diff --git a/latest_release.txt b/latest_release.txt index de6b52b20..3af323aac 100644 --- a/latest_release.txt +++ b/latest_release.txt @@ -1 +1 @@ -v2.6.4 +v2.6.5 diff --git a/v2.6.5/.buildinfo b/v2.6.5/.buildinfo new file mode 100644 index 000000000..c52da3352 --- /dev/null +++ b/v2.6.5/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 4f484f3127bc6e6a79e5e13464b028b9 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/v2.6.5/.doctrees/cleanlab/benchmarking/index.doctree b/v2.6.5/.doctrees/cleanlab/benchmarking/index.doctree new file mode 100644 index 000000000..d1ac12590 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/v2.6.5/.doctrees/cleanlab/benchmarking/noise_generation.doctree new file mode 100644 index 000000000..53cbd07fb Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/classification.doctree b/v2.6.5/.doctrees/cleanlab/classification.doctree new file mode 100644 index 000000000..d485cdd7a Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/classification.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/count.doctree b/v2.6.5/.doctrees/cleanlab/count.doctree new file mode 100644 index 000000000..2c1a4e03d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/count.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/data_valuation.doctree b/v2.6.5/.doctrees/cleanlab/data_valuation.doctree new file mode 100644 index 000000000..2851c4528 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/datalab.doctree b/v2.6.5/.doctrees/cleanlab/datalab/datalab.doctree new file mode 100644 index 000000000..ae012234f Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/v2.6.5/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree new file mode 100644 index 000000000..18b1e570d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/v2.6.5/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree new file mode 100644 index 000000000..aa2955624 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/v2.6.5/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree new file mode 100644 index 000000000..2d28c6bbe Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/guide/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/guide/index.doctree new file mode 100644 index 000000000..4b130dfaf Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/v2.6.5/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree new file mode 100644 index 000000000..36625734a Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/index.doctree new file mode 100644 index 000000000..89343c2af Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/data.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/data.doctree new file mode 100644 index 000000000..747054204 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/data_issues.doctree new file mode 100644 index 000000000..d691b51cd Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/factory.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/factory.doctree new file mode 100644 index 000000000..d0837e5fe Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/index.doctree new file mode 100644 index 000000000..3165f34df Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_finder.doctree new file mode 100644 index 000000000..1ad141453 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree new file mode 100644 index 000000000..86c5d69a8 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree new file mode 100644 index 000000000..c6a9fc3a7 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree new file mode 100644 index 000000000..09213d991 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree new file mode 100644 index 000000000..dc1e6c2ec Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree new file mode 100644 index 000000000..298eb617a Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree new file mode 100644 index 000000000..cb53b547f Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree new file mode 100644 index 000000000..d99215cd8 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree new file mode 100644 index 000000000..48ba1b6ff Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree new file mode 100644 index 000000000..402cba6e5 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree new file mode 100644 index 000000000..ae7d9f97d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree new file mode 100644 index 000000000..dbf82ccd5 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree new file mode 100644 index 000000000..2cda49087 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree new file mode 100644 index 000000000..9db3f89f2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree new file mode 100644 index 000000000..78df32502 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree new file mode 100644 index 000000000..2d1197c7e Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/model_outputs.doctree new file mode 100644 index 000000000..fd1cc8406 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/report.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/report.doctree new file mode 100644 index 000000000..6c0d6d4b2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/internal/task.doctree b/v2.6.5/.doctrees/cleanlab/datalab/internal/task.doctree new file mode 100644 index 000000000..a754645e8 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/v2.6.5/.doctrees/cleanlab/datalab/optional_dependencies.doctree new file mode 100644 index 000000000..988a49ce3 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/dataset.doctree b/v2.6.5/.doctrees/cleanlab/dataset.doctree new file mode 100644 index 000000000..a720a8ff1 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/dataset.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/v2.6.5/.doctrees/cleanlab/experimental/cifar_cnn.doctree new file mode 100644 index 000000000..939c4f604 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/coteaching.doctree b/v2.6.5/.doctrees/cleanlab/experimental/coteaching.doctree new file mode 100644 index 000000000..cb2ebe962 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/index.doctree b/v2.6.5/.doctrees/cleanlab/experimental/index.doctree new file mode 100644 index 000000000..5e6d0d648 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/v2.6.5/.doctrees/cleanlab/experimental/label_issues_batched.doctree new file mode 100644 index 000000000..10020a5e8 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/v2.6.5/.doctrees/cleanlab/experimental/mnist_pytorch.doctree new file mode 100644 index 000000000..6fc029944 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/experimental/span_classification.doctree b/v2.6.5/.doctrees/cleanlab/experimental/span_classification.doctree new file mode 100644 index 000000000..df3f2da4c Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/filter.doctree b/v2.6.5/.doctrees/cleanlab/filter.doctree new file mode 100644 index 000000000..47dac52e2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/filter.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/index.doctree b/v2.6.5/.doctrees/cleanlab/internal/index.doctree new file mode 100644 index 000000000..c832f697e Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/label_quality_utils.doctree b/v2.6.5/.doctrees/cleanlab/internal/label_quality_utils.doctree new file mode 100644 index 000000000..2970a2705 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/latent_algebra.doctree b/v2.6.5/.doctrees/cleanlab/internal/latent_algebra.doctree new file mode 100644 index 000000000..2f42aafaa Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/v2.6.5/.doctrees/cleanlab/internal/multiannotator_utils.doctree new file mode 100644 index 000000000..2b08e24a2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/v2.6.5/.doctrees/cleanlab/internal/multilabel_scorer.doctree new file mode 100644 index 000000000..66f36c550 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/multilabel_utils.doctree b/v2.6.5/.doctrees/cleanlab/internal/multilabel_utils.doctree new file mode 100644 index 000000000..732836f5f Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/neighbor/index.doctree b/v2.6.5/.doctrees/cleanlab/internal/neighbor/index.doctree new file mode 100644 index 000000000..4cdbaf195 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/v2.6.5/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree new file mode 100644 index 000000000..727b872a4 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/neighbor/metric.doctree b/v2.6.5/.doctrees/cleanlab/internal/neighbor/metric.doctree new file mode 100644 index 000000000..79f36ce70 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/neighbor/search.doctree b/v2.6.5/.doctrees/cleanlab/internal/neighbor/search.doctree new file mode 100644 index 000000000..2085ea716 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/outlier.doctree b/v2.6.5/.doctrees/cleanlab/internal/outlier.doctree new file mode 100644 index 000000000..5ef33179c Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/token_classification_utils.doctree b/v2.6.5/.doctrees/cleanlab/internal/token_classification_utils.doctree new file mode 100644 index 000000000..b3a132495 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/util.doctree b/v2.6.5/.doctrees/cleanlab/internal/util.doctree new file mode 100644 index 000000000..1f0b71e8b Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/util.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/internal/validation.doctree b/v2.6.5/.doctrees/cleanlab/internal/validation.doctree new file mode 100644 index 000000000..963661548 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/models/fasttext.doctree b/v2.6.5/.doctrees/cleanlab/models/fasttext.doctree new file mode 100644 index 000000000..aa982a75e Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/models/index.doctree b/v2.6.5/.doctrees/cleanlab/models/index.doctree new file mode 100644 index 000000000..09dcc3f46 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/models/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/models/keras.doctree b/v2.6.5/.doctrees/cleanlab/models/keras.doctree new file mode 100644 index 000000000..db8846b5d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/models/keras.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/multiannotator.doctree b/v2.6.5/.doctrees/cleanlab/multiannotator.doctree new file mode 100644 index 000000000..cd4d9d0a2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/v2.6.5/.doctrees/cleanlab/multilabel_classification/dataset.doctree new file mode 100644 index 000000000..813a4342d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/multilabel_classification/filter.doctree b/v2.6.5/.doctrees/cleanlab/multilabel_classification/filter.doctree new file mode 100644 index 000000000..9f5393588 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/multilabel_classification/index.doctree b/v2.6.5/.doctrees/cleanlab/multilabel_classification/index.doctree new file mode 100644 index 000000000..ce70f9573 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/multilabel_classification/rank.doctree b/v2.6.5/.doctrees/cleanlab/multilabel_classification/rank.doctree new file mode 100644 index 000000000..ffa877aec Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/object_detection/filter.doctree b/v2.6.5/.doctrees/cleanlab/object_detection/filter.doctree new file mode 100644 index 000000000..c75c64b18 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/object_detection/index.doctree b/v2.6.5/.doctrees/cleanlab/object_detection/index.doctree new file mode 100644 index 000000000..36aa5c4f2 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/object_detection/rank.doctree b/v2.6.5/.doctrees/cleanlab/object_detection/rank.doctree new file mode 100644 index 000000000..ac0a1aabd Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/object_detection/summary.doctree b/v2.6.5/.doctrees/cleanlab/object_detection/summary.doctree new file mode 100644 index 000000000..6e7530590 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/outlier.doctree b/v2.6.5/.doctrees/cleanlab/outlier.doctree new file mode 100644 index 000000000..2ba258a0f Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/outlier.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/rank.doctree b/v2.6.5/.doctrees/cleanlab/rank.doctree new file mode 100644 index 000000000..5eec333da Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/regression/index.doctree b/v2.6.5/.doctrees/cleanlab/regression/index.doctree new file mode 100644 index 000000000..c27ae3cfd Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/regression/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/regression/learn.doctree b/v2.6.5/.doctrees/cleanlab/regression/learn.doctree new file mode 100644 index 000000000..a8d39d8ef Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/regression/rank.doctree b/v2.6.5/.doctrees/cleanlab/regression/rank.doctree new file mode 100644 index 000000000..ded420984 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/segmentation/filter.doctree b/v2.6.5/.doctrees/cleanlab/segmentation/filter.doctree new file mode 100644 index 000000000..9f0bafc58 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/segmentation/index.doctree b/v2.6.5/.doctrees/cleanlab/segmentation/index.doctree new file mode 100644 index 000000000..c1e581f2c Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/segmentation/rank.doctree b/v2.6.5/.doctrees/cleanlab/segmentation/rank.doctree new file mode 100644 index 000000000..cd09d993d Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/segmentation/summary.doctree b/v2.6.5/.doctrees/cleanlab/segmentation/summary.doctree new file mode 100644 index 000000000..d29996172 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/token_classification/filter.doctree b/v2.6.5/.doctrees/cleanlab/token_classification/filter.doctree new file mode 100644 index 000000000..13294dbab Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/token_classification/index.doctree b/v2.6.5/.doctrees/cleanlab/token_classification/index.doctree new file mode 100644 index 000000000..93f140e7f Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/token_classification/rank.doctree b/v2.6.5/.doctrees/cleanlab/token_classification/rank.doctree new file mode 100644 index 000000000..e719bb525 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/v2.6.5/.doctrees/cleanlab/token_classification/summary.doctree b/v2.6.5/.doctrees/cleanlab/token_classification/summary.doctree new file mode 100644 index 000000000..d222d9d19 Binary files /dev/null and b/v2.6.5/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/v2.6.5/.doctrees/environment.pickle b/v2.6.5/.doctrees/environment.pickle new file mode 100644 index 000000000..552db0bd2 Binary files /dev/null and b/v2.6.5/.doctrees/environment.pickle differ diff --git a/v2.6.5/.doctrees/index.doctree b/v2.6.5/.doctrees/index.doctree new file mode 100644 index 000000000..7009d684e Binary files /dev/null and b/v2.6.5/.doctrees/index.doctree differ diff --git a/v2.6.5/.doctrees/migrating/migrate_v2.doctree b/v2.6.5/.doctrees/migrating/migrate_v2.doctree new file mode 100644 index 000000000..9b873e8da Binary files /dev/null and b/v2.6.5/.doctrees/migrating/migrate_v2.doctree differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb new file mode 100644 index 000000000..ec8995d2d --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -0,0 +1,820 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Classification with Structured/Tabular Data and Noisy Labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Consider Using Datalab\n", + "
\n", + "\n", + "If interested in detecting a wide variety of issues in your tabular data, check out the [Datalab tabular tutorial](https://docs.cleanlab.ai/stable/tutorials/datalab/tabular.html). Datalab can detect many other types of data issues beyond label issues, whereas CleanLearning is a convenience method to handle noisy labels with sklearn-compatible classification models.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use cleanlab with scikit-learn models to find potential label errors in a classification dataset with tabular features (numeric/categorical columns). Tabular (or *structured*) data are typically organized in a row/column format and stored in a SQL database or file types like: CSV, Excel, or Parquet. Here we consider a Student Grades dataset, which contains over 900 individuals who have three exam grades and some optional notes, each being assigned a letter grade (their class label). cleanlab automatically identifies _hundreds_ of examples in this dataset that were mislabeled with the incorrect final grade (data entry mistakes). \n", + "\n", + "This tutorial shows how to handle noisy labels and produce more robust classification models for your own tabular datasets. cleanlab's `CleanLearning` class automatically detects and filters out such badly labeled data, in order to train a more robust version of any Machine Learning model. No change to your existing modeling code is required! \n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Train a classifier model (here scikit-learn's ExtraTreesClassifier, although any model could be used) and use this classifier to compute (out-of-sample) predicted class probabilities via cross-validation.\n", + "\n", + "- Identify potential label errors in the data with cleanlab's `find_label_issues` method.\n", + "\n", + "- Train a robust version of the same ExtraTrees model via cleanlab's `CleanLearning` wrapper.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn compatible `model`, tabular `data` and given `labels`? Run the code below to train your `model` and get label issues.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "_ = cl.fit(train_data, labels)\n", + "label_issues = cl.get_label_issues()\n", + "preds = cl.predict(test_data) # predictions from a version of your model \n", + " # trained on auto-cleaned data\n", + "\n", + "\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `pred_probs`. Then run the code below to get label issue indices ranked by their inferred severity.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "\n", + "ranked_label_issues = find_label_issues(\n", + " labels,\n", + " pred_probs,\n", + " return_indices_ranked_by=\"self_confidence\",\n", + ")\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:18.076358Z", + "iopub.status.busy": "2024-05-24T23:42:18.075880Z", + "iopub.status.idle": "2024-05-24T23:42:19.312024Z", + "shell.execute_reply": "2024-05-24T23:42:19.311351Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.314921Z", + "iopub.status.busy": "2024-05-24T23:42:19.314370Z", + "iopub.status.idle": "2024-05-24T23:42:19.333120Z", + "shell.execute_reply": "2024-05-24T23:42:19.332668Z" + } + }, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import pandas as pd \n", + "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", + "from sklearn.model_selection import cross_val_predict, train_test_split\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.ensemble import ExtraTreesClassifier\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "SEED = 100 \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and process the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first load the data features and labels (which are possibly noisy).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.335500Z", + "iopub.status.busy": "2024-05-24T23:42:19.335131Z", + "iopub.status.idle": "2024-05-24T23:42:19.484091Z", + "shell.execute_reply": "2024-05-24T23:42:19.483484Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stud_IDexam_1exam_2exam_3notesletter_grade
0f48f7353.0077.009.003C
10bd4e781.0064.0080.00great participation +10B
20bd4e781.0064.0080.00great participation +10B
3cb9d7a0.610.940.78NaNC
49acca448.0090.009.001C
\n", + "
" + ], + "text/plain": [ + " stud_ID exam_1 exam_2 exam_3 notes letter_grade\n", + "0 f48f73 53.00 77.00 9.00 3 C\n", + "1 0bd4e7 81.00 64.00 80.00 great participation +10 B\n", + "2 0bd4e7 81.00 64.00 80.00 great participation +10 B\n", + "3 cb9d7a 0.61 0.94 0.78 NaN C\n", + "4 9acca4 48.00 90.00 9.00 1 C" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades_data = pd.read_csv(\"https://s.cleanlab.ai/grades-tabular-demo-v2.csv\")\n", + "grades_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.517867Z", + "iopub.status.busy": "2024-05-24T23:42:19.517400Z", + "iopub.status.idle": "2024-05-24T23:42:19.521653Z", + "shell.execute_reply": "2024-05-24T23:42:19.521165Z" + } + }, + "outputs": [], + "source": [ + "X_raw = grades_data[[\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]]\n", + "labels_raw = grades_data[\"letter_grade\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we preprocess the data. Here we apply one-hot encoding to features with categorical data, and standardize features with numeric data. We also perform label encoding on the labels, as cleanlab's functions require the labels for each example to be an interger integer in 0, 1, …, num_classes - 1. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.523840Z", + "iopub.status.busy": "2024-05-24T23:42:19.523649Z", + "iopub.status.idle": "2024-05-24T23:42:19.532271Z", + "shell.execute_reply": "2024-05-24T23:42:19.531797Z" + } + }, + "outputs": [], + "source": [ + "categorical_features = [\"notes\"]\n", + "X_encoded = pd.get_dummies(X_raw, columns=categorical_features, drop_first=True)\n", + "\n", + "numeric_features = [\"exam_1\", \"exam_2\", \"exam_3\"]\n", + "scaler = StandardScaler()\n", + "X_processed = X_encoded.copy()\n", + "X_processed[numeric_features] = scaler.fit_transform(X_encoded[numeric_features])\n", + "\n", + "encoder = LabelEncoder()\n", + "encoder.fit(labels_raw)\n", + "labels = encoder.transform(labels_raw)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own tabular dataset, and continue with the rest of the tutorial.\n", + " \n", + "Your classes (and entries of `labels`) should be represented as integer indices 0, 1, ..., num_classes - 1. \n", + "For example, if your dataset has 7 examples from 3 classes, `labels` might look like: `np.array([2,0,0,1,2,0,1])`\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Select a classification model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we use a simple ExtraTrees classifier that fits various randomized decision tress on our data, but you can choose any suitable scikit-learn model for this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.534774Z", + "iopub.status.busy": "2024-05-24T23:42:19.534404Z", + "iopub.status.idle": "2024-05-24T23:42:19.537097Z", + "shell.execute_reply": "2024-05-24T23:42:19.536648Z" + } + }, + "outputs": [], + "source": [ + "clf = ExtraTreesClassifier()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To find potential labeling errors, cleanlab requires a probabilistic prediction from your model for every datapoint. However, these predictions will be _overfitted_ (and thus unreliable) for examples the model was previously trained on. For the best results, cleanlab should be applied with **out-of-sample** predicted class probabilities, i.e., on examples held out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. An additional benefit of cross-validation is that it provides a more reliable evaluation of our model than a single training/validation split. We can implement this via the `cross_val_predict` method from scikit-learn:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:19.539154Z", + "iopub.status.busy": "2024-05-24T23:42:19.538829Z", + "iopub.status.idle": "2024-05-24T23:42:20.071856Z", + "shell.execute_reply": "2024-05-24T23:42:20.071186Z" + } + }, + "outputs": [], + "source": [ + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " clf,\n", + " X_processed,\n", + " labels,\n", + " cv=num_crossval_folds,\n", + " method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the given labels and out-of-sample predicted probabilities, cleanlab can quickly help us identify poorly labeled instances in our data table. For a dataset with N examples from K classes, the labels should be a 1D array of length N and predicted probabilities should be a 2D (N x K) array. Here we request that the indices of the identified label issues be sorted by cleanlab's self-confidence score, which measures the quality of each given label via the probability assigned to it in our model's prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:20.074422Z", + "iopub.status.busy": "2024-05-24T23:42:20.074210Z", + "iopub.status.idle": "2024-05-24T23:42:21.750857Z", + "shell.execute_reply": "2024-05-24T23:42:21.750207Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cleanlab found 212 potential label errors.\n" + ] + } + ], + "source": [ + "ranked_label_issues = find_label_issues(\n", + " labels=labels, pred_probs=pred_probs, return_indices_ranked_by=\"self_confidence\"\n", + ")\n", + "\n", + "print(f\"Cleanlab found {len(ranked_label_issues)} potential label errors.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.754003Z", + "iopub.status.busy": "2024-05-24T23:42:21.753208Z", + "iopub.status.idle": "2024-05-24T23:42:21.764689Z", + "shell.execute_reply": "2024-05-24T23:42:21.764243Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3noteslabel
45658.092.093.0NaND
82799.086.074.0NaND
6370.079.065.0cheated on exam, gets 0ptsA
1200.081.097.0cheated on exam, gets 0ptsB
23368.083.076.0NaNF
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes label\n", + "456 58.0 92.0 93.0 NaN D\n", + "827 99.0 86.0 74.0 NaN D\n", + "637 0.0 79.0 65.0 cheated on exam, gets 0pts A\n", + "120 0.0 81.0 97.0 cheated on exam, gets 0pts B\n", + "233 68.0 83.0 76.0 NaN F" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_raw.iloc[ranked_label_issues].assign(label=labels_raw.iloc[ranked_label_issues]).head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These final grades look suspicious and should definitely be carefully re-examined! This is a straightforward approach to visualize the rows in a data table that might be mislabeled." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Train a more robust model from noisy labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following proper ML practice, let's split our data into train and test sets.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.766710Z", + "iopub.status.busy": "2024-05-24T23:42:21.766449Z", + "iopub.status.idle": "2024-05-24T23:42:21.770603Z", + "shell.execute_reply": "2024-05-24T23:42:21.770157Z" + } + }, + "outputs": [], + "source": [ + "X_train, X_test, labels_train, labels_test = train_test_split(\n", + " X_encoded,\n", + " labels,\n", + " test_size=0.2,\n", + " random_state=SEED,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We again standardize the numeric features, this time fitting the scaling parameters solely on the training set.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.772757Z", + "iopub.status.busy": "2024-05-24T23:42:21.772426Z", + "iopub.status.idle": "2024-05-24T23:42:21.779657Z", + "shell.execute_reply": "2024-05-24T23:42:21.779173Z" + } + }, + "outputs": [], + "source": [ + "scaler = StandardScaler()\n", + "X_train[numeric_features] = scaler.fit_transform(X_train[numeric_features])\n", + "X_test[numeric_features] = scaler.transform(X_test[numeric_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now train and evaluate the original ExtraTrees model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.781709Z", + "iopub.status.busy": "2024-05-24T23:42:21.781385Z", + "iopub.status.idle": "2024-05-24T23:42:21.893798Z", + "shell.execute_reply": "2024-05-24T23:42:21.893298Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy of original model: 0.783068783068783\n" + ] + } + ], + "source": [ + "clf.fit(X_train, labels_train)\n", + "acc_og = clf.score(X_test, labels_test)\n", + "print(f\"Test accuracy of original model: {acc_og}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "cleanlab provides a wrapper class that can be easily applied to any scikit-learn compatible model. Once wrapped, the resulting model can still be used in the exact same manner, but it will now train more robustly if the data have noisy labels.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.896019Z", + "iopub.status.busy": "2024-05-24T23:42:21.895672Z", + "iopub.status.idle": "2024-05-24T23:42:21.898534Z", + "shell.execute_reply": "2024-05-24T23:42:21.898067Z" + } + }, + "outputs": [], + "source": [ + "clf = ExtraTreesClassifier() # Note we first re-initialize clf\n", + "cl = CleanLearning(clf) # cl has same methods/attributes as clf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following operations take place when we train the cleanlab-wrapped model: The original model is trained in a cross-validated fashion to produce out-of-sample predicted probabilities. Then, these predicted probabilities are used to identify label issues, which are then removed from the dataset. Finally, the original model is trained on the remaining clean subset of the data once more.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:21.900589Z", + "iopub.status.busy": "2024-05-24T23:42:21.900302Z", + "iopub.status.idle": "2024-05-24T23:42:23.984469Z", + "shell.execute_reply": "2024-05-24T23:42:23.983862Z" + } + }, + "outputs": [], + "source": [ + "_ = cl.fit(X_train, labels_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get predictions from the resulting model and evaluate them, just like how we did it for the original scikit-learn model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:23.987565Z", + "iopub.status.busy": "2024-05-24T23:42:23.986826Z", + "iopub.status.idle": "2024-05-24T23:42:24.000368Z", + "shell.execute_reply": "2024-05-24T23:42:23.999910Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy of cleanlab-trained model: 0.8095238095238095\n" + ] + } + ], + "source": [ + "preds = cl.predict(X_test)\n", + "acc_cl = accuracy_score(labels_test, preds)\n", + "print(f\"Test accuracy of cleanlab-trained model: {acc_cl}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we evaluate on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:24.002433Z", + "iopub.status.busy": "2024-05-24T23:42:24.002112Z", + "iopub.status.idle": "2024-05-24T23:42:24.037964Z", + "shell.execute_reply": "2024-05-24T23:42:24.037532Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "if acc_og >= acc_cl: # check cleanlab has improved prediction accuracy\n", + " raise Exception(\"Cleanlab training failed to improve model accuracy.\")\n", + " \n", + "# this file contains true and noisy labels\n", + "true_data = pd.read_csv(\"https://s.cleanlab.ai/student-grades-demo.csv\")\n", + "true_errors = np.where(true_data[\"letter_grade\"] != true_data[\"noisy_letter_grade\"])[0]\n", + "if not all(x in true_errors for x in ranked_label_issues[:5]): # check top errors are indeed errors\n", + " raise Exception(\"Some of the top listed errors are not actually label errors.\")" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "cda20062bc42cfdcaa0f9720c0b28e880bba110e9dfce6c1689934eec9b595a1" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb new file mode 100644 index 000000000..4bf48edf3 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -0,0 +1,3644 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Text Classification with Noisy Labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Consider Using Datalab\n", + "
\n", + "\n", + "If you are interested in detecting a wide variety of issues in your text dataset, check out the [Datalab text tutorial](https://docs.cleanlab.ai/stable/tutorials/datalab/text.html). Datalab can detect many other types of data issues beyond label issues, whereas CleanLearning is a convenience method to handle noisy labels with sklearn-compatible classification models.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use cleanlab to find potential label errors in an intent classification dataset composed of (text) customer service requests at an online bank. We consider a subset of the [Banking77-OOS Dataset](https://arxiv.org/abs/2106.04564) containing 1,000 customer service requests which can be classified into 10 categories corresponding to the intent of the request. cleanlab will shortlist examples that confuse our ML model the most; many of which are potential label errors, out-of-scope examples, or otherwise ambiguous examples. cleanlab's `CleanLearning` class automatically detects and filters out such badly labeled data, in order to train a more robust version of any Machine Learning model. No change to your existing modeling code is required!\n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Define a ML model that can be trained on our dataset (here we use Logistic Regression applied to text embeddings from a pretrained Transformer network, you can use any text classifier model).\n", + "\n", + "- Use `CleanLearning` to wrap this ML model and compute out-of-sample predicted class probabilites, which allow us to identify potential label errors in the dataset.\n", + "\n", + "- Train a more robust version of the same ML model after dropping the detected label errors using `CleanLearning`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn compatible `model`, `data` and given `labels`? Run the code below to train your `model` and get label issues using `CleanLearning`. \n", + " \n", + "You can subsequently use the same `CleanLearning` object to train a more robust model (only trained on the clean data) by calling the `.fit()` method and passing in the `label_issues` found earlier.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "label_issues = cl.find_label_issues(train_data, labels) # identify mislabeled examples \n", + " \n", + "cl.fit(train_data, labels, label_issues=label_issues)\n", + "preds = cl.predict(test_data) # predictions from a version of your model \n", + " # trained on auto-cleaned data\n", + "\n", + "\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `pred_probs`. Then run the code below to get label issue indices ranked by their inferred severity.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "\n", + "ranked_label_issues = find_label_issues(\n", + " labels,\n", + " pred_probs,\n", + " return_indices_ranked_by=\"self_confidence\",\n", + ")\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install sentence-transformers\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:26.941135Z", + "iopub.status.busy": "2024-05-24T23:42:26.940786Z", + "iopub.status.idle": "2024-05-24T23:42:30.011523Z", + "shell.execute_reply": "2024-05-24T23:42:30.010921Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used:scikit-learn==1.2.0 sentence-transformers==2.2.2\n", + "\n", + "dependencies = [\"cleanlab\", \"sentence_transformers\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.014303Z", + "iopub.status.busy": "2024-05-24T23:42:30.013658Z", + "iopub.status.idle": "2024-05-24T23:42:30.017165Z", + "shell.execute_reply": "2024-05-24T23:42:30.016742Z" + } + }, + "outputs": [], + "source": [ + "import re \n", + "import string \n", + "import pandas as pd \n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import train_test_split, cross_val_predict \n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "from cleanlab.classification import CleanLearning" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.019276Z", + "iopub.status.busy": "2024-05-24T23:42:30.018937Z", + "iopub.status.idle": "2024-05-24T23:42:30.022496Z", + "shell.execute_reply": "2024-05-24T23:42:30.022085Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "pd.set_option(\"display.max_colwidth\", None) \n", + "\n", + "SEED = 123456 # for reproducibility \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and format the text dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.024449Z", + "iopub.status.busy": "2024-05-24T23:42:30.024132Z", + "iopub.status.idle": "2024-05-24T23:42:30.080713Z", + "shell.execute_reply": "2024-05-24T23:42:30.080135Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textlabel
0i accidentally made a payment to a wrong account. what should i do?cancel_transfer
1i no longer want to transfer funds, can we cancel that transaction?cancel_transfer
2cancel my transfer, please.cancel_transfer
3i want to revert this mornings transaction.cancel_transfer
4i just realised i made the wrong payment yesterday. can you please change it to the right account? it's my rent payment and really really needs to be in the right account by tomorrowcancel_transfer
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "0 i accidentally made a payment to a wrong account. what should i do? \n", + "1 i no longer want to transfer funds, can we cancel that transaction? \n", + "2 cancel my transfer, please. \n", + "3 i want to revert this mornings transaction. \n", + "4 i just realised i made the wrong payment yesterday. can you please change it to the right account? it's my rent payment and really really needs to be in the right account by tomorrow \n", + "\n", + " label \n", + "0 cancel_transfer \n", + "1 cancel_transfer \n", + "2 cancel_transfer \n", + "3 cancel_transfer \n", + "4 cancel_transfer " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv(\"https://s.cleanlab.ai/banking-intent-classification.csv\")\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.083021Z", + "iopub.status.busy": "2024-05-24T23:42:30.082714Z", + "iopub.status.idle": "2024-05-24T23:42:30.086342Z", + "shell.execute_reply": "2024-05-24T23:42:30.085804Z" + } + }, + "outputs": [], + "source": [ + "raw_texts, raw_labels = data[\"text\"].values, data[\"label\"].values\n", + "\n", + "raw_train_texts, raw_test_texts, raw_train_labels, raw_test_labels = train_test_split(raw_texts, raw_labels, test_size=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.088374Z", + "iopub.status.busy": "2024-05-24T23:42:30.088069Z", + "iopub.status.idle": "2024-05-24T23:42:30.091533Z", + "shell.execute_reply": "2024-05-24T23:42:30.090957Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This dataset has 10 classes.\n", + "Classes: {'beneficiary_not_allowed', 'change_pin', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay'}\n" + ] + } + ], + "source": [ + "num_classes = len(set(raw_train_labels))\n", + "\n", + "print(f\"This dataset has {num_classes} classes.\")\n", + "print(f\"Classes: {set(raw_train_labels)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print the first example in the train set." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.093453Z", + "iopub.status.busy": "2024-05-24T23:42:30.093160Z", + "iopub.status.idle": "2024-05-24T23:42:30.096123Z", + "shell.execute_reply": "2024-05-24T23:42:30.095595Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example Label: getting_spare_card\n", + "Example Text: can i have another card in addition to my first one?\n" + ] + } + ], + "source": [ + "i = 0\n", + "print(f\"Example Label: {raw_train_labels[i]}\")\n", + "print(f\"Example Text: {raw_train_texts[i]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored as two numpy arrays for each the train and test set:\n", + "\n", + "1. `raw_train_texts` and `raw_test_texts` store the customer service requests utterances in text format\n", + "2. `raw_train_labels` and `raw_test_labels` store the intent categories (labels) for each example\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need to perform label enconding on the labels, cleanlab's functions require the labels for each example to be an interger integer in 0, 1, …, num_classes - 1. We will use sklearn's `LabelEncoder` to encode our labels.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.098205Z", + "iopub.status.busy": "2024-05-24T23:42:30.097882Z", + "iopub.status.idle": "2024-05-24T23:42:30.101153Z", + "shell.execute_reply": "2024-05-24T23:42:30.100629Z" + } + }, + "outputs": [], + "source": [ + "encoder = LabelEncoder()\n", + "encoder.fit(raw_train_labels)\n", + "\n", + "train_labels = encoder.transform(raw_train_labels)\n", + "test_labels = encoder.transform(raw_test_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own text dataset, and continue with the rest of the tutorial.\n", + "\n", + "Your classes (and entries of `train_labels` / `test_labels`) should be represented as integer indices 0, 1, ..., num_classes - 1.\n", + "For example, if your dataset has 7 examples from 3 classes, `train_labels` might be: `np.array([2,0,0,1,2,0,1])`\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we convert the text strings into vectors better suited as inputs for our ML model. \n", + "\n", + "We will use numeric representations from a pretrained Transformer model as embeddings of our text. The [Sentence Transformers](https://huggingface.co/docs/hub/sentence-transformers) library offers simple methods to compute these embeddings for text data. Here, we load the pretrained `electra-small-discriminator` model, and then run our data through network to extract a vector embedding of each example." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:30.103248Z", + "iopub.status.busy": "2024-05-24T23:42:30.102869Z", + "iopub.status.idle": "2024-05-24T23:42:35.862722Z", + "shell.execute_reply": "2024-05-24T23:42:35.862182Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5099e0804fc444398d1690ac7337c0bd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + ".gitattributes: 0%| | 0.00/391 [00:00" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted embeddings." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:35.865493Z", + "iopub.status.busy": "2024-05-24T23:42:35.865101Z", + "iopub.status.idle": "2024-05-24T23:42:35.868143Z", + "shell.execute_reply": "2024-05-24T23:42:35.867649Z" + } + }, + "outputs": [], + "source": [ + "model = LogisticRegression(max_iter=400)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can define the `CleanLearning` object with our Logistic Regression model and use `find_label_issues` to identify potential label errors.\n", + "\n", + "`CleanLearning` provides a wrapper class that can easily be applied to any scikit-learn compatible model, which can be used to find potential label issues and train a more robust model if the original data contains noisy labels." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:35.870293Z", + "iopub.status.busy": "2024-05-24T23:42:35.869971Z", + "iopub.status.idle": "2024-05-24T23:42:35.872668Z", + "shell.execute_reply": "2024-05-24T23:42:35.872217Z" + } + }, + "outputs": [], + "source": [ + "cv_n_folds = 5 # for efficiency; values like 5 or 10 will generally work better\n", + "\n", + "cl = CleanLearning(model, cv_n_folds=cv_n_folds)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:35.874593Z", + "iopub.status.busy": "2024-05-24T23:42:35.874270Z", + "iopub.status.idle": "2024-05-24T23:42:38.140230Z", + "shell.execute_reply": "2024-05-24T23:42:38.139614Z" + }, + "scrolled": true + }, + "outputs": [], + "source": [ + "label_issues = cl.find_label_issues(X=train_texts, labels=train_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `find_label_issues` method above will perform cross validation to compute out-of-sample predicted probabilites for each example, which is used to identify label issues.\n", + "\n", + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled). Note that the given and predicted labels here are encoded as intergers as that was the format expected by `cleanlab`, we will inverse transform them later in this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.143066Z", + "iopub.status.busy": "2024-05-24T23:42:38.142484Z", + "iopub.status.idle": "2024-05-24T23:42:38.150226Z", + "shell.execute_reply": "2024-05-24T23:42:38.149706Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_qualitygiven_labelpredicted_label
0False0.85837166
1False0.54727433
2False0.82622877
3False0.96600888
4False0.79244944
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_quality given_label predicted_label\n", + "0 False 0.858371 6 6\n", + "1 False 0.547274 3 3\n", + "2 False 0.826228 7 7\n", + "3 False 0.966008 8 8\n", + "4 False 0.792449 4 4" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 10 most likely mislabeled examples in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.152407Z", + "iopub.status.busy": "2024-05-24T23:42:38.152017Z", + "iopub.status.idle": "2024-05-24T23:42:38.156065Z", + "shell.execute_reply": "2024-05-24T23:42:38.155530Z" + } + }, + "outputs": [], + "source": [ + "identified_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_quality\"].argsort()[:10].to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.157910Z", + "iopub.status.busy": "2024-05-24T23:42:38.157659Z", + "iopub.status.idle": "2024-05-24T23:42:38.161141Z", + "shell.execute_reply": "2024-05-24T23:42:38.160554Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cleanlab found 44 potential label errors in the dataset.\n", + "Here are indices of the top 10 most likely errors: \n", + " [646 390 628 121 702 863 456 135 337 735]\n" + ] + } + ], + "source": [ + "print(\n", + " f\"cleanlab found {len(identified_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 10 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors. To help us inspect these datapoints, we define a method to print any example from the dataset, together with its given (original) label and the suggested alternative label from cleanlab.\n", + "\n", + "We then display some of the top-ranked label issues identified by cleanlab:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.164177Z", + "iopub.status.busy": "2024-05-24T23:42:38.163915Z", + "iopub.status.idle": "2024-05-24T23:42:38.166936Z", + "shell.execute_reply": "2024-05-24T23:42:38.166393Z" + } + }, + "outputs": [], + "source": [ + "def print_as_df(index):\n", + " return pd.DataFrame(\n", + " {\n", + " \"text\": raw_train_texts, \n", + " \"given_label\": raw_train_labels,\n", + " \"predicted_label\": encoder.inverse_transform(label_issues[\"predicted_label\"]),\n", + " },\n", + " ).iloc[index]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.169024Z", + "iopub.status.busy": "2024-05-24T23:42:38.168607Z", + "iopub.status.idle": "2024-05-24T23:42:38.177130Z", + "shell.execute_reply": "2024-05-24T23:42:38.176591Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textgiven_labelpredicted_label
646i was charged for getting cash.card_about_to_expirecard_payment_fee_charged
390can i change my pin on holiday?beneficiary_not_allowedchange_pin
628will i be sent a new card before mine expires?apple_pay_or_google_paycard_about_to_expire
121Would you rather fight one horse-sized duck or 100 duck-sized horses?lost_or_stolen_phonegetting_spare_card
702please tell me how to change my pin.beneficiary_not_allowedchange_pin
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "646 i was charged for getting cash. \n", + "390 can i change my pin on holiday? \n", + "628 will i be sent a new card before mine expires? \n", + "121 Would you rather fight one horse-sized duck or 100 duck-sized horses? \n", + "702 please tell me how to change my pin. \n", + "\n", + " given_label predicted_label \n", + "646 card_about_to_expire card_payment_fee_charged \n", + "390 beneficiary_not_allowed change_pin \n", + "628 apple_pay_or_google_pay card_about_to_expire \n", + "121 lost_or_stolen_phone getting_spare_card \n", + "702 beneficiary_not_allowed change_pin " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print_as_df(lowest_quality_labels[:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These are very clear label errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the intent of these requests, whoever produced this dataset made many mistakes that are important to address before modeling the data.\n", + "\n", + "cleanlab has shortlisted the most likely label errors to speed up your data cleaning process. With this list, you can decide whether to fix these label issues or remove ambiguous examples from the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Train a more robust model from noisy labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fixing the label issues manually may be time-consuming, but cleanlab can filter these noisy examples and train a model on the remaining clean data for you automatically.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To establish a baseline, let's first train and evaluate our original Logistic Regression model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.179157Z", + "iopub.status.busy": "2024-05-24T23:42:38.178849Z", + "iopub.status.idle": "2024-05-24T23:42:38.401460Z", + "shell.execute_reply": "2024-05-24T23:42:38.400931Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Test accuracy of original model: 0.87\n" + ] + } + ], + "source": [ + "baseline_model = LogisticRegression(max_iter=400) # note we first re-instantiate the model\n", + "baseline_model.fit(X=train_texts, y=train_labels)\n", + "\n", + "preds = baseline_model.predict(test_texts)\n", + "acc_og = accuracy_score(test_labels, preds)\n", + "print(f\"\\n Test accuracy of original model: {acc_og}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a baseline, let's check if using `CleanLearning` improves our test accuracy.\n", + "\n", + "`CleanLearning` provides a wrapper that can be applied to any scikit-learn compatible model. The resulting model object can be used in the same manner, but it will now train more robustly if the data has noisy labels.\n", + "\n", + "We can use the same `CleanLearning` object defined above, and pass the label issues we already computed into `.fit()` via the `label_issues` argument. This accelerates things; if we did not provide the label issues, then they would be recomputed via cross-validation. After that `CleanLearning` simply deletes the examples with label issues and retrains your model on the remaining data." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.404076Z", + "iopub.status.busy": "2024-05-24T23:42:38.403727Z", + "iopub.status.idle": "2024-05-24T23:42:38.576512Z", + "shell.execute_reply": "2024-05-24T23:42:38.575977Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy of cleanlab's model: 0.89\n" + ] + } + ], + "source": [ + "cl.fit(X=train_texts, labels=train_labels, label_issues=cl.get_label_issues())\n", + "\n", + "pred_labels = cl.predict(test_texts)\n", + "acc_cl = accuracy_score(test_labels, pred_labels)\n", + "print(f\"Test accuracy of cleanlab's model: {acc_cl}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:38.579081Z", + "iopub.status.busy": "2024-05-24T23:42:38.578747Z", + "iopub.status.idle": "2024-05-24T23:42:38.582477Z", + "shell.execute_reply": "2024-05-24T23:42:38.581987Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "highlighted_indices = [646, 390, 628, 702] # check these examples were found in find_label_issues\n", + "if not all(x in identified_issues.index for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from ranked_label_issues.\")\n", + "\n", + "# Also check that cleanlab has improved prediction accuracy\n", + "if acc_og >= acc_cl:\n", + " raise Exception(\"Cleanlab training failed to improve model accuracy.\")" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Text x TensorFlow", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "01e42f2208a7489abeff488ed8624297": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0420637dfe2340a59e008275393f4bc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_738c3aec6bff43dcb70e9118e091a58b", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53191b3cade240b08cc35c9c6edbe3d8", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "0aa1a8d5989549d0a6c92695409f5c9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b9e4c0cbd434c7c9a141e11e0f651a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ea3bcd8f3094ec59608631973e58338": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ff23ce7e3454374931e8c72e73bad4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f5f2d06746d4786869337ae539093d2", + "placeholder": "​", + "style": "IPY_MODEL_2d004cdeb60946a3be06725038acf4e3", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "16971a9a7b7f40b5848d1fc6500f764d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b933dfe487a4e05b76cc61ff9c24121", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ac7966a2f3a942bbb2df3dd6ee2607ab", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "1715a48111424c5e9007f6e079129011": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19fbba361b6c4b86ad650bf5b1f54097": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c14dda13f4624eed93ba43957a1c5dbc", + "placeholder": "​", + "style": "IPY_MODEL_83c2422c842e4050af2c0cee3242badb", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 36.3MB/s]" + } + }, + "246c96d2bf884951ab983568995b3889": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3eb84e8485b646f1a06f9b913871a671", + "placeholder": "​", + "style": "IPY_MODEL_0aa1a8d5989549d0a6c92695409f5c9f", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "26ccd5a80fd946368f10a248a3952632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d561bfbd18bb49a5af983d098dc983b0", + "placeholder": "​", + "style": "IPY_MODEL_eb957d20d64d46919dfc2a6b3cde72d3", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "27bfe6bcedfb48ef94bac80bf2525804": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a7e132861304aec9ca6d5e82efe907b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ff23ce7e3454374931e8c72e73bad4e", + "IPY_MODEL_b8e94f03ea124b62a8e98ff052d7ac4d", + "IPY_MODEL_d0bdcd74a088490191004162118c1582" + ], + "layout": "IPY_MODEL_b607042c35fd43c38a5977404b6d9bef", + "tabbable": null, + "tooltip": null + } + }, + "2d004cdeb60946a3be06725038acf4e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2eced07607684df986e270325792390f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2ee5ea1a7602431a8b8f915513fc1ef6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f6d1e1e7f7641f1930dfaa954165910": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "369963c25dcd474ba80f7d6b2a78b6ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3964e17d3f9547bdbba6ffc7f34ef3b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3df82298eedc4354bb79b8e6ff2c7ae1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3eb84e8485b646f1a06f9b913871a671": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44e4e0304756472d9f62fb73ba354d8c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4804006fc2cb4f49b68f4e432e85e71a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb8720d2fbdd47a08cd53229fc6707c9", + "placeholder": "​", + "style": "IPY_MODEL_2eced07607684df986e270325792390f", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.13kB/s]" + } + }, + "4989649acff94a42b2f81336e9ba0006": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49ca6cbd35af44d39c4663ae185c7321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5099e0804fc444398d1690ac7337c0bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_26ccd5a80fd946368f10a248a3952632", + "IPY_MODEL_610f33a526104c718ced0b6d4e7e10a1", + "IPY_MODEL_f3dab74f8b1f4e928cee360594c9676f" + ], + "layout": "IPY_MODEL_f383857b1ee84f23b2b1917b04aa2765", + "tabbable": null, + "tooltip": null + } + }, + "53191b3cade240b08cc35c9c6edbe3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5469513899ae4229a7745265f1c870b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "610f33a526104c718ced0b6d4e7e10a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1715a48111424c5e9007f6e079129011", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_759d38316c5a47b499c72efc35396a30", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "647a3ea3208544eeaf863bc5e2a24c53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b9e4c0cbd434c7c9a141e11e0f651a8", + "placeholder": "​", + "style": "IPY_MODEL_7f9ae8067cc343ceb740034020bbdae1", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 133kB/s]" + } + }, + "64e2d07801a24ae99c63cfdcf7b3aa42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85e94aa479bc47bbba0cdc96cf2cbf81", + "placeholder": "​", + "style": "IPY_MODEL_e19986b197fe4030b3c1fb2f0a5b9f79", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "6c95d2a299984edc8a26df76ff57f87e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cb385ac9ac04c4eb7b01136c0e7f315": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7869ec3309c4ae38c84f8aa27341c3b", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ded8ef1042084961bb90f58515499c54", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "7343db4d91e0463fa617bd13687e96ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad5bb85c39484635b428e81c059d6466", + "IPY_MODEL_16971a9a7b7f40b5848d1fc6500f764d", + "IPY_MODEL_4804006fc2cb4f49b68f4e432e85e71a" + ], + "layout": "IPY_MODEL_369963c25dcd474ba80f7d6b2a78b6ea", + "tabbable": null, + "tooltip": null + } + }, + "738c3aec6bff43dcb70e9118e091a58b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74974f93069c4dd3bcc5a1084d0b3f37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "759d38316c5a47b499c72efc35396a30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f5f2d06746d4786869337ae539093d2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f9ae8067cc343ceb740034020bbdae1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83c2422c842e4050af2c0cee3242badb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85e94aa479bc47bbba0cdc96cf2cbf81": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "862fd89cc21c47e7a39e52e9cdeba0a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c8b83f5d3f74c798a2a32cd3ce4aa80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8cfbca12545941dd9311451893c43acc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95091e04e057478cb7af63a9d3f58dda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cfbca12545941dd9311451893c43acc", + "placeholder": "​", + "style": "IPY_MODEL_ddabc074845446d49f999e03f2723a8c", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 417kB/s]" + } + }, + "97f93c12d8c44c849aa07327b4cd6290": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f72ce277c93a4278bdba70e93f47d2ef", + "placeholder": "​", + "style": "IPY_MODEL_8c8b83f5d3f74c798a2a32cd3ce4aa80", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 29.8MB/s]" + } + }, + "9b933dfe487a4e05b76cc61ff9c24121": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e7542d17b934fd2a97cc841817d2edf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac7966a2f3a942bbb2df3dd6ee2607ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad5bb85c39484635b428e81c059d6466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3df82298eedc4354bb79b8e6ff2c7ae1", + "placeholder": "​", + "style": "IPY_MODEL_2f6d1e1e7f7641f1930dfaa954165910", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "afa886851e694f068f3342ffd840ebaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64e2d07801a24ae99c63cfdcf7b3aa42", + "IPY_MODEL_6cb385ac9ac04c4eb7b01136c0e7f315", + "IPY_MODEL_97f93c12d8c44c849aa07327b4cd6290" + ], + "layout": "IPY_MODEL_d92016a3f4654f42a707978806b8fd90", + "tabbable": null, + "tooltip": null + } + }, + "b30a4a01efd846749d1e29bdc1d3bf18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cbe867b4649b4b43937c25f710365a1d", + "IPY_MODEL_0420637dfe2340a59e008275393f4bc0", + "IPY_MODEL_95091e04e057478cb7af63a9d3f58dda" + ], + "layout": "IPY_MODEL_ef774c22e7694b3ca6fa6590f1dc2fbd", + "tabbable": null, + "tooltip": null + } + }, + "b4982e3d7a2e49eaae23a5087c952237": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_246c96d2bf884951ab983568995b3889", + "IPY_MODEL_f417f8ea5e03499c8326cce158d3547a", + "IPY_MODEL_19fbba361b6c4b86ad650bf5b1f54097" + ], + "layout": "IPY_MODEL_862fd89cc21c47e7a39e52e9cdeba0a3", + "tabbable": null, + "tooltip": null + } + }, + "b607042c35fd43c38a5977404b6d9bef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b68720450a524abd88cba4953e9d1a9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8333e9d35f8453e9aa51f6577f154e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8e94f03ea124b62a8e98ff052d7ac4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_74974f93069c4dd3bcc5a1084d0b3f37", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b68720450a524abd88cba4953e9d1a9a", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "ba3a52bd36de453a9daedbd45e5cf3bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c14dda13f4624eed93ba43957a1c5dbc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cb8720d2fbdd47a08cd53229fc6707c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbe867b4649b4b43937c25f710365a1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4989649acff94a42b2f81336e9ba0006", + "placeholder": "​", + "style": "IPY_MODEL_ba3a52bd36de453a9daedbd45e5cf3bb", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "d0bdcd74a088490191004162118c1582": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9e7542d17b934fd2a97cc841817d2edf", + "placeholder": "​", + "style": "IPY_MODEL_5469513899ae4229a7745265f1c870b7", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 310MB/s]" + } + }, + "d0cd33e0c3ed49b280b449bb1988c8f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44e4e0304756472d9f62fb73ba354d8c", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b8333e9d35f8453e9aa51f6577f154e9", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "d561bfbd18bb49a5af983d098dc983b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7869ec3309c4ae38c84f8aa27341c3b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d92016a3f4654f42a707978806b8fd90": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ddabc074845446d49f999e03f2723a8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ded8ef1042084961bb90f58515499c54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e19986b197fe4030b3c1fb2f0a5b9f79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eb46effd0a324b098b56874839ec6336": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_27bfe6bcedfb48ef94bac80bf2525804", + "placeholder": "​", + "style": "IPY_MODEL_2ee5ea1a7602431a8b8f915513fc1ef6", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "eb957d20d64d46919dfc2a6b3cde72d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef774c22e7694b3ca6fa6590f1dc2fbd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "efe4c0c35cc940d0a743c398ca509c4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb46effd0a324b098b56874839ec6336", + "IPY_MODEL_d0cd33e0c3ed49b280b449bb1988c8f7", + "IPY_MODEL_647a3ea3208544eeaf863bc5e2a24c53" + ], + "layout": "IPY_MODEL_0ea3bcd8f3094ec59608631973e58338", + "tabbable": null, + "tooltip": null + } + }, + "f383857b1ee84f23b2b1917b04aa2765": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3dab74f8b1f4e928cee360594c9676f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c95d2a299984edc8a26df76ff57f87e", + "placeholder": "​", + "style": "IPY_MODEL_01e42f2208a7489abeff488ed8624297", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 64.4kB/s]" + } + }, + "f417f8ea5e03499c8326cce158d3547a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3964e17d3f9547bdbba6ffc7f34ef3b0", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_49ca6cbd35af44d39c4663ae185c7321", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f72ce277c93a4278bdba70e93f47d2ef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb new file mode 100644 index 000000000..6f135967b --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -0,0 +1,3208 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "eVufWTY3jRPx" + }, + "source": [ + "# Detecting Issues in an Audio Dataset with Datalab\n", + "\n", + "In this 5-minute quickstart tutorial, we use cleanlab to find label issues in the [Spoken Digit dataset](https://www.tensorflow.org/datasets/catalog/spoken_digit) (it's like MNIST for audio). The dataset contains 2,500 audio clips with English pronunciations of the digits 0 to 9 (these are the class labels to predict from the audio).\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Extract features from audio clips (.wav files) using a [pre-trained Pytorch model](https://huggingface.co/speechbrain/spkrec-xvect-voxceleb) from HuggingFace that was previously fit to the [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) speech dataset.\n", + "\n", + "- Train a cross-validated linear model using the extracted features and generate out-of-sample predicted probabilities.\n", + "\n", + "- Apply cleanlab's `Datalab` audit to these predictions in order to identify which audio clips in the dataset are likely mislabeled.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have a `model`? Run cross-validation to get out-of-sample `pred_probs`, and then run the code below to audit your dataset and identify any potential issues.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, issue_types={\"label\":{}})\n", + "\n", + "lab.get_issues(\"label\")\n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eqsqBq3PiUHA" + }, + "source": [ + "## 1. Install dependencies and import them\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i7nT-U9qc8MS" + }, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install tensorflow==2.12.1 tensorflow_io==0.32.0 huggingface_hub==0.17.0 speechbrain==0.5.13 \n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:41.594727Z", + "iopub.status.busy": "2024-05-24T23:42:41.594553Z", + "iopub.status.idle": "2024-05-24T23:42:46.229432Z", + "shell.execute_reply": "2024-05-24T23:42:46.228875Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: tensorflow==2.12.1 tensorflow-io==0.32.0 torch==2.1.2 torchaudio==2.1.2 speechbrain==0.5.13\n", + "\n", + "dependencies = [\"cleanlab\", \"tensorflow==2.12.1\", \"tensorflow_io==0.32.0\", \"huggingface_hub==0.17.0\", \"speechbrain==0.5.13\", \"datasets\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\") " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x-oboEbRdhf6" + }, + "source": [ + "Let's import some of the packages needed throughout this tutorial.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:46.232106Z", + "iopub.status.busy": "2024-05-24T23:42:46.231599Z", + "iopub.status.idle": "2024-05-24T23:42:46.234796Z", + "shell.execute_reply": "2024-05-24T23:42:46.234342Z" + }, + "id": "LaEiwXUiVHCS" + }, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "import random\n", + "import tensorflow as tf\n", + "import torch\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "SEED = 456 # ensure reproducibility" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:46.236652Z", + "iopub.status.busy": "2024-05-24T23:42:46.236457Z", + "iopub.status.idle": "2024-05-24T23:42:46.241112Z", + "shell.execute_reply": "2024-05-24T23:42:46.240695Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai \n", + "\n", + "def set_seed(seed=0):\n", + " \"\"\"Ensure reproducibility.\"\"\"\n", + " np.random.seed(seed)\n", + " torch.manual_seed(seed)\n", + " torch.backends.cudnn.deterministic = True\n", + " torch.backends.cudnn.benchmark = False\n", + " torch.cuda.manual_seed_all(seed)\n", + "\n", + "\n", + "set_seed(SEED)\n", + "pd.options.display.max_colwidth = 500\n", + "tf.get_logger().setLevel('FATAL') # suppress more TF logs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SOen_sxQidLC" + }, + "source": [ + "## 2. Load the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uHVskN2eeNj6" + }, + "source": [ + "We must first fetch the dataset. To run the below command, you'll need to have `wget` installed; alternatively you can manually navigate to the link in your browser and download from there.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:42:46.243092Z", + "iopub.status.busy": "2024-05-24T23:42:46.242787Z", + "iopub.status.idle": "2024-05-24T23:42:47.853694Z", + "shell.execute_reply": "2024-05-24T23:42:47.852953Z" + }, + "id": "GRDPEg7-VOQe", + "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "!wget https://github.com/Jakobovski/free-spoken-digit-dataset/archive/v1.0.9.tar.gz\n", + "!mkdir spoken_digits\n", + "!tar -xf v1.0.9.tar.gz -C spoken_digits" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tRvNnyB0e_IE" + }, + "source": [ + "The audio data are .wav files in the `recordings/` folder. Note that the label for each audio clip (i.e. digit from 0 to 9) is indicated in the prefix of the file name (e.g. `6_nicolas_32.wav` has the label 6). If instead applying cleanlab to your own dataset, its classes should be represented as integer indices 0, 1, ..., num_classes - 1." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:42:47.856581Z", + "iopub.status.busy": "2024-05-24T23:42:47.856218Z", + "iopub.status.idle": "2024-05-24T23:42:47.866858Z", + "shell.execute_reply": "2024-05-24T23:42:47.866414Z" + }, + "id": "FDA5sGZwUSur", + "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_george_26.wav',\n", + " 'spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_24.wav',\n", + " 'spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_6.wav']" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DATA_PATH = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/\"\n", + "\n", + "# Get list of .wav file names\n", + "# os.listdir order is nondeterministic, so for reproducibility,\n", + "# we sort first and then do a deterministic shuffle\n", + "file_names = sorted(i for i in os.listdir(DATA_PATH) if i.endswith(\".wav\"))\n", + "random.Random(SEED).shuffle(file_names)\n", + "\n", + "file_paths = [os.path.join(DATA_PATH, name) for name in file_names]\n", + "\n", + "# Check out first 3 files\n", + "file_paths[:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xi2592bVhSab" + }, + "source": [ + "Let's listen to some example audio clips from the dataset. We introduce a `display_example` function to process the .wav file so we can listen to it in this notebook (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the implementation of `display_example` **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import tensorflow_io as tfio\n", + "from pathlib import Path\n", + "from IPython import display\n", + "\n", + "# Utility function for loading audio files and making sure the sample rate is correct.\n", + "@tf.function\n", + "def load_wav_16k_mono(filename):\n", + " \"\"\"Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio.\"\"\"\n", + " file_contents = tf.io.read_file(filename)\n", + " wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)\n", + " wav = tf.squeeze(wav, axis=-1)\n", + " sample_rate = tf.cast(sample_rate, dtype=tf.int64)\n", + " wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)\n", + " return wav\n", + "\n", + "\n", + "def display_example(wav_file_name, audio_rate=16000):\n", + " \"\"\"Allows us to listen to any wav file and displays its given label in the dataset.\"\"\"\n", + " wav_file_example = load_wav_16k_mono(wav_file_name)\n", + " label = Path(wav_file_name).parts[-1].split(\"_\")[0]\n", + " print(f\"Given label for this example: {label}\")\n", + " display.display(display.Audio(wav_file_example, rate=audio_rate))\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:47.869034Z", + "iopub.status.busy": "2024-05-24T23:42:47.868692Z", + "iopub.status.idle": "2024-05-24T23:42:47.874150Z", + "shell.execute_reply": "2024-05-24T23:42:47.873720Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import tensorflow_io as tfio\n", + "from pathlib import Path\n", + "from IPython import display\n", + "\n", + "# Utility function for loading audio files and making sure the sample rate is correct.\n", + "@tf.function\n", + "def load_wav_16k_mono(filename):\n", + " \"\"\"Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio.\"\"\"\n", + " file_contents = tf.io.read_file(filename)\n", + " wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)\n", + " wav = tf.squeeze(wav, axis=-1)\n", + " sample_rate = tf.cast(sample_rate, dtype=tf.int64)\n", + " wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)\n", + " return wav\n", + "\n", + "\n", + "def display_example(wav_file_name, audio_rate=16000):\n", + " \"\"\"Allows us to listen to any wav file and displays its given label in the dataset.\"\"\"\n", + " wav_file_example = load_wav_16k_mono(wav_file_name)\n", + " label = Path(wav_file_name).parts[-1].split(\"_\")[0]\n", + " print(f\"Given label for this example: {label}\")\n", + " display.display(display.Audio(wav_file_example, rate=audio_rate))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2bLlDRI6hzon" + }, + "source": [ + "Click the play button below to listen to this example .wav file. Feel free to change the `wav_file_name_example` variable below to listen to other audio clips in the dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:42:47.876193Z", + "iopub.status.busy": "2024-05-24T23:42:47.875869Z", + "iopub.status.idle": "2024-05-24T23:42:48.314011Z", + "shell.execute_reply": "2024-05-24T23:42:48.313468Z" + }, + "id": "dLBvUZLlII5w", + "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given label for this example: 7\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_jackson_43.wav\" # change this to hear other examples\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-QvbZA7yHwkh" + }, + "source": [ + "## 3. Use pre-trained SpeechBrain model to featurize audio\n", + "\n", + "The [SpeechBrain](https://github.com/speechbrain/speechbrain) package offers many Pytorch neural networks that have been pretrained for speech recognition tasks. Here we instantiate an audio feature extractor using SpeechBrain's `EncoderClassifier`. We'll use the \"spkrec-xvect-voxceleb\" network which has been pre-trained on the [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) speech dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:48.316061Z", + "iopub.status.busy": "2024-05-24T23:42:48.315842Z", + "iopub.status.idle": "2024-05-24T23:42:49.039580Z", + "shell.execute_reply": "2024-05-24T23:42:49.038999Z" + }, + "id": "vL9lkiKsHvKr" + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "from speechbrain.pretrained import EncoderClassifier\n", + "\n", + "feature_extractor = EncoderClassifier.from_hparams(\n", + " \"speechbrain/spkrec-xvect-voxceleb\",\n", + " # run_opts={\"device\":\"cuda\"} # Uncomment this to run on GPU if you have one (optional)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vXlE6IK4ibcr" + }, + "source": [ + "Next, we run the audio clips through the pre-trained model to extract vector features (aka embeddings).\n", + "\n", + "For this tutorial, ensure that you have `ffmpeg` installed on your system. This is the backend used for loading the audio files." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:42:49.042074Z", + "iopub.status.busy": "2024-05-24T23:42:49.041731Z", + "iopub.status.idle": "2024-05-24T23:42:49.059878Z", + "shell.execute_reply": "2024-05-24T23:42:49.059407Z" + }, + "id": "obQYDKdLiUU6", + "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
wav_audio_file_pathlabel
0spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_george_26.wav7
1spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_24.wav0
2spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_6.wav0
\n", + "
" + ], + "text/plain": [ + " wav_audio_file_path \\\n", + "0 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_george_26.wav \n", + "1 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_24.wav \n", + "2 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/0_nicolas_6.wav \n", + "\n", + " label \n", + "0 7 \n", + "1 0 \n", + "2 0 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create dataframe with .wav file names\n", + "df = pd.DataFrame(file_paths, columns=[\"wav_audio_file_path\"])\n", + "df[\"label\"] = df.wav_audio_file_path.map(lambda x: int(Path(x).parts[-1].split(\"_\")[0]))\n", + "df.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:49.061938Z", + "iopub.status.busy": "2024-05-24T23:42:49.061604Z", + "iopub.status.idle": "2024-05-24T23:42:49.064613Z", + "shell.execute_reply": "2024-05-24T23:42:49.064190Z" + }, + "id": "I8JqhOZgi94g" + }, + "outputs": [], + "source": [ + "import torchaudio\n", + "\n", + "def extract_audio_embeddings(model, wav_audio_file_path: str) -> tuple:\n", + " \"\"\"Feature extractor that embeds audio into a vector.\"\"\"\n", + " signal, fs = torchaudio.load(wav_audio_file_path, backend=\"ffmpeg\") # Reformat audio signal into a tensor\n", + " embeddings = model.encode_batch(\n", + " signal\n", + " ) # Pass tensor through pretrained neural net and extract representation\n", + " return embeddings" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:42:49.066660Z", + "iopub.status.busy": "2024-05-24T23:42:49.066349Z", + "iopub.status.idle": "2024-05-24T23:43:03.532933Z", + "shell.execute_reply": "2024-05-24T23:43:03.532364Z" + }, + "id": "2FSQ2GR9R_YA" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n", + "Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\n", + " return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n" + ] + } + ], + "source": [ + "# Extract audio embeddings\n", + "embeddings_list = []\n", + "for i, file_name in enumerate(df.wav_audio_file_path): # for each .wav file name\n", + " embeddings = extract_audio_embeddings(feature_extractor, file_name)\n", + " embeddings_list.append(embeddings.cpu().numpy())\n", + "\n", + "embeddings_array = np.squeeze(np.array(embeddings_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dELkcdXgjTn_" + }, + "source": [ + "Now we have our features in a 2D numpy array. Each row in the array corresponds to an audio clip. We're now able to represent each audio clip as a 512-dimensional feature vector!\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:03.535626Z", + "iopub.status.busy": "2024-05-24T23:43:03.535376Z", + "iopub.status.idle": "2024-05-24T23:43:03.539382Z", + "shell.execute_reply": "2024-05-24T23:43:03.538882Z" + }, + "id": "kAkY31IVXyr8", + "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-14.196311 7.319459 12.478975 ... 2.2890875 2.8170238\n", + " -10.89265 ]\n", + " [-24.898056 5.256195 12.559641 ... -3.559721 9.62067\n", + " -10.285245 ]\n", + " [-21.709627 7.5033693 7.913803 ... -6.819831 3.1831515\n", + " -17.208763 ]\n", + " ...\n", + " [-16.084257 6.3210397 12.005453 ... 1.216152 9.478235\n", + " -10.6821785 ]\n", + " [-15.053807 5.242471 1.091424 ... -0.78334856 9.03954\n", + " -23.569176 ]\n", + " [-19.761097 1.1258295 16.753237 ... 3.3508866 11.598274\n", + " -16.23712 ]]\n", + "Shape of array: (2500, 512)\n" + ] + } + ], + "source": [ + "print(embeddings_array)\n", + "print(\"Shape of array: \", embeddings_array.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o4RBcaARmfVG" + }, + "source": [ + "## 4. Fit linear model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y9BIVyI9kHa4" + }, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted network embeddings.\n", + "\n", + "To identify label issues, cleanlab requires a probabilistic prediction from your model for every datapoint that should be considered. However these predictions will be _overfit_ (and thus unreliable) for datapoints the model was previously trained on. cleanlab is intended to only be used with **out-of-sample** predicted probabilities, i.e. on datapoints held-out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset, by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. An additional benefit of cross-validation is that it provides more reliable evaluation of our model than a single training/validation split. We can obtain cross-validated out-of-sample predicted probabilities from any classifier via the [cross_val_predict](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html) wrapper provided in scikit-learn.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:03.541389Z", + "iopub.status.busy": "2024-05-24T23:43:03.541211Z", + "iopub.status.idle": "2024-05-24T23:43:04.231966Z", + "shell.execute_reply": "2024-05-24T23:43:04.231374Z" + }, + "id": "i_drkY9YOcw4" + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "model = LogisticRegression(C=0.01, max_iter=1000, tol=1e-2, random_state=SEED)\n", + "\n", + "num_crossval_folds = 5 # can decrease this value to reduce runtime, or increase it to get better results\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=embeddings_array, y=df.label.values, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FW1yI9Ryrfkj" + }, + "source": [ + "For each audio clip, the corresponding predicted probabilities in `pred_probs` are produced by a copy of our `LogisticRegression` model that has never been trained on this audio clip. Hence we call these predictions _out-of-sample_. An additional benefit of cross-validation is that it provides more reliable evaluation of our model than a single training/validation split.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.234880Z", + "iopub.status.busy": "2024-05-24T23:43:04.234556Z", + "iopub.status.idle": "2024-05-24T23:43:04.239059Z", + "shell.execute_reply": "2024-05-24T23:43:04.238594Z" + }, + "id": "_b-AQeoXOc7q", + "outputId": "15ae534a-f517-4906-b177-ca91931a8954" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cross-validated estimate of accuracy on held-out data: 0.9708\n" + ] + } + ], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "predicted_labels = pred_probs.argmax(axis=1)\n", + "cv_accuracy = accuracy_score(df.label.values, predicted_labels)\n", + "print(f\"Cross-validated estimate of accuracy on held-out data: {cv_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SPz8WBwIlxUE" + }, + "source": [ + "## 5. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "laui-jXMm6qR" + }, + "source": [ + "Based on the given labels, out-of-sample predicted probabilities and features, cleanlab can quickly help us identify label issues in our dataset. For a dataset with N examples from K classes, the labels should be a 1D array of length N and predicted probabilities should be a 2D (N x K) array. \n", + "\n", + "Here, we use cleanlab to find potential label errors in our data. `Datalab` has several ways of loading the data. In this case, we can just pass the DataFrame created above to instantiate the object. We will then pass in the predicted probabilites to the `find_issues()` method so that Datalab can use them to find potential label errors in our data." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.241391Z", + "iopub.status.busy": "2024-05-24T23:43:04.241081Z", + "iopub.status.idle": "2024-05-24T23:43:04.330760Z", + "shell.execute_reply": "2024-05-24T23:43:04.330109Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Audit complete. 7 issues found in the dataset.\n" + ] + } + ], + "source": [ + "lab = Datalab(df, label_name=\"label\")\n", + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\":{}})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can view the results of running Datalab by calling the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.333064Z", + "iopub.status.busy": "2024-05-24T23:43:04.332729Z", + "iopub.status.idle": "2024-05-24T23:43:04.345105Z", + "shell.execute_reply": "2024-05-24T23:43:04.344557Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + "issue_type num_issues\n", + " label 7\n", + "\n", + "Dataset Information: num_examples: 2500, num_classes: 10\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 7\n", + "Overall dataset quality in terms of this issue: 0.9976\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "986 True 0.002161 6 3\n", + "176 True 0.002483 7 8\n", + "2318 False 0.004411 3 6\n", + "1005 False 0.004857 0 9\n", + "1871 True 0.007494 6 8\n" + ] + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We observe from the report that cleanlab has found some label issues in our dataset. Let us investigate these examples further.\n", + "\n", + "We can view the more details about the label quality for each example using the `get_issues` method, specifying `label` as the issue type." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.347177Z", + "iopub.status.busy": "2024-05-24T23:43:04.346755Z", + "iopub.status.idle": "2024-05-24T23:43:04.354566Z", + "shell.execute_reply": "2024-05-24T23:43:04.354033Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
0False0.04058776
1False0.99920700
2False0.99937700
3False0.97522088
4False0.99936755
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "0 False 0.040587 7 6\n", + "1 False 0.999207 0 0\n", + "2 False 0.999377 0 0\n", + "3 False 0.975220 8 8\n", + "4 False 0.999367 5 5" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled).\n", + "\n", + "We can then filter for the examples that have been identified as a label error:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.356552Z", + "iopub.status.busy": "2024-05-24T23:43:04.356251Z", + "iopub.status.idle": "2024-05-24T23:43:04.360416Z", + "shell.execute_reply": "2024-05-24T23:43:04.359870Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are indices of the most likely errors: \n", + " [ 986 176 1871 516 1946 469 2132]\n" + ] + } + ], + "source": [ + "identified_label_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = identified_label_issues.sort_values(\"label_score\").index\n", + "\n", + "print(f\"Here are indices of the most likely errors: \\n {lowest_quality_labels.values}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iI07jQ0BnTgt" + }, + "source": [ + "These examples flagged by cleanlab are those worth inspecting more closely." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 237 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.362402Z", + "iopub.status.busy": "2024-05-24T23:43:04.362099Z", + "iopub.status.idle": "2024-05-24T23:43:04.367509Z", + "shell.execute_reply": "2024-05-24T23:43:04.366971Z" + }, + "id": "FQwRHgbclpsO", + "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
wav_audio_file_pathlabel
986spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_25.wav6
176spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_nicolas_43.wav7
1871spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav6
516spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav6
1946spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav6
469spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav6
2132spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav6
\n", + "
" + ], + "text/plain": [ + " wav_audio_file_path \\\n", + "986 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_25.wav \n", + "176 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_nicolas_43.wav \n", + "1871 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav \n", + "516 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav \n", + "1946 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav \n", + "469 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav \n", + "2132 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav \n", + "\n", + " label \n", + "986 6 \n", + "176 7 \n", + "1871 6 \n", + "516 6 \n", + "1946 6 \n", + "469 6 \n", + "2132 6 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[lowest_quality_labels]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PsDmd5WDnZJG" + }, + "source": [ + "Let's listen to some audio clips below of label issues that were identified in this list.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p9jLn3Lp85rU" + }, + "source": [ + "In this example, the given label is **6** but it sounds like **8**.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.369581Z", + "iopub.status.busy": "2024-05-24T23:43:04.369274Z", + "iopub.status.idle": "2024-05-24T23:43:04.489582Z", + "shell.execute_reply": "2024-05-24T23:43:04.488956Z" + }, + "id": "ff1NFVlDoysO", + "outputId": "8141a036-44c1-4349-c338-880432513e37" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given label for this example: 6\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HwokyN0bfVsn" + }, + "source": [ + "In the three examples below, the given label is **6** but they sound quite ambiguous.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.491865Z", + "iopub.status.busy": "2024-05-24T23:43:04.491668Z", + "iopub.status.idle": "2024-05-24T23:43:04.597562Z", + "shell.execute_reply": "2024-05-24T23:43:04.596967Z" + }, + "id": "GZgovGkdiaiP", + "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given label for this example: 6\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.599782Z", + "iopub.status.busy": "2024-05-24T23:43:04.599426Z", + "iopub.status.idle": "2024-05-24T23:43:04.704472Z", + "shell.execute_reply": "2024-05-24T23:43:04.703942Z" + }, + "id": "lfa2eHbMwG8R", + "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given label for this example: 6\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.706574Z", + "iopub.status.busy": "2024-05-24T23:43:04.706303Z", + "iopub.status.idle": "2024-05-24T23:43:04.812742Z", + "shell.execute_reply": "2024-05-24T23:43:04.812191Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given label for this example: 6\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-rf8iSngtV83" + }, + "source": [ + "You can see that even widely-used datasets like Spoken Digit contain problematic labels. Never blindly trust your data! You should always check it for potential issues, many of which can be easily identified by cleanlab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:04.815066Z", + "iopub.status.busy": "2024-05-24T23:43:04.814747Z", + "iopub.status.idle": "2024-05-24T23:43:04.818011Z", + "shell.execute_reply": "2024-05-24T23:43:04.817463Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "highlighted_indices = [1946, 516, 469, 2132] # verify these examples were found in find_label_issues\n", + "if not all(x in lowest_quality_labels for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from label_issues_indices.\")" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "audio_quickstart_tutorial_deterministic.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "01e18680c58b44748f77e397464e9002": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03144c79bb2a4c388d423bc85dfb12c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a15e3d5446645a094ae2365a8a213d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0de05e57967c4a95b9cb930791938719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97541149e31a43ddb5ec4b0f04e49b7d", + "placeholder": "​", + "style": "IPY_MODEL_8c9603146fb844f3a39cbb6937a6faa1", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 726kB/s]" + } + }, + "199c2d348c80418a8f944bbac3b8b7d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_beb3a5b0669a4c0d88ad1105267f707b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a299ad8d28304f0585f8ae6c41723fbc", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "21d1d09de8bf42808fa2f593e66ac538": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2e1aaa61458846a281e7dbcb834d7427": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f27347fabd5484d98e9f8bc7c541905": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3921b2fd5c13409383fc69b03ebd1979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41b3c13468f94741815b6f8952431841": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "489621bcb81e4dafa80fb4435e58a274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a9069e731bc4c1e831d949e6b997b77", + "placeholder": "​", + "style": "IPY_MODEL_5cd988c7d5f540fb99e360e7efbd06ee", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]" + } + }, + "5078c15cacb4442692e74f42a146a69b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5228997cfbd74380bd460d319bf6c5c2", + "IPY_MODEL_9d87477f6e544038bffde2a541b551a0", + "IPY_MODEL_ec7e685b72e64053adaae3addd84a0b6" + ], + "layout": "IPY_MODEL_2e1aaa61458846a281e7dbcb834d7427", + "tabbable": null, + "tooltip": null + } + }, + "5228997cfbd74380bd460d319bf6c5c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b654a340157b4a27a313ac9ffdf7e742", + "placeholder": "​", + "style": "IPY_MODEL_21d1d09de8bf42808fa2f593e66ac538", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "56a6a36530ac410aaf4ac2a35b645052": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5adff64fc4c743ce8f72de48ad750628": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff57543a24964621ad8cdf8b06cd57e8", + "IPY_MODEL_822cbf68a2a342db80a45e6a846815a2", + "IPY_MODEL_e67f55e5ad66461cbba1f6a518d0af18" + ], + "layout": "IPY_MODEL_7a5c85e7912e493b8081ed69fd7b4c62", + "tabbable": null, + "tooltip": null + } + }, + "5cd988c7d5f540fb99e360e7efbd06ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6363dac4f9914cab9ae274fd647011a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6a9069e731bc4c1e831d949e6b997b77": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6aaa2d53da2b4195a9b97a2b4ccd3f81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_56a6a36530ac410aaf4ac2a35b645052", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73831c020e004c99b8e3ba69d8c0975c", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "6c0542fed97c44fbb07c8d0d1071ad44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f6c457a22cc4db1b518a52deccd6b67": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73831c020e004c99b8e3ba69d8c0975c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "73fdaa8daedb425cb7f62f2607905fd0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "784a7a179ba44ca385f38a2126f904ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "78f424a88d0c4419a7dadd01c4833050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73fdaa8daedb425cb7f62f2607905fd0", + "placeholder": "​", + "style": "IPY_MODEL_784a7a179ba44ca385f38a2126f904ef", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "7a3007d65e9f403384e0215613bea61b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a5c85e7912e493b8081ed69fd7b4c62": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c2ee16298ca4c6c8267b5de68fda5f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "822cbf68a2a342db80a45e6a846815a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03144c79bb2a4c388d423bc85dfb12c4", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7c2ee16298ca4c6c8267b5de68fda5f6", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "8c9603146fb844f3a39cbb6937a6faa1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "922a5f6422874202bfabbfd2f0211850": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d55fb78c0b1345feb6357adfe7f1128c", + "IPY_MODEL_199c2d348c80418a8f944bbac3b8b7d9", + "IPY_MODEL_9543170ad21b4d8480041c58745533ba" + ], + "layout": "IPY_MODEL_41b3c13468f94741815b6f8952431841", + "tabbable": null, + "tooltip": null + } + }, + "9543170ad21b4d8480041c58745533ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c0542fed97c44fbb07c8d0d1071ad44", + "placeholder": "​", + "style": "IPY_MODEL_7a3007d65e9f403384e0215613bea61b", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 334MB/s]" + } + }, + "95bd86be09124f4d91799554de42d48b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97541149e31a43ddb5ec4b0f04e49b7d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9756a043247545399226b0bf6ffebbaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78f424a88d0c4419a7dadd01c4833050", + "IPY_MODEL_ece0aab94f604813a045eabfb5b69857", + "IPY_MODEL_0de05e57967c4a95b9cb930791938719" + ], + "layout": "IPY_MODEL_b87e5b061d5343bb9bc66f7cab4aabff", + "tabbable": null, + "tooltip": null + } + }, + "9d87477f6e544038bffde2a541b551a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9e0185d961bf466e8ad1950e2c6e2739", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01e18680c58b44748f77e397464e9002", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "9e0185d961bf466e8ad1950e2c6e2739": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a299ad8d28304f0585f8ae6c41723fbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a2a1767634794214b0ff67da343736ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3588794d5824156bf4b24329a1570f6", + "placeholder": "​", + "style": "IPY_MODEL_a7872dbba4b04c57b87c93deb9c560e5", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "a7872dbba4b04c57b87c93deb9c560e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a981f56c420744f3ae69a0d1185e64d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae4961a180154730a6d9da04d1c5d5b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b13cdb19460649cebbf56f6b102bf01d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3588794d5824156bf4b24329a1570f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b654a340157b4a27a313ac9ffdf7e742": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b87e5b061d5343bb9bc66f7cab4aabff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "beb3a5b0669a4c0d88ad1105267f707b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c29f01e228a8492496e79e362f38285f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d55fb78c0b1345feb6357adfe7f1128c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c29f01e228a8492496e79e362f38285f", + "placeholder": "​", + "style": "IPY_MODEL_3921b2fd5c13409383fc69b03ebd1979", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "e0567235c44a4a3a8e6500910311fedd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e67f55e5ad66461cbba1f6a518d0af18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a15e3d5446645a094ae2365a8a213d1", + "placeholder": "​", + "style": "IPY_MODEL_a981f56c420744f3ae69a0d1185e64d9", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 160MB/s]" + } + }, + "ec7e685b72e64053adaae3addd84a0b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b13cdb19460649cebbf56f6b102bf01d", + "placeholder": "​", + "style": "IPY_MODEL_e0567235c44a4a3a8e6500910311fedd", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 19.6MB/s]" + } + }, + "ece0aab94f604813a045eabfb5b69857": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95bd86be09124f4d91799554de42d48b", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae4961a180154730a6d9da04d1c5d5b4", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "f3fa04424bd046ac844c321add25bf2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a2a1767634794214b0ff67da343736ad", + "IPY_MODEL_6aaa2d53da2b4195a9b97a2b4ccd3f81", + "IPY_MODEL_489621bcb81e4dafa80fb4435e58a274" + ], + "layout": "IPY_MODEL_2f27347fabd5484d98e9f8bc7c541905", + "tabbable": null, + "tooltip": null + } + }, + "ff57543a24964621ad8cdf8b06cd57e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f6c457a22cc4db1b518a52deccd6b67", + "placeholder": "​", + "style": "IPY_MODEL_6363dac4f9914cab9ae274fd647011a3", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb new file mode 100644 index 000000000..b05740992 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -0,0 +1,4034 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:08.409552Z", + "iopub.status.busy": "2024-05-24T23:43:08.409376Z", + "iopub.status.idle": "2024-05-24T23:43:08.420237Z", + "shell.execute_reply": "2024-05-24T23:43:08.419808Z" + } + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DataMonitor: Leverage statistics from Datalab to audit new data\n", + "\n", + "Once you've fitted your `Datalab` instance on some training data, it stores some statistics about the training data that may prove useful to monitor new data.\n", + "This notebook shows the process of applying Datalab to find issues in training data and then using the same statistics to monitor new data.\n", + "\n", + "This involves a new class called `DataMonitor` that takes a Datalab instance as input to, then run similar issue checks on new data in a more efficient way, especially for\n", + "smaller batches of data.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + "\n", + "Already ran `Datalab` on a dataset? Already have (out-of-sample) `pred_probs` from a model trained on an new set of labels? Some numerical features available for the new data?\n", + "Run the code below to examine your dataset for label issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab.experimental.datalab.data_monitor import DataMonitor\n", + "\n", + "monitor = DataMonitor(datalab=your_datalab)\n", + "\n", + "for batch in new_data_batches:\n", + " # Process data to get labels and predicted probabilities\n", + " your_labels = get_your_labels(batch)\n", + " your_pred_probs = get_pred_probs(batch)\n", + " your_features = get_features(batch)\n", + " \n", + " # Find issues in the batch\n", + " monitor.find_issues(labels=your_labels, pred_probs=your_pred_probs, features=your_features)\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:08.422448Z", + "iopub.status.busy": "2024-05-24T23:43:08.422120Z", + "iopub.status.idle": "2024-05-24T23:43:09.598685Z", + "shell.execute_reply": "2024-05-24T23:43:09.598067Z" + } + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.601253Z", + "iopub.status.busy": "2024-05-24T23:43:09.600979Z", + "iopub.status.idle": "2024-05-24T23:43:09.622073Z", + "shell.execute_reply": "2024-05-24T23:43:09.621634Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab\n", + "from cleanlab.experimental.datalab.data_monitor import DataMonitor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Create and load the data (can skip these details)\n", + "\n", + "For this tutorial, we'll re-use the toy classification dataset from the `Datalab` quickstart tutorial. The dataset has two numerical features and a label column with three possible classes. Each example is classified as either: *low*, *mid* or *high*.\n", + "\n", + "Here we show a workflow for finding label issues on data unseen by `Datalab` using the `DataMonitor` class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(800, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.1, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.624169Z", + "iopub.status.busy": "2024-05-24T23:43:09.623991Z", + "iopub.status.idle": "2024-05-24T23:43:09.647073Z", + "shell.execute_reply": "2024-05-24T23:43:09.646642Z" + } + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(800, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.1, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.648951Z", + "iopub.status.busy": "2024-05-24T23:43:09.648780Z", + "iopub.status.idle": "2024-05-24T23:43:09.667634Z", + "shell.execute_reply": "2024-05-24T23:43:09.667042Z" + } + }, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.669821Z", + "iopub.status.busy": "2024-05-24T23:43:09.669515Z", + "iopub.status.idle": "2024-05-24T23:43:09.683138Z", + "shell.execute_reply": "2024-05-24T23:43:09.682555Z" + } + }, + "outputs": [], + "source": [ + "train_X, test_X, train_y_true, test_y_true, train_y, test_y, train_y_idx, test_y_idx = train_test_split(X_train, y_train_idx, noisy_labels, noisy_labels_idx, test_size=400, random_state=SEED)\n", + "data = {\"X\": train_X, \"y\": train_y}\n", + "test_data = {\"X\": test_X, \"y\": test_y}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.685500Z", + "iopub.status.busy": "2024-05-24T23:43:09.685196Z", + "iopub.status.idle": "2024-05-24T23:43:09.877667Z", + "shell.execute_reply": "2024-05-24T23:43:09.877181Z" + } + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:09.879879Z", + "iopub.status.busy": "2024-05-24T23:43:09.879693Z", + "iopub.status.idle": "2024-05-24T23:43:10.240828Z", + "shell.execute_reply": "2024-05-24T23:43:10.240245Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpZUlEQVR4nOydd3wU5dqGr9mS3itJCEkINaEGEnrTUASxYeFYsBfsYgH1nIPlqKhHxN4+C3YUkYOKIEhAkBIw1NBbgHRCetlsme+PybZkN9mFYAi8l7/8cGffmXlnUube53ne+5FkWZYRCAQCgUAgELSIqq0nIBAIBAKBQNBeEMJJIBAIBAKBwEWEcBIIBAKBQCBwESGcBAKBQCAQCFxECCeBQCAQCAQCFxHCSSAQCAQCgcBFhHASCAQCgUAgcBEhnAQCgUAgEAhcRAgngUAgEAgEAhcRwkkgEJzTjB49mtGjR/9t51u9ejWSJLF69Wq3973lllvw8/Nr1fn83dcvEAiaRwgngUBwxnz22WdIkoSXlxe5ublN3h89ejS9evVqg5kJBAJB6yKEk0AgaDV0Oh1z5sxp1WP+9ttv/Pbbb616TIFAIDhdhHASCAStRr9+/fjoo4/Iy8trtWN6eHjg4eHRascTCASCM0EIJ4FA0Go89dRTGI1Gl6JOBoOB559/nsTERDw9PYmPj+epp55Cp9PZjXNU4/PWW2+RnJyMj48PwcHBDBw4kK+//hqAjIwMJEnixx9/bHLOr7/+GkmS2LBhg1vXtXbtWq655ho6deqEp6cnsbGxPPLII9TW1jocf/jwYcaPH4+vry/R0dE899xzyLJsN8ZkMjFv3jySk5Px8vIiMjKSu+++m9LS0hbn09z1CwSCs4sQTgKBoNVISEhg2rRpLkWd7rjjDv7973+TkpLC66+/zqhRo3jppZeYOnVqs/t99NFHPPjggyQlJTFv3jyeffZZ+vXrx6ZNmwBFaMXGxvLVV1812ferr74iMTGRIUOGuHVd33//PTU1NUyfPp233nqL8ePH89ZbbzFt2rQmY41GIxMmTCAyMpJXXnmFAQMGMHv2bGbPnm037u677+bxxx9n2LBhvPHGG9x666189dVXjB8/Hr1ef9rXLxAIzjKyQCAQnCGffvqpDMibN2+WDx06JGs0GvnBBx+0vD9q1Cg5OTnZ8nrbtm0yIN9xxx12x3nsscdkQF61apXdvqNGjbK8vvzyy+2O5Ygnn3xS9vT0lMvKyizbioqKZI1GI8+ePbvZfTMyMmRAzsjIsGyrqalpMu6ll16SJUmSc3JyLNtuvvlmGZAfeOAByzaTySRPmjRJ9vDwkIuLi2VZluW1a9fKgPzVV1/ZHXPZsmVNtp/O9QsEgrOHiDgJBIJWpXPnztx00018+OGH5OfnOxyzdOlSAGbMmGG3/dFHHwXgl19+cXr8oKAgTpw4webNm52OmTZtGjqdjoULF1q2LViwAIPBwI033ujytZjx9va2/H91dTUnT55k6NChyLLM1q1bm4y///77Lf8vSRL3338/9fX1rFy5ElAiWIGBgYwdO5aTJ09avgYMGICfnx8ZGRlO5+LK9QsEgrOHEE4CgaDV+ec//4nBYHBa65STk4NKpaJLly522zt06EBQUBA5OTlOjz1z5kz8/PxIS0uja9eu3Hffffz55592Y3r06EFqaqpduu6rr75i8ODBTc7pCseOHeOWW24hJCQEPz8/wsPDGTVqFADl5eV2Y1UqFZ07d7bb1q1bNwCOHj0KwIEDBygvLyciIoLw8HC7r6qqKoqKis7o+gUCwdlD09YTEAgE5x+dO3fmxhtv5MMPP2TWrFlOx0mS5Paxe/bsyb59+/j5559ZtmwZP/zwA++++y7//ve/efbZZy3jpk2bxkMPPcSJEyfQ6XRs3LiRt99+2+3zGY1Gxo4dy6lTp5g5cyY9evTA19eX3NxcbrnlFkwmk9vHNJlMREREOKzDAggPD3e6r6vXLxAIzg5COAkEgrPCP//5T7788ktefvnlJu/FxcVhMpk4cOAAPXv2tGwvLCykrKyMuLi4Zo/t6+vLddddx3XXXUd9fT1XXXUVL7zwAk8++SReXl4ATJ06lRkzZvDNN99QW1uLVqvluuuuc/s6du7cyf79+5k/f75dMfiKFSscjjeZTBw+fNgSZQLYv38/APHx8QAkJiaycuVKhg0bZpcGdBVXrl8gEJwdRKpOIBCcFRITE7nxxhv54IMPKCgosHtv4sSJAMybN89u+9y5cwGYNGmS0+OWlJTYvfbw8CApKQlZlu1Wo4WFhXHJJZfw5Zdf8tVXXzFhwgTCwsLcvg61Wg1gZycgyzJvvPGG031sI1uyLPP222+j1Wq5+OKLAbj22msxGo08//zzTfY1GAyUlZU5Pbar1y8QCM4OIuIkEAjOGk8//TRffPEF+/btIzk52bK9b9++3HzzzXz44YeUlZUxatQoMjMzmT9/PldccQVjxoxxesxx48bRoUMHhg0bRmRkJHv27OHtt99m0qRJ+Pv7242dNm0aV199NYBDkeIKPXr0IDExkccee4zc3FwCAgL44YcfnPoteXl5sWzZMm6++WYGDRrEr7/+yi+//MJTTz1lScGNGjWKu+++m5deeolt27Yxbtw4tFotBw4c4Pvvv+eNN96wzPtMrl8gEJwF2nJJn0AgOD+wtSNojHmJfuMl9Hq9Xn722WflhIQEWavVyrGxsfKTTz4p19XV2Y1rvBz/gw8+kEeOHCmHhobKnp6ecmJiovz444/L5eXlTc6t0+nk4OBgOTAwUK6trXXpWhzZEezevVtOT0+X/fz85LCwMPnOO++Ut2/fLgPyp59+anetvr6+8qFDh+Rx48bJPj4+cmRkpDx79mzZaDQ2OdeHH34oDxgwQPb29pb9/f3l3r17y0888YScl5fXKtcvEAhaH0mWG9nZCgQCwXmCwWAgOjqayZMn8/HHH7f1dAQCwXmAqHESCATnLYsXL6a4uNihw7dAIBCcDiLiJBAIzjs2bdrEjh07eP755wkLCyMrK6utpyQQCM4TRMRJIBCcd7z33ntMnz6diIgIPv/887aejkAgOI8QESeBQCAQCAQCFxERJ4FAIBAIBAIXEcJJIBAIBAKBwEWEASZKi4S8vDz8/f1Pq3eWQCAQCASC9ossy1RWVhIdHY1K1XxMSQgnIC8vj9jY2LaehkAgEAgEgjbk+PHjdOzYsdkxQjiBpU3B8ePHCQgIaOPZCAQCgUAg+DupqKggNjbWpbZFQjiBJT0XEBAghJNAIBAIBBcorpTriOJwgUAgEAgEAhcRwkkgEAgEAoHARYRwEggEAoFAIHARIZwEAoFAIBAIXEQIJ4FAIBAIBAIXEcJJIBAIBAKBwEWEcBIIBAKBQCBwESGcBAKBQCAQCFxECCeBQCAQCAQCFxHCSSAQCAQCgcBFhHASCAQCgUAgcBEhnAQCgUAgEAhcRAgngUAgEAgEAhcRwkkgEAgEAoHARYRwEggEAoFAIHARIZwEAoFAIBAIXEQIJ4FAIBAIBAIXaffCyWg08q9//YuEhAS8vb1JTEzk+eefR5bltp6aQCAQCASC8wxNW0/gTHn55Zd57733mD9/PsnJyWzZsoVbb72VwMBAHnzwwbaenkAgEAgEgvOIdi+c1q9fz+WXX86kSZMAiI+P55tvviEzM7ONZyYQCAQCgeB8o90Lp6FDh/Lhhx+yf/9+unXrxvbt21m3bh1z5851uo9Op0On01leV1RU/B1TFQgEAkE7xGQyUV9f39bTELQSHh4eqFSnX6nU7oXTrFmzqKiooEePHqjVaoxGIy+88AI33HCD031eeuklnn322b9xlgKBQCBoj9TX13PkyBFMJlNbT0XQSqhUKhISEvDw8Dit/SW5nVdRf/vttzz++OO8+uqrJCcns23bNh5++GHmzp3LzTff7HAfRxGn2NhYysvLCQgI+LumLhAIBIJzGFmWOXbsGHq9nujo6DOKUgjODUwmE3l5eWi1Wjp16oQkSYCiAwIDA13SAe0+4vT4448za9Yspk6dCkDv3r3JycnhpZdeciqcPD098fT0/DunKRAIBIJ2hsFgoKamhujoaHx8fNp6OoJWIjw8nLy8PAwGA1qt1u392718rqmpafIpQK1Wi7CqQCAQCM4Io9EIcNopHcG5ifn7af7+uku7jzhNnjyZF154gU6dOpGcnMzWrVuZO3cut912W1tPTSAQCATnAeZ0juD84Ey/n+0+4vTWW29x9dVXc++999KzZ08ee+wx7r77bp5//vm2nppAIBAIzkOMRiPz5s2jf//++Pj44OfnR48ePbjvvvssYyRJajPBtWbNGiZMmEBwcDDe3t707NmT119/HYBbbrkFSZL47LPP/pa5HD16FEmS6NChg9v7jh49GkmSWL16tdv7fvbZZ0iSxC233OL2vi3R7iNO/v7+zJs3j3nz5rX1VAQCgUBwATB16lQWLlxIQkICzzzzDEFBQWzfvp0ffviBd955B4BvvvmmTea2ePFipkyZgkaj4YEHHiApKYk9e/bw559/8sgjj7TJnM432n3ESSAQCASCv4t169axcOFCgoKC2LRpE0888QR33XUX77zzDgcOHLCM+8c//sE//vEPAEaNGoUkSezevRuA7OxsJEli+PDhAOzcuZNLLrmEkJAQwsLCuPbaa8nNzQXgmWeeQZIkpk6dysiRI/H392fMmDEUFxc7nN+jjz6KyWTinXfe4b///S+33XYbr776Kt99953D8U8//TQxMTF4eHgQHh7OlVdeSV5eHgCHDx9m9OjRBAQE4OXlRdeuXfn6668BmD9/Pl27dsXT05OgoCAGDx7sdE7OqKysZNCgQQQFBeHp6UlCQgIvvvhik3HLli0jMTGR4OBgHnjgAQwGAwA5OTlce+21REZGEhQUxCWXXMKePXvcmsPp0O4jTgKBQCAQ/F1s3LgRgBEjRhAeHg7AyZMnLe97eXk1Wal111138ccff/D5558zZ84cPv/8cwDuvvtuysvLGT9+PAaDgQceeAC9Xs/cuXM5ceIE69evtxxj6dKl/Oc//8FoNLJ69WreeecdnnnmGbvzFBcXc/jwYQCuuuoqu/ecWSl07tyZp59+GpVKRXZ2Nm+//TY+Pj589dVXvPnmm6xZs4ZZs2bRrVs39u3bZymofuihh/Dx8eG9996jpqaGzZs3WwSNq0iSxPjx47nzzjuprq5mwYIFPP3006SmpjJ27FjLuF9//ZVZs2bxzjvv8Pbbb9O9e3emT5/O5MmTOXToEPfffz8+Pj68+eabTJw4kX379rk1D3cRwkkgEAgEgtOkrq7OIqBAechPmDDBbszVV1/Ngw8+yFdffcV//vMfvvrqK4KDg7nmmmvIyMggPz8fgOeee86yz4YNGygtLbW8vummm3jwwQfx9vZm/fr1HDx4sFXmn5uby7x58+zOlZWVBUDPnj0B+P3336mpqWHgwIFcffXVlvf++usvli5dSq9evbjjjjuIiopy69w1NTVs3LiRF1980W6FW1ZWlp1wmj17NldddRWhoaFMmTKFZcuWcfHFF7Nz504AXnnlFcvYU6dOkZ2d7eZdcA+RqhMIBAKBwEWGDBkCKCm7kpISPDw8WLFiBX369HG6j6enJ9OmTePEiRP885//JDc3l2nTpuHl5WUZk5qayooVKyxfy5cvx9vb2/K+WZyZo1mOojvh4eEkJiYCSq2TLY4sevbv38/s2bORJIkFCxbw/fffA1BbWwsoEbF169ZZ0nfTpk2zdOX4/fffmT9/Pl26dGHhwoWMHDmSJUuWNH/zGjFv3jxWrFjB+PHj+fXXX7njjjvszu8KnTp1anLf4uPj3ZqHu4iIk0AgEAgELjJs2DCuueYavv/+e4YMGcI999xDWFgYVVVVze531113MW/ePEt05K677gKUfqtRUVH89ddfZGRk0KVLF/bu3csff/zBhg0b3J7ff//7X6ZMmcK9997Lnj176NmzJ/v37+fQoUMWYdSY+vp6SkpKWLFihd32d999l8LCQhISEkhLS2PhwoUcO3YMUETVgAEDSE5OZvfu3WRnZ1vec0RVVRX//Oc/La9TUlLs3jt69CjLly93uO+zzz7LqVOnePvttwGYMGEC3bp1o1evXuzatYtFixaRlpbGkSNH+PLLLzl06JBrN+s0EcJJIBAIBAI3+Prrr0lLS2P+/Pk8+eSTeHl5ERsbywMPPOA08tSzZ0+GDx/OunXrGD58OElJSQAEBgayfPlynnzyST744ANqa2uJj49nypQppzW3K664glWrVvHiiy/y4YcfotPp6NSpE/fcc0+Tsd26deOZZ57h9ddf55lnnmHmzJn8+OOPlve9vb1ZsGABx44dQ5Ik0tLSeO211wAlRfnyyy9TUlJCYGAgN954Y7NL/6urq3nhhRcsr2+++WZeeeUVNmzYwIYNG6ipqeHyyy+3iCNbJkyYwGuvvUZBQQH3338/99xzD2q1mp9//plZs2axaNEiPv30Uzp27Eh6evpp3Td3aPe96loDd3rUCAQCgeAcpK4Otm+HnTuhrAx0OlCrwccH4uMhNRXcrMGpq6vjyJEjJCQk2KXVBO0bR9/XC6pXnUAgEAguYE6dgj//hB07QK+3f0+vVwTVqVOQlQUdO8KgQdCrFwg3cMFpIoST4Kwgy7JoUyAQCM4uBw7A999Dfb1r40+cUL727YMrrgCNeAQK3Ef81AhaHZ1Ox2effcbAgQPp168farW6rackEAjON/bsUURT49Vifn7Qowd4e4PBAAUFcOSI/Zhdu6C2Fq6/XknnCQRuIISToNX566+/yM/P56effmLdunWMGjWKPn36ODVgEwgEArc4cQJ++MFeNHXsCEOHQvfuTcXQyZOwZQts3gxmv6BDh+Dnn+Hyy/++eQvOC8STTNDqpKWlMWHCBPz8/CgtLWXx4sW888477Nixw6GXiEAgELiMLMMvvyjRJDP9+8Ntt0FSkuMIUlgYTJgA06aBp6d1+9atcPToWZ+y4PxCCCdBq6PRaBg8eDAPPfQQ48aNw8fHh5KSEhYtWsT777/vti2/QCAQWMjNhQanbUBJy112GdhGtE1GOLIWdi5U/jU1RJni4uC66+wLwzdv/nvmLThvEKk6wVlDq9UydOhQBgwYQGZmJuvXr6dDhw5oREGmQCA4XWyFjiTBuHH2Qmj3Elg2EyryrNsComHCy5B0GXTurKTz9u5V3tuzByorwd//75n/GSJJEqWlpQQFBbX1VC5YRMRJcNbx9PRkxIgRlgiUmZKSEj766CP279+PsBMTCAQtUlenFHab6dIFQkKsr3cvge+m2YsmgIp8ZfvuhpYgqanW90wm2LbtrE1ZcP4hhJPgb8PLyws/Pz/L63Xr1pGbm8vXX3/Nxx9/zKFDh4SAEggEzikqshZ3g1LbZMZkVCJNOPob0rBt2SxlXOfOYBuxyctzsM+ZkV9ey/pDJ8kvd73vmrts2bKFoUOH0qdPH9LS0vjzzz8BeOqpp3jxxRcBWLp0KZIksX//fgBuu+02Pv/887M2pwsBIZwEbcbYsWMZNmwYWq2WEydO8MUXX/Dpp59ypPHSYYFAIAAl4mSLbbQpZ33TSJMdMlTkKuMkCYKDnR/3DFmw+RjD5qzi+o82MWzOKhZsdt7D7XSpr6/nqquuYvbs2ezYsYO5c+cyZcoUqqqqSE9PZ+XKlQCsWLGCIUOGWF6vXLnyb2lLcj4jhJOgzfDx8WHs2LE89NBDDB48GI1Gw7Fjx5g/fz4LFixo6+kJBIJzjcYRadvapqpC145hHme7bytGuvPLa3ly0U5MDYc0yfDUol2tHnnat28fKpWK8ePHAzB8+HAiIyPZtm0bw4YNY9u2bdTW1rJmzRr+85//sHLlSvbt24evry/R0dGtOpcLDSGcBG2On58fEyZM4MEHHyQ1NRW1Wk2HDh3aeloCgeBco3G/uIoK6//7Rbp2DPM4231bsQ/dkZPVFtFkxijLHD1Z02rncIa5W4OnpycDBw7k+++/x9vbm9GjR7Njxw6WL1/OxRdffNbncb4jhJPgnCEgIIBJkybx4IMPMnjwYMv2gwcP8vXXX5NvuwRZIBBceISG2keKduyw/n/cUGX1HM5aPUkQEKOMy81VTDHNhIW12hQTwnxRNZqCWpKID/NptXMAdO/eHZPJxIoVKwBYv349BQUF9OvXD4D09HT+/e9/c/HFF6NSqejfvz9z584VabpWQAgnwTlHYGAgnjYmdatXr2b//v188MEHLFiwgMJCF0PyAoHg/MLPD7p1s77evRuqqpT/V6kVywGgqXhqeD1hjjKusXeTbZH5GRIV6M1LV/VG3SDw1JLEi1f1IirQu9XOAeDh4cGiRYuYPXs2ffr04eGHH2bhwoWWBTjp6enk5ORYhNLYsWM5fvw4o0ePbtV5XIhIsljGREVFBYGBgZSXlxMQENDW0xE0oqSkhDVr1rBz507Lqrvk5GRGjx5NeHh4G89OIBD8rRw8CF9+aX2dlgYTJ1pfO/RxilFEU9Jlysq8Dz+0Oo8nJsJNNzk8VV1dHUeOHCEhIQEvN9N5+eW1HD1ZQ3yYT6uLJsGZ4ej76o4OEE6EgnOe0NBQrrrqKkaMGMHq1avJzs4mOzub3bt3M3LkSMaMGdPWUxQIBH8XiYnKarpTp5TXmZkQEADDhilpvKTLoMckZfVcVaFS0xQ3VIk0nToFX31l367F1tOpFYkK9BaC6TxFCCdBuyE8PJxrrrmGkSNHkpGRwd69e4mIiGjraQkEgr8TSYLx4+Hbb62r4VauhMJCRTx16KCIpIQR1n10OtiRBRkZUGNTpG12ERcI3EAIp3MJk9HxpySBHZGRkUydOpXCwkI74ZSZmUlhYSEjR44kMDCwDWcoEAjOKt27K61Wli+3btu5U/mKjYWePcHHR4ksFRQoReT19fbHiIiAa6+1LzYXCFxACKdzhZb6KwmaEBlpXX5sMBhYs2YN1dXVbNu2jQEDBjBixAj820n/KYFA4CZDhoBaDb/+au/DdPy48tUcsbHwj3+0qg2B4MJBrKo7F3C1v5LAKRqNhmuvvZb4+HiMRiOZmZm88cYbLF++nOrq6raenkAgOBukpcG0aRAf79p4X18YPVrZx6d17QEEFw5iVR1tvKrOZIR5vZppFSApkaeHd4q0nYscOXKEVatWcbzhU6dWq2Xy5Mn06dOnjWcmEAjOGsXFis3Azp1Qa+PSLUnQqZNSBN6zpxKlcpEzWVUnOHcRq+raO+70V7ItdhQ4JSEhgdtuu41Dhw6RkZFBbm6uKCIXCM53wsMVW4JLLlHqmerqQKNR0nFuiCWBoCWEcGpr3O2vJHAJSZLo0qULiYmJ5OXl2bVwWbFiBR4eHgwePNjOaFMgEJwHSBJ4eipfFzB5eXlcd911rF271uH7YWFhbNmyhXhX05wCC0I4tTXu9lcSuIUkScTExFhel5eXs2HDBkwmExs3bmTYsGGkpaXh4eHRhrMUCASC1iU6OtqpaBKcGaI4vK1xp7+S4IwJCAjgqquuIiwsjNraWlauXMkbb7zBhg0b0Ov1bT09gUBwvlCeC0f+UP5tRSRJ4oUXXmDQoEHEx8ezePFiXnrpJQYOHEjXrl1ZvXo1AEePHiUoKMiy35IlS+jZsyd9+vThiSeeaNU5XWgI4dTWuNNfSXDGSJJEr169uPfee7nyyisJCQmhurqa5cuX88Ybb3Ds2LG2nqJAIGjvZH2uLPqZP1n5N+vzVj28n58fmzZt4uOPP+bGG28kKiqKLVu28OKLL/L44483GV9UVMStt97KDz/8wI4dO+jSpQslJSWtOqcLCSGczgWSLoNrP4eAKPvtAdHKduHj1OqoVCr69u3Lfffdx2WXXUZQUBD19fWEtWKXdIFAcAFSngs/PQSySXktm+Cnh1s18nTdddcBMHDgQKqrq5k6dSoAaWlpHDhwoMn4jRs30qdPH5KSkgC4/fbbRXnCGSBqnM4VmuuvJDhrqNVqUlJS6Nu3LwUFBfg0eLvIsszixYuJj4+nT58+qMWqHIFA4AqnDllFkxnZCKcOQ2CM433cxLyE3vx3yfa1wbYPnxMk4ZZ+RgjhdC7RuL+S4G9DrVbbFZEfPXqU7du3s337dtauXcuoUaPo3bs3KpUI0goEgmYISQRJZS+eJDWEdG6zKQ0ZMoRbb72VvXv30qNHDz755BPqG7egEbjMefEUyM3N5cYbbyQ0NBRvb2969+7Nli1b2npagnZMx44dGTduHL6+vpw6dYoff/yRd999l127diE8YwUCgVMCY2DyG4pYAuXfyfNaLdp0OoSHh/PJJ59w5ZVX0rdvXw4cOEBoaGibzae90+6dw0tLS+nfvz9jxoxh+vTphIeHc+DAARITE0lMTHTpGG3qHC44p6mvryczM5M///yT2gY34oiICK6//nq7FSsCgeD844ycw8tzlfRcSOc2FU2CplzwzuEvv/wysbGxfPrpp5ZtCQkJbTgjwfmEh4cHw4cPJzU1lY0bN7JhwwaMRqMQ2AKBoHkCY4RgOk9p96m6JUuWMHDgQK655hoiIiLo378/H330UVtPS3Ce4enpyahRo3jooYe45pprLLVOBoOBBQsWcPDgQZHCEwgEgguAdh9xOnz4MO+99x4zZszgqaeeYvPmzTz44IN4eHhw8803O9xHp9Oh0+ksrysqKv6u6QraOd7e3nh7e1teb926lT179rBnzx46derEmDFjRMRTIBAIzmPafcTJZDKRkpLCiy++SP/+/bnrrru48847ef/9953u89JLLxEYGGj5io2N/RtnLDifSEpKYsiQIWg0Go4dO8b8+fP57LPPyMnJaeupCQQCgeAs0O6FU1RUlMXUy0zPnj2bdYB+8sknKS8vt3wdP378bE9TcJ7i6+vL+PHjeeihh0hLS0OtVnP06FE+/fRTvvjiC9HGRSAQCM4z2n2qbtiwYezbt89u2/79+4mLi3O6j6enJ54XeOdsQevi7+/PxIkTGTZsGGvXriUrKwuVSoVWq23rqQkEAoGgFWn3EadHHnmEjRs38uKLL3Lw4EG+/vprPvzwQ+677762nprgAiQwMJBLL72UBx54gAkTJli2V1ZW8v3331NYWNiGsxMIBO0dSZIoKytz+N7EiRObBBIcccsttzBv3rzWndgFRLuPOKWmpvLjjz/y5JNP8txzz5GQkMC8efO44YYb2npqgguY4OBgu9fr1q0jOzub7OxskpOTGT16NOHh4W00O4FAcD6ydOnStp7CBUG7jzgBXHrppezcuZO6ujr27NnDnXfe2dZTEgjsGDhwIMnJyQBkZ2fz7rvvsmjRItGhXCA4TymoLiAzP5OC6oJWP/a7775LWloaCQkJdh6G8fHxbNu2DYC9e/cyZMgQkpOTueqqqxg3bhyfffaZZeyePXu4+OKL6datG1dddZVoweIG54VwEgjOdcLDw7nmmmuYPn06PXv2RJZlduzYwTvvvMMvv/zS1tMTCAStyKIDixj/w3hu/+12xv8wnkUHFrXq8T09PcnMzOTXX3/lwQcfdNjY96abbuKuu+4iOzubF154gT/++MPu/W3btvHTTz+xZ88eCgsL+eGHH1p1juczQjgJBH8jkZGRXHfdddx9991069YNk8mERtPuM+YCgaCBguoCnt3wLKaGJr8m2cSzG55t1ciTuRSlR48eaDQaCgrsj11RUcG2bduYNm0aoKw0Hz58uN2YK6+8Eh8fH9RqNWlpaRw6dKjV5ne+I/5iCwRtQFRUFNdffz0nTpywq4c6ceIEO3bsYMSIEfj7+7fhDAUCwelwrOKYRTSZMckmjlcep4Nvh1Y5h23fPLVa7TDi1BhJks74GAIFEXESCNqQjh074uvra3mdkZFBZmYmb7zxBsuWLaOqqqoNZycQCNylU0AnVJL9o1UlqYj1//uMlgMCAujbty9ffvklAPv27WPdunV/2/nPd4RwEgjOIYYPH06nTp0wGAxs3LiRN954gxUrVlBTU9PWUxMIBC7QwbcDs4fMtognlaRi9pDZrRZtcpXPP/+c9957j169ejFz5kxSU1MJCgr6W+dwviLJojMpFRUVBAYGUl5eLrreC9ocWZY5fPgwq1atIjc3FwAPDw8uuugiBg8e3MazEwguHOrq6jhy5AgJCQl2qS1XKKgu4HjlcWL9Y/920QRQVVWFr68vkiRx5MgRhgwZwubNm0WLMRx/X93RAaLGSSA4x5AkicTERDp37syBAwfIyMggPz9fuJALBO2IDr4d2kQwmVm/fj2PP/44AEajkddff12IplZCCCeB4BxFkiS6detG165d2b9/P126dLG8l52dzalTpxg0aBAeHh5tOEuBQHAuMm7cOMaNG9fW0zgvEcJJIDjHkSSJ7t27W14bjUZWrlxJaWkpGzZsYPjw4aSmpoqIlEAgEPwNiOJwgaCdIUkSY8aMISQkhJqaGn777TfeeOMNNm7cKJYUCwQCwVlGRJwEgnaGSqWiT58+9OrVi+3bt7NmzRrKyspYtmwZ69evZ9KkSXYRKoFAcGaINVTnF2f6/RTCSSBop6hUKvr370+fPn3Ytm0bf/zxB+Xl5Xh6erb11ASC8wKtVoskSRQXFxMeHt7ERFLQ/pBlmeLiYiRJOu3yBmFHgLAjEJwfGAwG9u/fT1JSkmXbpk2b8PT0pE+fPqhUIjMvELhLVVUVJ06cEFGn8whJkujYsSN+fn6WbcKOQCC4ANFoNHaiqbq6mt9//536+nrWrl3L6NGjSU5KQlVVBTU1UF8PXl7g7w8+PhhNRrKKsiiuKSbcJ5yUiBTUKjVAs+8Jmkfcu/aNn58fXbt2Ra/Xt/VUBK2EVqtFrT7930ERcUJEnATnIPn5sGMHlJaCTgdqNXh7Q1wc9O4NjtJxJiPkrIeqQvCLRB+dSuaWv/jzzz+pqaiAggIiKioYHR5Oz7Awu7RDtl81c1Vr2RJchUmlbI/0iWRW2iwA5mTOobCm0DLe/F56XLrD6bdXsdDa816Zs9LteycQCP5+3NEBQjghhNN5RyMBQdxQOBce2i3Ny2iE7GzIzIQTJ5wfx8MD+vaF1FSIiFC27V4Cy2ZCRZ51XEA0XPQfdMe0bFqyhPVHjlBXVQJGPR0CAri832CiAgI5XHaY5UeXIyNT7aVmW1cfdiR6I0kqZBz/eZBQxNXc0XObCIAzFQttJbpaW+SszFnJjNUzmtzD5u7duUR7Fb8CwekghJObCOF0HuFMQEx4GZIuO3fnVV4OX38NhYXOj9EYSYKLLoKQU/D9zdBY5NQDO/XQ6XIA6vb9xobiCjZWyhhkeDAhAP8e4/iyOJMqvX0z4X2dvFnd398SfXJ4eiQifSJZNmWZ5YF6pmKhtcSLuw/91hY5RpOR8T+Mt7uOxsdtfO9aC0fXDrh9Pxx9H67udjWd/DsJISU47xDCyU2EcDpP2L0EvptGEwHR8PDj2s/bRjy1NK9xb8OGQqisbLpvZCT4+CjRqJMnldokW2QT5H0K0eWKkDJjkGGrHqpl0HiBoVbZ7iFRG67imATdwzTsVGn5wOSHlFVBuKeKUB+VJYV3sKMXKwYG2B/XAZ+M/4TUDqlnLBZaS7y4Ir5sxUWodyhPr3u6VUXO5oLN3Lb8thbHme9da+Ho2gM9A0GG8vpyy7bmxKiz70NjRMpRcD4hisMFFx4moxLRcfjHXgYkWDYLekxqmrY7k9ReS/u2NK964JXHoO9d0NBNHU9P6NcPBg6E8HDrcIMB9uyBLVsgJ0fZVnYcDhSBXgPxDb/Osgy79VBtativFjwk6KKBMBXeKgmzy9NxX09WenhTfqiG8HIDfU7p6R6qJdRHTZcTdZT6a9jSw7fZW1BcUwwoEQ1n4kO5WpmCmgKyirKaiAWjycgzG55x+LCWkZGQeDnzZcbEjjmtyFFRTREzVs9g7ui5QNOareZobt7OMN+T1hrXGEdRpYzjGQ6vvVxX3mR/2/thK3yMJiNzMue0KJqaO4ZAcL4jhJPg/CBnvX0arAkyVOQq4xJGWDefSWrPlX1bmtdBPZTVKQIoOA46dIAbblBWukFTYZY8VCkOz8qCn3+G+mpl3FEDhKrAXwVlMpwyWc/hKUE/D/BuGjkKNxpQeanw7OZL4ZFaNnoaOHW8jnBvNd3CtfTfX83Ozt7oPJxbGYT7KOLuTMTCRzs+cviAN+OKeGnuoW8WX89ueJYyXZlL83Rl3s4w35OWOFZxzO15OIoqRXhHoDPpXBI84FyMtiR+XTmGQHC+I4ST4PygysXaINtxzlJoFfnKdkepPbOQ2bcUNr7b9PiN921uXjoZihsETskB6JIC06YpqbmG+RmXzSSrvoRitZpwo5EUj1DUE16GlIZ5zT9iPV6uEXqoIM9o3SZJ0EfrUDQBpNTpiNbIFPXxx6erD9X7qjlmlJHydJzMMRLuq6bzgWr2JPs32decwjLX0DgUC7JMaLmBgBoTHnoTJpVEx8I6iKpVVgmiCJ4v9nzh/D7Z0Jx4cSXidbqiCVwXQwApESlE+kRSVFPUrJh5Z/s7dAnu4nLExmlErbbI5bmZcSRG3Y2AnU40TiBo7wjhJDg/8It0b1yLqT3gpwfBKxDihyvpN0cRJof72qQFm5tXvlFJqwGc2Aw3NYgmkxH++C8rM19nTmgwhRrrMSINBmb9fDfpoIinnaNh70+gq4IiE3Q0wUmbaFOoCnydR4vUwKySUh6JDEfjrSGgXwByFx/Cvy2g5GQ9FToTKSfq2NvTF9nGQFOSZZAkZqbNtEQabMWCRm+k6wkdvY7UEFqu9M+TkPDV+hJSupR93y9G1asXndOvI0tbSEV9RTP31Epz4uV0014t0VgguoJapWZW2ixmrJ7R4rFdjdi4k0ZzB9v7dqzS/QhY42MIBOc7QjgJzg/ihippsop8HIshSXk/bqjyssXUHlBbCp9fpuzX62pY/5aTYzfGJi1omVejc8myfWTIRwW7XoeYCFg+i5XGMmZEhDU5W5FazYyIUOaumkV6j0kwaBBkjoXsH8EE7NNbxRgSxGjAOxhqyxzO3SRDUrUPuhPXE5HwG+X6k0h+GqThwVyytYyelXXEFVeRfdKPnWFeyFvKSfRR01ktc2PC5Qws8IfavdClC2qNhlmpM/nio3tI2V+NVm8VcBISMjIG2cCSQ0uUjYeX4ffr+0R07U9IlIFTAc3/OQr0DGxWvLgTEXIVc2G6rUB0lfS4dO7tdy/vbHvH6Rh3IjbupNHcwXzfjCYjC/cvPKNjCAQXAkI4Cc4PVGqltui7aSir1WxFQkOaasIca+G2q6k9UETP+jfdn1NVoc28brJ/r0aGeps5RqmgMg8W3owRmBMbrVxBoxVtsiQhyTIve8uMOboOdbcRkNjwwD24AkoqlEJwAP9AuOtDkCTk76YhA7axJ1PD6Z/V34Re1wdDzkA+ujmQUwd+ocPBd+hXV41KC9Qb+PKvPH4rlVh6QI8HMNhbJj41B/J/VQ7i4wN9+pBeXEzn6mGsYx1VWC0OPNWe1BnrqDPU2V1Ptb6aw7vXcuUBFcsGBZIb7uH0dl7f4/pmxYur6TF3iPSJZGbazNMufu7k38mlca5EbFozqhNYZaBrbj0djf6keB0GjxMcrDuOd84xpEgP5GZsKGw5nWicQNDeEcJJcP6QdJlSW+SwYHuOfb2Sq6m9M8F8jqTLYPC99jVRjbs3+FslTZaXJ4Ua57+asiRRoNGQVbCZ1M6jFMuCiu4Q1hUO7oAAD/Dwha4pkKx4OO0f9Q7+q/9JtHTKcpwCQnlWfxPLTWnK6/J65NpEJsZeBKbXlUF1Mpw0oa40MNALKrxM7KmRya6G3Xtz6Fvnzci4OEJkGT77DAoK8AmQQKtEm+o8VeyJ8+ZwjDfVnn6oTRBabiD5aC2xhTpLgbGnQWbihjL+NyKYomDHjTcXHVhEt+BuTkWMbXrMHOEyY44cBXgEUFFf4VBYSUhEeEfwn+H/4VTdqVbxKnI1EuPKuDON6kgmmbjCenodrqFTkfIDOD5+GOo9ewBQlR7gkpwyqnzUZMd7syfem1pP52neM4nGCQTtGSGcBOcXSZcptUUt2Qu0mNo7ExqlBQG6T7QXTqZGu9g8n4pd7KFUrG7YySyyJBX4RoCHXlltd/KQUi+lUrM3eDSP6N4kTbWXCMooIohMUw9M2D8YiyrrwF9Wbkm1IpqQZZAg3EPiugg1+TqZ1eUm9smwraCAHYWF9NNouESno6q+nOMFB4nxVTN/Qig7En0xqu2jFxW+ao5EexJQZWDU9ko6FtWDDBojTNpQzjcXh1Dn4IHtyvL39Lh05o6e69DHaWbaTIBmhdWsQbMYHD242fvujsFkS1EwdyI2rhwr0CMQT42n3bUHeQbhVaNn+NrjhJcqgslX68fwmOF0DupsGeejVRYl+NUYGbS7ipT91azuH8DBjl4O53Om0TiBoL0ihJPg/EOltrcccDbGaWrvTHCQFgRFRHmHQG1DxKfxb57eev5woxFXCI9tEGa1DeaWxftg/3KgwaJgnwSv/gqTXyXCfxgmVGw0JTk8lpkIfy+oOanUXxWbsNwXFaCSIFJFVLSaf/hK5I6YTsZxLQc3bKDor79Q+/lxrOIYsgQFIVo6FuvZ3sX5uSr8NCxPDWTCpjJiiuvpG9GPg2UHSTpaS1b3pt5Rri5/T49LZ0zsGKUmqLqQUl0pwZ7Blhqp/476L//Z+B9KdaWWfVwVAadjMNlSFMzViI0rEbXZQ2dbrt0i4tRxSF98QX7oXmoCavDR+hDlG4VKUlkaPKPXE6WS8NP6Ua2vRkZGa5AZu7kcb52JnYk+SEgEewXz+MDHifSNFM7hggsWIZwEFy5Jl8HVn8HSGVBT0jrHdJQWtGAjzrwa1ZCcNEFow+q0Oh2RBgNFajWyA9duSZaJ9AwipUMqVFXBsWOKaMr+EbyBBh2FSYaDufDdNNKumU9UoB8F5XXOSufpEOhFWkII7AmArHqb+UrQUQ1JWtBa5xPTJYkbx47geKdOqPz8KKrIpaYki5wQLRurjSTk6Ri0u5oNvfxsboFMp8J6ko/W0rGoHo1RRmWCXkdq6VVeQbfQ7pTv28rWrj4O62xcLaZWq9SU68qZlzWvRZET7BnM46mPuySaTtdgsrkomDsRG1ePZbk31dXwf/8HFZXE+MUo2zQa6NVL6XUYHW2po1NVV9NzWSCrFr1CQLXRcp3Dd1Si81BzINaLfw3+l4gwCS54hHASXLjsXgK/Pdk6omnwvUo6zpnreM56ZZWeGQ8JglRQ1pCzKzRBogwayWIRMCMiDEmW7cSTxQZg6DPKp/2sLDAalMJwZEjUwn6DtfA81wjRatTLn2T2pb8x/avtzkrnmT05CbVKghw91GhRbM1liFIrXlCWedinImOPH4fAQA6YitiV4M2ucgOHT9WTU6onplyPKt4L2UdN78O19D5cQ0C1fURNVklUhQUQYPLi1IlchpRXYVBLLBsUSH6Y42Lxlgql3RE5ZboyHlvzGHMl5ylAd60AGkfHbKNgZ9o0t7mImtFktD/mzz9Dqc3PXUSEYrAaGNj0wL6+pE55mPKUJH77ZBbxO62Npi/dZST+8ucZ40w0VVdDRQXU1SnCzMcHgoNB5bxGSiBorwjhJLgwcdo/zk18wuDS11t2GXe0ii9GbRVOJlkROXEaQCK9ppa5RScbfJysv6aRRiMzayXSq2tAp1Par5QdB12lYnIZqlKETo7inUSNCU4YQMplgt8R3rsxhWd/2k1+uXV1W4dAL2ZPTmJCryilrcu3CyC4MxTvBY0EA+xFkxHIGnoXxUeXE2nyof/RI6gkFT5aH7Z19eGQSiJ0VQlltSaOFeuRvi+kp5+aVAk81E2jSADdk0cj7S5Aq1YKw5OO1uKpl1nXx49dnX2ajHdYKF1SAlu2YDp4gEMb3+C2ukr0GokqbxUHY7zY18nLoQO6KynA07ECaBwdU6vUrWYS6SyiZtc/rrQU9u617hQaCrfcYjVYBYwmmcwjpyiqrCPCX4k4pieMY8yzF3Pgh/dRr1tvTe0VNzJBNZlg/37YvBkOHWo6yYAAjP37sS1WRaGqRjQGFpw3COEkuPBo1vzSDXzCYMYe0DhfQm/B0Sq+UJUSeTJHh44YYcw9cHIpVOSRXlPLmJpasrw8rc7hdTrUSPDNTWCcAKWyUpMEEK1WBE60Go7ZmGseMihhpapCJvQewdikDk0elmqVpDQSfu89JfXnGwb0AJ88CDVYprwyNJo5wf4U7vsY9kFEqZ6bd9czPGY48YHxVIXGUOBfwcUn6qguqedAsZ6AgzVU+KrIUKvoHKKhS6gWWa3icLQnRQHB3D/oThKC+8Cnn+J/2IiHygMPgxFJlhmxvRK1EbZ3VR72DoupDxyAjRstD+/8qlyMleV4oNTJ+9YaiTylZ9DuKg7EerGtiw9l/vZ/+lpKAZ6JFcDZMId0pSdf+gFsPL2Ayy+3E03LduU3EdFRNiK6x9X3QrEERQ2u5H/9BaNGKVGkrVth9WolyuSEw8e2sW7D21QaqzkQ48n63v4EBEeJxsCCdo8QToILD1fML5ulIWpy6euuiSZwvIpPJSmNeffrlWN6+sMRf7joAwjTwZI7UdeWklqnsz9WlVFJx1Ustm7zlJRIk/n/u2jggI3nwUED/LYVtL1Qd+vGkMRQ63s6HezYAZmZsG6ddXtgB3hnIXgUQ1UhK49nMKNoDbKh2hKB8tDLVOurWH50OePjx3PHJQ9w374X2RfnRYrOxOByA5VaiZ80KkqMMl2rdYxJhmOxnmTK41lXfRn39RoKiaFQUIC0cSMd9kHZiSxLAfTQXZVU+Ko4Gq20aLEUU5tM8NtvimiyoUZf4/BboDHK9DxaS7fjdawYGMCR6KarxRyJHKPJSEnd6adzW9sc0pWefK9ueInRRy+msCqXGn0N2uhYYmOiMcd6lu3KZ/qXW1D5HEETUIls8MdYk0BBeR3Tv8zivRtTlAhkair88ouyU3U1ZGdDbi5s2tTsHA+XHWb50eUN84Fux+uILDWwdIgsGgML2j1COAkuPNwxv3SEhx9c/nbL6TlbnK3ii1JBlUZZxdYlXdn8+yqozoe8IghXgweKfUF1g9t4eSMvA7UEvbVKWs1MjFrphXfMgEWUVajh228hIABiYkCrVWpSjh6F+nplP/O/kgRjxkD3HkAPjNmLmZO/ClmttjPlNKjNTWZk1uWu44bwfzO3YhyfFP4P/21GQiuNhHqquKyDBt96PYP7qAkOl+lpqGNVuZG64r3knuqlCCe9HgICiBw4mppOHcg5uZkqvWKiOWJHFXWd43hicEO0QpZh8WJF8DVC2zGOXWofDGrw1Mt0KqjHt85aV6U2yozPrGBVisz+Tt52+zYWOY5W0bnK2TKHdKUnnzE/ly+2fECtQVkpsCY4gJJFW5iVNosxsRfzrxXf4NNlESqttebLpA9EVzgZY2Uvnv1pN2OTOqDu0wdWrFB+LmQZvv8eGttlaDQYk5LYHWGimGqCNf58suJnok+qCayyRisDqwxctraUH0eFiMbAgnaNEE6CC48zNb+sr4SfH1Z8k9wRT+ZVfL88YrUlkCToHwvDr4Eim4dIValS85TbgjWBVoJeWvBzUITbWaOkAg8aFFEmNYypqHCeYjEaleLe5GRISFC2mYxk/f4UhYFN/1zUNdQMyUCVvor92atJjx/EmKIPKc+vR66X0SIzoFKPapgnBFrnuePoKXRlq/hi/nYq8kdzw4mTeDbck4QRl9MpaBoFqxZTo1eW0M/o/TDquGRl51Wr7EWTJEHfvpCaSmxUB/b/kGnxO1KZZOIKdPQ9WEtUiSIMJVnmoq2VVHuryQ33cChynKXDXOFsmkO6kvrz1pksogmgMETLqYY03tiY66gN/pbG1WaSphyvmC+py72R/PJeZB45pUQmIyLgxAnIy4NTp6B374YdJBg1ilUdqnhx5zwKD9mIuU5AbAixRfWM2FFlEVC+dUYmbCzjh9GSaAwsaLeIJQ+CCw9z2qzJo8MNakuVNiq7l7i+z+4l8MvDVtFkxlQHowbCJZdYa1A8mvoYNSFIBf21dmKkCUmd4NkPYNxUq1GmM3x9oWdPJT0THGyNPuWsp9jG88iWcl81VT5WYSCv/hmK9qGulQmpNBJqMhJgMqEKVdnNc6WPN0f6HMIrehsbTvzGy288wS1fv8qPezMxmEzQuTPq0WOICYqja3BXYvxiUP+VpexcXAxr11onoVbDtdfCFVdATIzF7wgUAWNSSRyJ9mLxiCB2JFprfCSTzOitFagaAni2IudMG+pG+kQyd/RcxsSOYXPBZpYeXsrmgs0YTa55dDWHK6k/jdF+3kpkUPlvRe53QJNuPpbXnh0WofY5QEFFgx+YVqukRY8eVYS1efA117AywcDDm55yHAGTJI5HerJoZDAlNqI7rFxPl1ydaAwsaLeIiJPgwqM1zS9/ehC8AiF+uGMbAjO7lzTtV2emthS+nwbXfgEzZsDu3UoNyd6fQFdlPz+1YkJJjBp8nQimEY9DRI+mrunjxsG2bUoRdXW1khrz9FRMEJOTFdH0v//Bzp3K+Px8pf6pqtCpKaesksiO92bQbiWlFrhjBehXwhGD/bxjrPdmhbc3MyLC0ACh8aHUHauj068nqdDp+b9ta9hSeJLrJk+mj4+P4je0bZuy46FDUFamrOKy5YorlLk3YDTJ+Br6MzXuaZblf0BpfcMDWpLIHtiRIPkknQ4r4jWg2ki/Cn9uuuI5i8gprimmpK7ktNJzd/W+i8HRg0mJSCHjeAbjfxjvfNXbaeJKT756jb0q8rQxWJUxNRFNZiQJJE0NPnEf8/reJfiHPEV6XZ0iVvV6q/i+6CKMPboz54cHWxSXdZ4qfhkSxNTfT+HR0Pg5+XCNaAwsaLcI4SS4MDAZ7duw9JjkuK+du9SWwueXNRhfvuw4dWcywq9PtHysZbOUefXpo3wl+8CC6WCQQZKVtJyfpIin5ug8yrFzurc3DBmifDmjWzercNLplP8PjWzWlHNPvDepe6sIMJiIMhhgP5BvU4flJUG0IvL0MrwcFgxIysNbkkg1yQyN0HLCU+JgiZ51dYcZd2QjDEiBfv2swgmUwuTt262vY2OtqSMarxTzAx4hPDyXq1IDSO/WldK6Ut40vETHo6WoGrocdz9cwY7iHaddy2Qm2DOYe/vdi1qldprmK6wp5JHVj3BTz5sY02nMaS3Pt3UQd0a1t/0xOxXonPYAdEZZ/Un+vfQhEvYPJDGvTNno4aGI7bQ0tywaqr3V7I/1otfhGiQkulR6kmKMcms+AsG5wnmXqpszZw6SJPHwww+39VQE5wrZi+G/3WD+pfDD7cq/83op7z28C276H3gHn9k5KvKVCJaj1F3OeqjMb/kYpSfg1/mwcCF8/jnsqYPoO6A2UAmMBbQkmiQIiLHvkecuPXsqKTszmZnQMQ21TyizSpR0nSTbi4E6D4kDHb0YXlun/EEplaHIBOYgVZjaYoS4MShK8aWSAFmm96Eahu+oQq2SiAvWMirRh8ohvmj3P6d8j/LXc6S0lB2FhZhkGXbtUgSdmVRrjYyyUizLbnk9qDhZHMuHSwNZfeAoj615jBzTSQ7GeFpGBB4r5vvN/3dGogngn4P/iVqldinN98WeL7ht+W2M/2E8K3NWun2u9Lh0piVNs9RSmTG/LglQ21kuJB2tswhFV5GRST5ay+bDq5HLypSNERFKLZmnp9uptl0J3pb5DY8ZjnpXtlv7CwTnCueVcNq8eTMffPABffr0aeupCM4VfvsXfH+z1evITEWeInT2/gKJo2HymyhP89Ote2p4KC2bpUSYbGlpFV+trHgtbaiHn5cp4uDwYTh+HGoDIPY2UF0DdVMg9PqGvnZNSnuVfxr3yHMXjQZSbFaBZa+F+7pA9UmLKWdEo7RdpNHI5ZE6OmuNytxKTEqUrFJWVgIaZfAbAT0eQj/wcbzqjPQ8Wss1q0sZvqPSTohl9vZH3zeAMk8NVOQj/3g3y7etZ9GePby3eTPZO3Ygm8d7eUGS0nvPaJJ59qfdDqWKss3EFwfetIiZPXHW1XSSLBNeZnCwp+vcmnwr4+LHAe6ZZZp9l9wVT3O3zGX+7vlNxJnltSSxK8F6jb51RrqcqMMdtHoTPY7WYKipolJfqQjqwEAlrYv7NgulARrqw0MYHz9eaS5s62guELQjzptUXVVVFTfccAMfffQR//nPf9p6OoJzgV2LYf2bzQyQremxpMtaIXUnQ0WuEmGyTZU1t4qvwAj7DFajQkdF4ZIKguOU/y8BdFeBeh2obD7xN9sjz00GDlS8kfJ2Kf3vkKFaDYmapqacGh9Syk8q/kCd1bBSr4gmoww6QA/sNcB7v4J6GSlaL+apJEr9VBQHaan1tH5229bVh+1dlIe9UlMlY6qF5NoDlAcMoLimhu+zsohUqRiTkED3pCQklQRH1nLo0EHiKk9SSA9MDj4PqnyOIKvLLK/L/ezFpae+kcWDi4R4hfD0oKctogmgsNr1yJWrjYtt+e3ob3ya/WmL4/bFejE4u8pSKD5yeyWl/hqKXUjZKZYNSoNftVFGb9Rb+9o1LGBIiUgh0iOIIl2p056KEUYjLxSXUDJmFuFxIxggZ6M6elQZUOeekBMIzhXOG+F03333MWnSJNLT04VwOgeora3F29u75YFnC5NRad7bErZCJ+kyRUQdXacUa9eWnd65G0eY4oaCf1TTdN1xgxJpMuMZAEGxSiSlQwerz1JennU1E4BfPGgSYXhXCNU0LQI/UwID4fLL4NF5WCJpuUYl/RalRh2tJhWd4pw+6UN483LFX6rEpNQzlZgUwSSh/IWRZagDtBBYX4efpwcepSYiSw1U+Kg5Eu1JRv8AdnTxURoYGwykNJh+qguNjPCpJ7V7NBur1WyoqqLw5Em+3bWL6KM7GZ83lzhNMd2Abz0gTw7hWf00lpvS7C5J0lTavTY1XlHmRhYr2DOYiQkTifGPIdgzmGCvYLsecaVOViA6w9XGxaCs9nt+w/MuHdfXP5RdnWvod0BZHac1yFz2ZxkZ/f05HO3ZdFldAwHVRi7KqiDqpLKqUpZA4+0LkQ0fABp+FtUqNbNixjHj8ALHPRVRei4OqtOBTyfokAqmndYTNfaDEgjaCeeFcPr222/Jyspic+PVNk7Q6XTobOokKpppGyBwn/Lyct5++22Sk5MZNWoUwcFnWD90OuSsd715r63QUamV4urJb51+L7vGESaVGi55xX5VXaHRXjQBDLkGLrtCKXbW2kQFqqqUFhdbtkB5g2GhwQjrD8Nttykiq7XxLYO4Wthvs+pQ32CoecygmG2qcqHgazjgBXWVcMoElSbwkZS+edU2dU46QKsYZXbSGzjoocWglqjxUqHTqigM0VoetjNLSpUIVr0MxUokyMukY/S4Kxik1bL+p5/YtG8becd3UxvnCeHWP2MdOMV72nlM1z9sJ55kg32fNd86+whTnUfzKdonUp8g1CuUcJ9wSutKeWXzK05XywV7nt7Puys1Qx/t/Iiy+jKXjvdE6hNEjghDu2AhYbllrDq2imp9NeMzy6nwVZOd4M3hKE90HirURpnwcgO9DtcSW1Rv+V5ISKj8AvDvMtS6oq6oyPIzlx47mrkb33HcU7GklPSaBi8pv0hFcJXY/E625QcrgeAMaPfC6fjx4zz00EOsWLECL6+mLRQc8dJLL/Hss8+e5ZlduOzbtw+9Xs+2bdvYsWMH/fv3Z8SIEQQFBf19k3DHHdxRKs1p6s4F+wJbwWZezWesh9FPwcZ3oaJUSc+Z0XjDDY/BLU87jgL4+cGIETB4MPzwg7Vxa309LFoE06c7jR6cNlWFSs87D5RUm6HRNZtf11ZCYjqs/UGpaQJFOIWroFSlpOxklLBFlAo0EsHlJqJUJjLC/ahUS0iyzKXry/hziD93GyqVh60sK5YGtinM1FS8Cwu4WMplsMc+tgdIdFdZrzu7yIivh0SnQBWztZ9TofchnAqKCGJzTTckYxCoy5GR6X7MPk1U7uf4T6HZGPP6HtdbVss9tuaxZnvERfqensFqSzVDK3NW8s62d1w+XqRvpBLBuj8FFixguLGe5UeXIyERUG1kyK4qhuyqcrq/hIROKxF737Oo1udafb3++ktZ9QkQN5R0TTBjjueT5eXRqKeichQCopWI6J69ig2GmU6dXL4WgeBcQpJl+TQ+Up87LF68mCuvvBK1TdjXaDQiSRIqlQqdTmf3HjiOOMXGxlJeXk5AQMDfNvfzmdzcXDIyMjh48CAAarWalJQURowY8ffc4yNrldVzLeETBo/td57mamxjUF0MC29t/pgBMfDwTqXwvLHwCogGzUj464AiKII7waXXw1hrjYzRZCSrKIvimuKmHeWNRvjmG2i4rwDcfLPV5bslGl+PsxSf7f0zyFBoUtJx1Y1qgfpeD7Va2L4R6o+CV53iVp6oAX8Jttv0yzO3hglSQZUJ034D+TUqajSe+Bh0RKmNqFI9QI3S8Ni2XcwlT8HYzvDDA5BRZBVUYWropUVnkHljUz01epnOwSrGxGuItTHczJND+Dnlet4u+wmNwcS0ZSctnkJFwVp+GB3S5BaYV4CZ+6oZTcYmvkyNx0f6RPLLlb8w8ceJLheIm/dbNmWZ0xqnls7dmBCvEFZds8qyym9z7kYK//clHlnbyS8/QZ3RKhz9tH50De7KgdIDlhY3ALrIUFLufp5RKVcr/epsI/rTp1tTd7uXNERnwf5DRYOovfZz5YPIp59CTo6yzcND8Sxz8cOuQHC2qaioIDAw0CUd0O6FU2VlJTnmX8YGbr31Vnr06MHMmTPp1atXi8dw54YJ3OPYsWNkZGRw5MgRAHx8fJgxYwaallyszxSTUVnO3lKh9zXzIfkK14/rqiAb/RSsfokm0SkZ2FQPiVdAeHfFofuBByzL9R31RmtimlhRAfPmKW7OoKwsu/Za+/M4EkjOhJwj/ynL/bNpSizLUCFDWUMNk9YXRj8BW4+Drx9o1FB+Avr4wbH5yj779JBvU58lSdBRbY1m7TJApQcY6pTjR6iU9N4pE5YHb6+rYNIo2NTghbVbD0XmY0qQoqXWW2LVEQNZ+SaMDX/SuoQoAiomQNVQgg0r02fyy+8L6br1uGVKO4Z1ptuYa1l6ZKndfe/g04GZaTMt931zwWZuW34bLfHJ+E8o15VbfJaasyVoLM6c4eq5zbw26jXGxY9jZc5KntnwDOU6JcXrXWekZ04d/Y8ZSfXuRnxgPFG+UagkFSbZRF5tEYUJoWjShtCr3wTU6obf08JCeO896wk6dYJp0yzpO2P2YrJ+f4piXak14hQQY12wsG2b0lvQzMCBcKkLv0cCwd+EOzqg3afq/P39m4gjX19fQkNDXRJNgrNLp06duPnmmzl69CirVq2iU6dOdqKprq7O5RSrW9i5gzt5cA190D3RBK6nADe95/i8p4xQJ8PBlRDWVXmA2IgmR6aJtmmg9Lh0pUlv9+6wZ48yYO9eqKxUHMBBiQA0FkjewYpZZ2PM/lPmqABYRVfSFUpq0ZyelCQIlGxap+gg8xk46AVdxipC8KpbYPgwmLdCOXZXDSadTH6FihpJwkeWiTpuQHXcCCES+EqQWwOByXBiP+TqFJdxCSXS1CUdbn4Y1t5snXO02kY4ybBTj3c/LZO6aRnWSeaPHAPbCkwcPGXi4Kl6uoeqGZeoJtRHTfqPH3GR7w3kdymgRl+Dl38wdz/4X9SeXtzf734W7F/A8YrjxAbEcl236/DQeFhO66pvUXFNMRM7T2Tu6LlNRLBZoJiJ9Im0E2fNHdNVzNYIK3NW8sjqR+zeq/VSk9Xdl61dZZaeOsZzydcQE9ofNBpUPj507NiRjr4OVnZGRkJ8vNJ2BeDYMSXyee21rCxYy5zdb1MYqAbClOEeQcwa8i/S48cphqVLbPzNJMnOf0sgaG+0e+EkaB/Ex8dz6623YjJZHxpHjx7l66+/ZtCgQQwdOrT1V+GZm+ounWFfd+QTBhNfg15XtHyMxpEbXxe9axyJFIAyGZBBVwGVeYozNs33RnO4ZH3gQKtwMpkUz6ekJJu0SaPjOJsPDZ5QZlsGR1EpSbKmxhqTa1TawmT/CH2vhrRZdqJ1pZ8Pr0wIoteOGouPkJ/JxPDaOjqf0sMplCLw0nqIGAh15dAxGsIiITQerrwK/Mrs5xMoKSm6kw3iSS9Dlh4S1AR1UHNZdy3DGwTU9gIT+0tMXBylgtx6yM1F1fcEMWZ7h8mTwdPLYaRvfvZ8u0ifq75F5nHpcemMiR1jl3btG9aX7Se3O07DunDMlpjeZzr39r/X8vPkDFklkR/mwT8rvmP5uNtdcy+fPBn+7/+gtqHg+9Ah9v/nYb40/kZFvBfYWEsU15XxxoIHiPC8ktATJZZGzVG+UahGX2RN8wkE7ZDzUjitXr26racgcIAkSXb1Zrt27aK+vp61a9eSmZnJkCFDGDx4cOtFoHYvgd+ebCqaJr3mWqTJUeTGPwq8QxqEiCMxIYF3kHOhYtMzDK3R4tLdkmlikyXrjVfS1dYqIm/ZTCfzao4G/6k//uskvdggdj18od6muLe+IW0HgASVa8CjYTVg0mWsTJ/JjINfIQP5AwM4FuFBn0O1SOV6lvv6ML66hs56PfirQO+hCDTvIDAFwvCJMHw4REXBzoX285Ek6KmBbbKyig+UIvSDBqU2KlJFiL+KK0JUDPeQOHLcSMQua++8v3JPEOcZTlh6OgwY4HKkr6UeceZapZQIq4GoWqW2sxg43Sa/rvSni/SJ5O6+dwOum3AW1hY6tUFwWGt3/fXwxRdQX49JNrFx73LS9FUM3FtFXpgWnVaF2iQTWm7Av8bIn9Kn2FaD5HWPYnT8CE6/U59A0Pacl8JJ0D6YNGkSXbp0ISMjg8LCQlavXs3GjRsZOnQogwYNwtPTs+WDOMNZ5KWmBL6/BaTPmzeLdLZ/ZYHNtsYr7BpqcgZNh9UvOj6ubW21T5Dlf91JAwHWpeFm9HolMnYmffc2vUuzostWNIGScrQgg2+pxRPLaDIyJ/93O2+ffXHe7OvkRWSpQelZViRxV1E5Kh9/8OusiL+ICGX14DXXWA/taNWjWoK+WtiltxFvKAIqz4jZByEMc/JI4ZRe5pcTJ5H9iuhTVcXwk8VuRfrMPeIkJLt9zLVKM9NmOo3euFS/5gRXzj0rbZbl3O6k9hyNbXaut90GX31Ffv5eSzG5yiTTsai+yXFsRdOWHr5s6WFiyZpHmSs1X9N1rlFfX0+tOdImaDO8vb3x8PBoeeBZRggnQZshSRI9evSge/fu7N69m9WrV1NcXMyqVavYv38/d9xxx+kduNnIS6PUlKOHnCv7e/iBWmMfWTK7d/eYBFmf2RdWm9GAZaWYdwclBSZJbqeBqKmxf8PbG6pOuHQMp7hr+Nm4S4lWstSAOY14SBKFIVoKQwL5HRiQJ5M6+UPI1llTj42tFZz5cWkk6KOF40YlZVgvg8oDTE0f4A0HhtAguo34B3ura9i+YwfLNi7ngO4Avt19Ufs2/VloHOlLj0t3WLvUUq2Sy/VrzeDOud1ph9J4rEtzvfdejv30DhX5agKqnUfRTCqJgzGe7Ez0sTQZlsAtp/S2pri4mLy8PKTWtvwQuI0sy0RHRxMe7l67n9ZGCCdBmyNJEsnJyfTs2ZPs7GxWr17NwIEDLe8bjUZkWXZ9JV6LkRcnrVHc2b/exonaOwgG3QsjH7MKsQkv2xtemvFqiFJ1SYeaWqXINi6OlLC+RBplilQ4bV8RaYKUsL7Kht277QcEBoJ8BnUjnv6gq2x5nC2NO5uYsESHXI6gDbsffEPhyEIorYDAjlB6WEnP+UVC7CBY/mQzc5AgTgOd/CFPhqPlUA2oZEVYqRvGhKshRk3I7R8yNfly8vLyyMjI4EDmAWpzaqk7XodXnBd+Pf1QeTa+MPvrcVS71Fytktv1a83g6rnNqb2W0nWR3vapRZfnOmUZmpGj+Lr6M2KL6ul2vA6/OhMeehNGlYTOQ8WJcC37OnnbtdUxH8dVp/S2pr6+nry8PAICAoiIiBDiqQ2RZZmioiLy8vIIDAxs08iTEE6CcwaVSkXv3r1Jbmgiambr1q2sWbOGkSNH0r9//5YFlKsr35yNc8c8E6C2XKkNiujZcq+4CDUctvmEvnkzxMWhPr6JWSdPMiMizGn7ipknT6I+vgnihysu4mYCAxvMBGOVqJejSFdLuCuaABq3PKsyQbUSHQr3auqL5IjwrG/g25dhsx50DdG8IAlOaCFEBX5hzTvAV5oa2sHowNRwzV6ykqmTUY4Rq4ZOsXCJ1XYhOjqaG264gcAegaz5YA31RfXoTujwS/JzPM9GUZnGtUvN4Xb9Wgu4cm5zaq/xqrrGzBo0y050uTPXlIgUIvw6cFxVxLEO7qfVM45lnPPCqba2FkmSiIiIwNfRakPB30pERASVlZXU1ta2qXBq+tFKIGhjVCoVKpX1R3PHjh1UVlbyyy+/8NZbb/HXX39hNDZTZNtcU11Xxrm6v4WGB/ayWUqaz5Lqc4CXBKEqxY5ANimRo5ISqCokvaaWuUUniWh0bZFGI3OLTiqO2lWFyj62neXNlgbm1WyApd7KQsNrb9cETVOkpvv6SIrZpZk8kxIdyl5Myre3EmkwWERfY/xrjEzYWc6AX47AFj0UG6HCBBVGRQzt0sPGethd2CCoGlFhgr/qla8Co1U0gZLq00jKx8JTJtitBY/p4NXUnuSS/pfQY2wPQkaE4N/XH5WH8nMnyzI1B2uQdSY6aANIqalRvq+ngavRN3eaA7tCelw6r49+nVC1P/7VRkIqDPhXG9EYTAR5BPHaqNcI9Axk6eGlbC7YjNFkdKvWzizOwFpn5Q5f7PmClTkr3d6vLRCRpnODc+X7IIST4Jxn2rRpTJw4EX9/f8rLy/npp594++232bZtm529gYW4oUrkxekfc0lx944b6vjtFvd3hE36r6VUX4xasSMoO65YCXz9NaB4MKXX1LL8eB6f5BfyctFJPskvZNnxPGvPryoV/O9/1mOp1dC/v/W1uVVMQJT9OQOi4dov4NF94BPqxnWBtej9nkabJcVTyUyNCY6dgO9vRl2Rx6wSRdzZiSdZJm1PNTf8dpLp20+h0suKCLI9pl/Dn6V6GY4aFAGVY9N+pdgI2/TWFXUtoa+BA1nw1guw4BXFxNRk06g2bRYeYR54x1rtMOqL6qnaWcnJ304yNmM3uo8nK4agu5c4O4tTXK03emXzK60nJEwm2LuX9D/yWXVwLN8dGsoru+J5fXscP+0Zyrv5Q/hm8Wxu//VWZq6dyW3Lb2P8D+M5VnHMpcPbWi7MHT2XCJ8Iu/dVkmuPlpczXz7tlYZtRUxMDJIkOfy6+uqr23p6AOj1eq644gr8/PyQJIn77ruvyZirr74aSZJ49dVX22CG7RuRqhOc82g0GtLS0ujfvz9//fUXa9eupbS0lMWLF5OTk8Pll19uv4Od+aWTlW8T5jhvs9Ls/i3gSpovuMFE0rxKraQEVuyC+jDQnkQtQWqdzn4fE1AVAr9nKw1+zaSlKb3sbEm6TClQd9Ra5cha15sfmzEXvR/b0PS9KDXkGK2i5oAB+mtBK1kiaOYGsJJJ5qKsClLyYXhVgxVBpdywOk9SPsb5S8qKOezFFkcMyrhQCXbbnM9yT1XKXLwavr+6hjYxJ03KsXYvBkMtbAUytNAt1uKY7qjoWtJIhASoSc2vpOaknjcOSwzueJwhp27C6/ovWk7J2uCKlQBAqa7U5UJxp8gybNwIGzYoDvOAComO/h3p6N8RgMNlh1n3x3xSkenpo2Z7og87Er0pqinine3vEOgZSIWuwmXLBUd1V6V1pTy65tEWp9teap1s+e9//0t1dTUnTpzg2WefJSgoyCI+EhMT23h2CuvXr+d///sfHTp04NVXXyUlJaXlnQQuIyJOgnaDVqtl8ODBPPTQQ4wdOxYfHx8GDBhgeV+v11uXPzcbeWnBiqC5/VvCL7LlVJ8kQbIWImyOXVEJ5WmQWa+sEqswKTVDZSalJmpDPegG24umrl1h7FjH51CplcL33lcr/5pFoqv1WyMfhykfw80/K333ekyCHd81HefZ0NDXTI1J6U/XkF6zRNDyCvh4bS6P7ynhRp9Eq2iqlJU6pE4q6KSGdC8Y5gFdNODd6M/TMQP8qbcRTQ1GmGke0NdDqR8LUClf4UoPOwZ7QAe1IprM7DPAiVxFGDdEkNLj0lk+ZTmfjP2IlyuNfFlfys6Eap7uDh38VOiMMmty9MzbqGPNOw9gqG8kbJvB3ZTWaUdhDAb4/ntYvtwimhpjkk2sy11nEUV+NUaG7axk3OYKVEYTEhKSLDmca3OWC+a6q4mdJ5LaIZVx8eO4oecNLk27tVOUZ5t//OMf3HHHHVxxxRWA0kbqjjvuoGPHjlx00UWMG2ftOzlu3DgkSWLFihU8+uijSJLEZZddxsCBA/Hz82PkyJGcOKGshq2srGT69OnExMTg7e1NUlIS3377rdN5zJ8/n6SkJLy9vYmKiuL222+nvLycpUuXMnr0aAAKCgq49957yczMbPG63n77beLi4vDw8MDf35++ffuSl5dHTU0NU6ZMITg4GK1WS0REBHffrfiFma/JHNF666237CJv7l5Te0EIJ0G7w8PDg2HDhvHII4/QsWNHy/ZVq1bxwQcfsHfvXkVAJV0GD+9SHv62IsDVaIHt/ld91EKKyyb950qqMKwjPPA0SOVQuBtKc5QWLJ2vgBNekFUPW+phWz0UekO3K5SWJma6dVO8jlRu/gq7Wr/lFQRFe+HIGiVKdXQd1Jx0PLaLxhrpAUXwba5XDClrTKiB1OO1pB6uIUZvQFVWDQUmkGSIkhSho5IgXqOYYWol6KiBNC1001rtCao8oNQINQ3CqXM4zP4SOnTE6b32kqC7BjrZBNflhhQgWOvSaHj46/RMPJlLap0OjSTRPUzN3QO0XJusJcJXRZ1BZteRIlTHN7p2HxswR7WCPIOaHWdbfO0WJhN8913T1ZYajZLKveoqmDqV3aN68FeUEaPa/n4l5tYxPrMcTCbK6su4t9+9TdJvkT6RbkXDYvxiXBpXqnPmat++mDBhAr1792bVqlUcOnSIkydPsmbNGrp27cpYmw84q1ev5uqrr2bEiBGsXbvWYrty77338v777zNkyBAeeeQRjEYjN910E1tsF4I0sGLFCm677TaKi4t57rnn6N27N5988gl33nknffv25aGHHgKgc+fOfPTRR3bnd8aTTz5JbW0tr776Kk899RRdunRBr9ezaNEiFi1aRGpqKvPmzeP222932WPPnWtqT4hUnaDdotVal3UZDAZ27txJVVUV3377LdHR0YwZM4YuXbogObIccBVz5AZA49V8F3jb9F9LqcJeU+CzkVB6Ao4ZlfYhnr7QdYxibVB+XEnlefhCUCyYa0Y8PWHQIBg92n3RBFZR1+zKOwl+e9rm9atKQ19neDT4KW3TK3VJAAYZThjgBEoReZ4RamWlOXBdPYT5gabWMgdjtJqs7j4UazTWJrHmGiqNBAc8IaQXeJWBjxbGXwSP/Qc0WsVP67tpDYvlrdfUkABUhFeCWhFc5jYtp0xQawIa2VI4iMhJkkRSuJqeYSqyi014aSRUDUXUBoOBrKws+vfvb/fz6Ij0uHTqDHU8ua4Ze4UG3DGwBJQo0/791tcaDYwZAykpisdXA8c8DrNqQAB/9vajZ04taXuqURuVexZXoGNIdhXre/vTyb8Ty6csd9lywRHBnsGtOq49MGPGDG699VZef/11EhISqK+v5/bbb7cbM2XKFGbNmsVtt91GZGQka9euBWDp0qUA/PDDD3bjly5damfPArBo0SJMJhN33HEHjz/+ONOmTaNDhw78+uuvfPfdd4wbN4433niD0NBQl/3wEhMTyc7O5tdffyU5OZm77rqLuLg4iouLUavVZGdnExISQu/evbnnnntaPqCb19SeEMJJcF6g0Wi47777WL9+PZs2bSIvL4+vvvrKEj5PSEg48xUZ5vRd4zYs5hog20hWc2O7TIZvX4c8g9V9WwtUVMPqJRBzDLr3h8huVofwyEilMWqfPnAmy3Bdqt9ysE1f3XSbLT4qSPGAfR5QWmV/jFKT1d1bpYUuSRDUU+lvh8SWHj7MGhhBoY3wiDQYmFVSSnpNnZKC87kUthxVPLNkYPhkRTQBJF3G1iFvEL3hWSKx1m+V40cQirM1kqTYEpiFEw0O44kaJapmrgXzsfUZt0eSJHpFNAiHhsjdli1bWLZsGX/88QcjR44kJSWlWbuMSF/XIn7m4muHbU8ai5fSUrBNxXh4wI03NlhUOD6uzkPFtq6+FAZruXR9GZoG8dTnUC07O/u4ZaBpNBnZXLCZzYWbQYa0qDQGRg50+VpdHdceuOmmm/j3v//NV199RadOnfDx8eGuu+5y6xiffvopwcFWMdmlS5cW92mN1WZr167lm2++Yfv27SxZsoS5c+fy1Vdfcf3117N9+3YWL17Mnj17eP7555k7dy55eXmWFloGgxLBLSlxXD95Otd0LiOEk+C8wdvbm4svvpjBgwfz559/snnzZk6cOMHnn3/O+PHjGTJkyJmfpLnC65bGaoNhTxm8dw/U6u3HaiQIAgLVIB0B7yFQXa1YDYwdC+HhTR21z+QaHIk6SWXtS+c2EkTEwD+eh/duUURJRYNIqbQRUSY95C+D8Elw7eOsKV/AA1EeTaRakVrNjIgw5laZSL9oDvyyDziqvOnpCadKlBRiVSGZxRr+kRGCzBukqfYSQRlFBKHCxNceNq1vAhpW7FU1XGNhg3D6w2ZVUUA0eAc3uKg76UUYEG1Zkenn50dQUBBlZWUsXbqUdevWWfzGbPsymnGn353LLVq2bLEvlr/qKnvRZNOoOsU33O78+WEerBwYwIRN5YDiGzq8wJvSulLG/zC+xXOvzFnJMxueoVxXbtn24c4PCfQI5N9D/t2iCWcHnw52hebtHbVazX333cesWbMoKyvjH//4h51gACX60r17d9asWQPAiBFKtHPixIl8+eWXfPTRR0ydOpXi4mJ++eUX/vOf/zTxtpsyZQoffvghH3/8MaGhoaxcqazGvOSSS0577tOmTSMlJYVevXqxd+9eDh48SE5ODsuWLWPBggX07t2bgQMHsmzZMk6dOkVNTY1FAK1atYr58+fz8ccf2x3TnWtqTwjhJDjv8PX1Zdy4cQwdOpS1a9eyfft2evWyevgYDAbXXcgdYZu+c3VsZaViO7B7I9Q6LtwFGnJLVSBVQWAcHDigPBSvuUYRDK1FY1FXVQjLnzrNg9mkKpMugwe1iijLPaGsbCupt9ZABaogsR78lmAcNZ/nd29AdvBglSWlFPnlyGjG9JiE+qc9itFneTlo6+Dju6B/HQBpwFrPEJ7VT2O5Kc1yDBUm8uQQOkinlGJOqaGQ3Syc6mXF/0llI0jtUpgtr8js1asXPXv2JCsri7Vr11JRUcHPP//MunXrGDVqFP369bOLBqhVaiYmTOTT7E+d3s2ZaTPJOJ7hWosWgwG2brUO6NAButvUwjVqVK0GZoXFMMNfbel5dyTKk1MBGkIbhO6l5dE8tOpRDI10X+Nzr8xZ6dRgs7y+nEfXPMqtybfyWfZnTkVic7392iv3338/c+bMoaysjPvvv7/J+xdffDELFy5k7969jBgxgo8++giAd999F39/f5YsWcJjjz1GYGAgKSkpDlfqpaen88knnzBnzhz+9a9/ERgYaEkRni51dXW8+eablJWV4efnxxVXXMG9997Lzp072bx5MwsXLkSn0xEdHc1TTz1FcHAwN998Mz/++CNr1qzhpZdeYujQoXz3nXURiTvX1J6QZNmJQ90FREVFBYGBgZSXlxMQENDW0xG0IkaTzJ/7CijVmYjw9yItIYRvv/kaWZYZM2YMMTGuFbC2iM2n+iZRqLo6+PhjKC5WCsH3NPgweTXU8ASqlCeaAaX2Jt8IXS6DyCTr8Tt3hhtuUHybzgY7F8IPt7c8zhHeITD5DftUpaEe5vaEqmL4w2YFWmdzobbE5pBobgts+Xo+Gf8Jqe//DDs2wcHdoMqHYDWM9LBE4cz+l9P1D9uJp/GqTN7TzlN8dszpuf020b6hnvYmnoBi9hkMGk+ozLduDohpmpK1wWAwWOwyqqqq6N69O//4xz/sxjjrA2fm1uRbeSjloSbRHvvZKVGpZVOWod67TykKNzN5MphXmjprVI3ESh9v5nTsTKFeEfHJh2uYuFtmWMww/sz9k4UpGo5ENxXq5nP/cuUvTPxxokstXZ5Ie4JXNr9iN7aDT4dme/udK5SXl5OTk0OXLl3w8fFpcfyBAwfYtGkTd911F0lJSXZF0I8++ihz585lxowZvPbaa2dz2uctNTU1HDx4kLi4OAIDA1v12O7ogDOOOJkbICYmJuLX2E8GZTni1q1bGTly5JmeSiBwi2W78nn2p93kl9dZtoV7GOhRso3EcF8OHjxI9+7dGTNmDB06dDj9EzX6VA801D29DD0nw8KFimgCpdjbQ4JuGsVBvHH6LUgF8WoYNAG2F0B9Q8Paw4dh2TKYNOn059kcbrul26D1VqJXthzfpKzCa5z5s6zmkinWlQLOa4rMFB9YBpnvQn6ZYtMQqFKicJbqbyVoZJJhtvYLVugGYmpYMLzclMZ0/cPMC/gG77pCe4dxcLKuWIbaUzBtiZK+dCSGHQhljUbDoEGDSElJYfPmzXTu3NlyxIqKCo7mHOWlPS816+X065FfGRo91PUWLSV19m/27m2dXzONqtNrahlTUErW1E8orjtFxOhAUj5ZTn51PlX6KgKr/YCmwsl87gX7F7QomgAKawsJ9go+40Lz9sL777/PvHnzSExM5MMPP2zr6QjOEqctnAwGA3feeSeff/45oCwRv/vuu3nppZfwtlnFsXv3bsaMGdN8iwyBoJVZtiuf6V9mNXlsnKzXsEYzgITgGtRlx9m3bx/79u0jKSmJ0aNHExER4fB4TnH2qb4iX9k+/DU4eNy6Pa4XRHQCfVHTfQClV1sMXHIzpBTBZ5+BriFis2ULjBgBZyMqallt11xzYyc4aphsXp3W+NlosF5zuIt/E8L/fBuMlVYRVo+ilFT2olMlQTQlpKn2stFkjdYtN6Wxbcp9DNHsg59+hrJlcHKvIlqbe3ZXFys+WI1pTignXYZWq2XoUHtX+rVr17I4YzF7ivfg28MXzyhPhwW9BTUFSpG1CxTXFEOdzUo+T0/rwgEXGlWrK3JJ1emh80Rlk8dqaspqAPCqbz4RkVOR49IczfN0p7dfe+a1115zGk1q7j1B++K0fZzefPNNFixYwHPPPccvv/zCww8/zEcffcTQoUMpLGxfhmaC8wujSebZn3Y7XS+m9vZnRU0c90y/l969eyNJErt37+a9997j4MGDrp+ohU/1AHw521pwLUlww41w5X8bxkgYgc1eniz19WGzlydGZEi5WXk7Kkop9LUcUoa//nJ9fi1RUQG/r4QXH4dZt8O+BNioUzykjhtAfwaO6eYIliQpvkxmSq0hqJQ6HZEeQU5NISUkOhhlUurqlCiTeQVirdxsN5wIymyOAVGBXqQlhkNUKhzKVUQTQKDUfMG9oyicWSg3FiVmoeykJUtgYCB6SY+h3ED5pnJKV5eiK9DhsFLCxdse7hNub0lh237I3UbXsgwmEz5aH8sUfGuV/nZBlQa8dCa7AvRfDv/i2vFxveWMQNBeOO2I0yeffMK//vUvnnxS8SSZMGECN910E1dccQVDhw5l+fLl7X7JoaB9knnklF16rjEykF9ex+FKFVOmTGHEiBGsXr2avLw84uPjLeOMRqPDlVEWWvpUX2+CnJMQeByC4xTTyshIiFRWta1cNYs53jKFNoXqkQYDszJfJz3rM2uqLzzcmur76y8YOdK+1qm5+iqH885R2nKs/R8c+A10ldb3NN6gN0JFPRwxQoRKWcbv28JnrMYiw9YvKkyl1G2BYktQbQJfNeqAaGYN+Rcz1jxmKVQ2IzUUZs88eVIJCgVINs1+m1cWRQQ1HENh9uQk1CoJtmbB3mXWgdHO7pH9yjkLLQplSTHU7DGpyf0fPnw4cozMmvfXUHOoBn2ZnrINZWiDtfgl+eERYbWYSItK43+H/ufSyjsOb7K+odcrxfOBge43ui4vB6ORKNmfHsUSYeXlpOy3t6Ao99OQHe/Nvk5eVJltHlog0jvyvFo1JxDAGUScjhw50iQcnZSUxIYNGwgJCWHYsGFkZbnpfisQtAJFlc5Fk6NxERERXHvttUyfPt2y2s5kMvH++++zZMkSysrKHB+gpU/1xQ2f0s096VKtqYqVvj7M8NfYiSawLsNfaShTIhh7frLbj6oqpd7JzO4lSvPZ+Zcqxd3zL3XejFaWYc0a+PRT+GMx7FpkL5oADHVgrIe44dBxKHgMgu0aZXWcM7yDlaiabZsQs18UQEyjz2e5DceaMIf0+HEOm8RG+kQyN+Faa3PjSpN95EonN2nyawLy5FAyTT0A6BDoxXs3pjChV5TSD/B/X1iv10NSBJ1DZMe9DF1If1nSlg4YGjeUxIGJhI8Lx7erL5JaQl+qp75IqWOTkOjg04GBkQOdtmgxC8yxcWPJKsrCGNWoNs/8N9fdRte//AJZWaj+yqK/sQM6rarJuQOrDAzdVcm05ScZk1WBt65l64pZg2adl7VMggub0xZOYWFhDlNyoaGhZGRkkJyczJgxY/j999/PaIICgbtE+Hud1jjbNgKHDx+muLiYrKws3nrrLX7++WcqGvf/aulTvTm15OGr1J80LME1mozMyZzjMJogN6SOXg4NwggNEYzu9oPKGzxz3EkbybLiLp2RoYicgyuwRE58GhrkdtRABxV4qqBgByQMh86joOsE2KOHXCc1SbWl8PllTQWb2S8qOkZpq2KmxAf6PWdZnWbpEzf+E14e8TKfjP+EZVOWkR47Whmfb1SEm/kYXpISK9+hh3Lzw1tCQqJy9PO8PjWFb+4czLqZFymiqagIPv8cym3M+aLVTWqkLAy+1/HKOXfTX40w96xTearw7+VP6LhQfLr64NPVxyJS7oi/g9wTuZYWLY0Fpbku6os9X3Db8tsYv/lO9qpsWuH89RcYjfbCtYl4amSrsGkTzJ9v6W8XHNqRYT0vwbeRW7y3RqldVRtleuTUctWaUwRVGhxea5BHEK+Pfv2cXzV31qiogL17lRY4RUVtPRtBK3PaqboBAwawePFirr322ibv+fn5sWzZMq677jr++c9/toqrqUDgKmkJIUQFelFQXues/JoOgYo1gTO6dOnC7bffTkZGBocPH2bLli1s3bqVgQMHMnz4cPz9/VtuX2IAPAOUline3pZ6mqyirOZXTUkSBRoNWV4epFbkQvE2+wF1de6njTZuVL4Ayo4rkZdwNcSom9b6yDKU1IKfAao9lB55yVfCwZXgVQuhTiIIZsFm20TZ7BfV5xv4YYm1hcz2UojapETTVCrHxcMdB0FJEOxruFd+EtSolLQdKDVY2/SKN1P3GKSp/6V78uVYZGZ+PmzeDDt3KmksjwYhENDQUNgZgR0Ve4bGaU9X018lh5y+ZRZEczLnUEgh/r38ASXCNjNtJicyTvDJL5+QmJjImDFjLKvRMo5l8MWeLzA1Migtqi3meUMOz1cMpXNQZyUi+ccfSrsVV5zu//oL3nnHunoTIDqazv2HEXfD/ezWHaO0+iQRNRLGv7awJtsqjAOqjVyxtpRFo0Ko8LXezzt63cH9/e+/MCNNOTmwcqUimmxrzjp1glGjoF+/NpuaoPU4beF0/fXX89prr1FSUkJoaNPmpx4eHvzwww/ce++9LF++/IwmKRC4g1olMXtyEtO/zHJmYWite2mG2NhYpk2bxtGjR8nIyCAnJ4dNmzaRlZXFvffeqzgCN9eTTiVDVF+lWa4+TBE7KrXLfciKzXVM5Y0iShqNe2mj0L7KH3Mz+hrorlWiTI6QJAhTw/j+UBwCa9cq4imsK9QXg+dS0JU5PqejOh+VGtJvBDrAunUNQ2X49VdYv17xHerXD/wVEUFFhWLq+NdfYBoKKK1ZkGRI1UK5bI00xQyE0C5QDny1BMK3QFg3RUA0jogHxUJoMPSodR5rl1T2RqA2q+Vc6/MHrH4JIno69XtKj0tnTOyYJsvzkWFp6FKOHTvGoYMHOLRlFd2iAhg5ehS/Hf/N4bFkZPbFepGRsZ74wHhUkkpJx3p4wNChzTvdHz4M774Lx45ZDxgTA7NnQ8eOqIHeDLK8tXnwJpbN/4PBu6sskSZvnYlJG8r4fnQwBo1yU4fGDL0wRVNWFnzzjb1gMnPsGHzxhSKsJk8+vT6TDcTExLBw4UK3OiGczj6gRDiLi4sJC2vZNuRCwi3hVF5ebjGduvrqq7n6agdLdW1QqVS8//77pz87geA0mdArivduTGni4xTi68Hzl/dSUjguEh8fzy233MKRI0fIyMhArVYTFBSkvJl0GcYpn6Je8ZS9kPEOBt9a2L+2YYMEc1bCFf8lPMS1c1uW69c2ah7r7Q1VJ1ybfFUhHG1I35gZdxFssxZJG4EsL0+K1Wprg10A/w7Qe7gS4dq8WREVNXVKyivC2YNRdmxPAHDxxUpkw7avWnk5rFqlfJmjXrYrzSzRrhUQUas06zUBOQHg33D8vT/b12p5+kOXscq+tnROhMvfhCV3Or9fjVvONI6iTXgZvrvJ+f5mnBSJm3G2PH/y5MkMD6vkj4+eYPuRk+zfLpOx8v/Y3y0U356+aAKa/snWeUgsTZKYUJZPjF+DoeuKFYowGjQIunSx/16YTLBvH8yZA0eOWLfHx8OMGdCxo8M5p3QYSE2XTvwYVsCk9aVElCpGokGVBpKO1rGzi6+1aP1CIyfHuWiy5Y8/ICwMhg37e+bVxphtiGwX2ej1+hYbYp/O2L8Tt2TvmDFjnDbxEwjONSb0iuJfk3oS4mv9xSupruf5X3azdEceGw6V8L9tuWw4VIKxsTFiIyRJonPnztx2221MnTrVkn6uqanhjRVHyOj7FnVTf4ApH8Pop5S6H2/bVUky7M+D76aRUpJLpE+k82X4skwHg4GUunqlgDff9k1JCfs3kw6ywzvM3sIgLAwm324pHF7p48342Ghui4pkZkQYt0VFMj42mpVhDYXDkgTp6VZ/oPpq57VOtjiq85EkuOQSGD/e2rzYFlm2F01monvBcz/Dc8vg6k/gtl/g06Nw6Sgo+B/oGq3w0lUpDYSL9ymvExLg2mthQCCsnu14vlIzheKgCCGTURFPo1tqTdN8kXiz7F5C8PJ7ubxTJfelaukTqaZWpaIurw59qd7pbvtjvTiW2tV+46FDSpufN9+ExYth6VLl3zfegA8+sIgmWZYpCdSy4ZIkNkfoMDYU+RtNst3vCKiYlTYLnYeKX4cEU+NlfRj2OlILsnxetlBxid9/txdNXbrALbfAXXdZndxtx54FX8NnnnmGXr160aNHD3r16tWkvnj+/PkkJyfTqVMn/v3vf1u279q1i9GjR9OrVy+6devGSy+95NL5Zs+eTZ8+fUhKSmLEiBHs378fUBzSx48fz4gRI+jWrRurVq3C39+fe++9l6SkJObMmUN2djZDhw6lW7du9OjRgy+//NJyXEmSeOSRR+jVqxcPPPBAK9yZ1setiNO2bdsYOXIkv//+e4tOy+eqUhRcOCzblc99X29tklTJL6/j3q+32m2LCvRi9uSkFiNRkiTh5WUtKt++fTsVFRWsWbuOTV5eDB08iEGZT+OJDEESeKugtuEPap4BOqlRL3+KWVfNa1iG3yjB1yAcZpaUKVGfkc/Ar3usA7p0gfy1sNqmea3jmSriSBempK3MpKaCWgMTXmblz3czIyLUcYNdf4m5xzOU4l5PT+jbV4k6efgqabJqU/MWBc7qgSQJhgxRUnNbtyqmnqdOOR4bFqbMt29f8GpU8G8ywp43oLdW8XUqMCrNhM0GmxoJDH/C9NchsoNStL7wFpym2JptbtwoihbqYp8tV4vJzTSqWwv1UXFVTxV+Bi3ran3wirXeg/rielTeKjR+1j/hmlFjIFFSVsjZCtCyMti2zf5ceUp0tLSulJzKY7w1OIjMugJY/gWRPpGM73A3i9aF2EVrld+RZEuNVnZ8Nal7lQ8HMTov3kt8gmEXYjF4RQXssfkd7dwZ7r7bmo7r3l1JQ69erbwuL1fG2/TPbA3uuusunnnmGUBpunv77bdzxCaiWFRUxM6dOyksLCQlJYWRI0cyevRopk6dypdffkm/fv2orKxkwIABDBs2rNluHx988AH79u0jKysLjUbDe++9x1133cXqhmvcunUrWVlZdOzYkX379lFVVUVycjLvvvsuAH369GHatGk89thj7Nq1i+HDh5OWlka3bt0A0Gg07Nq1q1XvT2vilnB64okneOWVVxgxYgS///47nWw7cNuwYMECnnrqKQ4dcvFTsUDQyjRngumIgvI6pn+ZZV2+bnOczCOnKKqss/S6s62NGjx4MIGBgaxevZqioiJW/fg5G3fnMCxWTWqMGo8YFRy0aSp72ABdckmXva1FwrYd6I1GZpaUkq4Jgavfg2yd/afTASmw1MYUszkmzIG8AutrtVoRIYCxxyTmbOuMXF/exARSabAr8XLmy4yJHaNEEFJSFOEUFKukwip1YL/oqgEnHkiN8fZWanCGDIGjR5WVR3V11vciI5XImrOFJbY1Xt4SJDj6U1YONQfAFN5MIb0bmIWQux5JrtK4bs0kQ5nMxbo6Jof6UZRTS62nirxgLSezKjDVmfCK9cKvmw/RETFKiqyDWqlT2rgRdu1yHNkwGqGoiFP1ZWSacvirvzeZSdZ2WYU1hcw/9Bx1phsB68Pd9ndk+ZTlbOu/Fv93/g9ftTdRvlGoilru5XZekp9vH20aNqxpDdPo0VbhBJCb2+rCadOmTbz44ouUlZWhVqs5evQo1dXV+Poqv6h33nknKpWKqKgoJk6cyPLlywkJCeHgwYNMnTrVcpzq6mp27NjRrHD63//+Z9c83dQoRTlmzBg62qR8NRoN99xzDwBlZWXs3r2bhx56CFAaZQ8cOJDff//dIpymT5/eCnfk7OGWcJozZw6BgYE8/fTTjBgxgpUrV9K1qzU8vHHjRmbMmMGmTZuaOYpAcPZpyQSzMea2Z8/+tJuxSR1QqySHve4aR6YkSSIpKYkePXqQnZ3N6q/nUaKXWXHYwKZcIw/016I9IoGx4aF9wqAkyCsLSO9zjbVIuLqQ8IpCUtT+qP2jICZNaQ9i+0k2JAS0Ra61RRn9pJJWOvSTdZuvryVyk1WUpTR4dSJMLP3QCjYrbTlKT0BpjiKcuowF3U84LIgHxx5IzpAkJZWWkODaeDPuWAO0WEjvImYh5EqRuE+Y0iD4yFqriGzJpNR8TbUNzYgLjKCXUQOPaE+y3FcRJtWyzMo6mX0S1Bytoe5YLVNHjKCqskqpQY2KgiuvhHHjlKjevn1QXa207vH0BFnGFBfHr2WHKZc9yOruUAHjGfkThsokzBUdjX9HBnQZDSnHlZQgOI8cnu80rmuysTWxYE51m3GUkj4D6urquOGGG1i2bBkjR46ktLSUkJAQamtrLcLJEbIsExAQwN69e906nyzLzJgxg0cffdTh+4371np5eTVrJtx45X1LTXbbGrdX1T355JMEBQVx//33M3LkSH777Tf8/f2ZOXMmCxcuRJZl4uLieP7558/GfAUCl3DVBNMWs6N45pFTlNfWO+x15ywypVKp6N27N8l3TGNH6QLWHDXQOViF1ksFPTSQbcAkm1BJEhwzwJJNoO+Mundv+yLhmholrbLkfSgttW7XaJT2K6UbXbsYczrJ9o+6zadgl1f2LboNTuYq0Y/tOmvh9Zh/QeFnzpe5n23cifq4mzJrQqMomtkjyeFqygZqTsKihiJ072BlXK2NsLBdrWfGI0Txyyo0NTlmZ72e8dU1rPP2QlapuMxborTWSPYpAx5qPcYDZbz55psMGDCAESNGKHYZvr4wfLjyZUtuLvnHd1FeqvSlq/FqmnKVJJC05ah9jmCssaYmbX9HhiSGgu0Dsra22bt43tJ4xdnWrdCzp/22zY36D4Y4t0I5HWpra9Hr9ZbG0i+//HKTMR9//DGXXHIJRUVF/Prrr3z++ef06dMHPz8/3nzzTR588EEAsrOzCQ8Pb7Zv5+WXX86bb77JTTfdREREBDqdjr/++quJKbYjgoKCSEpK4q233mLGjBlkZ2ezZcsWSxqvPXBadgTTp08nICCAW2+9lREjRqDT6dDpdISEhPDUU09x//3349FYYQsEfyOummA6oqC8lleW72vOIckuMmWLKmE4/brF0jsiD7254DxcTUG0iW8zDYwIVNEvNAC13gd++klZ/RQVBVqtEhHIzQVDI1NBtRquvlpZ7aR3M01k03CbmholTaNWu9w/LLyqwVyxoc+wpfB6TBo8vMu9Vi+u4koLmRajPjZix60ibRejaM48khxRW9p0W+PVetXVkLEfSn2AyqbjUcRTvF5PvkZDjSThI8tEqQ0cN0JGWCRHjUYyMzPp3bu3IpycoVJRo6+xvmymvEvSOJ6L5YOJrTBvrj3R+Ux4OMTFKSvrQFmM4eurpOc8PRXRtHSpdby5ZvAMuPTSSy1dDgA2bNjArFmzSEtLIzg4mClTpjiYZjjJyclUVlZyxx13kJ6u1KP9/PPP3H///bz99tuYTCaCg4P57rvvmj3/PffcQ0lJCSNGKKs1jUYjN954o0vCCeCbb77hzjvv5IMPPkCSJN566y277NW5zmkJJ5PJRHV1Nf7+/pSWliJJElOnTuW9996z2BUIBG1JSyaYzXGqut6lXneWT922NEQj1N9NaxBVytk3maAsSMVPJSbWeXdiVGERfSIjUdXV2S8Jb4y3N1x3nbJUHNwTDAC2Hmv19UraJimJlIgUIn0infdDk2UiG6wJACg018o0SMdt78JVDza1HDhTdi9xYtjYKDrTbNSnkdhx9Z6NfxGWP+l6FM3WI6kyH5Y9qUSaXMLG86rzWPjqK9i5Bkw2otlPpTich6qUv9RGUFWYiMkzwimrY3qcjz+3+MVwZNx4DhUXEWs4Cjs3gV8k+3VhdOwUh4+PTf2Rt7elmS9AUJURGycn+1kaHAswywcT21XWjQv4LyTGjIHPPrO+/uMP5csRgwc7Tue5SG5ursPtzz//vF2m57nnnmtxH1Bapa1atcrhew6bUDfw9NNP8/TTTzfZ/tprr9m97t69O5WV9gI8OTmZ9esdf6Bp7pznCm67cP3444/06tWL6dOnU1paalGYK1eutKvgFwjaErMJJjjv1tUYCaWGKcTPtT9qTtOB5mhEgDWVN6mbhgnDYvC79DpKE5JZfOgQ72RmsqOwEJOjPxSBgXDRRXDvdJCPK07WRxo8oVxtpQGQnKxEs2STUqO06F04shY1NNMPTWFmSamysk+WrU16QSnGVhee3nL75nCnhQw4vM+AInZs3ctdbT+SfIUSRbv5Z8VW4uaf4eGdzaceVWpFPPpHuSGazDSs1vv0NdieoUTyDLVKH72+HjBAqwgnTwnUUkN/PTX08YA0D/Bv+B53SYfaOhJ+eJ/0HQ9Z+hZWfjiJ7x4Zybyn7mbVqlXUmlNpAQFERXbFT+uHhETS0domNTeyDCaDtzJHrFEl8+9IWkKIsjIvz+Z75cT/6YKgd29FPLVE164wceLZn4/grOJWxGno0KFs2rQJWZZJSUnhtddeY9SoUXz66afcddddXHTRRfz0008Mu0DMvQTnNs5MMB1h6yge6O1amrnZdGAjx2aNXySD44YywGhi8+bNrPvjD0qOHmVRSQlZej23DBqkfAr191fqI7p1U4wdPxrkOPrSUisNMx5akPbDn4uVBr4AJ+dDp46kT3jZ8co+bQAzTxyyNtjNNylNdc1Eq5QimDOuHbLB3RYyZppzxrbFlfYjYBVC7nK696JOhp3b4VAGICviqL+HIk5t8Q4BrZd17j4qGNER6i4GU5jiWZX9IyRpLOakNXqZcHUV+du+5w+9gczMTIYMGcLgwYPxHJjK8NxdLD+6nJBKI9En9eSFW3/uJQkkTS0+cf+HSR+IrnAyxkplBZXFdX/LFvs5NvYrutC49FIlwrtypWIBYYunp7KC9JJLHHuYCdoVkuxGXEylUtGxY0deeOEFbrrJ3j33+++/58Ybb0Sr1fLjjz8yduzYVp/s2aKiooLAwEDKy8vP+Wp+gfs0thQobTDBdLZazmiSGf7yqhZ73a2beVGLbVucodPpyMzMZP369YwcOdLSCsH86yjt+akhDdV4Bg3nu/bzlgXD7iXw00NQfBK22PQi0zRENPxVcO3nGHtMsm//UVOD+vMGIXHSCNkGa0RCJcEQD9BKSkTGmcgwGJSHR12d8hT29laiaM7qYI6sVSIlLdHcOV3Blfqp08HV+TfmsAG0o+BQg1lhXw8Itk8EWJzdRz9BuGewdeVl3FCorYPX58LaNxT39CAV9LMKIFmW2XtSJqPAl6Jed4Gkwtvbm2H9+pH255+cqDjKutx1HPXV8eOIIEvbFFvM33rv0lt5fuw/lEURx44pjYHNdgedO8O0ae5f/zlOeXk5OTk5dOnSxT7d2RxGo5ISz81VasBCQ5WI1Bmk5wQKNTU1HDx4kLi4uFYvC3JHB7glfZ9//nkeffRROwNAM9dccw2+vr5cffXVXHbZZXz99ddceeWV7s1cIDgLqFVSk1qk8b06OPVnaq1ed83h6enJiBEjSE1NtSvy3L17N+v++IMxx/5LVw+TgwbZjaIvzkSEOe2FrNTKRKqtdUoGGbbVK95HPz2Busck+5V9JiN4RMLePGUFoO0diFODVuXcq6mgQCmG3b4Nig8rTuPmxr4+vorx5cCB9rVX4J69wJlwuhGllnC1j50tJuCUH8Q2LBf3VSmmqTas9PFmTmgwhRoN7JsPKA2BZ6XNIl2lVoqQO2itLWfK7M1JJUmiZ7hEj7AasocksvpgJSdPnmT15s30SUigc46K+MB48qryUG35gx9TtNR72Isn849gYMdfGZv0EBw/Dt98g8mgJ786nxp9DXXxSSSZjOeta7hbdTdqNSQlKV+CVuVcqX9ySzg5KgSzZeLEifz6669MnjyZqVOnotPpmh0vELQVjsSULc7SfB1cdBh3lcYfQjZs2ED+3ky+3n6CjgEqxsRr6BwsNRJQzfSDA8dpr+4aJS1kbo5rlOGgHg4fhdBXYeAExWtGp4MDByBvIBxbZH/cDmro1PAno/Eqs+PH4bff4FiOMq8Tm62pQbDaGNTWwoYNigP6+PHKiiQ4e6aSfxeWYnUX+tiZKTNBWG/QNginGLWdr9ZKH29mRIQ1dXavKWLG6hnMHT1XcXZv/HNc3NTVXZIkesX4kjTuJnbu3ElVVRUBycnwf/+HqqqKQ6fKCSwp5ZoKDTs7+7Cvkxe6RgLKkH+CQ1+/Sbej1Rw+uZ91ueuo0ldxOMaL5Ye3E1n4oSLoziP3cG9vb2RZpqioiIiICAcfZAR/F+bvgyzLeNuuFm4D3ErVuUpmZiYTJ07k5El3iyXbBpGqEzijJefw1qampoY/v3yJzG9ftdgZdApUBFRCoxQOUz6G3lcrabE9e2DHDqWdQ94e+OsjJZ0WpIIotVIzY5SVtNupRm7SPS+HSAefjov3Kc11dZVKkXJXDQR2bFpHtXOn0gOtYDfs+1UpcG5Cwz1LvtLafNfLS1kxmJCgiL15vVpe+fbwztZJrZ0NTEZ4NdGx/YAjCoywV6+ISqMBBsrQoKONwPjYaArV9mLKjIREpE8ky6YsQ52zHu4Za61Di1ZDNwftrhylOfPyOPHmm7yc8Qt51UfoEqolNkiDSaPiWKQnNZ4q1LJMcIWBDqf0jI0bi1pSs/zoctQGE2X+Gtb28UevldBpVZT7aXgl/fXzSjwVFxeTl5cnRNM5gCzLREdHEx7ump2KO5y1VJ2rpKWlWXrWCATtmZYiU62Nj48PY8eOY8jRN1h3zMiWPCPHyk3M317PoBg1l3S1fSD6Kw1Ds7IUHyAzJYWK+3StDBUmOGZUlrTHqKG3Bo5LcMKotIABJZXmiPDu0H0wJPpDrD/4d2haE5SdDYsWQdFepTjZLHqCVEqEylNSNtXJSpH5wZUQ1lVpqltXpyzDnzZNaa/iqr3A6eBObdPp1kHlrHddNIG1r56uCpBB44my0Fkmy8tTSc85weLsXpRFatxQ8A0CXZlyHEPj0c20wYmOpvbyywnaup7D5YfZVVjPoVN6uoRqiTc0GLba4K32InPPbyQW1yKrJEwqiUs2lVne12tVZBx8nDEP/4o6svl+pu2F8PBwAgMDrasSBW2Gt7f3OeERedbK+3u1ch8eZ7z00kssWrSIvXv34u3tzdChQ3n55Zfp3r3733J+gaDViRuKX1gMEzzyGRqrZt0xA3/lmegSYo44SciGMKSlW5Xi4MY0EUIylBiVrxg1dNFARzWUmKAkAIIb9ZxUqZTGpKmpSjTI2Sft/Hz48UdFaBxcoZwnXA3xascNgKPVUFEHfgaobvjjZzDAN9/APfe4vvLNXVz1hnJ3bGPcrb9Sm+9rQ92aRzD4ekNlPsUumkkW1xQroq7bpbDxS+U4dru2LDq7DhnCPxf8j1seH0Ll5jxq64zsLKjnUImermEeRAeoUUsqomq1+G7bTVBZOUXBGk75N318aPUmYvbkUvDqv4jpPVxZen8WogN/Nx4eHufEA1twbtDu10WuWbOG++67j9TUVAwGA0899RTjxo1j9+7dzfboEZz//N1pNnfP53S8jbljgKeKiV21jOgk4+cBIMEpI2tzEzjBZsbExxNldon29ITERPDsBxUroKhEKRS2JdcIeqCnRhE5nTxgfB9ISFcMMj09wcfHtSXTGRkNq+eOK+k8syhrLqURoIKxfWG/BLt3K9tqa+HPP5WHrKv2Aq5iWyRvS2PnbnfHOsLd+iu7bJoMhSXw6C8gqQjP3wQH5rd4iPD/b+++49uq78X/v86RZHnPeMSO4zg7tjNwEofsQdgEKKPltlBGLxTKbNpeAr29lN9tGRdK00LL6LdNmQVK2aWkAbLIchaZOImTOMN7b8uSzvn98ZEsectkOHHez8fDD2LpSProWPi8/fm8P+93aLxang1JVcug+SvA5jcz0lXQ2cWMmj06hh/893P85N8PELmtFstX9TQ3ummpcRGREERSvYtpIZlUD40mr7z35u1NziZV2PXPf4YbbvAVcBViADjrA6dPP/203fd//etfSUhIYOvWrT12dxYDWyANevvz9Xo9vsPsS4TdE4xoCbi0HDbWldLkrGR/ZSXj0tOZd8MNJHpbPACM0uGtm6DOhEIXlPn1PytzqyW0EVZoroH3f9B7UNBRTY1KIge1cy5W7xQ0tW2jt1iI91QhtwBEJcM101VT2JISdfCOHbBwoUpQP1k73/pSGwq+WR0pf2076wJsKBylq/IO3tY8RW5oLIfx15GdNoPEwk+7r+zuyXHKTsiGVatVzYD4MWoZdGGWWirtrkRFNzNqCzOu5DcXLeWJ6CconlJM86Fm9GCddD2G75SPIzEqnXXHvlY7myw6hwbb2Z8aTFOwjmaYRDe4yShoJqnK6atM3tICr70Gt9xybhfIFAPKKUkO70/5+fmMGjWKXbt2dbtc6O2t51VXV0dqaqokhw8Qn+4u7rJBr/eS3rFB7+l+vT4d33F24LM8KCyksqmJ1UeOsMswMMeOBYuFzMxM5s2b50uc9L9IVrhhr8t3kQaY7KnlhAahcXDJ46oCdiAzPJ99Bl9+qf5dfQT0d1Qg4L3bfxu9R6LLxZJmjYU/8iR479yp8qO8rrhClSo4WfpSGwpOTh2pvR/2bWddnlMliXs9/Q5MWQTAZ0c+Y/GqxQDtgidvpfdn5j3DwpR58Nvf+nLc4uPhRz9SleI7ztrl/bP32mAZV+I23G11vYaUtpC1fAc6GjtKSnj366/ZFHKQounBGGnBnRKmNTTGtkbzpuUW9KN+jVzCwuCuu9o3BRbiDNKX5PA+t1w5kxmGwQMPPMDMmTN7zLF6/PHHiYqKavtKTU09jaMUp5LbMHn0o73dzhuYqAa9buPk/L3Q2+vR4fX6enzb7Mv468A+QhXVA+JCQ7nmiiv40bPPkjlhAqC6mv/xD8+x5YM/qRYtITFw3w7Vg22QRS3P+Sv06z/XVAHv3q6Ch6VZndubdLRjh+/fo6fAkBS8F2DvNvrSDnk6ZRYLiyMsfHZspbph7BhoKYXSvSr42r6959fsq77UhjpZdaQyroRvv6oqfXfSxRJmit85skfC5uOqJASwMG0hz8x7hoTQ9l3qE0MTVdA09ALVKNp/Y8DUqfD1R+pn6Gm9wstXwG8zVTHUnj55ny4BTy2mqUlTuSz9UibsLEf3jLvV7SY4I4OEsQso3V5PzeoaHKUOX9FWz3F3XPQ/6N//vsqT82pshE2bejpzQpw1zvqlOn933303u3fv5kvvX8LdeOihh1i8eHHb994ZJ3H2yz1c1Wt7leLaFp774gD3Lxwd2JMaBpSXq1/+TqfaRh8RATExvb5ex4bAfT2+nY4tLi69lPhBg7j++uuZM2cOK199iv2fvUx6UwtsV38TmRGD0TI9hWjjLRDjhmpP3lOZASNMVbbAX285PU4n+DftnDAB4v4P3v4+bjSeiItRl+IOsxGmpqGh8WTuk8xvaMCy/CHVUd7bB+/QP2Fm4jdPAu8o0JyjyoNd7zj7ps/pzdMq+FLNemlA2iy1o3DDs+2PjdDVTF2tAQnjoLRUNYudOQzMehaGJzL/W5+wrWKHr7J7QjYWw1QlIPwD2NBQCDoGb/+ATgFSfXEvg+6iNlhRkdoA4DF10SIyFy5k/fr1WJZbWF2wmpr1NdhibYSPCydhSAK/mP4LXymC666DF18Eb1mabdtg7lxpOSLOegPmE3zPPffw8ccfs2bNGob0spZut9uxS/n7AemzvSUBHffbzw4wJimi5yW7+nrYulV9dejuDcDgwTgi07C6XbgsPf+v5G0I3G1j4G6Ob+NwqHpJgGGaHIxIZO9xBwm1leSkxzKoYiPfafh/1E4yiA72TSR/uPkY2pbfMTfNSlSwpmY4vIGTYaplotSOY+8lp6elw9jCwiBjNnz7FbZ9toRSa/fLfG3b6D/6IVNbWlRvNq+GusCSsAMVaDXvVY/D9X/t5dgetvR3RbfA8LnqC9SS6wd3dX3sOBtsa4WyryEiGTY8B281QKIOyRYsKUOY6t3VV1MDK1d1LkFhscC118A7F/b8XnvjP6O2eXP7+2bOJDQ0lIULFzJ9+nR+987veOmfL9FU1URjXiPV8dX83+b/Q9d0FTzZbDBtGvzzn+rxjY2q3tj48d98fEKcAc76wMk0Te69917ee+89Vq1aRXp6en8PSfQTt2Hy5pZjAR+/5N1dXJiR1HnnW3Mz/OtfsHu3mm3qTnExI/Yc5PadZWxNGUfukMxud5R5GwL32Bi4i+PblJaC00l+WT2r9pXz9rAE9ld8BUCEXWOF9mMSTJPoYN/r17SYfFXixsBke4nJ5MEac4daiAjSfDWc6rq7yPZQnbzjVnnvOcq4knK7Dl8+1Ov7K7fobS/Txhvv9ZaEHai+VPNe/jBc9Di8cwunpI7UkfXdJ40HazDBBjvqYe97vtuL3eprVwF89h0Y/10IHeprHudlscA118Cxf0Bz1Tcbn5d3Rs3tVjW6vEaMaNcmZ0PFBt7kTUIXhMIBsA+2o2kaZU1lPPDvB/j5+J/zH+f/h5qNXLFC7dgENUMmgZM4y531OU533303r732Gm+88QYRERGUlJRQUlIixcrOQc99kU+jw937gR41TU42Hqxsf2N1tdpCvXNnz0GTR0pMCHEWgxlHdnB53pdY3e2rD2qo3XI56SrnJSc9lsFRwV1lu3R5fJvmZvLL6vl4ZzENDhdVob4Gl5nOPSRRScf4LzpY45ZJNtKjdUzTYHOhm6WbnCyvN2h0ey6+rl5mJ7rK6QkObh8glpe3/TM+LLDlsXhvc9hGv9e3QruA7WTIuBLmPdzLQZ7XDItTs12RHWYhI5NPfBast9yocB2yg7quf9VqQJMJX32oZq78hYbCjTfCuLGw6Y/ffHxoEJnim1FraFBLsl6ZmW3/dBtunsh9AhMTS4iFiAkRBMWrGkcmJk35Tfz8Nz/n1VdfpaiyEkaN8j1PTc0JjFGIM8NZP+P0/PPPAzBv3rx2ty9btoxbbrnl9A9I9Au3YbJs3eE+P27DoQpmjhqkvmlogFdeUcGTv7g4tdtryBC1/NDSAvv3w/bt6M3NzBsTz8c7ixlVeRR9n8HH42ZjanpbcOTfELivDYS9tZ4adxdz8OuytmMNzXeBTaCm2/eXFq1zy6QgDlcb/DJ/HIMa9rOhuoEtDvhugk56dC8nqKucHl2HlBQ4flx9v2MHXHABBAWRnZBNYmhiD9vo1e667BaHqiZe6Rec+u3KO+Fmvv7iRgR2XEOpSsI/mXWkvALJjQrRYIoNKgxVmqDaP3A3wVGnambFpEFCgkoEnzBBlaA4vFaVlvhGuphR69hnNDS07Z/byrZR2tT9z8dwGTS7m1mzYw0HDx5kbFMT8w2DxPDwzsu8QpyFzvrAaYBVUxDfUO7hKmqanb0f2InnomEY8NZb7YOmmBi1RX748M5LcMOGwfz5sGMHIz/9lCuAVfvKGVF1nOlHdrJ+2KRuGwIH2kDYv9bTkJoSrnP6ZhtCW5vbZp3KiO71XabH6LRMuI63q6JYUPECFqqJDqrEtLpVAGeaHbaW95LTM2WKL3BqaVHLmtnZWHQLS3KWsHjVYjS0DtvoAdPkwcpqVc+p2E270DHZLzg5mc18+9pA+GTVkfIXaL6Vpqkk/ngLNBmqYa/D00bFAowfChfeqlrU+P+8Ag00g8IhOLL3yuwdl2Pdvs9eeVM5PYmYEEHI8BAS9US0Mo28Y8fIKy4mMz6eeRMncvbXERfnurM+cBICAk+67qht51p+Phzzy48aNEgV7eup7ozNpgKIhARGvvoqw+PDKaxu5mJ3LXU3TWTKuJRuK4dfkjWYCzOSuq003rHWU21IRLvHjy0/wvFo1Qss1xhLkRlLElWdluvAkwNOHJvNcSTZapkUPZbmCCdfUs4VIVswTXhtp5OhUTrnD7Fgt3pmfnrK6cnMhOXLVT4YwKpVMHIkREa2baN/IveJdjMTiS4XD1ZWs7CpGRoM1S/PK1SHKI0+J2EHoteg5RS8Zkd+1eC7zqHqYlyhOqR1WLq7YCGkpXU+NtDgcMZ9MOenvc+odew+X1ratlwXH9p76GMNt3LVxVcxzDKM1b/4BbuLi9lTXo69qIiTtGdSiH5z1uc4CQGBJ113VNvUitswOfDxF+SV1HGsqglD1+F732sXNLkNN5tLNvPJoU/YXLIZt3+uydChcMUV6JpGamwo4+JDmVZ3rNf2Lt4GwldNSmH6iLi241tdBg+/t7vdpbTeHsaxKF/T1DHlBdhdKuHWQOdR5/fVvztcf73fP+q8CQOd8SUH0DSNUGsQB80UDn7rKQ45B3Gw2mBlgYulG1v5siKa1qv/3HNOj80G2dm+7+vq1DKnJ4dlYdpClmfcw19q3TxZVsFfikv59FiRL2ja6QS332BTLKrxL5xYEnZXvEEL0LmW0klI/A6Utxp8VzlU17+s/ttT9pt/DlJH3uCw28ejZpvm/LR9bbD02V2/79DQ9j3mtm1rm3XKriwk0eVC62a2XwOSQpPITsgm3unkuqQk7poyhYz4eOYsWNB2XHV1NdUdl8WFOAsMuMrh30RfKoaKM5PbMJn15BeU1Lb0aTN2dKiNhNZGLl31DprnkSXDxjBvyR1ckjUYt2Hywub3eePg76lzVrQ9LjE0kSU5S3w1awwDli5VAQRAbCzce2/Pfdu68OnuYh5+bxdVjZ2XHUdWHOWKvLVt329KzWJD2sS27y/Wc3nE9grJmm9nVZEZx6POm1hu5BDZ0sCN2z8hyK2euz5pCA+//SS66WbPitdZtWYNFY0GRKcSFh7BrFmzmDJlCjZbu6ZqPg4H/OUvajbCKyREBVTh5bD8R7SbSWnw5O6UGO0jvBgdxtsgPB6u+O3Jq+PUUZftRlJOrIFwT7roCYduAVcrbP4TVBdAzDCYejtYg/x65UGX2W+9JagHUrX8268G/l43bVK7S72uv14loS/N4jNXNYsTVG6g6fcZ9wZTz8x7hoXDLoIPP1RBl9c996jZXOCtt95i3759nHfeecyZM4eoKN+GByFOt77EARI4IYHTQOFd3oK+VbLJObabGUd8hQTfmnAxJZGDuGNOOu/u+5TmmGVA1zHQnWP/P+6cerWaLVqzBr74wnfnD34AfSis2l0rFi/dcHPblg8Ib/XtGF0xchp7kkb6jsEgR88jgRrKiCbXGIuJTpijiWt3f05Mc13bsVN+egezrp7X9r1hGOzatYvVq1dTVaWCr/DwcG677TZiY7uqhI0KFP/yl/a7pUwDNj4PwQ2qJx5Aswn1XexSDNdhkg2sGlzzJ5jw7Z5OUd84nar21aFDvuKlNhs4CiElAsZNhGEzT81MU3c94bKug93vdNkrjowrTyy4M9zw1MgeShJ4liQf2OV7z90Fd6By137zG9/uuuhoWDgO3lE/o67a6iR5l2Ov/zuYKapPnXd3ano63HwzAG63m7/97W/k5+cDYLFYyM7OZvbs2fI7WPQLCZz6SAKngaOr5rm9WXhgE1ml6hd4fVAof556tSdKMggb+SSatbbLoMk0wXRFEVH+CL9clMUlSTZ47jnfAdddBz20/vHnnTHrbdyZJQe4au9qrIYbzTRx6RZyU7PYmDaBentY23HehsG43bz6l08Zu2sjEa1NAITbrZw/ZwJZv1isdsh1HIvbzY4dO1izZg12u50777yzU0+ydhoa4I03VKVpUO1TdrzR+5uO1SHDEzRB733g/PV0wa+qgtxc+OqrnndxxcaqHLXsbFVi4WRpmzkK9Fdrhxmlnt5bT/rSmy99do8Nf9uCtH/+s30hTOdxcL+tak/RQyPnnF/DV3W++k0AN9wAY8e2G8rRo0dZuXIlhw+rHbFWq5UpU6Ywa9YswqWvnTiN+hIHSHK4GFD8k67X5Zfz3MqDvT7GmysE0GKzt00tWUIPo9tqu32cpoFmq6XC+TV3vdbKi9eO5SL/A/qw9bq3ViwxTbVMLD5ARtkhEuorGVZTgm6q7ntTju/l+3s/x5g/H2PuPKIHRTEhKRxL2dewbRsXRddTmBVLY2skYUFWUoYno99+e5dBE/j++p84cSJ1dXVtQVNrayuvvPJK230W786r8HC47TZVlmDzZtV7ridRusppitc957qPydk9XfBbhsDHHwdUg4uqKvj3v2H9evjudyE5uevj+hLIGG41tj7NeXZRqf2b7OrrS7+97oK7ju12LrgACgp8tboa3LCnFZIskKxjCdWZ2uIpXWCaUGOq5diabRA91Pe8Eye2713nMXToUG6++WYKCgr44osvOHr0KBs3biQyMpIZM05hsr4QJ0ACJzHgeJOuc9Jj+ce2wl7znlx+F0GLX9K3Zu2izUpXPMc9+fEeFmKie2dn+tCTq7tdgTFNtcw/tIWh1cVEOhpJqq8kprme4ZFWghrqMUz1evbmIrQv/gG71qjKzIm+XVbepHVA3f7d76o2Kb2wWCzExMS0fb9t2zaOHz/O8ePH+fLLL5k7dy7jx49H13X1XidPVrM36wfBsx+roo3eeqA2IFyDwRa1PNemj8nZPV3wn/ouhC6C+A4X6JAQSEpSY2xpUTNjftvraWiAZcvUeenYeSCQWRl/PVUI75GnCOemF2Dand9s+TDQnXVh8fD+nXTf8NcviAsOVhslli2D2lqITgVLOBxvgOMu1WsvSFMPazbUkqw9EjL82l6NGgVXXtljvt+wYcO49dZbOXToELm5uUydOrXtvrKyMiIiIgjpuNNPiH4igZMYsHoqNunPYQ1q+3ekoxG7qxWHNQjTFdHNI9ozXRGYgLu4hMLgZl+Q0odf9F3tCkypLWPR12uIb6wivaqQUKcDq64xPDGMyDA7NIap3CJvDorDoWorFRWpJcLzzvNdrIKCYNIkWLDgGy9LTTovm53Hqlm/fh3Hqo5TUfkua9euZd68eWRmZqqZKU2D6d+CTWm91yyCrmsIdaen2ZwSFxx2gf0zGDRK7dBLSVFFIjMzVW6TV0ODSljessWXzO90wptvqry0hAR1W6CzMv5OtHDn8odVr7ruAjOvrmbBAi27YJq9BHcd2u1ER8N//if87W/qszXyQtjznnq+rvLW3K1QcUAFsNnZcPnlnetCdTU6TWPEiBGMGOErWGqaJu+88w61tbVMnz6d888/n+CTuawqxDcggZMY0LotNhlpp8VlUNvk5HhUApOK9wFgNdxklB5ie8pY3E3pGM6oXnOc3E1qlmJCyQHyQ1Xj1ZRB4ei9NJv2523F4p0dS6yv4Oo9K0lsqGRk5TF008Sqa2RnpaGnJKvt4pqmckgOH4YjR1RAAGqZaudOFUgtWgQ5OarC9AlccHy5YwamdQqO8v0E7T/AnOENVFRUsHbtWv7zP/9T7cDTLSoJev3vu3/C838EYy7rvOzV07JYd7M5DhP2u2hXXfu622DWrK5nOcLDYc4cOP98eOcdVQUe1Pl67z244w6V4N7tkpvnto/uV7Mr/lv6T0bhzp4CM+h5FqzHWlGoILWpgoD4B4ERESqo3LXLl/O071/g6qK1ldsBZR/AVb+Di05st2J9fT2apuFwOFi1ahWbNm1ixowZTJs2jaCgoN6fQIhTQAInMeB1V2xyxd4S7nptG4djU2gICmnbrTax5ADbk8eApuMoXURwymuYZvtrsHdLhaN0EaAT2dJAelURO6pMdhyvoTRtFHMP13FJVu9LYtB+diy0tYWr9q4mvrGaURXH0DCps4cxasYk9BHJKsE2O1u1gtF1qK9XydAffKAKeRqGGmxTk7rg5eSc0PnruNtPs9gIHpIJSaP5vCiPoKA6MjMH+coW7P0Q1j/b/RPOuA8u+t/Ot/e2LNbdbE6xu315g4nDYLYvR8htuNlWto3ypnLiQ+PJTlAVzrFaICcZDm+Asga1DFVcrAqhuo/0vuTWXAWvXtV+jIFWCO9RFzlPXoHMgn37lW7Oo2dm7/BaAtIxCLRY1KzlpEmw0gJ/+gCadbUcq6GS/CM9y7F2DbY/BgtvO6Fdi5GRkdx5553s3buXVatWUV5ezueff86GDRuYNWsWU6dO7b5chhCniOyqQ3bVncu8Mylpu3I5/+guQO06C77oAn5RrerNWCJ2Y0/8qF2iuOGMwlG6CFd9Frrh5uq9qxhaU9J2/98nXEhRZALP35jdqeVKt5qbWffxWrYse5eRB3cxrLoYU4O66EEkzJvJyIUz4OKLobvPaGuralD81lu+28LD4ckn2zVp7YvedvtpQEKoxqf3zSQmOgoMN9WPjePd3GPMHWZlRIzWeUdeZEr7LfHQw040vx1nITGdd40ZJmxshVbP40J0+MNyGD4HgM+OfNa5gnloIksGX8DC3FdUcNFswqZWsIerZagF18FoE/7xgwDPUoddcd3WY/oG/HcaGm5YmtVDQOdXbgC6n7lre54elvQiBsO3XoDG8s6PD6RelNdNH8CIeYEd2wvDMNi9ezerV6+mslI15/7e977HKP8mwkJ8Q7KrTogAeWejtu4cQcSfqgm3QHJ0CEWFe3gkOYvftyZSVZ+Fqz4DS+hhNGs9pivCszynY3M7uXTf+nZBU1l4LIUR8WjAox/t5cKMpJ6riBcXq+WPXbuY6XAw3XmQZqrRrK1otiCCE4PRLA6VuBwc3P1yVlAQ3HWXCqDee089d0ODmonKyOhzMU7ofbefCZQ2meRVupgeDRxZz5d7jnOszuC1na2kRuosSLeSHuOXEO6fPwO97ETzzL7860FY9Hs6LUFVGr6gCSDFBkPPB1TQtHjV4k7NhsuaSlmc/zrPuKpZCKq5bpwOlQ0qd0fXYezNAZ4hvzF6Z4i8FcK7qseUdW3nOk498Z9l6zXxvENuUnc78wJp/+JqgVf8ltlCYmDaXTDrx56fVYCOfHnSAidd15kwYQJZWVns3LmT/Px8Ro701TArLi4mPj4eax82ZQjxTcgnTAjAHRFB6ewLqP3kY5bvKaHB4YJtx7koPI6C4ZlkXXg+F0yYQXWjg//959fUtlaTVXqQ8SX5RDga256n1WLj36POB03VIS+ubSH3cJWvJ54/hwPefx++/tp3W0UFusNBmLMFgqwQGw1RUar9xccfw9+eg6C1uO0Vvvo59hiyL3gMS+bV6jluukkFYt4mvDt2qOWnoUPpjdsw2y1pltR2kcPShbZdgQ2lLEi3EmTR2Fzk5lidwcs7WhkWrTN/mJW0aL3tuDaBBAT1RfDGdZ3vqvFLTtY1SAKObcKdNoMn1j2CaRqdAkZPmMOTcTHMb2pWdYeSdah0q3v2/xtY0sclN7+gJW2GCjQWPqpmbMLi1QyON8Bd+Eu1e275w70/rXe5zHDDodUBjIPAEtS7C+5CYtQSZMcims3VsOoxtQTbGuBuU4Dy/YEfGyBd15k0aRKTJk1qu62lpYVXXnmFoKAg5s6d275chhAnmQRO4pzWsWBmjnsIMxyVbfcnNVSStHMNLXs3EXbhJKanx3NJfDPHy/I56K5lh1/Q5NStfDhuDhVhMe1eo8tSA42NqqpycXH720tL1X2gckrCw2HIEHXxL98He97joM3KUzPiWTfYVyAwceND/Ff1XiIG/5Cy+hayxmWTfvy4akZZXg4bN/YaOHVVPDQ2LLAE3LZdgeGJhAVpXDzSyoxUC2uPuthaZFBQY7Dsq1Yy4i1cn2FF88+fOZGdaC6/fwdrKs+moZRtuc9S6qzrdpbN1DRKrFa2BdtVHaK2EgmeBPOCzT3MyvQg72N4746u87S8S126RZUc2PBcYI2Hu8r96kmgCeoZV6oZMu/sZegg+OAu6ClW7kvQBHBknQr6TnEfwMrKSqxWK7W1tXz44YesXbuWuXPnMmHCBFUuQ4iTSAIncc7qqsVJbmoWTbZgFhzcjG76ZjOCXQ5yv9hK1qx0dE1jaJQdzR3OjuM1ADTaQvgwYw6lEYM6vU6nUgNOp6q07Rc0GabJwYhE3HGpxNc2ERsejhYfr2oyTZsGO76C/BUcsln5d1go43c0UhRs43CyHYAyi4Wf5L9By2oNZ/0EMkut/LTczcRQF7FhdrXL7tpru90W3l27l+rG1i6P99KApKhgJqfFsOFgJWV1aVwSmkRQUykRdrhslI2ZqSZrj7rYVmwQH6qjRQ1pX+zS/0JvmlBrqoTvehNcnhFZNQjTIElXFce9AZH/bnjv9TF0EOWr/wciurlYmybRDW5CHAaNVSa0GqCZvqkogPpyyLit61mZnmx6ofNt/onb/oFK9i1qFqenHXB5/+xDFfIeCol2t7zrX2zz8NrO79M0wYH6ORioK0aQ5qv23pumivbLsqdISkoK9913H1u3bmXt2rVUV1fz/vvvtyuXIQGUOFkkcBLnJLdh8uhHe7u8HO1OGsnxqIS2St3eyuINDheF1b46TSkxIRgxsayLGsbuxOE4bPZ2z+MNKnLSO/R5+/e/obCw7du8RpP/smSw0xHOD/K3MbugjEjTRVJYDMkTJsAll8AIO+4dTXzZENp2fV+4pZY3LoyjMcSCqWlopkl44vtU16vgr9gWRkhpIaMTIbalxbfLrg/noqfLtffSeeXEwcx9amXbTNXF+g28ELQUEw0Nk6hgjStG25g1FIKttBW79BY7nD93Dolhg2H/cSh0Q1MXtYFaTWgCyt1qZinZoqqP+/8GcwIRyaBpxDdUQET7mRd7q8GYoy1kHW4mqkFNVY1qaAKXC5wmlBmqoGO4BtFJ6kHeWZmCL+Hv34fmmh7OSHc8P7GP7u9iaSxW3d9c7bstNA4u+4163aVZBBw0QdeFRAMt4uk/8+c0ocStqoA3d3h9zZMTlmKBaK333LkTrW0VIJvNxvnnn092djabN29m3bp1VFZW8u6775KcnExcXBfL5UJ8AxI4iXNSb0nPNSGRrB4+mfVpExhdfoS0mhJCnA4qouNJHZEEkZHomZlkXBfKs69v7/R476XkkUUZ7RPDm5pgu+/4vHo3N7gyqQlRy25u3YLVcBNs1FNcsJ/6fdsZY1wJLZVsGx/G+oowJhxUPeesbpPMw83kZqjHmpqGy9aEJfQwlgpbW0X0goomojUN3eHoMnDq7Vx4xYbZqGp0tn2fFBXMlRMH89Kaw+0u7cuNHO5qfYD/sb1CsubLlYlOaN+sdtWqVRw9epS8nTvJPDiMeccOEx8UwExGiwmHXFBiQIz3eE3VczrvZ9BYTnaLg0SXizKLBYsbzt/bwLiCZqxu03s0YYbBYJdnra/RVMFClQH1dijXVEBltapAZPhcWPRs4LvJOjE9uUMdbm6uVvcFRfiWwZoq4N8PQcW+wGe6uisk2pcinuGJ6hwcckGp0b7EQ7u3YkKFW32F6JBugYQeluJORm2rPggKCmLmzJlMmTKFTZs20djY2C5oKi4uJikpqef+i0L0QAInMaB1THbOSY/Fomus2FvS+4MBp8XGnqSR7ElSu3euu/l88Ev0vgR4/katc4FNT5PdTqUIvvpKXZBRy3O/NNKpCfEFMyOCiphi2UcwreDSYMfTmEv/jpZ9C+VWK+uzwhlS3kpsnXqOjIJmtowNw/ALzjRrPfGNettSY6vboKjBxZBudht11+6lo19ckUlSZHDbuZycFsPcp1Z2OR/yqZHDCscULo44xHOLktEjkjoVu1y0aBGrly9n9+uvs6e5hb2u0YxvKmBumIM4m2dJLhgV5ThQO+j8q6c0GSoQcQKhIZCYCfuLYdgILMCSymoejorl0k21JFb5Aj7vmZrV3KJW90xTLQt6l8xih8C6j6AkD+7+OYR6anFlXAnzHvYsr50snvfTMXeorjjw15nzM5j3UOeZpkB2K/rXiio6AtudXc/4dafZgL2GCjyHWTrMPvWxB+FJZrfbmTNnTrvbKioqeOmllxg8eDDz589n5MiREkCJPpPASQxYXSU7D/bMkvxlXUGfnqvbZTe6L7DZqQSBaao2Hx5HXTY2BcW3fX+xnsv3Yr9A052q7XyrCeUG1BbBqseIj4rH1DV2p4cwZ4e60IY4DEYUOjiQ6suj0lrDyCzd1VbQs9lqp8HQVLXxLnTV7qUrSZHB7XYHbjhY2eNMlRudT+pHsinsfKand14miY+O5rrmZmZnZrKqoICvK2BnZAK7o4OYPXci8y+7RCUrexOoWz25T4VuXwkCLQhaAL0Jjm+Gt7ZAeSqExLCwvoqUTU1sdgbR4JffogfB5FgXw4N1sAap56xxQpMV3Ca0HoK8AsgDtiyDh/8AE69RD44bwenRh/pP6XO7Tr7uS/mC2PHwfz/pHDTZPcui4Zratej0fCYrOgSxR1xqyMO9l5Q+9iA8TUpLS7HZbBQVFfH666+TmprK/PnzSU9PlwBKBEwCJzEgdZfsXFLbwotrDvf5+Uy6WHbz420s3KOKCqjyLV0dHz4O84C6oOsYPGJ7BQbraCGeCxRAiRut3oBIC9mtbhJdLg4MsTN9TwM2T+J0WokncDLBcEWRdtxGZEsDgxprACgNj2Vo2lBV56kLHdu9dNRd0BjoTFW3x+XmQmEhieHhfCcri2KLhZWJiewvKmLQvGthxPj2O9uCgDQrJFlglxMaDDBaweJJKI/V1cV8w3GYZIMDLsZVuhmDg2KrlXq7jnO0jYwIl+fnqMHEn8EXe+G8cpUc3WxCmO6LW0qr4bGb4BGrmnE6zctOPetlRifQ3KLaInjjA6it8d0WrMFIq8pl6hhQJFjUsuhxNxzz29Z41AWhmvr59KUH4WmUmZnJsGHDWLduHZs3b+bYsWO88sorpKWlsWDBAtLS0vp7iOIsINsMxIDzTZOde7OvpB53d3kflZWq59nOnbB7Nxw86Csr4OXtJecRMtpXvC9HzyNZq0IP0yHV7y/0BhP2qT5sluYqlgxegNOmUx7t+5snpNUAz6Ywy9GLmF2wg0FNtVgNN4am0xwXz7BL53X7vrztXsC3jOXVba4Wgc9UdXmcYbSbfSM0lMH33MN377iDO+64g8zMTLXUFBLD1rhv8cnRYOodnnNv12DGUIjwLKGFoJbrvJMlTQZsdKgLuWmiAymam7GZMD7Krd6H21SJz1/shdhRUPyVerNjbTAlCGze92pCqRv+8VM1Hm9LlVPBMFXT3CpD5Q9VG50TszvqaUYn0CCvqBmOH/V9H6ZDdhAM6rj05seuwQirOl94gtBhsyHiWrjpQ1W9/AwLmrzCwsK46KKLuO+++5g2bRoWi4UjR47w5ptv0tra8y5SIUBmnMQAFGiyc1/99rMD/C33GP9zRQYxYUGUVzeQVnaU8UX70Y8fazvOME0Kq5tpcBromZmMvHw+lmFpqqK3n0kjEhgcVUFJbQsJ1KgbTRMSLZDnUhdNzYTdTojSYLSNhanzeSbjKnK33AuonVhBThPDFYXtyIVcsamExPpKUj2VzMvDoplxXjqW8Vk9vrdumyF3l6vFN5+pAlRgWe3bSeY+fzq5VQZlRwpJiAgm8euPYPkSXDWFrNrYSn2rybbCMKbMvpBZV99GeGgwHLkc9qEu7oNQNZ28k2rlhgpCbBpEaCoQMFAFMysNtTznMjmaahDcmE+Co14FCumeYCHDBju8Py8T9vlV5L7kyb4liYcPBmcDOLqpgdTsCeI8Y+pk7BTQdkE8arkMQNNh+j2+4KSrcgO99s3zzFgdb4UgTxBq0WC8TZUcCESSBbQ40GdA/Bh1W2vCGbU8152IiAguvfRSZs6cydq1a4mJiWlrHGyaJmVlZSQmnkkzjOJMIYGTGHACXUL6JkrqWvjRG9vILD3IzIKvOORsYbPdyrwx8YxMiCC/rJ5V+8pV5XGAXUWEv7eS6TMyyLx8Xrvnsjhb2xr71raGQonLs/3bUHPB/vkmy1vggBNmNLMw61oWnPdfFAdvpMnZhC0phctcE9iyeRXWmkrGlhdgM9wYISFkzZrEiCsWqN1hvQg4V8s7fr/GxN1UIup+edNvtulARRN3rKzlcPNGQOV6TQtaiglYdY1rxtlYWeDiaG0TGz/7gK3lNnIy05kZoxFq1VSwYfHUedI1tYTX4BmN04RGIN+lAqsGAxwmphscZhB5hUeIs9WRMEyDsX4zLDG6Kk1Q7/kZlLihuhDS8VTdflWVF+hYYTskFq74rSop0FAKlQdh21+7DppaTDjg8lQs74oG1mDI26rObr4GQy0wxKK+X/8sDJmqDu2u3ECPrVWAyf8FKwtUg2N7BAxqVst0gZrzM5j2ACz9napPBqpq/bhxgT9HP4uMjOTyyy9vd9uBAwd44403GDNmDPPnzycpKamfRifORBI4iQEn0CWkb8Q0mVXwFVMK97bd1OBw8fHOYiantbD1SHWnhzQ4XKxYuZPgkiJG2A0Y5CmSeegQl8ycyTtDKtj2/n7qnTbCcakk1WRd5ZHUeS7cbiAfuO/XkPEeuqaRAmoWq9jJsORWpkTUUl9TjjMuGGtICJHTp6KPGQ2zAy8+GFCulp9vMlMFtNWxyi+rZ2lREIfD1cW6LdfL9MUw6TE6w6JtHKo2+eKwm8K85awzL2fzHidX2GGCN82mBZhhhS3O9jGCXVM1mppMwGzLaT5ixhOqt1AfEgqNBmxzqdpESboKxFIskOc5/y4TduRC9g3qe//6TofXqjgkbZaakfJvhrvqcbqc7WkwYKcTjGDU1sBuesaB779OEw661A620VbVU6+r4A3alxvosm+eJwfpaBBQoGawRl4Iof/sYiw9SJ8LYeGQleUrs3HoENTVQXhY942Gz3AlJSVomsa+ffvYt28fGRkZzJs3j4SEhP4emjgDaKZpBvh/yMDVl67I4sznNkxmPflFt0tIJ2L6kR1MO7a73W2tFht5CensSxhGvS0E3TSIaa5nfEk+6VWFaJ5RhNut3GavQB85EmJjwWaDuDgoKcEwTaoKdhF35BMA9RjDgAID6jzvInQQBIWqHncul+phZ7GoQMxm8w0oPFxVHE9Lg+9/v9vddN9UVyUegIBnqjBN+NWvMFwu/vLlYT5PGMuGtIkAnK/v5c2gX3X72qZpcqDKYGXiDyle+zJ3xDWRXOQ3YzPLrpKW813QEgxNg8BRDG5H2yFO08rXtqHsCh9BZWg0pq5xm+VfhNOsgrUQHSbY1LLfWt/jGG6Fn/4tsNwdw62KV3a1q63ZhG2tQIhabqvMh/wVYGtUwVq4BpGDYcy34KNnVb0qd4dPcpIFxlh7KT7pWYp7YJf61j+ISZ0GxzbBW+9AcZ2acRqcDHOSA6qUbphQpsUR/9/7sVitKlh65RUwDag5BtkhUPopNPnaF3VZdPMMVlFRwapVq9izZw+maaJpGllZWcydO5dB3j9+xIDRlzhAZpzEgNPTEtKJGFV+pFPQtHHoeLYlj6PVamt3e01IJIdjU4hsaWDuoa2MqDpOg8NFeVwciXv2wHnnqea+Q4dCYiK6pjEofQIMjoXGFWCrAgsw2YRdwXAsXNUyMk0VOBmGyhGKivItw0VEQEoKJCTAmDFw3XVgb1/N/ER1V+Khx9klfMFWZVk1ibqLybW1FNc5aG5uxfS7+LflenVD0zRGx1kYdeX5HJ+eQfJb96OSl0xWVhtYj7iY5oIgCxCXBVHBkJoFB1aCswV0sIVBalQ1G81wjjmSSK4rZ5UxkSv0jZgmaM2GCmwm2dTSn3dDQDPw+mL47nCwWCEkRJ3rkJDOA+2uFIDbVDNNThNogtrjMH4uPPgEuI5AY5lvdmbPe5Bng+GeHKhDbl8JgBK3WppM7elXuF+5gfTZvrYnez+E309U49veCrWGWqabfxNk3AljL2fPhk/Z8K9XuM3yKeBLrQLf6Xik9SZuOVKrZijDwlQvxfwValnSbVM5Y/66Krp5Bhs0aBDXXXcdc+bMYdWqVezdu5ddu3ZRXl7OD3/4QylfcA6TwEkMSBdmJPHAwlEsW1dATbOz9wcAMaE2qpu6OdY0OwVN/x41nb2Jw3t8zrrgcD4eN5sLD2wio+wQ+wgl0TRhwwaw2TD376fIZaE6IgbnpZczYf5ULDqdlzjKylV/uxdeULv1vL+07XaM5BRKQqKps4egjx3LiMvmYxk5ovdWGH3UU4mHu17bxvM3ZncZPC3ffpQ3/vIJyQf2kNhQST5gluwj0moypclJsMtBWVgsh2OTKSM6oLFoEUmkTrgejhbDkaXUNdbxZZ2J+6ibDY5QZulpTDUt2BzlULAObMBga1ubkCic/CcruMv5AJ82zyCr5CCRZc3Mde9QL+D0BDgOQ+3YqzegxoTiY9DwG4jxbFu3WCAzE6ZO9TVjhu5LAZQZKofNKzYYbr3VE+B22Arv3RVn8QRIoRrsdvmCp6Nu9X66m9nz8h9Lx0ri3oc6GmDji7B3PmRcSX7YJH7lgs3GWB6xvUIyvuXAEuJ41HkTy40cLvPmE379iQr0vM/b5Zi6KLp5FkhISODb3/42JSUlrFy5kkmTJrUFTU6nk8bGRqKjo/t3kOK0ksBJDDhdzYpEh9iYNWoQ/9ypGut2lcj8+DXjAfjlh3soqfNbogFS6soZ1FTT9v325LGdgiYdgxw9jwRqKCOaXGMsBjqmpvPZyBziG6vZVlTN6OAQkooLqIqJp6CqheqCXJ6ecyNff17J4C2rPLM3HfKSoqPV0tsVV8C6dW2lDkoThvCiM5XdeixfR6VTXxzG4HeO8MiisB5ngPqqtxIPGvDoR3u5MCPJt0TncpH713f56rVPOM/l21GomQZOpwtnQyMRpsnUY3sIaW3heHQiG9MmUJQWQ5JW3U084Fe7yDShPhLO/xHh1Ue5alQ1q4YOo2pvEf/evJn1eh2zHUVMTjewTgpqNwOio2ZOHrG9yizjd2xIm0DykGrm7tvlyysrdatlMm/KnHdiqdWvzITbrUpQ7NwJSUnq5zNkSNelAExTFe/0smpw/TXtZgXdhpttZdsobyonPjiW7MhkLN5dcXEWNft00JPU5e2vl9RLABKeqJYOC76Ej+6l3affv+xCkwmfPAhjL2/LE1zuqQCfo+eRSBVxWh2VZiS1hKNjqOMMN3z8/7V/3m6vLJ5ZsMNrYcS8nsd9hklKSuI//uM/2t22efNmPv/8c7Kzs5k9e7akepwjJHASA0p3syK1zU7+ubOYO+ak8+GO4h4TmS/MSOK5L/L57Wf7246ZUOz7t4nG9uQx7Z7/Ej2XR2yvMNivN1uRGcujzu+z3MjB0C1sTx7LRQc2sLu0kXBD43hhJa1BIRwalMzFBzYyqfgAOweP4sd/rSX2Uo2cQU5wBEGJBrv3qETwyEiYPh127KAgeTjvH2nmoB5Gbqqv3IB3BuiBhaMZNii095yjAPRW4sEEimtbyD1cpZZumpsx3vgbO/+2CrunxYzd1UpiQyXxDdVEOBqJaa7znd+SAwyvLiSr5CCflY/nxuxVGBa9XfBkekLc/ef9nJHoWA4eVAVFNR09dhgTrruNrFmz2PGLX7B6+3Zqmhv4V2Mr66otXGfTGNphzLoGyVQyTd/LBiOLQlu8ym3a7oQizw7HVtTWfB1fAOXdut9RSQn89a9w7bUwpotSAHWmSgoHQIMRCTB2QdvDPzvyGU/kPkFpk2+GKDEpliWuGhY2qf6EJFugwO3LeSpy9xA4eYLMxsru860iNSj3/LvVgIJjcGQ9Oemz2kpNGOhE0cCDtjfb9R4sJY5BLb+FI7FwwK+FkXeHY0/euQUW/f6sWLLrSVFREW63m82bN7N9+3YmT57M7NmzCQ8P7++hiVNIksOR5PCBwpsU3t0F3ltXaPXP5rP1SHWviczemauy6kZ+tOFtLJ7eb4dih/Bhxty24y7Rc/mjbSma1r6ApDcX5C7nAyw3crC6Xdy58R1mHN1BMCZBLY0URiXydUJ622NGaIXM03cQobf4lmTsEWrHk7dOjsWC4XLzly8P0eBw4bAG8f+mXo3T0j7Pyl8geUg9+eCrQu5/86tej/vdDZO4KiMe/vpXju3O5x/bjqMbbtKri4hubqAiLJo6exhgMr7kIGGtzYQ6W3DpFsrCYzA1VZPXEWdn9MJSBof5gqsi07dElBJh4wVjD+PdtW3nhB//WOV+/fa3uDdv5quDe1lTVUBTuM4D14UQFtJ1vd9qM4yHnLezwpjC7pifErL1OGxqUdXIMdX2/GgLTAyCEYPh/i/VLrSqKti2DQ4caN9+RNfhu9+F1r2eZTHU8xxwemacPJ+Sx/4MM74HqKBp8arFmB1Cfs2TpfdMWQULGz3BU9vzeEyzQ0g3pUtn3KvKFnSX6ec0YUOr78Maq8Ojr8L469r+CLnY8/kGOgWyGsCY78OLL/ruSLbA6O4/i+3GeJbkO/WkoKCAlStXcuTIEQBsNhtTp05l5syZhIV1E2SLM44kh4tzUqCzIluPVAe05d5b12jrzgIi61YRFmSlxenmV1bfEp2OwS+DXvXWTm7Hm1f8iO1VVjim4LJYcVht6KZJK1AXGs26oROJbVHBwQitkCv0jb7BejkaVP5I5rdgxFS45hp27Sqg4XM1C2Z3tTKsqogD8R1yZPz0lofUm4CrhIfb4b33oKiIxlYXVreLEZXHqQqN4nBMCoZfz7gjMYMZXF9BrRFOWGszsU11VIVGYWoa9koHX6zIYt2sbKyRtFv61A0347es5/PywwSPH0ywzUJx6gjcpQ5yjuzEYppYUlKYXH6ciREWinWNsKNuGK2BpvHRPiepUToTEnV0TSOKRp4PWspX039PiLkYPrlPzTS15QFpMDMIUm3w7Wcg0VPTZ1Ac2MshrRW2Faj+bZqugre334Y772xfCsD70bRHwPTr24Imt+HmidwnOgVNagRqnu3J2GjmNzZhAYi3tA+cWszOgVNkMlz8GCx/iG6DJlBLdQm6SjYHVbW8uBnGe0pNfG8i5/3jXjA7py2pnZ/Au2+2vyOlD7lLZ1m+U1eGDRvGLbfcwuHDh/niiy84fvw469evp76+nmuvvba/hydOAQmcxIBxwr3TumDRNXKSwyDJ9xfIX749l+eKLCxbV8BYxw6SqOz28d7loBw9j41GBlbDlxisAa9OvpyolgYmFu/ntqpPwdlVTrepZjzCcuHel8EWxJHy9hfDCEdTj++jYx4SwMaDlWw4VAGo2k3nD4/rdjmvtyrhoJLrc4Ka1W5BIMyikV5VxJGYwbTYfHk85WExfDV4NGVhsVyz+3PCW5uIaG0mvaqQlLoy6oNCcViDGFlTRPXXifw58yKqQ6PANEmuL2P6kV2k1qqloU92FeOw2Pgbk6j+00ZuO7iG78a7GJmQAIlDsbYcI7W1UVXl1uHIIJ2txW62FrtZe0Rn3jALmQk6oHPenich4scQPg30TUCrCkhCNUhNgW8/7Zsd2fth+237pglHQiF0HiSMVcuq69fDFZ56T0fWw2tvQkWT2vo/YlTb+dhWtq3d8lxXP7sSq5VtwXamtjhUors/b7Xx2T9Tr+3dUNBrk1+PFIsncNJUULfpMKR+DePGcUn4YaCy818FoJYL97qgsgVsoeBshmhNtWwJSIddf2cxTdMYPnw46enp5Ofns2rVKmb71U9rbGzEYrEQHHwKa8yJ00YCJzFgnFDvtJ50qLq9Ia+YpbnNmECCXhPYa3q22dtdrVh1DZdh4rRYMTWdmpBIHCNDibS4oMqmZhBcqLwam6barYTpQAUc3wTps4mPjeSAprctH9rdvffY8s64PfdFPsvWH6bGbwfhcyvziQ618cQ147uckfKWeLjztW3dPn91k5Md760g2/N9SmUhawcl0aKpNhaNthA+HTudlOgqRmhlRNDKB1nzuHbXF7gtVranjKUsLIbsojz0lgYc9hBGHtvPfzY2snL4FMZWHmVQY/sCo25N5+Oxs1VgBbTUN/JxcRVXTBjMyAULID8cdr+rDi50M7jK4MIInXVNBpXNBv/42mDNEZ35qTrj9h9GK/ozEAxDJkJVOcSEQeZYuO03MDQNt6uVbZ89SPmuN4l3u8lGVY1A0yCtCbZ/APVFMGKBShhfuBCCg1VgkHYY3IfUWFy+5rjlTeUEotzimZUxOtzhjVOGz20fgATa5DdCV7v2jrlh5EJwe2bMMjIgolwFhf7RvNNUgVahW31WARIzoWSLKszZV4GO8yygaRqjRo1i5MiR7coVfP755+zdu5cZM2Ywbdo07Ce5TIg4vSRwEgNGILMig7vrndYTvwKShmny9483YyaoZOxAt8+XEY1mmkS1NJA+KIwjlU24/ZYnEqhRSbXxvSxZeC4yOWnR7AnSaXCoq6i7D0sd/knv/mqanNz52jZe6GY578KMJKJDbe0CLn8hzha2fLyWSTOGojsc6E4nw0ckU3aokkZbCBWT4ngr8tftEoyLBsXyuwlXE72nhhCng8KoBBIbqkipLye8uZ4xjmaim+uJdDRSGRbd7vVaLTb+OXYWR2N8Y9U9M3qr9pWTPu98LHN/Bn8G8j4BVzNBzSYzMZmiwSYXrK8xKHe5eftrSGo1uSG+hujoJLXklpAMEyZAYiKY8NmXj/PE/tcptWiQoAogJrpcLKmsZmFTswouhlhg7yaISFazPzt3Qk6OGpx/IdLychU8Wa3El3X98+go3u2JmBo6fLptmmr1kjaj/e2BNvkFmDQUJl8FNZ4/KkwT9uyB6iMqpyrckyDvRDUf7tjsOjgMsmwQ+g36xvdlnGcJ/6DJ7XZTVFRES0sLX3zxBRs3bmTmzJlMnTq1rTeeOLt8g0+5EGcm76wIdL2yANDsdLNib0k393YjOBiSkwEorG5m8KE8rG41Y5BrjKXIjO10HfEyTJXUnGuMZQL1XDg0lLhwO8MGhdIYFEx0s+phFmgARngibsNk++Y8RiX4du40W0/eX7CPfrQXdxdvKPdwVbdBE8Do8iM0NTsorG6G4mJITiY6VK0rNY0N5TeRL5LkVw8IIIkqHo/7CxHntXJg0FAM3UJpRBwVIVEYmo7NcBHkVrvxvEw0DsWm8NaEizgSk9zu+RyeQqQNDheHjparQqP3/A9MvK7dcXYT5ljhgViNuXYNOyaOFpOIIM95jIyE7GwVNAFrdrzI4vzXKe3wG7PMYmFxwiA+C/XUKhikq114B5arKto7d/oOHjbM9++mJrWkabjJXv8iiS4XWjf7dDTTJMkWRXaLZ4nZv1K6VVNBTXMV5P2z/QO9TX67/b8BFXDd9AH8eDfc/7jasekvOhXcYarsQYlb9dVr99nQICIKUg5CdF8vJxpEpnQO+AYYi8XCHXfcwbXXXktcXBxNTU2sWLGC3/3ud2zYsAGns/v/p8SZSQInMaB4e6dFhXa9q6emycldr23j093FAT2f2zDZcLCSVRFDOVbVRIPDRbDLwZgKtYPGQOdRp9o51THWMNHQNI3j0/6H12+fwbtTgxiSri70sWF2Jk3LYG69ep62AKzbkaiLzKcN6cx68gue/81bbD9W472HwqiT10PLW1ago95yw2I8QWBjS6uaUYmNJSzISlVoFHfHfwR0TjDWNfV1T+TH/PfEtyjIGcK/Rs+gxWanyRaMrmlYDTeRjiY0w2DzkEyWTbmSDzPmdZqBAqiz+4LJsp15uOvqYexY+MVTMDYRbO1/5QXrGvNjdO5PtnB9uB1LVAKkpeHOyeHvJSUcqq5WydtF76tZzA4JaN6q50/GxeD2vqE4HZxNqvVInW9XIOPHt6/knpsLR9ZjqStiSaVaguwYPHm/f3DEdVhCYlSNqXq/T0mStwCmp7Ck4RdU6RbV4kQ9U4cz5XnMot+pekq6p8HxxRfDLbeoJr267uth19Vz2HUYZoW77wUtsOXG9q+P6pd3FieGB0rXdcaPH8/dd9/N1VdfTUxMDI2NjSxfvpwNGzb09/BEH8lSnRhwLsxI4pcf7un2fhN46N1d7Ys1dsG/kKbV7eL2nWVEa+rCNLPgK45FJVIXHM5yI4e7nA90qrCseRqp5mRcqWYX9uxWbVHCwyEoiOGp8fw22OQ/rp5MaYub+upfMXj13X6jbHsmALZnPshdr+8gyNXK2LKCtnuPRSVSFRrFbTOHERVi47efHeixZWwgugqSessN8+ZZNZZVUd3oIApIiQkhbISbZL26x8cCJFLF0vDnuWfkvWwvGUOC6eCSpmMcdIZRFJnAxqHj2TBsUo/P8XVCOuPKDwOw+VAFr/30/3HVfTeopcf7noM3b4JyQ82ctJqqebJFIxQIHToPRk0Bp5Md+/axp7ycPeXlhAyCg1FugkK6vsCbmtYhedvzmWpthOYmVezRWwV+fBZs2aruP3YMNqqAY2FTM8+UVfBEXAylfjl1iW43D1ZWs3BoA9RXwX5X+xdP9gaC3SRaZ1zZc5PfrkoBDBumvurqVLmFgmEQGwW73wNXnWqanKhDeipc9iQEkF/XSU+vP4Dpus6kSZMYP348O3bsYNOmTUydOrXt/rq6OsLCwrBYBn4weTYbMIHTH/7wB5566ilKSkqYOHEizz77LDne3AJxTsk9XNWp8ndH1U1OnvviAPcvHN3l/R0LabosVnYljmRK4V4AQp0tXL/rM973zHz4V1geHdrII99dgGXYTPXX9J498O67viTblJS2mQe9pYXz9+fCokWgfQ8SI7q8yLkvfpwffRiOaTZzQX4uNsN3Ad2RNAoN+NfuEr58cAFjkiI6VU5Pigrmhqmp/PazAwGdw66CpN5yyNya+mX/9ZFyGmpqOPDlYeaNiefyeanwde+v6S3f8N/W1/i7Np2cienEHmpiSlgcy2sshDtbOh3b0dHoJGqCI4huUbNfQ/J388CyDSy9dTqXZF0JN7yqzm+i//lNgdmPwD89gzx+nFHh4UwLCmJLURFfm41Ur60mKCGIsLFhBMV1nZfSKXm7uQo2/B6cT/m9yQSomAqDPJ+7TfuhUbVOWdjUzPymZrYF2ym3WFTyeYtDJZ83t8Iup18BTSDW0jmnqKtE6wy/nX3+bXx6m+mJjIR58zzf3ALGH7p+jsNre34er4sfU48L9PUHMIvFQnZ2Nuedd15bPpRpmrzzzjvU19czd+5cJkyYgK7LotCZaEAETm+99RaLFy/mhRdeYNq0aSxdupSLL76Yffv2kZBw8pYwxNkh0HIDy9YVcM+CUZ1mnbprL7Jx6HiG1JaS5Mm3iXA08t2v/sX+QWnsHDyKkohBbDIyuOXqbCxpCfB1HmzeDAUF7Z9o0SI1A+Vpm8K2baqA46WXdnuRyz1cQ2n1Oi7O38RozzIhQL09jINxQ9pV7vbWn8o9XNWuyCfA33KP9hpUdpdA31vz5BarCigshoHN7aS52cHHO4uZuSjwP2B0DZKbKrluhElKQgQctZKaEMltWQnMiRvKFXMmkRARTHVjK3e/oXb4tRuHprFz8CjmHFb3hbU2s+jrNTz2XoiaYewuiDBM+OTXUFQEx44RkZzMpaNHM3PiRP5f0DH+teYIrWWttJa1Yk+0E5UThWZt/7mJd3uWyeoNsIaoFichGuAXaBnl0PwhlC9SBU2jhsDXwVDWBMk6lnhdzVp5NQO10bCmTDXj9QrSut7B1l2itW458S3/3T2HN5fKv0p6O54K5tPuPKeDpa74J5HX19dTVVVFQ0MD77//PmvXrmXu3LlkZWVJAHWGGRA/jWeeeYbbb7+dW2+9lYyMDF544QVCQ0P5y1/+0t9DE/0g0HIDNc3OLnN5uiuk6bJY+SBjHpWere8hNgsW02Bc+WG+s/Pf3L/nEz4MzeOSDR/Db34Df/9756Bp/Hi47DK45hqVQ+K1eTP88Y+wcSO0OtUFavx16r8tDlxr13Lzto8ZV3bYNx7dwqejZ2D4XYy8QaNFV7WZrpqUwvQRqj6TRdf45ZWZvZ6XRxZldLuE6c0hS4rqfI6LI9ROM0PT0TGJb6wB4OcbgjAjk9tapvSq2E1KqCdIcLshMhJd0xg91Pd+LpvQ/Th2J45sl+uUUlfGrHX/5Ksvd6hZP28A4D2/ugVaWtTS1L596kGlpeByEXn55dx/z28YuyCW0LRgNF3DNM12QZNmmiS5XGS3OKDR8AtwTIjp+J5NtfPOuU4lj3tziGoN+Nqlqnh/1Qo7W2GrEzY5wDIDghNUjSU0tRQ4waYqmvtG0X+J1r3mUnHO5DKdiMjISO6//34uuugiQkNDqays5N133+X5559nz549SJOPM8dZP+PU2trK1q1beeihh9pu03WdhQsXdpt053A4cDh8f9XV+SdwirNeTnos0SE2app7363S1exUTzNWzUHBvD3hIi7PW8vtKRBut9LY6iIsyEpKTAi6UQ+F9V0/eNYsuOACtVw3YgRcdRW8/76vXUdFBXz6KXz+uWoYa7eDwwHFxQwrqyOqpaHtqdyazqejZ3RKCu8taLwkazAv3JjNknd3ddohFxNq4/Fu6jh1fA7vjNa6/HKeW3kQgMOxyTQEhRBtUe8/sb6SkvA4KCxi//z/Zkxb/lYPvI1rE8PUew8NhRDPjjX/7fx+4/jtin1tYwBotdp4P3Me3965gmCX+v88oaGKsDdegd0jYcoUSEhQs3yNjbB7t5oB9PaDAxWwpaRAZiYW4BeTvs/i8NcJHeXCNH3Bgdnipm5XA7+IbcGiA9XRMGwMFHiWr5K7CBY0YHANjE+CPeVq5inzW5C/Ahz1UONttRMJmQt9rXZGXgiH3ofxNlWUs90T0r/ByTfJpRKd2Gw2ZsyYweTJk8nNzWX9+vWUl5fz97//ne985zuMGzeuv4coGACBU0VFBW63m8TE9lPUiYmJ5OXldfmYxx9/nEcfffR0DE/0A4uucevM9G7rFfnrKtDoLfhwWIN4N3MBN10Yz7iyg517lfkLClK1gKZObdva3mbiRBUUvPOOqjTt5XSqxGE/KTEhhNutbb3pPho7m+PRSW33e/vwBVKjyhtw9KVyeEfeGS3/INPQLexOGklUSwNuTSfE5WBwfQUTiw+QF/Mzxnz7FfjXf0F9NzsaTRPy3WCLUNvgjxyFwX5B3KhRnR5i0TVmjoxvFzgBVIVG8Y+sBVy1dxXhrc0AhAVZoawMPvmk69ePj4f8fHX+09LUDFRlJcTFsXDWQzwDvjpOHkH7mphbncheYzj/SEphbqyVQfUF6s4oHcK7mdTXNBiTAHOvV7vrdgTBoFFqJ15ro2okHJ2qZqRABdKLFoH1evj852dmcPJNc6lEJ3a7ndmzZzN16lQ2btzIgQMHGDPG11i8rq6OiIiIdkt94vQ565v8FhUVkZKSwvr165nuV4Pkv/7rv1i9ejWbNm3q9JiuZpxSU1Olye8A4jZMJv9qRbd1h7yBxpcPLugyx2nWk190mwTd6bHV1bBjh7rItrSoJbiQEDVjMX68qgPVk/p62LpVfdV3M1sFfN2k8UhhMLsTR9IU5HtO7+i/aR+6E7HhYCX/8aeNbd+HO5q4dcsHjKg8RlJDFSZQEJPMqJeWMmXaOLVdfs3TsOqx9k9kmnDArWoUZX4L4kapczppkgoyBg2Cu+/uqh9Njz+vCEcj8w5uYUJTKT+YOQy9twtNZaWabfLmRkZGwo03tn3vdrWybderlNcdJT5yKEMSL2bN2nV8vW4d7NmD5nYzMVxnTvWXxE4MgoQegoabP/blDDkcsGuXWtptalLFMYODISpKBd5Dhvjeu+GW4OQcY5pmW5Dkcrn4/e9/T2RkJPPnz2f48OESQJ0E51ST30GDBmGxWCgtbb+bpLS0lKSkpC4fY7fbpeT9AGfRNZ64ZnyXLUK8v2K6y+XpKQm6y8fGxPjtPvoGIiLU42fPVjk2+/dDQ4OahbLbVfmCsWMZN2oUt+0t5dGP9tLUYcfcI4syTnvQBJ132jXYQ1mTnk2Eo5Gkhio0YExdCZP++CSE/VS18Zj3ICSMU8s6NYVqaa7QDa3hamlq0Gg1izdsmC9YmDq1y6AJev55NdjD+DhjLlddOQK9uVAl4nuT8r00DUaPVq8xdCi8+qpvxq+uDl56CTIzYepULCkpTD3vB+o+04T8fL7jdlMcFMSq6Gj2VVbyVb2bnU3BTKlxcWm83sVFzZMs7Z+PZLerJcQpU3o/6Scj0VucVfw/Q0VFRTQ3N1NXV8err75KWloa8+fPZ5h/gVVxSp31M04A06ZNIycnh2effRYAwzAYOnQo99xzD0uWLOn18X2JNMXZxb8Wk9fgAAONE3nsqeQ2zE475gJdYjsVvKUbwBe0zDq8nZu2/5OolgZGJ4YTG+YJAGfPhpEjwWaD5mbYvgpqK31LUyYqcIyJ8S1thoTA/ff3OnMX0M/L7YaqKvXabrdvVsc/f6qpCf76V7Ws11FcnJqFMgw109ghP7Kwro6Vzc3kU0VO3cdcNspGl6H3t1/p/6U1cdZqaGjgyy+/ZMuWLbg8fQ/T09NZsGABqamp/Ty6s1Nf4oABETi99dZb3Hzzzbz44ovk5OSwdOlS3n77bfLy8jrlPnVFAqeB7UQCjTMtSDlTdQpaTJOryvfwi33/YpB/EXddV7lEKSlqps37l3RLiyoFUFamAqtBg3zH33gjDB8e0DhO2s+rpUXtijx4sPdj/U2eDJddxrGiIqJL1hGx9lGoK6Ko3mBnqcGszFTCr/o/CZrESVFXV8fatWvZtm0bbk85jHvuuYdB3v9/RMDOucAJ4LnnnmsrgDlp0iR+//vfM23atIAeK4GTECeuy6Bl10747W/hyJHOCfQ2G1itaubHMFQCdEqKbxedrquyDVlZp//NgBrv/v2qVER+fvfHWSxqCdK71OfPk4/0xlvvsL+4Dlv8cKbmTGPmzJmEhYWd2vGLc0ZNTQ1r166lqamJ73znO223NzQ0EB4e3sMjhdc5GTidCAmchDiFamvV0pc3gd7pVMGS1ap2HSYk+MoDeIWGwnXXBTzTdMpVVcFXX6mSEc3NKqjzNn+eOFEtQ/bg0KFDfPHFFxw/fhyAoKAgpk2bxowZMwjxBopCnCD/JPK6ujp+//vfM2rUKObPny/FoHshgVMfSeAkxClmGCrhu7fZm8RENXPTsSHuAGCaJvn5+axcuZKiIlVOwG63s2DBgoBnx4UI1FdffcUHH3zQFkxlZmYyb948WcbrhgROfSSBkxCnUVUV7N2rSi+0tKglu7AwVRQ0NbXb3XMDhWma7Nu3j5UrV1JaWspll10mfTXFKVFWVsbq1avZs0c1Pdc0jQkTJjB37lxiY3uv+XYukcCpjyRwEkKcbqZpkpeXx6hRo7BaVWWYvLw8KisrmTp1KkFBXTcTFqKvSkpKWLVqVVtRaLvdzk9+8hP5jPk5p+o4CSHE2UjTtHYtNAzDYMWKFVRWVrJ+/Xpmz57NlClT2oIqIb6ppKQkbrjhBoqKili5ciXx8fHtgqbGxkbZrNAHMuOEzDgJIfqfYRjs3LmT1atXU11dDUBERARz5szhvPPOkwBKnDSGYaB7mowfPXqUl19+mcmTJzN79mwiIiL6eXT9Q5bq+kgCJyHEmcLtdvPVV1+xZs0aamtrAYiKiuKyyy5r169MiJPh3//+N+vXrwfAarUydepUZs2adc7NQEng1EcSOAkhzjQul4vt27ezZs0a6uvr+f73v8/wM6U8gxgwTNPk8OHDrFy5kmOeVkM2m62tXEaof1X9AUwCpz6SwEkIcaZyOp3k5eWRlZXVVqNny5Yt2O12MjMz25ZchDgRpmly8OBBVq5cSWFhIQCJiYnceeed50QTYUkOF0KIAcJmszF+/Pi275ubm1mxYgUOh4M1a9Ywb948MjIyzomLmzh1NE1j5MiRjBgxgv3797Ny5UpycnLaPldutxuXy4V9gNVX+ybkTxUhhDiLWCwWZs6cSXBwMOXl5WzYsKG/hyQGEE3TGDNmDD/84Q+ZNGlS2+179uyhpaWl+weeQ2TGSQghziJBQUHMmTOHnJwcNm7cSFpamsw2iZNO07R2nyuLxUJUVFQ/jujMIYGTEEKchYKDg5k3b15/D0OcIzIzM/t7CGcMWaoTQgghhAiQBE5CCCGEEAGSwEkIIYQQIkASOAkhhBBCBEgCJyGEEEKIAEngJIQQQggRIAmchBBCCCECJIGTEEIIIUSAJHASQgghhAiQBE5CCCGEEAGSwEkIIYQQIkASOAkhhBBCBEgCJyGEEEKIAEngJIQQQggRIAmchBBCCCECJIGTEEIIIUSAJHASQgghhAiQBE5CCCGEEAGSwEkIIYQQIkASOAkhhBBCBEgCJyGEEEKIAEngJIQQQggRIAmchBBCCCECJIGTEEIIIUSAzurAqaCggB/84Aekp6cTEhLCiBEjeOSRR2htbe3voQkhThK3YbLhYCUffFXIhoOVuA2zv4ckhDiHWft7ACciLy8PwzB48cUXGTlyJLt37+b222+nsbGRp59+ur+HJ4Q4QZ/uLubRj/ZSXNvSdtvgqGAeWZTBJVmD+3FkQohzlWaa5oD68+2pp57i+eef59ChQwE/pq6ujqioKGpra4mMjDyFoxNCBOrT3cXc9do2Ov6C0jz/ff7GbAmehBAnRV/igLN6qa4rtbW1xMbG9vcwhBAnwG2YPPrR3k5BE9B226Mf7ZVlOyHEaTegAqf8/HyeffZZfvjDH/Z4nMPhoK6urt2XEOLMkXu4qt3yXEcmUFzbQu7hqtM3KCGE4AwNnJYsWYKmaT1+5eXltXtMYWEhl1xyCddffz233357j8//+OOPExUV1faVmpp6Kt+OEKKPyuq7D5q+yXFCCHGynJE5TuXl5VRWVvZ4zPDhwwkKCgKgqKiIefPmcf755/PXv/4VXe85HnQ4HDgcjrbv6+rqSE1NlRwnIc4QGw5W8h9/2tjrcX+7/Xymj4g7DSMSQgxkfclxOiN31cXHxxMfHx/QsYWFhcyfP5/JkyezbNmyXoMmALvdjt1uP9FhCiFOkZz0WAZHBVNS29JlnpMGJEUFk5Mu+YxCiNPrjFyqC1RhYSHz5s1j6NChPP3005SXl1NSUkJJSUl/D00IcQIsusYjizIA3y46L+/3jyzKwKJ3vFcIIU6tM3LGKVArVqwgPz+f/Px8hgwZ0u6+M3AFUgjRB5dkDeb5G7M71XFKkjpOQoh+dEbmOJ1uUsdJiDOX2zDJPVxFWX0LCRFqeU5mmoQQJ9NZn+MkhBBeFl2TBHAhxBnjrM5xEkIIIYQ4nSRwEkIIIYQIkAROQgghhBABksBJCCGEECJAEjgJIYQQQgRIAichhBBCiABJ4CSEEEIIESAJnIQQQgghAiSBkxBCCCFEgCRwEkIIIYQIkAROQgghhBABksBJCCGEECJAEjgJIYQQQgRIAichhBBCiABJ4CSEEEIIESAJnIQQQgghAiSBkxBCCCFEgCRwEkIIIYQIkAROQgghhBABksBJCCGEECJAEjgJIYQQQgRIAichhBBCiABJ4CSEEEIIESAJnIQQQgghAiSBkxBCCCFEgCRwEkIIIYQIkAROQgghhBABksBJCCGEECJA1v4ewJnANE0A6urq+nkkQgghhDjdvNd/bzzQEwmcgPr6egBSU1P7eSRCCCGE6C/19fVERUX1eIxmBhJeDXCGYVBUVERERASapp3U566rqyM1NZVjx44RGRl5Up9bdE/O++kn57x/yHk//eSc949Ted5N06S+vp7k5GR0vecsJplxAnRdZ8iQIaf0NSIjI+V/sH4g5/30k3PeP+S8n35yzvvHqTrvvc00eUlyuBBCCCFEgCRwEkIIIYQIkAROp5jdbueRRx7Bbrf391DOKXLeTz855/1DzvvpJ+e8f5wp512Sw4UQQgghAiQzTkIIIYQQAZLASQghhBAiQBI4CSGEEEIESAKn06SgoIAf/OAHpKenExISwogRI3jkkUdobW3t76ENOH/4wx8YNmwYwcHBTJs2jdzc3P4e0oD2+OOPM3XqVCIiIkhISODqq69m3759/T2sc8oTTzyBpmk88MAD/T2UAa+wsJAbb7yRuLg4QkJCGD9+PFu2bOnvYQ1YbrebX/ziF+2unf/7v/8bUGuUU0UKYJ4meXl5GIbBiy++yMiRI9m9eze33347jY2NPP300/09vAHjrbfeYvHixbzwwgtMmzaNpUuXcvHFF7Nv3z4SEhL6e3gD0urVq7n77ruZOnUqLpeLhx9+mIsuuoi9e/cSFhbW38Mb8DZv3syLL77IhAkT+nsoA151dTUzZ85k/vz5/Otf/yI+Pp4DBw4QExPT30MbsJ588kmef/55Xn75ZTIzM9myZQu33norUVFR3Hffff0yJtlV14+eeuopnn/+eQ4dOtTfQxkwpk2bxtSpU3nuuecA1U4nNTWVe++9lyVLlvTz6M4N5eXlJCQksHr1aubMmdPfwxnQGhoayM7O5o9//CO/+tWvmDRpEkuXLu3vYQ1YS5YsYd26daxdu7a/h3LOuOKKK0hMTOTPf/5z223XXnstISEhvPbaa/0yJlmq60e1tbXExsb29zAGjNbWVrZu3crChQvbbtN1nYULF7Jhw4Z+HNm5pba2FkA+26fB3XffzeWXX97uMy9OnQ8//JApU6Zw/fXXk5CQwHnnncef/vSn/h7WgDZjxgw+//xz9u/fD8COHTv48ssvufTSS/ttTLJU10/y8/N59tlnZZnuJKqoqMDtdpOYmNju9sTERPLy8vppVOcWwzB44IEHmDlzJllZWf09nAHtzTffZNu2bWzevLm/h3LOOHToEM8//zyLFy/m4YcfZvPmzdx3330EBQVx88039/fwBqQlS5ZQV1fH2LFjsVgsuN1ufv3rX/O9732v38YkM04naMmSJWia1uNXx4t2YWEhl1xyCddffz233357P41ciJPv7rvvZvfu3bz55pv9PZQB7dixY9x///28/vrrBAcH9/dwzhmGYZCdnc1jjz3Geeedxx133MHtt9/OCy+80N9DG7DefvttXn/9dd544w22bdvGyy+/zNNPP83LL7/cb2OSGacT9JOf/IRbbrmlx2OGDx/e9u+ioiLmz5/PjBkzeOmll07x6M4tgwYNwmKxUFpa2u720tJSkpKS+mlU54577rmHjz/+mDVr1jBkyJD+Hs6AtnXrVsrKysjOzm67ze12s2bNGp577jkcDgcWi6UfRzgwDR48mIyMjHa3jRs3jn/84x/9NKKB72c/+xlLlizhhhtuAGD8+PEcOXKExx9/vN9m+SRwOkHx8fHEx8cHdGxhYSHz589n8uTJLFu2DF2XCb+TKSgoiMmTJ/P5559z9dVXA+ovxM8//5x77rmnfwc3gJmmyb333st7773HqlWrSE9P7+8hDXgXXHABu3btanfbrbfeytixY3nwwQclaDpFZs6c2anUxv79+0lLS+unEQ18TU1Nna6VFosFwzD6aUQSOJ02hYWFzJs3j7S0NJ5++mnKy8vb7pPZkJNn8eLF3HzzzUyZMoWcnByWLl1KY2Mjt956a38PbcC6++67eeONN/jggw+IiIigpKQEgKioKEJCQvp5dANTREREpxyysLAw4uLiJLfsFPrxj3/MjBkzeOyxx/j2t79Nbm4uL730kqwenEKLFi3i17/+NUOHDiUzM5Pt27fzzDPPcNttt/XfoExxWixbtswEuvwSJ9ezzz5rDh061AwKCjJzcnLMjRs39veQBrTuPtfLli3r76GdU+bOnWvef//9/T2MAe+jjz4ys7KyTLvdbo4dO9Z86aWX+ntIA1pdXZ15//33m0OHDjWDg4PN4cOHmz//+c9Nh8PRb2OSOk5CCCGEEAGSJBshhBBCiABJ4CSEEEIIESAJnIQQQgghAiSBkxBCCCFEgCRwEkIIIYQIkAROQgghhBABksBJCCGEECJAEjgJIYQQQgRIAichhBBCiABJ4CSEEEIIESAJnIQQA96vfvUrNE3j/PPP7/L+JUuWoGkakyZNorq6+jSPTghxNpFedUKIAa+5uZnRo0dz/Phx3nnnHa699tq2+x5//HEefvhhxowZw5o1a0hISOjHkQohznQy4ySEGPBCQkL49a9/DcDPf/5zXC4XAM8//zwPP/ww6enpfP755xI0CSF6JTNOQohzgmmaTJkyhW3btvHCCy8QHh7OTTfdRHJyMmvXriU9Pb3t2Pz8fJ5++mlyc3PZtWsXKSkpFBQU9N/ghRBnDAmchBDnjFWrVjF//nxiYmKor68nJiaGNWvWMHbs2HbHffDBB9x9993k5ORw+PBhqqurJXASQgASOAkhzjEzZ85k/fr1REREsGbNGiZNmtTpGMMw0HWVyXDnnXfy6aefSuAkhAAkx0kIcQ5ZtmwZGzZsAMDhcBAZGdnlcd6gSQghOpLfDkKIc8Lf//53br/9dmJjY/nOd75Da2srDz74YH8PSwhxlpHASQgx4H3yySd873vfIywsjOXLl/PCCy8QGxvLO++8w/r16/t7eEKIs4gETkKIAW316tVcd911WK1WPvroIyZPnkx0dDQPP/wwAIsXL+7nEQohziYSOAkhBqzc3FwWLVqE2+3m3XffZc6cOW333XPPPaSlpbFp0ybefPPNfhylEOJsIoGTEGJA2rVrF5deeilNTU28/vrrXHLJJe3ut9vt/O///i8ADz30EA6Hoz+GKYQ4y0g5AiGE6IGUIxBC+LP29wCEEOJM09TUxCeffALAoUOHaGpq4p133gFg6tSppKWl9efwhBD9SGachBCig4KCgnYtWPwtW7aMW2655fQOSAhxxpDASQghhBAiQJIcLoQQQggRIAmchBBCCCECJIGTEEIIIUSAJHASQgghhAiQBE5CCCGEEAGSwEkIIYQQIkASOAkhhBBCBEgCJyGEEEKIAEngJIQQQggRIAmchBBCCCECJIGTEEIIIUSAJHASQgghhAjQ/w/4lBXNzu7vWgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(train_X, train_y_true, train_y_idx)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` and `DataMonitor` rely on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "\n", + "Similar to what is shown in the `Datalab` quickstart tutorial, this tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:10.243058Z", + "iopub.status.busy": "2024-05-24T23:43:10.242718Z", + "iopub.status.idle": "2024-05-24T23:43:10.279437Z", + "shell.execute_reply": "2024-05-24T23:43:10.279000Z" + } + }, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=train_X, y=train_y, cv=5, method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use Datalab to find issues in the dataset\n", + "\n", + "These steps are pretty much identical to the `Datalab` quickstart tutorial. We'll use the `Datalab` class to find issues in the training data." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:10.281737Z", + "iopub.status.busy": "2024-05-24T23:43:10.281303Z", + "iopub.status.idle": "2024-05-24T23:43:11.935515Z", + "shell.execute_reply": "2024-05-24T23:43:11.934890Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Audit complete. 29 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + "issue_type num_issues\n", + " label 29\n", + "\n", + "Dataset Information: num_examples: 327, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 29\n", + "Overall dataset quality in terms of this issue: 0.9297\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "53 True 0.000124 low high\n", + "259 True 0.000725 high low\n", + "269 True 0.000794 mid high\n", + "89 True 0.002061 high low\n", + "125 False 0.002908 low mid\n" + ] + } + ], + "source": [ + "lab = Datalab(data=data, label_name=\"y\", task=\"classification\")\n", + "\n", + "# For simplicity, let's leverage the cross-validated predicted probabilities to find possible label issues\n", + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", + "\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Great! The `Datalab` instance has seen some training data and found some issues. This would be a good time to look at any major issues that may be easily resolved. For example, if there are many label errors of a certain class, you may want to investigate why this is happening and fix the issue at the source.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Use DataMonitor to find issues in new data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Now, how do you monitor new data for the same issues? You pass the `Datalab` instance to the `DataMonitor` class, which can then be used to monitor new data for the same issues." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:11.938082Z", + "iopub.status.busy": "2024-05-24T23:43:11.937622Z", + "iopub.status.idle": "2024-05-24T23:43:11.965649Z", + "shell.execute_reply": "2024-05-24T23:43:11.965098Z" + } + }, + "outputs": [], + "source": [ + "# Set up the data monitor\n", + "monitor = DataMonitor(datalab=lab)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For new data, you may be running model predictions on-the-fly and want to monitor the predictions for issues. \n", + "This requires a slightly different approach than the one used for training data, when feeding the data in batches to the DataMonitor.\n", + "\n", + "Here, we'll simulate a stream of data points annotated with some given labels and some model predictions. We'll then use the `DataMonitor` class to monitor the data stream for issues.\n", + "\n", + "Generally, you would have a model already trained on the full training data and would be running predictions on new data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:11.968064Z", + "iopub.status.busy": "2024-05-24T23:43:11.967636Z", + "iopub.status.idle": "2024-05-24T23:43:11.999590Z", + "shell.execute_reply": "2024-05-24T23:43:11.999010Z" + } + }, + "outputs": [], + "source": [ + "from tqdm.auto import tqdm\n", + "from time import sleep\n", + "\n", + "# Fit a classification model on the full training set\n", + "model = LogisticRegression()\n", + "model.fit(train_X, lab.labels)\n", + "\n", + "\n", + "# Here, we simulate a streaming scenario by processing some of test data, 1 sample at a time\n", + "batch_size = 1\n", + "def generate_stream(data: dict, batch_size=1, sleep_time=0.1):\n", + " n = len(next(iter(data.values())))\n", + " for i in tqdm(range(0, n, batch_size), total=n // batch_size, desc=f\"Streaming data, {batch_size} sample(s) at a time\"):\n", + " batch = {k: v[i:i + batch_size] for k, v in data.items()}\n", + " \n", + " # Simulate some processing time\n", + " sleep(sleep_time)\n", + " \n", + " yield {\"labels\": batch[\"y\"], \"pred_probs\": model.predict_proba(batch[\"X\"])}\n", + "\n", + "singleton_stream = generate_stream({\"X\": test_X[:50], \"y\": test_y[:50]})\n", + "# TODO: Add seamless Singleton Support designed to intuitively\n", + "# handle single data points without requiring the user to wrap singletons in additional data structures\n", + "\n", + "batched_stream = generate_stream({\"X\": test_X[50:], \"y\": test_y[50:]}, batch_size=50, sleep_time=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:12.002056Z", + "iopub.status.busy": "2024-05-24T23:43:12.001718Z", + "iopub.status.idle": "2024-05-24T23:43:17.104308Z", + "shell.execute_reply": "2024-05-24T23:43:17.103730Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7e5041d0479f4c14ac5009ccf637d8b0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Streaming data, 1 sample(s) at a time: 0%| | 0/50 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_score
0False0.623844
1False0.812647
2False0.816854
3False0.661968
4False0.632244
.........
395False0.474599
396False0.653901
397False0.584554
398False0.817287
399False0.881545
\n", + "

400 rows × 2 columns

\n", + "" + ], + "text/plain": [ + " is_label_issue label_score\n", + "0 False 0.623844\n", + "1 False 0.812647\n", + "2 False 0.816854\n", + "3 False 0.661968\n", + "4 False 0.632244\n", + ".. ... ...\n", + "395 False 0.474599\n", + "396 False 0.653901\n", + "397 False 0.584554\n", + "398 False 0.817287\n", + "399 False 0.881545\n", + "\n", + "[400 rows x 2 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_score
354True0.001612
51True0.002748
367True0.015793
295True0.022075
368True0.029022
.........
183False0.937927
309False0.939505
133False0.947290
177False0.952187
314False0.997293
\n", + "

400 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score\n", + "354 True 0.001612\n", + "51 True 0.002748\n", + "367 True 0.015793\n", + "295 True 0.022075\n", + "368 True 0.029022\n", + ".. ... ...\n", + "183 False 0.937927\n", + "309 False 0.939505\n", + "133 False 0.947290\n", + "177 False 0.952187\n", + "314 False 0.997293\n", + "\n", + "[400 rows x 2 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# View the full issues dataframe (analogous to the Datalab.issues DataFrame)\n", + "display(monitor.issues)\n", + "\n", + "# Look at particular issue types\n", + "# TODO\n", + "# monitor.get_issues(\"label\")\n", + "monitor.issues.sort_values(\"label_score\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:22.471396Z", + "iopub.status.busy": "2024-05-24T23:43:22.471220Z", + "iopub.status.idle": "2024-05-24T23:43:22.500175Z", + "shell.execute_reply": "2024-05-24T23:43:22.499700Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
issue_typenum_issuesscore
0label270.655501
\n", + "
" + ], + "text/plain": [ + " issue_type num_issues score\n", + "0 label 27 0.655501" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Look at a summary of all the issue checks across the full monitoring process\n", + "monitor.issue_summary\n", + "\n", + "# TODO: Align the behavior of the DataMonitor.issue_summary with the Datalab.get_issue_summary method " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Finding outliers in new data" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:22.502188Z", + "iopub.status.busy": "2024-05-24T23:43:22.502009Z", + "iopub.status.idle": "2024-05-24T23:43:22.545595Z", + "shell.execute_reply": "2024-05-24T23:43:22.545011Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "\n", + "Audit complete. 6 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + "issue_type num_issues\n", + " outlier 6\n", + "\n", + "Dataset Information: num_examples: 327\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 6\n", + "Overall dataset quality in terms of this issue: 0.3603\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "173 True 0.000330\n", + "269 True 0.000626\n", + "296 True 0.002004\n", + "304 True 0.165496\n", + "275 True 0.179811\n" + ] + } + ], + "source": [ + "lab = Datalab(data=data)\n", + "\n", + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {}})\n", + "\n", + "lab.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:22.547802Z", + "iopub.status.busy": "2024-05-24T23:43:22.547468Z", + "iopub.status.idle": "2024-05-24T23:43:22.574029Z", + "shell.execute_reply": "2024-05-24T23:43:22.573458Z" + } + }, + "outputs": [], + "source": [ + "# Set up the data monitor\n", + "monitor = DataMonitor(datalab=lab)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:22.576232Z", + "iopub.status.busy": "2024-05-24T23:43:22.575914Z", + "iopub.status.idle": "2024-05-24T23:43:22.602836Z", + "shell.execute_reply": "2024-05-24T23:43:22.602265Z" + } + }, + "outputs": [], + "source": [ + "# Here, we simulate a streaming scenario by processing some of test data, 1 sample at a time\n", + "batch_size = 1\n", + "def generate_stream(data: dict, batch_size=1, sleep_time=0.1):\n", + " n = len(next(iter(data.values())))\n", + " for i in tqdm(range(0, n, batch_size), total=n // batch_size, desc=f\"Streaming data, {batch_size} sample(s) at a time\"):\n", + " batch = {k: v[i:i + batch_size] for k, v in data.items()}\n", + " \n", + " # Simulate some processing time\n", + " sleep(sleep_time)\n", + " \n", + " yield {\"features\": batch[\"X\"]}\n", + "\n", + "singleton_stream = generate_stream({\"X\": test_X[:50]})\n", + "# TODO: Add seamless Singleton Support designed to intuitively\n", + "# handle single data points without requiring the user to wrap singletons in additional data structures\n", + "\n", + "batched_stream = generate_stream({\"X\": test_X[50:]}, batch_size=50, sleep_time=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:22.605052Z", + "iopub.status.busy": "2024-05-24T23:43:22.604873Z", + "iopub.status.idle": "2024-05-24T23:43:33.029284Z", + "shell.execute_reply": "2024-05-24T23:43:33.028708Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2548be10e1d341e7a25b518c2e53a366", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Streaming data, 1 sample(s) at a time: 0%| | 0/50 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
issue_typenum_issuesscore
0label270.655501
1outlier70.360596
\n", + "" + ], + "text/plain": [ + " issue_type num_issues score\n", + "0 label 27 0.655501\n", + "1 outlier 7 0.360596" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "monitor.issue_summary" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "061109789ffd44979a25020b45a716ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0dcc62c035b947efa1ced7ed4e0b45ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f38b2b7d3064e49bd4d6d774974f237": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_949f2cd2885c4f5489246603e6f34475", + "placeholder": "​", + "style": "IPY_MODEL_5ea64b5fa62c45a48f13619d75215989", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.77it/s]" + } + }, + "126b27e0f6724825a05948dfc6528244": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_527acd200a154b1d8e07340242de3b37", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2038d650c60c4f81a63a884da28a4395", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "12b7cc0483df4b318218b68b2b9ac873": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_061109789ffd44979a25020b45a716ee", + "placeholder": "​", + "style": "IPY_MODEL_f4d3c088817749209560dac26776125a", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.87it/s]" + } + }, + "1545dcb98d0540f08809ceb2406dd380": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1854d34db9a74254ba272f7d64daea62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "19813b119fed41aaa757668ad151226e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cb2b06188b642fa8e5a382718089733": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ea587db69034efba18d8ebf5dfd8232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0dcc62c035b947efa1ced7ed4e0b45ee", + "placeholder": "​", + "style": "IPY_MODEL_5832e836fe484072b261fbd6eb475d9e", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "2038d650c60c4f81a63a884da28a4395": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21e59a21d65c4353a26222e2baa330be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1cb2b06188b642fa8e5a382718089733", + "placeholder": "​", + "style": "IPY_MODEL_b1c93f7ca33247febbc30ca850450835", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "2548be10e1d341e7a25b518c2e53a366": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6121e7a8a5a84b98b6a2b5646b070660", + "IPY_MODEL_b59bb3fdb92f403baad00865a66fd539", + "IPY_MODEL_543106d6e37b4621ae27924ad8b136ba" + ], + "layout": "IPY_MODEL_ce68791250814ca6bc682e65c6864b87", + "tabbable": null, + "tooltip": null + } + }, + "285213c3f7d14827bc9f6ef0863aeb3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2d095123676845dd94964454dba94106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49e37b07222d484e9e348429595dc938", + "IPY_MODEL_93d8ebd0ca5f41808a2566ae91d18ae0", + "IPY_MODEL_0f38b2b7d3064e49bd4d6d774974f237" + ], + "layout": "IPY_MODEL_76fc352dc22948588e47ee2b90470ab5", + "tabbable": null, + "tooltip": null + } + }, + "33b1227b11fc4382aa432e7dd6ae2ff1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "349c6683d89e45c3a6ef2a09be8844a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f79be562f79e4a79bf202895f4822e29", + "placeholder": "​", + "style": "IPY_MODEL_33b1227b11fc4382aa432e7dd6ae2ff1", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "36cb93e94b554bd8bc797086c06ddecd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c5f6c3ed34e49f29b81d3f3e3f0ea48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d44b30aaea046a58c2bc0a36a8b35df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49e37b07222d484e9e348429595dc938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97cecd73cdec4ef69bcc272b3565dc88", + "placeholder": "​", + "style": "IPY_MODEL_70bc051d39094e618dc4e4521ce17d9a", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "4ae2cbff39da4f3398ae8ba88c253809": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "527acd200a154b1d8e07340242de3b37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52d7910acf484c0aa99cfb842a1d73e1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "543106d6e37b4621ae27924ad8b136ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d064572295154659af507417ad8b1377", + "placeholder": "​", + "style": "IPY_MODEL_f16b564bb09e4d508bf5bc487ca292d5", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.78it/s]" + } + }, + "5832e836fe484072b261fbd6eb475d9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ea64b5fa62c45a48f13619d75215989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6121e7a8a5a84b98b6a2b5646b070660": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52d7910acf484c0aa99cfb842a1d73e1", + "placeholder": "​", + "style": "IPY_MODEL_a9c66529a8a64024a0c789c12d76af2d", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "67ec0c612b17470ca763fb08279ea542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6a4be10c5c274eb1a6e4787b774cea4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f3d225c700f4e3f8543e1a1685051fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "70bc051d39094e618dc4e4521ce17d9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7186f03f4a1044de80d87a5732e71fc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ea587db69034efba18d8ebf5dfd8232", + "IPY_MODEL_f2f15a84769542dd8ed36b713923b6b0", + "IPY_MODEL_797e692994a5438f880dcd8f639ce18a" + ], + "layout": "IPY_MODEL_4ae2cbff39da4f3398ae8ba88c253809", + "tabbable": null, + "tooltip": null + } + }, + "76fc352dc22948588e47ee2b90470ab5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7837d71788ac414e926abaa9ab7e9eb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21e59a21d65c4353a26222e2baa330be", + "IPY_MODEL_a101c75cb9394e0495412cd78b656bf6", + "IPY_MODEL_fb8bb7d54bed492e941f11917aecd121" + ], + "layout": "IPY_MODEL_db8b23d0bb8e44a5b5962a62673ed086", + "tabbable": null, + "tooltip": null + } + }, + "797e692994a5438f880dcd8f639ce18a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e56fef212b80449b8e856ac66c1b0e98", + "placeholder": "​", + "style": "IPY_MODEL_3c5f6c3ed34e49f29b81d3f3e3f0ea48", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" + } + }, + "7e5041d0479f4c14ac5009ccf637d8b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d47bdeaafab84f8db0712f4f99530beb", + "IPY_MODEL_c356befa09174249b0dbbb0af841fd78", + "IPY_MODEL_12b7cc0483df4b318218b68b2b9ac873" + ], + "layout": "IPY_MODEL_1545dcb98d0540f08809ceb2406dd380", + "tabbable": null, + "tooltip": null + } + }, + "88fe8e06a06943d0aac8f783ff14019b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8c127141c31a4c01b97cac9b8648f0a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93d8ebd0ca5f41808a2566ae91d18ae0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c127141c31a4c01b97cac9b8648f0a1", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f3d225c700f4e3f8543e1a1685051fe", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "949f2cd2885c4f5489246603e6f34475": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97cecd73cdec4ef69bcc272b3565dc88": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98f4b0204d294c058501d6eda7507ab0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a101c75cb9394e0495412cd78b656bf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19813b119fed41aaa757668ad151226e", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f61285705a3d425989f96b21d6129764", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "a34f045f732e4d859f47a8dd3adb8b99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a9c66529a8a64024a0c789c12d76af2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ad2ed824550e4c2a80d59779a0f9be2a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ade57dd80a5f43bab9c83b78ef9b6f52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae01e2e94fdc465da1669fcc560ae1ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e25fcea602734d9c871a5da2fe7181aa", + "IPY_MODEL_126b27e0f6724825a05948dfc6528244", + "IPY_MODEL_349c6683d89e45c3a6ef2a09be8844a3" + ], + "layout": "IPY_MODEL_36cb93e94b554bd8bc797086c06ddecd", + "tabbable": null, + "tooltip": null + } + }, + "b1c93f7ca33247febbc30ca850450835": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b59bb3fdb92f403baad00865a66fd539": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_98f4b0204d294c058501d6eda7507ab0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88fe8e06a06943d0aac8f783ff14019b", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "c17e2524777f4544bec0ceb59d75cdec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c356befa09174249b0dbbb0af841fd78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ad2ed824550e4c2a80d59779a0f9be2a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a34f045f732e4d859f47a8dd3adb8b99", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "ce68791250814ca6bc682e65c6864b87": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d064572295154659af507417ad8b1377": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d47bdeaafab84f8db0712f4f99530beb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8e92099405548718190046603338bbf", + "placeholder": "​", + "style": "IPY_MODEL_67ec0c612b17470ca763fb08279ea542", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "db8b23d0bb8e44a5b5962a62673ed086": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e25fcea602734d9c871a5da2fe7181aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ade57dd80a5f43bab9c83b78ef9b6f52", + "placeholder": "​", + "style": "IPY_MODEL_285213c3f7d14827bc9f6ef0863aeb3b", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "e56fef212b80449b8e856ac66c1b0e98": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8e92099405548718190046603338bbf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f16b564bb09e4d508bf5bc487ca292d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f2f15a84769542dd8ed36b713923b6b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c17e2524777f4544bec0ceb59d75cdec", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d44b30aaea046a58c2bc0a36a8b35df", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "f4d3c088817749209560dac26776125a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f61285705a3d425989f96b21d6129764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f79be562f79e4a79bf202895f4822e29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb8bb7d54bed492e941f11917aecd121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a4be10c5c274eb1a6e4787b774cea4a", + "placeholder": "​", + "style": "IPY_MODEL_1854d34db9a74254ba272f7d64daea62", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb new file mode 100644 index 000000000..820783eb8 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -0,0 +1,1802 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Datalab: Advanced workflows to audit your data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleanlab offers a `Datalab` object to identify various issues in your machine learning datasets that may negatively impact models if not addressed. By default, `Datalab` can help you identify noisy labels, outliers, (near) duplicates, and other types of problems that commonly occur in real-world data.\n", + "\n", + "`Datalab` performs these checks by utilizing the (probabilistic) predictions from *any* ML model that has already been trained or its learned representations of the data. Underneath the hood, this class calls all the appropriate cleanlab methods for your dataset and provided model outputs, in order to best audit the data and alert you of important issues. This makes it easy to apply many functionalities of this library all within a single line of code. \n", + "\n", + "**This tutorial will demonstrate some advanced functionalities of Datalab including:**\n", + "\n", + "- Incremental issue search\n", + "- Specifying nondefault arguments to issue checks\n", + "- Save and load Datalab objects\n", + "- Adding a custom IssueManager\n", + "\n", + "If you are new to `Datalab`, check out this [quickstart tutorial](datalab_quickstart.html) for a 5-min introduction!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you have some `features` as well? Run the code below to examine your dataset for multiple types of issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(features=your_feature_matrix, pred_probs=your_pred_probs)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Datalab` has additional dependencies that are not included in the standard installation of cleanlab.\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib \n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:46.326123Z", + "iopub.status.busy": "2024-05-24T23:43:46.325960Z", + "iopub.status.idle": "2024-05-24T23:43:47.511851Z", + "shell.execute_reply": "2024-05-24T23:43:47.511289Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:47.514417Z", + "iopub.status.busy": "2024-05-24T23:43:47.513946Z", + "iopub.status.idle": "2024-05-24T23:43:47.516947Z", + "shell.execute_reply": "2024-05-24T23:43:47.516500Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create and load the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll load a toy classification dataset for this tutorial. The dataset has two numerical features and a label column with three classes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:47.519395Z", + "iopub.status.busy": "2024-05-24T23:43:47.518884Z", + "iopub.status.idle": "2024-05-24T23:43:47.528311Z", + "shell.execute_reply": "2024-05-24T23:43:47.527846Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:47.530155Z", + "iopub.status.busy": "2024-05-24T23:43:47.529975Z", + "iopub.status.idle": "2024-05-24T23:43:47.534529Z", + "shell.execute_reply": "2024-05-24T23:43:47.534102Z" + } + }, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(8, 6.5))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-3.5, 9.0)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.75, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.75, 0.45], title=\"Type of Issue\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:47.536481Z", + "iopub.status.busy": "2024-05-24T23:43:47.536302Z", + "iopub.status.idle": "2024-05-24T23:43:47.719676Z", + "shell.execute_reply": "2024-05-24T23:43:47.719041Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:47.722197Z", + "iopub.status.busy": "2024-05-24T23:43:47.721992Z", + "iopub.status.idle": "2024-05-24T23:43:48.093755Z", + "shell.execute_reply": "2024-05-24T23:43:48.093196Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmg0lEQVR4nOydd3hUZdqH7zOT3ikpEAKEThJaIKEGEukiFkBARbAgrhXFBqy76PqtYFkE6wqKooCLoiIqBkEIhJpQEnpPaKmEkF5nzvfHyUxmkkkyk0xI4b2viyuZc95zzntmhsxvnvd5fo8ky7KMQCAQCAQCgaBGVA09AYFAIBAIBIKmghBOAoFAIBAIBGYihJNAIBAIBAKBmQjhJBAIBAKBQGAmQjgJBAKBQCAQmIkQTgKBQCAQCARmIoSTQCAQCAQCgZkI4SQQCAQCgUBgJkI4CQQCgUAgEJiJEE4CgaBREx4eTnh4+C27XlRUFJIkERUVZfGxjzzyCC4uLladz62+f4FAUD1COAkEgjrz9ddfI0kSDg4OXLt2rdL+8PBwgoKCGmBmAoFAYF2EcBIIBFajqKiIJUuWWPWcf/75J3/++adVzykQCAS1RQgngUBgNfr27cvKlStJSkqy2jnt7Oyws7Oz2vkEAoGgLgjhJBAIrMbChQvRaDRmRZ1KS0t566236Ny5M/b29nTs2JGFCxdSVFRkNM5Ujs9HH31EYGAgTk5OtGjRggEDBrBu3ToAduzYgSRJ/Pzzz5WuuW7dOiRJYt++fRbdV3R0NPfffz/t27fH3t4ePz8/XnzxRQoKCkyOv3jxImPHjsXZ2Zm2bdvyr3/9C1mWjcZotVqWLVtGYGAgDg4OeHt78+STT5KZmVnjfKq7f4FAUL8I4SQQCKyGv78/M2fONCvqNHv2bP75z38SHBzMBx98wIgRI1i8eDHTp0+v9riVK1fy/PPPExAQwLJly3jzzTfp27cvBw4cABSh5efnx9q1aysdu3btWjp37szgwYMtuq8ffviB/Px8nnrqKT766CPGjh3LRx99xMyZMyuN1Wg0jBs3Dm9vb95991369+/PokWLWLRokdG4J598kldeeYWhQ4eyfPlyHn30UdauXcvYsWMpKSmp9f0LBIJ6RhYIBII68tVXX8mAHBsbK1+4cEG2sbGRn3/+ef3+ESNGyIGBgfrHcXFxMiDPnj3b6Dwvv/yyDMjbt283OnbEiBH6x/fcc4/RuUyxYMEC2d7eXr5586Z+W1pammxjYyMvWrSo2mN37NghA/KOHTv02/Lz8yuNW7x4sSxJknzp0iX9tlmzZsmA/Nxzz+m3abVaecKECbKdnZ2cnp4uy7IsR0dHy4C8du1ao3NGRkZW2l6b+xcIBPWHiDgJBAKr0qlTJx5++GFWrFhBcnKyyTGbN28GYN68eUbbX3rpJQB+//33Ks/v4eHB1atXiY2NrXLMzJkzKSoqYsOGDfpt69evp7S0lBkzZph9LzocHR31v+fl5XH9+nWGDBmCLMscOXKk0vhnn31W/7skSTz77LMUFxezbds2QIlgubu7M3r0aK5fv67/179/f1xcXNixY0eVczHn/gUCQf0hhJNAILA6r7/+OqWlpVXmOl26dAmVSkWXLl2Mtvv4+ODh4cGlS5eqPPdrr72Gi4sLoaGhdO3alWeeeYY9e/YYjenRowchISFGy3Vr165l0KBBla5pDpcvX+aRRx6hZcuWuLi44OnpyYgRIwDIysoyGqtSqejUqZPRtm7dugGQmJgIwLlz58jKysLLywtPT0+jf7m5uaSlpdXp/gUCQf1h09ATEAgEzY9OnToxY8YMVqxYwfz586scJ0mSxefu2bMnZ86c4bfffiMyMpIff/yRTz/9lH/+85+8+eab+nEzZ85k7ty5XL16laKiIvbv38/HH39s8fU0Gg2jR4/mxo0bvPbaa/To0QNnZ2euXbvGI488glartficWq0WLy8vk3lYAJ6enlUea+79CwSC+kEIJ4FAUC+8/vrrrFmzhnfeeafSvg4dOqDVajl37hw9e/bUb09NTeXmzZt06NCh2nM7Ozszbdo0pk2bRnFxMZMmTeLf//43CxYswMHBAYDp06czb948vvvuOwoKCrC1tWXatGkW38exY8c4e/Ysq1evNkoG37p1q8nxWq2Wixcv6qNMAGfPngWgY8eOAHTu3Jlt27YxdOhQo2VAczHn/gUCQf0gluoEAkG90LlzZ2bMmMHnn39OSkqK0b4777wTgGXLlhltX7p0KQATJkyo8rwZGRlGj+3s7AgICECWZaNqtNatWzN+/HjWrFnD2rVrGTduHK1bt7b4PtRqNYCRnYAsyyxfvrzKYwwjW7Is8/HHH2Nra8vIkSMBmDp1KhqNhrfeeqvSsaWlpdy8ebPKc5t7/wKBoH4QESeBQFBv/P3vf+fbb7/lzJkzBAYG6rf36dOHWbNmsWLFCm7evMmIESOIiYlh9erV3HvvvURERFR5zjFjxuDj48PQoUPx9vbm1KlTfPzxx0yYMAFXV1ejsTNnzmTKlCkAJkWKOfTo0YPOnTvz8ssvc+3aNdzc3Pjxxx+r9FtycHAgMjKSWbNmMXDgQP744w9+//13Fi5cqF+CGzFiBE8++SSLFy8mLi6OMWPGYGtry7lz5/jhhx9Yvny5ft51uX+BQFAPNGRJn0AgaB4Y2hFURFeiX7GEvqSkRH7zzTdlf39/2dbWVvbz85MXLFggFxYWGo2rWI7/+eefy8OHD5dbtWol29vby507d5ZfeeUVOSsrq9K1i4qK5BYtWsju7u5yQUGBWfdiyo7g5MmT8qhRo2QXFxe5devW8hNPPCHHx8fLgPzVV18Z3auzs7N84cIFecyYMbKTk5Ps7e0tL1q0SNZoNJWutWLFCrl///6yo6Oj7OrqKvfq1Ut+9dVX5aSkJKvcv0AgsD6SLFewsxUIBIJmQmlpKW3btmXixIl8+eWXDT0dgUDQDBA5TgKBoNmyceNG0tPTTTp8CwQCQW0QESeBQNDsOHDgAEePHuWtt96idevWHD58uKGnJBAImgki4iQQCJodn332GU899RReXl588803DT0dgUDQjBARJ4FAIBAIBAIzEREngUAgEAgEAjMRwkkgEAgEAoHATIQBJkqLhKSkJFxdXWvVO0sgEAgEAkHTRZZlcnJyaNu2LSpV9TElIZyApKQk/Pz8GnoaAoFAIBAIGpArV67Qrl27ascI4QT6NgVXrlzBzc2tgWcjEAgEAoHgVpKdnY2fn59ZbYuEcAL98pybm5sQTgKBQCAQ3KaYk64jksMFAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMBMhnAQCgUAgEAjMRAgngUAgEAgEAjMRwkkgEAgEAoHATIRwEggEAoFAIDATIZwEAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMykyQsnjUbDP/7xD/z9/XF0dKRz58689dZbyLLc0FMTCAQCgUDQzLBp6AnUlXfeeYfPPvuM1atXExgYyMGDB3n00Udxd3fn+eefb+jpCQQCgUAgaEY0eeG0d+9e7rnnHiZMmABAx44d+e6774iJiWngmQkEAoFAIGhuNHnhNGTIEFasWMHZs2fp1q0b8fHx7N69m6VLl1Z5TFFREUVFRfrH2dnZt2KqAoFAIGiCaLVaiouLG3oaAithZ2eHSlX7TKUmL5zmz59PdnY2PXr0QK1Wo9Fo+Pe//81DDz1U5TGLFy/mzTffvIWzFAgEAkFTpLi4mISEBLRabUNPRWAlVCoV/v7+2NnZ1ep4SW7iWdT/+9//eOWVV3jvvfcIDAwkLi6OF154gaVLlzJr1iyTx5iKOPn5+ZGVlYWbm9utmrpAIBAIGjGyLHP58mVKSkpo27ZtnaIUgsaBVqslKSkJW1tb2rdvjyRJgKID3N3dzdIBTT7i9MorrzB//nymT58OQK9evbh06RKLFy+uUjjZ29tjb29/K6cpEAgEgiZGaWkp+fn5tG3bFicnp4aejsBKeHp6kpSURGlpKba2thYf3+Tlc35+fqVvAWq1WoRVBQKBQFAnNBoNQK2XdASNE93rqXt9LaXJR5wmTpzIv//9b9q3b09gYCBHjhxh6dKlPPbYYw09NYFAIBA0A3TLOYLmQV1fzyYfcfroo4+YMmUKTz/9ND179uTll1/mySef5K233mroqQkEAoGgGaLRaFi2bBn9+vXDyckJFxcXevTowTPPPKMfI0lSgwmunTt3Mm7cOFq0aIGjoyM9e/bkgw8+AOCRRx5BkiS+/vrrWzKXxMREJEnCx8fH4mPDw8ORJImoqCiLj/3666+RJIlHHnnE4mNroslHnFxdXVm2bBnLli1r6KkIBAKB4DZg+vTpbNiwAX9/f9544w08PDyIj4/nxx9/5JNPPgHgu+++a5C5bdy4kcmTJ2NjY8Nzzz1HQEAAp06dYs+ePbz44osNMqfmRpOPOAkEAoFAcKvYvXs3GzZswMPDgwMHDvDqq68yZ84cPvnkE86dO6cf98ADD/DAAw8AMGLECCRJ4uTJkwCcOHECSZIYNmwYAMeOHWP8+PG0bNmS1q1bM3XqVK5duwbAG2+8gSRJTJ8+neHDh+Pq6kpERATp6ekm5/fSSy+h1Wr55JNPeP/993nsscd47733+P77702O//vf/46vry92dnZ4enpy3333kZSUBMDFixcJDw/Hzc0NBwcHunbtyrp16wBYvXo1Xbt2xd7eHg8PDwYNGlTlnKoiJyeHgQMH4uHhgb29Pf7+/rz99tuVxkVGRtK5c2datGjBc889R2lpKQCXLl1i6tSpeHt74+Hhwfjx4zl16pRFc6gNTT7iJBAIBALBrWL//v0AhIWF4enpCcD169f1+x0cHCpVas2ZM4ddu3bxzTffsGTJEr755hsAnnzySbKyshg7diylpaU899xzlJSUsHTpUq5evcrevXv159i8eTP/93//h0ajISoqik8++YQ33njD6Drp6elcvHgRgEmTJhntq8pKoVOnTvz9739HpVJx4sQJPv74Y5ycnFi7di0ffvghO3fuZP78+XTr1o0zZ87oE6rnzp2Lk5MTn332Gfn5+cTGxuoFjblIksTYsWN54oknyMvLY/369fz9738nJCSE0aNH68f98ccfzJ8/n08++YSPP/6Y7t2789RTTzFx4kQuXLjAs88+i5OTEx9++CF33nknZ86csWgeliKEk0AgEAgEtaSwsFAvoED5kB83bpzRmClTpvD888+zdu1a/u///o+1a9fSokUL7r//fnbs2EFycjIA//rXv/TH7Nu3j8zMTP3jhx9+mOeffx5HR0f27t3L+fPnrTL/a9eusWzZMqNrHT58GICePXsC8Ndff5Gfn8+AAQOYMmWKft+hQ4fYvHkzQUFBzJ49mzZt2lh07fz8fPbv38/bb79tVOF2+PBhI+G0aNEiJk2aRKtWrZg8eTKRkZGMHDmSY8eOAfDuu+/qx964cYMTJ05Y+CxYhliqEwgEAoHATAYPHgwoS3YZGRnY2dmxdetWevfuXeUx9vb2zJw5k6tXr/L6669z7do1Zs6ciYODg35MSEgIW7du1f/bsmULjo6O+v06caaLZpmK7nh6etK5c2dAyXUyxJRFz9mzZ1m0aBGSJLF+/Xp++OEHAAoKCgAlIrZ792798t3MmTP1XTn++usvVq9eTZcuXdiwYQPDhw9n06ZN1T95FVi2bBlbt25l7Nix/PHHH8yePdvo+ubQvn37Ss9bx44dLZqHpYiIk0DQTImPj6dPnz71Nl4guB0ZOnQo999/Pz/88AODBw/mb3/7G61btyY3N7fa4+bMmcOyZcv00ZE5c+YASr/VNm3acOjQIXbs2EGXLl04ffo0u3btYt++fRbP7/3332fy5Mk8/fTTnDp1ip49e3L27FkuXLigF0YVKS4uJiMjg61btxpt//TTT0lNTcXf35/Q0FA2bNjA5cuXAUVU9e/fn8DAQE6ePMmJEyf0+0yRm5vL66+/rn8cHBxstC8xMZEtW7aYPPbNN9/kxo0bfPzxxwCMGzeObt26ERQUxPHjx/npp58IDQ0lISGBNWvWcOHCBfOerNoiC+SsrCwZkLOyshp6KgKBVVixYoUMyIsXLzZr/OLFi2VAXrFiRT3PTCBoOhQUFMgnT56UCwoKjLaXlJTI7733nhwUFCTb2dnJbm5ucmBgoPzcc8/J165dk2VZlgG54kfssGHDZEAeNmyY0fajR4/KEyZMkFu1aiU7OTnJAQEB8j/+8Q9ZlmV50aJFMiAvWrRIlmVZ/uqrr2RAnjZtWpXzjoqKkseMGSO7ubnJ9vb2cteuXeX//Oc/sizL8qxZs2RA/uqrr2RZluU33nhDdnd3l728vOT//Oc/MiB36NBBlmVZXrVqldy9e3fZ0dFRdnJykkNDQ+Xo6GhZlmV5ypQpso+Pj2xrayu3bt1anjFjhpyTk1NpLgkJCfrnwvDfrFmz5NTUVDk8PFy2t7eXBwwYID/77LNG9zpixAgZkF999VW5R48esoeHh/zss8/KJSUlsizLcmJiojx9+nTZ29tbdnBwkLt06SLPmTPH6HmaNWuWWa+rJTqgyfeqswaW9KgRCBo78fHx9O3bV/948eLFzJ8/v8rxS5YsYcGCBfrHcXFxIvIkEKDkLyUkJODv72+0rCZo2ph6XS3RASLHSSBoZvTp04fFixfrHy9YsIAlS5ag0WqITYll88XNxKbEotFqKommxYsXC9EkEAgE1SBynAT1gizLok1BA6KLMOlE0YIFC/ji2Bc4jilPNi34s4AL68pzAWqKTAkEAoFARJwE9UBRURErVqzg0KFDtW6iKKg78+fPN4o8XVh3gfTfFIO69N/ShWgSNBuqMne01niBwBAhnARW59ChQyQnJ/Prr7/y8ccfExcXZ7IUVlD/vPLqK3R+sLP+ceqGVE4+fZLUDan6bV0e7MIrr77SENMTCOrMzJkzmTZtWiXvpKoYN24c06ZNY+bMmfU8M0FzRQgngdUJDQ1l3LhxuLi4kJmZycaNG/nkk084evSoEFC3mMNph3Ec44j3FG/9Nm1++WvgPcUbhzEOHE473BDTEwjqxPfff8+3334LwJYtW2oUT+PGjdOXvH/77bci8iSoFUI4CayOjY0NgwYNYu7cuYwZMwYnJycyMjL46aef+O9//2uxLb+g9qTnK0tznnd5onIy/u+uclLheZen0TiBoCkxdepUxo4dq3+sE0/FpcV8e/Jb3t7/Nt+e/Jbi0mIj0QQwduxYpk6d2hDTFjRxRHK4oN6wtbVlyJAh9O/fn5iYGPbu3YuPjw82NuJtd6vwdCoTRr+lG0WaQIk8pf+WjuddnvpxAkFTIzIy0kgUbdmyhVbBrej4Ukf9mKenP03usXKDyrFjxxIZGXmrp2oVJEkiMzMTDw+Php7KbYuIOAnqHXt7e8LCwvQRKB0ZGRmsXLmSs2fPIuzE6odgr2AK/iwwymkyjDylbkil8M9Cgr2CTR0uEDQJIiMjjSJPucdySXw/EYDE9xObjWgSNA6EcBLcMhwcHHBxcdE/3r17N9euXWPdunV8+eWXXLhwQQgoK/Peu+8ZVc95T/Em4NMAo5yn8+vO89677zXE9AQCq7Hpt0249Cr/+5J7PJfjjxwn93i5aHLp5cKm3yzrp1ZbkrMK2HvhOslZ5vdds5SDBw8yZMgQevfuTWhoKHv27AFg4cKFvP322wBs3rwZSZI4e/YsAI899hjffPNNvc3pdkAIJ0GDMXr0aIYOHYqtrS1Xr17l22+/5auvviIhIaGhp9YsqGhu2fnBzvqcJs+7POnyYBf9Pp1JpkDQVFl/dj0dX+qIS5CLyf0uQS50fKkj68+ur/+5xF5m6JLtPLjyAEOXbGd9bNU93GpLcXExkyZNYtGiRRw9epSlS5cyefJkcnNzGTVqFNu2bQNg69atDB48WP9427ZtjBo1yurzuZ0QwknQYDg5OTF69Gjmzp3LoEGDsLGx4fLly6xevZr16+v/j1tzxpQj+Jlvz7Bq7CreCXuHVWNXcfrb0yYdxgWCpsiV7CsAdHy5o8n9uu26cfVFclYBC346hrYseK6VYeFPx60eeTpz5gwqlUq/RDls2DC8vb2Ji4tj6NChxMXFUVBQwM6dO/m///s/tm3bxpkzZ3B2dqZt27ZWncvthhBOggbHxcWFcePG8fzzzxMSEoJarcbHx6ehp9VkiY+PrySa5s+fj1qlJsQnhDs73UmITwhqlbqSSeaCBQuIj49viGkLBHXCz80PQJ/bVBHddt24+iLhep5eNOnQyDKJ1/Pr9bqAvluDvb09AwYM4IcffsDR0ZHw8HCOHj3Kli1bGDlyZL3Po7kjhJOg0eDm5saECRN4/vnnGTRokH77+fPnWbduHcnJyQ04u6ZDnz59WLFiBWCeI7iheFqxYoXoVSdokkzrNo3E/yQa5TQZkns8l8T/JDKt27R6nYd/a2dUFbpNqSWJjq2drHqd7t27o9Vq2bp1KwB79+4lJSVF3+B71KhR/POf/2TkyJGoVCr69evH0qVLxTKdFRDCSdDocHd3x97eXv84KiqKs2fP8vnnn7N+/XpSU1OrOVoA8MQTTxAXF2d2G5X58+cTFxfHE088Uc8zEwjqh7vvutuoes4lyIWgr4OMcp5yj+Vy91131+s82rg7snhSL9Rl0R+1JPH2pCDauDvWcKRl2NnZ8dNPP7Fo0SJ69+7NCy+8wIYNG/QFOKNGjeLSpUt6oTR69GiuXLlCeHi4VedxOyLJooyJ7Oxs3N3dycrKws3N7ZZdNz4+3qJv95aOby5kZGSwc+dOjh07pq+6CwwMJDw8HE9P4T8kENzuVDS3dOnlYuTjlPif2lkSFBYWkpCQgL+/Pw4ODhbNKTmrgMTr+XRs7WR10SSoG6ZeV0t0gIg4NRArV66kb9++ZifjLlmyhL59+7Jy5cp6nlnjo1WrVkyaNImnn36awMBAAE6cOMGnn37Kjh07Gnh2AoGgITHlCJ5xOINXQ17lge4P8GrIq2QczjDpMF6ftHF3ZHDnVkI0NUNExIlbH3GKj4/Xr0NDzXkoFSuk4uLibsvIk47U1FR27NjB6dOnuf/++/ViSiAQ3F58//33TJtWnrNUUySposhav359tW1X6hJxEjReRMSpCdKnTx/TZeBaDSREw7ENyk+txmRZ+e0smgC8vb2ZPn06Tz31FAEBAfrtMTEx/Prrr2RlZTXg7AQCwa1i6tSpPPzww4B5y2+GDuMPP/yw6FUnqBUi4kTD5ThVEkV3ejI/pKh8f6w9CzaXN181p0LqdqW0tJQPPviAvLw81Go1/fv3JywsDFdX14aemkAgqGe+//57i0SQueNFxKl5UteIkxBONJxwAhPiaaQ984fZs2R3EQv+KhdRQjTVzKVLl9ixYweJiYkA2NjYEBISwrBhw3B2dm7YyQkEgiaHEE7NEyGcrEBDCie0GpZMbGMUWfJwgJuF5UMW3+nJ/F+TQaW+tXNroiQkJLB9+3auXFEcgm1tbZk4cSK9e/du4JkJBIKmhBBOzROR49TUubSX+SFFLB5Z7ltkJJpG2ivLd5f2NsDkmib+/v489thjzJgxA19fX0pKSvDy8mroaQkEAoGgGSCEU0OTq5g5zh9mj0eFLzQeDsp2w3EC85AkiS5dujB79myeeOIJoxYuW7duZefOnRQVFVVzBoFAIGi6JCUlERYWVuX+1q1b69MaBJZh09ATuO1x8QZgye4io0gTKJGnJbuLFPFUNk5gGZIk4evrq3+clZXFvn370Gq17N+/n6FDhxIaGoqdnV0DzlIgEAisS9u2bYmOjm7oaTRLRMSpoekwRKmeM0gEN4w8LfiriCWx9tBhSANMrvnh5ubGpEmTaN26NQUFBWzbto3ly5ezb98+SkpKGnp6AoGguZB1DRJ2KT+tiCRJ/Pvf/2bgwIF07NiRjRs3snjxYgYMGEDXrl2JiooCIDExEQ8PD/1xmzZtomfPnvTu3ZtXX33VqnO63RDCqYFZ8u57xpYDI+3JfM3NKOdpweZ0lrz7XkNMr9khSRJBQUE8/fTT3HfffbRs2ZK8vDy2bNnC8uXLuXz5ckNPUSAQNHUOfwPLgmD1ROXn4W+senoXFxcOHDjAl19+yYwZM2jTpg0HDx7k7bff5pVXXqk0Pi0tjUcffZQff/yRo0eP0qVLFzIyMqw6p9sJIZwaEJM+TmU5TfOH2bP4zvI+bHqTTIFVUKlU9OnTh2eeeYa7774bDw8PiouLad26dUNPTSAQNGWyrsGvc0HWKo9lLfz6glUjTzq39AEDBpCXl8f06dMBCA0N5dy5c5XG79+/n969e+sNgx9//HGRnlAHRI5TA2HKEXz+q68o1XO5qeDizfx/DoF339OP0/0Ufk7WQ61WExwcTJ8+fUhJScHJyQkAWZbZuHEjHTt2pHfv3qjVwgpCIBCYwY0L5aJJh6yBGxfB3df0MRaiK6HX/V0yfFxaWlrj8ZIkWWUetysi4tQAxMfHVxZN8+crPk3+YdBrivJTpWb+/PmV2rPEx8c3xLSbNWq12iiJPDExkfj4eH755Rc++eQT4uPj0Wq11ZxBIBAIgJadQarw0SqpoWWnhpkPMHjwYI4ePcrp06cBWLVqFcXFxQ02n6ZOsxBO165dY8aMGbRq1QpHR0d69erFwYMHG3paVdKnTx9WrFgBmOcIbiieVqxYcdv3qrsVtGvXjjFjxuDs7MyNGzf4+eef+fTTTzl+/DjCM1YgEFSJuy9MXK6IJVB+TlxmtWhTbfD09GTVqlXcd9999OnTh3PnztGqVasGm09Tp8k7h2dmZtKvXz8iIiJ46qmn8PT05Ny5c3Tu3JnOnTubdY6Gcg6Pj4+3SARZOl5Qd4qLi4mJiWHPnj0UFBQA4OXlxYMPPmhUsSIQCJofdXIOz7qmLM+17NSgoklQmbo6hzf5HKd33nkHPz8/vvrqK/02f3//BpyR+VgqgoRouvXY2dkxbNgwQkJC2L9/P/v27UOj0dz61jwCgaBp4e4rBFMzpckv1W3atIkBAwZw//334+XlRb9+/Vi5cmVDT0vQzLC3t2fEiBHMnTuX+++/H5VK+a9TWlrK+vXrOX/+vFjCEwgEgtuAJh9xunjxIp999hnz5s1j4cKFxMbG8vzzz2NnZ8esWbNMHlNUVGTUbiM7O/tWTVfQxHF0dMTR0VH/+MiRI5w6dYpTp07Rvn17IiIimkzEUyAQCASW0+QjTlqtluDgYN5++2369evHnDlzeOKJJ/jvf/9b5TGLFy/G3d1d/8/Pz+8WzljQnAgICGDw4MHY2Nhw+fJlVq9ezddff82lS5caemoCgUAgqAeavHBq06aN3tRLR8+ePat1gF6wYAFZWVn6f1euXKnvaQqaKc7OzowdO5a5c+cSGhqKWq0mMTGRr776im+//Va0cREIBIJmRpNfqhs6dChnzpwx2nb27Fk6dOhQ5TH29vbY29tXuV8gsBRXV1fuvPNOhg4dSnR0NIcPH0alUmFra9vQUxMIBAKBFWnyEacXX3yR/fv38/bbb3P+/HnWrVvHihUreOaZZxp6aoLbEHd3d+666y6ee+45xo0bp9+ek5PDDz/8QGpqagPOTiAQNHUkSeLmzZsm9915552VAgmmeOSRR1i2bJl1J3Yb0eQjTiEhIfz8888sWLCAf/3rX/j7+7Ns2TIeeuihhp6a4DamRYsWRo93797NiRMnOHHiBIGBgYSHh+Pp6VnF0QKBQGA5mzdvbugp3BY0+YgTwF133cWxY8coLCzk1KlTPPHEEw09JYHAiAEDBhAYGAjAiRMn+PTTT/npp59Eh3KBoJmSkpdCTHIMKXkpVj/3p59+SmhoKP7+/kYehh07diQuLg6A06dPM3jwYAIDA5k0aRJjxozh66+/1o89deoUI0eOpFu3bkyaNEm0YLGAZiGcBILGjqenJ/fffz9PPfUUPXv2RJZljh49yieffMLvv//e0NMTCARW5KdzPzH2x7E8/ufjjP1xLD+d+8mq57e3tycmJoY//viD559/3mRj34cffpg5c+Zw4sQJ/v3vf7Nr1y6j/XFxcfz666+cOnWK1NRUfvzxR6vOsTkjhJNAcAvx9vZm2rRpPPnkk3Tr1g2tVouNTZNfMRcIBGWk5KXw5r430cpKU3CtrOXNfW9aNfKkS0Xp0aMHNjY2pKQYnzs7O5u4uDhmzpwJKJXmw4YNMxpz33334eTkhFqtJjQ0lAsXLlhtfs0d8RdbIGgA2rRpw4MPPsjVq1eN8qGuXr3K0aNHCQsLw9XVtQFnKBAIasPl7Mt60aRDK2u5knMFH2cfq1zDsG+eWq02GXGqiCRJdT6HQEFEnASCBqRdu3Y4OzvrH+/YsYOYmBiWL19OZGQkubm5DTg7gUBgKe3d2qOSjD9aVZIKP9dbZ7Ts5uZGnz59WLNmDQBnzpxh9+7dt+z6zR0hnASCRsSwYcNo3749paWl7N+/n+XLl7N161by8/MbemoCgcAMfJx9WDR4kV48qSQViwYvslq0yVy++eYbPvvsM4KCgnjttdcICQnBw8Pjls6huSLJojMp2dnZuLu7k5WVJbreCxocWZa5ePEi27dv59q1awDY2dlxxx13MGjQoAaenUBw+1BYWEhCQgL+/v5GS1vmkJKXwpWcK/i5+t1y0QSQm5uLs7MzkiSRkJDA4MGDiY2NFS3GMP26WqIDRI6TQNDIkCSJzp0706lTJ86dO8eOHTtITk4WLuQCQRPCx9mnQQSTjr179/LKK68AoNFo+OCDD4RoshJCOAkEjRRJkujWrRtdu3bl7NmzdOnSRb/vxIkT3Lhxg4EDB2JnZ9eAsxQIBI2RMWPGMGbMmIaeRrNECCeBoJEjSRLdu3fXP9ZoNGzbto3MzEz27dvHsGHDCAkJEREpgUAguAWI5HCBoIkhSRIRERG0bNmS/Px8/vzzT5YvX87+/ftFSbFAIBDUMyLiJBA0MVQqFb179yYoKIj4+Hh27tzJzZs3iYyMZO/evUyYMMEoQiUQCOqGqKFqXtT19RTCSSBooqhUKvr160fv3r2Ji4tj165dZGVlYW9v39BTEwiaBba2tkiSRHp6Op6enpVMJAVND1mWSU9PR5KkWqc3CDsChB2BoHlQWlrK2bNnCQgI0G87cOAA9vb29O7dG5VKrMwLBJaSm5vL1atXRdSpGSFJEu3atcPFxUW/TdgRCAS3ITY2NkaiKS8vj7/++ovi4mKio6MJDw8nMDBQCKg6otFqOJx2mPT8dDydPAn2CkatUlttvKBx4eLiQteuXSkpKWnoqQishK2tLWp17f8PiogTIuLU7NBq4NJeyE0FF2/oMARuww+qkpISYmJi2LNnj9553MvLi/DwcHr27Fmvyw5NVSzUNO9tl7axJGYJqfmp+m3eTt7MD53PqA6jKp3P0vECgaBhsEQHCOGEEE7NipOb4I9XISe5fJtrGxj/LgTc3XDzakCKioo4cOAAe/fspjDlHBTn4ePbnnsefYE2vu2sfr2mKhZqmve2S9uYFzUPGeM/mRKKAF0avtTo/iwdLxAIGg4hnCxECKdmwslN8P3DVe+f+u1tK544uYnCX19h38mr7L+qoVQLz49qj/u974JTK6tF55qqWKhp3u+PeJ93Y981ElUVx3k7eRM5ORK1So1Gq2Hsj2PNHi8QCBoWIZwsRAinZoBWA+91hoLMqsc4toRXzt9+y3YnN8H3M6FMFBSUyFzO0tK9dfnzsCOhlA4eKvzb+yLVMjrXVMWCOfP2sPcgs6ia91YZq8auIsQnhNiUWB7b8pjZ4wWNm+LiYgoKChp6Grc9jo6O9dYpQSSHC24/EqKrF00ABTeUcZ3Db8mUGgVaDUS+BgaRFEdbyUg0Jedo2XmpFC5Bh8TL3HFlBh3mrLFYPB1OO1yl+ACQkUnJT+Fw2uFGJRbMmbc5ogkgPT/d6Ke54wWNl/T0dJKSkoQVQSNAlmXatm2Lp6dng85DCCdB8+DSbvPH3U7C6dJeyE6qdoirvcRAXzUHk7RcytLwVZyWTv/3NyIW98avQ0ezL9WUxIJhEviFmxesdl5PJ0+jn+aOFzROiouLSUpKws3NDS8vLyGeGhBZlklLSyMpKQl3d/cG7dEphJOgeWDugvPttjCdW3UkRYeLncT4rrYMbS+z61IpR5K1XEzK4OLSN+kaOoqJEyeatYTdVMSCqSRwc2hh34KbRTcr5UFB+TJksFcwAMFewXg7edd4jcxC8yJZgoahoKAASZLw8vLC2dm5oadz2+Pl5UVOTg4FBQUNKpyEoYugeeAfZt1xzQUXb7OHutlL3NXNlucG2hHcRo2qJI/kpGs4phyCYxuUZU6tpsrjdWJBl1BdEQkJHycfvbhoCHRJ4JaIJt28Xx/0uv5xxf0Ar4W+ps/dUqvUvBryao3nfi/2PTTVPKeCxoGINDUOGsvrIISToHnQcZiS/F0dDi2Un2aIgGZDhyHg1haqEDOm8HCQuLu7Lc+22s196cuxXXcv/Pg42q8nsOVvHUmL/sbkcWqVmvmh8wHzxMWtRqPVsCRmicmIUVUYzntMxzEsDV+Kl5OX0RhvJ2+T1YItdO+3atDlfDUGNFoNsSmxbL64mdiUWCHoqsDX1xdJkkz+mzJlSkNPD1A83O69915cXFyQJIlnnnmm0pgpU6YgSRLvvfdeA8ywaSOW6gTNA5UaJi6v3o5AkuAbg4Rnt7Yw7p2mZVFgqbmnSq3c4/czUcST+aKhpTqPlk7lj0+kadl3Np39/5hD0L0nGTHjZVq3bm10zKgOo1gavtSkH9Jroa81qBVBTUngpqg471EdRhHhF2GWuWdTyvlqqt5bDcH7779PXl4eV69e5c0338TDw0MvPjp37tzAs1PYu3cvv/zyCz4+Prz33nsEBzdclLc5IiJOguZDwN2KV5NbW+PtukhUwQ3j7dnJiqA4uenWzK+unNwEy4Jg9V3w4+PKz2VBNc8/4G6Y+g24tanT5X1cJHq2ViEDx/74kk8+/oiNGzdy44bx8zqqwyi2TN7CqrGreCfsHVaNXUXk5MgG/wA2V6DM6T2n2nmrVWpCfEK4s9OdhPiEVBlBa0o5X6aWL9Py05gXNY9tl7ZVeeztGKV64IEHmD17Nvfeey8ATk5OzJ49m3bt2nHHHXcwZswY/dgxY8YgSRJbt27lpZdeQpIk7r77bgYMGICLiwvDhw/n6tWrAOTk5PDUU0/h6+uLo6MjAQEB/O9//6tyHqtXryYgIABHR0fatGnD448/TlZWFps3byY8PByAlJQUnn76aWJiYmq8r48//pgOHTpgZ2eHq6srffr0ISkpifz8fCZPnkyLFi2wtbXFy8uLJ598EkB/T7qI1kcffWQUebP0npoKIuIkaF4E3A09JpRHZZxawy9PgUkLFhmQIHK+ckwj8haqRAUvJj068Tf1m+ojZxWfFxdvyMuAzfMgP8OsKXg6q5gWpCI5R0tUYh5nMi8TFydx9OhR+vbty/jx4/XdxnXiojFhrkAZ1GaQVeauy/lKy08zK6G8Iahu+VJGRkLinZh3iPCLqCQQRZTKmHHjxtGrVy+2b9/OhQsXcHd3Z+fOnXTt2pXRo0cTGRkJQFRUFAsXLmTnzp1ERkYye/ZsIiMjefrpp1mzZg2TJ0+mW7du/Pjjjzz88MN06dKFAQMGGF1r69atPPbYY7Rs2ZJ//etfbN26lVWrVpGTk8MHH3zA3LlzWb58OZ06dWLBggUMGzasxvkvWLAAR0dH3nvvPfLz8zl48CAlJSX89NNP/PTTT4wePZp77rmHq1evkpeXZ9ZzYsk9NSVExEnQ/FCplSTwXlOU36stx5ch+5oiKBorJryYyinbFjm/5pwtw+fFPwyC7oVxSyyeThtXFQ/0suWJiYPo0qULWq2WtLQ0bGxMfA/TapR8skaQV1YfyevVRVwae84XWOa9ZUhdolTNmXnz5qHRaPjggw9YvXo1xcXFPP7440ZjJk+ezPz581m9ejUA0dHRAGzevBmAH3/8kcWLF3P27FlKS0v12w356aef0Gq1zJ49m1deeYVvv/0WgD/++ANfX1991KtVq1bMnj2bHj161Dj3zp07k5mZyR9//MH169eZM2cOHTp0oEePHqjVak6cOEF0dDQuLi689NJLZj0fltxTU0JEnATNGzPK8c0e11DNg2v0YjIQf5ZWDbrWfvnOt3MAM0aFceXKFVQqlb7ipbCwkF27djGkRSYu0W8Yz70B88p0QmZe1DwkJKMoS22EjDkRl8ac8wWVly8lrYwsoeQDVjGuLlGq5s7DDz/MP//5T9auXUv79u1xcnJizpw5Fp3jq6++okWL8sKCLl261HiMNarNoqOj+e6774iPj2fTpk0sXbqUtWvX8uCDDxIfH8/GjRs5deoUb731FkuXLiUpKQm1Wnl9S0tLAcjIMB29rs09NWZExEnQvDG3HL+mcbXNL7IG1hR/FalF1R1I4OarHAv4+fnh6+ur37t//372/vIVy1+bxZ9HLpNXbPAB28B5ZTohY25lXFVYEnFprDlfAF4qN3qfz+f+HTd4/Ld0/vZLGn/blM4jm9MZv/8m7VOKQJaNljlrG6W6HVCr1TzzzDPcvHmTo0ePcs899xgJBlCiL0uWLGHWrFkAhIUpX3buvPNOAFauXMnly5c5dOgQ//rXv7h8+XKl60yePBmVSsWXX37J+++/z8yZMwEYP358rec+c+ZMUlNTCQoKon379gBcunSJyMhI3n//fRwdHfW5WZmZmeTn5+sF0Pbt21m9ejVffvml0TktuaemhIg4CZo3OmGQnYzppS5J2V8mAkxS1/yiumIt8WcKi6vuygTWuCVVRts6+LWjXXoUV7Uye6+UcjBJw0BfNUP81Djalp2jAfPKKlbGtXJshSzL3Ci8QWxKbJVVcjpqE3FpdDlfmZkQHU3w0XjGnpbJKynV34+klXEskumYXIR/cjFyCw+CuxRC61KwsWlS1YINwbPPPsuSJUu4efMmzz77bKX9I0eOZMOGDZw+fZqwsDBWrlwJwKeffoqrqyubNm3i5Zdfxt3dneDgYJOVeqNGjWLVqlUsWbKEf/zjH7i7u/Poo4/ywQcf1HrehYWFfPjhh9y8eRMXFxfuvfdenn76aY4dO0ZsbCwbNmygqKiItm3bsnDhQlq0aMGsWbP4+eef2blzJ4sXL2bIkCF8//33+nNack9NCdHkF9Hkt9mjFz5gLAzKREB1wkerUSJLVS6VlQmvF47VnwjQz6EG8VeXOZzcpORRGd6nY0vleoY9AN18FdFUnVBMiEb+egLnb2jZkaghKUcLgL1aYoifmuEd1MrSwqzfGtyQtDYJzk2+gW9CAqxfD4WFAFy8eZEtiVsATC5fju04lk4enaB9e3jgAWKzjjft+7eArKwsLl26RJcuXXBycqpx/Llz5zhw4ABz5swhICCAgwcP6ve99NJLLF26lHnz5vGf//ynPqfdbMnPz+f8+fN06NABd3d3q55bNPkVCAzRleNXFAZubWsWAfWZX2QOuryqgHth/6dUjgrVHAEyC1NVd7oonKV5XbmpSJJE11ZqurRUcSZDy44EDal5WjIL5fJ8jNosLVoR3XJbxciRbrmtqqW7Jh1xuXAB1q0DTXkSeyePTowMupevtAdIIhuVVqZljoZe120Z3maoIpoALl+Gr74i+JFZjb5asKH473//y7Jly+jcuTMrVqxo6OkI6gkhnAS3B1UJAzNEgFnUhwgwFQWSJDAMEpsj/sxFV3VXEUsFocGSoSRJ9GitpnsrFaeua2njUp5Web3YnjN79hASEnLL+07VJcG5Nv5Mhk2FqzPNrFfS0pRIk4FowtcXhg6lW/fu/J+E8Rydu6OOi4e9e6GgQH8O9fc/MH/Eq8zb9bJVkuybE//5z3+qjCZVt0/QtBDCSXD7UJUwqI76yC8ypzqvqrwqWVn2YtDT0P3OW1fZZwkm8sokSSLAUzdPZWlxx/l8Tpw6xN69ewkLC6N///56H6j6xpIE54rLTZb6MzUav6MtW6C4uPxxr15w771QVhmlhspLa2Fh0LMnfPstZGUp2xITGdWvX6OuFhQI6hMhnASC6jDHHNK1rSJojm2oOZJlKopUsUS/Wt8mAAlO/gJj/q/xiSaoIeG8fGmxW0kHklJSyMzMJDIykj179hAWFkZwcLBpTygrUpflNktsDWq7HGh1MjKUZTpAK2tJbKXidG87PNMPl0e/qhL0rVvDjBmwcmW58IqNZdTs2Wa3nxEImhNCOAkEVaHVwJYFNY8rKTCvB5651XkNnVel0cDp03D0KNy8qSQR29iAoyN06AD9+0PLGhoqm5FX1gcICgoiLi6OXbt26dtF7Nmzh5EjR9K7d2/r31sZdW2HYo4/U6PyOypLUr548yK7r+3m66F2pO/9UT/n+W1GMirmm6oFvacnBAfD/v3KvqtXITkZdZs2TT4BXCCwFCGcBIKqqFHAlFGYafzYlE1Bje7fBiX65uZLXdxp3aW6/HyIiYFDhyAnx/SYq1dhzx7o0gUGDlR+VmW+Z0ZemVqtpn///vTpFcSRzavZtXsPWZkqsm/Wb2KxNdqh1NTwty7LgVZFo4EjR/TVc6ktbEhv4azfnZafyrzza1lamolR7Kvi+3jAgHLhBMr75K676m/eTZkrV+DaNdBqoVUr5f+JWkTimgvNTjgtWbKEBQsWMHfuXJYtW9bQ0xE0FnJyIC4OkpKUCIosg4ODsgzRr5/yx60itU74NtEDz5Iokrn5UtHvQfxa6zhxJyUp1Va5ueaNP39e+RccDBMmVP2hYE5e2clN2ES+Rkh2Ev2cZA4na+m7fx+0fhcC7iYhIYGcnByCgoJQqazj2WstF/Hq/Jnqu/rO7ITzrCy0BfnsvrYbGZlTHRyNdpe9W3mnVQsi8gtQV9yjex+3bg1+foooAEhJqdW8mzXHj8OffyqiyRAPDxg+XMkZs9J7WNBwNCvhFBsby+eff16vIX5BEyMxEWJj4dQp5dufKXbvhs6dISQEuncvj6DUxlBST4XlNEuq8wLvq8G00wBrmHBevgxr1hgnDgPY2irPi5OTErVITa38YXn4MOTlwbRppj8QakqEr7B8aaOSCPVVQ34KfD8T+f7VbIlOJiUlhejoaMLDwwkICLBKi4n6bodS1+XA6rAo4bywkOS8ZHJLFFGc41T5dZIliRQbGw472BNSWGS4x/h93KJFuXAq84ESlLFzJ2yqwhH/5k1l3+XL8NBDdRJPvr6+bNiwgcGDB9frMaAUdaSnp9O6dWtLp9msaTbCKTc3l4ceeoiVK1fyf//3fw09HUFDo9HAb7/BkSPmjb9wQfnXqRNMnapEo2p0HTcDnWCypDrPIjdvE9EtS8jIgO++MxZNLVsqy3B9+ijPg/5SsvJNOjYWjh0rF6JnzsDmzZWXbWpKhDdj+VL7x3wCQz4jKyuL9PR0fvjhB7y9vYmIiKB79+51FlA1LbfVBWssB5qiNgnn+SX5+t/lap6y9Koih6aEv/BOLufMmapFkyFxceDjA6NH1/uUGgOaMusLtcH7qqSkxOzqWUvG3kqaTczwmWeeYcKECYwaJcpgGwMFOt+XhqC0VBEDpkSThwf4+ysCydPEN/2LF2HVKiXfRydgAMt6uRmgE0z5GSBV99/NuP+bPrnazZwmvAZRAUvZvLncowega1f4298U4WQomkCJxLVrB/fdBw8+qESkdBw8qET3dOgiSRWXJw171ZmxfKnOTSKsvZq5c+cSHh6Ovb09qamp/O9//2PlypVcunTJ8nuugG657c5OdxLiE2K1RG3dciCUL//pqK3fUU0J5wDvxLyDRmvg1eTggJNtueu1a34VkVfA09DjyRDd+1hnSQBKsYBAYft248f9+8MLL8Brr8GoUcYRpuhoKCmx+hTeeOMNgoKC6NGjB0FBQfz1119G+1evXk1gYCDt27fnn//8p3778ePHCQ8PJygoiG7durF48WKzrrdo0SJ69+5NQEAAYWFhnD17FlAc0seOHUtYWBjdunVj+/btuLq68vTTTxMQEMCSJUs4ceIEQ4YMoVu3bvTo0YM1a9bozytJEi+++CJBQUE899xzVnhmrE+ziDj973//4/Dhw8TGxpo1vqioiKKi8nB0dnZ2fU3ttiQrK4uPP/6YwMBARowYUanJZb0iy/DLL0r+jQ5JUpbgQkMV0WQYpdBFUI4fVwQXKEaB330HM2dWUx3mCyX5xu1ITJGXoYiEHx6hxqhVRfdvXXJ11GLY9V7N925pTtb16/oSdUBpqTFtmlJBV4ZGKxOTcIO0nEK8XB0I9W+JWiUpya5Tpyp5UbrIQ2wsdOxofiL8qDfMm2duKg4ODoSHhzNw4ED27t3LgQMHSEpKaliBbgbWXg6sVcK5uzttWnbExdaFvJI8ul8u5FRHY9EjyTLeGg3BRst0YNTL8cYNMBSqXl4IUPr+Gf69CQxUvljoGD8e7OyULymgLG0fP67kVlqROXPm8MYbbwBK093HH3+chIQE/f60tDSOHTtGamoqwcHBDB8+nPDwcKZPn86aNWvo27cvOTk59O/fn6FDhzJ8+PAqr/X5559z5swZDh8+jI2NDZ999hlz5swhKioKgCNHjnD48GHatWvHmTNnyM3NJTAwkE8//RSA3r17M3PmTF5++WWOHz/OsGHDCA0NpVu3bgDY2Nhw/Phxqz4/1qTJC6crV64wd+5ctm7dikPFb8hVsHjxYt588816ntnty5kzZygpKSEuLo6jR4/Sr18/wsLC8PDwqP+LHz+uLCPpsLdXxECnTqbH+/oq/4YMgbVry79RX7mi5D5FRFRdHXbqV/hhVvXz2bKgLFhVjWiS1DB5lekcJZUa/EeYJ5wszcky6KMFwLhxRqIp8ngyb/56kuSs8lyWNu4OLJoYwLigNkp0qls32P8nFOdB1hUYMxpuHDMvET7PzKRog/tydHRk5MiRDBo0iPj4eLp3767fd+LECZydnenYsaN5571FWHM5sFYJ52o1qr79GJY2jC2JW2ibUUKrmyVkeCgRQ93XiNcybmI8owrtfCq+X4Jvv5YqJkmtIGQHDqw8ZsiQcuEEypczK3PgwAHefvttbt68iVqtJjExkby8PJydlQrKJ554ApVKRZs2bbjzzjvZsmULLVu25Pz580yfPl1/nry8PI4ePVqtcPrll1+Ij48nKCgIAG2F/NGIiAjatWunf2xjY8Pf/vY3AG7evMnJkyeZO3cuoFiSDBgwgL/++ksvnJ566ikrPCP1R5MXTocOHSItLY1gg//EGo2GXbt28fHHH1NUVGS0vgqwYMEC5s2bp3+cnZ2Nn5/fLZtzcyc0NBRfX1927NjB+fPnOXToEHFxcQQHBxMWFla/jZQPHCj/Xa1Wvvl16KDfVGUlkpeXEmH68ktlmQ6UD4qwMEVMmKoOczJRiVeRHDPsDGQNOFdzrhpzrQyiAuaSlKT8Ic/PVyJGbdsqOUuyDJJE5PFknlpzuNLVUrIKeWrNYT6bEcw4VSwcfx3ir5YPWLgNJj6IWTh71vq+nJ2dGTKkfHtRURG///47+fn5dOrUiYiIiEb1f7q66jtLqHXC+YABdIqJYWzHsey+tpuBp/L4Y6A7skrC28mH19rcwagb3wDluVBG7Xxu3FAKAXS0aaN84RBUxlTuVz3ngxUWFvLQQw8RGRnJ8OHDyczMpGXLlhQUFOiFkylkWcbNzY3Tp09bdD1Zlpk3bx4vvfSSyf0uLi5Gjx0cHCp9DhtSMVexXj8jrECTF04jR47kmGGEAXj00Ufp0aMHr732mskXy97eHnt7+1s1xdsSX19fZsyYweXLl9mxYwcJCQnExsZy4sQJ5s2bVz/O0ElJis+QjgEDjERTjZVIrVopEabff1d25uUp1Xi9epm+njX701V3LjOduI2W+UxVs2llOHmyvMrw6NHy8TY28MUX4OmJpv8AFv95o7qFNqI2rmJs6XtINlpwlKCgbHRKelkzYjNwbWP5fVWBVqslMDCQw4cPc/HiRS5evEiXLl2IiIjAtxl9wNc64dzLCzp2pFMidHTvSHJeMveXtEG+awLBPgOULw9DXjVdAXnzplJ1aVhFFxJStX/X7YaPj3EPyQMHoCwSo2fPHuPHVl7mLCgooKSkhE5lkfV33nmn0pgvv/yS8ePHk5aWxh9//ME333xD7969cXFx4cMPP+T5558HlMitp6cnXtXM8Z577uHDDz/k4YcfxsvLi6KiIg4dOmT0ZaYqPDw8CAgI4KOPPmLevHmcOHGCgwcP6pfxmgJNXji5urrqw4U6nJ2dadWqVaXtgltP+/btmTVrFomJiWzfvp327dsbiabCwkKzl1hrpOJSQkj5N3yzK5F694atW8urzA4erFo41cmuwMJzmeHErcdUNVt+K9AOB5eOyuOKyalOZcnD6ekkrfuRCfGp7GvfmyNtu1f6gJTQ8nzJFyAp0SkcVVBQllRcYs43a4NIkkpt/n1Vg6OjIxMmTGDo0KHs2rWLuLg4zp8/z/nz5+nevTtjxoyhlSmvriZGnfynxoyBr75CVVKCr4svvknAn6cgrLWylF0xqlpYCEcPwa5dxv5e7dopFZcCBQ8PJefv3Dnl8cmT8M03SrTawUH5G7JrV/l4F5eq/6aYyV133WX0d3Tfvn3Mnz+f0NBQWrRoweTJkysd4+npSWBgIDk5OcyePVtfSPXbb7/x7LPP8vHHH6PVamnRogXff/99tdf/29/+RkZGBmFhyvtFo9EwY8YMs4QTwHfffccTTzzB559/jiRJfPTRR3Tt2tXc229wJFlufjWl4eHh9O3b12wDzOzsbNzd3cnKymr0IcKmjCzLaLVafRQwMTGRdevWMXDgQIYMGYJjXat0PvpIKa8HJQl8lpJ/pNFqGPvj2CqTanXf0iMnRyofOL/9Vi7CJAlef920waNWA8uCql9qcm2jBE9qWo564Zh5VgIW+iIBcKUULpQJm8D7wLO7svRiGHEKDoay9/7plGwijyt+TfFturGj0wAj8TRIdZL/2RlYfhwrgYyy87uqoL9dDTchVfadMqfxsQXcuHGDXbt2ER8fDyg5E9V9g25qmIqe+jj51Jxwfvo0rF9feemoZUslSuLiolh5pKcr+YIVvb1atoTHH4dqln+aE1lZWVy6dIkuXbrgpPtyYYqzZ2HFCvOW5MaPVyrtBBaTn5/P+fPn6dChA+7u7lY9tyU6oMlHnEyhy+wXNC4kSTJaOj1+/DjFxcVER0cTExPD4MGDGTRoUO0jUPkG+Rk+PvpfLa5EamNgASDLyjdvUx8U5iyhjS8LmVthOUp/zaqcuE1VsyVp4EJp+fXObwPfICUaZ2dXXlI+YYJiS3DoEM525c9jn+SzlKhs2O1fXgHkxU3j6xpGmcz5ixK+oHIkyRyHcQto2bIl9957L8OGDSMhIcFINB06dIgOHTo0aVO/Wiec9+gBDzwAP/xgHHW8ccM4KmKKtm2VnMHbRDRZRLducM89SkVvdeKpf3+4445bNy9BvdAshZOgaTBhwgS6dOnCjh07SE1NJSoqiv379zNkyBAGDhxoeR6azk4AjKrDLK5Eqph/ZXjeipi7hGaF5agaqeiLlKOFc4Zzl8EzHyYPBr9BimeV7o/81aswZQoMH07bAzE4n/wveYXKB+uAaydJdWnJOU8lXywNj/JTFsiQbVBR42hG3kurzrW7v1rQunVrI4F048YNfv/9d2RZpnfv3owYMYKWNTUsbqTUOuG8Wzd44glFKJ08WbWjvg4XFyVfcMgQRWwLTBMWpuRJbt2qOIQb0rKl0nJl6FDRcqUZIISToMGQJIkePXrQvXt3Tp48SVRUFOnp6Wzfvp2zZ88ye/Zsy05ob1/+Ldog+mRxJZJh5AoqG0FWXFbqMaHqZra6sZpiuPe/ilDJv26V5ahKVEwwv6Ix/vbb0Ub5V3xDyWnq1k1xPAYlWTw3F1xcUA8ZTM9nCjn4n5X6Q0OuneRc6/ZIkkSstgcFjj44FqRCUgVR6WPG/VgzN6wWdOvWjdOnTxMfH8+xY8fo06cPI0aMuDV2GY0FLy9FKOfmKtVycXGKH5Hu/WJjo/SlGzBAiVKJBrXmERCg/NMVquia/HbuLARTM0IIJ0GDI0kSgYGB9OzZkxMnThAVFcWAAQP0+zUaDbIs11yJ5+FRnsR65gzceSeo1QS37M2gdCdcLqXgUKTBRgMlNhJ5jioutLXnqpc93s4+5ZVIp06Vn9PBwfhbdk1tRAypbqwVl6X0GAqSYhnSDSIJLdXQQW00TtM/mJRD28kvycfJ1gmfXTtR3zkBgGH3ReCQkkTchi3kFpXilXsDn5wMJL92LJoYgKPqPfj2YUg2uIarClyrizjVwjbByrRs2ZLp06eTlJTEjr/+4tzB7RyJPM7Rnb/SL3wid4waXX0uS3PDxUWJhAwfroimoiJFJNnYWLVqzuyGxM2Ftm2Vf4JmiRBOgkaDSqWiV69eBAYGGm0/cuQIO3fuZPjw4fTr169qAdWrV7kdQW4uxMRAXh7qw4dZkNSdLVcSAYwqkQISC8lyUTNy0mzURcWKAaZhmL137/IPEFOJ12C60a4lY62Fod9TcqlxtKmdWmn5UiZctl3axpK4xYxMOYV7rhI1crn0Fz1KEgi951kABkwbT3DKWa5lFpBXXMr4XhJdnrxDcQ7PGwm2D4L6ByjNUa7RVq14WxXcwCr5XPVI25sHeSj9ba6orhKVUsqFTC3Hz2xiZLtPIPj+WzaPRiUoJKlydNUKWNSQWCBoAjTLqjpLEVV1jZtVq1ZxuUzMuLu7M3z4cPr27VvZo6uwEP7zH2W5LjUVkpOVsuky4XPx5kV2X9ut7xIP4GLrwjDfYXTy6KQsX7VoobRh0fH008qyhr6CripDS4PqODB/rLU/JHWC7WAR5JZFgxwlCLVXnoep37DN2UlvzdDpWiFjY7LKZqU8T4PueZ5+9z2jRPDWrClvJ2FrC/Pnw5nT8L/PIT0F7JwUfeRmC7MehM7D4fTvplvUWDOfqy6YELWXbmrJKoLe3oo9gtxzIgcOHKBXr17VGgjWhdtBUFRlA6J7r5lqSNyYMLuqTnBLaCxVdUI4IYRTY6e0tJTDhw8THR1NTo4S3WjRogUjRoygd+/eqAxzB3791bhXXZs2Si6PJIG9PVovLxILrpGbm0HLG0W0dfRCpWu+e/my0qg2KEhJ5uzYER55RNmXEA2r76p5srN+U36aO7Y+luxOboLXZkNOWfsYXzX07wjjlqDpMaGSNUPwmTwGnlTEpISEs60zMwIfRtWtu5KjceCA8jMvD1rKcOJ3KMopv567B/x9OYSWt22wtr1AndHNJycZIhcoeWYmUUTt+bt+Zs2677CzsyM0NJQhQ4ZY9YOzqQsKc7DYBqQR0liFU2FhIfPmzeO3337DxsYGGxsbnn/+eZ599tlqj7t+/TpLly7l7bff1m8LDQ3l+eefZ8aMGbzwwgv06NFD3x6lsdFYhJNYqhM0emxsbAgNDaVfv34cOnSI6OhoMjMz2bhxI5cuXeKee+4pH9yqFRg0tiQ5WYkkPfQQDBuGys4Ofdc6XWLsnj2KZ40u0nTihNKAc8SI8vOY6xJuiZu4NZ3HDQm4G0KfhesJSg+5YUPggedApeZwSmylD7LD3ZyQJRh0IhcZmdySXJJzk/A9K0FKiuL9A5B3HezPGf/VcFRBjwLY/DdwcSqPKFnZXqBOmMo1qxKlj559+jHatm1LUlISu3fvJjY2lkGDBjF48OA6G7ZqtBqWxCwx6fwtIyMh8U7MO0T4RTRaQWEOtWpILDCLqVOnUlRUxPHjx3Fzc+PMmTOMHz+e0tJSXnjhhSqPy8jI4KOPPjISToaY631oSElJCba2thYf15QRaf6CJoOtrS2DBg1i7ty5jB6tJPH2799fv78kKwt5xw6lqkWXl9S+veJ0HB2teNecOqWIgdRU5Wd6upIQW2TQFV6jUSpgDJvFmlsJ5uJt2dj6wt4BWnQA7wBo1UMf7TFpzSBJHOnmzB+DPMhwV1RRfklZZaGmzNhSluHGRcUtHEAlQRs1BNuWWxBEzlciO40J3bKcWaKpHD83pSnqAw88gI+PD0VFRezcuZNly5axc+dOSquzqKgBSwRFU6ZWDYmbAW+88QYLFy402rZw4ULeeOMNq5z/+PHj/Pnnn3zzzTf6yEj37t155513eOedd9i8eTM9evTQjz948KC+7dDs2bPJz8+nR48eJjtrTJkyhbfeegtQ+j8+88wz9O7dmx49enDnnXeSnp6uHzd16lQGDBigb8x7OyEiToImh52dHUOHDiU0NNTom872L78kYd8+wjt2pHvPnkj5+eXiR5bRnj1D8pEofRVZG+c25ct0AQFK1OnGDaV02MlJiVyV9X6yuNGutZvyWoqTU7mtgi7ZXavBMyu5ykMS29iT6GOHz40Sxrj1huSyZHmAwizQFoOzGnxtFNsBW8OqKyVSw6W9jSfSZMoQ1FxcvJEkie7du9OtWzdOnTpFVFQUaWlpHD9+XN9qojbcLoKi1g2JmzBvvPEGb775pv7x22+/zcKFC1m8eLHRmLoQExNDhw4d8PY2/uIVHh5OSkoKqalVi/IvvviCAQMGmNXU94033sDJyYmjZR0GXnnlFV566SW++eYbAOLj4zlw4MDtZeNRhhBOgiaLoWgqLSnh2M6d5Obm8r/jx2nr5UXEM8/Q5dQppJSUmhPDVSoYOFCpytP1NIuNLRdOljbatVLz2lrTtStcL8vjuXYVflgIF9cRXJCJt19b0tRqZBPl5pKkAr/2+E9+GbJz4N13FT+fjHPgcwb62lZfpl5fy4+1oaIhqFlUFrWSJBEQEKC3y3BwcNDn1eny7/r162f2csXtIihq3ZC4CVNs0KJm8eLFfPzxx/q8zIr7Gzu///47OTk5/Prrr4CyJNeuXTv9/nvuuee2FE0gluqaDLqeW/U1vqljc+kSzwQFEda+PXZqNUnOzqzdsYMv1WrW9/JguSaKbE2e0TF5JXlEXtrCsZbFMGMGvPqq4v6r48wZyM4uf6xzCXdrY3Qe3NpWthewZGx9oPPBSj8Dez6EH5dBQSZqYH5GJgCSbDoxWd8k9tgxxcPK1RXcW0F7dc3ePg1sbmmExSKuelErSRJBQUF06dJFv+3gwYNs3ryZ5cuXExMTY9YSnk5Q6J7vyrOQ8HHyafKCQteQGKh0rzU2JG6ivP322yxYsED/2FA0LViwoMrcIksIDQ3l0qVLlSJLUVFR+Pj44Ovri9bADb6goKBW19FqtSxdupTTp09z+vRpLly4wM6dO/X7XV1da3cDzQAhnJoAK1eupG/fvixZssSs8UuWLKFv376sXLmy5sHNhcREHG1tGdmpE3MHD2bIffdha2vL5atXWPC/D/nNw5avxrfm5+Et2DzYg8iBHvwc5sHqca2Z1yYWTSd/RRQYGG+i1cKVK8bXCbgbXjiuVMRN/lL5+cIx00LIkrHWplUrcMiCEz9BaQGkaCBNyT8alV/A0rTreGmM85G8nbzLq7muXAGDP5L494aO7agaSbEcaEBzy0pYKuJqIWpdXFzw8PAgNzeXzZs38+GHH3Lw4EE0mqpzvW4nQTGqwyiWhi/Fy8m4wbLRe62Z8fbbb1cSFa6urlYRTQBBQUGMHDmSmTNn6oXZmTNneO2113jllVfo1q0bSUlJJCUp0davvvpKf2yLFi0oKiqisLCwxuvcddddfPDBB/pr5OTkcOjQIavcQ1NHLNU1cuLj45kzZw6A/pvM/Pnzqxy/ZMkS/bg5c+YQGhpKnz596n+iDY1BmxTnVq0Yc/fdDLnjDr785UvyT+bT0rclxXYqUlrZIWtkJLVkcKhBZY9Bc+CK59VjScVYQ1WXaTWQvcl426lS0AA+KkblFxCRX8BhB3vS1Wo8R/0fwX0eUT6sL1yA77837tHnUwqXqvpj27jMLfXUmJcGOLWGcYvBtU2tLBOCgoLo2bOn3i4jOzub3377jd27dzNixAj69u2LZCJKpxMUpnycXgt9rVkJilo3JG6iLFy40CjSBIroWLhwodXE04YNG3jxxRcJCAjA1tYWtVrN3LlzmTt3LgBPP/00ISEhtG7dmtGjR+uP8/LyYtKkSfTs2RNnZ2eOHz9e5TXeeustXnnlFaMCnHnz5hk9vl0RPk40fh8nQzEEytr5K6++RkzCDdJyCvFydSDUvyXvvftOpXHViaxmxc8/g255slUreO45ADZf3MwrO15BZVMeXL259yYAzj2dsW2h5KW8E/YOd3a6E4qLwfCP29ixMHhwzddvbL5FOt+pC6VwpcLykbNKcfn2VoFN2Yf6PSvAJkDJ66rYoNQtH7I+p4qVJXBsCROXNw5zy4rozS7BZK6ZFZdNS0tL9XYZubm5dO/enQceeKDaYxqVc7igEpb6OFVMBHd1da2X5brblWbj45Senk5SUhKdO3fGxcWl0v6cnByOHDnC8OHD63qp2xad+NGJogULFvBp1HlUfe/Tj9HG/cyVLV/qH99WogmUBr86CgqU8nlJwtPJ00g0afI0FKcXI2tlilKLsG9jj3MP5/JE3Ir5AOZ49ljSv+5Wocvv6aSGUhmSDZaO8rRwTgsXJLBF0RC528DlVOXz+PtD2uKqRROAjYPS5Lgxoss1M/n6WNfJ3MbGhoEDBxIcHExsbCyddIUFKH+Ur1y5QkBAgFEESq1SCw+jZoSdQV9LnUgyFFOG+wVNl1oLp9LSUp544gl9aaKdnR1PPvkkixcvxtHRUT/u5MmTREREVLvmL6iZiuLpypYv8SgsxX3Q/WTt/4GbO1frx952ogmU9iA68vPh0iXo2LFSZY/aWU3LkS3JP5NP4ZVCipOLsb1uywXvC3S4owNeFy4Yn7embzUN0ZPOHHT5PZIE3WzAQYJEjXH/Oq0MRYC9Gzi3qXyO/v2hpyusqdrCAICcpMZlQ1CRgLsVYXeLIoK2trYMGWKc6xUdHU1sbCze3t6Eh4fTo0cPk0t4jZWKkbE+rfsQfz1eRMoqoLMaKC4u1keWdD/t7Oys5uUkaFhqvVS3dOlSXn/9df7+97/Tv39/du7cyYcffki3bt2IjIzUe0wcOHCAIUOGNGrh1NiX6nRotDL+dz5hFFlS2TujLSqvFvMb+zgJm1cqjVhvJ7KyYNmycmEQGAj3K81ade0twLjBryZHQ97pPMJtw/F390cCHtJq6aJr4eLmBi+8oFgVmMKS/nU1fahYe6lPPzeD/J5CGZI0SvSpRPc8SBB4H3h2Vx7a2Sn9/UJClB59xzbAj4/XfL3JX0KvKbWfbzNn9+7dREdHU1RmtNqmTRsiIiLo2rWrkYBqjALFVE89laRCK5dXbjW3Hns6GmvLlduVJr9Ut2rVKv7xj3/oIyDjxo3j4Ycf5t5772XIkCFs2bLFqGxXUHdiEm6g6nsfHoWl+giToWjyGDELVd/7iEm4weDOrRpqmg2Duzt0717eHuTUKcjIgFatqkzE9fX25bWJr9HbsTdRUVEkHTlCRwMvHk3fvqirEk1ghk+QmaaQ9bHUZ8p3ykGCTjbQUQ3XtVDsAv1mg1+osiTZurUiOA2XPRuDC3ozYNiwYfTv3599+/axf/9+kpOTWbduHb6+vowcOZJOnTo1SoFSVU89wzkBpOWnMS9qXrOtlBMIDKm1cEpISKgUjg4ICGDfvn2MGzeOoUOH8scff9R5goJy0nKUqib3QfeTvX+DkWhS2TvjPuh+o3G3HSEh5cJJq4W1a+HRR8HVtcbKnqnDhlF05gw2ZZFRLfDfI0fwy81l+PDhpo3erNG/ztylvtpEpKrK73FuCXc8BcNfrnwOrUZJLNddx29gw7ugNxMcHR254447GDRoEHv27CEmJoZr165x4cIFLqovNjqBUl1PvYo0px57AkFN1Fo4tW7d2qS1e6tWrdixYwd33303ERERvPbaa3WaoKAcL1clUTlr/w9GogmUyFPW/h9wH3S/ftxtR6dO0KGDkt8ESvuUL76Au++GTp1MJ+JqNIrR4+bN2BssJ1/08yP9yhXSDx8mPj6efv36MXz4cOMQbl2jMdW2BJEBqaz/mxb+XFC7iJQl+T1VRb6CpsDej7CqC3pjq0K8hTg5OTF69GgGDx7M3r17GTR4EPf9cR8yMiU3S5A1MnatTCcR30qBUlNPPVNzE017BbcDtRZO/fv3Z+PGjUydOrXSPhcXFyIjI5k2bRqvv/56k0qCbMyE+rdEG/ezUSK4YY7TzZ2rcXWwIdT/zoaaYsMiSTB1Knz5pSKaQMl9+vZbxaIgJERpH2JrqzT1PXcODh2CPGMRSufOdHnwQR5PSmLHjh1cvHiRgwcPcuTIEQYMGMCwYcMUgztL+9dVxNylvg2zKu+yJPncHC+p6iJfez+Cwc9C/DrIzyjfV9vKtMZYhdgAuLi4MGbMGGJTYvUCJfdYLsXXi7HzssOlpwu2LSu3cblVAqW2vfKaeo89gaAmau0c/uCDD5KQkEBGRobJ/XZ2dvz444/MmTOH9u3b13qCgnLee/cdo8RwjxGz8HthPR4jyj9Yr2z5kvfefachptc4cHaGWbPAs0Kfr4wMiIyElSvh008VcbVrV2XR1LUrTJsGajV+fn7MnDmTRx55hA4dOqDRaDhw4AAffvghmZmZ5XlEQOV6fTOiMXXq61YmcCLnK9GbulBj5EuG/Z8Yiyan1jD27dqJpu9nVhaMOiF4cpPp46pDt7x4bIPys67Pxy1GJzRkrYzaRY2kkihOK+bGzhvc3HeTkpsl1R5XX9S2V15T77HX2PH19cXf35/u3bvTvn17Ro0axbZt2+p0zo8++khvlBkdHc2ECbW3F7l+/ToLFy6s03waOxYJpyxdp3RgypQp7Nu3j1atqk5CVqlU/Pe//yUhIaH2MxQAlU0w/cY+rs9pch90P35jyyufFixYYHZ7lmaJuzs8/jj07l11RVxF7OyUPnUPPKD8bkDHjh155JFHmDlzJn5+fvj6+pbnPAXcjWbyV7XrSVfnhGqD5PO6YE4z3Aq5NuRnwA+PWCZ0ahRoWC4ET25SqgdX36VU/62+S3lc1bwaocjSCQ1JJeHWz41Wo1rh2MERSSVRlFLEjR03yDqQRWm2sZGpZ1Zyvd5HTT31KtJceuzVlTcSE1l48aLRtoUXL/JGYqLVrrFu3TrOnDnD5cuXmTlzJvfddx87duywyrnDwsL4/fffa318RkYGH330kVXm0lixaKkuIiKCrVu3ViuWBNbHPOfwO3nv3S5GJplQfXuWZo2DA0yaBKNHK8txhw5BhTYIgFJyHxKiiCzDarIKSJJEp06d8Pf3p6ioSL/8nJ+fz3+3JtCvz0cM9gWHkpvm5+yY0xLEHOoUuart8QY5WD0mmJefZK0qRB2Wemg10iVCU15jbsFuOHVzIu90HkVXiyhMKsTOxw4bNxskwFsjE/zLvHq9D11PvXlR85CQqk0Sb2499mrLG4mJvGkgkN7u1ImFFy+y2MCN/42OHa16zZkzZ3LgwAHeffddfvvtN27evMmXXyorE4sXL+bQoUNs2LCBjz76iLVr1+Ls7ExiYiItWrRg7dq1dO/e3eh8mzdvZt68eZwuK7RZv349b731FiUlJUiSxGeffUZERAT33HMPFy5coLi4mLZt2/Ltt9/i5+fH7Nmzyc/Pp0ePHtjY2HD8+HGuXLnCk08+ydWrVyksLGT8+PEsX74cjUbDY489RnR0NLa2ttjY2BAbG9vorR8sijjFxcUxfPhwUlJSahxbUmI6vCywjPj4eJNtVNQqicGdW3FPX18Gd26FWiUxf/58I7v/BQsWEK9rQ3K74uoK4eHw4ovw5JPw8MPKUtysWfDMM/DUU4pwqkY0GSJJEg4GbuLx8fFkZ2ezM3o3yzYeZFemF0VtQ80TEuYs9ZlDXSNXtT7ewoiXuQItpwbDTbA8elUfS4RWoqqmvzYuNrgPcKflHS1x6uyEg5+DsleWmXU2lZv5BlHAerqPqpr0qiTjj47m3LTXEoq15a/J4suXcYuONhJNhvutyaBBgzh79myN4w4fPsz777/PhQsXGD9+PI8/Xr1H27Fjx3jqqadYs2YNZ86cIT4+nt69ewPw2Wefcfz4cc6ePcuQIUP0X9K/+OILnJycOH36tL4X3oMPPshzzz3H0aNHOXHiBIcPH+arr77iwIEDREdHc+7cOc6cOcOuXbuwN/NvcUNikXB69dVXOXXqFGFhYVyu2M/KgPXr19OjR486T04Affr0YcWKFYB5juCG4mnFihW3R4Nfc1CpoE0b6NwZevZUWol4eioJ5XVg0KBBTJ06FS8vLwoLC9m+fTvLly9nz549FBcX13wCnWWAqaW++1crP6sUURK4+dbdCkAX+bJErBlSkyDSLY+lnzbvfJELahYAlkSv6mOJ0MpUJ1Bs3Gxw7e2KpJLw1si8l5JO+pEcPokt4ZfTJWQWlOWhQb3cx6gOo9gyeQurxq7inbB3WDV2FbEPxho9jpwceduLJlAiTAsMcnpzDCp1F7Rvz9sGbXisibk+1v369aNfv34AzJ07lwMHDlBaWlrl+N9//53w8HD69u0LgL29vX7FadWqVQQFBdG1a1fWrFlTZcPg7Oxs9u3bx4svvkiPHj3o1asXly5d4tSpU3Tv3h2NRsO0adP4+OOPKS4uRq1u/BFLi5bqlixZgru7O3//+98JCwtj27ZtdO3aVb9///79zJs3jwMHDlh9orczTzzxBKGhoWaLoPnz5zN+/Hghmm4BkiQREBBAjx49OHHiBFFRUWRkZLB161YOHDjAc889h61t5cooI6qzDJBUxiaW5VdWftTGCqAipswyLaG6iJWp5bGayM+ouWLQEg8tay8R1hOmvMaMnMOzkgn+ZR4FxTIZLiqyMjQcSdEQn6qln4+K4R1scKd+7sOUlYewHDDN25068fG1a0aiyVWtrjfRBBATE0P37t1Rq9VGXToKC+vH0+/PP//k888/Z//+/fj6+rJu3Tr+9a9/mRyrE3WHDx82uQR3+vRpIiMj+euvv+jTpw87duwgMDCwXuZtLSyuqluwYAGffPIJV69eZfjw4Rw7dozExESmTZvG0KFD2b9/P+3bt2f16tU1n0xgNpaKoNtZNGm0MvsuZPBL3DX2XchAo61D/pCZqFQqevXqxTPPPMO9995LixYt6Nq1q5Fo0lYXptdZBvSaovzUiaHqIlLW7INX1XWk6v5E1BDxqmp5rEbMiJ5Y4qFlDaPSW4ROoNzZ6U5CfEKws7Erf2zjjhpwsZN4sJcts4Pt6NxChVaWOZSs4cMDxWw+V0JOamJD38ZtzcKLF41EEyiRp4oJ49Zi3bp1rF69mldeeYVu3boRFxdHaWkpOTk5/PLLL0Zj4+LiiIuLA5RKukGDBmFjU3X8ZOLEiezcuVN/TFFRERkZGWRkZODs7Iy3tzeFhYX6VRGAFi1aUFRUpBdt7u7uDBw4kH/84x/6MYmJiVy8eJGkpCRycnK47777+PDDD/H19W0S6SW18nF66qmncHNz49FHHyUsLIyioiKKiopo2bIlCxcu5NlnnxVdoAUNQuTxZN789STJWeXftNq4O7BoYgDjgkw0srUyKpWKvn370qtXL6M8v5SUFP73v/8RFhZG3759LQtH36omtaauk5cBGx4pG2BBxKva5TFzqCEKZImHlrk5WI29bUyF+bVzU/FwHzsu3dSyI7GUxJtaYq5p6KVxxLWBpni7UzER3FWt1oso3XZrRJ4efPBB7OzsKCgooGvXrvz8889EREQwePBgfvjhB7p06YKPjw+9evWioKBAf1y/fv14+eWXSUxMxMPDg7Vr11Z7ncDAQP773/8yY8YMSkpKUKvVfPbZZ0yaNIk1a9bQqVMnPDw8CA8P1+c+e3l5MWnSJHr27ImzszPHjx/n+++/55lnntH3ZnR0dOTzzz9Ho9EwZ84cSkpK0Gq1hISEMHny5Do/P/VNrZr8arVavvjiCxYsWEBmZiaSJDFt2jQ+++wzqzfeuxU0lSa/guqJPJ7MU2sOV/oY1WXufDYj+JaIJ1P88ssvHDlyBFC+kY0YMYLevXujMtcuoSExWY3mW735ZUK0Yg1QV6prHqyvqgOTos6wXU3FhsdGWNCMuSGp4T4SMmUuFLVg1KcX9fdx9uxZ2rVr1+irlBorljb5Nayq0+U0GYqpRR07Wr2qzlw++ugjNm3axNatWxvk+tagyTb5/fnnn/n73//OmTNnkGWZIUOGsG/fPrZt20ZCQoI+iUwguJVotDJv/nqyuuYlvPnrSUYH+KBW3Xon+wkTJuDt7c3u3bvJzMxk48aNREdHM2LECIKCghq3gKpNxMtay17VRYGq6sVX0dG82hwuK+aK1Tc13Id/Cwn/qR/p7yMnJ4fvv/8elUrFoEGDGDx4MI6Ojg0x89sGnSgq1mr1kSXdTzuVqsFEk8C6WBRxGjJkCAcOHECWZYKDg/nPf/7DiBEj+Oqrr5gzZw6urq78+uuvDB06tD7nbHVExKnps+9CBg+s3F/juO+eGMTgzg3nQ1ZSUkJsbCy7d+8mPz8fKDfYbFbUOeJkQRTI3L53tYmcNUbMvI/U1FQ2btxIcrJi7+Dg4MDgwYMZNGhQkyj5bgxYGnES1C+NJeJkkXBSqVS0a9eOf//73zz88MNG+3744QdmzJiBra0tP//8s96+vSkghFPT55e4a8z9X1yN45ZP78s9fX0tPr9GK1cwHG1Zp8hVUVERMTEx7N27l+HDhzN48GCgvAKlyfd3NGd5zLEFFGSWPa5mqc3a87qFzYXjc3Pp4+Ji/fFm3ocsy5w+fZodO3aQlpYGgKOjI0OHDiU0NFTkotaAEE6Ni8YinCxaqnvrrbd46aWXjAwAddx///04OzszZcoU7r77btatW8d9991n2cwFglri5Vr5PVmXcYbUR8K5vb09YWFhhISEGFW1nDx5kt27dxMREaFPpGySmLM8NnG58rOmpTZrz+sWWQ6sTEpiztmzLPb3Z36HDjWOX3LpEgsSEljRrRtPtG1b/WAz70OSJHr27Glkl3H9+nWioqLo3bu3EE5mUotUYEE90Fheh1olh1fHzp07mThxor7SrikgIk5NH41WZtg720nJKqwqvoGPuwO7X7vDokjRrU44/+KLL7h69SoA7dq1IyIigk6dOjVdAWXOstItjgLdCuJzc+l78KD+sZF4MnG/S65cZYFBT8+4AQMsilSZi1ar5dixY+Tm5hqlVJw+fZouXbpUW5p+O1JcXMypU6dwc3PDy8ur6f4/bAbIskxaWhrZ2dn07NnT6qK/3pbqzCUmJoY777yT69evW/vU9YIQTs0DncgBk/ENi0WOTowZRpoMqa0Yq478/Hz27NlDTEyM3s6gffv2RERE4O/vb5Vr3HKaoTAyB10EScdif3/mZx+C3+ZCUXb5uK6PsMD3PuNxZkSorMXVq1f54osvcHNzY/jw4fTr169JuDffKtLT00lKShKiqREgyzJt27bF09PT6uducOEEcPz4cYKCgurj1FZHCKfmQ22W1arKX2rIhPPc3Fx2797NwYMH9S0RBg4cyPjx4616HUEtMVMMVhJPF79h/uUfy/e3n8yCTjPL999i0QRw7tw5fv31V7KzFTHn4eHB8OHD6dOnjxBQZRQXFxv5IQkaBkdHx3pbXm4UwulWsXjxYn766SdOnz6No6MjQ4YM4Z133qnU8bk6hHBqXliSyF2d0Coq1dY54byuSeXZ2dns3r2bQ4cOMX36dH2LI1mWxTfghsLk8mNbJafLRF5WVeKpkmi6tpH5D/zH8micFSJ6paWlHDp0iOjoaHJzcwFo2bIlI0aMoFevXo3bLkMgsAK3lXAaN24c06dPJyQkhNLSUhYuXMjx48c5efIkzs7OZp1DCKfbk5ryl14Y1Y0PttXccbyqiJM1k8pzcnJwcXHRi6Vdu3Zx9epVIiIiaNOmYUw9b0v0pptVvGtMVQKWFrPkm6dY0Km8EtmjJJebtuU5TPpI1KzfLEtet1DE1URJSQkHDx5k9+7d5OXl4ebmxvPPPy9ynwTNnttKOFUkPT0dLy8vdu7cyfDhw806Rgin2w9z85dkWSY1u8jihPP6TCovLS1l6dKleh+onj17Eh4ejrd3I28ZUh1NIQ9Kb7FQVe+9Kryn9n0CWxZWijDpWHxiNfNTfwSVVL1TekVqI+LMpLi4mJiYGFxdXfV9L7VaLefPn69TtadGqzFqYhzsFYy6sb3OgtuSenUOb+xkZWUBSpi5KipW/OnW9gW3DzEJN6oUTaB8FCVnFfLiqK4s23auqoJ6Fk0MqCSa6tvF3MbGhscff5ydO3dy7NgxTp06xalTpwgMDCQ8PLxeEidrjTmCyMpRk3rj0t4aGhZX0V8vMxHytMz/63+80+Y+bjqWd5LzKMhh/g/rwFYCHzVozPQKqrYXYNm7LHK+4vheC2FiZ2fHsGHDjLYdO3aMn3/+GR8fHyIiIujWrZtFAmrbpW0siVlCan65q7y3kzfzQ+czqsMoi+coEDQUzWrhWqvV8sILLzB06NBqE9MXL16Mu7u7/p+fn98tnKWgMZCWU7VoMqRja2c+mxGMj7ux/5OPu0OVUSNzRVlMwg2L5mxIq1atmDRpEk8//TSBgYEAnDhxgk8//ZSDBw+i0crsu5DBL3HX2HchA422AQLLJzcpEZrVd8GPjys/lwUp2w3HfD+zsiDJTla2G45taMxtI2M4LjcXYtIhtpgl/pONRBPATUdXlgybCiUyJKlh4wHYsAFqsnKxRMRZieLiYuzt7UlJSeG7777jiy++4Pz582Z562y7tI15UfOMRBNAWn4a86Lmse3SNqvNUyCob5pVxOmZZ57h+PHj7N69u9pxCxYsYN68efrH2dnZQjzdZlhimDm4cytGB/iYneRtrigzd1x1eHp6cv/99zN8+HB27NjB2bNnuVjoyHNly5C6JHKTuVX1uTxW1TKSThBN/UaJhtRj1MTqVNc3z9S4jAxYswa0fiwZNo0Fox7TD/EoyNGLqAWjHgdgfkYxIMHx45CeDjNmgKtrxbMr1EbE1ZGQkBACAwPZu3cvBw4c4Nq1a6xZswY/Pz+9XYapCJRGq2FJzBJkE6+zjIyExDsx7xDhFyGW7QRNgmYTcXr22Wf57bff2LFjB+3atat2rL29PW5ubkb/BLcXof4taePuQFULDRJKIneof0uLK+Pq08UcMBlN8vb2Zvr06QSOnsZrvyXqI14F5w+Qf/4ASWkZPLXmMJHHlb5lZkWDakuNy0gogigh+pZHTepEhyHKEmJ17xo3X2VcTg588w1kZrKko7+RaFoc/zWZOx9i8bnV+m0LRj3OkpCx5adKTVVEV2EV4tpSEWclnJycGDVqFC+88AKDBw/GxsaGK1euEBUVZTxQq1Fe32MbOBz/daVIkyEyMin5KRxOO2zVuQoE9UWTjzjJssxzzz3Hzz//TFRUVNM1CRTcUtQqiUUTA3hqzeFq85e2nkyxuDJOJ8pqcjEP9a86D68qqqvUGx3gw/tRV/XX1BbmUpx6EZApTr2IvU8X/rlBy2hJi/qHWVQbDapLbpHZy0jVR4b11DZqYu2ImjltZMYtAUkF338PWVksad+eBZ066Uctvvgt8zN/BgeJ+dd+ArVKX223oFMnsLdn/rlzyuDUVNi4EaZPrzwXnYirrhegW1tlXD3g7OzM2LFjGTJkCLt376Znz576aFPB4R/I2LiAdqp0ANKdncCrdY3nTM9Pr5e5CgTWpslHnJ555hnWrFnDunXrcHV1JSUlhZSUFGFWJqiRcUFtqs1fAnhqzeFK+UopWYXG0ZsK6EQZVI5NVJdUXhO6Sr2q5vPx9vNG+1QOLrj0GoWNuzfIWoqSz3Ju+3r+WPoMecVaE1cwiAZpNRbNzQhzhY65aVe1iZrUV0Qt4G5FWLpVEM1ubcsFZ0ICXLlSWTT5+zN/5mcw9m0InQNj32b+zM9YbPBlb4GvL0vKvLoAOH0ayprzGqETcUCV77JxS+p9idPV1ZXx48fTsWNHZcPJTexd9ihf7LrC2qMlJOVo8dSY917ydGpERQ0CQTU0eTuCqqo6vvrqKx555BGzziHsCG5vTC3FAXVut2JNHydz7BPcnWy5mV9icn/JzRQKLx2lTe5Jpqh3YauSeLCXLf4tqvjuZKmfkCEJ0YpQqYmZm2Dj32qOmlQs76+JeizT11NdNGv9euIvX6ZvSIh+uKEjuKmS/Pcq9qqLjaVPXp7yIDQU7ryz6nutqRfgraLMruGPQ5eITdKiLfto6dZazWdDfMlqaY9s4u+1hIS3kzeRkyNFjpOgwbit7AiauO4TNALUKqmSgeW+CxlmV8ZV1W5lXFAbi5LKq8OcSr2qRBOArYcPNu7eBGcV43ttNzcKZNq6ls+jkhN5XZKKzV1G6jjMvKUvSz5M67lMX49KbVpYZmfDmTP00WpZceYMc7p3NxJN1ZXkL/bvyoKEBFZ060afixdBJ5zi42HkSLC3r3y9gLuVe2kMHlhlS7Tju9oysJ3MzsRSjqZqOXtdg/8fyezs1gLn7s6o3W31h0hlr/Nroa8J0SRoMjT5pTqBoD6wVmWcTpTd09eXwZ1b1boZsLnz8XC0rTp1WZJw8evB7GBb5vS3w95GGSnLMmuOlrAzsZSiUkVwnMh2rL2VgX4Zqarj5HJBZM7SlyU0QJm+EadOgVZZBn0iOZm4Nm2MRFN1JfkDOEfcgAE80bYtGESrKCqCCxeqvqZOxPWaovxsKAFiILZbOkrc19OWp0NsCfJS06mkhBFnM7E9l2t0iLeTN0vDlwofJ0GToslHnASCumJqqa6+K+MsxdzrPDq0o0nDTh37S7tR6NSGFlKqfsTFTJkLmVouZGrZd1VLz/YteGFjEbI6Dqj98qLZWBI1qSnh29IyfWsnkOfklP9uZ0efbt0A80vyIydHKhvLjtPTFEx6TeSieTqrmBKgIqy9mp2XNHzgnM3F3m+S7t4G+2J7+nj2oXWrmhPHBYLGhBBOgtuaqvKQ/jEhoNrKOIAWTra1qoyrDeZW6j17R1e6+7gy/6djJpfuMgu0vFg0nc/slpctk8h0aiExJcCWHYkarudp+de5rtxM+A2HdgHY+XTVJ5+b3SZGv1xWFSaWy6pa+jLEHIdxS8r068Ox3NA+wM4WEndDbiqHS7PMLskP8QkBOzuQJNClIlRlS9CYqGaJ1ttFxdRANbi1pVWfR0ClZv369Xx65lP69evH8OHDcXd3b5BpCwSWIpbqBLct1VWpPbPuMHf3aVNt4VdmfglbT6bU7yTLsKRSb3SADw42pv9ry8AWbSgLbF5BLlsekySJIC81k0N8ONHlERLseyCXFFKQcJjsg5soLchBRmkTY9ayXX0sl5nrMG7otaSRIVkDJ0sgrhgOF0N8CVx2g9PHYf3D1ncsty3L30k/Azve01f1pW973azD9SX5Gk25aAJFSDV2LKj002g0lJSUoNVqOXToEB9++CG///67aH8laBII4SS4LahoGllcqq22nxzApvhk3B2rDsrqes7dqnYm1dknfPJgMO6OdvwSd42v9ySQkl11yw4Z+F9uX/ZP3KlUz03+khOj1zGs6EMOet6Na/AEHLsMRGXvgsrOAZWDC2BBmxhru1qba6ip1Sgf3oNeh/MlsK8YzpRAmgZuaiFbhkwtOAyFZf+AmCK4UgqlctXnsxRnZ0U0nfgZ8rIgX8l3srgk/+pV4x1OZvawa2jMzFlTq9XMmDGDxx57DH9/fzQaDbGxsXz44YdERkaSm5tr4uQCQeNALNUJmj2mluNaOttyI6/qKjRd1Vx1mFNZZ21MVepl5hXx1u8na5xvRdLySqCvsjx2Pu4aWuIAkFRq7H26YOflj7a4QF9tJ2tKWLLsYxY9OpE+ffqgVleRC2RtV2tLIliZzrDtArjfDelbodQg58jeFbqMAhsHKCrbfqEUrmigly24qiqfz1JLBv+OcH4regGWpIUuKoILi/AuLSVNra62JD/YS/EPIzbWYKcETcnY14Kctfbt2zNr1iwSExPZvn07ly9fZv/+/bi5uTFkSP2YdwoEdUUIJ0GzRrccVzFWUZ1oshRr9JyzBEP7hMjjyTyz7ojZXpKGGCacm0o+l1Rq1GXRJoDilAvEXD3Pxl9+Yffu3YwYMYJevXqhUlUIXFvb1drcyNTOKEgsi+x4dofWXeHmFVCVgG978O4JxcVwZKvxccUyHClRxJOhr1VtLBmKE8A+D3QBvxQN+KtRqyXmZ2Qyz6s1kiwbiadKJfk5OUp1no7u3aE+8n/qs1ehOTlrBnTs2JFHH32UixcvEhMTQ4hBVWFaWhqurq44OjpaZ24CQR0RwknQbNFo5SqX46zJraqsq0ht789Uy5dQ/5Y1RuHsfLpQJMscvpaKd2YB1zN+Ijo6mvDwcAIDA8t9oIxak5i6Opb5M5kTmUrRQOZFaNGhfFs7P7hvEgQGluceARxvB//5FZI0UFT27GllOF4CwbbgrDL/uhXJTYW2asguc2YvleF0KQTYMCq/gKVp11nSqgWpNuV/er2dvHkt9DWlJF+jgZ9+0lsaAMbWBNaiPhLj64gkSXTu3JnOnTvrt8myzIYNG8jKymLw4MEMGjQIB4eG+f8mEOgQwknQbKnJNLI6dOJClmVSs4uqFCetnO3o36FFredYF2pzf1W1fFGrJO7r68uXexKrPlZtg0O7nhzTdOFg8lnszp5jeKdcrl+/TnR0NLNnz8bWUKA4ekBBpvFJHFvAxOWWfTjXFMEqAi45Qahf+baRI2HYMGWZqyIBo6BXe2iXpCSOZ5RFqTQynCqF/nbg7lu7Pm8u3uClgouSEskCSNfAKaC7Ip4i8gs4fM9S0t3b6J3D1Sq1Ujn3ww9KyxYdXl6ga9tirQhRVc7q1upVWBMW3EdOTg6SJFFUVERUVBQHDhxgyJAhDBw4ELumkDAvaJYI4SRottR2Cc1QXAAmGwHryMgrZsR7O+rX56gKanN/PtV4Mo0K8KlWOOmQ1LY4tAsEn278lXQaO7tsAgNbl4umKlueAAVmJJdXpKbmusml0Gmk0lwXIDwcwsqXiUy1OFHrzhdoC8fKksYBcmUliXxaLfu8dRgCHr4QeA3ii5VIFigJ6plaaGODursvIWUl+QBcvw4HD0JcnLHtgIMD3H+/Iv6sFSG6Vc7qVWHhfbi5ufG3v/2NkydPEhUVRXp6On/99Rf79u1j2LBhhISEGIt1geAW0OR71VkD0auuebLvQgYPrNxf47iWznbcyCvWP65o+GgqudwQndAy2+fISph7f/+Y0JPWrvY1tnzR9cOrzruqIhLg5SQR+fxQWni4g1ZD5ts9+SnmCiM62tC5hVShn2Qt+8+B6Q9dl7aQNhic2iuPW7WCZ5/VR5qqa3EyKi9fOV/qNThQDMhg7wbjH4cXllg2t4rz/H4mXC+zQtBXXZY9D0GToOtAxWKgqAhu3qx8Dnt7ePBB6NDBur33zO0jqOtVaM08qDreh1ar5fjx4+zcuZOMjAwAHnroIboaNkUWCGqJJTpACCeEcGqu1CQEdMtxO1+J4NClzGr7yRWXahm0eFuVOUDmNP21NubenyVz0iXTQ9UNU0zx3RODlIT1hGh+XTiWQ8nK8pefm4o7/G0qNxOubRPhih/k+S3ghw3l+8eNg0GDgPIWJxXdunXJ2EvDlzLKL0I53/oNkJwNHn5gYwvz5inWArVFJ/KuXFVyp0rKRFmXUUrienV4eMADD4C3t75xbtVVhRYK0WMb4MfHax43+UtQ21kvD8qK96HVajl69Cjnz59n8uTJemGenJyMp6cnNjZiIUVgObdVk1+BoCp0ppGmltoMl+PsbFQ12gkcupRpln3BrbQmMPf+LBFyOq+o6iJsptAvG+amcoe/DXZqidgkDVeytayOL6ajh4qIjjZ08FDpx9WKitVaf/xR/ruNDfTtC5jf4iTCLwK1fxhM8oZ165QBGo3io9S9BoFTHYYl+TeuwtVcuFoE6derPqZdOyURPDBQuRewzIrBHCFqbsJ7xgWIWkyVeVDhC6BVZ/OjUFa8D5VKRd++felb9loDFBYW8s0332BnZ8eIESOqt8sQCOqIEE6CZk1VQqC6XB9TWKvpr7Wx1v1VPKfOK2rP+et8vON8jcfoKwtdvHG2kxjbxYYhfmqiL5dyKElL4k0tX8UVE+Cp5v4AG2LTbQi1eGYmKCgo/93DQ8kLAg6nHbasxYmPT9XnrS06kecP9EdxAr98Gc6ehbw8xRrB3h5cXKBnT2jbtvI5rG0maq5VxKGvqthfti3q7fJN5kShrH0fFcjIyMDGxoasrCw2bdpEdHQ0I0aMoHfv3pXtMgSCOiKEk6DZY8o0srpcH1PohIFbYS5+Wak4lBRho9VQZGNHjr0TlzzaUKq2aRBrAmvcX0V0XlGh/i358fDVGpcD9dYGBh/MrvZwZ1dbhvrJRF8u5XCyllaOEsm05oE/1XzilVz3nLDS0vLfDZZo9K1LakA/ruLyjuF5rYUkKTlLHTrUPFaHtcxEDZc4gx8pEz5VxCmDZxkLo5owpxrP2qaoFfD19eX555/n0KFDREdHk5mZycaNG43sMoSAElgLIZwEtwWGppEWo9USWnKdWQl78Lh2CcmEhCi0sSfFvzuhbgPrONPaUaf7q+G8Fi0HllXAyd/PREbp6eTuIHFXN1uG+Mk42MCLJQ+jRcWC1du40c+GkSPvwNu7dh+YGHr65OcrUR1JKm9dUgP6cfn5VZ+3IbGGmaippHrHlsr5DO0i3Noq/lqa4kqnqB4zqvGsbYpqAltbWwYNGkRwcDCxsbHs2bOHjIwMfvrpJ9q2bUurVrdmCV3Q/BHCSSCojqQk+PFH1BkZPNyqiN+umU6Zdigt4lnHdNSffAy9e8PEicamixag0cpWjR7VFYuXAwPu5uyIT3CNep22Urn9QKFDaxaUPMwWrbJId+XEQf4qsufs2TMEBgYSHh6Op6d5gkePh0f579nZcO0atGtHcOs+eGtk0lSYbnEiy3hrIbh1H2XDyZPGA+rDqbs21GTFANWbiVZVyaYTTOELK+cqJUTXYqI15CjV9T4swM7OjqFDhzJgwAAOHDhAXl6ekWhKTk7Gx8enQrWnQGA+QjgJBFVx/jysXw8lSlJ4Fy9X7uoNUWfSyS0qLUsxlnGxtyG8uyddvFyV444ehRs3lHJyC5uzmrI+qGiP0BBYuhx4ukU4LxZ9SKjqNF7cJA0PYrQ90Br0FXfsMpDWfjmQl8yJEyc4efIkvXr1YsSIEeZHB4KCYPv28sexsdCuHeorB5h//brpFidlhcSvXb+O+soB6DBU8VHS0bKlkqjdWNA1zjVZ4bak6uUxczybDq+uXMlWY3SoGqrLUartfdQSe3t7hg8fbrTt+vXrrFixgjZt2hAREUGXLl2EgBJYjLAjQNgRCExw9Sp8/bVxrotaDYGBaPoPIKbQnrT8ErztJUIKUlEfOqhEpwzx84OZM82OPFXVV8/IJ6p7a8jIUIwSZVlZUmrZUkkybkSY6zH13ROD6ORSSlRUFKfK+rOpVCrCwsKIiIgw72Jr1igiF5TX6Nln4cC7sP9Ttjk5Vmpx4lNaymsZmYzKL1DK7rVd4eefy883Zgw0xgazlnoqWerZZIg+UgUWiSdzbCbqs0deDZw4cYJffvmF4mJlOdLPz4+IiAj8/f2FgLrNEXYEAkFdKCyE774zFk3dusE994CzM2pgsNEBvtA/GBITlZYZeXnK5itXYMsWuKvmD6/q+s7JgGduJtveW8WYbqAqqWCLUCboCAlRIiWN4AMg1L8lbdwdzEoqV6skpk2bRnJyMjt27ODs2bO0bt3a/IuFhJQLJ40G3p8P8ndgJ5W3OHGwJ12txlOjIbiwCP3HdBaw87fycxlYGjQ6LGycW6dKtqqiQ1ViQY6SpfdhRQIDA+nYsSN79uwhNjaWK1eu8M0339ChQwfuuOMOOliSuC+4bRERJ0TESVCB/fshMrL8cc+eSusLc6pyMjLgyy/Lk43VarPMFKuK0Hjm3iD84kF8s5Xqr8nB7fBrWc3yn48PjB0L/v41z7WeqcpMsyan9aSkJHx8fPRVUIcOHSI1NZWwsDBcXV0rX0irhVWrlCihrIX9n4KUC91soYVkWkhqgNyW0PJR0Bg01A0LU/rcNTZqE6WpS8TJ1HUzLlRfjVffPe6sTE5ODrt37+bgwYNoNBocHR158cUXRQ+82xRLdICozxQIDJFlJU9Gh6srTJpkLJq0GuVD6dgG5adWU76vVSu42+DDQ6OBI0dqvKwp/yf/G9eYenSrXjQB5BXXUCafkgLffmvWNesbXVK5j7txhZqPu0O17Wnatm2rF02lpcoyXkxMDMuXLycyMpLc3FzjA1QqmD5dSRS/eQWKcqBQhqPFEFMCV0shSwu5WriphQulsK8IigcZi6YePcDc5cFbyclNiuv26rsU1+/VdymPT26q/jhdrhJVRSAlcKuhmbFKrex38VaSyMMXgmsFzyu3tk1ONAG4uroyfvx45s6dS0hICGFhYXrRJMsyqam1NGkVNHvEUp1AYEhCghI10tG/v3GOkjlNSrt1K/sQv6k8PnhQyZmpJmJV0f/J72YKE0/tQiVrjbbbdOoEY8OgRQslkpKdrTSHPX9eEX2gRGB++UWJdvXubdn9WxlLkspNVRPa2NgwadIkduzYweXLl9m/fz+HDh0iNDSUoUOH4qRLvndxgVmz4L2XjU9aoIXz2krXol2IceuTgAC47z7zooq3kqqq4szxTrJGJVtV73dT1XhNFDc3NyZMmGC07dy5c6xbt47u3bsTERGBT0WDVMFtjViqQyzVCQz4/ffyiJNKBS++qESdwLImpXv2wNat5UPmzDHtDF2GYd85t4IcHor7AztNeS5TYou2nO09iF/fmmy6ki0zE3bsUCr6dKjV8Nhj4Otr3r03IDVVE8qyzMWLF9m+fTvXrl0DwMbWlg59w3Dz7VwuyM78BW/cDWnaciFpij4PQosOSnL94MEwfHijyA0zwlr93UyKH9+aK9ms2Vy4ibFr1y527NiB7uMxICCA8PBwvLy8GnhmgvpCJIcLBLXFcBnI27tcNJlT2m1oANi5s7Fwqri8VAFDo8mQayeNRNMpL3+2dh3Epw8MqNrPqUULJWLi6qqINlCWCXfuVGwRGjFVVROmZBXy1JrD+mW9zp0706lTJ86dO8fHazby0/bjkOSHjWsOUCa07urBuIEdID0JkkshSQPFFSIt9q7QIxQGDoRevWrtt2UVCgvh+HFITS1v8+LoqLz3XG5ap7+bYd88c3OkLH2/NzOGDx9OQEAAUVFRequMU6dOERQUxIgRIywrXhA0O4RwEggMKSoq/90wSdTSJqX29mhlmWuZBeQVl1J0PpWgLl2rNbIcF9SGz+8P4OKCH9HFXVJcWnG8/wg+vadXeU5QVYnCkgSjRsH163DmjDL23DklGtWiRa2ejvqmpmpCCXjz15OMDvBBrZKQJImLxa5sKgqA7l7YuJb7PSUcjeHR4wf55YGXCc1+CTraQgc15MlQgpIQbiPB1GUw+MGGjTClpCiRzaNH9T5hlbhxFq6XQFs1uFSzhGhO9ZyllWzWbi7cBGndujVTpkxh+PDhREVFcfLkSY4dO0Z6ejpPPvmksC+4jRHCSSAwxFAsGX6gWVjavT3+Chd3J5BbpCRzb9KcpCC+uEYjyzGlaWgH++kFV+E9k/n32CHlgqumHCtJgmHDyoWTLMOhQ4qgaoTEJNwwWp6riAwkZxUSk3CDwZ1b6YUWkoSNW7nLuLYon8KrJ0DWcv8nLqx5aAGDkr/CNi8ZXMqeO3OWp+objQb++MPYcLMqJHslYpakAV81dLExLfYs6VNnbk5SPTflbUp4eXkxdepUUlJS2LFjB3379tWLppKSEvLy8vAwdLAXNHuEcBIIDDG0DUhLU2wFnJwsalIaeTyZ/67aRnhReQVcvq0DqRWWnkxy9CgqSVIsB1xcYMwgMBRN5iQKt2un2BKkpCj74+MbrXAyVU1Y3biqhJZk54BT10EUXj5GVk4OX8dkcMDvMcL6uNO/owc2Hm0bPom5tFRxoj93rvI+B4fyZeGcHGUJz8NPWVYsyoVrGigEAm3K3w+17VNXsZjBFNZuytuAppfWwsfHhwceeMBoW2xsLH/99RfBwcGEhYWJHNnbBCGcBAJDunVTIjSgfNDFxSkVcWY2KdX4DebNd6MYlVL+4Zhn60iaSwuTS0+VyDRoutqzp5LgDZbnnAQGlgunnBzlXmwa33/3itWENY2rSmhJkgo7L39sPTtQkpYA9pnk5uXzR3w+exLymDJlMO0b8oNalmHjxsqiyd9fMfDs3r38tdZo4PRpZSnv+mg48TMgQYYGzgA9bEAqW7qrTZ86cyryrNmUt7birQmQlJSERqMhNjaWI0eO0L9/f8LCwnBxcWnoqQnqkUZWeysQNDBduxo3eI2NVcr7daXdQGVfnPLS7phLWagvX6JVfpZ+73GfLmjLPtwMl55MUmggDAyjX5bknFQ8tuJ5GwiNVmbfhQx+ibvGvgsZaLSy3mG8Gqch2pQ5jEPNQkuSVNh5d+bRJ55i4sSJuLu7U1BQYH7vu/oiLk5JAtdhZwczZigWCgEB5aIJyp3gH3kE5r4Jfe8H+7IP4lQNpGpr9k6qUWijCG1DDzJDzHy/1xg10om3iu9dnXiryYuqkTNlyhQeeeQROnToQGlpKQcOHGD58uX8+eef5Ok6CAiaHY3vK6hA0JCoVDBgAPz1l/I4M1OxKLjrLrOalN7Yc4ax58odwLWSimM+XSpdpsolKrVaEWqgRB50WJpzUlrBKLOBo03V2Q3oqgmrcBpi0cQAfXTO3FYug7t4olZ50adPH5KTk3E2EJK//vorfn5+9O7dW2+0WSvMXX6SZdi3r/yxWg0PPQQG7T00Wg2H0w6Tnp+Op5MnwV7BqFVqJQI691/wbRfISITiPPBtD3OXgLqa19Qayd11bcp7m1TmdezYkUceeYSEhAS2b9/O1atX2bt3Lzk5OUyePLmhpyeoB4RwEggqEhwMu3eXV9gdOqSImQkTqi/tTk8nIPJHzhWVf9M827o9ufaVW6RUGTlxcoKssmiVoXOxpTknaWnl21SqWjcBNmVKWV1loCnMsRv4bEZwJWHlY+DjpMPQtsEcoWVjY4Ofn59+zKVLlzh06BCHDh0iOjqa8PBwAgMDLRdQliw/Xb5s/HoMGWIkmrZd2saSmCWk5pe/3t5O3swPnc+oDqOU5bxBg2Fv2d2WAknJShPpqqhrcrdOFGqK4d7/KuIv/7pl+Um3UWWeJEl06tQJf39/zp8/T1RUFGFh5feUl5eHWq3GwcG8pWlB40YIJ4GgIs7OMGWK0uhXF/05ckSpVOvXT4lI6f7QyzJcuKAs6Z09SweVFhd7G3KLSslwcmdH5xCjUxs2tzVJ+/Zw7Jjy+7lzivu4h4dlOSdFRcZGmH5+tSq9r8mU0hxqshsAJedr92t3mO0wrmvlYo7QqkibNm0YPXo0e/bsISMjgx9//JFdu3YRERFBz549zSsxtzR3yLCFjyQpbvRlbLu0jXlR85ArnCstP415UfNYGr5UEU8DBihRK52pZ2xs9cKpLsnd1YnCW9VkuIkiSRJdu3alS5cuRu+lv/76i5MnTzJkyBAGDhyIfS2/yAgaB0I4CQSm6NoV7r1XSejViaf8fMVccs8exaTQxkbJHTKwLVBJEuHdPVlzLo9fAiMosim3NzAVEanEgAHlwklnJTBypGXtM44ehuLi8t0hxuLNHMw1payJmuwGwNhuYHBn83KRLGnlYoidnR1Dhw5lwIABHDhwgL1795Kens7333+Pj48P06dPNyotrxRx6+CO2tLlpwsXyofo2vGgLM8tiVlSSTQpZ5KRkHgn5h0i/CJQt2wJXbqUJ5cbntMUtU3urktCeUWsXZnXhDAUTRqNhqSkJAoLC9m+fTv79+9n6NChhISEiIbCTRSRHC4QVEXv3kouilPlpTYKCpRqNRPmhV0G9mbI26/g7GUsAmpqbgsoESfDtg4HDkBysvK7LufErcLxhonCmZkQFVW+z9lZqc6zAHOjRBptzd2azLUb2HoyxfwJlqFWSQzu3Ip7+voyuHMri5YQ7e3tGT58OC+88AIjRozA3t6eoqIiXHWWACjicdg723lg5X7m/i+OB1bu57l3PrEsSV+rLXcEB8UqoozDaYeNlucqn0kmJT+Fw2mHKx1Lfn71LWVqk9xd14TyilijyXAzQK1WM2fOHCZPnkyrVq3Iz89n69atLF++nH379lFSlQGqoNEiIk4CQXV07gwvvKBURMXElJf4V0StVqqjQkLAz48xksTI/p0szw+SJKUVyK+/Ko+Li2HNGqVtiq9v9TlW16/D2rVgWM0zYIBxxZYZWGpKWR3m2g38EpfE3ydUE4mrJxwcHIiIiGDgwIHcvHkTddlz9Xv8VR5d9Am2Pl2wcffWRxBs8tLAnCBBVUn6Bu1d0vPTzZqjfpxhaxhZVs5dXbsYS5O7d71v3ZwkazQZbiaoVCp69epFYGAgR48eZefOnWRmZrJlyxZKSkoYPnx4Q09RYAFCOAkENWFnpySM9+sH165BQoLyjb+0VEm6dndXojoVvFt0ERGL6ddP8fHRLcvk5cGqVUpftZAQRUAZfnClpSk5L/Hxxkt0vr6Ki7iFWGpKWR2h/i1p6WzLjbzqv1Vn5BWbJcTqCycnJ5zKIosarcyClb9RfP0SxdcvYePmhUOHPti4e5GGh3kn1C0/2doqYlgXHTKwhfB08jRxYGX04wwtJdRq8yolze1Td3ITRL1t1nwsykmqa2VeM0OlUtG3b1969epFfHw8Bw4cIMRgKT07OxtnZ2e9gBc0TpqNcPrkk0947733SElJoU+fPnz00UeEhoY29LQEzQlJUpZLDJdM6gOVCu6/H779Fq5cUbZpNIoXUFyc0gDWw0OZT3Y2JJmIErRuDQ88UKsGtpaaUlaHWiVxX19fvtyTWONYcwVbfROTcIObtq2wb9OdopRzlGankXtsKzYePuxtH0SSZ0t8uIHp4FiF3CFJUhzBs7OVx2fPQng4AMFewXg7eZOWn2Yyz0lCwtvJm2CvYEV46drogHJOcxP+a+pTp1+iMxNLc5Jq02S4maNWqwkODqZfv376aKYsy2zYsIGcnBxGjBhRd7sMQb3RLF6V9evXM2/ePBYtWsThw4fp06cPY8eOJc2wBFggaErY2cHMmdCjR+V9qanKh+jp06ZFU4cO8PjjlSJg5mKpKWVNjArwMWucuYKtvknLKURl74Rj5wG4DbgHO5+uIKkovZlC9tFtzDjSjxKNkr5tTBXLT4GB5b8nJSlRS0CtUjM/dH7Zkcbn0j1+LfQ1xc/p6lVjewrDc9aVGm0DDKhtTpJOvPWaovy8jUWTIYZJ5Dk5Ody4cYPMzEw2btzIJ598wtGjR9HqilMEjYZmIZyWLl3KE088waOPPkpAQAD//e9/cXJyYtWqVQ09NYGg9tjawrRpSuSoS2UTzUq0bw+TJytu1I6Otb6szisJqkwrrr4ysALWFmL1jaGAU9k74dQlFLf+E7Hz7gKSiqPajjyvfZFipwqRl6rcvAcMMH5sYIY5qsMoloYvxcvJy2iIt5N3uRVBRQNNSap8zrpgydLbbZKT1BC4ubkxd+5cxowZg5OTExkZGfz000989tlnnDhx4v/bu/+gqur8j+OvC8SFEFAMMBUIf6SFJsovk0Ro/W5qNeNO69Z32l1yHazvQNnat0SaXWenDFuZHSfb8Mc0LFP2tXK3cdspzTF+FRr+yB+4oRG6GYSiq1wUuwT3fv8g74oaHhQ4l3ufjxlmuud+zuXt6ep93c/5nPeRs7uLAdCvLM4B/n+jra1NN998szZt2qS5c+e6tmdmZurs2bPavHnzFfvY7XbZLzY3VOd55aioKDU3N3OTRriv06c7+0l9+23nlVpOZ2dACg/vXBc1zNjMjlG90cfp0tf6nzc7rw67WtNKo+0N+kOHw6l7Xv74qt3JOy60yOJ0aMStkfrk2Rn67vDH2rL1I02fnqaIhG46YL/xRtcWAvfdJ9199yW/80c6h0ud7S+2bfvPvrff3nmxQG85WiEVP3Dtcel5UnoPTunhutntdlVVVamyslIXfrgq8+GHH9YdPbxCFsbZbDaFhoYaygEDfo3TqVOn1NHRocjIrt/+IiMjVVNTc9V98vPz9Yc//KE/ygN6z9Ch0syZ/fbrrrdX0o+91vU2rexv3XUn9wvsbFew7ME75evnp0/rpYO2Qar+4HNN+Pp7zZgxQ7fccsuVLzp9ulRX959F4lu3di76nz5dslrl6+OrpGGX9duy26Xy8s7gdJHFcl0L/rt1zZ5PkoKHS2n/27u/Fz/KarVq+vTpSkpK0s6dO/Xll19q3LhxrudtNpuCg4ONNWxFrxvwM04NDQ0aMWKEKisrdfcl3+Cee+45lZWV6bPPPrtiH2acAHP0xi1c+ouRGbeTJ0+qpKREX3zxhaTONSuTJk1SWlqawsIuO/W4c6e0ZUvXbf7+0qRJnTOGF28uffZs58zigQNdr5KUpDlzpL646MXV+FK66pxgTxpfotc5nU5XSGpvb9crr7yikJAQZWRkaNSoUQSoXtCTGacBH5yu51Td5XpywAB4D6NB79tvv1VpaakO/3Dlm4+PjxITEzV79uyuH2oVFf+5gXRP/dd/Samp17evEVe91coIr2wb4M6+/vprvfHGG67GmTExMcrIyNBtt91mbmEDnFcFJ0lKSUlRcnKyVq9eLUlyOByKjo5WTk6OcnNzr7k/wQlAb6ivr1dJSYlqa2uVnJysOXPmXDmoulr68MOujUq7M2iQNHt2715J92Mu3tyXtgFu7dy5c/rkk0+0e/dutf/QZDU2Nlb33ntvl5tawzivC05vv/22MjMztXbtWiUnJ2vVqlV65513VFNTc8Xap6shOAHoTcePH9fgwYNdt3BpaGjQgQMHdM8992jQoEGdzVO/+KKzcenXX1/9RWJiOhue3nFHj7u/wzvYbDZVVFRo79696ujovBVOTk7O1dfZoVtetThc6rzaoKmpSb///e/V2Nio+Ph4bdmyxVBoAoDedvm3/tLSUh05ckR79uxRUlKSUlNTFTRxYmc3+FOnOns0XewMHhDQ2eSUDz9cQ0hIiO6//36lpqaqoqJCra2tXULTuXPnOoM6epVHzDjdKGacAPSluro6ffzxx/rmm28kSf7+/kpJSdG0adMUeAM9t4BLXbqI3Gaz6ZVXXtHYsWOVkZGhiIiIa+zt3bzuVN2NIjgB6GtOp1O1tbUqKSlRww8d361Wq+69916lpKSYXB08zb59+7R582ZXmIqLi1N6ejqn8X6E152qAwB3Z7FYNHbsWI0ZM0aHDx9WSUmJTpw4waXk6BPx8fEaPny4ysrKdOjQIVVXV+vQoUO66667NGPGjCvbZcAwZpzEjBOA/ud0OlVTU6OxY8fKz6/zO2xNTY1Onz6tpKQk+fv7m1whPEVjY6NKS0tdTaGtVqueeeYZ3mOXYMYJANycxWLpcgsNh8Ohbdu26fTp06qsrNT06dOVmJjoClXA9Ro2bJgeeeQRNTQ0qKSkROHh4V1C0/nz5xUUFGRihQMLM05ixgmA+RwOhw4cOKCysjKdOXNGkhQcHKy0tDRNnjyZAIVe43A45OPjI6mzoWZxcbESEhI0ffp0VwsNb8Pi8B4iOAFwFx0dHdq3b5/Ky8vV3NwsSQoNDdWcOXO63K8M6A0fffSRKisrJUl+fn5KSkrSPffc43UzUASnHiI4AXA37e3t+vzzz1VeXq6Wlhb9+te/1qhRo8wuCx7G6XTq6NGjKikp0fHjxyVJN910k6tdxs0332xyhf2D4NRDBCcA7ur7779XTU2NJkyY4LoCb/fu3bJarYqLi3OdcgFuhNPp1FdffaWSkhLV19dLkiIjI/XEE094xZWfLA4HAA9x0003aeLEia7HFy5c0LZt22S321VeXq709HTdeeedXvHhhr5jsVg0ZswYjR49WkeOHFFJSYmSk5Nd76uOjg61t7fLarWaXKn5+KoCAAOIr6+vUlNTFRAQoKamJu3YscPskuBBLBaLxo0bp8cff1zx8fGu7YcOHdJ3F28L5OWYcQKAAcTf319paWlKTk7Wzp07FRMTw2wTep3FYunyvvL19VVoaKiJFbkPghMADEABAQFKT083uwx4ibi4OLNLcBucqgMAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAAAAMIjgBAAAYRHACAAAwiOAEAABgEMEJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwCCCEwAAgEEEJwAAAIMITgDcyv79+/t0PADcCIITALexfv16xcfHa8WKFYbGr1ixQvHx8Vq/fn0fVwYAnQhOANzC/v37tXDhQknS0qVLrxmeVqxYoaVLl0qSFi5cyMwTgH4xoIPTsWPHtGDBAsXGxiowMFCjR4/WsmXL1NbWZnZpAHpo0qRJys/Pdz2+GJ46HE7t+Oq0Nu+r146vTqvD4ewSmiQpPz9fkyZNMqNsAF7Gz+wCbkRNTY0cDofWrl2rMWPGqLq6WllZWTp//rwKCgrMLg9AD+Xm5kqSKxQtXbpUr5XWyif+Z64xjn3v6fjW112P8/PzXfsBQF+zOJ1Op9lF9KaVK1eqsLBQdXV1hvex2WwKDQ1Vc3OzQkJC+rA6AEZcPqM0eEamQqfOU/POd3W2rNi1ndAEoDf0JAcM6Bmnq2lublZYWJjZZQC4Ac8+t0Svlda6ZpbOlhXLtnOTHPbzrjFR9y3Qs88tMatEAF5qQK9xulxtba1Wr16txx9/vNtxdrtdNputyw8A91F19N/yif+ZBs/IdG27NDQNnpEpn/ifqerov80oD4AXc8vglJubK4vF0u1PTU1Nl33q6+s1a9YszZs3T1lZWd2+fn5+vkJDQ10/UVFRffnHAdBDJ1u+kySFTp0nH2tQl+d8rEEKnTqvyzgA6C9uucapqalJp0+f7nbMqFGj5O/vL0lqaGhQenq6pk6dqr/85S/y8ek+D9rtdtntdtdjm82mqKgo1jgBbmLHV6f13+t3XrGm6aKLa57+L2uq7h491IQKAXiSAb/GKTw8XOHh4YbG1tfXKyMjQwkJCSoqKrpmaJIkq9Uqq9V6o2UC6CPJsWFy7HuvS2jysQa5TtedLStWcICfkmPnmFUiAC/llqfqjKqvr1d6erqio6NVUFCgpqYmNTY2qrGx0ezSANyAlX98uUvLgcEzMhX19Ntd1jwd3/q6Vv7xZTPKA+DF3HLGyaht27aptrZWtbW1GjlyZJfn3PAMJAADLm9FEHXfAlcfp9Cp8xQc4OcKVRfH0ZIAQH9xyzVO/Y0+ToB7uFpH8GefW6Kqo//WyZbvFBEcoOTYMK3848tXjCM8AbhePckBBCcRnAB3sH//fsXHx7seXysMXR6y9u3bx21XAFyXnuSAAb3GCYDnmDRpktatWyfJ2AxSbm6u695269atIzQB6BfMOIkZJ8Cd7N+/v0chqKfjAeByzDgBGLB6GoIITQD6E8EJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwCCCEwAAgEEEJwAAAIMITgAAAAYRnAAAAAwiOAEAABhEcAIAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAAAAMIjgBAAAYRHACAAAwiOAEAABgEMEJAADAID+zC3AHTqdTkmSz2UyuBAAA9LeLn/8X80B3CE6SWlpaJElRUVEmVwIAAMzS0tKi0NDQbsdYnEbilYdzOBxqaGhQcHCwLBZLr762zWZTVFSUjh8/rpCQkF59bfw4jnv/45ibg+Pe/zjm5ujL4+50OtXS0qLhw4fLx6f7VUzMOEny8fHRyJEj+/R3hISE8BfMBBz3/scxNwfHvf9xzM3RV8f9WjNNF7E4HAAAwCCCEwAAgEEEpz5mtVq1bNkyWa1Ws0vxKhz3/scxNwfHvf9xzM3hLsedxeEAAAAGMeMEAABgEMEJAADAIIITAACAQQSnfnLs2DEtWLBAsbGxCgwM1OjRo7Vs2TK1tbWZXZrH+fOf/6zbbrtNAQEBSklJUVVVldklebT8/HwlJSUpODhYERERmjt3rg4fPmx2WV5lxYoVslgsevrpp80uxePV19frl7/8pYYOHarAwEBNnDhRu3fvNrssj9XR0aHf/e53XT47X3jhBUO3RukrNMDsJzU1NXI4HFq7dq3GjBmj6upqZWVl6fz58yooKDC7PI/x9ttva/HixVqzZo1SUlK0atUq3XfffTp8+LAiIiLMLs8jlZWVKTs7W0lJSWpvb1deXp5++tOf6p///KeCgoLMLs/j7dq1S2vXrtVdd91ldike78yZM0pNTVVGRoY+/PBDhYeH68svv9SQIUPMLs1jvfzyyyosLFRxcbHi4uK0e/duzZ8/X6GhoXrqqadMqYmr6ky0cuVKFRYWqq6uzuxSPEZKSoqSkpL06quvSuq8nU5UVJSefPJJ5ebmmlydd2hqalJERITKysqUlpZmdjke7dy5c5oyZYpee+01vfjii4qPj9eqVavMLstj5ebm6tNPP1VFRYXZpXiNBx54QJGRkXr99ddd2x566CEFBgbqzTffNKUmTtWZqLm5WWFhYWaX4THa2tq0Z88ezZw507XNx8dHM2fO1I4dO0yszLs0NzdLEu/tfpCdna3777+/y3sefefvf/+7EhMTNW/ePEVERGjy5Mlav3692WV5tGnTpmn79u06cuSIJGn//v365JNPNHv2bNNq4lSdSWpra7V69WpO0/WiU6dOqaOjQ5GRkV22R0ZGqqamxqSqvIvD4dDTTz+t1NRUTZgwwexyPNrGjRu1d+9e7dq1y+xSvEZdXZ0KCwu1ePFi5eXladeuXXrqqafk7++vzMxMs8vzSLm5ubLZbBo/frx8fX3V0dGh5cuX69FHHzWtJmacblBubq4sFku3P5d/aNfX12vWrFmaN2+esrKyTKoc6H3Z2dmqrq7Wxo0bzS7Fox0/flyLFi3Shg0bFBAQYHY5XsPhcGjKlCl66aWXNHnyZC1cuFBZWVlas2aN2aV5rHfeeUcbNmzQW2+9pb1796q4uFgFBQUqLi42rSZmnG7QM888o8cee6zbMaNGjXL9d0NDgzIyMjRt2jStW7euj6vzLrfccot8fX114sSJLttPnDihYcOGmVSV98jJydE//vEPlZeXa+TIkWaX49H27NmjkydPasqUKa5tHR0dKi8v16uvviq73S5fX18TK/RMt956q+68884u2+644w799a9/Nakiz/fss88qNzdXjzzyiCRp4sSJ+te//qX8/HzTZvkITjcoPDxc4eHhhsbW19crIyNDCQkJKioqko8PE369yd/fXwkJCdq+fbvmzp0rqfMb4vbt25WTk2NucR7M6XTqySef1HvvvafS0lLFxsaaXZLH+8lPfqKDBw922TZ//nyNHz9eS5YsITT1kdTU1CtabRw5ckQxMTEmVeT5Wltbr/is9PX1lcPhMKkiglO/qa+vV3p6umJiYlRQUKCmpibXc8yG9J7FixcrMzNTiYmJSk5O1qpVq3T+/HnNnz/f7NI8VnZ2tt566y1t3rxZwcHBamxslCSFhoYqMDDQ5Oo8U3Bw8BVryIKCgjR06FDWlvWh3/72t5o2bZpeeukl/eIXv1BVVZXWrVvH2YM+9OCDD2r58uWKjo5WXFycPv/8c/3pT3/Sb37zG/OKcqJfFBUVOSVd9Qe9a/Xq1c7o6Ginv7+/Mzk52blz506zS/JoP/a+LioqMrs0rzJjxgznokWLzC7D473//vvOCRMmOK1Wq3P8+PHOdevWmV2SR7PZbM5FixY5o6OjnQEBAc5Ro0Y5n3/+eafdbjetJvo4AQAAGMQiGwAAAIMITgAAAAYRnAAAAAwiOAEAABhEcAIAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAeLwXX3xRFotFU6dOverzubm5slgsio+P15kzZ/q5OgADCfeqA+DxLly4oNtvv13ffPONNm3apIceesj1XH5+vvLy8jRu3DiVl5crIiLCxEoBuDtmnAB4vMDAQC1fvlyS9Pzzz6u9vV2SVFhYqLy8PMXGxmr79u2EJgDXxIwTAK/gdDqVmJiovXv3as2aNRo0aJB+9atfafjw4aqoqFBsbKxrbG1trQoKClRVVaWDBw9qxIgROnbsmHnFA3AbBCcAXqO0tFQZGRkaMmSIWlpaNGTIEJWXl2v8+PFdxm3evFnZ2dlKTk7W0aNHdebMGYITAEkEJwBeJjU1VZWVlQoODlZ5ebni4+OvGONwOOTj07mS4YknntCWLVsITgAkscYJgBcpKirSjh07JEl2u10hISFXHXcxNAHA5fjXAYBXePfdd5WVlaWwsDA9/PDDamtr05IlS8wuC8AAQ3AC4PE++OADPfroowoKCtLWrVu1Zs0ahYWFadOmTaqsrDS7PAADCMEJgEcrKyvTz3/+c/n5+en9999XQkKCBg8erLy8PEnS4sWLTa4QwEBCcALgsaqqqvTggw+qo6NDf/vb35SWluZ6LicnRzExMfrss8+0ceNGE6sEMJAQnAB4pIMHD2r27NlqbW3Vhg0bNGvWrC7PW61WvfDCC5KkpUuXym63m1EmgAGGdgQA0A3aEQC4lJ/ZBQCAu2ltbdUHH3wgSaqrq1Nra6s2bdokSUpKSlJMTIyZ5QEwETNOAHCZY8eOdbkFy6WKior02GOP9W9BANwGwQkAAMAgFocDAAAYRHACAAAwiOAEAABgEMEJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwKD/B9RLP9oJB9ntAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In real-world scenarios, you won't know the true labels or the distribution of the features, so we won't use these in this tutorial, except for evaluation purposes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` relies on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "This tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:48.096105Z", + "iopub.status.busy": "2024-05-24T23:43:48.095832Z", + "iopub.status.idle": "2024-05-24T23:43:48.119296Z", + "shell.execute_reply": "2024-05-24T23:43:48.118737Z" + } + }, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=X_train, y=noisy_labels, cv=5, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instantiate Datalab object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we instantiate the Datalab object that will be used in the remainder in the tutorial by passing in the data created above.\n", + "\n", + "`Datalab` has several ways of loading the data. In this case, we'll simply wrap the training features and noisy labels in a dictionary so that we can pass it to `Datalab`.\n", + "\n", + "Other supported data formats for `Datalab` include: [HuggingFace Datasets](https://huggingface.co/docs/datasets/index) and [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). `Datalab` works across most data modalities (image, text, tabular, audio, etc). It is intended to find issues that commonly occur in datasets for which you have trained a supervised ML model, regardless of the type of data.\n", + "\n", + "Currently, pandas DataFrames that contain categorical columns might cause some issues when instantiating the `Datalab` object, so it is recommended to ensure that your DataFrame does not contain any categorical columns, or use other data formats (eg. python dictionary, HuggingFace Datasets) to pass in your data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:48.121607Z", + "iopub.status.busy": "2024-05-24T23:43:48.121274Z", + "iopub.status.idle": "2024-05-24T23:43:48.132700Z", + "shell.execute_reply": "2024-05-24T23:43:48.132162Z" + } + }, + "outputs": [], + "source": [ + "data = {\"X\": X_train, \"y\": noisy_labels}\n", + "\n", + "lab = Datalab(data, label_name=\"y\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 1**: Incremental issue search " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can call `find_issues` multiple times on a `Datalab` object to detect issues one type at a time.\n", + "\n", + "This is done via the `issue_types` argument which accepts a dictionary of issue types and any corresponding keyword arguments to specify nondefault keyword arguments to use for detecting each type of issues. In this first call, we only want to detect label issues, which are detected solely based on `pred_probs`, hence there is no need for us to pass in `features` here." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:48.134753Z", + "iopub.status.busy": "2024-05-24T23:43:48.134437Z", + "iopub.status.idle": "2024-05-24T23:43:49.783558Z", + "shell.execute_reply": "2024-05-24T23:43:49.782909Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Audit complete. 11 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + "issue_type num_issues\n", + " label 11\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 11\n", + "Overall dataset quality in terms of this issue: 0.9318\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 True 0.006940 high mid\n", + "7 True 0.007830 low mid\n", + "40 True 0.014828 mid low\n", + "107 True 0.021241 high mid\n", + "120 True 0.026407 high mid\n" + ] + } + ], + "source": [ + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}}) \n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check for additional types of issues with the same `Datalab`. Here, we would like to detect outliers and near duplicates which both utilize the features of the data.\n", + "\n", + "Notice that this second call to `find_issues()` updates the output of `report()`, we can see the existing label issues detected alongside the new issues." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:49.786145Z", + "iopub.status.busy": "2024-05-24T23:43:49.785696Z", + "iopub.status.idle": "2024-05-24T23:43:49.808228Z", + "shell.execute_reply": "2024-05-24T23:43:49.807783Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "Finding near_duplicate issues ...\n", + "\n", + "Audit complete. 21 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 11\n", + " outlier 6\n", + "near_duplicate 4\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 11\n", + "Overall dataset quality in terms of this issue: 0.9318\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 True 0.006940 high mid\n", + "7 True 0.007830 low mid\n", + "40 True 0.014828 mid low\n", + "107 True 0.021241 high mid\n", + "120 True 0.026407 high mid\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 6\n", + "Overall dataset quality in terms of this issue: 0.3558\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6160\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "131 True 0.000000 [123] 0.000000e+00\n", + "123 True 0.000000 [131] 0.000000e+00\n", + "129 True 0.000002 [130] 4.463180e-07\n", + "130 True 0.000002 [129] 4.463180e-07\n", + "51 False 0.161148 [] 3.859087e-02\n" + ] + } + ], + "source": [ + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {}, \"near_duplicate\": {}})\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 2**: Specifying nondefault arguments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also overwrite previously-executed checks for a type of issue. Here we re-run the detection of outliers, but specify that different non-default settings should be used (in this case, the number of neighbors `k` compared against to determine which datapoints are outliers). \n", + "The results from this new detection will replace the original outlier detection results in the updated `Datalab`. You could similarly specify non-default settings for other issue types in the first call to `Datalab.find_issues()`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:49.810468Z", + "iopub.status.busy": "2024-05-24T23:43:49.810135Z", + "iopub.status.idle": "2024-05-24T23:43:49.830304Z", + "shell.execute_reply": "2024-05-24T23:43:49.829687Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "\n", + "Audit complete. 22 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 11\n", + " outlier 7\n", + "near_duplicate 4\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 11\n", + "Overall dataset quality in terms of this issue: 0.9318\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 True 0.006940 high mid\n", + "7 True 0.007830 low mid\n", + "40 True 0.014828 mid low\n", + "107 True 0.021241 high mid\n", + "120 True 0.026407 high mid\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 7\n", + "Overall dataset quality in terms of this issue: 0.3453\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6160\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "131 True 0.000000 [123] 0.000000e+00\n", + "123 True 0.000000 [131] 0.000000e+00\n", + "129 True 0.000002 [130] 4.463180e-07\n", + "130 True 0.000002 [129] 4.463180e-07\n", + "51 False 0.161148 [] 3.859087e-02\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + " warnings.warn(\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", + " warnings.warn(\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:357: UserWarning: Overwriting key outlier in self.info\n", + " warnings.warn(f\"Overwriting key {issue_name} in self.info\")\n" + ] + } + ], + "source": [ + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {\"k\": 30}})\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also increase the verbosity of the `report` to see additional information about the data issues and control how many top-ranked examples are shown for each issue." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:49.832515Z", + "iopub.status.busy": "2024-05-24T23:43:49.832174Z", + "iopub.status.idle": "2024-05-24T23:43:49.846304Z", + "shell.execute_reply": "2024-05-24T23:43:49.845797Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 11\n", + " outlier 7\n", + "near_duplicate 4\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 11\n", + "Overall dataset quality in terms of this issue: 0.9318\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 True 0.006940 high mid\n", + "7 True 0.007830 low mid\n", + "40 True 0.014828 mid low\n", + "107 True 0.021241 high mid\n", + "120 True 0.026407 high mid\n", + "54 True 0.039122 mid low\n", + "53 True 0.044598 high mid\n", + "105 True 0.105196 mid high\n", + "4 True 0.133654 high mid\n", + "43 True 0.168033 high mid\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 7\n", + "Overall dataset quality in terms of this issue: 0.3453\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "125 True 0.101107\n", + "37 True 0.183382\n", + "109 False 0.209259\n", + "35 False 0.211042\n", + "5 False 0.221316\n", + "\n", + "Additional Information: \n", + "average_ood_score: 0.34530442089193386\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6160\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "131 True 0.000000 [123] 0.000000e+00\n", + "123 True 0.000000 [131] 0.000000e+00\n", + "129 True 0.000002 [130] 4.463180e-07\n", + "130 True 0.000002 [129] 4.463180e-07\n", + "51 False 0.161148 [] 3.859087e-02\n", + "52 False 0.161148 [] 3.859087e-02\n", + "5 False 0.169820 [] 4.087324e-02\n", + "89 False 0.169820 [] 4.087324e-02\n", + "92 False 0.259024 [] 6.583757e-02\n", + "91 False 0.346458 [] 9.341292e-02\n", + "\n", + "Additional Information: \n", + "threshold: 0.13\n" + ] + } + ], + "source": [ + "lab.report(num_examples=10, verbosity=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice how the number of flagged outlier issues has changed after specfying different settings to use for outlier detection." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 3**: Save and load Datalab objects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Datalab` can be saved to a folder at a specified path. In a future Python process, this path can be used to load the `Datalab` from file back into memory. Your dataset is not saved as part of this process, so you'll need to save/load it separately to keep working with it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:49.848459Z", + "iopub.status.busy": "2024-05-24T23:43:49.848126Z", + "iopub.status.idle": "2024-05-24T23:43:49.867422Z", + "shell.execute_reply": "2024-05-24T23:43:49.866832Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a87057a4b9c94328aa57d8825bb00130", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Saving the dataset (0/1 shards): 0%| | 0/132 [00:00 float:\n", + " if idx == 0:\n", + " # Zero excluded from the divisibility check, gets the highest score\n", + " return 1\n", + " rem = idx % div\n", + " inv_scale = idx // div\n", + " if rem == 0:\n", + " return 0.5 * (1 - np.exp(-0.1*(inv_scale-1)))\n", + " else:\n", + " return 1 - 0.49 * (1 - np.exp(-inv_scale**0.5))*rem/div\n", + "\n", + "\n", + "@register # register this issue type for use with Datalab\n", + "class SuperstitionIssueManager(IssueManager):\n", + " \"\"\"A custom issue manager that keeps track of issue indices that\n", + " are divisible by 13.\n", + " \"\"\"\n", + " description: str = \"Examples with indices that are divisible by 13 may be unlucky.\" # Optional\n", + " issue_name: str = \"superstition\"\n", + "\n", + " def find_issues(self, div=13, **_) -> None:\n", + " ids = self.datalab.issues.index.to_series()\n", + " issues_mask = ids.apply(lambda idx: idx % div == 0 and idx != 0)\n", + " scores = ids.apply(lambda idx: scoring_function(idx, div))\n", + " self.issues = pd.DataFrame(\n", + " {\n", + " f\"is_{self.issue_name}_issue\": issues_mask,\n", + " self.issue_score_key: scores,\n", + " },\n", + " )\n", + " summary_score = 1 - sum(issues_mask) / len(issues_mask)\n", + " self.summary = self.make_summary(score = summary_score)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once registered, this `IssueManager` will perform custom issue checks when `find_issues` is called on a `Datalab` instance.\n", + "\n", + "As our `Datalab` instance here already has results from the outlier and near duplicate checks, we perform the custom issue check separately." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:49.893961Z", + "iopub.status.busy": "2024-05-24T23:43:49.893645Z", + "iopub.status.idle": "2024-05-24T23:43:49.911382Z", + "shell.execute_reply": "2024-05-24T23:43:49.910905Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding superstition issues ...\n", + "\n", + "Audit complete. 32 issues found in the dataset.\n", + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 11\n", + " superstition 10\n", + " outlier 7\n", + "near_duplicate 4\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 3\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 11\n", + "Overall dataset quality in terms of this issue: 0.9318\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 True 0.006940 high mid\n", + "7 True 0.007830 low mid\n", + "40 True 0.014828 mid low\n", + "107 True 0.021241 high mid\n", + "120 True 0.026407 high mid\n", + "\n", + "\n", + "------------------- superstition issues --------------------\n", + "\n", + "About this issue:\n", + "\tExamples with indices that are divisible by 13 may be unlucky.\n", + "\n", + "Number of examples with this issue: 10\n", + "Overall dataset quality in terms of this issue: 0.9242\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_superstition_issue superstition_score\n", + "13 True 0.000000\n", + "26 True 0.047581\n", + "39 True 0.090635\n", + "52 True 0.129591\n", + "65 True 0.164840\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 7\n", + "Overall dataset quality in terms of this issue: 0.3453\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6160\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "131 True 0.000000 [123] 0.000000e+00\n", + "123 True 0.000000 [131] 0.000000e+00\n", + "129 True 0.000002 [130] 4.463180e-07\n", + "130 True 0.000002 [129] 4.463180e-07\n", + "51 False 0.161148 [] 3.859087e-02\n" + ] + } + ], + "source": [ + "lab.find_issues(issue_types={\"superstition\": {}})\n", + "lab.report()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "2ef1e19dc7ac42c0ac0dc3f5dc41239e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32991a6f62f8464f8249c74bbbc7104c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f293cd813e5412bb4c556e1e46b4e1a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b85279d5e564d1381f42c4edb6e4dfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ef1e19dc7ac42c0ac0dc3f5dc41239e", + "placeholder": "​", + "style": "IPY_MODEL_698c13e387f04cf1aeb8ab146c804bc1", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "54788f0e0ae6405f9635bdb974190f75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63df5f60d70f4372bb9d9d0a63e4e2d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32991a6f62f8464f8249c74bbbc7104c", + "placeholder": "​", + "style": "IPY_MODEL_d0b084d88df94c97a1d7ac4f8b67a9e1", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13330.64 examples/s]" + } + }, + "698c13e387f04cf1aeb8ab146c804bc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96e1a6c6b2714820badf999e2f1e28a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f293cd813e5412bb4c556e1e46b4e1a", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54788f0e0ae6405f9635bdb974190f75", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "a87057a4b9c94328aa57d8825bb00130": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4b85279d5e564d1381f42c4edb6e4dfb", + "IPY_MODEL_96e1a6c6b2714820badf999e2f1e28a5", + "IPY_MODEL_63df5f60d70f4372bb9d9d0a63e4e2d3" + ], + "layout": "IPY_MODEL_d4d3ddcbeaef40b88067fe22c92354ee", + "tabbable": null, + "tooltip": null + } + }, + "d0b084d88df94c97a1d7ac4f8b67a9e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d4d3ddcbeaef40b88067fe22c92354ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb new file mode 100644 index 000000000..d3aa14709 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -0,0 +1,1651 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Datalab: A unified audit to detect all kinds of issues in data and labels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, drift, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Compute out-of-sample predicted probabilities for a sample dataset using cross-validation.\n", + "- Use `Datalab` to identify issues such as noisy labels, outliers, (near) duplicates, and other types of problems \n", + "- View the issue summaries and other information about our sample dataset\n", + "\n", + "You can easily replace our demo dataset with your own image/text/tabular/audio/etc dataset, and then run the same code to discover what sort of issues lurk within it!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you also have some numeric `features` (or model embeddings of data)? Run the code below to examine your dataset for multiple types of issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(features=your_feature_matrix, pred_probs=your_pred_probs)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Datalab` has additional dependencies that are not included in the standard installation of cleanlab.\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:52.646142Z", + "iopub.status.busy": "2024-05-24T23:43:52.645974Z", + "iopub.status.idle": "2024-05-24T23:43:53.828145Z", + "shell.execute_reply": "2024-05-24T23:43:53.827541Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:53.830748Z", + "iopub.status.busy": "2024-05-24T23:43:53.830456Z", + "iopub.status.idle": "2024-05-24T23:43:53.834038Z", + "shell.execute_reply": "2024-05-24T23:43:53.833605Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Create and load the data (can skip these details)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll load a toy classification dataset for this tutorial. The dataset has two numerical features and a label column with three possible classes. Each example is classified as either: *low*, *mid* or *high*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:53.836166Z", + "iopub.status.busy": "2024-05-24T23:43:53.835835Z", + "iopub.status.idle": "2024-05-24T23:43:53.845157Z", + "shell.execute_reply": "2024-05-24T23:43:53.844705Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + " # Assign few datapoints to rare class\n", + " random_idx = np.random.randint(0, X_train.shape[0], 3)\n", + " noisy_labels[random_idx] = \"max\"\n", + " noisy_labels_idx[random_idx] = np.max(y_bin_idx) + 1\n", + " \n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:53.847084Z", + "iopub.status.busy": "2024-05-24T23:43:53.846759Z", + "iopub.status.idle": "2024-05-24T23:43:53.851093Z", + "shell.execute_reply": "2024-05-24T23:43:53.850689Z" + } + }, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(8, 6.5))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-3.5, 9.0)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.75, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.75, 0.45], title=\"Type of Issue\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:53.853221Z", + "iopub.status.busy": "2024-05-24T23:43:53.852905Z", + "iopub.status.idle": "2024-05-24T23:43:54.036067Z", + "shell.execute_reply": "2024-05-24T23:43:54.035557Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:54.038436Z", + "iopub.status.busy": "2024-05-24T23:43:54.038241Z", + "iopub.status.idle": "2024-05-24T23:43:54.407170Z", + "shell.execute_reply": "2024-05-24T23:43:54.406569Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkR0lEQVR4nOydeVxU9frH32eGfXdhUURFERVQFAVXFNJcMtu0tDJtMbttWrapt/uzbvem1b2m2WqLWWrXsjLbME1R3AA1cN9xBQQR2deZ8/vjMMMMDDADgyx+36+XL5hzvuec75kZmc883+f5PJIsyzICgUAgEAgEgjpRNfUEBAKBQCAQCFoKQjgJBAKBQCAQmIkQTgKBQCAQCARmIoSTQCAQCAQCgZkI4SQQCAQCgUBgJkI4CQQCgUAgEJiJEE4CgUAgEAgEZiKEk0AgEAgEAoGZCOEkEAgEAoFAYCZCOAkEgmZNVFQUUVFRN+x6sbGxSJJEbGysxcc+/PDDuLi4WHU+N/r+BQJB7QjhJBAIGsyXX36JJEk4ODhw+fLlavujoqIICQlpgpkJBAKBdRHCSSAQWI2SkhIWL15s1XP+8ccf/PHHH1Y9p0AgENQXIZwEAoHV6NevH59++impqalWO6ednR12dnZWO59AIBA0BCGcBAKB1ViwYAEajcasqFN5eTlvvPEG3bt3x97enq5du7JgwQJKSkqMxpnK8Vm+fDnBwcE4OTnRpk0bBg4cyNq1awHYtm0bkiTx448/Vrvm2rVrkSSJPXv2WHRfcXFx3HvvvXTu3Bl7e3v8/Px4/vnnKSoqMjn+7NmzjB07FmdnZzp27Mg///lPZFk2GqPValm6dCnBwcE4ODjg7e3NE088QXZ2dp3zqe3+BQJB4yKEk0AgsBr+/v5Mnz7drKjTzJkz+b//+z/CwsJ49913GTlyJIsWLWLq1Km1Hvfpp58ye/ZsgoKCWLp0Ka+//jr9+vUjPj4eUISWn58fa9asqXbsmjVr6N69O0OGDLHovr777jsKCwt58sknWb58OWPHjmX58uVMnz692liNRsO4cePw9vbm7bffZsCAASxcuJCFCxcajXviiSd46aWXGDZsGMuWLeORRx5hzZo1jB07lrKysnrfv0AgaGRkgUAgaCArV66UATkxMVE+c+aMbGNjI8+ePVu/f+TIkXJwcLD+cVJSkgzIM2fONDrPiy++KAPy1q1bjY4dOXKk/vGdd95pdC5TzJ8/X7a3t5evX7+u35aRkSHb2NjICxcurPXYbdu2yYC8bds2/bbCwsJq4xYtWiRLkiSfP39ev23GjBkyID/77LP6bVqtVp4wYYJsZ2cnZ2ZmyrIsy3FxcTIgr1mzxuicMTEx1bbX5/4FAkHjISJOAoHAqnTr1o2HHnqIFStWkJaWZnLMb7/9BsDcuXONtr/wwgsA/PrrrzWe38PDg0uXLpGYmFjjmOnTp1NSUsL69ev129atW0d5eTnTpk0z+150ODo66n8vKCjg6tWrDB06FFmW+euvv6qNf+aZZ/S/S5LEM888Q2lpKVu2bAGUCJa7uzu33norV69e1f8bMGAALi4ubNu2rca5mHP/AoGg8RDCSSAQWJ1XX32V8vLyGnOdzp8/j0qlIiAgwGi7j48PHh4enD9/vsZzv/LKK7i4uBAREUGPHj14+umn2bVrl9GYXr16ER4ebrRct2bNGgYPHlztmuZw4cIFHn74Ydq2bYuLiwuenp6MHDkSgJycHKOxKpWKbt26GW0LDAwE4Ny5cwCcOnWKnJwcvLy88PT0NPqXn59PRkZGg+5fIBA0HjZNPQGBQND66NatG9OmTWPFihXMmzevxnGSJFl87t69e3PixAl++eUXYmJi+P777/nwww/5v//7P15//XX9uOnTpzNnzhwuXbpESUkJe/fu5f3337f4ehqNhltvvZVr167xyiuv0KtXL5ydnbl8+TIPP/wwWq3W4nNqtVq8vLxM5mEBeHp61nisufcvEAgaByGcBAJBo/Dqq6+yevVq3nrrrWr7unTpglar5dSpU/Tu3Vu//cqVK1y/fp0uXbrUem5nZ2emTJnClClTKC0t5Z577uHf//438+fPx8HBAYCpU6cyd+5cvvnmG4qKirC1tWXKlCkW38ehQ4c4efIkq1atMkoG37x5s8nxWq2Ws2fP6qNMACdPngSga9euAHTv3p0tW7YwbNgwo2VAczHn/gUCQeMgluoEAkGj0L17d6ZNm8Ynn3xCenq60b7bbrsNgKVLlxptX7JkCQATJkyo8bxZWVlGj+3s7AgKCkKWZaNqtPbt2zN+/HhWr17NmjVrGDduHO3bt7f4PtRqNYCRnYAsyyxbtqzGYwwjW7Is8/7772Nra8uoUaMAuO+++9BoNLzxxhvVji0vL+f69es1ntvc+xcIBI2DiDgJBIJG4+9//ztff/01J06cIDg4WL89NDSUGTNmsGLFCq5fv87IkSNJSEhg1apV3HXXXURHR9d4zjFjxuDj48OwYcPw9vbm2LFjvP/++0yYMAFXV1ejsdOnT2fy5MkAJkWKOfTq1Yvu3bvz4osvcvnyZdzc3Pj+++9r9FtycHAgJiaGGTNmMGjQIH7//Xd+/fVXFixYoF+CGzlyJE888QSLFi0iKSmJMWPGYGtry6lTp/juu+9YtmyZft4NuX+BQNAINGVJn0AgaB0Y2hFURVeiX7WEvqysTH799ddlf39/2dbWVvbz85Pnz58vFxcXG42rWo7/ySefyCNGjJDbtWsn29vby927d5dfeuklOScnp9q1S0pK5DZt2sju7u5yUVGRWfdiyo7g6NGj8ujRo2UXFxe5ffv28uOPPy4nJyfLgLxy5Uqje3V2dpbPnDkjjxkzRnZycpK9vb3lhQsXyhqNptq1VqxYIQ8YMEB2dHSUXV1d5T59+sgvv/yynJqaapX7FwgE1keS5Sp2tgKBQNBKKC8vp2PHjkycOJHPP/+8qacjEAhaASLHSSAQtFo2bNhAZmamSYdvgUAgqA8i4iQQCFod8fHxHDx4kDfeeIP27dtz4MCBpp6SQCBoJYiIk0AgaHV89NFHPPnkk3h5efHVV1819XQEAkErQkScBAKBQCAQCMxERJwEAoFAIBAIzEQIJ4FAIBAIBAIzEQaYKC0SUlNTcXV1rVfvLIFAIBAIBC0XWZbJy8ujY8eOqFS1x5SEcAJSU1Px8/Nr6mkIBAKBQCBoQi5evEinTp1qHSOEE+jbFFy8eBE3N7cmno1AIBAIBIIbSW5uLn5+fma1LRLCCfTLc25ubkI4CQQCgUBwk2JOuo5IDhcIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMBMhnAQCgUAgEAjMRAgngUAgEAgEAjMRwkkgEAgEAoHATIRwEggEAoFAIDATIZwEAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMJMWL5w0Gg3/+Mc/8Pf3x9HRke7du/PGG28gy3JTT00gEAgEAkErw6apJ9BQ3nrrLT766CNWrVpFcHAw+/bt45FHHsHd3Z3Zs2c39fQEAoFAIBC0Ilq8cNq9ezd33nknEyZMAKBr16588803JCQkNPHMBAKBQCAQtDZavHAaOnQoK1as4OTJkwQGBpKcnMzOnTtZsmRJjceUlJRQUlKif5ybm3sjpioQCASCFohWq6W0tLSppyGwEnZ2dqhU9c9UavHCad68eeTm5tKrVy/UajUajYZ///vfPPjggzUes2jRIl5//fUbOEuBQCAQtERKS0tJSUlBq9U29VQEVkKlUuHv74+dnV29jpfkFp5F/b///Y+XXnqJd955h+DgYJKSknjuuedYsmQJM2bMMHmMqYiTn58fOTk5uLm53aipCwQCgaAZI8syFy5coKysjI4dOzYoSiFoHmi1WlJTU7G1taVz585IkgQoOsDd3d0sHdDiI04vvfQS8+bNY+rUqQD06dOH8+fPs2jRohqFk729Pfb29jdymgKBQCBoYZSXl1NYWEjHjh1xcnJq6ukIrISnpyepqamUl5dja2tr8fEtXj4XFhZW+xagVqtFWFUgEAgEDUKj0QDUe0lH0DzRvZ6619dSWnzEaeLEifz73/+mc+fOBAcH89dff7FkyRIeffTRpp6aQCAQCFoBuuUcQeugoa9ni484LV++nMmTJ/PUU0/Ru3dvXnzxRZ544gneeOONpp6aQCAQCFohGo2GpUuX0r9/f5ycnHBxcaFXr148/fTT+jGSJDWZ4Nq+fTvjxo2jTZs2ODo60rt3b959910AHn74YSRJ4ssvv7whczl37hySJOHj42PxsVFRUUiSRGxsrMXHfvnll0iSxMMPP2zxsXXR4iNOrq6uLF26lKVLlzb1VAQCgUBwEzB16lTWr1+Pv78/r732Gh4eHiQnJ/P999/zwQcfAPDNN980ydw2bNjApEmTsLGx4dlnnyUoKIhjx46xa9cunn/++SaZU2ujxUecBAKBQCC4UezcuZP169fj4eFBfHw8L7/8MrNmzeKDDz7g1KlT+nH3338/999/PwAjR45EkiSOHj0KwJEjR5AkieHDhwNw6NAhxo8fT9u2bWnfvj333Xcfly9fBuC1115DkiSmTp3KiBEjcHV1JTo6mszMTJPze+GFF9BqtXzwwQf85z//4dFHH+Wdd97h22+/NTn+73//O76+vtjZ2eHp6cndd99NamoqAGfPniUqKgo3NzccHBzo0aMHa9euBWDVqlX06NEDe3t7PDw8GDx4cI1zqom8vDwGDRqEh4cH9vb2+Pv78+abb1YbFxMTQ/fu3WnTpg3PPvss5eXlAJw/f5777rsPb29vPDw8GD9+PMeOHbNoDvWhxUecBAKBQCC4UezduxeAyMhIPD09Abh69ap+v4ODQ7VKrVmzZrFjxw6++uorFi9ezFdffQXAE088QU5ODmPHjqW8vJxnn32WsrIylixZwqVLl9i9e7f+HL/99hv/+te/0Gg0xMbG8sEHH/Daa68ZXSczM5OzZ88CcM899xjtq8lKoVu3bvz9739HpVJx5MgR3n//fZycnFizZg3vvfce27dvZ968eQQGBnLixAl9QvWcOXNwcnLio48+orCwkMTERL2gMRdJkhg7diyPP/44BQUFrFu3jr///e+Eh4dz66236sf9/vvvzJs3jw8++ID333+fnj178uSTTzJx4kTOnDnDM888g5OTE++99x633XYbJ06csGgeliKEk0AgEAgE9aS4uFgvoED5kB83bpzRmMmTJzN79mzWrFnDv/71L9asWUObNm2499572bZtG2lpaQD885//1B+zZ88esrOz9Y8feughZs+ejaOjI7t37+b06dNWmf/ly5dZunSp0bUOHDgAQO/evQH4888/KSwsZODAgUyePFm/b//+/fz222+EhIQwc+ZMOnToYNG1CwsL2bt3L2+++aZRhduBAweMhNPChQu55557aNeuHZMmTSImJoZRo0Zx6NAhAN5++2392GvXrnHkyBELnwXLEEt1AoFAIBCYyZAhQwBlyS4rKws7Ozs2b95M3759azzG3t6e6dOnc+nSJV599VUuX77M9OnTcXBw0I8JDw9n8+bN+n+bNm3C0dFRv18nznTRLFPRHU9PT7p37w4ouU6GmLLoOXnyJAsXLkSSJNatW8d3330HQFFREaBExHbu3Klfvps+fbq+K8eff/7JqlWrCAgIYP369YwYMYKNGzfW/uRVYenSpWzevJmxY8fy+++/M3PmTKPrm0Pnzp2rPW9du3a1aB6WIiJOAkErJTk5mdDQ0EYbLxDcjAwbNox7772X7777jiFDhvC3v/2N9u3bk5+fX+txs2bNYunSpfroyKxZswCl32qHDh3Yv38/27ZtIyAggOPHj7Njxw727Nlj8fz+85//MGnSJJ566imOHTtG7969OXnyJGfOnNELo6qUlpaSlZXF5s2bjbZ/+OGHXLlyBX9/fyIiIli/fj0XLlwAFFE1YMAAgoODOXr0KEeOHNHvM0V+fj6vvvqq/nFYWJjRvnPnzrFp0yaTx77++utcu3aN999/H4Bx48YRGBhISEgIhw8f5ocffiAiIoKUlBRWr17NmTNnzHuy6osskHNycmRAzsnJaeqpCARWYcWKFTIgL1q0yKzxixYtkgF5xYoVjTwzgaDlUFRUJB89elQuKioy2l5WVia/8847ckhIiGxnZye7ubnJwcHB8rPPPitfvnxZlmVZBuSqH7HDhw+XAXn48OFG2w8ePChPmDBBbteunezk5CQHBQXJ//jHP2RZluWFCxfKgLxw4UJZlmV55cqVMiBPmTKlxnnHxsbKY8aMkd3c3GR7e3u5R48e8n//+19ZlmV5xowZMiCvXLlSlmVZfu2112R3d3fZy8tL/u9//ysDcpcuXWRZluUvvvhC7tmzp+zo6Cg7OTnJERERclxcnCzLsjx58mTZx8dHtrW1ldu3by9PmzZNzsvLqzaXlJQU/XNh+G/GjBnylStX5KioKNne3l4eOHCg/Mwzzxjd68iRI2VAfvnll+VevXrJHh4e8jPPPCOXlZXJsizL586dk6dOnSp7e3vLDg4OckBAgDxr1iyj52nGjBlmva6W6IAW36vOGljSo0YgaO4kJyfTr18//eNFixYxb968GscvXryY+fPn6x8nJSWJyJNAgJK/lJKSgr+/v9GymqBlY+p1tUQHiBwngaCVERoayqJFi/SP58+fz+LFi9FoNSSmJ/Lb2d9ITE9Eo9VUE02LFi0SokkgEAhqQeQ4CRoFWZZFm4ImRBdh0omi+fPn89mhz3AcU5lsWvRHEWfWVuYC1BWZEggEAoGIOAkagZKSElasWMH+/fvr3URR0HDmzZtnFHk6s/YMmb8oBnWZv2QK0SRoNdRk7mit8QKBIUI4CazO/v37SUtL4+eff+b9998nKSnJZCmsoPF56eWX6P5Ad/3jK+uvcPSpo1xZf0W/LeCBAF56+aWmmJ5A0GCmT5/OlClTqnkn1cS4ceOYMmUK06dPb+SZCVorQjgJrE5ERATjxo3DxcWF7OxsNmzYwAcffMDBgweFgLrBHMg4gOMYR7wne+u3aQsrXwPvyd44jHHgQMaBppieQNAgvv32W77++msANm3aVKd4GjdunL7k/euvvxaRJ0G9EMJJYHVsbGwYPHgwc+bMYcyYMTg5OZGVlcUPP/zAxx9/bLEtv6D+ZBYqS3Oet3uicjL+765yUuF5u6fROIGgJXHfffcxduxY/WOdeCotL+Xro1/z5t43+fro15SWlxqJJoCxY8dy3333NcW0BS0ckRwuaDRsbW0ZOnQoAwYMICEhgd27d+Pj44ONjXjb3Sg8nSqE0S+ZRpEmUCJPmb9k4nm7p36cQNDSiImJMRJFmzZtol1YO7q+0FU/5qmpT5F/qNKgcuzYscTExNzoqVoFSZLIzs7Gw8Ojqady0yIiToJGx97ensjISH0ESkdWVhaffvopJ0+eRNiJNQ5hXmEU/VFklNNkGHm6sv4KxX8UE+YVZupwgaBFEBMTYxR5yj+Uz7n/nAPg3H/OtRrRJGgeCOEkuGE4ODjg4uKif7xz504uX77M2rVr+fzzzzlz5owQUFbmnbffMaqe857sTdCHQUY5T6fXnuadt99piukJBFZj4y8bcelT+fcl/3A+hx8+TP7hStHk0seFjb9Y1k+tvqTlFLH7zFXScszvu2Yp+/btY+jQofTt25eIiAh27doFwIIFC3jzzTcB+O2335AkiZMnTwLw6KOP8tVXXzXanG4GhHASNBm33norw4YNw9bWlkuXLvH111+zcuVKUlJSmnpqrYKq5pbdH+iuz2nyvN2TgAcC9Pt0JpkCQUtl3cl1dH2hKy4hLib3u4S40PWFrqw7ua7x55J4gWGLt/LAp/EMW7yVdYk193CrL6Wlpdxzzz0sXLiQgwcPsmTJEiZNmkR+fj6jR49my5YtAGzevJkhQ4boH2/ZsoXRo0dbfT43E0I4CZoMJycnbr31VubMmcPgwYOxsbHhwoULrFq1inXrGv+PW2vGlCP4ia9P8MXYL3gr8i2+GPsFx78+btJhXCBoiVzMvQhA1xe7mtyv264b11ik5RQx/4dDaCuC51oZFvxw2OqRpxMnTqBSqfRLlMOHD8fb25ukpCSGDRtGUlISRUVFbN++nX/9619s2bKFEydO4OzsTMeOHa06l5sNIZwETY6Liwvjxo1j9uzZhIeHo1ar8fHxaepptViSk5OriaZ58+ahVqkJ9wnntm63Ee4TjlqlrmaSOX/+fJKTk5ti2gJBg/Bz8wPQ5zZVRbddN66xSLlaoBdNOjSyzLmrhY16XUDfrcHe3p6BAwfy3Xff4ejoSFRUFAcPHmTTpk2MGjWq0efR2hHCSdBscHNzY8KECcyePZvBgwfrt58+fZq1a9eSlpbWhLNrOYSGhrJixQrAPEdwQ/G0YsUK0atO0CKZEjiFc/89Z5TTZEj+4XzO/fccUwKnNOo8/Ns7o6rSbUotSXRt72TV6/Ts2ROtVsvmzZsB2L17N+np6foG36NHj+b//u//GDVqFCqViv79+7NkyRKxTGcFhHASNDvc3d2xt7fXP46NjeXkyZN88sknrFu3jitXrtRytADg8ccfJykpyew2KvPmzSMpKYnHH3+8kWcmEDQOd9x+h1H1nEuICyFfhhjlPOUfyueO2+9o1Hl0cHdk0T19UFdEf9SSxJv3hNDB3bGOIy3Dzs6OH374gYULF9K3b1+ee+451q9fry/AGT16NOfPn9cLpVtvvZWLFy8SFRVl1XncjEiyKGMiNzcXd3d3cnJycHNzu2HXTU5OtujbvaXjWwtZWVls376dQ4cO6avugoODiYqKwtNT+A8JBDc7Vc0tXfq4GPk4nftv/SwJiouLSUlJwd/fHwcHB4vmlJZTxLmrhXRt72R10SRoGKZeV0t0gIg4NRGffvop/fr1MzsZd/HixfTr149PP/20kWfW/GjXrh333HMPTz31FMHBwQAcOXKEDz/8kG3btjXx7AQCQVNiyhE860AWL4e/zP097+fl8JfJOpBl0mG8Meng7siQ7u2EaGqFiIgTNz7ilJycrF+HhrrzUKpWSCUlJd2UkScdV65cYdu2bRw/fpx7771XL6YEAsHNxbfffsuUKZU5S3VFkqqKrHXr1tXadqUhESdB80VEnFogoaGhpsvAtRpIiYND65WfWo3JsvKbWTQBeHt7M3XqVJ588kmCgoL02xMSEvj555/JyclpwtkJBIIbxX333cdDDz0EmLf8Zugw/tBDD4ledYJ6ISJONF2OUzVRdJsn88JLKvcn2jP/t8rmq+ZUSN2slJeX8+6771JQUIBarWbAgAFERkbi6ura1FMTCASNzLfffmuRCDJ3vIg4tU4aGnESwommE05gQjyNsmfecHsW7yxh/p+VIkqIpro5f/4827Zt49y5cwDY2NgQHh7O8OHDcXZ2btrJCQSCFocQTq0TIZysQFMKJ7QaFk/sYBRZ8nCA68WVQxbd5sm8n9NApb6xc2uhpKSksHXrVi5eVByCbW1tmThxIn379m3imQkEgpaEEE6tE5Hj1NI5v5t54SUsGlXpW2QkmkbZK8t353c3weRaJv7+/jz66KNMmzYNX19fysrK8PLyauppCQQCgaAVIIRTU5OvmDnOG26PR5UvNB4OynbDcQLzkCSJgIAAZs6cyeOPP27UwmXz5s1s376dkpKSWs4gEAgELZfU1FQiIyNr3N++fXt9WoPAMmyaegI3PS7eACzeWWIUaQIl8rR4Z4kinirGCSxDkiR8fX31j3NyctizZw9arZa9e/cybNgwIiIisLOza8JZCgQCgXXp2LEjcXFxTT2NVomIODU1XYYq1XMGieCGkaf5f5awONEeugxtgsm1Ptzc3Ljnnnto3749RUVFbNmyhWXLlrFnzx7KysqaenoCgaC1kHMZUnYoP62IJEn8+9//ZtCgQXTt2pUNGzawaNEiBg4cSI8ePYiNjQXg3LlzeHh46I/buHEjvXv3pm/fvrz88stWndPNhhBOTczit98xthwYZU/2K25GOU/zf8tk8dvvNMX0Wh2SJBESEsJTTz3F3XffTdu2bSkoKGDTpk0sW7aMCxcuNPUUBQJBS+fAV7A0BFZNVH4e+Mqqp3dxcSE+Pp7PP/+cadOm0aFDB/bt28ebb77JSy+9VG18RkYGjzzyCN9//z0HDx4kICCArKwsq87pZkIIpybEpI9TRU7TvOH2LLqtsg+b3iRTYBVUKhWhoaE8/fTT3HHHHXh4eFBaWkr79u2bemoCgaAlk3MZfp4DslZ5LGvh5+esGnnSuaUPHDiQgoICpk6dCkBERASnTp2qNn7v3r307dtXbxj82GOPifSEBiBynJoIU47g815+Samey78CLt7M+7+h8PY7+nG6n8LPyXqo1WrCwsIIDQ0lPT0dJycnAGRZZsOGDXTt2pW+ffuiVgsrCIFAYAbXzlSKJh2yBq6dBXdf08dYiK6EXvd3yfBxeXl5ncdLkmSVedysiIhTE5CcnFxdNM2bp/g0+UdCn8nKT5WaefPmVWvPkpyc3BTTbtWo1WqjJPJz586RnJzMTz/9xAcffEBycjJarbaWMwgEAgHQtjtIVT5aJTW07dY08wGGDBnCwYMHOX78OABffPEFpaWlTTaflk6rEE6XL19m2rRptGvXDkdHR/r06cO+ffuaelo1EhoayooVKwDzHMENxdOKFStu+l51N4JOnToxZswYnJ2duXbtGj/++CMffvghhw8fRnjGCgSCGnH3hYnLFLEEys+JS60WbaoPnp6efPHFF9x9992EhoZy6tQp2rVr12Tzaem0eOfw7Oxs+vfvT3R0NE8++SSenp6cOnWK7t270717d7PO0VTO4cnJyRaJIEvHCxpOaWkpCQkJ7Nq1i6KiIgC8vLx44IEHjCpWBAJB66NBzuE5l5XlubbdmlQ0CarTUOfwFp/j9NZbb+Hn58fKlSv12/z9/ZtwRuZjqQgSounGY2dnx/DhwwkPD2fv3r3s2bMHjUZz41vzCASCloW7rxBMrZQWv1S3ceNGBg4cyL333ouXlxf9+/fn008/beppCVoZ9vb2jBw5kjlz5nDvvfeiUin/dcrLy1m3bh2nT58WS3gCgUBwE9DiI05nz57lo48+Yu7cuSxYsIDExERmz56NnZ0dM2bMMHlMSUmJUbuN3NzcGzVdQQvH0dERR0dH/eO//vqLY8eOcezYMTp37kx0dHSLiXgKBAKBwHJafMRJq9USFhbGm2++Sf/+/Zk1axaPP/44H3/8cY3HLFq0CHd3d/0/Pz+/GzhjQWsiKCiIIUOGYGNjw4ULF1i1ahVffvkl58+fb+qpCQQCgaARaPHCqUOHDnpTLx29e/eu1QF6/vz55OTk6P9dvHixsacpaKU4OzszduxY5syZQ0REBGq1mnPnzrFy5Uq+/vpr0cZFIBAIWhktfqlu2LBhnDhxwmjbyZMn6dKlS43H2NvbY29vX+N+gcBSXF1due222xg2bBhxcXEcOHAAlUqFra1tU09NIBAIBFakxUecnn/+efbu3cubb77J6dOnWbt2LStWrODpp59u6qkJbkLc3d25/fbbefbZZxk3bpx+e15eHt999x1XrlxpwtkJBIKWjiRJXL9+3eS+2267rVogwRQPP/wwS5cute7EbiJafMQpPDycH3/8kfnz5/PPf/4Tf39/li5dyoMPPtjUUxPcxLRp08bo8c6dOzly5AhHjhwhODiYqKgoPD09azhaIBAILOe3335r6incFLT4iBPA7bffzqFDhyguLubYsWM8/vjjTT0lgcCIgQMHEhwcDMCRI0f48MMP+eGHH0SHcoGglZJekE5CWgLpBelWP/eHH35IREQE/v7+Rh6GXbt2JSkpCYDjx48zZMgQgoODueeeexgzZgxffvmlfuyxY8cYNWoUgYGB3HPPPaIFiwW0CuEkEDR3PD09uffee3nyySfp3bs3sixz8OBBPvjgA3799demnp5AILAiP5z6gbHfj+WxPx5j7Pdj+eHUD1Y9v729PQkJCfz+++/Mnj3bZGPfhx56iFmzZnHkyBH+/e9/s2PHDqP9SUlJ/Pzzzxw7dowrV67w/fffW3WOrRkhnASCG4i3tzdTpkzhiSeeIDAwEK1Wi41Ni18xFwgEFaQXpPP6ntfRykpTcK2s5fU9r1s18qRLRenVqxc2NjakpxufOzc3l6SkJKZPnw4olebDhw83GnP33Xfj5OSEWq0mIiKCM2fOWG1+rR3xF1sgaAI6dOjAAw88wKVLl4zyoS5dusTBgweJjIzE1dW1CWcoEAjqw4XcC3rRpEMra7mYdxEfZx+rXMOwb55arTYZcaqKJEkNPodAQUScBIImpFOnTjg7O+sfb9u2jYSEBJYtW0ZMTAz5+flNODuBQGApnd06o5KMP1pVkgo/1xtntOzm5kZoaCirV68G4MSJE+zcufOGXb+1I4STQNCMGD58OJ07d6a8vJy9e/eybNkyNm/eTGFhYVNPTSAQmIGPsw8LhyzUiyeVpGLhkIVWizaZy1dffcVHH31ESEgIr7zyCuHh4Xh4eNzQObRWJFl0JiU3Nxd3d3dycnJE13tBkyPLMmfPnmXr1q1cvnwZADs7O2655RYGDx7cxLMTCG4eiouLSUlJwd/f32hpyxzSC9K5mHcRP1e/Gy6aAPLz83F2dkaSJFJSUhgyZAiJiYmixRimX1dLdIDIcRIImhmSJNG9e3e6devGqVOn2LZtG2lpacKFXCBoQfg4+zSJYNKxe/duXnrpJQA0Gg3vvvuuEE1WQggngaCZIkkSgYGB9OjRg5MnTxIQEKDfd+TIEa5du8agQYOws7NrwlkKBILmyJgxYxgzZkxTT6NVIoSTQNDMkSSJnj176h9rNBq2bNlCdnY2e/bsYfjw4YSHh4uIlEAgENwARHK4QNDCkCSJ6Oho2rZtS2FhIX/88QfLli1j7969oqRYIBAIGhkRcRIIWhgqlYq+ffsSEhJCcnIy27dv5/r168TExLB7924mTJhgFKESCAQNQ9RQtS4a+noK4SQQtFBUKhX9+/enb9++JCUlsWPHDnJycrC3t2/qqQkErQJbW1skSSIzMxNPT89qJpKClocsy2RmZiJJUr3TG4QdAcKOQNA6KC8v5+TJkwQFBem3xcfHY29vT9++fVGpxMq8QGAp+fn5XLp0SUSdWhGSJNGpUydcXFz024QdgUBwE2JjY2MkmgoKCvjzzz8pLS0lLi6OqKgogoODhYBqIBqthgMZB8gszMTTyZMwrzDUKrXVxguaFy4uLvTo0YOysrKmnorAStja2qJW1///oIg4ISJOrQ6tBs7vhvwr4OINXYbCTfhBVVZWRkJCArt27dI7j3t5eREVFUXv3r0bddmhpYqFuua95fwWFics5krhFf02bydv5kXMY3SX0dXOZ+l4gUDQNFiiA4RwQginVsXRjfD7y5CXVrnNtQOMfxuC7mi6eTUhJSUlxMfHs3vXTorTT0FpAT6+nbnzkefo4NvJ6tdrqWKhrnlvOb+FubFzkTH+kymhCNAlUUuM7s/S8QKBoOkQwslChHBqJRzdCN8+VPP++76+acUTRzdS/PNL7Dl6ib2XNJRrYfbozrjf9TY4tbNadK6lioW65v2fkf/h7cS3jURV1XHeTt7ETIpBrVKj0WoY+/1Ys8cLBIKmRQgnCxHCqRWg1cA73aEou+Yxjm3hpdM337Ld0Y3w7XSoEAVFZTIXcrT0bF/5PGxLKaeLhwr/zr5I9YzOtVSxYM68Pew9yC6p5b1VwRdjvyDcJ5zE9EQe3fSo2eMFzZvS0lKKioqaeho3PY6Ojo3WKUEkhwtuPlLiahdNAEXXlHHdo27IlJoFWg3EvAIGkRRHW8lINKXladl+vhzOQ5dzF7jl4jS6zFptsXg6kHGgRvEBICOTXpjOgYwDzUosmDNvc0QTQGZhptFPc8cLmi+ZmZmkpqYKK4JmgCzLdOzYEU9PzyadhxBOgtbB+Z3mj7uZhNP53ZCbWusQV3uJQb5q9qVqOZ+jYWWSlm7/+hvRi/ri16Wr2ZdqqWLBmvPxdPI0+mnueEHzpLS0lNTUVNzc3PDy8hLiqQmRZZmMjAxSU1Nxd3dv0h6dQjgJWgfmLjjfbAvT+TVHUnS42EmM72HLsM4yO86X81ealrOpWZxd8jo9IkYzceJEs5awW6pYMHc+bezbcL3kerU8KKhchgzzCgMgzCsMbyfvWiNZANnF5kWyBE1DUVERkiTh5eWFs7NzU0/npsfLy4u8vDyKioqaVDgJQxdB68A/0rrjWgsu3mYPdbOXuD3QlmcH2RHWQY2qrIC01Ms4pu+HQ+uVZU6tpsbjdWJBl1BdFQkJHycfvbhoLpg771cHv6p/XHU/wCsRr+hzt9QqNS+Hv1zntd9JfAdNLc+poHkgIk3Ng+byOgjhJGgddB2uJH/XhkMb5acZIqDV0GUouHWEGkSBKTwcJO7oacsz7XZyd+YybNfeBd8/hvbLCWz6W1cy4r4yeZxapWZexDzAPHHRXDB33mO6jmFJ1BK8nLyMxng7eZusFmyje7/Vgi7nqzmg0WpITE/kt7O/kZieKARdDfj6+iJJksl/kydPburpAYqH21133YWLiwuSJPH0009XGzN58mQkSeKdd95pghm2bMRSnaB1oFLDxGW12xFIEnxlkPDs1hHGvdWyLAosNfdUqZV7/HY6ingyf62yrbqAtk6Vj49kaNlzMpO9/5hFyF1HGTntRdq3b290zOguo1kStcSkH9IrEa80SysCMH/eo7uMJtov2ixzz5aU89VSvbeagv/85z8UFBRw6dIlXn/9dTw8PPTio3v37k08O4Xdu3fz008/4ePjwzvvvENYWPOK8rZ0RMRJ0HoIukPxanLraLxdF4kquma8PTdNERRHN96Y+TWUoxthaQisuh2+f0z5uTSk7vkH3QH3fQVuHRp0eR8Xid7tVcjAod8/54P3l7NhwwauXTN+Xkd3Gc2mSZv4YuwXvBX5Fl+M/YKYSTHN/gPY3HmrVWrCfcK5rdtthPuE1xhBayk5XzoPq6r5WBmFGcyNncuW81tqPPZmjFLdf//9zJw5k7vuugsAJycnZs6cSadOnbjlllsYM2aMfuyYMWOQJInNmzfzwgsvIEkSd9xxBwMHDsTFxYURI0Zw6dIlAPLy8njyySfx9fXF0dGRoKAg/ve//9U4j1WrVhEUFISjoyMdOnTgscceIycnh99++42oqCgA0tPTeeqpp0hISKjzvt5//326dOmCnZ0drq6uhIaGkpqaSmFhIZMmTaJNmzbY2tri5eXFE088AaC/J11Ea/ny5UaRN0vvqaUgIk6C1kXQHdBrQmVUxqk9/PQkmLRgkQEJYuYpxzSzJSQjqngx6dGJv/u+qj1yVvV5cfGGgiz4bS4UZpk1BU9nFVNCVKTlaYk9V8CJ7AskJUkcPHiQfv36MX78eH23cZ24aGlYc9663KmMwgyzEsqbAo1Ww+KExSbnJyMjIfFWwltE+0VXE4giSmXMuHHj6NOnD1u3buXMmTO4u7uzfft2evTowa233kpMTAwAsbGxLFiwgO3btxMTE8PMmTOJiYnhqaeeYvXq1UyaNInAwEC+//57HnroIQICAhg4cKDRtTZv3syjjz5K27Zt+ec//8nmzZv54osvyMvL491332XOnDksW7aMbt26MX/+fIYPH17n/OfPn4+joyPvvPMOhYWF7Nu3j7KyMn744Qd++OEHbr31Vu68804uXbpEQUGBWc+JJffUkhARJ0HrQ6VWksD7TFZ+r7UcX4bcy4qgaK6Y8GKqpGJbzLy6c7YMnxf/SAi5C8Yttng6HVxV3N/HlscnDiYgIACtVktGRgY2Nia+h2k1Sj5ZK80rqy3i0hJyvizx3jKkIVGq1szcuXPRaDS8++67rFq1itLSUh577DGjMZMmTWLevHmsWrUKgLi4OAB+++03AL7//nsWLVrEyZMnKS8v12835IcffkCr1TJz5kxeeuklvv76awB+//13fH199VGvdu3aMXPmTHr16lXn3Lt37052dja///47V69eZdasWXTp0oVevXqhVqs5cuQIcXFxuLi48MILL5j1fFhyTy0JEXEStG7MKMc3e1xTNQ+u04vJQPxZWjXoWv/lO9/uQUwbHcnFixdRqVT6ipfi4mJ27NjB0DbZuMS9Zjz3lphXVgPmRFyae85X1fwqSSsjSyj5gDWMa0iUqrXz0EMP8X//93+sWbOGzp074+TkxKxZsyw6x8qVK2nTprKwICAgoM5jrFFtFhcXxzfffENycjIbN25kyZIlrFmzhgceeIDk5GQ2bNjAsWPHeOONN1iyZAmpqamo1crrW15eDkBWlunodX3uqTkjhJOgdWNuOX5d445uVKI+TSECrCn+qqKrustNw/zEcUk5pstQAPz8/Iz27t27l90/rSTx2I+E+6oZ5qfG2a7iD7u5S4vNnJp62+kiLoZVdpYklN9ovFRu9D1dSM+LxbgVaLAr0yKrJIptJa60teVIV0cueNsZ5WG1VIf4G4Farebpp59m3rx5XL9+nfvvv99IMIASfenZsyfbt28HIDJS+bJz2223sXr1aj799FOmTp1KZmYmv/76K//6178IDg42OsekSZNYsWIFn3/+Oe3atWPLFiXCN378+HrPffr06YSFhRESEsLx48c5ffo058+fJyYmhnXr1tGnTx8GDhxITEwM165do7CwUC+Atm7dyqpVq/j888+NzmnJPbUkhHAStG7qFAbGIsAkDc0vaijWEn+msLjqrkIAjVtcY7Sti18nOmXGckkrs/tiOftSNQzyVTPUT42jbcU5mlFemUarsUjU1Cfi0uxyvrKzIS6OsIPJjD0uU1BWrr8fSSvjWCLTNa0E/7RS5DYehAUUQ/tysLFpUdWCTcEzzzzD4sWLuX79Os8880y1/aNGjWL9+vUcP36cyMhIPv30UwA+/PBDXF1d2bhxIy+++CLu7u6EhYWZrNQbPXo0X3zxBYsXL+Yf//gH7u7uPPLII7z77rv1nndxcTHvvfce169fx8XFhbvuuounnnqKQ4cOkZiYyPr16ykpKaFjx44sWLCANm3aMGPGDH788Ue2b9/OokWLGDp0KN9++63+nJbcU0tCNPlFNPlt9eiFDxgLgwoRUJvw0WqUyrUal8oqhNdzhxpPBOjnUIf4a8gcTEXUHNsq1zPsAejmq4im2oRiShzylxM4fU3LtnMaUvO0ANirJYb6qRnRRa0sLcz4pckNSeuT4NziG/impMC6dVBcDMDZ62fZdG4TgJEY1OVhje06lm4e3aBzZ7j/fhJzDrfs+7eAnJwczp8/T0BAAE5OTnWOP3XqFPHx8cyaNYugoCD27dun3/fCCy+wZMkS5s6dy3//+9/GnHarpbCwkNOnT9OlSxfc3d2tem7R5FcgMERXjm9yqa0OEdCY+UXmoMurCroL9n5I9ahQ3REgszBVdaeLwlma15V/BUmS6NFOTUBbFSeytGxL0XClQEt2sVyZj1GfpUUrYslymyEtOuJy5gysXQuayiT2bh7dGBVyFyu18aSSi0or0zZPQ5+rtozoMEwRTQAXLsDKlYQ9PKPZVws2FR9//DFLly6le/furFixoqmnI2gkhHAS3BzUJAzMEAFm0RgiwFQUSJLAMEhsjvgzF13VXVUsFYQGS4aSJNGrvZqe7VQcu6qlg0tlIe/VUntO7NpFeHj4De871ZAE5/r4M1m6HNgoZGQokSYD0YSvLwwbRmDPnvxLwniOzj1RJyXD7t1QVKQ/h/rb75g38mXm7ngRCclklKqpqwWbiv/+9781RpNq2ydoWQjhJLh5qEkY1EZj5BeZU51XU16VrCx7Mfgp6HnbjavsswQTeWWSJBHkqZunsrS47XQhR47tZ/fu3URGRjJgwAC9D1Rj05AEZ0v9mZqN39GmTVBaWvm4Tx+46y6oqIxSQ/WltchI6N0bvv4acnKUbefOMbp//2ZdLSgQNCZCOAkEtWGOOaRrR0XQHFpfdyTLnOq8Wn2bACQ4+hOM+VfzE01QR8J55dJiYFkXUtPTyc7OJiYmhl27dhEZGUlYWJhpTygr0pDlNp0/09zYuXVGXOq7HGh1srKUZTpAK2s5107F8b52eGYeqIx+1STo27eHadPg008rhVdiIqNnzmy21YICQWMihJNAUBNaDWyaX/e4siLzeuCZW53X1HlVGg0cPw4HD8L160oSsY0NODpCly4wYAC0raOhshl5ZaFASEgISUlJ7NixQ98uYteuXYwaNYq+ffta/94qaGg7FHP8mZqV31FFkvLZ62fZeXknXw6zI3P39/o5z+switEJX9Us6D09ISwM9u5V9l26BGlpqDt0aPEJ4AKBpQjhJBDURJ0CpoLibOPHpmwK6nT/NijRNzdf6ux26y7VFRZCQgLs3w95eabHXLoEu3ZBQAAMGqT8rMl8z4y8MrVazYABAwjtE8Jfv61ix85d5GSryL3euInF1miHUpc/U7PxO9Jo4K+/9NVzV9rYkNnGWb87o/AKc0+vYUl5Nkaxr6rv44EDK4UTKO+T229vvHm3ZC5ehMuXQauFdu2U/ydqEYlrLbQ64bR48WLmz5/PnDlzWLp0aVNPR9BcyMuDpCRITVUiKLIMDg7KMkT//soft6rUO+HbRA88S6JI5uZLxb0DyWusY8KZmqpUW+Xnmzf+9GnlX1gYTJhQ84eCOXllRzdiE/MK4bmp9HeSOZCmpd/ePdD+bQi6g5SUFPLy8ggJCUGlsk6XKEuW2+o6T02ip7Gr78xOOM/JQVtUyM7LO5GROdbF0Wh3xbuVt9q1IbqwCHXVPbr3cfv24OeniAKA9PR6zbtVc/gw/PGHIpoM8fCAESOUnDErvYcFTUerEk6JiYl88sknjRriF7Qwzp2DxEQ4dkz59meKnTuhe3cID4eePSsjKPUxlNRTZTnNkuq84LvNd/O2hgnnhQuwerVx4jCAra3yvDg5KVGLK1eqf1geOAAFBTBliukPhLoS4assX9qoJCJ81VCYDt9OR753FZvi0khPTycuLo6oqCiCgoKs0mKisduhNHQ5sDYsSjgvLiatII38MkUU5zlVf51kSSLdxoYDDvaEF5cY7jF+H7dpUymcKnygBBVs3w4bN5red/26su/CBXjwwQaJJ19fX9avX8+QIUMa9RhQijoyMzNp3769pdNs1bQa4ZSfn8+DDz7Ip59+yr/+9a+mno6gqdFo4Jdf4K+/zBt/5ozyr1s3uO8+JRpVr3YkVdAJJkuq8yxy8zYR3bKErCz45htj0dS2rbIMFxqqPA/6S8nKN+nERDh0qFKInjgBv/1WfdmmrkR4M5Yvtb/PIzj8I3JycsjMzOS7777D29ub6Ohoevbs2WAB1ZjtUKyxHGiK+iScF5YV6n+Xa3nKMmuKHJoS/sI7uZITJ2oWTYYkJYGPD9x6a6NPqTmgqbC+UBu8r8rKysyunrVk7I2k1cQMn376aSZMmMDo0aIMtjlQpPN9aQrKyxUxYEo0eXiAv78ikDxNfNM/exa++ELJ99EJGEBfDWYpOsFUmAVSbf/dJMWVW2c6qUuudjOnCa9BVMBSfvut0qMHoEcP+NvfFOFkKJpAicR16gR33w0PPKBEpHTs26dE93ToIklVlyd1EbKjG81avlTnpxLZWc2cOXOIiorC3t6eK1eu8L///Y9PP/2U8+fPW37PVdAtt93W7TbCfcKtlqitWw6EyuU/HfX1O6or4RzgrYS30GgNvJocHHCyrXS9di2sIfIKeBp6PBmiex/rLAlAKRYQKGzdavx4wAB47jl45RUYPdo4whQXB2VlVp/Ca6+9RkhICL169SIkJIQ///zTaP+qVasIDg6mc+fO/N///Z9+++HDh4mKiiIkJITAwEAWLVpk1vUWLlxI3759CQoKIjIykpMnTwKKQ/rYsWOJjIwkMDCQrVu34urqylNPPUVQUBCLFy/myJEjDB06lMDAQHr16sXq1av155Ukieeff56QkBCeffZZKzwz1qdVRJz+97//ceDAARITE80aX1JSQklJZTg6Nze3saZ2U5KTk8P7779PcHAwI0eOrNbkslGRZfjpJyX/RockKUtwERGKaDKMUugiKIcPK4ILFKPAb76B6dNrqQ7zhbJC43YkpijIUkTCdw9TZ9Sqqvu3Lrk6dhHseKfue7c0J+vqVX2JOqC01JgyRamgq0CjlUlIuUZGXjFerg5E+LdFrZKUZNf77lPyonSRh8RE6NrV/ET40a+ZN8/8Kzg4OBAVFcWgQYPYvXs38fHxpKamNq1ANwNrLwfWK+Hc3Z0ObbviYutCQVkBPS8Uc6yrseiRZBlvjYYwo2U6MOrleO0aGApVLy+L5t5qyc42/nsTHKx8sdAxfjzY2SlfUkBZ2j58WMmttCKzZs3itddeA5Smu4899hgpKSn6/RkZGRw6dIgrV64QFhbGiBEjiIqKYurUqaxevZp+/fqRl5fHgAEDGDZsGCNGjKjxWp988gknTpzgwIED2NjY8NFHHzFr1ixiY2MB+Ouvvzhw4ACdOnXixIkT5OfnExwczIcffghA3759mT59Oi+++CKHDx9m+PDhREREEBgYCICNjQ2HDx+26vNjTVq8cLp48SJz5sxh8+bNOFT9hlwDixYt4vXXX2/kmd28nDhxgrKyMpKSkjh48CD9+/cnMjISDw+Pxr/44cPKMpIOe3tFDHTrZnq8r6/yb+hQWLOm8hv1xYtK7lN0dM3VYcd+hu9m1D6fTfMrglW1iCZJDZO+MJ2jpFKD/0jzhJOlOVkGfbQAGDfOSDTFHE7j9Z+PkpZTmcvSwd2BhRODGBfSQYlOBQbC3j+gtAByLsKYW+HaIfMS4QvMTIo2uC9HR0dGjRrF4MGDSU5OpmfPnvp9R44cwdnZma5du5p33huENZcD65Vwrlaj6tef4RnD2XRuEx2zymh3vYwsDyViqPsa8UrWdYxnVKWdT9X3S9jN11LFJFeqCNlBg6qPGTq0UjiB8uXMysTHx/Pmm29y/fp11Go1586do6CgAGdnpYLy8ccfR6VS0aFDB2677TY2bdpE27ZtOX36NFOnTtWfp6CggIMHD9YqnH766SeSk5MJCQkBQFslfzQ6OppOnTrpH9vY2PC3v/0NgOvXr3P06FHmzJkDKJYkAwcO5M8//9QLpyeffNIKz0jj0eKF0/79+8nIyCDM4D+xRqNhx44dvP/++5SUlBitrwLMnz+fuXPn6h/n5ubi5+d3w+bc2omIiMDX15dt27Zx+vRp9u/fT1JSEmFhYURGRjZuI+X4+Mrf1Wrlm1+XLvpNNVYieXkpEabPP1eW6UD5oIiMVMSEqeowJxOVeFXJM8POQNaAcy3nqjPXyiAqYC6pqcof8sJCJWLUsaOSsyTLIEnEHE7jydUHql0tPaeYJ1cf4KNpYYxTJcLhVyH5UuWABVtg4gOYhbNnve/L2dmZoUMrt5eUlPDrr79SWFhIt27diI6Oblb/p2urvrOEeiecDxxIt4QExnYdy87LOxl0rIDfB7kjqyS8nXx4pcMtjL72FVCZC2XUzufaNaUQQEeHDsoXDkF1TOV+NXI+WHFxMQ8++CAxMTGMGDGC7Oxs2rZtS1FRkV44mUKWZdzc3Dh+/LhF15Nlmblz5/LCCy+Y3O/i4mL02MHBodrnsCFVcxUb9TPCCrR44TRq1CgOGUYYgEceeYRevXrxyiuvmHyx7O3tsbe3v1FTvCnx9fVl2rRpXLhwgW3btpGSkkJiYiJHjhxh7ty5jeMMnZqq+AzpGDjQSDTVWYnUrp0SYfr1V2VnQYFSjdenj+nrWbM/XW3nMtOJ22iZz1Q1m1aGo0crqwwPHqwcb2MDn30Gnp5oBgxk0R/XaltoI3bDF4wtfwfJRguOEhRVjE7PrGhGbAauHSy/rxrQarUEBwdz4MABzp49y9mzZwkICCA6OhrfVvQBX++Ecy8v6NqVbuegq3tX0grSuLesA/LtEwjzGah8eRj6sukKyOvXlapLwyq68PCa/btuNnx8jHtIxsdDRSRGz65dxo+tvMxZVFREWVkZ3Soi62+99Va1MZ9//jnjx48nIyOD33//na+++oq+ffvi4uLCe++9x+zZswElcuvp6YlXLXO88847ee+993jooYfw8vKipKSE/fv3G32ZqQkPDw+CgoJYvnw5c+fO5ciRI+zbt0+/jNcSaPHCydXVVR8u1OHs7Ey7du2qbRfceDp37syMGTM4d+4cW7dupXPnzkaiqbi42Owl1jqpupQQXvkN3+xKpL59YfPmyiqzfftqFk4Nsiuw8FxmOHHrMVXNVtgOtCPApavyuGpyqlNF8nBmJqlrv2dC8hX2dO7LXx17VvuAlNAyu+wzkJToFI4qKKpIKi4z55u1QSRJpTb/vmrB0dGRCRMmMGzYMHbs2EFSUhKnT5/m9OnT9OzZkzFjxtDOlFdXC6NB/lNjxsDKlajKyvB18cU3FfjjGES2V5ayq0ZVi4vh4H7YscPY36tTJ6XiUqDg4aHk/J06pTw+ehS++kqJVjs4KH9DduyoHO/iUvPfFDO5/fbbjf6O7tmzh3nz5hEREUGbNm2YNGlStWM8PT0JDg4mLy+PmTNn6gupfvnlF5555hnef/99tFotbdq04dtvv631+n/729/IysoiMlJ5v2g0GqZNm2aWcAL45ptvePzxx/nkk0+QJInly5fTo0cPc2+/yZFkufXVlEZFRdGvXz+zDTBzc3Nxd3cnJyen2YcIWzKyLKPVavVRwHPnzrF27VoGDRrE0KFDcWxolc7y5Up5PShJ4DOU/CONVsPY78fWmFSr+5YeMylG+cD55ZdKESZJ8Oqrpg0etRpYGlL7UpNrByV4Utdy1HOHzLMSsNAXCYCL5XCmQtgE3w2ePZWlF8OIU1gYVLz3j6fnEnNY8WtK7hDItm4DjcTTYNVR/mdnYPlxqAyyKs7vqoIBdnXchFTdd8qcxscWcO3aNXbs2EFycjKg5EzU9g26pWEqeurj5FN3wvnx47BuXfWlo7ZtlSiJi4ti5ZGZqeQLVvX2atsWHnsMaln+aU3k5ORw/vx5AgICcNJ9uTDFyZOwYoV5S3LjxyuVdgKLKSws5PTp03Tp0gV3d3erntsSHdDiI06m0GX2C5oXkiQZLZ0ePnyY0tJS4uLiSEhIYMiQIQwePLj+EahCg/wMHx/9rxZXInUwsACQZeWbt6kPCnOW0MZXhMytsBylv2ZNTtymqtlSNXCmvPJ6p7eAb4gSjbOzqywpnzBBsSXYvx9nu8rnMTTtJGUqG3b6V1YAeXHd+LqGUSZz/qJEza8eSTLHYdwC2rZty1133cXw4cNJSUkxEk379++nS5cuLdrUr94J5716wf33w3ffGUcdr10zjoqYomNHJWfwJhFNFhEYCHfeqVT01iaeBgyAW265cfMSNAqtUjgJWgYTJkwgICCAbdu2ceXKFWJjY9m7dy9Dhw5l0KBBlueh6ewEwKg6zOJKpKr5V4bnrYq5S2hWWI6qk6q+SHlaOGU4dxk8C2HSEPAbrHhW6f7IX7oEkyfDiBF0jE/A+ejHFBQrH6wDLx/liktbTnkq+WIZeFSeskiGXIOKGkcz8l7ada/f/dWD9u3bGwmka9eu8euvvyLLMn379mXkyJG0rathcTOl3gnngYHw+OOKUDp6tGZHfR0uLkq+4NChitgWmCYyUsmT3LxZcQg3pG1bpeXKsGGi5UorQAgnQZMhSRK9evWiZ8+eHD16lNjYWDIzM9m6dSsnT55k5syZlp3Q3r7yW7RB9MniSiTDyBVUN4KsuqzUa0LNzWx1YzWlcNfHilApvGqV5ahqVE0wv6gx/vbb1Ub5V3pNyWkKDFQcj0FJFs/PBxcX1EOH0PvpYvb991P9oeGXj3KqfWckSSJR24siRx8ci65AahVR6WPG/VgzN6weBAYGcvz4cZKTkzl06BChoaGMHDnyxthlNBe8vBShnJ+vVMslJSl+RLr3i42N0pdu4EAlSiUa1JpHUJDyT1eoomvy2727EEytCCGcBE2OJEkEBwfTu3dvjhw5QmxsLAMHDtTv12g0yLJcdyWeh0dlEuuJE3DbbaBWW16JdOxY5U4HB+Nv2XW1ETGktrFWXJbSYyhISmXINIgktFVDF7XROM2AMNL3b6WwrBAnWyd8dmxHfdsEAIbfHY1DeipJ6zeRX1KOV/41fPKykPw6sXBiEI6qd+DrhyDN4BquKnCtLeJUD9sEK9O2bVumTp1Kamoq2/78k1P7tvJXzGEObv+Z/lETuWX0rbXnsrQ2XFyUSMiIEYpoKilRRJKNjVWr5sxuSNxa6NhR+SdolQjhJGg2qFQq+vTpQ3BwsNH2v/76i+3btzNixAj69+9fs4Dq06fSjiA/X0mEDQ62rBIpPd04zN63b+UHiKnEazDdaNeSsdbC0O8prdw42tRJrbR8qRAuW85vYXHSIkalH8M9X4kauZz/k15lKUTc+QwAA6eMJyz9JJeziygoLWd8H4mAJ25RnMMLRoHtA6D+DsrzlGt0VCveVkXXsEo+VyPS8fo+Hsx8k4uqS8Sml3MmW8vhExsZ1ekDCLv3hs2jWQkKSaoeXbUCFjUkFghaACJ2KGh2qFQqVAZh7YMHD5KXl8evv/7K8uXL2b9/v755pBGhocb90/bs0edv6FpfeDkZV1Z5O3lXWhHIMuyu0u9NF/mqs40IShsRrcaysdbEsLdeZpW8ozYVz+e4xWy5uI25sXO5UpTB3qDKRN+CsgL2r3yDv1b+W/HuadsWVY8e+LV1opePGz2vXUQta+HoEXhrPmRmQa/boe/9MHw6vPgzvHQa7vu6eo89t46NIxbrg0EfPT93FQ+F2vFIPztu61yE48bH4ehGZFlm7969FBQUNNo0tpzfwtjvx/Lopkd5Je4VHt30KGO/H8uW81sa7Zo3Gp0NSNXiDJ0NSGu6V8HNQ6u0I7AUYUfQvCkvL+fAgQPExcWRl6dEN9q0acPIkSPp27evkcji559h//7Kx2FhMHGiPmpU6zf8nTthi8Ef8q5d4eGHld9T4mDV7XVPdsYvyk9zxzbGkt3RjfDKTMiraB/jq4YBXWHcYjS9JlSzZgg7UcCgo8oSp4SEs60z04IfQhXYUxGe8fHKz4ICaCvDkV+hJK/yeu4e8PdlEFHZtsHa9gINRjefvDSIma/kmZlEWU48ffuPrF77DXZ2dkRERDB06FCrLuHV5Cumi4DqxXwLxmIbkGaI2XYEN5ji4mLmzp3LL7/8go2NDTY2NsyePZtnnnmm1uOuXr3KkiVLePPNN/XbIiIimD17NtOmTeO5556jV69e+vYozQ1hRyAQmImNjQ0RERH079+f/fv3ExcXR3Z2Nhs2bOD8+fPceeedlYOHDVN61en8Zw4cUJK9x4yBtm1NVyLl5ysVRgkJldskCUaONBhjpku4JW7i1nQeNyToDoh4Bq6mKD3khg+F+58FlZoD6YnVPsgOBDohSzD4SD4yMvll+aTlp+J7UlKWLnXtGAqugv0p478ajiroVQS//Q1cnCojSla2F2gQpnLNakTpo2efeYiOHTuSmprKzp07SUxMZPDgwQwZMqTBhq0arYbFCYtN5tvJyEhIvJXwFtF+0c1WUJhDvRoSC8zivvvuo6SkhMOHD+Pm5saJEycYP3485eXlPPfcczUel5WVxfLly42EkyHmeh8aUlZWhq1hpP8mQAgnQYvB1taWwYMHExYWRmJiIrt27WLAgAH6/WVlZdi0aYN0773wzTeVZdbHjyvJ4gEBSgSqTRtFGOXlQXKyUpJddelv/HjFRFOHuZVgllSMNWZ1mb0DtKloN9Oulz7aY9KaQZL4K9CZbFcbIo7l0y6nnMKyispC3fMiy3DtLHSsaLqiksBbBd1swLYifylmnlJd2Jw+7GvKNasDPzelKerJkyfZtm0b6enpbN++nfj4eIYMGcKwYcPq3TboZhEU9WpI3Ap47bXXKC0tNRInCxYswM7Ojtdee63B5z98+DB//PEH58+f10dGevbsyVtvvcXs2bMJDAxk7ty5+v5z+/bt48477+Ty5cvMnDmTwsJCevXqhY2NDYcPHzY69+TJkwkNDeUf//gHJSUlzJ07l7i4OEpLS+nWrRurVq3C09OTyZMno1KpOHv2LFlZWaSkpDT4vloSQjgJWhx2dnYMGzaMiIgIo286W7duJSUlhaioKHpOnoz0ww+VHkyyrLRE0LVFqI2xYyEiwnibpY12rd2U11KcnCptFXTJ7loNnjlpNR5yroM953zs8LlWxhi3vpBWCjkVy33FOaAtBWc1+NootgO2hlVXSqSG87ubT6Sp1lyzOnDxRpIkevbsSWBgIMeOHSM2NpaMjAwOHz6sbzVRH24WQVHvhsQtmNdee43XX39d//jNN99kwYIFLFq0yGhMQ0hISKBLly54ext/8YqKiiI9PZ0rV2oW5Z999hkDBw40q6nva6+9hpOTEwcrOgy89NJLvPDCC3z11VcAJCcnEx8ff3PZeFQghJOgxWIomsrLyzl06BD5+fn873//o2PHjkSPHEnAkSNI6enmnbBNG0U09epVfZ+ljXat1Ly23vToAVcr8nguX4LvFsDZtYQVZePt15EMtRrZRLm5JKnArzP+k16E3Dx4+23FzyfrFPicgH62tZepN9byY32oaghqFtVFrSRJBAUF6e0yHBwc9Hl1uvy7/v37m71ccbMIino3JG7BlBq0qFm0aBHvv/++Pi+z6v7mzq+//kpeXh4///wzoET0O3XqpN9/55133pSiCURVXYtB13Orsca3dGxsbHj66aeJjIzEzs6O1NRU1vz5J5+r1Zy99Vbkvn1Nm/hJEvTsCdOmwezZpkWTDp1LuDkVY5aMbQx01YCZJ2DXe/D9UijKRg3My8oGQJJNJybrrRkOHVI8rFxdwb0ddFbX7e3TxOaWRlgs4moXtZIkERISQkBAgH7bvn37+O2331i2bBkJCQmU1+YyX4FOUOie7+qzkPBx8mnxgkJnAwJUu9c6GxK3UN58803mz5+vf2womubPn19jbpElREREcP78+WqRpdjYWHx8fPD19UVr4AZfVFRUr+totVqWLFnC8ePHOX78OGfOnGH79u36/a6urvW7gVaAEE4tgE8//ZR+/fqxePFis8YvXryYfv368emnn9Y9uBXh6OjIqFGjmDNnDkOHDsXW1pZLly/z1ebN7O3QAV56CR59VOm3NXUqPPIIvPCC0rsrIMA8w7+gO+C5w0pF3KTPlZ/PHTIthCwZa23atQOHHDjyA5QXQboGMpR8pdGFRSzJuIpXlbwuI2uGixfB4I8k/n2haydqRgI33yY1t6yGpSKuHqLWxcUFDw8P8vPz+e2333jvvffYt2+fabuMCm4mQWGWDUgr480336wmKlxdXa0imgBCQkIYNWoU06dP1wuzEydO8Morr/DSSy8RGBhIamoqqalKtHXlypX6Y9u0aUNJSQnFxcV1Xuf222/n3Xff1V8jLy+P/YYVyzcxYqmumZOcnMysWbMA9N9k5s2bV+P4xYsX68fNmjWLiIgIQkNDG3+izQhnZ2fGjBnD0KFDiYuLIzk5mZCQEMXcr3NnysvL653YC1hWMdZU1WVaDeRuNN52rBw0gI+K0YVFRBcWccDBnky1Gs/R/yIs9GHlw/rMGfj2W+MefT7lcL6mP7bNy9xST515aYBTexi3CFw71MsyISQkhN69e+vtMnJzc/nll1/YuXMnI0eOpF+/fkgmBLlOUJgyhnwl4pVWJSjq3ZC4hbJgwQKjSBMoomPBggVWE0/r16/n+eefJygoCFtbW9RqNXPmzGHOnDkAPPXUU4SHh9O+fXtuvfVW/XFeXl7cc8899O7dG2dn52rJ4Ya88cYbvPTSS0YFOHPnzjV6fLMifJxo/j5OhmIIlLXzl15+hYSUa2TkFePl6kCEf1veefutauNqE1k3C6WlpdgZtE1Zs2YNsiwTHR2Nr6+vdS7S3HyLdL5TZ8rhYpXlI2eV4vLtrQKbig/1O1eATRAkJlZvUOpWCDmfUMPKEji2hYnLmoe5ZVX0VXVgMtfMisum5eXleruM/Px8evbsyf3331/rMc3KOVxQDUt9nKomgru6ujbKct3NSqvxccrMzCQ1NZXu3bvj4uJSbX9eXh5//fUXI0aMaOilblp04kcniubPn8+HsadR9btbP0ab9CMXN32ufyxEUyWGoun69eucOXMGrVbL6dOn6dmzJ9HR0fj4+NT/Apb0r7tR6PJ7uqmhXIY0g6WjAi2c0sIZCWxRNET+FnA5Vv08/v6Qsahm0QRg46DYEDRHdLlmJl+fxVZ9fWxsbBg0aJDeLqNbt276fbm5uVy8eJGgoCCjCJRJXzFBi8Xwb41OJBmKKcP9gpZLvYVTeXk5jz/+uL400c7OjieeeIJFixbh6OioH3f06FGio6NrXfMX1E1V8XRx0+d4FJfjPvhecvZ+x/Xtq/RjhWiqGQ8PD5555hl27NhBcnIyJ06c4MSJEwQFBREVFYWXl1fdJzGkKXrSmYMuv0eSINAGHCQ4pzHuX6eVoQSwdwPnDtXPMWAA9HaF1TVbGACQl9q8bAiqEnSHIuxuUETQ1taWoUONc73i4uJITEzE29ubqKgoevXqZXIJr7lSNTIW2j6U5KvJIlJWBZ3VgKGPk+6ntXycBE1PvZfqlixZwquvvsrf//53BgwYwPbt23nvvfcIDAwkJiZG7zERHx/P0KFDm7Vwau5LdTo0Whn/2x43iiyp7J3RllT20/Ib+xgpv32qNGIV1MrVq1fZvn07hw8fRpZlJEniwQcfNKqaqhWtBpaG1FLyXlHa/tyhuj+krb3Up5+bQX5PsQypGiX6VKb7by9B8N3g2VN5aGen9PwLDwcvLzi0Hr5/rO7rTfoc+kyu/3xbOTt37iQuLo6SkhIAOnToQHR0ND169DASUM1RoJhq0quSVGjlysqt1tq0t7m2XLlZafFLdV988QX/+Mc/9BGQcePG8dBDD3HXXXcxdOhQNm3aZP4HkMAsElKuoep3Nx7F5foIk6Fo8hg5A1W/u0lIucaQ7u2aapothvbt2zNp0iQiIyOJjY0lNTWVrl276vdrNBrUpiwMdNTpE2SmKWRjLPWZ8p1ykBSn765quKqFUhfoPxP8IpTE+fbtITgY7O0rz9MYjuk3IcOHD2fAgAHs2bOHvXv3kpaWxtq1a/H19WXUqFF069atWQqUmnrqGc4JKpv2ttZKOYHAkHoLp5SUlGrh6KCgIPbs2cO4ceMYNmwYv//+e4MnKKgkI0+panIffC+5e9cbiSaVvTPug+81GicwDy8vL33vJ121nVar5eOPP8bPz48RI0aYNnqzRv86c5f66hORqim/x7kt3PIkjHix+jm0GiWxXHcdv0FN74LeSnB0dOSWW25h8ODB7Nq1i4SEBC5fvsyZM2c4qz7b7ARKbT31qtKaeuwJBHVRb+HUvn17k9bu7dq1Y9u2bdxxxx1ER0fzyiuvNGiCgkq8XJXmojl7vzMSTaBEnnL2fof74Hv14wSWYW8QaTl79iyZmZlkZmaSnJxM//79GTFihHEIt6HRmFpbglT0hIuZp/Tc+2N+/SJSluT31BT5CpkMu5djVRf05laFeANxcnLi1ltvZciQIezevZvBQwZz9+93IyNTdr0MWSNj1850EvGNFCh19dQzNbfW0GNPIKiLehtgDhgwgA0bNpjc5+LiQkxMDLfccguvvvpqfS8hqEKEf1u0ST8aJYKr7J31v1/fvgpt0o9E+Ldtium1KgICAnjsscfo1q0bGo2Gffv2sWzZMn7//ffK8mKdT1CNJWd1mEKau9S3fkb1cbqI1NGNpg81ROcl1Wey8rMm0fTtdNPX2b0chjwDTlXeV/V1QT+6Ucm/WnW7kj+16nblsTn30opwcXFhzJgxHM8/rhco+Yfyyd6RTfaubMqulZk8zlCgNCb17ZXX0nvsCQR1UW/h9MADD5CSkkJWVpbJ/XZ2dnz//ffMmjWLzp0713uCgkreefsto8Rwj5Ez8HtuHR4jZ+i3Xdz0Oe+8/VZTTK/V4efnx/Tp03n44Yfp0qULGo2G+Ph43nvvPbKzsyvziIDq4smMaEyD+rpVRH5i5inRm4ZQZ+RLhr0fQKHB/3Wn9jD2zfqJppoEmrlCsCq65cVD65WfDX0+bjA6oSFrZdQuaiSVRGlGKde2X+P6nuuUXTctoBpboNS3V15L77HX3PH19cXf35+ePXvSuXNnRo8ezZYtWxp0zuXLl+uNMuPi4pgwof72IlevXmXBggUNmk9zxyLhlKPrlA5MnjyZPXv20K5dzUnIKpWKjz/+mJSUlPrPUABUN8H0G/uYPqfJffC9+I2trHyaP3++2e1ZBHXTtWtXHn74YaZPn46fnx++vr6VOU9Bd6CZtLJ+PekanFBtkHzeEMxphlsl14bCLPjuYcuETp0CDcuFoKXRq2YosnRCQ1JJuPV3o93odjh2cURSSZSkl3Bt2zVy4nMozzU2MvXMSWvU+6irp15VWkuPvYby2rlzLDh71mjbgrNnee3cOatdY+3atZw4cYILFy4wffp07r77brZt22aVc0dGRvLrr7/W+/isrCyWL19ulbk0VyzKcYqOjmbz5s21iiWB9THPOfw23nk7wMgkE2pvzyIwH0mS6NatG/7+/pSUlOhLyAsLC/l4cwr9Q5czxBccyq6bn7NjTksQc2hQ5Kq+xxvkYPWaYF5+krWqEHVY6qHVHI1KqRQoGYUZyMiondW4hbnhFOhEwfECSi6VUJxajJ2PHTZuNkiAt0Ym7Ke5jXofup56c2PnIiHVmiTe2nrs1ZfXzp3jdQOB9Ga3biw4e5ZFBm78rxlU7lqD6dOnEx8fz9tvv80vv/zC9evX+fxzZWVi0aJF7N+/n/Xr17N8+XLWrFmDs7Mz586do02bNqxZs4aePXsane+3335j7ty5HD9+HIB169bxxhtvUFZWhiRJfPTRR0RHR3PnnXdy5swZSktL6dixI19//TV+fn7MnDmTwsJCevXqhY2NDYcPH+bixYs88cQTXLp0ieLiYsaPH8+yZcvQaDQ8+uijxMXFYWtri42NDYmJic3e+sGiiFNSUhIjRowgPT29zrFlZabDywLLSE5ONtlGRa2SGNK9HXf282VI93aoVRLz5s0zsvufP38+ycnJTTHtVoskSTg4VCbfJycnk5uby/a4nSzdsI8d2V6UdIwwT0iYs9RnDg2NXNX7eAsjXuYKtLw6DDfB8uhVYywRWomamv7auNjgPtCdtre0xam7Ew5+DspeWWbGyStcLzSIAjbSfdTUpFclGX90tOamvZZQqq18TRZduIBbXJyRaDLcb00GDx7MyZMn6xx34MAB/vOf/3DmzBnGjx/PY4/V7tF26NAhnnzySVavXs2JEydITk6mb9++AHz00UccPnyYkydPMnToUP2X9M8++wwnJyeOHz+u74X3wAMP8Oyzz3Lw4EGOHDnCgQMHWLlyJfHx8cTFxXHq1ClOnDjBjh07jIp0misWCaeXX36ZY8eOERkZyYWq/awMWLduHb169Wrw5AQQGhrKihUrAPMcwQ3F04oVK266Br83msGDB3Pffffh5eVFcXExW7duZdmyZezatYvS0tK6T6CzDDC11HfvqoYln5tLnUnudVCXINItj2UeN+98MfPrFgCWRK8aY4nQytQmUGzcbHDt64qkkvDWyLyTnknmX3l8kFjGT8fLyC6qyEODRrmP0V1Gs2nSJr4Y+wVvRb7FF2O/IPGBRKPHMZNibnrRBEqEab5BTm+egfHz/M6dedOgDY81MdfHun///vTv3x+AOXPmEB8fT3l5eY3jf/31V6KioujXrx+gVB7rVpy++OILQkJC6NGjB6tXr66xYXBubi579uzh+eefp1evXvTp04fz589z7NgxevbsiUajYcqUKbz//vuUlpbW7p3XTLBoqW7x4sW4u7vz97//ncjISLZs2UKPHj30+/fu3cvcuXOJj4+3+kRvZh5//HEiIiLMFkHz5s1j/PjxQjTdACRJIigoiF69enHkyBFiY2PJyspi8+bNxMfH8+yzz2Jra1v7SWqzDJBUxiaWlVdWftTHCqAqpswyLaG2iJWp5bG6KMyqu12NJR5a1l4ibCRGdxlNtF90zc7hOWmE/TSXolKZLBcVOVka/krXkHxFS38fFSO62OBO49yHqZ56wnLANG9268b7ly8biSZXtbrRRBNAQkICPXv2RK1WG3XpKC5uHE+/P/74g08++YS9e/fi6+vL2rVr+ec//2lyrE7UHThwwOQS3PHjx4mJieHPP/8kNDSUbdu2ERwc3CjzthYWV9XNnz+fDz74gEuXLjFixAgOHTrEuXPnmDJlCsOGDWPv3r107tyZVatW1X0ygdlYKoJuZtGk0crsOZPFT0mX2XMmC422AflDZqJSqejTpw9PP/00d911F23atKFHjx5GoklbW5i+JsuA2iJS1uyDV9N1pNr+RNQR8appeaxOzIieWOKhZQ2j0huETqDc1u02wn3CsbOxq3xs444acLGTeKCPLTPD7OjeRoVWltmfpuG9+FJ+O1VG3pVzTX0bNzULzp41Ek2gRJ6qJoxbi7Vr17Jq1SpeeuklAgMDSUpKory8nLy8PH766SejsUlJSSQlJQFKJd3gwYP1pr+mmDhxItu3b9cfU1JSQlZWFllZWTg7O+Pt7U1xcbF+VQSgTZs2lJSU6EWbu7s7gwYN4h//+Id+zLlz5zh79iypqank5eVx991389577+Hr69si0kvqZYD55JNP4ubmxiOPPEJkZCQlJSWUlJTQtm1bFixYwDPPPCO6QAuahJjDabz+81HSciq/aXVwd2DhxCDGhZhoZGtlVCoV/fr1o0+fPkZ5funp6fzvf/8jMjKSfv36WRaOvlFNak1dpyAL1j9cMcCCiFety2PmUEcUqM7EegNHc3NzsJp725gq8+vkpuKhUDvOX9ey7Vw5565rSbisoY/GEdcmmuLNTtVEcFe1Wi+idNutEXl64IEHsLOzo6ioiB49evDjjz8SHR3NkCFD+O677wgICMDHx4c+ffpQVFSkP65///68+OKLnDt3Dg8PD9asWVPrdYKDg/n444+ZNm0aZWVlqNVqPvroI+655x5Wr15Nt27d8PDwICoqSp/77OXlxT333EPv3r1xdnbm8OHDfPvttzz99NP63oyOjo588sknaDQaZs2aRVlZGVqtlvDwcCZNmtTg56exqVeTX61Wy2effcb8+fPJzs5GkiSmTJnCRx99ZPXGezeCltLkV1A7MYfTeHL1gWofo7rMnY+mhd0Q8WSKn376ib/++gtQvpGNHDmSvn37olLV20rtxmGyGs1XEU01RbxS4hRrgIZSW/NgfVUdmBR1hu1qqjY8NsKCZsxNSR33kZItc6akDaM/PKu/j5MnT9KpU6dmX6XUXLG0ya9hVZ0up8lQTC3s2tXqVXXmsnz5cjZu3MjmzZub5PrWoMU2+f3xxx/5+9//zokTJ5BlmaFDh7Jnzx62bNlCSkqKPolMILiRaLQyr/98tLbmJbz+81FuDfJBrapnEnQDmDBhAt7e3uzcuZPs7Gw2bNhAXFwcI0eOJCQkpHkLqPpEvKy17FVbFKimXnxuHY1FXa05XFbMFWts6rgP/zYS/vct199HXl4e3377LSqVisGDBzNkyBAcHR2bYuY3DTpRVKrV6iNLup92KlWTiSaBdbEo4jR06FDi4+ORZZmwsDD++9//MnLkSFauXMmsWbNwdXXl559/ZtiwYY05Z6sjIk4tnz1nsrj/0711jvvm8cEM6d50PmRlZWUkJiayc+dOCgsLgUqDzVZFgyNOFkSBzO17V5/IWXPEzPu4cuUKGzZsIC1NsXdwcHBgyJAhDB48uEWUfDcHLI04CRqX5hJxskg4qVQqOnXqxL///W8eeugho33fffcd06ZNw9bWlh9//FFv394SEMKp5fNT0mXm/C+pznHLpvbjzn6+Fp9fo5WrGI62bVDkqqSkhISEBHbv3s2IESMYMmQIUFmBojPYbLGYszzm2AaKsise17LUZu153cDmwsn5+YS6uFh/vJn3Icsyx48fZ9u2bWRkZADg6OjIsGHDiIiIELmodSCEU/OiuQgni5bq3njjDV544QUjA0Ad9957L87OzkyePJk77riDtWvXcvfdd1s2c4Ggnni5Vn9PNmScIY2RcG5vb09kZCTh4eFGVS1Hjx5l586dREdH6xMpWyTmLI9NXKb8rGupzdrzukGWA5+mpjLr5EkW+fszr0uXOscvPn+e+SkprAgM5PGOHWsfbOZ9SJJE7969jewyrl69SmxsLH379hXCyUzqkQosaASay+tQr+Tw2ti+fTsTJ07UV9q1BETEqeWj0coMf2sr6TnFNcU38HF3YOcrt1gUKbrRCeefffYZly5dAqBTp05ER0fTrVu3liugzFlWusFRoBtBcn4+/fbt0z82Ek8m7nfxxUvMN+jpmTRwoEWRKnPRarUcOnSI/Px8o5SK48ePExAQUGtp+s1IaWkpx44dw83NDS8vr5b7/7AVIMsyGRkZ5Obm0rt3b6uL/kZbqjOXhIQEbrvtNq5evWrtUzcKQji1DnQiB0zGNywWOToxZhhpMqS+Yqw2CgsL2bVrFwkJCXo7g86dOxMdHY2/v79VrnHDaYXCyBx0ESQdi/z9mZe7H36ZAyW5leN6PMx837uNx5kRobIWly5d4rPPPsPNzY0RI0bQv3//FuHefKPIzMwkNTVViKZmgCzLdOzYEU9PT6ufu8mFE8Dhw4cJCQlpjFNbHSGcWg/1WVarKX+pKRPO8/Pz2blzJ/v27dO3RBg0aBDjx4+36nUE9cRMMVhNPJ39inkXvq/c33kS87tNr9x/g0UTwKlTp/j555/JzVXEnIeHByNGjCA0NFQIqApKS0uN/JAETYOjo2OjLS83C+F0o1i0aBE//PADx48fx9HRkaFDh/LWW29V6/hcG0I4tS4sSeSuTWiVlGsbnHDe0KTy3Nxcdu7cyf79+5k6daq+xZEsy+IbcFNhcvmxo5LTZSIvqybxVE00Xd7AvPv/a3k0zgoRvfLycvbv309cXBz5+fkAtG3blpEjR9KnT5/mbZchEFiBm0o4jRs3jqlTpxIeHk55eTkLFizg8OHDHD16FGdnZ7POIYTTzUld+UvPjQ7k3S11dxyvKeJkzaTyvLw8XFxc9GJpx44dXLp0iejoaDp0aBpTz5sSvelmDe8aU5WA5aUs/upJ5nerrET2KMvnum1lDpM+EjXjF8uS1y0UcXVRVlbGvn372LlzJwUFBbi5uTF79myR+yRo9dxUwqkqmZmZeHl5sX37dkaMGGHWMUI43XyYm78kyzJXckssTjhvzKTy8vJylixZoveB6t27N1FRUXh7N/OWIbXREvKg9BYLNfXeq8F7as8HsGlBtQiTjkVHVjHvyvegkmp3Sq9KfUScmZSWlpKQkICrq6u+76VWq+X06dMNqvbUaDVGTYzDvMJQN7fXWXBT0qjO4c2dnJwcQAkz10TVij/d2r7g5iEh5VqNogmUj6K0nGKeH92DpVtO1VRQz8KJQdVEU2O7mNvY2PDYY4+xfft2Dh06xLFjxzh27BjBwcFERUU1SuJkvTFHEFk5atJonN9dR8PiGvrrZZ+DAi3z/vwfb3W4m+uOlZ3kPIrymPfdWrCVwEcNGjO9gmrtBVjxLouZpzi+10OY2NnZMXz4cKNthw4d4scff8THx4fo6GgCAwMtElBbzm9hccJirhRWusp7O3kzL2Ieo7uMtniOAkFT0aoWrrVaLc899xzDhg2rNTF90aJFuLu76//5+fndwFkKmgMZeTWLJkO6tnfmo2lh+Lgb+z/5uDvUGDUyV5QlpFyzaM6GtGvXjnvuuYennnqK4OBgAI4cOcKHH37Ivn370Ghl9pzJ4qeky+w5k4VG2wSB5aMblQjNqtvh+8eUn0tDlO2GY76dXl2Q5KYp2w3HNjXmtpExHJefDwmZkFjKYv9JRqIJ4LqjK4uH3wdlMqSqYUM8rF8PdVm5WCLirERpaSn29vakp6fzzTff8Nlnn3H69GmzvHW2nN/C3Ni5RqIJIKMwg7mxc9lyfovV5ikQNDatKuL09NNPc/jwYXbu3FnruPnz5zN37lz949zcXCGebjIsMcwc0r0dtwb5mJ3kba4oM3dcbXh6enLvvfcyYsQItm3bxsmTJzlb7MizFcuQuiRyk7lVjbk8VtMykk4Q3feVEg1pxKiJ1amtb56pcVlZsHo1aP1YPHwK80c/qh/iUZSnF1HzRz8GwLysUkCCw4chMxOmTQNX16pnV6iPiGsg4eHhBAcHs3v3buLj47l8+TKrV6/Gz89Pb5dhKgKl0WpYnLAY2cTrLCMjIfFWwltE+0WLZTtBi6DVRJyeeeYZfvnlF7Zt20anTp1qHWtvb4+bm5vRP8HNRYR/Wzq4O1DTQoOEksgd4d/W4sq4xnQxB0xGk7y9vZk6dSrBt07hlV/O6SNeRafjKTwdT2pGFk+uPkDMYaVvmVnRoPpS5zISiiBKibvhUZMG0WWosoRY27vGzVcZl5cHX30F2dks7upvJJoWJX9J9vYHWXRqlX7b/NGPsTh8bOWprlxRRFdxDeLaUhFnJZycnBg9ejTPPfccQ4YMwcbGhosXLxIbG2s8UKtRXt9D6zmQ/GW1SJMhMjLphekcyDhg1bkKBI1Fi484ybLMs88+y48//khsbGzLNQkU3FDUKomFE4N4cvWBWvOXNh9Nt7gyTifK6nIxj/CvOQ+vJmqr1Ls1yIf/xF7SX1NbnE/plbOATOmVs9j7BPB/67XcKmlRfzeDWqNBDcktMnsZqfbIsJ76Rk2sHVEzp43MuMUgqeDbbyEnh8WdOzO/Wzf9qEVnv2Ze9o/gIDHv8g+gVumr7eZ36wb29sw7dUoZfOUKbNgAU6dWn4tOxNXWC9CtozKuEXB2dmbs2LEMHTqUnTt30rt3b320qejAd2RtmE8nVSYAmc5O4NW+znNmFmY2ylwFAmvT4iNOTz/9NKtXr2bt2rW4urqSnp5Oenq6MCsT1Mm4kA615i8BPLn6QLV8pfScYuPoTRV0ogyqxyZqSyqvC12lXk3zeX/raaN9KgcXXPqMxsbdG2QtJWknObV1Hb8veZqCUq2JKxhEg7Qai+ZmhLlCx9y0q/pETRorohZ0hyIs3aqIZreOlYIzJQUuXqwumvz9mTf9Ixj7JkTMgrFvMm/6Rywy+LI339eXxRVeXQAcPw4VzXmN0Ik4oMZ32bjFjb7E6erqyvjx4+natauy4ehGdi99hM92XGTNwTJS87R4asx7L3k6NaOiBoGgFlq8HUFNVR0rV67k4YcfNuscwo7g5sbUUhzQ4HYr1vRxMsc+wd3JluuFZSb3l11Pp/j8QTrkH2Wyege2KokH+tji36aG706W+gkZkhKnCJW6mL4RNvyt7qhJ1fL+umjEMn09tUWz1q0j+cIF+oWH64cbOoKbKsl/p2qvusREQgsKlAcREXDbbTXfa129AG8UFXYNv+8/T2KqFm3FR0tgezUfDfUlp609som/1xIS3k7exEyKETlOgibjprIjaOG6T9AMUKukagaWe85kmV0ZV1O7lXEhHSxKKq8Ncyr1ahJNALYePti4exOWU4rv5Z1cK5Lp6Fo5j2pO5A1JKjZ3GanrcPOWviz5MG3kMn09KrVpYZmbCydOEKrVsuLECWb17GkkmmoryV/k34P5KSmsCAwk9OxZ0Amn5GQYNQrs7atfL+gO5V6agwdWxRLt+B62DOoks/1cOQevaDl5VYP/72lsD2yDc09n1O62+kOkitf5lYhXhGgStBha/FKdQNAYWKsyTifK7uzny5Du7erdDNjc+Xg42tacuixJuPj1YmaYLbMG2GFvo4yUZZnVB8vYfq6cknJFcBzJday/lYF+Gamm4+RKQWTO0pclNEGZvhHHjoFWWQZ9PC2NpA4djERTbSX5AzlF0sCBPN6xIxhEqygpgTNnar6mTsT1maz8bCoBYiC22zpK3N3blqfCbQnxUtOtrIyRJ7OxPZVvdIi3kzdLopYIHydBi6LFR5wEgoZiaqmusSvjLMXc6zwyrKtJw04de8sDKXbqQBvpin7E2WyZM9lazmRr2XNJS+/ObXhuQwmyOgmo//Ki2VgSNakr4dvSMn1rJ5Dn5VX+bmdHaGAgYH5JfsykGGVjxXF6WoJJr4lcNE9nFZODVER2VrP9vIZ3nXM52/d1Mt07YF9qT6hnKO3b1Z04LhA0J4RwEtzU1JSH9I8JQbVWxgG0cbKtV2VcfTC3Uu+ZW3rQ08eVeT8cMrl0l12k5fmSqXxkt6ximUSmWxuJyUG2bDun4WqBln+e6sH1lF9w6BSEnU8PffK52W1i9MtlNWFiuaympS9DzHEYt6RMvzEcyw3tA+xs4dxOyL/CgfIcs0vyw33Cwc4OJAl0qQg12RI0J2pZovV2UXFfsBrcOtIu9GFQqVm3bh0fnviQ/v37M2LECNzd3Ztk2gKBpYilOsFNS21Vak+vPcAdoR1qLfzKLixj89H0xp1kBZZU6t0a5IODjen/2jKwSRvBfJuXkCuWxyRJIsRLzaRwH44EPEyKfS/ksmKKUg6Qu28j5UV5yChtYsxatmuM5TJzHcYNvZY0MqRp4GgZJJXCgVJILoMLbnD8MKx7yPqO5bYV+TuZJ2DbO/qqvswtr5p1uL4kX6OpFE2gCKnmjgWVfhqNhrKyMrRaLfv37+e9997j119/Fe2vBC0CIZwENwVVTSNLy7W19pMD2JichrtjzUFZXc+5G9XOpDb7hA8eCMPd0Y6fki7z5a4U0nNrbtkhA//L78feiduV6rlJn3Pk1rUML3mPfZ534Bo2AceAQajsXVDZOaBycAEsaBNjbVdrcw01tRrlw3vwq3C6DPaUwokyyNDAdS3kypCtBYdhsPQfkFACF8uhXK75fJbi7KyIpiM/QkEOFCr5ThaX5F+6ZLzDycwedk2NmTlrarWaadOm8eijj+Lv749GoyExMZH33nuPmJgY8vPzTZxcIGgeiKU6QavH1HJcW2dbrhXUXIWmq5qrDXMq66yNqUq97IIS3vj1aJ3zrUpGQRn0U5bHTiddRksSAJJKjb1PAHZe/mhLi/TVdrKmjMVL32fhIxMJDQ1Fra4hF8jartaWRLCynWHLGXC/AzI3Q7lBzpG9KwSMBhsHKKnYfqYcLmqgjy24qqqfz1JLBv+ucHozegGWqoUAFWHFJXiXl5OhVtdakh/mpfiHkZhosFOClmTsa0HOWufOnZkxYwbnzp1j69atXLhwgb179+Lm5sbQoY1j3ikQNBQhnAStGt1yXNVYRW2iyVKs0XPOEgztE2IOp/H02r/M9pI0xDDh3FTyuaRSo66INgGUpp8h4dJpNvz0Ezt37mTkyJH06dMHlapK4NrartbmRqa2x8K5isiOZ09o3wOuXwRVGfh2Bu/eUFoKf202Pq5Uhr/KFPFk6GtVH0uG0hSwLwBdwC9dA/5q1GqJeVnZzPVqjyTLRuKpWkl+Xp5SnaejZ09ojPyfxuxVaE7OmgFdu3blkUce4ezZsyQkJBBuUFWYkZGBq6srjo6O1pmbQNBAhHAStFo0WrnG5ThrcqMq66pS3/sz1fIlwr9tnVE4O58ASmSZA5ev4J1dxNWsH4iLiyMqKorg4OBKHyij1iSmro5l/kzmRKbSNZB9Ftp0qdzWyQ/uvgeCgytzjwAOd4L//gypGiipePa0MhwugzBbcFaZf92q5F+BjmrIrXBmL5fheDkE2TC6sIglGVdZ3K4NV2wq//R6O3nzSsQrSkm+RgM//KC3NACMrQmsRWMkxjcQSZLo3r073bt312+TZZn169eTk5PDkCFDGDx4MA4OTfP/TSDQIYSToNVSl2lkbejEhSzLXMktqVGctHO2Y0CXNvWeY0Ooz/3V1PJFrZK4u58vn+86V/OxahscOvXmkCaAfWknsTt5ihHd8rl69SpxcXHMnDkTW0OB4ugBRdnGJ3FsAxOXWfbhXFcEqwQ47wQRfpXbRo2C4cOVZa6qBI2GPp2hU6qSOJ5VEaXSyHCsHAbYgbtv/fq8uXiDlwrOSkokCyBTA8eAnop4ii4s4sCdS8h076B3Dler1Erl3HffKS1bdHh5ga5ti7UiRDU5q1urV2FdWHAfeXl5SJJESUkJsbGxxMfHM3ToUAYNGoRdS0iYF7RKhHAStFrqu4RmKC4Ak42AdWQVlDLynW2N63NUA/W5P59aPJlGB/nUKpx0SGpbHDoFg08gf6Yex84ul+Dg9pWiqcaWJ0CRGcnlVamruW5aOXQbpTTXBYiKgsjKZSJTLU7UuvMF28KhiqRxgHxZSSKfUs8+b12GgocvBF+G5FIlkgVKgnq2FjrYoO7pS3hFST4AV6/Cvn2QlGRsO+DgAPfeq4g/a0WIbpSzek1YeB9ubm787W9/4+jRo8TGxpKZmcmff/7Jnj17GD58OOHh4cZiXSC4AbT4XnXWQPSqa53sOZPF/Z/urXNcW2c7rhWU6h9XNXw0lVxuiE5ome1zZCXMvb9/TOhNe1f7Olu+6Prh1eZdVRUJ8HKSiJk9jDYe7qDVkP1mb35IuMjIrjZ0byNV6SdZz/5zYPpD16UjZAwBp87K43bt4Jln9JGm2lqcjC4oVM535TLElwIy2LvB+MfgucWWza3qPL+dDlcrrBD0VZcVz0PIPdBjkGIxUFIC169XP4e9PTzwAHTpYt3ee+b2EdT1KrRmHlQD70Or1XL48GG2b99OVlYWAA8++CA9DJsiCwT1xBIdIIQTQji1VuoSArrluO0vRbP/fHat/eRKy7UMXrSlxhwgc5r+Whtz78+SOemS6aHmhimm+ObxwUrCekocPy8Yy/40ZfnLz03FLf421ZsJ17eJcNUP8sI28N36yv3jxsHgwUBli5Oqbt26ZOwlUUsY7RetnG/dekjLBQ8/sLGFuXMVa4H6ohN5Fy8puVNlFaIsYLSSuF4bHh5w//3g7a1vnFtzVaGFQvTQevj+sbrHTfoc1HbWy4Oy4n1otVoOHjzI6dOnmTRpkl6Yp6Wl4enpiY2NWEgRWM5N1eRXIKgJnWmkqaU2w+U4OxtVnXYC+89nm2VfcCOtCcy9P0uEnM4rqrYImyn0y4b5V7jF3wY7tURiqoaLuVpWJZfS1UNFdFcbunio9OPqRdVqrd9/r/zdxgb69QPMb3ES7ReN2j8S7vGGtWuVARqN4qPUsw6BUxuGJfnXLsGlfLhUAplXaz6mUyclETw4WLkXsMyKwRwham7Ce9YZiF2E1fKgrHgfKpWKfv360a/itQYoLi7mq6++ws7OjpEjR9ZulyEQNBAhnAStmpqEQG25PqawVtNfa2Ot+6t6Tp1X1K7TV3l/2+k6j9FXFrp442wnMTbAhqF+auIulLM/Vcu561pWJpUS5Knm3iAbEjNtiLB4ZiYoKqr83cNDyQsCDmQcsKzFiY9PzeetLzqR5w8MQHECv3ABTp6EggLFGsHeHlxcoHdv6Nix+jmsbSZqrlXE/pU17K9nHpS176MKWVlZ2NjYkJOTw8aNG4mLi2PkyJH07du3ul2GQNBAhHAStHpMmUbWlutjCp0wcCvOxy/nCg5lJdhoNZTY2JFn78R5jw6Uq22axJrAGvdXFZ1XVIR/W74/cKnO5UC9tYHBB7OrPdzWw5ZhfjJxF8o5kKalnaNEGu25/w81H3ilNTwnrLy88neDJRp965I60I+rurxjeF5rIUlKzlKXLnWP1WEtM1HDJc6whyH2TUwm2gOEzajYXxP1MAi1tilqFXx9fZk9ezb79+8nLi6O7OxsNmzYYGSXIQSUwFoI4SS4KTA0jbQYrZaIsqvMSNmFx+XzSCYkRLGNPen+PYlwG9TAmdaPBt1fHee1aDmwogJO/nY6MkpPJ3cHidsDbRnqJ+NgA8+XPYQWFfNXbeFafxtGjboFb+/6fWBi6OlTWKhEdSSpsnVJHejHFRbWfN6mxBpmoqaS6h3bKucztItw66j4a2lKq53CJJZEh6xtimoCW1tbBg8eTFhYGImJiezatYusrCx++OEHOnbsSLt2N2YJXdD6EcJJIKiN1FT4/nvUWVk81K6EXy6bTpl2KC/hGcdM1B+8D337wsSJxqaLFqDRylaNHjUUi5cDg+7g5MgPcI19lY5Spf1AsUN75pc9xCatskh38cg+/iyx5+TJEwQHBxMVFYWnp3mCR4+HR+Xvublw+TJ06kRY+1C8NTIZKky3OJFlvLUQ1j5U2XD0qPGAxnDqrg91WTFA7WaiNVWy6QRT1AJo1924Yi4lzry5WRIdauh9WICdnR3Dhg1j4MCBxMfHU1BQYCSa0tLS8PHxqVLtKRCYj6iqQ1TVCWrg9GlYtw7KKpPCT2fkEXsik/yS8ooUYxkXexuienoS4OVaeWynTko5uYXNWU1ZH1S1R2gqLBF0PyVd5vn/HSBCdRwvrpOBBwnaXmgN+oprCnN4wC8Px4I0QHGO7tOnDyNHjjQ/OnDtGrz3XuXj0FC4+25IiWPLd/cy16s9YCyepIo/eUsyrjL63u+gyzBYulQRXgBt28Kzz5o2z2wqTPof+Spio6Yk7fpWsumPqyM6ZC1Libruw4pcvXqVDz74gA4dOhAdHU1AQIAQUAJA2BFYjBBOgmpcugRffmmc66JWQ3AwmgEDSSi2J6OwDG97ifCiK6j371OiU4b4+cH06WZHnmrqq2fkE9WzPWRlKUaJsqwsKbVtqyQZNyPM9Zj65vHBdHMpJzY2lmMV/dlUKhWRkZFER0ebd7HVqxWRC8pr9MwzEP827P2QLU6O1Vqc+JSX80pWNqMLi5Sye20P+PHHyvONGQPNscGspZ5Klno2GaKPVIHJ6FBD3MUbs0deHRw5coSffvqJ0lJlOdLPz4/o6Gj8/f2FgLrJEcLJQoRwEhhRXAzLlyuVTzoCA+HOO2v39jl3TmmZYXjcwIFwe90fXjpPpposADzzsxmZd563A0FVVsUWoULQER6uRLqawQdAfTym0tLS2LZtGydPnmTSpEn06dPHvIudOAHffFP5uCwN5G/ATjmvBjjgYE+mWo2nRkNYcQn6j+nRn8P2E5VRRRsbxcPJwkhhs8QSz6Y+k6tvb+LoUGNRUFDArl27SExMpKzide/SpQu33HILXSxJ3Be0KoRwshAhnARG7N0LMTGVj3v3VlpfmFOVk5UFn39emWysVptlplhThMYz/xpRZ/fhm6tUf00K64Rf21o+1H18YOxY8Peve66NTE1mmnU5raempuLj46Ovgtq/fz9XrlwhMjISV1fXauPRauGLL5QooayFvR+ClA+BttBGMi0kNUB+W2j7CGgMGupGRip97pob9YnSNCTi1JDrthDy8vLYuXMn+/btQ6PR4OjoyPPPPy964N2kWKIDRH2mQGCILENiYuVjV1e45x5j0aTVKB9Kh9YrP7Wayn3t2sEdBt/GNRr46686L2vK/8n/2mXuO7hZL5oACkrrKJNPT4evvzbrmo2NLqncx924Qs3H3aHW9jQdO3bUi6bycmUZLyEhgWXLlhETE0N+fr7xASoVTJ2qJIpfvwgleVAsw8FSSCiDS+WQo4V8LVzXwply2FMCpYONRVOvXmDu8uCN5OhGJedo1e1KBGnV7crjoxtrP05XyUZNEUhJiSDVVsmmUiv7XbwV8XR+t/H7vQXj6urK+PHjmTNnDuHh4URGRupFkyzLXLlST5NWQatHVNUJBIakpChRIx0DBhjnKJnTpDQwsOJD/LryeN8+JWemlohVVf8nv+vpTDy2A5WsNdpu060bjI2ENm2USEpurtIc9vRpRfSBEoH56Scl2tW3r2X3b2Us8ZgylXxuY2PDPffcw7Zt27hw4QJ79+5l//79REREMGzYMJx0S2ouLjBjBrzzovFJi7RwWlvtWnQKN259EhSkJJU3N6+fmqrizHHwtkYlm7WaCzdj3NzcmDBhgtG2U6dOsXbtWnr27El0dDQ+VQ1SBTc1YqkOsVQnMODXXysjTioVPP+8EnUCy5qU7toFmzdXDpk1y7QzdAWGOUFuRXk8mPQ7dprKXKZzbTpysu9gfn5jkulKtuxs2LYNDh6s3KZWw6OPgq+veffehNRVTSjLMmfPnmXr1q1cvnwZABtbW7r0i8TNt3ulIDvxJ7x2B2RoK4WkKUIfgDZdlOT6IUNgxIhmkRtmhLX6u9U3V8mazYVbGDt27GDbtm3oPh6DgoKIiorCy8uriWcmaCxErzqBoL4YLgN5e1eKJq1G+fAxtw1F9+7Gwqnq8lIVDI0mwy8fNRJNx7z82dxjMB/eP7BmP6c2bZSIiaurItpAWSbcvl2xRWjG1FRNmJ5TzJOrD+iX9bp37063bt04deoU76/ewA9bD0OqHzaueUCF0Lq9F+MGdYHMVEgrh1QNlFaJtNi7Qq8IGDQI+vSpt9+WVSguhsOH4cqVyjYvjo7Ke8/lunX6uxn2zTM3V8nS93srY8SIEQQFBREbG8uRI0c4evQox44dIyQkhJEjR9K+ffumnqKgCRHCSSAwpKSk8nfDJFFLm5Ta26OVZS5nF1FQWk7J6SuEBPSo1chyXEgHPrk3iLPzv0cXd0l3acfhASP58M4+lTlBNSXsShKMHg1XryqVZgCnTinRqDZt6vV0NDYarczrPx+t7eOZ138+yq1BPqhVEpIkcbbUlY0lQdDTCxvXSr+nlIMJPHJ4Hz/d/yIRuS9AV1voooYCGcpQEsJtJLhvKQx5oGkjTOnpSmTz4EEjnzAjrp2Eq2XQUQ0utSwhmuPgXbU5cl1Yu7lwC6R9+/ZMnjyZESNGEBsby9GjRzl06BCZmZk88cQTwr7gJkYIJ4HAEEOxZPiBZmGT0q3JFzm7M4X8EiWZe6PmKEXJpXUaWY4pz0A7xE8vuIrvnMS/xw6tFFx15ZxIEgwfXimcZBn271cEVTMkIeVajRYMoIintJxiElKuMaR7O73QQpKwcat0GdeWFFJ86QjIWu79wIXVD85ncNpKbAvSwKXiuWsOpfQaDfz+u5L3VheSvRIxS9WArxoCbEyLPUv61JlbGdfITXlbEl5eXtx3332kp6ezbds2+vXrpxdNZWVlFBQU4GHoYC9o9QjhJBAYYmgbkJGh2Ao4OVnUpDTmcBoff7GFqJLKCrhCWweuVFl6MsnBg6gkSbEccHGBMYPBUDSZkyjcqZNiS5CeruxPTm62wslUNWFt42oSWpKdA049BlN84RA5eXl8mZBFvN+jRIa6M6CrBzYeHZu+lL68XHGiP3Wq+j4Hh8pl4bw8ZQnPw09ZVizJh8saKAaCbSrfD/XtU2dOcre1m/K2AlsDHx8f7r//fqNtiYmJ/Pnnn4SFhREZGSlyZG8ShHASCAwJDFQiNKB80CUlKRVxZjYp1fgN4fW3YxmdXvnhWGDrSIZLG5NLT9XINmi62ru3kuANluecBAdXCqe8POVebJrff/eq1YR1jatJaEmSCjsvf2w9u1CWkQL22eQXFPJ7ciG7UgqYPHkInZvyg1qWYcOG6qLJ318xLu3Zs/K11mjg+HFlKe/qrXDkR0CCLA2cAHrZgFSxdFefPnXmVORZsylvK67MS01NRaPRkJiYyF9//cWAAQOIjIzExcWlqacmaESaWe2tQNDE9Ohh3OA1MVEp79eVdgPVfXEqS7sTzuegvnCedoU5+r2HfQLQVny4GS49maTYQBgYRr8syTmpemzV8zYRGq3MnjNZ/JR0mT1nstBoZSL829LB3aE2pyE6uCsVc1C30JIkFXbe3Xnk8SeZOHEi7u7uFBUVmd/7rrFISlKSwHXY2cG0aYqFQlBQpWiCSif4hx+GOa9Dv3vBvuKD+IoGrmgV4VGb8KlTaKMI7Zo8mcx8v9cZNdKJt6rvXZ14q8uLqpkzefJkHn74Ybp06UJ5eTnx8fEsW7aMP/74gwLDDgKCVkXz+woqEDQlKpXSJuXPP5XH2dmKRcHttysfUvd9VcO3ZyV35tquE4w9VekArpVUHPIJqHaZGpeo1GpFqIESedBhac5JeRWjzCaONtVmN6CrJqzBaYiFE4P00Tmd0KqrlcuQAE/UKi9CQ0NJS0vD2UBI/vzzz/j5+dG3b1+90Wa9MHf5SZZhz57Kx2o1PPggGLT30Gg1HMg4QGZhJp5OnoR5haFWqZUI6Jx/wtcBkHUOSgvAtzPMWQzqWl5TayR3m/F+r5WbpDKva9euPPzww6SkpLB161YuXbrE7t27ycvLY9KkSU09PUEjIISTQFCVsDDYubOywm7/fkXMTJhQe2l3ZiZBMd9zqqTym+bJ9p3Jt6/eIqXGyImTE+RURKsMnYstzTnJyKjcplLVuwmwKVPK2ioDTWGO3cBH08KqCSsfAx8nHYa2DeYILRsbG/z8/PRjzp8/z/79+9m/fz9xcXFERUURHBxsuYCyZPnpwgXj12PoUCPRtOX8FhYnLOZKYeXr7e3kzbyIeYzuMlpZzhs8BHZX3G05kJqmNJGuiYYmd+tEoaYU7vpYEX+FVy3LT7qJKvMkSaJbt274+/tz+vRpYmNjiYysvKeCggLUajUODuYtTQuaN0I4CQRVcXaGyZOVxrG66M9ffymVav37KxEp3R96WYYzZ5QlvZMn6aLS4mJvQ35JOVlO7mzrHm50al1ERLf0VI3OneHQIeX3U6cU93EPD8tyTkpKjI0w/fzqVXpflymlOdRlNwBKztfOV24x22Fc18rFHKFVlQ4dOnDrrbeya9cusrKy+P7779mxYwfR0dH07t3bvBJzS3OHDFv4SJLiRl/BlvNbmBs7F7nKuTIKM5gbO5clUUsU8TRwoBK10pl6JibWLpwaktxdmyi0RODchJV5kiTRo0cPAgICjN5Lf/75J0ePHmXo0KEMGjQI+3p+kRE0D4RwEghM0aMH3HWXktCrE0+FhYq55K5dikmhjY2SO2RgW6CSJKJ6erL6VAE/BUdTYlNpb2AqIlKNgQMrhZPOSmDUKMvaZxw8AKWllbvDjcWbOZhrSlkXddkNgLHdwJDu5uUiWdLKxRA7OzuGDRvGwIEDiY+PZ/fu3WRmZvLtt9/i4+PD1KlTjUrLq0XcurijtnT56cyZyiG6djwoy3OLExZXE03KmWQkJN5KeItov2jUbdtCQEBlcrnhOU1R3+TuhiSUV8XalXktCEPRpNFoSE1Npbi4mK1bt7J3716GDRtGeHi4aCjcQhHJ4QJBTfTtq+SiOFVfaqOoSKlWM2FeGDCoL0PffAlnL2MRUFdzW0CJOBm2dYiPh7Q05XddzolbleMNE4WzsyE2tnKfs7NSnWcB5kaJNNq6uzWZazew+Wi6+ROsQK2SGNK9HXf282VI93YWLSHa29szYsQInnvuOUaOHIm9vT0lJSW46iwBUMTj8Le2cv+ne5nzvyTu/3Qvz771gWVJ+lptpSM4KFYRFRzIOGC0PFf9TDLphekcyDhQ7VgKC2tvKVOf5O6GJpRXxRpNhlsBarWaWbNmMWnSJNq1a0dhYSGbN29m2bJl7Nmzh7KaDFAFzRYRcRIIaqN7d3juOaUiKiGhssS/Kmq1Uh0VHg5+foyRJEYN6GZ5fpAkKa1Afv5ZeVxaCqtXK21TfH1rz7G6ehXWrAHDap6BA40rtszAUlPK2jDXbuCnpFT+PqGWSFwj4eDgQHR0NIMGDeL69euoK56rX5Mv8cjCD7D1CcDG3VsfQbApyABzggQ1JekbtHfJLMw0a476cYatYWRZOXdt7WIsTe7e8R/r5iRZo8lwK0GlUtGnTx+Cg4M5ePAg27dvJzs7m02bNlFWVsaIESOaeooCCxDCSSCoCzs7JWG8f3+4fBlSUpRv/OXlStK1u7sS1ani3aKLiFhM//6Kj49uWaagAL74QumrFh6uCCjDD66MDCXnJTnZeInO11dxEbcQS00payPCvy1tnW25VlD7t+qsglKzhFhj4eTkhFNFZFGjlZn/6S+UXj1P6dXz2Lh54dAlFBt3LzLwMO+EuuUnW1tFDOuiQwa2EJ5OniYOrI5+nKGlhFptXqWkuX3qjm6E2DfNmo9FOUkNrcxrZahUKvr160efPn1ITk4mPj6ecIOl9NzcXJydnfUCXtA8aTXC6YMPPuCdd94hPT2d0NBQli9fTkRERFNPS9CakCRlucRwyaQxUKng3nvh66/h4kVlm0ajeAElJSkNYD08lPnk5kKqiShB+/Zw//31amBrqSllbahVEnf38+XzXefqHGuuYGtsElKucd22HfYdelKSfory3AzyD23GxsOH3Z1DSPVsiw/XMB0cq5I7JEmKI3hurvL45EmIigIgzCsMbydvMgozTOY5SUh4O3kT5hWmCC9dGx1Qzmluwn9dfer0S3RmYmlOUn2aDLdy1Go1YWFh9O/fXx/NlGWZ9evXk5eXx8iRIxtulyFoNFrFq7Ju3Trmzp3LwoULOXDgAKGhoYwdO5YMwxJggaAlYWcH06dDr17V9125onyIHj9uWjR16QKPPVYtAmYulppS1sXoIB+zxpkr2BqbjLxiVPZOOHYfiNvAO7Hz6QGSivLr6eQe3MK0v/pTplHSt42pYfkpOLjy99RUJWoJqFVq5kXMqzjS+Fy6x69EvKL4OV26ZGxPYXjOhlKnbYAB9c1J0om3PpOVnzexaDLEMIk8Ly+Pa9eukZ2dzYYNG/jggw84ePAgWl1xiqDZ0CqE05IlS3j88cd55JFHCAoK4uOPP8bJyYkvvviiqacmENQfW1uYMkWJHAVUN9GsRufOMGmS4kbt6Fjvy+q8kqDGtOLaKwOrYG0h1tgYCjiVvRNOARG4DZiInXcASCoOarsyW/s8pU5VIi81uXkPHGj82MAMc3SX0SyJWoKXk5fREG8n70orgqoGmpJU/ZwNwZKlt5skJ6kpcHNzY86cOYwZMwYnJyeysrL44Ycf+Oijjzhy5AhybcUAghuKJLfwV6O0tBQnJyfWr1/PXXfdpd8+Y8YMrl+/zk8//VTtmJKSEkp05oYo68p+fn7k5OSIJo2C5ktWluInlZamVGrJsiKQPD2VvCgf8yI75mINHyfDcz25WqkOM2Vaaa69wY1Ao5UZ/tZWk+7kmqI8JFmLbwdvdr40kuITW4nZ9AeRkSPwGlCLA/bXXxtbCIwdC0OGGFyzBudwUOwvNm+uPDYwUCkWsBYpcbDq9rrHRS2AKAuW9AT1pqSkhISEBHbv3k1RRVXmlClT6G1hhazAfHJzc3F3dzdLB7T4HKerV6+i0Wjw9jb+9uft7c3x48dNHrNo0SJef/31GzE9gcB6tGsHo0ffsMvV1yuppnPV17TyRlObO7mNo2JXsHBiEGobG3ZdhkO5Lhz+7S9CLpQxcuRI2rdvX/2kkZFw9mxlkvimTUrSf2Qk2NujVqkJ96nit1VSAjt2KMJJhyTVK+G/Vur0fAJcO8KIF617XUGN2NvbExkZSXh4OHv37uXUqVP07NlTvz83NxdXV1fzDFsFVqfFR5xSU1Px9fVl9+7dDDH4Bvfyyy+zfft24uPjqx0jIk4CQdNgjRYuNwpzIm4ZGRls27aNY8eOAUrOSmhoKCNGjKBt2ypLj3v3QkyM8TY7OwgNVSKGuubS168rkcWDB42rJAFuuw0ao+hFb3wJJmOClhhfCqyOLMt6kVReXs57772Hm5sb0dHRdOvWTQgoK2BJxKnFC6f6LNVVxZInTCAQ3DyYK/TS0tKIjY3lREXlm0ql+v/27j4oqvPQ4/hvgbBQhFUsmBqB4EtjgsZVYPFKopCmjZpmJp2UNnfSllgHkxlItGZSVzKtfyQGU5mOU9OgOBnKtOZqYpux6eSljuUtVYsvkYgtWoI2ZBkMsZZFSNfC7v2D696sGjxE4Cy738/MzmR3n8WfZzbuj+c8+xxlZWVp2bJlgR9qDQ3/fwHp4fr616Xc3C/2WiOueamVW8Jy24Bg9uGHH+rXv/61f+PMtLQ05efn69ZbbzU32DgXVsVJknJycuRwOLR161ZJktfrVWpqqkpKSuR0Oq/7eooTgJHgcrlUU1Oj1tZWORwOLV++/OpBzc3SW28FblQ6lAkTpGXLRvabdJ/n8sV92TYgqF28eFHvvvuujhw5ov7/22Q1PT1d99xzT8BFrWFc2BWn3bt3q7CwUNu3b5fD4dCWLVv06quvqqWl5aq1T9dCcQIwktrb2zVx4kT/JVw6Ojr0/vvv66677tKECRMGN0/9298GNy798MNr/5C0tMENT2+/fdi7vyM8uN1uNTQ06NixYxoYGLwUTklJybXX2WFIYbU4XBr8tkFXV5d++tOfqrOzU3a7XW+//bah0gQAI+3K3/pra2t1+vRpHT16VNnZ2crNzVXc3LmDu8F/8sngHk2XdwaPiRnc5JQPP1xHQkKC7r//fuXm5qqhoUF9fX0BpenixYuDRR0jKiRmnG4UM04ARlNbW5v+9Kc/6aOPPpIkRUdHKycnR4sWLVLsDey5BXzWZxeRu91u/eIXv9CsWbOUn5+v5OTk67w6vIXdqbobRXECMNp8Pp9aW1tVU1Ojjv/b8d1qteqee+5RTk6OyekQao4fP669e/f6y1RGRoby8vI4jfc5wu5UHQAEO4vFolmzZmnmzJk6deqUampqdO7cOb5KjlFht9s1depU1dXV6eTJk2pubtbJkyd15513asmSJVdvlwHDmHESM04Axp7P51NLS4tmzZqlqKjB32FbWlp0/vx5ZWdnKzo62uSECBWdnZ2qra31bwpttVr11FNP8R77DGacACDIWSyWgEtoeL1e7du3T+fPn9eBAwd09913Kysry1+qgC/q5ptv1sMPP6yOjg7V1NQoKSkpoDT19vYqLi7OxITjCzNOYsYJgPm8Xq/ef/991dXV6cKFC5Kk+Ph4LV68WPPnz6dAYcR4vV5FRERIGtxQs7q6WpmZmbr77rv9W2iEGxaHDxPFCUCwGBgY0PHjx1VfX6/u7m5Jks1m0/LlywOuVwaMhD/+8Y86cOCAJCkqKkrZ2dm66667wm4GiuI0TBQnAMGmv79f7733nurr69XT06Mf/OAHmj59utmxEGJ8Pp/OnDmjmpoatbe3S5Juuukm/3YZX/rSl0xOODYoTsNEcQIQrP7zn/+opaVFc+bM8X8D78iRI7JarcrIyPCfcgFuhM/n0wcffKCamhq5XC5J0pQpU/T444+HxTc/WRwOACHipptu0ty5c/33P/30U+3bt08ej0f19fXKy8vTHXfcERYfbhg9FotFM2fO1IwZM3T69GnV1NTI4XD431cDAwPq7++X1Wo1Oan5+FUFAMaRyMhI5ebmKiYmRl1dXTp48KDZkRBCLBaLbrvtNj322GOy2+3+x0+ePKl/X74sUJhjxgkAxpHo6GgtXrxYDodDhw4dUlpaGrNNGHEWiyXgfRUZGSmbzWZiouBBcQKAcSgmJkZ5eXlmx0CYyMjIMDtC0OBUHQAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAYRHECAAAwiOIEAABgEMUJAADAIIoTAACAQRQnAAAAgyhOAAAABlGcAAAADKI4AQAAGERxAhBUmpqaRnU8ANwIihOAoLFjxw7Z7XZt2rTJ0PhNmzbJbrdrx44do5wMAAZRnAAEhaamJq1atUqStH79+uuWp02bNmn9+vWSpFWrVjHzBGBMjOvidPbsWa1cuVLp6emKjY3VjBkztGHDBl26dMnsaACGad68eSorK/Pfv1yeBrw+HfzgvPYed+ngB+c14PUFlCZJKisr07x588yIDSDMRJkd4Ea0tLTI6/Vq+/btmjlzppqbm1VUVKTe3l6Vl5ebHQ/AMDmdTknyl6L169frpdpWRdi/5R/jPf662t952X+/rKzM/zoAGG0Wn8/nMzvESNq8ebMqKirU1tZm+DVut1s2m03d3d1KSEgYxXQAjLhyRmnikkLZFhao+9Br+lddtf9xShOAkTCcHjCuZ5yupbu7W4mJiWbHAHADnv7xOr1U2+qfWfpXXbXch/bI6+n1j0m5b6We/vE6syICCFPjeo3TlVpbW7V161Y99thjQ47zeDxyu90BNwDBo/HMPxVh/5YmLin0P/bZ0jRxSaEi7N9S45l/mhEPQBgLyuLkdDplsViGvLW0tAS8xuVyaenSpSooKFBRUdGQP7+srEw2m81/S0lJGc2/DoBh+rjn35Ik28ICRVjjAp6LsMbJtrAgYBwAjJWgXOPU1dWl8+fPDzlm+vTpio6OliR1dHQoLy9PCxcu1K9+9StFRAzdBz0ejzwej/++2+1WSkoKa5yAIHHwg/P67x2HrlrTdNnlNU//U7RQ/zVjsgkJAYSScb/GKSkpSUlJSYbGulwu5efnKzMzU1VVVdctTZJktVpltVpvNCaAUeJIT5T3+OsBpSnCGuc/XfevumrFx0TJkb7crIgAwlRQnqozyuVyKS8vT6mpqSovL1dXV5c6OzvV2dlpdjQAN2Dzz14I2HJg4pJCpazZHbDmqf2dl7X5Zy+YEQ9AGAvKGSej9u3bp9bWVrW2tmratGkBzwXhGUgABly5FUHKfSv9+zjZFhYoPibKX6ouj2NLAgBjJSjXOI019nECgsO1dgR/+sfr1Hjmn/q4599Kjo+RIz1Rm3/2wlXjKE8Avqjh9ACKkyhOQDBoamqS3W73379eGbqyZB0/fpzLrgD4QobTA8b1GicAoWPevHmqrKyUZGwGyel0+q9tV1lZSWkCMCaYcRIzTkAwaWpqGlYJGu54ALgSM04Axq3hliBKE4CxRHECAAAwiOIEAABgEMUJAADAIIoTAACAQRQnAAAAgyhOAAAABlGcAAAADKI4AQAAGERxAgAAMIjiBAAAYBDFCQAAwCCKEwAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAYRHECAAAwKMrsAMHA5/NJktxut8lJAADAWLv8+X+5DwyF4iSpp6dHkpSSkmJyEgAAYJaenh7ZbLYhx1h8RupViPN6vero6FB8fLwsFsuI/my3262UlBS1t7crISFhRH82Ph/HfexxzM3BcR97HHNzjOZx9/l86unp0dSpUxURMfQqJmacJEVERGjatGmj+mckJCTwP5gJOO5jj2NuDo772OOYm2O0jvv1ZpouY3E4AACAQRQnAAAAgyhOo8xqtWrDhg2yWq1mRwkrHPexxzE3B8d97HHMzREsx53F4QAAAAYx4wQAAGAQxQkAAMAgihMAAIBBFKcxcvbsWa1cuVLp6emKjY3VjBkztGHDBl26dMnsaCHnl7/8pW699VbFxMQoJydHjY2NZkcKaWVlZcrOzlZ8fLySk5P14IMP6tSpU2bHCiubNm2SxWLRmjVrzI4S8lwul773ve9p8uTJio2N1dy5c3XkyBGzY4WsgYEB/eQnPwn47Hz22WcNXRpltLAB5hhpaWmR1+vV9u3bNXPmTDU3N6uoqEi9vb0qLy83O17I2L17t9auXatt27YpJydHW7Zs0X333adTp04pOTnZ7Hghqa6uTsXFxcrOzlZ/f79KS0v1jW98Q3/9618VFxdndryQd/jwYW3fvl133nmn2VFC3oULF5Sbm6v8/Hy99dZbSkpK0t///ndNmjTJ7Ggh64UXXlBFRYWqq6uVkZGhI0eOaMWKFbLZbHryySdNycS36ky0efNmVVRUqK2tzewoISMnJ0fZ2dl68cUXJQ1eTiclJUVPPPGEnE6nyenCQ1dXl5KTk1VXV6fFixebHSekXbx4UQsWLNBLL72k5557Tna7XVu2bDE7VshyOp3685//rIaGBrOjhI1vfvObmjJlil5++WX/Yw899JBiY2P1m9/8xpRMnKozUXd3txITE82OETIuXbqko0eP6t577/U/FhERoXvvvVcHDx40MVl46e7uliTe22OguLhY999/f8B7HqPn97//vbKyslRQUKDk5GTNnz9fO3bsMDtWSFu0aJH279+v06dPS5Kampr07rvvatmyZaZl4lSdSVpbW7V161ZO042gTz75RAMDA5oyZUrA41OmTFFLS4tJqcKL1+vVmjVrlJubqzlz5pgdJ6Tt2rVLx44d0+HDh82OEjba2tpUUVGhtWvXqrS0VIcPH9aTTz6p6OhoFRYWmh0vJDmdTrndbs2ePVuRkZEaGBjQxo0b9cgjj5iWiRmnG+R0OmWxWIa8Xfmh7XK5tHTpUhUUFKioqMik5MDIKy4uVnNzs3bt2mV2lJDW3t6u1atXa+fOnYqJiTE7Ttjwer1asGCBnn/+ec2fP1+rVq1SUVGRtm3bZna0kPXqq69q586deuWVV3Ts2DFVV1ervLxc1dXVpmVixukGPfXUU3r00UeHHDN9+nT/f3d0dCg/P1+LFi1SZWXlKKcLL1/+8pcVGRmpc+fOBTx+7tw53XzzzSalCh8lJSX6wx/+oPr6ek2bNs3sOCHt6NGj+vjjj7VgwQL/YwMDA6qvr9eLL74oj8ejyMhIExOGpq985Su64447Ah67/fbb9dvf/takRKHv6aefltPp1MMPPyxJmjt3rv7xj3+orKzMtFk+itMNSkpKUlJSkqGxLpdL+fn5yszMVFVVlSIimPAbSdHR0crMzNT+/fv14IMPShr8DXH//v0qKSkxN1wI8/l8euKJJ/T666+rtrZW6enpZkcKeV/72td04sSJgMdWrFih2bNna926dZSmUZKbm3vVVhunT59WWlqaSYlCX19f31WflZGRkfJ6vSYlojiNGZfLpby8PKWlpam8vFxdXV3+55gNGTlr165VYWGhsrKy5HA4tGXLFvX29mrFihVmRwtZxcXFeuWVV7R3717Fx8ers7NTkmSz2RQbG2tyutAUHx9/1RqyuLg4TZ48mbVlo+hHP/qRFi1apOeff17f+c531NjYqMrKSs4ejKIHHnhAGzduVGpqqjIyMvTee+/p5z//uX74wx+aF8qHMVFVVeWTdM0bRtbWrVt9qampvujoaJ/D4fAdOnTI7Egh7fPe11VVVWZHCytLlizxrV692uwYIe+NN97wzZkzx2e1Wn2zZ8/2VVZWmh0ppLndbt/q1at9qampvpiYGN/06dN9zzzzjM/j8ZiWiX2cAAAADGKRDQAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AQt5zzz0ni8WihQsXXvN5p9Mpi8Uiu92uCxcujHE6AOMJ16oDEPI+/fRTffWrX9VHH32kPXv26KGHHvI/V1ZWptLSUt12222qr69XcnKyiUkBBDtmnACEvNjYWG3cuFGS9Mwzz6i/v1+SVFFRodLSUqWnp2v//v2UJgDXxYwTgLDg8/mUlZWlY8eOadu2bZowYYK+//3va+rUqWpoaFB6erp/bGtrq8rLy9XY2KgTJ07olltu0dmzZ80LDyBoUJwAhI3a2lrl5+dr0qRJ6unp0aRJk1RfX6/Zs2cHjNu7d6+Ki4vlcDh05swZXbhwgeIEQBLFCUCYyc3N1YEDBxQfH6/6+nrZ7farxni9XkVEDK5kePzxx/X2229TnABIYo0TgDBSVVWlgwcPSpI8Ho8SEhKuOe5yaQKAK/GvA4Cw8Nprr6moqEiJiYn67ne/q0uXLmndunVmxwIwzlCcAIS8N998U4888oji4uL0zjvvaNu2bUpMTNSePXt04MABs+MBGEcoTgBCWl1dnb797W8rKipKb7zxhjIzMzVx4kSVlpZKktauXWtyQgDjCcUJQMhqbGzUAw88oIGBAf3ud7/T4sWL/c+VlJQoLS1Nf/nLX7Rr1y4TUwIYTyhOAELSiRMntGzZMvX19Wnnzp1aunRpwPNWq1XPPvusJGn9+vXyeDxmxAQwzrAdAQAMge0IAHxWlNkBACDY9PX16c0335QktbW1qa+vT3v27JEkZWdnKy0tzcx4AEzEjBMAXOHs2bMBl2D5rKqqKj366KNjGwhA0KA4AQAAGMTicAAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAY9L+YonlSRViTNQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In real-world scenarios, you won't know the true labels or the distribution of the features, so we won't use these in this tutorial, except for evaluation purposes.\n", + "\n", + "\n", + "\n", + "`Datalab` has several ways of loading the data.\n", + "In this case, we'll simply wrap the training features and noisy labels in a dictionary so that we can pass it to `Datalab`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:54.409494Z", + "iopub.status.busy": "2024-05-24T23:43:54.409076Z", + "iopub.status.idle": "2024-05-24T23:43:54.412003Z", + "shell.execute_reply": "2024-05-24T23:43:54.411463Z" + } + }, + "outputs": [], + "source": [ + "data = {\"X\": X_train, \"y\": noisy_labels}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other supported data formats for `Datalab` include: [HuggingFace Datasets](https://huggingface.co/docs/datasets/index) and [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). `Datalab` works across most data modalities (image, text, tabular, audio, etc). It is intended to find issues that commonly occur in datasets for which you have trained a supervised ML model, regardless of the type of data.\n", + "\n", + "Currently, pandas DataFrames that contain categorical columns might cause some issues when instantiating the `Datalab` object, so it is recommended to ensure that your DataFrame does not contain any categorical columns, or use other data formats (eg. python dictionary, HuggingFace Datasets) to pass in your data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` relies on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "This tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:54.414052Z", + "iopub.status.busy": "2024-05-24T23:43:54.413728Z", + "iopub.status.idle": "2024-05-24T23:43:54.448453Z", + "shell.execute_reply": "2024-05-24T23:43:54.447880Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:776: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=data[\"X\"], y=data[\"y\"], cv=5, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use Datalab to find issues in the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create a `Datalab` object from the dataset, also providing the name of the label column in the dataset. Only instantiate one `Datalab` object per dataset, and note that only classification datasets are supported for now.\n", + "\n", + "All that is need to audit your data is to call `find_issues()`.\n", + "This method accepts various inputs like: predicted class probabilities, numeric feature representations of the data. The more information you provide here, the more thoroughly `Datalab` will audit your data! Note that `features` should be some numeric representation of each example, either obtained through preprocessing transformation of your raw data or embeddings from a (pre)trained model. In this case, our data is already entirely numeric so we just provide the features directly." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:54.450891Z", + "iopub.status.busy": "2024-05-24T23:43:54.450347Z", + "iopub.status.idle": "2024-05-24T23:43:56.112729Z", + "shell.execute_reply": "2024-05-24T23:43:56.112118Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding null issues ...\n", + "Finding label issues ...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/runner/work/cleanlab/cleanlab/cleanlab/filter.py:904: UserWarning: May not flag all label issues in class: 2, it has too few examples (see `min_examples_per_class` argument)\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "Finding near_duplicate issues ...\n", + "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", + "Finding underperforming_group issues ...\n", + "\n", + "Audit complete. 30 issues found in the dataset.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "lab = Datalab(data, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, features=data[\"X\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's review the results of this audit using `report()`.\n", + "This provides a high-level summary of each type of issue found in the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.115098Z", + "iopub.status.busy": "2024-05-24T23:43:56.114740Z", + "iopub.status.idle": "2024-05-24T23:43:56.133424Z", + "shell.execute_reply": "2024-05-24T23:43:56.132895Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 17\n", + " outlier 6\n", + " near_duplicate 4\n", + "class_imbalance 3\n", + "\n", + "Dataset Information: num_examples: 132, num_classes: 4\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 17\n", + "Overall dataset quality in terms of this issue: 0.8561\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "77 False 0.001908 max mid\n", + "58 False 0.003564 max high\n", + "8 False 0.007331 max mid\n", + "7 True 0.008963 low mid\n", + "120 True 0.009664 high mid\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 6\n", + "Overall dataset quality in terms of this issue: 0.3558\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6160\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "131 True 0.000000 [123] 0.000000e+00\n", + "123 True 0.000000 [131] 0.000000e+00\n", + "129 True 0.000002 [130] 4.463180e-07\n", + "130 True 0.000002 [129] 4.463180e-07\n", + "51 False 0.161148 [] 3.859087e-02\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 3\n", + "Overall dataset quality in terms of this issue: 0.0227\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score given_label\n", + "8 True 0.022727 max\n", + "77 True 0.022727 max\n", + "58 True 0.022727 max\n", + "86 False 1.000000 mid\n", + "87 False 1.000000 mid\n", + "\n", + "Additional Information: \n", + "Rarest Class: max\n" + ] + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Learn more about the issues in your dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Datalab detects all sorts of issues in a dataset and what to do with the findings will vary case-by-case. For automated improvement of a dataset via best practices to handle auto-detected issues, try [Cleanlab Studio](https://cleanlab.ai/?utm_source=internal&utm_medium=blog&utm_campaign=clostostudio).\n", + "\n", + "To conceptually understand how each type of issue is defined and what it means if detected in your data, check out the [Issue Type Descriptions](../../cleanlab/datalab/guide/issue_type_description.html) page. The [Datalab Issue Types](https://docs.cleanlab.ai/stable/cleanlab/datalab/guide/issue_type_description.html) page also lists additional types of issues that `Datalab.find_issues()` can detect, as well as optional parameters you can specify for greater control over how your data are checked.\n", + "\n", + "Datalab offers several methods to understand more details about a particular issue in your dataset.\n", + "The `get_issue_summary()` method fetches summary statistics regarding how severe each type of issue is overall across the whole dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.135547Z", + "iopub.status.busy": "2024-05-24T23:43:56.135238Z", + "iopub.status.idle": "2024-05-24T23:43:56.141595Z", + "shell.execute_reply": "2024-05-24T23:43:56.141145Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
issue_typescorenum_issues
0null1.0000000
1label0.85606117
2outlier0.3557726
3near_duplicate0.6160344
4non_iid0.8217500
5class_imbalance0.0227273
6underperforming_group0.9015620
\n", + "
" + ], + "text/plain": [ + " issue_type score num_issues\n", + "0 null 1.000000 0\n", + "1 label 0.856061 17\n", + "2 outlier 0.355772 6\n", + "3 near_duplicate 0.616034 4\n", + "4 non_iid 0.821750 0\n", + "5 class_imbalance 0.022727 3\n", + "6 underperforming_group 0.901562 0" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issue_summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the returned summary DataFrame: LOWER `score` values indicate types of issues that are MORE severe *overall* across the dataset (lower-quality data in terms of this issue), HIGHER `num_issues` values indicate types of issues that are MORE severe *overall* across the dataset (more datapoints appear to exhibit this issue).\n", + "\n", + "We can also only request the summary for a particular type of issue." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.143536Z", + "iopub.status.busy": "2024-05-24T23:43:56.143337Z", + "iopub.status.idle": "2024-05-24T23:43:56.149091Z", + "shell.execute_reply": "2024-05-24T23:43:56.148589Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
issue_typescorenum_issues
0label0.85606117
\n", + "
" + ], + "text/plain": [ + " issue_type score num_issues\n", + "0 label 0.856061 17" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issue_summary(\"label\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `get_issues()` method returns information for each *individual example* in the dataset including: whether or not it is plagued by this issue (Boolean), as well as a *quality score* (numeric value betweeen 0 to 1) quantifying how severe this issue appears to be for this particular example." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.151236Z", + "iopub.status.busy": "2024-05-24T23:43:56.150843Z", + "iopub.status.idle": "2024-05-24T23:43:56.161239Z", + "shell.execute_reply": "2024-05-24T23:43:56.160700Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_null_issuenull_scoreis_label_issuelabel_scoreis_outlier_issueoutlier_scoreis_near_duplicate_issuenear_duplicate_scoreis_non_iid_issuenon_iid_scoreis_class_imbalance_issueclass_imbalance_scoreis_underperforming_group_issueunderperforming_group_score
0False1.0False0.859131False0.417707False0.664083False0.970324False1.0False1.0
1False1.0False0.816953False0.375317False0.641516False0.890575False1.0False1.0
2False1.0False0.531021False0.460593False0.601188False0.826147False1.0False1.0
3False1.0False0.752808False0.321635False0.562539False0.948362False1.0False1.0
4False1.0True0.090243False0.472909False0.746763False0.878267False1.0False1.0
\n", + "
" + ], + "text/plain": [ + " is_null_issue null_score is_label_issue label_score is_outlier_issue \\\n", + "0 False 1.0 False 0.859131 False \n", + "1 False 1.0 False 0.816953 False \n", + "2 False 1.0 False 0.531021 False \n", + "3 False 1.0 False 0.752808 False \n", + "4 False 1.0 True 0.090243 False \n", + "\n", + " outlier_score is_near_duplicate_issue near_duplicate_score \\\n", + "0 0.417707 False 0.664083 \n", + "1 0.375317 False 0.641516 \n", + "2 0.460593 False 0.601188 \n", + "3 0.321635 False 0.562539 \n", + "4 0.472909 False 0.746763 \n", + "\n", + " is_non_iid_issue non_iid_score is_class_imbalance_issue \\\n", + "0 False 0.970324 False \n", + "1 False 0.890575 False \n", + "2 False 0.826147 False \n", + "3 False 0.948362 False \n", + "4 False 0.878267 False \n", + "\n", + " class_imbalance_score is_underperforming_group_issue \\\n", + "0 1.0 False \n", + "1 1.0 False \n", + "2 1.0 False \n", + "3 1.0 False \n", + "4 1.0 False \n", + "\n", + " underperforming_group_score \n", + "0 1.0 \n", + "1 1.0 \n", + "2 1.0 \n", + "3 1.0 \n", + "4 1.0 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issues().head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each example receives a separate *quality score* for each issue type (eg. `outlier_score` is the *quality score* for the `outlier` issue type, quantifying *how typical* each datapoint appears to be). LOWER scores indicate MORE severe instances of the issue, so the most-concerning datapoints have the lowest quality scores. Sort by these scores to see the most-concerning examples in your dataset for each type of issue. The quality scores are directly comparable between examples/datasets, but not across different issue types.\n", + "\n", + "Similar to above, we can pass the type of issue as a argument to `get_issues()` to get the information for one particular type of issue.\n", + "As an example, let's see the examples identified as having the most severe *label* issues:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.163352Z", + "iopub.status.busy": "2024-05-24T23:43:56.162921Z", + "iopub.status.idle": "2024-05-24T23:43:56.171705Z", + "shell.execute_reply": "2024-05-24T23:43:56.171242Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
7True0.008963lowmid
120True0.009664highmid
40True0.013445midlow
107True0.025184highmid
53True0.026376highmid
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "7 True 0.008963 low mid\n", + "120 True 0.009664 high mid\n", + "40 True 0.013445 mid low\n", + "107 True 0.025184 high mid\n", + "53 True 0.026376 high mid" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "examples_w_issue = (\n", + " lab.get_issues(\"label\")\n", + " .query(\"is_label_issue\")\n", + " .sort_values(\"label_score\")\n", + ")\n", + "\n", + "examples_w_issue.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inspecting the labels for some of these top-ranked examples, we find their given label was indeed incorrect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Get additional information \n", + "\n", + "Miscellaneous additional information (statistics, intermediate results, etc) related to a particular issue type can be accessed via `get_info(issue_name)`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.173813Z", + "iopub.status.busy": "2024-05-24T23:43:56.173415Z", + "iopub.status.idle": "2024-05-24T23:43:56.180232Z", + "shell.execute_reply": "2024-05-24T23:43:56.179716Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
0low11220.4285710.1111110.571429
1high01120.4074070.1111110.592593
2mid32550.3378380.0925930.662162
3max21400.3333330.9523810.666667
\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", + "0 low 1 12 2 0.428571 \n", + "1 high 0 11 2 0.407407 \n", + "2 mid 3 25 5 0.337838 \n", + "3 max 2 1 40 0.333333 \n", + "\n", + " Inverse Label Noise Label Quality Score \n", + "0 0.111111 0.571429 \n", + "1 0.111111 0.592593 \n", + "2 0.092593 0.662162 \n", + "3 0.952381 0.666667 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues_info = lab.get_info(\"label\")\n", + "label_issues_info[\"classes_by_label_quality\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This portion of the info shows overall label quality summaries of all examples annotated as a particular class (e.g. the `Label Issues` column is the estimated number of examples labeled as this class that should actually have a different label).\n", + "To learn more about this, see the documentation for the [cleanlab.dataset.rank_classes_by_label_quality](../../cleanlab/dataset.html#cleanlab.dataset.rank_classes_by_label_quality)\n", + "method.\n", + "\n", + "You can view all sorts of information regarding your dataset using the `get_info()` method with no arguments passed. This is not printed here as it returns a huge dictionary but feel free to check it out yourself! Don't worry if you don't understand all of the miscellaneous information in this `info` dictionary, none of it is critical to diagnose the issues in your dataset. Understanding miscellaneous info may require reading the documentation of the miscellaneous cleanlab functions which computed it.\n", + "\n", + "#### Near duplicate issues \n", + "\n", + "Let's also inspect the examples flagged as (near) duplicates.\n", + "For each such example, the `near_duplicate_sets` column below indicates *which* other examples in the dataset are highly similar to it (this value is empty for examples not flagged as nearly duplicated). The `near_duplicate_score` quantifies *how similar* each example is to its nearest neighbor in the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.182280Z", + "iopub.status.busy": "2024-05-24T23:43:56.181951Z", + "iopub.status.idle": "2024-05-24T23:43:56.191176Z", + "shell.execute_reply": "2024-05-24T23:43:56.190724Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_near_duplicate_issuenear_duplicate_scorenear_duplicate_setsdistance_to_nearest_neighbor
123True0.000000[131]0.000000e+00
131True0.000000[123]0.000000e+00
129True0.000002[130]4.463180e-07
130True0.000002[129]4.463180e-07
\n", + "
" + ], + "text/plain": [ + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", + "123 True 0.000000 [131] \n", + "131 True 0.000000 [123] \n", + "129 True 0.000002 [130] \n", + "130 True 0.000002 [129] \n", + "\n", + " distance_to_nearest_neighbor \n", + "123 0.000000e+00 \n", + "131 0.000000e+00 \n", + "129 4.463180e-07 \n", + "130 4.463180e-07 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issues(\"near_duplicate\").query(\"is_near_duplicate_issue\").sort_values(\"near_duplicate_score\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?). \n", + "\n", + "Other issues detected in this tutorial dataset include **outliers** and **class imbalance**, see the [Issue Type Descriptions](../../cleanlab/datalab/guide/issue_type_description.html) for more information. `Datalab` makes it very easy to check your datasets for all sorts of issues that are important to deal with for training robust models. The inputs it uses to detect issues can come from *any* model you have trained (the better your model, the more accurate the issue detection will be).\n", + "\n", + "To learn more, check out this [example notebook](https://github.com/cleanlab/examples/blob/master/datalab_image_classification/datalab.ipynb) (demonstrates Datalab applied to a real dataset) and the [advanced Datalab tutorial](datalab_advanced.html) (demonstrates configuration and customization options to exert greater control)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:56.193198Z", + "iopub.status.busy": "2024-05-24T23:43:56.192880Z", + "iopub.status.idle": "2024-05-24T23:43:56.205036Z", + "shell.execute_reply": "2024-05-24T23:43:56.204576Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "from sklearn.metrics import roc_auc_score\n", + "\n", + "issue_results = lab.get_issues(\"label\")\n", + "outlier_results = lab.get_issues(\"outlier\")\n", + "duplicate_results = lab.get_issues(\"near_duplicate\")\n", + "\n", + "def jaccard_similarity(l1, l2):\n", + " s1 = set(l1)\n", + " s2 = set(l2)\n", + " intersect_set = s1.intersection(s2)\n", + " union_set = s1.union(s2)\n", + " if len(intersect_set) == 0:\n", + " return 0\n", + " return len(intersect_set) / len(union_set)\n", + "\n", + "identified_label_issues_indices = issue_results[issue_results[\"is_label_issue\"] == True].index.tolist()\n", + "label_issue_indices = np.where(y_train_idx != noisy_labels_idx)[0]\n", + "\n", + "label_quality_scores = issue_results[\"label_score\"].tolist()\n", + "Z = (y_train_idx == noisy_labels_idx).astype(float).tolist()\n", + "\n", + "identified_outlier_issues_indices = outlier_results[outlier_results[\"is_outlier_issue\"] == True].index.to_list()\n", + "outlier_issue_indices = list(range(125, 130+1))\n", + "exact_duplicate_idx = [index for index, elem in enumerate(X_train) if (elem == X_duplicate).all()][0]\n", + "if exact_duplicate_idx >= 125: # if the random index selected to create a duplicate >= 125, then the last point is also an outlier\n", + " outlier_issue_indices.append(131)\n", + " \n", + "identified_duplicate_issues_indices = duplicate_results[duplicate_results[\"is_near_duplicate_issue\"] == True].index.tolist()\n", + "duplicate_issue_indices = [exact_duplicate_idx, 129, 130, 131]\n", + "\n", + "\n", + "assert jaccard_similarity(identified_label_issues_indices, label_issue_indices) > 0.4\n", + "assert roc_auc_score(Z, label_quality_scores) > 0.9\n", + "assert jaccard_similarity(identified_outlier_issues_indices, outlier_issue_indices) > 0.9\n", + "assert jaccard_similarity(identified_duplicate_issues_indices, duplicate_issue_indices) > 0.9" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/image.ipynb new file mode 100644 index 000000000..735f4ccc1 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -0,0 +1,7229 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in an Image Dataset with Datalab\n", + "\n", + "This quickstart tutorial demonstrates how to find issues in image classification data. Here we use the Fashion-MNIST dataset (60,000 images of fashion products from 10 categories), but you can replace this with your own image classification dataset and still follow the same tutorial.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Build a simple [PyTorch](https://pytorch.org/) neural net.\n", + "\n", + "- Use cross-validation to compute out-of-sample predicted probabilities (`pred_probs`) and feature embeddings (`features`) for each image in the dataset.\n", + "\n", + "- Utilize these `pred_probs` and `features` to identify potential issues within the dataset using the `Datalab` class from cleanlab. The issues found by cleanlab include mislabeled examples, near duplicates, outliers, and image-specific problems such as excessively dark or low information images." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have a ML model? Run cross-validation to get out-of-sample `pred_probs` and provide `features` (embeddings of the data). Then use the code below to find any potential issues in your dataset (you can also run this code with one of `pred_probs` or `features` instead of both, but less issue types will be considered).\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\") # include `image_key` to detect low-quality images\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib torch torchvision datasets>=2.19.0\n", + "!pip install \"cleanlab[image]\"\n", + "# We install cleanlab with extra dependencies for image data\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install \"cleanlab[image] @ git+https://github.com/cleanlab/cleanlab.git\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:43:58.676556Z", + "iopub.status.busy": "2024-05-24T23:43:58.676375Z", + "iopub.status.idle": "2024-05-24T23:44:01.545083Z", + "shell.execute_reply": "2024-05-24T23:44:01.544485Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (this cell is hidden from docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"torch\", \"torchvision\", \"datasets\", \"cleanvision\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install \"cleanlab[image]\" # for colab\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " missing_dependencies = []\n", + " for dependency in dependencies:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")\n", + "\n", + "# Suppress benign warnings: \n", + "import warnings \n", + "warnings.filterwarnings(\"ignore\", \"Lazy modules are a new feature.*\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:01.547939Z", + "iopub.status.busy": "2024-05-24T23:44:01.547418Z", + "iopub.status.idle": "2024-05-24T23:44:01.551028Z", + "shell.execute_reply": "2024-05-24T23:44:01.550597Z" + } + }, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader, TensorDataset, Subset\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as optim\n", + "\n", + "from sklearn.model_selection import StratifiedKFold\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from tqdm.autonotebook import tqdm\n", + "import math\n", + "import time\n", + "import multiprocessing\n", + "\n", + "from cleanlab import Datalab\n", + "from datasets import load_dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Fetch and normalize the Fashion-MNIST dataset\n", + "\n", + "Load train split of the fashion_mnist dataset and view the number of rows and columns in the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:01.553047Z", + "iopub.status.busy": "2024-05-24T23:44:01.552743Z", + "iopub.status.idle": "2024-05-24T23:44:02.800699Z", + "shell.execute_reply": "2024-05-24T23:44:02.800145Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "30413b4850f144fb95d95e80062cde3d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading data: 0%| | 0.00/30.9M [00:00\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Load any huggingface dataset or your local image folder dataset, apply relevant transformations, and continue with the rest of the tutorial.\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Define a classification model\n", + "Here, we define a simple neural network with PyTorch. Note this is just a toy model to ensure quick runtimes for the tutorial, you can replace it with any other (larger) PyTorch network." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:32.663924Z", + "iopub.status.busy": "2024-05-24T23:44:32.663552Z", + "iopub.status.idle": "2024-05-24T23:44:32.669379Z", + "shell.execute_reply": "2024-05-24T23:44:32.668943Z" + } + }, + "outputs": [], + "source": [ + "class Net(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.cnn = nn.Sequential(\n", + " nn.Conv2d(1, 6, 5),\n", + " nn.ReLU(),\n", + " nn.BatchNorm2d(6),\n", + " nn.MaxPool2d(2, 2),\n", + " nn.Conv2d(6, 16, 5, bias=False),\n", + " nn.ReLU(),\n", + " nn.BatchNorm2d(16),\n", + " nn.MaxPool2d(2, 2),\n", + " )\n", + " self.linear = nn.Sequential(nn.LazyLinear(128), nn.ReLU())\n", + " self.output = nn.Sequential(nn.Linear(128, num_classes))\n", + "\n", + " def forward(self, x):\n", + " x = self.embeddings(x)\n", + " x = self.output(x)\n", + " return x\n", + "\n", + " def embeddings(self, x):\n", + " x = self.cnn(x)\n", + " x = torch.flatten(x, 1) # flatten all dimensions except batch\n", + " x = self.linear(x)\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:32.671482Z", + "iopub.status.busy": "2024-05-24T23:44:32.671132Z", + "iopub.status.idle": "2024-05-24T23:44:32.675385Z", + "shell.execute_reply": "2024-05-24T23:44:32.674854Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai\n", + "\n", + "SEED = 123 # for reproducibility\n", + "np.random.seed(SEED)\n", + "torch.manual_seed(SEED)\n", + "torch.backends.cudnn.deterministic = True\n", + "torch.backends.cudnn.benchmark = True\n", + "torch.cuda.manual_seed_all(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Helper methods for cross validation **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "# Set device\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "\n", + "# Method to calculate validation accuracy in each epoch\n", + "def get_test_accuracy(net, testloader):\n", + " net.eval()\n", + " accuracy = 0.0\n", + " total = 0.0\n", + "\n", + " with torch.no_grad():\n", + " for data in testloader:\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " # run the model on the test set to predict labels\n", + " outputs = net(images)\n", + "\n", + " # the label with the highest energy will be our prediction\n", + " _, predicted = torch.max(outputs.data, 1)\n", + " total += labels.size(0)\n", + " accuracy += (predicted == labels).sum().item()\n", + "\n", + " # compute the accuracy over all test images\n", + " accuracy = 100 * accuracy / total\n", + " return accuracy\n", + "\n", + "\n", + "# Method for training the model\n", + "def train(trainloader, testloader, n_epochs, patience):\n", + " model = Net()\n", + "\n", + " criterion = nn.CrossEntropyLoss()\n", + " optimizer = optim.AdamW(model.parameters())\n", + "\n", + " model = model.to(device)\n", + "\n", + " best_test_accuracy = 0.0\n", + "\n", + " for epoch in range(n_epochs): # loop over the dataset multiple times\n", + " start_epoch = time.time()\n", + " running_loss = 0.0\n", + "\n", + " for _, data in enumerate(trainloader):\n", + " # get the inputs; data is a dict of {\"image\": images, \"label\": labels}\n", + "\n", + " inputs, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.detach().cpu().item()\n", + "\n", + " # Get accuracy on the test set\n", + " accuracy = get_test_accuracy(model, testloader)\n", + "\n", + " if accuracy > best_test_accuracy:\n", + " best_epoch = epoch\n", + "\n", + " # Condition for early stopping\n", + " if epoch - best_epoch > patience:\n", + " print(f\"Early stopping at epoch {epoch + 1}\")\n", + " break\n", + "\n", + " end_epoch = time.time()\n", + "\n", + " print(\n", + " f\"epoch: {epoch + 1} loss: {running_loss / len(trainloader):.3f} test acc: {accuracy:.3f} time_taken: {end_epoch - start_epoch:.3f}\"\n", + " )\n", + " return model\n", + "\n", + "\n", + "# Method for computing out-of-sample embeddings\n", + "def compute_embeddings(model, testloader):\n", + " embeddings_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " embeddings = model.embeddings(images)\n", + " embeddings_list.append(embeddings.cpu())\n", + "\n", + " return torch.vstack(embeddings_list)\n", + "\n", + "\n", + "# Method for computing out-of-sample predicted probabilities\n", + "def compute_pred_probs(model, testloader):\n", + " pred_probs_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " outputs = model(images)\n", + " pred_probs_list.append(outputs.cpu())\n", + "\n", + " return torch.vstack(pred_probs_list)\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:32.677624Z", + "iopub.status.busy": "2024-05-24T23:44:32.677097Z", + "iopub.status.idle": "2024-05-24T23:44:32.686259Z", + "shell.execute_reply": "2024-05-24T23:44:32.685712Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Set device\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "\n", + "# Method to calculate validation accuracy in each epoch\n", + "def get_test_accuracy(net, testloader):\n", + " net.eval()\n", + " accuracy = 0.0\n", + " total = 0.0\n", + "\n", + " with torch.no_grad():\n", + " for data in testloader:\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " # run the model on the test set to predict labels\n", + " outputs = net(images)\n", + "\n", + " # the label with the highest energy will be our prediction\n", + " _, predicted = torch.max(outputs.data, 1)\n", + " total += labels.size(0)\n", + " accuracy += (predicted == labels).sum().item()\n", + "\n", + " # compute the accuracy over all test images\n", + " accuracy = 100 * accuracy / total\n", + " return accuracy\n", + "\n", + "\n", + "# Method for training the model\n", + "def train(trainloader, testloader, n_epochs, patience):\n", + " model = Net()\n", + "\n", + " criterion = nn.CrossEntropyLoss()\n", + " optimizer = optim.AdamW(model.parameters())\n", + "\n", + " model = model.to(device)\n", + "\n", + " best_test_accuracy = 0.0\n", + "\n", + " for epoch in range(n_epochs): # loop over the dataset multiple times\n", + " start_epoch = time.time()\n", + " running_loss = 0.0\n", + "\n", + " for _, data in enumerate(trainloader):\n", + " # get the inputs; data is a dict of {\"image\": images, \"label\": labels}\n", + "\n", + " inputs, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.detach().cpu().item()\n", + "\n", + " # Get accuracy on the test set\n", + " accuracy = get_test_accuracy(model, testloader)\n", + "\n", + " if accuracy > best_test_accuracy:\n", + " best_epoch = epoch\n", + "\n", + " # Condition for early stopping\n", + " if epoch - best_epoch > patience:\n", + " print(f\"Early stopping at epoch {epoch + 1}\")\n", + " break\n", + "\n", + " end_epoch = time.time()\n", + "\n", + " print(\n", + " f\"epoch: {epoch + 1} loss: {running_loss / len(trainloader):.3f} test acc: {accuracy:.3f} time_taken: {end_epoch - start_epoch:.3f}\"\n", + " )\n", + " return model\n", + "\n", + "\n", + "# Method for computing out-of-sample embeddings\n", + "def compute_embeddings(model, testloader):\n", + " embeddings_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " embeddings = model.embeddings(images)\n", + " embeddings_list.append(embeddings.cpu())\n", + "\n", + " return torch.vstack(embeddings_list)\n", + "\n", + "\n", + "# Method for computing out-of-sample predicted probabilities\n", + "def compute_pred_probs(model, testloader):\n", + " pred_probs_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " outputs = model(images)\n", + " pred_probs_list.append(outputs.cpu())\n", + "\n", + " return torch.vstack(pred_probs_list)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Prepare the dataset for K-fold cross-validation \n", + "\n", + "To find label issues based on `pred_probs`, we recommend out-of-sample predictions, which can be produced [via K-fold cross-validation](https://docs.cleanlab.ai/stable/tutorials/pred_probs_cross_val.html). To ensure this tutorial runs quickly, we set K and other important neural network training hyperparameters to small values here. Use larger values to get good results in practice!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:32.688373Z", + "iopub.status.busy": "2024-05-24T23:44:32.688075Z", + "iopub.status.idle": "2024-05-24T23:44:32.714934Z", + "shell.execute_reply": "2024-05-24T23:44:32.714367Z" + } + }, + "outputs": [], + "source": [ + "K = 3 # Number of cross-validation folds. Set to small value here to ensure quick runtimes, we recommend 5 or 10 in practice for more accurate estimates.\n", + "n_epochs = 2 # Number of epochs to train model for. Set to a small value here for quick runtime, you should use a larger value in practice.\n", + "patience = 2 # Parameter for early stopping. If the validation accuracy does not improve for this many epochs, training will stop.\n", + "train_batch_size = 64 # Batch size for training\n", + "test_batch_size = 512 # Batch size for testing\n", + "num_workers = multiprocessing.cpu_count() # Number of workers for data loaders\n", + "\n", + "# Create k splits of the dataset\n", + "kfold = StratifiedKFold(n_splits=K, shuffle=True, random_state=0)\n", + "splits = kfold.split(transformed_dataset, transformed_dataset[\"label\"])\n", + "\n", + "train_id_list, test_id_list = [], []\n", + "\n", + "for fold, (train_ids, test_ids) in enumerate(splits):\n", + " train_id_list.append(train_ids)\n", + " test_id_list.append(test_ids)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Compute out-of-sample predicted probabilities and feature embeddings\n", + "\n", + "We use cross-validation to compute out-of-sample predicted probabilities separately for each dataset fold. However, we use only one model to generate embeddings for all the images across the full dataset. This ensures all feature embeddings lie in the same representation space for more accurate detection of data issues. Here we embed all the data using our model trained in the first cross-validation fold, but you could also train a separate embedding model on the full dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:44:32.717052Z", + "iopub.status.busy": "2024-05-24T23:44:32.716867Z", + "iopub.status.idle": "2024-05-24T23:45:05.104669Z", + "shell.execute_reply": "2024-05-24T23:45:05.104078Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Training on fold: 1 ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.723\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.606\n", + "Computing feature embeddings ...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "057d3652acd94b27a3a9b42699d63dd5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/40 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------- dark images ------------------------\n", + "\n", + "Number of examples with this issue: 16\n", + "Examples representing most severe instances of this issue:\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFhCAYAAADgPRuZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2uElEQVR4nO3deXRV5b3/8U8MM4R50ASRMioxAzTKIHAp3qIIohWlKnK1F2sdlsoP67TqVIdevW29rjosUVvagr14K7UiDmgdioooVBm03lYZVIgyhhCGCCTP7w8W55K9v5GHc07ISZ73ay3X8jzZe59n7/OcnS873+/zZDnnnAAAABCMo+q7AwAAADiyCAABAAACQwAIAAAQGAJAAACAwBAAAgAABIYAEAAAIDAEgAAAAIEhAAQAAAgMASAAAEBgCABT4JzT5Zdfrj59+qikpESrVq2KbfPKK69o0KBBKigo0LBhw7Ry5crEz+bPn6/+/furb9++euKJJxLtI0eOVFFRkQYMGKA777yzxrGKi4uVn5+v//f//l/dnhwahLoag5JUXV2twYMH69xzz020VVZW6pJLLlH//v11wgkn6K233qq7k0ODkeo4/N73vqcOHTrUGGtS7ffCu+++Wz169FDnzp3r7qTQ4NTFOKyoqFBxcXHiv3bt2umBBx6QJH3/+99PtOfl5enss8+u61NMLxewffv2pbT/c8895yZOnBj7/4N98MEH7ssvv3TOObdgwQI3YsQI55xze/fudX379nXr1q1zFRUVrl+/fm7z5s3OOefKy8sT2wwePNi9//77rqqqyvXo0cOtWbPGOefcpZde6hYsWJBS/1H/MnUMOufcY4895iZNmlTjmD/5yU/cPffc45xzbs+ePa6srCyl/iMz1Oc4dM65119/3c2bNy+2n3UvdM659957z5WWlrpOnTql1G9klkwdhwdUV1e7Hj16uNWrV8d+NnnyZDdz5syU+n+kNagngDt27NDpp5+ugoICFRQUaMGCBZKk559/XgMHDlRRUZEuvPBCSdLq1as1atQoFRYWasKECdq6daskadSoUZo2bZpKSko0a9YsLViwQEOHDtXAgQN10UUXac+ePd79mTdvnqZMmSJJGjdunBYtWiQXWVq5uLhYRx99tCTppJNO0vr16yVJ7733nvLz85WXl6c2bdpo7NixevnllyVJbdu2lSTt3btXe/fuVVZWljZv3qw2bdqoZ8+ekqTRo0frT3/6UzKXESkIZQxu3bpVc+bM0WWXXVbjWLNnz9b06dMlSU2bNlX79u0P5/IhTRrTODzQl5ycnNhxrXvhgf2POeYY7/6hboQyDg945513dPTRR+tb3/pWjfavv/5aCxYsaHBPABtUALhgwQJ16tRJK1eu1IoVKzR06FBt3LhRV199tebPn6/ly5froYcekiRdc801uvLKK7VixQqdcsopuuOOOxLHadq0qZYuXarx48fr5z//uV577TV98MEH6tWrlx5//PHY+952222aN29erL20tFR5eXmSpKysLHXo0EFbtmyptf+//e1vNWbMmNi+kpSXl1djIA4bNkxdu3bVv/7rv6q4uFhdunTRzp07tXLlSlVVVWnevHk1tseREcoY/MlPfqJbb71V2dnZiZ9v27ZNTZo00Y9//GMNGjRIP/jBD1RRUXEYVw/p0pjG4aFE74XIHCGNQ0n6n//5H33/+9+Ptb/44osaOnRog/sHcYMKAAsKCrRw4ULdcMMNWrx4sdq2bavFixdr9OjRiQ+9Y8eOkqQlS5bovPPOkyRNmTJFb775ZuI4B9oXL16cGLTFxcX64x//qDVr1sTe984779SECRNS6vu7776rGTNm6O677/baftGiRSotLdWyZcv04YcfKisrS7Nnz9bll1+uYcOGKS8vr8YvZxwZIYzBDz74QGVlZRo1alSN9n379mnVqlUaO3as3n//fR1zzDG69957U+oTkhPCODwgei9E5ghpHDrnNHfuXE2aNCn2s9oCw0zXpL47cDj69eunZcuWaf78+Zo+fbomT56sHj16mNse+FOBpVWrVpL2J7mPGzdOM2fOTKo/ubm5Wr9+vUpKSuScU1lZmTp16hTbbs2aNZoyZYqeeeaZxM8P7HvA+vXrdfLJJ9fYLycnR6eeeqpeeuklnXjiiRo+fLjefvttSfv/FPdN54i6EcIYXLx4sd5880317NlTlZWVqqio0GWXXaYZM2aobdu2GjdunKT9CdMH/yseR05jGoc+ovdCZIaQxuFbb72l4447Tt27d6/Rvnv3br3yyiuaMWNGUn2uTw3qCWBpaalat26tiy++WNOmTdOyZcs0ZMgQvfbaa4lfZAfyCkpKSjR37lxJ0pNPPqmRI0fGjjd06FC9/vrr+uyzzyRJ27dvN/+1UZvx48dr1qxZkvbnPAwdOjQ2yMvKynTWWWfp4YcfVn5+fqL95JNP1ocffqj169drx44devHFF3XaaaepvLxcmzZtkvR/eQXHH3+8JGnjxo2S9uddPPjgg5o6dap3X5EeIYzBK664QuvXr9fatWs1Z84cjR07Vo899piysrI0ZswYvfPOO5KkN954QyeccIJ3X5E+jWkc1uab7oXIDCGMwwNqe8r3wgsvaOTIkd+YO5ix6q38JAkvvfSSO/HEE11RUZEbMmSI++ijj5xz+6t9ioqKXGFhoZs8ebJzzrlVq1a5kSNHuoKCAjd+/Hi3ZcsW55xz//Iv/+JWrlyZOObLL7/svv3tb7uCggJXVFTkXn/99dj73nrrre7ZZ5+NtVdVVbkf/vCHrlevXm7QoEHun//8p3POuSVLlripU6c655y76667XJs2bVxRUZErKipyJ598cmL/Z5991vXt29f17t3bzZgxwznn3Nq1axP9yc/Pdz/96U8T20+bNs0df/zx7vjjj3e///3vU7mUSFIIY/Bgr7/+eo2KuFWrVrlhw4bFzglHVmMbh6eeeqrr3Lmza9mypcvLy3OLFi36xnvhLbfc4vLy8txRRx3l8vLy3C9/+csUryiSEcI4PHDcvLw8V1paGnvPSZMmuTlz5iRz+epdlnOREhkAAAA0ag3qT8AAAABIHQEgAABAYAgAAQAAAtMoA8DS0lJNnjzZ/FnPnj21Y8cO72Ndd911KiwsVGFhoc477zzt2rWrxs8feughZWVlJY65fft2jRs3TsXFxSosLNSLL75YY/vly5erSZMmmj9/fqLt+uuvV35+vk444QT9x3/8h3ffkLnSOQbvuOMOde/ePbHm5IH5s1wt617WttblP/7xjxprWrZs2VJ//vOfJUmrVq1SSUmJ+vTpo8svvzw2ez4aviNxX1y7dq1GjRqlgoICjR07VuXl5ZKkOXPmqLCwUMXFxRo+fLj+93//N3GsV155RYWFhcrPz2+Qc6kheekck7Wty1vb2PvrX/+qoqIiFRcXq6SkRIsWLUr5fBqc+q1BOfKOO+44V1FR4b39gbUonXNu+vTp7v7770+83rhxozv99NNdjx49Esf8xS9+4W666SbnnHMff/yx69evX2L76upqN3bsWHf66ae75557zjnn3NKlS90pp5ziqqqq3K5du1zPnj3NSiM0Hoc7Bm+//Xb34IMPxtprW/fym9a6PKCiosJ16tTJ7dixwznn3MSJExNj8uD/RxjSdV8855xzEhWRs2fPdjfffLNzzrnt27e76upq55xz8+bNcxMmTHDOObd161aXn5+fuOdt2LAh9ZNBo3C4Y/JgB6/LW9vY27FjR2Lt4RUrVrjCwsLUO93ANMongGvXrlVJSYkkadeuXZo4caIGDBigSy655LCfbBxYi9I5p8rKyhpzCt1888366U9/WqMtKysrsTxWeXl5jfUqZ82apdGjR6tbt241tq+srNSePXtUWVmpFi1aqE2bNod/0sgo6RyDtalt3ctvWuvy4H1PPfVUtW7dWs45LVq0KDHB80UXXaTnnnsuLX1E5jgS98WPP/5Yo0ePllRzvfKcnJzENrt27Ur8/x/+8Aedf/75iftk165dUzxLNCR1cZ+Mrstb29hr3bp1YjWtg9tD0igDwIM98sgjysvL09///ndNmjRJn3/+ubndGWecodLSUvNn11xzjXJzc/XRRx/pRz/6kaT9S9ZUV1fHVu+47LLL9NFHHyk3N1enn366fvnLX0raHww+8cQTuvbaa2tsP2jQIH3nO99Rbm6uevTooWnTpjXMCSVRq3SMwfvvv1+FhYW64oorEn8W8Vn3sra1Lg+e1HTLli3q2LFj4gYYXZcajU9d3RcLCwsTQd+f/vSnGuPo97//vfr27avrrrtOv/jFLyRJn3zyiTZs2KARI0bo5JNP1vPPP5/O00QDko4xKdnr8lpjT5L+8pe/6IQTTtDYsWP16KOPpu1cGoz6e/hYd9asWeO+/e1vO+ecO+uss9zbb7+d+FmHDh2SeqxcVVXlpk2b5n7zm9+4qqoqN2rUqMSf2Q5+VP3HP/4x8Sfg999/3+Xn5yf2nT9/vnPOuYsvvjjxJ7ZPPvnEnX322W7Xrl1uy5YtrqCgwK1atSr5k0dGSOcY/Oqrr9y+ffvcvn373PTp092Pf/xj55xz48aNc0uWLElsN2DAALdp06bE68WLF7v+/fu7zZs31zheeXm569Kli9u9e7dzzrlNmza5/Pz8xM/fe+89N27cuMM4WzQEdX1fdM65devWuQkTJriBAwe6W265xXXr1i22z9y5c92//du/Oeecu+qqq9yIESPc7t273bp169xxxx3ntm7dmszpoQGqizF5wQUXuNmzZ5s/O3jsHeydd95x3/3udw/7vRq6Rv8EUPrmNQh9HXXUUbrgggs0d+5cVVRU6MMPP9SQIUPUs2dPrVu3Tvn5+dq+fbtmzpypc845R5I0cOBAOee0efNm/e1vf9NVV12lnj176umnn9bUqVP18ssv65lnntGwYcPUsmVLdezYUSNGjNDSpUtT7i8ySypjsFu3bsrOzlZ2drb+/d//XUuWLJFUcy1fF1n38sBal3Pnzo2tdfnss89qzJgxatGihSSpU6dO2rp1a+JPLuvXr1dubm7S/UXDkO77orT/6fGzzz6r999/Xz/60Y907LHHxvY555xz9MILLyS2Hzt2rFq0aKG8vDzl5+fr008/TblfaJhSHZMH1uWdMGGC+fODx97BhgwZonXr1mnz5s0pvX9D0+gDwOHDh+upp56SJL300ksqKys7rP0/+eSTxP/PmzdPxx9/vNq1a6dNmzZp7dq1Wrt2rbp3766PPvpIbdu21bHHHqtXX31V0v5fwtu3b1fnzp21cOHCxPbnnnuufv3rX2vMmDE69thj9cYbb6iqqkqVlZVatGiR+vfvn74LgHqX6hj88ssvE///7LPPJtavrG3dy0OtdRld0zIrK0tDhgxJ/PntySef1Jlnnnl4J4kGpS7ui5K0efPmxD8k7rnnHl122WWx7V955RUdd9xxkqQJEybozTffVHV1tbZt26aPP/5Y3/rWt5I/MTRYqY5JyV6Xt7axt3r1alVVVUmSPvzwQ1VUVMT+sdzYNfoA8Morr9Tnn3+uAQMG6KmnnlKPHj3M7WrLK7jmmmtUUFCgwsJCrV69Wrfddts3vt+tt96amNbg7LPP1mOPPaajjqr9Mp933nk65phjVFBQoEGDBmnSpEkqKio6vJNERkt1DN5www2JMfj+++/rrrvukrQ/AOzYsaN69+6t22+/Xffee68k6eGHH9aaNWt0/fXXq7i4WIMHD04cq7y8XO+9955OO+20Gu9x33336fbbb1fv3r3VoUOHREEIGqe6ui+++uqr6t+/v/r166dWrVpp6tSpkqTZs2crPz9fxcXF+tnPfqbf/e53kqT8/HwNHz5cJ554okaMGKG77rpLnTt3rqOzRiZLdUxK+/9xO2nSpBpttY29A7+ni4uLdemll+oPf/hDcIUgrAUMAAAQmEb/BBAAAAA1EQACAAAEhgAQAAAgMASAAAAAgSEABAAACAwBIAAAQGCa+GxUXV2t0tLSGosqA9L+FSgqKiqUm5v7jfMdpgPjELU5UuOQMYjacC9EJjiccegVAJaWlppL+gAHfPHFF+revXudvgfjEIdS1+OQMYhD4V6ITOAzDr0CwIOXVWmo2rRpE2tr2bJlrG3Tpk2HPNbq1atjbQeWfzvYlVdeGWvbu3fvIY/fEB2JMdIYxqGlVatWsbajjz461rZx48Yar5s0iX99s7OzY21btmxJoXcNS12PkcY6Bi3FxcWxtmXLliV1LGtt6dpWc2jouBcmr3Xr1rG2fv36xdqi49Baz6J9+/axti5dusTaDl4qrjHxGSNeAWBjeMRsnUOyj+mtC2v9Em8M183XkTjXxno9fcdmdLt0junGoq7HSGMdgxbrHxM+Qh+X3AuTZ52XNQ6j21kBoO+xGiufMRLOtxIAAACSPJ8ANjTWo19rYWnrX6XWvxC6du1a47W1WPnll18ea7P+7GGx/hSyZ88er32Ruax/gVmpCM2bN/dqiz5lrq6ujm1j/QnFGtNlZWWxtq+//jrWhjCUlJR4bXfppZfWeP3444/HtrHa7rrrrlibNcYZg42T9Vl369Yt1mb9ufcvf/lLrO3Pf/5zjddnnXVWbJv7778/1nbdddfF2k488cRY2/r162Nt1j2zoeMJIAAAQGAIAAEAAAJDAAgAABAYAkAAAIDANLgiEKvAI9pmbbN79+5YW1VVVazNmuLlyy+/rPHaSu633tOap81Khi0sLIy1bdu2rcbrTz/9NLYNMkt0DFiftcUam5s3b461ReettPaz5pnct29frK1Tp05e+1ZUVNR4XVlZGdsGmaNdu3Y1Xlv3Jeu+17Fjx1jbkiVLYm2jRo2q8Xrr1q2xbaw5Ua3iDiv53pqzcteuXTVeW8n4jXV+1UzTtGnTWFuHDh1ibdFCSWs/S/R+I9nFmj/4wQ9qvD7hhBNi2yxatCjWZk3XZt0frTigRYsWh+yXNc6te3mm4AkgAABAYAgAAQAAAkMACAAAEJgsZ62hErF9+/ZYbkl9yc/Pj7VF/+5u/U3fl5UfE51I15psd+fOnWl9z7y8vBqvrfUKM2mN1/LycrVt27ZO3yOTxqF1rtEcPd+8JOsraE0EHj13axtrcmjr+2Dlp1p5OtE8xnXr1nm9Z32p63FYX2PQyic99thjY23Rvll5olaektVmveeqVau+sZ+16d27t9d7WvnVVn5i1IYNG2JtX331lWfv0qux3AutSet93zOat2ndI6z7TXTRBetYUnyiZutY1v3XWsTBymv26a/VL+uaWcc6EnmBPuOQJ4AAAACBIQAEAAAIDAEgAABAYAgAAQAAApPRE0E3a9Ys1pZKgUeUlQhvtUVZycs++9W2r5XMH53s1JpsM5OKQEJjfd7RpOPt27fHtvEdv9YEvjt27Kjx2pqI1EqiT2VsRgugopOhSnYyNNLLKviwPq9ocrw1RlIp2snNzT3ksaziEese5zPepPhk09Z+VnK/VQTAPdNf9+7dY21WsY31/Y9OuGwVOlqFG9Yk3z6TT1v7Wb8zrTGR7PfB+m5Zx7cKZ8rLy732rWs8AQQAAAgMASAAAEBgCAABAAACQwAIAAAQmIwuArGSia22aBKqz2oemSS6goQUP4d0Fr8gdVZi8qZNm2q8tpJ/R40aFWv74osvYm3Lly+PteXk5ByyX74rOvgmMPv0gSKQ9LLuVdbqQ9GiIMkel1HWZ2+xkuOj48vaxjep3veeHL0XWv2vqKiItVE4lxrrOlvjK1rwIcU/W+veYv2ettqslTqirHucdS/0PSeLz/3R9/tgXTOrMKSu8QQQAAAgMASAAAAAgSEABAAACAwBIAAAQGAyugjEYiWJRgskrARLKyHUdyb6KN+VFSxW36wk+mhSq0+irWRfH6TGShy2rn002ffaa6+NbTNgwIBY23XXXRdrs4p+osf37Zdzzuv41ioi0fe0kq2RXp06dYq1+Sa0R1mfvbUqh+++yb6nNbYsPsf3Tdq3Vq2BP2ucWPcX6/OI3jesAop0rnyRyuo21r7WOIy2+RbSWQVKmfJ7mieAAAAAgSEABAAACAwBIAAAQGAIAAEAAAKT0UUgvoUPyaqP1UF8Zz+PFpr4JvxnSnJpY2IlOe/evTvWlpubW+P1/PnzY9usXr061nbhhRfG2u67775D9stKtk+3aLFIs2bN6vw9Q2ettuK7wkBd39NSSbZPF+sel8qKJLDvcVaxo/V7yCq2SXZ1oHSOX+ucrOP7FqhE9/UpfqlNpqxMxhNAAACAwBAAAgAABIYAEAAAIDAEgAAAAIHJ6CKQTEmUTJbVf2tGf999ozp06BBr27Bhg9fx4c9KhrZWxIgmPi9dujS2zbnnnhtru/HGG2NtPkUg6WYleEcT7n1WakBqfFZkkexx6VMYZO3nW0Th8/lb/U9l3ET3tfrlm5DvuxJTaHw/H98ih9atW9d4bX0+lZWVXsfy6UcqxY9W33zbfFgFJZmyohJ3cwAAgMAQAAIAAASGABAAACAwGZ0DaOVr+EyanMl8cxWiuYLW5LBMyntkWPkxPrlW1md20003ebVZk6tGx46Vk5JsX63jW+9BDmDds77XFRUVsTbrvheduNvKx7OkMwfM91jJjiVrP6vN6qtP7i72i44lyX8hg+j9y7oH+U7oXR+se2t07Fh9tfL9LJlS38DdHAAAIDAEgAAAAIEhAAQAAAgMASAAAEBgGk71RAOUyuSUPvtmSiJpY+d7naMJ91YCvjV5tyWVsXOk+Sbgw49v4YY1Ln0m7vYtCvKR7nFq9Td6PXy2qQ3j0maNJWucWEUOyV5T6z2T/Z2WyrGs8eQz6bNvEZ7PBPv1hSeAAAAAgSEABAAACAwBIAAAQGAIAAEAAALTKItArBnyoytr1Jdkk1ytWdnbtm3rdfxMSThtqKwE83SuiGAlWzekwgpr5YrKysp66EnjZX2HrXGZzpVa6noMJlvM4bMCimT3tSGtGnUkWZ+FVfDhu9JF9HjpHqvRfdO9+oy1nc/YsX7/+l6z+sATQAAAgMAQAAIAAASGABAAACAwBIAAAACBaXAZsT7FHFZCsMVKrE62iMI3MdlivWd03927d8e2admyZazNSsi39oU/K4HZKtyIbmeNm3QmPh+JopDoe1jvac2ITxGIn1atWnlt5/tZp3NM+Bwr3cn9PquUWN+r+iiSaeysa9WiRYtY265duw65r+84T3aVGut3qO9KHdY4t44X/d1qnbf1ntZ2OTk5sbaysrJYW10XkPBtAAAACAwBIAAAQGAIAAEAAAJDAAgAABCYjCkCsQoaLFZhRbQAI5VVP3wKPqxtmjdvHmvz7YfP6iBWIql1zTp06BBrowjEn5Uk3JASx30LVpItKrCuRbKr28B/bPmuYBH9rH1W1kg3a2yl8h3yOQff4j0rSR82qwDB+hyt33Pl5eU1Xrdp0ya2TSqFk+mU7NiMnqMkdezYMdaWyWOu4fxmAwAAQFoQAAIAAASGABAAACAwGZMDaOUD+EyQ7HusVPIC64NPzo+V22flAJaWlqalT6HyzauLqo/cwWQnUvVl5Xf55qchzrrHWblX9ZEb1ZBY31FyAP1Z49B3bPq0WQsU7Nix43C6eMj39GHdv6z8fR9WXv4xxxwTa7N+D2TKJOU8AQQAAAgMASAAAEBgCAABAAACQwAIAAAQmIzJ3rYSTpMt5rASpn0nCs0U0XPwvRbJJrRiP99JjX0mUra2sY6fzsKNVCb+TfY74jupNOKsxG/fQhvf5PJk+SSlp3vSZx/WmLSKDOCvVatWsTbrc7SKaKztokUa1mfme99IZd9k+Zyn70TZ1rGse761XV0Xr/IEEAAAIDAEgAAAAIEhAAQAAAgMASAAAEBgMqYIxEpCtVjJ0NHCh3QXR6SzWMS3H9EiEN+VAKxk6JYtW8barFVEYF8/K2HXp3DD2sY3Sd/azifx2ff4vgUEPu9pJS8nu3pKaKz7me+48Sm2SOWa+4yl+li9wJc1dtNZJNOYWL/jrJUuWrRoEWvzuUf4rspibefz+9faxvd3bbKrg1j7Wb+nrfO0Ckisa5vKaik+MvfbCwAAgDpBAAgAABAYAkAAAIDAEAACAAAEJmOKQKwkzp07d8barKRpnwIJa5UD38KKaN98V4uwWO9pnZMPa789e/bE2tq2bRtrowjEn++s8+lMMK/rggnfVUqirO+pdd7W2LQSn0NnJX5b1zhTC2iOxEog0XO3xpY1Bq3rmOy9trHzXQXIt1gknXzuS9Y2vr+nfYs0fMa1b0xhqY+VyXgCCAAAEBgCQAAAgMAQAAIAAASGABAAACAwGZMRa61WYSXsJpsQWh+spM5k++Z7LayE3M6dO8faNmzYkFQ/Gjvfz8dnpQvfopBUVgzxOVY6WWPaSo72TawOnTXerM/QSi63rns6P/9kj1XXq4Ok8h3N5JVL6pO18oW1CoW1ylayfFcQ8imssD5X38/aOnermNIq2IpK5fvnW2yYTnwbAAAAAkMACAAAEBgCQAAAgMAQAAIAAAQmY4pArORyq3hh8+bNhzyWVTBhHd9K/rSSXJs1a3bIY1latWoVa0t2pnCrX9YKH/Uxm3hj4ps4bG0X/Wx9E5N9V4eJJkj7Fo/4JiYnO5u+70ogiLOur5WAbn2vrST6qHSuTiPFE9Wt8Wydk5Xgnuz49V21wjo+RSA235V7rN+Zluh1tj7/yspKr2P5FEdYY8K36MwqnLSuh08/rPe04gDrPdu0aRNrKy8vP+R7poJvAwAAQGAIAAEAAAJDAAgAABCYjEnUsXILrNwoKz8m+jd23xwR31zBaD+svlrHsrbbvn17rM0SPZ7VL2vybCsvqD4mmGyofCc6rg91PcmzD2sspXPC89BYk8ta9zjrevpMDp9KTqgPazz45vtZ5+TT32hOtmRfM6sfvjlsofHN2fX9XRL9bH0/H4vP/cX3vm29p5Vfb41Nn98DVo1C3759Y21WDmB9TJSfGb/ZAAAAcMQQAAIAAASGABAAACAwBIAAAACByZgiEN/JcHNycmJt0WKI3bt3x7axEj2t9/SZSNlKaPXlO1FzNFnZSkqtqKg45H6SVFZW5tk7+BYvNKTCGisB37cQwCfx2foeUQTixyoCsQrFfCYGr227KN9Jky0+E/z6svrvM26svlrnbRXJMVG+P+u773v9ovta9whrImifyc0tvuPQOr51TsmOE6u4w2IdnyIQAAAA1DkCQAAAgMAQAAIAAASGABAAACAwGVMEsm3btqT3jRZ4tG7dOraNlVxsbZdsYUh0NRKrX7Xx6e+aNWti23Tu3DnWls6E1hD5JttbiejRsZPuQgirH1HWe1p99TmWFE+a9h1LvisLhM63kMu6R1jFItEx6FsokuwYse5xvqs6Jfv92LFjR6zNKg60Cmxgswo+UllVKvrZWmPOKnrwXYEj2pZscUptbT4r3FjXx7eQwzrPjh07xtrquoCTJ4AAAACBIQAEAAAIDAEgAABAYAgAAQAAApMxmdpWQUObNm1ibV988UWsbcuWLTVeWwmW+fn5sTYr+dNKuowez0pyto5lJb526NAh1mbNHv7555/XeG2tPmIlYFvHtxKwYbOS8q0CH58Edt9Ci0xhJT43a9asxmsr2doaX1aiPuJ8rrlkjyWrCCR6z/Rd4cNXtL9W/33vhb59i567lWhvjUHrOqb7ejRmqRQ5RO8TqRSFWWMs2g+r4Mdqs1Yf8S08SWYbyb5nWr9T6qNwjieAAAAAgSEABAAACAwBIAAAQGAIAAEAAAKTMUUg0aIHyS4MiRZ8WKykS+v4FmtFkv79+9d4bc06b63UYR3LSkzevXu3V9+irGvhc31QO6uwxkp87tSp0yGP5bsqR7KsY/mu6OCbwBxlJdtbhTPwY90PWrZs6bWvdX+Jjktr7FpJ9cmOkVSKQHyL06L7lpeXx7axkvu7du0aa7MK7mAXGVqFXL73jei4sPbzXQkm2X2tMW3t57t6lu8qKFEbN2702s5aCaSu8QQQAAAgMASAAAAAgSEABAAACAwBIAAAQGAypgjESkItLS1N2/GthGlf0YRQq2jDt/gi2YIP1B/fxGefxGQrudi3MCTZAhJrP6sfluh21io4SJ5VlGAVR7Rt2zbWZn0WrVu3rvHauq9aBRO+BRnR74JV3GEVnviutmD1I7pqgrWKgjWerYIu69xhF7VZY8d3JZAoa1WRZAvR0s3qmzV2oqvs+BaxWEWj1nW0il7rWmZ8AgAAADhiCAABAAACQwAIAAAQmIzJAcxk0ZwTa/JWhMUnH893omaLlZcSzcmxJjq1crIsVs6UlZMTbbPGvtWPdE543ZhFc/YkaefOnbE263O18gejE95beYK+E01bOWBRVj6exRpv1vFbtGgRaysrK6vxet26dbFtevbsGWuz8qwyJe8s02zYsCHWZl0/30nffXIFrbFj5d5Zop9jKrnV1gTP7dq1i7VFx6ZvHrV1Laz7e33g2wAAABAYAkAAAIDAEAACAAAEhgAQAAAgMBSBeIgmyPbp06eeeoJMYRU++PBNHLaO7/Oe1kS6vgnSVjJ0NIHZmvyUIpDkbdq0KdZmFWlYyfdWcvlXX32Vno41MNYE+9a4ZCJo29q1a5Pe1yqsid5LPvnkk9g21sTH1rGswqBocZNvUYX1ndmxY0eszfq+rVmzpsZr34KVaGFWbVatWuW1XTrxBBAAACAwBIAAAACBIQAEAAAIjFcOYOj5PNF8Bt+F00NyJMZIfY1D33y56HY+29Qm2X1990u2LZVzOhLqui/pPr51Pa0239zRUPleR6st3RrzvdCS7KT4qXxm0e+D7wTf1vfI9z0z6Zr78OmvVwDoO/t3YxVN1LYSt0NXUVFhzp6e7veoD9ZNY8uWLXX6nlZiMg6trsdhusfg5s2b03q8UGVS8UtjvhdafAINq0jHWtEF6eMzDrOcx6dXXV2t0tJS5eTkJF39iMbJOaeKigrl5ubW+TJLjEPU5kiNQ8YgasO9EJngcMahVwAIAACAxoMiEAAAgMAQAAIAAASGABAAACAwBIApcM7p8ssvV58+fVRSUmIu5fLKK69o0KBBKigo0LBhw7Ry5UpJ0rZt21RSUqLi4mKdeOKJevzxxxP7vPfee8rPz1efPn105513Jtrvvvtu9ejRw1xCBwAAwFfQAWCqc2s9//zz2rx5sz799FPdcccduvHGG2PbdOnSRS+88IJWrlypO+64Q1dddZUkKScnRwsXLtSyZcv07rvv6mc/+1liapGrrrpK//3f/61//OMfiX0l6bTTTtO7776bUp8BAAAaVAC4Y8cOnX766SooKFBBQYEWLFggaX8gNnDgQBUVFenCCy+UJK1evVqjRo1SYWGhJkyYoK1bt0qSRo0apWnTpqmkpESzZs3SggULNHToUA0cOFAXXXSR9uzZ492fefPmacqUKZKkcePGadGiRbE5kYqLi3X00UdLkk466SStX79ekpSdna1WrVpJ2r+otHNOzjmVlpZq3759KiwsVHZ2ts4//3zNnz8/sf8xxxyT7OUDAACQ1MACwAULFqhTp05auXKlVqxYoaFDh2rjxo26+uqrNX/+fC1fvlwPPfSQJOmaa67RlVdeqRUrVuiUU07RHXfckThO06ZNtXTpUo0fP14///nP9dprr+mDDz5Qr169avwp9oDbbrtN8+bNi7WXlpYqLy9PkpSVlaUOHTp84wTBv/3tbzVmzJjE623btqmoqEjdu3fX9ddfr86dO9c4piTl5eUlgkYAAIB08FoJJFMUFBRo2rRpuuGGG/S9731PQ4cO1RtvvKHRo0cngqaOHTtKkpYsWaLnnntOkjRlyhSNGzcucZzzzjtPkrR48eJEICntfxJ38HYHHJyHl6x3331XM2bM0Ntvv51oa9++vZYvX64NGzbonHPO0bnnnpvy+wAAABxKgwoA+/Xrp2XLlmn+/PmaPn26Jk+erB49epjbftPs6Af+9FpdXa1x48Zp5syZSfUnNzdX69evV0lJiZxzKisrU6dOnWLbrVmzRlOmTNEzzzxj/rxbt24qKirSm2++qWHDhtV44rd+/Xrl5uYm1T8AAABLg/oTcGlpqVq3bq2LL75Y06ZN07JlyzRkyBC99tpriaDpQK5fSUmJ5s6dK0l68sknNXLkyNjxhg4dqtdff12fffaZJGn79u1as2aNd3/Gjx+vWbNmSdqfhzh06NBY4FlWVqazzjpLDz/8sPLz8xPtGzZsSKznWF5eroULF6p///7Kzc1Vdna2VqxYoaqqKs2ZM0dnnnmmd58AAAAOpUEFgCtXrtRJJ52k4uJiPfDAA5o+fbq6du2qX/3qVxo3bpyKiop0zTXXSJJ+9atf6cEHH1RhYaEWLlyo22+/PXa8Ll266PHHH9fEiRNVWFiokSNHJoLBg9WWAzh+/Hh17NhRvXv31u233657771XkrR06VJdeumlkqSHH35Ya9as0fXXX6/i4mINHjxYkvTZZ59pxIgRKioq0ogRI3T11VeroKBAkvTQQw/pggsuUL9+/RJFL5J06623qnv37iorK1P37t11//33p+GqAgCA0LAWMAAAQGAa1BNAAAAApI4AEAAAIDAEgAAAAIFp9AFgaWmpJk+ebP6sZ8+e2rFjh/exli9frsGDB6u4uFinnHKKVq9eLUmqrKzUOeeco759++o73/mONm/eLGl/RfKZZ56pwsJCjRgxQp9//nnseE2aNEms9AEAAHAkNPoAMDc3V08++WRajnXLLbfozjvv1LJlyzRlyhTdd999kqQnnnhCvXr10ieffKKJEycmqoHvueceDR8+XCtWrNC9996rm266KXEs55xuvvlmffe7301L3wAAAHw1+gBw7dq1KikpkSTt2rVLEydO1IABA3TJJZfE1u09lKysrBpz9x1Yl/fgNYEvuuiixAokH3/8sUaPHi1JOuWUU/TCCy8k3nPWrFkaPXq0unXrlvpJAgAAHIZGHwAe7JFHHlFeXp7+/ve/a9KkSbE/yR5wxhlnqLS0NNb+n//5n5o+fbq6d++umTNnavr06ZJqrgncvn17bdu2TZJUWFioZ555RtL+iaLLy8u1detWlZeX64knntC1115bB2cJAADwzYIKAN966y2df/75kvYHeR06dDC3e+GFF8zl1x555BE9+uijWrduna6++upEAFibm2++WV988YUGDhyo+fPnq1evXsrOztYdd9yhG2+8UU2bNk39pAAAAA5TUAGg9M1rBB/KnDlzdMYZZ0iSJk2apEWLFkn6vzWBJWnbtm1q3769JKldu3aaNWuWPvjgA/3Xf/2Xqqqq1L59e/3tb3/TVVddpZ49e+rpp5/W1KlT9fLLL6d2YgAAAJ6CCgCHDx+up556SpL00ksvqays7LD279ixoxYvXixJevXVV9W/f39JNdcEnj17tsaPHy9pfzC4d+9eSdIDDzyQqEZeuHCh1q5dq7Vr1+rcc8/Vr3/9a40ZMyb1EwQAAPDQpL47cCRdeeWVuuiiizRgwAANHjxYPXr0MLc744wz9MQTT8T+DDxjxgxdccUVqq6uVrt27fSb3/xGkvTDH/5QF1xwgfr06aO8vDw9/fTTkvavXTx16lRlZWVpyJAhevTRR+v2BAEAADywFjAAAEBggvoTMAAAAAgAAQAAgkMACAAAEBgCQAAAgMAQAAIAAASGABAAACAwXvMAVldXq7S0VDk5OSmtpIHGxzmniooK5ebm6qij+PcEAAANgVcAWFpaqmOPPbau+4IG7IsvvlD37t3ruxsAAMCDVwCYk5NT1/2oF926dYu1NW/ePNb2+eefH/JYXbp0ibVt2rQpuY4dAdaT3FTmBG+sYwQAgMbIKwBsrH/2tf5kmeyfMRvanz/THQA21jECAEBj1LCiFgAAAKTM6wlgQ9OmTZtYm/WnXetPtDNnzoy1FRcX13i9ZcuW2DYTJ06MtfXq1SvWZv05ed++fbG2dGpoTycBAEDdIjIAAAAIDAEgAABAYAgAAQAAAkMACAAAEJgGVwTSrl27WFt0DrpWrVp5Hcsq5nj88cdjbX/9619rvL7++uu9jmXNDeg7WfLXX39d43VZWVlsm8rKylibb8FHdXW113YAAKDx4QkgAABAYAgAAQAAAkMACAAAEJiMzgG0JnTu2bNnrC2aH1dRURHbxsp5s46/cOHCWNuUKVNqvH7xxRdj21i5d3v27Im17d69O9ZmieY6Wmvt/vOf/4y1WefJRNAAAOBgRAYAAACBIQAEAAAIDAEgAABAYAgAAQAAApPRRSDt27ePte3cuTPWFi2ssAohWrZsGWuzCiuaN28ea+vcuXON1717945ts3HjRq/3tIpArP5GC1u6du0a28aa8HrXrl2xNgAAgIPxBBAAACAwBIAAAACBIQAEAAAIDAEgAABAYDK6CMRiFUw0aVLzNPbt2xfbpqqqKtbWtGnTWJtVuPG73/3uG99PsotHysvLY23W6iDNmjWLtUXP0+q/7wof1jUDAADh4gkgAABAYAgAAQAAAkMACAAAEBgCQAAAgMBkTBGIVQhhFT5YfIocrG327t0ba/v6668P2TeryMRa4cM6J6tww6f/1nu2bt061rZjx45DHgsAAISNJ4AAAACBIQAEAAAIDAEgAABAYAgAAQAAApMxRSA5OTmxNqs4wiqGSFayK2RYhRxWW3Z2dqwt2f5bfbVWLQEAADgUngACAAAEhgAQAAAgMASAAAAAgSEABAAACEzGFIFYq2ZYhQ/WdtYqHOkU7YdvEYi1kkmyK4Hs2bMn1mZdiyZN4h9pOgtnAABAw8cTQAAAgMAQAAIAAASGABAAACAwGZMDmOykzNa+Vh5cKqy8vUP14XCOZeXoRbez8gktVl4gOYAAAOBgPAEEAAAIDAEgAABAYAgAAQAAAkMACAAAEJh6KQKxChUaI5/ikcPZzkfLli1jbbt27Urb8QEAQMPHE0AAAIDAEAACAAAEhgAQAAAgMASAAAAAgamXIhDflTpSWR0kVDk5ObG2LVu21ENPAABApuIJIAAAQGAIAAEAAAJDAAgAABAYAkAAAIDA1EsRiLVahbUahtW2b9++WFtdF4v4HN/axip2adq0aaytsrLykPta+1nXIp2rigAAgMaJaAEAACAwBIAAAACBIQAEAAAIDAEgAABAYDJ6JZBQWAUk0WKOvXv3xrbJzs6OtbVq1Sp9HQMAAI0STwABAAACQwAIAAAQGAJAAACAwNRLMp41WbFPHlzIrOtj5QBabS1atIi1WZNPAwCAMBBhAQAABIYAEAAAIDAEgAAAAIEhAAQAAAhMxszInEoRSEMvFvEpimnevLnXsb7++utYm7UvRSAAAISrYUdOAAAAOGwEgAAAAIEhAAQAAAgMASAAAEBgMqYIxCqEaNq0aaxt9+7dXvseab6rm1iaNDn0x2BtYxV87Nu3L9bWoUOHWFt5eblX3wAAQONT/5ETAAAAjigCQAAAgMAQAAIAAASGABAAACAw9VIEkp2dHWvzLZjA/7Guo1UEsnfv3iPRHQAA0EDwBBAAACAwBIAAAACBIQAEAAAIDAEgAABAYOqlCMRawcJ3NY9UVtyoS1Yf0rlCie85VlVVxdqaN2+etn4AAICGjyeAAAAAgSEABAAACAwBIAAAQGAIAAEAAAJTL0UgTZr4va1V+JAJBR+WVAo+fApbrNU8rJVAmjZtGmtr0aJFUu8JAAAaJ54AAgAABIYAEAAAIDAEgAAAAIGplxzAPXv2xNpatmwZa7MmNbb45K6lMtF0svvt27cv1mZNgm2de3Q7K7fPN0fSasvJyYm1lZeXx9oAAEDjwxNAAACAwBAAAgAABIYAEAAAIDAEgAAAAIHJ6ImgrYmOM3WyYt9+JTsBs3XNrCKTioqKWFuzZs1ibdbk0BSBAAAQBp4AAgAABIYAEAAAIDAEgAAAAIEhAAQAAAhMvRSBWIUQvsURya7UkYp0rjSS7Hv6rvBhFXxkynUEAACZgSgAAAAgMASAAAAAgSEABAAACAwBIAAAQGDqpQjEWuFj7969Xvvu2bMnbf2wCiGsvjVt2rTGa6uooqqqKtZmrdTh24/oyh/Wsaxr5lvc0bx5c6/tAABA48MTQAAAgMAQAAIAAASGABAAACAwBIAAAACBqZcikGiBgyRt3bo11paTkxNr81lFxGflDsku+EhnQYYvq7/R9+jatWtsm9atW8faSktLY227d++OtbVs2fJwuggAABoRngACAAAEhgAQAAAgMASAAAAAgSEABAAACEy9FIFYRQ+7du2KtVmFCu3atYu17dy585DH910hw9q3vLw8qWNZ2/kWqHTq1KnG640bN8a2+fLLL2Nt1vVp1qyZV98AAEAYiAIAAAACQwAIAAAQGAJAAACAwNRLDqCVk2bZsmVLrM2aRDqaz5ZKfpu1b3TCZWvSZ2tyaCvfz2pr1arVIY9n5fv5iuYTSnbOJQAACANPAAEAAAJDAAgAABAYAkAAAIDAEAACAAAEpl6KQEpLS5Pet6ysLNaWk5NT47VVyOHbZolul52dHdtmz549sTarYKVp06axNqsgI9lrVFFREWuzilYoAgEAIFw8AQQAAAgMASAAAEBgCAABAAAC45UD6JxL65umcjxrX2tyZZ9tfPZL5VipvGey18jaL92fn+/7AgCAzOQVAFqFBanYvXt30vtaBQ1WYUiorEAslevtq6KiQu3atavz9wEAAKnLch6Pbqqrq1VaWqqcnBxlZWUdiX6hgXDOqaKiQrm5uSktwQcAAI4crwAQAAAAjQePbAAAAAJDAAgAABAYAkAAAIDAEAACAAAEhgAQAAAgMASAAAAAgSEABAAACAwBIAAAQGAIAAEAAAJDAAgAABCY/w/qXjtGKAiroAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "Let's first inspect mislabeled examples in the dataset. Such errors occur when the given label for an image is incorrect, usually due to mistakes made by data annotators. Cleanlab automatically detects mislabeled data that you can correct to improve your dataset.\n", + "\n", + "For each type of issue that Cleanlab detects, you can use the `get_issues` method to see which examples in the dataset exhibit this type of issue (and how severely). Let's see which images in our dataset are estimated to be mislabeled:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.350582Z", + "iopub.status.busy": "2024-05-24T23:48:42.350062Z", + "iopub.status.idle": "2024-05-24T23:48:42.412917Z", + "shell.execute_reply": "2024-05-24T23:48:42.412378Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
0False0.166980T - shirt / topDress
1False0.986195T - shirt / topT - shirt / top
2False0.997205SandalSandal
3False0.948781SandalSandal
4False0.999358DressDress
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "0 False 0.166980 T - shirt / top Dress\n", + "1 False 0.986195 T - shirt / top T - shirt / top\n", + "2 False 0.997205 Sandal Sandal\n", + "3 False 0.948781 Sandal Sandal\n", + "4 False 0.999358 Dress Dress" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above dataframe contains a `label_score` for each example in the dataset. These numeric quality scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. It contains a boolean column `is_label_issue` specifying whether or not each example appears to have a label issue (indicating it is likely mislabeled).\n", + "\n", + "Filter the `label_issues` DataFrame to see which examples have label issues, and sort by `label_score`(in ascending order) to see the most likely mislabeled examples first." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.415041Z", + "iopub.status.busy": "2024-05-24T23:48:42.414768Z", + "iopub.status.idle": "2024-05-24T23:48:42.423560Z", + "shell.execute_reply": "2024-05-24T23:48:42.423077Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
11262True0.000003CoatT - shirt / top
19228True0.000010DressShirt
53564True0.000018PulloverT - shirt / top
54078True0.000022PulloverDress
17371True0.000025PulloverT - shirt / top
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "11262 True 0.000003 Coat T - shirt / top\n", + "19228 True 0.000010 Dress Shirt\n", + "53564 True 0.000018 Pullover T - shirt / top\n", + "54078 True 0.000022 Pullover Dress\n", + "17371 True 0.000025 Pullover T - shirt / top" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues_df = label_issues.query(\"is_label_issue\").sort_values(\"label_score\")\n", + "label_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_label_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_label_issue_examples(label_issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " label_issue_indices = label_issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(label_issue_indices[i])\n", + " row = label_issues.loc[idx]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {row.given_label}\\n SL: {row.predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.425563Z", + "iopub.status.busy": "2024-05-24T23:48:42.425382Z", + "iopub.status.idle": "2024-05-24T23:48:42.431326Z", + "shell.execute_reply": "2024-05-24T23:48:42.430882Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_label_issue_examples(label_issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " label_issue_indices = label_issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(label_issue_indices[i])\n", + " row = label_issues.loc[idx]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {row.given_label}\\n SL: {row.predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View most likely examples with label errors\n", + "\n", + "Here we define\n", + "`GL` : given label in the original dataset\n", + "`SL` : suggested alternative label by cleanlab" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.433407Z", + "iopub.status.busy": "2024-05-24T23:48:42.433078Z", + "iopub.status.idle": "2024-05-24T23:48:42.940437Z", + "shell.execute_reply": "2024-05-24T23:48:42.939816Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGWCAYAAAC+UB0LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZycVZX//6l9X7qqeu9OL9l7zwZhCwSCxCgEAv4yghKJjKCoOOI2AwoizksQRB0dw6gEBVEGgYCAgJGgLGFPQkhIviSks/beVV37fn9/9JybW08/1XunO+n7fr3q1dX1LPXUc55z77nnnHuuhjHGIJFIJBKJRCIZNdrJvgCJRCKRSCSSkx1pUEkkEolEIpGMEWlQSSQSiUQikYwRaVBJJBKJRCKRjBFpUEkkEolEIpGMEWlQSSQSiUQikYwRaVBJJBKJRCKRjBFpUEkkEolEIpGMEWlQSSQSiUQikYyRSTeoWlpaEAqFVLctXrwYL7300pDneOaZZ7Bo0SKYTCZ87WtfG/a2n//852hoaEBjYyOamprw0EMP5Wz/xz/+gSVLlqC+vh51dXXYunUrAOBPf/oTWlpa0NDQgIaGBtxzzz3D/r3TkYmWcUdHB9asWYOmpibMnz8fP/3pT/m2wWT14osv4rTTTkNdXR3q6+vxrW99C9lslm+/8847UVdXh5aWFixduhRvvvnmiH73dGE85HvbbbehsLAQLS0taGlpwVVXXcW3/fKXv0RjYyOX489//vNhHQcAjz32GBobG7n8W1tbc7Z3dnaiuLgYl1566bB/73RjouVL5JPFHXfcgZkzZ2LmzJm4+eab+ec//OEP+flaWlrgdDrx9a9/HQCQzWbx9a9/HXV1dWhqasLy5cuxb9++4f/oacZEt9E33HBDjqzMZjPX4yeeeAJNTU1oaWlBXV0dbr75ZtACLoPJuLW1Feeddx5cLhdaWlpG/dvHFTaFWbRoEduyZcuQ++3du5dt376d3XzzzezGG28c9rbNmzezQCDAGGPs0KFDzOv1sn379jHGGDt69Cirqqpiu3fvZowxFo/Hmd/vZ4wx9sorr7C2tjbGGGOBQIDNnDlzWNcpGch4yPjKK69kN998M2OMsXA4zJqbm9mbb77JGBtcVu+++y7bv38/Y4yxWCzGzjrrLLZx40bGGGPbtm1jM2bMYKFQiDHG2IMPPsiWLFkyxl87/RiufG+99dYBciVIRxljrK+vj1VWVrJ33313yOPeffddNnfuXHb06FHGGGPBYJBFIpGcfS699FK2fv16tnr16iGvUTKQ8ZAvoSaLf/zjH6yuro6Fw2EWj8fZokWL2NNPPz3g2Hg8zjweD3v77bcZY4w98cQT7LTTTmPJZJIxxtgPfvAD9qlPfWrYv0tynPFoo0Xa2tqY2Wzm7XIwGGSZTIYxxlgikWBLlixhjz/++IDjlDLu6elhL7/8Mnv66adZc3PziH/XRDDpHiqNRoNAIAAAeO211/go9JprrkE6nR7WOebMmYPm5mbo9foRbbvgggvgcrkAAJWVlSgpKcHhw4cBAP/93/+NK6+8EvPnzwcAmEwmuN1uAMBZZ52FkpISAIDL5cK8efMGjHwlx5loGe/YsQOrVq0CANhsNixbtgwPPvgggMFltWDBAtTW1gIAzGYzWlpa+DaNRoNUKoVIJAIACAQCqKioGNXvP9UZD/kOBukoAEQiEaRSqWEdd8899+DrX/86ysrKAAAOhwNWq5Vv/+1vf4uamhqcc845Y77GU5mJli+QXxaPPPIIPvvZz8Jms8FkMmH9+vX44x//OOD4TZs2obKyEosWLeLXnEgkEI/HwRhDMBiU+jsIE91Gi/zud7/DRRddxNtlh8MBrbbfFInH40gkEtBoNAOOU8rY4/Hg7LPPhs1mG+7PnHAm3aAikskk1q5di7vvvhvvv/8+Pv3pT2PHjh18+4YNG/C9731vwr5/8+bN8Pv9WLJkCQBg9+7diMViWLFiBVpaWvCVr3yFd64iu3fvxtatW7FixYoJu7ZThYmS8aJFi/Dwww8jm82iq6sLzz//vKqBO5is2tvb8ec//xmf/OQnAQDNzc34t3/7N9TU1KCiogL33nsv/uu//mvE1zadGKt8H330UTQ3N+P888/Hli1bcrb9+c9/Rn19Paqrq/GNb3wDCxYsGPK43bt349ChQzj33HOxYMECfPe730UmkwEAHDhwABs2bMAPf/jD8fr5pzwTJd/BZHHo0CFUVVXx/6urq3Ho0KEB+/32t7/F5z//ef7/xRdfjPPOOw8lJSUoLS3F3//+d9x+++0j/s3TjRPRD99///05sgL6jbjGxkYUFRXh/PPPx+rVqwccp5TxlGSyXWQAmN/vZzt27GDV1dU522pra0cUShvMrTzYtvfee49VVFSwl19+mX928cUXs4ULF7Le3l6WTCbZVVddxW666aac4w4fPsxmzZrF/vd//3fY1zgdmWgZd3V1sXXr1rGmpia2YsUK9oUvfIFddtllOfsMJqu+vj62ePFids899/DPPvroI7Z06VIeLvqv//ovdtZZZw37OqcT4yHftrY2Hp555ZVXWGFhIWttbR2w34EDB1hLSwvbs2fPkMc1NjayVatWsWg0ysLhMDv//PPZf/3Xf7FsNsvOO+889vrrrzPGGNu4caMM+Q3CRMp3KFl88pOfZA8//DD//5lnnmHnnHNOzrlbW1uZxWJhPT09/LM33niDXXDBBczv97NMJsO++c1vsquuumqkP33acKL64X/+85+stLSUpdNp1e2dnZ3snHPOYf/4xz9yPleTMbFlyxYZ8hsOam6/8Wb37t345Cc/ifvvvx9nn302/3zGjBn4xCc+gYKCAhgMBnz605/G66+/zrcfO3YMK1aswC233IJPfepTE36dpyrjIWOfz4cHHngAO3bswN/+9jdoNBrU19fz7YPJKhQKYeXKlVi9ejVPdgSOJzNTuOiaa67Bq6++imQyOebrnU4MV74lJSUwGAwA+sO0CxYswNtvvz1gv+rqapx++ul4+umnhzxuxowZuPzyy2GxWGCz2bBmzRq8/vrrCAaDeO+997B27Vru8XrhhRdwwQUXjMdPnlaMVb5DyWLGjBk4ePAgP09raytmzJiRc+6NGzdi9erV8Hg8/LPf//73OP/88+F2u6HVarFu3boBXk/J8BjPfvi3v/0t1q1bB51Op7q9sLAQq1atwqOPPprzuZqMpyJTxqCaN28e0uk0f+g3b96M/fv3T+h3fvDBB1i1ahX+53/+BxdeeGHOtiuvvBJbtmxBIpEAAPz1r39Fc3MzAKCtrQ0XXHABvv3tb2PdunUTeo2nEhMl456eHp5Xs23bNmzatAlf+tKXAAwuq3A4jJUrV2LlypW45ZZbcrbV1tbi1VdfRTgcBgA8/fTTmDNnDoxG45iv91RlLPI9cuQIf//hhx9i+/btaGxsBNA/6CG6urrw4osvoqmpacjjrrzySrzwwgvIZrNIp9N44YUX0NzcDJfLhZ6eHrS2tqK1tRV33303Pvaxj+Hvf//72G7AKc5EyHcoWXzqU5/Cgw8+iEgkgkQigfvvvx//8i//ws+VzWaxcePGAaGg2tpavPjii3wA9PTTT6OhoWFMv386MJH9cDAYxJ///GesX78+5/M9e/bw2dWhUAjPPPMM128gv4ynJJPtIsP/uRoZY+zVV19lzc3NrKGhgV1zzTWsubmZuxp/9atfse9+97uq59i8eTMrLy9nDoeD2e12Vl5ezp588skht61YsYK53W7W3NzMX8899xw/71133cXmz5/PGhoa2Nq1a/l1XnvttcxqteYcd//990/MDToFmGgZP/vss2zWrFls3rx5bMmSJTnu4sFkdccddzC9Xp+z7Y477mCMMZbNZtl3vvMdNnfuXNbU1MTOOOMMPrtEkst4yPfqq69m9fX1rLm5mS1cuJA9+uijfNsXvvAFNn/+fNbc3MyamprYL3/5y2Edl8lk2E033cTmzZvH6uvr2fXXX88SicSA75Yhv8GZaPmKqMni+9//PqupqWE1NTXsO9/5Ts62559/nlVXV7NsNpvzeTweZ9deey2bN28ea2xsZBdeeCGf0SsZyES30Ywxdt9997Fly5YNOO62225j8+fPZ01NTay+vp7deuutOfLMJ+NIJMLKy8uZz+djBoOBlZeXD3g+TjQaxv6v4INEIpFIJBKJZFRMmZCfRCKRSCQSycmKNKgkEolEIpFIxog0qCQSiUQikUjGyJQ0qN5++218/OMfR01NDRYtWoQFCxbgjjvu4NvPO+88bNq0acTnfeedd7By5UrU1tZi8eLFOOuss0Z1HiIQCOBHP/rRqI+fbkyEXB944AG4XC4sWLAA8+fPR3NzM77//e8jFouN89VLgImVYUtLC+rr6/Hxj39ctXijkurqamzfvn3U3ysZiJTvqY+U8cQx5QyqnTt3YuXKlbjhhhtw4MABvPPOO/j73/+OYDA4pvPu2rULF110EW644QZ89NFHePvtt/Hoo4+ir69v1OeUBtXwmSi5AsDy5cuxbds2fPDBB/jb3/6Gd955B2vXrlXdd7yWypiOTLQMt2/fjl27dmHOnDn4t3/7t3G44omBqq2fakj59nOqyheQMiYmSsZTzqC68847ce211/IlQID+NXvuuuuuMZ33Rz/6EdavX4+LL76Yf1ZWVsZrE+3btw8rVqzgq16LlvJVV12FxYsXo6mpCZ/4xCfQ3t4OALj++usRCoXQ0tKCxYsXj+n6TnUmSq5KioqK8Lvf/Q6bN2/Grl27APQXprv11luxZMkS/Pu//ztCoRD+9V//FaeddhqamprwhS98gderueOOOzB//ny+uvnBgwcRi8Wwdu1a1NXVobm5GR/72MfG9ZpPFk6UDC+66CLs3bsXQO4aY0B/Edeh1s3s7OzEmjVr0NjYiIaGBtx3330AgD/84Q85184YQ21tLV9a48EHH8Tpp5+OhQsXYtmyZfzzBx54AMuXL8fll1+OxsZGvPnmm+P4a6cOUr6ntnwBKeOJlvHgqxhOAu+++y4uv/zyUR371FNP4amnnsJvfvObAdveeeedQdftuuqqq7B+/Xpcd911+PDDD7F06VIsWLAAVVVV+OlPf4rCwkIA/YbZbbfdhg0bNmDDhg1oaWnhLktJfiZKrmoUFBRg9uzZ2LVrF6+YrtPp8NZbbwEAvvCFL+Ccc87Br3/9azDG8K//+q/42c9+hmuvvRZ333032traYLFYEI1GodVq8de//hWBQIAXmOzt7R3V7zjZOREyzGQyePTRR/kCqKPhK1/5CubOnYvHH38cnZ2dWLRoEZqbm7FmzRrceOONaG9vR0lJCV566SUUFBSgubkZr776Kv74xz/in//8J0wmE15++WVceeWV3Ch/4403sG3bNsydO3fU1zXVkfI9teULSBlPtIynnIdKyTe/+U20tLSgvLyc35h8XHLJJcPudEVCoRDeffddXol19uzZOPvss/Hyyy8DAB5++GEsXrwYDQ0N+M1vfiMNqHFgouWqLK8mVufdtGkTfvzjH6OlpQULFizAyy+/jH379sHpdGL27Nn4zGc+g/vuuw+9vb0wm81obm7GBx98gC996Ut45JFH+BIa053xlOGWLVvQ0tKCRYsWQaPR4J577hn1dW3evBnXXXcdgH6P5Zo1a7B582ZYLBZcfvnlePDBBwH0j1qvueYaAMCTTz6JHTt24PTTT+eLoff29vJcvDPPPPOU72yVSPme+kgZjy9TzqBasGBBjjvuxz/+MbZv3w6DwcCXFxkNixYtwtatW4e9P61f9Morr+DnP/85nn32Wbz//vv4yU9+gng8PurrmK5MlFzV8Pv92LdvX85SE3a7nb9njOGxxx7D9u3bsX37duzduxf33XcfdDodXn/9dXzta19DZ2cnli5dipdffhm1tbXYvXs3Vq5ciVdffRUNDQ3w+/3jes0nAxMpQ8q/2L59O+6//374fD4A/Z5FMd9hNLonrkW2fv16bNy4EeFwGE8//TSuvPJKAP3PxLp16/g1bN++nXsqgdzn51RFyvfUR8p4YplyBtW3vvUt/PrXv8azzz7LP0smk2NOJv7Wt76F+++/H8888wz/rL29Hb/73e/gcDiwcOFCbNy4EUB/PtUrr7yCZcuWwe/3w+FwwOv1IplM8lguADidTsRiMblg7jCYKLkq6erqwvr167FixQrU1dWp7nPppZfizjvv5N9NBlgoFEJHRwfOOeccfPe738XZZ5+Nbdu24ciRI9BoNLjkkktw9913gzGGw4cPj+t1nwycKBmKzJo1C2+88QYA4PHHH0ckEhnymBUrVuDXv/41gP7n4fHHH+drdZ5++ukAgG984xtYsWIFX2z1kksuwUMPPcRnJmWzWdXFmU9lpHxPfaSMJ5YpZ1A1Nzfj2Wefxc9+9jPU1NTgtNNOw/Lly/HFL34Rc+bM4ftde+21qKio4K+tW7fiqaeewrXXXqt63sbGRvz1r3/Fz372M9TW1qKxsRFr1qxBQUEBgP5kt0ceeQTNzc244oor8Jvf/AYzZszAypUrMXfuXMydOxfnnHMOWlpa+Dk9Hg+uvvpqNDU1yaT0IZgouQL9ruYFCxZg3rx5WLFiBZqbm/HII4/k3f/ee++FxWJBS0sLmpqacMEFF6C1tRV9fX08EbKpqQmpVArr1q3Dzp07cdZZZ6G5uRkLFizAZz/72ZzFO6cLEynDfNx777248cYbsXDhQmzbtg1er3fIY37+85/jgw8+QGNjI5YvX46bb76ZN8IAcM011+C+++7joQIAOOecc3DXXXfhsssuQ3NzM+rr6/GnP/1pxNd7MiPle+ojZTyxyLX8JBKJRCKRSMbIlPNQSSQSiUQikZxsSINKIpFIJBKJZIyM2qAKBAL4zGc+g4aGBjQ1NaGhoQEPP/wwAOCll17KyTUaDlRIsa6uDjqdjv+fr+L1SLntttvwta99TXXbU089NWhV102bNuH1118f9PydnZ285pHISy+9hOeee25E13qqM97PDtCf7Lho0SK0tLRg3rx5OP/885HNZgHkLm+g5Nprr8WWLVvynve22247ZWd1Sh3ORerw4EyE3lZXV2Pu3Llobm7GrFmzsHr1arz22mvjfOWnJlJ/c5kK+jvqwp633HILCgsLsXPnTmg0GoRCIV5BfDRQh9fa2nrCi2VecskluOSSS1S3pdNpbNq0CS0tLVi6dGneczz55JOq53jppZcQCASwcuXKcbvek53xfnba2trwhS98Ae+88w6qqqoA9BewE6fa5iNfXZV0Og29Xo/vf//7+NrXvgaz2Tzq65uqSB3ORerw4Iz380I88sgjvPN//PHHsWrVKjz//PM5ScgA+ABJq5WBFUDqr5KpoL+jfjKPHDmC0tJS3mk5HA7Mnj173C5stHz44Yd8RlZjYyNuueUWvq2trQ0XX3wx6urqcP755/OK1w888AAuvfRSAP03v76+Hp///OfR0tKCP/zhD3jqqad4Ich8HfCmTZtw2WWX5Xy2fft2bNiwAX/4wx/Q0tKC22+/HUB/efympia+lM3Ro0f5dZx//vm45JJLUFdXh2XLlg1Zov9kZLyfnY6ODuh0Oj59FgAWLlyYY1A9/vjjOOOMM1BTU5N3IdDPfe5zWL9+PZYtW4aGhgZcf/31AMBnd3Z2do76GqciUodzkTo8OCfieVmzZg2uv/563H333QD6vRqXX345LrroIjQ0NKCtrQ3PP/88zj77bCxatAinnXYa9zDne27+8pe/8CXFGhoa8OSTT47rNU8WUn9zmRL6y0bJiy++yDweD1u4cCG74YYb2F/+8he+bcuWLay5uVn1uI9//OPsrbfeynveAwcOMJfLNdrLYl/96lfZf/7nf/L/e3p6GGOM3Xrrrayqqop1d3czxhhbu3Yt32/jxo1s9erV/No1Gg176aWX+DnWrVvH7r333rzfGQwGWW1tLctmswO23XrrrezGG2/k/+/cuZMVFxezI0eOMMYYu+OOO9jKlSv5dRiNRrZ7927GGGN33nknu/DCC0d4B6Y+4/3sZDIZtmbNGlZQUMAuvfRSdtddd/H7yxhjVVVV7Ctf+QpjjLGuri7mdDr59nPPPZc98cQTjLF+OTc1NbFgMMiPBcD8fv8Yf/HUROrwcaQOD81EPC9VVVVs27ZtOZ89/vjjbP78+Yyx/ntfWlrK2tvbGWOM7d+/ny1dupT19fUxxhj78MMPWUlJCYvH43mfm6amJvbaa68xxvrbilNFn6X+Hmeq6O+oPVTLly/HoUOH8IMf/AButxvXXXcdbrjhhiGPe/bZZye0ZtOyZcvw61//GjfffDNeeOEFuN1uvm3lypW8BsYZZ5yB/fv3q56jtrYW55577rC/869//StWrlw5rBDTli1bsHLlSpSXlwMAvvSlL+HFF1/klWTPPPNMzJ8/H0D/mnMvvfTSKbf6+Xg/O1qtFo899hhee+01Xs28vr4e+/bt4/tQNV2fz4fa2locOHBA9Ts+9alPweFwjPKXnVxIHT6O1OGhOVHPC1NU8lm1ahWKi4sBAM899xz27duHZcuWoaWlBVdccQW0Wi0OHTqU97m54IILcOONN+Kuu+7Ce++9l/M8ncxI/T3OVNHfMQWjbTYbVq1ahTvuuAOPPfYYX19nItm9ezdPllN7eC6//HK8+uqrmDt3Ln7xi1/krEwt5sHodLq81WFHWqL+iSee4O7KkTKcB+BUZCKenXnz5uG6667Dpk2bsHTpUjz11FN820TJ/mRH6nA/UoeHx4l4Xt56661Bl4268MILc5YXOXr0KGbPnp33ufnJT36CjRs3wmq1Yt26dbjrrrvG/ZonC6m//UwV/R21QfXCCy/krGf2zjvvYObMmeNyUYNRV1fHFemXv/zlgO0ffvghiouLcfXVV+Ouu+4acmbAcHA6nejr61PdlkwmsXXrVpx33nnDOnb58uV47rnncOzYMQDAhg0bcMEFF0Cn0wEAtm7dij179gDoT5hevnw533aqMN7PztGjR/Hqq6/y//1+Pw4cODAuz6PD4cgr+5MdqcP9SB0eHifieXnyySfxq1/9CjfddJPq9osuugibN2/Ge++9xz+jtenyPTd79uxBfX09vvzlL+OLX/ziuDxPUwGpv/1MJf0d9Sy/nTt34qabbgJjDFqtFqWlpXjooYf49t27d6OiooL/f8YZZ+DRRx/FqlWrcPvtt0+Yy/HPf/4zHnroIRiNRmSzWWzYsGHM5/zsZz+Lz33uc9i0aRNuuOGGnPL7L774Is4++2wYDAbVYy+77DI8+OCDaGlpwZo1a/C9730PP/7xj/mMg8rKSr5mEdDvbvz2t7+Nffv2wev14ve///2Yr3+qMd7PTjqdxu23344DBw7AarUinU5j3bp1WL169Ziv9aabbsKFF14Iq9WKF154AUVFRWM+51RB6nA/UoeHx0Q9L2vXroXZbEYkEkFdXR2effbZATP8iFmzZuHhhx/Gddddh2g0imQyiQULFuDhhx/O+9z8x3/8B/bu3Quj0Qir1Ypf/epX43hXJg+pv/1MJf2VS8+Mkeuvvx4rVqzAFVdcMeZzPfDAA9i0aROfdSaRSCYeqcMSycnLVNLfUXuoJP2Mh/UtkUgmD6nDEsnJy1TSX+mhkkgkEolEIhkjsuSsRCKRSCQSyRiRBpVEIpFIJBLJGJEGlUQikUgkEskYkQaVRCKRSCQSyRiRBpVEIpFIJBLJGJEGlUQikUgkEskYGbc6VBO5nhWdW63CQ1FRERYtWoSSkhJ4PB6Ul5fDYrEgmUwiHo/zKrI6nQ4ajQZarRZarRbRaBQHDx5ET08POjs7sXPnTvT09Izou8eLk6VyxWhlrNFooNFowBhT/a16vR56vR5OpxOrV6/G+eefD7vdjtLSUrjdbkSjUbS1tSEcDiMajSIYDCKVSiEYDMLv9yOdTnO5mkwm1NTUoKSkBBaLBSUlJXA4HHy7VqvF1q1b8b//+79ob29HZ2cnjh07hlQqhVQqlXdtKbr+0XIyyHiidJjkC/RXtaeFRk/EPVF+dz75jpXpLN+h0Ov1sFqtMBgMKCkpwbx582C32xEMBtHT04NkMolgMIhgMAidTofCwkK43W6YzWauv8eOHcMbb7yBjo4OZDIZpFKpE3rPpXxzsdvtmDdvHioqKtDb24vdu3eju7t71OezWq3weDwwm83Q6/UwmUwAgO7ubnR0dEyY3hLjJd+TsrCnVquFxWKB0WhEaWkpGhoaUFNTw4ViMBh4w00GlVarzTk+kUjA4/EgHA7j4MGDCAQC0Ol0iMfjiEQip8Tq8FMJpTFlNpths9n4ApmZTAYajQZtbW3YsWMHXC4XGGPQaDTIZDKwWCwwGAyw2Wx8eRmbzQaz2YxMJgODwQC9Xg+j0YiSkhL4fD7o9Xpks1mEw2HEYjH09PQgHo9j165daG9v5/+bzWYYjUZuVGWzWaRSqZxn4GRoUCcbjUYDnU4HrVYLt9uNoqIimEwmWCwWWK1WLku6l1qtFhqNBtlslhs72WwWyWQSjDEkEgnEYrEcHdZoNNDr9fy7SO70XjkA0ul0OQZVKpVCIpHAsWPH4Pf7kclkkEwmpb6PMxaLBTNnzkRhYSFf8sVgMMDhcKCoqIjrLRlGsVgM8XgcGo0GJpMJRqORD8Q0Gg0KCgowd+5clJSUIBwOo7e3F8lkErFYDNFoVOrnOKDVaqHX66HVamGz2eByubjMaFBK+mWxWFBVVYXCwkJEIhFUVlYiHA5zvQSAVCqFZDKJbDaLbDabo/fiAFiv18NgMMBsNnMd1mq1YIwhFAqhr68PqVQKfX19CIfDSKVS6O3tRSgU4m1HNpudtPsmclIYVEpl0ev18Hg8cLlcmDt3LlasWIHm5mYAyFFCMqJEy50EyxhDJpNBNpvF+++/j0AgALPZjO7ubhw+fPiEjqJPddTuod1uR0VFBUwmE/r6+vjilXv27MGhQ4dQWFjIldNiscDr9cJsNnNjJ5vNIhQKwe/3I5vNwmw2c6OroKAATqcTyWQSPT09CAaDOHr0KB/hHjt2DHv37kU0GoXVaoXT6QRwvAHIZDIIhUKIxWIn9D6d7IgNZG1tLc466yy43W54PB54vV6uj2QgGY1G6PV6pFIphEIhpFIpxONxhMNhJBIJ9Pb2orOzE+l0GkajEUajkQ+m6HvcbjcfXNlsNhiNRq7bdE1iA0+N8YsvvoidO3cikUggEAhIg2qccblcWLFiBc4444wc2ZBRyxiDy+WCx+PhBjIZ3OFwGJFIBJFIBB999BG6u7ths9lQWVkJADhy5Aj27NmDUCiEzs5OJBKJCfdgTAd0Oh1sNhv0ej3Ky8sxf/582O12VFdXY+bMmTlGrk6ng9vthtVqBXC8XyXvklarRTAYRCAQ4DJPpVLQaDQwGo0wGAwwGo3weDywWq3IZDJIJBLIZDJ8kAMAmUwG6XQayWQS+/fvx8GDB9HX14cdO3agtbUVqVQK4XBYGlQjhQQJ9BtUFosFdrsdLpcLPp8PxcXF/OZTgy0eI4ZsyPNB+3R0dMDtdsPlciEWi8FgMHCllwbV+EIyoRGJ2WxGPB6HTqdDJpNBJBJBOBwGAPT19SEajXLZkfeDRi+pVAoWiwXZbBZWqxUWi4UrtF6v54pMYUIyprq6uninbTKZeDiYSKfT/LsADFDWsYb/TjVIpuQhNBgMcDqdKC4u5sYUeQwJMr4MBgOSySRCoRD3SPX19SGZTHJjK5VKwWg0clnZbDZuRFGDbDQa+YiaDCrSc71eD8YYfx4sFgsKCgpgsVh45yBlOr4YDAYUFhaiqqoKBoMBdrsdBoMB8XgcoVAImUwGXq8XJSUlMBqNXN8ymQx6enrQ19cHg8EAk8nEvVYOhwN6vR6xWAx2ux2ZTIZ38pLRI+oveQedTic8Hg+cTifKyspQVVU1wKCyWq3ceCIZUruu0WjQ19eHnp4ersPJZJLLkvbz+Xyw2+3cMCIdJc8WkUwmkUgkEI/HeftisVig0+n4voyxSTesprxBJXoe3G43HA4H7HY7Zs+ejZKSEpSVlcFgMCAQCHAXcDqdRnd3N9rb25FKpWAymfirvLycez+oATUYDKivr4fX68XRo0fhcrkQDod5fhWFpCZbWCc7VqsVXq+XK2EgEAAARKNRHtoh93BPTw/effdddHV1wWQywe12cxk6HA7odDru7gWQE9YlQziRSKCzs5PL8sMPP0QgEEA0GgXQPyJLpVI83GuxWOBwOAAAhYWFPNfu6NGjCIVC/HsoTCU74H7Xf1lZGRwOB9xuN8rLy7k3oba2FjabjRu4ynAcyVv0OpFBlEwmEQ6HYTAYuHGUTCZ5Q0zPg9frhd1u50a6VqtFNpvlIWQyvoF+PTcYDPB4PFiwYAE8Hg96enqwc+dOdHR0IJFIIBQKSW/HOCHqCOkkddxarRbpdBp9fX3QaDSIRqOIRqNIJBJoa2tDT08PEokEenp6EIlEkE6neWiIMQaz2cw9l5LRYzKZ4PP5YLPZ4PP5MHfuXO5Vrqio4EYPpWcA4DpLXiXSOfqMvMKk12RIZ7NZLn9qD1KpFGKxWM5f0l/RMaLT6VBUVASdTodoNAqn04nGxkbEYjF0dHQgEomgu7sb/+///T8+IJ8MprRBpdFoYLPZ4PV6YbFYUFtbi8rKSrjdbixYsABVVVV8VNzT04NoNIpAIIBEIoGdO3fi9ddfRzQa5Y290+nEsmXLYDabuULTKGfJkiVIpVJobW2Fx+NBMBjE7t27EYlEEIvFBljMkpFjt9tRU1MDl8uFtrY2HDhwgE8cEMOwmUwG0WgUfr+fx9SpES4oKEBlZSX3SNntdp4Tl0gkkEwm0dvby70cfr8fsViM52uQwpNSJxIJRCIR7uamZNji4mK43W5ukIVCoRyvJgAZJgJgs9kwf/58VFZWoqysDC0tLfB6vTkeJRpxkgFFsqaGU6vVcjmSblKistFo5IZzIpEAAB4CtlgsKCoqgsPhyAkZAOCNPHDcI01hQ6vVirPOOgtLlizh4X0alMXjcWlQjTOifpMcSKa9vb3IZDI4evQojh49ilgshgMHDqC9vR1arZZ7QchjSWF/m83GzyU9VKPHbDajqqoKxcXFmDVrFj72sY+hrKyM5x6KKTQAuGOB2upkMgmtVsvDeZlMJudYm83GDSnSK2p7Sc8pbzIcDvNQHxlvtC+1zxUVFchms1iwYAHS6TRCoRAOHDiAQCCA999/Hx0dHaoG1YmYXAZMIYNKTIgTXw6HA06nE1arlVvOLpcLbrcbbrc7pxMWX5SPEY/HYTKZePIxNbjkCSHL2mq15sT1dTodPB4P72Dj8TgSiQQPHdCxYpKtZCBiSMVkMsFms8Fut8NkMuUopPjA0z3OZDKIx+M556LGNB6Pc2XVarVc1pQ3FQgEeG4OnYPkRKEn8lKSN4O8HHSdDoeDG1sSdXQ6Hex2O9dHj8eDgoKCnBxGpeGplLUYgqfRLQ2UzGYzgH6Xv06n414seul0Ou6tHAyxUyB9t1gsCAaD/Nop1CsZf5TpE+KsX8qLjMfjPMmcvJMUQhYNcTqeZC8NqtEj6m9BQQF/iYhGlHivSRbUF5JBRe2pUt6kW+Ksb+pDld8h/hVn6hsMBgD9njXK2err6+MTYex2OywWy6TMBAWmkEFVUFCAWbNmwel0cgEbjUY4HA64XC4YjUYUFhbyqZWUzCjeeIvFAqA/+XTWrFkA+htiu90Ou90Oq9WKsrIymM3mATeaHpTCwkLMmzcPiUQC1dXVWLp0KZ+iHwqFEI1GceTIEXR1dSEajeLYsWOT6mKc6hiNRu4yLi0txZw5c1BQUIBkMokPPvgA2Ww2R1FELxAlLYveh3g8jvb2dt7hUo4FzRJLp9Pc+NVoNHyGmTibSznrk77XbrfD5/Px0KTX60UsFuMGlRijn+5GNDWKNpsN1dXVaGxshMPh4DNsxc6PDCrRqAGQ04CSXOivwWBAaWkpnE4n92aI3izKnyCjWZzto5xFSC+6Ltqm1WrhdDpx+umnY/bs2di9ezf3SErGH6XOUAg/m82ir68PTqeTd/B2ux06nY7PwCUdpAGU0Wjk3hDJ6KA2b/78+TzlxWg0cm+yWg6xmPoiDprENIt0Op1j8NJ2KoVA5wH6+2oA3CCjfkA03kRjWuk91mg0KCwshMvlQjqdxrnnnov29nYcOnQIe/fu5ROLTlR7PWUMKpfLhebmZpSWlqKoqAgzZszgScsUvxVn+tBUadGgon2y2SzvyLPZLCwWC4/lknEmepfE6d6UJEcGGnmuurq6uOfjrbfewocffshDS7IBzo/RaERxcTF8Ph/Kysowa9YsuN1udHR08ER0GoUC4KFYMemR4urZbJaPYpWjJRHqLClR2Ww2I5VKIRKJcAUGcpWWvBYUSvL5fDz0K+ZpyLBvP9SYWq1WVFVVoa6uDgByvIvKPAg6jlDOpBXLI+h0OjidTjidTh6+o1ckEuE5GVRvTok4w1f0lFFjT8+bw+HAokWLAPSHP/75z39OxO2a1oids9ixkX5SZMDhcPBOnkJ65JEUBzWUAkA5c5KRQ3potVoxd+5cnHbaaXxgqyx1oJafSucQvfzA8Zm0jDHuYaS2mNpRqvdHnknKjyPDWfxucRArDojo+nU6HbxeL38e0uk0/H4/3njjDbS2tp7wmdqTalCRF4JGJS6Xi095pxpDNIoRQ4JKIYqNNG03GAx8BhgppZp7WAw/kODIUKMHjJIgqf6R2+2Gz+cDY4wXqJssF+NUh2RB4Rur1Qq73c5rjlCOFI1QxHwpkpcyji8aNUqvBwBuHOczuPI18OLMQ1JuMZla0o+YWEoNGYVlxEZvOOcRjSnxr9q+arIe6vz5EEMJJGtqZyTjA3koRD0WEY1stfdqXuR8x0uGD+UqkkFLE0KIfN6pfNCgRWzDlZMRxPMp/88nv+HIVQw70iA8nU7zXMwTzaQaVGazGeXl5XC5XJgzZw6amppQUVEBo9EIi8XCLWNxdErJb2KeFRlLYkdLIQEaMdOomRJkgeMdAyW8kjuTDDUxh4embrtcLjQ0NGDGjBk4duwYYrEYbDYbgsEg2tvbVUfL0xlx9lxBQQEqKipQVFSEjz76CEVFRWCMca+TRqOB1WrlyiDO2iIDiQxrMsZpX1H5xbycdDrNC7VSUrrY8YujMJfLhfLych5SpiKiMqyQC9WgoSKNFHYFcgcmag2aWqeoNKboeJr1o9xHrHiu/C5lx6zsoJV5H9S50GxiMuZH0qFIBkLeS5fLlSMH8Z6KUQL6S++pcybU5CoZHSaTCXPmzEFlZSUqKirg8/n4gEgM6SlD5krU8tnUIgfkSabogPgM0IBM3JfOqUSZa0t/KWLBGENhYSEcDgfPgz7RTKpBReGgoqIiVFdXo7a2FhUVFTneHjFZTZkDQd4P8nKIN5A6ZLrh0WiU52iQ2198UJQCZ4zxWDKdm9yWdrsdAOB2u/HRRx8hmUzymYbSoMqFOiyqvFtYWIji4mIUFhaioKAA8XgcmUwGwWAQAHh+jKjMJC8xHEQNNoUJCHpmyKUcj8cHTMVV8yZSdWCfz8evlzyk0muRixgepRA6QQaVWn6FErGTFEP3pPMkN7X9xb9qNefUvBfK/C1KDSBvtrImmTSoRo9Go+EeaQBcH5VyEesHKf8qDTDxOMnoMRqNqKysRENDA4qKiuB2u3nfSY4HsQ7fYB4kZX8MHI/wiI4Q5QoJ9BIHMKIhrWzTxfYfyH1uxNm9LpeL5+BNGw8V3SyTyQSPx4OSkhIUFBRwg0ccrSgVUKlgYqKassEkJRYT2aizFck3C0mJ0nrW6/UoKChASUkJ0ul0jqUt6YeMUQoP0UjGYrHA4/HwHJje3l4wxvjUaMYYj6+LzwOdU3weyOgSa1JRA0HGtji7U5QvebloeQWagSguYyLJhbyD9BpvI0QMIVBjm88wyhfaFQ00tW1qIUZKgrZarXyJGmlUjR5xbczBch4JZUhoqH2HChNL1KEBkcfj4cVSh+uRVTN0RNTaaTEcSN+vNrNb7bvU+nvxOpT9ABlR1KbHYjFeUudEcMINKtE96Ha70dTUhKamJh5aUSZ4k2cIQE6oThQUeYXE9bxisRgvSU8dOZ1D7FzFWV/k0SLDSRwdix4rehkMBjQ2NqKmpgY7duzAnj170NvbO7E38CSDPFQ0y5I8AkVFRWhubkZ5eTk0mv41/KgkgtfrRSqVQmdnZ05+mjL0B4B7ryKRCK+q7nA4YLVauXEGICcpnWQJAF6vl9efmjVrFqqqqnjxOEqWlB6qXGimnc/n4wU2RW8U6ZTaSHMoRE+zWkM7VF6U2t/B9hExmUwoLi7mSyF1dXXJmlSjJJvN8qr3ZKiqFXdV8xqKLwA5Ok+drCxZM3oMBgPKyspQV1fHJ2yJ0Z+hco3zDWDUZEHtgjJ6RCj7WPoutTCj6GQR+396Hih8qNFoeJFSj8eDtrY2HDt27ITUDZwUDxUZMBaLBSUlJaipqeE3jyqvkvKIrke1ejOi8pHCUsGwaDTKZ/mRQEUPGLkYKSFVmWtBrksAOZ4S+j6dToeSkhJkMhl0dHTIqr0qiGFZsW6Q3W5HaWkpTCYTPvroI37PqfAizeJKJBI5jSudU2xYAfACnZSYqMyvo1EKyY1kbbVa+er2Xq+X12Ch2WTSSzUQSuS2WCw5HaWYe5QvAZU+y0c+T9RgjNSzQSgbc71ez0PTVB9NMjrIw5xIJHhtNzVIj8V2dThGtLIulWT4ULmQoqIiboSI0Zeh9FM0fAbTa6Uuq3mVxPBuvmOHOjdtJ3tBo9Hw9A0ACAaDJ6wdP+EGlV6vR3FxMQoKClBVVcVzMMSGV23UAgy0jkWlUsbkNRoNr3EieqiA3CmX1PGK3y820PnqDtEDQl4xu92O4uJivoQC1caZ7oj5Z2Sg0kiBQoE0C5A8G+Kx1FHTtGmr1YqCgoKceiVUWZ2OIWVi7HhdFLURMQBeIqGgoIDne9B3igUm6VkaySy2UxWlh0oMdSs9CUMxWG7VYPsMZ/tQ3jEa4VLRUMYYXyw7HA5LY3oMUCqGGGpRq/8GHH9mSOfE6fZUMoE+o3ZErCsnGRkajSbHiaDR5M6yzmf8DJbTJvbBYv+pNJ7UdEptEDVYiFg0wui7RA850N+uFxcXw2g0oqur64QNjk64QWWxWNDQ0ICGhgb4fD5UVFTwwouU8wTkCoXCM9SxkrIqc5ookZX2tdlsfLvooaLPaGRN36VUTrVRkPiwUeVm8lTV1dXB5XLh6NGj+H//7//JBHXkejPEqfVAf4jFYrHw6um0NpfS9UteLa1Wi8LCQsyaNQs2mw3hcJgvNSSuz1dSUoLZs2cjHo/j8OHDCAQCqg2vVquF1+vFnDlzuIeKFI9G1SaTCXa7HQ6HA8lkks8YnM7QoGjWrFlwuVwDDFGSnzi4UWOw3AnldmVuxmDnUwsXUKehDCORJzKZTCKdTsPr9SKdTiMajcrZnWNADPnR0l9UY4gMInEwS207henFkD21H5TfGAwGee6lLFUzcsQ0DAB8uSUyZtVmuaoZRMPJXVRzSCjzHofSZ6WBRgaVaFhR/0D7er1eNDY2IhQKoaurCzt37hzVvRopJ9ygotwpylsRp6Ur3b1qXiulhypfngaFmpTQqJT2Uc4wEFHzWomQUabX6/kK9vF4HH6/X4YL/g/xHomzP4DjdWrEqbNqtWfoHJSLIRYBJKOVjqPGwul05iymmq/RNZlMcDqdcLlcOWEJUlJxdKzmmp6OULieVjUQl+YRw7FDGUFqchlsv9F6qoY6RqywTp05eUgko4PuqzhZRPReEmK7Lnqk6f6LtazEtAHlAFwyfKg9FUN9Sg8VoeyDB/My5fNiiaE90egZrC3Np8vK6JHSBqDtRqMRHo+HG+OnbMiPPEe07o5Gc3xJCOrExFi6Mpwn/lWGh4DjN1QsKCdatCJqn4nnzzdCFgvVUV6VwWBASUkJjEYjAoGAXP/t/xDLJpDBQms90Qw7Gn1S6EWsEURJhiRHCiNQVVwa2YrTfnt7e3Ho0CFu3EYikbyxejLSqJ6V6H2ic1OoQRmSnK6IRivJlZ73wQZHQK7BNdjIdLCciuGMjAc7P51DGZqkRbHNZjM6Ozulh2oMUGQhGo3y3FJaRkpc+JYGPKRj6XQaJpOJh/aofTCZTDmGbjweRzQa5ROFCGU/IOlHo9HwBHSv18uLK4t1+tTq+YmIukXnHE54XozoKD8b6vxq5yHdFj2c9Dk5R8xmMwoLC1VL60wkk+KhEgsCUgI5AD6jSjSo1OKywMDZQPRX6aHSarU5eS9iQy+OnMTvUdbDUFrY5LkQR7dmsxkzZ85EaWkpuru7ZQmF/0On03EDmpaTIOWlSvZOpxMejwfxeBwGg4EX4KSRKnBcbtQAAMgpVSEaVMeOHeONRCQS4RMdlBWbyaijuiVU5FVsAKhGES1HJA2qfoPK4XDwZXoonAsgZyChNjBReprVwnv0v/hXeYxabobaMfmuX23qts1mQ01NDeLxOI4dOyZ1eAxks1lEo1H09fXBaDRyXQPAB0KUmwj0e4rNZjNvS2myg9Pp5M+Yw+HgVe0jkQj6+vp4UUdA1qgaDK22v3BxUVERysrK4PF4YLfbcwpX5/MuiYgz45VtqZoxK27PJydleFCEDCflZ+J30rXQmq/ZbBZWqxVFRUVIJBK8JNOJ4IQZVGIhL8pNEZcdEQUkjhzzWczDUR61hlc8T76RTb74sfLcSkOLZpfRrEK1WPR0hEaiogEs5kaJS5eIDz4ZQcrQK80eUua4kUxoxh8lHJMXUZzdJz5rSm8mIW5XTmyY7oiza8XRojhqHMpjpNaAKxnOPvlQ+056vtTCG+QRzWQy0sM8RmhgSrOjgdx7Lr5ITmLbLz5LYv06ceCkXAxbMjg0OKRlv8RJAsPtp0TjR9QlcdtgDOaVVjvHYJ5q+l/Mh6TfQd5NMuTV2veJ4IS0GjqdjldELyoqQmVlJTwezwCDQ3TliQsYiwvaKr1ShFIgpMzkoaJzKHOllOFEsXOmEgvk7RKLPYpLlwDgCy/b7XYUFhaiqKgIWq0WkUgE4XB42iq9mJQuepsobASAL0tDS42kUilumJL8KHEyEong0KFDA2qZhEKhnAVUKVmV8gVEDxWF9/R6Pc/hE0PDdN1Av1zp+iihdroTiUTw5ptvoq+vD+Xl5VixYgVmz56dM1szHo8jHA7ndHpix6lEOdoFBrr+R9Jgi7IkRMNZXNuTGuRwOIw9e/bA7/fj4MGDOe2OZHDUIgnUBqtVvCe9plqBVEcuHo/zDpEGU6lUiocLaVILJaXLOmHDg0ollJSUoKioCEajka8OIq5GQpCMRD2i92oeJWVuHJ1DzRulHGiJfbYSMpTEwS0dJ55Tqe80OGKsf71dWkA5EolM6ILJJ8ygKisrQ2NjI3w+H2bMmAGv15szw0a8wTTNnrH+ZWOUice0n9p7ETKIyEuhVjBOmSQnvqc6SNQAk3uaOn3x+ykfSKPRoLi4GGVlZdDr9ejs7EQ0Gp22M8O0Wm1O/gNw3KAiT57T6URBQQHMZjOCwSBSqRSvpm42m3npAyqP0NHRwY1lcWQrGrzJZDLHCyYaVAaDAVarFQaDATabLafWmZhnReekkGQymZSeC/QbVFu3bsXbb7+N+vp6tLS0oKGhAcDxhrWvr493jkqdUyOfkUWM1pgSvWg0OYKMfJrlS69wOIxdu3bh2LFjOHTo0AmrrnyyI4ZlxA5XLMgrdpzU5oorIYTD4ZycKDH9Q1yLlc6ZSCT4zMzpOlgdCRqNBk6nE6WlpSgsLOQGldg3Kr1UogdRlKua15kcD8RgITY1Y0rNoKPziuF5paeJDHdlpILabgBwOp0oLCzkUZCT3qASIeGI66tRB0udnuiKzGdE5ftfKSy1kZPa50p3oKj8JEgxb0oM+ZFQqQFWGojTXeFFuQIDkwrFkJroMRSVBcj1Jirz3ESPw1AvuqZ8cX8ROrfYAU93GOtf0DoejyMUCqG3txc9PT3cUCU9AdRHqSJD3U8xJCR+phz8KK8v37noOSTjirxp6XQaoVAIoVAIwWCQG4OS0SEa0sryNmKbSQaTaHiR8Svqu/iiY2Wl9OFD7ZjNZuMDWbVw6VD6qtxX7f1YrlGp64PNChUZzMFC5TfEtTon6rk5IQZVJpNBV1cXPvjgAxQUFMDlcuXEOfV6PRwOB3w+H6xWa06DSV4qUkry9OQzVIayeNVGscqOVQzjmc1mnkhvt9u5V428JhSmCgaDPBn6vffew8GDBxEIBBCNRqe10ovro4kGKcmfOjZxREqu6HA4nLOeGuXf2e32nHACAF5hnRpjajDE4n+iy1hsmMUq+MpkZQrlFhYWIhKJSA+Vgo6ODjz66KN4/fXXMWPGDCxdupRXKCbDRTSM1UIDQ6E2+FGOUsX9xFG1mItDs00p1Gs0GtHZ2Ym33noLhw8fxuHDh7Fr1y709vbycKVkaPKFdihUL9YGJGOc8hz7+vp4Owr06zgtkE4RAgr50eQl8k6Rh0r8TjngUUer1fJi2m63my83Qx4gymmmQqpA7tq1YhssMljfNphxpgz/qw22lecXDS4yjETPGDlqqE2n9sZms/Gq8IFAYKS3bkSckN4hm82ip6cHsViMl7ynvJqioiJuNdtsNjidTgDHQ26xWCxnCRjRla+mQPk8Q2qCFb1VYqNNHbDJZOINMBlUYg6WRqPh68N1d3fjvffeQ09PDz766CNuXE1nYwo4PpPOYrEAyJ1FSUaPmHBKSpFIJBAMBhEOh/nIipLbrVYrstksX56GMcaNXzGcQ/k7pHTid4ijXHoBAz1XZEx7PB50dXXJHCoFPT09eO6556DVarFw4UK43W7MnDmTz+wkN7ual1CJ2mhZ7X+l4aR2XqUnUgw9kz6bzWa0t7dj586d2LZtG3p7e3HgwAG+nuh0193RIA6EU6kUHxwBxw0qWgbK7/fj2LFjfLYueZmpNIIY1qNzAeDGlDjhhJAyU4dyqMrKyvizTwYVDULp/tMgKJ/HSG2tTeV7YHCvlZqnSfxMLYRM56btZFSJC3CL4WE6zmKxwOPxAADP250oTthwW4x9BwIBdHZ2cqFarVbEYjGeACwWeozFYlzg4s0dzEASX0o383BQJjxT7SMSXiAQQCgUQjweR1dXF6LRKNra2tDT04NAIIBIJCJj+wLibD1lorDoERK9CaInSYzxi52zMjRM28g4IoMqXw0ykqfYOKt1zGItKjkCzoUaMQAIhUJoa2uDyWSC2+0GAJ43R/JUu79KnR6qQVY7XjyvaExRB6HRaHg+pkajQU9PD/R6PVpbW9Hb24tQKMQXxJZ6Oz6QvlLbT+0/hYtp4ki++00eTvKaKAe+Mp1iZCjbTPEz+kvRAvLu0oBXOTtW1LmhvFRDXZPyvdJzJeZfivmw1KYoZxjTtVI/QIW3LRbLgNVRxpsTYlAxxniHlUwmsX37duzfv5/HNimU43Q6YTAY4Ha7UVxcDIvFgjlz5qCurg56vZ67ioGBuVWkvDQaoun44nYxrg+ozyxSWuDkZert7eWu6f3796OjowPBYBD79++H3+9HNBpFb28vkskkwuGwnCH0f9DyPORijsfjOTMnAeRUUrdarXC5XIhEInwmEABeJkFETELXarXc1UshYursqXGgooKigRwMBtHZ2YlEIgG73c4VVjyOlsWh7RJ1jh07hqeffhoOhwPV1dVobGyE0+lEeXk5Kisrec6Scho9odbIKY0sNdRGu2TAk9eb2p33338f8Xgc3d3dPF9q3759CAQC3LCWjAw174QYTk8kEujr60NPTw96e3tx+PBh3q6SR1k5KYQ6bJvNxvsIsRyNrJQ+OtSMUHHNUqvVCpPJxPtKSrkBcifsiF5hcd/hGrn5jCflNjFNgOqWUd9BNQvJvgDAiwxrtcfrW9rtdlRXV8Nut2Pv3r1jvYWDckI9VGRQUWFGNTQaDUpKSjBz5ky4XC5YLBY0NjZybxYZVMo8K0I0nJSCVtbOUWuIyUoHwEdUNL2XXnv27MGhQ4fQ29uLXbt2obOzcyJu2SmB6OEhxFEPGVL0nsKDFNunEa5YhJVGGeLUajGUKIYZSM5iw0vhCI1Gg2g0imAwCK1Wy8s1KBt3yr2hkKJEHb/fD7/fzz1AtByT3W5HbW0tn1kkeqCU3uB8qIX2lXorvqfwktlshsPhQCwWQ2dnJ9555x0EAgHs378f7e3t0sMxTqjdR7HNpwXjg8Egenp6eAV10ilRlmLhSOpAxVm8+cJBkpEjhs/EGpFArocxmUwOiBKQjMR0HLU+mVDzJKuF+dQ80CR/Mr6pthQZTtSviytrkLfZbDbzkN9EL0Mz5TJsRU8TWZ8Ubhkq4z9fnoZoWImo7StOt4zFYgiFQkgkEmhvb0dXVxcikQgP79EinZLBEZVPDNeJuRYUBlCGXESlpYZWOUUXUA/3Ks+jLDQIgBvpoudMee1k6MlZfsODMcbLW6RSKYRCIVWvsKjP1GgCA+vbKD+j84iQN1F8vggKOUUiER6uVy5ZIpkYRKOK8qGU4X1lGyxCnTRFHMjjTS/ROwGMrGbZdEPpVBDzjERd1Gg0PC0nlUrleIZou1r7q4YoD7W+O9910vnEkH08HucpQDabjdeZojZanIQi5kJrtVq+fNFETyqacgYVAF7AkW4krTsUi8X4rDlRqOSlEK1jMZFdnGKrLDCnTLCjpGeNRoOOjg4cOHAAfX192LZtG3bu3MkbZrHQpGRwSCnEmiLA8fyoSCTCJy2ISf9iLp1YZFVtppjosRTlLdYfE0NO9LwkEgn09vbyJHexM6ZOnmpVUSV8SS5qYbuuri68++67sNvtKCoqwumnn84bZTH3gY4ViweqhVXFXIqhrkMsvwGAr/vW1taGffv2IRaL5dSiGSrsKBkcZYSA/lIyOc3oo8EpeUIoNJNPtmKnKIajXC4X3G43z8cVl5+RqEP3kpL7lV58MVIAAPv378dzzz2HUCiE5uZmLF68mNdZFPVFWb9KlIPSgBpqMEptsjhLj5YFy2azOHz4MNra2qDT6fjSOVQnkK5NTPcQZ4AXFBTwNf4mkilpUInF3ADwopqih0AtXCd6PkRXpFroT7mum2ipk9swlUohEAjwxXb37Nkjp1KPgqE8h6lUihvLykRz5WLZdJxSOUVPluiaFmvdiPXDCMrrisViA2RL30MjIVquQTIQ5X2lIo1WqxXBYHCAh0r5PNDx4+FhUBrd1JFEo1H4/X7Vgp3K65eMDOW9E70h5KGi9AkxXC8mROczmOnc1A/QWn/i8mXA+NRCOpWhdpBkIs5+VupMIBDA3r174ff7UVxcnJP3KJ5PzZhWQ002ap+J6RvUHhiNRm6Y9/T05CSkWywWnnstFnsWr49K91Au3kQyJQ0qKrZHN1K0gNUaY7UOVkygE48FkGNMKRtScV9loyAZOcpQn9h40ihCnF5N+5NxIyahioYSkKvA4kxCcR+aAmw0GnOWDxLDDeFwGDqdjie+i88Ejd7oXLLRHoja6FRp0Cone+Q7Nl/+xXCSj9Vys2gJnKE8Gfm+VzI6aGBqMpl4uFxtJhYwUI9FRH2mQRGVAEgkEjwERPtK/RwcuvdUQkRsC8XJAfF4HD09PTzfjaIFYr4UMDDVQkQ5QFILE6qFAfMNuiKRCLq7u5HNZtHb2wu9Xs9rVzocjgHPlziznEp1THQ/PukGlZq7ncJqAHgYSIypqqHWmKt5NNTyN5THixaumMslbhfDi5LBURpTNIuOHvJoNJrjoQLADSpa01Gj0eRNkASOG05imI8adWoMLBYL/58Ktmo0GvT29vJcH7GmCXB86RzqHGSDrY5SD8RZlkBuLoQYmlUax8qw/GDfAQwcMQO5xnU4HEZ3dzcCgQCCwaDqOaQOjz8ajQYWiwV2ux02m40bVeJKGKTTpPPKtl18JkjvgX5PVUlJCUwmE6LRKI4ePTpAbyUDofuu1+t5nTjRMyXqTSgUwsGDB9HZ2YlgMJgzWUjp9VdDzZmRz6gSj1E+E6Lx7ff70draimg0ymfpzp49GzNmzEBFRcUAY0osJB2JRPgydxPJpBtUaojCUq7TMxiDCUu5z2AxXWU+Vr7vl2GC/OQLyYqIrmeStVj/RPQ0UCgXyB21UicqvleOeEnB6HyUZE7nTiQSMBgMqs+aaAQqR9aSwRGNI3EGjzIcr7a/svFV08F8IQNxezqdRjQaRTQalaVMTiAUSqIBjDLpWURMwSDUdJ3aCq22v+q9uOC6ZGRQOyi2aWJUhmbjU+FqZQRATX/pHGqfi+cfjqdKrZ+msH0oFEJnZye6u7vhcrl4CRzlpBTlxCflIt0TwZQ0qGhdPJ1Ox0NBQxXcoxtJIyAx70aZl6PmThRnBlCOBeXW0AwwNZemZCAaTX+pAapwrsw9UoZwaRRBdaLoc/IsKRdZpe2iXCmkJ3qpgOOGFnm1YrEYzGZzzigIAA/5UacrltagZ0bM15AMH1pGSMybAdRDhfS/MkyvhrIhpudDbNTj8TgCgQD8fr9cn+8EQjOrnE4nrFYrAPA2nGSkbHvVOlvRABdrDPp8PpjNZhw5ckQOcoYBhclaW1vhcrl4u2o2m1FQUACLxYJgMIj29nZEo1EcPHiQe3PEnDdx0CmWIFKbKCQynG1imo44cYWwWq3wer3QarU4cOAA/H4/gsFgjhecIg/i9ZKH6kQMqibdoBK9QYRYEj8ej3OjaqjFMMXEZPJw0flJQGKDLiIKlWYKkBCUgsjXEUj60Wq1sFqtsNvtcDqdvMK4MkyqTCQXkwrJoBLz6ER5isdrNBo+jZpGsqJhRImYdDy5rpWj4lgsltOI0HdQuEJWSh85ZNT09fUB6G8ULRZLzkhXWSNsqFGk0qslhoOV3uVIJILOzk6+goHkxKDT6WC32+HxePhMXeXae4B6WQy1zpkGurRMTVlZGeLxOPbv3y+L7Q6DbDaLzs5OfPDBB3A6nWCM8aXgaNmu3t5evPvuu+js7MSePXsQj8cBIMfTSANbZU1HZQmUwVAbLIl6T/21GKHQ6XRwOp0oLS2FVttfM7Crqwt+v5+32bRGp7jeL3B8QBcKhQak74w3k25Q5UO0gJU1M9RGMiL5tim9UvnyKZQPjFojL42p/Ki5++lzIHfRTTFuDuRWqqc4uJgfocyHU76UdW2U8iaZKht2UdZKhRdzPiQjh0aJal7mwfKlhuOdUhpXyvOLU8WVs5JkyH7iED3M4mK7Y7nfYrtBoT6xkKOUZX4Y619DMRQKAeifxedwOJDNZnmOVF9fH3p7e9Hd3Y1IJDKs8BiFa0VGKwux3VX21UCuYUdtOIUmw+Ew13UxRCzmT00LD9Vg0EMQDAYBIMd7MJz8CbGEwmCz/tQS4yjGrFyBWzI0FPKz2+2wWq2qi2mKM4BoOiutNO9wOJDJZBAMBhGNRgEAfX19PH9CXI9JTFgnI4m8ShSmUxsFU0ydoNGXUpGVHQMZiMPN65OA5zFRYutQhulwDVdlno1avmMymUQwGEQwGJTlEk4AFAEwmUyw2+18TUfRqBXbYuB4W63WgYu6SCUXKKlabGOo5pU4UJKyPU4mk0FXVxey2SyMRiPa2trgcrlgNpvh8/lgsVgQCARw6NAhhMNhdHR08Nwk8g6Sh5HaXbV+U/nZcFD2w3R+mt1NESu1CFVHRweeeOIJvP/++zl5YVR7Lp1Oo6Ojg4cyjx07Nj09VECuVa3s5JThIuVxgHois1rISdxO5wfAVz6X9YdGBiWNqhlUBLmZyaCimLfdbofX680J75F8xZXRSdnonGJpC3EKsLiwKnma4vF4zgLWjPXXmFImwlP+HYX7qFKzWPZBMjgUqo3FYjCZTLxTFLerkW/QpHZ+ILfAoNKgoiVPEonEsHKzJMNDTY6kc7TQvcfjQSKRyAnNEMpE9XylFMQ0DqC/7bDb7WCsv/CjxWLhgyNxiSrx2OlONptFV1cXenp6AOTOnhP7UrEgciaT4ekRZBAPlXYz0vut1EOlUUXfnS+HurOzE0899RSvT+ZwOKDX6xEKheD3+/mxyrSRiWJKG1SEMhmZPstn5CiNr8GsZrUHQKnk+fKuJPmhhlVpTCkNFlJe8hiJs/3EkZCYaKh0CQ8nr45GzTTiIsQwIDUi4lpidM10LmWivGysh0a8xyM9bijDZ7CQn/hsqS2kKzvb8YVC/RSqF3V1OLlxg51XOeClF32XmFogUWc0OkgoUyfUnBLjwVDpOEodz2QyvIgweUD1ej0PA4r9yYlg0g2q4Ywk8lmxark1avUrlOcSO0i1h4E+M5lMcDgcSKfTMiF5BJCHymaz8eVaxBlY5F2KRqOIx+Po7e3FsWPH+LIUNDuDijGmUilYrVbuRRKTj5V5TqLHQgzd0kK9JpOJL3OjHAVFIhH09fXBYrHAarUOWAzZaDTC4/GgqKiIF4uUBV+HRlkGhVDzCqsZRUqUDSu9F41wkmssFuOLNlOSrYg0qsaOKEPyTDudzpzacGKoT5wMMljaBb0XjTFlR26xWOB2u3PaFCnP8UWM1JAek0NDrC0nMpKwvdiGA8fbC3qv9KAp86lpwEQ5VZS0rpwZfiKYdINqpChd/PQZeTGA3Dwo5ShXVFSlh0Op1FQMMh6PyxyqEUBJo7T2lhi2I7nQwx+LxRAMBtHb24t4PM6NsGw2yw0uoH+JAYvFwqsjK3MllCMoURGpkGdBQQFsNhvS6TS6urpyPGK0BE04HEY2m+XXLZ6T1o0qKCgAYwzBYFAaVMNANKiUxpJYnkL8fDDvlNLbIRpYyokFyWQS4XAY4XBYLog8zqh59k0mE2w2GywWS453mgxc5ZJfaii30/9iOI90mwa92WyWJ1xLxhdKBjcajTmFtsk4JkarW+LgmPoKseyN2E+rGVT0XNASZpPJlLAS8o0SxZusrF2jtu9wPh8q/qv8X7qTR4fSyAFy7z3l1ZC7lhpd6gAZY9yFCxxPKKfRUT4vBXB8aSH6SwqaTCah0+l4CQ6xSOBw1nlSPg/SYzl8ButE8xlQ+YyqfDqszL9QekekMTWx0EBKzJ1Uu++iXNUGs0rUvJairpvNZu7dlh7H8YHaT5pFSYNOUa+UA87x+E41yIAiT5lYlHmqMSUMKiVi7pI4wypfQpyy0qv4eb6ON5+bUvyMPFRUSVt2oMOD7iOF74CBU6aj0Sja2toQCoUQCAR4x9fT04NIJMIbSspXouKqYh6A+J4S1slAoto3tB+tTaXX6+H3+7nHgsITtKq5mqEkNt60nEY4HJbPwzAhuYgvZRiI/oreJ/p/OPdZ6aGiz5RV+CUTh06ng9frRXV1NbxeL2w2GwD1chZK45feq4V/xO20P83INZvNKC4u5nWUxPNL/RweogeI5EIRBpvNBp1Oh1gsBr1ezxPTgdw0i7EassrIkbKNoCKkNMnBZDIN+ltE1J6/iWJKGlSAeiNMnaaojMp4O30unke8oWIuj1KISmi2mJhcLRkeYgI5MPChTiQS6OvrQ19fHw/rMcZ4zRC9Xo+CggIeHozH43wmDxk9YudJeVo0sqJq6BRqEqt105pOqVQKer0eTqcTDocDZrNZNXxIf+l5MJlMcqHkESDe03xhdqWeKj8fzb2m8+Wbci0ZXzQaDWw2G7xeL9xud87KBWoojSk1o0u5XQwf0sQXCvkp81ylvIeHWntHbSi1iTTLT5zckc+RMZ7XAxzvs8nBYbFY8kYT1KIi4+lFG4opaVDp9Xo+DZJunFpDKxo5Q4X28v2vjNVTAwwc90iQO1kyPEg25DJWLoiq0fQnk1L9k+rqatTV1SEej/NERwDcGKIyB8oKuMpGmEYztMQIxdez2SzcbjdqamrgcrnQ29sLl8uFVCqFkpISlJeXw+FwoKysDHa7nbuUxfOLI6ep6m6eyigbbbUQjmhsDSfHJl9nfSJHpJLj0AoJbrebT18fzgoXQP5wjzhQIqiNZozxmlQ0cUgyPlAfLObBKvtK+jseuqYcTInfRd5lqlM4mEE12e3BlLQSjEYj3G43T24URyqAes0SZWhPaeGqxfLFBp7ekzuZrsPr9UKn08FqtaoqvRwRDUSj6U/op5lyZFRRorhWq4XH40FBQQEymQzsdjvKy8uRyWTgcDhgs9kQDAaxc+dOHDp0iK/FNthK4aKCx2KxAQZReXk5VqxYgdmzZ6O9vR0fffQR4vE4qqurMXPmTFgsFjgcDtjtdgDIGQXnC0FLD9XwEA1R0RBSK/JI+wMDG0IxHCQOfgZrRKVOnjgo5FdbW8v1noorUnRhMNTaUhqciWvIUT4klUIpLi7moXipk+ODyWSC1+uF0+nkYT+l9348+z6lN1LMmabJLFarFUVFRUgkEjCbzXnPM5k6PyUNKp1Ox9dmE5ctEFEW9lSOeIGBAlcLBSr3E7+LroMKT+ZDJkIOhDxN5J1ShnyooCcAPmuPMQa32w2XywW/34+Ojg709PRwz9Vwc2CUy8oA/flw5eXlmDVrFmw2G8/LqqmpwezZs3NGt9lsli+UrHxmpJdq5KiFUfONRtUQ91Gea6jjAEhZnSAop4nWh6M0jdHMhM3XNouGOHW8FosF6XRaDnLGEbEPFpf3Gez+jjVvTempFp0cAHj5m6H648lkShpUNFPE4XBw9564phtwvD7FYN4nZVFJtc5RRNkAU6cvTqOXDA3de9HwEO8tNXwkT6vVirKyMv7eZrNBq9VixowZSKVSKCoqgs1mQ19fX453Q+woxYZbWZMKAObPnw+32829n1VVVUilUvD5fHzWnpi8rDYtHzi+vqDspIePWMcGwIB7nK/zpG35ciLoGLW8CVHnZTL6iYEGStRmKycDiF5K2n+wWoHKNl0ssExJ6RQ9yGazORNRJMNHrX80m83wer281IxSTvm8ysNhOOF8cfAlllCY6jN2J92gUovFUja/2+3mox0qEifezHzT54HcjptGSuJ28buVxSLpeKvVCrvdzpPhJMOHOlFxKjOFAsmNSyE8t9uNkpISHlbT6XRwuVyIx+Pw+Xy8lALNMKFGmmTLWP8SRbRWm7JCO2MMJSUlKC0t5UmNRUVFOddLCexqxR/FiQy0rIaYcC/JD3V6NNolQ1psGEXP32CeK7VtasaU+F7p0ZBMHDTD1uFwQKvVIhgM5nh5xQHWYLqjFn0QDTEK+QHgda8oiVrq5MhR9p0ajQZ2ux0VFRXw+XzweDw5BtVEpLnk834pZ3KTkZ7veyc7BWfSDSo1lLWB8o1klA+CMoFY+VKijAUrw4LiUiPkwpbhveGhDI3ly20Djif/i6FB8lK63W5kMhnYbLacquZKgyoejyMej3OjR2lQeb1emEwmbrSRGzuZTHJDLF8Drrx+WYNqZIiGcr4w/XBDePn2U/NQST09MYgGMXlw6TNRn8RyGKP9DkI8lxzkjB2lrlAxZFqhYjJR86BR35IvOjVZuj/pBpXaDzebzXC73fB6vXA4HDAajTmNMZCrYDqdTtVDRZ2qmNAoJsKKrmW1BpiKT1ISXFFREaLRKEKhkKonQ9IPJYuKy7coPQW01At9Tgng5NZPp9MwmUwoKCgAcFzeqVQK0WiUh/xIxmQYUQNLHk3yZlmtVuj1ej7pIBQKDfBwijVWqPMWnx3RmyIZPtQ4k0FL91g0upX3Vdkoqg2axHMovVD0OX03tSGS8UWj6S+VQIMfu93O22NxCRFxUKzW5otyU+tAlceIsqYBEk0sMRgMPAdSMjpoRp3NZuP5pUMZKaJjYqyoOTlokXq73Y7CwkJUVlYiHo8jEAjw/niy2+YpZ1BRYmNhYSF8Ph9cLhdPjFOuFq/0WinrElEDKroJKWQkNubiiFm8HnJXx2IxWCwWlJaWIhwO84Rmug76K0fE/ZCHiXLgxA6PGthEIsEXr6TlZKhhpIkINCGAZgwaDAbE43EEg0GehEoGGC0jIxpU5CJOp9O8c6UlbQKBAFKpVM6MPWUeFn2m7KjzeUwl6lAyqcViyRnAUDhQNKbUklHV2gj6q1xeStk+GAwGPtKWpU/GHwoPlZWVweVy8XIJ1OamUqmcUigAcnRMRMyLHMzoEpcm0WiOr15gs9ngcrn4mp/SoBo9ZFA5nU5eRFM5mBks7DaavlDNWSI6QKiUg91uR2lpKWpqangdQ4pOyJCfChTyE+tNKMsmDAe1kY6IckSsPFYc9VKnkE6nB4x0pTGljtIQAcA9FKIRq8xhE40W0fClsJFYgkFcZoa+R1weRuy86Zro+5SlEfKNiMXrkUvPqDMcHVAzesS/ozmn8txqnyvroEldHV/IaFVbvmmkoVfS6+F4O5TGMw3IKD1DMnoodCvO0h4uE6lf1AZT7hwtJzZVmJIGFdUlKi4uhtPpzOmA88XSgdwZPeSxoM+pcxWT1cU8GzHRjUY/lGej1+vhdrsxY8YM+P1+dHd3o6ur64Tci5ORTCaDYDCIzs5Ofo8tFktOgirlV6hVric500weSmDX6/WIx+MIhULc66Q0uigvimrXxGIxXhGdptsqPZRi6JjCFaK3isKXBQUFKC8v58vXTCVFnkyG8tKSt4DkKSYmi3IfzghY9HCJn4mhPxGTyQSn04lsNquqs9K4GhsajQYOhwPl5eVwu92wWq0DZveJukb/q9135XMheqTUchrFQS8A2Gw2FBUVIRwOIxqNIhwOT+hvP5UhB4IY8huMfDo7HG+WGvn2z2az0Ol0KC4uxsyZM9He3o5Dhw6hp6cnx0aYtjlUalitVj4ri2oGicmNRL5lCZQGEnWUdCx5NUhJqcGn46gmkuj9cLvdKCsrg9lsxr59+078TTmJyGazCIfD6O7u5ut5US4V3dvBOtHBlqMQQ4ViZ2wymfjSE2K4jmYHUqNgNBp5Ay1ehzjKJc8VGVRGoxE2mw1OpxMlJSXQ6/VobW2VBtUwoVBvKpXK8SSqdZL5GkOlN0tphIvGmXhOg8EAu92OdDot1+OcACjkV1paCqfTCYvForrUjxieFRmq46O2gDpS0dgS23ygv9/wer0wGAzo6OgY5186vaD6XhaLhSel5wvDqumU2ufKzwbTReWzI36u0+ng8/lQVVUFjUaTs67fUFGpiWbSDKrBLFeaci8W9lQmBqudi96rjWIHS3oczs2nxSKj0WiOUTfZApyKZLNZxGIxBINB9Pb2oqurC+3t7dw4FY1bpdteTbZKY5k+p+PVOuGhRj6ip0TtWNF72dfXh0Qiga6uLnR3d/MFnGV9o+MoZUDGKZXOUHoDx3LuofYVv0NcoV4tHCUZOxSCoUkHotcoX2c7XOh8yokLygEYGVxmsxnxeFwOdsYIyVSZdjPaEPxwja7BQvfiewozq002mUy9nhSDSunSVWI0GuFyueB2uwHkunfpf/FcavFy0dMknoO+lzwYRD6DjbxibrcbFRUVMBgMsNlsA4w22TgfJ5lMorW1FT09PWhtbUUymURFRQWqqqpw5pln8tmSYpK6mPMEHM+FogaVSiVQyJZkrpztR8dRHgV5pEQDiRRSGdoTQxN2ux16vR6BQACvvPIKurq60NbWhp07d8Lv96OrqwuxWOxE39qTBqqYbbVa4XK5eOMn6lm+0S0xHONLPIcypMRY/3IVhYWFfGKD0hCXjA2Npn9dTpqRTWF5iiqo1ZRSHg/keqaVNY/EsL7SC0mrGtCyVeXl5bBarThw4MAJugMnJ8o+TgnVoaqoqMjpK5UpNmJ/SucV2/ChdGw4+6qlg9jtdng8Hvj9/kkv6yAyqSG/fEYVNX52u51Ph1fzNtE58rn7xSnwamEmeq8mSKXRR+7kZDKZ42JUnk/SP6uys7MTnZ2d6OrqQiaTgc/nw8KFC7F48WKeyySOZMlrJRbtJG8WGcfAce+R2Ikq5U8JleJ5RQOMjC5qxOncolFGSbY9PT3YvXs39uzZg46ODuzevZtXbJf0I+od3RcKtdntdlitVu4hGu1SJPm+S9RRZRgX6B+cOZ1OMMZUc0GkHMeGRnN8Rq/dbodWq0UymRyQG6nmzR2uQSsOdEi/RU8YDbZMJhM8Hg8YYwPaaMlA8kWJqP0rKCiAz+dDLBbjA2C1kG2+qMJg3zfYdvHc9LlS500mExwOB6xW65TyRk6ZHCrq5ERlEcsdqC1TocyfAHItaLETFYWoFsdVerKU78nIs1gsU0qAUx3y9og1aujzkYSBRJmodeCDHaMW2hOfHWVeHj2D4ow+8RyyEx6I8p6QQeV0OnMqWA92/9TCOcMZ4Q6mw1Q0NplMDhjJSjmOD+LsOvJmiINYpVxHwlDHUD9BuTViGGgkoWJJ7vqrYphPraQQMVov73CcG0r5if23WOdwKvXHU8agogaYcqeSySRisVhOQrrSmFKugC0qF42cAPAZRoSo6GJ4QHRL03uaVu9wOOBwOJDJZGC1WlV/w3A6+emGxWJBdXU15syZg5qaGlgsFh5GpRCQclFTUR7iZ2reLNqmFgpQfi7OEiUlVOZzZTIZnndjs9lgsVi4d0UuvqqOWh6b3W5HVVUV3G43PB4Pv890j4caxaq9zxdiH+xZoRXqqX6NlN/4I3ojk8kkkskklwHpmzhwUgs3qUUd1P5X9gE0kxfo90Z6vV5kMplhzUyT5N53g8HA6z7SbM14PI5UKjVgaTYgf9mTfDJVe6/cf7C2nNp8SsGx2+3o6enJK+vJ6I+njEFFHSzVMqGicMrOlW64mndDNIjE+hli+QSRfMeqPRA0i2w4pfjlyOg4VHKiqKgIbrebj3zEkJ5apWy1DlPpYVRzNYv7KyEZKw1xcQkD8fmhUbfSSyUZGipXQFPp803kGI4XSkRpWInnVGsnKOeRCsFKg2p8oXtMxZeV5WrE/eivWkeXTy6DfU6DJDLcKEyvVg9LMhClDpGHj2b2UR8szthUeh3znVNtkDWY7g1mUKvtYzabAWBYBXtPZH88ZZ46qnRrs9n4TaL8GeU0euUsEmUSo9ghAsiZxqsc4ShDP6SchPh9ymn0VB9JOaNFGlPHodXgKfRDS8fQ4qaDzbRT8xyK2/Mp3lCGltooSNyHEl2j0SgymQwvmRGPx6dUAuRUQimbfCE/NbmN1KgaLGSoNNzEsgkyr2b8oAGRuIae8t7nGyAN5qnK913K/8XBMrXZVBnfaDTKwc8QqOmcyWRCUVERHA4HCgoKcib/KAezSsNKrf0eaahXzYul5nkmQ1osg0SrYKjl6k1LD5XRaORLzRQUFPBYOK2vJho21NmSEokzxETFEhtyOlY8hyh0tYRW4LgwKJRIIT+Px4NEIoFAIMDXkBNHTdKo6kev18Pr9aK0tBQWi4WHcaPRKG+UlSMIcWaQMuQrNtzkBlaTm+h9Uob0RI8YbRc9VKlUite6SqfTqKyshN1uRzabxdtvv33ibt5JgtqzTrXkCgsL4XQ6c2bgicn/4jlEvc73Hfk8j8BxHQaO51JaLBa+HAktfaNkuB275DjitHrKWRJzVgF1A5f+DtbZ5hv0EtTm0yCX6ptRvtxUy6uZqiifdafTidmzZ6OkpAQzZswYUN9J2f6K7bRyoArkym8wr7KIaCwr+wVqv8U2hPp6k8mETCaT4+CYDKaMQaXT6biCmkymQUvei5YqgAFeJRKGWJhzqGUnlMcrG3Ax74MWaRStZPEcMqxwHMpHEt3I4iLEaoqj7OCUCisep9w/H2qyV55LlDmtQZbN9i+szBjLSaqXDA4VBlSGyAeT21CeqqG8GGqGEbUrtCbkYMdLY2r4aDSaAZM2BpOdmP+Y73wjQfl9Ykcrw/OjQ6/Xw+VywePx8LYun6dIqcNqNQLVjOF8AyLlvsM5TrxutbDfZOjzpBpU4g+mhDiPx6Na5wlAjqKI78V6RWJlXfIciVXQxcWRRQ+H2ugJOK6o4uiZ8jKAgQ2EbJjzwxjjnj7RSyh6jpT5VMowrfgXyK09JH4PvahGFX2ncjudQ3lOmuBAOVdqhSEl+SEPhlo+y1BGk1LeaseJeqb0bInnoJIb5MWgfC7RqJeMHKPRCLvdDpvNxvNZRJSeQvFzpQeKUHo+8hnJaucTPc7kjXQ4HHzxdSnrfvKF6IB+by55pzweDzSa4zM2xUiA6LAQy98otyvL1Yh9KV2D2nWIzhA6Vtyf2nSDwQCn04mamhqEQiH4/X60trYiGo1OyL0bDpPSQ6i572mGBq3fpwzDALk1hUQXszJ0R51hPB4HkJtDRS5icTRD5xCviUJ3auFBs9kMh8PBr4nI56Ke7pAiiEaKuJ6eaOyK1fGVeW9KlO5n5ffR5zTJQQz5ispJNalI5sDx9edo1h8l3cqR7/CgMiM2m40XUVXmGqp1lkpPpZo+DXW8OFrOZDJIJBJIpVK8Adbr9QiFQrKTHQMmk4nPtMrnzVDzOIrRBDVvpbIjFs9H75XPilhAlPJpqFQLGVNS1vm9uITVakV1dTXmzp3L02VoAKyWS0VGDd1fUb9F4xZAzgQzcSCtlh5DbTLtQ5McxDxmapMLCgrQ2NgIh8OB/fv3o6ura1INqinTO5AXgFzzakaJGF9VohwRUSet7ECVyjhYbka+7yaDbqRhp+mIsjEU/ypHK4SatynfOfPdd+VxosdTbZvypbzOkdbNmg7kuw90v8SQkHL7YDo8XoiyJk8jJS3L0O3YUIb8lAw2EFLTQbXz077iccr3g3k4xGWPJPkR9YLC9LQuqrKtVhvcDNYeisaV2nnyGXjDcUxQtMjhcAyoczhZTIqHSsxnIgPIYDDA4/GguLgYbrebewTE8Jxyxh8hWryiZ4KEqJzlp9aBqp2DDDuNpr+mFSW/qQlNhvnyQ2EXqjFmMBj4DEmShzgCotGMsrCrmtGsFkJQTmIQ96VngbxPomKLoSl6fmiElk6n+ZRsqtFC1z8dEe+beP+pAzObzXzWrsFgGBASEM+hPI/42WAGM/3N9xLPYzAYUFhYiNmzZyMUCmHfvn2IRCIDvme6ynOkUJkb8kCk02lotdqcsglK1EI4+d6LOZb0V5QRbae2hXSVPrdarbxMSzAYHPfff7KifM6tVisqKyvhdrsxf/58FBUV8ZUFRJ2lSILYJtP5lCE80TOpFv4TnRPKpWzE6xQHr0qdplxcrVaLoqIivkzYZNcfm7S1/MTcJcb6lwqgkF9BQcGAxHRRwNTpkvIoZ22JXiTguNLRd6u91GYs0ChnOAYVoF57Y7pDbloyqMgoSSaTXKHE+yWG5dQaZ1FZRSUT3c1KF7XopQCOKyN1tPSciV5Hek/hQDISKG8kFotxw2+6omycRa8UGVR2u53vQzqVz2OgZjyJ+6rl46jVjlMzqPR6PYqKijB37lz09vais7OTL9itpvuSwRFLFGg0Gl44mYooi8+GOFgV28d8s7HUVrtQ9gXKAZLY2QOAzWbjBWU7Ozsn7D6cTKjpl9VqxezZs1FZWYk5c+bA5/PB6XQimUzy5WbEPFRqk5UzdfMNaNT6Y1Hn6LlR6q9ykK30ToqzO4uLi+FyuXDs2LFJL/I5ZbJsM5kM4vE4IpEIrxtDQgSgeoMHM4xEAdIxdB6x0xQVlvYjhaZ8LI1Gg3g8jkQigXA4zN9TPpCIbIxzSafTCIVC6OnpQSKRgMlk4g0fNYSU3EiQASPe23whIuWzAAxMMqfPyFATY/SUc6FsGMgzlUqlEAqFkEgkEAqFchbcnu4oBw9iGEgs2qrcB0Beo0rtOwgxwVWUt3KWL+0rGt9iKRWTyaQahpRyHT5imIjkTfqkNrtaTY5A/qXCxO9Rtu3A8XZafM7E545mjMfjcRny+z9EfSBoZl9hYSFfxFw5U1LZZyr1m/pa0fgSB6VKD5UoR7UZmaKsxedJrX3XarUwmUzQaDS81BJ5xJUzyekeTCSTZlAprU6/34+3334bra2tmDt3Ll9wU1RKh8MBi8UCAAM8G4SYtEaddDKZzFl6BjjuslYWpaPE6Uwmg0gkglAohGQyiWPHjqG9vR1+vx87d+7EoUOH+MLNyt8kG+bj+P1+vPDCC3jvvffg9Xoxe/ZsOJ1OFBQUoKSkhC/C6Xa7B3j+xBAvofRKqY1yRUNZOctENJaB4x02yTsajSKRSKC9vR19fX0IBoPYv38/ent70d7ejqNHjyIcDue4vacjauE6ymegSRu0ugB1ftTYqhWCVAv95Ps+2k/ZSdN5k8kk4vE473Cpno7NZoPb7UYqlZJFPseIxWJBaWkpXwXB5XLxjpZSJSj8q+xcRbmpGdtDtaPkoaDIhtVqhUajgdfrRUFBAQwGAyoqKpBMJtHe3o4DBw5M7M04SVCGVYH+JaIWLFiA008/na9sQF55eolGj9ls5p/RBKJsNsvTc0RED6bofKDzUcoFFXkmxEEPzRbOZrN8WSPReKYSRowxlJWVobKykg9+e3t7kU6ncyJiEz1wmrRZfsoGsq+vD7t27eLlCGpqangNIJvNxg0st9ud11tBxpDyIUgkElxodDOpzD7lAJCi0xRr8phFo1GEw2Hs27cPu3fvRl9fH/bt24e2trYB1yAWHZX009fXhzfffBMajQalpaVob2+Hx+NBTU0NL5VRUFAAp9OZI4t8DaqyNIb4nhCNcHoOxPAQMHDmIRlUsVgM4XAYBw8exNGjR9HV1YW33noLx44dQyqV4oVJJf2IzzuVJaDVDsRSE6TzojeDOlqxgxTfK79HqfeifGmApNVqEY/H+XnIY8YY41PpY7FY3okvkqEhb4DP5+NGjN1u57JW81aJyeH5ZvCJHkdRP5Uhe2WqCC1Y73a74XA4eHiXijxK4/k4Sr2y2+2YO3culi5dOsCQFcO0or4qPZBkUFF7TO2jXq/PMa7VDCoxPYOggZhywBWLxXIKeop6r9Pp4PP5UFxcjHA4DI1Gg0AgwI8Xw86nnEEFDByFUN0orVaL3t5eHDlyBOFwOKc4YF9fH9xuNx+NKnOn6DxArltQrLZN75UPBAk3lUrxqbbd3d3o7OxENBpFR0cH/H4/91gNNnqS5EIyicfj6Ovrg0ajgc1mw5EjRxAIBJBKpZBMJnNmDamNatVCAvkQ5U+KpCydwRjjXsZ0Oo3e3l74/X5Eo1G0t7ejq6sLvb29iMViORX7JcdR6jDpT19fH44cOYJYLJYTIqBBDOUnUgM5Eg+VGOalbRqNhtedi8VivCwCNe7JZBJtbW3o6OhAT08PN7qUOTlSvkNDIfFwOAyTyYRgMIje3l7o9XqeDgHkhuuA3FxXOo9ojKvlPYoDIPG5oPeJRALxeJzn44RCIcTjcbS1taGrqwt+v39AdEJynGQyie7ubhw6dCjHy6uWkiGm0oj9p1JvRMOYJgyI9R/pOLGkiTI5nb6LcvJoEWyStRhupH4jEAggFovx9nwy0LBxakFGOtpTxjSpsdXpdCgoKEBxcXFOfJ5iveStcjqdsFgs0Ov13OAymUx8hEKJ0BqNBlarFRaLBYwxRKNRvoJ2X18f4vE44vE4/H4/kskkYrEYgsEgLwgXjUaRTqcRDAYRCoX4cbTC+XhwsjTiYx3RU+0aWmSa3Mvk1dDpdDysSzWDSMb0l54FUmwxF4o6Z3Ivi7WkyGWczWYRiUS4vAOBAPx+P5d3MplEOp3mz0YikYDf78/xeoyGk0HGY9VhSkbX6XQoLS3FnDlzYLVa4fV6UVhYyGvNuVwuGI1GuN1uXsSXGkdlrgwhdqzkURTlS3XnyNPY29uLVCqF3t5edHd3I5FI4NixY+jo6EA8Hkd7ezsfwY7H6PVUlO9glJaWYubMmbDb7SgtLUVFRQVfSFwspEs6Q4NU5TXQ4FacMUg6PdizQK9AIIBAIMD1Nx6PcyMhEAhwWYfD4TH93lNVvkVFRTjnnHNQU1MDm82G4uJimM3mHE8TOTVEHRG9zdQ+U3jdZrMNWIic2laNRsNDgdQmi7OygeNFgQGgq6sLHR0dSCQSSCQSiMViOTNMxYH23r178dxzz6GtrQ3RaBTBYDCn3iGQP1VovOQ7aQbVSNFqtXA4HLBarTCZTPD5fHA4HDAajXC5XDCZTLDb7SgsLMyZlg8AHo8HBQUFYIyhr6+Ph3ba2trQ19eHcDiMtrY2RCIRRCIR7jU5UZwMygpMvIx1Oh08Hg+XJ8mYQoOkROTZICNanHHEGOOjHgrbiu/T6TQCgQBX0s7OTrS1tU34iOZkkPF4ypfCa5TPUlVVxfNuioqKYDabee4NyY8aabVwnNhBU06kKN9kMolgMMgnjpARdeTIEbS2tiIej6O7uxs9PT2qshhrqH66yZcSmc1mMwoLC1FSUsJXkKDK6SSjVCqFSCTC22NlYjkAPvtXTHom74My31E8jqIIiUQCXV1d6O7uRjqdRiQS4YWdx4NTVb4WiwXl5eV8lZLa2lo4HI6cfFOn08mLbdP6pqSz5GmmRdBtNhvPYwOOyyoejyMWi0Gj0fD1H8XBkRhBEJeSOXToEPbv38+dG2SU0QAbOB5Cbm1txauvvoqurq4BZXnUvKIi4yXfk2r6gzhKHWqfwfYbyr1/MijPqY5SBmJYabjHDLVNhngmFqUuTuS9HurcUtYnhvFsU4d7jFp7LmU9foj97lB98InSebXzDicVZKIZNw+VRCKRSCQSyXTlpPJQSSQSiUQikUxFpEElkUgkEolEMkakQSWRSCQSiUQyRqRBJZFIJBKJRDJGpEElkUgkEolEMkakQSWRSCQSiUQyRqRBJZFIJBKJRDJGpEElkUgkEolEMkakQSWRSCQSiUQyRqRBJZFIJBKJRDJGpEElkUgkEolEMkakQSWRSCQSiUQyRqRBJZFIJBKJRDJGpEElkUgkEolEMkakQSWRSCQSiUQyRqacQdXS0oJQKKS6bfHixXjppZeGPMdtt92GwsJCtLS0oKWlBVddddWAfTo7O1FcXIxLL72Uf/bDH/6QH9PS0gKn04mvf/3rAICtW7fyz+vr63HdddchkUiM6jdON8ZDps888wwWLVoEk8mEr33ta8Pe1tHRgTVr1qCpqQnz58/HT3/6U75tMHm/+OKLOO2001BXV4f6+np861vfQjabHcnPnjaMh3wJNb184IEH4HK5uJyWL18+rG0A8I9//ANLlixBfX096urqsHXrVgDAW2+9hTPPPBNWqzXnuyQDGQ/5/vznP0dDQwMaGxvR1NSEhx56iG974okn0NTUhJaWFtTV1eHmm28GYwwAEIvFcPXVV6OhoQENDQ245JJL0NXVBQDIZrP4+te/jrq6OjQ1NWH58uXYt28fAKC1tRU6nS5Hv/fv3z/GOzE9mEx5A/l1NhKJ4JprrkFjYyPmzZuH73znOznHTQnYScSiRYvYli1bhtzv1ltvZTfeeOOg+1x66aVs/fr1bPXq1arb4/E483g87O2332aMMRaJRFgymWSMMZbJZNill17KfvKTn4zk8iUqDFeme/fuZdu3b2c333zzANkOtu3KK69kN998M2OMsXA4zJqbm9mbb7454PxKeb/77rts//79jDHGYrEYO+uss9jGjRtH/PumO8OVL6Gmlxs3bsyrp4NtO3r0KKuqqmK7d+9mjPXL2O/3M8YYO3z4MHvjjTfYhg0b8h4vGZrhynfz5s0sEAgwxhg7dOgQ83q9bN++fYwxxoLBIMtkMowxxhKJBFuyZAl7/PHHGWOM3Xvvvezyyy9n2WyWMcbYtddey775zW8yxhh74okn2Gmnncbb5R/84AfsU5/6FGOMsQMHDjCXyzVuv1PSz0TLezCd/Y//+A/22c9+lmWzWZZMJtnKlSvZ//7v/47zLxwbU85DpdFoEAgEAACvvfYaWlpa0NDQgGuuuQbpdHpcvuO3v/0tampqcM455+TdZ9OmTaisrMSiRYsAAFarFQaDAQCQTCYRi8Wg0WjG5XpOdcZDpnPmzEFzczP0ev2Itu3YsQOrVq0CANhsNixbtgwPPvjggP2U8l6wYAFqa2sBAGazGS0tLWhtbR3WtU43xktnh6OXI+G///u/ceWVV2L+/PkAAJPJBLfbDQCoqKjAaaedBpPJNC7fdSozHvK94IIL4HK5AACVlZUoKSnB4cOHAQAOhwNabX9XFI/HkUgkeNuq0WgQjUaRSqWQTqcRDodRUVHBtyUSCcTjcTDGEAwG+TbJ6JlMeQ+mszt27MDKlSuh0WhgMBhw4YUXqrblk8mUM6iIZDKJtWvX4u6778b777+PT3/609ixYwffvmHDBnzve9/Le/yjjz6K5uZmnH/++diyZQv//MCBA9iwYQN++MMfDvr9v/3tb/H5z38+57PW1lY0NzfD5/PB5XLhS1/60ih/3fRkrDIdDYsWLcLDDz+MbDaLrq4uPP/886qGkZq8ifb2dvz5z3/GJz/5yXG9tlONsch3KL185ZVX0NLSgjPPPBOPPvrosLbt3r0bsVgMK1asQEtLC77yla8gEomMwy+dnoyX/m7evBl+vx9Llizhn7322mtobGxEUVERzj//fKxevRoAcN1118HhcKCoqAjFxcXo6+vDl7/8ZQDAxRdfjPPOOw8lJSUoLS3F3//+d9x+++38nJFIBEuWLMHChQtx++23I5PJjNetmBZMhrwH09lFixbh0UcfRSKRQDgcxqZNm6beIHeyXWRKADC/38927NjBqqurc7bV1tYOy93Y1tbG3cCvvPIKKywsZK2trSybzbLzzjuPvf7664yx/OGC1tZWZrFYWE9Pj+r5Q6EQW716NfvjH/84sh83TRkPmRKDhXPVtnV1dbF169axpqYmtmLFCvaFL3yBXXbZZTn7DCbvvr4+tnjxYnbPPfcM+xqnG2OV71B62dXVxSKRCGOMsd27d7OKigq2devWIbddfPHFbOHChay3t5clk0l21VVXsZtuuinnuwcLGUr6GU/9fe+991hFRQV7+eWXVbd3dnayc845h/3jH/9gjDH25JNPsiuuuILFYjGWSCTYpz/9aR7Cf+ONN9gFF1zA/H4/y2Qy7Jvf/Ca76qqrGGP9oaKOjg7GGGM9PT1sxYoV7M477xzpT5+WTKa8B9PZaDTKvvrVr7Lm5ma2bNkydtNNN7EFCxaM7kdOEFPWQ6XGcENsJSUlPDx31llnYcGCBXj77bcRDAbx3nvvYe3ataiursY3vvENvPDCC7jgggtyjt+4cSNWr14Nj8ejen673Y5/+Zd/wR/+8Iex/SDJhIdNfT4fHnjgAezYsQN/+9vfoNFoUF9fn7NPPnmHQiGsXLkSq1ev5snqkpExHPkOpZc+nw9WqxUAMH/+fKxatQqvvvrqkNtmzJiBT3ziEygoKIDBYMCnP/1pvP766xPxM6ctI9Hf3bt345Of/CTuv/9+nH322ar7FBYWYtWqVdzT+D//8z+47LLLYDabYTQacdVVV/GIw+9//3ucf/75cLvd0Gq1WLduHd9mMplQVFQEAPB4PFi/fj1efvnlsfxUCSZe3oPprMViwc9+9jNs374d//jHP+Dz+Qa05ZPNlDWo5s2bh3Q6zRVk8+bNw56lceTIEf7+ww8/xPbt29HY2AiXy4Wenh60traitbUVd999Nz72sY/h73//O98/m81i48aNA8I/+/btQyqVAtDvCqWZCpLhMxaZjpaenh4ut23btmHTpk05odp88g6Hw1i5ciVWrlyJW265ZUKv8VRhtPIdSi+PHj3K9+3o6MCLL76IBQsWDLntyiuvxJYtW/hs3L/+9a9obm4enx87DRmL/n7wwQdYtWoV/ud//gcXXnhhzrY9e/bwGbShUAjPPPMMb1tra2vxwgsvgDEGxhieeeYZNDQ08G0vvvgikskkAODpp5/m2zo7O7neJxIJPP744/y5kAyPyZD3YDobDAYRjUYB9KcI/OpXv8JNN9009h86nky2i0wJ/s/dyBhjr776KmtubmYNDQ3smmuuYc3Nzdzd+Ktf/Yp997vfVT3H1Vdfzerr61lzczNbuHAhe/TRR1X3U3P3P//886y6uprPKiHuu+8+Vl9fz5qamlhdXR37yle+wmKx2Jh+63RhPGS6efNmVl5ezhwOB7Pb7ay8vJw9+eSTQ2579tln2axZs9i8efPYkiVLuGuZyCfvO+64g+n1etbc3Mxfd9xxxzjelVOH8ZCviFIv//3f/53V1dWx5uZm1tjYyH75y18OaxtjjN11111s/vz5rKGhga1du5Zf5549e1h5eTkrKChgZrOZlZeXDzhW0s94yHfFihXM7Xbn6NNzzz3HGGPstttuY/Pnz2dNTU2svr6e3XrrrVwfe3p62OWXX87q6upYXV0dW7NmDevq6mKM9Yf1rr32WjZv3jzW2NjILrzwQj4z97HHHstpr7/85S+zeDw+gXfp1GEy5c1Yfp3dtm0bmz17Nps/fz5rbGxkjz322ITdg9GiYWyqFXKQSCQSiUQiObmYsiE/iUQikUgkkpMFaVBJJBKJRCKRjJETblC9/fbb+PjHP46amhosWrQICxYswB133MG3n3feedi0adOIzikuP1FfX4+Pf/zjOHTo0JDHVVdXY/v27aP+XsnomIhnIBAI4DOf+QwaGhrQ1NSEhoYGPPzwwwD6n498y4u8/fbbWLt2bd7zvvTSS3juuedGdC2SiZExALzzzjtYuXIlamtrsXjxYpx11llj0ttAIIAf/ehHoz7+VEO2zxJAttGj5YQaVDt37sTKlStxww034MCBA3jnnXfw97//HcFgcMznXr58ObZv345du3Zhzpw5+Ld/+7dxuOKJYToXmJuoZ+CWW25BYWEhdu7ciffeew9bt27NKSSXj8WLF+ORRx5R3ZZOp6eUsp4sTJSMd+3ahYsuugg33HADPvroI7z99tt49NFH0dfXN+pzSoPqOLJ97mc6t8+AbKPHwgk1qO68805ce+21ORWnPR4P7rrrrnH9nosuugh79+4FkFtGH+ivWzNUddXOzk6sWbMGjY2NaGhowH333QcA+MMf/pBz7Ywx1NbW8uqxDz74IE4//XQsXLgQy5Yt458/8MADWL58OS6//HI0NjbizTffHMdfe3IxUc/AkSNHUFpayuukOBwOzJ49m28Ph8P49Kc/jcbGRixevBgfffQRgP7RTUtLC4D+Svhutxvf/va3sXDhQvziF7/Ahg0b8Ic//AEtLS05VZgl+ZkoGf/oRz/C+vXrcfHFF/PPysrKsG7dOgD9pU1WrFjBF14VR9BXXXUVFi9ejKamJnziE59Ae3s7AOD6669HKBRCS0sLFi9ePKbrO9mR7bNsnwHZRo+FgYufTSDvvvsuLr/88lEd+9RTT+Gpp57Cb37zm0H3y2QyePTRR/mabKPhK1/5CubOnYvHH38cnZ2dWLRoEZqbm7FmzRrceOONaG9vR0lJCV566SUUFBSgubkZr776Kv74xz/in//8J0wmE15++WVceeWV2LVrFwDgjTfewLZt2zB37txRX9epwEQ9AzfeeCOuuOIKPPLIIzjjjDOwcuXKnAbhrbfewvbt21FTU4PvfOc7uPPOO3lDLNLX14f6+nrceeedAPo9GIFAAD/96U9Hdc3TkYmS8TvvvDPoklFXXXUV1q9fj+uuuw4ffvghli5digULFqCqqgo//elPUVhYCKDfMLvtttuwYcMGbNiwAS0tLTy0NJ2R7bNsnwHZRo+FSU1K/+Y3v4mWlhaUl5fzBzsfl1xyyaDKumXLFrS0tGDRokXQaDS45557Rn1dmzdvxnXXXQcAKCoqwpo1a7B582ZYLBZcfvnlfEHGBx54ANdccw0A4Mknn8SOHTtw+umn8zWIent7EYvFAABnnnmmVFYVxusZWL58OQ4dOoQf/OAHcLvduO6663DDDTfw7WeccQZqamr4+3wF6gwGAz7zmc+M8tdI1BhPPc9HKBTCu+++ywu0zp49G2effTavjv3www9j8eLFaGhowG9+8xtpQA0D2T5LANlGj4QTalAtWLAgx5364x//GNu3b4fBYOBVbUcLxei3b9+O+++/Hz6fDwCg0+lyYuLxeHzE5xbL7a9fvx4bN25EOBzG008/jSuvvBJAv3t53bp1/Bq2b9+OtrY2WCwWAP3L1Ugm9hmw2WxYtWoV7rjjDjz22GM5K5GbzWb+XqfT5V013Wq18pXQJaNjomS8aNEibN26ddj7k96+8sor+PnPf45nn30W77//Pn7yk5+Mqh041ZHtswSQbfRYOKFX9a1vfQu//vWv8eyzz/LPkslk3hs3HsyaNQtvvPEGAODxxx8f1mrzK1aswK9//WsAQFdXFx5//HFePv/0008HAHzjG9/AihUr+Ppvl1xyCR566CE+eyWbzeLtt98e999zsjNRz8ALL7wAv9/P/3/nnXcwc+bMMZ0TAJxO55iSnqcjEyXjb33rW7j//vvxzDPP8M/a29vxu9/9Dg6HAwsXLsTGjRsB9OdTvfLKK1i2bBn8fj8cDge8Xi+SyWROGMHpdCIWi/HlS6Yzsn2WALKNHgsn1KBqbm7Gs88+i5/97GeoqanBaaedhuXLl+OLX/wi5syZw/e79tprUVFRwV9bt27FU089hWuvvXbE33nvvffixhtvxMKFC7Ft2zZ4vd4hj/n5z3+ODz74AI2NjVi+fDluvvlmrqgAcM011+C+++7j7mQAOOecc3DXXXfhsssuQ3NzM+rr6/GnP/1pxNd7qjNRz8DOnTuxbNkyPiX3qaeewkMPPTTm673sssuwffv2KZHweLIwUTJubGzEX//6V/zsZz9DbW0tGhsbsWbNGhQUFADoT0p+5JFH0NzcjCuuuAK/+c1vMGPGDKxcuRJz587F3Llzcc455/AEV6A/2fbqq69GU1PTtE9Kl+2zBJBt9FiQS89IJBKJRCKRjJGpGYiUSCQSiUQiOYmQBpVEIpFIJBLJGJEGlUQikUgkEskYmRSDarA1fcSqqMOlpaUFLS0tqKurg06n4/8Ptv6P5MQy3jIH+tf6mjt3LpqbmzFr1iysXr0ar7322jhfuWS4SBlPLU62dva2227D1772NdVtTz311KDL1WzatAmvv/76oOfv7OxEfX39gM+n0tIlk4nU37FzQiulE+KaPhqNBqFQiC8FMRqoSF9ra2veqsfpdBp6/aT83En97qnCeMuceOSRR7iiP/7441i1ahWef/75nFk/QP80aQBTtn7JqYCU8dRiMtrZieKSSy7BJZdcorotnU5j06ZNaGlpwdKlS/Oe48knn1Q9x0svvYRAIICVK1eO2/WejEj9HTuTcuVDrekzXlRXV+Pb3/42TjvtNKxbtw7hcBjr169HQ0MDGhoa8P3vf5/vq1w9+4orrsADDzwAAPjNb36Duro6tLS0oLGxkddN+fDDD/GJT3wCS5YsQVNTE37xi1/w4zUaDW699VYsWbIE//7v/z7uv+1k40TIfM2aNbj++utx9913A+gf8V5++eW46KKL0NDQgLa2Njz//PM4++yzsWjRIpx22mnYsmULgH5ZnnXWWWhubkZjYyNuueUWAMBf/vIXvjZcQ0MDnnzyyXG95lMJKeOpxYlqZ0dKPjkAQFtbGy6++GLU1dXh/PPPR29vL4D+queXXnopgH4DqL6+Hp///OfR0tKCP/zhD3jqqafw4x//GC0tLXkrdW/atAmXXXZZzmfbt29XXQvuwQcfRFNTE1/78ejRo/w6zj//fFxyySWoq6vDsmXLhlx78GRB6u84wCaBF198kXk8HrZw4UJ2ww03sL/85S9825YtW1hzc7PqcR//+MfZW2+9lfe8Bw4cYC6Xi/9fVVXFPv/5z7NsNssYY+xb3/oWu/LKK1kmk2HhcJi1tLSwP/3pT4wxxs4991z2xBNP8GMvv/xytnHjRsYYY06nkx07dowxxlgymWShUIil02m2aNEi9sEHHzDGGItEIqyxsZG9+eabjDHGALDvf//7I7ovpzITIfOqqiq2bdu2nM8ef/xxNn/+fMYYY7feeisrLS1l7e3tjDHG9u/fz5YuXcr6+voYY4x9+OGHrKSkhMXjcfbVr36V/ed//ic/T09PD2OMsaamJvbaa68xxhjLZDLM7/eP+LdPF6SMpxYnqp0dKfnkcOutt7KqqirW3d3NGGNs7dq1fL+NGzey1atX82vXaDTspZde4udYt24du/fee/N+ZzAYZLW1tbwvELn11lvZjTfeyP/fuXMnKy4uZkeOHGGMMXbHHXewlStX8uswGo1s9+7djDHG7rzzTnbhhReO8A5MTaT+jp1JiUPRmj7/+Mc/8Nprr+G6667DpZdeil/+8peDHidWbh0un/vc57jFvXnzZtxzzz3QarWw2Wy4+uqr8be//W3IHIALLrgAn/3sZ3HxxRfj4x//OObMmYPdu3dj165d+Jd/+Re+XygUwu7du7FkyRIA/csgSPo5UTJnirJqq1atQnFxMQDgueeew759+7Bs2TK+XavV4tChQ1i2bBm++c1vIhwO49xzz8WKFSsA9MueFvX82Mc+Nqo8gumClPHU4kS2syMhnxwAYOXKlby45xlnnIGdO3eqnqO2thbnnnvusL/zr3/9K1auXJmzTE0+tmzZgpUrV6K8vBwA8KUvfQm33347XyLnzDPPxPz58wEAX/jCF3DLLbcgk8lAp9MN+3qmIlJ/x86kBSsHW9NnPBlsjSZRufR6fd41pR577DH86Ec/QiqVwqpVq/CnP/0JjDF4PJ6ctaEOHDiAdevWDeu7pyMnQuZvvfUWGhoa+P+iDBhjuPDCC3NkdvToUcyePRuXX345Xn31VcydOxe/+MUv+CroP/nJT7Bx40ZYrVasW7cOd91117hf86mElPHU4kS1syK7d+/mCevi4rdEPjkAw1/PbaRt6xNPPMFDhiNlOEbYqYLU37ExKQbVRK3pMxQrVqzAb3/7WzDGEIlE8OCDD+JjH/sYgNw1pQ4cOIBXXnkFQH/C4/79+7F48WJ84xvfwBVXXIE333wTc+fOhdPp5GuHAf3rh1HMX5LLiZD5k08+iV/96le46aabVLdfdNFF2Lx5M9577z3+GS0C+uGHH6K4uBhXX3017rrrLj5jaM+ePaivr8eXv/xlfPGLXxxyJtF0Rsp4ajFZ7WxdXR3vDNW8G/nkMBYGW88tmUxi69atOO+884Z17PLly/Hcc8/h2LFjAIANGzbgggsu4B6orVu3Ys+ePQD682uXL19+0nunAKm/48GkhPx27tyJm266CYwxaLValJaW5qzps3v3blRUVPD/zzjjDDz66KNYtWoVbr/99lGvufXd734XX/3qV9HY2AgA+NSnPoX/7//7/wD0Lwi5du1aNDY2or6+ns9AyGQyWL9+PXp7e6HX61FYWIiNGzdCr9fj6aefxte+9jXce++9yGQy8Pl8fJqpJJeJkvnatWthNpsRiURQV1eHZ599dsDsEWLWrFl4+OGHcd111yEajSKZTGLBggV4+OGH8ec//xkPPfQQjEYjstksNmzYAAD4j//4D+zduxdGoxFWqxW/+tWvxvGunFpIGU8tJqudHYp8chgLn/3sZ/G5z30OmzZtwg033JCzntyLL76Is88+GwaDQfXYyy67DA8++CBaWlqwZs0afO9738OPf/xjPuuvsrKSL8YM9If8vv3tb2Pfvn3wer34/e9/P+brnwpI/R07ci0/iUQikZyyXH/99VixYgWuuOKKMZ/rgQcewKZNm3JmhEskxPQujiSRSCSSU5rx8IBJJMNBeqgkEolEIpFIxsjJW5JUIpFIJBKJZIogDSqJRCKRSCSSMSINKolEIpFIJJIxIg0qiUQikUgkkjEiDSqJRCKRSCSSMTJuZRMmuzy/RqMZsEYQ0L+kTG1tLWpra3nhL7PZjIKCAixduhRVVVU4fPgwXnnlFbS1teHQoUN4//33EQ6HodVqeQXcTCaDbDY7Idd+sky0nGgZK88/2H3R6XS44IILcMUVV8DtdiMYDCIYDCKbzSKTySCTyUCj0UCn00Gr1SIYDOLw4cOIRCI5Ms73/eMtk5NBxpOlwyaTCR6PByaTCTNnzsSZZ54Jj8eDdDqNZDKJeDyOt956C2+//TYAoLy8HIWFhSgoKEBTUxMqKytx+PBhvPbaa2hra0MgEMCxY8eQTCZP2G841eU7Ut2w2WyYO3cuSktLYTAYYLFYYDQa4ff7cfDgQcRiMd6e6nQ6OBwOuFwu6HQ6GI1G6PV6JBIJ9PX1IRqNIp1OI5VKIZPJwGq1wuFwQKfToa+vD36/H6lUCqFQaIBOjxenunxHitlsxowZM+Dz+aDX62G1WmEwGKDX62E2m6HVatHb24vOzk4kEgl0dXWhq6sLGo0Gbreby3vevHkoKSmB0WiE0+mEwWBAPB5HKBRCMpnEjh078Oabb+YsBTcRjJd8p6WHim7eyaAkkuGj0WgGNCr0v0ajgVarnXTDXzI81OQovkZ6vGRqoNbmjmc7LOV+YhitHg52XL7n4GSS6SlR2FPsNEkoer0eBoMBBoMBRqOR7xOLxRCPx6HVatHV1QWr1Yru7m4Eg0GEQiHE4/EcT5Q0uk4cjLEhlcfn82HWrFlwOBxYtGgRqqurYbfbEYlEEIlEwBjjLzKitFotYrEYiouLEY/HYbVacfToUWSzWe4FGe73S0aPTqeD1+tFQUEBdDodzGYzDAYDzGYzfD4fLBYLSkpKUF1dDYfDgWg0ilAoBLPZjLKyMsyZMwcA4PV64Xa74Xa7UVJSgsLCQmg0GkSjUVRVVSEQCKCjowOJRALRaBThcBjpdBqBQAB9fX1Sp0eBeM/yeau0Wi2cTifsdjtcLhfq6+tRU1ODUCiEw4cPo6enB5FIBIlEAul0OqedJQ9UOp1GNBrlOpzNZmE2m3l7rtfr+b7ZbBbFxcWYNWsWX3P14MGDOeeSjB0ygkwmE+bOnYuamhqut0ajkcsslUpBr9fzNtfpdMJkMiGbzaK2tjbnnIwx7pUCgEQigXg8DsYYLBYLnE4ntFotGhsb4fF4EI1GcejQIRw7doy32VNRvqeUQSUqt8lkgsPh4GE+g8EAxhhCoRBisRhisRh8Ph/S6TQ6OzvR2dkJv9+PcDiMTCbDzye9WSeWoe5zdXU11q5di6qqKpSXl2PmzJkwGo1IJBLcMCKFFj0ajDHeiBcUFOCDDz5ANpvlnS017lLOE4fBYMCsWbMwf/58WCwW+Hw+OBwOWCwWFBcXw2azwWKx8NCP3+/nIQONRgOfz8cbXGqMa2trUVpaivLyctTW1vLQT3d3NxKJBNra2nDkyBGEw2Hs2rULoVCI67dkbIi6xRiDXq9HWVkZqqqqUFhYiBUrVqChoQF79+7Fnj17sHfvXm4kiQYTDXj0ej0YYzzMZzQaUVJSAqfTCYfDgbKyMlitVnR0dOCjjz5CMpnE7NmzcdZZZ4Exhr/97W+IRqOIxWLo6+vjHe5EhvKnA5T64nK58MlPfhKf+tSnkM1meXjd7/fjgw8+QE9PD99fq9WisLAQbrcbJpMJtbW1qK6uRjabxdGjR9HV1YVEIoGenh5Eo1FEIhG0t7cjGo1i5syZmDlzJpxOJ5qbm/ng6umnn+YyDgQC0qCaaEQPlUajgV6v5xYzkUqlEI/HYTKZEA6HEQ6HEY1GuYWcTqdzlE4q4IlHGd4RPZAulwsVFRWoqqqCz+eD0+mEXq+HyWTiBpVer4dOp1M9D2MMPp8PdrsdFosF6XQa8Xic58hJA3pioHw2u92OwsJCbkQ5nU5YrVaUlJTAZrNxWWq1WiQSCZhMJgCAw+HgukmeCrvdDqvVCovFApPJBIvFgmw2C7vdDpPJhEQiAcYY4vE4H1hptdocOUvGD41GA4vFArfbjYKCAvh8PhQWFqK9vR2MMUSjUd45K40ckkcmk+EeCGq/zWYzLBYLbDYbbDYbAoEAstksstksrFYriouLAQAul4t7TMQ2XzI2tFot90gVFxdj9uzZ3JjR6XTIZDJ84WlxIGswGHg7W1xcjOrq6px2NhKJIBQK8Rw58kinUikYjUbYbDb4fD6UlJQgEonA6/XCbDYjnU7z3OapxilhUFGoRmwkM5kMEokED+vQ9lQqxRU7EAjAZDKhu7sbvb29CAQCiEQiE5Z8LhkcrVYLl8sFh8MBq9WKyspKeL1eGAwG2Gw2GAwG1NbWoqqqCgUFBbzTTKfTPBEdAPdGARjQeAP9Sc2f/OQn0dvbm5M4eeTIEbS1tXEvx0QnQk4XbDYb7HY7HA4HZs6cifr6eh6OpyTkbDbLwzikz8lkkuui3W6H2WzOCctarVbeUYteDzK6tFotysvL4Xa7EQ6HEYlEEAgEEIvFuK5LRo6yvRXTLCorK9HS0gKHw8HTKsLhMGw2G4qKinjHrNPpkEql+CDI5/PB6/VCq9XyTtdut2PmzJnw+Xzw+/348MMPuUekvb0d6XSat906nQ56vR5FRUV8kEwJ6mr9g2R46HQ6VFVVYe7cufD5fJgxYwYYY8hkMojH4wiHwwgGg+ju7kZ7ezucTid8Ph+MRiNSqRTa2tr4ACiZTCKTyaC7uxuBQICH5ClCoNVquRFNx6RSKQQCAT4oKi0t5VGmUCg02bdnAKeEQaVGOp1GLBZDOp3mBhXQH6slt39XVxey2Sx6enrQ1dWFQCDAZ5IAkJ6qE4xOp0NhYSHKy8vh8/mwbNky1NXV8VGozWbjDSd5GpLJ5ICGXZmIrtVqczrbqqoqfOYzn0E2m0V7ezuOHj2KYDCIV199FW+++Sai0ShvMCRjg3IpSktL4fF4UFdXh8WLFwMA/H4/IpEIdDodGGNIJpPckNJoNNxzyBiDy+WC1WqFRqPhBjQdRx2nGPo3Go0AgKKiIrhcLj767enpQTAYxP79+6VBNQbU2kODwYCamhqceeaZ0Gq1iEajaGtrQzAYhNPpRFlZGQ/p6vV63iFrNBqUlZWhrKyMh3JtNlvOLLCtW7fipZdewvbt25FMJhGLxaDVatHe3o7Ozk6YTCYYDAaUlpbyDn6o65UMjU6nw7x583DxxRfD4/HwXKhUKoVIJIK+vj709vaira0Nx44dQzabRWlpKex2O/r6+tDV1QUACIVCaGtrg0ajQSKR4IMnMrJEg4ryng0GA5LJJHp6ehCPx2E2m3mOZGdn52TelrycMgaVUmEoPk8jV9HNTw0vuZYpwU2ZKCk5MZCRZDab4XQ64fF44PV6UVhYCJ/PB5vNhsLCQthsNh4SUHokRJSGMMmU/hqNRlgsFt45JxIJGI1GeL1eeL1eGI1G9PT0QK/X82dIMnoMBgOsVit/mc1mZLNZbhgrcyBFuYoeK3Lzk9eRwjr55E+hCpK13W6H0+lENpvlIQrJ6NDpdDly0Gq1sNvtsNls3PAlg1ij0cBqtcLlcnGDymAwIBwOc92yWCw8N87hcMDhcPDQLX1PMpnkYVwqrWAwGPgzotfrYbFYkEwmeYcs9gGS0SHqr1ar5Qn/oreY2mWSg16v517BbDaLRCKBSCSS44HMZDJIJpPcU0nHk8zEEjiJRIIPotSiDlOFU8KgEg0lMVeGrGCypEmxy8rK+OiWYrhkNSs7aKmIE4tWq0VFRQWf2bVgwQLMnz8fdrsdM2bMgMfjgV6vRyaTyfEokFzUYunKGUn0PNDfTCbDR7hGoxFFRUVwu90455xzUFtbi56eHmzevBnvvfceEokEd09LRo5Go0FBQQFmzpwJt9sNo9GIQCAAoH+USwZVNpvlnTM1mOS1Io9xMpnkMqMEZtpfNL7I4KaGnMIKPp8PDQ0N6O7uxtGjR3H48OFJvDMnH3SvtVotfD4fKioqYLFY4HA4+Oy+mTNnAgBva41GI0wmE4xGIyKRCB/MaLVadHR04NChQ0in0zx5mQwhg8GASCSCrVu3IpFI4ODBgwCAwsJClJSUoLa2FjabDRUVFfD5fNBoNCgqKuI15ygclEgk0N3djVgsNmn37WSGPMDt7e2IxWLQ6XTcQ2wwGPjMaQrJ22w2PgOXBkyZTCbHMKbPafZnZ2cnb5eBfs81zdKl2mLJZBLt7e3o7e3lNaqmIqeEQSUijlqVBpVer4fL5YLP5+O5VJSYPlWnYZ7qUJ7LkiVL4PV6cfbZZ2PhwoXQ6XQ53kXyJIodLiknofRwiIg5FGK+lcFgQGFhIQCgoqICANDW1oauri50d3fzeL00qEaHVquF2+1GTU0Nn0YdDAZzjFylh0ocgaZSKf6KRqPQ6XQ8JAQcT3an0Sw9MxQqpPBQNpuFz+dDXV0d2tvb8c4778i8mhFCicZ6vR7FxcVobm6Gy+VCSUkJysvLYTKZ4Ha7+f7k0XC73aiqquIGM+ns/v37eWidJhaI+TPBYBBvvvkmWltbuWequLgY9fX1uOCCC+DxeHK8GYwxmM1mhMNh9PX1AQACgQDC4bA0qEYJOR3a29u5hymVSvG8VspZs9lsMJlMsFqtcLvd8Hg8OWUu6KXVanl4NhwO4+jRo9i7dy9MJhOcTicv/kqzALu7u9HZ2YlkMslL40QiEWlQnSiUtYTU8mtIsUU3pTjSlTO9ThxarRYWiwUFBQUoKCiAzWbjdcMon43kRC7f4RToVKu6LnbcZFDRcyAmRJrNZm5463Q6tLe3T8yPnyZQyMBiseQYwECunJShGeUsT/JiqdVEEkOE4rEAuHGl1WphNpv5aFkyNGI+IpW6MJvNPDfN4XDAZrPxmkTiLEp60SBXLGcCgM8CE2sGit5J4Hh43mQy8VCx2+3mn1G4iL6HzkW1sGjyESXBU36k2qBLog61lxSio1qNFouF7yOGftWgY0UvtGho0WxB2o8mjpEXW1mNnXIkpxqnlEE1lIcCyJ2WS/UvUqkULx5H2+ghkl6riYGUz2g0ory8HIsWLeK5UzS7izxD5GnIZrN8dDNYh6hmbIn1cqh0hhiTJ8OO8jgaGxthsVhw8OBBdHV18RorkpGh0WjgcDhQWlrKE8uVRhXN8CMjlwweyomh2T40+FEOesiQon3IKKbngApF6vV6OJ1OHnqSDA15pXQ6HWbOnImLLroIZWVlvEyFTqeD1WrlpS7S6TQPzYu5bBTm0el0MBgMvFBkbW0tstks4vF4jteBZnU1Nzejrq4uJ6RLuVWpVAqJRIJ7ICkvz2az8fpkyWQS9fX1iMfjOHr0KLZt28aXqhEntEjyQ31hMplEX18fMpkM1y8qS0IypoEwyYX610AggFAoxGdy22w2XvOR2nJKuenp6cGHH34Iq9XKZw3q9Xp4PB643W4+S/DIkSNTTn6nlEEFqHuVqGGl2V6ZTCZH6IwxHr8npaZRjGRioFCNwWCA1+vFnDlz4Ha7eaI4zdKk0hcUvh2qvsxgnitlkiQlzIqjK+o8ampquMfspZdeGudfP32gXJrCwkI4nc4czxFBpU2o0jJB4QHyIooeKCWUO5VKpXgpBqplRUY51TNS85RJ1BHDfGVlZTj33HMxb948hMNh+P3+nAEnyUAckJJnmIwokg15vMrKygAAfX19CAQCvONOJpMwm80oLy+Hw+Hg30G6GwqFuLzF8hrkZbbZbANm9+7atQsHDx5ENBoFcLwDlwwO6Wc6nUY4HOYOCIompFIpAOAGlTjZiwxlKrYrDmwpt5HadBowBYNBHDlyBGazGbNmzeKFXWtqajBjxgy0tbXhn//852TekrxM+VbFarXyfAkSEnkZlBWPKadG7KzJchYLdoqLropKRYYVlb2nWSWUEC2nWY8fDocDJSUlsNvtKC4u5oYMNcRi2ABATthgsMrHypmcavuIuVei7MnQzmazvLCcmCMSj8cRDAZ5AyIZHlSsk4ouiuFWkisNcHQ6Hddx6ozJ0BU9ihQaok6bOlbK76A2gPYRO3MZ8hsaKo5rNpu5npaUlPAJImLYTDkTlnSP9BlATltNAyMqqguATwoSZ/GSPpJOilPtqV2m7eKzQt+h1HsKVTLG+BJEZCjI6vm5iN5Eh8PBi/GKsiZPPxlN4nI/4vHUr9JkBFpyymg0wmg08giBWBRUHODS7FGamTuVjeApbVDpdDpUVlZi/vz50Gg0aGtrQ3d3N69NoTRwjEYjj8k7HA643W5otVpefExcXoSSIcWZfRqNBrW1tViyZAmcTifi8Tii0Sji8Th27dqFvXv3SsUbBzQaDebMmYNPfOITKCoqQkNDA58BFovF+MwucYRLLmaTyZSTNyNOq1d+R76wr06n440DdeTijDJKfPZ4PACAc889F2VlZTh06BDefPNN9Pb2noC7dGpAsisoKIDdbuezdKhhpdyJYDCIcDjMwwdkfJF3RBwgWSwW3lBTrblkMsmXEaJwoclk4jqu0WhgNBpRUFCAUCgkyyYMAlW0t1qtKCoqwnnnnYfa2lq4XC6YTCb09fUhHo8PMGoA5ORSUQdJ3maqgE2D3FAoBL/fj2w2y5eMUeY6UuXseDwOv9+PRCLBO2vgeKcOgKcD0OeUc0eGNU16icVi2L9/P3bs2MEnJYVCoSndUZ9oKOncarVi1qxZWLp0KYxGI44cOYKOjg4AQDAYRDweR2dnJ7q7u+H3++HxeHLKlTidTh6Gp3IaVPEeAC+jIsqJvIx6vR5utxuVlZX8WkQDeioypQ0qjUbDZ4hQsiMVFAsGgwP2pxABFYcrLCzknibKmSErmkZAypwMq9WKmpoa+Hw+HgOm2QhTtfbFyYjX60VzczPKy8tRXFzMawUBGDACpgZUWYNEDAHlm4ygto0UngxrMr7EOmQmkwl2ux3xeBw1NTV8Jtl777034ffmVINymsgYpkRTCv1QDg0lolJOjFh7CsgNExsMBt640jqOZDxRIV86lmRMRhzlS0rUoYGL1WqF1+vF3Llz0dDQwLeLHglqk8kQJu+gWGJB9DbR/yTzWCzG6wzRTFpRz2nB3HA4zMsf0LVR0jKlaZAhDYB7nchjRYMoWk8ukUjgwIED/L2c8ZkL6azZbIbX60VlZSWMRiNCoRC6urrAGON6F4lE+Pq4NHghPTWbzTmTQigFwGw2IxKJ5BjBoneKzmE2m+F2u7kxRn3DVK0NOKVbFRqB0tICyWQSBoOB51Uo8Xq9aGlp4ZV4KUwQDofR29vLSyMoDSma7ms0Gvn6Yna7PadiqzijQTJ2/H4/9u7dy6vTOxwOXlvIaDTmKA41zpTYqjSCByPfjE06DzX6jLEcbwjVqgqFQujs7MSxY8fQ09Mjw33DhGbiUBK6GLoh7wXdexq90tpsVGdKmW8lNrT0l16ko9Q+iKU1CAox0TpxDoeDd8jS84yctq6yshJlZWUoLi6G3W7n+4iDHJp1R/eO3lNejNhGizM26SXqnhjuIV0XB09KI432JZ2l7WKqgNoAi/ZzuVyorKxEQUEBdDpdziLp0rA6vnSbTqfjy3tRblpRUVHOfSbnhtrEEfF5IWNXNF7VjCOxSCwtQ2a1WvmzJT5DU01WU96g8vv92L9/P3f3k6tQbYQ5c+ZMrFu3DrW1tWhvb8ehQ4d4Eh2VrxcLeBJOpxONjY3w+Xyorq7miZDkAQmFQjx8KBk7jDEcOnQIzz77LFwuF5YvX85DQpQzJ+ZRUe4LNZxAbo6EMkwg/gWQcwyAHOWmkTPQX62Z1ouLx+O8/soHH3yA999/H729vbKezTCxWCzweDw8cZWqYlNIjl40k8/r9fJwvdlsHqBrZGyLs84AcC8XY4wPehwOh+oCvLFYjC93Q+GseDyOnp6eaS9X6sSoKOP/3957x0d6VXfj3+m9q660Rdu75IptbOMaG4cSMMQkFIMhgYQSfgFeQggtIfkklDeBwItJAJtgCCWAcQjBYDB5AReKvX293vVKK+1q1ab3orm/P/SeqzNXz4yk1cxK2r3fz0cfjeaZeWb0nOfe+73nfM851113ncx0jUQiAGalEpQxSde7UqlISYXqZeJkh2fU8r+BWaJDoVkKDZJnmOzOK+wTqaPvQfWm6D7hhFolbTTH53I5PPnkk5icnJRkW2d2Qwr9KWszn8/DarWivb0doVBIZmFTtjyAGrmGqq+j6BGAGi8lfQaPNthsNllsuaurS5bqyOVyyOVyNR0WVhqpWvGEqlgsIpVKyd0u7Xj57oYuqN/vx6ZNm7B9+3bpUiRWTV2q1V0TMBPeCYfD6OjoQCgUqonrUkhCay6ai0wmg9OnT8u+TJlMRrp4eYsR1ZsB1BclcjJlRLLoMc/65DtpmuBpJ1QoFGRD3VgshmQyqSfbBYJsSUJU3trJyLVPXme+CHPQhMsnUnovrz0FQG6++HNEBihURfMCfVcNyBCN1+tFR0eHlFrw68PHFs2JfFzyUjPcK1Tvx8hDxVPwOdTxSnob2gRRqJg2YaqHks7Bw07FYhE+n0+GkPWmeQYUyuUlS6hsjdfrlVrTYrEoN0BcqgHUli8yWne5BpYXZyXdJf9xOByyjtVKlt6saEIFzMTrk8kkLBYLstmsDMNRk9VMJoORkRFkMhk4nU4kEgmMj48jn8/L1Flq6EjnomaqNOhCoRC2bt2KQCCAUCgkd8PcLbmSWPCFgHK5LAWnhw4dkj2+9u7di23btknbeDyemonXCAsdYPR+WpjpN5Ht0dFRxGIxWbMmFothfHwcJ0+eRDwel3oPjfnh9XqxZs0aWTVZXZQB1KTQU99EYDYjjIf3uCaK69144oLa2oJ2r3Q+mvDNZrP0RsfjcVlN+2IG6aaoCj3pzOgaGi2MRJysViu8Xq8kywTy/KphHU6KeNaY6lFSf6vfQz0H9zbz78nJGi+9QuTd6/UiFArJtkgrtQr3+QRdG5vNhnw+j7NnzyKTycgQXLlcxuTkJFKpFCYnJ2UYlZJ9yNPHPVT12oSpHiryWtHvUqkkx7bD4ZCkzu/3S/3eStnormhCRWLEfD5fs6tZs2YNXvSiF+H5z38+Tp8+jUceeQSDg4Pwer0YGxuTLmlyX/v9fmzdurUmI4Vcy+SV4C5m3huMG1ejeSABsdlsRjKZxG9+8xuEQiHcddddMn5OejbKyKSFUd35cixUV0XnItvn83kcP34cTzzxBBKJBA4dOoTh4WGUy2UZNuZ6EY36oGSS7du3IxKJyHR7NVxLmXhUL0odbyRw5iEjIUSNHotIEs8M4iEhYHYnTJMzhXxMJhPOnDmD4eFhTE1NLeclW3aQ1yYUCiESichQLc9+Jc8RbUaIeNjtdoTDYQgxU1uInifRMl8sufaNCA7XSvIwDveG8U0t118Bs4SNvKB0XvoMfu/QPcYF7IFAAN3d3XKDl8lkLvoNNHmYKavz2Wefhc/nQ2dnJyKRCAqFAp577jmMj48jkUjIFl7kvSLb804kFPLjOmberYRsTXakMkmU2UmeK+oXGA6H5bqgCdUCodY4AWYMQtWXS6WSJE1UPTeXy0mXLo/LkwFpciASBdTugPhOaDECaI2Fg3YmAGQF3nw+j2g0KmvEhEKhutdeFZ3Scwv5XP5+mmSnp6elAD0ej2N0dBSnT59uwn96cYJCMVR5npMpnn2lhvDoNard1YWWazBUr4Xq6eB6PFpgaWLmIWYN1BCVeuDXlof/SN9EGlWegWuEhcytRppIFUb3gvr6Rl5sIopEFjVmM6F5GQqe1EXEM5lMyvJFJMUBjOuAGc3XKtkm8JZjatsxXhaFMnhXClY8oaIJEJg1EtWtmZycRKVSwaZNmxCJRGSmHp9Agdo0fD7ISVOlTuj0uZpEnV8Ui0U89dRTKJVKCAQC2LlzpxSPrlu3TtY04ZWReWinEVRBLU0U1HwzmUzi0KFDOHr0aE1zVY1zQ7lcRj6fRy6Xq9GmRKNRnDlzRraViEQikmBxQsWLP/JQHy/sSI+np6fhcrlkZi7p4AAgm83KtkHhcBidnZ3IZrM4e/asHt8M1WoV8XgcJ0+eRCKRwKZNm9Dd3S0LofJWPUZV61X9E/ceArXhdloE6TjN1xQyNNpE19vwUpIRaX5UQbo6p3OCQCL0yclJnDlzRpbI0ffFTMi+t7cXXq8X27Ztw65du+B2u2XiULVaxejoKPbv3y89Ujx8B8yu3fQ3DwETyJa0ASNPdjwel7aZnJyUUQuS8QQCAXR0dCCVSiGRSEhh/HJjxRMq7q6ln+npaSSTSYyPj8NqtWLr1q2yGjqFA/hA5oupkWCO95fii7OqCdBoLQqFAn79619j//79CAaDuPrqq7Fp0yasX78e7e3t6OzslPVqeLVtPgE22g3TRM0JVTQaxYEDBxCNRrF//34cOnRIp9EvETSx5nI56TUmO01NTeH48eMIBAKyvpcaouNeLJVM0eRNAmRaUOn95HWmRZrq5pjNZmzduhXd3d3IZDI4fvy49j4zVKtVTE5OIhaLIRKJYOfOnVi/fj3cbjc6Oztl2jotnPyHZ+qRPdVacnweJs809z5wm1MIF6glYqqd6D6jRZxrn2je5vM3F7tTIdhcLoeJiQkMDw/XyAoudni9Xqxbtw6hUAjbt2/H3r17ayqlZzIZjI6O4qmnnpIhX9Kico8TjwARoVK90bR5oh6NJpNJFgAeHx/HxMSEzMKlJBfqYGGz2XDmzJlluELGWPGEygjUCiYej8veXLznF1A7oDhTNnILG7kmeUhppWcWXCgQQkjCZDabpWA4FArV1B9phIV4q1ThLFVLzuVysuaKxtJAhMputyOVSsmK2IlEAqlUCiaTCalUCqlUSi68vMYQUFu4FZibjce9EbSQW61WmcpNTVlTqZTU6sViMVkYmPSZehGdAS1u1CuPeutR2QQVRptTYHaT02isqpugxZJaTtKMPFqAcfspul9Il0n9QnnbFI3awp7kobTZbDI6QBmzVCaDMgL5+kvrLndMqOSaHhPZVcvj8JA919tRZrBRNuhyYsUTKj5QaFBks1n8+te/xsjICLq7u3HNNdegt7cXJpNJVtzm+imqL1StVmUrGWBuOi9Qmx1Chl5JBrsQYTTxFYtFDA8PI5fLoVqt1rQZIo9lPb1DPVJFA5xn/KRSKQwPD8sdkTrx0nfSXozFIRqN4tChQ3A4HBgcHMSvfvUrAMDY2Jh04edyORw8eBBtbW245JJL0NHRgWw2KydrKq5KY5iXVqAfqphN4UOPx4Onn34aP/zhD6XHZWJiAmazGc8++yx+/OMfo1wuY2RkBFNTU8hkMkgkEst7sVYY8vk8Dh48iGg0ijVr1sDpdMLn89Ulnjy7jsTMajiv0fjhiy//TVA1cuSZImLEi+2qpFw9Bx1PJpM4evQoUqkUxsbGdNKRArvdLrPe7Xa7JFKUJT8+Pi4L5AoxmzzW1tYGYLZJNfcw0g9tXLlHkArter1eqb10OByyPqHD4UClUpGaLZvNhkAggEKhsKJKGq14QmUkbszlcjh06BCOHDmCrVu3YvPmzWhvb4fNZoPb7a7p+8XFdTRRG0FdbOk5o1i8RvOhTqDlcllWJ6cCfPQ6Lj5uhHqiSE6UstksxsbGEIvFavQTXJulydTikUwmZQVlI6+T0+lEPB6XrU127tyJQCAAs9mMbDYrs7YoxEShPJ4lRsUlacGnFhVTU1P47//+b5w8ebImxESiWdr1GmmBNGY2M8eOHcOJEyewefNmXHLJJejr66s7DojUmEwm6WUgD9B8c2e9uZZvivhreGYfZYSpISZ1zuY2JkKeTqcxNDSEWCyGaDSqvZQMlMTl9/vh9/ulZ4oITTQaRSwWQ7lclnXgstkshBAyNEchW7W0BdlLLaJK/SODwaCshWaz2eD3+6WXrFKpSOJmtVrh9/uRTqdXVFLJiidUgLEuhgxUKBSQSqUQi8UQCAQQDAbhcrnkIKfdDE+z5gsluaZpwPF02mKxiFwuh2w2K9N/Nc4P5tO3nCvBVb1OlL2ykmqZXAjgtjMiLNQwN5VK1YRauXaKZw2pdYV42xo6RkJj2v3SrprXtyEPhybK9cHDLBQ+zWazcnNaz3tkJAJXE4r4Mf7Y6IdDJUoqEVPJF/9uRv8b3X/Uf05jLtTeiCaTCblcDul0Wm56KMzHxxlvG0S24Zm7fFOs1jWjzyFPld1ul+s2nZfWcl6WYaVgVRAqgpoJJMRMN/IDBw5gfHwcO3fuxJYtW9DR0YHx8XGMjIzI0AFN1B6PR4rrSNzMK3N7PB54vV6YzWZMTk7i+PHjiMfjmJqaWlGGu9BBu13eq4ue56g3Sdc7Jw1u0kyQaDkajSKXyxnq67Tdm49KpYJoNCrbOpH4VIjZnor0m7KAiPBS2QNa4Ek3dfbsWZhMJkxMTMjEFFWrM18qv8YMSPeSz+cxPDwsvQfr1q2D2+2uWczIKwVA6lhJE0flFNSwHSfFqv6Kt6Sh8Uf3g9H4VwkY6XYoQ5TrcmhjTKG+eDwuM0Y1ZmG32+VaCADpdBrT09MYGRnB4OCg7Brh9/tRKpWQSqUkGXI6nXC73TUbF8rOpvWW9Fk8K5ciBOFwGJs3b0YgEIDD4ZAOjY6ODrS3tyORSKBYLGJ8fBxTU1NSx7USsKoIlZo1QC7GU6dOyfCB0+lEKBTC1NSUZNJUZMxms6G7u1u2nOCptjxThWrTFItFw3CQRutBtjbSRNSbVOvZxyg7iO9SSRzNB6a2dWtBYQJq7ZNOp5HJZGp6+alhV74DBmo9VRQOKJfLSKVSc/p1ErRdFw7KnIvFYhgdHYUQAmvXrpXyCXoN91ypzxMR5p4lbluVUAHGmd1GzwGzmYX0mfy7k0eSv5c21+Rp0eVRjEGFOKkYJ3l8o9EoRkdHkc1mUalUpGaZ1mUi0RT25bZSi3zyFnLValWGCy0WiywgSqVXyENF1dEp/EjHVgpWFaHig4mMRMJVs9ksU7Lz+TzGx8clmeJdxGnC5mJG0mJQ/RTKSBofH8fZs2el4fRkvDygHQ5PkebHVPCwXqNjNMHSZKFbDC0f1CrcPDwANCbRvL6YyWSSEzp5R1bShLvaQI3laQHk3hxaRNXx1qgwqxquU1+n1pVrZH+j96pJRRz5fF62lorFYjrE3wBWq1U2qvf5fAgEAiiVSrIOFTBTYZ50qEbElFenp36LFKorl8uShBPxdTgc0nNFfXspm99kmmkRFwgEZFu57u5u6YFcKVhVhMqo5EGxWJTZPMSUQ6GQNArfERFxojR8s9mMQqEAp9Mpi4JOTEzg8OHDyGQy+NWvfoXHH39cptVrt/D5g+oupkbFPFbfiDDRY7X4IIEW2nw+j2QyiUQiYTjBaoLVHDQiuZQCTZMu9y6pXg2gdsHmHmZeo8br9cLn88nUeDU0pEO5C0M6ncb+/fvx7LPPor+/H7t27ZIdDCi7io9JVezPQ30A5tiS26GeJ5qEz6rInH7zzhcOh0PeF7xgrMlkwtTUFJ588klMTU3h7NmzMttbYy7cbjfa29vR3d2NtrY2dHR0oFQqYWpqCvF4HIVCAW63G7lcTq6/aj9M3mKIokJUlDubzSKdTss52mKxwO/3IxgMorOzE11dXQiFQhgZGcHRo0dlCJecID09PWhvb8dzzz2HY8eOrZhaVKuKUAFzJ2RKwwSA8fFxPPPMM/D5fGhvb8fatWvlzorCBOShogyianWmg7bb7YbD4UC1WpVZDGfPnsXo6OiKqcJ6sYLH4OvppLg3YyHHaDKm+8AoDq8X3PMDCtvYbDZJkCh5hBZeXuQTQM2CSpsjGud2u10KWjlJNhI7axs3BjXBBYCurq6aVHcuk+Akql7bEbKzmslHHop6YnROwFRCzD+HRNR0/6iFmfP5PM6cOYPR0VGk02ntoWoAKklCTYhDoRCKxSJ8Ph88Ho+8zk6nU8ppVJC9KSRM45GKb/PiraSLJM8U/UxPT0udW3t7OyKRCBwOBwKBADweD7LZrAxLrgSsOkLVCLxEQltbGzZv3iwz/iqVCmw2G4QQsmAdid2AmRgxDW6akFdSfYuLDdwzYRQqAOpn8TQ6rnH+YZTtRQkgTqcTgUAAwGzDbBqLlJigZuVSIUbVC0KEyuFwYO3atXA6nXJDZBQq1vfH4pDL5TA8PCyjANSahrcCAmrD6UYlDbgteZIRgBqdFIcaTlSPqd4wl8tVc4yq61PGIpXj0DDGxMQEnnjiCbS1tcmG2eVyGUePHpXlSGgMUpsYoLb5NQ+/8jmcy208Ho8kR0Sw8vm8rI4+NjaGsbExFAoFWK1WpNNpWR7J6XRiZGRkRdWRW7WEql7qLnmbNmzYgGuvvRY+nw+JREKSqGKxiNOnT9cM+HK5DIfDITNXiBlTGXyN5QHtOHlNMaC26rEWHq98cPEx2YwSRNra2rBmzRoIIWSmEC3O3PZ0L1A7GfIa031BWknaWV9++eVIpVL47W9/i7Nnz9Z0tNc4N8TjcTz11FMYGRnB3r17sWHDBgSDwTneHvJWUfhPFaIDxqU0+JxspJ/jxSEJ9DeFjlSyXiwWEY1GZfJJLBZDLBarW11dY8YOx44dw+TkJGw2myy0CUDWgaK6UU6nE5lMRoZPecVzfj6g1o5ExgKBALq7u2scGKlUCidOnIDD4cDRo0fxzDPPIJvN4rnnnpON1snTSUkTKwWrllAZgU+8Ho8HkUgEfr8fAGTIqFAoyB0w/VCogXZHFH4go2mcfxh5qPgxI1K12MVS2/b8Qk1td7lc8Pl8UuTKEw9okeRhJdLLUO0wAHPqUBERI00kNVPVWDpKpRLi8TgASL0Mz8JVx6IRgaXX8NfyRAQOo79VobvR68izSSEm2kiXSiUpiNZoDNINAzMlFIjIEBGlhA/y/gG14Vle700F9046nU54PB4pzaGMXYoepVIpma2fTqfP6zU4F6xaQqUOSgBwOp3o7OxER0eHzBAQQiCXy9XUTVFDSCR6JHEcTfB0E2ksD/jgVCfsxcDIhnROmngpFVzvWs8PKCy/bt06We6EJ48IIWrSqrmHkrSOwOw9wjdBdru9ZgxrNAeFQkFmPUciETzzzDMIh8NyweWNkbnHiINXVadyCkaE1yh0r2qvgNlxTKJ0j8cDk8kkw3uxWAwHDx6UGdtaD7t4cJvRuHM6nejq6kJ3dzfK5TJ6e3tRLBaxa9cudHZ2IhgMolAoyNZhtNmpVqvw+XxwOBwIBoOwWq3o6+uT0SVeCxKAYe2xlYxVS6iAuTsTt9uNdevWYc2aNfD5fEilUnJgURFP2vlywRztgqnomNfrleL11WTMCw1GdajOlVRxcO8XaW4o5EueDyPCrnHuUK8jhfy2bt0qU7HJHvR60kSphSCpThwHESnu+aICgtpD1Rxks1kMDQ3Jax2JRBCJRLB+/Xr09fVJe/E+fqpujbf/IjE6h5qJyYXlalkEYLYFDXk7qE7R+Pg4UqkUTp8+jV/84hc4efIkyuWyJlTnAHWjKYSAz+fD2rVrsXPnzprne3p6sHbtWvj9fsRiMVknipc2CQaD8Hg8qFar2Lhxo/QiUmYmRZOKxeKq0zGvakKlgkiQ2+2es1PiWUEEI5EzES0eStA4/yDCw1Nvm0lw+PkpkUFn/Zw/kHeQyCwRKQAyXKAWgOQ6LLXekBoSJtvqDVHzQDWEAMiCrGazGR0dHYYJJPUyKnnxT8C4RpXqoVJ1OOpr1M8pFotIp9NIp9NIpVJIJpNz5n+NhYN7BGnOdLvdUlJDdvD5fLIyPe9wwUPAVCYFmPEgUxY3ZZDybG7yOjcKIa4kXFCEyuFwIBwOo62tDT6fb07tE5qkedhPJU5kbJPJtOrcjRcSyFMYDodlw0wSJfPQLdBYS0FQBzR5OEKhENauXQu3243x8XGZ/aNO7hrnDr6Q8YmZ6ycAyLpBqhCdj1OafHmWH2mraANFRVqNQk4azcHk5CSeeuopBAIB+P1+XHLJJbIcDdmGb4KM5BY8A1B9Xg3p8VIN5OlSM0Hz+bzskPHb3/4WJ0+eRDKZlCJ0jcVBnf8sFgva29vlGrt582Zs2rRJVp6fnp6WIVeetcnPRYkmqjYSgKyu7vV6ZXb+sWPH0N7eDpvNhlwuJz2M/N5aSWP8giJUNpsNoVAI7e3tcgLmA1X1OKnaDHqO16zSaD3UsAAwYwev14tIJIJAICCzQLigtN4OtdHn0PlpUIdCIdmfjIrUqcLXlTRgVyPqiZPtdjtcLleN4JU2NJxQAZA9+6gYK5EpErHzsa4SKm2/5oMKPLpcLuzcuRM2mw0ul0s2pqbNKzAb6lNriwG1UQIizI0y8Iwq6dPiTPKOqakp7N+/H7/97W9rNmAaC4fqYaSNaEdHB/r6+tDe3i4JVbFYRCwWQz6fh9frlWOZnBJ8neVaRxrvvJyGxWJBOBxGd3c3zGYz1q9fj46ODnlvqEV662n1lgsXPGPgEyoNVnquXosEIlXaO7V8IJGiy+WSYsWFuPsbQbUzLeo+nw+lUkmXyTiPMArLGYV25rNzvcywRqEnjaWDSA/16uNz6UIXNzVMa6Rb5MSKEzT+Ou6poO9FesiVstBeCODif5JJ0CaHJBMU6uO6ZNrwECnimir+m4Trq7lV1AVFqKrVqswsoMWR3MX0Qwajwcd1VpVKBU6nEw6HQ1Z21ZPx8sBqtcrd0Jo1a6RomcfSl2Iben9nZyf6+/sRjUYxMTGBY8eOyeP8t0ZzQWSWEj9oEeQLJR+fgHF6Pb8H+E6Xxr/2MjcHKtHhurZyuSxT2qmGGNmJSBAP8aihegA14nNVosFDg/w418cCeqw2E0ZRA5PJJOs8ut1uqZUSQsDj8cjsWr/fD6vVKlt6UY0qEqUTyRJipg8gF6PzddhisSCZTCKbzSKfz8+JThg9Xm5cULMNTcrFYrHG3cgLwql9p7jbkB5TWrb2Ui0fKBtkzZo1aGtrqyHIhKWSKpNppuHm5s2bEQqF8Nvf/naO2FmjNeCidCFme/JxAsR3qxaLpWFZCx7W59XVtTB96eBEhi+uRKgqlQpyuRwsFgtKpZJhCMYozMcfc6+TOsb5+zm51uHc1sLo2lKhT9K00nij0D2RLRrHmUxG9mAlTxY5LMrlMpLJJPL5vCRStO6GQiFYLBZZNJSy9Ot5pFcKLihCBdS2JuCTLA1AqjtEE7qaRUY1M4zSfjXOH0iUHgwG4ff7a1pSnKuHii8I9Ju6qufzee3NaDLmE/VTyE8NA1C2JbczaWXonOrm6FwSCbQ+buFYyLVqdJxrp4xCfTQ/q+8xeh/3WqlYSXqaCxG8/2kymcTExERNIc5QKCQ9zzSO1axd3vWAj/1CoSB781KrGVqLjcjzSrTzBbWCcOMAs1WUeQjBKD2eC9PL5TJSqRRKpRJyudyKNNqFCPU6OxwObNiwAQMDA3C5XHC5XHMG10ImeHXypr8pru92u9Hd3Q2HwwGfz6e9GecJpMVwu901FdJpcqZsP/Iyk+iZ7M/DCHyy5h7pxWp6NM4dRmHYemE7dYzRvM3PYyQ85mPfiOBpO7cWQsyUo8hkMqhWq9i/fz9OnTqFXC6HsbExZLNZbN68Gddffz0ikQgymYysWUa2o+KrPp8P+XwesVhM9u+knoAmkwmBQAA2m022NVotRPmCI1SkjQJqqyjTMWqQTINY3enwNgUUhtA4/7BarQiHw+jt7ZV2PBevoTrRqwkKvEp6o0Ku2ptx7qh37SiFml4DzBYRpA0OeQ1pYiahMU+bB2Y1OLwIrLbX+YXR9SZbqBoqNRFB9TDSazlJBlDjlayXcKDt3jpQ0U0iuJOTk0in0xgaGkIqlcL09DR27twJu90upTeUyUcODbvdDofDIUk01Z4irZTH40E6nYbdbpcZo5pQLQNIQ1UoFOD1emsKNlJ9lMnJSSQSCVnpl1pUcM8F7Yj45KxxfkA2c7lcNaUv+GAyCh2ofxsNPiOhuVE4SaN5aEREaUzSDpSD9/Ij23A9DU+x514QTXxbg8VeUyK9JD7mDY95th79ULVs/lmcIFMWGPc48vuB93k0up80lg6TyQSXy4VAICBbx7hcLkSjUYyNjSGVSskIj8vlQjablXYlrRXZiiJA0WgU4+Pj0m4m00zF+3A4DKfTiWAwCK/XKzfTVCeQvs9KG+sXFKGiZoqJREKWt3c6nXJXk0qlMDg4iH379qGtrQ3XX3891q5dC2B2cBaLRVk8bLWVvV9tUD0JVHvK5/MhEonA4/FIDwWfJCmzhN670EFlFJag1N9GGiojUa5GY9TzHhCEEHJS5eEcOkbv52E/7r2iMALVnDKZTDWLN30HjaWjXoitHui1tLmlhZDXoSKSZBTCN/ocngVGoWIi2vSbapTRZ+qx2lxYLBZEIhFs2LABXq9X9uEcHBzE8PAwpqamkMvlMDIyIhsrA7NEjDoi0Do9NTWFEydO4LnnnoPT6UQoFJIkasuWLfD5fDh58iTWrFkDp9OJ6enpOQ2SV9qcfEERKp7lR9kCPMRnsViQTqcxOjoqd1BUpRmYXZxLpZLO8DuP4Nk95J2i2lPc3a/qKpaqj6GJXe0X2Og7aiwdPExHJEglU/RbFaIT1AKP6g8v9KmxPCASRGEi3gyZCJBR0U0jcsUJlZptyN9Hr1vNtYxWKkym2bp9fr8fbW1t6OzsRCqVkoleRHpIeE79NQHUhG9JN5VIJDA1NQW/3w+fzwdgRj8bCARkFX6PxyM3vCt9Hl61hMpoUc3lcjhz5gyKxSJCodCcwVqtVpFIJDA6OgpgptpvNBqFw+GQ3hBV1KrROhh5qHw+H9rb2xGJRGC32+UkWiwWpZCcBhYPH9SrT6SGCumeofg+1UWhHbRGc6FOgOQRpGro5FHiJRK4Noo8VHwB5p4Nfj+oYSM9hpuHeqSH61Z5coDJZKppKUTjDEDNBskoNMftyMcxzefksSTQPKBt3lpQOI7kNLFYDNlsFrFYDOFwGBs3bkQgEIDFYpEJROVyWY5Ruh9IB5nL5WREicTobrcbvb29SCaTsFgsqFQqstSC2hB9JWLVEiq18qoQAslkEkePHpWLcrFYlL2FaEIeHx/HsWPHkMlkMDw8jM7OTvj9fukVIXexjsO3Fqr3gDyI5FLu6uqSbt5yuSwLwFEDbNoBcQ9GI0LEvR20O+JezEwmU7eysg75nRvU60aLrNvthsfjkcki5KniVZPpPU6nE3a7HeVyWSaKkN4CgNRY8To2tMA2qlulsXRwMkVEhuxBYXlqfkvHuahZbftF2lVKCjLaNNHn8rAuz+TmWd4azQURnlAohGq1itHRUdl0uru7G11dXXK+pg0w2ZnK09C9YjabkUwmMTk5ibNnz8JutyMWi8Fut6O9vR2Tk5MAZsiXy+WShURXOlYtoTJCpVKRsVvSZqjCRdJtUN+nfD4Pp9MJoNbrpXc6ywNKq3W5XDXZmTRQiRjzRXq+sI5RqJAWW3Xx1Vl+rQORWmpPofbW5IszgS+69TzHqqfLqKaRxvkBJ0BEdIlo0XHyRlKoHUCNjdV2JWoSitqAmR/TaB3IttRuiEoo2Gw26bUqFAoyvEtzNhXlVb2ZdJxsSUViSQdHxJsnpqx0rHpCxSfOYrGIeDyOfD4vK7AWCgUphuO6qHK5jKmpKQwPD6NSqWDdunXyuCqS1Wg+aGCp2VterxdtbW0yA5NEjFRxlyprUxiI3Mjz6Z/4xMt/6LuQO9vn88FqtaJYLNa0OtBYHIx0MCRODQaDCAQCcLvdMn2awjl8ARVC1HiMyTOljkteJoU+ZzVMvhcSeKiPL5yU4UXjlW+IuNdYDc1TggjXOdrtdlgsFnlPcOJNr6GQskbzQfribDYLYGbz6/f7a8LuVP28UChIG1MRTyphRESakgu8Xi/sdju8Xq9cq6empjA9PY1cLiebqNM9tJKxau88I0FysVjE1NQUrFYrYrEYcrkcisXinIrowIwrcXx8XPaIo8aOPAVXk6rWQrWh2WyG3+9HV1cXwuGw1LUJIZBOpxGLxWSoiPpIAbM7YSMYCVh5mIA/53Q6EQgE5ASgCdXSoBIqs9kMj8eDcDiMYDAIn88nC7ZSIgm9juxWKBTkbpdvdNQwEPeMqIRZozWg8UvXXq0BRnMoJZtQXSEaV7TA0ut5GFCtW0VeEJqjqT4RtzEvBrsa9DarDUSoqM0QkR/uOSanRjqdhsPhkG1myCNJpJfeT1ndtNGicjljY2PIZDLIZDKy6roRUV5p6/OqJVRArTCS/ubFwrguA6idaMn4+Xy+ZjKn82icf9AukxpU85ZAwOxCa6S/OtfP4+fl4Si9GC8d6oIHQE6oJCw2yq5Ubcuz+fhrVMKmvlejteBjsVFBVX7caAyrmx6j8W10TgJtgvn9xOd5jeaA1tdSqSSz57l+lTY9vAgreSjVDS+3Pc271BGDRO3kiSSCbSQRWGlYtYTKaDLlKBaLyGazyGQykvVSpoHT6YTZbEY8HofFYkEoFJL6HPX8GucPZrMZwWAQXV1dcrdCYb3Ozk7pGqZQoN1ul4tto6KOfNDTY/J80c65XC7D7XY33A1pLA5GRIk0cryBKtdTGJEsdYHlujdeEJDrsvT4bS3IBkSQ7Xa7HEc8fKsmjnBNJJ1HJUy0eFJ/N940lyQAPFwIzIYJ6Xuoi6/G0kEe41QqVTM/Ul2pYrGIQqEgvYnlchn5fB6lUknWi+N6R0K1WoXb7cb69esRDodleSNKFKLEodVg01W7asxHqCj+ms1mEQqFagYctRhJJBIol8vo6empIVSq50vj/IDKJnR1dcHr9dYQqra2NgQCgTnhAJ75Q8/xUARBvV9oMiaCXalUZDZJpVLRIYMmgicQECGmnShQS6h4SQx6rxEx44SKJnHeu1OP3daCCA2vN8S7UgCzITiVIPOxaPSYFmsa3xRBoPPRxoiPUSJc9D1Ww+K72kCEKp1O14zTXC6HiYkJZLNZ6bSw2+3IZDJIp9Mwm81SYK4mjpDNXS4Xent70d3dLZsu03zAw7gr3QO9agkV0HgXquqgyBCkvwFmskV4NoHG8oKLT2lSbKTTAOrfA/MNPCMPCBe16gm5NeDCVFXTxkO8PGTDf9TwH9dkqDbVaB5U7686Hutp1ri2zehYvceq54mXyOGaHTXsSPeWRmuhFm0lj6PZbJZlbYrFIgDUzN+qt5LOQRor8nZSlxKS5lCdwJW+UVrVhKoReBsC2jHZbDb4/X5ZoyqbzSKdTktPVaM4vUbrYTLN9ooiD4aaHMAJViMyVc+WRiEGeux2uxEOh2E2mzExMdGKf/GiBnmovF6vrCujFv3jqfKkveAZfqThKJVK0qPJX0ehX77gaywNRlon8hZRiM1oI6KG5WjTSuVQ6pEtsh9l9DocDkmiqGAkL/JJiy/pLkniodF8EOkpl8sYHR1FLBaD1WqVYXxKKiLBeiKRqGkXxIkSVVWPRqNoa2uTtqP7olwuY2JiAqOjo1KgzteBlbg+X7B3HYUDeK8vs9kMl8sFn88Hi8WCRCKBVCqFXC5X0wes3m5Lo7WgSdTj8cDhcMBkMtXUL+EwIkQLOT//Te+l99NiXy6XdR/HFsBkMsmqxzThEumh6616HNSaNeR5prABFeSldG61hpUex82BukkhIsxriqleQt7SSX0vD9vzz6DjZH/qxVoul5HL5eQGi+Zr+ky1vIImVM0H9zKVSiXEYjGMjIzA6/XC6XTC4/HA4/Ggra0NLpcL8Xhc1qyiTRNVzKd5nUKIVGaBNllUJX1qagrJZFK+RsVK81hdsHcd7VjVvk7EsNVigWrKtp6IlwfqrhY4t0GzGPuRvW02W02GIYfW5Zw7uL6Nayx4SJe3nuGLIREu8iBzO9AYN5lMNaUVuIdLj+XWQQ3P0nNqIU6CUTam0SaHgxcJ5fcFb3Wjfra2d+vAM+6oCCd5pjo6OuD3++X8ySMMNL9SMpC6URZCyPIpAGpqQubzeeTz+TllbFbifHxBEiqKzeZyOel9AlBTTIwmaJ6Vwl3SanaKRuvBPRjkVq7noWrmZxKJ83g8iEQiEELUtDlYqe7llQ6jsCtdYyqgSpMrZQgRkaWFlDY/1BZI9UySBpLOUa1W5T3EPSEqjMJYGgtHPU0jL8pplDhEJIjOUc9rTM/Rwkp25NmgQgjpHePn0ll+rQHZg9bPdDqN8fFx+Hw+bN68GTt27JCvpYw+ahdlsVhkHbFkMjmnVFGlUkE6nUY8HofH40EgEJDPnz17Vmb9rfSxekESKgA12gueostTeel1qtBV73SWD9w+alXspRCbhYjUbTYbXC4XnE6nDhm0AEbXmHunaOOjFuvk1bTVXS1/D3moeEJDI7trMrUwcLJiJEznpIjID08gMHofD+sagWxH8zSvtg2gxhvJz6Xn7taClzCgDhaVSgXhcBi9vb0oFotIp9OytIWRh0rN8KPXUV1ILgeoVqtSP1Wv1+pKwgW7aqhZfjy0oBb8BGoLk9UrOKixdDQK5ZHHMJ/Pw263t6TJaaNFlC/2RiE/jeagniaOa6U4oeYTLzC7WQJqe/3xBZUmZCLnupxC66ASXfUYh0qWG+ka1fmXE2wi45ycGZE3jeaByM3k5CRSqRQAyEbn9Jvaw5RKJQQCAQSDQRSLRZkoQCSJ+v0BM+PW7Xajs7MTa9eulZKAarUKh8OBYDAIALIu2Uq27wVNqKjxIidVFKflqZ68QzbVM9HtC1oDo50uQQiBXC6HRCIBp9Mpe3epr+GT7UIHV71QAz8HtT+gukbcK6K9Gc0B9wbz68m1jFQHzOVy1RRjpd9Ue4pErHSMbOZ0OqWYmcLHXAzLoe167uBeKKNwrOpN5DpVGo/19Fbq+YFZkTsXuqsbZvU9Gs3D9PQ0JiYmcPz4cblWhsNhhMNhtLW1oa2tDeVyGV6vF5VKBT09PVi7di1KpRJCoZCsrk4JBkSOLBYLgsEgdu7cib179yKbzcp+gH6/H93d3fB4PJienkYqlVrRtr1gCRUw66Xig5oGoVp3igvTGwkrNVoHsk2pVKrRsdV77WLOuxA7UoZQPSKn0RoYeRZojNZbrIloGYV9eC0iemzU71GTqYVjqdeqUesR/tsI3ENJr6OwIgCZmNDIU6axdJBmMZlMyo0JFUbmiSbAzKaHCiVTwVXyTpGzQ9U2+/1+WbYmk8nITRJptlZD5vUFTahUqOGAeoN4vvi+RmugZgzVO9Yoe4hey48ZvUf922w2y2advF6KRnNBtYtING60WNLYpFpy5F1SSRKNZdr5co8FHfd6vejs7ITD4UAikUAymawh2Gq4SGPhUDeq/Bpy7xP38NJruB6KnwMwbjWkeon5+VSPlN4EtwbVahXZbFaWQwiFQujo6EBXVxeEEMhkMjVOCavVKtu88SbJ5XIZ2WxWtqWh9/DWQST5CIfDWLduHVKpFKampla8bS9YQlWv8nmjBrjqhLDSjXchgmcPGR2rJ5DlrzH6u9HzNFk7nU4Eg0Fks1lNqFoACtF5PB6pU1MTQVQRejablWOWQnqcUBFBI88mLa50vK2tDX19fUgkEhgcHJQhA02kloZGeiW6tjTH0vUmrwYPvxPU0jXq+eh96saKQsR0Ti3TaB2q1SrS6TQAwO/3Y9euXejt7UV7ezsAIBaLwW63y+Kc5F3ijY9JbkObG8q2p7mBvF1U6LerqwvVahWJRAKnTp2C2Wxuiba2WbhgXDBG5Idn8PHX8YJz851Do/mY7zqrpKnRomckbl7I64zAvZfaO9kaqITZyDPByQ6vT7UQsqwK2GmXbJS5Wc8bqjEXiyGe3IZEqtS6YAutEVZP90jPGf2tbdp6UNFVn88Hl8sFAHOSwIC56y2RYC7FUTfK/H6h2oCrJWpwQXioVG8DABQKBSQSCVitVuTzeQCQlZUDgQCmp6flBEuGczgcKBaLssefmrav0TxwW/HBQ95DXtbCSHQKNA71LRREunkvKl1/rPWoVqtSWM5bxgCouS94AdBCoSDLK3Bvhzo50/O0SyaRrN1u13ZtEozICydKapiHijyqZWp4CLBeyA+otTPVOKLHvA0NhY20p6r5sFqt6O7uxsaNG+Hz+bBu3Tq0t7fD6/VKslOpVGQGYDablespeabK5bIk2iSxCAQCcDqdKBaLyGQysnYkjXFKEFsNm9wLilABszteciuazWbkcjnpEna5XPD7/SiVSvImoImbJm9qWUOiOY3moN6OlLexoElRJVQE1euoamGA+m1p1PAS7ZbURqs63NtaECmmujK86jV/DW98zBuk8tpyPAsQqCVUtMhyQqXRfNTzLpBWjvRSRKiIQBtlAvJz8nPzOmNEzohQUdiI9xZcDYvvaoPVasXatWvR398vyxxQZXRaS/naSe1ieP9NSiCge8Pn89UQqlQqhUKhUDPGKeS/Gmx6QRAqYG4WSqlUQi6Xg9PplDsYcj/Soq1OxHzgGtWq0mgN1JAAPcePc68FMDe0cy6Eir+P7g2aHFbD4F1tEEIgn88jlUrJyZSeVzMxGxFaVUNDpIweU1q2yWRCLpeb0yRdozmYb9Ohisbr/a2er9H9UG9DRkSrnpxD49zBw7cejwfhcFj27qMsP9oE8/Go2pbXEKPNM52H1/6juZiaKjudThQKhVVRbHnlf8N5oMZfgZkBmUgkcOzYMQSDQVx++eVyMqXmu+l02lBTUalUkEwmkUgkkM/nNaE6DyCdCzU1JXuqxKaeaBWoX8fGCDxhgTd4jUQicLvdmJ6ehtvtXuq/paGgVCrh0KFDSKVS8Pv92LFjB3p6emCz2eDxeGo8SGRP7s2gXSplDhF5KhaLNaHgRCKBkydPolQq4ciRI3j66aeRyWQwNTUlX8PDxnqMLx606HHNIdmE7JXL5WS9Ih7u4wVb1bC/ujFW9XT0m2+S6b4hrRwJoTWaAyI1oVAI27dvx9VXXy09UuQZpKKevL4UACmf8Hg8CAaDqFaraGtrQzabhdvtRrFYRDAYRF9fH0KhkGxPYzLNJDEEg0GYTCYkEglEIpEVv9G9IO461eUshKgpDBaLxaSBG1XDNplMskcRuR71ZNt68PAA7x5PuxjAOFx3rlDDTDRIA4EA/H4/stksnE7n0v8xjRqUSiU899xzOHXqlCSvHo9H1qvhO1QChQhod8uLQlJV/VKpBGCWHEWjUZw5cwa5XA6HDx/G4cOH54xlo120xsLBvcqqwJyuK9e5GZEhOkbeD06CVA80Pce9kaS7Uwu6GjU31zg30PWlBsjr169Hf38/zGazdDrQJoe8SuQ55veI0+lEIBBAtVpFKBRCOp2G0+lEuVyGz+dDT08P/H6/3CzROWiOiMfjCAQCK97zeEEQKoIaj6fQHQ/f0Q1Sr2yCUYV1jebAyJVPz5NwcWJiAs899xxcLhd8Pp8cYFzsaiQarxfmo7/563l4SA0VVSoVDA8Py/RgjeaCFtRisYh4PI7x8XE5sbpcLhkG4OEDo/CPxWJBqVRCLBZDNpsFMGv3eDyOqakpFAoF5HK5uuNYj+2FQ71WNE+S0JhrZFSiOl+4j5MvI9AmmV5PczrfEAkh5EZ4cnIShUKhBVfh4gPZjHRQU1NTOHXqFEwmkxSQOxwO+P1+2O12JJNJxONx5PN5ZLNZ6QnO5/OIxWKYnp7G+Pg4xsfHUSwWkc1mUSqVkM/nkUwm4XK55GPSPdJ5uWNkpWLVEyoyuOoqpkm0VCqhUCggk8lIF7XX64XH46npik43DBkzFotJMbtG82CknSCxcalUwg9/+EM888wz8Hg82LBhA9ra2qRLmXaetCPlnireXJd/Bl+Q+Q6aQhDpdBqJRALlchmTk5OYnJxEJpPBwYMHte1bAFpQ0+k09u3bh5MnT8oK9VarFe3t7di0aRM8Hg+i0SjGxsZk2KhSqcBms6G7uxvt7e1Ip9M4efIkpqamakJ+5LmiVhVaO7U00PhRNaqpVArlchnRaNSQxHDyROfhduLHyuWy4Werush6QvRyuYwTJ07g5MmTiMfjOH36tB6/TQK39Y9+9CMMDw/LxABgxrO/adMmhEIhJBIJnD59WsplhJhJLhkcHJThwKeeegrPPvusLLzrcDgwPT0Nl8uFUCiEsbExDA0NIZfLIZfLIZPJoFAo4NixY3Xvk5WCVU+oAOMic9xDRR4nEi6SW5gLnLmXIp/PI5fLyUGr0TwYXU+qX0Iam+PHj8Pr9WLXrl3o6emB0+mUQkhKt1VF7GRnNZTDPZNkb55pNDk5ifHxceTzeQwNDeHMmTPyXBrNB02yhUIBIyMjc46vW7cOVqsVwWAQw8PDOH78uAzrlUolOJ1ObNu2TW58Dh8+jDNnzshza5wf8JpD2WwW6XS6xvvPvb/A3Krq6mO1dIkR6FycUNFnVioVnDlzBgcOHEAmk0E8Hm/p/38xgTyC5XIZR44cwejoqNSumc1mdHR0oFqtorOzE/F4HCMjI8jn8/B4PAgEAhBCYGpqCul0GtlsFocOHcKRI0fgdDqxdu1ahEIhAMDg4CCi0ShOnTqFgwcPIp1OY2pqChMTE6tmU7SyFV4aFyXOZWFcSEinXvX8Zn0HjebDKHRkdFzbS0Oj9VjIPGs0ThdyHhX16g2uZJjEavq2GhoaGhoaGhorENpDpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRGhCpaGhoaGhoaGxRCw7oRoYGEA6nTY8dvnll+NnP/vZvOf4r//6L1x22WVwOBx45zvfWXPs05/+NHbv3o09e/Zg7969eOCBB2qOf/SjH8WmTZuwadMmvP/975fP/+3f/i0GBgbkj9/vx5//+Z/L4wcPHsQNN9yAHTt2YMeOHfjOd76z8H/6IkMzbNzIjtlsFm94wxuwZ88ebN++HX/xF38BIQQAoFqt4t3vfjd2796N7du3441vfCNKpRKAGRtef/312L59O3bv3o177rkH+XxenvcVr3gF1qxZA5PJhEQice4X4AJHq8cwYWJiAp2dnfi93/s9+dz999+PQCAgx+mNN94ojzUaw9VqFX/+53+OnTt3Yu/evbjxxhtx4sSJBf/PFxOaYd/Pfvaz2LNnDwYGBrB79258+tOflseWMrYb2XB4eBgvfvGLsW3bNuzcuRP//M//fI5X4MJHq2384Q9/GO3t7XIsvvrVr5bHqtUq3v72t2PTpk3YvHkzPvOZz8hjje6N+dboZYFYwbjsssvEo48+Ou/rjh07Jvbt2yfe//73iz/7sz+rOfbII4+IRCIhhBBieHhYRCIRceLECSGEEP/zP/8jdu7cKTKZjCgUCuKyyy4T3//+9+ecv1AoiHA4LH7zm98IIYTIZrOir69P/PznPxdCCFGpVMTExMQS/tOLFwu1cSM7/uVf/qV47WtfK6rVqiiVSuL2228X3/zmN4UQQvzLv/yLuPHGG0WxWBTValW86U1vEh/72MeEEEI8++yzYv/+/UKIGRv+/u//vvjQhz4kP/PHP/6xGB8fFwBEPB5v3j99EaEZY5jwe7/3e+Kee+4RL33pS+Vz9913X83f9aCO4e9+97viyiuvFKVSSQghxN/8zd+IV77ylfOeR6MWC7UvjV0hhEgmk2Lt2rXiqaeeEkKc+9huZMNqtSouvfRS+VohhBgbG1v6P3wRohk2/tCHPlR3XH/5y18WN910k6hUKiIajYp169aJQ4cOCSEa3xsc6vheLiy7h4rv/h977DHJbt/whjegUqks6Bxbt25Ff38/rFbrnGM333wzAoEAAGDt2rXo6urCyMgIAOAb3/gGXvva18Lj8cDhcOCee+7Bv//7v885x4MPPoi1a9fisssuAwB87Wtfw1VXXYVrr70WAGCxWNDe3r7o//1iQTNs3MiO+/fvx+233w6TyQSbzYZbb70VX/nKV+SxW265BXa7HSaTCS984QvlsS1btmDv3r0AZmx4xRVXYGhoSH7mLbfcgo6OjmZcggsarR7DAPDFL34RfX19uO66687pO6pj2GQyoVgsolAoQAiBVCqF3t7eczr3hY5m2JfGLjDjdSqXy/Lvcx3bjWz4k5/8BA6HA6985Svl53R2dp77RbjA0WobN8I3vvEN/NEf/REsFgvC4TDuuusuuQ43ujc41PG9XFh2QkUolUq466678IlPfAKHDh3CH/zBH2D//v3y+L333osPfvCDS/qMRx55BPF4HFdccQWAGZfw+vXr5fENGzZgeHh4zvu++MUv4o1vfKP8+8iRI3A4HHjRi16EgYEBvO51r8Pk5OSSvtvFgGbZWLXjZZddhm9961soFovIZDJ48MEHJTG67LLL8NBDDyGVSqFcLuOb3/xmDWkiZLNZfOELX8BLX/rSpvyvFyNaNYYHBwdx77334m//9m8Nj//iF7/AwMAArrnmGnzrW98yfI06hl/84hfjhhtuQFdXF7q7u/GTn/wEf/3Xf73o73YxYan2/Y//+A/s2rULGzZswLvf/W5ccsklc16zmLHdyIZHjhxBe3s7XvWqV+GSSy7By172Mpw8ebKJV+PCRCtt/K1vfQv9/f246aab8Oijj8rnF7oOq/cGhzq+lw3L6h8TQoZT9u/fLzZs2FBzbOPGjQtyNRIauRUPHDggent7ZZhOCCFe9KIXia997Wvy7//6r/8S1113Xc37hoaGhMvlEtFoVD739re/XfT29orTp0+LarUq/uIv/kLceeedC/6eFxuaaWMjO+ZyOfGOd7xD9Pf3i+uvv168613vEpdccokQYsb1/6EPfUgMDAyIq6++WnzgAx8QoVCo5pzFYlH87u/+rnj729/e8PtrGKOVY7harYobbrhBPPHEE0KIuSG+yclJkc1mhRBCHDlyRPT29orHH3+85pxGY/jJJ58UN998s4jH42J6elq85z3vEa9+9asX/D0vJjTTvkIIMTg4KAYGBsQzzzxT8/xix3YjG37yk58UXq9Xho4+97nPicsuu2yx//pFg1bb+OzZszI0+4tf/EK0t7eLoaEhIYQQu3fvFo899ph872c/+1nx2te+tuZ8RvcGwWh8LxdWjIfKCCaTqSnnOXLkCF70ohfhS1/6kgzTAcC6detw6tQp+ffQ0BDWrVtX89777rsPL33pSxEOh2ved+ONN6Knpwcmkwmvec1r8MQTTzTlu15sWIyN69nR5XLhU5/6FPbt24f/+Z//QVtbG3bt2iXP/+EPfxhPP/00HnvsMezcuVMeA4ByuYy77roL3d3d+NSnPtW8f0wDwNLHcCqVwoEDB3DXXXfJXe+PfvQj3HzzzQCAtrY2uN1uAMCOHTtwxx134Je//GXNOYzG8L/927/hpptuQjAYhNlsxt13312za9ZYGM7Fvhs2bMDznvc8fP/735fPncvYbmTDdevW4ZJLLpGvfe1rX4unnnpqwWEojVk0w8ZdXV2w2WwAgOc///m45JJL8Jvf/AbA/OtwvXuDYDS+lw3Lzejw/5hxsVgUvb294qc//akQYkYQDGDJHqojR46I9evXix/+8IdzXv/oo4/OEaX/53/+pzw+PT0t1q1bJ3784x/XvO/UqVNi+/btIplMCiGE+NjHPibuuOOOBX/Piw3NsHEjOyaTSemlOHnypFi3bp14+umnhRBC5PN5EYvFhBAz3oz+/n7x0EMPCSGEKJfL4uUvf7m45557RLVanff7axij1WOYQ/VQnT59Wj4eGxsTmzdvFj/5yU/kc/XG8Cc/+Ulx8803i2KxKIQQ4u///u/F7/zO7yz4e15MaIZ9Dx8+LB9PTEyILVu2iB/96EdCiHMf241smMlkRF9fn7w/vvnNb4qdO3ee2wW4CNBqG4+MjMhjzz77rOjo6BDHjh0TQsyMaVWUfuDAASFE43tDiPrje7mwYgiVEEL88pe/FP39/WL37t3iDW94g+jv75eG/NznPic+8IEPGJ7jkUceET09PcLn8wmv1yt6enrE9773PSGEELfccosIBoOiv79f/nDjfOQjHxF9fX2ir69P/MVf/EXNeR9++GGxYcMGw8X23/7t38SuXbvEnj17xO233y6Gh4ebcDUuTDTDxo3s+PTTT4stW7aIHTt2iD179ohvf/vb8n1jY2Ni+/btYufOnWL79u3ic5/7nDz2wAMPCABi79698px/+qd/Ko/fcccdoqenRwAQa9asES94wQuae2EuELR6DHOohOp973uf2Llzp+jv7xd79uwRn/3sZ2teX28MFwoF8aY3vUls375d7NmzR9x6663iueeeO/eLcAGjGfb94z/+Y7Fjxw7R398v9u7dW2Oncx3b89nw4Ycflp933XXXyUVaYy5abePXve51YteuXaK/v19ceuml4lvf+pY8VqlUxJ/+6Z+Kvr4+sXHjRvFP//RP8th863ejNXo5YBLi/xX10NDQ0NDQ0NDQOCesaA2VhoaGhoaGhsZqgCZUGhoaGhoaGhpLxIokVL/5zW/wwhe+EH19fbjssstwySWX4KMf/ag8fsMNN+DBBx9c1DkTiQRe85rXYPfu3di7dy92796Nr33tawBm2lfwdhbqd7nrrrvqnvdnP/sZfvjDHy7qu1zIaIXteHuRXbt24YUvfKFhnRIVGzZswL59+875cy90NNtW9957r2wDEQ6H0dPTI/9uVgZdozZAd9xxB44dO2Z4LJFI4O///u/nPf/b3vY2fOMb35jz/Ic//GEUCoVFfdeLAa0e7/39/di7dy++973vNfmbX7hohU0IH/rQh2CxWGqy8uZDvc/72c9+hoGBgUV/h2bP5UNDQ7j33nubcq4VR6gOHjyI22+/HW9961sxODiI3/72t/jJT36CVCq1pPP+1V/9Fdrb23Hw4EEcOHAAjz/+uGGBMBWXX3654QQLAJVKRRMqhlbZDgBuvPFG7Nu3D4cPH8bWrVvx//1//18TvnFrMD09vdxfYV60wlZvectbsG/fPuzbtw8veclL8J73vEf+zXvstQo/+MEPsG3btjnPVyqVBREqIQT++7//G3fcccecYx/5yEc0oVJwPsb7/v378S//8i9405ve1IRvfOGjlTapVqu4//77ccMNN+C+++5rwrddGbigCdU//MM/4E1vehNe9KIXyefC4TA+9rGPLem8p0+fRnd3t6yp4fP5sGXLFnk8k8ngD/7gD7Bnzx5cfvnlsqouZ9FDQ0MIBoN473vfi0svvRSf+cxncO+99+KrX/0qBgYGLvpKy62ynYrbbrtNeiJUj0VbW5thJXSOiYkJvPzlL8eePXuwe/dufP7znwcAfPWrX6357kIIbNy4UVYK/spXvoLnPe95uPTSS3H99dfL5++//37ceOONuPPOO7Fnzx786le/auJ/2xqcL1udKz760Y9ix44d0sPFd8T/5//8H1x55ZXo6+urmdhVj+Q73vEOXH311fid3/kdvOUtb0E6ncbAwAAuv/xyw8/8zW9+g23btsHn89U8/5a3vAUAcN1112FgYAATExN17yH6Hu95z3tw2WWXYfPmzfj4xz/erMuyonC+7qFEIoFQKCT/fve7340rrrgCAwMDuP7662u8kt/73vewY8cO9Pf3473vfe+C5oMLCa20yY9//GN0dnbiE5/4BO677z5Uq1V5bMOGDfjgBz+Iq6++Gn19fTUeMY5vf/vb6O/vx3PPPTfn2MMPP4xrr70Wl112Ga688sqGXu2f/OQnuOKKK7B582a8613vkg2zT5w4gVtuuQV79+7FwMBAjSfr4YcfxqWXXoq9e/fiBS94AY4cOQJgZnwfO3YMAwMDeMlLXnIul2YWy5pjaIAdO3aI73znOw1f84IXvEB897vfnfP89773PfHGN77R8D0//elPRTgcFpdeeql461vfWlNv6r777hN+v1+cPHlSCCHEe9/7XvHHf/zHQoiZWlX9/f1CiJnqrwDEl7/8Zfne+ermXExole14qnylUhGvf/3rxete9zohxNwaUZFIRAwODgohhFi/fr2sWcM/9/d///dliYzx8XFZXTuXy4lIJCLOnj0rhJi5Zy699FIhxEx13xe+8IWiUCgIIYT4v//3/8q6Nvfdd59wuVxzKj+vZLTKVoS7775b/OM//uM5fbdYLCYCgYDI5XJCiJlm5Pl8XggxY+9PfOITQgghjh49KrxeryiXy0KIufa+7bbbZHXmwcFBEQgEGn7u+973PvH5z3/e8Jh6n9W7h+h7UEPfyclJsXbtWvHLX/5y8RdihaOV493v94v+/n6xZcsW4Xa7a+Zr3oj+3//938Vtt90mhJixQzgcFkePHhVCCPGlL31JAJDzwcWAVo7rV77ylbLszCWXXCIefvhheWz9+vWy08Tk5KTw+/2yBhh93ic/+Ulx7bXXiqmpKSFE7dr63HPPiauuukrWdjx+/Ljo6uqS8636/W+66SZRKpVENpsVl112mfjqV78qhBDiyiuvFPfee68QYqbeVTgcFkNDQ/LeoNIZDzzwgNixY4eoVqs132OpWHEeKhXvec97MDAwgJ6eHhw+fLjha1/ykpfgC1/4guGxG2+8EcPDw/ibv/kbBINBvPnNb8Zb3/pWeZyYNT02YtAAYLPZ8JrXvOYc/5uLC82yHQA8+uijGBgYwGWXXQaTyYRPfvKT5/y9HnnkEbz5zW8GAHR0dODlL385HnnkEbhcLtx5552y+er999+PN7zhDQBmdr779+/H8573PAwMDODtb387YrEY8vk8AOCaa64xDDetFjTTVkuF3+/Hli1b8JrXvAaf//znEYvF4HQ65fFXv/rVAIDt27fDarVibGzM8Dyvec1rZHXmheChhx5acC/HevcQ4Y1vfCNMJhPa2trmHLtQ0cx7iEJ+zz77LJ588km86U1vwujoKIAZT8nVV1+N3bt346//+q+lV/KJJ57A3r17sX37dgDA3XffDbvd3px/bpWiWTaJRqP40Y9+hD/4gz8AANxzzz344he/WPOaP/zDPwQwEyXYuHEjBgcH5bGPfvSj+MlPfoIf//jHiEQic87/wx/+ECdOnMD111+PgYEBvOIVr4DZbK6rlX3d614Hm80Gt9uN17zmNXjkkUeQTqfx1FNPyZ5+W7ZswbXXXouf//znePLJJ7Fnzx7s2bMHwMwcMjo6ijNnzjS8JovFiiNUl1xySU3I5OMf/zj27dsHm8225LYBHo8Hd9xxBz760Y/i29/+tlw4AdRM2BaLpW6HbbfbDbN5xV22FYFW2o4m2H379uFLX/oS2traAMzYimuWzkXnwlsr3HPPPbjvvvuQyWTw/e9/X04SQgjcfffd8jvs27cPZ8+ehcvlAgB4vd6l/HvnHa201ULwjne8Q4bzDh48WHPMYrHgiSeewDvf+U5MTEzgqquuws9//nN5fKFjdTE2efbZZxEMBtHZ2bnI/2QG87XnaFYbrZWE83UP7d69G+vWrcMvf/lLDA8P421vexseeOABHDp0CF//+te1to2hVTb5yle+gkqlgv7+fmzYsAH/8A//gP/8z/9ENBqVr2k0Lp/3vOfh2WefrdugWgiBW2+9tWZ+PXPmTI0spxHqja/zPe5WHDP4X//rf+Ff//Vf8YMf/EA+VyqV6k6aC8WPfvQjxONx+fdvf/tbbNq0aUnnBGZ208lkcsnnuRDQKts1wubNm/Hkk08CAL7zne8gm83O+55bbrkF//qv/woAmJycxHe+8x3ceuutAGYGPjCj07jllltkf6iXvOQleOCBB+SOqVqtyl5UqxHLYSuOT3/603LipF0jIZ1OY3x8HNdddx0+8IEP4Nprr8XTTz+9pM/z+/3I5/MolUqGx7/73e/WzfQFZjSXfJw3uoeAGe8mAMRiMXz3u9+VvQcvJJyve+j06dM4fvw4tm7dimQyCZvNhu7ubggh8JnPfEa+7qqrrsKBAwekpuqBBx6oa+8LFa2yyRe/+EX8x3/8B4aGhjA0NISRkRG8+MUvxgMPPLCg999666340pe+hBe/+MV46qmn5hy/7bbb8Mgjj+DAgQPyuUZa1AceeADlchn5fB5f+9rXcMstt8Dn8+HSSy+VusoTJ07gF7/4Ba6//npcddVVOHjwIA4dOgQA+PrXv46enh709PQ0dQ1fcYSqv78fP/jBD/CpT30KfX19uPLKK3HjjTfiT/7kT7B161b5uje96U3o7e2VP48//jgeeuihutkgBw8exPXXXy/LJjz00EMLvhka4WUvexn27dunRelone0a4R//8R/xZ3/2Z7j00kvx9NNPG7qTVXz605/G0aNHsWfPHtx44414//vfL4kUALzhDW/A5z//eRnuA2YEyR/72Mfwspe9DP39/di1axe+/vWvL/r7rhQsh60WimQyKQXfe/fuRblcxt13372kc4bDYbzuda/D3r17DUXpDz74YENC9a53vQu33nqrFKXPdw+1t7dLce3b3vY2XHPNNUv6/isRrbyHKMQ/MDCA2267DX/3d3+H/v5+7NmzB6961auwa9cuXHHFFTVNdDs6OvCFL3wBv/d7vyc9n16vF8FgsJWXYUWhFTb51a9+hYmJCdxyyy01z7/61a+eE/ZrhOuuuw5f//rX8YpXvGJOA/PNmzfja1/7Gt785jejv78fO3bswD/90z/VPdeOHTvw/Oc/H3v27MF1112HV73qVQBmEou+8Y1voL+/H694xSvwhS98AevWrUN7ezu++tWvyjngc5/7HL71rW/BZDJh79692LVrF3bv3r1kUbpuPaOhoXFR4+zZs7jttttqdsdLwYYNG/Dggw+eU40djaUhnU7LLM0HH3wQ73vf+3D06NFl/lYaFwusy/0FNDQ0NJYT3d3dTSNTGsuLf/7nf8Y3vvENTE9Pw+/346tf/epyfyWNiwjaQ6WhoaGhoaGhsUSsOA2VhoaGhoaGhsZqw7IQqkZ99c6lvw+JF3fu3AmLxSL/btSDT6MxVpuNPvzhD+Od73yn4bGHHnqoYauaBx98EE888UTD809MTGDXrl1znteth2bR7HsGmNEjbdu2Df39/di8eTNe+tKX4rHHHmvyN9dYCLR9Lz600uYDAwPYsWMH/vAP/3BB2dmrAcuioeJ99UwmE9LpdN3ifAsBFXYbGhrCwMCA/JujUqnAal0eydhyfva5Yjls1Cq85CUvqZu9UalUpID4qquuqnuO733ve4bn+NnPfoZEIoHbb7+9ad93taLZ9wzhG9/4hpy4v/Od7+COO+7Aww8/XJNVB0C2wtB14loDbd+LD622ebVaxYtf/GLcf//9NYW2VyuW5c6cr69es7Bhwwa8973vxZVXXom7774bmUwG99xzD3bv3o3du3fjIx/5iHyt2sH6Fa94hawl84UvfAE7d+7EwMAA9uzZI+seHT9+HL/7u7+LK664Anv37q2piWIymfChD30IV1xxBd73vvc1/X9rNc6XjRaL48eP4/nPf75Mof6rv/oreezs2bN48YtfjJ07d+Kmm25CLBYDMFMTiFLif/azn2HXrl144xvfiIGBAXz1q1/FQw89hI9//OMYGBioWyn4wQcfxMte9rKa5/bt22fYy/ErX/kK9u7di7179+J3f/d3ZTXe+++/HzfddBNe8pKXYOfOnbj++usvqD5j5+OeefnLX463vOUt+MQnPgFgxjN555134rbbbsPu3btx9uzZuj3B6t07//mf/yl7f+3evRvf+973mvqdLxRo+158aLXNS6UScrmc7NV48OBBXHvttbj00kuxc+fOmp6A6XQad911F7Zv347rrrsOb37zm/H617++ad+lKWhKA5tFolFfvUZ9dV74wheKX//613XPq/brWr9+vXjjG98oqtWqEEKI//W//pf4wz/8QzE9PS0ymYwYGBgQX//614UQc/sb3XnnneK+++4TQgjh9/vF6OioEEKIUqkk0um0qFQq4rLLLpN9o7LZrNizZ4/41a9+JYSY6f31kY98ZFHXZSXhfNlosXjHO94h/u7v/k7+HY1GhRAzPRXXr18v+0Tddddd8nW8F+Cjjz4qTCaT+NnPfibPMV/fuVQqJTZu3CjvIw61l+PBgwdFZ2en7GP10Y9+VNx+++3ye9jtdnHkyBEhhBD/8A//IG699dZFXoGVi1bcM7w/H+E73/mO2LFjhxBi5vp3d3eLsbExIUTjnmD17p29e/eKxx57TAghxPT0dE3PPo1ZaPtefGiVzbdu3Sr6+/tFIBAQN910k+zHmUqlZP++XC4nBgYGZI/Md7/73eLuu+8W1WpVpFIpsXv3bnH33Xc3759tApbFQzVfX716+MEPflC3U3w9vP71r5fs+pFHHsEf/dEfwWw2w+Px4HWvex1+/OMfz3uOm2++Ga997WvxqU99CoODg/B6vTh27BgOHz6MV73qVRgYGMA111yDdDotO1gDM21MVivOp40Wg+uvvx7/+q//ive///340Y9+VFO07/bbb5eFPRv1Y9y4cSNe8IIXLPgz//u//xu33377gtoYPProo7j99tvR09MDAPjTP/1T/PSnP5Xtca655hrs2LEDAPDHf/zH+NnPflbTOmc143zdM0JJTL7jjjtky5hGPcHq3Ts333wz/uzP/gwf+9jHcODAgYuqEORioO178aFVNv/GN76Bffv2YWpqSkaSACCfz+NNb3oT9uzZg6uuugqnTp2S8pCf/OQneMMb3gCTyQSfz7ciNdLLFoxu1FevmWjUz4svkFartW5PuG9/+9v4+7//e5TLZdxxxx34+te/DiEEwuFwTe+hwcHBmorOq62/m4rzZSOOI0eOSMG60cC988478ctf/hLbtm3DZz7zGbzoRS+Sx1rR4w2Yvy1JI1yIPdwa4XzcM7/+9a+xe/du+Te3p2jQE6zevfO///f/xn333Qe32427774bH/vYx5r+nS8UaPtefGilza1WK+68806Z2POXf/mXaGtrw9NPP439+/fjhhtuqNurcSXOrctCqFrVV28+3HLLLfjiF78IIQSy2Sy+8pWv4Hd+53cA1PaEGxwcxC9+8QsAM6Ll5557Dpdffjne/e534xWveAV+9atfYdu2bfD7/bJvEDDTO4h0O6sdy2WjnTt3yonys5/97Jzjx48fR2dnJ173utfhYx/72LzZeQtBo15OpVIJjz/+OG644YYFvffGG2/ED3/4Q4yOjgIA7r33Xtx8882wWCwAgMcffxzPPPMMgBlt3o033iiPrXacj3vme9/7Hj73uc/hXe96l+HxRj3B6t07zzzzDHbt2oW3ve1t+JM/+ZOm3FMXIrR9Lz6cD5v/9Kc/xbZt2wAA8Xgcvb29sFqtOHbsWE0E6aabbsKXv/xlCCGQyWTwzW9+s6nfoxlYltSzgwcP4l3veheEEDCbzeju7q7pq3fkyBH09vbKv6+++mp861vfwh133IG//uu/PueQ0gc+8AG84x3vkM1YX/nKV+L3f//3Acw0lbzrrruwZ88e7Nq1S2aYTE9P45577kEsFoPVakV7ezvuu+8+WK1WfP/738c73/lO/OM//iOmp6fR1tYmU0pXO5bLRvPhP/7jP/DAAw/AbrejWq3i3nvvXfI5X/va1+L1r389HnzwQbz1rW+t6Wf105/+FNdeey1sNpvhe1/2spfhK1/5CgYGBvDyl78cH/zgB/Hxj39cZv2tXbtWNtEFZkJ+733ve3HixAlEIhH827/925K//0pBq+6Zu+66C06nE9lsFjt37sQPfvCDORlgBN4TLJfLoVQq4ZJLLsHXvva1uvfOX/7lX+LYsWOw2+1wu9343Oc+18SrcuFA2/fiQytt7nK5UKlUsH79emmrv/qrv8JrX/tafPnLX8amTZtw0003yfd88IMfxBvf+Ebs2LEDbW1t6O/vX3HhW10pXUOjAd7ylrfglltuwSte8Yoln+v+++/Hgw8+WJNNqqGhoaExP8rlMqanpyX5vu222/D2t799RWmpVldxJA2N84xmeMA0NDQ0NJaGeDyOF77whZienkahUMBLX/pSGWFaKdAeKg0NDQ0NDQ2NJUKXnNXQ0NDQ0NDQWCI0odLQ0NDQ0NDQWCI0odLQ0NDQ0NDQWCI0odLQ0NDQ0NDQWCI0odLQ0NDQ0NDQWCKaVjZhoWXgTSYTrFYrLBbLokrHN0pGNJvNMJlMqFQqKJVKEELAbrfD6XTC5XLhxhtvxA033ACbzYZMJoNcLoexsTE8/PDDsmo1wWKxwGazwWw2G37mQpIip6enUalUFvTahZ5zJeB8lvp3uVzYuHEjOjo60NXVhWuuuQY9PT2wWCywWmdu21gshvHxcZTLZVQqFUxPT8PhcGD9+vXo6uqCxWKB3W6HxWLBwYMH8cADD+DYsWPI5/NIpVLntYfearDx+bSv2WyGxWKBxWJBtVpFuVxu2jVas2YNtm3bBp/Phw0bNmDLli0ol8v44Q9/iEcffRTlcrkpn8Oh7TsXZrNZzqPqWDOZTNi6dSsGBgbg8/nQ2dmJrq4upFIp/OAHP8Djjz+OarVa83qzeWb/L4SoOXY+oO17YaNZ9r3gPVT8JlsNg0JjBiaTadETxEJefy7n1Wgdmj0mVftqWy8v6tnXaF7W87PGaseqL+xZb/L0+/3o6uqC2+2Gx+NBoVCQu2Gr1QqbzQan0wm3243p6WmUy2W566lHwvTk3FrYbDasW7cO3d3dcLlc6O3tRTAYRCgUQkdHB3w+H8xmM2w2G0wmE2w2G7xeL6anp1EqlVAul2G1WtHZ2YlQKCR3tSaTCR0dHbj00kvR2dmJ06dP4/Dhw8hms5ienj6vniqNGXAvw0IWUpvNBpvNBovFArfbDafTCavVCp/PB4fDAZvNBp/PB5vNhmAwiK6uLjidTrS3t6OnpwelUgk9PT1Yt24d8vk8EokEcrlcq//NixpGdqV5mebeWCyGVCqFXC6HRCKBarWKDRs2oK2tDalUCkePHsXY2BiEEJp4aax4rHpCBdTuSul3W1sb9uzZA5/Ph0AggHQ6LYmUzWaDw+GA3+9HKBRCsVhEMplEtVqV56LzqIPXZDI13HXpwX7ucDqduPLKK3HTTTfB6XQiGAzC4/HAarXKBZTCeGazGXa7HXa7HQCQz+eRz+cBAD6fDy6XC0IISZQ3b96MQCCAXC6Hxx57DJOTkxgbG0OxWES1WtV2O8+gMNBCrr3JZILL5YLX64Xdbkdvby/a2trg8XiwYcMGRCIRBAIBrFu3Dl6vt+Z9FPbP5/MYHR1FKpVCIpHAM888owlVi8FJEKGjowPPf/7zEYlEMDg4iMOHD6NQKMixHA6H8dKXvhTXXnstTp48ic9+9rMYGxsDgPMe5tPQWCxWNaFSSRR/3m63w+fzyQV5enoaQghYLBb5GtLjVCqVBXmfhBA6ZNQC0DW12WyIRCLo7e2VC6jD4ah5LSdUbrcbbrcbFosFDodDkit6TIt1pVKBy+VCR0cHyuUy2tra4HK54HA4avQ7egd8fsE3L43CdGazGQ6HAy6XC06nEz6fD6FQCD6fD11dXWhvb0coFEJfXx/8fj/K5TJKpZL0RhMR9/v98Pv9qFardZtda7QGZGPyGra3t+Ps2bMoFApys0vzsc/nw8aNG1EqlRAIBGC1WqVHU49NjZWMVU2oCER0+N+ZTAYjIyPwer0ybGQ2m5HL5WAymRCNRhGPx5FOp2vCffR+/lv9LECH/5YKIrRmsxltbW3o6OhAMBhEb2+vJFJWqxVms1mSHvIgFotFmM1mTE9PS3Hz9PS09BBymxaLRZkgQBNyIBDA1VdfjUQigampKYyPj6NUKiGbzSKXy6FSqSCfz6NUKi33ZbpgYbfb0dnZKRdMsjknzGazWd4DHo9HhvTII0WLs9frhcvlQrVaRT6flyF8TpKr1Sp8Ph96enrgdDrh8XiW+QpcPKDNjMfjwfbt27F161a0tbVhZGQElUoFhUJB2juTyWBqagqjo6MolUoYGBiAy+XCxMQEDh06hFgsttz/joZGXawaQqWG0+qJGuknmUxicHAQbrcbvb29cmIuFAooHIlcFgAARC9JREFUFotIJBKIRqNIJBKG5+DPaTQftFiSbmpgYADBYBAbN25EMBiUnkQiQkSMqtWqJL/T09NyZ0vEqlwuI5FIIB6Pyyaa5XJZZm9aLBaEQiHccsstqFQqGBwclJl/Z8+eleRqcnJSE6oWwuFwYOPGjVi/fj08Hg/WrFkjSZXX64XVapWeRqvVKr1TpKGjTE8a1xRCzOVyqFarqFQqACBJ9PT0NAKBADZs2ACXywWPx6ND9OcJHo8HW7ZsQXt7O3bu3Im9e/ciHA7j8OHDqFQqcpMLzBDts2fPYmhoCGazGVdddRWuuuoqHDhwAOPj45pQaaxorBpCpUL1FKkTI+18ANSkSZfLZRSLxZoFms5DP6rHq9Hnc2ivlTFIGE4ufSJTdrsdNpsNgUAAwWAQgUCgJsRHYnFaFOmHbFapVKQngj6DvBPlcrnmcbValWnXFCKsVqvw+/0IBAKypEY2m0WpVJL3Di3OROS0gH1poFIJLpcLfr8f4XAYHo8H4XBYEiqPxwObzSZLn5jNZjidTjgcDunJ4Cn0AKRtOOFWNTzk/aKyKBrnBxTGI88ihdsplMftVKlUkMlkEI/H4XK5EIlE4PV6EQqF5PsokUSTYY2VhlVDqOqF3/jzPGxXKBSQTCZleCgSiUAIgUQigVgsJsNCwGyNE/67Wd/xYgdlXblcLoTDYWzevBk+nw92u12GeDo7O9Hd3S29EbFYTC54/LfNZqshVeVyGZOTkzVaOgr7kC1p8eRkmRZeYEbA3tfXh3K5jK6uLqTTaSlmn56eRjqdxtDQEBKJBNLpNMbHx1EsFpfnYq5yWK1W9PT0oLOzE5FIBFdddRW2bdsmyTWRbbIZkS8iynTdjZJQVHDyzAmY1uGcP5CdAoEA+vv7sXPnToTDYTidzhriy5HP57F//34kEgl0dXXhtttuQ29vL9asWYM9e/bA4/FgcnISw8PDctOjobFSsGoIFQefELnHgk+WxWIRpVIJTqcTJpMJoVBILqSJRALZbLaGUNHErYpj9eS7NHDNy8aNG3HjjTdK8kTeB1r0qtWq3J3Se2mBJa8FQQiBbDZrWKCThMj0Xgofqt4LAPB6vfD5fAAg7w8SvDscDoyPj+OXv/wlhoeHMT4+jkQioQnVOcJqtaK7uxu7du1Ce3s7rrzySuzatQvlclmOR6514xsm8jZy8PHKy2nw8awSKi1uPn8gW/h8PuzZswdXXXVVTaKIEaEqFAo4cOAADh06hB07duCaa66RZTB27tyJQCCAZ599FuPj45pQaaw4rEpCBcwVjlPYx2q1wmQyyawgl8slxawUOvB4PBBCyNfS+3m4T0+4SwNNpna7HX6/H21tbdJTRXWDjEIvtOCRtwmYDbtxT9N84J4svjirCzVfbOlv0ltReQ2fz4dgMIh8Pg+n04lCoVCj09FYGKhLAqXIk/6NEgoI6thTbcafVz1V3Mus/qheL43mgspbUGiWNjbt7e1wuVywWq0144Z0cg6HQ3Y64NIA3lHDbrcjEAggn88jHA7LOnMk4dBEWWMlYNUSKiNvg9vtRigUgtPpxJYtWzAwMCA9EH6/H5VKBZs3b0Y4HMbk5CQymQxSqZQcjLwOFYAlhf8uZtAEaLPZ0NHRgSuvvBJbt26F2+2Gz+eTInM1hCOEQKlUgsViqQnN0URZKBQkySEiROUR+DkqlYrcAVPoTiVinFCpmht6fblchtlsxqZNm7BmzRqcPHkSyWQSExMTyGaziMViWlO1SFBBXZvNJu+Dcrksk0WA2lB+vfHHtVPc/twjpYYGqZRKJpORonaN5sFut2PHjh3YsmULHA4HgsEg3G63LG3BNyBmsxl+vx+9vb2w2+2Ix+OIxWKw2WxYu3Yturq6sGHDBgQCAQAzBUF37dqFDRs2oLOzEz6fD8lkEsPDwxgaGkKxWEQ+n9deK41lxaqcVTgB4iC9jtfrxe7du3H77bfD7/cjGo0iFouhUqlgzZo1aGtrg9frxZEjR2SNKlqA+Q6Xwj/1auTo3ZAxqKYUTarbtm3DZZddJhdOEpVSiMfImwDMCo1JQ0PkhzxI5PEg7yQdr1arKJVKsoI6ebeMCLJasZt7PSg7cM2aNTJs+Nxzz8nXJ5NJTagWAbIXef9Iq1YqlWoINoHr59Riuyqh4mOXex25vXktK12HqvmgjN0rrrhCEqlgMAin04lAICDHMmVlut1utLe3w2QyoVQqIZFIyE4HmzdvRnd3t4wmuN1ubNiwAdVqFV6vFxaLBclkEjabDfF4XHY9IG+VhsZyYNURKnWwkCuYFu/169fD6/UiEonIkB65lnml7XA4jE2bNsFsNiObzWJ8fFzWsKG6RUbhJV2Han5QaYJQKCR3k3a7vSacqpbAqHc9+SLKvVUqoeYuf+76pwl8vs9RYRRmcjgccgGoVCoYHx9f3IW5yEEEKp/Pywr1PAynhn9Vu3Fvk2pfXj5DfS2vZZbL5ZDP51vSIPlih8lkgsfjQSgUkt5ot9s9J7RP45Z0leFwGH6/H+3t7bDZbNi8ebOshk8eaMrqE0LA6XQiEonA6XSiq6sLXV1dyGQyMolEQ2O5sKoIlZFYNRQK4aqrrpKepw0bNsDj8cDv98NisaBSqcDhcCAcDtforbq7u7F161aUy2U899xzePjhhzEyMiJDOhTu4aEkvfNZGFwuF/bu3Ys9e/YgEolg7dq1su5PNpuVEyqvWm/kfeDkh2xvNpul94lPtEbvp89QF2rVy6iSO/55QsxW149EIrj66quRz+fx5JNP4tSpU7Ldjcb8oISQs2fPytCs3W6XmkcjcK+hkR15SQ673S5tRSA9TrVaRSqVwunTpzExMaHt1gJQ0sHu3bvhcDhkuyijMhcAsH37dvT09Mh6cYVCQd4L5MX0+/2y6j2NdSrUPD09jWAwCL/fj3g8jscffxyTk5Na26ixbFhVhAqYuwC6XC6sX78eW7ZsQVtbG/r6+uDxeGSNIir+SCEimoCJZLndbkQiERw+fBjpdFqGh9TwjxGMjmnSNeP67+7uxrZt22SdJ7vdLgtlqlq1el5AOsYF5rwWVCPBOV+E1QQG9fPqNcWmc9BxSnAQQmBoaEjrcBYJ0sGl02nZ1JrIDoXe1deTjY1CwrRQk4erHnmmMU89O9PptA4NtQCki+rs7KwhyESe1evd3t6OzZs315DgarWKXC6HYrFYU5iXtI0AZN0yKtScTqcRjUZx9OhRHTnQWFasqhXBaLG02+3weDyyYBwAmTFCA5BPyDyjiHapJpMJa9euhRACJ0+exOjoKAqFQo2+RmN+EHF1u93weDzwer2ybAXZwuFwyL9polTRKMzKswDV59XsTPUxJ1ZGhE7N/quntxJCwG63IxKJAAByuRxyuZxeoOcBLaykl+Jja77wunpMJVWceHNvVjabRTqdRi6Xw8mTJ/Hcc88hkUggk8m08l+9qMAzY4EZ7SFtRNT5k9uSWjxRGynyQJVKpTkkisYezRtUXZ2Il87wW33gSST1IgX13qdGNfjzBJ5kdL68lquOUNEApbg8iR/Xrl0Li8UiM4f4AOW7VjoHhQMpTPC85z0P/f39+PnPf46jR4/KAo9kCDW9XqMWJpMJbrcbXq8X4XAYbW1taG9vl33ZisUiTCaTbE6by+WQSqXk9eXkZr6BQgkEqk2MPIqqd4tsz9/HswOJrPGCoFwATb+DwSC2bt2KRCKB4eFhjIyMaIH6PBBCoFgsIpVKySbG3MaU3WlkdzUxhEgT103RokrEXgiBsbExHDx4EIlEAr/+9a/x9NNPS6+GRnNgt9tlOx8AUqNGGZy87RMvbUP9MoUQyOfzyOfzcr4mG9M4JCJVrVZragimUilZc1BXTz8/UOfncz2HxWKRCSJEfMj+jdZarpnkm1yaD/jGW4iZeoXZbPa83BurjlBx7wLpI1wuF9xud80uhguYgdmbgBMtIl4mkwnt7e0QQkgxO30eLbAE7VI2Bon/qWCn0+mEy+WqKapJrwFmd7EEo3Ac9zxxD4RqF6MBrob/6DvwY+rn0Wt4mJCfj4f/qGUOAExNTen7YgGgSZM8EJyAGtmS2119HUc9DyMt1JOTk4jFYhgdHcXo6Kgmvk0GrzkFzLaMouxNXu8PmB2nVN5ECIFcLie9hrTJVb2PPNxPtqb7qF7ldY3mohnzHN8Q0eaHRx3UjGx1rjaZTPIeMSJUlIRCx85nKY0VSajUCVSdbM1ms0x/pgwy0mIY7XDVRZq3oSCPBe8xV2+B1otmfZjNZnR1dWHTpk0Ih8M1WZZ0nYlwWSwWWW+KyiGoE646ORoV9WzkJjYKEdnt9pr3AphzzxgNZLo/+C6KPKMejwfj4+Pae7kA0MJpsVjg9/trsv3U0I5KhuuFdLn+je9OaaGdmJjAsWPHEIvFEIvFtAejyaDrTnXnKGRHXmnyHHG5BYnP+aaXvFkE7iGmTTCvrs43PWqpDI3W4VzWQZPJJDfYnCzRfUNrN3kgeVkc+kw6DzBL4I2ygmnNobmB5D/UNL3VoeEVSahUqITKYrHA5/PJproulws2m03ueAhqOIjOwRfNSqVSU1aBso7U92k0htVqRV9fH6677jpZsI8mWGpETaTGZrOhUCjMqSEFzHoQ+S6jXugHqBW40yRrRNBo8JrNZpmwQAOOL8pqejcNbrvdLgdntVqFz+fDxo0bkcvlMDIyoifzBaBarSKdTiObzcLhcCCVSkmtIhFVns21kPPRfcVF6bxw7NDQEB5//HHE4/E5ui2N5sBqtcrm1dVqVeqiiDDTgkmSDBrXNA456DU07inbmnumeTYnt72R1k6j+VjsmkhSj/b2drk5pbmWvEpUo5BkOE6ns8YDBdRuqrlsg37z5BROqCqVCpLJpHzcSg/1qiBUwFzvg9o53sgbNR8421b1GOrrNBqDvIahUAher1eKz7kwkLtl+bXmhKpeiPVcdkXcvvz+qKezMrI9/378mNVqhdvtlrsvm80mSZq+X+qDF3WtJybmoX31eaC2DpWRN5t2u6VSSWr1tGaqdeAhP+4d4MSJwoFcy1gul2XIj8YYL4dC9ldJsOqZ1h6q5Ue9Wn98M+twOGqiQeq6zVsS0ea3XvRArTnHJUB83eHerEZygWZhxRMqIx2FxWKR4mdKyVcNxD0cauiAwBky9RfjDVbVid5Iq8GfvxjBb2bqk6g2MuaTKw+j0S6EQIsobz3Dqyvz1/HP59+Dzk2fy4/xyVpdyOkzaKerhhj5DrlarUqvlcvlwoYNG7B3716k02mcPXsWU1NTmlTNA3696W9afIH5C+gaeZGJqEejUQwNDcm6U9xrbRTO1zh3mEwzzY/XrFmDYDCIYDAovfzkCeDEiC+WhUIB+Xxe6hb564rFIszm2ebmRiFdIQRsNhtCoRDM5pk+rRqthWonIQQcDgcikYiMFHk8HinnoHuA2517l3hfTXKO8CK9/By0TgOYwwd4xAmYW6OOPJ/8fK3AiiRU3LtgFO6heidtbW2ySrrKVlUBs6q94IyaDOV0OqU7WU+8CwO/YUnTRoSKSC3/IVCYwGaz1aS18tdQhhAwO5DrkWO+APPQD52Th5L491FDwSqhovtEJVQOhwNerxfVahUbN26UNY4qlQqi0ai+bxYAmjyB2THPK2IboZH3mHaoiUQCBw4cwNTUFE6dOlUzyepx3VyYTCZ4vV709PRIQkXeaS40pk0MyTVsNhtyuRwA1HijuJ5K3SBzLxZlB9psNoTD4RqPsUbrQHMkX1+dTifWrFkjoxOU3U2ZnlTBPp1O12RZq+s7he95U2we/iVSRhsvvtkmAsd1WJwXkLyk1R0SViShAuavQ8F7gi10ENWbRFXiZTTx6oE6P0qlErLZLICZelN2u71ml6peQ3Lp8jAfEShyFfP3qkSZexHVx/R7Ph0d6bXUzzEi8+pz3OOlM40WB1pkKduTL5x0/FzHXKVSQSaTQTqdlhotFUYeaI1zA83FPKwHYI43gHs21LHCs7JoLPHX0uLKn6N7xChhRWN+LHYMmEyzPVp54geVzPB6vfD5fDJRrFwuy4K9pVJJeiOB+ddVOk73gxpxIn0U6fPo/qB7R01aUOfuVmHFEiojcNc+9Yzyer0y/spDOUYlE1QPB4EmYHJBA5A3Ah/0enc7F7QwFgoFHDlyBCaTCYFAAHv27EFfX58U/Hs8Hlk9mXYW1KeLT5bcHcwnTtUW/PNVTxW9jzwgqo5L9VapoQm+6yGvBy0WTqcT09PTyGazGBsbQ6FQwMGDB/H000/LFH1NquZHpVLB5OQkhoaG4HQ60dbWJrOAznXSI7un02mcOXMGY2NjSCQSNfYw8m5qnDtUz242m8XExIRMVy+VSnA4HAgEAnLsjI+Pz5Fj5HI5ZLNZuWiTl4I8USaTSday42OWxmirxcYXGlRy0Wg8kI3tdjvWr1+P7u5uAJB1xEKhELZv3y7DfsFgEFarFfl8HplMBuVyWUYsyuUy4vE4MpkMLBaL7PVI9wuRMFoXKFMUqCXihUJBJjxQRISIG5E8mrPpuwOY04C92VjxhErVQAEzF8jtdiMQCMDj8dSIGY0WWKAxGaK0SjIgd2tqNAZd71KphMHBQcRiMYTDYXg8HtlpnkpckK6KBgsNJO7y5xWXCdRFnlzC3Iuhkhfu7eK7V06y+U6GdjqciPEwJpEp7jmrVquIRqM4ffo0UqkUjh07hsOHD+t2JosAhUZPnz6NYDBYM5bPBdx+uVwO4+PjGB0dRSqVqtkVa89U88HD7Pl8XpanoBYyPp9PhgLT6TSmpqZQLBbhcDjgcrkghEAymUQsFoPZbEYgEIDX6wWAGpKkeigA1GTg6o3M4rGQ8cB1xt3d3di1axeEENIJEQqFsGXLFkQiEbl5NpvNyGQySCaTshcjVcaPRqPIZrNys03rQKlUQqFQkNnhpLOjOlLcw5nJZFAsFuVa4XQ6UalU5GeRBIXAM8pbiRVPqBaKhe5q5wslAnNrE80HHRaEdAEXCgVkMhlMTU1hdHQUbrcbAOD3++VuhBdOVcN5wNxMPyNbcD2d+vxC7VbPXuQ9Iy0IhQYLhQKSySSKxSImJycxNTWFTCaDbDarJ/RzhLphUjdDixlTnCxTlp+unt1akOaJFk7yFHD9i9lsllmW8Xgc4+PjyOfzsoFytTrTuDqRSEidjMfjQbFYlP1V1agDjTUKN2azWWQyGW3rFoCSb9xuN3w+nyS7tCn2eDyynhTXoPLNMZeAUOkaALIeIWmf+KYXqJ37SWvLxzndZ7wkAr2Ot0AiNNJgNgOrklDxGGojjQ49bwT+PGmyyJvB6xQZfXaj73WxQoiZqtSVSgW5XA4///nPcfDgQQQCAWzevBltbW1Yu3YtrrnmGtl+hqfQ0y6Eh/bIpkbi8Xo7DR4OUPVZfNFWdXN8kFqtVrS3t6OtrQ3FYhHRaFTWm3ryyScRjUblwlAoFJBIJHS44RxAng3uQeT3BbexqmtUxzX3OhKppx20ERm/mMdqM1GtVnHmzBnk8/maelROpxM9PT0Ih8Ow2+2IxWJwOBw4e/YsDh06hGQyKb3AwMzCWiqV4PV6ce211yIUCsl2QUNDQzVzgBqtAGY8nqdPn9bjcIFYaOjbbDbLudvn82Hr1q3YtGlTjQeSEnTUsWyz2RAMBuV4np6elqG+QqEgiRV5j8jDT4SI1wwEIAkb77YgxEzDdTo/eaiIH5hMpvPaZ3VVEiqgsReJL8gLuZCqDoCMyrEYj9XFinK5LBuXJhIJAEAwGEQ2m0VnZ6d8DW81oF53NTGA695IF9VIZGhEoI1CwEbgn+H3+9HR0YF0Oo14PI5yuYxYLIZDhw7h9OnTyGQymkgtEWp9L6OQDg/fchiRKtqxEkGnnnLag9w6CCEQj8cRj8drnvf5fDU6p3Q6DYvFgqGhITz99NOIxWKG5wuFQti5cyeAmcbWR44cwdNPP20o/dBYGha6Nvp8PvT09MDr9aK7uxsdHR0AZprCU1V8qjFF4nHyXlG5gnw+Lzc3RJQoqsGTgui3WjoHwJyCzHQOTqL4Y5pDzldjZGAVECqjRVOI2a7109PTsNlscLlcUtTG0/XpHPy9tGjSMUqxtNlssg8dxWSJHevJ+NxQqVSQSqVgtVoxPDyMAwcOYGJiAoFAAG1tbTVVlCm0xkMFwOziqQqWjUJFRkS7kYeKgxcnPHv2LJLJJDKZDAYHB5FIJDA0NCQzx/hCrbF48MQSEqNz72Q9cTonUvWIMnmcKcWabLXYEKLGucNqtSISiaC3t7fGy5tMJg1T16kGICWv8ESQRmSKOmYAkONVj8tzA+mkeBNrq9Uq5Rok2aB5mc/dvBUMkR1aW7lO1WKxIBQKoaenR2qqKPGAh+dps0UhXQBSLlKtVmWtM1q7KYmMNuBciM7Xj1ZjxRMqYO4ulYSnqVRKCqDb2tpkRgFnqHRxVcbLK6iSa9LlcqGtrQ1tbW0yJs9FrTrLzxhqrSaOfD6PoaEhjI6OYnBwEAcPHoTT6cTznvc8vPjFL0YkEgEAOXlS+wGgNuOPh4fos9SYOz0mPZMaJuKEir+e/gci0plMBr/4xS8kgRoZGUEikUAul5OC2npZhxoLg91uR29vL3bs2CHd/XRdeSIBwegx10fQ60n/5vf7kU6na9rbaJw/uN1u7N27F9dffz1OnjyJ73znOzh27BhyudycZrUkRA+HwwiFQohEIvB6vbK5er3512KxoK+vD5dccgkAYN++fTh06JD2Gp8jnE4n2tvb4XQ64Xa74fV6YbPZ0NXVhc7OTvkc73dLaygV7czn80in01K/RKAx6HA4sH37dmzYsAGZTAYnTpzA5OSkDNNXKhVJnPi5gVlCJYSQ2jv+2UCtN4p7y+ie0KJ0A9CukzK/SDRH7kejRZS/l2eVAZDZBi6XS/44nc6Wp1heCJhvxz89PY1UKgUAstAilVa44YYb4PP5arwJHFwDpbqF6TjP1jMqmaHCSDtFCzF5KLPZLEZGRrB//36k02mZzafRPFCBR9KpxeNx5PP5OV4klUgZHVNfQ5sk2rkuND1co3mw2Wxob2/Hhg0bkEqlZOYlL+LL4XA4ZA0jyghWbUfg5Nnv92P9+vUwmUwYHBzUHsglwGq1wuv1wuPxwO12y8zMUCgEj8cj7cIrkAOo8VCZTCaUSqWatZPPzRaLRerq4vE4JiYmapwW/HVqgWaebU3goUUhRE2GOM3tapFY9f1NvYZNPVuLoLp8K5UKYrGYvOhHjx5FsViUhvV4PCgUCoZ6HN5HiDwe+XxeNrglb0Q2m51DqPRkPBcL1SepIHdvLpeD2+2WGXVGQmQjATJ9nipgp8cqseavoUVXfS+fJPL5vFzkW11d92KB2WyWkzWFe0lcSiEBoNZO9UJ16nH+XrfbLTV71WpVa93OE+jaUy0is9ks6wjxBCLeGoq8DMFgEH19fTK77+TJkxgdHUUmk5nzOTR/qxnDGguH0SaD1k7qQrJ27VqZZECbEwCyLhQV9qTNC2VGk2eRi8t5OxmXyyW9Sm63u6YwLInZ+ZzMQ4y8cwb95hrcerpKHfL7f1A9CQBkF/kzZ85gfHxchg/Wr1+PK664AqFQSJa5VydSvushQySTSRw9ehTZbBb79+/H6OgootFoTVhnIYLIizV76Fz+51KphFQqJQuw+f1+Q0KlDgJ+L6ghN6qOy+3A7cbPRRM5xfrpOO104vG4zBrihEp7O84dFosFnZ2d6OnpQXd3NxwOB3K5nAzRqloH7qHkMNJE8vf6/X5s2bIF4XBYZn9pUtx6WCwWtLW1obOzE52dnbBarchms1K8XKlUpE6HijxS2vzatWvxvOc9D2azGWfOnMHg4CDi8bhMbgFqQ33UN45qFhnNBxrGUCU0dF3tdjvC4TAikQg2bdqESy+9FB6PB8lkUtqBakMJIeRmk7SQVCKH5kzaMAshEAgE4Pf7YbPZZDjX6/XiyJEjcDqdEELA7XZLTRQP49Fv3vyYHhPUyAMPSebz+bqb82ZjxRMqYO7CRRoqYCbuOz4+DovFgmAwKDUU3A3Id7lqZhEAmcGVSCQQj8dlhV/1O3BDadfy0lCtznabJ1KzkGtqJFBVBcnq5xjZjZMorrei56lVgiZNzYPJZILT6ZSFG2kXyzdN6n2gblKMElTU4xQ+qlQqcLlceqyeJ5B9fT6f7KtHHkhVr8jnYJPJBI/Hg3A4jGq1iqGhIUSjUVnbyuhzyKtBmyjtgVwc6oVSiaS63W7ZiYQ6Q6jN5Wnu5gWX6f0ApHcKmK1lRQlkbrcbTqdTEiQ1e5vAn6PH3OMFYA6R5g4TtfyKimbP76uCUBH47pUuIpEhi8WC7u5uOXjp5lCzh9Sq1ySInZqawsTEBGKx2Jxmqqq42eh7aSwefFfJQza8h58KI9duveu/UAJMxzjJm2+gaaK1eFitVnR1dWHbtm0Ih8Pw+XwAFl64VQ3f19NIer1erF27FsFgEENDQ3N0FxqtgdVqRWdnJ7Zu3QqPx4NUKoWjR49iaGhIboBpjJFQmGzJizFGo1GMjIxIzxYJkYk0UUiXhMmDg4OYnp5GPB7X43IBqHeNCoUCxsbGpK0oUYc8TQBqtFQejweBQAA2mw3FYrGmhhwAqUemtZi8WuPj47JF0fHjxzEyMlKTtV8oFJDL5Wo8VESiiYDxLFAC92CZTLWNlalRMg8tLiTqtFisGkJFuhd6rJKhUqmEnp4eaViqjUHuRxrEPFOA0jRLpRJGR0dx6tQpTExM1JRKoLCgJk3NBb/+XEvBCVUj/QxBDeOprzPyaPBzc/B7pV74wOj7aCwMVqsVa9euxaWXXgqv14tQKFR3g6LaTvVCqYSKPBVCCPh8PmzZsgWFQgFHjx7VhOo8gex7+eWXo1wu49SpUzh+/DjGx8dlpXSqFUTgtqQw0ejoKI4fPy7nBKpbR3OFx+PB2rVr4Xa7kUql8Mwzz8juBTrstzAYjbtcLofh4WE4HA5MTk7izJkzsgI6rZuRSATBYBBerxft7e3o7u5GqVSSGbVc00Qthyj7L5/PI5vN4uDBgzh+/Dji8TgOHjyIs2fPyvfROCZwzxR9B+6h4ms0tb3hAnk6h9PplJXbiVAtZOO8WKwaQkXgF4mr+En8SL9p92NUCFI9Bw1yeq8qjuXeKaPFlL9eY3Go551QtVBGx9XHRsf5c/wzjY4RyWuUJWj0fo2FgSY2yiSi0ECj67kYjySBKnbTYz0uzw9IbuH1eqVsIpFIyPYxBK6Fol585KWiTQ0lBPENMP8cmtcrlQqy2aystK5x7qhWq9IhwfvsOZ1OKTjn66rdbpf6p0qlIvvwUbIYr4RPa2ypVEI2m5U1w2itBmZLMKgyHR7y4z9EpigSReFGIkxA7b02X/ivGVh1hEoFGapQKGBychLPPPMMEokEAoEAIpGIZK9GAjYeE6afpSyWeqFdOGiHQJkiRt6letqZesSWh4PnC/XV81ARsdY73eaDBOMkSLdYLDU9EFUNxULD7XScdpy6f9/ywGw2w+v1IhKJIB6PY3JyEkePHpVVsknTSuOzvb0dvb29spF6MpmcU6eKPBfAbCHJXC6HU6dOwW63S88ILeja7guHOsdSuI2IKa2bHo8HLpcLANDZ2Yn+/n54PB50d3cjHA5jYmICExMTOHv2LDo6OrB161Z4vV6Uy2VMTEygUqlgfHwcExMTyOfzmJyclMkIa9asQSgUkpsgrqnimi5VrM5rVAUCATgcjpo1fXx8HKdOnUK5XJbkkIjYQjbN54oLhlCZzWZEo1EcO3YMk5OT6OvrQyAQMKxdwcNMnExRaq8elK0HXXu65nxH0cgzpaLe640IlSpoNyJUpPHQhKr5IEJFGWC8155RmE/VTHJipZJtvknS43d5wMXlpVIJk5OTOHbsmJRrUJFOsk9bWxv27NkDn88Hi8WCVColvRZqEhEwew9QaMpkMslMwVboYS5UqGOMrtv09LTMiKM10Wq11pRH6OrqwqWXXio9zVQIeWJiAidOnIDFYoHb7UY4HK4hUUNDQzh16pT0UNG516xZIzM/qYQC9zqRgN1iscjCy0T06LO6urrg9XqRz+eRSCRQLBZx8OBBSahICE8hxVaE+ggrnlDN94+T24/HX9WfSqWCUqkkGS8XIas75HotLzSaD7UY57m4Y+uRr3N5L7meW7V7uZjBd52tGmP1wkL0oxfd1oAEwryyOQ/f8ZAN3+hYrVZZt4qyaqnBOr1G/c3nbp7UorF0UNiM6kPxosvALOFKJpMoFAoyxBeLxeZIZTgRBjDHS+R0OuVv0miR2J0TKqfTKVtT2e126aEiLxXVybLb7dK7Ru1seEYij0AtZc2YDyueUHEYTcLUNsbv96O9vR2RSET2ByM38NTUFKLRqMwEjEQi8uYgFzNNCJxwabQO5AmirDpgfvK81EFAduX1pniFXgpB8kldY+mg7BubzYbp6WnkcrmanS9Qm8FHUBdMI6+UCvKGUIif2miQPlLXo2ouzGYz2tra0NXVhWAwCLvdjsnJSUSjUamD4ptengXmdDoRiUTgdrsxODiIwcFBZLPZmtpTBE7K+N/0HWjjrMsnzI9686jX60Vvb68UnK9btw52ux3Dw8M4deoUcrkcnnjiCYyOjkovFm2KS6WS7MNIY5P6ddpsNvT19WHNmjUA5hbo5Josteg2J2ZUogGYncttNhvK5TKy2SxGR0fx61//GtFoFFNTU0in05LoUVeVcrksnS+t8GavaELVKOxDv6lcfjAYRCAQgM/ng9frhd1ul4t2IpHA6dOnZby1ra0NwEyBUCJUZNBzIVSNBM8axuAhv4WksNZbPI2e51XQVfCJWc0iLJfLKBQKcvBpNAe046RsLdrZ8p6L9cDtqyZ/8Awx9bUkZCbhLKXYa0LVXJhMJlnl3OfzwWazIZlMIplMGhIqbiOn0ykb7xYKBQwPDyOfz9dtcKx2NwBmq64T+daE6tzhdrvR29uLcDiMdevWYffu3ZLkjIyMoFAo4PDhwzh8+DCq1SoymQyKxSLa2tqwd+9edHR01DQk5o2Lw+Gw1E36fD54PJ4aEsyz9Thx5pKcTCaDbDY7Z06gdWRiYgKHDx/G6OioJF/0GUSgqLis2su1WVjRhMoI6uRLcVav1wuv1yv7QZlMJlktPR6PIx6Pw+FwSDEcMOuVqFQqyOVySKfTyOfzDRdjI+gsv8WDX3t1kqwnQq4nTF9oxp/R4szBtXUazYPaesKo+v25jJ16kyHf9ZJ3jESsGs0HhV7sdjuKxSKi0Sji8bgUN3MhOmUC8vASACnLoFAN3SuNklM0Fg5Vo8g9QVQaIRwOy4rmJEIXQsh+fuS5pznbarVienoaoVAIfr9fFuvN5/OyfyPZk3uteMNr7iXi35HGL+/TShmBdB6TySSTFKj4KG2IgVmyzUFzEfeUNhOrilCpO1JgZpfT3d2NtWvXore3Fxs2bIDf78f4+DhOnDiBXC6HkydPYnBwUNancTgccjdDPdsGBwcxPDyMQqEwp9XIQgex9k4tHBSOpUGqal5UAblRgUeVyPLnVS8VTeqqvo5DZ/k1H6SVIS2E3W6vSadutBmpN57qEW3+PJ3f5XLB7/dLdz+1wtBoDkwmk+zNaLfbMTExgVOnTiGZTCIWiwGYsQtpWJ1Op2yO6/V6Zegol8shHo+jWCzK19Hcy8ei0aZL27M+uHaNbyxoLLrdbqxZswaBQADBYBDr16+H1+uFw+GQcoxwOIyBgQEUi0UkEgmkUilYrVYEg0G43W6Z8ef1emE2m3H69Gk5/3LSQvZUQ3403/ONNW+8rGbnkRiddFNnzpxBIpHA0NAQYrEYMpkM3G63JHgU7gdmKrZ7PB5JCptNqlYVoSLwyZf6wEUiEdmHyOfzyQyDVCqF06dPY2RkRLJsu90umTNNsrFYDBMTE3M+pxGh0gN54VCJsBCz9cPoplZ3Jup1X2hotZG+Ru3NqIrSaaBpQtU88BoxaqHc+bxTix1jXIvFhaskftVoPogcWSwWjI+P48yZM8hms8hmswBmwzLALAGjits83E4eDVrsgbkJItpDtTjwNYwXtqTsOb/fj3Xr1qGtrQ0+nw9dXV1wuVw1c6HL5UJPTw/K5bLcEFH/XArlUemCbDYrRepqHSqjrhg0J1DEgkDlE0iGwzfb9P3J05RIJDA+Po5YLCa9VCRWp9cQoScpAA8rNhMreoZptDCqr+PZH+T+m5yclIyaF/zkLkTKDODsWCVS50KcNNlqDJXccBh5Irnuif6ul+XDB4xak8roHPSjQ0KtAYUWeBgHmLs4Gi2W8y2g9bJ2+Pv0Itxa8HFIRRup6bU6hzocDrnpdTqdsuZUuVyekyXGQ/V8Tua25t0z9PidC54xR1lyFAbn144IDa/lpW6AiQxTCQXK2hNCoFAoSOJi5Gmic9APZXWrNlfDvdzDZlTYs1KpIJFISOcJlVdQN0/0v/JCvxcdoVJhFK7hWglgNhZ/9uxZHDx4ULLWXC4nNVTkmUqn04jFYjWVfGk3XY/MaTQHqiidoMa9aYBxUauRiJ3/zX/TwFUHMP9tFDrUaB5oR0u7USMd1WKwUI8xTei0q9XEqjWghRQAotEohoaG5Dysjlm/34+tW7ciEonAarXKBsgkNlaTRrjGhu4b7u0gwkDiY41a2Gw2WeeLCBV5higESNe5UCggkUjUvJZfb7PZjEgkgvb29primkIIZDKZmtqO3CNmMplqavtROQ0idkDtWOU9+XgbGXqeb86KxSJOnjyJI0eOAJghTOQt47ot+j+pO0OhUEAqlWr69V7xhMpokTNa8LiHiph2PB5HNBqVQjpelZuMSqnUKkFr5AFpBB3TXzjUa1VPR8MnWvV18wnRuZeq0YKqyVTrwDc98xGpxZIesvVCNkCaULUG3OuQy+WQyWRkmw9Vy0iZ1uFwuCbLeiG61Xrjn0ibtu9cEKnhpUs4eQFqMySLxaIkOarOEYAMnwOzgnIiz6p0g6+lqlyD1x1U7anWg+Tn4iUVgBkHSiqVQiwWk6Fn3jiZ15ikzTl5tlpxvywboTqXf8bIFQnM7lyoOJjb7YbZbJZdq2nA86rcJISkzD5VnLaYiVp9nx7YCwPXR3C3LidRCykCuRCipNqFEyge8lvI52ksDo0SAYxeu1DyS683ep6O0cZJ1yhqDYQQUqxMukhgbt0oGutU5sbn8yGZTGJoaAiZTAbRaFS+jzbF3LNF51DnY/5avRmaC9KmkUepUCjUzKulUkmKzKmsATBbdoQ7GrhtuFyCe5I46v0dCAQkwSNxObc1ryPHmyBTYku5XMbU1BTOnDmD4eFhJBIJ5PN5ALMEijJGiUhx0g9gTmSkWVgWQnWuC9Z8IT9iqB6PB2azGZlMRsZVLRaL9EaRGJqYLfWCUr/fuX5Po1i/Ri3UG1wN6akxc/4eozAdf6wusrz+jdH76LlmhKM05oKIzXz1xhp5Iuc7v6p9pPADeasLhYIOCbUImUwG4+PjACCF6DTuqJgnXXu73Y5QKIRIJIJjx47ht7/9rQz70WJKnhIO2hCrGyTSwtI9plGLYrFYU61evX5+vx9+vx8A4PF4ZEiQ14jjBIxsoGqbeP0pAvck0W+r1YqOjg7Zv4+KafOWX2phT5qX/X4/fD4fEokEjh07hoMHD2JsbAxjY2NIp9MQQshMQxr39Jm82jttsi4YQkWoF+JphHrhPtUlSAOQV1blLJgGealUWlBvn8VM7hoLgxpSVQefOgkYoZEnsR6xVc+nLsZAawSLFzu4t8GI2DYD6vk4sdJjs/mgeZYWL5X00G/epJ5+KpUK0uk0kslkjQ7WaFNFz6nheyMt5MUKfr2N5i9+Xel15LnlrVmMzlvvmhvNl/XGNn0vh8MBj8dTQ6hUQTtvkkz3BmUmUmuZZDKJTCZj6KHkaz1lEaoa2lbcL8tCqOqF7hbyPjUzjC40MdNkMimr7aptRejmIT0VhQQb1R1Sb55G+i2NhYEIbbFYlJ4DNdymxsuNJgvucm40QIxCQfxz1MeaTDUXpVIJmUxGliupF6abj9RyPQT/24h4c+9UKpVCOp1GsVi86BfdZkOIGUHy2bNnAczYmrpU0CLtcDjQ0dEBp9OJzs5OmYXN7cG9CDRPu1wurFmzBsFgEOl0GqOjo8hmszWJK3runUUwGAQwE1Lr6uqS3QGMwlxkG4/Hg56eHlnMk9oH2e12mcXHCTH34BtpIut5mEmSwzV09JzFYkG5XJbeSZ5Ewr2bPPRbLBZlk2U6F0WoqB0NJSvw70n3WKFQkM3Zm4kVL0oncA8TBxX5ourosVgMJpMJqVSqhlDRBEt6CootUwagkbtYDS3pybh54KEYygpRhYjzDVhuHyN9Bb2eXqv+pnNRWjHpALSOqnkgjU21WoXNZpOLKNescaj3AYeRJkOtsk+voQUjl8vJVii6tljzIYRAKpWS2hySXpBAvVQqwev1Yv369bLXKrURofuCPFdOp7MmekA94DZs2IAzZ84gGo0imUwCmPVgGIX8L1ZEIhEAwIYNG3DJJZfA7/dLYkshNfICUSjQbrcjGAxKTxE1uOalCxqJxNVrrla45xpZs3mm2XEoFEJ7e3vN+yqViizyzLMDyRsF1M7dnFBFIhEEg8GazTAv2slJJWmy7HY7kslk02vTrQpC1cgzRAshpUPysggLDeMZeSQu9sHZanBdjVERz4XASDM132uN3sM9HJpMNR/cWwGgZoKeL5xL4F5F/hx/HbcdDxE1CmdoLB2kSeGaR7740UJKjXJpM9WoryKRM0oycjqdNeel12jMgrLvqEq4z+eT5JQSBmh95F4cahtEZIOH2wAYbjJp7Bp1PGhEqAg053PvmTpHkIeK7i36/hTRIBE9EXh1g811uuTlIo8YAPk/NxPLJkpf6GDgOhi+KJLx3W43QqEQ2trakE6nMT4+jlwuh2g0WpPGycVtxICpLUWxWDR0I9fT4GgsDvx60rWkkB/tStT493zCZfX8/KeeJ4JsrLZDoN+U6ULF7zSaA5rQqtWqrKrMPUnA3AmZHjeCOsFTWILuLdqFa31Na8GvPa+OTfax2+1ob2/HmjVrZBPbcrksS9rQYp/L5aTH2OFwSMF0IBBANBqtOS/N5UZRi4sVmzdvhslkQkdHR42niUiD3W6Hy+Wq0RfzBsYUglO9UlzfBsw6IIwiCNy7xHVM9Hh6ehpTU1PS68Q31fSYzwGURGYyzfTmdblcyOfzaG9vx5VXXlmzHlQqFen15GNe7RdI0qCLrpcf9xqohIpaWbhcLhmTzefzmJqaQjweRyKRmEOo6IYhjxaFCjOZzJxJwCgWrHdEzQO5nYvF4pzsK3UgctSzQb3YPR9I3MbqZ/JwBW/aqrF0kDdyenoadrsdPp8PZrMZ+Xy+prAggBoypRImI1JEcwPX23GNZKvSozVmwedXnq1L9rPZbAiHw1izZg0mJydx+vRpWVSZ7E4Lp8ViQSAQgMfjkYTK5/PB5XLVeKjoszghv9hJc19fHwDIKvQUtSFwBwHXn6prHvc+8SiQOh55YU8CaeEoHE/zOO+dF4vFkEgkAEDWhuSfa6SVBmqzsNva2tDV1VUj1SgWi8hkMnM8n0aC9Wg0isnJSWQymSZc+VmsCg+V0XPEhIkgkfGpJAIP+RkJnMkQNAEYuTPP9X/TmAt1QVxIYoIRMWp0XqOw3kLswQfcxT4ptxqqR4EmXiM9lArVU20UtuXhBvU1Gq2BOk55Nif3WhF5puKfPJ2fv97hcMDn88kaRZQVaDRH6/l2FrRJ5AWsFyJnMHIiqOJzow0Of2w03riniYpqcnCbN/JMq/M7fT8iUvR7enpakvl6EQ9Vv9nsSMSKJ1RGMJvN8Hg88Hq9CAQCcLvdcLlcACBrS2Wz2RohGlV4dTgcMtuAniNGrX4/buTF/n8aC4fR7pIWWKNwLz9Oz6kkiruZ1c8gu/JkBfqt9TatgxAzPb/S6XRN4T6ucZjPG2xEmulvmljVdicarQX3ZpB3kMahw+GAw+GA2+2G2+1GqVTCqVOnMDExgWKxKLUwFIKy2Wzo6enBxo0b4ff70dHRIRsp8wWXFkQaq9pDBZw+fRoA0NbWBpfLJa8nrW/khABqSZLRD8diri2FbykaRC1gSDunbnIdDgeAxsko/DvQmsCJE18n6v3wiAfpsuhzm4llrZTe6OI1AokcvV6vFCxSOmQ2m0U6nZZNHlVvFu8LR5oZivku5DvOZ4CFekU0aqG6oY3Ep9zjSL/VcI7RLkrdrfDXcLc0kSm9ELcGQgiUSiXkcrmalGaTySSv+UI2W+qOmt7HQxN6kT1/4IshZVEDs14EWtTtdjsqlQqmpqYwOjpa06yXF/iNRCJYv3493G43AoHAnE2vuvBrO88gHo/DZDLBbrcjn8/La0QkintzuNaNR2i4h1ctOwQ07kxAx2kOpTWXJyvQa/iYVUszGJ2bwobzhXhVEgXU6rS4lovmn2ZiRbaeUV3A3FtBz5HXiZfLp6q5pJ0wcjurbkWeUsmf54N2MSRJk6nFQR1Ai71+3KWsYr5wotF7tf1aB5oUabPDhcUqFkKq1FAATc7VahX5fB7ZbHZO3SuN5kMlN9VqFVarFaFQCG63G21tbXLDW++93IZutxvBYFCKpVVvoybLxkin0wBmazO6XK6aelK0XtL6yRMJVFLDrzkREqCWDHEYzaEOhwMulwsmk6kmg08lVCqx4ucw2vzSOeg4kcRyuSxLKfD7QyVT1WpVllKhptzNwooM+XGDqdonAFK42NbWhmAwKD1MhUIB0WgUExMTSKfTNbseVW8FzKb7qiEeI1LFn1/I/6fRGI08gkZhvfmgvna+SZcvAPXChxrNRbValX3bKJnE7XYDqD/mFkq2uDekWCxibGwMiUQCiUTCcLLXi3FzwTeo5XIZbrcbO3fulKG7QCBguHnlwmdgJgTc1dWFbdu2AYBhJwta5OnxfOGiiwUnT54EMJMEcOLEiRrCRJ4rIrbk8SMROZEqnqHHiYlKqDjhIpvTcbIN94KpczOB24zb0Khkg3qc5glOAuk78/NyIk73YD6fx/DwMGKxWLMuP4AV2HqGYCRY45OuzWaTsXVuNNqZ8urn3MWpXuiFLrzzfV/1e2ssHPXCqud6LVV7qudRbWp0/GKfnFsFSo8HIIvxLjaszl+nhvzMZrNsaUIFJ1VPlkbrQIuWxWJBe3s7+vr6pF6Vvwao9RITzGYzvF6vLAAai8Wkl1Ed0zxMrOfdmZBfI/AQHDkXyHPFC16SNk319AC19Z1Ie0qEipc/UMfcQu3DN1R0f/C2Rdy5YlS9HaglWxyccBWLRUxNTa3+LD9+oRb6etX7QBeXl6enXkCUQcLbGvCLrxIqddcEzLJizszpPI2wUA2IxlwyW++aGWV/zfdaumeMNFn1CBSgmyO3GlxDRZM2/VbH5WI2L+p9USqVEI/HEY1Ga5JT6DV68W0uaO6lx8DMWCJReT6fx6lTp5DL5TA0NCTbfdD7aLxSrzZKNiqVSkilUgAwZ1Gn4o40fxvN4xq1UMN3NP7IS2+xWFAsFud4e/j7ubeHjvMaUmp4drFQPdU0PwCQNjciXUahQqM5hCcitaJZ+rJ4qOZbtLgxeHxX9VCRWJEm6mw2i2g0KguH8YwAImBcdGcU8uPplGr670IIFX+tnrhnwO2mul/5AFfB9W7qtTXafQCQtWnoPSphU3UY/PvxUhqaFDcf1WoV6XRaFnTs7OysESQDcxMIjGBEuPg9lslkMDw8jLGxMUxNTc0p4KfDfs0FzaHAbGjHbrdjzZo12L59O44fP46HHnoIR44cQS6XkySJPBwmkwkejwdutxvhcBidnZ3o7u5GLpdDLBZDMpmssdX09LRsdcMXcG3PxiDHg8lkqslyU38I6vWs9/d8EYFzgVFkqF60qN5cbfQ8/84XDKEiLGTRUt369BwXmdOgqlQqUpSuxlK5l4rAB6Ia11VvsPkIlXY9N4bRtVE9gI3eS6/nf5/r5/LPrlcuQ6P5oE1MPp+Hy+WqqZNDx1V71bN5I21VpVJBJpOpyfbVaB24boaHY6i0jdVqxdTUFIaHh2teQ+8jL4PD4ZClbCjt3yhpgcauyWTSnqlFgJMJjdZgRWf5NXoNr8hKYQSquq16PbhbkE/eVKpezQTiIaP5wkxG/49ekOdHqVRCOp2GyTSTTGDkpajnhWi08NbzQKmTiOqpFELAarXKmmZqlWGNpYM8VJOTk1LHYLQrrkeAjaDuOIUQyGQymJycxNjYWE1yCqBDfq2Ax+OBx+OB1WpFMBisqR+Vy+VQLpfh8XgQCoVkdwuTyYRsNotkMgmTyYTu7m5s3LhRNlA2SrMnmM1m2O12Kfcgu2svlcZyY8Vl+c0X2gEgRXUkpqNigdTd3KitiBGhKpVKsps11+nwrIL5ND6L+d80ZlEsFpFIJFCpVJDNZmsEjhz13Lb13Mw8js+f5++j85Lrm3bXdE+l02lNqFqAarWKeDyOkZERlMtlWSuHH69XRoFD3fzQe0ulEiwWC5LJJEZGRjA8PFyTnGIUetZYGsxmM/x+P7q7u+F2u7FlyxasW7cOHo8HgUAAqVQKpVIJPp8PnZ2d8Hg8sozCyMiI1F719fXhmmuuQSgUQnd3d000QbUVNU2mzTTXwmq7aiwnVkzI71zCOfQ+8jRRpkEj0I6GOlcblU2o9z0X8t30gF4YaAEslUqLalLZKF5vVBVdY+WAxmqhUJBheaCx1qHRudRxSfan9lNqCyqN1oBXxfb7/Whra6vRt1JtKb/fX+OpSqfT8Hq9AAC/349QKIRgMAi73V5DgkkDS819qaizxWJBPp8HMFsCR4f/NJYTy+qhqhcmm28CnJ6eRi6Xkx2j3W434vE4xsbG5jRGJLdwoVBANpvFqVOncODAAUxMTGBoaAhnzpxBJpOBEEL2jVqs+I1/Z+2dWhjIJhaLRXY9pzYkRIjUKubqNebeRKC2yKca+uM/vPIv1SijYm+pVApjY2PIZrPn+5Jc8KCQ38TEBGw2m9Q3cQLMF0Q1KYSgpkhTtlcul5MeT9osLVbwrrE4kKefGsyHQiFs27ZNFpSkJI9bb70ViUQCDodD6qqoQTIArF27FmvWrJFEjEKFfr8fwGyySSwWg8/nQyQSgcViwfDwMAYHB5HNZjE8PIzTp09rUqWxbFgxGiqVuDQiKNVqVcbfyWXsdDpx9uxZ2XCTg9Jzs9kshoaG4HQ6EY1GcfLkSTkAhRBz2tAsJnyn6ns0GqNSqciQz/T0tCzKyFOgeSsYWhw5ieKV74G5oRxOxFStDddNkQA2k8lgZGQEk5OTmlC1AESoxsfHZXsMI28ib3nBk0vUzGCyv8VikYs6/SbvFIcmUa0B6SFtNpskVFarVXr/I5EItmzZIudF2rTy3nL5fL4mgYDKXQQCAXi9XlnTanp6GqFQCGvWrIHFYsFTTz2Fxx57DLFYDOVyGaOjo5pQaSwbls1DxX+rx+pNfHwxpTAfAFlungakusgS6DXpdFoW/zSqrDrf9zaCnqwXByI7ZJNMJmOYcQfMljNQs8K4cJUTWi5mpUwgYG57Gn6cvJ6JRAKpVEqHiloEysQlgsw3TvVKqRgRKq5z5P0A5+vFqG3afPC6PjT+qBwGz+BTawHyyt08qYAnFfHacOSJ9Pl8MuRH7VWoT6uGxnJixXio1Of4Akk/NpsNbrdbxt/PnDkDq9WKiYkJWCwWxONx6WniYnKqPyWEQDQahcViQSaTQaFQqBGeG2WPLcZDpb1TxjDyQkxPT0tCfPz4cTz66KMIBoPo6+tDb2+vrOALzGb1UJE3ErCrdqvnWaQwH+m1uNaqUCgglUohk8ng0KFDePzxx5HJZDA2NnY+Ls1FBWo9Uy6X4fV6azZATqdTNkzmiylfJGlBpcXbYrHI+YAW4kKhoPv3nUfQGCJvLyUHEYEiwsQTTnh5Cyryyesicc8z9fKj+Z9+0z1AWjnK8NZ211hOLEuldKPHRq9RdRW89hR5mDhoQJEYkhf2JOKUTCZrhLG8jpVRiG+hBMmIjGnMwOiacH3UyMgIfvOb3yAUCsHlcqGnp0cKXSks4PV6YbPZZHYYiVDJk8S9l9RWAajN5svn81I7RR6NYrGITCaDRCKBEydO4De/+U1N1qdG8yCEQC6XQy6XQzgcluPXZDLVLLxkI6pLpJLjbDaLQqFQ0yCdvM08a1Pj/IDGIWmfqOimx+ORYXwKs6swknaoXmhg5r4gQmW1WuXGiOoOLja5RUOjFVjWLL/5Muto0aPX8SrWVPmc6yxUUkSPVYEzLcB2u11OwAvJENFkqfmgHW4sFkO1WsXp06dlpo/X64XD4YDD4UC5XIbD4ZAZmjSh0uLLy2KQJovrpqgTOb2fFuBoNIrx8XGkUimk02np/dJoLajAJ9UhooWTkyKyPW+USv06i8Wi7Es2PT0tBc6xWAypVEovrssA8hKWSqU53SaM5ld1ribMV/6Ae5iJoGez2TmaOQ2N843zTqgaDRSj3QoJkqlpZiAQkF4nk8kk+z2prWZ4+I0mb/J0ECHz+/1wu93I5/NS1MhDd+dCoHQdqsWhWq1iYmJCehyOHz+OcDgMt9uNvr4+WSCwp6dH6iaoqB8n2OS95Nos8kBRaCCZTMqmmMPDw8jn85iamsLk5CQKhQLOnDmjF+LzhGKxiMHBQezfv1+mxPOacpVKpaZfJ9kagLSt3W5HIBCAy+XCyMgIHnvsMYyOjmJ4eFg2YAZ0q5nzBSI4sVgMDocDiURCeqiMWkxRqQVuHyLMFAokkI6SfjscDlSrVZw6dQrPPvsskskkYrGYtrHGsmJZPFTcS8Sfq/daIkqUcsvDO2azuWZHyj1b3F3Mhck0Qbvdbvk811JpnD8IIZBKpWR/r6GhIQCAz+fD3r17sW7dOvj9fuTzeQQCAVmDhjqnU4E/KrtAHq9yuSxT6EljEYvFUCwWMTw8jIMHDyKTySAajWJiYkITqfOMSqWCWCyG06dPw2KxyFT6XC6HeDwum+YSoSJ7A7MEiUJ9brcbo6OjePbZZzEyMiLfr3F+IcRM9XsqW8G7EfA5mOZ+p9MpG/Ty8iipVAq5XK5mLrZYLNJbSUSMPMyTk5NIJBJz3qOhcb5Rv0OxhsYKgjpRzjdxLmRi1ZPvykGzbKFtujLRbLvommIaKxEmoe9GDQ0NDQ0NDY0lQXuoNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWCE2oNDQ0NDQ0NDSWiP8ffrcsvuXDZA0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_label_issue_examples(label_issues_df, num_examples=15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "Datalab also detects atypical images lurking in our dataset. Such outliers are significantly different from the majority of the dataset and may have an outsized impact on how models fit to this data.\n", + "\n", + "Similarly to the previous section, we filter the `outlier_issues` DataFrame to find examples that are considered to be outliers. We then sort the filtered results by their outlier quality score, where examples with the lowest scores are those that appear least typical relative to the rest of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.942750Z", + "iopub.status.busy": "2024-05-24T23:48:42.942512Z", + "iopub.status.idle": "2024-05-24T23:48:42.951465Z", + "shell.execute_reply": "2024-05-24T23:48:42.950974Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_outlier_issueoutlier_score
27080True3.873833e-07
40378True6.915575e-07
25316True1.390277e-06
2090True3.751164e-06
14999True3.881301e-06
\n", + "
" + ], + "text/plain": [ + " is_outlier_issue outlier_score\n", + "27080 True 3.873833e-07\n", + "40378 True 6.915575e-07\n", + "25316 True 1.390277e-06\n", + "2090 True 3.751164e-06\n", + "14999 True 3.881301e-06" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "outlier_issues_df = lab.get_issues(\"outlier\")\n", + "outlier_issues_df = outlier_issues_df.query(\"is_outlier_issue\").sort_values(\"outlier_score\")\n", + "outlier_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View most severe outliers\n", + "\n", + "In this visualization, the first image in every row shows the potential outlier, while the remaining images in the same row depict typical instances from the corresponding class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_outlier_issues_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_outlier_issues_examples(outlier_issues_df, num_examples):\n", + " ncols = 4\n", + " nrows = num_examples\n", + " N_comparison_images = ncols - 1\n", + "\n", + " def sample_from_class(label, number_of_samples, index):\n", + " index = int(index)\n", + "\n", + " non_outlier_indices = (\n", + " label_issues.join(outlier_issues_df)\n", + " .query(\"given_label == @label and is_outlier_issue.isnull()\")\n", + " .index\n", + " )\n", + " non_outlier_indices_excluding_current = non_outlier_indices[non_outlier_indices != index]\n", + "\n", + " sampled_indices = np.random.choice(\n", + " non_outlier_indices_excluding_current, number_of_samples, replace=False\n", + " )\n", + "\n", + " label_scores_of_sampled = label_issues.loc[sampled_indices][\"label_score\"]\n", + "\n", + " top_score_indices = np.argsort(label_scores_of_sampled.values)[::-1][:N_comparison_images]\n", + "\n", + " top_label_indices = sampled_indices[top_score_indices]\n", + "\n", + " sampled_images = [dataset[int(i)][\"image\"] for i in top_label_indices]\n", + "\n", + " return sampled_images\n", + "\n", + " def get_image_given_label_and_samples(idx):\n", + " image_from_dataset = dataset[idx][\"image\"]\n", + " corresponding_label = label_issues.loc[idx][\"given_label\"]\n", + " comparison_images = sample_from_class(corresponding_label, 30, idx)[:N_comparison_images]\n", + "\n", + " return image_from_dataset, corresponding_label, comparison_images\n", + "\n", + " count = 0\n", + " images_to_plot = []\n", + " labels = []\n", + " idlist = []\n", + " for idx, row in outlier_issues_df.iterrows():\n", + " idx = row.name\n", + " image, label, comparison_images = get_image_given_label_and_samples(idx)\n", + " labels.append(label)\n", + " idlist.append(idx)\n", + " images_to_plot.append(image)\n", + " images_to_plot.extend(comparison_images)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " ncols = 1 + N_comparison_images\n", + " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " for i, ax in enumerate(axes_list):\n", + " if i % ncols == 0:\n", + " ax.set_title(f\"id: {idlist[i // ncols]}\\n GL: {labels[i // ncols]}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(images_to_plot[i], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.953662Z", + "iopub.status.busy": "2024-05-24T23:48:42.953340Z", + "iopub.status.idle": "2024-05-24T23:48:42.960823Z", + "shell.execute_reply": "2024-05-24T23:48:42.960246Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_outlier_issues_examples(outlier_issues_df, num_examples):\n", + " ncols = 4\n", + " nrows = num_examples\n", + " N_comparison_images = ncols - 1\n", + "\n", + " def sample_from_class(label, number_of_samples, index):\n", + " index = int(index)\n", + "\n", + " non_outlier_indices = (\n", + " label_issues.join(outlier_issues_df)\n", + " .query(\"given_label == @label and is_outlier_issue.isnull()\")\n", + " .index\n", + " )\n", + " non_outlier_indices_excluding_current = non_outlier_indices[non_outlier_indices != index]\n", + "\n", + " sampled_indices = np.random.choice(\n", + " non_outlier_indices_excluding_current, number_of_samples, replace=False\n", + " )\n", + "\n", + " label_scores_of_sampled = label_issues.loc[sampled_indices][\"label_score\"]\n", + "\n", + " top_score_indices = np.argsort(label_scores_of_sampled.values)[::-1][:N_comparison_images]\n", + "\n", + " top_label_indices = sampled_indices[top_score_indices]\n", + "\n", + " sampled_images = [dataset[int(i)][\"image\"] for i in top_label_indices]\n", + "\n", + " return sampled_images\n", + "\n", + " def get_image_given_label_and_samples(idx):\n", + " image_from_dataset = dataset[idx][\"image\"]\n", + " corresponding_label = label_issues.loc[idx][\"given_label\"]\n", + " comparison_images = sample_from_class(corresponding_label, 30, idx)[:N_comparison_images]\n", + "\n", + " return image_from_dataset, corresponding_label, comparison_images\n", + "\n", + " count = 0\n", + " images_to_plot = []\n", + " labels = []\n", + " idlist = []\n", + " for idx, row in outlier_issues_df.iterrows():\n", + " idx = row.name\n", + " image, label, comparison_images = get_image_given_label_and_samples(idx)\n", + " labels.append(label)\n", + " idlist.append(idx)\n", + " images_to_plot.append(image)\n", + " images_to_plot.extend(comparison_images)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " ncols = 1 + N_comparison_images\n", + " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " for i, ax in enumerate(axes_list):\n", + " if i % ncols == 0:\n", + " ax.set_title(\n", + " f\"id: {idlist[i // ncols]}\\n GL: {labels[i // ncols]}\", fontdict={\"fontsize\": 8}\n", + " )\n", + " ax.imshow(images_to_plot[i], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:42.962931Z", + "iopub.status.busy": "2024-05-24T23:48:42.962598Z", + "iopub.status.idle": "2024-05-24T23:48:43.443736Z", + "shell.execute_reply": "2024-05-24T23:48:43.443222Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAJxCAYAAAApTkn0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXCl2Vke/nx331ddrS21pG71dPeot+kZbA/ENeMxxsZ4ISyGAEUApzA2FapcgJOQpCosqZ+BSiXBlZqAjR0wIVMmhZmAScDL2MbrLO7Zel/U2re77+v3+0M8R+89+q5a3a2ecUvfU6WSdO/9lvudc97leZdjmKZpwoYNGzZs2LCxBY7X+wZs2LBhw4aN71bYStKGDRs2bNjoAVtJ2rBhw4YNGz1gK0kbNmzYsGGjB2wlacOGDRs2bPSArSRt2LBhw4aNHrCVpA0bNmzYsNEDtpK0YcOGDRs2esBWkjZs2LBhw0YP3DMlefr0aRSLRcv3Hn74YTzzzDO3PMd//a//FdPT0zhx4gROnjyJT3/60+q93/md38Hp06fVTyQSwYc//GH1/ic+8QlMTU3h0KFD+Bf/4l+g2WwCADqdDj784Q/j+PHjOHnyJB5//HFcvXpVHffXf/3XOHr0KKampvBP/+k/RaFQuMMnYMOGDRs27nuYrwPOnj1rfulLX7rl5z7/+c+buVzONE3TnJ2dNZPJpHn16tUtn6vVamYikTCfe+450zRN8/r16+bQ0JC5tLRkdjod813vepf5sY99zDRN0/zLv/xL83u+53vMRqNhmqZp/tZv/Zb5Yz/2Y6ZpmmaxWDT7+/vNCxcumKZpmh/60IfMX/3VX73r72vDhg0bNu5P3DNP0jAM5HI5AMDXv/51nD59GtPT0/i5n/s5tFqtHZ3jiSeeQDQaBQCMjo5icHAQc3NzWz732c9+FqOjozh79iwA4C/+4i/w7ne/G4ODgzAMAx/4wAfw53/+5+q+6vU6arUaTNNEoVDAgQMHAAB/+7d/izNnzuDo0aMAgA9+8IPqOBs2bNiwsf/gutcXaDQaeN/73odPfvKTeOtb34q/+7u/w6c+9Sn1/pNPPonFxUX85m/+5rbn+fznP49sNotHHnlky3uf+MQn8Au/8Avq/9nZWRw8eFD9Pz4+jtnZWQDAu971LnzpS1/C4OAgwuEwRkZG8OUvf7nncUtLS2i1WnC57vmjsmHDhg0b32W454k7Fy9ehMvlwlvf+lYAwNve9jZMTk6q9z/wgQ/cUkG+/PLL+Lmf+zk89dRTCAaDXe/dvHkT//AP/4Cf+qmf2tH9PPfcc3jllVewsLCAxcVFPPHEE/jABz5wm9/Khg0bNmzsB7wu2a2GYez4s+fPn8cP/dAP4Y//+I/xfd/3fVve/+QnP4n3vOc9SCQS6rWxsTHcvHlT/T8zM4OxsTEAwJ/8yZ/gLW95C2KxGBwOB372Z38WX/rSl3oeNzQ0ZHuRNmzYsLFPcc+V5NGjR9FqtZQi+vznP49r167t6NgLFy7gB3/wB/GHf/iH+P7v//4t73c6HXzyk5/soloB4Ed+5Efw9NNPY3l5GaZp4sknn8RP/MRPAAAmJyfxxS9+EY1GA8BGNuv09DQA4O1vfzteeOEFXLx4EQDw3/7bf1PH2bBhw4aN/Yd77iJ5PB489dRT+OAHP4h2u41HHnkEp06dUu9vF5P8l//yXyKfz+MjH/kIPvKRjwAAPvrRj+IHfuAHAGwoXIfDgSeeeKLruMnJSfyH//Af8L3f+70AgMceewy/+Iu/CAD40Ic+hAsXLuDUqVNwu90YHBzEk08+CQAIh8P4+Mc/jve+971otVqYnp7G//gf/2P3H4oNGzZs2LgvYJimab7eN2HDhg0bNmx8N8LuuGPDhg0bNmz0gK0kbdiwYcOGjR6wlaQNGzZs2LDRA6+Zknzuuefwjne8AxMTEzh79izOnDmD3/7t31bvP/bYY/jsZz97W+fM5XL46Z/+aUxPT+PkyZOYnp7G//yf/xMA8KlPfQrvfe97e97L+973vp7nfeaZZ/B//+//va17sWHDhg0bew+vSQHgyy+/jLe//e341Kc+hR/6oR8CAGQyGfx//9//d1fn/bf/9t8ilUrh5ZdfhmEYKBaLWF5evuVxDz/8MJ566inL91qtFp555hnkcjm8/e1vv6v7s2HDhg0b9zdeE0/yox/9KN7//vcrBQkAiUQCv/u7v3tX552fn8fQ0JBqThAOhzE1NaXeL5VK+Mmf/EmcOHECDz/8MK5fvw5gw1M8ffo0gI2GAbFYDB/5yEfw0EMP4WMf+xiefPJJ/Nmf/RlOnz59y25ANmzYsGFj7+I18SRfeOEF/MiP/MgdHfv000/j6aefxsc//vEt7/3Kr/wKfvRHfxRPPfUU3vSmN+Htb397lyJ+9tlnce7cOUxMTOBf/at/hY9+9KP47//9v285Tz6fx4MPPoiPfvSjADZo3Fwuh//8n//zHd2zDRs2bNjYG3hdEnd+7dd+DadPn8bIyAheffXVbT/77ne/21JBAsDjjz+O2dlZ/NZv/RZisRh+8Rd/ER/60IfU+29605swMTGh/u7V6cftduOnf/qn7/Db2LBhw4aNvYrXREmeOXMG3/72t9X/v/d7v4dz587B7XarzZDvFMFgED/4gz+I3/7t38b//t//G3/6p3+q3vP5fOpvp9PZc4uuQCAAh8NO9LVhw4YNG914TTTDr//6r+OP/uiP8LnPfU691mg0dryvZC/83d/9HbLZrPr/+eefx6FDh+7qnAAQiUSQz+fv+jw2bNiwYeP+xmuiJE+dOoXPfe5z+C//5b9gYmIC3/M934PHH38cv/RLv4QjR46oz73//e/HgQMH1M83vvENPP3003j/+99ved6XX34Zb37zm1UJyNNPP41Pf/rTd32/P/zDP4xz587ZiTs2bNiwsc9h9261YcOGDRs2esAOxNmwYcOGDRs9YCtJGzZs2LBhowdsJWnDhg0bNmz0gK0kbdiwYcOGjR6wlaQNGzZs2LDRA7aStGHDhg0bNnrAVpI2bNiwYcNGD+y4wTl32rgV3G43vF4vnE4nvF4v3G43AKDdbsM0TaRSKYyPj8PtdqNWq6HZbKLVaqFUKqHVasHn8yEUCqmtr0qlEqLRKM6ePYuRkRFUKhVks1k0Gg3k83nkcjl0Oh2Uy2U0m03U63VUKhW0Wi10Oh0AgMfjwcjICGKxGNxuNwKBAAzDwOLiIubn59FqtdBut9Xn+X0HBgYwNDSETqeDubk5rK+vo1arIZPJoNFo9HwG92vp6U7HeDevFwgE4Pf7ceDAAfzzf/7PcfbsWSwvL+PixYsol8sol8solUrwer0YGhpCJBJBtVpFLpdDrVbDc889h2efffau2xveLu7XMQbu7TgbhqHOb5qmek4ejwcejweDg4N417vehePHj6NcLiOXy6nOW4ZhwOVyIRaLIRAI4MUXX8Rf/MVfbNn+zuFwwDAMmKbZtWbvBe7XcX6t17K87oEDB/DP/tk/w5kzZ+DxeFTbz2aziWaziWw2i6985Su4fv060uk0rl27hmq12vN8bBl6r8b7VmO8K7uAOJ1OBAIBuFwuxONx9Pf3w+PxwO12w+l0otlsolKpoF6vY3BwEKOjowgEAohEIgiHw+h0OqjX62i320rJGoaBWq2Ger0Oj8eDgYEBhEIhtNtttFottFot3Lx5E7Ozs2g0GggEAmg2m2i320pgut1ueDwetNttlEolLC0tIR6PY2BgAIFAAKFQCMPDw2i1WigWi6jVauh0Omi32zAMA1NTUzh+/Dja7TZefPFFzMzMIJvNolwub6skbWwPh8MBl8sFl8uF0dFRjIyMYHh4WBkyDocDDocD9Xod9XodjUYDLpcLfX19CAaDSklWq1WsrKzg4sWLaq602+3X++vtC1BJ6bB6zeFwIJFIoK+vD6lUCv39/YjH4/D5fPB6vUpJcl5EIhH4/X4MDQ1hfHwcwWAQ2WwW2Wy2S/FuJ9x63Z+NnYHGjnze28HpdGJqagoTExMYGBjAyZMnMTk5CYfDAbfb3WXUpFIpGIaB48eP49KlSygWi0in02g0GlvkKo+xGs/Xaox3RUm63W5l/Y2Pj2N6eho+n08Ju2q1iuXlZVQqFQwNDWFqagrhcBjHjx/H1NTUli8rLQfTNNFsNpHP51Gv1+H1ehEKhWCaJp577jmYpol6va48SS40h8OBSCSCaDSKfD6PL3/5y5iZmYHT6VQLNhgMKuW6tLSEbDaLdruNer0OAHjjG9+It7zlLWg0GgiHwwiFQpifn8fi4iKKxSIAdFnNNnYGp9MJv98Pn8+HI0eO4OzZs0ilUjh06BCGhoaQSqUwNjamxt80TTidToRCIXi9XtRqNeTzeZRKJczNzeG5555DqVRSBo6Newu5GcBOFKXD4cDAwAAeeOABJJNJHDhwAAMDA2g2m6hWq13egcvlQigUgs/nQ6VSwfT0NNbW1nDlyhXk83nFSN1KQfLnXnuaexX01judzo5km9vtxtmzZ/HOd74TiUQCR48eRSqV6jre6XTC6XSi0+lgenoa7XYbX/7yl3Hx4kW0220Ui0U0m80t19PHW7IVr8UY75onGQwGEQqFEAqFEAgE4PP51ANyOp1wu93Ke/B6vfB6vfD5fPD5fDAMA81mU1kM0ooBoIRfrVaDw+FQ1gUfHt9vNBrKe9UfdKvVUp5JrVZDo9FAMBiEz+eDy+Xqsmr50H0+HwKBANxut3qfVpGNW8MwDLUwSJsYhgGfz6eefTgcRiAQgNfrVQaRw+Ho2sEFQBd932q1lDHEcxiGgXa7DYfDgU6ng1ar1TVPbLw24JjLsfd4PIhGo4jH44hGo/B6vWr8OO5c85QVDocDXq8X0WgUrVYL4XAYwWBQhWc4rrYSfO0gZbPH44HD4YDT6YTL5YLf70cikUAikVBj7HQ61XrsdDpqPnCMTdNEJBJBPB5HLpeDy+WC0+lEu91W4S+5lnfq1e42dkVJhsNhtT8kYw+dTgfr6+vKO+OuH1SEALC0tIRarYZKpYJr164hm82qmCQfrmmaqNVqWF5eRrFYRCQSwcDAAJxOJ2ZmZjAzM6M81WKxqGKOHLhAIIBqtYrFxUVUq1XMzc3hC1/4AsLhMB588EGcPn0aAFAsFlGpVJR1CwCFQgG5XK6LLtYtHVsAb4WkU/v7+5FMJuH1epFMJuH3+xEMBpFKpRS1Tivy8uXLWFxcRDKZxOjoqDKggA0jJ51Oo9VqIZfLYX5+HpVKBeFwGO985ztRq9WwurqKQqGAfD6Pubk5VCoVlMtlFItFe5zuEFZMyXZ0J+OOwWAQiUQCIyMj8Pv9OHToEMbHx+FyueDxeJDL5ZSB43K54Ha7lQGUy+VQKpXgdrtx4sQJ1Go19PX1YXBwEOVyGfPz88jlcqjX6ygWi1t2E9K9jl73aqM3rChOOjfhcFixAmQGAoEARkdHEY1G4Xa7kc/nlVPjcrm2xJAp2/1+P975zneqcBfDJisrK0r+3rx5E9VqFZVKBaVSSSlL6U0C926Md0VJBgIBTE1N4ciRI6hUKuoB5XI5zM3NweFwwOPxwOVydT38TCaDTCaDdDqNr3/965ibm0M4HEYqlVJuOT3IxcVFFAoFxGIxjI6Owu12I5fLIZfLoVKp4MaNG8hkMoqO5WLkwkun06jX61hdXcXq6qoS4uPj43A6nahUKiqRiEqSArbZbKJWq6kEH3vBbQ/GITweD/r7+1Vc6eDBg8qjGB4ehtPpxNzcHBYXF1EulzE7OwuHw4Hx8XEMDg52eZPtdhuFQgHlchlra2u4evUqqtUqBgYG8MY3vhHtdhsLCwvIZDJYXl5Go9FQSV1cWDbuHFbJOFZwu91IpVLK0Dlx4gTC4TBGRkYwODiIZrOJlZUVlEoluFwuxTqRWWJiXLFYhNfrVVvfBYNBhMNh5HI5dS0mdlmB9ygFqT0Hdg4ripNJOIlEAidOnMD4+DgOHjyI06dPw+/3o1wuo1KpqERKOi1+v18xPfQK6TD5fD48+uijXe9XKhVcvnwZS0tLWFxcRL1eRzabVefVjbR7Pca7oiSBzRvtdDqKEnE4HCqTlDQolZNhGEin08ryZ7YisMldM6ZJ64JBXdKggUAAAwMDqFar8Hg8WF9fV8cYhqESfOSDo4fp8XhUjIvHmKYJj8cDn88Ht9utYp/0hKvVKprNpqIL7BjYJkiPOZ1ORCIRpFIpeL1ejIyMIJlMKkFIKrxWqymanVYhn7vT6US9XldzgBtmSxZCUuxM2OE5wuEwhoeHVWJYOBxWcW0uYtvYuX1wnEinBoNBRKNRuFwbYoSvjYyMIB6PI5FIwO/3qwx3ySYBUAKx2WyqceRa5zojhe7xeBCJROBwOJSBVS6XEQwGlVwgPVcoFFSscycxTBvdoJHrcDjg9/sRiUTU8w+Hw4jFYhgYGEAsFoPf71cyX1KkAJTiq1arXQqMHqWVt8prc82apolcLoe+vj6sr68jGo2i0Wggm82iVCq9Js9j15Qk3edGo4FSqYRms6kWjNT40WgUfr8fAHD+/Hl84xvfQKvVUp4aAMzPz8PhcCAWiyESiaDRaKBYLKJcLsPtdmN0dBTJZBIHDx7EwYMHUavVcOnSJaytraFYLGJlZQW1Wg3z8/OYm5tDq9VSXHokEsHBgwcRDocxPj6O/v5+dDodZDIZdDodxGIxHDlyBNFoFLFYDACUV7KysqIs3Fgshmq12mXZ7GfIDOSpqSk8+uijCAaDWzyQTqej6G9gwxtot9vw+XxIpVKIRqPK4JGxYh5PJUoBWCgU0Gw2VfkAE6yY+ENvo1Ao4Nvf/jauXr2q5tPdbvq9H6DPbeYfeDweTE1N4Q1veANCoVBXrCkSicDr9SrPw+l0otFoqDXWbrfhcrlQq9UwNzen4tVUitVqFY1GoyuOFQgEcPDgQbTbbYyMjCiFyvGngC6Xy3jhhRcwMzODer2u3rfRGzpdySoFn8+HQ4cO4eGHH0YoFEJfXx8SiYRK1GSOQKlU6nJKZDyazECn01FsgQSdEBnvdLvdGBsbw/DwMBqNBk6dOoVms4nV1VWsrKwgm83iy1/+Ms6fP6+OpwHHpLLdjFXvmpIENr8wHxZjDTKBgrRru91WNTLkpl0ul0qw4RcmXUor1OFwIBQKIRaLYWxsDNPT06jVanC73VhdXUU6nYbL5UKpVEI+n1deJb1Fj8eDeDyuMl8DgYA6b6fTUcI+kUgoC5kZr5VKRZUjeDweJZxtJQmVfRqNRjE8PIwHHngA4XAYpVIJ1WoVrVZLlc60Wi2VqEVrkVarLAmq1+tq3sgxlN4kPyOzXxk3oUdaq9WQzWZx7do1LCwsAHj96sjud1CIMcZ8+PBhxGIxlXTBNetyubo8OCo/YNMjldmtMmORXgbr6jqdjmKAACAajXYZ5AyDtNttFcNaWVnpilvZ2DmYOBcKhdDf348jR44gFospGl0qVbmWKedp8DDzlOsf2GQJreKIkj1kyIyfMU0TyWQSsVgMa2trOHfunDKqrLCbcvmulCSpUybryMxSTnQqTlJig4ODSCQSMAwDyWRSTXjSnq1WS9Ezkn6LxWIIhULweDyqXqrZbOLmzZsAoCxJxhnb7TZSqRSOHDmCWq2mvEy/3494PA6v14tIJNKVeUXrV6Y/s3aHXmOr1VKfJT1sA/D7/ZiYmMDIyAhSqRRKpRIajQYqlYoShPQOKNAAKMOFpUK5XK6L0qMilCiXy8q7lHGOWq2mYtgyE5qYnJyE3+/HysoKvvOd7yCfz7+mz2gvIBAI4IEHHlBNQYLBoBJm9CIoPPXsU0nX6vVzEjLGRAXIRiEScg7xfJFIBIcPH1bj/NJLL1mWFdjYaih6PB44nU4kk0mcOXMGw8PDGB0dRSqVUln+dAwIPXtcjp38oXKUSTz654FNKlZmtPJ1r9eLvr4+uN1unD59Gj6fD+l0GpcuXdqSd7Cb433HStIwDGW1M53f6/WqBSNjk41GA4VCAY1GA1NTUxgeHobH48HQ0BD6+voUjUYlSeXDgaFlwRjn2toaMpkMXnjhBeRyOQQCAZw6dQrDw8NIJpN44IEHlGfqcrnQaDSwsLCAfD6ParWKfD6v0sol/cNYJRcxPeJqtYpSqaQ4cJ63UqnYluo/IhQK4eTJkzh69CiazSbS6bSyIincaGFK4UnKxul0olgsqvgyu3TIZCkpeP1+P7xeL0qlkjLAKKSB7uw5Un4nT57E2bNn8eqrr+LatWu2krwDRCIRfM/3fI9aY+FwWDV+IK0pC8KlIiMlLqlZeocyY5HzQdKpHHcpeIFN74Osld/vx0MPPYQHH3wQFy5cwMzMDAqFgl0uokGvRac8Z/er7//+78eDDz6ocjS4FuVaJnrVMZL9IUNIJQlssgVW9wJAUbDyvH6/H9FoVGXGnzhxAufPn1eJYDzHbuOulCTrB30+n/ImKQSllU8XnGneVKac4FxI8sECmw9P1k+Rpmm1WigUClhfX0coFEI+n0ckEkEkElFUAZU4EwO8Xi+KxaJKEqC3YlWcynuXiSH8HvR89O+7H61VKfz43IvFYhddJmPCVvSI9D64cCgoaajQuuTi4XGEFKI8FwB1DBOLmPAlY5v7cdxuF1yvVIyRSEQ17QC6W4bptClhtVZkTbSVEpQ0nhSqknaXIG1Pyp1/cy3bsAazV0OhEMLhsMpC15+xVfnPrdaPrJGW57P6Xz+vrnypZCORCEzTVLFTq0TK3SoNuWMl6XQ6MTg4iAMHDmB8fFy1JKrVarhw4QIqlYqi2oLBII4ePYpoNIqjR4+qrNFqtYrV1VXVjk7W19Fy4cJg+QgzGhlDNAxDXXNmZganTp3Cgw8+CK/XCwCo1WowTROJRAKxWAzLy8tYWFhAtVpVApMKE4BKN2ZyRz6fR6FQQLFYVB4ta/hCoZCiAxl7209gV6NQKIRkMgnTNLs8O9PcbCQBdPdh1OOKMm7tdrtRqVSU5cnYQ7lcRr1e74p50EK1ujeC9yMzW2OxmKqjtEtEtofL5cLY2BiGhobQ39+PRCKhaqFJpdMg4uetDF0aL+VyWRnNrIWVFDxB41aPc3Ee0XACoJSg9Faj0SiOHTuGZDKJhYUFzM3N2dno/whd2bndbjzwwAM4fvw4BgcH0dfXp4xISX3KdWV1TmnocP1StstYpFXDF2D7XAHKAABK7hQKBUxNTcHr9SKdTmN1dVXNF86511VJ9vf349ChQzh48CDGxsYwOjqqGobXajWVWRgIBDAxMYGDBw+qQmOmemcyGbRaLeWVyQJjaRnI7EjZkQHYEIJXr15Fs9lUFKrH41HJHyxL8Pl8alGTNiCVwEFj4/R6va4eOut/SPceOHAA0WgUAJDP51VLvP2mJA3DUFlv0WgUnU5HdTOiwqPhox/HxSDTxhlTJNXGrEa/349ms4lSqaSUp8fj6cqKtLo3GVdm4gjnEFPZmQFrK8necDqdGB4exvHjx1XXHLfbrdaXTNbTvTzd25eMAfMQ2N9ZJuDIjlrApvfI++F5ZdII51swGFRr/tChQ0gmk2i321hcXLSV5D9Cn+8ulwsTExN44xvfqLrg6EoS2L5eluyhnizJOKQcN70kpBekrGCSEA2gQCCAXC6HgwcPqvyD9fV1paj52t0qyrtK3OHkZL0T4wdsOybrHllcbpqmqmOSmW2MaTLGyUbHrI2SC48Wq2maSgCTmtPddw5Mo9FQApIeYCQSUQuKA+nxeBRNUyqVugQAhT+tVfmzH2OTfF4sCNfpa31BWD0j6V1S2XFxAlBC00pYAuiyGuU55f861UPaMBQKoVwu78uxux1IOp2hBvmejD1Jaq0X9PHjbymIZftJHdJw5uf1++Ha9/l8KtfARm9wLQeDQfj9/i4FIz8jlaQVnal7mpwX0pil8bpTWBlLnGOsqWTNppVR9rp5klSOTMq5evUq8vk88vk8BgYGEIlEVKYhuW5uc3ThwgUUi0VFtbKVFWtvgsEg3G43hoeHMTQ0pHbxqNfryOVyWFpaUh5iOBxWlg57QfJBSdo2k8moWsyJiQlFwSaTSZRKJVy/fl3Rh0eOHEE8Hke73cb169cVnVosFhGNRpUnw7ofej/7DaxlpWfNSSoVn6RgJOQY8XOyzyO9CZYDcXwDgcCWBSZjVVZGkk4T+Xw+DA0NqV6gy8vLtoexDQzDUG3mmJovWQJSp4T0EKwyV0m/AZsGryz14TnpmUgwq50ei8yo5z1xHni9XiQSCSVTtqMK9zsMY6OGfWhoSOWMyHAXP8P1Jde3/C0VJ8eI4TW+z7/1GLaUFbLCQCZ/cbx5/WAwiEOHDiEWiyGXy+HVV19V82O3jN+78iSpKKm8DMNAvV5XniC9C3qRHo8HlUoFmUxGdT9h3CoUCiEej8Pj8aguHalUCkNDQ6qtXLlcVoXGtVpN7STBa0hlxQUnC5Tz+Tx8Pp+ii6LRKKLRqLKi+Ju7hFAgyyQevd5HxlD3G6T1yQxS3ZPUlZbVOWSpBoUgDR8+e2DTiuTr21mj0ouV1A+wudMEgK7+sDZ6g5mj0pO0SsjQFZuVN8K1I+tkJWT4g+fgWPP8zWZTlZ/xvHKceR2/3w/TNFWOgg1r0KigEaR7kr3oc/0clLscM+lByjXLc1t5fjqkAaTXWXo8HtX0RTYvsbq/O8UdK8l2u626opRKJWWBsBEtM8kYdygUCkin0ygWiygUCqjVairg6vP5MDo6qrxPWpe0QDwej2qOvL6+rpIuCoWCom5LpRIKhQIuX76Mv/7rv+5qhUaFGAgElMKs1+tqkbF5ucyepAfKxud+vx8DAwMIh8OoVqvIZrMAgL6+Pvj9fqytre3CcNx/YIo4d1ORnf7lYtGzVwmdPpWv64tIHsvj5Dnlgub1ubD4m4kEPp9PNbywsT34PFkLLRXjrYyWXkKLY0slR2NUns/Kk9THlpBxMPlZPeHHRjfIBlBOcg0TfG6699cLUpnKshHWonO9WVHyOgPF3/yb9en8DOcI1/S9YvPuWEK0Wi3Mzc1haWkJBw4cwMGDB+Hz+VS2IIUXPYxcLgeHw6F2IzcMA9/7vd+L973vfcpKdbvdyGazWFhY6NpwNxgM4tSpUxgaGlLvl0olnDt3Dt/5znfU/oLLy8tIp9N45ZVXVGulZDKJvr4+vOMd71B7mLFuCtgYLGamUlFyYdVqNaTTaZRKJdUD1O12q3o+KvdKpYL5+fldG5T7BbQ+ud0VvQxOWgpOPYFGega0Win8CBmfBLr7PZJ24XllYoGkVmX8QipI0m8AFINgozdIkbKcQjdA6P3L7FKdSZDJNfyhkepwbO5aT8XYK+5IxWrlxciYKN+/1wL0fgdDGMFgUOWEOBwONQZW7I1ujBBW3iYTIFutFkKhkKK9aUgD3YpX9zTle9zhCUBXExEa6vcqN+SuE3dkYoX8ghRmFIIs3eCDZ4bS8PBwl6Ui29axQJlxy2AwqDxBWQfFrFJZ/M+BZZMAWjKMk7bbbVU3xxIE6QHpQWnpJVFYU3jIGMt+AxWWnrRhRbcC2DLxe1EivWhaKTTl+eUcImTMQ6fjZHmJjVtDp6ylkXk7SRj6uErqlpBJPFbJOVb/67QvPyPnpI2tYKiKxoTVmpVrS/7e7plK+UmGziq+uR0lapU0xLGUyXw0sO+VDL5jJel2u3Ho0CEcOHAAyWQSg4ODqlu8VEb1el1lxTmdTrUDvcfjUTs1ZLNZfOMb38D8/HyXx1AqlVAul5FIJDA8PKySA6LRKEKhEI4ePQqn04mVlRWsrKwgn893xQkffPBBTE9Po6+vDw888ACGh4cxOzuLV199FblcDv39/RgcHIRhGGp/yeHhYdWENxAIIJVKqRKEVqsFn8+n9kfkPpPsSbrf4HA4VBcMemQyaK5nKNJSBbaPbUhPgl1ATNNU2dBSIEq6VC48KcT5Oql80zTVGMtELxu9QYpalmswf4DGIo1gnZEBupM+JLvA8dTLOKwULxOGyFLRcJbzjOegEKXMsGl1awSDQQwNDSGRSKh+x/L5M89DX8u94pH6azKpi+fRk/p67cjDOUPHhXQ/ADXXDMNQDfbvVX7BHc8c1tWcPn0agUAA/f39qhUclaTX60W9Xlc9UQ3DQDwex9TUlEq6YTzv2WefxfPPP9+1n2SxWESxWFRNdtnpY3BwUHmbwWAQCwsLeOGFFzA7O9uVqn7kyBE8+uijiMVimJycRH9/P+bn53HlyhXMz89jeHgYuVwOwWAQExMTGB8fVxm2hmGo3bY9Hg8KhQIqlQp8Ph8SiQQCgQAymYx6fT/uKGEYG6U7kUhECUO544K0JilIOeFlMF/Gn/T4FpMvmOSh7xggLUjZwYn1c7pwlkpSNjqw0Rt8zjRwKKBkch6pU3aoYmKN9OLkWJBR0uk13UOl8KVwpSLk8dyRhI3sdbpWCmjbGNoK5lowc5nrUjJx0piRRijX9XYGr1zrXJ/yHFJJWnmxMmRCb1fmOBiGgUAgsKWyYTdxVyUg5XIZ2WwWrVYLsVhMLRaWT7CpOB8MYwlUKsxSZYyQtKWMR1DhptNpzM/PI5FIqIScTqejhPTBgwdRLBbVYpX3Id19ej+cELVaTXmetEqZrNNut1UmLAtZ5cLnxtJsdbcfIRWVnsYv407ApqCSNJtOwfSyKAmZQGBFufK3TOTQj+frMnZmY3sw1CCFG8eeYy0VGmCdwUjI8ZfskRX00Iek2WT8W/dIeZ39mn2+E9ADY0wP6F5HHE/DMLY0FdDXndVY67Hi7dCL6pVskJ78BWxmQ98rWv2OlWSz2cTly5exurqq9mQcGBjA5OQkTp48CdM08cwzz+DChQuIRCI4cOCAygy9ePGiOo9hGCgUCvB4PBgbG1OWBTsrBAIBNJtNfPvb38bzzz+PsbExnDlzBtFoFIlEAvF4HOFwGD/zMz+jGo5zsXD/sVqtpqhdtl9KpVIq47bZbMLv92NoaAjFYhHnz59HuVyG07nRFLter+PChQvKuyR3v7a2hu985ztqF+79CAbNTdNUdahsJkFPk/SYpEhkhpqE1WKSwlEWn3MB6spOTxOXCQJc9LxnuzRgZ6ClLlvRORwOlbBFI5RZ51JwSm+RilV2uJIsArBpTElPU286QAM6FAqpJulyU2catBxnO0HLGj6fT+0TyecIbI0ByrGSFCghjST+TyM5GAyqnBBpwMjxlteU0BWg9D45J5j8RaaKeSPbxTtvB3dVAkK6sdlsKjrU5XJhaGhI3XypVOpqCF4qlVS2E61H2TqO7exkYkyj0cDi4qLaqmpwcFDVY7K57cjISFdXjVarhW9/+9uYmZlRArzRaMDp3NgKxuVyqT0i6Xly/8O1tTXkcjkMDQ1hdHQU9Xodi4uLWF9f76oTK5fLWF5eRqVSucthuD/BRSQnP5WgnLB61xxpFcqFpdNyutUovUjCKr3fahHzHDKhTB5vozcktU3oiWv0Jvl8ie1iTaTMdPqOAlUfFz1DloKRsSp5XtLBOr1voxs0JNjApZcnp3uJ0pjtlVwl54hOp/M43SPtdX0rqpdzTa+f3O31vCvZrcBGAJgJHKyLYeINy0D8fr/qg1qv19XfABS3zOM6nY7yEuTf7XYbxWJRUaU8lqUAy8vLOH/+PPL5PC5duoQrV66osg16vHILL9nhhT1nc7kcMpmM2m+Si5nerRQEMlayH0GFI7vqSOEFQFHTLLWR8S2+rws/Hkv6XbcM9Sxa09zsxMLm8zJZgx4QDSWrfpI2ekN6f3pskW0p+XzJuMhkGqtnTCYA6L11EsE1ahiGKkPpdDoqD0EKTp5Djq9Nt1qDSpLPVCo8qYB6UalWMUgpB6RcAKyz0+UxupcpzyshFS4NIIbeACgdsxu4KyUpi+9jsRgGBgbg9/tVMwEqG3bqiEQiyGQyyOVyKJVKWFpawurqKoLBoNrhnAKRiT9sQO71etV76+vrqNfrGB0dVQ+Piu/VV1/FH/zBH+DmzZtqD0iHw4FwOAyfz4eRkRGcPXsW0WhUlYKwPKVer6NYLGJpaQkrKyuIRqNdVGGtVlMKmcJclhHsR0VJGk72zWVCBRO2mPjEPT1JWVsJLtJo9NhZkNxLSfI3lSCVMGs3gY0Fxjo8MgcUCvI6+3H8dgrpfctnzrFZXV3F2tqaokBjsZgyhK3iWMBm+QGwqWwB684rNGpdLhdisRjC4TAymQxeeeUVVKtVDAwMYGhoqCuOxvNbxaZtbIDdp2hU6tnjsp5R9yRv5fURemasrhz1cAjQHc/WryUNIlnNwKRPJvd8VyhJYFPjM1Xf5XKpwmJZ8Cktknq9jmq1qhoPGIbRlbVISDpPj2Nw9wHeA/nyXC6H+fl53Lx5U3l/hmGgXC6rIH+1WlWWrlV3GDYxoGei70pgZW3tVwFrNYn1MZMFyVaxAivhJReblYKUx/G3jFXwHnhvMlOSx8jMOd7fbsUx9hJ6Wf1y3JrNJsrlMtxutxK4O8n41scH6F07yzXGdWyappIh7NZl1S1GKkkr72c/Q9ZJWnnwVGIyIasX9PUl12WvtWWleHt5kxJ6chawabDLrjy7gV0pHvL5fDhw4AAOHz6MZrOptpfqdDqIx+MqYQYAstksLly4gEwmo7rqAMDq6ioajQYajYaKEbJVEq9BpcY9Bbko6vU6Ll68iNXVVZw7dw65XE5tshwOh1VMko3Kl5eXVUzz8OHDKgmI16NwrVarSKfTytOUNT7AZgcI0zRVNux+hG7MkGp1Op3I5/OqOb1pmirRg+BxskEDY0q0FCW1rdNnUmDLujy57yQtS55D/pCicTgcu0rR7AXw2THuz3His2ajDgAoFouYnZ1FMBhEX18fgsGgStzQd+ehsWTljei0KUEKn3OLpSfMYahWq13rT/dmuLsPsLHHrCxV2q8gdR2LxRCPx+H1erfEF/ncga3xe6uxkuuQeR/MQWFnH3msPM4qB0H/zHbfJRAIIJlMwul0IpPJ3M2j6cKuKcmRkREcOnQIc3NzmJubQ6FQQLvdVtQIY0CMFa6vr8Pn8ykls7a2hmq1qtokMW5FuoQDSKVoGIYqWK7X6zh//jxeeeUVzMzMIJ/Po9FoIBwOIx6Pq/6BjUYDpVIJKysrqNfrOHLkCCYmJtQu3KQHKYDZlo50q07bkM/n+/tNwOpehfQeSaeSZuVi8vv9SpGRTpFKkIuCgpVxK+kd8nr6bxnj4hzheErhLr1Ir9eLSCSiKNn9NobbgXQ0d4WQxoVhGF1GYrlcxtzcHOLxOKanpxEIBNSG2LrC0xN8dOFnxcpQKbOtIL0FJt+RTrfycgEoD5cGmK0kN+D1ehGNRlV9OCG9NJbuybUnlZgVNUol2Ww2kU6n0Wg0kEqlVNa7ZId6efe9aHqr92nwJpNJpS92C3elJKW1wR/GIguFgoohyNpCKhbW5dCDIDUqFw4ftl4TJ8/JBUeKF4Da4YG9AlutFgqFgvIueAw7yIfDYbXgSAOXy2UlMJm4w/Mzm67ZbMLj8ShlvZ8gJ65UbvqEbjabKsFKtq8DttIwejxCt1R1S1N/TcZPSL9zcesFy3Iu0TvZb2N4K1BAkhUArKlXJk1xI4BbMSryOD2xA+jetV73UvibY0W5IWNpEnJe7vcWklagocgxtspU1Wn2XrRpr7AJqXEpJyT0pKBeHiPHXU8e4zmkAbWb2cx3pSSZtCL3+FpbW8Nzzz2nWsRxkfGz8Xhc1Slms1nkcjnVb5Wgdcrj5cNhoJkpy1SOtVoNtVoNgUAAx44dU+693+/v6kIvG+T29fXhxIkTqsxkeXkZ8/PzuHr1Kubn5xEOh9VgFAoFrKyswOFwYHl5GU7nRkcgNj3nfpP7AdKqlzScjPsAGxOXJTXc+szv92/JLLZSlrT05X6TMqYpLV1+hh5Pp9PBysoKACAWi6mtdGSNJn/7/X5VEsRdZWxsgJZ5NBpVbfwA68zHQqGAxcXFHSVMyDnCcdYpdMMwVJhD9xj0mCTL0Dgf5ZxiXJQ7ARmGgVKptOvP6n6Fz+dDPB5HIpFQz1SCxgX/liERPSYIdDf7aLfbcLvd6OvrQ6vVUt6dvtZ1A7tXLJLsIhkK+XnDMNR3Mc3drX++KyWp16cAG7WD8/PzyOVySKVSqhMPF1UgEEBfX5+KJ+RyOQCbFqHs6kCXXW6gKVOWSaORPuFCGRgY6PISarUa1tbWUCqVugYqGAxicHAQTqcTCwsLKBQKyOfzSKfTWFtbQ7lcBrAxeMx81Tl4tkLaT70hJbUqU+11MKGqXC6rLGVZTyd/9OPkYrOidqR3yUXC+6nVaqqrEylBLnD9e/B9lvfY2ARjjoFAoKt9n+5JAlDrIxwO7yg2r1N2ci7xtxVbIBU0gK4kPpncR3DMKWAZy7SxARqK7MFrpST1EIcVxcrX5fuy4YSeOMfPyWO3iznyXmUSke5J0gliF7Xdwh2fiV5hLBbD4OAgPB6P8tZIccp4UKlUQj6fR7PZRCAQQKPR6GqFRG9SKjcqQLlllWEY6O/v7yoilhQKBZ+eSEJvwe12IxgMqjIEHiMTEVKplNrahcqbNCxjGsAmnUu6Yr+ASVVyexqpOAEoCqxSqaBYLHYl4uip/nqQXiYLcJylV6Gniut0PK/baDRUHEqOsWFsttgyTXMLpWhjA2Ryem01JZOuWq3WlgQaqdCkgSKziWkA68anDM/wc3KceU4aRNIjlYpWnk+n+22gixGSHrhuBBG3SqThmpKsDdkd+X4vilX+lmEZK6pWfoZyn9u5fVdkt7pcLhw8eBBTU1OYmJhQO2V4PB4kEgnVs5O0STabhcPhQLVaRSwWg9vtRjqdVgKwUqmg0+moFm9UwtFoFPV6HXNzc8jn8zAMo6tBeiAQQKVSURaG0+lU1qL0PicmJtTgccNlWk/Aptcai8UwNTWFWCyGRCKh4pSFQkFRw7KBwsDAAFqtFmZnZ3dhOO4PuN1uRCIRRCIR5UnrNFi1WkWr1UI2m8Xq6ioikUgXTSKtTT3myFgYKRSfz6eMJd0bpCElFSDnW7VaRSgU6lqwXDxsYdhut9Xc3U9swE7AtURPUqfT6Z2RaclkMgiFQip2T8OJ647JWFJwUijLcZQCmjQvPUY5ju12G/l8HrlcDtVqtYuB4rU513ivtjHUDY6x3+9XdeO9DA3pHRL6+3JNM1dD1sLKbRX1+KfOUEglKUvxdPCzHo8HoVAI1Wp1V52WO5YKnMDhcFhlLAGbuzaQvpITmnEoClNZlyMfrOzK4vF4UKvVVKE4zytre3R3X7rltFiY7MNdIHgMPQoqP/LZ3F1A93BoOTM+yiDxflp4FHJ642gZV6JQZFkPn/OtrFN5HskG6JanTsVJypUxTV5XnpeQi002hLCxCT5/XVjqcV16dXq4hJ/Vx1v3AICtSVn6XOk1bxhqseoBrP8vM3NtbECGKfQx7vWctqsJt6JNe3mJO03Y4XlvBVkm9F3hSXLSyaQcAEgmk5ienka1WlVb5vj9fsTjcQSDQWWtMFaVy+XgcrlUg91CoYC1tTW0Wi2USiWsrq6i1Wohn8+jVqvB6XRidHQUQ0NDympgS6x6vd61gSg77gCb27SwHMQwDMzMzOA73/kOTNPEzZs3sb6+jmKxiOXlZdRqNZWU43a7cfbsWRw+fFjFUZvNJhKJBFKpFKrValdiw14H43jMIpZJV8wkJd0pm05Tueregj6h5WIhIyEVs4xTynPIBUIFTeNHvzbBEpDdDvbvBTDzUW6R1el0umqX5Q4cwKbikk1EpHKSeQS0/oHNkh9gs0WdXiKi5z+wjaSkW/l53ROSRpetJDfBZ0IWxsrAkcrNyru0MnS4VilvdbbIat3zXHoij36f9FClsuX6jcViqtZ+t3DX2a06z59MJnHixAk0Gg3k83kUi0W43W6Ew2F4PB7k83kV5yuVSmo/x2g0ilQqhXa7jWvXrqFSqVgmcDidThw4cABjY2Pwer1KSTK7lXEyZr7mcrkuYUqL1zAM3LhxAz6fT+1osrS0BABqcTMRiHWgfr8fpVIJCwsLqFarauEVi0VFD+7E4rnfwZozZgrzWfC5MSbIZhEyniQTfnTqxmpxkFGgkqMxpnsOVJIU3LqSpHCUvUKBTSUphb+NDcjyAABq3XDNM5tYZxQkNWblvVGRypCMFHaMPcsMRmCrkuQ8o0EmGR/+lgLeymPa75BrUnp3VoaGrjR1pSZfI9vH8Ja+zaAcRz2/QIfOWujjKJUkw3PfFUqSlFa1WlUdLCgIZTyJtCTjGnxwjE/5/X4Eg0GkUikMDQ2h2WxiZWUFpVJJeYgydiGtW1qSTAyRg02hyu195C4UfMD0UJvNJvL5PPL5vPKSKHBDoVBXQ2XD2NgJmwKVi3o/xbOobHSrnH9zYXBxyG4629E4csHJ+rmd0mS6xSupX9lMQCrzXtSxjW7vC7BuTs3XrWLF8hiej7AaS13gWrUwlNfXY2BWNZX6MbaC3IpbUeJ61qr8jNW55PHUEzo7ID+rh07097l2rbLT5X1RLu12ctZdbZW1urqqlFA2m0UymVRdVahgpJJ0uVzIZrMqOSccDuPQoUMYGhrCO9/5Thw5cgSzs7M4duwY8vk8zp8/j0uXLqFeryOXy6FWq8Hr9ap9JC9duoRLly4pKjYcDqusVVK47PzB60rhWSqVcOnSJdRqNVy9ehXLy8uqdjIWi+HgwYM4fvw4AGBmZgaLi4tq30mv16vqM5ncsF/ADGFpLEjFJLcQ49gwmcOK7tIVLZN0DMNQO8tY0TNW4EIJBAKKBuSO9Ywzs0MSsNmujDVdNjYhDVIaFZKao6GpxyF16IJVGj2y/zLfJ2Uvs2KlVyMFOFkpJvbIXAb9+rai7IZ8HvpzkXJS1pxKNkEaKlJRSWqUGcgMu3Hu6PkdVufg+LPulmtaZk8Dm0Ya1z2vs1u4K0+yVCphfX0d8Xhc0Wt8ODJeydpG/qaXwWLl4eFhHD9+HCdPnlQ1lNlsVu0UUqlUVAccWbtVqVQwNzenYhIye41eKstNGLOU2VbsrFOpVNQuBj6fTwnORCKBgYEBdDodXL9+HblcDg6HA5FIBNFoFJVKBaVSSWX17hfwGfJZS2qG8cBisaierdWO5ttZofTOuQhZBrBT4ca5R+UqayD1XqLM7rOzHreCa1l2t5JxRgBbWBoJ3fMAto6/lccpDSJZ52h1fgpNPYGn1/yyFWQ3tvMiaZRQkfE567FiK49fnpPtHpkIKa+xnaLlORhvlsmV8hry2t9ViTt8aPV6Hfl8HleuXFGJM1SOw8PDquaQ+0aapqmaiVM4BYNB3LhxA9lsFplMBgsLC6jVaujr68P3fu/3qlZ3lUoFZ86c6em1UbgWCgW1qJhZ63BsFrUy45GKsFKpqPOzjyETjdxut2qMvra2hna7jZWVFdRqNWVF8+/9AioWWefqcDi6Sm+kAQFsFZhW/+vX4Ot8znodF6+rU6s8XsYvScezZEF6tnZbOmv0MmiouCStLmPEjDXKJiA8H3/LBB4pIOX7hE6rWilkvieVpDxGhgj2+zjTiOTc76UomZfBcBbLumSJTa+sYunxyVpy+fz1GLJM6GIYhLkr7Ngje7/qcU3pnO2mwXtXSpLNhRcXF/HFL34RkUhE7XIdCATw5je/GYlEQjUTYHbc5OSk+j02NoalpSX8xV/8BS5cuKA6/Pt8Pjz66KN45JFHFK3TbrdVCyVgqzXS6WzsKcjOOHyP9Y99fX2oVCpIp9NoNpsYHh7G1NSUSvxptVoYHh7G6OgoBgYGkEwm4fV60Ww2sb6+jmvXriGdTgOAqhH0+XyqL+x+AROxwuGwUjpsIuH3+7GwsIBMJoN8Pq+MI2DTsJIxJD05S16DC4BZsnqqv6Rt6OnwHJxHhmEohoM0Mbs9tVot5SntdpeOvQK9sxKwGeOl8Vgul1XijGFs5CSwh6uuaCXjQCWrNxGgMpPKk8YtWQUdegkKZYIU1jSG9rs36XRu7PlJWS2NBql8nE4nKpWKavtHOcdnKOsf9SxXltq5XC709fWpMZbMAecHr0dDGNg0tIrFIlZXV1VuimQ36Jny+mQquUGGHuO+U9x1g3N+uUwmo0ohuIknBSRjQJJbNgwDyWQSg4ODqhTk5s2baruTUCgEv9+PAwcOqAJ1PgjZqo7/8+FRoMoFSuGnW5GkVekZyU2C5U7dFAjcL4+xTV5DX+h7HVQ4Vp2OqNz0PT93CmldSgtTFp0TeoxKKlwKW2BTqJMm1jeI5kK1sRW6kpNJFqQ4ZYMNoHtLs14KSVJ1MqlLf19HL6EnhaWe/KPHNW1Pcmu4xOoz9Ni4zSCdHOmA9HqWsjmELPORna7keSTkOJEdZIIoZS3Xt5WBtdtJeHfVcWdkZAQTExMAutsNFQoF9TBZYiG5bSqffD6P2dlZrK2twev1IpVKAdjc5oh9VJk8QCVYKBTQarUQi8XwyCOPoFarYWlpCfl8HplMBjMzM4oaoHXCxB+Hw4F4PK5iZyw3WV9fVyUpS0tLXd0/SqWS8j55PtM0USwWVbu8Uqm0K1bL/QC9p6dMxNCFn8vlQjAYVF6d7JpByk2PSbC9FJWxFc3WK9uVC48lQKa5sZco75Pde2hUAXasqhfYlo6eg167WKvVsL6+rmLPPEaGXKxiljR2GALR6VYqPImd0K0s+9Hj1zpbsZ8MWis4nU5EIhGEw2GEQqGuMaWBQ5mbz+eRzWaVctIpcStKXo4jx20nBpBUvLK8kPKFcpq6gnuZEpKF+K5RkqOjozhz5gyq1arKZmSvTk5GNrYGuuNFVFzlchmZTAYejwepVArlchnZbBatVgu5XA7pdBp+vx/RaBR+vx/VahX5fB6dTgfJZBKHDx9Go9FQTdVnZmaQzWaVcKSiLBaLKBaLiEajGBsbg8/nQzabxbVr11Aul7G6uqqU5PLysqL3mMHKPdHkFkxsfMBz7xcwi4wbKMu4ID06PncKTE5o2cMV2NpphYo1FAp19f7VhaOk73istE5JxzBmTKuZNCDjHTyH7WFshWQMqCT5OgDVrpFJWnz2VK6SibEaZxkjljFn1rdasQlWSpJKlWtWCuXtjtuvcLlcag/dUCi0RYExq5kGTDabVdugsWmKVI46kyPDX1YMj26kWCVt6UoSgDLKfD4fotFoVycuue6/a0pAgM2m5KQ3ac1xRw7dgqDwZMYjXe98Po9CoaCyVKWVL7PXaCmyz2s8HldWbjAYRLvdVoNPS5cNl/lDDygQCKBYLHZ1hZGF57JwXVpYTqdTfUcASuiyEfR+WIgUhDJWJZ+RHHM54WWMQCo5KytTUqu68rJSZvqi0JN5aKDpHm+vxW5jA7rxA2w+M4YhdFq9l5evj3Mvqs2K3t3uXAC2KEIrz8bGBuSa1JNogO61yXIssjE7GRseK1tE6t69vI7Ve1b3ImOWpmluMWxlDHo3x/yOlWSz2dzS1Ns0TbXbB+MVQHfmWTqdxoULF1AqlTA3N4fFxUXU63Vks1nUajXE43GMjo6qwLJUjO12G5lMBnNzc2i32wiFQhgZGVFeaDQaVRQgS1JYo8etrxKJBCYnJ+H1elGv1zEzM4NardZFGfX19WF4eBjxeBzJZBLValXteOJ2uxV129fXh8nJSVQqFaysrGBtbW1fLEjSraxJpYLUaTYAqn1dJBLpep3HSEOKRgkTvehpSIpUBusJKcRJ47GVGtuW0YChdSqPk56kngC0n8ExlQkaAJSXyBKwfD6vtpUjrGKOfL7SO7B6znyf3qEev5I/UsjT0OW9U5HLxBKbMdhYZ4FAQCXe0QGxiveTJWQ+BjevkEl4ci3zWM4bhqparZbyRPWMdEnL8n9Ji3PNFotF5PN5hEIhHDp0qCtTnbFLsobMwt0Nev2OlWSn00Emk1GCh31OaXWwHo3gAy2Xy1haWkI2m8VLL72EixcvdgXumUQTDodVgg5pTyrhTCajuv0Am9laABRFRwuXitLv9yOTyajaR7/fj+vXryslzGsAG6Uh3IEkEAio2AkTjqh4h4aGcODAAdRqNSSTSQSDwX0hXPWyCelF6jVKLPHx+/1KAQFb+0Dq8Uy544P00Dnx9SxX3bqVx7DhA4+XMQtdcNqxyU3IRAgZk+Q6lWEMfXNkQlKrUjhKKpaf47FSwcksSL6vU+1A904R8nM61WeP78azIZ2qx43158P2ouVyWbF8HDt9Vw5Je8pmAqVSCfV6XeWj0NiV46PHpQF0KV2n06mcKeaG8Py8ZxpVvNZusUN3nd3KhSQ3QpYpxlwItVpNtZpjrFDu3Sh7fObzefVw4vE4Wq0WFhcXUSwWkc1mMT8/j06ng4GBAaRSqa7UfVnwyoHyer3o6+tDIBBAJBJBLBZTcS8q19HRUcRiMRw6dEhtFs3kEYdjY2NSbgPExKF8Pq8mAOOxe92T5KSTWcXSwJEZaVR0nBt63EKeT6d75A8Vo65UrRI0CEmPy/f1bEr5I9sm2jGsbnDc6KVzmzluVVWr1XoexzizrqRk0pbVuFC2cKz1QnJpnLH8i/OMncBkbEynGPcr6Igwp8DK2yYo70qlEtrttmLqpBEjoYdLmAfgdrtVxYD+/HXFrMexaZADG0mdsuxMz0rn/TOPpdlsolwu31Ud+10pSakgWXzPB86m5RSY3FeQ2aDVahWJRALhcBi1Wk3RoZ1OB7OzswiFQnj88ccxPj6OtbU1/M3f/A3OnTundkCnZcHm2kQikcDY2JhaxBTSAwMDigr0er0wTRP9/f0YHBxEo9HA1NQUXC4XBgcHcezYMcRiMeVlss5yeHgYq6uruHTpkmrMPjIygkajgfX1deVZ73VwzNlMHNikWPhsi8UiCoUCDMNALBZTjQZ6xY30vylQqYwBdClh/raKjzDtnAKU78t4hbwGFxwTjFiPebvlK/sBXAvhcBgzMzNYWFjA2toa8vn8Fm8Q6KZT9eJvUqT8LXcG0Tv90LDWWSfmAlDGcMwjkYi6TrPZVGzQfuuzbAWOYSqVUm07ZXMNacyUy2XMzc2hWCzizJkziMfjikWQpVT6OqSjwg3vpccnDWP5t5QNMlwnm8cUCgU1t/i6NLJ5zb6+Phw4cEDV578uSlK61MwklFsN6a68bHjNyc6Cb5fLpQpVTdPs6s5D4ZrP57G0tKS8TpfLhUwmg7W1ta7CY4fDgZGRka771HetADYWr6z1i0ajCAaDSCQSih5kUhIA1fCcWZGs22HiDynb/aAkpRWnKxvGJvhMgM1WUVYe43bX0M9rRbnpkIvFqgZMp3TkuXiM3inGxiaoxLjW2TKSY20FnfoCupUnx0S2POO1+L+k6vX3aXzpc04aSFJe7XfQiGRZnVRQemJbs9lU9YmmaXZlI1sZu8DW0g8a0tvFB/X5IY/nuJmmqXQI71VeU/9+wWBQZUnfDe54xjidTgwODmJqakrtVE/XnaUflUoFy8vLKBaLyipgMob+pWRyDwcgnU5jZWUFuVwOPp8P/f39SiEztnHlyhW0220UCgXUajWMj48rmpbJJfKcxWIRi4uLKJfLuHDhAm7cuAHTNJFKpRAOh9FqtVQNEa9Bz4KKfXBwEIFAQFli9Kj3E2RsSWYCU1gxVkVDh/WOsiBZF3oy7ijrnSgg6alSmHKh6Jmrej2fHjfVBQE/J+sybSVp7elzrns8HtTrdSwtLWFpaUmNNT8rY9QcDysDRTbI53tyD1DZXpJeIw00Mhp+vx+tVgvr6+swDENlm8s+zjRy7c5KUN2xotGoWk9MjJNGB70vPawGbMT5ZQjEKu4nDVYdVopVvkd94HA4EAqF4HK5UK/XMTc3p3pu89x6jJuGXCAQULXxd4O7qpMcHh7GiRMnAHTvIcegarlcxsLCgvIi+aX4oGUnFFqSzGTlpF9YWEClUkEgEMDQ0JDaVosK8sKFCyiXy6pO8tixYwgGg4pKHRwcVPdkmiYymQxeeukllWV79epVABtcdzweV6nOwWBQxS+5aDudDrxeL4aHh9HX14fBwUEEg0H1vfYL5MTUlSStPW49xrIbemhWFCYXiBSyFIZ69iwXgmxRx+OssvNkzELes64oSe1a9Rzdz9DjtlRWVJLMUNcTOORn9fEl5S2ZHOnNsHxM3zFCKj7OkWAwqDyGtbU1ZTSxexbnJg0sxsX2M5gzwjAI5aNcGzJOyedPg4Rj3atEC9hat7yTzwHdWdE0lJiFW6vVMDMzg2KxiFKppD7P+5ayhX1eq9XqXY/3XZlUMtOJVof80nIbG9YsSuuEFl2j0bAUXDKzlb9llxcmBJEK4GKT2bC0Pnlu0rnlclnRpYZhqKxcbusi4x9ycJm4QGVPT3U/bLNkleyij5lMlpALjHEMWQJi5VnoiRk6DaNfW08ekAtS9wj1+ImuCHu9bmMDVok3NHyksAK2bx8H9J5LNJr1cgA9A1JnHSgLpIcjf+yx3YQcK8o2fbyocJh8Izvf6BnJOwHHcSf3JilX3ivXsuyiZjWX5Pdj6cjdjvldNxNgIwGmCKsTu1yoVquq4fjc3BzS6bRSQsBGk/BQKKQ619RqNbXISN0Wi0XkcjncuHEDly9fxtjYGPr7+1W7u3K5jHa7jeHhYVUv2W63UalUEAwGVXcdKlcAyOVyWF9fR6FQUMqUvWdbrRaGhoa6No6mRcMJE41GAQDDw8OYnJxEsVhUiQJ7Fbp3xwXDRCiW/HA+SOszHA4rqlt2ubGiXOUC0RNsWBLU6xj+5j2aprmFWpMepi4g+H2sYpn7EVJB0ZPjGDAZgs+OXhqZFb4vlSifKQWuNIyl4ctd7JmxKuF0OpURC0A1B2EjbDIZ9Drpre5371EH80HogdHB4P+5XE4ZHtwNSd+jczvGRVKwXLMyJmm1xqyMMLfbjUAgoJgBaZjJuSlLvkjRJhKJLp1yp7irXUB4w0xkaTQaXdYGPTr23FtZWQGwqekDgQBisRgMw4Df71eDQM+MWW3cpmpxcVFtkMvYAx9CMplELBZT22E1Gg2lNPXO/+xsT1q30+momKbP51MLnNw2/6aFyi7zrLmkR7mXIa0zKdyklUnaRnrgpLm4OLbLGLVacLyGLmhvda+yYYDV+zJJR3/dVpCbkAlxOhWnp+nLNaxvbya9Rd2LATaFphR0UtFyXGT3LK5Pr9eLTCaDbDbb1XZQj23z++x3yFwCSXUDm112KpWKSoRiwqKUo5wDvRSQzi7JnBM5F4DuxC6eT4bimMNCj1L+8Pvwh9dmHSgNgbvBXXmSMk03FAopT4tWZyKRQDweVw+7UCioxQRAKUAqJ9a1sK6mr68PqVRKWRT0LOfm5lT2KZsO0EusVqtYXFyEx+NRaelS6LVaLZTLZRSLRbjdbgwMDHTtHuBwOFS3FypYOaFYXymbcO8HwcpJLekr+TeNCHoXku6Qu7ZYndcKOqUmP6vTK73uV37W6n1+B5n4o9Nz+xkcT8YIKYS4ia5sN0ZGQd+xXvbq1ceC7/Na0mDh/GGMWI9byZgnmQyCiXqSdaCs0rdb26+wYnGoPOn0VCoVxa71qhvezuiwUpJ6chffl/NFHiOzWLnDFJNCV1ZW1Hrl7j5UnMxulb3D7xR35Uk2Gg2Uy2UEAgGV8UmF5fF4MD4+juHhYQBQO37E43EMDQ0phcfdM2KxGKLRqJrgXq8Xx44dw/T0NMLhsKrB5G4frPUZGxvrEmrr6+u4fv06TNPE9PT0Fh6cbZbm5+fVfpKdTkfRry6XCysrK8hmsypRiKnP9H4HBgYQDAaRTCYVBbXXhSoFobTMOdH5/Zl+z+xmZrbSG5dxYblYZGaatDiBzbonXXFZKTk9NmkllKX1yesSFPTctWa/g32W9YxiehnValUpSZ/Ph1gshkgkop6rVEycP5JOl96o7JscDAa75ozspCLHlZ2+otGoymylXGJbSt6fzLjeTxuk94JkA4BupqhWqyGTySCTySCdTqukS71sR6JXmITjzGtJR4rzisaWjHVKw0iW6Q0ODsLr9WJ1dRXnzp1DLBbD5OSkqoHlMaFQCKlUCrlc7q6zme/oaOk5UECxCwdjACzMJgVDfpuep8PhULEFPjDWwlC4RiIRFbeU+xRWKhW1mNgqjvROo9FALpdTC5yLkINIipY0bSQSgWmaKJfLahHyPlmErGdoSetV96p2Epy+XyGtP/4vf8ukCipT/tyqPkqHVKRWSTjyur3OeStPU//MTo7bT9BLsuQa4m89gUZ2yNHjUDoFJ9/ndQgqWq4xK8VGA032gqXC1b0fXVjvZ0hlpBuslHfseSxzDHTFuFPqWl5HL8/SjVj5eSm7aSyz5K5WqyGXyymGUafrdWbjbnDbSjISiaiC+2QyCZ/Ph3q9jldeeUXFElkXd+3aNSSTSWSzWQQCARw5ckQd73Q61R6OtBTb7TaGhobwwAMPqL6pTK4ZHh7G9PQ0KpWK2gorHo+r2sZcLqes3mPHjimvb25uTpVzsGE6F3S1WsXq6qpScKR7SQEvLi7i1VdfhWEYWF9fR7PZRD6fVwp2ampKdQyKxWI4fPjwno15yPijjA3IAm2ZyMFjgK2ZbXJxyAUjkzgYS6AxJT1APS4h35OKm8K1Wq0qOkYuIi4wKST2CzOwE0iDUtLlNFjkmHLMZNkF5waVKY1OGb6gMmRnFHqoulKUVDi9D4fDocI5S0tLXfcnO8Iwzma1Y8l+hm4U8vlyPNLpNCqVypbuR3K99IJUiMxJkHFGAFuUoFSSulHMkiCWoKTTaVy/fh3tdhtHjx7tijtK+p819XeD21aSsVgMU1NTqhbR7/cjnU7j+eefx9ramiridLlciEQiqvN7f38/BgYGumrR0um0Ujqrq6sol8sIBoOYmJhAf38/gsEgcrkcGo0GDh48CMMwkE6ncfPmTTQaDdWEvF6vq9ZY8XgcR44cUbtPzMzMIBAIYHR0FPF4vGsrrkqlgoWFBXg8HiSTSSQSCRQKBWQyGVUDxpgkB7haraoNmA3DwIEDB9BqtZBKpXD8+PF9oSQpIDmRqWykZyEVlm4hSoWoe6cAtsR7GUeS8Qm56HRPhcKX98mFLrdvI2shd0rn3JSeyX4GDQyv19ultPi85XPnmDHJQybo8Flz7TF0QVlBhojXKJfLykuUu0YwaYwKz+FwIJFIANjYlICeBJUolSGVJLtk7Xcleatktk5nY69ftgrlupDhie1i/pIhMAxD5aDou7RIeaGfR44RZQY9yXq9jpWVFeTzeWUIy/IjoNtou1vctpKksNQz1KrVKkqlkool0IKs1WqIRCKqKw/PwS8vqRFgsyOP3+/v6tnJlN5Wq4VgMNiV9stEEaah86fVaqFQKKhFRSsmGAwiHA4DgOLbORA8LxdaJpPpmhzVahW5XA7NZlPRucDmoOxlyKQWPSOOgkjfckdCWq5Wi4tzSVLYO/Ho9OQseS2+L+cavSJJ0Vmdw8ZWSBpM98Jl3TQNGDkOMixhNRekp6Ine+jxKgpYKcB1T1LeH7PtdbZjP0JS3FZrlQZFqVRCs9lUGepUbLrBqkMPYfS6h+3CU3Le8HpkeriOGSKT80zOJT3r9U5x20pSll1Q4WQyGVQqFeRyuS5vg5bf6OgoHn30UUxNTaFcLqtG4PV6Hevr6wA2PFTu49jX16eSAFjfePToURw4cAALCwtwOByqLjOTyQDYaGze19enrl2v17G4uIjV1VVEo1EkEglVJvLQQw9hbGwM169fx5UrV1CtVlUtEADVpSedTuPZZ5/tUuTc6b7T6WBqakoNXDAYRCwW27MLkN4X6QtpFdK65y4v7L2r10LpE1cqW/maNML0RaYr5l4xRLlQaGGylIheidfrVRt9y6xcu6ZuA1zD+q4PTJCo1Wpdwos5CbVaTZVUcTwlDUulJmONzDHgGqPBxbnE+6H84bHcxYcbGpDt4fZdnC80ajne+xl0HrLZrCplo8LiOr5+/TpeeeUVpFIpjI+Pq9ZwhUJBKVlJz+rgupTGlO5J9kr+kf/zXrme+/v7USqV1HaLw8PDXXkudM52s+rgjpUk3Vim+TOhxgpMwDlw4ADW19eVBdBoNJT32dfXh3A4jEQiobawIn3j8Xhw4MABFfPMZDLI5/NYXV1Virm/vx/hcFg15G02mypOmUgkcPr0aXQ6HQSDQUxOTqrMJyo8tr5jlp7L5cLS0hIuX76sOvPoiQXcdYBeJDNh9yKoJCXdKjNQKTS5dRiP0a1KXUlKS9JKiUps92ytriMpJGCDBcjn812xMwpe+V16Kd79Bj0ZRyrJTqfTtYckqVHKAjY9l0qSikxa91Joyu2t6D1wCy7eB6/LcSN7Q3lE41sm7QGbcqtare57ulWuVTJqck3XajUsLy9jZmZGlebFYjE4nU4l460S6Qj5umQV5DrTPwdszSkAoGo2+X4sFgOwUT7IcJ2k1bned3Md33Wn351o61arhVKphFwup4r4G40GUqmU6v0qC9IrlQqKxaL60pIakJskOxybhf06x03wWG6rZZob5SZerxeJRAKRSERZrtyGJRwOq/0jt+vAwlRpj8eDYrGIcrm8Z5UkE6Gkd0/BJb13dkCiV8EYh57hRsj4llXgXpaY8L3tLFAey6QNuSE4N/yORCIIBoNbUsN1AW5j09CRCVoyvkjITFOrtcIxkZDPWtJ3VKr0POS8kTWzVJj1en2LAUuFyrli927dBOlUacjw2dOD52b1TGhkoxarsZXrlr/17HTdIAY2u27phrL0PmUYhAqbn2dSmUzI2k5O3Cnuej/JnWjser2OhYUF+P1+lMtlpNNpmKaJU6dO4Qd+4AdQKBTwne98BysrK2i322qD5WQyqSgbgrVOpVIJXq8Xg4OD6j09iYNxCDbcXl9fh9/vx+TkJAxjMwmoWCxibW0Nq6urcLlcGBkZQSqVwsLCAgKBgBIKkqYxzY1WdpcuXYLL5cLMzAyWl5fv5nF+V8Pj8aC/vx+pVEolVdHzZmOHfD6PlZUVNBoNlVDB9oFWafmEHo9itrOMTzNRSnZckUlAwKaCZK9gwzAQCAQwNjam5tX8/DwOHDigMrN5fUnz7hZNc79DWuZMsiElLWlYsgz00K3KhOTYk5Whd8mx5xhwGy7ZcYeQxhMNW/ZhpqJlezx6RWwAQi9kN5I57mc0m02sr6/D4/EgGo2q8et0OsqZKBQKiqWbmJjAwMCAKnvTlZHumcvXJJNj1d1K5jFIo0lmwnKOxeNxTE5OqiYCmUwGuVxObaYg+4LLuPbd4o6UpEyw6EWNSZDn5g7XrHOMRqM4dOgQ1tfXceXKFayvr6vPApv9IOU16EUyoMyidZaQ6B4LPUkKTrYr8ng8ital0GWg2u/3IxwOd2XqWX0/Kl+n06m+116F07m5mzkXiywJAaAWmKTBmMhh5eED3bELoHtvQam8KBx7xT/kscDmpq+MddXrdRQKBeTzedXa0Aq2F9kNPSOZf1tRZXqihJWHTyNGevp6C0EpKMkk6WPP/+n1SE9Sxqo5d2S27X6HVIayTIbrjs+UdeOUk/Jz+prrxR5YOVH6/1Ysk77OHY7NPSK5L7Dcx1e2w9TPe7e4bSVJSy8YDOLAgQM4duwYHA6H2k9S552BjV6pV69eVeUexWIRDodDcd+VSgWzs7MqRri+vq5KSEh9jo2NIRqNqv0l2Su2XC6j0+luVEAwuadcLuPmzZtoNpsIhUJIp9Nwu91q25VKpaIWZLVaxfXr11EoFLC4uIhqtWpZW2WaJrLZLK5cuQKHw4G5uTnVm3YvQma8cT83trDioltbW8P8/DzK5TKq1apK9IlGo4omp5CSVIwuHGUZETONqTQpUGn5SvDcXq9X7Qe6vLyMa9euqRhGoVBQDddlOzPDMJTXuhutrPYCcrkcrl69ilAoBIfDoWqaua4uX76s4pJM3PP5fPB6vUgmkyo+TWVFJctEL8oRySIAm0KUTTvICNEwjkajCIfDyOfzWFhYwOrqKtLptEraeemll7ra4JmmiatXr+LKlSuoVCrKCN+voGfNOnMyAFZxw7W1NZw7dw59fX0YHx/HyMiIos6l9y8NHlLvunMhFRbXXqfTgd/v74pdSoOKuR4ulwvLy8tYXl7GysqKckj0UADQvTuVTufe0fO67QP+kVaJRCKYnJzEww8/DJfLhUQioVp66ZRaqVTCSy+9BI/Ho/oCGoaB69evI5lMKhoN2KBT0+k0Wq2WonQSiQQee+wxTE5OIp1OI5vNqoA+j2UyEAWrTFdut9u4fPky5ufn1X6Ubrcbi4uLyOVyyhJ1OBwoFou4dOkSZmdncePGDRSLxZ5Kcm1tDS+99BIMw8Da2hpyudxdDMV3N+hpu91u5PN5FItFAJubr7Jn7rVr15SFT68zmUwqulWnuuSEpjXI2AOFKWveuPgAKAsY6N79g3HqRCIBwzBQKpVw4cIFlEolZLNZlMtlxONxdDqdLUqSO5aQ6djvSKfTKqyRy+UwMzODdrut1sz6+rqiObmJQSgUQjgcVjXRzC2QsX2pBIPBoFrDMtNVF66lUknNP2ap37x5E9euXcPNmzdVqKZSqeBb3/oWrly5os7vdDqxuLiI2dlZFX7Zz6C87u/vRzweRyAQUCET1pFSfi8vL+Mf/uEfkEwm4fV6cfjwYWW0kN6mQgwGg4o+51qUpTzApgHEnAVg0zhmfFEe4/f7VdJQo9HA7OwsVldXuwwdxpspS6gHXjdPUibP6LEhCjWrY6iIOEkpwPgwuTDorcjOOC6XC7lcDtlsFvl8vqsvI4Au65bxE4IWCjv3MFDNc9JTpMvORuySOrSKowFQ5SAAVLbuXoWkaMrlMnK5nGoIwYYSTMqSXmK5XFYZaPQw+R6wmbUolaTL5VKWKoVnr5ouPUFAxiUNo3ufUFJI/B70KhjX4rySpQP7GbK+uFAoqDgfGSGZQcpOORzvbDar5gM9QLmBNn9onFI2UGFKZQpAvW+apjLQmCwnt+nrdDqqGYHH40Gj0YDL5VJdtLar490vIPMm5z8zglm+Q4OFVQLM4VhfX1djwGfLkBjBjH9S3dQRHEOHw9HF+nGMeU9SFsjPMQYp+++yRCSTyah2qLVaDfl8HrlcTjGNd4PbVpLZbBYXL15ENBrF5OQk/H4/bty4gWq1qlx2PX7ARSTTyE3TVJNbJl9IAUWFnM/n8dxzz+Hq1asqdVnPkJRb6kg3nwpc7ubh8/mUQqYipBLP5/PIZDKqJohCwkpJsmkygC2Ke6+hXq9jaWlJLZRr167B6/UiFoshHA4rDzybzapjXC4X/v7v/x5Xr15Vr5mm2bWXHek5OQfY7Z8Gj9xCjQuI4y0baHOMi8UiZmdn0Wg0cO3aNeXxcHwymQyee+45LC4u4urVqzh//jxqtRqy2awSpns5vrxTyFKMlZUVte5oIPM3ANWlig2x+/v7u9oLBoNB5dVxnPi+jIcB2LKWAai12mg0lIfLEi0qba7TYrGoarmpmKmsd4N+u9+Ry+XwjW98A6+++ipGRkYUy0eHYXV1VSUh5nI5XLp0CT6fD+l0Gl/5yle6WJZQKKQ2eohGo6pxTCKRUDSqHnOUzIJ0uOgIMbTDcj52XVteXsbCwgKq1SrW1tYAAAsLC/jMZz6DVCqFUCiESCSCRqOBixcvYn5+Htlstksm3QkMc4dSXQ/MhkIhvOMd78Ab3/hGrKys4JlnnsHCwgIqlQry+fy+mIjsCWuaprKagft3z7rbyeiUVCf/1o0JwzAQDodVyUg4HFYKkrtFhEIh1bRYtitj/99wOKxiYrLUR9K8lUqli8IpFotYXFxEpVLBhQsX8NJLL3VZpAcOHMCjjz6KRCKB8+fP49y5c8pI2mkN3f06xsDtjfPtgqVCLpcLqVQKBw8ehN/vVy0kaRhRUerZsBxb0umkw+nhF4tFvPDCC5ibm0O9Xles073C/TrOOxljwzCQSqUwOjqqelmz9GNtbW2LoSjDGlzT8Xgco6Oj8Pl8igb3+/0YGhpSspGQmePSKWLCJCsMWDLIPIIrV64oA02XMX6/H319faqkj6GdixcvYmFhYUeU663ev6utsu7XCWTj7qEzBfpr8j1pRcr/5ftW5+k1x3Y67251fK97snHnkM9Ur321mjP63wRrIntlTtpjdveQmeRW9cxWn5fH6etVry7ota75NxkE/VryNRmf3O6+JENgdQ93gx17kjZs2LBhw8Z+g53nbsOGDRs2bPSArSRt2LBhw4aNHrCVpA0bNmzYsNEDtpK0YcOGDRs2esBWkjZs2LBhw0YP2ErShg0bNmzY6AFbSdqwYcOGDRs9YCtJGzZs2LBhowdsJWnDhg0bNmz0gK0kbdiwYcOGjR6wlaQNGzZs2LDRA7aStGHDhg0bNnrAVpI2bNiwYcNGD9hK0oYNGzZs2OgBW0nasGHDhg0bPWArSRs2bNiwYaMHbCVpw4YNGzZs9ICtJG3YsGHDho0esJWkDRs2bNiw0QO2krRhw4YNGzZ6wFaSNmzYsGHDRg/YStKGDRs2bNjoAVtJ2rBhw4YNGz1wz5Tk6dOnUSwWLd97+OGH8cwzz+z4XKurqxgYGMB73/vertd/+7d/G4cOHcKhQ4fwG7/xG+r1v/zLv8TJkydx+vRpHD9+HL/xG78B0zQBAL/zO7+D06dPq59IJIIPf/jDAIBOp4MPf/jDOH78OE6ePInHH38cV69evb0vbsOGDRs29gzumZI8d+4cwuHwrpzrF3/xF/FDP/RDXa995StfwZ//+Z/jpZdewvnz5/H//t//w9/8zd8AAN761rfi3Llz6ufv//7v8dnPfhYA8Bu/8Rvq9W9961twu934qZ/6KQDA008/ja997Wt48cUX8dJLL+GJJ57Av/k3/2ZXvoMNGzZs2Lj/cM+UpGEYyOVyAICvf/3rOH36NKanp/FzP/dzaLVaOz7PJz7xCUxMTOCf/JN/0vX6U089hZ/5mZ9BMBiE1+vFz//8z+PP//zPAQDhcBgOx8ZXq9VqqNfrMAxjy7k/+9nPYnR0FGfPnlX3XK/XUavVYJomCoUCDhw4cCdf34YNGzZs7AHc85hko9HA+973Pvz+7/8+XnnlFfzkT/4kXnzxRfX+k08+iX//7/+95bE3btzAk08+id/5nd/Z8t7s7CwOHjyo/h8fH8fs7Kz6/+tf/zpOnDiB/v5+vOUtb8F73vOeLef4xCc+gV/4hV9Q/7/rXe/CY489hsHBQQwNDeELX/gCfvM3f/OOvrcNGzZs2Lj/cc+V5MWLF+FyufDWt74VAPC2t70Nk5OT6v0PfOADlorINE38/M//PD72sY/B7/ff9nUfffRRvPzyy5ibm8Pzzz+Pr371q13v37x5E//wD/+gqFYAeO655/DKK69gYWEBi4uLeOKJJ/CBD3zgtq9tw4YNGzb2Blyvx0WtqE8dhUIBL730Et73vvcBAEqlEiqVCp544gl84QtfwNjYGG7evKk+PzMzg7GxsS3nSaVS+MEf/EF85jOfwZvf/Gb1+ic/+Um85z3vQSKRUK/9yZ/8Cd7ylrcgFosBAH72Z38Wb3vb2+70a9qwYcOGjfsc99yTPHr0KFqtFr70pS8BAD7/+c/j2rVrtzwuGo0inU5jZmYGMzMz+P3f/3287W1vwxe+8AUAwI/92I/hT//0T1Eul1Gv1/HHf/zH+Imf+AkAG95rp9MBABSLRfzN3/wNTp48qc7d6XTwyU9+sotqBYDJyUl88YtfRKPRAAD89V//Naanp+/+IdiwYcOGjfsS99yT9Hg8eOqpp/DBD34Q7XYbjzzyCE6dOqXef/LJJ7G4uHjbsb/HHnsM73vf+3DixAkAwPve9z6VAfvUU0/hqaeegtvtRrvdxo/+6I/i/e9/vzr285//PBwOB5544omuc37oQx/ChQsXcOrUKbjdbgwODuLJJ5+8069uw4YNGzbucxgmCwht2LBhw4YNG12wO+7YsGHDhg0bPWArSRs2bNiwYaMHXnMl+dxzz+Ed73gHJiYmcPbsWZw5cwa//du/rd5/7LHHVHecneJTn/oUotEoTp8+jVOnTuHkyZP4q7/6q12+cxs2bNiwsd/wmirJl19+GW9/+9vxoQ99CDdu3MDzzz+PL3zhCygUCnd97scffxznzp3Diy++iD/8wz/sStSxYcOGDRs27gSvqZL86Ec/ive///1dfVgTiQR+93d/d1evk8vlEI/H1f+/+qu/ikceeQSnT5/Gm9/8Zly6dEm991d/9Vc4duwYTp06hY985CPo6+vDzMzMrt6PDRs2bNi4P/GaKskXXngBb3jDG+7o2Keffnpb7/BLX/oSTp8+jSNHjuBHfuRH8J/+039S733kIx/Bs88+i3PnzuGDH/wgfuVXfgXAxu4iP//zP4+//Mu/xIsvvoijR48inU7f0f3ZsGHDho29h9c1cefXfu3XcPr0aYyMjODVV1/d9rPvfve78fGPf7zn+6RbL1++jG9961t4//vfj8XFRQDA3//93+NNb3oTpqen8Zu/+Zs4d+4cAOCb3/wmTp48iaNHjwLY6LDj8Xh258vZsGHDho37Hq+pkjxz5gy+/e1vq/9/7/d+D+fOnYPb7Uaz2dy160xPT2NsbAxf+9rXMDs7i1/+5V/Gpz/9abzyyiv4X//rf6FWq+3atWzYsGHDxt7Fa6okf/3Xfx1/9Ed/hM997nPqtUajcVtbZ+0E8/PzuHLlCo4cOYJ8Pg+3242hoSGYpomPfexj6nNvfOMb8dJLL6kY5ac//WnVks6GDRs2bNh4TRucnzp1Cp/73Ofw7/7dv8OHPvQhpFIpuN1u/NIv/RKOHDmiPvf+978fv/zLv6z+/8xnPoO1tTU8/fTTPSlXxiQBoNls4j/+x/+o2t/9xE/8BB588EEkk0m8973vVcf09/fj4x//ON773vfC6/Xi+7//+xEKhVSDcxs2bNiwsb+x79vSFYtFhMNhABubMP/rf/2vceHChdf5rmzYsGHDxncDXpetsr6b8Ad/8Ad46qmn0G63EYlE8Gd/9mev9y3ZsGHDho3vEux7T9KGDRs2bNjoBbt3qw0bNmzYsNEDtpK0YcOGDRs2esBWkjZs2LBhw0YP2ErShg0bNmzY6AFbSdqwYcOGDRs9sOMSEMMwbvvk8hiZRGsYBpxOJ/r7+5FIJBAKhTA2NoZIJAK/349oNAqHw4FisYhKpQKXy4VYLAafz4dkMonR0VF4vd4t53M4HGi322g2m2i321hfX8fa2hra7TY6nQ5M04Tb7UYgEIDT6YTH44HX64XD4YDX64Xb7Ua1WsX6+jqq1Sq+9a1v4ctf/jIqlQrq9fqW1nm9EoPv14ThOxnjewWOyXve8x68+93vRjgcxujoKGKxGK5evYpnnnkGq6urePHFF/Gd73wHzWbzNX3u9+sYA99d4/zdjvt1nF/PMXY4HPB4PHA6nTh16hTe/e53o7+/H8lkEolEouuz1WoV6XQa1WoVX/va1/DVr34VlUoF2WwWlUrlNXn+t7rGPa2TNE0ThmGoh+ZyuTA0NIQjR44oZRgOh+Hz+TA4OIhgMAi32w2fzwfDMFCtVlGr1eBwOODz+eB2u+H3+xEKheB0OtHpdNDpdGAYhvpxOBxwu91wOp2IxWJwu93qPvi+y+Xq+t8wDLhcLjidTrhcLvh8PrTbbdXOrlarIZfLoVwuo9VqKYW5tLSEmzdv7npbvf0ALmKrCTo+Po43vvGNiMfjOHjwIACgUqng2rVrMAwD9Xodo6OjGBgYgNPphM/nQ6lUwszMjL2Liw0brwMcDgf6+vqQSCQQCARw8OBBxGIxpFIpRKNRGIaBTCaDTCYD0zTVj8PhUA7OAw88gFgshkqlgtnZWaTTaeRyOdy8eRPVanXLNQ3DeE2U6D1vJsAHQWV45swZ/PiP/zgSiQQ8Ho9SntFoFF6vF51ORx3bbDbRarXUA+VrzWYTnU4HrVary7szTVMpOgAIBoMYGBhQipGKlZ6lPJ7n93q9iEaj8Hg8OH36NJxOJ5rNJubm5pBOp1Gr1ZDJZFCv1/G1r30NS0tLtpK8A/RiGYCNBvUf/vCHMTo6ihs3bmBmZgaFQgFzc3PI5XIYHR3FI488gnA4jMHBQYyPj2NtbQ1/+7d/aytJGzZeBzgcDhw4cADHjh1Df38/HnvsMUxOTiKXy2FxcRHVahVLS0tYXl5Gu91Gu92GaZqIx+MYHx9HIBDA2bNnMTw8jGq1ihdffBHz8/O4fPkyMpnMFiUpHSOpM+4FXpOOOy6XC6FQCKFQCPF4HIlEAolEQikvl8sFv9+vvD5So3zfNM0uypRKiZ5gr4fE43UlyWM7nQ4cDocS0tLzpfcaCATQbDZRKBTQarXgdrvRaDQUXWtTV7cPq2dmGAa8Xi+cTieCwSBCoRCCwSBM00ShUECpVEI2m0Umk0EkEkG1WoXb7YbH40FfXx86nY5iIuQcsWHDxr0DPUGPx4NwONzlTbrdbgAbLFCpVEKhUEAul1NKkixgsVhEp9NBvV7vcqpIz4bDYVQqFTQaDbUBBRXkfeVJWnkG/CKJRAKPP/44xsfHMTo6ilAoBIfDgWaziWq1CsMwUC6XlcKSiozKjN4jPUEdfE96ne12G06nU72v35+8Fo9rtVool8swDEMJ606ng2KxiHq9jmq1imw2i1KphFKpdM+tmP2CUCiEEydOYGhoCKOjozh//jxu3LiBb37zm/jWt76FWq2GQqGAWq2Gq1ev4tVXX0UwGMQb3vAGPProo8hms7h8+bIal5WVFdTrdWX0AFDzw4YNG7cPq7VENiccDuNNb3oT3vzmN6PRaOD8+fP42te+hvX1ddy4cQOVSkXlmEg57ff78eqrr8LtdiORSCCZTCIcDuPMmTM4ceIEotGoyi+5ePEiXnnllS4n6bXAritJPUHHMAxEo1E89NBDOHPmjEqWAaCUpFRsUnExtmiaJur1OtrttkrS4W+pBHVPs9VqKcVbr9eV5SJjkvK+TdNEs9lEpVJBu91GOBxWbn61WkWz2UStVkOxWFQC2xa6uwO/348HHngAx44dg2EYuHHjBprNJr71rW/hmWee2ZI0ZRgG/H4/JiYmcOTIERSLRUxOTmJxcRFra2uKEpcLW84xGzZs3B7IsMn1EwgEMDw8jEQigQcffBBveMMbsLi4iGeeeQbPPvss0uk0bt68ecs9fA3DgM/ng8/nw+joKKanpzE5OYlQKAQAaj1fvHgRrVbrNWXwdk1JkqokHA4HEokEotEohoeHEQqF4Ha7YRiGUmJUWsBWJSsHgi64fg2+p/8QUgmSltWP1112KlEKVjkgTqcTXq9XDVwkElGB5lqtZu9FuUPIcaQh5Pf7VYZxqVRScYhMJqPiF/o5Wq0WlpeX8corr6DRaMDhcGBoaAidTkfFpflZq79t3Htsl6DFRDyuNWCD/anVaru6CbuN3YEuX4EN43ZwcBCJRAKmaWJ5eRkrKyvIZrPI5/PK4bjVuuN6bjQaKJfLWFpawvXr19FoNBAOh+F2u9HX16fkbaPRUHPkXtOuu6ok5Y16PB6cOnUKZ86cQV9fH4aHh+Hz+dBoNFAqlbrifwCUR8j4ox4nZOxSepqSerWi0nh+JvTwNXqi/F/ev9PpRCAQUOeoVqsqpsm4qcfjUV5lLpdDsVjE7OwsVldXd+tx7nkwHhwOhxGNRtHX16eSu2ZnZ/GlL31JLTSONzOROQeazaaidKLRKI4ePYrHHnsML774Is6fP49cLtc1L2wF+dpAri2OGWNQEpFIBBMTE/D5fGr91Wo1zMzMIJPJbDknz2uHOF4fyHwRrqX+/n48+uijSCaTKJfL+PznP4/V1VW8+uqrKvNfKrNeTg4AVbqXTqfxxS9+ETdu3MChQ4fw1re+FfF4HCsrK7h69Sqy2Szm5+dVkp6MT96LNX7PEnccDgdSqRQOHTqEaDSqyjYAqPii2+1W1CcXkyzr4JfWKTP5o8cUCZ1O1Us+5GDpHjCVKO+T9ZWyTKTT6SCZTKKvrw8ul8tWkHcIj8eDQCCAQCCgaquq1SoWFhawtra27bGmaWJxcRHlchmpVArHjh3DyMgIFhcXe3qSNl4byPXG//X3vV4vYrGYStAyTROlUkklxFkZvfxtj+lri14GSjAYxNDQEPr6+nDx4kXMzc1hbW0N6+vrKBaLOzqvNGLb7Taq1Srm5+dRq9UQDocRCoXQ39+PVCqlPNaVlZWu3Jd7ibtSkttRKQ6HA9FoFCMjI/D5fKqUotPpKCVklWHKY4HNAdEpU3qU8tpUrlbHAbD0HvX7lYq11w+PJ7X38MMPK29yfX3dXry3AafTibGxMZw8eRJOp1PVUd24cQP1en3L5/UxZ6y5VCohFAp1GTP8kfPCxmsD3eszDAOhUAiBQABerxf9/f0IBoPw+XzKeOaaCgaDiEajaLVaWF1dxaVLl1Auly2NYHut3XvoeRsAFNvGqgVmsdKDzOfzKJVKW8610/Fqt9vI5XJotVpYWVnB+vo6/H4/PB4PxsfHEQqFsLi4iKWlpds6753itpWklQdmVavidDqRSqVw+PBhAFAxu3a7rYQXYaUM9feoxHRlx8UiS0RIwcqFxSQfSefqSs/q+0nvk6BSn5ycxPT0tKoFunHjhi2QbwMulwvHjh3DO9/5TmQyGfyf//N/cP78eRSLRcviYSs6hfMqEAig0+mo2lu32w23241Wq2WPyWsMfV06HA7E43GMjIwgkUjg7NmzGBkZQSaTwezsLOr1ujJuAoEAjhw5glQqheeffx6ZTEbVRlvRdraivPeQlLlpmnC5XIjH4wgEAojH40pJzs7O4hvf+Abq9XrP/IydjFez2cTq6irW19cxNDSEhYUF1WRmenoaa2truHDhwm2d825wT9rSUbEwfiezS/k+FdZ2AqyXQtY9O6v39SSfXn9bXU8er3uYwGac1O12IxQKodVqIRAIwO/32wJ5B+Dc8Pv9CAaDKotYlnns9DlSEMs4NlvaySxqG68NrGJOAODz+RCLxRCJRJRXWSwWVRtJgoZOIBBAMBhUVHylUrHMcLaV5L2FVRzRMAx4PB74fL6uOvZ6vY5yubwr643JnSy7q9VqipGoVCpKMb8W2LGStIoJWsHj8cDv9yMSicDhcCjaTFeQ/FvSMlLI8VrSq+T/MsmHCosKTdK3ve5Rp3d1KlXeJ+kiSRHLQHOpVEKtVsPAwACmp6ftRbsDpFIpTE1NqRqrer2OSqWCcrmMQqGgmIDb8RY6nQ5qtRpKpRKcTifGx8fh9/uxtLSE+fl5y9paG7sLPQmO4+ZyuTAxMYHv+77vg2EYyOfzWFtbw9LSEi5evIhKpaLKC0KhEPL5PAYHB1EsFnHy5ElMTU3h0qVLuHDhwo4yJW3sHqzkKHtpJ5NJeL1e5HI5uFwuVCqVu76ebvjUajWsrq7C6/XC7/cjkUig1WrB4/Hc9bV2itv2JOVD65XWHQwGEQwGVcMA+cX1jFYqLMYr5fsSFHJcTKR4pfCTipL/6+n/veKSuifKz1MhUznLDC82Hmg0Gkgmk5iamtrp49zXiMfjmJ6eRjweRzKZRKPRQKVSUYpSeu47FYimaarzuFwuHDhwAIFAALVaDQsLC/f4G9nQDV4Jh8OB0dFRPPzwwygWi/jKV76CGzduYGlpCefPn0e5XFafDQaDqFarKlHjyJEjqizo8uXLXaEUG68NdHnvdDoRDodVa9FCoQDDMHatblyu+1qthvX1dXi9XoyMjCAajaJer3dtcHGvcdsxSWZ4UiFRKbHHaiKRwOjoKKLRKCKRyJbEGp3KBKxrHaUSk4oJ6O7EY5XtqpeDWP2tZ0bxmvLaevlAL3rYKjXaRm9wN5dkMgmPx6MaxpNi0cf/dkAaPBKJwDA2uibd6+w3G9bwer2KNvV6vWg2m6jX6ygWi8jlciiVSkpuEDQ88/k8AoGAMlSZ5MMYtN51xV539w76emTryFgsphJ37mbNEr2Ob7fbql6dYRQ6L9udw+qe7mSe7FhJ0oILhUJIJpMqkOr1elGv11EoFNBsNvHQQw/hrW99K2KxGAYHB9WxrIGRN+/z+ZQn2Wq1LKkUKi7Zz1XWRvJ8O1WS8jh5Davf9FQNw1CDpN8LwSJYe7HeGslkEg899BBSqRRWV1extraGbDa7pVn9ncTBHQ4HYrEYjh8/jkajgdXVVZVZbeO1RV9fH44fP66abqTTaaytreHKlSt49dVXu3pxEo1GA/Pz81hdXUW73cbRo0dVgsjk5CRKpRKWlpaQz+cBbN8o34Y19NyL7Z6b1fs+nw8HDx7E0aNHVWit2WyqZjE7vba8Ri9w16VarQaXy4VkMtmTbu0ViuP1pF64ndyRHStJntztdiMcDsPj8ag07kajAdM0VWzu2LFjiMfj6ji95yo9Sr2fqp6VKh+k7qnpAyzf366AvJe3avU371lPMtLvA9gwBOyOOzuD3+9Hf38/BgYGkM/nVWBejxveqWdOD6bZbCIcDtue5OsEdmPhXrC1Wg3lchmZTKbnbi2dTkeVD5RKJTUnmPjjdDrtnV52AXezJpxOJyKRCJLJJFwuF7xe7xanYbtrWoVTtnNq6EmyoQubulidX2cn5XXJekrWcCfYsZJk0X84HMbQ0JCy7sLhsEqa6HQ6OHbsmFKiMutQ9/Zo9fNzLA/Rvxi/DD1OHiexncLbDr2yYwlZ+mEVw/T5fIhEIvB4POh0OigUCrY1+4+QlDiwGez3+XxIpVJqg+1Go6F6rd6NkUE2guUgNNJ4Hdkk38bdoZcXoM99j8eDWCyGWCyGTqeDdDqtSjp2cs56vY58Pq8o9AMHDiCfz6v6OJlQR1lj49a4WxnFmGQ8HlfNVVjJcKvrWinG7XJcPB4P4vE4UqkU/H6/GuOhoSEcPXoUlUpFbWagO1qEVULZ7TyDHStJdsFIpVJ44IEHEIlEMDw8jL6+PpWsw+LSWCwGh8OhklpkDSO9M9M0lWVAl1p+Tn5B+cWkSy3rHfVj9PgiwXvoRbHqD1V/Tf4dCoUwPDyMfD6PdruNtbU1Wwhja+u/TqcDn8+HsbExJJNJTE5Oqr6+lUoF8/PzWF9f76qNvBXdqo8Rt9qpVCpqXLxeL4aGhhAOh2GappqPVsfb2Aqr568ntvG31XMkYxCLxbC+vo7l5WVkMpmuZtdWCXOUAfV6HcvLy6jVaujr68Po6Ciy2SyuXLkCYHMrPK51W0nuHHcz710uFxKJBIaGhtS4VSoV+Hy+Wzoo2ylEK/j9fgwPD2NsbAzhcBjNZhMOhwOHDx9GtVrF3NwcSqWSKjG8F/L3tj1JWQpB99btdiMajcLn86lNlHVsp8GtvDSdT7aKVVpBz6Ttdb2dxLxuJaS5MOml2LuCbEAKPMLhcMDv9yMUCim6hJ4mkzH0CX6rZ6kLa8a+2ZVJbyygB/ttRXlvwOcqM93X1tZQqVRQrVa3KLNe2cytVgvVahUej0f1+W02m1s8Fqv5djt02n4D5TiZMr1Zig6rmCTXlTwf1xtfk9fjeaQOoAzejtHjtTgHKCMCgQCi0Sjy+Tzcbrdlu1H9/vVr7xQ7VpKJRAIAkM/n8Y1vfAMulwvhcBiBQAAjIyN4+9vfjtHR0S5emG44IevfmAxTq9VUV5ReMT+rL9SL5tmO/tkp5LWldcuWehywxcVFXLp0CblcDi+//DIWFhb29MLcabDdau9Or9eL0dFRTExMoL+/X22TVi6XUSwWUS6Xb2ujZF2otttt5PN5rK6uqvgX5+jExASy2SxmZmaUt7oTA2kniQ33M6yEyk4EyXZrjJuVu91uDAwMYGpqCrFYDLOzs5iZmVF7CvL62wnoUqmEq1evIhQKYWxsDIcPH0Y6nUY4HAYAZZxynGTSBs9v9b16XfNWnvFeQTAYxPj4OCKRiCrloBFJB4druNFoqFAan9nAwABSqZT6HKnuwcFBnD59GqZpKmfJ6XR2bb5MI6ler6s4IxM4pTJkH+fR0VGVHMqdP0zTVLtL1et1xONxtFot1ZiEukXPUeGeljSmdypvbktJdjodZLNZXL16tSsFe3p6Go888ghGR0fVa8BmKzhJtco6Rz4smdTTy+O0skD4t/6+/rq8p16wOpbWFgDlMdJzdjgcWF1dxblz55DJZHD58uWuprt7EbfjeeleocfjwdDQECYmJtDX16c8SO5azi11dnofOsvQbrdRLBaRTqdVLRU7+hw4cAB+v181Xr7Vd5KGHrHXxlV6b/rr243DrZ4DGQOv14u+vj5MTk6qcpyFhQWUy+UuWn27ZI9yuYybN2+qmDL7dnKXHsahgU1ZA3SXm1ndu1VeA9+nnNrJd71f4ff7cejQIQwODmJwcBATExPwer3Ka5MVApVKRTX4kGGmWCwGYNNQabfb6Ovrw/T0NAxjozMOvU2/3w8AyGazyGazqp6Z9Y7hcFiF3kKhkGpPKO+JmdBUfuFwGP39/SgWi0gkEmg2m0gmkxgYGIDD4ejKceEx6+vrKv+FZYs7wY6VJCdmqVTqyvqUmxrTSqAS44PtFduQ2OmElMp2J7iVxbjdvVlRQIaxuW1Xo9HA+vo6stksqtXqno9H7oSi7gVah36/Hy6XS03carWqGgncTkxJj0UzKzKTySCVSnXtNBMOh9FoNCwz4np5DXfzXb/bcTvUmhUYcrGKAXHfv3A4jHA4jFqtBqfTqYSiTqtbGcPyb8oahjNarRai0ajq1FQsFru8BnkOK2Oaf/ca8zuh4+4nGMZGrSFjislkErFYTCk0epKU4zQ+2IOXLR+pTOUzi8ViGBkZAQDVAF2yiXQwWq2W2hOSLQhJzbPhPdkIepr0SnlNVlckk0lMTEwgGo0iFoshlUrBMAxVey3vkS0R2WDkVrsMETtWkvQSG40G5ubmVMd+9izNZDKYm5tTsSA2wY1EImpwrCw5fWJu50Xqi0tP8pHoJQh6KUirv+VO3PQkmdnl8XhQLBbx4osvqt0r9jruhoZyOp2Ix+MYHByEz+dDuVxGvV7HysoKZmdnUavVbrl7uX4fck7V63VcvXpVTfx/8k/+icqsPHz4MCKRCF599VV1ju0MGqvz70X0WmvbgRtk00isVqtdx0SjUXzf930fpqamEI1GMTs7i3a7jdnZWZXBzOxWriur++JvWvyZTAYzMzNot9sqg35ubg7f+ta3kM1me9ZGWynJWyV47IUxt5KvVHjJZBKPPvooTpw4oerdGe/rFfKic8ByONKlfO7crODBBx/sug9ZI99sNlW5II+l8cyYM+lSXpshOfb0ZZvTRCKBWCyG4eFhHD9+HO12G36/XzWgKBQKqFarXXk0ZK2y2Sw+85nP4Mtf/vKOxnrHSjIWi8E0Tfj9fjXxaAW4XC5Uq1Xk83llObD5t6Qs9UXZK2ZgBalA9Z9esPJWZZzpVtl7uhfMY9jct9FoYHl5WVEINnqDwjUYDMLpdKpYR6lUQqFQuKPnJ8e+1Wohm82iUqkgnU6rlHCmkDebTfh8vjs+/16CFEK3+x0Nw+jauEBPVvN6vRgbG8PRo0fRaDTU7vS5XA7VanULxXWr61NRcoNzeqqkYGUSTy/vcCev7TXI/tTSOeE6HBkZweTkZJccZZxOvsaxphfodrtV2Rbjgzx3X18fkskkgM0NlEmt0jPVd3+SCUT09ACo5jLValU1qiF7QUqfuiYcDnclDrXbbWSzWdXHmeExypy1tTU888wzO36Wt60kuQlmp9PBmTNncPToUZimieXlZSwtLSEWi2FgYACBQAADAwNKqZJXlkpKbwAgB5iQCmu7IP9OFtutoHuTurcq97lstVpqIPXWWnsRbPXm8XhUsJ/UjLQ49b1AOb4sF2IpERfdxMQE3vSmN3VRI81mE5VKpSspANikgOR8kWMTCATg8/kUvcqi9EAggFAohL6+PgwPD3dl98lkBWnxMpGI1u9egvQsSIklk0kVG/J6vVvWG70Q2UxExqtk8sbAwIBqByh3b0ilUipMs10YhGDOAuNVFILJZBKRSAT1eh2nT59GOp1WGdIAFJMlPVWpMOjNcn4xfkkhXCgUdqVZ9+sJ/VmyE1UkEkF/f7/a45dzXD4Lenp8fiy7ICVrVW9M77JYLKrjKRuZd2IVepPru1wuq/PKe+K1uV0a1y3PVSwWu+Znp9NRdC47tPE35QeV6k5CZDtWkkNDQzDNjR2hY7EYvF4v3vWud+E973kPLly4gN///d/HuXPncPjwYZw+fVo1/A6Hw3C73crbknWS+hZHpmlaKkIKtZ1QsxJ3orj0hAZJB1EBkC7iYtsPStLn86mevJOTk3jooYfg8/m6kiRcLtcW1oCLMBwOY2xsrGs7McMw8NBDD2FwcLCroUShUMDq6qoSfKRb+Kz5N69BwRsIBODxeNDX16c8yna7rZIMJiYmUC6XFcXE2EcwGIRpbtRR0rudn59HuVxW/UX3UryZc9Xj8ahEmFOnTmFqagperxfxeFw1kKYxIdP+o9GoCjfkcjnVk5WNHCYmJhCLxWAYBgqFAhwOBxKJBCYmJlTNrF4mphvKAFCtVpHL5QBAlZj5/X4MDAzA6/UilUohGo2iWCwim81ifX0dhmGophUU3FJOcENfjisFMwVvrVbD9evX73slSfB7u1wuDAwM4ODBg5iYmFAsH8dOyjnWHEulAkD1TeX6IygruSOSVJLS0WCMUcpYOhwcq3w+3xXeolHOPIZ6vd5ljDcaDaWYpe6Qxg/nmuw1zljnrtKtPGEwGEQkEoHP50NfXx+GhoawuLiISqWC9fV1JJNJlMtl1R2BlqpM8pGDp/+9HXoF4eV7dwLdwpHX6UXXUDlsFxfdS6CgDAQCiMVi6O/vRyAQUItBZv1KYUfFxj6/nOAUTOFwGAMDA8pibTab8Pv9atFUq1WVFEVPjxaqbHMoBTnnKvvtMk7OrDxm3DGuTiXp8XhUokkul+vaxWYvglmEoVBIdTXx+XxIJBKqMJwWu/Tk6EmGQiH4fD4VN2K2Iqkw0mG8TjQaBYCufQgJKyVJgcxj2DyAyjISiSCVSqmQD9dxLBZDMBjsyp4HNmORMoHE6/Wi1Wqpc9dqtdd0G6Z7CT20xXaNfP6c17JVm9U5JJMjqxq4jqW8pMKT8Uo+81vJSen1U8nxPuXOT3IrRN6TrJzgOXg93qNM+JS7Ot0KO1aSnOBnzpzB+Pg4XC4XUqkU5ubmsLy8rAKqbBPEQmBSOlw8ctLKYtZbPURJuzJr9k6Vk7RkdOUoX5MLVw6ArNnZL3C5XIhEIkgkEqpbjt/vV+UbtAj5nPis5N6h9Xq9i+I0DAOBQKArUQrYiEdMTk6qso5isagWuaTR9PHnomTsU8bPHA4Hjh8/jv7+/q5FR+vYNE0Ui0WVkDA9PY1Go4Hnn38eX/3qV7vKFvYCDMPA2NgY3vSmNyEajeLw4cMYGRlRBoRsHgJsepRSWHFOcOzp0VPBhsNhpYRisRiOHj3alXov2SDpBcgavUqlAtM0VZcmGkEejwfRaBTj4+Mq85WJGl6vV9FuOkXPeBU3I5Dr2+VyoVAoIJvNYnZ2ds8ZvzIzn2MpaUeOMcdWNkoB0OUJ0uDtFTbTGTgZ4iB0h0n+puKjgwVsMB9MBJUKmjJB1mTK7yz/ZnYuDf5dV5KGYWBiYgIDAwMwDAOZTAYLCwuqdx6wQZGsrq6i0+mgWq12DQQTJ/gAdK9Cj2NJhaWnnd/JBNa9Tj1JR0L3WnUXH0BX4Hqvg9vjxONxtQ2az+fbQmfJiS2VEb0y0zSVsmMSgdfr7QrGc64YhoFcLodsNquypUOh0BYLmfOC7amY5EEmw+fzwefz4dixY2ru8bcUEsy4pecDbOxn981vfnPPKUlgI2P98ccfV9uWcY3r2d3AJn2lK0QmWuiGpWmaisrlJtjAxtovlUpqLlBhSmEo1zjfpzFDIcd5Qlp3u4x5/iYLwWQi2RiEhtv6+jqeffbZuzLCv1shPXupJGlQ8D3+zefFjFRpKMm4rwytyMQsjovepU2OK7BpSBOSrpXzkdeUOSH8XgCUQSxltZyPPBfDLTtN5NuxkqSQYPIGKQtpmQCbraQqlUqXa95LCUnoVF0v3A39tZOJ34tu5eukFPZSnOpWIJ3JlnKShpH0B4CuyS0tTBnw54KTTRoAqNgDz836OlJ6+hyRcQZSfryObkzJQmIp9CV1Y8Vy7EVI41N6cVKo8H9gs7MK0N0zWcaX+Xkew7iWYRhdiW6VSmULC0MZYpqmKhqXgpVUPJNN2CGGskgfZ0mxyvCIngfBhA9eV27pdz/DSs7R49b7nErnRK4Hope8lQpS/vAYufY5RvJc/F9eS67tXjpCMhn8nPRUpZEnry2NIUkN3wo7VpJXr15Vru3ExERXtmMsFlM3XC6Xsbi4iHq9rrIL9QcoH5h8qDtRpPL1nShLncK5HVBwykEwTVNlPu6HBgKEx+PBwMAARkdHEQqFlOKiZ8j4jy5gpIdAtoGTFdjMbtMnOceNcUlZnwd0JyRwXBj/JHVGQw7YMGzS6bSqqdOtSwBK8EoBvdcyWwkKLyZGsY0fX2PyBtP3pffB2HOv3ABScoVCAWtrayoho1AoqPO32221kbL0ULgHaLFYhN/vV7KF7AW9V1JmkUhE9QGWRiy9DSoEmWDHz7Io3uFwoFAoqC28isXifZ9roMslJiwtLCwgGAyqxi+y5EO2apPGBSHDHDQmdIrV6rlZMRO6EaZDD3tJVgpAl4IkrLKmpY6h98juPevr67ub3ZpOp2EYhsr6YuyBwktmfnIDTlJx/KK6UJKvE/QuJPQHyy+/nZLUrRb9eKv3rc6hey3M1qSS2C/gDi+MRcqMT5l5LD00oNtalJ4kx4Iehk7HSLqN70vhzONZuyWv7fV6u3ZMB6Do1Fwut4XWp5UZDAZV/R+Vwl7OXJaxH67bdrutOtuUy2Xk83lFv9GIkIk3+vomFed0OlEoFDA/P49KpaJaAkpBGgwGVd9QCsFarYabN28im82qpC42n6hWq0queL1eVXNLik3OMyaCUcnLUh52c5GeMCn6XC6njLm9BNPcqGkl1ax3o5EJOPy8Lpt1VkEeL711/fPSObKiVqVuADarGfg3wTGWsXErfSLPKz/DeDvj5IxL3wo7VpLXr1+Hw+HA8PAwarWastDZgeaBBx5As9lEJpNR+71ZPSB6HlJ46g9ax514a1ZKVB80nRrQB0SfPHyt0Wh0eVL7BTIpR3++tMxZR0V6Xi4MuXm1pKzl89VZBi4Y6WnKxSsXkx4DBboVAVtZyZgkP8PzM0bDHpKxWAzJZBJut1vFLPcKOE6VSkWxQvTsGUOWGaYUiqRDZWINlaicF5lMRjURkBQr55Dcj5VjxuxZXpsMBbejc7lcqownEAioXUI4bnK8pbElDTomEcrWZ7VaDSsrK0in0yiXy6/PgNxDuFwuDA0NYWpqCuPj4wgGg12hBN1Ts1Je+me5FvmMbxUuk54koct86XXqrxE6xd9LSeoOjrxPv9+PaDS6u57k17/+dTgcDqRSKRSLRRUk9Xq96O/vx2OPPYapqSl85zvfwRe+8IUuy8I0NzOPZPG27OquZ7xZfTmZ7LMd9IdnZRURVopSDzDL9xhTYaxsvyhJKhGOoVSWALrKKuT+brLjBX9TOMvsOakMdeVLWI27tF65aGWjABkLDQQCyjuUfYY5tvQevV4vksmkqg3lLiK30+/xfkC9Xkc2m4XD4cDg4KAqm2AMEdg0MuR2ZnyeuVwOKysraLfbKqGLsWG2kmPohbEwh8Ohml9HIpGuhiOGYaiSH/YL5bHFYhGrq6tdxhI316bC5HkoL+Q+t7JxQjgcVsqZyqJQKODixYtIp9PI5XJ7bl17PB6cOHGiK1FLV1r0toBuulX3/uTal8rISuFYGdQSZIDkZwHcMi5sld0uzynlPc/JRB2Hw6H6/+6qkszn80oAykJRehDJZBKdTkd17ZfpxLpy40Tejg7t9cV3Eofc7nhe/1af3e6aMgnAxgakJyZjA9IylLvCyJiWNEx0RSjnjPxNWFmhOg0jLUiZLg50zzmpXKVXSY9FFxb3OziHaahKI0MaOIZhKENGGq00NlqtFvx+v6qNrlaryhBiuZRcK9IToQcqEzLo6fG+6N3K2BePr9Vq6n89A17+LQ07meXJY1iUzszbvQSuTXbbYRxXh1RS/C3ZH7kW5fqSiTH8nM4O9YIul+VnezGLOs1/q/NKZorXIV2/q3RrvV7v6rnJomtaaAcPHkRfX1/XFz1w4EBXPRIfrK44rWJEwFaLRXqG27naEvpDlw9eLhIpUCUVyAXM+2BMhrTxnSrt+w2MVTEmzecCdMeMuUjYjYfeN7CZwUiLlUky9F7kOQmZTCAXp5wLvA4FIcfVKnNT7l3Khc3PcnsewzCwvr4O09xolCw79OwlcO2S7tRpbK/XqxRmIBDYErOs1Wrq9VarpeK9bAnGbGTWScuxZWy/WCyi2WwqT9Dr9WJgYAChUMjSY9HHmclcTOQBrJkjufk2vy+w6bGwGUomk9lT5T6BQADhcBjxeByjo6OYnJxUBgLHczsZ2stTlIrHSn5TrpKel+8D2KILgM35SEhdohvDvUJkco5Jo0p+1u1249ChQ3j00Ud3V0myDx6zDRmX5AQdGxsDANWNpdPpYGRkBKVSST0MPZ4EbK/E+L7+MHRFKh+EhJWnKj1ALjRdSepUIYUoj2HLLlrZ+wW1Wk3Fa2QcSC4IPje2n5MZdNI4YvyICRX0KmQXDC4wmRXLhaB7DdJLkApSF7JSQXY6HaUkaGmHQiGUy2UsLS2hXC6jUCh0fWYvgePANSBpawBqazNgU3g2Gg0UCgVFgwYCAdTr9a5MWHqXMuGKxdsMV3BcqSTZE5ZNSvr6+uD1elVGq7xnvQ4X2Ezg4r2a5kbHJjbHlnWWHEsacKa5kbG+tramYqh7BX6/H6lUCqlUCmNjY5iYmEC73Ua5XFa0uW508reMN+oyWDZ0sfLaaMzIkhuZyS6ZA15DGi/SeaExq0P3MkmnA5uyX5Z98TWPx4NDhw7t+BnuWEkS1WoVmUxGTTZ2NuGX4MRmsbHe1ku3HOhJWiVy6LAK+hLygfI9Ocg8XiaSWCUbOBybtXv6OfVr7QcFKVP/mahBhcb0eVrwepKE/ozkgpCfk/SslXVoRaPqCTuS7pXGmGxhpy94qdzluVqtlipZKJfLe5pW72WtA5uWPZUJjRF2Y5FZxGSZ+BnGEzl29Ep5TWmUyrHh+jRNUwk9WfajewtyTfP8pHelQJafszK4yRBZ9ZW9H0G5xjaS0WhUyWNd+XH+S9l7K4eDn9EVpBXLJ8NTXEty7cn2kts5RBK3iiXq92Sl8Hdq9N7WbDBNE3Nzc/jCF76Avr4+PPbYYxgYGACwWZvEbVjokeXz+S6BJH9Ib9HiZHxBllZw4EiDycxEKeDkQpJFz1wocgsvdgGxUnYyMaFarXbRxdLStqrJ2WtwOBxq15dAIIDV1VW0Wi3VA9Xv92NqakptRZXNZpXXx+cq6U7WJ+mQ8REKWb7m8Xi20K2SvpOepOwYwpIGuUelXKTsz0kKlu+bpolcLocXXngBS0tLXUXwO6Fm7idQCVIpyXVHI5htAyuVitrRQzY7D4VCyjvk3pIURqVSSTVA50+r1VLPnklUQPcOL1xbslmJVKakexlXkskh7fZGg3wyWDJpRyadAd09mCORCA4fPqx2FMlms6/9gOwiGPqanJzE6dOn1cbKi4uLXU0YKE+BrZ1vCCtGTldCOnS6lXKdThONbylXpUEDoKfx1gs69QtsliTye/Knlyyywm0ryWw2iytXriCbzeLMmTNdgd12u60yXjudDtbW1lQ/RcabpHXKJsn0UBgwl96f1PrSy+N70r23skwk5cM4i6yhk14Ez0kl3G63tzRE4Gf3gydJ44T1g6VSqYuOZjlFIBBQ3f8bjUZX8o7u1elMAcdWCiypWDlfpIVJgcdzSyVJiodejaTXJVvAOciFK4V0pVLB/Pw8ZmZmVExHzsm9Amm8ApsJMfI9hha4EwvXLekxbpvHOkY5TtwBhNuWkaqXsWI2f9Bpc5kDIEMunU6nS8DJzFgqXWbD6nvaWsWo+ePz+ZBMJpURcL+DxkMikcDo6KiirfP5vMosloai7gHKNaorK0mzElZrQ84rrjO54bZcvwCUAcV5oMdArWClwPmba5Zyh0ay/H8na/qO6Na1tTXVA7FcLndNQt6EfCiMUUlqU6bn09KQgkg+YP2Byi8mrUJgU8HyGApTWr60ErmYZHMExhuj0ajaJUB6Ofxe/NmphXO/ggIxGAwiHA5jcHBQNbRmHJFxPenJy4kqX9MNH/1vXlMaOvQs+B7Q3QZPnpOUvVR48jiCn6HQ5Wc4L+UOCdJr3SsxSe6oQfZGZqBKSpObJlOZ0bDUaXOgmw0g2u02IpGIigkGg0G1+TXLQfSWlpxbPCf3D5TNDnh9Klh9jcod6VkLqZcucQ7xmtzVSIYP7mdIepnflV59OBxGOByGz+dTXcMoL3dq+Ouf09cwYN3W08pA0eWoNHrk+tzuu+rnB7Alk146UqVSSSXn3Qq3rSRzuRwqlQri8Tjm5+exvr6u6pW8Xm9X4TCVEOkZptzKrCP2eJXWPCEXJBNCCPkgpfKUFoJs5hsIBOB2uzE3N4dvf/vbSKfTWF1dxfLyslok3HPtzJkziMfjiMViSCQSAKBcdLa6kjWeexWkxLmN0vT0NFKpFObn53Hp0iWVqMGtrTgBZYKOXAzSYu1lhVJxSdpWjxvripTnoNGln1caUvyRdYA8JxurS4Hq9XpVcbuVIrgfwUbmTqcTxWIRDocDyWRSsQBseM0dXoCNhDx61Prm6fTEgsEggM1nyrZvUrE1m02VHEMZwblCT1T2biVI5wJQ+4aS3XA4HKp22el0qq2y6DHRGybIdEgqnQ1R0uk0zp07t2WO3m+Qu7hQbnKP1OHhYUxMTKjxLBaLKofEShn1cgb02KOElMky7KJnn0qmx0pZ0vECuktU5LqVr0tDmp+TJU7UF2tra7hy5cq9UZKcWNyZvNFoKOEh3fJeiRLSQ+D7skOGFfg66aBeVoV+vOS++X6tVsP6+jpWVlawvLyM+fl5mKbZtb3OwYMHuyxK3re0fPYi/aZDxnJ9Ph/C4TBisRjW1taUJyknn5Xy063JW11PMgLApocPbM2E5jGEVeDfCrrC3u6H8Rv+vRcgO9zIjaxpdQObCWw0Vuh56z+Enr5PI1V27KHAondI2p7n5hpjk3opI6QSlPOAZSaVSgWlUkk1C5DZzqTw6HnK++Y1WE5C5SqzrO9H6GPEHIt8Po9oNKoYGp2Jk9huLW1nROiKjJBKSv+s1T3L46wUqC4DrLxZqznLOUYj/1a44zSuTqeDQqGAxcVFxGIxZbHpljmtPgbcaT2apqmC6jIZB+jmyPWib5k8IxeRFHi0iFh7Va/XcenSJaysrGB+fh4vv/wyMpmMWnhUnhQa7XYboVAI09PTSkGEQiFEIhFVI7ofYBgGQqEQUqkUksmkGmdgo+WYaZqK2pLx5l6GjO7REXLsJDWivy9f325h6H/zHHxdLjAZKmg2m6pbEIVmKpXC5OQk6vU6Ll68eN97GACQSCTU+pDUNSFbtdHYlQpKZjYD3U0J5PrTmwDwGlTSrG0kc0DluL6+jkKh0BVblteWLdV4fm644Ha71Z6nvI5eG6vTrhTCpJyHhoYwPT39Go/K7oLdr9rtNtLpNFwul2IB6b1LWK3XWxmb270v48vUC5JFlMqb7A+3QNM9TsC625a8ltW6lDKD56RsogF4TzxJeWPsKt9oNDAyMqLcd94gA/uSQqtWqygWizBNU8UJeT49zkGqgNQaH4YM9OtJGbJ2LxQKIRwOI5PJ4OLFi3jhhRewtraGS5cuoVQqdVm/XEjpdBozMzOKjjlw4ICimphGnc/n7/Sx3VdwODZaiLGNFSlowzBUs2ruGSqVJGC9gKRQlWMtaVGrzLZeMQv9OtstWmndykUok4AokLk7fTAYRH9/Pw4fPoxqtYpYLHbbz/C7EQwhSGUjDU2pBBmHp9Xt8/lUpqRUVKRDKRRlfoKegEEaFtik15kZ3Wg0sLa2htXVVTQaDZVdzl1ASO3TeJaNKILBoOr+lUwm1fnlfejxK6kkaRQMDQ2pe71fQeq71WphbW0NLpdLKUh+Tx23Uoq3C8prMnJy3UplxexTKT96MVDbvWblufK6ku7ldbneb4U7VpKkTjixrYQZBaecjDLmIflyeV6p+KQw1K0JK9dcXovnYsupXC6nFp3D4VAJKQCUFdtsNtVWWNwFgVlzVtfb6yBlxR+Ol157KLHdc9pOwW03nrc6r36+W8GKFtbnMK+t75l6v4MUKr03lljI58s1QmWoe42yDGs75kCWAkhvnufn8ez92263EQgEEAqFVNJfp9PpSjYhQyTPzxilbFquG2IcWz1BUDamoLxgfPR+BZtA0Dvjs+7lMd5LuSaNE15Pv/ZO19ZO71NnoqQilWt9V5WkzjMzTpDJZOD1etVegjL5hjtJyyxTUpcylkW+nIKXO2HLrEl6lLr3wfuSmXmMKbBDzNLSEmZmZnDlyhU4HA5EIhHE43EcPXpU0Spra2soFApYXV3Fyy+/jGKxiKWlJTz77LPKixoeHt7Cb+9lUICwW4nf71cUHalzaSBZWXJW2Wl6XILvWwlbaUTpis3qfq0MKf0YWq96bITCW9JzhmGoebhXxpt7w9brdbjdbkSjURw8eHDL9mBerxdDQ0PKy6IHUi6XVcctJrwxN4FGBQ1ghlrkXGGdo/Tik8kkEokEGo0GotEoisVi136QgUBANSvndm28FuULWwdSUZJSk4qd48nxZotJer7VahXXr1/Hiy++eF9nr09MTADY8CgjkYiSt0B3S0ldYUljaLcglZHu9NzOdbajhHWZTFkiEzplxQXn467SrZLfpZKq1+sol8sqQ9WKLpWTmHEIHXr9nLQuZPo/zy27NvABSOuUi4C9IXO5HNbW1rCysoJQKITBwUGEQiFMTEzgkUceAQDMzs5ifX0dHo8Hly9fVsddu3ZNNT7eKbW3lyCbMNBa57NlFqJcBHosWS4EuQD12GMvi1JXcjp1J2FljeoZcXKu6C2yZBMKeW7psewFrK6uAoAqeyArpNciM7OXdCiVJD3RQCCgjCZZG2tVJ8s4vr7bDz/DbjfMlqYilQqbNC7LyXgdKmPKFp3hkEKSRoBkCHjPVOZra2u4cePGfe1J9vX1AdgYY1LU3GHltWynKfNGCDkv5Gv8/O3CSlHKH+k90hHTHbrtsGMlacX76vEkWazLG9epDfkjhY+MZclMOytqTs88k8pZWrKMo8iHIT2DcDiMVCoFwzBQLpdVTFLei56IwgUlKai9DDnBZGxHWmgy7iTHXyoeoJt2sfLGdYUmf/N4ie0Wei9LmXNHLlSZcGKVwaor570CfWxl5xUZrqCnRTqUHiFzDGgIySQo/TlKg5d1p9KgletLNlaX5Vw00GTvVWCzk5JspC3zFeT1dUOMc4Hsgmyofz+DMoxjxGfk8/m2NJu/l6yY1fO2+sytznE7x+jGN+cd52Wv8EAv3LaS1F+Ti4gtxOQC00tB5GQlPeJwOJS1w9ICWvm8jrQ89C9IC4EPgjsD5PP5LYFqLkyfz4fBwUEcP35cvRaJRFAul7vaZunxKJmgcrsP+36E5O/ZlFqm55PCkDFb2YBaVzCytAPYGqPUKZJeuJWCtPL6+ZvjR8HIOcex5iKT9OtebB4h1yh37SBbwPVGxcPXa7WaqoVm5xuuXwrfXi3HGCtkxx4qZsoPzp1oNGoZh5byQCpCeqpy3PS5J9ksmeXI88kNqPeCkmRG6erqKhYXF2GaJgYHB5FIJFQjeR33SlnyueuMkxWswjBW99nrfavj5bxjsujtODi3nbgjvUDpPeoehJykXBA6zcb3pLWh1+5IildeX39AMglA3k+v2BevJZt0s1aS59VpJPn6flCQErrXyOeqxyP1edALumLUX9OvbfX6TqAfs90c7WUI6nHwvQJpAOmJDLpHLz0/rmeHw6EaEEjvsBdLIJUYr2FFxUkaVF/HUpYAm9Q456Y8Rt4/z91rXure5/0+1tJRKRQKAIBUKqXyRKzWxb26DytWB+j2+KRRdacMnZQTcq7xWei6Yae4bSUZj8fVxp3T09M4efIk4vG4ojdpeUqFJYWrrKcC0DWxAXTFIXTFpFuKBCkYXo8pxT6fD0NDQyrOwetxJ4tvfvObqq1epVJBvV7HzMxMV5eRiYkJJJNJ1cgZwJ7dOkkHnyu7FTElnx1XHA6Hss4ImfEIbFrwUiAD6PLspcKS4NyRc0DeG9CbCt3OUqXnwjklM63lIiKjwdZte8HDkKjX66qRt/TEGIcGrOO+7JcqDQe5Jq0oeqtzSeNDeoVc/1bH8FryPSpbjo8UzNuFeuTc4+5FjUaja3/N+xU0PgqFAhYWFgBs7O/LzGDJ5FgpsdtJqrFSavJY2SyC6EWHbvfMeyk2+bqcN5Q3eoiI98wM6FvhtpVkIpHA9PQ0EokEHnroITz00EOKXmN5BW9CLhw9aApsZhlKj1RSMHravZzg8uGYpqmUFovC2+02gsEgYrGYUpgAunZT//KXv4y/+7u/g9PpRF9fH8LhMPL5vErSicViapcLNnIGNvt57vX9JKWSJNXmcDjUFkikLZnBCHQn5QCbuwEwKUKHntTD60pqdDsWwWqSy9f0eAjvT8ad+SO3BeNxMrNzr9Gt7GMs6UoAXZ1y5LjSmKDRpO+yohsuci1L4ScFmfyRuQPSqJbH0uiiR8vrkjLlZ3QZocckdfnE+k/2mb3fQYWQz+cxMzMDh8OB06dPIxgMblGS8u+dwMpY1SGTKgkrr143ku/EMJHzTj8P9Y5+L5QBu95xh0KTNUuhUAg+n0/dmNzSSP8CuoLjjepJMboglJ+ngLNSkvqkBzbpVGbxDQ0NqcVC4VcsFpXSAza2VmF8hd+TGXxSwe8X6DEmeunAVuucuBNlImkWScNI3K1B0uu+dC8I2GxKoVOyewkyzqw35bBSaoTsgiWzmIledPmtoHuiVjS39DxlfEtXpLp3sx3N1kve3M9gIiKzhOlAsI/2TujWWz2LW61HPs/X2ri8HRZgJ+N9R3TrkSNHkEwm0d/fj0AggFarpXYAl70ugc1Gu9KCl70wpacgqS96knrq/a0mslwwLDweGhrCD//wD+PkyZO4efMmvvrVryKdTnclpGQyGRSLRcRiMZw5cwbhcBgnT57E1NSUSjDK5XI96b29CNJQrE9j0g6TNYDN3cAldanHna1iTxK3Gk/5t5UQv9U59cWsj5+VtxsMBtFoNBRNvxfHXO73SkYHQFeikk57Op1OtdF6s9lEIBDoGmtJVVvFqoHuvSOt6E+gewNvaQTzeP19AGrPWRbQy/fJFBCcl/qc2ivj/NxzzwEA5ubmVK/tvr4+jI+PIxqNdrUQ7ZVEp68xK1pzO+gGtHy+0tHRaXf5vj4+VgaYbrTLe5XntaL77wndGgwGMTg4iL6+vq5+rcwOk7FBmYRDBUnFpQfXJW8sqTY9aYavyy8pqRQKOtM0u4qdH374YRw9ehTf/va3VXs6yVNzr7tYLIaDBw9icHAQk5OTGBoagtPpVLvUy+SFveZZWIFeNoUin69VfAfYuhcof9+ugtwupng7HuVOvBq5IMmGcFcLue/oXhGgBJUht4XjeMr4nlRmwMazYokGMwW5/klr6ZQ10F1+Y5UgJI1fXbDJe5DjIClaGVNmnFzGo6Qs0svCenmt9zNu3LiBTqejeuAaxkYf5v7+flVnqo+rvhZv5W32Yht0ZaUbtlbrd7v1pdPq+j3p59Wdqrsd29tWks1mUzUGlwuDi0Z6f/LByyQX/WHoSpILVGasyYctKU8ONBe5zFDjTuq8P7/fj8HBQZw9exYjIyPI5/PIZDIbD+If73toaAgPPPCA6gDC+9AV8V6k36wgu9OwATTpOdlnURd6/FtfPMTrRWtZeaK8Tyk4WdhumqZqZ7jTnczvN3Ctyk45MuFOKjaGKnQGSP6wDEwv45LnkkLLik6V/0uvEbCeO/JccmNf3WPVX+f3J6PEfIb7HYwVJxIJTE5OIhaLYWRkRDVhoLxklrJ0TnYCPY54Kxob2Fq/SPB1nZrdacjFSnnrskZ/zSre3Qt3tOny6uoq2u02BgYGVCd1toLiYuOX5sOUi0oqRJ020bNb+RCs/uYDkJalfHDMYnW5XKpJ+ZkzZzA+Po5Go4HV1VUsLS0BAEKhELxeL0KhEIaHh+H1elEul1EqldSi93q9qqZMblK7V2GaporbttttFItFNBoN5HK5LkEnFaSk2/TFwXmw3fXuxXcg9Pi2vnBY8wlsCJdQKIRsNosbN26gVCohn8/v2fFmGYc0dMka0DBiVjPpda/X27WTiEzIIzjuTNrTFZT8ra9jyQrxfTmHaLgSfJ+JVrxX6S3x/qQCB7qN/72QxZzNZuFwOHD27Fn8+I//OJLJJIaGhhRVzoxtPc9jJ5BOSy8P0EqZyYQ+K+q2lxLd7py9oHvJOlMhG6vfCne0nyQbI8sCa0mrSuWo03LA5mTWYwsyZdfKrdY9SlqAUsnK9/kaSxTYuiqRSMA0TcRiMYRCIQBQOwx4vV7EYjG4XC6srKyoHUukot9r1Ewv8LmSMahWq2pxWXkRt8KtYhpWdMpuwsqLlJCCXsbV2ZbQKjt3r0BSpFyrcl1KA4Leh74egK3emxRMugfJ162gn1NStLxfGQPl9aQckd1VdAWs3we/415pGsH61XA4rHJIGKvVZeyt1qX+Gf3/21Fevc69HRV7O5DKsRcFzPd2ygbetpLkPnvSc5Q3od8MYUW3Srp2OyWpWxe6ouSX5o8sNiaN4vV6VZYXaUJZP0lr1zRNpNNpOJ1OtVeiPIbn3Cu0zHbodDrIZDKYnZ1FrVbD8vIyyuUyVldXVTsyaZhIY0hamhL3WhFuB6sFJH/TmwI2rU/276UnuVfRaDRQKpVUkhq9LY6x9DakJc5kPX6m0+koA5rrRhqz+voEuhUe0E3lSaHOa1NOWGXK92I3HA6H8hAlk0Vw159yubyl+f39CMpQwzBUhj9jyJSJesLLnRi7VvK+13l6vd5LZ+hMz60UqJUil87NnXqnd6wkWTsnO3Donhyw+UX1OkgZA5ABdn2CW32Z7b4YF6lcTIwlVqtVJQj54ILBYNeiZz2c9ExlvIb3yube9/ti2g7tdhtra2u4fv06SqUSrl+/jnw+j1arpYquKRxlgpU+VnfyjHRrfqcJPtKj0CG9I35WHi93nSFdl81mcfHiRZTL5T1rFJlm907tsn6Ma1dmmXPey5aE/AzXdb1eV2tNN2Ql3cn5oceNJK3K13m83KaLv3WvVUIvD9O7RhmGobbTKxaLe4Ix4Jg4HBvNH5isw7Gl56wzb8ROvEt+Tq5NOca6d6izA1bOj9U170S56Q5VL2bzntCtgHXN0U4tECtv0Opzt/pb3ov8orqHIF+XC0ueUx9YTiL92nIrof3gSZqmqQwHZkFynz8aSzLBA+g9oaWg62U1ys/2Uorb0T69rk/o3ofVtanwudUSAOUx7VVwbXCMga3p+7JrEj1NCl09m1XuFytjgnLt6YwDz6ULXemlSq+W61MP80hwzfI3lTiw2RxByoS9ZvBy/TLWymxtK9YH6G3QWrFBOvS1LcfIiu3j/71kgi7Hrd7fiRcoPy8dp9sZ69tWkpz4tLh1mpSf4Y0R8uHpbcrkxJef3Y5y1f+WsQSZts9rcpHwOtJ7ldfShTXvjfsplstlZDIZrK+vI5/P3zIb636GaW6UxmSzWUQiETzxxBOIRCJIp9NYXFyE2+1GJBJRNbIAbrnBK7GdotxJXESOk1WzZjkucoyl9UzhqC9mbi/UbrcRi8Vet0zc1xKNRgOVSkUVnDNWT8im43yevZRgLBbbYkBSIFNw6xa8PJcVIyFlhVXc0ErwSyVKI6Ddbndt+8Vsz06ns+c21zZNEysrK3juuefQ19eHo0eP4uDBgwA2a4Mpj6W8089hBZ3+lpDJm8CmLGXCI7Apr6VxI+PLOh1PWBnF+lyR98z5wmsyAe12snlvW0nS0tZjDTJOILW8LoDkg+B5dG5cr5fSPVD5gPg5qWxlyyp+Tk5+DrBMRtA9Y4LnYc2lYRgoFovIZDKoVCo9LZ29AE7sUqmEZDKJkydPYnx8HLOzs7h48SKAjT0F2eaPY2qlILfzIq0+s5Pn2mtu6Bar/LxM9tDfAzaNuFAoBMPYqC3bK0KzFyRjwDBKIBBQ7xmGgUAgoFo79jqHbuRQMQHdMUO9n6tct1aUmH4dqSTlmAJb1zrHmbucNBoNZLNZte6Z4KJ7pnsF2WwWly9fRjabxcDAAEZHR7u+J+OUVo6J/rdcMzKuyxiulPFWxgbHnA4KY96ylExfw4ZhbMtSAdgi7+Xx0muUmy7rCafb4baVpB7DYY9HTl7ZJNqKstSFl76wpBVhxV/r98D/ZYcQ3Z2W5Se65bJd30LpHRcKBZRKJSwtLWFubg6Li4vIZrOWFvNeAZUkm7+TYo1EImqzXpfLpaxyXXDx71t5iPo19f+txl6fG1KxynEDujOvSQNSmdOzBDY9oXq9rr5ToVDYE9mO26HT6aBcLqsuVGtra127twObmeEScq0xM5TnM01TlYjwOdOTq9VqXbkIkk7VM+OtvEJeW0Iew/GV90gjoNlsYnV1Ffl8XnnNDocDN2/exM2bN9U63ytgT9pYLKZocGAzrny7XhWwVd5aJVrqCg9AV4jqdtimW92blfGt0778+/9n772D67zOM/Hnu733e9FBACTBTkKkKNmylEi25SJ7HSdOXJLNeOzRzia2k2xJomQz2Z2fJ5NZJ5nsbpLdeBwnm5k4E2vkjS1tbMdxkW0VSyIpkmKvAFEvbu+9/P7gvgfvPfguAJIAJQLnmcEAuPfr5ztved5y6IcctLXIpNuKSdJF2Gw2eL1esbKGHAjmAlJWYJw+kbV+twvX24625cF4eX9qyswfDv3N6RjZeyHLo1qtYnp6GslkEtevX8cPf/hDzM3NiYYKmxWt1s2OHeVyGaFQCDabDX6/HyaTCQ6HA81mE1arVawkIY+xHhVDkKm7W8VKniYXvnzZJU6502ekDMibajQayGazmJmZQT6fx9TU1Kaom+OQhVez2cT8/DzOnz8Pn8+HWq0Gr9eLXC6HZDLZYcnzuUXJbs1mE8ViEaVSSXiP7XYbfX192L17N6xWKxKJBDKZDKrVKhKJhMgipUQ5Xnqipxj5OoB8HVr6nhs+PKxCwpw3qS8UCmKlH3pXY7EY5ubmUKvVxNJS9zo0bWmRBuqQxpMmZQOfP089b57P75VyMmQFpSeTaSw52wAsZ4fWAllB8/vhCpRkP7GCtIbxargtT5LHcejF1IsLreQlrnYOYHkMSlausjDuRrPJ1AsffLpuuYEB377VaiGfzyMWiyEWiyEajSIaja547ZsFpDh4IbnNZoPH4xGZynzpM5kCp7/5d4C+cuz2suttp7et/J7xCcfj0nIsjbbnsYt0Oo10Oo1CobBpPUnO7JTLZdEkIplMimewuLiIWq22bO6SN0HCMpfLIZ/PdyimcrkMn88Hu92OaDSKWCyGUqmEWCwmGlOUy2VBu3GFxwWbpmmi1RwZvJQ1SwqVK02uJMlTotruZrOJcrkslARdfyqVEk1SNhMob8Dj8QhPktOd3DmQ24iuVUnqUZbEynBWRzaEOIu3ktF7O9CLU8pGGGcYV8ItK8nFxUWcOHECPp8PlUoFyWQSZrMZdrtdNC8nCoNnrNEPt/J5dx1eTtEtNsgHSE9RcmHH/zebzfD5fHA6nUgkErh06ZJI6aeJTwKUrFuyjvP5PKrVKqLRKDKZDOLxuOjzKl/fZqJaOdrtNhKJBL773e/i4sWLMJvNQmiNj49jeHgYAEQHD739ge4TYKUXVWYm6Hc3QwropFutVquIJfMFZ2lil0olscQbJaeQgpiZmUEqldq0SpJ7kvF4HO12G3a7HYlEAjabDaVSSXRbkp8B0WwkCMlTo88BCOPKbDYLJUqlFjTHSAHLsUjujQBL81PTlhqYA1imTPnfnAokhc4FPE/eIy94s4B6aLvdboRCIYRCITidTtE1jMaIxw65ktSjT8kza7fbHXFcvXgmQS/UQomQeo0NbhXy+yLLA2qC0mw2xTMBbjYIiUajaxrzW1KS7XYbc3Nz+NGPfgS73Y54PI7JyUl4PB6Mjo7C4/HA5XLB7/cLBUnZY/SbPwz+AHm2k7zyB21D25F1yAebQBlMvBbIYrEgGAzC7XZjcXERr7zyCubn51EqlVAoFGAwGMSyX6VSCYlEArVaDclkUliXfFJ1o1g3mxcJLN3TwsICnnnmGZhMJkQiEQwNDSEQCGDbtm3YsWMHWq2WoNP0PDXgzpUk31ZvH24V0wSmrGQy2nhTi3a7LWJTmqbB6/XC4XAgm80iFovh6tWryGazm867kJ9do9HA3NwcotFoBzukxwZ0O5YegzM/P4+LFy92eBXcoO3GCOhBZnjWum03eSN/J+cx3OugWnCv14u+vj6EQiHx3Mg5IWZILuOhceeJNjINKseIaTugM3FO9kSbzaaIBcsLe9M7shZwmcL1BX9v2+2ltpq0og/dXyqVwo0bN9ZfSQI36TfywlKpFOLxOKrVKlwuF6rVKsrlMur1OsxmM8rlMpxOJwwGQ4cW19P6PIAvpw9zkBKkffhN0gtAFi1/6JVKBSaTCfl8HplMRmSn0gLL1WoVNpsN5XJZpIin02lBQW11NJtNkdBgsVjg8XhgMplQLBaFpVYqlcRzXk8luZbtuwlfShYhJSknf1DLOf6OkldE9aFbAXoG53pgszaFv1dQq9WQzWY7FCH14qUSGJK7POubZB6XoXKcUk8uyoqSz19ibYjVISXJ972dd1Avo56UZLlcRiqVEqUfjUZDLIvYjfmScVtKslAooFKp4MKFC5ibm4PFYoHX6xU3brVahbKjHpj0YHnmGae/yMonYUY3z5e/kQeSwLlmLiA5901xjAsXLuDkyZOIRqMd8TTeHZ+oIN6jVIacxLCVUCqVEI1GUSgU8NJLL4kJl8vlxFqTeo3M9cZtJYqG/l7Je+Tb8QnG4yy8gFqmkyiDU9M0BAIBOJ1OXLlyBbOzs8hkMmtugqyg8FZCpVKBwWDAiRMn8Jd/+Zdwu93wer1wuVzCyKXQmMvlWhar556lXlJVtzIqLnu5zK/X63jppZfw8ssvizwHeV7d7jzTi4nSsWSDwGazoVar4fTp08jn82s6/i0rSW5x8lTptcbjiIKlLDVSlA6HQ3ggcoKF0WgU3SLohw8ggA4lS5YFbUvnNRgMuHr1Kq5fv45YLHart77sXreqoiQvu1Qq4ezZs8KTpCbgelQM0L3GVQ88XrbWZC+95K1u10KgyWwymeD3++F0OjE/P9819qygcC+AQkJXrlxBOp2G1WoVtKvL5cLw8DDcbjecTie8Xq8wJkm2El3LHRSeQSzPK3mOypnklUoFp0+fxj/+4z+KDkDECL4ZuBW5fdslILd7Uu6+0988HsCFI8UyyEPk+/DMPP43bU/H0vt+Kyq29YacLCU//7XWXq3mSa51vGSqlddGreaBynEM9X4obBbw+SDLW724MJe3q82Dbkl6eol2etdzr8wzrX2vXKmCgoKCgsJdxubqwaSgoKCgoLCOUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpgw5TkxMQE8vm87nf3338/fvjDH656jD/7sz/D/v37ceDAARw8eBBf+cpXxHd/+7d/C6/Xi4mJCUxMTOCxxx4T333961/HwYMHMTExgb179+L3fu/30G63AQDHjh3DQw89BIfDgQ9/+MPLzvmjH/0IR48exb59+7B371785Cc/ubUbV1BQUFDYNDBt1IFPnTp1x8fYt28fXnrpJXi9XszMzOC+++7D29/+dmzfvh0A8Nhjj+Eb3/jGsv3e/e5342d+5mdgMBhQq9Xw8MMP4/7778fP/uzPoq+vD//9v/93nDx5Et/+9rc79pufn8cnP/lJfPvb38aePXtQrVZRLpfv+D4UFBQUFO5NbJgnqWkaMpkMAODll1/GxMQE9u/fj0996lNoNBprOsa73vUueL1eAMDQ0BB6e3sxMzOz6n5utxsGw81bq1QqqFar0DQNADA4OIgHHngAVqt12X7/63/9L/ziL/4i9uzZAwCwWq3w+XxrulYFBQUFhc2HDY9J1mo1fOxjH8Of/Mmf4OzZs/jEJz6B06dPi++/+MUv4j//5/+86nG+973vIZ1O4+jRo+KzF198ERMTE3jooYfwzDPPdGz/8ssv48CBA4hEInjnO9+Jn/mZn1n1HOfPn0e5XMa73/1uTExM4Nd+7ddQLBZv4W4VFBQUFDYTNlxJXrx4ESaTCe9+97sBAO95z3swNjYmvv+VX/kVfP7zn1/xGGfOnMGnPvUpPP3003A6nQCAD37wg5iensapU6fw13/91/gP/+E/4JVXXhH7PPTQQzhz5gxmZmZw4sQJvPDCC6tea6PRwI9//GM888wzOHbsGNLpNP7Lf/kvt3PbCgoKCgqbAG9KditRn2vB+fPn8cEPfhB/8zd/g4cfflh8HgqF4HA4AAB79uzBE088gZdeemnZ/uFwGE888cQyT1MPw8PD+MAHPgC/3w+z2YxPfOITHYpXQUFBQWFrYcOV5O7du9FoNPD8888DuEmbXrt2bU37XrhwAU888QS+9KUv4fHHH+/4bm5uTvy9uLiIH/zgB7jvvvsA3PReW60WACCfz+Ob3/wmDh48uOr5fvEXfxHPP/88qtUqAODb3/42Dh06tKZrVVBQUFDYfNiw7FaCxWLB008/jc985jNoNps4evRoh+L54he/iPn5eV3K9dd//deRzWbx1FNP4amnngIAfOELX8B73/te/M//+T/x7LPPwmw2o9Vq4d//+3+Pd77znQCAp59+Gk8//TTMZjOazSZ+/ud/Hk8++SQA4NKlS3jXu96FUqmEcrmMwcFB/Kf/9J/wmc98Bg899BA+9KEP4b777oPRaMS+ffvwxS9+caMfkYKCgoLCWxRamwoIFRQUFBQUFDqgOu4oKCgoKCh0gVKSCgoKCgoKXXDXleTx48fx/ve/H6Ojozhy5Ajuu+8+/MEf/IH4/tFHH9XtorMSeIu6Q4cO4eDBg3j22WfX+coVFBQUFLYa7qqSPHPmDN73vvfhs5/9LCYnJ3HixAl8//vfRy6Xu+NjP/bYYzh16hROnz6NL33pSyJRR0FBQUFB4XZxV5XkF77wBTz55JP44Ac/KD4LBAL4oz/6o3U9TyaTgd/vF///5m/+Jo4ePYqJiQn81E/9FC5duiS+e/bZZ7Fnzx4cOnQITz31FEKhEKamptb1ehQUFBQU7k3cVSX5+uuv48EHH7ytfZ977rkVvcPnn38eExMTGB8fx0c+8hH86Z/+qfjuqaeewrFjx3Dq1Cl85jOfwW/8xm8AAGKxGD796U/j61//Ok6fPo3du3cjmUze1vUpKCgoKGw+vKmJO7/1W7+FiYkJDAwM4Ny5cytu+6EPfQhf/vKXu35PdOvly5fx6quv4sknn8T8/DwA4Lvf/S7e/va3Y//+/fj85z8vVih55ZVXcPDgQezevRsA8MlPfhIWi2V9bk5BQUFB4Z7HXVWS9913H1577TXx/x//8R/j1KlTMJvNqNfr63ae/fv3Y3h4GC+99BKmp6fxuc99Dl/5yldw9uxZfPWrX0WlUlm3cykoKCgobF7cVSX527/92/irv/orfOtb3xKf1Wq1NS+dtVbMzs7iypUrGB8fRzabhdlsRl9fH9rtNv7iL/5CbPe2t70Nb7zxhohRfuUrX0GtVlvXa1FQUFBQuHex4W3pOA4dOoRvfetb+P3f/3189rOfRTgchtlsxq/+6q9ifHxcbPfkk0/ic5/7nPj/mWeeQTwex3PPPdeVcqWYJADU63X84R/+oWh/9/GPfxz79u1DMBjEhz/8YbFPJBLBl7/8ZXz4wx+G1WrF448/DpfLpdaQVFBQUFAAoNrSIZ/Pw+12AwC+8Y1v4Hd/93dx4cKFN/mqFBQUFBTeCrirnuRbEX/+53+Op59+Gs1mEx6PB3//93//Zl+SgoKCgsJbBFvek1RQUFBQUOgG1btVQUFBQUGhC5SSVFBQUFBQ6AKlJBUUFBQUFLpAKUkFBQUFBYUuUEpSQUFBQUGhC9ZcAqJp2poPeivb3iu4lSTgezVheDOO20bhXh1jQI3zreBeHee30hgbDAaYzWYcOXIEhw8fhtvtxrZt2xAIBMTzbbVaSCQSiMfjSCaT+P73vy86oW30GKx2/DWXgKz1oQcCAfT29sJiscBkMsFisUDTNJhMJnGMlU6paZruuQwGQ8c2K21L4Oehv9vtNlqtlvic/m42m2i322i32+LvZrOJRqOBer2OhYUFpNPptTwCNbG2AO7VMQbUON8K7tVxvptjzM8lP6+RkRHcf//98Pv9GBgYwMDAABqNBhYXF5HP59FoNEQv7Ugkgkgkgmq1ikuXLiEajSIWi+H8+fPI5/Mbdv2rjfG6NxOIRCJ48MEH4Xa74XQ64XA4YDabYbVaYTKZhCKii6O/SeHRDylF+XN5G6489W6WzsF/uBJstVpot9uo1WodSrHVaqFaraJcLqNQKOAnP/nJmpWkgoKCwlYAl9Xc+SDs2bMHv/Zrv4Zt27ah0Wig2Wxifn4er776Kl577TVUKhVkMhkYDAb8q3/1r3D//ffDYrFgfHwczWYTr7/+Oubn5zdUSa6GdVGSXHE5nU4Eg0F4PB643W44HA4YjUZYrVYYjUYA6HCxOQwGg66C5N/JSnI1T5KfS1aSrVZLNFcnJdlsNlGv19FsNoWSNJvNsNvtMBqNyzxRhfWD0WgUrIPZbO5gHtrtNhqNBlqtVse4Kdy7IBrOYDB0GLE0zgr3JgwGA2w2G8xms9ADTqcT+XwexWJROB65XA7lchm5XA6apqFQKKBUKgEAHA4HLBYLfD4fPB4PXC4XarVaxwIUmqbdFU9/XZSk0WgUHuP27dvxyCOPIBAIwGKxwGw2d91PvkFOo8q4VfpAPrae90oKT/YquTJtNBpIpVKYnJzE7Ows6vU6isWiEtLrDLPZjFAoBKfTiZ6eHoyPj8PpdKLRaAhKZnZ2FplMBplMBgsLC6hWq2/2ZSvcAYLBILZv3w673Y5ms4larYZKpYIbN27osjZrCdco3F1wp4HGxefz4eGHH8bo6Ch6e3sxPT2NxcVFnD17FufOnUMmk8HZs2eRyWSEd6lpGk6fPo1CoYBwOIx3v/vd2L17N4aHh/Hud78bsVgMly5dwhtvvIFGo9HhLG20QbUuStJgMMBut8Nut2NgYACHDh1COBzuuAnyzmRl1+2FX+lz2Ttcy37AckWrpyw1TRMeL30Xj8fR19cHj8eDcrmMcrnc9RwKtweTyQS/349AIIBdu3bh0Ucfhc/nQ71eR61WQy6Xw+nTpzE3N4eFhQUkEgmlJO9xeL1e7N69G16vF9VqFZVKBdlsFslkcpmS5KySUpJvLcjj4XK5cPToUTzwwAMoFApYXFxEsVjED37wA/zgBz9AvV7vkON0jCtXruDq1asYHBzExMQEbDYbenp6cP/996NQKKBWq+H8+fMdSvKe8SQtFgvC4TA8Hg9sNhtyuRyMRiNsNhssFktHzA9Y2SvUe3h8n26JN/IxZPBz6ilL+iGlrmlahxdjtVrh9/thsVhQr9dRrVbFbzVpbx8mkwkmkwlerxfbtm3DwMAAvF4vFhYWkEwmUa/XUa/X0Wg04HK5MDo6CqPRiIWFBRiNRlQqlVtSlndrYinog7NOVqsVxWIRAIRxSvOsWq2iWq2iUCh0yA2ao2oM31zIyTqapsHlcsHpdCIcDsNqtQIAisUiZmdnkcvlkE6nBWOnB5LBxCacPXtWjDPltLwZWJezejwe3H///RgeHkYgEMDFixdhs9nQ19eHUCgkkmDoZSdPTS8r6lZifrJClY9Ff8sKUo51cvBzE29eLBbh8Xiwb98+5PN5LCwsoFwuI5FIIBqNivtSWBl6E8vtdsPj8WBoaAgf/vCHcd999+H48eN45plnEIvFxLPt6enBz//8z2NiYgIXLlxArVbDwsICotEo5ufnVQzrHoHVasXY2BgCgQCazSZu3LgBTdPQ29uL3t5eeDwe7N27F2NjY4hGozh79iwKhYLyJN9ioJwQYuCMRiO2b9+O3bt3w+/3w+v1olar4caNG/jOd76DWCyGbDa7JlmZyWTw7LPP4oUXXsCOHTvwnve8Bz6fDzabTbwDNN/vxnuxbp5kT08PhoaG0G63kUqlYDKZ4HQ64XK5hHXQaDQ6MlLlG6QfTn3SdjK4UtUD/15WknR+OTtWvo5SqYRcLodKpQKz2YxAIACz2YxKpQKLxYJisajS6e8AmqbBYrHA6XTC7/djdHQU+/btw5UrVzA5OYmpqSmxbaVSgdvtxo4dO1AoFBAKhVCr1ZDJZG5pDJSAvTvo5u0RaxCJRJBOpxGLxdBoNODz+cR89Pv9AIBqtbrMe1Dz7a0BWTYbDAZ4vV4MDg7C7XbDYrGg0Wggn89jenoa0Wh0zceu1WqYmprC1NQUDAYDGo0GLBaLbqKmrCc2Yn7fkZI0m82CIqGstEKhIJRkOByGyWTqyCYFlpd1cMjUJ894vRWLgT88rnj5/pRdR55uvV6HyWSC1WqFpmloNpvI5XIoFAqYnZ3F9PQ0DAYDLBYLLBYLstksjEajuD+FlSFTZUajEUNDQ9i/fz98Ph+mp6dRrVZx9uxZUTtFqFQqOH36NIxGI/L5PIaGhhAIBFAsFnHjxg3lzb+FoCe07HY7bDYbPB6PyFak7MZyuYy5uTnUajW4XC6Mj48jEomgXC4L4Qh0Z44U7h5kGcxlaTgcxs6dO9FsNnHt2jXk83lcvnz5jnI4SNFms1nYbDaMjIygWCwimUwKhmGj34/bVpKapsFqtcJms8FmswEA6vU64vE4Ll++LNxvaiJA2aIAOhSe7OXJSpLKAihVHOiMU66UCMSDu7zEg5Sa1WqF1WpFs9lEoVBAsViE3W6Hy+WC2WxGo9EQSQQXL17ExYsXEQqFcODAAXi9XqTTaWEEKEW5NvBnZDQasWfPHjzxxBMol8t444038P3vfx8zMzMoFAod++VyOTz//PM4f/48xsbG8PDDD8PhcCAWi+H48eOo1+t3+1YUukAWpAaDAR6PB8FgEG63G8FgEH6/H4lEQgjAbDaL69evo6+vD0eOHMHevXtRKpVE6VWr1eqITSrq9e5Dfu48xGEwGDAwMIAjR45gYWEB3/72t/Hqq6+KuPLtolarIZVKwWKxwO1248CBA8jlcoKGp3OTU7MRuCNPkisxUmyUzEKNA6gGCrjJI8uKjh9LTtKRvc21BO7l7/T+53VZvDaSrpt7rvQyUM1ktVrt8IiNRmMHN6+wOgwGg2AgHA4HPB4PgJsx4Hg8jkwms+yFJ6/eYDAgEokImtZut8NqtYraSRWbfGtAVmJUa2yz2cT8I8VHP8BNxqDdbsNsNgtWx2q1diT+0fHVfLv74LIeuGno8rlInn+pVEI6ne4wbm4HvDSIchjo/bhbuCNP0mg0CiXRaDREoafVaoXZbIbD4YDb7Ua1WhWanitN/rBJGZpMJpHYw2OGfCLJMUs6Fv/Nj8n3oVipwWAQSTi1Wk2474FAAMFgEFarFXa7HcFgEMBNushkMqHRaCAej6NUKqFSqcDr9cJutyOfz4tCWIVOyALN6/ViYGAALpcLPT09sFgsaDabiEajuHLlCkql0jLPkOpVi8UiIpEISqUSHA4HIpEI7rvvPuTzeUxNTSGZTIpzyhNa731RWF+QgUmGIxnGPp8Pw8PDMJlMKBaLgjKT643r9ToSiQRmZmbQaDSwc+dOhMNhzM7OYmZmRhxPZqcUNh6yg9Fut0XJn9frRTAYxNzcHObn51EsFm+ZXdM7fqlUwo0bN5DP5+H1ejE2NoZsNiv6ugKr56fcKdbFkzQYDMIbA24m8pCScTgcQjhxJcm9NNlbpG4r3BrllKb88Lkg7KYkaWIZjUa43W4YjUZkMhnEYjFUKhWkUink83lR+gHcVPZerxeNRgM2m03EH2nbRqMBt9uNWq2GarWqlKQO9OJTbrcbo6Oj8Pl8CIVCMJlMaLVaiMfjmJ6e1n3Zm80mMpkMACCdTqNcLqPRaCAQCGDPnj1Ip9NIJpNIJpMdcQpg+Tshf6awviAlSfNc0zSR1FGv1zE3N4dcLteVMUilUohGo6jVahgZGRFlPnNzc0JekBJWHuXdg154KxKJ4G1vexuCwSBMJhMWFxeFE3GrrA6ftySDy+UyFhYWUCwW4Xa7RWKQ0+kU+210rPqOlCTRZjQheMyRW3sr3cRK2WpyKznehHwtD0WmRSm2UavVoGkacrkcEokEGo0GzGaziJlwK5jORa3SqDUd3Sc1cJezZBVuQvb4AXRkPrdaLWSzWeTzedRqtTWNa7VaRS6Xg91uB3Czw0er1RK1WTymrQTo3QefozQOFosFDocDlUoFtVpNMC+yIG00GshkMohGo6LWmmoq5Ux4hbsPvWdPIbdsNotCoYBYLHbbDoN8bEoGBW5S8XJY627M9TtO3HE6nSLdl4QceZIAREE+KTk55tetvIPim1R8ymMSNCiyB8p/U7Zto9EQ8S+i9ahI/fLly3jttddgs9nwyCOPYNeuXTAajTCZTKhWq8JDbDQasFqt8Hg84rrJu7TZbKjX60ilUrf7KDc95JfX5XJheHgYPp8P1WoVFy9eRCwW6wjwc7pUPk4ul8OFCxcQi8XQ09ODPXv2IJFI4MSJE2Jb8jLoWCtdj8L6gDNGnO3hnmQqlUImk8G1a9dEkwiOcrmMs2fP4saNGxgdHcXDDz8Mp9OJa9eudYROuHJVxtDGQu+50/wkWdxsNnH69GmcOHECxWIR8Xhc7L/W7FNehUDbFYtFTE5Owmq1oq+vT1QhyA1l9OT/euGOPEmj0SgC7MBNhdhut4XXBmCZRwYsT8iRwRN9KBmDFK1c49jtGHzC0v9GoxGNRgOlUgnValXQOm63WwwCfc8VNN2TxWJZdv9Ew/JWdgorw2w2w+12w+12I5/PI5PJIJ1Od8QhV3rpKeOt3W4jEonA7/ej1WqJLGvCSlnQCusL/nxl75AMarfbLZLfstms7nEoQz6TycDv98Nut8Pn88Fut+u+C3p0vsLGoFsoC7gpZ+PxOC5dutRh+NxKJrKeEqWOWxTL5jJZ79o2Yp7fceIOJelwutVsNgvlScqMKBNaZ5IHaAF0xCZ4UF72HrlyXMkTBQCbzSZSyB0OB6xWK+LxOI4dO4Z0Oo1Go4GDBw/C5XKJCcyTgkg5k/KXk4vIo6TvFdYGs9kMn88Hn88nEqB4RyZAvwmEXka03W5HKBQCABGroBVc9LxQ+W+F9YM8p4lpcjgccDgcANb27Ok94Aau0+kUCVuFQkG0IqQ5qbKaNwY8lMSTH71eL2w2G7xer3j+3cb2VudbtwQ7k8kEm82GdrsNj8cDv9+Per2Ocrks+oLL17oeuGO6lZQPNTGnz+12u6htNJlMotM/jy8Q3cI9RtmaoGw28lrp3HqlHUCnNeJ0OkWSDim1RCKBZ599Fjdu3MD73/9+/NzP/ZxYliWfz4vrpfgl9ZAkl95kMonlv4gSlgW8wsqw2+2IRCIIBoNIJBIoFAooFArLqDdumADLy4Qoa3JwcBA2mw2RSAQ+n090d9I7nsLGgCfr0I/T6cTg4CBcLhc8Hs+a8gloTtH40ZwLBALYtm0bCoWCaDrBDWXlSW4MeGiMxo5Yt2AwiEgkAgBdy69uN36spyipVtJsNiMSiaC/vx+FQkG0BuXZsev5PqxrnSQpEkrm4RYef9gc9BA53633sFejaLtdG1GkFFskgVwsFmE0GgWloxcfAbAsk5YrbNpHJRLcGoiBIGOJG0hrBb0zBoNBMBTU3ILX4yq8eTAajWJ1IDkZbjXIyT+U7NVqtTpCG4pGv/ug9SIdDgdMJpOQg+vd0EOmaflqUuR41ev1ZXN9vd+JO45Jcq+r0Wh0FACTVVir1TqUEN0UfS7HK3mhqOxNyJNHDzyobDKZkMlk8J3vfAdnzpxBo9HA+Pg4xsfHcejQIUQiEZhMJqTTaWGdysqcZ7NSPM1qtYqsTPJcFDrRzZqj0hqfzwdN00TdnBzL4L85ms2maGdGiVl2ux2Dg4MYHx9HPB4X2bK3EhNRuIludNdKIKOFw+FwiKblZrMZ2WwWuVyuY+FcOp/eeer1OrLZLCwWi2hJlslkMD8/LxJD1JhuLHgYjZ61yWRCMBhEb28v6vU6Xn/9ddRqNVGisx7nlOd9q9XCjRs38KMf/UgYXKOjo4jFYlhcXES5XO641vWk3+84JkllEVQnSaUSpOhIEfL4Ij0A+g5YUpw83icrT2B5BpQ8OTm1Sl5fqVTCd7/7XfzTP/0T9uzZgw996EMYGBjA7t27EQqF0G63kc/nO6xcueMOXQNZtDabDYVCAZVKRSlJHayUUMUTdwwGg1itXK/tGP3PhWGz2USpVILNZhPJXFarFT09PaIV4vXr13XPrYTq6rgdo4K25XOWKHCPxwOj0Sj6IK9kDMkJWvl8Xiy5NzAwIGqv5XOpcd0Y6DkjJpMJPp8PPT09mJqawrlz55DP55HL5TYsNtxut4USdjqdGB0dxeDgINrtpe47G8Xo3ZEnSfSJTKmSoiIFQwqStuMpwTQ5VstW7TYZ5EGhjFODwYBMJoN4PI75+XnRLNnhcCAYDIo1z0qlEtrt9rLkGzn2xT+T60O3wgRdC4XRLZu03W6LhbmJJqHkrUaj0RH3Xcs5ibXgBlir1YLZbBYCdbWkn60M+dkAK4/d7YJodcoA1zuePMY8RMOZKJPJBIvFIqjb9cJKiX9bHfK8sdlsHSwQZR1vRF6Gnryv1+sdZWJ0PdTukDe0WU/ctpIkBViv1zs8N8pAojpJqjckeozKMDglqmk3i415I2NZYMr/d1NOdrsdvb290DQN//f//l984xvfQLFYRDabxejoKPbs2YMHHngAw8PDKBQKuHbt2jKLlH54Jiu58u12W3jQmqYtMwA2G+RM4m5ehuzRy9vZbDbRZWdkZESsDVcqlTroUXl/PSFGS2Q1Gg1ks1kUi0XU63XY7XYEAgEkEollJTly0k+3Y/Nr3qzCUm+pOp78osfgdIOe0uOJFoFAoGMRZT0FTbKDjE6KURPdajKZ0Nvbi/7+fmHoEvTWFZSvQ+8aufzRy7TfrGN/uzAajejv70d/fz96e3tx6NAhjIyMIJvNiuYe660kZaelUCigVquJjFpqhdff3w+r1YpMJoNUKrXusnhdPEk5sYVWmweWCoubzWZHkgttJ3ufAHRLKrjiWvGGTCa4XC5omoZoNIoXX3wRjUZDLAgdCoXEYE9NTYkmvJThys8F6He+l73LzaogCbJBo2egyAJJzkjlFI3P5+vwJGW6lZ9X7+9ms4lKpSKaPsjBfL680krHW+ld2sxCUlaMcoYon9OrPaOVDA4aD4fDIRqC6F2LrCTpWFTKU6lUYDQa4XK5UC6XdVeol3MX+JzV81bpN73TtK1eCGerQpbrbrcbvb296OnpET8ej0c0IZex3gxOrVZDrVYT9Cp5kW63G/V6XTRBX2/c8aLL9FKRd6WX9MKVIvfCSFDSw+ReGZ+k3WIPvIGyx+OBzWZDuVzGsWPHUCwWceXKFdRqNdjtduzfvx+7d+/GyMiIaIVWr9dF+QoA4eHy2JjFYhHXy2kgmUberEK1W5KU3v2u1HiehJzP5xP9fElwlstlVCqVDiXJu2jIIMXabreFggWWEoKogb18DdzQ6mZ0bXYvEtD3vvQ8ybWEElb6nhJ3AoEAJicnkU6nkc1mRUxSPof8Py080Gw2MTg4KDJl9ZSkfD1rGUeSObLXqVeKttWhaTdX4Ojp6UEwGBSMoMfjwb59+xCJRBCNRhGLxTZ8DpHuoPyQvr4+OBwO1Gq1W1rcea1YF08SWOq+Q4k8cgyCEnrIupQteb4w81qTYGhbu92OcDiMQCCA119/HV/72tcwOzuLy5cvo1KpIBgM4t3vfjc+8IEPoNFooFwuY3FxEdVqVVi5RAe1222RmUupzvLyPvyHUp83q+VJggTopLxXEz4yzGYz/H4/+vr6BF1CCTjZbLZDSa4moGq1GtLpNEqlEjKZDAqFAiwWC1wuF4xGI2ZmZoQgXU3Bb0VB2K3EinA7z0RvH4/Hgx07dohVPBYWFpBKpToW1OZlXzJFXywWMT09jVQqhV27dokVhbotk7TW6+a0arfaPoVOGI1GhEIhbN++Xay3W6vVEIlE8M53vhO5XA4vvPACEonELdOut/ruUfKfw+EQTlalUkG5XMaVK1fWPYlyXTxJYOU6Rk6n8BpK+RiyVbma68xjCrRtpVLB4uKiWK6Fun4EAgH09PQgn8+jWCyKRBEeu9KLx8jN2mVFsVaL+16FHL/pRrcC+sqHMw3UAUnORqNt5ZUjuh2fsw68Py/vAMWXWVsLdShjsxo9ADqWouPtI+W5vNoYy//LY07lYJRIRS3Gus0V+XNOq9MYExvFFxqga5axkjzSA32+mZmhOwGtCUr1zdQcJhAIwGKxwOfzweVyiXHmC1LcCbj8ITlCndvomvhiE+uNdVkFhF5eWmiZB+iJqqR4nxzLo4fIl8FaDWR1er1ewUdfvXoV+Xweb7zxBq5du4Z4PI7h4WE88sgj6OnpQSgUQj6fF2Ub1WpVXL+maWK1Ab6eJV0n/0378FKV1eJb9wrkRsTU0cblcsHhcKCvr0/EhSiVn6/3SYYHH9dSqYRyuSyMlN7eXrhcLrG4rt1ux9DQkPAkKUvV6XR2xH5brZYotaH4AxlIhUKho5uTz+cTNVwUx9C0m52gaFkuet/4OWgcqfRAruHdLBgdHQVwc5mjgYEBkQlOHaeooxRlC8qxOsoZICOFaHMyWCiRStM00WO3UqnAbDYL4caz37uh3W4vY2qMRiOCwSCGhoY68hyI8eGgJELeHpPPXzoHHddsNqPZbIrVLBQ6wUNqNF81TRPy9X3vex8OHz6MdDqN48ePY35+XrA9K3l3K80vWtDZYrFgZGQEY2Nj8Hq92LNnD/x+v2gOIze9X0+s21JZnGLlXRDoBZUbBADoEFZrzSijiUWB5KGhIaTTabzyyiu4cOECrl69iqmpKRQKBTz00EP40Ic+JPr85XI5Ef+q1WodfWTp2klo6lnIPGmHK9PNoCCB5bQHKUlqITcxMYFgMIhMJoPFxUXx4muaJroZ1Wq1jnhtKpVCOp2G3+9HOBxGJBKB0+kUKeOkfEmhNZtN4flTYhdwMw5JjRvK5TIymYxQasViEQBEkojX60U4HEatVkOpVEKxWISmaXC5XCJVnKh1im8AS/2BqQH+Zo03j46OQtM0jI+P4/DhwzAajZiensbi4qKgxa1WK6rVquhnTM+BvDtSoPQ3Za9XKhWxnqDBYEA6nRbPm4djqCB8JfDeyXyhgWAwiIGBATQaDXF+r9cr6jEJZDCR8UvvEyXpcUOdlGyj0cDMzExHbE1hyYDkSrJarcLpdCIUCsFisWDfvn1wuVyYm5sTzg5fe/d2YDab4fV64XA4cOjQIbzzne8U85wqKHi+yEbgjtvSyfWNZP1xwcOVDG1D/68WHyFwKojKRZrNplhFIpFIYHFxEfl8XlgfbrcbXq8XLpcLBoNBWLtykJ6fUy89Xr42i8UiMii5Nb1ZQDQG9Ur0eDwiGYZ71Dw5ht4Fni1IxyIBRJ1TjEaj8PDI4CFDih9DzlTkxhgJQxLQVD5E1i411SahTtdCgpIbW3QfvByJ4i5UA0YKYjOMMzE91IiBBBFRpPzeqc0fj8dzr5HYA6pZrVQqsNvtKJVKCIVCgv52uVzC8BkdHYXH4+lYHICPB4291WqFy+WC3W6Hx+MBcPMd8Hq9iEQiHcY1LVJAArPZbMJms4len+Q90nFpUQYaT2prSFma1EBdYUkW0vwhxpCzgHxJRE3TRCa7xWLpWJSe6tLpXdKb5zyM5vF40NvbC7fbjWAwCKfTCavVKmQvzXlydjYCd9xxh2d/Uko/V0Q2m02k6VMW4kqd2rspSHqo5GUYjUak02lMTU2JUo+TJ0+K5rt2ux3j4+PYsWMHTCYTstkskslkx+DwJtgkIElByEqArptWsAgEArh+/ToKhQJKpdKm6LhDAoNqjxwOB4aGhtDb2wuDwYB6vY5EIoFyudyxvmc3JsBgMMDlcsFqtSIUCiEcDiMUCqFUKiGZTKJcLiOfz4vj0Iot9B7xLGPeiIIzE4VCAbOzs/B6vQgEAqKbz+DgIMxmMxYWFoTAI+MGgFhNQO7WRNR7MBgEAGGA1Wo1FAoF8Q7fy5ienobBYEAkEhEGxujoqFjtnSfRdUva4nFhAB1rq9LYBgIBDAwMiLEixUZjXK1WRTtCMjQptkRGNskVGg+TyYRDhw5h27ZtomaSG3WtVkvkHJB86tbIgH9GwprGeGZmZlMYRHcKkvOUcEmGCM3/er2OTCYDg8EgHJRarYbdu3djcHAQhUJBvA9nz57FhQsXREY7MY4yHU6GGrUifMc73iFYKHoPiBWs1WpwOp2iNeVbOibJkzpkupUXB/MYELC8vomOCywpUa4kqZTAaDRiYWEBc3NzmJ+fx+TkJKamphCJRETaeTgc7hB2xWKxYzD4JO8WnyLQ3xQ4pswqspI2A7hhEwqF4HK5EIlEEAqF0Gq1UCgUOrpr6MWUgU6LkKx2p9Mplk0iq5InUAHoEHS8zy95PfQ/vW+UlZzNZsV4Uos6r9eLWq2GXC4nLF9evyszHwCE8CZFS5OXFAnPyryXkc1mhUKgDiWBQAD9/f0d66ly6M0FGnvyHLxeL+r1OtLptKhnJEqM2tNZLBb09PSIuDSVhNAPZZSbzWYhM0gYU9vLvr4+RCIR0T2LjHRil+S5zpkDGm8594HkCxf8Skku76JGyTE0/ylXgOLO9MzD4TD6+vrEGNPvGzduCIO72Wx2xDnpHMRsUHnH3r170dvbK3IOKEZN56Xxp9/rjTvObiXIrjclSOglPsgTTr4xuR6RWprRAyyVSmi1WpiamsLJkyeRSCSQyWQAAD6fD/v37xf1PBTU1evyQ8emc5IglRsdyF1nuCLdbCC60e/3w+l0inEkT4p61RJtQs+EBBoJIXqBSTE1m01h+ZdKJbEPdeugZyrHoOia6Lg0Oej81E2JjDGabESftdttkYRBClLOfKXJyr0YGlun04ne3l5RIpTP5+/2kKw7KJEpnU5jcnIS2WxWNNkAOsMgK3lfpFQMBoNoXE6Je3QMUrak5FqtFlKplFDElUpFHIcYHmoMwRNzyHPhyo4EL6f4W60WSqUSarVaxzzmcVUS0Hwu12o1VCoV5HI5kQG/VWOSpKSI7vb7/XC5XAiHw0IRAhBjRONCxiYPtZHMbjQacLvdiEQiqNfrYoktm80mmovoJXIZjUZEo1GR5UzyiGQRGbVyguV6Yt2UJA+yU8xDXiOSkkF4jIlbpfIDosljNBqFZVGpVJBOp1EsFvHqq6/iH//xH8VCrADQ39+P973vfRgZGQEAUYxM3RhkxUfnoDgLDQRRc7zEhO+7kRz4mw2Xy4XBwUHR/osSYOLxuHg5yfigpAhgaZHccrksVp53uVwiUYcs/3K5LJ59Pp9HIpGApmmoVqsdPRjld4ImACnWVqslFlomhctjkk6nE41Go6NVFb2DchlSq9USWbxciQaDQQwODop7Wlxc3OCnv/Gg5z8zMwOj0YhAIIDBwUHs2rULADqUE39unNWRM12z2aygUp1O57KYHxlXrVYLmUxGjIMcw+bg2e483kVjw98zOb+AxzUpSYiEOSlcmsfATdo+k8mIfs+UlbsVYbfbsX37dgQCAQwNDWHPnj1wOBwwm83I5/MwGo0i+YmYNF6SRTF9ToMDN9mE7du3w2AwIBAIwOFwwO/3Y9u2bbDZbCJmWalUMDMzg1QqBYPBgIsXLy6TwRRnttlsCIfDy0qC1hPrpiQJnBrlk4m8Dk7RAMtXM+96of/vgZfLZRSLReRyOaRSKcRisY4GyE6nU/DXuVwO2Wy2g1YFlveMlBOL+CTj23NsRi+SXkS+onylUulYBJdS8nm9Gx87EpzkNVDsD1hKIeeJOdwC5RON0zkyeNybvBHyYogpIOXNA/yy0uWKkt4FuTSA4iNUg7mRk/FugSsu8sLJu+yGbkqS//DWgLSPzArJBilRbcByGpfvLydN0bzl2fGkRHkISN6fXyspdTLoiS3g68RuRZhMJpEoEw6H0d/fL7qZ8ZADn788eYfmnCzXyXglp8flcolz2Gw2FItFUdJB9dTNZhOFQqGDVSJmkd4dMnjeskqSTxqgU0jyejoAIqsxl8sBuNmRw+VydbVYiWcmKq1areL69ev47ne/i3g8jjNnzoiSgf3796Ovrw+HDh2Cw+EQg8djXpxalWOgvJyFT2g5EYlnt67UHutexNDQEDRNw9jYGPbu3Qur1YrLly8jHo+j2WzC7XbDbrejUqnA7XaLZ6TXKYfitB6PBz6fT8SjaEzpOJTOTVmLlJEqsxBAJyXOPQsSfHRcj8eDnp4eWK1WEVNtNpuCNuKtETnDQWnlVCfZaDTgcDhE8lFvb6/wgjYDODPCy6CI0uLgBhFXWDzMQjkDxMBw2cBZJG5o6IUu9AxUfn5OrXKFzePWAMS18IRCLkwp69ZoNIoEPKrx3CxjfDtwuVw4dOgQdu/ejUgkgpGREZhMJiwuLgrWh4yLXC6Hq1evdtQt2+12tNttoVSpNIxCFcQgEcVdKpVgsViEkqxWq5ifnxd6gue6kDFH2fIkV0iJv+XoVq7Q+GShG6lUKigWi2JCmUwmFItFIWio0JdiF7K1T5YmBeSr1SquXbuG5557DjMzM0JAO51OHD58GBMTE+jt7YXT6RRKkjwMHmPsRv3y5COu7Pm18QzYlaiiexFDQ0MAgB07dmDv3r2ixRslv7hcLkGxUH1asVhEqVQCsPQ+tFotQdW63W74/X6x8C55a9R9h0o1jEZjh9HE6T46LilOSqIhb4Q+J0uVlKTdbhex6Uaj0aEkSWHTOFN2nMViQb1eFzWZPT09wiCIRCKbrsicJ6SRkiSqVC95jXth/HtSWDTHKLZIxgxtz0MV8rHoHDSv5HIg2kbOvpWZIHpnOC3Hr5POx0tEotGoCNvoNeveSnC5XDh48CDe9ra3CY+SnjfVJNO7ksvlcOXKFRQKBTgcDpHUqGmaUJK5XE4khAEQxyFdEIvFAEB8xucfMTiapgklCkDojnK5LEI6lAex3rhjV4i/wPxF5ooTWPLWeOZYMBgUAVt6Mfkko+LjVquFRCKBer2OWCwmAvN8lQGfzyfqaEhRk6fBj0vXRr/593pJRAS+D0802Eyg7GMybigwzxtGcOEFQKSHcwXJ47W8tgpAx7Pj7wb3aiihigs/Mk7a7bbIcuPXIY8Lv04eR6YmEDzGASwpAE4rcxqJMwmbBWR4Uo0jp7e7zQX5M25k8v1kpoZTm3zcAP2VY/QS5mTvkt4VMmzpPN3CJLJM4tdLaxVSScpWRrO51FMZgDB4eU0rACHPyRsElowQ8hop4Y/yQohh0htDHhKTKXd6J8i45XOZWh9ulNNyx80E6IJp2RJyeTkVQhQl1Ta+8soraDabonaOvDVam5KELMXFotEovvOd7+DcuXNYWFgQKey09NXg4CAOHDiAiYkJYYVkMhnRqoyuFeis6eOrkHRT8LKXTBYRlS9sJlpmbm4Omqbh8uXLOH78OCwWC3K5nCg05y8yPTuLxbKslq7dbgtrkoq87XY7Wq0WyuWyWP6IEjm40JQpVl4EzgUsjQU1nwduxtjIApU9F166w8eblC7PiqQ4LFm8yWQSADZNPSyhWCxiYWGhIxmOngvFg+RYvqxouEcpCykaK1KQfEzoHHqG5mqCjhu73EOUvUp5zhONyuOTJKuSySQuXLiAdDqNdDp9B0/13kcul8Orr76KWCyG/v5+7Nq1CxaLRawdCXTWlSaTSWQymY6kx1gsJjxAAn+f6HPy5onJcDgcQvHyXAUAYhUSfkyq6XY6nWLhhPXGHXuS3EonakOOU/IJVCqVMD09LVpeOZ1OUf9Ex+OZS0SdXrx4ES+88IIQYpp2s70U1UP29fVhYGAA6XRarDTAM6uATjqQWyh6ik5PSQIQXioF+DeTkiTjY3FxEdPT0yLTlLquUIccYGlMSYkBSx5Bo9Ho6NlLtZIyhU3PT8405eBeBafpXC6XoElpDCkGTQqOK0nycPmaoXR8AEKIEt3Da3up3ISo+80C6npkNBqFgcC9bG6w8HnCP6P/5TGU6Vg9YxRAh0fJ95XPxY8pK0mZ5ZHPIyfr8PuifYvFIhYXF8XqMlsZlUoFN27cEC0g3W63WIqKt6KkbSnZhjMFuVxOyAZifWQPHoBI7tPzFHl+CMmSQCAATdMEy0Nd1ZxO51uzmQCwvGsOCUKg86XmLzatATgzM4Pz588LWjUYDAoPoVar4fLly0in05ifn0c0Gu3oLG80GtHT04MDBw4gEonAZDIhl8uJGko+gWXoTXhgSeHrTWYabF7kvJkEJgAxbplMBteuXYPdbkckEoHP5xPWN1EupKxI8fBnwZtJcApTTzjxCcG9RD6pZKML0I8h85otTvNyQSxnXHOKl8cqibZvt9uCldisXka7vZQUwalsMjyAlRcxps/531yR6jE1q11Pt+3WSnuv9D2/Dp5xS834NxNbcDtoNm+2+7RarchkMkin0x0NU7jBSnkAXB5yp4iMLU272XDC5/N1JHdZrVbhSVJMkpSlXsN6CsvRvKXGH263Wyjb9ca6LbpMoDgHCVUSZpS00WrdLCbOZDI4fvw4NE1Db28vHn30UYyMjCCTyWBhYQHFYhHf+9738N3vfhfFYhGxWExQuSQE9+zZg5/5mZ8RCRdzc3PL2szpTSpujcqZrzyGxa1gaslETZCJkttMipImwtTUFBYXF+FyufDYY49hbGxMGChEZdLYAkveAPfKSNmRACLvjCsyGkd6uWmVDop1AEs0Gh8zOielf5MS5v1gieqheAW9F9ybpZIF8oT5O0pKtFarYXZ2FrVaDTMzM4jH43dnMO4iSEmWSqWOPrvcGOL0tDzn+XF4qIVTq3x/TotyyJ6o3m/ZwJX3l0vKeAhAb38y3orFopBLmy3X4FZRq9VE+0lSblR3TG0AqZczdbeiDGKat3LM0WAwYGhoCAcOHIDVaoXH4xGlQuR4XLlyBZcvXxaJf/LKUTROmqaJEhCbzYaenh74/X74fL4OGbFeuOPsVv6bTwL6W44lARCcczqdxsLCgigNoZgXtS2LxWK4fv06qtWqeJnJSqGuENSuiIpQ9aiglawL2TuRrV7+W6YANttkovuheCFRolxgAp3CTO+lJCOD02HdhKvsvfOEIL24lxyXlL0Tzgpw6pDfIxfU/Hr4uSkOQh4WPZPN0pqOg54HhT34cyasZqHLzIxMt3bbnh9/NdZntf35XF2LJwks1U/SOG91LxJYMpooqYuUJbWMlD1Gq9W64rwg2WG32+Hz+cRvSggiuU90Kcla+T2kjHouW4jJIgP7LedJyoXfsiVJXgOfbNxVj0ajaDQamJycRDKZRDgcFuuPlctlvPHGG8IrpYEJBAIYHR2Fz+fD2NiYaLhLDXP14iDA8hVHeBwLWJrcpLB5liQJ260CGiOr1Sq8Cu6tcfBnSi8pTYJ2uy3KOqhjB6dViS6hlUE8Ho+YOHwikjXKaVtOe1OTY6fTCZfLJbxXnjjSarXEROa0Kq1yQrVbvB1Zu90WJSqVSkUk8Gw2tFotpNNp0Sje6/V2xHfk3/S3LJDk7wF9I1XPCF0J8jZ6CrLbNXHZwRkPogHT6TQajUZHwfpWh9lsRjgcFsvb0RygmmfeFITqkjlrIIPmISXWtFotkfTI8wSApflO68lynQIsvU+kGI1Go5BLG9UA4raVJF04jxPS57zIm6g3YPlySvPz85idnYXBYMBLL73UQZWQApMtu1AohCNHjiAcDgslyVtXcWqXrgfQX3GEx6boh5JyqFsHxbT4gG12kHVIVCXVRvKWgzLFSkk8mqaJukcAQkFSH1j+DlAsmqxAii3Q8WgykJKmRsn1el1kX5L3Q0X/lNBDE5bGkbYFIOIdtHZiT08PWq0W5ufnOxRxq7XU9o6SGTYjms2b635OT0+jp6dHFI+T0Sl7hXqUp6wg5RilDD2F1u1Y8vfdPFXOdHAqnodUOCNULpdFog61OVS4OT9ooQhq8EFZqJQ4Q3LTZrOJGmhSXATyIEmG+nw+sS/NY8rzAJbeCd72Th5D6sHN24aS17tRLMC6lIDQ3yuBPAGD4WaXf3LR11K4Sw+O+kJS6Yjdbu8oVubbc3SzPPk98KxN/h15PjwtmZTIRnWdf7PB75sbK9zokT0ETnPyl1qOCXU7H6dWZKuUTx5eF0njxhW0vC3PwKWJzJsp03JNnFXgFA/F6mhZns0APSVWKpWQSqXEcld6BmU35aU3B9ZKd652nWvFWq5Bfs8oxl4sFjdd5vKdgOYPzRVScnK9s8z2UDtL+h5Ah5LkvbDJmSLjlcaFFiUgI5YcIJI7/Pxyq0w9R2g9cMfrSZI3QA9QjjEBNycYeSBmsxmDg4OwWCyIRqNrqjU0mUwIBoNwOBzYs2cPHn74YfT29gIAYrGYKE+QaVGZYiVBqucZEr3KvVCiE0iAXL9+HZqmwev1or+/XwSsNxsomYZWp6elj0iQEFMgW/KkeKiAmOhrWsCXW/+y1c4VMx2LzsVXFHE4HB39Ien8RP8AS8uZGY03l1Xz+Xyo1+siVZxaZNEyW1evXoWm3cxopbpL6jm7sLCA6elpVCoVpFKpuzQCdxf1eh1XrlxBJpPBzp07cejQIeFd8zGWBaMMve/4Zyvtowc5t0Bv+24UL6fo+PlJaFOnppmZGSQSCdF6UQHCGSFmhmQB1RmTYpMdlGAwiIGBAQDoWGmF5DJfjIDnPHCGh7p+0Xzmy6mRLGm1bq4CksvlRAZuu91+a3bcIdqMZ4TKSoN7IyQ0/X6/oM84ZAuXwIVdb28vdu7cib6+PszPz2NhYUFMJu596CWI0IDxAC+fxOSV8MlEg1UoFBCPx0W7Mwo8b0ZPkmKFJEjI0uZt4eSkGtngoEYBdrt9GSVPkAUo/fBjEb3Cx45nXJIhxL16/h5S+ztK9HK73SgUCqIwOp1OI5FIwGQyYWhoSChJUriFQgGTk5ObZs1QPTSbTVEjaLVaUSwWOzpK0ZjI/8vQY3O6Ua3d9lvpmKuxEd0+03vPKDmLFknI5/PKk/x/IGeG8hEsFotgYfg843knAMTiEgBEvTLXC0THUkMWkik0x00mE/x+/7JEPkogonlZq9WQyWRQKBREHoHZbN4wpueOPElqC0cXuFoXGioCHxwchNPpRCqV0o1vEGhQfD4f9u7di4GBAYyMjIjO8OSm82uSj8PpO/6jN6nkGCTflqchU5GtwWCA3++HyWRCqVTaNILU5XJhYGBAxAVo7T9uaZOhwRUaXyBXTpiQM4c5haM3JiSU5bZzdE5uoertL48ZebhUB0clIkSjk/fMewlTPIRjMxpF9Gx5Kz5SiGQQyV6WHmXLv5MhG0Dy9noJPiuh2zn0PE29bZvNpohJkpLc6jFJmpNutxv9/f0YGRkRTRY0TRNLW8nlVjT3qDSO5hX1VuaOE/fyKamTtuHvHt+PkvPoGtvtdkcMlK/4syHP5XZ31LSbLccCgQAMBoMoBKXVE/QyyYCba4q94x3vQDabRTwex7lz51Y8vsfjwbZt2/CRj3wE999/v4gjRaNRYV3ILzef4DSARKNy4Un/k4dL+/CVromaoYlWq9WQTqfFemkjIyMoFAqbpoZO027WrT7wwAOCak4kEh1NIijzlSYGvdiUiUxUCtDpldJ40DPmFirv2sO7owBLDbdl4U2UK00qLgxJuBOLQRQwvTMul0vEUahO0+v1iiQlomOpOQXdy2ZUkgCEUCMPgKgyKv/hVJZMwRJkRkdWhHwfmcrVU7rdnjVXqnqxUjlWRscjkPdDK1hcu3ZNvLtbFZqmCTq1t7cXR44cwX333YfXXnsNL774IsrlskjoIXaJWkzSnK5Wq8hkMh0JVJS8Q3+T4Uk0KxmnRqNRhHQ4awRAtAGlRuZEBzcaDdjtdpFguFGrMt1xTJImES1JtZrlbbPZEAwGxTI1pJAo3sFjBzabDS6XC16vF319fRgeHkY+nxdrSNJLraco+fn5MTklxycpH1i9HwJlwFI5AXHslKG1GWC1WuH3+wVVSoktPKuQvDdSaMCS8NMbC/l5yl66HgW3Gv3F9+UsAhe8BHo3yfihJZRsNpuYmHrW62asm+tGlfIkLR4DIkFHWCtduhItu1Js81axmkKVr4UzH6VSSXiRK8U7twJovG02m1gwwmKxIJ/Po1AooFwuC6OUDA0+18lA5gZxt7GR6XvOTBFoP70yHh5bllmq9cYdqV6elEHuNylL/kK22+0O65TWDzx48CCq1arwxHK5HJxOJwKBAGw2G8bGxjAyMoJAIAC73S66QOi1juoWD+HZUfKD5BQQj23Z7XYYDAZBq1IRK3CTa08kEsLyoQSPzaQkzWZzR30jNY2fnJxEPp+HwWCAx+MRNUrAUlci8sppcvD0bqqJIg+SPEyuODnW8sLThJVX6qDJRHFlGlv64TFnq9UqWnFRC65cLieMITn+uplRqVQwPT0tssgHBgY6BBHQWVbFG1brKU/u+XcTZLJHuNpzlsdDVoSykSRvAyzlU9B9bPV4JLEGdrsddru9YwEDYl08Hg88Hg8ajYbofkZGFOWYNJtNWCwWUWtLbA0ZpsTUcAOZPEHySrkBbbFY4Pf74XA4xLWRB7rexlY3rIsnSXE6isvxbiY0UYjOoYfucDhw5MgRDAwMIJFI4KWXXsLMzAx6enqwY8cOeDweHD58GAcPHkS73UYulxPNB1ZqjK1HBXGqTm8C0SC3Wi1RZE6ZVaSUSRjUarWOTDhy/zeTkrTZbPB6vfD5fCLxZX5+HpOTk8hms4Ie4R2INO1mEwH+LLjxQAqT6i9pcWOuJGk7brwQ9BQpCTde10j70HZ0TgCCkiFFSddK15JIJJDJZIQQoAQDmVLczCiXy5icnESr1cLOnTvR39/fIbhoPnNaHFhSghzcSKUEP3lVET1PT8/rk6GnIPlv+TNuONG1kOza6rFI4OYzslqtcLlcIs+EnhHVQVKjCc4uUZlGo9FALpdDPp8XFCgV+1PbUPqMFp8Almqy5YXsaeyoqTnFN00mk1Cmd8u4uaNmAsCSKyxntnJhpUdfkufh8/nQarXQ09ODZrOJcDiMYDDYkX4sN7ymv+WSAQC6gpR/JluynDeXr3e1RJ+VvruXUalUkMlkAAC9vb1i4nTz9PSer94zkbfnz0+mTmUaXA/8nACWGWayl7PaOJEg5bVXcpxqsytJ8qhTqVSHgbCWd1wvNKFH068HLaanDPW+J2HK5ylnH1bCZh9rGZR0Vy6XEYvFMDs7i3Q63TGPyAOX12bloHnEy7LkXAPe9IXCIDxRT69agowuTr/yEM9aQjS3gztSkrR+X7vdFtZCs9lEMpkUD5OWuiJFx8sHaMX6gYEBjI6OCjecfjweD4rFopiovH0R0J3i4d/Ln/OJSv+TN9JsNjvoVgouc8uHOsPQyhh8xYvNgHa7jWvXruH//J//g1AohI9+9KM4fPgw6vW6eC6ysUOQMyQJsiFBFirRMHzS8fUpZW9CTwiTZ0jCkOKIxBxQbI0MK95XmL6nchWPxwOn04lMJoN4PN6xNiWdb7MZRDIKhQIuXLiAubk5wfbIzc55eAJYEorywtqUCAQs1b3ROyMn7ujRrfw3h6wgV6Jx6TMSylT2kc/nEY/HO8oGZDp5K6HVaomOVhSDDAQCIuRgtVo7EuSIQctkMh2ds4gpjEQiCIVCAJbyOLgHSl18Go0GYrEY2u22yEHhMob3TqZ3rlqtiiqKZvPmAtEGg2HDqgvuKCZJCoT3wszlcmKCkCtNNCa99GTZOZ3OjjIPq9WKQqGATCYjHg49DE3TlsVG9JQTp1j5dvxvvWQPEu4kqIkrt9vtgl6k/WmdS95wdzMpymg0ing8jlAohCeeeAKhUAiZTEY8F72kJ654uADVEzg0ljx7mIQsPWe9BuTdvHmiz4jW5wqRrFPeZYd+a5rW0a6OlzPRhJbrOze7oqxWq5ibm0MikcCePXs61hAFltdM8s9pDvDkDnq2ep6kHqPD/5YVpBx/0qPp+bbynKd3hJqD5PP5LZ3RytFu3+y6VCqVkE6nMT09DeBmNcLIyAj8fn9HiIuv3ENGqMViES0oPR6PoGYpXEU/vO1cNpsV8X9alo+zg+Ss0JwkI5iMG1Ka1EbxLedJlstl5HI5kTpMdWa85yNZb3qChSYRDRD14CPBRBYqd625Quo20eRMWXlbvg+PqenFVWRK1Wq1IhQKobe3F/F4XDRj32xZkORlJZNJTE9PI5VKwev1YnBwEFarFaVSCZqmdbSg43WLcvxHjmfpUfA8a44rMoKekOT78Lgz9/5IEFKPWIfDgZ6eHlitVpGERR5loVAQmcsrZU1vVpChAUAUcVPLL/485DnDBVu30IdeooWeUNPzHPUSclbbh98TP06xWEQ2m0WxWNx083Y9QUrQ7/fD7/fDaDSKBchpcXLqmUpzj96fXC4nqFTq1MXL6bjsJ5au1WqJxgDETFJDE3KYuJIkXUFeLCX28Drn9cBtK8lmsylWDggGgxgZGUEoFEIsFkOhUBDUC2VH8pgiCTdymw0GgyjO5y87ZSAC+jSqnlcpW7nyxCLhz2OaxJHLx+HeDe3vdruxd+9e7Ny5EydOnMCFCxdE95bNAhJm1WoVV65cwY9//GMYDAaMjIxgZGQEMzMzuHz5Mmq1mmhZRV4+T4wB0JHFSqtzkNEkxx2IniPPHuhem0if0TGJGpcXheZp6mTdRiIRHDp0CB6PB5OTk7h06RIKhQIuXryIeDwuml2T57GV0Gw2xcK3RLuRh02NFuj9MBgMHfXHHDL70y3RYqXEHI5ucUzucerR8jT+PIcimUzixo0botZaYTlI5vn9fuzYsQN+vx9WqxWpVErErakukuolKfmmVCphenoaCwsLHWGZQCCAYDAIAKIaotlswuFwdBjl1APW6/UKo5VCHzyhjhS00+mEz+eD3+9HKBQSHmqpVFqXZ3FHniR12XG73UL700SSE3q6WZE8fkEPlKwNnjaupyRlT0TP8tfzNPmPfDx+f/QZF+Ymkwkej0e8NNz7vdchP+dWq4VcLofFxUU4nU709vbC4XAgmUyK7jXyUjf8OQHoqGWiY8rCTH4fuBfIg/ndrpW/b+TxcNB2tPqHy+VCKBSCz+dDNpuFx+MRwpaa7sueix7tt1nB47k8DCF7jDJ9KqMbO3M7WOkYq1HyfBsy/qjub6sZQWsBf+/NZrNYTs5gMAjFRg4OsQw8eYbHCXk4hHvtfB9imkiW0vllr5Mbwtwg5s1JbDabWMVpvXBHSpKaWLvdbtH0e3BwEMPDwyKJYnJyUnS34EXbMs1G7jHFMbtlPtK5gSWBS5ORqNmVXnyeqMG72pPS5BO+Wq2KhXY9Hg+GhobQ29sr+nuWSiUsLCwgnU6jWCze7qN8y6Jer2NqagqapmF4eBg7d+7E0NAQMpmMCLB7vV54PB5YLBZhLNF4atrNLjbUEIKodzKeKD08EAig1WqJVc+5ty8rUQIpLr66B/da6To4zcsnMVmyFBtvNBodq9MQpbMZjJ/bBVeUADqMV5nW5uD0Ol9UQI/h0YvlcwN2JeNEpnP1jGe+L41pKpXCwsICUqmUoJb1tt/KIPnrcrnQ39+PYDAIj8cjFj2gWCMtNiAzSFwBErgSJIqW5ABn+qrVKubn50UCXaFQEPvRUnikKDkCgQDGx8dFGVc+n1+XZ3HbSpKyofL5vLDKh4aGkEwmsX37dpHUc+nSpQ4PjlM0vBs/NdGmglb55adteYyJLAsKGpOAJciZlwCE99toNDoGVU8JU6C4VCqJRZ77+/vFgrTUBCGTyWxKi7Rer+PatWuYn59HqVTCRz/6UezatQuJREI0E/D7/QgGg7BarfB6vSKgTy8+1cTyxZtJeVGmcDAYFArPYDAIJSY/UzmRh/bRa1DAO8VwBckzWqnPpNvtRru9lKFNVi+3arsphM0MriS5cUvzkLaRGZ1uVjw3YGUGiJ9TZnpoX/5bPgb9T+BeDB2LxjSRSGB6elo02ebHk8+xVUHPjpyDUCjUMT+pW1G9XheeHP0QyygbmKRYAQglKct78vSnp6eFXsjlcqjX62LNWEqqk1nGcDiM/fv3I51OY2FhAbOzs+vyLO4ou5UUlkzLeDweYaVT9itP6tCz2FaaGPx/ve3ljEqCXAQun4N7j3w7LlBJ0Hq9XvT29sLpdIr08Ww2u64B4jcbesKBhAjFjs1mMxwOB3w+nygwdrlcsFqtcLvdggUgJUkKkgwjHqvi9WvyuMvvArA0njx5pJvQ5J4Kz5glC7RYLIpEBFKYfM1M/o6sB114L4KElMPhgNvtXubVy0qFxrHb85IVIPceOPTGfrXP5HN3y8glb5Jo9c1o3K4H9OYgZ/TkeD99rxeb5nJalr1yjSN9Rk4WjZF8Hq5H6FqIHuZZ8uuBdekIS62sqO7lwIEDAG7eTLFYFF0TeJ2dnClHyR/csuCTiXd30cuQlMtD9MCtVqJbedyTPAiKVZByt9lsePTRR2EwGDA/P4/vfve7iMViuH79usiE3Iwg65uocxqvwcFBPPbYY8LzJ7rT6/WKxud6Vj1R21QjSe2lKEWcxoIvosrB6ydJkfE17agUiSeKEA1MyT3pdFokAFgsFrHcTrlcxuzsrAj4bxbDZy3oJtji8ThOnjyJUCiE+++/H5FIRDx7vgySbNHLxik/5mrn5vvoHYP/7qaU6ZqIzgOWWKF8Po9MJoNUKtVBJXMvd6t7knzeFwoFLC4uotVqIRgMwu/3iwUMyBPn7AA9b16VQMeiMeDGMnXqoedPY0nJOjx7nhggclzIIC+Xy2IOy2tcrgfWRUnWajWR3BEOhzEyMgKj0YhYLCaWw+JF+vzF5XQpCTW6ebIgONXDlSR/EFzZccjKlH9PSlBOQKCBoO+tVit27NiB3t5evPDCC/jLv/xLnDhxQtd73Wyg0gr+stIC2PQ5pWHTKhocNMa8VIM6/9PY84xXEm58pXj+m8ZeVqI0cfjKL5qmdRhd5EEUi0Wk02kx1mSxptNpkU2nJ+g3M/TYnUwmg2vXriGTyWB8fLzD+KA6aFlRdVO4fC6v1TPXOxb/W48CJy+HXxdRhGQc0YK9MrbCOK8VNF7lclk0DPB4PMKxNWOLIgAAtVVJREFUII+c1yaSo0FzUZbXXIHRe9AtR4Q3EOALKPBcBdIJ1WpVZNjyUpT1wrooSQq00sMaGBjoyGrirYnoJmU3nn7TNjxlnD7n3mU3alaPBqJ9+WfAkmciH58+495PNBpFJpPB1NRURxegrRLHKJVKmJqaEvFHUjyk+DRNE5Ycf0H5yuM0MYiupmPeuHFDjDnQORn0xph/T8jn8zh58iQymUwHU3Hx4kVMT093dOIBlowqSuCp1+vIZDIolUodvXq3ArpRpJVKBYlEAu12W3SdIsODFBFnhuQYo164A+heznEr10vQO46cQd1uLxXKUxxNYW2oVCrC0QkEAiK8RKwfGUvkKVLZBW8oQQYv5Y3wGDT3DklXUDiE4pc0lrIC5A4OGcGZTEY0o1kvrIuSTKfTePnll2Gz2fDYY4/hwIEDHSm5lBxDabt085RNSLEpeqh6FCZXpCtNjG6Tj6gXmf+mpASqieSKk7zfarWKV199FdPT05iZmUEymRTXrFfasBmRTCbxL//yLzh//jzGx8dx5MgROBwO8T2VhACddCgpIErSsVqtmJmZwdmzZ5HJZPDSSy/h2LFjuj1Suz1Pve+MRiOOHTsmEocIhUJBGDVyLIyORd+RR8s7xWwV6M2dVCqFcrmMYDCIQqEgloWjLEUaZx4LkkMj8jOX40m3cn16f/PjkBdJNXS8E1gymUQsFkM8Ht/UIZL1RiaTwfnz58VKHJFIBPV6XSynRXQnxRCp9IPCHsTcNJs3F7nOZrNinIgRopWjOFNBiZzE5MlMBeVHUKKd0WhENpsVzIceU3C7WBclWa/XEY/HoWnasoa43JMEOrvs0AtMD4asPnmlAA7ZaiWs5EnSfnLMgfPgerWclLVVrVYRj8dx/fp1xGKxjkl2JxbxvYRqtYrZ2VnUajV4PB7RcYfTKrxWkX5ISVLmG3mS8/PzSCaTmJ+fx8LCwrp4btFodB3uVIHAy2Qo05eEk0xp8YbVcv4AsLyP6kYpSarhIyZL7uaiPMlbAzUMaLdvdtmh8g96D6gnL0+K4mEPUoQ8Pgx01uISrcqVJDUK4Ofg8pnXrgNLWbG5XE4srr5eWPelnNPpNC5fvgy/3y/S+/nLym+M4kUkYPUC57IFoRdb5Pvw7/Q8Ef6g+d80qORZtttteDwe+Hw+YaVcvXpVdJqQ99/sqFQqmJ+fRy6XExSMzWYDsLxJA/fa5H6NZrNZGBzFYhGLi4tb5hm+1dFtHGq1Gk6ePIlnnnlGdEOh2BQpPPIkOfRocfl7mRrlv+W/5c/4XOeGmVza0W63cf78eZw8eRL5fB7JZHKtj2TLg2rBKS65sLAAm80Gv98vmMBt27YBWF6CQ+EMSoTjZXy8lR05TZRIxY1r7kk6nU44nU4AEIq32Wzi7NmzaDabuHLlCubn50WewXphXZVku91GIpHAqVOnEAgEcP/992NsbAwAOqgs8iio5yvQmR5O0Eu40fMeOXhMpJtC1NuXjkvX1263EQgE0NPTA4PBgGQyKQaDez1bRcCXy2Vcv34dmqbhwoUL+OEPf7hiYoXeZ5ya5hNjsyc/3QtY6T2uVqt44YUXcOXKFfj9fuzduxfBYLBj1QYyMmlsSUESLct/uBdB74GeEcznMgdP0qPveUY0eSF8XdBLly7hzJkzwhNSWBvy+bxgja5fvw6TyYRIJIJ3vetdGBkZQTAYxPDwsJDl1DuVKFjei5nAQxvcqKY4JLEBlKdAP16vF4FAQGxbqVRw48YNvPDCC1hcXEQ2m0UymVxWmnKnWHdPslariea2dMP0UOhFppeUUoKB7gqPQJStnOSjp+xkxShTuCuBBogGIpfLIZvNolwud2RcbjUQbQJgXakMhbc+iKokAZRIJABAtADjgkxPScp1rbweVc6OBPTXoOXfy7Stpmki34HOTwKahDUlZSkFeWug8QIgnp3VakUul0MulxNlVDSOpPTIONGjSOlvjlarBavV2uGEkMznsW66pmq1ilKphGKxiHw+L5T5RqwEckdKUs+rS6VSOH/+PNxuNwKBgFhPslQqdUwOg8Eg2pvJ9CmfDHolGvJ5u3mF3ErhJQN0DL19iUokS6ZeryObzeLSpUvLtl3JM1VQ2Cxot9vI5XIiPpXP50VrRkrQ4OA0qh7rIte7yqDjrUa78m15jJR7KCRzstnslspY3kgUCgWcOHECV65cgc1mg9vtFtmuPAOa3g9qN0nhK5PJJJrmUwyb5DGPP5L8J7q1XC4jlUqhWCzi3LlzmJmZQS6Xw8zMzIYpSGAdPEk5/kdFnU6nE6Ojo+jt7RVeGW9ibjAYUCwWO2on+eTgqb30o1cLyb1FGXICCU0SPTqWzktJJeVyGYlEAtFoVBSa60EpR4XNjnb75rJ4lL28uLgIYO1Ja2qObC6Uy2VcvnwZgH4ckmqmad1dWgyir68P/f39orkM5ShQhiopTHKkSGmSQZbL5RCNRpFKpfD666/j/Pnzd+XdWne6lSDHA4Gl9SA5JSrvo5d0Ix+Hb8O3I0uSW7bycVZK+JG3JWtYxcwUFJZDKT8FWf5SFQFnErgMXYmNu9Xz3q33T2urN11BQUFBQUEXy1PHFBQUFBQUFAAoJamgoKCgoNAVSkkqKCgoKCh0gVKSCgoKCgoKXaCUpIKCgoKCQhcoJamgoKCgoNAFSkkqKCgoKCh0gVKSCgoKCgoKXaCUpIKCgoKCQhcoJamgoKCgoNAFSkkqKCgoKCh0gVKSCgoKCgoKXaCUpIKCgoKCQhcoJamgoKCgoNAFSkkqKCgoKCh0gVKSCgoKCgoKXaCUpIKCgoKCQhcoJamgoKCgoNAFSkkqKCgoKCh0gVKSCgoKCgoKXaCUpIKCgoKCQhcoJamgoKCgoNAFSkkqKCgoKCh0gVKSCgoKCgoKXXBXlOTExATy+bzud/fffz9++MMfrnqMP/uzP8P+/ftx4MABHDx4EF/5ylc6vv+DP/gDbN++Hdu3b8fv/d7vic+LxSI+9alP4cCBA9i9ezd+53d+B+12W3z/13/919i5cye2b9+Of/Nv/g3q9frt3aSCgoKCwqbDXVGSp06dgtvtvqNj7Nu3Dy+99BLOnDmDb37zm/h3/+7f4dq1awCAH//4x/iHf/gHvPHGGzh//jy+853v4Jvf/CYA4A//8A/RbDbxxhtv4MyZMzh9+jS+9rWvAQAmJyfx+7//+3jhhRdw9epVLC4u4ktf+tKd3ayCgoKCwqbBXVGSmqYhk8kAAF5++WVMTExg//79+NSnPoVGo7GmY7zrXe+C1+sFAAwNDaG3txczMzMAgKeffhq//Mu/DKfTCavVik9/+tP4h3/4BwDA6dOn8b73vQ+apsFsNuPxxx/H3/3d3wEAvva1r+FDH/oQent7oWkafuVXfkXsp6CgoKCgcFdjkrVaDR/72MfwJ3/yJzh79iw+8YlP4PTp0+L7L37xi/jP//k/r3qc733ve0in0zh69CgAYHp6Gtu2bRPfj4yMYHp6GgBw5MgRPPPMM6hWqygUCvjGN76BqampVfdTUFBQUFAw3c2TXbx4ESaTCe9+97sBAO95z3swNjYmvv+VX/mVVY9x5swZfOpTn8LTTz8Np9O56va/8zu/g9/5nd/Bgw8+CK/XiwceeAA/+MEPbv8mFBQUFBS2DO6qktSDpmlr3vb8+fP44Ac/iL/5m7/Bww8/LD4fHh7GjRs3xP9TU1MYHh4GANjtdvyP//E/xHf/9b/+V+zbt0/sR3FNeT8FBQUFBYW7Srfu3r0bjUYDzz//PICbtClXUivhwoULeOKJJ/ClL30Jjz/+eMd3v/ALv4C/+7u/Q7FYRLVaxd/8zd/g4x//OAAgl8uhVCoBuJmo85d/+Zf4j//xPwIAPvKRj+C5555DNBpFu93GF7/4RbGfgoKCgoLCXfUkLRYLnn76aXzmM59Bs9nE0aNHcejQIfH9F7/4RczPz+Pzn//8sn1//dd/HdlsFk899RSeeuopAMAXvvAFvPe978Wjjz6Kj33sYzhw4AAA4GMf+xg++MEPAgCuX7+Oj370ozCZTDCZTPhv/+2/YWJiAgAwNjaG/+//+//wjne8AwDw6KOP4t/+23+7kY9AQUFBQeEegtbmRYMKCgoKCgoKAqrjjoKCgoKCQhcoJamgoKCgoNAFd11JHj9+HO9///sxOjqKI0eO4L777sMf/MEfiO8fffRRfOMb37ilY/7t3/4tvF4vJiYmcOjQIRw8eBDPPvvsOl+5goKCgsJWw11VkmfOnMH73vc+fPazn8Xk5CROnDiB73//+8jlcnd87MceewynTp3C6dOn8aUvfQlPPvnkOlyxgoKCgsJWxl1Vkl/4whfw5JNPisxTAAgEAvijP/qjdT1PJpOB3+8X///mb/4mjh49iomJCfzUT/0ULl26JL579tlnsWfPHhw6dAhPPfUUQqGQ6MijoKCgoLC1cVeV5Ouvv44HH3zwtvZ97rnnVvQOn3/+eUxMTGB8fBwf+chH8Kd/+qfiu6eeegrHjh3DqVOn8JnPfAa/8Ru/AQCIxWL49Kc/ja9//es4ffo0du/ejWQyeVvXp6CgoKCw+fCmJu781m/9FiYmJjAwMIBz586tuO2HPvQhfPnLX+76PdGtly9fxquvvoonn3wS8/PzAIDvfve7ePvb3479+/fj85//PE6dOgUAeOWVV3Dw4EHs3r0bAPDJT34SFotlfW5OQUFBQeGex11Vkvfddx9ee+018f8f//Ef49SpUzCbzeu6juP+/fsxPDyMl156CdPT0/jc5z6Hr3zlKzh79iy++tWvolKprNu5FBQUFBQ2L+6qkvzt3/5t/NVf/RW+9a1vic9qtdqal8taK2ZnZ3HlyhWMj48jm83CbDajr68P7XYbf/EXfyG2e9vb3oY33nhDxCi/8pWvoFarreu1KCgoKCjcu7irbekOHTqEb33rW/j93/99fPazn0U4HIbZbMav/uqvYnx8XGz35JNP4nOf+5z4/5lnnkE8Hsdzzz3XlXKlmCQA1Ot1/OEf/qFoeffxj38c+/btQzAYxIc//GGxTyQSwZe//GV8+MMfhtVqxeOPPw6XywWfz7fu966goKCgcO9hy7ely+fzcLvdAIBvfOMb+N3f/V1cuHDhTb4qBQUFBYW3At70pbLebPz5n/85nn76aTSbTXg8Hvz93//9m31JCgoKCgpvEWx5T1JBQUFBQaEbVO9WBQUFBQWFLlBKUkFBQUFBoQuUklRQUFBQUOgCpSQVFBQUFBS6QClJBQUFBQWFLlhzCYimaRt5HZsK92rC8FtpjDVNg9FoxODgILZt2waXy4Xt27cjHA4DAEwmE1qtFs6fP49z586hVCphcXFRLLvG76Xdbq/7mNyrYwy8eeNM5zUajdA0Dfv27cN73/tehMNhDA4OYmhoCEajEWazGQaDAdVqFblcDpVKBcePH8exY8eQzWZx7do1xGIxABs/DvfqON+tMaZ5CgCtVgutVqvjO5vNBo/HA6vViu3bt2Pnzp2wWCxwu92w2WxoNpuo1+totVrIZDJIp9PI5/M4c+YM5ubmACyNgaZp4r7Wc06vdpw1l4C8lQToWx1qYt0ZwuEwtm/fDqfTiUgkgt7eXjSbTaRSKRSLRZjNZiFITSYTjEYjarUaZmZmkM1mkcvlMDc3t6xH73qOy706xsDdH2eDwYCenh4Eg0E4nU709/fD6/Wit7cXu3fvhtPphMVigdlsRrvdRr1eR7PZhMlkEgsORKNRLCwsoFQq4dq1a0gmk0gkErh06RKKxeKGXfu9Os4bPcZcYRFIcdntdoyOjsLv98Nms8HtdsNsNsPpdMLlckHTtBWfa71eRyKRQKFQQD6fRzQaRblcRqlUQqFQQKvVuqtzecs3E1B462FgYADvfe97EYlE4PF44PP5EIvF8NWvfhWvv/46zGYzHA4HLBYLHn30UTz66KNotVqYnJxEIpHA1NQU0uk0yuXyW0bxb2UYjUZs27YNExMTCIfDeMc73oGRkREhVJvNJhYXF7GwsIBarSaMoWAwiJGRETidTuzbtw9ve9vbUKvVMD09jWQyidOnT2NxcXFDlaSCPgwGg1B2zWaz4zu3242jR49i9+7dsFqtcLvd0DQN8XgciUQCtVoNmUwGxWIRJpNJGLrhcBg9PT0wm804cuQIbDYbZmZm8MorryCVSmFubg6FQuGuGy5vGSWpZ5nw/9dD2NGg0kOmgdY0TfzdbDZRq9XuWQvyXgGnTeh/8g6dTid8Ph98Ph/MZjMajQZqtRrK5bLwJNvtNhqNBiqVipikdrsdXq8XbrcbDocDxWIRzWYTzWZTjeebAKJOrVYrfD4fwuEwQqEQ/H4/vF4vyuUystksarUacrkcMpkMqtUqUqkUSqUSDAYDfD4fGo0GDAYDbDYbWq0WHA4HWq0WAoEAvF4v8vk8arWaWt3nLkFPTmuaBovFAovFAo/HA5fLBYfDAZPppopptVqo1+uoVCqoVqsoFotijC0WCwwGA9xuN6rVqjim2WwWdG2j0UA2m4XNZhNMg6ycNwpvCSVpNBqFZ0BKjB6S2WwG0KlE9RSqwaCfg0QcOQ0WCdxWqwWXywWPxwOTyQSn0wmbzYZkMokLFy4gn88vO9ZqNIHC2kDjp2maoE7sdjvGxsYQCoWwa9cu9Pb2wuVy4eTJkzh58iRyuRyuX78u4hfNZhOlUgnHjh3D4uIi3G439u7di76+PgBALpdDOp3G7Owsbty4gWazKc65ETFKheUIh8PYtWsXvF4vHn74YbztbW+DyWRCu93G9PQ0rl69ihdffBGZTAaFQgGFQgHNZhOVSgW1Wg0OhwNer1coWhKYR48excjICHbu3Imf/dmfRSqVwunTp3Hs2LF1XXJPYTlI7rZaLRGPtFqtsFgsmJiYwP79+2E2m+F2u5HL5ZBMJnH9+nWUSiWUSiVhuFYqFdTrdXEMTdNw/fp12O122Gw29Pb2wuPxwOFwYPfu3TCZTLh27Rp8Ph8KhQJmZmaQTCZ1Zcl64y2hJA0GAxwOB2w2G4ClAaAHRgPDPT9gKQFA73h0HFK4JpNJJAPQZAyFQujp6YHFYkE4HIbT6cTU1BSmpqaWKUmuoJWAvXPQGNHztFqtGBkZwcjICIaGhhAMBmEymXDjxg388z//M6rVqjB4yNsHgPPnz+PChQvo6enBtm3bEAwGoWkayuUycrkc6vU6pqen0W63xfsD3LuxpnsJPp8Pe/fuRTgcxv33348HHngAlUoFFy5cQCwWw9mzZ/Hss88iGo0C0B8TeX4PDAxg27Zt2LdvH4aGhhAIBFCpVFCpVHDy5EmlJDcQXPaSbDWZTLBarYISf+9734tGo4Hr168jkUhgZmZGGELy+HIWicNqtWJgYAA+nw/j4+M4cuQIQqEQbDYb2u02UqkUMpkMkskkAHTM643wLt80JWkwGAT1YrPZEAgE4HA4ACx5fxTM59aCwWDoeCgy9LIaDQYDrFYrTCYTKpUKstksGo0GfD4fAoEALBYLQqEQXC4XWq0WRkZG4HA4BAXEM7YU1gfyhDGZTPD5fIhEItA0DZOTk2g2m4jFYmg0Gl3HgMa4Wq1iYWEBV69eFZScxWIR9Gu1WhU0DaCMnY0CeQYGgwEejwc9PT1iSTwyXKanpzE9PY25ubkO40cP8hhVKhVMT0/j3LlzsNvtCAQCsNvt8Pl86OnpQbFYRD6fV9TrBoPmj9vtxuDgoMhWpWzkaDSKeDyOVCol2B/ajx9DD61WC5VKBYVCAalUClNTU8jlciiVSvD7/TAajfD5fHC73Wg2mx3yYSPm9ZumJK1WKx566CH89E//NJxOJ3p6euB0OgEsWSmcdybFaDQaYTKZhHtN33OvkYP28Xg8sNvtKBaLiMfjqNVq4lhmsxnBYBButxvz8/MIBAJIJBI4fvw4Xn75ZVSr1Y4Hr7yRO0O73e4QjBSHHB8fx9GjR3H27Fl89atfRTweRzweF4tyr5RRl8/n8fzzz+P48ePYtWsX3v/+9yMYDKJQKCAWi6FQKGBxcRHZbFYcy2AwbBhFs1UgzwWj0Qi32w2LxYKRkRE8+OCDiEQiMBqNmJmZwezsLJ577jlBoVPJjnzMbrR4NpvFP/3TP+HFF1/EwYMH8fGPf1xkyf70T/+0oF6np6c3/ua3CPic48rIYDBg27Zt+OAHPwifz4disYizZ88ik8ng9ddfx/z8PEqlEsrlMgAI44kgjy2f3+l0GplMBplMBgsLC3A4HLjvvvsEG5HL5dBqtVAoFLCwsCCoW5lFXA9suJLsptmNRiP6+vpw4MABuFwuEYOiiUHeAdEn9AApGQBAhwVByRl6lgp5KU6nUwjLSqUihLXRaBSepMlkQiqVgs/nw/T0tKB0u1FBSsDeHuTkKZPJBL/fj56eHpw9exZXrlzB7Oxsxz4rJW/V63VRV+X1emG32xEMBhEIBODxeAAAyWRSvCOKPt8YUAKH3W6Hx+NBb28venp6kEwmBUV27do1nD9/fsVj0G95bGq1GqampgAAHo8HzWYTNpsNfr8f/f39sFqtuHLlyobd31aG7CgQWzA6OopAIIBLly6JWOH8/DxmZmY69udKTE9B0u92u41KpSI8ylwuB4vFgh07diAQCKBWq8Hv98Pn86HVasFgMOjOa73z3A42VEnKQVUAiEQiGBsbg8/nE7Vw9XodJ06cQLFYFA/SaDSit7dX0G90s+VyGfl8Hq1WS9TdyLEmKmq1Wq0wm80iDlIqlZBKpTA5OYlSqQSHwyEysOTiVofDgR07duBd73oX8vk8Ll++jPn5eXEOJVzvHAaDAX19fQiHw+jr60O73UY8Hkcul9ONLXR73vKESCQSePnllxEKhZDL5TA8PCySCBKJRIeHosZwfWG1WkVMeXBwEE6nE0ajEYuLizh//jzm5uaQyWRWPMZaxySXy+Hq1auoVquoVCoYHh6Gw+GAy+VahztRAKDrndlsNgwODsLlcmFwcBDtdhulUgkLCwu4cuWKoLvNZrOQxTJ7BHRXlPQ3OSgkk+fm5nDixAkYjUbYbDbs3bsXs7OzWFhYQLFY7DjHes7rDVOSvKyCK5Xh4WF84AMfQCQSwejoKLxeL+bn5/Ev//IvOHfuHMxmMywWC2w2G975znfi4YcfhsFgEF5jNBrF5cuXUalUMDY2hpGREUGZmkwmkb1KD8lsNqNYLOInP/kJLl68iGg0ijfeeAP5fB59fX3o7++H2WyG0WgU3u2RI0fg9/tx+PBhHDx4EKlUCv/wD/8glCSghOt6wGg0YnR0FPfffz/sdjva7TZmZmaQSCQExcrRzZuXJ/Hs7Cy+/vWvw2az4fDhw3jwwQdRLBYxOTkp9lNx5vWBPCaUjTg2NoZdu3bB4/HAbDbj+vXr+Jd/+RdkMhkkEgmxvZ7Fv9a5RbTe7OwsduzYgd27dyOZTOJHP/qR7vYqTHLrkOV4u92Gy+XCgQMHsG3bNvj9frRaLeTzeUxNTeHEiRNoNBqCUeAldXJHnpXOSbWTrVYLjUYDjUYDV65cQblchs/nwwMPPICJiQmcO3cOp0+fFiyR7O3qhWduFRuiJFdKqqEkHb/fD5PJhFqthlKphGQyiXg8LhSe0+kUxeCapqHRaKBer6NYLCKVSqFSqcDn88Hv98NqtQqPkmKZ3IIh6pZ3bSgUCshms7Db7cJiMRgMMJvNyOfzsFqtsNvtcLvdaLfbIhGE4qBqot05KIPZ6/XCYrGgVquJ0o47UWL1eh3ZbBalUgnVahVWqxWNRgM2m013DJXwXD8YjUY4nU54vV6RiNdsNlEsFpFOp5HNZtctA7VWqyGbzQo5YrPZYLfbhdGr570o3D54lYHT6RQGULlcRqPRELWPrVYLFotFlN2tFyqVCjKZjMgloLpMSvDkOSrriXVXkpxilWse6eH6/X64XC5MT0/j9ddfRywWw+TkJOLxuKBanU4n2u02wuEw6vU6FhYWEI/HcfXqVbzyyivI5/OYnJzE+fPnEQgE8OCDD2Lbtm3LLB8qRB4cHBT0ntvtFplTsVhMCMx2u41YLIZ4PA6n04mDBw/i6NGjYr+9e/cin89jfn5eBKMVbh+apsHlciESiXSUBtzK8+WCkL975InW63VRoDwwMCAU6NzcnDDCNiLYv1VhsVjQ39+PHTt2wOPxIJlMol6vY3Z2FjMzMyiXyx2Zp7fyvGVjJpfL4fz58yKnwWQywWazIRgMoq+vT2SyU1KHMoZuDbzcg/82GAyw2+1wuVxIJpM4c+YMSqUSbty40UGtkrNyq+CODnmVmqahUqkgHo+jUqlgamoKVqsVmUwGfX19sNvtSCaTWFxcFHkm3Gm6kzHfEE+SB2cpsEqZpOSdORwOLCws4MSJE0in05iZmUEqlRLHcLvdACAyFPP5PObm5nD9+nWcOXNG7BMMBsWkHBkZWTYZqIicsmep1VmxWMTx48dx6dIlVCqVjiSgy5cvi3ZJhw4dgtFoRCQSwfbt2xGPx5FMJpWSXAdomgaHwyGyiScnJ3Hu3DnRlWOtkJOAeKuser0uhGQkEoHZbMbi4iISicQyJamaDNw5zGYzIpEIhoeH0Wg0RKOAxcVFRKNRUd96q9BTcoVCAdeuXYPFYsHRo0dFrMrn8yEUCqFQKKBYLC7zXFU+werQK6Xj84xqI2/cuIHTp0+LxuSk2LhivZ1nTftTGMxgMKBWq6FYLKJWq2Fubg52ux21Wg09PT3w+/0ip4HrnPXwLjfEk5RBlgdRmMQ3u1wuhMNh2Gw2FItF+P1+sQ/VQJE1QHRptVrtsFDoYVBGHTVGbjabyGQymJqaQr1eRyaTEW2QvF4vXC6XyKbltKzL5UJ/fz8cDodIPGi326KHaKlUWncaYavB7XYjEokIL9JutwsatFqtotForJsQKxaLWFxcFJ1eXC4Xstmsbiq6EpxrgyxAAYj6ZYvFAqvVCqvVKqhzEmxyvGg9njfNXwrHUEIflZ1Qo4LV7kWN/XLwZ0NsIMnaZrMpWAHqkEQKkvZZD6OTjsFldKPRQD6fF7FtuibyONfz/MBdiklarVb09/fD5/Oht7cXdrtddGgYHBwUscZ6vS4eiNlsxuHDh2E0GoXCi8ViyGazwjukWKTX6xWrRQA3rZBarYaXX34ZTz/9NIrFogj+Hj58GP/6X/9r9PT04MaNG+Kh08Pcvn07nnzySWzfvl00G6jVaigUCqID0Pnz55FOp5fFPFYqUVBYwq5du/ALv/ALCIfDCIfDCAQCKJfLaDabosv/rdI0XOjS71arhampKRQKBXg8Hhw4cABDQ0Oo1WqijEjFrVaGrBD1PG+ai9Q2jnIFSqUS5ubmRIcUXkspe/xrRTehV6/Xkc/nYTAYMDIyAqvVisnJSczOzoqm2DwGLZcKrHTsrYZuITMaW6/Xi0KhgLm5OSGT8/k82u12x7JZPIx1u2i324IJonlaq9Vw/fp1RKNRBINB7N69W3Rs4xTxeinKu+ISmUwmuFwu+Hw+uFwuUesYCATg8/k6tuUUbW9vLwwGg8iQKpVKwiIlrtpms4kfnvpdLpeRTCZx/PjxjlUC+vv74ff7MTQ0BK/XK85J8Pv9OHLkCPbv3496vS4aJ/v9fsGJU3yVT3C9Saegj1AohEOHDomyj3a7LTzJ9Wwr1m63kc1mRUbc3r174Xa7Ybfbdeu1lJBcGXo1yARa1oo8SWohls/nkcvlOhpy6GUdrobVxoZkhNlshtfrhaZpyOVyK7I+aq52B1eS9D85JdRknBJ1qtWqaM7CGZr1MD71jFhymrLZrDC4bDZbx1ivZ+jkrihJHujlN0MtpIClbgxkjVLGGsWOent7RSs5o9Eo6qKGh4dht9tx5swZTE1Nwev1YmBgAJqmoVgsIhwOixZzVE8Vi8VECyW6PqKANU1DoVBAOp0WSpIsGfJa6YeyZbm1pQTt6qDYkdVqxdzcHObn5zE3N6fbVH6tkJUdp12oLCibzSKRSCCXy6HdbnctbFZYDi4sZY+dYsvBYBA+nw8Wi0XMv5mZGcRisQ5Pkmi59XzuNAeNRqNoJrG4uCgYA3lbNVfXBm78U3iExrdWq+mGRu7Gc+WsBGXa8gqEe6rjDrDUqoqyWklJplIpzM7OCkuAGgj09/fDYrEgn88jHo+j3W5j+/btGBsbQyKRwM6dO1Gv1zE8PIyhoSEsLi7if//v/41jx46JBgBerxfZbBbbtm1DoVDA1NSUWKLl+vXrqFargtM2mUxwOByivyt1jCDhSvcQCAQQDAYRiURQLpdFKQp5lGrSrQ6KbbhcLtjtdtEAOZlMiobFtws55gUs0T7lchnxeFxk5BGlT70fFZawEgWpZ6HTklYDAwPo6ekRtFcmk8GZM2ewsLCAxcXFDiV5O+dfbX5RViMJ8ng8LhZtlqHm6sqQPUmDwQC/34/h4WEAN8sxKEeEG00bEd/Xm9d0LrquUCgEr9crGAzKbeD73O513RUlSd0TiKYkC75arSKbzULTNFSrVZhMJng8HmHpUacF7k43Gg2EQiHU63X4/X54PB6xGv3s7CycTicSiYSYiH6/HxaLRWSkkmVJCT60Kjp5uQ6HA/V6HaVSSXiSZClTcJhoJZXAs3ZQcTEF2YGbQo1qZDOZzG1nPnJwL5L+58kd1OqwG+WnPAx96D0r7knSQthk7JIHX6lUxFzix5Kf81qe+UrCjryHZrPZsXwTL0pX43prkOcIhbfI6NRbeGAj50+3Mh6Kk/Of9aTS113Kk0CS+Wx6WYl2NRgMmJycxPe+9z2hsAwGA+677z4EAgGRMEMUKAk5i8WCvr4+MRmoCTaVDFBaeDKZxM6dO/FTP/VTqFarOH/+PBYWFrB9+3ZMTEwgGAyi0WjA4/Gg1Wqht7cXXq8XrVYL2WxWrGxPi/xu374dPT09AG5mZwaDQZTL5WWxSQV9eDweHD58GL29vdi1axfy+TzK5TKuX7+OS5cuoVgsolAorNv55MnEaddWqyWW+AGg20B9KwpU+d65wKEWj/QceScUg8GAYDCI0dFRUa9Icap6vd4hTGntWF783W63UavVhJGk9+ypUQD3Evj+VCJGC3XbbDaYzWaEw2Hk83nk83lks1lhRNEPr5HdqvNYLzmLxxfpWVmtVrjdbtEaNJPJdLSQpOfJDVNZWa11XunNQ6pkAJb6dtfrdSQSCWiahlKpJNih9TC4CRviCsmUDPckLRYLHA4H2u22oNq4ldlut/HAAw+I+hieLUVdFihBhyg6oj2Bm3HO6elpZDIZPPTQQ/jABz6AVquFsbExzM7Ooq+vD/v27RO1mgMDAzCZTNi2bRvC4TCuXLmCZ599VsTIMpkMHA4HPB6PqMUhDpxnUymsDLfbjcOHD2Pv3r2w2+0oFAqoVquYnp7GtWvXlpUIrBe4sUZlAmSUUSq7bP1uRW+y23vMcwUcDgeazaYow6KmDZqmwefzifUdjUZjh4Kkki2ixxwOhyjXovEgRdnt2khAkxCnMAcdl0p9arWaiI1SciAZX/l8vmPxbcpFoPvYikpSNgz5syFGgLYj2U0dlJLJpMhGl4/FDRH5+KvNLTlBjMcfqZSL10FTL2BiCsmBIsjs0q3irvGFpCjph26cL4cFQGS26rnMZJ3Q9uSZUpNyomipHnJ+fh4XL15Eu32zn2csFkO7fbNWzul0IhqNYm5uDjabDaFQCKFQSFgh1WpV/JA3a7VahcWSz+dFqzODwdCxVqHCclDyFgm6YrEomgZsVJu/bmUhdrsdAwMDqNVqiMViovyEsNUUJKAvSKg7lsVigcfjEeutck+yVquJLjter1c0NCdjcmRkBE6nUzAFJpNJxI7oGLRuKPXsJU+R1om0WCyiHIveHXpvarUaDAYDBgYGRP0z0axOpxODg4NiFaBAINARgyZaVtM0xONxzM3Nbbk53C08wT1B3k/b6XSi0Wh0rPOrt+9KiXS3ck1ynFOPNqf/fT4fRkdHUS6XEY1GkUqlxPvEjaO1XgfhrmW38iJjmiBc24sL+n9deZxOp1Cg/IaoFASAaEZAGW2UERuNRmE0GvG1r30NL730kqi1bLfboiMHJegkk0kEg0F88pOfhMvlEjVdFOekRZdtNhvC4TDm5+cxOTmJK1euwGKxoLe3F81mE4lEQqxVuFWx0gtI1Nfg4CAWFxdx9epVZLNZ0Zj4boAEcm9vLyYmJuByufCDH/wAzz33HMrl8rqmjd+LkO9927ZteOSRR8Ri2MFgUBiLcgyIEt9ontfrdezYsQOf/vSnl8Ujea9kyjN47bXXcOzYMRQKBczMzCCTyWDHjh145zvfiVAo1FEHXalUhFFKDQQcDgecTifMZjN8Ph+sViuGh4fxkY98RIRiyANJpVIoFouwWq1CFnzzm9/E3//9399RhvW9AL05KscVqc6cckHcbjdcLhcGBgawbds2JJNJwaRR1yraj8aaz6XbTZyRvU7u7cvMj8lkwsTEBHbs2IFKpYIXX3wRFy5cQDabxdTUlCgDvJ0WlHfNk+St6Uwmk/AYZZDlQvEP/lDIkiBahizETCYDi8XSUVPZbt+skbt48aLIrqX6OEreyeVySKfT6Ovrw8LCglgglLpI0A91CXI4HDAajchkMlhcXBSrrrdaLd3FY7cq9CgVSn5yu93CoEgmk8tWkF8vqrMbvUIdWXbv3o1wOCzeD4VOEIU6Pj6OUCiE/v5+hMNhkaBDCxFQXDeXy3UIolarBb/fj76+PpGsZbFYREyz3W6L/ev1urD+Kc5VqVTQ09ODgwcPYmBgAP39/ejv7xdJfuTNUoyZsi15gpjP50M4HBZ0MVG8CwsLyGQysNvtCIfDMJlMuHTpkm65yGbCrVCOnEIlqp1K4KiZPD1nPa+P43bn81oyqwnUX/vw4cOoVCqYnZ1FMpkU+oTuhdPBa8WGJO7If3OqtVKpIBqNotlsolKpwGq1wuv1Yt++fQiHw9i+fTsymQzq9brw9FwuF3bs2CEaYQMQ60VSq7ve3l6MjIyIlejr9bqYmJQsQJSBx+MR3m27fXOFD1oPbWFhAXNzc1hYWEA4HMbOnTvhdrthMpkwPz+PRCIhsiODwSD27t0LTdPgdDrhdDrX+3HeU5BjDlRb5XQ6EQqFANz0AlKpFKanp0VWK99+pSxK2qbbd3qfc1qfPH2v14tkMikE/vj4OHK5HOLx+JZnAzgouYmykUm5tdttEavkYQ45f4CMTLL0KRucrHiKCxNTMzo6ikKhAKfTiXw+j9HRUbjdbiE3KEGDvEfuSdJ1kVC0Wq2iTrNarSIYDCIcDgOAKFuo1+vI5XIihLLZOy+tFJuTk5moEqGnpwdjY2OCZr1w4UJHwg4xCwA62oXKypOfg38m/03g60LKc5kngtK7kcvlkEqlsLCwgGazCbvdLpqV8O5a/Fhvqiep50WQ5VkoFHDlyhXRRsrhcGB4eBif/vSncfToUSwsLODSpUvI5/O4cOECrly5gsHBQTz55JPo7e0VheD0IKhB9vj4OPL5PGZnZ5HL5TpiGtyS9Xg8GBwchNVqxcLCgugGlMlkcPXqVVy6dAkXLlzA4uIidu/ejY985COwWq2Ix+O4ePEibty4ISb+8PAw3vnOd8JkMuHMmTOYnJzc0nQdsDwbLRwOo7+/X7ywtALHqVOnEI/HRVNkoHOi6h1Pb4J3KyWQF19tNBqIRqNiObaZmRm0Wi243W489NBDyGazePXVV5WSZKDQh91uh6ZpgqHhAobCJm63W8SbacGAarUqEjv0LHial2RkHj58WFB2zWYTVqtVNBahJDp+fh6OoRANNapwuVxIJBI4duwY4vE4duzYgT179giGCoDoB91oNETm62aHnmzmypEUpMfjgcViwY4dO/DQQw/BZrNhdnYWP/rRj1CtVpFOp4WSJAeEcgzIASGjiSs3vcUE9GKYxBTwOCT9Ju+Wyo0oIWtmZkYsweh0OrFnzx6YTCa8/vrr4ri3E3O+a3WSpCipPydlvxEV0tPTg23btqFYLIo1IxOJBBYXF2G329FoNESZCO1LLeMajQYcDgf8fj/y+bxoxEuJImQRm0wmuN1ukThQLpdFT1bgZnYU/6EiaSpMprZ4dC/kxVLGLQkJhc7G8y6XC1arFdVqVaTj53I58R6sBbdCj3SjfGhFEEphz+fz0DQNfr+/Q2CrMVwCT6AjYcYFGAkeXvbFP9dLaCN5wGluWkOW0G63xTukaZqgVmUFTTEwYoXo+ET5UlcvarLO74mXsWyFOkry/mWPjnuE5ExQzSvJS0pwoj7YwFLdpMvlEvKZEnpISfLxIiXcTUHy33xMeA9YYjFIpjgcDnFPVJdrNpvFtVAmtc1mA7BkVN9KouVd690aCoXQ19eHYrGI2dlZFIvFDqqNbiqTyeDEiROiS0cqlYLP50Mul0Mul8OFCxfwz//8z8hkMsJDIW/w4YcfxsWLF7G4uIhMJoNDhw7h0KFD4mFSrRc9WLJ8+NpnfKAo6Gu1WpHL5QQtNDw8LOiH1157DWazGfV6XSzvtdUgKxaaXFarFZFIRFCtL7/8MlqtFubm5pDJZETWGeF2Yxq3KtwSiQRefPFFeL1e7N69GwcPHkSxWMQbb7whVq9Yz5VI7lVQSKRWqwmhxJUjr6Pji2VTzJDKQ0jZyWn5ZGhSLgEtcEDPnn9PNCqfn7x8h+hdumZSmi6XC9VqVbQtoxIB6rhkt9vFvL6TMoG3OkwmE4aHh0U3IrfbDbPZjJmZGVy6dAkAcPToURw8eFAYEO12G4FAQHhs/f39olaV09s8GYZT7XKTcd5IBliZcuXULX1HSWH8OHwpLZ/PJ66VHKX+/n488sgjSKVSwgCoVCo4efIkrl69urZnd5vP/JZgMpkQCATEyhtEiWazWZHAw5XkqVOnMDMzIyx/4sDz+TwuXbqEr3/965ibm8Pg4CAGBwfR19eHj3zkI5iYmIDVasXly5eRTCbx4IMP4n3ve19HXWOj0RAp/06nEw6HA8ViEa+99hquXr3aMajZbBY3btwQAX+aTENDQ/D5fKhWqzhx4gSMRiPGxsZE9t1WAqfR6GW2Wq0IBAKw2+0IBoMIBAJIp9N49dVXBc25Uiq3HtZTYaVSKfzkJz+B2WxGKBTC2NgYKpUKgsEgLBaLyKLbCkpypYxkXg5FngbvgsUzVUk5kcdHngBtQ6vH03Gp5pmUU7lcFkk4ZOWTN0JxTzm2xLPWuZKk0i1Sks1mU9RFG41G0eiAaDlN0wSlvFlhMpkwNDSEvXv3wul0ivaBx44dE6shHT16FB/+8IdFA3HKIqZnSS1DuafIQ1oUJ6zX60ilUiJjnC9rSO+N3vvGn78sHzRNg9vtFgtiEINIKzTRnCWjmxyi3t5e4ekSJU/NYq5du7amOb6hSpIsSCr7IG9OTgHnQV76jFLDaUKQYKUHQwtwZjIZuN1usRCox+NBT0+PiD/ScamQnAtAsoR4HIMUJ9ENZH0Qms2mSBunchGikbslnmwmrLXOiLyxer3esebceq7ycbugmAvFNcgYI2t3K4zjWsANIL0fXs/Mt6U5zGORNKdpzpGS4/OeL5pN81JvPPg2MsXLk4NIXtDYcq+Dfuga+Pk2YwIPGQJer1cwX9zjo/snD4wnWvG6dHpuFPriz4/OQ8ei8ZaVZDestoIIXy+SqFxuRPF3iFgLku1UH+1wOFCr1YQSXctYb5iSpIAueRN9fX3o7+9HPp+H2+1Go9EQcTyiPwHA4XCgr68PrVYLsVhMxCFIOdKAtVotYe3QQAUCAezYsQOPP/64WMSZSjrkFauJbiWlGQqFhKW8fft24TH29fUJTttkMqFYLMLr9aJYLOLs2bO4fv26yLhb756BbzXIghDQrzcib52SZWiR1HK5vOJx75bnFg6H8Y53vEPUbcZiMRQKBVQqFSHctwpWeubkvVGMh4QmeXA8BsWVGS+l0IsTcpAwI+MZgDBiuwlhYEmg8v85tVur1VAul5HJZJBOp3UFI6fvaFF4q9XaIWc2C0wmE3p6erBr1y4RtkqlUpiamhL0NPfKCdRIANDPTm02myK2z8e4W5KXLB/5MbuVBRIoNEbb0g8pRxpLntTFy5QoCa3dbou1Md9UT5ImC2lvCgA7nc6OomNepgEsWfnUa5GgFzekBBtqkk4KeefOnYJSoReeAvfU15GsSnqA5OWGQiGxCDCtf0nlHRTbbLfbKJVKmJycFIXKW8mTlIWW/KLxhIpSqST64OqttrES/bJRcLlc2L59OwYHB2E0GlEoFERG9EY0SL5XwZWO3Dyaf8ffB/kzOelHBqdOueHVDfwa+Ll4X09eHkIN1kmpc5aKvBAe7qHr2GxKUtNulmOFQiE0Gg2k02nMzs4ilUqhXq8Lr08eI/Iu+XzgyVrkjdI55PGWk3JWu0aCnkGl152NtgXQUV9P1DslhnJGs1qtCgfuTVWSJpMJY2Nj2LlzJ4aHh0U2KVk0FETv7e1Fb28vzGYzstksHA4HJiYmMDIyglgshng8jt7eXgwPD8Pj8XQsmMsnK6WcE6VHdVvUtZ5S1SnbklKHaUmsbDYrCpJ37dolluaiOBWnfmgSUpYVWUjr2VT3rYpucUROV5HFSh44WeeRSASlUqmrMUGTrts5b7d1HClhYg1GRkYQDAbhcrlQqVRQKBREBiQlnWyFeCQHhT1kT4K3cZOzE/nYA0teIWGlxAz+mWxw8baVHN2YDJnqo+t0u91icfVgMKjrpdB9k4AlKnIzggwJan6SSqVQKpXE/fNGL+Rx03dAJ+ND7wH9T9/rKUke2tKb9/L48WPy7+W/5W0420FznYwgThPTD08EWwkbpiStVive/va340Mf+pAoxaDOOOPj42i1WuJiqa5mYWEBgUAAH/3oR9Fut1EoFFAoFERGqdfrhc/nEy8758apnKNYLIoYE7nXdK5arQa73Y5AIACDwYDr16/jxz/+MXK5HKanp5FIJDAxMYEnn3wSY2Nj4l5arZZYOw1Yim+azWb4/X7h8nejEzcL6EXXU2REd5jNZuzatQs/93M/B7/f3xEDlmk0flzeE5SDMwhy7RRhLROr1WqJVdT9fj9GRkbgcDgwNzeHRCKBdDotylLk4292aJrW0S6SqDIqtyLjjwsVuYm03JP5VjwIALoKrNu+5D3SOHHFSp4DtUGcmJhArVYTeQR0XNqWFCPFp8nT2GzgMcdWq4XFxUVMTU0JGUrGLGUFU5cxbnRwdJsfenFF/rwJa3kv9BTrStdBil6Og5KOIOqYEsZo7cnVsO5Kkh4q9VCktlTt9lKXf6pLpCQZSh+vVqtwuVyibo3iiVTfSBQtucqkZKnJuLziAH8ARK0QR00CgFZNn5ubQzwex9jYGLxeL3p7e4VnSfFQTjXRS0dxTE3TNh1Fowd6cQlkifOXkdp9BQIBYbAAnZY+F1g0XsQA8ONzWocSr4DOtlkrXR+Pd5CnSOUM1FWEziHTOVsFpCSpXzI9C66I+LaAflE6/e5Greqdd7Xvu52HwJWx7NHQ4t7NZlNk0crKmyfw8MSezQIuq+iHWC+KRfLwE9GcFHemfeXxpWckG6Z8fGRmQo4/doM8t2W5y8E9Wu4pc++x289a8w/WXUn6fD709PSIvolkmRQKhWWNjikGQEKSFF2xWOygcEj4apqGHTt24Jd/+ZeRTCbFoHq9XvT394tif5ow8XgcxWIRBoMBgUBA9JykovFsNosrV66IHq6lUgmZTAbRaBRer7cjXsZjrHSsdDqNSCQiOP3NaIHqgVve+/btw86dO5FOp3Hs2DEsLi521D9SVjN5ghQnoEkmF3LLk4gnhQBYttC1XlIH/5u+b7Vaok8opYJTCUi73UYymcTJkyfvenz0rQCbzYYHH3wQhw8fRiwWwwsvvCAWCeCp/Vxwylmnt+N9d3vO3ZSnXgKITMG2222xsDYv4+FMhmxIAUsrClGC3maB2+1GIBBAMBjE8PAwBgYGkE6nRS4GhaTovrnnyJUroN9Ygv4G9NtKcmpWlqfdxp+fp9v85uCygo5NlQl8P/4ek0f5pihJr9eLnTt3il6JFotFZJoR/82D5cBSkJa8MVKSlG3G44Hbt2/HL/3SL3Vkk9LEoAA9V5JTU1Ow2WzYu3evKKDlTZmvXr0qWt212zcXb11YWIDL5RILRNOLQ8o1GAyiVqshlUqJfrIUD90KAtZsNotErEceeQSPP/44rl69imvXruHGjRsd/TS5h8INJf7Cd6uZlKlZ+i1bmLLA1vubYpIUb6GauVAoJLKsecnQVhhHgtVqxYMPPoiPfvSjuHjxIq5cuSLa9/GQiGzNy/Ghbl4836YbZCGq9z0XypyVANAhC+TsVPqcywb5+iwWC5xOp8iI3SzweDwYGRlBKBTC0NAQ+vv7EY1GRZyRtx4kecy9TzlRinuQK1HqesqUYzW2YSXvUT4OV8L0m/QGsSLtdlsoSWIUeZemlbDuStJmsyEQCMDv94skG9Lc3AoFOjPhOA1QLBY7XmiLxYKenh5BnXD3H1huWdJglstlxGIxWK1WscxPo9FAKBQS/LXNZuvwPjk3z4UDj4kRt09xHG69bgXYbDYEg0F4PB4YjUaUSiWRTUbxIVp1gWfG6WWNcg9AtjDpfzkhhE8e/j6tpCjpN8WnOc3G4xTUOIIK27cC6BlTLA9Yss7lOmbaXo+SXI0+XQv0vLzVji0LZMps5e+FTKV3ew9XE8r3GkgJklEoKyfuLXJDQ55j/EfPyNDDaoxAt+/1zrlW8H3ovZXpXi437ronqWkaenp6cP/99yMSiYisVuqbSgkv1MGB6A2epjs1NYU33ngD2WwWV69exdTUFHw+Hx5++GGMjIzA7XaLJXt4vIsXKxP1OT09jR/84AcAgAsXLiAQCODgwYNiiatgMIjx8XEUCgWR1bht2zaMjo5idHS0I5U8lUohl8uJVUuoV2xPT4/Ijtzsa9ERhoaG8Oijj8LlcqFWq+GHP/yhWOYIuEnxjIyMiDaEtP6nnKYPLA+2y5Yd34dPFq44V6Nj+Hb0Q9QSxZXr9Tr6+vowMjKCYrGIaDS6bBmvzQwei6OyiVarJbxss9nckVjFlYqecpE9y25JVXrg+/Ft5TgYPzfFrZvNpujew/en3p0AlsWd6TgUitksMUlN08Q6kJTdm81mxYLxwFL/VTJoZQdG9iT1vH35b9mg0qNlu70PXIGtRTnKNL+ckMU9SR6X5UbBalh3T5IEZCQSgc/nE5YpZcZRBii1pSIhSYPUbDYxNzeHWCyGY8eO4eTJkwiHw/D5fGi1Wujp6YHb7Yam3VxXrlKpiGQRuTNOOp3G5cuXxTJJPp8PDodDrDvndDoRiUTgdDpF4lAgEBA/1CkGgGh/BCytXkD1n/RibAWhqmlL6ww6HA5cvHgR169fF+nkwBKbEAwGRVYp7csD7fSZXETOBa7cdeV2rEvukcr7ci/K4/GIpLFEInHHz+peAvcOKVENQEfrOEDfC5DHpJsAlfeTIQtRvXPwbeXz8gQvaqVHMBqNop1et/vnzNFmgcVigdfrhdfrhdFoFK3meLILUY8010jRyEwNx3p5kd3eo26Kkr9PxCDqyRQ5TMNZzLVSuYR1UZJWqxXhcBgOhwODg4Pwer1wuVwwGAxCkS0uLqJUKonsVYPBgHw+j2g0CrvdjqGhIcEjk1dIN9loNJDJZBCPx0VJB38QlBhE8YhisYhyuYxEIiEsDRLUlOZfLBbhcrmwc+dOoWgBYHh4GIVCAbOzs2JQarVaR69Zr9crBomul1LntwKI0qIej/Pz86J/opwdKHuIXPmtJgj5/kBnl5VbmaSyZyJ7QWT0hMNhjI6OIhqNivHfzLDZbHA6nfD5fKjVaohGo0gmk4Kd4VQ0efvAUkaoXBogewj0mR5W8zD19pOVpyxQeXhG3p8UoHxOAr0HfLvNAHJALBYLisUiFhYWkEgkliUZys+Vh8JWm2/dxkoPekpSVpgrKUg9erSbd8ubpNOzoDwXGucNo1vlF9zj8eDIkSNiZejBwUG4XC6xJNHi4iJefPFFzM7OYmJiAu9973ths9lw9epVnDt3DsFgEH6/H4FAQGRO8jZVtVpNNMY2mUw4cOCAsICAm+2KYrGYyFKdnp5GPp/H1atXxWoE6XQa2WwW0WgUsVhM0LaPPfYYDAaDKC4vFotYXFzEzMwMXC4XPB4P6vU65ufnEY1G4fP54HQ6RdMCu90uShO2wsKtwFLni2q1itnZWZw5c6ajDZRcA0mQg/7yS61XRK6nYLtBFtjy31yg8qbZ1GBifHwcTqcTV65cwaVLl5BKpW710dxT8Hq9GBoagtvtRrFYxLlz5zA5OYlisQhgKUGL6FauJHmsUhZ0a4k5reUzoDt9x8eSjzs3nGl/2o8UqZzAAywZBJxy3AwgT5LW16RkRnIa5LlIz1UvxEHbc8jfr5Up6MYKcUNY3m+12kweCpCXc6PES7fbLVjMtTIGd+RJ0gtrsVjg9/sFxUoJAMViEZVKBcViEbFYDPPz8xgdHRU3Vi6XEY/HBVVJsQISXNyqo446chkJXUO5XBZKMhaLiQ4qfNJQ8g0dx2KxIBgMwmw2i7KVaDSK69evI5PJiI4NvJsPrYpA6cO8y8Nm9yRlq53iPxSLJepcFlzdMgq7eR7dMs5Wi2vxSaQ32fi1yJaz0Xhz4eBgMIjFxcVNJSi7gZSgy+USq+3weBXNHZkduB3Km+8r/7+WDEO9fbp5IbKRpvfe6L13vI5ws4CUv8lkQqFQEPO1Wz2wnocnK6FbhZ7hpPeMu81Zfm7ZaJLnKafe9Y4vlxSuZZ6vWUnqXThZk16vF2NjYxgfH8fAwIBYd+7ixYs4e/asaKSbSqWQTCaRSqVQLBZx8eJFvPbaawgGg/B6vVhcXESz2cSuXbswPDyMaDSKqakpuN1u7Nu3D9u2bcPAwAA0TevIPiyXy7hw4QIuX76MXC6HaDQq6ITdu3eLxgYOhwO7du2C0+lctuoDTZBUKoUXXngBMzMz6O/vx9DQkAgCh0IhEa9Kp9PCG7VarWg0GqKJ+mYEPUNq5kDt5eg5m0wm+Hw+0V1J7+Xt1m6MIH+n53GuhZKTf/OJI8eyKIbVbrcFm5BOpzsSPTYjNO1mUsfQ0BDsdjsqlQouX76MeDwuYuvkMfLVF1bzErt9fyt03Vo8Tfl6KEFjtf27vX8mk0ms/iNnU9/LoHInq9WKxcVFRKNRJBKJjsSmbvR5t7jv7YDOQ6EyPSW8FuNE3od/xt9Teh/kmkv+XNa94w5/yejhURmEz+fD9u3bsXfvXni9XrGw5YULF/Ctb31LxAnr9TqSySQSiQQsFgsuXryIl19+GcFgEG63G9FoFDt27MCDDz4Ik8mEy5cv4+zZs/D5fNi/fz/Gx8dFEkG1WhUWbrlcxrlz5/DKK6+gUqkgn8+j3W5j9+7dYv00qhUiQS63LSIlmU6n8cILL+DcuXNC8Xu9Xhw8eBC9vb0olUqIx+Oo1WrYuXMnIpGIWKcyGo3eslV8r4C8bo/HIxKdeCNzk8kEv98Pj8cDj8ejqyRlWkwP3eIQq1Gp8jH4ZCJLligYTsPQPRDlbrPZEI1GRS3tZobH48Hw8DAsFguuXbsmFsOm5DpN6+yHuVYD53a8wzsBjSMpyW6CcSWYzWY4nU4Ui8WOBMB7HXRfVqtV5FqkUilh3NK85JmsnKruRosS5Hks5w/wz+hc3ZTjatQuh9618MYHZARQ3oicz7BhSlKeCE6nE16vF36/H06nUyxcSoX9+XweuVxOBFBli4RKQqhFUrlcFt1riEuPRCLweDxwu90dacr0Q1QCLfpKpRz8OomL9vl8sFgsyGazHT06aeFQAEKYUoZcpVKB1WpFu93uKDOh+6HEBofDIZqdb0YYDAZRF6ppmmjcwD1y8jIpftVt4eJuGYR6yo+O3e37bkJQz5PkdDGvreVLBMme62aGnFVOdBz3yHhI43afza3Ql2vxItf6vd470k3gc2p5s9Ct3MOiDE+SkSSneCyWe2J6xwG6G7crfc/pWtl4lY/fzeNfS4YtzW09Rkqma6n0ZUPrJK1WK/bv348DBw5gcHAQ27Ztg9/vF/WNtPLz9PS0aAZAdAZXdABE79ZcLodyuSy6ouzdu1cM4sDAgChep96rTqcTbrdbBKFpfUjyPLh12dvbi507d2JmZgY//OEPkUqlRD1YKBTCL/3SL6G3txdGoxFOpxMulwvAzWxYevC0oggpZZvNJpIadu3ahQceeGDTCliim0OhEJrNJq5fv45qtSqSW6xWK/r6+tDX1yd6tpLRQy8mt/RkyIJLbzLxz/XALWAu0Dn7wRUlAGGgEfVKMRtKJNKr3dwscDgciEQiMBgMKBaLuH79ungewFJ5gNlsRq1WW1YneauUK+F2lJ7eGMrjSWPKPYeVsiH5eUiuUL32ZgF1EjKbzSiXy1hYWOjofGWz2dDT04NAIACn07nimK01G7QbVqttvlVjSt5XTtoiZ4m2pXs2GAzw+/3o7+9fX09ShtFoxODgIA4ePIhwOIxQKASn04lUKoVYLIZEIoFYLIZkMgmXy4W+vj44nU7RPIBbbO12u8OTpBsZHBwU3il1buHlIU6nEx6PR5SbUL9GOian6sgrnZubw6VLl3Djxg3kcjnkcjn09/fjPe95jzgvNVIHbsY7iX6hFns0CamXq9FoRG9vL8bGxjatQDUaby4L5vP5kEwmEY/HUSqVUCqVhELxeDwIBoNwOByi1o4vOyXHPDj0PD5Zoa0FNO7yeyCfi2faEjVDbAFfrf1uU4d3CzSnPB4PgJvGQiKR0G0uzRPfZKOBC6q1PKc78dK6JX/Rb37NZNh2Gz9ZUXKDYDMlbRHDYzTeXIiaFj8nBWKz2cTqSjzEsBYD53YSruS/uynJleh7WVbQb3pX6R2VFTp/f4g9XFclSQfjCoo6zrjdbtTrdbE+45kzZ5BIJERBNnmKJpMJiUQCMzMzMBqNaDQaooXd4OCgSCJYXFwUNC3v0KJpGlKplJjM27dvF91SyGKq1WrCs6Q6zGq1iuPHjyORSODatWvi+NQQneo4b9y4gYWFBbFAM9XOud1u0Qxd0272BaSWe8Tv12q1Tb2qPcVuiZojr58UjMFgEM3MrVareLF5zI/oHDk2oaccuaBaybLnL7le42sZMp3DDTCHwyGEBr2X5XIZxWJx0ylKMh74qiorUeMreY16tJce7pTGlN8PfjwK3/Br1VOq3bzcbpm89zrk8ZONRqvVCr/fD7/fL5LV1kqrr4cByd+f1Yyabp/x++Odl0gWk1ygEFqj0YDJZILT6VxfJUkntNvtQoiMjY1h3759ogQjn8/j+PHjePrpp5FIJJDL5USRfTweRz6fF/FGs9mMSqWCHTt2IBKJ4OjRo9i+fTsKhQLeeOMNtNttDA0Noa+vDwBELeLVq1fxve99D4VCAU888YQQZNQ9p1AoiFKNxcVFZDIZmEwmnD59GjabDZVKBel0WjThbjabsFgsOHv2LJxOJ86fP49YLIZisQiPx4O9e/fCZDJhdnYW58+fx8DAAB555BFEIhFomoZr166JMpfNFPCXYTAYxOoZjUZDGBM8ccfj8YiG4WTJU3xapsP0mmbz/+U6rW4xMf4ZjzVyuo22oe95/JHuy2QyIRQKwePxIJFIYGRkBNVqFYuLi4LG32ygGJWm6S/zJo/PagbISlhPBanXsIJ3CaJkDdpW9lZIEMteyGb0JDkVTSEFbii43W6Mjo4iHA7D4/F0nWP8t3z821GUeuxOt3PonbObwUQynRYL56xSqVRCoVAQobJQKLSma71lupUCnpSo4vF4UK1WRSebZDKJubk5JJNJsU+r1RLB4nw+j0QiIcpEaDUJn88nWsGl02nUajUEAoGOY7RaLZGhlc/nkUwmRZslWjuOCkVJEFKpAu+rKsciNO1mIko6nRYJPeQZUULPzMwMotEoXC6XOFexWEQ2m0W1Wt30y2TxyUbKj7fhIyFDiVQE/pLytOzVzsV/82PpeS63A1m5Uuyb3m1a63QzGz40Nrci6PSevaxw7gS3uj8X4Dy7lX7LcbBu96nnnW4mdLsvyn6luGU3L1LOeO32/VrPKx/rTjzSbjStXm4CKVCiodc9JqlpGnp7e3H48GGEQiH09/fDZDIhmUzi1VdfxezsLM6ePavb8oiWr8lkMlhYWBDrMvb394v6NIPBgGQyiePHj6NQKCCTySCVSsFut4tYV7lcRjqdRiqVwpkzZ+Dz+WA0GrF3716Mj48jl8thbm5OKE/q10jrpZEXw+lAh8OBAwcOYHh4GH6/H5p2c63JkZERjI2NoVwu49SpU5ibm0M4HIbT6UQoFEIikcC5c+eQz+dx7do1LCwsbDpabq0gGproVt6NhWJaRIPzha/1qDwurHhsQU7jpmPJK87TZOBxNJ7dxq+Zn4//T0kcfBWTzQZqkkF/y5C9EP7s9JoL8P/1jqWHW3m23RKx5G0o+Y/akJEBRDE3OduRYtGbcT1JykCnOSAbAlarVZRtUUNwPt+6FevrKbe1jOVq+6+kNPXCMt2OQQlYXBZQPgw31Ndyzbf8NvT39+Phhx9GOBwWhfa5XA4vvPACTp06hUwms6zRN3mSmqYhk8nAaDSKPq+7d+8WJR4GgwGJRAI/+clPEI/HEY/HEYvFEAgEMDExgcHBQRSLRSQSCSwuLuLkyZPI5/MYGBjAJz7xCdx3330dSpJWoKDEHUp3p4JhallnMBjgdrths9kwNjaG7du3i1W7rVYr4vE46vU6ZmdnMTIyApfLhXA4jNdffx2nTp1CIpHA1atXMT8/f6uPc9OAmoST90UTjKgxWkybvH5SkjLkyUGWn6Zp/397Xx4jV3aV/9W+r723u+22PbZ7Zuyxw2QmTBJCQiYhQICJQCx/ILZIQIgUJAIEIRBCgIAgEPohiNgliEgIy2QQCMgMiQRkyCTx2DOesT3et95q3/eq3x/Nd/u826+q2+62Pa66n9Tq7qpX77269917zvnOtomiBYBwOKyi8iSVKnMi9VQUGTjG33oOJ+uaDruQZLF/uzZvUkhKkLbeKvJ4K8F4uwJS0ua6b5HPBPvRsioW55BuHgCKipOQLaWkEv2gg3sv4yWk0gOsByNGo1HEYjEVb0AF5E4s637sD9+zE3B6HiXv2+7cdn5I/VmgC4XN3vmdZI9JSbtvhdu2JKXmAQCVSsXSKqper29pruuJ/DLvkZPaaDSUNelyudR16B+iP6VUKilKNRAIoNlsKjOai4H9H2UelK6FUuMCoNJUOGmsxhGJRNSiY95RrVZDrVZTwTvDCjsrTYdsQ8PPcPwAKB+BjCy1u478LX0o+nW5uZMtkMfRcS81Y3kN3XLUA4nIOAxTOoAOSbf2g75Odio47hYdKxkLpmjpHWS2Os+g6OsHFVQYAShFU/fT6r5nHf3mXwqpQZ+3+4ydkNrq2nZC0i7Yh3uMfk9Szsgc762wbSHJzW9sbAyLi4uqjNzVq1dx8eJF3Lp1C9lsVpn2duADHA6HEQ6HLbSGtDpoFaysrKDZbKqWW5lMBlevXlXCqFarIZvNIhwOI5/Po1AoqN9MKanVauj1epZu4xwYWpJMX2B0YzKZhN/vt7TiOnbsGAKBAI4cOYJkMgmn04lms4l8Po98Pj/0PkkqLzJ8XIKpMwyCYaQhx5NKje5Mlw+ppMB0ipXBGUzz4XkYsabTgvLz+uLlvVIQ0tLg80irOBwOq0jdYUSr1UKlUtm2JdlPqdmOANoN4ajT7TptSJ9aJBLZVKKOKRC8Z/mdaFnoSt6Djl6vp2I8GJAUj8fhdruRy+XUMVQoqdBK60vOv9zX5Rzo1DvPK38DViFFYS3PqQt0eR35mn59/si8eCk8+UMGk7JhbW1t94UkacnZ2VmEw2ElIK9du4ZMJqP6LQ6C7u+RprIepVQoFFCpVFAqlTA5OYlut4t0Oq02SFqbbH1FerVarapekI1GQ1Ew3GBZ91UKSSbTjo2NYWxsDIFAQG3KTqcTCwsLiEaj2LNnj6L3SCFWKpWhjH6UoEDScx8lGLhDRkB2Ben1eqpxLwWb7ickjSYXmGQYGOHcbrcVY8FNTipZBDc+PmdSo6RQ1Hvp8X3ZLHxYhSQ7uZCm1GEnJAdZ//zMbqOfZSBh132GkfUUgvomL583/j8sApKgIsR1GQ6HlYuJGKRUSiEoFQpikPVpR4PqQlJ+nnEr+jPWT0jyt2SuJAOlC2z6pumLZ/bFVti2kNy7dy9cLpcKbGm1WlhdXcUbb7yxZRf3YDCoWvIkk0lMT08jEAioKjwsddbpdBAKhbB//34EAgEUi0VV/YRO+OnpaTz++ONoNpvK0T49Pa2sv1qtpjY8tkOh01a2eJJUnNvtRjKZtNCptFyYR8nWWOl0Gl/5ylfg8/lU0M6wpgjo6EdfAlDCiIEP+sJjFSW5OHSBKB9wbto8nnPBueNcysIO4XBY1eXlYqMgBDYWFp8lbor65s/zUZEbVkif5FaBO4NoyO3SmXcqQPXNzu59vewlYedXk8qVpPMlkzUs4BxzD2TaA5/rVquFcrmsIrrpl5TCUndF6D92sKNB9WdJKihSAOvzvZWQ5LntLN1+zwyF5K5aku95z3vgcDhw6NAhOJ1OVKtVnDp1Cv/8z/+Mer2OYrHY97OTk5P43u/9XiwuLqpcO36pdrutHOrNZhNTU1N4+umnkc1m8dJLL+HkyZOqvmosFsP+/fvxzDPPqCLq1WoVkUgEhw4dQjweR7vdhs/nQ6fTsWyEkUhEFR5g3VFSKx6PRxUN4EPF3wxEou/z2rVr+Nu//Vvkcjnkcjmk02nbQIBhA+dqkLbHMoGMkgM2CgEwMIL+ANnFxc4PSSFJ1oFzzVZO/Dwt3GAwqBSwZrOpapDqXSx4T9SsmVMrr+92u1VqEhW4YUS9XlepWnZKLn1YgxoRb3dsdjqG8hkZtFHrr0krQz5v0mdNvyzzJIfJmiTdGgwGkUgkEI/HcevWLbzxxhuK/VteXkan01HNH8j20ICgQN1u1K+kOAFY9gIZiW5H8cv8aDvFx04JsoszGSTAO50Ocrkcbt68ubuWJJPnI5GI+oLZbBZLS0t9L8QbpSV55MgRy6DTUpQbp9frVZYmu0lQs/d6vUgmk3jooYcQDAaRz+eRy+UQCARUeTj9h58NBoOqQTK5cEm5McKWfkw6dknZcjPN5/N44403sLy8vN2hGxrYlSUjuACkD0+PbJNFBORC0s9HKx5YL5vFav26b4wbH4U2C81zfqWQ1O+VP6SO9XtlNOSw0q0UFBSOdvQUYO//2wp3a7wkZS7nSqfd+92LtDbsnr/b/Z4PArrdLur1utoD/X4/8vm8WoNsFl+pVJQFKQN7dEvSLoZAh/ysXLfyPHZlI+2E3CABKV+/nbnr9XqWymxbYdtCcnp6WgmsW7duKV9g3xO73Th48CDm5uawsLCAhYUFTE5OIpfL4fr166jX61haWlI9JBmyPzs7i8XFRbhcLtWBIxKJ4C1veQvm5+cRDocV9fnqq6/i9OnTCAaDeOKJJ7B3715FnSaTSRXIUywWcfnyZdRqNSSTSSwsLCAYDCrqtVgs4uTJk1hbW7OkJ7BRdLPZRCaTUQUMOLg6NbAd0/1Bx6AHleX6pGVNC5QblB29aXdeCjYuMLIBekAGfc9M75GQ1XYkGB0NQPmpKVR536Sfhjlwp1KpYHl5WVVLeuSRR1QRbLbL4tjoY2hHS0qKy47itKPNbmfN2G3UMjqXyvag+bKj+PW8wGGZ715vPWDx4sWLiEajOHr0KKanp1GpVFTOaCqVwle/+lVMTExgenoahw8ftowvx0evgCV92DKgSn4O2CxIeT6ydXL8qRDzXHbsxVZzI5UmSefyXmjsUN7sKt06Pz+vviSLgxcKhb4X8Xq9eOSRR/DOd74Tk5OTOHz4MGZmZlR3kFwuh3PnzuHSpUuoVqtIp9OoVCr47u/+bnzHd3wHpqenEQqFsGfPHvj9fhw8eBBjY2NoNBqK+vzqV7+Kz3/+8wiHwygWi1hcXMS+ffvw1FNPIRKJ4MKFC6pH3smTJ3Ht2jU88sgj2LNnDwKBgEopWVtbw7PPPosvf/nLSCQSOHToEEKhEDKZDFZXV9FsNpHNZlX1fCkk6X/rlxYxKmCwSzAYRKPRsCQw80GlsJQBErrWyt9y4+NxTHhmGpLT6VT9Sck0ELq1KReXnkdJC4Q0EwCEQiFFPw3LpqmjVCrh5s2b8Pv92L9/P2ZnZ5FOp1URbOn71QXfVtbmdoIvdNgJV/3zPE5XfvQNsZ+P1I614GvDJiQBIJPJ4PXXX0cikcAjjzyC+fl5lMtlJSSXlpZQLpeRSCRw4sSJvvvYoLkh7Kw5ub5lubhKpaJ8pRSS8XjcIiR1A2QrHyg/B1hTxzinZCu5P8muNoOwbSHJzYp5aTLVg5Qmf/t8PlWVhr0m6/W6EjTUThlqz+AYuTiB9TqxiUTCUsmFWgD9TgzsKRaLyOfzmJiYUJNDzYHnzufzKhKVVAMtEeZhsoEyQc2EEVH6QzQqglFSmyxw73K51APHY/r98H0JXQPV6TQ7a4Sv221o/Ra33cZotzj0DVPPJxs2cNPgOJIJiEQiaDabqt+e7K6jW4p243M7lmK/+d4NH6Z+H9vZ5IctT5J7HCP+GfjGNn9+v18FQOq+2H4BO71ez9KSqp9/eBD6HW83b1s9Q/q+wfUtqXUKSZ3e3Q62LSRJrfJCcuEEg0Hs27cPkUgE8/PzWFxcRDgcxsLCAmZnZ1Eul/H8888jm82qSiZTU1MYHx/HE088gaWlJTz77LOKGr148SIqlQoAYN++fSqQgoKPuZBM66jVarh58yYcjvW8vFKpBK/Xi2w2q+rIrqysIJVKIZPJoFgsIhqNYm1tDbdu3UIul4PD4cDY2Bimp6fx0EMPIR6PY2xsDIlEQlXwoECWD4tdvt8wot1uo1AoKGruqaeeQrPZVG3Hut2uCqyRigR9HwyWkcUjJOTDrVspTqdTReGVy2W10J1Op3pmvF6vqvAvf+wsDH2Ry/vkvcsCFMMKdu7hWna5XBgfH8c73/lOdDodHDlyBJVKRdGYcsyksiKh+7Ak7KzLfhbedj4rz6H7s+zOb7dB8jXON9OBhgWNRgP5fB6tVgsXLlxALBZDqVTCoUOHMDU1ZenkdOjQITUeNHpkGU89RY+wU5ikq0OfOyrZLPrC92XAnx3sFB0KP2DDNUA6VxZ34eeCwaD6f7sdX7YtJOmj4MVkrpzP58Ps7CzGx8dx/PhxvOtd70IkElHdPq5cuYKXX34ZZ8+exeHDh/HUU08hFothfHwcY2NjuHjxIr70pS+p67AG6szMDKanpy0TxJxHWp30K2YyGTidTszMzKgKOCy4zlqvFK7Mpczn86ptFgBEo1EkEglMT0+rXEmv14tSqYRr167Zaj/bMdeHAXzwSqUSpqamsG/fPnQ6HWQyGVy/fl0VG2D1Iz3xmyyDbJcFWK06XfuTr3GeyQRQ0DI3lhSq9C/aLWSgP62mC8lhTAmQoCIBQAWy+f1+LCwsIBAIYHp6WuWjci3LeelHsdoJrn7+H115sUM/JkJ/zgZh0Pn5vlTihgWc406ng6WlJVy8eBEejwd79uzB3r17MT09rWI02HEJgBoHKST7UaD9oAdJARvBUwzG0wWpXLN27MIgRYvPGBlEPTBHCmU+O7vqkzx//jwAIJFIYGJiAh6PB/Pz8zh+/DhisRgOHDiARCKhok4ZMVWtVrG8vIyVlRVVsHx1dRWNRgOJRELVQX3sscfgcrnw6KOPYmxsDJFIRFVvkTk7wWAQExMTCAQCOHbsmMqL3LNnD+LxOBYWFlR+ZDwex4EDB1Q+zNzcHGZmZpDJZFTkajQahc/nw5EjRzA1NYXJyUns2bMHkUhEtUqSD5q0kobdepRot9uKTWCheafTiT179sDpdGLfvn2IxWKbIlBl7VUKH+mT3EoIyUUkfRqsssMgLlqbnCs9n7OfYAY2Nnzpo9wOPTcskCHx8XhcFfFnMJRdLdN+dFk/qtXOqtDP2Y8u7/ee/LydFQlYKzZxXvWyhZxrWbZy2NDrrTcYKBQKiEajmJ+fRywWQywWQzgcVilROjNG5dNO6bED50QqRfytW+i6kJTjrhe32I7iQsFHN55+Pdbl5eu7Hrjz2c9+Fg6HA29961vx3ve+F6FQCO9+97vxzne+UzXu9Pl8yOfzuHDhAiqVCk6dOoVz586pfCx2fHc6nUgmk9i7dy9mZmZUIn+hUFD5PGyKKc1jh2O9C8n4+Di63S6OHj2K7/3e71X+FIbtB4NBOBzrOZ0LCwuKCmw0Grhy5Qq++MUvIpfL4eGHH1bl5t71rnepmq10HjcaDZw9exaVSkX5Lvv5s4YdjUYDS0tLquRcJBJBNBrFO97xDmV5UGByI2L4uZ6DJ5P5fT6fiiDlAyzHmH9LPzQFo8PhUC3aGAxQrVYteZR2Vq3dBu9wOCwl80ZJAWq1Wrh06RKWlpawf/9+HDt2DJOTkyqegLVQqexIZseOLtU3R+kj6kfBAfbBNYPWmq5g2dGs0jXCH9LLZKaouPFZHCZLkuh0Oshms7hy5QoeeughHDt2DIcOHbL4pT0ez6bcxX773VZzyGNYXYfnZwQ6504/PwXYoAAi/X/pa+T7kUhk030xXob7+HZrbW9bSJJuXFhYUHQXNU4mirMQOfMXL126hDNnzlgGoVAoIJ1Oq5v0er3wer04cOCApREyAFVkXA681+tFOBxWPkQdzWYTlUoF3W5XacPy86RZ2dGDCfBzc3NK+NIa4UNDC8WudNeogHQrABWZFggEMDExgYcfftjia5RpAzK9h69xoVBzl9qdHaWiU68UaAAsFr78saNw7ISkrh3ruXSjgF6vpxoUsKJWIBBQiqessWlHgfU7J7CZcuPPdhXNQRuxfg5dGeJr8lmQ19etmO1UF3pQ0ettlPFst9uIx+OYmZlBtVpV5dmkJckxsLMIdYGk0+wSds+KHGM7N4i8Z0KuYQn9ueT7ds0J7MoW7qolSSwtLeG//uu/EAqFlKkuL5jJZFTX+lQqtekmarUaVlZWUCwW8YUvfAGrq6sq/L7X61ksSdbPpECl1kc6lV+WDwAFHKNQKSQBqKCOW7duAQBisRjK5TLOnz8Pt9uNr33taxb/TKfTwYULF/D666+r5soG6yiVSrh69Sry+TyOHDmiArLIJnS7G42vGSFJPwET/KmxU0mSEdISXDhutxuzs7OIxWIW65C+B6/Xi8nJSdV4W/rMt2NtABtlyfj8DKpTO6zweDyIx+MYHx+3tD2jJs5x0fMRZdEGKYi4pvQIeFkJB9i8+W13zPttyvpveU4qUkyw57NE1mMYlWGuGVLnrJ9Mq5oKrT6eOgUthZFu+Uu2gWuJ1+x2u7h8+TKuXLliUaLtFFbJPMjz2ylW+loH0PcZIxVbLpfx8ssv48aNG7ubAsKLXb58Gbdu3YLL5UIsFkMoFFKRj7JwOGkN/WEvl8squOPq1av4p3/6J7VZulwuVUyA1SGCwSDa7TaKxSLq9bqlTBa/YKfTQalUUteXUbes5cnOID6fD7FYDIlEAuVyGadPn0a1WsUrr7yCGzduWO5XproMe9m520Eul0OxWEQkEsHDDz+MQ4cOIRaLIZlMIhAIWLRzn8+nigpXq1U0m01V5YgPrcyd5IZslx5CAahvfLolwNd1bMfX5HA4VNlCKlajBLfbjbGxMczOzlrGU5aOZCqBHHsKVMAaQME9QFqmjAO4F9hK+MrgDcZR2JVLGwbQwHC5XComQ5aZlIoF/5eKBPdbRgLrVh9bHHLdy7XdaDTw+uuv4x//8R9Rr9eVcKZA09e0LiTt2B0+f2Sq5J5B5VsacBT4zWbztvr/3rYlKRsVc+CazaYSkltBfnk+jFJI+nw+ZDIZRefRx1QsFtFoNCzRVhykTqdjSQ2QDz1rEbIQeSgUUs2UyU1XKhVks1lVx9JgMDiHzD/NZDKKwpF+QDIEsrC8TOAlvSMFI/+mFsgKGZLasaN1+qEfdTsI6XQamUwG+Xzekrc7CiCtXi6XlRUAbPiQmIzN1nD0O8loYn2MpaLDKGgpSHUKdzexHWWp1+uhUCggl8uhUCgMbds7ybQVCgVkMhnFDAAbFCXXF8s2AtbAGT4XekoQlSdaqtICbTQaKsuAcQXtdntTbeBBke52NL0eQ8DrUSEDYKGQuSdVq9VtK0O3LSQJBsPshqVFjbPT6SCVSlkGj6Y6B7Vfjp0seM0Bk7w0P+/xeJQlzOOazabqr2awfTSbTXzta1/D6uoq/H4/JiYmEAwGEY1GMT4+rpQRUnZcDMyV1UvUSX8CadvXXnsNZ8+eVRovabJBARZyMUlmQfdV9hOY1WpVBZqxLOGoIJPJ4Pnnn8cbb7yBaDSKZDKpgtl8Pp+FEaC2zqISXJ+MLGSUIeeDiuzq6qpSWukj031Ig4I2tlJ0Bm2qgNV3SUvy0qVLqqvP5cuXh45iZ+BOrVZDvV7Hc889h8nJSbVGaajQQpTBNn6/fxPDQ8h0K9l4nvNJWrfRaOArX/kKLl26ZKnGJYPAiEFr1O5/yWgQtGLtlOtut6vy8LcDR2+bT8Pd0vSGEQ/qArvTOWZkKlvtTE1N4cCBA/D7/Wrheb1eRbMFg0HEYjFLIXK5MNi8ud1u4/nnn8fzzz+vtFR2eQmHw7bh+pJd4G8uYhl8Ja83CP2OeVDnGBg8z0wqj8VimJycxPz8vKrOwkhzWoKcB4/HowpveDwelSMtLUj6+wqFAk6fPo2lpSWUSiXVH1ZGPm4VTWk3d/I7SStV933JYynIAeDixYs4c+aMhbXgtR5EDJrjYDCIubk5pdAyBsTr9SqBSJ8eqVXpZwQ2EvfZCIK/aUlS8JFtYmYBfZJvJmw1x3dsSRoYEPqGpP/wGP01+Xq//+3Oy9eoKeoRsfIz+t9292Bghd08EoOsue2Oqf5ccI4GRRXLz/QTotIFs510E1L98vyj8lxIpkX3+cnX6FLTrTK758Muh1wqrA/q+G7bkjQwMDAwMBg1DF9CkIGBgYGBwS7BCEkDAwMDA4M+MELSwMDAwMCgD4yQNDAwMDAw6AMjJA0MDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD4yQNDAwMDAw6AMjJA0MDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD4yQNDAwMDAw6AMjJA0MDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD4yQNDAwMDAw6AMjJA0MDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD4yQNDAwMDAw6AMjJA0MDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD+6akDxx4gRKpZLte29961vxpS99actz/Mu//Asef/xx+Hw+/MzP/IztMWtra5iamsIzzzyjXqtUKvjRH/1RHDt2DIuLi/jEJz6BXq8HAOh2u/j4xz+Oo0ePYnFxET/+4z+OZrOpPvvJT34SR48exSOPPIIPfehDyOfz2/3KBgYGBgZDhrsmJE+dOoVIJLKjcxw6dAh/8Rd/gZ/7uZ/re8xP/MRP4IMf/KDltd/8zd9Ep9PBK6+8gldffRWnT5/G3//93wMA/vzP/xwnT57EyZMncfbsWTidTvzBH/wBAOALX/gC/vIv/xIvvvgiXn/9dTz++OP4pV/6pR19BwMDAwODBxd3TUg6HA5lhX35y1/GiRMncPToUfzoj/4o2u32ts5x+PBhHD9+HG632/b9P//zP8f+/fvxTd/0TZbXT58+jQ984ANwOBzweDx43/veh7/+679W7z399NPwer1wOBz4tm/7Nst773znO5Vw//Zv/3b1noGBgYHB6OGu+ySbzSa+//u/H7/7u7+LM2fO4Ad/8Adx+vRp9f6nPvUp/Mqv/Mptn/fKlSv41Kc+hd/4jd/Y9N7jjz+Oz33uc2g0GiiXy3j22Wdx9epV9d5zzz2HYrGIVquFv/u7v7O89/zzz2NlZQW9Xg+f/vSnUSqVkM1m7+i7GxgYGBg82LA30XYR586dg9vtxtNPPw0AeP/7348DBw6o93/yJ3/yts/Z6/XwYz/2Y/jDP/xDBAKBTe9/4hOfwCc+8Qm87W1vQywWw5NPPon//M//BAD8yI/8CK5du4Zv/uZvRiAQwNNPP43/+I//AAC85z3vwcc//nF88IMfhMvlwoc+9CEA6GvJGhgYGBgMN+7L7u9wOHb0+WKxiFdeeQXf//3fDwAol8uoVqt473vfixdeeAGBQED5GQHgt37rt/Doo4+qa//qr/4qfvVXfxUA8JnPfEa9BwAf+chH8JGPfAQA8L//+7+Ym5tDNBrd0f0aGBgYGDyYuOt06+LiItrtNr74xS8CAJ5//nlcunRpR+eMxWLIZDK4evUqrl69it/93d/F+9//frzwwgsA1oVotVoFsE7L/vEf/zF+9md/FgBQr9eRy+UAAOl0Gr/1W7+Fn//5n1fnXl5eBgBUq1X8yq/8iuU9AwMDA4PRwl23JL1eLz772c/iIx/5CDqdDp544gkcP35cvf+pT30KS0tL+LVf+7VNn33hhRfwwz/8wygWi+j1evj7v/97/NEf/RG+67u+a+A1L1++jO/7vu+D2+2G2+3G7//+7+PEiRMAgEKhgHe/+91wOp3odrv42Mc+hu/8zu9Un33/+9+PbreLZrOJH/qhH8JHP/rR3RkIAwMDA4MHDo4eEwgNDAwMDAwMLDAVdwwMDAwMDPrACEkDAwMDA4M+MELSwMDAwMCgD+65kPza176Gb/u2b8P+/fvx+OOP4y1veQt+/dd/Xb3/7ne/G88+++xtnfOv/uqvEIvFcOLECRw/fhyPPfYYPv/5z+/ynRsYGBgYjBruqZB89dVX8YEPfAA//dM/jStXruDrX/86XnjhBRSLxR2f+z3veQ9OnTqF06dP40/+5E/w4Q9/eBfu2MDAwMBglHFPheRv//Zv48Mf/rClIHkymcTv/M7v7Op18vk8EomE+v/jH/84nnjiCZw4cQLvete7cP78efXe5z//eTz88MM4fvw4fuEXfgHj4+OqTJ2BgYGBwWjjngrJkydP4m1ve9sdffa5554baB1+8YtfxIkTJ3D48GF8z/d8D37v935PvfcLv/AL+OpXv4pTp07hIx/5CD72sY8BWG+z9WM/9mP4p3/6J5w+fRqLi4vIZDJ3dH8GBgYGBsOH+xq483M/93M4ceIE9uzZg9dee23gsd/1Xd+FP/uzP+v7PunWN954A1/5ylfw4Q9/GEtLSwDWW2A99dRTOHr0KH7t134Np06dArBedu6xxx7D4uIiAOCHf/iH4fV6d+fLGRgYGBg88LinQvItb3kLXnrpJfX/Jz/5SZw6dQoejwetVmvXrnP06FHs3bsX//M//4Pr16/jox/9KP7mb/4GZ86cwWc+8xnU6/Vdu5aBgYGBwfDingrJn//5n8ef/umf4l//9V/Va81mc9v9JbeLmzdv4sKFCzh8+DAKhQI8Hg9mZmbQ6/Xwh3/4h+q4b/zGb8Qrr7yifJR/8zd/g2azuav3YmBgYGDw4OKedgE5fvw4/vVf/xW//Mu/jJ/+6Z/GxMQEPB4PfuqnfgqHDx9Wx334wx+21Ez93Oc+h1Qqheeee64v5UqfJAC0Wi385m/+pqoR+wM/8AN49NFHMTY2hmeeeUZ9ZnJyEn/2Z3+GZ555Bj6fD+973/sQDocRj8d3/bsbGBgYGDx4GPnaraVSCZFIBADw7LPP4hd/8Rdx9uzZ+3xXBgYGBgZvBox8N+H/9//+Hz772c+i0+kgGo3i05/+9P2+JQMDAwODNwlG3pI0MDAwMDDoB1O71cDAwMDAoA+MkDQwMDAwMOgDIyQNDAwMDAz6wAhJAwMDAwODPjBC0sDAwMDAoA+2nQLicDju5n0MFR7UgOH7Pce3c/37Pcb3+/o7wf2eZ2JhYQFPPvkk4vE4ZmZmMD09jVQqhX/4h3/A6dOn7/ftAXhw5/luz7HTuW5f9Xo9yxg5HA7MzMzge77ne3Ds2DGEw2GMjY3B7XYjl8shl8thZWUF//AP/4BXXnnF9vM8773CVtd64PIkHQ4HXC4XHA4H3G43XC4XgPVJczgc6PV66Ha7AKwT2O120e120ev10Ol0Nk2Owd0D58UOfr8fPp8PPp8P09PTCIfDcLvd8Hq9ak6dTie63S6azSZarRbK5TJSqRQajQaq1Sqq1artNYEHd5MbBYyNjeEtb3kLxsfHUSgUsLS0hGKxiHg8joMHD6JarSKdTu9qXWeD3YG+rlwuFxYWFjA/P49oNIpgMIhSqYRUKoVTp06h2+0iFoshHo8jEAjgqaeewpEjR3Dr1i2cPn0apVLpPn2TrfHACUmXywWfzwen0wmfzwe/368EJzdTCkEKxm63i3a7jU6ng3a7jUajYRGkBncPDodD/XDM5XuhUAixWAyJRAJPPPEE5ufn4ff7EY1GlRLkdrvRbrdRKBRQr9dx69YtnDx5EoVCAaurq6jX67bnJswcvzkxPT2Nd7/73ZiZmcELL7yAl19+Gc1mE+Pj40gmk1heXkapVDJC8k2CQWvK7Xbj2LFjeO973wtgvadvPp/HxYsX8eUvfxnVahXveMc78Pa3vx3hcBgf/OAHkUgk8N///d+4du2aEpJvxrX6phaStCRoTdB69Pl8Slj6/X4A65NEIdluty0WY7fbhcvlQqfTgcvlUu9RgAJQVqbB3YfL5YLX64Xb7UYkEkE8Hkc0GkUkEkE4HIbP50MwGFQCknPX6XTUZ2KxGBwOB2q1GiqVCtrtNprNJjqdzv3+egYCukXvcDjg9XrhcrkQCATg9Xrh9XrR6XRQLpfR7XYRjUbh9XpRLpfVsWZ9vjmgz6fT6YTH40EgEEAgEEAoFEK73Ua73UapVEKxWEQ+n0e1WkWhUECpVFLrOhwOIxQKIRgMwu/3q8/1u9b9wj0VkoNoN1Ko8thwOIxwOAyXy6U2T5fLBY/HA4fDAY/Ho/6WHDmtRmlNcgLa7Tbq9Tp6vR4ajQZarZaa0Fqtdt8nZNhgN54zMzM4evQowuEwJiYmMDExAbfbjUAggG63i0qlgnw+j16vZ7FEuWGOjY3hXe96FzqdDpaWlnDr1i2USiWcOXNG9RDldc183j+Q4QE23B2hUAiLi4uYmJjA/Pw8VldXUSqVcP78eZw9exaRSASPPPIIjhw5gnPnzmFtbQ1+vx+lUgnlctnM532E0+mE0+lUrqper4exsTHs378foVAI8Xgc2WwWpVIJJ0+exK1bt5DNZlGr1dDpdHDx4kVUq1Ukk0nU63Xs378fxWJRPQ83b97E9evX0e12Le6z+z3n90xIUgDaCUoKOQo6YH1C6PT1+XwYHx9HKBSC0+lUApWf4bmdTqeiVGlRcHFSGHY6HUXP1Wo1VKtVtFotNBoN1Wfyfk/KsEEfz2QyiRMnTmBsbAzT09OYnJxEs9nEysoKSqUSqtUqstmssvZ7vR48Hg/GxsZUl5a5uTl4vV7cunULN2/eRCqVwtLS0iYhaXD/IBkgzoff78fBgwdx4MABJBIJZDIZZDIZXLt2DdeuXcPU1BQmJyfx2GOPodvt4uWXX1YsQqVSMfN6H8H5pPHR6/UQjUZx6NAhRKNRhEIhlEolpNNpnD9/HhcuXACwsRZv3LiBmzdvYnx8HGNjYwCAer2Offv2YWpqCs1mEzdv3rQVkvdz3u8r3SoDM+hTdLvd8Hg8cLlciEQiCIVC8Hq9ymKkb0tOFrARpCM3VmlJcqHxeFqifr9fUXgOh0P5LPXgHrM4dwav14uxsTEEAgHMzs6qeaXvotVqIZVKoVaroVaroVgsWtgAj8eDer2OQCCAbDaLcrkMn8+HdrutfJh79uxRgTyZTMb4st6EcDqdCAaDiMfjcDqdyGazKhiLa7VaraJUKqHdbiulqFwuq3NwH7jfm+ewQ6c7pcDiax6PB5FIBJFIBLVaDYVCQVmPdnPT6/XQbDaRTqdx48YNeL1eRbcyvkS/5v3GPROSdl+W/ghg48GPRqOYnJyE1+tFLBZDNBq10LDSjyiFJps3674LLiZpXfL1QCCAcDiMXq+HWCymFuvy8rKiCLhRSwFrcPuIx+P4lm/5Fuzfvx+RSAQTExPo9Xp48cUX8bWvfU1Z8/Qncy4JKjVUpvx+P7xeL972trfhG7/xGxGLxfD000/jySefxMWLF/H8888jlUpZ7sFsrvcHcqw9Hg+mpqawsLCApaUlvPrqqygUCsqCIKNw8eJFVCoVHDhwANPT02i1WuoYuyA9g92F3HOlK4uKJ8c8HA5jYWEBkUgE//3f/40XX3wRjUYDuVyu77krlQq+/vWv4+zZs1hcXMQHPvABRKNRXLp0SV2r0+lscr/dr3m+rTzJ3bxJWpBut9syGF6vF5FIRFkH4XDYQpdK65CWaKfTUf5FAGpz1dNCut2u2igBqCAgAPD5fOqc2WwW7XbbsqGagJCdwefzYX5+HkeOHFHMQb1eRyqVwpkzZywO++3C4/Hg4MGD8Hq9Ko2EzwLn1Q73c8GNOlwuF4LBIKLRKJaXl5FOp5FOp1EqldQ6pU+60+kgFoshEAggGAxa/NNkkgzuLvSIVn3MfT6f2qdrtRpu3bq1JYPTbreVAjs1NYVgMIhEIoFAIGBxuclgL/6+H3O+bSG5k5uT/kNGLjqdThVI43a7EQqF4PF4EIvFEAwG4fV6FfXCIBtqmtVqFZ1OR1kWfF/faOWAy3vh/bRaLYs/0+FwwOfzIZlMKn69UCig0+lYFqVZnNuDy+XCzMwMJicnMTMzg71792J6eho3b97EmTNnkM/nce3atTsez263iytXruBLX/oS4vE4jh49irm5OZRKJZw4cQJTU1NYXV3F0tKSSfm5x+C6okXg8/lURCPXbK1WQyqVwurqqgrK6XQ6KBQKSKVSagOWqV7SjWLm8u6BQXPAZtqV8QF+vx/xeFyxbo1GwyLYdNZGGihcj/V6Haurq+h0OohEInj88cdRLpdx/fp1ZLPZTUGZb2ohuRNIqiwej2N6ehputxsrKyvIZDLweDyIx+PKBxkOh+F0OtFsNlEqlVQwTrvdVv4m+qJI13LR2FWaoICWAT+kaWk90u9Jn1mn08Hy8rIKFmCUnr5AjVXSH263G4cOHcITTzyB8fFxPProo5idncWFCxfwL//yL1heXka9Xre10u3mUR/nTqeDM2fO4OLFi5ibm8Pi4iIeeugh+P1+VKtVpFIpvPTSS1hbW0Oz2TTzdI8gN0MqmIFAQOXDejweFYhz48YNrKysKNq03W4jk8nA7/djamoKs7OzKnZAbtZvhoCOYQf3U11I+f1+LCwsYGJiAuPj48pfLP2Q3HNJifM1Kkj8qVQqKk9ybGwM73//+5HL5fDv//7vyGaz6nNkDO8H7omQ5CLxer0qL4Y5j4A1iMbj8WwaYBmgI/Mb2+22El7AxiTqGywFof6/PC8hK/m43W643W6L9spj5DUN7CEjlOPxODweDwCg2WyiWCyiUCjs+Br1eh31eh3RaFQ9D16vF/F4XKUcUDnSfdWAmb+7AWlFEJwXr9driRNoNptoNpvquG63i3q9jmq1ikajoVK+uFcQZt7uH1wulyoC4vP5VH6ypFl1K1SHfAbK5bLa/xOJhBLEMnPhfuKeCMlYLIYnnngCMzMzqNfrqFQqaDQaqgCAx+NBIpHA+Pi4StEA1hcCaVdgXUAGg0FbH6HUNui71IsQSIFK6FGwfI0bLEOT8/m8sipl5Ouo+yr70SrcFPfs2YNjx47B6XQilUpheXkZ165dUwvKjoIBbn8TbLVaWFpawhtvvIFOp4OZmRkkk0lcvHgRsVgMbrcb9Xp903UNbbf7kKUE+X88Hsf8/DwSiQQ6nY5aT7qS2mw2cePGDUW1Pfnkk4hEIvD5fJbnxDA4dxd6sKRc336/HwcOHMChQ4eQy+Vw8+ZNVKtV5HI5i0tKnyPJwvH1XC6H06dPIxwO4+1vfzsee+wxBAIBTE5OYnx83OJe6/V6yti5l0GU90RIhsNhHD9+HIuLi7h58ybOnTunBBd/h8NhJJNJlMtl1Go1tNttVSxACjAWFGCkFTc9Wp+McpWvMUCIn9MHuJ/ACwQCcDgcljxKKUhHXUACm8vOcXFQSE5OTuLQoUOoVCp4+eWXsbKygpWVFYuw2g2fA4MBrl69ilgshrm5ObjdbkxOTqoI5na7rfzQvKbZbHcXUjGV1kQ4HMbU1JQKxCuXy7blBFutFpaXl+FwODA1NWWJVyAMzXr3oQtJYENx9fl8mJubw5EjR3D27Fm8/PLLyOVyKBQKA+fFTkgWi0WUSiX4fD4cO3ZM5cWTfapUKkpI3q91e0+EJEtQhcNheDweNJtN1Ot1FchDilVfMIxqlYKNlic3Y90cZ3FsGf2qL1xSrTLnkpMgzymv5XK51A8nhzSDWbDr4Dh4vV6Ew2FEo1EEAgFFWRcKBaytranIRbvP3ilYHIILjoLa4/EgGAyi3W6jUqlYrvdmoHKGEXqAm8PhUPlwXq9XxRrUarW+FoFMuyKjxGIizGPmueW1DHYPuiBi8BWVFu6b1WoV5XLZQpvb+Yz7uTu4vzNHvdVqIRAIIJlMqmwDfuZ+rNm7KiT5pbxeLyYmJjA3N4dbt24hlUqpPJqJiQmEQiG43W61KGj9NRoNNJvNTX5ClieT/kkOLrltwJpTydwqAMq/0Ww20Wg01LHtdlvl4FEg0poNhUJKsLOwQbFYHPmAEDtahV0ckskkpqenVV1Gap2ZTEaNu1SAdjKO7XYbq6uruHz5MtrttkoNicfjmJ2dRTAYVIvZjk0w2B1QuMlngvnPs7Oz6PV6yOVyWF5exurq6sDUH0atNxoNlY9XKpWwsrKCYrG4iYUwc7o7kMYE91CWgxwfH8fMzIyKUq7X66rilYxu1S1GQrrB9LgT5qgDwOzsLHw+H65du4a1tTXUajV1b/z9QFmS/bQ5mQsZDAbVwFarVVQqFQSDQYRCIRW5Juk6h2Oj+g2tQAo6WgqkYumHpK+CC4cRsXLSeT98n/dNPyZpHfkZACqIR3YhqdVqxhrB5nlnGs3Y2JhSgLrdLjKZDG7evKlCxvt9/k7AaMlcLofx8XHlv/D7/QiHw2i1Wpbgj1FWbO429M2RijLnoV6v9/VJ6udhQQ+Px6MKi2QyGcu5eazB7sHOamPKRzQaVZYkA2/sWl0NmhOd0QPWjZZKpaLcb263G8Vi0RLg+cBaknaD4XQ6MTExgUQigenpaRQKBVy5cgWrq6uoVqtoNpsIhUKKbiW1SiqWVh2F6NzcHGKxGOr1OorFovIvUdAxbaRer6NQKCifJqOkSBVIjXN8fFz5SDKZjEpo5sJkWkiv10MoFFIRXLw/qTkZbIBKEX26nFOWnJPW927RnrQkmW/FUnYUkgwUI8zmem9BBqjdbqNYLGJlZQX5fH6gJdlsNlEul9VzxFJ2TPsi7tfmOQqQrqdEIoE9e/YgHo+j3W6r8pB6BTRgcGCNTsfzb7IEfr8fyWQSExMTyOVyat3a+TTvBe4a3ep2u7Fv3z4cOXIEfr8fq6urKBQKuHTpEorFImq1mkraZyucRqOh/EqdTkcVzR0bG8Pb3vY27Nu3D9evX8fXv/51FItF9Rkmt4ZCIaTTaaysrKjz0w8SjUbh9/uVttLr9fDwww/j+PHjaDabeOmll3DlyhWl5bZaLVVn0uVyqXDnUqmETCaDcrlsStUJyIeWWn8sFoPT6VTMAYsz3I2HvNFo4PLly7h+/ToikQja7TZ8Ph9CoZCKqNQ3V8AE7twLkPUJBAKo1+tYWVnBpUuXUKvVBlZnabVayGQyyuqYmpqC3+/HpUuXLOc2AnL3oY+py+XC5OQkjh49qiLFl5aWkMvlbPMgge1HoHI/yGazuHDhAsbGxnDgwAE89NBDyOfzllz4+7Hf3jUhKSkWGX5Pqk2nY2jBscYqB4M0p8fjUd3qaUXS8gTsJ0RStMCGJiLDiUndBgIBVdZMBg3wYaFFWa1Wlf/SCMh16EKGlDZTfIh+SsVuCCnpv6K/k/dC/7JdBSaDuwfpbpHjz31gK38+q7hwjft8PtWH1ODuQmd4HA6HYmUAKAVHzuHtKiy6JcmALlZkCwQCqmCMXWbCvcpXv6tC0u/3IxKJoNVqIZfLoV6vI5fLWfKcSLPyNSaH8z36/l555RVcvnwZN2/exCuvvKK6BDSbTXi9XmSzWYRCIQBANBpVliMAVVOwUqmg0+moYKBqtYp0Oq2Ccw4cOIBUKoV0Oq0EcbPZtORayvseFQtEf/D7RawR3BgZkZhIJBCJRCxh/HcDvBfOcbPZVJT87So1dvmfBv1hR7WFw2FMTk6qxHMqlywWYKcsAxvz2Gw2VWSjz+dDPB4HAAv9xiAho7DuHuxoTQZfTU9Po1arqWpprH7Gz213veiUa6/XQzqdVrEFzWZTdYuZn59Hu91WHUZo4Nyr9XlXhSTprkqlgkKhYMml4RdkYA0DZ6hh0uJjlOu5c+fQbDaxurqKCxcuWEogud1uZLNZFTZ84MAB+P1+dY56vY4rV67g1q1blvvL5/NYWVlBLBbDk08+iYWFBQBQ1qrsAgLAkgIyKovSTjPcyp8nW54FAgFEo1FEIpF7ZgFwMybbIJtwbwcyYAswfsvtwC7fNRQKYc+ePaqVkhSSjFaUn7cTkvl8HgAwOTmJaDS6iTYflXV4r6GPK11P9BOWSqVNdOvt7It2QjKbzarzNZtNVcpwenpasUNMH5OBP3c7X33Xdy2PxwOfz6fy4xjsUqvVVC6NjDSVkag6KOA6nY4qMuB2u7F//34LHdDr9SzVVOhPZIpHs9lEJBLB7OysSutgqTLmzqVSKQSDQWSzWUuO5Vb5PsOOfoE1g8ZAboT0M8vctrsNpulwMyU7YXf9ft/DLrXFYGvI8WJOHfMbad1vd0xJt7LogKy/bHBvQJcVmSGyaezUQveTjq3m2C54h/9TZjAwkkxEOp22ZbUeOEsyHo9j7969qngAB3N5eRkrKysWHxEHnXw0aTEKzmKxqLp7ZDIZ1Go1fMM3fAM+9KEPYXJyUtGkqVQKzz33HF599VU4HA5ks1k4nU7k83kUCgUEg0GcOHEC8/PziEajmJmZgdvtxhe/+EX827/9G5aXl5HNZhGNRlX0nOxUAmx0FBnFKju3+xBWq1UsLS2hXq/j+vXrmJmZwcrKisVXeDfBbjIM2EmlUshkMqrcITD4O3HhjbqQ3MrHJDcoqdHztWAwiNnZWUSjUbhcLmQyGeRyuW0/B41GA+l0Go1GA8lk0rJJ7+ReDexhR5mzGAfbYbHu9tLSEs6dO2dpUXg7YzzoWNkJpt1uY35+XnVlunz5srq/QefYTX/lrgtJhu8Gg0F4PB6VMlEqlVAsFpXzl0EdbrdbUa2SEnM4HIouazQaKBQKqFarCAaDePLJJ7F//37VQ/D69ev46le/ivPnzwOA0jwLhQLS6TSSySSmpqZw9OhRJJNJHDx4EG63G+fPn1eRl+VyGW63G9FoFHv37lVRrXqklllsW4PNq5nnVCwWUS6X76hn5J2AChh90pVKRZU6vB2M8jzrQRuD0G9NsDcsG5rXajXbUnT90Ol0UKvVVGUXGQS0nfuW92ewNaSQpILIvHAWp2dcAfdWHf0sxNsBg/CYRxuNRgEAoVBoEyVvd53dLjiwK0KSSdtut1vlNNG/2Ov1FM2qR4yy9ZWs6iCdwLJaTiKRUNaBpFyYD7d3714cPXoU+Xwe169fR7VahcPhUJ+ZmZnB/Pw8wuGwSjtZWFjAU089hUKhgFu3bqkgAamlSCFJn8qoLDqHw4FgMAifz4dwOIy9e/eqDY9UiF2lfla5CYVCSCaTcDgciEQiOHHihAquokWgL0zCjoaR9yVf5w/naHFxUaUP+Hw+HDx4EOVyGZOTkyrpWTIDtIC4AVcqFaRSKRVgwio9owRpSW9ldfcDo8e9Xi/y+byyJKVFP+hcrVYLhUJBUa50z0h/lJ1vy2B70NetDFYjQqEQ5ubmEI/HEQ6HLevlds5th35zxRKTzIdnQ+ZwOLwtC3G3WaBtC8lBN8cuHrQSHY71bhxsh8S8yFarpVIuGMlKbYVaimyNxR+3261Ki7FckYwy9fv9OH78OMbGxvDaa6/h4sWLyOVyiEQiqifd4uIiHnvsMcWv93o9fMM3fAN8Ph/W1tbwz//8zypyit9RWo+0allLdhTABOJkMol9+/bhmWeewYEDB1AqlZSDncUgpLDiJsb+oSxp9e3f/u2oVCqW/oAyNcAuYq3fJi2VJD4zpH5CoRBqtRquX7+OQCCAJ598Ujn7+Vlek35rRmN7vV4sLy/jK1/5iupacidW6DBgp885yzkGAgHkcjmcPXsW5XJZ9R/c6lq1Wg2rq6vwer0olUoqwpw/cu53435HCTIwTa4LXbglk0nFwCWTSeVX3ooNsDu/RL+2g2QUSbeGQiHMzMzA6XTi5MmT207j2k1BeUeWpH5xBkrQmqSAodbB8HtJpQKwWGbsM0dIQQlsBATx/HLT4udZOEBGxvJz7G7O++12uwgEAkgkEmg2m6oeaz9IoT0qi5EMQTQaVZWTZmdnUSwW1TiThtEtOmqbDJ5xu92WVBBWQtKtA6KfkNQDieS8sBISlTSWM4vFYuj1espSlFVEmFfJXFmv14tOp4NEIqEsGSm8RwFyPvh3v+denye54cr81G63q+IOKOyIfilG+qbN/xlEovtAB232dtcZNWbIDltZfF6vF7FYDLFYTI35oCIq+vq8kyCrXq+nXHQMwGP8yZ3mYe4E2xaSgy7o8XgwPj6uyhUVi0VVUo4mOv0IcvHpG1kwGES321Xl4fgQA+scOFNArl27hmq1qgRfoVDAK6+8gitXruDmzZvKuiQl02g0kMlksLS0pKhDh8OBtbU1nDt3ThXc5iZJISw3VJahG6WC5h6PB48++ije+ta3IplMIhAIKKuKmrzcQGXtXflA0/rme3qLMzvKdbtCUtI/UvjxOQsGg+q5Yt4ksCFcyWJIIZ1MJvH2t78dtVoNL774IlZXV1Xu1rBblH6/HxMTEyqdamZmBi6XC/l8XlmAHF9GIdJ3yFrGrG08NTWlno+xsTEcOnQI9XodyWQSlUpFsToymE8KU6n4LiwswO12w+/3Y//+/araFvOl6YNmxyGfzwfA+kxwD+K6zmQyeO2113al+feDBjvr244tjMfjOHLkCMbHx+HxeJDNZvuWE9TXqX5O/dh+LpVqtYpTp05heXkZjzzyCBYWFlTQkN/vV2ld9yr9Z1d8kiwLNzExgXQ6jXQ6jV5vPXQ3GAyi2WxanO0Ukvyy1A4DgYClKwcXYbfbRbFYRL1ex9raGm7cuIFqtarCyzOZDM6cOYOzZ8+iWq0CgLJqacnmcjmsrKwof6TL5UIqlcL58+fVuaUloftPZfWPURGSXq8Xi4uLePrppy1+ZioQFCpSSNJHTKuNcygXRbvdVm2S7HyadoyC/F++zxxIWoK8LoOuWFi/3W4jn89b7pM+VVq7fEbj8TgOHDgAt9uNUqmEl156yeKTHmb4fD7MzMwgkUjgwIEDeOyxx+B2u3Hz5k2srq4CgCpuzfQeRp/n83nVtd7r9WJ8fBzA+vORSCRUm7xoNIpqtQqv14tAIKDSsrj2yuUyGo2G8mmzi5Db7YbP51PR85VKBWtra2i1WgiHw4hEIvB6varcpVS++EzK4J+LFy/ixo0bIy0kt3otFovh8OHDGB8fx+rqKlKpFIrF4sBygnbC8nbug8VjaEh953d+pxKSPp9PxUM8EEKSIdk+n0/lxnETcTgcloRufiFW2CH3TEiKjhFUklbl3+VyGUtLS6hWqwgEAggEAsjn88jlciiXyxafIT/TaDSQSqVw7do1hEIhlMtluFwuLC0tqchLWrukiYAN7ZOCllrzsCcwB4NBRCIRJBIJS0QZv7+d4JLCR2rtchFw7GTpQTt6Rl9kdv4LQl5T9gSV56LWuRVdTopeHhsIBDA1NaWK8PcLOhkWOBwOZZX5/X4Vpc6C9cCGJSZZllAotKnVHH3VnB9SrIxuJ21KRUXGJLBIvl6WjDEMPp9P9R2k9chj+SOtSNJ1/Ft28xlV6JS6DNzhXizZNGYq6DnPduuS46qvR50xkq9R8ZaxCgz063Q6CIVCmJ2dRTwet2V1eK+9Xk810Wi1WqrS2p3ijoWky+XC+Pi4ijaV1XSosTHPqVQqKc2DVTT4kPp8PsVBc2ATiQS63a6qrsDAmWazicuXL1sqwwNQFekrlYplwulvajab+MIXvoAXX3xRUTYOhwOpVAqpVEptjn6/X2mcsmYssJ5Wks1mlaAYVjgcDhw4cABPPfUU4vE45ubmUK1WlYJC/y03Nyl4+JuKkey+wuasXGCSbtUXlG6xUZDyubIL7GHhCc4jG8MyErfb7aqFIz+rF7SQ7AWf8W/91m9FLpfDl770JdUHdVjhdruVgpRMJhXNJmutck0yUI+dV8gOUAHy+/1qPEl9A0AkErHMG2Atjh2LxQCs7zEUuG63W22MdJlwD+AGGolE4HK5FEXLZ0YKfgpktmMalE4yzKBAYdSobCrPBuXsz8vyn6xQlkqlVD1dCjQp7KiISCqdLhjOmTRIqLywdSKfQZ/PhwMHDqDXW8+QOHjwIH7wB39Q7de6cGcRm0ajgddeew3Xr19HKpXCmTNnVOWmO8EdC0l+qUQioagsRq/KFknNZtPSP5AWJwePQpITQQ2SYcDMo+QGls1msbq6qjZSSddywKld0oJoNBqqko4cVNKqjMIMBoOW1AQuTlk1aBQsybGxMTzyyCPKYc95rFQqaDQaSgOXfmUAm4Sl1NplmzH9GD26VVK0BI9h4JYd3SKDvKglSyEpW6vZ+T6lgOQ1Q6EQDh8+jFwuh9OnTw99AA8Vm0AgoNwZtCQpEJnOBWzMh8/nQzAYVMpQq9VSPkauMSpWPp8PLpfLMjdyXXJzlX5iPmtUXuhzJJXO1C4KQVoiVHJlcXRaraNqSXKcOT7c9yjEaAhwD5TlBEulkqq7y3NJa5Pn5RhzD6UQo0Dk/k+jxel0qv3G4/Eoypy9YRuNBsbGxhCJRJTSI2MJHA6Hekar1ao6t8fjwYULF3Y0XjuiW6nRcVEwvJ9fhFSmDKGXmiijCqmVsGsIKR5qfzJQRG6gFJLAxgYrTW594cnFCGz4oPQAApnWwJJqrPwzCtGtegQbx1QPued7ujbORUXKXVJo3Nx4Duk/5OvcVPU55MZn5/DXBa8M/KJg5uLiPQIbdWZ7vZ4KbZeBJOyFKcseDjNokVcqFUtfV661VquFUqmkFFqmY5Haopbv9XpVYJ0cRwCWnEcqttzQpPJLxQYAAoGAqvYie1PK1CzOKe9Nbvxc8zIwiAJ61BAKhbBv3z5EIhHE43GMj4+rMaJCS0vy4YcfVj7myclJFYTVbrdx+PBh5VeWAXm6oiLPzb1EviYtSQrscDismAoKQ1lOlHs0wff5EwgEEIlEVOW0nWBHliRTKID1qiaZTAaxWAwTExNwuVzIZrNYXl5WViKw4SekxcCk/1wuB6fTibm5OczMzKgOInoSP/2DupCU4eAyskqPaJMbLBcRN0+pWfl8PtRqNeTzeZVUzqCiYReScmw5JhR27LoCbNAqXAyyHi67x1Njp7VBZYRKDTcz0rTSb0n/Ex9yOa8yNUHSvFLASu2XmmogEFDfg0FG9IWRVpaBJKwUtVWwwrCArJDL5UKxWFS1lunuqFarWFlZUdWvYrGY5X0G7nAdRSIROJ1OpNNpFItFtX47nfV+sZOTk0o5DoVCaLVaSKfTqFarqoF6p9PB5OSk2oz5HDHHtV6vK6Ep81/pU9WDzCj8GYswakgmk3jve9+L/fv3Y2xsDLOzs8qIkLnhAFRJOpfLhUOHDuGhhx5Cq9XCU089hXq9rrr8OJ1OFAoFS7EOyQIAG/ED+rrntWSKFj8v1zeZALIRNGQ4h/RJdzodxONxTExMIJ/P77j70G0LSZ2K5JeSFp4cAFlpR0IP3KF5L+s68hryszLvys4RLAOA5OvARn6k+vL/JyQ5IdIXyQ2Y2pFuQQ0zKESoncs8QT10W1p40vEuA3mk1cbfUqOUubXSwuRvfZHJz8tgAypf+neRc2dnocrniJBCmBvxKDwDHEf9mZfzKZUlGTTFvwlpOQAbc8E9Qe9FyHUoWQDeRz9hpj83fA2wJqzz/FLpHoX5tIPb7VYW5MTEBKampuD1epXiKMdL/qaQ6na7KlArHA4jmUxuikuxC9zhPEqrUO4PduuQLhoyFPpeIyHvV8qnHY/X7X4gEokgmUwq7vrq1asqoIMPIR8+u3ZT/cDNl8Wx/X4/fD4fYrEY2u02SqUS6vW6curKFBIAm6wQQp9w+bcccMmhc3MslUpYXl5WftVRQK+33tft9OnTiMfj8Pl8mJ6etghA6c+TvkE5dtwI5RzxeZCRqFKQVioVRa3Tsuf80AJgMAGDr+R983oy1J/PJC1NUmx8Tb8fXdhns1m8/vrryOVyqmzhMINaOqNbZZQrAzySyaR6jU0BZJ4k17zX61W+SaZ4kebk5lcoFODxeJT1yjmR1gF/0+KvVCoW/7jMjZSWCBVgAGov6XQ6qlnCqApJrrVyuYxwOKz2bM6hDLiTlDrZAiqOeoQ6XVO6Ig1sKDNcZ9IfzN/94hs4T2QhuD6lQiWVOMqLTCajmIid4I6E5N69e+FyuVTTTT70/LL8m5Tddh5EHlOpVFTS//z8PCYnJ5W/k5Ft0WjUEtDDSePfpHb7CUZuwASpY0bj8QEol8tYWVkZqVJ0wHrbsFOnTiGRSOChhx6yWG6E1NapfQKwWOC6RSJTMQhpnXCRcS5kziPPxwhK+imkdctFpKeh8Hqyk7rUXvmMygAwPjeZTAavv/666oc67KDFwEAXv9+v/IGkLpl6IetpcuOiT5NBfIyGpp+JglEKSZfLpfy+brcbsVhM+TIZ1MFNu9vtolwuI5PJqPgBBhnxWM6hZDX8fr8lyFBu8KMGuhZKpZJSHJxOJ6rVKgqFgporrjH+yJJ03G9JeUs2QRpIgHWvkEqp9EsCsJyfAlPuPTK4k8+UXMtyLymXy8hms6rYxE5wR3SrpDwpUGiF0UlPjfJ2wQ2Wk8LJAGAZLB4r74mTIWkgCkOpfXBydPOc1gbrzNI6ltF2EtJKHqbFJmlm3SqXwlIKKP37c6zluOlWqP66/Iz8rM4E6BQ7z2cHWjH68fJzOmUnr8fxGBWrQ44t17M+H9ykpDJhN858jqRrRa43ALZ0qpwHxgxIJkFuvvr1JRMg164MENP94qMGGhKkMfX1RUjrjIKNP7KIh4z3kAqrpOrluQAo14h83uz2EDuXSD8XCd/jd9wtRei2haQUMvV6Hfl8Hj6fDxMTE0r7T6fTSprb3aA+EfJLdzodlEolZfHJnBgmMxeLRQCwhAEz0EJu2FILkZs7B19+hm18CoUCrl27hkqlgl6vp6hdaqrAhnAuFouq0Pe9LJN0t8HNTadUpA9XKigEx57RZd1u11JvV39g9c2NFXNkuL7cyHw+nwq2kRu03FT5w/vz+XyIx+MArP5s3q/8fvJZlMnuzOfdaZTcgwIKFM4354IBTTIFSAZiMPCGgqzZbKrernRnOBwORZWzpRotPVqqUpgxWKdarSKdTqsNXgpuphEwqp4btMfjUfmUDCZyOp3qWqM0pxKtVgvZbFaVIOSa8/v9KuOA64rzyP2eewKNFzJ60jUiaVJgQ+mRgpV7jK7AyDkFrEobf3NdMvNBZ4aADSG5GxWy7siS5MZF+ovmeTweR61WU5VvSHvKz9qdT56X1qnD4VDC0uPxIBqNqiobpNwAqI1U+h8ImaOjB4AAUP4WqaVWq1WkUimUSiUVIu3xeFQeJcGJYTTXMEXJSS1MD7zRtUZuklIAclPsdrtqc9UDrfQIZGk1cEPVLUk9WEw+T3ZCG4DKu5VCWr8HKSR5Drl4KTBHYUPVrXppTXKuZLQgx01akpJ6ZfQ6Xwc2KmpJ14YsUCF9VVSCC4WC6tIjI6qldSvTUbiBy16IvL5dasgoQdKtpEr1oEVgY11wb5PuEz0gk3swYRcpqwdVMhKd78n9RSrHcl3yWrxXAIp5JLg/6ev6TrFtIUkrqtfrKcEgqy7wwWMTY1lMmtC/LF+TX4qvMTBH5rjRJyFzHnm85LAJOdAysoqLixPO3oOFQgHlcln5QGQFCNlwlJMdDAZVzpAsAD1MGETF6A8fx5cbGefRjvKQ88T3JUtBLVPOH58B3T/K88lFxnmVzwmvJQN3JOwEpX7eYYduBehCUo6LHaSCITV5GT8g04uowNAHKTdoGegh1z99XlReKQRlkRJZUKTX66mazdwrGEcxChS6DrJ1HDPZacPOz2dHs3NuqDTpCrDduMrnSHd16e/rqV+SrrVjpHRWit9zN9i9bQvJaDSqLIbV1VUVZQZstFQKBoPIZrPIZDKK77bDoM1JvsbkY56H+Xn88nzo5aQCG0JYWj3ULmVkJDvW1+t1XL16FalUSm3UtIwnJyfVgyD9lk6nUxV1bzabuHjx4tAISUlbSkEhodPacox7vZ6lzqe04OwErvRtyNQhXoeg8mLnn9B9xzKYTDIIkp6R98RrSYFN7Zg5WbsRTv5mB59vRimSbqZyQhpUB9ektDalT1JGGjNP0e1eb58mfYS8B0n18XUG1jFmIBqNYm5uDqFQCKVSSUXIjo2NIRqNot1uq4YHkUhECdlms4lyuWypHDNKaDQaqrPN0aNHVVGYSqWiCsOQTpUZALJphNPpVO/LlDlpvemCTFp/UiGSFqJMDdOVcq5pAJv2ezJRpIy5h+yGIrRtIUkBBUCF0csSXxxMLjLdihykhdt9CV1zALBpw9YHUR4nfVWANbJKHs8cuFqtpjoTyP5lpGm4kGUunv7+sFkaujAbBF3wUKBIarbfuaWwlZanrgX2G2OdsgdguZd+92v3vh7AI39GBXYKp1xzW42FpEH1dUx/Ia+hR5oTUlBK6Aoco1ur1aoS0vo+wWvyPd0XPWqgokKXGYWTHDc5V7q/EdjINybTAGxuu2XH9khXid37UpGWxQZ05lBnfXSl/r7QrSw6zPwaWe1G0p3ywZMRr9RG+aWADQqGnyeNQo45FAqpXD1SJ9L81zdFfZCpfcjF1mq1VLFbCnPSPWwsyhQTaq6cXApEGaHFH5/Ph2QyuaPJeDNB5/j1B1vSYpwv6UvSLT3+rfsT5VzaWXISurUhwU1QbvByM+S92n0n+Zq8d/26oyQogQ3Lm2uHm5Yd7S5jEBjoBEAF5jC0n2tSBr/pGydZASraDsd60Agr+rD6jt/vV5aPw+HA5OSk+jxZKDIPsisILd1hVGy3A9KtjUYD1WrVVlmUFKZMv+F6l4UHeDyFkxRUElKg6teS59CNLql4y6A9KSylMCQLWSwWd4UtuG0hKVMkZOSQDPbgF6agkYE3cjL44JMCoWXHLxUKhTA2NqaoHrloeH4OpG6yM3BAHyBZqJzodDqKHqSwlPQaqV02/JTmPB3YXq9XlegbJugCUl9M0tcrH2w7C8ROi9QtSt0S5THyt/6avmAkrSpD0aWQ1O9T/768n1GGVH4BWBREeQzXL4P42NdRLxPHHFU5TzKnWfoT+Rrnj/WT2bpsampKRaOXSiXl+uj1eqoIt9frVVGtsgmzDMYaRSHJZHun06mEJGFHkZJd47w1Gg0Ui0W1L0oFmZCCjNBdH3L9SQVJWoQ8FoAS1DpTqK/Tbne9OQafg536JbctJO0CLagZ0EkvWwwxDYAFa1lBR25YcuBpBciHVoaNE5w4/i1Nbv6WA60PkL4B01/Ce6H/SXaS4HX0LhL9omeHDYMotu0Ikp3Qldv9HOdILjY734g8drvX3sn9P2iggiE7fejWu57Sw+dfFrXmcbTgpEWqK0V8rZ/F7nBsRD6zYADXtaT1pdIuz8N71dmu3QjqeFAhaXC5B0vKleOs+/Vkowep8NixO/LvflbfoLWlK9x6EF2/dUx5tN1iNoOwbSHJyE7pM4pEIir6k1Xj6VB3OByYmZnB+Pi4RdNgxGq321URpPLLygFhLgxflya3w7HReUBaKTJEXfpNCQYiAFa6VwaayGID/L6sEsLcLdmfjtFypVJpKBaeFDT9foDND6i0EqUio1uO2wEXh76IdGVNvz6wMYe0hORCsbOE+NtO65WK4LAqQRLMoWMOI/PnuA6cTqeqslOv11WR8Hg8rjR9CsRAIICZmRl0Op1Nxa8djo0IZGAjHYvQabdkMolIJAJgfd0uLy8jEAggmUzC4/Gg2WwinU4rQRoKhSxsD9cri7SzP+YwrNedQLokSK3SteV0OtFsNrG0tGRxi9CnKdk4nTmS0MdYd5fJPYJrUPeHkjKXQV56jrO8nl1brzvFtoWkdNryxtjKBNgo+dXpdFQUFCvMS5+E7MlIYSY3UZmsLKkeDgQ1Vi4yUjiyhJmeRiAHkJ/nA0DfhQwg0LVb1pssFouqTBcfKOZuMupr2NCPapXCS1pwOlViZ4XtVFASfEb0+9Hpn60c+LpmK+9bVwyGHSwCQiqU1iCpVhnlCEDVa2XZOlJ5zH1kAQgZacocWCovvV7PohDTUuH4k8KdmZlRApLl7EKhEILBINLptIoul3VeqZCTruU+JenfUYa0KKVyy72ZeyQVJLt1INdKv2vI9cVzSZmiQ7rt5Pm5t1NY21mvZP2kO28nuC26lcKID758sOVx/DJM1OfrwIaQ0s1hHic7T0hfAidSOtylX0HX9u0G324DZNK7XgEf2DDZO52O6o1Jgej1ei0FBphDNIzYSqjZCcitrMd+VKbdZ/r9rV/bbs5lEIFuNeqfsdNs5bM1KpQrsJmiJOUJbFROkT5HWT2H+4ScS/r6pTLT6XTUpsykfwDKfSMFNAAlvJ1Op6VPJREIBNS+ITd77lV0qciKMUZIWv3Ouk+QRgf3Z30PlX8PWh/6GtbjE7gWdUZRCnApiO3Wr4QsnbdT3LYlSeuRdCu7AFBAyR5y5LP5eQpYTowMomHuFHNd3G43JiYmEI1GAWwITy4cu/uz46n1wZZWD32erVYLxWJRObMZYFQul1UfwVKphFqtBo/Hg1wuB4/Hg4MHD2J2dhbAet81XWEYBugPsm5NykXF3zKKTT9enpe/pdU56D6kpiqpVXl+6dfm8VSEHA7HJupVPjPSzyXPTx/1qORJSpqaLg0G1Oh9GFk0gs3VWQJONtfu9XqKLiWrRDrNbtOV1iWb5jYaDaytran1mUgk4HK51Jr1er2qZZPMa+W+xcIgZJio9A4j+3M7YM9VWot8xnU/pIxqtVOEgf4pWHZKrn4OqThJSxHY3KBd7h12DFGv17M8u/fMkpQ3woVBipMPKTU8PtiMgtUlvtxsqK3SP8iHWD9WWqSyQgP/lhbD7eQ/UUsidSsnghF7pFsZedvr9ZQfRG6m9IMNI7Zj7dk99Po5dOq0n0U5aBz1c3Nh9tvw9HuTr/VLC9GPGyUrUm5OVC6BDQuPdBYZI35GtkmSbg5aodIi0et66psd9xfuK6wbSmEtG+4yulwKRmkN8d75ww1fRj6PKiRjAGxeA1KYycYSuhJ8O+tju7SsNHD4Of0Z0aErvbsxv9sWkktLSwDWb5jWXbPZxOrqKjwej8oxpKZJ5yn7k3FgZI1GGfEqC4TLTYo5jRxA2UJJUkFcJMyPYd9BCnFZTqlWqyntktV3wuGwpYQWKZqpqSlLGzBgo7pIuVxW98d+l8O26PoJGLvcNrlB2QlKO9/iIIG61X3Jv+mv1q1I/TN8BjhPUvPlIqQWK48ZFUHJup5sT0dtnFaEbCtGNohCkQwSgE1CVKaH0bIHrJuZLjgB2HYUopUg4wt6vZ6qQ0olVgYGyXM3Gg1UKpWBVcFGBRx3qQxxr+U8c81IA0V/n//r5wCsa1XSpTxW7vv8bUex6vtKvzgDKmXMc9/put22kLxx4wYAIJlMYnp6GgCwsrKCTCajAlmCwaCKHqMZ32g0LDcfiUQwPj4Or9eLWCymKvdz8OkvYNk7CiG5ScmIWJZG4qAwd6rRaChqmEWu/X6/yp9hWSwWMGcAUqPRQC6XQ6vVUgXOZfNobh4McGCXA9JNw4R+NCsXyyCts5+QIuxotn6wo2N1yoW/pbZpF4wjhaL8vO63pHbN90YtcIfPdKPRUEEuekg91ziV10AgYKG6qBAD1kpGDNyRAlKv0AVAUbO8L84BlVnSqgyao0IuqTsG58ggIUai70YO3YMOaY3raR2S5mSglU6nbscqtFvfuoCU15HPhh4JK6+n3ydBZpN57Ttdu9sWknyImUzvdDotjXUZCcfFJClU/TwUnOwszihFmvSy7B2v288npA+UrtHIxWW36ctkZgYUETq1q0ewsgsKqVm7hT4M0AWhPo6DqFY7a9Lu9X7QLbhBn9OFsJ0gld9HP05/T/4/SoJS0qx6UIc+z9L6tpsbqcDI4+Rr+uZsB532lr5TafnLtC9JI8pNmfuKCdxZh75/Epwj/XW7NbxbLMtW57Rjo/qdx85veifYtpBkrb9sNqssJhYH73Q6SKVSSmvk4MqHkBNBK8zlciGXy20KwpGClT4J2apIN8lJjVJjkL3NZCIsj3O5XCrwqN1uY2VlBS6XC5FIBGNjYyiVSpvyuRwOh7JKXS6XspTz+TwuXbpkGYthg6RRqShQ45MPIsd8u35J+f8g4aPTvPpr/RaNLjCplcpQdjsfiIzo4w8Dd0ZFSBIyV9LhWHdJyKAbWnIcX1kRi9GtjDOwq3wke5byRz4bMidaRq5zbhmAQ3cKadxisWgpJ8m8PyruxWIR6XQa+Xx+V/oNDgN0BYVrTCodusLE3/2CeOTvfsF50repx5jwnNLQkfc2KOCPVPxuVFXatpDkQHHhSHS7XdX7kRGsfB2w8s+kbgCoTUgKVGp/DocDsVgM0WgU3W5XNV+VG7P0Y5B2lUEGdlolBR6w7u+koCb1y9BzSSlyEbLJJwe9Wq0qwSg5/WGCHHOZi2pHr24lIOU59QW51fXlcfpi1K0B+T4FI33YdueStBKP4fzL7z1qYK4ZFWQKSwazyTHhcRwvndaWdKtc5xS6diUkAViEJCGtSO4lwWBQpXtUq1U0Gg1V+MPtdlv2F/ZS1MtTjiL0tWNnzUtmQQbR2DFzOrYSZjor0c/6o4+Sv7daj1LR3Sl2fob/g64F8gvZOXIJKeSk/4daOylWGUGnW48MSWbeFN+Twg6AJXRZDrD0c3DBSl+KrDcpv5v+nYaVttGtRCk4+lGt+gOuR5HyvHxvuxTq7d633d/SmrTzXUofpFyMW1m8w4p+wovvSZpz0FxSEdZ91nIe7KwMaV3wPDKdS74u01IAWFgP3i/9qOVyWaU9GGxA39u4l0rqGrB2ZBokIAFsWm/yPUJeT19r8p7szm93Xck+3DNLchCYjO9wOCxpEcDWofz6AAQCARVsw0r/NLkpFBuNBhyO9X6Q7CLA8HJqkQzMoYCtVCoolUqqFJ5uWbCMUbPZtJRmYi6VbCkjv9uwa6KkvBjtSwtikDVpB/11u0jm7WIrhUQ/J6PvyFrICDsez791i1kyCqMGBtHV63U1JlI4Mc+ZlrocJxmdyHUigyikr1+nvnkOFiTRU8ZkDWUZGcuI10AgoErYSSHI6jH5fF71xDV0qz1ojMiKO/zhGpFGiK4I21mCEpINJCiMdQEnqV/d5WZ3LYfDYWkk/aYQkkD/cNztwE6D5CToC4+aLf2PpFH0tlu0TKX/ggKNlTdkMrm0ULmp8pz6uUYFdlSIrkHulnN8JxgUDMSFuJXPhN9FDy7RreVRAteS3Bz19/X2df0gLU55LikgpaICbLYEgfV5kk0GpJItrRD6J3VfKIXpMMYP7CZkQJVuRQJWZkWPOOX7+mvys/q17K6/1boe9Npu7k27JiR3AofDocpPhcNh1aoqEAggEAio3EZJj3BiGEwj60GWy2WLVimrprTbbaytrSlBywXl9XoRiURQq9VUfpis2MAADkb2Djt04WFHu+r+Ql07tNtYiUF+in7YiRK2VRQrX9MVARnAM2pCkopju91WawSwjqfU+PspGAAslrlscQdsrh8q3S2yiQCP4ftyPnSFWW98AGzEQxiKtT8kVUnaWo9AtmOMuHbsxtbOVdHPLdPPZSPRz3VHy1f2K90NvCmEpNPpVJ01mJvI4uEsG0cfAgeCfsh4PG7ZoBnxVq/X4ff7kUgk1MJzu93I5XJYXl5GrVZDOBxWhRFYWxLYyK+SQUbsUjAqQpLQLUnpJ+q3KIDNeVC3O2b9tMhBKQJbfQ8J6ZvkfUoqUEbzymouowRSm6RJWfhDCkQm7etWuBwruelKwSrPBcByTv6wHqtci1zLvCeHw6ECcaSQlbVfe72epWqWwWboyg8FouyoQ1BQ2SnKgHXdb+VftPu8HevDz8lzSIEpi5rvJo1+X4QkvyQHkIXMWeRYLiKa+vRH0rfEyZHJyqRWJH8uJ5PgwrcLNpLnonaqb568751QzA8StvIBPIjQF6TctPnaMH3fO4EeJNPP+uaGKv2QdsLPzlKQ/mG6OuxoMqmsydfkGtR7u0qrVe4no7Bmbwdb7WP9aO1+xwKDC4Dwb3296fe0lTV5J9/lTnDPhaTMtQuHwwgGg6qjBjV2Cj6Wjmo2m1hbW0O5XEYkElG1GyORCBKJBDqdDvL5vG37G2mRyKo+dP7LQs4MY+dPrVZDtVqFy+VCMplEOBxGp9NR/TIZ1DBsi07fTKQPUj6426U0BlmRdg+13QbJY/stuq3OqZ9fF4rAhjUpN9lRYg10sFgGg3NkKgzHjlaG9PnzdVm2jnlrElLo8VidIpWKL4/3+Xxwu90qCKfVasHn82FsbEy5T2hFMgiQe4Op12oFWTOyBQ6HwxL7oSsmugtl0FrVsRULxHmW55XrVFLsg4ImH3ghScuRPeISiQS8Xi8SiYSqtUdOmXVYuRjK5bKKVnW51qv9h8NhtFot5PN5FdWqQ9eC7cowyarxMoq2Xq8r6zYQCKDZbKpuCLzHYUQ/IbkV9Ad0KyGz1cIZpH3ezvnszqUvcLs8yVEFNyypeEqlQafluPbk5ibXGJudc3Oj4CQFKwsRyOvINQpACUn2caUiPT4+jmg0amF7fD4fIpEIXC6XctcYIWkF50NGrXO8pdLIY4HB1qFct5JJkNfTPychrVS7tS5ZCnnsIOG8U9xzISkHToZgs6gyfxiAQz8kfQ+hUAh+v9/SCJaCVe82Lq1W2b2AC8/lclk6osuwZykwgfWKOqzPKrWdYYQMvOFvSVv3izzbjmVpd4ydIOUC6KeR2o39nSwQ/TvJH6mpDutcD4JMAWENV64H+nS5rqi8Ujiy9KRM5qZVKX/kpqenetgVIOB+wbUeDAaV0ORxUvGtVqtwOp0olUooFAoolUqWetKjDhmcRQZA9wHKXHdgsCtC3x90v6EeozCInqdVKz9r59+0uz6rOd3TVln6jQB3LrXlQ0xLjF3L2Z5KVuFwu91IJBJKM+TfDBpgUfJUKqUc8w6HQzn+HY71KiGs/s+F7ff7kUwm1blYN5al6Ui5ut1urK2tWazNYYb0Rcni7oDVbwtgEwUij+FxulWgY9BDbOczvlNsZdXKZ46+6FG2OhqNBvL5PBwOB+LxOEKhkNpM2SqOSinzmzudjmogEAgElHVXrVZRqVQsCg6j0WUUMfcFPn9svwVsPJfpdBrNZhPRaBQzMzOqubvMswOgmKhut4tcLodMJoNcLrepYtgog4Xha7WaxZIErJWNAOv601NzgM1VlfTP2wlLOz83YN1XpK9bz9PWP8Pja7WaYh93Gqh1XwJ3pDkv21P1ej3VRUTX4ulfYBQsaRqZ+8RyWZKakf0i9aLGLKHn9XrhcDjUBkm6VR7faDRUzVY56cMKqUHKwA35/nYsve349OwsQzuqBtiZoByUkqIvcP4e5jneCrKTDyMG9dqdHDe6UQAoTZ6+Q25o0hWif16PlqaQpELLeZB+UrJAoVBIMUm8PoUtaWAWEymXy6aAgIC0JHW3FGDdB/TAK51atVubdoKTf99OfIG8xnb2BBo0u1HE/p4LSWmdVCoVZZXplTMAIBqNIhKJwOfzYXx8XFXKoS+QQqtaraJYLCptKBQKKaqVA5XP51VFHS7cSCSCZDKp6JhsNotcLmep2sOHhG11GBbP38MK+ptY+YgKh6y0I/1Pdp/nb53O7He97d7XoOMHnWerz/K5ZBd7ttvZrfJWDxqq1SqWlpZQq9Wwd+9eRKNRS2R4MBhEIBAAAMt6GBsbU88PnxcG6fFYu+dBFgmgwJXv0YpgoYBgMKiq/jANRe4rMj+6Xq/j5s2byrowWIedkJTpXgA2CUbO7SAFWKdo+ym98vy6EAWsbfn4vy5cGcFMvzfnO5fL9Y1TuR3ckZDciWRmMIDDsbmEneXG/i+wZ35+Hj6fD/F4HIFAAPV6XS2CYrGIQqGAer2ObDaLSqWCUChkoWMZgJNOp5HJZBQF6/F4kEgkMDU1hXa7jaWlJSwtLaFarao+epIaKBaLKJfLtpN9N53G9wNyMbCMnwy40svS2QXByHMNgj5mdtrsICE86G8ddgtMgspPMBhUTcSpmI1ilGuhUMCVK1eQz+fx+OOPI5FIKJdFs9lUucUOhwPpdBq5XA4+nw/T09MIhUKo1WqK7ozFYgiFQsrKJKXNID36Pikg+YxRWEpKMBKJqCA/5lDLEpSlUgnFYhHhcBjT09Pwer2oVqu4dOkSisWi6vJjsLEfy+AsWvZkXqSfkmtIriWuDTtFUj8W2OynlLSqNJb0PVY/nvfL+BTuVZzvVCqlzrkT3LdiAltpFpKSlWkadMjKlA270G7Sp5IqoiYqtSQ9mrVfmLgeyCGvM2zQ/Ql2OaW6M70f3TKIRtH/lotACqVBysftjL+dH0MuOPrCZMUW+qVJ5Y8SOp0OqtUq/H6/pfoUK+GwtjKwXmyDATSyATOFIF/nxsa1yHXKtU7XCtcpXSF8Hhllzo480l+lsxtyrlutFqrVqun8oUFWqbErYK77/+x+2/1N9HvN7m8ZOW3HOtnRuvock1Ln99kNw+VNUXFHBzfndDqNer2uKBb6F2X6BcO6ZQdzRsTS8qNPggNMrTOVSuHrX/862u02VldXkc/nB3Y96HevwwZq5x6PBysrK7h27Zp6nQyA5PrtBJWdEtTPN6H/9KNwB533TpUVff64oafTaTidTpw6dQovvfQS8vk80un0HV3jQUW1WkU6nUaj0cDly5dx/vx5hMNhzM7OIhKJWGiyeDyOubk5Rc8zEG5iYkIJN1l0QKdc6fukJUkhJ3ObZZcPRqxTCNMa8ng8GB8fRzgcttCv2WwWKysrKJfLKkhw1NHr9VAqlZSFHQgEkEgkAMAS96ELL7vzAFABk/I4GVBFSApVnl+ncwk7oSg/y+fpypUrOH/+PFKpFK5evbpre/ObUkgC64NbKBRQKBT60nr64DscDrVgSOXICvY8hpSh7AZQqVRMaPj/gRtStVpFLpfD6uqqsh64OdFHq8NO+On/9/uRheTtKBp5Pd3nsRXs/B3637yuy+VCNpsFAFy8eBHnzp1T/uxRgizNuLKyguvXr2N6ehqPPvoo5ubmVBkwWoeMTuVcyTmUzdQJuUGSGZJVcvRjuQFLSo5+5HK5rIJyGJfAPEpSxNls1ghIDeVyGSsrK2i1Wpifn1e+XQpIuQZ1A8JuPdkFXun1cnl+WbhD93Nu11KV17p+/Tr+53/+B5lMBisrK7s1RG9eISmhRzjd7ud2eswoY6uAG/1Y+Rn99a2u0e98g66znfMP+qz8W9eC5b2N+jOyXb/OoDWqv7cd37PdOXTabRhdHga3Dztf5m7A0Rv11W9gYGBgYNAHoxeyZ2BgYGBgsE0YIWlgYGBgYNAHRkgaGBgYGBj0gRGSBgYGBgYGfWCEpIGBgYGBQR8YIWlgYGBgYNAHRkgaGBgYGBj0gRGSBgYGBgYGfWCEpIGBgYGBQR/8f2eFj842tD/5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_outlier_issues_examples(outlier_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Near duplicate issues\n", + "\n", + "Datalab also detects which examples are (near) duplicates of other examples in the dataset. Near duplicate images in a dataset can lead to model overfitting and have an outsized impact on evaluation metrics (especially when you have duplicates between training and test splits).\n", + "\n", + "The `near_duplicate_issues` DataFrame tells us which examples are considered to be nearly duplicated in the dataset (including exact duplicates as well). We can sort all images via the `near_duplicate_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue, in this case, how similar the image is to its closest neighbor in the dataset).\n", + "\n", + "This allows us to visualize examples in the dataset that are considered nearly duplicated, along with their highly similar counterparts." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.446019Z", + "iopub.status.busy": "2024-05-24T23:48:43.445676Z", + "iopub.status.idle": "2024-05-24T23:48:43.461820Z", + "shell.execute_reply": "2024-05-24T23:48:43.461305Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_near_duplicate_issuenear_duplicate_scorenear_duplicate_setsdistance_to_nearest_neighbor
30659True0.001267[30968]0.000022
30968True0.001267[30659]0.000022
3370True0.001454[47824]0.000026
47824True0.001454[3370]0.000026
9762True0.001854[54565, 258, 47139]0.000033
\n", + "
" + ], + "text/plain": [ + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", + "30659 True 0.001267 [30968] \n", + "30968 True 0.001267 [30659] \n", + "3370 True 0.001454 [47824] \n", + "47824 True 0.001454 [3370] \n", + "9762 True 0.001854 [54565, 258, 47139] \n", + "\n", + " distance_to_nearest_neighbor \n", + "30659 0.000022 \n", + "30968 0.000022 \n", + "3370 0.000026 \n", + "47824 0.000026 \n", + "9762 0.000033 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "near_duplicate_issues_df = lab.get_issues(\"near_duplicate\")\n", + "near_duplicate_issues_df = near_duplicate_issues_df.query(\"is_near_duplicate_issue\").sort_values(\n", + " \"near_duplicate_score\"\n", + ")\n", + "near_duplicate_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View sets of near duplicate images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_near_duplicate_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=3):\n", + " nrows = num_examples\n", + " seen_id_pairs = set()\n", + "\n", + " def get_image_and_given_label_and_predicted_label(idx):\n", + " image = dataset[idx][\"image\"]\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " return image, label, predicted_label\n", + "\n", + " count = 0\n", + " for idx, row in near_duplicate_issues_df.iterrows():\n", + " image, label, predicted_label = get_image_and_given_label_and_predicted_label(idx)\n", + " duplicate_images = row.near_duplicate_sets\n", + " nd_set = set([int(i) for i in duplicate_images])\n", + " nd_set.add(int(idx))\n", + "\n", + " if nd_set & seen_id_pairs:\n", + " continue\n", + "\n", + " _, axes = plt.subplots(1, len(nd_set), figsize=(len(nd_set), 3))\n", + " for i, ax in zip(list(nd_set), axes):\n", + " label = label_issues.loc[i][\"given_label\"]\n", + " ax.set_title(f\"id: {i}\\n GL: {label}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(dataset[i][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " seen_id_pairs.update(nd_set)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.464328Z", + "iopub.status.busy": "2024-05-24T23:48:43.463978Z", + "iopub.status.idle": "2024-05-24T23:48:43.469671Z", + "shell.execute_reply": "2024-05-24T23:48:43.469222Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=3):\n", + " nrows = num_examples\n", + " seen_id_pairs = set()\n", + "\n", + " def get_image_and_given_label_and_predicted_label(idx):\n", + " image = dataset[idx][\"image\"]\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " return image, label, predicted_label\n", + "\n", + " count = 0\n", + " for idx, row in near_duplicate_issues_df.iterrows():\n", + " image, label, predicted_label = get_image_and_given_label_and_predicted_label(idx)\n", + " duplicate_images = row.near_duplicate_sets\n", + " nd_set = set([int(i) for i in duplicate_images])\n", + " nd_set.add(int(idx))\n", + "\n", + " if nd_set & seen_id_pairs:\n", + " continue\n", + "\n", + " _, axes = plt.subplots(1, len(nd_set), figsize=(len(nd_set), 3))\n", + " for i, ax in zip(list(nd_set), axes):\n", + " label = label_issues.loc[i][\"given_label\"]\n", + " ax.set_title(f\"id: {i}\\n GL: {label}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(dataset[i][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " seen_id_pairs.update(nd_set)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.471769Z", + "iopub.status.busy": "2024-05-24T23:48:43.471434Z", + "iopub.status.idle": "2024-05-24T23:48:43.946234Z", + "shell.execute_reply": "2024-05-24T23:48:43.945513Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkK0lEQVR4nO19a2wcV/n+s7PX2Yvt3cRxrnYSx+TmxE6aplSVCo36IQSomqQoStIWVQotFKpKlAISFBD0Ay0gCrRQKKAgaKuoVAoRDSVUSSpBi0oJCQmhEJI6VzvxbW3v/Xb+H/x7j989PrO7iXftXf33kSzvzs6cOfPMO+/tvOeMTQghUEcdNQhjpjtQRx03irrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i7rw1lGzqAtvHTWLsgtvd3c3xsbGtL9t2LABR48eLdrGc889hzVr1qC7uxudnZ344Q9/KH/L5XJ45JFH0N7ejmXLluHZZ5+Vv129ehXbtm3D2rVrsXLlSjzzzDN57b755pu4+eabsXr1aqxatQpvv/02ACAej+P+++9HZ2cnOjs7cdddd6G/v//6L75CmElOAeDVV1/FmjVrJD89PT0AgG984xtobm5Gd3c3uru7sXv3bnlMsXtRFohpxE033SSOHDlSdL9wOCw/j4yMiEWLFoljx44JIYT41a9+JTZt2iQymYwYHBwUra2t4tSpU0IIIXbt2iW+8pWvCCGEiEQioqurS7zzzjtCCCEuX74s2traxOnTp4UQQiQSCTE8PCyEEOL73/++2L59u8jlckIIIfbs2SMef/zxslxzpVFpTo8dOyaWL18uLl++LIQQYnR0VESjUSGEEF//+tfFo48+qj1foXtRLpRd89psNoTDYQDAW2+9JZ/0Bx54AJlMpqQ2Ghsb5edoNIp0Oi2/79u3D5/61Kdgt9sRCoWwY8cOvPzyywCAEydOYMuWLQAAn8+H22+/Hb/+9a8BAD/+8Y+xa9curFy5EgDgdrvR1NQk+xyLxZBOp5HJZBCJRLBw4cIp8VBOzCSn3/ve9/D5z38e8+fPBwAEAgF4vd6i5yt0L8qFivm8qVQKO3bswHe/+12cOnUKO3fuxIkTJ+Tvzz//PL72ta9ZHv/b3/4Wq1evxuLFi/GFL3wB69atAwBcuHABbW1tcr/FixfjwoULAICbbroJL730EnK5HPr7+/HHP/5RmrjTp08jHo/jzjvvRHd3Nx555BFEo1EAwEMPPYRAIIA5c+agpaUFIyMj+NznPlduSqaMmeD09OnTuHDhAj70oQ9h3bp1eOKJJ5DNZuW+r7zyCrq6urBp0yYcOXJEbi90L8qGsupxIQQAMTw8LE6cOCEWL16c99vSpUtLMnEc77//vuju7hbvvfeeEEKIzs5O8dZbb8nfn3vuOXHfffcJIYTo7+8Xn/zkJ8XatWvFnXfeKR588EGxdetWIYQQH//4x8X69evF0NCQSKVSYvfu3eKxxx4TQgjxu9/9Ttxzzz0iHo+LZDIpdu7cKU1eNWAmOV2zZo3YsmWLiMViIhKJiE2bNokf/ehHQgghent7RSqVEkII8ec//1k0NzeLnp4eIUThe1EuTGu2wWazXfcxixcvxi233ILf//73AIDW1lacP39e/t7T04PW1lYAwOzZs7F3716cOHECf/rTn2Cz2bB69Wp53Ec/+lEEg0E4nU7s3LkTf/3rXwEAP/vZz7B161Z4PB64XC7s3r07T4tUMyrNaWtrK7Zv3w7TNOHz+bBt2zbJ29y5c+F0OgEAt912G9atW4d3330XQOF7US5UTHhXrFiBTCYjheCNN97A2bNnSzr29OnT8nN/fz8OHz6MtWvXAgA+8YlP4IUXXkA2m8XQ0BD27duHHTt2AAAGBwelL/ePf/wD+/fvx8MPPwwA2LVrF44cOYJkMgkA+MMf/oCuri4AwNKlS3Ho0CEIISCEwGuvvYbOzs4ysFBezASnu3btwqFDh5DL5ZDJZHDo0CHJ26VLl2SbZ86cwfHjx7FmzRoAhe9F2VBWPS4mTJwQQvzlL38RXV1dorOzUzzwwAOiq6tLmrif/OQn4oknntC28eCDD4qVK1eKrq4usXbtWvHcc8/J3zKZjHj44YfFkiVLxNKlS8Uzzzwjfzt48KBYtmyZWLFihbj55pvFm2++mdfu008/LVauXCk6OzvFjh07ZD8HBwfF9u3bxapVq8SqVavEtm3bRH9/f/lImSJmktNsNisee+wxsWLFCrF69Wrx6U9/WiSTSSGEEPfff79YvXq16OrqEuvXrxevvPKKPK7YvSgHbELUZ1LUUZuoj7DVUbOoC28dNYu68NZRs6i48L777rv4yEc+giVLluCmm27CunXr8OSTT8rfP/zhD2P//v3X1WY4HMa9996Lzs5OrF27Fp2dnXjppZcAAHv37sXdd99t2ReKonU4evQoXn/99evqy0ygzuk4HBVp9f9w8uRJbN68GXv37sXHPvYxAMDQ0BC+/e1vT6ndr371q2hubsbJkydhs9kwNjaGvr6+osdt2LAB+/bt0/6WyWRw9OhRhMNhbN68eUr9qyTqnE6gopr3qaeewp49eyTJABAKhfD0009Pqd1Lly5h3rx5MkEfCATQ0dEhf49EIti5cyfWrFmDDRs24Ny5cwDGtUB3dzeA8UR8U1MTvvSlL2H9+vV49tln8fzzz+PFF19Ed3c3vvnNb06pj5VCndMJVFTzHjt2DNu3b7+hYw8cOIADBw7g5z//+aTfHn30Udxzzz3Yt28fbr31VmzevDnvZv7tb3/D8ePHsWTJEnz5y1/GU089hZ/+9KeT2hkZGcHq1avx1FNPARg3neFwuDLle2VCndMJTGvA9vjjj6O7uxsLFizAv/71r4L73nXXXVqSAeCOO+7AhQsX8K1vfQtNTU146KGH8NnPflb+fuutt2LJkiXys9UolNPpxL333nuDV1Md+P+Z04oK77p16/DOO+/I79/5zndw/PhxOJ3OvJK8G4HP58OWLVvw5JNP4tVXX80rt/N4PPKz3W63LBv0er0wjNpKuNQ5nUBFz/LFL34RL7zwAg4ePCi3pVKpkmtQrXDo0CEMDw/L73//+9/R3t4+pTYBoKGhASMjI1Nup5KoczqBigpvV1cXDh48iB/84AdYsmQJNm7ciDvuuAOf+cxn8IEPfEDut2fPHixcuFD+vf322zhw4AD27NmjbffkyZO4/fbbZVrnwIED+M1vfjPl/m7duhXHjx+v6oCtzukE6rUNddQsasvhq6MOhrrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i5ILc25kinWpoOFE8X+zd+l8pmnivvvuw9133w273T7puGQyiXA4jEQigUOHDuHAgQNydjC1Qf3mbZcbN9ruTHK6devWPE6Jq3Q6jXA4jHg8jtdffx379++vWk4rWlWmgl94LpeT26mj9N/v92Pu3LloampCe3u7XHopkUggl8tJ0gKBAEKhELLZLN577z00NzcjFothbGwM6XQ6jwB+Azn5/H+tQr0e/plzOn/+fDQ0NGDZsmVYtGgRcrkcUqlU3go4Qgg0NTUhnU6jtbW1qjmdduHVaQT1Qv1+P1asWIHm5mZ0dHSgra0NmUwG4XAYqVQKQgjkcjk4nU40NDTAMAycOHFCLtWUTCZlkYqOxFL6UCvgnNKDDeg5Xb58OebMmYOOjg60trZKTkkoOac2mw3Hjx+vak6nVXh1ZsZms8HhcMAwDPh8Png8HsyZMwfNzc2YPXs2TNOU+xqGAYfDIYm22+0wDAM2mw0NDQ1YsGAB/H4/AGBsbAzJZFJq60wmI7V9rQqqFQpx6vV6YZqmXIdt1qxZkzg1DEO2QUJYC5yWXNtQLv9MNS9utxsNDQ0wTRNdXV1ob29HMBjE0qVL4ff70dbWhgULFgAAstmsFFyC3W6HEAI9PT04c+YMxsbGcP78eYyMjODixYs4c+YMEokEhoaGEI/HtX2YKqbT5y2l75zTtWvXSk7b29vR0NCAtrY2zJ8/H7lcDslkUroNQggYhgGXywWbzYazZ8/if//7HyKRCHp6eiZxOjw8XJDTqfBcdT4vkO8nAePFy6ZpSp+so6NDPvGmacI0TWQyGelXkaagtkigGxoa0N7ejmg0CrvdLs1hX18fbDYbnE4nEonEdF/utII4dTgcME0TXq8X8+bNw7Jly9DY2IiFCxdKTZzNZqWbYbPZ5H9gIh5pamrC0qVLEY1GYRhGHqeGYSASicwop9MqvB6PB36/H263G/PmzUMwGJTBmcfjQUdHBxYsWACn0ykLnqPRKDKZDIQQ8n8ul0Mul8szj7lcDqZpwm63Y+HChQiFQvD5fGhubkYikUB/fz+i0SgSiQTGxsaQSCRw8eJFDA4OTicFZQHXSh6PB4FAAC6XC/PmzZPXTZwuW7YM8+fPh8vlgmEYcv3hVCqFXC6HeDwuBRkYt2QejweGYSCbzcI0TRiGgYULF2LWrFnw+/2YM2fOJE6j0SiSySR6enomcVpuSyfbnU63IRgMYsGCBWhoaMAtt9yCjo4ONDU1YcGCBXC73XC5XHA4HFJoSUjJv4rH48hkMshms8hms3A4HPD5fHA6nQgEAnIBZboZmUwGqVQK6XRamrihoSFcuXIF4XAYhw8fxr///W8Aky0C31YMM5kqI04bGxvxwQ9+EB0dHWhsbJScOhwOyWksFpPaNpfLIZ1OY3R0dFLAFggE4HQ64ff7EQgEpCCTpUun00ilUhgaGkIsFkM4HEZvby/C4TDeeOONvEX96Dp1WaZCqAq3wTAM+P1+eDwehEIhzJ8/X6a4AoEAfD4fXC4XnE5n3vQRh8MhBRcYJyAajSKbzUoBJs1Lx1Pekn6jAI/ym4ZhIJ1OIxQKwW63o6WlBaOjo4jH4wiHw3kpo2qGjtOGhgaEQiE0NDRoOSWuKGjmKUceS9jt9jxOaQlTug+GYcDpdMJms8kpP+Q7E6cjIyOIx+MYGRmZlIYrJyouvF6vF7fddhva29sxe/ZstLW1we12IxAIwOPxyCX1Y7GYdAFcLhf8fr80YW63WwoZRbjZbFb6dI2NjfLJJrOYTCaRyWSkq2Gz2eDxeNDS0oKWlhak02nMnTsXQ0NDOHXqFF577TWMjo7WRCZCxym5ZJzTeDwOu90Ou90uNanT6ZSCGYlEpDYm7etyuTB//nxpxWjgIhaLIZFISOUhhIDdbofX64XX65WctrS0YHBwcBKnleC14sLrcrmwaNEirFq1Cs3NzVi8eDEcDod8/wMRQxqAk01C7PP5pFYgUGQcCARkUj2dTkvBpnldlJskLeR2u+Hz+SCEgN/vRzweRywWg8vlqjQVZYMVp3TNmUwGiUQCQgg4HA7JKblmlJIEMMni2e12LafkglH7NptNunlutxumaSKXy8Hn80llVGlOKya8wWAQLS0tCIVCWLRokQwg4vE4bDabdAnIrFDEm81mkUwmMTw8DIfDIfOK8XgcPp8vT/BN00QikUA4HJb70Y0jDU1al8xeKpWSfTQMA6ZpYu7cueju7sbAwAAuXbqEgYGBStEyJQSDQcyZMwezZs3Sckq+Ph+soOum1JbD4UAikYDX65Wc2u12GUd4PB4tp5RS4wMQdO94uo1ctJaWFnR1dWFwcLBinFYsYFuxYgU2btyIWbNm4bbbbsPSpUsn+UE0wMBTXwDkkw6Mjwx5vV75hJOQ0w0iQqPRqHxBCgUIZK7oHCTEXGubpolLly7hxIkTGBoawuHDh/NeUlIKpitgW758OTZu3IjZs2dbcgpADt7wvnFFQdaMLJw6OkYPAefUbrfncU8c823EqcfjkZwODg7i8OHD+Oc//3ld1zqjAZvD4UAgEEAgEIDb7c67eK4N+eiOSrQQAul0GslkErlcTkbOPOjg7gcJvGEYkwp51DF5/p38wVQqJQOUagT1k9KNOk4B/RCtjlNyKagN2o/qHYhTnmPn7fJz83NSXt3n8yGZTFaM04oJLw06hEIhaarIpyUS6GL5mgMqCfF4HIlEAna7HbFYTOYquVtAx3Fks9k8X46Tzwc6qE8NDQ3IZrNV7fv6/X4sWrQIwWAwj1MKdPlDzc04kJ+i4sGc2+2WqTCeDiPh5Mdb1TToOHU4HGhsbEQul4Pb7a4IHxUTXnpJn9/vlwLHNS0fEy9UzEFPPw1aULqLfFc+UkcpHAKdj+9H7gNpfkqreTwemKYJh2PaBx1LhsfjQVNTExoaGiQfdI08jgCQ5+9zzQpMLFJit9uRTqfl/VELb1wuV57g6YZ+gYl6CH5vKZ5IJBIV47Rid8rpdMLr9UrfiucJudvA843A5MEC7q/ybeQ+8G2FwH1r/pn6RJF4NS//5HA4ZGqK8qsA8sw5kB9MqbxRiotrS54T5+1wLrgiIHC/Vy2LpGyEy+XS1mKXhY+KtIpxzRsMBmXJIpHCq8LoiVeLbbhwkU/G/2gbB90EFZRiUx8Cbg7tdjtM06yof1YOOJ1ONDY2Ss1LnNJn7hqp7pdu5NCKE4IqrKoA8+N5WSa5bF6vF6lUqvY0Ly+i4WbLSlOqpo1rVb6N738jfVKP5QKgeyiqCdRH0mRWnBYb4rba73quXdXoM8FpRYRXjXq5eSPiuYYgt4K7EDqXgJfuqSkw9Tx0nKp1eR/4CBwNilSr22BlVXigxH1ONaXI2+C/E6e82IlnIFT3g7I+PANBLgcA6TtPB6cVj050wshNDAkSF3h+rK4d+q574olgbgpV00hmVgghg0BKw1Wz5lX9SuKC88mvl/bj9SEqVOHlDwMdz9tS3Thql3NKbkNNaV6bzSYrmXw+nyy8icfjSKVSeW4EMFF8Q1VPauDB2+XbrdI2KohAOq/uxtAN8Xq9yGQy8Hq98Hg8eWP4MwkrTmOxGNLp9CQBAvIHKbhG1bWtfi7kctA5SuGUfN5sNiuHo3kNRTlQVuGlfCmfdmKaJnp7e2WOFsg352ReDMOQNaa0D/1XieV5zGL9oVE5fk5uUrPZLJxOJ4LBIFwuF4LBIBobG5FMJjE2NjbjlWbEqdfrzeP0ypUriMVikywKcex2u/Mq8FTorCDxolpK2o/OQTMtdJyS5vV6vQiFQjJwb2pqkrXU5eK07JrX4XDA6XTm/VcDNqs/+p23xz+rQ57qufln9U/N93JTyPtNf1NdrLlcoL7x/qkja7Sfer2qr6trG4B2X6tji3HKBV+VhXJzWnbhdblc8Hg8eSNVapbAimg1paIb4qTvVpqZawPub/H9eI6U2qNzuN1uOeFwdHR0xjUv55TnYYspAxIsp9OZN1OCjlXdMGqLoIsTyA3TPQzEqep2CCHg8Xjg8/kAYFIdxlRQEc1LQ47FnniVbJ4C4pFyIS2gG0HjRNM2fowa+PD/LpcLXq83z5+cSaicAqVZHp4nB/KzO7w6zEqz0jH0n/u5HLpcshpcUxkmxTXlQkXdBnXwwTAM6d/q3AT+nT+dqonXZR104A8Bv4kUKOqIJJ9OHWqeKaic8iFgoDinVoLOhY3vp2Zx1NFNXRqTc6rTvDSCWe7BirILL5kIp9OZNwcNmJjVSmPqqvkoJiz8idaZT3U/XrsATCTNKfKNRCKTNLBpmmhsbJTZkZmGzWaTBfTEKS+cKcSpyhGHqsW5UOpcMQ4upDRtyOv1Sk6pPbrvpmkiEAggkUhUt+alp1DVkARVQ+jIKQXF0i2qkNP5qA/8O9+f17hWi+bl+dJSOS0EK59fl2FQwc+t+sXcXeGoFKdlF14aVVFNHNUxjI6O5l0ML5FUC6p1gRqdRzcmr27jeWU6D033Jn+aTBmVBJIZpnTQTIM4JbOrxgCZTAZjY2NSaXDfVOWUeCFTDmCSqbdy43T9ovuXy+XkXDg+AldpTivi81IlkTr7l6a00zwpl8slfU+eZ6T9uTbhAZxOeHVaQBViOg8tV8TLCWmomPtn1SK8KqfcJKfTaUQiEdjtdjnBkoSKxwhWGpk44dZIJ8BWrgf1iRQC55SEl/Lt5ea07MPD3HSQlqCAI5VKIRKJSAHxer3a4zlUn9bqv+5YXb+SySSi0ajsFxVyE7gGqxao5pj3nYTXMMZnXZumWVB76gRRFWCr46z6Rfd1ujktu/DydAoFFmQuRkZG8J///Ac22/gkvVAoBJvNlud/EXRCrPOnrHw91TekwGJoaAg9PT0AgIULFyIYDMpAiPrq8/nyUlMzDc4pFZFTvXRvby/++9//ymA5GAzmcaq6VbSNuNH5/wQrbU3byRePRCJ4//33AQCLFi1CKBSC0+mUFoKmBJWb04prXnqiHQ4HstksRkdHAUyexavW8+rapTZ1GkGnidXjuY9In7mWoAeE54irAZxTXi+rclro3cPFzHUhzq+HU/J5+T2tFKcVy/MCmGSeM5kM+vr65G9U+MIdfLU9wvUKLfd1+eDH6Ogoenp6YBgGWltb4Xa75UNGDxr5l9Xi81KwA0CuceFwOGQB0bVr1wBALpEFjA8MkM+ptqfGE4XOzY8BJlwA/sCPjo7i/PnzMAwDixcvzhtdrSSnFQvYhBAyr0fFOlx4I5FInvCS78TbUtvWCXAh35dnGYBxIkl47XY7Nm7cCLfbLRfU4JFxtQkvzSUjTt1uNzweDzKZDK5duwYhBGKxmBRWugZajBuYnPqycgv47+p+vKoMGOeUlpWlmILuNa3nUClOK5bnpVQNrxEVQshJg8lkEslkMi+dxZ9mnQ9rFfXy8+v6w9ulBfvI5HL/XM1mVAO4b8kFBpgQRlrVRsdpIZNf6vn5Zx2ntOqROsrGayp0Q8tTRcVG2Ej7AhNJaiHGFwehFQb7+/vh9/sxe/ZsGIYh0y2qaSMUGgrWCTs98ST0udz4QhpXr16V2Q9yKVKplHxxiBotzyRIy6qckntGo1qZTAZDQ0MYGBiAz+fDrFmzYBiGdDNUTnXFOKpi0N0HcgGAidx4JBLB1atX4XK55MNDDxMtO8WnL5ULFRmkUNe/Im0MQC45Sks4UQRaLAfIA7br2YfnHEnzxmIxuN3uvPSQWjNQDS4DgR5+VYhIGGhNMeKU/EtuposV81hB3UfNfFCBObks3JrxWuJiluBGULGSSAra6KkjMz02NoZ4PI6BgQFcvXoVhmHIlSP5EKLuQq1uBN+fD3XyG5xIJJBOpxGPx6WGB5BXc0wPn9frrZr5bDabTfq3pHn5MHY2m8XIyAgSiQSuXbuG3t5eAJDBKHGqG9Sh9gH95FadpgYgByZoQcNkMqnllM7pdDpl/6tWePngg+o20GjayMiINDNXrlzJW4eMO/WFcrrqECn/z3+nAJKWLqIVISkqJ8HgfiI9fDQDY6bBBx/IpyThpYxCOBxGJBJBX18fQqGQLNRROeUZg1IsGAmfWifCNWsqlZIro1txWhPCC+gzAOoTTP4Q+b8UlFyvWbHSzDwzwQNHPltYNwwNTJjjahBcgs4SWXFK8wXLxam6jSsWchnIJbMa2idOy23Jym4X1eIZ6jR9t9nGE9nDw8NyKXjSLvzi+P4qVHL4vjy3S2k7WiqV3kXBLQJfbI40NWmsahFgVeupf+TTDw8Py1cWkGYuNORL39WHQ6eAyIfmdRY0Jy0ej2s5Vd2Gqq9tAPJTXdwE8d/5SzjUJ/NGL1An0Pzm0gRPK63LH7hq074EVaNxV4qsGWVN1PSU6loVuz6dBdVxymdZ6zjli6VUvfDqOsiFhjQJX3Jf1bK6z4VMGg/Y6Bzk6/JInA+E6NpRR5CqBTrzry4BwBdusRIW7lLxbeo+6me6Z+R+FeOUB4iVchsq4vNagRPNBwWs/EwukNzXsgo2VM2Sy+VkNByJROR7w7hlULWT6kpUA6yEif8H8tfgVTlV21AHgoq5ZwTStqlUCrFYzJJTDlIINaF5Veiq/wttvxEU0h68qL3QOQvdyGqEFadWmMp1qcdyTVzKsZXgtCIBmyogfBsXJEpq6wYIdH/0m9V5dcfzIJEPV5JbQYl0XUBULdDV36r8AhOvQ1Cjfw6dH1tIsKwCYwCSP64U+DY6jjRvuSdglv0OWS3FpJLN/TP+VwqR1IbuQeH7qYKve6jU/lar9i2VU/pcKB1Y6jVa7cfdOVXx6LaVUmtxIyi78KojOaoAcfBCmEqYFivh5udXl7BX03vVgFL5BEpbBlbnL18PinHK76t6DeVE2YW3EMn8MzfjumwDUFi7lgorDaSaOJ4iq+ZsQzHBLVUhTJVPK07JdaH7yhVB1QtvIaiE8ZSZuiRRKccXQilEqQ9QKQIy09A94Byk+XScTvWaSuGFWzN+XCUsWVk9aNJmqkDQbxykIZLJJIaGhgCMv4yuWHBWTIDV49WUGO8PJfVp+gwFFtW0Yg4wUXpYLGVIyoBeGAhM5lTdvxCsXJBinMZiMTlETXxmMpmyc1r2VBkPHHQBlop0Oo1oNAqPx5M3B0uX6tIFdDr/TRdRA5hENFX784Jp7jZUg/Cqab5CnNI+NKPY7XZbzmujtnibxdJsOv4LccozDbx6r1wou/DqUiVW6TMr88K/W5lzNV1kFRHTdp3vRVVR1Y5CnHJwy8dhFX+o20vNPtBnPopHv9ELCqk/umPLhbK7DfwFy9ThUnOsXHitTL/6MOhSc+qxXKNSfS9VYdH0lWp9CxBpUuKUb+cCTJzSlKBCnPLvqkLgbdNnK6HnAS4AuaBLJBKR7kIlUXbhVR32QiapWCK9VJSyvy5ooMAGgPTHqsFV4OBBrZWPS6BgTReklXpdpcQU9F83rE9KaTp4LLvwUnEyvVnR6mkm86JWetHv/OLJRdCtrM21q64/1BYvjyTtHY/HEYlEYJomPB6P1jeeaRBXVDdL12tlzUhDq9pXBXGqum60v+pb65QQzWrmiwBSEGyaply9p1IZnIr5vMU0L5k4q1WydRqAR9zUtvpaJUA/ykfTZvgaDjS7gtb14kJbLcIL5HNF18r9W7rWQu+gAPJrrXkgqGpq4qgQB7QfzVmk9qnajBYFrKQiKLvmVf1Q0nDZbFYucMehC7SsQNpCJ2A8y2HVjqrd+dviuZauJsGl6+LZBkqHkaa18vmtvquZBl2QfL19o+885inUh3Kg7JqXBIJmkeZyOYTDYTnXSl1DSw2urMA1At9G4G6JlQuhPlRk4vh8Ozq+mgSY3AY+25ne7TAyMnLdnJLg8gAY0OeNaX9g8gxgVdNzTml2Np+TWNX1vFYpMRJo3Tu4SgkQCvlualtcoxTbn/uNpZ5juqHmeWnbVDjlsLreUttQ91N98VLPdyOoiM9LppgI52YPmBywWWUdCKUKrU4T61JtBF7VpqaDqqm2gVuzUjhVJ5mqKOZm8O2cVzWW4EEwwapmuuoDNtIIao2nLh/L1wezMlsqivmxOpK5ybMq/uHHq2Z3psG1LK/T1XHKFUcxTgtZJ/Whp22cU3U0Uj3+erT/jWJaXiKorrVFN4SGEV0ulxzKpBvENYxVqketn9BNP6HzRSIRDA8Py+WP6HdeTcYXR6mWJU5ttolViIpxSpo3m83eEKdqDlcHntGJRCIYGhqaxCnnkzIS5P+WExV597DH45F5Puo43QTySWOxGBKJBFKpFPx+P5qamuSFc8Eu9BSrN4/2oyWk6HyZTAZXrlzBuXPn0NfXJ4WTp3r4ijS8rzMNm218/Te/3w+fzwev1yvXfSuVU1pelnLqqlWk86juFc8kkIal1GQ6ncalS5dw7tw59Pb2IpvN5r2p0+12yz8KDqt+0REO1TfjQkjbyczxsXs6VpeXJFiZNdqXzk2DJpFIBCMjI3nLEulMb7WDXxt9J+g4VYNnXWCqE2DOK+c0m83KBfSIU3qZCj9HzbkNqVQKPT098uXILpdLrhyYzWZx6dKlSfm/s2fP4he/+AVCoRCam5sRCoXyFswgjahLtXDho5tFL21Jp9MYHh5Gf38/IpEITp06hb6+PoTDYblfb28vzpw5g9HRUdlX0l79/f1V8f7hVCqF8+fPY2xsDOl0WgZJFJhdvHhxUj/PnTuHX/7yl5g1axbmzJmDYDAoLZFhGHkjiroYgP4om5HJZBCJRJBKpRAOhzEwMGDJaV9fn+SU+hqPx5FMJnHt2rWyclp24b18+TIGBgbk29T54nC9vb2TOt/T04MXX3wRpmli48aNWLlyJUzTlG9hb2pqQiAQyHMDePqIgj7y95LJJHp7exGNRnH27FmcPHkS0WgUAwMDiEajACaGUq9duwan04l4PI5AIAC3241oNIpEIoGBgYGqEd6LFy+iv79fCi8tsCeEwJUrV7ScvvzyyzBNExs2bMCqVavg8XjQ1NQEl8sl3wXCaxO4RieBJauVSCRw5coVRCIRnDt3DqdPn9Zymslk5FKn8XhcvoeCFEK5Oa1IPa/OXbAyJSRIvPJfTQEVOw/fj29XZyfrcpJ0DA9mpsvslQreL/LXC7k8VHBEbkMp94HOU+g+EY+FOFUzIdTnSnBqE9V0l+qo4zpQPZn4Ouq4TtSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ/D8OXe44Ro7dywAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkOklEQVR4nO1deWxcV/X+5s3+ZvV4S5rNdpq4JLGT1ElY0iVtlJa2oa2QaCQKqghISAQEqghIIFQJgqjEIjVSRRBqQ0EqVEhd6IKaoKbQUkhVQpo2apYmsZsQJ15ie8azz7z7+8O/c33enTeO7cyzZ2A+aWTPW+5773vnnnu2e8chhBCoo44ahDbfN1BHHbNFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkXFhXfdunVIJBKW+zZs2IDXX3992m0NDAygtbUV999/v9z24x//GOvWrZOfcDiMhx9+GABgGAYefvhhrFq1Ct3d3bjtttvw4YcfAgDee+893HLLLbjhhhuwZs0a7Ny5E+l0uuSajzzyCBwOB44ePTrt+5xLVILfxx9/HF1dXVi3bh3WrFmDvXv3Tmvfrl27TNz7fD7T/j179mD58uVYvnw5vv/978/+IacLMYfo6ekRhw4dmvbx999/v9i5c6e47777LPdnMhkRi8XEO++8I4QQ4rnnnhObNm0SuVxOCCHEj370I/G5z31OCCHEqVOnxLvvviuEEKJQKIgHHnhAPPLII6b2Dh8+LO666y6xbNky8e9//3tGz1YNmC6/o6Oj8v+xsTGxZMkSceTIkavu4+jv7xc+n0/09/cLIYT461//KlatWiXGx8dFJpMRPT094qWXXrrGJ5oaFde8DocDo6OjAIC33npL9uAvfelLKBQK027niSeeQHt7O26++eayxzz//PNYsmQJenp65LWz2SwymQyEEIjH41i8eDEAYMWKFeju7gYAOJ1ObNy4Eb29vbKtVCqFr3/96/jVr341wyeeW1SC30gkIv9PJpPI5/PT2sfx1FNP4c4778SCBQsAAM888wy++MUvIhAIwOv1YufOnfj9738/08ebGSrdGwCIkZERkc1mxeLFi8XBgweFEEK8+uqrAoDUDL/85S/FD37wA8s2zp49KzZs2CBSqZTYv39/Wc27bds2sXfvXvm9WCyKb37zm0LXddHa2ipuvPFGkUgkSs4bHx8XnZ2d4tlnn5Xbdu3aJZ588kkhhKhqzVsJfoUQ4o9//KNYtWqV8Hg84mc/+9m09xFWrlwp/vSnP8nv27dvF08//bT8/vLLL4ubb755to85LdgmvO+++65oa2sz7evo6LjqsGYYhtiyZYv45z//KYQQZYW3t7dX+P1+MTw8LLcdPnxYbN26VYyMjIhisSh2794tHnzwQdN52WxW3HPPPeIb3/iG3HbgwAGxfft2+b0WhHe2/Ko4d+6cWLdunThx4sS09/3tb38TCxcuFIVCQW6bD+Gd02iDw+G46jHxeBzHjh3Djh070NbWhm9/+9s4cOAAtm7dajpu//79uO+++xCLxeS23/72t7j99tsRjUahaRoeeughHDp0SO7P5/PYsWMHFi5ciMcee0xuf+2113DkyBG0tbWhra0NFy5cwN13340XX3yxAk89d5gOvyra2trw8Y9/HC+99NK09z3xxBN46KGH4HQ65balS5eir69Pfu/t7cXSpUtnfD8zQqV7A5Rh7bXXXhNCCHHw4EHTsDZdWGneYrEoli5dKodMws9//nOxdetWkc1mhRBCPProo+KOO+4QQgiRz+fFZz/7WbFz505hGMaU16wFzXst/B4/flz+PzAwIFasWCEOHDhw1X1CTDhxgUBAnDp1ytTmoUOHShy2F1988Voe9apw2dUpPB4PnnnmGXzta19DsVjExo0bsXbtWrl/3759uHjxIn74wx/OuO2//OUv0DStRBvv2rULH3zwAdauXQu3240FCxZg3759ACYcimeffRbd3d1Yv349AGDz5s14/PHHr+Ep5w/Xwu9jjz2GN954Ax6PB0IIfOtb38K2bduuug8A/vCHP6CnpwcrVqwwtbllyxbs2LEDXV1dAIAdO3Zg+/btdjy6hEOI+kyKOmoT9QxbHTWLuvDWUbOoC28dNYs5Ed533nkHd911F9rb29HT04P169djz549cv+WLVvw/PPPz7jdf/3rX/j0pz+Njo4ObNiwAZs3b55VO4TR0VE8+uijsz5/rlDn8/9hayxDCHHs2DHR2NhoCpsMDw+L3bt3y++33nqreO6552bU7vvvvy8aGxtNWZ7//Oc/4je/+c2s7/XcuXMiEonM+vy5QJ3PSdguvA8++KD47ne/O+UxsyH7C1/4gumFqTh9+rTYunWr6OrqEmvXrjW1//nPf1709PSIrq4ucffdd8vikjvvvFNomibWrl0renp6ZnQ/c4U6n5OwXXg/9rGPmWoIrFCO7BdeeEF8+ctfnlW7mzZtEvv27RNCTFSUxWIx0dvbK4SYCL4TfvKTn4ivfvWrQoja0Lx1PidhW5KiHHbv3o2DBw9icHAQBw4cwOrVq8see++99+Lee++d8TUSiQSOHDmCv//97wAmKspuuukmvPHGG1i2bBmefvpp/O53v0Mmk0Emk0FTU9Osn2e+8b/Mp+0O2/r16/H222/L7z/96U9x9OhRuN3usuV200FPTw/+8Y9/TPt4yvu/+eab2Lt3L1555RW8//77+MUvfoFMJjPr+5hr1PmchO3C+53vfAe//vWv8corr8htuVxuRrW95dp98skn8fLLL8ttly5dwlNPPYVQKIQbb7wR+/fvBwB8+OGHePPNN3HLLbdgZGQEoVAIjY2NyOVypvrdcDiMdDqNXC53TfdmJ+p8MthmkDAcPnxY3HHHHaKtrU1s3LhRfOpTnxJ79uwRyWRSCDFhozU2NopFixbJz1tvvTWljSaEEG+//bbYtm2baG9vF2vWrBGf/OQnxQsvvCCEmHQwuru7TQ5GLpcTDzzwgFi+fLnYtGmT+N73vifWrl0r2/zKV74iOjs7q9ZhE6LOJ6Fe21BHzaKeYaujZlEX3jpqFnXhraNmURfeOmoWdeGto2ZRF946ahZ14a2jZjHt2obZTKu+WnvUpmEYpm1LlizBli1b0NDQAK/XC7fbDY/Hg3A4bJpuXSgUkEgkkM/noWkaNE3D0NAQXn31VfT29qJYLKJYLJbcf6VD27Ntbz44jcVi8Hq98Hg8cLvdiEQicLvdKBQKMAwDxWIRyWTSdP7g4GBVcjrnhTkq6CadTieuu+46NDY2or29HZs3b0ZTUxOcTic0TYPT6YTX64WmaaZzi8Wi6UEHBwcxMjKC5uZm9Pf3o6+vTx7jcDgqTnI1worT5cuX46abbpKc0oc4FRMVhqYPtTU4OIjR0VG0tLSgv79fCvF8czpvwsvJASaIXrJkCTo7O9HZ2Ylbb70VLS0tJWQCk9qEyHc6nTAMA4ZhYGBgAGNjY2htbcXRo0dx4cIFqSn+2wV3Kk5vuOGGEk75ecSppmklnA4ODpo4PX/+fFVwOq+aVxXIYDCI5uZmRCIROJ1OCCFgGEZZ4XU4HJJEGs4Mw4DX60UgEIDH46n40FztKMcpN7mIV368lclBZgTn1O12Vw2ncy689OBqj3W5XGhvb8cnPvEJhMNh5PN5jI2NoVAoyIopOlfTNJP2BSaWcspms0in09B1HQsWLEA4HK4aou3EVJy2tbVh06ZNiEQiKBQKGB0dRaFQKDG3yGcg7etwOJDP55HP55FMJuH3+9Ha2lpVnM67zUtwOBwIh8NYsGAB3G43hBDIZrPI5/MoFAqSMK51AUgbOJfLIZvNIpvNwuVyQdf1/0nNy0Gctra2wuv1wjAM5HI5KZT8OG42EGe5XE7y6na7q47TqhJeGpo4gRykZVWP1+FwwDAMOJ1OuN1u2YbP56saoucDxGkoFJKOL2CORPBtJNDEv8qpw+G4KqflRgE7MCfCO52QisPhgN/vRyQSgRAC+XzeZJdRxMHhcCCXyyGVSgGA3OZyueB2u6FpGoLBINxu97SJnuq+qhXT5dTn80lOualAThrZsKlUSs6AIOElTsl29ng88Pv9V1UIcyXA86Z5PR6PJIeENhAIyP2cZO5gqMRxE4Jejss18VjBYBCNjY3wer1Ip9OyQ1Bb/23gnJLQBoNBAKUCZRiGyRTjmIrTQCBQNZzOifBaORLXXXcdYrEYFi5ciNWrVyMajWLlypXI5/MmgS0UCsjlcnC5XPB4PABg0sIejweapiGfzyOVSsHpdCIQCMDlcqGrqwuf+cxncOXKFRw/fhyXL19GOp1GIpEoiWDUGqw4XbhwIRoaGrBw4UKsWbMG0WgUnZ2dUgBJyPL5vOTU6/UCmDQhNE2TI1gul0M6nYbL5ZKRhq6uLtxzzz0YHR0ty+lc8TovmtfpdCIYDKKpqQlLlizB2rVrEY1G0djYaIofcgHmNhgwSTYF28mxAyY0kM/nQ0tLC1asWIHh4WFcunQJ8XgcxWIRmqbJ6/y3wOl0IhQKobm5GUuXLkV3d7fklJtfnFNKTgCTfFIEh2xh4pRGyJaWFqxcuRJXrlxBf3//vHJaceFVhydN0xAKheD1ehGLxbB48WLouo5FixahsbERTU1NiEaj0HXdkgAi0+l0wuVySWLVqAO/djabhWEYcLlcaGlpQSAQwIYNG7Bs2TKMj49jeHgY6XQavb29GB4elvHMakU5Tn0+HxoaGkycxmIxNDc3IxaLQdd1OJ3OEoWgaZrkkvjknFpdO5fLQQgBt9uN1tZWBAIBbNy4Ee3t7UgkEpLTvr4+DA0NzQmntggvpQxJgJqbmxGNRrF69WrcfvvtCIVCCIfD8Pv9kkgikLQst8eshJfMBjWEZhgGUqkUNE2Dx+PBkiVLIIRAW1sbisUi4vE4BgcHceXKFfz5z3/G+Pi4zOuTE0OoFrOiHKexWAyrVq3CbbfdZuKUIgSkTfP5vOm5yDS4mgDzaEQ6nUY2mzVx2tHRgWKxiLGxsRJOyRa2k1PbzQby/mOxGBoaGhCJRBAKheD3+0tihtxemsqj5fUNVuA9nhwNrr0oJNTQ0IBYLIZUKoV8Pl/V2peDOG1oaEA0GjVxym1YVWPz76oQTcW36jBTHJ6nkInTWCw2Z5xWXHjJiyVyvF4vVq9ejTVr1qClpQWRSAQejwfFYlH+AiW3tbi9RelfbvNqmmbybNXQD33npPE0s9frRUtLC8LhMLZs2YKVK1fi9OnTeP311zE+Pl412pbDitM1a9ZITqPRqBQoGnVIeNXRCpjghoSNOOX1DRxc4IlDnj4WQsDn88ns25YtW9DZ2YmTJ0/azqktmpffrNvtxsKFC3H99dcjEAjA5/NJT5aGMysblgfPi8Wi7OVWWqTc9bmGoXMpU6TrOq6//nq0tLQgn8/D7XbbQUXFMB1Os9ms7OhWnJLwzoZTK4UxFaeUlbMTtpkNZMv6fD4EAgGEQiGpHYgIEtByIRbSBmTfUqCdxxVJK1m9BF64QyCtQ5ELr9cLl8tVE5k4lVNKHKic0neurQFYalfOabFYNAk855S/A74dgEw7kylBNdh2c2qb8FJvJNuMwmA8p049n7SFFdE03PFIBDclAEii6X9+PCeaXlShUJCBd9JctSC8nFMeBiOHE4A0qyjE5XK5Sjo6mRPkIAOQ9Q70Hrjw8vdAnBKEELIN4lTXdTka2AnbWnc6nfD5fPD5fHC73SZbVl6c1TBYlelxjUwfCrhPpa15PFM9jv9PmoyyUvRCqxXXwilB5QJASQdX96vnWnHPw3DEpdvtlgkPO2Cb5o1Go+jo6EBzc7MpRUnePxFPyQVOJDBJRi6Xk/YZD6eRo8FDPNQG1wSqc0H3wIfHhoYGLF26FLquY2hoCPF43C5argmc01AoJE0EPjOCOFXrGHhEgLQsT/JQsRPnmZt1dK6qZLhpB0x2Hs7p4OCgLZzaJrxUU9vU1ASfzwfAHDckL5hHCVRhAyZtVCKQiLbKDAFmr5iDx0jpxdCLohoIABgfH69a4SVOm5ub4ff7AZTnlEdlVC1JNdIul0sqDq6hrThV6395u/x44jcQCCAWi0EIgUQiUVvCGwgEZP0C1ZJyh8HtdsuYJBFNJKmwCp6TA8GdDYKV88a1E5/ESd4yEX3p0iW7KLlmBAIBmUXzer2meWQkOF6vV24jWJkOViExnhLmZad0DhdeLrBcS1O7Xq9XKgS7OLVNeGOxGLq7u2UAnc/wdblcCAaDsu42Ho+XeLecKLW+l5sJlAqmc0iLqDWrVHGlvtRisQhd17F06VKEw2GcP3/eLkquGU1NTbIOROWUCpKoZJE0XbmYOAc3pwzDMHFK+638C+IUKC3RDAaDaG9vRyQSsY1TW397OBAIIBAIyKGMa4lyWlD9v1wUgIdtuBdt5UTwa1pdy+l0Qtd1ZDIZ+TKqEW63W3Z6K055qh0oFTor4VUFEoCJU3W2Nv2l7apiIaF3Op3w+/3w+/22cWqr8IbDYYRCIQCQlUdqDp1HEQh8SCIiqXKMXhq1STFbHi3gjhtpJypk4Y4haRgqGgIg7fNqBM1ooCIm7iyp2Ulu+/PODUyOOKptDEyGIYlTtbqM28uUklY5pf3RaBRCCGkeVhq2CS/FUAOBgHwgoLSnAjAN80SommEDJjNE3Dwgm5eEl78YilbQS6CMD3UkXikVDodlO9UKl8sFv98Pn89nEiLufKpFPDxjyRUCj5lzG5hzSmFEnvAoFoumhAQlSaz2BYNBFAoF2zi1NcOmOlpEMg0jfEjjzhjXyPzDjyEQaWq+XvWg1SFPfbFer1dm26oZPLTF+eVOL48AAKUFOarjpfLJzTGKRliZF+W2031STLrmzAYazlwulymm6PF4pAal4YnHXElweQiH0pYATPWpwKSg5nI5k0CqICHnWp22ezweRKNROBwO24a4SoBKHWl5JnoeWiQEgDSjrGx8K0Hkgk8gzkmL0vn8HNrG3x/ndS44tVV41Z6vhlVUh6Oc1r0a1AjD1TI6qrYhk8LObFAlwO1bdaTinAKl5pkaR58KXGDLHc9NE95J+GhG66HVXIaNbt7r9UrHiMIxZJ/REO71ek22GL0kVXBJ46oxYa4JeMSBhFIts+T/08fn8yGfz1et2UCcqAJBMXMeuSHuHQ6H1NC0nYck1eQDfVcVCV0HmNT+PNnD4+485kyjbk3avFZEk/ACk/YnTaLMZDKm1XG4FgZgIl21l1XNQ9uJ7HLCC0DOtqVJidUKMsPoeShFzv0IYLLTUhKHd2agNBLBhVe1l1UFwrU/T1KQ8PJsn9/vRzabNWnmSqKib4qnB6m3qTFAyrvTdtUOVclTnS4+XHJi+fDFj+OZOK6BuLlC9iBfK6JawDs8ccuHZuKU255qaIxzyrkph3LOGb8ucUp2NH8fNGpaLStVSVRUeKlOgOpNeW90Op0oFAoym8btIAquA5OV/fRdnTw4FbFq8J1rBCrwoenzwIRg0KyOZDIp57PRS7aL9JmAc0rxXe475PN5ySkJueqwqZxaRWH4d27rqk4fj9Vns1lLTukexsfH5frJ6vupBCqueWkhaHX4JY2QzWblA3J7SR2mVLtL1SJTgTtu1AaPbPA0saZpUiurtarVgJlwyoVO1by0jf+dCirPVtEGHiMmM4WHIlVOKy3AFde8uq7L5TSTyaTsyS6XC2NjY7h8+TIMw5DLbtLMADqf1y3wdknbcEK5gNO5/DyKNRqGgStXriCdTkv71uVyIRKJyAxRLpeTmpiSAFTNNp/gnLpcLjknjJIIo6Oj6O/vBwA5N48KdFQloZpdVpzSNekY4pRGQOKvWCxiZGQE6XRaOua00jpxStegZaLU8Nu1ouLCGwgESogme218fBynT5+WPZE0ChGtkqk6ZOo+q8gBgWxgchrGxsYwNDRkuqbP50MoFDLl8fmL53XG8wXOqdPplJySN59MJnHmzBlT1R7NIi7HG1Da8WnfdDgl57Ycp5StVIWX5i1WpfCq3j034Ml2ymQy0tDnaVxOJlA6TJVz1NTrW3nHqnPBbWQ1C0gdrVrMB6uICTB5n0IIpNNpmWG0Mn3UsFe52Pp074fug9dac07V90VKgTvqlUDFNS85a1yb6rouS/WGh4eRz+eRSCTkWrqAeRjjwxS1a5Wbp8REsViUdqzqbBGhtLIkHZPL5VAoFEpqAuj+NU0z/bDIfEHTNPj9fgSDQVP9M80TczgcGBoaQj6fx+LFi5HL5WSMl8+KUGO6Kqc80UMfNRsJmOcIZrNZJJNJ6RjTrBjOKQDJqcPhwPj4eMW4qXhQk3oZf2i+VGYmk5HDB8+KqSinkfl+/hdAiXbhIBuW7lENlxEoEaCuMjOf4KsF0T3xhQdpgQ++Sg1Q6vRazTBRnTIebbDKjHG++ERYUiAqp8S1ev+VgC1mgzoxkLYXi0WMj4/LFbd5WZ6qBehjlU7myQoONcjOSSwUCshkMiYyVaJpePZ4PNKDn2/Qs6gvnrYZxsTyVtyeLNeB+bl8FCPhU1Ps6vXofjin2WwWwKSC4qYYXccuTm1Zq4w/OH+IQqGA8fFxZLNZmU3jMUmrB1NNAT68caiaRb2PXC4nhZfbtfQyqMPR9KRMJlMVwktQoymqQshms7I4SRVgNUbOfRA+jUqdG1jurxWnpHm588uF1w5ObTEbyg3zhUIB6XQauVwOAGSO3ApWD2mlSaYSfH4/RCQJvprpU9uzGjLnC6oy4KARhTQg1TmUUwRWKGdK8FHQqi2VU55tU4+1g1NbzQZ6eOrVyWQS/f39MosVi8Xg8/lMmSBy1MrNjVLJJEeNCFRtYDIFKEM1Pj6OkZER6bCpGo0XnlSD5qVn4DYj5zWZTOLSpUvS9oxGo6YfW6TjHA6HiVPikUd8aB9/brUIisCd80QigdHRUblotdoGXxejqjUvgJKeT0N6LpdDMpmUZNLiGZxMchQ4AeWGQG4aqPv4frJx6eVlMpmSumACmRXVpHkBs/MFmNdiSKVSsqCJkgWEqUKRVsqg3DH8Ox1HQglYc6qaOFWteQFzCIYelpbmp0UtSHB1XQcAU+G5ldDTdhJ0XuZHx1mB28G0VNLo6CiSyaS8rqoJKNpQLZoXKM08CiHk785RoT9VcdHvevBpVepzkJ3LOVVt3nLnckGmbCSFFYHJuW4cFBmpas1r5RlTjBWAFF7KfIXDYamNywkkhWNoDSyn0ymjFeUiD1yL0wvhP5MVj8dNoTMOMjGq5ffGOKekuQzDQCaTkc9HnAYCAUSjURnTVtd1ACbNCCtOKVrBzyvHKzAxWyIUCuHy5cuIx+PSbFBBWcuqFl7AXEnPZ/PyJZoAmOzi6cR7qW01dqmaCSrZJNwkAABMHUW1JdV0ajVAjZmqkQLOKS/0nyrBokZluGa/2n0QpzxqYcUpP0dd5qASqLjwcgcpEonA6/UilUohnU6jUCjIohg+C5ZPYZ8KVpEFPgTSMdxkIY1CZgMNcWS6RKNRaJqGRCJRsuhetQgwcer3+6VDlkwmZVqYc+r1euWowlcmVzs1waqzcmWickB2Ns0KJk4pc+b3+9HY2Ain04l4PC7NMDvMhopa0FyAiGxa6ommAvEHIS1hFSngKKd5aV+5+CTto4ISMgXI7HA6nfInSXlIrdKZoGuB6nQSp0IIS0559EVd4pWDmxNWDnI5RcLbpU7lcEz+TjG/Rz5S8NGtUrBF86oCQL/nRYXLfCoLMLmQRbkYITcv+Fq0fD+BTAR6aaTZPR6PrLEgm5Y6Fa90qkbTgYcg6Z7y+bwsciLhVTklm151gvk27hfQdish43MK+UIvnFO3241isSg55ffPzZ1KwZY4L9esDsdEPUMikUChUJCajoLpAKShz+0iNcxCUQYrsnlMk59DwglAriEQDoflzASKk/K1uewK68wWapxX5bRYLCIQCEgBJv746GLFKT0fn9TKr6lyyp1F4pSWcwqHw3KRbsr4ZTIZU7iyJkJlvNfy3s1/4I8LLjD14hUcVkMZd97UuLCVQFKeXZ1nRagWoeWwMpc4p16v1yS4hOk4X9ypVa9XztzgKX0yZ1RO1c5gB2wTXu69ZrNZpFIpuN1uLF68WIat6AGp1tMq4UBtcpLVAhK19oFPtiShJucxHA6jqalJ5uHj8bjMCvESwmoxGQBz57PidNGiRfD5fHK2Ao+uqJzyNoHJWDe3c3nal9rjcWOaxUE/RxYKhdDY2GjilKryOKf8upWAbUkKfpOUpHA6nWhoaJA2Jx+S1HOstDEnUB3OVOEFIIWYhlyq6A8Gg1JLpNPpkmydOnLMJ6zuC5g0tTRNQzQaNdnxJLxWnVCNOvD6DitOuQbmJgaF6MgxJ04NwyjLaVWbDarWBcxk0RJA5ImSo2ZVIWalKcjeoyC72j5Bta94RMPj8aCxsVFqJjVRwb3jaoFqg/Jn9nq9aGhokEs+kRk0U055XYmVMNOxfPkAOsbr9aKpqUmaEKqjyLOulYRtxehAaYKBfn6JFrWjn7wncIKtprLwxUm4Fqb99OEzCSh9CkA6N21tbQAg74FCPvz+q0l4VYeHC6Cu63LmisfjQSaTuSqnnDPOqSq89D8f/vnvWVBbtJC0w+Gw5NTptOcnw2zNsKlakYYZeqiZxHfpr5VWV0Ns5eKX5GiQcJPGUc+1GqbnE2rsmkPl1KpGgcOqs1uZbPy6/HjODTcf+M/G8gm2/NxKw5baBh5vtHK+HA4HstmsDKnwYc7q5fA4J/+oGtrKSyYNSsXafL1Yyhbx61JYqlqWfXI4HNKb55xywSHeM5mM5JQXNNE5hKtxavW+ONdkalAGj+okgElO+Q9G2mWKVfwNqQvplSMjn89Ls4EX16jCSy/G6lMuHKNeC4ApRsw9cJowqMaIqyXioMZJrcwA7gtYcUpQ47wqt+RwcfOBc6g6dMQpcUjHWHFqRxTHFs1L88Moc+VwTK76ouu6nBbCVzJUhZf+58SqhHNSeVaPv0x64fSXr1rIQ0jVFGFQQc9G98/LGWmtBOKXOFVTw5xfnm5WFUI5TmkfL14nTmmBQh6d4NEGu2Dbck/AxKxWYHL6tq7riEQicLvdCIVC0HVdDjmqRuFleYC5YoqcAS6cfH1dcgz4qjf8JVL2h9vlakq7WsA5FULIullN0+SPVTc0NEhOA4HAjDklU8ntdsthnnNKpgtFiNSFQ9TwmJVdbQdsm4AJwJS54k6TlZlwtQfmL8HKvODDKAk1d15oH8WcAci4qHqP1YapOOWOE4AZc8rPUTnlZha1r6bngVJO1XCcXbBliVO+fiwZ8LlcDsPDwxgdHYWmaWhra0NLS4ssRjcMQwbauRbki4NQ+V02m5X5dUIqlZJro3GbTC2wHhoawvnz5+FyudDT04Nly5YBMKdbqy3SwDklISOBGRkZwXvvvQen04mOjg60tLQgm80ikUjAMAyZBeMhTKp74MXo5NACk8mgVColSx252cBtXeL0o48+gsvlwoYNG2QokisNOzi1pTBHnRRJRA8NDeH48eMAJmdIZDIZxONxGIaBcDgsbWJd1+FwOJBKpeTvo1GWjsgHJp2HgYEBuYgf9XxerUYzLy5evIhTp05B13W0t7fL+CTX6NUiuICZU64QqGMODAzg+PHjcrguFotIpVIYGRmBYRiIRCIIBoMmTpPJJFKplIlTit9yDAwMoL+/36TB+cqPFG24ePEiTp48CV3X0dHRITlVhbfSsCVJwcNNQgiZdxdCYGRkBPl8HufOnUMymZRTVoQQcgkjmjYCTGgJWl3b7/ebiOa9eXR0FFeuXDGZAZxo+gwODsoliihHz1f0IQeoWqYBAaW/Tk+jlK7rJk7Pnj0rF3VJJBIQQshfxeTFM+l0WioE4pQ6OsfIyAiGh4dN2/goRtm84eFhySlNS+KTM+3i1BaHzev1miYDUj3DyZMncerUKYyNjeGDDz6QNqdaEMJtNB6vLFdkAsCSfCv7j1Z5IY1MxJKjE4lE0NDQgGAwaKunPF1QUoXuk9Z8o2UDTpw4ITk9ceKEjK+SgKlRGqD0Fy5nyin/n4TYilNd15HP5xEOh23htOKaV3WoeNyUaj2r4VfVaTYz7zyAdUnnfIOHveieqKPTKkTxeHzeeVU5tYq3V63mzWazOHPmDAqFApYtWyYf4sKFCxgZGcGZM2csZ+xWGuW8ag4aZiORiAw3FYtFHD16FGfPnkV/fz8ymYzt93o1qJwCE8/T19dXlZyeO3cOR44cga7riEajtnJaceHt7e1FPB5HOp2GrusoFos4ceIELl++jI8++siSaKsU5mxRzqtV287n8+jr64OmTfzmQ1NTEwqFAo4dO4bTp0/LGRbzjWw2i7Nnz2JsbAyZTAbBYBCGYeD48eO4dOkS+vr6bBfemXJK0/AbGxtt5bTiRh0fMnj9p1WZnp2YzvDEHTn+maqwZa5B98FNB/Li55JPYHqc8oSI3Zw6RLW8pTrqmCHm352uo45Zoi68ddQs6sJbR82iLrx11CzqwltHzaIuvHXULOrCW0fNoi68ddQs6sJbR83i/wD9yVR3TdAFtQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAABzCAYAAAD+K0vUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwklEQVR4nO2de3BV1fn3v+d+SULuJJiA4lgECUkQsYq2gtAqVAWL1SqtjsroiFWn9dbqWG3n53REq60dO9TW6oyXttKxSlvrBRHrBaFWbjYzXgkQAskhyUly7rf1/pH3Way9zj4XOCfZx7PXZyaT5Jy9d7K/51lrPetZz3q2hTHGoFAoFIqMWI3+BxQKhaLUUR2lQqFQ5EB1lAqFQpED1VEqFApFDlRHqVAoFDlQHaVCoVDkQHWUCoVCkQPVUSoUCkUOVEepUCgUOZiQjrKzsxOjo6O675122mnYvHlzzms8+uijaGtrw5w5c9De3o5nnnmGv/fUU0+huroanZ2d6OzsxKJFi/h74XAYV155Jdra2tDW1oaLLroIPp+v4HsaD4qhE9Hf34+mpiasWLGCv3b//fdzjTo7OzFp0iT86Ec/AgB0d3dj4cKFXEeRLVu28HNmz56N66+/HtFoFACQSqVw2223oa2tDTNnzsS1116LWCx2VPc9nhRD076+Pnz7299Ge3s7Zs2ahV/96lf8vWyaAsDu3buxcOFCzJo1C7NmzcILL7wAANi0aRNOP/10nHLKKZg9ezbuuOMOpFKpgu61WBRDs/vuuw+NjY1cl1WrVqUdo2ej2doyALz11luYP38+Zs+ejVNOOQVbtmzJ67yCYQYzb9489uabb+Y8buPGjczv9zPGGNu3bx+rr69nn332GWOMsSeffJItX75c97xHHnmErVy5kqVSKcYYY6tXr2a33357Uf73iSRfnYgVK1awa665JqMukUiE1dXVsQ8++IAxxtjAwAB7++232T/+8Q/W0dGhOTYYDLJYLMYYYyyZTLIVK1awhx9+mDHG2OOPP84WLVrEotEoS6VSbPXq1Wzt2rVHfX9GkK+mV1xxBbv77rsZY4wFAgHW0dHBtm3blnacrGkwGGTTp09nb7/9NmOMsUQiwfr7+xljjH344Yfs888/Z4wxFg6H2VlnncWefPLJItzV+JKvZvfeey+75ZZbsh6jZ6PZ2vKBAwfY8ccfz7q6uhhjY3oPDQ3lPK8YTIhHabFY4Pf7AQDvvfceOjs70dbWhquvvhqJRCKvayxevBjV1dUAgKlTp6K5uRn79+/P62+HQiHE43EkEgkEAgG0trYe872MJ8XQCQCeeOIJTJ8+HV/72tcyHvPiiy9i6tSpmDdvHgCgrq4OZ599NioqKtKO9Xq9cDgcAIBYLIZwOAyLxQIA2LlzJ5YsWQKn0wmLxYKlS5fi6aefzvt/HW+KoenOnTuxbNkyAEBFRQW+/vWv696jrOlzzz2HM844A2effTYAwGazobGxEQAwd+5cnHjiiQAAt9uNzs5OdHd3F3KrRaNYdpiNfGxU5re//S2uuOIKzJo1CwDgcrlQU1NTlP8nFxMao4zFYrjsssvw0EMP4aOPPsLll1+OnTt38vfXrVuHn/70pzmvs3HjRgwNDWH+/Pn8tXfeeQednZ1YsGAB1q9fz1+//vrrUVVVhcmTJ6OpqQnDw8P4wQ9+UNwbKzKF6LRnzx6sW7cO999/f9a/8cQTT+Daa6/N+3/q7u5GR0cHGhoaUF1djTVr1gAA5s2bhw0bNmBkZATxeBzPP/98yTR4kUI0nTdvHp577jmkUin4fD68+uqruvcoa9rV1QWXy4ULLrgAnZ2duPLKK3XDPocOHcJf//pXXHDBBYXfaBEptL2uX78eHR0dOPfcc/Hmm2/y13PZaKa23NXVhXA4jCVLlqCzsxM33XQTgsFgzvOKwrj5qgIA2NDQENu5cyc74YQTNO+deOKJRzWl3LVrF2ttbeXTGcYY8/l8LBgMMsYY6+rqYq2trWzLli2MMcZeeukldskll7BwOMyi0Si7/PLL+TSq1ChUp1QqxRYuXMjef/99xljm6Uh3dzfzeDxsYGAg7b0333wzbeotMjo6ypYvX87+9Kc/8b957733ss7OTnbmmWeye+65h9XW1ma/0QmkGLbn8/nYVVddxdrb29mSJUvYddddxy6++GLNMXqa3nTTTay1tZX19PSwVCrFfvzjH7OVK1dqzhseHmannXYa++Uvf3nsN1lkiqHZwYMHebjmnXfeYY2Njay7uzunjWZryxdeeCE79dRT2eDgIIvFYmzVqlXs1ltvzXleMTB81ZumcPnQ1dWFCy64AH/84x/5dAYAGhoa4PV6AQCzZs3CsmXL8O677wIAHn/8cVx88cVwu91wOp1YtWqVZnT7spCPTiMjI9i1axcuu+wynHDCCbjtttvw2muvYfHixZrjnnzySSxfvhx1dXVH/X9UVlbiu9/9Lp599ln+f913333Yvn073nvvPb448WUgX9traGjAU089hZ07d+L111+HxWJJu0c9TadNm4ZFixahpaUFFosF3/ve9/D+++/z90dHR3H++edj+fLlmgWgUiZfzZqbm3m45qyzzsLcuXPxwQcf5LTRbG152rRp+Na3voXa2lo4HA5cfvnlXM9s5xWFonW5WcD/H6Gi0ShrbW1lmzZtYowx9vrrrzMAeY1QXV1d7Pjjj2evvPJK2ns9PT3850OHDrGTTjqJvfHGG4yxsVH9qquuYqlUiqVSKXbDDTew6667rjg3VmSKoZOInkeZTCbZtGnT2Ouvv657jp5H+emnn3LvIBqNsksvvZTdddddjLGxhYjBwUHG2Nio3tHRwTZs2HBU/+d4UgxNDx8+zO//ww8/ZE1NTay3t5e/n0nTvXv3spkzZ7Lh4WHGGGNr165ly5YtY4yNeeYLFixgP/vZz4pxm0WlGJrt37+f//zJJ5+wyZMns48//jjtONlGs7Xld999l5199tksEokwxhi78cYb2Zo1a3KeVwzsxetyc+N0OvGXv/wFa9asQTKZxPz589HR0cHfX7duHXp7e/Hzn/887dybb74Zw8PDuPPOO3HnnXcCAB544AGcd955eOyxx/DSSy/B4XAglUrhhz/8Ic4991wAY2kK1113Hdra2gAAM2fOxO9+97sJuNtjpxCdcrFx40ZYrdY0LzMUCmHGjBmIRqMYHh5Ga2srvv/97+MXv/gFNm3ahEcffRQ2mw2JRAKLFy/GPffcAwAYHh7GwoULYbVakUqlcMstt+DCCy8sTIBxoBBNt23bhptvvhl2ux1VVVV4/vnnMWXKFP5+Jk2nTZuGu+66CwsWLIDVakVLSwsef/xxAMCvf/1rbNu2DcFgkKcMfec738Hdd989Hrd/TBSi2d13343//ve/sNvtsNlseOyxxzBjxoycfzNbW16wYAEuuugizJ07FzabDbNnz8a6detynlcMLIypCucKhUKRDcNjlAqFQlHqqI5SoVAocqA6SoVCochBwR3lBx98gKVLl2L69OmYN28e5s6di//7v//j7y9cuBAvvvhi3tdbt24d369ZV1eHlpYW/vuXMa0nH5SGhaH0KxylYQ4KWTLftWsXq6+vZ3//+9/5awMDA5q91Oeccw7729/+dkzXv+qqq9gjjzyi+14ikTimaxZKMplkyWSyaNdTGhaG0q9wlIa5KcijfOCBB7B69WrN1qu6ujqsXbu24A5c5qmnnsKiRYuwcuVKzJkzB9u2bcOrr76KU089Fe3t7TjnnHPQ1dUFANi8ebOmAs5HH32EE044AQDg8/nwzW9+k1chuvrqq/lxDz30EE4//XSceuqpOP/887F3714AYylGK1euxHnnnYe2tjYcPHiwaPelNCwMpV/hKA1zU1Ae5YcffoiVK1ce07kbNmzAhg0b8Ic//CHvc7Zu3Yrt27fj5JNPRn9/P2bNmoXNmzdjzpw5ePbZZ3HJJZfgf//7X9ZrPPPMM5g+fTpee+01AMDg4CCAsQIGH3/8MbZs2QKbzYann34aa9aswT//+U8AY6XGtm/fjqampmO630woDQtD6Vc4SsPcFHUx5/bbb0dnZydaWlpy3uhFF110VOICYwmnJ598MoAxsefMmYM5c+YAAFatWoXe3l4cOHAg6zXOOOMM/Otf/8Ktt96Kl156iVfLefHFF7Fx40bMmzcPnZ2dWLt2Lfbt28fPW7ZsWdENVA+lYWEo/QpHaZhOQR3l3LlzsW3bNv77gw8+iB07dsDhcCAejxdyaV0qKyvzOs5utyOZTPLfI5EI//nMM8/Ejh078NWvfhUvvPAC5s+fj2QyCcYYfvKTn2DHjh3YsWMHdu/ejd27dx/13z5alIaFofQrHKVhbgrqKO+44w78/ve/x8svv8xfi8ViRatZl40zzjgDu3fvxkcffQQA+POf/4yWlha0tLTgxBNPxN69e3lJK7F24J49e1BZWYlLL70Uv/nNb/DJJ58gEAhgxYoVWLduHXfh4/E4tm/fPu73oTQsDKVf4SgNc1NQjLKjowMvv/wy7rnnHtx4441obGyEw+HADTfcoNnXuXr1ak0NyPXr18Pn8x11bEOksbERzz77LK688kokEgnU1tZi/fr1sFgsOO6443DHHXfg9NNPR1NTE5YuXcrP27x5Mx5++GG+b/nBBx9EdXU1Vq1ahYGBAV5CPpFI4JprrsHcuXOPUZ38UBoWhtKvcJSGuVF7vRUKhSIHameOQqFQ5EB1lAqFQpED1VEqFApFDlRHqVAoFDlQHaVCoVDkQHWUCoVCkQPVUSoUCkUO8k44P5rHyh4tHo8H559/Pjo6OuD1elFTUwMAiEajSKVSsFgs/O8zxjRfTqcTlZWVYIzh8OHDCAQC2LFjB1599VWEw+Fx+5+PJf10PDX0er1YunQp2tvb4fV6UV1dDWBMw2Qyqfnb8v+eScNXXnnFtBp6PB6uYSwW4xqKdkjfyQ5pv7Gyw6Xo6OjQaCjaYTYNS7UtT+hTGDPhdDrR3t6Ob3zjG7DZbLDb7Tk/TLo5i8UCm80GYOzDSCQSiMfj2LRp07iKW2o4HA60tbVhyZIlXEMZi8WiaxRWqxVW69jkgjSMxWJ44403TK+hqJmeTcp2yBjj2//MbIeLFy/WtcN8NARKry2XREdpt9tx0kknYcGCBUgmk4jH47BYLHA4HLwBZyKZTCKRSIAxBofDAZvNhk8//VS3oyhnRA3JwEhDMr5MKA3HUHZYOOVqh4b+BzabDW63G1VVVXA6nQCAVCqFeDwOxljalFEPxhgSiQQfjejL6/UiHA7zaVO5QhpWVlZyDRljvOoLhS6ykUwm+XF6GlIIpFyZCDs0o4ZHa4el3JYN7SjdbjemTJmChoYGeL1eAGPVPoaHh3WPl6eN4rSIRHU4HPB6vZg8eTKsVit8Pp/hbvt44na70dTUhMmTJ2s0DAQCaQ0zVyyGDFTU0GKx4PDhw2WvYSY7FKeFFEsjqOHnskMza5ivHZZ6Wy4Jj7KiooK716lUin/JQV/5Z3mEog/EbrfD6/XC4/HkdPe/7NhsNng8Hs29plIp7iUSYiPX05WuJWooX7dcyWSH5E0SehrKP9O5gNIwlx2KlHpbNrSj9Hg8aGlpQXNzM18xBI6IabPZMjZqUXAyaqK6uhpf+cpXUF1dDb/fj0AgMAF3Ywwejwetra1obm7WFCWVNaTfxVVH0o0xlqZhTU0NZs6ciZqaGgwPD5e9hpnsEIAmRqY32GTSsLq6GjNmzMCkSZNMraGeHQLgcV9ZQ7FjLZW2bGhH6XQ6UVtbi7q6OrhcLgDpozatJJJ4JC4JKqYYEF6vF83NzQDAr1uuOJ1O1NXVaTQEoOkYrVarxkMXFybk0Z7weDxobm5GKpUyhYayHRKkn9Vq5R6m1WrlWsoxMzPboZ6G2doyeYiZvHagdDQ0fOpdWVmJqqoqOByOvM4RGzYZL71GItvtdkyaNAmBQKAkVszGk0waZotH5qOhw+FAVVUVqqqqTK0haUM6AUiLuYmxSvFch8OB6upqBINB02hYWVmZ5oGLtihqJ3aQsoal1pYN/fRcLhfq6+vR0NCQcbSQGzyJSwFfeTQiD6ixsRHRaJSvwJUrNJLX19drvPJsiBra7Xa+0khTo1QqBafTiYaGBkQikbLX8FjsUJzhiHYoTi/NZod1dXVoaGiA2+0GoB8u0/ueScNSasuGbmG0WCxwu91wu93cLdcjn7QKMc5htVrhdDrhdDpz5r992bFarVxD0es5WuQdT6KG5Y5oh6ShXiM/GjskL1TZYTr5pAmVWls21KP0er047rjj0NLSAqfTyfOksgktT2/IKC0WC09YdTgcqK2tRTAYzHtK/2WF0jKmTJkCh8OBSCSCRCKhGXgyTRUBaI4RNbTb7aipqcHo6GjZd5Zer5dr6HQ6+a4QUadsnSSt7NI58XicfwbV1dUYGRkp+6l3PnYoIneW1JYpZ7XU2rKhn57dbudxDXK9aQGCyNbIxVVb+p1GcrfbDZfLNa77WksBu92OiooKVFZWwmq1IpFIZEzulRd1AO3oDWg1dLlccLlcpvCGKioqUFVVxR9WJS9yZbIjek/WkDpNs2iYjx1+mduyoR2lPL1LJBJpMUcAmmNIbBq15RzLZDLJR6Ny3pFDUP4aTXnEbADR8EQNaUAircS0ITFFQ07VKFdsNhtcLpdGH71sAIfDoWuHYmxNXIwwm4Zih0YainZIWxnFnTuMje3GobYs2mEptWXDO0oacYH0jlJMOqUcQRI/EAjwLWaEKCxd61hjdl8WxIRzsaOUc/poKxgAbpThcBjxeFxToUk0UHmUL1eooxTtUN7wQCuwlCNIrwWDQf78a0obkjtJs2jodrvh8Xh4R0ntT7x/j8fDNSRtgsEgYrGYpqOkZPVSacuGB04oTw1ITxynPCvGGKLRKP+ZjqHqLtShikYqflDljJwbKWpI2pIuZIziMXa7ne9rljsGcaQvd8QKSnLHJu4IicVi/BjCbrdn3IFiJg3ltiy/LtqhfAzZoTxAlUpbNrSjpCRU8oRoBCGxPB4P7HY7wuEw+vv7NSMO5b2RVykKnEgkEA6HEQ6HDXfZxxuLxQK73a7RkDpCq9Wq0dDn82k0pJgSaSjG4uLxOEKhkGk0lJPKxRiZ1+vlGh4+fFijodfr5RoGAgFTa0htmTSkAULWkOyQzqusrMSkSZN07bBU2rLhHaW8pQ44EiCnXMlUKoVQKMTPo2mkw+HQGC2dK059zIAcFBfvm3Ilk8mkpqCAaLzigoSI2TSUPRmCCjQEg0FEIhGNzdFAlGkBzSwaym1ZtiVZQ3F3TkVFhaYti3mWpdKWDZ9600iul7Jis9ngdDoRiUTg8/n4KEVB4draWn68HAehJNVyTw8CtFMe0ciAsSmNy+VCNBpFX18fn8bQQlptbS0f+UUN3W43GhsbEYlEyl5DcVCWBx1Khrbb7YhEIjh06BDXkLz5mpoaTYyXMJOGwJHEcT0N7XY7Txvq6+vjcUe5LQMoybZcMh0lkN7h0SgUi8UwMDCAeDyOaDQKi8XC93/q4XK5UFdXh0AgUPY5gAA0jVTWkAw0Go3C5/Px6uVWqxXNzc1pgxQw9jlQJ2qGPEpA28hlj4bsMBqN4vDhw4jH44jFYtwORRsWcblcptNQz+kRNYzFYlxDsS1n8kRLpS0b3lGK3pD4mujGJxIJnsBKjVyMY4ixOXkxwwyIeslfRDKZRCwWQzweRzwe1+RUiquMoobyNcoZvfuU7z+RSGgelSHnpYoLD5RobTYN5XvNpiEtIOqtdpdaWzY8PUgehfQaeiwWw+joKF9BpOR0WvUmN56qKcsPMSpnSD95ykOaiiuNIyMjPHxBGtKKrqghnaPnIZQjenZIr8sainZotVqzakghDrNpKL8uakiLXuLupUwaAqXTlg33KEXEzlKEdjqQuHIaAZA+bTcT8iCjB43U5FHSIlkmDUtlJDeSbHaYS0M5PcasZNKQdPyytGVDO0oxJcjpdGoavDgyUYpAJBJBMBiExWJBOBzWNGbZC9WbfpYjouGJ4QjZyChVJRKJYHR0FDabDaFQSFdDsyHn6olTadEO4/E4X7UNBoOwWq0ZNcw06JcrmdqybIexWEyjocViyUtDo23TcI9SjkXoFcSgmBA1cuBI4q/o2pvNOAkyUkJvYSGZTCIajWoMlDQkzKabiN5uJtmzETWkStuiHcqYzR71NJQRNZTbsh6lop2hHaW4c4FSLeh3ceqSSCQQDAYRCATQ39+PVCqVVhKeOspMK+jlCu2qEWtM6u31jkajGBkZ4RrS1jFC9uYpppTL8MsB2Q5lDYloNIrR0dGMGgKZ7bDc0dOQXjtaOyzFtmxoR0krsZRq4XA4NDELEiYSicDv92NwcBCff/454vE4hoaG+HXEUUd0+c1goKlUCrFYDNFoFIwxnlwux8lCoRB8Ph/8fj+6u7uRSCS4hmSQZJz0u7j6WM6IsVtgrPiFuE+ZkDVMJpMaOxQRp+9mGGz0NNSLP4oafvHFF0ilUhgcHASgtUNxwC4FGzR86q1XOUTvGNrGFA6H+TmELCyg/wS4coS2i+nthZXTMiKRiGY7mKyhfN1SMNCJIl87JA0prpbNDkUNzaCjXqwcyGyHtEPny6ChoR0lPTu5qqoKDQ0NaYFcEnhkZAT79u3D0NAQ3ydK2/HIzafv4pZHccGnXEkkEggEAhgdHUV9fb1mn7dooIFAAAcPHoTf78fAwACAMU8dOOJJknbUiUajUV5Io5whO6ysrER9fb1GDzH2GAwGcejQIY2Goh1ScV7RI6cOwQwajoyMYHh4GPX19QCg0ZBsMRgMore3l2vIGNPYIdUtEItr0KzT1FNvCuyKLrqcKiDGhkKhEM9Ro2NpAUgchcTyTOUM5aZRdXg5LUXOXwsGgwiHwzwHkKDkabpmqVRtmQiSySQikQgikQjP2wO08TLSMBgMcg1lOwSg6RREOzSDhtFoFNFoVPehYQB4Lio5MXoaUj6lqCHZoZEY2lEmEgmMjo7yRGjyCGXI4DK53vKKdzKZ5B9GuU95QqEQent7AQDNzc1obGzkg4bI0QTEGWMIhULo6+tDf38/L3FXriQSCYyMjPAqQHJ6GiEOHnqIO8aoyncgEEAgENBML8uReDyOwcFBuN1uvuaQKYRxNDHbaDSKwcFB+P1+Q+3Q8Km33++H1+vlCbw0IouGSvEJvUdFAOlpGLRKHgqFDB+JxptIJIKenh7EYjHMmDFDU5tT1DCfmKM4itMU6dChQ2XfUcZiMQwNDcHj8fAdX2J9TkIcsPXskKAOgqajtJunnKFaAlQ8RG/1GtAm5Gdry3QslbajWg9GYeiDPGS3WsyJFKGAr7gSSSvmYjqCeJ5eNZhyhTo/q9UKh8Oh65XraSjuuwW0q952ux1Op9MUz3sRB2JAv7gDHaenoWiH8iKG3W7nW23LHdKE2mMmr1wMickaAtp+gIppOBwO8yaci7tKZHFFo6Ns/lAoxHdLhEIh+P1+3X26DocDFRUV8Hq9up1GuUHPIfF6vaiqqkIoFErzAim+RuEIq9WKQCAAn8+nWbygjra6uhpTp04FAP6c5nKGtsdSmhpNH8XGLsbXSMNwOIyhoSGuH9kbeaaTJk0yxVMYAe2zhdxut+7shdYbgsEg1ygcDmNwcJC3YbvdzvsCr9fLny+f6ZnrE4HhroI4HZTz+AgKpIsLC5RmQO64XFiDxDbDSE6DCnkvmbwh8YFspKmooThdstvtmmfxlDNyWCJTaousIXDEDuUdOhQnNpNHCUATo9VDT0MquaZnh+KD34zU0NAWkEql+Kq3vFIm77Glfcpk0IODg9izZw/6+vq4UdKHQInX1GmUOzSVEafgchiDclGj0SiPDw0NDWHv3r3w+XwAwHdGic9kNoMnJK96A9r6lLKGsh12d3fzXSbioxAYY9zLLHc7JLuRNcxkh6KGQ0NDXEMAvKIQraCTHRqpoaGfnpgeJD/yUy9JlXafMMbg9/vR09PDc7HEjjKVSpkmRkmNUk5BkQcbOS+SMYbh4WEcOHBAs0OHOg0xC6HcGzmlrdAgAuhvRSQPXNRQzw6BI0+6zJTJUW5QGp+oIaHXlmU77OnpweDgINeQ1iCoLRtdqq5kFnPIK6IafhaLhccw9dIJKNZBSeV603Xxe7lCwXDaPkaeJWko5ljKWlBhAor96u2KKHf9gMx2SA2TtD1WOzSrhqId0hbHTHYYCAR48r7ohYpbQE2bcE5Tb/IqaWsdjcDUyOW0ABqFent74fF4AEDjPZbCJvqJIplMapKgZQ2j0SifcoswxjAyMoIDBw7wxRryfsi7L4WtYxMBzUTIqxQ1FL1NucoNeZT79++H2+1O2xEl6mcGDakdi22ZQjc0G9TTkDxKl8vFNRQHHOqATbuFUdwBohdM1yvuQNBKOH0AdJ64k8IMHaW8F1bMTxNHeTmflKZKoVBIsz0sWyC+XJHtULQd0avJZIdi7Jcwq4byDFBsy9k0pEyNUrVDwztK2scpGxk1ZFoRk88bGhrCvn37+FMEgfQSTeUenwS01YPEaQ3FbElfOYYpekN1dXWakvvyQkYpGex4IM5sRJ1kO5RnNqlUCn6/H3v37kVtba1mMY0WIMykIa1my3ZI7TyThrSYU1NTk5bTS/FJvWyYicTwVW/RrZZHIVqAkGNDtMVuYGAAo6OjuvubxeuUM2IRi0waism8IuFwGAMDAxgeHtbEKMWBxgwa0kKN+JgRAJqFmUxx3mAwiMHBQW6H8kqvWQZsPQ3FnTekoV6cV9YQSK8iZLSGJeNRitsTRXHForQi4jN09KbeZuksyUBpsQHQbukUg+syYgdLiNqVipGONzRlJDsEtBrSgJ1Nw0xl7sysIZDfgE0LPXqZG0Bp2KHh6UEU+JWnPMCR+I/eYg7lY1F8Te4kjXbVJwoxxUo0Qrp3SmnRi1HKqRoi8k6TciaVSvHcPlEnCj/IifkExYBpap6pozRDwjmVlAuFQmmhMOBIW5Y7StEOKUYpeuGlYoeG9yTZlv71PB5CXMSQg+9mQ08fcSTPpaFeAzcTdP96oQsgPzsUMwXk882CXhsWF3MyzWzkBVtZw1JYlDW8oyREL5C8oXA4jNHRUd3CpyS8XlxJXKksd8Tpnfhd1HB4eDijhmJcSQ59mKUepd4UT1yACYVCGBkZyaghTTfl+p70vhnqUQLpVbxoCyIwFof0+/26xbTltkznihoabYcl01ESYkOlFW+9uAa57Jm8APG4ckeO3+SrobiYJutkplxUPY5GQ3lmI34WZtZR1lAODxF6bVl+32inx9CO0mKx8Mo3csI4pRuIixQi4igkrpqbZZWRsFqtvBya3pZNMT9QRsx70/PKzdK4yQ6pcpLc0dHCYSY7pNQXM2tIJf707FDM582nLctlFwHjQxmGdpRWq5VXBhGDtdTpyfUSRWgVjVbS5L3iZoE0JAMlyIvJFqOkqbeYtiFP3c3Q0Gmwke1QTKLOln1Bu3bkqWMpxdjGG6vVCrfbDbfbrcnBJTvMFueV27KsYSm0Z8M9Sr2UHiD7HllRfL3UFjOlBwGZc0dJv0xakrcpL+qIMTszZA4Ax5Z/K+/o0bueWTTMFPohMtmgXluW0/1Mnx4EpOdIiY07G2Jell5qi91uN7wq8kQgNm7xXqnjy7T9Ti8tQ7wOpWQYXd5qIsg0WOcTF6Opt7wNlDR0Op1wOBxlryEh65hPQQvRo9Rry6avcC5zNELoeZTytcq9k5TR88qzIXqUetcyQ5k6PYqhod7quUIfasv0M1FKGhreUeqlAwDIuSijV1+RrkOYITZE9y5vu6OfsxkaaSiXEDNTbA3QrkyLWuUz7RMTzvVSrOj65Y44E5TtLVeskRL59bxyuqbRGhreUQLQNa5MU0qCptzZEoGNFneiEBu5Xqwo06BDnlCmWot0bTORyd7yscNsMTgzkMlhyRTaIEQ7VOlBOohpA6LA+QZv9er9mW0hpxANxUUc0RiVhrkbt4hemTuzUSw7LNW2bHj1ILEoBqAtr5RNHLFqDn3pxTfKHb08v3w1FNNf9Ao7mElDsRI8kc/jRJQdjiG25ULtsBQ1NNyj1CvJJJKPQPLuh3w9gXJA9grle85XB6VhZk+wEA3F7+WOuPGj3OzQ8I6SRmMgfbqTr9suFgQlL8DhcJgitSWThgTpmE0HWUPyAsykIXk0QPrCImUAZNNB3EkGmNMOxdXrYthhKWlYEh2l7GaL5Fr9FpN+6fxSqIg8UehpSOTr0YgaiotCZtEQ0OZM6jXwfAZsMUan7PAIx2KHdHypaGh4RykXRZWFzhUclyvgAEcSzs3yqNVMhWXzTd4nDSnOSQZqFg314muEHNrIdg2KFYsdJe0fL3cN5Vi5XnpUvnZYim25JAr3ygVTxVXYXAbKGEt7Nri4d7fcyUfDXCXnGGNpD8iiXSVKw8zbFEXIDvU0dLlc434PRkODTaYBW4496lHKbdnwPMpc6Ri5RiGLxcK3K4oPIhJ/LncyBb7FhN1sWCwWTRxI1NDokdwIjlVDskOxLqiZ7FBEDl/kWjCj4+x2u64dGq2hoR0lNVBqpA6Hg79ns9n4dEavagvhcrkwefJkNDU1wePxwG63w+l08kom5W6gonHJGlqtVs2D5zMhauj1ermGXq8XLper7DWk6V2xNPR4PNyuPR4PPB5P2WsIaJ8+Sc/zptfzbcsNDQ2YPHkyKioqSqotG149CEhfsKGfs+1FJmw2G9xuNzdOGnkormEG9HbfHKuGNJqbqSgGoP8Aq0LskFbKS8EbmghED1xPw3wqvevZYam0ZUM9ykgkAp/Ph3g8jp07d6KiogIulwsejweBQAA7duxAT08Penp6MsaHBgcH8f7772Pfvn2YMmUKampq0NfXhz179uDAgQPw+/0Te1MTTDQaRX9/f1E03L9/P6ZMmYLq6mr09/djz5496O3txeDg4ATf1cQSjUbR19eHWCyGXbt2Faxhc3Mzampq0N/fjy+++MIUGharLW/duhU9PT1pdmh0Wza8o+zt7YXf78d//vMfRKNRVFVVob6+HoFAgBteb29vRnF9Ph82b96MhoYGdHZ2YurUqfj000+xdetWDAwMYGBgYILvamKJRCI4ePAghoeH0zQcHR3lg8jBgwezavjWW2+hoaEBHR0dmDp1Kj777DPTaBgOh7kdbtu2DZFIpCgams0OxbZMGjY0NCAQCGDr1q3Yt29fzrb873//Gw0NDWhvby8pOzR8PiCuKsrl4LNV5ybkLXjytcyw71ZpWDiFakjpMUpD7VZEWcNcq95iNflS0tDCzPAJKhQKRQEY7lEqFApFqaM6SoVCociB6igVCoUiB6qjVCgUihyojlKhUChyoDpKhUKhyIHqKBUKhSIHqqNUKBSKHKiOUqFQKHLw/wCXJ0ydzERhuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWwUlEQVR4nO2dfXAbR/3GH92dTifJkt9k2Y7t1E4aasvyW0wayIQhTUObZNoUmjCFlpZJxtBCM9OBUmBoAwXyB+V1pjOlpTAlTDNAKQGmpJ0Q0gSGkGmgdtK6DnWbguPEjhNjS7b1etLd/v7Ib7crRbZlW25yw35mPJZ0t6vd55777nf3TpKNEEIgEFgQ6Uo3QCCYL8K8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLAU3b3t7O6ampnJue//734+//OUvs9bxxBNPoKWlBe3t7QgGg3j88cfZtscffxzBYBAtLS1obW3F3r172bZ//vOfWLNmDVwuFz760Y9m1DnTNgDYvXs3li9fjuXLl+Phhx/Oq69XgkLoCwD79u1DS0sLgsEggsEgBgYGAACjo6O49dZb0draiqamJnz6059GPB4HAPz+979Ha2sr2tvbEQgE8PDDD4NeoI3H47jnnntYfVu2bMHo6OiC+zsj5D2ks7OTHDlyZNb9wuEwezwxMUHq6upIT08PIYSQQ4cOse2Dg4OkvLycnD59mhBCyNmzZ8nx48fJU089RW677baMOmfa9te//pUEAgESiURIIpEgnZ2dZP/+/fPv6BUiX317enrIddddR4aGhgghhExOTpJoNEoIIeSBBx4gX/jCFwghhKTTaXLzzTeTJ554gu1nGAYhhJBkMklWrVpFfve73xFCCPnRj35Etm7dSkzTJIQQ0tXVRR566KGC9i+bgkdem82GcDgMADh27BiLntu3b0c6nc6rjuLiYvY4Go0ilUqx5zfeeCPbXldXh6qqKpw9exYAUFtbi+uvvx4Oh+OyOmfa9txzz+Huu++G2+2Gw+HAjh078Ktf/SrvPr+XFELfH/zgB/jiF7+IJUuWAAA8Hg9cLherf2pqCqZpQtd1xGIx1NbWsv0k6ZJlEokEkskkbDYbKxeLxZBKpZBOpxGJRFi5xWLRcl5d13HHHXfg+9//Pt544w188pOfxGuvvca2P/XUU/j6178+bfnf/va3aG5uRn19Pb70pS+ho6Pjsn0OHTqEUCiEVatWLaitg4ODuOaaa9jz+vp6DA4OLqjOxWYh+p46dQqDg4P48Ic/jI6ODuzatQuGYQAAdu3ahdOnT6Oqqgp+vx9NTU3YsmULK3vs2DG0tLTA7/dj/fr1uO222wAA9957LzweD/x+PyorKzExMYGdO3cuogKLaN4333wTiqJgw4YNAICbbroJy5YtY9vvu+8+fOtb35q2/LZt29DX14f+/n7s3bsX/f39Gdt7e3uxfft2PPfcc3C73YvTiauYheibTqdx4sQJHDhwAEePHsWxY8fw5JNPAgB+/etfIxAI4Pz58xgeHsZbb72Fn/3sZ6zsmjVr0Nvbi7Nnz6K7uxt/+9vfAAAHDx6EaZoYGRnB+fPnUVJSMmNwKgTv6WoDHWLmQn19PVavXo39+/ez106dOoVbbrkFzzzzDNauXbvgdi1duhRnzpxhzwcGBrB06dIF1/tek6++S5cuxdatW+F0OuF2u3H77bfjlVdeAQD8+Mc/xl133QVZluHxeLBt2zYcOXLksjoqKiqwefNmPP/88wCAp59+Gh/72MegaRpUVcVdd92Vs1whWTTzNjY2Ip1Osw4cOnQI77zzTl5lT506xR6Pjo7i8OHDaG1tBQD861//wubNm/H000/jIx/5SEHa+vGPfxzPPvssotEokskknnnmGXziE58oSN2LxUL0vfPOO1mkTKfTOHjwINra2gAAy5Ytw4EDBwAAqVQKf/rTnxAMBgFcivamaQIApqam8OKLL7LjsmzZMhw8eBCEEBBC8OKLL7Jyi0ahZ4AASCgUIoQQ8ve//520tbWRYDBItm/fTtra2ths+MknnyS7du3KWcdnP/tZ0tTURNra2khrayub7RJCyIYNG0hJSQlpa2tjfwcOHCCEEPLmm2+SmpoaUlpaSjRNIzU1NazsTNsIIeSb3/wmaWhoIA0NDeSrX/1qoWUpGIXQ1zAM8uCDD5LGxkbS3NxM7rvvPpJMJgkhhPz73/8mN910EwkGg6SpqYns2LGDxONxQgghjz76KGlqaiKtra2kubmZfOMb32CrC2NjY2Tr1q0kEAiQQCBAbr/9djI6OrqoWtgIEZ+kEFgTcYVNYFmEeQWWRZhXYFkKZt5XX30VmzZtQkNDAzo7O9HR0YHdu3ez7evWrcMf/vCHOdUZDofxqU99CsFgEK2trQgGg/jlL39ZqCYDAPbv349169bNut+ePXty3hOxmAhNZ0aZd0mO3t5ebNy4EXv27MEtt9wCABgfH8d3vvOdBdX7yCOPoKKiAr29veyy5cjISCGafNUjNJ2dgkTexx57DF1dXUxkACgrK8N3v/vdBdV77tw5VFdXs8V3j8eDFStWALh0cNeuXYuVK1ciEAhkRKRHH30Ud9xxB2699VYEAgGsX78e4+PjAC6tXX7+85/HihUrcP3112cspI+MjOCGG25AZ2cnmpubsXPnTrau+V4jNJ2dgpi3p6cHq1evnlfZF154AV1dXTm3PfDAA3jsscfQ2dmJnTt3Zlxlq6+vx8svv4yenh50d3dj37597CoRABw/fhx79uzBqVOn4Pf78ZOf/ATApStB/f396Ovrw9GjR9HT08PKlJSU4I9//CO6u7vx+uuvY2BgAL/5zW/m1a+FIjSdnUWZsD300ENob29HTU0N+vr6Ztx3y5YtGdfOeW644QYMDg7i29/+NkpKSnDvvffi/vvvB3Dp/tGuri60tLTgAx/4AM6cOYOTJ0+yshs3bkR5eTkA4IMf/CC7+vTyyy/jnnvugaqqUFUVO3bsYGVM08RXvvIVtLW1oaOjA6+++mpGnVcSoenlFMS8HR0d+Mc//sGef+9738PJkydht9szbmecD263G5s3b8bu3buxb98+PPvsswCAr33ta/D5fDhx4gRee+01rFu3DolEgpXTNI09lmV52tsF+fsBfvjDH+LixYs4fvw4Xn/9ddx5550Zdb6XCE1npyDm/fKXv4yf/vSneOmll9hruq7nfX/pdBw8eBChUIg97+7uxvLlywEAoVAItbW1UBQF/f39+POf/5xXnRs2bMDevXuRSqWg6zp+/vOfs22hUAhVVVXQNA0jIyPsppMrgdB0dgqy2tDW1oaXXnoJu3btwv3334+KigrY7XZ87nOfw/ve9z62X1dXV8Y9ns8//zxGR0fxwgsv5Bzment78eCDD4IQAkmSUF1dzT7288gjj+Duu+/GL37xCyxfvhzr16/Pq62f+cxn8MYbbyAQCKC0tBQf+tCH0N3dDeBSPrht2zY0NzdjyZIl7HbDK4HQdHbEvQ0CyyKusAksizCvwLII8wosizCvwLII8wosizCvwLII8wosS94XKebzsfX/Fea7VC40nZ58NBWRV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlqUg3887H+jHviVJgizLAC59BbxpmtN+7Fl8G+vMTKepYRjTlrGyplfEvDabDU6nE6qqoqSkBDU1NZBlGcPDwxgfH2e/Rk6/AFmSJKTTacTj8Sv26zxXOzNpOjY2lhEYJEmCzWazvKZXzLwOhwMulwt+vx9NTU2w2+2w2WxIpVJIp9NIJpMghECWZciyDF3XkUwmLSv0YjOdpgCQTCZhGMZlAcHqms7LvDabbV7Djdfrhd/vh8vlwpIlS1BaWgpN0+DxeAAATqcTbrcbpmmy1wAwoe12O9LpNDsQhmEw8a08/AHz17S4uBiVlZXQNO0yTQkhTFMeSbo01dF1HaqqIpVKMU1N00QikbCEpnM2Lx1yCCHsL1/q6+uxceNGVFRUoKOjA/X19Th37hxOnDiBiYkJ+Hw+JBIJqKoKj8cDWZZZJE6n09B1HYZhIBKJIBaLIZFI4MKFC5YRezoWqummTZtQUVGB9vZ2XHPNNTh37hy6u7sRDofh8/nYie/xeCBJEtPUMAxm3Gg0img0ing8josXL7J04mrWdE7m5b9bay6RQlEUyLIMj8cDv98Pv9+PyspKVFZWIhKJQJIkmKYJSZJgt9uhqipcLhcURYGu60ilUjBNEw6Hg00+6HurqgrDMNjfXA/+lWahmhYVFaGioiJD16mpKVYX1dThcMDpdEJRFJZG0LkFTRvof1VVmbmvZk3z/kEVKjIvdj5FXS4X2tvbUVtbi7KyMtTV1UGSJEQiESQSCUxOTmJ4eJjlX7quw+FwwOv1QlEUqKrKcjf63pFIBNFolKUN6XQa4XAY4XAYuq5jampqxt8qm+0L7mYyES3LH9CFftHeQjQtLy9HbW0tZFnG1NQUEokEJiYmMDQ0xDRNp9MZmtrtdjbHyKVpIpGAYRgIh8MIhUJIpVJXpaZzThvmeqA0TUNbWxtWrlyJaDSK8fFxTE5O4vDhw+jr64OiKNA0DbIso6SkBEVFRUwku92O4uJiOJ1OyLIMVVUBXPoBO7vdDkmS2LahoSEMDg4iGo0ikUhMK/RMIvMHkx/G+e00X6RRqhAR6Upo6nK5MjSVJAmKokCSJGiaBkmSMDw8DEmSWIq2WJpml8979MlrrxwNmu1NvF4vysrK4PV6EYlE8M477yAej2NychLRaBSRSISlADQtiMfjsNlsUBQFhmGwnDcWi7HIQSdtVASas9G0xG63Ix6Ps9wumUzm3S/an1wiZ+8zW//nAj2Asw3PXq8XPp8PRUVFC9I0nU5naMr/miUhBOl0mpVZbE2z9ZyLpnNOG+jSFSGE5U25WLlyJW688UaYponjx4/jzJkzGTkWHeKAdycssiyzx/xrsizD6/Xi2muvhdvtZks9/Hqww+GAqqrQdR1DQ0OIRCIYGxvDhQsXFn0paKFpgyzLUBSFGWcmTTds2ADTNPHKK6/MW1MaYb1eLxoaGthETpbljPpUVYWmaUgkEhgeHkYkEsH4+PhVo+mcv1ya5qG80Nlnj81mQ3FxMerq6pBMJlnnsxtF66RCzHQlyDRNRCIRyLIMh8MBRVFYfYZhwG63w+v1IplMwuv1QpIkxONxdqIVMkryfS1EXYqiwOFwsAnWbJrqul4wTePxOEsz6NyCXtCgqz6qqiISicBms11VmuZt3urqakiShBUrVqCxsRGSJLFZK11yAcBmp83NzWhsbEQymcTq1avh8XgQj8cRiURgmib7HV1d19lEgR40Qgh7TF+nBysUCqGxsRENDQ2w2+3QNI0ZGQDS6TSqq6uRSqUwMDAATdMQj8dx4cIFRKNRltvZbDbWVl40PgejkYqiqiqb9ExNTSEajeYtdD6aAmBpEK8pDRLBYBCNjY1IJBJYtWoV03RqagqGYbClRF3XEYvFMjTlr7DRx4lEAkNDQ3A6nZdpSg1Kj2lVVRV0Xcfg4CBcLhdisRguXrzIVov4YJJryY/qymtqs9mgqiqKi4vZhDMSieSt35zMqygK1q5di02bNrHIlkqlWB5ETWkYBmpqanDttdcikUhgbGwMPp8P4XAYIyMj0HUdkUgE8XgcsVgMo6OjGWuPfDpAxaZC2+12NDU1oaGhAUVFRaisrITT6cTk5CQmJycBgM2ki4uL2ayZzqZp5KamyF5640WWZTnDzEVFRaiurobD4cCFCxdYG+cL1XTNmjW4+eabIcsyWx3gNY3H4zAMA7W1tVixYgUSiQRGR0fh8/kQCoVw/vx5pikNBmNjY5dpSvNgelLQgGC32xEIBFBfX5+h6cTEBMLhMIBLJ67NZkNZWRlM00Q4HGZ5Np340YDAB55sTWngoH8ejwc1NTVQVRXDw8NIpVKFn7DRKBuLxViDdV1nZzHNrYB3hzl6INxuN8rLy9lwn0qlEI/HkUwmEY/HUV5ezg4YrY8ag16goCIoioK6ujqUlpbC5XKhqKiIDbmsU/8vkN/vx9KlS1FSUgLDMNiPT2uaBgAZdfPt5vNF3rxOpxNVVVVseI3H4wsyL9WHaqooCus31ZRe9jVNk2mq6zrTVFVVdizoikAikYDP52PRm2pKozp/sw7VtLa2NkNTTdMy0heaJ/t8vgxNfT4fW5vnRzN+fZj6gs5feE3dbjeqqqqgKAo7UfPNp/M278jICCRJwltvvQWfzwdVVaGqKiRJgtvtRlFREYtq9EaakZERAEBVVRUqKyvZQQHeTS+okNlDW/biOB8ZKyoqUF5eDrvdDqfTyWbBuq5n7FteXo7rrruOGSSVSjEBgXdzO/qY1k/hJ1T0IDudTpimicOHD+Po0aMZ5p8rVNO3334bZWVlGRcS6GVdepGBXiIfGhqCzWZDZWUl/H5/RoqVnXZRnWk/+TSJx2azwefzoby8HIqisGW00tJStrJAy/l8PjQ1NSGdTiMSiSCVSrE20v3oX3bk5TWlk25ZluF0OmEYBo4cOQJZlmfM03nyNm8sFoMsy5iYmMDFixehaRpcLhcTlkYzeobSzsmynLFWS4d0vlP82ml2zpsrmecX2en708V3XjxN01BSUpJRdrpbMGeKoPyMnY4cfX19KCoqylvomTQNh8P473//C03T2EgCgEVVGtVoGkDXb6fTNLuPvJmoptlrq4qisGNHgxKvKa2H15S/S43PebO1zfV+1Ly0vbymBY+8tANjY2N4++232QxZkiS4XK7LogRvTE3ToKoqE4PvCN8JKj5PrgkUP7TTx/xByrUWy0duerJk941/z+zX6PvTof3kyZMYGBhYUNpA32N8fBynT59ml3GpZlRTOlrwWjmdTtjt9gxNeQ35SSzfL17TbB2zgwltI2/e7Pbn0tRms2WManQ7f2x4Y9Noe/LkSZw5c6bwOS89c+lNG7yQdJ2SF4gXm3aMCk238x3j13Tpa9kG5VcJsgXk33umPvD70DbyKQs/CmSnM7QNpmmiv78f//nPfxa03kk1HR0dRTKZzGgbjYQAptWZmpRqStvOR15+rZcfQabTlDfYdBdPckVSCn+TEdWGHlM+laCjCO3DfDTN27x0wkAnBLzp+GGDF5A/+6kZ6dCUK6Ly4lLx+X15EfLpYC4hebLNS8meNVMj05PLNE3EYrEFrzbwmtIrYfzJz09u+Lybhx/uadt5/fhAwAeGmTTlzcuTffLnIl/z0skybRshBIlEYk6a5m1eOjGhy1Z8o6iA9HH2FZ1scqUBuUSg+9KO56ojV5nsYQ9AxmRltgNAy82Uz4ZCoQWbN1tTfuimETX7hOdXdCjTpVbZTKdpPlE1+1jyIxJfNhf869kTZL6+uWo6p8hL/9N1Qt68VGg6vObqLP+fP1DZneCh2/kzOVfZ2XI2GknziSa52ppdXyHud51JU3qy8Zryfc41yZyvprwGueYE2YGI1jfTpezsNvF9nk7zud6XvaCPAVEz0LOFPs4l4nTmpY/5bdnweVeu2Wt2PblytZlEm6t5ASw46k4H1ZReKeM15duSa1K6UE35bdmaZJ84tK35aJDr5C+EpnO+MadQ+1mdXOaZK0LTTOaqacE/gLkY0eh/HaFpbsSXjggsizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosS95fOiIQXG2IyCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLP8HrCc374KV5soAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgR0lEQVR4nO1deWwc5fl+Zmd39l6vHdtxLhPndMw6duo0TaoICEmoSSkqpChCpaUprqClFVVbaNRLVeEPoJUKCCkQWgQ9FVpUGjWIRi6kRQWphBJIIEUiBw52nNjxrr3r3Z095vv94d/7+d3JOnESjzMb5pFW9u7cz7zz3t83ihBCwIGDCoTrUp+AAwcXCkd4HVQsHOF1ULFwhNdBxcIRXgcVC0d4HVQsHOF1ULFwhNdBxcIRXgcViykX3vb2diSTybLLVq5cib17955zH7t370ZHRwe8Xi++/e1vlywzDAPf+ta3sHDhQixatAiPP/64XPbYY48hFouhtbUVy5cvx+9+9zu5bHR0FFu3bkVrayuam5uxbds2UHHRMAx873vfQywWQ3NzM+644w7kcrnzv/hpgNX83n333Whvb5cfn8+Hxx57DACQyWTw5S9/GbFYDLFYDDfeeCMGBgYAjHH4ne98By0tLVi+fDnWrVuHDz744KKu9ZwQ04iOjg7xyiuvnHO9999/X+zfv1/88Ic/FPfcc0/JsmeffVZce+21olAoiNOnT4vGxkZx8OBBIYQQ3d3dIpFICCGE6OnpETNmzBAffPCBEEKIH/zgB+JLX/qSMAxD5HI50dnZKZ577jkhhBA7duwQ69atE7quC8MwRFdXl3j44Yen7sKnCVPBL8eJEyeEz+cTJ06cEEII8ctf/lJs3rxZGIYhhBCiq6tL3HvvvUIIIf7yl7+IVatWiVwuJ4QQ4v777xe33HLLxV3QOTDlmldRFCQSCQDAa6+9hvb2dsRiMWzduhWFQmFS+1iyZAna2trgdrvPWLZz50587Wtfg6qqqKmpwZYtW/DHP/4RALB+/XpUVVUBAObNm4eGhgYcP34cAPD222+js7MTiqLA4/Fg48aN+O1vfyuXbdiwAZqmQVEUXH/99XKZ3WA1vxzPPvssPvOZz6ChoUEeO51OI5/Po1AoIJVKYe7cuXKZruvIZrMQQmBkZEQuswqW+by5XA5btmzBL37xCxw8eBC33nor3n77bbn8iSeewE9+8pPz3m9PTw+uuOIK+X3+/Pno6ek5Y73u7m7E43F88pOfBAB0dHTgT3/6E3RdRyqVwgsvvIBjx47JZbt27cLIyAjy+Tyee+45ucyusIpfjqeffhp33HGH/H7nnXciHA6jvr4eM2fOxPDwML75zW8CAD73uc/hmmuuQUNDA2bNmoV//OMf+NnPfnZRxz8XLBPe//3vf3C73diwYQMA4LrrrsOCBQvk8rvuusuyiztw4AC2bt2KnTt3IhgMAgC2bduGxsZGfOpTn8JnP/tZrFq1Smqer3zlK+js7MTVV1+Nq6++GkuWLDmnVrrUsJrfV199FclkEps2bZK/7dmzB4ZhoL+/HydOnEA0GpUPyL59+3Dw4EH09vair68P69evx1133XXBx58MpjXboCjKRe+jsbERH374ofx+7NgxNDY2yu/vvfcebrjhBjz99NNYu3at/N3v9+PRRx/F/v378c9//hO1tbW48sor5Xn99Kc/xVtvvYXXXnsNLS0tclklYSr4Jfz617/G7bffDlVV5W87duzATTfdBJ/PB03T8MUvfhGvvPIKAOA3v/kNrr32WkSjUbhcLtx+++1ymVWwTHibm5tRKBTkBXR3d+Pw4cMXvd9bbrkFTz31FIrFIoaGhrBz505s2bIFAHDo0CFs2rQJO3bswMaNG0u2GxkZQTqdBgAcPXoU27dvx3e/+10AQDabRTweBwAMDg7iwQcfxH333XfR52olrOIXGOPqz3/+M7761a+W/L5gwQLs2bMHQggIIbB7927EYjG57OWXX5ZZmr/97W9ymWWY6ggQgIjH40IIIf7973+LtrY2EYvFxNatW0VbW5uMhrdv3y5+/OMfl91Hd3e3mDNnjgiHwyIUCok5c+aIv/71r0IIIQqFgvjGN74hmpqaxIIFC8Qjjzwit9uwYYOIRqOira1Nfl566SUhhBBvvfWWWLx4sVi2bJlobW0Vzz//vNyuv79fNDc3i5aWFtHc3Cy2b98+1bRMGazmVwghnnzySXHVVVedsd3p06fF5s2bRUtLi2hpaRE333yzGBgYEEIIkc1mRVdXl2hubhatra1i48aN4vDhw1N78SYoQjgjKRxUJpwKm4OKhSO8DioWjvA6qFhYLrz79u3D9ddfj6amJnR0dGDFihV44IEH5PJrrrkGL7zwwnntM5FI4LbbbkMsFsPy5csRi8Xwhz/8AQDwzDPP4POf//yE50KZiXLYu3cvXnrppfM6l0sBh9MxWJqJP3DgADo7O/HMM8/ghhtuAAAMDQ3hwQcfvKj9/uhHP0JdXR0OHDgARVGQTCbR399/zu1WrlyJnTt3ll1WKBSwd+9eJBIJdHZ2XtT5WQmH03FYqnkfeughdHV1SZIBoKamBg8//PBF7fejjz7CrFmzZFI+HA5j8eLFcnkqlcKtt96K1tZWrFy5EkeOHAEwpgXa29sBjBU3otEovv/97+MTn/gEHn/8cTzxxBP4/e9/j/b2dstLmxcKh9NxWKp5//vf/2Lz5s0XtO2uXbuwa9cu/OpXvzpj2T333IMvfOEL2LlzJ9asWYPOzs6Sm/nGG29g//79aGpqwrZt2/DQQw/hySefPGM/w8PDuPLKK/HQQw8BGDOdiUQCjzzyyAWd83TA4XQc0xqw3XvvvWhvb8ecOXPw7rvvnnXdG2+8sSzJALBu3Tr09PTg/vvvRzQaxZ133om7775bLl+zZg2amprk/xNVnjweD2677bYLvBp74OPMqaXCu2LFCvznP/+R33/+859j//798Hg8yOfzF7XvYDCITZs24YEHHsDzzz9f0sLo8/nk/6qqTtgqGAgE4HJVVsLF4XQclh7lvvvuw1NPPYUXX3xR/pbL5SbddzoR9uzZI3sRAODNN9/EwoULL2qfABCJRDA8PHzR+7ESDqfjsFR429ra8OKLL+LRRx9FU1MTVq1ahXXr1uHrX/86lixZItfr6urC3Llz5ef111/Hrl270NXVVXa/Bw4cwFVXXSXTOrt27SoZ8nOhuOmmm7B//35bB2wOp+NwehscVCwqy+Fz4IDBEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULCbdmDOVw6onC1VVsWzZMixcuBANDQ1YvXo1otEoBgcHMTg4CJfLBb/fD0VRsHfvXvz973+HrusoFApyHjI6byvT2Re670vBqdvtxvLly7Fs2TLU19djzZo1qK6uRiqVQiqVkusJIdDd3Y3du3cjm80im82iWCyWnPel5nTaZ9Y4nwt3u92IxWK47rrrEA6HMXfuXPh8PkSjUdTW1sLtdqOqqgqqqiKbzSKdTiMej+P999+Xpc6PQw3mfDhVVRVLly7Fxo0bEYlE0NjYiEAggFQqhdHRUbhcLgQCASiKgng8juHhYcTjcbz77rs4ffr0pI8zHZhW4VUURTZtGIZxThJIS9x8881QVVVuk0wmkU6noWkaamtr4fV6AYyR2tfXh1OnTpXU6Sc6Fw673JDzhaIoJddyrutQVRXNzc3o7OyEx+OB2+2GoihSeDVNQ01NDTRNQy6XQ7FYRG9vL3p7e6Xwnu1cOKzmdNo179kuyOPxQFVVeL1eRCIRhMNhRKNRqKpa0qnk9XphGAY0TZPbBINB1NbWQtd11NfXI5VKSW0shDjjYRFCXBKzPdXg11GOW7fbLTkNh8OSU/rd5XLB5XJB0zQUCgUp0KSBZ8yYAV3XUVdXh2QyiWw2i0wmA8MwLjmn0yq84v9nWikHl8uF6upqRCIRzJs3D2vXrpVTMmUyGbjd7hJB9fv9knjDMFBXV4e2tjbMnTsXuq7j+PHjOHr0KN577z3ouo5MJnNG51WlalszDMMo+7vL5UJVVZV0uT796U+jrq4OsVgMhUIBiqJA0zSoqopAIACv1ys5FUKgvr4ey5cvx+zZszE6Oio5PXTokOTU3IY5nZxestnk+BOqKApUVYXf70ckEkF9fT2WLVuGmTNnoqamRgqdx+OR65pNpd/vR21tLVRVxbx586CqKlKpFHw+H4QQyOfzZTXF5QSz1qOANhQKoa6uDkuXLkV9fT1qamqkIiG3g5QD58Tv92PGjBlwuVyYN28eXC4XRkdH5Qya5FZcKk6nVXg9Hg98Ph+8Xi/mzp2L6upqeL1e+P1+eDwe1NXVIRqNYubMmZgzZw7C4TA8Hg9yuRyEENA0beyk3W643W4YhiGXUU+rqqpoampCbW0tqqurMWvWLORyOWSzWeTzeSQSCZw6dQqZTAZ9fX1yrttKhdvtlhPfzZ49G9FoFD6fD8FgEB6PB7W1tYhGo6ivr8cVV1yBSCQCr9cLXddhGIZ0E8hVAMaE0jAM6LqOfD4Pl8uF+fPno7a2FjNmzCjhtFAoYGho6JJwOq3Cq2kaqqurEQ6HsXr1aixduhShUAj19fXQNA3RaBShUAhut1t25OfzeSmg3B8DUCK0RLSmaVi6dClcLhdisRiSySQMw0ChUECxWMSRI0fw5ptvYmhoCLquV7zwapom44OOjg4sWbIEkUgEDQ0NMjMTDoehaRqCwaDklISXNC65EIVCAblcTq6Ty+Xg8XiwdOlSqKpawmmxWIRhGDh8+DD27ds37ZxOi/CSwEUiEcyaNQuRSATV1dWoqqpCIBBAIBCAx+OBx+MBMGb+yBzRTOYul6vkN1qHAgfaTlEUGIZRYg4Nw5B+XDAYRE1NDRRFwcyZM5HJZJDJZDAyMiLzmJUAM6fhcFhq2VAohGAwCE3TpE9LvAAo4bRQKEh+VFVFsViUvAJjroeiKCVuBnGqquol5XTSzegXGkWqqooZM2YgEAigtbUVGzduRFVVFSKRSEnQBYwHdKR53W436urqUFNTA13XEY/Hkcvl4PV65RT8HOTbxuNxGaDRlJt0A3O5HDKZDHK5HE6cOIHh4WEcOnQIe/bswcjIyKRSeGZMd5GCcxqLxbB+/XpEIhFEo1GZo+VCB0BySu5ZdXU1dF3H4OAgdF2H1+stCdg48vk8hoaGbMep5ZqXgoZIJILZs2ejtbUVkUgE+XxePuXcxyIzRakwYCxwIP82k8mgWCyiUCjIFA/dKLfbjUKhgHQ6jWQyKdcDxtNwmqYhFAoBgLyBdPNIO9s9kCvHaVVVlbRCJGDFYrGEU4obFEVBMBiEEAK6riOdTqNQKCCfz8vAWVVV+SkWi7bk1HLh1TQNixcvxvz589HY2IhcLodkMilJFUJId4DMVbFYlEQqioKRkRH5Ag/uKqiqCp/PJ80Xad5EIgFd10tIKxaLcLlcyGazcrZvEvrq6mq0trZiaGgIPT098vVMdgXndN68ecjn80ilUtL/JwEmTulDAS0wNp9CoVBAMplEoVDA6Oio5JSsHvGXy+UwPDwsX5bCOVUU5ZJxarnw+v1+rFixAqtXr4aiKMhkMkin00ilUtB1XZpOSoGRb0sBxalTp+ByueDxeBAKhaCqKpLJJJLJJFRVRTgchtvtLgnsiFyXyyXfLUGmizSMy+VCTU0NgsEgGhoasHbtWiQSCbz88su2F14zp5RzHR0dPYNTcgNIIRiGgZMnT0q/NxKJwO12I5lMYmRkBG63WwbNFLSV45QXfrjWnk5OLRdeRVHg9/sRDoelgE0UaHETwzUprev1eiVZpFlof0Qg3x8RDKBEu5MGohtCETtlNOwOzillWogjM6fc7zVzSv8DkJwC46myfD5/Vk75MSkwm05Op8XnDQaDqKqqkg4/Rbf8jTs8yKBImsjN5/MQQiCTycjfaRIMeicYHYv2RUSTkNPNomPzoMTv98u8cjgctpqSi4aZUxLGiTjlH+KUeEmn0zLrQD0inHPS4jwANHMqhJD+Ma1PnIZCIekPTzWmRfNqmga/3y9LkgDKRrW8cYc0I/ff8vm8XIdMFz0MRB7tG4DUtABKiOagIIYyHxQk2hmcU/Llye0yp6Y438QP15SkWWk5F066R2YtbuaUjsN7LDRNg8/ng6Io8qGYakxLntd8gTxLwF0AACU5Wr6teX/04RrVXHIuJ6zUkEL+NdfE5gYgO8N8XRQXKIpyBqeU4+UPNf0182x223h+ly/nUFW1pNGH543NpfypxLRV2MhPoqefNKeu6zIFw5uduZaYaF/c5+Ik879mst1uN4LBoCSWllH1rpJg5pSuZzKccoHkXE3EqXk9zqnH40EgEJDCy3PL9EBZAUvvFteg3PQA46adzBKBa4CJ/nJiuSBPpEXo+HQ8rmHND4fdNa8dOeWZItqOL7eKU8uEl0yJ1+uFx+OBpmky7QKMN9cA4xPF8UCCAgZeqqS/uVwOuVyuJLgDIAsX/DegNHDhZowyEPSblSZuKlApnFIMYjWnlgkvkcD7cPnFq6paUkkjX4kn1znRPOVDeU2qBgHj2oO0jjmrwP8nMnlzCddgdkUlcMp7I6zm1DLhdbvd8Pv98Pl80g/iwgKMP73UPGK+cPK3yG8jn03TNBkN002kfZsJo32Q1qJjASgJauh87IxK4tQcpPMHZcr4mNK9MXi9XkSjUTnkhJcoeTKdAihzspt8MNrOnEYjgmkMFk+yA6XpMjoONfRQsUPXdXljy6WE7IZK4ZSOY+aUbzsVsNTnpTFmvDJjjnS52THnfs2RLTdXtF+e4+TBlzltxtNjZE7NQsrPgQcudkGlc3oh3WVng6VuA/Xq0lOcz+eRzWYBjN2IUChUUj83+1PmfCR9yETx4IIn2c2E02gDv98v/UUz0aRxAoEAqqqqkMvlkE6nbSXAduWU+9pcwGl7v9+PaDSKXC6HVCo1ZZxaKrw0PIV8LGrVI7K8Xi8URZHlTU4mNzNm559uAk978RykuWmdzJvX65VCStU+7pu5XC45hMblciGTyVhFzwXBrpzSNuSKmDkNBAIIhUKyKcv2wktmiJs4+h1ASZeTuf5uhtkUkS820fr8RlCahxcleHMQgW4SnTeVou0EO3NK25s5pWORNp9KTi31ecms8CiXhpDk83k5QwtVt7LZrDR35fwjevozmQx0XZcEUtcSHYPIp7QSDyyy2aw0XVTX5+kjTdMQCARKyql2gV055VML8C5A+pDFmGqFYHmelwdAwHj1h1r5eAmRSJqMWTGXMM3gPhtPlFPek1I6/HfSLOaEvF1gZ055McScWrOqWGGp28CjTDJJwWAQ+XwefX19SKVSqK2txaJFi2RSnS6Sm3FzwEGBl7m6Q3/pN57MJ42QSCTQ398PwzAQjUblEHGekPd6vTJdZCfYldN4PF6WU3oYSJNPNaeW9jbwygwFSIFAAJlMBv39/ejp6UFTUxMaGxtlEGImtZwPRkl4Dh548Aia1qPAZmRkRI4kiEQiJUNeSHitIHqqYHdOw+GwHOjJA0NyR6YSlroN5pwpXQQNMUmlUnJAJS03mzhugrgwlTODPL/JyaYgrVAoyOEydF40BJwfz66oBE4BSI0PoORhMbsTFwtLhZfMC0WjHo8Hfr8fQozN9Njb24toNIpsNitHRlBjCfefyGTRhfOG63KEcF+PJtLIZDJIpVIYHBxEX18fPB4Pli1bJkfR8hs31VHxVMHOnPb29kLTNLS0tCAcDkvLAIxr9aluObXU56WL5cJB5iOfzyOdTstJi4k8/pQCpU88Pc0TaREegAHjfprL5ZImjiJjirKpzGpu47Oj8NqVU5pkhI7n8XhKgmJ+3lPJq2UhNSX8uX+kKIps5xsdHcXg4CDi8bicjhSALH9ymC+Yql80FJsvp6CETCa5BdlsVo6QHR4eRjKZlG4DaQRebbOj9rUrp6lUCsPDwzIFSTEEn1HdCj4trbBRBQaANCGUG8xkMiVEU4RK7XjmJDrXBDSxCPW0moWPlyk9Ho8cSp9KpZBMJjE8PCx7W6mbisDr9XaDnTmluTVIeAGUWLmp9neBaRxJYf6NCKMSJ92IcwkOmR/ez8orORw87UOahZLxFA3TcjoPs9axGyqF03KB3lTD0gobTzmZTTJN80SR6ujoKGpqauD1ekv6Dsz+maIoMicJjE/KV84skdahWXQ++ugj9Pf34/Tp01JQabpPGklAmsOOoyqIU3N52E6cUpWS7j1ZMj66e6pgueblKRP6jUikXlM+98LZtARty00an9y4nEai/WWzWXlDaS4tHkzwAKfcvuwAnioD7M2pOTVmRSBsaaqM+1T0IbNG0S3/zawVJvrQdsD4SAAii0fhRDQAZDIZJBKJkjm96Jj8uHb2eYHSm29HTvl6Zk4rTvMSMaQRqHmDiCJiJqqLm0uZZ1yAqRJmbt+jbVKpFIaGhuQcaeZp/rkZtbPwAigRKDtyagbvF6mIVJkZXIh54weRbJ5eaKLtaRvSNOUaSMzb8Zt9tsYTK02cFagUTq3icVqme6IGcGC8Hk5PKE1dGggE5AR4ZvNiNmuUjOfNInwd+t+sRSe6MeUCGLvD7pzSMSoy28DBT9z8dBuGId+BwAOoiWA2ifyJ59txsidDXLmUkJ1hZ07PlmabSkyb8NKTz80Mfedz6/K2v3L7AcbSNcFgEMB4uZI/3VT7p3wlaRI+RJuOTb4c+WWk0SpBeD/unE6L2wCUtvKZZ2yhMiLPsZ5tf/Q6LNIY5oiabiIni1eO6JwoPUY9DvSxa3kYKJ1u6ePO6bT08/KUizmfCkxchSlXyjR/5385yeXOhd9EXq83ZxysDDIuFmbffCJOzc04hMuJU0sbc7hzryiKfDEHvcCD1vP5fGe8W4LX0stdtHnYDu92IvAcrs/nQygUknPGApDDxvkrSK3q+p8K0LXytFM5TmlmnWAwKJtkLkdOp0Xz8ieYZt0mE8dviDkCBsqTzG+E2RxOpCU8Hk/J8B7SWJTMp2Px2r0dYa5eTcQpNetwrUi4XDidtoDN3FNLF0daIhAIQAgh3+dVDqQB6GZxE1ouQub+Ns0kzueLNaeYuGmzq/ASzsYpjTL2er0wDOOy5dRS4eUX7nK5JJHcxHk8HvlSQSEERkZGkMlkzqgMmX08ej9FOU3BNRNpE3oBCZk40ljZbFbuoxI072Q4pbnKQqEQisXiZcvptOSDuIkzlzIp5UJPr9nZL7cvvs+zHZM0B3VImRvP+SR157NvO2AynJI5v1w5nZbeBqrwFItF2Xmv6/rYCbjH3vtFb3g3BxblQNPI000qFzUriiJffpdOp+H1elFdXS1fnEIuyvDwMPx+f8kw8YkidTvA4XQc0+rzUv4xk8nIJ5P8M8o2TAblkujlUCwWkc1m5etLA4GAHJQohCiZUBkonRfB7nA4nYaWSLOvZI6MuYnjeWFKm5n3AYz3p55rFhi+DUXGvJGb+l75MBWe4rMbHE5LYanwms0FBRfZbLakUdrr9cLn80nfiXypiaJUHmhQCZQHGeYEOWkIHlwAYxF2JpORY7yIYLuOpDgfTmnC58uZU8vzvNxc8P5Tc9TM/aHJmC9g4gYQDh5Z8/o6b+czp3Xs7DZMxKl59IN5vcuRU8vfSUGTDwNANptFPB6Xb2UnTFT35tEtJ5669nngQiYLKJ1+nm4GPf18P9RJZZ5wxK69DeU4zefz8kXivKrF+wmAUqG8XDi1TMXwKTApEqU+01QqVVIepid4ogszJ8t50ED74NvyJ5+2JQIn6oDi52LXoG0iTsuV3KkkS8JqxuXA6bS4DfyppFG65vJhOdeBL+e/0Y3hyW9OTLnGHzOBdON1XZezLZIvx2cftxvMPJHQ0eQewPj1lgvM+H5oXaAyOZ2WKU7phMtpXh4Zm/0y7lvx71SzJxPHbwBvQqFtaD2al4ACHV3XkU6npbZxu8ffSUFT+9sJ5TjN5XJIJBJIJBLyOuh6iVOXyyWjf9qPmeNK5NTSu8OJJvNlNisTEUMo96SaA5Jy7Xfm9ek43ISSKeRpHfMNsRvOxik36+ag6VyoRE4tnXSEUmB8Egqz75PJZNDb2wvDMFBXV4doNFrSVE0oJ9Q8rUPam5NJ6SHDMJBMJjEwMIBkMinLpUQy37+dh75zTsn3JVPPtWkmk0FfXx8Mw0B9fT2qq6tLhvlzcCVC2pOyQZxTgp04tVx4zbOnmH2wbDaLgYEBuFwuRCIROcMg18bAmd1JnGg+7ISDAkF6V0M8Hsfo6KgslVI0zRP3PAixm+Y1c8qnZ5qI06qqqpKGccMofdeGOTVGzTW8WmcWXrtwapnw0tRDNBCQZnAxD5NOpVI4cuQIkskkamtrMXv27LETY3O5lvOBqa5PkTKPevlfOo+TJ0/i2LFjGBgYgGEY8qabfW07a94L5XTWrFlSkwKlQbA5K0DCbeZUCCEfFrtwapnwUv6R6uwAZF8p7/fs7e3F7t27UVVVhZqaGixZsgRCiJI38pifVtI8RCJ/jSkAmSIiokdGRvDGG2/g9ddfl2/HoVEGmqbJKJiCR17ytBPMnAohZHA0EafV1dVYtGgRhBByEmqzb0sZAU3TZNDF534A7MmpZcJLM2fTqFSXyyVLmLxFT9d1DAwMIJvNIpFIIJ1OAzjT3+Xg6Rxurgh0Q4j80dFRDA0NYWBgoGQ/5J9RMzeZTO6K2AkXw+lE+V4SYs4pKQZ+D+zIqWXCe/z4cXR3d8Pr9cLv98Pr9WJgYABHjx6VE7Rx6LqOV199FadOnUI4HMbs2bPlGKlgMFjiOtCTDYyTTzMjUotgoVDA6dOn0d/fj0QigQ8//LDkeLlcDocOHcLAwACqqqrwzjvvQFVVDA8PY3R0FCdPnjzjHC81LoTTf/3rXxgYGLhgTjOZjNT4duNUEZN8FM5X3ZfL13K/bCItoCgKGhoa0NHRgWg0irq6OtTU1JQk3HmwQqVSmuA4m83KVzodPnwY77zzzhnzkpnPkV5yB6DkfWL8jednw4VqEztwSp9ynNLE0cRpMpm0FaeWad5yaZlzgcwUmSz+oWDCnF/keWLzd/KFzdUh8zmSv0zBX7mbYgdMNadAaRHCzCNPf/H8rV04nbTmdeDAbrBfPsiBg0nCEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULBzhdVCxcITXQcXi/wCuj10nXJQJMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dark images\n", + "\n", + "Datalab can also detect low-quality images in the dataset, such as those that are abnormally dark. It can be challenging for both annotators and models to assign a proper class label for low-quality data, which can hamper model training and testing.\n", + "\n", + "The `dark_issues` DataFrame reveals which examples are considered to be abnormally dark. We can sort them via the `dark_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue). This allows us to visualize images in the dataset considered to be too dark (you might consider omitting such low-quality examples from a training dataset)." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.954022Z", + "iopub.status.busy": "2024-05-24T23:48:43.953659Z", + "iopub.status.idle": "2024-05-24T23:48:43.963791Z", + "shell.execute_reply": "2024-05-24T23:48:43.963020Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dark_scoreis_dark_issue
348480.203922True
502700.204588True
39360.213098True
7330.217686True
80940.230118True
\n", + "
" + ], + "text/plain": [ + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dark_issues = lab.get_issues(\"dark\")\n", + "dark_issues_df = dark_issues.query(\"is_dark_issue\").sort_values(\"dark_score\")\n", + "dark_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View top examples of dark images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_image_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_image_issue_examples(issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " issue_indices = issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(issue_indices[i])\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {label}\\n SL: {predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + "\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.966305Z", + "iopub.status.busy": "2024-05-24T23:48:43.966096Z", + "iopub.status.idle": "2024-05-24T23:48:43.972181Z", + "shell.execute_reply": "2024-05-24T23:48:43.971670Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_image_issue_examples(issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " issue_indices = issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(issue_indices[i])\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {label}\\n SL: {predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + "\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:43.974600Z", + "iopub.status.busy": "2024-05-24T23:48:43.974109Z", + "iopub.status.idle": "2024-05-24T23:48:44.163854Z", + "shell.execute_reply": "2024-05-24T23:48:44.163218Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAACfCAYAAADK1szHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqGUlEQVR4nO3deZQU1dkG8GcY9p0BZJEdQZiNZktAFlnkOKJsQuQIImIQERRQYuAEPyFKPAGSuIEhEgMGNaKiIxo1YFhiAA+bIIEYWcMqOwz7MDPv9weHyq13Zm5PTXfNdPc8v3M4p2pudXVV3arq4r5v3RsnIgIiIiIiCqtSxb0BRERERLGID1lEREREPuBDFhEREZEP+JBFRERE5AM+ZBERERH5gA9ZRERERD7gQxYRERGRD/iQRUREROQDPmQRERER+SCiHrICgQDOnz+fZ1mHDh2wevXqoOuYN28eUlJSEAgEkJycjFdeeSXXMsePH0edOnUwcOBA52+XL1/Ggw8+iOTkZCQnJ6N///44ceKE63Migl69eqF69equv8+aNQuJiYkIBALo1KkTNmzYEHQ7S6Jw1O+MGTNQu3ZtBAIBBAIBDB8+3CnLycnBE088gebNm+OWW27B3LlznbJXXnkFycnJSElJQWpqKt566y2n7Fe/+pWzvkAggKpVq+Kpp55yyt944w20aNECzZs3xyOPPIJr164VYu9LHr+v52PHjuHee+9FamoqWrdujZdeeskp++ijj5CamopAIIDExERMmzYN5uAWa9asQceOHZGUlITExESsX7++0PtJ14WjvsePH++6FsuXL+/Uua1Og9U3eReO+jxx4gT69evnXKMjR47E5cuXnfKZM2eiefPmaN68OaZNm+b8/eLFixg1ahRSUlLQqlUrTJ06NVd95vd7HHEkSrRv315WrVoVdLmzZ8860+fOnZOGDRvKli1bXMsMHDhQHn74YRkwYIDztxdffFEGDx4sOTk5IiIyevRoefrpp12f++1vfyujR4+WatWqOX/75ptvpFGjRnL+/HkREVm8eLF07NjR495RQet3+vTpMnHixDzL3nzzTenVq5dkZWXJqVOnpFGjRvKvf/1LRES+/PJL59w4cOCA1KxZU3bv3p1rHVeuXJGEhATZtGmTiIjs3btX6tWrJ0ePHpWcnBzp16+fzJ07t3A7SY5wXM/Dhg2TadOmiYjIhQsXpE2bNrJhwwYREcnIyJDs7GwREbl69ap07NhRPvzwQxEROXz4sDRu3Fh27twpItfr/MyZM+HaNcpDQevbdPToUSlfvrwcPXpUROx1aiuj8CtofU6cOFGefPJJERHJysqSO++8U+bNmyciImvWrJHExES5cOGCXLlyRdq3by+ffvqpiIj84he/kBEjRkhOTo5kZmZKWlqavPfee6515/V7HIkiqiUrLi4OZ8+eBQCsW7fO+d/rqFGjkJWVVaB1VKtWzZm+ePFirlaHN954A02bNkW3bt1yffelS5dw7do1ZGVl4cKFC2jQoIFTvmPHDqSnp2Pq1Km5Pnft2jVcvHgRAHD27FnX5+h/wlG/NkuWLMEjjzyC+Ph4JCQkYOjQofjLX/4CAOjdu7dzbjRs2BB169bFwYMHc60jPT0dDRs2RPv27QEAH3zwAfr374+6desiLi4OY8eOddZJdn5fz9u2bUPfvn0BAJUqVUL37t2xePFiAECVKlVQqtT129uVK1dw9epVxMXFAQBee+01DBs2DK1btwYAlCtXLvL/NxwFwn19v/nmm7jzzjtRt25dAPY6tZVR4YSjPuPi4nD+/Hnk5OQgMzMTly5dcn4flyxZghEjRqBSpUooV64cHn74Yefeum3bNqSlpSEuLg5lypRBnz59nGsbyP/3OCIV91OeCYCcOXNGrl69Kg0aNJAVK1aIiMjf/vY3AeA8Of/+97+X//u//8t3Pe+//74kJiZK2bJl5Te/+Y3z971790qHDh3k0qVLsnDhQldL1uXLl+W+++6TatWqSUJCgtx1113O/4wyMzOlc+fOsnPnTtm3b1+uJ+fZs2dLhQoV5Oabb5ZmzZrJoUOHwnNAYkw46nf69OlSv359SU1NlZ49e8rKlSudsuTkZFm3bp0zP2/ePBkxYkSudaxYsULq168vFy5cyFXWp08feeWVV5z5xx9/XF544QVnfseOHdKwYUNvO15C+X09P/jggzJ+/HjJzs6W48ePS8uWLaVfv35O+dq1ayU5OVnKlSsnkyZNclqpBw0aJJMmTZLevXtLmzZt5PHHH8/zXCBvwlXfN7Rs2VKWLVvm+lt+dRqsjLwLR32eOnVKevToIbVr15bKlSvLmDFjnLJ77rlH3nnnHWf+r3/9q3Tr1k1ERJ599lkZOHCgXLlyRc6fPy/dunWTlJQUEQn+exxpIvIha9u2bdKkSRNXWbNmzTw3N+/bt08CgYB89913kpOTIz169JCvv/5aRCTXQ9bHH38sQ4YMkcuXL8vVq1fl/vvvd0IR06ZNkzlz5jjrNCt179690qlTJzl8+LCIiLz66qvSpUsXj3teMoSjfo8ePSqZmZkiIvLPf/5TateuLfv37xeRgj1kffvtt9KgQQP56quvcq17//79UqFCBTl16pTzNz5kFZ6f17OIyIkTJ2TkyJGSmpoqd9xxh4wZM0YGDRqU63PHjx+Xbt26yZo1a0REpF+/ftKuXTs5ffq0ZGZmyvDhw2Xy5MmF20lyhLO+//GPf0i9evUkKysrz3JdpwUto4ILR33OmzdPxo0bJ1lZWZKRkSE9evSQBQsWiIj9IevSpUsyYcIEadOmjXTv3l0mT54sbdu2FRH773EkiqhwoU1hmn6bNGmCH//4x/j000+RkZGBb7/9FkOHDkWTJk3ws5/9DMuXL0fv3r0BAK+//joGDRqE8uXLo2zZshg+fDhWrVoF4HqS7KuvvoomTZqga9euyMjIQJMmTXDixAksXboUKSkpqF+/PgBg1KhRWLt2LTIzM8O38yVAQeu3bt26KFOmDACgS5cuaNu2LTZt2gQAaNSoEf773/86y+7fvx+NGjVy5nfu3Il77rkHf/rTn9C1a9dc6164cCEGDBiAhIQE52/B1kmFE+r1DAC1atXCokWLsG3bNqxYsQJxcXFISkrK9bnatWujb9++eP/99wFcr9O7774bNWrUQJkyZXD//ffj66+/Dm2HyMprfb/xxhsYOXIk4uPj8yzXdVrQMgqPgtbna6+9huHDhyM+Ph5VqlTBkCFDnN9V2721QoUKePnll7F161asWbMGtWrVcq5t2+9xRCrupzwTVPPkjVDQihUrXM2TNjt27HCmjx8/Li1atJDly5fnWk63ZD3xxBMycuRIycnJkZycHHnsscdcTZs36CfnpUuXSmJiopP4/u6770rLli0LuMclSzjq9+DBg870999/LzfddJP85z//EZHrdaoT37/99lsREdm5c6c0btxYvvjiizzXm52dLY0aNXKaxG/Ys2dPrsT3V199tTC7X+L4fT2fPHnSadXcsmWL1KlTR44cOSIiIv/+97+dcH9GRoZ07dpVXn/9dRG5Hlbq2rWrXLlyRURExo8fL+PGjQvPTpdg4ahvkesvOFSqVEm+//57199tdWoro8IJR33269fPCSVmZmZKv379nMjAqlWrciW+f/LJJyJy/Ry4ePGiiFyPFjVq1Ei++eabXOuPhpas0sX1cGdTtmxZLFmyBOPGjUN2djY6duyINm3aOOXz58/HkSNH8Nxzz+X67Msvv4yvvvoKZcuWhYhg0qRJ6NOnT9DvnDFjBsaMGYPk5GQAQKtWrfCHP/wh6OcGDRqEjRs3okOHDihXrhwqVaqEd955x8Peljyh1O+0adOwefNmlC5dGvHx8Zg3bx5atmwJABgxYgQ2btyIFi1aIC4uDk899RRSUlIAABMmTMC5c+cwZcoUTJkyBcD1rjfuvPNOAMCXX36JUqVKOS2bNzRr1gy//OUv0aVLFwBAjx498Oijj4b/oMQwv67nDRs2YMKECShdujSqVKmC9957D/Xq1QNwPal2yZIlKFOmDLKzszFkyBCMHj0aAHDbbbehf//+aNu2LeLj45GUlIT58+cXwZEoGUKpbwB499130b59e7Ro0cL1d1ud2sooNKFev2PHjkVKSgqys7PRuXNnPPnkkwCu30uHDh3q3KOHDh2Ke+65BwCwd+9e3HfffShdujRKly6NF198EYFAwP+d9UGcCDsTISIiIgq3qMnJIiIiIoomfMgiIiIi8gEfsoiIiIh8ENEPWZs2bcJdd92Fpk2bon379mjbti1mzpzplPfo0QPp6eme1nn27Fk88MADSE5ORmpqKpKTk51E9UWLFrnGM9TbMnTo0HzXu3r1anzxxReetqWkY/3GPtZxbGP9xjbWb+gi8u1CANi+fTvS0tKwaNEi542D06dP49e//nVI633mmWdQu3ZtbN++3eny/4cffgj6uQ4dOmDJkiV5lmVlZWH16tU4e/Ys0tLSQtq+koL1G/tYx7GN9RvbWL/hEbEtWbNmzcLo0aOdygWAhIQEzJ49O6T1Hjp0CPXq1XONeWW+KnzhwgXcf//9SElJQYcOHbB3714A15+Sb7xCun//flSvXh1TpkxBu3btMHfuXMyfPx9vv/02AoFAvq8m0/+wfmMf6zi2sX5jG+s3PCK2JWvLli0YPHhwoT67bNkyLFu2DH/84x9zlU2cOBFDhgzBkiVL0LlzZ6SlpblOoo0bN2Lr1q1o2rQppk6dilmzZuXZX9a5c+eQlJSEWbNmAbjeBHr27Fm89NJLhdrmkob1G/tYx7GN9RvbWL/hEbEtWdrTTz+NQCCAm2++GTt27LAu279//zwrFwB69uyJAwcO4Pnnn0f16tXx6KOPYvz48U55586d0bRpU2d6z549ea6nTJkyeOCBBwq5N6SxfmMf6zi2sX5jG+u3cCL2Iatt27bYsGGDMz9nzhxs3boVZcqUwbVr10Jad6VKldC3b1/MnDkTS5cuxeLFi52y8uXLO9Px8fHIysrKcx0VK1ZEqVIRe/giHus39rGOYxvrN7axfsMjYrfw5z//ORYsWIDPPvvM+VtmZma+B7ygli9fjjNnzjjzmzdvRvPmzUNaJwBUrVoV586dC3k9JQXrN/axjmMb6ze2sX7DI2Ifstq0aYPPPvsML7/8Mpo2bYof/ehH6NmzJx577DFnrDoAGD16NBo0aOD8W79+PZYtW5bvuFXbt29H9+7dnddHly1bhrfeeivk7R00aBC2bt0acUl3kYr1G/tYx7GN9RvbWL/hwbELiYiIiHwQsS1ZRERERNGMD1lEREREPojohyxb9/tmx2RefPjhh2jfvj0CgQBatWqFXr16IScnBwDQpEkTbN26Nc/PjR49GqtWrcp3vTNmzMCVK1c8b080CHc9BAIBBAIBJCYmIj4+3pm3DZngxYwZMzBp0qQ8y5YtW4Ynn3wy38+mp6fj66+/tq7/+PHjSEpKyvX3SB3Wobjw+o19rOPYxvoNXcR2RgoUvvv9/Bw9ehRjxozB5s2b0bhxYwDXO1y70fOsTX59fmRlZaF06dL45S9/iUmTJrleP40V4a6HGxfR/v37EQgE8r2o/NC/f3/0798/z7KsrCykp6cjEAigU6dO+a7j448/znMdkTqsQ3Hh9Rv7WMexjfUbuohuyQrW/b5Xx44dQ3x8PBISEpy/tWvXzlXBH374odMZWn4DYT700EN4+OGHnTckxo4dCwDo1q0bAoEAjh8/XuhtjEThrodw2bVrF7p06YI2bdogJSUFzzzzjFN29OhR9OvXD4mJiejVqxdOnz4NwD0A6erVq5GUlISf/vSnCAQCePvtt7Fs2TLMmTMHgUAg34s6PT0dgwYNcv1t69ateQ7rsHjxYqSmpiI1NRV33303Dh8+7GxHr1690L9/fyQmJqJ79+7Yv39/mI9Q8eL1G/tYx7GN9RsGEsFWrlwpCQkJ0q5dOxk/frx88sknTtmqVaukTZs2eX7urrvuko0bN+b6e3Z2ttx7771So0YNGThwoMyePVsOHTrklDdu3FieeOIJERE5ceKEVK1a1Sm//fbb5aOPPhIRkZEjR0pqaqpkZGQ4nwUgZ86cCXGPI1O46+GGffv2SbVq1Qq9XRMmTJAXXnjBmT916pSIiEyfPl0aN24sJ0+eFBGRoUOHOsstXLhQBgwY4Gx7XFycrF692lnHyJEj5cUXX8z3OzMyMqRZs2aSk5OTq2z69OkyceJEZ3779u1Sp04d5xyaOXOmpKWlOdtRtmxZ2blzp4iIzJo1S/r06ePxCEQ2Xr+xj3Uc21i/oYvolqxg3e/n57PPPkOHDh1y/b1UqVJYunQp1q1bh7S0NKxduxZJSUnYvXu3s8ywYcMAALVq1UKzZs2wb9++PL/jJz/5CapUqVLIPYsu4a6HcOnevTsWLFiAadOmYfny5ahevbpTlpaWhpo1awKwD83QrFkz3H777QX+zs8//xxpaWkFat5etWoV0tLScPPNNwMAxo0bh5UrVyI7OxsAcNttt6F169YAgDFjxmD16tVOWSzg9Rv7WMexjfUbuoh+yALs3e8XVqtWrfDoo48iPT0dnTp1wrJly5yygnbpX7ly5ZC3I5r4UQ/B7Ny500mKz+vCHjx4MNauXYtbb70Vc+fOdQ0y6lc9fvTRR0640auCPJjFGl6/sY91HNtYv6GJ6IescHe/f/jwYaxdu9aZP3PmDPbt2xeWLv2rVKkSkV36h4NfwyAEk5iYiK1bt2Lr1q2YN29ervJdu3ahTp06ePDBBzF79uygbwUWhG1ohszMTKxfvx49evQo0Gd79uyJL774AkeOHAEAzJ8/H71790Z8fDwAYP369fjuu+8AXE/q7Nmzp1MWC3j9xj7WcWxj/YYuot8u3L59OyZPngwRQalSpVCvXj1X9/s7d+5EgwYNnPnOnTvj/fffR9++ffHcc8/laq7MysrCc889h3379qFixYrIysrCyJEjMWDAgJC3dfLkyejTpw8qVqyI5cuX46abbgp5nZEi3PUQLh988AHeeustlC1bFjk5OZg/f37I6xwxYgQeeughpKenY/z48a6hIVauXImuXbuiTJkyeX520KBBWLx4MQKBAO699148++yzmDNnjvO2YcOGDbFgwQJn+dtuuw1TpkzB7t27UbNmTfz5z38OefsjCa/f2Mc6jm2s39BxWB2iAho7dizuuOMODBkyJOR1LVq0COnp6c7bMkREFHsiuiWLKJKEo6WMiIhKDrZkEREREfkgohPfiYiIiKIVH7KIiIiIfMCHLCIiIiIf8CGLiIiIyAd8yCIiIiLyQYG7cIi0IUH0mEUVK1Z0po8dO5bv506cOOGaX758uWt+1KhRznRmZmYom+i7cL4YGmn1q1WqVMmZrlevnqvMrO/Spd2ntJ7X9R/Jwv3ib6TXsal9+/au+c2bN+e7rN6vG2NFAsChQ4fCu2FhVpKuYXMYlFatWrnKtmzZ4kzn5OS4ymrUqOGar1OnjjN9Y8SESFWS6te8L5crV85Vtn///nw/Z9YnYP/99kupUv9rb9Lnn01B6pctWUREREQ+4EMWERERkQ8K3BlpcTdVVq9e3TXfqFEj17zZ3Hf8+HFXmTmG0TfffOMqq1q1qmu+Zs2a+W7DjYF+byjucGIsNUXr79cjrJvNz7p5+eTJk860buo1w4wAcOXKFWfaHPgUAK5evephi/1X0sKFtjEuA4GAM22O/5jX/PPPP+9M63tBLNdxcdevDhHp67Rly5bO9JdffukqM4eX0uPY/e53v3PNT5482ZlOTk52lR0+fNg1r6/xohZL9Wu7JwNwDc68cOFCV5l5/Z46dcpVNnjwYNd8tWrVnOkDBw64yrKysgq+wRbm84LGcCERERFRFOBDFhEREZEPImqAaB0SNOd12eXLl13z2dnZzrR+8/Do0aPOtG5y1es130bTzaGpqamu+bNnzzrTu3fvBnljHnt9rDWzvs3wIABUqFAhz+UA4Nq1a655s7lZh4b1sufPn3emzTAjFZzZ9K+vNfOaBYCEhARneuPGja6yHj16ONOnT592lf397393zZshQR1O0qGKS5cuOdM6tKTPh5KqTJkyzrR+069WrVp5LpcX83rS4Rrzre7WrVu7ytatW+eaN98k1+Ejfe8vX758vt9pnif6nlJSmdcr4D6e5nHPi3lt6RD+mjVrnOmnn346388BQO3atZ3pBg0aWL/TrEN9/Zr3bFt4EPAWIvSKLVlEREREPuBDFhEREZEP+JBFRERE5IOI6sIhKSnJNW/GW728uqlzPeLj451p/Ur/xYsXC71es2fpXbt2ucp0nNkP0fZ6sO4uw8ylCpb/Yu6r7jrDzCPQZTrWbp5Hujd4nVNi5onpnsP9jOHfEC1dOJjHqWHDhq4ys250vpzuTsGc1zl6e/bsKfD2NG/ePN/v0MfAzAPTzJ6nf/jhhwJ/vxeReA3rV/V1no7JzGnT14S+nsyudMzPAe6uF/Tn9L3BzAPTuZK2bdDfae6n/ly4crQisX418ziY1w7gznPS9aCPmflbeuHCBVfZAw884Ex//vnn+X4HADRp0iTPdebFdm5+//33+ZbpHK3C3s/ZhQMRERFRMeFDFhEREZEPir0Lh7JlyzrTofTmaoZ+dBjIpMMHXpbVoSizmVO/2lwU4cJoo4+12fyckZHhKrOdC7orALNpWjcD6yZ2L/VthpnNV8GB3KGHkswMEepjaIaBQmmir1+/fr6f06FF8zq11Sng7g5CL2uGpXSoJJavb/3avBk21ee9+Vq/TqfQYT/zfqnLzPunDh/pe6tZF17OIX3+mevRYSez93K9bKwx76c6PGeG+PWxNtM9AHd3D/qaNK8lHZLUozLYuuTR22CeK2Y4GnCfm8V5v2ZLFhEREZEP+JBFRERE5AM+ZBERERH5oNhzsszYrY7jmnFUW7cMRUXHoM1tCtfo4LFM52GcOHHCmdY5EeYwKgBw8OBBZ3rbtm2uMj2Uhknn2ZjnmC1HQ9PfUZJzsvS1Z3aLol/dtg21YhvqQudemPWoy2x5OcHuE+Y1rLfHHAamJOVc6uNg1qEeWsU8vvr60fdsc942TJX+HdDXsLl9wYbysV3T5nmjzyG9nzpHK1bp42DmsOrfOFsOnv6tfPPNN/NcJ5C7vs1jrfOgzRxuvb16e7zcX/zEliwiIiIiH/Ahi4iIiMgHfMgiIiIi8kGx52SZdEzVjAHrGLltSA5bHoatnyRNf6fOwzFjybZcBb1fJYkZF9f1YsbFJ06c6CpLTEx0zU+ePNmZ1rkB5np0HF5/pzkMgl6P7lPLXK/OGyjJatas6Zo3rz1bHoQegkLnW9iW9bJe2/AjtvXY8nt0P2mxTNeLeQ3pY2ReIzr/qbB9S3nJl9HL6vo15205mGb+HRDb92yd12TbV1td6DLzeOrfZ1t/mLovLHNZL33r6fXackWLEluyiIiIiHzAhywiIiIiHxR7uNAMs4XSLYMfXTrYXkEG3KFHW5gqlpuegzHDC7pZ2Bwq5dNPP3WV7d271zU/bNgwZ3rWrFn5fl84R703m591E3tJpruzsL0KH67rsiheudbXqW2/YokOAeqUCvPeFsrwUoU9F/T22bqN0PMFDXVqxdFFUFGxXb+hdEVU0GvEFtIF3Mfey/YEG/anuLAli4iIiMgHfMgiIiIi8gEfsoiIiIh8UOw5WZEW+za3R7+GaltWM4fhOHbsWOgbFqXM/A7bsEmbNm1ylQ0ZMsQ1P2XKFGfalpMVCp0bYBtypSSzdXWh83lsOXJ6WVsOlO346+3xUlfmsvo7zRyeYMOuRPMwS8GOly3XxnxNXuc82YbOsX2HlxxW/Z3B5vOjc7liucsW29A0ukzn0RaWrZsdL/dd27loG4JH32uKchg8/nIQERER+YAPWUREREQ+KPZwodnsbusioTgEa7Y2w4n6tVi+8n+d2dxrCx3p4zd16tR85/Vr5GY96fCAbm62bYNtVHmGC/9Hn9tmb9m2ZnlbT+yA/RjbwgS2zxU2dKjn9ffbQt/RTodSzOtCXyPmtaivLVuXGH7R179ZT7YeyrVIS2MJp8L2qB/K73G4rm19bprltt9rfc9iuJCIiIgoyvEhi4iIiMgHfMgiIiIi8kGx52RFGi+vD9uWjeWYvhe242Dm6Oh8HbMLDC0Shimy5evEOltula5v2+vYhR0CKZT619tg7outTIulOtd1puvFzF3yst96vQW9J3r5nK4zW5cNtnxNWzcC0S7a8oPDlWNp0kPsFGUOJVuyiIiIiHzAhywiIiIiH/Ahi4iIiMgHUZOTpfvoCDbkTTh4yavS/W5UrVo13/XEUrw/GDOvpbB9HQHuPBEvQy34xcxz8DJ8SCwyz+dQhrixfa6wdewlz8rWx5f+/uLuwy+c9DHS/UfZ+pMyPxuu4Y2Cfc5Lzo6tnsz7sm0fo12wczWW8gvzo/thPHXqVJF9N1uyiIiIiHzAhywiIiIiH0RUm7ctBBisG3wzZOElPOdldG69XnNZPVq5+cqoXyObRwMzhKBfDTfLdB0VNtQQzqZvc116vebr4LEeLjSHvsqL7ZgXtj5snwslLOVlWCU/wqDRQO+bOXSOfvXdXDbYeVLQLjv0fdbW9YI+T/RnzXuv3nZzvbpMh5fOnDnjTEdbaFF3X2AbPkr//oXrfurlHmH+Juu61/da27LmvhTn9Rq7dwoiIiKiYsSHLCIiIiIf8CGLiIiIyAdFnpOl48MmHQ82461eumyw5WDpsnLlyrnmbd9j69JBx/TN/dRDxMRyTpYt3l8cdC6NmRcSLN/ALNf7UZKGTQpWh7ZXxM3jbes+IRS6Hr2ccwUdIkjfN2zDt0Q7nXNkHk99fzx37pwzXblyZVeZl3zXwvJS1+a2AkBCQoIzHcv1GUvdjdiudX3emtdvsHxBP7Eli4iIiMgHfMgiIiIi8kGRtyPqpkuzSc/WnFwcPb4HY2uGNUOCOlx45MgR37Yp0ti6cDD5FVYs6GvjwcRyj9/B6NCobpb3IwwUCWxdjMRSeEnXr62+bb3B665qLly4UOBt8NItgnkt6nQPG53SUa9ePWc62MgAxZ32EIpgoydE876ZbN156HPa7JYE8Lcbntg4ukREREQRhg9ZRERERD7gQxYRERGRD4o8sUTHRgvaTYPO+/AydI5fzG2y5Yx5yRuIdrauDbwMraDXU9jcKi/dBng5p0rCyPU3BMvpMM/9YLkthf1O2/eHK6dE17fOMYpV+vV2fTzN/DNdZuZS6eNnu0a8LOuFbQgeW9cU+nP6fmOWR0I+cCi8XD+Rlq9luxfZfmd1nellmZNFREREFGX4kEVERETkAz5kEREREfmgyHOybN3b67wmM24aLKZqU9h8rWDfYeZk2foK0rkdemihWBpmR++rmdtgy6vSZbZcHl1my+ewrSdY/pBtvWaOhm3onligr0tbXdlyOLwcFy/1VhT0ueDXEEHFQd8fdX9SZp9CXvKsdJ6TWR7K0GcmvT1eljXv2Xpbdf6WeQy89P8ViWw5d/q3qCiutWA5nyZb/4S2vGj9+6z7rtRDLoUTW7KIiIiIfMCHLCIiIiIfFHm4UDcFX7x48X8b42HUdv26vW1Z8zttXQxoep1ehlIxl83MzHSVVa1a1TUfS+FCrbChPBu/hsqxnRv6vDW3XZ8XXoYIiQZ6CAp9LIo6PBrOLhzMbdf1aBtWJ5aGVQrWdYk5r0OJ4fpOW5lt2WBhPtu54WU4qOLoIihc9PErKd3P2IbsK8p7NFuyiIiIiHzAhywiIiIiH/Ahi4iIiMgHRZ5YoLsvMHMbvMTp/VLY/C2do2F+Vucx1KpVyzV/7NgxL5sY0WzHzNbVQbD8LC/L5ve5UOicDNuQHLGWkxVsiCMz30HnwBT2+Hv5XLheM/dy7kbacCOh0N0e6C4KCjuMjL4uzGNoy4fSx9Z2rPW26/xXnU9o8nKORXMek64/L8PoFMV+hyvH0kv3IkU51F3s3CmIiIiIIggfsoiIiIh8wIcsIiIiIh8Uez9ZZn7SyZMn8/2cznmyxVh1DNoc6iVYfyfmsD9e+lHR32n2hRXNfax45SXeb8vlsS1r688o2PA8tjwML/3z2PrJijX6OOi8F/P81nk4plCGojHzLfS5YesHyMv5YOsvSq8nlnKygvXzZstfMY+Dzom5cuVKvp+z5c/oerDlOOp8V70vtu8x16uHe9PrrVy5sjPt5xAsfgh2fzKPUXHknnm5lmw5Y/o8Mc8jfV/SuXq28zhUsXOnICIiIoogfMgiIiIi8kGRxzl007MZBtJhCLMJN9jQD2aTqC4zv0N/v25KNcszMjJy70ABv9PsqkI3VUbz68DB2Lo68EtRDOui66ywXX1EI920rq9Tc/9tXZl4Cd3a6LrQ87YQoG0bzLQCwL2f+juK8hVwv3kJJ2nm8dXnhZdX6s31BLuHmOvVaRq6vm33HzM9pUWLFq4yHS6M5m5ZdL3obpRs6Sy2OvSSGmJjSw3R9au33Sy3/c4Gu2dUqVLFmQ53OJgtWUREREQ+4EMWERERkQ/4kEVERETkgyLPydLdIpj5AGZcFHDHXy9fvuwq07Fac722GLOOT9sE63rBzMvQuQDnz5/PczkAOHPmTIG3IdrY8pMiIRfNzMEJlhNkyyswz7eSlpOlcxXNa1jnPNnyffT1ZauPwr5irbfHVlf6+81t95LHEu30eW/bV3NZfW/XXTjYuvcwBatfcz1627zUi867sq0nmnOyguXcmddEcdyjveR92ZbV+2mej+bvMZA7/9K8xzEni4iIiCgK8CGLiIiIyAdFHi48e/ZsgZc1Q4KVKlVylelmf7NcN1vbmpB1T7+2Eedt27Bv3z5XmdmTfShN2tHGS2/s4Qq52XoS1+s1tyFYD+S2sIQp1nt8103tOvxtXhc6lGjWcbBQYkHrRl+jtm5hvJxXFy5ccM2b6Qs6ZBpLdEjGS5cztu47bD1w20Z4CHZ/NJcNFk4y5/V+2UKA+rxJSEhwpqMt3SPYaBq20RTCpbBdQXhZr63udXhQL+tnV0NsySIiIiLyAR+yiIiIiHzAhywiIiIiHxR5MomZqwS4Rzc/ePCgq+zUqVPOtI6RJyUluebNmKqOmZuf1fkbOhZr5hXUqFHDVaZf+T1w4IAzrbuGMPNG9Hp0zlgs0fk7tqGRTMHyo4qCjtObcXzbUE06lyfW2I4L4K47nZNlXt+hDH9ky72wXcPBvtPcdp2jY9ax3ueiGMqpuHjJXTKvCy+5iboOze/Q+W963uwawsswOrYyfX3rXN1ozrvUx8hWn166ONLM46u/0zynbEOUAfbfR9u1rj9n7mewnCs/h8liSxYRERGRD/iQRUREROQDPmQRERER+aDIA81mHhPgztEyc7A0HbfV6zHpvrhuvfVWZ1oP3aP7tzI/q/Mw9NA+Nua+2PYr1ug+jMy4eM2aNfP9nK0/Ky/05/S8mYPjpW8UHe/XuWexTF8HeogZk772zDrXuSA6N6OgdeMlJytY/qO5rB5Ow8z9uemmm1xltiFZoo3Ow9E5hgWtC72cLQfTy7K2oZGC9UFY0GFijh8/bi03+8mKNjqf7PTp06558zfR1qdWsGNp6wetoLlTwehtMNelr1Gz/74jR464yvRvue2eFiq2ZBERERH5gA9ZRERERD4o8nChbprWzXgF5WV4HrMJWTcT2kJ5XsKDlDdbqMEWItDN/rbwoZfQorlssOE7zHI/X/GNdDo0ppv7q1at6kzbhtzR174ZjstrvSbzPApl+Bb9Hear+vq1fbP+dRhcb3s002F8XU8FDeforh/8HKokv+/U9WR2IWK73+g0Er3PuuuhaKJDbPp6NkNl1apVc5VdvHgx3/V4Cembofhg54WXEKV57uqQ79GjR51pvV86BYLD6hARERFFGT5kEREREfmAD1lEREREPojesQI8MHMtdCyWio6XvCrbsjoPw8wh0a9724bD0DlZtteXbUPJxPIQK4A7rwpw52kA7mNsG3pK52vZXpu2De+hc6c0s171evQQLeYQXIcOHXKVNWnSxJnWOTpFkW9UVI4dO+aa1/tq667Elq+l60nnS5nM4+klH1Pn7OjcG7O+bTmYej/0PSaaBfvNM/OS9f3SrBcv57xe1ryH2IavAuxDaOlzyvysmYMVjM5D9LNLlti5UxARERFFED5kEREREfmgRIQLzebwW265pRi3pGTToTwbW9O+Xo9tvbop2lyvDkPopmmzWVu//l2SwoUnTpxwzeswnxlO0qGAH374wb8N85nZhYs+x2KpC4f9+/cXeFkdBjKvmV27drnKdLcH5md12NYMJQcL1ZnnmO6dXoc2zRE9bOFK2wgiALBnzx5reSTz0k2SGT4HCt4bfF7z+ZXpe6kO6ZshS30u6LBeQfdNnxf6PsVwIREREVGU4UMWERERkQ/4kEVERETkgziJ9YQSIiIiomLAliwiIiIiH/Ahi4iIiMgHfMgiIiIi8gEfsoiIiIh8wIcsIiIiIh/wIYuIiIjIB3zIIiIiIvIBH7KIiIiIfMCHLCIiIiIf/D9jCw+O0q9MWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_image_issue_examples(dark_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see from above examples that too dark images can also lead to label errors as it is difficult to see the contents of the image clearly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Low information images\n", + "\n", + "Other types of low-quality images that Datalab can automatically detect include images whose information content is low. Low information images can hamper model generalization if they are present disproportionately in some classes.\n", + "\n", + "The `lowinfo_issues` DataFrame reveals which images are considered to be low information. We can sort them via the `low_information_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue). This allows us to visualize the images in our dataset containing the least amount of information (you might consider omitting such low-quality examples from a training dataset)." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:44.166236Z", + "iopub.status.busy": "2024-05-24T23:48:44.165870Z", + "iopub.status.idle": "2024-05-24T23:48:44.173837Z", + "shell.execute_reply": "2024-05-24T23:48:44.173367Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_low_information_issuelow_information_score
53050True0.067975
40875True0.089929
9594True0.092601
34825True0.107744
37530True0.108516
\n", + "
" + ], + "text/plain": [ + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lowinfo_issues = lab.get_issues(\"low_information\")\n", + "lowinfo_issues_df = lowinfo_issues.query(\"is_low_information_issue\").sort_values(\n", + " \"low_information_score\"\n", + ")\n", + "lowinfo_issues_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:44.175898Z", + "iopub.status.busy": "2024-05-24T23:48:44.175562Z", + "iopub.status.idle": "2024-05-24T23:48:44.371838Z", + "shell.execute_reply": "2024-05-24T23:48:44.371260Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAACfCAYAAADK1szHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbIElEQVR4nO3deXQV5f3H8U8MiVGM7CAaQyBSMQnkQgA34GDEI3JUkNLiFqk0YAXUutaaai1iT93rQg9uBY5bA4q7PYASqCiCBgiLFquySAVCNQQCZP/+/uDHnJkBbi7JHYmX9+uv57nPnefO3C/P5MvMc5+JMzMTAAAAouqYI70DAAAAsYgkCwAAIAAkWQAAAAEgyQIAAAgASRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABKBZJVmhUEi7du06aFvfvn21cOHCBvu499571aFDB4VCIYVCIV111VVO29SpU9WzZ0+FQiFlZWXpiSeecNrq6+t1ww03KD09XaeddpqeeuqpiPoMtx28ohHf/UpLS9WpUyeNGDHC8/qUKVOUnp6u9PR0FRQUOK/v3btX11xzjbKyspSVlaVLL71U27dvlyRNnz7diW0oFFL79u01cuRISdKGDRsUHx/vaf/6668P78CPUtGI97Zt2zRy5Ej16tVLZ5xxhv761786bTNmzFCrVq2cuJx33nlO2+7du3XttdeqZ8+e6tGjh+688075H25hZsrNzVXr1q0bc3hHpWjENNx5eL+Dje9wY3jBggXq37+/MjIylJmZqTvuuEP19fWSGMOHI+j4Tpw40ROHpKQkpz3ceH799dfVq1cvhUIhZWRkqKCgwDOeD3XebxbsJyInJ8eKiooafN8f//hHu+mmmw7atmPHDqdcXl5up556qi1fvtzMzGbOnGm5ublWW1tr33//vaWmptqaNWsa7DPcdohcpPHdb8SIETZ27FgbPny489qiRYssIyPDKioqrLKy0nJycuydd94xM7PHHnvMfv7zn1t9fb2ZmeXn59vtt99+0L4zMzPt1VdfNTOz9evXW6tWrRp1TDi0SON95ZVXWkFBgZmZVVRUWHZ2ti1btszMzKZPn+6Jv9tdd91leXl5Vl9fb9XV1TZ06FCbNWuW5z2PPPKI5efnE98oiTSm4c7D+x1sfIcbw8uXL7evv/7azMz27t1r5557rk2fPt3MGMPREs34mplt2bLFkpKSbMuWLWYWfjzv3LnT6urqzMysqqrK+vXrZ3PmzDGz8Of95qBZXcmKi4vTjh07JEkff/yxkwlfe+21qq2tbXL/rVq1csq7d+9WTU2NUy8sLNS4ceMUHx+vtm3bavTo0XrllVca7LOx2x2NohXf559/Xl27dtXAgQM9rxcWFiovL08tW7bUscceq7FjxzqxiIuL0549e1RTU6Pa2lpVVFQoJSXlgL6XLl2q0tJSXXrppY0/UEiKTrxLSko0bNgwSVLLli01aNAgvfDCCxFtN3ToUMXFxSkhIUEXXHCBZ7u1a9fqjTfe0J133nn4B3YUi0ZMw52HpUOP73BjuHfv3urWrZskKSkpSaFQSBs2bGjkUR69foz47jdz5kxdeOGFOumkkxrsMzk5Wcccsy9dqaysVFVVleLi4iSFP+83B80qydqvurpao0eP1sMPP6w1a9boiiuuUElJidM+bdo03XPPPYfcfvbs2crOzlZubq6Kioo8ba+++qoyMzOVlpam2267Tb1795Ykbdq0SV26dHHel5aWpk2bNjXYZ0Pb4UBNie/69es1bdo03X///Qe0hYvFddddp+TkZHXs2FGdOnVSeXm5Jk2adEAfzz//vPLy8pSQkOC8tnv3bvXr1099+vTR5MmTVVdX1+hjPxo1Jd45OTl6+eWXVV9fr+3bt2vu3LmeP56LFy9WKBTSOeeco9mzZ3u2mz17tqqqqlRRUaE33njD2a6mpkbjxo3T008/rfj4+ECOOdY19Rx9qPNwuPEd6RjeunWrXn31VV188cXOa4zhwxNUfN3+/ve/69e//rXntUONZ2lf0tezZ0917NhRubm5Gj58uKSfwN/gI30pzU2SlZWVWUlJiaWlpXnaunXrFtGlyi1btlh1dbWZmS1evNg6dOhgGzZsOOB969evt1AoZP/+97/NzCwrK8s+/vhjp33q1KmWl5fXYJ/htoNXU+NbX19vgwcPtk8++cTMDry8fPHFF9vLL7/s1N99910bOHCgmZm9+eabNmrUKNu7d69VVVXZFVdc4dyG2q+iosKSk5Nt7dq1zmuVlZW2bds2MzP7/vvvbciQIfbAAw8c9rEfjaIxnrdv325jxoyxXr162ZAhQ2z8+PF22WWXOW27d+82M7PPP//cUlJSbMmSJWZmtmfPHrvxxhstOzvbBg0aZLfeeqv17t3bzMwKCgrsoYceMjNuJR2uaMTUzX0ebmh8RzKGy8vLrW/fvvbII484rzGGIxdkfN3+9a9/WefOna22ttZ5Ldx4distLbWBAwfaokWLzCz8eb85aJZXsg5m/6XBhpx00knOVYhzzz1XvXv31meffXbA+9LS0nTmmWfqnXfekSSlpqZq48aNTvuGDRuUmpraYJ/htkPkIonvzp07tWrVKo0ePdr5H9K8efN0/vnnSwofi2eeeUaXXXaZkpKSlJiYqKuuuuqAq5yzZ89WZmamMjIynNeOPfZYdezYUZLUtm1bjR07Vh9++GGTj/doF+l4bt++vWbMmKGSkhLNnz9fcXFxyszMdNqOP/54SdIZZ5yhYcOG6aOPPpIkHXfccXr88ce1cuVKLVq0SO3bt3e2W7RokZ588kmlpaVpwIAB2rlzp9LS0pxJ1GicSGPq5j4PNzS+GxrDu3bt0tChQzV8+HDdcsstzuuM4ehoanzdnn/+eY0ZM8ZzJTnceHbr0KGDhg0b5lzpavZ/g490luem/8+iq6qqLCUlxRYsWGBmZvPnzzdJEWXR3377rVP+8ssvrWPHjrZu3TozM88VitLSUuvevbvNmzfPzPb9r8k/gX3VqlUN9hluO3hFI75u/v/pFhUVHTAB8u233zYzsxtuuMHGjBlj9fX1Vl9fb9dff72NHz/e09+AAQPs2Wef9by2bds25ypmZWWljRo1yu6+++7DPPKjUzTi/b///c/5/pcvX26dOnWy7777zszMNm/e7Lxv69atdtppp9kHH3xgZvuuaOz/X/E333xjqamptmLFigP650rW4YlGTMOdh9384zvcGN61a5edc8459qc//emAfhjDkfsx4lteXm4tW7a0L7/80rNduPH8xRdfOBPfd+7caQMGDLBnnnnGzMKf95uDFkcquQsnMTFRhYWFmjBhgurq6tSvXz9lZ2c77dOmTdN3332nyZMnH7BtQUGBiouL1aJFC8XHx2vq1Kn62c9+Jkl6/PHH9eGHHyoxMVFmpt/+9re64IILJEl5eXn69NNP1b17d8XFxemWW25Rz549G+wz3HY4uKbEN5zBgwdr9OjRzvc/evRoZ17Gvffeq/HjxysrK0uS1KNHDz399NPOtuvWrdPKlSv13nvvefpcvHix7rnnHsXHx6u2tla5ubnN7yfCzVxT4r1s2TLdeOONatGihZKTkzVr1ix17txZ0r6fir/55ptKSEhQfX29br75ZuXm5kqSvvnmG/3yl79UixYt1KJFCz322GMKhUI/yvEeDZoS03Dn4XDCjeHHH39cy5Yt0+7duzVnzhxJ0i9+8QsVFBQwhhshyPj+4x//UE5Ojrp37+7ZLtx4LiwsVGFhoRISElRXV6dRo0YpPz9fUvjzfnMQZ+ZbPAYAAABN9pOZkwUAAPBTQpIFAAAQAJIsAACAADSLJOuzzz7TRRddpK5duyonJ0e9e/fWlClTnPbBgwfrjTfeOKw+d+zYoauvvlpZWVnq1auXsrKy9PLLL0d1v9955x0NHjy4wffNmDHjgGfsHU2Ib+wjxrGN+MY24hucI/7rwtWrV2vo0KGaMWOG84uAH374QX/5y1+a1O8f/vAHdejQQatXr1ZcXJx27dqlrVu3RmOXcRiIb+wjxrGN+MY24husI34l64EHHlB+fr7nJ5dt27bVgw8+2KR+N2/erM6dOzsLqCUnJzs/GV29erUGDBigPn36KCMjw5Ox33vvvRo9erQuueQSZWRkKDc3Vz/88IOkfY/jmDBhgrp3767+/ft7FsLbunWrzjvvPOXk5CgzM1OTJk1yngJ/NCO+sY8YxzbiG9uIb7COeJK1fPlynXnmmY3a9q233nLWyvC76aab9MADDygnJ0eTJk3yrDiblpamDz74QMuXL1dxcbFee+01ffLJJ0770qVLNWPGDH3++efq2LGjsxbLM888o3Xr1mnt2rVavHixli9f7mzTunVrvf322youLtaqVau0YcMGzZo1q1HHFUuIb+wjxrGN+MY24husI55k+d1+++0KhUI65ZRTtHbt2rDvvfTSS/Xcc88dtO28887Tpk2bdN9996l169a67rrrNHHiREnS3r17lZ+fr549e+qss87Sxo0btXLlSmfboUOHql27dpKks88+W19//bUk6YMPPtA111yjxMREJSYmauzYsc429fX1+t3vfqfs7GznsTvuPrEP8Y19xDi2Ed/YRnyj64gnWb1799ayZcuc+kMPPaSVK1cqISFBNTU1Teq7ZcuWGjZsmKZMmaLXXntNL7zwgiTprrvuUvv27bVixQqVlJRo8ODBqqysdLZLSkpyyvtXCT4Y97OcHn30UZWWlmrp0qVatWqVrrzySk+fRyviG/uIcWwjvrGN+AbriCdZd9xxh5599lnP40yqq6sP+aVGat68eSorK3PqxcXFSk9PlySVlZUpJSVFLVq00Lp16zR//vyI+hwyZIhefPFF1dTUqLq6WtOnT3faysrKdNJJJykpKUlbt251Hl55tCO+sY8YxzbiG9uIb7CO+K8Ls7Oz9d577+nuu+/WxIkT1aFDByUkJOj66693ng8oSfn5+Zo0aZJTnz17trZv36633nrroJcrV69erVtvvVVmpmOOOUadO3fWiy++KGnfrx7y8vI0c+ZMpaenO89Hasi4ceO0Zs0aZWRkqE2bNho4cKCKi4sl7bv/PGrUKGVmZurkk0/WkCFDmvK1xAziG/uIcWwjvrGN+AaLZxcCAAAE4IjfLgQAAIhFJFkAAAABaBZJVrjl9xcuXKhQKHTYfc6ZM0c5OTkKhULq0aOHcnNzo74wWd++fbVw4cIG35eWltYsfkp6pBDf2EeMYxvxjW3ENzhHfOK7FP3l97ds2aLx48eruLhYXbp0kbRvwTX3zz3x4yG+sY8YxzbiG9uIb3CaxZWscMvvN8a2bdsUHx+vtm3bOq/16dPH6f+2225Tv379FAqFNGjQIK1bt855X1xcnP785z+rf//+6tq1q+cnoh9//LFCoZCysrJ07bXXen7i+uijjzp99uvXT0uWLGn0/sca4hv7iHFsI76xjfgGyJqBBQsWWNu2ba1Pnz42ceJEe/vtt522oqIiy87OPuh2F110kX366acHvF5XV2cjR460Nm3a2IgRI+zBBx+0zZs3O+2lpaVO+ZVXXrELL7zQqUuyhx9+2MzMvvjiCzvhhBOspqbGqqqqLCUlxebPn29mZnPnzjVJVlRUdECfS5YssdNPP92pd+nSxVasWBH5FxJjiG/sI8axjfjGNuIbnGaRZJmZVVRU2LvvvmsFBQV28skn24QJE8wsfIAb8sUXX9i0adNs+PDh1qpVK/vPf/5jZmYvvfSSnXXWWZaZmWlnnHGGderUydlGkm3ZssWpt27d2r799lsrKSmxtLQ0T//dunVzAjx37lwbNGiQZWZmWnZ2tkmyPXv2mBkD2Iz4Hg2IcWwjvrGN+Aaj2SRZbkuWLLHk5GQza1qA3S688EJ75JFHbOPGjdamTRv76quvzMyspKTEWrVq5bxPkpWVlTn1du3a2fr16w8a4PT0dCsqKrKqqipr2bKlLVu2zMzMysvLPf0wgL2Ib+wjxrGN+MY24hs9zWJOVrjl9xvjv//9rz766COnXlZWpvXr1ys9PV3l5eVKSEhQ586dZWZ66qmnIuqzR48eqq2tVVFRkSTp/fffdx5aWVlZqerqaqWmpkqSnnzyyUbveywivrGPGMc24hvbiG9wmsWvC8Mtvy9Jn3/+uVJSUpz62WefrdmzZ2vYsGGaPHmy+vbt6+mvtrZWkydP1vr163X88certrZWY8aM0fDhwyVJl19+uTIzM9WuXTuNGDEion1MTExUYWGhJkyYoLq6OvXr10/Z2dmSpBNPPFFTpkxR//791b59e11++eVN/EZiC/GNfcQ4thHf2EZ8g8NjdQAAAALQLG4XAgAAxBqSLAAAgACQZAEAAASAJAsAACAAJFkAAAABIMkCAAAIAEkWAABAACJejHT/07PRfERziTPi2/xEewk7Ytz8MIZjG/GNbZHElytZAAAAASDJAgAACABJFgAAQABIsgAAAAJAkgUAABAAkiwAAIAAkGQBAAAEgCQLAAAgACRZAAAAASDJAgAACABJFgAAQABIsgAAAAJAkgUAABAAkiwAAIAAkGQBAAAEgCQLAAAgACRZAAAAASDJAgAACABJFgAAQABIsgAAAAJAkgUAABAAkiwAAIAAkGQBAAAEgCQLAAAgACRZAAAAASDJAgAACABJFgAAQABIsgAAAAJAkgUAABAAkiwAAIAAkGQBAAAEgCQLAAAgACRZAAAAASDJAgAACABJFgAAQABIsgAAAAJAkgUAABAAkiwAAIAAtDjSOwAA+GlITU311M8991ynfPzxx3vadu3a5anHx8c75bq6Ok/b3r17nfKmTZs8bSUlJY3bWaAZ4EoWAABAAEiyAAAAAtCsbhe2bNnSU2/Tpo1TTkpK8rTt2LHDU//hhx+csvuytCTV1NREaQ/h99prr3nqc+bM8dRfeuklp3zKKad42tzxTUlJ8bT5627ff/+9p/76669HtrOIivPPP99Tr62tdcq9evXytG3evNkpV1ZWetr8t5NKS0ud8saNGz1tVVVVjdtZNNncuXOdcpcuXTxtzz33nFOeOXOmp62srCziz+jWrZtTvvvuuz1tCQkJnvp9993nlNeuXRvxZ/i1aBGdP3/uf/8/pnC3X8O1ZWVleer333+/U/afS4899lin7P++Onbs6KmffPLJTnnlypWetqlTpx6w/0cLrmQBAAAEgCQLAAAgACRZAAAAAYgzM4vojXFxnrr7PvnhzHnyz62qrq52yvX19RH3E67fxMTEQ7Y1NF+roqLCKfvnkDTWMceEz2UjPW5/P/577U3hj2+k/D+vzs7OjsbuHDB/Kz8/3ylfddVVnrbjjjvOKYebEyZJX331lVN2z+NrjiIcmhFrbIyvv/56T/1vf/tbo/o98cQTPfWMjAxPPTMz0yn7x+m6deucsn9+lnve18HqzVk0Y9zY+Pq552BJ3vGVm5vrafsx5iNNmjTJU//973/vlP1zQm+88cbA9+dwNMf4+vdpxYoVTrlPnz4R9+OeryV5/23k5eV52tq2beuU/XO5CgoKPPV//vOfh/xM/3nBLVpz7PzCzQeNJL5cyQIAAAgASRYAAEAAGn27MFa5b8m5L5NL3lWJpabd3oyGaF6K9q/W7OY/bvelX/fPdiVpzZo1UdunSJ122mlO2X8r0X2bUQp/i3Dp0qWe+vjx46Owd40X7duFt9xyi6fu/i7cMZWkoqIip/yb3/zG0+ZfpmHgwIFO+eyzz/a07dy50ynv3r3b07ZhwwZP3X25/4YbbvC0uftdsmTJIT9DkgYMGOCU/Zf6Fy1a5Km7l43wLyHj7td/m8J/q6RVq1aHfK/7+3rvvfc8be+//76iJT093VN3L6HgXy7DfZvPv2SC+9asJM2aNStauxh1TzzxhKfu/3fTt29fp1xcXPyj7JNbNMfw4dwOc08lcS/RIEmXXHKJp+4fz0F79tlnPfVf/epXnrp7jA4ZMuTH2KVG43YhAADAEUKSBQAAEACSLAAAgABEPCfrhBNO8NTd8xfc8xrQNP5HSLRv3/6Q7/3uu++i9rn++UjuJRT883VWr17tlP1znC666CJP3f0InHbt2nna9uzZ45T987783O3h3uteouFg73Ufl3+ZCP973XPy/PPz3Nzfx+Fyf7f+73Lw4MGN7vdg/PMbOnTo4JRPP/10T5t7zpF/v/xzQ9zzpfzzrtx1/0+3/T//d7/XPcdJ8j6CyT+XK9zjW/xzp/z75z4W9/fhb/PPs/IvnxJuuZft27c75bfeesvTtnDhwkNud7j885Hc++/+/iTvd++Pg39epX+u16E+w8/fr38f3JKTkw/Zp38+mXuZHf8SPO45WH7+uWbu+aT+z/TX3edl/98797//hx56yNNWWFh4yP05XCNHjvTU3f+2y8vLPW3uf5/+78h93pWkTZs2OeXu3bt72tzLH/nHjp+73f/YO7dvv/3WUw+FQp764sWLnfJHH33kabvyyis99a5duzrlcPOKW7du7an7zwvuv03+uZnu89a8efM8bf7lTg6GK1kAAAABIMkCAAAIAEkWAABAACKekzVs2DBP/eabb3bK/vkK7nvv/rkL/sfquLf13/N1z5EJNyfM/zn+/XGvd+P/fP/cD3c//n339+t+fE+4ORv+ffV/pnvOhv843fyPkLj66qsP+d7DNW7cOE893Jws9317/1ylhtYWC0K4+VLhPt8/1yjcsYQ7rnCf39D+uLf1z4uL9iNCjpa17n5Kgnzsinu9MP+cO/ccKP9cNP+/58Y+rsQ/JyvcI3j85+Vw3Pvun4/nnl8kef8W+Y/rcB4H59423HytadOmedpWrlwZ8Wc0pFOnTp76qaee6pT98x1TU1MP2Y9/7pJ73m+4v2PuuXDSgXNs3WvS+ec8ufnb/HPcFixY4JSzsrI8bf7jCjcX0r0/DcU6XP7gnsPmnyMWyXxcrmQBAAAEgCQLAAAgADxW5yesOT7hHdET7cfqEOPmhzEc24hvbOOxOgAAAEcISRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABIAkCwAAIAAkWQAAAAEgyQIAAAgASRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABIAkCwAAIAAkWQAAAAEgyQIAAAgASRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABIAkCwAAIAAkWQAAAAEgyQIAAAgASRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABIAkCwAAIAAkWQAAAAEgyQIAAAgASRYAAEAASLIAAAACQJIFAAAQAJIsAACAAJBkAQAABIAkCwAAIABxZmZHeicAAABiDVeyAAAAAkCSBQAAEACSLAAAgACQZAEAAASAJAsAACAAJFkAAAABIMkCAAAIAEkWAABAAEiyAAAAAvB/lYfJ9H5vNFAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_image_issue_examples(lowinfo_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we can see a lot of low information images belong to the Sandal class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the toy model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:44.374138Z", + "iopub.status.busy": "2024-05-24T23:48:44.373795Z", + "iopub.status.idle": "2024-05-24T23:48:44.378163Z", + "shell.execute_reply": "2024-05-24T23:48:44.377725Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "assert set([53050, 40875, 9594, 34825, 37530]).issubset(lowinfo_issues_df.index.values.tolist())\n", + "assert set([34848, 50270, 3936, 733, 8094]).issubset(dark_issues_df.index.values.tolist())\n", + "assert set([47824, 3370, 3952, 37119]).issubset(near_duplicate_issues_df.index.values.tolist())\n", + "assert set([38093, 22628, 44031, 25316, 40329]).issubset(outlier_issues_df.index.values.tolist())\n", + "assert set([45561, 11262, 54078, 53564]).issubset(label_issues_df.index.values.tolist())" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "031b84089c57458383c94f82d7d067c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1105429b0f44916a584ad356231c0b6", + "placeholder": "​", + "style": "IPY_MODEL_76a98b619f364041b8178ca31b41b04b", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "057d3652acd94b27a3a9b42699d63dd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a0fa43d222c2455091aea1acdd62eb43", + "IPY_MODEL_5d42f382e75341a8a31834203b75f754", + "IPY_MODEL_a6d07afaf60745139d81c4683be3e1a8" + ], + "layout": "IPY_MODEL_2ee8e9cdec054706b67790d24d520a51", + "tabbable": null, + "tooltip": null + } + }, + "074af57fa3a64899a739e0cc3cee08df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e8f671afb4a47c086f360c99ed87141", + "IPY_MODEL_bce61ad68bbf40b7ba3d606b59da8600", + "IPY_MODEL_366017fd9649479daa83be455eb4ea01" + ], + "layout": "IPY_MODEL_388a0a6518214a2f970de25f0ea39830", + "tabbable": null, + "tooltip": null + } + }, + "07564356ed2342d6ac04a5ed23ca015c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07586dba54fa41809fdfe5fea21beccd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ab57489ecdc4069bf25275747c0f017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_152462880c0d4347b2f75441fcf2df0a", + "IPY_MODEL_b7b322cffbf046abaa40028236d8e0b1", + "IPY_MODEL_dc8e2ed0897b433a9d66a7526a19fcc6" + ], + "layout": "IPY_MODEL_292714ab23c243799bef2f67014f9dc7", + "tabbable": null, + "tooltip": null + } + }, + "0df0a55db4a74f4092a8a38dad7bce98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9349c75be51444989d878970f227d6ab", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_656b64905b124b18b80256b83a945f51", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0e8f671afb4a47c086f360c99ed87141": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c74a1649bf54e0190d56644440205bf", + "placeholder": "​", + "style": "IPY_MODEL_eb48bd6e712e4dc8ae4dd66c2ba45ec8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "118bf11ce0b94bd4af1b4c3fa3564c3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "152462880c0d4347b2f75441fcf2df0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_307eeb18be8446a08548512f55f29f7f", + "placeholder": "​", + "style": "IPY_MODEL_50a748471f47497fa252bac10d6b4fa0", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "15cd0c778c24431599ddd94a10c8e932": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16c3bd87a2414e87bf4fffbadf309de1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ec89a620dea40d0936d55b0d7b478f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24aa63736533454daffddb5428783a72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "24ad391f91364782b5a7871d4f64e79d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28ccbf7c88504162b4d9f7fc07c4f264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae453bb57bbd45dc9c85bdd3463ca4e9", + "IPY_MODEL_58a1a04d58c74f878a846f0e300b2dbc", + "IPY_MODEL_8f3b6c02b5ef426eb5089349c3a96f26" + ], + "layout": "IPY_MODEL_9129ea8e4bdf4518b5297aaa6fdf669d", + "tabbable": null, + "tooltip": null + } + }, + "292714ab23c243799bef2f67014f9dc7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2bf6cab9cb2c418481e877201601feb5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c46903cffce4102936c00193f67f6dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2da0a350a6b4418d979c028e59646c98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2df8c43347674f8f9460602da6fcd437": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ee8e9cdec054706b67790d24d520a51": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f9cfb9cf7f2480f89681306f3dda365": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30413b4850f144fb95d95e80062cde3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b19575d46d044df79a6d24eff74b310f", + "IPY_MODEL_c080c63fec9a433c976476c02fee11fb", + "IPY_MODEL_8d27eb9f199d44849e34d75da230700e" + ], + "layout": "IPY_MODEL_7dab533c96ae44588fdcd60f5a01d429", + "tabbable": null, + "tooltip": null + } + }, + "307eeb18be8446a08548512f55f29f7f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3143faded19141c9998bdd5a7dfb3c2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_efdb9b1fb61749b2a9ece54d91f63015", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24ad391f91364782b5a7871d4f64e79d", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "338eee5298a145768e775d1d7c7decb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "366017fd9649479daa83be455eb4ea01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2bf6cab9cb2c418481e877201601feb5", + "placeholder": "​", + "style": "IPY_MODEL_aa46d438b31540bfaeefddac2cf91516", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.74it/s]" + } + }, + "36cd70c3398442f58782c3f85d001d1e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "37b1c3455a304115902e36c60cf9dec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_43d9458289f449c8adae3c4448cf2115", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b5f07b848284371865d0863d5d5fd3e", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "388a0a6518214a2f970de25f0ea39830": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b062893f6e245a9a71dace61ff3b4a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d5972f2b7664b7abf98600c720ff540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd8786a22a7647bdb93dc74ef4d647f2", + "placeholder": "​", + "style": "IPY_MODEL_ec6af3a5d5524c19ab36f805a7792110", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3d9fc15ffaad4462ab1742b07a2ecc8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3ea372aea0f948bfb47fdeac06eb0994": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ddbf4bf39c0744d8a8809c774c8e7d21", + "placeholder": "​", + "style": "IPY_MODEL_15cd0c778c24431599ddd94a10c8e932", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.84it/s]" + } + }, + "416a4505643e47e7816864e492906577": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4af4dc81edd4b539df99c76834bdefa", + "placeholder": "​", + "style": "IPY_MODEL_ce3bad4b784b4200b180e4468b74a599", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 273797.51 examples/s]" + } + }, + "4197d3e8019443f0bc179fe3a1bf4a0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41d61e7445f9467596af4eff47bfbcbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41eed2754ea84c198f25fa1e9bd85a46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4360e57dcfd6447195a40a68c2f8aaed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "43d9458289f449c8adae3c4448cf2115": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b8656e2bb514775b8ac4f65b1ac2b01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d7ab02c7e0444b294ff124003e91ece": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4e3e9645377a419b93276f7f13c6a8f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_867b24af14744cc0b7e3221044920a21", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ce94be5d26247a3a5fea9894d30f71e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "50a748471f47497fa252bac10d6b4fa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "54d9440571b04435aeb26d2879353d89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4d7ab02c7e0444b294ff124003e91ece", + "placeholder": "​", + "style": "IPY_MODEL_8ce555e74940488da091f7919714cf68", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "56250a49f1414abf9501cfaee3b6c095": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3a72ed440ef46b8ba14df3862ac09fa", + "placeholder": "​", + "style": "IPY_MODEL_5f3ca3677b0745fcbb821f783572361b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.84it/s]" + } + }, + "5821c10e057642b8bf8d2be5c1af93b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "58a1a04d58c74f878a846f0e300b2dbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c8207f6ac9d941969378bc21008ee447", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5821c10e057642b8bf8d2be5c1af93b6", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "5ab4202daa704b019646dd67ff00f98b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5d42f382e75341a8a31834203b75f754": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b717cf2a3d3d423298479375eb966a2d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_41eed2754ea84c198f25fa1e9bd85a46", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5d6cbc407b574bbd8fa8a0f2ae596003": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b5ae1024dc8411fa7019eeed8b87b1d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d9fc15ffaad4462ab1742b07a2ecc8d", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5de68be00c00484fb5fff99d70154da3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e27eb32c4a440cfbd59c9416827b2b0", + "placeholder": "​", + "style": "IPY_MODEL_d3817d46adff409caf353981e4c37884", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "5f3ca3677b0745fcbb821f783572361b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "610bee41790a48b9beb22fa43dc50096": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ec89a620dea40d0936d55b0d7b478f1", + "placeholder": "​", + "style": "IPY_MODEL_41d61e7445f9467596af4eff47bfbcbc", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "656b64905b124b18b80256b83a945f51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6b5f07b848284371865d0863d5d5fd3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bba03622a5241ce953d65f8ffbea29e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f651eeff1404646b9d9c75f5494706a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "703f59a20d21480ea94da7a7c518345e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76a98b619f364041b8178ca31b41b04b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "78d9d7ef106a4e00a8fce1d1ac2fa3d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_610bee41790a48b9beb22fa43dc50096", + "IPY_MODEL_37b1c3455a304115902e36c60cf9dec4", + "IPY_MODEL_56250a49f1414abf9501cfaee3b6c095" + ], + "layout": "IPY_MODEL_79e52f3bf49041c1b48ad013ad7afd5a", + "tabbable": null, + "tooltip": null + } + }, + "79e52f3bf49041c1b48ad013ad7afd5a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b5ae1024dc8411fa7019eeed8b87b1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b798d1304d14fccb54fee108780bd8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c74a1649bf54e0190d56644440205bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7cad129b50624340bf5236e9a5f718d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90f83e1dac4f4ffd86bdbc98a5e2bd0f", + "IPY_MODEL_5d6cbc407b574bbd8fa8a0f2ae596003", + "IPY_MODEL_3ea372aea0f948bfb47fdeac06eb0994" + ], + "layout": "IPY_MODEL_07586dba54fa41809fdfe5fea21beccd", + "tabbable": null, + "tooltip": null + } + }, + "7dab533c96ae44588fdcd60f5a01d429": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e27eb32c4a440cfbd59c9416827b2b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e6ecb977931418d9870af5c93307f5f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81dcf42359a647598021ac00d9914aa0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "867b24af14744cc0b7e3221044920a21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "880ede3d97c24407b1789073b7c65d67": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8a253c35254e43c6bf3890c1ed1b1ce9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b5956e27e1a4174875b0e17c13ae4bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ce555e74940488da091f7919714cf68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ce94be5d26247a3a5fea9894d30f71e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8d27eb9f199d44849e34d75da230700e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bba03622a5241ce953d65f8ffbea29e", + "placeholder": "​", + "style": "IPY_MODEL_4360e57dcfd6447195a40a68c2f8aaed", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 83.0MB/s]" + } + }, + "8d9c2c95130342038b87560495f48489": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f3b6c02b5ef426eb5089349c3a96f26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2df8c43347674f8f9460602da6fcd437", + "placeholder": "​", + "style": "IPY_MODEL_8b5956e27e1a4174875b0e17c13ae4bf", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 310079.92 examples/s]" + } + }, + "90f6e65afe284e5b943e4c0216a1ab9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba230de6fe62406ab43d8188168f3f10", + "placeholder": "​", + "style": "IPY_MODEL_9ca94178c3834ff19d8535ec980ab156", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "90f83e1dac4f4ffd86bdbc98a5e2bd0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5e3bf9042ee4b3f8e073edc2c43c03e", + "placeholder": "​", + "style": "IPY_MODEL_fe353c77d8a2411ea0f4004a565f6cc7", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "9129ea8e4bdf4518b5297aaa6fdf669d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9349c75be51444989d878970f227d6ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98b15b576c8848ae97d5d968cf82dc6f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ca94178c3834ff19d8535ec980ab156": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9cdde645fcae4d9b942b442ae0023bbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a0ece89a0497431c88338dc3c7f3fd61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3d5972f2b7664b7abf98600c720ff540", + "IPY_MODEL_0df0a55db4a74f4092a8a38dad7bce98", + "IPY_MODEL_ce543dafdcd547a8bf0f9f55bdf35f97" + ], + "layout": "IPY_MODEL_3b062893f6e245a9a71dace61ff3b4a8", + "tabbable": null, + "tooltip": null + } + }, + "a0fa43d222c2455091aea1acdd62eb43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_98b15b576c8848ae97d5d968cf82dc6f", + "placeholder": "​", + "style": "IPY_MODEL_9cdde645fcae4d9b942b442ae0023bbf", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "a6a89edd860e496eafadf1972e20007d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ea8814660da74335ab823e484a74a3d2", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ab4202daa704b019646dd67ff00f98b", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "a6d07afaf60745139d81c4683be3e1a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0a75ed2e24548e9b2255d8e63afc3ba", + "placeholder": "​", + "style": "IPY_MODEL_338eee5298a145768e775d1d7c7decb9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 66.19it/s]" + } + }, + "aa46d438b31540bfaeefddac2cf91516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac0b34eb383f4d56afd63bb1cd2f1a3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad14dbe2f6904d7c88475c4d5d4d92a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae453bb57bbd45dc9c85bdd3463ca4e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c680bb113ead4c1cbd70aed63888fc80", + "placeholder": "​", + "style": "IPY_MODEL_cf59a6b22705481b9321e9e7ad270909", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "b19575d46d044df79a6d24eff74b310f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81dcf42359a647598021ac00d9914aa0", + "placeholder": "​", + "style": "IPY_MODEL_118bf11ce0b94bd4af1b4c3fa3564c3b", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "b3d6db494b3a412c8a500fe0027837ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e6ecb977931418d9870af5c93307f5f", + "placeholder": "​", + "style": "IPY_MODEL_2da0a350a6b4418d979c028e59646c98", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 598.08it/s]" + } + }, + "b4262b525bf4435982dbf81bc4888039": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a253c35254e43c6bf3890c1ed1b1ce9", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f9cfb9cf7f2480f89681306f3dda365", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "b674895ee0954c45814dcc88bbdae611": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e86d601b37744e39b4994ce325a8f9e2", + "IPY_MODEL_4e3e9645377a419b93276f7f13c6a8f1", + "IPY_MODEL_d1bc7f2596634d18bd880ba9e0f2a154" + ], + "layout": "IPY_MODEL_8d9c2c95130342038b87560495f48489", + "tabbable": null, + "tooltip": null + } + }, + "b717cf2a3d3d423298479375eb966a2d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b7b322cffbf046abaa40028236d8e0b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_efdf81e7f5bc4dff86c25c83abbbfd91", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ac0b34eb383f4d56afd63bb1cd2f1a3a", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "b8b8083698d64a2aabe2981d10a4b7ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5de68be00c00484fb5fff99d70154da3", + "IPY_MODEL_3143faded19141c9998bdd5a7dfb3c2e", + "IPY_MODEL_e72693d9a44c48efaabbc59bb06faf8c" + ], + "layout": "IPY_MODEL_703f59a20d21480ea94da7a7c518345e", + "tabbable": null, + "tooltip": null + } + }, + "ba230de6fe62406ab43d8188168f3f10": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bab4801986314324bd8322766dff1237": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bce61ad68bbf40b7ba3d606b59da8600": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ece176d13b244cd0824bb4fe89006db7", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_edf9700ebbe748789d1aef8e16e75fdd", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c080c63fec9a433c976476c02fee11fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_16c3bd87a2414e87bf4fffbadf309de1", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf6c8ca6214941c696bea2233517c08f", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "c19fcf349bb24271ad666a1fe8382b69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90f6e65afe284e5b943e4c0216a1ab9d", + "IPY_MODEL_d0131efaccbe4ca9a73cca13c03df181", + "IPY_MODEL_e82d8d0685bd4225a9a232c57083f7ee" + ], + "layout": "IPY_MODEL_880ede3d97c24407b1789073b7c65d67", + "tabbable": null, + "tooltip": null + } + }, + "c55c3557e57b4d04a6019dc272730e9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c680bb113ead4c1cbd70aed63888fc80": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8207f6ac9d941969378bc21008ee447": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca862490bed749d5bcb11be7e492deee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ce3bad4b784b4200b180e4468b74a599": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ce543dafdcd547a8bf0f9f55bdf35f97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b8656e2bb514775b8ac4f65b1ac2b01", + "placeholder": "​", + "style": "IPY_MODEL_ca862490bed749d5bcb11be7e492deee", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.61it/s]" + } + }, + "cf59a6b22705481b9321e9e7ad270909": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cf6c8ca6214941c696bea2233517c08f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0131efaccbe4ca9a73cca13c03df181": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b798d1304d14fccb54fee108780bd8a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fd0d948c0bbc40a4abcee99c0cbfd900", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "d1105429b0f44916a584ad356231c0b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1bc7f2596634d18bd880ba9e0f2a154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe6fd548de564bf4918d81a2257af48a", + "placeholder": "​", + "style": "IPY_MODEL_6f651eeff1404646b9d9c75f5494706a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:47<00:00, 1161.97it/s]" + } + }, + "d3817d46adff409caf353981e4c37884": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5e3bf9042ee4b3f8e073edc2c43c03e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc8e2ed0897b433a9d66a7526a19fcc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07564356ed2342d6ac04a5ed23ca015c", + "placeholder": "​", + "style": "IPY_MODEL_24aa63736533454daffddb5428783a72", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.96it/s]" + } + }, + "dd8786a22a7647bdb93dc74ef4d647f2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ddbf4bf39c0744d8a8809c774c8e7d21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e173466ad7784de68abad340c4e1251e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_031b84089c57458383c94f82d7d067c9", + "IPY_MODEL_b4262b525bf4435982dbf81bc4888039", + "IPY_MODEL_416a4505643e47e7816864e492906577" + ], + "layout": "IPY_MODEL_ad14dbe2f6904d7c88475c4d5d4d92a3", + "tabbable": null, + "tooltip": null + } + }, + "e3f967973a5649329a92180d45a9111e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4af4dc81edd4b539df99c76834bdefa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e72693d9a44c48efaabbc59bb06faf8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3f967973a5649329a92180d45a9111e", + "placeholder": "​", + "style": "IPY_MODEL_ec62a473720a42a8942322419a77bbb4", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 77.4MB/s]" + } + }, + "e82d8d0685bd4225a9a232c57083f7ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36cd70c3398442f58782c3f85d001d1e", + "placeholder": "​", + "style": "IPY_MODEL_2c46903cffce4102936c00193f67f6dd", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5494.13 examples/s]" + } + }, + "e86d601b37744e39b4994ce325a8f9e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bab4801986314324bd8322766dff1237", + "placeholder": "​", + "style": "IPY_MODEL_4197d3e8019443f0bc179fe3a1bf4a0c", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "ea8814660da74335ab823e484a74a3d2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb48bd6e712e4dc8ae4dd66c2ba45ec8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ebe5000ccad3427aa6c212d21169d3cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54d9440571b04435aeb26d2879353d89", + "IPY_MODEL_a6a89edd860e496eafadf1972e20007d", + "IPY_MODEL_b3d6db494b3a412c8a500fe0027837ff" + ], + "layout": "IPY_MODEL_c55c3557e57b4d04a6019dc272730e9b", + "tabbable": null, + "tooltip": null + } + }, + "ec62a473720a42a8942322419a77bbb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec6af3a5d5524c19ab36f805a7792110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ece176d13b244cd0824bb4fe89006db7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "edf9700ebbe748789d1aef8e16e75fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "efdb9b1fb61749b2a9ece54d91f63015": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "efdf81e7f5bc4dff86c25c83abbbfd91": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0a75ed2e24548e9b2255d8e63afc3ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3a72ed440ef46b8ba14df3862ac09fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd0d948c0bbc40a4abcee99c0cbfd900": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fe353c77d8a2411ea0f4004a565f6cc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe6fd548de564bf4918d81a2257af48a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb new file mode 100644 index 000000000..1f69d6e4f --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -0,0 +1,1378 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in Tabular Data (Numeric/Categorical columns) with Datalab\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use Datalab to detect various issues in a classification dataset with tabular (numeric/categorical) features. Tabular (or *structured*) data are typically organized in a row/column format and stored in a SQL database or file types like: CSV, Excel, or Parquet. Here we consider a Student Grades dataset, which contains over 900 individuals who have three exam grades and some optional notes, each being assigned a letter grade (their class label). cleanlab automatically identifies _hundreds_ of examples in this dataset that were mislabeled with the incorrect final grade selected. You can run the same code from this tutorial to detect incorrect information in your own tabular classification datasets.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Train a classifier model (here scikit-learn's HistGradientBoostingClassifier, although any model could be used) and use this classifier to compute (out-of-sample) predicted class probabilities via cross-validation.\n", + "\n", + "- Create a K nearest neighbours (KNN) graph between the examples in the dataset.\n", + "\n", + "- Identify issues in the dataset with cleanlab's `Datalab` audit applied to the predictions and KNN graph.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on your original data labels? Have a `knn_graph` computed between dataset examples (reflecting similarity in their feature values)? Run the code below to find issues in your dataset.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, knn_graph=knn_graph)\n", + "\n", + "lab.get_issues()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:47.807649Z", + "iopub.status.busy": "2024-05-24T23:48:47.807215Z", + "iopub.status.idle": "2024-05-24T23:48:48.922437Z", + "shell.execute_reply": "2024-05-24T23:48:48.921854Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.925112Z", + "iopub.status.busy": "2024-05-24T23:48:48.924778Z", + "iopub.status.idle": "2024-05-24T23:48:48.943873Z", + "shell.execute_reply": "2024-05-24T23:48:48.943370Z" + } + }, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "from sklearn.model_selection import cross_val_predict\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.ensemble import HistGradientBoostingClassifier\n", + "from sklearn.neighbors import NearestNeighbors\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "SEED = 100 # for reproducibility\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and process the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first load the data features and labels (which are possibly noisy).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.946170Z", + "iopub.status.busy": "2024-05-24T23:48:48.945756Z", + "iopub.status.idle": "2024-05-24T23:48:48.972667Z", + "shell.execute_reply": "2024-05-24T23:48:48.972168Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stud_IDexam_1exam_2exam_3notesletter_grade
0f48f7353.0077.009.003C
10bd4e781.0064.0080.00great participation +10B
20bd4e781.0064.0080.00great participation +10B
3cb9d7a0.610.940.78NaNC
49acca448.0090.009.001C
\n", + "
" + ], + "text/plain": [ + " stud_ID exam_1 exam_2 exam_3 notes letter_grade\n", + "0 f48f73 53.00 77.00 9.00 3 C\n", + "1 0bd4e7 81.00 64.00 80.00 great participation +10 B\n", + "2 0bd4e7 81.00 64.00 80.00 great participation +10 B\n", + "3 cb9d7a 0.61 0.94 0.78 NaN C\n", + "4 9acca4 48.00 90.00 9.00 1 C" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades_data = pd.read_csv(\"https://s.cleanlab.ai/grades-tabular-demo-v2.csv\")\n", + "grades_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.974704Z", + "iopub.status.busy": "2024-05-24T23:48:48.974523Z", + "iopub.status.idle": "2024-05-24T23:48:48.977842Z", + "shell.execute_reply": "2024-05-24T23:48:48.977418Z" + } + }, + "outputs": [], + "source": [ + "X_raw = grades_data[[\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]]\n", + "labels = grades_data[\"letter_grade\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we preprocess the data. Here we apply one-hot encoding to columns with categorical values and standardize the values in numeric columns." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.979961Z", + "iopub.status.busy": "2024-05-24T23:48:48.979587Z", + "iopub.status.idle": "2024-05-24T23:48:48.987345Z", + "shell.execute_reply": "2024-05-24T23:48:48.986918Z" + } + }, + "outputs": [], + "source": [ + "cat_features = [\"notes\"]\n", + "X_encoded = pd.get_dummies(X_raw, columns=cat_features, drop_first=True)\n", + "\n", + "numeric_features = [\"exam_1\", \"exam_2\", \"exam_3\"]\n", + "scaler = StandardScaler()\n", + "X_processed = X_encoded.copy()\n", + "X_processed[numeric_features] = scaler.fit_transform(X_encoded[numeric_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Assign your data's features to variable `X` and its labels to variable `labels` instead.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Select a classification model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we use a simple histogram-based gradient boosting model (similar to XGBoost), but you can choose any suitable scikit-learn model for this tutorial.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.989325Z", + "iopub.status.busy": "2024-05-24T23:48:48.989146Z", + "iopub.status.idle": "2024-05-24T23:48:48.991874Z", + "shell.execute_reply": "2024-05-24T23:48:48.991291Z" + } + }, + "outputs": [], + "source": [ + "clf = HistGradientBoostingClassifier()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To find potential labeling errors, cleanlab requires a probabilistic prediction from your model for every datapoint. However, these predictions will be _overfitted_ (and thus unreliable) for examples the model was previously trained on. For the best results, cleanlab should be applied with **out-of-sample** predicted class probabilities, i.e., on examples held out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n", + "We can implement this via the `cross_val_predict` method from scikit-learn.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:48.993983Z", + "iopub.status.busy": "2024-05-24T23:48:48.993559Z", + "iopub.status.idle": "2024-05-24T23:48:51.946825Z", + "shell.execute_reply": "2024-05-24T23:48:51.946265Z" + } + }, + "outputs": [], + "source": [ + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " clf,\n", + " X_processed,\n", + " labels,\n", + " cv=num_crossval_folds,\n", + " method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Construct K nearest neighbours graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The KNN graph reflects how close each example is when compared to other examples in our dataset (in the numerical space of preprocessed feature values). This similarity information is used by Datalab to identify issues like outliers in our data. For tabular data, think carefully about the most appropriate way to define the similarity between two examples.\n", + "\n", + "Here we use the `NearestNeighbors` class in sklearn to easily compute this graph (with similarity defined by the Euclidean distance between feature values). The graph should be represented as a sparse matrix with nonzero entries indicating nearest neighbors of each example and their distance." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:51.949437Z", + "iopub.status.busy": "2024-05-24T23:48:51.949247Z", + "iopub.status.idle": "2024-05-24T23:48:51.958264Z", + "shell.execute_reply": "2024-05-24T23:48:51.957847Z" + } + }, + "outputs": [], + "source": [ + "KNN = NearestNeighbors(metric='euclidean')\n", + "KNN.fit(X_processed.values)\n", + "\n", + "knn_graph = KNN.kneighbors_graph(mode=\"distance\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the given labels, predicted probabilities, and KNN graph, cleanlab can quickly help us identify suspicious values in our grades table.\n", + "\n", + "We use cleanlab's `Datalab` class which has several ways of loading the data. In this case, we’ll simply wrap the dataset (features and noisy labels) in a dictionary that is used instantiate a `Datalab` object such that it can audit our dataset for various types of issues." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:51.960138Z", + "iopub.status.busy": "2024-05-24T23:48:51.959967Z", + "iopub.status.idle": "2024-05-24T23:48:53.690933Z", + "shell.execute_reply": "2024-05-24T23:48:53.690322Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Finding near_duplicate issues ...\n", + "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", + "Finding underperforming_group issues ...\n", + "\n", + "Audit complete. 358 issues found in the dataset.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "data = {\"X\": X_processed.values, \"y\": labels}\n", + "\n", + "lab = Datalab(data, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, knn_graph=knn_graph)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.693902Z", + "iopub.status.busy": "2024-05-24T23:48:53.693306Z", + "iopub.status.idle": "2024-05-24T23:48:53.716227Z", + "shell.execute_reply": "2024-05-24T23:48:53.715723Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 294\n", + " outlier 46\n", + "near_duplicate 17\n", + " non_iid 1\n", + "\n", + "Dataset Information: num_examples: 941, num_classes: 5\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 294\n", + "Overall dataset quality in terms of this issue: 0.7109\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "3 True 0.000005 C F\n", + "886 True 0.000059 D B\n", + "709 True 0.000104 F C\n", + "723 True 0.000169 A C\n", + "689 True 0.000181 B D\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 46\n", + "Overall dataset quality in terms of this issue: 0.3590\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "3 True 3.051882e-07\n", + "7 True 7.683133e-05\n", + "0 True 6.536582e-04\n", + "4 True 8.406589e-04\n", + "8 True 5.324246e-03\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 17\n", + "Overall dataset quality in terms of this issue: 0.6165\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "12 True 0.0 [2, 1, 6, 9] 0.0\n", + "582 True 0.0 [185] 0.0\n", + "185 True 0.0 [582] 0.0\n", + "187 True 0.0 [27] 0.0\n", + "898 True 0.0 [637] 0.0\n", + "\n", + "\n", + "---------------------- non_iid issues ----------------------\n", + "\n", + "About this issue:\n", + "\tWhether the dataset exhibits statistically significant\n", + " violations of the IID assumption like:\n", + " changepoints or shift, drift, autocorrelation, etc.\n", + " The specific violation considered is whether the\n", + " examples are ordered such that almost adjacent examples\n", + " tend to have more similar feature values.\n", + " \n", + "\n", + "Number of examples with this issue: 1\n", + "Overall dataset quality in terms of this issue: 0.0014\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_non_iid_issue non_iid_score\n", + "595 True 0.702427\n", + "147 False 0.711186\n", + "157 False 0.721394\n", + "771 False 0.731979\n", + "898 False 0.740335\n", + "\n", + "Additional Information: \n", + "p-value: 0.0014153602099278074\n" + ] + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "The above report shows that cleanlab identified many label issues in the data. We can see which examples are estimated to be mislabeled (as well as a numeric quality score quantifying how likely their label is correct) via the `get_issues` method." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.718840Z", + "iopub.status.busy": "2024-05-24T23:48:53.718514Z", + "iopub.status.idle": "2024-05-24T23:48:53.727428Z", + "shell.execute_reply": "2024-05-24T23:48:53.726947Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
0True0.000842CF
1False0.555944BB
2False0.555944BB
3True0.000005CF
4True0.004374CD
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "0 True 0.000842 C F\n", + "1 False 0.555944 B B\n", + "2 False 0.555944 B B\n", + "3 True 0.000005 C F\n", + "4 True 0.004374 C D" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "issue_results = lab.get_issues(\"label\")\n", + "issue_results.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To review the most severe label issues, sort the DataFrame above by the `label_score` column (a lower score represents that the label is less likely to be correct). \n", + "\n", + "Let's review some of the most likely label errors:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.730011Z", + "iopub.status.busy": "2024-05-24T23:48:53.729684Z", + "iopub.status.idle": "2024-05-24T23:48:53.740140Z", + "shell.execute_reply": "2024-05-24T23:48:53.739657Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notesgiven_labelpredicted_label
30.610.940.78NaNCF
88689.0095.0073.00NaNDB
70964.0070.0086.00NaNFC
72353.0089.0078.00NaNAC
68977.0051.0070.00NaNBD
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes given_label predicted_label\n", + "3 0.61 0.94 0.78 NaN C F\n", + "886 89.00 95.00 73.00 NaN D B\n", + "709 64.00 70.00 86.00 NaN F C\n", + "723 53.00 89.00 78.00 NaN A C\n", + "689 77.00 51.00 70.00 NaN B D" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_issues = issue_results.sort_values(\"label_score\").index\n", + "\n", + "X_raw.iloc[sorted_issues].assign(\n", + " given_label=labels.iloc[sorted_issues], \n", + " predicted_label=issue_results[\"predicted_label\"].iloc[sorted_issues]\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dataframe above shows the original label (`given_label`) for examples that cleanlab finds most likely to be mislabeled, as well as an alternative `predicted_label` for each example.\n", + "\n", + "These examples have been labeled incorrectly and should be carefully re-examined - a student with grades of 89, 95 and 73 surely does not deserve a D! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "According to the report, our dataset contains some outliers. We can see which examples are outliers (and a numeric quality score quantifying how typical each example appears to be) via `get_issues`. We sort the resulting DataFrame by cleanlab's outlier quality score to see the most severe outliers in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.742666Z", + "iopub.status.busy": "2024-05-24T23:48:53.742342Z", + "iopub.status.idle": "2024-05-24T23:48:53.751361Z", + "shell.execute_reply": "2024-05-24T23:48:53.750809Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notes
30.610.940.78NaN
7100.00100.001.00NaN
053.0077.009.003
448.0090.009.001
80.0056.0096.00<p style=\"font-size: 18px; color: #ff00ff; bac...
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes\n", + "3 0.61 0.94 0.78 NaN\n", + "7 100.00 100.00 1.00 NaN\n", + "0 53.00 77.00 9.00 3\n", + "4 48.00 90.00 9.00 1\n", + "8 0.00 56.00 96.00

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_near_duplicate_issuenear_duplicate_scorenear_duplicate_setsdistance_to_nearest_neighbor
12True0.0[2, 1, 6, 9]0.0
582True0.0[185]0.0
185True0.0[582]0.0
187True0.0[27]0.0
898True0.0[637]0.0
\n", + "" + ], + "text/plain": [ + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", + "12 True 0.0 [2, 1, 6, 9] \n", + "582 True 0.0 [185] \n", + "185 True 0.0 [582] \n", + "187 True 0.0 [27] \n", + "898 True 0.0 [637] \n", + "\n", + " distance_to_nearest_neighbor \n", + "12 0.0 \n", + "582 0.0 \n", + "185 0.0 \n", + "187 0.0 \n", + "898 0.0 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "duplicate_results = lab.get_issues(\"near_duplicate\")\n", + "duplicate_results.sort_values(\"near_duplicate_score\").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results above show which examples cleanlab considers nearly duplicated (rows where `is_near_duplicate_issue == True`). Here, we see some examples that cleanlab has flagged as being nearly duplicated. Let's view these examples to see how similar they are\n", + "\n", + "Using the one of the lowest-scoring examples, let's compare it against the identified near-duplicate sets." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.763942Z", + "iopub.status.busy": "2024-05-24T23:48:53.763768Z", + "iopub.status.idle": "2024-05-24T23:48:53.771061Z", + "shell.execute_reply": "2024-05-24T23:48:53.770600Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notes
181.064.080.0great participation +10
281.064.080.0great participation +10
1281.064.080.0great participation +10
681.064.080.0great participation +10
981.064.080.0great participation +10
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes\n", + "1 81.0 64.0 80.0 great participation +10\n", + "2 81.0 64.0 80.0 great participation +10\n", + "12 81.0 64.0 80.0 great participation +10\n", + "6 81.0 64.0 80.0 great participation +10\n", + "9 81.0 64.0 80.0 great participation +10" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Identify the row with the lowest near_duplicate_score\n", + "lowest_scoring_duplicate = duplicate_results[\"near_duplicate_score\"].idxmin()\n", + "\n", + "# Extract the indices of the lowest scoring duplicate and its near duplicate sets\n", + "indices_to_display = [lowest_scoring_duplicate] + duplicate_results.loc[lowest_scoring_duplicate, \"near_duplicate_sets\"].tolist()\n", + "\n", + "# Display the relevant rows from the original dataset\n", + "X_raw.iloc[indices_to_display]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These examples are exact duplicates! Perhaps the same information was accidentally recorded multiple times in this data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let's take a look at another example and the identified near-duplicate sets:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.773125Z", + "iopub.status.busy": "2024-05-24T23:48:53.772795Z", + "iopub.status.idle": "2024-05-24T23:48:53.780151Z", + "shell.execute_reply": "2024-05-24T23:48:53.779598Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notes
2786.080.089.0NaN
18786.080.089.0NaN
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes\n", + "27 86.0 80.0 89.0 NaN\n", + "187 86.0 80.0 89.0 NaN" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Identify the next row not in the previous near duplicate set\n", + "second_lowest_scoring_duplicate = duplicate_results[\"near_duplicate_score\"].drop(indices_to_display).idxmin()\n", + "\n", + "# Extract the indices of the second lowest scoring duplicate and its near duplicate sets\n", + "next_indices_to_display = [second_lowest_scoring_duplicate] + duplicate_results.loc[second_lowest_scoring_duplicate, \"near_duplicate_sets\"].tolist()\n", + "\n", + "# Display the relevant rows from the original dataset\n", + "X_raw.iloc[next_indices_to_display]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We identified another set of exact duplicates in our dataset! Including near/exact duplicates in a dataset may have unintended effects on models; be wary about splitting them across training/test sets. Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial highlighted a straightforward approach to detect potentially incorrect information in any tabular dataset. Just use Datalab with any ML model -- the better the model, the more accurate the data errors detected by Datalab will be!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:53.782316Z", + "iopub.status.busy": "2024-05-24T23:48:53.781994Z", + "iopub.status.idle": "2024-05-24T23:48:53.789935Z", + "shell.execute_reply": "2024-05-24T23:48:53.789493Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "identified_label_issues = issue_results[issue_results[\"is_label_issue\"] == True]\n", + "label_issue_indices = [3, 723, 709, 886, 689] # check these examples were found in label issues\n", + "if not all(x in identified_label_issues.index for x in label_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_label_issues.\")\n", + " \n", + "identified_outlier_issues = outlier_results[outlier_results[\"is_outlier_issue\"] == True]\n", + "outlier_issue_indices = [3, 7, 0, 4, 8] # check these examples were found in outlier issues\n", + "if not all(x in identified_outlier_issues.index for x in outlier_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_outlier_issues.\")\n", + " \n", + "identified_duplicate_issues = duplicate_results[duplicate_results[\"is_near_duplicate_issue\"] == True]\n", + "duplicate_issue_indices = [690, 246, 185, 582] # check these examples were found in duplicate issues\n", + "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")\n", + " \n", + "# check that the near duplicates shown are actually flagged as near duplicate sets\n", + "if not duplicate_results.iloc[690][\"near_duplicate_sets\"] == 246:\n", + " raise Exception(\"These examples are not in the same near duplicate set\")\n", + " \n", + "if not duplicate_results.iloc[185][\"near_duplicate_sets\"] == 582:\n", + " raise Exception(\"These examples are not in the same near duplicate set\")\n", + "\n", + "# Function to check if all rows are identical\n", + "def are_rows_identical(df):\n", + " first_row = df.iloc[0]\n", + " return all(df.iloc[i].equals(first_row) for i in range(1, len(df)))\n", + "\n", + "# Test to ensure all displayed rows are identical\n", + "if not are_rows_identical(X_raw.iloc[indices_to_display]):\n", + " raise Exception(\"Not all rows are identical! These examples should belong to the same EXACT duplicate set\")\n", + "\n", + "# Repeat the test for the next set of indices\n", + "if not are_rows_identical(X_raw.iloc[next_indices_to_display]):\n", + " raise Exception(\"Not all rows are identical! These examples should belong to the same EXACT duplicate set\")" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "cda20062bc42cfdcaa0f9720c0b28e880bba110e9dfce6c1689934eec9b595a1" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/text.ipynb new file mode 100644 index 000000000..b6d746a72 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -0,0 +1,1511 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in a Text Dataset with Datalab\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use Datalab to detect various issues in an intent classification dataset composed of (text) customer service requests at an online bank. We consider a subset of the [Banking77-OOS Dataset](https://arxiv.org/abs/2106.04564) containing 1,000 customer service requests which are classified into 10 categories based on their intent (you can run this same code on any text classification dataset). Cleanlab automatically identifies bad examples in our dataset, including mislabeled data, out-of-scope examples (outliers), or otherwise ambiguous examples. Consider filtering or correcting such bad examples before you dive deep into modeling your data!\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Use a pretrained transformer model to extract the text embeddings from the customer service requests\n", + "\n", + "- Train a simple Logistic Regression model on the text embeddings to compute out-of-sample predicted probabilities\n", + "\n", + "- Run cleanlab's `Datalab` audit with these predictions and embeddings in order to identify problems like: label issues, outliers, and near duplicates in the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you have some numeric `features` as well? Run the code below to find any potential label errors in your dataset.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, features=your_features)\n", + "\n", + "lab.report()\n", + "lab.get_issues()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install sentence-transformers\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:56.498538Z", + "iopub.status.busy": "2024-05-24T23:48:56.498365Z", + "iopub.status.idle": "2024-05-24T23:48:59.203155Z", + "shell.execute_reply": "2024-05-24T23:48:59.202528Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used:scikit-learn==1.2.0 sentence-transformers==2.2.2\n", + "\n", + "dependencies = [\"cleanlab\", \"sentence_transformers\", \"datasets\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.205802Z", + "iopub.status.busy": "2024-05-24T23:48:59.205455Z", + "iopub.status.idle": "2024-05-24T23:48:59.208753Z", + "shell.execute_reply": "2024-05-24T23:48:59.208282Z" + } + }, + "outputs": [], + "source": [ + "import re \n", + "import string \n", + "import pandas as pd \n", + "from sklearn.metrics import accuracy_score, log_loss \n", + "from sklearn.model_selection import cross_val_predict \n", + "from sklearn.linear_model import LogisticRegression\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.210659Z", + "iopub.status.busy": "2024-05-24T23:48:59.210473Z", + "iopub.status.idle": "2024-05-24T23:48:59.213487Z", + "shell.execute_reply": "2024-05-24T23:48:59.213058Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "pd.set_option(\"display.max_colwidth\", None) \n", + "\n", + "SEED = 123456 # for reproducibility\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and format the text dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.215347Z", + "iopub.status.busy": "2024-05-24T23:48:59.215173Z", + "iopub.status.idle": "2024-05-24T23:48:59.237021Z", + "shell.execute_reply": "2024-05-24T23:48:59.236532Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textlabel
0i accidentally made a payment to a wrong account. what should i do?cancel_transfer
1i no longer want to transfer funds, can we cancel that transaction?cancel_transfer
2cancel my transfer, please.cancel_transfer
3i want to revert this mornings transaction.cancel_transfer
4i just realised i made the wrong payment yesterday. can you please change it to the right account? it's my rent payment and really really needs to be in the right account by tomorrowcancel_transfer
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "0 i accidentally made a payment to a wrong account. what should i do? \n", + "1 i no longer want to transfer funds, can we cancel that transaction? \n", + "2 cancel my transfer, please. \n", + "3 i want to revert this mornings transaction. \n", + "4 i just realised i made the wrong payment yesterday. can you please change it to the right account? it's my rent payment and really really needs to be in the right account by tomorrow \n", + "\n", + " label \n", + "0 cancel_transfer \n", + "1 cancel_transfer \n", + "2 cancel_transfer \n", + "3 cancel_transfer \n", + "4 cancel_transfer " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv(\"https://s.cleanlab.ai/banking-intent-classification.csv\")\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.238935Z", + "iopub.status.busy": "2024-05-24T23:48:59.238755Z", + "iopub.status.idle": "2024-05-24T23:48:59.242390Z", + "shell.execute_reply": "2024-05-24T23:48:59.241865Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This dataset has 10 classes.\n", + "Classes: {'card_about_to_expire', 'change_pin', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card'}\n" + ] + } + ], + "source": [ + "raw_texts, labels = data[\"text\"].values, data[\"label\"].values\n", + "num_classes = len(set(labels))\n", + "\n", + "print(f\"This dataset has {num_classes} classes.\")\n", + "print(f\"Classes: {set(labels)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's view the i-th example in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.244530Z", + "iopub.status.busy": "2024-05-24T23:48:59.244207Z", + "iopub.status.idle": "2024-05-24T23:48:59.247192Z", + "shell.execute_reply": "2024-05-24T23:48:59.246654Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example Label: cancel_transfer\n", + "Example Text: i no longer want to transfer funds, can we cancel that transaction?\n" + ] + } + ], + "source": [ + "i = 1 # change this to view other examples from the dataset\n", + "print(f\"Example Label: {labels[i]}\")\n", + "print(f\"Example Text: {raw_texts[i]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored as two numpy arrays:\n", + "\n", + "1. `raw_texts` stores the customer service requests utterances in text format\n", + "2. `labels` stores the intent categories (labels) for each example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own text dataset, and continue with the rest of the tutorial.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we convert the text strings into vectors better suited as inputs for our ML models. \n", + "\n", + "We will use numeric representations from a pretrained Transformer model as embeddings of our text. The [Sentence Transformers](https://huggingface.co/docs/hub/sentence-transformers) library offers simple methods to compute these embeddings for text data. Here, we load the pretrained `electra-small-discriminator` model, and then run our data through network to extract a vector embedding of each example." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:48:59.249097Z", + "iopub.status.busy": "2024-05-24T23:48:59.248922Z", + "iopub.status.idle": "2024-05-24T23:49:03.241650Z", + "shell.execute_reply": "2024-05-24T23:49:03.241095Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", + " return self.fget.__get__(instance, owner)()\n" + ] + } + ], + "source": [ + "transformer = SentenceTransformer('google/electra-small-discriminator')\n", + "text_embeddings = transformer.encode(raw_texts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our subsequent ML model will directly operate on elements of `text_embeddings` in order to classify the customer service requests." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Define a classification model and compute out-of-sample predicted probabilities" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted embeddings.\n", + "\n", + "To identify label issues, cleanlab requires a probabilistic prediction from your model for each datapoint. However these predictions will be _overfit_ (and thus unreliable) for datapoints the model was previously trained on. cleanlab is intended to only be used with **out-of-sample** predicted class probabilities, i.e. on datapoints held-out from the model during the training.\n", + "\n", + "Here we obtain out-of-sample predicted class probabilities for every example in our dataset using a Logistic Regression model with cross-validation.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:03.244657Z", + "iopub.status.busy": "2024-05-24T23:49:03.244118Z", + "iopub.status.idle": "2024-05-24T23:49:04.126942Z", + "shell.execute_reply": "2024-05-24T23:49:04.126363Z" + }, + "scrolled": true + }, + "outputs": [], + "source": [ + "model = LogisticRegression(max_iter=400)\n", + "\n", + "pred_probs = cross_val_predict(model, text_embeddings, labels, method=\"predict_proba\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to find issues in your dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given feature embeddings and the (out-of-sample) predicted class probabilities obtained from any model you have, cleanlab can quickly help you identify low-quality examples in your dataset.\n", + "\n", + "Here, we use cleanlab's `Datalab` to find issues in our data. Datalab offers several ways of loading the data; we’ll simply wrap the training features and noisy labels in a dictionary. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:04.129856Z", + "iopub.status.busy": "2024-05-24T23:49:04.129470Z", + "iopub.status.idle": "2024-05-24T23:49:04.132349Z", + "shell.execute_reply": "2024-05-24T23:49:04.131863Z" + } + }, + "outputs": [], + "source": [ + "data_dict = {\"texts\": raw_texts, \"labels\": labels}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All that is need to audit your data is to call `find_issues()`. We pass in the predicted probabilities and the feature embeddings obtained above, but you do not necessarily need to provide all of this information depending on which types of issues you are interested in. The more inputs you provide, the more types of issues `Datalab` can detect in your data. Using a better model to produce these inputs will ensure cleanlab more accurately estimates issues." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:04.134684Z", + "iopub.status.busy": "2024-05-24T23:49:04.134306Z", + "iopub.status.idle": "2024-05-24T23:49:05.716552Z", + "shell.execute_reply": "2024-05-24T23:49:05.715930Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding null issues ...\n", + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "Finding near_duplicate issues ...\n", + "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", + "Finding underperforming_group issues ...\n", + "\n", + "Audit complete. 85 issues found in the dataset.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "lab = Datalab(data_dict, label_name=\"labels\")\n", + "lab.find_issues(pred_probs=pred_probs, features=text_embeddings)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the audit is complete, review the findings using the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.719800Z", + "iopub.status.busy": "2024-05-24T23:49:05.718989Z", + "iopub.status.idle": "2024-05-24T23:49:05.743310Z", + "shell.execute_reply": "2024-05-24T23:49:05.742804Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 42\n", + " outlier 38\n", + "near_duplicate 4\n", + " non_iid 1\n", + "\n", + "Dataset Information: num_examples: 1000, num_classes: 10\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 42\n", + "Overall dataset quality in terms of this issue: 0.9710\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "981 True 0.000005 card_about_to_expire card_payment_fee_charged\n", + "974 True 0.000146 beneficiary_not_allowed change_pin\n", + "982 True 0.000224 apple_pay_or_google_pay card_about_to_expire\n", + "971 True 0.000507 beneficiary_not_allowed change_pin\n", + "980 True 0.000960 card_about_to_expire card_payment_fee_charged\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 38\n", + "Overall dataset quality in terms of this issue: 0.3584\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 4\n", + "Overall dataset quality in terms of this issue: 0.6070\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "160 True 0.095724 [148] 0.006237\n", + "148 True 0.095724 [160] 0.006237\n", + "546 True 0.099341 [514] 0.006485\n", + "514 True 0.099341 [546] 0.006485\n", + "481 False 0.123418 [] 0.008165\n", + "\n", + "\n", + "---------------------- non_iid issues ----------------------\n", + "\n", + "About this issue:\n", + "\tWhether the dataset exhibits statistically significant\n", + " violations of the IID assumption like:\n", + " changepoints or shift, drift, autocorrelation, etc.\n", + " The specific violation considered is whether the\n", + " examples are ordered such that almost adjacent examples\n", + " tend to have more similar feature values.\n", + " \n", + "\n", + "Number of examples with this issue: 1\n", + "Overall dataset quality in terms of this issue: 0.0000\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_non_iid_issue non_iid_score\n", + "313 True 0.564102\n", + "13 False 0.572258\n", + "28 False 0.574915\n", + "31 False 0.575507\n", + "40 False 0.575874\n", + "\n", + "Additional Information: \n", + "p-value: 0.0\n" + ] + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "The report indicates that cleanlab identified many label issues in our dataset. We can see which examples are flagged as likely mislabeled and the label quality score for each example using the `get_issues` method, specifying `label` as an argument to focus on label issues in the data." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.745790Z", + "iopub.status.busy": "2024-05-24T23:49:05.745411Z", + "iopub.status.idle": "2024-05-24T23:49:05.755021Z", + "shell.execute_reply": "2024-05-24T23:49:05.754536Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
0False0.792090cancel_transfercancel_transfer
1False0.257611cancel_transfercancel_transfer
2False0.698710cancel_transfercancel_transfer
3False0.182121cancel_transferapple_pay_or_google_pay
4False0.771619cancel_transfercancel_transfer
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "0 False 0.792090 cancel_transfer cancel_transfer\n", + "1 False 0.257611 cancel_transfer cancel_transfer\n", + "2 False 0.698710 cancel_transfer cancel_transfer\n", + "3 False 0.182121 cancel_transfer apple_pay_or_google_pay\n", + "4 False 0.771619 cancel_transfer cancel_transfer" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 5 most likely mislabeled examples in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.757435Z", + "iopub.status.busy": "2024-05-24T23:49:05.757106Z", + "iopub.status.idle": "2024-05-24T23:49:05.761347Z", + "shell.execute_reply": "2024-05-24T23:49:05.760804Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cleanlab found 42 potential label errors in the dataset.\n", + "Here are indices of the top 5 most likely errors: \n", + " [981 974 982 971 980]\n" + ] + } + ], + "source": [ + "identified_label_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_score\"].argsort()[:5].to_numpy()\n", + "\n", + "print(\n", + " f\"cleanlab found {len(identified_label_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 5 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors. \n", + "\n", + "Here we display the top 5 examples identified as the most likely label errors in the dataset, together with their given (original) label and a suggested alternative label from cleanlab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.763439Z", + "iopub.status.busy": "2024-05-24T23:49:05.763263Z", + "iopub.status.idle": "2024-05-24T23:49:05.769829Z", + "shell.execute_reply": "2024-05-24T23:49:05.769271Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textgiven_labelsuggested_label
981i was charged for getting cash.card_about_to_expirecard_payment_fee_charged
974can i change my pin on holiday?beneficiary_not_allowedchange_pin
982will i be sent a new card before mine expires?apple_pay_or_google_paycard_about_to_expire
971please tell me how to change my pin.beneficiary_not_allowedchange_pin
980why do i see extra charges for withdrawing my money?card_about_to_expirecard_payment_fee_charged
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "981 i was charged for getting cash. \n", + "974 can i change my pin on holiday? \n", + "982 will i be sent a new card before mine expires? \n", + "971 please tell me how to change my pin. \n", + "980 why do i see extra charges for withdrawing my money? \n", + "\n", + " given_label suggested_label \n", + "981 card_about_to_expire card_payment_fee_charged \n", + "974 beneficiary_not_allowed change_pin \n", + "982 apple_pay_or_google_pay card_about_to_expire \n", + "971 beneficiary_not_allowed change_pin \n", + "980 card_about_to_expire card_payment_fee_charged " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_with_suggested_labels = pd.DataFrame(\n", + " {\"text\": raw_texts, \"given_label\": labels, \"suggested_label\": label_issues[\"predicted_label\"]}\n", + ")\n", + "data_with_suggested_labels.iloc[lowest_quality_labels]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": true + }, + "source": [ + "These are very clear label errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the intent of these requests, whoever produced this dataset made many mistakes that are important to address before modeling the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "According to the report, our dataset contains some outliers.\n", + "We can see which examples are outliers (and a numeric quality score quantifying how typical each example appears to be) via `get_issues`. We sort the resulting DataFrame by cleanlab's outlier quality score to see the most severe outliers in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.771919Z", + "iopub.status.busy": "2024-05-24T23:49:05.771517Z", + "iopub.status.idle": "2024-05-24T23:49:05.777977Z", + "shell.execute_reply": "2024-05-24T23:49:05.777418Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_outlier_issueoutlier_score
994True0.009642
999True0.013067
81True0.013841
433True0.014722
989True0.018224
\n", + "
" + ], + "text/plain": [ + " is_outlier_issue outlier_score\n", + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "outlier_issues = lab.get_issues(\"outlier\")\n", + "outlier_issues.sort_values(\"outlier_score\").head()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.779961Z", + "iopub.status.busy": "2024-05-24T23:49:05.779661Z", + "iopub.status.idle": "2024-05-24T23:49:05.785447Z", + "shell.execute_reply": "2024-05-24T23:49:05.784902Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textlabel
994(A AND NOT B) OR (C AND NOT D) OR (B AND NOT C AND D)change_pin
999636C65616E6C616220697320617765736F6D6521cancel_transfer
81cancel transactioncancel_transfer
433phone is gonelost_or_stolen_phone
989<p><samp>File not found.<br>Press F1 to continue</samp></p>supported_cards_and_currencies
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "994 (A AND NOT B) OR (C AND NOT D) OR (B AND NOT C AND D) \n", + "999 636C65616E6C616220697320617765736F6D6521 \n", + "81 cancel transaction \n", + "433 phone is gone \n", + "989

File not found.
Press F1 to continue

\n", + "\n", + " label \n", + "994 change_pin \n", + "999 cancel_transfer \n", + "81 cancel_transfer \n", + "433 lost_or_stolen_phone \n", + "989 supported_cards_and_currencies " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lowest_quality_outliers = outlier_issues[\"outlier_score\"].argsort()[:5]\n", + "\n", + "data.iloc[lowest_quality_outliers]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that cleanlab has identified entries in this dataset that do not appear to be proper customer requests. Outliers in this dataset appear to be out-of-scope customer requests and other nonsensical text which does not make sense for intent classification. Carefully consider whether such outliers may detrimentally affect your data modeling, and consider removing them from the dataset if so." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Near-duplicate issues\n", + "\n", + "According to the report, our dataset contains some sets of nearly duplicated examples.\n", + "We can see which examples are (nearly) duplicated (and a numeric quality score quantifying how dissimilar each example is from its nearest neighbor in the dataset) via `get_issues`. We sort the resulting DataFrame by cleanlab's near-duplicate quality score to see the text examples in our dataset that are most nearly duplicated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.787539Z", + "iopub.status.busy": "2024-05-24T23:49:05.787221Z", + "iopub.status.idle": "2024-05-24T23:49:05.795758Z", + "shell.execute_reply": "2024-05-24T23:49:05.795170Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_near_duplicate_issuenear_duplicate_scorenear_duplicate_setsdistance_to_nearest_neighbor
160True0.095724[148]0.006237
148True0.095724[160]0.006237
546True0.099341[514]0.006485
514True0.099341[546]0.006485
481False0.123418[]0.008165
\n", + "
" + ], + "text/plain": [ + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", + "160 True 0.095724 [148] \n", + "148 True 0.095724 [160] \n", + "546 True 0.099341 [514] \n", + "514 True 0.099341 [546] \n", + "481 False 0.123418 [] \n", + "\n", + " distance_to_nearest_neighbor \n", + "160 0.006237 \n", + "148 0.006237 \n", + "546 0.006485 \n", + "514 0.006485 \n", + "481 0.008165 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "duplicate_issues = lab.get_issues(\"near_duplicate\")\n", + "duplicate_issues.sort_values(\"near_duplicate_score\").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results above show which examples cleanlab considers nearly duplicated (rows where `is_near_duplicate_issue == True`). Here, we see that example 160 and 148 are nearly duplicated, as are example 546 and 514.\n", + "\n", + "Let's view these examples to see how similar they are." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.797871Z", + "iopub.status.busy": "2024-05-24T23:49:05.797595Z", + "iopub.status.idle": "2024-05-24T23:49:05.802908Z", + "shell.execute_reply": "2024-05-24T23:49:05.802397Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textlabel
160why was i charged an additional fee when paying with card?card_payment_fee_charged
148why was i charged an extra fee when paying with card?card_payment_fee_charged
\n", + "
" + ], + "text/plain": [ + " text \\\n", + "160 why was i charged an additional fee when paying with card? \n", + "148 why was i charged an extra fee when paying with card? \n", + "\n", + " label \n", + "160 card_payment_fee_charged \n", + "148 card_payment_fee_charged " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.iloc[[160, 148]]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.805012Z", + "iopub.status.busy": "2024-05-24T23:49:05.804580Z", + "iopub.status.idle": "2024-05-24T23:49:05.809964Z", + "shell.execute_reply": "2024-05-24T23:49:05.809461Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
textlabel
546do i have to go to the bank to change my pin?change_pin
514do i have to go into the bank to change my pin?change_pin
\n", + "
" + ], + "text/plain": [ + " text label\n", + "546 do i have to go to the bank to change my pin? change_pin\n", + "514 do i have to go into the bank to change my pin? change_pin" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.iloc[[546, 514]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets. Learn more about handling near duplicates in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Non-IID issues (data drift)\n", + "According to the report, our dataset does not appear to be Independent and Identically Distributed (IID). The overall non-iid score for the dataset (displayed below) corresponds to the `p-value` of a statistical test for whether the ordering of samples in the dataset appears related to the similarity between their feature values. A low `p-value` strongly suggests that the dataset violates the IID assumption, which is a key assumption required for conclusions (models) produced from the dataset to generalize to a larger population." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.811928Z", + "iopub.status.busy": "2024-05-24T23:49:05.811656Z", + "iopub.status.idle": "2024-05-24T23:49:05.815128Z", + "shell.execute_reply": "2024-05-24T23:49:05.814675Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_value = lab.get_info('non_iid')['p-value']\n", + "p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, our dataset was flagged as non-IID because the rows happened to be sorted by class label in the original data. This may be benign if we remember to shuffle rows before model training and data splitting. But if you don't know why your data was flagged as non-IID, then you should be worried about potential data drift or unexpected interactions between data points (their values may not be statistically independent). Think carefully about what future test data may look like (and whether your data is representative of the population you care about). You should not shuffle your data before the non-IID test runs (will invalidate its conclusions)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab's issue detection can be run with outputs from *any* type of model you initially trained.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:05.817134Z", + "iopub.status.busy": "2024-05-24T23:49:05.816961Z", + "iopub.status.idle": "2024-05-24T23:49:05.822346Z", + "shell.execute_reply": "2024-05-24T23:49:05.821891Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "label_issue_indices = [981, 974, 982] # check these examples were found in label issues\n", + "if not all(x in identified_label_issues.index for x in label_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_label_issues.\")\n", + " \n", + "identified_outlier_issues = outlier_issues[outlier_issues[\"is_outlier_issue\"] == True]\n", + "outlier_issue_indices = [994, 989, 999] # check these examples were found in duplicates\n", + "if not all(x in identified_outlier_issues.index for x in outlier_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_outlier_issues.\")\n", + "\n", + "identified_duplicate_issues = duplicate_issues[duplicate_issues[\"is_near_duplicate_issue\"] == True]\n", + "duplicate_issue_indices = [160, 148, 546, 514] # check these examples were found in duplicates\n", + "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Text x TensorFlow", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/dataset_health.ipynb new file mode 100644 index 000000000..6288b5c11 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -0,0 +1,3112 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "uKlKumjJyIAL" + }, + "source": [ + "# Understanding Dataset-level Labeling Issues\n", + "\n", + "This 5-minute quickstart tutorial shows how `cleanlab.dataset.health_summary()` helps you automatically:\n", + "\n", + "- Score and rank the overall label quality of each class, useful for deciding whether to remove or keep certain classes.\n", + "- Identify overlapping classes that you can merge to make the learning task less ambiguous. Alternatively use this information to refine your annotator instructions (e.g. more precisely defining the difference between two classes).\n", + "- Generate an overall dataset and label quality health score to track improvements in your labels over time as you clean your datasets.\n", + "\n", + "This tutorial does not study issues in individual data points, but rather global issues across the dataset. Much of the functionality demonstrated here can also be accessed via `Datalab.get_info()` when using Datalab to detect label issues." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on your dataset? Run the code below to evaluate the overall health of your dataset and its labels.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.dataset import health_summary\n", + "\n", + "health_summary(labels, pred_probs)\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install dependencies and import them" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```\n", + "!pip install requests\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:08.984099Z", + "iopub.status.busy": "2024-05-24T23:49:08.983927Z", + "iopub.status.idle": "2024-05-24T23:49:10.126124Z", + "shell.execute_reply": "2024-05-24T23:49:10.125470Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: requests==2.28.0\n", + "\n", + "dependencies = [\"cleanlab\", \"requests\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:10.128922Z", + "iopub.status.busy": "2024-05-24T23:49:10.128628Z", + "iopub.status.idle": "2024-05-24T23:49:10.131443Z", + "shell.execute_reply": "2024-05-24T23:49:10.130999Z" + }, + "id": "_UvI80l42iyi" + }, + "outputs": [], + "source": [ + "import requests\n", + "import io\n", + "import cleanlab\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wd2FlGn4sL0V" + }, + "source": [ + "## Fetch the data (can skip these details)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for fetching data **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "mnist_test_set = [\"0\", \"1\" ,\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\"]\n", + "imagenet_val_set = [\"tench\", \"goldfish\", \"great white shark\", \"tiger shark\", \"hammerhead shark\", \"electric ray\", \"stingray\", \"cock\", \"hen\", \"ostrich\", \"brambling\", \"goldfinch\", \"house finch\", \"junco\", \"indigo bunting\", \"American robin\", \"bulbul\", \"jay\", \"magpie\", \"chickadee\", \"American dipper\", \"kite\", \"bald eagle\", \"vulture\", \"great grey owl\", \"fire salamander\", \"smooth newt\", \"newt\", \"spotted salamander\", \"axolotl\", \"American bullfrog\", \"tree frog\", \"tailed frog\", \"loggerhead sea turtle\", \"leatherback sea turtle\", \"mud turtle\", \"terrapin\", \"box turtle\", \"banded gecko\", \"green iguana\", \"Carolina anole\", \"desert grassland whiptail lizard\", \"agama\", \"frilled-necked lizard\", \"alligator lizard\", \"Gila monster\", \"European green lizard\", \"chameleon\", \"Komodo dragon\", \"Nile crocodile\", \"American alligator\", \"triceratops\", \"worm snake\", \"ring-necked snake\", \"eastern hog-nosed snake\", \"smooth green snake\", \"kingsnake\", \"garter snake\", \"water snake\", \"vine snake\", \"night snake\", \"boa constrictor\", \"African rock python\", \"Indian cobra\", \"green mamba\", \"sea snake\", \"Saharan horned viper\", \"eastern diamondback rattlesnake\", \"sidewinder\", \"trilobite\", \"harvestman\", \"scorpion\", \"yellow garden spider\", \"barn spider\", \"European garden spider\", \"southern black widow\", \"tarantula\", \"wolf spider\", \"tick\", \"centipede\", \"black grouse\", \"ptarmigan\", \"ruffed grouse\", \"prairie grouse\", \"peacock\", \"quail\", \"partridge\", \"grey parrot\", \"macaw\", \"sulphur-crested cockatoo\", \"lorikeet\", \"coucal\", \"bee eater\", \"hornbill\", \"hummingbird\", \"jacamar\", \"toucan\", \"duck\", \"red-breasted merganser\", \"goose\", \"black swan\", \"tusker\", \"echidna\", \"platypus\", \"wallaby\", \"koala\", \"wombat\", \"jellyfish\", \"sea anemone\", \"brain coral\", \"flatworm\", \"nematode\", \"conch\", \"snail\", \"slug\", \"sea slug\", \"chiton\", \"chambered nautilus\", \"Dungeness crab\", \"rock crab\", \"fiddler crab\", \"red king crab\", \"American lobster\", \"spiny lobster\", \"crayfish\", \"hermit crab\", \"isopod\", \"white stork\", \"black stork\", \"spoonbill\", \"flamingo\", \"little blue heron\", \"great egret\", \"bittern\", \"crane (bird)\", \"limpkin\", \"common gallinule\", \"American coot\", \"bustard\", \"ruddy turnstone\", \"dunlin\", \"common redshank\", \"dowitcher\", \"oystercatcher\", \"pelican\", \"king penguin\", \"albatross\", \"grey whale\", \"killer whale\", \"dugong\", \"sea lion\", \"Chihuahua\", \"Japanese Chin\", \"Maltese\", \"Pekingese\", \"Shih Tzu\", \"King Charles Spaniel\", \"Papillon\", \"toy terrier\", \"Rhodesian Ridgeback\", \"Afghan Hound\", \"Basset Hound\", \"Beagle\", \"Bloodhound\", \"Bluetick Coonhound\", \"Black and Tan Coonhound\", \"Treeing Walker Coonhound\", \"English foxhound\", \"Redbone Coonhound\", \"borzoi\", \"Irish Wolfhound\", \"Italian Greyhound\", \"Whippet\", \"Ibizan Hound\", \"Norwegian Elkhound\", \"Otterhound\", \"Saluki\", \"Scottish Deerhound\", \"Weimaraner\", \"Staffordshire Bull Terrier\", \"American Staffordshire Terrier\", \"Bedlington Terrier\", \"Border Terrier\", \"Kerry Blue Terrier\", \"Irish Terrier\", \"Norfolk Terrier\", \"Norwich Terrier\", \"Yorkshire Terrier\", \"Wire Fox Terrier\", \"Lakeland Terrier\", \"Sealyham Terrier\", \"Airedale Terrier\", \"Cairn Terrier\", \"Australian Terrier\", \"Dandie Dinmont Terrier\", \"Boston Terrier\", \"Miniature Schnauzer\", \"Giant Schnauzer\", \"Standard Schnauzer\", \"Scottish Terrier\", \"Tibetan Terrier\", \"Australian Silky Terrier\", \"Soft-coated Wheaten Terrier\", \"West Highland White Terrier\", \"Lhasa Apso\", \"Flat-Coated Retriever\", \"Curly-coated Retriever\", \"Golden Retriever\", \"Labrador Retriever\", \"Chesapeake Bay Retriever\", \"German Shorthaired Pointer\", \"Vizsla\", \"English Setter\", \"Irish Setter\", \"Gordon Setter\", \"Brittany\", \"Clumber Spaniel\", \"English Springer Spaniel\", \"Welsh Springer Spaniel\", \"Cocker Spaniels\", \"Sussex Spaniel\", \"Irish Water Spaniel\", \"Kuvasz\", \"Schipperke\", \"Groenendael\", \"Malinois\", \"Briard\", \"Australian Kelpie\", \"Komondor\", \"Old English Sheepdog\", \"Shetland Sheepdog\", \"collie\", \"Border Collie\", \"Bouvier des Flandres\", \"Rottweiler\", \"German Shepherd Dog\", \"Dobermann\", \"Miniature Pinscher\", \"Greater Swiss Mountain Dog\", \"Bernese Mountain Dog\", \"Appenzeller Sennenhund\", \"Entlebucher Sennenhund\", \"Boxer\", \"Bullmastiff\", \"Tibetan Mastiff\", \"French Bulldog\", \"Great Dane\", \"St. Bernard\", \"husky\", \"Alaskan Malamute\", \"Siberian Husky\", \"Dalmatian\", \"Affenpinscher\", \"Basenji\", \"pug\", \"Leonberger\", \"Newfoundland\", \"Pyrenean Mountain Dog\", \"Samoyed\", \"Pomeranian\", \"Chow Chow\", \"Keeshond\", \"Griffon Bruxellois\", \"Pembroke Welsh Corgi\", \"Cardigan Welsh Corgi\", \"Toy Poodle\", \"Miniature Poodle\", \"Standard Poodle\", \"Mexican hairless dog\", \"grey wolf\", \"Alaskan tundra wolf\", \"red wolf\", \"coyote\", \"dingo\", \"dhole\", \"African wild dog\", \"hyena\", \"red fox\", \"kit fox\", \"Arctic fox\", \"grey fox\", \"tabby cat\", \"tiger cat\", \"Persian cat\", \"Siamese cat\", \"Egyptian Mau\", \"cougar\", \"lynx\", \"leopard\", \"snow leopard\", \"jaguar\", \"lion\", \"tiger\", \"cheetah\", \"brown bear\", \"American black bear\", \"polar bear\", \"sloth bear\", \"mongoose\", \"meerkat\", \"tiger beetle\", \"ladybug\", \"ground beetle\", \"longhorn beetle\", \"leaf beetle\", \"dung beetle\", \"rhinoceros beetle\", \"weevil\", \"fly\", \"bee\", \"ant\", \"grasshopper\", \"cricket\", \"stick insect\", \"cockroach\", \"mantis\", \"cicada\", \"leafhopper\", \"lacewing\", \"dragonfly\", \"damselfly\", \"red admiral\", \"ringlet\", \"monarch butterfly\", \"small white\", \"sulphur butterfly\", \"gossamer-winged butterfly\", \"starfish\", \"sea urchin\", \"sea cucumber\", \"cottontail rabbit\", \"hare\", \"Angora rabbit\", \"hamster\", \"porcupine\", \"fox squirrel\", \"marmot\", \"beaver\", \"guinea pig\", \"common sorrel\", \"zebra\", \"pig\", \"wild boar\", \"warthog\", \"hippopotamus\", \"ox\", \"water buffalo\", \"bison\", \"ram\", \"bighorn sheep\", \"Alpine ibex\", \"hartebeest\", \"impala\", \"gazelle\", \"dromedary\", \"llama\", \"weasel\", \"mink\", \"European polecat\", \"black-footed ferret\", \"otter\", \"skunk\", \"badger\", \"armadillo\", \"three-toed sloth\", \"orangutan\", \"gorilla\", \"chimpanzee\", \"gibbon\", \"siamang\", \"guenon\", \"patas monkey\", \"baboon\", \"macaque\", \"langur\", \"black-and-white colobus\", \"proboscis monkey\", \"marmoset\", \"white-headed capuchin\", \"howler monkey\", \"titi\", \"Geoffroy's spider monkey\", \"common squirrel monkey\", \"ring-tailed lemur\", \"indri\", \"Asian elephant\", \"African bush elephant\", \"red panda\", \"giant panda\", \"snoek\", \"eel\", \"coho salmon\", \"rock beauty\", \"clownfish\", \"sturgeon\", \"garfish\", \"lionfish\", \"pufferfish\", \"abacus\", \"abaya\", \"academic gown\", \"accordion\", \"acoustic guitar\", \"aircraft carrier\", \"airliner\", \"airship\", \"altar\", \"ambulance\", \"amphibious vehicle\", \"analog clock\", \"apiary\", \"apron\", \"waste container\", \"assault rifle\", \"backpack\", \"bakery\", \"balance beam\", \"balloon\", \"ballpoint pen\", \"Band-Aid\", \"banjo\", \"baluster\", \"barbell\", \"barber chair\", \"barbershop\", \"barn\", \"barometer\", \"barrel\", \"wheelbarrow\", \"baseball\", \"basketball\", \"bassinet\", \"bassoon\", \"swimming cap\", \"bath towel\", \"bathtub\", \"station wagon\", \"lighthouse\", \"beaker\", \"military cap\", \"beer bottle\", \"beer glass\", \"bell-cot\", \"bib\", \"tandem bicycle\", \"bikini\", \"ring binder\", \"binoculars\", \"birdhouse\", \"boathouse\", \"bobsleigh\", \"bolo tie\", \"poke bonnet\", \"bookcase\", \"bookstore\", \"bottle cap\", \"bow\", \"bow tie\", \"brass\", \"bra\", \"breakwater\", \"breastplate\", \"broom\", \"bucket\", \"buckle\", \"bulletproof vest\", \"high-speed train\", \"butcher shop\", \"taxicab\", \"cauldron\", \"candle\", \"cannon\", \"canoe\", \"can opener\", \"cardigan\", \"car mirror\", \"carousel\", \"tool kit\", \"carton\", \"car wheel\", \"automated teller machine\", \"cassette\", \"cassette player\", \"castle\", \"catamaran\", \"CD player\", \"cello\", \"mobile phone\", \"chain\", \"chain-link fence\", \"chain mail\", \"chainsaw\", \"chest\", \"chiffonier\", \"chime\", \"china cabinet\", \"Christmas stocking\", \"church\", \"movie theater\", \"cleaver\", \"cliff dwelling\", \"cloak\", \"clogs\", \"cocktail shaker\", \"coffee mug\", \"coffeemaker\", \"coil\", \"combination lock\", \"computer keyboard\", \"confectionery store\", \"container ship\", \"convertible\", \"corkscrew\", \"cornet\", \"cowboy boot\", \"cowboy hat\", \"cradle\", \"crane (machine)\", \"crash helmet\", \"crate\", \"infant bed\", \"Crock Pot\", \"croquet ball\", \"crutch\", \"cuirass\", \"dam\", \"desk\", \"desktop computer\", \"rotary dial telephone\", \"diaper\", \"digital clock\", \"digital watch\", \"dining table\", \"dishcloth\", \"dishwasher\", \"disc brake\", \"dock\", \"dog sled\", \"dome\", \"doormat\", \"drilling rig\", \"drum\", \"drumstick\", \"dumbbell\", \"Dutch oven\", \"electric fan\", \"electric guitar\", \"electric locomotive\", \"entertainment center\", \"envelope\", \"espresso machine\", \"face powder\", \"feather boa\", \"filing cabinet\", \"fireboat\", \"fire engine\", \"fire screen sheet\", \"flagpole\", \"flute\", \"folding chair\", \"football helmet\", \"forklift\", \"fountain\", \"fountain pen\", \"four-poster bed\", \"freight car\", \"French horn\", \"frying pan\", \"fur coat\", \"garbage truck\", \"gas mask\", \"gas pump\", \"goblet\", \"go-kart\", \"golf ball\", \"golf cart\", \"gondola\", \"gong\", \"gown\", \"grand piano\", \"greenhouse\", \"grille\", \"grocery store\", \"guillotine\", \"barrette\", \"hair spray\", \"half-track\", \"hammer\", \"hamper\", \"hair dryer\", \"hand-held computer\", \"handkerchief\", \"hard disk drive\", \"harmonica\", \"harp\", \"harvester\", \"hatchet\", \"holster\", \"home theater\", \"honeycomb\", \"hook\", \"hoop skirt\", \"horizontal bar\", \"horse-drawn vehicle\", \"hourglass\", \"iPod\", \"clothes iron\", \"jack-o'-lantern\", \"jeans\", \"jeep\", \"T-shirt\", \"jigsaw puzzle\", \"pulled rickshaw\", \"joystick\", \"kimono\", \"knee pad\", \"knot\", \"lab coat\", \"ladle\", \"lampshade\", \"laptop computer\", \"lawn mower\", \"lens cap\", \"paper knife\", \"library\", \"lifeboat\", \"lighter\", \"limousine\", \"ocean liner\", \"lipstick\", \"slip-on shoe\", \"lotion\", \"speaker\", \"loupe\", \"sawmill\", \"magnetic compass\", \"mail bag\", \"mailbox\", \"tights\", \"tank suit\", \"manhole cover\", \"maraca\", \"marimba\", \"mask\", \"match\", \"maypole\", \"maze\", \"measuring cup\", \"medicine chest\", \"megalith\", \"microphone\", \"microwave oven\", \"military uniform\", \"milk can\", \"minibus\", \"miniskirt\", \"minivan\", \"missile\", \"mitten\", \"mixing bowl\", \"mobile home\", \"Model T\", \"modem\", \"monastery\", \"monitor\", \"moped\", \"mortar\", \"square academic cap\", \"mosque\", \"mosquito net\", \"scooter\", \"mountain bike\", \"tent\", \"computer mouse\", \"mousetrap\", \"moving van\", \"muzzle\", \"nail\", \"neck brace\", \"necklace\", \"nipple\", \"notebook computer\", \"obelisk\", \"oboe\", \"ocarina\", \"odometer\", \"oil filter\", \"organ\", \"oscilloscope\", \"overskirt\", \"bullock cart\", \"oxygen mask\", \"packet\", \"paddle\", \"paddle wheel\", \"padlock\", \"paintbrush\", \"pajamas\", \"palace\", \"pan flute\", \"paper towel\", \"parachute\", \"parallel bars\", \"park bench\", \"parking meter\", \"passenger car\", \"patio\", \"payphone\", \"pedestal\", \"pencil case\", \"pencil sharpener\", \"perfume\", \"Petri dish\", \"photocopier\", \"plectrum\", \"Pickelhaube\", \"picket fence\", \"pickup truck\", \"pier\", \"piggy bank\", \"pill bottle\", \"pillow\", \"ping-pong ball\", \"pinwheel\", \"pirate ship\", \"pitcher\", \"hand plane\", \"planetarium\", \"plastic bag\", \"plate rack\", \"plow\", \"plunger\", \"Polaroid camera\", \"pole\", \"police van\", \"poncho\", \"billiard table\", \"soda bottle\", \"pot\", \"potter's wheel\", \"power drill\", \"prayer rug\", \"printer\", \"prison\", \"projectile\", \"projector\", \"hockey puck\", \"punching bag\", \"purse\", \"quill\", \"quilt\", \"race car\", \"racket\", \"radiator\", \"radio\", \"radio telescope\", \"rain barrel\", \"recreational vehicle\", \"reel\", \"reflex camera\", \"refrigerator\", \"remote control\", \"restaurant\", \"revolver\", \"rifle\", \"rocking chair\", \"rotisserie\", \"eraser\", \"rugby ball\", \"ruler\", \"running shoe\", \"safe\", \"safety pin\", \"salt shaker\", \"sandal\", \"sarong\", \"saxophone\", \"scabbard\", \"weighing scale\", \"school bus\", \"schooner\", \"scoreboard\", \"CRT screen\", \"screw\", \"screwdriver\", \"seat belt\", \"sewing machine\", \"shield\", \"shoe store\", \"shoji\", \"shopping basket\", \"shopping cart\", \"shovel\", \"shower cap\", \"shower curtain\", \"ski\", \"ski mask\", \"sleeping bag\", \"slide rule\", \"sliding door\", \"slot machine\", \"snorkel\", \"snowmobile\", \"snowplow\", \"soap dispenser\", \"soccer ball\", \"sock\", \"solar thermal collector\", \"sombrero\", \"soup bowl\", \"space bar\", \"space heater\", \"space shuttle\", \"spatula\", \"motorboat\", \"spider web\", \"spindle\", \"sports car\", \"spotlight\", \"stage\", \"steam locomotive\", \"through arch bridge\", \"steel drum\", \"stethoscope\", \"scarf\", \"stone wall\", \"stopwatch\", \"stove\", \"strainer\", \"tram\", \"stretcher\", \"couch\", \"stupa\", \"submarine\", \"suit\", \"sundial\", \"sunglass\", \"sunglasses\", \"sunscreen\", \"suspension bridge\", \"mop\", \"sweatshirt\", \"swimsuit\", \"swing\", \"switch\", \"syringe\", \"table lamp\", \"tank\", \"tape player\", \"teapot\", \"teddy bear\", \"television\", \"tennis ball\", \"thatched roof\", \"front curtain\", \"thimble\", \"threshing machine\", \"throne\", \"tile roof\", \"toaster\", \"tobacco shop\", \"toilet seat\", \"torch\", \"totem pole\", \"tow truck\", \"toy store\", \"tractor\", \"semi-trailer truck\", \"tray\", \"trench coat\", \"tricycle\", \"trimaran\", \"tripod\", \"triumphal arch\", \"trolleybus\", \"trombone\", \"tub\", \"turnstile\", \"typewriter keyboard\", \"umbrella\", \"unicycle\", \"upright piano\", \"vacuum cleaner\", \"vase\", \"vault\", \"velvet\", \"vending machine\", \"vestment\", \"viaduct\", \"violin\", \"volleyball\", \"waffle iron\", \"wall clock\", \"wallet\", \"wardrobe\", \"military aircraft\", \"sink\", \"washing machine\", \"water bottle\", \"water jug\", \"water tower\", \"whiskey jug\", \"whistle\", \"wig\", \"window screen\", \"window shade\", \"Windsor tie\", \"wine bottle\", \"wing\", \"wok\", \"wooden spoon\", \"wool\", \"split-rail fence\", \"shipwreck\", \"yawl\", \"yurt\", \"website\", \"comic book\", \"crossword\", \"traffic sign\", \"traffic light\", \"dust jacket\", \"menu\", \"plate\", \"guacamole\", \"consomme\", \"hot pot\", \"trifle\", \"ice cream\", \"ice pop\", \"baguette\", \"bagel\", \"pretzel\", \"cheeseburger\", \"hot dog\", \"mashed potato\", \"cabbage\", \"broccoli\", \"cauliflower\", \"zucchini\", \"spaghetti squash\", \"acorn squash\", \"butternut squash\", \"cucumber\", \"artichoke\", \"bell pepper\", \"cardoon\", \"mushroom\", \"Granny Smith\", \"strawberry\", \"orange\", \"lemon\", \"fig\", \"pineapple\", \"banana\", \"jackfruit\", \"custard apple\", \"pomegranate\", \"hay\", \"carbonara\", \"chocolate syrup\", \"dough\", \"meatloaf\", \"pizza\", \"pot pie\", \"burrito\", \"red wine\", \"espresso\", \"cup\", \"eggnog\", \"alp\", \"bubble\", \"cliff\", \"coral reef\", \"geyser\", \"lakeshore\", \"promontory\", \"shoal\", \"seashore\", \"valley\", \"volcano\", \"baseball player\", \"bridegroom\", \"scuba diver\", \"rapeseed\", \"daisy\", \"yellow lady's slipper\", \"corn\", \"acorn\", \"rose hip\", \"horse chestnut seed\", \"coral fungus\", \"agaric\", \"gyromitra\", \"stinkhorn mushroom\", \"earth star\", \"hen-of-the-woods\", \"bolete\", \"ear\", \"toilet paper\"]\n", + "cifar10_test_set = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "cifar100_test_set = ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']\n", + "caltech256 = [\"ak47\", \"american-flag\", \"backpack\", \"baseball-bat\", \"baseball-glove\", \"basketball-hoop\", \"bat\", \"bathtub\", \"bear\", \"beer-mug\", \"billiards\", \"binoculars\", \"birdbath\", \"blimp\", \"bonsai\", \"boom-box\", \"bowling-ball\", \"bowling-pin\", \"boxing-glove\", \"brain\", \"breadmaker\", \"buddha\", \"bulldozer\", \"butterfly\", \"cactus\", \"cake\", \"calculator\", \"camel\", \"cannon\", \"canoe\", \"car-tire\", \"cartman\", \"cd\", \"centipede\", \"cereal-box\", \"chandelier\", \"chess-board\", \"chimp\", \"chopsticks\", \"cockroach\", \"coffee-mug\", \"coffin\", \"coin\", \"comet\", \"computer-keyboard\", \"computer-monitor\", \"computer-mouse\", \"conch\", \"cormorant\", \"covered-wagon\", \"cowboy-hat\", \"crab\", \"desk-globe\", \"diamond-ring\", \"dice\", \"dog\", \"dolphin\", \"doorknob\", \"drinking-straw\", \"duck\", \"dumb-bell\", \"eiffel-tower\", \"electric-guitar\", \"elephant\", \"elk\", \"ewer\", \"eyeglasses\", \"fern\", \"fighter-jet\", \"fire-extinguisher\", \"fire-hydrant\", \"fire-truck\", \"fireworks\", \"flashlight\", \"floppy-disk\", \"football-helmet\", \"french-horn\", \"fried-egg\", \"frisbee\", \"frog\", \"frying-pan\", \"galaxy\", \"gas-pump\", \"giraffe\", \"goat\", \"golden-gate-bridge\", \"goldfish\", \"golf-ball\", \"goose\", \"gorilla\", \"grand-piano\", \"grapes\", \"grasshopper\", \"guitar-pick\", \"hamburger\", \"hammock\", \"harmonica\", \"harp\", \"harpsichord\", \"hawksbill\", \"head-phones\", \"helicopter\", \"hibiscus\", \"homer-simpson\", \"horse\", \"horseshoe-crab\", \"hot-air-balloon\", \"hot-dog\", \"hot-tub\", \"hourglass\", \"house-fly\", \"human-skeleton\", \"hummingbird\", \"ibis\", \"ice-cream-cone\", \"iguana\", \"ipod\", \"iris\", \"jesus-christ\", \"joy-stick\", \"kangaroo\", \"kayak\", \"ketch\", \"killer-whale\", \"knife\", \"ladder\", \"laptop\", \"lathe\", \"leopards\", \"license-plate\", \"lightbulb\", \"light-house\", \"lightning\", \"llama\", \"mailbox\", \"mandolin\", \"mars\", \"mattress\", \"megaphone\", \"menorah\", \"microscope\", \"microwave\", \"minaret\", \"minotaur\", \"motorbikes\", \"mountain-bike\", \"mushroom\", \"mussels\", \"necktie\", \"octopus\", \"ostrich\", \"owl\", \"palm-pilot\", \"palm-tree\", \"paperclip\", \"paper-shredder\", \"pci-card\", \"penguin\", \"people\", \"pez-dispenser\", \"photocopier\", \"picnic-table\", \"playing-card\", \"porcupine\", \"pram\", \"praying-mantis\", \"pyramid\", \"raccoon\", \"radio-telescope\", \"rainbow\", \"refrigerator\", \"revolver\", \"rifle\", \"rotary-phone\", \"roulette-wheel\", \"saddle\", \"saturn\", \"school-bus\", \"scorpion\", \"screwdriver\", \"segway\", \"self-propelled-lawn-mower\", \"sextant\", \"sheet-music\", \"skateboard\", \"skunk\", \"skyscraper\", \"smokestack\", \"snail\", \"snake\", \"sneaker\", \"snowmobile\", \"soccer-ball\", \"socks\", \"soda-can\", \"spaghetti\", \"speed-boat\", \"spider\", \"spoon\", \"stained-glass\", \"starfish\", \"steering-wheel\", \"stirrups\", \"sunflower\", \"superman\", \"sushi\", \"swan\", \"swiss-army-knife\", \"sword\", \"syringe\", \"tambourine\", \"teapot\", \"teddy-bear\", \"teepee\", \"telephone-box\", \"tennis-ball\", \"tennis-court\", \"tennis-racket\", \"theodolite\", \"toaster\", \"tomato\", \"tombstone\", \"top-hat\", \"touring-bike\", \"tower-pisa\", \"traffic-light\", \"treadmill\", \"triceratops\", \"tricycle\", \"trilobite\", \"tripod\", \"t-shirt\", \"tuning-fork\", \"tweezer\", \"umbrella\", \"unicorn\", \"vcr\", \"video-projector\", \"washing-machine\", \"watch\", \"waterfall\", \"watermelon\", \"welding-mask\", \"wheelbarrow\", \"windmill\", \"wine-bottle\", \"xylophone\", \"yarmulke\", \"yo-yo\", \"zebra\", \"airplanes\", \"car-side\", \"faces-easy\", \"greyhound\", \"tennis-shoes\", \"toad\"]\n", + "twenty_news_test_set = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']\n", + "amazon = ['Negative', 'Neutral', 'Positive']\n", + "imdb_test_set = [\"Negative\", \"Positive\"]\n", + "\n", + "ALL_CLASSES = {\n", + " 'imagenet_val_set': imagenet_val_set,\n", + " 'caltech256': caltech256,\n", + " 'mnist_test_set': mnist_test_set,\n", + " 'cifar10_test_set': cifar10_test_set,\n", + " 'cifar100_test_set': cifar100_test_set,\n", + " 'imdb_test_set': imdb_test_set,\n", + " '20news_test_set': twenty_news_test_set,\n", + " 'amazon': amazon,\n", + "}\n", + "\n", + "\n", + "def _load_classes_predprobs_labels(dataset_name):\n", + " \"\"\"Helper function to load data from the labelerrors.com datasets.\"\"\"\n", + "\n", + " base = 'https://github.com/cleanlab/label-errors/raw/'\n", + " url_base = base + '5392f6c71473055060be3044becdde1cbc18284d'\n", + " url_labels = url_base + '/original_test_labels/{}_original_labels.npy'\n", + " url_probs = url_base + '/cross_validated_predicted_probabilities/{}_pyx.npy'\n", + " NUM_PARTS = {'amazon': 3, 'imagenet_val_set': 4} # pred_probs files broken up into parts for larger datatsets\n", + "\n", + " response = requests.get(url_labels.format(dataset_name))\n", + " labels = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " if dataset_name in NUM_PARTS:\n", + " pred_probs_parts = []\n", + " for i in range(1, NUM_PARTS[dataset_name] + 1):\n", + " url = url_probs.format(dataset_name).replace(\n", + " '.npy',\n", + " f'.part{i}_of_{NUM_PARTS[dataset_name]}.npy',\n", + " )\n", + " response = requests.get(url)\n", + " pred_probs_parts.append(\n", + " np.load(io.BytesIO(response.content), allow_pickle=True))\n", + " pred_probs = np.vstack(pred_probs_parts)\n", + " else:\n", + " response = requests.get(url_probs.format(dataset_name))\n", + " pred_probs = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " print(f\"\\nLoaded the '{dataset_name}' dataset with predicted \"\n", + " f\"probabilities of shape {pred_probs.shape}\\n\")\n", + "\n", + " return pred_probs, labels, ALL_CLASSES[dataset_name]\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:10.133540Z", + "iopub.status.busy": "2024-05-24T23:49:10.133363Z", + "iopub.status.idle": "2024-05-24T23:49:10.145630Z", + "shell.execute_reply": "2024-05-24T23:49:10.145173Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# names of classes in each dataset -- SCROLL DOWN!!!\n", + "mnist_test_set = [\"0\", \"1\" ,\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\"]\n", + "cifar10_test_set = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "cifar100_test_set = ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']\n", + "caltech256 = [\"ak47\", \"american-flag\", \"backpack\", \"baseball-bat\", \"baseball-glove\", \"basketball-hoop\", \"bat\", \"bathtub\", \"bear\", \"beer-mug\", \"billiards\", \"binoculars\", \"birdbath\", \"blimp\", \"bonsai\", \"boom-box\", \"bowling-ball\", \"bowling-pin\", \"boxing-glove\", \"brain\", \"breadmaker\", \"buddha\", \"bulldozer\", \"butterfly\", \"cactus\", \"cake\", \"calculator\", \"camel\", \"cannon\", \"canoe\", \"car-tire\", \"cartman\", \"cd\", \"centipede\", \"cereal-box\", \"chandelier\", \"chess-board\", \"chimp\", \"chopsticks\", \"cockroach\", \"coffee-mug\", \"coffin\", \"coin\", \"comet\", \"computer-keyboard\", \"computer-monitor\", \"computer-mouse\", \"conch\", \"cormorant\", \"covered-wagon\", \"cowboy-hat\", \"crab\", \"desk-globe\", \"diamond-ring\", \"dice\", \"dog\", \"dolphin\", \"doorknob\", \"drinking-straw\", \"duck\", \"dumb-bell\", \"eiffel-tower\", \"electric-guitar\", \"elephant\", \"elk\", \"ewer\", \"eyeglasses\", \"fern\", \"fighter-jet\", \"fire-extinguisher\", \"fire-hydrant\", \"fire-truck\", \"fireworks\", \"flashlight\", \"floppy-disk\", \"football-helmet\", \"french-horn\", \"fried-egg\", \"frisbee\", \"frog\", \"frying-pan\", \"galaxy\", \"gas-pump\", \"giraffe\", \"goat\", \"golden-gate-bridge\", \"goldfish\", \"golf-ball\", \"goose\", \"gorilla\", \"grand-piano\", \"grapes\", \"grasshopper\", \"guitar-pick\", \"hamburger\", \"hammock\", \"harmonica\", \"harp\", \"harpsichord\", \"hawksbill\", \"head-phones\", \"helicopter\", \"hibiscus\", \"homer-simpson\", \"horse\", \"horseshoe-crab\", \"hot-air-balloon\", \"hot-dog\", \"hot-tub\", \"hourglass\", \"house-fly\", \"human-skeleton\", \"hummingbird\", \"ibis\", \"ice-cream-cone\", \"iguana\", \"ipod\", \"iris\", \"jesus-christ\", \"joy-stick\", \"kangaroo\", \"kayak\", \"ketch\", \"killer-whale\", \"knife\", \"ladder\", \"laptop\", \"lathe\", \"leopards\", \"license-plate\", \"lightbulb\", \"light-house\", \"lightning\", \"llama\", \"mailbox\", \"mandolin\", \"mars\", \"mattress\", \"megaphone\", \"menorah\", \"microscope\", \"microwave\", \"minaret\", \"minotaur\", \"motorbikes\", \"mountain-bike\", \"mushroom\", \"mussels\", \"necktie\", \"octopus\", \"ostrich\", \"owl\", \"palm-pilot\", \"palm-tree\", \"paperclip\", \"paper-shredder\", \"pci-card\", \"penguin\", \"people\", \"pez-dispenser\", \"photocopier\", \"picnic-table\", \"playing-card\", \"porcupine\", \"pram\", \"praying-mantis\", \"pyramid\", \"raccoon\", \"radio-telescope\", \"rainbow\", \"refrigerator\", \"revolver\", \"rifle\", \"rotary-phone\", \"roulette-wheel\", \"saddle\", \"saturn\", \"school-bus\", \"scorpion\", \"screwdriver\", \"segway\", \"self-propelled-lawn-mower\", \"sextant\", \"sheet-music\", \"skateboard\", \"skunk\", \"skyscraper\", \"smokestack\", \"snail\", \"snake\", \"sneaker\", \"snowmobile\", \"soccer-ball\", \"socks\", \"soda-can\", \"spaghetti\", \"speed-boat\", \"spider\", \"spoon\", \"stained-glass\", \"starfish\", \"steering-wheel\", \"stirrups\", \"sunflower\", \"superman\", \"sushi\", \"swan\", \"swiss-army-knife\", \"sword\", \"syringe\", \"tambourine\", \"teapot\", \"teddy-bear\", \"teepee\", \"telephone-box\", \"tennis-ball\", \"tennis-court\", \"tennis-racket\", \"theodolite\", \"toaster\", \"tomato\", \"tombstone\", \"top-hat\", \"touring-bike\", \"tower-pisa\", \"traffic-light\", \"treadmill\", \"triceratops\", \"tricycle\", \"trilobite\", \"tripod\", \"t-shirt\", \"tuning-fork\", \"tweezer\", \"umbrella\", \"unicorn\", \"vcr\", \"video-projector\", \"washing-machine\", \"watch\", \"waterfall\", \"watermelon\", \"welding-mask\", \"wheelbarrow\", \"windmill\", \"wine-bottle\", \"xylophone\", \"yarmulke\", \"yo-yo\", \"zebra\", \"airplanes\", \"car-side\", \"faces-easy\", \"greyhound\", \"tennis-shoes\", \"toad\"]\n", + "twenty_news_test_set = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']\n", + "\n", + "ALL_CLASSES = {\n", + " 'caltech256': caltech256,\n", + " 'mnist_test_set': mnist_test_set,\n", + " 'cifar10_test_set': cifar10_test_set,\n", + " 'cifar100_test_set': cifar100_test_set,\n", + " '20news_test_set': twenty_news_test_set,\n", + "}\n", + "\n", + "\n", + "def _load_classes_predprobs_labels(dataset_name):\n", + " \"\"\"Helper function to load data from the labelerrors.com datasets.\"\"\"\n", + "\n", + " base = 'https://github.com/cleanlab/label-errors/raw/'\n", + " url_base = base + '5392f6c71473055060be3044becdde1cbc18284d'\n", + " url_labels = url_base + '/original_test_labels/{}_original_labels.npy'\n", + " url_probs = url_base + '/cross_validated_predicted_probabilities/{}_pyx.npy'\n", + "\n", + " response = requests.get(url_labels.format(dataset_name))\n", + " labels = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + "\n", + " response = requests.get(url_probs.format(dataset_name))\n", + " pred_probs = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " print(f\"\\nLoaded the '{dataset_name}' dataset with predicted \"\n", + " f\"probabilities of shape {pred_probs.shape}\\n\")\n", + "\n", + " return pred_probs, labels, ALL_CLASSES[dataset_name]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7PixDik8JFiX" + }, + "source": [ + "## **Start of tutorial:** Evaluate the health of 8 popular datasets\n", + "\n", + "This tutorial shows the output of running `cleanlab.dataset.health_summary()` on 8 popular datasets below:\n", + "\n", + "- 5 image datasets: ImageNet, Caltech256, MNIST, CIFAR-10, CIFAR-100\n", + "- 3 text datasets: IMDB Reviews, 20 News Groups, Amazon Reviews\n", + "\n", + "`cleanlab.dataset.health_summary()` works with several kinds of inputs (see docstring). In this tutorial, we input:\n", + "\n", + "1. out-of-sample predicted probabilities (e.g. computed via [cross-validation](https://docs.cleanlab.ai/master/tutorials/pred_probs_cross_val.html))\n", + "2. labels (can contain label errors and various issues)\n", + "\n", + "For the 8 datasets, we've precomputed and loaded these for you. See [labelerrors.com](https://labelerrors.com/) for more info about the label issues in these datasets." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Want more interpretability?\n", + "\n", + "Pass in a list of class names ordered by their indices into the `class_names` argument in `cleanlab.dataset.health_summary()`.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:10.147591Z", + "iopub.status.busy": "2024-05-24T23:49:10.147405Z", + "iopub.status.idle": "2024-05-24T23:49:14.370041Z", + "shell.execute_reply": "2024-05-24T23:49:14.369565Z" + }, + "id": "dhTHOg8Pyv5G" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "🎯 Caltech256 🎯\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n", + "\n", + "-------------------------------------------------------------\n", + "| Generating a Cleanlab Dataset Health Summary |\n", + "| for your dataset with 29,780 examples and 256 classes. |\n", + "| Note, Cleanlab is not a medical doctor... yet. |\n", + "-------------------------------------------------------------\n", + "\n", + "Overall Class Quality and Noise across your dataset (below)\n", + "------------------------------------------------------------ \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
0tennis-shoes25437330.3592230.3333330.640777
1skateboard18437230.3592230.2584270.640777
2chopsticks3829200.3411760.2631580.658824
3drinking-straw5828180.3373490.2465750.662651
4yo-yo24833370.3300000.3557690.670000
........................
251raccoon167000.0000000.0000001.000000
252hummingbird112000.0000000.0000001.000000
253hourglass109020.0000000.0229891.000000
254starfish200000.0000000.0000001.000000
255saturn176050.0000000.0495051.000000
\n", + "

256 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues \\\n", + "0 tennis-shoes 254 37 33 \n", + "1 skateboard 184 37 23 \n", + "2 chopsticks 38 29 20 \n", + "3 drinking-straw 58 28 18 \n", + "4 yo-yo 248 33 37 \n", + ".. ... ... ... ... \n", + "251 raccoon 167 0 0 \n", + "252 hummingbird 112 0 0 \n", + "253 hourglass 109 0 2 \n", + "254 starfish 200 0 0 \n", + "255 saturn 176 0 5 \n", + "\n", + " Label Noise Inverse Label Noise Label Quality Score \n", + "0 0.359223 0.333333 0.640777 \n", + "1 0.359223 0.258427 0.640777 \n", + "2 0.341176 0.263158 0.658824 \n", + "3 0.337349 0.246575 0.662651 \n", + "4 0.330000 0.355769 0.670000 \n", + ".. ... ... ... \n", + "251 0.000000 0.000000 1.000000 \n", + "252 0.000000 0.000000 1.000000 \n", + "253 0.000000 0.022989 1.000000 \n", + "254 0.000000 0.000000 1.000000 \n", + "255 0.000000 0.049505 1.000000 \n", + "\n", + "[256 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Class Overlap. In some cases, you may want to merge classes in the top rows (below)\n", + "-----------------------------------------------------------------------------------\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0sneakertennis-shoes190254660.002216
1frisbeeyo-yo78248290.000974
2duckgoose5988260.000873
3beer-mugcoffee-mug940220.000739
4frogtoad79255220.000739
.....................
32635cormorantcovered-wagon484900.000000
32636conchtoad4725500.000000
32637conchtennis-shoes4725400.000000
32638conchgreyhound4725300.000000
32639tennis-shoestoad25425500.000000
\n", + "

32640 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A Class Index B \\\n", + "0 sneaker tennis-shoes 190 254 \n", + "1 frisbee yo-yo 78 248 \n", + "2 duck goose 59 88 \n", + "3 beer-mug coffee-mug 9 40 \n", + "4 frog toad 79 255 \n", + "... ... ... ... ... \n", + "32635 cormorant covered-wagon 48 49 \n", + "32636 conch toad 47 255 \n", + "32637 conch tennis-shoes 47 254 \n", + "32638 conch greyhound 47 253 \n", + "32639 tennis-shoes toad 254 255 \n", + "\n", + " Num Overlapping Examples Joint Probability \n", + "0 66 0.002216 \n", + "1 29 0.000974 \n", + "2 26 0.000873 \n", + "3 22 0.000739 \n", + "4 22 0.000739 \n", + "... ... ... \n", + "32635 0 0.000000 \n", + "32636 0 0.000000 \n", + "32637 0 0.000000 \n", + "32638 0 0.000000 \n", + "32639 0 0.000000 \n", + "\n", + "[32640 rows x 6 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * Overall, about 7% (2,051 of the 29,780) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 0.93.\n", + "\n", + "Generated with <3 from Cleanlab.\n", + "\n", + "\n", + "🎯 Mnist_test_set 🎯\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", + "\n", + "------------------------------------------------------------\n", + "| Generating a Cleanlab Dataset Health Summary |\n", + "| for your dataset with 10,000 examples and 10 classes. |\n", + "| Note, Cleanlab is not a medical doctor... yet. |\n", + "------------------------------------------------------------\n", + "\n", + "Overall Class Quality and Noise across your dataset (below)\n", + "------------------------------------------------------------ \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
055220.0022420.0022420.997758
166210.0020880.0010450.997912
288200.0020530.0000000.997947
333210.0019800.0009910.998020
477230.0019460.0029150.998054
522230.0019380.0029040.998062
600110.0010200.0010200.998980
744120.0010180.0020350.998982
899120.0009910.0019800.999009
911000.0000000.0000001.000000
\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", + "0 5 5 2 2 0.002242 \n", + "1 6 6 2 1 0.002088 \n", + "2 8 8 2 0 0.002053 \n", + "3 3 3 2 1 0.001980 \n", + "4 7 7 2 3 0.001946 \n", + "5 2 2 2 3 0.001938 \n", + "6 0 0 1 1 0.001020 \n", + "7 4 4 1 2 0.001018 \n", + "8 9 9 1 2 0.000991 \n", + "9 1 1 0 0 0.000000 \n", + "\n", + " Inverse Label Noise Label Quality Score \n", + "0 0.002242 0.997758 \n", + "1 0.001045 0.997912 \n", + "2 0.000000 0.997947 \n", + "3 0.000991 0.998020 \n", + "4 0.002915 0.998054 \n", + "5 0.002904 0.998062 \n", + "6 0.001020 0.998980 \n", + "7 0.002035 0.998982 \n", + "8 0.001980 0.999009 \n", + "9 0.000000 1.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Class Overlap. In some cases, you may want to merge classes in the top rows (below)\n", + "-----------------------------------------------------------------------------------\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0272730.0003
1565620.0002
2494920.0002
3353520.0002
4282810.0001
5464610.0001
6373710.0001
7020210.0001
8898910.0001
9070710.0001
10121200.0000
11383800.0000
12454500.0000
13050500.0000
14474700.0000
15484800.0000
16040400.0000
17030300.0000
18575700.0000
19585800.0000
20595900.0000
21676700.0000
22686800.0000
23696900.0000
24787800.0000
25797900.0000
26393900.0000
27060600.0000
28131300.0000
29232300.0000
30141400.0000
31151500.0000
32161600.0000
33171700.0000
34181800.0000
35191900.0000
36242400.0000
37363600.0000
38252500.0000
39262600.0000
40090900.0000
41080800.0000
42292900.0000
43343400.0000
44010100.0000
\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A Class Index B \\\n", + "0 2 7 2 7 \n", + "1 5 6 5 6 \n", + "2 4 9 4 9 \n", + "3 3 5 3 5 \n", + "4 2 8 2 8 \n", + "5 4 6 4 6 \n", + "6 3 7 3 7 \n", + "7 0 2 0 2 \n", + "8 8 9 8 9 \n", + "9 0 7 0 7 \n", + "10 1 2 1 2 \n", + "11 3 8 3 8 \n", + "12 4 5 4 5 \n", + "13 0 5 0 5 \n", + "14 4 7 4 7 \n", + "15 4 8 4 8 \n", + "16 0 4 0 4 \n", + "17 0 3 0 3 \n", + "18 5 7 5 7 \n", + "19 5 8 5 8 \n", + "20 5 9 5 9 \n", + "21 6 7 6 7 \n", + "22 6 8 6 8 \n", + "23 6 9 6 9 \n", + "24 7 8 7 8 \n", + "25 7 9 7 9 \n", + "26 3 9 3 9 \n", + "27 0 6 0 6 \n", + "28 1 3 1 3 \n", + "29 2 3 2 3 \n", + "30 1 4 1 4 \n", + "31 1 5 1 5 \n", + "32 1 6 1 6 \n", + "33 1 7 1 7 \n", + "34 1 8 1 8 \n", + "35 1 9 1 9 \n", + "36 2 4 2 4 \n", + "37 3 6 3 6 \n", + "38 2 5 2 5 \n", + "39 2 6 2 6 \n", + "40 0 9 0 9 \n", + "41 0 8 0 8 \n", + "42 2 9 2 9 \n", + "43 3 4 3 4 \n", + "44 0 1 0 1 \n", + "\n", + " Num Overlapping Examples Joint Probability \n", + "0 3 0.0003 \n", + "1 2 0.0002 \n", + "2 2 0.0002 \n", + "3 2 0.0002 \n", + "4 1 0.0001 \n", + "5 1 0.0001 \n", + "6 1 0.0001 \n", + "7 1 0.0001 \n", + "8 1 0.0001 \n", + "9 1 0.0001 \n", + "10 0 0.0000 \n", + "11 0 0.0000 \n", + "12 0 0.0000 \n", + "13 0 0.0000 \n", + "14 0 0.0000 \n", + "15 0 0.0000 \n", + "16 0 0.0000 \n", + "17 0 0.0000 \n", + "18 0 0.0000 \n", + "19 0 0.0000 \n", + "20 0 0.0000 \n", + "21 0 0.0000 \n", + "22 0 0.0000 \n", + "23 0 0.0000 \n", + "24 0 0.0000 \n", + "25 0 0.0000 \n", + "26 0 0.0000 \n", + "27 0 0.0000 \n", + "28 0 0.0000 \n", + "29 0 0.0000 \n", + "30 0 0.0000 \n", + "31 0 0.0000 \n", + "32 0 0.0000 \n", + "33 0 0.0000 \n", + "34 0 0.0000 \n", + "35 0 0.0000 \n", + "36 0 0.0000 \n", + "37 0 0.0000 \n", + "38 0 0.0000 \n", + "39 0 0.0000 \n", + "40 0 0.0000 \n", + "41 0 0.0000 \n", + "42 0 0.0000 \n", + "43 0 0.0000 \n", + "44 0 0.0000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " * Overall, about 0% (15 of the 10,000) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 1.00.\n", + "\n", + "Generated with <3 from Cleanlab.\n", + "\n", + "\n", + "🎯 Cifar10_test_set 🎯\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loaded the 'cifar10_test_set' dataset with predicted probabilities of shape (10000, 10)\n", + "\n", + "------------------------------------------------------------\n", + "| Generating a Cleanlab Dataset Health Summary |\n", + "| for your dataset with 10,000 examples and 10 classes. |\n", + "| Note, Cleanlab is not a medical doctor... yet. |\n", + "------------------------------------------------------------\n", + "\n", + "Overall Class Quality and Noise across your dataset (below)\n", + "------------------------------------------------------------ \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
0cat371670.0710.0672690.929
1dog546590.0460.0582430.954
2bird235320.0350.0320960.965
3truck931120.0310.0122320.969
4deer422260.0220.0258960.978
5frog620130.0200.0130920.980
6automobile118130.0180.0130650.982
7airplane016310.0160.0305420.984
8ship813210.0130.0208330.987
9horse712100.0120.0100200.988
\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", + "0 cat 3 71 67 0.071 \n", + "1 dog 5 46 59 0.046 \n", + "2 bird 2 35 32 0.035 \n", + "3 truck 9 31 12 0.031 \n", + "4 deer 4 22 26 0.022 \n", + "5 frog 6 20 13 0.020 \n", + "6 automobile 1 18 13 0.018 \n", + "7 airplane 0 16 31 0.016 \n", + "8 ship 8 13 21 0.013 \n", + "9 horse 7 12 10 0.012 \n", + "\n", + " Inverse Label Noise Label Quality Score \n", + "0 0.067269 0.929 \n", + "1 0.058243 0.954 \n", + "2 0.032096 0.965 \n", + "3 0.012232 0.969 \n", + "4 0.025896 0.978 \n", + "5 0.013092 0.980 \n", + "6 0.013065 0.982 \n", + "7 0.030542 0.984 \n", + "8 0.020833 0.987 \n", + "9 0.010020 0.988 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Class Overlap. In some cases, you may want to merge classes in the top rows (below)\n", + "-----------------------------------------------------------------------------------\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0catdog35730.0073
1automobiletruck19200.0020
2birdcat23200.0020
3airplaneship08160.0016
4birddeer24150.0015
5deerdog45140.0014
6catfrog36130.0013
7birdfrog26130.0013
8catdeer34120.0012
9airplanecat03100.0010
10airplanetruck0980.0008
11shiptruck8970.0007
12birddog2570.0007
13doghorse5760.0006
14cathorse3760.0006
15airplanebird0250.0005
16airplaneautomobile0150.0005
17automobileship1840.0004
18catship3830.0003
19horsetruck7930.0003
20deerhorse4730.0003
21deerfrog4630.0003
22birdship2830.0003
23birdhorse2730.0003
24dogtruck5920.0002
25automobilefrog1610.0001
26airplanehorse0710.0001
27airplanefrog0610.0001
28cattruck3910.0001
29airplanedog0510.0001
30automobiledog1510.0001
31birdtruck2910.0001
32deertruck4910.0001
33dogfrog5610.0001
34frogship6810.0001
35horseship7800.0000
36frogtruck6900.0000
37froghorse6700.0000
38automobiledeer1400.0000
39dogship5800.0000
40airplanedeer0400.0000
41automobilehorse1700.0000
42automobilebird1200.0000
43automobilecat1300.0000
44deership4800.0000
\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A Class Index B \\\n", + "0 cat dog 3 5 \n", + "1 automobile truck 1 9 \n", + "2 bird cat 2 3 \n", + "3 airplane ship 0 8 \n", + "4 bird deer 2 4 \n", + "5 deer dog 4 5 \n", + "6 cat frog 3 6 \n", + "7 bird frog 2 6 \n", + "8 cat deer 3 4 \n", + "9 airplane cat 0 3 \n", + "10 airplane truck 0 9 \n", + "11 ship truck 8 9 \n", + "12 bird dog 2 5 \n", + "13 dog horse 5 7 \n", + "14 cat horse 3 7 \n", + "15 airplane bird 0 2 \n", + "16 airplane automobile 0 1 \n", + "17 automobile ship 1 8 \n", + "18 cat ship 3 8 \n", + "19 horse truck 7 9 \n", + "20 deer horse 4 7 \n", + "21 deer frog 4 6 \n", + "22 bird ship 2 8 \n", + "23 bird horse 2 7 \n", + "24 dog truck 5 9 \n", + "25 automobile frog 1 6 \n", + "26 airplane horse 0 7 \n", + "27 airplane frog 0 6 \n", + "28 cat truck 3 9 \n", + "29 airplane dog 0 5 \n", + "30 automobile dog 1 5 \n", + "31 bird truck 2 9 \n", + "32 deer truck 4 9 \n", + "33 dog frog 5 6 \n", + "34 frog ship 6 8 \n", + "35 horse ship 7 8 \n", + "36 frog truck 6 9 \n", + "37 frog horse 6 7 \n", + "38 automobile deer 1 4 \n", + "39 dog ship 5 8 \n", + "40 airplane deer 0 4 \n", + "41 automobile horse 1 7 \n", + "42 automobile bird 1 2 \n", + "43 automobile cat 1 3 \n", + "44 deer ship 4 8 \n", + "\n", + " Num Overlapping Examples Joint Probability \n", + "0 73 0.0073 \n", + "1 20 0.0020 \n", + "2 20 0.0020 \n", + "3 16 0.0016 \n", + "4 15 0.0015 \n", + "5 14 0.0014 \n", + "6 13 0.0013 \n", + "7 13 0.0013 \n", + "8 12 0.0012 \n", + "9 10 0.0010 \n", + "10 8 0.0008 \n", + "11 7 0.0007 \n", + "12 7 0.0007 \n", + "13 6 0.0006 \n", + "14 6 0.0006 \n", + "15 5 0.0005 \n", + "16 5 0.0005 \n", + "17 4 0.0004 \n", + "18 3 0.0003 \n", + "19 3 0.0003 \n", + "20 3 0.0003 \n", + "21 3 0.0003 \n", + "22 3 0.0003 \n", + "23 3 0.0003 \n", + "24 2 0.0002 \n", + "25 1 0.0001 \n", + "26 1 0.0001 \n", + "27 1 0.0001 \n", + "28 1 0.0001 \n", + "29 1 0.0001 \n", + "30 1 0.0001 \n", + "31 1 0.0001 \n", + "32 1 0.0001 \n", + "33 1 0.0001 \n", + "34 1 0.0001 \n", + "35 0 0.0000 \n", + "36 0 0.0000 \n", + "37 0 0.0000 \n", + "38 0 0.0000 \n", + "39 0 0.0000 \n", + "40 0 0.0000 \n", + "41 0 0.0000 \n", + "42 0 0.0000 \n", + "43 0 0.0000 \n", + "44 0 0.0000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " * Overall, about 2% (244 of the 10,000) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 0.98.\n", + "\n", + "Generated with <3 from Cleanlab.\n", + "\n", + "\n", + "🎯 Cifar100_test_set 🎯\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", + "\n", + "-------------------------------------------------------------\n", + "| Generating a Cleanlab Dataset Health Summary |\n", + "| for your dataset with 10,000 examples and 100 classes. |\n", + "| Note, Cleanlab is not a medical doctor... yet. |\n", + "-------------------------------------------------------------\n", + "\n", + "Overall Class Quality and Noise across your dataset (below)\n", + "------------------------------------------------------------ \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
0boy1154380.540.4523810.46
1girl3553400.530.4597700.47
2seal7249560.490.5233640.51
3man4645470.450.4607840.55
4shark7343460.430.4466020.57
........................
95road685110.050.1037740.95
96skunk75530.050.0306120.95
97orange533120.030.1100920.97
98motorcycle48350.030.0490200.97
99wardrobe94350.030.0490200.97
\n", + "

100 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", + "0 boy 11 54 38 0.54 \n", + "1 girl 35 53 40 0.53 \n", + "2 seal 72 49 56 0.49 \n", + "3 man 46 45 47 0.45 \n", + "4 shark 73 43 46 0.43 \n", + ".. ... ... ... ... ... \n", + "95 road 68 5 11 0.05 \n", + "96 skunk 75 5 3 0.05 \n", + "97 orange 53 3 12 0.03 \n", + "98 motorcycle 48 3 5 0.03 \n", + "99 wardrobe 94 3 5 0.03 \n", + "\n", + " Inverse Label Noise Label Quality Score \n", + "0 0.452381 0.46 \n", + "1 0.459770 0.47 \n", + "2 0.523364 0.51 \n", + "3 0.460784 0.55 \n", + "4 0.446602 0.57 \n", + ".. ... ... \n", + "95 0.103774 0.95 \n", + "96 0.030612 0.95 \n", + "97 0.110092 0.97 \n", + "98 0.049020 0.97 \n", + "99 0.049020 0.97 \n", + "\n", + "[100 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Class Overlap. In some cases, you may want to merge classes in the top rows (below)\n", + "-----------------------------------------------------------------------------------\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0girlwoman3598340.0034
1boyman1146320.0032
2maple_treewillow_tree4796260.0026
3maple_treeoak_tree4752250.0025
4otterseal5572250.0025
.....................
4945cattlewhale199500.0000
4946cattlewillow_tree199600.0000
4947cattlewoman199800.0000
4948cattleworm199900.0000
4949womanworm989900.0000
\n", + "

4950 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A Class Index B \\\n", + "0 girl woman 35 98 \n", + "1 boy man 11 46 \n", + "2 maple_tree willow_tree 47 96 \n", + "3 maple_tree oak_tree 47 52 \n", + "4 otter seal 55 72 \n", + "... ... ... ... ... \n", + "4945 cattle whale 19 95 \n", + "4946 cattle willow_tree 19 96 \n", + "4947 cattle woman 19 98 \n", + "4948 cattle worm 19 99 \n", + "4949 woman worm 98 99 \n", + "\n", + " Num Overlapping Examples Joint Probability \n", + "0 34 0.0034 \n", + "1 32 0.0032 \n", + "2 26 0.0026 \n", + "3 25 0.0025 \n", + "4 25 0.0025 \n", + "... ... ... \n", + "4945 0 0.0000 \n", + "4946 0 0.0000 \n", + "4947 0 0.0000 \n", + "4948 0 0.0000 \n", + "4949 0 0.0000 \n", + "\n", + "[4950 rows x 6 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " * Overall, about 18% (1,846 of the 10,000) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 0.82.\n", + "\n", + "Generated with <3 from Cleanlab.\n", + "\n", + "\n", + "🎯 20news_test_set 🎯\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loaded the '20news_test_set' dataset with predicted probabilities of shape (7532, 20)\n", + "\n", + "-----------------------------------------------------------\n", + "| Generating a Cleanlab Dataset Health Summary |\n", + "| for your dataset with 7,532 examples and 20 classes. |\n", + "| Note, Cleanlab is not a medical doctor... yet. |\n", + "-----------------------------------------------------------\n", + "\n", + "Overall Class Quality and Noise across your dataset (below)\n", + "------------------------------------------------------------ \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class NameClass IndexLabel IssuesInverse Label IssuesLabel NoiseInverse Label NoiseLabel Quality Score
0alt.atheism01130.0344830.0096460.965517
1comp.os.ms-windows.misc21280.0304570.0205130.969543
2comp.sys.ibm.pc.hardware311140.0280610.0354430.971939
3comp.windows.x51020.0253160.0051680.974684
4misc.forsale68200.0205130.0497510.979487
5talk.religion.misc195110.0199200.0428020.980080
6rec.autos7720.0176770.0051150.982323
7comp.sys.mac.hardware4520.0129870.0052360.987013
8sci.electronics125100.0127230.0251260.987277
9talk.politics.guns16430.0109890.0082640.989011
10comp.graphics14110.0102830.0277780.989717
11talk.politics.misc18300.0096770.0000000.990323
12sci.space14340.0076140.0101270.992386
13sci.crypt11220.0050510.0050510.994949
14sci.med13220.0050510.0050510.994949
15rec.motorcycles8200.0050250.0000000.994975
16rec.sport.hockey10200.0050130.0000000.994987
17soc.religion.christian15000.0000000.0000001.000000
18talk.politics.mideast17000.0000000.0000001.000000
19rec.sport.baseball9020.0000000.0050131.000000
\n", + "
" + ], + "text/plain": [ + " Class Name Class Index Label Issues Inverse Label Issues \\\n", + "0 alt.atheism 0 11 3 \n", + "1 comp.os.ms-windows.misc 2 12 8 \n", + "2 comp.sys.ibm.pc.hardware 3 11 14 \n", + "3 comp.windows.x 5 10 2 \n", + "4 misc.forsale 6 8 20 \n", + "5 talk.religion.misc 19 5 11 \n", + "6 rec.autos 7 7 2 \n", + "7 comp.sys.mac.hardware 4 5 2 \n", + "8 sci.electronics 12 5 10 \n", + "9 talk.politics.guns 16 4 3 \n", + "10 comp.graphics 1 4 11 \n", + "11 talk.politics.misc 18 3 0 \n", + "12 sci.space 14 3 4 \n", + "13 sci.crypt 11 2 2 \n", + "14 sci.med 13 2 2 \n", + "15 rec.motorcycles 8 2 0 \n", + "16 rec.sport.hockey 10 2 0 \n", + "17 soc.religion.christian 15 0 0 \n", + "18 talk.politics.mideast 17 0 0 \n", + "19 rec.sport.baseball 9 0 2 \n", + "\n", + " Label Noise Inverse Label Noise Label Quality Score \n", + "0 0.034483 0.009646 0.965517 \n", + "1 0.030457 0.020513 0.969543 \n", + "2 0.028061 0.035443 0.971939 \n", + "3 0.025316 0.005168 0.974684 \n", + "4 0.020513 0.049751 0.979487 \n", + "5 0.019920 0.042802 0.980080 \n", + "6 0.017677 0.005115 0.982323 \n", + "7 0.012987 0.005236 0.987013 \n", + "8 0.012723 0.025126 0.987277 \n", + "9 0.010989 0.008264 0.989011 \n", + "10 0.010283 0.027778 0.989717 \n", + "11 0.009677 0.000000 0.990323 \n", + "12 0.007614 0.010127 0.992386 \n", + "13 0.005051 0.005051 0.994949 \n", + "14 0.005051 0.005051 0.994949 \n", + "15 0.005025 0.000000 0.994975 \n", + "16 0.005013 0.000000 0.994987 \n", + "17 0.000000 0.000000 1.000000 \n", + "18 0.000000 0.000000 1.000000 \n", + "19 0.000000 0.005013 1.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Class Overlap. In some cases, you may want to merge classes in the top rows (below)\n", + "-----------------------------------------------------------------------------------\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0alt.atheismtalk.religion.misc019140.001859
1comp.os.ms-windows.misccomp.sys.ibm.pc.hardware23100.001328
2misc.forsalesci.electronics61270.000929
3misc.forsalerec.autos6770.000929
4comp.os.ms-windows.misccomp.windows.x2550.000664
.....................
185comp.sys.mac.hardwarerec.motorcycles4800.000000
186comp.sys.mac.hardwarerec.sport.baseball4900.000000
187comp.sys.mac.hardwarerec.sport.hockey41000.000000
188comp.sys.mac.hardwaresci.crypt41100.000000
189talk.politics.misctalk.religion.misc181900.000000
\n", + "

190 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A \\\n", + "0 alt.atheism talk.religion.misc 0 \n", + "1 comp.os.ms-windows.misc comp.sys.ibm.pc.hardware 2 \n", + "2 misc.forsale sci.electronics 6 \n", + "3 misc.forsale rec.autos 6 \n", + "4 comp.os.ms-windows.misc comp.windows.x 2 \n", + ".. ... ... ... \n", + "185 comp.sys.mac.hardware rec.motorcycles 4 \n", + "186 comp.sys.mac.hardware rec.sport.baseball 4 \n", + "187 comp.sys.mac.hardware rec.sport.hockey 4 \n", + "188 comp.sys.mac.hardware sci.crypt 4 \n", + "189 talk.politics.misc talk.religion.misc 18 \n", + "\n", + " Class Index B Num Overlapping Examples Joint Probability \n", + "0 19 14 0.001859 \n", + "1 3 10 0.001328 \n", + "2 12 7 0.000929 \n", + "3 7 7 0.000929 \n", + "4 5 5 0.000664 \n", + ".. ... ... ... \n", + "185 8 0 0.000000 \n", + "186 9 0 0.000000 \n", + "187 10 0 0.000000 \n", + "188 11 0 0.000000 \n", + "189 19 0 0.000000 \n", + "\n", + "[190 rows x 6 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " * Overall, about 1% (55 of the 7,532) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 0.99.\n", + "\n", + "Generated with <3 from Cleanlab.\n", + "\n" + ] + } + ], + "source": [ + "DATASETS = ['caltech256', 'mnist_test_set', 'cifar10_test_set', 'cifar100_test_set', '20news_test_set']\n", + "\n", + "for dataset_name in DATASETS:\n", + "\n", + " print(\"\\n🎯 \" + dataset_name.capitalize() + \" 🎯\\n\")\n", + "\n", + " # load class names, given labels, and predicted probabilities from already-trained model\n", + " pred_probs, labels, class_names = _load_classes_predprobs_labels(dataset_name)\n", + "\n", + " # run 1 line of code to evaluate the health of your dataset\n", + " _ = cleanlab.dataset.health_summary(labels, pred_probs, class_names=class_names)" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "cleanlab_dataset_tutorial.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/faq.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/faq.ipynb new file mode 100644 index 000000000..17d56decf --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -0,0 +1,2468 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ffe0d62e", + "metadata": {}, + "source": [ + "# FAQ\n", + "\n", + "Answers to frequently asked questions about the [cleanlab](https://github.com/cleanlab/cleanlab) open-source package.\n", + "\n", + "The code snippets in this FAQ come from a fully executable notebook you can run via Colab or locally by downloading it [here](https://github.com/cleanlab/cleanlab/blob/master/docs/source/tutorials/faq.ipynb).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2a4efdde", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:16.420164Z", + "iopub.status.busy": "2024-05-24T23:49:16.419746Z", + "iopub.status.idle": "2024-05-24T23:49:17.567990Z", + "shell.execute_reply": "2024-05-24T23:49:17.567333Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai. Execute it to ensure all other cells below can be executed in your own notebook\n", + "\n", + "import os \n", + "import logging \n", + "import numpy as np \n", + "import sklearn \n", + "import cleanlab \n", + "\n", + "np.random.seed(123)\n", + "\n", + "# Toy dataset:\n", + "N = 50\n", + "K = 3\n", + "num_errors = 4\n", + "labels = np.random.randint(low=0, high=K, size=N)\n", + "pred_probs = np.random.random_sample(N*K).reshape((N,K))\n", + "pred_probs[np.arange(N),labels] += 4 # make pred_probs accurate\n", + "pred_probs = pred_probs/pred_probs.sum(axis=1)[:, np.newaxis]\n", + "data = np.array([[label+np.random.uniform(), label+np.random.uniform()] for label in labels])\n", + "# introduce label errors in last few examples:\n", + "og0_indices = labels[-num_errors:] == 0\n", + "labels[-num_errors:] = 0\n", + "labels[-num_errors:][og0_indices] = 1\n", + "\n", + "your_classifier=sklearn.linear_model.LogisticRegression() # toy classifier" + ] + }, + { + "cell_type": "markdown", + "id": "d504ec58", + "metadata": {}, + "source": [ + "### What data can cleanlab detect issues in?" + ] + }, + { + "cell_type": "markdown", + "id": "5e70efbc", + "metadata": {}, + "source": [ + "Currently, cleanlab can be used to detect label issues in any classification dataset, including those involving: multiple annotators per example (multi-annotator), or multiple labels per example (multi-label). This includes data from any modality such as: image, text, tabular, audio, etc. For text data, cleanlab also supports NLP tasks like entity recognition in which each word is individually labeled (token classification). We're [working to add support](https://github.com/orgs/cleanlab/projects/2) for all other common supervised learning tasks. If you have a particular task in mind, [let us know](https://github.com/cleanlab/cleanlab/issues?q=is%3Aissue)!" + ] + }, + { + "cell_type": "markdown", + "id": "eca36874", + "metadata": {}, + "source": [ + "### How do I format classification labels for cleanlab?" + ] + }, + { + "cell_type": "markdown", + "id": "38c50875", + "metadata": {}, + "source": [ + "**With Datalab**:\n", + "\n", + "Datalab simplifies label management by accepting both string and integer labels directly. Internally, unique labels are sorted alphanumerically and mapped to integers, facilitating seamless integration with lower-level cleanlab methods. Below are the supported label formats:\n", + "\n", + "- **List of strings or integers**: Directly pass labels as a list of strings or integers without manual encoding.\n", + "\n", + "- **Using** `datasets.Dataset` **with** `ClassLabel`: For advanced use cases, you can structure your dataset using HuggingFace's `datasets.Dataset` object, specifying label columns as `ClassLabel` feature objects for formatting the labels. Refer to the [datasets documentation](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.ClassLabel) for detailed guidance.\n", + "\n", + "```python\n", + "from cleanlab import Datalab\n", + "from datasets import Dataset, Features, Value, ClassLabel\n", + "\n", + "# Example 1: Labels as a list of strings\n", + "labels_str = ['cat', 'dog', 'cat', 'dog']\n", + "datalab_str = Datalab(data={\"text\": [\"a\", \"b\", \"c\", \"d\"], \"label\": labels_str}, label_name=\"label\")\n", + "print(\"String labels:\", datalab_str.labels)\n", + "\n", + "# Example 2: Labels as a list of integers\n", + "labels_int = [1, 2, 2, 1] # These will be remapped to [0, 1] internally\n", + "datalab_int = Datalab(data={\"text\": [\"a\", \"b\", \"c\", \"d\"], \"label\": labels_int}, label_name=\"label\")\n", + "print(\"Integer labels:\", datalab_int.labels)\n", + "\n", + "# Example 3: Advanced - Dataset with ClassLabel feature\n", + "my_dict = {\"pet_name\": [\"Spot\", \"Mittens\", \"Rover\", \"Rocky\", \"Pepper\", \"Socks\"], \"species\": [\"dog\", \"cat\", \"dog\", \"dog\", \"cat\", \"cat\"]}\n", + "features = Features({\"pet_name\": Value(\"string\"), \"species\": ClassLabel(names=[\"dog\", \"cat\"])})\n", + "dataset = Dataset.from_dict(my_dict, features=features)\n", + "datalab_dataset = Datalab(data=dataset, label_name=\"species\")\n", + "print(\"ClassLabel feature:\", datalab_dataset.labels)\n", + "```\n", + "\n", + "Using Datalab allows you to directly handle raw class name labels in your dataset while ensuring compatibility with label encoding requirements of lower-level cleanlab methods, which we'll cover in the next section.\n" + ] + }, + { + "cell_type": "markdown", + "id": "d5d0fbb3", + "metadata": {}, + "source": [ + "**Without Datalab**:\n", + "\n", + "Outside of Datalab, cleanlab offers various lower-level methods to directly operate on labels and diagnose issues. For instance: ``get_label_quality_scores()`` and ``find_label_issues()``. These lower-level methods only work with integer-encoded labels in the range `{0,1, ... K-1}` where `K = number_of_classes`. The `labels` array should only contain integer values in the range `{0, K-1}` and be of shape `(N,)` where `N = total_number_of_data_points`.\n", + "Do not pass in `labels` where some classes are entirely missing or are extremely rare, as cleanlab may not perform as expected. It is better to remove such classes entirely from the dataset first (also dropping the corresponding dimensions from `pred_probs` and then renormalizing it).\n", + "\n", + "**Text or string labels** should to be mapped to integers for each possible value. For example if your original data labels look like this: `[\"dog\", \"dog\", \"cat\", \"mouse\", \"cat\"]`, you should feed them to cleanlab like this: `labels = [1,1,0,2,0]` and keep track of which integer uniquely represents which class (classes were ordered alphabetically in this example). \n", + "\n", + "**One-hot encoded labels** should be integer-encoded by finding the argmax along the one-hot encoded axis. An example of what this might look like is shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "239d5ee7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:17.570846Z", + "iopub.status.busy": "2024-05-24T23:49:17.570424Z", + "iopub.status.idle": "2024-05-24T23:49:17.573647Z", + "shell.execute_reply": "2024-05-24T23:49:17.573208Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np \n", + "\n", + "# This example arr has 4 labels (one per data point) where \n", + "# each label can be one of 3 possible classes\n", + "\n", + "arr = np.array([[0,1,0],[1,0,0],[0,0,1],[1,0,0]])\n", + "labels_proper_format = np.argmax(arr, axis=1) # How labels should be formatted when passed into the model" + ] + }, + { + "cell_type": "markdown", + "id": "4181cac7", + "metadata": {}, + "source": [ + "### How do I infer the correct labels for examples cleanlab has flagged?" + ] + }, + { + "cell_type": "markdown", + "id": "6d4db5e1", + "metadata": {}, + "source": [ + "If you have a classifier that is compatible with [CleanLearning](../cleanlab/classification.html) (i.e. follows the sklearn API), here's an easy way to see predicted labels alongside the label issues:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "28b324aa", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:17.575770Z", + "iopub.status.busy": "2024-05-24T23:49:17.575430Z", + "iopub.status.idle": "2024-05-24T23:49:20.575383Z", + "shell.execute_reply": "2024-05-24T23:49:20.574651Z" + } + }, + "outputs": [], + "source": [ + "cl = cleanlab.classification.CleanLearning(your_classifier)\n", + "issues_dataframe = cl.find_label_issues(data, labels)" + ] + }, + { + "cell_type": "markdown", + "id": "6d4db5e2", + "metadata": {}, + "source": [ + "Alternatively if you have already computed out-of-sample predicted probabilities (`pred_probs`) from a classifier:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "28b324ab", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.578448Z", + "iopub.status.busy": "2024-05-24T23:49:20.577854Z", + "iopub.status.idle": "2024-05-24T23:49:20.612439Z", + "shell.execute_reply": "2024-05-24T23:49:20.611840Z" + } + }, + "outputs": [], + "source": [ + "cl = cleanlab.classification.CleanLearning()\n", + "issues_dataframe = cl.find_label_issues(X=None, labels=labels, pred_probs=pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "b386dfc8", + "metadata": {}, + "source": [ + "Otherwise if you have already found issues via:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "90c10e18", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.614961Z", + "iopub.status.busy": "2024-05-24T23:49:20.614716Z", + "iopub.status.idle": "2024-05-24T23:49:20.645409Z", + "shell.execute_reply": "2024-05-24T23:49:20.644814Z" + } + }, + "outputs": [], + "source": [ + "issues = cleanlab.filter.find_label_issues(labels, pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "ad9ca03e", + "metadata": {}, + "source": [ + "then you can see your trained classifier's class prediction for each flagged example like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "88839519", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.647896Z", + "iopub.status.busy": "2024-05-24T23:49:20.647697Z", + "iopub.status.idle": "2024-05-24T23:49:20.650734Z", + "shell.execute_reply": "2024-05-24T23:49:20.650269Z" + } + }, + "outputs": [], + "source": [ + "class_predicted_for_flagged_examples = pred_probs[issues].argmax(axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "a668b74b", + "metadata": {}, + "source": [ + "Here you can see the classifier's class prediction for every example via:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "558490c2", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.652829Z", + "iopub.status.busy": "2024-05-24T23:49:20.652403Z", + "iopub.status.idle": "2024-05-24T23:49:20.655162Z", + "shell.execute_reply": "2024-05-24T23:49:20.654609Z" + } + }, + "outputs": [], + "source": [ + "class_predicted_for_all_examples = pred_probs.argmax(axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "f9450eed", + "metadata": {}, + "source": [ + "We caution against just blindly taking the predicted label for granted, many of these suggestions may be wrong! \n", + "You will be able to produce a much better version of your dataset interactively using [Cleanlab Studio](https://cleanlab.ai/studio/?utm_source=github&utm_medium=docs&utm_campaign=clostostudio), which helps you efficiently fix issues like this in large datasets." + ] + }, + { + "cell_type": "markdown", + "id": "bcc97591", + "metadata": {}, + "source": [ + "### How should I handle label errors in train vs. test data?\n", + "\n", + "If you do not address label errors in your test data, you may not even know when you have produced a better ML model because the evaluation is too noisy. For the best-trained models and most reliable evaluation of them, you should fix label errors in both training and testing data.\n", + "\n", + "To do this efficiently, first use cleanlab to automatically find label issues in both sets. You can simply merge these two sets into one larger dataset and run cross-validation training. On the merged dataset, you can do either of the following to detect label issues:\n", + "\n", + "\n", + "\n", + "**With Datalab**: Run `Datalab.find_issues()` on the merged dataset, then call `Datalab.report()` to see the label issues (and other types of data issues).\n", + "\n", + "```python\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data = merged_dataset, label_name = \"label_column_name\")\n", + "\n", + "# Run proper cross-validation when computing predicted probabilities\n", + "lab.find_issues(pred_probs = pred_probs, issue_types = {\"label\": {}})\n", + "\n", + "lab.report()\n", + "```\n", + "\n", + "You can fetch the label issues DataFrame from the `Datalab` object by calling:\n", + "\n", + "```python\n", + "label_issues = lab.get_issues(\"label\")\n", + "```\n", + "\n", + "**Without Datalab**: Run cleanlab's lower-level `find_label_issues()` method on the merged datataset. Calling the [CleanLearning.find_label_issues()](../cleanlab/classification.html) method on your merged dataset both runs cross-validation training and finds label issues for you with any scikit-learn compatible classifier you choose.\n", + "\n", + "---\n", + "\n", + "After finding label issues, be **wary** about auto-correcting the labels for test examples. Instead manually fix the labels for your test data via careful review of the flagged issues. You can use [Cleanlab Studio](https://cleanlab.ai/studio/) to fix labels efficiently.\n", + "\n", + "Auto-correcting labels for your training data is fair game, which should improve ML performance (if properly evaluated with clean test labels). You can boost ML performance further by manually fixing the training examples flagged with label issues, as demonstrated in this article:\n", + "\n", + "[**Handling Mislabeled Tabular Data to Improve Your XGBoost Model**](https://cleanlab.ai/blog/label-errors-tabular-datasets/)" + ] + }, + { + "cell_type": "markdown", + "id": "21f42f24", + "metadata": {}, + "source": [ + "### How can I find label issues in big datasets with limited memory? " + ] + }, + { + "cell_type": "markdown", + "id": "089f505e", + "metadata": {}, + "source": [ + "For a dataset with many rows and/or classes, there are more efficient methods in the `label_issues_batched` module. These methods read data in mini-batches and you can reduce the `batch_size` to control how much memory they require. Below is an example of how to use the `find_label_issues_batched()` method from this module, which can load mini-batches of data from `labels`, `pred_probs` saved as .npy files on disk. You can also run this method on Zarr arrays loaded from .zarr files. Try playing with the `n_jobs` argument for further multiprocessing speedups. If you need greater flexibility, check out the `LabelInspector` class from this module." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "41714b51", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.657513Z", + "iopub.status.busy": "2024-05-24T23:49:20.657109Z", + "iopub.status.idle": "2024-05-24T23:49:20.680962Z", + "shell.execute_reply": "2024-05-24T23:49:20.680406Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mmap-loaded numpy arrays have: 50 examples, 3 classes\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cca6b53f68d341dc9085197ae7e8924f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "number of examples processed for estimating thresholds: 0%| | 0/50 [00:00 0.95, \"issue indices differ in batched mode\"" + ] + }, + { + "cell_type": "markdown", + "id": "438b424d", + "metadata": {}, + "source": [ + "**To use less memory and get results faster if your dataset has many classes:** Try merging the rare classes into a single \"Other\" class before you find label issues. The resulting issues won't be affected much since cleanlab anyway does not have enough data to accurately diagnose label errors in classes that are rarely seen. To do this, you should aggregate all the probability assigned to the rare classes in `pred_probs` into a single new dimension of `pred_probs_merged` (where this new array no longer has columns for the rare classes). Here is a function that does this for you, which you can also modify as needed:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6983cdad", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.696218Z", + "iopub.status.busy": "2024-05-24T23:49:20.696041Z", + "iopub.status.idle": "2024-05-24T23:49:20.699435Z", + "shell.execute_reply": "2024-05-24T23:49:20.698998Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai\n", + "# Add two rare additional classes to the dataset:\n", + "\n", + "num_rare_instances = 3\n", + "small_prob = 1e-4\n", + "pred_probs = np.hstack((pred_probs, np.ones((len(pred_probs),2))*small_prob))\n", + "pred_probs = pred_probs / np.sum(pred_probs, axis=1)[:, np.newaxis]\n", + "labels[:num_rare_instances] = 3\n", + "labels[num_rare_instances:(2*num_rare_instances)] = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9092b8a0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.701502Z", + "iopub.status.busy": "2024-05-24T23:49:20.701171Z", + "iopub.status.idle": "2024-05-24T23:49:20.707559Z", + "shell.execute_reply": "2024-05-24T23:49:20.707081Z" + } + }, + "outputs": [], + "source": [ + "from cleanlab.internal.util import value_counts # use this to count how often each class occurs in labels\n", + "\n", + "def merge_rare_classes(labels, pred_probs, count_threshold = 10):\n", + " \"\"\" \n", + " Returns: labels, pred_probs after we merge all rare classes into a single 'Other' class.\n", + " Merged pred_probs has less columns. Rare classes are any occuring less than `count_threshold` times.\n", + " Also returns: `class_mapping_orig2new`, a dict to map new classes in merged labels back to classes \n", + " in original labels, useful for interpreting outputs from `dataset.heath_summary()` or `count.confident_joint()`.\n", + " \"\"\"\n", + " num_classes = pred_probs.shape[1]\n", + " num_examples_per_class = value_counts(labels, num_classes=num_classes)\n", + " rare_classes = [c for c in range(num_classes) if num_examples_per_class[c] < count_threshold]\n", + " if len(rare_classes) < 1:\n", + " raise ValueError(\"No rare classes found at the given `count_threshold`, merging is unnecessary unless you increase it.\")\n", + "\n", + " num_classes_merged = num_classes - len(rare_classes) + 1 # one extra class for all the merged ones\n", + " other_class = num_classes_merged - 1\n", + " labels_merged = labels.copy()\n", + " class_mapping_orig2new = {} # key = original class in `labels`, value = new class in `labels_merged`\n", + " new_c = 0\n", + " for c in range(num_classes):\n", + " if c in rare_classes:\n", + " class_mapping_orig2new[c] = other_class\n", + " else:\n", + " class_mapping_orig2new[c] = new_c\n", + " new_c += 1\n", + " labels_merged[labels == c] = class_mapping_orig2new[c]\n", + "\n", + " merged_prob = np.sum(pred_probs[:, rare_classes], axis=1, keepdims=True) # total probability over all merged classes for each example\n", + " pred_probs_merged = np.hstack((np.delete(pred_probs, rare_classes, axis=1), merged_prob)) # assumes new_class is as close to original_class in sorted order as is possible after removing the merged original classes\n", + " # check a few rows of probabilities after merging to verify they still sum to 1:\n", + " num_check = 1000 # only check a few rows for efficiency\n", + " ones_array_ref = np.ones(min(num_check,len(pred_probs)))\n", + " if np.isclose(np.sum(pred_probs[:num_check], axis=1), ones_array_ref).all() and (not np.isclose(np.sum(pred_probs_merged[:num_check], axis=1), ones_array_ref).all()):\n", + " raise ValueError(\"merged pred_probs do not sum to 1 in each row, check that merging was correctly done.\")\n", + " \n", + " return (labels_merged, pred_probs_merged, class_mapping_orig2new)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b0a01109", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.709495Z", + "iopub.status.busy": "2024-05-24T23:49:20.709184Z", + "iopub.status.idle": "2024-05-24T23:49:20.744956Z", + "shell.execute_reply": "2024-05-24T23:49:20.744248Z" + } + }, + "outputs": [], + "source": [ + "from cleanlab.filter import find_label_issues # can alternatively use find_label_issues_batched() shown above\n", + "\n", + "labels_merged, pred_probs_merged, class_mapping_orig2new = merge_rare_classes(labels, pred_probs, count_threshold=5)\n", + "examples_w_issues = find_label_issues(labels_merged, pred_probs_merged, return_indices_ranked_by=\"self_confidence\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8b1da032", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.747598Z", + "iopub.status.busy": "2024-05-24T23:49:20.747350Z", + "iopub.status.idle": "2024-05-24T23:49:20.780727Z", + "shell.execute_reply": "2024-05-24T23:49:20.780017Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai, and is only for internal testing. You can ignore it.\n", + "\n", + "rare_classes = [c for c in class_mapping_orig2new.keys() if class_mapping_orig2new[c] == pred_probs_merged.shape[1]-1]\n", + "og_examples_w_issues = find_label_issues(labels, pred_probs, return_indices_ranked_by=\"self_confidence\")\n", + "examples_of_interest = [x for x in examples_w_issues if labels[x] not in rare_classes]\n", + "og_examples_of_interest = [x for x in og_examples_w_issues if labels[x] not in rare_classes]\n", + "assert set(examples_of_interest) == set(og_examples_of_interest), \"merged label issues differ from non-merged label issues\"" + ] + }, + { + "cell_type": "markdown", + "id": "3868ee8b", + "metadata": {}, + "source": [ + "### Why isn’t CleanLearning working for me?" + ] + }, + { + "cell_type": "markdown", + "id": "d13c9cd0", + "metadata": {}, + "source": [ + "At this time, CleanLearning only works with data formatted as numpy matrices or pd.DataFrames, \n", + "and with models that are compatible with the `sklearn` API \n", + "(check out [skorch](https://github.com/skorch-dev/skorch) for Pytorch compatibility and [scikeras](https://github.com/adriangb/scikeras) for Tensorflow/Keras compatibility). \n", + "You can still use cleanlab with other data formats though! Just separately obtain predicted probabilities (`pred_probs`) from your model via cross-validation and pass them as inputs. \n", + "\n", + "\n", + "If CleanLearning is running successfully but not improving predictive accuracy of your model, here are some tips:\n", + "\n", + "1. Use cleanlab to find label issues in your test data as well (we recommend pooling `labels` across both training and test data into one input for `find_label_issues()`). Then manually review and fix label issues identified in the test data to verify accuracy measurements are actually meaningful.\n", + "\n", + "2. Try different values for `filter_by`, `frac_noise`, and `min_examples_per_class` which can be set via the `find_label_issues_kwargs` argument in the initialization of `CleanLearning()`.\n", + "\n", + "3. Try to find a better model (eg. via hyperparameter tuning or changing to another classifier). `CleanLearning` can find better label issues by leveraging a better model, which allows it to produce better quality training data. This can form a virtuous cycle in which better models -> better issue detection -> better data -> even better models! \n", + "\n", + "4. Try jointly tuning both model hyperparameters and `find_label_issues_kwargs` values.\n", + "\n", + "5. Does your dataset have a *junk* (or *clutter*, *unknown*, *other*) class? If you have bad data, consider creating one (c.f. Caltech-256).\n", + "\n", + "6. Consider merging similar/overlapping classes found via ``cleanlab.dataset.find_overlapping_classes``.\n", + "\n", + "Other general tips to improve label error detection performance:\n", + "\n", + "1. Try creating more restrictive new filters by combining their intersections (e.g. `combined_boolean_mask = mask1 & mask2` where `mask1` and `mask2` are the boolean masks created by running `find_label_issues` with different values of the `filter_by` argument).\n", + "\n", + "2. If your `pred_probs` are obtained via a neural network, try averaging the `pred_probs` over the last K epochs of training instead of just using the final `pred_probs`. Similarly, you can try averaging `pred_probs` from several models (remember to re-normalize) or using ``cleanlab.rank.get_label_quality_ensemble_scores``.\n" + ] + }, + { + "cell_type": "markdown", + "id": "9ae3899c", + "metadata": {}, + "source": [ + "### How can I use different models for data cleaning vs. final training in CleanLearning?" + ] + }, + { + "cell_type": "markdown", + "id": "a2ce1518", + "metadata": {}, + "source": [ + "The code below demonstrates CleanLearning with 2 different classifiers: `LogisticRegression()` and `GradientBoostingClassifier()`.\n", + "A `LogisticRegression` model is used to detect label issues (via cross-validation run inside CleanLearning) and a `GradientBoostingClassifier` model is finally trained on a clean subset of the data with issues removed.\n", + "This can be done with any two classifiers." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "4c9e9030", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.783570Z", + "iopub.status.busy": "2024-05-24T23:49:20.783320Z", + "iopub.status.idle": "2024-05-24T23:49:20.903397Z", + "shell.execute_reply": "2024-05-24T23:49:20.902821Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LogisticRegression()\n", + "GradientBoostingClassifier()\n" + ] + } + ], + "source": [ + "from cleanlab.classification import CleanLearning\n", + "import numpy as np\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "\n", + "# Make example data\n", + "data = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Introduce label errors\n", + "true_errors = [97, 98, 100, 101, 102, 104]\n", + "for idx in true_errors:\n", + " labels[idx] = 1 - labels[idx]\n", + "\n", + "# CleanLearning with 2 different classifiers: one classifier is used to detect label issues \n", + "# and a different classifier is subsequently trained on the clean subset of the data.\n", + "\n", + "model_to_find_errors = LogisticRegression() # this model will be trained many times via cross-validation\n", + "model_to_return = GradientBoostingClassifier() # this model will be trained once on clean subset of data\n", + "\n", + "cl0 = CleanLearning(model_to_find_errors)\n", + "issues = cl0.find_label_issues(data, labels)\n", + "\n", + "cl = CleanLearning(model_to_return).fit(data, labels, label_issues=issues)\n", + "pred_probs = cl.predict_proba(data) # predictions from GradientBoostingClassifier\n", + "\n", + "print(cl0.clf) # will be LogisticRegression()\n", + "print(cl.clf) # will be GradientBoostingClassifier()" + ] + }, + { + "cell_type": "markdown", + "id": "b71fef02", + "metadata": {}, + "source": [ + "### How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?" + ] + }, + { + "cell_type": "markdown", + "id": "e7ec1956", + "metadata": {}, + "source": [ + "The code below demonstrates CleanLearning using a `GradientBoostingClassifier()` with no hyperparameter-tuning to find label issues but with hyperparameter-tuning via `RandomizedSearchCV(...)` for the final training of this model on the clean subset of the data.\n", + "This is a useful trick to avoid expensive hyperparameter-tuning for every fold of cross-validation (which is needed to find label issues)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8751619e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:20.906246Z", + "iopub.status.busy": "2024-05-24T23:49:20.905549Z", + "iopub.status.idle": "2024-05-24T23:49:23.954232Z", + "shell.execute_reply": "2024-05-24T23:49:23.953613Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GradientBoostingClassifier()\n", + "RandomizedSearchCV(estimator=GradientBoostingClassifier(),\n", + " param_distributions={'learning_rate': [0.001, 0.05, 0.1, 0.2,\n", + " 0.5],\n", + " 'max_depth': [3, 5, 10]})\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from cleanlab.classification import CleanLearning\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "\n", + "# Make example data\n", + "data = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Introduce label errors\n", + "true_errors = [97, 98, 100, 101, 102, 104]\n", + "for idx in true_errors:\n", + " labels[idx] = 1 - labels[idx]\n", + "\n", + "# CleanLearning with no hyperparameter-tuning during expensive cross-validation to find label issues\n", + "# but hyperparameter-tuning for the final training of model on clean subset of the data:\n", + "\n", + "model_to_find_errors = GradientBoostingClassifier() # this model will be trained many times via cross-validation\n", + "model_to_return = RandomizedSearchCV(GradientBoostingClassifier(),\n", + " param_distributions = {\n", + " \"learning_rate\": [0.001, 0.05, 0.1, 0.2, 0.5],\n", + " \"max_depth\": [3, 5, 10],\n", + " }\n", + " ) # this model will be trained once on clean subset of data\n", + "\n", + "cl0 = CleanLearning(model_to_find_errors)\n", + "issues = cl0.find_label_issues(data, labels)\n", + "\n", + "cl = CleanLearning(model_to_return).fit(data, labels, label_issues=issues) # CleanLearning for hyperparameter final training\n", + "pred_probs = cl.predict_proba(data) # predictions from hyperparameter-tuned GradientBoostingClassifier\n", + "\n", + "print(cl0.clf) # will be GradientBoostingClassifier()\n", + "print(cl.clf) # will be RandomizedSearchCV(estimator=GradientBoostingClassifier(),...)" + ] + }, + { + "cell_type": "markdown", + "id": "d228decd", + "metadata": {}, + "source": [ + "### Why does regression.learn.CleanLearning take so long?" + ] + }, + { + "cell_type": "markdown", + "id": "de5c984b", + "metadata": {}, + "source": [ + "To effectively identify errors in a regression dataset, the methods in [regression.learn.CleanLearning](../../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning) estimate each datapoint's aleatoric uncertainty (by fitting a second copy of the regression model to predict the residuals’ magnitudes), as well as its epistemic uncertainty (by fitting multiple copies of the regression model with bootstrap resampling). These uncertainty estimates help provide a robust quality score that accounts for the model's imperfect predictions. \n", + "\n", + "These uncertainty estimates help produce better results but require longer runtimes. Here are a few options to speed up the runtime of these methods:\n", + "\n", + "- Reduce the number of bootstrap resampling rounds by decreasing the `n_boot` argument (default value is 5, set it to 0 to skip the epistemic uncertainty estimation entirely).\n", + "\n", + "- Set `include_aleatoric_uncertainty=False` to skip the aleatoric uncertainty estimation.\n", + "\n", + "- Include less elements in the `coarse_search_range` argument of [regression.learn.CleanLearning.find_label_issues](../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning.find_label_issues). This is overall set of values initially considered for estimating the fraction of data that have label issues.\n", + "\n", + "- Reduce the `fine_search_size` argument of [regression.learn.CleanLearning.find_label_issues](../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning.find_label_issues). A higher number represents a more thorough search to precisely estimate the fraction of data that have label issues.\n", + "\n", + "Below is sample code on how to pass in these arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "623df36d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:23.956990Z", + "iopub.status.busy": "2024-05-24T23:49:23.956501Z", + "iopub.status.idle": "2024-05-24T23:49:24.015143Z", + "shell.execute_reply": "2024-05-24T23:49:24.014539Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n",
+       "              n_boot=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n", + " n_boot=1)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from cleanlab.regression.learn import CleanLearning\n", + "\n", + "X = np.random.random(size=(30, 3))\n", + "coefficients = np.random.uniform(-1, 1, size=3)\n", + "y = np.dot(X, coefficients) + np.random.normal(scale=0.2, size=30)\n", + "\n", + "# passing optinal arguments to reduce runtime\n", + "cl = CleanLearning(n_boot=1, include_aleatoric_uncertainty=False)\n", + "cl.find_label_issues(X, y, coarse_search_range=[0.05, 0.1], fine_search_size=2)\n", + "\n", + "# you can also pass coarse_search_range and fine_search_size as kwargs to CleanLearning.fit\n", + "cl.fit(X, y, find_label_issues_kwargs={\"coarse_search_range\": [0.05, 0.1], \"fine_search_size\": 2})" + ] + }, + { + "cell_type": "markdown", + "id": "1677ba25", + "metadata": {}, + "source": [ + "**With Datalab**:\n", + "\n", + "Datalab runs CleanLearning under the hood when looking for label issues in regression datasets. Here's how you can achieve the same behavior as calling `CleanLearning.find_label_issues()` in the code above using Datalab:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "af3052ac", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.017489Z", + "iopub.status.busy": "2024-05-24T23:49:24.017080Z", + "iopub.status.idle": "2024-05-24T23:49:24.057939Z", + "shell.execute_reply": "2024-05-24T23:49:24.057419Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n", + "\n", + "Audit complete. 3 issues found in the dataset.\n" + ] + } + ], + "source": [ + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data = {\"X\": X, \"y\": y}, label_name = \"y\", task=\"regression\")\n", + "\n", + "issue_types = {\n", + " \"label\": {\n", + " \"clean_learning_kwargs\": {\"n_boot\": 1, \"include_aleatoric_uncertainty\": False},\n", + " \"coarse_search_range\": [0.05, 0.1],\n", + " \"fine_search_size\": 2,\n", + " },\n", + "}\n", + "lab.find_issues(features=X, issue_types = issue_types)" + ] + }, + { + "cell_type": "markdown", + "id": "674cdd66", + "metadata": {}, + "source": [ + "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" + ] + }, + { + "cell_type": "markdown", + "id": "32b8bcc9", + "metadata": {}, + "source": [ + "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", + "cluster IDs to `find_issues`. These cluster IDs can be obtained by grouping\n", + "the features using any clustering algorithm of your choice (E.g. K-Means, DBSCAN, HDBSCAN etc). By default, Datalab will detect the underperforming group using the DBSCAN clustering algorithm.\n", + "\n", + "Below is sample code on how to generate cluster IDs and pass them to `find_issues`: " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "cb0ce6ea", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.060044Z", + "iopub.status.busy": "2024-05-24T23:49:24.059728Z", + "iopub.status.idle": "2024-05-24T23:49:24.163999Z", + "shell.execute_reply": "2024-05-24T23:49:24.163471Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Audit complete. 0 issues found in the dataset.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from cleanlab import Datalab\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "# Make example data\n", + "features = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Train classifier and generate out-of-sample probabilities\n", + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(model, features, labels, method=\"predict_proba\")\n", + "\n", + "# Group features into 8 clusters\n", + "clusterer = KMeans(n_init='auto', n_clusters=5)\n", + "cluster_ids = clusterer.fit_predict(features)\n", + "\n", + "# Find underperforming group\n", + "lab = Datalab(data={\"features\": features, \"y\": labels}, label_name=\"y\")\n", + "issue_types = {\"underperforming_group\": {\"cluster_ids\": cluster_ids}}\n", + "lab.find_issues(features=features, pred_probs=pred_probs, issue_types=issue_types)" + ] + }, + { + "cell_type": "markdown", + "id": "d9731d70", + "metadata": {}, + "source": [ + "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3c681020", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.166502Z", + "iopub.status.busy": "2024-05-24T23:49:24.166153Z", + "iopub.status.idle": "2024-05-24T23:49:24.228886Z", + "shell.execute_reply": "2024-05-24T23:49:24.228320Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding underperforming_group issues ...\n", + "\n", + "Audit complete. 0 issues found in the dataset.\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Make tabular dataset with 1 continuous column and 1 categorical column\n", + "continuous_column = np.concatenate([np.random.random(100), np.random.random(100) + 10])\n", + "categorical_column = np.concatenate([np.random.randint(0, 2, 100), np.random.randint(1, 3, 100)])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "data_df = pd.DataFrame({\"Feature_A\": continuous_column, \"Feature_B\": categorical_column, \"labels\": labels})\n", + "\n", + "# Train classifier and generate out-of-sample probabilities\n", + "model = LogisticRegression()\n", + "features = data_df[[\"Feature_A\", \"Feature_B\"]].to_numpy()\n", + "pred_probs = cross_val_predict(model, features, labels, method=\"predict_proba\")\n", + "\n", + "# Find underperforming group\n", + "lab = Datalab(data=data_df, label_name=\"labels\")\n", + "issue_types = {\"underperforming_group\": {\"cluster_ids\": data_df[\"Feature_B\"].values}}\n", + "lab.find_issues(features=features, pred_probs=pred_probs, issue_types=issue_types)" + ] + }, + { + "cell_type": "markdown", + "id": "8821438e", + "metadata": {}, + "source": [ + "### How to handle near-duplicate data identified by cleanlab?\n", + "\n", + "cleanlab may identify near-duplicate examples in your dataset, these are examples that are very similar to each other and can potentially cause issues in model training and analytics. When near-duplicates are present, models may unexpectedly emphasize these examples, especially if they were accidentally duplicated. In such cases, it is crucial to remove the (near) duplicate copies from your dataset to ensure accurate and reliable results. A common strategy is to remove all but one of the duplicates from your dataset. Here's how you can achieve this with results from cleanlab's `Datalab` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "dc736efc", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.231565Z", + "iopub.status.busy": "2024-05-24T23:49:24.231230Z", + "iopub.status.idle": "2024-05-24T23:49:24.240356Z", + "shell.execute_reply": "2024-05-24T23:49:24.239640Z" + } + }, + "outputs": [], + "source": [ + "from typing import Callable\n", + "import pandas as pd\n", + "\n", + "\n", + "def merge_duplicate_sets(df, merge_key: str):\n", + " \"\"\"Generate group keys for each row, then merge intersecting sets.\n", + " \n", + " :param df: DataFrame with columns 'is_near_duplicate_issue' and 'near_duplicate_sets'\n", + " :param merge_key: Name of the column to store the merged sets\n", + " \"\"\"\n", + "\n", + " df[merge_key] = df.apply(construct_group_key, axis=1)\n", + " merged_sets = consolidate_sets(df[merge_key].tolist())\n", + " df[merge_key] = df[merge_key].map(\n", + " lambda x: next(s for s in merged_sets if x.issubset(s))\n", + " )\n", + " return df\n", + "\n", + "def construct_group_key(row):\n", + " \"\"\"Convert near_duplicate_sets into a frozenset and include the row's own index.\"\"\"\n", + " return frozenset(row['near_duplicate_sets']).union({row.name})\n", + "\n", + "def consolidate_sets(sets_list):\n", + " \"\"\"Merge sets if they intersect.\"\"\"\n", + " \n", + " # Convert the input list of frozensets to a list of mutable sets\n", + " sets_list = [set(item) for item in sets_list]\n", + " \n", + " # A flag to keep track of whether any sets were merged in the current iteration\n", + " merged = True\n", + "\n", + " # Continue the merging process as long as we have merged some sets in the previous iteration\n", + " while merged:\n", + " merged = False\n", + " new_sets = []\n", + "\n", + " # Iterate through each set in our list\n", + " for current_set in sets_list:\n", + " # Skip empty sets\n", + " if not current_set:\n", + " continue\n", + "\n", + " # Find all sets that have an intersection with the current set\n", + " intersecting_sets = [s for s in sets_list if s & current_set]\n", + "\n", + " # If more than one set intersects, set the merged flag to True\n", + " if len(intersecting_sets) > 1:\n", + " merged = True\n", + "\n", + " # Merge all intersecting sets into one set\n", + " merged_set = set().union(*intersecting_sets)\n", + " new_sets.append(merged_set)\n", + "\n", + " # Empty the sets we've merged to prevent them from being processed again\n", + " for s in intersecting_sets:\n", + " sets_list[sets_list.index(s)] = set()\n", + "\n", + " # Replace the original sets list with the new list of merged sets\n", + " sets_list = new_sets\n", + "\n", + " # Convert the merged sets back to frozensets for the output\n", + " return [frozenset(item) for item in sets_list]\n", + "\n", + "def lowest_score_strategy(sub_df):\n", + " \"\"\"Keep the row with the lowest near_duplicate_score.\"\"\"\n", + " return sub_df['near_duplicate_score'].idxmin()\n", + "\n", + "\n", + "def filter_near_duplicates(data: pd.DataFrame, strategy_fn: Callable = lowest_score_strategy, **strategy_kwargs):\n", + " \"\"\"\n", + " Given a dataframe with columns 'is_near_duplicate_issue' and 'near_duplicate_sets',\n", + " return a series of boolean values where True indicates the rows to be removed.\n", + " The strategy_fn determines which rows to keep within each near_duplicate_set.\n", + "\n", + " :param data: DataFrame with is_near_duplicate_issue and near_duplicate_sets columns\n", + " :param strategy_fn: Function to determine which rows to keep within each near_duplicate_set\n", + " :return: Series of boolean values where True indicates rows to be removed.\n", + " \"\"\"\n", + " \n", + " # Filter out rows where 'is_near_duplicate_issue' is True to get potential duplicates\n", + " duplicate_rows = data.query(\"is_near_duplicate_issue\").copy()\n", + "\n", + " # Generate group keys for each row and merge intersecting sets\n", + " group_key = \"sets\"\n", + " duplicate_rows = merge_duplicate_sets(duplicate_rows, merge_key=group_key)\n", + "\n", + " # Use the strategy function to determine the indices of the rows to keep for each group\n", + " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n", + "\n", + " # Produce a boolean series indicating which rows should be removed\n", + " to_remove = ~data.index.isin(to_keep_indices)\n", + "\n", + " return to_remove" + ] + }, + { + "cell_type": "markdown", + "id": "0b606eae", + "metadata": {}, + "source": [ + "The functions above collect sets of near-duplicate examples. Within each\n", + "collection, a single example is chosen to be kept in the dataset. The rest of the examples in the collection are removed.\n", + "Examples that are not near-duplicates of any other examples are kept in the dataset as well.\n", + "\n", + "The choice of which example to keep in each set of near-duplicate examples can be made in a variety of ways. Here, the example with the lowest near-duplicate score is chosen.\n", + "You can use any strategy that best suits your application by defining the strategy as a function and passing it as the `strategy_fn` argument to `filter_near_duplicates()`.\n", + "Below is an example of how this is applied to a dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "5b5617ca", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.242330Z", + "iopub.status.busy": "2024-05-24T23:49:24.242166Z", + "iopub.status.idle": "2024-05-24T23:49:24.261570Z", + "shell.execute_reply": "2024-05-24T23:49:24.260978Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding near_duplicate issues ...\n", + "\n", + "Audit complete. 3 issues found in the dataset.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_7776/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" + ] + } + ], + "source": [ + "from cleanlab import Datalab\n", + "import numpy as np\n", + "\n", + "# Assume you have a dataset with a set of 3 near-duplicate examples\n", + "features = np.random.random(size=(15, 3))\n", + "for neighbor in range(1, 3):\n", + " # Make examples 0, 1, and 2 near-duplicates of each other\n", + " features[neighbor] = features[0] + np.random.normal(scale=0.001, size=3)\n", + "\n", + "# Identify near-duplicate examples with Datalab\n", + "your_dataset = {\n", + " \"features\": features,\n", + "}\n", + "lab = Datalab(data=your_dataset)\n", + "lab.find_issues(features = features, issue_types={\"near_duplicate\": {}})\n", + "\n", + "# Pick out ids of near-duplicate examples to remove\n", + "near_duplicate_issues = (\n", + " lab.get_issues(\"near_duplicate\")\n", + " .query(\"is_near_duplicate_issue\")\n", + " .sort_values(\"near_duplicate_score\")\n", + ")\n", + "ids_to_remove_series = filter_near_duplicates(near_duplicate_issues)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "9c829235", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:24.263552Z", + "iopub.status.busy": "2024-05-24T23:49:24.263232Z", + "iopub.status.idle": "2024-05-24T23:49:24.266391Z", + "shell.execute_reply": "2024-05-24T23:49:24.265816Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Near-duplicate examples to keep: [0]\n", + "Near-duplicate examples to remove: [1, 2]\n" + ] + } + ], + "source": [ + "print(\"Near-duplicate examples to keep:\", np.where(~ids_to_remove_series)[0].tolist())\n", + "\n", + "print(\"Near-duplicate examples to remove:\", np.where(ids_to_remove_series)[0].tolist())" + ] + }, + { + "cell_type": "markdown", + "id": "3a28168h", + "metadata": {}, + "source": [ + "### What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?" + ] + }, + { + "cell_type": "markdown", + "id": "1a117547", + "metadata": {}, + "source": [ + "These questions are automatically handled for you in [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- our platform for no-code data improvement.\n", + "While this open-source library **finds** data issues, an interface is needed to efficiently **fix** these issues in your dataset. [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is a no-code platform to **find and fix** problems in real-world ML datasets. Cleanlab Studio automatically runs the data quality algorithms from this library on top of AutoML models fit to your data, and presents detected issues in a smart data editing interface. Think of it like a data cleaning assistant that helps you quickly improve the quality of your data (via AI/automation + streamlined UX). [Try it for free!](https://cleanlab.ai/signup/) \n", + "\n", + "![Stages of modern AI pipeline that can now be automated with Cleanlab Studio](https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-pipeline.png)" + ] + }, + { + "cell_type": "markdown", + "id": "3a28168f", + "metadata": {}, + "source": [ + "### What license is cleanlab open-sourced under?" + ] + }, + { + "cell_type": "markdown", + "id": "1a117546", + "metadata": {}, + "source": [ + "[AGPL-3.0 license](https://github.com/cleanlab/cleanlab/blob/master/LICENSE)\n", + "\n", + "**What does this mean?** If you're working at a company, you can use this open-source library to clean up your internal datasets. You can also use this open-source library to clean up a dataset used to train a model that is deployed in a commercial product.\n", + "For non-commercial purposes, feel free to release altered versions of the source code as long as you include the same license.\n", + "\n", + "Please email `team@cleanlab.ai` to discuss licensing needs if you would like to offer a commercial product that utilizes any cleanlab source code." + ] + }, + { + "cell_type": "markdown", + "id": "1520a93f", + "metadata": {}, + "source": [ + "### Can't find an answer to your question?\n", + "\n", + "If your question is not addressed in these tutorials, please refer to the: [Cleanlab Github issues](https://github.com/cleanlab/cleanlab/issues?q=is%3Aissue), [Cleanlab Code Examples](https://github.com/cleanlab/examples) or our [Slack Community](https://cleanlab.ai/slack).\n", + "\n", + "If your question is not addressed anywhere, please open a [new Github issue](https://github.com/cleanlab/cleanlab/issues/new/choose). Our developers may also provide personalized assistance in our [Slack Community](https://cleanlab.ai/slack). \n", + "\n", + "Professional support and services are also available from our [ML experts](https://cleanlab.ai/about/), learn more by emailing: `team@cleanlab.ai`" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "0cf0187f81674184ab47ff6336d0c6a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99abeaa6e20b4ded9dddf2cfd017f051", + "placeholder": "​", + "style": "IPY_MODEL_66ce88cbede149de83c65282079b32d1", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1545090.99it/s]" + } + }, + "19081af98c6b4ff0b5c4cdb2b5e0f7b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_affd5ea913c0468d87c111237f23a653", + "placeholder": "​", + "style": "IPY_MODEL_40f3bf2e61fb4f0db905da2b95341d36", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1053633.44it/s]" + } + }, + "2cc89c5aeb85466396f4ccdf6a52f158": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2de52a7660804203973874aa076b4d33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cab645130644e629a80bbd6863e3445": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40f3bf2e61fb4f0db905da2b95341d36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "56c850fad1f944c8b66b347a21ec49b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5850aca1d6834bc38700beb6c6233acd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_721d4499d4cc4f18a0903a3043e7b8ab", + "placeholder": "​", + "style": "IPY_MODEL_88e921d5daf3481da4e124e5a1de26ec", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "66ce88cbede149de83c65282079b32d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "721d4499d4cc4f18a0903a3043e7b8ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81e603cd992f4535bf1a3d35ab4e3fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2cc89c5aeb85466396f4ccdf6a52f158", + "placeholder": "​", + "style": "IPY_MODEL_8b25d8ad7a3c48819b4753344502c6ca", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "88e921d5daf3481da4e124e5a1de26ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b25d8ad7a3c48819b4753344502c6ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8fec9d6df2c047efb5d81de11193690e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3cab645130644e629a80bbd6863e3445", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_56c850fad1f944c8b66b347a21ec49b9", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "9880c1b0e51d460987ed1a62dd9e8ed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_81e603cd992f4535bf1a3d35ab4e3fdc", + "IPY_MODEL_996ce66786224fff809340032cf7aeaa", + "IPY_MODEL_0cf0187f81674184ab47ff6336d0c6a2" + ], + "layout": "IPY_MODEL_2de52a7660804203973874aa076b4d33", + "tabbable": null, + "tooltip": null + } + }, + "996ce66786224fff809340032cf7aeaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed6178d193174d66a43d01c171640026", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e30e1f6edaca445ab4df3c65693945bf", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "99abeaa6e20b4ded9dddf2cfd017f051": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "affd5ea913c0468d87c111237f23a653": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cca6b53f68d341dc9085197ae7e8924f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5850aca1d6834bc38700beb6c6233acd", + "IPY_MODEL_8fec9d6df2c047efb5d81de11193690e", + "IPY_MODEL_19081af98c6b4ff0b5c4cdb2b5e0f7b8" + ], + "layout": "IPY_MODEL_d6cc9570cfc748319d11c36ea5c010be", + "tabbable": null, + "tooltip": null + } + }, + "d6cc9570cfc748319d11c36ea5c010be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e30e1f6edaca445ab4df3c65693945bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ed6178d193174d66a43d01c171640026": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb new file mode 100644 index 000000000..b2de095cb --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -0,0 +1,2416 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "Sfmml1VCqCHm" + }, + "source": [ + "# The Workflows of Data-centric AI for Classification with Noisy Labels\n", + "\n", + "In this tutorial, you will learn how to easily incorporate [cleanlab](https://github.com/cleanlab/cleanlab) into your ML development workflows to:\n", + "\n", + "- Automatically find issues such as label errors, outliers and near duplicates lurking in your classification data.\n", + "- Score the label quality of every example in your dataset.\n", + "- Train robust models in the presence of label issues.\n", + "- Identify overlapping classes that you can merge to make the learning task less ambiguous.\n", + "- Generate an overall label health score to track improvements in your labels as you clean your datasets over time.\n", + "\n", + "This tutorial provides an in-depth survey of many possible different ways that cleanlab can be utilized for Data-Centric AI. If you have a different use-case in mind that is not supported, please [tell us about it](https://github.com/cleanlab/cleanlab/issues)!\n", + "While this tutorial focuses on standard multi-class (and binary) classification datasets, cleanlab also supports other tasks including: [data labeled by multiple annotators](multiannotator.html), [multi-label classification](../cleanlab/filter.rst#cleanlab.filter.find_label_issues), and [token classification of text](token_classification.html).\n", + "\n", + "**cleanlab is grounded in theory and science**. Learn more:\n", + "\n", + "[Research Publications](https://cleanlab.ai/research) | [Label Errors found by cleanlab](https://labelerrors.com/) | [Examples using cleanlab](https://github.com/cleanlab/examples)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XBK4cAOUyLgW" + }, + "source": [ + "## Install dependencies and import them" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```\n", + "!pip install matplotlib \n", + "!pip install cleanlab[datalab]\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:27.454271Z", + "iopub.status.busy": "2024-05-24T23:49:27.454071Z", + "iopub.status.idle": "2024-05-24T23:49:28.640481Z", + "shell.execute_reply": "2024-05-24T23:49:28.639921Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: matplotlib==3.5.1 \n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")\n", + "\n", + "%config InlineBackend.print_figure_kwargs={\"facecolor\": \"w\"}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:28.643031Z", + "iopub.status.busy": "2024-05-24T23:49:28.642602Z", + "iopub.status.idle": "2024-05-24T23:49:28.822842Z", + "shell.execute_reply": "2024-05-24T23:49:28.822254Z" + }, + "id": "avXlHJcXjruP" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import cleanlab\n", + "from cleanlab import Datalab\n", + "from cleanlab.classification import CleanLearning\n", + "from cleanlab.benchmarking import noise_generation\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "from numpy.random import multivariate_normal\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I6VuupksjruQ" + }, + "source": [ + "## Create the data (can skip these details)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation **(click to expand)**\n", + "\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "SEED = 0\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8], [0, 10]],\n", + " covs=[\n", + " [[5, -1.5], [-1.5, 1]],\n", + " [[1, 0.5], [0.5, 4]],\n", + " [[5, 1], [1, 5]],\n", + " [[3, 1], [1, 1]],\n", + " ],\n", + " sizes=[100, 50, 50, 50],\n", + " avg_trace=0.8,\n", + " seed=SEED, # set to None for non-reproducible randomness\n", + "):\n", + " np.random.seed(seed=SEED)\n", + "\n", + " K = len(means) # number of classes\n", + " data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + "\n", + " for idx in range(K):\n", + " data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " test_data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " test_labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(data)\n", + " y_train = np.hstack(labels)\n", + " X_test = np.vstack(test_data)\n", + " y_test = np.hstack(test_labels)\n", + "\n", + " # Compute p(y=k) the prior distribution over true labels.\n", + " py_true = np.bincount(y_train) / float(len(y_train))\n", + "\n", + " noise_matrix_true = noise_generation.generate_noise_matrix_from_trace(\n", + " K,\n", + " trace=avg_trace * K,\n", + " py=py_true,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_marix.\n", + " s = noise_generation.generate_noisy_labels(y_train, noise_matrix_true)\n", + " s_test = noise_generation.generate_noisy_labels(y_test, noise_matrix_true)\n", + " ps = np.bincount(s) / float(len(s)) # Prior distribution over noisy labels\n", + "\n", + " return {\n", + " \"data\": X_train,\n", + " \"true_labels\": y_train, # You never get to see these perfect labels.\n", + " \"labels\": s, # Instead, you have these labels, which have some errors.\n", + " \"test_data\": X_test,\n", + " \"test_labels\": y_test, # Perfect labels used for \"true\" measure of model's performance during deployment.\n", + " \"noisy_test_labels\": s_test, # With IID train/test split, you'd have these labels, which also have some errors.\n", + " \"ps\": ps,\n", + " \"py_true\": py_true,\n", + " \"noise_matrix_true\": noise_matrix_true,\n", + " \"class_names\": [\"purple\", \"blue\", \"seafoam green\", \"yellow\"],\n", + " }\n", + "\n", + "\n", + "data_dict = make_data()\n", + "for key, val in data_dict.items(): # Map data_dict to variables in namespace\n", + " exec(key + \"=val\")\n", + "\n", + "# Display dataset visually using matplotlib\n", + "def plot_data(data, circles, title, alpha=1.0):\n", + " plt.figure(figsize=(14, 5))\n", + " plt.scatter(data[:, 0], data[:, 1], c=labels, s=60)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:28.825535Z", + "iopub.status.busy": "2024-05-24T23:49:28.825319Z", + "iopub.status.idle": "2024-05-24T23:49:28.838366Z", + "shell.execute_reply": "2024-05-24T23:49:28.837776Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "SEED = 0\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8], [0, 10]],\n", + " covs=[\n", + " [[5, -1.5], [-1.5, 1]],\n", + " [[1, 0.5], [0.5, 4]],\n", + " [[5, 1], [1, 5]],\n", + " [[3, 1], [1, 1]],\n", + " ],\n", + " sizes=[100, 50, 50, 50],\n", + " avg_trace=0.8,\n", + " seed=SEED, # set to None for non-reproducible randomness\n", + "):\n", + " np.random.seed(seed=SEED)\n", + "\n", + " K = len(means) # number of classes\n", + " data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + "\n", + " for idx in range(K):\n", + " data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " test_data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " test_labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(data)\n", + " y_train = np.hstack(labels)\n", + " X_test = np.vstack(test_data)\n", + " y_test = np.hstack(test_labels)\n", + "\n", + " # Compute p(y=k) the prior distribution over true labels.\n", + " py_true = np.bincount(y_train) / float(len(y_train))\n", + "\n", + " noise_matrix_true = noise_generation.generate_noise_matrix_from_trace(\n", + " K,\n", + " trace=avg_trace * K,\n", + " py=py_true,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_marix.\n", + " s = noise_generation.generate_noisy_labels(y_train, noise_matrix_true)\n", + " s_test = noise_generation.generate_noisy_labels(y_test, noise_matrix_true)\n", + " ps = np.bincount(s) / float(len(s)) # Prior distribution over noisy labels\n", + "\n", + " return {\n", + " \"data\": X_train,\n", + " \"true_labels\": y_train, # You never get to see these perfect labels.\n", + " \"labels\": s, # Instead, you have these labels, which have some errors.\n", + " \"test_data\": X_test,\n", + " \"test_labels\": y_test, # Perfect labels used for \"true\" measure of model's performance during deployment.\n", + " \"noisy_test_labels\": s_test, # With IID train/test split, you'd have these labels, which also have some errors.\n", + " \"ps\": ps,\n", + " \"py_true\": py_true,\n", + " \"noise_matrix_true\": noise_matrix_true,\n", + " \"class_names\": [\"purple\", \"blue\", \"seafoam green\", \"yellow\"],\n", + " }\n", + "\n", + "\n", + "data_dict = make_data()\n", + "for key, val in data_dict.items(): # Map data_dict to variables in namespace\n", + " exec(key + \"=val\")\n", + "\n", + "# Display dataset visually using matplotlib\n", + "def plot_data(data, circles, title, alpha=1.0):\n", + " plt.figure(figsize=(14, 5))\n", + " plt.scatter(data[:, 0], data[:, 1], c=labels, s=60)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:28.840397Z", + "iopub.status.busy": "2024-05-24T23:49:28.840218Z", + "iopub.status.idle": "2024-05-24T23:49:29.048220Z", + "shell.execute_reply": "2024-05-24T23:49:29.047628Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAHQCAYAAAD0wPz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVfrA8e+ZmfRKEkgIvfdi6CiCgAXFztpX7Lu2RV17Wcva9aeuddW1YMeOFRUEVBSk907oJZCE9DIz9/z+uMlkJpka0nk/z5MnmZlz75yZ3Dt37nvPeV+ltdYIIYQQQgghhBBCiCbD0tgdEEIIIYQQQgghhBCeJGAjhBBCCCGEEEII0cRIwEYIIYQQQgghhBCiiZGAjRBCCCGEEEIIIUQTIwEbIYQQQgghhBBCiCZGAjZCCCGEEEIIIYQQTYwEbIQQQgghhBBCCCGaGAnYCCGEEEIIIYQQQjQxErARQgghhBBCCCGEaGIkYCOEEMC4ceNQSqGU4u233/baZvv27a42SqmG7WAIgnktQjR3b7/9tms7HzduXGN3Rxwl5s2b59ruOnfuXKfrbi7HmOZGjolCiOZMAjZCNEPuXxiVUsTExFBQUNDY3RJCCCFEC/fxxx97fAdRSjFv3rzG7pYQQrRIErARohmaPn26x+3i4mI++eSTRuqNqC8PPPCA68vwZZdd1tjdEUJUkCv2wTmaR0G11G0kNzeXf/zjH43dDSGEOGpIwEaIZqaoqIhPP/20xv3VgzhCCCGEEHXptttu48CBA43dDSGEOGpIwEaIZubzzz+nsLAQgGOPPZa4uDgAfv31VzIzMxuzay1e586d0Vq7fpqqefPmufooI3OEEKLujBs3zvX5un379sbuToOaN28eb775JgATJkxo5N4IIcTRQQI2QjQz7kOrr7rqKs455xwAtNa88847jdQrIYQQQrRUpaWlXHPNNWitad26NU8++WRjd0kIIY4KErARohnZuXMnc+fOBSAqKopzzz2XSy65xPX4O++806RHfgghhBCi+XnooYfYvHkzAE8//TRJSUmN3CMhhDg6SMBGiGbk3XffdQVkzjjjDOLi4hg/fjzt2rUDYNu2bfz22291/ry+So3u3LmThx56iOHDh5OWlobVavVbinTdunXcd999jBgxgrZt2xIREUGbNm0YPnw49913Hzt37gy6T1lZWUyfPp3LLruMjIwMkpKSCAsLIzExkZ49e3LJJZfwySefYBjGEb12d6GWXJ09ezZXXHEF/fv3JzExEZvNRkxMDB06dGDcuHHccsstfP3115SVlXksV5ms8sEHH3TdN3369BpVOSp/qg/Lr02yy8OHD/PSSy9xxhln0LVrV+Li4oiIiCAtLY1x48Zx7733smTJkqDWVZe8vc6srCweffRRhg4dSuvWrYmIiKBHjx7cdNNN7N+/v8Y6ysvLee211zjhhBNITk4mPDyc9u3bc9FFF9XqNR06dIhnn32Wk046iU6dOhEVFUViYiJ9+/bl+uuvZ+HChUGvq6ysjHfffZdzzjmHrl27Ehsbi81mIz4+nh49enDqqafywAMPsHDhQr/BWMMw+OKLL7jooovo1asX8fHx2Gw24uLi6NKlCyeeeCJ33XUXc+bMwel0eix7zz33uN7jESNGhPRenHTSSa5lr7vuupCW9efrr7/mnHPOoUOHDkRGRtK+fXvGjx/PG2+8QUlJScjry8vLY8aMGfztb39j5MiRtG7dmvDwcNf7M2XKFN58803Ky8v9rqfytc6fP9913+WXX+51v/RV8rk+PrvqajtyN3v2bK677joGDBhASkoKERERtGvXjhNPPJHnn3+eoqIin8tedtllKKW4/PLLXffNnz/f52dYbSoMffPNN67l+/fv77dtZX8qf7755hufbTds2OBqFxcXh8Ph8Hg8UFnvuthGqnP/zEtOTiYqKoquXbty+eWXs2zZsqDWcSRWrVrFU089BcAJJ5zApZdeWu/P6c7hcPDxxx8zdepUevfu7dpnkpKSGDZsGNdddx3ffvttjc+22tixYwevvvoqF110EQMGDCAxMdH1XH379uWqq67ihx9+CGmdBQUFvPLKK5x22ml06NCB6Oho1z7ft29fzjrrLB577DFWr17tdz1NbT+vbt26ddx2222MHDmSlJQUwsPDiYqKIjU1leHDh3PVVVfx9ttvk5OTE/Q6hRCAFkI0Gz179tSABvRXX33luv/WW2913X/llVfW+fNmZma61l/5sfH222/rmJgYj/vdH3dXWFior776am21Wr22r/yJjIzUTzzxRMD+TJs2LeC6Kn/69++vN27cGHCdY8eOdS3z1ltvBf0+eJObm6tPPvnkoPoH6GuvvdZnX4L5yczMDPm1uHvuued0YmJiUM91//33B1xfXar+On/++Wfdpk0bn/1LSUnRa9ascS2/detW3b9/f5/trVarfuWVV4Luz7PPPqsTEhICvk8XX3yxLi4u9ruuFStWeOzTgX5mzJjhdT07duzQw4YNC3o91fexzMxMrZRyPb569eqg3ovt27dri8XiWm7p0qXBvYl+5Ofn6zPOOMNv/wcNGqS3bt2q33rrLdd9Y8eO9bnOp556SkdERAT13nTo0EH/8ccfPtcVyn7ZqVOnGsvXx2dXXW1HlbZs2aJPOOGEgOtp27atnjVrltd1TJ06NaT3au7cuQFfZ3WHDx92bX9KKZ2VleWzbadOnTye75///KfPtq+88oqr3cknn1zj8blz5/r9Hx/JNuLtGDNr1iydkpLicx0Wi0U//vjjwb1pteB0Ol2fLxEREa5tsnpfa/M/DMaPP/4Y9Pbt63Mg2GPi2Wef7fFZ6O9nzJgxev/+/QH7P2fOHN22bdugt4lFixZ5XU9T3M8rGYahb7vtNo/jgb+fPn36BHzfhBBVbAghmoXff/+dTZs2AZCSksIpp5zieuySSy7h6aefBuCTTz7hhRdeICoqqt768sknn7iS2VqtVvr370+rVq3Yv38/Gzdu9GibnZ3Nqaeeyp9//um6LywsjH79+pGUlEROTg5r1qzB4XBQWlrKHXfcQVZWluv1eLNmzRrXlTSlFF26dCEtLY2oqCgOHz7M+vXrKS4udrUdNWoUy5cvp2PHjnX8TtRkGAann366x0inyMhIevfuTXJyMna7nUOHDrF582bsdrtrGXfDhw8nMjKSLVu2sHXrVgDS09MZMGCA1+es7f/aMAyuvPLKGqNwUlJS6NatG9HR0Rw6dIgNGza4+nr48OFaPVddWLFiBRdeeCGlpaWEhYUxcOBA4uLi2LJlC7t37wbM0S8TJ05k3bp1lJeXM27cOHbt2gVA7969adu2LVlZWaxduxYAp9Ppurp47LHH+nxuwzD4+9//zuuvv+66TylFjx49SE9Pp7S0lDVr1rgSgr///vts376dOXPmEBERUWN9+/btY8KECWRnZ7vuS0xMpFevXsTFxVFcXMy+ffvYvn2760qptxEXxcXFTJgwgS1btrjui4mJoXfv3rRq1YrS0lIOHDjA1q1bXctXX0/nzp058cQT+fHHHwH43//+x3PPPefzvaj05ptvutZ1zDHHkJGREXAZf8rKyjj99NM9RiZUfr4kJiaSmZnJzp07WblyJSeddBLTpk0Lar0bNmzwGMXWoUMH2rVrR0xMDIWFhWzYsIG8vDwAdu3axQknnMBvv/3GkCFDaqzr5JNPBuDPP/8kNzcXgP79+7tGObpLTU2tcV9df3bV1XZUadmyZUyaNImsrCzXffHx8fTp04fo6Gh2797tmhazb98+Tj/9dGbMmMHZZ5/tsZ4BAwZw8skns2fPHtasWQNAq1atGD58uNfnrc30moSEBAYPHsyyZcvQWjN//nymTJlSo9327dvZsWOHx33+RvS4P1abUuRHuo24mzt3LpMnT8bhcGCz2VwjPtz/D4ZhcOedd9KtWzevr/9IPf/88yxevBiAO++8k549e9b5c/jy+uuvc+2113qMnImOjqZ3794kJiaSn5/Phg0bXJ+7R3p8WrVqlWs/sVqtdOvWjTZt2hAeHk52djbr1693jcL79ddfOfbYY1m2bBnx8fE+13faaadRWlrquq9169b06NGD6OhoCgsL2bVrF3v27HE97m3/bKr7eaV77rnHNQILPI+NFouF3NxcNm/e7Po/1eXIZyGOCo0aLhJCBO2aa65xXZ247rrrajw+YMAA1+Pvv/9+nT539StpcXFxGtDTpk3Thw4d8mi7ZcsW19+GYehJkya5louPj9cvvPCCLiws9FgmOztb/+Mf//B4ji+//NJnf0455RR93nnn6c8//1zn5+fXeLysrEx/8MEHOj093bW+k046ye9rrKsRNp9++qnr8fDwcP3cc8/poqIir3386aef9OWXX66nTZvmdV3333+/a11Tp0712/9QX0v19QN6xIgRet68edrpdHq0Kykp0TNnztRnnHGGvummm4LuR11w719SUpIG9M0336xzc3M92n3wwQc6PDzc1fZf//qXPu2001z/+02bNnm0X7p0qW7fvr2r/bHHHuu3H4899pirrVJKT5s2Te/evdujTVlZmX7llVd0dHS0q62v9+uGG25wtUlPT9fffPNNjfdda3O01ocffqhPPPFE/dFHH9V4/Omnn/bYv959911dXl5eo11RUZGeOXOmnjJlin7yySdrPO6+3SYnJ+uysjK/74fT6dQdO3Z0LfPSSy/5bR+Me++91+P//Ze//EXv2bPHo828efN0t27dNOAx6sDfCJurr75aT5o0Sb/33ns1Pq8qX8u3336re/Xq5XEF2Nv/o1Koo9gq1fVnV11tR1prfejQId2uXTvX+nr16qW/+uor7XA4PNqtX79eT5w40dUuISFBb9++3es6gx0FVVu33HKLa/3XX399wD5ERUVpMEfWHT582Gv7tLQ0V3tvo60CjbCpVJttpPoxJjk5WSul9J133lnjM2/hwoUen2EdO3b0u83Wxvbt210jaXv27KlLS0t99rWuR9jMmTPHY8RGu3bt9LvvvqtLSko82jmdTv3HH3/o6667To8cOdLruoL9XwwYMEBfeeWVetasWTWeR2tztPDLL7/sMcrymmuu8bm+yZMne3ym/Pbbb17bHThwQL/xxht6xIgRXre5pryf79u3T4eFhbnaXX311Xrfvn012hmGoZcvX67vuecefdxxx3ntmxDCOwnYCNEMlJSUeExZWbBgQY02TzzxRNDBiVBV/2IG6EceeSTgcm+++abHyfbatWv9tn/44Ydd7bt3764Nw/DarnrAx1+/3d83f1M96ipgc8UVV7gev/fee4PqZ/UvSpXqM2CzatUqjy/DZ599ttcT/eoKCgqC7kddqL7d/fvf//bZ9sEHH/QIlgH6lFNO0Xa73Wt79xMvQG/dutVru40bN7q+kCql9AcffOC3z/PmzdM2m811Ylh9yprWWnft2tX1vLNnz/a7vkretpPx48e71vO///2v1uspLy/3OFENNJx+1qxZHifBvk5+g7V7926PgNt5553nc//ftWuXR18DBQOC/bzIzs72+L988803PtvWNmBT159ddbUdaa31pZde6lrXsGHDvAaUKtntdo9g/BVXXOG1XX0HbL766ivX+vv16+e1jfv0rJtvvtn199dff12j7fr1612Px8bGev3saMiADaD/+9//+my/ePFijyk8c+bMCep5gnXKKaf43L7qM2BTVlbmEYzq2bNnjeCtN76OT8H+L4LdPxcvXuw6JkRGRnoNBNvtdtdUTKVUjYsGvnjbP5vyfv7OO++4Hg82EOOrb0II7yTpsBDNwMyZM11Dfbt27cro0aNrtLnooouwWMxdevbs2R5DbOvawIEDufPOO/220Vp7DJF97rnn6Nu3r99l7r77blebLVu2uKZoVBcTExNUPzt37syNN97ouv3VV18FtdyRqJyaA/idYuPOarXWV3d8euqpp1zDkjt27Mj06dMJCwsLuFxsbGx9d82nvn37cvfdd/t8/Oqrr3Ylgy4vLycsLIzXX38dm8377N9x48Z5DO///fffvbZ79tlnXVPCLr/8ci688EK//Rw7dixXX301YE65evXVV2u0qavtpK7WExYW5pEg9n//+5/fdbg/PmXKFBISEoJ6bl/efvtt11SD+Ph4XnrpJZ+Jvdu3b88TTzwR9LqD/bxISkrinnvucd2eOXNm0M9R130J9rOrLrejDz74AIDw8HA+/PBD4uLifK7DZrPx2muvuT4zPvjgA9e0soY0ZswY13Fv3bp1HDx4sEabyil2Xbp08UiW621alPt0vNGjR/v87Ggo48eP529/+5vPx4cOHcqYMWNctxcsWFBnz/3BBx8wa9YswJx2PWHChDpbdyDvvfeea9u2Wq18+OGHpKenB1zuSI9Pwe6fQ4cO5YILLgDMcufekhAfPHjQNRWzTZs29OjRI6h11+fnfH3s583lO48QzZkEbIRoBqZPn+76++KLL/bapn379q759oZh8O6779Zbf6688krXl2Rfli5dyvr16wHzy8pFF10UcL1KKY92P//885F1FDyq3lTOw69PkZGRrr9XrVpV789XG3a7nc8++8x1e9q0aX6/tDUVl19+ud/trm3btrRv3951+6STTvK47Y379lG5vbozDMP1BRfgpptuCqqv7vupt+24rraTutze3ANec+bMqZH3o9KhQ4c8AghXXXXVET0vwJdffun6+7zzziMlJcVv+wsvvLBeygo39OeFP8H0pa7+/x999JGrGtLkyZPp1q1bwGXat2/P2LFjAfOk1VfAsz4lJiYyaNAgAFceG3c7duxwVZcbN24cAwcOpFWrVoD3gM2R5q+pa9dcc03ANscdd5zr7w0bNtTJ82ZnZ7s+65KSknjmmWfqZL3B+vDDD11/n3rqqUecH6s+BNo/3ffNrKwsrxUMg9WU9/Pm8J1HiOZOkg4L0cTt27fPY6TJJZdc4rPtJZdc4jo5nD59esBRMLXl/gXRl19//dX19/HHHx/0FRX38qzBlCtdvHgxCxYsYN26deTm5lJUVOSR0M69fGR9jjqqNGTIENfJ7IMPPkh6ejoXXHBBo1+pdbd06VJXYlOAc889txF7E7xgSk6npaW5kgyPHDkyqPaVvCWsXLlyJfn5+YCZjNlX4ufq3LfjFStWoLX2GDEyZMgQ5s6dC5j77VtvvRX01Ul3Q4YMcX1JvvHGG4mJieHUU08Nqux8dV26dGHixIn89NNPGIbBW2+9xQMPPFCj3bvvvusaDdOzZ0+OP/74kJ/LXXl5uccX/cqkrf6EhYUxceJEPv7445Cea+3atcyfP581a9aQnZ1NYWGhR0JT95Lh9f15URefXXW1Hbl/Xo8fPz7o5fr378/s2bOBqkSmDW3cuHEsX74cMAMu7ol3qwdgLBYLxx9/PDNnzmTFihXk5eV5jA5zD/g0hYDNqFGjArZxT2ZcV0nhb7nlFtdopSeeeILWrVvXyXqD4XA4+OOPP1y3G+P4ZBgGv/32GwsXLmTjxo0cPnyY4uJij1LZ7vukt/2zVatWdOnShczMTLTWnHXWWbz++utBH0PcNeX93D05+/fff8/dd9/NHXfcccSjLoUQVZrOGYQQwqv33nvPdUIxdOhQvxUazj33XK6//npKSkrYsGEDf/75p8+qHEcimKsylZVBwDwxca9q5Y/7ScqhQ4d8tvvuu+/45z//GdIVxYYYsn/llVfy1FNPUVhYSHFxMX/961+5+eabmTRpEmPHjmXMmDENWmXDG/eRJMnJyXTq1KkRexO8QBVVwKwgUqlNmzYhtXcPYlVy347LysqC3o7dlZeXk5+f7/EFdtq0aa4v4Js3b+a4446jR48enHLKKRx//PGMGTMmqNd7ww038M477+B0OsnKymLy5Mm0b9/eY3sLpTra3/72N3766ScA3nrrLf71r3/VGNX0xhtvuP6+8sorg163Lzt37nQFgMAz2OVPv379gn6OhQsXMm3aNI9qdYHU1+dFXX521dV25L6dv/HGG3z99ddB9cu9Opm/z+v6NG7cOJ599lmg5qgZbyNmxo0bx8yZM3E6nfz6669MnjwZgI0bN7Jv3z7AnBozbNiweu97IO4BZV8CfYaFavbs2bzzzjuAOcWlLvbxUOzatYuioiLXbW/V2urTO++8w7333usK/AfD1/550003uarZLVq0iIEDBzJo0CBOOukkjj/+eI499ljXiC9/mvJ+PmbMGDIyMlwX2B577DGeffZZJkyYwPjx4znuuOMYMmSITIMS4kg0agYdIURA/fr1cyV0e+655wK2P//8813tvVWTqo3qyQWDqURx5pln1kieGOpPly5dvK77qaeeqtX6jjRBZDBJh7XW+ocffvCoIlH9p3379vr666/XK1as8Pse1lfSYffKQr179w56vY3B/X3zlry3ulATfQZ6j5999tkj3o4BvWPHjhrrfvTRRz0SP1f/GTBggH7ooYf03r17/b6G6dOnu5Jbevvp3r27vv322z0quPlSXl6uU1NTXcvOmjXL4/E//vjD9VhYWJjev39/wHUG8ueff3r0NysrK6jlXnzxRdcy/hLafvTRR9pqtdbq/+ZLbZMO18dnV11sR/4+r4L9ufzyy2ust76TDmttVsapfP1KKY/tp3PnzhrQXbt2dd23fPlyV5/++c9/uu7/73//67rfX+L+hkw6HIy6fI+LiopcCW7DwsL0mjVrgu5rXSUdXrJkicd66+IzJtj/hXs1plB+fL3vhmHo6667zudyFotFDx8+XD/zzDMBE7c35f08MzNT9+nTx+cy8fHxesqUKX4TuQshfJMcNkI0YUuXLmXt2rWu2/feey+JiYl+f9wTZX700UceV67rSqD8NYDHFbLacp8eUGnhwoXcdtttrtudOnXikUce4ZdffnFdmXM6nWizCp7rqlRDOumkk9i4cSO3336710SJu3fv5qWXXuKYY47h8ssvr5OroqGoTIQIEBER0aDP3dzUxXYM3rflu+66i2XLlnHJJZd4TZa5evVq/vWvf9G9e3f+7//+z+e6L730UtatW8e1115LcnJyjce3bNnCk08+Se/evbnjjjtcOQy8CZR82P325MmTg7qqG0j1z6jw8PCglgtm292+fTuXXXaZa5Ri69atufvuu5k9ezaZmZmuKVGVnxeZmZmhv4Ag1ddnV11sR/X1ed0QfOWx2blzp0f+mkq+8ti4T4eqzNlxtPnPf/7Dtm3bAPjnP/8Z0ii2uuJ+fIKGO0Z99NFHvPjii67b/fr145lnnuGPP/5g3759FBcXYxiGa/986623Aq5TKcVLL73E/PnzOfvss2u8FsMw+PPPP7nlllvo0qWLR7606pryft65c2eWL1/O888/z8CBA2s8np+fz6effsrkyZMZNWpUvX7OCtESyZQoIZqwt99+2+N2YWFhSMvn5OTw9ddfN8occPfpH9dff73HF6Ej8fjjj7v+HjlyJD/99JPfyhAFBQV18ryhSk1N5YknnuCJJ55g3bp1zJs3j/nz5/Pzzz+7hhRrrXn77bfJycmpl4o0viQmJrr+bozKLs2J+3bcr18/jyHldWHQoEG8++672O12Fi9e7NpOfvnlF0pLSwFzmsOtt96KxWLh5ptv9rqerl278vLLL/Piiy+yYsUK13rmzp3r2gccDgdPPvkkpaWl/Oc///HZp6uvvponnngCrTVfffUVhw4dIiUlhcLCQmbMmOFqVxfJhsGsCuWuoKAgqPwHwezbzz33nOt97Nq1K7///rvfIFN9fl7U52fXkW5HCQkJZGdnA/DJJ5945IFpDsaOHVsjj42vBMK+8tg0tfw1jeHAgQOuvx9//HGPbTaQE044wfV3p06dXMGyULkfn8A8RlW/rz64v9azzjqLjz/+2G/lxFD2z+OPP57jjz+e0tJSFixYwPz585k/fz6///67K4Cem5vLxRdfTGRkJOecc47X9TTl/TwiIoIbb7yRG2+8kb179zJ37lzXd56tW7e62i1cuJATTjiB5cuXBzUdTAghVaKEaLLKy8s9KiXUlnuFqYbkflKUlZVVJ+vUWrsS34H5BStQGc+GSDQcSN++fbnuuuuYMWMG+/fv57vvvvO4CvXVV195JAOsb+55EXbv3u36oidqqo/t2JuwsDBGjx7N3XffzQ8//MChQ4d49dVXPaol3X///QGvkFosFjIyMrjllluYOXMmBw8eZMaMGXTu3NnV5qWXXvJ7MtW1a1cmTpwImJ9DlRXnPv74Y1fQuH379rXK5+NN9VxDwZ7oBXOVtjIfD8C//vWvgCOC6uvzoqE+u2q7HTXUdl5f3AMslYEafxWfKm9X5rHZtGkTe/fuBZpO/pqjVfW8PZs3b67358zKymLlypWu288++6zfYA3Ubv+MjIxkwoQJPPTQQ8yfP58DBw7wxBNPeOQhch+F50tT38/T09O5+OKLee2119iyZQvLly/3CELt2LGjzi7iCXE0kICNEE3Ut99+67oSEhERQX5+vmsobqCfBQsWuNbz/fffN8oXcPcKPQsXLqyTdebk5Hh8ARk6dGjAZdyrTTQFVquVSZMmMWfOHI8vV+6VwCq5Tz3TbtUpjpT7/8bhcDRKOd7mwv29OnjwoGu6QH2LiYnhmmuu4ZNPPnHdV1BQEPK+FBERwXnnnccPP/zgOgFxOp3MmTPH73Lu5YQrkwy7T4cKVGI9FKmpqbRt29Z1O9jEwMG027lzp+vvuvy8CHXfbKzPrmC3o/r4vIb6+wyr7vjjj3c917p16zh48KArYNO1a1c6dOjg0b56gMc9uDN69OiAJ+vBaKjXXpdiY2NJTk4O6qf66Ij4+HjXY0lJSbXuQ1JSEj169HDd/uWXX2q9rmC5JxhOSUnxCHD7Uhf7Z1JSErfffjsvvfSS675t27Z5jEgJRmPv54EMHjyYTz/91GMUlrfvPEII7yRgI0QT5T4y5qSTTiIuLi7oZUeNGuUq9elwOPzOi64vEyZMcFUF2LVrV53kkrHb7SG1z8/P5/PPPz/i560PKSkpHmU53YeiV4qJiXH97V5u+Eilp6fTt29f1+3XX3+9ztbd0nTo0IE+ffq4bjf0iLVx48Z5TA/ytp0Eo2fPnh7/80DrOfPMM11XY9euXcubb77pOkFRSnHFFVfUqh++jBkzxvV3MKW6MzMzgwrYhPKZ4XQ6XaOJAgl132zsz65A25F7KfWZM2fW2VTJ+voMq65Vq1auUYtaa959913XCCz3k8RK1fPY+BuNU1sN9drr0sMPP8yhQ4eC+qmsClRp5syZPh8L1Yknnuj6e/r06SHvP6EKdf1bt26t01GxZ511lsft2n7ON9Z+HgylFGeccYbPvgkhfJOAjRBN0MGDB/nuu+9ct0OdZ6yU8shb0xjTotLT0zn//PNdt6dNm3bEyXWTk5M9rny6jyTy5q677go578+RCuVKqvsceG9XJN2HhruX1awLN9xwg+vvGTNmeEzXqI3t27ejlHL9PPDAA0fYw6bDPQ/AM88841EWvTZC2UbKyso8TiaqbyehrMt9Xwh0BTwsLIzLLrvMdfv66693/T1hwoSgrkCH4q9//avr70WLFgUsN3vvvfcG9drdR+4E+rx45plngk6GGeq+WR+fXXW5HZ1zzjl06tQJMINF//znP4Netz/u79O2bdvqdaSJe6DlySef9Hp/pco8NgArVqzwmDpXVwmH6/Pzu6W7/vrrUUoB5ii5hx56qF6fz/1z4tChQ2zatMlv+2nTpgXclmv7XQA898+mvp/X5XceIYR3ErARogn64IMPXAfd8PBwj6sSwfrLX/7i+nvFihWsWrWqzvoXrAcffNA1Mmj16tWceOKJHlMUvDEMg59++omTTz6ZjRs3ejxWOW+70u23305+fn6NdWitefTRR3n55Zfr4FWEZsKECbzyyite++Xu22+/9biqW3ny4C4jI8P194oVK+q04tXll1/uGjmiteacc87h22+/9bvM0qVL+eyzz+qsD83F1KlTXVVoCgsLmThxYlBXV9esWcPVV19do5rIjh07GDNmDF9//bXfik1g5iGoDHSGh4d7DGkHc6j5+++/HzAP0SuvvOIxzN7b9lbd1Vdf7Tppcl9/XSUbdjdp0iSPvE6XXXYZK1as8Nr2ySefDHrUoPvJ97///W+feSemT5/OXXfdFXR/3ffNjz/+2JX/xJf6+Oyqy+3IZrPxxBNPuG6/8cYb/P3vfw8YZC8qKuLtt99mwoQJXh8fMGAANptZ3yI7O5t33nkn4OuqLff/tfvVe18jZtzz2FQmgo+Ojmb48OF10p9QtxFRpW/fvkydOtV1++GHH+aRRx5xVXvzZu/evR5Ti0LRqVMnVyAD4B//+IfXCpt2u53rrrsu4LESzKlckydPZt68eX6DGk6nkzvvvNN1Oy0tjZ49e7puN/X9/Oabb+buu+/2mFbmTWZmpsfnWjDHICGESapECdEEuY+ImTBhQq0qJBx77LG0bduWffv2udbprzRwfejevTvTp09nypQpGIbB77//To8ePZgyZQrjx4+nU6dOREREkJeXR2ZmJkuXLmXWrFmuL9vevuRMmzbNVc1j5cqVDBw4kBtuuIEhQ4agtWb9+vVMnz6dxYsXA+bJZfXSxPVp27ZtXHfdddxyyy2cdNJJjBo1ij59+pCUlITT6WT79u189913fPbZZ67ymEOHDvUYqlypT58+DB48mBUrVqC1Zvz48QwcOJAOHTq4ToIAXnvttRqJWwOJjIxkxowZjB49msLCQgoKCpg8eTLjx4/nnHPOoUePHkRFRXHw4EGWL1/Ot99+y/Lly5k2bVqjVB1rTOHh4Xz++ecMHz6c7Oxs9u7dy/HHH8/48eOZPHkyvXv3Ji4ujsLCQvbt28fy5cuZPXu2ayTOkCFDaqzzt99+47fffiMlJYXTTjuNYcOG0aVLFxISEigpKWH9+vV8+OGHHnkSrr/++hqfBatWreKSSy7h2muv5dRTT2XEiBF0796dVq1aUV5ezpYtW/j888/54YcfXMucffbZHtOjfOnWrRsTJkzwGH2VnJzM2WefHepbGJDVauW1115jzJgx2O12cnJyGDlyJFdeeSUnnXQSiYmJZGZm8u677/Lzzz+jlGLKlCkeORu8ufHGG3nnnXfQWrN7924GDx7MjTfeyKhRowgLC2Pr1q18+OGHrpw+wX5enHPOOdx8882UlZWxZ88eunbtSkZGBikpKa7cJW3atOG1115zLVMfn111tR0BnH/++SxatIhnn30WgFdffZXPPvuMiy66iNGjR7umyOXm5rJhwwYWLVrETz/9RHFxsc9kzvHx8UyePJkvv/wSMANxjz76KN26dfMo3/7www/Tv39/v681kOOPPx6llMdxo1u3brRv395re2+BnLrKXwO120ZElRdffJE///yTdevWAeaouvfee4+LL76YwYMHk5iYSH5+PmvXrmXOnDnMmTOHfv36eYwGDMW0adO45ZZbAPjhhx8YMmQI1157Lf369aO8vJyVK1fyxhtvsGHDBqxWK5deeqnf0t5aa7799lu+/fZbOnTowKRJkxg6dCgdOnQgLi6OgoICVq9ezfTp01m7dq1rubvuuqtGfrCmvJ8fPnyY//znPzz++OOMHj2asWPHMmjQIFq3bk1YWBj79+/nl19+4e2333aNsImPj+cf//hHkP8ZIQRaCNGkrFq1SgOunzfeeKPW67rhhhtc60lNTdV2u71W68nMzPToU6i+++47nZCQ4LGOYH7Wr1/vdX1XXnllUMvfeuuteu7cua7bnTp18tnHsWPHutq99dZbtX4fOnXqFNJr7NGjh96xY4fPfi1evFgnJib6XUdmZmbIr6XS0qVLdVpaWtD9nTZtmtf1LFq0yKPdZ5995vd5g+XvdXoTymvXWuv777/f1X7q1Kl+227ZskX37ds35O34lVde8VhP9e0omJ/TTz9dl5aW+n1/gvkZMWKEzsnJCfi+VPr44489lr/pppuCXrY2ZsyYoa1Wa8DXce+99+q33nrLdXvs2LE+1/nvf/87qPfmvPPO09u2bQu4j1d69dVXtcVi8bk+b583dfnZVZfbkbuHH35YK6VCWm9qaqrP9WVmZur27dv7XX7u3Ll++xSsQYMGeaz3yiuv9NnW6XTqVq1aebR/+OGHAz5HsMcUrUPfRmpzrA12P6hr1ftaV/9Dd4cOHdKjR48OejscNGiQ1/UEc1xwOBz65JNPDvgcFotFP//88wHfd/ftJNifv//979owDI/1NPX9fOrUqSGtIyYmRv/4449++yaE8CRTooRoYtxH19hsthrJ6ELhPi3qwIEDzJo160i6VmuTJk1i48aN3HLLLTUqS1SXlpbG5Zdfzty5c+nVq5fXNq+//jqPPfYY8fHxXh/v2rUrH3zwAU899dQR9z1Ujz32GGeddZZH4j9vUlJSuPPOO1m2bBkdO3b02W7o0KGsWbOGe+65h5EjR5KUlOQxuuZIZWRksG7dOm6//Xa/I7kiIyM5++yzueSSS7w+7j5FqE+fPvUyCqOxdevWjWXLlvH888/TtWtXv21jY2M5/fTT+fDDDz1ywYBZFenJJ59kzJgxHqMMvOnVqxevv/46M2fOJCIiosbjL774IieddJJHWVhvOnTowBNPPMGvv/4acB90VzkVrFJ9TIdyd95557FgwQIGDx7s9fH27dszffp0/v3vfwe9znvvvZc33njD5yi0tLQ0nnvuOWbMmOGaAhaMa665hj///JNrrrmG/v37Ex8fH7ByVl1+dtXlduTunnvuYcWKFUyZMiVg2969e3PHHXd4TO+srnPnzqxcuZLHHnuM448/njZt2gTsb235Kt/tjXsem2Da10ZtthFRJTk5mfnz5/Pf//6XLl26+GxnsVgYNWoUd999d62fy2q18tVXX3HLLbf43O779+/PDz/8wI033hhwfQMGDOCBBx5g6NChrgIMvmRkZPD555/zyiuv1PgMaur7+TXXXMMVV1zhcyRbpcjISC666CLWrFnjkVRaCBGY0rqZ1BoUQrQIhmGwdOlS1q5dy6FDhygrKyM+Pp727dvTt29fn0EabwoKCpg3bx6bN2+mvLyctLQ0+vTpw4gRI+rxFQTHMAzWrVvHxo0b2b17NwUFBYSHh5OcnMyAAQM45phj6mzofV1xOp0sXLiQDRs2cPDgQcBMDNi7d2+GDRtGVFSUz2XPPvts17SHd955xyOJbEu1efNmlixZQlZWFgUFBcTExJCamkrv3r0ZMGBAUP/f0tJSVq5cyebNm9m/fz8lJSXExMSQlpbGMccc41Ghyh+Hw8GqVavYtGkT+/bto6ioiMjISNq0acOgQYMYMGBArU4UH3zwQVcC6ZEjR9ZJKdtgrVy5ksWLF3Pw4EGSk5Pp2bOnR/nmUJWWlvLrr7+ydu1aSkpKaNOmDd27d+e4444LeEJV1+r6s6uutqPqSkpKWLBgAZmZmWRnZwOQkJBA165dGTBgAOnp6bVarxC1sW7dOpYuXUpWVhalpaUkJCTQrVs3hg0bRkpKSp09T3Z2NnPnznUlIW/bti0DBw70yLMVisLCQlasWMGWLVs4ePAgZWVlxMbG0q5dO4YOHeo3GOWuqe/nO3fuZPXq1ezYsYPDhw+jlCIhIYFevXoxbNgwn4FqIYR/ErARQghxxFq3bs2hQ4fo0qULmzZtqtNRQKJxOJ1OunTp4kom+cYbb9R5OW8hhBBCCOGbjMsUQghxRNavX++qsnLHHXdIsKaF+PDDD13BmlatWnHhhRc2co+EEEIIIY4uErARQghxRCrz16Snp9fI1yKapw0bNnDbbbe5bt9www1+p8QJIYQQQoi6J1OihBBCCOFKcJ6VlcXixYtxOByAmZR3/fr1fpNSCyGEEEKIuicBGyGEEEJ4rZAUHh7Ot99+y8SJExuhR0IIIYQQRzeZEiWEEEIIF6UUbdq0YcqUKSxatEiCNUIIIYQQjaTJjbAxDIO9e/cSFxfn9WqfEEIIIYQQQgghRHOktaagoID09HQsFv9jaJpcKY+9e/fSoUOHxu6GEEIIIYQQQgghRL3YtWsX7du399umyQVs4uLiALPz8fHxjdwbIYQQQgghhBBCiLqRn59Phw4dXLEPf5pcwKZyGlR8fLwEbIQQQgghhBBCCNHiBJMCRpIOCyGEEEIIIYQQQjQxErARQgghhBBCCCGEaGIkYCOEEEIIIYQQQgjRxEjARgghhBBCCCGEEKKJkYCNEEIIIYQQQgghRBMjARshhBBCCCGEEEKIJkYCNkIIIYQQQgghhBBNjARshBBCCCGEEEIIIZoYW2N3QAghhBAtj9ZOsK8BnQcqDsL6o1RYY3dLCCGEEKLZkICNEEIIIeqM1nYono4uegeM/VUPWJIh+mKIuQqlIhuvg0IIIUQt7Mw6zNJNuyhzOGmTGMux/ToTESan06J+yRYmhBBCiDqhdTk69xoo/wPQng8a2ejCF6FsPrR6G2WJaZQ+CiGEEKHYvOcQz3w6n0UbdgKgFGgNcVERXHDCYK46dQRhVmsj91K0VJLDRgghhBB1Quc/4T1Y42KAfTU6/76G7JYQQghRK2u372fqkx+yeNMu13264hBXUFLG/75bxG2vfo3DaTRSD0VLJwEbIYQQQhwxbeRDyQx8B2sqGVD6Hdq5P0A7IYQQovHYHU5uemUm5XYnhuH92KaBX1dn8t6cpQ3bOXHUkICNEEIIIY5c6XeAPfj2JV/WV0+EEEKII/bzii1k5xdjaP8XIjTwwc/LcRoyykbUPQnYCCGEEOKIaedeINg5/Ba0c199dkcIIYQ4It/9uR6LUkG1PZRXxIote+u5R+JoJAEbIYQQQhwxpcIJPB3KfQEp8S2EEKLpOpRXFHB0jbvsgqJ67I04WknARgghhBBHLmwY4AyysQMVPqw+eyOEEEIckZjI8JDaR0eE1l6IYEjARgghhBBHLnw4WDsBQQwftyRDxPh675IQQghRW8f170KQM6KICLMxuFt6/XZIHJUkYCOEEEKII6aUQsXfjxmw8f8NV8Xdh5IpUUIIIZqwM0b1w2YJfLpstShOH9mX2KiIBuiVONpIwEYIIYQQdUJFHIdKfAEIp2bQRgFhqIQnUFGnNnznhBBCiBAkxkZx+/kn+G1jtShaJ8Ty98mjGqhX4mhja+wOCCGEEKLlUJEnQpsFUPIFuvQbMHJBxaMiT4HoKShLUmN3sVkocpTx476VbMrfh4GmS0xrJqUfQ0J4dGN3TQghjhrnjhmI1WrhqRnzKCm3Y1EKQ2usFoXT0PTpmMpT10wmKV4+m0X9UFqHkPq6AeTn55OQkEBeXh7x8fGN3R0hhBBCiAajtWb6tvm8uXUupYYdmzIHQzu1gU1ZOb/TaK7vdTJWJYOkhRCioRSXlvP94g0s3riLMruDNolxnD6qL/06paKCTXQjRIVQYh4hB2x++eUXnnrqKZYuXcq+ffv44osvOOusswCw2+3ce++9fPfdd2zbto2EhAQmTpzI448/Tnp6cEmYJGAjhBBCiKPVfzZ8x/vbf/P5uAJOajuIhwaeJycJQgghRDMUSswj5MszRUVFDBo0iJdeeqnGY8XFxSxbtoz77ruPZcuW8fnnn7Nx40bOOOOMUJ9GCCGEEOKosip3h99gDYAGfti3krkH1jZMp4QQQgjRaELOYTNp0iQmTZrk9bGEhAR++uknj/tefPFFhg8fzs6dO+nYsWPteimEEEII0cJ9vPMPrMqCUxt+21lQfLzjD8an9W+gngkhhBCiMdT7BOi8vDyUUiQmJtb3UwkhhBBCNFvzDqwLGKwBMNAsy82kyFHWAL0SQgghRGOp1ypRpaWl3HHHHVx44YU+52aVlZVRVlb1hSM/P78+uySEEEII0eQ4tUG54QhpmUJHKTG2iHrqkRBCCCEaW72NsLHb7Zx33nlorXnllVd8tnvsscdISEhw/XTo0KG+uiSEEEII0SRZlYUoa3jQ7RUQb4uqvw4JIYQQotHVS8CmMlizY8cOfvrpJ7+Zj++66y7y8vJcP7t27aqPLgkhhBBCNGknpQ0Mqly3VVkYldKTKFvwAR4hhBBCND91PiWqMlizefNm5s6dS3Jyst/2ERERRETIcF4hhBBCHN3+0mkkM/csCdjOqQ3O7zS6AXokhBBCiMYUcsCmsLCQLVu2uG5nZmayYsUKkpKSaNu2LVOmTGHZsmV88803OJ1O9u/fD0BSUhLh4XIlSAghROPTRgGUfIEumQHOfUAYhI9AxVwCYcNQSjV2F8VRqGd8Ojf0PIUXN83y2+7CTscyqnXPBuqVEEIIIRqL0lrrUBaYN28eJ5xwQo37p06dygMPPECXLl28Ljd37lzGjRsXcP35+fkkJCSQl5fndyqVEEIIURu6fCU690rQBZX3VPy2Ak6IOAWV+DRKyUUG0Ti+3r2Ulzf9QHZ5IVZlQQEObRBvi+LybidwUedjJagohBBCNFOhxDxCDtjUNwnYCCGEqC/asQ2dfQ7oUsBX+WQFkadiSXy2IbsmvNDaCWW/oMt+AqMALPGoyFMg/FhUELlemjOH4eT3Q5vYlL8XQ2u6xLZhbGpfwi31WuBTCCGEEPUslJiHHPWFEEIcNXThy6DL8B2sAdBQ+i3afjUqrG9DdU1Uo8uXow/fBMY+zNFPBmBBl3wC1vaQ+DwqrH/jdrIe2SxWjm/Th+Pb9GnsrgghhBCikUjARgjR8hQXw44dkJUF5eXgcIDNBuHh0KYNdOoE0dGN3UvRwLSRA6XfAc4gWlvRxe+jEh6p724JL3T5SnTOXwFHxT1Oz9/OvejsiyH5QwmqCSGEEKLFkoCNEKLlOHgQMjPhwIGajzkcUFoK+fmwZQukpkKXLtC6dcP3UzQO+0aqAgCBOKF8eX32RvigtUbn3YH5v/I1EsoAytF596JSPm+4zgkhhBBCNCAJ2IhGUeosZ3H2NvLtxcTaIhma3I0Ym5R3F7WkNaxdawZrgnXggPnTpQv06weSwPMoEMzIGnf2eumFCMC+BJzbgmjoBMcatH1Ni54aJYQQQoijlwRsRIMqdpTx+pY5fLHrT4qd5a77Iy1hnN5+CH/vcSJxYVGN2EPR7GgNS5fCvn01H4uPh6QkczqUwwE5OeYIG3eZmebImyFDJGjT0lk7htIYbF3rrSvCN102D/PrSTCjoaxQNh8kYCOEEEKIFkgCNqLBFDpKuXbR/9hcsA8Dz+JkpYadz3YuYnH2Vl4f8TcSwiW/iAjS2rWewRqlID0dOnc2gzXV5eTA9u2wd68Z7AFz+bVrob+c9LVkytYRHTYM7Evxn3QYwImKuqAhuiWq08UhNFZoXYSEWoUQQgjRErXsmpiiSXly3VdegzWVDDS7irP595rPGrhnotmqzFlTyWqFoUNxDhrEoj8yuef0x7io49+5qOPfue/Mx1k8azlGYiJkZMDQoWb7SpmZ5vpEi6Zi/07gYI0VrN0h4viG6JKoRlmSwcdxoiajor0QQgghRMsjI2xEgzhUVsCPe1f6DNZUcmqDX7LWs6c4h3bRXkZHCOHOPVijFGRkkGuJ4t6Rd7Np6TYsVguG0zw5z96Xy8Kvl9JnVE8e/upO4tPSzMDNkiVVI20yMyUJcQunIsZA3L/QBf/GvGZRPa+NBaxtUUlvoJTVyxpEvYs8FQqfD7KxhshJ9dodIYQQQojGIiNsRIOYvW9V0NdLLShm7VtRn90RLUFxsWc1qPR0SuNbcceJD7Fl5XYAV7DG/e+Nf27hrlMeprzMDmlp5vSpSgcOmOsVLZqKuQSV9B5EjAX3yTSWJIi5DpX8OcrattH6d7RTtq4QPhrwHzDTWCFiAsqa7redEEIIIURzJSNsRIM4WFaAVSkcOnDYxqIU2WUFDdAr0azt2OF5u3NnfnpnPplrdvqdTWE4DTYt3ca5D9zL6VecyNlp3Wm9Z4/nevv0qZ8+iyZDhQ9DhQ9DGzngzAIVBtaOKBXW2F0TgEp4AsehKWBkYVU1d2iHVhwojyIv/G9I5ikhhBBCtFQywkY0iEhrWNAjbDQQYZGTJhFAVlbV3xXVoL584TtUEOlHtYKiT/fw5ta5nLn6fywqdxup475e0eIpSxIqrDfK1k2CNU2IQyVz47ZJzD3cHodWaA3Oit8OrfgptwNXbRrP9Uu/YHdxdmN3VwghhBCiXsgIG9Eghid35/Utc4Jq69QGw5O713OPRLNXXlUWnqQkSgpL2Ll+j+/2bpQG69YyDIeBYVM8l7WQe2OH0C+xved6hRCNYt6BdSzLK2RZ3giS9gzi2Ph9xFnt5DnDWZDXlsPOCACsysEH23/j9r5nNnKPhRBCCCHqngRsRIMYmNiRrrFt2F540G/iYYUiLSqBESkSsBEBOBxVf9tsOOzVk8cGsw4NNoW2WPhq92L6JrRDua9XCNEoPt25EAsKA02OI5Kvc7p4befUBl/vXsaNPScRZQtv4F7WH23fAOULQJeApTVEnoyyJDZ2t4QQQgjRwGRKlGgQSinu6nc2FqV8TllRFT/39DsHi5JNUwRgc4s3OxxEx0cRFRcZ9OJGnAUizG1RGQYHywrYWnDAc72i3hja4HB5MbnlhTh1oDLb4mizuWB/wKqClcoMO/tKc+u5Rw1D29dhZP8FnX0GuuApdOHL6Px/obOOxci7D21IUnQhhBDiaCJnJqLBDGrViReGXsGdKz4gz17sunqqUGg0MbZIHh50PsNldI0IRng4lJaaf+fkYLVaOfXKCXzxwvce1aG80RYon5RglgIH4gtKsSjFjuJDdA/vWd89P6odLi/mi11/8snOPzhUkVw8PiyKczoM59yOI0mNTGjkHormKIh89k2eLl+JzrkEsFfcY1T8YN5X8gnavh6S30WpqMbppBBCCCEalARsRIMaktyVb0+4k5/3r2HO/jXklheRGB7NuNR+TEwbQKRVkn6KILVpA/n55t/5+ZCTwxnXn8JXr/yANgyfJ3BaAWGK8lPNwEB8QQkxxWUopXBqp7leUS92FB7k2sX/I7usEO02eiLfXsI7237hk50LeX7o5QxI7NiIvRRNQdfYNqw5vCuoUTYRFhttoxLrv1P1SGs7+vB1mMEaXwFnAxxr0AXPo+LvaMDeiaZCG/lQ+g3asR2UDRU20CxtLwnThRCixZKAjWhw4RYbp6QP5pT0wY3dFdGcdeoEW7ZU3d6+nfSMDO7/9FYeOPdptGHgdHie+GgLYFUU39cW3cb8gtv2QB4ATq1JCY+Hzp0b6AUcXQodpVy3+A1yqgVrKhloShzl/GPJW3x07DRSm/kJuDgyUzqOZNXhnQHbWZWFU9tlEG2LaIBe1aOyn8E4GERDA0o+Qsf9Q0bZHEW0dqALnobi9zCDelbzfhygkiDudlT0OY3aRyGEEPVDEoUIIZqn6GhITa26vXcv7N/PiNOG8MLCRxkzZSQWa9VHnLaCfWwchf/pgCMjBoDknEJaZ5vTciKtYfTrNRSi5CSoPny3ZzmHyvL9jpioDNp8vHNhA/ZMNEXj0/rTOaY1Vj/5zBSKMGXlos7HNWDP6ocu/Y6gv5LpIij7vV77I5oOrZ3owzdB8VtAOaABR8UPoHPQ+Xeii6Y3Wh+FEELUHwnYCCGary5d0M7D6PLl6NLF6D8/Q+/bR/fBXbjng5v5eN/rDHh7PEX/14GC97tSclsaRmfzSnxyTiG9t+ynMn4wrk1fIrr3aMQX07J9snNhUClkDTRf7PoTh1GLql+ixQi32Hhh2BWkR7VyJaR3Z0ERaQ3j2SFT6RST0hhdrFtGNr6nQnlr3zKSLIsglMyEsh8hwCeoLnjUnColhBCiRZEpUUKIZknbN6Ntz0Li97CzzLyzGPj5DehyMar35SSkJPHoxVdy89LpLMvJRAFxBSW0PZBH6+wClFZoYGhSVyaOPgNat27EV9Ryaa3ZWXQo6PaFjlJyy4toHRlfj71qBMXFsGMHZGVBeblZmt5mMxNot2ljTvOLjm7sXjYZqZEJvDP6Br7Zs5QZO35nd3EOAHG2SM7pMIJzO44graVMnVPxmGGpILMnW2LrszeiCdHF0zGvrwYK6FnQxR+i4u9qgF4JIYRoKBKwEaKJ09oJjq3mMHhLK7B2QinvpdGPFrp8BTp3Kuhy6GWDUidkVQwPdx5Ab/k/9O61WFKnEpmUxPPRI5iTG8lvG3+nOKcqcNAuuhXHt+nDkP7HofoPaKRXc3QI4VTU1b4xaO2Asrlo+yrAibJ2hMjTUJa42q/04EHIzIQDB2o+5nCY1c7y882cTKmp0KWLBA8rxNgiOL/TaM7rOIoSZzlObRBji8DiZ6pUc6QiJqDLZgfZOgzCR9drf0TToJ17wbE+yNZOKP0OJGAjhBAtigRshGiitC6D4nfRRe+Csa/qAVtPiL4cos45KgM32ihC514NugwwzNLcgyJgo4KddlxhgdJZ6EOdUPkZhAGnkMjJnSdxsG0Bpc5yYmyRJEfEmifH/fq5SnyLuqeUomtcKlsLDnhNOFxdYlg0ieExDdAzT7rkK3TB42AcovLwqHFC/iPomEtRsTejVPCHTW3fBSu/hO17zGCrrRdKWf0vdOCA+SPbpQelVPNPLOxP1KmQ/whQGLitpQ0oGWFzVDDyQ2uvC+qnH0IIIRqNBGyEaILMoMTlYF9JjXEJjs3o/Lug/A9IeBLVwq40B1T6Neg8z/uUgt4RkGKFXQ446AAs6NKfUOEZbs0UbSqn2chIhgZ1XsdRPLr2i4DtLCjO7TgCmyVAYKOO6eL30fkPut3jcPu7DIr+h3bsgsTnAu5z2r4Rnf8kLJ4NWfaqB1QiRJ4Erc9CJSeb06EcDsjJqSpRXykz0xx5M2SIBG2OAkpFoaPPheIgEscae6BsPkSeUP8dE43LEuK0UHUEIwGFEEI0SRKwEaIJ0nl3gX0V3ieRVI4g+QpsXSH2uobsWqPTJZ/ic4JNis38KTZgtwMObUeH5aN0kuQKaWSnpA/i3cxf2FuSi1N7z8VgQREfFsW5HUc2aN+0Yyc6/6FAraBsFpR8CX7K5+ryFeicqbChoFqwBkgtRHf4GtpGQ8IjniPkcnJg+3az2pmu2Lb37YO1a6F//1q+MtGslC8luMmDVnTxeygJ2LR4ypqOtvUBx0YC57CxQuSpDdEtIYQQDegouzQvRNOnHTuh7AeCqRiii940p04dTZz7CXhCE22BnuEwOhrG94RJk+DEE2HsWOjTR4I1jSDSGs5Lw66kbWQiUDNHjUKREB7NS8OvJCWiYa8S65KPCO5waKlIAOpjPboEnfs3OFQEO0urHrAqGBQJAyOhlRVKP+W/10/m/HZX86+znmDJjysxEhMhIwOGDgWr2+iizEwzB45o0bRRAI41BJfpyQnlv6N1KFmhRHOloqcSXAUxAxV9YX13RwghRAOTgI0QTYwu+YKgd02dD2U/12t/mhwVYh4LFVk//RAhS4tK5L1jb+SOvmfSOaaN6/62UYnc2OsUPj7uZnrEtW34jpV8CwRTRtwAx3q0c4+P9XwHOhd2lVfdp4ABEdCmakCrYcCkC3eSsy+XRd8t465THubW8Q9QeLgI0tLMwI376JvMzFq8KNGs6JIQF3DiOW1PtFhRZ0HEKQRKxa7i7kHZOjdEj4QQQjQgmRIlRFPj3BVCYys4QmnfAkSMgeIZBHWCreLNJM1NnZdyzw6LYl1JFlnxkRidOnBMu34tosx1tC2CczuaJZmd2kBr3eD5amrQISb2NPLA2q7makq+gGJdkUOpQqrNI1gDYLFAxx5ldO1Xyra1UQCsXbCRe09/jP+b+yDWtDRIT4c9FYGhAwfMbeQIRoZp5wEzEbdxCKWiIeJ4VFi/Wq9P1DFLIuZXsiCDMCoWpcLqsUOiqVDKAonPoAufgaJ3ADtQ+ZnpAEsyKu42VJTvqZpCCCGaLwnYCNHUhPQlXEMIVWtaAhV1Ebr4gyBaWiH6fFSoI3Iakpdyz07DyZz9a/jl4HqKHVUjNT5qFUun/sO4ctT5tI9ODmr12rkf7GsBB1g7o8J61fUrOCJWZWm8+t3uVBzoohDa+wicGftht93zvg6+9+ek1na2YQZsDKfB2gUb+f2rJYw5ZwR07lwVsAEzoNenT/B9rKCNPHT+A1D6PeZ0G6tZqavwWbStPyrhYVRY35DXK+qWUuHoyElmWeaAwWgrRJ3bEN0STYRSNlTc7eiYa6H0G7RjBygrKmwgRIyX4J0QQrRgR9eZnhDNgAobhC75LMjWBoQdU6/9aWpUWE909GVQ/LafVlawtkXFXNVAvQqR1mYy2WpTXZyGk7e3zWdd3u4amSwScwsp/G0e929byz0X3EfXuDTfq7evRxf+B8rm4p4TQ9v6oWKvQ0WeWIcvpgWInATF7xD4RFmBrYfX0TXmwzFwyG2ERKzFzFnjQ2mJ59RHi9XCzBe/NwM2SUkQH19VPSorC/r0QWsDyv9Al84yR/pYYlERJ5ojZqqVDNdGPjrnQnBkUpUDw61/jnXo7Asg+T3zxE80KhV9Kbr0myBaaslVcpRSljiIvrBJxLmFEEI0DAnYCNHURJ4OBY8FkdNAga07hA1uiF41KSruTrSyQdEbmEM0Kk9GrYATbD1RrV5FWVo1Xid90RqWLjUrAFXzQ9F25kQW4IhphdVpEF9QSkxxVVJpp9Yk7T3Iyx88xhNXP4PVy1QiXbYQnXsVZvChekn49ejD10PcHaiYK+v4hTVfKvoitN8AYCWNir7Us7qTu4ixYF9WddtPsKaowMLmVZ5TnAynwbqFm6ruSEqqCtiUl6Pt69CH/wHOnZiHbydgMSunWdqaJcfDqwK4uuCpimCNr0CUAcWl6C1XguMJlN1plhmXimqNQoUPgrh70AUP471alAXQqITHUbauDd9BIYQQDcvLlHk5Rh99JGAjRBOjLDEQeyu64N/+WgEKFXe375PHFkwpizk8PPpidPEMKF8ClIO1EyrqLxA+okHfF601lC8Cx1pAg7UbRIxBeZuutnatZ7BGKUhPx9GxA8/9soz8vASwKox2YWBVxBeU0PZAHq2zC0CbQRv27WXVb99xzPGne/bDyEUf/jvmKApvVUXM+3TBE2Dri4oYVVdvQbOmbJ0g7m50wSP+WkHEeL9TUVT0BWjHM1V3WL1vg04HzPogibKSmsnFDYdbcMWtWpQuzUTn3Aq6cppc5UiZivbGAXTOXyHpPVT4YLSRDyVf4DNYc8gBuxwV+XYKIeYPCK8YZeNwQGmpGSzasgVSU6FLF2jd2udrF3VDxVwK1lR04Qvg2OT5oK0fKu5mVMRxjdM5IYQQDcPLlHkXOUYfdSRgI0QTpGL+CroEXfh/mFdV3U+6LIANlfh/qIhjG6eDTYSytkPF3dKofdCls9AFT1eMerBgBtOcYEmB2Osh6qKq4FHlAbiS1QoZGSxbk8X/7ngOY84mKgtaG8lWyicnkn96Ivnd0ziUFEuvLfuxGBorijXLf+GYPiM9D9Aln1WMzApU7teKLnpTAjZuVMxUULFmMEsfpurw6DT/jr4IFXd7jWlHHuuwpkPcOejDn1YsWvP/4HDAob1hfPRCqtd1tOno9v90Vu33uuxd0GX4Lu9rAA503h2QMgvKfgHKazbTGjaWw073XDsWdPlSVLiPaVEHDpg/XbpAv36eFaxEnVORJ0PESWBfBc6tmKMpe6PCQs9hJIQQohnxMWXeLzlGt3gSsBGiiVKx10DkKeiSj6D0RzAKwZKEijoToqagrMElnhX1Rxd/iM6/n6rMuW4n08YhdP6D4NyLirvNvM/9AKwUZGTw0fSFvHHX+yir8shLoLKdRLyTTdjcAooeb0d2Uiwbu6fRZ/M+nFqTZy821+cWsNHFnxA4WAPghPJf0EYOypJUuxffAqnocyHqdCidjbavApwoa0eIOh1lSQy4vHbuRUf1heIToPwXyK3aHhx2sIXBltVRPHhFF/Jzah5+lUVx+t9PqrojJ8dcr2MnWDKBQMOeDXBmgn0JGIepMa1Ga1hZBlnVKxEZEGs3Ex3bbGZUKSenajpWpcxM86rekCEhfSHU2gllc9HF74N9pfl81s5mHpbI01EWGc5dnVIKwgcBgxq7K0IIIRqCnynzxMeb06Tr4Rgtmj4J2AjRhClbR1Tc7RB3e2N3RVSjHVvN6jvmLd8Ni15Hh49EOYd4Dm1NT+fXBdt54673zTVUG42hKlZr2V1O9EP7KPq/9mQnxXIwOY7WhwoIt4TVLPdseBk66/sVgDMLJGDjQalwiDoVFXVq0Mvost/QRa9B+UKIKDfnmRMOJR2gqD0lYZr5n+3gh49asW5xNN5KY1ksFqITojj58hPMO9y/jNnXQFp4kL2xocvmomy9qLFdbiz3DNYoINVGXmw0C/5MJ2/lJqLiIhl+agbtxw4w+7B9O+zda36RBPOL5Nq10L9/cO+NkYfOvQbsy3HlmAIzn1L+fVD4IiS9hbJ1D/L1CSGEEC2QjynzdO5sBmuqq4NjtGgeJGAjhBC1oIs/pOZ0NW+s6KJ3UAdSPJfv1In3rngMpZSZA8cHZYBtQynWdaU4+0WxLzWBNocK6BOfbjbwKPccARQH/yKacsnzZkIXvYUueAwzGAG0t8H2cqDcHO2SmUf0uC+I63iQjcufw2rTOB2e05qsNgsR0RE8+t09xCdXTIrbvr3qOSiFDuH4ng5VjVEEEWMwD/EVAZpDDs9pUFZFUacoXn6hE3O/aIXTmYPV+gmGYfDKzW9zzPj+/OPlq2mfkWF+YVy2rGqKVmamOWc+wHx5rR0VwZpVFfe47ysV27xxCJ1zKSR/hbKmVF+FEEII0fL5mDKvU1ubI1Rz3jMv3qArRqheDK1ORSXV/hgtmo+aGQ+FEEIEVjKTwMEacE0/2r+j6q74eLbuymfbqh1+gzWVtBXCZ+UBkB8XRVlsNEOSK6rEZGVVNYwYjStwEIilDVg7Bte2lrS2o0t/RBe+ZP6U/oTW1afjNF+67NeKYA24toVoC7SuvBZiwL5c9Ia/ctw5GTz/xyMcd84ILNaqQ294ZBinXDGBV5Y+SZ8RPcw79+83r5hVUKnpEBV0r8ypk5YkiDwN1/awy3NkTVGnKG66qjc/f94Kp0OZA64cTrRhbo8r56/jhpF3sWPdLkhLg4wMzyHWwcyvL/u5YmSNv/3ECUYOuvidYF+gEEII0bJ4mTKv20Sicy5EH77OLGyh80EXgGMNOv9O9MFJaMeOWh2j84tKeW/OMs59cDrH3fQiJ9z6Cre//g1LN+0O6nupaFgywkYIERopMWgezHR+4IZVS0BZDlSmFE5KYs+G/UEvrZxg2VWVQPacQacQXVoxOqa86n4VfTG69Nsg1mhBRV/sN4HukdBaQ8mH6MLnwcjBDBoowAGWZIidhoq+oF6euyHpwtcwr3tUG/nSwVZRfQnQTli5A2Jm0HPIX7n3o1vIO5TP/swsLFYL7Xq0JTrOLRqzf785h939C1OvC4BPg+yVExV1GgAq7k50+RIo3FvVH4BUG6++0pHdWyMxnN7nuRtOg5KCUh76y//xvzXPotLSzKt4e/aYDapPx/NCF7+PxzQonwwo/hAde4M5JU0IIYQ4WhQX15gyr1OT0TkXVYyqAe8jVPeb1SFTvgzpGL1i6x7+8dKXFJWWg65YW5mduSu2MHvZZk7M6Mm/LzuZ8DAJEzQVMsJGCBGcgwfhzz9hzhyzjGB+vpncrHp5wTlzzHYHDzZ2j+uNUgpUZGgLOd0OfDYbVluIH782RYQljHv6n8P4dm6JSB1uJ+JhQyDyDLzlSKliBWtniP5raM8fAl34vJnfx8ipuMeJa2qOkY3O/xe68MV6e/6GoB27wb4Ir9OUUmzQMazqtlOh/3jTHLKck0NCSjy9hnWnR0bXqmBNTo75+JIlYLits0sXVNoAiJhI4NFTVggb4coHo6zJqOSP4UDllDkLYKUgNoY5n7byGaypZDgNdq7fw6pf1pl3dO7s2WDHjhrLeKhI3BwUnQfO4IOYQgghRItQ/VjauTOUza5I0h9ohGoWFH9QtZy/9QLb9mVz3fOfU1xqR2vPTHfOihG2s5dv5qH3fgrxRYj6JAEbIYR/WsOaNbBwoecVAH8OHDDbr1njOVKgJYmYQHDTjyxgG4gKb1V1l8NBzyFd/cdV3FkVGcf24/vxd3Fm+6Ee5Z6xVQWClFKohMcgakrlgu4rMX+F9UMlvYeyxAb55KHR5Uug6KXA7QqfR5cvr5c+NAhjr//He4VDG7epUc6D5pWvBQtg/nxYvRrWrTN/z59v3r9nj+f+kp5ulugEVMK/wdoO39ucFSwpqMSnPO5V1tZYym9GxT8AkZMgeTx/rDwNhz24w7/VZmX+jN/NG0lJZqWKSu7T8bzRQQZrXFrOdDkhhBAiKO7H0opqULroPYI7TTfQxe+b082DOEa/9u1C7A4nhp/v5lprvvtzA5t2t9wLr82NBGyEEL5Vlhj0Nhc2Pt6M5nfvbv52P0hUysysOb2jhVDRlxDc6AEDFXOJOWWsUk4ObTq2ZvipGR75THxyam65bSqxtkjX8i7hnlNIlArDkvAIKmWWOYombBDY+kHkqWagJumTek3uqoveJbhAlhVd/F699aP+BRgqrBQMiqgaaeM+/Sw/30wqvHWr+bt6aU6ALl085qQrSxIq+ROInOz23JXrtEDEiajkz1DWtJrrKi9HWdtiiToDS8dbKSg6PrjtDjAMB4f3/IAu+RytyzwrVbhNx/PK1ongo5JhYEkNsq0QQgjRQrgfSyuPsfZVBF9oIBuMg57LV18vkJ1fxJzlm10jafyxWhSf/rIqYDvRMGRymhDCNykx6JMKz0BH/RVK3vXXCiLGQeTp0GZT1Yl5fj7k5HDZg+ezfPYqtNauZK811qAUp10zkXbd25p3uJd7BjNvkLflbF1R8XeH/sKOgNYOKPuRoJMxl36P1k+hVDO8dmDrCUQCpb7bKAW9IyAlHA4cE1wBr9RUM1jjpbqDsrRCJT6FNu6C0p/NaUQqDiLGoazetwPAc9qczUZUXBSGEdwXQYsFomNy0Xl3QuF/gXuqQjAO/yNiVPSF5tS4gKwQeTrKEhNUn4QQQogWo9ox2hTiCNXKgg5Wt4tD1Y7Rm3YfCipYA+b0qJXbAowkFg1GAjZCCO98lBgkLY3dm/Yy+7mPyN6bS0RUOBkTBzLitAysSUlmIOcoKTGo4u9BW+Kh6DXM6RwWPGYER01Bxf/LTO7bqZOZ46fS9u30yMjg4W/u5v6znqCspNwjaGO1WXA6DCZeejzXP3+Fx3Ieqs9Zbky6iNC+ZDhAF4Oqn+lZ9UlZYtFR50DJDAK+5hSF6nUb2LvUScJuZUmC6CkB27nYbFVf3BwOhk8ajEKhCfzFzelQjDwpr+LGLnTOnWDcgrJEekzH8yryDCh8qSKXka/3SAEKFXN5sK9GiBbPqQ3W5+0hz15MjC2CfgntCbPIV3YhWqRqx2gArB3AuR2COE5DOFgrvl/7mDIP4AzyQo2rvTO09qL+yKe/ECEotJeyInc7Jc5yWoXHMLhVZ2yW+qm00+i8lBg8bI3iyVMfYfGsFRVJcxUomPnSLJLatuKW1/7GiNOGVJUYXLKkaqRNZmbLC9goCypuGjpmKpR8ibavAwyUrStEneM5PSU62gxaVeYB2rsX0tPJmDCA9zJf5oe35vL9Gz+TvTeH8Mgwhpw0iDOuO4W+o3qaSY6hRrlnUlMhKuh6z0dEaw3lf6LLZptlJVUCKnIShA2q6p+KwjwBD3YKnCX05M1NiIr9G7r0+4qKYX4CEpFnoML6QRjQp4/505DCw83E4GBOxxswgJGnD2HRt8sw/HwhUxZNq9YORkysHNHlhOzdYCyCiLE1puPVXD4WWr1lVrHw+h6Z1cNU4vOosF61fXVCtBgOw8mHOxbw0fbfOVhWNZIyMSyaczuO4NIuY4mySSU1IVqUasdoABV9Ebrg0SAWtkLU2SgVeMp8h9aJQXfJalF0SmsVuKFoEBKwESIIOWWFvLplNt/tWUaZUTXEMCk8lgs6jeaSLmNaVuDGS4nBgohYbh51N3u3mvc7HZ4nern7c7nvjCe4/7NbOfas4WbQJsQywM2VsiRCzGWBs3V06VL1vmptjkLKyCAhLY3zbjuT82470/ey3so9d+lyhD0PjravQR/+JzgzMQ8bGlDo4rfA1hsdexPKsRWti8HataJdoCszVogYi1LN9zCkrG0h6T107hVgHMCzxHdFOevI01EJjzReJ8EcvVNtOt4Nz1/Buj82UZhbWGNfBjNYY1Fwx4s7sFb+i3KdUGigLT+jIsb6nI7nsZ6wnpDyFbr4HSj+yAz2ARBmvjcxl6HCetfN6xSiGSs3HPxz6Tv8mb2lRsj7sL2Yt7bO47eDG3ll+FVV+cyEEM2fl2M0iWdD4cuBLwhhQcVMNW8GmDLfKbUVg7qls3rbPr9Jh8GcEnXumIG1ejmi7jXDxAFCNKys0jwu++Nlvtq9xCNYA5BTXsgrm3/ktmXv4TBCrYjShHkpMfj2fR+xd+sBn1fkzc9+zROXvkBJUalrOb/rPdq0bu0ZZHE6zVFIFeWevfJT7rkhRixp+zp09kXgrPzfOfAo0+3YAIf/ji58GopeBedWgkuU56xI3Ny8qbAeqNazUQlPQliGmTjX2h4iz0Qlf4Yl8WmUqp8r4lprNuXv5Y+Dm1iRu50yp917w06dPG9v306bjq154Y9H6TbY3B6tNo3FqrHazC9xyal2HpuxlcHHFlUtt8sOaDD2m/mKgpyOp6ypWOJuQ7X5A5UyC5XyHarNIiyJj0uwRogKL278gT+zt/ocn2ig2Zy/j4dXf96g/RJC1DMvx2hliUclvVUxZdzbBWErYEMlvoCydXct58HLMfqqU4YHDNZYLYqe7Vszsncnv+1Ew2m+lzaFaCB3Lf+Ag2X5OLWPQAXw+6GN/G/rz/y9x4kN27n6Uq3EYHFYFD+8Ndfv9AkwgzYlhaXM/XABp141oarEYGXEPyur4aeDNDX9+plDXyuTOWttjkLas8dVzhGr1QzmVL9aUsmt3HN90lqjD98KlBM4CKMJqSxz1PkQfmztO9eEKBUBUWehos6qt+fIKSvkh30r2VdymDCLhRKnnUUHN7OrJNvVJtYWydkdhnNZ17HEhblNlfMxHa9t1zRe+vNxNixawdy3p5F3yEZUrMGIifkMGVfgkbuQLAcccPv/prYOeTqeUuFg61qLVy9Ey1ZoL+XzXYsC5pUy0Mw9sIa9xbmkR8t0BSGam/yiUrILiokIs5LWKh6LRfk8Rqu0vuYI1aK3oORjM+cfALaKEapXVE0nDnLK/LH9u3D7eeN48uN5WC2qRhJii1KkJyfw/PVnmX0TTULIAZtffvmFp556iqVLl7Jv3z6++OILzjrrLNfjWmvuv/9+Xn/9dQ4fPsyxxx7LK6+8Qo8ePeqy30I0iHV5u1mdtytgOw3M2PE7l3UdR6Q1rP47Vt+qlRhcMXcNZSUBSvhWUEqx4MtFZsCmYnlX0CFQGeCjgVIwZIhZOat6ufT8fO8BGnddupjBGtUAB1L7MnBuCdwuIPeqB2EQczUq9saq3DfCp1KnnWfWf83Xe5ZhaI1VKZza8HpaV+go5f3MX5l/YB2vjria5Ii4qgd9TMcjLY1ewwfSs1MxkOe9E1kOWFVWlZpIJaK6Ss4ZIerKnANrsBvBBbwViu/3LufK7uPruVdCiLqyfMse3p29lF9WbXONcEltFcsF445hyvEDifFxjFZpbVHxd6PjbgHnbtBOsKajLG7H9xCnzF9wwjH0aN+a92Yv5ZfV21yLJcVFc/64QVwwbjBx0TLtsikJOWBTVFTEoEGDuOKKKzjnnHNqPP7kk0/y/PPPM336dLp06cJ9993HySefzLp164iMlH++aF6+3bMMq7L4HF3jrshRxu8HNzI+rQWUr65WYrA4vyToRbXWFOS4TaPwU2KwudLObCj5FF36FRi55pDVyJNR0RegrO0Cr0Aps8x5aqoZtHHPF+SLn3LP9UWXzcE8TBzJ/80CkZNBRaBsPSHqTJQlvo562LKVGw5uWvI2K3K3UxmicQQYymyg2VOSw10rPuS1EddUPVA5Ha8ySFgxHU+3bYNOmQURhTVXlus0p0EdcLjlkbagep3b4hKIC9GYDpQcxqosOIL4rqGUYn/p4frvlBCiTnw0d7lrRIv7dKQDuYU8/+VvfLNwHa/eNIUkL8do0tOhc2dUUhJUTn2qlJNjToPau7dmsCbAMXpIj/YM6dGe3MISDuUVEW6z0i4lAZtVsqU0RSEHbCZNmsSkSZO8Pqa15rnnnuPee+/lzDPN5JnvvPMOqampfPnll1xwwQVH1lshGpi/qVDVKRRZpT6uUDc31UoMxifH+W/vRlkUiW3cTsj9lBhsjnTpLDMBL06qpgkdgqLX0UWvQdzdVQngAmnd2vwpLq6Tcs91zvByEh/6SlDhI1DR59bBuo4uH23/neW524Mqv+3OqQ1W5G5nfd4e+iS4BRCrTcfThhO96RFYuwRiFbSyVuVNrkgw7MkCaXGQMe2IXpcQwlOYxYb3cXM1KSBcSnwL0Sz8unobT348D6DG9CMwz523H8jh5v/O5O1bz0c18JT5VrFRtIptmGqjovbq9BM/MzOT/fv3M3HiRNd9CQkJjBgxgj/++MNrwKasrIyysjLX7fxA0wGEaEDhFhsWVFBfpDSaSGsLKbdZrcTg4BNGEZMQTVFesf/lAG1oxp3vlpvET4nB5kaX/YI+XHmyWn2bME9udcEjoCJR0ecHv+Lo6MYp9xyIJZHgS3T7YgV9+Mj7cpRxaoMZO34POVhTyaosfLNnqWfApvp0vPI/wb7YfKxQewnQuLNAx3jU6A9RtpRa9UkI4d0xSZ0DJgKt5NAGxyQ1TIVAIcSRef27RViU8rt/Ow3N6sz9LNu6lyHNZcq8aFB1GrDZv38/AKmpqR73p6amuh6r7rHHHuPBBx+sy24IUWeGJXfnx32rgm6f0VK+RFUrMRheXMjpfz+Jj5+aieHlCkEli0URlxTHceeMMO8IUGKwOdFao/MryzP7/2KtC54wp/6o5j0NVEWegi767xGuxVlR5aAmrQ0zaODcCdggfGBVtYOj3Mb8vRwsq/0FDKc22F9yuOYDbtPx9PL/g2L3UuQ+tLZBl/6oHm+YpcxF89dUR/UdpQYldqJzTGt2FB0KGKRNDItmXJu+DdQz0ZzsPniYhet3UFxmJyk+mrEDuxEXFdHY3TpqbduXzZrt3s9/q7NaFJ//upohPdo3iynzjcXhNPhtTSaZ+7NRqqqaVUtPkNzoYyrvuusubrnlFtft/Px8OnTo0Ig9EqLKyW0H8uz6byh2+k+Wa1GKjFZd6RjTQq48d+oEW9ySzW7fziX/msLK+WvZ+OdWDKPmCZ7ForCGWbn/s1sJjwhzLechyDLATZJ9CTgzA7cD0IVQ+h1E1czz1eCO4MRMhfVFhx0D9pUEV6rbGwtEjPW4R2tt5gAqehmcezwfCxuCirsNFZ5Ry+drGQrtpUe0vEIRZvFWCtSkkwwYuBe6R8JuBxxygF2b6YpsQJiCFBu0t0G0BSx5EqxpCQ4e9H0S4HCYIyvz883P/6PoJKCxKaW4re8Z3Lj4TcD/JYHb+p6Bzc++LY4+O7NyeXLGXP5YtwON+X3MMDThNitnju7PTeeMISqiBRTEaGZ2HMgNuq3T0GzbV1X1sclPmW9gWms++WUVr327kJyCYqwWhQYMQ5PWKo4bzzqOScN7N3Y3602dBmzS0tIAOHDgAG3bVn2xO3DgAIMHD/a6TEREBBEREv0VTVOkNZxb+57BQ6s/9dnGgiJc2bilz2kN2LN65qXEYER6Ok/89C/+e8t0fpw+D6fdicVmQRsaw2nQdVBn/vHy1fQZUVERLsgSg81G+XLAipm7JhAbunwFqjEDNnV0YqYSnkYfOhuozWgPK0RMQFnTPO7VhU9D0eveF7EvR+dcAq1eRkWMq8VzhqAJfxGKDTvS0Vmawa06+37YqMi3FW2BnuHmjz9GwRH2RzQqrb0Ps/fnwAHzR4bZN4hhyd14KuOv3LPyQ8qcdo+gjUJhVRbu7ncWJ7Yd2Gh9FE3Ptn3ZXP7UDIrLyl3bTOVI6HKHk89+XcXaHft5/ea/SNCmgYU66sNq8ZLwt6lOmW9gL85cwFs/LHbdds8HtD+3gHve+p7cwmIuGt8yL/bVacCmS5cupKWlMWfOHFeAJj8/n0WLFnHttdfW5VMJ0WAmt8vAqQ2eXDsTh3a6DoiVuW0Sw2P4v4y/0j0uze96mh0vJQajMjK4+dW/ceWjF/HLpwvJ3ptDRFQ4x0wcSK+h3aqWDbHEYPNgx0z3GAxd0b4R1PGJmbJ1QMdeDoX/CbEjVrAkoeLv9exe6WzfwRrAHMmj0bk3Qut5KGtyiM8bhGYwyqBXfDptIuLJquW0qDCLjdPa+fniEmqlLov3aW1Hg7zyYr7Zs4zPdy1iX8lhrErRP7ED53UcxZg2fZr+aAetzc/jykSW7ioTWVYmmveWyDIz09wnhgyRoE09G9OmN9+Nu4vv9y7nh30ryS0vIj4sihNS+3N6+wxahR+9+6GoSWvNP1/9muKycq8JbQEMrdmwM4sXZ/7Gbeed0MA9PLr17tAGpTy/CvtitSgGdJVRrN4s2rDTI1jjy/99Mp+hPTvQs33LGxUacsCmsLCQLW5TJTIzM1mxYgVJSUl07NiRm266iYcffpgePXq4ynqnp6dz1lln1WW/hWhQZ7Yfyrg2fflmzzJ+O7iBIkcpKRHxTEofzLjUvoS1xIoNPsoAk55OfOfOTP7bia6mWpeiS+dC9i7YWQgHU1DKbTRNSxhWb21P8OWtDVCNMJqovk7MyleG3pewQajEZ2qOril6i6pSRD5fCGCHkk8h9m+hP7fP1TafUQZWZeG8TqN5adMPtUo8fH3Pk4kL870NKmsa2tYXHBsIPN3NCpEtaARhCNbl7eYfS96iwF7q+j84NCzP2c7SnEwGJXbimSGX+n2vG93atZ6fCUq5SsWSlFSzvbdSsfv2mevp378henxUiw2L5C+dRvGXTqMauyuiiftz466gpt0YWvPFgjVcd8axxEQ27+IPzUlqqzjG9O/KgrWZPgNqlZyG5i/Hy+g5bz78eTlWiwr4Hlosik9+Wck9F0302645Cvksc8mSJZxwQlWEtjL/zNSpU3n77be5/fbbKSoq4pprruHw4cMcd9xxzJo1i8jI5p18U4iE8Ggu7nIcF3c5rrG70nCqlQGuXmJQt4pBl30ERd9CToFblZkwdPgoVNSZqPY9Qyox2GRFnAgqGnTgSlmgofg9DMdWVMJTKGvgZMvaKAZdBJa42icrrq8TMx3iKI+Y67HE1Sz9rJ0HqqoSBWSgSz5H1VXAphmOMriw82gWHtrE0pzMoII2Fsw53df3PJkLOo0O2F7FXIrOuzOInhio6JpVHlu6PcU5XL/4DUoc5TXe/8rKgasP7+TWZe/yyvCrsCgvw9kbW+VoskpWK2RkQFoaeYfy+eGpmSz8ZinF+cUkpScx8eIxHHfuSMIzMszPjmXLzGA9mOtJTW3+wXchWogfFm8M6kQWoLTcwW9rMjl5aK8G6Jmo9PfTR/HH+h0Y2ulzpI1ScOrwPnRtWw8jipu5knI7v67ZFtQoJaeh+f7PDRKwARg3bpyZMNIHpRQPPfQQDz300BF1TIimTGtt5too+9k8yVatUFGntrwKN9XLALvRhw+id98Nzh3UvEJvh/Lf0OnbYdDXqCBOcDfl7+OzXYtYmbsdh2HQKSaFszoMZ3TrnlibwImQskSjoy+DolcIutR1+Z/o7PMg+VOUtWZCaq01lM1GF78L5QsrnwkdcQIq+lJUROCTbhcfJ2Y6NZUVudv5dMUPrMjdgUM7aR+dzNkdhjMxbQCRwZyYWZIJPCqmigrzcZXIOBT866lNe3+qBbM0DmidAx0iKE20sqwwmgJnGK3CY8jodyxhh/MbfZRBmMXGs0Om8syGb/lq9xIMrbFW7EsObRBviyIpPBa7dhJtC2dMmz6c3X4YqVGJwT1B5FlQOhfKfsTfNq3ibkfZuvl8vKV6L/NXSp12V3DGGwPN8tztLDq0hVGtezZg74Lk/pmglCtY8+1rP/HijW/gdBroipO9bat3svj75STe/DYPzryDviN7mu2XLKnaBzIzJWAjRBORW1gcVLAGzN0/tyCYC06iLvXu0Ibnrz+Lm1+ZSZnd6XEOXRlsm3BMD+67uOUFGepCQXFZUMGaSsVldhxOA5u18c8b6lILnMchRP3S9rXovNvBsRkzCa0CNLroRXTYcFTiUy2rmopbGWD3vB+65BMfwRrMMsAdbJCSh86/DZX0ts/VlxsOHl7zObP2rsCqLDi1ub49JTn8enADXWLa8J+hl5EW7EloPVKxN6Ad26BsFpX/d/+cYBxAFzyOSnza4xGtnebohtKZmNuR6xEom48u+xkdczUq9tagAl7eTsxKWydz3/L3mZ+1zuO9PVxezOrDO3ll04+8MOxyuqal+T0xU5GT0GU/Be4DmCW8fQWa3KeJFRuBqxPF1tHITLdgltZ2sP+I7rkIWhcBEFEAQwwL3+d25Ll9/TFUEud1GsXUwWMJa+RRBhHWMO7qdxbX9jiRH/atZF/JYcItVga16szIlB5HFMxUygKJz6ILnobi9zDzLlVuiw5Qiai4W1HR59XFSwHM7Z7yRWZ1MBUOYRkoW9OrDFnsKOObPctc+4w/VmXh050Lm17AprjYM09TejqkpTHrzZ957u+v1WheGbjJzynk9gkP8p/fH6HboM7mcnsqqrkdOGCu9yioSiJEUxcdEY5FKYwgzmi1hmiZDtUoRvTuyDf/vpIvf1/DFwvWcPBwIWE2KyN6d+T8cYMZ2rN9cN/zjkLRISbKDrdZW1ywBkBpf8NlGkF+fj4JCQnk5eURHx9iUkQh6pm2r0ZnX4R5YuPti3xFotXkz2rk7mgxiovRmavRG88Hu913GWA3KuU7r6OPtNbcs/Ij5uxf43PKh1VZaBOZwPRR15MY3vgnCVobUPIxuvAlMLwkrfXKhmrzG8pSNS3JyH8Sit8gUNBHxd2LirnU/+qLi2HOnKrb7dqhjzmG25e/z69Z632OELAqRXxYNO+OvoE2kQlmYKLyxAxgwgSIjkbrcvTBsWDk4n+UjQVirsQSd5vXR7V2otcfCzv2wsFA+YAs0P5ELAOePPLgyJ9/woEDaG1HF70E/bZDm5qJYh1accgeydWbx3PIHs2w5G48O+RSwrIOeQazUlNh+PAj61MTo418KP0a7dgBWFFh/SHyRJSqmy/4Wmsofhdd9Hq1/UZB+LFmKfewplMFY0PeHi7946Wg2yeHx/L9+LvrsUe1sH69mTi70rHHUhIRzXlpV1FaVOZ3UYvVwsCxfXlq9v3mFMEFC6oe7N79qK9YIkRTMGvxBu5+8/ug2lqU4vtHr6J1oiSuFs3L5U/PYPW2fQEDk1aL4oTB3Xny6skN1LMjE0rMo+WFoISoJ1pr9OGb8R2sAXNERQ46/4EG61eDi46GLtthdASMjYEJMebv0dFmaeDo6h8rVnTJV15XtfLwDmbvX+03P4dTGxwoOcyMHQt8tmlISlnMfB5hwwn+I9QBZfNdt7SRC8XTCWZqlS58Ea3L/TfascPzdufOrMjdzvysdX6nczi1Jt9ewnuZv7mW87ZepcJRiS9iRuZ8vWYLhA1Exd7o44Vo1Nr1qDVD4WAwU6sMVN5QWLgQ1qwJrsyCN26jDHTp15C81WuwBsCmNClhpTza+Q80msXZW/nv5tmQlmaOMqhUOcqgBVGWeFT0xVji78YSfwcq6rQ6Ddbo/H+hCx72EuTUUP4HOvs8dPnSOnm+uuBvv/Havmld+zJlZVX9XZGnae4HvwUM1gAYToMVP69h96a9Zn4n9y+T7usVQjSa8YO7kxATGTCtmtWiGDe4mwRrRLN04QmDgzrGOg3N+eMG13+HGoEEbIQIVvkf4NxJ4DweTiibi3Z6SW7aUhhZeE7jCaZ9TZ/sWBjUlA4DzWc7F+EwnME/Z70rIticLqDAKKi6WTKToCtO6cNQ9rP/Nl5OzD7dGdx769QGM3cvptRZ7vfETIUPQSV/CLbKBNIWzACOAsIg6jxU0nTvCZMrE/5mZkLEuIqKWxV9i7VAhzDoHG7+jq24P2ICytbR/Dszs2aZ+GBVBJ20UQZl86CD/+3WpjQDYnLoHZWDRvPpzoWUOMp9BrNEEEq/gJIZfho4ATs6929m8u0mID0qKejpZhYUnWObYF6XcrdAb0XS8RXz1mAJYbj4ynlrPZavsV4hRKMJD7Px0NSTAd+58K0WRXx0JP+cMrYBeyZE3Zl4TE8mZvQg0KSx88YOIqN7uwbpU0OTgI0QQTJzeISQ9ql0TuA2zZWKIqRghY+qR0tytgaVIwLgsL2YXcXZQT5nA1AJBB+00mBJrLrl2BLCsjZwbPHfxNuJWe6OoN/bEmc52wsPeixfY72AChuAJeUzVPIXqNh/omKvRcU/iGqzAEvCQ56l3N25JfxVlghU3M3QIQOGRcHoOOgTYY7O6hMFo2Nh7LWo7tM8v4FWJvwNVWXQyb4KYuzQKvD77tCKSUk7AfO9+fXgehllUEtaa3TRmxDwq5ZhViMr/bohuhVQYng0J6T2CzqgfG7HEQ3QqxA53ILCNvPYVV5qx3AGmTzcoigvtZs3rG77jSPIYLMQot6NGdCV5649k4QY8/hrtSiUMn8DdE9PYfrtF9A2SdJMiObJYlE8csUkzhs7GKtFYVEKq0W5tvUwm5WrTx3B7eed0GJzAUnSYSGCZRQQfJDCArogcLPmKnw0wb8XDlS49yS09hBHzNiNpnOioCJPQZd+EWTrcHNkSdXSoT6b/4e9nJg5dGjvraMyuBPEiZkK6wdhQZZq91K9SmWMhdTz2LDgK/JWvkVE+D4cdsXBA+1I7HAlw047kbBOYbB//5En/K0MOuk8aBVc8joLmpSwkoq/FQdLK0p8JyVVlfuWUQbBcWwBx6YgGyt0yReo6PPrtUvB+muX45l7YK3f9OJWZaFtVCtOSA1yf2hIlWXqwfU7JT0Jq82K0xH480EbmpT2FWVmnW7tbfLVUYimZMyArvzw+NXMW7GV39ZmUlJmJykumknDezOwS9sWexIrjh5hVit3XHACV506nK8XriNzXw5KKXq2T2HyiL7Ex9RRkYomSo66QgTLEk/wpY0NsCTUc4dCp3WZOfLHuRuUDcIyIGxQyAdzFdYXbRsIjjX4fz+UWRI6YrzXR9MiE9lSuD+450SREtGErhBFHA+WdDD24/89sELUWShLVd9VWB90SbABFQfYevtv4uXErH10MofLi/3mB3L1B1VVhauuT8y8VK8qio7ngYkPsWLuGiy2CAyHOfXJYrVgON+iXY9ZPP7DvaR19l+9KiiV74sKA2twU6oMFGWGGbjSaCKsFYGeIxhlUJnf/6j74uxjOqR3GpzBJvKuf30S2vHIoAu4Z+VHADVGrFlQtImI54WhlxNmaYJfp8LDobTU/DsnB4ATp45j5kuzglo8NjGGEace47G8a72iQRWUlLFiyx6Ky+wkx0czuFu7FlkJRdRemNXKiUN6cuKQJlatTog6lBwfw2UnDWvsbjS4JvgNQ4imSUWegi5+L9jWEDGhXvsTCq0NKPovuuiNipE/VsxrxgbYekLc3ShfpZh9UAn3o7MvxMzF4i1gYZ6YqvhHUMr7R81ZHYbxf+u/DhhSsCoLI1N6kBTRdBLmKWWFVi+gsy/GTETtLQBjBWtnVNztnndHngH5jwGBk39iaQ0RAeaeezkxO7vDcFYf3hlw9VZlYVRKT1Ii4jyWd633SHgpK+xs3Zp/TXyINb9tAMBwVG07lVM19mce4NbxD/DykieIr0z4W9uywpXBLFtvcAYXsLEpzZKCNoC5lwxN6mo+EGIwSxtFUDoTXfQ+OLeZ99m6o6IvgcjTUZbGr3pW73xNk/Olib0n49P6827MDXy0fQHf71vhGhWYHBHHXzqO5NwOI0hoAtXrvGrTpmpEWH4+5OTQa2g3+o7qyYbFWzz2veqUUpx14yTCI8PNz4TK9VSuVzSInPxiXvnmd75ZuI4ye9XnT3J8NBeNP4a/ThwqgRshhGjh5FNeiGCFDQNrVwLvNlaIOBFlTW2IXgWktYHOux1d+JzbNC0nriCLYzM69wp06Y8hrVeFDUAlvQOWVhX3VL4vFSMIVDQq8QVU5Ak+13Fq+jHEhUUFfEed2uDizseF1L+GoMIGoJI/AlvfinusVCXitUDkKajkjzxG1wAoSywq9u/BPUfsLT4DXi7uJ1AVJ2YT0wbQOiIeq48RHQrNiLj93NpuCfd0+BUj7370vu/ReXne11sbXqpXLfx6Kavmr/ObR8PpMMjaeYivX/nRtZzf9fpTEXRS1lQo7E2g3EGGhkKnjdmHO2BBkdGqC51jK96HEIJZ2rEDfeg0s2KccwvmPucExyZ0/n3o7DPQjt3Bv47mKqwfqLggG1urTR1sGrrHpXHvgHOZM+E+vjj+Vr4eezvfjLuDK7qd0HSDNQCdOnne3r4dgPs++Set2yf7TD6sFIw4LYNL7pvisZxL9f1R1IsDuQVc/PgHfLlgjUewBiA7v5gXZy7gn//9CruzKSXjF0IIUdckYCNEkJRSqMTnKhLo+jrps4IlFRV/fwP2LICSL6DUe1ltkwY0+vAtaCPH45FiRxl7i3PJKSt0Telwp8IzUK3noxKeM0cUhWVA+DhzVE3rBajIk7w/o9boskVEF97GrH4f8/vgT5nV/yumpa+kQ3hV7h9LRfDnn70nMzS5W6ivvEGosL4ViXi/RMX+A2KuRMXdjWo9H0visyhfU+NiroPoqRU3qm9P5m0Veysq+tzAnfByYhZpDeOFYZcTHxZdI3Fqn6gcPuszi/90+40zk3fQyvgVSj5Br/6bGUxwVIzMOdITMy/Vq7588fugqtRoQ/PVy7NwOp1HlvDXLeikHGfBYQu+Dn2GBouCJ3Zl4NA2wiw2bukz2XwwhFEG2shD5/zVrYS1+75T8bdzDzp3KtooDP61NENKRUD0BQSXZNtARTWN/DXeRFrDaRedRGpUYtAVpBpVdLSZ86nS3r2wfz8p6Um8uOgxJv/tRCKiIzwWSU5vxZWPXcIDn9+G1WY180jt3VvVIDUVokIcNSVCprXmtte+4VBeIU7D+8hAreG3NZn877tFDdw7IYQQDUlpb2dhjSg/P5+EhATy8vKIj29C+SqEqKDtm9B5d4NjFeZJiMIcraIhfCwq4RGUtWmUeNVao7NPB8dmfKfNrKQqKv9cw6rcHXy4YwFz96/FqFiuS0wbzu80isnthxB+BPkatHai8/8FJZ9gvn9VVwcdWqGAR3cN4duczgxu1ZnLuo5ldOtetX6+pk6X/4kueg/K5mBOrYqAyMmomItRYf2DX9Gff1ZNP1IKhg6FtDSySvN4L/M3Zu5eTImznF5RubzaYy7hSmNRbttElgNWloK2AGGo7o+jRh/hyfNPP1VN1ercGQYMYHLsxZQVB5+w973Ml0nt1BpWr6660h8ZCSeeGNwKiothTlXFNp1ajO78PBgHMbQFizKoPB8q1xae3DWU73I7khQey/9l/JV+iR3MB5ctq5qWBTBxos8TV134OrrwaYLa5+LuRcX8NbjX0kxp4zA6ewo49+B96qBJxd6Iir2x4Tp2NDh4EBYurLpttZp5odLSACguKGHtgg2UFJbSKjWRvqN7Yq3M1bR/PyxdCobbaLiRI0PLISVqZXXmPqY++VFQbeOiIvjxiWuICLNxsDSfL3cvZkn2VsoMB+lRrTi93RBGpHTH0hyCjEI0A3ank19WbuO7xes5lFdEbGQEx/XvwuRRfYmLigi8AiEILeYhARshaknb10HZPLQuRFmSIOJklK1DY3fLg3Zkog+dHPwCth7MKLybZzd8i1VZPJJsVlZKGZjYkf8MvZwYW+0OSkb+41D8pu8+V/zOjnqaNgln1Oo5miPzo9gOhNUuMW2AE7NSZznbC7LoWHYFEXonyj3vUJYDVpXhilxggeGDsPT+tqpvzkwwckBFg62XmcMnkO+/r0rO27079OnDpMgLcZQHn7D37U3P0657W1i3DrZuNe+02WDSpKDXUT2YpYcMglbr0CVf4XQeIKvM4Lf8tszN605seAontx3ECan9sFncTlzdEx+npsLw4V6fSmuNPjgOjH1BdEyBtROW1qFNR2yOtDMLffh6sK/EM1CrAGvF6LS/HX1JmRvCmjU1k3+np5tB1KSkmu1zcszg6N69Vds8QJcu0D+EILKotcc+/JnPf1vlc3RNdQ9ffgp7kvbyxpafAVwXWiqP451jWvPskKm0i/by/xZCBG3djgPc8t+vyDpciEUpDK1ddTzDw2zcfeF4Th/VBKsGiiYnlJiHJB0WopZUWF8I6xtygeYGVW2KUyDljiye3WCepFeviFL5tXHN4V3cu/Ijnh0ylVBp50Eofttvm4pUxaTYX0Pr0+vlBE4bhWYAQhtg62AG3BqZ+TqPIMlv69bmCVXliZnTaQYZKk7MIpOS6BWdhS7dXrVMrhN22eGAw3MwSEcrJG7GKF+NcmxGF7/pWZrZ0gaiL4aYy1D+ksp6qV6V2jGFPVuCqwxmC7eR1LZV1etxX28ounSpCthojVq+GjIyUGknYwHaAee3A6/jiSpHGVQ/cfVFFwYZrAGzKtJ2tLajVHAlx5srZW0DSR+DfSW65FOzUh3hqPChED2lSeyDLVa/fuZIt30V26XW5mixPXtcUxWxWs19rPrUv0rp6eZ6RIM46GcqlDcPLPwcehbVuL/yOL6rOJurF73KO6OuJyVSLoYKURtb9x7immc/obTiopNR8b2gck8tszu4/50fsVgsnDaiTyP1UrREErARoiVTMSE1zyk3Szz7KwVtoFlwcCOb8vfRM75taP0p+TTIhtoMENhXQfig0J7D31odO81KWSWfU1WhyYKOmIiKuRpVh8/VKAKcmOmIb6DMAYbTDNYUekn8m2qDXuGAFfLvQTs2QPWwpJGFLvwPlP4ISe+gLD6SynqpXnXa307i9TveRQc4GbHaLEy46DiiYiI9lnetNxQBglkhjzLwOyXEX4l3X5rUQNd6o5SC8MGo8MGN3ZWji1IwZAisXes50gbM4Iy3AI27Ll3MzxYZ/dRgwm1W19X7gKKc6B5Ffi8eObVBbnkRb2ydyx39zqyzfgpxNPm/T+dTZncE3C8f+3AO44/pTlR4y74QIxqOTGgVoiWz9QBLWlBNNRZm56b6DdZUsioLX+7+M+TuaPs6Qjo5dawL+Tl8P/cqdPZZUPIxnuW0DSibg845H13ybZ09X6OoPDHzNgIkPx927IUdDnNUjbdgTccwGBhRcWKmwbGh4gFv/zMDHOvRebd7eayCl+pVJ18+jtiEmKASD5897TTzj7ooK9yvH7R1CzBWBrMWLID5880cOevWmb/nzzfv37PHM1gTzCgDFQcqMfh+WVJR6gjLp1codpTx9e6lvLzpR17bPJvfsjbUGCknjlJKmdOZRo70TETsT2qq2b5/fwnWNLDhvTsGF6wBLJ1LgjqsOrXBN3uWUeQoC9xYCOFhZ9ZhFq7fGdTIt+IyOz8s2dgAvRJHCxlhI0QLppQVoi9BF/4fAb/RaYPPs7sGtV6nNsgsDKFSj0soJ4+VyZyPnFm15yrQxT7WaU630Xm3gq0rKqwZD2WtPDFLTTWvpldOBQKUikN7e/2tbdDBBinuh4Rg3vuKYJcjE2XzEiTq1Am2bKm6vX078RkZPPr93dxx0r8pLSqrUd7bYjMDOXe9N41ugzq7lvNQm+pVDTTKQCkLOvoiKPovgd9DCyr64oBdD8SpDV7bPJsPty+g1LBjUxZ0xf1tIuKZ1vtUTmw78IifR7QArVubP8XFsGOHWXGtvNycsmizmaPX2rQx993oJlyyvIWbNKw3z3w6n+Iye8C2qo2dYPMJlxl21uXtZlgTrbooRFO1ZNOuoNtaLIo/1+/krNHNL+eX1poVW/fy7SIzoXJkuI2RfTpx8rBeMmKoEUnARoiWLuZSKPsJ7KvxdwK5WV/M3vLgr7xZajNAz9YVyiz4qxRTRaMLnkcXvgzWTqjoCyDylNqNRij5HHQewVyG1EVvoxKfCP05mhpvJ2Zho8H+NdgUhCkzQNPeBtFHMtjSii75DBV3a82HKssKVwaN9u6F9HR6D+/Bf5c9xYwnZ/LTO/MoLzVPSixWC8eeOZzzbz+TXsO6m8vUZVlhP8Esn1JTg5gGVe1poi9EF78Lugjf+5wFVDxEnxf0er0xtMH9Kz/mx/2rXPc53EbVZJXlc8/Kjyh0lHJ2B++JksVRKDoa+vQxf0STExURxm3nncCD7waRkNwa2pTKUmfgIJAQwlNZuSPoaYra0JTZgy+u0FTszc7jn//9mo27D2K1KJyGxqIUPy7dxNOfzOOeiyYyaXjvxu7mUUkCNkK0cEpFQqu30Hl3QdmPmDMhNeYIFieoKFTsrUTok4HnglqnRSl6JaSH3peov6CLXgt+AZ1rdtXIRuctgYJnIOlNlC24kUCu1RQHVx4VnFD6Ndr4F8oSWv6fJsvtxEwBOudnKF+E/6BZZU2wYGhw+rnyVC3hL8uWQUYGbbumcdN/r+Gap/7Kro17MZwGbbu2IbF1QtWyoSb8DVY9jzJQ1lRo9SY693LQJdR8r81gjUp6+4iT7c7au9IjWOPLE2tnMjy5u1SJEaKZOHN0PwzD4PGPfsbu9H2xRZdYINYZ9Ky1NpJ0WIiQtU6MCX6aokXROjG2nntUt7IOFzL1yY84XFgC4Jr6Vfmai8vs3PPW9zi1weQRfRutn0crCdgIcRRQllhUqxfMpLslX5gn2CoMFTYYIk9HWaLpAgxK7MTqwztdJUF9MbTmnFpcrVe2jujIyVD6LaFNd6poaxxA51wCyV+aVWeC5dxD8AEIBxgHoaUEbKpRCU+gs/9ivkavQRsrqNiKEUlBrRHwM0w2QMLf6KQkeg2tNjy/1gl/Q1SPowxU+CBI+RZd/B4UfwS6oOKBBIi+EBV9sRnYOUIf7VgQMFF4pS92/ckNvU454ucUQjSMs48bwPhjenDZUx+x40Cu1zZ6ZySWNkFMnQI6xbSmZ1yIxQKEEBzbvwsxkeEUlZYHbOs0NJNHNq+gxgtf/sbhwpKAOXoefX8OJwzqTkxk3eTeE8GRpMNCHEWUrSOWuGlYEp/GkvAYKvp8lKVqBMG1PU802/lbB3Bm+6G0j06uXR8SHoHwkW5rC4UTjFx00ZshPqk1xOdpubFsZU1FJX8GERMxDwEKsFb8tkDEyZD4bAhrNFDhGf6bNFTC3yZGWdtiibsN1WYhqvUvqNa/otr8gSXuljoJ1uwvOcyG/L1BBWsMND/sW3nEzymEaFgJMZGcP26wz6Ol3huBLrEQKL+4Bi7pMsas1iaECElUeBjnjR0UcCSb1aLo1ymVfp2O/BjfUHILS/hhycagEiqX2R18t2h9A/RKuGu5ZyVCtGT1NJUjI6krjwy+gPtWfoyhDY+RNlalcGrNhLQB3N73jFp33Zyi9T90yedQ+AoYe0JcgxNKPkbH3YxSEcEtEnZMENOAKlhSwBpcZa2mLq+8mN3F2Sil6BCdTFyYmftFWVubI66cB6BsLhj5YImHiAkoqzmCxbD1ragSFWgkVAREBtgejvKywkqF1cs2lW8vDql9gb2kzvsghKh/p43ow38+/9V7XgytcC5MwHrcYTS6RgLiygmu53YYwenthjREd4Vokf4+eRQbdmaxcMMOvM2OsloUKfExPHXN6c0qMLp00y4cfqZdVvfbmkz+MnZQPfZIVCcBGyGak4MHfSdLdTigtNQ8+d2ypVbJUu2GgzhbFP/oNYkVuZksy8kkz15MmMXGiOTu/KXTKEYkdw94INL2deji96Hsd6AMLG1R0X+pmH4VA/YVUPgsGNmEli+l8gkKwbENgqzmpKIvQZf/HkRLs2qPUs37o3FLwX7e2Tafn/avdpV1tikLJ7cdxF+7Hk/XWPPKj7KmQvQFXteh4u9G50wl0P9Hxd2CsgQxV7uBEv4eTWJskfXaXgjRNMRFRXDvxRO57+1Z3hvk2+DXVkT0L8PRptjjYkt6VBKXdj2es9oPa1YnkaJlK7c72H0oD4fTIK1VHPExTf/4FGaz8tz1Z/L2D4v5cO4KV74XAJvVwqRhvbnxrONISWheU+qDqUZXSQOFQUwLE3WreZ+VCHG00Nr76AR/Dhwwf4IYnWA3HEzfNp+Pd/zBYber9hEWG2e1H8a1PU8iMTzwAUhrBzr/QSiZgTnNpmJEi5GNzl8NBc+i426H/PuByiuFIQZrqnodfNOIEyB8BJQvwfcoGytYUiHIMsvavgFd/CGUzTbLhVtaQeRZqOjzUI04QuePg5u4dfm7GFq7gjVgVg6atW8ls/ev5pkhUwOWdVXhwyHxZfThfwDleP6frICBir0ZoqeG1kEpK1xn0qNa0TW2DZmFWQH3IquyMCFtQIP0SwhR904b0QebxcIjH86hsKQMq8WsWGNRFpyGQb/W7XnyjMlYojRrDu/CbjhIjUxgQGJHCdSIJuNQXhEf/LyMz35dTUGJWZnUYlFMOKYHf504hP6dm/YI5zCrlatPHcmovp154YvfWLJ5N1prHE6Dn1dsITE2iosnZNCmGSUdTo4L/ruWxaJo3cwCUi2B0jrIlNcNJD8/n4SEBPLy8oiPl0z2QqC1WSln376aj8XHQ1KSeaLrcJjJWr1NL2nb1pyS4uVLW7nh4Oal01mSvc1rLgyrstAmMp43RvydlADVJYy8B6HkA3wHYSrHams/bYKhUK1/R1mDz6OjjUL04eugfCEewSQsgGGWDm/1JsrWwf96tEYXPgNFr1ZbT+W6rKjEp1GRk0J5QXViT3EO5//2HHbD4fPdVSgiLDY+GXMzqVGJAdepjVwo+Rxd8qU5IkrFQOSJqKgLULaOddn9WtHaCY6N5qgr1QpsgUeAtSRf7lrMo2u/CNhOAR+PuYVOMSn13ykhRL0pszv4aekmFm3YSZndQeuEWE4b0Ye+zShnhjg67TiQy1XPfExuYQlGtXwpVotCa3hw6smcNqJuCwForckrKsXucJIQE0l42JGNV5i9bBN3vfEdQI28L1aLIi46ktdumkL3ds3jeFtud3DyXa+TV1QaVPtnrz2DsQP9X/QTgYUS85CAjRBN3Zo1niNrlIL0dHSnTqzfnM3SH1dSVlxGUttWjD1vNMkR2neFnf79a6z++Q3f8/723/wmLrUqCwMSO/DaiL/5bKMdmehDJ9fmFYbIChFjsbT6b8hLaq2h/A9zupZ9JeAEazdU9EUQORGlAme914WvoAv9JeVVgEK1+h8q4riQ+3gkntvwHR/tWBCw9KQFxdSuY7m250kN1LO6p3U5FE1HF78Lxv6qB6ydUDGXQdQFqJCTTTc/DsPJbcvf4/eDm/zuw//oNYlLuoxpwJ4JIYQQpjK7g7MfeJuDhwv9Jre1KMWbt57PwK5HXs2spNzOV7+v5aN5K1xV1sJtVk4d0YcLTziGHrUIqGzclcUlj3+IYfiup2qxKJLiovnygcuIbibVlP77zR+8/t1Cr7l5KlktijaJsXz17yuwWqRu0ZGSgI0QLcXBg7BwYdVtqxUyMli3PZ/n/vYqmat3YrVZUErhdBoopRh73mimvXwVMSUFsGyZWUa50siRHvlAih1lnDL3UUqdwU0venf0DfSKT/f6mJH/KBS/S1CJfY+IQiW9hwofVs/PU5M28tBZx2JOEfJHga0nKvmrBhvtYWiDCbP/TZGzLKj2iWHR/Djh3nruVf3QRjE69wqwL6fmSK2K9ztiPCrxeTPhbwtnNxw8u/5bvti9GENrrBXbnEMbxNkiuaHXKZzdYXgj91IIIcTR6puF6/jX9B8CtrNaFL07tqFvxzTKHQ7aJsVz2og+tEtJCOn5cgtLuPY/n7F590Gg2qRui3mMfGjqKUwa3juk9d771ix+WLIhqIpKd180gSljBoa0/sZidzj5x0tf8ufGnT4TKkeGh/HGP8+jZ3vJK1gXQol5SA4bIZqy6iNrMjJYvTmX2098CMNhBkacjqo8JRrN/I9/Z/uanTz328NEZ2TAkiVVI20yMz0CNr9krQ86WGNVFr7bs9xnwIbyxdRvsKYib0r8Q40SrAGg5AuCy52jzWk69lUQ3jCZ9Av/n737Do+juho4/Lszq95lq9uW5G7LVe4FXDEYTO8loQUIvST5KCGQEBJCCARCDZ3QOwaDAWOwwd2y3HuRZFvdVu/anfn+GKta0q5sadXO+zwG7e6dmbsqsztnzz3HXulysAagoLqMCkc13nrXC2iYRQ9Zhaub/Hzr2H2VP2KWPI0K+IMbZ9YxPDQb/5dwLjcMmsPijE0cLjuKrjQSgvoyO3IEnpq81AshhOg4n/yyBU0ppxnADsNke2o2uw7mAGCYJi8tWg2Ah64YGR/NVXMSOWVU/2azPEzT5O4XFrI/40iT7xJqgi1/evNbIkL8SRzUx6XnUFJe6XL7a6Xgk+Wbu0zAxsOm859bz+OlRav5aPlmSiuqaltOKGDysFh+d9EM4iJDO3imPZO8ixOisyora9hJJzqa6tBePHLxgxh2x3Hrf2sYDoO0HYd548H3ufWZ6yA6GtKPtc7Ozrb2e6yY65HKYpdeQMF6AcytbKn9ciuKALeaAs/pKP8brGK4HcSs3oLrXa2UWwM2tsa9XNtpm45mOrKg4iuc/wxMKH0b0+9m17pYdQMhnv5cEefeZXhCCCGEMwdzClx6r1mjqaBItcMkeV86yfvS6RcezKv3XEzvoONf39fvPsSWlCbqPjaiFLz27TqXAzbZ+cU4DNfaX5smHD5S6NLYzsLDpnP7edO54czJrNyWQm5RKd6eNiYM7tvqDCfRtrreu3Uheoq0tIa34+JY9cV6CnIKmw3W1DAcBt++/iPlJeUQF9fsfr00G66uilRK4aW1kI2hx2JlwbShoOdQoR+iwn5BC32lQ4M1ltZkECnqOmG1Px/dk1i/3riyAEtDMTggCpvWBWu8lH8OLj1LgAqocJ6CLYQQQoj2U7MMqa0czCng3IetmjiNffrLVpeO5zBM1uxII+NoSx9G1rHprXvP1FXrvHh72piTOIjLZo7hvKkjJFjTCXTN3yTR5VQ6qlmcsZE7kt7g8hXPcP2aF3l9/08crSzu6Kl1Xjk5dV8f6wb186dr0HTXXvQqSivZsGSL1UWq/trIevsd16u/y72aHKbB+F79m31c+V5M2y2J0sHzVDSfeSjPsSg9vI32e5L0frgeLDCOBbHcQynFpbFTXRprYLo8trMxHem4/tJlw3Qcbs/pCCGEEMKJUf2j2jxoU15ZzQ3//vi4rJe96bkuLVsCK1e3piCxM9G9Agn09XJprK4pRsR37hblouuQgI1od9sLDnHO8n/y8JaPWXdkH/tLstlacIiX9/7AgmWP82Hqqo6eYudUVa+wbai1ZrQwtwjD4XpKaXFeSYPtG++3v38EY0Li0JwEIRTgb/NmbuTI5gd5ngr6QFzKstH60PzpRwe9Lyr4n87342bK5yJcDkppvcDr1HadT2MLYhKJ9w9Hb2Gpk640BgdEMS+qa6yrPo5qzUpe06XOX0IIIYRoP5fMGONyEKU1DuYUsHpHw4z01jZ7OFJ4fJZOUzxsOheeMgrNxeydS2eOadU8hGiOBGxEu9pfnMXN616lsKoMsD7Zr2Fg4jANnty1iE8OrmluFz2Xvd5yGpt1kRrYyx/Vik8o/IP9rC/qp3HaGy7T+f2wBXhothaDNiZwX8K5eLVQoFYpDRX6CmgRNB20sU43yv8uVO9F4Hs1KL9GY7zA5xJUr49QWucrbKZsseB1Bq6cOpXfb1GtCi6cPG/dk+cmXM8A/wjAao9ZoyaIMyQwmmcnXNviz7IzUx6JuL7UzAEeY9tzOkIIIYRwYuKQvkwZHtvgfUlb+eTnzQ1uD4+NaFU2zyNvL+G7pN0ujb181lhC/Hxa3L+mKRIHxTAtIc7lOQjREgnYiHb1zK7FVBn2BoGapsd9Q4m9wk2z6iJs9S72jwVZpp03CdPFTyg8vT1InHssI6Z+a+9j+zVNB2bVOgZ5JPP2uGH09bGCLPUDNwqrzs1fRl3MvCjnxXOVHoPq/Rn4XQcqoOGDHuNQwf9F+d+C0nzRAu9Hha9CBb+ICnwMFfwcKnw1WtBfUFqwS8+xI6igx8BjDNZ3p/EL9rFTqs+vwPfX7p3YMb29Anhr6q38K/FXTAgdSC+vAHp7BTCp10D+Pe5qXpv8W0I8u3ARXu8zQLmynlpZS9I8J7X7lIQQQgjRPKUUT9ywgIlD+wJtW9NmX8bRBrcvPnV0q7J5DNPkj68vZv3uQ07H9g7y4+V7LqZXoPWBY/34U81zGjsghn/ffG6b17DJKShhafJeFq/bxab96S7XoBRdnzI72U+7NT3JReeWXpbH+T//y6WxCvjdsLO5JHZK+06qK1m+HIqOFUILDIQZM6iqrOaymBspyS9t8USt6Rrzr5/DXS/deNy+zAB/mJCCWfoGGHVdqExsZJrTeD17FAfKdfxt3pwaPowzo8fi7+Hd6umbZiXY94JZCXokSo9p9T46K9OsgrIPMMv+B46DdQ94JKL8rgWvea1OyRWuM8s/wyy8r4UR1vdehbyM8prhnkkJIYQQokWGYbJu90E+XLaJTfszcBgGvl6e5DRRPNhVfcKC+PKR62pvm6bJHc9/weodaS53ptKUYmT/KN74/aUujS+vqua7pN188vMWDubko2saI+IiuXTmGKYMj23TYM2BzKM8t3AlP2850OD59AkL4tp5Ezhv2gh5z9kFtSbmIQEb0W4WHd7AI9s+dWmsQjErYjj/GHtlO8+qC9m5E/btq7s9bRqEhpL0/WYeXPB3DMNsMttG0zWi+kfwn9V/IzA0APLyYOVK4FhWTcRnENvcEjQdtCBU6AcoW1zbP6duxjRNcBwCswS0UJQuBebcxSx7F7Por8du1S84qAAbKvhfKO/5HTAzIYQQQriquLyS0+97mcpqO629KtWUYm7iIP7xm7Ma3F9WUcVdL35J0h7nWTP1ffynXzEgunfrJtGOtqVmcdO/P6HKbj8ua0hhlSy4YvZYfnfRDAnadDGtiXnIkijRbioN11sam5itGt8jxDbqMJSaCsD4eaN57NsHiYgNA0C36egeOpqugYKJ88fyzMpHrWBNve0AqFwK4S0VeXaAUYiZfyOmabQwToCV4qts/VAewyVY42bK90pU2DLwuxn0AaCFg20Iyv93qPBfJFgjhBBCdAEBPl784zdnWe+pWhlzMEyTi2ccv2Tf19uTF+64gEGtDL7sOXykdRNoR+VV1dzx3OdUVh8frAFqi0289+NGvl3vWg0e0TW5tyKm6FHCvV2pM2HRldaq8T2Cry9ERED2sWVLGRkQHQ2RkYydPZK39j7LxqVb2fD9ZirKqgiNDGb2FdOJHlAvcJCVZW3HseyagOXg4yxO6wBHKlStAq/p7fLUOrPi6nK+z9xCenkeNqUzMrgvU8OGtNh5STShrAzS0qw28lVVVh0mmw08PSE83ApI+vqe1CGUHokKuBMC7myjSQshhHDH+VuI+k4d2Z8X77iQxz/8kQOZeS5toynFhCF9SRzY9JJ7m64RHODTqnm4uoTKHb5bv5uCUuf1PZWC/y1JYv7EoW6YlegIErAR7WZy74EEe/hSUF3mdKzDNFgQk+iGWXUN2RWFLDy0nh1HN9Jvx15CvPyZ0GsgwzaAPm48REaiaRrjThvNuNOaKQaclQUbNlCbX2rfA/1LcO3PXscs/xzVgwI21Yad53Z/xyeH1mA3HOhKB0zspkGYVyB3Dzur5bbmwpKbCykpdYHG+ux2qKiw6int22cFJOPjISzM/fMUQgjRkJy/RQeaMKQvH//p12w5kEnyvsNs3p/Bim2pxwVRapYCjRkYzRM3LmhxKdCAqF4k7z3schHi+MiQk3gGbevL1dtRCqfLxEwTdh/O5UDmUfpH9XLP5IRbScBGtBsPzcblcdN5ce/3LY7TlcaQwGhGBPV108w6L9M0eXX/j7y270cADGWSFWTSJ/swWwsO0ftwAL8pKyR8wDCIi4PQJlpf5+VZy6AyMhqe5ft5QW9X/+Qd4Mg42afjFnbDwbKcHXx2cC1ppUfQlcbI4H5c1G8SY0LiXFrT6zAN7t34Hitzd9WmmNrNus5auZVFPLDpffYNyMIwDYqrKwjw8GZWxAiGBXWfYsonxTRh+3brzb6rsrOtf/HxkJBAq3OhhRBCnDw5f4tOQinF6AHRjB4QDcCRwlI++nkzn/+ylbziMnRNY/SAaC6bOYYZowdg01vOfj5/+kg+WLbJhePCwOjeDOsX0RZPo01k55e0qqZPbmGpBGy6KQnYiHb16/6nsqc4g6VZ25p8XFeKMK9A/jn2SimWBby6/0de2be0wX0HYnvjVWWnV14J+VUlPLf7W+5WGiHp6Vb3qNBQ0HWrdXdeXl1nqfqio2G4DQpbMRnV+dOd08vyuCPpDQ6VHUVD1baPz80uYknWFqaFDeHvoy/Hx+bZ4n4+P7SOFbm7nB7v9f0/oSut9tOdNw8sZ1hgDI+MuoRY/x78KaNpWtlcmZnHP1bzO2qzWZ/QNvU7mpJifXI7bpy86RdCCHeS87foxHoH+XHL2VO55eypGIaJUrTqemFQTG9OHdWfFVtTWlzuZJpw04IpnepaxNuzdZfp3h5yWd9dSVEG0a50pfHo6Mu4Z+hZRHoHN3jMW/Pggr6TeGvqLVK/BsgqL+DVY5k1DSjFzkGRZEQG4zBNyh2VfJ+5xXqsqMjKptm/3/p/U8Ga+HhITATP8bj+J69QXlNP7Im4SUFVGb9d9woZ5fkAtcEasDJmAFbn7uHeTe9itFBA2TRNPkhdhasv0Q7TwG4atcfYU5zJtWteJK0k98SeSHewfXvDN/tKQUwM9omT2ExvVuwrY2OmnarBQ2HGDKvjWUxMwzf3mZnWfoQQQrhPM+dvpk3DMW06R3rFcCQoAsew4XL+Fh1K09QJBVT+du18RvePAo6PKeqadcfvL57B7DEDT3qObWlqQlzt/Jzx8/ZkSN/wdp6R6CgSihPtTlcal8VN45LYKWwrOExeVQk+ugcjg/vha/Pq6Om1vRMs1vf5oXW1mRvHUYoDcWHkBfsRnV3AhvwDnN1nXMvfv0bry5Uehul1OlR+Dzia3w4AHXwucPEJd4yP0laRW1HUIFDTmIHJmiN7WXtkH1PCBjc5Jq00l4NlJ94VwGEalNor+fXq5wnx9CPQw5c5kSM4O2YcoV7+J7zfLqOm5kENXadq+Ag+fGstC59/jsIjxbUP+Qf7seC387jigfPxSUy0Mr+Sk63sMLD2ExEhNRGEEMIdmjh/k5jIEYcHC59YzKL/LqGkoBSAgFB/Ftx0Gufcega95fzdKrmFJexIy8buMIjpHcSQPmGdKpOju/Pz9uSluy5i0ZodvL9sE/vSrfd8uma1BL98ViKjjgV0OpOLThnFu0uTnY7TNcX500a0OiNHdB3KNDtROWxa15NciE6lpWJ9jTVRrO/a1S+wvfCwS4fyqqjm2bDZjLH7tiooZNoPYh69EMwSWgraqIAHUX6/dmkuHcFuODjzp8dcKmitK42pvQfz5Limn8+W/IP8Zu1LbTo/hUJXGg8knMeCPuPadN+dzrp1db/zSlExfCT3X/Mq21ftxmyiyJ+mafQfHcu/fvozfoG+VnHspKS6eksRETBxohufgBBC9FCNzt+MH8/uQyXce/pfKS+uwHA0zE7VdA2/QB/++cPDDBwbL+dvJw5kHuWlRav5ceO+BstxBkb34rozJnLGBOnq426maVJYWkFFlZ0gf298PD06ekotevaLFbzx3fpmH9c1RXhwAO/cfwUh/q3riCU6VmtiHhKKE+JktVGxvgpHtcubV3p7UDAwFiKGt2qqytYPQt/DLLgRHOmATl3gRgE6KuDeTh2sAcgoz3cpWANWBszG/NRmHw/w8G6jWdUxMbGbDh7Z9ileugenRY1q82N0CmVlDQOU0dG8+PhidjQTrAEwDIMDW9L4940v8eAH90BkpPVJbXq6NSA729qvtIwVQoj208T5Ow8v7jvjPsqLyzEcx5/DDYdBaVE59877K6/t+DfBcv5u1taUTH779KdU2e3H1U7Zn3mUB15fTEpWHjef3bmXn3c3SimCu1Bg47Zzp6FrGq9/uw6oazuuawqHYTIgujdP33yuBGu6OQnYCHEy2rBYX6RPMCklOS0u8akv3PvEMtCUxyDo/QNULscs/xyMTFC+KM/p4HsRSmui81QnU7+D08mOj/MLo49vKOlleS5+51vnXzu/YlZEAjZNb4e9d7C0tAY3iwJC+f7NZRhO2mcaDoOfP15DzhNHCO/b2+p4VvOGv2a/w4a1w4RPjmEarD2yj60FB7GbBtE+IcyNGom/re2DfkII0a4anb+Ji2PRf5ZQVljW4jnccBgU55fwzStLueKBC7rM+dudyiqquOP5L6isPj5YA3UJSa98s5Zh/SKYOXqAm2cougqlFLecM5WLTh3FZyu2krz3MFV2B316B3Hu1BGMH9xHltf1AG0esHE4HPz5z3/mnXfeISsri+joaK655hoefPBB+YUS3U9TxfqioyEujuxiB/s3p2IaJn2HxtBvxsimW24fK9Z3dsw4Vubudumw/Xx7MyzwxNtJK6WD92yU9+wT3kdHCvMKRFdabeHfligg2iek+ceV4rLYaTy586s2nGGd/KpSfs7ZyezIEe2y/w6Vk1P3dWAgP32/C4fd+c8EQGmKpe/8wuX3n28FNgMD6wKaOTmd7g3/T9nbeWrnIrIrCms7hTlMgyd3LuLi2MncMmhe9wzKCSG6p0bnbzMkhC9f/M5pwB3ANEy+fOFbK2DTBc7f7vbN+l0UllY4Hacpxf+WJEnARjgVHuzPbxdM6ehpiA7S5gGbxx9/nBdffJG33nqLhIQEkpKSuPbaawkKCuKOO+5o68N1SqY9DYxcqy2ybRBKde71keIENVOsb9fBYt666kWSvtvUoILw8KlDuOpPFzHh9KaL9Z0aNoFI72ByKwtxOCktdVX8KT06ABrg4cPsiAR+zN7uUtDm/L4tr6m/oO9EVuTuYu2RfZhtnGdjUxqb8lO7Z8Cmqqru69BQjhzegm7TsFc7z4BSmiL3UL1iz6GhdW/46++3E/g6PZm/bP2k9nb937lKo5p3U37hUOlR/jH2CnQlzReFEF1Ao/N3WVEZhblNdJpsxtGMfCrLK/Hy8erU5++OsHDlNpSq+1yuOYZpsml/BhlHC4nuJd1ST0Radj7Z+cV4edgY3Des09ekEeJEtHnAZtWqVZx77rmcddZZAMTFxfH++++zbt26tj5Up2KaJlR8jVn6Oti31T2ghWL6XI7yux6l9YCOMT1J/WCNUpCYyNoN6fz5giesT6gavVDvWrOHB878G3e/dBNn3jDXarVdr1ifLe0gT4+/mhvXvkypvbLZQMSFfSdxbp/x7fWsuowr4qazNGtbi2M0FAEe3pwVndjiOJum86/EX/H0zq/54vB6HKZ57MLbxO5CQMiZKsN+0vvolOz1npfNhqe3J62pY+/pXe+NlV4vO8Xeeb5fuRVFPLrtsxbHmMDynB18eTjJaXCwq0spyWFxxiaOVBbhrXswoddATgkbKtlFQnQ1jc7fSmt9sLl2m056/u4o2fklToM1jcdLwKZ1lmzYw1tLktiRVleHydfLg/OmjeDa0yfQK9CvA2cnRNtq84DN1KlTefnll9mzZw+DBw9m8+bNrFixgqeeeqrJ8ZWVlVRWVtbeLmpc46MLME0Ts+hRKH8baPSCZ+RB6YuYFd9Cr3e7RH0Q4YImivXl2j145OIncdgdTb5Q16QZP/3blxkwJo4hEwYeV6yv/4gR/G/Kbby87we+z9zcIFjQ17cXv4o/lXP7jO/R2TU1EoL78qeRF/LXrZ+iFMdlJelKw1v34Jnx1+LvQmFhT83G/yWcy42D5vJtxibSy/OwKZ0+PqH8d98PFNsrXMrmacwwTaJaWJLVpdXUZwKw2xk1czj/+4tr3yNHtYNRMxPq3VEvK8fWecqrfXF4vUtBKAW8n7qS8/pM6JZ/n3mVJTy05SPWHd3XIIvok4Nr6eXpzwMjLuCUcOl40h3tKcrgk4Nr2V54CMM06e8fwQV9J5IYGt8tf9d7jEbnbx9/b8Jje5OTdqTl7bCWEkcPjMDT61jQvZOevzuKp0frAtheHvI9a42azklao/NPWWU1Hy7bxA/Je3n995dIEEx0G21+hrjvvvsoKipi6NCh6LqOw+Hgb3/7G1deeWWT4x977DH+8pe/tPU03Kv8vWPBGoCmLlYMcKRi5t+G6vWeO2cm2ksTxfq+/vf32KubDtbUp+mKz//zDfe9fUeTxfqihw3jz6Mu5q6hZ7Gt4CBVhp0I7yCGB0lhscbOikmkj28v3jqwnJW5u2uXM3lqNs6KHsuv+88gxrd1QdJgTz8ui5vW4L7JYYP527bPSMo7gIZCU6pVmTdnRI9p1Ry6DE9Pq2g2QF4eo049lT6Do0jfm9VikEMpCI0KYdJZ9TKf8vIa7reT+D5zs0uFwE0gtTSXg6VHiPUPa/+JuVFhVRm/WfMSmRUFAMcFLvOqSvh98tv8Y+wVzIpIaGIPoiuqcFTzl60fszRrW4OaYamluSzJ2sKIoL48Oe5XhHhK9nCX1Oj8rZTivFvn88p97zTb5a++c2+dX3ejk56/O8qU4bF8sXIbDhe+jwE+XgyM7uWGWXUP36zbWdvmuqmCzg7D5GhRKbc/9wUf/+nXaJq8bxZdX5svtv/oo4949913ee+990hOTuatt97iX//6F2+99VaT4++//34KCwtr/x06dKitp9SuTNOBWfJfF0Y6oDoJs3pLu89JuEGjYn2EhrL4taUYDucX8Q67wbIPV1FRVllXrK+J/QZ7+jI9fCizI0eQENxXgjXNGB0Sy1Pjfs3XM+/llUk38frkm/l29gPcP+L8VgdrmhPjG8oLE3/DR9Pv4ubB87g8bjojg/o53U5DcVrUKCK8u+mnPOHhdV8XFaHy87njhRtQmmr+91VZ/7njhRvQa9LoG3dQq7/fDlZUVd6q8YXVrRvfFby0dwkZFfnNZpiZWK3s/7LlY8rtUr+iOzBMgz9uep+fsrYDDYN0NV/vLErn1nWvy8+8q2p0/iYvj/m/mUPvmFA0vfnLA82mER7bm3nXzLTu6MTn745y8amjXQrWaJriwlNG4ikZNi4xTZPXv12Hs7fDDsMkJSuP1TtS3TIvIdpbmwds/vCHP3Dfffdx2WWXMXLkSH71q19x991389hjjzU53svLi8DAwAb/upSqdWBkuThYxyz7tF2nI9ykUbE+0zTJzy5weXOH3VFX3C+0XlBBivWdsN7egYwOiWVEcN92a7Mc5x/O1f1ncPuQM3hx0m+Y2Gsgzb1v0FAMC4rh/oTz2mUunUJsbMPbqamMnT2SRxbei7efFyjqAjfHvvb09uSPH9zN1HMmNNiugbi49px1q/i5sJyuvoBWju/sSuwVLErf0OQnmY2VOar4LnOzG2Yl2tuaI3v5JXdXi9llDtNgf0k2nx/u3jUKu60mzt/+wX48sfRhwvr0OnbOrntYKQUKwvv25omlD+MX6Fu7XQOd6PzdUQb3CeOSGaNbHKNrisiQAH59mtQkrHG0qJQ3v1vPA699wwOvfcOri9eSW1hS+/juw7kcyMxzqT6Qrik+X9VynUMhuoo2D+mWlZWhNSpcpus6hnHyhTs7Jcfh1gwGx8F2m4pwo8bF+pTC5mmjutL1Ynu1BVelWF+X5KnZeHrc1XyQtooP01aRXVFY+1iopz8X95vMlfGn4K13444Fvr4QEVFXzykjA6KjmXRmIh9mvMzSd1ew7MOVFB4pIiDUn1MumMy8q2fgF1SvGGBWlrVdjYgI8PFx7/NowdzIEfzvwM9Ol0UpIMYnlDi/7rUcasPRA1S6WDRboVies4Pz+k5wPlh0ah+lrUZH4XC6HNDko7TVXBY7FU06pHUtzZy/YwZG8fKWJ1n6zs988fy3HN5lLduOTejLObecwZwrp+Pjf+wc3cnP3x3pD5fMxKZrvP/jRjRN1Wbc6Me+jo/qxX9uOY9gf/l+OQyDZz77hfd/2ohhUvdB2AZ46avVXHjKKH5/yQwyjrpe59RhmKTnFjofKEQX0OYBm7PPPpu//e1v9OvXj4SEBDZu3MhTTz3Fdddd19aH6hxUa7+Fsra3W2hUrA9g9MwRJP+wxemyKKUgZlAUweHHlslIsb4uy6bpXBV/CpfHTWN3UQaFVWUEePgwNDC653TNiY+ve8Nvmla7+sREfCIjWXDTaSy46bTmt83Kgg0bGvY+jY9v3/m20vl9J/K/Az+7NPbS2Kndbuliqb3yuPu8KqqJyikkpKAMD7sD3WHg0DWqbTr+/WwwrMy6GBRdVnJeigvBGms5XEZ5Pkcqiwnvrks/u7Nmzt++kZGcffPpnH3z6bX1yI47t3WB83dH0jWN3188k0tnjuHTX7awcV861XaDvuHBnD9tBBOH9JP6KljLnB55ewmL1uyoPeM0PvN88vNm8kvKWDBpeKv27WnrIe/DRLfX5leHzz77LH/605+45ZZbyMnJITo6mptuuomHHnqorQ/VOXiMbcVgDeXZmvGi02pUrA/gvNvOIOm7TS5tft7tZ9a9+ZFifV2erjSGB/Xp6Gl0jLAw6016TZt7h8NqVx8dbaXGhzZRRygvz0qjz8g4/s1+WOfKUInyCeGeYQv4186vmh2jUIwL7c+F/Sa5cWbuEeRZF3gJLigjOruA0PzS48bpDgPvKgfxWcWwdKn1SXsn/HkK11SbDueD6qlyMQtLdDIunL+PC9R0ofN3Z9A3LJi7Lji1o6fRaa3akcZXa3a0OMYEfkjey7SEuNoMJWc0TTFucA99Xya6nTYP2AQEBPD000/z9NNPt/WuOyVli8P0nGzVsmmyQ1R9Gvhc7I5pifYWHl5XZO9Ysb4J88cy+exxrP06udkOC5quMWB0HGdcN8u6Q4r1ie4gIcEKYGZmWrdN0+p+lp5eW5QbXbcuBhr/zteIjrb20wldEjsFX92Tp3d/Q1F1ObZjSz8M00QpxYKYRH4/7OxumVU1PrQ/fronEfvTic4qaHGsgcnYkDjrRna29S8+3vq5drPMo+6ut1dAg2WeLdGVRqh0iuq6uvn5W3RuHy3b5FIQRtMUX6/dydzEwfyQvMfpeNMwufCUUW05VSE6jKy/aAMq4A+YRy8H7LQUtFH+t6B0ad3XLcTGwr59dbdTU9ESE/nTh/fwxLXPs+zDVeg2DYfd+n2o+XrE9KE8/Onv8fLxqt2uASnWJ7oipWDcONi+ve6T2hpFRU2/wa+vC1zUL+gzjtOjR7MsewdbCtKwGwYxvqHMjx5DL6+Ajp5eu/HSbNxc2It1WTuOe3Ur9fWiKMAbh67h4TCJqjAZGdyoe1pKinUxOG5cp/75iobO6zOBV/YtdVq7SVcacyJH4GvzctPMRJvrAedv0TkZhsnK7akuFbU3DJOkPYf58I+/YsW2FMqrqjFaCNpcNXccMb1lmaboHpRpulJr232KiooICgqisLCwS3WMMivXYBbcDGZZzT3H/q8DDvC7CeV/T7erb9CjrVtXt/ZbKRg/HiIjAUjZmsZXLy1hT9I+DIdJbEIfFtw0j+FTBtf9DmRlWanHNX+CEREwcWIHPBEh2lBurvWmv+ZvoyWybKbz27aNqn17eXHv9xwqPYqhTHJ7BZAZEURRgFUsU0OhaxovTPgNo82A5pdLjBjRMc9BtNqRymLOX/4vqgw7ZgtBG4Xi9cm/JSG4rxtnJ9qNnL+FG5VXVTPtzudatc3Sf95EVn4xtz/3BXnFZWhK1QZ8ajJ1rpg9lnsunCE1gkSn1pqYhwRs2pBpFEP555jln4GRC8oHvGahfC9H2fp39PREW8vNhTVr6m7rOiQm1gZtWlRTrK9+97TJk+WNj+g+ysogLQ1ycqx29Xa7VVTb09Na+hcbK4VpO7t657hKRzULM5J5O6SUnABvPNaW4bG4AJVZjZenB5Nmj+Hquy4gfuSxVsFZWVYB0/pF1eUc16WsPbKXe5L/h2GaOMyG+VUaCgOTBxLOl65g3ZGcv4UbmKbJ1Dufo7LatRpYuqZY9czteNh0KqrsLNmwm4WrtpOZV4Snh42pw2O58JRR9I+S1Qyi85OAjRDusm1bwxRipU682Kp8+iyE6EyayCLclV/OH8/8O0VpBShdYTqOfbJ5bNnnGdfN4s4Xb8TmYZMswm5gd1EGr+37kZ9zdjZYHjU2JI7rBsxiUu9BHTg7IURX95e3v2fRmh1Oa9LommJu4iAeu/4sN81MiPbVmpiH1LAR4mRIsT4hRHdUVtZwWUR0NHl48fDchyjJsc5jNcEaoLZe13dvLMMwTP7w+q1WtmF0tHU+BGt/ZdLyuysZEhjNPxOvIqeikH3FWThMk1i/3vTz693RUxNCdBJFpRV8tWYH367fRX5JOQE+XswZO4jzpo2gd5Bfi9teOnMMX67a7vQYDsPkspnSaVf0TJJhI8TJMs2mi/W5Qor1dTlF1eWsyt1NUXU5AR7eTOk9mGDPlt+QCNHl7NzZsLD6tGm89OiXfP7sYgyHs46I8Pz6fzB43AArUL1yZd0DAwfCsGHtMGEhhBDutnzzfu5/7Rsq7fYGieOaUigF918+hwumj2xxH+8uTebJT5a3OObWc6Zx/XzJ0OwJdqRl8cXK7Rw+UoCHrjOyfxTnTxtBr8Du9V5bMmyEcCelrOVMERFSrK8bK6ou59ldi/kmYyPVpgOFVVrcpjTmRY3mrqFnSuBGdB85OXVfBwZS4e3HN68tdSlYo9s0vnzhO37/2i1WlmFgYF12YU5OswEbu+FAV5oU5xdCiC5g7a6D/O6/X2Gax5cmN0wTTHj03R/w8rBx1qTmA/VXzkmkd6Afzy5cQcbRIrRjrwGGaRIZEsDNZ0/h7CmSid7d5ZeU84eXvyJ5b3qDVu8rtqfy30Wrue6Mifx2wZQe+R5BAjZCtJWwMOufFOvrdgqqyvjNmpdILz+K49hHSDVvTuymwXeZm9mUn8prk3/brVs8ix6kqqru69BQ0rYfory4wqVNHXaDTT9ua7B9bcCm/n6BAyXZfHJwDYszNlFqr8RD6UwLG8JFsZOZEDqgR74xE0KIzs40TR7/8EfMFvvIWf718TJOSxyEp0fzl52nTxjCaeMGs37PIfalH8EEBkT1YtLQftLtqQcoKa/khqc+Ii07H6BBTSPTNHGY8Mo3a6myO7jz/FM6apodRgI2QrQ1X1/rE2RJ++82Htv+OenlebXBmsYcpkF2RSF/3fopT4+/xr2T68YcpsHq3D18dmgde4utOlHDAmO4sN8kJvQagKa0Dp5hN2av17XDZqO6srp1m1fV217Xm9zvZwfX8viOL9GUqu1CVG06+CV3F8tydnB2zDgeGHE+uvychRCiU9m4L53UrHyXxhaWVvDjpn2cMWFoi+M0TTFpaD8mDe3XFlMUXci7S5NJzcqvbdHenLe+T+LsycN7XCcweRckhBAtyC4vYFn2juPa2jbmMA1WHdnDodKjbppZ95ZXWcK1q1/knuT/sTp3N9kVhWRXFPJL7i5uT3qDG9e+QmFVWUdPs/uy1fs8x24nvJ/rRWaVpoiIq7fcs35r72P7/SlrG//YsRCT41tG19z+Kn0Dz+/+rvVzF0II0a427c9AdzHzxaZpbNyX3s4zEl1VtcPBxz9vdhqsAatb2Mc/b3HDrDoXCdgIIUQLlmRtxdVkXE0pvs/c3K7z6QkqHFXcuv612qwaR72E65qL+e2Fh7hzw5tUGfYm9yFOkqdn3dd5eYT3C2P0zAQ03fnbBtMwOfOGuQ22r79f0zR5fs/3Lv1dvZ+2krzKEtfnLYQQot1V2R0uL1k1Mam2O69/JnqmlMw88orLXRrrMEx+2XqgnWfU+UjARgghWpBXWeLy0hsNRV6VXFyerEXpyRwoyW4xq8lhGuwoPMwPmVvdOLMeJDy87uuiIsjL45I/nOu06LCma4REBDHz0qnWHXl5dfVrju13U34qB8uOOK17AFbRya/SN7R+/kIIIdpNVGggdheK0INV8y8yVOr7iaaVt3LJdUVV68Z3BxKwEUKIFvjYPF0oqWcxAR/d0+k40TzTNPkwbbVLYzUUH6ataucZ9VCxsQ1vp6Yycf5Ybnj8KoAmi0DqNg3fQB8e+/ZBvHy8ardrIC6OPcWZKBfz1hSwtyizlZMXQgjRnuaMHYhXC0WE6zMNkwWTh7fzjERX1TvI9Q6rCujdzdp7u0ICNkII0YKpvQc7rV9Tw2EaTA0b3M4z6t5KHZWklea6ln2Byc6idJd/PqIVfH0hIqLudkYGZGVxyR/O5a9f3sewKQ1/zz28bMy7eiYvJD3OgNFx1p1ZWdZ2NSIiwMcH04V16vUZLgZMhRBCuIe/jxeXzBiNs1VRmlLMSRxEdK9A90xMdDkxvYMYERdZ2869RQrOmdrzWrxLlyghhGjB8KA+DAqIYn9xVosXjhqKPr69GBsS78bZdT92w+F8UCMO05BOQu0hPh6ys62vTROSkyExkckLxjF5wTgO780kOzUHm6eNAaPj8A+u96lXVhZs2GBtV39/QJx/uMtZawDx/uHOBwkhhHCr286bRkpWHiu3pTR5RteUYmi/cB7+1Ty3z010LVfNTeS+V79pcYxS4OPpwdk9MFtL3uEKIUQLlFL8ccT52DQdrZllHBoKXWk8NPJCl4vwiaYFePi0allZsIcvnpp89tAuwsJqgyyA1e0pKckK3OTl0WdQFONOG83oGQl1wZq8POvxpCQw6mU+xcdb+wMm9hpAhHeQS1MwgXNixrXRExJCCNFWPHSdp357DvdcNOO4DJrQAB9uPGsyr9xzMX7eslRctOy0xMFcMXtss49rSmHTNJ787TkE+Hq7cWadgzJbm5vczoqKiggKCqKwsJDAQEmfE0J0DtsKDnHfxvfIqSxEV5qV1YHCgUkvT3/+PuZyxoZKdk1beHLnV3xycK3TpU4aiqv7z+DmwfLpXbsxTStTJrOJOjKBgRAaCrpuBXMaFxiuER0NiYnUz53/6vAG/rrt0xYPrVCcHZPIgyMvPNlnIYQQoh0ZhsmuQzkUllbg7+PJ0H7heOh6w0FlZZCWBjk5UFUFdjvYbFZXwvBwq3aar2/HPAHR4UzT5NMVW3l98Tqy8osbPDZhSF/uOG86CXGRHTS7tteamIcEbIQQwkUO02BV7m6WZm2jqLqcAA8fZkUkMD1sCDZNd74D4ZKDpUe4fMUzVJvNL49SKDw1G5+ccjcRPsHum1xPZJqwfTukpLR+2/h4SEigqUIHr+37kf/u+6E2AFpDQ2FgMj1sKP8Ye0W7ZlAZpkGV4cBLs0l2nBBCtIfcXOv1o2aJbUsiIhpkZIqexzBMNuw9TPqRQmw2jZFxUcRGhHT0tNqcBGyEEEJ0aT/n7OS+je9iwnGZNrrS0JXGU4m/ZmLvgR0zwZ6oHd50J+el8GHaKpZn76itETUyuC+X9JvK3KiR7VKbyDANfsnZxUcHV5N09AAmJj66JwtiErm432TipGaOEEKcvHYK9gvRHUjARgghRJe3qzCdtw4s56fs7bUX87rSmBs5kqv7z2BgQPdJje1S2iGtvcJRRVF1Ob66F/4e7bc+vcqw88Cm9/k5Zye6UjjqvQXSlYZpmvxp5IWcFZPYbnMQQohuz8ly2kJPH37YmsKqzfsw844SajoY3T+KqQlx9Kpp2xwVBePGSdBGdEsSsBFCCNFt5FWWcKjsKAro5xdGsKescRcn5s9bPmZxxqYWu1Qp4Jnx1zK59yD3TUwIIbqTbdsaZtYoZdUzi4vjh9Qj/PH1xdgNk5rL0MCKUmJK8wkrKeTcKQnMGnMsezY+HkaM6IAnIET7ak3MQ1prCCGE6NRCvfwJ9fLv6GmILu5g6RG+ydjowkjFS3uXSMBGCCFORM3y2Rq6DomJmBERvLtuPU+9ufK4TYq8/Sjy9iPHJxDH6h142nSmjYi39hMRITVtRI8mARshhBBCdHtfHFqPphSGk8RiE5MdhYfZW5zJoIAoN81OCNEdlFVU8eOmfVbBVF1nzIBoEgfF9Kyi5o0zaxITORLsy+9Wv8DWz8sAHSuX8XhHfQPZFdaHL9fsYPyQvnh52Kz9ScBG9GASsBFCCCFEt7enOMNpsKa+vUVZErARQrjE7jB48atVfPDTJsqrqrHpVk0sh2HSLzyYP1wyi2kJcR09zXa3e08q2z9dQn5xOTZdI2rUcEb4enPr2pfJSC+BkiCn+zjqG8ih0iI27stg8rB+VqH7sjJp+S16LAnYCCFED1LpqKbcUY2/zUtakYsepbUF+1qqcyOEEDUchsH/vbKI5Zv315417I667oaHcgu44/nPefw3ZzE3cXDHTLKd5RWVce+rX5O3bgOxxUcwDCu55s0ST8qqnocBZTiOeoMywXSebZQdFEpq9lErYANWofthw9r5WQjROUnARgghujnDNPg5Zxcfpa0iKe8AYHXEmR0xgktjpzIqpF8Hz1CI9jfAP5LkvJTj2sQ3Pz6inWckhOgOPvtlK8s272/2cdO0FgA9+Ma3jBvUh5CA7pUpUlxWwfVPfsThIwWMLi/GOHaKLfbwotDXF73fURQmGK4vCyvy9qPMs7rujpwcCdiIHkvr6AkIIYRoP3bDwYObP+T/Nr5Dcl7dunKHafBj9jZ+s/Yl3ty/rOMmKISbnN93gkvBGoVicEAUQ4Ni3DArIURXZpom7/6Y3ExFlnrjgGqHg4Wrt7tjWm712rfrOHSkAIdh4uFw1N5f5OULQXaUx7G8Iz+HS9k1YH2/AmLqLUmtqmrDGQvRtUjARgghurGndn3N0qytABiNlnjUXLy+sPd7FqUnu31uQrhTvH84cyJHoDm5tDIxuXHQXDfNSgjRle3POMrBnAKXFlCaJixet6vd5+ROFVV2PvtlK4ZhfQf0ekFxh6aj9LrvjIqsBJtrGY6maTKj/vIxu71tJixEFyQBGyGE6KaOVBTx2cG1Lr2R/O/eJRguLhURoqt6eORFjO81AOC4wI2uNBSK/xt+DqeGS+q9EMK5wtKKVo3fl3GEx97/kf0ZR9ppRu61Iy2Lkoq67BeHqru01A0HZmXdbWUDNaAcZxXFNKU4LXEw4QE+dXfapIqH6LkkYCOEEN3UV63ImsmuKGTtkX3tOBshOp637snT467mL6MuZli9JU8eSueMqDG8OeUWLuo3uQNnKIToSvx8PFs13jThsxVbuOSvb/PO0q6f2VpeWd3gdrVe18wgsLIMinXMQp2aBn3akDJUTCVW0KZx4MZEKRgRF8lDV50GeXl1D3m27vssRHci4UohhOimDpRkuzxWQ3GgJIcpYd2zg4UQNWyazvzoscyPHkuZvZJKo5oAm490TRNCtNqgmN6EB/uTU1Di8jaOY8uHnvpkOcF+3iyYPLy9ptfuGhdQzvcJwL+qEgD/qkoCK8oo3u+LnlgMWJ2jtHHFmGHVGPt9oLjuUlT5mNw8byq/mjMer+IiKCqq23F4ePs/GSE6KQnYCCGEAKw3UkL0JL42L3zx6uhpCCHKyqzWzTk5VoFZu91aBuPpaV2sx8aCb+frrqRrGpfNHMOzC1dimq4sQG7omc9/4YwJQ7Hp7b/oobLajk3X0LW2O9awfuH0CQsiPbcQE8j0D6FvYd1yr+jifHYdisEIqUaLt5aPKQUqtgLVrwJKdFSVhoenxvOzr2ZMrzhrw9TUhgeKi2uzOQvR1UjARgghuqmBAZF8n7nFpbEGJgP9I9t5RkIIIU6GwzBYsTWF5H3pVNsdRPUKZP6EofQO8uvoqZ2Y3FxISYHsJjJC7XaoqLAyLfbtg4gIiI+HsDCXdm0YJmk5+ZRXVhES4EtUaGAbT95y+eyxLN+yn60pWRitDNocLSpjxbYUZo4e0C5zSz9SyMc/b+aLldsoKqtEASP7R3H5zLHMThyIh35ymYVKKa6aM45/fPAjABUenhz18adXuZVxFFZWSG5ZIPlbA/Go8CZkjEFOZdGxbYEAB1N7D+DWIaczKOBYV6isLMjIqDtIRAT4+CBET6XMEwkHt6OioiKCgoIoLCwkMLB9TqxCCNETHK0sZsGyx11qZRzlE8znp/4eTUlpMyGE6Ix+3LSPxz/4kdzC0tqMDMMwQcGCScO497LZ+Hh6dPAsXWSasH27Faxprfh4SEhoNi20osrOR8s38eGyTWTmFdfePyo+iivnJDI3cRCqjVNKyyur+eu7S/guaTetubKyaRrXnjGBm8+e2qbzAVi+ZT//98rXGIZRuwwLrKK+hmmSOCiGZ245Dz/vk6sPYxgmD7z+Dd9v2ANAcHkJo7LTah83NY09Ef149L5rGDsomo15qWSW52PTdEYFxxLtG1K3s6ws2LABjHrvWyZPdjlIJ0RX0ZqYhwRshBCiG3t659e8n7bSaaeoR0ZdwhnRY9wxJSGEEK30zbqdPPjGtyia7rGjKcWo/lG8dOeFeHp08gR607QuyjMzj38sMBBCQ63lUHa7VXi2fi2TGlFRMG7ccUGbkvJKbv7Pp+xIyzluiVJNoOLSGaP5v0tntXnQBiArr5j/e2UR29OyXArc2HSNq08bz63nTmvTeWxPzeKaJz7EMIxmX/81pZg0rB/P3Xb+SX8vHIbBG9+t592lyRSWVjAwL5PoIqto8IDoXpw7bQT9xiRYS5tCQ4/fQV6etQwqI4MG37j4eBgx4qTmJkRn1JqYRyc/owshRM+wtziTw6VH0TWdIYHRRHgHtcl+bx86n4LqMr7J2IiutAbZNjW37xp6pgRrhBDtpsReQbm9igAPH7z1LpIB0onkl5Tzl/99DzTfENkwTTYfyOTtH5K5fv5E903uRGzf3jBYoxRER0NcHAc8q8kqL8BDszE0MI4AD5+mL+YzM639NLqY/9Ob37Lz4PHBGqB2udKHyzfTLzyEy2ePbfOnFhkawPwJQ9meluXSeLvDIDYyxPnAVnr5mzWA2eKHNYZpsnpHGltSMhndP/qkjqdrGr+ZP4mrTxvPyu2pZB0tJGz/bhI8DSJrlqKlp1v/aoJyug4OR/NBuehoK5NKiB5OAjZCCNGBfsraxuv7l7G7uG69tkJxSvhQbhw4l8GBUSe1f11pPDzyIk6PGs1HB1ezOncPBiaemo3To0Zzcb/JDK3X3lgIdzNNk51F6eRWFOGp2UgI7kugh9Qr6OocpsGPWdv4MG0VWwoOAlY3ulPDh3FZ3FQSQ/t38Ay7joUrt2E3nC9tNU2TD5dv4prTx7dpYdk2VVOzpoauQ2IiP5DL/3a9x66iutdCT83G/KgxXD9wNpGJidYFfHKydZEP1n4iImqXy6Rk5bF8ywGXpvH6d+u4eMbodin2e+akYTz92c9UO5z/zPy8PZkzdlCbHj87v5gV21JcyvDRNcUnP2856YBNDQ+bXlePZ9bYppe9FRU1HaCpz8myNyF6EgnYCCFEB/nfgZ95bs+3KBq+ITExWZG7mzVH9vLMuGsY1+vkLmyUUkwJG8yUsMEYpkGVYcdL82iXdHAhXGWaJl+lb+DtlJ9JK63rKuKh6cyPGsMNA+cQ4RPccRMUJ6zasPPHTR+wLGcHWr3zm4HJL7m7WJazgxsGzuGGgXM6cJZdx5LkPS7XRTlSWMrOgzmMiOukReTrX7wrBYmJ/Ld4K6/t/+m418Iqw86ijGSW5ezgv5NuoH9kJCQmQlJSXaZNSkptwGbhqm3ommpQr6U5R4vKWLMzjekj4tvsqdUI8vPm0pljeHdpstPlyFfPG9/mdYf2Zx51+ffFYZjsOpjTpsevpZSVARUR0Xxh6cZaWVhaiJ6gk4bfhRCie1t3ZB/P7fkWaDpp2TANqg0Hv0t+m8KqsjY7rqY0vHVPCdaIDmWaJk/s+JJHt33GwXrBGoBqw8HXGRv59ernGwRyRNfxr52LWJ6zE7CCNPXVLMt8Zd9SFh5OcvvcuqKi0orWjS9r3Xi3KStreNEeHc1Scnlt/09A06+FDtOgxF7OnUlvUm3YITLSyrSpkZ1t7Rc4nFtoFWF2gVJwOLfghJ+KM3ecfwpzEwcDVq2Y+jTNun3h9JFcd3rbL19rbXXSlhdOtYGwMJg4EebMgYEDrSVR3t5WnSJvb+v2wIHW4xMnSrBGiEYkYCOEEB3gndRfGnzy3BQTk3JHJYvSk900KyHcY+HhJD45tBZouiaHwzQoqi7n7qQ3XepyJjqPnIpCFh5a79JF4Ct7f5CfrwuC/Fu3RDDI17udZnKS0tIa3o6L438Hfj4us6Yxh2mSXVHIsuwdtds1tV9d11z+MMI0addlYzZd47Hrz+Tv180nIS6iwWOJA2P4101n88AVc2qDN20pPjLUyXe0jq4pBsW4KUDi6wvDhsGMGXDaaTB/vvX/GTOs+3193TMPIboYWRIlhGhT1YadFbm7OVx2FJvSSQjqy8jgvpLRUU9eZQlrj+x16TMtE1h4eD1Xxk9v72kJ4RamafJ2ys9OxzlMg8PleazK3c0p4cPcMDPRFr5K3+Dy2JzKItYd2ceUsMHtOKOub964wew8mO1S5kR4sD9D+4W3/6RORE69pTeBgaR62tlZlO7SphqKLw8ncVrUKKtgbWBgXR2UnBwYNoyRcZH8kLzH5emMiI+kqtrOT5v2syc9F7A6Gs0ZOwivNui0pWmKMyYM5YwJQ8kvLqO4vIpAXy+CWxmAa63oXoFMHh7Lul0HnS4PcxgmF506ql3nI4Q4ORKwEV2eaZqsz9vPJ2lr2FZ4CNM0ifUP48K+k5gZMRwPTX7N3cE0Td5NXcFbB5ZTWF1Wmz1iYBLvF85dQ8+UN+XHHKksblUCck6Fk+J8QnQhOwoPc6jsqEtjNaX46vAGCdh0ISklrtfD0FAcKMmR1wYnzpmSwAtfrqLa7mjxtUMpuGzWmM5bcLiqqu7r0FAyywtc3tTAJKM8v8H2tQGbY/s9e0oCz36xwmmxX00phvTpzaZ9Gdz8zKcUlVXWFh+2Owz+8cFP/Gb+RH41d1ybfdgUEuBLSID7MkhuOHMSa3cebHGMpinG9I8mceDJNx5IP1LIJ79s4fuk3RSXVxLg48W88UO4cPpI+oQFn/T+hejJOukZXQjXlNgruC3pdW5b/zq/5O7iSGUxR6tK2JSXyh83f8BlK54hvSyvo6fZ7ZmmyT+2f8F/di+msNpaS25g1tYuSC3N5a4Nb7Ekc0tHTrPT8GplENFLl6Cj6D5yKgpdHmuYjS7SRKfnbHnLceMl+dKpYH8fHrnmdFA0+91VSjFuUF+unJ3o1rm1it1e97XN1urXNs/6r526ftx+g/y8ueGsyS3uo+b7Fx/Viyc+XkZRWaW1C4eB/Vigp6S8kqc/+4V/f+o8E7CzGjMghr9dNx9d09AbLbuq+Zsb2jecp357zkkHpT5avplzHnqdt3/YQGZeMSXlVWTmFfP2Dxs49+E3+Gj55pPavxA9nQRsRJflMA3+L/kdNhw9UHu7Rk2gIKM8n5vXvUpBGxZtFcf7IWsrnx9e3+zjVi0Dk4e3fNyqi7XuKsY3lF6e/i6N1ZXGxF4D23lGQriPp966jiherRwvOtbgwCiXMwgNTAYHRLXrfLqLeeOG8O+bzyWyVyBg1V+x6RpKWfVSLpw+kmdvOw8Pm+5kTx3IVi/gYrczODDa5Q8wdKUxvn7HxJrW3o32e/0ZE7nuDKuQb+NAhaYUHjadW86Zyjfrdjk95jtLk1m7q+Uslc7s9PFD+PDBq7hg+qgGS7wGRPfmT1fO5bXfXUKg38nVO/p67U7+8cGPmCbHFXw2DBPThH988CNfr915UscRoieTj21Fl7UydzdJeQdaHOMwDXIqCvnk4Gp+I+1D2837qSvRUMd1A6nPxOp8tPBwUo9v5WrTdC6Kncwre5e2+D0D63f44n4tf2IoRFeSENQXm9Kwu1BsVkMxsdcAN8xKtJUFMYm8sOd7HC4UXInxCWVcaH+n44Tl1JH9mZ4Qz5pdaWzcm061w0FkaCBnjB/S7nVR2oSnJ1Qc62CVl4e/zZszYxL58nCS0+LTDtPgor71Xgvz6mVPe3rWfqmU4syJQykpryR5bzoZR60PicKC/FkweTjnTUvgXx8vd6n9t64pPly2iUlD+7XueXYi/aN6cf/ls/nDJTMpLq/E06bj5+3pfEMXVDsc/PvT5S6N/feny5k3fjAeeicOKArRSbVLhk16ejpXXXUVvXr1wsfHh5EjR5KUJK0bRdv6KG31ca0Sm2Jg8vHBNdgNh9OxovWyKwrZVnjIaeABrJ/FN+kb3TCrzu/SflPp69cLXTV/GlbAmdFjGRncdd8sCtFYsKcv86JGtfi7X995fdu+7a1oPyGe/lwZ51qR9FuHnC4F6VtJ0xRTh8dx67nTuOuCU7ls5piuEawBCK9XDLmoCPLyuG7ALAI9fJyeDy7pN4VY/2PdjPLy6urX1NtvVl4xN/77Ey565H98+ssWUrPzqKy2U1ZZjbenjVNGxhPi78vSjXudBmvAKsj785YDVNu7/vtHm64R4u/TZsEagJ+3HCCvuNylsXnF5fy8peUPWYUQTWvzgE1+fj7Tpk3Dw8ODxYsXs2PHDp588klCQkLa+lCih9tacBDDlZYJQH5VKdmyFKddFFSVtm58devGd1f+Ht68OPEGhgRGAzR4s1rz9bl9xvPgiAvkgkZ0OzcOPA0/mxe6k9/t6wbMIsI7yE2zEm3l5sHzOLfPeIDjLsR1ZZWk/8Ows5kbObIDZic6TGxsw9upqUR4B/HfiTcQ7mUt9dLqVemp+d25pN8U7h52VoPtGoiLIzu/mF89/h4b9x0GrGCL3WHUBmb2Zhzh2ic+ZFtqVm2tGlcYpklJRZXzgT3QttSs2mLNzth0jW2pWe08IyG6pzZfEvX444/Tt29f3njjjdr74uPj2/owQjhNn23MlfR70Xq+ulerxvvobffpTlfX2yuANybfzMb8FD4/tJ600lxsSmdkcD8u6DeJWL/eHT1FIdpFtG8IL0+6kbuS3iKroqDBkkoNhQlcN2Bmj18+2VXpSuOBhPOZFzWaj9NWsyJ3N3bTga/uyfzosVzUbxIDAiI7eprC3Xx9ISICsrOt2xkZEB1NXGQkn576O5bn7GDh4SQyyvLx1HTG9xrAhX0n1WXWAGRlWdvViIgAHx/+9voXFJSUN5s5YxgmlXY7f/7fdy4th6qhFPh5SR2tpjhaEfg6kfFCCEubB2y+/PJLTj/9dC6++GKWL19OTEwMt9xyCzfccENbH0r0cFHewRwsO+JScUOb0ujtFdDuc+qJ+viG0scnlPTyPKc/C11pzIpIcMu8ugqlFImh/UmUOg6ih+nvH8Fnp/6OX3J28mX6BrLKC/DSPZjYayAX9J1IpE9wR08RsLrgrc/bz6LDGzhcloeX7kFiaDzn9ZlAmHdgR0+v01JKMaHXACb0GoBpmjhMA5sm9St6vPj4uoCNaUJyMiQmYouMZE7kSOa0lHWVlQUbNljb1dtfxtFCVm5LcfoexDBMUrPzGTcohk37M1yqYTNleByeHlLysyl9woJdDsI4DEPaewtxgtr8DHTgwAFefPFF7rnnHh544AHWr1/PHXfcgaenJ1dfffVx4ysrK6msrKy9XVR/TaoQLTi/30Se2fWN03G60pgXNQo/W+syQYRrlFJcGjuVp3YtcjrWYRpc0HeSG2YlhOgKbJrOrMgRzIoc0dFTaVJWeQH3bHiLfSXZ6EqrzezcmJfCa/t+5LoBs7hh4BxZtuiEUgqbkmCNAMLCrKBNSop12+GApCSIjoa4OAgNPX6bvDxrGVRGxnHBGsLCWP7jRqvomwuf4OmaRrCfj8s1bC6dOcaFJ9UznTF+CE9+stylGj+mCcVllVRV2yUAJkQrtflfjGEYjB8/nr///e8AjB07lm3btvHSSy81GbB57LHH+Mtf/tLW0xA9wIKYcby+/ydKqiucFry93MUCiOLEnN9vIj9kbbXqCrXws7h+wCwGBES4cWZCCHFi8ipLuGHtfzlSWQw0XIZbc557df+POEyDmwfP65A5CtElJSRY3aIyM63bpgnp6da/wEAraKPrVjCncYHhGtHR1n6AorIKdE1zsTaNia+3J1fNSeSdpcktjrzolFFMHR7b4pgTUVxWwTfrdnEgMw9NUwzpE8bp44fg08WWXgX6eXPJjNG892MyrpSUfOGrlazemcqzt52Pj2fXeq5CdKQ2LzocFRXF8OHDG9w3bNgwDh482OT4+++/n8LCwtp/hw4dauspiW4q0MOH/4y/Fh+bZ5PdBXSloaF4ZNQltYVdRfvw1Gz8Z/y1tanMGgoNVVtc0kuzcfuQM7hx4NyOnagQQrjozQPLOFJZ7LRe2psHlnG47KibZiVEN6AUjBtnZcg0VlRkZdPs32/9v6lgTXw8JCZa+wGC/LxxGK7WR1EE+Hpx94Wncvt502qDJDZdqy2g6+1p47cLpnDfZbPbNHvOYRg8+8UK5t77Mv/88Cc+X7mVT3/ZwiPvLGHuvf/lre+TMF1sptFZ3HH+dGaMHODSWNOETfsy+Pt7S9t5VkJ0L8ps4zPDFVdcwaFDh/jll19q77v77rtZu3Ytq1atcrp9UVERQUFBFBYWEhgoa8OFc+llebyd8jNfp2+k0qgGrIDBjIjh/Dr+VBKC+3bwDHuW9LI8FqVv4FDZUWxKJyGoD/NjxuJv8+7oqQkhhEvK7VWc8dPfKXc47w6jKcUVsdO5Y+h8N8xMiG4mN9daHlVT16YlERG1y6Dqy8wrYsGDr7mU5QHw+u8vYcyAGADKK6v5bsNu9h4+ApgMiO7N6eOHtGn7a7BqYT301nd8vXZni+OumTeeO84/pU2P3d4chsEnv2zhnx/+5NLPQFOKr/92PREhUltS9FytiXm0+ZKou+++m6lTp/L3v/+dSy65hHXr1vHyyy/z8ssvt/WhhAAgxjeU+xLO4/Yh80krzcUwTaJ9Qgj18u/oqfVIMb6h3DTotI6ehhBCnLBdRekuBWvAavu7+sge7kACNkK0WliY9a+sDNLSICcHqqrAbgebDTw9ITzcagnu69vkLqJCAzl1ZH9WbEtpsTaNpiniI0IZ3b8u69rHy4PzprZ/Da2fNu93GqwBePP7JGaOHsio/lHtPqe2omsaAT5eLgfMAL5as4PfzJeahkK4os0DNhMmTODzzz/n/vvv55FHHiE+Pp6nn36aK6+8sq0PJUQDfjYvhgf16ehpCCGE6OIqDXurxlc4qttpJkL0EL6+MGyY9e8EPHD5HK76x3vkFZc1GbTRNIW3h43Hrj+zQ4qEf/DTRjRNYbjQmerDZZu6VMAGIP1IITZNw+7C0jSlrPFCtNaRwlIWrtrOnvRcME36R/XivGkjun22VruU6V6wYAELFixoj10LIYQQQrSrMC/X3/wpFBHeQe04GyGEM2HB/rx93xX85X/fs3pnGpqm0JSyWsobJsP6hvPnX89jQHRvt8+tpLySpD2HXRrrMEx+3LSvnWfU9nRNw3SlTRfWObOmXpAQrrA7DJ757GfeX7apQTe4pRv38co3azl3agL3XTYbD1v37EYofdWEEEIIIerp7x/BQP8I9pfkOL0IMTE5u884N81MCNGc8GB/nr/jAg7m5PND8l4KSsrx8/ZkxugBDO0b3mHzKq1wbXlljcpqOw7DQNe6TlBjVP8ol1qlA9gNg5HxXSuDSHQc0zR55O3v+XrtzmZfjb9YtY38knL+dePZaJr7M+jamwRshBBCCCHqUUpxVfyp/Hnrxy2O01AEefrWdsgTQnS8fuEhXHfGxI6eRq0AHy8UuJh/Aj6eHl0qWAMwblAf+oYFczi3wOnz9PP2ZN64IW6Zl+j6Vu9MY5GT+k+mCcs272fpxr2cNm6wm2bmPl3rbCCEEEII4Qbzo8dwSb8pADT1eZ2uNLx1D/497mq8dQ/3Tk4I0WX4ensyZXgsuguf/OuaYt74rnfBqZTi9xfPaPpk2cid50/H21NyBoRrPvxpk0t/O5pSvP/TRjfMyP3kr0UIIYQQohGlFL8btoCBAZG8dWA56eV5tY9pKE4NH8bNg04jzr/jlloIIbqGy2eNZdWONKfjHIbJpTPHnNSxTNMkeV86n/y8mW2p2RiGycDoXlx46iimJcS1W/bOKSP787dr5/PQW99hGCZGvbZR+rGCy3decAoXnTq6XY4vuh/DMFm5I9VpsW6wOjZu2p9BeWU1Pl7d60MUCdgIIYQQQjRBKcV5fSdwbp/xbC04SGZ5AR6azsjgfoR5B3b09IQQXcTUhDgunTmGD5dtanHcbedOO6l6O6UVVfzh5a9Ys/MguqZq68rkFBTzy7YUBsX05rnbzics2P+Ej9GSMyYMZdzgPnyxchvfrN1FQWk5/t6ezEkcxIWnjKJvWHC7HFd0T9UOh0vBmvrKKqu6XcBGmabZuu9COysqKiIoKIjCwkICA+XNkBBCCCGEEKJrM02Tt5Yk8fq36ykpr6ztlGR3GIQG+HDrOdM4f/qJ18OyOwxu+c+nJO9Lb/YiV9cUfcOCefu+K/Dz9jzhYwnhDqZpMu2u56iosrs0XtcUK5++DU+Pzp+T0pqYR+d/NkIIIYQQQgjRhSmluGbeBC6fNZYfN+4jJSsPpWBwnzBOHdUfD/3kWhIv37Lfaftwh2GSlpPP5yu2ctVc6W4nOjelFGdOHMbCVducdiHTNcWcsYO6RLCmtbrfMxJCCCGEEEKITsjLw8b8iUPbfL8fLtuMdqxWTEtME95ftokrZid2yxbIonu5ZMZoPl+x1ek4h2Fy+ayxbpiR+0mXKCGEEEIIIYRwE9M0OVpUSsbRIsqrqttkn5v3N78UqrHMo0XkFZe1yXGFaE+D+4Txf5fOAlpuQnb7edMYPSDaPZNyM8mwEUIIIYQQQoh2Vl5VzcKV23j/p00cyi0AwKZpnDZuMFfOGcvw2MgT2q9pmtgNo1XbVDscJ3QsIdzt0plj6BXoy3MLV3IwpwClABSmaRLdK5Dfnj2FBZOGd/Q0240EbIQQQgghhBA9Vl5RGQtXb2PZ5v2UllfRK9CP+ZOGcvr4Ifh4tk3HmYKScn77zKfsPZzb4H67YfD9ht18m7SLB6+Ye0KFh5VSRAQHkJVf7NJ4D5tOiL9vq48jREeZmziYOWMHkbw3nb3puZgm9I8KZcKQft1+aZ90iRJCCCGEEEL0SJ/+soXHP/gJh2lSc1mklFXrJcDXi6duOodxg/uc1DFM0+T6Jz9ia0qm0+KpL9xxAZOHxbb6GK9+s5aXFq3GcHJpp2uKBZOH8/Cv5rX6GLXKyiAtDXJyoKoK7Haw2cDTE8LDITYWfCUgJERzpEuUEEIIIYQQ4qRUOqr5IWsr2woO4TANYnxDOSt6LL29u8eHqgtXbedv7y097v6amEdpeRW3PPsZr//uEhLiTmy5EkDyvnQ27c9wOk5Tile/WXtCAZvzp4/gze/XU1Fldxq0OeHirLm5kJIC2dnHP2a3Q0UFFBXBvn0QEQHx8RAWdmLHEkIAErARQgghhBBCNPL5oXU8u/tbSuwV2JSGiZUp8uKe7zkzZiz/N/xcvPW2WS7UEcqrqnnio59aHGOYJjgM/vXxMt74w2UnfKzPftmKrimn2TWGaZK8L52DOfn0Cw9p1TF6BfrxzC3ncdtzn2N3OI47lq4pTBMevWY+g/u0MohimrB9uxWscVV2tvUvPh4SEjhWeEQI0UrSJUoIIYQQQghR673UFTy2/QtK7BUA2E0Dh2lgYGJg8k36Ru7Z8BbVhr2DZ3rivkvaTVml8w5Nhmmy+UAme9OPnPCx9mcedRqsqS81O/+EjjNucB/evf8KTh8/FF2ru8xTCqYlxPPa7y/h9AlDWrdT04QNG5oO1gQGQlwcDBxo/b+ppR0pKdb2nasKhxBdhmTYCCGEEEIIIQA4XHaUZ3Z90+IYA5MNeQf47OA6Lo2b6qaZta3kPYddynoBq53whr2HGRTT+4SOpbUyu6S14+vrH9WLR689g99fPIOUrDwM06RfWDBhwf4ntsPt2yEzs+62UhAdDXFx7PWoZHvBYeymg76+vRg/4hT0/AJITYWMjLogTWamtZ8RI074eQnRU0nARgghhBBCCAHAZwfXoZTClb4kH6at4pLYKaguuNyl0u5wOelDaYqq6hPPJkqIi2Bveq7LWTYDo1sfGCqtqOKnTfvIKSjB08PGhMF9GDswptX7aaCmZk0NXYfERJI9y3l29wdsLzzcYHi4VyDXDpjFBWMnoqKjITkZatqHp6RYdW2kpo0QrSIBGyGEEEIIIQQAS7O3OS1aC2ACh8vzSCvNJc4/vP0n1sYiQwKssiouxFAMwyQiJOCEj3XRKaP49JetLo//9Jct3HLOVJcCYVXVdp5buJKPf95CZbUdXdMwTRPDNEmIi+DeS2cz4kQLJtcP1igFiYn8rOVz7/p3mwzo5VQW8fiOhRwuO8qdQ8+ExERISqrLtElJkYCNEK0kNWyEEEIIIYQQAJQeq1vjqhJ7ZTvNpH0tmDzc5YwXP29PZowacMLHGtI3nLmJg1xe6vTat+t4Z2my03HVdgd3vrCQd3/cSOWxDCCHYdQG3Ham5XD9kx+xYe/hlnbTtLKyht2goqM5GuLHA5vexzhWz6g576au4Kfs7RAZaS2fqpGdbe1XCOEyCdgIIYQQQgghAAjy8G3X8Z3FoJjeTBzSF11rOYiigMtmjsHb8+QWJjxy9RlMGe56u+6XFq2m3ElR5LeWJLFu98Fml68ZponDYfC7l76koqqVS7rS0hrejotj4eEk7IbDaVKShuL91JW127W4XyFEiyRgI4QQQgghhADg9KjRaDjPBFEoBgZE0sc31A2zah+PXX8mfXoHozUTtFHAKSPjuWnBlJM+lrenjQtPGeXy+PLKar5L2t3s49UOBx/8tNFpHR7DNCkqq2TJhub31aScnLqvAwMhNJSv05NbzKypPSYmm/JTyakohNDQht2j6u9XCOGUBGyEEKIbya4oZHn2Dn7M2saeokznGwghhBD1nNd3gktLd0xMLot1rc5KZxUS4Mv/7r2MK2cn4uft2eCx8GB/7rrwVP510znY9La5ZNp9KKdBu+2W2HSNXYeaD25s3p9BXnG5S/vSlOLbFoI/Taqqqvs61ArK5VWVtGoX+VWlDbY/br9CCKek6LAQQnQDe4oyeXnfD/ySswuz3qdfgwOiuH7ALGZFSitNIYQQzoV7B/GnkRfy8JaPmx2jgLmRI1kQk+i+ibWTAF9v7r7wVG4+eypbDmRQVllNSIAPI+IiXQ6uuMowTVoT3zJaqLFTUOJasKbmuEeLWlk7xl5vCZXNumT01jwoxfWaRd76sSCYrje935NkmiYb96WTtOcwldV2woP9mTd+CCH+Pm12DCE6mgRshBCii0vOO8AdSW/iMI0GwRqAvcVZ3LvpPW4dfDpX95/RQTMUQgjRlcyPHoufzZundi4iozwfXVmLpOymgY/uyeVx07hh4Bw01X2S9b09bUwc2q9djxEXEYrdYbg01mEYxEWGNPu4b6OMIGcCfLxaNR6brS64cuz/p4QP46v0DThM588h0juYvjXL5Wpae9fstw1s2HOYv7+/lJSsPHRNoZTCYRg8+clyzp48nN9fMhMfT482OZYQHUkCNkII0YUVVpVxz4a3qTYcxwVrgNr7nt/zHUMDo5nUe5C7pyiEEKILOjV8GNPDhpB09ABbCw/iMAxifEOZHTECH1vrggXCMnvsQPzf96SkwvmyIJumcebEYc0+PnZADD5eHk4LE4PVkXvm6FZ2ufL0hIpjHcPy8gC4qN9kvji83vnxUFwSO6UuoHds+9r9nqTVO9K44/nPa7thWd2+rK/tDoOFq7ZzIPMoL9550UkXixaio8lvsBCi45SVWd0CcnKsNc12u/XJi6cnhIdDbCz4ds3uE+6yKD2Zckel0xKAutJ4N3WFBGyEEEK4TFMaE3sPZGLvgR09lW7By8PGtWdM4NkvVrY4TgGXzBxDcAtLe3y8PDhv6gg+XL6pxaVTAB66ztmTh7dusuHhUFRkfV1UBHl5DA6N4sq46bybuqLZzTQUQwKjuajfZOuOvLy6/dTs9ySUV1Vz76uLMEyz2YLLhmmyNSWLN75bx81nTz2p4wnR0bpPHqMQouvIzYV162DpUti3z3ohr6iwAjYVFdbtffusx9ets8aLJn15eL0L/RrAYRqsPbKXo5XF7T4nIYQQQjTtmnkTuOhYt6jGxZ1rbs9NHMyd55/idF83nTWZvr2Dm21NXnPvg1fOJdDPu3UTjW3Ugjw1FYA7hsznNwNmH1smp2qPoR/LppkSNpjnJ1yPt+7RYLtajdt8t9J363dTUl7lUnesj5ZvptruaHmgEJ2cZNgIIdzHNGH7dkhJcX2b7GzrX3w8JCTQqmp9baUTZwLlVBY5H3SMCRytLKaXV0D7TUgIIYQQzVJKcf/ls5mWEMd7P21k/e5DtY+NiIvk8lljOW3c4GZbjdcX6OfN67+/hD++vpg1uw6iawoTa0mSwzAI8PXi/svmcPqEIa2fqK8vRERY78EAMjIgOhoVGcmNg+Zycexkvjy8gR2Fh7EbDvr49uLcvuPp7x9Rt4+sLGu7GhER4HNyBYG/T9qNUjgN2AAUllaQvC+dSe1cm0iI9iQBGyGEe5gmbNgAmU20mg4MtFo+1hS4a5w+C1aQp6ICxo1zX9AmN9c6bs2blfoaZwNFRFhBpbAw98ztGE/N1qqODZ6anPaFEEKIjqSUYsboAcwYPYCi0gqKyirw9/FqcQlUc0ICfHnhzgs5kHmURWt2kF1QgpfNxvghfZg7dhCeHifxuh8fX/ceyDQhORkSEyEykhBP/5abGWRlWe/76kdW4uNPfC7H5JeUuxSsqVFUWnHSxxSiI8k7dyGEe2zf3jBYoxRER1upsaGhx4/Py7PSaDMy6l7sMzOt/Yxo5xbVXSgTaFKvgSzJ2upSx4Zenv708e3lhlkJIYQQwhWBft6tX67UhP5RvbjDhWVUrRIWZr2vqXk/5HBAUlLr379Bm32oFejnjQKXloMDBPi2sjuWEJ2MBGyEEO2vJlOlhq5DYiKO8HBWbU/lo/eWs/NgDqZpMiC6FxedOopZYwbikZhovSlITq5rCZmSYmWztFcmSxfLBLqo3xS+zdzsdJyG4qLYydg0vd3nJIQQQohuIiHBel9T877INCE93fpX875I1633aU29LwLrvVxCQptMZ87YQSTVW0bWEn9vT8YMiGmT4wrRUSRgI4Rof/WDNUpBYiKFAcHc+a+P2JKSia6pYy0ZIXlvOkl7DhMXGcILt19IZGSklX6blFT3SU1KSvsFbLpSJhAwMrgvZ0WP5ZuMjc1+2qQrjT6+oVzaTzolCCGEEKIVlLI+hGoq87ioqOkATX1tnHl85sShPP3Zz1RW2VvMstGU4oJTRkpbb9HlSZcoIbqx6qpq8nMKKS8p77hJlJU1rAETHU117zBue+4ztqdlAdQGa8Cq6g9wKKeAm57+hOLySoiMtIImNbKzrf22taYygcaPh8RE0rwMXt77A3/f9jlP7VzEytzd1jKk0FAroDR+vDW+RkqKW7pbKaX444gLOK/vRGvKqu60XvP1kMBoXpx4A/4eJ59yLYQQQogeRinrQ6jJk60sZ1dERFjjR4xo04xjfx8v/nr1GaDqumA1pmmK/tG9uOHMyW12XCE6ijLN1pRtan9FRUUEBQVRWFhIYGBgR09HiC5pz4b9fPHsYn56fwX2amsp0ZAJAznv9vnMumwaus2Ny2J27rSK8taYNo3F+3L44xuLnW6qFNx1wan8au44K5Nl5cq6BwcOhGHD2nau69bVBZeUgvHjyQvx5y9bP2H1kT0NgiEO0yDCO4g/jriAyb0HWXdmZTXMBIqIgIkT23aOLThYeoTPDq1jS34adtNBrF8Y5/edwNiQeFRHdNcCKsoq2bh0K8V5JfgH+zFm9gh8A06uQ4QQXVIn7jYnhBCt0gnOZz9vPcDf31tKTkEJNk0DZX3oZ5oms8cM5KGrTiPAVz6oEp1Ta2IeErARopv58oXvePb2V9F1DYe9rhCtpikMw2TsnJE8svBevN1VhG358rp02cBAmDGDq//5PttTs2uzaVoSFRrAokevtwIOTeyrzZSVwdKldbdjYigYMZTrVr9AZkVBk0V9FQoFPDnu10wLO9YyMznZWtddY86cHnkRVl5SzlsPf8Q3r/5AeXFdhwYvXy9Ov2Ym1z56Of7Bfh04QyHcpKVuc411ULc5IYToihyGwcrtqazffYjKKjvhIf6cOXEY0b3kGlJ0bq2JeciiPiG6kVVfrufZ214FaBCsATCOLTvavGw7T1z7HH/68HfumVRVVd3XoaGYpsn2NNeCNQCZecXkF5cTGuhrLT+qCdjU329bSEtreDsujhf3fEdmRT6OZuZqHls9/afNH/LNrPvx1j2sWjf1AzZpaW2fCdTJlRaV8buZD5Oy9SCGo+HvYWVZJYv+u4SNP27j6V/+SmCvgA6apRDtrAt1mxNCiK5I1zROHdmfU0f27+ipCNFupIaNEN2EaZq89dCHKK3lN/iGw+Dnj9eQtvOweyZmt9d9bbNhmnXBI1c5jGMX/fVrxNTfb1vIyan7OjCQkgBfvs7Y2GywpoYJlNgrWJq11bojNNTK/mlqvz3Ec7e91mSwpobhMEjfm8m/rnvBzTMTwk1qus01FawJDLQCuwMHWv9v6pO1lBRr+86VBC2EEEIIN5OAjRDdxN7kAxzYkobpQjBEs2l88/IPbpgV1prmGnY7mqaICPF3eXNvTxvB/sdqntS09m6837bQKBNo/dF9VBmuBYUUiuXZOxps3+R+e4C8rHx+/GBFs8GaGobDYPWiJDJTXFgmIlrkcDjYvzmVrb/sJG3HITrZSueeqaluczExMG0azJiBY9hwzKFDYeRIa2nntGnW4/Uzamq6zQkhhBCix5IlUUJ0E2nbXc+YMewGKdsOtuNs6vH0hIpjNUzy8gC48JRRvPTVaqfLonRNcc6UBDxqiiQf2752v22pUSZQsb3U5U1NTIrs9TpxtWcmUCe3/KPVLgUNATRN48d3V3Dlgxe286y6p6rKar74zzd88dxicg8drb2/z5BoLrjzLM68YQ667sYC48LSVLe5xERyqm0sevJbFr+2lIKcIjRdI2HaEM67bT7TzpuInphodcNLTq4LTqekWHVtpKaNEEII0SNJho0Q3UUrSx24rWtQeHjd10VFkJfHBdNG4uvtgdbCHBTWBf1lM8dYd+Tl1dWvabzfttAoEyjIw/VCwRqKEM96BXTbMxOokzuakYeuu/bSojTF0Yw85wPFccpLK7j3tEd49f53GwRrANL3ZPCfW1/h0Uv/jcPuaGYPot3UD9YoBYmJrN+UybVD7+TDfy6kIMc6jxkOg+0rd/PXS57ivtMfpbykHCIjITGxYaZNa2rgCCGEEKJbkYCNEN3EgNFxLo/VdI2BY1wff1JiYxveTk0lNNCXZ289H29PG3oTNXd0TaHrGv+84SziIkNrt2sgLq5t51k/Yycvj4m9BuKju5bFY2AyJ3Jkg+2b3G8XVlVZzb6NKexYvZucQ0eaHefl6+X6khzTGi9a75nfvsyOVbubzGYyTcCEFZ+v5c2HPnT/5HqysrKG3aCio9mbUcZD5/2T6orq45YK1tze8vMOHr3039bfTmSklWlTIzvb2q8QQgghehwJ2AjRTfQfFcuQCQOdFh0G6yLhzBvnumFWWC2tIyLqbmdkQFYWowdE894DV3Hu1BF42uqWbeiaxrxxQ3jnviuYMWqAdWdWlrVdjYgI8PFp23k2ygTyKSrhvD4T0JykLmkoQj39mBk+3LqjvTOB3KzwSBGv3PsOl0bdwM3j/o87pz3IlbE387tZD7P26w3HjU+cO+q4DmXNcdgdJM4d6XygaCD38FF+fG+F8+LdJnzx7DdW5oZwjya6zb376KcYDqPFQKbhMFi3eCO71u2r3a7F/QohhBCiR+hZufpCdHPX/PUyHpj/txbHKE0x96pTiRkY5aZZYbWorfnU2TStGg2JifSLjOTBK+dy1wWncPhIIYZhEtM7iCA/77pts7KO75YSH9/2c4yNhX376m6npnLTqLkk56ewtygTg+MvtjQUuqbx+NirsGl67XYNtHUmkBtlp+Vyz4yHOJKed1xmwLYVu9iyfAfXPno5VzxwQe39w6cMJm5EX9J2HG6xlo3SFOF9ezNu3uh2m3939f1by1CawnQ4z2SqKK3kl0/XMu/qme0/MXFct7kjFbDqy/Uu1XXSbRpfvfgdwyYNqus2VxP8zcmBYcPaadJCCCGE6Kwkw0aIbmT8vNH84c1b0XQN3dbwz1s7Vldkytnjueu/N7l3YmFhDYMsDgckJVmBm7w8/H28GNo3nOGxEXXBmrw86/GkJDDqBQvi49unAGcTmUC+R/J5aeINzI8eg640FAqb0mqzbgYFRPHKpJsYHXJs2Zc7MoHcxOFw8Mez/s7RjOODNVC3lOONB9/nl8/W1t6vlOKul25C1zW0ZrK9lFIopbj75ZvQNHkZaq3s1FyXa1DpHjpZKT2vtXyHadRtLnXbIZeLcDvsBruT9jfYvsn9CiGEEKLHkAwbIbqZ0341gyETBvLVi9/x/VvLKCsqR9MUY2YlcO6t85l89riOuUhOSLC6RdW0ujVNSE+3/gUGWhcnum4FcxovK6oRHW3tp700kQnkl5jIn0ZcyIzD/Vi0aDklpeUERARw7q9PY/qIest53JUJ5CZJ320mbYfzzmNKU7z/2GeccsGk2vsSpg7hH9/9iUcufpKio8VWNohh1v7fN8iH+9+5k3GnSXbNibB5uN75yTRMbJ7yUu82jbrNmWZl67avH9zpwd3mhBA9W2pWHkuS91BQUo6ftxczRvUnIS6yo6clRIeQd3FCdEP9hsZw6zPXcesz11FVUYXN09bxmQxKwbhxsH378V1PioqaDtDUFx9vBWvas7tVTSZQzfwcDva9+jFvvvQLO9IrKfPwQSkwDJPNT67hlIsmc/c/LsY/P9fKrGkcrOnCrXgXv7oUTdeazK6pzzRM9m44QMq2g8SP6Fd7/+iZCbx/+L+s+GwtP3+8isIjxQSE+jP9/EnMuGQKXj5SbPhEDZ86hK9e+t6lsYbDYPiUwe08I1HLZqsLrtjt9Bsa4/Kmuk0jfmTd31BP7jYnhOiZsvOLefit71i3+xC6ZmXjmqbJq4vXMqRPGH+5+nQG9+m6762EOBHtfgX3j3/8w0qRv+uu9j6UEKIJnt6eHR+sqaEUjBgBkyc3XH7UkogIa/yIEe0brKmRkABRVn2f3Un7+d/DH6FlZpDAERKqs+hTlUcfewGxRgGFn37Fm7Nvp3LfgYbBmvbOBHKD9H2ZToM19TW17MbTy4PZl0/nz5/9H//++a888sW9zLt6pgRrTtKpF03GP9jP6TilFDGDohg9s2v/LnYpjbrNRcSGMe60UbVLUlvisBss+O28Bts3uV8hhOiGcgpK+PXj77Nhr5Xd6zBM7A4Dx7HMw70ZR7j2iQ/ZfUiW+YqepV2v4tavX89///tfRo0a1Z6HEUJ0NWFhMHEizJkDAwdaS6K8va1Pkb29rdsDB1qPT5zo3kyVY5lAlZExfPLkl2CatTUofKkmklKiKSGSUnwcVeQctDr21IqPh8RE9wSX2pHNo3Wf6MuyG/fx9Pbkpn/9uuVBx379bnn6Wpfr3Yg20KjbHHl5XPngRU5b3Wu6xvApg+uCa92s25wQQjjz9/eWkldcVhugacwwTCrtdu577Run51QhupN2C9iUlJRw5ZVX8sorrxASEtJehxFCdGW+vlbnkxkz4LTTYP586/8zZlj3+/p2zLyU4qetBWws9SfPbDkbxDQMkr7fTGVQiHszgdrZyFOGuZQVAKDbdAYldt16PV3RGdfN5tb/XIemqeN+TkpT2Dxs/PH9u5g4f2wHzbCHio1teDs1lZGnDOO+/93eZDF4pax/8SP78cjCe+uCa92o25wQQjiTcbSIX7YdaDZYU8MwTNKy80nem+6mmQnR8drtI9Fbb72Vs846i7lz5/Loo482O66yspLKyrqifEXO6lgIIYQb/PLZGop0bwoNL7xMOxGUEUwlNgx0DBxo2NEowIvscl82FfswqQvXrGns7Jvn8c0zX7b8vPHF7uHJjEumEBwW1NFT7nHOu20+U88Zz9cv/8Avn66hpLCMoF4BzLnyFE6/bjYh4fIzcbuabnM1xcszMiA6mtlXnEL8yH588exilrzzM9UV1QDEDI7m/NvPZN41M/H2PRYc7kbd5oQQwhU/b9nvfNAxuqbx46a9jBvcpx1nJETn0S4Bmw8++IDk5GTWr1/vdOxjjz3GX/7yl/aYhhBCnLCioyW1S6EqlY2DBHKwhfElBWXumZg75ObStzCdG8+IJum7zQ1Sj3UceOLAl2pitDJKPf25+rbZHTjZni28XxjXPno51z56eUdPRdRootsciYnEj4zl7pd/y23PXU/R0RI8vGwEhPg3XLLWzbrNCSGEK4rLK9GVht10pXaeSVFZKzvwCdGFtfmSqEOHDnHnnXfy7rvv4u3t7XT8/fffT2FhYe2/Q4cOtfWUhBCi1YJ6BaA015c2+Yc4LwLb6ZkmbNsGa9ZAdjZn3XQaiadZNcjqL7tRSoECHz8v7n7kPKJzU63tZE25EHXd5mo4HJCUZAVu8vLw8PSgV1QIgaEBdcGavDzr8aQkMOpdsHTxbnNCCOGKAB8vHC4FawAUgb7SvED0HMps46pNX3zxBeeffz66rtfe53A4UEqhaRqVlZUNHmusqKiIoKAgCgsLCQwMbMupCSGEy7578yf+dd0LLo31DfTho8xXunb3I9O0PtnPzDzuocNZJSxdvJ1ta/dhVFbRN8ybabOHMmrG8IbPOSrKat3eCWr4pO/LZNFLS1j/3SYqyyoJ79eb06+ZJS3FhXu08PdEYCCEhoKuW8GcxgWGa0RHd4sC5kII4UxmXhELHnzN5c99XrnnYsYNkiVRoutqTcyjzQM2xcXFpKWlNbjv2muvZejQodx7772MGDGixe0lYCOE6Awqyyu5NOZGyorKa5dGNUXTNS686yxufMJJ157Obts2SEmpu62UdcEYF2ddXDaWl2cVRs3IOH75hpPzfHsyTZPX//g+H/zjczRdq21NrjSFaZgEhwXy6NcPMGT8gA6bo+ghTBO2b2/4d+Wq+HhISJBgjRCix7jnxS+dFh7WNUW/8BA+eejX0gFRdGmtiXm0eQ2bgICA44Iyfn5+9OrVy2mwRgghOgsvHy8e/OAeHlzwdwxoMmij6Rr9R8Xyqz9f4v4JtqXc3IYXlbpufbIfGUl5STlL/7uEHat3Y6+2ExEbzunXzqLPoCgrkBMdbS3lcDisbVNSrCKpHbSM462HP+SDf3wOUBusgbqfX1FeCX+Y82eeW/sP+g2N6ZA5ih5CKSt4GRFh/V3U1LVpSUSELIMSQvRI918+mx2PZ3O0qLTJoI2mKbw8bDx2/ZkSrBE9Sptn2DRl5syZjBkzhqefftrpWMmwEUJ0JpuXb+fpm/7L4T2Z6DYdpcDhMFBKMfPSqdzxwg34BXZQ+/G2sm5d3cWkUjB+PERG8sVzi3n1vnepLK9E0zQrY0ApDIfB1HMn8H9v3opfkJ9VKDUpqS7TJiICJk50+9M4kn6UK2JvbjEjCqxA27TzJvLQx79z08yEAMrKIC0NcnKgqgrsdrDZwNMTwsOtluC+XfxcIoQQJyGnoIS//O97Vu9MQ9MUmlKYponDMBnWL5w///p0BsX07uhpCnHSOnRJ1MmSgI0QorMxTZMtP+9g49KtVJZV0TsmlJmXTaNXVAgAhmGw4fvNfP3yD6TtPIyuawyfMpizbz6dQYn9O3j2TpSVwdKldbdjYiAxkY+eWMgr977T7GaarjFgdBxP/fyI1Y44ORnS0+sGzJnj9ovP//35I9599BMMJwEbsOb/3sGXan+GQgghhOgcDubks2TDXgpKy/Hz9uTUkf0ZHhvR0dMSos1IwEYIIdzkaGY+fzzr7+zflNqgZopu03DYDU69eAr/9+atnbfQ7c6dsG9f3e1p08gsrObqgbfj7OVB0xRXP3IZVzxwgVXTZuXKugcHDoRhw9pp0k373ayH2bJ8h8vjH/7090w/f1I7zkgIIYQQQoiGWhPzaPO23kII0VOUFpby+1kPk7rtINCwZorDbn294tM1/P2KZ5wGPzpMTk7d18e61yx6aYlLLc0Nw2Th89/isDusejb1X3Dq79dNqiqqWzXeXmVvp5kIIYQQQghx8iRgI4QQJ+jLF74nfV9WbXCmKYZhsmrhepJ/2OLGmbVCVVXd18e6Qa1auK5B8KkleZn5pGw92GD74/brJlH9w9F011/WwvvJOnghhBBCCNF5ScBGCCFOgMPhYOHzi50WuAVredSXL3znhlmdAHu9LBOb1TiwrLi8VbuoHa/rTe/XTc64drZrgSYF0QMjGTZ5cPtPSgghhOik9hzO5eu1O/l67U52H3J/ZqwQwrk2b+sthBA9Qc7BIxzNyHdprMNusOmnbe08oxNks9UFV479Pzg8iLzMApd3ERR2bClUTWvvmv262ZjZI4gf2Y+DOw+3mPWECZfde560BRVCCNEjrdyeyotfrWJHWnaD+4f1Defmc6YyfUR8B81MCNGYZNgIIcQJqK5sXQZJp62X4ulZ93VeHgBzrzzVpRo2SiliE/rSb2hMg+2P26+baJrGo1/dR2hUSJNLo2qe0/l3nMkZ18129/SE6DrKyqyC5MuXw5IlsHix9f/ly637y8o6eoZCiBO0cNV2bn/uc3YezD7usd2Hc7nj+S/4fMXWDpiZEKIpErARQogT0CsquFX1Unr36dWOszkJ4eF1XxcVQV4ep187Cw8vD5wloJimyYV3nWVlquTlWds3tV83Cu8XxvPrH+e82+bj4+/d4LH4Ef247+07uPnf10h2jRBNyc2Fdetg6VKre1xREVRUWNl3FRXW7X37rMfXrbPGCyG6jP0ZR/jrO0sAaKoXgnHszkff+4E9h+XvW4jOQJZECSHECfAL8mPaeRNZtXBdy8tvsDI7zrphrptm1kqxsQ3beqemEpiYyIMf3M2fL3gCTLPZOj2zr5jO6dfOqt2ugbi4dpmuK0LCg7j539dwzaOXsX9jCpXlVfSOCaXfsD4SqBGiKaYJ27dDSorr22RnW//i4yEhAacRXiFEh/tw2WbrT9VJ+T1NKT5YtomHrjrNLfMSQjRPMmyEEOIEXfS7szEcLb/r0TSFj793XWCjs/H1hYiIutsZGZCVxZSzx/PPJQ/Rf1QsYAWdajKK/IP9uOavl3Hv/25H0zTIyrK2qxERAT4+7nwWTfLx82bE9GGMO200scP7SrBGiKaYJmzY0HSwJjDQCr4OHGj9PzDw+DEpKdb2TX1cL4ToNEzTZNGaHThcaJbgMEy+WbsTh+Fax0ghRPuRDBshhDhBwycP5s4Xb+Dpm19G07TjOhRpNg0PDxt//fI+gno3caHTWcTHW5+Ug3XRlZwMiYmMnpnAS8lPsHv9Prav2o29yk5kfDiTzx6Pp5eHNT4r6/iLtXgpVihEl7F9O2Rm1t1WCqKjeGTczAAAkX5JREFUIS6OTB/FtoJD2M0KonxCGD1iBCo/38qoy8io+7vPzLT2M2JEhzwFIYRzZZXVVFS7Xk+vyu6gtLyKQD9v54OFEO1GAjZCCHESzrrxNKL6R/De3z9j87LttfdrNo1TL5rMlX+8iLiEvh04QxeEhVlBlppP2B0OSEqqvWgbMmEgQyYMbLhNXt7xF21g7ScszG1TF0KchNzchpk1ug6JiezxNXlhz5esPrKnwcqJGJ9Qrhkwk3PGjkNFR1vB3ZrucCkpVnad/P0L0Sl5euit3sbLUy4Vheho8lcohBAnKXHuKBLnjiJjfxbp+7LQdY34UbGEhAe5dyJlZZCWBjk5UFVlFQq12ayOTeHhVr0aX9+mt01IsIqK1nzSbpqQnm79CwyE0FDrYs7hOL7AcI3oaGs/otMyDIPSQqvDj3+wnywT6+nqB2uUgsRENnlVcPua16k2HMeVucgoz+Nv2z4jtSSHO4bMRyUmWsHdmqBtSooEbITopDx0ncSBMWzan1FbXLg5mlKMiIvEy0MuFYXoaPJXKIQQbSR6QCTRAyLdf+CaT8mzj2/ReVx3l4iIprNglIJx45ouPFpU1HSApr4OKjyac+gI+dmFePt50WdwFLre+k8Qe4L87AIWvbSEL1/8joKcQgBCIoM595YzOOumuQSHuTm42E2Ypsmmn7bx0/srKcgtxMffm4nzEznlosl1ywY7q7KyhueM6GhKegdzz7J/Um04MJqoSlpzz7upKxge1IfTokZZgdr0dEzTJH3FJg7sKkb5+TFkwgDC+0nwRojO5LJZY0jel+50nGGaXD5rrBtmJIRwRplm56oSV1RURFBQEIWFhQQ2VdxOCCGE5UQ6u9RoKcDSUgCoseYCQO3INE1WfL6OT//9FdtX7q69v3efXpx76xmce9sZ+Mia+1r7NqVw72l/paSg9Lg6S0pTBPUO5ImlD7fp0j2H3cHqr5JYv3gj5aUVBIcFMfuK6QydOKjNjtHRDu5K588XPMGhXenoNh2H3YGmW7WsAkL8+f0btzD1nAltdjx7tZ1VC9ez6L9LOLjzMJqmMXTSIM6+eR5jZo1ofbbUzp0NO8RNm8YnJXt4YseXzhrIoKEYGhTDm1Nugbw8tjz2Css/WkXOwSNk4M9BFYhSiolnjuWav17GwDHdtK7VyWQ1ig5xMCef1Ox8NKUYFNObiJCAjp6SWzkMg7tf/JKV21Np7hJQU4pJw/rxzC3nYdOlP40Q7aE1MQ8J2AghRFdU09mlfrHQGjVLmGw26wKiuSVMUVFWVk1zF3qd8GLENE1e/sPbfPLUV2iawmjU7UJpiv6jYnli6cMEhPi7dW6dUX5OIb9JuLvJYE0NTdcI6h3Aq9v/TWDoyV+8JH2/mSeufZ68zHx0m45pmiilcNgdDBrXnz99dA9R8RHOd9SJZezP4raJ91FaVN7k99X6k1L8+fM/tEnQJudgLved8TcO7UqvDQoB6DYNh91g7JyRPPzp7/ELbMXf4/LldeeFwECYMYOrVz3PrqJ0pwGbGp+e8juWP/UTGx96Dj9lxzRNyvBgi7ICuJquoXvoPPbNHxk9sxstl+zkQW1xvDU703jlm7VsrJddohScOrI/N541mWH9uvY5qTUqq+088vYSFq/fha6p2q5RNV/PGzeYP//6dLylfo0Q7UYCNkII0d1t23Z8/YljRYIJDT1+fEtFgrtQZ5dF/13CMze/3OIYTddInDuSxxY/6KZZdV5vP/Ix7zzy8XGBrcaUpvjNY1dyyR/OPanjrf9uEw8ueAzTMJv89FazaQSGBvD8use69HKZB89+jPXfbmo2CAbWn6R/iD8fZryMh+eJL48qzi/hlvH3knvoCA5780G3kacM4/Elf3J9WeCSJdZySbDOGyNHcuZPj3Gkstjlud1VOJ03Ln+DOLOQSEoBqEInWdVd/CpN4e3nzbupL3T9IGp7ZTWKdvX5iq389d0f0JQ6rnaLrik0pXj6lvOYMjy2g2bYMVKz8vhsxVb2HM4FYFCfMC6YPpL4yCbeQwgh2lRrYh6S5yaEEF1NU51dxo+HxEQysfHCl6u4/bnPufXZz3jio2XszzhiBXESE61x9S/oUlKs/XUBhmHw3t8/dT7OYZD03WYObElzw6w6L9M0+erF75wGawBMw2ThC9+e1PGqq6p5/NfPYppNB2sADLtB0dFiXrz7zZM6VkfKTstl7TfJLQZrwLq2L84rYcVn607qeF++8B05abnNBmvA+p3fvGw7axclu75je732vjbrk3QvrXWBpRUvrrAyfqgLQug0nKdpmFSUVLDkreWt2nenU5PV2FSwJjDQCnoNHGj9v6k33ykp1vad63PSbm97ahaPvvcDQJOFdh2Gid0w+N1LX5JbWOLu6XWouMhQ7rloBi/ddREv3XURv7tohgRrhOiEJNdNCCG6miY6u9jDwnnygx/56OfNKFW3VGjdroO8/9NGZo4ewKPXnIFvZKQVuOkKnV0aLck6kLSXvgd3EIVGAV5k40ulavplTLdpLH51Kbf+5zo3T7rzKCsqIz+70OXxhalZVG3ajGdhwQktgVv1xXoKc50Up8YKLqxcuJ4jGXn0ju56Fwcbvt+Mq2uGNF1j3eJkZl027YSO5XA4+PIF14Jumq7xxXOLmXqui0uwapZMQu3/p4YN5rND63CYLQejAAILbez9ead17HrfEEcTnwWamCx+fSkX3HWWa3PrjLZvb7gEtV5Woxmsgf0AUAV6HEof2XRWY2YmZWuTWL2/gvzsAnz8vRk3bzSRceEd8Yx6hPd+3IimFI4WAmWmCVV2B5+v2MaNZ0124+yEEMI5CdgIITq/TlhLpcM00dnFjIjgL299xzfrdmKaNMhuqFmb/vOWA9z+3Oe8dNdFeERG1nZ2Aaz9lZV1nu9hM/Uh8g8fwRMHnjjwpZpoSsg3vcnCj0Ll1WCsw26QsT/LnbNuUU3B2KTvNlNRVkFoZAhzrjyFQYn9O3pqBJmVRFJKCBWoAwegfhtXV7uMAWu+3tCgvkpLTMMk6dtNnHHd7LZ8Km5RXlLRZP2kphiGQXlJxQkf62h6HnmZ+S6NNRwGO1bvcX3nnp51S6Ly8gC4sN8kPj64xummGopZHkNYhhWwCaSq9jF7U8nbJhxJz3N9bp1NU1mNiYmYvUswSx6DnK+BmowlDdPrNFTATVbb8+hoSE6mqqyCJW8tI+n7zWytCqJY98EwDFAwcf5Ybnn6WmIGRnXEs+u2yiurWbJhT+3rYEsM0+SzFVslYCOE6HQkYCOE6Lzaol11d5PWaJlPXBzrdx/i67U7W9zMME027s/gy9XbufCUUVbafnq91p5paTBsWNvPtzWc1IfQmuhWEUIFIVSQZfqRSmBdfQgFtk5SMHHNog386/oXKMwtalCE99N/L2L4lME8+OE9hPXp1ebH9Q30pVdMKEebu1A2TeIosmqPKAiJCMbDw8n3LDvb+tdEPY7y4qYL8DZFaYqyonJXn0qnEhIR5FKwBkDXNULCT7xlur3a0arxjmq780E1wsPrig4XFUFeHv1DI7gq/hTeSfml2c10pRHtE8J50ZNYxhcEmFX4Ul37eAFeTW7n6e3p+tw6myayGs2QNMwjv8EK1NT/ORlQ+QNm5VIIfgYVeRoVQxN4c/7vydiXhWkYRFJKoXHs+2RC0nebuW3S/Ty94lFih/Vx4xPr3vKKy7Abrp2TAI4UlrbjbIQQ4sRIDRshROdjmlZR3TVrXOvCAda4NWus7bpzjYCcnLqvj3WD+mj5ZnTNeSFLpeD9nzZaGTihoQ3rLNTfb0dwoT5E5NypZOFHGcfX2YiklMHk1/7slVKdooX0qi/X89C5j1N0xLowdtgdGA4Dh926wNu9fh93THmAoy5mUbSGUopzbzkD1dTvhmkymPzaQrEKxeSzxlmPnWA9jqDegeg2195WmIZJcHjXbCwwacE4vHxcCz447AazrzgFgNzDR9m3KYWM/VnN1vhpLCQyGJuHi0WEoXWFnGMbFVhNTQXgtsGnc23/mWgotPq1aZT1sx0SGM1/J97A0OHxhEQEEUHDi9ws/I47lG7TGD9vtOtz60yaymoMU5gFNwLVNAzW1HAADsyCOzHt+3n9Pz+ydX8h5rHgQQgVeJl1wTXDYVBWXM6fL3jC5d8N4ZxnK/52ADxcPH+5m91hUNWaYKwQolvpHB8/CiFEjZNtV52SYmXetNSuuiurqlt6UNMNatWOVJdSvk0TDmTmkVdcRq9AP2v7mu9f/f12hBbqQ9Q8z5iR4Df9R7at3oOfo5IISulFee0lZSgVxFFEKkFomuKM6zt2uU1leSX/vPo5wGw2huiwG+RnF/Dqfe9w71u3t/kczrpxLp8/+w2FuUUNsl/iKCIUazmM0jT8Q/0Z86vTYeQwCA2loKScssoqAn298ffxarYeB9u313YZm3HpNL55dalL8/L09mDSWYlt+lzdxS/Ql/nXz+HLF75tMdNGs2nEDutDzqEj3Dbpfnav31f7WJ/BUZx723zOunFuix2kfPy8mXX5dH5875cWiw6DlbW04KbTXH8ivr5WZmJNMCIjA6Kj0SIjuXnwPC7sN4mFh5PYnJ9KleGgj28o5/QZz+jgWNSxc+vFV01i61O7qSl5k483Ver4i2SH3eCcW89wfW6dSRNZjWbZO2BWAi39TEzApDT7Tb55NQVPhw+h9YJbEZRxkLqgpWE3OLw7g00/bWPs7JFt+hR6qt6BfvTpHUT6kUKnZad0TTFuUOfJbqqstvPt+t18sGwjuw9ZjQFCA3y48JRRXHTKKMKCu3jHNSGEyyRgI4ToXFy4cG/AhQvJbqWJzi6VrfzkraLq2Pj63aLsHfjpXTP1IYiMpKS6gm8PrmFfsVWPZsBdY9i1dh8lphfFpidHTR8GkV9b9DSSUvJNbxbcd8VJLUVpjZr6NF+/vIRDuzPQdZ2E6UOIiA2jtLDM6fYOu8GyD1by2yevJqh322adBPYK4IkfHuL/5j5Cfk4hpmHW1qxBWZk1fqEBXLXwMbwmj+Tr9bt5/6dv2ZFmXcQrYGpCHJfPHsvUevU4cBzLKkhJsS76w8IYO3sEfQZHkbE/u8WlUZqucfo1s/ALOj4Tw13KS8rJOXgEpWlExPbGy6fpZTzNuf4fV7Jr3V72bDjQ5HPVbBr+QX70GRLFP676D1qjLKfDezN54c7XWfn5Oh5ddF+Lx7/w7gX8+F7zS5TA+p76Bvpw+rWzWvU8iI+vC9iYpvWzPfa3F+4dxA0D5zS/bVYWZ08IJSMqmKOZBZiG0WR2jVJw5g1zGTJ+QOvm1lk0kdVIzoe0HKyp4WDdoh+pLIumUnlSZnrULh8LppKDjUbrNo0f31shAZs2opTi0pljeOoT5x3KHIbJZbPGumFWzuUXl3HLfz5j9+Fc6p868orLeW3xOt5dmswzt57XqQJMQoj2IwEbIToB0zRJ2XqQrNQcbB42Bo/vT3CYey42O5UWLtzN6p2Yhf+Gyh/BLAetF8rnfAi6uEFhx6YuJLuVJjq7hPj7kFfsWj0QTSmC/X2sG456qfy2Dnw5aKI+hBERzqt7f+DtlJ+pMuy1yzEcfgZeD0Xj+7cMjGqDfMObvWYIg8lDP1bw9oorxnL+Xy51y9QzU7K5/4y/kb43s0HB3dzDR5xmRNRnr3aQ/MPWE+4m1JLY4X15dfu/+fb1n1j4/GKCU3YD1nKbyWeNZ8wfrsYW3497XvySX7aloNXLTDOBNTvTWLk9lWvmjef286Zbf29NdBlTSvHwp3/grukPUl5S0XQgQ9eIH9mP3zx+lWuTb+OC42k7D/PpU1/xwzs/U11p/f34BHgz/7o5XHj3WS4vKfL29eKJH//M6w+8xzevLqWyrBKlKUzDRGmKKQvGEz0wko//9SXA8Zk4pvW93bx8O0//9uUWs6sGjI7jvrfv4LGr/mPtq9H3VbdpePp48revHyCwV4CL34ljwsKsoE3N36DDYf1sXQySe/t4cv1jV/Du3z4jaXchJR4+cOz3XtM1DMPg3Nvm89unrm7dvDqTRlmNpmkHI9flzQuPmLW/G0V41gZsbE0EfBx2g4Jc1zu7CecumD6SL1dv50Dm0WYzUTWlmDYijqnD49w7uSY4DIPbn/+CfRlHAGg8ZcM0qaiyc/tzn/Pe/VcSJ224hej2JGAjRAdb/tEq3n/sM/Zvrku71m06My6Zwq8evoQ+g3pQ14imCjtGRGAW/xNKXwV0ausFOEowS/4DJS9A8FOoyHldp131yWiis8vZUxJ4+4cNTguh6prilJH98asp/plXrxitZwcVBG2m69UTOxby6aF1tXfb67UZrhjvTeWb/RizNojqb3PJzy7AYfNkYmIkE+cnEhkfDuXl7d71qvBIEb+b+XBt/Zn6F9KtCdbUKCtyno1zogJC/Ln4d2dz8c1zsH/7HQA2DxvExMDg/jz67hJWbE8FrAuC+mouct78PonI0EAumTG62S5jcQl9eW7tYzx726sk/7AVpRRKVxgOA5uHjdN+PYPfPnk1vgE+LU+4HQqOr/9uEw+f/08Mu6PBz6e8uIIvnl/M928t4/Elf2LwONcyQbx9vbjl6Wu55q+XsfbrZApyCmvbNAeFBXJp1A1O92EaJkvf+YXr/nZFi4WnZ146jYi4cD58/AtWfbke89jPxMPLg7m/OpVL/+/cE+8wlJBgfT9rMhtN0/rZpqfXZZTouhXMaWIZqn+wPze+cy9Ty3z55rWlHN6TiYenjeFTBnPWTacRFR9xYvNyF2dBwZKSuoC2zYZV/lHham93bz9H7c/LqF8TqImAjaZrzv82RKv4eHnw0l0XcfeLC9lyIBNdU7XntJqvZ48dyCNXn3FcJlxHWLEtpTbDsTmGaVJtd/DWkiQe/tU8N81MCNFRJGAjRAf6358/4u1HPj6uKKjD7mDZR6tYs2gDTyx92OULiC6tiQt3IiOh5NljwRo4vrijAVRjFtwBIW+hIid17nbVbaGJzi4XnzqKd39IxsRs8RLCYZhcOedY3ZDGF17h4e025RY1UR9i3dF9DYI1TTGDbGycV8oz99/ClLDB1vNZubLhftu569VnT3/N0Yx8lzsjORMUdmLLoRwOB2u/TmbbLzuprrQTHhvGnCunExoZgmmaVJRV4uXjiaZpkJZmBWpqxMWRU1DCFyu3u1Ts9JVv1nDB9JHYWugy1mdwNI9//xDp+zJZ/+0mKkoqCI4IZuq54wkMdZIB4qRTWJNa6FxVI31fJg+f/0/slfYmn6dht4q+3nf6o7y5+z+tylTxDfA5LjNq+cerKSlwreOM0hTfvfETV/3pohbHDZs0iD9/9gfyswvIPJCNpmv0HRJ98kvLlLJqfjX1fS8qOr5OWGPx8aiEBEYqxchTh5/cXNzJ1aDg1q3g52cFBu12lNIwPUZD9RacL4tSjJsdWJtho9U7Qzua6PthOAwmndk1azs1pTi/hJWfryMvqwBvPy/GzRvdIV2wQvx9eOP3l5K8N51PftnC/oyj6JoiIS6Ci08dzZC+HfT614SPjzURcFaXzmGYfLNuF/dcNIOAVi7pFEJ0LRKwEaKDrFq4nrcf+Rig9tO3+gy7QUVpJQ+c+XfeSXkBb99u/oLcVGFHIw+z5EUnG5qAwix+AuX1SedsV92WYmOtrIIaqalEJyby12vP4I+vL0ZxfIZEzWfBd5w3vW7N+7GOMLXi4tpvzi1pquvVhkXoSsNhtnwxpCuNjw6utgI2NV2vai4uc3La9edeXVXNF88tbrNgjY+/N+NPH9Pq7X75bC3P3/EaRzPy0T10FOBwGLxy79tExoWTe/go9io7mq4xecE4rjwljEEDe1lFY499v79cvNbl4x0tKmPl9hRmjBrg9PsdMzCKmNtakfXRjgXHv/jPYgy7o8WglOEwKCko5dvXf+SSP5zr+rybkL43E92muZxplbE/y+V9h/x/e3cd39TdPXD8c29S91KjUMNdisOGDN9gsGf6m7ux7dmYu7s+M+ZjzpQxA7YBwwbD3aHFK1D3Jvf+/rhNm7Rpk3o7zvv16tYkV75Nb0q+J+d7TmQwIZHBdRxZNRTFqPkVGVl9EKMyNzObWpzaBgU9PCAry/gqLYVevVB8L0PPvtOt3cM7Xsbwaams/nkdgaUVy6sslQI2igL+wX6cdu5QN3+Qlqswv4j37vqUhbOXUFpiwWQyoWkauqbTe2R3bn3zWhJ6xTbpmBRFYUCX9gzoUoeAUQMvzazJrsNpbjURACi1WDmSnkX32BaexSaEqBcJ2AjRTL5+4UdUValxGYtm1chOz+GvOSuZdHXzdrxpdM4KO+Z/gPOWqZVpYNmCXroDJbRHk07cm1w1nV0mDuxKiL8Pb85bybZkx8lfbGQIN541jImDuhp3pKQY+9lERoJPM6XhV6oPYdGsrEzfjebGcgOrrvF3+h4smhWzamqyrlfz3lzARw99SUGOe3WDXFFVhbOuH1/roOyiL5bz3OWvl9+2ljq+Vo4fqJh0a1aN1b+up+jH44yY3IcpN4xHLatPkpyS4fYKD5OqcDC1rAV5Qz/fjVRwvLSklAUfL3YreKJrOj/P+r3eARuT2VRtZ7DKFEXBZK5d++FGEx5ufDXhBLVJ1SUoGBRkPB8ABw7A4sUwZiJ4fAalW6n+3ygTmOLB51xueqWA5KWb8c+yopVtnkXF692ILyrcPfsWPL2q7xrWGhTmF3HXmMfYtzGpPKBttVQ8R9tX7ua2YQ/wytIn6JzYobmG6Z5GWJrpSm27uksXeCH+/SRgI0QzOH4glR2r9ri1raIqzP9w0b8/YOOkXbVesqV2xyjdAh49Wla76sZQTWeXwd1i+bRbLHuOpLP7cBpWXSchMpQ+HdqWt+ElJcWYsNi/y0tIaPqfwaZS16sirdStYI2Njk6BtYRA1adJul69ccsH/PT2wgY7nmpS6TKgA1c8UbsiyVnp2bx0zdvultEAjKw9Expr52/EL9CXsY92McagKLhbuUHXqShK3JDPdzUFxw8FmPn+0Cp+37yZvNJi/MyejI3qzbmxQ+gQGmm81l0UHM9Ky6Eov9jtoaQeSkfTNGMJWR11G9LJafaVl24hkgKCKcaM8fuwWlSGBRXAzp0tJxDi62sEuv9NwW6oMSioBYdQVFKKt6dHRS2TjAzj95KSUvE3c+tWlMhI6PE+euZNULoOh/pqtu/NnVFCPkRR/YiM8+PFDy/nm9tnkZKchmpSSdX8y7OwAkIDuPvjGQydMqDpnotG8snDcxyCNZVpVo2SolIeP/clPtn3BiZTCwlW2mukpZnu6Nw+jHV7jrisSQdgNqm0DzsFG1QIcYqRgI0QzSD9yEm3t9U1ndRDJxpxNC2ExUJGShY5J3PRCz1o17krZkpxf0aqgN7C2lU3FhedXbq0D6dL+0qf8jnLRoDmX9JQqeuVj8kTs6I6FBmuiUlR8TWVFUxu5K5XK374p87BGm8/L4ryi1EUBdWkYLVqeHh5MOmqM7j+xctqnV2z4KMlDp9au8uKigkry+f+w7DbzsUX6BoTwa9rdrq1v6brFfUeGvL5dlJw/JviJF7e9AuqopQvjysuKeWHw2v49tBqZnSZyBUdRhm1rmooOG4y1y7woqpKRYCzjvqM7EG7zm05tu84uk55K/UQiqpsa1Z1+g+KNT6lb8BP6kUl1QQFN+VbmfPDKhZv2ofFqqGqCqP7dOTC0f0Y1DUGRowwPgBYvRo0zfhbumGDEbQJ+xxKVqEXfAGl2wEdzF1QfC8Gr1EoStm/RSkphJtKuPl/V3Fo51FWrzmMqoTi4+/N4Mn9GXHOYDw8mzazxmq1kp9VgIe3Bz5+3g1yzML8In59/0+XS0U1q0bqwXTWzt/U8oJUjbg00x3nj+zLml2HXW5nUhUmDuxKYAP97oQQLZcEbIRoBp7etXtjVtvtW5uVP65h84OfcXyHUccmBT/Sg7/izCsCOP86T4LauJMlo4M5zvi2pbSrbkz17OwCGAGenj2bdtyVVep6ZVJUxkT2YnHqNrdq2IyJ7Gkshyrb3+G4DWz2I3PqtqMC1z1/Gf3O6MX63zdTXFBMSFQwI6YPxj+4bgVjl323ymntK1csqHhiRSu1sv7rpZw+fAhThvbg9bnLKXUxyVKAduFBDLTVgGio59tJwfH52nFe2vkzANbKXavKrou39iwkwOzNf2KHGEGbagqOB0cE0aZdKCePZuCKqip06t+h3gEbRVG48eUreHjqs8STQxTVFyDWrRqLvljGlOsnVIy9AT6pF5VUCgrq/fvz1j/7+WjBGocir5qms3TLfhZv2sfFZ/TnzvNGoQwcaAR89u0z/tbu3w/r1qFMngxeI1C8RlRzUhyyGhVFIa5He+KuPq/ZAnIHdxxm3psL+P2TvyguNP5t7dgvnum3TOaMS06v15KsdQs3u53NpppU/vpmZcsL2DTS0kx3jerTkU7twkiqoQ25ooCqqlwxfmCtjy+EaH3+pTMZIVq2hN6x+Ab6uFUDw2RWGTCuTxOMqnnMfmQOXzz1PX2VE9iqqARSQnJ2Ad+/VcjS7zvy8tx9RLQvrflAaiR4Dje+bwntqhtbA3R2aRGTQSddry6MG8YfKa6Xw1l1jfNjywp0NnLXq7RD6RzccaTW+6kmFf9gP8Zeejp+gb7EdmvXIOPJzcir035ZeOFLKYqqkLH7IGRkEBQaypUTB/H+b86LD3uXltA2L5OQwlxu7j0QZcECIxiyZ49R3yMiAgICjKUjdal5UqnguCU2hje2fuB820re2rOQKe0H4Kmaqy04rqoqZ980kdmPzHEZ5NI0nem3Tnbr3K4MPSuRyf2DydxY9ZP6AjzIwRMNBRWdJb9sZehZAwhrZ9fau56f1As7ToKCc3am8NECoxtd5Ymx7faXizcSGuDL1ZMGG1lcGRlw8qSRabNqlREc797d/Yk8NGv21JI5K3m+rO6VfU2nA1sO8vK1s5j/4SKe+e2BOncey0538e+OHc2qkZWaXafzNJpqsrCIiqLUYmXJ+t1sOXAci1WjXVgQZw7uRpvQULeWZrrLbFJ565ZzuOF/33MwxXgvY391mlQFs0nl5RvPplO7sHr+wEKI1qDuC7SFEHXm5ePFmdeOQzW5fglaLRpn3zyxCUbV9JbMWckXT30PQKZWEVjxpZQAvQTNqnMixZOHL09Ac7FCRvG/0Ug/byntqpuCrbPL0KHGG0N3REYa2/fq1TImgXFxjreTk+kTEse1HV3XbLq64xj6hyaU7+eggbtenTyeVet9VFXBx9+bZxc8iF9gw9YlqU3baXup2I1D18uftxvOGsaFo/sBxoQAILgwj56pBxl6fC8xOSe4amhXEmPCjGDM4cPGJHjfPvjtN1i40MgiyMkxggyVC3IuWgRr1hgTosoqFRz/WzvBieJct36eXEsRi1O2GTdsncKcHHfKjeMJb9+mxuVRqlmlY794Rp4/zK1zu5L/91pytlbUKtOBE/iwnTC2KOEkK0EcUgJJVoLYZo7kp8150K6d4+vS9km9qJ9KQcGSdu1599dVbu364YI1FBaXGgHu3r0rHtB12LwZVq6EpUuN9t87dhj/X7rUuP/oUcdgTTNmNW5dvpNnL/0fVotWpQC3LZC5a80+Hj/v5Rq7qdXEN9D94vWKquBXxwzDRuNkaSZRUfz6z04m3v8+933wG98s3cwPK7by2g/LmXT/+zzx+R8Ul1oqlmbav35rUwPHTniwP5/f+3/cfeEYYiKCy+/39fJgfGIXpg3rycptSbz/22qjaLwQ4l9NAjZCNJML7plGaNsQ1JrqKyhw9s0TSegdV/02rZSu63z5zPcoZZNDh4kkEFm2hECzQvIuHzYuC4AqpVHLnjvfK8DnYuP7ltKuuimFh8PgwTB2LHTqZExavb2NDAdvb+N2p07G44MHt6zaGLauVzbHjkFKCtd3Hse9PaYR4mm8oTcpKmbF+H0He/hyT4+zuaHTOGOfJuh65eVT+0ytARP7MWv9C3QZ0LFBxwIw+oLh5a+d2ihWzGTija7phMeGlT/fqqpw74Vj+OiuC5iQ2IUeuen0ST1Ie62Y03olcN9FZzCiV1lwLDPTyDJIS6vIaCkogN27jYlxdZO91FSjDsi2bY7bVCo4viP7CCbFvbcnZkVlZ7ZdVo19poPdcQNDA3hp8WNExBrXvv1zZwucd+wTz3MLH2qYLj3p6aQsXl1eZ0hDYQ+h7FNCyFWqXkuaVWPN6mRjwjdwoGMdrqQk54Eu4b5KQcElhzLJKXBv6U5hcSkL1+02JuJnnAEd7DobZZdliOTkGP/27N9v/N9ZhmNCQtUJfRP67IlvXS7106waGxdtZedq95oiVDZgfB/MHu4VEdY1vWUth3KShUVUFN8t28zDsxeQlWdkRFusGharhq7rWDWdeX9v59Y3f6TUYq1YmmljW5pZB77enlw0uh9zH7uSpa/czLu3n0e7sCAWrNvN9yu28u2yLbz762r+8/gn3Pjad6RmuhfkFkK0PrIkSohmEhIRxKvLnuDBs57h0M6jqCa1vFCf7fvpt0zmxleuaOaRNo79m5JJ3lZRWK9YMZOpe5cX5WxDISd1HzIVb1SzyoJvhzNg7Daw2k3OPBJR/K4ArwnGG9GW1K66ObTWzi7VdL06N3YI09oPZHnaTvblGY939I9kZET3iro1TdT1KrZ7Ozx9PCkpdL/r2D2zZxAc3jgdPCZeNYaPH55DaUlprTpFgVEjKsxcSr8zejk830RF0a9DNP0yj0PEMPSymhvlAgONpSBHjhjZM4VlSzqDgyu2yc01Jih9+lRfP6nyUp9KncKsmuZ21ypQHGsd1VBwvG2HSN7f+jJLv1nFT7MWcnjnURRVoVP/BKbNmMSwswdi9migt0VJSeVL6HRgLyFkKjUXBz2Ylc6RgpO0d1FE+d8s9WA6v7z7B0u+WkFuZh6+gb6MOm8oU26cQPsu0a4PUJ1KQcG9B05gNqlYXNRtAmOJyt6jZYX/FcUIqHl4GH+z8quvTVSuBRSRPn4glY2Ltrq1rcms8vM7v9NjWNdanycoLJBRFw5nyZyVaJbqn1tFAb9gP0Y1UDZbg6iUhUV8PCkZuTz39ZIad9N1nfV7D/PN0s1cMjax2qWZdaUoCkdPZPPft3+kpCwAbCzZq/jDv37vES5//is+v+9iwoP963wuIUTLJAEbIZpRVHwE7215mXULN7Pgw0Uc3ZeCh5cHfUb2YMqN42nXqW1zD7HRpCSnVb0Pv/KAjQJ0JpO9egiZFm+OJnmjhC0C6yHQC0ANRTFF2e3cwtpVC/fV0PXKHB/PmKhejKFS8cYmrg9h9jAz6aoz+OntBW5tP/jM/o0WrAFjSdS9n9zC0//3Gih6tUktzmSrXvS5/Ex8/cuCmfZdxgoLy2tAKYpSXnDTEuDPloNbyUreS0BaCtFaKdGxsSgBAeBV1uGqrJaNVbNSUlKEd9/+xjFcFeWs1CksJqSN213CrLpGjJ9d3RcXBce9fLyYcMVoJlwx2v0nrLYKCti7YDVLvl4JwEl8XAZrdBWKIhSuWjWL2cNupl0NRZT/reZ/uIjXbnwPoPzDi4KcQua+MZ/v//cr1z9/GeffdXbdDl4pKFj7JT9225tMRu2moCDjuJ061a12UxM6tNP9+ltWi8aBzQddb1iN61+4jM1LtpOZmlVl6RVQHgS+Z/YteHq3oBpzlbKwCA3lh5/+di8grsNXSzbyf2P6o9qWZtoC1Wlp9QrY6LrOfR/8SonFWm2rb6umk5FbwLNzFvPKjXV8jQghWiwJ2AjRzEwmE0POTGTImYnNPZQm5eyT7GzFixTdr7yjiopOFzI4qfsQaGqPoqhgjnfcqQUWdhR10Aq6Xl399EUs+mIZ+dk1p7ibPczc9OpVjTYOm1EXDMfL14s3b/uQ1OR0TGYToJdPkhRFcZiY2jL3Jlwxmmnv3ACbNjk+3zt2GMuafH3B3x88PNC7dGHpvtUs2bOKXEsRAQUlxB0+yWZ0lNA2DOg2kX7jzsWiWdm06AdW7lrOwfwTsBEO7E1gZK9RnBc7hNjExOqLclbqFDau+1Be2vEzRZqLQuMYS6Imte1XcUcLKDhuPXCAeW/8hoKCjk4qrut0KBoUTwykyFLE89vn8WyXC1iz+iimf1bj6e1Bx37xhNfyk/r9m5P5+e2FbFqyjZJiC207RHDmteM4/byhDbPsqwEt/XYVr1z3jtPHbMGb9+75DJ8AH6bcML72J6gUFOwUHeZWdg0YS2A6RtsVd7UPCvr7t86sRlfqsWorNCqE11c9w9MXvcr2v3djMpvKs/WsFivBEYHc+eHNLe89T6UsLIA/1u9BcyO4pwPHTuZw4PhJoxBwaGjFv1El7mdlOrNuzxEOpWW53M5a1t0sNTOXyJC61TgTQrRMErARQjSLLgM7OCwDs0kmEE+shNpl2oSrxYyIVYxCji1g4i4aQSvoeuUX5McH217hxsR7qu2G4unjyctLHqN956bJjhs6ZQCDz+zP+j+2sG35TiwlFsJjw4iMC+ePT5ey8sc1aFbNqJ85tjfTbpnMkLMSjU+5Kz/ftmVpBQVGpk2nTvy6exmLUyuK3oZk5qGhkxHiR0q4F9+pu7mscB9L03ZwyLSXHgUny7cNPpbGt4Gr+O7QKp7qexFnRPVyvtSnUqcw35x8Lk44jY/217wUQQHOjR1CkGdZBkMLKTi++9dVZJ8w6kkU4OG0Zo09XQUtwgPLED/QNVaf2Mu5F9yE9WAhfdUT+Gql6LpO235/cebnTxLfM6bG41lKLfzv5vdZ8OFiTGa1PIB38uhJtizdwQf3fc6zCx5yeZymomka7971iVvbfnDf50y4YlTtMzMqBQXPGD4C/zle5BW6rmPj7Wlm0kC75UEtIChYW/G9Yo0XjBvZIiazSuf+9ctODW/fhtdWPMW+TUks+nw5malZePt6MXBSP4ZNHVgWXG5hKmVhAeS6cX3YK9++hqWZtbV40z5MqorVVeeFMn9t3l9eQF4I8e8gARshRLMIjQrh9HOHsPz7fxyDNorCHj2EeHLKM210XWPQpP4tZuIuGomt61VkpDGRty8AWZ0mrg8R1q4N36Z8wO+f/MVXz84l7dAJdF0nKCyAc247k3GXj+LvuWt45bp3OLY/BZPJRLchnZg2YzJDpiRiMjX8REVVVQZN7Megif0c7h82dSClJaUU5BTi4+9ddZJr/3zv3AlZWRWPhYayy1ToEKzxKDUmHofatyHPz4v0sABOhvrz2u7fUFHQQv1Ja+NPeFmwIjQzH3NhMSXeHjy4eQ7vel1Hn6i4qkt9OnQwOknZJCdzXf+xHCvIYMHxzcax7WaatsyVURE9uK3rZIf9HDRTwfH9/+xBNatoFo0cKp5zXTUyaezpKuhBJgqejAZT2d8sXaegnxdeBwvJtnrgg/EJ/eEtSdw27AFeWfoEnWqYUP/v5vdZ+JER7LJfkmJbTpGRksWdox9l1vrny4swa5rG2vkbmff2Qrav2IXVYiUiNoyzrh/PhCtHExDSeHUx1v++mfTDJ11vCORnF7Dsu9WMu3Rk7U5SKSjolZvDdWcO4dXvl7nc9coJg/C1vXZaSFCwtiLjwhk4oR8b/txS5UOSyqwWjak3NUxnyk79EujUr5UsTa6UhQUQ5OdNRq77RYOD/MqWPrpYmlkbuQVFbi/hUxW11kEmIUTLJ12ihBDN5vLHLsTLx7Nqe3NFIVkJYidtyFS8GTZ1EKFRwTUfrKW1qxZ118K7XimKwsQrxzB79+v8Vvgl84u+Ys6R94jt3o6ru93O6zM+IGnbIYoLSijILWTTku08es4L3DXmMfKy3ChS2oA8PD0ICgusOSMhPNz46tsX2rY1lkTFxLD0xG4snh7k+3pxJDqEo1EhHGoXSp6fUbPmeGRFjR5bQMX+PoC2adnoGHUYPti32LizciAlPb1KpzBTahqP9TmfJ/pcQPegdg6bdwloyyO9zuXZ/hc7Fp9uIQXHrYVF5d/byicXTwnC2tnLYTvdW6FkShB5r8eitbP7/Wig+6kO+wMompXiwhIePecFrPYTQjsHthxkwYeLa5zgaVaNvOx8vnp2LgCFeYXcP+kpHpr6HOt/30xBbiHFhSUc3nOMd+/6lCs638quNXtr9yTUwq5/9rmdcWH2MLF7zT7XG1YWV6nTYnIyl45N5LJxRpciU6WOa7bb553eh2snD3HYz0Er6kJ42aPng0KNnaJUk8rgyf3pOqhTE46shbDPlirLopo0qCuqG+8nFCA2IpiEqFCH/asctw4Cfb1ddvey0XSNQN+a62UJIVofybARQjSb2G7teHHRozxw5jPknMxFURX0sk+BTWaVbIsXo24+m4nPXmh0pmnhhR1F3RXkFrJy7hrSj5zE09uDvqN70jmxQ6uoD7Fj9R7emTmbnavtJrV282XbJ9o7Vu3hkWnP8+LiRxsl06Ze0tKM4sExMdCzJ3kjhvDRn+vRiS/fpP+WQ+Xf5/t6kRNQNSCSE+BDvq8XfmUtk0OyCkiONQI6q0/u5VhBJtHOinL26FGlU5iamMik6H5Miu5HelEOOaUF+Hv4EOldqZhzCys47h8ejK1mslp2IWhRHhRdH46aWoqSbgEPBWsHL/Bx8rmZCkqO1WF/ACvGEtK0QydYO3+T05bIP89a6LAMqjqaReP3T/7imucu4emLXmPTEiOTyiH7QgcdnfzsAu6d8CSz1r9AdMeoao5Yd1aL1e2aKTrGkq9a8/U1gni2a+zYMZToaO44dySn9Upgzl8bWbr5AJquoygwvGc8F47ux7DucRWT5RYUFKyLHkO78PDXM3n6olfRNN3hd21bntz79O48OOeOZhxlM6qUhUVGBtNH9OL9X/9xWcdGBy4+I7GiyHoDZmGN7d+ZOX9tcmtbBYVRfTq43lAI0apIwEYI0ay6DurE58lvs+Srlcz/cBHph0/g6e3BgPF9OfvmiST0LvtktBVM3EXtlZaU8tEDX/HzO79TXFBsFKjUNDRNp/OADtzy+tV1ai/bVNbM38ij05/HYnGe8WBPs2psXb6TdQs2MeSsqpPtZlWp4GZOSWGVchcedj9jTkD1n+LmBHiXB2w8Kj0vB/JSifYNqVqUs4ZOYcTHEx4aSrh3oOOJWmjB8b4T+7P0MyObKLBsOZPH8jxK/hNiZNK0c/2Ju8ffeQ77A1jKkqJVk8qSOSucBmw2/bXdZbDGpqSolD8+Xcq6hZtq3E6zahQXFPPNC/O4/d0b3Dp2bUR3isJa6vr1YxtLdF27JyYkVAkKkpjIoK4xDOoaQ6nFSn5RCX7ennhUzvhpYUHBujrtnCF8uOM1fp71O/M/XFReQL3r4E6cc+uZnH7ukHq1tk/aepB9G5PRNI2Ybu3oPqSz29khzS4ursrSzPDERB65fDyPzF5YbQkgRYHTeyXwn9N6l+/noJ5ZWImd2xEfGcKh9Kxqu0SBkRU2sk8HKTgsxL+QBGyEEM3Ox8+bM68dy5nXjnX6+M7so3x3aDWrTuyhRLMQ7hXI2e0Hcla7RAI9Ws8nnMKRpdTCw1OfY8OireWZVVa7Cf7+jUncOfpRnpn/IP3P6N1cw6xWVno2T5z3EhY3J5tgTLZ/fHNBywvYVCq46Wv2qrKJye4TeWvlZYx2NLXiMVOlehnl0w1nRTlbQacwd4QndqfLwA7s3ZCMr1ZKgF5Czm5Q9xehxXtV1Kpxxqpj/jsPNcNKgF6CLxWdsrIwfieaVSMjJcvp7pbi2mWfrPj+H7cycqwWjd8/W8p1L1yKX5Drrle1cfp5Q3njlg8oyndde0NVFcZdVsv6NTYugoIeoaEE+1f696SFBgXrI7pjFDe8dDnXv3gZxYUleHia610EeMOirXz84JfsqrRcLaZbO6547AJGXTC8XsdvEk6ysIiOZsqQHvh5efLSt39xPCMXk6qiKGC1anh6mLhgVD9umT4Cs0ltlCwsRVF47tqzuOrFrym2WJwGbUyqQligH/dddEa9ztVcdF1n5z97+eeX9RTkFhIcHsSoC4bRvkt0cw9NiBZBAjZCiBbLqmu8uOMnfji8BpOiYi1bZ5BbWshru37l3b1/8sqAy0gMlRTg1iRp60F+nvU7K39cU+3EE4wiqToaj5/3EnOOvIe3b9UgQnNa8OFiSopdt562p1k1djdiPZA6q1RwM9jTl+6B7didc6y8Po3VpJYHYCoHYuypWvWBnQ7+ZcsDnBXlbAWdwtwSF8d/bp/C+/d+TsbxLCK1fHLxxPe5FPJeiQFf1XnQxqqjpFvweTsdgEgc6x2llLUHV1QF/2DnQZO2HSNJO3zCZWFZmyN7jrmdkVNaVMqhXcfoPqSzW9u7y8fPm3Nvn8IXz3xfYxcjRVWYdM1YQiKCqt/IlX9JULAhKIrSIH9T//p6Jc9c8j+njx3ZfZSnLnqV1IPpXHD3tHqfq9FVk4U1pl8nRvXpyOpdB9m8/xgWq0a7sCDGD+hCgE/Zc9iIWVhd2ofz8d0X8vhnv7PzUBomVUFRFDRdR9N0BneN5bHLJxAe1HjFwRvL3g0HePGqt0jaegiTWTV+Lk1n9iNzSBzfh7s/nkFYdGhzD1OIZiUBGyFEi/Xazt+Ye3gNQHmwBire0xdZS/jvutl8OPRGugTKJzEtXUlxKa9cO4tFXyxHNSloVtedL3RNJz+rgL/mrGTS1S3r08OFs/8qzwyqjZrS2ptNpbbHABfFD+fRLd+Wb1JqNuFZYgR1AnOLqhzCxv6x0rJP7lUUBrbpSDtfF0U5W0GnMJd8ffHrnMD1L17Gos+WsWHxNk4WF5F5FPzvOEzJ7VGU9PJGRUFVFKy6DuiY1+Tj/XoaaraVEL2INhSWHzITb0oU47nUNb3aDK0zrx3LxkVbXQ5RVRW6D+tCSlJarX40dwNBtXXZY+dzbH8KS+asdKhlBkZgQUdnwPi+3PzaVfU7UQsJCuZn5/PHp8tY9OVystKy8Qvy5bRzhjD52rG0aRtSr2M3peNJqTx32RtGkWsnf9ZssYv37/2c7kO70Pv0Fr6suYYsLDU+nuE9jC8HTZSF1aV9OF/cfwk7DqaybOsB8otKCPbzYfyALsRGBDfYeZrS7nX7mTnqESxl/65UDh5vWrKN24Y9wJv/PEtoVOt5XQjR0Bo8YPPss8/yww8/sGvXLnx8fBg+fDjPP/88Xbu23BoEQoiW52hBBt8c+rumD1zR0CnVrLy7909eHnB5k41N1J6u6zx/2ess/+EfALeCNTaKorD4y+UtLmCTkZJZ630UVaFd5zrW4GhMTgpuTmjblz+Pb2VF+m50dDKDfctr0/gVFBOYW0hOgA+RXkGkF+egoROYW1i+DUBmcEUx8Gs6jjG+cacop61zVUEBHDzY+gqOJyTgm5rK1JsmMv6K0RzYdpjUsFi8O8TRf2xvUrUclqfvIt9SRLCHH6OjejL7q09ZnJ9KkF5EZzId6vDasmtQwDfAh9EXOl9iMuKcwUTGhXPi6MkaM2c0TefCe6Yz9/XfyEzNdisQoygKbTs0Thtrk8nEfZ/fxsCJ/Zj7+m/s21gRTInpFs30W8/kzGvH1nvpDtDsQcF/fl3PUxe+SnFhCToVgY6kLQf5/MlvmfH6NUy9cUK9z9MUfnnnj2qDNfZMZpUf/vdryw/YQIvPwuoRF0mPuEjXG7Zwmqbx9EWvYimxVPv3R7NoZBzP5K3bPuLhb+5s4hEK0XI0eMBm6dKlzJgxg0GDBmGxWHjggQeYMGECO3bswM+vYdc9CyH+vX48vBYF45PVmmjorEjfTUphFlE+wU0zOFFrW5buYNl3q+u0r67rZKZlN/CI6s/Lx5OCnELXG9rRNZ2pN01spBHVg5OCm6bQRJ7rfzEv7viZn46sIzUimNhjWSgKaLpOTGouw/qdxUVxw5m54VO2ZB0iOtVx8pIWFYJJUXmizwX0D00oP7aDmopy+vq2zoLjdp/Ue/t60WNwJ3ooCkSrUJRPXGg4cf7G5P/gjsN8d+/3ZOw4QGeyCFHyHT6pT8GPbMULRTHmxXd/PKPapSwenh48u+BBZo56lJyTuVUmQrZuQNc8ewnDpg6kpKjUvYwcs8qQMxMb9VNuVVWZcMVoJlwxmtSD6eSczMU/2I+ohIjGKVzbDEHBzX9t55HpL6BrepXW65qmg6bz+s3v4+ntwcQrxzTIORvT758scSvYZ7Vo/D1vLYV5hfhUrhPkpuLCYpZ+s4pf3/uDY/tTMZlVep3enbNvmkjv07s33DXSQrKw/u02LtrK8QOug6VWi8aKuWs4cSxDlkaJU1aDB2wWLFjgcHv27NlERESwfv16Ro6sY6E4IcQpZ3PWwfLaGa7o6OzMPiIBmxZs3lsL3CpuWp3qanY0pyFnDeCPT/9y+2dSTSptokOqzY5oVtUU3PSIiuKBXudwXaex/Hx0PZb8VfifzKadbyiDwjrhG9ALPH2ZNfhalm5ezJatP3Ck7JD5oUGc1WkE58UOJcFWu6aVtUbWNI0Nf27l4PbDKIpCQp9Y+o7uiapWX3S5nItP6kt8/fn40W9YN38jQaZSfKwlOPSPUiBD8eWwGgxWncA2Acx8/yaGTxtU42ljurZj1vrnmfPcjyz4eAnFdhlPPYd35cJ7ppUvqRoxfRDtu7Tl2IFUtBquY70sI6epRMaFExlnBLRshcgbJLvGmSYKCuq6zpu3fYiuVw3WVPbOzE8Yc9EIPL1ddxRrLrquk53uInhhR7NqZJ/IrVPA5uDOI9w38SlOHDnpsGRuxferWfr13ww7eyAPfHl7w9U5q5yFdeiQEdDLzobSUtA0UFXw8ICgICOwFxvbspZmtnArfvgHk9nk0GigOpqmsfrn9Uy5YXwTjEyIlqfRa9hkZxufioaGSlRUCOE+i+Z+5x0Ai944tRVEw9i0eFudgzWKqjB82uAGHlH9nX3zRBZ8tNitbRVFITg8kOd/f7jFFU8uV03BTaKiCPcO5OqOYyCwF6y2y5Qq28YDGHeslHHdzqLEasGiW/EacTqmCLvUfbuinCXFpWxduoNfNudwJGsOfkG+jJg2mIlXjSGwTctoS/v7J3/xyaNfk3boBKpqfFquaTpRCRFc/fTFjLloRM0HqOGTemtmJnPu/ICjG5OIQgcnf+5S8CMrLIaxZyUyeFJ/hk8fhIenh1tjD2vXhlveuIZrnr2YpK2HKC22EBEXRtsEx6UUZg8zzy54iLvGPEb64RNV6iuZzCq6bmT19BzedEvb87PzWfDREua9vYDj+41rsl2Xtky7eRITrhyNX2ALXAbnws5/9pK87bBb2+Zl5bP021WMv2xUI4+q7hRFwcPLg5Ii9wuve/vV/m/fiWMZ3Dn6UXIzjFb39vWNbP+m/PPLep65+DUen3tP7TNtasqwMpsdC6SLBpOXXYCuufeewGRSycvKd72hEP9SjRqw0TSN22+/nREjRtCrVy+n2xQXF1NcXPHpT46rVEMhxCkh1i+MnTlHHYoN16S8mKlokUpLatdNyZ7JbGLiVaMbbCwNpXNiB6bdMol5by6ocTvVpHLuHVM4/86phEQGN83g6sJF22NCQ6tuk5UFc+YY30dEQEAAniYzngmdwRasqVSU88CWg3z17A8k55s5qAaXZxvsWLWHjx76itvfub7Zl4N89excPnrwy/Lb9oGMlKQ0nrn4NTJTs/jPf8+q+UDV1EvZ9c9e9q4/4HSXTLyNZVB4QXoO/c/oXee2yD7+PvQYVnOgJSo+grfXP8+8Nxfw09sLySpbfmgymxh1wTDOvWMKXQZ0rNP5a3J033F+eecPVv64hsK8IoLDAxl32Sh6nd6NJ89/mYzjWQ5LYo/tTWHWHbP57pWfeeHPR2jXqQXWgqrB9hW7ypekuWIym9i2fGetAjZJ2w6xbflOSopKiYgLZ8hZiXh6uRfgq6tBk/qz+pd1LoPxiqoQ16M9QWGBtT7Hdy/9RG5GXo3Pm6bprPppHVuX76TPyB7uHTg9vfoaRqWlsHt3xWPBwcZrOCam+uOlphpfsiTKLQHBfiiqCm58OGe1agSEtLwsWyGaSqMGbGbMmMG2bdtYsWJFtds8++yzPP744405DCFEKzSt/UB+O7bR5XYKkOAfQffAdo0/KFFn4e3bcHj3MdcbOnH7O9cTGNoysi4qu/m1q/D29eKbl34y2pGWTSpsXbB6DOvCI9/fRZvW0uHCnYKbqgr5+cZkp6CgYt+TJ43lJR06GJOVrVurFOU8tOsonz72DemaF8kEOtRq0TUdS4mFl65+Gw9PM2dcfHpT/dQOdqza7RCsqc6smbPpM7IHnfq70bq3Ur2Uvx75DotqRtGsWFGxoJKFF6n4UqxUvDVTVYW5r//GuEsbd0l5YGgAlz1yPhc/8B/SDp/AUmIhtG1Io2Sy6LrOnOd+5KOHvkRVKwIYWWnZfPjAF+iabix7qbRsyHb7xNEM7hn3BO9tfgm/oNYziSspLnU/+0PXKS21uLXprjV7mTXzE3b8vRtFAaXsOfUP9uM/t5/FxQ/+B5PJjeVkdajlc/aMSaz8cY3rH0fTmX7L5FpnvxQXFvPbh4vcDHKp/PT2gmoDNlaLFdWkGsW8ndWnKR+sbtTzyrQrKp+VZXx16GBkzXl4GM+Ps6LDSUnG39ABAyRoU4PT/jOEn9/53a1tVVVl2NkDG3lEQrRcjRawueWWW/jll19YtmwZ7du3r3a7+++/n5kzZ5bfzsnJIaamCLYQ4pTQLySenkHt2ZVzrMYsGx24uuOYxilKKRrM5GvG8v59n7vXBlsBdAgI8eOWN65ptom7O1RV5drnLmX6bWcy/4NF7FqzF0uJhXado5l8zRl0TuzQ3EOsHXcLbvr6QkCAY8AGjPt8fOCA8+yRX9//k2OaD0laQI2TmTdu+ZDTzh3a6BkCzsx94ze36i2ZTCrz3lrAnR/c5P7BfX2xdunCvC0F6HoEuPizpWk6e9btp6iguEmW0pnMpirLphra3Nd/Kw+IVZ6I2/4+1PR3QrNqpB8+ycLZf7nOcGpBIuPC3arXAca/axExYS6327RkG/dPfrr8edR10Mu+z8vK57PHvyF52yEe+Or26oM2NWWaWCxG8CEnxwhiVOqW1f+MXpxx8Wks+WpltXV5VJNKj2FdmHDlaJc/T2WHdx+jMLfIrW2tFo2ty3c63JeSnMYv7/zO/I8Wk3MiF1VVmNwvmPHju9BtSCfH58QWkE5KMgIyvr7G3zdFMe6PiED394PCNOjRG0yhKIqH87bex48bf0OrWV0goN8ZvYjuGElKcnqNATmTWeW0c4dKW29xSlN0V5XPaknXdW699Vbmzp3LX3/9RefOnWu1f05ODkFBQWRnZxMYWPvUSSHEv8eJ4lxuWvM+h/NPVilArKKgoXN9p7Fc22lsM41QuCvnZC6XdZxBUV5RlToZlQ2dMoAxF41otgm7KFPTRM4mO7vi8chIowBnNQ5lWph5xcdkK+4FHu777DbGXtK0wbrSklKm+l/qdr0lTx9Pfsn7vFYB46KCYqb6X1qrcX2f/lGLqe1THwW5hVwQdS3FhSX1O5ACbTtE8uneN6vdRNd1ThzNoLiwhJCIwGbPxinML+KCqGspyi92vbECn+x5g+iOUdUfL6+Q/4u5kYLcwpoD4QrM+N/VTL9lsuP9ul5zpklN7Jb9WEotvH37x/zyzh8oql2WoVlFs2gMnzaI+z671Wmx4eNJqSz6fDnph0/g6e1J75HdGT5tEGYP4/Pk3Wv3ccuQ+90eVlBYAN+lfQTA3z+t5akLX8Fq0crHFK9n01YtRNc0OvWL56IHz8WrQ3zFks/0dMcaXQUFEBKCXpQBRUvRi5eAngOxHtC9Dfich+J7GYo5xqjRtWGDY82boUOlCHEN9m44wB0jH6G0uNRp0MZkVmkTHcqb/zzbspcTC1EHtYl5NHiGzYwZM/jyyy+ZN28eAQEBpKSkABAUFIRPC+4EIYRoecK8Avh46M3MObiSbw+tJrOkouhcYmgClySczojwpiuEKeousE0AT/50Hw9MfprSEku17YZn/O9qpt86uZqjiCblTtvjTp2MpRLgcjnF2ncXk2PyBjeyrExmE5v/2l4esCnML2LJVytZ/cs6CnILCY0KZsxFpzH4zP7uLfdwU0FOYa2KY5cUllBcWFKr7BcvH098Arzdzhzw8PbAL6j1Fdl1ZtHnyyguqmewBkCH4/tTKSkurRLULSoo5rf3/2Tem/M5VlawWFEVRkwbxH9un0Lv05unRbyPnzfTb5nM1y/Mq7FLlGpSGTZ1YI3BGoDFX64gP6cAd5opfv/qL5x988SK7ma6bhQAty19tGfLNDGb3Vr2Y/Ywc9tb13HhPdP57f0/2bsxCd2qEdOtHWddP464HlWz5vOz83npmrdZMXcNqqqWBzx/fHM+QeGB3PbWtYw8bxgRsWEoStXlcc4oqkJ0WV2jnf/s5YnzXsZqtZY/P0F6MVHkY0vY3bvlMK9/tJG7fj2HLVmHmL99GT7rN9Emq4AugdH0C4nHc9Qo9LBC9F0XwuZjlO98qBTCsiDsM/TCryH4PZSoIUaR9nXrKjJtkpIkYFODzokdeG3Fk7x09dvs35SMyWxcC5qmo2kaA8b35c4Pb5JgjTjlNXjAZtasWQCMHj3a4f6PP/6YK6+8sqFPJ4T4l/P38ObaTmO5ssNoDuafoFgrJcwrgAjv6j/JFy1Tn5E9eOOfZ/n8iW9ZMXeNQ9Cm+9DOXPzAuQye3L8ZRyiccrftsYttSopKUVUFqxsBG13XKSmb2C/9dhUvX/M2hXlF5ZM31aSy5KuVRMaF89jcu+nUz406Mm6obRcbVVXw9K5dFpiiKEy8Ygw/zVrosjaHyawy7pLTG6+ldRPbsXqPQ92aeqs0kc/JyOXeCU+yf2OyQ8FiXdNZ9fM6Vsxdw40vX8G5d0xpmPPX0hVPXEjy9sP88+sGY3yVXgqqqpDQO5a7P77Z5bH+/GI5CorDz+mUbhTK3rshia4Dy4pHb9/uGKxRFMfi4pW5sewnMi6cq576P5fjLswr5M7Rj5K07TDoVZfFZafn8OQFr3Dvp7cy7tKRDJmSyJrfNrq8ZnRN56zrxwHw2RPfGkEeu6cmiooPfHRgjxbEyY37WLPoZQ5aMvAttpJ44ACHUdiQkcSHhTs5T2vH2Iy7ICwXenvC5qKKYx62QJgZ9GL0zOsh7GeUqFjjeTx61NgmNdUIePv+OwKujaFTvwTe2fAiu9fuY/Uv6ynMLSQoPIhRFwxzGbQU4lTR4AGbBl5hJYQQAJhVEx0DGre2gmh8Cb1iefibO8lIyWT/5oNoFivRnaKI6SpFo//twtqHup29oigQHhPG8u9X89RFr5Tfb3uPYZu8pR85ycxRj/DGqmecfpJfW14+XvQd3ZOty3e6nCCqJpVBk/pVZC3UwtSbJ/LzOwtdbqdpOtMqL2VpxSyl1ipBlroKj2mDp7dn+W1d13ni/Jc5sPmg0/eitmvvnTs/ISohghHTBzfIOGrD7GHmsR/uZt5bC5j7+m+kJKWVPxYUHsjUGydwwT3T8PHzdnmszOOZtXrPbev+Vb7U0cZkgsRE9MhINmYm892mhaw9uZ9SzUqkdxDTYgYypd0AAhMTjWCE/bKfpCRjKWQtski+enYuSVsPo7lo6fzKde8w+Mz+XHj3NP75ZUON26omlZDIIEZfOJzUg+msXbDRIVjjpVsIoSKj7SQ+nAzzJ++VGPJKMkCFiFSjyLBt+fX+UB8e3DIXLdbE+FArRJgh0gwpZcWg0y1QoIEvQAl6wScogQ8bQS9bwAaMzENXwW5B10Gd6DqoU3MPQ4gWqVG7RAkhhBDOhEaFSBHB2qhDB5eWoKigmCVfreDnWQs5vMfJ8otqWC0aoy8azl1jHqtxyYdm1SguKOHt2z/m+d8fqf+AgWm3TGbzX9tdbqdZNabNmFSnc8R2a8fdH9/C85e/gaJQpa6TrUvSHe/eQMe+8XU6R0sUFR9RVmy6fkEbRVWYNsMxkLV77T42L3H9e1NUhc+f/K5pAzZ2r19TSQn/6aIy/e2zOXYogyzFG1OnDnQe0bO8dos7fAJrV2bAx78sCGQfrFEUSEykNCKMRzfP4c+UrZgUtbzQf3J+Gv/b9Rsf7FvMqwOuoG9UXL2W/ZQUl/LLO7+7DNYAWEos/D77L86bOZXb372B125416FGjo1qUgkI9ef53x/Gy8eLpK2HqlxekTgWR0/Fj8Kr26AHmKAs3hqSVbFNvq8XOUG+gM4zRwZwWtBxfExWiPGoCNgAHLFAF0/ACoXfoQfcgxIaaiwrsy0jS0uTgI0Qol4kYCOEEEK0VPXo4NLcjuw5xj3jnyD98EkjAOFOhzCMCVjiuN4kbz1MXma+y+01q8aGP7dydN9x2pXVsKiPEdMHMfK8oSz//p9qMxgUBcZdNoqBE/vV+TxjLzmdkKhgPn3sa7av3O3wWNeBHbn8sQsYNOnftURw4lVjmPPc3HodQzWpBLYJYPI1Zzjc/+t7f7rV3UvXdPZtTGLfpqQGW0pXrbLX78mNO1m7YBN7Nx7AUmIhKDyQ/mP70GtEV9p7miH3EGwsrtXrd/jUQRzYfNCt5WX+wX50G9zJCBzZ/y2JjoaoKJ7e8i2LUrYBOHRltF39BZZibl37EbOH30yHqKg6L/vZuWoPuW68psHImFr+/WrOmzmVM68dS0zXaL55aR7//LKh/HXp4+/N5GvGcv5dUwlr16Z8v8qCqSj0XIAH2cE+WEYGgKmiWLiHXQevnABbhpNCoWZmYVYs09skQYgJ/FXIK3uOTtgCNoBeCNY0MMcYy8psAZuSBqjZJIQ4pUnARgghhGhp6tLBJTXV+LLr4NJcstKzuXPMY+XLMGoTrGnXuS33f/5f3rnzk/Ji1C4psOHPrQ0SsFFVlfu/+C9BEbP59d0/jN9F2XOp6zqqqjD91jO57oVLa9UdypnEsb1JHNubgzsOk7T1ELoO8T3bk9A7zq39dV1n24pd/D57CamHTuDp7UHfUT2ZeNWYFtlVqn3ntoyYPphVP6+rUx0bRYGAUH9e+OPhKj/foZ1HHII1XrqFSAoIphgzGiY0rKhYUMnCi2NbDjRewKbs9avt38+fny1j+ferUVQVvSyzJDM1m6Qth/j94yVc9ugFRHeMrPXr98zrx/H5U9+5HIpqUjnr+nHG8rGd+x0fjI9nX24Kvx3bWOMxNHRKdSsf7lvM0/3+r87LfvJzClxuY88+YNv79O70Pr07malZpB5Mx+xhpn3X6CoFv2O7V11ea6biusjBE0tfH4dgDYDJ7nq0miqWOSrAqpwoI2ADRtDGFrAprfR3TSnbz74QusWCEELUhwRshBBCiJakATu4NFfQ5sc35pOVll3rSfmYi0Zw65vX4BfkR1F+kfuBHlWluMCNdsluMnuYue3Na7nkwXNZ8NFiDu44jKIoJPSKZeLVZxAS0bBFz+N6xNS6Bk/6kZM8Ov159m5IcsgsWTN/Ix899BVXP30x582cUu+gUkO7e/YM7h3/BHvWH3D792uj63D+nVOdBrTUskm2rRuQfc0SGxNWPLHiSymhOzbAmoCGz0qze/0u/mI5y7832kTrmkYBHuTgiaYpqOgE5Zby8UNfcsPLVxAWXVbs183Xb5u2Idz48hW8ffvH1W5jC4D+3/3nGHekVdTMsf0t+X77PIdlUNWx6hqLU7dzsjiXNnVc9hMY6u9yGxtFUQiKqNrqNiQyuMauQe06taXPqB5sW7Gr/O+PyS5go6GAT9W6U1aTWh60sQ/e6CjkW+2mS/a72sdilEBQy64j+9beZplqCSHqR/6KCCGEEC1JDR1ctJBgMkvy0XSdEE8/zKrJrQ4uTclqsRp1KmoZrDGZVcweJvyC/ACjzpFqUrHaLVWojmbVCI0Krstwa9SmbQiXPHhugx+3vrLSs7n9tIc4eSwDwCGzRNd0LCUW3rv7UzSrxoX3TGuuYTrlF+jLy389ztzX5zPvzfmcOJpRq/0/fOBLTvvPkCrZVF0HdiT/77VEWnPdOk7bDrXPanFL2es3Kz2HZd+tRscocpuKH7mKp+O2GgQVlzJv7hauuWVMrV+/59x2Jh5eHrx71ycUFRSjqiq6pqOaFKwWjb6jevDgnDvKX1MOy3PKukFtzjroMlhjY9U19uam0MYroE7LfroP7UJIVDCZKVkut9XRGXPRaW4dt7JLHz6Pe8c/WX7biooJ4++Iio6SVfVvSqnZhGeJEYEJzK0I9pnQaONhF/yzf6rMFVvhexGK7febYXdNe1b6nQshRC1JwEYIIYRoKarp4JIdGsgPh9fw7eZVnCg2JqS+Jk/Obj+IC+OG0a6BOrg0yI9w5CTZJ9ybNNuzWjQWfbmCO967EZPZxLjLRjLvrQVu7evl68WwswfW+pyt1RdPfs+Joxkug2IfPfAFYy85rby+R0vh5ePFRfdO5/y7pnJw+xEKcgt585YPSNp6qEoB5soUReGXd/7ghpcur7hT1zlnRCRHX6163ZVntVCW1WIqpVfvaNq0tSt63lBZaXav33ULN6EpKnv0IDKV6rs+ZVs9+GbxEc59sTPBh/fX+vU75YbxjL3kNBZ9sYJtK3ZSUlxKREwYE68cXTUTyX55Tlnmh6XUimlLAWqGFd1bwdLTBwKqbyNfHtypw7Ifk9nE9FsmM/vhOTV2uFIUBW8/L8Zecrpbx62s/xm9ueujm3npmrdRVQVLqYpnWcAmUCnFvLEAU5GO1dv4XXsVleJbWEzH5HRMVg1V0wjKLSA7wJfMYF8mRCRXHDzTLtjjoQAmUAJQfC8z7quc9RgRUaefQQghbCRgI4QQQrQUTjq4HAn04Ka/3yCtKAfdrv1JgbWEbw+t4sfDa3h5wOUMiupYrw4uzui6jmbVMJmrn8BV5k5GTHUsJRYKcgsJCPEva/PakX0bk2osJKuoClOuH4ePf+265rRWhXmFLPh4sdsZTL++9ydXPH5hI4+qbkwmEx36xJGRksn+zQfd2kezaiz+aoVjwGb7diI9LSSO78PGRVvRNN15VosCJtXEtc/9F8LNDZ+VZvf6Tdp2mD1azcGa8p/JorEjKYfhg+v2+vXx92HKDeOZcsP4mje0LaUErMXF/PDST+S9uAH/9IoMEt0MpWMCKLosDD2s6jShvU/Z0q06Lvs5/66pbFy0lc1LtztdEqeoCqqq8OCcO/ANqPtresIVo+nQN44f35jP3s9/wbfEqKcVHxPIhP9eyJ4uPvyy5XfapmYRmpmPR6kVr+LS8v2j0nKwKCqBx/PpeOIIej8d3V9FzbN73YWZQQ1CCfkYxRRp3Jec7DiQ+PjaDbyVdgQUQjQeCdgIIYQQLYGTDi5F4aHMWP4aJ4pzHYI1NlZdQ9N1Zq7/lC9G3EpsPTq4lB/TamXVT+uY9+YCtizbgWbVCAoLYPI1Y5ly4wQi42qeQLaJDsXD24PSotIat6uOV1kRUUVReOTbO7lt+INkpWU7DdooqkKvEd24+pmL63Su1mj32v0U5btXr0fTdNbM39hiAzY2OSfzarV9Xqbd9nZZLVNvnEBxsYUflqWQZfZBt1a8ZnQVMCl0eGkwwSO7gE9wnbPSLKUWDu86SklRKW3ahRr1Zyq9fk/qXmQq7gcvLSUWaIDXb408PaGoCKvVyue3v8vny09UaYGtWMBjUS7mdQXkvRSD3tYDABWFnsExxPmXPTd1XPbj4enB07/ez3v3fMZv7/9JaYkFk9mErhnB4dhu7bj1zWvpO7pnfX9aOvVL4K4Pb6bkpUso+uk3zJ4mfPy8Udq14wyLCdNRC/tzC9CBUg8Tef7e+OcZwavA7EICPb0o/SaP97Pa0XtIPqf1TKdNOwtKjBlM4Sg9boTQ/0NRg40TpqQYQUCbyEjwcTPo1Io7AgohGpcEbIQQQoiW4GClDIP4eBYe38Lxoqwad9PRsehW5hxcyT09ptW5gwtAYX4Rj//nRdb/scWhQ1P2iVy+eeknvn/tFx7+5k6GTa1++ZG3rxfjLx3JwtlLXLZYtqeaVHqd1g1PL4/y+yJiw3lzzXN8eP8X/DVnJZbSigmwX5AvU2+ayGWPnGd0wDlFuBusKd8+r2rx3ZbGP7h2AQmHzAu7rBazpwf/+fIRFv70FWlf7MS8MR9KdfQQMyUTAimZFMTGsAwu//tNPhh6oxHgrEVWWm5mHt+/+gu/vPO7w7K//mN7c9kFvYj3KmbnP3spzC0izSMA1ALHmic18GlbVpC3Hq9flyIiICeHlXPXsG/ZFgL0sKp1dQBFA7Kt+D1xjLy3Y0FR0NC5uuMYY4N6Lvvx9Pbkltev4conLmLZt6tIP3ISDy8P+ozqQc/hXRu8ULZnSBCe3TsawRBdh2XL8GjThus6jWPBsU2sTN9FiWblcNtgotJzsKoKHsnFRM8/SmaOJ3l4sHe5F4UrQzjzurEE+8ShnHYahA2pOElKilFs2n6pV4IbXciauiOgZPAI0epIwEYIIYRoCZx0cPlu55coKE6za+xZdY2fj2zgtq6T8a5jBxeA5y57nY2LtwFUWXKjWTV0TePxc1/itRVP0m1w52qP85/bz+L3T5eiKBo1lKqocvxpMyZVuT8sOpR7P7mVG1++gk2Lt1GQW0hwRBADxvc5pQI1NqFtg93eVlUV2rQLbbzBNJCwdm3o2DeOA1sPuewcpZpVRp4/zLjhJCvtg/yd7EjIRn/IeYt3q66Rayni7g2fM+e0/6K4mdVy4uhJ7hz9KCnJ6VVeG5uWbMP652L8VAu6rlOkerIpJhqTG8EaXQGtnQe722YxCIxivnV8/boUF4d1127+/mkd6BBJPrk4fw0pGpgOluC5tZiSPt7c2W0KI8K7Gg/Wd9lPGf9gP868bhyZqVkcT0rDZDZRlF/UOMsbExKM3+2hQ0bAKSsLj44dmRozkPEDJjPn0H4+/mkZsVYP2u3LQD2mkpnjhw+lRCiFRJLPkOnDCAkPgqwsKC4LnDor+m47n6sMmKbsCCgZPEK0WhKwEUIIIVoCJx1ckvPTXQZrbIq1UtKKcoj1C6tTB5c96/fz949ra9xG1426Np89+R1P/3x/tdvF9Yjh0e/u4vHzXkLXNJeZNoqqMHTKAEacM7jabYLCAhl1wfCaf4hWxGqxsu73zaQmp2P2NNNzRFfiurd3uV/nxA5Ed4zk+IG0Ggu3grEkasIVoxtoxI1r8nXjefOWD1xup1k0pt400bhRKSutKKYd327+2a0AZ1J+GhsykhjQpoPLrBZN03hoyrOkHqwarAGjM5cZrTzYlGX1wNLXBzQd9WipkbFSDUWHkvNC2ZNrN2mvw+vXLb6+7D6US35WPgBtKOSk7lNtnR3dBG2X69x3zbXG8wT1W/ZTyfa/d/P1Cz+y+uf15deyl48nE64cw4X3THO5/LJWwsMhKKgiYKFpcOAAREWRGhXMDrNG0cVt2K2HoO71oU1GHn5HCwhcfoKeWjB9+vcmzAdj//Bw2LwZMjNBrdoinOhoI/PF5RNQfUfAVMWD5VsPkFeUR5CvN6P6DyLUUlT7joBNncEjhGhwErARQgghWgInHVxq+z5Zte1Qhw4uv7z7Byaz6jK4olk11vy2gbRD6UTEVj+hGjplAG+ve57vX/2FRV8sN2p0VB6vSUXTNCZcMZr/zroOk8n94satlaZp/PDar3zz4jwyU7NBobyOSO+R3bn+hctqzF5SFIXz7jyb129+v8bzqCaVwFB/Rp43tAFH3/CsFiuzH57DD//71a3tr3zyIuJ7xhg3KmWl/aOdJN/i3pIxk6Ly27GNRiDCRVbLxkVbXRZFNtmtfdJQwKSQ/0g0/vcegSxrlaCNrhjBmuLpQVjGB6LZt9auw+vXXcfxK/9eATqTyV49xGnQRrFCfGGwY7CmLst+nPjjs6W8eNVbKKriEHgsLizh1/f/YMlXK3hx8aN06le34zvl5QUhIUagRVGgQwcOnjzCO7M/Js/HTAd/LzRVpcSsEpRTSLu8LOhvxjc4gjZtYiA/H3JzjX1tS4q6dHE8h7tBjmo6AqZ6+fH810tYtuUAmq6jqgqapvPMV4uZOLArd50/imB3ay81ZQaPEKLRSMBGCCGEaAnsOrjY/t8loC3bsg6juZFl42f2IsI7yLhRhw4ue9btd7/mjA5JWw/VGLABSOgVy10f3szNr11F+uETZKZms/6PzRzedRRdh/ieMUy+dixR8adG61td13n1+ndY8NESuzsrvt2+cjd3jHyEZ357gP5n9K72OFNuGM+OVbv587NlTh9XTSqe3h489cv9LXrZmKZpPHvp6yz99u8qxW8r8w305eqn/89x2VylrDRby3t3WHWNk/bb15DV8tsHf6KaVbQaXh9WVExlraNVdNQjJejtPMl7PRavrzPw/CMHpajih9TiPSk+L4TS0QGoimJkxpUfrG4dmNyhRESQgh9R5JePtQsZnNSdd9Xy9vWq37IfJ3at2cuLV72FrulOl8BpFo2C3ELum/gUn+57s17dosoVFBhBlk6djGVRFgslgf58uO0HSjUr3vkW2uZX1HvKDvTBalIJzcpnW9Zhwr0C6dipD5SWVhRcti2N8vKq/TIiJx0Bj3v6cvlzX5KVV4hW9jzb2txbNY2F63axLfk4s+++iGB3ai/VkMFDaCi6rjvWC3L2e26I7mlCiHqRgI0QQgjREpR1cAHKJwTnxw5jS9Yhl7uqisI57QfjqZod9i8/rhtcLa+pur372/oG+BDXI4a4HjH0G3PqvvH//ZO/HIM1lWhWDV3XefScF/nq8Dv4BTov/qkoCnd/PIOOfeP59uWfyTieafcgDJrUj2ufu7QiE6WFWvT5cpZ+87frDRV4bcUTJPSKc7y/Ulaaj8n94JSCgrf99jVktRzZc7zGYA2ABRXPsoBNICWY1xegnLSgh5oouimCoivDMO0rRinR0NqY0eI8y7MWdGBae7tC3nXswOSOPiO785wahKdmJRTj740ChFFIGIUU6B7k4ImGggkYHwusXFn1QO4u+3Hiu1d+RlUVrDXUK9KsGtknclj0+bKKJXD1YVs+pyhGYd2uXVm9exV5NWRk5fl5kefnRb6vN8cC/HikR284cQKys42lUB4e4O0NZ5xRu0K9TmovERXFgy99TVZeYbXPi1XTOXoim2e/Wszz151Vc+2lajJ49lhMfLtgAwvX7iavqAQfLw/G9uvEBaP70Ss+yghc1rF7mhCicUjARgghhGgJyjq4AMb/MzI4I6onnxyIIik/DavufMKoouBv9ubC+LL6LnXs4JLQO5aD2w+7nWUT0y3are2EQdd1vnvlZxRFqTE4pms6hXmF/PnZMqdFmG1UVeW8mVM557Yz2bRkG+mHjU47PUd0bTUZSz/871djSYyrQsOqyh+fLOX6Fy93fKBSVtqANh1QUdzKSNPRGRpmt/SshqwWs4frt8tZeOGL0crel1LCrAW0fe8Avmd542GxYrJqWE0qpR4mMlVfjhcHUeztgYLCmdH9ifQJNg5Uzw5MroS1a8PwaYNZ9dNaYq1Z5Zk2Nr6Ulv8cJg8zg0Z0rHqQetQ2yc3MY/n3/zitBVSZAvz87u8NE7CpXNS9Sxc+y1jC7n4JRKVlEZJV4Ph7MpvIDPbleITxe9oIXD6gO/H+ERAWVvE7CgiofVclJx0B9xxJZ9P+Y863t2PVdBZt3Et6Vh7hNdVecpLB89m2o7z6/TJMdsGywuJS5q/dxS//7OSqiYO4ZdoIoxB3LbqnCSEal5NKWUIIIYRocnGVsgeSk/FQzbw+6Cri/Yw3ygqOEyQFhQAPH94adA2RtuVQdezgMuX68W4Fa1STSt/RPWnXyXkXHuHcoZ1HSN522K1MJgX449O/3DquyWxiwPi+TLr6DMZecnqrCdakHT7Bvo1JLoM1YGRbLJnjJMvDPvskI4NI7yBOj+iGSXH99tbH5MnEtn0d9nd6XKDXiG6o5pqPmYoxafellHbkMpIjxC07TvDvJ/AssWAqteJZYsGvoJj2xzIZvOkgPXYfY6wpgvt6Tqs4UAN1YKrJtc9fik+AD4fMIeykDZk4Lzo8+eoz8PG3eywyEoYONZbH1LGmyYmjGW4Fa8CIFaQcSHO9oTucFHVPK8qmyNtMcmwYG/vEsiYxgVWDOrImMYGNfWJJjg2j2NujfLe04hyH/asc111OOgIuXLcbk+rec6oDf27YW1F7qfJxnWTw/JR0kle/N5ZQVs7gsd3+eOFaPvtzvXGnrXuajS2DRwjR5CTDRgghhGgJfH2NCZHtjfaxYxAdTVhUFLOH3cwfx7fwzaFV7Mk5jo5OlHcw58UNZWq7gQR7ln3CW48OLj1HdKPPqB5sW7GrxgmVrulc8tC5df0pT1mZqdlub6vrkHE8q/EGU18FBcan+bbCqxaLkZXi6WlkhMTFucw6yMvMr/Hxykozs2HnTsdzHjtm3A4KMs6bkcF/u53Jxsxk8i1FWGsIjt3Xcxo+5rLAjIuslik3jndZFLkYE95YiMGoi6MDAZSStygXNbkEyxA/rJ0rgh/tfEK4MLAbAwriMO3cbWSspKbW+vWr6zopyWkU5RcTHBFESERQjdsDtO/clleXPcFDU58j7dAJck0+eFhKiKSAYLUEL1Vn6nVjGXLO0Fr9Tt1h9qhdYfHabl8tJ0XdvUwe1WzsnLdatn19i0I7CR5l5RXiUIG8BiZVITOvsGL/yrWXKmXwWGJieeOl790a2ru/rub8kX3x8fJw2T1NCNE0JGAjhBBCtBQJCRUBG1036ggkJuIVFcWU9gOY0n4Auq6jo6NWziKoZwcXRVF49Pu7uH/SU+xZfwAFx6U7JrMJTdO468ObayyIK5zz9vOq3fb+zrMempWtLob9p/c2FotRgyknB/btc1mE1T/Yvcl/kF5MFPnEepmN4zo8GGRkpBQUGMVRCwpoP3ky7w+5gTs3fMaRgpOYFBWrrhnXMzo+Jk/u7zmdSdH9Ko7jIqslpms7ptwwnl/f+9N5hpSu04VMVLvJtgJEk8c+gslI9iDUEsSjd95GQXoKPvlFBHjYBWKSkuDIEbJTMti5eg+FuUX4+HnT4cYLqS5fqqSohF/e/YN5b87n2P6K30f/sb05944pDDkzsZo9DQm94/h035us/mU9f3y2lBNHM/Dx92bQxH5MuvoMAtsE1Lh/XUUlRBAQ6k9uRp7LbVWzSs/TujXMiZ0UdR8a1oXDBSerXW5qz8/kRZfAsqzC+haFdhI88q1FcXBN0/H1riF4VCmDZ8WxbE7muJcdU1hcysJ1u5k+opfL7mlCiKYhARshhBCipQgPNya5tvoDVqtRR8Cus4eiKI5Loxqwg0tgaACvLH2CPz5dxtzXf+XQTuPTVbOnmbGXnM70Wyc3bJvdU0jHfvEEtgkg56TrTkaqSWXYlAFNMCo36brRKca+LoYrqanGVzX1TsJjwujQJ46kbYecL4vSdeLJIYp8FFWl92lOgoReXhAcbHTrASOgM38+CYmJfHfa7azJOMD8Y5s4WZyDr8mLYeFdmNi2L75mu+CZm1lpt7xxDaUlFhZ+vASTWXVYPhhPDqEUUYAHmXgTTBG5eJKFF5qXGXOwiXPfvRG//oPwVxTH12xODvn7kln35WK27jlJmuKHoigc131J/nAHQ85K5La3ryO8fZvy8+XnFHD/pKfY9c8+9EoZGZv/2s7GRVv5v/vP4eqnL67utwMYQdgR0wczYvrgGrdrSB6eHky9cQJznv/R5dIozaIxbcbkhjmxk6Lu58YOYc5BJ0vtKlFRmBYzqKJIdX2LQjsJHp3WK4EvFm1wa3dN1zm9V9nfYWfBo0oZPLsOpmFWVSya68CU2aSy67BdwKeG7mlCiKYhARshhBCiJenZ05hY2Nqx6rqRln70aHm9A0wm44165aUcNvXo4OLl48WUG8Zz1vXjyM3Mo6SolMA2AXh61W75gHBkm6h+9dxc1xNVTWPKjROaaGQu6LqRuWXfHtjGdj3aJqDOrsekJON6HjDAIWijKArn3HYmL187y+k5u5BZ3sVI1zUGTe7n/JyaZgQ1bWPdvx8AtaiIoQMGOBYWrqwWWWkms4m7PryZqTdOYN5bC9jw5xZKikpJaOvDxO5x7Ph7NyePZpCmBnBM98cU60HxIF+s3b3xUhW+XPU/ftkzh9O6DmNkdG88PTygpISCdZtY+MGfFOYXEazr5OoeHCaQJAJA0Vm7YCO3DL6PN1Y/Q0SsEYB9/rI32L12v9NsH9u19dWzc4nuGMWkq8+o/udvJuf890x+/+QvMlKyqn0tqCaVxLG9SRzXQNl8Toq6x4WGcXnCSD5NWlbtbiZFJdwrkCs6jDTuaIii0E6CR4O7xtA+PIhjJ3LKW3o7o6oKfRLa0jE6zGH/8uNClQweXdehFiWHHK6r+i7/EkLUmwRshBBCiJZEUYzJrbOMhpwc5wEae/Xo4OI4DIXA0MZZFnGqOv/us1kx9x8O7z5WY9Dmyscvom2HyCYcWQ22b3cM1iiKQ8ZXFc4yvo4fN47Ty7Gl+/grRrH6l/X8PW+twyTRlrFiM+nqsYQN7oMWF8s2tYCTJbn4msz0Du6Ab+/eRteetWuNc2uakWmTkQHFxTBihHtjBLey0roO6sQ9s2+puGPNGkhNZfylI0necYQle4pYEV9IQUQy7VOysa9Jknsyld/+/pGdfiu5rvM4vD08+HXRAYrzisvHoaGwl+Dy16/VYrS3fv6KN3l5yeMkbz/Mqp/X1ThGm8+f+o4JV45GVVtWj5Hg8CAe+nomD015lrwsx1pGtq5hA8b34eFvZjbc2OPiHJfUJSdDaCgzukzEpKh8cmApQHmHMdtSugT/CF5NvJwQT/+K/ezVpSi0k+CREhrKk1dO4vpXvgUNp0EbVVXw9jDz0CXjjDuqCx5VyuCJjwzF4mahZ6umER9p97qu7/IvIUS9yStPCCGEaGkUxZjcRkZWXzOkMhc1Q0Tz8wv05eW/HufJC19h85Lt5UtrlLLJudnTxJVPXMT5d53dzCMtY6tZY2MyQWIihWGhLDy+mR92fcWxwgxMikq/kHjOjx3KgNAOKKGhRlBnw4aKCV9SknGN2l2fJpOJh76+g/fv/Zyf3l6ItdRKqKmEdnohVgv4Bvgw/qoz6H/flcwpTuKLrR+SWlRRvNlb9WBq+wFcO3AMIV5esGOHkWGjaXDyJCxYACdOQIcOjZOVZteNR1EUEiYMJflKT97Z9CUQTkawH9GpWYSWFVi2TcEP5p/g86Rl/Md/AFu2HqetbkYFMvGiCDNeWCm2e4tutWhsWbqDgzsOM/+DRVWWZFUnNTmdLUt30G9ML5fbNqWty3fy4FnPUFRQXOUxXdOJjAtn5gc34ePvXsF0t1RT1F2JiuKmLhM4N3YIPx5ey4bMJEqsFtr5hnJ2+4EMDO1Q/vqsT1F3B9UEj/p2iOad28/jgY/mk5qZi0lV0XUdRVGwahox4cG8cN0UOrRtY1x7S5bAnj1QWmpc84pi1Jk5ftz4eb28ICODM4aPwP8rT/KKXC9pMqsqZw6xq1NT3+VfQoh6U3R3+ks2oZycHIKCgsjOzibQvlWdEEIIcapqgK48omXZtzGJhR8vISU5DQ8vMz2Hd2PClaMJCPFv7qFVKMseAYzJ4MCB7PXTuXXtx2SU5JUX8oWKjITTwrvxTL+LjHofKSnGciXbW83ISBjsvF5KTkYui79cgWXF3/gX59GucxTdh3VFGTqYh1L+YlHqNqf7mRSVCK9A3h9yPRH7jxhBon37Ks4ZHAxdutT8c9Y1K23nToeJtz58OBfv/JwDeWkOtWW8ikppm5ZNSFYBHhYrJquG1aQydl8Hfv10A3lWlc5klW9/DH8OKY7vgU1mlf+7/z/sWX+ANb+5V+sE4PZ3rues68fX7udqREf3HefG/ndTUliCVk1Ld5NZJaZbO2atfwGzRwN+tpyeDqtX253ICEASFeV6X9vyOfs6MEOH1j1A7uS1ZRuHVdNYteMgSzbvI6+whGA/b8YP6MKAzu1RTpwwgp+7dlV/nR8+bARtgoON19yZZzJ77X5e/3FFjUNSgEvHDeCOc+2Wf620q/HTqZMUHRaigdQm5iEZNkIIIURL5+trvFGWN8v/Gp36J9Cpfwsu4GyXPQJAdDSpQd7c9Pcb5JWW1ZaxC0rYOu38nb6bBzfN4aXEy1CioozMFVtr4NRU47hOgouBoQFMv3oUxNnVyWjXjo8KdlcbrLGdN604h3s3fclHQ29CiYyE+fNh715jg6wsY2mUl5MuXfXNSqvUjWenuZD9eVWz4Yq9PUiODSM5tuI+k6JStN/EUVMQFs1KOz0fX0oBCKaYQ5UPoihkn8jFZFbd7f5snMfcQG2xG8h3L/9MaXFptcEaMDKKkrcdZuWPaxl1/rAGO7ceFkZhm0iUgwfx9vNCcVLUvYoGLOruoJqOgERFYVJVTuuVwGm97P4+2Bf+zsx0DNaAcS3bREQYAZusLOPL05MrzjuP1Mxcvl66GVVVHJ5/VVHQdJ0JA7ty6/TTKo7TEMu/hBD1JgEbIYQQQgjh6OBBx9vx8XyatIx8S3F5nQ9nNHSWp+9iU2Yy/UMTjEmeLWBjO251gcdK5yyNbc9Xm39zOVSrrrE9+wjbs4/QKzwGpkyBxYuNgEp2tvEVHd3wWWmVuvEczE93e1errpHrYS2fOOfgWR6wMeNkuZMOfoE+tInuxD+/rK+xMK29LgM7uj2mxlaYV8jvn/zl1nIu1aTy09sLGiRgk5Weza/v/sm8txeQeTyTLmQSG2Ji8OREBk3uh7/edEXdy7nREbCcrfD3nj3GNZ2RURGs8fWFrl2N15R94W/77mnbtqEEBnLPBRMY1jOerxZv5J9dFSHBPh3actGYfozr3wVVbeDlX+LUIxnBDU4CNkIIIYQQwlGl7JHCQH9+Xre+PJOmJiZF5btD/xgBm9BQYyJsm/impVUfsKl0ztXaSbJLC9warklR+eXoenoFxxjnDA83smpiYozzjxrl1nFqpVI3HgVr9ds64X96BBnvGUuqNLs2PiYnARurxcqwswcSlRDBp499g6sUG0VV6DaoEx36xNVqTI0pJTmdkqJSt7bVrBoHthx0vaELSdsOcc+4J8g+kWO0j1cU9ughlGTmkD9nBat/Xc9VT1xEVEJEkxZ1B9zvCLhrF+zebUyEwTh3mzbkhwayMhR2dvTCw3SY/mHxDOl1OmpmljEhXrrUOKauw6pVKN7ejBw9mpG9O5BbWExuQRH+3l4E+nk7jqsW3dOEKGereeas5p7FYlzrOTlGdpjU3KsVCdgIIYQQQghHlbJHkvLTKNLcm2xbdY3NWXaT7dDQiolwSQ2FTyud077AsDvndNje3XPWR6VuPF0C27q9q6oo9B3YDb8h6exetx/VYre8DMfOSKpJJbZ7O7oP7YKiKFxw19nMef7Hao+tKAqKonDNs5fU6sdpcepZZTPnZC73jHuCnJO5RrDGRlFIJohMzZvovAI+fmQOt755Df5BftUfrDEmmO50BMzONoI1NqpKSUIc8/L28WPhDvaZwjAdSkJHZ/aBv4j0DuKeHtM4fexYI9izZIlRd0fTjKwzqxX69ycgNJQAn0rLBBtr+Zf4d7Nfrueu1FTjqyEDoP9iErARQgghhBCOKmWPuJNZY8+q2WWbmOzqqNgf18U5vVQPt8+noOCl2r2tdfec9eHpaXxqDJCRQYfevekTHMe2rEM1LhsDo23zf2IGY/mgF7cNf4Cg/FJsCToWu4CNalLx8DRzz+xbyrsVXfX0/1GYV8S8txZU6RilmlRUk8qDX91O39H1XLbTwKLiw/Hw9qDUjSwbVVWI7x3rcrua/Pb+nxWZNU5kK15ka14k5VrpvS6NKef0bfolHK46AtrfVhRKE+J5RdvLX2EFZASHAWDRK15raUXZ3LXhU57qexHjR40yrs+//67ItNm0ycjUacrlX+Lfy7Zcz5YlZs92jdkC286usaQk4xodMECCNjWQgI0QQgghhHBUKXukrU+IQ1eomqgoxPiFVdxhtQvemGt461npnP1D42sxYJ3E0A61P2d9RERUTEByciAjg5u7jOfmNR/WWBdYAaa2G0B73zbQsw1v/HY3P138MGmHTqCaVLLxwaSasFqsRHeM5IEvb6dzYsXPpqoqt7xxDeMuG8nPs35n9S/rKS4sJjg8iIlXjmHydWMJi3ZSQLeZ+fj7MOGyUSz4eLHLOjaapjPt5ol1Ppeu68x7e2G1wRp7RbqJz7/bxlmv3lrRwruphYcbX/b1P3JyIDcXPDyMry5d+LqbP3MP70PHeQBJx7i+Htv6LYPadCJ44kTjOFu3GhvYinA39fIv8e+0fbtjsEZRyuswlQYHsjXrMPmWIoI8AunRswfmrOyqWVzHjxvH6dWrWX6E1kACNkIIIYQQwlGl7JEwr96MCO/KqhN7XGbbaBjZI+UyMhyP6+Y52/fuzZA2nVh7cr/LjBVP1cyZ7frX/pz1ERfn0Nab5GQSExN5ut9FPLz5GzRdcxi3rfX52Kje3NtzWsVhfCzc8sY1HNp5hG0rd7MrIJb+bUIYcc5g+o7uWW0QodvgznQb3LlxfrZGct6dU/nzi+VoWkm1wRSTWaV9l2hGnOO8Bbw7igtLOHHkpNvbnzyWSWFeEb4BzVxY174j4M6dDg9Zhw/jyy3vuwya6oBF0/j16HouSTgdxo0zModSU42ATVqaUdupOlJfRLjDVrPGxmSCxEQKw0KZfeAvvt/4DzmlheUPh3kFcEHsMC7pdxoe0dFGZzRbYD0pybju5JpzSgI2QgghhBDCkZPskcs7jGRl+u4adzMpKhFegZwRVfZpaeU0+IiIWp3zv93O5OpVsyjRLDUGbf7b7Uz8zd61P2d9+PoakwzbspVjxyA6mrFRveke2J65h9fw09F1ZJXk46maGdymE+fHDWNIm04VQZiybjyKohDXI4a4MQM5a3DdAxUtXfsu0Tz9y/08NPVZSopK0ax2wb+ypyS6YxTPLXwID0/3l8Q1hBaXSFKpCPcuUyEninPd2lVH5/fjW4yATWioEaAJCjKya2xLoqSDj6gP+2CNokBiInltgrlpzXvszTle5e/1ieJcZu39gzUn9/HawCvxTEw0OqPZMm2SkiRgUw0J2AghhBBCCEdOskf6JSbyYK9zeHrbXFRFqZJpo6IQ7OHL64OuxtNWTyY52fG48fG1OmenxERmDb6WmRs+JbMkHxWlfCKgoKAqCrd3O5PzYoc67Of2OesrIaEiYKPrxqfGiYlER0Uxo+tEZnSdiK7rzrNkTtFuPH1H9+TDHa/x86zf+fXd38nNzAegfee2TL/1TCZcMQof//plunj5eBIRF07aQfdarYfHtMG7crek5lapCLd9toI7HDqs2Ypwe3kZgZvG6JomTh0FBY71laKjISqKpzZ+6TRYY6Ojsz4jidd3zeeuHlON/Y4eNR5MTTWOKwHDKiRgI4QQQgghHFWTPXJ2+4HE+YXzRdJylqXtLH9j7m/25pyYwfxf/AjCvAKMfcqyR8pFRoJPDRPxas7ZMyqGn0ffy+KUbfx2dCPpxTn4mr04LbwbZ7cfQBvb+epyzvoKDzeCLLZPm61W41PjsjoOhIZWDdZINx4iYsK45pmLueqpiyjMLUQ1m/D29WqwGjKKojB9xiTev+9zl3VsFFVh2ozJzVe/pjqVinAHeNTuOg70sJv4NkURbnHqOHjQ8XZ8PMcKMlmSus1llTMdnR+PrOWGzuMIiI+vCNjYjtu9e0OPttWTgI0QQgghhKiqmuyRvlFx9A2JI7Mkj9TCbDxUE+192+BlslvCUtfskWrO6RkVxaTofkyK7lf9vs2VsdKzp1F7x1Z8U9eNScjRo03fjce+aG0rWPKiqip+NbXTrodJ15zB96/9QmZqtuPSK/vzm1SCI4KYfO0ZjTKGeqlUhLtbYDRhXgFuLYtSUBjftnfFHU1RhFucOiot1yM0lPn7F7tdmL5Us7AoZRvTYwYZ+9v+JqalScDGCXnFCiGEEEKIqlxkj4SEhhLi6e+4T32zR9zIWKmiuTNWFMVoS7t9u2NdB2i6bjy2AqCV20KDMekvKjLGsW/fKVNUNiDEnxcXPcrdYx8n43iWMZG0uzwUVSE4IogX/nyEwNCA6g/UXCoV4TarJs6PHcY7e/9wOSk2KypT2w2ouKMpinCLU0el5XoAqYXZqIqCprsO2JgUldSirIr9bX8j7Y8ryknARgghhBBCONcc2SMtKWPFXYpitKWNjKw+cFJZQwROdN15oKgmqanG1ynQtjmmazs+2PYqCz5azLy3FpCSZGQGRMaHM23GZCZdPYaAEH8XR2kmTopwX5JwGn+n72Zr1qEai3A/3Ptcgj3LMpeaqgi3OHVUWq4H4KGaqtm4Kh3wsNU5k+V6LknARgghhBBCONcc2SMtIWOlrsLDja+mWJqk68YSMFtgy54tsGVbVuMksJW5eiPr319IsncEPoG+DJs6kA594uo3phbIP9iP82ZO5byZUykpLgXA06tpO1DViZMi3J6Jibwx6Cpe3PEzvx3biK7rqIoK6Fh0jXCvQO7ucTajI3s47OegMYtwi1NDpeV6AANCO/DtodVu7W7VNfqHxJfdkOV6rsizIoQQQgghqtcc2SPNlbFSDzkZufzxyVL2bjiApmm07xzNpKvHEBHbSOPZvt0xWKMo5UvH0k2eZOYW4uPlQfuwIKOgbtnSsbzte/jxjfnsXrcPRVFIU/1JIojZD8+h+7Au3Pn+jcT1iGmcMTezVhGosammCLd3VBQP9z6Xm7tMYOHxzaQUZuGhmukXEs/w8C6YFLXiGE1dhFucGiot1wMYGdGdEE8/Mkvya9xVQSHOL4x+toCNLNdzSdF1NxaaNaGcnByCgoLIzs4mMDCwuYcjhBBCCCHsNUdh2xZcTFfXdT57/Fu+em4u1lIriqoY2S+Kgq7pjLtsJLe/cz2e3g04GUlPh9V2n2abTJCYyF+p+Xy+aD0b9lZ0XmkXFsRFo/tx3sg+FGTk8dDA2wk5fgDF7pPtnbQhW/FCNal4+XryvxVPkdD735dt0+pU83smKsr1vrYi3JpdweWhQ//1tYtEE9i50zH7a8QICA1lUcpW7t/0VbW7KYCqqLwx8CoGtuloBGtWrqzYoFOnU6bocG1iHhKwEUIIIYQQoo7emTmb71/7tdrHFVVhyOiuPPbqhZgyTjZMwGnNmorMC0VBHzCA1/7ey2d/rq9S+FMp+0+v+Cji1h3jnx/XEFRaQBcysC0ay8Sb3YpRPFQ1qbTv0pYPtr3a8lpdn4q2bXNcGmiXSVXrIty9ejX2aMWpoKAAFi2quN2unRFIBOYf28hTW3/AomvlxbFtf0W8TZ483fciTovoZtyxYYNjW+9x406ZDLDaxDxkSZQQQgghhBB1sPOfvTUGa4L0YqKs+bBoMZve92LA+L4VD9a1e1NBgeMSsehovtuTxmd/rgeo0qVFL/vP9uRUdudmEmDRyFS8Oan7EEYhACEU4aVbKFbMaFaNQzuPsm3FLnqffmp82t2itcYi3OLfrZrlekRFMTm6P8PCuvLr0fUsTtlGjqWQEE9/JrTtw+To/viZvYx9ZLme2yRgI4QQQgghRB389PYCTGYVq0VzfEDXiSeHKIx6DoqqsPrn9SSO61N91oq73ZsOHnS4aY2N5cOX57ocq6brlMS3wRrsgymrkFT8ygM2AJEUcAjjk16T2cSyb1dJwKYlaM1FuMW/V0JCRcBG141smbLlesGevlyScDqXJJzufF/bcr3KGWDCKQnYCCGEEEIIUQd/z1vrNFjThUxCKaq4S9NJSU4jx6IS1Dmuxu5NJCUZGRUDBjifZKelVXwfGMiatHzSsvLcG7CmU9QtAr/VB8lVPCnQPfDF6JwUTDGHyn8EndxMN48pGl8rLMIt/uXCw43ryxZEtFph3bq6L9eT67RaErARQgghhBCtTkpyGr+++wcbl2yjtKiUth0imXT1GQya3A+TydQkYyguLKlyXzw5jsEa4CQ+pOJHTo+OBCZkAhqY4lDMvZ1PYo4fNzIqnNUcKbE7Z2goh9IyUcrO45IC1kDv8ps5eJYHbMxUBJ4URcEvqHmKOIsaNGXbeCFckeV6TUICNkIIIYQQotXQNI2PHviSr1+ch6qqaFYj0JC8/TArf1xDu85tefrX+2nXqW2jjyUgxJ+stOzy20F6cfkyKAANhb2EkKkYQZIA/Xz0zIqAi+45FMXvRpTE4cbEZcMGY3IDxifXkZFVP3m2WCq+N5sxmXT3gjUAOihaxdYaFRk8JruAjdViZcQ5Q9w9qmhqvr5GN51TpKOOaKFkuV6TUJt7AEIIIYQQQrjrw/u+4OsX5oFOebAGKr5PSUpl5shHOHEso9HHMv6ykaimirfT9sEaHcqDNapJJ3FkLoEhlTJyStagZ16FXvC10ao5MdFx8lJ5EgRGJoWNxUKveDdaPNso4HGyYoyqXajHWjYtUE0q0R0j6X+GdBQSQrhgW643dKgRYHZHZKSxfa9eEqxxQ6MFbN566y3i4+Px9vZmyJAhrFmzprFOJYQQQgghTgFH9x3nm5d+qnEbq0UjKz2Hr575odHHM+XGCeXfe+kWQuyWQp3EpzyzRrMqnHNdupMjaICOnvMIeskmI2gTHV3xcGqqsfzFnqdnxfcZGXSLiaB7bIRb8x6zyUTkySJMZmMKEEhFAMmCimpSMXuaeeCrO6SltxDCfeHhMHgwjB0LnToZS6K8vY0As7e3cbtTJ+PxwYOlZk0tNErA5uuvv2bmzJk8+uijbNiwgb59+zJx4kTS7IukCSGEEEIIUQu/vPOHQ0ZLdTSrxsLZf1GQW+hy2/qI7hjFHe/dCApEKo6BlVT8yr8/78Y0Bo/NreFIKnr+R8a38fGOD1XqCkVERMX3OTmQkcF/zzkdBQVXIZarJg3i7WVP0mN4VwL0EvxNVkxmI1CThRcxXaN5ddkTdB3Y0cWRhBDCCdtyvVGjYPx4mDzZ+P+oUcb9Ulup1hRd191e9uquIUOGMGjQIN58803AWGscExPDrbfeyn333Vfjvjk5OQQFBZGdnU1gYGBDD00IIYQQQrRS1/e9k6Sth1xvWOalJY/Rd1TjF7T8+6e1LLv1OfIPpaCoCgWKB5u1MEIiNC7+7zGmXnnSjQwYFSViDYoaCEuXVtR/CAw0Jjs2BQWwaFHF7XbtIDGRRRv38sCHv2HVdDS7t/cmVcGq6Vw6NpE7zh1Znjlz7Nvf2PH9EgqyC/Dy9aL9jMvpMaavZNYIIUQjq03Mo8GLDpeUlLB+/Xruv//+8vtUVWXcuHGsWrWqyvbFxcUUFxeX385xVZxICCGEEEKckpx1ZapJSVFpI43E0fCzBzHM+wYObtjHsf0p5AaFc/6Y4ST2vRKTudj1AQDQQEsHtay7iu09cUmln9nX16gBYWvtfOwYREcztn9nfnnqGuau3MbPq7aTkVeIj6cHo/p04PxRfekWY5eZk5JCtI9G9CUjjduRkTC4X32eAiGEEI2gwQM2J06cwGq1Elmp6FBkZCS7du2qsv2zzz7L448/3tDDEEIIIYQQ/zKRceGkHEhF09xLEA9v36aRR1RBsVqJ7xlDfM8Yo1ZD9+5oqR6guxuwAfAw/mfflty+K5RNQkJFwEbXje5SiYmER0Vx/VlDuf6sodWfIiUF1q+vaCFuO54QQogWp9m7RN1///1kZ2eXfx0+fLi5hySEEEIIIVqgSVeNcStYo6gKHfvFG8GTplKpexMAnoMBk9PNq1AjwNTO+N7W2rvycW3Cwx2DLFYrrFtnBG4yqumOlZFhPL5uHWgV3bVISJACoEII0UI1eIZNWFgYJpOJVFvUv0xqaipRUVXbDnp5eeHl5dXQwxBCCCGEEP8yp507lDb3fEZmarZDS+/KdE3ngrunNeHIMLo3FZV1iSoLmii+l6IXL3ZjZxXF9xIUxeSwf/lxnenZ0zjf8ePGbV2Ho0eNr8CyZVUmkxHMycioWGJlLzraOI4QQogWqcEzbDw9PRkwYACL7IqhaZrGokWLGDZsWEOfTgghhBBCnCI8vTx45rcH8Q3wKW9Nbc9WMPf8O6cy5qIRTTs4J92b8BwBXmdQ81tuE5hiwfdS42bl4Ir9ce0pCgwY4Hw5U04OJCfD/v3G/50FaxISIDERt/qBCyGEaBaNsiRq5syZvP/++3zyySfs3LmTm266ifz8fK666qrGOJ0QQgghhDhFdOgTx1trn2P0RSMwmR2XG8V2b8c9s2/huhcua/puR3FxjreTk1EUBSX4NfCaUHan/XjLvjd3Qgn9DEUNKN/PQeU23/YUBXr1gqFDjcLB7oiMNLbv1UuCNUII0cI1SltvgDfffJMXX3yRlJQU+vXrx+uvv86QIUNc7idtvYUQQgghhDuyT+Swa80+LCUWImLD6NQ/oXnbUq9ZU1EMWFFg4EAoKwmgl25Fz/8KSjcBFjB3RPH9P/A8DUUp+ww1JcWoMWN7ex4ZCYMHu3/+ggI4eBDS0ozuUhaLUQPH09PI1ImLM7pMCSGEaDa1iXk0WsCmriRgI4QQQgghWqX0dFi9uuK2yWQsO3JSx7EKW/cm+4LAQ4dKQWAhhPiXqU3Mo8GLDgshhBBCCHFKsnVvSkoybtu6N0VHG0ubQkOr7pORYSyDOnasaqttCdYIIcQpTQI2QgghhBBCNBTp3iSEEKKBSMBGCCGEEEKIhmLr3rR9e0WmjU1OjvMAjb2EBCNYIwWBhRDilCcBGyGEEEIIIRqSrXtTZKQRtLEVIq5JZKQsgxJCCOFAAjZCCCGEEEI0hvBw40u6NwkhhKgDCdgIIYQQQgjRmHx9oXt340sIIYRwk9rcAxBCCCGEEEIIIYQQjiRgI4QQQgghhBBCCNHCSMBGCCGEEEIIIYQQooVpcTVsdF0HIMdVy0MhhBBCCCGEEEKIVsQW67DFPmrS4gI2ubm5AMTExDTzSIQQQgghhBBCCCEaXm5uLkFBQTVuo+juhHWakKZpHDt2jICAABRFae7htDg5OTnExMRw+PBhAgMDm3s4ohWTa0k0FLmWREORa0k0FLmWREORa0k0FLmWhI2u6+Tm5hIdHY2q1lylpsVl2KiqSvv27Zt7GC1eYGCgvNBFg5BrSTQUuZZEQ5FrSTQUuZZEQ5FrSTQUuZYE4DKzxkaKDgshhBBCCCGEEEK0MBKwEUIIIYQQQgghhGhhJGDTynh5efHoo4/i5eXV3EMRrZxcS6KhyLUkGopcS6KhyLUkGopcS6KhyLUk6qLFFR0WQgghhBBCCCGEONVJho0QQgghhBBCCCFECyMBGyGEEEIIIYQQQogWRgI2QgghhBBCCCGEEC2MBGyEEEIIIYQQQgghWhgJ2PxLFBcX069fPxRFYdOmTc09HNHKJCcnc80115CQkICPjw8dO3bk0UcfpaSkpLmHJlqBt956i/j4eLy9vRkyZAhr1qxp7iGJVubZZ59l0KBBBAQEEBERwfTp09m9e3dzD0u0cs899xyKonD77bc391BEK3T06FEuvfRS2rRpg4+PD71792bdunXNPSzRylitVh5++GGH99hPPvkk0vdHuEsCNv8S99xzD9HR0c09DNFK7dq1C03TePfdd9m+fTuvvvoq77zzDg888EBzD020cF9//TUzZ87k0UcfZcOGDfTt25eJEyeSlpbW3EMTrcjSpUuZMWMGq1ev5o8//qC0tJQJEyaQn5/f3EMTrdTatWt599136dOnT3MPRbRCmZmZjBgxAg8PD+bPn8+OHTt4+eWXCQkJae6hiVbm+eefZ9asWbz55pvs3LmT559/nhdeeIE33nijuYcmWglp6/0vMH/+fGbOnMn3339Pz5492bhxI/369WvuYYlW7sUXX2TWrFkcOHCguYciWrAhQ4YwaNAg3nzzTQA0TSMmJoZbb72V++67r5lHJ1qr9PR0IiIiWLp0KSNHjmzu4YhWJi8vj8TERN5++22eeuop+vXrx2uvvdbcwxKtyH333cfKlStZvnx5cw9FtHJTpkwhMjKSDz/8sPy+c889Fx8fHz7//PNmHJloLSTDppVLTU3luuuu47PPPsPX17e5hyP+RbKzswkNDW3uYYgWrKSkhPXr1zNu3Ljy+1RVZdy4caxataoZRyZau+zsbAD5GyTqZMaMGZx11lkOf5uEqI2ffvqJgQMHcv755xMREUH//v15//33m3tYohUaPnw4ixYtYs+ePQBs3ryZFStWMHny5GYemWgtzM09AFF3uq5z5ZVXcuONNzJw4ECSk5Obe0jiX2Lfvn288cYbvPTSS809FNGCnThxAqvVSmRkpMP9kZGR7Nq1q5lGJVo7TdO4/fbbGTFiBL169Wru4YhWZs6cOWzYsIG1a9c291BEK3bgwAFmzZrFzJkzeeCBB1i7di233XYbnp6eXHHFFc09PNGK3HfffeTk5NCtWzdMJhNWq5Wnn36aSy65pLmHJloJybBpge677z4URanxa9euXbzxxhvk5uZy//33N/eQRQvl7rVk7+jRo0yaNInzzz+f6667rplGLoQ4Vc2YMYNt27YxZ86c5h6KaGUOHz7Mf//7X7744gu8vb2beziiFdM0jcTERJ555hn69+/P9ddfz3XXXcc777zT3EMTrcw333zDF198wZdffsmGDRv45JNPeOmll/jkk0+ae2iilZAaNi1Qeno6J0+erHGbDh06cMEFF/Dzzz+jKEr5/VarFZPJxCWXXCJ/CITb15KnpycAx44dY/To0QwdOpTZs2ejqhLTFdUrKSnB19eX7777junTp5fff8UVV5CVlcW8efOab3CiVbrllluYN28ey5YtIyEhobmHI1qZH3/8kXPOOQeTyVR+n9VqRVEUVFWluLjY4TEhqhMXF8f48eP54IMPyu+bNWsWTz31FEePHm3GkYnWJiYmhvvuu48ZM2aU3/fUU0/x+eefSzaycIssiWqBwsPDCQ8Pd7nd66+/zlNPPVV++9ixY0ycOJGvv/6aIUOGNOYQRSvh7rUERmbNmDFjGDBgAB9//LEEa4RLnp6eDBgwgEWLFpUHbDRNY9GiRdxyyy3NOzjRqui6zq233srcuXP566+/JFgj6mTs2LFs3brV4b6rrrqKbt26ce+990qwRrhtxIgR7N692+G+PXv2EBcX10wjEq1VQUFBlffUJpMJTdOaaUSitZGATSsWGxvrcNvf3x+Ajh070r59++YYkmiljh49yujRo4mLi+Oll14iPT29/LGoqKhmHJlo6WbOnMkVV1zBwIEDGTx4MK+99hr5+flcddVVzT000YrMmDGDL7/8knnz5hEQEEBKSgoAQUFB+Pj4NPPoRGsREBBQpe6Rn58fbdq0kXpIolbuuOMOhg8fzjPPPMMFF1zAmjVreO+993jvvfeae2iilZk6dSpPP/00sbGx5d18X3nlFa6++urmHppoJSRgI4Tgjz/+YN++fezbt69KsE9WTYqaXHjhhaSnp/PII4+QkpJCv379WLBgQZVCxELUZNasWQCMHj3a4f6PP/6YK6+8sukHJIQ4pQ0aNIi5c+dy//3388QTT5CQkMBrr70mhWJFrb3xxhs8/PDD3HzzzaSlpREdHc0NN9zAI4880txDE62E1LARQgghhBBCCCGEaGGkSIUQQgghhBBCCCFECyMBGyGEEEIIIYQQQogWRgI2QgghhBBCCCGEEC2MBGyEEEIIIYQQQgghWhgJ2AghhBBCCCGEEEK0MBKwEUIIIYQQQgghhGhhJGAjhBBCCCGEEEII0cJIwEYIIYQQQgghhBCihZGAjRBCCCGEEEIIIUQLIwEbIYQQQgghhBBCiBZGAjZCCCGEEEIIIYQQLYwEbIQQQgghhBBCCCFamP8Hg6rNVuqoJLgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "true_errors = np.where(true_labels != labels)[0]\n", + "plot_data(data, circles=true_errors, title=\"A realistic, messy dataset with 4 classes\", alpha=0.3)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AM6E7tNS9pZn" + }, + "source": [ + "The figure above represents a toy dataset we'll use to demonstrate various cleanlab functionality. In this data, the features *X* are 2-dimensional and examples are colored according to their *given* label above.\n", + "\n", + "Like [many real-world datasets](https://labelerrors.com/), the given label happens to be incorrect for some of the examples (**circled in red**) in this dataset!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Workflow 1:** Use Datalab to detect many types of issues " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Datalab offers an easy interface to detect all sorts of common real-world issue in your dataset. Internally it uses many data quality algorithms, and these methods can also be directly invoked — as demonstrated in some of the subsequent workflows here." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:29.050589Z", + "iopub.status.busy": "2024-05-24T23:49:29.050237Z", + "iopub.status.idle": "2024-05-24T23:49:29.076768Z", + "shell.execute_reply": "2024-05-24T23:49:29.076329Z" + } + }, + "outputs": [], + "source": [ + "# Datalab offers several ways of loading the data\n", + "# we’ll simply wrap the training features and noisy labels in a dictionary. \n", + "data_dict = {\"X\": data, \"y\": labels}\n", + "\n", + "# get out of sample predicted probabilities via cross-validation.\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All that is need to audit your data is initalize a Datalab object with your dataset and call `find_issues()`. \n", + "\n", + "Pass in the predicted probabilities and feature embeddings for your data and Datalab will do all the work!\n", + "You do not necessarily need to provide all of this information depending on which types of issues you are interested in, but the more inputs you provide, the more types of issues `Datalab` can detect in your data. Using a better model to produce these inputs will ensure cleanlab more accurately estimates issues.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:29.078737Z", + "iopub.status.busy": "2024-05-24T23:49:29.078559Z", + "iopub.status.idle": "2024-05-24T23:49:30.761042Z", + "shell.execute_reply": "2024-05-24T23:49:30.760412Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding null issues ...\n", + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding outlier issues ...\n", + "Fitting OOD estimator based on provided features ...\n", + "Finding near_duplicate issues ...\n", + "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", + "Finding underperforming_group issues ...\n", + "\n", + "Audit complete. 78 issues found in the dataset.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "lab = Datalab(data_dict, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, features=data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the audit is complete, review the findings using the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:30.763330Z", + "iopub.status.busy": "2024-05-24T23:49:30.762957Z", + "iopub.status.idle": "2024-05-24T23:49:30.781903Z", + "shell.execute_reply": "2024-05-24T23:49:30.781349Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a summary of the different kinds of issues found in the data:\n", + "\n", + " issue_type num_issues\n", + " label 64\n", + " outlier 7\n", + "near_duplicate 6\n", + " non_iid 1\n", + "\n", + "Dataset Information: num_examples: 250, num_classes: 4\n", + "\n", + "\n", + "----------------------- label issues -----------------------\n", + "\n", + "About this issue:\n", + "\tExamples whose given label is estimated to be potentially incorrect\n", + " (e.g. due to annotation error) are flagged as having label issues.\n", + " \n", + "\n", + "Number of examples with this issue: 64\n", + "Overall dataset quality in terms of this issue: 0.7560\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_label_issue label_score given_label predicted_label\n", + "99 True 5.637318e-08 1 0\n", + "8 True 3.896262e-07 1 0\n", + "64 True 3.548391e-05 1 0\n", + "107 True 7.923417e-05 3 1\n", + "10 True 9.375075e-05 2 1\n", + "\n", + "\n", + "---------------------- outlier issues ----------------------\n", + "\n", + "About this issue:\n", + "\tExamples that are very different from the rest of the dataset \n", + " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", + " \n", + "\n", + "Number of examples with this issue: 7\n", + "Overall dataset quality in terms of this issue: 0.3454\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_outlier_issue outlier_score\n", + "147 True 0.014051\n", + "10 True 0.020451\n", + "249 True 0.042594\n", + "132 True 0.043859\n", + "189 True 0.045954\n", + "\n", + "\n", + "------------------ near_duplicate issues -------------------\n", + "\n", + "About this issue:\n", + "\tA (near) duplicate issue refers to two or more examples in\n", + " a dataset that are extremely similar to each other, relative\n", + " to the rest of the dataset. The examples flagged with this issue\n", + " may be exactly duplicated, or lie atypically close together when\n", + " represented as vectors (i.e. feature embeddings).\n", + " \n", + "\n", + "Number of examples with this issue: 6\n", + "Overall dataset quality in terms of this issue: 0.6120\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", + "3 True 0.023714 [58] 0.007136\n", + "58 True 0.023714 [3] 0.007136\n", + "119 True 0.107266 [103] 0.033738\n", + "103 True 0.107266 [119] 0.033738\n", + "238 True 0.119505 [236] 0.037843\n", + "\n", + "\n", + "---------------------- non_iid issues ----------------------\n", + "\n", + "About this issue:\n", + "\tWhether the dataset exhibits statistically significant\n", + " violations of the IID assumption like:\n", + " changepoints or shift, drift, autocorrelation, etc.\n", + " The specific violation considered is whether the\n", + " examples are ordered such that almost adjacent examples\n", + " tend to have more similar feature values.\n", + " \n", + "\n", + "Number of examples with this issue: 1\n", + "Overall dataset quality in terms of this issue: 0.0000\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_non_iid_issue non_iid_score\n", + "222 True 0.614915\n", + "122 False 0.624422\n", + "126 False 0.625965\n", + "119 False 0.626079\n", + "118 False 0.627675\n", + "\n", + "Additional Information: \n", + "p-value: 0.0\n" + ] + } + ], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZmUd-5tljruT" + }, + "source": [ + "## **Workflow 2:** Use CleanLearning for more robust Machine Learning\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:30.784191Z", + "iopub.status.busy": "2024-05-24T23:49:30.783860Z", + "iopub.status.idle": "2024-05-24T23:49:32.185488Z", + "shell.execute_reply": "2024-05-24T23:49:32.184848Z" + }, + "id": "AaHC5MRKjruT" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_qualitygiven_labelpredicted_labelsample_weight
0False0.695223001.323529
1False0.523015001.323529
2True0.013720300.000000
3False0.675727001.323529
4False0.646521001.323529
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_quality given_label predicted_label sample_weight\n", + "0 False 0.695223 0 0 1.323529\n", + "1 False 0.523015 0 0 1.323529\n", + "2 True 0.013720 3 0 0.000000\n", + "3 False 0.675727 0 0 1.323529\n", + "4 False 0.646521 0 0 1.323529" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "\n", + "# CleanLearning: Machine Learning with cleaned data (given messy, real-world data)\n", + "cl = cleanlab.classification.CleanLearning(yourFavoriteModel, seed=SEED)\n", + "\n", + "# Fit model to messy, real-world data, automatically training on cleaned data.\n", + "_ = cl.fit(data, labels)\n", + "\n", + "# See the label quality for every example, which data has issues, and more.\n", + "cl.get_label_issues().head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "78udGSU6jruT" + }, + "source": [ + "### Clean Learning = Machine Learning with cleaned data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.188106Z", + "iopub.status.busy": "2024-05-24T23:49:32.187429Z", + "iopub.status.idle": "2024-05-24T23:49:32.201585Z", + "shell.execute_reply": "2024-05-24T23:49:32.201054Z" + }, + "id": "Wy27rvyhjruU" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy using yourFavoriteModel: 83%\n", + "Accuracy using yourFavoriteModel (+ CleanLearning): 86%\n" + ] + } + ], + "source": [ + "# For comparison, this is how you would have trained your model normally (without Cleanlab)\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel.fit(data, labels)\n", + "print(f\"Accuracy using yourFavoriteModel: {yourFavoriteModel.score(test_data, test_labels):.0%}\")\n", + "\n", + "# But CleanLearning can do anything yourFavoriteModel can do, but enhanced.\n", + "# For example, CleanLearning gives you predictions (just like yourFavoriteModel)\n", + "# but the magic is that CleanLearning was trained as if your data did not have label errors.\n", + "print(f\"Accuracy using yourFavoriteModel (+ CleanLearning): {cl.score(test_data, test_labels):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rtEh09G7764o" + }, + "source": [ + "Note! *Accuracy* refers to the accuracy with respect to the *true* error-free labels of a test set., i.e. what we actually care about in practice because that's what real-world model performance is based on. If you don't have a clean test set, you can use cleanlab to make one :)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_b8O6_J2jruU" + }, + "source": [ + "## **Workflow 3:** Use CleanLearning to find_label_issues in one line of code\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.204010Z", + "iopub.status.busy": "2024-05-24T23:49:32.203665Z", + "iopub.status.idle": "2024-05-24T23:49:32.276762Z", + "shell.execute_reply": "2024-05-24T23:49:32.276165Z" + }, + "id": "Db8YHnyVjruU" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_qualitygiven_labelpredicted_label
0False0.69522300
1False0.52301500
2True0.01372030
3False0.67572700
4False0.64652100
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_quality given_label predicted_label\n", + "0 False 0.695223 0 0\n", + "1 False 0.523015 0 0\n", + "2 True 0.013720 3 0\n", + "3 False 0.675727 0 0\n", + "4 False 0.646521 0 0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# One line of code. Literally.\n", + "issues = CleanLearning(yourFavoriteModel, seed=SEED).find_label_issues(data, labels)\n", + "\n", + "issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8OOsvMoMjruU" + }, + "source": [ + "### Visualize the twenty examples with lowest label quality to see if Cleanlab works.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.279123Z", + "iopub.status.busy": "2024-05-24T23:49:32.278752Z", + "iopub.status.idle": "2024-05-24T23:49:32.491223Z", + "shell.execute_reply": "2024-05-24T23:49:32.490598Z" + }, + "id": "iJqAHuS2jruV" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAHQCAYAAAD0wPz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1frA8e+ZTe+E0DsKIkqxIAIiRRABQaxgxd579+K93p+9XBtiL6goRUEEEUFAkKIgioAKSu89hPS2O+f3xySb3WTLbEjn/TxPnmw5c+bM7uzOzjvnvEdprTVCCCGEEEIIIYQQosYwqrsBQgghhBBCCCGEEMKbBGyEEEIIIYQQQgghahgJ2AghhBBCCCGEEELUMBKwEUIIIYQQQgghhKhhJGAjhBBCCCGEEEIIUcNIwEYIIYQQQgghhBCihpGAjRBCCCGEEEIIIUQNIwEbIYQQQgghhBBCiBpGAjZCCCGEEEIIIYQQNYwEbIQQlapv374opVBK8fHHH1d3c4QN27Ztc79nSqnqbo6oZNX5GfXcz7Zt21al6w7Vxx9/7G5r3759q7s5dcZ///tf9+t67bXX+i3XunVrd7lFixZVWfuEKC+7+7YQQgQiARshjnGlT84r6u9Y+UG9Zs0aXnnlFS699FI6dOhAYmIi4eHhpKSkcOqpp3L77bezZMmSctefm5vLJ598wnnnnUfr1q2JioqiSZMm9OjRgxdeeIF9+/ZV4NYIIYQQQgghagoJ2AghRDm88MILtGnThq5du/LAAw8wdepU/vnnHzIyMnA6naSmpvL777/z9ttvc/bZZ9O7d282b94c0jp+//13Tj31VK699lrmzp3L9u3byc/PZ9++fSxfvpxHH32UDh06MHny5EraSlHd5AqtEPZJLyghhBB1TVh1N0AIUb2io6MZNGhQwDK5ubksXrzYff/kk0+mWbNmAZdJTk6ukPbVVBMmTCgzhKN+/fq0bt2axMREDhw4wLp16zBNE4ClS5fSrVs3Fi1aROfOnYPW/9dff9G3b18yMjLcjzVp0oR27dpx+PBh/vrrL7TWpKenc/nll+N0OrnqqqsqdBuFEEIIIYQQ1UcCNkIc4xo1asScOXMCltm2bRtt2rRx33/ggQfkan+R1q1bc8MNNzBixAhOOukkr5wve/bs4T//+Q8ffvghAGlpaQwfPpz169cTHR3tt868vDyGDx/uDtbExcXxwQcfcOmll2IYVsfIDRs2cO211/Lzzz8DcOONN9K1a1dOPvnkytpUIYSoNjU9x5EQQghRGWRIlBBClMMJJ5zAxIkT2bx5M48//jgnn3xymQS9TZs25YMPPmDMmDHux7Zv384777wTsO633nqLLVu2AFZS1q+//pqRI0e6gzUA7du3Z/78+bRv3x6A/Px8r/UIIYQQQgghajcJ2AghRDlMmzaNyy+/3CuI4s8TTzxBy5Yt3fe/+uorv2VN0+Sll15y3x85ciTnnHOOz7IxMTG8/vrr7vszZ85k/fr1dpovhBBCCCGEqOEkYCOEqHKmaTJ16lSGDh1Ky5YtiYyMpFGjRgwcOJCPPvoIl8sVcp3z58/n9ttvp1OnTqSkpBAZGUmzZs0YOHAgY8eOJTs7uxK2xJ7w8HDOO+889/2///7bb9mffvrJa+anW2+9NWDdgwYNonXr1u77gYJBlSk3N5d3332XoUOH0qpVK6Kjo0lKSqJDhw7cfPPNLFiwIODyWmsaNGjgThj666+/+i27aNEirxnJLrnkkoB1n3nmme6ywRI0FxQU8NlnnzFy5EjatWtHQkICMTExtGnThlGjRjF16lS01gHr8DR//nyuv/56Tj75ZJKSkggLCyM2NpYWLVrQt29f7r//fr755hvy8/O9liueavv//u//3I998sknfmdlq6rhItu3b+fdd9/liiuuoFOnTiQlJREeHk5ycjIdO3bkxhtvZO7cuUe1jn379vH0009z+umn06BBA2JiYmjXrh233HILq1atCrk+rTVff/011113HR06dKBevXpER0fTsmVLhg8fzkcffURhYeFRtbkiLF68mKuvvpo2bdoQFRVF48aN6dmzJ6+99hpHjhwBvPd9z899aaHuG3brBeuzPnPmTO655x569+5N48aNiYyMJDY2lpYtW3L++eczduxYsrKy7G+8DYGm9b722mtRSnHddde5H/vxxx+DzmJ45ZVXuh8bOXJkSO054YQT3Mu++OKLR7t5bllZWbz77rsMHz6ctm3bEhsbS3x8PO3ateO6667j+++/D7j8mDFj3O2KjIxk9erVQdf5wgsvuJdxOBwsXbrUZ7nCwkLmzZvHI488Qv/+/WnWrBnR0dFER0fTrFkzBgwYwLPPPsvBgwdtbau/pOpz587lsssu47jjjiMqKop69eoxYMAApk2b5rOev/76i1tuuYX27dsTFRVFYmIip59+Oi+++GKZ71Zfir9vlVJ8/PHHgLWff/jhh/Tv35/mzZsTFRVFixYtuPDCC/n6669tbV951JRjkBCiBtFCCBHE1q1bNeD+Gz9+vO1l+/Tp47Xc/v37df/+/b3qK/3Xq1cvfeTIEVv1b9q0Sffr1y9gfYBu0qSJnjNnTjlfgaP36KOPutsSERFhq1xcXJx2Op1B677lllvcy/To0eOo21r6/Q5m7ty5umXLlkHfg/POO0/v37/fbz0XXXSRu+xLL73kt9wTTzzhVW+DBg20aZo+y2ZmZuqwsDB32b179wbcjuOOOy7odpx++ul6y5YtAV+TtLQ0PWjQoKB1Ff/ddtttXst7fm7s/G3dujVgewIp/Rn158ILL9RKKVvt6d27t963b1/QdZfehrlz5+rk5GS/9RqGoR977DG/73dpv/76qz7llFOCtrddu3b6119/DVjX+PHj3eX79Olja/12FBYW6ptvvjlg+1q1aqV/++03vXDhQq/H/Al137Bb78SJE3V8fLytfSA5OVnPnDkz6Lo9P8+jR4/2W65Vq1bucgsXLvR6bvTo0SF9XoqXX7Rokdf38qFDh4K2V2utFy9e7F4uPDzc1r5ux+eff64bN24ctP3nnnuuPnjwoM86CgoK9Omnn+4u27FjR52bm+t3nb/99psODw93lx8zZozPcgsXLtT169e39frGxsbq9957L+j2ln7vc3Jy9NVXXx2w7ttvv92rjmeffVY7HA6/5Tt37hz0fS39Hbh582bduXPngO0YMmRI0N8pdvftYjXpGCSEqDkk6bAQospkZ2czcOBA1q5dC1hXTFu1akVubi6rV6+moKAAgGXLlnHllVcya9asgPWtWrWKwYMHc+DAAfdjCQkJnHjiicTExLBr1y42btwIwN69exk2bBhTpkzhwgsvrKQt9G/79u3u2w0bNvRbbs2aNe7b3bp1w+FwBK27R48evPvuuwCsXbsWrXWZfDqV5auvvmLUqFFePRQaNWpE+/btyc3N5c8//yQvLw+AOXPm0Lt3bxYuXEjTpk3L1NW3b193D6FFixbx4IMP+lxn6avrBw8e5K+//vKZcHnp0qU4nU7AuiLeuHFjn3V+/PHH3HTTTe6yYOUgatu2LYZhsGHDBnfPp19//ZWePXuyZMkSjj/++DJ1mabJsGHDvK5SR0VF0aFDB+rXr09hYSGHDh1i48aN7teteDaxYmeccQZRUVFs2rTJPR1806ZN6dSpk8/2B0piXVGK9y0Ah8PBcccdR8OGDYmIiCA1NZX169e7P8NLliyhV69erFq1ioSEBFv1r1q1issvv5yCggKUUnTs2JEGDRqwa9cuNm3aBFiv03PPPUdubi6vvvpqwPrmzJnDJZdc4tW7LiUlhXbt2hEZGcnWrVvdn8uNGzfSr18/5s6dS48ePUJ+bcpLa80111zDpEmTvB7v2LEjDRs2ZPfu3WzcuJHt27czcOBAryGQ1WHz5s1kZma67zds2JDWrVsTHx9Pbm4uGzZs4NChQwAcPnyYESNG8PXXXzNs2LBKbVenTp0YNGgQu3fv5s8//wSgXr16nHHGGT7LF89i2KdPH0444QT++ecfCgoKmDBhAvfee2/Q9X3wwQfu2+effz6NGjU66m146qmn+M9//uP1WOvWrWnZsiUul4v169dz+PBhAL7//nt69+7NkiVLSElJ8VomPDyciRMncsopp5Cdnc26det46KGHeOONN8qsMzc3lyuvvNL9PdStWzf++9//+mzfrl27SE1Ndd+vV68exx13HAkJCRQUFLB582b27t0LWMf6m2++mYKCAu644w7br8F1113HlClTAGjevDnHHXccOTk5rF692t3Gt956ixYtWvDoo4/y3HPP8a9//QuAxMREOnbsSFhYGH/88Ye7V9ratWu54oorbPf8y8jIYODAge48ci1btqRNmzakp6fzxx9/uHsAz549m6FDhzJv3rwK+f6taccgIUQNUs0BIyFELVBRPWyKr8716tVLr1q1yqvc4cOH9WWXXea1nvnz5/ut99ChQ7pZs2busieccIKeOXNmmR4p69ev1wMGDHCXS0xM1Nu2bQtp+49Wbm6uTkpKcrfhkksu8Vu2devW7nI33nijrfqXLFni9bpt3779qNprt4fNli1bdFxcnLtc48aN9fTp07XL5XKXSU9P14899phXz4wBAwb47CGxdu1ar/fJV++i3NxcHRkZqQEdHR3tLv/GG2/4bOMjjzziLnPLLbf4LLN06VKvK7TnnXdemf1Ta62///573bZtW3e5bt266cLCwjLlpk6d6nXV/rXXXtPZ2dllyuXn5+t58+bp6667Tt9zzz0+2xbqFdrysNvDplOnTvqGG27Qc+bM8XnFPisrS7/11ls6MTHRXd/NN98ccN2e+1lKSop7/9i0aZNXud9//12feuqpXuW//fZbv/Vu3LjRa98844wz9KJFi8rsdytWrPDqgdOqVSu/V80ro4fNBx984LVNffv21Rs2bPAqs3r1ave2F79GxW31x7POiuxh8/TTT+tevXrp9957T+/evdtnmSVLluju3bt7va8ZGRl+66yIHjbFyvMe/e9//3Mvc/LJJwctn56ermNiYmzth3ZNnjzZ6z278sory+wHLpdLf/HFF177wIgRI/zW+f7773vVOXv27DJlbr31VvfzsbGxZdbpacKECbpz58769ddf15s3b/ZZZs2aNXrw4MHuOqOiogL2BPF874t71h1//PF6wYIFXuX27dvn1TM3MTFRz5kzRxuG4e7NU1BQ4C6fl5en7733Xq/tnzdvnt92eH4HFr++bdu21T/88INXub179+orrrjCq96HHnrI1vYF2rdr8jFICFH9JGAjhAiqogI2xT+i8/LyfJZ1Op26a9eu7rJXX32133qvueYarx8tgU4ICgsLvX5EXn/99bbbXxGef/55r9fgq6++8lnONE1tGIa73JNPPmmr/u3bt3vV/+OPPx5Ve+0GbC688EKvH9Dr16/3W9bzpAjQkydPLlPGNE2vk5GVK1eWKeN5YnnPPfe4A0EXX3yxz/V6njhOmjSpzPOFhYVeP4Bvu+22gMNt9u3bp5s3b+4u/+mnn5Ypc/3117uff/zxx/3W5cnf0LeaFLDJysqyVd/KlSvdQyyioqICDkfw3CcA3a9fP68TL0/p6em6Y8eO7rLHH3+83/fq7LPPdpcbNmyY3zqLt8vze8ff566iAza5uble+3uvXr38fjeW3vbqCtjY3Qdyc3P1mWee6a5z3LhxfstWd8Dm4MGD7iAwoFesWBGw/DvvvOMu27x5c68AdXkcPnzYK8j5/PPPByy/fv16r2Fpixcv9lt2xIgR7nKNGzf2Gkb1zTffeO0nwYYw2X3vXS6X1/DWBx980G/Z0sNbmzVr5nd4WVpamtdwyYiICO1wOPSiRYv81t+3b193+WuuucZvudK/Uxo3bqx37tzpt/xVV13lLhsWFuY3KGVn367pxyAhRPWTpMNCiCrjcDgYP348kZGRfp+/++673feXLVvms9yuXbuYOHEiABEREUyaNIn4+Hi/6w0LC+O9994jPDwcgIkTJ5Kenl7ezQjJhg0bePLJJ933TzvtNEaMGOGzbHZ2tle35MTERFvrKD3kxHPIQmXZuXMnM2fOdN9/8skn6dChg9/y999/P2eeeab7/rhx48qUUUpx9tlnu++XHvoEViLRYhdddBGdO3cGrIStulQixqysLH777Tf3/T59+pSpb9q0ae6u7yeccAJjx44NOJysUaNGvPzyy+77b731Vpkyu3btct/u1auX37o82Rn6Vt1iY2NtlTv99NMZNWoUAHl5ebaHIoSHh/P++++7P6elJSQk8Pbbb7vvb9q0ifnz55cpt2LFChYvXgxA/fr1+fTTT/3WCdZ2vfPOO+7777zzTkhJPctr2rRp7uFDDoeD999/3+93Y+ltry5294GoqCieeeYZ9/0ZM2ZUVpOOWkpKChdddJH7vudwJ188n7/uuutszRQYyHvvvec+HvXv359HHnkkYPkOHTrw+OOPu+/7+g7ybGvx8NN9+/Zx4403ArB//36uv/56d7kLLriAm266KeB67b73hmF4JWEO5b1/+eWX/Q4vS0pK4tJLL3XfLygo4KabbvL5vV7s5ptvdt/293vClxdffJHmzZv7ff6NN95wD6tzOp1B95lA5BgkhAhGAjZCiCozcOBA2rRpE7DMWWed5b69detWd04MT5MnT3aP8z7//PM57rjjgq67efPm7h92eXl5/PTTT6E0vVyysrK48MILycnJASAyMpIPPvjA74+x0jNZRUVF2VpP6fHzVTEj1qxZs9xj+WNjY7nhhhsClldKcc8997jvL1261H2y6snzx7evgE3xY9HR0XTv3p2+ffsCJXlsPC1btsy9n7Rv354mTZqUqW/ChAnu23fccQdhYcFTu1144YXExMQAsHLlyjKz4Xi+b8X5mo413bt3d99euXKlrWWGDBkS9LN89tlne+Xx8TVbi+d7Onr0aJKSkoKuu3v37u5cEHv27Ak4k1tF8Wx7v379OPHEEwOWL73tNZ3nPhBo1reawPPEfvLkyX6/Q9euXeveFqWUV9CjvDz3Vzv5c8Ca3arYwoUL/ZarX7++e3Y5sIIn7777Ltddd517JqfGjRvz/vvvl6Pl/h133HHu3DqbNm1y55MJJDExkYsvvjhgmdI5iYIddzz3wS1btvj8PVFaSkoKl19+ecAySUlJXu/B0cwaJccgIUQwknRYCFFl7CTzbNasmfu21pr09HQaNGjgVWbJkiXu2/3797e9/pNPPtl9Rb44YXFlcblcXHnllaxbt8792IsvvkjXrl39LlN6amE7P9x8lbPzo/RorVixwn377LPPtnX1dciQISil3L0XfvnlF4YMGeJVpjgAA1ZQx+Vyua/85efns3z5csCaqjsyMpK+ffu6E7EuWrTIK/GwZ8DHs95iWmuvq65296Xw8HDat2/P6tWrcblcrFmzxusq5mmnnebuffR///d/NG3alFGjRtl+P2s60zRZunQpy5cv559//uHIkSPk5OR49UrZvXu3z9uBnHfeebbKDR48mD/++APwHQw6mu+H4uTGq1atChpAOVqebR80aJCtZTy3vbpt3bqVBQsWsHbtWg4ePEhmZqZXwlRPaWlp5OTkuE8ya5q+ffvSvn17NmzYQGZmJl9++aXXNNPFPvzwQ/ftAQMGBJ0CPZjDhw97HSP69etna7lmzZqRlJTEkSNH2L9/P7t37/Y6dnoaMGAA9913H6+88goAt99+u1dPzvHjx5c5xgazf/9+5s6dy5o1a9i7dy+ZmZlljl/FQQStNXv27AkaOD3ttNOCfkd6Jo2PjIwMeDwtXd7f74nSzjnnHFvf1YMHD3Yncv7777/JysoiLi4u6HKe5BgkhLBDPrlCiCrjb4YeT6V/0Bf3TvFUPAsIWD+gv/nmG1vrLz4ZA3z27qgoWmtuuukmryFD9957r9dwL19Kb3vx7ErBlC5nt+v60fB8Le1e9U9ISKBVq1Zs27atTB2eddWvX5/U1FTS09P5/fffOf300wFYvny5e1uLAzBnn322Owi0aNEi7rzzTnddwQI2u3bt8rrye88999j+Qes561fpfemGG27gpZdeIisri5ycHK6++mruu+8+Bg8eTJ8+fejduzft27e3tZ6a5tNPP+Xxxx9n586dtpexO/zQ1yxfvpx00knu28WzwBXTWnv1tHr22Wd9zo7ji2cgpDK/H8AKznruQ+XZ9ury999/c8899zBv3ryQho6lp6fX2IANWL1simem++CDD8oEbPLz8/nss8/c94uHFx2Nv/76y/0ahoWFcckll9he1vN7/9ChQ34DNmB9DhYsWMCaNWu8gjV33XWX7UApWMHX+++/n2nTprl7WNph5zvAzkxbnvtPcnJy0O9rO78nSivPZ9E0TTZv3kyXLl1sLVtMjkFCCDskYCOEqDIREREhL+PrhMBzatHff/+9XG2pzBw29913H+PHj3ffv/76691XNwMpfXUuNzfX1vpK/wgN9SpfeXj+yKxfv77t5VJSUtwBm7S0tDLPF+exmT59OmAFXYoDNp4BmOIr0cnJyXTu3Jk1a9a489gopcjOzvYahuErYOO5HwEsWLDA9nZ4Kr0vNWvWjGnTpnHZZZe5nzt06BATJkxwd39v3ry5O29EqD/yq8tdd93lM/dQMPn5+bbK2d2PPMtlZGR4TWOfnp7udSJZ3qGPlZ3jqvQQkfJse3VYvHgxgwcPtnXiW5rd/aC6jB49mjFjxpCfn8+yZcv4559/OOGEE9zPT58+3T2tdkpKit9cZKHw/A5yOp228z2VFmx/jYyM5LnnnvPq0diiRQuvXDPBrFu3jr59+7qHUoXCznsf6u+Divo9UVp5P4t2hn2VJscgIYQdksNGCFHrVESOFs+rjBVpzJgx7iE6AKNGjeL9998PmESwWEREhFfy5L1799pa5759+7zuV8VJnecP8FB+OHuW9fcj3jO44hmkKU44XJy/pnR5zzw2nvlr2rVr5zN/TUXl+vG1L5177rn8888/PPzww+6kn5527drFm2++ySmnnMJ1111XrhPgqjR58mSvYM1JJ53EK6+8ws8//8zevXvJycnBNE20NfukV8DSLrv7kWdiXtM0vYZiVOZ7WpFKD1ssz7ZXtYyMDC699FL3vhofH88999zDt99+y8aNG91Door3gapI3FyRUlJSuPDCC933SyeS9bx/9dVXlytgUFpV7a8ul8sr+T1YvWU8h7YGW/6yyy5zB2siIyO54YYb+Oqrr/j7779JT0+noKDA671v1apV+TammpX3s1iegKQcg4QQdkgPGyFErZOYmOi+MvXll1+G1I28Mj377LM8++yz7vvDhw9nwoQJIc0icsIJJ7h7huzYscPWMp7DU5RSXleFK4vnDFahzErlWdZfTgPPxMPFeWycTqc7f02PHj28flT7ymMTbDhU6W0AK+BTnCizIjRq1IgXXniBF154gXXr1rFo0SJ+/PFHfvjhB3cXdq01H3/8MYcPH67RM+k8//zz7tsjRozgiy++CDjzUnlmKrO7jGe5yMhIr32h9Hu6cuVKdw+tmqS8M7tV1gxwdoa3fPTRRxw4cACAevXqsWLFCtq1a+e3fFXMVlfRbr75ZiZPngxYw/+effZZwsPD2bp1Kz/88IO7XEUMhwLv/TU2NrZM8tiK8tRTT7m/P4uZpsk111zD2rVrg85I+M0337iD4eHh4fzwww/07Nkz4DK18f2H8n8WS3+m7ZBjkBDCDulhI4SodTzHuhefQFS31157jTFjxrjvDxo0iC+++CLkJH+eiU5Xr15taxnPYWEtWrSokhw2nokbt27damsZrbVXWX/JHzt37uyeMrU4j82KFSvcQ8RKB2CK89hASY8cOwGb0jkTKnNf6tixI7fffjtTpkxh3759zJ492z0lOcDMmTO9kuXWJAcOHGDNmjXu+6+++mrAYA3YTzTsye5+5FmuYcOGXs/FxcV55a2oKd8PpcXHx3vN7lY8TDAYu6+R5/tTOhmsL3aGc8ybN899+5577gkYrIHy7QPVrV+/fu7cHgcOHGDWrFmAlZi3uMdQjx496NixY4Wsz/M7KDs7u1Jm+Fu+fDlPP/20+/59993n/n7dsWMHt99+e9A6PN/7K6+8MmiwJicnp1xDhGqC8nwPQdnvIjvkGCSEsEMCNkKIWufMM8903y591bA6vPfee9x3333u+3379mX69OnlGr5w9tlnu29v3LiR/fv3B13G80eW5/KV6dRTT3Xf/uWXX2wt89dff3ldQfasw1NxHptiixYtChiAKc5jA1aOjaysrKD5a8AKGLVt29Z9v6r2JYfDweDBg1mwYIHX1dTvv/++TFnP3lnVNcTEswdXSkqKrZlxfv7555DXY3c/8iznax+qad8P/njOcFOebQ/Ec2ilr1xRpXkmcvfHs8efnV5L5dkHjlZFfF5uuukm9+0PPvgA0zS9hvhVVO8agC5dungF7uwOUbIrKyuLq666yt2Dqk+fPvzvf//j3XffdZeZOHGiu1eRP6G+9ytWrKj0YYWVpTyfxaSkJNq0aRPyumrDMUgIUf0kYCOEqHU8p8CdMWNGpScIDeSzzz7jtttuc9/v2bMn33zzjdeP8FAMGzbM66Rj4sSJAcvv37/fK1HhBRdcUK71hqp3797u23/99ZetqYY9Z1hJSkoKOBtH6Tw2xQGb0vlrSpc/ePAg7733nrtXQbt27XyO3y/muS998sknQbehIqWkpHhNxeorOOfZW8puEuqKZqeHhqfNmzeX60rtl19+GfQkLysri2+//dZ9/6yzzipTxvM9/fzzz0OazaYqeX6GvvrqK79TYhcrve2BtGzZ0n177dq1QcvbGQoR6n7w8ccfh1S+IlTE5+Xaa691D7ObO3cuH374Ibt27QKsQNjIkSOPvqFFIiIivL7rKvo76O6772bz5s2ANfzm008/xTAMLrnkEq9ZsG677baAM7/Vhve+oqxYscJWjzfPIFevXr1s5anzpaYfg4QQ1U8CNkKIWueiiy5yJzTMyMjggQceqJZ2fPXVV1x77bXuk8zTTz+d2bNnH9UsTY0aNfKaZvW1114LmNfghRdecJ/oNWjQwGsWkMo0cOBAmjdv7r7/2GOPBSy/Y8cOr6S11157LQ6Hw295z5OYJUuWuK889uzZ02dSSM/ynjOfeObD8eXuu+92B8gWL17sFVQqr1Cu7HvmQSgepuCpcePG7tu+pkGvCp4Jmw8dOsSGDRsClr/nnnvK1bth8+bNfPTRRwHLPPfcc+7PQ1hYGFdddVWZMjfeeKP7M7hlyxaee+65kNtSFa6++mr37d27d/P2228HLO+57cGccsop7ttffvllwLLTpk2zNdue536wbNmygGW//PJLFi9eHLTOiub5edmyZUu59kPP5MMul4u7777b/dzIkSMrfMipZ+/Mzz//3Ks34dGYNm2aV8+gt956yyuQN3bsWHfvjiNHjjB69Gi/AdNQ3vsVK1ZUyPdoddFa8/jjjwcsM2/ePHcSfKDMFPChqOnHICFEDaCFECKIrVu3asD9N378eNvL9unTJ+TlPNe1detWn2UmT57sVe6WW27R2dnZAevNysrS48eP1/3797fdfn++++47HRER4V5/165d9eHDh4+6Xq21/u2337RSyl33pZdeqgsKCsqUmzp1qjYMw13u1VdfrZD1l36//Rk3bpxXuUceeUS7XK4y5fbu3as7d+7sLhcXF6e3bdsWsA0ul0vXq1fPq35AP/XUUz7Lp6amer1mxX+fffZZ0O299dZb3eUjIiL022+/rU3TDLjM3r179ZNPPqnvvPPOMs/169dPv/XWWzo9PT1gHbNmzfJ6/7799tsyZdatW+d+Ximlf/jhh6DbEyo7n9FWrVq5ywwaNEjn5+eXKVNQUKBvu+22Mu9Bnz59/K67dNno6Gi9cOFCn2UnTpzo9XrdcMMNfut9/vnnvV63//73vz4/Q57S0tL066+/ri+77DKfz48fP97WNoVi6NCh7jojIyP1999/77Nc6W0HdKtWrfzWO3PmTK+yU6ZM8Vlu8eLFOjEx0Va9TzzxhLtMfHy8Xrt2rc9yc+bM0TExMWXeW3/f5Z71jh492u82ee6D/vaR9PR0HRYW5i738ccf+60vkAULFpRpP6CXL19ervqCGTx4sHsdiYmJetq0aUGX2bJli37ggQf0008/Xea53bt36+TkZHedl19+uc86li1bph0Oh7vciy++6LOc577vcDj0/PnzfZb77bffdMOGDcu8bv7eL7vvfbGFCxfa2v892dkHPb8Di/9eeOEFn2X/+OMP3aBBA3e5E0880e93i93tq8nHICFE9ZOAjRAiqJoYsNFa6/vuu8+rbEpKir777rv15MmT9cKFC/XChQv1V199pZ999ll9wQUXuE8iGjVqZLv9/kRHR3utu1u3bnrQoEG2//bt2xew/gcffNCr/s6dO+t33nlH//DDD3rq1Kn6yiuv9Pqh1atXL58n0eVhN2Bjmqbu379/mdfh7bff1j/88IOePXu2HjNmjK5fv75XmXfffddWOy644IIyP6KXLFnit3yXLl3KlN+1a1fQ9eTl5ekzzzzTa7kTTzxR/+c//9Fff/21Xrx4sZ43b56eNGmSfuyxx3Tv3r3dr/3IkSPL1Fd8YhkVFaWHDx+un3vuOXc9Cxcu1OPHj9eXXnqp1/t3+umna6fT6bN9Xbt2LbMvDB06VF9wwQXuv/3799t6TX2x8xl95ZVXvNpw8skn6zfffFMvWrRIf//99/qll17SHTp0cJ/QXXfddSEHbC677DINaMMw9OjRo/XUqVP1jz/+qCdOnKgvvPBCr7JNmjTRqampfus1TVNfdNFFXsu0aNFCP/zww3ratGn6xx9/1AsWLNBffvmlfuKJJ/S5556rw8PDNaC7d+/us87KCNhs3bpVJyQkuOs1DENfddVV+ssvv/S57SNHjrR1wlpYWKg7duzodZJ944036pkzZ7rrvfzyy9374FVXXRW03t27d3t978XFxemHHnpIz549W//44496woQJXq/5jTfeWOUBG621HjFihNd627dvrwcPHuz1efnjjz/8Lq+1tf+0a9fOq55OnToFXOZopKam6uOOO67Md+mzzz6rZ82apZcsWaLnzp2rJ0yYoB944AF9+umnu8s98sgjZdo+cOBAr/0+LS3N77off/xxr2DB6tWry5TJycnRjRs3dpcLDw/Xt912m54xY4ZevHixnjJlih49erQ7WDZo0CDdokWLoO9XTQzYXHrppe7bffv21ePHj9eLFi3SM2bM0HfddZeOiory+lwtXrzY77rtbl9NPwYJIaqXBGyEEEHV1ICN1lo//fTTPntWBPqriIBNKOvz9Rdsu1wul77iiits1dWpUyd94MCBo96mYnYDNlprnZGRofv27Wt7u1966SXb7Xj11Ve9lo2JiQkYlLrnnnu8yh9//PG215WVlVXmBN/OX6Afy3b/2rVrp7dv3+63bStXrtRJSUlHtT8FYucz6nQ69aBBg4Jui2EYeuzYsbaDG57LbtiwQffr1y/oOurXr++3d4enwsJCfccdd4T8nlZlwEZrq5eLrx4ppf+uvvrqkE5Yf/nlFx0XFxe03gcffNB2vZ9++qmt79vevXvr3NxcW/toRQdstm7dqps3bx6wfYGWL/biiy96LfPaa68FXeZo7N+/X5911lkh76+lAzaewVXDMIJua2Fhoe7WrZt7mZNOOknn5uaWKbdgwQKvXqX+/jp27KgPHDhg6/2qiQGb8ePHewWxAn3XTZgwIeC6Q9m+mnwMEkJUL8lhI4So1caMGcPq1au55JJLgs7K1KFDBx555JEKyxFQmQzD4PPPP+eDDz5w5+spLTExkYceeohffvnF7xTZlS0+Pp558+bx+uuve+U5KK1nz54sXbqUBx980HbdpWd36tGjh8/8Nf7K+5sdypfY2FimTZvGzJkz6dGjR8AEkg6Hg549e/LKK6/wxhtvlHn+ueeeY8SIESQmJgZcZ0pKCo8++iirVq3yyi1R2umnn86ff/7JmDFjOPPMM0lOTg55uvij5XA4mDlzJvfff7/fz9nJJ5/M3Llzueuuu8q1jvDwcObOnctDDz3kMw+UUorhw4ezevVqOnXqFLS+sLAwxo0bx5IlSzj33HMD5kxSSnHKKafw1FNPBc35UtF69+7NqlWr/O6v9evX58UXX+TTTz8Nqd5u3bqxaNEiv7OxNW/enE8//ZSXXnrJdp1XX301M2bM8DsjTr169RgzZgw//PADUVFRIbW3orRu3Zo1a9bw3HPPcfbZZ9OwYcOA3xv+dOnSxX07MjLSK+dQZWjYsCGLFi3i008/DZiQvbg955xzDu+//z5jxoxxP/7HH3945RN74IEHgn4PhoWF8fnnn7tz8/z111888sgjZcr179+fRYsW+f3sxcTEcOutt1br8aiiPPXUU3zyySdeedo8de7cmSVLlvjMoVVeNfkYJISoXkrraponVAghKlhubi7Lli1j69atpKamAlZQo23btnTq1CngbEE1mdaa5cuXs379evbv30+9evVo3bo1ffv2rbaTIl+01qxcuZI//viDgwcPEhkZSePGjendu7ffH7411cGDB1m2bBl79uwhLS2NiIgI6tevT7t27ejSpQsJCQlB6zBNk3Xr1vHPP/+wa9cuMjMz3fV06tSJU045hfDw8CrYmoqVmprKwoUL2bp1K2AlJO3cubN7avWKkJ2dzYIFC9ixYwfZ2dk0a9aMPn360KJFi3LXmZ6eztKlS9m5cyeHDx8mLCyMpKQkjj/+eDp37uw1vW112bhxI8uWLWPfvn0kJibSpk0b+vfv7w44LFq0iH79+gHQqlUrW7PZAKxevZpffvmF1NRUkpOTad++PWeffXbAIFYgTqeTn3/+mTVr1pCRkeGe7r1v377lCo7URNddd517tqNRo0YxadKkKl3/rl27+Pnnn9m3bx/p6elER0fToEED2rdvX2Y68KqktebXX3/l119/JS0tjXr16tGiRQv69u17VAn3q1Pfvn3dSYTHjx/vTiJsmiaLFy9mw4YNpKam0qBBA0477TSvpN6VRY5BQohiErARQgghhKgFyhuwEaFJT0+nadOm5OTkALBgwQL69+9fza0SlcVfwEYIIWoCGRIlhBBCCCFEkTfeeMMdrOnQoYMEa4QQQlQbCdgIIYQQQggBLFu2jOeff959/6GHHqrG1gghhDjWVW3WQiGEEEIIIWqIAwcOcPPNN6O1Zvfu3axatYribAGdOnXimmuuqeYWCiGEOJZJwEYIIYQQQhyTcnJymDFjRpnHk5KS+Pzzz6t8RjYhhBDCkwyJEkIIIYQQxzyHw0GzZs0YPXo0v/32m63p44UQQojKVONmiTJNkz179hAfH49SqrqbI4QQQgghhBBCCFEhtNZkZmbStGlTDCNwH5oa189zz549tGjRorqbIYQQQgghhBBCCFEpdu7cSfPmzQOWqXEBm/j4eMBqfEJCQjW3RgghhBBCCCGEEKJiZGRk0KJFC3fsI5AaF7ApHgaVkJAgARshhBBCCCGEEELUOXZSwEjSYSGEEEIIIYQQQogaRgI2QgghhBBCCCGEEDWMBGyEEEIIIYQQQgghahgJ2AghhBBCCCGEEELUMBKwEUIIIYQQQgghhKhhJGAjhBBCCCGEEEIIUcNIwEYIIYQQQgghhBCihpGAjRBCCCGEEEIIIUQNE1bdDRBCCCFE3aO1Cwr/BJ0OKh7CT0ap8OpulhBCCCFErSEBGyGEEEJUGK0LIecTdPanYO4recKoDzFXQuyNKBVVfQ0UQgghymHHgSP8tmEn+U4XDZPi6HVSayLD5XRaVC7Zw4QQQghRIbQuQKfdDAU/A9r7STMVnTUO8n+Eeh+jjNhqaaMQQggRio27D/HK1B9Z8fcOAJQCrSE+OpJR/bpy45DuhDsc1dxKUVdJDhshhBBCVAid8YLvYI2bCYV/oDP+XZXNEkIIIcrlr237GP3iJFZu2Ol+TBcd4jJz8/lg9goeevcbnC6zmloo6joJ2AghhBDiqGkzA3Kn4D9YU8yEvNlo174g5YQQQojqU+h0ce/bMygodGGavo9tGljyx1Y+W/Bb1TZOHDMkYCOEEEKIo5c3Gyi0Xz7368pqiRBCCHHUfli9idSMHEwd+EKEBib+8DsuU3rZiIonARshhBBCHDXt2gPYHcNvoF17K7M5QgghxFGZ/ct6DKVslT2Uns3qTXsquUXiWCQBGyGEEEIcNaUiCD4cynMBmeJbCCFEzXUoPTto7xpPqZnZldgacaySgI0QQgghjl54N8Bls7ATFdGtMlsjhBBCHJXYqIiQysdEhlZeCDskYCOEEEKIoxdxBjhaATa6jxv1IbJ/pTdJCCGEKK+zTm6DzRFRRIaH0fW4ppXbIHFMkoCNEEIIIY6aUgqV8ARWwCbwL1wV/2+UDIkSQghRgw3vcRJhRvDTZYehGHZmR+KiI6ugVeJYIwEbIYQQQlQIFXkWKukNIIKyQRsFhKMSX0BFD6n6xgkhhBAhSIqL5uGR/QKWcRiKBolx3Hp+jypqlTjWhFV3A4QQQghRd6iogdBwGeROR+fNAjMNVAIq6jyIuQRlJFd3E2uFbGc+3+9dw4aMvZho2sQ2YHDTU0iMiKnupgkhxDHj4t6dcTgMXpqyiNyCQgylMLXGYShcpubElo146ebzSU6Q72ZROZTWIaS+rgIZGRkkJiaSnp5OQkJCdTdHCCGEEKLKaK35ZMuPfLR5IXlmIWHK6gzt0iZhysHIVj2544RBOJR0khZCiKqSk1fAdyv/ZuU/O8kvdNIwKZ5hPTpyUqtGKLuJboQoEkrMI+SAzeLFi3nppZf47bff2Lt3L9OnT2fEiBEAFBYW8vjjjzN79my2bNlCYmIiAwYM4Pnnn6dpU3tJmCRgI4QQQohj1et/z+bzbUv9Pq+Ac5t04cnOl8lJghBCCFELhRLzCPnyTHZ2Nl26dOHNN98s81xOTg6rVq3i3//+N6tWreKrr77in3/+Yfjw4aGuRgghhBDimLI2bXvAYA2ABubuXcPC/X9VTaOEEEIIUW1CzmEzePBgBg8e7PO5xMRE5s2b5/XYuHHjOOOMM9ixYwctW7YsXyuFEEIIIeq4L3b8jEMZuLQZsJyB4ovtP9O/8clV1DIhhBBCVIdKHwCdnp6OUoqkpKTKXpUQQgghRK21aP+6oMEaABPNqrStZDvzq6BVQgghhKgulTpLVF5eHo888giXX36537FZ+fn55OeX/ODIyMiozCYJIYQQQtQ4Lm1SYDpDWibLmUdsWGQltUgIIYQQ1a3SetgUFhZy2WWXobXm7bff9lvuueeeIzEx0f3XokWLymqSEEIIIUSN5FAG0Y4I2+UVkBAWXXkNEkIIIUS1q5SATXGwZvv27cybNy9g5uPHHnuM9PR099/OnTsro0lCCCGEEDXauY0725qu26EMeqS0JzrMfoBHCCGEELVPhQ+JKg7WbNy4kYULF1K/fv2A5SMjI4mMlO68QgghhDi2XdrqTGbs/jVoOZc2GdmqZxW0SAghhBDVKeSATVZWFps2bXLf37p1K6tXryY5OZkmTZpwySWXsGrVKmbNmoXL5WLfvn0AJCcnExEhV4KEEEJUP21mQu50dO4UcO0FwiGiOyr2KgjvhlKqupsojkHtE5pyZ/vzGLdhTsByl7fqRY8G7auoVUIIIYSoLkprrUNZYNGiRfTr16/M46NHj+a///0vbdq08bncwoUL6du3b9D6MzIySExMJD09PeBQKiGEEKI8dMEadNoNoDOLHyn67wBcEHkeKul/KCUXGUT1+GbXb7y1YS6pBVk4lIECnNokISya647rxxWte0lQUQghhKilQol5hBywqWwSsBFCCFFZtHMLOvUi0HmAv+mTFUQNwUh6tSqbJnzQ2gX5i9H588DMBCMBFXUeRPRC2cj1Ups5TRc/HdrAhow9mFrTJq4hfRp1JMKo1Ak+hRBCCFHJQol5yFFfCCHEMUNnvQU6H//BGgANed+iC29ChXesqqaJUnTB7+gj94K5F6v3kwkY6NwvwdEcksaiwk+u3kZWojDDwdkNT+TshidWd1OEEEIIUU3q9uUpIcSxaetWePRR6NIFmjaFhATrf5cu8NhjsG1bdbdQVANtHoa82YDLRmkHOufzym6S8EMXrEEfvhrM/UWPuLCGrhW9d6496NQr0YXrqqmFQgghhBCVTwI2Qoi6Y948GDYMjjsOXngB1q6FvXshM9P6v3YtPP88tG1rlZs3r7pbLKpS4T+A02ZhFxT8XpmtEX5ordHpj2C9V/56QplAATr98aprmBBCCCFEFZOAjagWea4Clhz4m293r+LH/evIduZXd5NEbeZywV13wbnnwqxZECw1l9ZWuXPPtZZz2elxIWq/UN/nwkpphQii8FdwbSHwsDUAFzj/RBf+WRWtEkIIIYSocpLDRlSpHGc+729awPSdv5DjKnA/HmWEM6z5adzabiDx4dHV2EJR67hcMGoUTJ1a9rnOneGssyAuDrKyYOlSq5eNp3HjYN8+mDwZHI6qabOoHo6WoRSGsLaV1hThn85fhPXzxE5vKAfk/wh1OJeNEEIIIY5dErARVSbLmcdtKz5gY+ZeTLx7QOSZhUzbsYKVqZt5v/stJEbEVFMrRa1z773ewRrDgJEj4Y47oGdP8Jz6Vmv46Sd4802YMgXMoiv4U6da9bzxRlW2XFQxFdYSHd4NCn/DTu8NFT2qKpolStM5IRRWaJ2NTHAthBBCiLpIhkSJKvPiupk+gzXFTDQ7c1J56s9pVdwyUWvNm2f1kCkWHQ3Tp+OaMIEVR6IYM/x5rmh5K1e0vJV/X/A8K+euxuzRAyZOhOnTrfLFxo2D+fOrfhtElVJxtxI8WOMAx/EQeXZVNEmUooz64Oc4UZZZVF4IIYQQou6RgI2oEofyM/l+zxq/wZpiLm2y+MB6duccrqKWiVpt7NiS24YBkyeTdmYf7j7zXzw+7Hl+nbOag7tSObgrlV9m/86/hjzLvb3/TUZqJgwfbg2DMgzf9Yk6SUX2RsX/B1BYU0WXZoCjCSr5Q5SSIXLVImoI9vMNaYgaXJmtEUIIIYSoNhKwEVVi/t61tq+XGijm7F1dmc0RdcG2bfDttyX3R44kb8AgHhn4JJvWbAPAdJX0pCi+/c8vm3jsvKcpyC+0gjYjR5bUMWuWTPl9DFCxV6GSP4PIPuA5mMZIhtjbUfW/QjmaVFv7jnUqrC1E9MR3QK2ExgGR56AcTaumYUIIIYQQVUwCNqJKHMzPxKHsZRkwlCI1P7OSWyRqvXff9Z4N6o47mPfpj2z9cwem0/+QF9NlsuG3LVz838d5b+N80m64puRJra16RZ2nIrph1HsH1fBnVP2ZqJTvUA2WYMTfjTKSqrt5xzyV+AIulYJL+z5uOLViT3406/QtVdwyIYQQQoiqIwEbUSWiHOG2e9hoINIIr8zmiLpg9uyS2507Q8+efP3GbJSN9KNaQfbU3Xy0eSFDC5eQeWK7kie/+64SGitqKmUko8I7oMKOQyn53qkpnKo+d20ZzMIjzXFqhdbgKvrv1Ip5aS24cUN/7vhtOrtyUqu7uUIIIYQQlUJmiRJV4oz6x/P+pgW2yrq0yRn1j6/kFola7+DBkttnnUVudh471u+2tajS4Nicj+k0McMUc9vGccl6H/UKIarFov3rWJWexar07iTv7kKvhL3EOwpJd0WwLL0JR1yRADiUk4nblvJwxwuqucVCCCGEEBVPAjaiSnROaknbuIZsyzoYMPGwQtE4OpHuKRKwEUFkZZXcjovDWWg3SakHp4YwRW50RMljmTIcT4jqNnXHcgwUJprDzii+OdzGZzmXNvlm1yruaj+Y6LAIn2VqI134NxQsA50LRgOIGiRD9YQQQohjkAyJElVCKcVjJ12IoZTfISuq6G/MSRdhKNk1RRBxcSW3s7KISYgmOj7K9uJmvAGR1r4YnVtQ8kR8fEW1UARgapMjBTmkFWTh0sGm2RbHmo2Z+4LOKlgs3yxkb15aJbeoaujCdZipl6JTh6MzX0JnvYXO+A/6QC/M9H+jzZzqbqIQQgghqpD0sBFVpku9Vrxx+vU8unoi6YU57qunCoVGExsWxdNdRnKG9K4RdjRoAHv3WreXLsVhGAy54Rymv/Gd1+xQvmgDCgYnglKgNV3+2uVdr6g0RwpymL7zF77c8TOHipKLJ4RHc1GLM7i45Zk0ikqs5haK2kjbTZJWg+mCNejDVwGFRY+YRX9Yj+V+iS5cD/UnoFR09TRSCCGEEFVKAjaiSp1Wvy3f9nuUH/b9yYJ9f5JWkE1SRAx9G53EgMadiHJI0k9h05AhsHatdXvtWvjpJ4bfcR4z356LNk2/J3BaAeGKgiFWYKDLX7tot80jb83gwZXb7mPY9qyD3LbyA1Lzs9AevScyCnP5dMtivtyxnLGnX0enpJbV2EpRE7SNa8ifR3ba6mUTaYTRJDqp8htVibQuRB+5HStY4y/gbILzT3TmWFTCI1XYOlFTaDMD8mahndtAhaHCO1tT20vCdCGEqLOU1jXrulRGRgaJiYmkp6eTkJBQ3c0RQtRU27ZB27Yll9YvvxwmTmTFt7/x34v/hzZNXKWm99YG4FDkPNEE56mxADz1wgwGLVpnPa8UautWaNWqCjfk2JDlzGPkktdIzc/0exJuoIgOi2Byr3toVMtPwMXRmbNnNf9Z+0XQcg5lMLz56Tx20ojKb1Ql0nlz0UfusldYxaIa/iS9bI4hWjvRmf+DnM+wgnqOomecoJJR8Q+jYi6qxhYKIYQIRSgxD0kUIoSonVq3hqFDS+5PmQIzZ9J96Gm8sfxZel9yJoaj5CtOO6CwTzxZr7dwB2vO/nkDAxavd5cxhw6RYE0lmb37dw7lZwTsMWGiyXUW8MWO5VXYMlET9W98Mq1jG+AIkM9MoQhXDq5ofVYVtqxy6LzZ2P5JprMh/6dKbY+oObR2oY/cCznjgQJAA86iP0AfRmc8is7+pNraKIQQovJIwEYIUXvdfXfJbdNEjxqJnjGD47u2YczE+/hi7/t0+rg/2S+3IPPztuQ+1BiztTUd8Nk/b+Dp52fgMEsCCI577q3iDTh2fLljua0Usiaa6Tt/wWmWY9YvUWdEGGG80e16mkbXcyek92SgiHKE8+ppo2kVm1IdTaxYZir+h0L5Kl83kiwLG3JnQP73EOQbVGc+aw2VEkIIUadIwEYIUSvpwo2Yp09HX5/kfkzl5sFFI9Ajz4alS0msH8+zV95Al14nQoIDpTVd/tzJUy/M4IWnvyKqwFlS3x13wIAB1bAldZ/Wmh3Zh2yXz3LmkVaQXYktqiZbt8Kjj0KXLtC0KSQkWP+7dIHHHrOG+Qm3RlGJfNrzTu4/8XyaxSS7H48Pi+LqNmcz5ax7Oa1+22psYQVSCZQNSwVgxAUvI+oEnfMJ9n6uG+icSZXdHCGEEFVMctgIUcNp7QLnZqsbvFEPHK1QKoQf9nWQLliNThsNugBcTtSt+1CzssoW7NwZevXCFRvD1n1bCPt5Oa037y1b36WXoiZNAoejbB3iqGmt6TH3cdvTNAPM7vsoKVFVfwzQ2gn5C9GFawEXytESooaijKOY7n3ePBg7Fr79NvB0RkpZw/zuvhsGDiz/+uogrTW5rgJc2iQ2LBIjwFCp2kjnTENnPGazdDiq4c8oQ34j1XXatQd9sK/9BYxGGA2XVFp7hBBCVIxQYh4yS5QQNZTW+ZAzAZ09AUyPIENYe4i5DqIvOiYDN9rMRqfdBDofMMGh0O80hv8cRH2U7l147VpYuxYH4Hey+DvvRL32mgRrKpFSirbxjdicud9rdih/ksJjSIqIrYKWedO5M9GZz4N5iOLDo8YFGc+gY69Bxd2HUvYPmzp/O9x7B+qdb20uoGHWLOvvzjtB9ks3pRQxYZHV3YzKEz0EMp4BfASeSzMagpIeNscEMyO08jqzctohhBCi2tStS1RC1BHazEYfvhqd+ZJ3sAbAuRGd8Rg6/SG0DiHnQV2R9w3odLzyPTgU+pmGmFOaoc+NtabuDkQpGDbM6vnwxhtyUlwFLmvZw1awxkBxccvuhBlV+57onM/R6Q8WBWugJKmnBvIh+wP0kfttfeZ04T+YB6+HS072GazRnTvD7bfDww9b/zt3LlvJuHEwahS4JJfPsUCpaIi52F5hczfk/1i5DRI1Q6i9qNRR9AQUQghRI0kPGyFqIJ3+GBSuxXeSwaLH8mZCWFuIu70qm1btdO5UrFwPPl6bs2PQZ8fAzkL4NB0WZkNaPVRmDsTHQ4MGMHgw3HKLNcuUqDLnNe3ChK2L2ZObhstP0MNAkRAezcUtz6zStmnnDnTGk8FKQf4cyP0aAkyfqwtWow+PRo3Z4TVMTxvABXHoa5Og9xBIerakh5zW8NNP8Oab1mxnZtHrM3Uq3HuvFVQUdV/Bb/j9bvPiQOd8horqVwWNEtVJOZqiw04E5z8ET0rtgKghVdEsIYQQVUhy2AhRw2jnDvShgQT/0Q6oBFTDZShVh4cKlGIeOAvMA7bLq+TPURHdKrFFwq59uUe4/ZcP2JV7uMxpqUKRFBHDuG7X0y6+SZW2y8x8EbLHA8F6sxgQdgJGygyfz2qdiz7QFxbtwRi1q+TxqKJhe4NKhrG8+2Q7Fs1oygndjmf47edx6oBOGIYBM2daPWtyc0sqnjdPEmLXcdrMRB84LYQlHKhG647JYbHHGp3zFTrjURslFSplLiqsdWU3SQghxFEKJeYhQ6KEqGF07nRsfzR1BuT/UKntqXFCDU6pqMpphwhZ4+gkPut1F490vIDWsQ3djzeJTuKuE87ji7Puq/JgDQC53xI8WANggnM92rXbTz2zQaehPiyZclkblAnWmCYMvnwHh/emsWL2Kh4772ke7P9fso5kw/DhMHkyGB7fAWPHlmuzRC2ic4OX8eLCGrIn6rzoERB5HsFmEVPxYyRYI4QQdZAMiRKipnHtDKGwA5yhlK8DIntDzhRsnWCrBCtJc023dSu8+y589x0cPAhZWei4OHLqJbC775nsveYyOnY5iwbVMGtSRYsJi+Tilt25uGV3XNpEa13l+WrK0CEm9jTTwdGsbDW502GnE+Z7TEl+QZxXsAasWEzLdvm0PSmPLX9FA/DXsn94fNhzvLzw/3AMHw4jR8Kkoil6Z82ypvw+imF82rUf8uagzUMoFQORZ6PCTyp3faKCGUlYP8lsBmFUHEqFV2KDRE2hlAFJr6CzXoHsT4FCoPg70wlGfVT8Q6ho/0M1hRBC1F4SsBGipgnpR7iGEGatqQtU9BXonIk2SjogZmTNHi4WYLpnlZlJ7N69tF/3D8e//Qk/dTuer0dfxOBrH6Z5TH1b1WvXPij8C3CCozUq/IRK2Ijycygj2EXjqqHiQWcHL+cu7ydwZu5DfXoE5fFW6muT/FaT3KCQLVgBG9Nl8teyf/hp5q/0vqi7lYy4OGCjtRXQe+45+20sXr+Zjs74L+R9hzUIzWElf856FR12MirxaVR4x5DrFRVLqQh01GDIm03wYLQDom0mKBZ1glJhqPiH0bG3Qd4stHM7KAcqvDNE9pfgnRBC1GEyJEqIGkaFd8He8AwAE8JPqczm1DgqvD3EXBuklAMcTVCxN1ZFk0LncsFdd8G551q9J4KkEjM0nPXLJm6640VWXjGELel7ApbXhesx025FH+yDPnIb+shd6NRhmIcuROfNq8gtqRuiBlNyxToQZfXY8tG7xno6Fn4oCfzojhHQzf+QvLxc70Ow4TCYMe47606vXtCpU8mT31mPa22i85dhpv8bM+1uzPR/ofMWonXZ7wxtZqAPXw55c7ASlmqsHhxFZZ3r0Kmj0IVrg2y3qAoq5hqCJ5YF0KiYyyu7OaIGUkY8KuZyjIRHMeIfQkUNkmCNEELUcRKwEaKmiRoGKtpGQQVh7SC8a2W3qMZR8Y9C7I1Y3TM8v8aKTrrD2qOSJ6KMetXQuiBcLiup7LhxZZ463KEtU88/lU8vOZMvzz+VjW0alilz4Yxf2HfBYFzOQp/V6/zl6NRLi6b9LRUIcq5HH7kDnf1hRWxJnaFirsD+ifI1/hO9RvaBVI/AyRnR1hTyPmRnGmxcG+P1mOkyWbd8Q1GjFJx1VsmTBw+iC9ehD52LTrsOcqdB/lzInY4+cgv6YH90we/erc18CZxb8R8ANmFHFtx/PrpLF2jaFBISrP9dusBjj1lDsUSVUBFdUPFjiu/5KGEACpX4PCqsbRW2TAghRLXYuhUefdQ6Jssx+pgls0QJUQPp7AnozKcClFCAQtX7EBXZq6qaVeNo1250zhQo+BUoAEcrVPSlENG9SmdP0VpDwQpw/gVocBwHkb1Rvoar3XWXd7DGMGDkSJy33cqQAz+QcSATIhRm43AwoPO63Vw66zcGLF6Pwyz5ut5zw5U0/eAz73aYaeiD/UDnESwAoep9gorscRRbXbfo7E/Qmc8EKKGsoQdJ41DKd28c7doDSS1QWdZrr++oh348pUw5lxO+/jCF9/6vbE8dR5jBnIIp1p2HH4aXXrLqio9FbzwOdAG+AzAGEIZK/gwV0dXqXXOgJ1Dge3N+zEZ9mA7zs72GcJXdbAVDh8Ldd8PAgQEKioqi8+ais94A5wbvJ8I6oeLvQ0We5XtBIYQQdUOAIfNe5Bhda4US8zi2kl8IUUuo2KtB56KzXsY6EfM8QSs6MUt6+ZgO1gAoRzNU/P3V2gadNwed+T9w7aD4Cji4wEiBuDsg+oqS4NG8ed7BmuhomDyZVTGt+eDJKZgLNhBf9JRZ30HB+UmsHdaUtY805/s+HXnm+a+JyreSkjb98HMYda33dM+504pmmwkWh3egsz+SgI0HFTsaVBw68wXQRyg5PLqs2zFXoOIf9husAVCOpui4eMhKtx7ILhs0czrh0J5wJr/RyGcdDVs2KLmTlVVyO9YFOh//gTgTcKLTH4GUOZC/GJ/BGpdG/ecg6qN0v9vhRWtr2N6sWXDnnfDaa+Co5iTRdZyKGgSR50LhWnBtxupN2QEVfmJ1N00IIURlcrng3nt99sL2SY7RxwQJ2AhRQ6m4myHqPHTuZMj7HswsMJJR0RdA9CUoh73Es6Ly6JxJ6IwnKBm+4HEybR5CZ/wfuPag4h+yHvOcntkwYPJkJq83+fCxp1AO5TUIQqW6iPw0lfCFmWQ/34wlZ7ZjzKMjePGpaSU9bcaO9QrY6JwvCR6sAXBBwWK0eRhlJIe+4XWUirkYoodB3vyivC4ulKMlRA9DGUlBl9euPdCgAewrCob8kmv9mFIKZyGEhcOmP6L5v+vbkHG47OFXGYpht55bVJmGpUtLnqxvEnzYlgmurVD4K5hHsPZLj/3BpVG37kPNyiqzpD4pGdVnFMTFWYGipUthbancNuPGwb591rTjIfwg1NoF+QvROZ9D4RqrnY7WVh6WqGEoIyZoHccapRREdAG6VHdThBBCVIXiIfNTp5Z9rnNna5h0JRyjRc0nQ6KEEKIctHMz+tAQ7ARIVL0PUXtbQNu2JV1bL7+cJRffzZOXvhx4PQa42keR/XJzUIqnXpjBoEXriipWsGWLe7pnc39X0Dm2t0HVn4kK72C7vPBN5y9FZ78HBctRzxxCjUtzP2fOHkzuSQn8OG07cyfXY93KGHzlJzEMg5jEaD7Z8AYJ9eOtH2O9e5es485k9Bg7QdowiL0WFXYCOv0hr2fUmANePWu0AVwQR+aFDVh8aADp2YOIjo/ijCGn0vz4xvDTT/DmmzBlCpgewaI774Q33rD32pjp6LSbofB3rBxTxb0Fi4JJRiNU8nhU2PG26hNCCCHqJD9D5rnjDujZ0zsnntYVcowW1SeUmIckHRZCiHLQOZOw9xXqQGd/ak3L7BEf17ffzmdPTQ2aa0eZEPZ3Ho51eQBMHXqqRyOKpnt2C3EK85o85XktobPHo9Ouh4KV1v1rEtEeb6l6/xdimj5DfMtX+ef3BBxhZa96OcIMouIieXb2GCtYA/DWWyXrUAp9TQg9ocxsiOyNVyfaH7O9gzVRitxxzXgx/Awuu+FUXn8wjQlPfsk7D3zCdSfczcMDn2RXgzYwcSJMn24N3ys2bhzMnx+0GVo7i4I1xVcBPYd2Fn0WzEPow9egXYfsb58QQghRl/gaMj99OvrzCejTcjHTrsPcfzrm/tMwD12Mzp2O7nnaUR2jRe0hARshhCiP3BnYm369aPjR7FklD3XuzObYpmxZux07nRy1AyLmWCfba05qzibP2aOKpnsGILIn9qanBoyG4Ghpr2w5aV2IzvsenfWm9Zc3D62dlbrOqqTzl6Aznyu6V7QvtAiHAbElhWakoidewFkXncrYn5/hrIu6YzhKDr0RUeGcd/05vP3bi5zYvV3RMjOsK2bFBneGFna7N2tr6KSRDFFDKd4f1IfePWtyX2nKXa935Yev6uFyKtDgcrrQRcPt1vy4jjvPfIzt63bC8OFWF2vD4yeD5/A+f/J/KOpZE+hz4gLzMDrnU5vbJ4QQQtQxPobM6/PPRh++HH3kdmtiC50BOhOcf6IzHkUfHIx2bi/XMTojO4/PFqzi4v/7hLPuHUe/B9/m4fdn8duGXbZ+l4qqJUOihBCh2brV6tXx3Xdw8KA1ljYuzsrdMWQI3HKLe4hOXaW1Ru/vgL18MRZ1ajpq7wHrzu2382Pfq3h65Cu2l3e2jyT7NSvAMnniBtpOmGY90bQp7N5ttavgV/ThK2zUZqDi7kHF3WZ7/aHQWkPuJHTWWDAPYwUNFOAEo7617phRlbLuqmSmXg2FKymTW+bHbIxRe9x3dZSCT8egLrVmfks/lMG+rQcwHAbN2jUhJt7jytiMGdYY9ry8kuXnTEJ3eQK7+5tKmY0KOx7tSkWnXgLbd6C6b3HPBqUvjOPl6G7M+yIZ0+W/h5fhMGjevgkf/Pmq1RPsiitg0qSilXgPx/PFPDwaCn7BVmBTJaIaLkOpCFvbKIQQQtQJ27aVGTKvP//E+j1X+Cf+j6EOMBqgUr62LtLYPEav3rybu9/8muy8AtAlvywchsJlagae2p6nrh1ERLikuq1MMiRKCFHx5s2DYcPguOPghResZGd790JmpvV/7Vp4/nnroDNsmFW+jlJKgYoKbaEsj9wycXE4wkL8+g1TRBrhjDn5Ito2blvyeGZmye3w0yBqOL5ypJRwgKM1xFwd2vpDoLPGojP+WxSsAevHRlHPGjMVnfEfdJbNGRBqKO3cBYUr8JkIuE8s+vpE912Vp2HUM9aPqaVLSawfzwndjqfdqW2tYE1xguErroCLLvIK1nDnnahBoyByAMF7TzkgvLs7H4xy1EfV/wL1eYzX1N1ZFzVgwdR6AYM1AKbLZMf63axdXJQz6fbbPV6A0sPxfChK3GyLTgfXPntlhRBCiLqi1JB57rgD8ucXJekP1kP1AORMtO7aOEZv2ZvK7WO/IievEK29LwO5inrYzv99I09+Vnd/w9dGErARQgTmclmJ0M4915o2MFinvOIpBs8911rOZfOErbaJPAd7w48MCOuMiosveSgri/antQ0cV/HkUJza6yS+6/8YFzQ/3Xu65/iSepVSqMTnIPqS4gU9K7H+hZ+ESv4MZcTZXHlodMGvkP1m8HJZY9EFv1dKG6qEuSfg0/rJBujzS15jZWrrylfv3tC1q/XD6uGHrf9du1qPT5rknTjw0kutKToBlfgUOJrhf59zgJGCSnrJ61HlaIBaWHKo1yc1ZFnGhTgL7R3+HWEOfpzyk3WnVy/o1KnkSc/heL7oUD/7dWe4nBBCCGHL7Nkltzt3hp490dmfYe803UTnfG4NN7dxjH7v2+UUOl2YAX7La62Z/cvfbNh10P42iEolARshhH/FUwyO89EbonNn75POzp3Llhk3zlq+DgZtVMxV2Os9YKJir7KGjBVbupSGLVI4Y8ipXvlM/HJp7n9oNHFhUWWne/asF1AqHCPxGVTKHKsXTXgXCDsJooZYgZrkL1GOFFvbWB46ewL2AlkOdM5nldaOyhekq7BDod9p7NXTxm3tWnj7bXjpJet/6ak5wZrlYdIk99ScykhG1f8Sos73WHfx62xA5EBU/WkoR+OydR0s+dGl+lxCZk4fe/sdYJpOjuyei879Ck2BNa2oj3p9CmuF/ahkOBiNbJYVQggh6gjPY+lZZ1nDmQrX4rMHry9mKpgHreUCHKNTM7JZ8PtGd0+aQByGYupiH79NRLWQwWlCCP/uvRemTi25X54pBqdOteqpY1MMqohT0dFXQ+6EQKUgsi9EDYMhK0pOzNeuhZ9+4tr/G8nv89daOXH8HECVUgy9eQDNjm9iPbBsGfzxR0mBwYN9LxfWFpXwr9A37Cho7YT877GdjDnvO7R+CaVq4bWDsPZAFJDnv4xDoZ9piB6UgBofiZq7OXAPNaXg/PPh7rthwICyTxv1UEkvoc3HIO8HaxiRiofIvihHQx8VFvHskRUXR3R8NKZp74egYUBMbBo6/VHIegdiji8JwXgOx/O1OTGXW0PjgnJA1DCUERu8qBBCCFGXlDpGW0K80Fk8oUOcR+/pUsfoDbsO2QrWgDU8as2WwD2JRdWphb+ShRBVws8Ug0ycyK4Gbfj4iSm8fOPbjLvrQ36asRKXy7S6Yx5DUwyqhDEQewcQjtWTwIH1tVr0F30pKukNlHJYyZg9A1xvvkm7U9vy9Kx/ERkdgTK8eyIU57gZcM3Z3DH2+pInPKZ7Rim49dbK2bjy0NmE9iPDCToneLEaSBlxEH0RtnoTnR0FM7+2EgA++ih06WIli46Pt/536WI9vmULzJzpM1jjve5kVMwlqNgbUDGXBQ7WgPcPuKwszhjcFWWz54vLqTjz3KIZplw7IfWbkic9huP5FDUcjAYEfo0UoFCx19lqjxDHApc2+fPITpYd/IfVadsoNGW4oBB1VqljNACOFtjvoRoBjgbey0OZY7TL5oUad3lXaOVF5ZEeNkKEIKswj9Vp28h1FVAvIpau9VoTZtidbreW8THF4JEefXhxyDOsnLO6KKCgQMGMN+eQ3KQe9793C92HnlYyxeCFF5b0tBk7NuiJaG2jlIGKvwcdOxpyv0YXrgNMVFhbiL7Ie3hK69YwdKiV3wesXkijRnHq8OF8tvUt5o5fyHcf/kDqnsNERIVz2rldGH77eXTs0d5Kcgxlp3s+/3xo1apKtlVrDQW/oPPnW9NKqkRU1GAI71LSPhWN9QPD7uxZRujJm2sQFXcLOu87a6pNv4EqBVHDUeEnQWvgueesv6rUoIGVGBys4XjjUjhz2Gms+HYVZoAfZMrQ1GvgpPuADOsB7YQVB7zrDUAZcVBvPPrw1X5eI2v2MJU0FhV+QsibJURd4zRdTNq+jMnbfuJgfob78aTwGC5u2Z1r2vQhOkxmUhOiTil1jEZrVMwV6MxnbSzsgOgLUSr4kPkWDZJsN8lhKFo1rme7vKhcMq23EDYczs/i3U3zmb17FfkeV7qSI+IY1aonV7XpXbcCNz6mGMx88z3u7vEv9mze7/MkzzpnVzwx7UF6jTjDejDEaYDrvHnzrGTMxaKjrcDW8OHBl/Ux3TPz5lVJEEwX/ok+8gC4tmLF+TXuabrDOkDcvSjnZrTOgbw5ReWCXZlxQGQfjHrvVHbzK5Uu3IhOux7M/Vg9q4q32wG4rGBN4rPVO131Y49ZM7gVW7qUAy3ac3u3R8lKy8Ll9PF5NjSGgmcnb6Zrr2zrwRW5GCN2lRR69FFbwSft2o/O+RRyJlvBPgDCrWFQsdeiwjscxcYJUTcUmE4e+O1Tfknd5DPkbaBol9CEt8+40cpnJoSoG3wco3WPTuiDA4NfECIMlTLDmh1y6VJrAoNiPo7R1/1vCn9s2Rsw6XCxcXddSM+OrUPdGmGTTOstRAU6kJfOtT+/xcxdv3oFawAOF2Tx9sbveWjVZzjNOpRY18cUgx//e7LfYA0UF9e8cM0b5GYXBRVCnQa4rhs40EomWyw31+qFVDTdc5n8JkGme66aYM06dOoV4Npe9IgTr2m6nX/DkVvRWf+D7HfBtRl7ifJcRYmbazcV3g7VYD4q8UUIP9VKnOtoDlEXoOpPw0j6X6UFa7TWbMjYw88HN7A6bRv5rkLfBX0Mx2vYsgFv/Pwsx3VtA4AjTGM4NI4wax+s36iQ56Z4BGsA9cmRknWHMBxPORphxD+EavgzKmUOKmU2quEKjKTnJVgjRJFx/8zll9TNfvsnmmg2Zuzl6T++qtJ2CSEqmY9jtDISUMnjQcXhe1ixAwizht2HHW89ZGPI/I3nnRE0WOMwFO2bN+DMDlXTg1sEJz1shAjihp/fZl3Gblw6wNAB4Lrj+nFru4FV17DK1KVLSYLczp3JWfIzlzW5ifzcAluL3/ferQy58Rwr4NClS0mS3C5dYPXqymlzbVE885ZnMudinTtbeYDi4qxxyMuW+Z5B6NJLvWYQqixaa/ShoeDagu3ZCuyKHolKeLJkOJUI6HB+FnP3rmFv7hHCDYNcVyErDm5kZ26qu0xcWBQXtjiDa9v2IT482ruCYcNKhuMZhpVnqqhn198rVrPw43tIPxRGdJxJ9wEZnNY303v3mpOFumEvqmg30MOGombOqsQtFuLYkVWYx3kLn6XARq4aBUw/+yGaxshwBSFqm4zsPFIzc4gMd9C4XgJGcf5CP8do7dqLzh4PuV945PwLK+qhen3JcOIZM6wLe8VpCIYNs3Li+TB54e+8+MUiHIYqk4TYUIpmKYm8f/+lNEyK87m8qBihxDxCzmGzePFiXnrpJX777Tf27t3L9OnTGTFihPt5rTVPPPEE77//PkeOHKFXr168/fbbtGvXLuQNEaK6rUvfxR/pO4OW08CU7T9xbdu+RDnCK79hla3UFIOrF/1lO1ijlGLZ1yusgE3xFIPFAZtg0wAfCxwOaxjUvfeWnS597VrfARpPd94Jr71W6cEaAApXgWtTBVRUfKhxAeEQexMq7i4J1tiQ5yrklfXf8M3uVZha41AKlzZ9XoXPcubx+dYl/Lh/He92v4n6kR4JB+++u+THoGlaQcOi4XgnnNGZ9q1ygHTfjZiThbptnztYA6DuvreCtlAIsWD/n7YTCysU3+35nRuO71/JrRJCVJTfN+1mwvzfWLx2i7uHS6N6cYzqewqXnN2ZWD/HaDV8OCrhX+j4+8G1C7QLHE1RhsfxvXjIvGdS4bvv9tuWUf1OoV3zBnw2/zcW/7HF3bk7OT6GkX27MKpvV+JjZNhlTRJywCY7O5suXbpw/fXXc9FFF5V5/sUXX2Ts2LF88skntGnThn//+98MGjSIdevWERUlb76oXb7dvQqHMgL2rimW7cznp4P/0L/xyVXQskpWaorBnIxc24tqrck8XDKMItAUg7WVdqVC7lR03kww06wuq1GDUDGjUI5mwStwOKxpzi+4wErGPGvWUU33XFl0/gKsw8TRzFBiQNT5oCJRYe0h+gKUIb0n7Sgwndz768esTttGcYjGGaRTrIlmd+5hHls9ife631zyRPFwvOIgYdFwPD3yMvS1ydAp03tCCq3hlzxrGNSMLK9gjb6lD6qOJRAXojrtzz2CQxk4bfzWUEqxL+9I5TdKCFEhPHu0eA5H2p+WxdivlzJr+TrevfcSkn0coxk5Em6/HdWrFxQPfQLrGL1smTUMasoU72CNjSHzp7VrzmntmpOWlcuh9Gwiwhw0S0kkzCHZUmqikAM2gwcPZvDgwT6f01rz2muv8fjjj3PBBRcA8Omnn9KoUSO+/vprRo0adXStFaKKHczPsBWsAeuq14E8P1eoa5u4uJLgSlYWCfWDTN/rQRmKpIYeJ+QBphisjXTeHCsBLy5Khgkdguz30dnvQfy/ULGj7VU2YID1t22bld/nu++sXkiZmdZr1aABDB5sjW+ujmTNZlbwMsErQUV0R8VcXAF1HVsmb/uJ39O2oW3PumVxaZPVadtYn76bExM9AoivvQb79pUMxzNN1KTJqEmgO0ZAt2iINSDbhJW5qHVle9XpYfVg7BdHsVVCiNLCjTB895srSwERhkzyKkRtsOSPLbz4xSKAMsOPwDp33rb/MPe9M4OPX30VVeoYzaRJ1l8oQ+Zfe812++rFRVMvLjp4QVGtKvQbf+vWrezbt48BHlG9xMREunfvzs8//+wzYJOfn09+fr77fkZGRpkyQlSXCCMMA2Xrh5RGE+WoI9NtlppisOv/XiE2MYbs9JzAywHa1PQd2avoTuApBmsbnb8YfeSe4nulnrWCNzrzGVBRqJiR9itu3bp6pnsOxkjC/hTd/jhAHzn6thxjXNpkyvafQg7WFHMog1m7f/MO2AQYjqfWFYCPAI0nfX0DeHMuKqJhudokhPDtlOTWtmZtAXBqk1OS21Ryi4QQFeH92SswlAr4+XaZmj+27mPV1n2cVluGzIsqVaH9nvbt2wdAo0aNvB5v1KiR+7nSnnvuORITE91/LVq0qMgmCXFUutU/3vZVL4BT68qPqCFDSm6vXUvEql8Zduu5JcnR/DAMRWJKAmdd1N16YNmykvw1YPUWqaW01uiMZ4rvBS6b+QJa5wUsUxuoqPPwP52kXa6iWQ7K0tpE5y9H53yBzvkK7ayIfDl1wz8ZeziYX/4LGC5tsi/3SNkniofjzZuHHtQYHSSNkFagz43FnNoT3luDijql3G0SNcjWrdaUr126QNOmkJBg/e/SxZpidtu26m7hMaVLUitaxzZAETyvV1J4DH0bdqyCVonaZtfBI0xdvIZP5/3KrBXryMzND76QqDRb9qby57Z9toKxDkPx1ZI/vI7RDBvmPXuUL0pZ5ebNs5ar48Eap8tk0ZrNjJ/7Cx9/v5Kf1m3D9NFzqa6p9j6Vjz32GPfff7/7fkZGhgRtRI0xqElnXl0/ixxX4CvPhlKcWq8tLWNTqqhlleyWW+CFF0ryqrz5Jld9OJ41P/7FP79sxjTLDhMzDIUj3MET0x4kIrIo8bKNKQZrjcJfwbXVXlmdBXmzIbpsnq/aRIV3RIefAoVrKP8sUQZE9vF6RGtt5QDKfgtcu72fCz8NFf8QKuLUcq6vbsgqPLqAn0IRbvj/4ab7dUKfHA87o+DTdFiYDakuyNIQp6C+A/rFoq9JhBbhYIByNDmqNokaYN48K2/Wt9+WzZuVmWn1rFy71vr+HzrUyps1sI7MfliDKaV4qONw7lr5ERD4ksBDHYcTFuCzLY49Ow6k8eKUhfy8bjsa6/eYaWoiwhxc0PNk7r2oN9GRdWBCjFpm+/4022VdpmbL3pJZH2v8kPkqprXmy8Vree/b5RzOzMFhKDRgmprG9eK5a8RZDD6jQ3U3s9JUaA+bxo0bA7B//36vx/fv3+9+rrTIyEgSEhK8/oSoKaIcETzYcXjAMgaKCBXG/ScOraJWVYHWra0f68WmTCFy3lxemPcfzruhP2ERYShlBWiMogRlbbu05uVFT9Kp94nWMjNmWInQip1/PrRqVXXbUNEKfgfs/kgOQxesrsTGVB2V+D+gvFM7OiByAMrh/f2vs/6HzhhTJlgDQOHv6MNXofMXlXOddUNc+NEm6dd0rdfa/9NmUb6tFuHoMSno+a3Qv7dFbzzO+j+/FXpMihWsATDrRsLwY5bLBXfdBeeeGzzJOVjPz5pllb/rLmt5Uam61T+Ol069mkhHeJl+NgpFmHLwn5MvZmCTztXSPlEzbdmbytXPT2LF3zvcgb7iHgcFThfTlqzlple/JDe/sPoaeYwK1iu9NIfh47S8eMj86tWwezdkZFj/V6+2Hj8GgjUA42Ys4/nJP3A400rN4DK1ez/fl5bJmPHfMfGHVdXZxEpVoT1s2rRpQ+PGjVmwYAFdu3YFrB4zK1as4LbbbqvIVQlRZc5vdioubfLiXzNwapf7gFic2yYpIpaXT72a4+N9ByVrLR9TDEZPnsx9797CDc9eweKpy0ndc5jI6AhOGdCZE04/rmTZEKcYrB0KwUZ3dYsuKl/7qbAW6LjrIOv1EJd0gJGMSnjc61GdNx+y3w+wnAlodNpd0GARylE/1CbXCSckNKVhZAIHyjksKtwIY2izAL2UQp2pyyhv0K72Sy/IYdbuVXy1cwV7c4/gUIqTk1pwWcse9G54Ys3v7eByWd/HxYksPXXuDGedVZLIcunSsnkSxo2zklVPnlznu9tXt94NOzC772N8t+d35u5dQ1pBNgnh0fRrdDLDmp9KvYhj93MoytJa88C735CTX+AzoS2AqTV/7zjAuBlLeeiyflXcwmNbhxYNUSp4fBysIVGd2kovVl9W/L2D8XNXBi338pc/cnr7FrRvXrvzZfoScsAmKyuLTZtK8gxs3bqV1atXk5ycTMuWLbn33nt5+umnadeunXta76ZNmzJixIiKbLcQVeqC5qfTt2FHZu1exdKDf5PtzCMlMoHBTbvSt1FHwuvijA1+pgFm5EgSbr+d828e4B5bq3UeOvcH+Gk5vDcfpv6ICnGKwRrP0Rz701uboOpQ1v2CNaEvE94FlfRK2d412eOxOncGGmJVFPDKnQpxt4S+7jrAoQwua9WTNzfMLVfi4TvaDyI+3P8+qByN0WEdwfk3wYe7OSCqDvUgDMG69F3c/et4Mgvz3O+DU8Pvh7fx2+GtdElqxSunXRPwta52997rHawxDGuq2DvugJ49vXMkaA0//QRvvuk9VezUqVY9b7xRlS0/JsWFR3Fpqx5c2qpHdTdF1HC//LPT1rAbU2umL/uT24f3IjaqjkyOUQs0qhdP75PbsuyvrX4DasVcpubSs6X3nC+Tfvgdh6GCvoaGofhy8RrGXFHLzzd8UFrbTEtfZNGiRfTrVzZCO3r0aD7++GO01jzxxBO89957HDlyhLPOOou33nqL9u3b26o/IyODxMRE0tPTZXiUENUtyJVZ3fNMiPwHjvwFKzN8TgPMpZdaUxLW8iuz2sxBH+wJOvhMWW4RPVCJL6EcwWfV0WYO6Gww4lHqaIfDVCwzdRQUhtDVNPYOjPh7yjysXfvRB3vbr8fRBqPBXPvl65hC08k9v37Mb4e32graGFhjuu9oP4ir2/RGBUlWqHO/Qqc/aqMlCpUyGxV2XPCidcjunMNc9dMb5DoL/CafN1B0qdeKt8+4EUNV6CjzijFvnjWsqVh0tNVTZvhw0g9lMHf8QpbP+o2cjBySmyYz4MrenHXxmVYespkzre//3Fzv+mp78F2IOuLJCfP4ZvlfQU9kiz13wxAGnX5CJbdKePp75wFGvzgZp8vlt6eNUjDkjBN56trzqrZxtUBuQSFn3TvOVi8lgJjIcJa+dmflNqqChBLzCLlbQN++fQkU41FK8eSTT/Lkk0+GWrUQtYbW2sq1kf+DdZKt6qGih6DCjq/uplWsANMAs3YtKsgUg/qG5vDWGygbwZoNGXuZtnMFa9K24TRNWsWmMKLFGfRs0B5HDTgRUkYMOuZayH4b21NdF/yCTr0M6k9FOcompNZaQ/58dM4EKFhevCZ0ZD9UzDWoyJ5H3W6tNavTtjF1x3JWp23HqV00j6nPhS3OYEDjTkQ5bCQiNOoTvFdMCRXu5yqRech2u8tVPgRaF0DBL2CmkmeGsyqrAZmucOpFxHJqcpsa0Wsu3Ajj1dNG88rf3zJz16+YWuMoCsI4tUlCWDTJEXEUahcxYRH0bngiFzbvRqPoJHsriBoBeQsh/3sC7dMq/uFjLlgD8NnWJeS5CgPOFGii+T1tGysObaJHA3sXpqrU2LEltw3DHaz59r15jLvrQ1wuE110srfljx2s/O53ku77mP+b8Qgdhw+3yl94YUlPm7FjJWAjRA2RlpVjO1ijFKRlhnDBSVSIDi0aMvaOEdz39gzyC11e59DFvUbOOaUd/75Svld9yczJtx2sAcjJL8TpMglzVP95Q0UKuYdNZZMeNqKm04V/odMfBudGrCS0CutkxwXhZ6CSXqqbs6nMn2/9WA+SsFIrYGAs+oYkODseIrpjJH/st3yB6eTpP79izp7VOJSBS1snBsW328Q25PXTr6Wx3ZPQSqS1E33kfsifQ8n7How1nMRI+l+pulxW74a8GVYZr+mzi+7H3oSKezBoTwl/8lyF/HvNFH48sM7rtVUoNJoGkQm80e062sY1CliPzp2FTr8/YBk3FYdq+DNKRZatx7kFfajoCtKOQtSEdPihaHaibA2xRbMT9S+anahVU4yGy0La5mC0LoDsd9HZE0AfcT9eYBp8l9aSd/eejKmSuaxVD0a37VMjAjcARwqymbt3DXtzjxBhOOhSrzVnprQ76mCm1k505v8g5zOsvEvFwVUnqCRU/IOomMuOtvke63NBwQor4bSKgPBTUWE1b2bIHGc+g354lnwzeC4qhzLomdKel0+7pgpaFoJt26Bt25Lv68svh4kTmfPRD7x849t+FzMcBuERYbz+0zMc16U1XHGF1UsSrLO+LVuOmUSXQtRkYz76jrm//mNr2miA/15zLsN7nFTJrRK+HM7I4euf/mT6sj85eCSL8DAH3Tu0ZGTfrpzevnm5f+fVdVm5+Zx9/1vBCxaJCHOw/I3akTMzlJiHBGyECIEu/AOdegXWiY2v3gZFiVbrTyuTu6PO2LYN/c7rMOttSHX6nwbYgzWcomzvI601Y9ZMZsG+P/0O+XAog4ZRiXzS4w6SImIqZZNCobUJuV+gs94Ec3/wBQAIQzVcijKS3Y+YGS9CzocEC/qo+MdRsaGfCGqtefj3z1lyYL3fHgIOpUgIj2FCzztpGJUYoK4C9ME+YKYRuJeNAbE3YMQ/5KceF3pqV9T7W2F+NirApmsFnHs86oG3KmxaYa0L0Gk3FfVmKrtyp1YcKozipo39OVQYQ7f6x/HqadfUmKBNZdJmBuR9g3ZuBxyo8JMhaiBKVUy+A6015ExAZ79f6nOjIKKXNZV7+IkVsq6K8Hf6bq75+U3b5etHxPFd/39VYovK4bHH4PnnS+4vXUpu19O4rPGN5GXnB1zUcBh07tORl+Y/YSUi7u0xlPHRR63ZSYQQ1WrOyr/510ff2SprKMV3z95IgyRJXC1ql+v+N4U/tuwNGph0GIp+XY/nxZvOr6KWHZ1QYh51q7+QEJVIa40+ch/+gzUALjAPozP+W2XtqnKtW8N/zgw+DbCbA50702dVa45sZ/6+PwLm53Bpk/25R5iyvWJ7WpSXUgYqZhSEn4H9r1An5P/ovqfNNMj5BDs9dHTWOKtXSIhWp23jxwPrAg7ncGlNRmEun21dGrAupSJQSeOwRtH622YDwjuj4u7yszIX6u57MS77EzUvcLAGQGlQczdV6LTCOut1q3eHn9ckTGlSwvN4tvXPaDQrUzfzzsb5R73e2kAZCaiYKzES/oWR8AgqemiFBmt0xn/QmU/7CHJqKPgZnXoZuuC3CllfRQj0ufFZvmZd+7LMnl1yu3Nn6NmThROXBg3WAJguk9U//MmuDXugVy/o1Knkye/snSAKISpX/67HkxgbRbDOGQ5D0bfrcRKsEbXS5f262jrGukzNyL5dK79B1UACNkLYVfAzuHYQPI+HC/IXol17q6JV1cM8QMnQCbvly/py+3JbQzpMNNN2rMBpHv1Je8XJxm5OF1BgZpbczZ2B7Rmn9BHI/yG0pgFTd9h7bV3aZMauleS5AgeFVMRpqPqTIKy4O7WBFcBRQDhEX4ZK/sR3wuTi5NWl8yABumME+tpE9B31rP8dfQQJxo2zlj+KoI02cyDnc4K9Z2FK0yn2MB2iD6PRTN2xnFxn6AEz4SFvOuROCVDABRSi026x3qcaoGl0su3hZgaK1nE1cBrRgwdLbp91FijF6kV/YoQwtn/Nor+sYVBnneW7XiFEtYkID+PJ0YMA/AZtHIYiISaKBy7pU4UtE6LiDDilPQNObUewQWOX9enCqcc3q5I2VTUJ2Ahhk86fR0h5uvMWVFpbqp2KJqRghZ9Zj349vNmdVyWYI4U57MxJtbnOKqASsR+00mAkldxzbgph2TBwbgqtbcDqtO22X9tcVwHbsoKfhKnwThgp01D1p6PiHkDF3YZK+D9Uw2UYiU+i/E1lXmpaYW0Y6IvbYs5ojp7fBv1cQ/TjKejnGqPnt8b8/g705aOsJKnFiqcVLq/8hbZn+HJqxeDkHYD12iw5uL786z3Gaa3R2R9B0J9aJmhrWFZNkBQRQ79GJ9kOKF/csnsVtCpEWVklt+OsK+sFeYWYLpvJww1FQV6h1/IAZGb6XkAIUeV6d2rLa7ddQGKsdfx1GAqlrP8AxzdN4ZOHR9EkWdJMiNrJMBTPXD+Yy/p0xWEoDKVwGMq9r4eHObhpSHcevqxfnc0FVPcH5gtRUcxM7AcpDNB1+EdtRE/svxZOVITv2Y4KQ+wxU2ja7JVSBVTUeei86TZLR0BkX8+lQ11biOXBqUN7bZ02gzsAKvwkCLeZuHDePO+eNdHRqMmT0cOG8c+ymaT/OJ7IiL04CxUH9zcjqcUNdBs6kPCB4TDqcu9phceNgwsuKN8sNeYB7M50ZaBJCc8tuq04mJcR+vqExbkJnBtsFlbo3OmomJGV2iS7rm5zNgv3/xUwvbhDGTSJrke/RjUwkWdcXElwpSh4k9I0GUeYA5cz+PeDNjUpzet7LQ9AfHxFt1QIcRR6d2rL3OdvYtHqzSz9ayu5+YUkx8cw+IwOdG7TpM6exIpjR7jDwSOj+nHjkDP4Zvk6tu49jFKK9s1TOL97RxJifV8YriskYCOEXUYC9qc2NsHwn8S1umidb/X8ce0CFQbhp0J4l5AP5iq8IzqsMzj/JPDroawpoSP7+3y2cVQSm7L22VsnipTIGnSFKPJsMJqCuY/Ar4EDokegjJK2q/AT0bl2AypOCOsQcvOax9TnSEFOwPxA7vagKm8WLh/TCmf3HcB/BzzJ6oV/YoRFYjpbWk87DEzXeJq1m8Pzcx+ncUVOK6yisBtkNFHkm1YPKI0m0s7U50EU5/c/5n44+xkO6ZsGl91E3pXvxMRmPNNlFGPWTAYo02PNQNEwMoE3Tr+uZiambtAA9hYNzV26FLRm4Oi+zHhzjq3F45Ji6T7kFGuWqaUeea4a1MDhX3VcZm4+qzftJie/kPoJMXQ9rlmdm7ZWHJ1wh4OBp7Vn4Gntq7spQlSa+gmxXHtut+puRpWrgb8whKiZVNR56JzP7JaGyHMqtT2h0NqE7HfQ2R8W9fxxYF0zNiGsPcT/CxXpuxeMPyrxCXTq5Vi5WHydCFsnpirhGZTy/VUzokU3Xl7/TdCQgkMZnJnSjuTImpMwTykH1HsDnXolViJqXwEYBzhao+If9n44ajhkPAcET/6J0QAiQx97fmGLM/jjyI6g5RzKoEdKe1IiK+Gq+bZt8O23JfdHjsQ1dCj/GfAkfy79GwDTWbLvFA/V2Ld1Pw/2/y9v/foCCcOHw8iRJdMKz5pl1RvqtMIRZ9ouGqY0v2Y2BKxPyenJbUNbVxFtZkPeDHT25+DaYj0Wdjwq5iqIGoYyqn/Ws0rnb5icPzXsNenf+GQmxN7J5G3L+G7vanevwPqR8Vza8kwubtGdxBowe51PQ4bA2rXW7bVr4aefOKFXLzr2aM/fKzd5ffZKU0ox4q7BRERFWMGaP/4oeXLw4EpuuCh2OCOHt2f9xKzl68gvLDnG1E+I4Yr+p3D1gNMlcCOEEHWcfMsLYVd4N3C0JfjHxgGRA1GORlXRqqC0NtHpD6OzXvMYpuXCHWRxbkSnXY/O+z6kelV4J1Typ2DUK3qk+HUp6kGgYlBJb6Ci+vmtY0jTU4gPjw76irq0yZWtzwpSquqp8E6o+pMhrGPRIw5KEvEaEHUeqv5kr941AMqIQ8Xdam8dcff7DXgFMqBxJxpEJuDw06NDoekev48Hm/3KmBZLMNOfQOcvc/cEqRDvvmtdnS92xx0s/+Y31v64LmAeDZfT5MCOQ3zzdtE+efvtJU9qbdUbIhXWpihoEzh3kKkhyxXG/CMtMFCcWq8NreMahrw+7dyOPjTUmjHOtQnrM+cC5wZ0xr/RqcPRzl0h11vrhJ8Eym4w0FFq6GDNcHx8Yx7vdDELzvk3089+kG/6PMysvo9w/XH9am6wBuCWW7wzkb5pTVP+7y8foEHz+n6TDysF3YeeylX/vsR64K23vJ+81d53lzg6+9MyufL5iXy97E+vYA1AakYO42Ys44F3ZlJYATPoCSGEqLmUrtBf50cvlDnJhahquvBv9OFRoPPx26PCaISqPxXlSKnq5vmkc6ahMx4LUsqa6Uc1XIwykt2P5jjzOVKQQ5QjnHoRsT6Hc2hdAHnz0XnfgpkKKhEVNQCihvrtQaC1hoJf0DmfYeYvwiCfI84Ivjvciq8OtWVngXWCZ6Aw0TzQ4XxGtg6tB1BV04XrIP9HtM5BGSlWsCZA0E5rjc58tmh6bwfe+5N1X8U9iIq7udxt2pK1n9t++YCMwlyv4RwnRh/mmdYraBqZjakdGEpjBdyc4GiJSnrdylNztLp0KbnC37kzrF7NQwOfDBqwKZbcJImJO97BYRhWXcVX+bt0gdWrQ26OLvwHffiyos9v2fWbGgwF/952BguOtCLcCOPDM2+lfUKT0NZjpqMPDQPzIL6/J8DqfdUUVX8Gyqg5Pccqg5n5EmR/hP/XophCpcxDhbWsimYdG4YNs3qlgTUkcfp0GD6cIwfTmfB/XzL340Xk55T09KvftB4X3j2US+4/H0eYA2bMgIsuKhmSOGwYzJxZDRtybNFaM/rFyazfsR+X6f9nugJuHNKd24bV7OOjEEIIb6HEPCRgI0SIdOEGdPq/wLkW68RaYZ38aYjog0p8BuWoGWP8tdbo1GHg3Ij/tJnFVNHMPzezNm07k7YvY+G+vzCLlmsT25CRrXpwfvPTiDiKfA1au9AZ/4HcLykdqHBqhQKe3Xka3x5uTdd6rbm2bR96Njih3Our6XTBL+jszyB/AdbQqkiIOh8VeyUq/OSjrv9AXjqfbV3KjF0ryXUVcEJ0Gu+2W0iE0kWBmtIcQITVMyj8xKNbedOmJTk0br8d3nyT8+OuJD/H/jTZn219i0atGljLv/12Sb27d5erSbrwD3TarWAexNQGhjIpPh8q0AYv7jyd2WktSY6I4+VTr+akpBahryPrfXTW/7D1mYt/HBV7dcjrqE20eQSdegm4dhMoaKPi7kLF3VV1DTsWzJsH555bcj862soLNXw4ADmZufy17G9ys/Ko1yiJjj3b43AU9UKbMcNK+p2X511feXJIiZD8sXUvo1+cbKtsfHQk379wM5HhYRzMy+DrXSv5NXUz+aaTptH1GNbsNLqnHI9hc5p6IURghS4Xi9dsYfbK9RxKzyYuKpKzTm7D+T06Eh8dWd3NE7WEBGyEqAJWj4pFaJ1l9UqJHIQKC/3krjJp51b0oUH2Fwhrx5Ssf/Hq39/iUIZXr4zimVI6J7Xk9dOvIzasfAclM+N5yPnIf5uL/qdG/4+GicPLtY7ayPoqLgTCKyUxbZ6rgG2ZB2iZfz2RegcqYAJeA8I6YqR8VdI211YwD4OKgbATrBw+wSQklMxS8/DD8MILDI66HGeB/dm+Pt4wlmbHN7GWf+kl68H4eMgo/8xNWhdC/g/o3Jm4XPs5kG+yNKMJC9OPJy4ihUFNutCv0UmEGXanXvesW6MP9gVzr43SChytMBqENhyxNtKuA+gjd0DhGrwDtQpwoOLuhthbjr2kzFXhrru8Z2ozDCsv1O23Q69e3sOmtIZly6xhUFOmlPSsAbjzTnjjjapr9zHsuUk/8NXStQF713h6+rrz2J28hw83/QDgvtBSfBxvHduAV08bTbOY5EDVCCGCWLd9P/e/M5MDR7IwlMLU2j2PZ0R4GP+6vD/DetTAWQNFjRNKzEOSDgtRTiq8I4R3LMeEy1XIPBxS8QLnAV7920oSW3pGlOKfjX8e2cnjaybz6mmjQ26Odh2EnI8DlilKVUxK4XtoPaxSTuC0mWUFILQJYS28hoFVF2s7Iyqt/ihHBCfEHEDnbbNR2gTnn5gFf6CcG9E5H3lPzWw0hJgrIfZaVKCksj6mFW7UMoXdm+zNDBYWEUZyk3peywNHPa2wUuEQNQgVNQgDaAaMbAYVMpm0zrIZrAFrVqRtaF1otakOU46GkPwFFK5B5061ZqojAhVxOsRcUiM+g3XWa6/Bvn0wdap13zStJN6TJllDFXv1sj6rWVlWsKZ4GKOnSy+16hFV4mB6lu1gDcB/l38F7bPLPF58HN+Zk8pNK97l0x53kBIlF0OFKI/New5x86tfkld00cks6vNQ/EnNL3TyxKffYxgGQ7sfZQ9lITxIwEaIukzFhlT8cIE1xXOgqaBNNMsO/sOGjL0h5/Ygd6rNgtoKEBSuhYguoa0jUK3OHdZMWblfUTJDk4GOHICKvQlVgeuqiXT+Isrmy/HHARlj0M6/oXRY0jyAznod8r6H5E9Rhp8Aio9phYfeci7vPzIBHeRkxBFmcM4VZxEdG1XLphW2N3W4txrV0bXSKKUgoisqomt1N+XY4nBYw6Duvde7pw1YwRlfARpPd95pBWscofc4E+UTEeZwX70PKtqFbpcd8OKRS5ukFWTz4eaFPHLSBRXWTiGOJS9P/ZH8QmfQz+VzkxbQ/5TjiY6o2xdiRNWRAa1C1GVh7cBobKuoxmB+WqOAwZpiDmXw9a5fQm6OLlxHSCenznUhr8P/uteiU0dA7hd4T6dtQv4C9OGR6Nxv/SxdR+hs7H/ta3D+XXK7DBOc69HpD/t4rsiQISW3i6YVHnRdX+ISY/3OUOPpwnuGWjeWLas90wqreFBJ9ssbjVCqYnpW5Tjz+WbXb7y14Xve2zifpQf+LtNTThyjHA5rONO8eVbi4GA9F5Wyys2bZy0nwZoqdUaHlvaCNYDROtfWYdWlTWbtXkW2Mz94YSGElx0HjrB8/Q5bPd9y8guZ++s/VdAqcayQHjZC1GFKOSDmKnTWywT9RadNvkpta6telzbZmnWgHC0K5eSxOJnz0dNmOvrwjaBz/NRp9TjR6Q9CWNujT7ZbQykjGW37NbVTrijY5dxqTZtd2i23wAsvlEzt/eabJEycyLPf/YtHzn2KvOz8MrNFGWFWIOexz+7huC6trQdr0bTCShnomCsg+x2Cv4YGKubKo16nS5u8t3E+k7YtI88sJEwZ6KLHG0YmcE+HIQxs0vmo1yPqgAEDrL9t2+Ddd+G77+DgQWvoYny81Xtt8GDrs9u6dXW39pg1uFsHXpn6Izn5hUHLqoaF2M0nnG8Wsi59F93qH3eULRTi2PLrhp22yxqG4pf1OxjR8+gnjqhqWmtWb97DtyushMpREWGceWIrBnU7QXoMVSPpYSNEXRd7DYR3JtjHfaO+kj0F9qcXNsrz9RHWNmg7Smh05ljMA70wU69A5860phAvj9yvQKdjJwihsz8u3zpqg6jB2BsOFQoHOnea76dat4ahQ0vuT5kCM2fS4Yx2vLPqJQbfcA4RUSU/AAyHQa8LzmDssmfoc1nRNLUzZljLFTv/fGjVqoK3oWKpmMuLhiMG2tcNUAkQc9lRrcvUJk+s+YLxWxaRZ1ond05tunvWHMjPYMyayUzfGXqPOFGHtW4Nzz0Hq1dbM65lZFj/V6+2HpdgTbWKjgznocv62SvsCG1IZZ4reBBICOEtv8CJYTOnojY1+YX2J1eoKfakpnPFs59zw8tfMOOnP1n8xxbmr9rIk5/NY+DD7/LdL38Hr0RUCgnYCFHHKRWFqjceIgdSPCOL9dEv6uKuolHx/yYy4TbbdRpKcUJi09DbEn0pIfWa0WlgHoTCVej0B9EHz0U7t4S8Xp1jb3pUcEHeN2izbPLGukCFtYWInrjfe/8lQ6hVgyvAlae77y65bZrWNMEzZ9KkbSPufedmvtz/IeN+eZ6xPz/LlD3v8Z8vH+CEbsdb5YunFfacqcazvhpKORqh6n1kzajl87W2gjUq+eOjTrY7Z88avt8XJAcJ8MJfM9idE1oSciFE9bmg50n8+8oBhAcZPqpzDUKZ77WhJB0WImQNkmLtD1M0FA2S7F8ArQkOHMli9IuT2bTnEIB76FfxNufkFzJm/HfMWlFxqQqEfRKwEeIYoIw4jHpvoFLmQeytEHU+RI9AJTyFavAzKvZq2sQ1pEtSKwwbJ+um1lzU4ozQ2xHW0lp3yF89RSfs5n704avQrhCHY7l2Yz93jtMKEtVRKvEFMBrgP2jjsHp+2K8RCNBNduBAK2lpsdxcuPBCuOIKWLqUmLgoTjj9OE7s3o6kBoklCYavuAIuugjy8kqWvfNOazhHLaAiuqBSvoXY6628Nu4nEiH2ZlTKN9ZMc0dp8vZlKJsBNullI0TtcuFZnfj+hVto1aie3zJ6R1TQlERgfVO3jm1A+/gQJwsQQtDr5DbERtnLN+cyNeefefTH96r0xtdLOZKVGzRHz7OfLyA7r5y93UW5ScBGiGOICmuJEX8PRtL/MBKfQ8WMRBkx7udvaz/QKheoDuCC5qfTPKZ++dqQ+AxEnOlRWyhcYKahsz8KcaWhJsysu+m9lKMRqv40iByAdQgo7nWlrPuRgyDp1RBqNFERpwYu8tprcMklHosUTSvcuzd07Qq33w4PP2z979rVenzSJO+eNbVwWmHlaIIR/xCq4XJUg8WoBktQDX/GiL8f5Wh01PXvyz3C3xl7bCUKN9HM3bvmqNcphKhaibFRjOzb1e/RUu+JtHrZBOm8qoGr2vS2ZmsTQoQkOiKcy/p0CRocdRiKk1o14qRWR3+MryppWbnM/fUfWwmV8wudzF6xvgpaJTxJwEYI4XZqclue6ToKh3KU6WnjKDpKndO4Ew93HF7udVhDtD6AhKfBCH1YFbgg9wu0DmGmi/BTCD4MqIiRAg57M2vVdOkFOfx1ZCfr0neRWZjrflw5Glg9rhr8iEr4P1Tcfdb/Bksw6r2GEXkWhHXE3iEiEqKC7A/F0wp79rQptnYtvP02vPSS9d/XFMN33mkFcGrpTDVKhaMcja1gmaq4YGBGYU5I5T33ASFE7TG0+4lEhPv57tAK1/JEcCmfQZviI/nFLbozrNlpldZGIeq6W8/vwZkdWvkN2jgMRUpCLC/dPKxWBUZ/27ATp8t+uoKlf26txNYIX+ruZWQhRMgKTSfxYdHcfcJgVqdtZdXhraQX5hBuhNG9/vFc2qoH3esfH/RApAvXoXM+h/yfgHwwmqBiLoWoYSgjFgpXQ9arYKZi/ZwMLWkiOgucW8DmbE4q5ip0wU82Slqz9lTkSXV12JS5j0+3/Mi8fX+4k8+GKYNBTbpwdduzaRtnXflRjkYQM8pnHSrhX+jDown2/qj4+1GGjbHaxdMKX3ABjB0Ls2YRMPGCUlaC4bvvrjXDoKpabFhUpZYXQtQM8dGRPH7lAP798RzfBTLCYEk9Ik/Ox9kwB9PjO7tpdDLXtD2bEc271aqTSFG3FRQ62XUoHafLpHG9eBJia/7xKTzMwWt3XMDHc1cyaeFqjmSVXAQJcxgM7taBu0acRUpibDW2MnR2ZqMrpoEsGRJV5Wr3WYkQokIUmk4+2fIjX2z/mSMeV+0jjTBGNO/Gbe3PJSki+AFIayc64/8gdwpWj5aiGYnMVHTGH5D5Kjr+Ych4AijOoB9isKak1faLRvaDiO5Q8Cv+Z0lygNEIbE6zrAv/RudMgvz51nThRj2IGoGKuQxVjT10fj64gQd/n4CptTtYA9bMQXP2rmH+vj945bTRQad1VRFnQNJb6CN3AwV4v08OwETF3Qcxo0NroEwrXGGaRtejbVxDtmYdCPopciiDcxp3qpJ2CSEq3tDuJxJmGDwzaQFZufk4DIWpNYYycJkmJzVozovDz8eI1vx5ZCeFppNGUYl0SmopgRpRYxxKz2biD6uYtuQPMnOtntKGoTjnlHZcPeA0Tm5ds3s4hzsc3DTkTHp0bM0b05fy68ZdaK1xukx+WL2JpLhorjznVBrWoqTD9eNjghcqYhiKBrUsIFUXKK1DyS1f+TIyMkhMTCQ9PZ2EBMlkL0RlKzCd3PfbJ/yausVnLgyHMmgYlcCH3W8lJcjsEmb6/0HuRPwHYYqH2OgAZexQqAY/oRz28+hoMwt95HYoWI5XMAkDMMHRClXvI1RYi8D1aI3OegWy3y1VT3FdDlTS/1BRg0PZoAqxO+cwI5e+RqHp9PvqKhSRRhhf9r6PRtFJQevUZhrkfoXO/drqEaViIWogKnqUlUS6mmntAuc/Vq8rVQ/CgvcAq0u+3rmSZ/+aHrScAr7ofT+tYlMqv1FCiEqTX+hk3m8bWPH3DvILnTRIjGNo9xPpWItyZohj0/b9adz4yhekZeVilsqX4jAUWsP/jR7E0O72ek/bpbUmPTuPQqeLxNgo/8MLbZq/agOPfTgboEzeF4ehiI+J4r17L+H4ZrXjeFtQ6GTQY++Tnp0XvDDw6m3D6dM58EU/EVwoMQ8J2AhRS2mtWb9iI799v4b8nHySm9Sjz2U9qd/E/2wSvoz9+zs+37Y0YOJShzLolNSC97rf4r89zq3oQ4NCWnf5OCCyD0a9d0JeUmsNBT9bw7UK1wAucByHirkCogagVPAZAHTW2+isQEl5FaBQ9T5ARZ4VchuPxmt/z2by9mVBp540UIxu24fb2p9bRS2reFoXQPYn6JwJYO4recLRChV7LUSPQoWcbLr2cZouHvr9M346uCHgZ/juEwZzVZveVdgyIYQQwpJf6OTC/37MwSNZAZPbGkrx0YMj6dz26Gczyy0oZOZPfzF50Wq2708DICLMwZDuJ3J5v1NoV46Ayj87D3DV85MwTdP/pUlDkRwfw9f/vZYYmzNLVbd3Zv3M+7OXBxyp7jAUDZPimPnU9TgMSYN7tCRgI0Qdt275Bl675V22/rEDR5iBUgqXy0QpRZ/LenLPWzcSa6PLYo4zn/MWPkuey97wogk97+SEBN+Jgs2MZyFnAv6HHFUUhUr+DBXRrZLXU5Y209EHemENEQpEQVh7VP2ZVdbbw9Qm58x/imyXvWTMSeExfH/O45XcqsqhzRx02vVQ+Dtle2oVvd6R/VFJY1EqwJTjdUSh6eTV9d8yfddKTK3dCcKd2iQ+LIo7TziPC1ucUc2tFEIIcayatXwd//lkbtByDkPRoWVDOrZsTIHTSZPkBIZ2P5FmKYkhrS8tK5fbXp/Gxl0HgVKDug3rGPnk6PMYfEaHkOp9fPwc5v76t60Zlf51xTlc0rtzSPVXl0Kni7vf/Jpf/tnhM2jjMBRREeF8+MBltG/eoOobWAeFEvOQHDZC1DJ/LFnPwwOfxHRagRGXsyRPiUbz4xc/se3PHby29Gli4qMD1rX4wHrbwRqHMpi9+3e/ARsKVlK5wZqivCkJT1ZLsAaA3OnYy52jrWE6hWshoktltwqALGe+7WANwJHCHPJchUQ5al9AQ2f8x0pc7fP6VtFj+T+gs15DxT9UhS2rHuFGGA+fdAE3tTuH7/asZldOKg5lcFJiC/o3PpkIQw71Qgghqs/UJWsxlAraA9hlav7atp+/dxwAwNSad2b9DEC4Q9GpTVOuOudUendu67eXh9aa+96aweY9h3z+SigOtvz74zk0qhfHqe2a29qGrNx829NfKwVTf1xTawI24WEOxt4xgndm/cwXP64hO6/APeWEAs48sRUPXNKH1o2Tq7mlxyb5FSdELVJYUMiTl76M6XSVGf9bzHSZbF+3i/GPT+KO168PWN+h/ExbB1CwDoAH8zMCtS5oHeWnIOIsVNxNVjLcaqIL12J/VitVpQGbMBV699TyLFPdtGsf5H1D8PdAQ/YEdOxt9maxqgPqRcRxReuqHYYnhBBCBLPjwBFbvzWL+QqKFLo0qzbtZtWm3bRsmMQH919KSmLZ4/vKf3ayduveoOtQCj6c84vtgM3+tExcpr3pr7WGXYfSbZWtKcLDHNw14ixuGnImy/7cysGMbKIiwujWvkXIPZxExap9v9aFOIb99PVKjhxI9xusKWa6TOZ89AO5HlMO+hJphGF3VKRSikgjQG8MRyusXjAVKHEcKnkKqsESjOT3qzVYYwmlB5GiZCasyhftiKBVbAp2BmAZKNrHNyHMqIU5XnKng62tBMiDvOBdsIUQQghReYqHIVWUHQeOcMETVk6c0qYt+cPW+lymZvm67exJDXQxskSYI7TfTLU1z0tURBjnnNqOUX27MqLnyRKsqQFq554kap18VyHf7fmdu38dz+VLX+eG5W/z0eaFpOZnVnfTapXF05ZjOOwd9PKy8/lt3tqAZU6r39b2XE0ubXJ6/bZ+n1cxl1JxQ6IcEHE2RvS5qIhTUI6GFVTvUXK0xH6wwCwKYlUNpRQjW/W0VdZE2y5b02jXbuwfusLQrl2V2RwhhBBCBNG5bZMKD9rk5hdy0/+zd9fxUZ1ZA8d/z52JOxBcgntwd4pbgVKksvXSUkpp3627bGm3shXqrkBLoVCkFC9WPAR3DQkEEuI2c+/7xxCDJDMDmYmd7366JDPP3HsSwmTumfOc879fr6p6ORwV69C2JbDV6mY3JLanZuVAAn29HFpr0hSt6pfuEeWi7JCEjXC5vZdOM2rtf3kx8le2XDjC0eRz7L50ms8Pr2DEmjeZc2JjSYdYZiTEJqJbHS8pTYq7+p2HvBr4V6NtSBianSSEAvzN3gyo3rrwRZ69wdQIh6pstNoU/vRjAlMdVPB/7R/HzZTPOBxOSmmVwau3S+O50oha7anvXxVTEVudTEqjSUANBtUoG/uqr6Kc2clrODT5SwghhBCuM75PW4eTKM44df4Sm/adzHebs8MeLiQU/Vo5m4fZxE29wtEcrN6Z0LetU3EIURhJ2AiXOpoUw4NbviQhMxWwvbOfTcfAaui8c2ARc0/9U1IhlimBlf1RTrxD4R9sf1LUv5uPwEMzF5m0MYCnWt6IVxENapXSUJW+AK0aBSdtbE83yn86qsoi8L0D1JXxeYHPeFTlX1Ba6Wtspsz1wGsIjjx1Kr8HUE4lF66ft8mTmZ3uoaF/NcA2HjNbdhKnaWBNPux0V5F/l6WZ8miP41vNrODRzpXhCCGEEMKOzk3r0K1FvXyvS4rL3L935fu8Rb1qTlXzvPLDcpZtO+jQ2kn92hHi51Pk8TVN0b5xLXq0DHM4BiGKIgkb4VLvH1hKpm7Jl6gpeN0Ski3pboqq7OoxuguGg+9QeHp70H5A4RUxhmHFyNxCY48d/NChOXV8bEmWvIkbha3PzcvhNzOohv3mucpUC1VlHvjdDSog/50eHVDBn6H8p6A0X7TAp1FVN6KCP0EFzkAFz0RV3YQW9DJKC3boaywJKmgGeLTF9t258hf25adUn9vB91/uDeyyKl4BfNf9Id5ufzudKjWislcAVbwC6FK5Ef/rcAdfdX2AEM8y3ITXewgoR/ZTK9uWNM8uLg9JCCGEEIVTSvHWfSPo3KwOULw9bY6cvZjv85t7t3Gqmkc3DJ79eilbD562u7ZKkB+fP3YzlQNtbzjmzT9lf03tGtbifw/eWOw9bM5fSmbljsMs3XKAiKNRDvegFGWfMkrZ37YzM8lF6RaVGseYv992aK0C/q/5SMbX6+baoMq4zIwsJta6n+T4lCKfqDWTxtB7bmD6p/dfdZ9h6JD6LUbKN6Cfy70dM9FGD74+F86xNBP+Zm96V23OsJrt8PfwdjpWw8gAy2EwMsBUHWWq5fQxSivDyITU2Rip34P1VO4dHu1RfneB1yCnS3KF44y0eRgJTxWxwva9VyGfo7z6uCcoIYQQQhRJ1w22HDzFnDURRBw9i1XX8fXy5HwBzYMdVTs0iIWv5E5FNQyDaR/9zqZ9Jx2eTKUpResGNfjm3xMcWp+WmcWybQeZ+3ckp87HY9I0WoVVZ0LftnRrUa9YkzXHoi8yc8EG/o48lu/rqR0axF2DOjG6Ryt5zVkGOZPzkISNcJlFZ7bzyp7fHFqrUPSr1oI32t3q4qjKvm1/7eK5Ea+j60aB1TaaSaNGg2p8sOk/BFbKX+ViGFaMhP+D9CWFHN0EWhCq0myUOaz4gy9nDMMA62kwkkGrhDJJgzl3MVJ/wkh89fJneRsOKsCMCn4b5T20BCITQgghhKOS0jIY/NTnZGRZcPaqVFOKAe0b88a9w/PdnpqeyfRPFrLtkP2qmbx+ff52Gtas4lwQLrTnRAyT/zeXTIvlqqohha1lwS392/F/4/pI0qaMcSbnIVuihMtk6I6PNDYwnFpfkXUc1IYZfz5HtXqhAJjMJkweJjSTBgo6D23H+xteuypZA0Dqt0UkawCsoCdgxN9vq8QRRVJKocx1UR4tJFnjZsr3VlToGvB7EEwNQasK5qYo//9DVV0nyRohhBCiDAjw8eKNe4fbXlM5mXPQDYOb+1y9Zd/X25OPp42lsZPJl0NnLjgXgAulZWYxbeZ8MrKuTtYAOc0mfl61kz+3OtaDR5RN7u2IKSqUqt6O9JmwMSnNqfUVXbv+rfnu8IfsXLmb7X/tIj01k0rVg+l/S09qNiw4cWAYFoyUrx04uhWsJyBzI3j1LNa4y4KkrDT+io4kKi0OszLROrgO3UObFjl5SZQMZaqOCngEAh4p6VCEEKL8OH4cPvsMli6F2FhITgZ/fwgNhWHDYPJkCAsr6ShFOdK7dQM+mXYTb85ZxbHoOIceoylFp6Z1aN+o4C33ZpNGcICPU3E4uoXKHZZtPcilFPv9PZWC75dvY2jnZm6ISpQESdgIl+lapRHBHr5cykq1u9Zq6Iyo1d4NUZUN59ITWHB6K1suHiHDmkUNnxBG1O5AjzyJA03T6DCwDR0G2m8GDEDmFtBjHYzAhJE2H1WBEjZZuoWZB5cx9/Q/WHQrJmUCDCyGTqhXII82H170WHMhhBCiLFu+HD74ABYv5qq9KUlJEB0NkZHw5pswfDhMmwYDB5ZMrKLc6dS0Dr8+/y8ij0Wz48gZdh09y/o9J65KomRvBWrbqCZv3T+iyK1ADWtUZsfhMw43Ia5fPeQ6voLitXDTXpS6+p/ilQwDDp6J5Vj0RRrUqOye4IRbScJGuIyHZmZSWE8+OfxXketMSqNpYE1aBdVxU2Sll2EYfHl0FV8dWQXkjkE/nBzDmvP7qO1Tif91uIN6/qHOH1w/78RiK1jPOn+OEmDRraw5v495pzZzMuUCJqXROrgu4+p2oW1ImEN7eq2GzpM7f2ZD7IGcElOLYc25PzYjkWciZnGkYQy6oZOUlU6Ahzf9qrWieVD5aaYshBCiArJaYfp0mDnTsfWGAYsW2f6bOhXeew9MJldGKCoIpRRtGtakTcOaAFxISOGXv3cxf91u4pJSMWkabRrWZGLftvRp0xCzqejq5zE9WzN7TYQD54VGNavQvG614vgyisW5+GSnevrEJqRIwqackoSNcKl/NejNoaSzrIzZU+D9JqUI9Qrkv+1ulWZZwJdHV/HFkZVX3Z797kJ0+iXu3/I533d7iGo+wc4dXDk56Un5Ore+BESlxjFt2zecTr2IhspJcMWeS2R5TCQ9QpvyeptJ+Jg9izzO/NNbWB97wO75vj66GpPSct7d+fbYWpoH1uKV8PHXlkQTQgghSpLVChMnwty5V98XHg49e9q2QyUnw/r1tgqbvGbOhJgYmD1bkjai2FUJ8mPKyO5MGdkdXTdQCqeuFxrXqkLv8Aas3328yO1OhgGTR3QrVdci3p7OXaZ7e8hlfXklTRmES5mUxmttJvJYs+FU9w7Od5+35sHYOl34rvsU6V8DxKRd4svLlTWFsRo6iVlpBSZ17PLogOP/5BXKq7vz53CjS5mpPLDlC86mxQO51Uhg+z4BbIo9xJMRP6EX0UDZMAxmn9iIo7+irYaOxdBzznEoKZq7/vmEk8mObjerOCxZFnat3cv6+ZvZuWo3mRlZJR2SEEKIvKZPz5+s0TSYNAnWr8e6bTsXnn2VC488ifX9DyAiwpa0mTTJti7b3Lm24wjhQpqmrimh8p+7htKmQQ2Aq5oamzTbDf++uQ/92za67hiLU/eWYTnx2ePn7UnTOlVdHJEoKTLWW7iNbujsuXSGuMxkfEwetA6ui6/Zq6TDKjU+OfQX3x1bmy/xUBgPzcTSfs8Q6OFkM7X4RyDjL8BqZ6UZVXUDSis9e3mv9PnhFXx9dLVD36/3O9xJt9AmBd53Ivk849e/d12xKBTeJg9CPP0I9PDlhuqtGFmrA5W8/K/ruGVVZnomc95cwIKPlpJwISnndv9gP0Y8MIhbnhmDj79zP7tCCCGK2fLlMGhQ7uc+PjB7Nhc69GDBzD9Z9Nlyki+lABBQyZ8Rkwcy6qEhVKlZCRYutFXmpKXlP96AAW7+Ikq/2IRk9p08h8WqU6tKEE1rh5aqSo6KIMtiZdE/+5i1JoIjUbZJUCbNNhJ8Ur/2hF9O6JQmJ8/FM+alb+2uM2mKSf3a8di4Pq4PShQbZ3IekrARopS4a9PH7E044/D6opIQhTEspzAu3gRGMkUlbVTAcyi/fzl1bHey6FaGrZ7hUENrk9LoXqUJ73Qo+OuJjD/FvZs/Ldb4FAqT0nim5WhG1O5QrMcu7dJTM3h6yGvs3XgQo4Amf5qm0aBNPd5e/RJ+gaV/250QQpRbI0fa+tCArWJm/nwO1mjBk4NfJS0pHd2avzpVM2n4Bfrw3xUv0qhdfVvSZswY0PXc4y1c6OYvovQ6Fn2RTxdtYtXOI/m24zSqWZm7h3RmSCeZ6uNuhmGQkJJOeqaFIH9vfDw9SjqkIn34+3q+Wba10PtNmqJqcAA/Pn0LIfJGWJniTM5DtkQJUUqkW53bLpKhW5w+hzLXRVX6GUzZo7/z7jdXgBkV8GypTtYAnE2LdyhZA7YtTDvjTxR6f4CHk719HGBgYDGsvLLnN5ZHR9p/QDnyyaPfsK+QZA2AruscizzJ/+4v3iSZEEIIJ5w4YZsGlW3CBOI69+KpIa+RlpR2VbIGQLfqpCSm8eSgV7kUmwCjRsGECbkLFi2yHVew+3g0t78xi9URR67qnXI0+iLPfL2UT/7YWELRVVxKKYL9faheKaDUJ2sApt7Yg3uHdkFTCi1PVVb2VqmGNavw1f+Nl2RNOSfdiYQoJar7BHM8+bxDW3wAqnpfWwWa8mgMVVZAxlqMtPmgR4PyRXn2BN9xKK3SNR3XnfJOcLre9WF+odT2rURUapyD33nnvL3/D/pVa4lZK//NGBMuJPLXt2vQ7YzP1K06f//6D+ffukDVOlXcFN310w2dzReOsPvSKSyGTk2fEAbUaI2/ufiTfkII4VKffZZ/XvBDD7Ho0+WkJqQW+RyuW3WS4pNZ8sVKbnlmLEyZArNm2e40DNtxZ8xwcfClW2p6JtM++p2MLEuBjW6zb/piyWaa161G3zYN3RyhKCuUUkwZ1Z1xvcOZt343Ow6fIdNipXaVIG7s3oqOTWrL9roKoNgTNlarlZdeeokff/yRmJgYatasyZ133slzzz0nP1CiQjl3Mpaju05g6AZ1mtWibrOixz+PrNWBDbEHHTp2Xd8qNA+89nHSSpnAuz/Ku/81H6MkhXoFYlJaTuPfoiigpk/hvXiUUkys14N39v9RjBHmis9M4e/z++lfvZVLjl+arJmzEavF/t8JgNIUK39cx6Snx7g4quKx+txe3t2/iHPpCTmTwqyGzjv7F3Fzva5MaTyoQiTlhBDlxJIluR+Hh2N068bCsffZTbgDGLrBwo//tCVsevSA1q1h927bnUuXVviEzZKtB0hISbe7TlOK75dvk4SNsKtqsD8PjOhW0mGIElLsCZs333yTTz75hO+++46WLVuybds27rrrLoKCgpg2bVpxn65UMiwnQY+1jUU2N0ap0l9yJ4rPgS2H+e6lX9i2LIK8JRstujfltufH0Wlw2wIf17tqc6p7BxObkYDVTmup2+r3qtAJ0AAPH/pXa8mqc3sdStqMqdO5yPvH1unM+tgDbL5wBKOY62zMSiMi/kSFSNhcOHMRk1nDkmW/AkppitjTF9wQ1fVbHLWDl3fnTlHJ+zOXoWfx0/F1nE65yBvtbsGkZKexEKIMiM0z2bBnT1KT0kiITXT44RfPxpORloGXj5dt9Hd2wiZWJiYu2LAHpfIXMBVENwwijp7l7MUEalaWaanX4uS5eM7FJ+HlYaZJndAysc1JCGcVe8Jm48aN3HjjjQwfPhyAsLAwZs2axZYtW4r7VKWKYRiQvhgj5Wuw7Mm9Q6uE4TMJ5XcPSquYE2Mqks2Lt/PS2Lds71Bd8Yv6wD+HeGbYf3j008kMu+/qKQpmzcR7He/g/s2fk2LJKDQRcVOdLtxYu6Mrwi9TbgnrycqYPUWu0VAEeHgzvGb7IteZNRNvt7+d9/Yv5vczW7EaxuULbwOLAwkhezKvod9QWeTp7Ykzfew9vUv/C6vY9ERe2zOvyDUGsPb8Phae2WY3OVjWHU8+z9KzEVzISMTb5EGnyo3oFdpMqouEKGuSk3M/9vdHac4nm3Me45/n9W1SUsGLK5Bz8cl2kzVXrpeEjXOWbz/Ed8u3se/kuZzbfL08GN2jFXcN7kTlQL8SjE6I4lXsCZvu3bvz+eefc+jQIZo0acKuXbtYv3497777boHrMzIyyMjIyPk8MdHx7H5pYRgGRuJrkPYDV/Vx1uMg5ROM9D+h8k9loj+IuDaxZy7yys3vYLVYC/xFnV1m/N4Dn9OwbRhNOzW6ak0D/2p8320qnx9ZwV/Ru/IlC+r4Vub2+r25sXbHCl1dk61lcB2eb30Tr+7+DaW4qirJpDS8TR683/Eu/B1oLOypmXmi5Y3c33gAf56NICotDrMyUdunEp8dWUGSJd2hap4r6YZBjSK2ZJUn4X1b8P3Ljn2PrFlWwvu2dHFE1+/3M1sdSkIpYNaJDYyu3alc/vuMy0jmhchf2HLxSL4qormnNlPZ059nWo2lV1WZeFIeHUo8y9xTm9mbcBrdMGjgX42xdTrTvlL9cvmzXmH4++cmV5KT8fH3pmq9Kpw/ab/yUSlFzUbV8PTyyHl8joAAFwRbtnh6OJfA9vKQlqLOyJ6cpF3x/JOakcWcNRGs2HGYr/89XpJgotwo9meIp556isTERJo1a4bJZMJqtfKf//yHW2+9tcD1M2bM4OWXXy7uMNwr7efLyRqAgi5WdLCewIifiqr8szsjE260+LPlWLIKTtbkpZkU8z9YwlM/FLxFsKZvCC+F38z0ZsPZc+kUmbqFat5BtAiSxmJXGl6rPbV9K/PdsbVsiD2Ys53JUzMzvGY7/tWgD7V8nUuSBnv6MTGsR77buoY24T975rEt7hgatk79zlTeDKnZ1qkYyqrw3i2o3aQGUYdjikxyKAWVaoTQZXjRlU+lwV/RuxxqBG4AJ1JiOZVygXr+oa4PzI0SMlO5959PiU6/BHBV4jIuM5l/7/iBN9rdQr9qpT8JJxyTbs3i5d2/sjJmT76eYSdSYlkeE0mroDq80+F2QjylerhMCg2F6Gjbx+vXo4DRDw3li6d+LHTKX143PjTU9oFhwPr1+Y9bwXVrUY/fN+zB6sD3McDHi0Y1K7shqvJhyZb9OWOuC2robNUNLiam8PDM3/n1+X+hafK6WZR9xb7Z/pdffuGnn37i559/ZseOHXz33Xe8/fbbfPfddwWuf/rpp0lISMj57/Tp08UdkksZhhUj+TMHVlohaxtGVsUa8VuRLP1qZYFjMK9kteismbOR9NSMItcFe/rSs2oz+ldvRcvgOpKsKUSbkHq82+FfLO77JF90mczXXR/kz/7P8HSrMU4nawpTy7cSH3e+l196TufBJoOYFNaT1kF17T5OQzGwRjjVvCvGuzxKKaZ9fB9KU4X/vCrb/037+D5MptK/jSYxM82p9QlZzq0vCz49vJyz6fGFVpgZ2EbZvxz5K2mWTPcGJ1xCN3SejZjF6pi9QP4kXfbH+xOjeGjL1/J3XlYNG5b7cWQkbNzI0HtvoEqtSmimwi8PNLNG1XpVGHRnX9sNGzbk9q8BGDrUNfGWITf3buNQskbTFDf1ao2nVNg4xDAMvv5zC/ZeDlt1g+MxcWzad8ItcQnhasWesHn88cd56qmnmDhxIq1bt+b222/n0UcfZUYhHeO9vLwIDAzM91+ZkrkF9BgHF5swUn9zaTiiZBiGQfy5Sw6vt1qsTjX3E/ZV8Q6kTUg9WgXXcdmY5TD/qtzRoA8PNx3CJ13upXPlRhT2ukFD0TyoFk+3HO2SWEqrdv1b88qCJ/H28wJFbuLm8see3p48O/tRuo/qVLKBOsjPge10eQU4ub60S7aksyhqe4HvZF4p1ZrJsuhdbohKuNo/Fw6zLvZAkdVlVkPnaPI55p8p3z0Ky63Jk8l35fvRR/gH+/HWyhcJrV358nN27t1KKVBQtU4V3lr5In6BvrY7Pv447yJ44AH3xF+KNakdyvg+bYpcY9IU1UMC+NdA6UmY7WJiCt8u28ozXy3hma+W8OXSzcQm5G63O3gmlmPRcQ71BzJpivkbi+5zKERZUewp3dTUVLQrGpeZTCZ0/fobd5ZK1jPOLAbrKZeFIkqOUgqzp5msDMeby5aFhquicJ6amfc63MHskxuZc3Ij59ITcu6r5OnPzXW7cmv9XnibKt7fc5dh7Zlz9nNW/rSeNXM2kHAhkYBK/vQa25VBd/TBL6jsNAMcUL0V3x/72+62KAXU8qlEmF/52g6w/eIxMhxsmq1QrD2/j9F1ykYyThTul5ObMKGw2t0OaPDLyU1MrNcdTSaklS1hYTB8OCxaZPt8zhyYOJFao0bxeeQ7rPzxb37/6E/OHIgCoF7LOoyaMoQbbu2Jj7+P7TELFtgel23ECKhXz71fRyn1+Pi+mE0as1btRNNUTsWN6fLH9WtU5oMpownO/l5WYFZd5/1565i1eie6Qe4bYdvh0z82cVOvcP49vg9nLzr+RqdVN4iKTbC/UIgyoNgTNiNHjuQ///kPdevWpWXLluzcuZN3332Xu+++u7hPVTooZ7+Fni4JQ5S8Nn1bsWNFpN1tUUpBrcY1CK5aMbbJlGdmzcRt9XsxKawHBxPPkpCZSoCHD80Ca1b4qTk+/j6MmDyQEZMHlnQo12VMnc58f+xvh9ZOqNe93G1dTLEUvXUzLwODpHK4Jawi2hF33IFkjW073Nm0eC5kJFG1gmz9LFemTctN2Og6TJwIs2fjO2oUIx8czMgHB+f0I7vquW3BAtv6vG/ITiu4N19FZNI0/n1zXyb0bctv6yLZeSSKLItOnarBjOnRis5N60p/FWwV6q/8sJxF/+zLeca58pln7t+7iE9OZUSXFk4d29NcsV+HifKj2BM2H374Ic8//zxTpkzh/Pnz1KxZk8mTJ/PCCy8U96lKB492TizWUJ7OrBdlyeipQ9i2LMKxtQ8PK3cXdhWZSWm0CKpd0mEIF6jhE8JjzUfw9v4/Cl2jUHSo1ICb6nZxY2TuEeTp6/BaDSUNaMuJLMPq1PpMB6uwRCkzcCBMnQozZ9o+T0uDMWNgwgSYMgV69Mj/WsUwbD1rPv7YVlmTN1kzdSoMGODe+MuAOqHBTB/bu6TDKLU27jvJH//sK3KNAazYcZgeLcNyKpTs0TRFhybyukyUD8WesAkICOC9997jvffeK+5Dl0rKHIbh2dXWy6bACVF5aeBzszvCEiWg09B2dB3Zgc2LdxQ6YUEzaTRsE8aQu/u5OTohxLUaX68bviZP3ju4hMSsNMyXt37ohoFSihG12vPv5iPLZVVVx0oN8DN7OVRpo2MwqEa4G6ISrlbFKyDfNs+imJRGJUnUlV3vvQcxMTB3ru1zXYdZs2z/hYdDjx62EeDJybZkTWQBwzNuvtl2HCGc9MuaCIeSMJqmWLx5PwPaN2HFjkN21xu6wU295PeRKB+kLXkxUAGPY1ycBFgoKmmj/KegTDK6r7zSNI3n5zzGW3d9xJo5GzGZNawW289D9setejbjxd/+jZePVwlHK4RwxojaHRhcsw1rzu0j8tJJLLpOLd9KDK3ZlspeASUdnst4mTwYV6crPxwvuo+PhiLI05e+1ZwrWRel0+janfjiyEq7vZtMSuOG6q3wNcvvtDLLZILZs2H69NxKm2yRkQUnaPKaOtWWrCkDU/9E6aLrBhv2nnCoqb2uG2w7dIY5z97O+j3HScvMQi8iaXPbgA7UqiLbNEX5oAzDkV7b7pOYmEhQUBAJCQllamKUkfEPxqUHwUjNvuXynybACn6TUf6PyTaYCuL47pP88elyDm07gm41qNeyNiMmD6JFtybyMyCEKFPSrVlM2fIl+xLOFHgBr6EwaRofd7qXNiHScLQ8uJCRxJi1b5OpWzCKSNooFF93fYCWwXXcGJ1wmRUr4IMPbH1tiro8UMrWYHjaNNkGJa5ZWmYWPR6ZaX9hHiv/O5mY+CQenvk7cUmpaErlJHyyK3Vu6d+Ox27qIz2CRKnmTM5DEjbFyNCTIG0+Rto80GNB+YBXP5TvJJS5QUmHJ4QQQlyTNEsm7x1YzKKoHViyLHhsTsVj6SVUdBZenh506d+WO6aPpX5rSdiUF5svHOaxHd+jGwZWI3/1sIZCx+CZlmNkKlh5dOIEfPYZLF0KsbGQlAQBARAaCkOH2kaCh4WVdJSijDMMg+6PzCQjy7EeWCZNsfH9h/Ewm0jPtLB8+0EWbNxLdFwinh5mureox029wmlQQ3YziNJPEjZCCCGEKHYH9h/n2WGvk3jyEsqkMKyX39m8vO1zyN39eOST+zF7yI7r8uBg4lm+OrKKv8/vz1dd1S4kjLsb9qNLlcYlGJ0Qoqx7+Ye/WPTPPrs9aUyaYkD7xsy4Z7ibIhPCtZzJecgrKiGEEELYFRcTz4sDZpB8PhEgJ1kD5PTrWvbNGnTd4PGvHyqRGEXxahpYk/+2v43z6QkcSYrBahjU86tCXb8qJR2aEKKUSExJ549/9vHn1gPEJ6cR4OPFDe0aM7pHK6oE+RX52Al927Jw416757DqBhP7yqRdUTFJhY0QQjghMSuNjbEHScxKI8DDm25VmhDsWfQLEiHKg08f+5b5Hy5Ft9qbiAgfbX2DJh0auiEqIYQQJWXtrqM8/dUSMiyWfG2PNKVQCp6edANje7Yu8hg/rdzBO3PXFrnmoVE9uGdo5+IIWZRy+07G8PuGvZy5cAkPk4nWDWowpkcrKgeWr9fasiVKCCGKWWJWGh8eWMqSszvJMqwobK3FzUpjUI02TG82TBI3otxKT81gfI17SUtKt7vWZNYYcHsf/v3VFKfOYdGtmJQmjdmFEKIM2HzgFA99MA/DKKo1Obx65xCGd2le5LGWbT3IhwvWc/ZiItrl3wG6YVA9JIAHR3ZjZLeWxRi5KI3ik9N4/PM/2HE4Kt+od6UUmoK7h3TmgRHdys1rBNkSJYQQxehSZir3/vMpUWkXsV7OcWe/OLEYOsuidxERf4Kvuj5Qrkc8i4rr5N7TDiVrwLY9KmLVHofWHks+x9xT/7D0bAQplgw8lIkeoU0ZV68rnSo1LDcvzIQQojwxDIM356zCKHKOnM3bv65hYPvGeBbR22xwp6YM7NCErYdOcyTqAgbQsEZlujSrK9OeKoDktAzue/cXTp6LB8jX08gwDKwGfLFkM5kWK4+M6VVSYZYYSdgIIYQdM/bOJyotLidZcyWroXMuPYFXd//Gex3vdG9w5ZjV0NkUe4h5p7dwOCkagOaBtbipbhc6VW6IprQSjrDiyMrIcmq9JdP+1I95pzbz5r6FaErlTCHKMqysiz3AmvP7GFmrA8+0GoNJ/p6FEKJU2XkkihMx8Q6tTUhJZ1XEEYZ0albkOk1TdGlWly7N6hZHiKIM+WnlDk7ExOeMaC/Md39tY2TXFhVuEpi8ChJCiCKcS7vEmnP7rhpreyWrobPxwiFOp1x0U2TlW1xGMndt+oTHdnzPptiDnEtP4Fx6AutiD/Dwtm+4f/MXJGSmlnSYFUbVuo43mVWaolpYaJFrVsfs4Y19CzC4emR09ud/RG3no4PLnA9WCCGES0UcPYvJwcoXs6ax80iUiyMSZVWW1cqvf++ym6wB27SwX/+OdENUpYskbIQQogjLY3bjaDGuphR/Re9yaTwVQbo1k4e2fpVTVWPNU3CdfTG/N+E0j2z/lkzdfiWHuH5V64bSpm9LNJP9lw2GbjDsvgGF328YfHToL4f+Xc06uYG4jGQnIhVCCOFqmRarw1tWDQyyLPab1YuK6Xh0HHFJaQ6tteoG63Yfc3FEpY8kbIQQoghxGckOb73RUMRlysXl9VoUtYNjyeeKrGqyGjr7Es6wInq3GyOr2MY/fqPdCVGaSSOkWhB9J3QvdE1E/AlOpV6w2/cAbE0n/4ja7mSkQgghXKlGpUAsDkwMBFvPv+qVpL+fKFiak1uu0zOdW18eSMJGCCGK4GP2dKClno0B+Jg8XRtQOWcYBnNObnJorYZizsmNLo5IZOs8tB33vXkbQIFNIE1mDd9AH2b8+RxePl6FHudQUjTKwbo1BRxOjL6meIUQQrjGDe0a4VVEE+G8DN1gRNcWLo5IlFVVghyfsKqAKuVsvLcjJGEjhBBF6F6lid3+Ndmshk730CYujqh8S7FmcDIl1rHqCwz2J0Y5/Pcjrt/4x2/k1YVP0bxb/p9zDy8zg+7oy8fb3qRhm7Aij2E4sE89L93BhKkQQgj38PfxYnyfNtjbFaUpxQ3tG1OzctFji0XFVatKEK3CqueMcy+SglHdK96Id5kSJYQQRWgRVJvGATU4mhRT5IWjhqK2b2XahdR3Y3Tlj0W3Ov0Yq6HLJCE36jqiA11HdODM4WjOnTiP2dNMwzZh+Ac79q5XmH9Vh6vWAOr7V73WUIUQQrjI1NE9OB4Tx4Y9xwt8RteUolndqrx4+yC3xybKltsGtOepL5cUuUYp8PH0YGQFrNaSV7hCCFEEpRTPthqDWTOhFbKNQ0NhUhovtL7J4SZ8omABHj5ObSsL9vDFU5P3HkpC7cY16DCwDW36tHQ4WQPQuXJDqnkHObTWAEbV6nCNEQohhHAVD5OJdx8YxWPj+lxVQVMpwIf7h3fli8duxs9btoqLog1s34Rb+rcr9H5NKcyaxjsPjCLA19uNkZUO8ipXCCHsaBFUm08738dTO3/mfEYCJqXZqjpQWDEI8fTj9baTCA+pV9KhlnkmpTGqdgfmntpsd6uThmJMnc5uikwUF01p3N9oAK/u+a3IdQrFyFrtqeYT7J7AhBBCOMVs0rj1hvZM6teOA6fPk5CSjr+PJ83qVsXDZMq/+Phx+OwzWLoUYmMhORn8/SE0FIYNg8mTISysRL4OUbKUUvzfuD6EVa/E10u3EBOflO/+Dk1qM210T1qGVS+hCEuWMpzdTO5iiYmJBAUFkZCQQGCg7HcUQpQeVkNnY+xBVsbsITErjQAPH/pVa0nP0KaYNZP9AwiHnEq5wKT175NlFL49SqHw1MzM7fWoXNCXUV8dWcVnR1bkJECzaSh0DHqGNuONdre4tIJKN3QydStemlmq44QQwhWWL4cPPoDFi6Goy06lYPhwmDYNBg50X3yiVNF1g+2HzxB1IQGzWaN1WA3qVQsp6bCKnTM5D0nYCCGEKHX+Pr+fp3b+hAFXVdqYlIZJabzb/l90rtKoZAIUxWJH3HHmnNzI2nP7cnpEtQ6uw/i63RlQo7VLehPphs668wf45dQmtl08hoGBj8mTEbXac3PdroRJzxwhhLh+VitMnw4zZzr/2KlT4b334MoqHSHKCUnYCCGEKPMOJETx3bG1rD63N+di3qQ0BlRvzR0N+tAooGKWxpZH6dZMErPS8DV54e/huv3pmbqFZyJm8ff5/ZiUwprnJZBJaRiGwfOtb2J4rfYui0EIIco9qxUmToS5c6++Lzyc9M5dOXQpjbMnz9L4xAEaxkZdvW7cOJg9W5I2olyShI0QQohyIy4jmdOpF1FAXb9Qgj19SzokUUa9FPkrS89GFDmlSgHvd7yLrlUauy8wIYQoTx5+OH9ljabBhAnw0EOs8K7Cs9/8iUU3MAwDDIM2MSeYsG8DA4/sxJT30nTqVPjwQ/fHL4SLScJGCCGEECKPUykXGLfuXbvrFIrmQbX4ttsUN0QlhBDlzPLlMCjPKG8fH5g9G2PkSH7aspV3v91Q6EN7n9jDjBU/4GPJyn+8AQNcGLAQ7udMzkPGegshhBCi3Pv99FY0BxoLGxjsSzjD4aRoN0QlhChPUtMzWfTPPj5btImvlm5h+6EzlLL3xl3vgw9yP9Y0mD2bC4P6cuemj3l37looosLx77BWPD3gdqx5n6vzHk+ICkjGegshhBCi3DuUdBbdiQunw4kxNA6o4cKIhBDlhcWq88kfG5m9OoK0zCzMJltPLKtuULdqMI+P70ePlmElHabLHd24jQaLF5OdbjnZbxAefXvz0ObPORuVDMlBdo/xd1gr/mrYlqFHdtpuWLQITpyQkd+iwpIKGyGEqEAyrFlcykzFohc+MluI8sjZ97iL6nMjhBDZrLrOE18s4ttlW0nLtG3lsVh1rLrtOeR07CWmfTSfFTsOlWSYLhWXmMp97/7K2qlPovIkxl/2b8yYHz7ibFo81osmUI49r/7WumfuJ4YBn31W3CELUWZIhY0QQpRzuqHz9/kD/HJyI9vijgG2iTj9q7ViQr3uhIfULeEIhXC9hv7V2RF3/Kox8YWvr+biiIQQ5cG8dbtZs+toofcbhq2Z+XPf/EmHxrUJCShfjfOTUtO5551fOHPhEo+f2p9z+6HKNYioWQ9T3TgUBuj2t6Rm21W9PjG1w6h+5oTthqVLYcaMYo5ciLJBKmyEEKIcs+hWnts1hyd2/siOuOM5t1sNnVXn9nDv5k/59uiakgtQCDcZU6eTQ8kahaJJQA2aBdVyQ1RCiLLMMAx+WrUDe6kIA8iyWlmwaa87wnKrr/7cwukLl7DqBiFpKTm3R1RvAMFWlMflqho/KxiOJW0MpbjYul3uDbGxxRmyEGWKJGyEEKIce/fAYlbG7AZAv2KLR/bF68eH/2JR1A63xyaEO9X3r8oN1Vuh2bm0MjC4v7FMJBFC2Hf07EVOnb/k0AZKw4ClWw64PCZ3Ss+0MG/dbvTL2798sjJy7kv18ESZcr8zqnoGmB2rcDQMg3oN6+TekJRUPAELUQZJwkYIIcqpC+mJzDu12aEXkp8dXo7u4FYRIcqqF1uPo2PlhgBXJW5MSkOheKLFKHpXbV4S4QkhypiElHSn1h85e4EZs1Zx9OwFF0XkXvtOxpCcnpnzeZqHV87HvlmZGBm5l5rKDKphGvY6imlKMbB9E/yteUZ7BwQUW8xClDWSsBFCiHLqDyeqZs6lJ7D5whEXRiNEyfM2efJehzt4OfxmmufZ8uShTAyp0ZZvu01hXN2uJRihEKIs8fPxdGq9YcC89ZGMf/UHflxZ9itb0zKy8n0e7+OX83HbmGOQqGEkmMjuQ6w1TUXVysCWtLkycWOgFLQKq84Ltw6A9etz7woNdUn8QpQF0nRYCCHKqWPJ5xxeq6E4lnyebqFNXBiRECXPrJkYWrMdQ2u2I9WSQYaeRYDZB7NmKunQhBBlTONaVaga7M/5S8kOPyZ7etS7c9cS7OfNiK4tXBWey13ZQHl93eY0uRgNQJOL0bSJOUnk0RqY2tu2NCkFWockjNAs9KM+kJR7Kap8DB4c1J3bb+iI1+Z/YPfu3AMPHer6L0aIUkoqbIQQQgC2F1JCVCS+Zi9CPP0lWSOEuCYmTWNi37aoa/wF+v78dVis7tmOnJFlwaoX77ma161K7dCgnA2mvzXvjp5nu+n4vesxTnuhH/fOuU0p0OqlY+oXj6l/HOael/Dpn8hXz97EvUO64uVhho8/Jt8DHnigWOMWoiyRChshhCinGgVU56/oSIfW6hg08q/u4oiEEEJcD6uus373cXYciSLLYqVG5UCGdmpGlSA/+w+uYHTd4OT5eNIyMgkJ8KVGpUCXnGdS/3asjTzK7uMx6IYjXeNyXUxMZf2e4/Rt09AlsUVdSODXv3fx+4Y9JKZmoIDWDWowqW87+rdvhIfp+pLVSiluu6EDb8xeBUB0YCXW12tO75P7ABh0NIJljdqxXrXCI92bkLY65zMSLz8WCLDSvUpDHmo6mMYBNWwHXbAA5szJPcmIEVCv3nXFKURZpgzDyWcWF0tMTCQoKIiEhAQCA13zxCqEEBXBxYwkRqx506FRxjV8gpnf+99oSgovhRCiNFoVcYQ3Z68iNiEFs8n2XK3rBigY0aU5T07sj4+nRwlHWfLSMy38sjaCOWsiiI7LnS4UXr8Gt97QngHtG19zRUxh0jKyePWn5SzbdhBnrqzMmsZdQzrx4MjuxRoPwNrIozzxxWJ0Xc/ZhgW2pr66YdC+cS3enzIaP2/n+vBcSdcNnvl6CX9tPwRAl9MH+WTxZzn3p5s9eG7wHUx690XaNa7JzrgTRKfFY9ZMhAfXo6ZvSO7BFiyAiRMhPU8z5+XLYYBM7hPlizM5D0nYCCFEOfbe/sXMOrnB7qSoV8LHM6RmW3eEJIQQwklLtuznuW/+RFHwjB1NKcIb1ODTR27C06PiFtAnp2Xw4Ae/se/kea68xMlOVEzo04YnJvQr9qQNQExcEk98sYi9J2McStyYTRp3DOzIQzf2KNY49p6I4c635qDreqG//zWl6NK8LjOnjrnu74VV1/lm2VZ+WrmDhJR0nlg/j4l7cpsGG5qGmjABpkyBHj3y78E2DNiwwbYNas4cyLtta+pU+PDD64pNiNLImZxHxX1GF0KIUuRwUjRnUi5i0kw0DaxJNe+gYjnuw82GcikrlSVnd2JSWr5qm+zPpzcbJskaIYTLJFvSSbNkEuDhg7dJKkCcFZ+cxsvf/wUUPhBZNwx2HYvmhxU7uGdoZ/cFV8yOJZ8jJu0SHpqZZoE1CfDwcerxz3/7J/tPXZ2sAXK2K81Zu4u6VUOY1L9dscScV/VKAQzt1Iy9J2McWm+x6tSrHmJ/oZM+X/IPYBT5Zo1uGGzad5LI49G0aVDzus5n0jTuHdqFOwZ2ZMPeE5y7qRdn/vMMtdcsB0DpOsyaZfsvPNyWtPH3h+RkW7ImsoDt2zffDO+9d11xCVEeSMJGCCFK0OqYPXx9dA0Hk87m3KZQ9KrajPsbDaBJYI3rOr5JabzYehyDa7Thl1Ob2BR7CB0DT83M4BptuLluV5rlGW8shLsZhsH+xChi0xPx1My0DK5DoJMXaaL0sRo6q2L2MOfkRiIvnQJs0+h6V23OxLDutK/UoIQjLDsWbNiDxYFmsYZhMGdtBHcO7ohJK1vbW1fE7Ob7Y2s5kJj7u9BTMzO0RlvuadSf6j7Bdo9xPCaOtZHHHDrf18u2cHOfNjlby4rTsC7NeW/e32Q50EzYz9uTG9o1Ltbzn4tPYv2e4w5V+Jg0xdy/I687YZPNw2zK7cfTbylMnw4zZ+ZfFBlZcIImr6lTbcma6+yxI0R5IAkbIYQoId8f+5uZh/5Ekb8U2cBgfexB/rlwmPc73EmHytd3YaOUoltoE7qFNkE3dDJ1C16ah0vKwYVwlGEY/BG1nR+O/83JlAs5t3toJobWaMt9jW6gmgMXaaL0ydItPBsxmzXn96HleX7TMVgXe4A15/dxX6MbuK/RDSUYZdmxfMchh/uiXEhIYf+p87QKKztN5D87vJyvjq6+6ndhpm5h0dkdrDm/j8+63EcD/2pFHmfBxj2YNJWvX0thLiam8s/+k/RsVf+6Yi9IkJ83E/q25aeVO+xuR75jUMdi7zt0NPqiwz8vVt3gwKnzxXr+HCaTbTvTjTfCBx/AokUUGZhStgbD06ZJzxoh8ihb6XchhCgntlw4wsxDfwIFFy3rhk6WbuX/dvxAQmZqsZ1XUxreJk9J1ogSZRgGb+1byGt75nEqT7IGIEu3svjsTv616aN8iRxRdry9fxFrz+8HbEmavLK3ZX5xZCULzmxze2xlUWJKuv1FedenOre+JK2M2c1XR1cDBf8utBo6yZY0Htn2LVm6pchjnYlNsDVhdoBScCb2ktPxOmramF4MaN8EsPWKyUvTbJ/f1LM1dw8u/u1rznYnLXrjVDEYMAAWLoRjx+Cpp6BNG6hZEwICbH+2aWO7/dgx2zpJ1giRjyRshBCiBPx4Yl2+d54LYmCQZs1gUdQON0UlhHssOLONuac3AwX35LAaOolZaTy67VuHppyJ0uN8egILTm916CLwi8Mr5O/XAUH+zm0RDPL1dlEkxe/7Y39fVVlzJathcC49gTXn9hW5zmTSHH4zwjBw6bYxs0ljxj3DeP3uobQMy18Z1L5RLd6ePJJnbrkhJ3lTnOpXr2TnO5rLpCka1wot9hgKFBYGM2ZARARERUFiou3PiAjb7WFh7olDiDJGtkQJIYpVlm5hfexBzqRexKxMtAyqQ+vgOlLRkUdcRjKbLxx26D0tA1hwZiu31u/p6rCEcAvDMPjh+N9211kNnTNpcWyMPUivqs3dEJkoDn9EbXd47fmMRLZcOEK30CYujKjsG9ShCftPnXOocqJqsD/N6lZ1fVDF4ETyefYnRjm0VkOx8Mw2BtYIL3RN67DqrNhxyOHzt6pfncwsC6sjjnIoKhaAhjUrc0O7xngVw6QtTVMM6dSMIZ2aEZ+USlJaJoG+XgQ7mYBzVs3KgXRtUY8tB07Z3R5m1Q3G9S78eyqEKHmSsBFlnmEYbI07ytyT/7An4TSGYVDPP5Sb6nShb7UWeGjyY+4OhmHw04n1fHdsLQlZqTnVIzoG9f2qMr3ZMHlRftmFjCSnCpDPpye6LBYh3G1fwhlOp150aK2mFH+c2S4JmzLkeLLj/TA0FMeSz8vvBjtGdWvJxws3kmWxFvm7QymY2K9tmWk4HJ12yeG1OgZn0+KLXDOyW0s+/H293Wa/mlI0rV2FiCNnefD930hMzchpPmyx6rwxezX3Du3M7QM6FNubTSEBvoQE+BbLsRxx37AubN5/qsg1mqZo26Am7Rtd/+CBqAsJzF0XyV/bDpKUlkGAjxeDOjblpp6tqR0afN3HF6IiKxvP6EIUItmSztRtXzN169esiz3AhYwkLmYmExF3gmd3zWbi+veJSo0r6TDLPcMweGPv73xwcCkJWbZ+KzpGTu+CEymxTN/+Hcuj7UwFqCC8nEwiepkk6SjKj/PpCQ6v1Q37F2midLG3veWq9VJ8aVewvw+v3DkYFIV+d5VSdGhch1v7t3drbNfD2d9tnnZ+dwb5eXPf8K5Frsn+/tWvUZm3fl1DYmoGYEvUWC4nepLTMnhv3jr+95v9SsDSqm3DWvzn7qGYNA3TFduusv/NNatTlXcfGHXdSalf1u5i1Atf88OK7UTHJZGclkl0XBI/rNjOjS9+wy9rd13X8YWo6CRhI8osq6HzxI4f2X7xWM7n2bITBWfT4nlwy5dcKsamreJqK2J2M//M1kLvt/UyMHgx8lenLtbKq1q+lajs6e/QWpPS6Fy5kYsjEsJ9PE3OTUTxcnK9KFlNAms4XEGoY9AkoIZL4ykvBnVoyv8evJHqlQMBW/8Vs0lDKVu/lJt6tubDqaPxMJedMchNAms6/AaGSWl0dGBi4j1DOnP3EFsj3ysTFZpSeJhNTBnVnSVbDtg91o8rd7D5QNFVKqXZ4I5NmfPcbYztGZ5vi1fDmlV4/tYBfPV/4wn0u75+R4s37+eN2aswDK5q+KzrBoYBb8xexeLN+6/rPEJUZPK2rSizNsQeZFvcsSLXWA2d8+kJzD21iXtlfKjLzDqxAQ111TSQvAxsk48WnNlW4Ue5mjUT4+p15YvDK4v8noHtZ/jmukW/YyhEWdIyqA5mpWFxoNmshqJz5YZuiEoUlxG12vPxob+wOtBwpZZPJTpUsn8RLmx6t25Az5b1+efASXYejiLLaqV6pUCGdGzq8r4oruBv9mZYrfYsPLPNbvNpq6Ezro7934VKKYZ1bkZyWgY7Dkdx9qLtTaLQIH9GdG3B6B4tefvXtQ6N/zZpijlrIujSrK7jX1Qp06BGZZ6e1J/Hx/clKS0DT7MJP2/PYjl2ltXK/35b69Da//22lkEdm+BhKjsJRSFKC5dU2ERFRXHbbbdRuXJlfHx8aN26Ndu2yehGUbx+ObnpqlGJBdEx+PXUP1h0qxuiqnjOpSewJ+G03cQD2P4ulkTtdENUpd+Eut2p41cZkyr8aVgBw2q2o3Vw2X2xKMSVgj19GVQjvMif/bxG1yn+sbfCdUI8/bk1zLEm6Q81HSwN6Z2kaYruLcJ46MYeTB/bm4l925bJZE22uxv2I9DDx+7zwfi63ajnX/Q0o5i4JO7/31zGvfI9v62L5MS5ODKyLKRmZOHtaaZX6/qE+Puycudhu8kasDXk/TvyGFmWsv/60WzSCPH3KbZkDcDfkceIS0pzaG1cUhp/Rxb9JqsQomDFnrCJj4+nR48eeHh4sHTpUvbt28c777xDSEhIcZ9KVHC7L51Cd2RkAhCfmcI52YrjEpcyU5xbn+Xc+vLK38ObTzrfR9PAmgD5Xqxmf3xj7Y4812qsXNCIcuf+RgPxM3thsvOzfXfDflTzDnJTVKK4PNhkEDfW7ghw1YW4Sdla0j/efCQDqrcugehEaVLNO4jPOt9HVS/bVi8tT5ee7J+d8XW78Wjz4UUe51x8Ere/+TM7j5wBbMkWi1XPScwcPnuBu96aw54TMTm9ahyhGwbJ6ZlOfU0VxZ4TMTnNmu0xmzT2nIhxcURClE/FviXqzTffpE6dOnzzzTc5t9WvX7+4TyOE3fLZKzlSfi+c52vycmq9j6n43t0p66p4BfBN1wfZGX+c+ae3cjIlFrMy0Tq4LmPrdqGeX5WSDlEIl6jpG8LnXe5n+rbviEm/lG9LpYbCAO5u2LfCb58sq0xK45mWYxhUow2/ntzE+tiDWAwrviZPhtZsx7i6XWgYUL2kwxSlRJh/VX7r/X+sPb+PBWe2cTY1Hk/NRMfKDbmpThe7lTUA//l5JZeS0wqtnNF1gwyLhZe+X+bQdqhsSoGfl/TRKojVicTXtawXQtgUe8Jm4cKFDB48mJtvvpm1a9dSq1YtpkyZwn333VfcpxIVXA3vYE6lXnCouaFZaVTxCnB5TBVRbd9K1PapRFRanN2/C5PS6FetpVviKiuUUrSv1ID20sdBVDAN/Ksxr/f/se78fhZGbScm7RJeJg86V27E2Dqdqe4TXNIhArYpeFvjjrLozHbOpMbhZfKgfaX6jK7diVDvwJIOr9RSStGpckM6VW6IYRhYDR2zJv0rRMHMmokbqrfmhmuoujp7MYENe47bfQ2i6wYnzsXToXEtIo6edaiHTbcWYXh6SMvPgtQODXY4CWPVdRnvLcQ1KvZnoGPHjvHJJ5/w2GOP8cwzz7B161amTZuGp6cnd9xxx1XrMzIyyMjIyPk8MTGxuEMS5dSYup15/8ASu+tMSmNQjXD8zM5VggjHKKWYUK877x5YZHet1dAZW6eLG6ISQpQFZs1Ev+qt6Fe9VUmHUqCYtEs8tv07jiSfw6S0nMrOnXHH+erIKu5u2I/7Gt0g2xbtUEphVpKsEa6xdtcxW9M3B97BM2kawX4+DvewmdC37XXHV14N6diUd+audajHj2FAUmoGmVkWSYAJ4aRi72Gj6zrt27fn9ddfp127dtx///3cd999fPrppwWunzFjBkFBQTn/1alTp7hDEuXUiFodCPDwybffuTCTHGyAKK7NmLqdCQ+uZ/fv4p6G/WgYUM1NUQkhxLWLy0jmvs2fcTwlFsi/DVfHQMfgy6Or+PTw8pIKUQgBJKamY9IcvaQx8PX25LYb2ttdOa5XON1b1Lu+4AqQlJrOnDURzJi1ijfnrOb3DXtIy8gq9vO4WqCfN+P7tMHRfPXHf2xgyofzSMsse1+rECWp2BM2NWrUoEWLFvlua968OadOnSpw/dNPP01CQkLOf6dPny7ukEQ5Fejhwwcd78LH7FngdAGT0tBQvBI+Pqexq3ANT83MBx3vyill1lBoqJzmkl6amYebDuH+RgNKNlAhhHDQt8fWcCEjyW6/tG+PreFM6kU3RSWEuFKQnzdW3dH+KIoAXy8evak3D4/ugc/l/jRmk5bTQNfb08wDI7rx1MT+xVo9Z9V1Pvx9PQOe/Jz/zlnN/A27+W1dJK/8uJwBT37Gd39tw3BwmEZpMW1MT/q0bujQWsOAiCNnef3nlS6OSojyRRnF/Mxwyy23cPr0adatW5dz26OPPsrmzZvZuHGj3ccnJiYSFBREQkICgYGyN1zYF5Uaxw/H/2Zx1E4ydFvWXkPRp1oL/lW/Ny2DpWrLnaJS41gUtZ3TqRcxKxMtg2oztFY7/M3eJR2aEEI4JM2SyZDVr5NmtT8dRlOKW+r1ZFqzoW6ITAhxpei4REY89xWOXtF8/e/xtG1YC4C0jCyWbT/I4TMXAIOGNaswuGPTYh1/DbZeWC98t4zFm/cXue7OQR2ZNqZXsZ7b1ay6ztx1kfx3zmqH/g40pVj8n3uoFiK9JUXF5UzOo9g3ET766KN0796d119/nfHjx7NlyxY+//xzPv/88+I+lRAA1PKtxFMtR/Nw06GcTIlFNwxq+oRQycu/pEOrkGr5VmJy44ElHYYQQlyzA4lRDiVrwDb2d9OFQ0xDEjZClIQalQLp3boB6/ccL7I3jaYp6lerRJsGuVXXPl4ejO7u+h5aq3cdtZusAfj2r230bdOI8AY1XB5TcTFpGgE+Xg4nzAD++Gcf9w6VnoZCOKLYEzadOnVi/vz5PP3007zyyivUr1+f9957j1tvvbW4TyVEPn5mL1oE1S7pMIQQQpRxGbrFqfXpVunJIERJembSDdz2xs/EJaUWmLTRNIW3h5kZ9wwrkSbhs1fvRNMUugOTqeasiShTCRuAqAsJmDUNiwNb05SyrRfCWRcSUliwcS+HomLBMGhQozKje7Qq99VaLmnTPWLECEaMGOGKQwshhBBCuFSol+Mv/hSKat5BLoxGCGFPaLA/Pzx1Cy9//xeb9p9E0xSaUraR8rpB8zpVeelfg2hYs4rbY0tOy2DboTMOrbXqBqsijrg4ouJn0jQMR8Z0YXvOzO4XJIQjLFad9+f9zaw1Efmmwa3ceYQvlmzmxu4teWpifzzM5XMaocxVE0IIIYTIo4F/NRr5V+No8nm7FyEGBiNrd3BTZEKIwlQN9uejaWM5dT6eFTsOcyk5DT9vT/q0aUizOlVLLK6UdMe2V2bLyLJg1XUnJl+VvPAGNRwalQ5g0XVa1y9bFUSi5BiGwSs//MXizfsL/W38+8Y9xCen8fb9I9E091fQuZokbIQQQggh8lBKcVv93ry0+9ci12kogjx9cybkCSFKXt2qIdw9pHNJh5EjwMcLBQ7Wn4CPp0eZStYAdGhcmzqhwZyJvWT36/Tz9mRQh6ZuiUuUfZv2n2SRnf5PhgFrdh1l5c7DDOzQxE2RuU/ZejYQQgghhHCDoTXbMr5uNwAKer/OpDS8TR78r8MdeJs83BucEKLM8PX2pFuLepgceOffpCkGdSx7F5xKKf59c5+Cnyyv8MiYnnh7Ss2AcMyc1REO/dvRlGLW6p1uiMj95F+LEEIIIcQVlFL8X/MRNAqoznfH1hKVFpdzn4aid9XmPNh4IGH+JbfVQghRNkzq146N+07aXWfVDSb0bXtd5zIMgx1Hopj79y72nDiHrhs0qlmZm3qH06NlmMuqd3q1bsB/7hrKC98tQ9cN9Dxjo0yXGy4/MrYX43q3ccn5Rfmj6wYb9p2w26wbbBMbI46eJS0jCx+v8vUmiiRshBBCCCEKoJRidJ1O3Fi7I7svnSI67RIemonWwXUJ9Q4s6fCEEGVE95ZhTOjbljlrIopcN/XGHtfVbyclPZPHP/+Df/afwqSpnL4y5y8lsW7PcRrXqsLMqWMIDfa/5nMUZUinZnRoUpvfN+xhyeYDXEpJw9/bkxvaN+amXuHUCQ12yXlF+ZRltTqUrMkrNSOz3CVslGEYzn0XXCwxMZGgoCASEhIIDJQXQ0IIIYQQQoiyzTAMvlu+ja//3EpyWkbOpCSLVadSgA8PjerBmJ7X3g/LYtWZ8sFv7DgSVehFrklT1AkN5oenbsHP2/OazyWEOxiGQY/pM0nPtDi03qQpNrw3FU+P0l+T4kzOo/R/NUIIIYQQQghRhimluHNQJyb1a8eqnUc4HhOHUtCkdii9wxvgYbq+kcRrI4/aHR9u1Q1Ono9n/vrd3DZAptuJ0k0pxbDOzVmwcY/dKWQmTXFDu8ZlIlnjrPL3FQkhhBBCCCFEKeTlYWZo52bFftw5a3ahXe4VUxTDgFlrIrilf/tyOQJZlC/j+7Rh/vrddtdZdYNJ/dq5ISL3kylRQgghhBBCCOEmhmFwMTGFsxcTScvMKpZj7jpa+FaoK0VfTCQuKbVYziuEKzWpHcoTE/oBRQ8he3h0D9o0rOmeoNxMKmyEEEIIIYQQwsXSMrNYsGEPs1ZHcDr2EgBmTWNghybcekM7WtSrfk3HNQwDi6479Zgsq/WaziWEu03o25bKgb7MXLCBU+cvoRSAwjAMalYO5IGR3RjRpUVJh+kykrARQgghhBBCVFhxiaks2LSHNbuOkpKWSeVAP4Z2acbgjk3x8SyeiTOXktN44P3fOHwmNt/tFl3nr+0H+XPbAZ67ZcA1NR5WSlEtOICY+CSH1nuYTYT4+zp9HiFKyoD2TbihXWN2HI7icFQshgENalSiU9O65X5rn0yJEkIIIYQQQlRIv62L5M3Zq7EaBtmXRUrZer0E+Hrx7uRRdGhS+7rOYRgG97zzC7uPR9ttnvrxtLF0bV7P6XN8uWQzny7ahG7n0s6kKUZ0bcGLtw9y+hw5jh+Hzz6DpUshNhaSk8HfH0JDYdgwmDwZwsKu/fhClHPO5Dykh40QQgghhBDiKhnWLBZH7eDNvQt4fc98vju2lgvpiSUdVrFZsHEv//l5JRZdJ+972NkfpqRlMuXDeew9EXNd59lxJIqIo2ftJms0pfhyyeZrOseYnq3w9jSjKfvVBtfcnHX5chg5Eho2hDffhMhIiI6GpCTbn5GR8MYb0KCBbd3y5dd2HiFEDknYCCGEEEIIIfKZf3oLQ1fP4OXdc1lwZit/RG3nk0N/MWLNm7yyey7p1uJplltS0jKzeOuX1UWu0Q0Dq1Xn7V/XXNe55q3bjcmBbRu6YbDjSBSnzsc7fY7KgX68P2U0HmZTgecyaQpNKV67cyhNaoc6d3CrFR5+GAYNgkWLcjNahTEM27pBg2yPk345Qlwz6WEjhBBCCCGEyPHzifW8d2BJzucWI39D2yVRO4lJu8T7He/EQyublxPLth0kNcN+0kk3DHYdi+Zw1AUa16pyTec6Gn3RbnVNXifOxVO3aojT5+nQpDY/PX0LX/+5lWXbDmK93IhYKejRsj53DelEmwZOTtKxWmHiRJg79+r7wsOhZ0/bdqjkZFi/3lZlk9fMmRATA7Nng8nk9NckREVXNp9hhRBCCCGEEMXuTOpF3s+TrCmIjsH2uGPMO7WFCWHd3RRZ8dpx6AwmTTmUSFHA9sNnrjlh48g2petZn1eDGpV57a4h/PvmPhyPiUM3DOqGBhMa7H9tB5w+PX+yRtNgwgR46CEOt67P3oQoLIaVOr6V6VjpA0yb/oGPPoI5cyB7ctXcubbjfPjhNX9dQlRUkrARQgghhBBCADDv1BaUUjgyl2TOyY2Mr9cNdR0JhpKSYbHa3dmTTWmKzCzLNZ+rZVg1DkfFOlxl06im84mhlPRMVkcc4fylZDw9zHRqUpt2jWo5fZx8li+3Vchk8/GB2bPZ0bM1Hx5cyt6Ni/Mtr+oVyF0N+zH2p59QEyfaKnPS0mx3zpwJN94IAwZcX0xCVDCSsBFCCCGEEEIAsPLcHruThgAM4ExaHCdTYgnzr+r6wIpZ9ZAAlML2hdih6wbVQgKu+VzjeoXz27rdDq//bV0kU0Z1dygRlpllYeaCDfz6dyQZWRZMmoZhGOiGQcuwajw5oT+twqpfW+AffJD7sabB7Nn83bUxT279qsCE3vmMRN7ct4AzqRd5ZNQo2zaoMWNyK20++EASNkI4SZoOCyGEEEIIIQBIsaQ7tT7ZkuGiSFxrRNcWDle8+Hl70ie84TWfq2mdqgxo39jhrU5f/bmFH1fusLsuy2LlkY8X8NOqnWRcrgCy6npOwm3/yfPc884vbD98xvmgT5yAxXkqaCZM4OLgfjwTMQvd0NGLyHT9dGI9q8/thVGjbNunsi1aZDuuEMJhkrARQgghhBBCABDk4evS9aVF41pV6Ny0jt3pTQqY2Lct3p7XtzHhlTuG0K1FPYfXf7poE2l2miJ/t3wbWw6eKnT7WvaUq//7dCHpmU5u6frss/zToB56iAVntmHRrXaLkjQUs05ssH0yZUruHYZhO64QwmGSsBFCCCGEEEIAMLhGGzTsV4IoFI0CqlPbt5IbonKNGfcMo3aVYLRCkjYK6NW6PpNHdLvuc3l7mrmpV7jD69Mysli27WCh92dZrcxevdNuHx7dMEhMzWD59sKPVaAleRpPh4dD9+4sjtpRZGVNzjkxiIg/wfn0BOjRA1q3zr1z6VLn4hCigpOEjRBClCPn0hNYe24fq2L2cCgxuqTDEUIIUcaMrtPJoa07BgYT6znWZ6W0Cgnw5fsnJ3Jr//b4eXvmu69qsD/Tb+rN25NHYTYVzyXTwdPnMWmOHcts0jhw+nyh9+86epa4pDSHjqUpxZ9FJH8KFBub+3HPnqAUcZnJTh0iPjPFNlO8Z8+CjyuEsEuaDgshRDlwKDGaz4+sYN35Axh53v1qElCDexr2o1/1ViUYnRBCiLKiqncQz7e+iRcjfy10jQIGVG/NiFrt3ReYiwT4evPoTb15cGR3Io+dJTUji5AAH1qFVXc4ueIo3TBwJr+lF9Fj51KyY8ma7PNeTEx1/MQAyXmSM/62keDemgcpON6zyNvkme/xACQlORdHEQzDYOeRKLYdOkNGloWqwf4M6tiUEH+fYjuHECVNEjZCCFHG7Yg7xrRt32I19HzJGoDDSTE8GfEzDzUZzB0N+pRQhEIIIcqSoTXb4Wf25t39izibFo9J2TZJWQwdH5Mnk8J6cF+jG9BU+SnW9/Y007lZXZeeI6xaJSxW3aG1Vl0nrHpIoff7XlERZE+Aj5dT6/H3z02uXE7e9KranD+itmM17H8N1b2DqZO9XS5v8ifg2qdt5bX90Blen7WS4zFxmDSFUgqrrvPO3LWM7NqCf4/vi4+nR7GcS4iSJAkbIYQowxIyU3ls+w9k6darkjVAzm0fHVpGs8CadKnS2N0hCiGEKIN6V21Oz9CmbLt4jN0Jp7DqOrV8K9G/Wit8zM4lC4RN/3aN8J/lSXJ6pt21Zk1jWOfmhd7frmEtfLw87DYmBtuupL5tnJxyFRoK0Ze3Vq9fD4bBuLpd+f3MVvvnQzG+XjdbQs8wbI/Pe9zrtGnfSaZ9ND9nGpZt2pftY4tVZ8HGvRyLvsgnj4y77mbRQpS08pMWF0KUPcePw1NPQZs2ULMmBAba/mzTBp5+WkY/OmBR1A7SrBkFJmvyMimNn06sL3KNEEIIkZemNDpXacQ9Dftzf+MBDK/VXpI118HLw8xdQzrZXaeA8X3bElzE1h4fLw9Gd29VaMPkvDxMJkZ2beFMqDBsWO7HkZGwcSNNAmtwa1jPwh+DbUJUs8CajKvb1XbDhg2we3fugqFDnYvjCmmZWTz55SJ0wyi04bJuGOw+HsM3y7Zc17mEKA0kYSOEcL/ly2HkSGjYEN580/ZCIDraVnobHW37/I03oEED27rly0s64lJr4ZmtDsxrAKuhs/nCYS5mFN/ecSGEEEI4585BnRh3eVrUlc2dsz8f0L4Jj4zpZfdYk4d3pU6V4EJHk2ff+tytAwj083Yu0MmTyddw56OPAJjWdCj3Nux/eZucyjmH6fL2uG6hTfio0z14my5vR/r44zwBKXjgAefiuMKyrQdJTst0aDrWL2t3kWWxXtf5hChpyjDs/bi7V2JiIkFBQSQkJBAYGFjS4QghipPVCtOnw8yZzj926lR47z0wmYo7qjKt34qXSbE43gDwx+5TaRJY04URCSGEEKIohmHwd+Qxfl69k60HT+fcHl6/BpP6tWNghyYOVc4AxCel8uzXS/nnwClMmsLAtiXJqusE+nrx9MQbGNyp6bUFOnIkLFpk+1jTYP58GDXKdt7MZBae2c6+hDNYdCu1fStzY52ONPCvlvv4BQtg7FjQ9dzjLVx4bbFcNuX939h88JTdhE22Tx65iS4u7k0khLOcyXnIpj4hhHtYrTBxIsyde/V94eG2kY/+/rbGdOvX26ps8po5E2JiYPZsSdrk4amZnZrY4KnJ074QQghRkpRS9GnTkD5tGpKYkk5iajr+Pl5FboEqTEiALx8/chPHoi+y6J99nLuUjJfZTMemtRnQrjGeHtfxe3/atNyEja7bXsfNng2jRhHi6V/0MIMFC2zr9TwNiqdNu/ZYLotPTnM4WQOQmJJ+3ecUoiTJK3chhHtMn54/WaNpMGECPPQQdO+ev+zWMGDjRlv57Zw5ub/s5861HefDD90ZeanWpXIjlsfsdmhiQ2VPf2r7VnZDVEIIIYRwRKCft/PblQrQoEZlpjmwjcopAwfaKpyzK6PT0mDMGNvrtylToEePq1+/bdhg2waV9/Ub2I4zYMB1hxTo540Ch7aDAwT4OjkdS4hSRrZECSFcb/lyGDQo93MfH5g9G+uIEWzce4Jf1u5i/6nzGIZBw5qVGdc7nH5tG+FhMtlKZydOtL1IyHu8YvilXx5Exp/i3s2f2l2nobiv8Q3c07C/G6ISQgghRLlgr0K6R4/cCukNG66ukAa4+WaYNatYKqR/WbuLN2evcihh4+/tyV9vTpZJUaLUcSbnIQkbIYTrFbAHOuGGQTzy0e9EHo/GpKnLIxltDfd0wyCseggfP3wT1SsF2JI2Y8YU6x7o8sIwDF7ZPZclZ3cW+uLFpDRq+1bim65T8Pe4/nfxhBBCCFGBlKIehMlpGQx66nMyMi1FJm00pbhtQHumj+1dLOcVojg5k/OQKVFClGNZmVnEn08gLTnN/mJXOXECFi/O/XzCBLKGDWfqzHnsPRkDkJOsAVtXf4DT5y8x+b25JKVl2BrcTZiQe4xFi9w+8vtkygU+P7yC1/fM5939i9gQe9ChbUiuppTi2VZjGV2nM5A7pSHvx00Da/JJ5/skWSOEEEII55lMtu3o2VM+lZ2GyErlTvn88MNi7T3o7+PFq3cMAZU7BetKmqZoULMy9w3rWmznFaKkSIWNEOXQoe1H+f3DpayetR5Llm2cYdNOjRj98FD6TeyByezGpr1PP20b0Z1t/XqWelTm2W+W2n2oUjB9bG9uH9DB1oi4V5692U89BTNmuCDg/OIyknl591w2XTiULxliNXSqeQfxbKuxdK3S2OVxOOJUygXmnd5CZPxJLIaVen6hjKnTiXYh9VH2Xly5SHpqBjtX7iYpLhn/YD/a9m+Fb4DzTRWFEEIIUUqcOAGffQZLl0JsLCQlQUAAhIbC0KG2keBhYS4N4e/dx3j955Wcv5SMWdNA2d70MwyD/m0b8cJtAwnwlTeqROkkW6KEqMAWfryMDx/+EpNJw2rJrQDRNIWuG7S7oTWvLHgSb3c1YWvTJnc/c3g4RERwx1uz2XviXE41TVFqVApg0Wv32N5FadMGdu/OPW5EhKuiBuBSZip3b/qY6PRLBVbTKBQKeKfDv+gReo0jM8uptOQ0vnvxF5Z8uYK0pNwJDV6+Xgy+sy93vTYJ/2C/EoxQCCGEEGWZVdfZsPcEWw+eJiPTQtUQf4Z1bk7NynINKUo32RIlRAW1ceFWPpz6JRjkS9YA6Je3He1as5e37rqGPcjXKjY29+OePTGAvScdS9YARMclEZ+UZiu36dmz4OO6yCeHlhGdHl/o1ifj8v+e3zWHdGuWy+MpK1ISU3m09wvM/2BJvmQNQEZqBos+W8607s+SeDGphCIUQgghRFln0jR6t27A/43rwzO33MC9Q7tIskaUO5KwEaKcMAyD716Yg9KK3vqiW3X+/vUfTu4/457AkpNzP/b3xzByk0eOsmY3G/b3z70xybUX+8lZ6Sw+uxOrncSSASRb0lkZs9ul8ZQlM6d+xfHdp9CtBSe6dKtO1OFo3r77YzdHJoQQQgghRNkhCRshyonDO45xLPIkhgPJEM2sseTzFW6IivxJluRkNE1RLcS/8PVX8PY0E+zvk/P4HAEBxRRgwbZePEKmbnForUKx9tw+l8ZTVsTFxLNq9vpCkzXZdKvOpkXbiD5+zk2RlV9Wq5Wju06we91+Tu47TSnb6SwKYLVY5e9JCCGEEHbJUHohyomTex2vmNEtOsf3nHJhNHmEhkJ0tO3j9evBMLipVzif/rHJ7rYok6YY1a0lHmYTGIbt8XmP60JJlnT7iy4zMEi0lOAkrlJk7S+bHEoaAmiaxqqf1nPrcze5OKryKTMji98/WMLvM5cSe/pizu21m9Zk7CPDGXbfDZiKcTKHuD7nT19g0ad/sfSrlVw6n4hm0mjZoymjpw6lx+jO7m0GL4QQQogyQSpshCgvnBwC5LapQcOG5X4cGQkbNzK2R2t8vT3QiohBYbugn9i3re2GDRtyGw6DbQqBCwV5+Dq8VkMR4ikNdAEuno3DZHLsV4vSFBfPxrk4ovIpLSWdJwe+wpdP/5QvWQMQdegsHzz0Ba9N+B9Wi7WEIhR5bf1zJ3c1e4Q5/13ApfOJgK3KbO+Gg7w6/l2eGvwaacmS9BVCCCFEfpKwEaKcaNgmzOG1mkmjUVvH11+XyZNtDYOzffQRlQJ9+fChMXh7mjEV0HPHpClMJo3/3jecsOqVbDd+nKffiVLwwAMuDbtz5Ub4mDwdWqtjcEP11i6Np6RlZmRxZOdx9m06yPnTFwpd5+Xr5fhWD8O2Xjjv/Qc+Z9/GgwVWMxkGYMD6+Zv59oU57g9O5HN4xzFeGP1fstKzrtoqmP155N/7eG3C/2SblBBCCCHykYSNEOVEg/B6NO3UyG7TYbBdJAy7f4AbogLCwmD48NzP58yBhQtp07AmPz9zGzd2b4Vnnq0AJk1jUIem/PjULfQJb2i7ccEC2+OyjRgB9eq5NGwfsyeja3dCs1O6pKGo5OlH36otXBpPSUm4kMgXT/7IhBr38WCHJ3ikx3PcWu9B/q/fi2xevP2q9e0HhF81oawwVouV9gPKd6LLFWLPXGTVz+vtN+824PcPl0jlRgn76bXf0K16kckY3aqzZelODmw54sbIhBBCCFHaSQ8bIcqRO1+dyDND/1PkGqUpBtzWm1qNargpKmDaNFi0yPaxrsPEiTB7NnVHjeK5WwcwfWwvzlxIQNcNalUJIsjPO/exCxbY1ut6/uO5weTGA9gRf5zDidHoXH2xpaEwaRpvtrsNs1b++k+cOxnLY31e4EJU3FWVAXvWHyBy7T7uem0StzwzNuf2Ft2aENaqDif3nSmyl43SFFXrVKHDoDYui7+8+uu7NShNYVjtV2Okp2Sw7rfNDLqjr+sDE1e5cDaOjQu3OtTXyWTW+OOTZTTv0tgNkQkhhBCiLJAKGyHKkY6D2vD4tw+hmTRM5vz/vLXLfUW6jezI9M8muzewgQNh6tTcz9PSYMwYuOUWWL8ef29PmtWpSot61WzJmuwGw7fcAmPHQnqeBsBTp8IA91QH+Zq9+LTzfQyt2RaT0lAozErLqbppHFCDL7pMpk2Ia6t9SoLVauXZ4a9z8ezVyRrI3crxzXOzWDdvc87tSimmfzoZk0lDK6TaSymFUopHP5+MpsmvIWedOxHrcA8qk4eJmOPnXRyRKMyJPacdbsJttegc3HbUxREJIYQQoiyRChshypmBt/ehaadG/PHJMv76bg2piWlomqJtv5bc+NBQuo7sUDIXye+9BzExMHeu7XNdh1mzbP+Fh0OPHrYR4MnJtgbDkZFXH+Pmm23HcSM/sxfPt7qJPmfqsmjRWpJT0gioFsCN/xpIz1bldzvPtmW7OLnP/uQxpSlmzZhHr7Fdcm5r2b0pbyx7nldufofEi0m2ahDdyPnTN8iHp398hA4DpbrmWpg9HK/mMnQDs6f8qi8pTvekcTC5I4QQ5dmJmDiW7zjEpeQ0/Ly96BPegJZh1Us6LCFKhDJKWYe7xMREgoKCSEhIIDAwsKTDEaLMy0zPxOxpLh2VDFYrTJ8OM2c6/9ipU23JGjePKd6xIpL/Tf6MmOPnMZlNKAW6bmDoBr3GdeXRzybjH1z+JkS9NPYtNv2xrcDqmoJ8HvkO9VvVzXdbZkYW6+dt5u9fN5JwIYmASv70HNOFPuO74eUjzYav1Yof/+bNf33o8Pq3Vr5I236tXBiRKMy5k7HcVn+KQ2tNZo2eY7rw3JzHXByVEEKUTufik3jxu2VsOXgak2arxjUMA6tu0LR2KC/fMZgmtUNLOkwhrpszOQ+XX8G98cYbthL56dNdfSohRAE8vT1LR7IGbMmWDz+E5cth5Mj806MKopRt3fLltse5OVmzeckOnh76H86djAVsTXItWdacBqLr523msT4vkJpU/pq6Rh2JdjhZAxS47cbTy4P+k3ry0rwn+N/fr/LK708y6I6+kqy5Tr3HdXUoSaiUolbjGrTp29INUYmCVKsXSoeB4TlbUotiteiMeGCQG6ISQojS5/ylZP715iy2H7ZV91p1A4tVx3q58vDw2Qvc9dYcDp6Wbb6iYnHpVdzWrVv57LPPCA8Pd+VphBBlzYABsHAhHDsGTz0FbdpAzZoQEGD7s00b2+3HjtnWualnTV7pqRnMuPV9jMvVNAXRrTon953h+5d+cXN0rmf2cG4bjWy7cR9Pb08mv/2vohddzoVOee8uh/vdCNe49blxdrdGaSaNFt2aSHJNCFFhvf7zSuKSUnMSNFfSdYMMi4Wnvlri/HZTIcowlyVskpOTufXWW/niiy8ICQlx1WmEEGVZWBjMmAERERAVBYmJtj8jImy3h4WVWGhrZm8gJSHV7osC3aqz5MsVpKdmuCky92jdq7lDVQEAJrOJxu3ruzgikdeQu/vz0Ad3o2nqqr8npSnMHmaenTWdzkPblVCEIlvrXs156vuHC2wGr5Ttv/qt6/LKgicluSaEqJDOXkxk3Z5jhSZrsum6wclz8ew4HOWmyIQoeS5L2Dz00EMMHz6cAXbeGc/IyCAxMTHff0IIUdLWzfsHVciUoyulJaWza/UeF0fkXiMfHOTQliiTWaPP+G4Ehwa5ISqR1+ipQ/nh2EdMfHI0dZrWJKR6MGEt63D3a5P4+dSn9BnfvaRDFJf1v6UXn+74L4Pv7IeHt0fO7bWa1GTqh/fy3vrXCKoiffuEEBXT35GOT8gzaRqrIg67MBohSheX1LDPnj2bHTt2sHXrVrtrZ8yYwcsvv+yKMIQQ4polXkx2eBwvQPKlVBdG4351mtZixOSBLP58RaFVRppJw9PHk9tfuNnN0YlsVeuGctdrk7jrtUklHYqwo37rejz6+QNMnXkPiReT8fAyExDiL1U1QogKLyktA5PSsBiO9M4zSCxnVc1CFKXYK2xOnz7NI488wk8//YS3t7fd9U8//TQJCQk5/50+fbq4QxJCCKcFVQ5wuMIGwD+k/E2KmvrhPQy5pz9Avq0cSilQ4B/sx1srXqR2k5olFaIQZY6HpweVa4QQWClAkjVCCAEE+HhhdShZA6AI9JXhBaLiKPax3r///jtjxozBlGeai9VqRSmFpmlkZGTku+9KMtZbCFEaLPt2NW/f/bFDa30Dffgl+otyO/3o8I5jLPx4GTtWRJKVkUXVulUYes8N9L+lJz7+PiUdXoGijkSz6NPlbF0WQUZqBlXrVmHwnf1kpLgQQghRykTHJTLiua9w9Kr0i8dupkPj2q4NSggXcibnUewJm6SkJE6ePJnvtrvuuotmzZrx5JNP0qpVqyIfLwkbIURpkJGWwYRa95OamFbk1ijNpHHT9OHc/5adqT3CLQzD4OtnZzH7jfloJi2nD4/SFIZuEBwayGuLn6Fpx4YlHKkQQgghsj32yUK7jYdNmqJu1RDmvvAvqVAUZZozOY9i72ETEBBwVVLGz8+PypUr203WCCFEaeHl48Vzsx/juRGvo0OBSRvNpNEgvB63vzTe/QG6SVpyGit/Ws++TQexZFmoVq8qg+/qR+3GNUo6tAJ99+IcZr8xHyBf0+Tsv7/EuGQev+ElZm5+g7rNapVIjEIIIYTI7+lJ/dn35jkuJqYUmLTRNIWXh5kZ9wyTZI2oUFw2JUoIIcq6joPa8ObyF6jVqDpgG19t9jChLo9S7juhO2+vfgkfP/v9usqi32cu5ebq9/H+lM9Z+dM61s7ZyC9vLeCuptN4ccx/SUlIKekQ87kQdZGfX59X5BrdqpORmsm3z892U1RCCCGEsCc02J/vn5xE56Z1AVuCxmzSMF3uJ9i0dijfPD6RJrVDSzJMIdyu2LdEXS/ZEiWEKG0MwyDy733sXLmbjNRMqtSqRN+JPahcIwQAXdfZ/tcuFn++gpP7z2AyabTo1oSRDw6mcfsGJRz9tfnlrQV88eSPhd6vmTQatgnj3b9fwbuUNP/7/qVf+Om1uegOTPfSTBo/n/o05+9QCCGEEKXDqfPxLN9+mEspafh5e9K7dQNa1KtW0mEJUWxKtIfN9ZKEjRCiLLkYHc+zw1/naMSJfD1TTGYNq0Wn983deOLbh8pUo9vo4+e4o9HDhY7zzqZpijtemcgtz4x1U2RF+79+LxK5dp/D61/87d/0HNPFhREJIYQQQgiRnzM5D9kSJYQQ1yglIYV/93uRE3tOAfl7plgtto/X//YPr9/yvt3kR2my6NPlDo0013WDBR/9idVidUNU9mWmZzm13pJpcVEkQgghhBBCXD9J2AghxDVa+PFfRB2JyUnOFETXDTYu2MqOFZFujOz6bFywJV/yqShx0fEc333KxRE5pkaDqmgmx3+tVa1bxYXRCCGEEEIIcX0kYSOEENfAarWy4KOlRY78zmYyayz8eJkboioeqUlpLl3vKkPu6u9YoklBzUbVad61ieuDEkIIIUqpQ2diWbx5P4s37+fg6fMlHY4QogDFPtZbCCEqgvOnLnDxbLxDa60WnYjVe1wcUfEJrhpEXPQlh9cHhZaOfmNt+7eifuu6nNp/psiqJwyY+ORoGQsqhBCiQtqw9wSf/LGRfSfP5bu9eZ2qPDiqOz1b1S+hyIQQV5IKGyGEuAZZGc71PylL/VIG3NrboR42SinqtaxD3Wa13BCVfZqm8dofT1GpRkiBW6Oyv6Yx04Yx5O7+7g5PCCGEKHELNu7l4Znz2X/q3FX3HTwTy7SPfmf++t0lEJkQoiCSsBFCiGtQuUawU/1SqtSu7MJoitfgu/rh4eWBvQIUwzC4afrwUlWpUrVuKB9tfZPRU4fi4++d7776rery1A/TePB/d5aqmIUQQgh3OHr2Aq/+uByAgmYh6JdvfO3nFRw6E+vO0IQQhZAtUUIIcQ38gvzoMbozGxdsKXr7DbbKjuH3DXBTZNcvsHIAz81+lJfGvgWGUWifnv639GTwXf3cHJ19IVWDePB/d3LnaxM5uvM4GWmZVKlVibrNa0uiRgghRIU1Z80u25sxdtrvaUoxe00EL9w20C1xCSEKJxU2Qghxjcb930h0a9GvejRN4ePvXSoTG0XpNrIj/13+Ag3C6wG2pFN2RZF/sB93vjqRJ79/GE0rvb9GfPy8adWzOR0GtqFeizqSrBFCCFFhGYbBon/2YXVgWIJVN1iyeT9W3bGJkUII15EKGyGEuEYtujbhkU/u470HP0fTtKsmFGlmDQ8PM68ufIqgKqWjMa8z2vRtyac73uLg1iPs3XgQS6aF6vWr0nVkRzy9PEo6PCGEi0WnxbPn0mkshpUaPiG0Ca4niU8hyqjUjCzSsxzvp5dpsZKSlkmgn7f9xUIIl5GEjRBCXIfh9w+kRoNq/Pz6PHat2Ztzu2bW6D2uK7c+O46wlnVKMMLr17RTI5p2alTSYQgh3ORQYjQfH1rGpguH8u2cqOVTiTsb9mVUrQ6SuBGijPH0MDn9GC9PuVQUoqTJv0IhhLhO7QeE035AOGePxhB1JAaTSaN+eD1Cqga5N5Djx+Gzz2DpUoiNheRk8PeH0FAYNgwmT4awMPfGJEoVXddJSUgFbFvb5KJbXCki/gQPb/2aLN16VZuLs2lx/GfPPE4kn2da06Hy8yNEGeJhMtG+US0ijp7NaS5cGE0pWoVVx8tDLhWFKGnyr1AIIYpJzYbVqdmwuvtPvHw5fPABLF589diHpCSIjobISHjzTRg+HKZNg4Hlo5Hg+dMXiD+XgLefF7Wb1MBkcv4dxIog/twlFn26nIWfLOPS+QQAQqoHc+OUIQyfPIDgUDcnF8sJwzCIWL2H1bM2cCk2AR9/bzoPbU+vcV3L5LbBZEs6j23/nizdil5AV9LsW346sZ4WQbUZWCM89z7D4ND2Y0QfjcFkNtG0U0Oq1g11U+RCCEdM7NeWHUei7K7TDYNJ/dq5ISIhhD3KMOykWN0sMTGRoKAgEhISCAwsez0fhBDCbaxWmD4dZs50/rFTp8J770EZTHAYhsH6+Vv47X9/sHfDwZzbq9SuzI0PDeHGqUPwkT33OY5EHOfJga+SfCnlqj5LSlMEVQnkrZUvFuvWPavFyqY/trF16U7SUtIJDg2i/y09ada5cbGdo6SdOhDFS2Pf4vSBKExmE1aLFc1k62UVEOLPv7+ZQvdRnYrtfJYsCxsXbGXRZ8s5tf8MmqbRrEtjRj44iLb9WhVLtcvcU//w1r6F9gbIoKFoFlSLb7tNAWD17A389J/fOLn3dM4apRSdh7Xjzlcn0qht/euOrVSSqsYy59T5eE6ci0dTisa1qlAtJKCkQ3Irq67z6CcL2bD3BIVdAmpK0aV5Xd6fMhqzqfQOFhCiLHMm5yEJGyGEKIusVpg4EebOvfq+8HDo2dN24ZCcDOvX2ypsrjRuHMyeXaaSNoZh8PnjPzD33T/QNIV+xbQLpSkahNfjrZUvEhDiX0JRlh7x5xO4t+WjBSZrsmkmjaAqAXy5938EVrr+i5dtf+3irbs+Ii46HpPZhGEYKKWwWqw07tCA5395jBr1q133eUrS2aMxTO38FCmJaQV+X225E8VL8x8vlqTN+VOxPDXkP5w+EJWTFAIwmTWsFp12N7Tmxd/+jV+g73Wd546NH3EgMcpuwibbb73+j7Xvrua7F+eglLrqAlAzaZg8TMxY8ixt+ra8rthKlaKqGvNSqtxVNZZV/+w/yRdLNrMzT3WJUtC7dQPuH96V5nXL9nOSMzKyLLzyw3KWbj2ASVM5U6OyPx7UoQkv/Wsw3tK/RgiXkYSNEEKUdw8/nL+yRtNgwgR46CHo3j37itHGMGDjRvjoI5gzB/KO6Zw6FT780H1xX6dFny3n/Qc/L3KNZtJoP6A1M5Y+56aoSq8fXvmVH1/59arE1pWUprh3xq2Mf/zG6zrf1mURPDdiBoZuFPjurWbWCKwUwEdbZpTp7TLPjZzB1j8jCk2Cge2foH+IP3POfo6H57Vvj0qKT2ZKxyeJPX0Bq6XwpFvrXs15c/nz17UtcNjqGVzISHJ4/fSEnnwz6Zsi1yhN4e3nzU8nPi77SdQKWtVY1s1fv5tXf1qBptRVvVtMmkJTivemjKZbi3olFGHJOBETx7z1uzl0JhaAxrVDGduzNfWrVyrhyIQo/yRhI4QQ5dny5TBoUO7nPj62SplRo4iOS2T++j3sP3UO3TAIq1aJsT1b0bBmFdvahQttlTlpafmPN2CAe7+Ga6DrOrfVn0Ls6YsOrf8s4m0ahFesF+B5GYbBhJr3EX8uwaH1VetV4afjn1zz+bIys5hU5wESLyZhFJEg0kwa3Ud15MXfHr/mc5Wkcydjua3BFBwtQ3nm5+n0m9jjms/3039+4/sX59hNugG8PP8Jut947RU9Y9a+TVRanMPrO74BRzccLTJxBbbtUQ+8cwdjpw+/5thKXAWtaizr9p6I4V//nWW3EMrLbGbBq3cRGlTGk4pCiDLBmZyHbEwUQoiy5oMPcj/WNJg9G8vwEbw5exUjnvuKr5dtYcPeE2zad5Jf1kZw86s/8NinC0lNz4RRo2wXDJpW8PFKsYjVex1O1pjMGku/XOniiEq31MRUh5M1ANqJk1j//Ti0aQM1a0JgoO3PNm3g6afhxIkiH7/x960kxCYWmawB0K06GxZs5cJZxxMDpcn2v3Y5nKzRTBpblu645nNZrVYWfrzMoWSNZtL4febSaz4XQPfQJpiUYy8NAxPMHP77sN1kDYCBwdKvy/i/x+nT8ydrNA0mTYL16zF2rMH43z0Yr47H+OAViIiwJW0mTcr/XDt3LllTprLyp3XMffcPFn++nJgT5939lVQoP6/aiWanv5NhQKbFyvz1e9wUlRBCOE42JwohSj9p7JjrxAlb34RsEyZgjBzJy98tY8mW/RgG+baiZO9N/zvyGA/PnM+n08fhMWqUbfvUrFm2RYsW2Y5byr+H0UdjHF5rteicdWK9q2U3jN22bBfpqelUqh7CDbf2onH7BiUdGu2Nc4zmCF2IRnvnigt+J6aM/bN4e77+KkUxdINtf0Yw5O7+xfVluE1acnqB/ZMKous6acnp13yui1FxxEXHO7RWt+rs23Toms8FcFPdLvx66h+76zQU/Tyasob9jh3YgAtRZTNBB9iqEPNug7pc1WgMa4GR/BnE3gdYLt+pYXgNRHWejOrxs60qJ09Vo8fnn7Ls873sMtVA13VQ0HloO6a8dxe1GtVw+5dWnqVlZLF8+6Gc34NF0Q2Deet3c//wrm6ITAghHCcVNkKI0mv5chg5Eho2tF0sRkbaLh7zXkS+8QY0aGBbt3x5SUfsep99lr/J5UMPsfXgaRZv3l9kybduGOw8epaFm/babpgyJfdOw7Adt5QzmZ3YRqDAXEoaJv6zaDsTa0/m1fHv8td3a1j7yyZ+/3ApUzo+ySM9niX2jGNVQ87yDfSlcq3CexFohsFDxk7eZB3diLb/gsAwbMm9QYNsPZSs1nx3pyUV3IC3IEpTpCam2V9YCoVUC3IoWQNgMmmEVL32kemWLKv9RXlYsyz2FxWhgX81bqvfq8g1JqVRy7cSoxt1cerYnt6e1xNaySqgqtEYXA3jwhhIX0RusgZAh4wVGBfHY6Qvh1GjyPzuB3RyqzzGcMSWrAEwYNuyXUzt8jQn959xy5dTUcQlpWLRHXtOAriQkOLCaIQQ4tpIwkYIUfpYrbYLwkGDbBeI9lpt2bmQLFeWLMn9ODwcunfnl7W7MGn2R/oqBbNW77RV4PToAa1b59659Pq2UrhDsy6Oj4RWSpWKEdIbF27lhRvfJPFCImAbd61bdawW28/owa1HmNbtGS46WEXhDKUUN04ZgirgZ0MzDJ7lH0Zz9OoHhofbEnpPPGH7Mzz86jUzZ9qqBvL8WwuqEojJ7NjLCkM3CK5aNvvUdRnRAS8fx5IPVotO/1tsCZDYMxc5EnGcs0djCh2ne6WQ6sGYPRxPVBZHI+epTQZzV4O+aCi0PEmG7K1STQNr8lnn+2jWoj4h1RxLRpnMGh0Htbnu2EpEQVWNw7tgXLofyAIK+n1jBawYlx7BsBzlyw2JrFV1cu7tQjTVjNzkgG7VSU1K46Wxbzn8syHs83Ti3w6Ah4PPX+5msepkXmcyVghRdpWOtx+FECLb9TZ2nDkTYmLKb2PH2Njcj3v2GwGWKQAAdPtJREFUBKXYuO+EQyXfhgHHouOIS0qlcqCf7fG7d1993FIqrGUdWvZoyv5Nh+xWOGiaYsg9JbvdJiMtg//eMRMwCs05Wi068ecu8eVTP/Lkdw8XewzD7x/A/A+XkBCbmK/65UEi6E3ueFsdhfWmcXg8+gh0786llHRSMzIJ9PXG39uz4Cljc+fa+npcnjLWZ0IPljjYN8jT24Muw9sX29fpTn6Bvgy95wYWfvxnkT+HmlmjXvPanD99galdnubg1iM599VuUoMbpw5l+P0Dipwg5ePnTb9JPVn187pCJ0RlU5pixOTrHx2tKY0HmwziprpdWHBmG7viT5CpW6ntW4lRtTvSJrge6nJPkJEPDubHV+farayyWnRGPTTkumMrEQVUNRqpc8DIAIr6ug3AIOXctyz58jiHjAb04xRge7d0OMf4mtykuW7ROXPwLBGr99Cuf+uCDymcUiXQj9pVgoi6kGC37ZRJU3RoXNstcTkiI8vCn1sPMnvNTg6etv1+rhTgw029whnXK5zQYGmOLERFIQkbIUTpUlBjR2fHVV9xIVmuJCfnfuxve8GW4eQ7b+mZlnyPB2zbzEqh5Kx0/oyO4EiSrR9Nw+ltObD5CMrQi3wneuJTY65rK4ozsvvTLP58OacPnsVkMtGyZ1Oq1QslJSHV7uOtFp01szfwwDt3EFSleKtOAisH8NaKF3hiwCvEn0/A0I3LPWtyK2sylJmkj78g5P5/sXjrQWa9OYt9J88BoIDuLcOY1L8d3X++uh8HM2fCjTfCgAG069+K2k1qcPbouSIv4DWTxuA7++EX5FesX6sz0pLTOH/qAkrTqFavCl4+Xk49/p43buXAlsMc2n6swK9VM2v4B/lRu2kN3rjtA7QrqpzOHI7m40e+ZsP8Lby26Kkiz3/ToyNY9fO6IuPRTBq+gT4MvqufU19HUap6B3FfoxuKXDP2kWGsnrWeqCMxhf6dKwXD7htA044Niy02tyqgqpHYJyg6WZPNypZFq8hIrcleKnOMIBpgawTemZh8CRuwVSKt+nm9JGyKiVKKCX3b8u7ctXbXWnWDif3auSEq++KTUpnywTwOnokl71NHXFIaXy3dwk8rd/D+Q6NLVYJJCOE6pbP2T4gKxjAMjkWeZOPCrWxZupNLsY5PdilXCmrsOH8+/PwzRudK6IkvoJ/vgX6uPXrsQIyUTzC6NoGff7at8/HJfezMmbBihfu/BlfLm2S5nLwJ8fcpZPHVNKUIzl6fN/kTEFAc0RUb3dD5/PAKhq5+nbf2LWThmW0sPLONH/12kPpCTTRP7aqtPtnbccY9NpI7Xp7gljijj5/j3laP8er4d3OmWMWcOM+a2Rv4+T/zHD6OJcvKjhW7XRJjvRZ1+HLv/7jvzdupFhbKaHIrPQylYfz0E4H33MZjnyzk+W//5MCp3Kk1BvDP/pNM/XA+H8xfhzFyZKFTxpRSvPjb4/j4e6OZCn55oZk06reuy71v3uaSr9Wek/vP8O59n3BT6N3c2+ox7mkxnZur38snj37L+VOOV5l5+3rx1qqXuPGhIXj52pIt2T+PSlN0G9GRwXf1Y93czQBXV+IYtnzzrrV7ee+Bz4s8V8M2YTz1wzQ0k1bg99Vk1vDy9eQ/i58hsLJ7/x37BfnxzpqXaXI5GZN3S5xm0kDBjVOH8vBH97o1rmJ1RVWjgRV0x39WEi4Ytp8NpdhD5Zzbg8i4aq3Volfc3/8uMrZnaxrVqlLktmFNKXq1rk/3FmHuC6wQVl3n4Y9+58jZCwBc+dShGwbpmRYenjmfEzFluJG3EMJhyihlm2WdmUkuRHmw9peNzJoxj6O7TubcZjKb6DO+G7e/OJ7ajSvQ1IiRI229aMB2QTh/PsbIkRjJb0HKl4CJ/P0CNMCMCn4X5T0IFi6EMWNyK21GjrTdVp60aZO7DSw8HCIieP/39fywYrvdbUImTdGrdQPefWCU7WqxTZvcLVFt2thG0ZYChmHw330L+O30lkLXqAQLbTcHkfVnLPHnLuHt60XXER0Y+eBgGoTXc0ucCRcSebDDE1yMjke3s13FEdM/vZ/h91//lpYinTiB0aABKvtX/6RJ8PPPvPbTcuZv2Gu3f8ZTE/szvk8buOWW3CljSsGxYzlTxs4cOsuHU79kx4rdKKVQJoVu1TF7mBn4rz488M4d+AY4nmQsLluXRfDimP+iW6xXbS/SzBq+/j68ufx5mnRwrhIkNSmNzYt3cOl8Aj7+3nQY1Iag0EAm1LiP5Ev2m5gqpfjp5CeE1q5c5Lr9mw8z583f2bhwa87odA8vDwbc3psJT9xYohOGDMNgz/oDLPlyBWcORePhaaZFtyYMnzyQGvWrlVhcxSIwMLcC8YknMN6YgXGuOY7Odl82O4R3H6sLwL1GJBOwTfJKwcxoNTrfWs2k0XdCd57+8ZHiil4A8clpPPrJAiKPRWPSVM4W4uyPB7RvzCt3DMG7FDSqXxt5lEc/sf+6xaQpRnRtwYu3D3JDVEKI4uZMzqPkn5mEqMC+f+kXfnjl16sqBawWK2t+2cg/i7bz1soXnb6AKJMKaOzIqFGQ/OHlZA1c3dxRB7IwLk2DkO9QZXRctVOGDctN2ERGwsaN3Nw7nJ9W7MDAKPISwqob3HrD5b4hGzbkJmsAhg51WcjO2nLxSJHJGgAjyMzOQSm8//QUuoU2cVNk+c17bzEXz8Y7PBnJnqDQa3uTwmq1snnxDvas209WhoWq9UK54daeVKoegmEYpKdm4OXjiaZp8NlnuckagIce4vylZH53IFkD8MWSfxjbszXmKVNy/51lTxmbMQOA2k1q8uZfLxB1JJqtf0aQnpxOcLVgut/YkcBKJVPJFXUkmhfH/BdLhqXAr1O32Jq+PjX4Nb49+IFTlSq+AT70m9gj321rf93kULIGbBU5y75ZzW3PjytyXfMujXlp3uPEn7tE9LFzaCaNOk1rlujWsmxKKVr3ak7rXs1LOpTi5++fm7BJTkYpDcOjDWRFYn9blKJD/0CUpjB0A58806TSCngJrlt1ugwrm72dCpIUn8yG+VuIi7mEt58XHQa1oV5z92/jCfH34Zt/T2DH4Sjmrovk6NmLmDRFy7Bq3Ny7DU3rVHV7TIX59fIQAXt96ay6wZItB3hsXB8CnNzSKYQoWyRhI0QJ2bhgKz+88itAzruleekWnfSUDJ4Z9jo/Hv8Yb99y/gu5oMaOehxG8id2HmgACiPpLZTXXNtUm0IuJMuFyZNtI86zv1cffUTNn3/m1buG8OzXS1HYSqbzUti+S9NG98zd8/7xx3kWKHjgAXdE75BfTm7CpDSsRtEXQyal8cupTSWSsMnKzOL3mUuLLVnj4+9Nx8FtnX7cunmb+WjaV1w8G4/Jw4QCrFadL578gephVYk9cxFLpgXNpNF1RAeejJyHb/aDL/fjWPhn0cmxvC4mprJh73H6ZE8Zy076LV161b+zWo1qUGtq6agQ/P2DpegWa5FJKd2qk3wphT+/XsX4x2+8rvNFHY7GZNbsNgrOdvZojMPHDqkWTEi14GuMTDgtNBSio20fr18PhoHyvR0j4f8ce3jD2+l+4zn+WbiVVpaLObcnkP93ulLgH+xHz5u6FlvoJSUtJZ3P//09y75dTVamBZPJhK7rGLpB697NeXjmvdRvVdetMSml6NCkNh2alO6+LwdOn3doiABAlsXKmdhLNK9bxqvYhBBFkh42QpSQOf/9/apGlFfSrToJsYmsmb3BTVGVoIIaO6bNo+CRqVfSwRKJkbWvTI6rdkpYGAwfnvv5nDmwcCGDOzbl42ljaVHv6hdudauFMOPuYdw5uJPthgULbI/LNmIE1HPPNiJ7LLqVDbEH7SZrAKyGzsbYQ1h0945xXzDzT8ZVvYfUxLRiOZ6mKYbfP9DppOzKn9bxys1v54wEt2ZZsWRZMXQDQzeIPnYOy+UG07pV55/F20k7dir3AJenjJ2IiQP7U+EBWxn+yXPxtqvLnj1z7yjFU8ayMrP485tVDiVPDN3gj0/+uu5zmsymQieDXUkphclcDifalRfDhuV+fLmqEe8h4NEW2zbdwpjA1AB8buLBd++ko39KTsNhgC1Uz/nY1ktf8fi3U/H0KnxqWFmQlpLOv/u9xJIvV5KVYQHDVjWc/cbU3g0HmdbtGQ7vOFbCkZZOzjaqKF2NLYQQriAVNkKUgOhj59i36ZBDa5WmWPrVSobcXbIjil2ugHHVRmZk4esLkhUJHi3K3Lhqp02bltvrR9dtU3tmz6bzqFF836wuh87EcvD0eayGQf1qlQhvUCNnDC8LFtjW63r+45US6XoWuoO9IQAMDFKtmQRq7umJ8uHUL1n48bJiO55m0mjSoQF3vOJck+RLsQm8fc/HjrbRAGxVe955tmRkN7DWlHI0X4Nh2NbnfTzgsiljp1Iu8NupzfwVs4vkrAz8zJ7cUL01N9XtQgN/x95VvnQ+kfSUqxu8FubcqVh0XbdtIbtGzbo0crj6ymq10rRTo2s+lygeum6QnpmFt6dH/jdTCqhqVD16QMgXGPEPQtY28vdXu/yxuTEq5CuU5ke1en4808sL/rh8LmCxaphThRVQKYDHv3mIriM6uO3rdZXvnp/NkZ3HC/351606melZvHzT23x35ENMJklW5tW4dhW2HTpjtycdgNmkUbuKe6YhCiFKjiRshCgBsWcu2l90maEbnDt1wYXRlBJ5JhZdTMoiID0TM1k4fkWqwCg746qvy8CBMHVq7kSttDRbs+UJE2DKFJr06EGT2qG56w3DVsr/8cf5x5+D7TgDBrg3/iL4mDwxKw2LAxU2YNsW5WvydHFUNuvnbb7mZI23nxfpKRkopdBMCqtVx8PLgyF39ef+t253urrmz69XY7U4X1mUjhm/y0mbrLh4PICmdaqyeMt+hx6vG0ZuvwcXTxn75eQm3tm/CE2pnIqrjMws5p3ewq+n/uGhJoO5o0Efu8fJO7nIEZqmchOc1yi8dwtqNa7B2SPRdt8B10wafSd2v67ziWsXcTSK2asjWBVxBItVR9MUfcMbMqFvWzo1rZNb1ZidJJ8zByZOtPVMq/QjZG7CSP0JsvYCBpiboHxvAa8+KHU5GbFgAb6LF+Sc80S9cBp37Ee4vzedh7ajx5jOeHi6t7LGarWScikVD28PfPy8i+WYaSnpLP5ihd1kpW7VOXcylq1LI8pFkqo43dy7DVsOnLa7zqQpBndsSmAx/d0JIUovSdgIUQI8vZ17Yebs+rJmw+9baJVukP0+0YYfVvH1H/cx7I4Abr7Pk6DKmQ4cxQDz5W09pXhcdbF57z2IiYG5c22f67qtd8+sWbYtZT162BJXycm2BsORBVQr3Xyz7TiliElp9KvWilXn9jjUw6ZftZaYNfe8Q/vtC7Ov7YEK7nvzdtr2b8X2v3aRkZpBSPVgeozujH/wtTWM/XvupgJ7X9lzCS8qkw5A6pIVBBkGI7q24IP568iyc5GlgFqhQXRsUjs3CZgtNLTQx12LpWd38vZ+WzmC9YqMR/bPxUeHlhFg9mZs3S5FHiu4ahCVa1XiYpT9EbiapmjUrsF1J2yUUjzwzh08P+oNu2t1i863z89m6gf3XNc5hXMMw+CjhRv5+s8t+Zq86rrB2sijrIo4wi392/F/4/qgCqlqVKNGgVcPlFePwk9UQFVjgy/f4cUSSpSf3HeaBTP/5K/v1pCRZvvd2rBtGKOnDqX/rb2ua0vWtmW7HK5m00waa37ZIAmbK/QJb0ijWlU4Hn2x0F42SoGmadwxsKOboxNClATpYSNECajfui6+gY5t4TCZNToMCHdxRCXn2xdm89LYt7iYlXvR3ZILpFxK4bePzjN1SEPOn3HgBaRWDTy7u/xCstQwmWD2bFuFzJUiI+GTT+Ctt2x/FpSsmTrVltwpheXoE+p1c7iHzc113dOg8/ypWE7uO+P04zSTRmClAG64rRd1m9VizLRhTHxqDIPv7HfNyRqApLhk+4sKkLdvRtDZ47BxI0F+3rn9jYqQ3bhaKeXSKWMW3cqHB/90aO1Hh5aRqVuKXKNpGqMeHHzVNL6C6LrB6IeL52vpOqKDw1OTFsz8kzOHzhbLeYVjZq+O4OvLDbevvDDO/vznVTv5ZtnW3KrGbNlVjbfcktOIOJ/s30O33AJjx0J6eu59JVjVuHr2Bia3/TdLvlyRk6wBOBZ5knfu/YTH+79ESoJj080KkhCb6PBa3apz6VyC/YWlRJbFyl/bD/L2r2t4Y/YqflixnYuJ1/69KozZpPHR1DHUqRqC4ur2YiZN4Wk28b8HR9GoVpViP78QovSRhI0QJcDLx4th9w5AM9n/J2i16IyaMtgNUbnf6tkb+Om13wDYnOdCsiEJtOQiutXgQownz/+rfr5dPAVR/g/Yys9L8bjqYmcywYcfwvLlMHJkdufKwillW7d8ue1xpTBZAxAeUo97G9rv2XR3w360q1TfDRHBxehLTj9G0xQ+/t7M+PNZ/AJ97T/ACc6Mnc5rMQ3yDyL+6CMAJg/vxoS+bQHbBUFeJk2hFDwzqT8D2l+eyOXCKWMbLxziQoZjWxmTLOmsitljd92IBwYSWrtykdujNLNGw7Zh9L65m8OxFhlbfDL7Nx92aK1m0oql2bFwTGaWhc8Wb3Jo7Vd/biEtI8tWjTguz+j17KrGXr2gbVvbhMInnrD92bat7fZZs/JvQS3Bqsbd6/Yz47b3sVr0qxpwZ1frHdhyhJfHvVPkNLWiOPpGFNj68/ldR9LanRZv3s/gp7/gqS+X8MvaXcxbv5v35q1jyNNf8MqPy8nIKjpp7KzQYH9+fHISj0/oR52qwTm3+3p5MLB9E27s1pINe47zxZJ/bE3jhRDlmmyJEqKEjH/iRtb8spG4mHj0wqaXKBj14GDqty4dE3yKk2EY/Pz6byhNYegGi2nABA7mZJFHcZS9VEG3wokDPuz8O4AOfZPJ39NGA3TwvQN8brHdVIrHVbvMgAG2/06csI0xX7rU1mw5Kcm2JSw01Ja4mjzZ1o+hDLi/8QAqewXw+ZEVxGemYFIaCrAYOsEevtzfeAA31Sl6K0xx8vJxvk9Oh8FtefjDe6jRoPhHrvYd353DO445vS3qnPJjs1GDblweU3y5H4c2ahRPTujH4I5N+HVtJGt2HSU9M4sAX2+Gd2nGuN5tqF+9ku0xLp4yti/hjENj3QHMSmN/QhRDarYtcl1gpQDeXvUSTw56lehj53Ked8CWLNGtOg3Dw3h96TPFNqXn8PZjOVO67NGtOrvW2E88ieKxOuIoiamObd1Jy8hi2baDjO7RylbVOH16bv+wbJGRBVcy5jV1qi1ZU0KJ8h9e+RWlFEYRfeF0q87OlbvZ/88hWnRr6vQ5OgwMx/z/7d13eBRVF8Dh38xueqMloYXQpJfQe+8dVARFPwQFERARFcGGhSKiiIAUG6AooChVOtJ7b9J7DaGk9535/ljSSNndZEMSOO/zoNnZOzNnk91k5+y95zgYiI+zXF9L1/Q8sRxq8dYjjF/wb+Lt+GRLR006LNt5gmtBIXz3Rg8c7NjtzdXZkd7NA+jVrDrh0bGcunKbr/7czJr9px8k0RU0XWfmil3ULe/Hp33b4Zv/MV0CLsQTThI2QuSQ/D5efLP1Mz7oNJ4rJ68nXjRA0gVE96EdGDS5bw5Hmj3OH77EpeNJhfUevpBsxlU2637sUoqiGlXW/NmQWq2Og+l60kEcaqK49QWntuZlGrm4XfUjUbIkTJhg/vcYeKZEPboVr8222yc5Fx4IQBl3X5r6VHxkdWsSlKhYDEcXR2KjrKmnZDZy7hDyeWdPB492/Vow56OFxMXG2dQpCmApZZMSNsnqcdC1KwFlihFQphhgTqqmquXyCLqMmTTN6q5VoFiV2AEoUtqXH459zZY/drF85lqunryOoiqUrVGKbkPa06BrbYwO9ntbdHy7dYWcE1wODuJa5F2Kuxa0Wwx5TeDlIFbOXs+mBdsJux+Oq6crzZ6tT+dBbSlerqjdznP2xh2MBjXFxXd6jAaVs9cfFP5PmNXYrRtMnWqua5PRbBRFMf8dGjYsR4u737wQyKGNxywPxLwMe8WsdZlK2HgV8qRZr4ZsWrgj/Q+iMH9b3PK50cxOs9myy617YXyxaFOGY3Rd58DZq/yx5Qh9WtW0ewyKonD9TghvzlhK7INC8+Yle0nPuwNnr/G/iQuYP+oFvPO5p3MkIUReJQkbIXJQ4ZI+fH/0a/avPcKanzZy/dwtHJwcqNa0Ep0HtaFY2SI5HWK2uXXpdqptyS8kDcD77GG8Xo9d8UW5ftEZpdBGMF0BPRLUAiiGpGVUub1dtcgco2qgReEqtKBKzsbhYKR9v5Ysn2FdbZW6HWtkW7IGzEui3ps3lHHPTwFFt9iJKLmDqi8nAtpQ+eB684aHuozRqBEoyTol6Trx27Zyb8okCi1bjWqhy1i8ZiJWi8fF4Jip4r1+bgWt7hJm0jX83KxPcDi5ONG2b3Pa9m1uc1y22L/uCL9+vtjq8boK0T4K/XbNZG6DwRRzLZCN0eVOq3/ayJRB3wMkfngRGRrFkmmr+evbfxg48SV6vtPVLueyfcnPQ+Pz2KzGKyetr79lite4cORyps818MuXOLLpBPcDg1MtvQISfyeMnDsUR+dH0+Evs/7efsy6hLgOCzYd4vkWNVK2hLcDXdcZ9eM/xMab0m31bdJ07oVFMmHhv0weZJ/XiBAi95CEjRA5zGAwUK9jTep1tP8nM7lZWp9kH1R8WaqXoTvnAXDGxBh2skX340iMMwoKGEsm7aDr5po1eaBdtcj7+o/rzcbfthIREpnhOKODkde/6Zft8TR7riFOrk5MH/YTgZeCMBgNgJ54kaQoSooL04SZe237NqfCrAHQp4/FLmN6WBghWzaQ7+Q5fB46/47m1Yge9QqtMCdpNtw6xh+Xd3E8xDxzzs3gRJfitXm2RD1KuFlfHLN14ap89d8KorU4i2ONikr7IgFWH/tRMJlMTB4wE4WMl58kp2gQ086T6PhoJp5YxoRyz7Fz2X7u3ryPs5sTtdpUw698MZviOH/kEitmrOXwpuPExsRTpLQPHV9tTZNn69tt2Ze9bPlzF5MHzErzvoTkzfcjf8XFw4XOr7XJ8vnKFi1k1ewaMC+BKVM0nefvYzarMVEWcg4FCudn6q7xjOv9DSd2nsZgNCTO1jPFm8jn48nbPw3OE+951h84g2ZFck8HbtwN5cLNu3YvBLz/zDWu3A62OM70oLtZ4P0wWRolxGNGEjZCiBxRrnbpFMvAEswkgAJE0xTz0icD0JKrtPxvPgQczbPtqkXe5+blxo/HJzOo5sh0u6E4ujjy9aZPKP7Uo5kdV79zLep2rMGB9Uc5vu0k8bHxeJcohK+/N+t/2cKOpXvRTBqKAjVbVaXb0A7U61TT/Cm3FfU4FCBfGuf9o0stJr/WGu3YHwyPDWfL7f84dP8SarIrvQhTDH9e2cXiK7sYW703LQtbN0vK1ejEC6Ua8/P5jJciKJiXzXk52regc1btX3uEoKt3rR6vq6D5OBBfzw10jd13zvLMc69juhyFalDRNR1d16nevDJDp71Cycp+GR4vPi6ebwf/wJqf/sVgVBMTeHev3+Xolv/4cdR8Jqz50OJxHhVN05j9zjyrxv44aj5t+zbL8syMljXK4r7QifAoy3VsnB2NtK9t+/Kg3KRklRLmF4wV+UODUeWpGlkr5u5dvCBTto/l3OGLbJy/jfuBwTi7OlG7fQANutR+kFzO/cKseH5kZbw1/j18DoOqYrLUeeGBzUfOJxaQF0I8HiRhI4TIEQUK56fJM/XY9teeFEkbTVEYp9fnHocTZ9okygOFHcXjrVCxgvx560fWzdvMgglLuH3lDrqu41XIgx7DOtL6f83YuWQvkwfM4sb5WxgMBirUK0u3IR2o17kmhmx4XqqqSp12AdRpF5Bie4MutYmLjSMyNAoXd+fUF7k21uPQFNhetyyLutVmX7ILuimnVyUmarSHrghNurkezQdHFjLbaQDV8ltXU2pA2VbciLzHmptHUFFSHDdh5kozn0oMK5/7usAdXH8Ug4MB00OFV3XVPJPm4W26l4HIz4uCIWkJWmSAE06Xo1L8bjy27STDGrzP5C2fUTaDC+pvB//A2p/Nya7kS1ISllPcuxXM283HMPPARHxKeD+4T2Pf6kMsm7GWE9tPYYo34VOiEJ0GtqHty83xyJ99dTEOrLM+wRUREsnWxbtp/WLTLJ3TycHIgI71+OavrRbHvty2Dq65fOmOJb7+3tRuG8DBDUdTfUjyMFO8RpfX7dOZsmxAKcoGPJpOftnBy82Ze2EZz6h8eLy9hUVGW72ET1XUbEkaCSFyliRshBA55n+f9GLvqkPERMWmStp8Rw126kXpwTnqcwslo48Gc0lhR/FkUBSFdi+3oN3LLVJs37ViH/0rDCcyNDLFp9mHN53g4IZjVGlcgc+Xj8L9EbaydXB0wKuQheUv6dTjiA65R5izkfteruysXYYlHQO46ZsvzUM8nKhJTsdch+HHc/8ytY51S8UMison1XrS0Ls8iy7v5ERIUg2Och5F6OXfgA7FamBQ0m/TnVNi0ug+FNPZC8PZaIynk+7TnRVi23oS07MAesFkb8c00N1SPy7NpBETFcuYHl/yy/npaSb/Lhy9zJqf/k21/eHjhIdEsGDCEt6cOZCo8Cg+eXoSBzccSzHr8eqZG8x+5xd+G/cX41e9T4W6T1n7LbDJqT3nMBgNmOItdxYyOhg4vfdclhM2AC+2qsmdkAh+3XAAg6o8KORqlnD72SbVeLXDo+tGl51eGtOTgxuPploqmZxqUKndtjrl65R9xNHlTu3rlGf2yt0Wl0UpgJ9PvqROenbk6epsnhFpRdJG0zU8Xe2fNBJC5CxJ2AghckyJCsWYtHEM73ccT+jdsBStdg1GlUPxvvgN/h9132qB4ccfc31hR5F5kWFR7Fiyl6Brd3F0dqB688o8VbN0Todllf92n2HWiLmc3H02aWOy99YJF8D/7TrDx90mMunfMdky0ybLktXjCI+PptWGz2xtQJUuDZ3dd89yI/I+RV3zW7WPqqi0LxpA+6IBBEWHEhoXibuDC77O2VfM2R4KFi2Qqt26VtiB6IHeqIFxKEHx4KBgKu0ELmkknFRQQtNOXmgmjdtX7rBv9eE0WyKvmLk2xTKo9GjxGuvmbeaVL/owrvcUDm86kXj8RDro6ESERPJe28+ZeeBLipYpnM4RM88Ub7K6ZoqOecmXPSiKwlvPNKVxlVIs3HyILUcuoOk6igINK5ekV/MAGlT0z1Th7NyoUv1yfLRoBON6f4Om6Sl+1gmJuqpNKvLBwrdyMMrcpXujKvzwzx6LCRsdeKFlzWx5rrSq8RQLNx+2aqyCQrNqeePvphDCepKwEULkqPJ1yjL/0gw2LdjB6p82EnT1Do7ODtRqU52ug9tRquqDJRSPY2FHQVxsHD+/v4AVs9YRExljLlCpaWiazlO1SjN0av9MtZd9VPauPsSY7hOJt2J2gGbSOLbtJPvXHKZep9QX27lJaGyU3ZI1yV0ID7Q6YZOct7Mn3s6e2RCR/bXs05hfPv0jxTaHbeHEPp0frZgjFLO8vMZhZ3i696kGlU0Lt6eZsDm8+YTFZE2C2Og41v+yhf1rD2c4TjNpxETG8MeXyxg++zWrjm2LomULp1o+llEsRe3cPbFOeT/qlPcjLt5ERHQsbs6OOOSRGiu2atyjHj/9N4UVM9ex+qeNiQXUy9ctS483OtLkmXpZam1/8dhlzh26hKZp+FUoRsV6T+XphJe3lzsf/68NH89dm24JIEWBJlVK8XTjqtkSQ82nilHSNz9XgoLT7RIF5llhTauVloLDQjyGFN323obZKjQ0FC8vL0JCQvD0zBtvzoQQ2etkyHUWX9nNrjtniNXi8XbypGvx2nQqVhNPB5ecDk9kUnxcPB92nsDBjcdSzUgAUFUF1aAyfvUH1GiZPW+GsyI4KIQXSw4mJirW6n1Ug0rN1tWYsPqDbIws64JjI2n771i7H/frmv+jiU8Fux83t/mg83j2rz2SOItBB8Kn+aGVdEqqVZMWk45xZzhuE25lePyAllWYtGFMqu0vlR7CrUu3rY6zWtNKnNh5yqokj4OzA3/e/AE3L/su6YuKiOa5wq8SHWG59obBqLLg2vfk98nds6zyAl3XiYmKxcHRmOUiwAc3HmPOB79zau+5FNv9KhSj7yfP0ey5hlk6fk7bdPgcX/25mZv3wjCoKooCJpOGo4OB55oFMLR7IxyycdbkmWtB9Ju0iJj4+DSTNgZVoZCnG7+Meh5vr+yrN5VddF3n5J6z7Fl5gMiwKPJ5e9HsuQYUL1c0p0MTItvYkvOQGTZCiFzLpGtM+m85f1/di0FRMenmi4qwuCimnPqH2Wc3MLnWS9QsIFOA85KLxy6zYuY6dizdy71bwemO0zQdHY1Pn/2Khde+x9nV6dEFaYU1P/1LbIzl1tPJaSaN03vPWh6Yw/I5ulLRsxinQ29kWJ/GVqXdH24O/ngaOXcowxt/yI3zgeYuXYDrF7cIn+wHrmraSRuTjhIUj8uMoAyPrahKunWQipTx5fbVOxYLyya4duaG1TNy4qLjuHLqBhXr2beWjYubM88M78xv4//KsIuRoiq0f6WVJGvsRFEUu/xO3bxoB+P7fJvmfddOX2ds728IvBzEc+92y/K5ckqLgLI0q1aG3acuc+T8DeJNGsUKedGmVjk8XLL/71K54t7MebcXn/66jpNXbmNQFRRFQdN1NE2nbvkSfPK/tnkyWXP24AUm9fuOi8euYDCq5sel6cz9eCE121Tj3TlDKFTU/rWBhMhLZIaNECLX+vq/lfxxZWe67+FVFBxUAz/VH0Q5T/kkJreLjYlj8qsz2fjbNlSDgmay/s/P2z++Tvv+LbMxOtv1q/Am187csHk/Ny9Xlt63ro1xTlp94xBjjv5pl2OpKNQuWIbpdfrb5Xh5Qdj9cOZ8sIB18zYnzsIyFXUgdnhhYqs4o6KgKgomXQd0jLvCcZ56GzXE8vKgt38aTPt+LVJt37xoB+Oen2Jxf1VVqNigHLcu3ubujftWP6Yp28dSuaH9lyiaTCYmvjSNTQt3pKhlBubEgo5O7bYBfLp0JI5OFopo5wERIRGs/2UrG3/fRvDtENy8XGncox4dXm1FwSK2LxnMKTcvBtKv/JuYTCaLLcMnb/mMqk0qPprAHmP/XQ5k67ELRETHks/NhTa1ylHCJ19Oh5Upp/efZ0Szj4mPjU8zyawaVQoWyc/0PRMoUDjvvC6EsEaOzrCZMGECf//9N6dOncLFxYWGDRsyceJEypfPvTUIhBC5z/XIexkma8BcyDROMzH77Aa+rvW/RxabsJ2u60x8aSrb/t4DYFOyRlEU/v19W65L2Ny7Zf2FbgJFVSj2lH1rcGSXtkWqs+HmMbYHnUbP4JXo6+RFUEyoxZk4r5RJnWB4nHnkd2fYjAG88kUfDv97nPDgCDwLelCjVVUCtVC2BZ0iIj6afA5uNC9cmbkLfuHfiEAynO+igKuHC817pb3EpFGPuvj6e3Pn+t0MZ85omk6vkd1ZMnUV9wNDrJqRoygKRUpnzwwpg8HAqPnDqN0ugCVTV3Hu0MXE+/wqFKX7Gx3p+GqrLC/dyQ32/HOAsb2+ISYq1vy6evCyuXj0MvM//5MhU1+hy6C2ORuklVbOWm/uOGXh17nBqPL3t/9IwsYOKvn7UsnfN6fDyDJN0xjX+5t0kzVgLo5+7+Z9vhv2Mx/98fYjjlCI3MPuCZstW7YwZMgQ6tSpQ3x8PO+//z5t27blv//+w83t0bUyFULkbUuv7kNByfBCEcxJm+1Bp7kVFUxhl3yPJjhhs6Nb/mPr4t2Z2lfXde7fDrFzRFnn5OJIZGiUTfvomk6X19tlU0T2ZVBUvqjxApP+W8Hya/sTt5un4msYFQN9Szejt39DRhz8haPBV1K9ZhPabn9W7TlqFCj1yB9DbuDm6Uqj7nVTbPPHG393bwAu/3eVxe/9xbUzN1FVFV3R02y7rCjm6+J35wxJdymLg6MDE9Z8wIhmYwi9G5bqQiihG9ArE/rQoEttYqPjOLTxmMXHoBpV6nWsma2fcquqStu+zWnbtzmBl4MIvRuGez43CpfyydOFa5M7svkEH3f/El1L/TPWNB00namDf8DR2YF2L+f+BOe6eZusSvaZ4jV2LttHVHgULu6ZqzsXExXDlj928c/367lxPhCDUaVKk4p0fb0dVZtUfGyeI0+KQxuPcfNCoMVxpniN7Uv2cufGPVkaJZ5Ydk/YrFmzJsXtuXPn4uPjw4EDB2jatKm9TyeEeEwdCb5sde0MHZ2TIdckYZOLLftujVXthtOTXs2OnFSvUy3W/7LZ6sekGlQKFs2f7uyI3MhBNfJ+lR4MKNuKFdcPcDkiCAWF8p5FUxT9nln3VdbdPMqiyzs5FWpeJuasOtCleC2eLVGfUnm0do2maRzccIzLJ66iKAqlqpWgevPKqGoa7bhtFBMVw1f9Z7B50U5Uo4r28PNIAVVRUFQFU7yGZ0EPRvzwOg271cnwuH7lizHzwEQWfrGUNXM2EROZVMy3csPy9BrZLbFLWaPudShergg3LgSmPn8y+oMZOY+Kr783vv7mhJbpQQe2vD67Rtd1pg/7CV1POyGX3KwR82jRuxGOzpY7iuUUXdcJCQq1erxm0gi5E5aphM3lk9cY1W4sd67dTbFkbvtfu9myaCcNutbm/d+HZ1+ds4sXYfZsWL0agoIgPBzc3cHbGzp2hNdeg5Ils+fcj6ntf+/BYDQkvr4zomkau1ccoPNrbR5BZELkPtledDgkxPypaIECkhUVQlgvXrOuzWvieD1ziQDxaBz+93imkzWKqtCwW13LAx+xroPbsebnf60aqygK+bw9mbjuo1xXPNka3s6e9M9gSZODaqRTsZp0KlaTaFMcsVo8bkanxBk2D4uOjGHTgu1sWrCd+w9qeDTqVpd2/VrgWTB3tKVdN28z88Ys4vaVO6iq+dN7TdMpXMqH/uNeoEXvRpk+tslk4tNnv05sqZ1essSzkCd1O9agbvsaNOxeBwdH6+q3FCpWkKHTXuGVCS9w8dgV4mLi8fEvRJFSKZdSGB2MTFjzIe+0+ISgq3dSdaAxGFV03TyrJztq16QnIiSCNT9vYtmMNdw8b/4Uvli5InQb3J62LzfHzdP1kcViLyf3nOXS8atWjQ0PjmDLn7to81KzbI4q8xRFwcHJgdho6wuvO7vZ/rvvzo17vN18DGH3zK3uk9c3SvibsmflAca/MIVPl4y070yb9eth6lT45x94OMkWFgY3b8LRozBxInTqBMOGQRtJKlgjPCQSXbPuPYHBoBIeHJHNEQmRe2VrwkbTNIYPH06jRo2oUqVKmmNiYmKIiUn69Cc01PpsvRDi8VXCrRAnQ68ndoaypJirJIVzs7hY27opJWcwGmjXr7ndYrGXp2qWptvQ9iybvibDcapB5Zm3OtPz7S7k9833aILLQc4GB5wN6ScWDm86zifPTCIiONJcUPbBhdB/u87w84cLGD5rYI4vB1kwYQk/f/B74u3kiYxbF28z/oUp3A8M5uk3O2Xq+DuX7mPf6kMZD9Ih+HYINVpWzXRbZBd3Fyo1yDjRUrikDzMOTGTZ9DUsn7GW4AfLDw1GA82ea8Azb3WmXK0ymTp/Rq6fu8nKWevZsXQvUeHR5PP2pPVLzajSpAKf9/yaezeDUyyvu3H2FjPfmsviySv4csPHFCubN2pBJTix/VTikjRLDEYDx7edtClhc/H4FY5vO0lsdBw+/t7U61Qz2ws012lfg90r91tMxiuqgn+l4ngVsr2ZyOKvlhN2LzzD75um6exavp9j205SrWklm8+RiskEw4fD9OnWjdd1WLnS/G/oUJgyBbKxzffjwCOfG4qqghUfzplMGh75c98sWyEelWxN2AwZMoTjx4+zffv2dMdMmDCBTz/9NDvDEELkQd2K12bVDQsXNIAClHL3oaJnsewPSmSad/GCXD1te0clgOGzBuJZIHfMunjY4Cn9cHZ14o+vlptruzy4qEjoglWpQTk+/usdCkqHCwD+232G0R3GJU6DT740RNd04mPj+ar/DBwcjbR8oUnOxLjrdIpkTXpmjphLtaaVKFvD9to8S6evturiXVUVlkxdResXs3dJuWcBD176uCcvvP80t6/eIT42ngJF8mfLTBZd11n4xVJ+/vB3VDXpexB8O4Sf3v8NXdPNy14emtGQcPvO9XuMbP0Z3x/5CjevvHMRFxsTZ/3sD10nLi7eqqGn9p5l5oh5/LfzNIoCyoPvqXs+N54e3okXPngaQzYlD7oOac+OpXstjtM1ne5DO9g8+yUmKoZVP220MsmlsnzGmnQTNqZ4E6pBtRyDyQS9e8Pixanvq1YNGjc2L4cKD4ft280zbJKbPh1u3YKFCyVpk4HGT9djxax1Vo1VVZUGXWtnc0RC5F5ZX4SdjqFDh7Jy5Uo2bdpE8eLF0x03evRoQkJCEv9dvWrddFEhxOMtIH9JKnsVT3dJRQId6F+mhRQczOU6vNIKRbXyZ/RgmEd+N0bPH5bjsy0yoqoqr37xIr9fmcWLHz1L3Y41qNm6Kp0GtmXG/ol8u2OcJGuS+W7Yz2jxphTLGtIybehPxMZkflZWViyZtgqD0fLbI4NBZdl3Gc+uSovJZOLY1v+sugjVNJ0z+88TnawOTXYyGA0UKeWLX/li2bbsaMnUVeaEmE6q70HC8yKj54dm0gi6epe1czdnS3zZxdff26p6HWD+u+bjV8jiuMObjvNW0485teeseb9k39Pw4Ah+/fQPxj8/xdx2OxvUaFmFli80zvDvr2pQqdK4Am1fbm7z8a+evkFUWLRVY03xGse2nUyx7dal2/w4aj7P+PSnvWNv2jv25p2Wn7Dt7z3pf0+GD0+ZrFFVeP552L4d/dBB9Kmfoo9/G336FDh82Jy0ef5587gEixebjyPSFdCyCkXL+KIaMv5dazCqNHm2vrT1Fk80RbdU+cxGuq7zxhtvsGTJEjZv3sxTTz1l0/629CQXQjze7sSE8freH7gacTdVAWIVBQ2dgWVb8WrZVjkUobBW6N0wXiozhOjw6FR1Mh5Wv3MtWvRuRONn6mf7lH7x6Jw9eIHBtd+zevyoX4fRqs+jnWUTFxtHF/cXra635OjiyMrw+TYljKMjY+ji/qJNcf0V9HOuqe2TFZFhUTxX+FViomKzdiAFipT25Zez6S9Z0XWdO9fvERMVS34fzxyfjRMVEc1zhV8lOsKK5JsC885Mo2iZwukfLzyK5/0GERkWlXECVIEh3/an+9AOmYjasvi4eGYMn8PKWetR1GSzDB8U0m7YrQ6jfn0jzWLDNy8GsnH+NoKu3sHR2ZGqTSvSsFsdjA7mBQCn951jaL3RVsfiVciDxbd/BmDn8n2M7TUZU7yWIjGYMLOtVptqjPn7XVzcnJMOsH49tE3WUt3FBRYuRO/cBCIXoEfOB+2O+T7FHVyeRXF9CcXoB8uXm2fmREWlPF7r1lbH/6Q5e/ACbzX9mLiYuDQT2AajSsGiBZi+Z8ITsZxYPFlsyXnYfUnUkCFD+P3331m2bBkeHh7cunULAC8vL1xcMtfKTwjxZCrk5MGc+oNZeHkHf17Zzf3YpKJzNQuUok+pJjTyfnSFMEXmeRb04PPlo3i/wzjiYuPTbTc85Nv+dH8jey4sRM46uuW/FB1eMmIwGjiy+URiwiYqIppNC3awe+V+IsOiKFA4Hy16N6Zuxxp2Xe4RGRplU3Hs2KhYYqJibSok7eTiiIuHs9UzBxycHXDzyntFdtOycf5WYqKzmKwB0OHm+UBiY+JSJXWjI2NY9cMGlk1fzY0HBYsVVaFRtzo8PbwzVZtUzPr5M8HFzZnuQzuw6MtlGXaJUg0qDbrUzjBZA/Dv79uJCI3EmmaKf32zkq6D29mlu9nDjA5Ghn03gF4ju7Pqhw2cPXQR3aThV6EYnQa2xr+SX6p9IkIi+OqVGWxfshdVTVqmtHT6ary8PRn23as0fbYBPiUKpahzlRFFVSj6oK7RyT1n+ezZr82zaB7aNeFvz6F/j/PFS1P55K93ORp8hdU3DtH1809JWFClqyrKwoXoHaui3+nyIFGT7HeDHg6Rv6JHLYJ836N07WpeBtWjByQU0506VRI2GXiqZmmmbP+cr/rP4PzhSxiM5ueCpulomkatNtV5+6fXJVkjnnh2T9jMnDkTgObNm6fYPmfOHF5++WV7n04I8Zhzd3Dm1bKteLl0cy5H3CFGi6OQkwc+zl45HZqwUbWmlZi2ZwLzP/uT7Uv2pkjaVKz/FC+8/wx1O9TIwQhFdoqNjkNVFUxWJGx0XSf2wYX9lj938fUrM4gKj068eFMNKpsW7MDX35tPlrxL2QDb68ikxdYuNqqq4Ohs2ywwRVFo17cFy2eutbgsymBUad2nSZ5vaZ3gv91nUtStybKHLuRD74XxXtvPOX/oUoqCxbqms2vFfrYv2cugr/vyzFud7XN+G/X9rBeXTlxlzz8HzfE99FJQVYVSVUvw7pzBFo+14bdtKCgpHmeadHOh7LMHL1K+tv2LRyfw9fem39jnLY6LCo/i7eZjuHj8aprL4kKCQvn8ucm898sbtH6xKfU612TvqkMWnzO6ptNpoDk58utnf5qTPBl8azSTxvZdh3hu49dcjr9HscBQRm4/nHj/v80qodUuQqt7L4N2lxTJmkQm0GPQ7w+EQivMSZtevWDBAvPdK1fCpUvS8jsDZQNKMevgJE7vO8fulQeICovCy9uLZs81sJi0FOJJYfeEjZ1XWAkhBABG1UAZD1/LA0WuVqpKCT76423u3brP+SOX0eJNFC1bGL/yUjT6cVeoeAGrZ68oCnj7FWLbX7sZ23ty4vaE9xgJF29B1+4yotnHTNs1Ps1P8m3l5OJE9eaVObbtpOWCwAaVOu0DMjVrocvgdqyYtdbiOE3T6ZZNS1lyQnycKXV75Ezy9iuIo7Nj4m1d1/ms59dcOHI5zfeiCc+9WW/Po3ApHxp1r2uXOGxhdDDyyd/vsuy7NSyZuopbF28n3ufl7UmXQW15bmS3lMt00nH/5n2b3nMndP9Kj67rHLp/icVXdrPv7nniNBO+zl5086tN52K18HSwzyz5BROWcPHYVTQLLZ0nD5hF3Y416PVuN/asPJjhWNWgkt/Xi+a9GhJ4OYh9aw5ZnHmkFTQSPtmP8Nh7oEK3VQdRk+2zoGMAR48uQSthoE2BjGoAaUAseuQ8FM+PYPDgpISNrsPs2TBhQsbBCMrXKUv5OmVzOgwhcqVsKzoshBBCpKdA4fzUaRdAvU61JFnzGIuOjGH1TxsZXHskU4f8aPV+pniN5r0bMnngLPOFVzoXX5pJIyYylhnD59gnYKDb0A7WFQQ2aXQb0j5T5yhRoRjvzhmKoiioaRTjVlQFFHhr9muUqV4yU+fIjQqX9DFn47JIURW6DUmZyDq97xxHNp2w+LNTVIX5n6fRAegRMRgNPP1mJ+adncaM/ROZsOZDvt05joXXZtP3015WJWsAXDxtS6C4uKd/3Dgtng+OLGTQ3h/YFHiCkLhIIk0xXIq4zbenVtF9yySO3L9s0/nSEhsTx8pZ6ywmawDiY+NZN3czVRpXZPjs18yvlTQK1KoGFY8C7kxc9xFOLk5cPHbFqmViUf0LonsY0B8cstG+84n3nS3lw9HKxQGd8ddqEWWyNMPNBFGL0fUYaNQIqlZNumv1asvBCCFEBiRhI4QQQgi7u3bmBv0rvsnkAbM4d/gS0eHW1WxRDSq121Xn0rGrhN+PsDheM2kc3HCM6+duZjVkABp1r0PTZ+tnWEhYUaDN/5pRu11Aps/Tqk8Tvlj3ERUblEt1X/naZRj/z/t0eOXxKqjerl+LLC+HUg0qXoU86fBKyxTb//l+g1XdvXRN59yhi5w7fDFLcdji+rmbzH7nFwZUG0Hfp4byTqtP2PjbNvwrFad22+pUql8usdCutRp2qWOxw04C93xuVKib/uyFcceXsPHWcQBMetLPJyFXGhkfwxv7fuZCeKBNMT7s5K4zhFnxmgbzjJ9tf+0GoOOrrfh686fU7VgjxevSxd1cF2jWwS8TZ9hZM+tI8zIQ39QDjEnHyhcSmfj14crFHyQWFaI0I2uDS1gRcBSYbpv3a9w4aXtQkOV9hRAiA3ZfEiWEEEKIJ1twUAhvt/gkcRmGNYWGwXwxXuypIoye/yaz3p6XWIzaIgUObjhGsQdFR7NCVVVG//YmXj5z+Wf2evOyhgcXibquo6oK3d/oyIAvX7SpO1RaaraqSs1WVbn831UuHruCrkPJysUpVdXfqv11Xef49lOsm7uJwCt3cHR2oHqzyrTr1yJXdpUq/lQRGnWvy64V+zOVuFEU8CjgzpfrP0r1+K6cvGZTwehrp2/YrfZRejRNY84HC1g4cWmK5/Kti7c5sukEP4z8lfGrPqBsDdvj6DiwNfPHWp4ppBpUOg1snWL5WHLnwm6x6sahjB8HOnG6iZ/O/cu4AMt1atITERppeVAyyRO2VZtUpGqTitwPDCbwchBGByPFyxdNVfC7REXLMzbjq7uAIeVr1yVZ57KoZN8rBdgVWpjuBa1I8CkPEmju7knbwsIs7yeEEBmQhI0QQggh7GrptNUE3w6x+aK8Re9GvDH9Fdy83IiOiLY+0aOqxERa0S7ZSkYHI8Omv0qfD55hzc//cvm/qyiKQqkqJWjXvyX5fexb9Ny/kp/NNXiCrt1lTPeJnD14EYNRTUxW7F19iJ8/XED/cS/w7IjOWU4q2du7c4fwXpvPOHPggtU/3wS6Dj3f7pJmQsva2SaZHZ8Z8z5exMKJS4GUxXW1B4875E4Y77T8hOl7v6D4U7YlGwsWyc+gr/tmuBwwIQH6/Oge6Y7568oeDIqaYmZNWky6xr+BJ7gbE0ZBp8wlAz0LuFse9ICiKHj5pG51m983X4Zdg4qVLUK1ZpU4vv1U+r9/XFL/7KNcHHF/kLRxSdbJTEchwmTF5ZLiCaq3+evw8KTtHrkvcSqEyFtkSZQQQgiRR2i6xt2YMIKiQ4nXMiqEmXNM8SZznQobkzUGo4rRwYCblxtgrnNk7UW1ZtIoUDifraFaVLBIfvp88Azv/zac0fPfpPeoHnZP1mRGcFAIwxt/yIWj5roiyWeW6JpOfGw837/7C39MWp5TIabLzdOVrzd/Sv9xL1CoWAGb9//p/d/TXP5Wvk5Zm5IwmZnVYovbV++wYMKSDMdoJo3oiGjmjVmYqXP0GNaRN2cONHc3U8wJGkVREpeGVW9WiW+2fpb4mkrLkeDLFpM1CUy6xtmwW5mKFaBi/XLkt/J1qqPTondjywPT8OJHz2aYDFSCU//uDPZyTfw64MS1xOLYBjQKOlhazmkA194oiqN5v+3bk+7y9rYpdiGEeJgkbIQQQohcLiQ2kjnnN9N580Q6bJpAp81f0Hrj50w++Q/XI+/ldHgpBF27S8gd25cBmOI1Nv6+HVO8+WKq9UtNE7+2xMnViQZda9t8zrzqt8//4s71exaXAP38/m/cuX73EUVlPScXJ3q/1535l2Yw+/BXfLPtc8pU90+zAPPDFEVh5az1qbZ3fq2NVUlC1aBSs3XVbG8ZvOr7Debi0RaY4jW2Lt7N/cDgTJ2n82tt+OPmD7w5YyAtejei8TP16P5GR74/8hVfbhiDV6HUs1SSi48zYTgaicPmMIy7wyEs49ectcmdtBiMBroP7WBx1peiKLi4OdOqT5NMnadGy6q88/NgFFVJVddIURSMhyIxRKdM6Oyok9Ty/KmLt6n233UATKi09ryawdkMoHiguL704EA74NixpLs7PD5d3oQQOUMSNkIIIUQudi3yLi/unMass+u5E5OUCIk0xfLnlV08v/1b9t09n8ERMk/XdauTJglsHZ9cfGw8kWFRQEKb1zIWC8kqqkLnga1xcbdP2+HcLio8ijVz/rV6BtM/32/I5ogyz2AwULqaP0XL+HL+yOXEpUIZ0Uwa/y7Ynmp78XJFad+/RcZJEsV8wd73s95ZCdsqR7ZY7liVQIvXOLnnbKbP5eLuQufX2jDq12F8/MfbDPq6r8U6SCaTiT+/Wk54r4O4j7qO65e3cPvsJp59LuDyzS2UO/Fp7lfcxfZZUcn1fKcL1ZtXTvfnpKgKqkHhg4Vv4eqR+dd0277NmbF/Iq1faoaDU9KSphIVizH82wG8UK4JCkkxLOkYgJYspJ4rD4BJx3g7lmKB99F1SD2pUQHVC6XAPBSDr3nTjBnJ7lZg0KBMPwYhhABJ2AghhBC5VrQpliF7f+JOTBh6Gr1qTbpGjBbPiAO/cCXijl3OaTKZ2L5kD++2+pT2jr1p79ibZ33689Po3wi8bLnjScGiBXBwdsj0+Z0eFBFVFIWP/3ybfD5e6SZtFFWhSqMK9B//QqbPl9ec3nee6Ajr6vVoms7e1RkXlM0NQu+GWx6UTPj9tMcPmzGAZj0bAKA8VFRWV0E3KpT+ui4FqvtkLtAH4uPiuXjsMqf3nePOjbRnuMUmK2Jr1TFj006QZAeTycS43t/w/Xu/EheUcrmPEg8OG8Nwf/MKys24xO0qClXzlcDfPWtLfBwcHRj3z2i6Dm5nTqQoYHAwJC5nK1GhGBPXfUy9jjWzdB6AsgGleOenwSwN/oWF17/n77tz+OHYZDq/1obXKrSlZoGSiUmbm7752FEnqZNW660nabLtNM5jbvJmx3JMHuHHhf9c0DRz9ygMfigeI1EKrUFxqGjeadkyWLQoKYDOncHfugLiQgiRHik6LIQQQuRSa28e5WZ0cIZjdHTidRMLL+9gZKVuWTpfVEQ0nz49iQPrj6boahNyJ4w/vlrOX1NW8tEfb9OgS/rLj5xdnWjzYlPWzt1kU9ce1aBSpXEFHJ2Skj0+JbyZvvcLfhr9G5sX7iA+LukjbjcvV7q83o6XPn423Q44jyNrkzWJ461sp56T3PO5Wh6UTHozLxwcHXh3/lDONY3j4m8nMR6KgDgdPb+R2LaexLb34lChe/xv53R+rD+IEm6FbDpv2P1w/vpmJStnrUux7K9Gq6r0fKcrZar7s3PZfsLuhWPSNPPHola+BFyKWF+QN6v+nLScbX/vIY0cMACKBoSYcPvsBuEzSoCioKHTv0wLu5zf0dmRoVNf4eXPerP1z10EXbuLg5MD1ZpVonLD8nYvlO3o5EDBIvlTblONfFu7H7POrmfx5d1Ea3Es6lqLJnvPAWDQdMZ9uZzxej12KUVZ90cBNv7lzaxDX+JfqTiK8lASedky6N0btGQ/8GHD7Po4hBBPJknYCCGEELnU4su7UVDSnF2TnEnXWHHtIMPKd8DZkPnkxRcvTeXQv8cBUi3n0Ewauqbx6TNfMWX751So+1S6x3l6eCfW/bIFRdESandapJk0ug1pn2p7oaIFeG/eGwz6ui+H/z1OZFgU+Xy8qNWm2hOVqElQoEg+q8eqqkLBTBT2fdQKFStImer+XDh2xWLnKNWo0vTBLJq0/Hh+E/+VCkH/MO2uSyZdIyw+mncPzmdh4zetTg7cuX6Xt5uP4daloFSvjcObjnNo4zEUVUHXdQwGldhiRgxWJGt0BbRiDpwuEkwdqyLJmvi4eP6a8k+6yZoEigaGy7E4Hoshtpozb1foTCPv8naNxT2fGx0HtOZ+YDA3L97GYDQQHRH9yJY3OqpGhpXvwIAyrfhl41p+P32PxdWq8uxRcw0aZ93EGHaylRKsUMrQ7dfPKVm5RNIBdN1cs2bGDPPMmuTJmqFDoXXrR/I4hBCPN0nYCCGEELnUpYggi8maBDFaHLejQ22eNZDgzIHz7Fy6L8Mxum6ua/Pr54sZt2J0uuP8K/kxZvE7fPrsV+iaZnGmjaIq1O9ci0Y96qY7xquQJ82ea5jxg8hDTPEm9q87QuClIIyORio3Ko9/xeIW93uqZmmKlvHl5oXb6BayYZqm07ZvcztFnL06DGjD9KE/WhynxWt0eb1dmvdFm+L488ouqxKcFyNuc/DeRWoVLG35nJrGh50nEHg5dbIGSEwyJfzfFK8RX90FNB31epx5xko6FB1iny3AmbDUna+yw6GNxwi+HWLVWN0ARbbpjHrlVau+T7Y6sfM0i75cyu4VBxKfy04ujrR9uQW9RnbD1//RdFi6FR3Mee8Qol8oyFe9OpL/izhabT8FgAFooV+hhekKjB8MWxqBu7u5dfeOHXD0aOoD9uwJU6ZkKabA+2FsO3aB8OhYvFydaVatDAU8bZuJJoR4PEjCRgghhMilbF0ZoGZhKcHK2esxGFWLyRXNpLF31UFuXwnCp0T6F1T1O9dixv6J/PXNSjb+ti3NGh2qQUXTNNr2bc6bMwdgMBgyHX9eoWkaf0/5hz8mLeN+YAgoJM52qNq0IgO/fCnD2UuKovDs212ZOviHDM+jGlQ8C7jT9Nn6doze/kzxJuZ+tJC/v/3HqvEvf96bkpX90rxvz52zRMRbt2TMoKisunHIqkTEoY3HOH/kslXHTXYCIj4uivt71yDYlCppoyvmZE1Mdy/i23iiZaH7ki3u3rhv9VjFBCWj8mVLsmb9r1uY1O+7xFlJCWKiYvnnh/VsWrCdSf+OoWxA9rZfPxF8lcH7fiJWi0dHRzeofDCqG3dnu/HcigMpBx89mnaCJrmhQ83Jmkz+Lgu8H8bERZvYevQCmq6jqgqapjN+wb+0q12ed3o2I98TUmBdCGEmCRshhBAilyrnUYTjwVfRrJhl42Z0wsfZK9PnOrP/vPU1Z3S4eOxKhgkbgFJVSvDOT4MZPKUfQVfvcD8whAPrj3D11HV0HUpW9qPDq60oXDJrRWDzCl3X+WbgLNb8vCnZxqQvT+w4zVtNP2b8qvep0bJqusfp/Fob/tt1mg2/bk3zftWg4ujswNiVo3P1sjFN05jw4lS2/LnT4hIdV09X+o97Ps1lcwmSd1GzxKRr3LVy/KofN6AaVTRbajJdi0Uv5kj41BI4LbqH4/pQlGStpLWSjsQ8m5+45h6oipLpmXG2cnSx4fmgmGtS2dupvWeZ1O87dE1PcwmcFq8RGRbFqHZj+eXc9Cx1i8pItCmWtw7MI8YUl+J3rGZQ+WpwW7Y0eIpey/bTeO851Iyen4piLjA8bFiWlkHdvBfK/yYuIDg8Cu1BEiuhc5pJ01i7/xTHL91k7ru97ZK00XXd7vWChBD2JwkbIYQQIpfqWaIBR4OvWBynKgo9itfFUc38n3VLy2tSj7d+rKuHC/6V/PCv5EdAiyo2Rvb4WDdvc8pkzUM0k4au64zpMYkFV2fhls4SCEVReHfOEMpUL8mfX6/g3s1ksyYUqNM+gFe/eDHdmSi5xcb529jyx07LAxWYsv0zSlXJuOOOiw31mxQUq+s9XTtz06ZkDYDxQCTK3Xj0AgaiX/ch+uVCGM7FoMRqaAWNaP6OiVPodKBb8fQLedtTtaYVzbNarGihrqBkmDjMrMWTV6CqCqYMYtBMGiF3Qtk4f2u6S+Cyat3NowTHRaZ7/74apdhXoxRFA0N4ZcNZuhy7DUFBEBYGHh7g7Q0dOsBrr0HJklmO54OfVxMcHpXu98Wk6Vy/E8KEBf8ycUCnTJ3jzLUg/tx6hLX7ThMeHYuLkwOtAsryXPMAqpQsnJXwhRDZRBI2QgghRC7VsnBl5l0ozMWI25jSWTKhouBudKZXyazVdylVtQSXT1y1epaNX4WiWTrfk0bXdRZPXoGiKBkmx3RNJyo8ig2/bs1wNomqqjw7ogs9hnXk8KbjBF01d9qp3Kh8npmx9Pe3/1iVPFBVlfXztjBw0v8yHFerYGlUFKtmpOno1C+U/tKz5IwOtr9dVjRwWnCP6KEPfhYuKqaqqWdFKCh0LFoDX5d8Np8jMwoVK0jDrnXYtWJ/mvV4kjM6GWn7cnO7nj/sfjjb/tpj8dxgXi24Yva6bEvYrLh2wKqi7jd8vfi8T22qNh5OSffseW2duRbE4fM3LI4zaTobD50lKDgc73y2dRb7dcMBvvlrK4ZkybKomDhW7zvFyj0n6deuDkO7NZJZN0LkMqrlIUIIIYTICQ6qkal1+lHSzbz0SCHlG2kFBQ8HF76r8wq+WVgOBdB5YBurkjWqQaV688oUK5t2Fx6Rtisnr3Hp+FWrZjIpwPpfNlt1XIPRQK021WnfvyWt+jTJM8ma21fvcO7QRatmemgmjU0Ld1gc5+vsRROfChgebrmcBheDI+2KVLcq1iqNKqAabX/L7LgqBKc/7plvmFI+zoTXcr1CZRlVuZvNx86KVye+iIu7M6oh48c06Ku+uOdzs+u571y/Z1WyBsyz+G5duG3X8yd3OzrE6qLuALdjQrMtlrX7T2NQrUuU6MCGg2dtOv7yXSf45i/zEsqHZ/Ak3J6zdh+/bjiQal8hRM6ShI0QQgiRixVy8mBug8F8XOUZynsWQX1wqVfEOR9Dy7fjzyYjKO+Z9dkulRtVoFqzShYv4nRNp8+Hz2T5fE+a+4HWdeYB84XqvZvB2RdMLhB+P8K28cHWjX+zQkfcjE4YLMwSGFW5Gy5G65ZEdR7UxuYlUWBOvDnPvYvrh9cxHky59KacRxE+rvIMk2v+DyeDg83HTqDrOjcvBnLx+BXuW9n9qfhTRfhm62cUetDyPflrXlEVjA4Ghk57ha6D7T+zxehgWzFeW8fbwtbvu7Oa+Z+TJcHhUYB1CRuDqnA/PMrqY8ebNKYt3W7V2Nn/7CYqJs7qYwshsp8siRJCCCFyOSeDA52L16Jz8Vrouo6OjmrFLAJbKIrCmL/eYXT7sZw5cMG8VCDZbBCD0YCmabzz0+BsqWvxuHN2s614q7O7czZFkju457OtRbGbl3Xji7sW5Id6r/H2wV+5FnkXg6Ji0rXEpS8uBkdGV+5O+6IBVp/br3wxOr/Whn++32BzrScApyNRlAzzYup7HxIaH4WrwYkCTqmXswRdu8vOZfsIuxeOez43GnStnW5r69joWFbOXs+y6au5cT4wcXuNVlV55q3O1OtYM8OYSlX155dz09m98gDrf93Cnev3cHF3pk67ANr3b4lnQQ+bH6c1CpfywaOAO2H3wi2OVY0qlRtXyJY4AOoXKsfVyLvpLjdNzs3gRDnP7JtV6GpDcXBN03F1tj55tP34Re6Gpl+rJ7momDjW7j9N90ZPbq0xIXIbSdgIIYQQeYiiKKmWRtmLZwEPJm/5jPW/bGXJ1H+4cvI6AEZHI636NKH7Gx2yvc3u46pMQEk8C3oQetdyZyLVoNKgc61HEFXO8fYrROlq/lw8fsVyDRuDSvPnrK/RVMrdh8VN3mLv3fOsvnGYuzGhuBqcaOBdjnZFquNqtL3z0dBprxAXG8/aOZswGFWraz0pLgYo6MDrcwfg4eCCp2PqxNO9W/eZOuRHdi7bB5hr9miaxozhc6jXqSbDZgzAu3jBxPERoZGMbj+WU3vOpVrSc2TzCQ5tPMbzo3vQf9wLGcZmMBpo1L0ujbrXteqx2IODowNdBrVl4cSlFpdGafEa3YZ0yLZYnilRj4WXLS+1U1Ho5lfH6iLVmdG4Sil+23jQqrGartOkivW/h09dvY1RVYnXLD9njQaVU1ezbxmaEMJ2ip6ZjwqyUWhoKF5eXoSEhODp6ZnT4QghhBBPJF3XCbsfTmx0HJ4FPXB0yr7lAE+KuR8tZMEXSyzX8FDgl7PTKVLa99EElkPW/PwvX7860/JABeac/Jbi5XK+0PXpfedY9t0aDm44Smx0HN5+BanbsSbb/97DtdM3MBgN6JpGfCUXojp7Et/IHQzmBGspNx96+Tegc/FaiR3d7t68zxv1R3P35v00l10ZjCpehTyZtns8PiXMs20+7jaRPasOWnwevf3j67Tv39LO34GsCw4K4fWaI7l3Kzjdx6AaVGq2qsq4Ve+jqtlXwWH66TX8cnFruvcbFBVvJ0/mNRxMfkfbivzaQtd1uo2Zw407oYktvdOiqgrVShXh53d6WX3smSt2MmftPuKtqB1kNKj0aFSF0c+3svr4Qgjb2ZLzkISNEEIIIcQjEBEayZsNP+Dq6RsZXmy//FnvJ6JOkMlk4vOek9m5bF+GS40Gfd2XZ97qjKZrHA++xt3YMFwNjlTNVyJTs2Wyg67rHNt2kq1/7uKgTyDH64Sn6lilYC4YWy1fCb6t3Q83oxMfdBrP/nVHMnw+GIwqlRtV4OtNn3LpxFUGVB1hVUy+Jb355dz0bE14ZNaJnaf5sPOEVLWJErqG1WkfwEd/jMDFPXVnLXvSdZ1ZZ9cz78IWgMSfV8JSurIehfmm5v8eSRevIxduMHDyn5g0Pc2kjaoqODsY+eW95yldpGAaR0jb6r2n+GDOaqvGKgq882xznm9Zw+rjCyFsJwkbIYQQQohcKOROKJ/3msyRTScSl9YktNE1Ohp4+bPe9Hyna65urRsVH8vam0f4++pebkTdw6CoBOQvSc8S9alVoLRNscfHxfPDe/NZPmMtpjgThgfdmOLjTHgW9ODVL/rQtn8L/ry8i98ubScwOqmwrrPqQJfitXi1bMtsnf1gi023jvPe4d8zHKOi0MC7HCPzt+d/Tw3F2kZFPx6fzKofNrLsu9VWL8matHEMAS1yVz2SY9tO8kGn8URHxqS5HM7X35spO8ZSqGiBRxbT7egQll7dx8H7F4k1xVPMtQBdi9emto3P56w6dO467/+8msD7YRhUFV3XURQFk6bh75ufLwd05qlihWw6ZkxcPG1GziY8OtbiWAeDyrqJr+Hl9njX0BIip0nCRgghhBAiFzt36CJr52zi1qXbODgZqdywAm1fbo5H/tyReEjP2bCbvLFvDvdiwxML+ULSjITG3hUYH9Db5nofoffC+Pf37dw4dwuD0UD5OmVo1KMuqoOBDw8vZGPg8TT3MygqPk6e/FD/NXyy2No+q3Rd54UdU7kQftuqdtF991Vk+WcrrWpzbTCqPD/6ac4cuMDeVdbVOgEYPmsgnQa2sXp8drt+7iaDarxLbFQsWjq1iwxGFb8KxZh54EuMDk9euU2TprHrv8tsOnKO8KhY8rk506ZWOWo9VTzTyaO5a/cx1UKnKAV4sXUt3nqmaabOIYSwni05jyfvt6AQQgghRA4rW6MUZWvkrQLOgVHBvL73R8LjogFSJCUSOu3sDDrNB4cX8lXNl2y6uPQs4EH3oakLzP58flO6yZqE896OCeW9Q7/xc/3Xc3Rm0snQ65wPD7Q8EHOi6dClc6iqgmayYgdFIeROmHkGUsLaKmvOY8y+ttiZsfjrFcTFxKWbrAEwxWtcOn6VHUv30axnA7udW9d1IkLM3ZLcvFxz7Sw2g6rSuEopGttQWNiSvm1rE3g/jEVbjpifc8m+/6qioOk6bWuX543uje12TiGEfeS+Ra1CCCGEECLX+eXiViLiY1LUZXmYhs62oFMcvn8py+eL0+JZcMlyFx+TrnEi5BonQq5l+ZxZcTkiyOqxJl0jzCH9WSap6ODm6UL5OmVRbUg0lKtdxuqx2S0qPIp18zZbtZxLNagsn7HGLucNDgrht7F/0avYQHoUeJkeBV6mV7GBzP98McFBIZYP8BhQFIWRvVowZXA36pTzS3FftdJF+OLVjozr1wGjQS4NRRZdvAijRkH16lC0KHh6mv9fvTqMHg2XLuV0hHmOzLARQgghhBAZioqPZcW1A4kzaTJiUFQWX9lDjQJZmyGw+85ZQuIirRprUFRWXj9AlXx+lgdnEwXbZmy4N/Hh3vfnrBprijfRoGttCpfy4ZdP/sDSFBtFVahQpyylq/nbFFN2unUpiNjoOKvGaiaNC0cvZ/mcF49fYWTrzwi5E5qiXs79W8H8+ukfLJ2+mi/Xf5yrvk/WCo6NYO3NI9yKCsZBNVIjf0nqFSqLqqSddFEUhaZVS9O0amnComIIi4zG3dkJT6lXI+xh/XqYOhX++QcerrgSFgY3b8LRozBxInTqBMOGQZvcs1wzN5OEjRBCCCGEyNDFiNtEa9ZdbJt0jSPBWb/YTl5g2Jpz2jI+O5TzLGL1WFVRqF67Am71gji9/3yGdWxUg0qJisWoWL8ciqLw3DtdWThxabrjFUVBURRemdDHlvBznyxW2Qy9G8bI1p8RejcszeLGmqYTdi+ckW0+48fjk8nnnbM1kKwVbYrjm5MrWX79AJquY1BUdHTmXtiMr7MXIyt1o4lPhQyP4eHihIdL7uiwJvI4kwmGD4fp060br+uwcqX539ChMGUKGHLX0s3cRua9CSGEEEKIDFkzsybFeKsKs2TMSXWweqyCgpOas59Dlnb3pVo+f1QrZtpous7TfnUZ8ePrOLk6oqazFEU1qDg4Ghk5d2hizZV+456n25D2AIldtZKPNzgY+OiPEVRvXjmLj8i+Cpf0xsHZup+pqiqUrFoiS+db9cMGQu6EZpgM00waoXfDWPXDxiyd61GJ1eIZvn8uy67tx6Rr6OjE66bE1+ft6BDeOfgL628ezeFIxRPBZILevdNO1lSrBoMHw8iR5v9Xq5Z6zPTp5v1NWf978TiThI0QQgghhMhQEZf8Vi/5UVHwc7Ot9XBaahQoacNonZoFSmf5nFk1uJx5in9G3ykF6FqsFsVdC1Kysh/f7hiHX/migLlIsGpQE4sFFy3jyzfbPuepmkmPTVVVhk57hWm7x9OqT1M8C3rg5OqIr783L374LL9e+I7GPepl10PMNBd3F9q+1CxVkiktmqbTbXC7TJ9L13WWzVib5syaVGM1neUz1pDLGuemacGlHRy6fyndOlIJWz859ifBsdYtJxQi04YPh8WLk26rKjz/PGzfTtzB/Rz8/B22vf0yR8eOJP7gAdi+3Xy/mux3wOLF5uOIdElbbyGEEEIIYdGIA7+w684Zq2bbfFbtOdoXDcjyOd/Y9zP77p7PsNAxgJNqZHXL93E35nw9jo23jvHRkT/QdC1F3Amtz1sXrsqn1XrikGxGkK7rnNhxiq2LdxN2Pxx3Lzca9ahL9eaVc203o8y4duYGg2qOJDY6Nt1kisGoUrxcUWYe/BIHR+tnWSUXHRlDF/cXbdpnWcgvuHq4ZOp8j4JJ1+iyeSJ3YsIsjlVQGFa+PX1KNXkEkYkn0vr10LZt0m0XF1i4kKiO7Zl7YTN/Xd1DaFxU4t2FnDx4rkQD+pRqjMPKVeaZNVFRKY/XuvUjfAA5S9p6CyGEEEIIu/pf6absCDqd4RiDouLj5EnLwlXscs43K3Sk/66ZxGrxGSZt3qzQMVckawBaFa5KRc/iLLm6l+XX9xMcG4GjaqRuwbL09G9AvYJlUyVhFEWhSuOKVGlcMYeifjSKlyvKuJWj+bDLBGKj41IuV3rwLSlapjBfrP0w08mazMrtebFTIdetStYA6Oisu3lUEjYi+0ydmvS1qsLChYR3aMvre7/nbOjNVL+v78SEMfPsevbePceUzi/juHAh9OgBmpZ0vCcoYWMLmWEjhBBCCCGssvzafsYdX4KqKKlm2qgo5Hd0Y1a9gfjbYUlUghPBVxlx8Bfux0agoiReCCgoqIrC8Aod6eXf0G7nszdd1x+rWTL2cPvqHVbMXMc/s9cRdj8CgOLlitD9jY607dsMF/eszXTRdZ0XSw/h9mXrWq17+xXkt0szc/XPaVfQGd48MNfq8UVd8rO02bvZF5B4cl26BKVLJ3WDev55+P13Rh36nc2BJzJMriso9CxRn3cqdYEXXoAFCx7cocCFC1CyZLaHnxvIDBshhBBCCGF3XYvXxt/Nm98ubmPr7ZOJb8zdjc708KvL8yUbUcjJw67nrJzPjxXN3+PfW8dZdf0QQTGhuBqdaOxdga7Fa1HQzuezt9ycBMgpPn6FeGX8C/Qb25uosChUowFnVye7fa8URaH7kPb8MGq+xTo2iqrQbUiHXP9z8nCwLYnl6eCaTZGIJ97s2Slbdw8Zwo3I+2wKPG6xuZuOztJr+3jtqdZ4DB6clLDRdfNxJ0zItrDzKknYCCGEEEIIq1XP70/1/P7cjw0nMCoEB9VAcdeCOBmybwmLo2qkfdEAu9TFeaxdvGi+6Fm9GoKCIDwc3N3B2xs6doTXXstVn2Crqoqbl1u2HLv9Ky35a8pK7geGpNspSjWo5PPxosOrLbMlBnuq4FmUQk4eVtewaVOk6iOISjyRVq1K+rpaNWjYkNUXNqGgoFtM2UCcFs/GW8fp3qgRVK0Kx46Z71i9WhI2aZAuUUIIIYQQwmb5Hd2p4FWMMh6FszVZI6ywfj106QJlysDEiXD0KNy8CWFh5v8fPQpffGFextCli3n8Y84jvzuTNo4hv6+XefbMQxNoFFUhn48XX274GM8CuXuWFoBRNdCzRAOrurUZFZUuxWo9gqjEEyko2VLDxo1BUQiMCkG1cpaaQVEJjA42L4Nq3Djt44pEkrARQgghhBAiLzKZ4I03zN1aVq5MuUwhLbpuHte2rXk/k+nRxJlD/MoX48fj3zBw0ksULumTuN23pDcDJr7Ej8cn41+xeA5GaJs+pRpTLV8JVAtJm4+qPkM+x+yZuSQE4eFJX7u7A+CgGqzeXYekLnkP9gfMCWaRiiyJEkIIIYQQIq8xmcytcRcvTn1ftWrmT67d3c0XV9u3m2fZJDd9Ole3HmRdu9dw9nKjQZfalK7m/2hif4Tc87nx7IguPDuiC7ExcQA4OuXNGWGOqpFpdfox6b8VrLpxCF3XURUV0InXNbydPHm3Ulea+1bK6VDF48zdPSm58iB5U6tAaf68stuq3U26Ro38JVPsD4BH7p/plhMkYSOEEEIIIUQWhd4LY/28LZw9eAFN0yj+VFHa92+BTwnv7Dnh8OEpkzWqCr16wZAhBFWuxv3waFycHCheyMs8H2PnTvjuO/RFi1AetNL1O7oT7+O3+U6tydyPFlKxQTne/mEQ/pX8sifmHJZXEzXJORsc+ajqMwwu15a1N49wKyoYB9VIQP6SNPQuh0GRBRQim3l7m5dagjkZrOs09alIfkc37sdGZLirgoK/WyEC8pc0z/jbvj3lcUUq0tZbCCGEEEKITNJ1nV8//ZMFXyzBFGdCURXzhYiioGs6rV9qyvBZA3F0drTfSdevNy9rSuDiAgsXstm/MvM3HuDg2euJdxUr5EXv5gE827QakffCmVPteQbfXo8zScuhRtKEQ4ovqkHFydWRb7ePpVTVx2+2jRDCDkaPNtfESrB9OzRqxMZbxxh9eEG6uymAqqhMq92P2gXLmPdr0iRpwKhRT0zRYVtyHpKwEUIIIYQQIpNmjZjLX1P+Sfd+RVVo1aA47zYwoq5da5/uTV26mGvRAKgq+t9/MyU+P79uOICqKGjJ3t4rD/5TpWRh/PffYM/SvdSLu8YYdpJQdWIXRfhYaWQ+nEGleLki/Hj8m1zf6loIkQMuXTIXME/4PfP88/D77wCsvnGIscf+Jl7XEjtGJfwWcTY4Mq56bxr7VDBveOGFpLbeimLucuf/ZCSKJWEjhBBCCCFENju55yzDGryf7v019UC6c4563My404eiQKdOMGwYtGmT8UnTuFj687X3mLDw3wx3UxUF48U7eKw9DcBofQ8tuQqABvyPDgQqSYVqJ2/5jKpNKmYcixDiyfRQ0pglS6BrVwCCYyP55/oB/r11nND4KPI7utO2SDU6FK2Bm9HJvM+yZfD00/BgeSZdusDy5TnwQHKGLTkPWeQohBBCCCFEJiyfsQaDMfXbaVXXGaIfYiLbaGApWQO2dW+aPTtFNyjT66/z05q9FmPVdJ3YkgUx5XMxx06ZpHiBTlxIvG0wGtj65y6LxxRCPKGGDUv6WtPMBdAfJFzyObrSp1QTfmrwOn82GcH39QbybIn6KZM1vXsnJWsePp5IQRI2QgghhBBCZMLOZfswxWsptqm6zgfspjvnU42Pr1QZBg+GkSPN/69WLfVBp083X8ykl7RZtSrp62rV2FvAj9vB4WmPfZimE13B3N76BAW5gFfiXXW5lfi1ruuE3bfymEKIJ0+bNjB0aNLtqCjo0cO8zOlBIeIUEgoMv/CCeWZNdHTSfUOHQuvWjybuPEi6RAkhhBBCiDzn1qXb/DN7PYc2HScuOo4ipX1p378ldToEYDAYLB/ADmKiYlNte53DNCWp6K8J2IIfyynD24u/o3jpYEADgz+KoXhi9yYWLUr6xHnxYnMXqGnTUp80KCjp68aNuRIUjAJYVeNAAZOn84OvFY7rBSlNCABexCQNUxTcvFytOaIQ4kk1ZQrcupXUrU7TzDVpFiwwJ6MbNTLX6goPhx074OjR1Mfo2dN8HJEuSdgIIYQQQog8Q9M0fn7/dxZNWoaqqmgmc5Lj0omr7Fi6l2JPFWHcP6MpVrZItsfikd+d4NshibfNNWuSZtZEY2A89dilFDWP5zn0+0lJHt2xPkrtQSi//26eVdO7t/mTajDPtOnWLfUnz+HJZr64u2MwqNYlawB0ULSk0VHJLgVciE/82hRvolGPetYeVQjxJDIYYOFCc3J5+vSU9x09mnaCJrmhQ83JmkeUYM+rZEmUEEIIIYTIM34a9RuLvlwGOonJGkj6+tbFQEY0/Zg7N+5leyxtXmqKakh6O92dc4lfmyAxWaMadGo2DcMz/0MzcmL3ot/vhx65yFywc+FCcwHPBFOnpj6pu3vS1+HhVClZ2PqAFXC4G5F4M3mSJiF5oxpUipbxpUbLKtYfVwjxZDIYzDMB1683Fw621FlOUczj1q837yfJGouyLWHz3XffUbJkSZydnalXrx5791ouhiaEEEIIIUR6rp+7yR9fZdxJxBSvERwUyoLxf2d7PJ0HtU382lePoB43E29vwS9xZo1mUugxICjV/ub+TDp66MfosYfNSZtevZLuXrnS3BUqOW/vpK+3b6dCcW8qlvCxeJ0EYDQY8L0bbS6UrOtU4W7ifSE4oRpUjI5G3l/wlrT0FkJYr3Vrc9HhCxdg1CioXh2KFgUPD/P/q1c3b79wwTxOatZYLVsSNosWLWLEiBGMGTOGgwcPUr16ddq1a8ft27ez43RCCCGEEOIJsHLW+hQzWtKjmTTWzt1MZFhUtsZTtExh3vp+ECjQmQsp3lgn78L07KDb1G0VlsGRVPSIn81fDh6ctFnXzV2hkuvYMenro0dh507e7NEEBQVLKZZ+7eswY+vnVGpYnsrcTaxfA7CXwviVL8o3Wz+jfO0yGRxFCCHSUbIkTJgAhw/D9esQGmr+/+HD5u0lS+ZsfHlQtiRsJk+ezIABA+jXrx+VKlVi1qxZuLq68vPPP2fH6YQQQgghxBPgwPojKZZBZSQmMoazBy9YHphF7fu14NMlI2nolDRb5QJenKAg+X00hoy7xqsf3czgCAAmiFmHroWaC3VWrZp01+rVKYe+9lrKZQfffUfdCiWYOKATRoOK+tDMGINqvv1iq5oM6twAnxLeTN78GWM7JnWI0lGoufg7fjg2mXK1JFkjhBC5hd0TNrGxsRw4cIDWyaY5qapK69at2bVrV6rxMTExhIaGpvgnhBBCCCHEw9LqypSR2Oi4bIokpYZd6+BXwCHxttawEWNXjua3/Wfo2u+uVcuVQAMtyJyMadw4aXPQQ0upSpaETp2Sbi9aBMuX06rGU6wc+woDO9WnWEFPXJwcKODhStcGlfn9/T6MeLZZ0jKnZctwX7Mi8RBKl86Uf6aVLIMSQohcxu5dou7cuYPJZMLX1zfFdl9fX06dOpVq/IQJE/j000/tHYYQQgghhHjM+Pp7c+tCIJpmXV8k7+IFszmiJEqy7k1lG1ehbKdaaIEOoMdksNfDHiR9khcWDktjKdWwYeb6NmBupdu7NyxciHfXrgzsVJ+Bneqnf4ply8zjtWQzlYYNsyFGIYQQj0qOd4kaPXo0ISEhif+uXr2a0yEJIYQQQohcqH2/FlYlaxRVoUxASUpW9nsEUT3wUPcmABzrAlZ2QVF9wFAs5f5gLtr5sDZtzC1xE0RFQY8e8MILsH27ufZNcrpu3v7CC/D00xAdnXTf0KFSAFQIIXIpu8+wKVSoEAaDgcDAwBTbAwMDKVw4ddtBJycnnJyc7B2GEEIIIYR4zDR+pj4FR/7K/cCQDGvZ6JrOc+92e4SRYe7edPNBrZoHSRPF9UX0mH+t2FlFce2DohiSkivJj5uWKVPg1i1YvNh8W9NgwQLzv2rVzLVw3N3NyZ8dO8wFih/Ws6f5OEIIIXIlu8+wcXR0pFatWmzcuDFxm6ZpbNy4kQYNGtj7dEIIIYQQ4gnh6OTA+FUf4OrhYm5N/ZCEGiw93+5Ci96NHm1waXRvwrEROLUk47fcBjCUANcXzTd37IBjx5Lu7tAhnd0MsHBhypk2yc8/cyZMmmT+f1rJmqFDzckdg5UzgIQQQjxy2bIkasSIEfzwww/MmzePkydP8vrrrxMREUG/fv2y43RCCCGEEOIJUbqaP9/t+4LmvRthMKZMNpSoWIyRc4cy4MuXHn0B3TS6NymKgpJvCji1fbAxebwPvjaWRSnwK4r6YOnTjBlJQxQFBg1K/5wGA0ybBuvXQ5cuWKxurCjmcevXm/eTZI0QQuRqiq4/vMjVPqZPn86kSZO4desWAQEBTJ06lXr16lncLzQ0FC8vL0JCQvD09MyO0IQQQgghxGMg5E4op/aeIz42Hp8ShShbo1TOdjrq0iWpGLCqwpIl0LUrAHrcMfSIBRB3GIgHYxkU1+fBsTGK8uAz1GXLzDVmEgoCd+kCy5dbf/5Ll2D2bHMr8KAgc8FiDw/zsqoOHcxJpZIl7fRghRBCZIYtOY9sS9hkliRshBBCCCFEnrR+PbRtm3TbxcW8bOlB0iZDCd2bkhcEXr9eCgILIcRjxpacR453iRJCCCGEEOKxIN2bhBBC2JHMsBFCCCGEEMJeTCbzTJmE7k3J2dK9SQoCCyHEY0mWRAkhhBBCCJFTTCYYPhymT7d936FDza22JVkjhBCPJVkSJYQQQgghRE6R7k1CCCHswJjTAQghhBBCCPFYat3a/E+6NwkhhMgEWRIlhBBCCCGEEEII8QjIkighhBBCCCGEEEKIPEwSNkIIIYQQQgghhBC5jCRshBBCCCGEEEIIIXKZXFd0OKGkTmhoaA5HIoQQQgghhBBCCGE/CbkOa8oJ57qETVhYGAB+fn45HIkQQgghhBBCCCGE/YWFheHl5ZXhmFzXJUrTNG7cuIGHhweKouR0OLlOaGgofn5+XL16VbpoiSyR55KwF3kuCXuR55KwF3kuCXuR55KwF3kuiQS6rhMWFkbRokVR1Yyr1OS6GTaqqlK8ePGcDiPX8/T0lBe6sAt5Lgl7keeSsBd5Lgl7keeSsBd5Lgl7keeSACzOrEkgRYeFEEIIIYQQQgghchlJ2AghhBBCCCGEEELkMpKwyWOcnJwYM2YMTk5OOR2KyOPkuSTsRZ5Lwl7kuSTsRZ5Lwl7kuSTsRZ5LIjNyXdFhIYQQQgghhBBCiCedzLARQgghhBBCCCGEyGUkYSOEEEIIIYQQQgiRy0jCRgghhBBCCCGEECKXkYSNEEIIIYQQQgghRC4jCZvHRExMDAEBASiKwuHDh3M6HJHHXLp0iVdeeYVSpUrh4uJCmTJlGDNmDLGxsTkdmsgDvvvuO0qWLImzszP16tVj7969OR2SyGMmTJhAnTp18PDwwMfHh+7du3P69OmcDkvkcV988QWKojB8+PCcDkXkQdevX+fFF1+kYMGCuLi4ULVqVfbv35/TYYk8xmQy8dFHH6V4j/35558jfX+EtSRh85gYOXIkRYsWzekwRB516tQpNE1j9uzZnDhxgm+++YZZs2bx/vvv53RoIpdbtGgRI0aMYMyYMRw8eJDq1avTrl07bt++ndOhiTxky5YtDBkyhN27d7N+/Xri4uJo27YtEREROR2ayKP27dvH7NmzqVatWk6HIvKg+/fv06hRIxwcHFi9ejX//fcfX3/9Nfnz58/p0EQeM3HiRGbOnMn06dM5efIkEydO5Msvv2TatGk5HZrII6St92Ng9erVjBgxgr/++ovKlStz6NAhAgICcjoskcdNmjSJmTNncuHChZwOReRi9erVo06dOkyfPh0ATdPw8/PjjTfeYNSoUTkcncirgoKC8PHxYcuWLTRt2jSnwxF5THh4ODVr1mTGjBmMHTuWgIAApkyZktNhiTxk1KhR7Nixg23btuV0KCKP69y5M76+vvz000+J25555hlcXFyYP39+DkYm8gqZYZPHBQYGMmDAAH799VdcXV1zOhzxGAkJCaFAgQI5HYbIxWJjYzlw4ACtW7dO3KaqKq1bt2bXrl05GJnI60JCQgDkd5DIlCFDhtCpU6cUv5uEsMXy5cupXbs2PXv2xMfHhxo1avDDDz/kdFgiD2rYsCEbN27kzJkzABw5coTt27fToUOHHI5M5BXGnA5AZJ6u67z88ssMGjSI2rVrc+nSpZwOSTwmzp07x7Rp0/jqq69yOhSRi925cweTyYSvr2+K7b6+vpw6dSqHohJ5naZpDB8+nEaNGlGlSpWcDkfkMQsXLuTgwYPs27cvp0MRediFCxeYOXMmI0aM4P3332ffvn0MGzYMR0dH+vbtm9PhiTxk1KhRhIaGUqFCBQwGAyaTiXHjxtGnT5+cDk3kETLDJhcaNWoUiqJk+O/UqVNMmzaNsLAwRo8endMhi1zK2udSctevX6d9+/b07NmTAQMG5FDkQogn1ZAhQzh+/DgLFy7M6VBEHnP16lXefPNNfvvtN5ydnXM6HJGHaZpGzZo1GT9+PDVq1GDgwIEMGDCAWbNm5XRoIo/5448/+O233/j99985ePAg8+bN46uvvmLevHk5HZrII6SGTS4UFBTE3bt3MxxTunRpnnvuOVasWIGiKInbTSYTBoOBPn36yC8CYfVzydHREYAbN27QvHlz6tevz9y5c1FVyemK9MXGxuLq6srixYvp3r174va+ffsSHBzMsmXLci44kScNHTqUZcuWsXXrVkqVKpXT4Yg8ZunSpfTo0QODwZC4zWQyoSgKqqoSExOT4j4h0uPv70+bNm348ccfE7fNnDmTsWPHcv369RyMTOQ1fn5+jBo1iiFDhiRuGzt2LPPnz5fZyMIqsiQqF/L29sbb29viuKlTpzJ27NjE2zdu3KBdu3YsWrSIevXqZWeIIo+w9rkE5pk1LVq0oFatWsyZM0eSNcIiR0dHatWqxcaNGxMTNpqmsXHjRoYOHZqzwYk8Rdd13njjDZYsWcLmzZslWSMypVWrVhw7dizFtn79+lGhQgXee+89SdYIqzVq1IjTp0+n2HbmzBn8/f1zKCKRV0VGRqZ6T20wGNA0LYciEnmNJGzysBIlSqS47e7uDkCZMmUoXrx4ToQk8qjr16/TvHlz/P39+eqrrwgKCkq8r3DhwjkYmcjtRowYQd++falduzZ169ZlypQpRERE0K9fv5wOTeQhQ4YM4ffff2fZsmV4eHhw69YtALy8vHBxccnh6ERe4eHhkarukZubGwULFpR6SMImb731Fg0bNmT8+PE899xz7N27l++//57vv/8+p0MTeUyXLl0YN24cJUqUSOzmO3nyZPr375/ToYk8QhI2QgjWr1/PuXPnOHfuXKpkn6yaFBnp1asXQUFBfPzxx9y6dYuAgADWrFmTqhCxEBmZOXMmAM2bN0+xfc6cObz88suPPiAhxBOtTp06LFmyhNGjR/PZZ59RqlQppkyZIoVihc2mTZvGRx99xODBg7l9+zZFixbltdde4+OPP87p0EQeITVshBBCCCGEEEIIIXIZKVIhhBBCCCGEEEIIkctIwkYIIYQQQgghhBAil5GEjRBCCCGEEEIIIUQuIwkbIYQQQgghhBBCiFxGEjZCCCGEEEIIIYQQuYwkbIQQQgghhBBCCCFyGUnYCCGEEEIIIYQQQuQykrARQgghhBBCCCGEyGUkYSOEEEIIIYQQQgiRy0jCRgghhBBCCCGEECKXkYSNEEIIIYQQQgghRC4jCRshhBBCCCGEEEKIXOb/Js60FkMqJ8sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lowest_quality_labels = issues[\"label_quality\"].argsort()[:20]\n", + "plot_data(data, circles=lowest_quality_labels, title=\"The 20 lowest label quality examples\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wdtPREswG2fe" + }, + "source": [ + "Above, the top 20 label issues circled in red are found automatically using cleanlab (no true labels given).\n", + "\n", + "If you've already computed the label issues using ``CleanLearning``, you can pass them into `fit()` and it will train **much** faster (skips label-issue identification step)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.493475Z", + "iopub.status.busy": "2024-05-24T23:49:32.493125Z", + "iopub.status.idle": "2024-05-24T23:49:32.509901Z", + "shell.execute_reply": "2024-05-24T23:49:32.509448Z" + }, + "id": "PcPTZ_JJG3Cx" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
CleanLearning(clf=LogisticRegression(random_state=0),\n",
+       "              find_label_issues_kwargs={'confident_joint': array([[68,  0,  8,  8],\n",
+       "       [ 5, 46,  3,  0],\n",
+       "       [15,  3, 31, 14],\n",
+       "       [ 2,  1, 12, 34]]),\n",
+       "                                        'min_examples_per_class': 10},\n",
+       "              seed=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "CleanLearning(clf=LogisticRegression(random_state=0),\n", + " find_label_issues_kwargs={'confident_joint': array([[68, 0, 8, 8],\n", + " [ 5, 46, 3, 0],\n", + " [15, 3, 31, 14],\n", + " [ 2, 1, 12, 34]]),\n", + " 'min_examples_per_class': 10},\n", + " seed=0)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# CleanLearning can train faster if issues are provided at fitting time.\n", + "cl.fit(data, labels, label_issues=issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XYFkRMk-jruV" + }, + "source": [ + "## **Workflow 4:** Use cleanlab to find dataset-level and class-level issues\n", + "\n", + "- Did you notice that the yellow and seafoam green class above are overlapping?\n", + "- How can a model ever know (or learn) what's ground truth inside the yellow distribution?\n", + "- If these two classes were merged, the model can learn more accurately from 3 classes (versus 4).\n", + "\n", + "cleanlab automatically finds data-set level issues like this, in one line of code. Check this out!\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.511984Z", + "iopub.status.busy": "2024-05-24T23:49:32.511598Z", + "iopub.status.idle": "2024-05-24T23:49:32.520987Z", + "shell.execute_reply": "2024-05-24T23:49:32.520537Z" + }, + "id": "0lonvOYvjruV" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class Name AClass Name BClass Index AClass Index BNum Overlapping ExamplesJoint Probability
0seafoam greenyellow23260.104
1purpleseafoam green02230.092
2purpleyellow03100.040
3blueseafoam green1260.024
4purpleblue0150.020
5blueyellow1310.004
\n", + "
" + ], + "text/plain": [ + " Class Name A Class Name B Class Index A Class Index B \\\n", + "0 seafoam green yellow 2 3 \n", + "1 purple seafoam green 0 2 \n", + "2 purple yellow 0 3 \n", + "3 blue seafoam green 1 2 \n", + "4 purple blue 0 1 \n", + "5 blue yellow 1 3 \n", + "\n", + " Num Overlapping Examples Joint Probability \n", + "0 26 0.104 \n", + "1 23 0.092 \n", + "2 10 0.040 \n", + "3 6 0.024 \n", + "4 5 0.020 \n", + "5 1 0.004 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cleanlab.dataset.find_overlapping_classes(\n", + " labels=labels,\n", + " confident_joint=cl.confident_joint, # cleanlab uses the confident_joint internally to quantify label noise (see cleanlab.count.compute_confident_joint)\n", + " class_names=class_names,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZXkMIKlGjruV" + }, + "source": [ + "Do the results surprise you? Did you expect the purple and seafoam green to also have so much overlap?\n", + "\n", + "There are two things being happening here:\n", + "\n", + "1. **Distribution Overlap**: The green distribution has huge variance and overlaps with other distributions.\n", + " - Cleanlab handles this for you: read the theory behind cleanlab for overlapping classes here: https://arxiv.org/abs/1705.01936\n", + "2. **Label Issues**: A ton of examples (which actually belong to the purple class) have been mislabeled as \"green\" in our dataset.\n", + "\n", + "### Now, let's see what happens if we merge classes \"seafoam green\" and \"yellow\"\n", + "* The top two classes found automatically by ``cleanlab.dataset.find_overlapping_classes()``" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.523095Z", + "iopub.status.busy": "2024-05-24T23:49:32.522699Z", + "iopub.status.idle": "2024-05-24T23:49:32.608814Z", + "shell.execute_reply": "2024-05-24T23:49:32.608247Z" + }, + "id": "MfqTCa3kjruV" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Original classes] Accuracy of yourFavoriteModel: 83%\n", + "[Modified classes] Accuracy of yourFavoriteModel: 94%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Modified classes] Accuracy of yourFavoriteModel (+ CleanLearning): 96%\n" + ] + } + ], + "source": [ + "yourFavoriteModel1 = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel1.fit(data, labels)\n", + "print(f\"[Original classes] Accuracy of yourFavoriteModel: {yourFavoriteModel1.score(test_data, test_labels):.0%}\")\n", + "\n", + "merged_labels, merged_test_labels = np.array(labels), np.array(test_labels)\n", + "\n", + "# Merge classes: map all yellow-labeled examples to seafoam green\n", + "merged_labels[merged_labels == 3] = 2\n", + "merged_test_labels[merged_test_labels == 3] = 2\n", + "\n", + "# Re-run our comparison. Re-run your model on the newly labeled dataset.\n", + "yourFavoriteModel2 = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel2.fit(data, merged_labels)\n", + "print(f\"[Modified classes] Accuracy of yourFavoriteModel: {yourFavoriteModel2.score(test_data, merged_test_labels):.0%}\")\n", + "\n", + "# Re-run CleanLearning as well.\n", + "yourFavoriteModel3 = LogisticRegression(verbose=0, random_state=SEED)\n", + "cl3 = cleanlab.classification.CleanLearning(yourFavoriteModel3, seed=SEED)\n", + "cl3.fit(data, merged_labels)\n", + "print(f\"[Modified classes] Accuracy of yourFavoriteModel (+ CleanLearning): {cl3.score(test_data, merged_test_labels):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bi53hnRxjruW" + }, + "source": [ + "While on one hand that's a huge improvement, it's important to remember that choosing among three classes is an easier task than choosing among four classes, so it's not fair to directly compare these numbers.\n", + "\n", + "Instead, the big takeaway is...\n", + "if you get to choose your classes, combining overlapping classes can make the learning task easier for your model. But if you have lots of classes, how do you know which ones to merge?? That's when you use `cleanlab.dataset.find_overlapping_classes`.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BxI7bgn8L_1K" + }, + "source": [ + "## **Workflow 5:** Clean your test set too if you're doing ML with noisy labels!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iZ43QfbrNk0K" + }, + "source": [ + "If your test and training data were randomly split (IID), then be aware that your test labels are likely noisy too! It is thus important to fix label issues in them before we can trust measures like test accuracy.\n", + "\n", + "* More about what can go wrong if you don't use a clean test set [in this paper](https://arxiv.org/abs/2103.14749)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.611217Z", + "iopub.status.busy": "2024-05-24T23:49:32.610854Z", + "iopub.status.idle": "2024-05-24T23:49:32.732952Z", + "shell.execute_reply": "2024-05-24T23:49:32.732352Z" + }, + "id": "9ZtWAYXqMAPL" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Noisy Test Accuracy (on given test labels) using yourFavoriteModel: 69%\n", + " Noisy Test Accuracy (on given test labels) using yourFavoriteModel (+ CleanLearning): 71%\n", + "Actual Test Accuracy (on corrected test labels) using yourFavoriteModel: 83%\n", + "Actual Test Accuracy (on corrected test labels) using yourFavoriteModel (+ CleanLearning): 86%\n" + ] + } + ], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "# Fit your model on noisily labeled train data\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel.fit(data, labels)\n", + "\n", + "# Get predicted probabilities for test data (these are out-of-sample)\n", + "my_test_pred_probs = yourFavoriteModel.predict_proba(test_data)\n", + "my_test_preds = my_test_pred_probs.argmax(axis=1) # predicted labels\n", + "\n", + "# Find label issues in the test data\n", + "issues_test = CleanLearning(yourFavoriteModel, seed=SEED).find_label_issues(\n", + " labels=noisy_test_labels, pred_probs=my_test_pred_probs)\n", + "\n", + "# You should inspect issues_test and fix issues to ensure high-quality test data labels.\n", + "corrected_test_labels = test_labels # Here we'll pretend you have done this perfectly :)\n", + "\n", + "# Fit more robust version of model on noisily labeled training data\n", + "cl = CleanLearning(yourFavoriteModel, seed=SEED).fit(data, labels)\n", + "cl_test_preds = cl.predict(test_data)\n", + "\n", + "print(f\" Noisy Test Accuracy (on given test labels) using yourFavoriteModel: {accuracy_score(noisy_test_labels, my_test_preds):.0%}\")\n", + "print(f\" Noisy Test Accuracy (on given test labels) using yourFavoriteModel (+ CleanLearning): {accuracy_score(noisy_test_labels, cl_test_preds):.0%}\")\n", + "print(f\"Actual Test Accuracy (on corrected test labels) using yourFavoriteModel: {accuracy_score(corrected_test_labels, my_test_preds):.0%}\")\n", + "print(f\"Actual Test Accuracy (on corrected test labels) using yourFavoriteModel (+ CleanLearning): {accuracy_score(corrected_test_labels, cl_test_preds):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GluE5XAAjruW" + }, + "source": [ + "## **Workflow 6:** One score to rule them all -- use cleanlab's overall dataset health score\n", + "\n", + "This score can be fairly compared across datasets or across versions of a dataset to track overall dataset quality (a.k.a. *dataset health*) over time.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.735316Z", + "iopub.status.busy": "2024-05-24T23:49:32.734942Z", + "iopub.status.idle": "2024-05-24T23:49:32.738629Z", + "shell.execute_reply": "2024-05-24T23:49:32.738108Z" + }, + "id": "0rXP3ZPWjruW" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * Overall, about 28% (71 of the 250) labels in your dataset have potential issues.\n", + " ** The overall label health score for this dataset is: 0.72.\n" + ] + } + ], + "source": [ + "# One line of code.\n", + "health = cleanlab.dataset.overall_label_health_score(\n", + " labels, confident_joint=cl.confident_joint\n", + " # cleanlab uses the confident_joint internally to quantify label noise (see cleanlab.count.compute_confident_joint)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "M85Fta_bjruW" + }, + "source": [ + "### How accurate is this dataset health score?\n", + "\n", + "Because we know the true labels (we created this toy dataset), we can compare with ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.740672Z", + "iopub.status.busy": "2024-05-24T23:49:32.740490Z", + "iopub.status.idle": "2024-05-24T23:49:32.744577Z", + "shell.execute_reply": "2024-05-24T23:49:32.744115Z" + }, + "id": "-iRPe8KXjruW" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentage of label issues guessed by cleanlab 28%\n", + "Percentage of (ground truth) label errors): 20%\n", + "\n", + "Question: cleanlab seems to be overestimating. How do we account for this 8% difference?\n", + "Answer: Data points that fall in between two overlapping distributions are often impossible to label and are counted as issues.\n" + ] + } + ], + "source": [ + "label_acc = sum(labels != true_labels) / len(labels)\n", + "print(f\"Percentage of label issues guessed by cleanlab {1 - health:.0%}\")\n", + "print(f\"Percentage of (ground truth) label errors): {label_acc:.0%}\")\n", + "\n", + "offset = (1 - label_acc) - health\n", + "\n", + "print(\n", + " f\"\\nQuestion: cleanlab seems to be overestimating.\"\n", + " f\" How do we account for this {offset:.0%} difference?\"\n", + ")\n", + "print(\n", + " \"Answer: Data points that fall in between two overlapping distributions are often \"\n", + " \"impossible to label and are counted as issues.\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8hxY5lxJjruW" + }, + "source": [ + "## **Workflow(s) 7:** Use count, rank, filter modules directly\n", + "\n", + "- Using these modules directly is intended for more experienced cleanlab users. But once you understand how they work, you can create numerous powerful workflows.\n", + "- For these workflows, you **always** need two things:\n", + " 1. Out-of-sample predicted probabilities (e.g. computed via cross-validation)\n", + " 2. Labels (can contain label errors and various issues)\n", + "\n", + "#### cleanlab can compute out-of-sample predicted probabilities for you:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.746500Z", + "iopub.status.busy": "2024-05-24T23:49:32.746326Z", + "iopub.status.idle": "2024-05-24T23:49:32.783806Z", + "shell.execute_reply": "2024-05-24T23:49:32.783228Z" + }, + "id": "ZpipUliyjruW" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pred_probs is a (250, 4) matrix of predicted probabilities\n" + ] + } + ], + "source": [ + "pred_probs = cleanlab.count.estimate_cv_predicted_probabilities(\n", + " data, labels, clf=yourFavoriteModel, seed=SEED\n", + ")\n", + "print(f\"pred_probs is a {pred_probs.shape} matrix of predicted probabilities\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ftWk9CTrjruW" + }, + "source": [ + "### **Workflow 7.1 (count)**: Fully characterize label noise (noise matrix, joint, prior of true labels, ...)\n", + "\n", + "Now that we have `pred_probs` and `labels`, advanced users can compute everything in `cleanlab.count`.\n", + "\n", + "- `py: prob(true_label=k)`\n", + " - For all classes K, this is the distribution over the actual true labels (which cleanlab can estimate for you even though you don't have the true labels).\n", + "- `noise_matrix: p(noisy|true)`\n", + " - This describes how errors were introduced into your labels. It's a conditional probability matrix with the probability of flipping from the true class to every other class for the given label.\n", + "- `inverse_noise_matrix: p(true|noisy)`\n", + " - This tells you the probability, for every class, that the true label is actually a different class.\n", + "- `confident_joint`\n", + " - This is an unnormalized (count-based) estimate of the number of examples in our dataset with each possible (true label, given label) pairing.\n", + "- `joint: p(true label, noisy label)`\n", + " - The joint distribution of noisy (given) and true labels is the most useful of all these statistics. From it, you can compute every other statistic listed above. One entry from this matrix can be interpreted as: \"The proportion of examples in our dataset whose true label is *i* and given label is *j*\".\n", + "\n", + "These five tools fully characterize class-conditional label noise in a dataset.\n", + "\n", + "#### Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.786069Z", + "iopub.status.busy": "2024-05-24T23:49:32.785732Z", + "iopub.status.idle": "2024-05-24T23:49:32.828167Z", + "shell.execute_reply": "2024-05-24T23:49:32.827689Z" + }, + "id": "SLq-3q4xjruX" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Joint Label Noise Distribution Matrix P(given_label, true_label) of shape (4, 4)\n", + " p(s,y)\ty=0\ty=1\ty=2\ty=3\n", + "\t---\t---\t---\t---\n", + "s=0 |\t0.27\t0.0\t0.03\t0.03\n", + "s=1 |\t0.02\t0.18\t0.01\t0.0\n", + "s=2 |\t0.06\t0.01\t0.12\t0.06\n", + "s=3 |\t0.01\t0.0\t0.05\t0.14\n", + "\tTrace(matrix) = 0.72\n", + "\n", + "\n", + " Noise Matrix (aka Noisy Channel) P(given_label|true_label) of shape (4, 4)\n", + " p(s|y)\ty=0\ty=1\ty=2\ty=3\n", + "\t---\t---\t---\t---\n", + "s=0 |\t0.76\t0.0\t0.15\t0.14\n", + "s=1 |\t0.06\t0.92\t0.06\t0.0\n", + "s=2 |\t0.17\t0.06\t0.57\t0.25\n", + "s=3 |\t0.02\t0.02\t0.22\t0.61\n", + "\tTrace(matrix) = 2.86\n", + "\n" + ] + } + ], + "source": [ + "(\n", + " py, noise_matrix, inverse_noise_matrix, confident_joint\n", + ") = cleanlab.count.estimate_py_and_noise_matrices_from_probabilities(labels, pred_probs)\n", + "\n", + "# Note: you can also combine the above two lines of code into a single line of code like this\n", + "(\n", + " py, noise_matrix, inverse_noise_matrix, confident_joint, pred_probs\n", + ") = cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba(\n", + " data, labels, clf=yourFavoriteModel, seed=SEED\n", + ")\n", + "\n", + "# Get the joint distribution of noisy and true labels from the confident joint\n", + "# This is the most powerful statistic in machine learning with noisy labels.\n", + "joint = cleanlab.count.estimate_joint(\n", + " labels, pred_probs, confident_joint=confident_joint\n", + ")\n", + "\n", + "# Pretty print the joint distribution and noise matrix\n", + "cleanlab.internal.util.print_joint_matrix(joint)\n", + "cleanlab.internal.util.print_noise_matrix(noise_matrix)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fKEsc-rBBbuW" + }, + "source": [ + "In some applications, you may have a priori knowledge regarding some of these quantities. In this case, you can pass them directly into cleanlab which may be able to leverage this information to better identify label issues.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.830182Z", + "iopub.status.busy": "2024-05-24T23:49:32.830006Z", + "iopub.status.idle": "2024-05-24T23:49:32.923778Z", + "shell.execute_reply": "2024-05-24T23:49:32.923062Z" + }, + "id": "g5LHhhuqFbXK" + }, + "outputs": [], + "source": [ + "cl3 = cleanlab.classification.CleanLearning(yourFavoriteModel, seed=SEED)\n", + "_ = cl3.fit(data, labels, noise_matrix=noise_matrix_true) # CleanLearning with a prioiri known noise_matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cfeJAGyxFFQN" + }, + "source": [ + "### **Workflow 7.2 (filter):** Find label issues for any dataset and any model in one line of code\n", + "\n", + "Features of ``cleanlab.filter.find_label_issues``:\n", + "\n", + "* Versatility -- Choose from several [state-of-the-art](https://arxiv.org/abs/1911.00068) label-issue detection algorithms using ``filter_by=``.\n", + "* Works with any model by using predicted probabilities (no model needed).\n", + "* One line of code :)\n", + "\n", + "Remember ``CleanLearning.find_label_issues``? It uses this method internally." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:32.926351Z", + "iopub.status.busy": "2024-05-24T23:49:32.926125Z", + "iopub.status.idle": "2024-05-24T23:49:33.011958Z", + "shell.execute_reply": "2024-05-24T23:49:33.011307Z" + }, + "id": "p7w8F8ezBcet" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 99, 8, 64, 45, 83, 213, 212, 218, 152, 197, 196, 170, 167,\n", + " 214, 164, 198, 21, 191, 107, 16, 51, 63, 2, 175, 10, 121,\n", + " 117, 24, 95, 82, 76, 26, 90, 25, 62, 22, 92, 49, 97,\n", + " 206, 68, 115, 7, 48, 43, 193, 184, 249, 194, 186, 201, 174,\n", + " 188, 163, 150, 190, 169, 151, 168, 54])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get out of sample predicted probabilities via cross-validation.\n", + "# Here we demonstrate the use of sklearn cross_val_predict as another option to get cross-validated predicted probabilities\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# Find label issues\n", + "label_issues_indices = cleanlab.filter.find_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " filter_by=\"both\", # 5 available filter_by options\n", + " return_indices_ranked_by=\"self_confidence\", # 3 available label quality scoring options for rank ordering\n", + " rank_by_kwargs={\n", + " \"adjust_pred_probs\": True # adjust predicted probabilities (see docstring for more details)\n", + " },\n", + ")\n", + "\n", + "# Return dataset indices of examples with label issues\n", + "label_issues_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4-ANXupQJPH8" + }, + "source": [ + "\n", + "#### Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:33.014183Z", + "iopub.status.busy": "2024-05-24T23:49:33.013960Z", + "iopub.status.idle": "2024-05-24T23:49:33.225356Z", + "shell.execute_reply": "2024-05-24T23:49:33.224762Z" + }, + "id": "WETRL74tE_sU" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAHQCAYAAAD0wPz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RURRvA4d/sbnolCb33TihSpIOAUkUsFAvYlaLYxf5ZUawIghWwAQoiiAiCNAFBehUE6RB6SG+7O98fN9nsJlvuhmwa85yTky2zc2fLbe+dmVdIKSWKoiiKoiiKoiiKoihKiWEo7gYoiqIoiqIoiqIoiqIojlTARlEURVEURVEURVEUpYRRARtFURRFURRFURRFUZQSRgVsFEVRFEVRFEVRFEVRShgVsFEURVEURVEURVEURSlhVMBGURRFURRFURRFURSlhFEBG0VRFEVRFEVRFEVRlBJGBWwURVEURVEURVEURVFKGBWwURRFURRFURRFURRFKWFUwEYplYQQtr+jR48W2XJXr15tW26tWrWKbLkFNWrUKFt7X3nllUKps7g+e6VoSCmZM2cOgwYNonr16gQFBTl858qVKex1srRtk4qD+oz0U/tWTXJyMu+99x7du3enfPny+Pn52drXvXt3Wzm967Pab+Z37NgxnnrqKdq0aUNkZCRGo9HpZ1mrVi3b46tXry629urVvXt3W3tnzpzp02Wp9VUfXxwLu1KU379SuMxmM02bNkUIQf369TGbzfnKHDt2jICAAIQQ3H777UXWNlORLamQHT16lNq1axd6vatWrXLYGZd2//77LytWrGDdunXs3r2bkydPkpycTFhYGFWqVKF9+/YMGTKEvn37YjB4H78zm838/PPPfPfdd+zatYvTp08TGhpKjRo16N+/P6NGjaJOnTo+eGeKohQ2s9nMTTfdxOLFi4u7KYqiKMXi1KlTdOvWjf/++6+4m1JmrVixgptuuonk5OTiboqiKAoAU6dOZd++fQC8+uqrmEz5wyQ1a9bkgQceYMqUKcyePZtx48bRoUMHn7et1AZsFPdmzJjBe++9x969e50+Hx8fT3x8PHv37uWrr76iadOmzJo1izZt2uhexpEjRxgxYgQbN250eDw9PZ0LFy6wbds23nnnHd5++20effTRK3o/iqL43kcffeQQrKlUqRKNGjUiICCgGFulKIpSdB566CGHYE2DBg2oUaMGRqMRgBYtWvhkua+88gr/+9//ABg5cmSZvTqflpbG7bffbgvWGI1GYmNjiYmJsfXirFevXnE2UVGUq0xiYiKvvvoqoG3zhw4d6rLss88+y6effkpWVhZPP/00a9eu9Xn7Sm3AJigoiOuvv95tmbS0NIcPsVmzZlStWtXta6KiogqlfcVt/vz5+YI14eHh1KlTh6ioKOLj49m9e7etu9fevXvp1KkTixcvplevXh7rj4uLo2vXrpw8edL2WHR0NI0aNSI5OZl9+/aRlZVFRkYG48ePJykpiRdeeKFw36SiKIXqyy+/tN1+8MEH+eSTTwrU805RFKU0Onv2LL/++qvt/nfffceIESOKsUVlzy+//MK5c+cACA0NZcuWLTRs2LCYW6UoytXso48+4tKlSwA88cQTbo99q1atyogRI5g1axZ//vknf/zxB9ddd51P21dqAzYVK1Zk6dKlbsvkHTb1xBNPMGrUKB+3rGSpWLEiI0eO5LbbbqNly5a2K0Sg9bJ55513eOedd7BarWRkZHDzzTdz4MABKlWq5LbeW265xRas8fPz4/333+fBBx/Ez88PgJMnTzJmzBgWLVoEwEsvvUS7du3o06ePj96pUlSklMXdBMUHUlNT2b9/v+3+s88+q4I1iqJcVbZt22bbx9WsWdNjsGbmzJlltieMr2zdutV2++abb/YYrFFz/iilSWmYZ0lxlJaWxocffghAREQEd955p8fXjBs3jlmzZgHw5ptv+jxgo47Gy6hq1aoxdepUjh8/zttvv02bNm0cgjUA5cqV46233uLTTz+1PZaYmMhbb73ltu6ffvqJDRs22O5Pnz6dsWPH2oI1Ocv/6aef6NatG6Cd5D/zzDPqZF9RSqj4+HiH9bN69erF2BpFUZSil3OFFdQ20FfUZ6woSknyzTff2LZLw4cPJygoyONr2rRpQ2xsLAArV650OQVJYVEBmzJq+vTpjB49Gn9/f49l77vvPq699lrb/Z9++slt+bffftt2u0OHDtxzzz1OyxmNRqZNm2a7v2PHDo+9ohRFKR5ZWVkO9/MGeBVFUco6++2g2gb6hvqMFUUpST777DPbbW8yP9n3wLTv/OALKmBjJy0tjU8//ZT+/ftTs2ZNgoKCiIyMpFGjRjzwwAP88ccfuuqZOXOm0/SP69evZ+TIkTRs2JCQkBCio6Np164dEydO5PLly755UzoNHDjQdvvkyZOkpKQ4LXfy5En+/vtv2/2HHnrIbb2NGzema9eutvuegkG+sG3bNiZOnMjAgQOpW7cuoaGh+Pv7U7FiRdq1a8eTTz55xZHRXbt2MWbMGJo0aUJ4eDgRERHExsby4osvcvr0aa/rS05O5tNPP2XQoEHUqVOHkJAQwsLCqF+/PnfffTe///77FbX3SniTRvLvv/9m7NixtG7dmqioKEwmE8HBwVSpUoVOnToxZswYfvjhB5e/txz79u3jqaeeokOHDsTExODv709QUJDtO7zvvvuYOXOmw5U7e67WSXcKkgbywoULfPDBB/Tp08dhG9KkSRPGjBmTb4JudzIyMvjmm28YMmQIderUITQ0FJPJRHh4OPXr16dfv3688sorbNy4scA9144ePWp7j3mz7tl/z56+b4vFwnfffcett97q8HutV68ed9xxBwsWLNDVRl99T65SkB49epQJEybQokULIiIiCA0NpVGjRowZM4ZDhw7pWn6OjIwMpk2bRrdu3ahQoQJBQUHUrVuXW265hd9++82rugpDQbdJCQkJhISE2D4vb9q+YcMG2+tMJlOBtn2uHDp0iNdee42uXbtSvXp1AgMDCQ4OplatWgwcOJD333+f48ePF9ryQMtkM3r0aJo3b05MTAwBAQFUrVqV3r17M3nyZI/bLXv79+/nww8/5Oabb6ZRo0aEh4fj5+dHTEwMLVu2ZOzYsfz111+66rJfb3MmaQU4d+4cb775Jtdccw3R0dEEBQVRp04d7r77brZt2+b1+/ekNO5bnbHf7tx99922x9esWZNvG5g3hXFhpAvOSQOcM+EwwKxZs5xugz3td6WU/Pzzz9x99900atSIcuXKERQURI0aNRg0aBBfffVVvuC8M6+88optefZTCaxcuZJRo0bRqFEjIiIi8j3viv3nlDOMAOB///tfvveXtz49ab1d7Tv27t3L2LFjady4MaGhoYSHh9OiRQuefvppzpw547Hd9hITE5k0aRLt27cnOjqakJAQGjRowMiRI1m/fr1XdRWH0ri+luRjYVe8Set97NgxXnnlFbp160bFihUJCAggICCAmJgYWrduzZ133sn06dM9fnbnz59n0qRJ9O7dmypVqhAUFIS/vz/lypWjRYsW3HbbbXzwwQcuM9+52qe4U5DjtczMTL799luGDh1K/fr1CQ8PJzg4mNq1azNs2DDmzZvn1fHsihUruOeee2jWrBmRkZGYTCZCQkKoXr063bt35/HHH+eXX34hIyPDZR0HDhywDdOsUKECHTt21L38m266yXZ77ty5TtOAFxpZhh05ckQCtr8ZM2a4LLts2TJZo0YNh/LO/m644QZ59uxZt8udMWOGrXy3bt1kVlaWHD9+vNt6q1SpIlevXl3In4B+06dPd2jP6dOndZU7c+aMx7rfeustW/nKlSsXSnvt23DkyBGnZS5evCjr16/v8TsFpBBCPvzwwzIzM9PtcletWmV7Tc2aNaWUUr799tvSaDS6rDsyMlL+8MMPut/bd999JytVquSxzX369JHnz593W9fIkSNt5V9++WXdbXBHz2efnp4u77rrLl2fPSD79u3rtB6r1SqfeuopaTAYdNXTuHFjp/XkXSf18Paz++CDD2RERITHNt5+++0yNTXVbV07duyQDRo00P35zZ07V9d7yivvNtLTn7Pve8uWLbJp06YeX9u+fXv577//um2Pr74nZ+vtrFmzZHBwsMv2+vv7y2+//VZXG/bt2+fxMxg2bJhMTk4u9HXSF9ukUaNG2crefPPNuttyzz332F43cODAK31rUkopU1JS5IMPPihNJpPH35jBYJArVqzIV4ezz8idQ4cOyR49enhcXuXKleXSpUs91temTRvd69iQIUNkUlKS2/ryrrdSSrl06VIZExPj9rOZOHGix7Z6Wt+lLL37Vlfstzue/vL+fvSuz+4+127dul3xdlhKbVvcqlUrj6+vX7++3LJli9vP5OWXX7aVHzlypExMTJTDhg1zWt/IkSM9fsb2n5Onv7z11axZ0/bcqlWrnNbvbN8xceJEt9uNsLAw+ccff3hsu5RSrlu3TlavXt1tu8ePHy+zsrIcvk935x2FoSyvryX9WNgVvd//Bx98IAMCAnR9L0FBQS7rmT17tq5jz5w/Z+ewzvYpnnh7vLZs2TJZt25dj+275ppr5OHDh93WFR8fL6+//nrd7/nhhx92Wdcbb7xhK3f77bfreu/26tSpY3u93u1JQZTaSYcL008//cSwYcMcrjpUrFiRBg0akJaWxp49e0hPTwdg6dKldOnShVWrVlGlShVd9U+YMME2mVFoaChNmzbFZDLxzz//2HoEnD59mn79+rF8+XKvonuF5dixY7bbQghiYmKcltu5c6ftdu3atalYsaLHuu2HW8XFxXH+/HnKly9/Ba3VJzU1lYMHD9ruBwUFUb9+fcqVK4cQgtOnT3Pw4EGklEgpmTZtGhcuXOCHH37QvYypU6fyzDPPABAQEEDz5s0JDg7m33//tV29uXz5MsOHD8doNDJkyBC39b322mu89NJLDo/VqlWLGjVqYLFYHH4zv//+O126dOHPP/90+X0Vl7vvvpvZs2fb7ptMJho2bEiFChWQUnLp0iX+/fdf23pltVqd1vP8888zadIk230hBPXr16dKlSoYDAbi4+M5ePCgLT2oq3p8yWq18tBDD/H55587bWd6ejp79uyxtfG7777j6NGj/PHHH07TZcfFxXHddddx8eJF22ORkZE0bNiQsLAwUlNTiYuL4+jRo7YrEQV93/bZ9vJm1XOWhS/vuN4NGzbQt29fEhMTbY+VK1eOxo0bY7Va2bdvn+25TZs20aVLF/744w+aNm1aoPYWlm+++YaRI0cCEBgYSLNmzQgNDeXw4cO2XhqZmZncdddd1KtXj/bt27us68iRI1x33XXExcXZHgsJCaFp06b4+fnZ1tk5c+ZgtVp1jY2+EoWxTXrggQdsVwYXLVqka5udnJzssO287777rvi9nD9/nr59+zpMUgraNjFn7ovTp0/brhparVaSkpKuaJnbtm2jb9++tiw2oGVYbNy4McHBwZw8edK2X4mLi2PgwIHMnTvX4UpbXjt27LDd9vPzo379+sTExGA0Gjl37hz79+/HYrEA2vFIXFwca9euxWTSd4i2atUqBgwYgNlsxmQy0bx5cyIjIx3aarVaefbZZ229vq5Eady3ulO1alXb9u7UqVPs2bMH0LZl7dq1cyir55jHW+3atSMwMJBDhw7ZfstVqlShefPmTss724YsXbqUW265xaHXV0xMDPXr1ycgIIAjR47YjvMOHjxIjx49WLZsmcPxmStSSoYPH27LnlWuXDkaNWqEwWDQ3ROxefPmts949+7dth4DdevWzZfC29X79ob9sVRYWBhNmjQhMDCQ/fv3c/bsWQCSkpIYNGgQe/fupWbNmi7r2rJlC3379nXYtpQrV44mTZpgNpvZt28fSUlJfPjhhw5zOZYUpXF9LSvHwq589tlnPPbYYw6P1a5dmxo1amAymUhISODQoUO20ReujvGWLl3K7bff7vB81apVqV27NoGBgSQlJXHkyBGH/VlxHCfPnDmT+++/36EHSpUqVahTpw4Gg8Hhd7JlyxY6duzIn3/+mW/bAFr7Bw4cyLp162yPBQYG0qhRI6Kjo8nKyuLChQscPHjQdl7v7j0vW7bMdtt+RIhe3bp14/Dhw7a6evbs6XUduvgsFFQC6Olhc/jwYRkaGmorU6lSJblgwQJpsVhsZRISEuSECROkEMJWrlevXtJqtTpdrn3UMSoqSgohpMlkkm+++aZMSUmxlcvMzJSff/65DAkJsZWvVauWQ5mi0qhRI4fopivdu3d3+Az0OHHihMP3sGbNmitur319rq4qnDhxQlaqVEk+//zzcsuWLdJsNucrc+rUKfn44487fLfff/+9y+XaX1UIDQ2VgYGBEpCPPfaYjI+Pt5WzWCxy/vz5snz58rbyERERLnsuSSnlnDlzHN7X7bffnq9HgsVikT/88IPDldTBgwe7rLM4eths2bLFocwLL7zg8NnkMJvNcv369fKRRx6Rt956a77n4+LipJ+fn62e+++/X8bFxeUrZ7Va5fbt2+Xzzz8vO3fu7LTNvuxhY9+DTAghH330UXny5EmHMhkZGXLatGkOPTrGjx/vtL6xY8faylSpUkUuXrzYYXuUIz4+Xs6ePVv27t1bzpkzR9d7csfbKyzx8fGyatWqtvJhYWHyyy+/dLgyl5aWJt9//32Hq0hNmjSR6enpTussih42ISEhMjAwUAYEBMh333033/b2119/dbha5eo3JaX22+vatautrNFolK+++qpMTk62lcnZzufsZ+zX3cLuYVOY26RmzZrZyr377rse2/H555/byleuXNnp9tYbFotF9uzZ0+E3eccdd8gDBw7kK3vhwgX5xRdfyJYtW8oFCxbke15vD5sLFy44/KYbNmwoFy1alO+9/PPPP7JXr14On+PRo0dd1hsdHS0fffRRuXbtWqdXri9duiRff/11h/XkzTffdFlf3nU1OjpaCiHks88+m29bu3HjRlmtWjVb2Ro1ajjdnuQoi/tWb3i7DSqMHjY58vZq0evgwYMOx7Ht2rWTq1evzneMumnTJoceODVr1pSXL1/22JawsDAJyAoVKsg5c+bIrKwsWzmLxeLxanhe3h6XeNvDJue4OzIyUs6YMcNhnbNarXLmzJnS39/fYbviSnp6uqxXr56tbHBwsJw2bZrMyMiwlUlNTZVvvfWWNJlMUggho6OjbeVLQg+b0ra+lpZjYVc89bDJzMyUUVFRtjI33nij/O+//5zWtX//fvnWW2/JBg0aOH3efj/dqVMnuXPnTqfljh07JidPniybNGni9Djalz1s1q1b59Dz6oYbbpDbtm3LV+7333936K3Stm1bh21Njnnz5tnK+Pv7yw8//NDpeXNGRoZcvny5vPvuu+Wjjz7qtG0ZGRkO2wJn7fLkk08+cdj2+spVH7C56aabHDYi//zzj8v63n33XYf6XJ0kOete+8UXX7isd9myZQ5DPl599VWv3+uVyLtxfP/9912WrV27tq3cPffco6t+i8Xi0C111qxZV9xmPTupzMxMh52qOx9++KGtPncBK/udVM7fCy+84LL8jh07HAJyrj6zS5cuOZwkeuq6/s8//9gOogC5du1ap+WKI2Dz6quv6joQsufsAOLrr7+21ePupNlTPVL6LhBw4MABW1BJCOH2AEdKKVevXm1bF4xGo9PPz36H5Wx4hzNXenIspfc77Mcee8xW1s/Pz20g9scff3So29XvuygCNjnf1ZIlS1zWOX/+fIfyrg6m8r6vKVOmuKzz999/zze0r7ADNoW5Tfr4449tZVwNNbTXoUMHW/kJEyYU+P3kmDp1qsN70hM0slqtDsGyHHoDNvbDONu2bSsTExNdls3KypJ9+/bVtT901iZnfv75Z1t9lStXdjkswdlQxunTp7usd/PmzQ4nYu66bZe1fau3SmPAxj5oPHDgQLfDWZKTk2XLli09Hm/atwW0oI2742Nv+DpgA9oQku3bt7us87333nMo62odnTRpksN+45dffnFZ5xdffJHvN1wSAjalaX0tTcfCrngK2Kxdu9b2fO3atT0OP5PS+THe8ePHbfWEhoY6vTCal9VqdRqw91XAJisry+GY9uGHH3bZ2UFKKc+cOeNwgeHrr7/OV8Z+6LW735w9V8fI9heYDQaDx+kKnPnzzz9tdQQGBur6Pgviqp50+MSJEyxatMh2/9VXX6VRo0Yuyz/++ON06NDBdn/KlCm6ltOzZ0/uvfdel8/36dPH1j0f4PPPPy+yLmvnz5936JZXtWpVHn74YZfl7Yc+RERE6FqGwWAgJCTEdv9Ku6zr5efnpytLFsAjjzxCjRo1AK07nv3wBncaNmzIyy+/7PL52NhYnn76adv9OXPmkJCQkK/cZ599Znu8Z8+etq6lrjRq1IgXXnjBdv+TTz7R1d6icPLkSdvtTp066XqNs0wRhVWPL33wwQe2Lpd33303w4cPd1u+W7du3H///YA2Ua+zWeVLw/tOTU1lxowZtvtjx45125X0lltu4bbbbrPdnzZtmm0ISHG4++676du3r8vnb7rpJocu8q4mlLT//jp27MiYMWNc1tm7d2+H7byvFNY26Y477rANvfjnn3/YsGGDyzr37t1rm1BbCOF2f6eHxWLh3Xfftd0fPHgwTzzxhMfXCSEc9jXeOHnyJN9//z0A/v7+zJ49m7CwMJflTSYTn332mW0IxPfff+/0cwR0t+nGG2+kS5cugDbcavPmzbpe17NnTx588EGXz19zzTW2esH171mv0rRvLes2bdpkG8oaHR3N119/7XZYTkhICNOnT7fdnz59uq5JPl966SW3x8clzYQJE2jZsqXL5x988EHb9i0tLc3lpNz22WOGDRvGgAEDXNZ577330qNHj4I12IdK0/palo6FXbE/xmvXrp2uYXSejpGbNm1KZGSkx3qEEBgMRXfqP3/+fNtwoYYNGzJ58mS3kxpXrFiR9957z3bf2fdZmMfI+/bts93OmazZW3Xr1rXdTk9Pt73fwnZVB2wWL15sO2kICQnxeJAphODRRx+13V+3bh0XLlzwuJxx48Z5LDN27Fjb7RMnTuQbs+8LFouFoUOH2jbIQgg+//xzAgMDXb7Gfny0u3J52a8E3mTWKCpCCIex6vaZsNx56KGHPM4z8NBDD9k2FqmpqU5ntf/mm29st8ePH69r2fap51atWqXrNUXB/nexa9euYq/HV6xWq+0EDwr2va1cuTLf8yX9fYOWPSVnbLUQgkceecTja+wDw8eOHXOY16OoPfDAA26fF0I4HAjs378/X5mkpCSH72/06NEel2u/nfeVwtomRUZGOgTZvvzyS5f12T/XvXt3hwOYgti4cSNHjhyx3X/xxRevqD495syZYxtfP2DAAF3voVq1anTr1g3QDtTcBbX0sp8vSW/AxtPvGaBz5862285+z75S3PvWss7+2GHkyJG6Ttrat29vmxvi9OnTHn8PJpPJIXtWaZBzYcSVkJAQWrVqZbvv7DPYu3evw9wv7gLyOYpiG+9Lxb2+lqVjYVfsj/H27NlT4Av09vUcPHiQtLS0K25bYbP/PseMGaNrXrabbrqJ4OBgQNsH5sz/mKMwj5Ht52/VOy9tXhUrVnR4X/Z1FqarOmCzadMm2+2uXbvqugrWr18/h+igp42ZwWCgd+/eHutt3bo1FSpUsN3Xe6B2JR555BGHjdv48ePdXnUGHCZm1jshYt6ymZmZXrSycKSmpvLzzz/z0ksvcddddzF48GD69u3LDTfcYPuzP9g+deqUrnpvuOEGj2UqVKhAmzZtbPfzfreXLl1yiPLqvUJTtWpV28HZ2bNndbfZ1+zf66effsqHH35YoB2JfT2//fYbzz33XIm6grpz505bj7OYmBjdEyU2a9bMdnvHjh35rm7av+877rijRKYLtd92NmrUKF+qW2c6dOhAdHS00zqKkr+/v8Nn7ErVqlVtt3OCU/a2bt3qcKDlbJLmvPJu532hMLZJOewDAT/88EO+AyfQtuf2B2WFMdnwn3/+abtdq1YtWrdufcV1erNMbyYNtF+fPaXOzsrKYtmyZbz++uuMGjWKIUOG5NsPLViwwFZe7zZdz8Sxnn7PBVWS961Xg6L43TZu3Nhh213S1a5dm0qVKnks52mdsP89hYWF6UoIcv311+tOi1wcSvL6WtaOhV2x35/t3buXe++91zYRtjcaN25suxh+6dIlbrnlFocLHcVNSulw/Kp3++Tn50eDBg0ArWOBfbIbcDxG/t///se3335b4HTa9p0uypUrV6A6DAYD4eHhtvvnz58vUD2eXNVZouxnt9d7shUeHk7NmjU5evRovjqcqV27tu7u0E2bNrXN5G0f1feF//3vfw5dzW6++WaHbDyuBAcH24Y05WT40cO+bEG7rBdEWloar732GlOmTPFqKJaewIC/vz/169fXVV/Tpk1twb283+3evXttJ+0mk8mrDB72n+uFCxccDkCKyy233MJzzz3HqVOnsFqtPPbYY7z88sv06dOH7t2706VLF5o3b+7xoKZLly60bt3adjD51ltv8cEHH3DdddfRs2dPOnfuTJs2bYp8OFCOnEwiABkZGboOWPLKzMwkMTHRYXjho48+agukHjx4kM6dO1O/fn1uuOEGunbtSpcuXXySqcQbBdl25pRdvXp1vjqKUnR0tK5gc84VHtAOcvOyb3/FihV1Z6ew384XtsLaJuXo2LEjzZo1s2U5mzNnTr6AzMKFC20HPeXKlbuibD05/vnnH9ttPcG1wmC/Pn/55Zf88ssvul5n/ztw1ePWYrHw0Ucf8dZbb+nqlZtDb4Baz8mpp9+zt0rDvrWsk1Kyd+9e2/0333yTjz/+WNdrd+/ebbvt6Td5pT3mipqe9QG828Y3adJEVyAmJCSEWrVqlagTZygd62tZOxZ2pWbNmtx000224PzMmTP59ttv6dq1K9dddx1dunShXbt2TrOI2gsMDOShhx7igw8+AGDJkiXUrVuXDh060KtXL7p06ULHjh2L9JzL3smTJx0CoY8++qjuC/32vVTybp/uvfdeJk2aRHJyMqmpqdx555089thj9O3bl27dutGlSxdbwMcT+xEfV5LBsyhGkVzVARv7H5I3Vw9iYmJsAZv4+Hi3Zb2p175sYV4By+uDDz7glVdesd2/4YYb+P7773Wd+IaGhto29t70mrDfGYaGhupv7BVISkqiT58+trkVvJGRkeGxTGRkpO5ggbvv1j59s9lsdkgx542S0vskODiYX375hQEDBthSdyYmJjJv3jzmzZsHaOtQ//79uffeex3mVrAnhGD+/Pn069fPdgKXnp7Or7/+aksvGh4eTp8+fRg1ahT9+/cvgneXy/57S0pKuqLvzT5gc+ONN/Lmm2/ywgsv2HpwHDx4kIMHD9oOxps3b86tt97KfffdR+XKla/gXRTMlWw7c3jadvqK3rH89pzN8WDf/oJu5wtbYW2T7D3wwAO2IW9ffvllvoCN/XCoO+64w6uhsq7kpGsFPKYTLyz26/P27dsLVIezbbDZbObWW2/l559/9ro+Pfsh8P43rWfOEndKy761rEtISHCYC6ygQ/I8HTu4m8upJCoJ2/iSFLApLetrWTsWdueLL77g3Llzth4oZrOZlStX2oZZBwUF0aNHD+68805uvfVWl5/vW2+9xZEjR2z7Fyklf/31F3/99Reg9Vbp1KkTI0aM4M477yyU/bNe9t8nwB9//FGgevJ+n1WrVmX+/PncdttttucuXLjAN998Y+vtW61aNW688Ubuv/9+YmNjdS3nSvaLV7pP1eOqHhJlvyHyZgNvX9bTxsybeu2jqXoP1Lz12Wef8fjjj9vud+vWjZ9++kl3O+1PuPRORpaUlOQQsCmqrrVPPfWUww7qhhtuYMaMGezcuZMLFy6Qnp6O1DKlIaX0ekLQwvpuCysaW1QTVevRqlUr/vnnH15//XXbWHl7Fy5cYNasWXTt2pUBAwa4vMJXq1Yttm/fzuTJk2nRokW+53MCQQMGDODaa68t0oMkX35vEyZMYNu2bdxxxx1OA5y7d+/mpZdeol69eg4TtBWVoth2lnT2QzsLui0obL7Y39x55522q0cbN250uKJ//Phxli9fbrtfGMOh8rbHl5+XvcJYn52ty++++65DsObaa69l2rRpbNmyhXPnzpGWluawH3I3cWdJUVr2rWVdUR07FOUkpSVJSdzGF0RpWV/L4rGwK1FRUaxdu5ZZs2Zx7bXX5uu9lZaWxpIlSxg+fDjNmjVzeREhICCABQsWsHDhQnr37p2vB0tWVharV6/mgQceoF69eqxYscJn7ykvX36fffr04cCBAzz99NNO5545efIkU6dOpVWrVtx9990ue5Xa9z7yZtRIXvYdGHzVo+mq7mFjf1Xbmy6C9mU9TfBW0Hrtx8MVlm+//dYhA1T79u355ZdfvOoG1rBhQ1tX2uPHj+t6zYkTJxzuF0WmgYsXL/LFF1/Y7k+aNIknn3zS7Wu8zV5VWN+t/e8wJCTE6TwRpVF4eDjPP/88zz//PIcPH2b16tWsWbOGP/74w2GM8a+//soNN9zAxo0bnXaXDAgIYNy4cYwbN47Tp0+zatUq1qxZw8qVK/nvv/9s5TZu3EiPHj3Yvn17gcei2vOUxcj+e2vatKnDkIrCEBsbyzfffENWVhabN2+2fX5r16617VhSU1N58sknMRgMDpP6+lpRbDv1Kq5sU/brcUE/g8Lmi/1NZGQkt956K19//TWg9ah5//33AZgxY4btYKpt27ZOg6oFYf/bKKqrpREREbYrgj/++KNX3fFdyZvtauzYsR6HrBRVFsWCKk371rIub6bOzZs3c8011xRTa8qekriN91ZpWl/L6rGwKwaDgbvuuou77rqLixcv2o7xVq1a5XA8uX//fnr27MnWrVupU6eO07oGDRrEoEGDSEpKYu3ataxZs4bVq1ezZcsWW++PU6dO0b9/f9asWeOQ8bigvDlGBm1uF71Dx/WoWLEib7/9Nm+//Tb79u2zfX4rV660XQSWUjJz5kwuXbrEwoUL89VRGL2+LRaLQwZlX/UKvjrD5tnsP1S9V+allA5lPX0xOUOn9LCvt7Anppw3bx6jRo2yHVy3atWKpUuXet3VtXHjxrbbe/fu1TXRk31k2GQyOe1xUdhWrlxp25jUrl1bV0pYbycqS0hI0L2Cu/tu7ecjSUlJKZFZtK5UnTp1uOeee5g1axYnTpzgzz//tGVXAW0C19mzZ3usp0qVKtx+++189tlnHDp0iO3btzvMmXHs2DGmTJmS73X2V4DsJ852x1P3evvvzVdzkoDWpbVjx44899xzLFu2jAsXLvDpp5867GhefvnlIv3dFGTbCTgE2JxtO33xPfmK/Xp88uRJ3ZPe+bIXWGFtk/KyTxn9zTffkJmZiZTSIbV7YfWuAcc5KIpqXhJfrM/btm2zBYGCg4N5++23Pb6mpE+YWZr2rWVdaGiowzwsvtwPXY3sf096j+WllF4d9/taaVpfr4ZjYVeio6O5+eabmTx5Mrt37+bgwYMOk/5fvnyZN954w2M9YWFh9O/fn3feeYe///6bkydPMmHCBNuQqszMTJ5//vl8r8vbS0rP8Zc3x8jg2+1TkyZNGD16NHPnzuXMmTMsWbLE4QLSokWLHCZoz1GzZk3b7YLue8+ePesQvLKvszBd1QEb+5m69aau27t3r0PU11P2ioSEBA4cOOCx3qSkJIe0goWZFePXX39lxIgRth9U06ZN+f333wt0hbtr166226mpqR6zC4BjFoMOHToUaHyxt+x7/7Rp08bjZHFpaWkFSjOs53cjpWTLli22+3m/29jYWIdeTsWVPaeoCCHo3LkzS5cudehtVZCUrC1btmTevHkO2QSc1WMfmNR7YOGpx4z9FYrz589z+PBhXfVeqZCQEB544AF+/PFH22NJSUkFGp9eUPa/4e3bt+veudtvC51t43zxPfmKfUrYjIwMXekl827nfaEwtkl55Uw+DNpwxoULF7J8+XLbxIAhISEMHz78ClrtyH7d2rZtW5EcuNsvs7DWJfv9UJMmTRxOrl3JmXugpCpN+9bSxn7okd45EXzxu1U09tv4w4cP55uTw5kDBw44XG0vbqVpfb3ajoXdqVevHp9++qnD8LSCHCNXqVLFNidijrVr1+Ybjpb34r2e4y9Px17ly5d36BFUVNsno9FI3759+eOPPxwubDr7/Ow7IcTFxRVoQn77Y/+AgACXvaCu1FUdsLGf7HTv3r0Os+a78u2339puR0ZGOqRGdGXu3Lkey8yfP9920mM0GnWl6dRj5cqV3HLLLba6GzRowIoVKwrcLa1bt24O3dy+++47t+UzMzNtE82CNqFqUdB7dT7HnDlzCjT+Xc93u2bNGof5fjp37uzwvL+/P927d7fdnzVrltftKI0CAwMdUiEXJK0haAGgQYMGua2nRo0attuHDh3yOGH2rl27PF4lq169usPGvqi/t+7duzusiwX9/ArCftt5+fJlli5d6vE1c+bMsQWNXW3jfPE9+Ur9+vUdriD98MMPHl9jv533lcLYJjlz//33225/+eWXDpMN33bbbYU6MWmPHj1sVwTT0tIc9ru+Yr8tWrhwYaEMxfL2u161apXuocbFpTTtW0sb+7kP9CZ1sP/dfvfdd8U2RLQsateune0Co5TS4SKJK3PmzPF1s7xSmtbXq/VY2J3Bgwfbbl/JMZ59PWazOV/wMSwszGEqAU8XoDIzM/ntt988Ltd++1TU32dMTAydOnWy3Xf2+TVv3hw/Pz9AmyvHPq28XvaxgxYtWtjqK2xXdcCmd+/eVKtWzXZ/woQJbssfP37cYbjFqFGjdM2M/sEHH7jNy56ens5rr71mu3/DDTcUStreDRs2MGjQINt8F7Vr1+aPP/7QnfLQGT8/P26//Xbb/RkzZrjtRjZ9+nTbhiEgIIBhw4YVeNnesM+cs2nTJrcHMZcvX+bFF18s0HK++eYbhxS0eUkpHepu2rSp0zHm9vOPfPfdd7bUx6WRN7Ol249njoqK8kk9oF3dzpnsLisry2PGFvurEe7Yf2/vv/++29+CHt6854yMDIeDMWfv21caNWrkEHB56aWX3A4JSkpKctjGDRw40OnwBV99T74ghOCOO+6w3Z86daotK5ozebfzvlJY26S87DNMLF++3OG7uffeewveYCcqV67MzTffbLv/wgsvcObMmUJdRl5DhgyxdWVOTEzUNXTAE/v90J49e9wGgbKyshwSApRUpW3fWprYH5vZp5R257777rNNTH/48GHeeustn7TtahQZGcnAgQNt99988023vf3Onz/PRx99VBRN0620ra9l6VjYleI+RgaczvPYsmVL221PwcmPP/5YVwDpkUcesfUcXLt2baFcfCnMc4OAgADat29vu2/fA0wv+9fYT/VQ2K7qgI3RaOTZZ5+13f/111959tlnnc5IfebMGQYOHGjbWIeGhjJ+/Hhdy7l8+TKDBw922sUsPT2dESNG2LpUCSF45plnCvBuHG3fvp1+/frZ2lujRg1WrVrlEKAqqOeff9524J6UlMTw4cOdTjq2bt06nnvuOdv9hx56qFCWr4f90K0TJ07w+uuvOy13/vx5+vXrV+Cxi2azmRtvvJGTJ0/me85isTBu3DjWrVtne8z+92avd+/e9O3b1/a6wYMH89NPP3lc/pEjR3jyySd1jW0tKsOHD+ftt992G6QEbd4a+6tR9t8ZaDvu5557Lt+k1XkdOXKETz75xGU9oAUa7dN+P/fcc07H01qtVp566il++eUXt8vMMXLkSFvKwOTkZHr16uV0nGxee/bs4f7773eYAwS0OXi6dOnCL7/84nFOlJdfftnWfdPf379QJpHzhv046B07djBq1CiHrBo5EhMTGTJkiC2YYTQaXQbHffU9+cojjzxiG+aSnJzM4MGDnXabT09P5/bbby+SYXOFtU3Kq1y5ctx6662A9vnnfNeNGzd2uIpVWF555RVb9/gLFy7Qo0cP/v33X5flpZQsWLCArVu3Fmh5JpPJYY6ZL7/8koceeshjF+mUlBRmzpzJddddl++5du3a2d5Deno6jz/+uNODzeTkZG677bYCDUUoaqVt3wrab0kIYfsrSXOM2LMfIrJjxw5WrVrl8TVRUVEOgeuXXnqJ//3vfx57Vly+fJnJkyczdOjQgjfYTvfu3W2fb61atQqlzpLg6aeftp1wnjhxgmHDhjndJuQc55e01PKlbX0tS8fCrrzzzjuMHj3a43QZFy5cYOLEibb7eY9tv/vuO26//XaP+7zU1FSH7INt27Z1mmzmpptust2eMWOGLeV4XvPmzXM4t3OnUaNGDnPx3HvvvUyfPt1j0OXMmTO89tprjBs3Lt9z1113HdOmTfM49PDXX391CPg5OzcAx15Aa9ascVunM/avsa+rsF3VWaIARo8ezU8//cTKlSsBePvtt1m5ciX33HMPDRs2JD09nfXr1zv0FAF47733dE0s1Lp1axISEtiwYQPNmjXj4Ycfpm3btphMJnbt2sX06dMdDkLvv/9+h+EGBXX77bc7XM0LDw93mDjSk3feecdlxo8qVarw7rvvMnbsWECboyY2NpZx48bRokULkpOT+f333/nyyy9tXSvr169fpOlKa9euzaBBg1i0aBGgHbD9/fff3H777VSvXp2EhATWrVvH559/zqVLl6hSpQotW7ZkyZIlupdRrVo1atSowYYNG2jevDkPPfQQXbp0ISgoiAMHDvDFF184bEj79OnjcEU+r2+//ZZ27drx33//kZCQwM0330zbtm256aabaNGiBREREaSmpnLu3Dl27NjBmjVrbJHdwgjyFZYzZ87w7LPP8sILL9CjRw86d+5Ms2bNiI6ORgjBqVOnWL58Od99953tpK9GjRrceeedDvVcvnyZjz76iIkTJ9KxY0e6detGbGws5cuXx8/PjzNnzrB27VpmzpxpCxiGh4fzyCOPOG3X448/zoIFC2yTArZq1YrHHnuMNm3aYLFY2Lt3L1999RW7du2iYsWKNG/e3GMKRH9/f3766SfatWvHxYsXOX36NF27dqVnz54MGDCARo0aERYWRnJyMnFxcWzfvp0VK1bYrkS1adMmX53r1q1j3bp1xMTE0L9/f9q2bUvt2rWJiIggLS2Nf/75h9mzZzvMdTFmzJhCy7qkV//+/bn77rttQafvvvuOrVu38sADD9C8eXOsVitbt25l+vTpDsM8nn76adq1a+eyXl98T75So0YNXnvtNVtvjM2bN9u28+3bt8+3nY+KiqJ169Y+a29hb5PyevDBB/nmm28cHivs3jU5GjduzNSpU7nnnnsALVNGs2bNuO222+jTpw/Vq1cH4PTp02zatIkFCxZw8uRJFixY4HS90mPo0KFs2rSJDz74AIBPP/2U+fPnM2LECDp27Gjr+RofH8/+/fvZtGkTy5cvJzU11Wmv2KCgIO6//34mT54MwFdffcX+/fu57777qFevHikpKfz99998/vnnnDx5ktDQUAYMGFDihlXYK4371tKicePGtGzZkh07diClpGfPnrRo0YLq1as7ZFD87LPPHHooPv300/z999/89NNPSCl55ZVX+PLLLxk+fDjt27cnJiYGs9nMpUuX2LNnD3/99RerVq0iKyvL4eqykl+7du0YM2aMLbvb4sWLadGiBQ8//DCxsbFYrVY2b97MJ598wunTp6lXrx7h4eG65ncsCqVxfS0rx8KupKWlMW3aNKZNm0arVq3o2bMnrVq1omLFigQFBXHhwgU2btzIl19+abvwaTKZ8gW5zGYz33//Pd9//z0NGjTg+uuvp02bNlSuXJmQkBAuX77M1q1b+eqrr2zzzYHrnsl33nknr7/+OufOnSMrK4tevXoxZswYrrvuOoKDgzly5Ajz5s3j119/xWAwMHz4cF3JQj788EN27NjBxo0byczM5OGHH2by5MnceuuttG7dmqioKDIyMrhw4QK7du1i3bp1rF+/HqvV6jSgfPjwYUaPHs3jjz9Onz59uPbaa2ncuDFRUVFYLBaOHj3KkiVLmD9/vq0DxjXXXOMymDJkyBBb768VK1ZgsVh0jZ4BLZFGTjKNmJgYn/awQZZhR44ckYDtb8aMGU7LJSYmyu7duzuUdfc3adIkt8udMWOGrWy3bt3k5s2bZWRkpMd6+/fvLzMzMwvlvdesWVP3+3H2t2rVKo/LeOaZZ3TVVaNGDXngwIFCeV857Os/cuSI0zKnT5+W1atX99i+iIgIuW7dOjly5EjbYy+//LLTOletWmUrU7NmTXn06FFZrVo1j8u45pprZEJCgsf3dfbsWdm5c2evv69nnnnGaX163pO3PH323bp186rtFSpUkNu3b3fbdj1/ISEh8vfff3fbdj2/2YiICLl+/XqvPrtDhw7JJk2aeP29TZs2zaGevNssPX8DBw6U6enpnr42j/IuW4/MzEw5bNgw3W0dN26ctFqtHust7O8p73qrx8svv2x7zciRI92WHTdunMf2BgQEyMWLFxf6OunrbVJeTZs2tdXh7+8vz507d8XvwZ2ZM2dKPz8/3b+xBQsW5KvD2+//9ddfl0IIr9bDihUrOq0rOTlZxsbG6vp9zJ8/X9fvriDrat7jElfs6y0r+1b7z9Td+/Lmc8qhd33Wu3w9x4vOXp+VlSXHjBnj1W8WkO3bt3faDm+2f1I67vc9rWPebgPtj2ddHZt6+715046srCw5ePBgj59lZGSk3LJli8Nn4eq8o7CUxfVVytJxLOyKp+8/7/bI05/JZJKzZs3KV4/9b17v3xtvvOG27YsWLZImk8ltHQaDQU6ePNmrdS45OVkOGTLE6/YOHTo0X13ent/Wr19fHjt2zG37WrVqZSu/evVqt2XtTZo0yfa60aNH635dQVzVQ6JyhIWFsXz5cj766COH8Z55dezYkXXr1vHkk096Vf8111zD5s2bHSbTshcREcHEiRNZuHChzyYr8oWJEyeyaNEimjRp4vT5oKAg7r33Xnbu3EmDBg2KuHXa2N1NmzY5jEG2ZzAYuP7669m+fXuBu/TXrFmTrVu3MnjwYKcR2aCgIJ544gnWrl1LeHi4x/oqVKjA6tWr+frrrz1OaB0QEMB1113H559/7jRNX3F55plnGD58uMeU92FhYTz00EPs2bPHYexsjgceeIB77rnH4zC6wMBARowYwZ49e+jdu7fbshMnTuTDDz90mKzXXo8ePdi6dSsdO3Z0W09edevWZdu2bUyePNnjDPGhoaEMHDiQ2bNnM2rUKIfnKlasyDvvvEOXLl08ZlNr2LAhn3/+OQsXLrTN+1LU/Pz8+P777/n222+pW7euy3LNmjVj0aJFTJ482WOWCvDd9+QrkydPZtasWS7nB2vdujXr1q1zGO7lK4W9TcrLvufloEGDPK7nV2rkyJHs2bOH2267ze06ERMTw+jRowulx8Dzzz/Pjh07uOWWWzyuW40aNeKZZ55xOddCSEgIa9euZeTIkS6v2l177bX89ddfDBky5EqbXiRK4761tLjmmmvYs2cPzz//PB06dCAqKsqhd40rJpOJKVOm8Oeff9KnTx+3V4iFELRq1YrXXntN10S6VzuTycT8+fOZNGmSy56s3bt3Z8uWLQXu3edLpXF9LQvHwq7ccsstjB071u0xE2jDx/v378/WrVu566678j3fo0cPnn76aZo1a+b2uEoIQdeuXVmzZo3HoUwDBw5kyZIl1KtXz+nzDRo0YMmSJU6HKrkTEhLC/PnzWbRoEddee63b9hqNRjp27Mj7779v69lm76233mLw4MEujw9zxMTE8Oyzz7Jt2zaHhBbO2A/b0tNrKMf333/vtA5fEFJ6MXvPVUBKyebNm9m9ezfnz58nICCASpUq0aVLF93zr8ycOZO7774b0CYgsj+QO3ToEJs2beL06dMEBARQt25drrvuOtucMKXV9u3b2b17N3FxcYSEhFC9enV69uxZqJlDrsThw4dZu3YtcXFxBAUFUbVqVTp27EjVqlULbRmnTp1i3bp1nDx50jaOu3fv3lf0GZw8eZK//vqLM2fOkJCQQFBQEOXLl6dBgwb5UiCWRAcPHmTfvn0cP36cpKQkDAYD5cqVo0mTJlxzzTW623/8+HF2797NsWPHuHz5MkIIIiIiaNiwIW3btvX6gD0tLY1Vq1Zx8OBB0tPTqVq1Ku3bt6d+/foFeZv5HDx4kC1btnDu3DmSkpIICQmhYsWKNGrUyGFWenfS09PZuXMnBw8e5MyZM6SlpRESEkKlSpVo1aqVQ4aqkmL37t1s27aNc+fOIYSgYsWKdOjQocCfq6+/p8JmsVhYs2YN//zzD0lJSVSuXJlWrVq5HF7qa4W9TUpJSaFSpUokJycDsHTpUp+O2c4rOTmZP//8k2PHjnHx4kX8/f2pVKkSzZo1IzY21iEtcmFJS0tj/fr1HDlyxDYsOiIigjp16tC8eXOqVKmiu67Tp0+zatUqTp48iclkokqVKrRt29blwXFpUFr3rWVdzlCXEydOcOnSJUwmE5GRkdSrV48WLVoUOFPo1S4jI4M//viDQ4cOkZGRQZUqVWjfvn2pWYdL6/pa2o+FXTl79iw7d+7kyJEjxMfHY7VaCQ8Pp27durRr147o6Ghd9cTHx7Njxw7+++8/Ll68iNlsJjQ0lFq1atG2bVuv9lOgzVO3adMmtm/fTkJCAhUqVKBp06aFNlfi+fPnWb9+PadPnyY+Ph5/f3+io6OpX78+sbGxuo7pc7I6HThwgJMnT5KUlGSrp3nz5rRq1Up3J4jU1FSqV6/OpUuXCA8PJy4uzjY/oSvbt2+3zTuW91zfF1TAxgfcBWwURVEUpTT6/PPPbVeRatWqxX///eeTIImiKIqiKEpRefXVV21zrU6fPt3jvK/33nsvX331FQDLli2jT58+Pm2fOtJSFEVRFMUts9nMe++9Z7v/4IMPqmCNoiiKoiil3vjx423pzt9//32nGaNzxMXF2VKUd+zY0efBGlABG0VRFEVR3LBYLEyYMMGWhtTbrIOKoiiKoiglVXh4OC+99BIA//77L3PnznVZduLEibYst5MmTSqS9qmAjaIoiqIoDubMmcPgwYPp27cvtWrV4t1337U999xzz9muRCmKoiiKopR2Y8eOtc0P+dJLL2E2m/OVOXbsGNOnTwdgxIgRRZb8wvPU84qiKIqiXFX279/PwoUL8z3ep08fnnjiiWJokaIoSuk1cuRIzp49e8X1zJo1i4oVKxZCi5T33nuP5cuXX3E9TzzxhMcspUrJZzKZ2Ldvn9syNWvWJCMjo4halEsFbBRFURRFcSkwMJAGDRpwxx13MH78eF1phhVFUZRca9as4dixY1dcT1paWiG0RgEts+WyZcuuuJ5hw4YVQmsUxbUSd9RltVo5ffo0YWFhbvO0l2RDhgxhyJAhtvuJiYnF2BpFURRF8c7jjz/O448/nu/xtLQ0dcKgKIripcJKypuUlKTOKwpJVlZWodSTlpamvhPFa1JKkpKSqFKlisckDiUurffJkyepXr16cTdDURRFURRFURRFURTFJ06cOEG1atXclilxPWzCwsIArfHh4eHF3BpFURRFURRFURRFUZTCkZiYSPXq1W2xD3dKXMAmZxhUeHi4CtgoiqIoiqIoiqIoilLm6JkCRqX1VhRFURRFURRFURRFKWFUwEZRFEVRFEVRFEVRFKWEUQEbRVEURVEURVEURVGUEkYFbBRFURRFURRFURRFUUoYFbBRFEVRFEVRFEVRFEUpYVTARlEURVEURVEURVEUpYRRARtFURRFURRFURRFUZQSRgVsFEVRFEVRFEVRFEVRShhTcTdAURRFUZSyR0oLZO0BmQAiDPyaIYRfcTdLURRFURSl1FABG0VRFEVRCo2UWZA6C5nyNVjP5D5hiIbg2yHkPoQILL4GKoqiKEoBHD93ma3/niDDbKFCZCidmtYiwE+dTiu+pX5hiqIoiqIUCikzkfEPQOZfgHR80noRmTwFMtZAuZkIQ0ixtFFRFEVRvHHw1AXen7eGTfuPAyAESAlhQQEM69GS+/q1x89oLOZWKmWVmsNGURRFUZRCIRPfdh6ssbFC1m5k4otF2SxFURRFKZC9R88w8p3ZbP73hO0xmb2LS0rL4Islm3jq018wW6zF1EKlrFMBG0VRFEVRrpi0JkLaXFwHa3JYIX0J0nLGQzlFURRFKT5ZZgvjpy0kM8uC1ep83yaBP3cf4ds/thZt45SrhgrYKIqiKIpy5dKXAFn6y6f97KuWKIqiKMoVW7njEBcTU7FK9xciJPD9yu1YrKqXjVL4VMBGURRFUZQrJi2nAb1j+A1IS5wvm6MoiqIoV2TJ3/9gEEJX2QsJKew4dNrHLVKuRipgoyiKoijKFRPCH8/DoexfoFJ8K4qiKCXXhYQUj71r7F1MSvFha5SrlQrYKIqiKIpy5fzaAhadhc0I/7a+bI2iKIqiXJGQQH+vygcHeFdeUfRQARtFURRFUa6cfzsw1gR0dB83RENAT583SVEURVEKqnOz2ugcEUWAn4mWdav4tkHKVUkFbBRFURRFuWJCCET4y2gBG/dHuCLsRYQaEqUoiqKUYIOubYrJ4Pl02WgQDOzQhNCggCJolXK1UQEbRVEURVEKhQjojIj8GPAnf9BGAH6IiLcRQf2KvnGKoiiK4oXI0CCeHtrDbRmjQVA+IpSHBlxbRK1Srjam4m6AoiiKoihlhwjsDRXWQ9oCZPpisMaDCEcE3gDBtyAMUcXdxFIhxZzB73E7+TcxDiuS2iHl6VulFRH+wcXdNEVRlKvGzV1aYDQamDR3NWmZWRiEwColRoPAYpU0rlGRSQ8MICpcbZsV3xBSejH1dRFITEwkIiKChIQEwsPDi7s5iqIoiqIoRUZKyazDa/jqv1WkW7MwCa0ztEVaMQkjQ2t2ZEzD6zEK1UlaURSlqKSmZ/Lb5v1sPnCCjCwzFSLDGHhtE5rWrIjQO9GNomTzJubhdcBm7dq1TJo0ia1btxIXF8eCBQsYPHgwAFlZWbzwwgssWbKEw4cPExERQa9evZg4cSJVquibhEkFbBRFURRFuVp9tH8J3x1d5/J5AfSpHMurLW5TJwmKoiiKUgp5E/Pw+vJMSkoKsbGxTJ06Nd9zqampbNu2jRdffJFt27bx008/ceDAAQYNGuTtYhRFURRFUa4qu+KPuQ3WAEhgWdxOVp3dWzSNUhRFURSl2Hg9h03fvn3p27ev0+ciIiJYvny5w2NTpkyhXbt2HD9+nBo1ahSslYqiKIqiKGXcD8f/wigMWKTVbTkDgh+O/UXPSs2KqGWKoiiKohQHnw+ATkhIQAhBZGSkrxelKIqiKIpSaq0+u89jsAbAimRb/BFSzBlF0CpFURRFUYqLT7NEpaen88wzzzB8+HCXY7MyMjLIyMg94EhMTPRlkxRFURRFUUoci7SSaTV79ZpkczohpgAftUhRFEVRlOLmsx42WVlZ3HbbbUgpmTZtmstyb731FhEREba/6tWr+6pJiqIoiqIoJZJRGAgy+usuL4BwU5DvGqQoiqIoSrHzScAmJ1hz7Ngxli9f7nbm4wkTJpCQkGD7O3HihC+apCiKoiiKUqL1qdRCV7puozBwbUwDgkz6AzyKoiiKopQ+hT4kKidYc/DgQVatWkV0dLTb8gEBAQQEqO68iqIoiqJc3W6t2YGFp7Z4LGeRVobW7FgELVIURVEUpTh5HbBJTk7m0KFDtvtHjhxhx44dREVFUblyZW655Ra2bdvG4sWLsVgsnDlzBoCoqCj8/dWVIEVRFKX4SWsSpC1Aps0FSxzgB/7tESF3gF9bhBDF3UTlKtQgvApjG9zAlH+Xui03vGYnri3foIhapSiKoihKcRFSSunNC1avXk2PHj3yPT5y5EheeeUVateu7fR1q1atonv37h7rT0xMJCIigoSEBLdDqRRFURSlIGTmTmT8vSCTch7J/m8ELBBwAyLyXYRQFxmU4vHLya188u8yLmYmYxQGBGCWVsJNQdxdtwcjanVSQUVFURRFKaW8iXl4HbDxNRWwURRFUXxFmg8jLw4BmQ64Sp8sILAfhsgPirJpihNSWiBjLTJjOViTwBCOCLwB/DshdMz1UpqZrRY2XPiXfxNPY5WS2qEV6FaxCf4Gnyb4VBRFURTFx7yJeai9vqIoinLVkMmfgMzAdbAGQEL6r8is+xF+TYqqaUoeMnM78vJ4sMah9X6yAgZk2o9grAaRkxF+zYq3kT5kMhjpWqExXSs0Lu6mKIqiKIpSTMr25SlFUa5OR47As89CbCxUqQLh4dr/2FiYMAGOHi3uFirFQFovQfoSwKKjtBGZ+p2vm6S4IDN3Ii/dCdaz2Y9Y0IauZX93ltPIi7cjs/YVUwsVRVEURVF8TwVsFEUpO5Yvh4EDoW5dePtt2LUL4uIgKUn7v2sXTJwIdepo5ZYvL+4WK0Up6wBg1lnYApnbfdkaxQUpJTLhGbTvylVPKCuQiUx4oegapiiKoiiKUsRUwEYpFumWTP48t59fT21jzdl9pJgzirtJSmlmscC4cdCnDyxeDJ6m5pJSK9enj/Y6i54eF0rp5+33nOWTVigeZG0By2HcD1sDsIB5DzJrT1G0SlEURVEUpcipOWyUIpVqzuDzQ3+w4MTfpFoybY8HGvwYWK0ND9XvTZhfUDG2UCl1LBYYNgzmzcv/XIsW0LkzhIZCcjKsW6f1srE3ZQqcOQNz5oDRWDRtVoqHsYY3hcFUx2dNUVyTGavRDk/09IYyQsYaKMNz2SiKoiiKcvVSARulyCSb03l40xccTIrDimMPiHRrFvOPb2Lzxf/4vP2DRPgHF1MrlVJn/HjHYI3BAEOHwpgx0LEj2Ke+lRI2bICpU2HuXLBmX8GfN0+r5+OPi7LlShETphpIv7aQtRU9vTdE0LCiaJaSl0z1orBAyhRUgmtFURRFUcoiNSRKKTLv7FvkNFiTw4rkROpFXtszv4hbppRay5drPWRyBAXBggVYvvmGTZcDeX7QREbUeIgRNR7ixRsnsnnZDqzXXgvffw8LFmjlc0yZAitWFP17UIqUCH0Iz8EaIxjrQUDXomiSkocwRIOL/UR+1uzyiqIoiqIoZY8K2ChF4kJGEr+f3ukyWJPDIq2sPfcPp1IvFVHLlFJt8uTc2wYDzJlDfIduPNLhOV4YOJEtS3dw/uRFzp+8yN9LtvNcvzcZ3+VFEi8mwaBB2jAog8F5fUqZJAK6IMJeAgRaqui8DGCsjIj6EiHUELliEdgP/fMNSQjs68vWKIqiKIqiFBsVsFGKxIq4XbqvlxoQLI3b4cvmKGXB0aPw66+594cOJb3X9TzT+1UO7TwKgNWS25Mi5/aBvw8x4YbXyczI0oI2Q4fm1rF4sUr5fRUQIXcgor6FgG5gP5jGEAUhoxHRPyGMlYutfVc7YaoD/h1xHlDLJTFCwHUIY5WiaZiiKIqiKEoRUwEbpUicz0jCKPTNMmAQgosZST5ukVLqffqpYzaoMWNY/vUajuw5jtXsesiL1WLl362HufmVF/js4Ari770r90kptXqVMk/4t8VQbjqiwl+I6EWImN8Q5f/EEPYIwhBZ3M276omIt7GIGCzS+X7DLAWnM4LYJx8s4pYpiqIoiqIUHRWwUYpEoNFPdw8bCQQY/HzZHKUsWLIk93aLFtCxIz9/vAShY/pRKSBl3im++m8V/bP+JKlx/dwnf/vNB41VSiphiEL4NUKY6iKE2u6UFGYRzbjDfVl1uRpmKZASLNn/zVKwPL469/3bkzFbF3Ay9WJxN1dRFEVRFMUnVJYopUi0i67H54f+0FXWIq20i67n4xYppd7587m3O3cmLSWd4/+c0vVSIcH4XwZWsxWrSbCsTii3/OOkXkVRisXqs/vYlpDMtoT2RJ2KpVN4HGHGLBIs/qxPqMxlSwAARmHm+6PreLrJjcXcYkVRFEVRlMKnAjZKkWgRWYM6oRU4mnze7cTDAkGloAjax6iAjeJBcnLu7dBQzFl6Jym1Y5ZgEqQF+ec+lqSG4ylKcZt3fCMGBFYkl8yB/HKpttNyFmnll5PbGNegL0Emf6dlSiOZtR8y14NMA0N5CLxeDdVTFEVRlKuQGhKlFAkhBBOa3oRBCJdDVkT23/NNh2AQ6qepeBAamns7OZng8CCCwgJ1v9waZoAA7bcYlJaZ+0RYWGG1UHHDKq1czkwlPjMZi/SUZlu52hxMOuMxq2CODGsWcenxPm5R0ZBZ+7BevBV5cRAyaRIy+RNk4kvIc52wJryItKYWdxMVRVEURSlCqoeNUmRiy9Xk42vu4dkd35OQlWq7eioQSCQhpkBejx1KO9W7RtGjfHmIi9Nur1uH0WCg373XseDj3xyyQzkjDZDZNwKEACmJ3XvSsV7FZy5nprLgxN/8ePwvLmRPLh7uF8SQ6u24uUYHKgZGFHMLldJI6p0krQSTmTuRl+4AsrIfsWb/oT2W9iMy6x+I/gYhgoqnkYqiKIqiFCkVsFGKVJvoOvza41lWntnDH2f2EJ+ZQqR/MN0rNqVXpeYEGtWkn4pO/frBrl3a7V27YMMGBo25gUXTliGtVpcncFIAfoLMflpgIHbvSeoftZu3pm9f37b7KnYs+TwPb/6CixnJSLveE4lZaXx9eC0/Ht/I5GvupnlkjWJspVIS1AmtwJ7LJ3T1sgkwmKgcFOn7RvmQlFnIy6PRgjWuAs5WMO9BJk1GhD9ThK1TSgppTYT0xUjzURAmhF8LLbW9mjBdURSlzBJSlqzrUomJiURERJCQkEB4eHhxN0dRlJLq6FGoUyf30vrw4fD992z6dSuv3Pwu0mrFkie9tzQARkHqy5Uxtw4B4LW3F3L96n3a80IgjhyBmjWL8I1cHZLN6Qz980MuZiS5PAk3IAgy+TOn06NULOUn4MqVWXp6By/t+sFjOaMwMKjaNUxoOtj3jfIhmb4MeXmcvsIiBFFhg+plcxWR0oxMehdSv0UL6hmznzGDiEKEPY0IHlKMLVQURVG84U3MQ00UoihK6VSrFvTvn3t/7lxYtIj2/dvw8cY36XJLBwzG3E2cNEJWtzCSP6puC9Z0/etfeq39x1bG2r+fCtb4yJJT27mQkei2x4QVSZo5kx+ObyzCliklUc9KzagVUh6jm/nMBAI/YWRErc5F2DLfkOlL0H1IJlMgY4NP26OUHFJakJfHQ+oMIBOQgDn7D5CXkInPIlNmFVsbFUVRFN9RARtFUUqvRx7JvW21IocNRS5cSL2WtXn++8f4Ie5zms/sScp71Un6rg5pT1XCWktLB9z1r395feJCjNbcAILx0fFF/AauHj8e36hrClkrkgUn/sZsLUDWL6XM8DeY+LjtPVQJKmebkN6eAUGg0Y8P2oykZkhMcTSxcFkv4noolLPyZWOSZUWHtIWQ8Tt42ILKpDe1oVKKoihKmaICNoqilEoy6yDWaxYg74m0PSbS0mHIYOTQrrBuHRHRYbx5+73EdmoM4UaElMTuOcFrby/k7dd/IjDTnFvfmDHQq1cxvJOyT0rJ8ZQLussnm9OJz0zxYYuKyZEj8OyzEBsLVapAeLj2PzYWJkzQhvkpNhUDI/i641gebzyAqsFRtsfDTIHcWbsrczuPp010nWJsYSES4eQPS7lhCPVcRikTZOos9B2uG5Cps33dHEVRFKWIqTlsFKWEk9IC5v+0bvCGcmCsiRBeHNiXQTJzBzJ+JMhMsJgRD51BLE7OX7BFC+jUCUtIMEfOHMb010Zq/ReXv75bb0XMng1GY/46lCsmpeTaZS/oTtMMsKT7s8QEFv0+QEozZKxCZu0CLAhjDQjsjzBcQbr35cth8mT49Vf36YyE0Ib5PfII9O5d8OWVQVJK0iyZWKSVEFMABjdDpUojmTofmThBZ2k/RIW/EAZ1jFTWSctp5Pnu+l9gqIihwp8+a4+iKIpSOLyJeagsUYpSQkmZAanfIFO+AatdkMHUAILvhqAhV2XgRlpTkPH3g8wArGAUyOmV4KXziK8SHAvv2gW7dmEEXCaLHzsW8eGHKljjQ0II6oRV5L+ksw7ZoVyJ9Asm0j+kCFrmSKYtQiZNBOsFcnaPEgskvoEMuQsR+hhC6N9tyoxjMH4MYvqvOl8gYfFi7W/sWFC/SxshBMGmgOJuhu8E9YPENwAngee8DBVAqB42VwVronflZZJv2qEoiqIUm7J1iUpRyghpTUFeuhOZNMkxWANgPohMnIBMeAopvZjzoKxI/wVkAg7zPRgF8o0KWOdWRfYJ0VJ3uyMEDByo9Xz4+GN1UlwEbqtxra5gjQHBzTXaYzIU7XciU79DJjyZHayB3Ek9JZABKV8gLz+ua52TWQewnr8HbmnmNFgjW7SA0aPh6ae1/y1a5K9kyhQYNgwsai6fq4EQQRB8s77C1lOQsca3DVJKBm97UYkr6AmoKIqilEiqh42ilEAyYQJk7cL5JIPZj6UvAlMdCB1dlE0rdjJtHtpcD04+m67ByK7BcCILvk6AVSkQXw6RlAphYVC+PPTtCw8+qGWZUorMDVVi+ebIWk6nxWNxEfQwIAj3C+LmGh2KtG3SfByZ+KqnUpCxFNJ+Bjfpc2XmDuSlkYjnjzsM05MG4MZQ5KhI6NIPIt/M7SEnJWzYAFOnatnOrNmfz7x5MH68FlRUyr7MrbjctjkwIlO/RQT2KIJGKcVJGKsgTY3BfADPk1IbIbBfUTRLURRFKUJqDhtFKWGk+TjyQm88H7QDIhxRYT1ClOGhAnlYz3UG6znd5UXUdwj/tj5skaLXmbTLjP77C06mXcp3WioQRPoHM6XtPdQPq1yk7bImvQMpMwBPvVkMYGqIIWah02elTEOe6w6rT2MYdjL38cDsYXvX5w5j+fTV+qxeWIWGbesxaPQNtO7VHIPBAIsWaT1r0tJyK16+XE2IXcZJaxLyXBsvXmFEVNx3VQ6LvdrI1J+Qic/qKCkQMcsQplq+bpKiKIpyhbyJeaghUYpSwsi0BeheNWUiZKz0aXtKHG+DUyLQN+1QvFYpKJJvO43jmSY3Uiukgu3xykGRjGt4Az90fqzIgzUApP2K52ANgBXM/yAtp1zUswRkPOLL3JTL0kC+YI3VCn2HH+dSXDyblmxjwg2v82TPV0i+nAKDBsGcOWCw2wZMnlygt6WUIjLNcxkHFrQhe0qZFzQYAm7AUxYxEfa8CtYoiqKUQWpIlKKUNJYTXhQ2gtmb8mVAQBdInYuuE2wRrk3SXNIdOQKffgq//Qbnz0NyMjI0lNRy4Zzq3oG4u26jSWxnyhdD1qTCFmwK4OYa7bm5Rnss0oqUssjnq8lHejmxpzUBjFXzV5O2AE6YYYVdSvIbQx2CNaDFYmrUz6BO03QO7w0CYO/6A7ww8C3eW/U/jIMGwdChMDs7Re/ixVrK7ysYxictZyF9KdJ6ASGCIaArwq9pgetTCpkhEu2QTGcQRoQihJ8PG6SUFEIYIPJ9ZPL7kPI1kAXkbDPNYIhGhD2FCHI9VFNRFEUpvVTARlFKGq8OwiV4kbWmLBBBI5Cp3+soaYTgoSV7uJibdM8iKYmQuDga7DtAvWmz2NC2Hj+PHELfUU9TLThaV/XScgay9gJmMNZC+DX0wZsoOKMweLpoXDREGMgUz+Vs5V0EzqxnEF9fRth9lXJUpMtqospncRgtYGO1WNm7/gAbFm2hy5D22mTEOQEbKbWA3ltv6W9jzvKtCcjEVyD9N7RBaEZt8ufkD5CmZoiI1xF+TbyuVylcQvgjA/tC+hI8B6ONEKRzgmKlTBDChAh7GhnyMKQvRpqPgTAi/FpAQE8VvFMURSnD1JAoRSlhhF8s+oZnAFjBr5Uvm1PiCL8GEDzKQykjGCsjQu4riiZ5z2KBceOgTx+t94SHqcQMEjr/fYj7x7zD5hH9OJxw2m15mfUP1viHkOe7IS8/jLw8DnlxINYLNyHTlxfmOykbAvuSe8XaHaH12HLSu0Z7OgRW5gZ+ZBN/aOt6SF56muMu2GA0sHDKb9qdTp2gefPcJ3/THpfSisxYjzXhRazxj2BNeA6Zvgop828zpDUReWk4pC9Fm7BUovXgyC5r3oe8OAyZtcvD+1aKggi+C88TywJIRPBwXzdHKYGEIQwRPBxD+LMYwp5CBF6vgjWKoihlnArYKEpJEzgQRJCOggJM9cGvpa9bVOKIsGch5D607hn2m7Hsk25TA0TU9whDuWJonQcWizap7JQp+Z661KgO8wa05utbOvDjgNYcrF0hX5mbFv7NmRv7YjFnOa1eZmxEXrw1O+1vnkCQ+R/k5THIlC8L452UGSJ4BPpPlO9yPdFrQDe4aBc4aRekpZB3IiXJwMFdwQ6PWS1W9m38N7tRAjp3zn3y/Hlk1j7khT7I+LshbT5kLIO0BcjLDyLP90RmbndsbdIkMB/BdQDYCseT4fEByNhYqFIFwsO1/7GxMGGCNhRLKRLCPxYR9nzOPSclDIBARExEmOoUYcsURVGUYnHkCDz7rLZPVvvoq5bKEqUoJZBM+QaZ9JqbEgIQiHJfIgI6FVWzShxpOYVMnQuZW4BMMNZEBN0K/u2LNHuKlBIyN4F5LyDBWBcCuiCcDVcbN84xWGMwwNChmB9+iH7nVpJ4Lgn8BdZKfmCAFvtOcevirfRa+w9Ga+7m+vS9t1Pli28d22GNR57vATIdTwEIUW4WIuDaK3jXZYtMmYVMesNNCaENPYicghDOe+NIy2mIrI5I1j57OaYc8oWYfOUsZvj5yxg++1/+njpGk4GlmXO1O08/DZMmaXWFhSAP1gWZifMAjAEwIaK+Rfi31HrXnOsIZDp/O2tSEF8mwIoUhyFc+d+2gP794ZFHoHdvNwWVwiLTlyGTPwbzv45PmJojwh5DBHR2/kJFURSlbHAzZN6B2keXWt7EPK6uyS8UpZQQIXeCTEMmv4d2ImZ/gpZ9Yhb53lUdrAEQxqqIsMeLtQ0yfSky6V2wHCfnCjhYwBADoWMgaERu8Gj5csdgTVAQzJnDtuBafPHqXKx//EtY9lPWaCOZAyLZNbAKu56pxu/dmvDGxJ8JzNAmJa3y5XcwbJRjuue0+dnZZjzF4Y3IlK9UwMaOCBkJIhSZ9DbIy+TuHi3a7eARiLCnXQZrAISxCjI0DJITtAdS8gfNzGa4cNqPOR9XdFpHhRrlc+8kJ+feDrGAzMB1IM4KmJEJz0DMUshYi9NgjUUiXjqP+CrB5ftwIKU2bG/xYhg7Fj78EIzFPEl0GScCr4eAPpC1Cyz/ofWmbITwa1zcTVMURVF8yWKB8eOd9sJ2Su2jrwoqYKMoJZQIfQACb0CmzYH038GaDIYoRNCNEHQLwqhv4lnFd2TqbGTiy+QOX7A7mbZeQCb+DyynEWFPaY/Zp2c2GGDOHOb8Y+XLCa8hjMJhEIS4aCHg64v4rUoiZWJV/uxQn+efHcw7r83P7WkzebJDwEam/ojnYA2ABTLXIq2XEIYo7994GSWCb4aggZC+InteFwvCWAOCBiIMkR5fLy2noXx5OJMdDPk7TTuYEgJzFpj84NDuIP53T20SL+Xf/QqDYOBDfbIrk7BuXe6T0VY8D9uyguUIZG0B62W036Xd78EiEQ+dQSxOzvdK2TQK0W0YhIZqgaJ162BXnrltpkyBM2e0tONeHBBKaYGMVcjU7yBrp9ZOYy1tHpbAgQhDsMc6rjZCCPCPBWKLuymKoihKUcgZMj9vXv7nWrTQhkn7YB+tlHxqSJSiKEoBSPN/yAv90BMgEeW+RMRVhzp1cru2Dh/Onzc/wqu3vud+OQawNAgk5b1qIASvvb2Q61fvy65YwOHDtnTP1rMtQabqfg8iehHCr5Hu8opzMmMdMuUzyNyIeOMCYkq87Tnrkr6kNQ1nzfxjLJtTjn2bg3E2P4nBYCA4IohZ/35MeHSYdjDWpUvuMsZGIZ/XE6Q1QcgohKkhMuEph2fE8+ccetZIA3BjKEk3lWfthV4kpFxPUFgg7fq1plq9SrBhA0ydCnPngtUuWDR2LHz8sb7PxpqAjH8AsrajzTGV01swO5hkqIiImoEw1dNVn6IoiqKUSS6GzDNmDHTs6DgnnpSFso9Wio83MQ816bCiKEoByNTZ6NuEGpEpX2tpme3i43L0aL59bZ7HuXaEFUz70zHuSwdgXv/Wdo3ITvds42UK85Kc8ryUkCkzkPH3QOZm7f5dEUi7r1R8/jfBVd4grMYHHNgejtGU/6qX0WQgMDSAN5c8rwVrAD75JHcZQiDv8qInlDUFArrg0Il2TYpjsCZQkDalKu/4teO2e1vz0ZPxfPPqj0x/YhZ3N3yEp3u/ysnyteH772HBAm34Xo4pU2DFCo/NkNKcHazJuQpoP7Qze12wXkBeugtpuaD//SmKoihKWeJsyPyCBcjvvkG2ScMafzfWs9dgPdsG64WbkWkLkB3bXNE+Wik9VMBGURSlINIWoi/9evbwoyWLcx9q0YL/QqpweNcx9HRylEbwX6qdbO9sWo1D9tmjstM9AxDQEX3pqQFDBTDW0Fe2gKTMQqb/jkyeqv2lL0dKs0+XWZRkxp/IpLey72X/Fqr7Qa+Q3EILLyK/v5HOQ1oz+a836DykPQZj7q7XP9CPG+65jmlb36Fx+/rZr1moXTHL0bcFVNfbvVlqQycNURDYn5zfg/jSsWdN2vtVGPdRS1b+VA6LWYAEi9mCzB5ut3PNPsZ2mMCxfSdg0CCti7XB7pDBfnifKxkrs3vWuFtPLGC9hEz9Wuf7UxRFUZQyxsmQeTmgK/LScOTl0VpiC5kIMgnMe5CJzyLP90WajxVoH52Yks63f2zj5v/NovP4KfR4chpPf76Yrf+e1HVcqhQtNSRKURTvHDmi9er47Tc4f14bSxsaqs3d0a8fPPigbYhOWSWlRJ5thL75YjSidQIi7px2Z/Ro1nS/g9eHvq/79eYGAaR8qAVY5nz/L3W+ma89UaUKnDqltStzC/LSCB21GRChjyJCH9a9fG9IKSFtNjJ5MlgvoQUNBGAGQ7S27OBhPll2UbJevBOyNpNvbpk1KRiGnbbdlYECvn4ecauW+S3hQiJnjpzDYDRQtX5lgsPsrowtXKiNYU9Pz3390tnI2JfR+3sTMUsQpnpIy0XkxVvg2HFE+8O2bFDyplDeC2rL8h+isFpc9/AyGA1Ua1CZL/Z8oPUEGzECZs/OXojjcDxnrJdGQubf6ApsighEhfUI4a/rPSqKoihKmXD0aL4h8/K7WdrxXNYeXO9DjWAoj4j5WbtIo3MfveO/Uzwy9WdS0jNB5h5ZGA0Ci1XSu3UDXht1Pf5+aqpbX1JDohRFKXzLl8PAgVC3Lrz9tjbZWVwcJCVp/3ftgokTtZ3OwIFa+TJKCAEi0LsXJdvNLRMaitHk5ebXJAgw+PF8syHUqVQn9/GkpNzbfm0gcBDO5kjJZQRjLQi+07vle0EmT0YmvpIdrAHtYCO7Z431IjLxJWSyzgwIJZQ0n4SsTTidCLhbCPKeCNtdkS5h2BvawdS6dUREh9GwbT3qt66jBWtyJhgeMQKGDHEI1jB2LOL6YRDQC8+9p4zg1942H4wwRiOif0B8F+yQujt5SHn+mFfObbAGwGqxcvyfU+xamz1n0ujRdh9A3uF4TmRP3KyLTADLGX1lFUVRFKWsyDNknjFjIGNF9iT9nnqonoPU77W7OvbRh+MuMnryT6SmZyGl42UgS3YP2xXbD/Lqt2X3GL40UgEbRVHcs1i0idD69NHSBnrqlJeTYrBPH+11Fp0nbKVNwHXoG35kAFMLRGhY7kPJyTRoU8d9XMWeUdC6U1N+6zmBG6td45juOSy3XiEEIuItCLol54X2lWj//Joior5FGEJ1Ltw7MnMLpEz1XC55MjJzu0/aUCSsp90+LV8tjxyQ+xkLq9SufHXpAi1bagdWTz+t/W/ZUnt89mzHiQNvvVVL0QmIiNfAWBXXvzkjGGIQkZMcHhXG8ohVubt62bQC6xNvwpylb/dvNBlZM3eDdqdTJ2jePPdJ++F4zkhv1/2yM1xOURRFUXRZsiT3dosW0LEjMuVb9J2mW5Gp32nDzXXsoz/7dSNZZgtWN8fyUkqW/L2ff0+e1/8eFJ9SARtFUVzLSTE4xUlviBYtHE86W7TIX2bKFO31ZTBoI4LvQF/vASsi5A5tyFiOdeuoUD2Gdv1aO8xn4pJF8vhTIwk1BeZP92xfLyCEH4aINxAxS7VeNH6xYGoKgf20QE3UjwhjjK73WBAy5Rv0BbKMyNRvfdYO3/PQVdgokNMrOfS0sdm1C6ZNg0mTtP95U3OCluVh9mxbak5hiEJE/wiBA+yWnfM5GyCgNyJ6PsJYKX9d53MPukS3W0hK7abvdwdYrWYun1qGTPsJSaaWVtRJvU6ZaqI/KukHhoo6yyqKoihKGWG/L+3cWRvOlLULpz14nbFeBOt57XVu9tEXE1P4Y/tBW08ad4wGwby1To5NlGKhBqcpiuLa+PEwb17u/YKkGJw3T6unjKUYFP6tkUF3Qto37kpBQHcIHAj9NuWemO/aBRs2MOp/Q9m+Ypc2J46LHagQgv4P9KJqvcraA+vXw+7duQX69nX+OlMdRPhz3r+xKyClGTJ+R/dkzOm/IeUkhCiF1w5MDYBAIN11GaNAvlEBeX04YkYAYtl/7nuoCQEDBsAjj0CvXvmfNpRDRE5CWidA+kptGJEIg4DuCGMFJxVms++RFRpKUFgQVqu+A0GDAYJD4pEJz0LydAiulxuCsR+O5+ztBA/XhsZ5ZITAgQhDiOeiiqIoilKW5NlHa7y80JmT0CHUrvd0nn30vycv6ArWgDY8audh9z2JlaJTCo+SFUUpEi5SDPL995wsX5uZL8/lvfumMWXcl2xYuBmLxap1x7yKUgyK8OchZAzgh9aTwIi2Wc3+C7oVEfkxQhi1yZjtA1xTp1K/dR1eX/wcAUH+CINjT4ScOW563dWVMZPvyX3CLt0zQsBDD/nmzRWETMG7gwwzyFTPxUogYQiFoCHo6k3UNRAW/axNAPjssxAbq00WHRam/Y+N1R4/fBgWLXIarHFcdhQi+BZEyL2I4NvcB2vA8QAuOZl2fVsidPZ8sZgFHfpkZ5iynICLv+Q+aTccz6nAQWAoj/vPSAACEXK3rvYoytXAIq3suXyC9ecPsCP+KFlWNVxQUcqsPPtoAIzV0d9D1R+M5R1fD/n20RadF2ps5S3elVd8R/WwURQvJGelsyP+KGmWTMr5h9CyXC1MBr3pdksZJykGL1/bjXf6vcHmpTuyAwoCBCycupSoyuV4/LMHad+/TW6KwZtuyu1pM3myxxPR0kYIAyLsUWTISEj7GZm1D7AiTHUgaIjj8JRataB/f21+H9B6IQ0bRutBg/j2yCcsm7GK375cycXTl/AP9KNNn1gGjb6BJtc20CY5hvzpngcMgJo1i+S9Sikh829kxgotraSIQAT2Bb/Y3PaJILQDDL3ZswzeT95cgojQB5Hpv2mpNl0GqgQEDkL4NYVawFtvaX9FqXx5bWJw0IbjTYmhw8A2bPp1G1Y3B2TCIClX3kz7XonaA9IMm8451uuGMIRCuRnIS3e6+Iy07GEicjLCr6HXb0tRyhqz1cLsY+uZc3QD5zMSbY9H+gVzc4323FW7G0EmlUlNUcqUPPtopEQEj0AmvanjxUYIugkhPA+Zr14+UneTjAZBzUrldJdXfEul9VYUHS5lJPPpoRUsObWNDLsrXVH+oQyr2ZE7ancpW4EbJykGk6Z+xiPXPsfp/846PcnTztkFL89/kk6D22kPepkGuMxbvlybjDlHUJAW2Bo0yPNrnaR7ZvnyIgmCyaw9yMtPgOUIWpxfYkvTbWoEoeMR5v+QMhXSl2aX83RlxggB3TCUm+7r5vuUzDqIjL8HrGfRelblvG8jYNGCNRFvFm+66gkTtAxuOdat41z1Boxu+yzJ8clYzE7WZ4PEIODNOf/RslOK9uCmNAyDT+YWevZZXcEnaTmLTP0aUudowT4A/LRhUCGjEH6NruDNKUrZkGk188TWr/n74iGnIW8DgvrhlZnW7j5tPjNFUcoGJ/toeW1z5Pneni8IYULELNSyQ65bpyUwyOFkH333u3PZfTjO7aTDOaaMu4mOTWp5+24UnVRab0UpROfSExj11ycsOrnFIVgDcCkzmWkHf+epbd9itpahiXWdpBic+eIcl8EayCkuefuuj0lLyQ4qeJsGuKzr3VubTDZHWprWCyk73XO++U08pHsummDNPuTFEWA5lv2IGYc03eb9cPkhZPK7kPIpWP5D30R5luyJm0s34VcfUX4FIuId8GutTZxrrAaBNyKi52OIfNdnwRopJf8mnuav8/+yI/4oGZYs5wWdDMerUKM8H//1JnVb1gbAaJIYjBKjSfsNRlfM4q25dsEaQMy6nLtsL4bjCWNFDGFPISr8hYhZiohZgqiwCUPkRBWsUZRsUw4s4++L/7nsn2hFcjAxjtd3/1Sk7VIUxcec7KOFIRwRNQNEKM6HFRsBkzbs3lRPe0jHkPn7bmjnMVhjNAgaVCtPh0ZF04Nb8Uz1sFEUD+79axr7Ek9hkW6GDgB31+3BQ/V7F13DfCk2NneC3BYtSP3zL26rfD8ZaZm6Xv7YZw/R777rtIBDbGzuJLmxsbBjh2/aXFrkZN6yn8w5R4sW2jxAoaHaOOT1651nELr1VocMQr4ipURe6A+Ww+jOVqBX0FBE+Ku5w6kUty5lJLMsbidxaZfxMxhIs2Sx6fxBTqRdtJUJNQVyU/V2jKrTjTC/IMcKBg7MHY5nMGjzTGX37Nq/aQerZj5KwgUTQaFW2vdKpE33JMef19JkxL1xiOyfgRzYH7FosQ/fsaJcPZKz0rlh1Ztk6pirRgALuj5FlWA1XEFRSpvElHQuJqUS4GekUrlwDDnzF7rYR0tLHDJlBqT9YDfnnym7h+o9ucOJFy7ULuzlTEMwcKA2J54Tc1Zt550fVmM0iHyTEBuEoGpMBJ8/fisVIkOdvl4pHN7EPLyew2bt2rVMmjSJrVu3EhcXx4IFCxg8eLDteSklL7/8Mp9//jmXL1+mU6dOTJs2jfr163v9RhSluO1LOMnuhBMey0lg7rENjKrTnUCjn+8b5mt5UgzuWL1Xd7BGCMH6nzdpAZucFIM5ARtPaYCvBkajNgxq/Pj86dJ37XIeoLE3dix8+KHPgzUAZG0Dy6FCqChnV2MB/CDkfkToOBWs0SHdksX7//zCL6e2YZUSoxBYpNXpVfhkczrfHfmTNWf38Wn7+4kOsJtw8JFHcg8GrVYtaJg9HK9huxY0qJkKJDhvxNJkxMNnbMEaAPHI+EJ6h4qi/HF2j+6JhQWC305v5956PX3cKkVRCsv2Q6f4ZsVW1u46bOvhUrFcKMO6t+KWri0IcbGPFoMGIcKfQ4Y9DpaTIC1grIIw2O3fc4bM208q/MgjLtsyrEcr6lcrz7crtrJ292Fb5+6osGCGdo9lWPeWhAWrYZclidcBm5SUFGJjY7nnnnsYMmRIvuffeecdJk+ezKxZs6hduzYvvvgi119/Pfv27SMwUH35Suny66ltGIXBbe+aHCnmDDacP0DPSs2KoGU+lifFYGpimu6XSilJupQ7jMJdisHSSlouQto8ZPoisMZrXVYDr0cED0MYq3quwGjU0pzfeKM2GfPixVeU7tlXZMYfaLuJK8lQYoDAASACEKYGEHQjwqB6T+qRaTUzfstMdsQfJSdEY/bQKdaK5FTaJSbsmM1n7R/IfSJnOF5OkDB7OJ4cehtyVBQ0T3JMSCEl/J2uDYNamOwQrJEPdkOUsQnEFaU4nU27jFEYMOs41hBCcCb9su8bpShKobDv0WI/HOlsfDKTf17H4o37+HT8LUQ52UczdCiMHo3o1Alyhj6Bto9ev14bBjV3rmOwRseQ+Tb1q9GmfjXik9O4kJCCv8lI1ZgITEY1W0pJ5HXApm/fvvTt29fpc1JKPvzwQ1544QVuvPFGAL7++msqVqzIzz//zLBhw66stYpSxM5nJOoK1oB21etcuosr1KVNaGhucCU5mfBoD+l77QiDILKC3Qm5mxSDpZFMX6pNwIuF3GFCFyDlc2TKZxD2HCJkpL7KevXS/o4e1eb3+e03rRdSUpL2WZUvD337auObi2OyZmuy5zKeK0H4t0cE31wIdV1d5hzdwPb4o0jdWbc0FmllR/xR/kk4ReMIuwDihx/CmTO5w/GsVsTsOYjZIJv4Q9sgCDFAihU2pyH25e9VJweWg8k/XMG7UhQlLz+DCef95vITgL9BJXlVlNLgz92HeeeH1QD5hh+Bdu589OwlHpu+kJkffIDIs49m9mztz5sh8x9+qLt95UKDKBca5LmgUqwKdYt/5MgRzpw5Qy+7qF5ERATt27fnr7/+chqwycjIICMjw3Y/MTExXxlFKS7+BhMGhK4DKYkk0FhG0m3mSTHY8t33CYkIJiUh1f3rAGmVdB/aKfuO+xSDpY3MWIu8/GjOvTzPasEbmfQGiEBE8FD9FdeqVTzpnj0xRKI/RbcrRpCXr7wtVxmLtDL32AavgzU5jMLA4lNbHQM2bobjiX2Z4CRAY0/eUx6mLkP4VyhQmxRFca5VVC1dWVsAzNJKq6jaPm6RoiiF4fMlmzAI4Xb9tlglu4+cYduRM7QpLUPmlSJVqP2ezpw5A0DFihUdHq9YsaLtubzeeustIiIibH/Vq1cvzCYpyhVpG11P91UvgNZl5SCqX7/c27t24b9tCwMf6pM7OZoLBoMgIiaczkPaaw+sX587fw1ovUVKKSklMvGNnHvuyya9jZTpbsuUBiLwBlynk9TLkp3lID8prciMjcjUH5CpPyHNhTFfTtlwIPE05zMKfgHDIq2cSbuc/4mc4XjLlyOvr4T0MI2QFCD7hGCd1xE+24kIbFXgNiklyJEjWsrX2FioUgXCw7X/sbFaitmjR4u7hVeV2Mia1Aopj8DzvF6RfsF0r9CkCFqllDYnz19m3tqdfL18C4s37SMpLcPzixSfORx3kT1Hz+gKxhoNgp/+3O2wj2bgQMfsUc4IoZVbvlx7XRkP1pgtVlbv/I8Zy/5m5u+b2bDvKFYnPZfKmmLvUzlhwgQef/xx2/3ExEQVtFFKjOsrt+CDfxaTanF/5dkgBK3L1aFGSEwRtczHHnwQ3n47d16VqVO548sZ7FyzlwN//4fVmn+YmMEgMPoZeXn+k/gHZE+8rCPFYKmRtQUsR/SVlcmQvgSC8s/zVZoIvyZIv1aQtZOCZ4kyQEA3h0eklNocQCmfgOWU43N+bRBhTyH8WxdweWVDctaVBfwEAj+D6wM32aM5slkYnAiErxNgVQpctECyhFAB0UboEYK8KwKq+4EBhLHyFbVJKQGWL9fmzfr11/zzZiUlaT0rd+3Stv/9+2vzZvUuI9kPSzAhBE81GcS4zV8B7i8JPNVkECY367Zy9Tl+Lp535q7ir33HkGjHY1arxN9k5MaOzRg/pAtBAWUgIUYpc+xsvO6yFqvkcFxu1scSP2S+iEkp+XHtLj77dSOXklIxGgQSsFollcqFMW5wZ/q2a1TczfSZQu1hU6lSJQDOnj3r8PjZs2dtz+UVEBBAeHi4w5+ilBSBRn+ebDLIbRkDAn9h4vHG/YuoVUWgVi3tYD3H3LkELF/G28tf4oZ7e2LyNyGEFqAxZE9QVie2Fu+tfpXmXRprr1m4UJsILceAAVCzZtG9h8KWuR3Qe5BsQmbu8GFjio6IeBcoaGpHIwT0Qhgdt/8y+V1k4vP5gjUAZG1HXroDmbG6gMssG0L9rnSSfknLcrVcP23Nnm+ruh/y+RjkiprI7XWQB+tq/1fURD4fowVrAKxlY8Lwq5bFAuPGQZ8+nic5B+35xYu18uPGaa9XfKptdF0mtb6TAKNfvn42AoFJGHmp2c30rtyiWNqnlEyH4y5y58TZbNp/3Bboy+lxkGm2MP/PXdz/wY+kZWQVXyOvUp56pedlNDg5Lc8ZMr9jB5w6BYmJ2v8dO7THr4JgDcCUheuZOGcll5K0qRksVmn7nZ+JT+L5Gb/x/cptxdlEnyrUHja1a9emUqVK/PHHH7Rs2RLQesxs2rSJhx9+uDAXpShFZkDV1liklXf2LsQsLbYdYs7cNpH+IbzX+k7qhTkPSpZaTlIMBs2Zw2OfPsi9b45g7byNXDx9iYAgf1r1akHDa+rmvtbLFIOlQxbo6K6ukdnlSz9hqo4MvRuSP/LylUYwRCHCX3B4VKavgJTP3bzOCkhk/DgovxphjPa2yWVCw/AqVAgI51wBh0X5GUz0r+qml5K3mboMBQ3alX4JmaksPrWNn05sIi7tMkYhaBZZndtqXEuXCo1Lfm8Hi0XbHudMZGmvRQvo3Dl3Ist16/LPkzBlijZZ9Zw5Zb67fXHrUqERS7pP4LfT21kWt5P4zBTC/YLoUbEZA6u1ppz/1bseKvlJKXni019Izch0OqEtgFVK9h8/x5SF63jqth5F3MKrW6PqFRDCc3wctCFRzeuoXqzObNp/nBnLNnss996Pa7imQXUaVCvd82U643XAJjk5mUOHcucZOHLkCDt27CAqKooaNWowfvx4Xn/9derXr29L612lShUGDx5cmO1WlCJ1Y7Vr6F6hCYtPbWPd+f2kmNOJCQinb5WWdK/YBL+ymLHBRRpghg4lfPRoBjzQyza2Vsp0ZNpK2LARPlsB89YgvEwxWOIZq6E/vbUVRBmadT9zp/ev8YtFRL6fv3dNygy0zp3uhlhlB7zS5kHog94vuwwwCgO31ezI1H+XFWji4TENrifMz/VvUBgrIU1NwLwfz8PdjBBYhnoQemFfwkke2TKDpKx02/dglrD90lG2XjpCbGRN3m9zl9vPutiNH+8YrDEYtFSxY8ZAx46OcyRICRs2wNSpjqli583T6vn446Js+VUp1C+QW2tey601ry3upigl3N8HTugadmOVkgXr9zB6UCdCAstIcoxSoGK5MLo0q8P6vUdcBtRyWKySW7uq3nPOzF65HaNBePwMDQbBj2t38vyIUn6+4YSQUue09NlWr15Njx75I7QjR45k5syZSCl5+eWX+eyzz7h8+TKdO3fmk08+oUGDBrrqT0xMJCIigoSEBDU8SlGKm4crs7JjBwg4AJf3wuZEp2mAufVWLSVhKb8yK62pyPMdQXrOlGXjfy0iYhLC6DmrjrSmgkwBQxhCXOlwmMJlvTgMsrzoahoyBkPYo/kelpazyPNd9NdjrI2h/DL95cuYLKuZR7fMZOulI7qCNga0Md1jGlzPnbW7IDxMVijTfkImPKujJQIRswRhquu5aBlyKvUSd2z4mDRzpsvJ5w0IYsvVZFq7+zCIQh1lXjiWL9eGNeUICtJ6ygwaRMKFRJbNWMXGxVtJTUwlqkoUvW7vQuebO2jzkC1apG3/09Ic6yvtwXdFKSNe/WY5v2zc6/FENsdb9/bj+msa+rhVir39J84x8p05mC0Wlz1thIB+7Rrz2qgbirZxpUBaZhadx0/R1UsJIDjAj3UfjvVtowqJNzEPr7sFdO/eHXcxHiEEr776Kq+++qq3VStKqSGl1ObayFipnWSLcoigfghTveJuWuFykwaYXbsQHlIMynurwScfI3QEa/5NjGP+iU3sjD+K2WqlZkgMg6u3o2P5BhhLwImQMAQjg0dByjR0p7rO/Bt58TaInocw5p+QWkoJGSuQqd9A5sacJSEDeiCC70IEdLzidksp2RF/lHnHN7Ij/hhmaaFacDQ3VW9Hr0rNCTTqmIjQEI3nXjG5hJ+Lq0TWC7rbXaDyXpAyEzL/ButF0q1+bEsuT5LFj3L+IbSOql0ies35GUx80GYk7+//lUUnt2CVEmN2EMYsrYSbgojyDyVLWgg2+dOlQmNuqtaWikGR+hYQOBjSV0HG77j7TYuwp6+6YA3At0f+JN2S5TZToBXJ9vijbLpwiGvL67swVaQmT869bTDYgjW/fracKeO+xGKxIrNP9g7vPs7m37YT+dhM/rfwGZoMGqSVv+mm3J42kyergI2ilBDxyam6gzVCQHySFxeclELRqHoFJo8ZzGPTFpKRZXE4h87pNXJdq/q8eLvarjqTlJqhO1gDkJqRhdlixWQs/vOGwuR1DxtfUz1slJJOZu1FJjwN5oNok9AKtJMdC/i1Q0ROKpvZVFas0A7WPUxYKQXQOwR5byR0DQP/9hiiZrosn2k18/qen1h6egdGYcAitRODnNu1Qyrw0TWjqKT3JNSHpDQjLz8OGUvJ/d490YaTGCLfzVOXRevdkL5QK+OQPjv7fsj9iNAnPfaUcCXdksWLO+ey5tw+h89WIJBIygeE83Hbu6kTWtFtPTJtMTLhcbdlbEQoosJfCBGQvx7zYeSF7CtIx7MQ3yTAyuzsRCkSQrKzE/XMzk5UswqGCuu9es+eSJkJKZ8iU74Bedn2eKbVwG/xNfg0rhlWEcVtNa9lZJ1uJSJwA3A5M4VlcTuJS7uMv8FIbLladIipf8XBTCnNyKR3IfVbtHmXcoKrZhCRiLAnEcG3XWnz7ZZngcxN2oTTwh/8WiNMJS8zZKo5g+tXvkmG1fNcVEZhoGNMA95rc1cRtMwLR49CnTq52+vhw+H771n61Ureu2+ay5cZjAb8/E18tOEN6sbWghEjtF6SoJ31HT581Ux0qSgl2fNf/cayLQd0pY0GeOWuPgy6tqmPW6U4cykxlZ837GHB+j2cv5yMn8lI+0Y1GNq9Jdc0qFbg47yyLjktg66Pf+K5YDZ/k5GNH5eOOTO9iXmogI2ieEFm7UZeHIF2YuOst0H2RKvR8/PN3VFmHD2KnP4RLJ4GF82u0wDb0YZT5O99JKXk+Z1z+OPMHpdDPozCQIXACGZdO4ZI/2CfvCVvSGmFtB+QyVPBetbzCwAwISqsQxiibI9YE9+B1C/xFPQRYS8gQrw/EZRS8vT27/jz3D8uewgYhSDcL5hvOo6lQmCEm7oykee7gTUe971sDBByL4awp1zUY0HOa4n4/AisSEG4eetSAH3qIZ74pNDSCkuZiYy/P7s3U/6Fm6XgQlYg9x/syYWsYNpG1+WDNneVmKCNL0lrIqT/gjQfA4wIv2YQ2BshCme+AyklpH6DTPk8z3ojwL+Tlsrdr3GhLKsw7E84xV1/TdVdPto/lN96PufDFhXAhAkwcWLu/XXrSGvZhtsq3Ud6SobblxqMBlp0a8KkFS9rExF3sRvK+OyzWnYSRVGK1dLN+3nuq990lTUIwW9v3kf5SDVxtVK63P3uXHYfjvMYmDQaBD1a1uOd+wcUUcuujDcxj7LVX0hRfEhKibz8GK6DNQAWsF5CJr5SZO0qcrVqwUsdPKcBtjEi0xY5rWrn5WOsOLPb7fwcFmnlbNpl5h4r3J4WBSWEARE8DPzaoX8TaoaMNbZ70hoPqbPQ00NHJk/ReoV4aUf8Udac2+d2OIdFShKz0vj2yDq3dQnhj4icgjaK1tV7NoBfC0ToOBcLsyAeGY/htj2I5e6DNQBCglh2qFDTCsvkj7TeHS4+E5OQxPil82atv5BINl/8j+kHV1zxcksDYQhHBN+OIfw5DOHPIIL6F2qwRia+hEx63UmQU0LmX8iLtyEztxbK8gqDu/XGafmSde1Ls2RJ7u0WLaBjR1Z9v85jsAbAarGyY+UeTv57Gjp1gubNc5/8Td8JoqIovtWzZT0iQgLx1DnDaBB0b1lXBWuUUml4j5a69rEWq2Ro95a+b1AxUAEbRdEr8y+wHMfzPB4WyFiFtMQVRauKh/UcuUMn9JbP78djG3UN6bAimX98E2brlZ+0F54U9M7pAgKsSbl30xaiO+OUvAwZK71rGjDvuL7P1iKtLDy5mXSL+6CQ8G+DiJ4Nppzu1Aa0AI4A/CDoNkTULOcTJudMXp13HiRANvFHjopAjimn/W/iJEgwZYr2+isI2khrKqR+h6fvzCQkzUMu0SjoEhLJvOMbSTN7HzBT7KQvgLS5bgpYgCxk/IPa91QCVAmK0j3czICgVmgJTCN6/nzu7c6dQQh2rN6DwYux/TtX79WGQXXu7LxeRVGKjb+fiVdHXg/gMmhjNAjCgwN54pZuRdgyRSk8vVo1oFfr+ngaNHZbt1ha16taJG0qaipgoyg6yYzleDVPd/ofPmtLsRNBeBWscJH1aMul/2zzqnhyOSuVE6kXdS6zCIgI9AetJBgic++ZD3nxWhOYD3nXNmBH/DHdn22aJZOjyZ5PwoRfcwwx8xHRCxChTyBCH0aE/w9RYT2GiFcRrlKZ50krLA0G5M11sC6shlxRG/lWBeQLMci3KiFX1ML6+xjk8GHaJKk5ctIKF1TGKt0ZvsxS0DfqOKB9Nn+e/6fgy73KSSmRKV+Bx0MtK0htWFZJEOkfTI+KTXUHlG+u0b4IWuWl5OTc26HalfXM9CysFp2ThxsEmelZDq8HICnJ+QsURSlyXZrX4cOHbyQiRNv/Gg0CIbT/APWqxDDr6WFUjlLTTCilk8EgeOOevtzWrSVGg8AgBEaDsP3W/UxG7u/Xnqdv61Fm5wIq+wPzFaWwWJPQH6QwgCzDB7X+HdH/WZgR/s6zHWV52WMmy6qzV0oREIE3INMX6CztDwHd7V/t7dK8LA9m6d1na9YZ3AEQfk3BT+fEhcuXO/asCQpCzJmDHDiQA+sXkbBmBgH+cZizBOfPViWy+r207d8bv95+MGy4Y1rhKVPgxhsLlqXGeg69ma4MSGL80rJvC86nJ3q/PEVjPgTmf3UWFsi0BYjgoT5tkl531u7KqrN73U4vbhQGKgeVo0fFEjiRZ2hobnAlO3gTUyUKo8mIxex5+yCtkphq0Q6vByAsrLBbqijKFejSvA7LJt7P6h3/sW7vEdIysogKC6Zvu0a0qF25zJ7EKlcPP6ORZ4b14L5+7fhl4z6OxF1CCEGDajEMaN+E8BDnF4bLChWwURS9DOHoT21sBYPrSVyLi5QZWs8fy0kQJvBrDX6xXu/MhV8TpKkFmPfg/vMQWkrogJ5On60UGMmh5DP6lokgJqAEXSEK6AqGKmA9g/vPwAhBgxGG3LYLv8bINL0BFTOYGnndvGrB0VzOTHU7P5CtPQjfZeFyklY4pXsvXun1KjtW7cFgCsBqrqE9bTRgtcygav2lTFz2ApUKM62wCERvkNGKIMOq9YCSSAL0pD73IGd+/6vuwNnFcEjnJFj0TuTte40jqvJG7DCe3zkHIF+PNQOCCgHhfHzN3SVzYury5SEue2juunUgJb1Hdmfh1KW6Xh4aGUL7fq20LFPr7Oa5Kl8Ch3+VcUlpGew4dIrUjCyiw4NpWbdqmUtbq1wZP6OR3m0a0LtNg+JuiqL4THR4CKP6tC3uZhS5EniEoSglkwi8AZn6rd7SEHCdT9vjDSmtkDIdmfJlds8fI9o1YyuYGkDYc4gA571gXBERLyMvDkebi8XZibB2YirC30AI55uawdXb8t4/v3gMKRiFgQ4x9YkKKDkT5glhhHIfIy/ejjYRtbMAjBGMtRBhTzs+HDgIEt8CPE/+iaE8BHg/9vym6u3Yffm4x3JGYeDamAbEBPjgqvnRo/Drr7n3hw7F0r8/L/V6lT3r9gNgNef+dnKGapw5cpYne77CJ1veJnzQIBg6NDet8OLFWr3ephX276C7qElItiRVALS15JqoOt4tK5u0pkD6QmTKd2A5rD1mqocIvgMCByIMxZ/1zOdcDZNzpYR9Jj0rNeObkLHMObqe3+J22HoFRgeEcWuNDtxcvT0RJSB7nVP9+sGuXdrtXbtgwwYadupEk2sbsH/zIYd1Ly8hBIPH9cU/0F8L1uzenftk374+briS41JiKtMWb2Dxxn1kZOXuY6LDgxnRsxV39rpGBW4URVHKOLWVVxS9/NqCsQ6eVxsjBPRGGCsWRas8ktKKTHgamfyh3TAtC7Ygi/kgMv4eZPrvXtUr/Jojor4GQ7nsR3I+l+weBCIYEfkxIrCHyzr6VWlFmF+Qx0/UIq3cXquzh1JFT/g1R0TPAVOT7EeM5E7Ea4DAGxDRcxx61wAIQygi9CF9ywh93GXAy51elZpTPiAco4seHQJJ+7AzPFl1C89X/xNrwsvIjPW2niCF4tNPtavzOcaMYeMvW9m1Zp/beTQsZivnjl/gl2nZv8nRo3OflFKr10vCVDs7aON+7iCrhGSLiRWXq2NA0LpcbWqFVvB6edJ8DHmhv5YxznIIbZ2zgPlfZOKLyIuDkOaTXtdb6vg1BaE3GGjMM3SwZKgXVokXmt/MH9e9yIKuT/JLt6dZ3P0Z7qnbo+QGawAefNBxJtKpWpryF398gvLVol1OPiwEtO/fmjtevEV74JNPHJ98SN+2S7kyZ+OTuH3i9/y8fo9DsAbgYmIqUxau54npi8gqhAx6iqIoSsklZKEenV85b3KSK0pRk1n7kZeGgczAZY8KQ0VE9DyEMaaom+eUTJ2PTJzgoZSW6UdUWIswRNkeTTVncDkzlUCjH+X8Q5wO55AyE9JXINN/BetFEBGIwF4Q2N9lDwIpJWT+jUz9FmvGagxkcNnsz2+XavLThTqcyNRO8AwIrEieaDSAobW86wFU1GTWPshYg5SpCEOMFqxxE7STUiKT3sxO723E8fek3RehTyJCHyhwmw4nn+Xhv78gMSvNYThH46BLvFFrE1UCUrBKIwYh0QJuZjDWQER+pM1Tc6ViY3Ov8LdoATt28FTvVz0GbHJEVY7k++PTMRoMWl05V/ljY2HHDq+bI7MOIC/dlr3+5l++VYJBwItH2/HH5Zr4GUx82eEhGoRX9m451gTkhYFgPY/z7QRova+qIKIXIgwlp+eYL1iTJkHKV7j+LHIIRMxyhKlGUTTr6jBwoNYrDbQhiQsWwKBBXD6fwDf/+5FlM1eTkZrb0y+6SjlueqQ/tzw+AKPJCAsXwpAhuUMSBw6ERYuK4Y1cXaSUjHxnDv8cP4vF6vowXQD39WvPwwNL9v5RURRFceRNzEMFbBTFSzLrX2TCc2DehXZiLdBO/iT4d0NEvIEwlowx/lJK5MWBYD6I62kzc4jszD8PsCv+GLOPrWfVmb1Ys19XO6QCQ2tey4BqbfC/gvkapLQgE1+CtB/JG6gwS4EA3jzRhl8v1aJluVqMqtONjuUbFnh5JZ3M/BuZ8i1k/IE2tCoAAgcgQm5H+DW74vrPpSfw7ZF1LDy5mTRLJg2D4vm0/ir8hcwO1ORlBPy1nkF+ja9s4VWq5M6hMXo0TJ3KgNDbyUjVnyb72yOfULFmee3106bl1nvqVIGaJLN2I+MfAut5rNKAQVjJOR/KlAbeOXENS+JrEOUfynut76RpZHXvl5H8OTL5XXStc2EvIELu9HoZpYm0XkZevAUsp3AXtBGh4xCh44quYVeD5cuhT5/c+0FB2rxQgwYBkJqUxt71+0lLTqdcxUiadGyA0ZjdC23hQm3S7/R0x/oKMoeU4pXdR+IY+c4cXWXDggL4/e0HCPAzcT49kZ9PbmbLxf/IsJqpElSOgVXb0D6mHgadaeoVRXEvy2Jh7c7DLNn8DxcSUggNDKBzs9oMuLYJYUEBxd08pZRQARtFKQJaj4rVSJms9UoJuB5h8v7kzpek+QjywvX6X2Cqz9zk5/hg/68YhcGhV0ZOppQWkTX46Jq7CTEVbKdkTZwIqV+5bnP2/4tB71IhYlCBllEaaZviLMDPJxPTplsyOZp0jhoZ9xAgjyPcTsBrAFMTDDE/5bbNcgSsl0AEg6mhNoePJ+HhuVlqnn4a3n6bvoHDMWfqz/Y189/JVK1XWXv9pEnag2FhkFjwzE1SZkHGSmTaIiyWs5zLsLIusTKrEuoR6h/D9ZVj6VGxKSaD3tTr9nVL5PnuYI3TUVqAsSaG8t4NRyyNpOUc8vIYyNqJY6BWAEZE6CMQ8uDVNylzURg3zjFTm8GgzQs1ejR06uQ4bEpKWL9eGwY1d25uzxqAsWPh44+Lrt1Xsbdmr+Sndbvc9q6x9/rdN3Aq6jRfHloJYLvQkrMfrxVSng/ajKRqcJS7ahRF8WDfsbM8Pn0R5y4nYxACq5S2PJ7+fiaeG96TgdeWwKyBSonjTcxDTTqsKAUk/JqAX5MCJFwuQtZLXhXPNJ/jg/3aJLF5M6LkHDbuuXyCF3bO4YM2I71ujrSch9SZbstkT1VMTNZnSDnQJydw0pqsBSCkFUzVHYaBFRftffr7rP5Aoz8Ng88h04/qKG0F8x6smbsR5oPI1K8cUzMbKkDw7RAyCuFuUlknaYUr1ojh1CF9mcFM/iaiKpdzeD1wxWmFhfCDwOsRgddjAKoCQ6tCoSSTlsk6gzWgZUU6ipRZWpvKMGGsAFE/QNZOZNo8LVMd/gj/ayD4lhKxDpZZH34IZ87AvHnafatVm8R79mxtqGKnTtq6mpysBWtyhjHau/VWrR6lSJxPSNYdrAF4ZeNP0CAl3+M5+/ETqRe5f9OnfH3tGGIC1cVQRSmI/05f4IEPfiQ9+6KTNbvPQ86ampFl5uWvf8dgMNC//RX2UFYUOypgoyhlmQjxqvilTC3Fs7tU0FYk688f4N/EOK/n9iBtns6CUgsQZO0C/1jvluGuVvNxLVNW2k/kZmgyIAN6IULuRxTiskoimbGa/PPluGKExOeR5v2QNyxpPYdM/gjSf4eorxEGFwEUJ2mF+z/Yh8+f+Qbp4WTEaDJw3YjOBIUElrK0wvpShzsqUR1dfUYIAf4tEf4ti7spVxejURsGNX68Y08b0IIzzgI09saO1YI1Ru97nCkF428y2q7eexRkQdZPcXvxyCKtxGem8OV/q3im6Y2F1k5FuZq8N28NGVlmj+vlW7P/oGeregT5l+0LMUrRUQNaFaUsM9UHQyVdRSUGVsRXdBusyWEUBn4++bfXzZFZ+/Dq5NS8z+tluF72LuTFwZD2A47ptK2Q8Qfy0lBk2q8uXl1GyBT0b/YlmPfn3s7HCuZ/kAlPO3kuW79+ubez0wpff3d3QiNCXGaosXfTo/21G+vXl560wiIMRKT+8oaKCFE4PatSzRn8cnIrn/z7O58dXMG6c/vz9ZRTrlJGozacaflybeJgTz0XhdDKLV+uvU4Fa4pUu0Y19AVrAEOtNF27VYu0svjUNlLMGZ4LK4ri4Pi5y2z857iunm+pGVks23KgCFqlXC1UDxtFKcOEMELwHcjk9/B4RCet/HSxjq56LdLKkeRzBWiRNyePOZM5XzlpTUBeug9kqos6tR4nMuFJMNW58sl2SyhhiELq/kz1lMsOdpmPaGmz83rwQXj77dzU3lOnEv7997z523M80+c10lMy8mWLMpi0QM6Ebx+lbmwt7cFSlFZYCAMyeASkTMfzZ2hABN9+xcu0SCufHVzB7KPrSbdmYRIGZPbjFQLCebRRP3pXbnHFy1HKgF69tL+jR+HTT+G33+D8eW3oYliY1nutb19t3a1Vq7hbe9Xq27YR789bQ2pGlseyokIWeucTzrBmsS/hJG2j615hCxXl6rLl3xO6yxoMgr//Oc7gjleeOKKoSSnZ8d9pft2kTagc6G/i/+zddXwUV9fA8d+d2bgTgrtrgjulaItDBasrFUpp37o75am31F2BlpZCKZQCBYoVD+5OkATiRHdn3j+WGCTZXchuhPN9Pn1YuTtzNtnM7py995wuzetyVcemMmOoFMkMGyEquoCbwSsSR3/ue80bOJ7lfHth7WIOH5YGDuPIY2KmvI8R2x3jzDjM9Dn2FuIXI/03MJNwJglhnv3m4vZRHvgOxLnlUK7QMdN/LfyuevVg8OC86zNmwJw5NOvUmE82vsHAO/ri7Zv3AUDTNboP78T7K1+l16hzbWpnz7Y/LseQIVC3bgk/h5Kl/MeeW45Y3GtdAxUM/qMuaV+GafD85p/5+sBSMgz7yZ3VNHJn1sRmJvP05unMOur6jDhRgdWrB5MnQ3S0veNacrL93+ho++2SrClVfj5ePDqqt3ODddeWVGbYHCeBhBAFZWZZ0ZysqWgaJpnZzjdXKCuOn0li3Gs/csdbPzN71Tb+3XqARRv38tIPC+n/2KfMX7vL8UaEW0jCRogKTilfVNjX4NOfnI4s9j/9c1PclR8q6Fl8gu91epuaUjQNqeF6LH7X49KsGTMBjDjI3oiZ9Ahm3ABM6wGX92umOdceFWyQ8QemcWHxxopAWRqAdzdyf/dFj3RhqybYivnmaeLEvMuGYW8TPGcO1RtUZdInd/PLqS+ZuvZ13l/9GjOOf8Zzv/wfTTs2so/PaSucv1NN/u2VUUqvigr7yt5Rq9CftT1Zoyp9c8nFdv86vpm/TzqoQQJM2T6bmDTXipALIUrP8G4tefaGfng5WD5qpmu40u+1ihQdFsJlEaEBzi9T1BQRoc5/AVoWxCamcsv/prPv+GmA3KVfOc85LTObp7+ez9w1JVeqQDhPEjZCXAaUFogW9gGq8kIIuAd8h4DfCFTwy6iI1aiAm6gfWIWo0LpoTpysG6bJNbU7uR6HpY593y4fes6dsBunMONvxLS5uBzLFoPztXOs9iRRBaVCpoAWQdFJG90+88P5LQLFTJPt399etDRHejqMHAnjxsGKFfgH+tK0Q0Oad25MaERIXoHhcePgmmsgIyPvsRMm2JdzlAPKOwpV+U8IuN1e1yb3jhAIuBtV+Q97p7lLNP3wSpSTCTaZZSNE+TKyR2v+njKeulXDihxjHvF1WJII7EfqegERNAlysVmAEILureoT4OtcvTmbYTKky6W/v3vSB7+vIDE13WGNntd+XMzZjIuc7S4umiRshLiMKEsdtKAH0ULfRAuZjPIfjdL8c++/t0l/+7jitgEMr9WBWv7hFxdDyKvg3SXf1lxhAyMB8+xXLu7U1YKZFbe8l9KrosJ/BZ9+2N8CcmZdKft1n6sg9B0XtmigvNsVP+Tdd+G66/I95Fxb4Z49oU0buO8+eOwx+79t2thvnzat4MyacthWWOnV0YIeRVX5DxXxLypiOarKarSgh1F61Uve/sn0RHYlH3eqULiByYITmy95n0IIzwoJ8GX0lW2KfLc0j/vYZ9k4mLxqAjfW72nv1iaEcImftxejekU5TI7qmqJl3aq0rHvp7/GekpCazoL1u50qqJyZbWXemp0eiErkJwkbIcqjgwfhiScgKgpq1IDgYPu/UVHw5JP2gpIXoV2lBrzaZgy60i+YaaOfe5fqW601j7UYdtGh25dofQHBr4Dm+rIqsEH6z5imC50uvNrieBnQOVpl0J3rrFXWJWWlsT3xKDuSjpGSnZ57u9Ij7DOuIpahgl9EBT5k/zdiOVrYu2g+PcDSAufeInzA18HrIaetcP6ZNjm2bIGPP4Y33rD/W1iL4QkT7AmcctqpRikvlF7NnixTJZcMTM5Oc2l8/teAEKL8GNy5Od5eRRw7TIXtvxCwqUKTNjnv5NfW7szQmu3dFqMQFd09Q7rSpVndIpM2uqaoHBzAG3cPLVeJ0Q17jmK1OV+uYMW2g26MRhSm4n6NLERFtHAhvP8+/PknFyxaT0mBEyfsJ7xTptiLvU6caF+S4qRsw0qQxY+JTQcSnXCQjfEHScpOw0uz0Dm8EdfX7Urn8EYO34jM7B2YaT9C5iogE7TqKP/rwXcoSguA7GhIfQeMM9g/TrpWNBEzFawHwMluTsr/RsysVU6MtHftKcmT6tKwL+Uk3x1YxsKTW3OLz1qUxlXVo7ipwRU0CLR/86P0quA/ptBtqOCnMONvwdHvRwU9jNKcWKud01Z4+HD7a3ju3AtfwwU2rOwFhidOLDfLoDwtwOLr1vFCiLIhyM+HZ27ox7Pf/FX4gGQLLA/Dp1Um1ippGPmO2TX8KnFzgysYUatjuTqJFBVbVraVY6eTsNoMqoUFERxQ9t+fvCw6794/nG8WrGPakmgSU/O+BLHoGgM7NuOBET2oHBJQilG6zpludDlMIFWWRHlc+T4rEeJyYbPBpEkwdapz403TfkI8d659dsK77xY7OyHbsPLtgWX8fHg1ifm+tffRLIyo1ZF7mwwg1NvxG5BpWjGTX4T0GdhntJzrSGScwUzeCinvYAY9BsnPAzkV9F1M1uRF7fxQn97g3Rmy1lN0lyQdtKrgZJtlM3sXZto0yFxkbxeuhYHvCJT/KFQpztBZHbeHRzZ9j2GauckasHcO+uvEZhad3Mrb7W9x2NZVeXeC0I8wEycCWRT8PemAgQp8CPxvcS1AaStcYmr4hdEgsAoHU2Md/hXpSqNvtdYeiUsIUfIGd26ORdN4ddpiUtMz0TWFYZpoSsNmGLSMqMX/hg1B8zPZlniUbMNKVd8QWofWkUSNKDNOJ53lp3828uvyraSk22dKa5qib9vG3NSvPa3qle0Zzl66zl2DutC1RT0+mLWC9XuPYZomVpvBP9H7CA3044a+7ahSjooOhwf5Ox50jqYpIspZQqoiUKbpSm1590tOTiYkJISkpCSCg6WSvRDYbPZOOTNnXnhfZCT06AGBgZCaai/WWtiSkuuusy9JKSRpk2VYeWjDt6w/c6DQWhi60qjiG8yXne+hsoPuEkbSi5D+E0UnYXKW2JjFjHGGQkWsQunO19ExjVTMxPsg6z8KJJPQAAP0uqiwr1CW2sVvxzQxU9+Gs5+et52cbemo0DdRvgNdeUIlIiYtntEr3iXbsBb501UofDQLv/R8iKp+oQ63aRoJkP4bZvrv9hlRKgB8+6P8xtiLSJcy07SBdbd91pUKA4vjGWAVye9H1/Ha9lkOxyng554PUzegsvuDEkK4TWa2lYUb9rBm1xEys61EhAQyuHNzWpSjmhni8nT4VAJ3vv0zCanpGOfVS9E1hWnCi7dcxeDOzs2edpZpmiSdzSDbaiMkwLfo5YVOWrRxD09+OQ/ggrovuqYI8vfls0nX0ahm+Xi/zcq2ctWTn5N0NsPxYOCde4fRK7L4L/2EY67kPCRhI0RZ98ADBWfWaBqMHo15333s1CPYsHALmWmZVKoeRq/ruxJ+cCd8+CHMmFGwaOuECfYlKed5f9d8fjy0otjCpbrSaB1am886jy9yjGk9iHn6qot6iq7RwacXWtgnLj/SNE3IWm1frpW9GbCB3hDlPw58+6GU4w4AZurHmKnFFeVVgEKFfYHy6eFyjJfi3V3zmH54pcPWkxqKWxr04t4mAzwUWckzzSw4+y1m2vdgnMy7Q6+LCrgV/MagXC42Xf5YDRuPbvqBVXF7iv0bnth0IDfW7+nByIQQQgi7zGwrI1/4hrjE1GKL22pK8dUjo4lscOndzNKzspmzajvTl0Zz+FQCAN4WnUGdmzO2d1saX0RCZffRWG58fRqGYRT91aSmqBTkz+8v3Iq/k52lStsnc1fz+bz/il2prmuKKqGBzHn5dnRNyuBeKknYCFFRLFwIA/KdVPv5wfTp7KjSjHfHf8rBrUfQLRpKKWw2A6UUvUZ148GP7iRg2WL7zJz09ILby1cPJM2aydVLXiPD5tzyou+7TaBpcOGFgo3k1yDte4peclRSFKrSDyjvjm7ez4VMIwkztjv2JULFUWBpggqf47HZHoZp0HfRy5y1OVeMOdTLn7/7PuPmqNzDNNIwE26H7E1cOFPr3M/bpw8q9H2UKqbleAWRbVh5Z+efzDq2DsM0cwuEW02DIIsvE5pezcjanUo5SiGEEJeruf/t4LlvFzgcp2uKZnWq0KJONbKsVqpXCmZw5+bUrBzi0v4SUtO5971f2XssDjhvUbdmf4986ZarGdipmUvbfebrv1iwfpdTHZWeGteX63pGurT90pJttTHxw99Zu/tIoUkbXVP4envx5f+NokmtCM8HWAG5kvOQGjZClGXvv593WdNg+nS2hjXmsSufx7DaEyM2a94sGhOTZT+v4tC2I7y74hX8p0+HkSPzZtq8/36BhM2/sTudTtboSmNezKYiEzZkrcO9yZpzdVOCXyqVZA0A6bNwrnaOaV+mk70FvKPcHRUAqdZMp5M1AInZaWTYsvHVy19Cw0x+zl64utDvt87dlvkPZuq7qKBHPRhZ6fDSLDzWcjh3Ne7L/OPRHEs7g640WobUpk+1Vnhr8lYvhBCi9MxcvgVNKYczgG2GyfZDp9h1JBYAwzT5ZO5qALx0Rev6Nbixbzt6RjYocpaHaZo89NFs9h8/XeinhJxky7Pf/EXVsEDaNa7l1HNITc90uv21UjBz2eZyk7Dxsui8f/8IPpm7mp+XbeZsRlZuywkFdGlel/+7rhf1qlUq5UgvT/IpToiy6tAhezeoHKNHk331QF6qcy+G1XbB+t8chs3g8I5jfP3MNO5/73YYPdreEhnsRYgPHcot5no6M8WpN1CwvwHGZSYXM8KFIsAuU+DdAxV4l70Ybikxs7fgfFcr5dGEjUW5Pj31Yh5T2kzbScj4A8e/AxPOfo8ZcK9zXawqgDDvQMbV8+wyPCGEEMKRI7GJTn3WzFFYUiTbZrJxXwwb98VQp0ooXzx8PZVDLnx/X7f7KFsOnnC4D6Xgy7/WOp2wOZWQgs1wrv21acKx00lOjS0rvCw6D4zowV2DurBy20Hiks/i622hY5PaLs9wEiWr/H1aF+Jy8emnBdse338/q35fR2JsUpHJmhyGzeCvr/4hPTUd7rsv7w7TtG/3HB/NgrOrIpVS+GjFzMbQ62KfBVOCQqaiKs1ARSxHq/R5qSZr7FyZQaTI64Tlfn66N3UDKuPMAiwNRZOg6li0cljjJX0WOPUsATIgw/EUbCGEEEK4T84ypJJyJDaR4c/ba+Kc79flW53an80w+W/HYY6fKe7LyDyWYrqtFqa81nnx9bbQt11jxlzZhhHdWkmypgwon68kUe5k2rKZf3wTE9d/zdgV73HHfx/z1f4lnMlMKe3Qyq558/IuR0ZCt278++t/aLpzb3oZZzPZsHALdO8OrfO1850/P/di+/AGTvdqspkGHcIbFHm/8r+eklsSpYP3FWh+A1DebVF6lRLa7iXS6+B8ssA4l8TyDKUUo+t2c2qsgen02LLGtMXg/FuXBdN2zJ3hCCGEEMKByAbVSzxpk56ZzV3v/HLBrJe9MXFOLVsC+1zdnILEjtQIDybY38epsbqmaFW/bLcoF+WHJGyE221PPMqwZf/j+S2/sPb0PvannmJr4lE+27uIIUunMOPQqtIOsWyKi8u73KMHKEVSXDKGzfkppSnxqfY5nz3yLZPIt90GgVVpE1YPzUESQgGBFl/6VWtd9CDvK0BvhFOzbLRaFH340UGvjQr9n+PteJjyuw6nk1JaOPhc4dZ4zjekZjvqB1ZBL2apk640mgRVZ0D18rGu+gLKlZW8plOdv4QQQgjhPqN6tXE6ieKKI7GJrN5xuMBtrjZ7OJ104SydwnhZdK7tGYnm5Oyd0Ve2cSkOIYoiCRvhVvtTTnLv2i9IykoD7N/s5zAwsZkGb+2ay8wj/5VWiGVXar43kED7Gt3g8ECUC99QBIYGFHg8ACkFZzU90nwIXpql2KSNCTzRcjg+xRSoVUpDVfoctKoUnrSxH25U4CRU5bngfwuogPPG+IDfKFT4zyit7BU2U5a64HM1zhw6VcA9KJeSC5fOV/dmasc7aBhYFbC3x8yRk8RpGlyDDzreVuzvsixTXu1wfqmZDbzaujMcIYQQQjjQqWlturaoW+BzSUmZ+e/mAtdb1K3q0myel75fyIL1u50aO7Z3W8IC/IrdvqYp2jWuSfeW9ZyOQYjiSMJGuNV7u+aTZVgLJGoKHzePVGuGh6IqJ/InWc4lb7qP6Izp5DcU3r5etOvXusDjAQgKAsA0bZhZa2nstZHv2zentp89yZI/caOw17l5MfJ6BlR3XDxX6TVRlX+DgNtBBRW806s9KvRTVOB9KM0fLfhJVJVVqNCPUcGTUaFTUVVWo4W8iNJCnXqOpUGFTAavNth/Oue/YZ87pPrdBP43ezawcyr7BPFtt/t5s91NdKzUiHCfICr7BNE5vBHvtL+FL7vcQ5h3OS7C63s1KGfWUyv7kjTvzm4PSQghhBBFU0rxxl1D6NSsNlCyNW32HT9T4Pr1V0S5NJvHME2e/mo+63YfdTi2ckgAnz18PeHB9i8c8+efcp5T24Y1eefe4SVewyY2MZXFG/cyf+0uovfHOF2DUpR/yixjv21XepKLsi0mLZ6R/77p1FgF/F/zoYyq29W9QZUnUVGwZYv9cmQkREeTlWVlTM27SU04W+yBWtM1Bt7Rl0mf3G0vNBwVBVu3AmBGRcHKiZhnvwbjVO5jTCycMLvz1alIDqTrBFp8uaJKcwbVaEugl6/L4ZtmJlj3gpkJejWUXtPlbZRVppkFadMx074D25G8O7zaoQJuA58BLk/JFc4z03/DTHqimBH2n70K+wzl08szQQkhhBCiWIZhsnb3EWYsjSZ6/3FshoG/jzexhRQPdlatiBDmvHR77nXTNJn44e+s3nHY6c5UmlK0blCdrx8Z7dT49KxsFqzfzcx/t3AkNgFd02hVrxqjr2xD1xZ1SzRZc+DEGabOXsm/Ww4UeD61IkK4bUBHRnRvJZ85yyFXch6SsBFuM/fYBl7a9qtTYxWK3lVb8HrbG9wcVTny5JPw+ut511esgO7dWf/3Zp4Z8hqGYRY620bTNao3qMr7q18luFKQ/XE9e+beb07qgPl4Ua0GddBCUJWmoyz1Svb5VECmaYLtKJipoFVC6VJgzlPMtB8xk18+dy1/wUEFWFChb6J8B5ZCZEIIIYRwVkp6Jlc98RmZ2VZcPSvVlKJfu8a8fufgArenZWQx6eM5rN/jeNZMfr88exMNa1R2LQg32nboJOPfmUmW1XrBrCGFvWTBuD5t+b/reknSppxxJechS6KE22Qazrc0NjFdGn9ZGD++4FzLDz8EoMOAKCb/9QxV60YAoFt0dC8dTddAQaeBbXlv5Sv2ZA3ARx/lbsJUCnPc6WJ2agMjCTPhbkzTKGacAPsUX2Wpg/JqIckaD1P+N6AilkLAvaA3BK0KWJqiAv8PVWW5JGuEEEKIciDIz4fX7xxs/0zlYs7BME2u73Xhkn1/X28+mngNjV1Mvuw5VtxnZM9Kz8pm4tRZZGZfmKwBcotN/PTPJv5a51wNHlE+ebYiprisVPF1ps6Ena40l8ZfFurVg8GDYe5c+/UZM2DMGBg2jLZ9WvPt3g/YtHgrG/7eTEZaFpWqhdJnXA9qNMyXOJg92/64HP1DobajYrM2sB2CrFXg08PB2IonJTudv09sISY9HovSaR1am24RTYvtvCQKcfAgfPqpvY18XJy9jlJgIEREwKBB9oRkvXqXtAulV0MFPQhBD5ZMzEIIITxy/BYivytaN+DjidcyZcY/HDgR79RjNKXo2LQ27RoVvuTeomuEBvm5FIezS6g8YcG63SSedVzfUyn4buF6BnZq5oGoRGmQhI1wmy6VGxHq5U9idprDsTbTYEjNdh6Iqnw4lZHE7KPrSO3fgIfP5WswDMwxY1DTp8OwYWiaRvv+UbTvX0Qx4Nmz7QkeI2+mjHmHv5MR6Jjps1CXUcIm27AydfcCZh79D6thQ1c6YGI1DSJ8gnmo+eDi25oLu4UL4f334c8/uWBuc0oKnDhhr800ZYo9ITlxIvTvXzqxCiGEyCPHb1GKOjatzS/P3syWAyfYuO8Ym/cfZ8W2QxckUXKWArVpVIM37h5S7FKghtXD2bj3mNNFiOtXC7uEZ1Cy5qzejlIX/imezzRh97E4Dpw4Q4Pq4Z4JTniUJGyE23hpFsbW68HHe/8udpyuNJoG16BVSG0PRVZ2mabJF/v/4ct9/wBgNAmg1tD2jPpjAwAqPR1z5EjU6NFw333QvXvBZVOmCStX2pdBzZhRMFlzzyC4Yq+TkdjAdryknpZbWQ0bS2N38NuRNRw+expdabQOrcN1dTrTJqyeU2t6babB45t+YmXcrtwpplbTlnt/XGYyT0VPY1/DkximQUp2BkFevvSu2ormIRWnmPIlsdlg0iSYOtW58aZpnz02dy5MmADvvgt6Ye3ghRBCuJUcv0UZoZQiqmENohrWAOB00ll+/nczs5ZvJT4lDV3TiGpYgzFXtqFXVEMsevGzn0f2aM30pdFO7Bca1ahM8zpVS+JplIhTCaku1fSJSzorCZsKShI2wq1ubnAFe1KOs/jktkLv15UiwieY/7W9QYplAV/s/4fP9y0ucNvb4/sRnnCWvit2AaAMA6ZNs/8XGWlP2gQG2qcsr1yZ11kqv+uvhzdvgZSHnA9GOTsbp/TEpMUzcf3XHE07g4bKbR8fdyqZhSe30D2iKa9FjcXP4l3sdmYdXcuKuF0O9/fV/iXoSsv9duebA8toHlyTlyJHUTcwogSeUTlls9lnc82ceeF9kZHQo0fea3TFigtfo1OnwsmTMH26fOgXQghPkuO3KMMqhwRw39Bu3De0G4ZhohQunS80rlmZKyIbsGLrwWKXO5kmjB/StUydi/h6u3aa7uslp/UVlXSJEm5nMw1+Obyanw6t5GRGYu7tvpoXQ2u1585GfQjzDiy9AMuIk+mJDF/2BiYX/klqNoOHP12UO9PGJee+/TKJx4zrScGOOkVRqKDHUAF3uL4/D0nMSuOmVR9wOjMFWxEFkjUUnSo34t32t6AVUYPGNE2uX/4OR9NOF/KTd0xXGn66N193uffyTdo88EDBb2Y1DUaPxjp+PNvNcFISzhIQ4k/L7s3w9rbAqlX2ItrnzQJjwgT44APPxy+EEJerIo7f3H8/tk6dSYhLBiCsSgi6rsnxW5Q7ZzOymDh1Fpv2H79giZGuKWyGySPX92Jcn7JVmuGtmcuYvmSTU8u5Any9WThlvMtJHlF6pK23KJMM02Bb4jHis1Lx071oHVoHf4tPaYdV8i6yWN/He/7m2wPLcmeJFKbjpoOMnr2eHmv3oRX3l6sUDBliX1/er1/uzUbCg5D5N2Ar+rEAWFBVVqK0srOW93yf7V3EV/uXFPvzyvFe+1vpGtGk0PsOpcYyasW7lxSLQuGrexHmHUCwlz99q7ViaM32VPK5DBKRCxfCgAF51/38yP7ue6ZvN5j94XySTqfk3hUYGsCQewYw7qmR+AX6wZw59m9209MLbi/fa1YIIYSbFHL8Zvp0TrfvzuypfzH304WkJp4FIKhSIEPG92fY/VdTuUYlOX67IC4plR2HT2G1GdSsHELTWhFlaibH5SDbamPufzuYtjSafTH2TlC6Zm8JPrZ3OyIbVC/lCC90+FQCI1/4xuE4XVOM7d2Wh6/r5f6gRImRhI0QpaG4Yn35KVVosb7bVn/E9qRjTu2q+qlEPtpoo+ayNfakUEoKBAXZk0IDBxaZFDKtRzDPXAtmKsUlbVTQM6iAm52KpTRYDRuDlkx2qqC1rjS6VW7CW+0Lfz5bEo5w55pPSjQ+hUJXGk+1HMGQWu1LdNtlztCheZ3MNI2s6T/z+AfRbF+1G7OQb4U0TaNBVF3eXPICAcH+9g/9I0fmfVM7dKj9NiGEEO513vGbWbPYXb0Fj1/1MukpGRi2grNXNV0jINiP/y16nkZt68vx24EDJ87wydzV/LNpX4HlOI1qhHP71Z24uqN09fE00zRJOptBRpaVkEBf/LwddU4tXR/8voKvF6wr8n5dU1QJDeKHJ8cRFuhaRyxRulzJeUifWiEulc1mn1I8YID9g48z5dznzrWPf+AB++OBDFu207s8UTWUvU89CNHREBMDycn2f6OjYfLkItttKksdVKWfQM9p/Z1/vbkCLKigp8t0sgbgeHqCU8kasC/J25RwqMj7g7x8SyiqPCYmVtPGS9t+ZeGJQmoKVRSHDtkTlDlGj+bDRXHsKCJZA2AYBge2HOadu88lyYYNs0+/zzF3rn27Qggh3KeQ43d8p548cfUrpKekX5CsATBsBmeT03l8wMskxiXJ8bsYWw+e4KbXp7Eket8FtVP2nzjDU1/N5+M/VpVSdJcvpRShgX5UqxRU5pM1ABOGd+fOgZ3RlELLNytL1+yXG9aozJf/N0qSNRWcJGyEuBQ5xfoK66wQGWnv5PTYY/Z/IyMvHDN1qv3xNhvV/EKxl7N1ThXfi5uBprwaoyovQoV+Aj79wCsSvLugAv8PVWUFKuCWi9quJ+Xv4HSp4+sFRFDLv5ILP3nXvLnzD6yGa/GWG59+WiBBmXrDrfz9zVIMB+utDZvBv7/8R+xR+7Rk7rsv707TtG+3DDJMg9Vxe/hs7yI+2vM3vx9dR6o1o7TDEkII1513/Ob++5n7yULSktIwbEUfww2bQUpCKvM+P9cgoZwcvz0pLSOLiR/+Tma2tdD6Izk/9s/nrWHp5v0ejk6UJ0op7hvWjXmv3cmdgzrToUktIhtU56oOTfl00nVMe+oGqlUKKu0whZuVeMLGZrPx7LPPUr9+ffz8/GjYsCEvv/wyZWzllRAlY9Kkgp0VNA3GjoUVKzg1eyGrrrqVlV2v5cgDT9lnv6xYYb9fy/enN3MmTJrE0JrtnarHAlDHvzLNgy++nbRSOsq3D1rYB2jhM9EqfYcKvBulVbrobXpShE8wehFFhM+ngBp+RdfiUUoxpm73EorsQglZZ/k3dqfbtl+q5s3LuxwZyeKDNmxWZ4pag9IUi39Ybr/SvTu0bp135/z5JRhkyVhyajvDl73Bgxu+4esDS/nh4L9M3j6Lgf9M5v3d8ytuUk4IUTGdd/w2u3ZlzscLHCbcAUzDZM5Hf9mvlIPjt6fNW7eLpLMZxXYlAtCU4ruF6z0UlSjPqoQGcs+Qrnz20PV88+gYXrltIB2b1pZaSJeJEi8lPWXKFD7++GO+/fZbWrZsyfr167ntttsICQlh4sSJJb27Msm0HgYjzt4W2dIYpcr+lDtxERYuLDiz5lyxvl3VmvPtCz+zfsG75M+/tOjWlBufvY6OP/1kn1WTv1jf1Kn0GjqEar6hxGUmYXPwJn9j/Z6X9UE6yMuPPlVb8s+p7UV2iMpvZO1Oxd5/Te1OrIjbxZrT+wrt0nUpLEojOuEQfaq1KtHtlglxcXmXe/TgdEw8ukXDmu04eaE0RVzODBul7K1jt269cLtlwJ8xG3lxa15iNv9rLtPI5seDyzl69gyvtx3ndCJRCCFK1XnH77SUdJLOdYRyxpnjCWSmZ+Lj51Omj9+lYfbKbRd0IyqMYZpE7z/O8TNJ1AgP8UxwFczhUwmcSkjBx8tCk9oR5WKZkxCuKvGEzapVqxg+fDiDBw8GoF69ekybNo21a9eW9K7KFNM0IeNPzLNfgXVb3h1aJUy/saiAO1DaZdAx5nLy/vt5lzUNpk9njV6TF3o+a/+G6rw36l3/7eGpQa/y0CfjGXTXMJg+vUCxPn3qh7z70+fcveYzzlozi0xEXFu7M8NrdXDXsyo3xtXrweKT24odo6EI8vJlcI3iWzVaNJ03293Euzv/5Pdj67CZ5rkTbxOrEwkhR7IM6yVvo0xKTc27HBiIt6+3S7MpvX3zfbAKzHd8TEm5cHApictI5pVtvxU7xgSWxe5gzrH1DpOD5d3B1FjmH4/mdGYyvroXHcMb0TOiGRZNd/xgIUTZcd7xW2muJ5tzH1NGj9+l5VRCqsNkzfnjJWHjmoUb9vDtwvXsOHwq9zZ/Hy9GdG/FbVd1JDw4oBSjE6JklXjCplu3bnz22Wfs2bOHJk2asHnzZlasWMHbb79d6PjMzEwyMzNzrycnO5/dLytM08RMfgXSv+eCVWZGPJz9GDPjLwj/sdwsOREOFFKsL65dd15q8gA2q63QN+qcacbv3vMZDdvUo2lOsb5p0+wD5s6lwel0vus6gc/2LeLvE5sLJAtq+4dzU/0rGF6rw2U9uyZHy9DaPNv6Wl7e+itKccGsJF1p+OpevNfhNgKdKCzsrVl4rOVw7m7cj7+ORxOTHo9F6dTyq8Sn+xaRYs1wajbP+QzTpHoxS7LKtcDAvA/nqalEDmrBdy869zOyZduIvLJl3g35Tx6Cys567N+PrXMqCaWAaYdWMqJWxwr59xmfmcpzW35m7Zl9BWYRzTyyhnDvQJ5qdQ09q0jHk4poT/JxZh5Zw/akoximSYPAqlxTuxPtKtWvkK/1y8Z5x2+/QF+q1K1M7OHTDh+qlKJGo6p4+3jlPj5XGTp+lxZvL9cS2D5eJX46VqHldE7Szjv+pGVmM2NpNIs27uWrR0ZJEkxUGCV+hHjiiSdITk6mWbNm6LqOzWbj1Vdf5YYbbih0/OTJk3nxxRdLOgzPSv/pXLIGoLCTFQNshzATJqDCf/JkZMJdCinW9+enC7FmF56syU/TFbPen8cT30+0F+vLSdicK9ZXY/JkXoi8nknNBrMt8QhZhpWqviG0CKklH47PM7hmO2r5h/PtgWWsjNudu5zJW7MwuEZbbm7Qi5r+riVJQ70DGFOvYE2bLhFNeHXbb6yPP4CGvVK/KzNvrq7RxqUYyo2ICDhxwn55xQoiP/iAWk2qE7P3ZLFJDqWgUvUwOg8+N/PJNO31nfJvt4z4+8Rmp2pLmcChs3EcOXuauoFlJ/6SkJSVxp3/fcKJjESACxKX8VmpPLLxe15vO47eVVsWsgVRHmXYsnlx6y8sPrkNXWm5v/dDZ+NYeHILrUJq81b7mwjzltnD5dJ5x28FjLh/IJ8/8UORXf7yG37/QPuFMnz8Li1dW9Tl95XbCi04fL4gPx8a1Qj3QFQVw7y1O3PbXBdWI8hmmJxJPssDU3/nl2dvRtPkc7Mo/0p8sf3PP//Mjz/+yE8//cTGjRv59ttvefPNN/n2228LHf/kk0+SlJSU+9/Ro0dLOiS3Mk0bZqozFfFtkL0eM7sCt/i9nJxXrI9u3Zj/5eJC22Cez2Y1WDpjFRlpmcUW6wv19qdHlWb0qdaKlqFSWKwoUWF1ebv9zfx55eN83nk8X3W5l7/6PMWTrUa6nKwpSk3/SnzU6U5+7jGJe5sMYGy9HrQOqePwcRqK/tUjqepbQb/lGTQo7/KWLajVq5n40V0oTRX9elX2/5v40V3o+rlvIVeuzKt/ADBwoLsidllyVrpL45OyXRtfHnyydyHHMxKKnGFmYm9l/+KWX0i3Znk2OOEWhmnwdPQ0lpzcDhRM0uVc3pkcw/1rv5LfeXl13vGbVasYeGdfKteshKYXfXqgWTSq1K3MgFuvtN9Qho/fpeX6K6KcStZomuLanq3xlhk2TjFNk6/+Woujj8M2w+TgyXhW7zjkkbiEcLcST9g8+uijPPHEE4wZM4bWrVtz00038dBDDzF58uRCx/v4+BAcHFzgv3Ilay0YJ50crGOm/erWcISHnFeszwQSTiU6/XCb1WYv7pdTbLWw7QqXVPYNJiqsLq1CaxNocbwE6mLUC6zCLQ168UDTq/m48510Cm9UZDtwDUXzkJo82XKEW2IpE8aPp8Anpw8/pG2f1rw0+3F8A3xAkZe4OXfZ29ebp6c/RLdhHfMe99FHeZeVgnvu8Uz8TghwYjldfkEuji/rUq0ZzI3Z4LDbCUCaLYsFJzZ7ICrhbv+d3svyuF3Fzi6zmQb7U08x61jFrlFYYRVy/A4MDeCNxc8TUSv83DE7726lFCioUrsybyx+noBgf/sdZfj4XVqa1IpgVK+oYsfomqJaWBA395eahDnOJJ/lmwXreOrLeTz15Ty+mL+GuKS85Xa7j8Vx4ES8U/WBdE0xa1XxdQ6FKC9KPKWblpaGdl7hMl3XMYxLL9xZJtmOuTIYbEfcForwoPOL9SmFxdtCdqbzxWVzC65Ksb5yyVuz8G77W5h+eBUzDq/iVEZS7n2VvAO5vk4XbqjfE1+9AncsqFcPBg+GuXPt12fMgDFj6DxsGDOOf8biH1ewdMZKkk4nE1QpkJ7XdGHALb0ICMlXDHD2bPvjcgwZAnXrevRpFKdftVZ8d+Bfh8uiFFDTrxL1AirWcoANZw6Q6WTRbIViWewORtTu6HiwKNN+PrwaHYXN4XJAk58Pr2ZM3W5o0iGtfCni+F1z2DA+2/IWi3/4l98//Itju2IAqNuyNsPuu5q+N/TAL9DP/pgyfvwuTY+OuhKLrjHtn01omsqdcaOfu1y/ejjv3zeC0Jyf5WXMZhi899typi3ZhGGS90XYBvjkj9Vc2zOSR0b14vgZ5+uc2gyTmLgkxwOFKAdKPGEzdOhQXn31VerUqUPLli3ZtGkTb7/9NrfffntJ76psUK7+CL3dEobwsPOK9QFEXdmKjYu2OFwWpRTUbFyd0CohBR4PSLG+csai6dxYvydj63Vnd/JxkrLSCPLyo1lwjcuna87EiXkf+A3D3q5++nT8hg1jyPj+DBnfv+jHzp5tH58/oT9xonvjddHI2p347sC/To0dXbdbhVu6eNaaecFtNU4mMnLeJrqtP0BoUhp+6Vmk+3mTGOLP3h5t4aVe9pNBUW5tjD/oRLLGvhzueHoCpzNTqFJRl35WZEUcv/2HDWPovVcx9N6rcuuRXXBsKwfH79KkaxqPXH8lo69sw6/Lt7BpXwzZVoPaVUIZ2b0VnZrWkfoq2Jc5vfT9Qub+tyP3iHP+kWfmv5tJSE1jSOcWLm3b23KZfA4TFV6JJ2w++OADnn32We677z5iY2OpUaMG48eP57nnnivpXZUNXm1dGKyhvF0ZL8qs84r1YZqMmHA16xdEO/XwEQ8Msn/4kWJ9FYKuNFqE1CrtMEpH//4wYQJMnWq/np5ub1c/erS9qHb37gXn1ZumvebBRx/Zv5nN/2F/wgTo18+z8TtQ3S+Mh5sP4c2dfxQ5RqFoX6kB19bp7MHIPCPE2z/3cqeNBxk9ez3d1+1DO+8TdWB6FhHxqTQ+uAB+aGD/5n7iRPvrQ5Q72abNpfFZTs7CEmWME8dvVY6P32VB7YhQJl1zRWmHUWat2nGYP/7bUewYE1i0cS/dW9bLnaHkiKYp2je5TD+XiQpHmc70K/Wg5ORkQkJCSEpKKjf1bIz4m+21bArtEJWfBRWxHKVLNfhy78kn4fXX866vWIHRtSvPj/wfa/7cWGSHBU3XaBhVj3eWv4SPn489WdOzZ96AJ56AIuo9CVFm2Wz2b1pnzrzwvshIe9ImMNA+m2zlSnuBy/Ndf729Y5peNr8Rm3tsA+/unkdydjqWc0s/DNNEKcWQmu14pPlQfCrg8rdMWzaDFr3C+A//ZNQfG1zfwIQJ8O67Zfb3Kgo3dOmUAss8i6MrjcV9n8Xf4uPmqIRbXAbHb1F2Pfjh76zacchhEkbTFO0a1SQ8OIBFG/c4HK+AOS/fTs3KMvNPlE2u5DwkYVMCzOytmGfGAlaKS9qowImowAkei0u40aFD0KBBXmvvsWPhp5/Iysjijds+ZOmMVegWDZvV/nrIuRzZqwXP//oIwZXOLX0aNy6vrbdScPCgrP8W5ZPNBpMm5X1T64pyclKfbVhZemoHWxIPYzUMavpXYmCNNoT7VOCljDYb+wZfSaMFKy64a2/9KkS3rEW6rzf+GVm023GcBgcKKcJ/3XUwfXqZ//2KPF/u+4fP9y12WLtJVxp9q7XilagxHopMuMVlcPwWZY9hmHSa8J5TRe1zzHj6Jm5/awbpWdkYxSRtburXnoeulZlNouyShE0pMDP/w0y8F8y0nFvO/asDNggYjwp8uMLVN7isDR2at/Zb02DWLBg2DICDWw/zxycL2bN+H4bNpG7LWgwZP4AWXZvkvQZmz4ZrrsmbUjx0KMyZUwpPRIgStGgRvP++/W+juLcXpewFKidOlGn0ZdkDDxQ4ibNpikVXNOeXIe3Z0qImKIWGQtc0PupwB1E7Y+DDDwtfLvHBB6XwBMTFOJ2Zwshlb5JlWDGLSdooFF91uYeWobU9GJ1wGzl+Cw9Kz8qm+4OuJQkX/288JxNSeGDq78SnpKEplZvwyVkuNa5PWx6+tpfUCBJlmiRsSolppED6LMz038CIA+UHPr1R/mNRlgalHZ4oaQsXwoABedf9/OzfIp9L2hQrp1hfRkbB7ckHH1FRHDoEn34K8+fb29WnpNiLakdEwMCB9payUpi2bDvvGJft680zj49gaYcGeK1Jw2t+IupENj7eXnTu04ZbJl1D/dbnZgjOmWM/xqWnF9yeHOPKjTWn9/Lwxu8wTBObWXD2sIbCwOSpliOlK1hFJMdv4QGmadLtwalkZjtXA0vXFKveewAvi05GlpWFG3Yze9V2TsQn4+1loVuLulzbM5IG1aX0hCj7JGEjhKec9+0zmnbxxVbl22chRFlSyCzCXY1b8/Sg10g+nIjSFabt3Deb55Z9Xn17bx78+G4sXhZ70mbkSJlFWI7tTj7Ol/v+4d/YnQWWR7UNq8ftDXvTuXLjUoxOCFHevfj938z9b4fDmjS6pujXrjGT7xjsociEcC9J2AjhKVKsTwhRERVSpyv+7Q+5t/3jJMYmYdgKr9emlKL/Lb149Kv77TecX6frwAH5Zr4cis1IYl/KSWymSd2AytQJqFzaIQkhyojksxn88d8O/lq3i4TUdIL8fOjbtjEjureickhAsY/ddTSWG1770UG1LLuvHxlNVMMaJRO0EKVMEjZCeJIU67usJGensypuN8nZ6QR5+dK1chNCvYv/QCJEuVNIJ7xPft3LrA/mF5msye/Dda/TpH1D6YQnhBAV2LLN+3nyy3lkWq0Fyh5pSqEUPDm2L9f0aF3sNn5cvJG3Zi4rdsz9w7pzx8BOJRGyKON2HD7J7yu3c+x0Il66TusG1RnZvRXhwRXrs7YkbIQoDVKsr0JLzk7ng13zmXd8E9mmDYW9tLhFaQyoHsWkZoMkcSMqjqiovBmBkZFkrFrDqBp3kZ6SUfzjsC+P6ndTLx758j77sTAqCrZuzdtudHShj7MaNnSlSXF+IYQoB9bsOsL97/+GaRZXmhxevvVqBnduXuy2FqzbzQezV3D8TDLaufcAwzSpFhbEvUO7MrRryxKMXJRFCanpPPrZH2zcG5NbQBrsM3c1Bbdf3Yl7hnStMJ8RXMl5WDwUkxAVX79+9v+kWF+Fk5iVxp3/fUJM+hls55JxOR9OrKbBghObiU44xJdd7qnYLZ7F5SMuLu9yjx4c3nHMqWQNgM1qEP3PNvsVpaBHj7yETf7tAgdSTzHzyH/MPx7NWWsmXkqne0RTrqvbhY6VGlaYD2ZCCFGRmKbJlBn/YBbbR87uzV+W0r9dY7y9ij7tvKpjU/q3b8K6PUfZF3MaE2hYPZzOzepIt6fLQGp6Jne9/TOHTyUAFKhpZJomNhM+n7eGLKuNB0f2LGozFZYkbIQoafXq2af8y7T/CmPy9lnEpMfnJmvOZzMNTmUk8fLWX3m3w62eDa4Cs5kGq+P28NvRtexNOQFA8+CaXFunMx3DG6IprZQjrMBSU/MuBwaSnZnt0sOtWfm6fgQG5l1OScm9+NuRNUzZMQdNqdwuRNmmjeVxu1gau4OhNdvzVKuR6PJ7FkKIMmXTvhgOnUxwamzS2Qz+id7H1R2bFTtO0xSdm9Whc7M6JRGiKEd+XLyRQycTclu0F+Xbv9cztEuLy64TmHwKEkKIYpxKT2TpqR0XtLU9n800WHV6D0fPnvFQZBVbfGYqt63+mIc3fsfquN2cykjiVEYSy+N28cD6r7l7zeckZaWVdpgVV/4kS2oqVeo4X2RWaYqq9SIKPD5XkH0G2pKT23h9x2xMLmwZnXP9j5gNfLh7geuxCyGEcKvo/cfRnZz5YtE0Nu2LcXNEorzKttn45d/NDpM1YO8W9su/hTRwqeAkYSOEEMVYeHIrzk7G1ZTi7xOb3RrP5SDDlsX9677MnVVjyzfhOudkfnvSUR7c8A1ZhrXQbYhLFJEv4bJiBVVqVybqypZouuOPDaZhMuiuc/W5TNNeeDjfdk3T5MM9fzv1dzXt8EriM1MdDxRCCOExWVab00tWTUyyrY6L1YvL08ET8cSnpDs11maYLN96wM0RlT2SsBFCiGLEZ6Y6vfRGQxGfJSeXl2puzEYOpJ4qdlaTzTTYkXSMRSe2ejCyy8igQXmXt2yBVasY9ehwhx2iNF0jrGoIV47uZr9h5cq8+jUAAwcSnXCII2mnnWrjapgmf8RscD1+IYQQblO9UjBWJzoGgr3mX7VKUt9PFC7dxSXXGVmuja8IJGEjhBDF8LN4O1FSz84E/HRv9wZUwZmmyYzDq50aq6GYcXiVmyO6TI0fby8YnOPDD+k0sC13TbkRoNAikLpFwz/Yj8l/PYOPn4/9xo8+yhugFNxzD3tSTqCcnLemgL3JJy72WQghhHCDvm0b4VNMEeH8TMNkSJcWbo5IlFeVQ5zvsKqAyhWsvbczJGEjhBDF6Fa5icP6NTlspkG3iCZujqhiO2vL5PDZOOdmX2CyMznG6d+PcEG9ejB4cN71GTNgzhxGPTqcl+c8QfOuBV/nXj4WBtxyJR+tn0LDqHr2G2fPtj8ux5AhULcuphPr1PMznEyYCiGE8IxAPx9G9YrC0aooTSn6tmtMjfDi2xaLy1fNyiG0qlctt517sRQM63b5tXiXLlFCCFGMFiG1aBxUnf0pJ4s9cdRQ1PIPp21YfQ9GV/FYDZvLj7GZhnQScoeJE2HuXPtlw4AxY2D6dLoMG0aXIe05tvcEpw7FYvG20DCqHoGh+b71mj3bPt4wCm4PqBdYxelZawD1A6uUxLMRQghRgiaM6M7Bk/Gs3Haw0CO6phTN6lTh+ZsGeDw2Ub7c2K8dT3wxr9gxSoGftxdDL8PZWvIJVwghiqGU4ulWI7FoOloRyzg0FLrSeK71tU4X4ROFC/Lyc2lZWaiXP96afPfgFv37w4QJedfT02HkSBg3DlasoFajarTvH0VUr5b2ZE1OgeFx4+CaayAjI++xEyZAP3sh4k7hDanqG+JUCCYwrGb7EnxSQgghSoKXrvP2PcN4+LpeF8ygqRTkx92Du/D5w9cT4CtLxUXx+rdrwrg+bYu8X1MKi6bx1j3DCPL39WBkZYMyXZ2b7GbJycmEhISQlJREcLBMnxNClA3bEo/yxKafiM1MQleafVYHChsm4d6BvNZmLG0ryeyakvDWzj+YeWSNw6VOGopbGvTi3iby7Z3b2Gz2mTIzZ154X2QkdO9ubwGemmovMLylkHab118P06aBrufe9MexDby87ddid61QDK3ZjmdaX3upz0IIIYQbGYbJrqOxJJ3NINDPm2Z1quCV75gvhCOmafLriq18NX8tJxNSCtzXsWltJo7oQct61UopupLnSs5DEjZCCOEkm2mwKm43i09uIzk7nSAvP3pXbUmPiKZYNPlgUlKOnD3N2BXvkW0WvTxKofDWLMzs+RBV/UI9F9zlyGaDSZNg6lTXHzthArz7boFkTY4v9/3Dp/sW5SZAc2goDEx6RDTj9bbj3DqDyjANsgwbPppFZscJIYQQpcwwTDbsPUbM6SQsFo3W9apTt2pYaYdV4iRhI4QQolz7N3YnT2z6ERMumGmjKw1dabzd7mY6VW5UOgFejhYtgvfft9e1Ke6jg1L2AsMTJ+YugyrKxviDzDi8imWnduTWiGodWptRdbrRr3prt9QmMkyD5bG7+PnIatafOYCJiZ/uzZCa7bi+ThfqSc0cIYQQQriRJGyEEEKUe7uSYvj2wDKWnNqeezKvK41+1VpzS4NeNAqqOFNjy5VDh+DTT2H+fIiLg5QUCAqCiAgYONDeErxePZc2mWHLIjk7HX/dh0Av961PzzKsPBU9jX9jd6IrhS3fRyBdaZimybOtr2VwzXZui0EIIS538clp/L5qG/PX7iIhNY0AXx/6tm3EtT0jqVnZuRpnQpRnkrARQghRYcRnpnI07QwKqBMQQai3f2mHJMqpF7b8wvzj0cV2qVLAex1uo0vlxp4LTAghLhOLNu7h6a/mYzVM8p+GaprCNE0mXXMFN/WTYvOiYnMl5yGtNYQQQpRplXwCqeQTWNphiHLuyNnTzDu+yYmRik/2LpSEjRBClCDTNPlx7Tre/mZlofcbhj15886v/+LnbeG6K6I8GZ4QZZYkbIQQQghR4f1+dB2aUhgOJhabmOxIOsbelBM0DqruoeiEEBVBWkYW/0TvsxdM1XXaNKxBu8Y1L/ui5qczkvm/jd+zdVYaoGOfy1i092atYHCXFvh5e3kkPiHKMknYCCGEEKLC25Ny3GGyJr+9ySclYSOEcIrVZvDxH6uYviSa9KxsLLq9JpbNMKlTJZRHR/Wme8t6pR2m2+06Gssfq7dzMj4FL4tOu8a16NG2Lvdv+oLjMamQ6lx9mrMZWfy9fg/Du7V0c8RClH2SsBFCiMtIpi2bdFs2gRYfaUUuLiuuFuwrrs6NEELksBkGj30+l2Wb9+ceNay2vO6GR+MSmfjhLKbcOZh+7ZqUTpBuFp+cxuNf/MmGvcfQNYXNMNGUYuGGPby1LQ0apmE74wvKBNPxbCNdU2w5eFwSNkIgCRshhKjwDNPg39hd/Hx4FevjDwD2jjh9qrZidN1uRIbVKeUIhXC/hoHV2Bh/8II28UWPr+rmiIQQFcFvy7eydPP+Iu83TfsCoGe+/ov2jWsRFlSxCuenpGVwx1s/c+x0IgC2c7VoDNMEzcSok4bCBMO1ZWFWq3PHaiEqOq20AxBCCOE+VsPGM5tn8NimH9gYfzD3dptp8M+pbdy55hO+2b+09AIUwkNG1u7oVLJGoWgSVJ1mITU9EJUQojwzTZMf/9nooCKLfYZfts3G7NXbPRGWR33511qOnk7MTdQUEGJFeZ27PcDm1OwasP+8aoRLt2AhQBI2QghRob29608Wn9wKgHHeEo+ck9eP9v7N3JiNHo9NCE+qH1iFvtVaoTk4tTIxubtxPw9FJYQoz/YfP8OR2ESnFlCaJsxfu8vtMXlSRpaV35Zvze3wdD6l592uqmWCxblZM6ZpMrSrLIcSAiRhI4QQFdbpjGR+O7LGqQ+Sn+5diOHkUhEhyqvnW19Hh/CGABckbnSloVA81mIYV1RpXhrhCSHKmaSzGS6N33f8NJOn/cP+46fdFJFn7Th8ktSMrCLvNzPzTjWVBVTDdBxVFNOUon+7JjLDRohzJGEjhBAV1B8uzJo5lZHEmtP73BiNEKXPV/fm3fa38GLk9TTPt+TJS+lcXb0N33S9j+vqdCnFCIUQ5UmAn7dL400TfluxhVEvf88Pi8v/zNb0zOziB6TomEk6OQ36tKZpqJqZ2JM25yduTJSCVvWq8dyN/d0QrRDlkxQdFkKICupA6imnx2ooDqTG0jWiYnawECKHRdMZWKMtA2u0Jc2aSaaRTZDFT7qmCSFc1rhmZaqEBhKbmOr0Y3Jqvbw9cxmhAb4M6dLCXeG5neMCygpjvz96uxT7NQVa+xTMiGyM/X6QkncqqvxM7h3QjZv6dsDHS05RhcghM2yEEEIA9g9SQlxO/C0+hHkHSrJGCHFRdE1jzJVtUBf5BvrerOUFWoC7U2a2FZtRsvtqXqcKtSJCiq0MZh71wTjom3tdKdDqZqD3TkDvE4+lRyJ+fZL58ulrufPqLpKsEeI88hchhBAVVKOgavx9YotTYw1MGgVWc3NEQgghLoXNMFix9SAb98WQbbVRPTyYgR2bUTkkoLRDK3MMw+RwbALpmVmEBflTvZJ7aqKM7dOWZVv2s/XgSXsraxecSU5jxbaDXBnV0C2xxZxO4pd/N/P7ym0kp2WigNYNqjP2yrb0adcIL/3SktVKKW7s257Xp/9T3CjYGoRXhi9hbQxiM5PPPRYIstGtckPub3oVjYOqX1IsQlRUyjRdPLK4WXJyMiEhISQlJREcLMWmhBDiYp3JTGHI0ilOtTKu7hfKrCseQVMy8VIIIcqif6L3MWX6P8QlncWi24/VhmGCgiGdm/P4mD74eXuVcpSlLyPLys/LopmxNJoT8Sm5t0fWr84NfdvRr13ji54RU5T0zGxe/nEhC9bvxpUzK4umcdvVHbl3aLcSjQdg2Zb9PPb5nxiGUaDltqYUhmnSrnFN3rtvBAG+rtXhOZ9hmDz11Tz+3rCn0Ps1pdB1jY8euIa2jWuwKf4QJ9ITsGg6kaF1qeEfdkn7F6I8ciXnIQkbIYSowN7d+SfTDq902CnqpchRXF2jjSdCEkII4aJ5a3fyzNd/oSi8x46mFJENqvPJg9fifRkvKUlNz+Te939lx+FYzj/FyUlUjO4VxWOje5d40gbgZHwKj30+l+2HTzqVuLHoGrf078D9w7uXaBzbD53k1jdmYBhGke//mlJ0bl6HqRNGXvLPwmYYfL1gHT8u3kjS2QyUIvf5t2tck4evvYIWdWUWrxA5XMl5XL5HdCGEKEP2ppzg2Nkz6JpO0+AaVPUNKZHtPtBsIInZacw7vgldaQVm2+Rcn9RskCRrhBBuk2rNIN2aRZCXH766zABxVUJqOi9+9zdQdENkwzTZfOAE3y/ayB0DO3kuuBJ2IPUUJ9MT8dIsNAuuQZCXn0uPf/abv9h55MJkDZC7XGnGss3UqRLG2D5tSyTm/KpVCmJgx2ZsP3zSqfFWm0HdaiU/w+Szef8BZrFf1himyeodh9ly8ARRDWpc0v50TePOgZ25pX8HVm4/xMn4ZLwsOm0b1aRB9fBL2rYQlztJ2AghRClacnIbX+1fyu6U47m3KRQ9qzTj7kb9aBJ8aWu6daXxfOvruKp6FD8fWc3quD0YmHhrFq6qHsX1dbrQLF97YyE8zTRNdibHEJeRjLdmoWVobYJdPEkTZY/NNPjn5DZmHF7FlsQjgL0b3RVVmjOmXjfaVWpQyhGWH7NXbsPqRLFY0zSZsSyaW6/qgK6Vr+Wti05u5bsDy9iVnPde6K1ZGFi9DXc06kM1v1CH2zh4Mp5lWw44tb+vFqzl+l5RuUvLStKgzs1597d/yXaimHCArzd92zYu0f2fSkhhxbaDTs3w0TXFzH+3XHLCJoeXRXdbPR4hLleSsBFCiFLy3YF/mbrnL9R5/RVMTFbE7ea/03t5r/2ttA+/tBMbpRRdI5rQNaIJhmmQZVjx0bzcMh1cCGeZpskfMRv4/uC/HD57Ovd2L01nYPU23NWoL1WdOEkTZU+2YeXp6Oksjd2Blu/4ZmCyPG4XS2N3cFejvtzVqG8pRll+LNy4x+m6KKeTzrLzSCyt6pWf5Sef7l3Il/uXXPBemGVYmXt8I0tjd/Bp57toEFi12O3MXrUNXVMF6rUU5UxyGv/tPEyPVvUvKfbChAT4MvrKNvy4eKPD5ci3DOhQ4nWH9p844/TrxWaY7DoSW6L7F0KUrPKVfhdCiApi7el9TN3zF1D4pGXDNMg2bPzfxu9Jykorsf1qSsNX95ZkjShVpmnyxo45vLLtN47kS9YAZBs2/jy+iZtXf1ggkSPKjzd3zmVZ7E7AnqTJL2dZ5uf7FjP72HqPx1YeJZ/NcG18mmvjS9Pik1v5cv8SoPD3QptpkGpN58H135BtWIvd1rG4JHsRZicoBcfiEl2O11kTR/akX7smgL1WTH6aZr9+bY/W3H5VyS9fc7U6afELp4QQpU0SNkIIUQp+OLS8wDfPhTExSbdlMjdmo4eiEsIzZh9bz8yja4DCa3LYTIPk7HQeWv+NU13ORNkRm5HE7KPrnDoJ/HzvIvn9OiEk0LUlgiH+vm6KpOR9d+DfC2bWnM9mmpzKSGLpqR3FjtN1zekvI0wTty4bs+gak+8YxGu3D6RlvYIzg9o1qsmb44fy1Li+ucmbklS/WiUHP9E8uqZoXDOixGMQQpQcWRIlhChR2YaVFXG7OZZ2BovSaRlSm9ahtWVGRz7xmamsOb3Xqe+0TGD2sXXcUL+Hu8MSwiNM0+T7g/86HGczDY6lx7Mqbjc9qzT3QGSiJPwRs8HpsbGZyaw9vY+uEU3cGFH5N6B9E3YeOeXUzIkqoYE0q1PF/UGVgEOpsexMjnFqrIZizrH19K8eWeSY1vWqsWhj4a2lC9OqfjWysq0sid7Pnpg4ABrWCKdv28b4lECnLU1TXN2xGVd3bEZCShop6VkE+/sQ6mICzlU1woPp0qIua3cdcbg8zGaYXHdF0T9TIUTpk4SNKPdM02Rd/H5mHv6PbUlHMU2TuoERXFu7M1dWbYGXJi9zTzBNkx8PreDbA8tIyk7LnT1iYFI/oAqTmg2SD+XnnM5McWkCcmxGsttiEcLTdiQd42jaGafGakrxx7ENkrApRw6mOl8PQ0NxIDVW3hscGNa1JR/NWUW21Vbse4dSMKZ3m3JTcPhEeqLTYw1MjqcnFDtmaNeWfPD7CofFfjWlaFqrMtH7jnPve7+SnJaZW3zYajN4ffoS7hzYiZv6tS+xL5vCgvwJC/IvkW05465BnVmz80ixYzRN0aZBDdo1uvTGAzGnk5i5fAt/r99NSnomQX4+DOjQlGt7tKZWROglb1+Iy1n5OKILUYRUawYT1n/FhHVfsTxuF6czUziTlUp0/CGe3jydMSveIyYtvrTDrPBM0+T17b/z/u75JGXb660YmLm1Cw6djWPShm9ZeGJLaYZZZvi4mET00SXpKCqO2Iwkp8capuOTNFG2OFrecsF4mXzpUGigHy/dehUoivzpKqVo37g2N/Rp59HYLoWr723eDt47QwJ8uWtwl2LH5Pz86lcP541flpKclgnYEzXWc4me1PRM3v1tOe/86ngmYFnVpmFNXr19ILqmoZ+37Crnb65Z7Sq8fc+wS05K/bxsM8Oe+4rvF23gRHwKqelZnIhP4ftFGxj+/Nf8vGzzJW1fiMudJGxEuWUzDR7b+AMbzhzIvZ4jJ1FwPD2Be9d+QWIJFm0VF1p0ciuzjq0r8n57LQOT57f84tLJWkVV078S4d6BTo3VlUan8EZujkgIz/HWXeuI4uPieFG6mgRXd3oGoYFJk6Dqbo2nohjQvinv3DucauHBgL3+ikXXUMpeL+XaHq35YMIIvCx6KUfqvCbBNZz+AkNXGh2c6Jh4x9WduP1qeyHf8xMVmlJ4WXTuG9aNeWt3OdzWD4s3smZX8bNUyrKrOjRlxjM3ck2PyAJLvBrWqMyzN/Tjy/8bRXDApdU7+nPNTl6f/g+myQUFnw3DxDTh9en/8OeanZe0HyEuZ/K1rSi3VsbtZn38gWLH2EyD2IwkZh5ZzZ3SPtRtph1aiYa6oBtIfib2zkezj62/7Fu5WjSd6+p24fO9i4v9mYH9NXx9neK/MRSiPGkZUhuL0rA6UWxWQ9EpvKEHohIlZUjNdny0529sThRcqelXifaVHJ+EC7srWjegR8v6/LfrMJv2xpBts1GtUjBXd2jq9roo7hBo8WVQzXbMObbeYfFpm2lwXW3H74VKKQZ1akZqeiYb98Zw/Iz9S6KIkECGdGnBiO4tefOXZU61/9Y1xYyl0XRuVsf5J1XGNKgezpNj+/DoqCtJSc/E26IT4OtdItvOttl459dlTo1959dlDOjQBC+9/CQUhSgr3DLDJiYmhhtvvJHw8HD8/Pxo3bo169dL60ZRsn4+vPqCVomFMTD55ch/WA2bB6K6/JzKSGJb0lGHiQew/y7mxWzyQFRl3+g63agdEI6uij4MK2BQjba0Di2/HxaFOF+otz8DqkcW+9rPb0Ttkm97K9wnzDuQG+o5VyT9/qZXSUF6F2maoluLetw/vDuTrrmCMVe2KZfJmhy3N+xNsJefw+PBqDpdqRtYfDejk/Ep3P3OTK576Tt+Xb6FQ6fiycy2kpaZja+3hZ6t6xMW6M/iTXsdJmvAXpD33y0HyLaW/8+PFl0jLNCvxJI1AP9uOUB8SrpTY+NT0vl3S/FfsgohClfiCZuEhAS6d++Ol5cX8+fPZ8eOHbz11luEhYWV9K7EZW5r4hEMZ1omAAlZZzklS3HcIjHrrGvjs10bX1EFevnycae7aBpcA6DAh9Wcy8NrdeCZVtfICY2ocO5u1J8Aiw+6g9f27Q17U9U3xENRiZJyb5MBDK/VAeCCE3Fd2UvSP9p8KP2qtS6F6ERZUtU3hE873UUVH/tSLy1flZ6c186oOl15qPngYrdzKiGFm6b8xKZ9xwB7ssVqM3ITM3uPn+a2N2aw7dDJ3Fo1zjBMk9SMLJee0+Vi26GTucWaHbHoGtsOnXRzREJUTCW+JGrKlCnUrl2br7/+Ove2+vXrl/RuhHA4ffZ8zky/F67z131cGu+nl9y3O+VdZZ8gvu5yL5sSDjLr6DoOn43DonRah9bhmjqdqRtQubRDFMItaviH8Vnnu5m0/ltOZiQWWFKpoTCB2xteedkvnyyvdKXxVMuRDKgexS+HV7MibjdW04a/7s3AGm25rk5nGgZVK+0wRRlRL7AKv17xfyyL3cHsY+s5npaAt6bTIbwh19bu7HBmDcCrPy0mMTW9yJkzhmGSabXywncLnFoOlUMpCPCROlqFsbmQ+LqY8UIIuxJP2MyZM4errrqK66+/nmXLllGzZk3uu+8+7rrrrpLelbjMVfcN5UjaaaeKG1qURmWfILfHdDmq5V+JWn6ViEmPd/i70JVG76otPRJXeaGUol2lBrSTOg7iMtMgsCq/XfF/LI/dyZyYDZxMT8RH96JTeCOuqd2Jan6hpR0iYO+Cty5+P3OPbeBYWjw+uhftKtVnRK2ORPgGl3Z4ZZZSio7hDekY3hDTNLGZBhZN6leIwlk0nb7VWtP3ImZdHT+TxMptBx1+BjEMk0OnEmjfuCbR+487VcOma4t6eHtJyc/C1IoIdToJYzMMae8txEUq8SPQgQMH+Pjjj3n44Yd56qmnWLduHRMnTsTb25tbbrnlgvGZmZlkZmbmXk9OTi7pkEQFNbJOJ97bNc/hOF1pDKgeSYDFtZkgwjlKKUbX7cbbu+Y6HGszDa6p3dkDUQkhygOLptO7Wit6V2tV2qEU6mR6Ig9v+JZ9qafQlZY7s3NT/EG+3PcPtzfszV2N+sqyRQeUUliUJGuEeyzbfMBe9M2Jb/B0TSM0wM/pGjajr2xzyfFVVFd3aMpbM5c5VePHNCElLZOsbKskwIRwUYnXsDEMg3bt2vHaa6/Rtm1b7r77bu666y4++eSTQsdPnjyZkJCQ3P9q165d0iGJCmpIzfYEefkVWO9clLFOFkAUF2dknU5EhtZ1+Lu4o2FvGgZV9VBUQghx8eIzU7lrzaccPBsHFFyGa2BiYPLF/n/4ZO/C0gpRCAEkp2Wga86e0pj4+3pzY992Dkde1zOSbi3qXlpwhUhJy2DG0mgmT/uHKTOW8PvKbaRnZpf4ftwtOMCXUb2icDZf/dEfK7nvg99Izyp/z1WI0lTiCZvq1avTokWLArc1b96cI0eOFDr+ySefJCkpKfe/o0ePlnRIooIK9vLj/Q634WfxLrS7gK40NBQvRY7KLewq3MNbs/B+h9typzJrKDRUbnFJH83CA02v5u5G/Uo3UCGEcNI3B5ZyOjPFYb20bw4s5VjaGQ9FJYQ4X0iALzbD2fooiiB/Hx669goeGNEdv3P1aSy6lltA19fbwj1DuvLEmD4lOnvOZhh88PsK+j3+Gf+bsYRZK7fy6/ItvPTDQvo9/inf/r0e08lmGmXFxJE96NW6oVNjTROi9x3ntZ8WuzkqISoWZZbwkWHcuHEcPXqU5cuX59720EMPsWbNGlatWuXw8cnJyYSEhJCUlERwsKwNF47FpMXz/cF/+TNmE5mGPWuvoehVtQU317+ClqEya8uTYtLimRuzgaNpZ7AonZYhtRhYsy2BFt/SDk0IIZySbs3i6iWvkW5z3B1GU4pxdXswsdlAD0QmhDjfifhkhjzzJc6e0Xz1yCjaNKwJQHpmNgs27GbvsdOAScMalbmqQ9MSbX8N9lpYz327gD/X7Cx23K0DOjBxZM8S3be72QyDmcu38L8ZS5z6HWhK8eerd1A1TGpLisuXKzmPEl9E+NBDD9GtWzdee+01Ro0axdq1a/nss8/47LPPSnpXQgBQ078ST7QcwQNNB3L4bByGaVLDL4xKPoGlHdplqaZ/JcY37l/aYQghxEXblRzjVLIG7G1/V5/ew0QkYSNEaaheKZgrWjdgxbaDxdam0TRF/aqViGqQN+vaz8eLEd3cX0Nryeb9DpM1AN/8vZ4roxoR2aC622MqKbqmEeTn43TCDOCP/3Zw50CpaSiEM0o8YdOxY0dmzZrFk08+yUsvvUT9+vV59913ueGGG0p6V0IUEGDxoUVIrdIOQwghRDmXaVhdGp9hk5oMQpSmp8b25cbXfyI+Ja3QpI2mKXy9LEy+Y1CpFAmfvmQTmqYwnOhMNWNpdLlK2ADEnE7ComlYnViappR9vBCuOp10ltmrtrMnJg5MkwbVwxnRvVWFn63lljLdQ4YMYciQIe7YtBBCCCGEW0X4OP/hT6Go6hvixmiEEI5EhAby/RPjePG7v1m98zCaptCUsreUN0ya167CCzcPoGGNyh6PLTU9k/V7jjk11maY/BO9z80RlTxd0zCdadOF/ZiZUy9ICGdYbQbv/fYv05ZGF+gGt3jTPj6ft4bh3VryxJg+eFkqZjdC6asmhBBCCJFPg8CqNAqsyv7UWIcnISYmQ2u191BkQoiiVAkN5MOJ13AkNoFFG/eSmJpOgK83vaIa0qx2lVKL62yGc8src2RmW7EZhgudr0pfZIPqTrVKB7AaBq3rl68ZRKL0mKbJS9//zZ9rdhb5bvz7qm0kpKbz5t1D0TTPz6BzN0nYCCGEEELko5TixvpX8MLWX4odp6EI8fbP7ZAnhCh9daqEcfvVnUo7jFxBfj4ocHL+Cfh5e5WrZA1A+8a1qB0RyrG4RIfPM8DXmwHtm3okLlH+rd55mLkO6j+ZJizdvJ/Fm/bSv30TD0XmOeXraCCEEEII4QEDa7RhVJ2uABT2fZ2uNHx1L95pfwu+updngxNClBv+vt50bVEX3Ylv/nVNMaBD+TvhVErxyPW9Cj9YnufBkT3w9ZY5A8I5M5ZEO/W3oynFtCWbPBCR58lfixBCCCHEeZRS/F/zITQKqsa3B5YRkx6fe5+G4ooqzbm3cX/qBZbeUgshRPkwtndbVu047HCczTAZfWWbS9qXaZps3BfDzH83s+3QKQzDpFGNcK69IpLuLeu5bfZOz9YNePW2gTz37QIMw8TI1zZKP1dw+cFrenLdFVFu2b+oeAzDZOWOQw6LdYO9Y2P0/uOkZ2bj51OxvkSRhI0QQgghRCGUUoyo3ZHhtTqwNfEIJ9IT8dJ0WofWIcI3uLTDE0KUE91a1mP0lW2YsTS62HEThne/pHo7ZzOyePSzP/hv5xF0TeXWlYlNTGH5toM0rlmZqRNGEhEaeNH7KM7VHZvRvkktfl+5jXlrdpF4Np1AX2/6tmvMtT0jqR0R6pb9ioop22ZzKlmTX1pmVoVL2CjTNF37KbhZcnIyISEhJCUlERwsH4aEEEIIIYQQ5Ztpmny7cD1f/bWO1PTM3E5JVptBpSA/7h/WnZE9Lr4eltVmcN/7v7JxX0yRJ7m6pqgdEcr3T4wjwNf7ovclhCeYpkn3SVPJyLI6NV7XFCvfnYC3V9mfk+JKzqPsPxshhBBCCCGEKMeUUtw6oCNje7fln037OHgyHqWgSa0IrohsgJd+aS2Jl23Z77B9uM0wORybwKwVW7mxn3S3E2WbUopBnZoze9U2h13IdE3Rt23jcpGscVXFe0ZCCCGEEEIIUQb5eFkY2KlZiW93xtLNaOdqxRTHNGHa0mjG9WlXIVsgi4plVK8oZq3Y6nCczTAZ27utByLyPOkSJYQQQgghhBAeYpomZ5LPcvxMMulZ2SWyzc37i14Kdb4TZ5KJT0krkf0K4U5NakXw2OjeQPFNyB4Y0Z2ohjU8E5SHyQwbIYQQQgghhHCz9KxsZq/cxrQl0RyNSwTAomn0b9+EG/q2pUXdahe1XdM0sRqGS4/Jttkual9CeNroK9sQHuzP1NkrORKbiFIACtM0qREezD1DuzKkc4vSDtNtJGEjhBBCCCGEuGzFJ6cxe/U2lm7ez9n0LMKDAxjYuRlXdWiKn3fJdJxJTE3nnvd+Ze+xuAK3Ww2Dvzfs5q/1u3hmXL+LKjyslKJqaBAnE1KcGu9l0QkL9Hd5P0KUln7tmtC3bWM27o1hb0wcpgkNqleiY9M6FX5pn3SJEkIIIYQQQlyWfl2+hSnTl2AzTXJOi5Sy13oJ8vfh7fHDaN+k1iXtwzRN7njrZ7YePOGweOpHE6+hS/O6Lu/ji3lr+GTuagwHp3a6phjSpQXP3zTA5X0IIUqGKzkPqWEjhBBCCCGEuECmLZs/YzYyZftsXts2i28PLON0RnJph1ViZq/azqs/LcZqGOT/Djvn4tn0LO774De2Hzp5SfvZuC+G6P3HHSZrNKX4Yt6ai9rHyB6t8PW2oCnHsw0qanFWISoiWRIlhBBCCCGEKGDW0bV8sPsvUq0ZWJSGiX2myMd7/mZQzbY81mI4vnrJLBcqDelZ2bzx85JixximCTaDN39ZytePjrnoff22fCu6phwmbAzTZOO+GI7EJlCnSphL+wgPDuC9+0YwYeosrDbbBfvSNYVpwiu3DqRJrQiXn4MQonTIDBshhBBCCCFErp8OrWDy9t9JtWYAYDUNbKaBgYmBybyYTTy84VuyDWspR3rxFqzfTVqm4w5Nhmmy+cAJ9sacvuh97T9xxmGyJr9DpxIuaj/tm9TixyfHcVWHZuha3mmeUtC9ZX2+fGQUV3VselHbFkKUDplhI4QQQgghhADgWNoZ3ts1r9gxBiYb4g/w25G1jK7XzUORlayNe445NesF7O2EN+w9RuOalS9qX84sU7qU8fk1qB7OK7ddzSPX9+LgyXgM06RORCgRoYEXvc2i7E05wfbEY1hNG7X9w+kQ3hBdyXwAIUqSJGyEEEIIIYQQAPx2ZC1KKZzpSzLj8CpG1e2KuoQEQ2nJtNpwtvWK0hRZ2Rc/m6hlvarsjYlzepZNoxquJ4bOZmSxJHofsYmpeHtZ6NikFm0b1XR5O87YGH+QD3bPZ3vSsQK3V/EJ5raGvbmmdqdy+ZoQoiyShI0QQgghhBACgMWntjnsNARgAsfS4zl8No56gVXcH1gJqxYWhFLYn4gDhmFSNSzoovd1Xc9Ifl2+1enxvy7fwn3DujmV9MjKtjJ19kp++XcLmdlWdE3DNE0M06Rlvao8ProPrepVu+jYz/dv7E4e3/RjoQm92MxkpuyYzbG0MzzYbFCJ7VOIy5nMWRNCCCGEEEIAcPZc3RpnpVoz3RSJew3p0sLpGS8Bvt70imx40ftqWrsK/do1dnqp05d/reWHxRsdjsu22njwo9n8+M8mMs/NALIZRm7CbefhWO5462c27D1W3GacdiYzhaeip2Gcq2dUlB8PrWDJqe0lsk8hLneSsBFCCCGEEEIAEOLl79bxZUXjmpXp1LQ2ulZ8EkUBY65sg6/3pS1MeOmWq+naoq7T4z+Zu5p0B0WRv124nrW7jxS5fM0wTWw2g//7ZA4ZWZdeIHr2sfVYDZvDSUkaimmHVl7y/oQQkrARQgghhBBCnHNV9Sg0HM8EUSgaBVWjln8lD0TlHpPvGEStyqFoRSRtFNCzdX3GD+l6yfvy9bZwbc9Ip8enZ2azYP3uIu/PttmYvmSTwzo8hmmSnJbJwg1Fb8tZf8ZsLHZmTe4+MYlOOERsRtIl71OIy50kbIQQogI5lZHEslM7+OfkNvYknyjtcIQQQpQzI2p3dGrpjonJmLrO1Vkpq8KC/Pnu8THc0KcdAb7eBe6rEhrIpGuv4M3xw7DoJXPKtPtobIF228Wx6Bq7jsYWef/m/ceJT0l3aluaUvxVTPLHWfFZqS6NT8g6e8n7FOJyJ0WHhRCiAtiTfILP9i1ieewuzHzffjUJqs4dDXvTu1qrUoxOCCFEeVHFN4RnW1/L81t+KXKMAvpVa82Qmu08F5ibBPn78tC1V3Dv0G5sOXCctMxswoL8aFWvmtPJFWcZpokr+S2jmBo7ianOJWty9nsmOc35HRfBV/PiLM7XLPLVvR0PugSmabJpXwzr9xwjM9tKldBABnRoSlign1v3K4QnScJGCCHKuY3xB5i4/htsplEgWQOwN+Ukj0f/xP1NruKWBr1KKUIhhBDlycAabQmw+PL2zrkcT09AV/ZFUlbTwE/3Zmy97tzVqC+aqjiT9X29LXRqVset+6hXtRJWm+HUWJthUK9aWJH3+/u6lgwJ8vNxaXxhelZpzh8xG7CZjp9DNd9QartxudyGPcd4bdpiDp6MR9cUSilshsFbM5cxtEsLHhl1JX7eXm7bvxCeIgkbIYQox5Ky0nh4w/dkG7YLkjVA7m0f7llAs+AadK7c2NMhCiGEKIeuqNKcHhFNWX/mAFuTjmAzDGr6V6JP1Vb4Wdw7c6Ki6tO2EYHTvEnNyHI41qJpDOrUvMj72zasiZ+Pl8PCxABKwZVRF9/lKsd1dbrw+7F1jveHYlTdrm5L6K3ecZiJH87K7YZl7/Zlv2y1GcxetZ0DJ87w8YPXXXKxaCFKW8VJiwshyp+DB+GJJyAqCmrUgOBg+79RUfDkk3DoUGlHWObNjdlIui2z0GRNfrrS+PHQCg9FJYQQoiLQlEanyo24o2Ef7m7cj8E120my5hL4eFm47eqODscpYNSVbQgtZmmPn48XI7q1KrJgcn5eus7QLi1cCbVQTYKrc0O9HsWO0VA0C67BdXW6XPL+CpOelc3jX8zFMM0iCy4bpsnWgyf5esFat8QghCdJwkYI4XkLF8LQodCwIUyZAlu2wIkTkJJi/3fLFnj9dWjQwD5u4cLSjrjMmnNsnRP9GsBmGqw5vZczmSluj0kIIYQQhbt1QEeuO9ct6vzizjnX+7VrwoMjezrc1vjBXahdObTI1uQ5tz5zQz+CA3wvPuh8JjYdyJ0N+5xbJqdy96Gfm03TNaIJH3a8A1/dPcuRFqzbTWp6llPdsX5etplsq80tcQjhKTJHTAjhOTYbTJoEU6c6N940Ye5c+38TJsC774KuuzPCcic2M9npsSZwJjOFcJ8g9wUkhBBCiCIppXhybB+6t6zHT0s2sW730dz7WtWrxtjebenfvolTM2eCA3z56pFRPP3VfP7bdQRdU5jYlyTZDIMgfx+eHNOXqzo2LdH4727cj+vrdmHOsQ3sSDqG1bBRyz+c4bU70CCwaontqzB/r9+NUjhM2AAknc1g474YOru5NpEQ7iQJGyGEZ9hsMGYMzJx54X2RkdCjBwQGQmoqrFhhn2WT39SpcPIkTJ8uSZt8vDWLSx0bvDU57AshhBClSSlFr6iG9IpqSPLZDJLTMgj08yl2CVRRwoL8+ejBazlw4gxz/9vBqcRUfCwWOjStRb+2jfH2cs/7fph3YKk0M0hITXcqWZMj+WyG+4IRwgPkk7sQwjMmTSqYrNE0GD0a7r8funWjQJ9L04RVq+DDD2HGDDDOdSOYOdO+nQ8+8GTkZVrn8EYsPLnVqY4N4d6B1PIP90BUQgghhHBGcIBviSxXalA9nIlOLKMq74IDfFHg1HJwgCD/S++OJURpkoSNEML9Fi4suAzKzw+mT8c2ZAirth/i5w9/Z+eRWEzTpGGNcK67IpLeXbrg1b27fVbOmDGQnm5/7NSpMHw49OtXOs+ljLmuTlf+OrHZ4TgNxXV1u2DRZHaSEEIIIcqnvm0bsz7fMrLiBPp606ZhTTdHJIR7SdFhIYT7vf9+3mVNg+nTSeo7gDve/JkHP5rNfzsPE5+SRkJqOhv3xvDEF/MY/cr3nIxPgWHD7MugNK3w7V3mWofWZnCNthS30l1XGrUDwhldp5vH4hJCCCGEKGmDOjXDx9tS7OcesBdwvqZna2nrLco9SdgIUYFlZ2WTEJtEemp66QVx6BD8+Wfe9dGjyR40mAlTf2P74ZMA2Iy8ia3GuYXJR2MTGf/uTFLSM+1Jm9Gj87Yxd67HW34fPnuaz/Yu4rVts3h751xWxu12ahmSuymleLrVNYyo3QnI69KQ/3LT4Bp83OkuAr1KpkOEEEIIIURpCPTz4eVbrgZFkUkbTVM0qBHOXYPc01pcCE9SpulK2Sb3S05OJiQkhKSkJIKDg0s7HCHKpT0b9vP7B/NZMm0F1mx7O8OmHRsx4oGB9B7THd3iwWUxTz5pb9GdY8UK5nuF8/TX8x0+VCmYdM0V3NSvvb0Qcc98a7OfeAImT3ZDwAXFZ6by4taZrD69p0AyxGYaVPUN4elW19ClcmO3x+GMI2dP89vRtWxJOIzVtFE3IIKRtTvSNqw+SjnuNuEOGWmZbFq8lZT4VAJDA2jTpxX+Qa4XVRRCCCGEyPHv1gO89tNiYhNTsWgaKPuXfqZp0qdNI567sT9B/vJFlSibXMl5SMJGiApmzkcL+OCBL9B1DZs1bwaIpikMw6Rt39a8NPtxfD1VhC0qKq/jU2QkREdzyxvT2X7oVO5smuJUrxTE3FfusH+LEhUFW7fmbTc62l1RA5CYlcbtqz/iREZiobNpFAoFvNX+ZrpHlFzLzIogPTWdb5//mXlfLCI9Ja9Dg4+/D1fdeiW3vTKWwNCAUoxQCCGEEOWZzTBYuf0Q63YfJTPLSpWwQAZ1ak6NcDmHFGWbKzkPWRIlRAWyas46PpjwBZgUSNYAGOeWHW1eup03bpta2MPdIy4u73KPHpjA9sPOJWsATsSnkJCSbp9u06NH4dt1k4/3LOBERkKRS5/Mc/97dvMMMmzZbo+nvDibnMZDVzzHrPfnFUjWAGSmZTL304VM7PY0yWdSSilCIYQQQpR3uqZxResG/N91vXhqXF/uHNhZkjWiwpGEjRAVhGmafPvcDJRW/NIXw2bw7y//cXjnMc8ElpqadzkwENPMSx45y5bT1jswMO/GFPee7KdmZ/Dn8U3YHCSWTCDVmsHik1vdGk95MnXClxzcegTDVniiy7AZxOw9wZu3f+ThyIQQQgghhCg/JGEjRAWxd+MBDmw5jOlEMkSzaMz7bJEHoqJgkiU1FU1TVA0LLHr8eXy9LYQG+uU+PldQUAkFWLh1Z/aRZVidGqtQLDu1w63xlBfxJxP4Z/qKIpM1OQybweq56zlx8JSHIqu4bDYb+zcfYuvynRzecZQyttJZFMJmtcnvSQghhBAOSZ8zISqIw9udnzFjWA0ObjvixmjyiYiAEyfsl1esANPk2p6RfPLHaofLonRNMaxrS7wsOpim/fH5t+tGKdYMx4POMTFJtpZiJ64yZNnPq51KGgJomsY/P67ghmeudXNUFVNWZja/vz+P36fOJ+7omdzbazWtwTUPDmbQXX3RdQ8WGBfFij16mrmf/M38LxeTGJuMpmu07N6UERMG0n1EJ88WgxdCCCFEuSAzbISoKFxsAuSxrkGDBuVd3rIFVq3imu6t8ff1QismBoX9hH7MlW3sN6xcmVdwGGDgQLeEmyPEy9/psRqKMG8poAtw5ng8uu7cW4vSFGeOx7s5ooop/WwGj/d/iS+e/LFAsgYgZs9x3r//c14Z/Q42q62UIhT5rftrE7c1e5AZ/5tNYmwyYJ9ltn3lbl4e9TZPXPUK6amS9BVCCCFEQZKwEaKCaBhVz+mxmq7RqI3z4y/J+PH2gsE5PvyQSsH+fHD/SHy9LeiF1NzRNYWua/zvrsHUq1bJfuNH+eqdKAX33OPWsDuFN8JP93ZqrIFJ32qt3RpPacvKzGbfpoPsWL2b2KOnixzn4+/j/FIP0z5euO69ez5jx6rdhc5mMk3AhBWz1vDNczM8H5woYO/GAzw34n9kZ2RfsFQw5/qWf3fwyuh3ZJmUEEIIIQqQhI0QFUSDyLo07djIYdFhsJ8kDLq7nweiAurVg8GD867PmAFz5hDVsAY/PXUjw7u1wjvfUgBd0xjQvik/PDGOXpEN7TfOnm1/XI4hQ6BuXbeG7WfxZkStjmgOpi5pKCp5B3BllRZujae0JJ1O5vPHf2B09bu4t/1jPNj9GW6oey//1/t51vy54YLx7fpFXtChrCg2q412/Sp2ossd4o6d4Z+fVjgu3m3C7x/Mk5kbpezHV37FsBnFJmMMm8Ha+ZvYtXafByMTQgghRFknNWyEqEBufXkMTw18tdgxSlP0u/EKajaq7qGogIkTYe5c+2XDgDFjYPp06gwbxjM39GPSNT05djoJwzCpWTmEkADfvMfOnm0fbxgFt+cB4xv3Y2PCQfYmn8DgwpMtDYWuaUxpeyMWreLVnzh1OI6Hez3H6Zj4C2YGbFuxiy3LdnDbK2MZ99Q1ube36NqEeq1qc3jHsWJr2ShNUaV2ZdoPiHJb/BXV398uRWkK0+Z4NkbG2UyW/7qGAbdc6f7AxAVOH49n1Zx1TtV10i0af3y8gOadG3sgMiGEEEKUBzLDRogKpMOAKB795n40XUO3FPzz1s7VFek6tAOTPh3v2cD694cJE/Kup6fDyJEwbhysWEGgrzfNalehRd2q9mRNToHhcePgmmsgI18B4AkToJ9nZgf5W3z4pNNdDKzRBl1pKBQWpeXOumkcVJ3PO48nKsy9s31Kg81m4+nBr3Hm+IXJGshbyvH1M9NY/tua3NuVUkz6ZDy6rqEVMdtLKYVSioc+G4+myduQq04dinO6BpXupXPyYKybIxJFObTtqNNFuG1Wg93r97s5IiGEEEKUJzLDRogKpv9NvWjasRF/fLyAv79dSlpyOpqmaNO7JcPvH0iXoe1L5yT53Xfh5EmYOdN+3TBg2jT7f5GR0L27vQV4aqq9wPCWLRdu4/rr7dvxoACLD8+2upZex+owd+4yUs+mE1Q1iOE396dHq4q7nGf9gs0c3uG485jSFNMm/0bPazrn3tayW1NeX/AsL13/FslnUuyzQQwz91//ED+e/OFB2veX2TUXw+Ll/Gwu0zCxeMtbfWlxuSaNk8kdIYSoyA6djGfhxj0kpqYT4OtDr8gGtKxXrbTDEqJUKLOMVbhLTk4mJCSEpKQkgoODSzscIcq9rIwsLN6WsjGTwWaDSZNg6lTXHzthgj1Z4+E2xRsXbeGd8Z9y8mAsukVHKTAME9Mw6XldFx76dDyBoRWvQ9QL17zB6j/WFzq7pjCfbXmL+q3qFLgtKzObFb+t4d9fVpF0OoWgSoH0GNmZXqO64uMnxYYv1qIf/mXKzR84Pf6Nxc/TpncrN0YkinLqcBw31r/PqbG6RaPHyM48M+NhN0clhBBl06mEFJ7/dgFrdx9F1+yzcU3TxGaYNK0VwYu3XEWTWhGlHaYQl8yVnIfbz+Bef/11+xT5SZPcvSshRCG8fb3LRrIG7MmWDz6AhQth6NCC3aMKo5R93MKF9sd5OFmzZt5Gnhz4KqcOxwH2IrnWbFtuAdEVv63h4V7PkZZS8Yq6xuw74XSyBih02Y23jxd9xvbghd8e451/X+al3x9nwC1XSrLmEl1xXRenkoRKKWo2rk7UlS09EJUoTNW6EbTvH5m7JLU4NqvBkHsGeCAqIYQoe2ITU7l5yjQ27LXP7rUZJlabge3czMO9x09z2xsz2H1UlvmKy4tbz+LWrVvHp59+SmRkpDt3I4Qob/r1gzlz4MABeOIJiIqCGjUgKMj+b1SU/fYDB+zjPFSzJr+MtEwm3/Ae5rnZNIUxbAaHdxzjuxd+9nB07mfxcm0ZjSy78RxvX2/Gv3lz8YPO5ULve/c2p+vdCPe44ZnrHC6N0nSNFl2bSHJNCHHZeu2nxcSnpOUmaM5nGCaZVitPfDnP9eWmQpRjbkvYpKamcsMNN/D5558TFhbmrt0IIcqzevVg8mSIjoaYGEhOtv8bHW2/vV69Ugtt6fSVnE1Kc/ihwLAZzPtiERlpmR6KzDNa92zu1KwAAN2i07hdfTdHJPK7+vY+3P/+7WiauuD3pDSFxcvC09Mm0Wlg21KKUORo3bM5T3z3QKHFm0M/eQAAhYhJREFU4JWy/1e/dR1emv24JNeEEJel42eSWb7tQJHJmhyGYXL4VAIb98Z4KDIhSp/bEjb3338/gwcPpp+Db8YzMzNJTk4u8J8QQpS25b/9hyqiy9H50lMy2Lxkm5sj8qyh9w5wakmUbtHoNaoroREhHohK5DdiwkC+P/AhYx4fQe2mNQirFkq9lrW5/ZWx/HTkE3qN6lbaIYpz+ozryScb/8dVt/bGy9cr9/aaTWow4YM7eXfFK4RUlrp9QojL079bnO+Qp2sa/0TvdWM0QpQtbpnDPn36dDZu3Mi6descjp08eTIvvviiO8IQQoiLlnwm1el2vACpiWlujMbzajetyZDx/fnzs0VFzjLSdA1vP29ueu56D0cnclSpE8Ftr4zltlfGlnYowoH6revy0Gf3MGHqHSSfScXLx0JQWKDMqhFCXPZS0jPRlYbVdKZ2nklyBZvVLERxSnyGzdGjR3nwwQf58ccf8fX1dTj+ySefJCkpKfe/o0ePlnRIQgjhspDwIKdn2AAEhlW8TlETPriDq+/oA1BgKYdSChQEhgbwxqLnqdWkRmmFKES54+XtRXj1MIIrBUmyRgghgCA/H2xOJWsAFMH+0rxAXD5KvK3377//zsiRI9HzdXOx2WwopdA0jczMzAL3nU/aegshyoIF3yzhzds/cmqsf7AfP5/4vMJ2P9q78QBzPlrAxkVbyM7Mpkqdygy8oy99xvXAL9CvtMMrVMy+E8z9ZCHrFkSTmZZJlTqVuerW3tJSXAghhChjTsQnM+SZL3H2rPTzh6+nfeNa7g1KCDdyJedR4gmblJQUDh8+XOC22267jWbNmvH444/TqlWrYh8vCRshRFmQmZ7J6Jp3k5acXuzSKE3XuHbSYO5+w0HXHuERpmny1dPTmP76LDRdy63DozSFaZiERgTzyp9P0bRDw1KOVAghhBA5Hv54jsPCw7qmqFMljJnP3SwzFEW55krOo8Rr2AQFBV2QlAkICCA8PNxhskYIIcoKHz8fnpn+MM8MeQ0DCk3aaLpGg8i63PTCKM8H6CHpqeks/nEFO1bvxpptpWrdKlx1W29qNa5e2qEV6tvnZzD99VkABYom5/z+kuNTebTvC0xd8zp1mtUslRiFEEIIUdCTY/uwY8opziSfLTRpo2kKHy8Lk+8YJMkacVlxW5coIYQo7zoMiGLKwueo2agaYG9fbfHSUedaKV85uhtvLnkBvwDH9brKo9+nzuf6anfx3n2fsfjH5SybsYqf35jNbU0n8vzI/3E26Wxph1jA6Zgz/PTab8WOMWwGmWlZfPPsdA9FJYQQQghHIkID+e7xsXRqWgewJ2gsuoZ+rp5g01oRfP3oGJrUiijNMIXwuBJfEnWpZEmUEKKsMU2TLf/uYNPirWSmZVG5ZiWuHNOd8OphABiGwYa/N/PnZ4s4vPMYuq7RomsTht57FY3bNSjl6C/Oz2/M5vPHfyjyfk3XaBhVj7f/fQnfMlL877sXfubHV2ZiONHdS9M1fjrySe7vUAghhBBlw5HYBBZu2Evi2XQCfL25onUDWtStWtphCVFiSrWGzaWShI0Qojw5cyKBpwe/xv7oQwVqpugWDZvV4Irru/LYN/eXq0K3Jw6e4pZGDxTZzjuHpilueWkM4566xkORFe//ej/PlmU7nB7//K+P0GNkZzdGJIQQQgghREGu5DxkSZQQQlyks0lneaT38xzadgQoWDPFZrVfXvHrf7w27j2HyY+yZO4nC51qaW4YJrM//Aub1eaBqBzLysh2abw1y+qmSIQQQgghhLh0krARQoiLNOejv4nZdzI3OVMYwzBZNXsdGxdt8WBkl2bV7LUFkk/FiT+RwMGtR9wckXOqN6iCpjv/tlalTmU3RiOEEEIIIcSlkYSNEEJcBJvNxuwP5xfb8juHbtGY89ECD0RVMtJS0t063l2uvq2Pc4kmBTUaVaN5lybuD0oIIYQoo/Yci+PPNTv5c81Odh+NLe1whBCFKPG23kIIcTmIPXKaM8cTnBprsxpEL9nm5ohKTmiVEOJPJDo9PiSibNQba9OnFfVb1+HIzmPFznrChDGPj5C2oEIIIS5LK7cf4uM/VrHj8KkCtzevXYV7h3WjR6v6pRSZEOJ8MsNGCCEuQnama/VPylO9lH43XOFUDRulFHVb1qZOs5oeiMoxTdN45Y8nqFQ9rNClUTnPaeTEQVx9ex9PhyeEEEKUutmrtvPA1FnsPHLqgvt2H4tj4oe/M2vF1lKITAhRGEnYCCHERQivHupSvZTKtcLdGE3Juuq23nj5eOFoAoppmlw7aXCZmqlSpU4EH66bwogJA/EL9C1wX/1WdXji+4nc+86tZSpmIYQQwhP2Hz/Nyz8sBKCwXgjGuRtf+WkRe47FeTI0IUQRZEmUEEJchICQALqP6MSq2WuLX36DfWbH4Lv6eSiySxccHsQz0x/ihWveANMssk5Pn3E9uOq23h6OzrGwKiHc+86t3PrKGPZvOkhmehaVa1aiTvNakqgRQghx2ZqxdLP9yxgH5fc0pZi+NJrnbuzvkbiEEEWTGTZCCHGRrvu/oRi24j/1aJrCL9C3TCY2itN1aAf+t/A5GkTWBexJp5wZRYGhAdz68hge/+4BNK3svo34BfjSqkdz2vePom6L2pKsEUIIcdkyTZO5/+3A5kSzBJthMm/NTmyGcx0jhRDuIzNshBDiIrXo0oQHP76Ld+/9DE3TLuhQpFk0vLwsvDznCUIql43CvK6IurIln2x8g93r9rF91W6sWVaq1a9Cl6Ed8PbxKu3whBBudiI9gW2JR7GaNqr7hREVWlcSn0KUU2mZ2WRkO19PL8tq42x6FsEBvo4HCyHcRhI2QghxCQbf3Z/qDary02u/sXnp9tzbNYvGFdd14Yanr6Ney9qlGOGla9qxEU07NirtMIQQHrIn+QQf7VnA6tN7CqycqOlXiVsbXsmwmu0lcSNEOePtpbv8GB9vOVUUorTJX6EQQlyidv0iadcvkuP7TxKz7yS6rlE/si5hVUI8G8jBg/DppzB/PsTFQWoqBAZCRAQMGgTjx0O9ep6NSZQphmFwNikNsC9tk5Nucb7ohEM8sO4rsg3bBWUujqfH8+q23ziUGsvEpgPl9SNEOeKl67RrVJPo/cdziwsXRVOKVvWq4eMlp4pClDb5KxRCiBJSo2E1ajSs5vkdL1wI778Pf/55YduHlBQ4cQK2bIEpU2DwYJg4EfpXjEKCsUdPk3AqCd8AH2o1qY6uu/4N4uUg4VQicz9ZyJyPF5AYmwRAWLVQht93NYPH9yM0wsPJxQrCNE2il2xjybSVJMYl4RfoS6eB7eh5XZdyuWww1ZrBwxu+I9uwYRRSlTTnlh8PraBFSC36V4/Mu8802bPhACf2n0S36DTt2JAqdSI8FLkQwhljerdh474Yh+MM02Rs77YeiEgI4YgyTQcpVg9LTk4mJCSEpKQkgoPLX80HIYTwGJsNJk2CqVNdf+yECfDuu1AOExymabJi1lp+fecPtq/cnXt75VrhDL//aoZPuBo/WXOfa1/0QR7v/zKpiWcvqLOkNEVI5WDeWPx8iS7ds1ltrP5jPevmbyL9bAahESH0GdeDZp0al9g+StuRXTG8cM0bHN0Vg27RsVltaLq9llVQWCCPfH0f3YZ1LLH9WbOtrJq9jrmfLuTIzmNomkazzo0Zeu8A2vRuVSKzXWYe+Y83dsxx1EAGDUWzkJp80/U+AJZMX8mPr/7K4e1Hc8copeg0qC23vjyGRm3qX3JsQpSEI7EJHDqVgKYUjWtWpmpYUGmH5FE2w+Chj+ewcvshijoF1JSic/M6vHffCCx62W0sIER55krOQxI2QghRHtlsMGYMzJx54X2RkdCjh305VGoqrFhhn2Fzvuuug+nTy1XSxjRNPnv0e2a+/QeapjDO63ahNEWDyLq8sfh5gsICSynKsiMhNok7Wz5UaLImh6ZrhFQO4ovt7xBc6dJPXtb/vZk3bvuQ+BMJ6BYd0zRRSmGz2mjcvgHP/vww1etXveT9lKbj+08yodMTnE1OL/Tnas+dKF6Y9WiJJG1ij8TxxNWvcnRXTG5SCEC3aNisBm37tub5Xx8hINj/kvZzy6oP2ZUc4zBhk+PXnv/HsreX8O3zM1BKXXACqOkaupfO5HlPE3Vly0uKTYhL8d/Ow3w+bw2b8s0uUQquaN2Auwd3oXmd8n1MckVmtpWXvl/I/HW70DWV2zUq5/KA9k144ear8JX6NUK4jSRshBCionvggYIzazQNRo+G+++Hbt1yzhjtTBNWrYIPP4QZMyB/m84JE+CDDzwX9yWa++lC3rv3s2LHaLpGu36tmTz/GQ9FVXZ9/9Iv/PDSLxckts6nNMWdk29g1KPDL2l/6xZE88yQyZiGWei3t5pFI7hSEB+unVyul8s8M3Qy6/6KLjIJBvY/wcCwQGYc/wwv74tfHpWSkMp9HR4n7uhpbNaik26tezZnysJnL2lZ4KAlkzmdmeL0+ElJPfh67NfFjlGawjfAlx8PfSRJVFEqZq3Yyss/LkJT6oLaLbqm0JTi3ftG0LVF3VKKsHQcOhnPbyu2sudYHACNa0VwTY/W1K9WqZQjE6Lik4SNEEJUZAsXwoABedf9/OwzZYYN40R8MrNWbGPnkVMYpkm9qpW4pkcrGtaobB87Z459Zk56esHt9evn2edwEQzD4Mb69xF39IxT4z+NfpMGkZfXB/D8TNNkdI27SDiV5NT4KnUr8+PBjy96f9lZ2YytfQ/JZ1Iwi0kQabpGt2EdeP7XRy96X6Xp1OE4bmxwH85OQ3nqp0n0HtP9ovf346u/8t3zMxwm3QBenPUY3YZf/IyekcveJCY93unxHV6H/Sv3F5u4AvvyqHveuoVrJg2+6NiEuBjbD53k5v9Nu6C8W35KgY/FwuyXbyMiRJKKQgj3cyXnIQsThRCivHn//bzLmgbTp2MdPIQp0/9hyDNf8tWCtazcfojVOw7z87Jorn/5ex7+ZA5pGVkwbJg9uaNphW+vDItest3pZI1u0Zj/xWI3R1S2pSWnOZ2sAdAOHcb2yKMQFQU1akBwsP3fqCh48kk4dKjYx6/6fR1JccnFJmsADJvBytnrOH3c+cRAWbLh781OJ2s0XWPt/I0XvS+bzcacjxY4lazRdI3fp86/6H0BdItogq6c+2gYnGRh7797HSZrAExM5n9Vcf8eTSMRM2sjZtYGTFvxx6izyWks/nE5M9/+gz8/W8jJQ7EeivLy9NM/m9Ac1HcyTciy2pi1YpuHohJCCOfJ4kQhhChPDh2yd4PKMXo05tChvPjtAuat3YlpUmApSs7a9H+3HOCBqbP4ZNJ1eA0bZl8+NW2afdDcufbtlvGW3yf2n3R6rM1qcNyF8e6WUzB2/YLNZKRlUKlaGH1v6Enjdg1KOzTamacYwT46cwLtrfNO+F3oMvbfnxsK1FcpjmmYrP8rmqtv71NST8Nj0lMzCq2fVBjDMEhPzbjofZ2JiSf+RIJTYw2bwY7Vey56XwDX1unML0f+czhOQ9HbqylL2enchk04HVM+E3TFMa37MFM/hYw/Aeu5WzVMn/6owPEor1a5YzPSMvnyiR+Z98UisjKy0TQNwzBAQaeBbbnv3duo2ah6qTyPiio9M5uFG/bkvg8WxzBNfluxlbsHd/FAZEII4TyZYSOEEOXJp58WbN19//2s232UP9fsLHbKt2GabNp/nDmrt9tvuO++vDtN077dMk63uFCbQ4GljBRM/G/uBsbUGs/Lo97m72+Xsuzn1fz+wXzu6/A4D3Z/mrhjzs0acpV/sD/hNYuuRaCZJvebm5jCcrpywvEHAtO0J/cGDLDXULLZCtydnlJ4Ad7CKE2RlpzueGAZFFY1xKlkDYCua4RVufiW6dZsm+NB+diyrY4HFaNBYFVurN+z2DG60qjpX4kRjTq7tG1vX+9LCa3MMTPXYJ4eCRlzyUvWABiQuQjzzCjMjIWAPVnzaJ8XmPPxArIysu2jcmqJmbB+wWYmdH6SwzuPefQ5VHTxKWlYDeeOSQCnk866MRohhLg4krARQojyZN68vMuRkdCtGz8v24yuOW7pqxRMW7LJPgOne3do3TrvzvmXtpTCE5p1dr4ltFKqTLSQXjVnHc8Nn0Ly6WTA3u7asBnYrPYT8d3r9jGx61OccXIWhSuUUgy/72pUIa8NzTR5mv8Ywf4LHxgZaU/oPfaY/d/IyAvHTJ1qr4WUL2kTUjkY3eLcxwrTMAmtUj7r1HUe0h4fP+eSDzarQZ9x9gRI3LEz7Is+yPH9J4tsp3u+sGqhWLycT1SWRCHnCU2u4rYGV6Kh0Mh77eQslWoaXINPO91Fsxb1CavqXDJKt2h0GBB1ybGVFabtFGbi3UA2UFhSzQbYMBMfxLTu56unfmLPhgNFJjQNm0FaSjovXPOG068N4Zi3C387AF5OHr88zWozyLrEZKwQovwqm0cmIYQQhYuLy7vcowcoxaodh5ya8m2acOBEPPEpafbsTY8ehW+3jKrXsjYtuzdFcyI5pWmKq+8o3eU2memZ/O+WqYBZ5Ownm9Ug4VQiXzzxg1tiGHx3P0KrhKDpBd/u7yWaK8hrb2ugyL72ensL+OhoEqe8yfHHniL1zbchOtp++9ixBWsfzZwJkyblXu01unuRXYzO5+3rRefB7S7lqZWagGB/Bt7R1+HrULNo1G9dh9ijp5nQ+UnG1bmHe9s9xi2NH+D25g/y+9T5ZGdlF7sNvwBfeo/t4VQiTGmKIeMvXKrmKk1p3NtkAHOufIw7GvWhU3hD2oTVY2CNNnzW+W6+7nIvlX2D0S06Q++96oLXVmFsVoNh9199ybGVFWbaDDAzgeJe7yZgcvbUN8z7YrHD2WeG1eDY7uNEL5E6KiWlcnAAtSqH4Pgdw94tqn3jWm6PyVmZ2VZmr9rO2Nd+oNOE9+gy8QP6PfYJH/+xirjE1NIOTwjhQWVjvrgQQgjnpOb7oBZo72aR6eI3bxlZ1gKPB+y1Ssqg1OwM/joRzb4Uez2ahpPasGvNPpRpFPtN9JgnRl7SUhRX5NSn+fOzhRzdfRxd12nZoylV60ZwNinN4eNtVoOl01dyz1u3EFK5ZGedBIcH8cai53is30skxCZhGua5mjV5M2sylYWUjz4n7O6b+XPdbqZNmcaOw6cAUEC3lvUY26ct3X76yT6rJn+XsalTYfhw6NePtn1aUatJdY7vP1Xsyamma1x1a28CQgJK9Lm6Ij01ndgjp1GaRtW6lfHx83Hp8Xe8fgO71u4tctaEZtEIDAmgVtPqvH7j+xckd47tPcFHD37FyllreWXuE8Xu/9qHhvDPT8uLjUfTNfyD/bjqtt4uPY/iVPEN4a5GfYsdc82Dg1gybQUx+04W+TtXCgbd1Y+mHRqWWGylLn0GxSdrcthYO/cfMtNqOLVZ3aLxz08raNuntePBwiGlFKOvbMPbM5c5HGszTMb0buuBqBxLSEnjvvd/Y/exOPIfOuJT0vly/lp+XLyR9+4fUaYSTEII95EZNkKUAaZpcmDLYVbNWcfa+ZtIjHO+s8vlwszeiZH0LEZsd4xT7TDi+mOmfoRpK/szQ0pU/iTLueRNWKCf0w/XlCI0Z3z+5E9QUElEV2IM0+CzvYsYuOQ13tgxhznH1jPn2Hp+CNhI2nM10Ly1C5b65MxCuO7hodzy4miPxHni4CnubPUwL496O7eL1clDsSydvpKfXv3N6e1Ys21sXLTVLTHWbVGbL7a/w11TbqJqvQhGsC/3PlNpmD/+SPAdN/Lwx3N49pu/2HUkr2uNCfy38zATPpjF+7OWYw4dWmSXMaUUz//6KH6BvkXOutB0+6yTO6fc6Jbn6sjhncd4+66PuTbidu5s9TB3tJjE9dXu5OOHviH2iPPHEl9/H9745wWG3381Pv72ZEvO61Fpiq5DOnDVbb1ZPnMNwIU1b0z7jLfNy7bz7j2fFbuvhlH1eOL7iWi6VujPVbdo+Ph78+qfTxEc7tm/44CQAN5a+iJNziVj8s8E0nQNFAyfMJAHPrzTo3G5k2lawXD+tZJ02ix0WWJhbFZD3v9L2DU9WtOoZuVilw1rStGzdX26tajnucCKYDMMHvjwd/YdPw3A+YcOwzTJyLLywNRZHDpZ8Qp5CyEupMwytljWlZ7kQlQEy35exbTJv7F/8+Hc23SLTq9RXbnp+VHUanx5d40wTRMz9Q04+wWgU7BegAZYUKFvo3wHlE6AnhYVZe/YA/baItHRvPf7Cr5ftMFhIVRdU/Rs3YC37xlmP1uMioKtW/O2Gx3t3tidZJom/9sxm1+Pri1yjEqy0mZNCNl/xZFwKhFffx+6DGnP0HuvokFkXY/EmXQ6mXvbP8aZEwkYTi4FKs6kT+5m8N2XvqSlWIcOYTZogMp56x87Fn76iVd+XMisldsd1s94YkwfRvWKgnHj8rqMKQUHDuR2GTu25zgfTPiCjYu2opRC6QrDZmDxstD/5l7c89Yt+Ac5n2QsKesWRPP8yP9hWG0XLN3SLBr+gX5MWfgsTdq7NhMkLSWdNX9uJDE2Cb9AX9oPiCIkIpjR1e8iNdFxEVOlFD8e/piIWuHFjtu5Zi8zpvzOqjnrclune/l4/X979x0eRdUFcPg3s5veaAm9995BCFV6BxXB9iEqooCI2MACigWxINIRpShSFKVIR5r03qX3GkJJr7sz3x9LGim7m+ymwHmfB83O3pk5SSbJztl7z6HtCy3o816PHO0wpOs6x7adZNVP/3D19A1cXI1Ua1KJLgPbUbRs4RyLyyYXLliKrq9ebVkaGhFhSYz7+0PnzjBwYIoOerquoQdVxdbe7msX5mf88FI2jVUNKq36NGXkvDcz8YmI9NyLiOatacs4cv4GBlVJXEKc8HHbehUZ068j7rmgUP2WI+d4a9pyq+MMqkLXx6ox+oVH5LWPEA8Ze3IekrARIgf98snv/DrmDxRVSXwBnkA1qpZ3cTeMtvsG4mGiR0xCj5iUwQgFUFDyz0Vxs69rSZ40ciR89VXS423buF6lBj1HzcGsaVZvIWYO722ZRr1tGzRP1g1mxAgYO9YpIdtr9+0zvLFvtk1jf6j/Ik38Kzk5orTN/mgBC8cttbkzkjWj/3yHZr3sv4bNZjO7Vx7g2NYTxMeaCCjtT5vnmlGgSH50XScmKhY3D1dUVU3z+rlVvTadP/gJzYaXAwV9PVn95QCMO3dYvX6unb3B3jWHiImIIV/hfDTt0QDfAjkzk+va2RsMqPU2plhTukkp1aDi5efJnFMTszxTZcsfO/m8z3ibxqoGlRdG9eb5j5+yafy9oBBunA9CNaiUrFwsR5eW5Wnr11tmh61cSYYt9hQlVTt77c7TEH8E68uiFG7fKsXz9fKn+hufnpHzhiYWqs7rwu9FsH3JHu7eDMHdy4367WtTumrOLOPRdZ0DZ66xeOsRzl2/g0FVqF6mML1b1KZyyYAciSktQyb9xe6Tl22qS+diNPDP1wPxsXNJpxAi59mT88j5VLIQj6gdy/by65g/ANJ8IaeZNGIiY/mg85fMuzAVd89H7w+yrt1Fj5hmbRSgoId/g+K2ODvCylkDB8K4cUk3GFOmUGz+fD7r35EPZ61GgVQ33gqWr9LQns2S1rxPnZpsgAKvvZYd0dvk90s7MSgqZj3jmyGDovL75Z05krCJj4tn6eTVDkvWeHi706BDHbv32/rXbqYM/Zk71+9hcDGgAGazxsz3f6VImQCCr97BFGdCNag81rU+7x/5C8+Ene93GVu+Jv2ZTA+6ExbF9uMXaJnQZSxhhtbq1akSNsUrFKX4kNwxQ3DpxNVoJnOGM4g0s0ZESCRrZm3k6Xd7ZOl8187cwGBUbS7CfP3cTZuPnb9wPvIXzpfJyARms6VY9uTJto1PaGe/YgUMGQITJqB4voAe+rZNu/uXf4GmPYLY9fe+DK8HRQHvfF40e/Ix2+LKxaIjY/jxnV9YO2cT8XEmDAYDmqahazo1W1TljcmvULaGbbOOHEVRFOpXKkH9Srm77svJK7dsStYAxJvMXA0OoWqpXD6LTQiRJVLDRogcsujrpVa7jGhmjdDgMDYv3J5NUeUy0X+RdsvUB2lgOoIe/5+zI8p5ZcpY3u1NsGgRLF9OhwaVmTr0CaqVTv3CrVTh/Ix9qTMvdmho2bBsmWW/BF27QunsWUZkjUkzsz34lNVkDYBZ19gRfBqTZss14jjLJq/hqYCXiQqLdsjxVFWhy6vt7E7KbvhtK2N6f5vYEtwcb8YUb0bXdHRN58b5IEz3C0xrZo1dK/cTff5y0gHudxm7ePMuNrVRwTIN/1LQvTzVZSw+Lp41szfalDzRNZ2/p63L8jkNRkOGkzaSUxQFg9G+9sMik8xmS9HstJI19rSzd2kHLnWwLNNNjwEM5cDjSV4f/yLe+bzT7falKAAK784Zgqubi/2fVy4SHRnDO60/YdVPG4iPNYEOZpM58Y2p49tPMbTJB5w5cD6HI82d7F33kLvWSQghnEFm2AiRA26cD+K/nadtGquoCqt/3kDHl3K2RXFO0OOO2LdD/BFwqeacYHKToUMt7/YCaJrlBmLhQhp1784vVUpx+mowp67cwqzrlC1cgFrliqIo9+/Ily2zjNe0lMfLJWK0eKwv7EqioxNljsNXzZ6aKJOG/MTyqWsddjzVoFKpfjn6jbGvSHJIcCjfvjzV1jIagGXWnjvJOordL2CtKoqt+Rp03TI++f6A07qMXY68zZ+Xd7Pu5mEi4mPxMrrSpkhNnizVmHLetr2rHHIrjJjIWJvPGXQ5GE3TLEvIMqlK4wo2z74ym81Ublgh0+cSdhg2zNKOPoGqQp8+MHgw2mNNiIk34e7qYnkzRddhxw6YMsWS4E74nbl4MUqRIvDDTPR7r0P8PlLWV7v/sbEiSv6fUVQvCpf2YuLOL/j0yW85f+QSBqMBzayhGhTMJg2fAj68O3swj3Wtn61fDmeY+/FCzh68kO71r5k14mLi+fTJb5l7dhIGgyQrk6tYohD7Tl+1WpMOwGhQKVEoe7ohCiFyjiRshMgBwVfv2DxW13SCLt92YjS5x43zQdy+dhdXdxfK1iyFkXhsvyNVQLevvXWe1a6dZWp+wrvE0dHQq5flxmPQICoFBlKphH/SeF231KyZOjXljQdYjtO2bfbGnwEPgytGRcVkwwwbsCyL8jS4Ojkqi21/7c50ssbdy42YyFgURbHcpJk1XNxc6Nj/cV795gW7Z9esmbUJs8n+mUUxGPG6n7SJv3sPF6ByyQBW7jlh0/6arifVe3Byl7HfL+3kuxMrUBUlccZVbFw8f13Zwx+XdzG4Ugf6lWtp9TjpzWpIj6oqSQnOTKrVohrFKxbl+tkbVt8BVw0qrfo2zdL5hA3Wr085s8bDAxYu5FD1+izcdIiNCyZhMmuoqkKrWuXp06oODQMDITAwzXb2So8e0GYexO1Ej/oN4o8DOhgroXg+C24tUZSkZESx8kWYfvAbju84xcbftnLvfpHqRp3qEtirES6u2Tuzxmw2ExkShYu7Cx5e7g45ZnRkDCtn/mM1WamZNYIuBbN39aGHIknlSL1b1GbPyStWxxlUhQ4NKuProO+dECL3koSNEDnA1d2+F2b2js9rti/dw+/fLEsx68jLz5PO/XzoPcAVv4JxNhxFB2PuWNaTLSZMgJs3k94t1jRL154FCyxT+QMDLTMgIiJg+/akzlLJ9e5tOU4uYlBUWheuwcagYzbVsGlduDpGNXveoZ0zamHmdlRgwLgXqPN4DfavO0xsVCz5i+QjsGcjvPNlrmDsv4t32lzENLkQ3ChIDABRq/7BT9fp+lg1Ji7ZSryVmywFKO7vR4NKJZKSgAn8/dPdLzNWXz/Ityf+BsD8QMYj4bqYcnotPkZ3niiVcaHmfAF+FCxegDvXrLfAVVWFCnXLZTlhoygKr33Xj4+7f2V1rGbSmPPxQoZMfDlL5xRW3G8/D4Cqoi9YwBS9ILO+/T1F5yBN09ly5BwbD53l2cfr8vZTLVG6d7e0s+/VKynhPXEiStu24BaI4hZoUwiKolAjsAo1Aqs4+rOz2aX/rrBs8hrWzd1MbLTlb2v5OmXoOaQTjz/XPEtLsvatPWzzbDbVoLL59+2SsHlAy1rlqVC8EBdu3Em3lo2igKqq9GvXIJujE0LkBKlhI0QOKFuzFJ6+ti3hMBhV6rdNYy39Q2LOqIV88sQ3nNx9JsX2yNAo/pxyiyEdy3Prqg0vINXC4PoIvUttMFhuIIYMSf3ckSMwbRp8843l/2kla4YMsSR3cuF09D6lm9hcw6Z3qewp0HnrcjCX/rtq936qQcW3gA9tnm9OqSrF6TW0M31H9KLDi60znawBCL8bYX1QGvZQJPFjv+sXYMcO/Lzck+obZSChcLWiKJYkYELBYYBOnTIVT1pMmplJp9bYNHbK6bXEaRnPrFNVle6vd0CxUjMMLDfrPd9wzOfyWNf61Gxe1aaxyyav4erp6w45r0jDxYuWblAJ+vRhoU8pZt0vuP3gjXHC4/kbDzJ77V7Lxu7dLbMYE6xYYTluHrJp4XYG1nmHVT/9k5isATh/5BLfvTKNdx//hMhQ663o0xMaHGbzWM2sERIUmulzZbd4k5l1+0/x7R+b+WrhRn79Zz93wjL/tUqP0aAyZUgvSgbkv98DMyWDquBqNPD9692pULyQw88vhMh9JGEjRA5w83Cj8yttUQ3WfwTNJo3ugzpkQ1TZb9PC7fz2+Z8Aaa7X1sw6t2+68vH/yqZYxZMWxfu1FNPPHwkGA0yaZJnq361bQuXK9CmKZdz69Zb9cmGyBqBW/tK8Ut56zaaXyremboGy2RAR3LkRYvc+qqrg4e3O2DUf4uXraX0HO2S27fRKyqVsRDxlCgADuzShT6s6gOWGIDmDqqAo8MEzj9O23v2OXE7sMrbj9mlux9pWEyfcFMPGm8esjuv6Wjv8SxTMcHmUalQpX6cMLXo3sTnWDGO7F8GJBxLR6Z7boDqk2LFIx4wZKaqzxg8cyIyVO23a9ec1e4iOjbc8GDQo6Qldtxw3jzi69QRjn/8Bs0lLVYA7YbbeyT1n+fSp7zLsppYRW9+IAkt9Pq8sJK2z08rdJ+gwciYjflrF71sO89e2o0z4aysdR85kzLz1xMY7djm2fz5v5r3/DO/2aU3JgHyJ2z3dXGhXrxI9mlRn+7ELzFy1y1I0XgjxUJOEjRA55On3elCgaH7UjOorKNB9UAfK1nz4lvrous78L/+0+q63ZoaLJz04+K8Pqd9ruv+18+wHHs86Jc48oW1bWL4czp+HESOgdm0oVsxSV6RYMcvjESMszy9fnqtq1qTn1Ypteb9aD/K7Wl7QGxQVo2L5fudz8eS9at0ZWCH7Pg83D/vr5NTvUIdp+7+mUv3yDo+n1dNNbZox8qAgxYvdJGu1fb/LmKoqvN+nNbPeeZr29Svj4eqCAvh6uvN0y9osHtWPp1rUtuzj5C5j/4VexaDY9vLEqKicCL1mdZxvAR++3fgJAaUsS7eSf+0SEufla5Xhq7UfOaxLz5n95xO7dFmjmTUOb7aeeBKZtGpV0se1arHRozBhUbYt3YmOjWftvlOWBwnt7BOsXu3AIJ3r1zF/WF3qp5k1Dm44yoldtjVFeFD9drUwutj2RoCu6XliOdTifw/z8Zw1hERY6heZzBoms4au65g1nWU7jvPG5KXEZ6KmWEY83V3p26oOSz55kS3jBzFj2FMUL+THmn2n+HPbUf749wgzVu7iiU/n8tqExQTdc07hdyFEzpMaNkLkkPwBfnz/7xg+7PIll09cQzWoiYX6Ej7uOaQTr43vl8OROse5Qxe5eMx6YT2wvPO95o+m1G9zDMzJbs5c6qF49QO39lmuOfFQKFMGxo61/HsIPFmqMT1KNGDrrROcjQgCoLx3YVoEVM22ujUJSlUtjquHK3HRttRTsnhvzmDy+Tung0eH/q2Z/fFC4uPi7eoUBbCUCjThhuVBsi5jdO9OnfLFqVO+OGBJqqb6ucqGLmNmTbO5axUoNi2fAyharjAzj37Hlt93snzaWq6cuIaiKlSoW5YegzvSpHsDjC6Oe1l0bJtthZwTXAoJ5mrUHUp4FnRYDHlN0KVgVsxYz6YF2wi/F4Gnryctn3qMrq+1p0SlYpk/cPK2882acebGHYwGFZMNnbyMBpUz1+4X/k9oZ5+wHDAXt7NP7sb5IA5uOGp9IJZl2H9PX0e1JpXtPo9fIV9a9mnKpoXb0Uzpf20VBbzyedHSQbPZnOXm3XC+WrQpwzG6rrP/zBV+33KY59rUc3gMiqJw7XYob05dStz9pJBlyV7SL/79Z67yv3ELmDfiWfzzeadzJCFEXiUJGyFyUJEyAfx45Dv2rT3Mmp83cO3sTVzcXKjVohpdX2tH8QpFrR8kj7p58ZbNYzWTxrUL7iiFNoD5MuhRoBZAMRSxvrPI04yqgdZFatCaGjkbh4uRjv0fZ/lU22qrNOpc12nJGrAsiXp/7hC+eGYCKLrVTkTJHVALc7xOO6ofWG/Z8ECXMQIDQUnWKUnXMW39l7sTvqHQstWoVrqMmTQzcZoJD4NrphKpJb0K2twlzKxrlPSyPcHh5uFG+36taN+vld1x2WPfusP8+tli6wPv01WICVDov3Mac5oMorhnASdGlzut/nkDE177ESDxzYuosGiWTFrNnz+s5NVxL9D7ne6ZO3jyjmbe3plY8pNsfDa0s3e0yydsr79lNmmcP3wp0+d69esXOLzpOPeCQlItvQISfye8N2cIru7Z0+Evs/7adtS2hLgOCzYd5JnWdS0t4R1I13VG/LSSOJM53VbfZk3nbngUYxduZPxrmfwZEULkWpKwESKHGQwGGneuR+POjn9nJjez951sFzcXFEUFYxnnBCSEFS990ZcNv/1LZGhUhuOMLkZe/76/0+Np+XRT3DzdmDz0Z4IuBmMwGgA98SZJUZQUN6YJM/fa92tFlekD4LnnrHYZ08PDCd3yD/lOnCXggfNvb1WLmBEv0wZLkuafm0f5/dJOjoVaZs55GdzoVqIBT5VqTCkv24tjti1Sk2//+5sYLd7qWKOi0rFoHZuPnR3MZjPjB0xDQUG3cfqTokFsB19iTDGMO76MsZWeZseyfdy5cQ93Lzfqt6tFycrF7Yrj3OGL/D11LYc2HSMu1kTRcgF0fqUtzZ96zGHLvhxlyx87GT9geprPJSRvfnzvVzx8POg6sJ39J/D2TkquRERQoVghm2bXgGUJTPliya5fJ7ezzxWykHMoUCQ/E3d+yRd9v+f4jlMYjIbE2Xpmk5l8Ab68/fOgPPGaZ/3+02g2JPd04PqdMM7fuOPwQsD7Tl/l8q0Qq+PM97ubBd0Lp3D+h/S6FOIRJQkbIUSOqNSgXIplYBlRDSq1WlTLhqiESJ+Xnxc/HRvPa/XeS7cbiquHK99t+oQSFbNndtxjXevTqHNd9q8/wrGtJzDFmfAvVYjCpf1Z/8sWti/dg2bWUBSo16YmPYZ0onGXepZ3uRcuhGHDYPLklAc9ciSxs5gC5EvjvL93q8/4gW3Rjv7OsLgIttz6j4P3LqImu9OLNMfyx+WdLL68k89r9+XxIrbNkvI0uvFs2WbMOpfxUgQFy7I5P1fHFnTOqn1rDxN85Y7N43UVtAAXTI29QNfYdfsMTz79OuZL0agGFV3T0XWd2q2qM2TSy5SpXjLD45niTfwwaCZrft6IwagmJvDuXLvDkS3/8dOIeYxd85HV42QXTdOY8c5cm8b+NGIe7fu1tH9mhr8/3Li/DHDbNh7/fgLeHm5ERFuvY+PuaqRjg/vLg5zczt5ZytQoZfmBsSF/aDCqVKybtWLu/iUKMmHb55w9dIEN87ZyLygEd083GnSsQ5NuDe4nl3O/cBuuj6yMt8XGQ2cxqCpma50X7tt8+FxiAfk84cIFS/Hu1astSwwjIiwJVn9/6NwZBg60LPcW4hEmCRshRI4oUCQ/zZ9szNY/d1tN2mialrl3VYVwsELFC/LHzZ9YN3czC8Yu4dbl2+i6jl8hH3oN7Uzb/7Vkx5I9jB8wnevnbmIwGKjSuAI9Bneicdd6GJzQmUtVVRp2qEPDDnVSbG/SrQHxcfFEhUXj4e2e+iY3octYjx4wcaKlTXEG7yZrCmxrVIFFPRqwN9kN3YRTqxITNdoDd4Rm3VKP5sPDC5nhNoBa+W0rTjygQhuuR91lzY3DqCgpjpswc6VlQDWGVnZcO3FHObD+CAYXA+b4lEVIddUyk+bBbbqfgajPioEhaQlaVB033C5Fp/jdeHTrCYY2+YDxW8ZQIYMb6h8GzWTtLEuyK/mSlITlFHdvhvB2q9FM2z8usQizpmnsXX2QZVPXcnzbScwmMwGlCtHl1Xa0f7EVPvmdVxdj/zrbE1yRoVH8u3gXbZ9vYd9JOndOTEJy5Ahue/cwoHNjvv/zX6u7vti+IZ4JPztObGfvTIVL+9OgfR0O/HPE6t9bs0mj2+uO6UxZoU5ZKtTJnk5+zuDn5c7d8IxnVD443tHCo2JsXsKnKqpTkkZOsX695e/OypWp/+6Eh1sSrEeOwLhx0KWLpVZaO3kdKB5N0iVKCJFj/vdJH9w8XDNub67AE0O7ULRc4ewLTIgMKIpChxdbM+fURFZFz2d1zAIWXv2RUlWL81KVYUwc/BMXjl0mNiqOqPBoDm06zuheX/NO60+ICInM1lhdXF3wK+Sb8YyEdLqMxXi5E1zQm9PlApjzdBN6zX6ddz7pnSJZk+DBRE1yOpY6DD+d3Whz3AZF5ZNavRlT62mq+qVcClTJpyijajzJ2LrPZnvxaVvEptF9KLarH+aKbim26e4KcV39iJhYCq14su+PBrpX6t+JmlkjNjqO0b2+xmxOuyPN+SOXWPPzxgxv8DSzRkRoJAvGLgEgOiKakR0/56NuX7F/3WGiwqOJjY7jyunrzHjnF/pVfIOTe2xrT54ZJ3eftXnGhdHFwKk9Z+0/ycCBlkq3CaZM4fk29XihraVLUVqt7AGeal6LVzo1TnrCie3sne2F0b1BIcO6UqpBpVGnulRuWCEbI8u9OjasjGpDHS4FKBWQj7JFHF97ytfT3eZaYJqu4evp+KSRQ5nN8MYb0L691TcJAMvzK1ZYxr/xhmV/IR4xMsNGCJFjSlUpzjcbRvNB5y8JuxOOoiro998FTpjK3/31Drz67Qs5HKlwtqjwaLYv2UPw1Tu4urtQu1V1KtYrl9Nh2eS/XaeZPnwOJ3Ylu6lN9ho04R3t/3aeZlSPcXyzcbRTZtpkWbIuYxGmGNr8M8beBlTp0tDZdecM16PuUcwzv037qIpKx2J16FisDsExYYTFR+Ht4kFhd+cVc3aEgsUKJP4eS6AVcSHmVX/UoHiUYBO4KJjLuYFHGslqFZSwtG9KNLPGrcu32bv6UJotkf+etjbFMqj0aCaNdXM38/JXz/FF3wkc2nQ88fiJdNDRiQyN4v32nzFt/9cUK+/4Qu9mk9nmmik6liVfditTxvIu/YoVlseLFqH07ctbT3anWY2yLNx8kC2Hz6PpOooCTauXoU+rOjSpWjrpZtnJ7eydrdpjlfh40XC+6Ps9mqan+F4nLE+u2bwqHy58KwejzF16BtZg5srdVuvY6MCzj9dzSrfKNnUrsnDzIZvGKii0rJWL/26azZYug4vTKMheq5alA5u3t2VZ1LZtSbPiEkyeDDdvWpbz5sa/oUI4iSRshBA5qnLDCsy7OJVNC7az+ucNBF+5jau7C/Xb1ab7oA6UrZl3XhAL+8XHxTPrgwX8PX0dsVGxlgKVmoam6VSsX44hE1/KVHvZ7LJn9UFG9xyHyWT9XT/NrHF06wn2rTlE4y6pb7Zzk7C4aIcla5I7HxFkc8ImOX93X/zdfZ0QkeM9/lwzfvn09xTbXLZGEPdEfstMmuLW66+47IhI9znVoLJp4bY0EzaHNh+3mqxJEBcTz/pftrBv7aEMx2lmjdioWH7/ehnDZgy06dj2KFahSKrlYxnFUiyz3ROHDk1K2CRrZ9+we3caVi5JvMlMZEwcXu6uuDw44ycb2tlnh2a9GvPzfxP4e9o6Vv+8IbGAeuVGFej1RmeaP9k4S63tLxy9xNmDF9E0jZJVilO1cUWnJDGyi7+fN6P+145Rc9amWwJIUaB5jbI80aymU2KoV7E4ZQrn53JwSLpdosAyK6xFrXK5u+DwsGEpkzWqaulOOHgwNG2achacrsOOHTBliiVRmvCzt3ix5TiTJmVn5ELkKEW3v7ehU4WFheHn50doaCi+vnnjxZkQwrlOhF5j8eVd7Lx9mjjNhL+bL91LNKBL8Xr4unjkdHgik0zxJj7qOpYDG46mmpEAoKoKqkHly9UfUvdx57wYzoqQ4FCeLzOI2Og4m/dRDSr12tZi7OoPnRhZ1oXERdF+4+cOP+539f5H84AqDj9ubvNh1y/Zt/Zw4iwGHYiYVBKtjFtSrZq0mHWMOyLwGnszw+PXebwG3/wzOtX2F8oN5ubFWzbHWatFNY7vOGlTksfF3YU/bszEy8/L5uPbIjoyhqeLvEJMpPXaGwajyoKrP5I/IJOzrN54I2WR7YQbxmTt7BPpuqVmzdSpKW8YwdLOPo/fMOq6Tmx0HC6uxiwXAT6w4SizP5zPyQeWq5WsUpx+nzxNy6ebZun4OW3TobN8+8dmbtwNx6CqKAqYzRquLgaeblmHIT0DcXHijI/TV4Pp/80iYk2mNJM2BlWhkK8Xv4x4Bn8/59WbypL16y3LmhJ4eFhmynTvjq7rnNh9ht0r9hMVHk0+fz9aPt2EEpWKWcYuX25JmEZHpzxe27bZ+zkI4UD25DwkYSOEyLXMusY3/y3nryt7MCgqZv1+u+L7z3sY3Bhf/wXqFcjFU4BFKheOXuLvaevYvnQPd2+GZDhWURU8fT1YePVH3D3dMhyb3RZ+tYRZHy1IM9mUEZ/8Xvx1Z45zgnKgfjumcCrseob1aey1pMU7FPd0fJ2H3Cb0dhjDmn3E9XNBiUkbc3EXIsaXBE817aSNWUcJNuH91hXU0PRnnCiqQmDPRoxe/E6q595rN4bDm4/b1H0PoECRfFZ/BpObuPNLqjauaPN4W835eCG/fflnhl2MFFWh84C2DJv2auZPZG1Jxv129kREWJI1Dy7JAOjdGxYskCUZ921etJ0vn/sBINXvQkWx5L0GjHuep9/tkRPhOYym6ew6eYnD565jMmsUL+RHu/qV8PHInr9Lp68G8+mv6zhx+RYGVUFRFDRdR9N0mlQtzSf/a49/vlyarAHo1i1phpuqwpIl0L07Zw6c55v+U7hw9DIGo2r5vO4v2avXrhbvzh5MoWIFLEmbXr2SEqfdulm2CZFHScJGCPFQ+O6/Ffx+eUe6r+FVFFxUAz8/9hqVfItla2zCfnGx8Yx/ZRobftuKalDQzLb/+Xn7p9fp+NLjTozOfv2rvMnV09ft3s/Lz5Ol92xrY5yTVl8/yOgjfzjkWCoKDQqWZ3LDlxxyvLwg/F4Esz9cwLq5mxNnYZmLuRA3rAhxNdxRUVAVBbOuAzrGnRG4T7yVYbImwds/D6Jj/9aptm9etJ0vnplgdX9VVajapBI3L9zizvV7Nn9OE7Z9TvWmjl+iaDabGffCJDYt3J6ilhlYiuTq6DRoX4dPl76Hq5tLVk+Wdjt7WwwZAhMmZDlZExkayfpf/mXD/K2E3ArFy8+TZr0a0+mVNhQsav+SwZxy40IQ/Su/aSmCbeXX+fgtY6jZvGr2BPYQ++9SEP8ePU9kTBz5vDxoV78SpQLy5XRYGbt4EcqVSyow/MwzMH8+p/adY3jLUZjiTGkmmVWjSsGi+Zm8eywFiuSHZ5+1JEvBkg08f15afos8y56ch8O7RI0dO5aGDRvi4+NDQEAAPXv25NSpU44+jRDiIXct6m6GyRqwFDKN18zMOPNPtsUlMkfXdca9MJGNC7YB2JWsURSFjfO3Oiu0TLt70/Yb3QSKqlC8YiZrcGSz9kVr09y/CoqVirCF3fwS23pn5OXyqRMMDzOf/N4MnTqARTdm8slf7/LOrEF8MW04/wwayx/N3mJI5Y70K9eS4VW6sLzV+3S/WBFjpJWfCwU8fT1o1SftJSaBvRpRuLQ/BmPGL+80TafPez0pVbVExl36kp9aUShaLsCmsfYyGAyMmDeUd2cPpnztMimeK1mlGEOnDODzv0dkPVljOZllOdP69ZZ36a3VWFEUy7j16y37ZTFZs3vlfvoWH8jUYbM5uecMNy/c4tyhi/z66e88V/o1/p6+LkvHz04rpq+3dCSzctkajCp//bAye4J6yFUrXZjXujbh7ada8nKnRrk/WQMwY0bKblCDB6NpGl/0/T7dZA1YiqPfvXGPKUNnWTYMGpT0pK5bjivEI8DhRYe3bNnC4MGDadiwISaTiQ8++ID27dvz33//4eXl2HXPQoiH19Ire1GwvLOaEQ2dbcGnuBkdQhGPfNkTnLDbkS3/8e/iXZnaV9d17t0KdXBEWefm4UpUWLT1gcnomk631zs4KSLHMigqX9V9lm/++5vlV/clbrdMxdcwKgb6lWtJ39JNGX7gF46EXE71M2tQLMmAMbWepm6B1O3AHwVevp4E9myUYltp/Cnt7Q/Apf+usPj9P7l6+gaqqqIrepptuRXFcl/87uzB6S4PdHF1YeyaDxnecjRhd8JT3QgldAN6eexzNOnWgLiYeA5uOGr1c1CNKo0717O8y+0kqqrSvl8r2vdrRdClYMLuhOOdz4siZQOcU7i2bVvLv4sXLTd+q1dDcDCEh4OPD/j7Q6dOlpbgDnoX//Dm44zq+TW6lvp7rGk6aDoTB83E1d2FDi/m/gTnurmbbFp+ZzZp7Fi2l+iIaDy8M1d3LjY6li2/72Tlj+u5fi4Ig1GlRvOqdH+9AzWbV83TxY0feqtWJX1cqxY0bcrBf45w43yQ1V3NJo1tS/Zw+/pdCgUGQs2acPT+76zVqy2dDYV4yDk8YbNmzZoUj+fMmUNAQAD79++nRYsWjj6dEOIhdTjkks21M3R0ToRelYRNLrZsyhqb2g2nxztf7kv4N+5Sn/W/bLb5c1INKgWL5U93dkRu5KIa+aBGLwZUaMPf1/ZzKTIYBYXKvsVSFP2e1ugV1t04wqJLOzgZZlkm5q660K1EfZ4q9RhlvZ0zM8PZNE3jwD9HuXT8CoqiULZWKWq3qo6qZn2Ccmx0LN++NJXNi3agGlW0B68jBVRFQVEVzCYN34I+DJ/5Ok17NMzwuCUrF2fa/nEs/Gopa2ZvIjYqqZhv9aaV6fNej8QuZYE9G1KiUlGunw9Kff5k9PszcrJL4dL+FC5tSWiZ73dgy2ph3HQla2fvTLquM3noz+h62gm55KYPn0vrvoG4ulvvKJZTdF0nNDjM5vGaWSP0dnimEjaXTlxlRIfPuX31Toolc9v+3MWWRTto0r0BH8wfluvqnIn7goOTPm7WDBSFbX/txmA0JP58Z0TTNHb9vZ+uA9tZ9k9I2CQ/rhAPMae39Q4NtbwrWqDAw19kUAjhOCbNtjavieP1zCUCRPY4tPFYppM1iqrQtEcj6wOzWfdBHVgza6NNYxVFIZ+/L+PWfZwnbyr83X15KYMlTS6qkS7F69GleD1izPHEaSa8jG6JM2weFBMVy6YF29i0YBv37tfwCOzRiA79W+NbMHe0pV03dzNzRy/i1uXbqKrl3XtN0ylSNoCXvniW1n0DM31ss9nMp099l9hSO71kiW8hXxp1rkujjnVp2rMhLq62LQkqVLwgQya9zMtjn+XC0cvEx5oIKF2IomULpxhndDEyds1HvNP6E4Kv3E7VgcZgVNF1y6weZ9SuSU9kaCRrZm1i2dQ13DhneRe+eKWi9BjUkfYvtsLL1zPbYnGUE7vPcPHYFZvGRoREsuWPnbR7oaWTo8o8RVFwcXMhLibe5n3cvez/3Xf7+l3ebjWa8LuWVvfJ6xsl/E3ZvWI/Xz47gU+XvCczbXKjiIikj70thZEjQqPQNdteExgMKhEhkSn2Byyz4YR4BDg1YaNpGsOGDSMwMJAaNWqkOSY2NpbY2KR3f8LCbM/WCyEeXqW8CnEi7FpiZyhrHoXOM3lZfJztL+ofZDAa6NC/lcNicZSK9crRY0hHlk1ek+E41aDy5Ftd6f12N/IXzpc9weUgd4ML7ob0EwuHNh3jkye/ITIkylJQ9v5sg/92nmbWRwsYNv3VHF8OsmDsEmZ9OD/xcfJExs0Lt/jy2QncCwrhiTe7ZOr4O5buZe/qgxkP0iHkVih1H6+Z6bbIHt4eVGuScaKlSJkApu4fx7LJa1g+dS0h95cfGowGWj7dhCff6kql+uUzdf6MXDt7gxXT17N96R6iI2LI5+9L2xdaUqN5FT7r/R13b4SkWF53/cxNpr01h8Xj/+brf0ZRvELeqAWV4Pi2k4lL0qwxGA0c23rCroTNhWOXObb1BHEx8QSU9qdxl3qOqfmTgYYd67JrxT6ryXhFVShdrQR+hexvJrL42+WE343I8OumaTo7l+/j6NYT1GpRze5zCCfz9k5KrtxP3vjk80JRVbDhzTmzWcMnv1eK/S0HyR3JfSGczakJm8GDB3Ps2DG2bduW7pixY8fy6aefOjMMIUQe1KNEA1Zdt3JDg6XFd1nvAKr6Fnd+UCLT/EsU5Mop+zsqAQyb/iq+BXLnC7NBE/rj7unG798ut9R2uX9TkdAFq1qTSoz68x0KOrH2R17y367TjOz0ReI0+ORLQ3RNxxRn4tuXpuLiauTxZ5vnTIw7T6VI1qRn2vA51GpRjQp17a/Ns3Tyaptu3lVVYcnEVbR93rlLyn0L+PDCqN48+8ET3LpyG1OciQJF8ztlJouu6yz8aimzPpqPqiZ9DUJuhfLzB7+ha7pl2csDy4YSHt++dpf32o7hx8Pf4uWX+5ZKpicuNt722R+6Tny8yaahJ/ecYdrwufy34xSKAsr9r6l3Pi+eGNaFZz98AoOTWpB3H9yR7Uv3WB2nazo9h3Sye/ZLbHQsq37eYGOSS2X51DXpJmzMJjOqQZUZODnB3x9u3LB8vG0b6DrNnmhsc4FtVVVp0r2BpdBw8ntKf38nBCtE7uPwLlEJhgwZwooVK9i0aRMlSpRId9zIkSMJDQ1N/Hflim3TRYUQD7c6+ctQ3a9EuksqEujAS+Vby4uwXK7Ty21QVBu/R/eH+eT3YuS8oTk+2yIjqqryylfPM//ydJ7/+Ckada5LvbY16fJqe6buG8cP27+QZE0yU4bOQjOZUyxrSMukIT8TF5v5WVlZsWTSKqtdlsAyTX/ZlIxnV6XFbDZz9N//bLoJ1TSd0/vOEZOsDo0zGYwGipYtTMnKxZ227GjJxFWWhJhOqq9BwnWR0fWhmTWCr9xh7ZzNTonPWQqX9repXgdY/q4FlCxkddyhTcd4q8UoTu4+Y9kv2dc0IiSSXz/9nS+fmWBpu+0EdR+vwePPNsvw769qUKnRrArtX2xl9/GvnLpOdHiMTWPNJo2jW0+k2Hbz4i1+GjGPJwNeoqNrXzq69uWdxz9h61+7M/U10XUN3Xwb3XwLXc+Z3095UufOSR8fOQI7dlDn8RoUK1/Yapc6g1Gl+VOPWQqeb9+eVL8GLEXBhXgEKLq1ymd20nWdN954gyVLlrB582YqVqxo1/729CQXQjzcbseG8/qemVyJvJOqALGKgobOqxXa8EqFNjkUobBV2J1wXig/mJiImFR1Mh70WNf6tO4bSLMnH3P6lH6Rfc4cOM+gBu/bPH7Er0Np81z2zrKJj4unm/fzNtdbcvVwZUXEPLsSxjFRsXTzft6uuP4MnpVravtkRVR4NE8XeYXY6LisHUiBouUK88uZyekO0XWd29fuEhsdR/4A3xyfjRMdGcPTRV4hJtKG5JsCc09Polj5IukfLyKaZ0q+RlR4dMYJUAUG//ASPYc45+bWFG9i6rDZrJi+HkVNNsvwfiHtpj0aMuLXN9IsNnzjQhAb5m0l+MptXN1dqdmiKk17NMToYlkAcGrvWYY0HmlzLH6FfFh8y9ICesfyvXzeZzxmk5YiMZgws61+u1qM/utdPLzcrR5X1+5B1AL0qHmg3bZsVLzB4ykUzxdQjCVtjvGRdPEilCuX1Nr7mWdg/nzOHDjPWy1GER8bn2YC22BUKVisAJN3j7UsJ372WViwwPKkosCFC1C6dLZ9GkI4kj05D4cviRo8eDDz589n2bJl+Pj4cPPmTQD8/Pzw8MhcKz8hxKOpkJsPsx8bxMJL2/nj8i7uxUUmPlevQFmeK9ucQP/sK4QpMs+3oA+fLR/BB52+ID7OlG674cE/vETPN+Rds4fRkS3/pejwkhGD0cDhzccTEzbRkTFsWrCdXSv2ERUeTYEi+WjdtxmNOtd16HKPqLBou4pjx0XHERsdZ1chaTcPVzx83G2eOeDi7oKXX94rspuWDfP+JTYmi8kaAB1unAsiLjY+VVI3JiqWVTP/Ydnk1Vy/X7BYURUCezTkiWFdqdm8atbPnwkeXu70HNKJRV8vy7BLlGpQadKtQYbJGoCN87cRGRaFLc0U//x+Bd0HdXBId7MHGV2MDJ0ygD7v9WTVzH84c/ACulmjZJXidHm1LaWrpU5mRIZG8u3LU9m2ZA+qmrRMaenk1fj5+zJ0yiu0eKoJAaUKpahzlRFFVSh2v67Rid1nGPPUd5ZZNA/smvC35+DGY3z1wkQ++fNdjoRcZvX1g9yODcfD4ErjQhVpW6Qm7gYXdNMF9Lsv3E/UJPvdoEdA1K/o0Ysg348obo0z9wV8FJQpA126wIoVlseLFkHfvlTs3p0J2z7j25emcu7QRQxGy7WgaTqaplG/XW3e/vl1S7Jm2TLLfgm6dpVkjXhkOHyGTXrvMs2ePZsXX3zR6v4yw0YIkRaTZuZS5G1itXgKufkQ4O6X0yGJTLhw7DLzxvzBtiV7UiRtqgdW5tkPnqRRp7o5GJ1wpgVjlzB39EKbEiKqQaV130BG/DqULX/s5LuXpxIdEZN485aQ4Ctc2p9PlrxLhTr215FJS2x0LF29bJ/9oqoKq+MW2n0jPGXoLJZPW2t1WZTBqNK+XyuGz3zdruPnVuP6TWLj/G02LQezxcqo31K0vg67G8777T/j3MGLloLFyV7hGowqZpPGa9/148m3ujrk/PYyxZv49Mlv2b3yQKr4wHI9la1Vmu82fWJ1RtBbLUdxfNtJm5IZAJP3fEXlBo4vHm2v6Iho3mr+MReOXcnwOnj/lzdo+3wLPu7xFXtWHbTpmnln1iA6vNiaD7p8yf51h63uoxU2UuDX+lwy3cWgqJh1LXH2rrfRjZHVOtPG+A5ot4D0llCpgBtKob9RjKWsxvjIWr8e2rdPeuzhAQsXQvfugGU21a4V+4kOj8bP34+WTzdJSlouWwZ9+0JMTMrjtW2bjZ+AEI6VozNsHJz/EUIIAIyqgfI+ha0PFLla2Rql+Pj3t7l78x7nDl9CM5kpVqEIJStL0eiHXaESBWyevaIo4F+yEFv/3MXnfccnbk94jZFwIxZ89Q7DW45i0s4v03wn315uHm7UblWdo1tPWC8IbFBp2LFOpmYtdBvUgb+nr7U6TtN0ejhpKUtOMMWbk5ZFZJF/yYIpkjW6rjOm93ecP3wpzdeiCdfe9LfnUqRsAIE9GzkkDnsYXYx88te7LJuyhiUTV3Hzwq3E5/z8fen2Wnuefq+HTct07t24Z9dr7oTuX+nRdZ2D9y6y+PIu9t45R7xmprC7Hz1KNqBr8fr4ujhmlvyCsUu4cPQKmpWWzuMHTKdR57r0ebcHu1ccyHCsalDJX9iPVn2aEnQpmL1rDlqdeaQVNBIxviQRcXdBJbEjZcLy64i4GD48sgStlIF2BTKqd6MBcehRc1F8P874pI+ydu1gyBCYfH8ZY3Q09OoFffrAoEFUDgykcsMKSeMTCgxPnWqZWZP8ehkyRJI14pHi1C5RQgghRFoKFMlvKSIoHmoxUbFsWrCNv6et5crpGzbvZzZptOrblHdaf5LhjZdm1oiNimPqsNmMWzcq6wEDPYZ04vDm41bHaWaNHoM7ZuocpaoU593ZQxj3v0koCqnqOiV0SXprxkDK1y6TqXPkRkXKBFiycbas48mAoir0GJwykXVq71kOb7L+fVNUhXmfLc6RhA1Ylvs98WYXer7RiXOHLhJ6OxxPXw8q1S+XWLvFFh6+9iVQPLzTTwLFayZGH/mDf24eTZxpAnAx8hY/nFzFT2c38n39ftTOn7UlKHGx8ayYvs5qsgbAFGdi3ZzNPDW8G8NmDGTCwBkpauQkUA0qPgW8GbfuY9w83Lhw9LJNl1f0SwXRfQzpt19RLdfpl1fr08zvBh6GjJI2ZohejO7zHopi+/LIR86ECXDzJixebHmsaZaaNAsWQK1aEBhoaQEeEWEpMHzkSOpj9O5tOY4QjxBJ2AghhBDC4a6evs577cYQfOWOzbVrwHIDVq9tTS4evULEvUir4zWzxoF/jnLt7A2K369hkRWBPRvS4qnH2Prn7nRnMCgKtH2hJQ061Mn0edo815z8RfLxyyeLOL79VIrnKjcoz/8+eZqGHR+uJYId+rdm4VdLsnQM1aDiW9CHTi8/nmL7yh//SVz2lBFd0zl78AJnD11w2FI6a66dvcGK6evZt+4QcdFx+JcqRIcXW9Oyd5MUs4Ts0bRbQ84fvmTTUiHvfF5UaVQh3ee/OLaEDTePAUkzTSAp7xFliuWNvbOY03QQ5bwzP9P1xM7ThNvwMw2WGT9b/9zFU8O70fmVNpSsXIzfv13G7hUHEn8uPbzd6fRyG3q/041CxQsm7meN5mfA1MIHDNaKhStEa0bWhpSiZ8ELVgKOBvMtkALE6TMYLMughg1LmmmT4MiRtBM0yQ0ZYknWOKlNvRC5lSRshBBCCOFQIcGhvN36k8RlGPYka4pXLMrIeW8y/e25ibVqrFLgwD9HHZKwUVWVkb+9iV/AHFbOWG+Zmn+/Pp+u66iqQs83OjPg6+ft6g6VlnptalKvTU0u/XeFC0cvo+tQpnoJyta0bSaDrusc23aSdXM2EXT5Nq7uLtRuWZ0O/Vvnyq5SJSoWJbBnI3b+vS9TdWwUBXwKePP1+o9TfX6XT1y1q2D01VPXnZ6w0TSN2R8uYOG4pSmu5ZsXbnF403FmvvcrX676kAp17Y+j86ttmff5YqvjVINKl1fbppsYOht+k1XXD2b8eaATr5v5+exGvqjzjN2xJogMi7JrfPKEbc3mVanZvCr3gkIIuhSM0cVIicrFUhX8LlXV+vJaU20PG5I1FgqwM6yI9YQNgOL4os4PHYMBJk2CHj1g4kRLIeKMkmyKYikwPHSoLIMSjyxJ2AghhBDCoZZOWk3IrVC7b8pb9w3kjckv4+XnRUxkjO2JHlUlNsqGdsk2MroYGTr5FZ778EnWzNrIpf+uoCgKZWuUosNLj5M/wLFFz0tXK2l3DZ7gq3cY3XMcZw5cSDGzZM/qg8z6aAEvffEsTw3vmuWkkqO9O2cw77cbw+n9523+/ibQdej9drc0E1qqwb6bZXvHZ8bcUYtYOG4pQIqfhYQlcKG3w3nn8U+YvOcrSlS0L9lYsGh+XvuuH1OHzU53TEIC9JmRvdId8+fl3SmWQaXHrGtsDDrOndhwCrplLhnoW8Db5rGKouAXkLoQZ/7C+Sxdg9JRvEJRarWsxrFtJ9P//eNh+/deRyHSbMPtkuILqr/Nx33ktW1r+XfxIsyYAatXQ3AwhIeDjw/4+0OnTjBwoKXLlBCPMEnYCCGEEHmEpmvci4tE03Xyu3phVHPf1HCzyWypU2FnssZgVDG6GBK74xQokh/VoGI2ZVQ7wkIzaxQoki8z4WaoYNH8PPfhkw4/blaFBIcyrNlH3Ll+FyDFzBJd0zHFmfjx3V/QzBp93uuRU2GmycvXk+82f8qSiatZNnk1t6/dtWv/nz+YT7MnGqeaTVW5YQX+23na5usuM7Na7HHrym0WjM14+Zdm1oiJjGHu6IV8OP8tu8/Ra2hnXNxcmPHOXGKiYlFVFV3TUQ0KZpNG7ZbV+HDhWxl2nDoccslqsiaBWdc4E34z0wmbqo9VIn+RfNy7GWJ1rI5O677NMnWe5z9+ivfbfZbu80qI9d8pCQxoFHSJsToKz74oSuaWtz3SypSBsWMt/4QQaZK5e0IIIUQuFxoXxexzm+m6eRydNo2ly+avaLvhM8afWMm1KPtueJ0t+OodQm+H272f2aSxYf62xARN2xda2JSsAXDzdKNJ9wZ2nzOv+u2zP7l97a7VJUCzPviN29fuZFNUtnPzcKPv+z2Zd3EqMw59y/dbP6N87dKoqvXZQIqisGL6+lTbuw5sZ1OyJqFGUmLLYCdZ9eM/KDZ8PmaTxr+Ld3EvKCRT5+k6sB2/35jJm1NfpXXfQJo92Zieb3Tmx8Pf8vU/o/ErlHG7WFO8GcORKFw2h2PcFQHhGf/M2ZrcSYvBaKDnkE5WZ30pioKHlzttnmueqfPUfbwm78wahKIqGIwpb3UURcF4MApDjG2zu8yotPW9ksEIAyg+KJ4vZCpWIYSwRhI2QgghRC52NeoOz++YxPQz67kdm5QIiTLH8cflnTyz7Qf23jnnlHPrum5z0iSBveOTM8WZiAqPBiwzJio3LJ/qhutBiqrQ9dW2eHg7pu1wbhcdEc2a2Rttnkmy8sd/nBxR5hkMBsrVKk2x8oU5d/hSqm5ZadHMGhsXbEu1vUSlYnR8qXXGSRLFcsPeb0zfrIRtk8Nbjtv8PdJMGid2n8n0uTy8Peg6sB0jfh3KqN/f5rXv+lmtg2Q2m/nj2+VE9DmA94hreH59E68xN/B97jwe399EuW1Kc78SHgUyHSdA73e6UbtV9XS/T4qqoBoUPlz4Fp4+mf+Zbt+vFVP3jaPtCy1xcUtaUFCqanGG/TCAZys1R8FKQs2sY7wVR/Gge+g6aKl+tSmg+qEUmItiyHwxZiGEyIgkbIQQQohcKsYcx+A9P3M7Nhw9jV61Zl0jVjMxfP8vXI687ZBzms1mti3ZzbttPqWja186uvblqYCX+HnkbwRdCra6f8FiBXBxd8n0+d3uFxFVFIVRf7xNvgC/dJM2iqpQI7AKL335bKbPl9ec2nuOmEjb6vVoms6e1RkXlM0Nwu5E2DU+4l7a44dOHUDL3k0AUB4oKquroBsVyn3XiAK1AzIX6H2meBMXjl7i1N6z3L6e9gy3uOg4+44Zl3aCxBnMZjNf9P2eH9//lfjglMt9FBO4bAjH+83LKDfiE7erKNTMV4rS3lmr0+Li6sIXK0fSfVAHSyJFAYOLIbGmUKkqxRm3bhSNO9fL0nkAKtQpyzs/D2JpyC8svPYjf92Zzcyj4+k6sB0Dq7SnXoEy6SdtzDrEaLiPvsGbnSsxfnhJzv/ngaYpWIIuieLzHkqhNSguVbMcqxBCpEdq2AghhBC51NobR7gRE5LhGB0dk25m4aXtvFcta/VKoiNj+PSJb9i//kiKrjaht8P5/dvl/DlhBR///jZNuqW//Mjd0412z7dg7ZxNdnXtUQ0qNZpVwdUtKdkTUMqfyXu+4ueRv7F54XZM8UlvcXv5edLt9Q68MOqpTLdGzotsTdYkjo+wVn8j53nn87RrfHozL1xcXXh33hDOtojnwm8nMB6MhHgdPb+RuPa+xHX042Chu/xvx2R+euw1SnkVsuu84fci+PP7FayYvi7Fsr+6bWrS+53ulK9dmh3L9hF+NwKzplneFrXxR8CjqO0FebPqj2+Ws/Wv3aSRAwZA0YBQM15jrhMxtRQoCho6L5Vv7ZDzu7q7MmTiy7w4pi///rGT4Kt3cHFzoVbLalRvWtnhhbJd3VwoWDR/ym2qkR8a9Gf6mfUsvrSLGC0eNJ2E/I3xQBTuPwZjuBZPHCrrfi/Ahj/9mX7wa0pXK4EiHaGEENlEEjZCCCFELrX40i4UlDRn1yRn1jX+vnqAoZU74W7IfPLiqxcmcnDjMYBUyzk0s4auaXz65LdM2PYZVRpVTPc4TwzrwrpftqAoWoYdWx88fo/BHVNtL1SsAO/PfYPXvuvHoY3HiAqPJl+AH/Xb1XqkEjUJChTNZ/NYVVUoWDxrS1iyQ6HiBSlfuzTnj1622jlKNaq0uD+LJi0/ndvEf2VD0T9Ku+uSWdcIN8Xw7oF5LGz2ps3JgdvX7vB2q9HcvBic6mfj0KZjHNxwFEVV0HUdg0ElrrgRgw3JGl0BrbgLp4qG0NCmSLLGFG/izwkr003WJFA0MFyKw/VoLHG13Hm7SlcC/Ss7NBbvfF50HtCWe0Eh3LhwC4PRQExkTLYtb3RVjQyt3IkB5dvwy4a1zF+4EnM+A+qlWAxnYlGvWWYYJcz+GTlvKGWql8qW2IQQIoEkbIQQQohc6mJksNVkTYJYLZ5bMWF2zxpIcHr/OXYs3ZvhGF231LX59bPFfPH3yHTHla5WktGL3+HTp75F1zSrM20UVeGxrvUJ7NUo3TF+hXxp+XTTjD+JPMRsMrNv3WGCLgZjdDVSPbAypauWsLpfxXrlKFa+MDfO30K3kg3TNJ32/Vo5KGLn6jSgHZOH/GR1nGbS6PZ6hzSfizHH88flnTYlOC9E3uLA3QvUL1jO+jk1jY+6jiXoUupkDZCYZEr4v9mkYartAZqOei3eMmMlHYoOcU8V4HT4DatxOMLBDUcJuRVq01jdAEW36ox4+RWbvk72Or7jFIu+Xsquv/cnXstuHq60f7E1fd7rQeHS2dMm+2ZMCOf8Q4l5tmCKa0e9FofbH/do7lqBZ0c+QbUmjk1YZSToXjhbj54nIiYOP093WtYqTwFf+2aiCSEeDpKwEUIIIXIpe1cGqFlYSrBixnoMRtVqckUza+xZdYBbl4MJKJX+DdVjXeszdd84/vx+BRt+25pmjQ7VoKJpGu37teLNaQMwGHJfm3JH0zSNvyas5PdvlnEvKNSyBOP+PWLNFlV59esXMpy9pCgKT73dnYmDZmZ4HtWg4lvAmxZPPebA6B3PbDIz5+OF/PXDSpvGv/hZX8pUL5nmc7tvnyHSZNuSMYOisur6QZsSEQc3HOXc4Us2HTfZCYgcVQzv969CiDlV0kZXLMma2J5+mNr5omWh+5I97ly/Z/NYxQxlovM5JVmz/tctfNN/SuKspASx0XGsnLmeTQu28c3G0VSo49z268dDrjBo78/EaaZUiT6tuCvRwwpTsHQtqlap5NQ4EgTdC2fcok38e+Q8mq6jqgqapvPlgo10aFCZd3q3JN8jUmBdCGEhCRshhBAil6rkU5RjIVfQbJhl42V0I8DdL9PnOr3vnO01Z3S4cPRyhgkbgLI1SvHOz4MYNKE/wVducy8olP3rD3Pl5DV0HcpUL0mnV9pQpEzWisDmFbqu8/2r01kza1OyjUkfHt9+irdajOLLVR9Q9/Ga6R6n68B2/LfzFP/8+m+az6sGFVd3Fz5fMTJXLxvTNI2xz09kyx87rC7R8fT15KUvnklz2VyC5F3UrDHrGndsHL/qp39QjSqaPTWZrsahF3clYmIp3BbdxXV9GEqyVtJaGVdin8pPfCsfVEXJ9Mw4e7l62HE9KJaaVI52cs8Zvuk/BV3T01wCp5k0osKjGdHhc345OzlL3aIyEmOO4639c4k1x2f4O3bBpe1U8ytBh2K1nRJHght3w/jfuAWERESj3U9iJXROM2saa/ed5NjFG8x5t69Dkja6rju8XpAQwvEkYSOEEELkUr1LNeFIyGWr41RFoVeJRriqmf+zbm15Terxto/19PGgdLWSlK5Wkjqta9gZ2cNj3dzNKZM1D9DMGrquM7rXNyy4Mh2vdJZAKIrCu7MHU752Gf747m/u3kg2a0KBhh3r8MpXz6c7EyW32DBvK1t+32F9oAITto2hbI2MW1V72FG/SUGxud7T1dM37ErWABj3R6HcMaEXMBDzegAxLxbCcDYWJU5DK2hEK+2aOIVOB3qUSL+QtyPValHVMqvFhhbqCkqGicPMWjz+b1RVwZxBDJpZI/R2GBvm/ZvuErisWnfjCCHxUVbHKSjMu7DV6QmbD2etJiQiOt2vi1nTuXY7lLELNjJuQJdMneP01WD++Pcwa/eeIiImDg83F9rUqcDTrepQo0yRrIQvhHASKXEuhBBC5FKPF6lOBe8iGDLoSKKi4G10p0+ZrNV3KVuzVLrts9NSskqxLJ3vUaPrOovH/231HW1d04mOiE539kwCVVV5ang35l+axldrP+Ltn15nxK9D+fXcFD7/e2SuT9YA/PXDShTV+jv8qqqyfu4Wq+PqFyyHml6b5gfo6DxWKP2lZ8kZXexPhCoauC24m7Su0UPFXNMDU30vtDJuidsVFDoXq0thj3x2nyMzChUvSNPuDRML6WbE6Gak/YutHHr+8HsRbP1zt02z+RTg7xnrHHr+5P6+uj/9tt7J6OicCr/OxYhbTovl9NVgDp27nmESCyxJmw0HzxAcknZr+4z8+s9++n4xj6XbjxERY2k7Hx0bz+q9J/nfuAVMWrrN7sS9EML5JGEjhBBC5FIuqpGJDftTxsuy9OjBmwsFBR8XD6Y0fJnCWVgOBdD11XY23USpBpXarapTvELaXXhE2i6fuMrFY1dsuiFSgPW/bLbpuAajgfrtatPxpcdp81zzPLO87NaV25w9eMGmmR6aWWPTwu1WxxV296N5QJUME5wJPAyudChq24yJGoFVUO1IZiZwXRWK2+93LQ/MKT/PhJ/lxoUqMKJ6D7uPnRWvjHseD293q0mb177th3c+L4ee+/a1u2kWbk6LrsPN885LktyKCbW5qDvArdgwp8Wydt8pDDYkL8EyI+ufA2fsOv7yncf5/k9LEvjBpFDC49lr9/LrP/vtOq4QwvkkYSOEEELkYoXcfJjTZBCjajxJZd+iqPdv9Yq652NI5Q780Xw4lX2zPtulemAVarWsZvUmTtd0nvvoySyf71FzL8i2zjxguVG9eyPEecHkAhH3Iu0bH2Lb+DerdMbL6IbBykymEdV74GG0bUlU19fa2b0kCiyJN/c5d/D86BrGAymX3lTyKcqoGk8yvt7/cDO42H3sBLquc+NCEBeOXeaejd2fSlQsyvf/jqHQ/ZbvyX/mFVXB6GJgyKSX6T7I8UuRjC72FRa3d7w97P26u6uZ/z5ZExIRDTbODjOoCvciom0+tsmsMWnpNpvGzli5i+jYeJuPLYRwPqlhI4QQQuRybgYXupaoT9cS9dF1HR0d1YZZBPZQFIXRf77DyI6fc3r/eRRSdm8xGA1omsY7Pw9ySl2Lh527l33FW9293Z0USe7gnc++FsVefraNL+FZkJmNB/L2gV+5GnUHg6Ji1jXL9YyOh8GVkdV70rFYHZvPXbJycboObMfKH//J1JIRt8PRlAn3Y+L7HxFmisbT4EYBN+9U44Kv3mHHsr2E343AO58XTbo3SLe1dVxMHCtmrGfZ5NVcPxeUuL1um5o8+VZXGneul2FMZWuW5pezk9m1Yj/rf93C7Wt38fB2p2GHOnR86XF8C/rY/XnaokjZAHwKeBN+1/qSHtWoUr1ZFafEAfBYoUpcibqD2YYOXV4GNyr5Om9WoacdxcE1TcfT3fbk0bZjF7gTZr1WD1iWSK3dd4qegY9urTEhchtJ2AghhBB5iKIoNtVdyAzfAj6M3zKG9b/8y5KJK7l84hoARlcjbZ5rTs83Ojm9ze7DqnydMvgW9CHsjvXORKpBpUnX+tkQVc7xL1mIcrVKc+HYZavLolSDSqunba/RVNY7gMXN32LPnXOsvn6IO7FheBrcaOJfiQ5Fa+NptL/z0ZBJLxMfZ2Lt7E0YjKrNHdUUDwMUdOH1OQPwcfHA1zV14unuzXtMHPwTO5btBSw1ezRNY+qw2TTuUo+hUwfgX6Jg4vjIsChGdvyck7vPplrSc3jzcQ5uOMozI3vx0hfPZhibwWggsGcjAns2sulzcQQXVxe6vdaeheOWWl0apZk0egzu5LRYnizVmIWXrC+1U1HoUbKhzUWqM6NZjbL8tuGATWM1Xad5Ddt/D5+8cgujqmLSrF+zRoPKySvOW4YmhLCfouey6lJhYWH4+fkRGhqKr69vTocjhBBCPJJ0XSf8XgRxMfH4FvTB1c15ywEeFXM+XsiCr5ZYr+GhwC9nJlO0XOHsCSyHrJm1ke9emWZ9oAKzT/xAiUo5X+j61N6zLJuyhgP/HCEuJh7/kgVp1Lke2/7azdVT1zEYDeiahqmaB9FdfTEFeoPBkmAt6xVAn9JN6FqifmJHtzs37vHGYyO5c+NemsuuDEYVv0K+TNr1JQGlLLNtRvUYx+5VB6xeR2//9DodX3rcwV+BrAsJDuX1eu9x92ZIup+DalCp16YmX6z6AFV1XgWHyafW8MuF9At8GxQVfzdf5jYdRH7X1LOiHEXXdXqMns3122GJLb3ToqoKtcoWZdY7fWw+9rS/dzB77V5MNtQOMhpUegXWYOQzbWw+vhDCfvbkPCRhI4QQQgiRDSLDoniz6YdcOXU9w5vtF8f0fSTqBJnNZj7rPZ4dy/ZmuNTote/68eRbXdF0jWMhV7kTF46nwZWa+UplaraMM+i6ztGtJ/j3j50cCAjiWMMIVBS0ZDNgFCwFY2vlK8UPDfrjZXTjwy5fsm/d4QyvB4NRpXpgFb7b9CkXj19hQM3hNsVUuIw/v5yd7NSER2Yd33GKj7qOTVWbKKHleMOOdfj49+F4eHs4NQ5d15l+Zj1zz1u6kCV8vxKW0lXwKcL39f6XLV28Dp+/zqvj/8Cs6WkmbVRVwd3FyC/vP0O5ogXTOELaVu85yYezV9s0VlHgnada8czjdW0+vhDCfpKwEUIIIYTIhUJvh/FZn/Ec3nQ8cWlNQqtvo6uBF8f0pfc73a22/85J0aY41t44zF9X9nA9+i4GRaVO/jL0LvUY9QuUsyt2U7yJme/PY/nUtZjjzYmt5U3xZnwL+vDKV8/R/qXW/HFpJ79d3EZQTFJhXXfVhW4l6vNKhcedOvvBHptuHuP9Q/MzHKOi0MS/Eu/l78j/Kg7B1kZFPx0bz6qZG1g2ZbXNS7K+2TCaOq1zVz2So1tP8GGXL4mJik1zOVzh0v5M2P45hYoVyLaYbsWEsvTKXg7cu0Cc2URxzwJ0L9GABnZez1l18Ow1Ppi1mqB74RhUFV3XURQFs6ZRunB+vh7QlYrFC9l1zNh4E+3em5HYyjsjLgaVdeMG4uf1cNfQEiKnScJGCCGEECIXO3vwAmtnb+LmxVu4uBmp3rQK7V9shU/+3JF4SM+Z8Bu8sXc2d+MiEgv5QtKMhGb+VfiyTl+7632E3Q1n4/xtXD97E4PRQOWG5Qns1QjVxcBHhxayIehYmvsZFJUAN19mPjaQgCy2ts8qXdd5dvtEzkfcsqlddL+9VVk+ZoVNba4NRpVnRj7B6f3n2bPKtlonAMOmv0qXV9vZPN7Zrp29wWt13yUuOg4tndpFBqNKySrFmbb/a4wuj165TbOmsfO/S2w6fJaI6DjyebnTrn4l6lcskenk0Zy1e5lopVOUAjzftj5vPdkiU+cQQtjOnpzHo/dbUAghhBAih1WoW5YKdfNWAeeg6BBe3/MTEfExACmSEgmddnYEn+LDQwv5tt4Ldt1c+hbwoeeQ1AVmZ53blG6yJuG8t2LDeP/gb8x67PUcnZl0Iuwa5yKCrA/Ekmg6ePEsqqqgmW3YQVEIvR1umYGUsLbKlvMYndcWOzMWf/c38bHx6SZrAMwmjYvHrrB96V5a9m7isHPruk5kqKVbkpefZ66dxWZQVZrVKEszOwoLW9OvfQOC7oWzaMthyzWX7OuvKgqartO+QWXe6NnMYecUQjhG7lvUKoQQQgghcp1fLvxLpCk2RV2WB2nobA0+yaF7F7N8vnjNxIKL1rv4mHWN46FXOR56NcvnzIpLkcE2jzXrGuEu6c8ySUUHL18PKjesgGpHoqFSg/I2j3W26Iho1s3dbNNyLtWgsnzqGoecNyQ4lN8+/5M+xV+lV4EX6VXgRfoUf5V5ny0mJDjU+gEeAoqi8F6f1kwY1IOGlUqmeK5WuaJ89UpnvujfCaNBbg2FyG1kho0QQgghhMhQtCmOv6/uT5xJkxGDorL48m7qFsjaDIFdt88QGh9l01iDorLi2n5q5CtpfbCTKNg3Y8O7eQB3fzxr01izyUyT7g0oUjaAXz75HWtTbBRVoUrDCpSrVdqumJzp5sVg4mLibRqrmTXOH7mU5XNeOHaZ99qOIfR2WIp6OfduhvDrp7+zdPJqvl4/Kld9nWwVEhfJ2huHuRkdgotqpG7+MjQuVAFVSTvpoigKLWqWo0XNcoRHxxIeFYO3uxu+Uq9GiFxNEjZCCCGEECJDFyJvEaPZdrNt1jUOh2T9Zjt5gWFbzmnPeGeo5FvU5rGqolC7QRW8Ggdzat+5DOvYqAaVUlWLU/WxSiiKwtPvdGfhuKXpjlcUBUVReHnsc/aEn/tkscpm2J1w3ms7hrA74WkWN9Y0nfC7EbzXbgw/HRtPPv+crYFkqxhzPN+fWMHya/vRdB2DoqKjM+f8Zgq7+/FetR40D6iS4TF8PNzw8cgdHdaEEBmTeW9CCCGEECJDtsysSTHepsIsGXNTXWweq6Dgpubs+5DlvAtTK19pVBtm2mi6zhMlGzH8p9dx83RFTWcpimpQcXE18t6cIYk1V/p/8Qw9BncESOyqlXy8wcXAx78Pp3ar6ln8jByrSBl/XNxt+56qqkKZmqWydL5VM/8h9HZYhskwzawRdiecVTM3ZOlc2SVOMzFs3xyWXd2HWdfQ0THp5sSfz1sxobxz4BfW3ziSw5EKIRxFEjZCCCGEECJDRT3y27zkR0WhpJd9rYfTUrdAGTtG69QrUC7L58yqQZUsHZky+kopQPfi9SnhWZAy1Uvyw/YvKFm5GGApEqwa1MRiwcXKF+b7rZ9RsV7S56aqKkMmvcykXV/S5rkW+Bb0wc3TlcKl/Xn+o6f49fwUmvVq7KxPMdM8vD1o/0LLVEmmtGiaTo9BHTJ9Ll3XWTZ1bZoza1KN1XSWT11DLmucm6YFF7dz8N7FdOtIJWz95OgfhMTZtpxQCGeI10wcuHuBrbdOcOTeJUwOSOI/qmRJlBBCCCGEyFAhNx8C/Suz8/Zpq7NtNCyzR7KqhGdBGheswN475zIsdAzgqhrpXLxuls+ZVfUKlOOLOn35+PDvaLqWIu6E1udtitTk/eo9EreXrVGKmUfHc3z7Sf5dvIvwexF4+3kR2KsRtVtVT7ebUZVGFanSqKLTPydHeurtbvzz21Y0LS7dZIrBqFKiUjECe2X+GoqNjuP21Ts2j79z/R7RETF4+nhk+pzOZtY1Fl3aYbVlvA6YNI2V1/bzXNnm2ROcEPdFm+KYc34zf17ZTVh8dOL2Qm4+PF2qCc+VbYZLDs+GzGvkqyWEEEIIIaz6X7kWbA8+leEYg6IS4ObL40VqOOScb1bpzEs7pxGnmTJM2rxZpTPextxRPLVNkZpU9S3Bkit7WH5tHyFxkbiqRhoVrEDv0k1oXLBCqiSMoijUaFaVGs2q5lDU2aNEpWJ8sWIkH3UbS1xMfMrlSve/JMXKF+GrtR/h4mr7kjhHyKVdvhOdDL3G7dhwm8bq6Ky7cUQSNiJbRcTH8PrenzgTdiPV7+vbseFMO7OePXfOMqHBi7hK0sZm8pUSQgghhBBW1clfhg9r9OKLY0tQFSXVTBsVhXwunkxs+JLDXoxX8CnCtEavMPzAL9yLi0RFSbwRUFBQFYVhVTrzVKnHHHI+RynmmZ/BlTswuHIHdF1Pd5bMo6h2q+r8/N8E/p62jpUz1hF+LxKAEhWL0vONzrTv1xIP76zNdHHzcCWgtD+3LtnWat2/ZEHcc3m3pOSzFWxha4c1IRzl82N/pZmsSaCjs//uBSaeXM071bplc3R5lyRshBBCCCGETbqXaEBpL39+u7CVf2+dSHxh7m10p1fJRjxTJpBCbj4OPWf1fCX5u9X7bLx5jFXXDhIcG4an0Y1m/lXoXqI+BR18PkeTZE1qASUL8fKXz9L/875Eh0ejGg24e7o57GulKAo9B3dk5oh5VuvYKKpCj8Gdcv33ycfFviSWr4unkyIRIrXrUffYFHTManM3HZ2lV/cysGJbu6/pR5UkbIQQQgghhM1q5y9N7fyluRcXQVB0KC6qgRKeBXEzOG8Ji6tqpGOxOnQsVsdp53goXLgAM2bA6tUQHAwREeDtDf7+0LkzDBwIZcrkdJSJVFXFy8/LKcfu+PLj/DlhBfeCQtPtFKUaVPIF+NHplcedEoMjVfEtRiE3H5uWRSkotCtaMxuiEsJi9Y2DKChWayyBpSDxhpvH6FmyYTZElvdJlyghhBBCCGG3/K7eVPErTnmfIk5N1ggbrF8P3bpB+fIwbhwcOQI3bkB4uOX/R47AV19BuXKWcevX53TETueT35tvNowmf2E/y+yZBybQKKpCvgA/vv5nFL4FcvcsLQCjaqB3qSY2dWszKirditfPhqiEsAiKDkW1cZaaQVEJiglxbkAPEUnYCCGEEEIIkReZzfDGG9C+PaxYAdZaU+u6ZVz79pb9zA93q92SlYvz07HvefWbFyhSJiBxe+Ey/gwY9wI/HRtP6aolcjBC+zxXthm18pVCtZK0+bjmk+Rzdc7MJSHS4qIabB6rg3SKsoOi69Z+s2evsLAw/Pz8CA0NxdfXN6fDEUIIIYQQIvcxm6FvX1i8OPVztWpBs2aW5VAREbBtm2WWzQOu1GrKug4Dcffzokm3BpSrVTobAs85cbHxALi65d0ZYTHmOL75729WXT+IruuoigromHQNfzdf3q3WnVaFq+V0mOIRs/HmMUYcmm/z+BmNBlC3QFknRpS72ZPzkISNEEIIIYQQWRR2N5z1c7dw5sB5NE2jRMVidHypNQGl/J1zwjfegMmTkx6rKvTpA4MHE1y9FvciYvBwc6FEIT/LfIwdO2DKFPRFi1C0pJouy9UKTFHroZk1qjapxNszX6N0tZLOiVk4zJ3YcNbeOMzN6BBcVCN18pehqX8lDIosoBDZz6SZ6bL5K+7FRWY4TkGhtFchFjUblusLfTuTJGyEEEIIIYTIBrqu8+unf7DgqyWY480oqmJZeqQo6JpO2xdaMGz6q7i6uzrupOvXW5Y1JfDwgIUL2Vy6OvM27OfAmWuJTxUv5EffVnV4qkUtou5GMLvWMwy6tR53kpZDvUdzDiqFUQ0qbp6u/LDtc8rWfLhn2wghHGvDzaOMPLQg3ecVQFVUJjXoT4OC5bMvsFxIEjZCCCGEEEJkg+nD5/DnhJXpPq+oCm2alODdJkbUtWsd072pWzdLLRoAVUX/6y8mmPLz6z/7URUFLdnLe+X+f2qUKULpfdfZvXQPjeOvMpodJFSd2ElRRimBlsMZVEpUKspPx75/pN8BF0LYb/X1g3x+9C9MupbYMSrht4i7wZUvavelWUCVnAswl5CEjRBCCCGEEE52YvcZhjb5IN3n6+lB9OQsjbmRcacPRYEuXWDoUGjXLuOTXrxo6faU8BL+mWf4Y+D7jF24McPdVEXBeOE2PmtPATBS383jXAFAA/5HJ4KUpEK147eMoWbzqhnHIoQQDwiJi2Lltf1svHmMMFM0+V29aV+0Fp2K1cXL6JbT4eUK9uQ8pDyzEEIIIYQQmbB86hoMRhWzSUuxXdV1XucQPTln24ESujetWAFDhsCECWBIp+vKjBkpukGZX3+dn1ftsXoKTdeJK1MQcz4PDCHRLKd8YsJGBbpwnlnUBMBgNPDvHzslYSOEsFs+V0+eK9uc58o2z+lQHgqSsBFCCCGEECITdizbm2ay5kN20YJrqcabqlXH2Kplxt2bJk+Gmzdh4cK0kzarViV9XKsWewqU5FbIPtsC1nRiqgTgtesSxynIefwoRygAjbiZmLDRdZ3wexG2HVMIIYTTSMJGCCGEEELkOTcv3mLljPUc3HSM+Jh4ipYrTMeXHqdhpzoY0pud4mCx0XGptr3OoRTJGjOwhZIspzxvL55CiXIhgAaG0iiGEondm1i0CBK6Ny1eDMOGwaRJqU8aHJz0cbNmXA4OQQFsqnGggNnX/f7HCsf0gokJGz9ik4YpCl5+nrYcUQghhBNJwkYIIYQQQuQZmqYx64P5LPpmGaqqopktSY6Lx6+wfekeilcsyhcrR1K8QlGnx+KT35uQW6GJjy01a5KWQcVg4Esas1MpZhnP0+j3kpI8uutjKA1eQ5k/H/r2tfyLjrY8OXky9OgBbdumPGlEspkv3t4YDKptyRoAHRQtaXR0slsBD0yJH5tNZgJ7Nbb1qEIIIZwkw/pnQgghhBBC5CY/j/iNRV8vA53EZA0kfXzzQhDDW4zi9vW7To+l3QstUA1JL6d7cjbxYzMkJmtUg069FuH45n9gRk7cHvR7/dGjFkH37pZlUGqyl+cTJ6Y+qbd30scREdQoU8T2gBVwuROZ+DB5kiYheaMaVIqVL0zdx2vYflwhhBBO4bSEzZQpUyhTpgzu7u40btyYPXusF0MTQgghhBAiPdfO3uD3b5dnOMZs0ggJDmPBl385PZ6ur7VP/LiwHkljbiQ+3kLJxJk1mlmh14DgVPtb+jPp6GGj0OMOWZI2ffokPb1ihaUrVHL+/kkfb9tGlRL+VC0VgC0duI0GA4XvxGAwqqDr1OBO4nOhuKEaVIyuRj5Y8Ja09BZCiFzAKQmbRYsWMXz4cEaPHs2BAweoXbs2HTp04NatW844nRBCCCGEeASsmL4+xYyW9GhmjbVzNhMVHu3UeIqVL8JbP74GCnTlfIoX1sspn/jxU6/dolGb8AyOpKJHzrJ8OGhQ0mZdt3SFSq5z56SPjxyBHTt4s1dzFBSspVj6d2zI1H8/o1rTylTnTmL9GoA9FKFk5WJ8/+8YKjcon8FRhBBCZBenJGzGjx/PgAED6N+/P9WqVWP69Ol4enoya9YsZ5xOCCGEEEI8AvavP5xiGVRGYqNiOXPgvJMjgo79W/Ppkvdo6pY0W+U8fhynIPkDNAZ/cZVXPr6RwREAzBC7Dl0Lg8BAqFkz6anVq1MOHTiQFNNppkyhUZVSjBvQBaNBRX1gZoxBtTx+vk09XuvahIBS/ozfPIbPO/sljtFRqLd4CjOPjqdSfUnWCCFEbuHwhE1cXBz79++nbbICaaqq0rZtW3bu3JlqfGxsLGFhYSn+CSGEEEII8aC0ujJlJC4m3kmRpNS0e0NKFnBJfKw1DeTzFSP5bd9puve/Y9NyJdBAC7YkY5o1S9oc/MBSqjJloEuXpMeLFsHy5bSpW5EVn7/Mq10eo3hBXzzcXCjg40n3JtWZ/8FzDH+qZdIyp2XL8F7zd+IhlG5dqfxkG1kGJYQQuYzDu0Tdvn0bs9lM4cKFU2wvXLgwJ0+eTDV+7NixfPrpp44OQwghhBBCPGQKl/bn5vkgNM22vkj+JQo6OaIkSrLuTRWa1aBCl/poQS6gx2aw14PuJ32SFxYOT2Mp1dChlvo2YGkF3rcvLFyIf/fuvNrlMV7t8lj6p1i2zDJeSzZTaehQO2IUQgiRXXK8S9TIkSMJDQ1N/HflypWcDkkIIYQQQuRCHfu3tilZo6gK5euUoUz1ktkQ1X0PdG8CwLURYLBtfzUADMVT7g/g45N6bLt2MGRI0uPoaOjVC559FrZts9S+SU7XLduffRaeeAJiYpKeGzIkdetwIYQQuYLDZ9gUKlQIg8FAUFBQiu1BQUEUKZK67aCbmxtubm6ODkMIIYQQQjxkmj35GAXf+5V7QaEZ1rLRNZ2n3+2RjZFh6d50436tmvtJE8XzefTYjTbsrKJ4PoeiGJKSK8mPm5YJE+DmTVi82PJY02DBAsu/WrUstXC8vS3Jn+3bLQWKH9S7t+U4QgghciWHz7BxdXWlfv36bNiwIXGbpmls2LCBJk2aOPp0QgghhBDiEeHq5sKXqz7E08fD0pr6AQk1WHq/3Y3WfQOzN7g0ujfhGghuj5PxS24DGEqB5/OWh9u3w9GjSU936pTObgZYuDDlTJvk5582Db75xvL/tJI1Q4ZYkjsGG2cACSGEyHZOWRI1fPhwZs6cydy5czlx4gSvv/46kZGR9O/f3xmnE0IIIYQQj4hytUozZe9XtOobiMGYMtlQqmpx3pszhAFfv5D9BXTT6N6kKApKvgng1v7+xuTx3v/YWAGlwK8o6v2lT1OnJg1RFHjttfTPaTDApEmwfj1064bV6saKYhm3fr1lP0nWCCFErqbo+oOLXB1j8uTJfPPNN9y8eZM6deowceJEGjdubHW/sLAw/Pz8CA0NxdfX1xmhCSGEEEKIh0Do7TBO7jmLKc5EQKlCVKhbNmc7HXXrllQMWFVhyRLo3h0APf4oeuQCiD8EmMBYHsXzGXBthqLcfw912TJLjZmEgsDdusHy5baf/+JFmDHD0go8ONhSsNjHx7KsqlMnS1KpTBkHfbJCCCEyw56ch9MSNpklCRshhBBCCJEnrV8P7dsnPfbwsCxbup+0yVBC96bkBYHXr5eCwEII8ZCxJ+eR412ihBBCCCGEeChI9yYhhBAOJDNshBBCCCGEcBSz2TJTJqF7U3L2dG+SgsBCCPFQkiVRQgghhBBC5BSzGYYNg8mT7d93yBBLq21J1gghxENJlkQJIYQQQgiRU6R7kxBCCAcw5nQAQgghhBBCPJTatrX8k+5NQgghMkGWRAkhhBBCCCGEEEJkA1kSJYQQQgghhBBCCJGHScJGCCGEEEIIIYQQIpeRhI0QQgghhBBCCCFELpPrig4nlNQJCwvL4UiEEEIIIYQQQgghHCch12FLOeFcl7AJDw8HoGTJkjkciRBCCCGEEEIIIYTjhYeH4+fnl+GYXNclStM0rl+/jo+PD4qi5HQ4uU5YWBglS5bkypUr0kVLZIlcS8JR5FoSjiLXknAUuZaEo8i1JBxFriWRQNd1wsPDKVasGKqacZWaXDfDRlVVSpQokdNh5Hq+vr7ygy4cQq4l4ShyLQlHkWtJOIpcS8JR5FoSjiLXkgCszqxJIEWHhRBCCCGEEEIIIXIZSdgIIYQQQgghhBBC5DKSsMlj3NzcGD16NG5ubjkdisjj5FoSjiLXknAUuZaEo8i1JBxFriXhKHIticzIdUWHhRBCCCGEEEIIIR51MsNGCCGEEEIIIYQQIpeRhI0QQgghhBBCCCFELiMJGyGEEEIIIYQQQohcRhI2QgghhBBCCCGEELmMJGweErGxsdSpUwdFUTh06FBOhyPymIsXL/Lyyy9TtmxZPDw8KF++PKNHjyYuLi6nQxN5wJQpUyhTpgzu7u40btyYPXv25HRIIo8ZO3YsDRs2xMfHh4CAAHr27MmpU6dyOiyRx3311VcoisKwYcNyOhSRB127do3nn3+eggUL4uHhQc2aNdm3b19OhyXyGLPZzMcff5ziNfZnn32G9P0RtpKEzUPivffeo1ixYjkdhsijTp48iaZpzJgxg+PHj/P9998zffp0Pvjgg5wOTeRyixYtYvjw4YwePZoDBw5Qu3ZtOnTowK1bt3I6NJGHbNmyhcGDB7Nr1y7Wr19PfHw87du3JzIyMqdDE3nU3r17mTFjBrVq1crpUEQedO/ePQIDA3FxcWH16tX8999/fPfdd+TPnz+nQxN5zLhx45g2bRqTJ0/mxIkTjBs3jq+//ppJkybldGgij5C23g+B1atXM3z4cP7880+qV6/OwYMHqVOnTk6HJfK4b775hmnTpnH+/PmcDkXkYo0bN6Zhw4ZMnjwZAE3TKFmyJG+88QYjRozI4ehEXhUcHExAQABbtmyhRYsWOR2OyGMiIiKoV68eU6dO5fPPP6dOnTpMmDAhp8MSeciIESPYvn07W7duzelQRB7XtWtXChcuzM8//5y47cknn8TDw4N58+blYGQir5AZNnlcUFAQAwYM4Ndff8XT0zOnwxEPkdDQUAoUKJDTYYhcLC4ujv3799O2bdvEbaqq0rZtW3bu3JmDkYm8LjQ0FEB+B4lMGTx4MF26dEnxu0kIeyxfvpwGDRrQu3dvAgICqFu3LjNnzszpsEQe1LRpUzZs2MDp06cBOHz4MNu2baNTp045HJnIK4w5HYDIPF3XefHFF3nttddo0KABFy9ezOmQxEPi7NmzTJo0iW+//TanQxG52O3btzGbzRQuXDjF9sKFC3Py5MkcikrkdZqmMWzYMAIDA6lRo0ZOhyPymIULF3LgwAH27t2b06GIPOz8+fNMmzaN4cOH88EHH7B3716GDh2Kq6sr/fr1y+nwRB4yYsQIwsLCqFKlCgaDAbPZzBdffMFzzz2X06GJPEJm2ORCI0aMQFGUDP+dPHmSSZMmER4ezsiRI3M6ZJFL2XotJXft2jU6duxI7969GTBgQA5FLoR4VA0ePJhjx46xcOHCnA5F5DFXrlzhzTff5LfffsPd3T2nwxF5mKZp1KtXjy+//JK6devy6quvMmDAAKZPn57ToYk85vfff+e3335j/vz5HDhwgLlz5/Ltt98yd+7cnA5N5BFSwyYXCg4O5s6dOxmOKVeuHE8//TR///03iqIkbjebzRgMBp577jn5RSBsvpZcXV0BuH79Oq1ateKxxx5jzpw5qKrkdEX64uLi8PT0ZPHixfTs2TNxe79+/QgJCWHZsmU5F5zIk4YMGcKyZcv4999/KVu2bE6HI/KYpUuX0qtXLwwGQ+I2s9mMoiioqkpsbGyK54RIT+nSpWnXrh0//fRT4rZp06bx+eefc+3atRyMTOQ1JUuWZMSIEQwePDhx2+eff868efNkNrKwiSyJyoX8/f3x9/e3Om7ixIl8/vnniY+vX79Ohw4dWLRoEY0bN3ZmiCKPsPVaAsvMmtatW1O/fn1mz54tyRphlaurK/Xr12fDhg2JCRtN09iwYQNDhgzJ2eBEnqLrOm+88QZLlixh8+bNkqwRmdKmTRuOHj2aYlv//v2pUqUK77//viRrhM0CAwM5depUim2nT5+mdOnSORSRyKuioqJSvaY2GAxompZDEYm8RhI2eVipUqVSPPb29gagfPnylChRIidCEnnUtWvXaNWqFaVLl+bbb78lODg48bkiRYrkYGQitxs+fDj9+vWjQYMGNGrUiAkTJhAZGUn//v1zOjSRhwwePJj58+ezbNkyfHx8uHnzJgB+fn54eHjkcHQir/Dx8UlV98jLy4uCBQtKPSRhl7feeoumTZvy5Zdf8vTTT7Nnzx5+/PFHfvzxx5wOTeQx3bp144svvqBUqVKJ3XzHjx/PSy+9lNOhiTxCEjZCCNavX8/Zs2c5e/ZsqmSfrJoUGenTpw/BwcGMGjWKmzdvUqdOHdasWZOqELEQGZk2bRoArVq1SrF99uzZvPjii9kfkBDikdawYUOWLFnCyJEjGTNmDGXLlmXChAlSKFbYbdKkSXz88ccMGjSIW7duUaxYMQYOHMioUaNyOjSRR0gNGyGEEEIIIYQQQohcRopUCCGEEEIIIYQQQuQykrARQgghhBBCCCGEyGUkYSOEEEIIIYQQQgiRy0jCRgghhBBCCCGEECKXkYSNEEIIIYQQQgghRC4jCRshhBBCCCGEEEKIXEYSNkIIIYQQQgghhBC5jCRshBBCCCGEEEIIIXIZSdgIIYQQQgghhBBC5DKSsBFCCCGEEEIIIYTIZSRhI4QQQgghhBBCCJHLSMJGCCGEEEIIIYQQIpf5P3FKtNMkw/7KAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(data, circles=label_issues_indices[:20], title=\"Top 20 label issues found by cleanlab.filter.find_label_issues()\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BcekDhvFLntB" + }, + "source": [ + "### Workflow 7.2 supports lots of methods to ``find_label_issues()`` via the ``filter_by`` parameter.\n", + "* Here, we evaluate precision/recall/f1/accuracy of detecting true label issues for each method." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:33.227781Z", + "iopub.status.busy": "2024-05-24T23:49:33.227407Z", + "iopub.status.idle": "2024-05-24T23:49:33.409351Z", + "shell.execute_reply": "2024-05-24T23:49:33.408693Z" + }, + "id": "kCfdx2gOLmXS" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
filter_by algorithmprecisionrecallf1accuracy
0prune_by_noise_rate0.7187500.920.8070180.912
2both0.7333330.880.8000000.912
3confident_learning0.7213110.880.7927930.908
1prune_by_class0.6769230.880.7652170.892
4predicted_neq_given0.5679010.920.7022900.844
\n", + "
" + ], + "text/plain": [ + " filter_by algorithm precision recall f1 accuracy\n", + "0 prune_by_noise_rate 0.718750 0.92 0.807018 0.912\n", + "2 both 0.733333 0.88 0.800000 0.912\n", + "3 confident_learning 0.721311 0.88 0.792793 0.908\n", + "1 prune_by_class 0.676923 0.88 0.765217 0.892\n", + "4 predicted_neq_given 0.567901 0.92 0.702290 0.844" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import precision_score, recall_score, f1_score\n", + "import pandas as pd\n", + "\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "\n", + "# Get cross-validated predicted probabilities\n", + "# Here we demonstrate the use of sklearn cross_val_predict as another option to get cross-validated predicted probabilities\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# Ground truth label issues to use for evaluating different filter_by options\n", + "true_label_issues = (true_labels != labels)\n", + "\n", + "# Find label issues with different filter_by options\n", + "filter_by_list = [\n", + " \"prune_by_noise_rate\",\n", + " \"prune_by_class\",\n", + " \"both\",\n", + " \"confident_learning\",\n", + " \"predicted_neq_given\",\n", + "]\n", + "\n", + "results = []\n", + "\n", + "for filter_by in filter_by_list:\n", + "\n", + " # Find label issues\n", + " label_issues = cleanlab.filter.find_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " filter_by=filter_by\n", + " )\n", + "\n", + " precision = precision_score(true_label_issues, label_issues)\n", + " recall = recall_score(true_label_issues, label_issues)\n", + " f1 = f1_score(true_label_issues, label_issues)\n", + " acc = accuracy_score(true_label_issues, label_issues)\n", + "\n", + " result = {\n", + " \"filter_by algorithm\": filter_by,\n", + " \"precision\": precision,\n", + " \"recall\": recall,\n", + " \"f1\": f1,\n", + " \"accuracy\": acc\n", + " }\n", + "\n", + " results.append(result)\n", + "\n", + "# summary of results\n", + "pd.DataFrame(results).sort_values(by='f1', ascending=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vNkStbegYk7y" + }, + "source": [ + "### **Workflow 7.3 (rank):** Automatically rank every example by a unique label quality score. Find errors using `cleanlab.count.num_label_issues` as a threshold.\n", + "\n", + "cleanlab can analyze every label in a dataset and provide a numerical score gauging its overall quality. Low-quality labels indicate examples that should be more closely inspected, perhaps because their given label is incorrect, or simply because they represent an ambiguous edge-case that's worth a second look." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:33.411717Z", + "iopub.status.busy": "2024-05-24T23:49:33.411517Z", + "iopub.status.idle": "2024-05-24T23:49:33.418204Z", + "shell.execute_reply": "2024-05-24T23:49:33.417618Z" + }, + "id": "-uogYRWFYnuu" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 99, 8, 64, 107, 10, 16, 51, 63, 121, 213, 212, 218, 117,\n", + " 2, 152, 197, 196, 170, 45, 24, 167, 83, 95, 82, 76, 26,\n", + " 90, 214, 164, 25, 62, 22, 198, 92, 21, 191, 49, 97, 68,\n", + " 115, 7, 48, 43, 193, 184, 194, 186, 174, 188, 163, 155, 150,\n", + " 190, 169, 156, 151, 168, 54, 172, 176, 157])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Estimate the number of label issues\n", + "label_issues_count = cleanlab.count.num_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs\n", + ")\n", + "\n", + "# Get label quality scores\n", + "label_quality_scores = cleanlab.rank.get_label_quality_scores(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " method=\"self_confidence\"\n", + ")\n", + "\n", + "# Rank-order by label quality scores and get the top estimated number of label issues\n", + "label_issues_indices = np.argsort(label_quality_scores)[:label_issues_count]\n", + "\n", + "label_issues_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qe-nGjdeYu3J" + }, + "source": [ + "#### Again, we can visualize the label issues found to see if Cleanlab works." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:33.420373Z", + "iopub.status.busy": "2024-05-24T23:49:33.420190Z", + "iopub.status.idle": "2024-05-24T23:49:33.636272Z", + "shell.execute_reply": "2024-05-24T23:49:33.635657Z" + }, + "id": "pG-ljrmcYp9Q" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW8AAAHQCAYAAADeeZg2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXwT5x8H8M+T1F0oXqDFKbS4u7vbgA0bw2VM0A2m2H4bw2XYcIbrWHF3KU6BAgVaKNS9TZ7fH0euSRu5tEnawve9V0fkyZPnkstzd9977vswzjkHIYQQQgghhBBCCCGEkDxFltsNIIQQQgghhBBCCCGEEJIVBW8JIYQQQgghhBBCCCEkD6LgLSGEEEIIIYQQQgghhORBFLwlhBBCCCGEEEIIIYSQPIiCt4QQQgghhBBCCCGEEJIHUfCWEEIIIYQQQgghhBBC8iAK3hJCCCGEEEIIIYQQQkgeRMFbQgghhBBCCCGEEEIIyYMoeEsIIYQQQgghhBBCCCF5EAVviSSMMfHv6dOnFnvfEydOiO9bqlQpi71vdg0aNEhs78yZM01SZ2599uTjNnPmTHG9GzRoUG43J99r2rSp+HmuXbs2t5uTZ+XmekffkeWUKlVK/KxPnDiR280xK3Puxzx9+lRjH+FD8DGtGzlhjv1Nqeg7IiR/Wbt2rfibbdq0qUXfOzf7quyw1HH3h7j9/picPXvW4Ho9a9YsscyRI0dM8r6Sg7eZVzBT/X1oG/2HDx9iyZIl6NevH6pUqQJ3d3dYW1vDw8MDlStXxtChQ3HgwAEolcps1Z+eno7t27ejW7duKF26NOzt7eHl5YUaNWrg+++/x5MnT0y8RIQQQgghhBBCCCGEfLyUSiXGjRsHAChQoAC++uorreXGjx+PQoUKAQC+/PJLKBSKHL83jbw1kTVr1qBy5cooX748Ro8ejc2bN+P27duIjo5Geno6oqKicOfOHaxevRodO3aEv78/rl69atR7hISEoFGjRujVqxd2796NJ0+eIDk5GW/fvsW1a9fw008/oVKlSvjzzz/NtJSEEEIIIcTUaOQ3ISS35LcrHQkhJLds3rwZ165dAwBMmDABzs7OWss5ODiIgd3bt29j3bp1OX5vK6kF7e3t0aZNG71lkpKScOrUKfF+5cqVUaxYMb2v8fDwkNqEPG3Hjh24c+eOxmMuLi7w9fWFh4cHoqKicOvWLaSnpwMA7ty5gwYNGmD//v1o2bKlwfrDwsLQuHFjvHjxQnzM09MTFSpUQHx8PO7evYu0tDSkpKRgwoQJiIuLw/Tp0027kIQQQgghhBBCCCGEfEQUCgV+/PFHAICjoyNGjhypt/zw4cPx888/IzY2Fj///DM+++wzWFlJDsFmIfmVhQoVwr///qu3zNOnT+Hj4yPe/+qrrz66XImFChXCwIED0bt3b1StWhVyuVx8LioqCnPnzsXcuXOhVCqRkpKCHj164MGDByhcuLDeenv27CkGbq2trfH7779j+PDhsLa2BgC8ePECo0ePxt69ewEA33//PWrXro3WrVubaUmJpXDOc7sJ5CM0c+bMfJGbihBC8rKmTZvSdpwQQggholKlStG+QT60fft2PHz4EADQr18/gwNRXVxc8Nlnn2HRokUICQnB5s2b8emnn2b7/SltgokUL14cixcvxvPnzzFnzhzUqFFDI3ALAO7u7pg1axaWL18uPhYbG4tZs2bprXvnzp04d+6ceH/ZsmUYM2aMGLhVvf/OnTvRpEkTAELAb9KkSdQpEEIIIYQQQgghhBCSTerpSYcOHSrpNerlFi5cmKP3p+CtiSxbtgyjRo2CjY2NwbKff/456tWrJ97fuXOn3vJz5swRb9etWxdDhgzRWk4ul2Pp0qXi/Rs3bhgcLU0IIYQQQgghhBBCCMnq9u3bOH/+PACgdOnSqFOnjqTXVa1aFRUrVgQAXL58WcyXmx25GrxNSkrC8uXL0aFDB5QsWRL29vZwc3NDhQoV8MUXX+Do0aOS6lm7dq2YZL1p06bi42fPnsXAgQNRvnx5ODo6wtPTE7Vr18bs2bMRHR1tnoWSqFOnTuLtFy9eICEhQWu5Fy9e4NKlS+L9ESNG6K23YsWKaNy4sXjfUGDYHK5du4bZs2ejU6dOKF26NJycnGBjY4NChQqhdu3a+Prrr7PkBzZWUFAQRo8ejUqVKsHFxQWurq4ICAjAd999h1evXhldX3x8PJYvX47OnTvD19cXjo6OcHZ2RtmyZTF48GD8999/OWpvTqjWbcYYnj59qrfspUuXMGbMGFSvXh0eHh6wsrKCg4MDihYtigYNGmD06NHYtm2bzvVN5e7du/jmm29Qt25dFChQADY2NrC3txe/w88//xxr165FZGSk1tfr+k3qM2jQIPE1Ui/Xf/v2Lf744w+0bt1aow+pVKkSRo8ejQsXLkiqBwBSUlKwfv16dO/eHb6+vnBycoKVlRVcXFxQtmxZtG/fHjNnzsSFCxdMMqK9VKlS4vKeOHHCYPmnT59qrAv6KJVK7Nq1C/369UP58uXh4uICKysrODs7w8fHB61atcKUKVNw9OhRnTNfzpw5U3wvfelvtK2fsbGxWLBgAerXr49ChQrBzs4O3t7e6Nu3L44dO2ZwWdVxzvHPP/+gc+fOKF68uFhXixYtsHbtWqSkpADI3jpnjPT0dGzbtg0DBw5EhQoV4OHhAWtra3h4eKBWrVoYNWoUDhw4YJKZRFVMuX4nJSVh7969GD9+PBo1aoTChQvD1tYWjo6OKFGiBDp27IgFCxYgPj5eUn26fq+HDx9Gr1694OvrCzs7OxQoUACNGjXC/Pnzxe/KVGJiYrB161YMHz4cdevWhZeXF2xsbMT1vGfPnli9ejVSU1Oz/R5JSUlYtWoVmjdvrrH+devWDbt37zbdwryn63d37NgxDBo0CBUqVICrq6vO3+WbN2+wbt06DBo0SNwOWFtbw83NDeXKlcOAAQPwzz//QKlUSmqPtn4qJSUFa9asQfPmzVGsWDHY2tqiaNGi6NKli1n2OZ49e4Zy5cqJ7fD19cXjx4+Nrmf//v1iHZUrV9ZbVn39Zoxh//79Osvev39fLOfs7CzObaBiaCIg1XMnT54UHxs8eLDG+xs7kdCbN2/w66+/ombNmvD09IS9vT18fX0xePDgHB00SJGUlIQ1a9agT58+KFu2LNzc3GBjYwMvLy80aNAAX331FU6cOGHSK8OePXuGX3/9FY0bN0bx4sVha2sLT09PVK1aFV9//TXu3r0ruS5T9yvaJqJTKpXYvn07OnTogBIlSsDW1haFChVCq1atsHr1apNuRwDT9wvaREdH488//0T9+vVRuHBh2NnZwcfHB/3798fx48dNuDTa3bhxA1OnTkWdOnVQtGhR2NrawsnJCWXLlkWPHj2wdOlSREREGKxHoVBg48aN4nZMdTxQpkwZDBgwALt27ZK07pprP1hXf/L06VNMmTIF/v7+cHV1hZOTEypUqIDRo0fj0aNHOt9Ttc1p1qyZ+NizZ8+09j85nUxR1/btwoULGDRoEMqVKwcHBwe4u7ujVq1a+PHHHxETE2Ow3uwcP0jZB9fV3sOHD6N3794oXbo07Ozs4O7ujpYtW2LHjh1a67lz5w6GDx+OcuXKwc7ODq6urqhZsybmzp1r8v0iUzD1/qI2CoUC27ZtE2NAdnZ2KFq0KNq0aYO///47W33g3bt38d1336FOnTooUqQIbG1tUbBgQdSuXRvfffcdnj9/nu32moMxx3UAcOTIEQwZMgSVK1eGm5sbrKys4OjoCG9vbzRt2hQTJ07Evn37DK5TOY0VSD0+VJedCVlNuV2Pi4vD0qVL0aFDB3h7e8PBwUHcBlaqVAldu3bFrFmzcOvWLb31bNy4UbzdtWtXye8PAN26dRNvb9iwwajXauAmFBISwgGIf2vWrNFZ9vDhw7xEiRIa5bX9tW3blr9+/Vrv+65Zs0Ys36RJE56WlsYnTJigt96iRYvyEydOmHLxjbJs2TKN9rx69UpSufDwcIN1z5o1SyxfpEgRk7RXvQ0hISFay7x7946XLVvW4HcKgDPG+MiRI3lqaqre9z1+/Lj4mpIlS3LOOZ8zZw6Xy+U663Zzc+Pbtm2TvGwbN27khQsXNtjm1q1b84iICL11DRw4UCw/Y8YMyW3QR8pnn5yczD/77DNJnz0A3q5dO631KJVK/s0333CZTCapnooVK2qtJ/NvUgpjP7s//viDu7q6Gmxj//79eWJiot66bty4wcuVKyf589u6daukZdKnZMmSYn3Hjx83WD5z/6rLs2fPeK1atSQvy5w5c7TWM2PGDLHMwIEDdb5f5vXz8uXLvFSpUnrfc8yYMVypVBpc5oiICN6sWTO9dVWrVo0/efIkW+ucVP/995/k9UPXezdp0kQso2/bqGLK9XvTpk3c2dlZUvs9PDz43r17DbYv8+81Li6O9+3bV2/d5cuX56GhoXrrlbrezZs3j9va2kpaJm9vb37+/HmDy5T5O3r8+DH39/fXW3f79u15dHS0wbqlyrz8sbGxOj/XzJ/P+PHj9W4b1f8qV67MHzx4YLA9mfup4OBgXrVqVb11d+vWjaekpBhVry537tzhxYoVE8v6+fnxly9fSvkos4iOjha3bYwx/ubNG0ntA8C/+uornWWXLl0qlmvTpk2W57Xtx6iT2ldre7227cK///7LCxQooLMOmUzGZ8+eLe1DM9LGjRt50aJFJS2Lrt+3MdvGtLQ0PmXKFIN9gVwu519++SVPT0/XW58l+pXXr1/z5s2b6627QYMGBvsVqftMlugXrl69muU3k/lv8ODBBvuF7Hjz5g3v2bMnZ4wZXD4bGxt+//59nXVduXKF+/n5GaynTp06/OHDh3rbZa79YG39ybp167iDg4Pe5d6wYYPW+tS3OVL+pOy/6JJ5+5aammrweL1w4cI8KCgox59bZlL6mcztTUxM5J9++qne9o4aNUqjjl9//VXv78/f35+/fftWUptzQur6aIn9xTdv3hjct69bt67B/UWV+Ph4PmzYMIP9nJ2dnc5jHnXqr9F13G0KUo/roqKieJs2bST/RkeOHKm1HlPFCqTup6sz5hjI1Nv1o0eP8iJFikhe7osXL+qsSz3OFRgYKGnZVU6dOiW+1tvb26jXqsv+VGc5sHPnTvTt2xdpaWniY4UKFUK5cuWQlJSE27dvIzk5GQDw77//olGjRjh+/DiKFi0qqf4pU6Zg/vz5AAAnJyf4+fnBysoK9+7dE0cKvnr1Cu3bt0dgYCDq169v2gWU4NmzZ+JtxhgKFCigtdzNmzfF2z4+PihUqJDButVTMoSFhSEiIgJeXl45aK00iYmJCA4OFu/b29ujbNmycHd3B2MMr169QnBwMDjn4Jxj6dKlePv2LbZt2yb5PRYvXoxJkyYBAGxtbVGlShU4ODjg4cOHCA8PByCc/f/kk08gl8vRvXt3vfX99NNP+P777zUeK1WqFEqUKAGFQqGxzvz3339o1KgRTp8+rfP7yi2DBw/G5s2bxftWVlYoX748ChYsCM45IiMj8fDhQ/F3pWt0xbRp0zBv3jzxPmMMZcuWRdGiRSGTyRAVFYXg4GDxbGtORmlkl1KpxIgRI7By5Uqt7UxOTsbt27fFNm7cuBFPnz7F0aNHYWtrm6W+sLAwtGjRAu/evRMfc3NzQ/ny5eHs7IzExESEhYXh6dOn4miL3FhuKRITE9GiRQuNURaOjo6oUKEC3N3dkZycjNevX+Px48fiMphyWe7evYu+ffsiLi4OjDH4+fnBy8sLERERuHPnjvj5LVq0CCVLlsTXX3+ts664uDi0bt0a169fFx+zsrJClSpV4OrqiufPn+PJkye4fv06WrVqhfHjx5tsOdStXLkSI0eO1BgF4ODggAoVKsDNzQ2xsbG4f/++uL7l9KoOU6/fAPD48WPExcWJ9wsWLIhSpUrB2dkZSUlJePjwId6+fQsAiIyMRNeuXbF7926NK0T0USgU6NGjh3iFQpEiRVCmTBkoFArcvHlTPHv/4MEDdOzYEVeuXMnRTKuAMNpRfXSBt7c3ihUrBkdHR8THx+P+/fviiJ3Q0FA0a9YMZ86cQY0aNSTVHxsbi1atWuHJkycAgBIlSsDHxwcxMTG4deuWuD4cPHgQHTp0QGBgIOzt7XO0TJlxzvHJJ5/gwIEDAIS8+RUqVIBMJtM6kur27dtiuxhj8PHxQeHChWFvb4/o6Gjcu3cPiYmJYtl69erh+vXrKFGihKT2hIeHY8CAAXj58iUAoFy5cihWrBiio6MRFBQkvveuXbswceJELFq0KEfLf+nSJbRv317sm+vUqYODBw8anBxCF1dXV1StWhXXrl0D5xwnT55Ez549s5R7+vSpxj4aAL1XR6g/l51R/23atAEgLG9UVBQAoHLlyihWrFiWsob2AY8fP46OHTsiPT1d7C/d3Nzw4sULcf9MqVRi8uTJKF26tNblz67vv/8eP/30k8Zjrq6uKFu2LFxcXBAVFYV79+6J+yE57SuTk5PRs2dP8fcBADKZDJUqVYKXlxfi4+MRFBSElJQUKBQK/PHHHwgNDcW2bdt0jnIyd7+SkJCAVq1aISgoCICwv1myZEkkJSXhxo0b4mjes2fPon///npHfEtl7n4hNDQUEyZMEPeVy5Qpg+LFiyMiIgJ3794Vt/tr1qxBbGwstm3bBpnMNBd+Pnr0CG3atBH7aZVy5cqhSJEiSE9Px/PnzxEaGgoASE1NRVJSkta6zp07h3bt2iE2NlZ8zN3dHRUrVoRSqcTdu3fF5y5evIhGjRrh6NGj8PPzM8myZNf69esxcOBAAICdnR0qV64MJycnPHnyRBxpmJqais8++wxlypTJcplvmTJl0KZNG0RGRuLy5ctiPao5VDLT1i9l18iRI7Fq1SoAgKenJ8qXLw+5XI7bt2+LfWF4eDjatm2Le/fuwcXFxWTvnR2DBw/G1q1bAQhzzZQuXRqJiYm4ceOGGNNYsmQJvL29MXnyZMyaNQtTp04FIPSFlSpVgpWVFW7duiX2f0FBQejXrx8OHz6cK8uUmbn3F9PT09GlSxfx0vPChQujXLlySExMxK1bt8T+98KFC2jRogXOnDmjN4bx7t07tG/fXuMqZWtra/j5+cHDwwORkZG4ffs20tPTkZycjEmTJuHNmzf47bffjP5scoNSqUSnTp1w5swZ8TE7OztUqFABnp6eSEtLw9u3bxEcHCyug7qO60wVKzAnU2/Xg4KC0KFDB3GZAMDLywtly5aFg4MD4uPjERoaKu7XArqXOyQkRNyPsrKy0oi3SVG7dm3Y2dkhOTkZoaGhuHfvnphKwSjZDvtqIWXk7ZMnT7iTk5PGGbVdu3ZxhUIhlomJieFTpkzROIvasmVLnSO11M8meXh4cMYYt7Ky4r/++itPSEgQy6WmpvKVK1dyR0dHsXypUqU0ylhKhQoVxDbUrFlTZ7mmTZtqfAZShIaGanwPJ0+ezHF71evTdRYqNDSUFy5cmE+bNo1fuXJF65mQly9f8okTJ2p8t5s2bdL5vupnmJ2cnLidnR0HwL/88kseFRUlllMoFHzHjh3cy8tLLO/q6qpzRDPnnG/ZskVjufr375/lTLpCoeDbtm3TGMXStWtXnXXmxsjbK1euaJSZPn26xmejkp6ezs+ePcvHjRvHe/XqleX5sLAwbm1tLdYzbNgwHhYWlqWcUqnk169f59OmTeMNGzbU2mZzjrxVH1nOGOPjx4/nL1680CiTkpLCly5dqjESYcKECVrrGzNmjFimaNGifP/+/Rr9kUpUVBTfvHkzb9WqFd+yZYukZdLHHCNvf/vtN/F5FxcXvn79eq2j2xMSEviePXt4z549+dy5c7XWlZ2Rt56enhwAHzp0aJbf3r1793iVKlXEso6OjjwmJkZnvSNHjtSoe+jQoVlGvl+6dIkHBARwABq/UVONvD169KjGKPRixYrx9evX86SkJI1yCoWCnz9/no8aNYrXrVtXa11Szzqbev3mnPOff/6ZN2jQgK9YsULnqMXTp0/zOnXqiPUVKFCAx8bG6qxT/feq+t4rVaqUZV1OTEzk48eP1/gu//rrL531Sl3vhg0bxtu1a8c3bNigddSKQqHgBw4c4OXLlxfrq1ixotbftor6d6Ran3x9ffmxY8c0yoWFhfF+/fppLNM333yjs15jqC+/avRLwYIF+ZYtW3haWprG8j158kTjtW3btuW9e/fmO3fu1PrdpaSk8E2bNmmMjGzdurXe9qj3U6rvuXPnzjw4OFijXGhoqMZIGplMpndkmqH+78iRIxr7ii1btuRxcXF62yrFxIkTxTpHjx6ttYz69sve3p4DwggPXSMh1a/c0TYS09DIWxVjR+dznnW74OnpyRljfPLkyVn2Ay5cuMCLFy8uli1RooTe34Mx1D8zALxChQp87969Guss58J++NGjR/mAAQN4jx49tNYldds4fPhwsZyNjQ3/4Ycf+Lt37zTKxMfH859++kljRNb8+fN11mnufkX1G2rQoAG/du2aRrnIyEjeu3dvjc/xyJEjOuuVus9k7n5B1VdWr149yzI9fvyYt2zZUmOZFi9erLduqRISEnilSpU0+hxt20vOOX/x4gWfP38+L126NL9+/XqW56OiojRG+Ds7O/NVq1Zp7D8lJSXx33//XWM0WKVKlXhycrLW9lli5K2joyO3s7Pjtra2/LfffstyPHvgwAGNK3h07bNnrldfP5UT6ts31W+hePHifPfu3Rq/obS0ND579myNY8Xp06frrNcSI289PDw4AF6mTBl+9OhRjXLh4eEao+ldXV35v//+y2UyGXd0dOQrVqzQWJeSk5OzjDg2dhSfsaSuj+beX1T1F15eXnzHjh0a33tUVBT/8ssvNT4XbcerKkqlkrdr104s6+LiwhcuXMjj4+M1yr17946PGzdOo97du3frrFe9XG6PvN2+fbvGdm7+/Pla41YpKSk8MDCQDx48mI8fPz7L86aKFXBu3pG3pt6ud+zYUWNbfebMGa3lXr9+zVetWsXr1Kmj84oa9d+Qv7+/pOXOrHbt2mIdS5YsyVYdFg/eduvWTaNzu3fvns761AMRAHQGTDLvNAL6Dw4PHz6scUD+448/Gr2sOZE5aPj777/rLOvj4yOWGzJkiKT6FQoFt7KyEl+3bt26HLdZSkeWmpoq+ZKo+fPni/XpC16r70xI2YDfuHFDIziv6zOLjIzU2KExdAnhvXv3NC4jOXXqlNZyuRG8/fHHH8XnBwwYIKlObYH1v//+W9IOnqF6ODffTuuDBw/EADNjTG/gn3POT5w4If4W5HK51s/P19dXfF99B0rqDF2iIYU5grfqO4/6+kB1upYlO8FbAHzy5Mk6yz5//lwj4Lhq1Sqt5e7fv6+x0575MjR1kZGRWVIamCJ4m5KSohHoKFeunKTLtXUFmKTsuJhj/eacZ9mR1SUpKYnXrVtXbOeiRYt0llX/vap2irTtCKp06tRJLNuoUSOd5aSud1KX6d27dxq/8f379+ssq/4dAcLJZX2X7Q0YMEAsa2VllSWYmh2ZL2F1dnbWu5+kTupnEhISwt3c3MT3uHXrls6ymS+F7tevn84T6XFxcRoBoO+++05SvZn7v+3bt2sESHr06GGyy6337t0r1uvn56e1jPq6rX4guW/fvixl7927Jz7v5OSUJVjJuWWDtwD4smXLdJa/fPmyRt+aOQiRHW/evNHY76pfv77eE3MquvpKKdvGY8eOiWVsbW0NpkHbsGGDWN7V1VXne1uiX2nSpInOgF96erpGWpJPP/1UZ71S9zct0S/4+fnp/M5TU1M1Tuy4urrqDfRI9c0334h1ymQySems0tLSspx85Zxr/M6tra31Dnr5559/NJZd1/GDJYK3qn2FgwcP6qxzx44dGuUfP35ssF5LBG8B4cTks2fPdJYfO3asWFbfZcaWCN4Cwgl8XekLo6KixAAvIASe5HK53r5JfYDWZ599Jqnd2SV1fbTE/qKjoyO/ceOGzvLTp0/XKK/rmHv16tViGQ8PD37nzh29bf7555/F8mXKlNG5L6P+3rkdvB0yZIj4vL74hzptx3WmihVwbr7gram362lpaeK+JGPMYKobFV3LrT7Y65NPPpFUV2ZDhw4V65Aa18vMohOWhYaGYu/eveL9H3/8ERUqVNBZfuLEiahbt654X+oleM2bN8fQoUN1Pt+6dWvxEhNAuCzWUkPDIyIi8OWXX4r3ixUrhpEjR+osr375jqurq6T3kMlkcHR0FO+rX/5gTtbW1rCxsZFUdty4ceIlWVeuXEFYWJik15UvXx4zZszQ+XxAQAC+/fZb8f6WLVu0JrtfsWKF+Hjz5s3FVAy6VKhQAdOnTxfvL1myRFJ7LeHFixfi7QYNGkh6jVwuN1s95vTHH3+Il4UMHjwYn3zyid7yTZo0wbBhwwAIl3YvX748S5n8sNxS5faylCtXLstls+q8vb01LtM9e/as1nJ//fWXeKll4cKFMXfuXJ11uru7488//8xmi3XbsGGD+HnK5XJs3rxZUuoeJyenbL+nOdZvABrbA33s7Ozwyy+/iPf37Nkj6XUAsHz5cri5uel8Xn27d+nSpSyTOhlL6jJ5eHhg2rRp4n1jlmnu3LkoXry4zucXLlwoXsKfnp6Ov/76S3LdUn3//fd695PUSf1MSpUqhbFjx4r31ffL9HFzc8PSpUt1XnLu5OSEzz//XLyv6/etz6pVq9CnTx/x0smhQ4di69atkvctDGnUqJF4yfbdu3e1TmCkmjjMx8cHn332mfi4ttQJ6pOM1a9fP8fpQHKqefPmGD58uM7na9asiUaNGon3s/MdZbZw4UIxNYqzszO2bNki6fLmnPSV6tuEadOm6bzEW6V///5o164dAGFCMvVJR9SZu1+Ry+VYs2aNzhQ3crkc48aNE++b4vsxd78AAEuXLtX5nVtbW2PlypWwtrYGIHz+W7ZskVy3NjExMVi2bJl4f9y4cejdu7fB11lZWcHOzk7jscTERKxZs0a8P2bMGI2JnzPr2bOnxnstXbrU5BPMGWPw4MHiuq1Nt27dULJkSfG+KdYpU/ntt9/0pueYMGGCeDs0NFRMf5Fb/ve//+lMXePm5oZevXqJ91NTUzFs2DC9fdMXX3wh3s4r34sl9hcnTZqEgIAAnc/PmDED5cqVE++r/9ZVOOcaaf7mz5+PSpUq6X3fqVOnimUePXqUq5ORS/UxHeOberseEREh7ksWLFgQZcuWldQOXcutPkFa6dKlJdWVmfrrjJlwTZ1Fg7f79+8XN3COjo56A6yAkJtJPY/hmTNnxDwr+qjvfOgyZswY8XZoaCiuXr1q8DU5pVAo0KdPHzFQyRjDypUrs+xIqFOf6U9fuczUc+/pmi0wNzHGULt2bfG+eq4afUaMGGHw4GjEiBHiDy8xMVFr57x+/XrxtvrOgT79+/cXb1ti5lyp1NcLVR613KzHXJRKJTZt2iTez873duzYsSzP5/XlNkZuL8uQIUMM/j4bNmwo3r5//77WMgcPHhRvDxgwwODOZJs2bSTPwi6Vel6o9u3bo3r16iatPzNzrd/GUs+Hd+XKFUmvqVChgkZASJt69eqJQbOUlBSEhIRkv5FGUl8mVU4/QwoUKGAweO7m5qbx+e/evTtb7dPFysoKgwcPNmmdKtn5TPr27WswKCfl963LvHnz8Pnnn4v7iV9//TX++usvkx5AuLm5iQeN/H3eW3XPnj3D06dPAQj5a/39/eHu7g5Ae/A2p/luTU09GKBLTr4jbdT7ykGDBsHb2zvHdeoTEREh5oe0trbG6NGjJb3OnH2l1N9Qq1at4OPjo7eM+vcTEhIi5sG1hOwsU0BAgMH+v3Tp0mjbtq14P6d95f79+8WBKdbW1pg8eXK26zp58qSYf5QxphE810X9ZOSzZ89w48aNbL9/Thn6zTPGNII1pvjNm4KLiwv69u2rt4yvr6/GSfPcbLurqyt69Oiht4z6cS0Ag3EO9d/bkydPLPpbN4Xs7C9aWVnpHbSmKqN+EnLv3r1ZBtldvXoV9+7dAyAE5vr162fwvRljGuVMsR0wt4/lGN8c23X1ZX7z5o04N1J2qc+FIHUerszUc4ZnnltBKosOEbh48aJ4u3HjxpLO7rRv3x6MMXEUlmoCC11kMhlatWplsN7q1aujYMGCePPmDQBhJ6VWrVoGX5cT48aN0wj6TZgwQe/ZUgAak7oZM6JDvWxubAxUQdNr167h6dOniI2NRUpKivg9AsCtW7fE2+qJovVR3/nTpWDBgqhRo4YYEL58+bLG2dDIyEiNsx3NmjWT9N7FihWDm5sboqOj8fr1a7x8+dKkifuzS32ijOXLl6NcuXIYPny40ZPnqNdz6NAhTJ06FZMmTZI84tvcbt68KY5EL1CgAKpUqSLpdZUrVxZv37hxA5xzjZFjNWrUEH+XAwYMwJo1aySflcxratSoIW6Ux44dC0dHR7EPtQQpydvVfzPaJqxRTQqjIuX3yRhDkyZNxKBLTqWnp4uTKQAwuMNuCuZavzMLCQnB0aNHERQUhIiICMTFxekcBRsVFYXExEQ4ODjobYOU793Ozg6enp7iSMecTlak7s6dOzh58iRu376Nd+/eIT4+XmMklPoENVK3NS1atJC0zW3Xrh0WLlwIAOLEdTkZUaiuYsWK8PT0zNZrL1++jLNnz+Lu3buIiopCQkKCxsGPanIhQPpnYorfty6TJ0/GnDlzxPu//vorpkyZIvn1xmjatKk4EeKJEyc0rgbIHIyVyWRo3Lgx9uzZgxs3biAmJkZjm6ge/M0LwVtzfkfahIeHa0yeZ4m+8syZM+K+ZEBAgOQJ7NT7ymvXrhksb45+xdjvh3OOmJgYk006bI5+Qcp+OSD0lfv27RPbkROnT58Wbzdo0EDSZM66qB+bVqhQQdKJ4Lp168LT01OcTPHixYuSJ60zJRsbG0nva8rfvKnUqFFDHI2tT7FixfDq1SsAudv2GjVqGNwnKFy4sHjb1tYWVatWlVze1L91UzDH/mKNGjUkTfrdrl07fPXVVwAyjgvUR9aq9wGNGzeWfJLX2O1AbqtRo4Z4FcQPP/yAokWLom/fvkZf5WOqWIG5mGO77u7uDh8fH4SEhIBzjq5du2LlypWSj68yUx9Aqjqpbyz112m78ksKiwZv1XfwpH5wLi4uKFmypHhQrm2GZXU+Pj6Sh/z7+fmJwVvV7HHm8sMPP2hcat+jRw+N4f66ODg4iGeX1WfKM0S9rNTPwxSSkpLw008/YdGiRUala9CW2iAzGxsbyUPe/fz8xOBt5u9WfdZ7Kysro2ZbVv9c3759myeCtz179sTUqVPx8uVLKJVKfPnll5gxYwZat26Npk2bolGjRqhSpYrBAF6jRo1QvXp1sfObNWsW/vjjD7Ro0QLNmzdHw4YNUaNGjVxLGXD79m3xdkpKiuQDBnWpqamIjY3VOPgeP368GLwNDg5Gw4YNUbZsWbRt2xaNGzdGo0aNcnRgYEljxozB33//DYVCgTdv3qBjx44oXrw42rVrhyZNmqBRo0aSZ5DODvUdUV3Ud+xUM1yre/HihcbBpNRLxrM1Y6cOoaGhGlcsWOKgzFzrt8r9+/cxfvx4BAYGapxEMyQmJsbgzriU7x0w/N0b68KFCxg/frzkKzcAadsaQHOHUB/1mcaVSiUeP36s93JAY2TnsqyDBw/iq6++MmqEktTPxBS/b22+/fZbMZgjk8mwZMkSvZf+51TTpk3xxx9/AMg6mlbbSNqmTZtiz549UCgUOH36NDp27AgAePDggXgllaOjo9kHAEhhru9IF9XIJxVL95XPnz+X3FeqB1v1XcVnzn7F2O8HME1fac5+ITt9ZURERJYTIcZQX+9yus5l59hUVVbVXxg6NjUXT09PSUEcU297TSG39huyS8pxgHpbPTw8DH435vitm4I59xel9hflypWDtbW1OIgtODhYI3irvh24fPmy5O2A+gkqKVdz57ahQ4di3rx5iI+PR2JiIj799FN8+eWXGsd16ikmdDFVrMBczLVdnzBhgngV/8WLF+Hv74+AgAC0bt0ajRs3RoMGDSQHYtWPC7Mb9FZ/XXp6OlJTU41OC2bR4K36GTNjRpMUKFBADN5GRUXpLWtMveplzXk2748//sDMmTPF+23btsWmTZskBcGcnJzEIKj6CmqI+gbAVKOADImLi0Pr1q1x4cIFo1+rykmij5ubm+TAob7vVnWmHBB+OKph+saSumNrbg4ODti3bx86duwonp2OjY3F9u3bsX37dgDCb6hDhw4YOnSozsvbGGPYsWMH2rdvL+4YJycn48CBAzhw4AAA4WRK69atMWjQIHTo0MECS5dB/XuLi4vL0femfsDQpUsX/Prrr5g+fboYNAwODkZwcLA4oq5KlSro1asXPv/8cxQpUiQHS2Fe1atXx+rVq/HFF1+Iv6kXL15g5cqVWLlyJQCgTJky6N69O7744ots5+zRxdgNkLadwsy/V315VNWZcoS4+s4dAIuMhDDX+g0Ap06dQrt27bJ1YCClb85OPlJjDgi02bp1K/r37290rkGpV6JI3ZfIXM6U+xLOzs5Glf/tt9/wzTffGP0+Ur5jIHvfsxTqo/CaNWsm6dL/nGjcuDFkMhmUSqWY91b1G1cFY3x9fcUTXeojak+cOCEGb9UDvQ0aNMj1fLeAafpgY6j3lXZ2dhbZ31TvK9+8eZOtvlLX/pu5+5Xc6CvN3S/kpK/M7nZbfb3L6fY5J8emKoaOTc0lN9YnU8lvbTe2vflt+VTMvb8o9Tcml8vh6uoqBuT0Hcs/e/YsW5eg55XjeH2KFSuGHTt2oHfv3mJ73759i/Xr14spIIsXL44uXbpg2LBhOgcPmCpWYC7m2q6PHTsWDx480BhAefPmTdy8eRPz5s2DTCZDzZo10bdvXwwZMkTyNim7v1VT/MYtmvNW/UdtTKemXtZQx2BMveoTBkjdSTHWihUrMHHiRPF+kyZNsHPnTsntVN85kDqpV1xcnEanm93LLo31zTffaARu27ZtizVr1uDmzZt4+/YtkpOTwTkX/9QnjZPCVN+tqXIAW2qSOymqVauGe/fu4eeff0aZMmWyPP/27VusW7cOjRs3RseOHXWebSxVqhSuX7+OBQsWwN/fP8vzqo6+Y8eOqFevnkXzVprze5syZQquXbuGAQMGaD34vHXrFr7//nuUKVMG//vf/0zSDnP57LPPcPfuXYwcOVLrb//Ro0eYO3cuKlSogEmTJuV44qi8QpVP1RQy9xm6JpcxJXOt37GxsejVq5e4TXB2dsb48eNx4MABBAcHi5fBqffNed3Tp08xaNAgMcDi5eWFqVOn4siRIwgJCREvb1YtT3b6Kanbm8zrhin3JYxZpy9cuKARoClZsiR++eUXnDp1ShxJrv6Z5KW87erpo44ePYpRo0aZdT3Ulff2+fPnGvluVXTlvVVPmWBoYo0Plfr6bol+EjBNX6lt/bJEv2JplugXcqOvNOV6Z4ljU0LyA0vsL+alY/m8dByvT+vWrfHgwQN8++23WnOtvnjxAosXL0a1atUwePBgnYF3U8UKzMFc23XGGBYvXoyTJ0+iW7duWbYXSqUSly5dwsSJE+Hj46Mx90hm6leyG3M1vDr1gZhWVlbZOslj0WEC6tFsYy6pVy9raBRWduuVMjOusTZs2KCRlLtOnTrYt2+fUUOty5cvL+aGff78uaTXZJ6NU+plxznx7t07jZm2582bh6+//lrva4z5rowtr++7VV8PHR0dER8fb1Q78ioXFxdMmzYN06ZNw5MnT3DixAmcPHkSR48e1chdduDAAbRt2xYXLlzQOlLI1tYWY8eOxdixY/Hq1SscP34cJ0+exLFjx/D48WOx3IULF9CsWTNcv34927lf1Bka6aL+vfn5+WlcYmEKAQEBWL9+PdLS0nD58mXx8zt16pTYSScmJuLrr7+GTCbTmLDCEowZCeTr64slS5Zg0aJFuHHjhrgsx48fF38b6enpmDt3LpKTk/Hnn3+aq9lGy3zWMyYmRlLuI1OOfMm8nYmJiZE8Aji7zLV+r169WkwP5O7ujosXL+pNP2Nsv5wb5s+fL/4mfX19ce7cOb2XNGZnmaS+JnM5c+xLSDF79mzxdt26dREYGKh3FGRe+p6//fZb1K5dGz/88AMAYWZpuVyORYsWme09mzRpkiXvra7Jx3Tlvc1r+W5zg3q/GBcXZzDntimo95UdOnTA/v37TVKvJfoVS7NEv5AbfaX6epfT0XOWODaVytgR3yT76LPOyhL7i+Y4lh89erRZ9xfygkKFCmHOnDmYM2cO7t69Kx7XHTt2TAyycs6xdu1aREZGYs+ePVrrMVWswFjGHOObcruu0rhxYzRu3BjJyck4e/YsTp48iZMnT+LcuXPiIKaoqCj0798fdnZ26N69e5Y6ChQoIG5vsnvMqf667F41YtGRt+qNlHrGOvPZbUMLasyENer1FixYUPLrpNi+fTsGDRokntWpVq0a/v33X6Mvg1TP43jnzh1Jo+RUBySAENXXdnbF1I4dOyb+MH18fMQk4/pInQxBJSYmRvKPRd93q74znpCQYLIRb3mJr68vhgwZgnXr1iE0NBSnT5/WGBl09epVjRmidSlatCj69++PFStW4NGjR7h+/bpGh/bs2TOtG0z1M0nqk+7pY+hyY/XvTbVzYQ7W1taoX78+pk6disOHD+Pt27dYvny5xij4GTNm5Hi9MfYzys7l2DKZDNWrV8fEiROxZ88eREREYOvWrRoTcixevNhkE32ZQvHixTUO/qXm6DPlLMSZc7GZOyc6YL71OzAwULw9fvx4g3nDje2Xc4P6Mn3//fcGc9FlZ5mk7qNkLmfqfQkpOOc4cuSIeH/27NkGL1/Pa9/zzJkzMX36dPH+4sWLxTxl5pA5FYL6v5mfV7+vynv78OFD8dLDvJLvNjeo95WqnM/mZom+0lz9iiVZql/ITl9pZWUleUIabdTXu5xun7NzbApAY13Xdmxqjv1goh191qZhif1Fqb+xyMhIcRJfQP+xvDmPCfOiSpUqYdSoUdi6dSvCw8Nx8OBBjatl9+7dqzGhmy7ZjRXk52N8Ozs7tGjRAj/++CNOnjyJ169fY86cORq5mnWlGSpZsqR4O7vbf/XXqddnDIsGb6tXry7eljoRwJ07dzRGRqrXoU1MTAwePHhgsN64uDiNg31D9RrjwIED6NevnxjM9PPzw3///ZetM7ONGzcWbycmJkqaGVH9B1u3bl2z5alTpz4quEaNGgZHXiQlJeHGjRtGv4+U9YZzjitXroj3M3+3AQEBGqOf1Wea/RAxxtCwYUP8+++/GqOw//vvP6Prqlq1KrZv345mzZrprUf9JIXUgLuhkYZ169YVb0dERODJkyeS6s0pR0dHfPHFF/jnn3/Ex+Li4rKV21mdsZ+RKUZi2traonfv3jh8+LA4y69CocDRo0dzXLepODs7o3z58uJ9qZdxqo+CyykPDw+NndZTp06ZrG5dzLV+q/fNNWvWNFj+/PnzJnlfc7LEMkndR1Ev5+bmBh8fH6PfK6ciIyM1Tibl1+/5p59+wtSpU8X7CxYsMNsVDqq8twDEvLfq+W69vb01ymcO9qoHeuvXry9p1nRD1NNk5If0JYCQD179oMfSfeXNmzezffliZh9aX2mpfiE7faWfn1+Ojk3U14HTp0/n6Peifoxw/fp1ySfT1Y81tR1DmmM/2JzyY/+jYuxn/ezZsw/mqktTskQfeOXKFUnrV+Z+pVq1ahr31fuAnB6P5WdyuRzt2rXD0aNHNQYZGXuMb0yswNjfW2pqqsGTbObarhvi4eGBb7/9FosXLxYfe/LkidYT0eoDKrM7SaX6sZ36BHzGsGjwVj358Z07d8R0APps2LBBvO3m5iZplsKtW7caLLNjxw5xAy2Xy1GvXj2Dr5Hi2LFj6Nmzp1h3uXLlcOTIEY0flDGaNGmiMZR848aNesunpqaKiacBYTImS5B65kVly5Yt2coRJeW7PXnypEZ+4IYNG2o8b2Njo3Egtm7dOqPbkR/Z2dmhTZs24v3Xr19nqx7GGDp37qy3HtVEL4DQwRmabC8oKMjg6E9vb2+NjtPS31vTpk01fovZ/fxU1D+joKAgg+V1XQKTHeXKldPYaOR0WUytffv24u0NGzYYnDghMDDQ5PkHW7VqJd5et26d0X2cscy1fhvb7rVr15rkfc3JmGVSKBTipA7GuHjxoqQR6Vu2bBFvN2jQIFdm6jX2O46NjcXOnTvN1Jqc+eWXXzBp0iTx/vz58w2mYMoOd3d3caQK5xzr168X+xD1k5MqmfPe6hulm13q+dSMmaA2N1lbW2ssv2piTHOqU6eOuC1OTU2VdBWRFJboVyzJUv3CgQMHDAbClEqlxgnwzPvlxlLfPj9//jxbgxFU1I9No6Oj8e+//xp8zZYtW8QBOrqOIc2xH2xO+bH/UcnN/ekPiSX2F1+9eiVpVKj6vpWfn1+W9HwtWrQQJzEPDQ3NU3n8c0OBAgXQoEED8X52j+ukxArUf29SYnn//vuvwZiPubbrUnXt2lXjvrblrlGjhng7uyfa1D8v9fqMYdHgbatWrVC8eHHx/pQpU/SWf/78ucYl2YMGDRJ/qPr88ccfiIiI0Pl8cnIyfvrpJ/F+27ZtDV4eJcW5c+fQuXNn8WyBj48Pjh49muUSXGNYW1ujf//+4v01a9boHaq9bNkyccY+W1tb9O3bN9vvbYwiRYqIty9evKg3t0l0dDS+++67bL3P+vXrce/ePZ3Pc8416vbz89N69lB9NM/GjRs1DsTyG2POkKvnD8p8yZqp6gGEs0mqpOBpaWnYvXu33vrUL5fVR/17+/333/WuC1IYs8wpKSkaOzY5ueQP0DyLvHPnTr2J8y9duoS9e/carNOY5VE/2Mrpspja559/LgbBwsLCMHnyZJ1lY2JiMG7cOJO3YfTo0WIbnj9/jh9//NHk75GZqddvQLNvPnv2rN6y//zzj0VGzuWUMcv0+++/Zyuwzzk32C8FBgZqjPgeNGiQ0e9jCp6enhojPw19JlOmTMnTo45mz56tEbD93//+pxHQNRX1oOPcuXO1Pq6iynsLADdu3NC4vNRUk5Wp7ytmd1RHbhgzZox4+8KFC1i1apVZ38/GxgajR48W70+fPt0kJyAt0a9YkqX6hbi4OI3cutqsWrVKY8RRTvvKWrVqoXbt2uL98ePHGzzJq0uFChU0gq/ff/+93hR1cXFxGseQnTp10poux1z7weai3v+8ffs2x7mELUl9f/rChQt48eKFzrIxMTGYN2+eJZqV71hqf3H69Ol6j1fu3r2rMVhNW39RtGhR9OnTR7yfkz4gL8uLx/jqv7cXL17oHYGdlpaGmTNnGnxPc2zXs7vMgPblVr8a/v79+0ZvL1NTUzVOLmV339GiwVu5XK5xEH7gwAFMnjxZa9AiPDwcnTp1Ei/5cXJywoQJEyS9T3R0NLp27ap1KHdycjL69esn7kQwxkxyUHD9+nW0b99ebG+JEiVw/PhxjWB1dk2bNg12dnYAhJXrk08+0Zrw+8yZMxqXHI4YMcIk7y+F+godGhqKn3/+WWu5iIgItG/fPtu5QtLT09GlSxetG2aFQoGxY8fizJkz4mO6gj6tWrUSZ7hWKBTo2rWrpBEHISEh+Prrr/HLL79kq/3m8Mknn2DOnDl6T1gAQu4a9TOZ6t8ZIASOpk6dmmXCu8xCQkKwZMkSnfUAwkmHDh06iPenTp2qNYeNUqnEN998g3379ul9T5WBAweKs4THx8ejZcuWks7g3r59G8OGDcOaNWs0Hn/27BkaNWqEffv2GcwnPWPGDHHHwMbGRuMSj+zo1q2bePvevXv47bfftJa7e/cuevToIWlyhapVq2Ljxo0GLzdZunSpxiUh2r7D3FSxYkUMGzZMvL9w4UIMHz48y8ynV69eRdOmTXH//v1sX92gS6VKlTBw4EDx/s8//4xffvlF7/fw6tUrjUtvjGXq9RvQ3DlYtGiRzrPkhw8fzrXgo7HUl+mnn37SuT1Zt26dwZPE+mzcuFEjqKfu9u3bGidWK1asqPdKF8aY+Gfqz1mVp1vl22+/1cgVp8I5x6+//qrRf+dV8+bN0ziZMXfuXI39G1NQX4/UDxJ0jaRVz3ur6oscHBw0gkg5oX7p9bZt28Scunldu3btNEYrjxw5EqtXr9b7muDg4ByN8p84cSKKFSsGQOh3mzZtKmkkzIULF9C7d2+N4LuKpfoVS7FkvzBr1iydI6WOHz+ukb+6RYsWOi/Jfvr0qUZfqe+gf/bs2eKl/g8ePEDr1q01rrrLLC0tDWvWrNE6unXatGni7Rs3bmDQoEFITU3NUi42Nhbdu3cXf5tyuVznumCu/WBzKVasmBiE5pwbNZGtObdvUtSvX18chKVQKDBy5Eit+2oxMTHo1q2b3uDux8xS+4unT5/GuHHjtH5HL168QNeuXcVjMi8vLwwdOlRrPT/88IN4Cf+tW7fQqlUrg5O7K5VKBAYGok2bNpLSbOa2Fi1aYOnSpVr7bnUHDhzQGIiW+bjOVLECQIhxqe+vjBs3TmvgPCUlBQMHDtSYi0kfU2/XT506hY4dO+LEiRN6A7kKhUIjXlS4cGGUK1cuS7nSpUujdOnS4msMneDI7NKlS+LxebFixeDn52fU61VyPn2ckUaNGoWdO3fi2LFjAIA5c+bg2LFjGDJkCMqXLy/OAqc+ghQQRl5ISexbvXp1xMTE4Ny5c6hcuTJGjhyJWrVqwcrKCkFBQVi2bBkePnwolh82bJjGJTPZ1b9/f42zlC4uLhg+fLjk18+dO1cj2bS6okWL4rfffhNHN5w+fRoBAQEYO3Ys/P39ER8fj//++w+rVq0Sh6WXLVsWM2bMyMESGcfHxwedO3cWRwfOnDkTly5dQv/+/eHt7Y2YmBicOXMGK1euRGRkJIoWLYqqVavi4MGDkt+jePHiKFGiBM6dO4cqVapgxIgRaNSoEezt7fHgwQP89ddfuHr1qli+devWGDBggM76NmzYgNq1a+Px48eIiYlBjx49UKtWLXTr1g3+/v5wdXVFYmIi3rx5gxs3buDkyZNiLl1zjALKrvDwcEyePBnTp09Hs2bN0LBhQ1SuXBmenp5gjOHly5cIDAzExo0bxZ3REiVK4NNPP9WoJzo6Gn/++Sdmz56N+vXro0mTJggICICXlxesra0RHh6OU6dOYe3ateLJAxcXF52jHidOnIhdu3aBc46nT5+iWrVq+PLLL1GjRg0oFArcuXMHq1evRlBQEAoVKoQqVapoTK6hjY2NDXbu3InatWvj3bt3ePXqFRo3bozmzZujY8eOqFChApydnREfH4+wsDBcv34dR44cEUcwartE4cyZMzhz5gwKFCiADh06oFatWvDx8YGrqyuSkpJw7949bN68WePM4ujRo3M8u3CVKlXQunVr8XK/SZMm4cqVK+jTpw8KFiyIN2/e4L///sPatWuRmpqKAQMGaKSR0SYoKAgDBgzAyJEj0b59e9SpUwdlypSBu7s7UlNT8ejRI+zcuROHDx8WX9OtW7ds590xp3nz5uHChQviWcoVK1Zg9erV4m/z+fPnYgDa19cX48ePFw8QTZXne9GiRbh06RLu3r0LQDgTvGHDBvTv3x9Vq1aFm5sbYmNjcefOHRw9ehRHjx6Fn5+fxtljY5hj/f7iiy8wd+5cJCUlIS4uDvXr18fIkSPRrFkzODo64vnz59i1a5d48urzzz/HX3/9lc1PzDLGjh2Lv//+G5xzvHjxAlWrVsXYsWNRr149WFtb4/Hjx9i8ebOYyzk7y9SrVy/8888/mDRpEg4dOoSBAwfCx8cHMTExOHLkCFauXCnuhMnlcixfvtwkeU+za/z48eIo4Js3b8Lf3x9jxoxBjRo1wDnHvXv3sG7dOly+fBlA/vief//9dygUCixYsACAECCSy+Uao95yonHjxmCMaezUly5dWudJb21BXVPluwWA7t2748svv0RKSgpevnwJX19fVK9eHQUKFBCDVAULFsSKFStM8n6mtHHjRtSoUQNhYWFIS0vD0KFDsXTpUvTp0wd+fn5wdnZGZGQkgoKCcPjwYZw9exadO3fOdgDA09MTO3bsQLNmzZCUlIT79+8jICAAHTt2RNu2beHr6wtHR0fExsYiNDQU165dw+HDh/Hs2TMAwJAhQ7LUaYl+xdIs0S/07t0b27ZtQ79+/bBt2zb07t0bxYoVQ0REBPbt24f169eLg3QcHR2xdOlSkyxbs2bN8N133+GHH34AIIwULFu2LPr164fmzZujSJEiSE9Px/Pnz3Hu3Dns3r0bb9++1RpI6NChAwYPHiyeAN24cSOuXr2KL774AlWqVIFSqcTVq1exbNkyjeDQt99+q/fkjTn2g82pX79+mD9/PgBhwMKqVatQsWJFcQARIARqmjdvnkst1M7Kygrjx48XT/Dt378f9erVw4gRI1CmTBnEx8fj/PnzWLFiBd68eYOmTZsiODg4z086aGmW2F/s0qULDh06hEWLFuHcuXP4/PPPUaFCBSQlJeH06dNYtmyZxuRWf/75Z5aUCSplypTBunXr0LNnTyiVSpw7dw5ly5ZFz5490bx5c5QsWRK2traIiYlBSEgIrl69in///Vc8WZsfcjs/efIEo0aNwsSJE9G6dWvUq1cPFStWhIeHBxQKBZ4+fYqDBw9ix44dYj9bs2ZNjdQHgOliBSpff/01+vXrB0DIY1ytWjWMHz8efn5+SE5OxrVr17By5UqEhISgYsWKsLe3Nzhvk6m365xzHDhwAAcOHIC3tzfatWuHmjVrwtvbG87OzoiLi8OtW7ewbt063LlzR3zdlClTNHKAq+vevbs4cv/w4cNZPmd91I+9e/ToIfl1WXATCgkJ4QDEvzVr1mgtFxsby5s2bapRVt/fvHnz9L7vmjVrxLJNmjThly9f5m5ubgbr7dChA09NTTXJspcsWVLy8mj7O378uMH3mDRpkqS6SpQowR88eGCS5VJRrz8kJERrmVevXnFvb2+D7XN1deVnzpzhAwcOFB+bMWOG1jqPHz8ulilZsiR/+vQpL168uMH3qFmzJo+JiTG4XK9fv+YNGzY0+vuaNGmS1vqkLJOxDH32TZo0MartBQsW5NevX9fbdil/jo6O/L///tPbdinrrKurKz979qxRn92jR494pUqVjP7eli5dqlFP5j5Lyl+nTp14cnKyoa9NkidPnvDChQsbfM/evXvzx48fazymjbHLUqdOHR4ZGam1rhkzZojlBg4cqHMZpPQN6jL/pvV58+aNwfXb39+fP3r0iC9dulR8rGfPngbbIdXbt295/fr1JX+mAQEBWutRXw5d20YVU63fKn///TdnjBl8faNGjXhSUpKk7zQ7fZ36dlLXNk/qevfTTz9J+kx69+7Nnzx5YvC3w3nW72j69OkG65fJZHz9+vUGl139NfqWS+ryazN06FBJn8nXX38t+Xco5TtTl7lPNUW9o0eP1qjTVNtWzjkPCAjQqHvo0KE6yyoUCu7u7q5R/ueffzb4Hsb0ecuXL+cymUznd5f59VI/b3WZ95lN5cmTJ7x8+fKS+6suXbporceYdePy5cu8WLFiRveVhw4d0lqfJfoVKUzZB1uiXxgwYIDB+u3s7PjRo0f1Lnfm9VnKb/2XX36RtH1T/Wnb/+Wc89TUVN63b1/J9YwdO5YrlUqD7TP1frAx/YmK1O1KdHQ0r1y5st62aluH1Z839fZN6u8nJSWFN2rUyOBnXbFiRf7mzRuT7o+oZOe7kfJbNwWp/b4l9hdXrFihdzun+vvll18kLdvBgwe5q6ur5N+u6u/evXta67PUdyJl+21sfKls2bL82bNnWeoxVaxAXZ8+fQzWU7RoUf7gwQOjtoOm2q6r/x6l/o0YMUJvv37z5k2xrI+Pj97lyMzPz0987aVLl4x6rTqLpk1QcXZ2RmBgIP7880+N/CqZ1a9fH2fOnDF6soqaNWvi8uXLOi99c3V1xezZs7Fnz55cHSljrNmzZ2Pv3r06R8nZ29tj6NChuHnzptbh3uZWpEgRXLx4EZ06ddL6vEwmQ5s2bXD9+nWNpNrGKFmyJK5evYquXbtqzX9sb2+Pr776CqdOnYKLi4vB+goWLIgTJ07g77//NjgZnq2tLVq0aIGVK1dqXGKV2yZNmoRPPvkEXl5eess5OztjxIgRuH37NqpWrZrl+S+++AJDhgwxmGrDzs4O/fr1w+3btzUmjdBm9uzZmD9/vsZEX+qaNWuGq1evalzaJ0Xp0qVx7do1LFiwAL6+vnrLOjk5oVOnTti8eXOWUT6FChXC3Llz0ahRI4OjNcuXL4+VK1diz549Yh6znPLx8cGZM2fQokULrc97enpi3rx52LJli86zgOoWLVqE1q1ba8z+rY23tzfmzJmD06dP6zyjnRd4eXnh+PHj2LJlCzp06IAiRYrAxsYGRYsWRdOmTbFy5UpcuHABpUuX1rgc0ZQpFDw9PXHy5EksW7YMPj4+OsvJZDLUq1fPJJd2m2r9Vvn000+xZ88ene13d3fHtGnTcOzYMY0RNnnZ9OnTsWrVKq25BgHhsqf58+dj69at2Z5E7KeffsK6det09on+/v44ffq03is8LGnlypWYNWuWzm2fr68vNm3alO/y/S1atAgjR44U7//www8mG32beT9R3+Rj6nlvpZTPji+++AKXLl3CF198gcqVK8PFxUVS358X+Pj44Pr165g1a5beuR6srKzQqlWrbF+hoK5mzZq4e/cufvzxR4PzS7i7u6N3797Yt2+fzn0XS/QrlmaJfmH9+vWYO3cuPD09tT7fqFEjXL161SwjNqdOnYpLly6hTZs2eudFKVasGCZNmiRe9pqZtbU1Nm3ahA0bNugsAwCVK1fG3r17sWDBAknrgLn2g83B1dUVly5dwsKFC9GqVSsUKVIk3+wT2NjY4NChQxg+fLjW9cDW1hZDhw7FpUuXDB4vfcwssb84bNgwHDhwAGXLltX6vI+PD/bu3St5f7pdu3Z48OABJk6caPCYpnDhwhg8eDCOHz+O8uXLG912S5s1axa6du2qs/9QKVCgACZPnoxr165pTCimYqpYgboNGzZg2rRpWo+J5XI5unXrhuvXrxsdkzLVdr1KlSqYOXMmatasaXDOrOrVq2Pnzp1YunSp3n7d398fderUASCkkbxw4YKkZQoKChJH91arVg21atWS9DptGOe5O2acc47Lly/j1q1biIiIgK2tLQoXLoxGjRpJzte6du1aDB48GICQr0U958ejR49w8eJFvHr1Cra2tihdujRatGiRbzZGuly/fh23bt1CWFgYHB0d4e3tjebNm4u5X3LbkydPcOrUKYSFhcHe3h7FihVD/fr1xVwmpvDy5UucOXMGL168AGMMpUqVQqtWrXL0GagSb4eHhyMmJgb29vbw8vJCuXLlEBAQAHt7e5O13xyCg4Nx9+5dPH/+HHFxcZDJZHB3d0elSpVQs2ZNye1//vw5bt26hWfPniE6OhqMMbi6uqJ8+fKoVauWpMC4uqSkJBw/fhzBwcFITk5GsWLFUKdOHZ0bbmMFBwfjypUrePPmDeLi4uDo6IhChQqhQoUKqFKliqSTNMnJybh58yaCg4MRHh6OpKQkODo6onDhwqhWrRoqVqxokrbq8uDBA5w9exavX7+Gi4sLfH190aJFi2ylAEhPT0dQUBAePnyIsLAwJCQkwM7ODgULFkRAQACqVKmSbwICUnXq1An79+8HIOT0HTFihFne5+7du7h69SrevHmD5ORkuLq6onTp0qhVq5bJ8+6qmGL9BoT14vz587h58yZiY2NRoEABlCpVCk2bNjVZqglLS05OxunTp3Hnzh0kJSWhYMGCKFOmDBo2bChpglMplEolTp06hYcPH+Ldu3fw8vJCjRo1NCZtyEvi4uJw4sQJBAcHIzU1FYULF0bFihXFHU5CzI1zjmvXron79unp6XBzc0O5cuWytQ8hVVBQEG7evImIiAgkJibCyckJxYoVQ4UKFeDn5yd5u2eJfsXSLNEvpKam4vjx43jy5AliYmJQqFAhNGjQwGIDSqKionDq1Cm8ePECUVFR4vGHv7+/0emhbt26hWvXruHNmzdgjKFQoUKoW7dutvdbzb0fTDJERETg6NGjCA0NhVwuR4kSJdCsWTOdJxdIVpbaX7x48SLu3LmD169fw8PDA1WqVEG9evWyfXJMleLkzp07ePv2LVJSUuDi4oLixYujUqVK+SJgq41SqcTdu3fx4MEDvHjxAnFxcbCxsYGnpyeqVKmCatWqST4WMFWsQCUmJgbHjh1DSEgIFAoFihcvjsaNG5ss5mOK7Xp8fDxu3LiBR48eISIiAikpKWI9NWvW1Ds4J7MtW7bgk08+ASCkDlm5cqXB14wfP15MAbZmzZoc5YzO9eCtKegL3hJCCPmwvXz5Ej4+PkhLSwOQkduPEEIIIYQQQgjJKYVCgYoVKyI4OFjMBe3h4aGzfFxcnDj/U8mSJREcHJyjK/8/rKFXhBBCPhhSzi2mpaVhyJAhYuC2WrVqFLglhBBCCCGEEGIycrkc33//PQAgISHB4CScK1euRExMDABg2rRpOU7ZSsFbQggheVKDBg0wd+5cPHr0KMtznHOcOHECjRs3xn///Sc+rtqgEkIIIYQQQgghptKvXz8xddr8+fMRFxentVxiYqKYT97Pz0/MFJATFLwlhBCSJz158gSTJk1C2bJlUbBgQdSrVw+tWrVC3bp14eHhgWbNmmkkix8xYgS6du2aew0mhBBCCCGEEPJBkslkWLhwIQDg7du3+N///qe13IIFCxAeHg4A+OOPP2BlZZXj9855DYQQQogZqCehj4iIQEREhNZytra2mDJlCo26JYQQQggh+VZQUBC+/fbbHNfj7++PuXPnmqBFBADatm1rknr+/fdfk9RDcleDBg0MpvebPHkyJk+ebNL3peAtIYSQPOn69evYtWsXTp48idu3b+PFixeIj4+HlZUVPD09Ua5cOTRv3hyDBw822aymhBBCCCGE5IbIyEgcPnw4x/UkJyeboDVExRTfCSE5xbiUGWEIySalUolXr17B2dkZjLHcbg4hhBBCCCGEEJLnnD59Gh07dsxxPQ0bNsSBAwdM0CICAK6uriaph0JvJCcoeEvM6sWLF/D29s7tZhBCCCGEEEIIIYSYRWhoKIoXL57bzSAfKEqbQMzK2dkZgNCRubi45HJrCCGEEEIIIYQQQkwjNjYW3t7eYuyDEHOg4C0xK1WqBBcXFwreEkIIIYQQQggh5INDaSKJOckMFyGEEEIIIYQQQgghhBBiaRS8JYQQQgghhBBCCCGEkDyIgreEEEIIIYQQQgghhBCSB1HwlhBCCCGEEEIIIYQQQvIgCt4SQgghhBBCCCGEEEJIHkTBW0IIIYQQQgghhBBCCMmDKHhLCCGEEEIIIYQQQggheRAFbwkhhBBCCCGEEEIIISQPssrtBhBCCCGEkLyNK2OBtLsA0gB5MTAr39xuEiGEEEIIIR8FCt4SQgghhBCtePoL8PglQPJeAKkZj1sHgDkOB7NrmXuNI4QQQrJBqeS4/DAUz15HQcaA8t4FUblUYTDGcrtphBCiFQVvCSGEEEJIFjztPnjkpwCPB6DQfDLtFnj0KMBpIpjTiFxpHyGEEGKsvefvYPn+8wiLjAMDwN8/XqZYAYzr2hANK/vkZvMIIUQrynlLCCGEEEI0cJ4CHjVUe+AWAKAUysX/Dp583KJtI4QQQrJj+f7zmPn3fwiLjAOQEbgFgMev3mLc4t3Yf+Fu7jSOEEL0oOAtIYQQQgjRlHwQUEZAe+BWnQw8YaUlWkQIIYRk26X7z7H8wAWdz/P3kdyZ6/9DaES0ZRpFCCESUfCWEEIIIYRo4In/QNpuohJIuwKeHmruJhFCCCHZtunYdchlhnPaMgDbTwWZv0GEEGIECt4SQgghhBBNihdQpUaQRBlutqYQQgghORGflILTt59AoeQGyyqUnFInEELyHAreEkIIIYQQTczGyBdYm6UZhBBCSE7FJCSLaRGkiE5IAjfmBYQQYmYUvCWEEEIIIZps6gGQSyvLHACrcmZtDiGEEJJdDrbGnWC0s7YGY4ZTLBBCiKVQ8JYQQgghhGhgDp/A8GRlACAH7HuByRzM3SRCCCEkW9yc7FGuuBckpLyFXMbQsIqP+RtFCCFGoOAtIYQQQgjRwKwrAfa9IEzdoosckLmDOQ6zVLMIIYQQozHG0LdZVUhIeQuFkqN34wDzN4oQQoxAwVtCCCGEEJIFc/kBsO/9/p56CoX3u4/yomAem8DkBS3dNEIIIcQoHepURO0KJSAzkA6hW4PKqF62mIVaRQgh0jBOmbiJGcXGxsLV1RUxMTFwcXHJ7eYQQgghxEg8LRg8aTOQehHgqYC8JJhDL8C2ORijicqkeJ7wFv++uoG3KXGwlVuhtmcZ1PcqDzmjcRSEEGIpSalp+HF9IA5feQC5jEGp5AADmPA/9G9eHeO6NYRcRn0zkY5iHsQSKHhLzIo6MkIIIYR8rKJTEzAzaDvOvX0AGWMQ/gPSuRJeti6YWrkbGniVz+1mEkLIRyU0Ihq7z97G0/BIyGQMFbwLoUt9PxRwdcztppF8iGIexBIoePsRO3XqFObNm4erV68iLCwMu3btQteuXQEAaWlpmD59Og4ePIgnT57A1dUVLVu2xOzZs1G0aFHJ70EdGSGEEEI+RrFpSRhyfileJkVCwZVZnmfv/z+3Wn80KVTJ0s0jhBBCiAlQzINYAl0P8BFLSEhAQEAAFi9enOW5xMREXLt2Dd999x2uXbuGnTt34sGDB+jcuXMutJQQQgghJH9ZHhyIF0nvtAZuAYC///+MoH+QlJ5qyaYRQgghhJB8xCq3G0ByT7t27dCuXTutz7m6uiIwMFDjsUWLFqF27dp4/vw5SpQoYYkmEkIIIYTkOwnpKdj34iqUBi5w4wASFSk4HHYTXb1rWaZxhBBCCCEkX6GRt0SymJgYMMbg5uaW200hhBBCCMmzrkY+QbIyTVJZBoYTr++YuUWEEEIIISS/opG3RJLk5GRMmjQJn3zyid48LikpKUhJSRHvx8bGWqJ5hBBCCCF5RkJ6suSyHBxxaUlmbA0hhBBCCMnPaOQtMSgtLQ29e/cG5xxLly7VW3bWrFlwdXUV/7y9vS3USkIIIYSQvMHF2kFyWRkY3G2dzNgaQgghhBCSn1HwluilCtw+e/YMgYGBBmdPnDJlCmJiYsS/0NBQC7WUEEIIISRvqOnhC0crW0llleBoWbiKmVtECCGEEELyKwreEp1Ugdvg4GAcOXIEnp6eBl9ja2sLFxcXjT9CCCGEkI+JrdwaPbzrQAamt5wMDK7WDmheuLKFWkYIIYQQQvIbynn7EYuPj8ejR4/E+yEhIbhx4wY8PDxQpEgR9OzZE9euXcP+/fuhUCgQHh4OAPDw8ICNjU1uNZsQQgjRwNMfgSduApL/A3gCwNwA+85gDn3A5EVzu3nkI/V5mea4GvkE92JeQgme5XkZGORMhjnV+sNGRrvkhBBCCCFEO8Y5z7o3ST4KJ06cQLNmzbI8PnDgQMycORM+Pj5aX3f8+HE0bdpU0nvExsbC1dUVMTExNAqXEEKISXHOgYSl4PHzAcgBKNSelQFgYK6/gtl3y5X2EZKUnorf7+/HgZfXoOBKyJkMSs6hBEdZ5yKY7NcFVdxK5HYzCSGEEJJNFPMglkDBW2JW1JERQggxF56wFjzuVwOlGJjbYjC7lhZpE9GNK2OApN3gaTcBKAB5CTD7nmBWJXO7aWYXnZqAo+G3EZESCzuZNWoXKINKrsVzu1mEEEIIySGKeRBLoOAtMSvqyAghhJgDVyaAR9QHeJKBkgyQe4MVCARj+vOPEvMQRkgvA49fDCANAAPAIYyOVgC2bcBcZ4PJHHO1nYQQQgghxqKYB7EEmrCMEEJI3hYSAkyeDAQEAEWLAi4uwr8BAcCUKcDTp7ndQpIbkvdLCNwCAAcUz4HUC2ZvEtGOx/8BHv8HgFQIQVvl+3/fp7lICQSPGgLOU3KtjYQQQgghhORVFLwlhBCSNwUGAp06AaVLA3PmAEFBQFgYEBcn/BsUBMyeDfj6CuUCA3O7xcSCeFoQpM+7KgfSbpmzOUQHnvYQSFhmoJQSSLsBJG62RJMIIYQQQgjJVyh4SwjJsVeJUQgMC8KhV9dxI+opKBsLyRGFAhg7FmjdGti/HzC0PnEulGvdWnidQqG/PPlAKCCM3pSCAUg3Y1uILjxxE4TJ5KSUXU/bD0IIIYQQQjKROmSFEEKyeBgbhiUPD+Pc24cajxez98Cg0k3RuVgNyjFJjKNQAH37Atu3Z33O3x9o2BBwcgLi44EzZ4TRt+oWLQLCw4EtWwC5tIARyZ+YvCS45OBtOiAvYdb2EB1SAiGmR9CLA4pQIcXFRzCBGSGEEEIIIVJR8JYQki3XIkMw/soapCmzHpS/TIrEL7d34mn8G4wr344CuES6CRM0A7cyGdCnDzB6NFC/PqC+LnEOnDsHLF4MbN0KKJXC49u3C/UsXGjJlhNLs+8GxP8prSxzBuxambc9RDtJeYnVyyeYpx2EEEIIIYTkU5Q2gRBitPj0ZHx9bT3SlAoo9Yx82/j0DI6+vm3BlpF8LTBQGDmrYm8P7NqFuMUrsPNyNEbWnIQ+xYZhUPmxWPbVOrx4FA40aABs2gTs2iWUV1m0CDhyxPLLQCyGyQsDdl0gZVeGOX4OxmzN3yiSlczDvOUJIYQQQgj5wFHwlhBitEMvryMhPVlv4BYAZGDYGHLaQq0i+d6CBRm3ZTJgyxZcsSuJfiVGYNlX6/Doeggiw6LxMjgcuxYcxODy47D+h3+EHJmdOwupEmQy7fWRDxJz/QGwqQshp23mEf7v1wW7HoDjcAu3jKgw+66QtrspA6yrCUF5QgghhBBCiIiCt4QQo+17eU1SOSU47sS8wIvEd2ZuEcn3nj4FDhzIuN+nD+56lcd3nWYhJSk1yyRGSoWQIuHvH7Zh27y9woOdOwspFlT27xfqJR8sxuzA3FeCuXwPyEtpPmldBcz1dzDXX8EY7e7kGvveECYsM5Q+RwnmOMj87SGEEEIIISSfoaMZQojRIpJjJE8TBABvU+LM1hbygVi+XMhhqzJ6NFZ8ux5KJQdX6l/b/pq+EYP/W4hDr64jdfgXGU9wLtRLPmiMWYM59Acr8C9YgSNgnrvBvE5B5vkPmH1Hyrmdy5i8IJjb/8AB6PspH4+tigRZU0s1ixBCCCGEkHyDgreEEKPZya2NKm8rM648+QgdPJhx298fT129cefsA3GErT5cwfFoxz3MCPoHffhlpPlVynjy0CEzNJbkRYwxMKsSYNaV6NL7POZeSmV8+bgRHie7AhCCuIr3gdzINFv88TIA056UwaSbm7KMsieEEEIIIeRjZ5XbDSCE5D/1vcpjZ+glKLjhwJqrtQPKOBeyQKtIvhYRkXG7YUPcPf/QqJfL7yUB3dwQnhKDwNIuaH9HS72EkFyx6tExXI4vjE8feKGifRT8HCNhxZQITXHChdjCULwfS3D53WPcjH6Gqu6lcrfBhBBCCCGE5CEUvCWEGK1HiTr45/kFg+VkYOjuXRvWMupqiAHx8Rm3nZyQnqYAY5qZFHTiANKEggquRKSN2nNxlLKDkNz0JjkGZyIegIMDYLiX5IF7SR5ay8qZDDueX/yggrecpwEpJ4D0R8IDVhUA28ZgTJ6r7SKEEEIIIfkHRVQIIUbzdSqE/qUaYuPTMzrLyJkMRe3d0d+nkQVbRvItJ6eMQGt8PAqV8pIWuAUAOaAsnJGawy4pJeM5Z2fTtZHolKZMR2xaEmzl1nCyssvt5pA8JCT+zfvArWEKrsSD2FdmbpFlcM6BpM3g8QsB5TsIk7YBgAKQFQScJoI5dM/NJhJCCCGEkHyCgreEkGwZW74trGVW+PvJSQCA8v3BuZzJoOBKVHApinnVP4WLtX1uNpPkF15eQFiYcPvMGdSc/yfcC7ki6nWMwZcyBZDa2kW4wzkC7rzQrJeYzYPYV9jy9Bz+C7uJNK4AAJR1LoK+JeujbdEAGnVPjCY10JvX8fg/gYQlao8oMm4q34DHTgaU78Cchlm8bYQQQgghJH+hoypCSLbImAyjyrVGzxJ1sOfFFdyMeopUpQLeDp7oUrwmqriVoFneiXTt2wNBQcLtoCDIL11En2+7YtlX6/S+jMuAdH97KH1sAQABd16g7FO1PLft2pmrxR+93aGXMevObsgY08h//TguHD/d3oF9L67gj5qD4Ghlm4utJLmtlKMXGCApJCtnMpRzLmLuJpkdT72UKXCro1z8PMC2Hph1ZQu0iuQ1PP0RkPwvuDIGYE5gdq3ArCsZfiEhhBBCPjoUvCWE5EhBO1cMK9Mit5tB8rvhw4E5czKS3C5ejO4bN+L5/Rc4uPIomIyBKzXDP1wGKL1tkDQlI9jT88C1jOcZAxsxwiLN/9icj3iIX+/sAgAoMuW3UI3CD4p+ju9ubsHvNQZavH0k7yhk74Z6Bcrh4rvgLOtKZgquRI8SdSzUMvPhCX9DSJOgMFBSDp6wAcxttgVaRfIKnv4CPGYykHYJwnoiA6AET1gMbu0P5joHzKp0LreSEEIIIXmJLLcbQAghhKBUKaBDh4z7W7eC7duHCcuG49t1Y+BbpYRGcaWrHCmfeCD+f97gzkIuycbnH6LlqXtiGdaxI1CypCVa/9FZ8egIZNA/sl4JjjMRD/DwA8lhSrJvaJnmAJjeNUbOZKjmXgrV3H0s1Syz4DwVSDkCw4FbCGWSDwj5cclHgae/AI/sCaRdff+IAkAaxPUl7Q74u97CqFxCCCGEkPcoeEsIISRP4GPHZtxRKsH79gHbtw+tPm2CZdd/w8Jbc8B/L42EBSUQt94HKf09AQdhM9b4/EP8PHsP5Oqjc8eNs/ASfBwex4XjTswLcYStPnImw87QSxZoFcnLqriVwC8BfSFjMsiZ5q6nKqRb3qUo5lYbkP/T7SjjACgNFsuQ8v6PfAx47DRAGQPdwX0FwBPBo7+xZLMIIYQQksdR8JYQQkiu40n7wKvNBx/iKj7GkpLBu3UF79sJOHMGFSr5YOHgsbCr4Aq5tVyYnOx2KH6aswdzft4Ju9T0jArHjAFatsyFJfnwPYl/I7msgivxKC7cjK3JRSEhwOTJQEAAULQo4OIi/BsQAEyZAjx9mtstzFOaF66MLQ3Go4d3HdjLbcTHSzsXwvTK3bG89jC42jjkYgtNRGbsMsgBUF7ojwFPDwFSz8PwqGwFkH4HPO2WJZpFCCGEkHyAct4SQogFcWU8oAgBuBKw8gaTeeR2k3KdMu5PIGExAAb+oxfwRgG2Px4AwJQc2Lpf+PP3R8UGDbDX1gqPwh7B6fI1lHnyOmuFvXoB8+dbdBk+JsaOjNR/sbx5cWUkkHQAXPEKYDZgNjUBmwZgLAfnrgMDgQULgAMHMnI0q8TFAWFhwuR7c+YIqUDGjQNatcrZgnwgSjp54etKnfBlxQ5ISE+BjUwOO7VA7oeAMXtwm7pA6mUYDtLJANvm+X+0MZEmORCq/LaGycGTD4NZVzFzowghhBCSH1DwlhBCLICnPwNPWAEk7QGQ+v5RGbhtazCnLz7a2cZ58pH3gVsA4ICcgS8rDHwfAbY6RrNwUBAQFAQnAFV1VThmjBC4lcvN1eSPXlmnwpLLypkM5V2KmrE12nGeDB77K5C0HUIATVgfeMJSQFYUcJkBZtfMiPo4kHwRmPgj2LJDUl8E7N8v/NF6qUHOZHCxts/tZpgNc/gUPPWChJJKwKq82dtD8gbOYyE9eMsAZayZW0QIIYSQ/ILSJhBCiJnx1Ovg77oASTuREbgFACWQEihMTpJ8OLeal6t4wipk2RTJGfgvBaHcWgy8tSO4oUFpjAGdOgkjIhcupACZmZV08kI191IGJywDhLQJ3UvUtkCrMnCeCh45DEjaBiAdAH//7/u0Gsow8OgR4MnSgrA8aSf465ZA71baA7f+/sCoUcC33wr/+vtnLbNoEdC3L6CQMokVyfdsWwLMS1rZxL+FSc7IB48xF0jPh8wBmYs5m0MIIYSQfIRG3hJCiBlxZSR41OcAT4b2gzYFAAYe/SXguQfMuqyFW5h7uOKl2ozbWjR2AG/sAISmAX/HAMcVYFFOwqXpzs6AlxfQrh0wfDhQqpTF2k2A4WVbYtSlVWCAzmnLZGBoWbgKfJ0KWbJpQMJaIO0SdLeMQ/jNfQMUrAcmc9NZlTJuPpCwBGxahJjKAwC4DEAXZ/BBHmCt/gCzb65WPQfOnQMWLwa2bgWU73/327cDEyYIJxjIh00RCvAIaWV5LJB8CLDvYt42kdxn1wqI/01iYQWYXRuzNocQQggh+QeNvCWEEHNK/AfgCdA/2oYD4OCJf1uoUXmEQuLEV97W4NMKgB+rBLx8CcTGCv/euAHMmkWB21xQ3cMXPwX0gYzJIM+UP1Y1IreeVzl8V6WHRdvFueL970hX4FYsCSDt/Wh4HSVSTgAJS4CTCWCrozMet2Pgq4uALykMXssGKW9GYWiFAfi09Ggs//pvvHryGmjQANi0Cdi1C7BXSw+waBFw5EgOlpDkC6lnAcm5nuXgKWfM2RqSRzArH8CmHlRpXHSTA1Z+lO+WEEIIISIK3hJCiBnxxC2QdpmkAkjaBc5TzN2kvIMZO8M6zciel7Qq4o9tDb9En5L14WxlB0AI3Fb38MXcagPwW/VPYSu3tmyj0m4DSoknBcDBkw7ofjZhNQA52KqM3MtcBiEncxsnAELGDisrJeq3eY7wkDfY+ecBDCw3Flvn7hFe0LkzsGULIFPb3VqwwMiFIvkOT4L04K3y/ZUZ5GPAXH8FZK7QHcCVA8wBzE3qCF1CCCGEfAwobQIhhJgJ5xxQhhnxilRA+RaQFzNbm/IUqzIAcwN4tITCcsC2kZkbZAIhIcDy5cChQ0BEBBAfDzg5Ib2AJ543qYVHn3SBfZlyqFOgLGxk+X8T7O3oiQkV2mNChfZIU6bDisnBmNSglRlwIyf40bHuccVbIPWCkLLjSELGE12cxMCtCpMBrftGYsvCQlAqhBM1f03eAFsHG3Qd004I4PbpA2zeLLxg/37g6dNsjxjnnANpN4DU8+A8GUxWELBvDybzyFZ9xAxkBSE9t6kMkBcwZ2tIHsLkxQCP7eAxU4C0ixCCuKoENArAujKY62wwq9K521BCCCGE5Cn5/8iREELyKMYYOOSQfhAPfEzdMmM24A6fAAnLYfgzUoA59LNEs7InMFAYUXnggJDzVF1cHKzCwuB76zZKLV6Ds7XKYHr3+ijdfQCGlG4GawlBXM45kH4LUIQBsAFsAvJcsE7KcpgdM3KCH+aq/XHlW+Hpv2PA1L5OPsgtaxUMcPdKz/L46qmb0GZwM9g72gkTmamCt5wLAf5Zs4xrKwCeehU8dgaQ/hCqoA+HAoj7FdyuK5jLNDCZo9H1EhOzbQbAHkCShMIKMLuu5m0PyVOYVXEwz/Xg6Y+A5MPgyhgwmTNg2wLMulJuN48QQggheVAeONIihJAPmHUAkHYNkgK4siKATOIM5R8I5jgEPPkAoHgJYfI2Hez7g1lXtFi7JFMohEmoFi2SVFzGgUaXHqHRpUfYdvYOvpo6Av+rPUhn4JNzLqTTSFgOKELUnrECt2sH5jQezKpEzpfjQ2HtJ/yGlFImi2Jg9u11PPU+T+2xjFG3vJINUMtOa/HU5KyjjZPik3F881m0/7yFkAO3ShXg1i3hyUOHgFmzwJXxQPJe8NRrANIAeXEw+x5gVr5Z6uMpF8CjhiCjL1H/vaQDyTvB0x8CnuvBmH2W1xPLYTJHcIe+QOI66O/75YBVRcDa31JNI3kIsyoDOJWRnGCDEEIIIR8vynlLCCFmxBw/hbSRtzIwh/5g7OPqlpnMFcxjI2BV4f0j6nkA319O6jAIzGV6LrTOAIUC6NtXa+CW+/vj364NsL5XPfzTsTqCfQpmKdN731V0+eZ/WP1Q+wRWnHPwuFngsZMBxdNMz6YDyQfB33UDT7tngoX5MDBmBeYwANJ2b6wA++7an5J7A7KiwDu1AGlte2GYbSbp6cClo1lH/Mqt5Lh34aGqYUDDhuJzPCICPOFv8Df1wWN/AJIPAMmHgYTV4G/bQhk1HFyZkQKC8xTw6LEQ+hId/cnzFLAfjgP+pYGiRQEXF+HfgABgyhQhVQOxGOY8EbCuAd3rohyQeYC5L8zdVCOEEEIsIyQEmDxZ2C7TdpoQYiQaeUsIIeZk2wqwrgakBUH3yFK5kOfWoa8lW5ZnMHkhwHMnkHoJPOmf94FKa8CmBph9XzCr4hZtD1cmAClHAMVrYVI1m3pg1uWyFpwwAdi+PeO+TCbkNh09GpfKeWHG/pVgyUpwVzm4uxz+d1+i1/6raHnqHuRK4Vr8FmfuI3byDKTubJk1B27yPiBxrapVWlqqAHgieNTngNdxMGZjgqX/ADgOAVJOCnlhtQY6hUAZc52tM/UEYzLA8VMg4bRavdqDcFZWwL61WnKWcg5Futpv3kktV25cJHjcz2qFM/UNKSfBIz8DPDaByRyA5EMAj4FWJxOESdWOJGikeBDeJw4ICwOCgoA5c4AOHYBx44BWrbTXRUyGMVvAYzV4/CIgcSPA49WetQLsOoA5fy30f4QQQj5cBlJr0XaaECIF4zxzD0KI6cTGxsLV1RUxMTFwcTEyFyEhHwiujAWPGgWkXYIwmlQVqJEBUAJyXzCPNWDyIrnXSALOU8HjfgcSNwFIBsR8xRywrgbm8h2YdWWhcGAg0Lp1xovt7YEtW5Daui32Lw/Emv/9g+QXGZfcp1e2Q0pXd6TXd0KjC8H4ZfZu2KVk5EkN2vYX/HsNVWsLB3/XCUgPhvbArSbm+j8w+045Wv4PCedJ4DE/AMl7IHx+qsBrOiArCObyPZhdaz01CHWgiDvY6xTh/iBX8FmaI6i5Etj3tycWT816gkEml2HA9J74dEYv4YFRo4ClS4XXFZaDX8+aGiFTDUJaDKeRUEYOB1JPQiMYreBg30eArdYR1NVnzBhg/nxArmvGe2JKnKcAKWcB5TuAOQC29fJczmpCCCEmZmRqLQ20nc5XKOZBLIGCt8SsqCMjRMC5UpgdPnEDkHYbQtC2NJhjf8C2ORizzu0mftQ4TwWPGgakXoT20ZoyAFZgHuvAbGoAnToB+/e/f0oG7NqFxGatMKXtz7h3IRgcXCPmymUAUwIp3dyQ/HkBNLr4CHN/2iGOwA1r2QhFAk9llE97IARvJZEBNnUg81iXnUX/oHFFBJC8D1zxCmA2YNY1AdsmYEz/wRDnCmFSsBodwW49ER6rZAt+xBscDEqlMH53+3IvrP6lCDjXctk7AzY8WYJCJb2EkTYBAWLOW+5nC35EQq5imReY10nwyE+AtJsZjys42IhwsP3xWV7CK9kADVuAuVUB4uOBM2eEET2Z9ewJbNli9IEhV0YBSTvBE7cBynAIE+jVFdJV2NSmFACEEEKIKrWW+hVaKv7+QiolJyezbKeJ5VHMg1gCpU0ghBALYEwG2DYAs22Q200h2iSsBFIvQPcoVyWAdGEEdeJ6sAMHMp7q0wfo3Blzu8/D/UuPoO2cKHsfD7bdFQ1lEWuc7lgWRxpXRJsTdwEAhY+eEXKdlSr1/u1eG9F4JaB4ZUT5jweTewGOQyRPCMR5KpC4Hjzhb0AZBtYkCng/xxi7mwJ+oyxeecpxdFs0Dm30RORr7SddZHIZGveqJwRuAeDs2YzJygCgmYO0BikjhCAyc4UQLhbWLfZ9hEbglssAdHECH+SGYFt3BN1ohdT0EijoVwANZs2Dw63rwOLFwNatgPL9yrh9uzAiaOFCiZ8OwFMvg0cNB3gCMn4rSUDKEfCUw4BtW8DtN0rhQQgh5OOmJ7UW6tfXzKHPOXDunEm204SQD9fHNTMOIYQQkgnnaeCJ62E4PYES4FHAkqmaOctGj0bog5c4u/sSlAr9k9NxALZbIgEFx/YO1cXHGefA8uVqJW2NWwhmZ1x5kgXnSeCRg8Dj5gLKMOGxz1yhPqiWrQpGsRrbEf66FyJfW4PJsoaFmYyhYt2ymLhyRMaDS5ZkvA8T6pXesAQwu1YQ18+TCRqpErgdA19dBHeHlsaY7/0xpl15/DXtPNb/8A/mDlqE3kWGYdnOR0hbuw7YtUtI8aGyaBFwRPuEeVmakfYQPHIowBOR9bfyPhVMyn/gMVOlLxshhBDyoQkM1EyVYG8P7NoFvmEJeNX7UL5tB+XralC+rgNl9ETwtGvg9esDmzblaDtNCPmwUfCWEELIxy31CqCMlFhYBhw6nnHX3x+oXx//rj4OuZXhTSoDIItUwOpGIm76FcejUmo5VA8dyrht7QdAakBWDtiYf0Q3V7wDT9wIZdyf4PErwdPum/09LYnHzADSrkEjMOltDbR0zLi/6xGwfTi+XTcGX68eBZ/KmqkPCpb0wrA5n2Ju4Pewd3z//e3ZI4ykUWldSKhXKpkHYNcJYI4AmDA5marNMoAvK4wbToXwdffSeHxbOOBTKjMmS0tJSsXOPw9gesdZSG/XXrgEU6a2ri5YIKkZPH4hgDRoTyuiogSS94KnPZC+fIQQQsiHRH27KpMBW7aAty0MHtFMOEGseCJcwcKjgORD4JGfgMd8A87TgM6djd5OP3r5FrM2H0Wrb5ejwYRFaD/tLyzecxZhkbFmWkBCSG6gtAmEEPKxCgkRRnseOgRERAh5t5ycAC8voH17YPjwjMv4P2SSA7cAoATeJmbcbdgQYAwvH4VBYWDUrQpngOxVGuQ15bhbpSTKPH0jPBERIZZhMidwh+5A4lZkTHCniwLMoZ8Ry2AcrowHj/0RSN4HIXAnB4cSiJ8Hbl0VzOUHMOuKZnt/S+CK10DyXmgLTPKhrmCBwuRzTAlg0N+AbTu0GdQHrQc2xavH4YiJiIWjqwO8KxSDTP2Aa88eIeedUq3eMQMA7IPhkd4MsCorTGjIGOA6D/zWcOBIxkR46OKE5EbO+LF6KSgUDFypPUEEV3JcP3Yb2+btRb+p3YVLNzdvFp7cv18zZYfWzycCSAnU+vlkJQdP3AzmOlNCWUIIIeQD8vQpkCm1Fm9XDvxdLwgnQHVcuZK8D5zZgrn+IgRwJWynOedYtv88Vh68CLmMQfF+HoWklDSsOXwZa/+7jJmftUGHOvl7H40QIqCRt4QQ8rEJDBQm3CpdGpgzR5gkISwMiIsT/g0KAmbPBnx9hXKBgbndYvOSORouI2JAglow1ckJACC3kkufqIkDkAFF7d3RxLd2xuNxcZrv5DhKGHUJAxNVOA4Ds5Iw+VU2cGW8MFlW8l4IBxgcQDrEIF5aEPi7vuBpt3RXkh8k7db9XBNH8CEZaQ5YMgd6fAL06wd29iyKlS6MSvXKo2QlbyFwy7kw+Ui/fkD37kByckZdY8YA7adDSIthaH3hYA6DxPWK2bUE21YXTH0ivEGeOLnHAwmxcp2BW7GskmP3okPCiNxRo9SeyJyyQ4v0+5AWuAUABZB2XWJZQggh5AOyfHmW1Fo8fgE09p204kDSP+DpwiSpUrbT649cxcqDFwFADNyqKDmHQsnx/dp/cfr9xKuEkPyNgreEEPKxUCiAsWOB1q2Fs/haJtbSwLlQrnVr4XUKQyNA8ynrmpCeogCAk1qwN16YNKp8zdKSX84AfNm1N/5p9CVcU9V25J2dNcvJC4J5bAbkqsCsehBXJtTkOALM6SvpbTcSj/8NSA+G7gMOJYBU8Kix4Dz/rh9c8RL6don4j17gHZ3E+0zJhRExjRoBVasKB1nffiv8W7Wq8PjmzZojbnv1AubPB5O5gbn9+f799OyG2XUB7HtoPMT+u53RpsqFgcaf4vi+ymAyabtzUeHRuHPuAdCgAVClSsYT6ik7tOHpkurPYGx5Qggh5ANw8GDGbX9/8Dq+QMpRGL6KChCuXNki3DSwnY5PSsHSfeclNen3Hae0TqZLCMlfKHhLCCEfA4VCuHxbfQIFFX9/zeCTv3/WMosWCa//AAO4TOYEOPSEwRGuAAAboGDxjLtnzgCco83gZpDLJeS8lTGUre6DHi2aQgYmvF7FyytreasSYAUOgrmvAGxbAVaVAOtqgONwMK/jkDlPBGPm2ZRzZTyQuAOGR1wqAOUrIOWUWdphEcxAFik5A19WWGMErigoCFi6FJg3T/g3KChrmTFjhGCuXFjHmF0zMI+/he9TeATiLhlzBXOaCOY6J+tobvXUGo27Q+b2E6LfuYArpR+URT9bAJ52TUj5oaVeraxKSq4fkANyXyPKE0IIIR8I9e1pw4ZA+j0YTpOkonifex8AY3q30wcv3UdqmuETpRzAs9dRuPbopcQ2EELyKsp5SwghH4MJE4Dt2zPuy2RCPq3Ro4H69YWdRBXOgXPngMWLhYmWVKMHt28X6lm40JIttwjmNBY85RSgeAntoyMYAA7m+jNY+wtA0PsRkEFBwLlzcG3QAJ9M6Y71P/6j502Efz6f86lw4+xZ4JZauoF27bS/jMkB26Zgtk2NXKocSjkJIEViYTl48kEwu2bmbJHZMOvq4Nigv5Ccgf9SELyNE9jfpcAOntM/ep0xoGNHYNw4oGXLrE/b1AIrsBM87Q6Qeg1AGiAvLnzXzEZ7ne9HegMQU3Y4ujoYWDpNDrZXwCOPAdYFMhI3ZErZkaWtVr7g1tWAtJuQEsxnDn2NahMhhBDyQciynTbyShT1K12cMq74ybydvvMsHDK1PLf6yBjD3WevUaNscYNlCSF5FwVvCSHkQxcYqDni1t5emMm2c2coFApcOXQdV/69geSEZLgXdkPzfo1QqkED4ZKtvn2Fv6Qk4bWLFgFdumgNRuVnTOYOeGwBj/4SSLsIYRQuhxBxVQDMGcxlJph9R2B4gJArWBW4W7wYaNAAn87oheSEZPzzv32QW8mgSM8IcsnkMsjkMkzdOB7VW7y/DG7JErUGMGDECAstrUQ8GqqgtWEKQBlt1uaYlV1rINbt/TLrw4BmFYBegcCzZ5oT/sXFCakvvLyEQLzECf+YtR9g7SetnU5OGQdw7w8Q63epjTtnH0i6JNLBSYFKNd+/PuZuxhOZUnZobafTSPCoLwyUkgNW5QGbegbrI+RjEZuWhPuxL5GuVKCIvTt8nArmdpMIIeaSeTstN/LKFSu1K1fUA8GZttMKhVLyeF7GIHlSXUJI3kXBW0LIR+t5wls8igsHB4evU6EP94BqwYKM2zKZGLi9fuwW5g1ejIjQd5Bby9/H6Dg2z9qFgGZ+mLx+HAp07iyU79YtYwTuggUfXPAWAJi8AJjnevC0B+BJuwHla4DZgdnUBezaZoyGLFUK6NBByAcMCKOT+/YF69wZX8z7DM37N8LeJYdxfu8VJCemwM3LBa0/a4p2w1qgQFEP4TV79givU+nYEShpzA5+znBlIpB8ADwtCIACTF4SsO8GJlf7DTAnSL/UTwbIDAcA8yrGbACXKeAxk/SVEv7vPE1IZ1CqFDBrlvBnKV5ewqSCgFrKjqZYM30T0lL0j+6RyTna9X8HOwcunHi4lKRZrwHMtingPB087mcIJzcyj1CXAXJvMPflZkvlQUh+8ioxCqseH8O/YTeQpsz4vVR0KYaBvk3QvHDlXGwdIcQsMm2nmdUicKvKQPpdSLpyxb6PcFM1+al6vWq8vdwk76IplFwoTwjJ1xin7NXEjGJjY+Hq6oqYmBi4uLjkdnMIAQBciwzBiuAjuBYVovF4FbcS+KJMC9QpUDaXWmYGT58Cvr4Zo0Q/+QTYtAlXA29iWodfoVRyrfky5VYyeBb1wKKLs+BeyA3o10/I2QkIp/CfPJE0qvCDFRgoTOSmojaa2aA9e4TRzMnJmvVZICDOOQcS/waP/wPgicg4h/v+gMKum3DZvuIROE8AElbD8MGGgLn+AWbfwRzNthieuAk89sf399SXWwZALuShte+YCy17b8oUYPbsjPtnzgANGiDw75OYO0hLPuv3ZHKOYj4p+HN/MBxdlMDFJMi6vsgoMHmy5CA0T70MnrDm/QQs7/sOmReYwwDAYQBYPg7iE2Iqj+LCMeLSSiSkp0DBNftQGRiU4BhWpgWGlWmRSy0khJiFlu00r5EIHj3awAvlgFUlMM/twgniM2eEyU9VMm2nwyJj0XH6KoNzDwOAq6Md/pv9BaytpMztQLKDYh7EEmhoBCHko3Ik/BZGXfoLN6KeZnnuTnQoxl5Zg30vrlq+YeayfLlmXs7Ro5GWmoZZ/f/UGbgFAEW6Em9fRWLFt+uFB0aNyniSc6Hej1mrVsIkVCpJScLo5H79xBGRGlQjKPr1A7p31wzcjhljuZHMCUvA4355H7gFhFxs6RAClUogeQcQMxY8fiGQsBbSArcMYO6AXSszNdpymEM/MK8TgONIYdItmRdgVQ7MaQKY1ymzBm6T0lNxPTIEF94G43FcuPY0CMOHa+anXrwYANDqsyaYumkCnD2E/HhyKw6ZXPgDgOqN4/D77kdC4BYAWxctVsEZjErZwWxqQea+BKzgRTDPA2AFAsG8ToI5jaTALSEAUpXpGH9lDRLSkrMEbgFAdbHzykdHceL13SzPE0LyMS3baWbXCsxZdWWPtgCqDJCXAHNfljFRqYHUWkU8XNCuVkXIMk9sqsWg1rUocEvIB4BG3hKzorNQJC8JTXiH3mf+gJLrzxMlA8Pf9cegnEsRi7XNbAIChEm1AMDfH7hxA8e3nsOv/eZLerncSo6tr1bA1dNZqEs1wVZAAHDjhlmanG8oFMIIWvWJ4FT8/YWcwU5OQs6ys2czvgd1vXoJI5rl5t+p5mnB4O9MPTJWBoCBuf8FZtvAxHV/uO7FvMSpN3eRkJ4Ca5kV3qbE4sTru0hSpIplyjgVwgCfxmhXtGrGwRwAdOqUkbJDJgN27RJHfKempOH05v/h5tH/kJrC4FU0DS17RsG7jNrEc//Ggw0NA3sfU+JtS4IdemrmJSbk43Ho1XXMCNIzeeV7MjD4uRXHqrojLdAqQogpcc7xOioeiSmpcHeyh7uz2uShOrbTPOU8eMIqIPU09F65smePcKJfla6sUydg794sbUhOTce4xbtx9WGo0Ca152SMQck5ejSsgqn9WmjuRxCTo5gHsQTKefsRO3XqFObNm4erV68iLCwMu3btQteuXcXnOeeYMWMGVq5ciejoaDRo0ABLly5F2bIf0CXl5KOy/fkFAIZTRDHG8M+z85hWpbv5G2VuEREZtxs2BBjDub2XIZPLoJQweYEiXYErh2+iRf9GwutVwVv1ej9WcrmQKmHCBM0J4QAhUKstWKtuzBhg/nyLBG4BgCdtgvZcpcYQgrXCXzogKwTmOgvMtr4pmvjBexz3Gj/c2o77sS8hZzLhU9QyMg8AHse/wcxb/+BOTCi+rtgp48Br3LiMg0KlUjiB8D5lh42tNZp/0hjN2q7W3oB/48FGhouBWwDgI1uDDukIMZ09L66IqRH0UYLjVnQonie8RQnHAhZqHSEkJ9LSFdhz/g42H7uOkPBI8fGa5bzRv0U1NPEvrXM7zTp3BrOtB654ByjfAMxWGHHL1EIyqtRaSrUN9bhxWttiZ2OFxWO7YdfZ29h87DqevYkSn6viUxifNK+GVtXLUeCWkA8EBW8/YgkJCQgICMCQIUPQvXvWINXcuXOxYMECrFu3Dj4+Pvjuu+/Qpk0b3L17F3Z2drnQYkJyZt/Lq1ovYcxMwZU4GHYdk/y6wEqWzy8zUp+p1km4pDohJlFS4BYAwITy6q8HkDGT7geAp90GT9gIpF4AkArIi4PZ9wbs24Mxe/0vlsuBhQuBLl2Eidz278+aMkEdY8LkZOPGWX7St+TDyHHgVlYcsK0NMHsw28aATSOanEqiR3Hh+PzCciQrhdG1hvoi/j7w88/zCyjrXARdvWsJT6hSdqhOGKhSdvTpAz68N3jlnZkq4sClZCFVwp54zcDtEFew9tNMsXiEkPfCEqMMBm7VvU6OoeAtIflAUmoaxi/egysPQ5E5Hnrt0QtceRiKAS2q48seLcF0bKcxahRYgwaA3DPjxZwLV2gtWSJMZqseuDWQWsvaSo7eTQLQq7E/Xr2LRUJyKtyc7FHQzUnnawgh+RMFbz9i7dq1Q7t27bQ+xznH/PnzMX36dHTp0gUA8Pfff6NQoULYvXs3+vbta8mmEpJjqcp0xKcnGy74XppSgdi0JHjY5vOdHyenjEDr+0CuawFnySNvwQEXTyeN1wMAnPN/bkvO08BjpgPJu6AxIlX5FjztOhD/P8D9LzDrSoYra9lS+Hv6VMgHfOiQMDo5Lk74rLy8gHbthFxouTXRG0/IYQVKQBkK5rwHTOZokiZ9LDjn+O7mViQrUo0K6gDCGOd1T06iS/GaGaNn5s8HwsMzUnYolcDmzWCbNwOVbIFadoCjDEhQApeTwO6mZqmXd3IGnzMAMquSOVs4QogGG7lxh1c2MjocIyQ/+GlDIK4FC5N9Zj5Pr3w/h8SGo9dQrIAr+ujYTmPzZuNSa82fL6ltjDEUK+CazSUjhOQHNFyGaBUSEoLw8HC0VDvT5+rqijp16uD8+fM6X5eSkoLY2FiNP0LyAismAzPy4mA7ubWZWmNBXl4Zt99PpNW4Zz3JI29t7KxRq121jAm3tNWbT/GY74Hk3e/vqY9Ifb9HrowCj/wUPD1UeqWlSgmzAd+4Abx8CcTGCv/euCE8nluBWwBgptip5wD/cEZdW0pQ9HM8jn9tdOAWENbGl0mRCIp+nvGgKmWH+qR577G7KWDrYsCWRAn/agvcDnEFX9URzGOu0e0hhOhXy7M05BKvSLCTW6Osc2Ezt4gQklMv38bg8OUHUEqYLuivQxeRDqZzO42gIGDpUmDePOFfbYHbMWMsNicCISR/oOAt0So8PBwAUKhQIY3HCxUqJD6nzaxZs+Dq6ir+eXt7m7WdhEglYzJU9ygFmYQALgNDeeeicLCytUDLzKx9+4zbQUHAuXOo3b4avLw9IZPr3wTI5DK0Gdwcji4OwqgAVb5bQBhFmo/xtPtA8g7oz4CsAHgieMIySzXLvOw7wSSbfaZ9NDpXxoMnHwJP3AKedBBcSSfvVI6/viM5mKNLeFK05gOqlB2BgeAdW4Ib6No4A3hrRyi3FgOf/x1YgbVgMgf9LyL5Q0gIMHmyMJFk0aKAi4vwb0AAMGWKcEUAsZge3nUkpWiSMxk6FavxYexrEJNSKjku3X+OjUevYePRa7hw75k4spPkjj3n7oDJpA0CeRebiHN3n2psp9GpE7LkWsiMMaFcYKDwug88cBsVl4gdp4Pw16GL2HTsGp6r5ewlhGRF1+kQk5oyZQomTpwo3o+NjaUALskzepeoh6uRIQbLcXD0LlnPAi2ygOHDgTlzMq7vWrwY8gYNMGPHN/iq6QykpaRpHYUrk8tQys8bn8/uLzywZEnGk4wBI0ZYoPHmwxM3Q9rkXQogaQ+48yQwWf6ePZbZfyLMcpxtcsC6BphMM3jLlXHg8f8DEncASFF7xgbcviuY89dgMrccvG/+F5eWlOM6rHXl327ZEqj3DPzuE+DvKOB4AvBOAcRzwIkBnnKgmSP4Z66AtzWE9V4Jxmxy3CaSywIDhVzbBw5kvYY3Lg4ICxNO2s2ZA3ToIOTabtUqd9r6ESntXBg9vOtgZ+hFnacH5UwGV2sHDPJtasmmkXzg8JUHWLTnLF6+jYHsfbBPyTkKuztjVOf66FhXQionYnLP3kQZnvH4PRljeP4mOuOB/JBay4LiklLw27YTOHjpPpRKJWQyGZRcid/+OYnaFUpgSt/mKFnIPbebSUieQyNviVaFCwuXcL1+/Vrj8devX4vPaWNrawsXFxeNP0LyisaFKqFugbJ6R9/KwBDgVhJtiwZYsGVmVKqUcNCusnUrsHcvytcsjT/P/ozyNUsDEIK1cms5GGOQW8nRvF9D/H7qRzg42wsz327dmlFHx45AyXyeJzP1MqRP3pUKpN83Z2ssglkVB3P5OQc1KMAcP9V4hCtjwCP7AIlboRm4BYBUIGkH+Lve4MpIfMycrQ1MfGeADAxV3ErofJ4rYwFvW/BpBcCPlAS/7gseXFr490hJ8GkF3gduAYABypgctYfkMoUCGDsWaN3a8CSJgPD8/v1C+bFjhdcTs/qqYkf08K4DABqj7lX7H4Xt3LCizhfwsqP9ZJJh07FrmLLqIF6+FfpoJefiZfrhUXH4ft1hrDl8KTeb+NGSGxo1q4aDay+fl1NrWUhcUgqGzNuKA5fuQaEUkkkplEpxM3b1YSg+nbMZT8Le5Wo7CcmLaOQt0crHxweFCxfG0aNHUbVqVQDCKNqLFy9i5MiRuds4QrJJzmSYW60/fgjajqOvb0POZOKljarbdQuUxS9VP4H1hzSByLhxwoE7IEyY0LcvsGULSnfujAXnf8Xjm09x5fBNJCckw72QGxr1rAv3gu/zo+7ZI5RXn/l23DjLL4PJpRlXnBtZPo9iDj3B4xcCyjBjXwnYdQRsNUft8ZjvgfQQ6A6EKwBFKHjMFDD35dlp8geheSE/bHp6xnBBLeRMhsYFK+oN8jCZCzik5bEGAOTzUeQ58SguHNufX0Bg2C0kKlLgILdFqyJV0LNEXZTJD7lHFQqhT1ZNgqPO3x9o2DBjEpwzZ7LmUly0SJhEZ8uWD/6S3NxkJZPjW78u6F2yHnaGXsKVyCdIVaSjuIMHunjXQiOvCrDSNZqefJQehL7B//45abDcwt1nUb1scQT4FrVAq4hKpZKFcPjqA0llORfKk6x+334SIa8jdaYBUSg5klJS8c2K/dj+/WcZE7USQih4+zGLj4/Ho0ePxPshISG4ceMGPDw8UKJECUyYMAE///wzypYtCx8fH3z33XcoWrQounbtmnuNJiSH7OQ2mFWtHx7FhWNn6EU8iHkFDqCMc2F0866Niq7FcruJpteqlTDxwaJFwv2kJKBbN6BPH2DUKJRu0AClA0qJxXn6K/CjK4AV+4DtZ8HUA7djxgiXfuV38pKAIhSQGPDizM3I6e7yJq6Mz0bgVg44DBTSH6iNIOOKcCDlMAx/hgog5QR4+nMwK92jRz9kVdxKoIxTIYQkvIFCwmQnKjIw2MqsMLKsgUvdbVsAcXMk1poOZttGchs+JGsfn8CS4P80TtzFpSdhz4sr2Bl6CaPLtcFA3ya53EoDJkzQDNzKZEJfPno0UL++Zk5FzoFz54DFi4WrJ1R9+fbtQj0LF1qy5R+lUk4FMbFix9xuBskHtpy4AZmMQWEgt61cxrDl+A0K3lpYp3p+WLj7DNIMTPjLGOBT2AP+vkUs1LL8Izo+CQcv3jOYv1mh5AgJj8S14JeoUa64hVpHSN7HODfiKIJ8UE6cOIFmzZpleXzgwIFYu3YtOOeYMWMGVqxYgejoaDRs2BBLlixBuXLlJL9HbGwsXF1dERMTQykUCMlNhkZrNWgAbp8GRJ8DLjzSPkN9r15gH8jMtzz5MHj0WCNeYQs4DgVzGqcRwNRaN+cAjwa4EpC5gbG883lxxWvwiEbGvcjrLGRyr6x1JawCj5sHaQFwufDZOX28V248jgvH0AvLkaJMNRjAZWDg4HC3ccQfNQaikqvhgxdl5CAg9SL0pwORA1ZlwTz3fHSjWXY+v4jZd/cYLDe5Uhd0L1HHAi3KhsBAIfWBir29MIK2c2c8uhGC/csC8ej6E3Alh29AKXQc3grla5URyu7dK2wDkpI06/sQTsYRks9xzlF//CKkpKVLKi+XMZxbMBbWH8D+WH6yfP95LD9wQW8ZxoA/R3VFw8o+FmpV/rH3/B3M/Ps/SWXlMoZuDapgar8WZm6VaVDMg1gCjbz9iDVt2hT6YveMMfz444/48ccfLdgqQiyP82Qg+V/wtLsAlGBWPoBdp3w/QZUGuVw4yJ8wIWMErkpQEBAUpHdkKR/iCj6vAiDTlzFYkK5U4OSbu9jz4gpeJkbCRmaFmp6+6OFdB6WcCuZwQUzEtjkgLwEoXkJa7tsUIGEJuDICcPlZa+CLK2OBxK3giRsyRrcyJ3D7PmCOA8DkOR/VnaxIxX9hQdgdehkvkyJhxeSo7uGDXiXqoopbCcMBOZkLAAbJs27AXmvgFgC44i2E1PlSgrcMXBlhttHLXBEBpF0DeApep9rjdpIXOJfBx6lgnrkUvrRzYayuNwI/3tqBuzEvIGcyMDAooRQmo7Fzg63MCulcicL2ruhYrAZaFK4CO7m14coBMJefwSN7vs9nq22dlgPMDsz1t48ucJuqTMeSYGkHjEuDA9GpeI28mTpnwYKM2zIZsGULklq0xpwe83B21yXIrWRQpAu/x8c3n+Lf1cdQo3UAvtv6JRw7dxa2Ad26ZYzAXbCAgreE5AHJaemSA7eAMDIxPikV7k45y6dOjPNFh7pITEnD+iNXIc80SlomY2AAZn7WhgK3OkTHJ0EmYwZH3gJCvufohJxP9krIhyQP7pkSQohlcM6BxPXg8fMBHg9Vl8ihAGJngTsOBHOamKdGTuaIXC5cJtuli3DQbmCiG84AtHIEH+oGNHYAUrcAyVUB++46X/MsPgLjr67Fq6QoyMCgfB8kfJoQga3PzqNXibqYWLGjxgQuuYExa8B9FXhkP0AZCcmTlyX9A9i1AmybajzM00PBIz99H7RV+0x5PJC4FjxpE+C+Esymdrbb/CguHGMvr8a71HiNz/ZI+C0cDruJFoUq44eA3rDRE3RizB7cthmQchKGl1kO2Ou53JfZQ3oQWFXetHj6c/C4/2mkbygIoFKqPTa9KYfpb8uggktxfFG2JRp4lTf5+xvL16kQ1tYbhQexr3DqzT3EpyXD1cYBLQpVRkkn7UFyqZhVccBjO3jMJCDtMgA5MgL1CsCqIpjrHDDrsiZYEgFXxgApZ4X1XOYG2DQEkzmYrH5TOfH6DmLTpB0ExqQl4sTru2hVxN/MrTLS06fAgQMZ9/v0gaJDB/zQ/ldcP3YbAMTArfrt60dvYWr7XzHv2EzYdO4spFjYvFkotH+/UO9HMEkOIXmZrZUVZIyJk5NJYW8j7cQeMR3GGL7s0RhtapbDtpM3ceLmEySlpsHN0Q4d61ZCj0ZVUNTTNbebmWc52NlICtwCgIwxONrZmLlFhOQvFLwlhHy0ePxCIEF9FKr6qIdUIOEvIa/nhzZSrWVL4e/pU2D5cvADW4CIUCCeA04M8JQDzRzBP3NVm6EeABh4wmrArpvWz+NNcgy+uLRCDJIo1QJ7qvyS259fAOcc3/p1MecSSsKsSgKeu8ET/gIS/4a0AK4cPGEDmFrwlvNk8KhBgPI1tAczFQBPAY8cBhTYK7yvkcKTojHi0krEpyUD0P7ZHn99ByzoH/wS0Ffv+socPgVPOSbhXRVgDv1112PbEDxhkc7nNaWD2TSUWFYanvZACL7zRGQe/VvQOglfFruJ8vbR+DmU4cur6/LU5fDlXYqivIvp8xUyq+JgnhvB04KBlH/BldEAcwazawlmXdlk78OVkeCxvwHJewGopVhhDuD2vcGcJuSpIO792FewYjKkc8OjxK2YDPdjX+W94O3y5Zon20aPxtldl3A1MEj3awAoFUrcPf8QxzaeRtshzYFRozKCt5wL9c6aZcaGE0IMkckY6vuVwvm7Tw3mvJXJGKqXKQY7GzqMzy2VShbGzM/yxlU9+UkDv1JgTO+4EZFCydG4iq/5G0VIPpK7Q58IISSX8LQ7mQK3WksByfuA5EMWaZPFlSoFzJoFfrw++PXS4MGlwa/7gh8pCT6tQKbALQBwIP0hkB6stbq1T04gNi1JDCZqwwFsD72IJ/GvTbYYOcHkXmDOkyB9BKkCSD0NztUCVkn7309+pi/4qwSQCp64NlvtXPfkJBLSUzSCtlnfgeNI+C3cjXmhty5m2wBwHGbwPZnzJDDrSroLWFcDrMrB8K6ETEhR8X/27jvOqSr94/jn3GR6b5Sh996bdFFUuqIi2LsgIquu7lrW3+qufdVVwYKuvYAKIl0EG116k97r0Ke3JPf8/gjTZGaSMJNkyvN+vUYnycm9z2SGlO899zmBl7jcp7u0tqHP3Xc+uL3wcTeUs+/c0LiDXBu3F4CXt812+dhUFSqgGSr8QYzIpzEiHirf4NZxCn3mesieSZHgFpy/j8zP0Gdvdi6OV0F4MpsNFKYbIa/PzZ9f8H379tCrF99PXoBhcf1WXhmK7yedv3/v3tCuXcGNC6ro65sQlczoSzu6DG4BTFMz+tKO3i9IiHJWOzaSfu0aYzFKnxBjKEV8VBh9JbwVoggJb4UQ1ZLO+BLnacWuGOjMz71djn/9+VR/l+NPXnBVhj2HOUfWlxrc5rEogxmHfvegQC/T2bjXtzX/DufbbJy/lPkl7r2cOiDzO2ePZQ9k2HOYe9T9x/bbQ6UvpgGgwh9FRfwDVMz5a6zk/3swaqCiXkKF3V36NpRCRT5//r4l/fwGYKCiXizf2es5P5//uy19trSp4aYaO1FoDKX45uCK8quhmtIpj4GjtMfeBPt2dOrzviyrVA3C4t369wNg1w4ahJWthYVXnDpV8H2fPphas3XZDkwXK58DaFOzd9NBMtOynEc1+hSaBV94u0IIv+nVugFDe7QqtTe8UjCwczMGdGjqs7qEKE9/Gz2AyNDgEgNcQymUgufuGITVjYOTQlQn8i9CCFE95fyAe6fJm2Bb5zz9uKpSHp7erIIvuGpX6jFyTJtbd3dokzVn9nq2T29SIYAnveMMUOEFF+17cT/8zQJHkgf7gn3pJzx6bDecO+BynFIKFXYbqsZSVPQkVPgEVPhEVPQUVMJvqFL6GhfZTmAHVOwnYMSev8Yo+n8VhYr5EBXYza3tuUtnzcSdtzCGgjpBmbQOPYtDm/x4fAs5DvceS3Ehbd8DuStw/dxpQvYstHnWF2W5dEXt9qX2gi4syAioeC0TANILzWQOD8duc6Dd7B2YJycrN//++dLSyqE4IURZKaX4561XctPlnbEYCkNd+HV93w48f9dgDBczF4WoqGrHRvLp38bQvK7zIKnFMDAMhcVwvqeLjwrjnYnX0b1lfX+WKUSFJM1yhBDVk87wbLyZ6lyQpyoK6nc+gHQjzFZhENDmgqttppsLfp2Xa7q/qrK3KaXQwYMgez5uLeIVdBlKlWURBc8+dNk9fGwdHoxXKhCCr/Jo+xdsI7ArWcE/8Mcv76KzFxIYmE5meiBnz3alZb/xNK3ZvEzbL5bjOJ7Mlq4RkMUfOGdVptqySLDIQi8XQ2fNwTlD252/MQdkL4TQG71clWvh1mBubNiHT/b96nLsTQ17E2YN8n5RngoPLwha09MJDAogLCqUjJRMt+4eGBxARExY/v3zRUSUc6FCiItltRj89fr+3HFlV2at+IM9R0+jgSa147i6VxsSosNdbkOIiq5uQjRfPnEzfxxIYuHanZxNyyQsOJA+bRvRq03D/CBXCFGUhLdCiOpJhYP2YMaRUfFWj9WOpPOnj6c66wu6HGWp4fF2VMgYdMaHboy0QMgolAq54JaaIdFu789AkRgS43qgD6nQW9HZc9wY6UCF3lr0qoBWYNuEW2GiCgdLbY9q8+SxMlDUDYvzaPtltf333Tw19AXSzqWjiENr5/4t1uM47E8x5N6BTHz7HixWd9qUuKmYv8HSZJsF+w4qh+BWa121FjF0l+nJKfYWtOOkh4cqvGdss4EkZSfzw7GNGKgi/aPzLg9O7Mh9zQb6scpSJCTA8ePO75ctA60ZdNdlzHxrvsvWCRarwcBb+mENsDpXilm2rOh2hU8dPHGOPUdPA9CodiyNa/v2OVtUfHGRYdw1qLu/yxDCq9o0rEWbhrLwmxDukvBWCFE9BQ+FrG9xPYPMgMBuqAoU3mrHCXTqs87gFo3z9HETeBYddBUq8v9QFvc/DCprfXTYeMh4u5RRFjBqosLHFXtrg7B42kTVZXvK0VIX1QLnwlpX1y3f0+jLSgV2hPAH0emTSh8Ydi8qqOjCWyr0FnTKBjf2YoGQGzyetVszJJrucU1Ze3avy4WXTDTX1vPdB76D24/wt4HPkpttc7YCLnSbw+4MlBb8bzEBgVYmTCq9h64nVFAftG0j7gTmuabBlsw4FIom4TWIsF7Y9sMd2n4AnfkVZH0POhlNMAT1c4b5gd2rR5irgnF/5rhZ7IEef7Eog2fbjaJvQku+PriSzckH829rF12fGxr0ZGCtdhX39zhkCGze7Px+82ZYsYIR469i1uQFmCalti03Tc3VEwY7LyxfDlu2FNw4eLDXShZFrdt1hPfmrmTd7qILJ3Zoksi4oZfQo1UDP1UmhBBCiIpO5qQLIaolFXoT7va8vWCmpR9pRxL6zHWQ8wvO4Erj/Dm083LOj+gz16Edni1Co8InosL/gvOU6MIvDednLFpboOKmofJ7m17otkb9MCk9RbAog4SgSAbUurD1gr+p8AdRkc/8aRGv88c4VRQq4ilU+KMX3jH4KrA2o/QF8AxQoaiw2y6qttsa9ys1uA01bIyK38uLjTZyWfAnmGlvoO2HL2pfnvjsma/JzbaVOvNPa5j19g8c2X28/HYccoNbw+xa8cO5+qQ7AtFobmjQ66LCOZ31Hfr0IMj8HHTy+WuzIecn9Llb0SlPobVn7S0qIxXYF3C35YkJQX1cD/MhpRRX1G7P/y4Zy4+XPcWMvn/lx8ue4oNLxnJF7fYVN7gFGDvWuVpRnrffJrFJLZ786iEMw8AoZmEXw6JQSvHoh+Np3P58MPjOOwUDlIJxxR+QE+Xrx3U7GfvGdDbsOXrBbVv2HWf8pO+Ys/IPP1QmhBBCiMpAae1iGo8QZZCamkpUVBQpKSlERkb6uxwhitDpH6DT/1P6oJBRqMjnKsyHevPMbWBbQ+nBswWC+mHETMm/RmtNsi2DLLuN6MBQQkvo6agdpyBrOjp3NegcsNRDhV4PAV1LfAy0zoKs2ejMLzBtu9FoDmZHMP10Exaca0CW6QxALcogzBrElO730SSi5sU+BF6ntc0Zytl2AqCsTSH4ilJnzGrHCfS5O8G+B+fMxMIvrQaoCFTsR6iAdhdd1/RDq3hl22wsKBz529fclLCL+2pvI0g5QBnn50UqnOHZIFTUCygj7KL3W5KzSee4sd44t1a7NywGIycOYdxrt5fb/l39+7VrRYo9kDt2DeSMLZR20fV5u/vdbi9clb+f7F/QyeModWojQOidGJFPeLTtykZrB/rUpWCepPTHwwBrG4z4GT6qrJoYPhzmznV+bxgwcyaMGMHWZdv57Nlv2fDTliLD2/VrxS1Pj6Lz5eefd2bNgmuvxTlV9/z2Zs/24Q9QPR06eY7rn/0Mh1n6eSmGUkx96haa1Yn3WW1CCCHKTjIP4QsS3gqvkicyUdHpzG/Q6a+DeZaCTjL287Mk74Ww+1GqYpykoO170KeHuDlaoeIXYzdqM//YRr4+uII9aUmAs79jvxqtGNOwN51jG5WtJsdR9NnbwXGIwqGlqZ2XkmyhTNzTlxP2GAYnduSuJgOoXcH63ZYXrbPPh9ifg90Z/GLUcs7yDr2h1FnL7lp3Zh+f71/CytO70MDdNbdxb+1tpdzDgICOqNjPyrjI2oV+n7eOfwx/ye3xLbo1YfLv7o93RWsNmR+i015HY4I2UcoZ2lqV5kB2BH/b35dDOaH0im/Ocx3HEO5hywStNfrMcLDvxmV4i4FKWHJRfacrE52zFH3uXpyPR3GPiQEEOGfqF7O4oSiDRYvgyisLLoeEwLRpMGIEAMf2JnFg62G01tRvVYd6LeoUjJ01C8aMgezsotsbWEF7/FYh//nmV775bSMOs/TnEIuhGNGrDU/ffAVaa7YkH2Lm4TUcyDiFVRm0ja7HyHrdqR8m4a4Q5eVcWibfr9jK79sPkW2zUysmguGXtKZn64YYRsWYuCEqPsk8hC9IeCu8Sp7IRGXgnGn5M9q2DXCgrI2dMxaNUH+XVoROn4ROfwf32j0Y2EMfYuIOC+vP7keh0IWCFosycGiTB5pfxe2N+19cPWYG+swIcBwrsSaNgY1YbDEziQiquLNty5vzFHoTpcq+OFZxTmencjZzM01z73JjtEJFPIEKu+N8bTnOMFLnOPsYW+teVA3Lv1/NM9e6mLleSJMODXhvw6sXta/SaMcZyPoWnbuSbHsaB7ID+OFsY7Zn16dxRG1G1u1Gy6g6rjdU3LZzN6HPjnJztHG+/cj4i9pXZaJzfkUnPwo6lYKe2+f/bySgot9BBXbwb5FV1YMPwuTJBZcNA0aPhvHjoXfvoq0VtHb2uH3nHfj664IZtwATJsAkFz2+RZlpren3yDtkZOe6Nd5qMZj3yp08tWUaG88dyH+tBrAohUNrrqnblb+1vhqrUY6LQApRzWit+fKn9bw1cxmm1vmtqSyGwmFq6teI5q0HrqF+jao54UCUL8k8hC/IgmVCiGpPqQAIvgoVfJW/SymVNs/i/mJBBitOrmLjWWdopf80Qy7vw+DbuxZSKziaqxIvImjJmgmOI5Q2I1FhEsgZguxzIOgez/fhBu04Do4ToALB2rTcZ5heDKUslN4Dt2zigyOJzf0Zci24E+brzM/QwcMg82PInAY6reC2gK6osHtQwZd5VEOtRu7PMLVYDeo0r+3R9t2lLHEQPg7FOEKB1kDr+uW0cXtps5r/TKNt293+F1qZqaBLocZyyF6Azv4JdAoYsajgIRB0GUrJ20uveeMNSEqC6dOdl00Tpk51frVv7wxww8MhPd0Z3OYtclbYqFHO7Qivy7E53A5uAew4uHrB65hhNqDgtdr5vfO1dtaRteSYdp5pN6rCtHQSorL54qf1/HfGkguuz5shf/R0Cnf+52u+fOJmasVG+Lo8IYS4gLy7FkKIykKF4frUbSeNyfa0ZEwSXY79YM9PXHkRi/XozM/dHYnO+BxC7y7XD5o651d0+odg+73gShWFDh2DCrsLZVTx2RLZi3FvFrZ2huynrwF95sL72NY7e7qGP4gKf9Dt3Tdu34AmHRqwb8shtIvTgR12k8F3V8bTs00u7GHsanz1oFQQhFyDCrnG36VULxaLs1XCQw8VnYELzqC2uLC2sAkTnMGtRWZt+kKA1fDoGUQ1ysIWmlvqQSANLDi2kWvqdqNTGVsfCVEdnUnN4K2ZS0sd4zA1qZnZvDtnBc/eXrEndwghqoeK0chRCCGESyroMtwL65wzXlemuXeq+KHM02xKPuhRLVrbwLEftz+SmsdBp3u0j1L3n/4u+tx95xdvK3xDCmR8gD5zrXNGblWmMzwcf5ri/36cgaNOn4TOXuD25pRS3PjkdS6DW4vVoFG7+nQeePGLtfmNpTHuxy4GWMsvSDmSeYbP9y/h7Z0L+XTfbxxIP1lu2xaVnMXibHmwaJFz0TFXB8WUco5btMh5PwlufcZiGHRqWgfDrQOXGqNRlnvbVQbTD60qW3FCVFMzl2/FncaRDlPzw5odpGRkux4shBBeJjNvhRCisgjoBNZmYN9L6TP8LBzMqcGOzCi3N30w4zQdYxp6UMzFtEsvn1mJOnshOv2/pWzTBEeSc1GluNkVZsG5cmfEgiPN9bh8rh5/hU5/19nv2c0Z0v1H9eTIzjF88n/TMCwGpqPoPgyLQXzdOJ6b+wSGUQl/D4E9wFIHHEfdGGyiQm4o8y5PZCXz3NaZ/H5mNwYKQylMrXl710K6xDbiqbbXUjc0rsz7EVXAwIHOrwMHYMoUWLAATp2CtDSIiICEBBg8GMaOhYYN/V1ttTVmQEfW73HjOSTURIW69zrp0CarTu8pY2VCVE+rth/M73Hris1hsnHvUfq3b+Llqspfdq6dH9ftZOW2g2Tl2IiLCmVI91Z0blpHWq4IUQlJeCuEEJWEUgqiXkGfGQPYKD6Ms4AKZHrycOCs29s2POzUqVQg2qgFZpKb97CgTw1Cq0AI7IEKvRkCPG/VAM5ZtwWLJJXEAfZdkLscgvp6vI/KQIVcjU6fTPmdqq/BvsP5FdDK7Xvd/I/raNqpId++NodNv/6Rf31EbDjDxl7B9Y8MJzKucvaLU8qA8AfRKY+7GGlA8FCUtWzNdk9kJXPHyndItmUCYKKLfMDceO4gd6x8h48vGU+9MAlwxXkNG8KLLzq/RIUzoGNTerZuwO/bD5UeGFk8Oyiaa9rLWJkQ1VNWjs2j8Tm2yvdv7cd1O3nui8WkZ+fmHwS2GAYzl22laWI8r40bTr2EaH+XKYTwQCWcBiOEENWXCmiDivsKLHXPX2PF+VR+/jRYSz1U7DSiQjt6FMg2j/R8MSkVehPuv4w4nP1WzeOQPQd9dhQ65a9o7f5CLgDatvP8IlLuBJYWdOY3Hm2/Ugm5AefvvZxnTziOeHyXHkO78OrPz/DlwXd5c/lzvLvuFaYdfZ+7nr+p0ga3eVTItajwv5y/9OfTzc///Qf2REU9X+Z9Pbd1Jsm2zCKLFBXm0CYZ9hye2VyF/66FqGIshsGrY4czoKOLmXvZhluncueJD6rcz61C+EutmAg3W5k41YgO92I15W/h2p08/r/5+Ysl5h00cpjO9xb7k85wxyvTOH421W81CiE8J+GtEEJUMiqgHSr+R1TMx84AL3gIhI5GxXyGil+ICmjF1XW7utXYQKFoFVmHFpGuFza7QOgNoKLw/KXkfN/V7HnolCc8vOthz/bjOODZ9isRZamBivpP3qVSBnq4cJsKuOiaatSLp3XPFjTt1IjAoIvfTkWjwh9AxXwOQQMo8lhbW6IiX0TFvI9SwWXax+GMM/x+ZneJwW0ehzbZknKYXanHyrQ/IYTvhAQG8J/7hvPhX0tprWIz0EmBuHgKAJyv3VfX7Vp+BQpRjQy7pLXbbRNqx0bQvtFFvEf2k6wcG//+YlGpCyXmLcb25nelL9omhKhYpG2CEEJUQkoZENQbFdS72NtrhkQzqv4lfHtopcsQd3zzKy+uBiMWYj9Gn70DdCqen76vnbNwbXeiAtq6uVNPA8GqEyAWR4UMASMCnfYS2HfjDNIV4AAVjQq/D20/CVmf495idxawuvm7qGZUUA9UUA+0mQE6GVQoyvAwGC/Fzye2YqAw3TjsYlEGPyVtpfnFHHQRQvhNp6Z1aNuwFtsOnig2PNL7QjBql35GikIRaFgZIeGtEBelb7vG1I6N5GRyGg4Xi67eOrALhlF5+sP+sGYHmW60hXCYmp827OZMagZxkWE+qEwIUVYy81YIIaqoh1oOYXBiR8AZ9hRmKIVFGTzbfhQ94ptd9D5UQGtU/BwIvQW4mJmHFnTGV+4Pt7bhwlPXS942gVXnw+3RzLNsPneQ3WnHsZsFQawK6ouKm4uK/RoV8Tgq4q+o6EmoGstQYfegwm7C7eA26CqUJd5rP0NVoIwwlKVOuQa3AKm2LAw3F9dT58cLISqfMQM6ljjrT58OxPGHM0gpboiBwqoM/tP5FmKDKtep3EJUFFaLwVsPXE1YcCCWUoLZoT1acUP/jr4rrBws/+MA7naEcJia1Ts8OaNNCOFPMvNWCCGqqBRbJv1rtKFmcDQbzx1gW8oRck07UQGhDKvThevq96BOaGyp29DaBtmL0JlTwbEfMCCgg3PBscAezkFZ30Dml1zcwlkOsK12e7SyxKODroScH3EdSDpQoTdeRE0Vh9aahcc38dWB5exILVitPD4oguvrX8KNDXoTYg10LvwW2Mn59SfK2hAdcitkfUHJJ9EZoIJQERO984MIl8KtwZjunC+N87cYEVC2Ng1CCP+4qmsLFq7dybKtB9DFzb7dE4ojw0JMZ5NUa3qR27rHN2VcsytoHVX3gvsJ4S/J6VmcTE7HajGolxBNgNXdg+z+0yQxni8ev4m3Zy9n8frdRWbgxkWGcseV3bhxQKdKNesWICM716Pe2Zk5nq09IYTwHwlvhRCiijmSeYZ3d/3Izyf+KNI/s1ZwNLc26sv19S9xhn0uaMdR9Nk7z/eNNcgPZ3NOoXMWQmBvsDaHzI/LVrD2bNVfFTERnfsb6GxKDowVhNyIsjZyvXtth5yf0Jlfgm0boMHazLkgW/AglAr0qL7yorXmlW2zmHF4NepPPW1P56Tx/u7F/JS0lXe730NkQEip21KRT6KxQ9ZUnDOX84Lv813RVJSzb6u1sTd+FOGG/jVb8e7uH90a69Am/Wu09nJFQghvsBgG/7l3GC99/QuzVmx1vh4XCluUUtzarjfjB/dib8YJDmWcxqoMmkcmujzgKoQvbdp7jE8XrWXJ5n35s8mjwoIZ1a8DN17WiZjw0t+b+FvdhGiev3MIHZps5MvF6zl6xrmA15nUTGYu30JwoJWre7XFaqk8JyvHR4VhMZTLdhB5pGWCEJWH0sUd8hWinKSmphIVFUVKSgqRkZH+LkeIKm9PWhJjf3+fTEfuBQsf5S1ecHXdrjzZZmSpAa42k9GnR4KZRMkzXAsFuhfNgIDuGHGfeXQvnbsJfe4e0ClQZFmG88FkyChU5LMoVfoxSu0449yO/Q+K/jznv7c0RMV+jLLU8ai+8jDtwHJe3zGv1DGGUnSPa8pbXe90a5vath2d+RXkLneG35ZEVMgoCB6GMvz/Bl6baWDfAzjAUh9lqeHvknxq7O/vszn5UKmLlhkomkbU4oveD/qwMiGENySdTWPWiq3sTzqLoRTN6yVwdc82xESE+rs0IUr13bItPP/VYgx1YVBoGIqEqHD+98go6sRHlet+bQ4HyelZWA2DqLCQMs2MdZgmT3/yAz+s2YmhVJF2Jko5W5f0btOQ18eNqBSzicHZNuHByTPdGhseHMiiV8YSFCDz+cpKMg/hCxLeCq+SJzIh3JObncuy737nwB+HUUrRuH0Del3TjYBA9xfcspsOrvntVU7npLpc9OiJNtcwsl73Em/X6ZPR6ZMpezjrmor6LypkqMf302a6c8GzzG/AcRxUIAT2QYXdjApo4/r+Ogd9ZtT5hb5KCqgtYKmNipuFMiI8rvFi2U0Hw399mTO56a4HA1N7T6RJRC0vV+U92n4QnT4FsmcDeafwKQjsjwofiwrs4s/yfOZwxhnuXPUOGfacYgNcA0WQJYCPLhlXqX/fQgghKq81Ow8z7o3ppb7TtBiKOvFRfPt/txFgKXvwefhUMl//upHvl2/NX5CrZkw4oy/tyHV92hER6nkroXfnrOCD+b+XOkYpuL5ve5648fKLqtvXTFMz8plPOHYmpdTZt0op7riyKw9e08eH1VVdknkIX5DwVniVPJEJUTqtNdNfn8uXz00nIyUTS4DzDa7D5iAiNpzbnx3NiPFXudXmYHHSFp7cONWt/dYNjWNG30eK3a7WdvSpvmCe8eyH8ZgFjFqohIV+aU2gs75DpzzuxkiFivgbKuxur9eUZ8WpnTy07lO3xlqUwaj6PXmklecBeEXgnEV9J+gsLgzRLYBGRb2ECrnG98X5waGM0/zf5m/YlnIEizLy55U7tEmziNr8q/0oCW6FEEL4zfi3ZrB652FMN07NH9K9JYFWK1aLQeuGNbmqawtCPJiYALBq+0EefncWdod5QSCplKJ2bATvP3w9iXHuz/LNyrEx8G9TyMp13brLYhgsfPFeYiMrx4z4fcfPcOd/viYzJ7fYAFcpRZdmdZg8YSSBMuu2XEjmIXxB/rUKIYQfvf/Y50x/fU7+ZYetILxKO5vO5Ac/JPlkCrc/O9rltuYdWYeBcjnrFpx9cbenHi1+0RPHcR8FtzGo2I/811M24wvca/2g0RmfQ+hdboXo5eFY1rkizSBK49Amx7LOerskr9Bmyvn2F5kU/3tw/nvQKY+DtQkqoJ1P6/OH+mHxfNJzPDtSjvLzia2k2LKIsAYzoGYbWkfV9dnfoBBCCPFnSWfTWLX9kNvj56/egcUwAM30pZv51+eLAAgLCuSqbi246bJONK4dV+L99yed5aF3ZmFzOIpdiEtrzYlzaYx7cwbfPn2b2y0AFq/f5VZwm7ePeau3c+vAynEWUOPacXz++I28Nv03lm3dj9YFbSBCgwIY1b8D9w/rKcGtEJWM/IsVQgg/Wf/TliLBbUm++Pd0ug3uROtLmpc6Lik7xa3gNs/J7FRaFztJwe72Ni6KCnP2pA27x289TbU2z/e5dfPxMo+BTgYV482y8lmVxe3fpEJhVZVnMY0ismaCTsX170GhMz5GRb/ui6oqhJZRdWgZ5ftey0IIIURJjp5O8fg+DvPCg7MZObl8t2wL3y3bwnV92/HkjZcXe3Dy88XrcJhmscFtwfY1R06lsGj9Lob1cG8xz0Mnk7FaDOwO1+3BDENx5FSyW9utKOrXiOHN8ddw/Gwqv+84RHaunfjIUHq3beTxzGchRMUg4a0QQvjJ95PmY7EaOOylv3G0WA1mv/2Dy/A2xOLZDNYgo4SXACMB58tDeYW4BliaoKKeAxXgnEGp/L0CsYnbwW0e7eVQu5C20fU8Gt8uuoGXKvEunTnNzZEOyF6ANv+FMsK9WpMQQgghimexlP/ZHzOWbuHY6VQmP1h0Md3M7Fzm/b691N6teQyl+Pa3TW6Ht1aLUWog/GfO2cOVT+3YSK7p1dbfZQghykHlfBYSQvjVyewU3t+9mLtWvsuNy97k4bWfsOj4Zmym78Ktyi43x8bvc9e5DG4BHHaT375diasW5T3im+LskOlaoGEtMSBURjgED8HZb9QdrvZposLHoQI7oQLaVoDgFpSyguFB31AVCka01+r5s6YRtWgXXc+t36dVGQyr09kHVXmB4xjuh+gOME94sxohhBBClKJJ7TgCrGVfgOzPVm4/yKeL1ha57vjZVGz2khaULcrUmn3H3W8h1bZhrWJnBBfH7jBp3bCm29sWQghvkPBWCOE2rTWf7vuNEb++wkd7f2FrymH2pp9g5endPLVpGtf89iq7Uo/7u8xKITM1062FHvLYc+3kZOWWOuaaet3d2pZFGQxJ7EREQMkhqgq7C9ehmuFsgUAgxQe954PHkFsheJhbtfmSCr0R914GLRByA0r59jSziS2GoJRyGd/e2/RyogIrxyIaF1CefgCUU/2EEEIIf4kIDWZI95ZYjPKfgfvB/N/JtRVMBPG0x7vdYZKV414f20taN6BmjHtn8kSEBHFF59LPfhNCCG+T8FYI4bbP9y/l7V0LMdFFeqvmfX8mJ41xqz/gUMZpf5VYaYRGhODJe1JLgIWgkNLbItQMjuLeZpeXvh1lEBUQyj1NLyt1nApojYp6FefLRHEBmwVUKCr2U1TcNxDYhwtm4FoSUZH/QkX+o2IushRyw/nwubSXQgVYUaG3+KioAh1iGvBa51sJNAL4c4RrOd/j9q4mA7i9cX+f11ZuArri9gxvIw4siV4tRwghhBClu2tQd0ICAzDK+b1dVo6NXzbtzb+cGBflUX/WHJud0c9/zrEzqS7HWgyDR65z7/3TgyP7uL0QmhBCeIuEt0IIt5zNSefd3T+WOsZEk+XI5d1dpY8TEBgcSNdBnTAsrp+GLVaD3ld3KzUA1WYKOvsn7qydwbMt6hOALnLKfV7YVzc0lv9dMpYawcWuVFaEChmGip0GQQMoGswGQsj1qLjvUQHtUQGtMGI/QMX/hIp6HRX1Eir2S+fl0DEVM7gFlCUOFfORsyVCSQE1AaiYd1HW+j6uzqlXQgvmXvp3JrYYRJPwmsQEhJEYEsOo+pfwbZ+HGdfsigr7+LpDhd0CuHNKpIEKvdnZ7kIIIYQQflMvIZr3HrqOyNAgFK6bZ7nLUIr9SQWtD4IDrVzTu41Hs3yPn0ll3JvTycwu/Ww1gCu6NOfpmwdiKIXxp31YDOdh84kj+3B93/Zu798dWmu2HkjihzU7WLRuF8fOeL4InBCi+lHaVRNFIcogNTWVqKgoUlJSiIyM9Hc5ogw+2fsr7+5ehHajP6WBYu6Ax4kPivBBZZXX6gUbeGroC26NffWXZ+jQv80F12vHSXTafyF7DlDwRtVUcazP6cenSU3IdDioHRLN8DpdnH1xlefH7bTjNDgOA4ZzwbEqtGiUth9GZ34MmdOB7PPXBkLwCFT4XShrU3+WV6VpbaLP3QO5K3AuIlccC1hqoeJmonzYd1gIIYQQJUvPymH+6h18t3QzR8+knl8ETJOWmePpkrCAM7wdO+wS7h1ySf51x86kMOa5L8jMsWF6EFs8MeYyRvXv4NbYY2dSmLF0CwvW7CA1I5uw4ECu6NKc6/u2p2GtWI9/jtIsWL2D/y34vUhIrYBebRrywNW9aVmvRrnuT/iGZB7CFyS8FV4lT2RVx4Q1H7L6zF7XA897qeNNXFZLVjctjdaaN8a9z/wPFpc67rqHhjLu9TsuvL/9CPrsaDDPUvzsRQVBl6GiJ8mMRTdonQX2I4B2tnyoQgF1RabNTHTyXyD3N5yznfP+lg3ABEsjVOxHKEsd/xUphBBCCJcWrtnJEx/Nv+j7/3fcCPp3aFLkuj8OJDH+re9Iy8pxaxsKaFgrlhn/vP2i6/CGKXNXMmXeKhQXriphGAqrYTBpwki6tSh+QWFRcUnmIXxB2iYIIdyS7XBvAYA8OaZn46sjpRR/efdebv2/Uc5+tgqsARasAc5T+IPDgrj7hZsY+9qFbz611ujk+0sJbgE05PwMGVO890NUIUqFoAKaoQKaS3DrQ8oIRcW8j4r9CoIHgVEHjFoQeInzwEP8PAluhRBCiErgyq7NGdHzwjPF3BEfFUbvto0uuL5Nw1p89vcb3d6OBvYnncVhlnRGj+8t27qfKfNWAcUvB2yaGrvD5OF3Z5GSkV3MCCFEdSdTsYQQbqkdEsMfKUdwaPfeCNV0o6eqAMMwuO2ZG7j+r8P5+atlHPzjMCho1K4BA27sTUhYcPF3tK0F+0439qDRGZ9C2L0oVfqCZ1XR3rQT/HryD9Jt2UQEhDCgZhsahcspaRWNUgoCu6ICu/q7FCGEqFr274cpU2DBAjh1CtLTITwcEhJgyBAYOxYaNvR3laKKUErxf7dcQd34KD5btJZ0N3rP5nnw6t5YS1gLIrKk98OlqEjnF3+2aB2GUqW2fjC1JivXxpyVf3DLwC4+rE4IURlIeCuEcMuwOp1ZeHyTW2NrBkfRMaahdwuqJLTWbDx3gFlH1rA//RRKKdpG1ePa+t1pHF4zf1xoRAjDxl7h/nazZlL0FPPSBidDznIIHuBx/ZXV4Ywz/HvrDDaeO4CByn/D/N7uRXSOacTT7a6jTmj59jETQgghKoxFi+Ctt2DevAtTrLQ0OH4cNm+Gl1+GoUNh4kS4wv33IUKUxDAU9wzpwS0Du/DLxj0cPHGWhet2cfDEuQvHnn9/9tC1fRleyozdyNAgosKC3Z6VWjsussQg2NdOJaezdtdh9wZr+H7FVglvhRAXkPBWCOGWbnFNaBRWg0OZp13Ovr2lUd+LWhSrqknOzeDR9Z+zOfkQFmXkP247U4/xzaGVDEnsxJNtRxJoXMRTseMEbgW3ecwTnu/DD87kpDH7yDoWHt9Eii2TCGswl9dqyzX1urs9m/twxhnuXPUOGXZnbzQTXWSmw6bkg9yx4m3ubno5x7LO4tAmiSGxDKnTkZhAaZcghBCiEnM44KGHYPJk98ZrDXPnOr8mTIA33gCLxZsVimoiONDK4O4tARg3vBeb9x3ni5/WsXTLfnJsdsKCAxnUrQWj+nWged2EUrdlMQyu7dOOT39c63LhMqXghn7uLVbmC6dSMtweqz0cL4SoPiS8FUK4xVAGr3e5jXtWvUeyLfOCADev+f6wOp25oX5Pv9RYkWTZcxm/+kP2Z5wEKPJ45X2/4NhGchw2Xuh4o/O0cU+oECh2yYOSxgd5tn0/+PH4Jp7ZPB2HNtHnf64zOWl8vPdXPt77K4+2Hs719S9xsRV4Zsu3ZNhzSjzI4NAmKfYsXt8xF+v5gwwOrZm86weurtuVR1oNu7hAXQghhPAnhwPGjIHp0y+8rX176NPH2TIhPR2WLXPOvC1s8mRISoJp0yTAFeWufePavNJ4GODs8WoYnr33HX1pR75dsonMbFuJAa5hKKJCg7mmd8VZNDk40LP3lEFWeQ8qhLiQTI0TQritTmgsn/WawIg6XS4It+qExPL31lfzdNvrPA8iq6DvDq9mb/qJUmcpazQ/ndjKmrN7Pd6+CnQdYhYaDYE9PN6HLy09uYOnN32NQzvyg9s8JhoTzSvbZjPv6PpSt7M77Thbkg+53ZvZrk3s58NihzaZeXgNj67/HLvpwazmauLcyRR+n7+eFbPWsHfTAXRFaiYnhBDCOeO2cHBrGHDjjbBsGVnLV3Hy78+Q+vd/wNtvw8aNzgD3xhud4/JMn+7cjhBe5GlwC1AjOpzJE64lNCgAo5jPGoZSRIYG8+5friPqInrkekv9GjHERYa6NdZiKHq1aeDlioQQlZHS8ulLeFFqaipRUVGkpKQQGRnp73JEOUq3ZbMl+RA5pp2EoAhaR9WV0PY8U5uMXPIqx7OSXY61KIM+CS34T+dbPdqHNtPRJ3sBrnp/WSCoH0bMFI+270umNrl2yWsczzrnch5xZEAICwY8QUAJM2Pf372Yj/f96nZ4W5K4wHBCrIHUDY3j6rpd6V+jNVajes5COrzzKJ89+w1Lpq/CtBc8rk06NODGJ66l/w29/FidEEIIwNnj9sorCy6HhMC0aWyObsp3b85j5aw1mKbzVbZpp0Zc8+BgLr+5L9YAK8ye7Zyxm5VVdHsDB/r4h6jYtNbsPHKKo6dTsFoMWjeoSUKUtFvytaSzaXzz20ZmLN1CWpazRVZ0eAij+rVnVL8OxEeF+bnCC30wfxVT5q5y2fIB4IvHb6R1g1o+qEqUF8k8hC9IeCu8Sp7IRHWUlJXMiN9ecXt8qCWQX694xuP96Myv0alPlzLCAioEFTcdZW3s8fZ9ZfXpPUxY+5Hb45/rMJoraxffy+zVbXP47vDv2MsY3uYxUJhoEkNieKvrndQPiy+X7VYWO9fu5bHLnyE3KxeH/U+tUgyFNjW3/fMGbv3nKD9VKIQQAoDhw519a8E5k3bmTL7aaufjf0zFYjWKPIfnPX93HtiOf836O0EhQc4Ad+RIMM2C7c2e7YcfpGJauHYnHy5YzZ5jp/OvM5RiQMem3D+8J41rx/mxuurJ5nCQnJYFCmIjQrEYFfek4vSsHG5/ZRqHTp7DYZYcv1zXtx1P3SQHTSobyTyEL1TcZzghhKikcky7R+NtF3mKvgodjYr8FxCAs/9tnvNP7UYCKvaLCh3cAmxOPojFzQXurMpg87lDJd4eERDsbhdgt5jnt3YiO4Wxv7/P6ezUctx6xZaVkc1TQ14gJ/PC4BZAn//w8dmz37Bi1hpflyeEECLPgQMwb17B5dGjWZwazcf/mApwwXN43vP3xp+38to97zqvHDECRo8uGDR3rnO7gvfmruSJD+ez9/jpItebWvPrpj3c+tJUtuw/7qfqqq8Ai4WE6HASosIrdHALEB4SxAcPj8qfUVu4XkMpFHDjgI48PuYyP1UohKjoKvaznBBCVEJxgeEYuN9CIj4o4qL3pULHoGosR0X8HQJ7QkB7CLocFT0ZlfAzKqD1RW/bV+za9ODRApsuOeweULNNmVsmFMehTZJtmXy2f0m5b7ui+mXqclJOp2I6Sn88DYvBt69VvtlZ6bZsvj+8hnd2/cj7uxez6vRuTC/87QghhNdNmQKFTqbU48fz2TPfuLybaWp+mbqcY3uTnFeMH19wo9bO7VZzv23ay/vzVgFFHuJ8DlOTY7Pz4OSZZGTn+rg6UZnERobyyWOj+fjR0Qzp0ZL2jWvTpVldbr+yK3Oeu4vHbhhQ4UNoIYT/yFKGokQOh4NnnnmGL774gqSkJBITE7njjjv4xz/+Ib1NRbWitWb777s5c+wcQSGBtLqkGRExJfc4Cw8Ipn/N1iw5ud1lkGigGFGva5nqU0Y0hN2FCrurTNvxl9ohMW63OTC1s4VBSZpHJtImqi47Uo+Ve4jr0CazjqxlfPMrCbYEluu2K6IFH/6Uf2ptaUyHydZlOzi+/wS1G9X0UXUXz2baeXvXj0w/tAqbaceiDDTO32/tkGgebTWcvjVa+btMIYRw3/z5Bd+3b89mezTH951w666GxWD+B4u556VboHdvaNcOtmxx3rhgAbz4ohcKrjw+XbQWQ6lSe5WaWpOamcOCNTu4vm97H1YnKhulFB2aJNKhSaK/SxFCVDJyaEeU6OWXX+bdd99l8uTJbN++nZdffplXXnmFSZMm+bs0n9E6F237A527Fm0v+VRtUTVprZnz3o/c3uxB/tLrKf51/as8NfQFRifey6t3v8PJw6dLvO9NDfu4DA8VigDDytV1u5V36ZXK5bXaEmQEuD1+SGKnUm9/pt0oQiyBbrdi8ESWI5fdaUnlvt2K6NTh0y6D28JOHznrxWrKh9108PcNXzH1wDJyTTsa58zvvH+rSVnJ/HX95yw8tsm/hQohhCdOnSr4vk8fDu045vZdTYfJoR1HnReUgj59it9uNXTsTCob9x5za5EppeD75Vt9UFXVZLM72LL/OL/vOMSuI6eQZXmEEKIomXkrSrRixQquvvpqhg4dCkDDhg2ZOnUqq1ev9nNl3qfNVHTGR5D5Fejkguut7Z2zG4MHy+zjKk5rzev3vccPH/7Mn8/pt+XYWfz5b/w+bz3/Xfpv6jarfcH9O8Q04K+thvHa9rkoFPpPnVgtSmFg8J/Ot5SpbUJVEG4NZlSDS/hy/9JS+9UaKAYndiIhuPSFABqEJ/DxJffzzJZv+SPlCBblbGJhap3fw7YsLrZHcWUTGOx+oH4x4/3hu8OrWXZqR4m3a5z/3J/dMp2ucY2Jq8L/Nh3aZMWpXaw6vYssRy5xgRFcldiBphGywrUQlU56esH34eEYhgfvUZVz9m3h++dLSyt7bZXYqeR014PO0xqSzlbvx+tiZGTn8tmitXy7ZDPJ6Vn519evEc0tA7twbe92nv09CyFEFSXhrShRr169eP/999m1axfNmzdn06ZNLFu2jNdff73E++Tk5JCTk5N/OTW18i3uox2n0WdvAsch4E8zJ+1b0SkPgW0jRDwhAW4VNufdH53BLVBc3uewm6SdTeMfw17kw23/xWKxXDBmdINeJIbE8tHen/kj5Uj+9QpFz/gW3Nv0clpF1fHWj1CpjG92JYcyTrPk5PZib1coOsQ04O9tRri1vQbhCXzcczy7Uo/xy4k/SLVlERkQgqEMPtjzU5lqrRUcXab7VxadB3bgh49+Knaxsj8LiwqlUbv6Pqjq4mmtmXZgOYpi/0kXjMMZbM45so47mlzqm+J87PfTu/n3lhmczEktMkP90/2/0SmmEc91GO3yIImofOymg19PbmPukXUkZScTZATQI74pI+t1p3Yp7WhEJRAeXhC0pqfTtFMjt+9qGAZNOjQsuKJwEBxRdQ9guSMw4ML3dqUJDpSP1p5Iycjm3v9+y75jZy6Y3Xz4ZDIvfPUT63Yd4bk7B0kvWCFEtSevMKJEjz/+OKmpqbRs2RKLxYLD4eD555/n5ptvLvE+L774Is8++6wPqyxfWmt08nhwHOaC4BYKrsv8BKxNIHR0MWNEZWeaJt+8OsvlOIfd5Oju46xduIkeQzoXO6ZvjZb0rdGSvWknOJR5GosyaB5Rm1oh0eVcdeVmNSy83OlmZh5ezbQDKziUWdCSomZwFKMb9OKGBj0JNDx72WoemUjzyKJ9xRqH1+C/2+flB1fazRm5xvkAOTG0eoQcw++/knnvL3I5zrAYDL13IIHBFbsP8L70ExzJcq+1g0az8PimKhnerjy1i4fXfZr/F//n9i6bkw9y16p3+aTn+Co987i62Zt2gofWfcKJ7BQMVP5z3s7UY3y6bwl3NbmU+5oOlIPSlVVCAhw/7vx+2TKaT5pE4/YN2L/lkMvTz7XWDL7n8rwLsGxZ0e1WY01qxxEZGkRqZo7LsRZDcUmrBj6oqup46qP57D9+YXALBQdZF67dSZPacdwzpIdvixNCiApGDmGJEn3zzTd8+eWXfPXVV6xfv55PP/2UV199lU8//bTE+zzxxBOkpKTkfx0+fNiHFZcD20bnF65Oi1bojCloWZm8Stq2chcnDrjX582wGCz85BeX45pE1GRAzTb0q9FKgtsSWJTB9fUv4du+DzO19194r/u9fNn7QWb1f4xbGvX1OLgtyeW12jHr0r/x3y63c0fj/tzYsDfh1qA/d8e4gInm1kb9yqWGyqBJh4YMv/9KSstyLFaD+DqxjHrMvRnR/pRiy3I9qMj4TC9V4j+5pp2nN3+NhgtaueRxaJPTOWlM2rnAt8UJrzmaeZaxq9/ndI5zZmbhg1UmGo3mw72/lPmsBOFHQ4YUfL95M2rlSu564aYS/53nUQqueXAw8YmxziuWLy9YrAxg8GAvFFt5BAZYua5ve7dO23eYmhv6d/BBVVXDvuNnWLHtIA43eut/8dM6cm12H1QlhBAVl4S3okSPPfYYjz/+OGPGjKFdu3bceuutPPzww7xYyqqzQUFBREZGFvmqTHTWdMCdU6Q0OI6AbZ23SxJ+cPrIGbfHmg6Tkwer94Ie5U0pRZOImnSObUSziNoYXlh4zKIMeie0YGyzK/hLyyFM6XEfEQEhxS5yZpyPdR9ofhV9arQs91oqsgfeuourJzg/vBfuiWixOr+v2zyR13/7F9EJUX6pzxPh1mCPxkd4OL4y+DlpK6m2LJeBjkOb/Hh8M8m5GT6qTHjT+3sWk2HPcbmI5od7f+FEdoqPqhLlauxYihxpe/ttegzpzN8+noBhMYr2tKXgOXzgbf0Z+5/bCm54552C75WCceO8WXWlcOvALtSOicDiIsAd1a89zetW75nKhW07mMR/vvmFv38wl39+upAf1uwoEsDOXvmHy8c0T2pmDku37vdWqUIIUSlI2wRRoszMTIw/9ReyWCyYZhWebeo4hOtZt4XHHwa6easa4Seenv4dFBLkpUqErzSLqM1nPSfw8b5fWHBsI7lmwQeMNtH1uL1xf/rVaOXHCv3DYrHwwJt3cc2Dg5n73iK2LN2GLcdOYpOaDL5nIF2v6nDB60RF1TSiJjWDo9wKpwwUl9dq54OqfGvpye1FTpkvjV2brDq9m0GJHb1fmPCa5NwMfjy+2WVwC87F+mYeXs24Zld4vzBRvho2hKFDYe5c5+Wvv4YxY7jithG06tmcue8u5MfPfiPtbDoBwQH0GNyJ4eMH0emytgWtMmbNct4vz7Bh0EDaAESHh/C/v97AxLe/Z/fR01gMlT9b1GIoTFMzZkBHHrm+v58rrRiSzqbxtw/msvVAEhbD2ZpKKZizahtRYcE8fcsVXNaxKcfPpBbbLqE4hlIcl8XghBDVnIS3okTDhw/n+eefp379+rRp04YNGzbw+uuvc9ddd/m7NC/ydLX0it3jUVyc1r2aY7FacNhdB/nKUHS6vOqFPNVRYmgMT7W9loktBrM77Tg200HtkBjqh8X7uzS/q9O0NmNfvc31wArMUAZjGvTirZ0/uJx5CnBNvap3YC7dnuNWcJsnw+66z6Oo2LYmH3YruAVnC4W1Z/aChLeV08SJBeGtacKYMTBtGnVHjGDc63cw7vU7ME2z+ANus2Y5xxeeoDFxom/qrgRqxkQw9clbWLPzEN8t38rhk8kEWA06Na3DdX3bUy8h2t8lVginUtK54z/TOJPqPGvDkff3dP5lJzUjm8emzOHle4ditVpQSrnsyQzOvswBlspxoFgIIbxFwltRokmTJvH0008zfvx4Tp48SWJiImPHjuX//u///F2a16jALujcFRS/WNkFoyGgvbdLEn4QnRBF/xt68ts3K3DYS/9bUEox5N7LfVSZ8IWIgBA6xzb2dxnCC0Y16MmSk9vZdO5gqSHm31qPoEZwxW8F4anowFC3Z94CRAWGerki4W2FzyJwR7bD5qVKhNddcQVMmACTJzsvZ2XByJEwejSMHw+9excNbrV29rh95x3njNvCwe2ECTBwoG/rr+AMQ9GjVQN6yKJkJXpr5jLOpGaU2MdW45zh/8xnPzJ+RG8WrN7h1nY10KlpnXKrUwghKiMJb0WJIiIieOONN3jjjTf8XYrvhIyC9EluDLRAYC+Utb7XSxL+cce/x7BmwQYyUrMwHSUHuLc/O5rYWjE+rEwIcbECDStvdr2TV7bNYv7RDYDzdExwtgmIDgjl4VZDGZzYyZ9les3AWu1YcGyjW2ODjQB6xjf3bkHC62p6cBDCogwSQ+T1rFJ74w1ISoLp052XTROmTnV+tW8PvXtDeDikpzuD282bL9zGqFHO7QjhgXPpWSxcu9PlAmQayMyxYTEUQQFWclwsRGYoRasGNaSfsBCi2pPwVohClKUGOmwcZLxTyigDsKAi/uqrsoQf1G5Uk9eX/Jt/DHuREwdPYViM/BDXsBigNbf/aww3PjHSz5UKITwRbAng/9pdz/jmV7Hg2AaOZZ4jwLDQPqYBl9ZojdVwZ9HKyqlXQgtqBkdxKju11Nm3BooRdbsSZpV+3pVd66i61AuN43Cm64U4HdpkeN2uPqhKeI3FAtOmwUMPFczAzbN5c/FhbWETJjiDW0vVfR4U3rF6xyHspUx2KEwBv+84xEPX9uXlr38peZxynuH2V+knLIQQEt4K8WcqfCIaG2R8AFgoWMDs/IIOKhQV8x4qoLWfKhS+0rBNPT7dPYmVc9by4ye/cuLQKYJDg+hyRQeG3DeQ+MRYf5cohLhI8UER3Nqon7/L8CmLMni5082M+/0Dck17sQGugaJpRC3GN7/SDxWK8qaU4rbG/Xl+63eljrMog9ohMfRKkNnWlZ7FApMmwdVXw1tvOfvgltZXVCnn4mQTJ0qrBHHRsnLcb7migfSsHEZf2pFcu4M3vluCQuUvYHb+ExfBgQH8575hdGwiLROEEELCWyH+RCkDFfEYOmQkOnMq5PwGOguMGqiQ6yDkGpQR7u8yhY9YrBb6jOxBn5E9/F2KEEKUWeuouvzvknG8vG0WW5IPYUlxEPhjKpalaah0k8j4CAbf2hV7q1yIlZm3VcGIOl3YlXqMbw+tQsEFkb1FGUQGhPBGl9uxKFkUqMoYOND5deAATJkCCxbAqVOQlgYREZCQAIMHw9ix0LChv6sVlVxMeIjbYw1DER8ZBsCtA7swsHMzvlu6hV837SUjO5e4yFCGXtKaoT1aEREir0NCCAGgtDtLPApxkVJTU4mKiiIlJYXIyEh/lyOEEEKI8778YDafTfgS06GhUJ9CZSgCAq08/vlE+l53iR8rFOVFa83co+v5fP8SDmScyr8+0LAyJLETdze9zKP+uEIIUVh2rp0r/z6F9Oxct8b/9/4R9G/fxMtVCeEbknkIX5DwVniVPJEJIYQQFc+S6Sv59w2vl3i7Or+Q23Nzn6D74Kq5gFt1pLVmZ+oxTuakEmRYaRNVj/CAYH+XJYSoIPYcPc23Szazdtdhcu126sRHM7J3Wy7r2JQAa+m9kCd9v4xPf1yb3/6gOIahqBEVzpzn7sJiyEx/UTVI5iF8QcJb4VXyRCaEqMj2piWxJfkwdu0gMSSG7nFNq/SCVUIAOOwObqw3lnMnUkodp5SiVqMafLp7Un6YK4QQouqxO0xe/vpnZizdgsVQOM6fjWEoZy/aWrERTJ4wksa140rcRo7Nzv1vzmDzvuPFBriGoQgOsPK/v95Ay3o1vPaziIrBZnfw04bd/LJxDykZ2USFh3B5p6YM6NiUgCq2KKJkHsIXJLwVXiVPZEKIimjzuYO8uXMBW5IPAeT3gYwLDOf2xv0Z3aCXhFWiylo283eeve5Vt8e//OPTdB7Y3u3xWmsc2pQDIUIIUUk8/9Vivlu6pZhlLJ0shiIyNJivnryZmjERJW4nO9fOpO+X8d2yLeTY7BiGQpsaDXRrUY+/3XApTRLjvfIziIpj9Y5DPP7hfJLTs/IPAOT9PzYilFfuHUrnZnX9XWa5kcxD+IIsWCaEEKJaWXlqF4+s/4zCxy7zvjuTm87rO+axP+MUj7e+WgJcUSVtXbodS4AFh83hcqzFarBl6XaX4a1Dmyw7uYNvDq1k/dn9OLRJdEAoI+p25dp6PUgMjSmv8oUQQpSjPUdPM2PpllLHOExNamY2H/2wmiduvLzEccGBVh674VLGj+jFr5v2ciY1g+DAAHq0rE+DmvI6UB2s232EBybNzH+fbf7p/8npWdz/5gzef2QUHRon+q1OISobCW+FEEJUGym5mfx945eY2ixxdgnAzMOr6RTTkEGJHX1VWpWXZsti3tH1zDu2gTM5aYRaguhXsxXX1utO3dCST8MU5S83x467hyWUUthz7aWOyXbYeHzDl6w4vQuLUjjyPqDZMvli/1KmHljOCx1vpH/N1mWsXAghRHn7dsnmIq0SSuIwNbNXbuPBa/oQHhJU6tiw4ECG9mhVnmWKSkBrzb8+X+R8n13Cn5OpNZjw3BeL+ebpW2WihBBuki7hQgghqo25R9eT47CVGtwCKBRfHVjmk5qqg1WndzPs15f574557Ew9xumcNA5lnuarA8u4bslrfLT3F6SLk+/UbJCA6TDdGuuwm9SoX/oprs9u/pZVp3c7x//p92iisWkHj2/8is3nDl1cwUIIIbxmzc5DLoPbPDk2O7uOnPJyRaKyWrPzMIdPJZcY3OYxtWbv8TNs3nfcN4UJUQVIeCuEEKLamH9svVvjNJodqcc4nHHGyxVVfZvPHeKRdZ+SXUxobmpnH7z3di+SsNyHLr+lr8sDGHmsgRYuHdO7xNt3pR7npxNbKX0uu3M2zv/2/ORBlUIIIXwh1+66hU5hNjcP/onqZ9X2g1gM9yImi6FYse2AdwsSogqR8FYIIUS1cTonze3QCuBsbrrXaqku3tw5/3xIW/oj/+7uRaTZsnxUVfUWnxjL5Tf3xbCU/jZQGYoh9wwkIia8xDEzD6/Goly/nTTRrDqzm6OZZz2uVwghhPfUiY/C8ODU9dqxJS9YJqq3rFw77v4pKaXIdtGWSQhRQMJbIYQQ1UaopfQebX8WYgn0UiXVw560JLYkH3I5KxPAZtqZf3SDD6oSABPfuZeW3ZuijOI/ZSlD0XFAW+579bZSt7M95QgO7f4srD1pSR7VKYQQwruu7d0ufzGp0hhK0b5RberXkIXHRPHiI8Pc+lsCME1NfFSYlysSouqQ8FYIIUS10bdGK7dmCQLEBYbTOLyGlyuq2jafO+jBaMWmZE/Gi7IICQvmPz/9k9ufHU1Mregit8XXjeOeF2/mhflPEhgUUOp23AnmC5POxkIIUbFc1qkpNWMisJRwMC+PqTV3XNXNR1WJymhQtxZoN/snA1zVtYUXqxGiarH6uwAhhBDCV66r151pB5e7HGeguL7BJVgNiw+qqrps2oFCuWyZAM4+wzbTs757omwCgwO5+anrGPP3a9i1bh/pyRlExobTtHMjLBb3/vabhNdid1qS27NvG4UllKVkIYQQ5SzAauHtB0dyz+vfkpaZfcHiZYZSmFozfkQvLu3QxE9VisqgTnwU/do3ZtnW/aUugmcxFAM6NqVGdMltmYQQRcnMWyGEENVGg/AE7mlyWaljLMqgcURNbmxQ8iJNwj2JIbFuBbfgfNwTQ+RUTH+wWC206tGMbld1pEW3pm4HtwDX1u/uVnBroOgQ3YAG4RLeCiFERdO4dhxfPXEzI3u3Iyig6GtA24a1eH3cCO4Z3MNP1YnK5J+3Xknd+OgSZ3IbhqJBzRj+cdNAH1cmROWmtHazKYkQFyE1NZWoqChSUlKIjIz0dzlCCIHWms/2L+H93YuxawecnxlqUQYObXJJfDOe6zCGyIAQf5da6dlNB0N/fYlzuRlujZ/aeyJNImp5uSpRnrTWPLDmQ9af3e+yhcKkrnfSI76ZjyoTQghxMdKzcth55BR2u4NasZE0qPmnA6v798OUKbBgAZw6BenpEB4OCQkwZAiMHQsNG/qldlExpGZkM2nWMuas3EauveCsqqAAK1f3asMDV/cmIsSzdSgqMsk8hC9IeCu8Sp7IhBAVVUpuJvOOrWfzuUPYtYPEkFiurttFwsNy9sX+pby1c0GpYyzKoGtsYyZ1u8tHVYnylGbL4sG1H7Mt5QiKon1tLcpAa82TbUcyom5Xr9ZhM+0olLQ7EUIIb1i0CN56C+bNg9IiBKVg6FCYOBGuuMJ39YkKJy0rh1XbDpKWlUNkaBCXtGpAeBUKbfNI5iF8QcJb4VXyRCaEENWbqU2e3/odc46uL7b/rYGicXhN3u1+D1GBoX6qUpRVjsPG/GMbmHZgBfszTgIQoCxcldiB0Q160SIy0Sv7TbVlMfvIWr49tJLjWckA1AuN44b6PRlatzPh1mCv7FcIIaoNhwMeeggmT/b8vhMmwBtvgAfteISobCTzEL4g4a3wKnkiE0IIobVm3rENfLV/KXvST+RfHxMYxvX1L+Gmhn0Is1a9mRjVkdaaVFsWuaadqMBQAg3vrY27N+0ED6z5kHO5GUUOCuR12asZHM3b3e6mXlic12oQQogqzeGAMWNg+vQLb2vfHvr04bRDsW/PQeK3bKTxySMXjrv+epg2TQJcUWVJ5iF8QcJb4VXyRCaEECKP1pqDGac4m5tOiCWIZhG15BR3cVGSczMYs+xNknMzSuy1a1EGCUGRfNVnoszAFUKIi/Hgg0Vn3BoGjB4NDzyArUcPnvvyJ+as2obFUDgcJh2SDjD6j2VcsXcjlsIxw4QJMGmS7+sXwgck8xC+IOGt8Cp5IhNCCCFEeftw7898sPsnl4ukKeCRVsMY3aCXbwoTQoiqYtEiuPLKgsshIc4ZtCNGkO2w8cAH37Jh04li79rvwFZeWvw5wXZb0e0NHOjlooXwPck8hC8Y/i5ACCGEEEIId5naZPrBVS6D2zzfHFzp5YqEEFXR4VPJfLF4He/OWcFXP6/n+NlUf5fkW2+9VfC9YeQHt0tP7uCq718uMbgFWNKwLY8PvBWHUgVXFt6eEEIIj3ivEZkQQgghhBDlLM2WzZncdLfGauBw5hnspkNadAgh3HLsTArPf/kTK7cfxFAKw1A4TJPXpv9G/3ZNeOKmy0iICvd3mV5l27sX67x5+T3Et3TvT0azDjhO7uSx9Z9j3xMGSoNWJW5jScO2/NikI4P3bHBeMXcuHDgADRt6u3whhKhyZOatEEIIUQlprUm3Z5Nmy8LUpr/LEcJnLqbfl76oewkhqpsjp5K55aWprN55CABTa+wOE61Ba1i6dR+3vTyVUynuHUCqjFZtP8j0mx9AFequ+Ebttox/awZ/XfkFGo15JqDU4DbPt216F1zQGqZM8UbJQghR5Ul4K4QQQlQiqbYsPt+/hBG/vcJli//F5T/9m8G/vMj7uxdzOifN3+UJ4XWRAcHEBIa5PT4xJIYAQ042E0K49o9PfiAtMxuHWfwBH4epOZ2SwXNfLPZxZb7x+/aDTJg8ky57NudftyuuNhtqNETVzMUMcjgPhbl5zHhjrUbsjq1dcMWCBeVarxBCVBcS3gohhBCVxKGM09y07E0m71zIieyU/OvP5Wbw0d5fGL30v2xLOeLHCoXwPkMZXFevBwauZ30pYFT9nt4vSghR6e06corN+46XGNzmcZiaZVv3c+xMSqnjKhuHafLPz35Ea01MVkb+9RtrNQalUDVs5J/oE+5wtk1wRSk21GpUcPnUqfItWgghqgkJb4UQQohKIN2ezQNrPuRMbnqxp4CbaDLsOUxY8xEns6vWB0oh/uza+j0IDwguNcC1KEVsYDjD63bxYWVCiMpq0bpdWAzXB4UAlFIsXr/byxX51rKt+zmZnI7WEGLLyb8+MyDQ+Y2l4L2H0SDbrbYJhlKEJ8QWXJEmZwgJIcTFkPBWCCGEqATmH93AyewUHKX0tzXRZNpzmH5olQ8rE8L34oMimNz1rhIDXIUiOiCMt7vfTWRAiB8qFEJUNskZWSjlXnhras1HP6zhy5/Wk5aZ7eXKfGPFHwewGM54ICsgKP/6UFuu85vsguhA1cyFMLvL2bem1nSoEVlwRURE+RUshBDViIS3QgghRCXw7aFVbi25ZKL57tBq7KbD6zUJ4U8to+owrc9D3N30siI9cOODIhjX7Aqm9vkLjcNr+rFCIURlEh4ShPZgbcPUzGxen/4bV//zE3YePum9wnwkM8dG3pKQ50IKnlM7Ju0DrTGPBKHOpwfKAEvPFAgyiw9wz1838Zre1NmxpeD6hARvlS+EEFWarN4ghBBCVHCmNjmUcdrt8an2LJJzM4gPjnQ9WIhKLD4ognubXs7dTQaQZstGKUWENdjt2XNCCJGnf/vGfPrjWo/uo3GGuGPfmM7X/7iVmjGVd2ZpbEQozk7hmmX1W9H8zHEAmp85ToekA2xSjTBPBqDibSgDVJiJpf85zL2h6APBYC+YFxafGMw/Rw6h97kjsKVQeDt4sG9/KCGEqCJk5q0QQghRwSk3Fma68E4SXonqw1AGUYGhRAaESHArhLgoHRon0qR2HIaHzyGmqcnIzuXLn9Z7qbIL95eda0d7Mk3YDYO6tcBhOlszzWjVC7PQe48b/ljm3Pf6SMgy4HwHJxWssbTJwDLoDJb+57D2TabFtQF8//jd9G7TEN55p2AHSsG4ceVasxBCVBcy81YIIYSo4JRSNApPYH/6SbdaJ0QFhBIdEOr1uoQQQly85PQsflizg8OnkrEYBm0b1WJAh6YEWC3+Lq3CycjO5cipZDRQJz6KiJAgl/fxlFKKf985iLv+8zW5Dgem6X446jA13y3bwgNX9yYooPw/YmutWb3jENN+3cjSrfsxTU2g1cKgbi0YfWlHWtUve4uYVvVr0q5RbbYdTOJ4ZCzLGrSi38FtAFy5dyMLm3ZiScO26KWx1O8XwInwU+SadgCUBULjDK6p152xTQcSYg2EWbPg668LdjBsGDRoUOY6hRCiOlK6vA/ZCVFIamoqUVFRpKSkEBkpp+8KIcTFmn5oFa9sm+1ynIHijiaXMq7ZFT6oSgghhKdsDgdvzFjC9CWbsZtm/iJRdodJVFgwD13bj6t7tfFzlRXDoZPn+GzROub9vo0cm7OXe4DFYFC3ltx2RReaJMaX+z53HD7Jkx/O58CJcx7fd8Y/b6dRrdhyrcc0NS9MXcx3y7ZiMRSOQqFy3uWHr+vHrQO7lHlfx86kcvsrU0lOz6LrwR28O29K/m1Z1gCeuuI2jvbqz4d/vQGsmtVn9pBuzyYqIJQe8U0JtgQ6B8+aBWPGQHahxdwWLYKBA8tcoxAVjWQewhckvBVeJU9kQghRPjLtOdy0/C1OZKfg0GaxYwyliLCGMLX3ROl3K4QQFZDDNHl0yhyWbNlX6uJYj426lBsv6+S7wiqgDXuOMmHSTHLt9iKBJThDS4th8N/7r6Zn6/Kfzam1Zv2eo9z/5gzsjuJfc4vz7dO3lnugPOn7ZXy8cI3Lcf+64yqG9Whd5v2dTE7n1W9/5ecNe3h06QzGbF2Wf5upDMxRo7A+OAF69y7aoklrWL7c2Srh66/BLPS4TZgAkyaVuTYhKiLJPIQvSHgrvEqeyIQQ1U2uaWfTuYOk2jIJtwbTMaYhQZaActn20cyzjF/zIUlZztlAhV/AFYqogBAmd7uL5pGJ5bI/IYQozNQmKbZMTK2JCgjFasjp/Z6auWwL//5ysctxSsHMZ+6kfo1o7xflBTbTzh8pR8iw5xAVEEqrqDpYlPvLrZxKSWfkPz8hO9eOWcLHVaUg0Grh26dvo25CdDlVXtQtL33FjkMncKeDQoDF4Kf/jCO8HFs6JKdncdXj72NzI0CuGRPO3Ofuzp/JXVanUtJZsXkfnf7xCPWX/HThgPbtnQFueDikpzuD282bLxw3ahRMnQoWeb4QVZNkHsIXpOetEEIIUQ6yHTY+2fcr0w+tItWWlX99uDWYkfW6c3eTAYRay/aBrk5oLF/2fpB5R9fzzcGVHM48A0CNoEhGNejJ1XW7Eh0YVqZ9CFEW2Y5cNp87RKYjl9jAMNpE1/MosBEVU3JuBjMO/c63h1ZxNjcdgIjzz22jGvSkZnCUnyusHLTWfPXzBpSi1Fm34DyTYsbSzTx8XT/fFFdOMu05fLrvN2Yc/r3Ia2HN4CjGNOjF6Aa93Ar9v1u6pdTgFpyPod1h8s1vm3jk+v7lUv+fXd+vPf/6fJHLcRZDMbh7y3INbgHmrtqG3XRv5u+Jc+ms2n7IuVBYOUiICufqvu3h54Xw0EMweXLRAZs3Fx/WFjZhArzxhgS3QghRRjLzVniVHIUSQlQHWfZcHljzIdtSjmAWs6SYgaJJRC2mdL+X8IDgctuvzXR+sC2vmb1CXKyU3Ew+3PsLs46sIcuRm399jaBIbmzY2+3ARlQ8+9NPMn71/ziXm3HB85uBIsQSyJtd76R9TH0/VVh5HD2dwvCnP3J7fM2YCBa8cI8XKypfabYsxq3+H3vTkop9LVTAJfHNebXzLQQYpc8huuLvUziTmunWfsOCA/n1tfvLbcZpYVm5Nq5/9lNOJqdf0LohjwKsFoMvn7iZpnXKt2XCPz9dyPzV20vcd2GGoZhwdW/uuLJbudaQb/FieOstmDu39KMPSjkXJ5s4UXrcimpBMg/hCzIVQgghhCijV7fPKTG4BTDR7E1L4vk/vivX/QYYVgluhd+dyUnjrlXv8s3BFUWCW4CTOam8tXMBf9/4FXbT4acKxcVKt2XzwJoPSbZdGNyC87kty5HLX9Z+zImsZN8XWMmkZeV4ND7dw/H+9u8tM0oMbsHZ6mfV6V28u6v0maw2u8Pt4BYgIzuX1Ixs1wMvQkhgAO/+5TriIsMwCvd3Pc9iKKxWC6+OHV7uwS04Z2u7SwElPPTlY+BAmD0b9u2Dxx+HDh0gMREiIpz/79DBef2+fc5xEtwKIUS5kfBWCCGEKIOzOenMP7ahxA+reUw0Pyf9QZIEHKKKeWrTNI5lnSs1sFl2cjsf7v3Zt4WJMpt7dB1nctJwlBIg5QW43xxa5cPKKqfIUM9OqS/vU/C96UjmGX49uc3la6EGph9aRaa95GDaMC4MSV2xWrz3sbZ+jRimPnUL9w7pQWxESP71QQEWrundlqlP3kzfdo29su/GiXEuW2zkcZiaxolxXqmjiIYN4cUXYeNGOHoUUlOd/9+40Xl9w4ber0EIIaoZ6XkrhBCiRKdz0lh2cgcptkwirMH0rdGKhGA5HaiwRUmbS+3JV5gCfji2kTuaXOrVmoTwlV2px1h/dr/LcRqYdnAFtze+lGCZLV5pTHczkDXRzDy8mvubXSHtMUpROzaSZnXi2XPstOuet4ZicLcWvimsHMw/ugFDKbdeD7NNG7+c+IOhdToXe7vFMGhRN4HdR0+5XChMAXUSoggPCeJUcjoL1+3idEo6wYEB9GzdgPaNaqOKmTHrqZjwEMYO68ndg3twOiUDh2kSFxlGcKB3P06PuKQNb89a7taM2vioMHq1bujVeoQQQviHhLdCiAolw57DD8c2MuvIWk5kJxNoWOke15RR9S+hZVQdf5dXbZzNSee17XP5KWkLGo2hDBza5JVts+lfszWPtRpOvIS4AJzKTsWiFHY3PrAaSnEyJ8UHVQnhG3OPbsBy/vnBlQx7DstP7eDyWu18UJkoK1ObHM486/ZZ2On2bJJzM+S1oRRKKW66rDPPfv6j68Earuvb3vtFlZOk7GQUCndSRosySMpOLnXMmAGd3HucgGt6teXJjxawaN0uwBl8a615f94qmibG8dTNA+nQONGtbblitRjUio0ol225IzYylNGXdmTqzxtcPrJjh15S5hnIWmtW7zzM179uZOPeYzhMk3oJ0VzXpx2DurUkJEgOvgkhhD9I2wQhRIXxR/JhrvntFV7eNoudqUc5l5vBiewU5h/bwG0r3+a5LTOkZ6IPnMlJ485V7/Dzia2YaDTkBzMmmiUnt3P7ync4mS0hJECgYfWoxVygIR98RNVxMjsF043gFpyLWyVlyfNGZeEM4jy9U9lnOFZ1wy9pzcDOzVw+uo+PGUCd+Cif1FQeXC1AVpjWmkAX4wd1a0HzuglYSmmhYDEUdeOjmf/7dhat34WpNabW2B1m/gJf+46f5b7Xv2X97iNu11fRPHRtP67s6pyF/eeWEnmPz31DLylz2J+VY2Pi299z/5szWLplH8npWaRl5rD90An+/eVirv7nx+w5erpM+xBCCHFxJLwVQlQIB9NPMX7Nh6TZnAtOFA7D8oLDOUfX8dr2OX6ornp5YetMTmanljiTzqFNzuam88zmb31cWcXUNa6xW7MOAezapEusd/riCeEPQRar2yGfRhNkkZO+KgulFI3Da7gd4cYEhhETGObVmqoCw1C8cNcQbruyK0EBFhTO2Zx5MybjI8N4/s7BXN+vg38L9VCnmIZuvxaaaDrGNCx1TFCAlXcnXkvzugkARRYLy/u+Qc0YOjVL5MDJc5gl9FcwtcZhav72wTxsjso5AcBqMXj+zsG8NnY4XZrVzb/eMBQDOjblf4+MYtywnmXah9aav30wl5XbDgLkh9/O25z/P5uWyX1vTOfEubQy7UsIIYTn5B20EKJCeH/PT+Sa9lIXutDAjMOrGdOwDw3Cyn9FXwHHMs+x9NQOl+Mc2mTt2X0cSD9Jw/AaPqis4uoU04gGYfEcyjhzfp5y8RSQEBRJr4TmvitOCC/rFNOIBcc2ujVWA51jG3m1HlG+bmjQkxf/+N7lOAPFdfV6YFEyL8QdVovBX0b25e5B3Vm4dieHTyVjtVho27AWfdo28uriW95yWa22vLp9Dqm2rFLHKRRNwmvQNqqey21GhgVzz5AezF21jW0HT5KakUWA1UKzOvHc0L8j3VrWY8iT/ysxuM1jas3ZtEx+3biXK7pUztfgvKB2QMemZOfayczOJTwkkMCA8vk4v3bXEZb/caDUMaapScvM5vPF63h01KXlsl8hhBDuqXzvDIRPHT16lFtuuYW4uDhCQkJo164da9eu9XdZooo5m5POzye2ujVjw6IMZhz63QdVVU8/ndiC4eY8K4syWJS0xcsVVXxKKf7e+moMpUqcgajO//fxNtdIuCGqlEGJHQixBLocZ6DoGNOQxuE1fVCVKC+DanekXmhcqc9bBoqowFCur3+JDyurGsJDgriub3seurYfE67uzaUdmlTK4BacLYQebTW81DEK56zZR1sPd7mI2C8b9zD0qQ/563tzWLp5P2dSM8ixOcjIzqVOfBR92jVi3a4jZOfa3arPUIrFG3a7++NUaMGBVmIjQ8stuAX4+reNpbaoyOMwNTOXbyUr11Zu+xZCCOFa5Xx3IHzi3Llz9O7dm4CAABYsWMC2bdt47bXXiImJ8XdpoorZkXrU7VPtHNpk4znXK5uLi3MuNwPDzXBRAedy071bUCXRNa4Jr3e+jVCrM8RS+XGtU5AlgJc63USfGi39VKEQ3hFsCeSvrYaVOsZAYTUsPNxyqI+qEuUlxBrI293uJjHE+d6vcLSjzn9FB4bxTre7iQ0K90eJogIZlNiRp9pei1UZRQ5m5v2tBFsCea3zrXR20T5oweod/HXKHE4lO99j2E0Tu8PMb4Ewd9V2HnjrO86mZrpdm6k1yemlzwquzjbtPVakVUJpsnJsHDpxzssVCSGEKEzaJogSvfzyy9SrV4+PP/44/7pGjeR0R1H+7G4Gt3lssmiZ14RZgko99b8wDYRZgr1bUCXSM6E58y99goXHN7E4aQvJuRlEBYQyoFYbBid2Iswa5O8ShfCKEXW7YjMdvLZ9Dg6t859DFAqNJjwgmP90uoVWUXX8XKm4GLVCovmi14MsOLaBbw6tZH/6STSQGBLD9fV7MrxuFyIDQvxdpqggrq7blb4JLZlzdB0/J20l3Z5NTGAYgxI7MiixI+HW0t83nEvP4pnPFgKU+G7E1JpN+45TKzbC7boMpYgKk/csJXE3uM1jd3j23l0IIUTZSHgrSjR79myuuuoqRo0axW+//UadOnUYP3489957r79LE1VMnRD3Z3NblEF96XfrNb0TWjBlz2K3xjq0KTNJ/yTEGsg19bpxTb1u/i5FCJ+6rn4PLqvVhtlH1rHk5HYy7NnEBUUwOLETA2u1I9gS4O8SAciw5/DDsY38dnIbaTZnqHRl7fZcVqstgYa8LS5JiDWQa+v34Nr6PTC1szu9tIARJYkNCuf2xv25vXF/j+87a8VW7G4EiVprVu88TKDVQq7d9UF9U2su69jU43qqi3oJUaRmZGNq14+9oRSJcZE+qEoIIUQeeZcqSrRv3z7effddHnnkEZ588knWrFnDxIkTCQwM5Pbbby/2Pjk5OeTk5ORfTk1N9VW5ohJrElGLlpGJ7Ew97nLWp0ObXFNXgjFvaRlVh1aRddiZeqzUxeMMFA3CEmgfXd+H1QkhKrKYwIsPbHzhp6Qt/GvLDLIcuSics/oMFMtO7eD17XN5udPNdJIF1Vxyt7WOEBdj8frdaDcCRICzqZkM6NCEJVv2lTpzVCmIDA2W8LYU1/dtz5b9P7o1Nio8mF1HT9OjpbwHFEIIX5F3X6JEpmnSuXNnXnjhBTp16sR9993Hvffey3vvvVfifV588UWioqLyv+rVc72SrBAAdzS+1GVwa1EGjcNr0CNe3nx709PtriPIEoBRwmIief0r/9n+epcLjgghREXw24ltPLlxKtmOXKDgdOy8g1SptiwmrP2IP5IP+6lCIQRASoZnfWkHd29J3fjoEhfbUso5U/Slu4eU6wJfefYdP8O7c1bw/FeL+e+MJazbdcTt8LkiuaJLC2rGRLi1aFlKehb3vzmDL39a74PKhBBCgIS3ohS1a9emdevWRa5r1aoVhw4dKvE+TzzxBCkpKflfhw/LhyDhnstqtWVcsysAZzj4ZwaKGkGRvNHlDpn142VNI2rxQY/7qBMSCzhDcwOVf4psrZBopnS/l9ZRdf1ZphBCuMVuOnjhj5loSumhicZhmryybbYvSxNC/El0mGf9k2vFRvLRY6Pp3aYhCjAMhdViYDWc71kS46J49y/X0aNVg3Kt88S5NO59/Vuu/9dnfPTDamat+IOvft7Avf/9lpHPfMLmfcfLdX/eFhxo5Z2J1xIdHoLhIsDNm+T82vTfWL5VFhEWQghfkLYJokS9e/dm586dRa7btWsXDRqU/OYnKCiIoCBZlEdcnLuaDKBFZCJf7F/KurP78q+PtIZwbf3u3NSwL9GBoX6ssPpoHpnI9L6PsPbsPn5O2kqqLZPwgBAG1GxD97gmEqALISqNpSe3cy43w+U4E8321KPsSDlKS1lcTQi/uKJLc7YdOoE7k1drRIfTqn4NLIbBG+Ov4ejpFBas2cHplAyCA630bN2Q7i3qlftZQqeS07nt5amcTcsE8hb7Kij4yKkU7v3vt7z/0PV0aJJYrvv2pka1YvnqyZt5cerP/Lppr8vxhlJ8/OMaereVdjNCCOFtEt6KEj388MP06tWLF154gRtuuIHVq1fz/vvv8/777/u7NFGF9U5oQe+EFpzISuZEdipBFiuNwmvIQjJ+oJSiW1wTusU18XcpQghx0Vaf2YtVGdi169XRDRRrzu6V8FYIPxnRsw3vzF6Bze4otZmWUjDm0o5YjIKDyXXio7hncA+v1/jKN79yNi2zxD67ptbgMHniw/nMfe5ulzNZK5KEqHBy7Y78vuClMbVm/e6jHD6VTL2EaB9UJ4QQ1ZekIaJE3bp1Y+bMmTzxxBP861//olGjRrzxxhvcfPPN/i5NVAM1Q6KpGRLt7zKEEEJUcjmmzWUIkUcpRY7D5tV6hBAliw4P4V93XMUTH85H6eIDREMpOjerw82Xd/Z5faeS0/ll4x5nQFsKU2uSzqWxYtsB+lSymamHTp5z+zkT4NjpFAlvhUe01mw9kMS837fnz5S/pFUDrujSnCAv9KYWoiqQfxmiVMOGDWPYsGH+LkMIIYQQ4qIkBEW6PdbUJvEejBdClL8ru7QgKMDKK1//wvGzaVgMA6XAYZpYDIMRPdvw6KhLCbBafF7bki373F6QzGIoftm0p9KFt1bDs9ZYFou00hLuO342lcfen8u2gyewGAamaWIYivmrd/DKN7/yj5sv58ouLfxdphAVjoS3QgghhBCiyhqc2JGP9/3q1lirYeHyWm29W5AQwqX+7ZvQt21jVm4/yIY9R7HZHdSOjeCqbi2JCfdsUbPylJ6Vi2GoElsmFGZqTXpmjg+qKl+dm9Xh8Klkt37GAItB8zoJPqhKVAWnUtK545VphfpFm+f/7/xby8jK4fH/zUebcFU3CXCFKEzCWyGEEEIIUWU1DK9Bj7imrD27F0cpM+YMFCPqdCUiwH/BkBCigGEoerdpSO82Df1dSr6osGC3Qk0AQxlEhgV7uaLyN6pfB75bttXlOIuhGNK9VaX8GYV/TJq5rNR+0RpQwL++WETfdo0IDQ70aX1CVGRyjoMQQgghhKjS/tXhBhJDYrGo4t/6GijaRtfnLy2H+LgyIURl0q9d4yKLpJXGYZoM7NzcyxWVvxb1ajC0RytUKeusGUoREhTAXYO7+64wUamdS8/ih7U7XR780EBWro35a3b4pjAhKgmZeSuEEEIIIaq0mMBwPrrkft7fs5g5R9aRbRYsShZpDeG6+j24q8kAgiwBfqxSCFHRxUaGclXXFixcu6PUEMowFHXjo+jeol6Z9peVa2Phmp3MWvEHJ86lERRgoVebhlzfrwONasWWadul+b9brsBhmvywZieWQm0ilAKtITIsmLcfHCkLlQm3rd15GLvDdGusUrB0y36u79vey1UJUXlIeCuEEEIIIaq8qMBQHms9gvHNr2L92f1k2LOJCgilS1xjAg15SyyEcM+jo/qzef8xjp9JLTbANQxFkNXKy/cMRZU2fdWFrQeSmPj29ySnZ2EoyNvVkdObmPrLRm4d2IW/jOyLYVz8PkoSYLXw/J2DGXNpJ775bRNrdh3CZjdJjItkZO+2DO7WUk5pFx7JzLG5HnSe1pCRXfn6RQvhTfJOVQghhBBCVBth1iD61mjp7zKEEJVUdHgIn/7tRp7/ajG/bNyDQmEYClNrTFPTpkFN/nHzFTSrE3/R+9ifdJZxb0wnO9cOFAS3ULC40+eL12ExFBNH9i3Tz1MSpRTtG9emfePaXtm+qF5iI9zvJ28YivjIMC9WI0TlI+GtEEIIIYQQQgjhppjwEF69bzhJZ9NYvGE359IyCQ0KpG+7RjSvm1Dm7b8zewU5NjtmKYssAny6aC2j+negdmxkmfcphDd1b1mfiJAg0rJcz6g1Tc3gbnKQVYjCJLwVQgghhBBCCCE8VCs2glsu71yu2zyVks4vG/e4DG4BFIrvlm7hgat7l2sNQpS3oAArN/TvwEcL16BL+du2GIr4qHD6tGvkw+qEqPjcWypTCCGEEEIIIYQQReTa7CSdTeNkcjoO070FmUqzdX+SW8EtgKk163YfKfM+hfCFe4f0oEuzOiX2grYYiqAAK2/cPwKLIVGVEIXJzFshhBBCCCGEEMIDh04mM+2XDcxa8QdZuc7FmGIjQrmhfwdG9e9ATLj7PT4Lszkcno23ezZeCH8JDLAyecJI3p69gulLNpOVa8NQKv9gRdfm9XjshktpXDvOz5UKUfFIeCuEEEIIIYQQokrYdvAE05duZtvBJEwTmtWJ57q+7ejUtOQZf576fftBHnp3FnaHmb+AGMDZtEzen7eKGUs38/7Do2hQM8bjbSfGRbk91mIo6iZEe7wPIfwlMMDKw9f1Y+zQS1i6ZT+nUjMIDrTSvUV96teI9nd5QlRYEt4KIYQQQgghhKjUsnJsPPnRfH7bvA+LofJD1f1JZ1iwZgedmtbh9XEjiAoLLtN+Dp44x0PvziLX7qC47gam1pxNy2Tcm9OZ8X+3Exoc6NH22zSoSYOaMRw6cQ5XzRMcpuaaXm082v4F9u+HKVNgwQI4dQrS0yE8HBISYMgQGDsWGjYs2z6E+JPQ4ECu6tbC32UIUWlIIxEhhBBCCCGEqOJOZCXz0d5feH7rd7yybRYLj20i17T7u6xy4TBN/jplNku37D9/WRe6zfn95n3HGP/WDLJzy/Yzf/XzeuwOs9jgtvA+T5xLZ8GaHR5vXynFXVd1cxncWgxF0zrxdGtR3+N9ALBoEQwfDk2awMsvw+bNcPw4pKU5/795M7z0EjRu7By3aNHF7UcIIUSZycxbIYQQQgghhKiiMu05vPjH9/x4fDMKZziogOmHfidyewgPtxzK0Dqd/V1mmfy2eR+rth8qdYzD1Ow4dJI5K/9gVP8OF7Wf7Fw7s1duKxIOl0Qp+Pa3TVzXt73H+xl2SWv2Hj/DZ4vWFekJmsdiKBKiw3lz/NUYhoetIBwOeOghmDzZvfFaw9y5zq8JE+CNN8Bi8WyfQgghykTCWyGEEEIIIYSognIcNiau/ZityYfRaOdszkJBYKoti2e3TCfHYePa+j38VmdZTftlI4ahMN0IVaf+soHr+7W/qP63J5PTybG5N3NXazh48pzH+wBnwP7Qtf1o3aAmny1ax7aDJ/JvCw8OZGSfdtxxZVdiIkI927DDAWPGwPTpF97Wvj306eNsmZCeDsuWOWffFjZ5MiQlwbRpEuAKIYQPSXgrhBBCCCGEEFXQtIMr2HI+uC3NK9tm06dGS2oEu79YVkWhtWbDniNuBbcaOHDiHCkZ2USHh3i8L08nuRplXCDtyi4tuLJLCw6eOMfJ5HSCAqw0r5tAcOBFfox/6KGiwa1hwOjR2O8fx+8tanA8O5lAw0qH6AY0CIuHFSvg7bfh66/BNJ33mT7duZ1Jk8r0swkhhHCfhLdCCCGEEEIIUcU4tMnXB1e4DG7zfH94Dfc1G+jlqsqfqbVbbQwKy7U7LmpfNWMiiAgJIi0rx+VYBTSqHXdR+zl08hzLtx4gM8dGbEQIl3ZsSoOaMRe1rXyLFhVtlRASgjn1K75sH8sX+5dybn1GkeFdYhsxse0QWn31lXO27pgxkJXlvHHyZLj6ahhY+f5ehBCiMpIFy4QQQgghhBCiitmVepzTOWlujTXR/HziDy9X5B0WwyA2wv1ZtAEWg6iw4IvaV4DVwnV927nVZ1YDe4+dZv3uI25v/+CJc4x7cwbX/PMTXp3+K+/NXclzXy7mqsff55nPfiTdjdC4RG+9VfC9YaCnTuVfjWxM2vkD53IzLhi+4ewB7v19CuvP7oMRI5ytEgyj+O0JIYTwKglvhRBCCCGEEKKKybBnezQ+3ZblpUq875re7gWqFkMxpHsrggIu/gTUGwd0IiIkCHc6ItjsJhMmz2R/0lmXY/cdP8OtL3/Ful2HAWfPXIdpogG7w2Tu79u467VvLi7APXAA5s0ruDx6NLM6JzL/2IYS72KisZsOHl3/BZn2HGeAO3p0wYC5c53bFUII4XUS3gohhBBCCCFEFRMV6NliVtGBYV6qxPuu69sOq2HgKk/VGsYM6FimfSVEhzPloesJDw50OdbUGpvdwcc/rHZRl+bRKXPIyrGV2ALCNDX7jp/hje+WeF70lClFFqrT48fz5YGlLh8vE026PZuFxzc5rxg/vnDRzu0KIYTwOglvhRBCCCGEEKKKaRpeizohsS4DOgCF4qrEDl6vyVtqx0byn/uGYbEYxc7ANZRCKXjmtitpUa9GmffXvG4C3VrUR7kx/dZhan5Yu5OUjJJnQq/ZeZgDJ8657N1rmpo5q7aTWsq2ijV/fsH37duzu11jDmacdqsbsgLmWnfo8wAAoDBJREFUHV3vvNC7N7RrV3DjggWe1SGEEOKiSHgrhBBCVEBaa7alHOGnpC0sPbmdsznp/i5JCCFEJaKUYkzDXi4DOgVYDYPhdbr4oiyv6duuMR8/OprebRpe0NKgc7O6vPeX6xl2Sety29/OIyfR2r2F0uwOk/1JZ0q8/cd1u7AY7n00t9kdLNm6z62x+U6dKvi+Tx/O2i7scVsSDQW9k5WCPn2K364QQgivufhmP0IIIYQod1pr5h1dz6f7f+Ngxun86y3K4LKabRnbbCD1w+L9WKEQQojK4rp6PVh9eg/LTu1EFxPjKpyzbv/dfnSlbpuQp03DWrw5/hqSzqax99hpTK1pUDOW+jWiy31frmbJejI+OT0LU5tubcdQiuQ0D/sTpxc6ABweTojFdcuHwkItQUXuny/NvQXx3JGVa+OnDbs5mHQOw1C0rFeDvu0aY7XIfDMhhJDwVgghhKggtNa8uXMBXx1YdsFprg5t8vOJraw4vZP3ut9Li8hEv9QohBCi8rAaFl7udDPv7l7ENwdXkmPasCoDjfN1pV5oPH9tNYyeCc39XWq5qhUbQa3YCK/uo0ntOE4lp7sV4ioF9ROiS7w9LDgQQykcbszkNbUmzI1+u0WEhxcErenptIxMJMIaTJobi9oZKPrUaFlwReEgOKLsj7Fpaj5auJpPf1xLRnauM6zVYDdNYiNCmTiyDyN6tinzfoQQojKT8FYIIYSoIH48vpmvDiwDKPY0V4c2yXLk8pe1nzCr/2MEWQJ8W6AQQohKx2pYeLDFIO5qMoCfk7ZyPOscVsNCh+gGdI5t5FbfVnGh6/u1Z/kfB1yOsxiK3m0akRAdXuKYfu0aM2fVNrf2ayhFrzYN3azyvIQEOH7c+f2yZQQZVkbW684X+5diumisoYFr63U/f0HDsmVFt1sGWmtenPoTM5Ztyb/O7iiYgXw2LZNnPvuR1IxsbhlYudt6CCFEWcg5CEIIIcrH/v3w+OPQoQMkJkJkpPP/HTrAE0/AgQP+rrDC+3z/EpSLpWVMrTmbm87PJ7b6qCohhBBVQZg1iOF1u3Bfs4Hc1WQAXeIaS3BbBn3aNqJpYhyWYhZIK0xruHNQt1LH9OvQmLiI0At69f6ZxVD0a9+YmjEezngdMqTg+82bYcUKbm/cn7qhcVhU6ZHA+OZXUisk2nlh+XLYUhC0MniwZ3X8ya+b9hYJbkvy+owl7D122uU4IYSoqiS8FUIIUTaLFsHw4dCkCbz8svNDwfHjztPzjh93Xn7pJWjc2Dlu0SJ/V1wh7Us/wa6048X2JPwzA8XsI+t8UJUQQgghimMxDCY/eC1146OLDcEthsIwFM/dOYgOjUtvdRRgsfDcnYMwlCoxwLUYiqiwYB674VLPix07liIbfvttIgJCeL/HfbSPru/c/vkQV50/jBxoWHmo5RBua9Sv4H7vvFPwvVIwbpzntRQy9ZcNGC7Cb3D+7N/8trlM+xJCiMpMaXeXyBTiIqSmphIVFUVKSgqRkZH+LkcIUZ4cDnjoIZg82fP7TpgAb7wBFkt5V1VprTq9m4lrP3Z7fJ2QWGb2f9SLFQkhhBDClfSsHGYs3cK0Xzdw4pyzH2yAxWBw95bcdFlnmtd1v7XA7zsO8X+f/MCplAwshoHWGqUUDtOkdYOavHzPUOrER11cocOHw9y5zu8NA2bOhBEjANiecpS5R9eRlJVMgGGhY0xDhtbpTERASMH9Z82Ca68F0yzY3uzZF1cLkJKRzYBH33V7fGRoEL++Nv6i9yeEt0jmIXxBet4KIYTwnMMBY8bA9OkX3ta+PfTp41wcIz3d2Rtt859mS0yeDElJMG2aBLjnBRmevSQHWeQlXAghhPC38JAgbr+yK7cO7MKZ1AxsDgcxEaGEBHrel75Hy/rMf+Eelm3dz7Kt+8nMthETEcLgbi1p07BW2QqdOLEgvDVN5/u4adNgxAhaRdWhVVSdku87a5ZzvFnQj5aJE8tUTmqm68XSCkvPyi3T/oQQojKTT35CCCE899BDRYNbw4DRo+GBB6BXr6Kn5mkNK1bA22/D118XvPGfPt25nUmTfFl5hdUysg4hlkCyHK4/nFiU4pL4qrUyuBBCCFGZGYYqdVEyd1kMg/7tm9C/fZNyqKqQK65wnvmUd8ZUVhaMHOl8/zZ+PPTufeH7t+XLna0SCr9/A+d2Bg4sUzkRIUEejQ8NlkVahRDVl7RNEF4lpxAIUQUtWgRXXllwOSQEpk0j9fIrmbNqG7NX/sHJ5HSCAqz0btOQUf070LJeDefY2bOdMzeysopur4wfAKqKV7fNYcbh33Fo0+XYGX3/Sr2wOB9UJYQQQogqwdWZU717F5w5tXz5hWdOAYwaBVOnlsuZU3e8Mo2tB5IwXUQSFkMx7JLW/PPWK0sdJ4Q/SOYhfEHCW+FV8kQmRBVUTM+0dS0785d3Z5GV7Zw1mvfCYjEUDlNzQ/8OPHbDpVgMwxngjhxZbj3TqpLTOWncvuJtzuamlxrg3tqoHw+2GOTDyoQQQghRJVSgNQsWrtnJEx/Nd2vsl0/cRKv6Nctlv0KUJ8k8hC8Y/i5ACCGEe7LSszh3MgVbrs1/RRw4APPmFVwePZqdnS7hgUnfkZ1jQ1MQ3AI4TOelb37bxFszlzmvHDHCeYpenrlzndv1EVObrDi1k9e3z+OFrTN5f/diDmac9tn+SxMfFMH7Pe6jXqhzRq1BwemLxvn1n29v1J8HmsvMEyGEEEJcBIvF2bJq0SLnAfTCrRKKo5Rz3KJFzvuV41oFV3RpzpVdmuOiAu4d0kOCWyFEtSYzb4VXyVEoIcrGYXfw69cr+H7SfHas3gOANcDCpWN6c82DQ2jRtZz7obnyxBPw0ksFl5ct48ENJ1m1/WB+UFsSpWDuc3dTOzbSuYhZ374FNz7+OLz4opeKLrD69B7+vXUGJ7JTsKiC45cObdIjrinPtB9FXFCE1+twxdQmv5/ew6wjazmWdZYAw0qX2MZcW687tUKi/VZX0oGT7Ph9N7ZcO7Ub1aBN75YoVx/6hBBCCFFxHTgAU6bAggVw6hSkpUFEBCQkwODBMHYsNGzotd3bHSaTvl/GtF82YDdN51la568PCw5k3LCe3HRZJ3m/ISosyTyEL0h4K7xKnsiEuHg5WTn885pXWLdoM4ahMAuFoxargcNh8sCbd3HNhMG+K6pDh4L+Z+3bc+ynJQx/+iPceSExDMWdV3bjgat7OxfB6NABtmwp2O7Gjd6qGoCVp3bx8LpPz88OvrBiizKoFRzNxz3vJzowzKu1VDZ7Nx3gwye/Ys0PG4pMra7duCZjHh/J4Lsvkw9VQgghhLhoKRnZLFi9nf1J57AYipb1a3BllxYEB8oa66Jik8xD+II8EwohRAX16t3vsuEnZ7hp/mlWq8Pu7If69sSPiK8TS5+RPXxT1KlTBd/36cMfB0+4FdyC82fYuPeY84JS0KdPQXhbeLtekOOw8Y9N00oMbsE5+zYpO5m3dy7kqXbXerWeymTL0u08ftW/sdsc/PmhO77/BP+97z0ObT/C2FdvkwBXCCGEEBclKiyYMQM6+bsMIYSokKTnrRBCVECHdx7l12nLLwht/0wpxaf//BqfnUSRnl7wfXg4DrPkRbWKY3M4itw/X1paGQsr3c8ntpJmzy4xuM3j0Cbzj28gzZbl1Xoqi4zUTJ4e8RL2XDumo5jf9fmHc8Z/57Lk25W+LU4IIYQQQgghqgEJb4UQogKa/8FPGFbXT9Faaw5sPczONXt8UBVFA9f0dOrER7l9V4uhaFAjpsj980V4t8/sbye2F1n8qzQ208HvZ3z0eFZwP32xlIzUTJcHEQxD8e1rc3xUVdWWkZLBtlW72Lp8B2eTzvm7HOGC1hqH3eF6oBBCCCGEEBdJ2iYIIUQFdOCPQ5h292e1HvjjCC27N/NiReclJMDx487vly2j7aSaNKgZw6ET51y2T3CYmpF92jovaO1ctKzwdr0ozZ6F6XaDB0i3ZXuxmspj4Se/oLigW8IFTFOzc80eju1NIrFJLV+UVuUc25vEtJdmsviLJdhy7IBzZn2PYZ258fGRtO7Zws8VijxaazYv2cbst39g5Zy12HLshIQHc9mNfRjxwCAat2/g7xKFEEIIIUQVIjNvhRCiAvK0d6jPWo0OGVLw/ebNqJUruWdwD5fhnsVQtGtUiw6NE51XLF9e0O8WnKsZe1F0QKjbM28BogJDvVhN5XH66Bk86chx5pjMFL0YO1bv5v4uf+PHT3/ND27BGRKuXrCBh/o+zU9fLvVjhSKPaZpMfvBDHh3wDMu/X53/+8pKz+aHj39mbKdH+e6NeX6uUgghhBBCVCUS3gohRAXUpENDDIv7T9FNOjT0XjGFjR1bNCl++22G9mjFPYOdC6YZxaTIhlLUS4jm9XEjCkLpd94pGKAUjBvnzaq5vFY7t2fehlgC6RHX1Kv1+Nu5kylsW7WLnWv2kJlWcn/foNAgj7YbFBpY1tKqnbRz6Tw5+AWyM3LyFyIszLSbaFPzyh2T2bVurx8qFIV9/uy3zH5nIcAFvy+H3QQN7z7yiYTtQgghhBCi3Eh4K4QQFdCQewdiurEYmDIUzTo3ommnRj6oCmjYEIYOLbj89dcwezbjR/Tiv/ePoGPTxCLDYyNCuGdIDz79+43ERYY5r5w1y3m/PMOGQQPvnmbcr0Yr4gLDXc6+NVBcXbcroVbPQsvKYtuqXTxz7X8YnXgvf+n1FBN6PMGomnfzxrj3Ob7vxAXjuw/qhMWN3ssAEbHhNGpXv7xLrvJ+/ORX0pMzil8QrhClkBmdfpZ2Lp2vX/nerbEfPfWVW8/hQgghhBBCuCLhrRBCVEC1G9fkqjsGoIzSw0atNXf8+0YfVXXexIkF35smjBkDs2fTv30T/vfIDcx//h4++/uNfP2PW1nw4r2MG9aTiJDzYeisWc7xhUONwtvzEqth4eVOt2A1LCUGuAaKJhG1GNfsCq/X4w8/T13Gw32fZtXctehCC5DlZtv44aOfuL/L39i5tujMzuHjryp2NuifGRaDYWOvICAwoNzrrurmvr8I7cascIfd5NevV5CRmumDqkRxFn32G/Zc9xYnO3noNOsWbfZyRUIIIYQQojqQ8FYIISqov7x7L72v6Q5wQQsFi9XAMBSPfjie7oM7+bawK66ACRMKLmdlwciRcNNNsGwZtWLCaduwFs3qxBNgsRQsTnbTTXDttZBdaDGwCRNg4ECflN0+pj7v97iPZpG1AWdYa1UGCoVFGQxK7MiUHvdWyVm3u9fv4+XbJmE6zGLDWIfdJCs9iycGPUd6ckb+9Q1a1WXUX4eXum2L1aBWoxqMenREudddHZw8eMr1inDnOewOzh6XvsL+snfTAQyLe72zDYvB3o0HvFuQEEIIIYSoFqz+LkAIIUTxAgIDePqbR/h93npmv/0D6xdvxjQ1IRHBXHnbpQwffxUNWtX1T3FvvAFJSTB9uvOyacLUqc6v9u2hd28ID4f0dOfiZJuLmYE2apRzOz7UOqou77W9i6kfz2PTpp04lEmdtnW4+86R1IqO9WktvjTjv3NdLmpnOjTp5zL48dNfufYvBa0x7nn5FgKCApj28vfnxznDX4vVwGE3ada5Mc9+/zciYsK9VX6VZrFaAJvb462B8tbNX7QHq/cpBR6t9ieEEFWQwzRZ8ccB1u85Sq7NQe24SAZ3a1HQSksIIYRblPbknagQHkpNTSUqKoqUlBQiIyP9XY4QlZppmthz7QQGV5BFoRwOeOghmDzZ8/tOmOAMbi2W8q6qRKZp8tkz3zD9tTnkZOditVrQgMPmICwqlNueuYGRE4cULKpWRWSmZXFt3J047G6c7q2gfss6fPjHGxfcdPrYWRb87yf+WL6D3BwbdZrUYtDdl9O6Z/Mq95j50hODn3cemHHR8xYgpmYUUw9POR/4Cl/7+pVZfPjkl0XajpTm2Zl/o9fV3bxclRBCVEy/bdrLi9N+5mRyOtbzZ5CZpkYpGHZJa/42egAh0m5JVAGSeQhfkLYJwm0vvfQSSikeeughf5ciRLVkGEbFCW7BGbxOmgSLFsHw4bic2qmUc9yiRc77+TC41Vrz+r3v8eXzM8jJygUNdpsDh80ZaGakZPLuw5/w6T+/drGlyufMsbPuBbcAGpL2nyz2pvjEWG79v1G8tPBpXv/1X/z1w/G06dVCgtsyumbCILeCW8NQjBg/SIJbP7ry9v4YLvqQ54muEUWPoZ29XJEQQlRMC9fs5JH3ZnMqOR0Au8PE7jAxtcZhauas3MYDb31Hjs3u50qFEKJykPBWuGXNmjVMmTKF9u3b+7sUIURFM3AgzJ4N+/bB449Dhw6QmAgREc7/d+jgvH7fPuc4H/W4LWzFrDUs/PgXl71Fv3xuBjvX7PFNUT5iDfDsNHtPx4uy6Ta4E50ub3dBX+vCLFaDhPrxjHjgKh9WJv4spmY0w++/yq0DFrf+3ygJ2oUQ1VJyehb//GwhUPLbLlNrNu87zueL1/muMCGEqMQkvBUupaenc/PNN/PBBx8QExPj73KEEBVVw4bw4ouwcSMcPQqpqc7/b9zovL5hQ7+V9v2kBaWGY3ksVoPZ7yz0QUW+U6N+PNE1otwaa1gMWvdu4eWKRGGGYfDszMfoPNB5cNRiLfg7zfubrd24Jq/98iyRsRF+qVEUGPvqbfS9rgdQ/EKSADc+MZLh91/p89qEEKIimL3yD2wOh8u1OE2t+frXjdjdOPtECCGqOwlvhUsPPPAAQ4cOZaAbs+VycnJITU0t8iWEEP6UkZrJxl+2unVqusNu8tu3K31Qle9YrBZG3H+VW+G16TC55oFBPqhKFBYSHsIL85/k1V+eoc/IHiTUiycuMZb2/Vvz9DeP8MGW16nZIMHfZQqcM9OfmvYw//j6Edr0KjjQoQxF9yGdeXnR/3HX8zdJOxEhRLW1aN0ut9drPJOaybaDJ7xbkBBCVAFybqQo1bRp01i/fj1r1qxxa/yLL77Is88+6+WqhBDCfRkpmR6Nz8nMwTRNDKPqHN+8esIgfvj4Z04fO4tpLz7ENiwG7fu1puugjr4tTgCglKJD/zZ06N/G36UIFwzDoP+onvQf1ZPMtCwyUzMJjwknODTI36UJIYTfpWRmezQ+zcPxQghRHVWdT6ai3B0+fJi//OUvfPnllwQHB7t1nyeeeIKUlJT8r8OHD3u5SiGEKF1YVKhH44PDgqpUcAsQGRfBq788Q62GNYCip3vnnerd6bK2PPv937D4cCE5ISq70IgQ4uvESXArhBDnRYW697kxT4SH44UQojqSmbeiROvWrePkyZN07lywWrLD4WDJkiVMnjyZnJycCz7kBwUFERQkH2CEEBVHWGQonS5vx6Zf/3DZOsFiNeh/Qy8fVeZbtRvV5H9bX2fF92uY895CDu88hmEYtLqkOSPGX0WHS9tUyFO9TdNk3aLNzJuyiP1bDmFYFC26N2X4uKto3bN5haxZCCGEqK6u7NqCbYdOuNU6IT4qjNYNanq/KCGEqOSU1u52pBHVTVpaGgcPHixy3Z133knLli35+9//Ttu2bV1uIzU1laioKFJSUoiMjPRWqUIIUaoVs9fwz2tecWvs22teonmXJl6uSLjj3Ilk/jHsRXat24dhNfJbPlisBg67SbdBHfnH148QGhHi50qFEEIIAZCSkc1Vj7+PzV76omVKKR4Y0Yu7BnX3WW1CeINkHsIXZOatKFFERMQFAW1YWBhxcXFuBbdCCFFR9BzelaH3DWTe+4tLHXf7s6OrdHB7dM9xFn78C0kHTmINsNKqRzMuv6VfhQw/s9KzeOzyZzm88xhAkV69jvPfr1u0mX9e8wovLfwHFqu0exBCCCH8LSosmH/fMYjHP5yH0hQb4BpK0bFpIrdc3rmYW4UQQvyZhLdCCCGqPKUUE9+5l4S68Xz9yvdkpWdjDXCGfXabg4jYcO789xiG33+Vnyv1jozUTP5z59ssn7m6SL/bRZ//xpTHPueu529k5MQhFaoFwYIPf+bQ9qOUdoKQ6TDZ+MtWVs5ZS5+RPXxYnRBCCCFKckWX5gQFWnl52s8cP5uGxTBQChymxlCKET1b89gNAwgMkDhCCCHcIW0ThFfJKQRCiIomKyObJd+u5ND2oxgWgyYdGtB7ZHcCAgMA+H/27jpMqvIL4Pj33jvbvbB0IyHdtaSUNChtYAFKiehPwcJGTKSxMAkFCUGUle4u6c4FFli2a+be3x/DFhszG7MB5/M8PEy8994zs7OzM+ee97xRYVEE/bSRdQs2E3YjHA8fD1o90pSHn30I3wCffI4+6+Ji4ni53Tuc3HMm056/z3w4mEET+uRhZBkzDIMhVUYTfPZa+iU7KaiaSp3WNfh0zcS8CU4IIYQQdtF1g21Hz7Pv1GUSzBZK+HnxcONq+HllbTFZIQoyyXmIvCDJW+FQ8kYmhChMtq/Yw4cDvyQuJh6D5Ll+iqqgaSpj5wyn81Pt8jfILFoweSnfvzEPQ7fx516BH45PpfQDJfMmsEyEXg+jf4nn7B5vctJYFbfAgREJIYQQQgiRluQ8RF5QbQ8RQggh7n371h5iYp9PrIlbI3WTNkM3MCdY+OyZmaxbsCX/gswii8XCsumrbCduAVVVWTE7KA+isi0hLiFL4y1mC7qecVWxEEIIIYQQQhRWkrwVQghx3zMMg+mjv8MwjEx7rALMGPMdCfFZSy7mlwtHLnHj8i27xuoWnS1Ldzo4Ivv4Bnjj5GJ/Hzz/Uv6oqnykEUIIIYQQQtx75JuOEEKI+97hLcesi2PZUaEadiOCrUt35UFUORcdEZvF8TEOiiRrnF2deWhwKzST7Y8pqqrQbWiHPIhKCCGEKJgSzBa2HD7H8m2HCdpzglvh0fkdkhBCiFwkyzsKIYS47x3ceBRVUzNd0CuR5qRxcOMR2vRvkQeR5YxPQNb6bvlmcbwjPfJiN4J+2pDpGEVVcHJ1pqskb4UQQtyHEiwWfvhnF/PX7ed2ZPIJWE1V6dSwKqN7t6SEv1c+RiiEECI3SOWtEEKI+15CXAKKqtg32ICEOLNjA8olpR8oQaU65e16bIqq0OGJNnkQlX0q1SnPaz+OQlEVVC3txxXNpGJyNvHestcoUtIvHyIUQggh8k+CxcK4WcuZvWJbqsQtgEXXWb3nOI9N+pUL12/nT4BCCCFyjSRvhRBC3PeKlSuKxWyxa6xhGASULeLgiHKHoig8+lJ3m+0gFEXB5GTi4Wfa5VFk9nlocCu+2PAeDTvVhRT5Z9Wk0vLRZszYMYkG7WvnX4BCCCFEPvl+1U62Hj5HRq36LbpBeHQs42Yvs9nPXwghRMGmGPJOLhwoPDwcHx8fwsLC8PYuONNxhRAipaiwKPqXHEp8rB0LkSnw8+kZlKhQzPGB5QLDMPj06RkZtiBQVAVFUXj795cJ7N0kj6Oz3/WLN7h8MhhVVSlXowx+xXzyOyQhhBAiX8QnmOk0/mvCo+PsGj/7xUdpUr2cg6MS4v4kOQ+RF6TyVgghxH3Pw8eDHs93stleQNVUWj3arNAkbsFaVfvK9yN45sPBePl5ANbHkfhYK9Yqx8f/vFmgE7cAxcoWpf5DtanbtqYkboUQQtzXth09b3fiVlMVVu486uCIhBBCOJIsWCaEEEIAz378GOeOXGJv0MF0pxeqqkLluhV4+dsX8iG6nFFVlUET+vDouO7sWLGH4DPXMDmbqNG8KtUaP4Ci2NnvVwhRKBmGwcHbF7gScwuTolHDpwyl3f3zOywhRDbdCIuye6xFNwi5HenAaIQQQjiaJG+FEEIIwMnZiQ/+HM8fU1ayZNoqbly6mXSfT1EverzQmf6v9sLNwzUfo8wZZxcnWj3aLL/DEELkEcMwWHF5L3PPrONS9K1U97UoWpUXqnaimnepfIpOCJFdrs5Odo9VFHBzcXZgNEIIIRxNkrdCCCHEHSYnE/3/14tHx3XnxO4zhN+MwMPHnWqNK+OUhS9KueLsWZgzB1atgpAQiIwET08ICICuXWH4cKhQIW9jEgVKQnwCUWHRuHq44urukt/hiAJoxol/+OnsxnTv237zJLu3n2Fqo6do4F8pjyMTQuRE42plURUF3Y7lawwDmkq/WyGEKNRkwTLhUNK8WwghsigoCKZOhZUryXAJabCW0nTrBmPGQMeOeRefg1jMFi6duEJsdDxFSvpStHSR/A6pwDq28yRLpv7Fht+3YUmwAFAzsBq9R3WhVd9maJqWzxEWTjGRMaydt5n96/4jPjaBIqX86TSkTaFtLbLu6n+8tn9epmNUFNxMzvzZ5jU8nZJnFcTFxHFwwxEiQqPw9PWgbtsauLjJCQIhCpJxs5ez6dAZLHrmX+ddnUwEfTIcD1epvhXCESTnIfKCJG+FQ8kbmRBC2MligbFjYfr0rG87ahRMmQKFMGkXHRHDkq/+YtnMvwm9ejvp9jptatDv5Z40694w/4IrgBZ98SdzXvkJzaRiMetJt6uaim7RadajIW/99jLOLrlXKR52I5zVP27gzMFzGIZBhRpl6fx0O/yK++baMfLbqu/WMHPsXGKj46zVbLqBZtKwmC1Ub1qFiYteztUTCqHXw/j7u7WsnbeJsBvhuHu70+qRpnQb3jHXFkR8dvtsDt++iE7mH/UVYNyD3RlQvgUxUbH88t4iVswJIjo8OmmMu7cbXZ/rwJPv9MPN0y1X4itwZLZDoWLRdQ6dDeZ2ZCzuLk7UqVQKV+f7a1LpxZDbPP7xPKJj4zNN4E58ohO9WtTMw8iEuL9IzkPkBUneCoeSNzIhhLCDxQIDB8KiRWnvq1MHWra0JhEiI2HzZjh4MO24vn1hwYJClcC9HRLGK+3e4eKxy+h3ffFMTEY+9uajPPXewHyKsGBZv3ALHw6akukYRVXoNKQtr3w3IsfHs1gszH1jPou/XIHFoidVnxqGgaIq9Hi+E89/PgSTU+FOmKz8Oogpz3+d4f2aSaVIKX9m7PoY3wCfHB9v46JtTHp8KhazBSPF617VVAzD4PnPhvDI2G45OsaV6FB6b/zU7vFVvUrydZ3neKXdO5w+cA7doqcZo2oqFWuV5fP17+Lh45Gj+AqU+3S2Q2GVYLHw6797mb9uHyEpFu3ydHXmkVa1ebZLU7zuoyrxM8E3eXHmMi7fCENVrSeeEucJODuZeG1gO3q3qJWvMQpxr5Och8gLkrwVDiVvZEIIYYfRo1NX3KoqDBgAI0dCixbWpEEiw4CtW2HGDFi4EPQUSZZRo2DatLyLOwcMw+Cl1m9zdPuJdBNFKb364yg6PtEmjyIrmAzD4OnqL3L5VDA2CilBgZ9Pz8hRBadhGHwxbDZ/f782w+MpikLrvs14ff5YVFXN9rHyU9iNcAaWHob5TvuJjKiaSrehHRgzc2iOjrfrn/280fUjDIxMf45jZw+j27DsJwgPhp7nuR1z7B7v5+xBu7lerFuwJdPfR1VTafVoU95cMC7bsRUY9+lsh8IswWzhpVnL2Hb0fLp5dlVVqFDcj2/H9cf3Xq0QT4dF19l25Dyrdh7j2u0I3F2caVGzAt2aPnhfJbKFyC+S8xB5QZK3wqHkjUwIIWwICoJOnZKvu7nBggUYPXqw5+QlVmw/yrXQCFydTTSuVpYezWrg5X6nN+Xy5daK3ZiY1Pvr0CFvH0M2HNl+ghdbvGFznKJA6aql+P7IlELZdzS3HNx4hJfbTrRrrKqpDHytN09/MCjbx9v770Fe6/S+XWPf/v1lWj3aLNvHyk+/fbqMbyf8mqoCNiMubs78dvVb3L2ylxQyDINnaozl8olgbH38dvd257fgr7PdZ/ZE+BUe32p/UrJ4lDvxAw/ZPJEC1uruX8/NIqBMIe5LfZ/OdijspvyxkZ//3ZNpgbSmKjR7sDzTRvXJu8CEEPc1yXmIvFA4yySEEEKIe8XUqcmXVRUWLOBKYBsGfvgLw75cxModR9hx7AIbD57h89830PG1r/ltwwHr+J49rcmDlFWPKfdXgK36dg2ayfbHEMOAS8evcHT7iTyIquA6f+QS2Jm71nWdsF0HYPx4qFsXSpUCb2/r/3XrwoQJcO5cpvtYOn2VXT8fVVNZNuNv+wIrgHb8tdeuxC1AXEw8/20+lu1jHdp0lEvHr9hM3AJEh0ezfuHWbB+rkmdxfJ3sa22gKSpld2h2xQXWiuu18zZnO7YCYezY1IlbVYVBg2DzZozdyzC+fArjg8cxpn8J+/dbE7iDBqV+r120iIghz/Hn7NUs/nIF6xduITY6Lq8fyX0jOjae3zYcyDRxC2DRDbYcPse5q7fyJjAhhBAiDxTuJmVCCCEKH1kUJtm5c9Y+i4kGDCCkzUM8PWketyKsiwUlLkKS+H013mzh4wVr0XWdge3qWxO4AwbA/PnWAStWWPdbwJ/DyyeDUy24ZcuV09eo0byaAyOyX+j1MFb/sJ5zhy8AUKl2eTo91Rafog6utrAjt9bAuEYf4xRNVy+G1XdtEBEBwcHWKsLJkzPs32kYBjv/2mvXz0e36BxYf5jY6Dhc3Qvf9Nzo8Bjbg1KIiYzN9rGObDuR1MvZFs2kcXTbCTo/1S5bxzKpGn3LNeX70+tsLlhmMXTKx/pyVlMx65m3jwDr1PQbl29mK64CISgodasENzeM+fOhkxNG1Bdw81DyfYoPhvsglObPogTOs1brppjt4PXrD2yad5oDakl0XcfNy5VeIx7myXf74+Sce4sGClh34DSx8Wa7xmqqwp/bjzC6d0sHRyWEEELkDam8FUIIkTeCgqBHD6hc2Zo4OnjQmkhKmVD6+GOoVMk6LigovyN2vDlzUi+QM3Iks/7cxq2I6ExXjgb4YtFGQu8keBmRYnEqw7Dut4DTnLI21diUxfGOYDFbmDXuBwaVGcZ3r//K2nmbWTdvM9+M/4UBpYbx9as/Y7HYTn5lR6U65TO9XzUMRhr7mMwmmhGMYivTaxjWRH+nTtaeyyniTohLyFJiHSAmImtJ0ILCv6Qvqmp/Ow6/4tlfsMySYMlC6w+DhAT7ElUZGVyhJWU9iqApmX/cH1Q+kOI+fjYrGpMiM6wtJAqtu2Y7GPPnY7Q7ihE2FsyHU481wiDqa4ybfTEs16FnTy699wWWFGXwfYxT6Hd6j8dExLLw02W81XMy5hz+/ERq10Ij0Oz8XTXujBdCCCHuFZK8FUII4VgWizU51KmTNVlkK0OQSVLpnvPXX8mX69Qhol4DVu44ajNxC9ZquWVb7yQaAgOhdu3kO1etyuVAc1/N5tVQNTs/hihQrfEDjg3IBsMw+OSp6fzx1UosZh1DN9AtOhaL9bLFbOH3z5fz+XOz7J5+nhU1mlel3IOl003+qYbBG2ynN6fTblinjjW5/+qr1v/r1Ek7Zvp0azXhnd81JxenLCXnVE3Fw9e+KfoFTfvHWqPb2TahSCk/agZWw5xg5sKxy5w+cI6wG+F2H6tExWJYzPa9nxkGOVpwDsDTyZXZTYZSw7s0QKokroqCisKTFVvzYvUu1Huolt2xWcwW6j1U2/bAgiid2Q50jIfo7+/ckN5JCx0slzBCRxAfl8C4z3ezUSmbdG9TgiluRCVdN3SDvf8eZOHkZQ55CPcrZyeT3ScYFMDFqWBOMI1PMGPRs3ZyTAghhCiYf9WEEELcG3K6KMz06XD16r27KExISPLlli3ZfyaYhCwkdzYfPstTnRtbV/Vq2RIOHUq73wKq69D2zPvoD5vjVE2lQfvalKxUPA+iyti2P3fb7vNpQNCPG2g3IJDGD9fP1eMrisIzHw7mnUc+TXPfC+ynNZeTruuKgjpwIIwciblpM25FxqDrBkW83XHSVNi6FWbMgIULITGJsGiRtQ/otGkoikK7QS0J+mm9zQpczaQS2LsJzi6Fc4p4y0ea4lvMh/CbEZm2M1AU6PpcB355bxF/zl5NWEj4ndsVmnZrQN+Xe1C3Tc1MjxXYpwluXq7ERNhuvWDoBp2fapulx5KeIi5efNvseQ7dvsCyS7u5GH0TJ1Wjrm95epVtTHFXayVx3bY1KV2lJFdOX820B7CiKhQvH0CDDoU0eXvXbAdjxAiMKHsWArSA+SBbFi0g9FoYy4xKtMPaNkUFunGG70l+TgzdYOn0VQx4rRemAppELGwaVimNbmf21qIbNKhSxsER2e/qrQh+33iAPzYfIizK+vtfo3xxBrarR+eG1XAy3YOfb4QQQuQq+TQhhBDCcdJbFGbAABg5Elq0sGZEEhmGzaTSPScyMvmypycx8QlZ2jw6NsV4T8/kyxEFc7ro2cjr/BN8gJtxEbhpzjQb3oJtc7Zk2MtVURU0k8rTHw7KsxhDr4fx93drWbdgM+E3I/Hy86B13+bsW3vIrn6lmkll6Yy/cz15CxDYuwljZg5l2shvUTUFi1mngXEtVcVtguaE+ttCbnboxG8bDvD7hG+4HWltaeDu4kTvwFoMalef0vPS9u9k+nTo1Qs6dKDXyIf5+/u1NmOymHV6j+6a6481K24GhxJ+Ixw3LzeKlw/IQmsCcHZx4v3lr/HKQ++SEJeQ7s9XURTqPVSL1T+tJ+TizVRjDMNg59/72L5iDyO/eobeo7tkeCxXdxceebEb8z5cnGkFoaqptO7XnGLlAux+HJlRFIU6fuWp45dx6w1FURg7exjjO7+PDukmcBVFSRqnqoV08t5dsx1o7AqhF+3cWGPtvH9RNZXD5iKcwYdKhAHQhKupkrcAt6+HcXDjURq0L6SJ7gLmwXLFebBsMY5fCrGZxPVyd6Fjgyp5FFnmth89z0uzlpNgtqSK+9iF67z9wz/8tv4A00f1wdvDNR+jFEIIUdAV0k9eQghRcMXHJbB/3X9sWbqTgxuP3L9979JZFIYlSzB+/RGjYQT6rSfRrzW2/rs5GCN2JUaLxjBvHixZYh2faPp0+PffvH8MjpYy4RoZSRFv+6eeq4pCMb/U2yfx8sqF4HLPjbgIRu36jgGbp/DjmQ2suLyX3y9s5+9u11B7WhNUmin1RxJFUXB1d+GDFa9TtWHlPIlz7fzNDC47nLlvzefsoQvcvHKLc4cv8vP7v3No01G7FpqymHV2rdrnsN63PZ7vxJz9n/LwM+1xcXemN6eS7jNUFdPi3znXrBUDPviZ71btTErcAkTHJbBw/X76v/8ze05csi52t2CB9aRKojv9QB+oX5HnPx9iM54nJ/andqsHc+8B2skwDDYt3s5Lrd9iYOlhDKv7Ck9UGskzNcayfOY/JGThREj1JlWYuvVD6rZNrpxNTAB7+now+I1HuBkcyo1LN9N9Deh3qpNnvPg9u/7el+mxnpjYj1Z9m6c6RkqKqlC9aRXGffO83fHnlnrtavH+nxNw93JLigWS43TzcuW9pa/SsGPdPI8t19w12wH9csZj07Bw62q09TWgKPxHkaR7fIhLd4vb18OyGahIz6sD26GqCrbOz7w2oB3OBaDi+cSlEF6cuYx4szlNwjnx+tEL13hp9nKHtNsRQghx71AM+UshHCg8PBwfHx/CwsLw9nbwKtxC5LOYyBjmfbSEFbNXE3k7uf+dT4A3vUY+zIDXehfaqcXZ0qOHtXctWJNDS5ZgdGuOEfosmI9hPX+YmAi5c1mrjOI/F0UrAcuXQ58+yRW4PXpYb7uX1K2b3CqiTh0se/fS7c3vuX47MvPt7vhkaDc6NKhqrVquWze5bULdurB/v2NizqLQ+Eie2jaT67HhWIx0qhpR0E7F0mp7AOfXnyEuJp4iJf14+JmH6PRUW7z98yYRve3P3bzde3KGVcBZtSzsp6QkmKMYZ89C5cooiR/lBg0i4ru5PPLOD4TeaZWQHlVRcHEy8dtbT1C6qA8MHgzz51vvVBQ4cwYqVABg7bxNfPfGfK6fD0nqUaxbdIqU8uPJdwbQ9bn2Dn2M6TEMg+mjv2P5zH/SVEMnJnXqtKnJBysm4OrukqV9XzoZzMH1h4mPTaBoGX+adKnPvjWHeLPHxza3VVWVmoHV+GLDe5mO03Wdv79by+IpK7hwNDl5GFC2CL1HdaH36C44u+bfgmCx0XGsX7iVjb9vJfxmBF7+nrTu25y2AwNxK8jVgWfPWtsirFplTdJGRlpPkAUEQNeuMHy4tdo2cWbCq69ivNMaI+wluw/x2sD67N+kgwHPGQcZwAkAojDRW+mdZvz7y8fTrHvD3Hh04o4dxy7wv6//JDImHkVJ7oKhKKCpKq8Pbk/vFrXyN8g7Jny3kn/3nrSrj/2sFx+lafVyeRCVECK3Sc5D5AVJ3gqHkjcycb+ICovi5XbvcPbghaRVp1NSVIVagdWZ9PcbuLhlLZlQKJ07B5UqJX+rGjQI49fvMW4+CuYzQEZViRpoZVGK/IGiemaaVLonTJgAH6dICm3ezC8xrnyxeGOmm2mqQhFvD/784BmcNM3aL7hVq+QB48fDpEkOCjpr3ju0iFVX9qebuE2koODt5MrKdhNwVvO+WkrXdZ58YBTXz4fYvSBOZkzOJlZG/5qtqeXhNyNYO28zl08Fo5k0qjd5gMA+TXBydsJitpAQb8bFzdlaDZnO62d+nDuf/b7eZg5aUxUGtqvPy33b2Hz96LrOvjWHOHPwAhgG5WqUoVHnumj51Id68ZcrmP3yj5mOUVVr397xP4/J8fEm9vmE7Sv22FV5DfDDiamUfqCkzXGGYXDx+BXCb4Tj7u1O+Zpl8u05LdSCgqwV4ytXZr4gpqKAszPE3amSHTECY+rrGCEPYd9ZG5WlP/Vm9oQzGIbBaGMvPTkDwA1cGaR0TzXa2dWJ365+i4e3e/YeVwFz9r8L7Pv3ELHRcRQp5UfLPk3w8MmfhQpj4hL4e9cxVu06zq3wKDzdXWhX9wF6tqiJn6djT5rZKzQyhk6vzbErcaupCm3qVuazYT3yIDIhRG6TnIfIC/k/n0QIIe4BXwybzdlD6Sduwdo/8L8tx5g97kdenDUsj6PLB3ctCsPIkRCzDMwnbWxoAct5iPkDPJ6EESOSk7eGYd1vAUlK5orhw2Hy5OTnasYMBv3yCwfPBvPv3vSfK01VcHV24qsRvayJW4CZM5MHKAo8n/dTrtNzOz6af64cyDRxC2BgEJYQw7qrh+lcKu+nZG9fsYdr53JnkTfNpNJuYGCWE7cJ8Ql88+ov/Dl7NZYES1IbicUJFlw9XfEp6pUUo6evB12HduCp5ctJquWvUwdatOC3dzNPaiay6AZLNh9iTO+WOAUGQu3ayZXbq1al+j1TVZWGHesWiOny5gQz8yfZXuhO1w3WztvM0x8Monj5nPWOvXDsst2JW4Arp67albxVFIVy1UsDpXMQ3X3MYrH2Q0/ZniczhpGcuAXYtAlFLYXh3BriN5PxScVkHZ8dznfvvEF8TDy1uJl0exipT8qqmkqnIW3vicTtqf1nmT76Ow5vOY6iKqiqisVi4asR39D12fYM/eTxPD8p7ebiRJ+WtenTsuD2Ez4bfNOuxC1Y34+PXbju4IiEEEIUZtLzVgghcuja+RA2Ldph88u9oRv8PXcd4TcL5mJSueruRWFatMCI/hmwbyEhI/ona/+3xKRSolWrcjfO/FahAnTrlnx94UK0FSuY9GxXRvcOTFNBpCgQWKsiP782iGpli1lvXLbMusBbou7doXzGCxPlpR03TpJg2Nf7VUVhw/UjDo4otajwaD4Y+CUT+3ySa/u0mHV6jXw4a9tYLLzf/wuWTluFOd6MYRiYEyyYE6zPXWxkbKrkcuTtKBZ98Sfhx84m76RlSwzg4vXbdnd+iI5L4FZEtPWF1bJl8h0huZPIdoQdK/cSdsO+91BFVexadM0WLYsrwWsFoNfmPc9isS62l17itk4d64m/V1+1/l+nTvr7OHTImsD1ehlwwubXIo/heBWpyIuzhlGTm0mLlQHspETSZc2kElCmCEPeG5D1x1XAHN1xkrGBb3J0u/VkoqEbWMwWMCAhNoHls/7htU7vEx8bn8+RFjxZncQhc2GFEEJkRj5dCiFEDv37y0YUVcGw2P7kbUmwsOG3rfR4oXMeRJaP7loUxsAM5hN2bmyA5QIYUaB6WpNKiRWBBTiplG1jxiT3BtZ1GDgQbcECnu7Zk8c7NGTn0Qtcvx2Ji7OJ+g+UpqR/iulYy5ZZExgpK77H5HyaeG6JMsfaPVbHICIhxvbAXBJ5O4qhdcZx49KtXN3v0MmPU63xA1na5p/v17Ft+e4sbaNbdFxJsSjXncXvFIUsZQ3UO4tSpVo8LyL3TzDphs6OG6f47cI2DoSex2xYKOXqR5+yTehWugGeTvb1Ur18MjhNn9sMGQZXTl/NYeRQK7A6l45fxmK2fUzNpFGpjvStdLixY2HRouTrqgoDBlhnebRoQYKuY7bouDqZrKcMt26FGTOsJ7pSvl8+9xzKiRPg/z1G6HAwEvuNJ/4SaYAF3J9F8XwRgE5D2lJnzoewzTpCB1YqldFMGhazhepNqvDmb+PwDfBx5DPgcOYEM+888ikJ8eYMf98M3eDIthP8/N4inv1ocB5HWLBVKO6HqihpFipLj6YqVC1TNA+iEkIIUVhJ8lYIIXLoxqWb1lW57SgwVE0q1y/etD2wkDMiI5NqbMPjDDztrL5MzWz9z8FJpXzXsSOMGpVcQRYTY12obcAAnEaMIDAwkFRLaxsGbNlibZVwdyJi1Cjo0CFv48+Et7P9U4ZVFHyd865/4nv9P89W4lZRwM3LjejwmFQLeAWULcLT7w+i45NtsrQ/wzD446uVKIqS5dXGYzHhkfh7EhmJoihUKR3A8UvX7ari8vN0w9/LPWn7JF65u0hctDmO1/b9yo6bp9AUNamNxtmo63xxbAXfnl7DV42epoZPGZv70kya/SVqipLlqtn0dH++Iyu/DrJrbM3AaoU+aVfgBQWlrrh1c4MFC4jr0pVVu46x4KNfOXHJeqLPx8OVR1rWpm/rOpScN896sivlQpgnT8J776G8/TYEbIDY5RjRi0G/BooruLRGcR+MYkpxQmbZMkrsSK7oPl2mFlWbtaN5KX86PtmGqg0r58WzkEp8bDwxkbF4+LhjyqXK763LdnErONTmOEM3+HPWPzzxdt98XWivoCni7UHbepXZcOC0zfYJFt2gb+v8b0sjhBCi4JLkrRBC5FCWvqwYBs6uTrbHFVIxUbEs/mIFXaMs+N+5bf13q/lz5+s88mxZOvW/mCoPmSHFC5Q7FaYOTCoVGFOmwNWryZVkum7t9Tt/vnXKb2CgNYkdGWlN3B48mHYf/fpZ91OANC9aFRfViTg9weZYHYMOJfKmf+H1izfY9++hbG2rqCrfHf6SMwcvcP7wRQAq1C5Hw451srVA2dVz1zl/5FK2YrmNC0WwVjeb12/AZBgMbFePd35abXNbVVHo16Yumqpak6GbNyffGZCzHrEpGYbBhP3z2XXzNECq/seJ6YyIhFhG7vqOX1qMprS7fzp7SVatyQPodvaRNHQjVxJpD9SryEODW7J2/mabVc3/bT7GgQ2HqdumZo6PKzIwdWryZVWFBQsIfagjIz9dyLGL11FT/I0Ji4rlx6DdzFu7jy9f6Emznj1h4kTrv0Tvvgv16qH07Anug1HcM6kgTWe2Q5W5X/J2Ppw003Wdrct2sWz63+xf9x9gbdnQ8tFm9BndlZotquVo/+sXbkXVFHQ7ZhVFhUWzb+1/NO3aIEfHvNc807kJGw6cQcHI8K1DUxWqlS1G8wcLRrsjIYQQBZP0vBVCiByq27YmlgT7KkstZp26be/NL/WRt6N4qdVb/PTub4TqyQnqmtzg/H8X+eIlfz4bW5YM1nRLQQP3ASiKY5NKBYqmwYIF1srZux08CLNmwaefWv9PL3E7apQ10VvAVqr3MLnQs0xDVBu9jlUUAly8CQzIWbLBXv/MXZet7VRVocMTrSlaughNutSn3ys96fdKTxp3rpetxC1A1O3obG0Hqftsmo4chq1b6dyoGhVL+KOpGT/nqqrg5+lG/8RKry1bkluTAHTpku2Y7rYv9BzbbpxAzyTrqWMQa0ngp7Mbbe6vZotqlK1eGsWOs0AmFxMdn2ydpXgzMnLas2h2/H4ZhsGsl37IlWOKdJw7BytXJl8fMAC9ew/GzlzKycvWatu7c/u6bhBvNjN25jJOXb4Bb78NVaqkHAC9e8Pgwda/N3dXdif+HRo8GB55BGJTtIPJp9kO5gQzkx77incf/YyDG5N7hVvMOpsXb2dsyzeZ95Hthf0yE3rttl2J20RhIeE5Ol5euhkexc//7uHjBWv57Pf1rN5znARLdmYIZa5G+eJ8Oqw7Jk1N856ceK1SySJMHdE7uYWNEEIIkQ5J3gohRA417dYA/5J+NtfiUlSFstVLUbvVg3kTWB77+ImpnD10AUM3UiWVKhNGDeMGAP/+7sfvM4tlshcFcEZxu1P55MCkUoGjaTBtmnVKcI8e2CxRVhTruKAg63YFLHGbaETVzlTyKp5hAldFwUnVmFz/MUxq3jyG7PRBVVSFmi2rM2bGc7kai6df9ltFrKQSqc6FzJiBi5OJ2S8+SrlifoC1wjaRcuefv5c7c17qi7/3nZYJM2cm70NR4Pnnsx3T3RZd2I6m2P64aTF0/rq8l0gbfZIVRWH4Z09mUseW7Im3+uHhkzutOLYu3WVdqMkGQzc4vf8cx3aezJXjirvMmZM6uTpyJNuOnOPQ2auZTk03DLDoOj+svtNb+ptv0g6YPx9atYJ69VIveFavnvX2+fNTt6nJx9kOc175iQ2/WZvu3t2PNrE389w35/N3Nk9UAXj6eth1kiSRu7eb7UH5LC7BzHu/BPHwhG/46o9N/LH5EL9tOMD4b/+i8/hvWLnjaK4fs23dyvz21pP0b1MXN+fkE9vli/vRq3kNGlUtw9zVu1i06SCRMXG5fnwhhBD3BkneCiFEDmkmLTmhk8H3HEVRUBSF0dOfy9KXocLi/NFL7Fi5N+lL5N1JpZ6cvnNJYdGsYiTEp9e1RwOcUfxmoZju9L50YFKpwOrQAZYvhzNnYPx4qFsXSpWytowoVcp6ffx46/3LlxeoHrfp8TC58HXTYTxcqh6aoqKgYFLUpGRuNe9SfNN0OLV8y+ZZTK7uLlne5rlJj/HxP2/h4pb1bTNTvHwAleqUt/bNzqJrigc7KJl8w8KFsHw5Ab6ezHv9Md59shPVygZgUlVUVaF8cT/+178tiycOoVLJItZtli2zbpeoe3con3vTdw/dvpCqVUJm4nQz5yNtL0rYtGsDxv80Bs2kJvUdTqSZrNcHju/DwPG9sxxvRg5vPopqsu9js6Iq/Lf5WK4dW6Tw11/Jl+vUgRYt+G3DgUwrzRNZdIN/dh8nLCoWWreG2hm0aSngsx1uXQ1l+cx/7OqR/dM7C7Fks6K0eY9Gdp0kAXBycaJeu1rZOk5eSTBbGD19Kcu3HsaiG+iGgdliXdgO4HZkDG/98DeLNqXz884h63tvOzZ8MYI1nz7PS4+25mZ4NMu2HeH3jQdZuH4/k+atoeNrc5i+bAsW21OUhBBC3Gek560QQuSCwN5NeHP+S3zy9AwSYhOSvlQpirXTmauHC28seIn6D+VNT8+8tnruOjSTmlTxc03xYIdRkuYEA9CGi6w3yrJNKUV4qMauzZ1p8dC/QGKViTO49ULxeAbFdKdHpYOTSgVehQowaZL1XyHnaXLlnTr9GF3tYdZe/Y+b8ZG4ac40K1qFat6l8jyeFn2asmKOfQtQAVRrXJn+/+vlkFgURaHPi934/NmZtgenY7lahea69fcMXbf241ywAJeePenRvCY9mtdM9X6USjr9OxkzJltxZMTexG1Wx7d/rBW1W1Xnr2/WEPTzBsJuRODm4UJgn6b0eKETletWyEa0GcRksXB463F0s32x6YrB2kuH6K13zbNq8oLGMAwOrD/Mshl/c2jjEcwJFopXCKDb0I50eKI17l7ZrNIMSZHcb9kSFIXjl0JsLgiVyKLrnL8WSp1KJa3bJ87scHWFuLjMF8NTFOvfoTFj8vWk2eof1tu9uGHIxZvsDTpI44frZ/k47Qa3ZPbLPxIbFZfp8VSTSocnWuPpm3cLTmbHwg0H2HPyos31Dj9esJaWNStSwj/3e+ybNJXFmw4yc/nWpNvMKSqn4xIsfP/3Tq6FRvDekM735Ml+IYQQ2SPJWyGEyCVt+regYae6BP20gU2LtxN+KxLfAG/aDgik/WMtcfMs+FMKs+vq+ZA0vfGW8kBS8lYDXmcHHxlN2aGV5tq19ijFPgDLZcAArTSK6pm8cR4klUTeK+LiRb/yzfM7DBp1rIOXnwcRoVF2jX/i7X4OjafTkDbsWrWXjYu321wQKxUF9mklCX30Cfx+/9l6W0wM9OkDAwZYp3wHBqZOABgGEev/Jeyrzyn1ZxBqyt+xu/p3Goa1F62qKLho2VtosbxHALfiIjPteZv8cBRK2ViwLKVi5QJ46v2BPPX+wGzFZg/DMPjqhW+4ePyK3dsoFjjgHMzr++czqf5gu9pG3EviYuL4aPBXbF22K9VJvbMHzzNt9Lf89M5vTPr7Dao0qJT1nadcwNLTM+Nx9ki5vZMTHD1qbcuwapU1SRwRYZ3xEBBgbdkzfLj1pFo+O3f4YtKJYVtUTeXc4UvZSt66ebjyv7kjea//59ZZRekcTtVUAkoX4ZkPB2V5/3lJ1w0WrNtn3/urAUu2HOKFHi1yPY7jF6+nStxmZOWOo7SuXYmODavmegxCCCEKJ0neCiFELvL09aDPmK70GdM1v0PJUyYnDUVVMFIkcPcqxVlqVKb3nZYJrliYyFY2WMridLEJitINnFJ8MTEMa4/bmTOtFbeZJJWEyAlFUXjl+5FM7POJzbFVGlSicZesJz6yQlVVXp83lhJvzGfptL+Ij0vAZNLQDSO52vOu5IlqUlFVlTcXvIRfj4ZgxMCiRdY7dd06pXv+fOvU8sBA8PQkPvw2t9atpsSJ89xdU7avQ2OKffQ2pYEbcREsubiTxRd2cCvemiwr7xFA/3LN6Fa6Ae4m+1tHPFK2CXtunbE5TlNUWhStSlGX3K92y4mj20+w6ts1WdrGcFNJaObB+utH+OfKAWpFFGNv0EFio+MoUsqPFr0a45HYb9gO5gQzW5ftYuXXQVw6EYxm0qjVsjo9R3SmWuMHClR1nmEYTHp8Ktv+tPaWtaSoVk6seIwIjeR/7d9l1p5PKFmpeNYO4OlpTapCUiK3Sumi3AyPsqv6VlMVyhXzTbU9YE3S3kOzHVLKycuj1aPNeGfx//hy2GzCbkSgmTQMw0BRrD/bWoHVeX3+WHwDfHIvYAc4HXyTKzftW1BNNwxW7znhkORtYosPW69VVVFYsH6/JG+FEEIkkeStEEKIHKvRvBpr529Oc/ss6uFPLK25DFgrcB/iInz5P1jzc1JSichIa+I2vd6C+bgojLh3tejVmP/9MJLPnpmJkcEX6SoNK/H5undQVcdXTmomjaGTH2fwG4+wfsEWrpy6iuakUbleRSJuRbB85j+cPXQBADdPVzo/3Y5eIx+mTNU7bScWLICxY2H69NQ7Pngw6ffKGVIsJZjstx4N+er5DrjtnM34Gr356PASos1xqaplL0SF8NnRP1lwfiszGz9LcTdfux5X2+I1KONehOCY0ExbIhiGwZBKbezaZ15aPvOfVNWjthhAXC9fcLX2d/5s9e9oz5609j1XFXSLjoubM12ea89zHz9ms4dy8JlrjH/4A66cuoqqqUl9xa9fCCHopw207tuM134ajbOrcw4fae44uuMkW5bszHSMbtGJiYplwcdLeOnrLPYxDwiA4DttQjZvBsOgf5u6bDl8zuammqrQsUFVfD3drJnkzSn+ZgUEZC2OfFSxdvl0/96mR7foVKxdLkfHC+zdhKbdGrBl6S72Bh0gLiaeIiX96PBEayrWLhytjLK6EFhEtGMWDgvae8Kukwy6YbDv1GVuR8ZYX69CCCHue4phb9MkIbIhPDwcHx8fwsLC8Pb2zu9whBAOEhUeTf8SQ4mPjU9zn2oYvMD+pArcLBk1ypq4zYdFYcT9ISo8iu9fn8/6hVuIDo9B1VQq1i7H0x8Moli5oqycE8S6BVuIvB2Fu5cbrfs1p8cLnalQM+8WWEsUExlDQrwZDx93tIx+J/79F6ZOhRUrMu3fqSuwuckDLOzViF31KwIkLSIHZNjmQFNUyroX4ecWo+xupXA5+hbP7/yGkNjwNPvVFBXDMHi7dl+6lnZshXN2PFL0aSJuRaa6zVBAuevpMe5URptbeBA9oSRoyc+l1+AzqLdTLxqlqAo1W1Rj8uq3Mky83g4J44WGrxF6NTTD5LGqKjTv1ZiJi15JqsCNvB3F6h/Ws/KbIK6dC0EzadRoUY1eIx+mcZd6Gb92csHkIdNYN3+zXcluJ1cnfg/+Bg+fLPRKnTABPv44+frmzViaN+fJj+dz4nLGvW8VrP1Gfx4/mKplAqyJ21atkgeMH19oKm5Dr4cxqMxwLGbbC5EVrxDAT6em58kJqILsTPBN+r73k93jK5bwZ/HEIbkeR6MRU9Cz8NV72XtPUzbAN9fjEELkLsl5iLxwf/8lF0IIkSs8vN159qPB6d6nKwozlPq8prRmu1IKw9YcTkWBHj0gKAimTZPErXAoD28PRk9/jsUhc1kVt4CV0fP4auuHbFu+m2dqjOWPqX9x6+pt4mMTuB0SzoqvgxhaexzzJy3J81jdPN3w9vfKPPnWoQMsXw5nzlgTUnXropcqSZS7M9eLeHKiUjF+6N+cPnNf4JV3+iUlbsGasE38lxGLoXMuKoQ1V/+zO+7S7v783GI0z1Ruh59zcqJOU1Tal6jF981fKJCJWyDdE1JxA/3RfVL/DPQSTsS+EJAmcQtgeKT9uG3oBoe3Hufnd3/P8NiLv1zJreCME7dg7eW5ZclODm06CsDx3ad58oFRzH75Ry4cu0xcTDzRETHs/fcgb/X8mAmdPyA6IibTx5wT/20+ZneVckJsAucOX8raAYYPT90HYMYMNFVl2qg+VCxZBEjbJkBTFZxMGl8839OauAVre55EigLPZ7ECOB/5FfOhz4td7WqH8MwHg+77xC1Yk7HlivliTwcJVVHo0ri6Q+LwyGKFvJeNynwhhBD3D2mbIIQQIlf0ebErcTHxfP/mPFQ1eXovinUhosNuZXjkty9RavgXikVhRPZdOhnMzr/2EhMZi2+AN4F9mhT4nohgnbq/bPrf/PjOQiLvLGZ29wSlxB60378xD09fd3q80DnP47RLiv6dyy/uYtLhJVlaCy0zKgqLLmzPUsLV19mdYVU68EzldgTH3CbBMFPMxQdPJ9dcisox/Ev4EXzmWqrb4nv4EDfIH+10HETrGD4aekXnDJuLKhHpV0gausGfs1fzxMR+aapv4+MSWDlndfL7aCY0k8qy6asIKFOE1zq+R0xkbNrX7Z39HNhwhPf6fsakv990SK9cexO3yeNtV4+mUqECdOtmrSwHa3/0gQPx79mTH18dyModR1mwbh9ngm8B1mRZn8Ba9G9TlzKJFYzLllm3S9S9O5QvHNP/Ez338WOE3Qgn6McNqdppAEltPoZ/9iQPDW6VyV7uH4qiMPihBny8YK3Nsaqi0DuwlkPi6NSoKku3/GdXz9t6D5SSlglCCCGSSNsE4VAyhUCI+0/wmWusmBPE1mU7iY6Iwa+4Lx2faEPHIW3w9i9YixGJ3HXpZDBTR3zDvjWHUFQFVVWxWCxomsZDg1syYsrTePpmYYp0HjIMgynPz+Gvb+xfnMrT14OFV74uMP1GM/LD6fXMOfVvpj1ns8pVdWJjp3dzbX8F1a8fLubHiQtT9UWOGV6U+O6+aSps07AYaP/F4DnhcqbD3l8+nmbdG6a67ex/FxhW52W74/Qt5kNg7yb8/f0auxKon619h7pta9q9f3u91uk99q87bFfSGQXmnZ9NQJkiWTtIUBB06pR83c3N2vO5Z8+km2LiEkgwW/B0c0FVU/ycli2DgQMhNjb1/grhgpiGYbB79QGWz/ibnX/tRdcNnF2daDeoJb1GPkyVBpWyvW9zgpl9a//j5uVbOLs6Ubt1jaz/nAoYs0XnlTnL2fTf2XQ7yiSuCfneU53p3rSGQ2I4cSmEgR/+YtfYT4d2p32DKg6JQwiRuyTnIfKCVN4KIYTIVSUrFWfo5McZOvnxNPcl6GbWXTvM4gs7OBN5HRWF6j6l6VuuGS0CqqIpMr2zsDp/9BIvBr5BTIQ1KWLoBhbdWlVnMVtY8+smTuw+zZTNHxTIBO4/P6zPUuIWrL1FNy7aTofHWzsoqtzhbnLJUp9Fe9wvZ/67PteeeR/9QUJsQlI1q/PKMOJ7+treWFNwWX7b5rDb18PS3GaON2cpzoT4BIJ+Wm9X4lYzqSyb8bdDkrfdhnVk77+HbI5TNZUG7WtnLyHYsaO1H3ri4nwxMdCnDwwYACNGQGAgbi5OuLnc6clsGNYFMWfOtFbc6imeo1GjCmXiFqzVpI0716Nx53rouk5cTDyu7i45qqi2WCz8/ulyFk9Zmep1qagKzXs0Yujkx5MXSSxkTJrKp8N7MH3pFn7bsJ/4BAuapmIYYNF1Svh78Uq/trSr94DDYqhaJoDRvQOZtnRLpuN6NKvBQ/UdF4cjxcfGs2nxDk7tO4uh65R7sAxtBwbi7iVVxEIIkRNSeSscSs5CCSESBceEMnrXXC5E30BFSeqrqSkqFkOntm85vmjwJD7O7vkcqbCXxWxh6/LdrPp+Dfv+PWQz4aRqKh2fbMMr343IowjtYxgGQ2uP48LRy2mmm2dGc9Lo+UJnRkx52oHR5dzl6Fv02fhZru1PQaG6dyl+bDEy1/ZZkO34ay8Te3+CYRhJFaVx3X2IHVHMmhjMIFnmtPI2bjNCbPbZfHPhONr0a57qttshYfQvMdSu16OiQOkqpbh04opdjwegaGl/5l+cY/d4e5kTzDxb8yWunbueeSJZgU//nUi9dtmcnm6xWCtoFy1Ke1+dOhAYCJ6eEBlpTdwePJh2XL9+MH++9FW/w2Kx8NGgKWxcvD3dszOqpuLm6coXG96jUp3C1WbibhExcQTtOcHlG2GYNJW6lUvRrHr51FXaDrR400GmL9tCWFQsJs160tps0XF1NvFEh4YM79Y8z2LJLYlth354ewFRYdFoThoKYDZbcHF1pu/LPXjynf7Sg1nckyTnIfKCJG+FQ8kbmRACICIhhie2TudabFiGU7c1RaWadym+bTockypfpgu6i8cv83rXj7h69jqKqqSaVp4Zk7OJhZe/xrtIwWmhcfbQeYbVfSXL25mcNLoO7cDo6c85IKrcNWb3XHbdPJ1rrRPert2X7qUb5Mq+CoMj208w94357F+XvFBbfBtPEoYXx+yroimqNVFh6LjoJvjxKi6/h9pM3JqcTSy88nW6LWXe6vUxO//aZ7sFgQL9XunJ758ut/vx+Jf0ZeHlb+wenxXBZ64xru1EbgWHpoldM6noFoOxs4fRdWgOK14tFhg7NrkCNytGjYIpU3IlcXv+6CVWzFrNvrWHiI9NoETFYnR5tj0tH2mCk7NTjvefVxZ98Sdz/vdTpmX1qqZSpKQfP52ejslJJnDmRILZwtr9pzh+8ToW3aBiCX86NayKewFvw5ORn9/9nZ/e/S3TMZ2fbsfL377gkH7bQuQnyXmIvCB/dUWmJk2axB9//MGxY8dwc3OjRYsWTJ48mWrVquV3aEKIQuSPizsJjrmNYWMV+yNhl1h37TAdS9bJw+hEVoVcuslLrd8mMjQSwO7ELVing29dvpuHn27nqPCy7Gbw7WxtZ7HohWYK8Ws1ejFk2wyizHHpJnDVO2lGJ1UjQbckVcbfTVNUSrn50aFEbYfGW9DUaFaVT9dM5NKJK5zYcwaL2ULpKiWp2qQyO26e4lj4ZXTDoJx7UZp6VebJQS8QqyiZVs6qJpX2g1tm2Au8/yu92L5iT6ZxqZqKl58n3Yd3YtHnf9r1u6hqKmWrOe51W7JScWbtmcySr/7iz9mribhlfZ9QVIVm3RvR9+Ue1AqsnvMDaRpMmwa9esHUqdZFzDKrSVEU6+JkY8bkSqsEi8XCrLE/sGzG30mLhAFcO3edfWsOUbRMESateoMKNcvm+FiOZrFYWPzlCpv9UHSLTsilm2z7cw+tHmmaN8Hdo5xMGp0bVaNzo8L/nerEntM2E7cA/8xdR7PuDWnZR147QgiRVZK8FZnasGEDI0eOpHHjxpjNZl5//XU6derEkSNH8PAoeD0LhRAFj27o/H5+W6aJ20QqCgvPb5PkbQH36/uLiAiNRM/iyvJgTRyF3wh3QFTZ5+rhkq3tNJNG+8cKx2rupd39+a7ZC0zYP49TEVfRFBXDMFAUBYuhU8TFi/fq9Mekary4+wdiLfGpEriJdVIlXH2Z3vgZXLXCU1GYm8pULZUmYR8YUI3AgGpYLBZ2rNzL1F/m4F/Cj8sngzPcj2ZS8S/px7OTHstwTO1WD/LizGF8NeJrVFVNt4rV1cOVSX+/QalKxWneoxE7Vu6x2fdWt+j0eL6zHY82+3wDfHj6g0E8/nZfrpy6SkK8mYAyRfAp6oCKpA4drP/OnYM5c2DVKggJgYgI8PKCgADo0gWGD4cKFXLtsLNe+oHlM/8GSPWc63cS6LeCQxnX5m1m7fmE4uUDcu24jnB4y3FuXL5l11hVU/n35w05St5ev3iDlXOCWP/bViJvR+Hp60G7AYF0HdaBYmWLZnu/In8sv+sERkZUTWXZ9L8leSuEENkgbRNEloSEhFCsWDE2bNhA69a2F2iRKQRCiBtxEXRdN8nu8ZqisrXT+zKtroCKCouiX8mhJMQmZG8HCrw4cxjdh3fM3cByID42nv4lhxIVFm33Noqi0HtMF0Z8WbD73d7NMAwO3b7I6uAD3I6PwsPkQstiD6ZaMPB6bBh/XNzJ4gs7CEuwPiel3fwZUL453cs0xNPkmp8PIduiwqLYunw3oVdv4+bpSqPO9ShZqXiu7Pvsfxd4q+fHXDsXgqqlTbQqqoICKKqKxWyhRvOqvLlwnF0Ldu1be4iFk5eyJyi5b6uTqxMdH2/NwPF9kh7Dke0neKnVW5m2WVBNKiUqFOPb/77Ilyn98XEJODmbCv37+4Vjl3m2xlib4zSTSuen2vHS1887PqgcWL9wCx8OmmL3+KqNKjNj58fZOtZf3/zLVyOsLTtSvlbVO71fX5w1jK7Ptc/Wvu1y9mzqJH9kpLU/ckAAdO2a60n++0FP7yeIiYy1e/zS0B/w8JEiIHHvkJyHyAtSeSuyJCzMuvKsv79/PkcihCgsLLolS+N1OadYoJ3Ycyb7iVusi1016VIv9wLKBc6uznR9rj2Lp6y03V/0jha9GzPskyccHFnuUxSFOn7lqONXLsMxxVx9eL5KR4Y90J5oczyqouCmOWeYcLt67jor5wSl6vn58NMP0bRbAzRT/vevjomK5ZtXf+HvuWtJiE1A1VQM3VpX3KhjXUZOe5YyVUpme/+XTwUzrvXbREfEAKT7GjJ0gyqNKlO7ZXXaP96aKg0q2b3/+g/Vpv5Dtbl+8QbBZ66hmTQq1iqbJvlRo1lVXvtxFJOHTEdRSFMFp6oKRUv58/E/b+Zp4vb8kYssm/43//6ykZjIWFRNpVHnuvQa2YXGD9crlIncFbNXp5ukv5vFrBP0y0aGfvIEnr4FN1nl4p612Qduntk7gbN23ia+HJ7+QnmJz+WXw2bj5ulKu4GB2TpGhoKCrO01Vq5M214jIgKCg60L202eDN26WdtrdCw4JxkLKsMwspS4BYgKi5bkrRBCZJEkb4XddF1n7NixBAYGUqtW+qsDx8XFERcXl3Q9PLxgTY0VQuQ9PxdPXFQn4nT7En4lXH0K5Zf5+0V8DhK3qkmlSZf6FCtX8KYQD5zQh81LdnL9QkimUz/9S/ry7EeP0f7xVmj3+Cr1qqLi6ZRxkkbXdea+MZ8FnyxNNa3//JFLbFu+m5KVivPRX6/na1/gmKhYXmn3Dqf2nU2KL2XCbe+aQ4xqOp6vNn9A+RrZ60367fhfiY6IsZnIO/ffBT4JeivbSYtiZYvanFL+0OBWlK1emsVfrmD9wq1YzNaTZ77FfOj5Qmd6jXo41xcL1HWdPUEH+XPWP5zYfRrDMKhQsyzdn+9MWEg4U0d8g6opSb9XukVnz+oD7PxrHw8NbsmrP4wqEEn+rNi/7j+7T/QkxCZwat9Z6rVL/7Pz3SxmC7tXH+DyiWA0J41qjStTrfEDDv27WKtldZxcTCTEmW2OVVSFxg/Xz/IxLGYLs1/+0a6xs1/+gdZ9m+XO6yKrC9sZhrV/8ooVubqw3b1KURTcvFyJibA/getRgE9kCCFEQSXJW2G3kSNH8t9//7F58+YMx0yaNIl33303D6MSQhR0zqqJ7qUbsPTSLpsr3SsoPFJOeqEVZMXKZa8foWZS8fT1ZNTUZ3M5otzh7e/Fl5ve550+n3Bs56nU/fsUUFWVfi/35NlJg+Xkwh1z35jPgslLgdQJ0cTL186H8FLrt5m5e7Jd7QEc4fsJ81Ilbu+mW3RiImJ555FP+f7oV1n+2d64costS3fatVBYQpyZ1T9uoM+Yrlk6RlZVaVCJ8T+PYczMody8cguTs4liZYs6JEEaERrJxN6fcGjTUVSTmtQH+/b1cPb+eyhpnMWc+vlJ/N1aN38LXn6ejJpWMN8XMpLVk1gJcbbHG4bBsul/M2/SH4RevY2iKmBYb69UpzxDP3mCRp3qZjfkTHn5edL+sdas/mm9zV7mqqbS+em2WT7Gtj93E3otzK6xt4Jvs2PlXlr0apzmPsMw0C26fa9niwUGDoRFi9LeV6cOtGxpbZkQGQmbN1srb1OaPh2uXoUFCySBm4k2/VoQ9NN6u3re1m1TAw9v9zyKTAgh7h1qfgcgCodRo0axYsUK1q1bR5kyZTIcN2HCBMLCwpL+Xbx4MQ+jFEIUVAPKN09azT4jKgoeJhd6lWmUR1GJ7KhQsyyV6pS3JhbskNjHsFLdCkzb/lGBXrinSEk/pm77iK+2fECnIe1o0KE2Tbs14LlJj7Pwytc89/Fjkri948rpqyz4ZGmmY3SLTvitCH79YHHeBHWX6IgYVn23xmaFpG7RuXQimH1r/8vyMQ5uOGJX4hbAwGDfmkO2B+YSdy83ylYrTcmKxR2SuDUnmHmj20cc3nocIFXSz96qVMMwWD7rH0Iu3cz1+BypZKXiSe9t9ihm433PMAxmvfQDM178ntCrt6236QaJS5OcPXSB17t+yIbftmY7ZluGvDcA3wAfNFPmj+v5z4bgG+CT5f0f3X4Szcm+16HmpHFk2/Gk64ZhsG/tId559FO6ug3mYeeB9PR5gq9e+Jqz/13IeEdjx6ZO3KoqDBoEmzdj7NuBMfUtjEnjMaZPh/37rQncQYOs4xItWmTdj8hQzxGdbSZuwfq+0Hu0Y09eCSHEvUqStyJThmEwatQolixZwtq1a6lYsWKm411cXPD29k71TwghKngW4+P6gzEpatKiSClpioqr5szURk/j6yzT6QoyRVEY8Gov2wkrBVzcnek18mGm75jEzF2Tc21xKEdSFIUazasx7pvnmbz6bT74cwIDXu2VrWTFvWzlnCBU1fbHSN2sE/TTeqLCovIgqtR2rNxLXEy8XWM1k8q6+RnPLMpIvJ37B8CA2Og42+MKiU2Ld3B0+0m7E7UZUVBY9e2aTMfEx8YTfOYaV89dx5xge2q/o3V59iG7HreqKlRtWInyD2Zc+ACwZelOlkz9K8P7DcOayP34iakOS3QXLeXPlM3vU+5OrGpiElexvi86uToxevpz9B7dJd349q09xOxxP/DF0Nl89/o8Th84l2qMJcFs4xRuMgUwJ1hbflgsFr4cPodXO7zH9j93Y463/vxjImJZ9d0ahtV9mWUz/k67k6Cg1K0S3NxgyRKMH99Ar7kU43oDjJDWGNebYtzoghEzH6NFI5g3D5YssY5PNH06/PuvndHff6o0qMSQdwfYHNflufY07ykn6IUQIjukbYLI1MiRI5k3bx7Lli3Dy8uLq1evAuDj44Nbyg81QghhQ6tiD/JD85H8cnYjQVcPJbVQcFGd6F66AY9VbEkZ9/yZWi2y5qHBrTh94Dy/fboMRVXSJHJVk4qHtztfbnwv231ERcG259+Ddift4mMTOL77DA3a1wYg+Mw1/vrmX07uO4uhW/ujdh3WwWaCK6vCQsLTfX2mx2LWuR1i35TulIqU8rN7rGpSKVrm3lnwdem0v+xatMsWw9A5c+h8uvddPhXMH1NW8s8P64m7k/j29POg29AO9B7TlaKl8uf5bNGrMcUrBBBy8Wamj1/XDQa81tvm/v6YstL2c2lY9/fXN//alSjLjpIVizNn/2cc3HCE1T+tJ+TiTVzdXaj3UC06DWmb7qJrR7YdZ/KQ6Vw5dTVFhbfBgo+XUKN5VV6fN5bi5QMoUam4XdWZYP19TDzZN/eN+az6bk3S7XePA5g++jt8i/nQ9JFG/Bt8kO03TzL4/cnUSIxGVVEWLMDoEIdx8xGs9UspFlO1nMUIfweiF4P/9yg9e1pbJfTpA/qdY06dCh062BX//ejxt/riXcSLH96aT0RoFKY7VdZmswVXdxf6/68Xj735qMxeEUKIbFIMQ5b1FhnL6A/s3Llzeeqpp2xuHx4ejo+PD2FhYVKFK4RIEp4QQ3BMKAoKZdz9cTdlbaVrUTCsnbeJBZOXcvZQ8rRVJxcT7R9rzeNv9S3QLRJEzjzz4ItcPH7F7vEf/DmeBh3rMG3kt6z6fm2qBc4S+wu36tuM/80diZtH9layv9vfc9fx+bMz7RqraiptB7Rgwi8vZukY5gQzA0sPI+xGhF3jP/n3beo/VDtLxyiIDMPgYeeBOU7cAqBAYK/GvPPHq6lu3rf2EG/1+BhzgjlN0k7VVDx9Pfjk37epXLdCzmPIhovHL/NS67eJDI1MG5+qoOsGj7/V12ai9WZwKANLD7P7uMXLB/DLWfte1452eOtxXnnoHXSzjq6nfS1oJhXvIl5M3/kxru4uDCg9LKlyNjNOLiYWXvkGi9nCwNLDkxbey5ACHn1LEzbUjyhzHKWvhbH46Zmod77lbu3QkPK/f0TJ2NFAZl99NXBqhOL/k/U70ODBMH/+nWMocOYMVKhgM/77WXxcAluW7OT0fuvJubLVS9Omf3PcPKXoR9y7JOch8oJU3opMSW5fCOEI3k5ueDvJB/nC7qHBrWg3qCVnD13g+oUbOLmYqNqoMl5+nvkdmnCw4uUDuHzqqt3Ju6JlivDx41PZ9McOawVhiu0SE19b/thJxM1IJv39BiannH9EbdS5rt2Vt7pFp2m3hlk+hsnJxCNju/PDW/PJ7COTqqmUrVaKeu1qZfkYBVHiolG5QVXVpKn6iYLPXOOtHh8TH5eQ7s9Pt+hE3o7itU7vM/fYV/nynlO2Wmlm7fmE+R/9weof16dq0VGlYWUGvNqLVo82s7mfsJDwLB037Ibt8bGWeFYHH2TxhR1ciL6BikJN37L0K9ecFgFV021flFW6rvPR4CnoZgt6Br9jFrNO2I0Ipo/+jveWvka3YR1YPvOfTH8nFVWh+/BOePl58tuny9JNCt8tvo0XYU+7g9land3rr31JiVuA7zs9yPnt//DTg64Ud4nJZE8WSNgBCfvBuT6MGJGcvDUMmDMHJk2yGc/9zNnFiXYDA2k3MDC/QxFCiHuKJG+FEEIIkW2KolCpTnkq1Smf36EIBws+e42Vc4JY8+smwkLC7UreKapChZplCbl0k42Ltmc6Vtd19q/7j7XzNtNpSNscx1u0lD+BvZuwbfmuTKdrK4qCp58HLR9pmq3jDHitF8d3n2Lbsl3pJnA1k4qXvxfvLXvtnpkyrKrWFhA3Lt3K8b50XafLc+1T3bZ02ioSEsyZJvl0i074jQhW/7CeR1/qnuM4siOgTBHGzBzKc5Mf5/T+cyTEJRBQtghlq5W2ex9unlmrNHd1z3ymyvnIEEbu+p7rcWGoKOh3Kk133TzN9hsnqedXgc8bPIFXDk+g7v7nANcv3LA5TrfobP9zD9cv3mD4Z08SfOYaO1ftQ4FUvy+KYq2JbdylPkM/eRyA0wfOoSgKRibVsoabQsyYYqAbcGchzcBdp5PuP1mxGAdrlUHDYNbVWrxTfpeNiDWM6AUozvUhMBBq14ZDdxYaXLVKkrdCCCHyhSxYJoQQQgghMvX392t5quoYfv/8T25cvkWCHVOfAQzdoP//erF85j+omu2PnYqqsHTaqpyGm+SFL4bg6eeJZkr/2IqigAKv/TgKZxenbB1D0zTe/v1lnvnoMfxK+Ka6z+Sk0W5QS2bunkypyiWytf+CqvuwTihqzpLRiqrQ8Yk2lKyYvJhhQnwCq75bg25Hf1QDg+Uz/8lRDFmh6zq7/tnPO498ylPVxvDMgy8yecg0zh2+SK2W1WnQoU6WErcAJSoWo9QDJexK7GsmlRa9Gmd4/824CJ7f+Q03461tPPQUSc/EPvMHQ8/z8t6fk65n19alO1P0uLXFYMeKPTg5O/He0tcYPe05SlcpmWpE6aqlGD3tOd5b8ipOztbfRcMwyLSkHYhv5w0uSlLiFsA3LDrp8v6aZUBRsKASFFqW22ZnG7FawHzCelFRoGXL5LtCQmw/VCGEEMIBpPJWCCGEEEJkaPOSHXz+3KxsbfvoS915aHBLPnt2pl2VuoZucHLvGaLCovDwSbs4UlYVKxfAtG0f8V6/zzm17yyaSUPXdVRVwWLW8S7qxf++H5GtlgkpaZrGwNd60+/lHhzYcITQq7dxcXemdqsH8SlqX/+72Og41i/cyvYVu4kKi8a3mA/tBgTStFuDLCTJ8k7Xoe1Z+OlS4qLiMpw2b0vjh+sxds7wVLeFhYQTExlr3w4Ma0W4YRgOr2oOvXabN7pN4uTeM6gmNSm5fOX0Vf79eSNNuzfkjfljs9yzWVEU+ozuysyxc22OtZh1eozonOH9C89vIzQ+KlXS9m46BvtDz7El5Ditiz2YpVhTioqIsbu9mqqpRN1JqGomjZ4jOtPjhU5cOnGFiNAovPw8KFO1VJqfYfkHy4K1RjfDfZsbuVvvTrGpW4oWFjGuyclaCyq7I4rRwe+SrYiTL3qmaMkRYV9vayGEECK3SfJWCCGEEEKkS9d15rzyk638SRomZxMvzR5OxyFtsJgtWBJsLDh0l9jo+FxJ3gKUrFScmbsnc3THSdb+uonQ62G4ebjSpGt9WvRqnCv9dRNpJo0G7bO+INmWpTv55KnpRIfHJPXpVTWV9Qu2ULRMEd5d8j+qNqyca3HmBr/ivny08nUmdPmQhLiETFtTpMfVw4Vhnz6RpuJZUbM2MTAvWlHERMbwv/bvcvGEdZG+lFXBiY9716p9vPvIp3z41+toWtaS7V2HdWDD71s5su1Epic5+r/SkwfqVUz3vgTdzB8Xd2SauE2kKgq/nd+Wo+Stl5+n3c+9xaLjXcQr1W2KotisUu78dFt+fGdhpmMMdzVV1S1AjJsznncSuG6x8anv0239vmvglKI3dWRk8mUvr7TDhRBCiDwgbROEEEIIIfJBnCWB67Fh3I6PLrALhO5fd5irZ69nKXELYI43U6S0H4qiYHIy4elrfyJWM2l4+eVO4jaRoijUaFaVUdOe5a2F43jl+xG07ts8VxO32bXtz928++hnREdYF1JK7POamMS7FRzKuDYTOXvofL7FmJFaLR9k1p5P6PhkW5xcUjyXCqkqIdMTH5vA5Cenp7ndt5g3fsV97Dq+oipUrlvB4QnclV//y4WjlzNt5aBbdPYEHWTnX/uyvH9nFyc+WvUGLR9pAlgrVRVFQVUV6++Qs4mn3hvIc5Mfz3AfwTG3CU/IbDGuFLEaBofDLmY5zpTa9G+OxWzfSRlNU2meSbuHjBQtXYQuz7XPtD2HessCltRvULd93JMu1zt8KVXrBX+TrapuC4r7QOtFw4DNm5PvCgiwO3YhhBAiN0nyVgghhBAiD50Iv8J7hxbx0L/v0X39ZDqt/YD+m79k0YXtxFoS8ju8VE7sOoWaQb/YzGgmlTW/bkq63mlIW7t63momlTb9m+Psaqsv5b3BnGC+05LCyDBBrlt0EuISmDb6uzyNzV5lqpbi5W9f4Per3zJ9xyQm/vGK9bHYSPjrFp2Te85wfPfpVLdrmkbPEQ+j2tFP19ANeo/ukoPobdN1naXTV9l1gkXVVJZO+ytbx3HzcOWthS/zw4mp9P9fL1r1bUabAS0Y9ukTLLzyNY+9+WimSWqLoaNEWDBti8RpfQTaweg0Sc27x+dEndY1KPdgaZu/16qm0rpfC/yK2ZeQv9uoqc/QvEcj677uek1oJhWn9RGgpb59S+PkKvUqZ69T58hlADzVeBp6XM8sWnB5GMXpTkXyli3Ji5UBdHHsa00IIYTIiCRvhRBCCCHyyIrLe3ly6wxWXdlPgpFctXYh6gafHlnOsB1zCIuPzmQP2WexWND1rCVsLGYdxVYJZQbb3QoOTbqeWZ/OVNtZdHqP7prl4xVWW5buIiwk3NaaTOgWnUMbj3L+qK1enfnHw8eDao0f4NrZELsXMtNMGpsWbUtze48XOuFXwjfTxKBqUqlQqyxtB7TIdsz2CL0WxrVz9i1UpVt0Dm0+lqPjlX6gJM9+NJi3Fo7j9V/H0ndcD7z9M5+uf+PyTRaMXojXY2fweD8Y90+u4jn+Ml5DzuL8R2iaJK4ClHbzz1GciqLw1m8v4+rhkuHPSdVUSlQsxqipz2T7OE7OTry96GXemD+WB5tXTd63qtC8RyO+nPQyJV19UVO8Ty3pWg89xUuw34o9oBsU23oD1WJgSbPe4p02F86tUHw/Sb555szky4oCzz+f7cchhBBC5IQkb4UQQggh8sDum6d5/9AidIw0VW+JhYonIoL5375fcq2NQvjNCBZ+sozHK47gYaeBPOw8kOcb/I+/v19LXEycze1LVylh99TolBRFwc3LLel6mSol+d/ckSiKkm5iL7GicMSXT/Ng0ypZPl5htTfogN2LkSmqwt6ggw6OKOfCb0ag2VFlnTw+Ms1tPkW9+WztOxQp5We9IcVLxriza72sM3XnPITqnLPF3MJvRXBiz2lO7TtLTFTaKfUJcVmrhrckpMkMOlTwmWuMaPQaG37djHLXoZVbFly/vYHb5KupErgG8Gi5pjk+doWaZZm67SNq3EmqqpqK5qShqNbf85Z9mjB164dp+t1mlaZptB0QyJRNH7D09o/MvzSH5RE/M3Hx/6jfrjafNXwCN80Z7c77SHBxX7Y0fiBp+w4bj9JmwWFufBTFsy2r8/vMYoSGJLb5MIFzUxTfWSh+s1GUOwvOLVsGC1P02+3eHcqXz9HjEEIIIbIr/xt9CSGEEELcB747vRYFBSOzleAN60rwB26fp55fhRwd7+TeM4zv/AERoZFJfVQN3eDMwfN8/twsFn3xJ5OD3qZISb8M99GiV2M8fNyTVoq3l2EYNH64fqrbOjzeGr/iPsx9cwHHd51KdV/5mmV48p0BtHok5wmlwiQ2Os7uRL2qKsRF20645zdPXw903f6TDx4p+pOmVKZqKd7YPoExn3yJsTwE9VICKGCp5EJ8Dx8SWnryc9hWzu4PZXK9wZjUrCVxT+49w8JPl7F58fakRcdc3F3o/FRb+r7cg7CQcP7bfIzYyFhUTc10IbFEBqAVdclSHDlhGAZv9ZpM+M2IdBeMS8x5O22ORH8glLj+/qgo+Dl70KVU/TTjs6P8g2X4cuP7nDt8kZ1/7SU6Igafot60erQpRUsXyZVjpOTh7Y6Hd+rXTBWvksxt/gJfHlvJtpCTgMHCng1ptdP6PqPpBu///Bcf0ZRtl0vx02el2fRPC2bsmoSiqGnbUSxbBgMHQsqZCmPG5PpjEUIIIewlyVshhBBCCAe7GHWTPbfO2jVWU1T+uLAjR8nbkEs3ea3je0SFxyQlbhMlXr904grjO7/PjF2TcXZxSnc/zq7ODHi1N9+/Mc/+gyvW/p3tBgWmuathx7o07FiX0wfOcebAeQzDoNyDpanW+AGHLzpVEPmX8MPeh20x6/iV8HVoPLmhec9GfP3qz3aNtZgtBPZpkv59hs7rJxYS/bAnls7pJ3gNYPP1o/xydhNPVW5rd4ybFm/nw0FTACNV0jMuOo4/56xmxezV6LqBoloXDYt/wAntVByKrSJ0BSI6eXAt5jbF3Xztjie79q/7j/OHbS88pgDOS29jfrQIXq5uTGv8DB6m3E0yV6hZlvI1ynDx+BUibkUSeTsa/5J+qGreTPSs4FmMrxo9zaWom0ye/gP7zoWyqGYt+h7+DwBXLExkKxspx6YiDXhh6auoKRP+hmHtcTtzprXiNmXidtQo6NAhTx6HEEIIkR5J3gohhBBCONi5KPt6ZoI1aXUq4lqOjrd06l9EhcdkWi1oMeuc++8imxdv56HBrTIcN+C1XgSfvcaqb9egqkrmVZUKYMDYOcNx83DNcFjluhWoXLeCHY+kcLgdEsbufw4QFRaNl78nTbrUx9PXw+Z2Dw1uyaIv/rTrGE6uTrTMINFZkJSpWorqTatwfOepTKuKVU2lbLVS1GxRLd37t4YcJzjmts3jGcCC81t5vGIru6pvzx46z4eDpmCxWNJdVM2wJNfGG7qBRTeI6+mL+2fXMCDDDtCGArgoxHf25mTE1TxJ3gb9tAHNpKZbdXs39baFh4Ir8OLj/Snmmr3FwzJisVj465s1/PHVSi4dv5J0e4mKxegzuis9RnTCyTn9E0S57XDYJa630Iiv689nvbvh97GZ9nf6EGtAO+MC7a5egO5nIDAQPD0hMtKauD2YTluSfv1gypRsx2MYBvtPX+Hw+Wvouk75Yn60qFUBJy1n7T6EEELcXyR5K4QQQgjhYGoWq0qzOj6l+LgEVnz9r13TvFVVYen0vzNN3qqqyktzhtOwQx3++GolR7adSDvoTtLW3cuNsbOH025g2qrbe1Ho9TDmvPIj6xdsxWK2oCgKhmHg5OpEpyfbMnTyY3j4ZJzErdKgEjVbVOPYzpOZJuBUVaHLMw9luq+C4PqFED59ZibHdpzMdJyqqTi5ODH+lzEZVlyvurIfFQU9kzYjiW7FR7L31lmaFH3A5tjFX64AjHQTtxnRyzkTM644bl9cw1BAuetHZaiASSHq7VIY/ia7Ys4NIZdu2pW4TdRKrZzriVtzgpn3B3zB1mW70iS2r567zuyXf2Tbit18uGICzq7OuXrsu317ag1fn1qTFIeuqbwxvhc353jQ/889qQcfPJh+sjalUaOsidtsJlo3HTrDl39s5NzVUOt7ugK6buDv5cYzDzdhULv69+WMAyGEEFknyVshhBBCCAd7wLN4Yn7TJk1RedC7dLaPdfPyLaLD7etRq+sGZw6eszlOURTa9G9Bm/4tuBkcSlhIOOePXmJv0EFCr93G1cOFRp3r03ZAC1zd867nZ366GRzKiy3eIOTyTfQ7CbTEStOE2ARWfbeG/7YcY8qm9zOtwn1z4UuMbv4Gt66GJu0nJUVVqNbkAYZ+8oRjHkguuX4hhFFNJxB+M8Lm2LLVSzP+59E8UK9ixvuLDctSEvRmvO3jxkTFsmbe5iwlPAG0C/EktPFCL2bCZeEtnPbGJN1nqJAQ6EncQH/0itbXfnn3olnaf3a5urtg9xsL4OyW+8nTuW/MZ9uy3ennww0wMDiw/jDTR3/HuG9eyPXjJ9oScpyvT61JPGwSXVP5bEQnNjSvwoBle2i58yRqZs+XolgXJxszJketElbsOMLEH/5JKtXWjeQn6FZEDJ/9voHLN8J4pV/bXEngGoYhiWAhhLiHSfJWCCGEEMLBirv50iKgGttvnMBiY4Eqi6HnaCV4Xc9aYiqrRYJFSvpRpKQfleqUp92A+6PCNj2Tn5zGjRSJ27vpFp2Lxy4zdeS3vP7rixnup2jpIszYOYnvJsxj7bxNmBOSG6u6e7vRbWgHhrw3ABe3gp0U/2LobMJuRmT4fID1JECZaqX45uDnNhNNWe3J6qranpZ/KzgUc7w5S/sFcF4VRkI7byy13Ymu7Y5yLQHtcjyGqqCXd8bws36lUlGo7VuO8p4BWT5GdtR/qDY7Vu7NdBHERIqqUKf1g7l6/KjwaJZOX2Vz0T1DN/jnx/U89f5A/EtkvEBiTvx6dlOmldq76ldkV/2KlLp2mw93hFNz638QEgIREeDlBQEB0KULDB8OFSrkKJYrN8N496fV1kgyeWrmr9tP42rlaFu3cpaPYbbobDhwmgXr93PgzBUsuk4xX08ebVmHPi1rUcS7YFfpCyGEyBpJ3gohhBBC5IGhD7Rnx42TKJmkWlQUWhV7kOo+2a+8LVraHxd3F+Ki42yOVVSFstWzf6z71fmjl9i35pDNcbpFZ8NvW3n+8yczTVr5l/Djf3NHMvyzJ9m35hBR4TH4BnjToGOdQlHJfOlkMHuCbExBx1odePHYZU7uPUPVhpknrJoVrcr2GyftOrdgUlTq+2dcxZtIM2Vv+rv2XyzakRgs1VxBUzCKO2EunjZZrGPwTOV22TpGdnQc0oZvJ/xCQlzmCWlVU2nRsxFFSxfJ1eNv+G0b8XEJ9g3WDdb8sol+r/TM1RgAQmLD2X3rjF1jg4v78v7gaiyY+Uuux5Fo8aZDdr1uVVVh3tq9WU7eRsbE8dKs5ew5eQlVUaxVvcC10Ehmr9jGD6t38dXI3jSsUiYb0QshhCiI8mb5TyGEEEKI+1wNnzJ8Uv9xnFQT6l3dIROvNynyAO/X7Z+j47i4udD5qbaoJtsf8wzdoMcLnXN0vPvRunmb0ex4fsGasNz4+3a7xnoX8aJN/xZ0fa49LXo1LhSJW4AtS3aiavY9H5pJY9Mi289Ht9IN7FqATFNUOpasg6+z7UrDgDJF8C2W9Z6vCuD+3hXU8/GgG9Z/d8WgoDChZm+aB1TN8v6zy8vPk+c/fyrTMaqm4ubpyrMfP57rx7969homOxPiiqYSfCZnCzFm5Eac7ZYZiQwgJDbMIXEkWrnjaOYLO96h6wa7T1zilp1tbsD6fvK/r1ew79Rl6z7uqnrWDYPYeDOjpy/hTPDNrAUuhBCiwJLkrRBCCCFEHmlZrDqLW41jSKU2+N1JNmmKSgP/inxS/3G+bDQEVy3nfSkfGdsNJ2cnFDXjqemqplK8fADtBt2/rQ+yK/TabUizPFP6NE29M/7eFRkaiZrJay0VBSJCo2wO83Zy45UHe2Q6RlNUvJ3cGFGlk12H1kwaPUd0tj/WFNRwHc+XL+L6zQ1MN5JbW2iKSvsStfi+2fP0Kdsky/tNKTY6jgvHLnPh2GVi7aicB+g5ojOjpj2LyUlL9fuemEwvWtqfLze+R5kqJXMUW3pMTiZsdExIPd7ZMZM+XbSs7ddFs91iIyfComJsD0rhdhbG7z15mR3HLqRJ2qakGwYJZgtz/9mVpTiEEEIUXNI2QQghhBAiDxV38+WFqp14oWonLIaOipLrC82UfqAkH66YwBvdJ5EQl4BuSd2HVFEVipTyY3LQW7h5uObqse8Hrll4znTdyNL4wsjD18OuSkMADPD0dbdraJ+yTVBQ+Pzon8Tr5sTN0RQVi6FTzr0onzd8guJuvnbH2mvkw6z6bg23gkOzvHCZEmfg9mcYjzfoxMP9OxOvm/Fz9sD9rv68hmFweMsxjmw7QUK8mZIVi9Gid5MMK6mvnL7K4i9X8M8P65Panbi4WyvoH32pO6Uql7D5mNoOaMHf369j9z/7iYmKpWhpfzo+0YZm3Rtmu12ELQ82r4rFbLE9ELAkWKjR3DFVyeXci+Lv7Mmt+EibYzVFpVnRKg6JI5GbsxNxCfY9LwBuLvYnk3/bcABNVbDY+H2z6Ab/7D7Oy33b4OvpZvf+hRBCFEyKYavDvBA5EB4ejo+PD2FhYXh7e+d3OEIIIcR9JfjsNZbP+Ie/vv2X6HBrdVfR0v70GvkwXYd1wNvfK58jLJx2/bOf17t8aPf4WXs+4YH6tnuyFlYXj1/mmQfH2j1++o5JVGv8gN3jI82x/HV5HztvniLWEk+Aiw9dS9enkX+lbJ34CD5zjfGd3+fK6WuoqpKUeFYUJcPFtwxA8TNRrn45PvnjDYpk8Ll29+oDzHppLheOXkbVVBRFwWK24O7txqNju/PYW4+iacnJ1P+2HOP1Lh8SHxufJpmsmlScXZyYtOoNarXM3cXGcoOu6zxReRTXL4TYXPjQu4gXCy7PwcnZMVWv351ayzen1mS4YFlKPzQfQQ0fx/WDfffn1azYfsRmglVRoGIJf35/60m7X8fd3/yOKzfD7Y7l+1f6U6+y9DUXwpEk5yHygiRvhUPJG5kQQgiR/yxmC2E3wlE1Fe8iXqiqdM7KCV3XefKBUVy/cAMjkwSNqqk8UL8iM3Z+nIfR5Y//tX+XgxuPpKnyTknVVCrWLsfsvZ/mYWTpi49LYPMfO/hz1j9cPGZNtFZr/ADFKxZj9Q/riImIRTOp6BrEP+RFbHcf9IrWylkVhdbFHmRghUAapFgobdPi7bw/4AswSD8JrEDb/i2Y8OuLqKrKjSu3eLbGWGIiYzN8HamqgouHC98fmZLrC47lhi1Ld/LOo5/aTN6++sMoOj7ZxmFxRJpjeWbbLC5G38RipP8aVIDeZRozoVYfh8UBcPTCNR6bNM+usa8Pbk/fVnXs3nfXN77l6i37e/x+O64fDWThMiEcSnIeIi9I8lY4lLyRCSGEEOJedGDDYV7r+D66rqebeFM1FSdnE1M2f3BPV90mCj57jdFNJxBxOwo9nXYEqqbi6uHC1K0fUr5GWSITYjl0+wJxupkAFy9q+JTJ9fYh2RUbHce6+Zs5sP0oG1ve4EaxeBQldX4ysXXDyKqdGVKpDaHXw3is/AuY480ZVu8meunr5+n6XHt+eGsB8z9ekmnCG6zP3aDxfXjq/YG58Ohy3w9vL2Deh3+kedyKqqAAI6c+S88Rjl8Y8VZcJP/b+zOHwi4m/XzAmmw3MOhfrgVjH+yKpjj+5NVXSzbx4+rdGd6vKgoNq5Zh+ug+OGn2t7UYPX0J24+et1nVC9bK3r8nDSXAx9Pu/Qshsk5yHiIvSPJWOJS8kQkhhBDiXrVv7SE+HDSFsBBrVbNu0VFNKrpZJ6BsESYu/h/VGlXO7zAzdTn6Fosv7mBN8CEizLF4ObnRqUQdHinXhJJuflnaV/CZa3zy1HT+23wM1aSi3mlDYDHrVGlYidd+HIV7JR++PbWGlVf2JfWxBSjj7s/jFVpZ+9wWkCTu+H3zWH/tsM2p+O/XGUDoT2f4/s35mVZig7U1Q7kHS/P1wc/pX+I5wm7YV0XpXcSLRde/KzDPDViri+e+OZ/5k5agagq6Je1j7/RUW175bkSexW0YBgdvX2DpxZ2cj7qBk6pRx7c8fco2oZR71l7POY3ju1U7+WbVDsxmi3UxOQNQrPc93Lg6bz3WEdfLF2HOHFi1CkJCIDISPD0hIAC6doXhw6FChaT9bjh4mpdmLbd5fE1VaFmrIl++0MtxD1IIAUjOQ+QNSd4Kh5I3MiGEEELcy8wJZrYs3cXWZTuJvB2NT1EvWvdtTuMu9VL1Ni2IFp7fyhdHV6IqYEnxlUDFmmh7rWYv+pRtkuX9nj10no2LthNxKxJPXw9a9G5M1YaVuRx9i+e2z+Z2QnSaqe0K1txWj9INebPWI/mepDwbeZ0Bm6fYNbace1H8Rl7i3OGLdu9/xq6PGdl4fJZiWhb2E+5eBWfxqaXTVjHjxe9tjnv6g0EMfv2RPIio4ImIjuXP7Uc4cv4aum5QtpgvvVrUotTeHTB1KqxcCZl9HVcU6NYNxoyBjh2x6DqDP/qVM8E3M62+VRWF718ZQJ1KJR3wqIQQKUnOQ+QFSd4Kh5I3MiGEEEKIgmfF5b28d2iRzXEf1B1Ap5J1c3w83dAZuPmrTHuSJnrlwR70L988x8fMiSnH/mLh+a02Y01UekgwkSGRdu9/ctBbvNbx/SzFtCLqF1zcXLK0jaPExyUwsNRQIkKjbI519XDht+BvcPPMvcSzOcFMVFg0Lu4uuLoXjOfELhYLjB0L06dnfdtRo2DKFEIiYhg+ZRHnr4emyftqqvWkx4fPdKFTw2o5j1cIYZPkPEReMOV3AEIIIYQQQoi8k6CbmXrsL7vGTjn2F+1L1M5xn9CdN09zLirErrE/n91I33JNUfOgN2lGzkVetztxC6B5OoF9Dw8A3wAfylQrxeUTVzItvARAgdJVShaYxC3A1qU77Urcwp0ewgu20vW59jk+7ok9p1k6bRXr5m/GnGABoEaLavQe1YXW/ZoV7Gp3iwUGDoRF6Zw0qVMHWra0tkyIjITNm+HgwdRjpk+Hq1cJWLCAn8cP5o/Nh1iwbh/BdxYwczJpdGv6IIPa1adK6aJ58IDEPe/s2Sy19RBCOI4kb4UQQgghhLiPrL92hNsJ0XaNvREXwdaQ47Qq9mCOjrni0p5Ui0hl5lpsGPtDz9PAP/8WelOz2LbhgYerse/rnTYXHwMIKFuE8jXL0HtUF6aP+c6u/fcZ3TVL8TjamYPnMTlpSQnUzJhMGmcPnc/xMZdOt7Zp0DQVS4pF8Y7tOMlHW4/z7y/1mbjoFZxdnXN8LIcYOzZ14lZVYcAAGDmS47UqsDHkGFHmOHyc3Gk/+R3KHTgBM2bAwoWg33m8ixbB2LF4TJvGEx0a8thDDbgVEU2CxYKfpzuuzvL1XuSCoKCM23pEREBwsPXkwuTJqdp6CCEcJ/9OZwshhBBCCCHy3OGwS5jsrGo1KSqHbtvfyzUjwbG3s1TJej02LMfHzIlq3qWSev/ao8fwTtjTjU5RFXqN7IKmaXQa0oYyVUqimTL+WWgmldIPlKTTkDZ2x5JX8rL33uYlO5gx5nswSJW4BZIS5rv+3s+Xw+bkYVRZEBSUulWCmxssWcLpOV/ylHqAJ7bN4PvT6/jt/FbmnAyi7+YvGe18nOvfz4IlS6zjE02fDv/+C4CqKhT18aCkv7ckbkXOWSwwejR06gQrVmTejxms969YYR0/erR1eyGEQ0jyVgghhBBCiPuIxcjaF+ysJF0z4qo5ZWm8s5q/iaheZRrblZxUUKjuXZrAOrUZ9skTmY5VNZUHm1ahz5guALh5uvHJvxMpXcW6qJSqJieLEy+XeqAkn66ZmKv9YnNDhVrlsNhRdQtgNluoULNsto9lGAY/vLXA5iJ2hm7w7y8buXL6araP5TBTpyZfVlVYsIBT7Zrw7PbZHAu/DFh/z8yGjn7nlbf71hme3jaT653awIIF1u3S258QuSGxrUd6/Zjr1IERI+DVV63/16mTdsz06dbtJYErhENI8lYIIYQQQoj7SBm3IljsXLPYYuiUcffP8TEb+VdGsbOSVUWhjm+5HB8zJ0q4+dK3XFO7Ih5ZtRMAfcf14MVZw3D3tiZaNZOGalJRNRVFUWjdtxkf//Nmqmn9AWWKMGvvp0z4ZQzVm1bB3csNdy83qjetwoRfxjB736cElCniiIeYIy0faYqnr4ddY13cXGg3qGW2j3V0x0nOH7lkV2Wzqqms/PrfbB/LIc6ds04/TzRgAEaPHrx5YAGxlnj0DB6XxdC5FR/FJ0eWQ8+e1hYLiVassO5XiNySXluPQYNg82Zu7tjEtndeZPPLT3Phk3dh/35rX+ZBg1KfVLjT1kMIkftkboUQQgghhBD3kc6l6vHV8b8w25EMc1ZNdCyRTpVVFvUs05CvT/1rM2msKSrtitekqGv+r9j9UvVuRJpjWXVlf5p+vaqioKAwsXZfmhatknR79+Ed6fBEa9Yv3MrRbcdJSDBTskJxOj3VluLlA9I9jrOLEw8NbsVDg1s5/DHlFmcXJx5/qy+zX/7R5tgBr/bC3Sv7lcPnD9vftkO36Jw7fCHbx3KIOXNSTz8fOZIDt89zJvK6zU0ths6m68e4GnObEiNGwPz51jsMw7rfSZMcFLS4r6TX1mPBAk63a8K3p9aybv1fSRXhAHV9y/NM1XY0nzfPWm07cCDExFjvnD4devWCDh3y+EEIcW+TylshhBBCCCHuI77O7jxStqnNSlgF6Fe+OZ5Orjk+ZhEXL56vkvmCNioKbpqzzXF5xaRqvFO7HzMaP0urgOq4qCYUwNfJncHlW7Ko1TgeLlUvzXau7i48/HQ7Xvr6eV6dO4onJvbLMHFbmD0ythv9/9cLIE3fXvXO9R4vdOKxNx/N07hstVfIc3/9lXy5Th1o0YK1Vw+j2dl3GmDDtSMQGAi1ayffuGpVLgYp7mvptPXY27I2T22bxfrrR1IlbgEO3b7Ai3t+YNGF7daqcGnrIYTDSeWtEEIIIYQQ95kXq3fhcswttoQcRyH14lMKCgYGbYrVYESVTrl2zCcrtsYwDGafDAJISgioKOgYFHHxYkqjIZTzKJprx8wpRVFoXKQyjYtUBqz9VwtccjCfKIrC0MmP06RLfZZOX8XWZbvQLTqKqtCkS316jexCw451cvx8VapT3u6xqqZSsbb94/NESEjy5ZYtQVGISIixe3NNUQg3x4CiWLc/dCjtfoXIrnTaetx+uD3jNnxGgm5Ok7iF5PfuT44sp4pXSeomtvVIrAxPbOtRoYLDwxfifiHJWyGEEEIIIe4zTqqJT+s/zvJLu1lwfivnopITQZU8izGwQiDdSzfIUnWgLYqi8FTltnQtXZ+lF3ex/cZJYizxFHf1oXuZhrQtVgOTquXa8RxBErdp1W1bk7pta2JOMBMdEYObpytOzllboC4zVRtVplKd8pw9dMFm31td1+k2rIBN146MTL7s6QmAVxaq2S2GgZfJNdX2AERE5EZ04n6XTluPPy/vIcYSj2Fj2UZNUZl3bjN1/cpbFzKTth5COIwkb4UQQgghhLgPmVSNR8o1pU/ZJlyKvkWEOQZvJzdKu/k7NElZzNWHYVU6MKxKAUuyiRwxOZnw9vfK9f0qisLTHwzirV4fZz5OVej8VDtKVCiW6zHkiKdncqL1TiK3bfGaLDi/1c4dGLQpXiPV9gB45f5zLe5D6bT1WLrpC5uJW7D2ZN5w7QjhCTF4J7b1SKwMX7VKkrdC5CLpeSuEEEIIIcR9TFEUynoUoYZPGcq4F5HqUlHgNOvekJfmPI+iKGn762rW64G9mzBm5nP5EV7mAlL0O968GQyD+n4VqOARgGqj77SmqAQGVKekm5+1mnHz5vT3K0R2pdPW43psuN2b6xjcjItIbuuR3n6FEDkmyVshhBBCCCGEEAVa1+faM+fAZ3R9rgMu7i6Atdq2XruavLv0Vd76bVyutmvINV27Jl8+eBC2bkVRFD6oOxAXzSnDBK6mqPg6ufNaTeuicGzZklzVCNCliwODFveNdNp6OGWxfY2zakq1PSBtPYTIZdI2QQghhBBCCCEKKcMwOLD+MAc3HCEhLoFi5YrSZkALh7QwyG8Va5VjzMyhjJ7xHHEx8Ti5mNC0gt0nmeHDYfLk5L6iM2ZAYCBVvUvybbPhvHtwEScigtEU9c7igQYWw6CeXwXeqd2X4q4+1u1mzkzep6LA88/n+UMR96B02no08q/EppBjWAzd5uZFXbwo4eabantA2noIkcskeSuEEEIIIYQQKZw9dJ7VP27gxuWbOLk6Ua9tLdr0b46Lm0uexmHRdS7fCCM23kxRbw/8vd1T3b979QGmjfqWK6euoplUFEXBYtaZ+dIPPPzMQ7zwxRCcXZ3zNOa8oCgKru55+7PItgoVoFs3WLHCen3hQhg4EHr2pIpXSX4JHM2RsEtsvH6UyIRYfJ3daV+iNhU9U/TuXbbMul2i7t2hfPk8fRjiHhUQAMHB1st32nr0K9+c9deP2NxURaF/uebWhS2lrYcQDqUYtpbsFCIHwsPD8fHxISwsDG9v7/wORwghhBBCiAyFXg/jo0FT2L/uPzSTiq4bKIqCbtHx8HFn5NRn6PhEG4fHERUbz28b9rNw/QGu37ZWsylA8xrlebxDQ5o9WJ6ty3bxzqOfgmGtvr2boirUaV2DSX+/UTDbCdxPgoKgU6fk625usGAB9Oxpe9tly6zJ3tjY1PvrIAv+iVwwYQJ8nGIxwM2bMVq0YPz+eay/diTDhcs0RaWMuz9zm43A08nVmrht1Sp5wPjx982CZZLzEHlBkrfCoeSNTAghhBBCFAYRoZGMbvY6V89ew2LOeLrwm5N60yb0kHU19ZAQ61RhT09rpVnXrtZp8hUqZDuO0Ihohn25iDNXb6VJymqqgkU3GNa5CSsen0l8TDyZfZtTVIWn3x/EoAl9sh2PyCWjR8P06cnXVRUGDIARIyAw0NoKIZFhWHvczpxprbjVU7weR42CadPyLm5xbzt3DipVSm7rMWgQzJtHvG7mvUOLWB18EE1Rk1ooJF6u5lWKLxs+SVHXO9/xBw+G+fOtlxUFzp69b6rDJech8oIkb4VDyRuZEEIIIYQoDGa99ANLp69Ct6SfuG1gXKM3p2hKcOarPiuKdZr8mDHQsWOWYjAMg6c/W8jhc1ex6Jl/TfMKOo7zmZs29+lf0o95F2YV/N6w9zqLxVpBu2hR2vvq1LEmcD09rScDtmyxLm52t379rAky+VmK3NSjR3JbD1WFJUuSqsJPhAfzx8UdHLp9AYuhU8EjgD5lm9C4SGVU5c474bJl8MgjyScZevSA5cvz4YHkD8l5iLwgyVvhUPJGJoQQQgghCrqYqFgGlBxKTGRsmvtUw+AF9tOb01nf8ahRMGWK3cm2/acv88xnv9keaBhot6LxWXQAxfZovtryATWaV7MrBuFAFguMHZu6AtdeWXwtCWE3aeuRI5LzEHkh05PGQgghhBBCCHGvO7zleIaJ2zfYnn7itk4d65T3V1+1/l+nTtox06dbExsWi11xLNn8H5pqx1c0RcFSxANLUQ+79htxK9L2IOF4mmZteRAUZK1OVGyk3hXFOi4oyLqdJG6FI3TsaD05kCgmBvr0sbZCuLOIWSqJi5MNHmytuE2ZuB016r5K3AqRV0z5HYAQQgghhBDi/mUYBvvX/cdf3/7LxaOX0ZxM1GxRje7Pd6Jc9dJ5EkN6iVuAF9hPay4nXbcAGyjLrsoteHX3+6BfBcUFTDVQFA/YuhVmzEjdp3TRImu1pR19Ss9evYVFz7jf7t0s3q6YbkTZHOfha1+SV+SRDh2s/86dgzlzkvsnR0SAl5e1f3KXLjnunyyE3aZMgatXk9t66Lq1Rcf8+Vlr6zFlSl5GLcR9Q9omCIeSKQRCCCGEECIjt66G8maPjzm55wyaSU1aKEw1qehmnYefaceYmUNxcnZyaByHNh1lXJu3U93WwLjGZDYlXY9F4yOasl0rRf3WOpPmHUox2hXcHkHxfB5FK2Ht9zhwoLWCLZEdU4mf+Wwh+09fsTtuz9XHcDl7K9MxPgHeLLg0B5OT1O0IITIhbT2yRXIeIi9I2wQhhBBCCCFEnosKi+Lldu9w5sA5gKTELYB+5/I/c9fz2TMzcXS9SY0WVSlSyi/Vbb05lXTZAnxEU7YppTB0eKjPpbv2EAsxCzFuPoJhPmvtFblggXXxn0RTp9qMo3bFkmiqPV1sAcPAFJJ51a2iKvR8obMkboUQtklbDyEKLEneCptmzJhBhQoVcHV1pWnTpuzcuTO/QxJCCCGEEIXc0ul/c+VkcKqk7d0Mw2DtvM0c3nrcobFomkbv0V1R7iQrihtRNCU46f4NlGWbUgpVNfDyM9O6++109mIBPRQj9DkMw2xN4A4YkHz3ihXWafKZ6Nu6DhbddqJaVRWq+/ugRcWR0YplqqZStWFl+r/ay+b+hBAiSYcO1tkDZ87A+PFQty6UKmVt6VGqlPX6+PHW+5cvlx63QuQBSd6KTC1cuJBx48YxceJE9u7dS926dencuTPXr1/P79CEEEIIIUQhZTFbWD7zb3Q7EpWaSWX5zL8dHlPfcd1p/HA9FEWhG2dSfVFaTmVU1UBzMpj4/Tlc3DKK2wKWixC3znp1xIjkuwzD2t80E2UDfOnbqk6mBW+KApqq8ubw7rz9+yv4l7BWDGtOGpqThqqpKKpCm/4t+HTN27i6u9h+8EIIcbcKFWDSJNi/Hy5fhvBw6//791tvl37MQuQZ6XkrMtW0aVMaN27M9Dt9b3Rdp2zZsowePZrx48fb3F76vwghhBBCiLtdOnGFp6u/aPd4n6JeLLr+vQMjsjInmPlx4m88NHkkFfXbAJzGh+fpQI0mUbzw3hWq1o3JfCdo4NIa1W+ONWFbty4cutMft25da+IjsxgsOu//EsSf24+gqUqqSlxFUXB1MvHFCz1pWr0cYE2E71i5l4MbDhMfZ6ZYuaJ0eLwVRUsXyeazIIQQwl6S8xB5QZofiQzFx8ezZ88eJkyYkHSbqqp06NCBbdu2pbtNXFwccXFxSdfDw8MdHqcQQgghhChc4mMTHDo+u0xOJp79aDDG3Ffg6m0AlFYtmfPlACqUfsPOvdypvgVrmWzLlsnJ25AQ2zFoKu882YlHWtXmt/UH2Hb0PPEJZgJ8POkVWJNeLWrh5+mWNF4zabTo1ZgWvRpn4ZEKIYQQorCQ5K3I0I0bN7BYLBQvXjzV7cWLF+fYsWPpbjNp0iTefffdvAhPCCGEEEIUUv4lfa29Wu2cA1i0TN5WkSpRkUmXKzWviVGrJEZoVvbgnHzR0zP5ckSEfcdXFOpWKkXdSqWyclAhhBBC3IOk563IVRMmTCAsLCzp38WLF/M7JCGEEEIIUcD4BvjQpEt9NJPtryOKotD1ufZ5EFUKKROukZHgVAtwsnNjDZybp94+kZdXbkQnhBBCiPuIJG9FhooWLYqmaVy7di3V7deuXaNEiRLpbuPi4oK3t3eqf0IIIYQQQtyt77geWMx6pmNUVcHV05VOT7XNm6ASBQQkX968GUXxAdcegGbHxjqK+yDrRcOAzZvT368QQgghhB0keSsy5OzsTMOGDVmzZk3Sbbqus2bNGpo3b57JlkIIIYQQQmSu/kO1Gf7Zk4A1SXs3VVMxOTvx/vLX8PbP44rVrl2TLx88CFu3oniOAsUTmwlc96dRTNbFxNiyJbnfLUCXLrkeqhBCCCHubZK8FZkaN24c33zzDT/++CNHjx7lhRdeICoqiqeffjq/QxNCCCGEEIVc33E9eHfpqzzQoFKq2xVVoXnPRkzb/hF129TM+8CGD7cuNpZoxgwUUxkU/19BTayeTflV6k5C1/1pFK9Xk2+eOTP5sqLA8887KmIhhBBC3KMUwzDsXCZA3K+mT5/Op59+ytWrV6lXrx5Tp06ladOmdm0bHh6Oj48PYWFh0kJBCCGEEEJk6Ox/Fwg+fQ3NpFK5fkWKlvLP34B69IAVK6yXVRWWLIGePTGMeIhdjRGzCCyXQXEB5xYo7oNQTBWTt1+2DB55BHQ9eX/Ll+f94xBCCOEwkvMQeUGSt8Kh5I1MCCGEEEIUSkFB0KlT8nU3N1iwAHr2tL3tsmUwcCDExqbeX4cOuR+nEEKIfCM5D5EXpG2CEEIIIYQQQtytY0cYNSr5ekwM9OkDgwdbFyG7uwYmcXGywYOtFbcpE7ejRkniVgghhBDZIpW3wqHkLJQQQgghhCi0LBZrBe2iRWnvq1MHAgPB0xMiI62Lkx08mHZcv34wfz5oNhY6E0IIUehIzkPkBUneCoeSNzIhhBBCCFGoWSwwdixMn571bUeNgilTJHErhBD3KMl5iLwgbROEEEIIIYQQIiOaBtOmWXvW9ugBipL5eEWxjgsKsm4niVshhBBC5IApvwMQQgghhBBCiAKvQwfrv3PnYM4cWLUKQkIgIgK8vCAgALp0geHDoUKF/I5WCCGEEPcIaZsgHEqmEAghhBBCCCGEEOJeJDkPkRekbYIQQgghhBBCCCGEEEIUQJK8FUIIIYQQQgghhBBCiAJIkrdCCCGEEEIIIYQQQghRAMmCZcKhElsqh4eH53MkQgghhBBCCCGEELknMdchy0kJR5LkrXCoiIgIAMqWLZvPkQghhBBCCCGEEELkvoiICHx8fPI7DHGPUgw5PSAcSNd1rly5gpeXF4qi5Hc4BU54eDhly5bl4sWLsjKlyBF5LYncIq8lkVvktSRyi7yWRG6R15LIDfI6EikZhkFERASlSpVCVaUzqXAMqbwVDqWqKmXKlMnvMAo8b29v+cMvcoW8lkRukdeSyC3yWhK5RV5LIrfIa0nkBnkdiURScSscTU4LCCGEEEIIIYQQQgghRAEkyVshhBBCCCGEEEIIIYQogCR5K0Q+cnFxYeLEibi4uOR3KKKQk9eSyC3yWhK5RV5LIrfIa0nkFnktidwgryMhRF6TBcuEEEIIIYQQQgghhBCiAJLKWyGEEEIIIYQQQgghhCiAJHkrhBBCCCGEEEIIIYQQBZAkb4UQQgghhBBCCCGEEKIAkuStEEIIIYQQQgghhBBCFECSvBWigImLi6NevXooisL+/fvzOxxRyJw7d45nn32WihUr4ubmRuXKlZk4cSLx8fH5HZooBGbMmEGFChVwdXWladOm7Ny5M79DEoXMpEmTaNy4MV5eXhQrVozevXtz/Pjx/A5L3AM+/vhjFEVh7Nix+R2KKIQuX77M448/TpEiRXBzc6N27drs3r07v8MShYzFYuGtt95K9Tn7/fffR9aAF0I4miRvhShgXn31VUqVKpXfYYhC6tixY+i6zpw5czh8+DBffvkls2fP5vXXX8/v0EQBt3DhQsaNG8fEiRPZu3cvdevWpXPnzly/fj2/QxOFyIYNGxg5ciTbt28nKCiIhIQEOnXqRFRUVH6HJgqxXbt2MWfOHOrUqZPfoYhCKDQ0lMDAQJycnFi1ahVHjhzh888/x8/PL79DE4XM5MmTmTVrFtOnT+fo0aNMnjyZTz75hGnTpuV3aEKIe5xiyGkiIQqMVatWMW7cOBYvXkzNmjXZt28f9erVy++wRCH36aefMmvWLM6cOZPfoYgCrGnTpjRu3Jjp06cDoOs6ZcuWZfTo0YwfPz6foxOFVUhICMWKFWPDhg20bt06v8MRhVBkZCQNGjRg5syZfPDBB9SrV48pU6bkd1iiEBk/fjxbtmxh06ZN+R2KKOS6d+9O8eLF+e6775Jue/TRR3Fzc+OXX37Jx8iEEPc6qbwVooC4du0aQ4cO5eeff8bd3T2/wxH3kLCwMPz9/fM7DFGAxcfHs2fPHjp06JB0m6qqdOjQgW3btuVjZKKwCwsLA5D3IJFtI0eOpFu3bqnen4TIiuXLl9OoUSP69etHsWLFqF+/Pt98801+hyUKoRYtWrBmzRpOnDgBwIEDB9i8eTNdunTJ58iEEPc6U34HIIQAwzB46qmneP7552nUqBHnzp3L75DEPeLUqVNMmzaNzz77LL9DEQXYjRs3sFgsFC9ePNXtxYsX59ixY/kUlSjsdF1n7NixBAYGUqtWrfwORxRCCxYsYO/evezatSu/QxGF2JkzZ5g1axbjxo3j9ddfZ9euXYwZMwZnZ2eGDBmS3+GJQmT8+PGEh4dTvXp1NE3DYrHw4Ycf8thjj+V3aEKIe5xU3grhQOPHj0dRlEz/HTt2jGnTphEREcGECRPyO2RRQNn7Wkrp8uXLPPzww/Tr14+hQ4fmU+RCiPvVyJEj+e+//1iwYEF+hyIKoYsXL/Liiy/y66+/4urqmt/hiEJM13UaNGjARx99RP369Rk2bBhDhw5l9uzZ+R2aKGR+++03fv31V+bNm8fevXv58ccf+eyzz/jxxx/zOzQhxD1Oet4K4UAhISHcvHkz0zGVKlWif//+/PnnnyiKknS7xWJB0zQee+wx+UAg7H4tOTs7A3DlyhXatm1Ls2bN+OGHH1BVOVcnMhYfH4+7uzuLFi2id+/eSbcPGTKE27dvs2zZsvwLThRKo0aNYtmyZWzcuJGKFSvmdziiEFq6dCl9+vRB07Sk2ywWC4qioKoqcXFxqe4TIiPly5enY8eOfPvtt0m3zZo1iw8++IDLly/nY2SisClbtizjx49n5MiRSbd98MEH/PLLLzJTSQjhUNI2QQgHCggIICAgwOa4qVOn8sEHHyRdv3LlCp07d2bhwoU0bdrUkSGKQsLe1xJYK27btWtHw4YNmTt3riRuhU3Ozs40bNiQNWvWJCVvdV1nzZo1jBo1Kn+DE4WKYRiMHj2aJUuWsH79ekncimxr3749hw4dSnXb008/TfXq1XnttdckcSvsFhgYyPHjx1PdduLECcqXL59PEYnCKjo6Os3nak3T0HU9nyISQtwvJHkrRAFQrly5VNc9PT0BqFy5MmXKlMmPkEQhdfnyZdq2bUv58uX57LPPCAkJSbqvRIkS+RiZKOjGjRvHkCFDaNSoEU2aNGHKlClERUXx9NNP53doohAZOXIk8+bNY9myZXh5eXH16lUAfHx8cHNzy+foRGHi5eWVpleyh4cHRYoUkR7KIkteeuklWrRowUcffUT//v3ZuXMnX3/9NV9//XV+hyYKmR49evDhhx9Srlw5atasyb59+/jiiy945pln8js0IcQ9TpK3QghxDwkKCuLUqVOcOnUqTeJfuuSIzAwYMICQkBDefvttrl69Sr169fj777/TLGImRGZmzZoFQNu2bVPdPnfuXJ566qm8D0gIcd9r3LgxS5YsYcKECbz33ntUrFiRKVOmyCJTIsumTZvGW2+9xYgRI7h+/TqlSpVi+PDhvP322/kdmhDiHic9b4UQQgghhBBCCCGEEKIAkkaIQgghhBBCCCGEEEL8vx07FgAAAAAY5G89jR2FEQzJWwAAAACAIXkLAAAAADAkbwEAAAAAhuQtAAAAAMCQvAUAAAAAGJK3AAAAAABD8hYAAAAAYEjeAgAAAAAMyVsAAAAAgCF5CwAAAAAwJG8BAAAAAIYCJVkbIvnpJ2UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(data, circles=label_issues_indices[:20], title=\"Top 20 label issues using cleanlab.rank with cleanlab.count.num_label_issues()\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ol57ouSTNAfZ" + }, + "source": [ + "#### Not sure when to use Workflow 7.2 or 7.3 to find label issues?\n", + "\n", + "* Workflow 7.2 is the easiest to use as its just one line of code.\n", + "* Workflow 7.3 is modular and extensible. As we add more label and data quality scoring functions in ``cleanlab.rank``, Workflow 7.3 will always work.\n", + "* Workflow 7.3 is also for users who have a custom way to rank their data by label quality, and they just need to know what the cut-off is, found via ``cleanlab.count.num_label_issues``." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gRfHlDlEKyRD" + }, + "source": [ + "## **Workflow 8:** Ensembling label quality scores from multiple predictors" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:33.638709Z", + "iopub.status.busy": "2024-05-24T23:49:33.638282Z", + "iopub.status.idle": "2024-05-24T23:49:34.727603Z", + "shell.execute_reply": "2024-05-24T23:49:34.727024Z" + }, + "id": "wL3ngCnuLEWd" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier\n", + "\n", + "# 3 models in ensemble\n", + "model1 = LogisticRegression(penalty=\"l2\", verbose=0, random_state=SEED)\n", + "model2 = RandomForestClassifier(max_depth=5, random_state=SEED)\n", + "model3 = GradientBoostingClassifier(\n", + " n_estimators=100, learning_rate=1.0, max_depth=3, random_state=SEED\n", + ")\n", + "\n", + "# Get cross-validated predicted probabilities from each model\n", + "cv_pred_probs_1 = cross_val_predict(\n", + " estimator=model1, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "cv_pred_probs_2 = cross_val_predict(\n", + " estimator=model2, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "cv_pred_probs_3 = cross_val_predict(\n", + " estimator=model3, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# List of predicted probabilities from each model\n", + "pred_probs_list = [cv_pred_probs_1, cv_pred_probs_2, cv_pred_probs_3]\n", + "\n", + "# Get ensemble label quality scores\n", + "label_quality_scores_best = cleanlab.rank.get_label_quality_ensemble_scores(\n", + " labels=labels, pred_probs_list=pred_probs_list, verbose=False\n", + ")\n", + "\n", + "# Alternative approach: create single ensemble predictor and get its pred_probs\n", + "cv_pred_probs_ensemble = (cv_pred_probs_1 + cv_pred_probs_2 + cv_pred_probs_3)/3 # uniform aggregation of predictions\n", + "\n", + "# Use this single set of pred_probs to find label issues\n", + "label_quality_scores_better = cleanlab.rank.get_label_quality_scores(\n", + " labels=labels, pred_probs=cv_pred_probs_ensemble\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z-ghgvqVcOJa" + }, + "source": [ + "While ensembling different models' label quality scores (`label_quality_scores_best`) will often be superior to getting label quality scores from a single ensemble predictor (`label_quality_scores_better`), both approaches produce significantly better label quality scores than just using the predictions from a single model." + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "tutorial_cleanlab_2_0.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/multiannotator.ipynb new file mode 100644 index 000000000..b964e5e1e --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -0,0 +1,1584 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4c7436b8", + "metadata": {}, + "source": [ + "# Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators" + ] + }, + { + "cell_type": "markdown", + "id": "4b432513", + "metadata": {}, + "source": [ + "This 5-minute quickstart tutorial shows how to use cleanlab for classification data that has been labeled by *multiple* annotators (where each example has been labeled by at least one annotator, but not every annotator has labeled every example). Compared to existing crowdsourcing tools, cleanlab helps you better analyze such data by leveraging a trained classifier model in addition to the raw annotations. With one line of code, you can automatically compute:\n", + "\n", + "- A **consensus label** for each example (i.e. *truth inference*) that aggregates the individual annotations (more accurately than algorithms from crowdsourcing like majority-vote, Dawid-Skene, or GLAD).\n", + "- A **quality score for each consensus label** which measures our confidence that this label is correct (via well-calibrated estimates that account for the: number of annotators which have labeled this example, overall quality of each annotator, and quality of our trained ML models).\n", + "- An analogous **label quality score** for each individual label chosen by one annotator for a particular example (to measure our confidence in alternate labels when annotators differ from the consensus).\n", + "- An **overall quality score for each annotator** which measures our confidence in the overall correctness of labels obtained from this annotator.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Obtain initial consensus labels of multiannotator data using majority vote.\n", + "- Train a classifier model on the initial consensus labels and use it to obtain out-of-sample predicted class probabilities.\n", + "- Use cleanlab's `multiannotator.get_label_quality_multiannotator` function to get improved consensus labels that more accurately reflect the ground truth.\n", + "- View other information about your multiannotator dataset, such as consensus and annotator quality scores, agreement between annotators, detailed label quality scores and more!\n", + "\n", + "**Consensus labels** represent the best guess of the true label for each example and can be used for more reliable modeling/analytics. Cleanlab automatically produces enhanced estimates of consensus through the use of machine learning.\n", + "**Quality scores** help us determine how much trust we can place in each: consensus label, individual annotator, and particular label from a particular annotator. These quality scores can help you determine which annotators are best/worst overall, as well as which current consensus labels are least trustworthy and should perhaps be verified via additional annotation. \n", + "\n", + "This tutorial uses a toy *tabular* dataset labeled with multiple annotators but **these steps can easily be applied to image or text data**." + ] + }, + { + "cell_type": "markdown", + "id": "03385f84", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have `multiannotator_labels` and (out-of-sample) `pred_probs` from a model trained on an existing set of consensus labels? Run the code below to get improved consensus labels and more information about the quality of your labels and annotators.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab.multiannotator import get_label_quality_multiannotator\n", + "\n", + "get_label_quality_multiannotator(multiannotator_labels, pred_probs)\n", + "\n", + "```\n", + "\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "e6a48d31", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "id": "6c6e5b15", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install cleanlab\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a3ddc95f", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:38.213048Z", + "iopub.status.busy": "2024-05-24T23:49:38.212796Z", + "iopub.status.idle": "2024-05-24T23:49:39.329767Z", + "shell.execute_reply": "2024-05-24T23:49:39.329125Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "markdown", + "id": "dd0148e6", + "metadata": {}, + "source": [ + "Let’s import some of the packages needed throughout this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c4efd119", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.332660Z", + "iopub.status.busy": "2024-05-24T23:49:39.332156Z", + "iopub.status.idle": "2024-05-24T23:49:39.335320Z", + "shell.execute_reply": "2024-05-24T23:49:39.334858Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab.multiannotator import get_label_quality_multiannotator, get_majority_vote_label" + ] + }, + { + "cell_type": "markdown", + "id": "345b6678", + "metadata": {}, + "source": [ + "## 2. Create the data (can skip these details)" + ] + }, + { + "cell_type": "markdown", + "id": "82aeedc8", + "metadata": {}, + "source": [ + "For this tutorial we will generate a toy dataset that has 50 annotators and 300 examples. There are three possible classes, `0`, `1` and `2`. \n", + "\n", + "Each annotator annotates approximately 10% of the examples. We also synthetically made the last 5 annotators in our toy dataset have much noisier labels than the rest of the annotators.\n", + "\n", + "Solely for evaluating cleanlab's consensus labels against other consensus methods, we here also generate the true labels for this example dataset. However, true labels are not required for any cleanlab multiannotator functions (and they usually are not available in real applications).\n", + "To generate our multiannotator data, we define a `make_data()` method (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "69b5ddaa", + "metadata": {}, + "source": [ + "
See the code for data generation **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "from cleanlab.benchmarking.noise_generation import generate_noise_matrix_from_trace\n", + "from cleanlab.benchmarking.noise_generation import generate_noisy_labels\n", + "\n", + "SEED = 111 # set to None for non-reproducible randomness\n", + "np.random.seed(seed=SEED)\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8]],\n", + " covs=[[[5, -1.5], [-1.5, 1]], [[1, 0.5], [0.5, 4]], [[5, 1], [1, 5]]],\n", + " sizes=[150, 75, 75],\n", + " num_annotators=50,\n", + "):\n", + " \n", + " m = len(means) # number of classes\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + "\n", + " for idx in range(m):\n", + " local_data.append(\n", + " np.random.multivariate_normal(mean=means[idx], cov=covs[idx], size=sizes[idx])\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(local_data)\n", + " true_labels_train = np.hstack(labels)\n", + "\n", + " # Compute p(true_label=k)\n", + " py = np.bincount(true_labels_train) / float(len(true_labels_train))\n", + " \n", + " noise_matrix_better = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.8 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + " \n", + " noise_matrix_worse = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.35 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_matrix for specified number of annotators.\n", + " s = pd.DataFrame(\n", + " np.vstack(\n", + " [\n", + " generate_noisy_labels(true_labels_train, noise_matrix_better)\n", + " if i < num_annotators - 5\n", + " else generate_noisy_labels(true_labels_train, noise_matrix_worse)\n", + " for i in range(num_annotators)\n", + " ]\n", + " ).transpose()\n", + " )\n", + "\n", + " # Each annotator only labels approximately 10% of the dataset\n", + " # (unlabeled points represented with NaN)\n", + " s = s.apply(lambda x: x.mask(np.random.random(n) < 0.9)).astype(\"Int64\")\n", + " s.dropna(axis=1, how=\"all\", inplace=True)\n", + " s.columns = [\"A\" + str(i).zfill(4) for i in range(1, num_annotators+1)]\n", + "\n", + " row_NA_check = pd.notna(s).any(axis=1)\n", + "\n", + " return {\n", + " \"X_train\": X_train[row_NA_check],\n", + " \"true_labels_train\": true_labels_train[row_NA_check],\n", + " \"multiannotator_labels\": s[row_NA_check].reset_index(drop=True),\n", + " }\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c37c0a69", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.337447Z", + "iopub.status.busy": "2024-05-24T23:49:39.337158Z", + "iopub.status.idle": "2024-05-24T23:49:39.344895Z", + "shell.execute_reply": "2024-05-24T23:49:39.344436Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from cleanlab.benchmarking.noise_generation import generate_noise_matrix_from_trace\n", + "from cleanlab.benchmarking.noise_generation import generate_noisy_labels\n", + "\n", + "SEED = 111 # set to None for non-reproducible randomness\n", + "np.random.seed(seed=SEED)\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8]],\n", + " covs=[[[5, -1.5], [-1.5, 1]], [[1, 0.5], [0.5, 4]], [[5, 1], [1, 5]]],\n", + " sizes=[150, 75, 75],\n", + " num_annotators=50,\n", + "):\n", + " \n", + " m = len(means) # number of classes\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + "\n", + " for idx in range(m):\n", + " local_data.append(\n", + " np.random.multivariate_normal(mean=means[idx], cov=covs[idx], size=sizes[idx])\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(local_data)\n", + " true_labels_train = np.hstack(labels)\n", + "\n", + " # Compute p(true_label=k)\n", + " py = np.bincount(true_labels_train) / float(len(true_labels_train))\n", + " \n", + " noise_matrix_better = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.8 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + " \n", + " noise_matrix_worse = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.35 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_matrix for specified number of annotators.\n", + " s = pd.DataFrame(\n", + " np.vstack(\n", + " [\n", + " generate_noisy_labels(true_labels_train, noise_matrix_better)\n", + " if i < num_annotators - 5\n", + " else generate_noisy_labels(true_labels_train, noise_matrix_worse)\n", + " for i in range(num_annotators)\n", + " ]\n", + " ).transpose()\n", + " )\n", + "\n", + " # Each annotator only labels approximately 10% of the dataset\n", + " # (unlabeled points represented with NaN)\n", + " s = s.apply(lambda x: x.mask(np.random.random(n) < 0.9)).astype(\"Int64\")\n", + " s.dropna(axis=1, how=\"all\", inplace=True)\n", + " s.columns = [\"A\" + str(i).zfill(4) for i in range(1, num_annotators+1)]\n", + "\n", + " row_NA_check = pd.notna(s).any(axis=1)\n", + "\n", + " return {\n", + " \"X_train\": X_train[row_NA_check],\n", + " \"true_labels_train\": true_labels_train[row_NA_check],\n", + " \"multiannotator_labels\": s[row_NA_check].reset_index(drop=True),\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "99f69523", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.346910Z", + "iopub.status.busy": "2024-05-24T23:49:39.346619Z", + "iopub.status.idle": "2024-05-24T23:49:39.394278Z", + "shell.execute_reply": "2024-05-24T23:49:39.393697Z" + } + }, + "outputs": [], + "source": [ + "data_dict = make_data()\n", + "\n", + "X = data_dict[\"X_train\"]\n", + "multiannotator_labels = data_dict[\"multiannotator_labels\"]\n", + "true_labels = data_dict[\"true_labels_train\"] # used for comparing the accuracy of consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "4a705e28", + "metadata": {}, + "source": [ + "Let's view the first few rows of the data used for this tutorial. Here are the labels selected by each annotator for the first few examples (rows) in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8f241c16", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.396843Z", + "iopub.status.busy": "2024-05-24T23:49:39.396391Z", + "iopub.status.idle": "2024-05-24T23:49:39.413454Z", + "shell.execute_reply": "2024-05-24T23:49:39.412918Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A0001A0002A0003A0004A0005A0006A0007A0008A0009A0010...A0041A0042A0043A0044A0045A0046A0047A0048A0049A0050
0<NA><NA><NA><NA><NA><NA><NA><NA><NA><NA>...<NA><NA><NA><NA><NA><NA><NA><NA><NA><NA>
1<NA><NA><NA><NA><NA><NA>0<NA><NA><NA>...<NA><NA><NA><NA><NA><NA><NA><NA><NA><NA>
2<NA><NA><NA><NA><NA><NA><NA><NA><NA><NA>...<NA>0<NA><NA><NA><NA><NA>2<NA><NA>
3<NA><NA><NA><NA><NA><NA>2<NA><NA><NA>...0<NA><NA><NA><NA><NA><NA><NA><NA><NA>
4<NA><NA><NA><NA><NA><NA><NA><NA><NA><NA>...<NA><NA><NA>2<NA><NA>0<NA><NA><NA>
\n", + "

5 rows × 50 columns

\n", + "
" + ], + "text/plain": [ + " A0001 A0002 A0003 A0004 A0005 A0006 A0007 A0008 A0009 A0010 ... \\\n", + "0 ... \n", + "1 0 ... \n", + "2 ... \n", + "3 2 ... \n", + "4 ... \n", + "\n", + " A0041 A0042 A0043 A0044 A0045 A0046 A0047 A0048 A0049 A0050 \n", + "0 \n", + "1 \n", + "2 0 2 \n", + "3 0 \n", + "4 2 0 \n", + "\n", + "[5 rows x 50 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "multiannotator_labels.head()" + ] + }, + { + "cell_type": "markdown", + "id": "4a705e29", + "metadata": {}, + "source": [ + "Here are the corresponding features for these examples:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4f0819ba", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.415390Z", + "iopub.status.busy": "2024-05-24T23:49:39.415212Z", + "iopub.status.idle": "2024-05-24T23:49:39.418935Z", + "shell.execute_reply": "2024-05-24T23:49:39.418485Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5.60856743, 1.41693214],\n", + " [-0.40908785, 2.87147629],\n", + " [ 4.64941785, 1.10774851],\n", + " [ 3.0524466 , 1.71853246],\n", + " [ 4.37169848, 0.66031048]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X[:5]" + ] + }, + { + "cell_type": "markdown", + "id": "0cb8131d", + "metadata": {}, + "source": [ + "`multiannotator_labels` contains the class label that each annotator chose for each example in the dataset, with examples that a particular annotator did not label represented using `np.nan`. \n", + "`X` contains the features for each example, which happen to be numeric in this tutorial but any feature modality can be used with ``cleanlab.multiannotator``." + ] + }, + { + "cell_type": "markdown", + "id": "946726ad", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own multiannotator labels and features, then continue with the rest of the tutorial.\n", + " \n", + "`multiannotator_labels` should be a numpy array or pandas DataFrame with each column representing an annotator and each row representing an example. Your labels should be represented as integer indices 0, 1, ..., num_classes - 1, where examples that are not annotated by a particular annotator are represented using `np.nan` or `pd.NA`. If you have string labels or other labels that do not fit the required format, you can convert them to the proper format using `cleanlab.internal.multiannotator_utils.format_multiannotator_labels`. \n", + " \n", + "Your features can be represented however you like (since these are not inputs to `cleanlab.multiannotator` methods) as long as you are able to fit a classifer to them and obtain its predicted class probabilities! \n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "id": "51335def", + "metadata": {}, + "source": [ + "## 3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities" + ] + }, + { + "cell_type": "markdown", + "id": "c1857cc7", + "metadata": {}, + "source": [ + "Before training a machine learning model, we must first obtain initial consensus labels from the data annotations representing a crude guess of the best label for each example. The most straight forward way to obtain an initial set of consensus labels is via simple majority vote." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d009f347", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.421165Z", + "iopub.status.busy": "2024-05-24T23:49:39.420720Z", + "iopub.status.idle": "2024-05-24T23:49:39.436274Z", + "shell.execute_reply": "2024-05-24T23:49:39.435827Z" + } + }, + "outputs": [], + "source": [ + "majority_vote_label = get_majority_vote_label(multiannotator_labels)" + ] + }, + { + "cell_type": "markdown", + "id": "7287b733", + "metadata": {}, + "source": [ + "Majority vote consensus labels may not be very reliable, particularly for examples that were only labeled by one or a few annotators. To more reliably estimate consensus, we can account for the features associated with each example (based on which the annotations were derived in the first place). Fitting a classifier model serves as a natural way to account for these feature values, here we train a simple logistic regression model to get significantly more accurate estimates of consensus labels and associated quality scores.\n", + "\n", + "We fit the model with our initial consensus labels, and then get (out-of-sample) predicted class probabilities for each example in the dataset from the trained model. These predicted probabilities help us estimate the best consensus labels and associated confidence values in a statistically optimal manner that accounts for all the available information." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cbd1e415", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.438611Z", + "iopub.status.busy": "2024-05-24T23:49:39.438080Z", + "iopub.status.idle": "2024-05-24T23:49:39.464441Z", + "shell.execute_reply": "2024-05-24T23:49:39.463869Z" + } + }, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "\n", + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=X, y=majority_vote_label, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "4eab5188", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to get better consensus labels and other statistics" + ] + }, + { + "cell_type": "markdown", + "id": "4d392ce5", + "metadata": {}, + "source": [ + "Using the annotators' labels and the (out-of-sample) predicted class probabilities from the model, cleanlab can estimate **improved consensus labels** for our data that are more accurate than our initial consensus labels were.\n", + "\n", + "Having accurate labels provides insight on each annotator's label quality and is key for boosting model accuracy and achieving dependable real-world results." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6ca92617", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:39.466572Z", + "iopub.status.busy": "2024-05-24T23:49:39.466394Z", + "iopub.status.idle": "2024-05-24T23:49:41.172479Z", + "shell.execute_reply": "2024-05-24T23:49:41.171812Z" + } + }, + "outputs": [], + "source": [ + "results = get_label_quality_multiannotator(multiannotator_labels, pred_probs, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "98042e7f", + "metadata": {}, + "source": [ + "Here, we use the `multiannotator.get_label_quality_multiannotator()` function which returns a dictionary containing three items:\n" + ] + }, + { + "cell_type": "markdown", + "id": "76d7c0e2", + "metadata": {}, + "source": [ + "1. `label_quality` which gives us the improved consensus labels using information from each of the annotators and the model. The DataFrame also contains information about the number of annotations, annotator agreement and consensus quality score for each example.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "bf945113", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.175056Z", + "iopub.status.busy": "2024-05-24T23:49:41.174766Z", + "iopub.status.idle": "2024-05-24T23:49:41.181711Z", + "shell.execute_reply": "2024-05-24T23:49:41.181167Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
consensus_labelconsensus_quality_scoreannotator_agreementnum_annotations
000.7361180.52
100.7577511.03
200.7822320.65
300.7155650.65
400.8242560.85
\n", + "
" + ], + "text/plain": [ + " consensus_label consensus_quality_score annotator_agreement \\\n", + "0 0 0.736118 0.5 \n", + "1 0 0.757751 1.0 \n", + "2 0 0.782232 0.6 \n", + "3 0 0.715565 0.6 \n", + "4 0 0.824256 0.8 \n", + "\n", + " num_annotations \n", + "0 2 \n", + "1 3 \n", + "2 5 \n", + "3 5 \n", + "4 5 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[\"label_quality\"].head()" + ] + }, + { + "cell_type": "markdown", + "id": "984d65c4", + "metadata": {}, + "source": [ + "2. `detailed_label_quality` which returns the label quality score for each label given by every annotator" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "14251ee0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.183707Z", + "iopub.status.busy": "2024-05-24T23:49:41.183366Z", + "iopub.status.idle": "2024-05-24T23:49:41.195615Z", + "shell.execute_reply": "2024-05-24T23:49:41.195165Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
quality_annotator_A0001quality_annotator_A0002quality_annotator_A0003quality_annotator_A0004quality_annotator_A0005quality_annotator_A0006quality_annotator_A0007quality_annotator_A0008quality_annotator_A0009quality_annotator_A0010...quality_annotator_A0041quality_annotator_A0042quality_annotator_A0043quality_annotator_A0044quality_annotator_A0045quality_annotator_A0046quality_annotator_A0047quality_annotator_A0048quality_annotator_A0049quality_annotator_A0050
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaNNaNNaNNaNNaN0.757751NaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaN0.782232NaNNaNNaNNaNNaN0.070564NaNNaN
3NaNNaNNaNNaNNaNNaN0.216078NaNNaNNaN...0.715565NaNNaNNaNNaNNaNNaNNaNNaNNaN
4NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaN0.119188NaNNaN0.824256NaNNaNNaN
\n", + "

5 rows × 50 columns

\n", + "
" + ], + "text/plain": [ + " quality_annotator_A0001 quality_annotator_A0002 quality_annotator_A0003 \\\n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + " quality_annotator_A0004 quality_annotator_A0005 quality_annotator_A0006 \\\n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + " quality_annotator_A0007 quality_annotator_A0008 quality_annotator_A0009 \\\n", + "0 NaN NaN NaN \n", + "1 0.757751 NaN NaN \n", + "2 NaN NaN NaN \n", + "3 0.216078 NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + " quality_annotator_A0010 ... quality_annotator_A0041 \\\n", + "0 NaN ... NaN \n", + "1 NaN ... NaN \n", + "2 NaN ... NaN \n", + "3 NaN ... 0.715565 \n", + "4 NaN ... NaN \n", + "\n", + " quality_annotator_A0042 quality_annotator_A0043 quality_annotator_A0044 \\\n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 0.782232 NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN 0.119188 \n", + "\n", + " quality_annotator_A0045 quality_annotator_A0046 quality_annotator_A0047 \\\n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN 0.824256 \n", + "\n", + " quality_annotator_A0048 quality_annotator_A0049 quality_annotator_A0050 \n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 0.070564 NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + "[5 rows x 50 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[\"detailed_label_quality\"].head()" + ] + }, + { + "cell_type": "markdown", + "id": "db02e63d", + "metadata": {}, + "source": [ + "3. `annotator_stats` which gives us the annotator quality score for each annotator, alongisde other information such as the number of examples each annotator labeled, their agreement with the consensus labels and the class they perform the worst at. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "efe16638", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.197642Z", + "iopub.status.busy": "2024-05-24T23:49:41.197317Z", + "iopub.status.idle": "2024-05-24T23:49:41.203690Z", + "shell.execute_reply": "2024-05-24T23:49:41.203237Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
annotator_qualityagreement_with_consensusworst_classnum_examples_labeled
A00500.2449810.208333224
A00470.2959790.294118234
A00490.3241970.310345129
A00460.3553160.346154126
A00480.4397320.480000225
A00310.5232050.580645231
A00340.5353130.607143228
A00210.6069990.718750132
A00150.6095260.678571228
A00110.6211030.692308126
\n", + "
" + ], + "text/plain": [ + " annotator_quality agreement_with_consensus worst_class \\\n", + "A0050 0.244981 0.208333 2 \n", + "A0047 0.295979 0.294118 2 \n", + "A0049 0.324197 0.310345 1 \n", + "A0046 0.355316 0.346154 1 \n", + "A0048 0.439732 0.480000 2 \n", + "A0031 0.523205 0.580645 2 \n", + "A0034 0.535313 0.607143 2 \n", + "A0021 0.606999 0.718750 1 \n", + "A0015 0.609526 0.678571 2 \n", + "A0011 0.621103 0.692308 1 \n", + "\n", + " num_examples_labeled \n", + "A0050 24 \n", + "A0047 34 \n", + "A0049 29 \n", + "A0046 26 \n", + "A0048 25 \n", + "A0031 31 \n", + "A0034 28 \n", + "A0021 32 \n", + "A0015 28 \n", + "A0011 26 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[\"annotator_stats\"].head(10)" + ] + }, + { + "cell_type": "markdown", + "id": "a0d09bfa", + "metadata": {}, + "source": [ + "The `annotator_stats` DataFrame is sorted by increasing `annotator_quality`, showing us the worst annotators first.\n", + "\n", + "Notice that in the above table annotators with ids A0046 to A0050 have the worst annotator quality score, which is expected because we made the last 5 annotators systematically worse than the rest." + ] + }, + { + "cell_type": "markdown", + "id": "20ca8dd2", + "metadata": {}, + "source": [ + "### Comparing improved consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "1b49657d", + "metadata": {}, + "source": [ + "We can get the improved consensus labels from the `label_quality` DataFrame shown above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "abd0fb0b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.205782Z", + "iopub.status.busy": "2024-05-24T23:49:41.205476Z", + "iopub.status.idle": "2024-05-24T23:49:41.208174Z", + "shell.execute_reply": "2024-05-24T23:49:41.207731Z" + } + }, + "outputs": [], + "source": [ + "improved_consensus_label = results[\"label_quality\"][\"consensus_label\"].values" + ] + }, + { + "cell_type": "markdown", + "id": "1fd7a5fd", + "metadata": {}, + "source": [ + "Since our toy dataset is synthetically generated by adding noise to each annotator's labels, we know the ground truth labels for each example. Hence we can compare the accuracy of the consensus labels obtained using majority vote, and the improved consensus labels obtained using cleanlab." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "cdf061df", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.210085Z", + "iopub.status.busy": "2024-05-24T23:49:41.209766Z", + "iopub.status.idle": "2024-05-24T23:49:41.213153Z", + "shell.execute_reply": "2024-05-24T23:49:41.212667Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of majority vote labels = 0.8581081081081081\n", + "Accuracy of cleanlab consensus labels = 0.9797297297297297\n" + ] + } + ], + "source": [ + "majority_vote_accuracy = np.mean(true_labels == majority_vote_label)\n", + "cleanlab_label_accuracy = np.mean(true_labels == improved_consensus_label)\n", + "\n", + "print(f\"Accuracy of majority vote labels = {majority_vote_accuracy}\")\n", + "print(f\"Accuracy of cleanlab consensus labels = {cleanlab_label_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2c20b2c9", + "metadata": {}, + "source": [ + "We can see that the accuracy of the consensus labels improved as a result of using cleanlab, which not only takes the annotators' labels into account, but also a model to compute better consensus labels." + ] + }, + { + "cell_type": "markdown", + "id": "f82dd4d5", + "metadata": {}, + "source": [ + "### Inspecting consensus quality scores to find potential consensus label errors" + ] + }, + { + "cell_type": "markdown", + "id": "fddb5453", + "metadata": {}, + "source": [ + "We can get the consensus quality score from the `label_quality` DataFrame shown above." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "08949890", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.215318Z", + "iopub.status.busy": "2024-05-24T23:49:41.214885Z", + "iopub.status.idle": "2024-05-24T23:49:41.217506Z", + "shell.execute_reply": "2024-05-24T23:49:41.217068Z" + } + }, + "outputs": [], + "source": [ + "consensus_quality_score = results[\"label_quality\"][\"consensus_quality_score\"]" + ] + }, + { + "cell_type": "markdown", + "id": "5f150a08", + "metadata": {}, + "source": [ + "Besides obtaining improved consensus labels, cleanlab also computes consensus quality scores for each example. The lower scores represent potential consensus label errors in the dataset.\n", + "\n", + "Here, we will extract 15 examples that have the lowest consensus quality score, and we can compare their average accuracy when compared to the true labels. We will also compute the average accuracy for the rest of the examples for comparison." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6948b073", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.219623Z", + "iopub.status.busy": "2024-05-24T23:49:41.219179Z", + "iopub.status.idle": "2024-05-24T23:49:41.223525Z", + "shell.execute_reply": "2024-05-24T23:49:41.222957Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of 15 worst quality examples = 0.8\n", + "Accuracy of better quality examples = 0.9893238434163701\n" + ] + } + ], + "source": [ + "sorted_consensus_quality_score = consensus_quality_score.sort_values()\n", + "worst_quality = sorted_consensus_quality_score.index[:15]\n", + "better_quality = sorted_consensus_quality_score.index[15:]\n", + "\n", + "worst_quality_accuracy = np.mean(true_labels[worst_quality] == improved_consensus_label[worst_quality])\n", + "better_quality_accuracy = np.mean(true_labels[better_quality] == improved_consensus_label[better_quality])\n", + "\n", + "print(f\"Accuracy of 15 worst quality examples = {worst_quality_accuracy}\")\n", + "print(f\"Accuracy of better quality examples = {better_quality_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "4fdf4d91", + "metadata": {}, + "source": [ + "We observe that the 15 worst-consensus-quality-score examples have a lower average accuracy compared to the rest of the examples. Cleanlab automatically determines which consensus labels are least trustworthy (perhaps want to have another annotator look at that data). Here we see these trustworthiness estimates really do correspond to the true quality of the consensus labels (which we know in this toy dataset because we have the true labels, unlike in your applications)" + ] + }, + { + "cell_type": "markdown", + "id": "06cae16a", + "metadata": {}, + "source": [ + "## 5. Retrain model using improved consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "8d4e31ab", + "metadata": {}, + "source": [ + "After obtaining the improved consensus labels, we can now retrain a better version of our machine learning model using these newly obtained labels. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6f8e6914", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.225772Z", + "iopub.status.busy": "2024-05-24T23:49:41.225344Z", + "iopub.status.idle": "2024-05-24T23:49:41.254086Z", + "shell.execute_reply": "2024-05-24T23:49:41.253658Z" + } + }, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "\n", + "num_crossval_folds = 5 \n", + "improved_pred_probs = cross_val_predict(\n", + " estimator=model, X=X, y=improved_consensus_label, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")\n", + "\n", + "# alternatively, we can treat all the improved consensus labels as training labels to fit the model \n", + "# model.fit(X, improved_consensus_label)" + ] + }, + { + "cell_type": "markdown", + "id": "e59f7d4f", + "metadata": {}, + "source": [ + "## Further improvements \n", + "You can also repeat this process of getting better consensus labels using the model's out-of-sample predicted probabilities and then retraining the model with the improved labels to get even better predicted class probabilities in a virtuous cycle!\n", + "For details, see our [examples](https://github.com/cleanlab/examples) notebook on [Iterative use of Cleanlab to Improve Classification Models (and Consensus Labels) from Data Labeled by Multiple Annotators](https://github.com/cleanlab/examples/blob/master/multiannotator_cifar10/multiannotator_cifar10.ipynb).\n", + "\n", + "If possible, the best way to improve your model is to collect additional labels for both previously annotated data and extra not-yet-labeled examples (i.e. *active learning*). To decide which data is most informative to label next, use `cleanlab.multiannotator.get_active_learning_scores()` rather than the methods from this tutorial. This is demonstrated in our examples notebook on [Active Learning with Multiple Data Annotators via ActiveLab](https://github.com/cleanlab/examples/blob/master/active_learning_multiannotator/active_learning.ipynb).\n", + "\n", + "While this notebook focused on analzying the labels of your data, cleanlab can also check your data features for various issues. Learn how to do this by following our [Datalab tutorials](../tutorials/datalab/index.html), except you do not need to pass in `labels` now that you've already analyzed them with this notebook (or you can provide `labels` to Datalab as the consensus labels estimated here).\n", + "\n", + "\n", + "## How does cleanlab.multiannotator work?\n", + "\n", + "All estimates above are produced via the CROWDLAB algorithm, described in this paper that contains extensive benchmarks which show CROWDLAB can produce better estimates than popular methods like Dawid-Skene and GLAD:\n", + "\n", + "[CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators](https://arxiv.org/abs/2210.06812)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "b806d2ea", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:41.255993Z", + "iopub.status.busy": "2024-05-24T23:49:41.255825Z", + "iopub.status.idle": "2024-05-24T23:49:41.260336Z", + "shell.execute_reply": "2024-05-24T23:49:41.259889Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "if majority_vote_accuracy >= cleanlab_label_accuracy: # check cleanlab has improved prediction accuracy\n", + " raise Exception(\"Cleanlab training failed to improve consensus label accuracy\")\n", + "\n", + "if worst_quality_accuracy > better_quality_accuracy: # check bad consensus quality score corresponds to bad consensus\n", + " raise Exception(\"Cleanlab consensus quality score failed to detect bad consensus labels\")\n", + " \n", + "annotator_stats = results[\"annotator_stats\"]\n", + "bad_annotator_idx = [\"A0046\", \"A0047\", \"A0048\", \"A0049\", \"A0050\"]\n", + "bad_annotator_mask = annotator_stats.index.isin(bad_annotator_idx)\n", + "\n", + "avg_annotator_quality_bad = np.mean(annotator_stats[bad_annotator_mask][\"annotator_quality\"])\n", + "avg_annotator_quality_good = np.mean(annotator_stats[~bad_annotator_mask][\"annotator_quality\"])\n", + "\n", + "if avg_annotator_quality_bad >= avg_annotator_quality_good: # check bad annotator get bad quality scores \n", + " raise Exception(\"Low quality annotators have higher quality scores than good quality annotators\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "vscode": { + "interpreter": { + "hash": "50292dbb1f747f7151d445135d392af3138fb3c65386d17d9510cb605222b10b" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb new file mode 100644 index 000000000..db69f3b54 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -0,0 +1,795 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "64053c0f-3582-465b-9e4c-a83da332da88", + "metadata": {}, + "source": [ + "# Find Label Errors in Multi-Label Classification Datasets\n", + "\n", + "This 5-minute quickstart tutorial demonstrates how to find potential label errors in multi-label classification datasets. In such datasets, each example is labeled as belonging to one *or more* classes (unlike in *multi-class classification* where each example can only belong to one class). For a particular example in such multi-label classification data, we say each class either applies or not. We may even have some examples where *no* classes apply. Common applications of this include image tagging (or document tagging), where multiple tags can be appropriate for a single image (or document). For example, a image tagging application could involve the following classes: [`copyrighted`, `advertisement`, `face`, `violence`, `nsfw`]" + ] + }, + { + "cell_type": "markdown", + "id": "adaefc8b-b639-4bdf-af0d-337519e37ffc", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "# Assuming your dataset has a label column named 'label'\n", + "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", + "\n", + "lab.report()\n", + "```\n", + "\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "6a6261a3-6ea1-44a6-ac91-d375c8aa5535", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and get dataset\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7383d024-8273-4039-bccd-aab3020d331f", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:44.058111Z", + "iopub.status.busy": "2024-05-24T23:49:44.057941Z", + "iopub.status.idle": "2024-05-24T23:49:45.229234Z", + "shell.execute_reply": "2024-05-24T23:49:45.228685Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# Package versions we used: matplotlib==3.5.1\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:45.231905Z", + "iopub.status.busy": "2024-05-24T23:49:45.231412Z", + "iopub.status.idle": "2024-05-24T23:49:45.427380Z", + "shell.execute_reply": "2024-05-24T23:49:45.426812Z" + } + }, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import sklearn\n", + "from sklearn.multiclass import OneVsRestClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import StratifiedKFold\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from cleanlab import Datalab\n", + "from cleanlab.internal.multilabel_utils import int2onehot, onehot2int" + ] + }, + { + "cell_type": "markdown", + "id": "6fe047ed", + "metadata": {}, + "source": [ + "Here we generate a small multi-label classification dataset for a quick demo. To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb)." + ] + }, + { + "cell_type": "markdown", + "id": "6b283ecc-ba52-4bd7-81d8-5397966b1621", + "metadata": {}, + "source": [ + "
Code to generate dataset (can skip these details) **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "def make_multilabel_data(\n", + " means=[[-5, 3.5], [0, 2], [-3, 6]],\n", + " covs=[[[3, -1.5], [-1.5, 1]], [[5, -1.5], [-1.5, 1]], [[3, -1.5], [-1.5, 1]]],\n", + " boxes_coordinates=[[-3.5, 0, -1.5, 1.7], [-1, 3, 2, 4], [-5, 2, -3, 4], [-3, 2, -1, 4]],\n", + " box_multilabels=[[0, 1], [1, 2], [0, 2], [0, 1, 2]],\n", + " sizes=[100, 80, 100],\n", + " avg_trace=0.9,\n", + " seed=1,\n", + "):\n", + " np.random.seed(seed=seed)\n", + " num_classes = len(means)\n", + " m = num_classes + len(\n", + " box_multilabels\n", + " ) # number of classes by treating each multilabel as 1 unique label\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + " for i in range(0, len(means)):\n", + " local_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_labels += [[i]] * sizes[i]\n", + " labels += [[i]] * sizes[i]\n", + "\n", + " def make_multi(X, Y, bx1, by1, bx2, by2, label_list):\n", + " ll = np.array([bx1, by1]) # lower-left\n", + " ur = np.array([bx2, by2]) # upper-right\n", + "\n", + " inidx = np.all(np.logical_and(X.tolist() >= ll, X.tolist() <= ur), axis=1)\n", + " for i in range(0, len(Y)):\n", + " if inidx[i]:\n", + " Y[i] = label_list\n", + " return Y\n", + "\n", + " X_train = np.vstack(local_data)\n", + " X_test = np.vstack(test_data)\n", + "\n", + " for i in range(0, len(box_multilabels)):\n", + " bx1, by1, bx2, by2 = boxes_coordinates[i]\n", + " multi_label = box_multilabels[i]\n", + " labels = make_multi(X_train, labels, bx1, by1, bx2, by2, multi_label)\n", + " test_labels = make_multi(X_test, test_labels, bx1, by1, bx2, by2, multi_label)\n", + "\n", + " d = {}\n", + " for i in labels:\n", + " if str(i) not in d:\n", + " d[str(i)] = len(d)\n", + " inv_d = {v: k for k, v in d.items()}\n", + " labels_idx = [d[str(i)] for i in labels]\n", + " py = np.bincount(labels_idx) / float(len(labels_idx))\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=avg_trace * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=seed,\n", + " )\n", + " noisy_labels_idx = generate_noisy_labels(labels_idx, noise_matrix)\n", + " noisy_labels = [eval(inv_d[i]) for i in noisy_labels_idx]\n", + " return {\n", + " \"X_train\": X_train,\n", + " \"true_labels_train\": labels,\n", + " \"X_test\": X_test,\n", + " \"true_labels_test\": test_labels,\n", + " \"labels\": noisy_labels,\n", + " \"dict_unique_label\": d,\n", + " 'labels_idx': noisy_labels_idx,\n", + "\n", + " }\n", + "\n", + "def get_color_array(labels):\n", + " \"\"\"\n", + " This function returns a dictionary mapping multi-labels to unique colors\n", + " \"\"\"\n", + " dcolors ={'[0]': 'aa4400',\n", + " '[0, 2]': '55227f',\n", + " '[0, 1]': '55a100',\n", + " '[1]': '00ff00',\n", + " '[1, 2]': '007f7f',\n", + " '[0, 1, 2]': '386b55',\n", + " '[2]': '0000ff'}\n", + "\n", + " return [\"#\"+dcolors[str(i)] for i in labels]\n", + "\n", + "def plot_data(data, circles, title, alpha=1.0,colors = []):\n", + " plt.figure(figsize=(14, 5))\n", + " done = set()\n", + " for i in range(0,len(data)):\n", + " lab = str(labels[i])\n", + " if lab in done:\n", + " label = \"\"\n", + " else:\n", + " label = lab\n", + " done.add(lab)\n", + " plt.scatter(data[i, 0], data[i, 1], c=colors[i], s=30,alpha=0.6, label = label)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + " plt.legend()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:45.430238Z", + "iopub.status.busy": "2024-05-24T23:49:45.429794Z", + "iopub.status.idle": "2024-05-24T23:49:45.443220Z", + "shell.execute_reply": "2024-05-24T23:49:45.442756Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "def make_multilabel_data(\n", + " means=[[-5, 3.5], [0, 2], [-3, 6]],\n", + " covs=[[[3, -1.5], [-1.5, 1]], [[5, -1.5], [-1.5, 1]], [[3, -1.5], [-1.5, 1]]],\n", + " boxes_coordinates=[[-3.5, 0, -1.5, 1.7], [-1, 3, 2, 4], [-5, 2, -3, 4], [-3, 2, -1, 4]],\n", + " box_multilabels=[[0, 1], [1, 2], [0, 2], [0, 1, 2]],\n", + " sizes=[100, 80, 100],\n", + " avg_trace=0.9,\n", + " seed=1,\n", + "):\n", + " np.random.seed(seed=seed)\n", + " num_classes = len(means)\n", + " m = num_classes + len(\n", + " box_multilabels\n", + " ) # number of classes by treating each multilabel as 1 unique label\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + " for i in range(0, len(means)):\n", + " local_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_labels += [[i]] * sizes[i]\n", + " labels += [[i]] * sizes[i]\n", + "\n", + " def make_multi(X, Y, bx1, by1, bx2, by2, label_list):\n", + " ll = np.array([bx1, by1]) # lower-left\n", + " ur = np.array([bx2, by2]) # upper-right\n", + "\n", + " inidx = np.all(np.logical_and(X.tolist() >= ll, X.tolist() <= ur), axis=1)\n", + " for i in range(0, len(Y)):\n", + " if inidx[i]:\n", + " Y[i] = label_list\n", + " return Y\n", + "\n", + " X_train = np.vstack(local_data)\n", + " X_test = np.vstack(test_data)\n", + "\n", + " for i in range(0, len(box_multilabels)):\n", + " bx1, by1, bx2, by2 = boxes_coordinates[i]\n", + " multi_label = box_multilabels[i]\n", + " labels = make_multi(X_train, labels, bx1, by1, bx2, by2, multi_label)\n", + " test_labels = make_multi(X_test, test_labels, bx1, by1, bx2, by2, multi_label)\n", + "\n", + " d = {}\n", + " for i in labels:\n", + " if str(i) not in d:\n", + " d[str(i)] = len(d)\n", + " inv_d = {v: k for k, v in d.items()}\n", + " labels_idx = [d[str(i)] for i in labels]\n", + " py = np.bincount(labels_idx) / float(len(labels_idx))\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=avg_trace * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=seed,\n", + " )\n", + " noisy_labels_idx = generate_noisy_labels(labels_idx, noise_matrix)\n", + " noisy_labels = [eval(inv_d[i]) for i in noisy_labels_idx]\n", + " return {\n", + " \"X_train\": X_train,\n", + " \"true_labels_train\": labels,\n", + " \"X_test\": X_test,\n", + " \"true_labels_test\": test_labels,\n", + " \"labels\": noisy_labels,\n", + " \"dict_unique_label\": d,\n", + " 'labels_idx': noisy_labels_idx,\n", + "\n", + " }\n", + "\n", + "def get_color_array(labels):\n", + " \"\"\"\n", + " This function returns a dictionary mapping multi-labels to unique colors\n", + " \"\"\"\n", + " dcolors ={'[0]': 'aa4400',\n", + " '[0, 2]': '55227f',\n", + " '[0, 1]': '55a100',\n", + " '[1]': '00ff00',\n", + " '[1, 2]': '007f7f',\n", + " '[0, 1, 2]': '386b55',\n", + " '[2]': '0000ff'}\n", + "\n", + " return [\"#\"+dcolors[str(i)] for i in labels]\n", + "\n", + "def plot_data(data, circles, title, alpha=1.0,colors = []):\n", + " plt.figure(figsize=(14, 5))\n", + " done = set()\n", + " for i in range(0,len(data)):\n", + " lab = str(labels[i])\n", + " if lab in done:\n", + " label = \"\"\n", + " else:\n", + " label = lab\n", + " done.add(lab)\n", + " plt.scatter(data[i, 0], data[i, 1], c=colors[i], s=30,alpha=0.6, label = label)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "672bfc2a", + "metadata": {}, + "source": [ + "Some of the labels in our generated dataset purposely contain errors. The examples with label errors are circled in the plot below, which depicts the dataset. This dataset contains 3 classes, and any subset of these may be the given label for a particular example. We say this example has a label error if it is better described by an alternative subset of the classes than the given label." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "dac65d3b-51e8-4682-b829-beab610b56d6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:45.445394Z", + "iopub.status.busy": "2024-05-24T23:49:45.445072Z", + "iopub.status.idle": "2024-05-24T23:49:48.172951Z", + "shell.execute_reply": "2024-05-24T23:49:48.172442Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGMAAAHQCAYAAAAFy6d4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+w0lEQVR4nOzdeXhTZfo38G+SJmmS7oU2dIO20LK0lKUFAVGWUjYXVBSXcXAZHB1nRHFUdHTcFdSZcfw5+qqoOIqDirsglrJv0hZaaKmltBRautM1bdMkTc/7x0NOkjZpkzRJ0/b+cPUiy1menJwk59znfu5HwHEcB0IIIYQQQgghhBDiFsKBbgAhhBBCCCGEEELIcELBGEIIIYQQQgghhBA3omAMIYQQQgghhBBCiBtRMIYQQgghhBBCCCHEjSgYQwghhBBCCCGEEOJGFIwhhBBCCCGEEEIIcSMKxhBCCCGEEEIIIYS4EQVjCCGEEEIIIYQQQtyIgjGEEEIIIYQQQgghbkTBGEIIIYQQQgghhBA3omAMIb0QCAT83/nz59223n379vHrHTNmjNvW66i77rqLb+9zzz030M0hHuK5557j94u77rproJszbJ0/f97su8zZxowZwy973759TlvuQH6vuOo1uYIn/F64eh8jxBpXHqcNpu+BwYKOCwgx5zXQDSD9c/78eURHRzt9uXv37sW8efOcvlxCCCGEEEJI33Q6HU6cOIEjR47g1KlTKCwsxIULF9DU1ASdTgc/Pz9ERkYiOTkZN998MxYtWgShkK61EzJY0KeVEEIIIZThRgYlutJum+GcvTSY95GnnnoKV1xxBdatW4fNmzfj119/RVVVFdRqNTo7O9HQ0ICTJ0/iww8/xJIlSzB9+nTk5OQMdLMJITaizJhBTiaTYfHixb1Oo1arceDAAf5+QkICwsPDe50nKCjIKe0jhBBCCCGE2I/jOLP7CoUCsbGxCAwMhEAgQHV1NYqKitDV1QUAyM3NxVVXXYWdO3dizpw5A9FkQogdKBgzyIWGhmLnzp29TtO9K9Ojjz466K4MEEIGn+eee44yLIYBd9bTIoQQU92DFUONTCbDNddcg+uuuw5XXXUV4uPje0xTV1eHf//739iwYQP0ej1aW1tx++23o6CgAAqFYgBaTQixFQVjCCGEEEIIIcTDvPjii31OM3LkSLz00ksYM2YM1qxZAwAoKyvDl19+ibvvvtvVTSSE9APVjCGEEEIIIYSQQewPf/gDYmNj+fs0AhQhno+CMYRnaQg/lUqF9957D6mpqRg9ejSkUmmPIf4cKfroyHCBBQUFeOaZZzBz5kyMGjUKUqkUISEhmDFjBp555hmUlZXZ94Kd7MSJE9iwYQOuvfZaxMbGwsfHBxKJBKGhoZgxYwb++te/4vTp0/1ax6lTp/Dggw9i4sSJ8PPzg7+/P5KSkvDMM8+gsrLS7uW1trbivffew3XXXYeYmBgoFAr4+vpi3LhxuPvuu5Gent6v9jqLs9o5b948fr/bvHkzAECr1WLLli245pprEBMTA5lMZvY8YHnozLq6Ovzzn//ElVdeiYiICIjF4l6H1vzhhx+wevVqjBs3Dn5+flAoFIiOjsZNN92E//73v+js7Oyz/dYKMJaVleGFF17AjBkzoFQqIRKJLBZo7Orqwrfffovbb78d8fHx8PPzg5eXF3x9fREdHY1FixbhySefxO7du6HX623apr2xtWiipe3b0tKCt956C7Nnz0ZoaCi8vb0RGRmJW2+9FXv27Ol322xpQ21tLV555RUkJydj5MiRkEqlGDduHB5++GFUV1f3WIZWq8X777+P+fPnIzg4GBKJBBEREbj99tuRnZ3dZxs2b97Mt8HW0eycUXTX8H38ySef8I89//zzZtukt8KfnjD8a21tLT755BPcddddmDZtGoKCgiAWixEQEIC4uDj87ne/w1dffcXXVXBEU1MT/v3vf2P27NlQKpXw9vZGdHQ07rjjDuzdu9ehZWZkZOBPf/oTEhMTMWLECEilUoSHh2PRokV466230NbW5nB7nSU3NxcPPPAAxo0bB7lcjpEjRyI5ORkvvfSSxc9BX3Q6HXbt2oUnnngCCxYsQHh4OGQyGWQyGcLDw5GamopXXnkFdXV1vS7H8H3+/PPP84998sknVvdbS9/NarUaP/zwA9auXYu5c+dCqVRCKpVCoVAgKioK11xzDd566y20trba9RozMjJwzz33ICEhAQEBAfDy8oJCoUBkZCTmzZuHdevW4ccff4RGo7Fpef05/jF8r3QfedPadnLke6S5uZn/3REKhb2+d6bfcwKBAH/96197XfaoUaP4aX/99dcez/f2HjtjH+lOo9Hg448/5vddqVSKsLAwXH/99fjmm2/6nN/Vpk2bxt925PNpi4MHD+KRRx7BtGnTEBoaColEAl9fX0ycOBF33HEHPvnkE6hUqn6vp7m5GV988QX++Mc/4oorrsDIkSP5dUVHR2PlypX46KOPoNVqbV6mM4+DPOlz3l1dXR1ef/11LFq0CGFhYZDJZJBIJAgMDMTkyZNxyy234F//+hdKSkpsXiZxEY4MeaWlpRwA/u/jjz+2ON3o0aP5afbu3ctlZmZy0dHRZvOaPm+wevVq/vFnn33WpjZ1X1dvWltbuTVr1nAikchiWwx/3t7e3MaNG23bKDYyXX5paanFaerr67lx48b12jbDn0Ag4B544AFOq9X2ut69e/fy84wePZrjOI7buHFjr9sgICCA+/LLL21+bVu2bOGUSmWfbU5LS+Pq6up6XZYj+8BAtPPqq682+xwUFRVxU6dOtbg8089J9/1gx44d3MiRIy3O130/KSkp4WbPnt1n+8ePH8/9+uuvvba/+2eZ4zhu8+bNnEKhsLhMUxcuXOBSUlJs2k8BOOWz9Oyzz/LLW716tdXpum+/rKwsbsyYMb22789//jPX1dXV7zZaa8OePXu4kJAQq+sfMWIEl5+fz89fUlLCJSQkWJ1eJBJx7777bq9t+Pjjj/npr776apvabctnz9J+Y8r0+9iWv97m7+v73B62fq+sXbu2z98Hw19CQgJ35syZPtfd/TUdP368z+109913cxqNxqbXVlxczM2fP7/P9o4aNYrbuXNnr8uy9HvhLH//+9973bbBwcFcenp6n/uYaVuDg4Nteq8UCgX3/vvvW12W6fe5LX/dv5s///xzztfX16Z5g4KCuB9++KHP7dXY2MgtXrzY5jY98MADvS7PGcc/pt8rtvw5+hs+bdo0fhlfffWV1elMP9cAuOnTp1ud9rfffuOn8/Hx4XQ6XY9penuP+7uPdP8eOHv2LDdlypRel3HDDTfY/D3gCjfccAPflpUrVzp12cXFxdzChQtt2pY+Pj6cSqXqsQxbjwtef/11TiqV2rSuyMhI7ujRo32231nHQZ74OTf1v//9j/P397e5fTU1NX0uk7gO1YwhFhUXF+PRRx9FS0sLAGDs2LGIiIhAU1MTCgsL3daO+vp6LFu2DJmZmfxjYrEYkyZNQlBQEBoaGpCfn4/Ozk50dHTgiSeeQG1tLd544w23tbG9vR1nz57l78tkMowbN46vdF9ZWYmzZ8+C4zhwHId3330Xly5dwpdffmnzOv7zn//giSeeAABIpVIkJiZCLpejqKiIv/LR1NSE2267DSKRCDfeeGOvy3vxxRfx97//3eyxMWPGICoqCnq9Hr/99hsaGhoAAOnp6Zg7dy4OHjyIESNG2NxmZ3BlO+vr67Fw4UKUl5cDAKKiohAdHY22trZe9/EjR45g9erV6OzshEAgwIQJExAaGopLly6hoKDAbNozZ85gwYIFZllLPj4+mDhxIiQSCX777TfU19cDAAoLC7Fw4UL89NNPNmdFfPXVV3zGiUgkQkJCAgIDA1FdXY0zZ87w07W3t2PhwoUoLi7mH1MoFBg/fjwCAwPR0dGBmpoalJSU8JkD/ckg6I+CggLceuutUKlUEAgEmDRpEkaOHIm6ujqcPn2aL9b49ttvY/To0X1eVXVEbm4ubrvtNnR0dEAsFmPy5Mnw9fVFcXExLl68CAC4dOkSUlNTUVBQAK1Wi3nz5vH70vjx4zFq1CjU1tby2XB6vZ7PgPC0ES6uvvpq1NTUIC8vj99XY2NjMXbs2AFumW3y8/P5K5iGDAClUgmZTIampib89ttvaG9v56edNWsWcnJyEBUVZdPyy8vL8fDDD/PfNYbfw7q6OhQUFPD75Mcff4yWlhZ8+eWXEAqtJx6fOHECS5cuRW1tLf+Yn58fJkyYALlcjosXL/K/KVVVVbj22mvxxRdf4IYbbrB/4/TD+vXrsXHjRrPHYmNjERkZyb/2+vp6XHPNNdi6datNy7x48SL/nQcAgYGBiI2NhZ+fH7RaLUpKSlBVVQUAaGtrw3333QetVosHH3ywx7JmzJgBb29vFBcX81d3w8LCkJiYaHHdMpnM7H5JSYnZ1fuQkBCMGTMGvr6+UKvVKCoqwqVLlwAADQ0NWLFiBb777jtce+21Fpff1dWFa6+9FocOHeIf8/b2xvjx4xEcHAydTodLly7h7Nmz0Ol0/DzWOOv4Jzw8HIsXL+4xsqa1kTgd/dzPmzcPJ06cAMC6x6xcudLidN2z53Jzc9Hc3Ax/f/9ep50zZw68vOw7benvPmKquroav/vd71BRUQEAiIuLQ3h4OJqamnDq1Cn+O+jbb7/FunXr8Pbbb9vVVmfQ6XQ4evQof3/WrFlOW/axY8dwzTXX8J8JABAKhZgwYQJCQkKgVqtRWlqKmpoaACyj2ZaMX2sKCwvNMkoiIyMRHh4OhUKB1tZWFBYWorm5GQD7jp4/fz4OHTqE6dOnW1yes46DPPVzbrBz507ccccdZusMDw9HdHQ0vL29oVKpUFpaavb7M1DHe+SygY0FEXdwJDPGcLVo0aJF3G+//WY2XUNDA9fQ0MDfd1VmTFdXF7d06VJ+Oj8/P+7//u//uNbWVrPp6uvruYceesjsNX733Xc2taMvpsu0lhlTXl7OKZVK7m9/+xuXnZ3NdXZ29pimoqKCW7duHScQCPjlff7551bXa3ql08fHh/P29uYAcI888gjX2NjIT6fX67mvv/7aLEvD39+fq6ystLrsrVu3mr2uO+64gysqKjKbRq/Xc19++SU3YsQIfroVK1ZYXaYrMmNc0U7Tq2SGfXz69Ok9MlLa2tq4qqoq/r5pOwzz3XbbbVxZWZnZfJWVlVx7ezvHcRyn1WrNrqBJJBJu48aNXFtbGz+9TqfjPvnkE7MrGKGhoVYzfLp/lg1tWbt2LXfp0iWzaYuLi/nbb7zxhtnn6NNPP7WYndXW1sZ9//333MqVK7nXXnvN6na0lSOZMYar5vfee2+P/fi3337jEhMT+WkVCgXX3Nzc73Z2b0NQUJDFzxvHsavpEomEn/bvf/87t3z5cg5g2Vnd99Hjx49zERER/PRz5syx2oaByoyxZ1mWDHRmzJIlS7hbbrmF++abb7iWlpYez2s0Gu7zzz/nwsLC+OWlpaX1um7T12T4fpk2bRp34sQJs+lKSkq41NRUs+37n//8x+pyL126xIWHh/PTxsfHcz/88EOP343ffvvNbLn+/v7c+fPnLS7TFZkxGRkZZq9p8uTJXHZ2ttk0JSUl3KJFi8y2UV/72KeffspNnjyZ+/e//82VlJRYnObkyZNmv/3e3t7cuXPnrC7T1u+Z7l566SVuzpw53Pvvv89VVFRYnObgwYPczJkzzfYFS/sYx3Hctm3bzL7v33zzTbPvewONRsPt2rWLu/vuu7m1a9daXJYrjn9s/R5w1A8//MAve9KkSX22QSaT8bd//PFHi9OvWrWKn+bVV1+1OI0tx2mO7iOm3wOG36brrruOO3v2rNl05eXlZpluQqGwx2+BOzz22GNmv2P19fVOWW5VVRUXGhpq9pl8/vnnexx3cBzHnT17lnvppZc4pVLZ4/eT42x/L9asWcMtXbqU++yzzyyuR6/Xc9u3b+fi4+P55U2YMIHT6/UWl+es4yBP/5ybZujOmTOHO3nypMXpLly4wL311lvcxIkTzY53iftRMGYYcCQYA4BbunSpxZTQ7lwVjPnoo4/MflROnz7d6zJfeuklfvqxY8c6pQuDLT/yWq3W5pTUN998k19ecnKy1elMD64Nf08//bTV6XNzc826qtxzzz0Wp2toaDA78d+wYUOv7f3tt9/M0rgPHDhgcTpnB2Nc1c7uKctTp061mEbbXff3Ys2aNX3O8+9//9tsnv/9739Wpz18+LDZCf79999vcbrun2UA3Msvv9xnWxYsWMBPv2nTpj6n5zjOYlDRXo4EYwBw69evtzptWVkZJ5fL+Wk//PDDfrfTUhtefPFFq9M+//zzZgdjALglS5ZY/b7s/nm2dhJKwRjH2tP9wNWa0tJSLiAggF9mXl6e1Wm7/x5OmjTJauBPq9WanYj5+/tbPWH//e9/z0+XkpJidTqOY8Fa0wN1a9/rrgjGTJo0iV9mXFyc2QUYU91fe1/7mK3vlV6v52688UZ+eX/961+tTuvoibatbVGr1dwVV1zBr+Ptt9+2ON0999xj0++1KWvfs644/nF1MKapqYkTCoUcwLpk19bW9pjG9DvukUce4W8/+uijFpdp2kXZWjcUW47TnBGMAcDdfvvtVo8tVSqVWcD3mWeesXk9jtLpdFxlZSX37bff8oFRgAVL+ureaI+bb76ZX7ZcLuf279/f5zzt7e0W929b3wtbP5/19fVcTEwMv8yffvrJ4nTOOg7y5M95WVkZ/7yPj4/FYFh3XV1dVgNYxD2ogC+xSCKR4IMPPrA7JdRZOI7D66+/zt9/8803MXHixF7neeqpp/hpiouL3VZ8ViwWQyKR2DTtQw89xKfGZ2dn8+nYfYmPj8ezzz5r9fmkpCQ8/vjj/P2tW7fy6Zum3n//ff7xBQsW8F2frBk/fjyefvpp/v4777xjU3v7y13tfP/99+Hj42NX20JDQ/Gvf/2r12k4jjNrww033IBbb73V6vSzZ8/Gww8/zN//9NNPLb5/3U2ePBnr16/vczpD1xoANneREYlENk3nbHFxcb0O5RkZGWmW/n748GGnt2HixIl46qmnrD6/Zs0avpCtVquFWCzu9fty3rx5iIuL4+8fOXLEuQ0e5hQKhU3TjRkzBn/5y1/4+z/88IPN63j33Xfh5+dn8TnD+y8WiwGwopOWuu1cvHgRn3/+OQD2G/u///0Pvr6+Vtfp5eWF999/n1/u559/btP3Qn8dPnzYrNj8//3f/yEwMNDitN1fe19sfa+EQiFee+01/v73339v03z2sLUt3t7eePnll/tsi7O+ZwfT8Y8pf39/TJkyBQB7Dfv37+8xjeljDz30EL9fWSr8febMGb4btkKhQHJysvMbbYeAgAC8++67FouYA6wL8h/+8Af+vit+mwBgxIgRfMFhsViMsLAw3HDDDdi1axcAIDU1FceOHbPaDc1excXF+Prrr/n7r7zyCq666qo+55PJZP06jrD18xkUFIS//e1v/H1Xfz49+XNu2rZJkyYhICCgz7YZim6TgUNbn1i0fPlyhIeHD9j6jx8/jt9++w0A68d9++239zmPQCAwm84VI670l0AgwIwZM/j7pn1Ee3P//ff3GRi7//77+S/89vZ2iwdjn376KX/b9OS/N3fccQd/29ERQ+zljnZOnTrVoYO722+/vc+DhMLCQrOaLWvXru1zuQ899BD/g9jW1oaMjIw+57n33ntt+hH19vbmb586darP6QfSPffc0+e+fuWVV/K3XVHD6u677+51u44aNQoRERH8/bS0NLP7lsycOZO/bfhuI+5n+j5kZWXZNE9SUhLmzp3b6zSxsbFYsmQJf/+7777rMc3WrVv5GgrXXHON2RC01kRERODqq68GAHR0dLglkGfa9nHjxiEtLa3X6bu/dmeJjY3l638VFxejqanJ6euwlel+Y21kNGd9zw7m4x/DvgpYDrAYHouOjsaYMWP4k3pD3RhL0wKO1YtxtltvvdVqQNbA1b9Nfbnyyivx5z//2WpNHEd88cUXfE2RESNG4IEHHnDasp3Flu91Z30+Pflzbtq2s2fPQq1WO9w+4j5UwJdYZPqDMhAOHjzI377qqqtsjq4nJCTwtw2F5NzJEAQ5ceIEzp8/j5aWFmg0Gr7AIwDk5eXxtw2F4Ppiy4FuSEgIpk+fzgd4srKycPPNN/PPNzQ0mBWYnT9/vk3rDg8PR0BAAJqamlBTU4OKigqXBurc1U5H93Fb5jt27Bh/W6FQ9HkiB7D2T506FcePH+eXcdNNN/W7LQAwffp0/qDhL3/5CxQKBZYtW2b1Ct9AsqXgoOn76ooTNNMDO2uUSiVfsPeKK66waXqDgTypHOqysrJw+PBhFBQUoLGxEW1tbWbFCQ1FeAHnfv8CwNKlS/Hjjz/y7ejO9HdtwYIFNi0TYL9rhuCsofivK5m2va9AjIHpa7dVTU0NfvnlF5w8eRJVVVVQqVR8wUsDw5DSHMehsrLSpiu9jigtLcXu3btx6tQp1NXVQaVSWS0+2tjYiPb2dsjlcrPHp0+fzmdbPf/88wgLC8Ott95qdxBhsB7/ACwL0JA52j0Yc+HCBX7oaEOR+nnz5uH777+HXq/HwYMHcc011/DTm85va1F7V/KE3yYAWLhwIR+40mg0qK6uRlFREbq6unDo0CEcOnQIM2bMwBdffIExY8b0e32m++M111xjcya4M50+fRr79+9Hfn4+6uvr0draajbstGnQwdr3urOOgzz5cz5hwgTIZDKo1Wo0NDRg5cqVePvtt3sMa088CwVjiEW2XLFzpfz8fP52VlaWzQfDpgfaphXfXU2tVuPFF1/E22+/bTY6Q19sSTmXSCQYN26cTcubNGkSH4wxHeEJgNlINF5eXlZHOrCko6ODv33p0iWXBmPc1U5H93Fb5jOt1j9p0iSbU0ATExP5YIzpMvrTFgD485//jP/+97/Q6/Wora3FNddcg4iICCxduhRXX3015s6da/PIMq5mGrSwxvQkyDBKjjOFhoba1YaQkBC7pndFm4e7HTt24NFHH7XrarStXX5MD357M2nSJP52XV1djxFiTH/XPvzwQ5uDF6bfBe74XTNdnyOvvS8VFRVYt24dvv76a7MTqr64ootWYWEh1q5di127dpldNLGlLd2DMffeey9ef/11tLa2or29HXfeeSceeeQRs+9Z0+6K1gy24x9TV111FYRCIbq6ulBQUIC6ujqMHDkSgOXgimmQZd++fWbBGNMuTZ4QjPGE3yaAZap019DQgE2bNuGFF15AW1sbMjMzcfXVVyMrK8um36femGZyWhupyFV+/fVXrF271uYscsD694SzjoM8+XPu7e2N+++/nw+I7tixA7GxsbjiiiuQmpqKuXPnYvbs2TZ3ASPuQcEYYlFv/djdwXToywsXLuDChQt2L8MdfesBQKVSIS0tDb/++qvd85oO22dNQECAzRHz4OBg/nb3qzKm27SzsxO//PKLbY3sxtXb1V3tdHQft2U+021v+p70xXRI7sbGRqe0BQCmTZuGjz76CPfddx+/z128eBEffPABPvjgAwBsONMbb7wR991334AGY+296mbPCZSr2uAJbfZkjz/+eJ/p3I8++igWLVrk0PLfeOMNPPbYY3bPZ8v3L2D7Z7j7dE1NTWbBGNPvtpycHJuW2Z07ftdMv3scfe3WFBQUYN68eairq7O7Xba+X7Y6cOAAli5d6tBJs6W2hIeH4+uvv8Ytt9zCv0+XLl3Cp59+yne9jYiIwPXXX481a9YgKSnJ4rIH0/FPdwEBAUhKSkJOTg5fN8ZwQcU0GGPIeJ08eTICAwPR2Nho9vyZM2f4mnoKhQIpKSluew3WDERGiK2CgoLw+OOPY9GiRbj66quhUqlQVlaGRx991KzbtyNMT/4NgTV3+OKLL3DHHXfYFbAFWB03S5x1HOTpn/NXX30VpaWlfHdTjuNw9OhRfshzsViMOXPm4Pbbb8edd95p1rWJDAyqGUMsGuhiTm1tbf1ehmlquis99thjZoGYJUuW4OOPP8bJkydx6dIldHR0gGMjl4HjOKxevdqu5dtzACCVSvnb3Q8WnbFNAddvV3e109F93Jb5TLe9Pe+f6bS2nHjY8xp+//vfo6CgAA888IDFE6fi4mK89tprGD9+PJ544gmrKfqE2CszMxO//PJLr3+2dhnq7tdffzULxIwePRovv/wyDhw4gPLycrS1tUGv1/Pfv47UvbL1M2z6/Qu45jvYHb9rpiczjr52S/R6PW655RY+ECOVSnHvvffim2++QWFhIZqbm6HVas1+L0ePHu3Yi+hDS0sLbr75Zj4Q4+vri7Vr12L79u04e/Ys303JtC22SEtLw5kzZ/D4448jLCysx/MXL17Ef/7zH0ydOhV33323xUDQYNlPrOme7WJgyHSJiYlBZGQkAPYbZqlujGlWzOzZswe8XsxgMXXqVDz55JP8/a1bt5oFUxxh+j1my+fcGc6fP4+77rqLD8SMHDkSTz31FDIyMlBaWsp3UzJ8NktLS21arrOOgzz5cy6VSvHtt9/i+++/x6JFi3p8dnQ6Hfbt24f77rsPY8eOtak+IXEtCsaQAdFXpNv0auKDDz5odkBk65+hb7Ir1dfXY9OmTfz9119/HT///DPuuusuTJ48GcHBwT1+vOzpxmTv9KbTdi80Z7pNFQqFQ9uU4ziXpwsPlnba+hocff9cURshJiYG77zzDmpra3H8+HH84x//wHXXXWeWYdPZ2YnXXnsNjz76qNPXT5zP3quGQ82GDRv421dccQXy8/Px1FNPYe7cuYiIiIBcLjcLWtr7/WvPPN2n6+07+KuvvnLoe23z5s12t99epu129LVb8uOPP/KjNInFYuzZswebNm3CDTfcgPj4ePj5+fUYlcmR98sWH330EWprawEAgYGBOH78ON58800sW7YMY8eOhY+Pj1lGqj3tCA0NxcaNG1FRUYHTp0/jP//5D2655RazzEfDe3nbbbf1mH+wHP9YY6mIb1lZGX/C3P232XDfUDfGdD5L05Pe3XLLLfztzs5OqwWnbWV6LOKujKs333yT73YeExODvLw8vPzyy1i4cCHGjBkDhULh8Pe6s46DPP1zft111yE9PR0NDQ346aef8NhjjyElJcWsRk5FRQWWL1/uUGY/cR4KxpB+M71y1r34njV9FTYzrdlgOGDyRHv27OFPhqKjo206gbX3CnBzc7NNXVYAmF0d6N5P2HSbtrW1OS0DxdkGSzt7Y5rKa+sVGwAoKSmxuAxnEwqFmDZtGtatW4fvv/8edXV1PYr9/ec//xnQA/rhyBXfpZ5g3759fR5U3nXXXXYvl+M4s6t6GzZs6HOoekcycGz9DJtO5+XlhaCgILPnB8vvmulvh63fAbZsI8PQuwAb/W727Nm9Tt/e3u6y/du0LWvXru2zLpujmVsTJ07En/70J3zxxReorq7Gjh07MHnyZP75H374wayQJzB49hNrDHVjAPB1Y3oLrljKpPG0ejGDiSHryKC/9YNMa+V0r0XoKqafz7///e991nFz5PPpzOMgT/6c+/r6Yvny5XjttdeQmZmJixcv4sknn+SDzVqt1mxocOJ+FIwh/WYaTbYlaHDhwgV+hARrTEcn8eSIbVlZGX97+vTpfVZlV6vVyM3NtXs9thQv4zjO7ArItGnTzJ5PSkqCTCbj75uO+ONJBks7e2O67c+fP2/TD61er+/1/XMlqVSKW265Bb/88gt/ZVqv12P37t1uawOx/7sUMC8C2F+mVxoHQ12bhoYGs2CtLUPVG/rN28PW4pGm002aNKlHF5/B8rs2depU/rYjr90a099LW96rY8eO2dTdxpH91t62OLLfdCcSibB06VLs3r3b7Op5enq62XSu2k+6d2t11Wc8MDCQPxE11I3pLRhjqBsDsGBMUVERKisrATivXsxg+27rj+7ZK/3NsjXdHw8cONCvZdlqID6fzjoOGujPeV/CwsLwyiuv4Omnn+YfO3DggNNrchHbUTCG9Jtp9fG+ijQCwPfff9/nNAsXLuSjtuXl5Q7183cHW69eG2zdutWhLzxL1fO7279/P1/wDug57LFEIjE7CPrkk0/sboc7DJZ29mbGjBn8iRjHcTa9f7t27TIL2tgyHLazxcXFYeLEifz9mpoat7dhODP9Li0uLjYbrtOSU6dOOTV7yXSEhb7W7Qns/f5taWnBN998Y/d6tm/f3ucFhK6uLnz11Vf8fUvDzi9evJi//f333w9YkdW+mH737Nq1q8/slO6v3Rp73y9bu2Q5st+6qi22GDFiBObMmcPf7/4966rjn+4jqLjyM94928UQjImNje2RudG9bozpMeLs2bN7dF1zxGD7buuP7hkY/S3Ib1pY/dChQ3aNWOcoez6fer2+30WKTTnrOGigPue2WrFiBX+7s7PTrKAwcS8KxpB+M72K9uuvv+LixYtWp21ubsbrr7/e5zLDwsKwatUq/v7atWs9cjjYUaNG8bePHTvWa/2GpqYmPPPMMw6t59NPPzUbXrA7juPMlj1p0iSLVxMeeeQR/vaWLVvMrlZ5ksHSTmv8/f1x00038fdfffVVtLS0WJ2+s7MTTz31FH9/ypQpTs2MsedKoOlJZ/duFsS1Jk6cyNeY0ul0/GgI1phe2XIG03R0W4ZWH2jBwcFmJ2qHDx/udfonn3yyz6CKJSqVyqw2jSUffvghzp07x9+31O3qxhtv5AvStrS0eGxdpltuuYUPJnd0dODFF1/sdfrur90a09/Lvt6rY8eO4bPPPrOhtY7tt/a05auvvrIpI8Ce71nTGhfdv2dddfwTEBBgNnKKKz/jpsGYbdu2Wa0X0316vV6Pf/zjH/zjpvVn+mOwfbc5SqvV4qWXXuLvx8bGIj4+vl/LXLFiBSIiIgCwffz+++93ea0yez6f//znP23qJums4yBP/pw72jYAfHYacT8KxpB+mz17Nt/3Ua/X44EHHrD4Rd3c3Iwbbrih12CNqeeff55P28/Ly8OiRYvMUhct6erqwq5du7B48WKcOXPGzldiP8PVHIBFtk1/BE3V1dVh2bJlDvc77+zsxPXXX29x2+n1evzlL3/BoUOH+MfWr19vcTmLFi3C0qVL+flWrFhh05Xi0tJS/PWvf8XLL7/sUPvtNVja2ZvHH3+cr2JfVVWFG2+80WJARqvV4u677zYb6tbZJ9lTpkzBli1b+IJ41rz77rtmdWtM92/iemKxGMuXL+fvP/XUUxa7uHV1deGxxx7Djz/+6NT1mwYA09PTUVBQ4NTlO5tYLDarO/L4449b/IxxHIdXXnkF77zzjsPrevXVV/G///3P4nN79+7F2rVr+fsLFy60GAz38vLCxo0b+fsffvgh7r///j4PwNva2rB582YsXLjQwdbbJzg4GGvWrOHv/+tf/7Kaobhv3z6z194b0xPrL7/80mr6/4kTJ3DdddfZPCKQ6X6bm5tr0xVm07a8/fbbyMvLszjdL7/8YnM9o4ULF+Ldd9/tNfAOsEwr0wsMlr5nXXH8IxKJzOpYvPXWWy4bdWnu3Ll8t23TjIC+gjG2Tm8vR/YRT7Br1y489thjNh07VlVV4dprrzU7lrB2LGgPsVhsdmy7f/9+3Hzzzb1m9rW3t+PNN990uOaf6efzxRdftPr6P/nkE7PRo3rjrOMgT/6cb9myBXfccQeOHz/e6zLa29vx7LPP8vdTUlLMygMQ96Kx4ki/eXl5Ye3atfyV/Z9++gmzZs3C/fffj7Fjx6K1tRVHjx7F+++/j9raWsybNw9nz57t88dl7Nix+OSTT7By5Up0dXXhyJEjGDduHFauXIkFCxZg9OjRkEqlaG5uRmlpKY4fP46dO3fyP+Tu6BccHR2N6667Dj/88AMA4LnnnkNmZibuuOMOREZGorm5GYcOHcIHH3yAhoYGhIWFYcqUKdixY4fN64iIiEBUVBSOHDmCxMRE3H///Zg7dy5kMhnOnDmDTZs2mX3xpqWl4Xe/+53V5X322WeYMWMGSkpK0NzcjJtuugkpKSm44YYbMHnyZPj7+6O9vR21tbXIzc3F/v37+VomTzzxhINbyn6DpZ3WTJkyBc888wz/g7d7925MmjQJ999/P5KTkyEWi5GXl4f33nvPLOvptttuM8uqcYZTp07hd7/7HR544AEsW7YMM2fOxNixYxEYGAitVovi4mJ88803+OWXX/h5brjhBrNUXeIe69atw7fffsuPlDB16lQ88sgjmD59OvR6PU6fPo2PPvoIp06dQmhoKBITE502NOXChQsREhKC2tpatLW1YfLkyZg6dSqUSqXZyDJ9Zey409q1a/linydPnsTkyZPx5z//GdOnTwfHcfjtt9/wySefICsrCwDwhz/8wWwEPFvccsst+PLLL3H77bfjyy+/xC233ILw8HDU1dXhxx9/xKeffsqf1CoUCrz77rtWl7Vq1SocO3YM//rXvwAA7733Hr7++mvcfvvtZhc2GhsbUVhYiGPHjmHXrl1ob2/vs4ilM7388sv44YcfUF5ezhdY/vrrr3HrrbciIiICdXV1+Omnn/Dpp59Cr9dj1apVfXbHXLVqFZ588klUV1dDr9dj6dKl+MMf/oAlS5YgMDAQVVVV2LFjB7Zs2YLOzk4sXrwYBQUFKC8v73W5EyZMwJQpU5CbmwuO47BgwQJMnjwZkZGRZsO6vv/++3xx4vvuuw+vvfYa1Go1VCoVZs+ejQceeADz58+HQqFAWVkZvv32W/4igC37zblz5/CnP/0J69atQ1paGmbNmoUJEyYgKCgIer0e58+fx44dO/D111/z+0tycrJZ9zUDVx3/3H777Xx9nw8//BDbt29HQkKCWTeeW2+9Fbfeemuvr7UvQUFBmDx5Mk6ePGn2uLXgiqFujGmtLLlcjhkzZvSrHQaO7COeoK2tDW+88Qb+8Y9/YPbs2Zg7dy4SExMxcuRIyOVytLa24ty5czh48CC+//57s8Duddddh3vvvdcp7Vi9ejX27NmD//73vwCAb7/9FgcOHMCdd96JK6+8EiNHjkRHRwdKS0tx8OBB/PDDD1CpVA4VZgeAv/zlL/jvf/8LjuNw8eJFTJkyBX/5y18wa9YsiMVilJSU4H//+x8f0LXl8+ms4yBP/px3dnbi888/x+eff464uDgsXrwY06dPx6hRo6BQKNDU1ITjx4/jo48+woULF/j5nH0BkNiJI0NeaWkpB4D/+/jjjy1ON3r0aH6avXv32rUOjUbDzZ0712w9lv4mTJjA1dbW2rWuHTt2cP7+/n0uu/vfb7/9ZtdrsMR0eaWlpRanqays5CIjI/tsj7+/P3fo0CFu9erV/GPPPvusxWXu3buXn2b06NHc+fPnuYiIiD7XkZyczDU3N/f5umpqargrr7zS7m36xBNPWFyeLa/JEc5u59VXX93n58ASW/YDax599FGb233jjTdyGo3G6rK6f5Ydab8tfzNnzuQaGhrsep2WPPvss/wyV69ebVP7bNm+3T8fzmBvG+zdl2zdFhzHcU888YRN3yeHDx+26bNnz37z448/ct7e3r2uu7v+/Hb0xtbvlXvvvdem/fqvf/2rzftO99f0u9/9rs/le3t7c7t377bptb300kucQCCw63MZGhpqcVmu+DxwHMcVFBRwI0eO7LNdCxYs4IqKimzax3bv3s1JJJI+lzlx4kS7jhWysrK4gICAXpfZ/XP93//+16b3YO7cuZxare7zO8K0rbb8jRs3jrtw4UKv74Gzj3+0Wi03f/78Xud11m/42rVrzZYbGxvb6/TXX3+92fSpqak2raev98XAkX3E3u82R3+jrfn222/tfu8BcHfffXevxxKO6Ozs5B544AG72tHY2NhjObb+Fr744os2reOWW27hzp071+d2t3cbWjsO8uTP+ccff2z3Ml5++eVe20Zcj7opEaeQSCT4+eef8cc//tHsCqqBVCrFvffei8zMTLuH7F26dCnOnDmDdevW9dmnUalU4u6778bevXv73U/WVqNGjcKxY8dw7bXXWnxeKBRi8eLFyMnJMSvmZY/Ro0fj+PHjWLFihcXtK5PJ8Oijj+LAgQPw8/Prc3khISHYt28f/vvf/yIhIaHXaaVSKRYuXIgPPvjA7cPfDZZ29uaNN97Ajh07MGXKFKvTjBkzBps3b8a2bdt6jMDiDG+//TbS0tIgl8t7nS4yMhIbN27EwYMHqf/wANqwYQPefPNN+Pv7W3x+/vz5OH78eJ9DAzvimmuuwcmTJ/Hwww9j2rRpCAgIsPid40k++OADvPrqq1a/+2JiYvD555/bVK/Mmk8//RSvvfYagoODLT4/d+5cHD9+HAsWLLBpeX/729+Qm5uLlStX8nWCrBk/fjyeeOIJt9fOmjBhAnJzc3HDDTf0GIkHAHx8fPDYY4+ZjT7SlwULFmDfvn1ITEy0+LxcLsf9999v97FCcnIy8vPz8be//Q1XXHEFgoKCzDIeLLnzzjvx/fffIzo62uLzgYGB+Nvf/oY9e/aY1Vqx5tVXX8WKFSusfm4NRowYgfXr1+PEiRNmRbstcfbxj1gsxq5du7B582Zcc801iIyMdFn3hN6GsHbG9PZyZB8ZaMnJyVi3bh0mTpzY52idEokEN910E/bv34+PPvrI6ccSIpEI77zzDnbt2oVZs2b12p6xY8fipZdego+Pj8Pre/rpp/Hhhx9azVRSKpV488038cUXX/S5bQDnHQd58ud8/vz5ePzxx5GQkNDrNhEIBLjqqquwf/9+s3qFZGAIOG6Ij/FG3K6urg67d+9GeXk5RCIRoqKiMH/+fKsHsfbo6urC8ePHcfr0aVy6dAkajQZ+fn6IiIjAxIkT3RaAsebcuXM4cOAAqqqqIJPJEB4ejtmzZyM8PNxp66ioqMChQ4dw8eJFCAQCjBkzBosWLTIbFtdeFy9exNGjR1FdXY3m5mbIZDKMHDkScXFxPYaaHkiDpZ3WlJSU4OjRo6ipqYFer8fIkSMxbdo0JCUluWX9nZ2dOHXqFIqKilBVVYW2tjZ4e3sjJCQESUlJSExMtHjSRQaGWq3G3r17cfbsWXR0dCA8PBwzZ87EuHHjBrppHkmlUmHfvn04e/YstFotlEolJkyYgJkzZzptHVqtFnv37sW5c+fQ3NyM0NBQzJkzB3FxcQ4vU61W4/DhwygtLeVHtPD390dMTAwSExMRFhbmrOY7rKKiAnv37kVFRQUUCgWioqKwYMECh0+2OI5DdnY2srOz0djYiMDAQERGRmLevHn9OoFzRGdnJ44ePYqTJ0+ipaUFI0aMwJgxYzBv3jyHTmi7urpQUFCAM2fO4OLFi1CpVJBIJAgODkZiYiKmTp3q0AhBnn78Q1yrqakJJ0+exLlz5/j3X6FQIDAwEBMmTEBSUpJNQUNnqaqqwqFDh/jjMYVCgcjISEydOrXfIziZ6ujowMGDB3H69Gmo1WqEhIRg7NixuPLKKx26UOCs4yBP/5w3NjYiNzcXJSUlqK+vR2dnJ3x8fDBmzBikpKR4xO8KYSgYQwghhBBCCCGEEOJGdAmUEEIIIYQQQgghxI0oGEMIIYQQQgghhBDiRhSMIYQQQgghhBBCCHEjCsYQQgghhBBCCCGEuJHbx3Tr6upCZWUlfH19bRqKjBBCCCGEEEIIIWQw4DgOKpUKYWFhvY7Q5fZgTGVlJSIjI929WkIIIYQQQgghhBC3KC8vR0REhNXn3R6M8fX1BcAa5ufn5+7VE0IIIYQQQgghhLhES0sLIiMj+diHNW4Pxhi6Jvn5+VEwhhBCCCGEEEIIIUNOX2VZqIAvIYQQQgghhBBCiBtRMIYQQgghhBBCCCHEjSgYQwghhBBCCCGEEOJGbq8ZQwghhBBCCCGEkL7p9XrodLqBbgYxIRaLIRKJ+r0cCsYQQgghhBBCCCEehOM4VFdXo6mpaaCbQiwICAiAUqnss0hvbygYQwghhBBCCCGEeBBDICYkJARyubxfJ/3EeTiOQ3t7O2prawEAo0aNcnhZFIwhhBBCCCGEEEI8hF6v5wMxwcHBA90c0o1MJgMA1NbWIiQkxOEuS1TAlxBCCCGEEEII8RCGGjFyuXyAW0KsMbw3/annQ8EYQgghhBBCCCHEw1DXJM/ljPeGgjGEEEIIIYQQQgghbkTBGEIIIYQQQgghhPTLvHnzIBAIIBAIkJuba9M8mzdv5ud5+OGHXdo+T0PBmCFCowG2bwfWrgVWrWL/b9/OHieEEEIIIYQQQlxtzZo1qKqqQkJCAgCgrKwMy5cvh1wuR0hICB577DF0dnby069atQpVVVWYNWvWQDV5wNBoSkOARgNs2ADs3g2IRICPD3DqFJCTA2RnA+vXA1LpQLeSEEIIIYQQQshQJpfLoVQqAbBRoZYvXw6lUokjR46gqqoKv//97yEWi/HKK68AYCMTyWQySCSSgWz2gKBgzBCQkcECMZGRLBBjoFIBe/YAycnA8uUD1z5CCCGEEEIIIe6j12pQm5OB6ux0dDRWwztQCWVyGkKmpkIkcc+V+vT0dBQUFCAjIwOhoaGYMmUKXnzxRTzxxBN47rnnhmUAxhR1UxoC0tONGTGmfH3Z4+npA9MuQgghhBBCCCHupddqUPjFBhR+sRHNpaeg17SjufQUCr/YiMIvNkCvdU8ti6NHjyIxMRGhoaH8Y4sXL0ZLSwtOnz7tljZ4MsqMGQKqq3sGYgwUCvY8IYQQQgghhJChrzYnA7U5uyEfGQkvmfFEUdeuQm3OHgTFJWPUTNd3naiurjYLxADg71fTSSplxgwFSiXQ2mr5ubY29jwhhBBCCCGEkKGvOjsdAqHILBADAGK5LwRCEaqzqeuEJ6BgzBCQlgbo9axGjCmVij2eljYw7SKEEEIIIYQQ4l4djdU9AjEGXjIFOhrdk5WiVCpRU1Nj9pjhvpIyBigYMxSkpgILFwIVFcDZs0BlJfu/ogJYsIA9TwghhBBCCCFk6PMOVKJTbbnrRKe6Dd6B7gmEzJo1C3l5eaitreUf27VrF/z8/DBx4kS3tMGTUc2YIUAqZcNXJyezYr3V1UBMDMuISU2lYa0JIYQQQgghZLhQJqehqSQHunYVxHJf/nFduwpclx7KZPd0nUhLS8PEiRNx55134rXXXkN1dTWefvppPPjgg5DSSSoFY4YKqZQNX01DWBNCCCGEEELI8BUyNRUNRdmozdmDDqEIXjIFOtVt4Lr0CJm6ACFT3dN1QiQS4aeffsIDDzyAWbNmQaFQYPXq1XjhhRfcsn5PR8EYQgghhBBCCCFkiBBJpBi/aj2C4pJRnZ2OjsZqKJQxUCanIWRqKkQS92WljB49Gjt27HDb+gYTCsYQQgghhBBCCCFDiEgixaiZy90yhLWpd955B5s2bcLRo0eRmJjY5/RbtmzBH//4R6jVakyZMsX1DfQgFIwhZLBobASOH2fVmdvbAa0WkEgAuRwYN44VDQoIGOhWEkIIIYQQQoahLVu2QK1WAwCioqJsmue6667DzJkzAQABw+xchoIxhHi6khLg2DEWhOE48+c0GjaGeU0NcPgwC8rMnAnExg5MWwkhhBBCCCHDUnh4uN3z+Pr6wtfXt+8JhyAKxhDiqbq6gJ07gcxM26bnOKCoiP3NmAEsWQIIafR6QgghhBBCCPE0FIwhxBN1dQHbtgEFBT2fCw0FoqJYFyWtFigrY5kxpjIzgdZWYOVKCsgQQgghhBBCiIehYAwhnmjnTvNAjEAAJCQAKSlAZCS7b8BxQHk5kJUF5OcbuzIVFLDlLFvm3rYTQgghhBBCCOkVBWMI8TQlJeZdk8RiluESH295eoGAZcpERbGAzbZtgE7HnsvMBMaPB2JiXN9uQgghhBBCCCE2of4LhHiaY8eMtwWC3gMx3cXHs+lNM2dMl0cIIYQQQgghZMBRZgwhnqSpiY2aZJCQYBaI0ek1yKvKwMnKdDSpqxEgUyIpLA2Jo1IhFknZRPHxbL68PHa/qIgtd5gNFUcIIYQQQgghnooyYwjxJNnZ5sNXp6TwN3V6Db7L34Dv8zeirPEUtJ3tKGs8he/zN+K7/A3Q6TUW5wPHseUSQgghhBBCiIvMmzcPAoEAAoEAubm5bl//mDFj+PU3NTW5ff32omAMIZ7ENCsmNJQV670sryoD+VW7ESyPxCi/OATKwzDKLw5B8gjkV+1BXlWGcd7ISDa/QXGxGxpPCCGEEEIIGc7WrFmDqqoqJCQk8I+VlZVh+fLlkMvlCAkJwWOPPYbOzk67lvvqq68iJSUFvr6+CAkJwYoVK3DmzBmzabKysvD111875XW4AwVjCPEk7e3G21FRZrVfTlamQygQwVvsYzaLTOwLgVCEk5XpxgcNRX0N2tpc1WJCCCGEEEIIAQDI5XIolUp4ebGKKHq9HsuXL4dWq8WRI0fwySefYPPmzfj73/9u13L379+PBx98EL/++it27doFnU6HtLQ0tJmc54wcORJBQUFOfT2uRDVjCPEkWq3xtkRi9lSTuhreXj6wRCZSoEldbf6g6fymyyWEEEIIIYQMaTpNJ/KOnMPJgyVoqlMhYKQvkubGInF2DMRS94UB0tPTUVBQgIyMDISGhmLKlCl48cUX8cQTT+C5556DpNs5jzU7d+40u79582aEhITg+PHjuOqqq1zRdJejzBhCPEkvAZQAmRIdna0WZ1Pr2xAgU5o/2EtghxBCCCGEEDI06TSd+O69Q/j+vUMoK6yBtqMTZYU1+P69Q/juvUPQaezrItQfR48eRWJiIkJNSigsXrwYLS0tOH36tMPLbW5uBoBBlQnTHQVjCPEkcrnxdlmZWTHfpLA0dHF6qHUqs1nUOhW4Lj2SwtKMD3Icm99AoXBViwkhhBBCCCEeJO/IOeQfOYdgpT9GRQcjMMQXo6KDEaT0Q/6RUuQdOee2tlRXV5sFYgDw96urqy3N0qeuri48/PDDmDNnjlltmsGGuikR4knGjQNqatjtmhqgvJyv/ZI4KhUl9dnIr9oDgVAEmUgBtb4NXJceCaMWIHFUqnE55eXG5QDA2LFufBHDk0YDZGQA6elAdTWgVAJpaUBqKiCVDnTrCCGEEELIcHHyYAmEQiG8FebZ8TKFFAJRK04eLMG0+XED1Lr+e/DBB5Gfn49Dhw4NdFP6hYIxhHiS5GTg8GFjRkxWFh+MEYukWJGwHrHByThZmY4mdTVCfGOQFJaGxFGpEItMzvizsoy3BQK2XOIyGg2wYQOwezcgEgE+PsCpU0BODhtVfP16CsgQQgghhBD3aKpT9QjEGMjkEjTVqSw+5wpKpRKZmZlmj9VcvmisVCotzdKrP//5z/jpp59w4MABREREOKWNA4WCMYR4koAAlh1TVMTu5+cDCQlAfDwAFpCZFrEc0yKWW19GYSGbzyAuji2XuExGBgvEREayQIyBSgXs2cNiYct7ecsIIYQQQghxloCRvigrrLH4nLpdi5DIQLe1ZdasWXj55ZdRW1uLkJAQAMCuXbvg5+eHiRMn2rwcjuPwl7/8Bd9++y327duH6OhoVzXZbeyqGaPX6/HMM88gOjoaMpkMsbGxePHFF8GZ1LUghPTTzJnG2xwHbNsGnDlj27yFhWx608+k6fKIS6SnGzNiTPn6ssfT0y3PRwghhBBCiLMlzY1FV1cX1G0as8fVbRpweg5Jc2Pd1pa0tDRMnDgRd955J06ePIlffvkFTz/9NB588EFI7Ugdf/DBB/HZZ5/h888/h6+vL6qrq1FdXQ21Wu3C1ruWXZkxGzduxLvvvotPPvkEkyZNQnZ2Nu6++274+/vjoYceclUbCRleYmOBGTMAQzqfTgds3coyZFJSWPqFQGCcnuNYjZisLJYRYxqImTEDiIlxb/uHoerqnoEYA4WCPU8IIYQQQog7JM6OQUleJfKPlEIgaoVMLoG6XQtOzyFhdjQSZ7vv/EAkEuGnn37CAw88gFmzZkGhUGD16tV44YUX+GnOnz+P6Oho7N27F/PmzbO4nHfffRcAejz/8ccf46677nJR613LrmDMkSNHcP3112P55Xz7MWPG4H//+1+PPmCEkH5asgRobQUKCth9jgPy8thfaCirIyORsOGry8rMi/UaTJrElkNcTqlkNWIsaWujeBghhBBCCHEfsdQLK/54JWITw3DyYAma6lQIiQxE0txYJM6OgVjq3molo0ePxo4dO6w+X1paioCAACQlJVmdZij2xrHrXZg9ezbef/99FBUVIS4uDidPnsShQ4fwz3/+0+o8Go0GGo0xPaqlpcXx1hIyXAiFwMqVwM6dxgwZg5oay8EXUzNmsECMkEavd4e0NFasV6ViXZMMVCpAr2fPE0IIIYQQ4i5iqRemzY9z+6hJ77zzDjZt2oSjR48iMTHRpnl27NiBp556CoGB/atlM2nSJJw7575hu/vLrmDM+vXr0dLSgvHjx0MkEkGv1+Pll1/GHXfcYXWeV199Fc8//3y/G0rIsCMUAsuWAePHA8eOsaK+vUWEBQJWrHfmTErFcLPUVDZq0p49rEaMQsEyYvR6YMEC9jwhhBBCCCFD2ZYtW/gaLlGXR4S1xeuvv+6U9e/YsQM6nQ4A4Ofn55RlupKAsyPfZ+vWrXjsscfw+uuvY9KkScjNzcXDDz+Mf/7zn1i9erXFeSxlxkRGRqK5uXlQbCBCPEZTEzvjLy5mZ/paLeuqpFAAY8eyIXto1KQBo9GwUZXS01mNGKWSZcSkptKw1oQQQgghxHYdHR0oLS1FdHQ0vL29B7o5xILe3qOWlhb4+/v3GfOwKxgTGRmJ9evX48EHH+Qfe+mll/DZZ5+hsLDQpmXY2jBCCCGEEEIIIWS4oWCM53NGMMaughLt7e0QdqtBIRKJ0NXVZc9iCCGEEEIIIYQQQoYtu2rGXHvttXj55ZcRFRWFSZMmIScnB//85z9xzz33uKp9hBBCCCGEEEIIIUOKXcGY//u//8MzzzyDP/3pT6itrUVYWBj++Mc/4u9//7ur2kcIIYQQQgghhBAypNgVjPH19cWbb76JN99800XNIYQQQgghhBBCCBna7ArGEEIIGSYaG4Hjx4GzZ4H2duPoXXI5MG4cjd5FCCGEEEJIP9hVwJcQQsgQV1ICfP458NZbwKFDQE0NoFKxsbtVKnb/0CHg3/9m05WUDHSLCSGEEEKIB5g3bx4EAgEEAgFyc3OH3frtRcEYQghxA40G2L4dWLsWWLWK/b99O3vcI3R1ATt2AJ9+ChQVARzX+/Qcx6b79FM2H42qRwghhBAy7K1ZswZVVVVISEjgHysrK8Py5cshl8sREhKCxx57DJ2dnXYt98CBA7j22msRFhYGgUCA7777rsc033zzDTIzM/v7EtyGuikRQoiLaTTAhg3A7t2ASAT4+ACnTgE5OUB2NrB+PSCVDmADu7qAbduAgoKez4WGAlFRrIuSVguUlbHsGFOZmUBrK7ByJSCkGD8hhBBCyHAll8uhVCr5+3q9HsuXL4dSqcSRI0dQVVWF3//+9xCLxXjllVdsXm5bWxuSkpJwzz334MYbb7Q4TVBQEFpaWvr9GtyFgjGEEOJiGRksEBMZyQIxBioVsGcPK7+yfPnAtQ87d5oHYgQCICEBSElhjRYIjM9xHFBeDmRlAfn5xgyaggK2nGXL3Nt2D6TRsPc8PR2orgaUSiAtDUhNHeCgGyGEEEKGDZ1eg7yqDJysTEeTuhoBMiWSwtKQOCoVYpH7DkjS09NRUFCAjIwMhIaGYsqUKXjxxRfxxBNP4LnnnoNEIrFpOUuXLsXSpUtd3Fr3okuYhBDiYunpxowYU76+7PH09IFpFwBW88U0nVMsBm69FbjpJpYRYxqIAdj9qCj2/K23sukNMjOBc+fc024PZciC2riRZT+1t7P/N25kj3tMtzRCCCGEDFk6vQbf5W/A9/kbUdZ4CtrOdpQ1nsL3+RvxXf4G6PTuOyA5evQoEhMTERoayj+2ePFitLS04PTp025rhyeizBhCiNNRZoC56uqegRgDhYI9P2COHTPeFghYV6P4eNvmjY9n02/dasyQOXYMiIlxfjsHCY/PgiKEEELIkJdXlYH8qt0IlkfCW2w8IFHrVMiv2oPY4GRMi3DPAUl1dbVZIAYAf796QA+CBx4FYwghTuXx9VEGgFLJtoElbW0DGLtoamJDVxskJJgFYmxKb42PZ/Pl5bH7RUVsucN02GtbsqAoGEMIIYQQVzpZmQ6hQGQWiAEAmdgXAqEIJyvT3RaMIdZRMIYQ4lTOygwYStk1aWksGKVSsZNyA5UK0OvZ8wMiO9t81KSUFP6mIb01v2o3+zH38kFZ4ymcb8hBSX02ViSsNwZkUlKMwRiOY8tNTXXjC/EcHp0FRQghhJBhoUldDW8vywckMpECTWr3HZAolcoeIxzVXB4MwrTQ73BENWMIIU7ljPooQ63uRmoqsHAhUFHBElEqK9n/FRXAggUDGLcwzYoJDWURtMtM01tH+cUhUB6GUX5xCJJHIL9qD/KqMozzRkay+Q2Ki93QeM+kVLKBpSxRqQC12oOHNyeEEELIkBAgU6Kj0/IBiVrfhgCZ+4Igs2bNQl5eHmpra/nHdu3aBT8/P0ycONFt7fBElBlDCHEqZ2QGeHLdDUcydqRS1j0rOdk4X0yMB2T6tLcbb3cr1mtXequhqK9hyOu2Nle33GNZy4JqagLOn2f7s0pF3fcIIYQQ4jpJYWk435ADtU4Fmdh4QKLWqcB16ZEU5r607LS0NEycOBF33nknXnvtNVRXV+Ppp5/Ggw8+CKkdBz+tra0oNrngV1paitzcXAQFBSEqKsoVTXc5CsYQQpzKGfVRPLXuRn/q4UilrM0eVS9EqzXe7jasoN3prabzmy53mElNZfvCnj1sH1Eo2H5fW8t6cCUkAP7+xuk9IcBICCGEkKElcVQqSuqzkV+1BwKhCDKRAmp9G7guPRJGLUDiKPelZYtEIvz000944IEHMGvWLCgUCqxevRovvPACP8358+cRHR2NvXv3Yt68eRaXk52djfnz5/P3161bBwBYvXo1Nm/e7MqX4DIUjCGEOJUz6qN4at0NT87YcYhEYuwj0y2AEiBToqzRclRNrW9DiG+3qFovgZ3hxFoWVGkp0NxsHogBBj7ASAghhJChRyySYkXCesQGJ/MDMYT4xvQciMFNRo8ejR07dlh9vrS0FAEBAUhKSrI6zbx588CZ1jocAigYQwhxKmuZAXq97fVRPHX0IU/N2HGYXM4iSQBQVsZSNy53VbIrvZXj2PwGCoU7Wu+xLGVBrVplXivZFBX2JYQQQoiziUVSTItY7vZRk9555x1s2rQJR48eRWJiok3z7NixA0899RQCAwP7te6lS5fiwIED/VqGO1EwhhDiVM6oj+Kpow95asaOw8aNM9Z5qakBystZ7RfYmd5aXm5cDgCMHevGFzE4eGqAkRBCCCHEWbZs2QK1Wg0AdtVxef31152y/k2bNjm0/oFCwRhCiNP1tz6KM7JrXGHInVAnJwOHDxtTNrKy+GCMXemtWVnG2wIBWy4x46kBRkIIIYQQZwkPDx/W67cXBWMIIR7HU0cfGnIn1AEBLDumqIjdz89nFWbj4wHYmN5aWMjmM4iLY8slZjw1wEgIIYQQQgYGBWMIIR7JE0cfGpIn1DNnGoMxHAds2wasXMkHZHpVWMimNy2GMnOma9o5yHlqgJEQQgghhAwMCsYQQoiNhuQJdWwsMGMGkJnJ7ut0wNatLEMmJYUNHXW5qC8AFngpL2ddk/LzzQMxM2YMwr5a7uOJAUZCCCGEEDIwKBhDCCF2GJIn1EuWAK2tQEEBu89xQF4e+wsNZXVkJBI2fHVZmXmxXoNJk9hyrNBo2NDghiCWUjnIg1iEEEIIIYT0AwVjCCFkuBMKWdeknTuNGTIGNTWWgy+mZsxggRih0OLTGg2wYQOwe7dxaPBTp1j9nexslm1EARlCCCGEEDKcUDCGEEIIC6QsWwaMHw8cO8bqyJh2QepOIGDFemfO7LNrUkYGC8RERpoPDa5Ssfo7yclDLNOIEEIIIYSQPli+jEkIIWR4iokBbrsNWLsWuPJK1p/I15elrvj6svtXXsmev+02m2rEpKcbM2JM+fqyx9PTXfRaCCGEEEKI28ybNw8CgQACgQC5ubkD3RyH7Nu3j38NK1ascOm6KBhDCCGkp4AAVtDl/vuBRx8FnnyS/X///ezxy8NXazTA9u0sNrNqFft/+3b2uEF1dc9AjIFCwZ63lS3rI4QQQgghA2PNmjWoqqpCQkIC/1hZWRmWL18OuVyOkJAQPPbYY+js7LRruQcOHMC1116LsLAwCAQCfPfdd3a37fz587j33nsRHR0NmUyG2NhYPPvss9Bqtfw0s2fPRlVVFW655Ra7l28v6qZECCEeYDAWuLW1FoxSyR63pK3N9gGYqPYMIYQQQohnk8vlUCqV/H29Xo/ly5dDqVTiyJEjqKqqwu9//3uIxWK88sorNi+3ra0NSUlJuOeee3DjjTc61LbCwkJ0dXXhvffew9ixY5Gfn481a9agra0Nb7zxBgBAIpFAqVRCJpNB4+KrfRSMIYSQATZYgwy21oJJS2OvRaViXZNMp9Pr2fPOXB8hhBBCyHCn1emQdSYPmYUnUd/chGD/AMwYn4SU+ERIxGK3tSM9PR0FBQXIyMhAaGgopkyZghdffBFPPPEEnnvuOUgkEpuWs3TpUixdurRfbVmyZAmWmIz+GRMTgzNnzuDdd9/lgzHuRMEYQsiw4anZJ64IMrjjtdpSC2b5crbO7Gz2WkQi1jWprY0FYhYsYM/3d30CAfDee5733hJCCCGEuJtWp8Onu75D1pl8iIRCyKTeKK4ow5ny8ygsK8Gdi1a4LSBz9OhRJCYmIjQ0lH9s8eLFeOCBB3D69GlMnTrVLe2wprm5GUFBQQOybgrGEEKGBU/OPrE1qGErd71WW2vBSKVsncnJxmBJTIz9wRJr69Prgaoq4PRpFsDypPeWEEIIIcTdss7kIetMPkICgyGXevOPt3eokX0mH+OjYjEnYZpb2lJdXW0WiAHA36+2p3CgCxQXF+P//u//BiQrBqBgDCFkmPDkLi7OLHALuO+1mtaC0euBigrg4kWgvZ0FhKZNY/9Lpexv+fL+rdda7ZmKCqCmBggNZaNtG3jCe0sIIYQQ4m6ZhSchEgrNAjEAIPeWQSgUILPwpNuCMZ6qoqICS5Yswc0334w1a9YMSBtoNCVCyLDgycMrK5VAa6vl59ra2PP26O9rtXXEorQ0FoRpagJyc9lffT3Q0cFez7lzLEPHWbXPDOtTqcwfP3eO/d+9ELAnvLeEEEIIIe5W39wEWbdAjIFMKkN9c5Pb2qJUKlFTU2P2mOG+0t6DXCeprKzE/PnzMXv2bLz//vsD0gaAgjGEkGHC2dknzmQtyGBvgVuD/rxWQxenjRtZFkp7O/t/48aegZXUVGDhQtY9qLiYBT4AoKsLGDsWmDSJZaZkZNjXfmsM66uoAM6eBSor2f8NDSwrJjzc/tfbHQ2dTQghhJDBLtg/AGpNh8Xn1Bo1gv0D3NaWWbNmIS8vD7W1tfxju3btgp+fHyZOnOi2dhhUVFRg3rx5mD59Oj7++GMIhQMXEqFuSoSQYcFZwyu7grMK3Br057Xa08XJUAvm+HGWHSOVAnI5EBHBAiMiEVBXZ3/NG2us1Z7x8QGam43BIHterylPritECCGEEGKrGeOTcKb8PNo71JB7y/jH2zvU6OriMGN8ktvakpaWhokTJ+LOO+/Ea6+9hurqajz99NN48MEHIbXjwKq1tRXFxcX8/dLSUuTm5iIoKAhRUVE2LcMQiBk9ejTeeOMN1NXV8c8NRJYOBWMIIcOCs4ZXdgVnFbg16M9rtbeYsFQKyGTA1KlAWFjP5Tk768hS7Znt21nmDg2dbR9PHV2MEEIIIf2TEp+IwrISZJ/Jh1AogEwqg1rDAjHJ8QlIiU90W1tEIhF++uknPPDAA5g1axYUCgVWr16NF154gZ/m/PnziI6Oxt69ezFv3jyLy8nOzsb8+fP5++vWrQMArF69Gps3bwYAPPfcc9i8eTPOnz9vcRm7du1CcXExiouLERERYfYcx3GOv0gHUTCGEDIsODv7xNmcUeDWoD+v1ZEuTgOddeSOobMdGdXKk1EWECGEEDJ0ScRi3LloBcZHxSKz8CTqm5sQPiIEM8YnISU+0W3DWhuMHj0aO3bssPp8aWkpAgICkJRkPWNn3rx5fQZMSktLrQZzAOCuu+7CXXfd1Vdz3YaCMYSQYcHZ2SeeypDtUFvLarc0NwM6HZCUBCxd2vdrdSSwMtBZR64eOhsY+LpCzjbcsoAIIYSQ4UYiFmNOwjS3j5r0zjvvYNOmTTh69CgSE23LwNmxYweeeuopBAYGOrxejuOwb98+HDp0yOFlAMDBgwexdOlSaDQaLHfxwRAFYwghw4Yzs088Ufdsh4AAwMuLBURGjrQtMOFIYMUTso6cNXR2bi7Q2WkcottQA0etHti6Qs42nLKACCGEEOIeW7ZsgVqtBgCb67gAwOuvv97vdQsEAly4cKHfy0lOTkZubi4AwMfaVTonoWAMIYQMEc7IdnAksDJUso7mzwe++44FXry8ALGYDdVdU8OCMg8/PNAtdF6dl+GUBUQIIYQQ9wi3NLTlICOTyTB27Fi3rIuCMYQQMkQ4I9vB0cDKUM86ciZrAZW5c4GDB60HWpxZ52Wg6/wQQgghhAx3FIwhhJAhwlnZDsM1sLJ3LzBmDMuCMXRT8vMzdlPauxdYsaJ/67AWUDlxAnjjDVbfRyy2HGhxZp2Xga7zQwghhBAy3FEwhhBChgjKduif6moWfAkLA7p3c66stBDMamwEjh8Hzp5lkRutFpBIWDRn3DgWHQkIMJvFWkDlzBkWkJk6FYiLMz5uGmhxZp0XT6jzQwghhBAynFEwhhBChgjKdugfm4NZJSXAsWMsCNN9iEWNhm3wmhrg8GEWlJk5E4iNBWA9oFJfDwgE7H9TpoEWZ9Z5GSp1fgghhBBCBisKxhBCyCDTW82RoZTt4KxitbbqLZil0wFBAV147/qdCCrOhI8Pi6/ExLBivxZxHFBUxP5mzACWLEF1tdBiQKW9nb2m9vaezxkCLc7OfBqu3dEIIYQQQjwBBWMIIWQQ6auI6yOPDI1sB2cWq7WVta47Oh0gFnVB/8U2SDsKoJOwxJfqatZ9ac5NoRDHRLEuSlotUFbGJjCVmQm0tmJU6EqczBP2WLdczrJiQkJ6tssQaKHMJ0IIIYSQoYOCMYQQMojYWsR1sGc7OLNYrS0MWTi1tUBXF9DczIIwSUnAiBFA65c7kSQugETBphfrO9Cml+LseQlCctswsfWUsV7M2LHAlVeyjJj8fGNXpoIC3B60Eyf0y3oEVIKDWQwnKMi8XaaBFqrzQgghhBBPNm/ePOzfvx8AkJOTgylTpgyr9dur5+U5QgghHsuWIq5DgTtfpyELZ+NGoKCA1dwNDGQ1XEaOBFBSgoT2TBZr0TRgVGMBxNo2qNUCqBp02P1dK37+ToOi4yp0VlyuFfPNN2zBs2ez4ZEum9aZiZumnkNFBSs5U1nJ/tfrgWnTWCDI9PGKCmOgxVDn5fHHgcREFvdJTGT3e8sU0miA7duBtWuBVavY/9u3s8f72i6OzEcIIYSQ4WvNmjWoqqpCQkIC/9hDDz2E6dOnQyqVOhwg+eCDDzB37lwEBgYiMDAQqampyMzMNJvmm2++6fGYJ6PMGEIIGUScWcTVkzn6Oh2pM9NXFs6C6mOQiDmENBcjoL0CFwMSUNIUjJYWFjzhOPNuS1deCXh5mdSLCQtjURWBAF5ewJ+mH8PYtJgeXcnmzgUOHuy9i5m9dV4c7e41EN3EBh0HRtMihBBChjq5XA6lUtnj8XvuuQfHjh3DKWsF8Pqwb98+3HbbbZg9eza8vb2xceNGpKWl4fTp0wgPDwcABAUFoaWlpV/tdycKxhBCyCAyXIavduR1OhpA6C0Lx6+rCSFNZxDWVYAArzqoZCGo0o5ASws7767Sj0SjfAQqJZ3QtWlxIe8SvEVVSJnlA5HX5eTTykqgtZWtQCCAuLQIy69rwvLlAT3a4uwuZo5293J3N7FBpR+jaRFCCCHuounsRMa5c0gvKUG1SgWlry/SYmORGhMDqdXRB1zjrbfeAgDU1dU5HIzZsmWL2f1Nmzbh66+/xu7du/H73/++320cCBSMIYSQQWS4FHF15HU6GkDoLQsnSZeN2K5i+GvroBcATYpwNNcKUChOwBnf6TivEsNPpIKsSwCRnxC1OgVOnCvA+tGHMTO8CyKRgC2oqwsoLmYn5xzHokNuKPJiS3cvS9vE0fncPQKWW3V1ATt3smLMtrAwmhaE1DucEEKI62k6O7Hh0CHsPncOIqEQPhIJTtXUIKeqCtmVlVh/5ZVuD8g4W3t7O3Q6HYK6F9wbRAb3O0AIIR7IlSekw6WIqyOv09EAQm9ZOLE1RzBGXAGJAqhqUeBCWzC2cjfjN1E8vNVNUIir4RcggVgsYuvyF6JcEI9f2svhP3YUJl08zioB+/mxk/LGRlaQprjYLW9WRQXrQXPkCPtfLgciIoDw8N67eznSTWxId23q6gK2bWNFhboLDQWibBtNCytXUkCGEEKIy2WcO4fd584h0t8fPhIJ/7hKo8Ge0lIkh4VheVzcALaw/5544gmEhYUhdRAf/FIwhhBCnMjVJ6SGIq5DYfjq3jjyOh2tM2PIwumqb8RE9XGEtJyFpLMd+nYtptZ9hzA/FeS+ckgiRmJPzM2o+TUe3u1AqKIF0Av4QAwAaLUihIe0QyASIPMCh0mrVgJbt7In/f2BixdZMKatrZ9bqG8aDVvdmTMsCCMWs+GzL10C6urYtrLWrc2RbmJDumvTzp3mgRiBAEhIAFJS2AsWCIzPcRxQXg5kZfUYTQs7dwLLlrm37YQQQoad9JISPiPGlK9UClFrK9JLSgZ1MGbDhg3YunUr9u3bB29v74FujsMoGEMIIU7kyhNSSxk3v//90ArCmLK3WK0tAQRL23D5+BL8JfgYVNlnIRJwEIiBdh3g1dmBkeImKMRdEKiaERZUi78tOY7ZV3nh2f/GorWqE36iKijUNRByamg5BXwQjQljtJDJJWiqUwHx8eykPS+PRefq64GODre8YRkZLBnDUFPWMKiTTseSN0JCLHf30mhYvKioiJVH8fc3ZtO0t1vvJuZIZtKg6NZUUmLeNUksZhku8fGWpxcIWKZMVBR777dtYxsdYMsZP37oFHcihBDikapVqh6BGAOFRIJqlcrNLXKeN954Axs2bEBGRgYmT5480M3pFwrGEEKIEznaVaYvQ7oLiINMT+QrKlgWyNmzrAdQQEDPAML8+ebb0FfRBdnenaj4LhNjxgCJVwClpSyAERgIJCoqEXBeAEHX5RUGBABFRZjbWYT7wqfj/TIBvHEREAmh7RJDiCaMlh+DrEOMtlYxQiID2XwpKSwYo9ez+5WVl8fMdq30dCA4GPD25gdzgljM4gJaLduHumf2mu5nEgnQ0sICiZWVrKdVRASbZ+5cNsy1aRDlxAk2jSWWMpMGzT597JjxtkDQeyCmu/h4Nv3WrcYMmWPHKBhDCCHEpZS+vjjVvcvsZW1aLWICA93cIud47bXX8PLLL+OXX35BcnLyQDen3ygYQwghTuSqoaeHdBcQB5ieyAsEbLtWV7PH29tZEKF7AAEwbkNfRRemnduGUeICaP2A8+dZ4GbpUhhrgPzSAKiCgKYmthKdDuA4eHkJMM8rHa2SDvzYOROdAgWksi4E+nbBx1uPxuo26IMVSJp7eQSdyEiWhpKVxe43NLCdwcWqq9nrHzeOxX4uXmTbxrBNIiJ6BjsM+1lUFIsjGIJczc0sgLNwIfDII8C//tUziHLuHAvgjBrFHjdlqWvToNinm5pYhM8gIcEsEKPV6ZB1Jg+ZhSdR39yEYP8AzBifhJT4REgMqUim2VEASzlqaqJhrwkhhLhMWmwscqqqoNJo4GvyY6/SaKDnOKS5eZS/4uJitLa2orq6Gmq1Grm5uQCAiRMnQmIlg6e7jRs34u9//zs+//xzjBkzBtWXD6p9fHzgY+3g28NRMIYQQpzIVUNPuyrjZrAyPZFvaGDBl5AQVme1sZEFHLq6jAGE9euBxx83bsNJZTsxqpHVAJFIAIFQgEPNCYi7x6QGSGEhO2m+cIGlyhhSRfz9UXexAfGSVkiDcnEUYwAB4OUlgk6rR6dOD2+FBImzL7/ZAgEgkxnrxGi1wNixLt9Ghn0xLMzYa8bg7FkWfOqu+35mOt/Zs2zbHjxoOYjS1QXk5rLMJNPEEWsjYKWns03T0MDaaVpgWCAw7tMD2pUpO9t8+OqUFP6mVqfDp7u+Q9aZfIiEQsik3iiuKMOZ8vMoLCvBnYtWGAMyhuwowK2jaRFCCBmeUmNikF1ZiT2lpRC1tkIhkaBNq4We47AgOhqpbs7Q/MMf/oD9+/fz96dOnQoAKC0txZgxYwAAAoEAH3/8Me666y6Ly3j33Xeh1WqxcuVKs8efffZZPPfcc65otstRMIYQQpzIVUNPuyrjxhM4crJtGjQ4dYqdvBtGaPT2Ztt+9mxjAEEqNW7DES0lGFNrrAGiF4rx65iVaPSJxz0mAQtotSySUVbGFhgbCwQFASoVOtq0EEu8kOh1CWplDEravKFRa+HrI4dUKUaw0g9iqclPbGmp8XZXF0v7cDFH9kVb9jNrgcFx49imOnuWDRjU1whYFRVseS0txi5UhgLDfn7AiBEe0JXJNCsmNJRFoC7LOpOHrDP5CAkMhlxqLB7Y3qFG9pl8jI+KxZyEaezByEg2vyFl3E2jaRFCCBmepF5eWH/llUgOC0N6SQmqVSrEBAYiLTYWqTExbh/Wet++fb0+X1paCi8vL8yZM8fqNOfPn3duozwABWMIIcSJXDX0tKsybgaaoyfbpkGD9nZjcVqA3W5vZ7dNA1WGbRjdbl4D5ETMShTVxSNR2W0lEgmL7AQHG+u9NDYCM2bAO+M3NF9qhUAgQXxnJbymXc3PVnm+HkGhJsVTCgtZEVgDpRIaWQAytrs228ORfdGW/cxawEYkAiZMYMGexMS+R8DSallsYsQI8/dPp2OPx8d7QFcmw44EsBQhk1GTMgtPQiQUmgViAEDuLYNQKEBm4UljMMZQ1NcQjHHDaFqEEEKGN6mXF5bHxbl91KR33nkHmzZtwtGjR5GYmGjTPDt27MB9992HcePG9WvdS5cuxYEDB/q1DHeiYAwhhDiRq4aedlXGzUBz9GTbNGggl7OMCgOdzlhI1jRQlZYGnM1qQoDqLHC5e3JFYAKKRfH8NjStARKbcxQjtTqM9pZB2dgEoaG7yokTGJEwBk1786DT6eHfUAlJRyu03j5Qt2nA6TljvZjCQuCrr1h3J0P7Yse7LdsjKQk4fpw1A2AD+dxzD6uNY2kdtuxn6enWAzYdHcC0acC//+2c9g949zyt1ni7W5/2+uYmyLoFYgxkUhnqm5vMHzSd33S5hBBCyBCxZcsWqNVqAECUaf/oPjz44INOWf+mTZscWv9AoWAMIYQ4mb1DMtvCVRk3A83Rk23ToEFEBOvaYhg9mOPYY90DVampQP0X2VDt59AmZNkY+6QpqNKybXjV1eY1QOTBARCdKUY914TxGj2iGxshCgoCdDqECVrBiVtwscELrRI5vH/Lw/nAOHB6DgmzxiAxwgv4+msgP58FYgyZEOHhOC65Art/cV22h0YD/PwzyzgqKWH7Y3g4S/JpagJOnrxcqNgCW/czZwQGJRLWc6elhXVr8vICOjtZL67QUPb8gHfPk0jYBgV6BFCC/QNQXFFmcTa1Ro3wESHmD/YS2CGEEEKGgnBLBemG0frtRcEYQggZBFyVcTPQHD3ZNg0aCAQsE8bQAyQ0FFCrWQ8T0wCCVArclnIWpZ0sSFHRGYrQ5Ejcufjy8s6a1wBpV/jDr6IGnTodznBqyJoaEB4UBAAQBfojQilDYOUlNKmbEXCxA4EjFYhNGIlo4WmIthiL1KGigv0/ciQwbhy+K092WbaHodvXV1+xUZAUChbcKCtjAZnY2N4DPrbsZ84KDIaHA3V1bPndR3pSq40Fhge0e55czqJMANuIHMd3VZoxPglnys+jvUMNubeMn6W9Q42uLg4zxicZl8NxbH4DN4ymRQghhBDPRsEYQggZJFyRcTPQHK2F0z1oMGKEcQQfiYSdyFsKVIm17YiLA+LiAKREAcut1wDRKORoVIYiqKoGEHagTK1CeFgYGzNbIIAwMAC+6nb4BgKREg6I1gGaSkBj0tBLl4DaWtagsWOB+HiU/hbgsmwPQ7cvnY7FEQzdtXQ6FhMaObLvgE9f+5mzAoOG7KbAQPORnlQqFpgxZNgMaPe8ceOMUb6aGqC8nG9sSnwiCstKkH0mH0KhADKpDGoNC8QkxycgJd6kn3x5uXE5gEtH0xrQ0acIIYQQYjO7gzEVFRV44okn8PPPP6O9vR1jx47Fxx9/jGQ3jAxBCCFkaOlPLRyHglN21gCpHBuNoKoaiL28oNZ0sFSOK69k/587B4BlnjTU6JH1M9DayjJeYmOBGP9L8KqvZYVbAgPZAmfOhPJX12V7GLp9dXb2LGosFLIMlDFjbAv49HVS39/AoK0ZNgPaPS85GTh82Di8dVYWH4yRiMW4c9EKjI+KRWbhSdQ3NyF8RAhmjE9CSnyicVhrw3wGAoHLRtMa8NGnCCGEEGIzu4IxjY2NmDNnDubPn4+ff/4ZI0eOxNmzZxFoOMgkhBBC7GDphFylYgklPj7Axx+zYIDTruzbWQOkKXQkKmPHQHEqD75+CpZicvgwkJAAzJwJfSeHkuxG1NULcNFfCqFUjKZaLaqrNKiJ8sWseSP4IbcxYwYQE+PSYsyGbl/dixoDrCZLe7ttAR93nNTbmmEzoN3zAgJYdkxREbufn8/e+8tpWBKxGHMSphlHTbKksJDNZxAXx5brAgM++hQhhBBCbGZXMGbjxo2IjIzExx9/zD8WHR3t9EYRQggZHrqfkFdUsKQTw3MajZODAA7UADkdH4OImiokKoLZAxzHGpWdjUu1wIUmf+hHjERHzGQEtZbBr70VWq0AxeVShJ673CVq0iRgyRIAri3GbOj2ZVrUWCwG/PSNSGo7jvGisxh5oR0LI7XAPyRse4wbx94AkwCBu07qbcmwGfDueTNnGoMxHAds2wasXGnsF9ebwkI2vSGzxrA8Fxnw0acIIYQQYjO7gjE//PADFi9ejJtvvhn79+9HeHg4/vSnP2HNmjVW59FoNNBojB3oW1paHG8tIYSQIcf0ZHv7dmDjRtazxyVBAAdrgETdfDNGdcmAEyfYvC0tQFsbWiqBkdo2qLu8MKbW2BVFImHdgkpKgLjfzWCBGKGQf72uyvYwZN34+bEyNV4XSjC98xii9WfRqeXg5wdMjATGRgJQadiGralh2T7jxrFAQWysS0/qB11Nk9hYltWUmcnu63TA1q0sQyYlhUWsBMbaQ+A4tl9lZbGMGNNAzOXsKFcZ8NGnCCGEEGIzu4Ix586dw7vvvot169bhqaeeQlZWFh566CFIJBKsXr3a4jyvvvoqnn/+eac0lhBCyNDWnyCATSf5/agBIhaL2Qn4sWPAd98BYD2dhCKgWRFm3hiBALWBccgeMRNLl/U8+bYn28Oe4IUh62bv7i4s1OzEWEkmVBpWQ2bECFbuZuxYGLtOGXAcy/4oKgJmzEBN1RL4+Agttqc/J/WDtqbJkiWsIFBBAbvPcUBeHvsLDWX7kETCdoiyMvNivQYm2VGu4mhBbEIIIcQZ5s2bh/372YiSOTk5mDJlSp/z7Nu3D/PnzwcAXH/99fju8jHWcGBXMKarqwvJycl45ZVXAABTp05Ffn4+/t//+39WgzFPPvkk1q1bx99vaWlBZGRkP5pMCCFkqHLkyr5GA/z8MzvJLylhJ/NhYWzaHif5/a0BEhPDTrhPngSkUnAXGlDTHgC1xB+dIgm0XgrU+o3FhZHJOFUWgMR+Dppjb/BCKgXWP96Fa9XbULO3AK1drMtSbCxrule49cBBZyerSVzycyZCy1rxjXAlOjuFCA9n6zboz0m9K7s/uTTjRihkXZN27jRmyBjU1FgOvpiaYZ4d5SqurEdECCGE2GLNmjV44YUXMGLECADAQw89hMOHDyM/Px8TJkxAbm6u2fSzZ89GVVUV1q5da9ajZjiwKxgzatQoTJw40eyxCRMm4Ouvv7Y6j1QqhdQjL3MRQgjxNPZe2TcEK776io0U5OPDRjcqL2fddGJjLZzkO6MGiLc3EBMDSWcMNp39PURjY1xy8utI8EK6dyemeRcASy8/IBD02aVGdyQLh9/LR+k5jk0uLEBl007sP74MdXXAlCksINPf1+Wq7k9uybgRCoFly4Dx41l2VFGReRek7gQCVjBo5ky3paS4sh4RIYQQYgu5XA6lUmn22D333INjx47hlIWDPIlEAqVSCZlMRsGY3syZMwdnzpwxe6yoqAijR492aqMIIYQMbdayGObPt+/KviFYodOxWrSGeXQ6Vgx45EgLJ/lOrAESvWoGJubG9Dj51elYAsrPPwP//a/jWRp2By9KSswzN8Ti3gNNAgEQFYX0vCh8rkrA9QHbIPPSgeOARVwmzmvG42xxDFpa2EhMGg3bfDodu21vgMNVNU3cOopQTAz7a2pikY/iYvama7Us40ihYH3BuhVFdgdX1iMihBAyuGigQQYykI50VKMaSiiRhjSkIhVSuO8H4a233gIA1NXVWQzGDGd2BWMeeeQRzJ49G6+88gpuueUWZGZm4v3338f777/vqvYRQggZYnrLYrj6amDePGD/ftuu7BuCFZ2dLO5gIBazOMPFi8CYMRZO8p1UA0R87RKsX2J+8hsVxc7Ty8qAysr+ZWnYHbw4dsx4WyCwOeMnPR2o9I1HfshKpJRshQAclErgBt0xbLgQg/JyIDgYiI5mbf/nP1lPLXszTlxV02RARhEKCGA7pMlOyQcZfwSqPxiY4sQDPvoUIYSQAaeBBhuwAbuxGyKI4AMfnMIp5CAH2cjGeqx3a0CGWGZXMCYlJQXffvstnnzySbzwwguIjo7Gm2++iTvuuMNV7SOEEDLE9JbFcOAA8MgjrGeHLVf2DcEKuRyorzd/Tixm2RwWT/KdWAOk+8mvYUSoqKj+Z2nYFbxoagLOnjXeN6mFAwBanQ5ZZ/L44sTB/gF8ceLqajF8fICagHhUBCYgvCEPAgEQ2VGEYFETugIDzGrPOppx4qqaJp4witCgLU5MCCFkyMlABnZjNyIRCR8YfyBVUGEP9iAZyVgOitoPNLuCMQBwzTXX4JprrnFFWzyeXqtBbU4GqrPT0dFYDe9AJZTJaQiZmgqRhI6wCCHEFn1lMezaxUpz2MIQrIiIAC5dYt1nDBkyOh0r7WL1JN9FNUCcmaVhV/AiO9u8/Skp/E2tTodPd32HrDP5EAmFkEm9UVxRhjPl51FYVoKQ0BXIz2Mb7nxICsIb8th6mjkk6bJR4meekuRoxomrapp4wihCbu0qRQghhPQiHel8RowpX/hCBBHSkU7BGA9gdzBmuNJrNSj8YgNqc3ZDIBTBS+aD5tJTaCrJQUNRNsavWk8BGUIIsUFvWQze3qyLUl6ebdkFhmCFnx8r2FtRYRywpr0dCAqy4STfyTVAnJmlYVfwwjQrJjSURQUuyzqTh6wz+QgJDIZc6s0/3t6hRvaZfMRPjcXJ3GlQqQD4RKJFHgq/9hpWI4Yrhiai5wZ0JOPEVTVNPGEUoQHpKkUIIYRYUI3qHoEYAwUUqIYbUkZJnygYY6PanAzU5uyGfGQkvGTGHVvXrkJtzh4ExSVj1Ew6ynI2ykYiZOjpLYvh4kWgsRFISrItu8A0WOHjw7oGVVSwLiPjx7MT/6VLbTzJt1ADxBHOzNKwK3jR3m68HRVlVoQ4s/AkREKhWSAGAOTeMgiFAnTKTmLhwmmXgz4ChGmiMKahBl1dQJC0DeHh/X8tpq/Jlpom9gxVbSlopVKxbCm5HHjlFeBvf2OBkaQktk84u46LJ3SVIoQQQgBACSVOwfLBSBvaEAP3jPJHekfBGBtVZ6fzGTGmxHJfdAhFqM5Op2CMk1E2EiFDU29ZDPX1rFCsrdkFloIVV1wxsKPHODtLw+aCrFqt8bZEwt/UaIBfDwbibF4iDqoD4evfjnGTL2JsQgW8xF2QSWVoamvCMybbUZQrQUgIMHo0cOa8Fqfb3ZtxYm/9le77QUUFUFfHhjmvrTW2VyRiAb+TJ51fx8UTukp5KnsCa4QQQvovDWnIQQ5UUMEXxh9wFVTQQ480uCFl9LLi4mK0traiuroaarUaubm5AICJEydCYnK8MhxRMMZGHY3VPQIxBl4yBToa6ZKXs1E2EiFDU29dbwICzHrXmLGWXeBpo8e4qi5KnyQSdtYL8IEZQ1Aje9cV6NCp4ecrRHVZECrPj8DFcyMw77qTUGvUCB8RYrYddd9pUfol67HV3CHB/v0sSBYRAXR0uP61OFJ/xbT9hiLKISHAmTNAYCCrJaTTsfdCJHJ+HRdP6CrliaiwMSGEuF8qUpGNbOzBHoggggIKtKENeuixAAuQClcdjPT0hz/8Afv37+fvT506FQBQWlqKMWPGuK0dnoiCMTbyDlSiudTyJa9OdRsUymF8yctFKBuJkKGpt643P/8MnD5teb7Bkl3gqroofZLL2Zk/wMbV5jhkZAiwezcQEy1GRcNFyKRS+AV6QaP2QsnpcIyMqETA6HLMGJ/EL0bTwSFjUxlqTrET6eZOBdo6gOZm9rdsGXDNNa59Lf2tv2KY/9Il1lvLUNRZLGY1herrgZEjnVvHZcCCcB6OChsTQoj7SSHFeqxHMpKRjnRUoxoxiEEa0pCKVLcOa71v3z63rWuwoWCMjZTJaWgqyYGuXQWx3HjJS9euAtelhzJ5mF7yciHKRiJk6Ootm+XUqcGfXTAg2TrjxhmH5K6pAcrLkZ4eBZEIGB0WAG1XIOqaGiEQaOAl8oK20wunT4RgbVoCUuIT+cUc+l85ak6x4r1tbUCxdCz8/QG1mtU4bmlxffeS/tZfMcxfVmYMxBh4ebHyOs6u4zJgQTgPR4WNCSFkYEghxfLL/9zpnXfewaZNm3D06FEkJib2Of3BgwexdOlSaDQaLB9mPwgUjLFRyNRUNBRlozZnDzqEInjJFOhUt4Hr0iNk6gKETB2ml7xciLKRCBl+KLugH5KTgcOHjcNbZ2WhujoKPj6ASCjCuIgxCPDxQ21TAzRaDQL8RRgpj8edi5IhMYlYXNiWxQdixFIBSoOTIRexxJuGBmDfPpbt4Mrjpf7WXzHML5ezLBhTOh37PyeHPb92rfMCJp7WZc4TUGFjQggZPrZs2QK1Wg0AiIqKsmme5ORkvo6Mj7UfjCGKgjE2EkmkGL9qPYLikvmRfRTKGBrZx4UoG4mQ4YeyC/ohIIBlxxQVsfv5+ZgsTUBGbTwAFpBRBo2EMmgkADYSdkI8IDHNHCkshO+FfKi0rHtPmXccVKIA/mlvb5Yh4+pshv7WXzHMHxTEuirpdCxDRqtlyxAK2esLC6P6Ja5GhY0JIWT4CLc0/GIfZDIZxo4d64LWeD4KxthBJJFi1MzlVKfETSgbiZDhibIL+mHmTGMwhuOwEttQoFoJlSq+76BGYSGwbRt8FBy0Wtad55T3TLPF63TuyWbob4aUYf6MDBZAamxkIyt1drLX4OfHRv+ePJktn+qXuA4VNiaEEEIso2AM8ViUjeRaeq0GtTkZ/Lb1DlTStiVksIuNBWbMADIz2d0oHdaUb8Xu3AScDUhBW1Ak2toFxqDGQg4oKweysoD8fIDjEBsLFBQAmZiBixJj2oJOx3pA+fqybAdX6m+GlOn8O3YY6xDV1rKMmMmTgfBwFogBqH6JK1HXQ0IIIcQyAccZOpe7R0tLC/z9/dHc3Aw/Pz93rpoQcpleq0HhFxtQm7ObH7GqU916OetoIcavWk8BGUIGq64uYNs2FlEBywY5dw4oKQEqOkOhD4/ClBkSTEvQQlxVZiz6e1lnJ/Cf/ZPw7MmbIJUJ4e1tDMSMGMF6Q61fPziDFqtWseK9YWE9n6usZDVkvvjC/e0a6jQalqVkCKwpldT1kBBCetPR0YHS0lJER0fD29t7oJtDLOjtPbI15kGZMYQMQ7U5GajN2Q35yEizEat07SrU5uxBUFwydccjZLASCoGVK4GdO4HMTHh5AXFx7A+oYX+dAHItz+41ewbu/usSZD4oxL59rEaMQsGyR/z92Qn0YM1moPolA4O6HhJCCCE9UTCGkGGoOjudz4gxJZb7okMoQnV2OgVjCBnMhEJg2TJg/Hjg2DFWR6a3RFiBgEVrZs4EYmLgB+Cjj4ZGNoNpVsaJEyxLqKuL1To2dFOi+iWEEEIIcTcKxhAyDHU0VvcIxBh4yRToaKSxRgkZEmJi2F9TEyvcUVzMUkC0WkAiYSkvY8ey4ioBAWazDoVsBo0G2LAB2L2bBV78/NjLzs0FysqACROAjg4n1y9pbASOH2fDVbW3G7e1XM4iQBa2NSGEEEKGHwrGkGFtuBax9Q5UornUcq5+p7oNCqVrc/WH63YnZMAEBAzu/kUOyshggZjISMDncvx51CgWkzp7lmXETJvmpIyfkhKWhXT2bM8sJI2GraymBjh8mAVlZs5kBZcJIYSQIWLevHnYv38/ACAnJwdTpkzpc57Nmzfj7rvvBgCsXbsWb775pgtb6FkoGEOGLUtFbJtLT6GpJAcNRdlDuoitMjkNTSU50LWrIJYbxxrVtavAdemhTHZdrv5w3u6EEPdKT2cZMT4miYAiERAfz3pyJSYC//53P1fS1cXX57EJx7FuY0VFwIwZ0Mxfgow9wkHfHYwQQggBgDVr1uCFF17AiBEjcPLkSWzYsAGHDh3CpUuXMGbMGNx///1Yu3YtP/2qVauwZMkS3HjjjQPY6oFBwRgybA3nIrYhU1PRUJSN2pw96BCK4CVToFPddnk0pQUImeq6q+fDebsTQoxcMsJOty5CV+zVYnKnBN6dctT6jcOFkclQSwMAsB5a1f3tkdlt5CozoaFAVBTroqTVsn5R3UeuOpKJHz5uxdvVKyH0EsLHhxUYzslhvcrWr6eADCGEkMFFLpdDqVQCAI4fP46QkBB89tlniIyMxJEjR3DfffdBJBLhz3/+MwBAJpNBJpNBIpEMZLMHBAVjyLA1nIvYiiRSjF+1HkFxyXxXIYUyxi1dhYbzdieEMN1rufQ7CGGli1CADNDUaOAnU8GvvQZjaw6jxn8cSkNm4mxbbP9HT9q50zwQIxAACQlASgrrGyUQGJ/jOKC8HMjKAvLzAY7DuXNAa2YBlkfvREncMn5SlQrYs4eVlxnMNXsIIYQMHJdc9LDTPffcY3Y/JiYGR48exTfffMMHY4YzCsaQYWu4F7EVSaQYNXO52wMfw327E0Is13IBHAhC9NFFKDaWHYAaauiC4xDaVITA2iLoMANXpy4BIHTsRZSUmK9XLGZDisfHW55eIGCZMlFRLGCzbRtKSnQQCIAJqkw0t4zHJT8WHfL1ZUGq9HQKxhBCCLGf0y96OFFzczOCgoIGZuUehoIxZNga6CK2wxVtd0JIejqLTTQ0sIPD9nY22FBEBHvcpiCEDV2ExqRIkC3Q4kJmGYJbayAWAzodm3VZdCbmtLQCXStZARl7HTtmvC0Q9B6I6S4+Hli5Eq3/2wqJhGXyRNce44MxQP+7UdlzRdQTrp4SQghxHqdd9HCyI0eO4IsvvsD27dvdv3IPRMEYMmwNZBHbwcTZIx/RdieEVFSwk/6WFhbHEIuB+nrg0iU2/PSIETYsxIYuQhIAN6UCGbs4ZH1TDt8zWZioz0dsDIeYGMDrbAFbzrJlVldjUVMT6xJlkJBgFojR6nTIOpOHzMKTqG9uQrB/AGaMT0JKfCIkYjGbKD4eqtEJEJ7OAwCENhdBpmnia9q0tcHhblT2XBH15KunhBBCHGOpgD0wsJmX+fn5uP766/Hss88iLY2O9wEKxpBhSq/VQK/ToUunRc2JXRB5ecN7xCiIJHIAnMuL2A4Wrhj5aCCLBxNCPINWy2rZjhjBAjEGOh17vM8EEzu6CEmlwPJrBFh+TRSAKOAM6yIEnY5NkJkJjB9vX+QjO9t8+OqUFONr0+nw6a7vkHUmHyKhEDKpN4orynCm/DwKy0pw56IVfEBm9MoUlOXnXe5GxWF0XTYKI1KhUgF6PctOcYQ9V0Q99eopIYQQx1VX9wzEGDilgL2dCgoKsHDhQtx33314+umn3btyD+ZgR2lCBi9DgOHsN/+EUCyFjzIGnIBDW3Up9LoOxN30CA2vfJnpyEe+EXGQBYex/0dEoDZnD2pzMuxepqF48PhVj8M/OhEiqRz+0YkYv+px2u6EENs4oYuQWXFd0+XZwjQrJjSURTIuyzqTh6wz+QgJDEZkyCiM8A9EZMgohAQEIftMPrLO5PHTXnlbJEISQ9HSwrpsScqLcfYsyxxasIB1E3KELVdEHZmWEELI4KBUAq2tlp9ra2PPu8vp06cxf/58rF69Gi+//LL7VjwIUGYMGXYsDa0cMHYKdO0qqC9VQOglpoDAZa4a+WigigcTQjyDRMJiGC0trFyLlxfQ2clquYSGXi62a00fXYR0eg3yqjJwsjIdTepqBMiUSApLQ+KoVIhFl7/b4+PZfHmXAyNFRWy5AQG2vYD2duPtqCizwE5m4UmIhELIpd5ms8i9ZRAKBcgsPIk5CdMAAFJvAdL+EIXSL2tQUgIINW1ITOx/vRZ7roh62tVTQggh/ZeWxrqbqlQsuG7Q38xLe+Xn52PBggVYvHgx1q1bh+rLPyoikQgjR450TyM8GAVjyLBDQyvbjkY+IoS4Qng4UFfHegZdvMhiG35+rICvWs2et6qXLkI6vQbf5W9AftVuCAUieHv5oKzxFM435KCkPhsrEtYbAzIpKcZgDMex5dqaiqLVGm93ixzVNzdB1i0QYyCTylDf3GT2mFghQVwcEBcHQKrFnU/a1oTeKJWs7osl3WvR2DMtIYSQwSE1lf2s7dnDshwVCvadrtf3L/PSXtu2bUNdXR0+++wzfPbZZ/zjo0ePxvnz593TCA9GwRgy7FCAwXY08hEhxBUMV+wCA1liiYFKxQIzvV6x66WLUF5VBvKrdiNYHglvsfF7Xq1TIb9qD2KDkzEt4nKwPTKSzV9Tw+4XF9t+dCqRsMq3gHlgBkCwfwCKK8oszqbWqBE+IsT8wV4CO46y54qop1w9HRCNjcDx42yfam83joEulwPjxrGCObZmSxFCiAeRSlkB9uRk40h5MTHuHynvueeew3PPPeeelQ1CFIzxIM4etYZYRgEG29HIR4QQV+jXFbteugidrExnGTFi84C7TOwLgVCEk5XpxmCMQMDmNwRj2tpsfwFyOYtWAEBZGcusudyOGeOTcKb8PNo71JB7y4zN7lCjq4vDjPFJxuVwHJvfQKGwvQ296Gv7zp0LbN/ODtArKlgM4tQpVlDZ13dgrp66VUkJqxN09qx5lhXAgmwqFdsvDh9mQZmZM4HY2IFpKyGEOEgqZQXY3V2E/Z133sGmTZtw9OhRJCYm9jn9li1b8Mc//hFqtRpTpkxxfQM9CAVjPIQrRq0hllGAwXY08hEhxBX6dcWul0ySJnU1vL0sZz7KRAo0qbtlPprO3y3DpVfjxhmDODU1QHk5n+KTEp+IwrISZJ/Jh1AogEwqg1rDAjHJ8QlIiTc5MC0vNy4HAMaOtb0Nveht+86dC/zrX+ZDWUulrNBjRwcLyLji6qlGw0ZuMrRHqXT/FVp0dbGhzE1H4uoNx7F6QkVFwIwZwJIlrMgRIYQQi7Zs2QK1Wg0AiDJNfe3Fddddh5kzZwIAAoZZNiIFYzyEpaKyAAsQ1ObsQVBcMtUxcRIKMNjOMPJRUFwyn7GlUMZQxhYhpN8cvmLXSxehAJkSZY2WMx/V+jaE+HbLfHS0i1ByMsuaMGRVZGXxwRiJWIw7F63A+KhYZBaeRH1zE8JHhGDG+CSkxCfyw1rz8xkIBGy5TmJt+27f3nMo67AwlgxSUQHcfbfzr6JqNMCGDeYBoFOnWPeo7GwWOHJ5QKariw1pXlDQ87nQUPb+SSRsnygrMw+SASyA09rKRuKigAwhhFgU3mvRN8t8fX3ha9pPdhihYIyHoKKy7kMBBvvQyEeEEI/SSxehpLA0nG/IgVqngkxsPLBT61jmY1KYSeZjf7oIBQSw7JiiInY/P99sVCeJWIw5CdP4UZMsKixk8xnExbmlPoktQ1k7OxiTkdEzAASwt3HPHhaDcnka/c6d5oEYgYC9ZykprGGmQ51zHMtayspi75Eh6FZQwJazbJmLG0sIIWQ4oGCMh6Cisu5FAQZCCBmkeukilDgqFSX12civ2gOBUASZSAG1nmU+JoxagMRRJpmP/e0iNHOmMRjDcSzrYuVKs2G2rSosZNOb1iu5nKLtagMxlPVABIDMlJSYd00Si3t/rwz1hKKiWMBm2zZAp2PPZWYC48fTMFOEELfgute1Ih7DGe8NBWM8BBWVJYQQQmzQSxchsUiKFQnrERucjJOV6WhSVyPENwZJYWlIHJVqHNbaMJ+BI12EYmNZHRHDSb5Oh87PtuKkPgE/Vqfgt9ZIKEcJMH8+e3rvHg66c+VI5rJwZUA+YqI5eBmOwmbM6HFy76oaKwMxlPVABIDMHDtmvC0Q2B40A9h0K1cCW7ca97ljxygYQwhxKfHlLq3t7e2QyWR9TE0GQvvlAQXEpt2P7UTBGA8xXIvK0ghShBBC7NJHFyGxSIppEcuNoyZZ4qwuQkuWsDoiBQXo7AQOHeJQWpqHMYI8hPiG4kJBFL76nwQSaJHoXwaloAZaLXCYAyorgCuvBLySJrHlmHBljZWBGMp6IAJAvKYm8+HQTfYVANDpNciryuCDdwEyZc/gXXw8my8vj90vKmLLHWaFJgkh7iMSiRAQEIDa2loAgFwuh8C0OyUZMBzHob29HbW1tQgICIBIJHJ4WRSMcaPeAg/DsagsjSBFCCHEIZ7SRUgoZOvduRPnPstEaSng58fqwAajBn7NNRhxecTsED/A14/d1mqB0lJAPm8GZtzUc4QeV9ZY6dew4g4aiAAQLzvb/L1OSeFv6vQafJe/AflVu9mQ6F4+KGs8hfMNOSipz8aKhPXGgExKijEYw3FsuUNy3G9CiKdQKpUAwAdkiGcJCAjg3yNHUTDGTWwJPAy3orLOGEGKMmsIIWQYstBFCFu32l+QFbDYRcguQiGwbBm2fjkeAsUxTJEW8ctvaTHGWVpaAH9/AAIBGkPisNdnJnIbYzDDwsA8rqyx0q9hxR00EAEgnmlWTGgo2zcuy6vKQH7VbgTLI+EtNm5stU6F/Ko9iA1ONmZYRUay+Q11hoqLKRhDCHEpgUCAUaNGISQkBDpD3SriEcRicb8yYgwoGOMmtgYehlNR2f6OIEWZNZZRgIoQMiyYdBECwAIgeXnsz5ahigFgUs8uQo46rY5Be2wM6oObMLouGyEtxWjSt0Ek0kInkKCRU0CjHIsLI5OhlgagpRLotFIrxdU1VhweVrwf63N3AIh3uU8/ALZPmATpTlams4wYsfnGlol9IRCKcLIy3RiMMRT1NexHbW0ubDQhhBiJRCKnnPgTz0PBGDehoat76u8IUs7IrBlqrAWoGs+eQNmezyFWBEDTcokCNISQwc+ki5DZSDkAO2G2FHwxNWMGC8QILaSmOMBQF0UdFoDCiFQUIhVHmoD6evZ8cDAwO8I4fW+1Uga0xoqLuDsAxNNqjbclErOnmtTV8PayfBwiEynQpO52HGI6v+lyCSGEEAdQMMZNaOjqnvo7gtRwDnBZy37R63Q9AlRdej0aCo+h8tdTkIeOhiJ0NGUQEUKGhstdhDB+PBvhpqjIvAtSdwIBK9Y7c6bTIxqW6qJERBhjQhEmgZi+aqUMaI2VoUYiYRWRgR4BlACZEmWNlo9D1Po2hPh220d6CewQQggh9qJgjJvQ0NU99XcEqeEa4Oqte1aXTguhWGq2XTouVUDbcgkiiTfAcZAFhwHwvAwiSwGmkCnzwXFA3cm91OWKEGJdTAz7a2pixUmKi1kKiVbLTpoVCmDsWNZPxkUj4Fiqi6JWA3I5e16tBiorbauVMqA1VoYauZxFsQDWXY3j+K5KSWFpON+QA7VOBZnYeByi1rHjkKQwk+MQjmPzGygU7mg9IYSQIYyCMW4yXIeu7k1/R5AaDAEuV9Rv6a17Vs2JXfDp9rrbL10EIIBQ4g29xth33pMyiCwFmJpKclF55DsAgDx0DMQKP8roIYT0LiCARSoGIFphrS7Kww+z5/futb1WyoDWWBlqxo0zpifV1LBCzlFRAIDEUakoqc9GftUeCIQiyEQKqPXsOCRh1AIkjjLZj8rLzbu+jR3rxhdBCCFkKKJgjJsMx6Gr+yKSSPs1gpSnB7hcVWC4t+5ZIi9vtNdXIGDsFGM7NO0QeonR1amDSO5nNs9AZBBZClBJfANRcyIDitDR/OviOjvRqVFDAMBLKvfYjB5CCDHorS7KihXOW9ZwpdGwYb8NASql0oYAVXIycPiwsftaVhYfjBGLpFiRsB6xwck4WZmOJnU1QnxjkBSWhsRRqcZhrQ3zGQgEbLmEEEJIP1Awxk36G3gYqkQSqcMjSHl6gMtVBYZ7657lPWIU2qpLzQJUIqkcmsYaQCSCfESE2fTuziCyFqBSXSyC0EsCv8jx/LTtly5C6OUFcAK0X7oIeejlg2cPyughhBBHOBRUGOY0GmDDBmD3buOw36dOsdo62dksk8jitgsIYNkxRUXsfn4+GwI9Ph4AC8hMi1huHDXJksJCNp9BXJzLursRQggZPigY40b9CTyQnjw9wOWqAsO9dc8SSeRQjIqF+lIFH6ASCATQ6zSQB0ZBNiKcn9aVGUT2FBgGgNbKEujaW6C+VMEHXfSadghEYggu3zY1lGsCEUKGNoeDCsNcRgbbZpGR5sN+q1Sstk5yci9ZRDNnGoMxHAds28ZG4rockOlVYSGb3rQw9MyZDr8OQgghxICCMWRQ8+QAl6sKDPfWPQvgMOHW9RB6iflAyIjEq+AX3Yj2mjK0Vp2zK4PIkZo39hYYBgCxwh+d6hazDBiRVA69qh4cJ4CkW/cqT6kJNBS4oq4RIcS6fgUVhrH0dGPwypSvL3s8Pb2X7RYby4YyNwyBrtMBW7eyDJmUFPZmXC7qC4AFXsrLWdek/HzzQMyMGYNzbHFCCCEeh4IxhLiIqwoM99U9S5mylA9SGXQ/4bYlg8jRmjf2FhgGAPmICHTUV0LX1mz+WGMNBJdvmy7HE2oCAYM/kOGqukaEEOv6FVQYxqqre24zA4WCPd+rJUuA1lagoIDd5zggL4/9hYayOjISCRuBq6zMvFivwaRJbDlDFHWfI4QQ96JgDCEu4qoCw450z3Ikg8jRmjf2FhgGAO8R4fC66IcunRaqi2dZgEmjhpeUjQnbqVVDXV/pUTWBhkIgw1V1jQgh1vU7qDBMKZWsO5clbW02JKsIhaxr0s6dxgwZg5oay8EXUzNmsECMUGhzmwcT6j5HCCHuR8EYQlzElQWG3dE9y9GaN/YWGAZYTRjZiAiETl0IraqRDzDF3fQwOA6oO7nX42oCDYVAhqvqGhFCrOt3UGGYSktjgQGVimURGahUgF7Pnu+TUAgsWwaMHw8cO8bqyJh2QepOIGDFemfOHPJvDHWfI4QQ96NgDCEu4ukFhvviaM0bewsMGwJUodNSrWaTRFy5wuHX4SpDIZDhqrpGhBDrnBJUGIZSU1mGxp49LHNDoWDBK70eWLCAPW+zmBj219TEFlpczBam1bKuSgoFMHYsi0AMk1GTqPscIYS4HwVjCHEhTy4w3BdHa97YW2B4MAWoTA2FQIar6hoRQqxzalBhGJFKWVeZ5GRjTZOYmH7WNAkIYDPTRqfuc4QQMgAoGEMIscjRmjeOFBgejIZCIMNVdY0IIda5JKgwTEilLDvDkKFhKDj7+ONUcLa/qPscIYS4HwVjCCEWOVrzZrB3z7KV0wMZjY3A8ePA2bNAe7sxXV4uB8aNc0m6vCvrGhFCrOseVCD2o4KzzkXd5wghxP0EHNdb5TLna2lpgb+/P5qbm+Hn5+fOVRNC7DTYh252JeNoSnsu144xD2TYPJpSSQkrJHn2bN+FJMeNY4UkY2Od+jroPSaEDDbbtwMbN1ouOFtRwbJlKNhlO0Nwy1r3OQpuEUKI7WyNeVAwhhDiFgN+0u+CzJN+vaauLstDrNrC3iFWByDrhhBCXGntWpYJExfX87mzZ4HERODf/3Z/uwYzQ7cvQ/c56vZFCCGOoWAMIcRjGLNIdvMjEHWqWy9nkSy0PYvEgfXW//gp2n/cBlHZRXh5K+ATFgvFqBgIRd16aboo88Siri5g2zagoKDnc6GhQFQUC5ZotUBZGVBT03O6iROBlSt7D8gMcNYNIYS4yqpVLLYcFtbzucpKFmv+4gv3t8vTUcCFEEJcz9aYB9WMIYS4XG1OBmpzdkM+MtJsBCJduwq1OXsQFJfs9IK++g41Lj79B3QdPgSBQADOSwJNUys6Gquhrq/EiIQrzQMyHAcUFbE/ezNP7LVzp3kgRiAAEhKAlBSWcy8QmLervBzIygLy841BlYICtpxly3ou396sG3e+dkIIcQIqOGs/qrNDCCGehYIxhBCXq85O5zNiTInlvugQilCdne7cYExXF1r+8Ty6Dh+CWO4HoVjCP6WRClHNXYJopDeCY6dazjzJzARaW/vOPHFESYl5kEQsZuuJj7c8vUDAMmWioljAZts2QKcztnP8ePOzjv5m3bjytRNCiJNQwVn7ZWSwQIylOjt79rAeq1RnhxBC3IeCMYQQl+torO4RiDHwkinQ0Vjt3BXu3ImOw3shEAguB2IEUI8KRFtUCHQBCqgqiqEX1SF4+XLHMk/649gx422BoPdATHfx8Wz6rVuN7Tx2zDwY4+qsG0II8QCpqSybw1rB2VQaDK6H9HRjRowpX1/2eHo6BWMIIcSdKBhDiIcY8AK3LuQdqERzqeV88k51GxRKJ+aTX8486exohdBLAk4kREPCaDQJ29BeeQr60nZwHAdOr4Neq2Hb1p7MEwtsfu+amlj9FoOEBLNAjKazExnnziG9pATVKhWUvr5Ii41FakwMpF6Xv67j49l8eXnsflERW25AgOuzbgghxENIpaxbTXKysf5JTAzVP+lNdXXPQIyBQsGeJ4QQ4j4UjCHEA1gqcNtcegpNJTloKMp2WYFbd1Emp6GpJAe6dhXEcmM+ua5dBa5LD2WyE/PJL2eeeHn7oKOpFs0Jo1GtOo+O+goAAgi9xNC1N6NVx7a52ba1JfOkG7veu+xs80K6KSn8TU1nJzYcOoTd585BJBTCRyLBqZoa5FRVIbuyEuuvvNIYkElJMQZjOI4tNzXV9Vk3hBDiQaRSlslB2Ry2oTo7hBDiWSgYQ4gHGIgCt9a4IkMnZGoqGoqyUZuzBx1CEbxkCnSq2y6PprQAIVOdlE9uknniExaLepEK9bpL6KivgJe3DyDygrq9FVo90C70RlP656iWBGDujX+CRCxmy+gt88QCu94706yY0FDWbeiyjHPnsPvcOUT6+8NHYqxxo9JosKe0FMlhYVhuGMM1MpLNb6j3UlzMLg+7MuuGEELIoEZ1dgghxLP0qzrjhg0bIBAI8PDDDzupOYTYTq/VoOrYduT8Zy2OvrQKOf9Zi6pj26HXaga6aXbrrcCt4HKBW3cwZHkUfrERzaWnoNe0o7n0FAq/2IjCLzY4vG1FEinGr1qP8aseh390IkRSOfyjEzF+1ePOzfoxyTxRjIqBZMFiqCrPQq9VQ6/ToqWhBu2qJrSJ5WhXBEGt1SJ31+f4dNd30Bq65wBmGSt85okVdr137e3G21FRZvVb0ktK+IwYU75SKUQCAdJLSowPGroXGbS12ZR1s/HQIZyqqUF7ZydO1dRg46FD2HDoEDSdnQ69dkI8hQYabMd2rMVarMIqrMVabMd2aDD4fg8IcZXUVGDhQqCigsXuKyvZ/xUVVGeHEEIGgsOZMVlZWXjvvfcwefJkZ7aHEJsMtW49bi9wa4WjGTp6rQZ1+79D6w9bIbxQBqmXHL7KGPiMngihnx8wbhxEyWze3jJ8+p2VY5IZIgwLR+w9d+NiWTbUly5Co9OhXeCFruBQcD7B8BYKIVL4wo/TIvtMPsZHxWJOwjQ2s6XMEytHqXa9d1qt8Xa3oEu1StUjEAMAgk4d4mpOIzT3Sxw9vtm4TQSAyGS5Xb/9hraLRWitLIHaqxPNIxqgTFmMkKmpyDh/oX9ZN3SETjyYBhpswAbsxm6IIIIPfHAKp5CDHGQjG+uxHlIMnt8DQlyF6uwQQohncSgY09raijvuuAMffPABXnrpJWe3iZA+eVK3Hmdwa4HbXjgyBLX+twJUvfUMdLnZ8BIIIPSSQNdZj/qqMnRUXcCIhCshrKkBDh8Gxo0DZs4EYmN7rNspAbZumSciqTcCx06DUOSFWi2HlrZWKGRyfhKhTgsEhUMoFCCz8KQxGGPIPDEEJNrarK7SrvdOIgE0l6/UmwZmACh9fXHKZJhpQacOweePY8zxbZA0VkIolqKtMwYdDdVoKsmBVhCJSHk0hCIvdAmFqD36E9SlhRAIBFBHhaD5fB6azuWioSgbvwROt55109qK9JISYzDGjtdOiCfIQAZ2YzciEQkfGL+7VFBhD/YgGclYjsHze0CIK1GdHUII8RwOdVN68MEHsXz5cqTS1VIyQDylW4+zKJPTwHXpoWtXmT3ukgK3vbCU5cHp9WivKUNbTSkqDn9r7A7WoQZ27ED7P16CLjcbYrkfJH7B8JL7QuIXDLHcD23VpWirOnd5QRyrQfLpp8COHUBXl9l6TANsvhFxkAWHsf9HRKA2Zw9qczL6fgEWMk/4bdvWApGIzyWBQNcBAdcFdfhEyKQy1Dc3mS/LNHDRLXBiyq73Tm4MBKGszKxbUVpsLPRdXVBpNBB06jDm+NeI/fUzyBsuQi/ygrdIiPa6cnR2tME7UImO3Ex+26oaytBWVsS/B+LAkWbb7vzFEotZNwCgkEhQrTJvu62vnRBPkI50PiPGlC98IYII6RhcvweEEEIIGR7szozZunUrTpw4gaysLJum12g00GiMfbZbWlrsXSUhPXhKtx5ncVuB2z50z/Lg9Ho0luRCXV+BLk0HxL6BLFul+AQ6P92M8MB4tFaWQCAQQChmJ/A6Xzm0AT7gvIToqCmHV2sVfBFnvqLMTKC1lY3eI2QxYUeycnqwkHli2LYX0z8HtFqIFL4Q6jrQpe1AvSwI5TWVuHSpEXGRMcahri/P36XvRFvVObQ0lKPspVyL3abseu/GjTNmnNTUAOXlfO2X1JgYZFdWYk9pKSSVp6A4fxydOg0EIgkkcj/4yOXg9Dqo6yvgDx9I1Z1orSyBb0Qc6torAS8R/x4IOrvMtp1PcxWqvP0tbrI2rRYxgYHmD/bSnYoQT1ON6h6BGAMFFKjG4Po9IIQQQsjwYFcwpry8HGvXrsWuXbvg7e1t0zyvvvoqnn/+eYcaR4g1ntKtx1kMBW6D4pL5eikKZUy/RzGyV/chqNWXKqCur4DQSwIBAL+IeMhDo6DIOYPOoky0TRKj8/+39+9Rcd/3ve///M4VGO4gQBewBZIgthTZMhKNLae2Q4ljpbs+rXKy9iU78e7JSftzspp6r50qbVeyu0+7Yjc9bfdOesnev900zW93O6tKm5wmJ9pYIrbjSyRhyxJYRkhINlhoAHEdZoa5//74MjBcBIM0zAVeDy2WYYbvlw/jAWZe8/683zPTGHYn/q3leOuqCJW65hrT+isteB351H7638HZs9DdPV8NcvEinDgBTzwBpChgKygwx0LAXOVJ/LZ1O0p5q/3/R7lvlJhvikgsihGzUGC7QcRZQUXf6/Ojru0OolevcrP7Fbzua4QKnUQCpctum1rT/7vmZnO7Vvw2OHt2Loxx2mwcO3yY5m3buPz//QEWi5U8i0FBfgGuggIMAwybHQMDR+9VLLY8wjPTYBiMFUN5QT7MFhs5JqbNr2EY2PJdHAiM8P9E9+AJBChKaArgCQSIxGK0JW4bi8XM2y7O5Vr9dhfJoBpquMDyfw+8eKknt/4eiKRSUpP0REQkI9b0W/iNN95geHiYAwcOzF0WiUR4+eWX+eY3v0kgEFiwDQDgy1/+Ms8888zcx1NTU9QmjHMVuR2LQ4O4dG/rSSWrw7lqg9v1trjKwzt0jWhgBgPIq9hOXuV2HDenKB7yEDQsTA/2YXWVMLglgu2DS5/wzAVjdXXm2969cPw4xCcXnTkDTU1QX5+agG1R5Umk7wrDo724O9ux33yf/FiYwIyXaAxitjycQT/bb15hW6mXe3fu4v2X/oHxy2+Q74uy5exlgp5x8kqrCO26i/yKbcDyfYmS/n9XWmqusbfX/Li7e8EIaqfNxpE9e3i9OI+Isx6v20JwajRx6BKFXigYmSbqsuIsLIM9e7CPjeHtvUr+ZIywb4rQ8ACT0X5C5cUYhsHhvXfhra+n49o1rNPTuBwOvMEgkViMx3bupLU+4bYdGJi/DQF27Vr9dhfJoDbaOMc5PHgoYv7vgQcPESK0kXt/D0RSIT5J79TVq3N9wy4MDXHuxg06Bwc5dviwAhkRkQxa02/gj3zkI3R1dS247KmnnqKpqYnf+Z3fWRLEADidTpxqzy4pli3bejaaxVUe04NXsBeVUbyjkbzK7VisVlzvDQNgsdkJz3hx/sYX8P38f5CfTDDW2GhuTXr++fnqkNOnob4+NQFbQuVJNBLm+n/5ffpsNzAsVsIzXmpGrzEVgSl7PlFnAQ7DoJQILt8Q01d9BCdHCHonqAjV4B+9QSwcJGC14d1+/9yXWNO2qeW0tMyHMbGYGU4dPToXyMB85VdB5Q4CkyOEpieIBAO4JgNUXQ8RszuJRSMUbmuAlhZqRoq53H0G19WrRGa8gEHJcIzrhp9IKEDxznH+w6GDNG/bNvfqaH1Z2fKvjiZuQTUM8zYVyWKttNJJJx10YMWKCxdevESI8BiP0Yr+HsjmdPLq1eQn6YmISNqtKYwpKipi7969Cy5zuVxUVFQsuVxkPWXLtp6NaHGVx+S1CxRUm1tprP4AeSOTAETDIaJ7drPtyc9QFXAzfK4DPwY+v4WpkVHCwRDGlgMUT91FZSCM3Tn766ax0awGiQe7vb0wMZGagC2h8sR74yqRt39O+Yc+SHjHNm6+/Rr2/AKKvVMUBcZx5tlmt0XZmBmfxD96HUdhGcU+g5IAeK1WotiZsPnweW9SUFg392XuqC9RQwMcOmRWBYFZJfT88+ZtcvAg1NbOBVPW/EIMDCxDN6mchOLpGESjRGIxDIuFvCd+Ferrqdqxnf6Ov2f8zHmKYwaG1Urh+AyuwjxC23cwceUt3nz2X1LuyOczc31vHlv6c9LTY1brxO3ZY96mIlnMiZNjHKOZZtppx42beuppo41WWjfsWOtgKMTZS12c6TnP6OQEFSWlHGraz8HGfTjs9kwvT7JAe19f8pP0REQk7VSbKDkrG7b1bHSLq1UK+keAGNFQkFgsiuuXj84FY8U77+fnf/cdJq73E7FWESy6jwnfHi7/9zNcfecmT37u8Hwgc/DgfBgTi0FnJ9bW1tQEbLOVJ/HGwpWX3IznFRAJ+DCsdiw2B5FwiPCMF1uB2aMmGg5CLEbhZIhtIwZUxjCsdgiHmSh3EL75/lwgBSnoS/T442YD44sX52+Dri7zrbqaqq1bCdjvZvSVl6h1T5AXshGLhIkBFmc+zuJKPGX53NzqZCvmz4LdVcr07lrKeseJRUJYrE7qvSUMemHEf52Qb5LS+vt4/9ppLnV0MO34ANbGf8P+X2xi34P12K9dMat0EiY80dJy+9+jSBo5cXJk9t9mEAyF+O4LP+DspW6sFgv5zjyuXO/n0sC79PT38alfelKBjOD2eNY2SU9ERNLqjsOYF198MQXLEJFstLhapeS9EYJT08RiUZyN+6h8/F8CZhgwEmqie+oIFbtLyHM5yANqAL83QPdr12jYt40Dj86+AldbC9XV871JrlyB1tbUBGyzlSfhl//BbDwciVL+Zh/hcIib+QFmXGYwEw3PTgyKxcibDlE+FaNsxo+jtBoAe0Exo4VhfEV2rAHf3OlT0pfIYjG3Jp04MV8hEzc0hHVoiDpHHZaZPGaidgyHFcNqx15QbI4Mv7ua0aIZwm+eZOuHfhmAwNRNLLv3ECsO4+o3t5KFpiep6OrHWWJnstqC+waMDedhBRyBC4xc6ODFNy4x810fLdujWK0JzWkOHYJ6NT4VyUZnL3Vx9lI3VWUVFDjnByr4Zvx0Xuqmqa6Bh/YeWOEMshnUFBVxIbEHWIJlJ+mJiEhaqTJGRG5p8XYw29sv4SytonBbAwUf/9+xJjwJOP+zPiwWC3muha/C5bucGNZpzv+sbz6MMQyzoW/8QaLXm9qFP/444e9/A+Odd2YviFE24yD/xhihwnymMIgSxj4xTL4/gm0ihGGxYCspwlZQDECo/i6mXCVEbvRhYME/OrimbVORYIDhcyfnqnyWjMW2WMxJUk1NcPo00Xcu4h3sY3qwj/DMNLa8QiJBP86yauyuYsBgpqqEqboqgpXF2EYHF2yViveZmWrajTUQIm9onJBvCgMomghROOnFYfRSVuoCmxVbYIbGcAcxSxP+awGGH6hj684K82T33mtW74hIVjrTcx6rxbIgiAEoyMvHYjE403NeYYzQ1tDAuRs3kpukJyIiaacwRkRWtKBaZeprEAiYVywaeTwx4lkSxMTlFziYGFlUDp1YOh0MpnLJYLGQ93/8fxj+4y9TMRXEYndgLygmHPAR80xSFolhy3cR9YaIRcNYC0sxDAuOojIMi4G3roqpploKfZNEQwFcW+uxOvOXbJu6VeBSsfdhLv/jnzF87hSGxYotv3DZsdgA1NcT2bGd3r85T+DtLgpCAexWGyHPCP6ZSaJRG457duG/u5pI/vyD6cVbpea2lM1MM76/nuKeAbhxdfbaGKGYk4JgkJKJ2fnXkRAYE4TKrcwYBu7+MTOMOXTIDGIsltT+PxGRlBmdnCB/URATl+/MZ3RyIr0LkqzUWl9P5+BgcpP0REQk7RTGiEjyHI75MGZRgFK6pYj+nuXLof2+IFW1i8qhE4+/xZ72O1H1QBtjv/omAz/9MSVDXlz+MBabA1ueC4vNDGdsBUVmlU/VXYz2/JyRGTeebQ7C1TbCg1eIRSPs+MVPLAxPZkWCAXq+9+yygUt+x9/jG+rHVV032yTYtNxYbMAMdHpfo6D5g0QSPt/Tf4nxvnOUunwUJwQxy22VWrylzF/tIlibR5F7knKjFJ/XiZGQrxixMFGb+bVsDis3HJXc/2//rbYmieSAipJSrlzvX/Y6f8DP9sqqNK9IspHTZuPY4cPJTdITEZG0029hEUleQQHEG/7195vNXg2zz8j+hxt49+IN/N4A+a754MDvDRCLxNj/cEI5dCxmHh+3qMomFeJbrIbnxnT3Uz4FWwq2UVRehyUaNUMglwt27aLii18kcq2TYGc7sSSaBw+fO8nQGy9gsdoITN7EN9yP1VmAo6ickbd+irOkckEQA7cei+3ubJ8LdBK5tu/CO/Ie04NXZq+/9YSp5SaMOe4/yNiNq8Sqd+M5fR3H8AQFVguWSICYzcBftouJ7ffQFaqget9OBTGSdTQxaHmHmvZzaeBdfDN+CvLy5y73zfiJRmMcatqfwdVJNnHabBzZs0dTk0REspDCGBFJ3u7d831ehoZgYMDs/QLse7Cevq5Bul+7hmGdJr/Agd8XJBaJsffBnex7MOGJ/sDA/HkAdu1al+WupSGwFdhalXzz4Bun/1/8N68TCc1gGAaG1U7EM0pg6iZh7xSG1Y5vqB/fzfeJBHxYnQUUVO7A6sxfMhZ7Zty9JIgBsFitFNfdQ9g3RcnOfatOmFr8/c5X73Tgu8vgXUcBTnsYi9VGuOhBZrb9Gn5/FL/bszAsE8kCmhh0awcb99HT30fnpW4sFoN8Zz7+gBnENDfu5WDjvkwvUURERFahMEZEktfcDK++Oj/++OzZuTDG7rTx5OcO07BvG+d/1sfEiIeq2jL2P9xgjk52Jvy6OXt2/n3DMM+bYyauXSDkm8JRVIbFNv+EMBoOEZwaZ2ZiiFgkCBhYbHaCU6MEp25iceSx9dDCwCfefHc5kYCf0l0HuP/p/7zmNSZWywyePsFMqJub4za89r1E7Pfh759aPizbBEKBMF2vXZ27r5ZuKVr+vioZo4lBt+aw2/nULz1JU13DXNXQ9soqVQ2JbBbj4/DGG3D5Mvh85tZvh8OsYN6923xcVVqa6VWKyCr0iFNEkldaav6R7+01P+7uhr17obERMAOZA4/umZ+atJyeHvO4uD17cvIBQ9jngWhkQRADYLHZMQwzlLHYnFhntxBYgfCMj+DUOM6SygXHzDXf9XmwFxTNXZ6KMdqJ1TIfXBRAVNWtXwCRGHaMDU0RDkUAsNkslNeUJP111yM0CQXC/OBbr9D92tW5CWD9PUO8e/EGfV2DPPm5wwpksoAmBq3MYbfz0N4Dm/o2ENl0+vrg9GkzhIm/MBYXCJhbyYeGzBfOdu+GlhbQ1CyRrKVHmyKyNi0t82FMLAbHj8PRo3OBzIp6eszPT3wA0dKS1JdddVR0mtkLijAs1tnQZWFlTCwWw2K1EwkHiE4HMWx2YuEQMWI4isoITIwsONfi5rsr9Ya5ozUnE5alQGLYgWEwMeJh8qY5vryk0sXUmD+p4GO9QpOu167S/dpVKmpKFkwA83sDdL92jYZ929b9NpLVaWLQ5hQIhzl59epcw9maoiI1nBWJRuHECThzJrnPj8XMx2q9vZqSKJLF9FdNRNamocH8wx5/QBAKwfPPmxUyBw9Cbe1cU1/AfEAwMGBuTeruXhjEHDqUVNPYlSYXLRkVnSYl9fvxjbxPZMZLBAsWm41oOAxEsVhtOEoqKam7Z75nTEExBZU7wGIQmLq54FzLNd9drYFwNksMO6Yn/fingxSXuYgRwz8dpLrWjqskb9XgY71Ck/M/65sLdxLlu5wY1mnO/6xvQ4UxubolSxODNp9AOMyzr7zCqatXsVosFDocXBga4tyNG3QODnLs8GEFMrL5RKPmC1kXLy69rrra3C7ucJhblfr7F/bkA/Px2vS0+cKZAhmRrKK/aCKydo8/bv5hjz8wiMWgq4voW+fwBMa56Rkg4J/EmV9CZVEtRc4yLNZFv27uvdc8TxKGz51k+NwpCrbUJjUqOh22HvoYE33nsVisBDyjRAI+HAXFOIsq8Az24nCVUFBdR0F13YLjPO9fpnDb7iXnW0uz4bhsqxaKSww73rs0hGGA1W4+AAzOhBh1T1K5rQQMDy/8z85bhgTrFZpMjHiWnHPu3AUOJkY8a/+m18mdBim5vCVLE4M2n5NXr3Lq6lVqS0oodMz/jHoCATquXaN52zZNBZLN58SJhUGMYaz9BbCLF83zPPFEetcuIivKzkdgIpLdLBbzFZaEktloJMzN7lfwuq9hNQwKbQ6i4fcYi50nULOTyr2H5wOZNZbM3mr0861GRadD4tYiZ8mWBVuLtux/FN9Q/7r0gInLxmqhuMSwI+APYrVZ566z2qwE/GGikSgTIx7evzzMzHRw2ZBgvUKT0i1F9PcMLXud3xekqrbsts6baqkIUnJ5S5YmBm0+7X19cxUxiYqcTqzT07T39SmMkc2lr2/h1iS7feWt4YZhVsrU1ZmBzfHjZgUzmOdpakqqIllE0kNhjMgGkJEKCYvFfIWlqQlOn8bb8SO87mvYC4qx2OcfSEdDQbzua+RXbqfosY+bPWLW+EDgVqOfAWz5riWjotNhpa1FFXsf5vI//tm69oDJxmqhuMSww5nvYHrCB5h9dSLhCPmFDsaGzD4yJZWFbN1ZMXdsYkiwXqHJ/ocbePfiDfzeAPmu+Z8PvzdALBLLmjHfqQhScnlLliYGpVcwFOLspa6527qipDTtt7Xb41kSxMS5HA7cnuypWhNJi9On5983jOR79IH5eUePmlvJ4xUyp08rjBHJIgpjRHJcxisk6uuhvp5r779EbKKUUoqJBcNYIhGiVivRogKmyq149hTxwX/5L2/rS6w0+jns9+KqycwDi5W2Fq13D5hsrBaKSww7KmqK8Yz75qYpxWJQUVPC0MA4ANWLApXEkGC9QpN9D9bT1zVI92vXMKzT5Bc48PuCax7zvd69WFIRpOTSlqzlaGJQegRDIb77wg84e6kbq8VCvjOPK9f7uTTwLj39fXzql55MSyBTU1TEhcX9LmZ5g0Hqy7Kjak0kLSYmzKlJcQnTKyHJALWx0Tyuq8v8uLfXPG8OTrEU2YgUxojkuGypkPAGxok01RGu2LbkOv/oINbA+G2fez1HP6+X2+kBsxbZWC0Ulxh2YEB+oWPBNKWZmRDTE35KKl2UVxctOT4eEqQqNFnM7rTx5OcO07Bv2/yY79qyrOvFkoogJVe2ZElmnb3UxdlL3VSVVSwYJe6b8dN5qZumuoa0BGJtDQ2cu3EDTyBAkXM+gPUEAkRiMdo0olc2k87OhUMPDh6ce3dNAerBg/NhTCxmnrc1NVMaReTOKIwRyXHZUiGxntUr6Rr9nEvWu1roTqo+FocdY+UFhOvNyhibzUJ5TQmuIie+qQAW69K+QfGQIBWhyUprvJMx3+noxZKKICVXtmRJZp3pOY/VYlkQxAAU5OVjsRic6TmfljCmtb6ezsFBOq5dwzo9jcvhwBsMEonFeGznTlq1vUI2k8SqmOpqs1nvrDUFqLW15vHxqrMrVxTGiGQJhTEiOS5bKiTWs3ollaOfs3UC0UqWW7OjqIxoOLwut/dKVR+Xz73Pzr1befvn764Y0qwWdrz5015++K1XVg0J7jQ0WS/r0YtlcQAWDISZHPNSXFGAq3h+mtBagpT1qi6SjWV0coL8RUFMXL4zn9HJibSsw2mzcezwYZq3baO9rw+3x0N9WRltDQ201tdrrLVsLj7f/Pt1dQumJq0pQI039Y2HMV7veq9cRJKkv2oiOS5b+qmsd/VKKrb9ZLy/zm241Zqj4RAWmx3fyAAWqz2lt/etqj68UzO89E/nOd3+DiXlrqS25tyqwqapuY6+rvqsCAlupwoocQtRNBJlbMjDqHuKgD9ILAbRcJRQIJx09c5yAZhvOsCMN8jlt65TuaMUV6FzzbfRelYXycZRUVLKlev9y17nD/jZXlmVtrU4bTaO7NmT01OTAuEwJ69enQuUaoqKFCjJ2gWD8+8vamy95gA18fjE84pIRukvgkiOy5Z+KqmsXlkv2dJfZy1WWrNveIDqAx8h6BlP6e19q6oP/3QAn2cGu9N2ywlIidUgIfcIr/1ff4fn9Ftsj4Sot8UIhA0G/x87npb7OHLsX2c8JLjd3i/xLUTRSJR333EzNuTBMMzR3T7PDOGged5ke8csF4CVVRVRWlnI+5eHcRU5cThtt3UbZWt1kWSPQ037uTTwLr4ZPwV581VYvhlzlPihpv0ZXF1uCYTDPPvKK5y6enVuTPeFoSHO3bhB5+Agxw4fViAjyXE4IBAw318UoKw5QF0h2BGRzNFfA5Ecl039VNa7ae2dypb+Omux0potNjtBzzj3P/2fU/o1b9U4dtQ9hcVqIRKOAgsrQiZvTvM//+QUAPuqY9jfeoOR9p8T7XyPLYVObPlWwKAQCIUC+F96mQnvexxo+wX2HX2AriGD8z/r46V/fGtuklI6Qpm19H5JrKC59vYgQ/0TTI578Yz5yC9wYrVbCIciOPLs1NxdsabeMbcKwFzFeRRVuKjaUcZTX/lYar95kVkHG/fR099H56VuLBaDfGc+/oAZxDQ37uVg475MLzFnnLx6lVNXr1JbUrJgTLcnEKDj2jWat23L6aofSaOCAoiPc+/vN5vvzm5VWlOAGouZx8e5XOlYvYgkQWGMSI7LhYqUbJEt/XXWYrU1+0evc+P0j1PaA+dWjWMDfvOVNWe+bUlFiGEYTAxNcvGrf4nTNUHTA3UMvTeKYRjY7NYF57HbrcwYBkPvjVJ9sYfe77Zz0VtK//YPkleYl/KpRCtJtvfL4gqa/EInNruFG9dGscx+j4GZKLEYlFcXsfWuctwD40n3jsn1EdTZLKnxryk4Jpc57HY+9UtP0lTXMPc9b6+s2tDf83pp7+ubq4hJVOR0Yp2epr2vT2GMJGf37vk+L0NDMDBg9n5hjQHqwMD8eQB27UrjNyEiK1EYI7IBZHtFSrbIlv46a7HSmkNeD5HQCD3fey7pHjjJ9Ee51QQeq81KNBKloqaEsSEPY0Me8vIdWO0W/FM+HgxeZlfQw/BYgPKqIma8QWx2Kz5XKdMlW4habVgiYQonR7B5g8x4gwwPjDM8MM7uQh81M06u7nwQqopSOpVoJcmGIMtuI9pSxNmTPfi9QcKhCMXlBVTUlFBeXYTFallTiKIR1OtjTeNf7+CYjcBht/PQ3gNpmZq0kbk9niVBTJzL4cDt2XzBqnro3KbmZnj11fnx1mfPzoUxawpQz56df98wzPOKSFbQb0AR2TSypb/OWqy05uDUTQCKtu1PqgdOsv1RbjWBx2azUFDkJL/QwftXbpo9Uma35twzcYmdeePY7U5mDAN3/zj++j2c95fjunf3gikQxGJ4L15mf94Y7v735qpnym72U9uXx8Cu5juaSrQWyYYgy1XQWKwWSrcUEglPUVzuovFA7S2PX41GUK+PNY1/vYNjROJqioq4MLT87xRvMEh92eYKVtVD5w6UlprVMb295sfd3bB3LzQ2AkkGqD095nFxe/aY5xWRrKDffiKyaWRTf51krbRmW34hFrsz6R44a+mPcldTNVe7B7l+xQx8tu+qpO1fNdN/aZh3zrzH5M1pDMPA55mh0n+Te2JD5Bea67A4HZzf3swHf/0JJr71ChZfcGHA4AsykVdO6ed+mfP//f+l3vPa/Pc72MtExQ48ZTVp2Z6TbAhyqwqaipoSxoc8+DwzCy5fa4iiEdTrY03jX+/gGFlfuVRZ0dbQwLkbN/AEAhQ553+neAIBIrEYbQ25F6wGRkY49+Mf09/ZSWByklKrlYaaGnbv2IG9qcmstLjFE3z10LlDLS3zYUwsBsePw9Gjc4HMinp6zM+PV9bEzyciWSO7/oKJiKyjXOqvEwkGGD53EndnO/6b17EXlkAMLHYHJbNrvnbi20TDgWWPX64HTjL9UfY9WL+gemZ7QyUz3iC+qRmu993kX3z2Qfbcv4P/+SenGB/2UFhawEHHFKWFhRiGQcwwOL/1fgr3NCYVMJz/WSMXJvz8wlQXxuwDxqrBS3jKatKyPSfZEORWFTTl1UXkFzoJh6MMvjt62yGKRlCvjzWPf73NY2R1txuopK2yYnwc3ngDLl8Gn8+cPuNwmE1Ud+9eMXBI1FpfT+fgIB3XrmGdnsblcOANBonEYjy2cyet9TkUrPb1EXrtNV7v6ODa2BiGYeCwWhmNRLg5Ps6w283h4WFsr75q3kYtLbAobFIPnTvU0ACHDsGZM+bHoRA8/7xZIXPwINTWLqk8ZWDA3JrU3b0wiDl0CHLp/ieyCejRnYhsKrnQXycSDNDzvWcZPndqrhdM2D89W8HzkbleMO7O9jX1wEmmP8paqmd++K1XqCmzsuPtCYzZB4NDRdu46arhoYcbsDttHPnsQWJbr3P2xS6GRoMUVjg4+Mg+jnz8IHanjf0PN/DDizcYio1SM3UdgJKxQSJjY2nZnpNsCHKrCprATIjymhL2PbQT7+TMHYUoGkGdemse/3qbx8jy4gHMTy5f5qfvvsuE309FQQE7iosZTjJQWffKir4+OH3aDGESn7iCOVbY4zGbn64QOCRy2mwcO3yY5m3b5oKn+rKyrK3kWVY0CidOwJkzXBsd5drYGMVOJw7rfDP2YCTCtfFxthUVsaeiwqze6O01n/A//jhYLMD69NDJpUqplHj8cZiehosXzY9jMejqMt+qq80+Mg6HGSD29y9s1ht3773meUQkq2zA31giIrlt+NxJhs+domBL7Yq9YJLtgRNv2jt4dZSxYQ+llYVU1BTPNZqF+f4myU4XileU+P7xR0yP+7DZrYRDES6V1sxVhIQiAX7c+ye8XXSKwn9hpdJWyEx4mrdjr2H0XuHJvcfmznPphTFcE1fmzlPwThd7f/Xjadmek0wIEl/nhVev4vfM4PcGCfiCWO1W7m25m4//uw9RULR8NYVkzprGv97BMbJUYkXLxMwM7ulpbBYLIz4fDquV+2pq8IVCqwYq61ZZkRA4JCUWu2XgsJjTZuPInj25WfERjZpbW2af+PclVMRMlZYytmULEZsNazhM5N136RsbM8OYuDNnzODg6FGwWFLeQ2dT9qCxWMzbc7n769DQ8uFLolXuryKSORvst5WIiClxm0+qRj6ni7uzfa4iJtHiXjDJ9MBJbNobi8aIRaJMjk7jGfcxNealrrGa4YFxBt8dZermNGNDHiwWC5OjXiq3lSwIbBJ7uMQrSm5cfZHR8y5mvEEs27byyG//MvseMqti3nz/f9F94xQVBbXk2ee/F3/IQ/eNDhoqmjmw4whPfu4wXXu3MvOn72IMD+EqyePR+4rYus5jrdfC7rRx5Klf4Ma1Ud7++RiRcBRngYP8Agcj1yf48bd/vu5juGXt1jT+9Q6OkaUSK1rGZ2ZwWq2U5OURikS47vGwxeWirqRk1UBlXaYTLQocFkim0mBR4LChnDix4HaZDga5cffd9Hzwg4xXVi7YEjPY2Ejv5CQfq65euCXm4kXzPE88kfIeOpu2B43FAk88AU1NZiVXb+/SSq5EhmE2621p0dYkkSymR40isuEst81ntZHP2WRm3L0kiIlL7AWTTA+c8z/tndt2tPXuCt59x8rYkIdoNMrQwASjN6YIBkIYhsH4TIjgTIhoNEY4FMEzYQY2d3+gBovVsqSHi91po662iLrS3eYFBw/CY/NNBc8PtmMxrAuCGIB8exGGxcr5wXYO7DhiVqY81gj+j82P4CwqhCwLNno6+xm9Mcm9LTtX3cIl2WFN41/v4BhZKrGixRcMYp/d4mK3WjFCId6fnKSupGTVQGVdphMtChwwjLX34EgIHDaMvr6FlRd2O71tbZy02xdWv8zyhkLYd+6Ej33MvP2OHzd7moB5nqamlPfQ2fQ9aOrrzbeJCejshCtXwOud73HkcsGuXUn3OBKRzMquR7oiIimQ7DafbJVXVpN0L5jVeuAs3nZ09wdqKC53Meqe5OaNKWZ8Iapqy5ga85FX4CCvIMLUuJdIJIJhOBgb8lBc7sJVkrd8D5dgcP79RQ+OJ/xu8mzLh0r5VhcT/oUNhhccn3jeLJHsFq6NKBgKcfZS11w4UVFSmjPhRFLjX1NwjCyUWNFS4HAw6vPB7H3FbrXiC4eB1QOVlE8nWiZwWHE6jWGYlTJ1dbcMHDZM5cHp0/PvGwYcPcp9hsH/euWV1W//xkbzdnz++fnA6vRpnPX1Ke2hsy6VUrmotBRaW803EclZCmNEZMNJdptPtkq2F0wyFjfttVgtVG4roXJbCTOv9BHwmaGHxWJgs1ux2izkBZz4pmfwTQdwOG309w5RXVu+/HQgh8NscglLApTS/Br6x+dDpWgIxrqdjHY5mbhppbyqmDejvfONblcIdrJBMg2QN6JgKMR3X/gBZy91Y7VYyHfmceV6P5cG3qWnv49P/dKTWR/ISPolVrTsKC7mps9HKBLBbrUSikQodjiSClRSPp1omcAhqTHBcMvAYUOEMRMTZhPjuL17obGR1nCYzsFBTvZdY3JimulRB9OhIHZHjEfu2snD2xO+98ZG87iuLvPj3l6YmMBZWpqyHjrrUiklIpIhCmNEZMNJdptPtkqmF0yybjWSGSDgC+IscBDwh7HazC0EhmFQVJaPYUAoGMbusOJw2vmVzz20/HSgggJz2giYvRVisbkS//3b2nh37Bz+kAcnRbz7zy7G3nYSNcLEbAYx9xZ++K1X6Osa5Mn/8yHs/QkTbFyu5G+wdRJvfByfsjR4dZRYLEZJhWuuj05cOsZwZ8rZS12cvdRNVVkFBQkjn30zfjovddNU16AKElkisaJle1ERI14v1z0eooEA4VgMwzC47vGsGqikdDrRLQKHuEAATp6E9nZwu6GmBtrazOKDuaKQWwQOOb8lpLNzYQ+SgwcB8/b/7YOH6X1xGy/29xHK8+CKlVE03MB7r9TzZzdsHDuWcPscPDh/28Ri5nlTWL2R8kopEZEMUhgjIhvOWrb5ZKNkesEk61Yjmf3eAFa7lfwCBzFiTE/4AbO6wTAMLDYLlZWlFJUXcFdj9a233+zePd/ccmjI7K1QVwfAvq2t9I120n2jg+m3tzDeVYilZAKLM0xlwXbuLm8g4AvT/do1mqpgX+Krnbt2rek2S7XExscWi4USW4hdw++Qd+M9yq5aqa52EbXbCducjBRsYZTqdR/DnSlnes5jtVgWBDEABXn5WCwGZ3rOK4yRJRZUtBgG1S4XwUiEUb+fLXl5PHzXXTyxe3dSgUrKphPdInAAM4h59lk4dQqsVigshAsX4Nw587B0Bg4ZkRhSVVebvXNm/exFGwMde3ikdg+F8SK4SvA4oaPDbE9yJF5sWltrHh//fX7lSkpvm5RXSomIZJDCGBHZcFK5zScTUjkJKj6Sufu1axjWafILHPh9QWKRGPe23M3I9QksVguecT/hUGRutDQxKCrNX75PTKLmZnj11fknOGfPzoUxdquTJ/ceo6Gimf/5zz/DsEYoKSmlomAH5QXbsRhW8l1WDOs0Iz94AZpmH+UbhnneDOp67Srdr12lPs/PjolrlIwNgjPKaF4Y3/g0k5EABUV5REIRymKD/Ivachr7i6HPChvsldnRyQnyncuP7c535jM6OXFb583lPjSyuuUqWh7dufO2e4WkxAqBw8mTZhBTW2sGMXEeT/oDh4zw+ebfr6sDwyBAgJOc5Pdc7Qz+RzfjsRp2XGxje08r1rCToiIzuGpvT7ht4j124reN15vSZaa0UkpEJMP0G0tENpxUbvNJt1RPgoqPoG7Yt21uu01VbRn7H26gqbmOH3/751x45Sp2hxXv5AzRaBSLxUJ+oYNINMYHH6pf2icmUWmpWR3T22t+3N29oPTfbnVyYMcRXrJ4qdwWpmxL0ZJTbA/eJL+/F5ruNS/YsyfjJf/nX7rMHncXTZGELW2GQUVNEcwOWrHaLLhK8qipK6eqtgzrtT641geHDsHjj2+YkbcVJaVcud6/7HX+gJ/tlVVrPqf60GwOKatoSZVlAoe49vb5iphEmQgcMmJRz64AAZ7lWU5xisFKK4a3kNGSC9ysPcfIXZ3c97+OYQ07cbnMLV0LrHMz9qy7X4mI3CaFMSKy4aRym0+6rcckKLvTxoFH9yy71Sge1Lz54mX6e9z4p4PkFzq5q6ma+x/ZvXyfmMVaWubDmFjMnDayqCnmrXrXlNx8ny29r5FXnr/wfJkUjVL185OUTPXDooa9/sIyply1WPKctP2fHzL75CxuJnnmDExPm7fBBghkDjXt59LAu/hm/BTkzf9/8s34iUZjHGrav+Zzqg+NZMQKTcLd7qVBTFwmAoe0W9SM/SQnOcUpaqllfLKQ0TEoCUDI6eF6Uwdb3mumrvsIXu8y/YuzvBm7iEi2UBgjIhvSaiOfs1W6J0GtFNQkraHBrAaJj4sNhcxpI3v3mr0VamsX9q4pcOCauknVjcsUXb+KPxKhpq7cPPbQocxPJjlxgm2BYSZDEQBihsH4lrsY3robb3Elg++NcVdjNRz5mBk+DQyY27O6u+e3a128CCdOwBNPZPAbSY2Djfvo6e+j81I3FotBvjMff8AMYpob93Kwcd+atxypD41kxArT32pqzB4xy9kUgcOiZuztsXewGlYKKWTHDrg5av5qt1OEEbXy/j3tlL1+hEjEbHI8JxYzQ+q4LGjGLiKSrRTGiIhkkZydBPX442Y1yMWL5sexmNngsqsLqqv54NbteMrHGHjzAqUzY5SGvYRDEfyxGFW1ZeYkonvvNc+TQaGLl7j5vZ/gnZphctTLtC/M+/t/EXbvwWK14PcGFvbRiW9XqKszw6fjx81nLGCGU01NKQmXFk92Kt1SxP6HG5KrXLpDDrudT/3SkzTVNcyFLdsrq+bCFmDNW47Wqw+NyIpWmP7W1mY26/V4zK1JcR4PmyNwWNSMPTRwlcI682/R9h0wchOuXweLARGniyGLm/Lr8Nhji9rlDAwsrBbMcDN2EZFspjBGRCSL5OwkKIvF3JZz4sR8hUzc0BC2oSEOl0cZ3hnB3R9hxruo38qDv5DxPiuhQJg3nv0u/jfNJ1mOPBsv2ffgvhqmZOo9SrcUQQz2Prhz+T46jY3mbfD88/MVMqdP33EYs3iyU57LQX/PEO9evGGOBf/c4bQEMg/tPbBstcqr3W+uecvRevShEVnVCtPfWlvNoUgdHWaPGJfLrIiJRDZJ4LCoGXvz2Rjv1Jm9cKxWuO8+2FIJ778PQy4v2/z1fOlLi8Z+g1klGLdKM/Z4g+B22nHjpoYa2mijlVacZO92YhGRVFEYIyKSRXJ6EpTFYm7LaWoyQ4je3gVjZK02C1t3VrB1Z4V5gWGYzXpbWjK/NQm42P4W/je7KCh0YrNbCe5uorh0H/6BcaYn/FTVl1PYtp2X87wc/+E/UlNUtHSCR2OjWSETH3vb2wsTE3fUkDg+2amipoS8hB42fm+A7teu0bBv251tM7tDt7PlaD360IisaoXpb06nOb66udls1ut2m7+W2truLHDIGYuasR/uLuXU3iE8jR6KKMJqhbq7oOwuD+VE+BJtLNkw29NjbteMW6EZe2KDYCvmdqgLXOAc5+ikk2McUyAjIhuewhgRkSySy5Og5tTXm28TE+ZLzVeumC8xB4NmbwWXy3wlubl5xZAi3VtzbhxvJ88wsNmtANzc3khlSQmV20rof+8mZ7f5GZu6hnXaQqHDwYWhIc7duEHn4CDHDh+eD2QOHpwPY2Ix8za4g7G353/WN1cRkyjf5cSwTnP+Z30ZDWNuZ8tRMn1oRFJulelvTqc5MenISm251hA45JyEZuz1sZ38+nE3f3P0Mpcbi3DhwoOHm9ykkEK+zbdpp32+kqXnmrlNMyGAX6kZe2KD4ELmt+Z68NBBB800c2Rp3CMisqEojBERySK5PAlqidJSM4S4jSAiFAjzj3/xMmfa38HrmSEaiWGxGnS/dpVDbR/gV5/+cMoDGft7V+eCGJ+rFG9x5dx110tDdIUm+IWSBgoTmnV6AgE6rl2jedu2+TGrtbVQXT2/jeHKlTsKYyZGPEuCmLj8AgcTI57bPncqlBYV8daVHm6MDjMTDJDncLKltIItpeW33HK0Wh8ajbWWdZPE9Ldb6ulZU+CQCXe09SehGbsNGx8OfYgdz1/jlb0TnDkY4a1aPxjgxEmAABdi57k+8Dres3/Hr3bvwRazzp9rlWbs7bTPVcQkKqIIK1baaVcYIyIbnsIYEZEsk6uToFLp3EuXeemfzhOcCWG1WbDZrUTCESZHvbz0T+fZuXcrh9o+kNKvWeQ08M1OUJou2TLX2BPgHasHh926IIgxj3FinZ6mva9vPoyJN/WNhzFe7x2t61ZjwQH8vqDZ/DgJiZVGY+5JQoEIU+M+PBM+DAy276rk0aP3c/8v7k466AqGQnh8PtxjIzhsdhx2B5PeaSa8HkYmRinML7jllqOV+tCIrJskpr8l/uzfcmIaZMf0twQp2fqT0Izdho09sd3s6YLDXb38c3Uv0bod2B0urMEw5f0R8ob8TPFzrmJlD7O/A5Noxu7GvSSIiXPhwk2WNqsXEUkhhTEiIpJ1fnr8HD7PDMVlLqz2eFNfO+FQBM+4j58eP3fbYcyttj9t3V7IlevDhEIRotb5P49+bwCPNcKW8uVDD5fDgduzqDolMbRZNEJ3rRaMBXfNP5FaMtlpBYlNgMFgfGSK0cEpwuEodrsVR56Nd868x3vvuLnafYNfS7Ly6OylLtxjI9SUbWHCO0UkEsZmtREMBRkav8mu7Q9suC1Hax3jLVlolelv1NWZP8PBoDk1aWiZMDQLpr8tlpKtP7doxt5HHxVDYSqGPEDi7zsHFiz00WeGMYcOJdWMvYYaLrB8s3ovXurJnpBLRGS9KIwREZGsc/3KTSxWS0IQY7LZrVisFq5fuXlb511pMtH/5vOzZXspI9cnmBgcZ9zlwe8LEovEuGt/Gb7C5f9keoNB6ssWBTWJAYxj+S1Gydr3YD19XYN0v3YNwzpNfoFjbl23nOy0SGIT4OlJP56x2e0GeXai0SjOfAc2hxX/dIAz7e+w5/4dSfWhOdNzHpvVxj1372JkYozhiVFmggHKikowDIOifNeGCiiCodCax3hLFlpl+tuy4UuiJAOHdEvZ1p9lmrFPx6ZxsPzvMpvhoHePhY+1/NukK4XaaOMc5/BgNgiO8+AhQoQ2srhZvYhIiiiMERGRTWOlyUTvv+Lj/g8UUVFTjHM0xLDTSlVtNfsfbuBAVYT/+/TreAIBihLGqngCASKxGG0NCdUpsZj5anqcy3VHa7Y7bTz5ucM07Ns2V81TVVu2pmbGiU2A37vkJhSKYBgGFpuFaDDKjD9IqasQq82CzzOTdFPgePNei8VCdXkl1eXzfXZuTo4zMT11R997tjl7qSupMd6qnskBq0x/WyLLpr8tJ+VbfxKasQ93vkXgytvYvQ5swQhhh5Wgy8bwrmI6mqeoLz0Aa6hmaaWVTjrpoAMrVly48OIlQoTHeIxWcqBZvYjIHVIYIyKykY2PwxtvwOXL4PPNTzQqKDCniqwy0ShTtu+q5J0z7xEOReaa6gKEQxGikSjbd1WucPStrTSZaKykmuH3B7n/F3ezdSc8+O8+NDf29t5wmLdGhui4dg3r9DQuhwNvMEgkFuOxnTtpTXxyNjCw8JX1Xbtua62J7E4bBx7dc9tTkxKbAAf8YYjFsMy+qm+xWIiEowBYbWZvnmSbAleUlHLluhk8RaJRRibGGJmtjgmFwzTW7SQYCm2YACKZMd4HG/epeiaXpGj6WzZYt60/paXc3fp/8Fzrc+xgx5JKlimm11zJ4sTJMY7RTPNcs+F66pNvNiwisgEojBER2Yj6+sxXey9fXvpqbyAAHo8ZGLz6qhnKtLSYjS2zxKNH7+e9d9z4pwNYbZa5kCASjlJQlMejR++/rfOuNJlobPseZi69O3/B2bNzYYzTZuPY4cM0b9tGe18fbo+H+rIy2hoaaK2vnx9rHT8uzjDMJ3EZltgE2JlvA8MgGo1iwUI0Gp2rromEIxgWg9ItRSudbs6hpv1cGniXaZ+X928OMTI5hoGBYcBMIMD1m8N894UfbJgAIpkx3slWz0iWuYPpb9liPbf+rEclixMnR2b/iYhsRgpjREQ2kmh0+T4ItxKLmeX5vb1Z1Qfh/l/czdXuG5xpfwefZ2YuJCiucHGo7QPc/4u7b+u8K00mmojYCdbunL+gu9ucsDI78tZps3Fkz575qUnL6ekxj4vbsycrXk1PbAJcUVPCmNtDMBAiGjanR+XlOwiHzLCruMKVVFNggION++jp7+PUm68zPDFGvtMJsRixGOzYUsP2LdUbKoBIrARaLD7GO5nqmY1wW0j2Wc+tP6pkERFJPYUxIiIbRTQKx4/PTwhJlMyEkDNnzAkjR49mPJCxO2382tMfZs/9O5ZMPUq2T8pyVptMVPFkG1x5xbwwFjNvz6NH5wKZFfX0mJ+fWInU0nJb60y1xCbAMQOKyvMZHQwRmAljt1sJ+IP4vTEKivI41PaBpJoCgzme+lO/9CQ9A1eZ9vuw22zkOZxUlVawpbQci8XCuGdySQCRqz1V4pVAvhk/BXn5c5f7ZvxEozEONe3nJ6dfWrV6RmQ9rHdgokoWEZHUUhgjIrJRnDixMIgxDLOy4+BBqK01P46LxczeJmfPmpUc8QDh4kXzPE88kd61L+NO+6QsZ7XJRI2fOAyngvOVRaEQPP/82m9HMCuNsqTR5+ImwGNl+Wy7u5KpcR+eCR8GBtt3VfLo0fu5/xd3rynsctjtOG0O9tTupLJk6fjvxQFELk8kilcCdV7qxmIxyHfm4w+YQUxz414ONu7jTM/5VatnRJIVIMBJTs6FKzXUrBiubLbAZK23j4hINlEYIyKyEfT1LdyaZLevXNFhGGalTF2dGTQcP24GD2Cep6kpa4KEVEpqMtHjj5sVQvFgKxaDri7zLZkKI4B77zXPkyVCgTBdr12d+57La0ruuMooUTLbd+KysadKspU68UqgprqGuc/dXlm14HOTqZ4RSUaAAM/yLKc4NTey+gIXOMc5OunkGMc2deCg20dEcp3CGBGRjeD06fn3DSP5rTVgft7Ro2YFSLyy4/TpDRnGQBIVNxaLeXss13tnaGj58CVRFvXeATOI+cG3XqH7tatzk6T6e4Z49+IN+roGefJzh+84kFlLAJFtPVXWWqnjsNt5aO+BW64xmeoZkWSc5CSnOEUttQtGVnvw0EEHzTRvmgqY5ej2EZFcpzBGRCTXTUyYU5PiEprOQpKv+jc2msd1dZkf9/aa582C5rMZYbGYW7Wamsxgqrd36VSqRIZhNuttacm6EKvrtat0v3aVipqSBZOk/N4A3a9do2HftjveCraWACKZiUTplOpKnWSqZxIt/vksLSympLCISe8UEx5PzvTTkdRrp32u4iNREUVYsdJO+6YOG3T7iEiuUxgjIpLrOjsXBgUHD869u6ZX/Q8enA9jYjHzvDk85jUl6uvNt4kJ8/a4cgW8XnOLksMBLhfs2mWOr87S4Or8z/rmKmIS5bucGNZpzv+s747DmLUEEGvZ0pQO61Gps1r1TNzin0+n3cHF964w5ZumuKCQu2t2MJ4j/XQk9dy4lwQNcS5cuHGneUXZRbePiOQ6hTEiIrkusSqmutpsMjtrTa/619aax8e34Vy5ojAmrrTUvC1y4PZY3B/m2ttuCkvyiEaiWKwLt07lFziYGPGk5OveKoAIhkK82v3mXEgTCAcZ90xSVlhMYYFr7vMy1VMlk5U6i38+h8ZuEgiHKMwvJBAOEY3FqK3amtF+OpI5NdRwgQvLXufFSz3ZVYWXbrp9RCTXKYwREcl1Pt/8+3V1C6b9rOlV/3hT33gY4/Wu98olxZbrDxMMhBi85iUajXH3B2oWBDJ+X5Cq2qUTkFJlucos74wPX2CGt9+9TE15Ja58V0Z7qmSyUmfxz+fwxCgWDPIcDiL+MCMTo9SUV2asn45kVhttnOMcHjwUUTR3uQcPESK00ZbB1WVeNt8+mvIkIslQGCMikuuCwfn3HQu3oqz5Vf/E4xPPKzlhuf4wkXCUq92D3BycpLjcReW2EsDsGROLxNj/cMO6rWe5yqzKkjIqiku5duN9CgtcOG0OasorKHEVM+6Z4j/93TfT2iclk9OPFv98zgQDWK1WAKxWKzPBwNx1meinI5nVSiuddNJBB1asuHDhxUuECI/xGK1kf6XeesrW20dTnkQkWQpjRERyncMBgdknbYsClDW/6r9CsCPZb7n+MOXVRUyNleB+b4z+3iGsNgt+X5BYJMbeB3ey78H1K+W/VWVWYb6L0sIitlVU8fSv/Js1TTNKtUxOP1r885nncDLlnQYgEongSgiHMtFPRzLLiZNjHKOZ5rkKi3rqVWExK1tvH015EpFkKYwREcl1BQXgme370d9vNt+d3aq0plf9YzHz+DjXfD8PyQ0TI54ljXotVou5PcliYXrSjyPPRlVtGfsfbmDfg/V3PNZ6JclUZqV6mtFarXX6USot/vmsKq1gwuthJhggSowtpRVA5vrpSOY5cXJk9p8slY23j6Y8iUiyFMaIiOS63bvn+7wMDcHAgNn7hTW+6j8wMH8eMKcESU4p3VJEf8/QksstVguOAjv337+Dp77ysbStJ5nKrPWYZrRWyU4/SrXFP59OuxOnzT43TcliGAwMD6a+Smd8HN54w2z+7fPNTwcrKDB/n2TxdDC5Pephkj6a8iQiyVIYIyKS65qb4dVX58dbnz07F8as6VX/s2fn3zcM87ySU/Y/3MC7F2/g9wbId80/wUpHf5jlJFOZ9ZPTL2VsmlGmLffz+eC9BygpLGLSO8WEx0NtVU3qqnT6+uD0aTOEif++iAsEzAq7oSHz98nu3dDSAg3pvc9I6qmHSXolO+VpIwZkG/F7EllPawpjvva1r/GP//iP9PT0kJ+fz4MPPshzzz1HY2Pjeq1PRERWU1pqPnHq7TU/7u6GvXth9ndzUq/69/SYx8Xt2aNXxnPQvgfr6esapPu1axjWafILHGnrD7OcZCqzzvScz9g0o3QJhkKcvdTFmZ7zjEyMEYqEAbBbbGwpK+dQ036e/pV/s35boqJROHECzpxJ7vNjMfP3SW8vHDoEjz8OFsvqx0lWut0eJrfzxFpPxpOb8rQRA7KN+D2JrLc1hTEvvfQSTz/9NAcPHiQcDvO7v/u7tLW1cfHiRVzqLSAikjktLfNhTCwGx4/D0aNzgcyKenrMz098pbylZX3WKevK7rTx5OcO07BvG+d/1sfEiCdt/WGWk1j5cfrtN7nef4mSqREaYj729Y0zWlFA8657MjbNKB0Sx3sbBoxNTjDqmQSgvLiE8emp9W1WHI2aP98XLy69rrrarKJzOMytSv39C7cqghngTE+bv08UyOSk2+lhcjtPrPVk3JTMlKeN2OR3I35PIuttTY/KTpw4seDjv/3bv6Wqqoo33niDD3/4wyldmIiIrEFDg/kKdvyV71AInn/erJA5eBBqa+ea+gJm8DIwYG5N6u5eGMQcOgT16a2gkNSxO20ceHQPBx7dk+mlAGYg8wt77qX03D8zfOM0hsWKLb8Q33td9Fx7i7L9j/LArg/w5pV30j7NKB0SGxR7vNNMB/yUFhYDMbwzfrZVVFNc4Fq/ZsUnTiwMYgxj7b8XLl40z/PEE6ldm6TF7fQwSeqJ9fiDC3oPXQteoNLxMz5TUMnk7i2811yBv3TbpnsynsyUp43Y5Hcjfk8i6+2OXiKbnJx9Zae8/JafEwgECMRHrgJTU1N38iVFRORWHn/cfAU7/sQrFoOuLvMtmVfAAe691zyPSAoNnzvJ8LlTFGypxZY//0A95PMwfv5FPnr0Ae7Z+Stpn2aUDokNivuuv4cFA5vVCoCFICMTo9SUV65Ps+K+voVbk+z2lSvmDMP8PVFXZwY2x4+bwS6Y52lqUlCbYwIE8OPnHOe4yEUKKGAHO9jOdqxYF/QwSbTSE+vaviCjp78BlzsXBPnX6MEViFLhibBlyM2uV4cY2l3CtZYq3A3r+2Q827ZHrTblaSM2+d2I35PIervtMCYajfLFL36Rhx56iL17997y8772ta/xB3/wB7f7ZUREJFkWi/lEa7neEENDy4cvidQbQtaJu7N9riImkb2giBmLldFzp3jo6f+c9mlG6ZA43nsmGMA6G8QAWK1WZoLmC1br0qz49On59w0j+a2LYH7e0aNmhV38Cffp0wpjckh829BVrjLNNDFi+PFzk5uMMEIDDXM9TBZb7om1EY1x74kBKs6MYmcK+IUF108zjQPH/AWxGNW9E1T3TmA/ZKXn8RuwDn9eMrE96k7Dn2Sb/OaSjfg9iay32w5jnn76abq7u3nllVdW/Lwvf/nLPPPMM3MfT01NUVtbe7tfVkREVmKxmFsJmprMJ069vUunpiQyDLNZb0uLnmTJupkZdy8JYuJs+S5mxjfuK6aJ473zHE6mvNNz10UiEVyzfXJS3qx4YsLcPhKX0NQbFjYVHp2coKKkdGk1UmOjeVxXl/lxb695XjX3TkqmqzXiW432spc88rjOdQwMLFi4whVmmOETfIJWWpccu/iJtRGNceD4VbZeHGeMEGWUzX/ybOXliOM8A8E+9vYXUDzkW3C+nWdGuGu6Ao5GCVhCKb1d0t2rJNnwZ6X//8k0+c01G/F7EllvtxXGfP7zn+dHP/oRL7/8Mjt27Fjxc51OJ07nxm/WJSKSVerrzbeJCejshCtXwOs1tyg5HOBywa5d5vhqPbGSdZZXVsPkteVfMQ37vbhqNm4QmDjeu6q0ggmvh/DsNKUoMbaUVqxPs+LOhVtIOHhw7t3EpsJWi4V8Zx5Xrvcv30j44MH5MCYWM8/buvTJuyyUDc1s41uNSijhPu5jC1t4n/fx4cOChXrqb7mOxU+s7z0xwNaL4wQJEiVKg7EL9u5b0HvoLuB5nuO92HbqBizcfXaY7d3jBGMBokR56GIZoRP/zLNPvJXS2yXdvUqSCX9aaV3x//9v89urNvnNNck0LhaRhdYUxsRiMb7whS/wT//0T7z44ovs3LlzvdYlIiKpUFpqPnHSkyfJoJrmNib6zhHyebAXzL9iGvJ5iEUj1DRv3FdME8d7GwYUOvMZm52mVFZcQiA4w0gwkPpmxYlVMdXV5hPmWYlNhQtmt1CBOcFqSSPh2lrz+Pg2xytX9PskCdkwWSZxq5EVK3Wz/wAGGSSf/FsGH4lPrGv7glScGWWMEFGi3GXfxd1Hj8Gi++vcMUYH7jorb9e5KN9r4/DxUXaHdlJPPVfPfI+LTZeprd+Tstsl3b1Kkgl/gFX//6/W5DfXJNO4WEQWWlMY8/TTT/P3f//3/PCHP6SoqAi32/zlVlJSQn5+/ipHi4iIyGZUdX8rY72dDJ/rYMZixZbvIuz3EotGqLr/Maru37hP7hPHe5/pOU9p4Rh1s5UxdouNLWXl69Os2JewTaSubsHUpMSmwokK8vKXNhKON/WNhzFeb+rWuIFlw2SZO+nhkfjEevT0N7AzRRllNBhmEONYJjhc7sl4aWMLu4/ew+Hn38cWs9JHH3tPe3m/PnW3S7p7lSwX/kSIcJ3rXOMaV7jCS7xElCh7WDjVbvH3uVKT31y0WuNiEVloTWHMX/3VXwHwyCOPLLj829/+Np/5zGdStSYRERHZQKwOJ02fPEb5nmbcne1MTV3nQovBhQdgqqqLrdYvbehXTx12Ow/tPZDeBsXBYMICHAuuSmwqvNiyjYQTj088r9xSNkyWudMeHk6cHJl4yJyaFG/Wu3ffgoqYQABOnoT2dnC7oabGSVvbEf649QhzXQoagb3fh64uppmmvjfC6EQAf+nCn/XbvV3S3atkcfgTIcJbvMV1rjPDDGWUMcjg3OX3cR9W5ht3a7KQiMSteZuSiIiIyFpZHU62thyhvGXlXgrp6KWxKTgc5jNlWBKgJDYVXmzZRsIrBDsbUSoa72bDZJmU9PBYofdQIADPPgunToHVCoWFcOECnDtnHnbsGPOBzGzvoUIKGYoNcVfnCD2tC/tO3u7tku5eJYvDn+uz/+KTpBpp5H3eZ4ghrnOdLWyZ2x4GmiyU08bH4Y03zG2gPt98H76CAti9W334ZM1ue5qSiIiIyFplQy+NTaGgADwe8/3+fvMJ9exWpcSmwgV589vMl20kHIuZx8e5XOlYfcakqvFuNkyWSUkPjxV6D508aQYxtbVmEBPn8UBHh/m89Ej8R3m291DDUANu3BRfGYaEMOZObpd09ypZHP5c4xozzACwffYfwE1uEiXK+7w/F8ZoslCO6uszJ1Revrx0QmUgYN7ph4bg1VfNUKalBRoaMrNWySkKY0RERCRtsqGXxqawe/d8n5ehIRgYMHu/sLCpsMVikO/Mxx8wg5gljYQHBubPA+YUtg0sVWFhtkyWueMeHiv0Hmpvn6+ISVRUZF7e3p4Qxsz2HqofqmeQQd72DnCZyym7XdLZq2Rx+HOFK5RRRiONbGc7VqxsZzsjjHCNawwxxCCDmiyUi6JROHECzpxJ7vNjMejtNd8OHYLHHweLZX3XKDlNYYyIiIikTTb00tgIVt1K09xsvkobfxX37Nm5MGZxU+HRyQm2V1Yt30j47Nn59w3DPO8GlqqwcMNMlllhi5rbvTSIiXO5zOsXcDiwYeMwh6kJDtBL6bK3Syq2ia23xeHPBS4s2Ipkxcp93EeQIBYsFFCQm///N7NoFI4fh4sXl15XXW3+PnU4zJ+R/v6FoTWYAc70NBw9qkBGbklhjIiIiKRNNvTSyHVJbaUpLTWrY3p7zYO6u2HvXmhsBJJsKtzTYx4Xt2fPhu+HkMqwcENMllmh91BNjdkjZjleL9Qv/lGePd6GjSbHB/nP/Pslx6Vqm1g63WpLmg8fZZTx2/w2duy0087f8Xe0065QJhecOLEwiDEM83fowYPmtruEKjFiMbOK8OxZ83dmPAS/eNE8zxNPpHftkjMUxoiIiEjaZEMvjVyX9Faalpb5MCYWM1/lPXp0LpBZUU+P+fmJ/RFaWlL8nWQfhYWLrNB7qK3NbNbr8Zhbk+I8HohEzOvnJNl7KBd7Sq20Je3DfJg3eZMXeTFnwiXB7BGTuDXJbl/5d+fsNjzq6szA5vhxCIXM686cgaamZdJJEVDNlIiIiKRNK618hI9wnetc5jKDDHKZy1znunopJCmZrTSA2UDy0KH5TwiF4Pnn4fvfn39inSj+hPn734fvfQ/C4fnrDh3aFE8m2mgjQgQPngWXb9qwcPfu+ffjvYdmtbbCRz4C16+bfU0HB83/Xr8Ojz1mXj8nyd5DSd+3s0h8S9qX+BL72EcBBexjH1/iSzzAA7zIi9RSyx72sI1t7GEPO9hBBx2c5GSmly/LOX16/n3DSD7EBvPzjh5dWDmTeD6RBKqMERERkbTZML00MmhNW2kef9zsWxAvt4/FoKvLfEum7wHAvfea59kEsqXx7u1Keb+VFXoPOZ3m+OrmZrNZr9tt5nVtbWYQ40z8ckn2HsrVnlK32pL2W/yWGpbnmomJhVPEErZ3AkSCAYbPncTd2c7MuJu8shpqmtuour8Vq2P2Tt/YaB7X1WV+3NtrnneDb/OUtVMYIyIiImm1IXppZNCattJYLOartMtNBBkaWj58SbTJJoLkcli4Lv1WVuk95HSaE5OOrPSjvIbeQxttm1iuhkubWmfnwqrBgwfn3o0EA/R871mGz53CsFix5Rcyee0CE33nGOvtpOmTx+YDmYMH58OYWMw8b2t2h7mSfgpjRERERHLImvvuWCxmA8mmJrNcvrd36RalRIZhPmFuadkUW5MWy9WwcN36raSx99BG6ym10cKlTSGxKqa62mzWO2v43EmGz52iYEsttvz5n7GQz8PwuQ7K9zSztWX2Z6y21jw+HnhfuaIwRpZQGCMiIiKSQ257K019vfk2MWG+Snvlijn2Jhg0tyq5XGYvj+ZmldPnoFSN5V4i3nsoXlkV7z201skysGrvoVzfJrbYRguXNgWfb/79uroF9213Z/tcRUwie0ERMxYr7s72+TAm3tQ3HsZ4veu9cslBCmNEREREcsgdb6UpLTVfodWrtBvKum6JSVPvoVzeJracjRYubQqJI9wdjgVXzYy7lwQxcbZ8FzPji37GEo9fNBpeBBTGiIiIiOScXN1KI+tnXbfEpLH30Ea6b2+0cGlTcDggEDDfXxSg5JXVMHlt+Z+xsN+Lq2bRz9gKwY4IKIwREREREcl5qd4Ss2Qyk6WGtifaaG36JM7Tb6n3UJI2Uri0KRQUgGd2tH1/v3kfn92qVNPcxkTfOUI+D/aC+Z+xkM9DLBqhpjnhZywWM4+Pc7nSsXrJMQpjRERERCSjUj6SeRNK5ZaYFScz1X+EY/XHcE741XtINp7du+crvYaGzP5Hs+Pcq+5vZay3k+FzHcxYrNjyXYT9XmLRCFX3P0bV/Qk/YwMDCyvGdu1K4zchuUJhjIiIiIhkzLqMZN6EUrklJqnJTKVH1HtINp7mZnj11fmqr7Nn58IYq8NJ0yePUb6nGXdnOzPjblw19dQ0t1F1f+v8WOv4cXGGYZ5XZBGFMSIiIiKSMes2knkTStWWmHWbzCSS7UpLzeqY+Dj37m5zctjsKHerw8nWliPzU5OW09NjHhe3Z4+qxGRZq3fREhERERFZJ8k88Zf0WtfJTCLZrqVl/v1YDI4fh0uXkju2p8f8/MR+SonnE0mgyhgRERERyRg98U+fZHvzrOtkpiym3kUCQEODOQEsPjksFILnnzcrZA4ehNrauaa+gBm8DAyYW5O6uxcGMYcObeoG1rIyhTEiIiIiOWijPHHcrE/80y2Z3jxgbhu7xjW66WaQQeqpZzvbsWK97clMuUC9i2SBxx+H6Wm4eNH8OBaDri7zrbra7CPjcJiNq/v7lx/vfu+95nlEbkFhjIiIiEiO2UhPHFM9klmWt1pvnv3s5zznOcUpDAzKKWdo9l811WxlKzFia57MlCs2Wu+ijRLWZozFAkePwokT8xUycUNDy4cviQ4dMoMYi7qCyK0pjBERERHJMRvpiWMqRzLLra3Wm+dv+BsmmJi7T+1mN9e5zlWuMsYYjTTyOT63rk/mMxkgbKSmxRsprM0oiwWeeAKamuD0abOpb+IWpMUMw2zW29KirUmSFIUxIiIiIjlmIz1xTOVIZrm11Xrz9NDDdrbPfY4VK3Wz/y5zmZ3sXNf7VKYDhI3Uu2gjhbVZob7efJuYgM5OuHIFvF5zi5LDAS4X7Npljq/W1CRZA4UxIiIiIjlmIz1xhNSNZN7MVqsqWa03D5DR+1SmA4SN1LsoG8LaDblNqrQUWlvNN5EU0CY2ERERkRxTQw3TTC97nRcvNdSkeUWSSfGqkud4jgtcwIePC1zgOZ7jWZ4lQIA22ogQwYNnwbHx3jxNNGX0PpXpEeer3T651Lso02FtMvdHEVFljIiIiEjOUdNbSZRMVclqvXn2s58/5U8zdp/KdICwkXoXZbrKJ9NVTiK5QmGMiIiISI7ZSE8c5c4luy1lpd48AOc5n7H7VKYDhI3UuyjTYW02bJMSyQUKY0RERERyzEZ64ih3LtmqktV682TyPpXpAAE2Tu+iTIe1ma5yEskVCmNEREREctBGeeIody5VVSWZvE9lOkDYSDId1ma6ykkkVyiMERERERHJYdlQVXKnMh0gbDSZDNY2wv0xUzbkFCq5JYUxIiIiImkQigTounGS84PtTPjdlObXsH9bG/u2tmK36kG23L6NUlWiaq+NYaPcH9MtPoXqFKfmeu5c4ALnOEcnnRzjmAKZDcaIxWKxdH7BqakpSkpKmJycpLi4OJ1fWkRERCQjQpEAP+h+lu4bp7AYVvJshcyEp4nGIuzd+hGe3HtMgUwOy4ZXs7NhDSJxuj+u3Y/5Mc/x3LJTqK5znS/xJQWVOSLZzEOVMSIiIiLrrOvGSbpvnKKioJY8+/yDbH/IQ/eNDhoqmjmwI30PsvVEKXWy5dVsVZVINtH9ce00hWrzURgjIiIiss7OD7abFTH2hQ+y8+1FGBYr5wfb0xbGZEt4sFGc5CSnOLXsq9kddNBMs55AiciqNIVq81EYIyIiIrLOJvxu8mzLP8jOt7qY8KfvQbbCg9TSq9kiEncnVYeaQrX5WDK9ABEREZGNrjS/hpnw9LLX+SNeSvNr0raWZMIDSZ5ezRYRmK86fI7nuMAFfPi4wAWe4zme5VkCBFY8vo02IkTw4FlwuaZQbVyqjBERERFZZ/u3tfHu2Dn8IQ/59vlRr/6Qh1g0wv5t6XuQrfAgtfRqtojAnVcdagrV5qMwRkRERGSd7dvaSt9oJ903OjAsVvKtLvwRL7FohL1bH2Pf1vQ9yFZ4kFpttHGOc3jwUMR80KZXs0U2lzvdsujEyTGO0Uzz3DaneurVXH0DUxgjIiIiss7sVidP7j1GQ0Uz5wfbmfC7qSqqZ/+2NvZtbU3rWGuFB6mlV7NFBFJTdagpVJuLwhgRERGRNLBbnRzYcSStI6yXo/AgtfRqtoiAqg5l7RTGiIiIiGwiCg9ST69mi4iqDmWtFMaIiIiIbDIKD0REUktVh7JWCmNERERERERE7oCqDmWtFMaIiIiIiIiI3CFVHcpaWDK9ABERERERERGRzURhjIiIiIiIiIhIGimMERERERERERFJI4UxIiIiIiIiIiJppDBGRERERERERCSNFMaIiIiIiIiIiKSRwhgRERERERERkTRSGCMiIiIiIiIikka2TC9ARERERERE5HYECHCSk7TTjhs3NdTQRhuttOLEmenlidySwhgRERERERHJOQECPMuznOIUVqwUUsgFLnCOc3TSyTGOKZCRrKUwRkRERERERHLOSU5yilPUUkshhXOXe/DQQQfNNHOEIxlcocitqWeMiIiIiIiI5Jx22ucqYhIVUYQVK+20Z2hlIqtTGCMiIiIiIiI5x417SRAT58KFG3eaVySSPIUxIiIiIiIiknNqqGGa6WWv8+Klhpo0r0gkeQpjREREREREJOe00UaECB48Cy734CFChDbaMrQykdWpga+IiIiIiIjknFZa6aSTDjqwYsWFCy9eIkR4jMdopTXTSxS5JYUxIiIiIiIiknOcODnGMZpppp123Lipp5422milVWOtJavdVhjzF3/xF3z961/H7Xazf/9+vvGNb3Do0KFUr01ERERERETklpw4OTL7TySXrLlnzPe+9z2eeeYZvvrVr/Lmm2+yf/9+PvrRjzI8PLwe6xMRERERERER2VDWHMb86Z/+KZ/97Gd56qmnuOeee/jrv/5rCgoK+Ju/+Zv1WJ+IiIiIiIiIyIaypjAmGAzyxhtv0No63wjJYrHQ2trK66+/nvLFiYiIiIiIiIhsNGvqGXPz5k0ikQjV1dULLq+urqanp2fZYwKBAIFAYO7jqamp21imiIiIiIiIiMjGsOZtSmv1ta99jZKSkrm32tra9f6SIiIiIiIiIiJZa02VMZWVlVitVoaGhhZcPjQ0RE1NzbLHfPnLX+aZZ56Z+3hqakqBjIiIiIiIiEiWChDgJCfnRobXUKOR4Sm2psoYh8PBAw88wKlTp+Yui0ajnDp1ig996EPLHuN0OikuLl7wJiIiIiIiIiLZJ0CAZ3mW53iOC1zAh48LXOA5nuNZniVAYPWTyKrWVBkD8Mwzz/DpT3+a5uZmDh06xJ//+Z/j9Xp56qmn1mN9IiIiIiIiIpImJznJKU5RSy2FFM5d7sFDBx0008wRjmRwhRvDmsOYT37yk4yMjPCVr3wFt9vNfffdx4kTJ5Y09RURERERERGR3NJOO1asC4IYgCKKsGKlnXaFMSmw5jAG4POf/zyf//znU70WEREREREREckgN+4lQUycCxdu3Gle0ca07tOURERERERERCQ31FDDNNPLXufFSw3LD++RtVEYIyIiIiIiIiIAtNFGhAgePAsu9+AhQoQ22jK0so3ltrYpiYiIiIiIiMjG00ornXTSQQdWrLhw4cVLhAiP8RittGZ6iRuCwhgRERERERERAcCJk2Mco5lm2mnHjZt66mmjjVZaceLM9BI3BIUxIiIiIiIiIhkSIMBJTs4FHzXUZDz4cOLkyOw/WR8KY0REREREREQyIECAZ3mWU5yaGyd9gQuc4xyddHKMY6pE2aAUxoiIiIiIiIhkwElOcopT1FK7YJy0Bw8ddNBMs6pTNihNUxIRERERERHJgHba5ypiEhVRhBUr7bRnaGWy3hTGiIiIiIiIiGSAG/eSICbOhQs37jSvSNJFYYyIiIiIiIhIBtRQwzTTy17nxUsNNWlekaSLwhgRERERERGRDGijjQgRPHgWXO7BQ4QIbbRlaGWy3tTAV0RERERERCQDWmmlk0466MCKFRcuvHiJEOExHqOV1vQvanwc3ngDLl8Gnw+CQXA4oKAAdu+G5mYoLU3/ujYYIxaLxdL5BaempigpKWFycpLi4uJ0fmkRERERERGRrBIgwElO0k47btzUUEMbbbTSmt6x1n19cPq0GcKsFBMYhhnKtLRAQ0P61pcjks08FMaIiIiIiIiIbFbRKJw4AWfOrP3YQ4fg8cfBog4occlmHtqmJCIiIiIiIrIZRaNw/DhcvLj0uupqqKsztygFg9DfD0NDCz/nzBmYnoajRxXIrJHCGBEREREREZHN6MSJhUGMYcDevXDwINTWmh/HxWIwMABnz0J39/xWposXzfM88UR6157jFMaIiIiIiIiIbDZ9fQu3JtntZoVLY+Pyn28YZqVMXZ0Z2Bw/DqGQed2ZM9DUBPX167/uDUJ1RCIiIiIiIiKbzenT8+8bxspBzGKNjebnJ1bOJJ5PVqXKGBEREREREZHNZGLCnJoUt3fvgiAmFAnQdeMk5wfbmfC7Kc2vYf+2NvZtbcVunZ3w1NhoHtfVZX7c22ueV2Ovk6LKGBEREREREZHNpLNz4fjqgwfn3g1FAvyg+1l+2P0c/eMXCIZ99I9f4Ifdz/GD7mcJRQLLHkcsZp5XkqIwRkRERERERGQzSayKqa42m/XO6rpxku4bp6goqGVr8R7KCraxtXgP5QU76L7RQdeNk/PH1taax8dduZKGxW8MCmNERERERERENhOfb/79uroFvV/OD7ZjMazk2QsXHJJvL8KwWDk/2D5/Ybypb5zXu14r3nAUxoiIiIiIiIhsJsHg/PsOx4KrJvxu8myFLCff6mLC7154YeLxieeVFSmMEREREREREdlMVghQSvNrmAlPL3uYP+KlNL9m4YUrBDtyawpjRERERERERDaTgoL59/v7FzTz3b+tjWgsgj/kWXCIP+QhFo2wf1vb/IWxmHl8nMu1XivecDTaWkRERERERGQz2b0bhobM94eGYGBgrvfLvq2t9I120n2jA8NiJd/qwh/xEotG2Lv1MfZtbZ0/z8DA/HkAdu1a81ICBDjJSdppx42bGmpoo41WWnHivJPvMqspjBERERERERHZTJqb4dVX5ytizp6dC2PsVidP7j1GQ0Uz5wfbmfC7qSqqZ/+2NvZtbcVuTQhIzp6df98wzPOuQYAAz/IspziFFSuFFHKBC5zjHJ10coxjGzaQURgjIiIiIiIispmUlprVMb295sfd3bB3LzQ2AmYgc2DHEQ7sOHLrc/T0mMfF7dljnncNTnKSU5yilloKmW8a7MFDBx0008wRVlhDDlPPGBEREREREZHNpqVl/v1YDI4fh0uXkju2p8f8/IReMwvOl6R22ucqYhIVUYQVK+203+LI3KfKGBEREREREZHNpqEBDh2CM2fMj0MheP55s0Lm4EGorTW3HsXFYmaPmLNnzYqYxCDm0CGor1/zEty4lwQxcS5cuHEve91GoDBGREREREREZDN6/HGYnoaLF82PYzHo6jLfqqvNPjIOhzm+ur9/YbPeuHvvNc9zG2qo4QIXlr3Oi5d61h7w5AqFMSIiIiIiIiKbkcUCR4/CiRPzFTJxQ0PLhy+JDh0ygxjL7XVAaaONc5zDg4ciiuYu9+AhQoQ22lY4OrcpjBERERERERHZrCwWeOIJaGqC06fNpr6JW5AWMwyzWW9Ly21tTUrUSiuddNJBB1asuHDhxUuECI/xGK20rn6SHGXEYivdyqk3NTVFSUkJk5OTFBcXp/NLi4iIiIiIiMhKJiagsxOuXAGv19yi5HCAywW7dpnjq9c4NWklAQKc5CTttOPGTQ01tNFGK605OdY62cxDYYyIiIiIiIiISAokm3lotLWIiIiIiIiISBopjBERERERERERSSOFMSIiIiIiIiIiaaQwRkREREREREQkjRTGiIiIiIiIiIikkcIYEREREREREZE0UhgjIiIiIiIiIpJGCmNERERERERERNJIYYyIiIiIiIiISBopjBERERERERERSSNbur9gLBYDYGpqKt1fWkRERERERERk3cSzjnj2cStpD2M8Hg8AtbW16f7SIiIiIiIiIiLrzuPxUFJScsvrjdhqcU2KRaNRBgcHKSoqwjCMJddPTU1RW1vLwMAAxcXF6Vya5AjdR2Q1uo/IanQfkWTofiKr0X1EVqP7iCRD95ONJRaL4fF42LZtGxbLrTvDpL0yxmKxsGPHjlU/r7i4WHdEWZHuI7Ia3UdkNbqPSDJ0P5HV6D4iq9F9RJKh+8nGsVJFTJwa+IqIiIiIiIiIpJHCGBERERERERGRNMq6MMbpdPLVr34Vp9OZ6aVIltJ9RFaj+4isRvcRSYbuJ7Ia3UdkNbqPSDJ0P9mc0t7AV0RERERERERkM8u6yhgRERERERERkY1MYYyIiIiIiIiISBopjBERERERERERSSOFMSIiIiIiIiIiaZRVYcwf/dEf8eCDD1JQUEBpaemyn9Pf38+RI0coKCigqqqK//Af/gPhcDi9C5Ws0dvby6/8yq9QWVlJcXExhw8f5qc//WmmlyVZ5sc//jEtLS3k5+dTVlbGk08+meklSZYKBALcd999GIbBW2+9lenlSJZ49913+fVf/3V27txJfn4+DQ0NfPWrXyUYDGZ6aZJhf/EXf8Hdd99NXl4eLS0tnDlzJtNLkizxta99jYMHD1JUVERVVRVPPvkkly5dyvSyJIs9++yzGIbBF7/4xUwvRdIkq8KYYDDIJz7xCX7zN39z2esjkQhHjhwhGAzy2muv8Z3vfIe//du/5Stf+UqaVyrZ4uMf/zjhcJiOjg7eeOMN9u/fz8c//nHcbnemlyZZ4vvf/z6f+tSneOqppzh//jyvvvoq/+pf/atML0uy1Je+9CW2bduW6WVIlunp6SEajfKtb32Lt99+mz/7sz/jr//6r/nd3/3dTC9NMuh73/sezzzzDF/96ld588032b9/Px/96EcZHh7O9NIkC7z00ks8/fTT/PznP+eFF14gFArR1taG1+vN9NIkC509e5ZvfetbfPCDH8z0UiSNsnK09d/+7d/yxS9+kYmJiQWX/+QnP+HjH/84g4ODVFdXA/DXf/3X/M7v/A4jIyM4HI4MrFYy5ebNm2zZsoWXX36Zhx9+GACPx0NxcTEvvPACra2tGV6hZFo4HObuu+/mD/7gD/j1X//1TC9HstxPfvITnnnmGb7//e9z7733cu7cOe67775ML0uy1Ne//nX+6q/+iqtXr2Z6KZIhLS0tHDx4kG9+85sARKNRamtr+cIXvsCxY8cyvDrJNiMjI1RVVfHSSy/x4Q9/ONPLkSwyPT3NgQMH+Mu//Ev+8A//kPvuu48///M/z/SyJA2yqjJmNa+//jr79u2bC2IAPvrRjzI1NcXbb7+dwZVJJlRUVNDY2Mjf/d3f4fV6CYfDfOtb36KqqooHHngg08uTLPDmm29y/fp1LBYL999/P1u3buVjH/sY3d3dmV6aZJmhoSE++9nP8t3vfpeCgoJML0dywOTkJOXl5ZlehmRIMBjkjTfeWPDCj8ViobW1lddffz2DK5NsNTk5CaDfG7LE008/zZEjR/RC8iaUU2GM2+1eEMQAcx9rW8rmYxgGJ0+e5Ny5cxQVFZGXl8ef/umfcuLECcrKyjK9PMkC8Ves/+N//I/8/u//Pj/60Y8oKyvjkUceYWxsLMOrk2wRi8X4zGc+w2/8xm/Q3Nyc6eVIDrhy5Qrf+MY3+NznPpfppUiG3Lx5k0gksuzjUj0mlcWi0Shf/OIXeeihh9i7d2+mlyNZ5Pnnn+fNN9/ka1/7WqaXIhmw7mHMsWPHMAxjxbeenp71XobkkGTvM7FYjKeffpqqqip+9rOfcebMGZ588kl++Zd/mRs3bmT625B1lOx9JBqNAvB7v/d7/Nqv/RoPPPAA3/72tzEMg3/4h3/I8Hch6y3Z+8k3vvENPB4PX/7ylzO9ZEmz23mMcv36dR5//HE+8YlP8NnPfjZDKxeRXPL000/T3d3N888/n+mlSBYZGBjgt37rt/gf/+N/kJeXl+nlSAbY1vsL/Pt//+/5zGc+s+Ln1NfXJ3WumpqaJV3qh4aG5q6TjSHZ+0xHRwc/+tGPGB8fp7i4GIC//Mu/5IUXXuA73/mO9mtvYMneR+Kh3D333DN3udPppL6+nv7+/vVcomSBtfwuef3113E6nQuua25u5l//63/Nd77znXVcpWTSWh+jDA4O8uijj/Lggw/yX//rf13n1Uk2q6ysxGq1zj0OjRsaGtJjUlng85//PD/60Y94+eWX2bFjR6aXI1nkjTfeYHh4mAMHDsxdFolEePnll/nmN79JIBDAarVmcIWy3tY9jNmyZQtbtmxJybk+9KEP8Ud/9EcMDw9TVVUFwAsvvEBxcfGCJ1uS25K9z/h8PsDco53IYrHMVUTIxpTsfeSBBx7A6XRy6dIlDh8+DEAoFOLdd9/lrrvuWu9lSoYlez/5L//lv/CHf/iHcx8PDg7y0Y9+lO9973u0tLSs5xIlw9byGOX69es8+uijcxV2i//2yObicDh44IEHOHXqFE8++SRgbkU5deoUn//85zO7OMkKsViML3zhC/zTP/0TL774Ijt37sz0kiTLfOQjH6Grq2vBZU899RRNTU38zu/8joKYTWDdw5i16O/vZ2xsjP7+fiKRCG+99RYAu3btorCwkLa2Nu655x4+9alP8cd//Me43W5+//d/n6effnrJK5qy8X3oQx+irKyMT3/603zlK18hPz+f//bf/hvXrl3jyJEjmV6eZIHi4mJ+4zd+g69+9avU1tZy11138fWvfx2AT3ziExlenWSLurq6BR8XFhYC0NDQoFcxBTCDmEceeYS77rqLP/mTP2FkZGTuOlVBbF7PPPMMn/70p2lububQoUP8+Z//OV6vl6eeeirTS5Ms8PTTT/P3f//3/PCHP6SoqGiul1BJSQn5+fkZXp1kg6KioiU9hFwuFxUVFeottElkVRjzla98ZUE5+P333w/AT3/6Ux555BGsVis/+tGP+M3f/E0+9KEP4XK5+PSnP81/+k//KVNLlgyqrKzkxIkT/N7v/R6PPfYYoVCIe++9lx/+8Ifs378/08uTLPH1r38dm83Gpz71Kfx+Py0tLXR0dKjJs4gk7YUXXuDKlStcuXJlSUAXi8UytCrJtE9+8pOMjIzwla98BbfbzX333ceJEyeWNPWVzemv/uqvAHjkkUcWXP7tb3971e2RIrI5GDE9ihARERERERERSRtteBYRERERERERSSOFMSIiIiIiIiIiaaQwRkREREREREQkjRTGiIiIiIiIiIikkcIYEREREREREZE0UhgjIiIiIiIiIpJGCmNERERERERERNJIYYyIiIiIiIiISBopjBERERERERERSSOFMSIiIiIiIiIiaaQwRkREREREREQkjRTGiIiIiIiIiIik0f8f5eGBjFWYrlAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_class = 3\n", + "dataset = make_multilabel_data()\n", + "labels = dataset['labels']\n", + "true_errors = np.where(np.sum(int2onehot(dataset['true_labels_train'],3)!=int2onehot(dataset['labels'],3),axis=1)>=1)[0]\n", + "plot_data(dataset['X_train'], circles=true_errors, title=f\"True label errors in multi-label dataset with {num_class} classes\", colors = get_color_array(labels),alpha=0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "144ad4c2-49bb-4147-a743-a83ed1656a11", + "metadata": {}, + "source": [ + "## 2. Format data, labels, and model predictions\n", + "\n", + "In multi-label classification, each example in the dataset is labeled as belonging to one **or more** of *K* possible classes (or none of the classes at all). To find label issues, cleanlab requires predicted class probabilities from a trained classifier. \n", + "Here we produce out-of-sample `pred_probs` by employing cross-validation to fit a multi-label **RandomForestClassifier** model via sklearn's [OneVsRestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html) framework. \n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n", + "`OneVsRestClassifier` offers an easy way to apply any multi-class classifier model from sklearn to multi-label classification tasks. It is done for simplicity here, but we advise against this approach as it does not properly model dependencies between classes.\n", + "\n", + "To instead train a state-of-the-art Pytorch neural network for multi-label classification and produce `pred_probs` on a real image dataset (that properly account for dependencies between classes), see our [example](https://github.com/cleanlab/examples) notebook [\"Train a neural network for multi-label classification on the CelebA dataset\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/pytorch_network_training.ipynb). " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:48.175120Z", + "iopub.status.busy": "2024-05-24T23:49:48.174939Z", + "iopub.status.idle": "2024-05-24T23:49:49.536846Z", + "shell.execute_reply": "2024-05-24T23:49:49.536267Z" + } + }, + "outputs": [], + "source": [ + "SEED = 0\n", + "random.seed(SEED)\n", + "y_onehot = int2onehot(labels, K=num_class) # labels in a binary format for sklearn OneVsRestClassifier\n", + "single_class_labels = [random.choice(i) for i in labels] # used only for stratifying the cross-validation split \n", + "clf = OneVsRestClassifier(RandomForestClassifier(random_state=SEED))\n", + "pred_probs = np.zeros(shape=(len(labels), num_class))\n", + "kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)\n", + "\n", + "for train_index, test_index in kf.split(X=dataset['X_train'], y=single_class_labels):\n", + " clf_cv = sklearn.base.clone(clf)\n", + " X_train_cv, X_test_cv = dataset['X_train'][train_index], dataset['X_train'][test_index]\n", + " y_train_cv, y_test_cv = y_onehot[train_index], y_onehot[test_index]\n", + " clf_cv.fit(X_train_cv, y_train_cv)\n", + " y_pred_cv = clf_cv.predict_proba(X_test_cv)\n", + " pred_probs[test_index] = y_pred_cv" + ] + }, + { + "cell_type": "markdown", + "id": "41c1efab", + "metadata": {}, + "source": [ + "`pred_probs` should be 2D array whose rows are length-*K* vectors for **each** example in the dataset, representing the model-estimated probability that this example belongs to each class. Since one example can belong to multiple classes in multi-label classification, these probabilities need not sum to 1. For the best label error detection performance, these `pred_probs` should be out-of-sample (from a copy of the model that never saw this example during training, e.g. produced via cross-validation).\n", + "\n", + "`labels` should be a list of lists, whose *i*-th entry is a list of (integer) class indices that apply to the *i*-th example in the dataset. If your classes are represented as string names, you should map these to integer indices. The label for an example that belongs to none of the classes should just be an empty list `[]`.\n", + "\n", + "Once you have `pred_probs` and `labels` appropriately formatted, you can find/analyze label issues in any multi-label dataset via `Datalab`!\n", + "\n", + "Here's what these look like for the first few examples in our synthetic multi-label dataset: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ac1a60df", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:49.539467Z", + "iopub.status.busy": "2024-05-24T23:49:49.539101Z", + "iopub.status.idle": "2024-05-24T23:49:49.543156Z", + "shell.execute_reply": "2024-05-24T23:49:49.542624Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "labels for first 3 examples in format expected by cleanlab:\n", + "[[0], [0, 2], [0]]\n", + "pred_probs for first 3 examples in format expected by cleanlab:\n", + "[[1. 0. 0. ]\n", + " [0.96 0.09 0.88]\n", + " [1. 0.01 0.22]]\n" + ] + } + ], + "source": [ + "num_to_display = 3 # increase this to see more examples\n", + "\n", + "print(f\"labels for first {num_to_display} examples in format expected by cleanlab:\")\n", + "print(labels[:num_to_display])\n", + "print(f\"pred_probs for first {num_to_display} examples in format expected by cleanlab:\")\n", + "print(pred_probs[:num_to_display])" + ] + }, + { + "cell_type": "markdown", + "id": "5a973506-c30e-4409-ac65-495537d13730", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "Based on the given `labels` and `pred_probs` from a trained model, cleanlab can quickly help us find label errors in our dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d09115b6-ad44-474f-9c8a-85a459586439", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:49.545320Z", + "iopub.status.busy": "2024-05-24T23:49:49.544978Z", + "iopub.status.idle": "2024-05-24T23:49:51.339165Z", + "shell.execute_reply": "2024-05-24T23:49:51.338595Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Audit complete. 30 issues found in the dataset.\n" + ] + } + ], + "source": [ + "lab = Datalab(\n", + " data={\"labels\": labels},\n", + " label_name=\"labels\",\n", + " task=\"multilabel\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " pred_probs=pred_probs,\n", + " issue_types={\"label\": {}}\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "439c003e", + "metadata": {}, + "source": [ + " Here we request that the indices of the examples identified with label issues be sorted by cleanlab’s self-confidence score, which is used to measure the quality of individual labels. The returned `issues` are a list of indices corresponding to the examples in your dataset that cleanlab finds most likely to be mislabeled. These indices are sorted by the *self-confidence* label quality score, with the lowest quality labels at the start." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c18dd83b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:51.341936Z", + "iopub.status.busy": "2024-05-24T23:49:51.341333Z", + "iopub.status.idle": "2024-05-24T23:49:51.349192Z", + "shell.execute_reply": "2024-05-24T23:49:51.348695Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Indices of examples with label issues:\n", + "[275 267 225 72 171 234 165 44 6 29 227 188 102 262 263 35 266 139\n", + " 143 172 53 216 265 176 164 73 75 10 159 107]\n" + ] + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "issues = label_issues.query(\"is_label_issue\").sort_values(\"label_score\").index.values\n", + "\n", + "print(f\"Indices of examples with label issues:\\n{issues}\")" + ] + }, + { + "cell_type": "markdown", + "id": "d6af5833", + "metadata": {}, + "source": [ + "Let's look at the samples that cleanlab thinks are most likely to be mislabeled. You can see that cleanlab was able to identify most of `true_errors` in our small dataset (despite not having access to this variable, which you won't have in your own applications)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:51.351492Z", + "iopub.status.busy": "2024-05-24T23:49:51.351028Z", + "iopub.status.idle": "2024-05-24T23:49:53.981119Z", + "shell.execute_reply": "2024-05-24T23:49:53.980519Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGMAAAHQCAYAAAAFy6d4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT5/4H8E8SIIQ9BCOK4kJUhgP1KmpRkRaxqL222mmX1apV671Ve2tv7VRrf7fWeW1ttbe11dYOW0cLOItalcoQVx1QlSEoskMI4fz+eMxJAklIQhbwffviZcY5T56Tec73fJ/vI+A4jgMhhBBCCCGEEEIIsQmhvTtACCGEEEIIIYQQ0p5QMIYQQgghhBBCCCHEhigYQwghhBBCCCGEEGJDFIwhhBBCCCGEEEIIsSEKxhBCCCGEEEIIIYTYEAVjCCGEEEIIIYQQQmyIgjGEEEIIIYQQQgghNkTBGEIIIYQQQgghhBAbomAMIYQQQgghhBBCiA1RMIYQQgghhBBCCCHEhigY04ZwHIcdO3YgKSkJwcHBkEgkEAgE/B+xvNjYWP753bZtW4vbO3z4MN9eSEhIi9szxfLly/nHfvrpp2362OYICQnh+3v48OEWt2fP555Yl6XfK8Q81vyOsebnV/N3NC8vz6JtG9LavpOefvppvr/Lly+3Sx9a2+8YaRu2bdvGv+9iY2Mt2nZr+x5oLWi/gDgKJ3t3oC14+umn8fnnnwMA7rvvPrt8qOvr6zFlyhTs2bPH5o9NCCGEEEIIaZvu3LmDY8eO4fTp0zh79iyuXr2K/Px8VFVVQSQSwdfXF3379sXIkSPx1FNPoWfPnvbuMiGtAgVj2oiPPvpIKxAjlUoRFhYGsVhsx14RQgghptHM5MzNzaWzwaRVCAkJwV9//QUAOHTokMUzJNqK5cuX48033wQAzJgxwyJZxa1Fa36PhIWF4fbt2zrvUygUKCwsRGFhIQ4ePIi3334bs2fPxurVq+Hu7m7jnhLSulAwpo349NNP+cuzZs3Cxo0bIRTSKDRCCCGEEEKI+TiO07oulUrRrVs3eHp6oqamBleuXEFxcTG/7KZNm5CdnY3k5GS4ubnZo8uEtAoUjGkDampqcPHiRf760qVLKRBDiIliY2Ob7GyQtsGWdT6IfdDnlxBiL08//XSbr1HUpUsXPProo4iPj0dMTAz8/PyaLHP69Gm88sorOHLkCADg2LFjeP311/F///d/tu4uIa0GBWPagLt372rthAYHB9uxN4QQQgghhJC2IjMzs9llhgwZgpSUFMTHx/P1M//73//irbfeouFKhOhB6RNtgEKh0LouEons1BNCCCGEEEJIe+Ts7Iy33nqLv15TU4NTp07ZsUeEODYKxtiQrmmQGxoasGvXLiQmJqJr164Qi8Xo2LEjxo8fj88++wxKpVJnW3l5eXxb3bt317pPcxpOY6bjPH/+PF5//XUMGzYMnTp1glgsRmBgIIYOHYrXX38d169fb3bbNPujWXzx+vXreOuttzB06FBIpVKIRCKt+/VNB3j69GnMnTsX4eHh8PPza3a6wNTUVMyZMwcRERHo0KEDxGIxOnfujPHjx2Pt2rWorq5udhs0VVRUYPXq1Rg2bBj8/f3h7u6O0NBQzJgxA8eOHTOpLWtRKBRISUnBkiVLMHbsWHTu3BkSiQQSiQSdO3dGXFwc3nvvPZSUlLTocfbv34+pU6eiZ8+ekEgkCAwMxOjRo7FhwwbU1taa3N5ff/2F9957D6NHj0aXLl0gFovh7++PAQMG4J///CfOnz/fov6ay5TpIxsaGvDDDz/gscceQ58+feDl5QUnJyd4enqie/fuGD9+PF599VUcOHBA72dYJTU1Fc8++yzCw8Ph4+MDJycnuLu7Izg4GLGxsVi0aBF+/vlnyOVyneubM52sOVM6WuJ7QqWkpASrV6/G+PHjERQUBIlEAhcXF/j6+iIyMhKPPPIIPvzwQ1y9etXoNg0xZnv1fRedO3cO8+bNQ9++feHh4QEvLy9ERkZi8eLFKCoqskj/muvD77//jmeeeQahoaFwd3eHl5cXYmJisGXLFjQ0NDRp5/r16/jHP/6B/v37w83NDR4eHggPD8eyZctQXl7ebD90/VY1p6XTP2t+/jR1795d529a4yEBjjL965kzZ7By5Uo8+OCD6NmzJzw8PODi4oKOHTti6NCh+Oc//4lz58616DGys7Mxd+5c9OvXD15eXvD29kZUVBRef/11FBQUmNxeVVUVNm/ejKSkJPTo0QPu7u7w9PRE79698cwzzyA5OblF/bWEhoYGfPnll3jggQcQFBQEV1dXdOvWDRMmTMDOnTub/Z7Vpbi4GJ9//jmefvppDBo0CH5+fnB2doaPjw9CQ0PxxBNP4Ntvv9X5GVPR3PdRFWYFgDFjxuh83+rbj/nrr7+wefNmPPbYY4iIiICPjw+cnZ3h5+eHfv364fnnn8evv/5q0vZVVlZi06ZNSExMRHBwMNzc3Pjt69evHyZPnowVK1bg7NmzRrXHcRx+/PFHPPPMMwgLC4Ovry8kEgm6du2KpKQkfPbZZ01ODmpSfa+oivcCwOeff67zeTL3e2T9+vX8+hMnTjS4rOb3nEAgQE5Ojt5lf/nlF365sLCwJvcbmtraUu+RxvLy8vDqq68iMjIS3t7e8PDwQFhYGObOnYsrV64Y1Ya1DB48WOu6pX8rAUAmk2Hr1q2YNm0aevfuDR8fH7i4uCAgIAAxMTH4xz/+gcOHD1tk+OrFixexZs0a/P3vf0dYWBi8vLzg7OyMDh06YMCAAZg3bx5OnDhhUpuW2g9ytM95Y6dOncK8efP471gnJye4ubkhKCgIMTExmDt3Lr755huTj9PaFI602IwZMzgAHADuvvvu07vcfffdxy+3detW7tatW9zYsWP523T9xcTEcGVlZU3ays3NNbhe47/c3NwmbVRVVXEzZ87kRCKRwXVdXV25VatWGXwOGveH4zhu27ZtnLu7u842VbZu3ar13NXV1XELFy7UuY6u5/bKlSvcmDFjmt3+Tp06cb/88ovBbVBJS0vjgoODDba3cOFCTqFQNHlNW+rQoUN8e926dTO4nL+/v1Gvvbu7O/fxxx83+9hvvPEGv86MGTO4qqoqbtq0aQbbDgsL47Kzs43aNoVCwb366qucWCw22KZIJOJefvllrr6+3mB73bp149c5dOiQUX0wxNjn/q+//uKGDBli9GdP32fn7t273P333290Oy+++KLOdjS/f9544w2jttWU586S3xMcx3Fff/015+3tbfR237p1y6htaun2Nv4u4jiOW7lyJefk5KS3b56entyBAwda3D99faivr+cWL15s8PlJSkri6urq+Da2bdvGSSQSvcsHBwdzV69eNdgPc77XNB9D1+8NxzX9jtGk+fkz5s/Q+oY+v+YwZtvu3LnD9e7d26i+CwQC7sUXX9R63XTRtU2rVq0y+Fn08fHhvvnmG6O3bfv27ZxUKm22z/Hx8VxJSYnBtsz5LjJGfn4+FxMTY7B/Y8eO5UpKSgy+xzQtWLCg2e801V94eDh36dIlne2Yui+maz9mypQpnEAgMGr9UaNGcUVFRc0+ZwcOHOA6depkdL9OnjxpsL309HRu4MCBzbbTu3dvLj09XWcbmt8rxvzp+6wZkp2dza/v7e2tdz9CJpM12RdZt26d3naXLFnCLzdr1qwm9+v6/VBp6XtE1/fA559/zrm5ueltw8XFhfvyyy9Neu4sqby8XKs/e/bssWj727dv54KCgox6PvV9Dxi7HzR48GCjX7uHHnqIq6ysbLb/ltoPcsTPuUptbS331FNPGd23hISEZp+3topqxthJdXU1xo8fj+zsbADszG23bt0gk8mQmZmJuro6AKz41eOPP641bTUASCQS3H///QBYdPjo0aP8farbGy+v6c6dO5gwYYJW6qCzszP69+8PPz8/lJaWIicnB/X19aitrcWSJUtQXFyMDz74wKjt+/bbb/kzlyKRCOHh4fD19UVRUREuXbqkd72FCxdi48aNAAAPDw/069cPrq6uyM3NbbLsmTNnkJCQwFdvBwAvLy/07dsXbm5uuHnzJi5fvgwAKCwsxIMPPoidO3diypQpeh8/PT0dCQkJqKys5G/z9fVFv379UF9fj/Pnz6OyshJr1qyBs7OzUc+FNdy8eRN37tzR6mPPnj3h5eWFuro6XL16FYWFhQDYe+2FF15AXV0d5s6da/RjPP3009i1axcAwM/PD3379kV9fT3OnTuHqqoqAOxsQVxcHNLS0tC7d2+9bdXW1mLq1KnYu3cvf5tQKES/fv0QEBCAqqoqZGdnQy6XQ6lU4sMPP8SNGzfwzTffNDlTbk81NTUYN26c1lknd3d3/uxBbW0tbt26hatXr/JnU3WdVW1oaMCDDz6ItLQ0/jZXV1eEhYXB398fCoUCt2/fxuXLl/kzEIbOzlqLpb8nfvnlFzz++ONa29K5c2d0794drq6uqKysRG5urtZn2h7bDQBvv/02/v3vfwMAPD09+e+iixcv4tatWwDYGamkpCScO3cO3bp1s3gfXnvtNbz//vsAgICAAISFhUGpVCIjIwMymQwA8NNPP+Gll17Cf//7X3z11Vd45plnwHEcJBIJIiIiIJFIcOHCBf45vXHjBpKSkpCZmQknJ8fZBfDz8+N/uzQzAEaPHt3k9wsAIiIibNY3Y9TU1PC/NwD7ze3duzd8fX0hEAhQUFCAy5cvg+M4fqaR27dv45tvvjH6MTZs2IAlS5YAAMRiMSIiIuDm5oY///yTP/NcVlaGRx99FCKRCA899JDB9jTf4yohISHo2rUrlEolLly4gNLSUgBAcnIyRo0ahd9++w0dOnQwus8tVVpaivHjx2tlTLq4uCAiIgLu7u78th88eBBJSUkYO3asUe3m5OTw2TSqDGOpVAqJRIKysjJcuHABNTU1/LLDhw9HRkYGunbtqtWO5r7YkSNH+GzRIUOG6CxwGhkZ2eS27Oxs/uy9SCRCz549ERgYCBcXF9y5cwcXLlzg9wl/++03xMTE4MyZM/Dy8tK5bdnZ2UhMTNTKXA0ICEDv3r3h5uaGqqoq3LhxA/n5+fz9hr5nf/nlF0ydOlXrzHWHDh3Qu3dviMVi5Obm8hkfly9fxpgxY/Drr79i+PDhWu0MHToUrq6uuHLlCn+2PygoSO9nWdfnvjnh4eHo0KEDbt++jfLycmRkZCA6OrrJcr///nuTbNPDhw9j3rx5OtvVzKg0dTpqS7xHNH3xxReYMWMGALbfEB4eDg8PD1y7do3PUK2rq8NTTz2FXr16YdiwYSb11xJUBXwB9p4eMmSIxdr+97//jbffflvrNm9vb/Tu3RteXl64e/cuLly4wD/PZWVlLXo8zVo5zs7O6N27Nzp06ACRSITi4mJcvHiR/y75/vvvUVhYiKNHj+r9fbXUfpCjfs5VnnnmGXz99df8dScnJ/Tp0weBgYHgOA6lpaX4888/+f7ba1/PIdg1FNRGmJMZo8pqiImJ4c6cOaO1XGlpKffII49oRQxTU1P1tqsrK8WQhoYGLiEhgV/ey8uLW7duHVdVVaW13J07d7j58+drtf3jjz8a1QdPT08OALdgwQLu9u3bWsteuXKFv6x5NkG1joeHB7dp0yautrZWaz3Ns7m3b9/mOnfuzK/bp08f7qeffmpyFuTChQtcXFyc1pmSvLw8ndtQW1vL9erVi1/Wzc2N27RpEyeXy/llampquBUrVnBOTk6cQCDQyk6xZWbMF198wUVGRnIfffSR3rPcWVlZWq+zq6srd+3aNb1tap5R7NChAweos2o0z+BWV1fzz4Fq+WHDhnFKpVJv27NmzdI6Y/Pmm29yd+7c0VqmqqqKe/vtt7XOVq5Zs0Zvm/bIjPnggw+0PjdffPGFzrPb1dXV3O7du7mpU6dy77//fpP7d+3apfV8rFmzhquurm6ynFwu51JSUrhnnnmGW7Bggc4+WSszxhrfE+Hh4fwyMTExXFZWls7l/vrrL27t2rVcv379uMLCQqO2yRBTM2P8/Pw4gUDA+fj4cFu3btV6jRsaGrht27ZxLi4u/PJPPPFEi/vYuA++vr6cQCDgOnbsyH333Xdan6/y8nLu0Ucf5ZcViURcSkoK5+bmxjk5OXHvvfee1vtJqVRyq1ev1nqNPvnkE739sEdmjKltNWbvzJgbN25wUqmUe+2117j09HSdZ+Tz8/O5RYsWaWVBfPXVV3ofV3ObPDw8OFdXVw4A9/LLL3N3797ll1Mqldx3333HBQQEaP3WFRQU6G17x44dWtv1+OOPc3/++afWMkqlkvvmm2/43wMA3OTJk/W2aY3MmCeeeEKrn/PmzeNKS0u1+vj9999zgYGBWr9dzb3HHnjgAe6RRx7hvv/+e66ioqLJ/XK5nPvqq6+0zr7Hx8cb7Ku5v0kRERHcc889x/3yyy+cTCZrcn9VVRW3ceNGrTPpL7zwgt72Jk6cyC/Xt29fLi0tTedyt27d4j799FNu2LBh3IkTJ3Quc/nyZc7Dw4Nvb+jQodzhw4e5hoYGreVOnjypdUa9W7duOrO6Oc747wFzPfTQQ3z7q1evbrYPqkzCgICAJtvFcRxXWVmptb+j6zfJUGaMJnPeI5rfA+7u7pyrqysnFou5Dz74oMl+w969e7XeJyNHjjTqMSzp9u3bXFhYmFVeY83nGWDZ2T/99BOnUCi0lqurq+MOHDjAPfHEE9zf//53nW0Z+1r4+/tzCxYs4I4ePapzf6+0tJR75513tDKt3nvvPb3tWWo/yJE/5+np6Vqv07Jly7R+s1Tq6+u5Y8eOcfPnz+cefvhhnX1rDygYYwHmBGNUyzYOOKjU19dzAwYM4Jd98skn9bZrajDms88+0zroOHfunMHl33nnHX75Xr166fyx0pWG+e677zbbl8ZfrCKRiDty5Eiz62mmvg0ZMkTnzpSKQqHQOqh89tlndS6nebAiEAi4n3/+WW+bW7ZsabK9tgzGND4g1kepVGrtmPzzn//Uu6zmzgkATigUcsnJyXqXb/wc/O9//9O53MGDB/llxGIxd/jwYYN9/vLLL7UOKPSlfNojGKM5rHDLli1GtavroOzZZ5/V+pEytx2Os14wxtLfE9evX9c6sNT1w9xYQ0ODwSCfsUwNxqh20DMyMvS2+X//939ayxr7mTSkcR88PDy4Cxcu6FxWoVBwoaGh/LKq4JCh1HTN98ro0aP1LkfBGNP7U1dXpxW4N2TNmjV8e9HR0XqX0zV0y9D3RWZmptbQYH2/daWlpVoHbCtXrjTY3wsXLvAnSwBwR48e1bmcpYMxp06d0tp2Q79fjbe9ufeYsZ/X3NxczsfHh2/z7Nmzepc19zfJ2L6cPn2ac3Z25gB2cqXxiS6OY98LqoNCgUDQJMCmj77fl9GjR/Pb9OCDDxocWldVVaW13/rWW2/pXM7awZi1a9fy7ScmJupcRvUdJ5FIuNmzZxt8fffv38/f36dPH53t2SoYo3pd9+3bp3f57777Tmv55oalWkJNTQ13/vx57sMPP9QKYA4cONCo33pjFBcXa33GR4wYwZWXlze7Xkv3IY39fP744498e506ddL5WbHUfpCjf87feust/n5jT1Y1V5qgLaMCvnYiEomwdetWiMVivffPnz+fv26porEcx2H16tX89TVr1qBfv34G1/nXv/7FL3PlyhWjivlFRkZi6dKlJvdv9uzZGD16tMFlbt68ia+++goAS1f++uuv4enpqXd5JycnfPzxx/ywoq+++kpnEcuPP/6Yvzx9+nSDxd+ee+45jBkzxmA/rcnYKQKFQiE/zAEAdu/ebfRjPP300xg/frze+xs/B//97391Lqf5+K+99hruu+8+g4/7+OOPIyEhAQBQXl6O7du3G91na7t58yZ/OSYmxqh1dM1uZql2rMUa3xOa29y/f3/4+Pg02w+BQACh0D4/U6+++ioGDBig9/5Zs2bxafQymQxnzpyxeB+WLVums1gkwL7XnnnmGf56XV0dHnjgATz++ON625s1axZ/+eTJk6ivr7dcZ9s5Z2dnuLi4GLXs/Pnz+eEu6enp/JDS5vTp0wdvvPGG3vujoqKwePFi/vqOHTv0/tapbh87diw/9EmfsLAwLFu2jL+uGkpsbZq/ySEhIXjnnXf0Ltt425tj7G9oSEgIXnrpJf76Tz/9ZPRjWLov0dHRmD59OgA29FdXQd+SkhJ++E1gYKDB4cOadP2+nDx5kh8C7+/vj//9738Gh2e7u7tr7Qf897//tUjxVFNpDiNKS0trUtxZLpfj5MmTAIC//e1vWkP7dRV41xxy09z+iy0888wz/D6SLlOmTNEaNmuNSSf27NmjVXTYzc0N/fr1w8svv4yCggJ4eHjglVdeQVpamlG/9cZYt24dP4TG09MTO3bs0DtUT5OHh0eLHtfYz+ekSZMwatQoAKw0wunTp5ssY6n9IEf/nDv6Pq6joWCMnYwfP77JLEiNjRw5kr+cm5vLjxluiT/++AMXLlwAwD7Ajz32WLPrCAQCreUOHjzY7DrPPfecWQdRL7zwQrPL7Nixgz+ImDhxInr27NnsOl26dOF/RGtra3H8+HGt+8+dO6c13t+Y2ir6xhY7mp49e/Jj/K9cuWL0+FnNHVB9NJ+D48ePa41xBdgPhmqH0dnZ2eiaNZoHlMa832zF1dWVv6yq92TPdqzFGt8Tmtt8+fJlvuaJo5o5c6bB+93d3TFw4ED++sWLFy36+AKBQCvYosvQoUO1rj/33HMGlx88eDC/wyOXy3XW4iLWJxAItF47Y6d9nT17drN1fmbPns2/xjU1NTpPnnzxxRf85YULFxr12JrfyYcOHTJqnZbSPHnw/PPP6z15paK57ZakWXND1wGWLTXXF83v2eLi4hbNYqP5PpkxY4ZRB47Dhg1Dr169AAAFBQUW/140Rnh4OPz9/QGArxuj6ffff+frVMTGxmL06NF8bTpdwZiW1Iuxhub2kwUCgdYBsK1fAycnJ8yYMQPPPfcc3NzcLNauZv2Rp59+GsHBwRZr21JM+Xy2ZD/I0T/njr6P62gcp3pfO6Ov4JGmzp0785c5jkN5eTkCAgJa9Li//fYbf3n06NFG77iEh4fzl405A6wZSDKWt7e3UUUZNbfB2GJ9ANuG1NRUAOrivyqaX5qenp4YMWJEs+3df//9EAgEdjnzo+nWrVv49ddfkZWVhcLCQlRWVjaZdk5VcJfjOBQUFDT7ZduxY0eDWQEqjZ+D9PR0TJgwgb8/LS2Nvy8qKkpnsTpdTH2/2crgwYP5H5aXXnoJ7u7umDBhgslFhgcPHsyfYX3zzTcRFBSE6dOnO0xBVWt8T/Tt2xcSiQQymQylpaWYOnUq1q9f32xQ2h5UxTybo/kd3dIigbr6EBgYaHCZxn3829/+ZnB5FxcX+Pn58dPdW7rPhFEFQc6cOYO8vDxUVFRALpdr/VZoTjOqWWDRkAceeKDZZQIDAzF48GA+wHP69Gk8/PDD/P2lpaVaxXCNzfDs3LkzfHx8UFZWhlu3biE/P1/r/W9peXl5/PsU0D0xQWONt91Yp0+fxrFjx3D+/HncvXsX1dXVWsUkVUWMAeNfK3M0NDQgLS0Nv//+Oy5duoSysjLU1NRovW80H19XX3x9fdG9e3fk5uaC4zhMnjwZn3zyiVkFr1uyr6Uqcn/mzBn07dvX5MduCYFAgNGjR+OHH34AwIIpmkV8GwdX/Pz8EBkZiaysLBw9ehQcx/G/6dXV1UhPT9da3p5cXFyaTButizV/mwD2WVN9JjmOQ1VVFa5evYpbt26hvr4eGzZswKZNm/DPf/4TK1asaHGGa1FRkdbECX//+99b1J45FAoFDh48iNOnT+PKlSuoqKiATCbT+nxq9lHX59NS+0GO/jnXfI9u3rwZoaGhWtnERJtj7Pm3Q8bs6DeOKKsq+7dETk4Of/n06dNG7dwB2jsjt2/fbnZ5Y7JVGuvevbtRB7Wa2/Dpp5/i559/Nqp9zS/JxtugeV+/fv2M6oe7uztCQkLsdnY5Pz8fixYtwnfffdckDdcQXWnrjWkeVBvS+DnQzC4CtF+r69evG/1+0zxbYMz7zVbmzZuH//3vf1AqlSguLsbEiRPRpUsXJCQk4L777sOoUaOazLahy3PPPYfVq1ejqqoKNTU1ePLJJ/Hyyy9rtRMaGmqDLdLNGt8Trq6umD17Nj788EMAwL59+9CzZ0/87W9/Q1xcHEaNGoURI0YYnRJsTcZ8PwPa39GW+H7W1LFjR5MeH0CzwZvG61i6z+2dTCbD22+/jfXr12vNyNccY76TXVxcjE5F79+/Px+QaPydfO7cOf7gwcnJCVOnTjW6n5qzdty+fduqwRjN32SAbZMxNLe9Ofv27cM//vEPkzIHjHmtzPG///0Py5Ytw40bN1rcl4ULF2LBggUA2BCEyMhIREVFIT4+HqNHj0ZMTAx8fX0Nts1xHM6dO8dff++997Bu3Tqj+qUZaLTX73dsbKxWMOaf//wnf58qGCORSPhMhtjYWGRlZaGkpATnzp3j94HS0tL4TOzQ0FB06tTJhlvRlL+/v1Enbaz9PT906FD88ssvTW7PysrC22+/je+++w4NDQ14//33UVFRgU2bNrXo8VSZuirGBKQsRalU4qOPPsKKFStMej/r+nxacj/IkT/nU6dOxb/+9S/k5+ejoaEBL7/8Mt544w3Ex8cjNjYWo0aNQkREhEPNlmpPFIyxE2PHlmuyRAaG5nTIf/31Fz9NmSmM2RkxVMOlpetobkPj9FNjNd6Gu3fv8pdV6a3G8Pf3t0sw5vz584iNjdU6c2isxtM56mLuc9D4DIzma1VcXKxzjHtzrLXza45Bgwbhs88+wwsvvMA/jzdv3sQnn3yCTz75BADQq1cvPPTQQ3jhhRf0BiU7d+6M7777Do888gi/fbdv38YXX3zBp4x26dIFkyZNwsyZMxEVFWWDrVOz1vfEihUrkJubix9//BEA+047ceIETpw4AYANZYuJicFjjz2GJ598UivV1Zbs9f3c0j6Yuo69s/ps6datW/x0sIboOsAwRmVlJeLj4/H777+bvK4x38k+Pj5GZ6hpfn8b+k6ur6836zsZsP73suZvspubm9FnVI397frggw/wyiuvmNwvY14rU7300ktYv369xfry0ksv4dKlS1q1fbKyspCVlYXVq1dDKBTy9WeeffZZeHt7N2mjvLxc6yRP46HdxrLX77euujEikQhyuZz/jA4fPpwf+hYbG4uPPvoIAAvWqIIxjjZEyRF+mwyJiorCrl27sGzZMrz77rsAWE2RqVOnYty4cWa3q3mix9XVtcV1YIxVX1+Phx9+mN9nMYW+z6el9oMc+XPu5uaGn3/+GRMnTkRBQQEAoKKiArt27cKuXbsAsGmzExMT8dxzz/G1dtorqhnTzmjOH28uY+aCNycl0dh1rLENmvV4TPmxa24MuzUolUo88sgjfCBGLBbjueeew/fff4+LFy+ivLwcdXV14NhsaeA4TquYmzHMfQ4a//hY4rVytAPGp556CufPn8eLL76oc8f/ypUreP/99xEWFoYlS5boLZIaHx+PS5cuYfHixQgKCmpy/82bN7FhwwYMHDgQzzzzjE2zGKz1PSEWi/HDDz9g9+7dGD9+fJMzfAqFAocPH8YLL7yAXr168cMKCWkpmUyGX3/9tdk/c73yyitagZgHHngAW7duRVZWFm7fvo3a2lqt72RjAkOaHOk7GTBuP6AlrPmb/Pvvv2sFYrp164Z3330XR48exY0bN1BdXQ2lUsm/VtaskbNjxw6tQEz//v3xn//8BydOnEBhYSFqamrQ0NDA92Xr1q3NtikQCLBhwwYcOXIEU6ZMafKcNDQ04NSpU1i0aBG6d+/OT4igqbW8T/SJiIjQWTfm5MmTWvViVPTVjXG04r2txZtvvqk1bKWlRb81v8dsud/9wQcfaAVihg8fjk2bNiE9PR3FxcX8MCXVn6EC6yqW2g9y9M/5wIEDceHCBbzzzjt8fRlNt2/fxueff47Ro0dj4sSJDpUFb2uUGdPOaEZG586da9bZGHvz9vbmz+59++23JqVZ66NZkd2U9HJTlrWUn3/+mU8rdHZ2xsGDB5utcWNqP819DhpXttd8vyUmJmLPnj0m9cNR9ejRAxs3bsT69euRmZmJw4cP48iRIzh06BD/fNTX1+P9999HbW0tf8atsY4dO2LVqlVYtWoVzp8/z7dz8OBB/oeJ4zhs27YNpaWlJs2GZUhzw9qs/T2RlJSEpKQkVFZW4ujRozhy5AgOHz6M9PR0PviWn5+PxMREHDlypNlaKMS+TBkm2RbduXMHW7Zs4a+vXr1aa1iELo7wnezu7s7XE3M0mv02pY/GPE8rV67kL//tb39DSkqKwTPt1vyd1+zL5MmT8c033xicycSUvowePRqjR49GbW0tjh07hiNHjuDIkSM4fvw4f5Lg7t27ePzxx+Hq6oqHHnqIX7fxWfTTp09r1V1xdAKBAKNGjeIPpFV1Y/RluuiqG1NTU+NQ9WJaE5FIhL///e/8DGiqrA9zadY5rKys1KrrYy1KpRIffPABf33evHnNDuEx5fNpqf0gR/6ce3l54bXXXsNrr72Ga9eu8fu4Bw4c0Kqps3fvXjzwwAP4/fffHaZ2oi1RZkw7o1mHoPHMN62FNbZBs9ZCXl6eUetwHGf0spaUkpLCX3788cebDcTU1NSYXMDN2KFXjZ+DxjUr2sL7zRChUIhBgwZh0aJF2L17N0pKSrBz506EhITwy2zYsMGo90m/fv0wZ84c7Ny5E0VFRdi3bx8iIyP5+3/66SetQmsqmmeNGxdu1qe594OtXjdPT08kJibi/fffx6lTp3Dz5k28+uqr/HCMuro6vPbaa1Z7fKKbqe+p1lAIOCQkROsMpr4/cxw8eJAPSHXv3h3/+Mc/ml3H1EKw5eXlWkN3DNH8/jb0nVxdXW2xM6OWptnv+vp6ralSDWnut4vjOK0zzStXrmx2yIO1ivYWFxcjKyuLv/7hhx8aDMSY2xdXV1eMGzcOb731Fo4cOYJbt25h1apVWnVFGg/Z8vDw0Lq/Nf5+awZPVEEYXfViGi+vqhtz7Ngx/vuvd+/eOjNYiX6asx21NOtBs45bQ0MDrl692qL2jHHmzBn+xK+bmxtWrVrV7DrmfD4ttR/k6J/zHj164Nlnn8Xnn3+OGzdu4LffftPKNvvjjz+0ZsxqTygY085oRlbNGdvuCKyxDZpT1F67dk1rXL0+ly5dQkVFhUUe3xTXr1/nLxsTwT558qTJqcIXLlwwKsLf+DkYNGiQ1v2ar1VWVpZWAci2SCwW45FHHsGvv/7K71QrlUocOHDApHZEIhESEhJw4MABflpyADqnqdWstWTMwdpff/3V7Jlme31PBAUF4b333sOyZcv4244ePWqVOg1EP1PfU5oFny1B84ynow1T1EXzO3nw4MHNnrGVyWTIzMw0+XGMKUzLcZzW2fzG38lRUVFa9VdOnjxpcj9sISIiQqtGjjnbrktpaalWAMqY31Bjz+prDrU25n2rWay3Q4cOWkH8lvbFED8/PyxevBgbNmzgb7t27VqTA1xr/Q6Y+jyZq3HdmJqaGq16MY2HvzUO3lijXoyttt0RaNYRMWa6ZEMiIiK0ggZHjx5tUXvG0Pxe79evn1HTdFvi82mp/SB7f84NEQgEGDlyJH755ReEhYXxt+vax20PKBjTzowbN47fwblx44ZVx0Jbi+YUl7t377ZIgbihQ4fyP8wcx+Hbb79tdp0dO3a0+HHNYWz2g8q2bdvMegzVTASGaD4HPj4+TWZhGjZsGJ8GWVdX126i3qGhoejXrx9//datW2a106FDB8TExBhsR3P2JtW024YYM9TJ3t8TkydP5i/X19cbFRwllmON95QpNGeS0JxZzVGZ+p28Y8cOswKMO3fubHaZI0eOoLCwkL8+cuRIrftdXFy0Diw///xzk/thC25ublozpnzzzTfNrtN423Ux9bWqqKjA999/b9Sypr5vTe3L1atXdWZHmkvzexZo+vuiua+1fft2iw1HtNXnOzIyEn5+fgBYYOC///0v/3i6pnRvXDfGGsGY1vbd1hKa71VzZljV5OzsrPUaqCZMsCZTP5+HDh3SCuC0lKX2g+z1OTeGq6ur1uObu6/c2lEwpp0JCgrCtGnT+OsLFixoddObPvTQQ3xB2oqKCqNSwpvj4+ODBx98kL/+3nvvGUzfLikp0VsHxNo0p1Y8duyYwWVPnjyJL7/80qzHeeuttwxmsjR+Dh5//PEmYz1dXFwwd+5c/vqyZcta9ZetKWeyNLNPVDuE5rSjmaHUuB1AO6vr999/N5jOX15ejtWrVzf7mNb4njB3mwE0Oz0jsSzN99T+/fsNfhfm5eVZfMdYMyW98RTHjkjzO/nkyZMGd2bLysrw+uuvm/U4X3zxRZMpXjVxHKfVdv/+/XVmfrz88sv85e3bt2sddDqSJ598kr/87bffGswmarzt+vj7+2sNBWruN/TVV181umaNqe9bzffN7du38eeffxpcfsGCBc1+j7bke7bx78vzzz/PD+G6du0aVqxYYXTbhtjq8y0QCDB69Gj++vvvv89f1hVcUdWNAdiBtWaWlaWK97a27zZz/f7779i7dy9/PTExscVtzps3T6v9Tz/9tMVtGqL5+czJyTF44lehUGDRokXNtmmp/SBH/5xbch+3PaBgTDv05ptv8mnoZ8+exfjx45uN5jY0NCAlJQX3338/Ll26ZItu6uXk5KQ1dvPTTz/F7Nmzmz1YrK6uxrZt2/ROr7d48WI+hfTGjRuYPn26zjbLysowefJku9VJ0Nwp+Oabb/QOgTlz5gySkpLMns3g6tWreOyxx3QGZO7evav1HLi6umLhwoU621m0aBE6d+4MACgoKEBsbKxRwxp+//13PPLII1o1cuxtwIAB2L59e7PDrTZt2qSVCqq5QwiwzJNNmzY1O8xt7969WgdKjdsBgBEjRvB1IJRKJV588UWdB4Pl5eWYMmWK0bUXLP09sX37djz++OP4448/DLZRU1OjNSPBkCFDjJ7WllhGYmIinylYWlqqdwrggoICJCUlWbwIrObQmk2bNjn8MDXNz+WNGzf4opWNlZSUYMKECWbXIKmvr8ekSZN0foaVSiVeeuklpKWl8bctXbpUZzvjx49HQkICv97kyZONyv7Izc3FP//5T37KWmubMWMGf0DU0NCAhx56CH/99VeT5ZRKJebPn6+17fo4Oztr1VlbvHixzu9hjuPw3nvvmTQLjOb7duvWrc1m7Xbr1k1rpsP58+drzSKlolAoMGfOHK2DW32OHj2KiRMn4vDhwwYPiJRKpdb7QyqVIjQ0VGsZPz8/raES//73v/Hmm282mzFQVlaGtWvXagX0NWk+T5mZmVbNvNTcX1KdCHJzc8PQoUN1Lq8K0pSWlvLb2atXL34fpqVMfY84iiVLlmD79u1GfRcnJydj4sSJ/L6nj48PZs2a1eI+JCQkaGU0vfjii/jss88MrnP58mWzssMBljGv2veora3FokWLdH6mqqqq8Mgjjxg19NRS+0GO/jl/9NFHsWrVKn7WV33++OMPrQx7Xfu47UH7K1lM0KtXL3z++eeYOnUqGhoacPz4cfTu3RtTp07F2LFj0a1bN4jFYpSXlyM3Nxd//PEHfvnlF/6HzBHGuU6bNg0nT57Ehx9+CADYvHkzvvvuOzz22GNaB6d3797FxYsXcfLkSaSkpKCmpkargKGmoUOHYu7cuXy19D179iAyMhIvvvgioqKi0NDQgNOnT2Pjxo0oKChAr1694OXlhTNnzthmo++ZNm0aXn31VRQVFUGpVCIhIQHPP/88HnjgAfj6+qKwsBD79u3D9u3bUV9fj/vvvx/nz5/XGp/enHHjxiEjIwM//PADIiMjMXv2bERFRaG+vh7p6en8c6Dy73//W+fUdQA7E/ndd99hzJgxkMlkuHjxIqKiojBx4kQ88MAD6NGjB9zd3VFRUYEbN27gzJkz+PXXX/md7meffbZlT5gFZWdn44knnsCLL76ICRMmYNiwYejVqxd8fX1RV1eHK1eu4Pvvv9eaInfKlClaQ5YAdvZhzpw5WLRoEeLj4zF8+HD07dsXfn5+UCqVyMvLw759+/Ddd9/xOzTR0dFa6ZwqTk5OWLBgAf71r38BYO/b4cOHY/bs2ejVqxeqqqpw4sQJfPzxxyguLkZsbCwuX77c7AGhpb8n6uvr8dVXX+Grr75CaGgo7r//fgwePBidOnWCu7s7ysrK8Mcff+Czzz7TOuDS3EkgtuHv74+nn34aH3/8MQAWELl8+TKeeeYZBAcH4+7duzhy5Ag++eQTVFZW4oknnjA7A0+Xxx57jB+W8ssvv6BTp04YMGCA1gw7Y8eOxfz58y32mC3RvXt3JCUl4aeffgIALF++HKdOncLjjz+O4OBglJeXIy0tDZ988glKS0sRFBSEAQMGYN++fUY/RpcuXdC1a1ccP34cERERmD17NkaNGgWJRIJLly5hy5YtWjv48fHxeOKJJ/S29+WXX2Lo0KG4evUqysvL8fe//x1DhgzBlClTEBkZCW9vb9TU1KC4uBiZmZk4cuQInymwZMkSM58p03h6emL9+vX4+9//DoAFg1S/R6NHj4a7uzsuXrzIb7tYLMYDDzzQ7LC5BQsW8FMWZ2VlITIyEvPmzcPgwYPBcRwuXLiAzz//HKdPnwbAzhxrzpalz6OPPorVq1eD4zhkZmaic+fOGDRoEHx9ffnhL+Hh4VrBugULFvBn1H/99VcMHjwYL774Ivr374+6ujpkZWXh008/xcWLFyESifDUU08ZnN6a4zjs3bsXe/fuRXBwMBISEhAdHY3g4GB4enqisrISZ8+exeeff87PygiwDCDNeiYqixcvxqlTp/D999+D4zgsX74cn376KR599FEMGzYMHTp0QH19PUpLS5GTk4MTJ07g0KFDUCgUTQrkqvTt2xcDBgxAZmYmOI7D2LFjERkZieDgYK3s2o8//rhJAWpT6cqA0VUvRnP5xlnPlpxFyZz3iCO4dOkS3n//fcyZMwcPPPAAoqOjERoaCh8fHwgEApSWluLcuXP4+eeftepQCYVCbN68GQEBARbpx/bt2zF48GAUFhZCoVDgueeew6ZNmzBt2jT0798fnp6eKC0tRXZ2Nn799VccO3YMSUlJePrpp01+LIlEgpkzZ2Lt2rUAgM8++wwXL17E888/j169eqG6uhqnTp3CJ598gps3b8LDwwMTJ040WMLAUvtBjv45LyoqwtKlS7Fs2TKMGTMGI0eORHh4OPz9/SEQCJCfn4+UlBRs376dD0B37dpVKxuyXeFIi82YMYMDwAHg7rvvPr3L3XffffxyW7duNapt1fIAuNzcXJ3L5Obmai1nrH379nHe3t5a6xrzd+HCBYv1YevWrUY9d/q88847nEAgMKn/HTt21NueQqHgJk+e3GwbPj4+XHp6ulmvqSGHDh3i2+vWrZve5Q4cOMC5uLg0289+/fpxxcXFXLdu3fjbDh06pLPNN954g19mxowZ3J49ezixWNzsY7zwwgtGbdvp06e5zp07m/x+279/v872jNkmUxjz3Jva92HDhnGlpaUG+27MX+/evbm//vpLb9/lcjk3atSoZtvp27ev0e8HFUt9T2h+1o39e/fdd5t93YxhzPaa812k+d3/xhtvtLifpvbBnO9dY1/70tJSrm/fvs2+RqNGjeJqamq0btP3W9X4O8aQJ554wuDjNl7f2O9OcxizbQUFBVxwcHCzz5e3tzeXlpZm1Hun8Tbl5eVxXbp0afYxoqOjufLy8ma369atW9zIkSNN/lwuWbJEZ3uW/jyofPDBB832SSgUch9//LHR77HnnnvOqG395z//adJ767XXXjPYXuPPdX19PXf//fcbtX1r165t9jtCs6/G/s2ePZtraGjQu00KhYKbO3euye0OGzZMb5unT5/mfHx8DK6v77NmCqVSyfn6+mq1+/bbb+td/s6dO032Kb/88stmH8eU725T3yPmfLeZ8l1rjEmTJpn8+vv6+nLffPNNix+7sWvXrnF9+vQxuh+TJk3S2Y4xv4VVVVVcVFRUs48hFou57777rtnn3VL7QY7+Odc8NjLmLzAwkMvIyNDbt7aOhim1YwkJCbh06RIWLVrUbE0GqVSKZ555BocOHUKfPn1s1MPmvfbaa8jMzMTUqVMhFosNLhsWFoYlS5YYHB/v5OSE7777DqtXr9Zb/T02Nhbp6elaxQVtbezYsTh8+DAiIiJ03u/m5obZs2fj1KlTZp+RSExMRFpaWpPZOFQCAwPx6aefYvPmzUa1Fx0djfPnz+Ott97SGjeti6+vLx555BH8/PPPGD9+vMl9t5b169cjPj6+2ar6wcHBWLVqFX777Tedn60VK1Zg8uTJfHFjfTp06IClS5fizJkzWkVVG3NxccH+/fsxa9YsrRlIVMRiMZ577jmz3g+W+p4YM2YMFi9ejPDwcIOzzajG+R85coTP9iG25+vri8OHD2Pq1Kk67/fw8MCSJUtw4MABqwwj++KLL/D9999j6tSpfPZcc7MU2VOnTp1w8uRJrdpjmoRCIe6//35kZGRoFeU2Rbdu3fDHH39g8uTJOj/nEokE//jHP3D06FGtLCJ9AgMDcfjwYfzvf/9rUny9MbFYjHHjxuGTTz6x+XTz//jHP7Bv3z69RUB79+6NvXv3YubMmUa3+cknn2DFihV6n6cePXrgq6++MqrGlqZ33nkHBw8exBNPPIE+ffrAw8PD4PtWJBLhp59+wqJFi/Tuw4SHh+PXX3/FSy+91OzjR0REYPny5YiOjtb5HtE0aNAgfP/999i0aZPBPjo5OWH9+vX47bffEB8fb7BdgUCAgQMH4u233zY4EUJ0dDRycnLw2muv4W9/+xv8/Pya1JyzBKFQ2GTog6FMF826McYsbw5T3yOOYPbs2XjkkUe0ZnfUJygoCEuXLsWFCxfw8MMPW7wv3bt3R0ZGBlasWGFwX9LJyQnjx4/XqltoKnd3dxw9ehQzZszQ+74fPnw4Tpw4gYceeqjZ9iy1H+Ton/MlS5bg0UcfbXZ/09PTE7Nnz0ZOTg4GDBhgcNm2TMBxDjDmhNhdQ0MD/vjjD5w7dw63b9+GXC6Hl5cXunTpgn79+jlUAEYfmUyGY8eOITc3l6867u3tjR49eiAiIgJBQUEmtSeXy3HgwAFcuXIFcrkcQUFB/LAUR8Hdm8ozPT0dd+/eha+vL4KDgxEbG8sX5LKE7OxsZGRkoLCwEJ6enggLC8N9993Xop2n7OxsZGVloaSkBDU1NfDw8EDnzp0RFhaG/v3760yldBT19fXIzs7Gn3/+icLCQlRXV8PV1RWBgYGIiopCRESEUf1vaGjA+fPncenSJdy8eROVlZVwcXGBv78/IiIiMHDgQK1ik8YoKSnBgQMHcOPGDYhEInTt2hVjxoyBv7+/uZur1V9LfE/cvXsXmZmZuHr1Ku7cuYP6+np4eHggJCQEQ4YMMfmzSqxLNaNWYWEhJBIJunXrhnHjxln0O6YtuXbtGo4ePco/X507d8aIESMsVncCAPLz85GWloabN29CIBAgJCQE48eP15qW3FQ3b97EiRMnUFRUhPLyckgkEgQEBCA0NLTJlNj2wHEcTpw4gbNnz6K0tBQdO3ZEv379tKZmNVVlZSUOHz6My5cvo66uDlKpFH379tU7xMaa7ty5g0OHDiE3NxcAC/BFRkY2CQ4Yq6qqCpmZmbhy5QpKSkogl8v539no6Gh0797drHZVw+5u3LiB0tJSODk5wcfHB7169UJkZKRRB+yk9bp69SouXLiAv/76CxUVFeA4Dt7e3ujYsSOioqLQq1cvmwWXOI7DmTNncPbsWZSUlKC+vh4+Pj4IDQ3FkCFDjApKG6ugoACHDh3CzZs34eTkhKCgIAwZMsTsYwJL7Qc5+uf88uXLOH/+PK5fv47KykoIhUL4+vqiX79+iI6OtvvviiOgYAwhhBBCCCGEEEKIDTnuqWdCCCGEEEIIIYSQNoiCMYQQQgghhBBCCCE2RMEYQgghhBBCCCGEEBuiYAwhhBBCCCGEEEKIDVl+HrlmNDQ0oKCgAJ6eng4/lRshhBBCCCGEEEKIsTiOQ2VlJYKCggzOsGrzYExBQQGCg4Nt/bCEEEIIIYQQQgghNnHjxg106dJF7/02D8Z4enoCYB2z5PzvhBBCCCGEEEIIIfZUUVGB4OBgPvahj82DMaqhSV5eXhSMIYQQQgghhBBCSJvTXFkWKuBLCCGEEEIIIYQQYkMUjCGEEEIIIYQQQgixIQrGEEIIIYQQQgghhNiQzWvGEEIIIYQQQgghpHlKpRIKhcLe3SAanJ2dIRKJWtwOBWMIIYQQQgghhBAHwnEcioqKUFZWZu+uEB18fHwglUqbLdJrCAVjCCGEEEIIIYQQB6IKxAQGBsLNza1FB/3EcjiOQ01NDYqLiwEAnTp1MrstCsYQQgghhBBCCCEOQqlU8oEYf39/e3eHNCKRSAAAxcXFCAwMNHvIEhXwJYQQQgghhBBCHISqRoybm5ude0L0Ub02LannQ8EYQgghhBBCCCHEwdDQJMdlideGgjGEEEIIIYQQQgghNkTBGEIIIYQQQgghhLRIbGwsBAIBBAIBMjMzjVpn27Zt/DoLFy60av8cDQVj2gi5HNi7F1iwAJg2jf2/dy+7nRBCCCGEEEIIsbaZM2eisLAQ4eHhAIDr168jMTERbm5uCAwMxCuvvIL6+np++WnTpqGwsBDDhw+3V5fthmZTagPkcmDlSuDAAUAkAjw8gOxsICMDSE8Hli4FxGJ795IQQgghhBBCSFvm5uYGqVQKgM0KlZiYCKlUiuPHj6OwsBBPPfUUnJ2d8d577wFgMxNJJBK4uLjYs9t2QcGYNiA1lQVigoNZIEalshI4eBCIjgYSE+3XP0IIIYQQQgghtqOsk6M4IxVF6cmovVsEV18ppNHxCBwYB5GLbc7UJycn4/z580hNTUXHjh0xYMAAvP3221iyZAmWL1/eLgMwmmiYUhuQnKzOiNHk6cluT062T78IIYQQQgghhNiWsk6OiztX4uLOVSjPzYZSXoPy3Gxc3LkKF3euhLLONrUsTpw4gYiICHTs2JG/7f7770dFRQXOnTtnkz44MsqMaQOKipoGYlTc3dn9hBBCCCGEEELavuKMVBRnHIBbQDCcJOoDRUVNJYozDsIvNBqdhll/6ERRUZFWIAYAf72IDlIpM6YtkEqBqird91VXs/sJIYQQQgghhLR9RenJEAhFWoEYAHB284RAKEJROg2dcAQUjGkD4uMBpZLViNFUWcluj4+3T78IIYQQQgghhNhW7d2iJoEYFSeJO2rv2iYrRSqV4tatW1q3qa5LKWOAgjFtQVwcMG4ckJ8PXL4MFBSw//PzgbFj2f2EEEIIIYQQQto+V18p6mW6h07Uy6rh6mubQMjw4cNx9uxZFBcX87elpKTAy8sL/fr1s0kfHBnVjGkDxGI2fXV0NCvWW1QE9OjBMmLi4mhaa0IIIYQQQghpL6TR8Si7mgFFTSWc3Tz52xU1leAalJBG22boRHx8PPr164cnn3wS77//PoqKirBs2TLMnTsXYjpIpWBMWyEWs+mraQprQgghhBBCCGm/AgfGofTPdBRnHEStUAQniTvqZdXgGpQIHDgWgQNtM3RCJBJhz549ePHFFzF8+HC4u7tjxowZeOutt2zy+I6OgjGEEEIIIYQQQkgbIXIRI2zaUviFRqMoPRm1d4vgLu0BaXQ8AgfGQeRiu6yUbt26Yd++fTZ7vNaEgjGEEEIIIYQQQkgbInIRo9OwRJtMYa1p48aN2LJlC06cOIGIiIhml9++fTtmzZoFmUyGAQMGWL+DDoSCMYS0Frm5wObNwP79QEkJm8/cwwMICAAmTABmzQJCQuzdS0IIIYQQQkg7tH37dshkMgBA165djVonKSkJw4YNAwD4+PhYq2sOiYIxhDi6lBRg7Vpg716A47Tvq6wECguB7Gxg1SpWNGj+fGD8ePv0lRBCCCGEENIude7c2eR1PD094enp2fyCbRBNbU2Io1IqgZdeYtNi7dnTNBDTGMex5eLj2XpKpW36SQghhBBCCCHEJJQZQ4gjUiqB6dOBXbua3hcZCYwcyYYoVVUBaWksM0bT+vVsjvMdOwCRyDZ9JoQQQgghhBBiFArGEOKIFi7UDsQIhcC0acDcucCIEYBAoL6P44Djx4ENG4CdO4GGBnb7rl2snXXrbNlzQgghhBBCCCHNoGFKhDialBSW2aIikQA//AB89RUQE6MdiAHY9ZgYdv8PP7DlVdavB1JTbdNvQgghhBBCCCFGoWAMIY5m7Vr1ZaGQDTVKSjJu3aQktrxQ46Ot2R4hhBBCCCGEELujYUqEOJK8PDZrksq0aVqBGIVSjrOFqcgqSEaZrAg+EimiguIR0SkOziIxWygpia339dfs+p49rF2a9poQQgghhBBCHAJlxhDiSDZv1p41ae5c/qJCKcePOSuxO2cVrt/NRl19Da7fzcbunFX4MWclFEq5er05c9SXOY61SwghhBBCCCFWEhsbC4FAAIFAgMzMTJs/fkhICP/4ZWVlNn98U1EwhhBHsm+f+nJkJCvWe8/ZwlTkFB6Av1swOnmFwtctCJ28QuHn1gU5hQdxtlCjNkxMDBARob6+f78NOk8IIYQQQghpz2bOnInCwkKEh4fzt12/fh2JiYlwc3NDYGAgXnnlFdTX15vU7ooVKzBkyBB4enoiMDAQkydPxqVLl7SWOX36NL777juLbIctUDCGEEdSUqK+PHKkVrHerIJkCAUiuDp7aK0icfaEQChCVkGy+kaBgK2vq11CCCGEEEIIsQI3NzdIpVI4ObGKKEqlEomJiairq8Px48fx+eefY9u2bfj3v/9tUrtHjhzB3Llz8fvvvyMlJQUKhQLx8fGorq7mlwkICICfn59Ft8eaqGYMIY6kqkp92UM76FImK4Krkwd0kYjcUSYr0r5Rc/3KSkv1kBBCCCGEEOLgFPJ6nD1+DVm/XUVZSSV8AjwRNaonIkb0gLPYdmGA5ORknD9/HqmpqejYsSMGDBiAt99+G0uWLMHy5cvh4uJiVDu//PKL1vVt27YhMDAQf/zxB0aPHm2NrlsdZcYQ4kg0AyiagRkAPhIpauuroItMWQ0fiVT7Rs31PT0t1UNCCCGEEEKIA1PI6/Hj5jTs3pyG6xdvoa62Htcv3sLuzWn4cXMaFHLThgi1xIkTJxAREYGOHTvyt91///2oqKjAuXPnzG63vLwcAFpVJkxjFIwhxJEEBKgvp6VpFfONCopHA6eETKGd5SJTVIJrUCIqKF59I8ex9XW1SwghhBBCCGmzzh6/hpzj1+Av9Uan7v7wDfREp+7+8JN6Ied4Ls4ev2azvhQVFWkFYgDw14uKinSt0qyGhgYsXLgQMTExWrVpWhsapkSII5kwAcjOZpezs4Hjx1kxXgARneJw9U46cgoPQiAUQSJyh0xZDa5BifBOYxHRKU7dzrFjwNmz6usJCTbciPZJLgdSU4HkZKCoCJBKgfh4IC4OEIvt3TtCCCGEENJeZP12FUKhEK7u2kOAJO5iCERVyPrtKgaNCbVT71pu7ty5yMnJQZrmyedWiIIxhDiSWbOAVavUGTEbNvDBGGeRGJPDl6KnfzSyCpJRJitCoGcPRAXFI6JTHJxFGkf8GzeqLwsEwOzZNtyI9kcuB1auBA4cAEQiNtosOxvIyADS04GlSykgQwghhBBCbKOspLJJIEZF4uaCshLb1ZOUSqU4deqU1m23bt3i7zPVvHnzsGfPHhw9ehRdunSxSB/thYIxhDiSkBAgMRHYs4dd37kTmD4dSEoCwAIyg7okYlCXRP1t7N7N1lOZOBHo1s16fSZITWWBmODgpnWTDx4EoqPZy0oIIYQQQoi1+QR44vrFWzrvk9XUITDY12Z9GT58ON59910UFxcjMDAQAJCSkgIvLy/069fP6HY4jsNLL72EH374AYcPH0b37t2t1WWbMalmjFKpxOuvv47u3btDIpGgZ8+eePvtt8Fp1LUghLTQ/Pnqyw0NLBjz00/Grbt7N1u+oUF3e8QqkpPVGTGaPD3Z7cnJutcjhBBCCCHE0qJG9URDQwNk1XKt22XVcnBKDlGjetqsL/Hx8ejXrx+efPJJZGVl4ddff8WyZcswd+5ciE1IHZ87dy6+/PJLfPXVV/D09ERRURGKioogk8ms2HvrMikYs2rVKmzatAnr16/HhQsXsGrVKrz//vtYt26dtfpHSPszfjwwb576ukwGTJkCPPZYk6K+ANTFeh97DHjoIaC2Vn3fvHmsaAmxqqKipoEYFXd3dj8hhBBCCCG2EDGiB8JH9EBpUSUK8u7gbjH7v7SoEuEjuiNiRA+b9UUkEmHPnj0QiUQYPnw4nnjiCTz11FN46623+GXy8vIgEAhw+PBhve1s2rQJ5eXliI2NRadOnfi/nZojAloZk4YpHT9+HJMmTULivXz7kJAQfP31103GgBFCWmjNGnYEv2sXu97QAHz9NfuLjGR1ZDw82PTVx46pi/5qevhh1g6xOqlU90sAANXVQA/b/d4RQgghhJB2zlnshMmzRqJnRBCyfruKspJKBAb7ImpUT0SM6AFnsW2rlXTr1g379u3Te39ubi58fHwQFRWld5m2OBrHpFdhxIgR+Pjjj/Hnn38iNDQUWVlZSEtLw3/+8x+968jlcsjl6vSoiooK83tLSHshEgE7dgALFwLr12vfl52t/8hfZd48FogRiazVQ6IhPp4V662sZEOTVCorAaWS3U8IIYQQQoitOIudMGhMqM1nTdq4cSO2bNmCEydOICIiwqh19u3bh3/961/w9W1ZLZv+/fvj2jXbTdvdUiYFY5YuXYqKigqEhYVBJBJBqVTi3XffxeOPP653nRUrVuDNN99scUcJaXdEImDdOmDSJGDtWlbU11BEWCBgxXrnz6ehSTYWF8dmTTp4kL1s7u4sI0apBMaOpZeDEEIIIYS0fdu3b+druHTt2tXo9VavXm2Rx9+3bx8UCgUAwMvLyyJtWpOAMyHfZ8eOHXjllVewevVq9O/fH5mZmVi4cCH+85//YMaMGTrX0ZUZExwcjPLy8lbxBBHiMPLygM2bgf37gZISdRpGQACQkMCmxQ4JsXcv2y25nM2qlJzMRphJpSwjJi6OprUmhBBCCCHGq62tRW5uLrp37w5XV1d7d4foYOg1qqiogLe3d7MxD5OCMcHBwVi6dCnmzp3L3/bOO+/gyy+/xMWLF41qw9iOEUIIIYQQQggh7Q0FYxyfJYIxJs2mVFNTA6FQexWRSIQGzWl0CSGEEEIIIYQQQoheJtWMefDBB/Huu++ia9eu6N+/PzIyMvCf//wHzz77rLX6RwghhBBCCCGEENKmmBSMWbduHV5//XXMmTMHxcXFCAoKwqxZs/Dvf//bWv0jhBBCCCGEEEIIaVNMCsZ4enpizZo1WLNmjZW6QwghhBBCCCGEENK2mVQzhhBCSDuRmwssXQpERQFBQYCXF/s/Kgp49VU2uxchhBBCCCHELBSMIYQQopaSAjz4INCzJ7BqFZCdDRQWsqnUCwvZ9ZUrgR492HIpKfbuMSGEEEIIcQCxsbEQCAQQCATIzMxsd49vKgrGEEKIDcjlwN69wIIFwLRp7P+9e9ntDkGpBF56CYiPB/bsATjO8PIcx5aLj2frKZW26SchhBBCCHFYM2fORGFhIcLDw/nbrl+/jsTERLi5uSEwMBCvvPIK6uvrTWr36NGjePDBBxEUFASBQIAff/yxyTLff/89Tp061dJNsBmTasYQQggxnVzOkkkOHABEIsDDgyWYZGQA6elsNJBYbMcOKpXA9OnArl1N74uMBEaOZJ2uqgLS0ljnNa1fDxQVATt2sA0khBBCCCHtkpubG6RSKX9dqVQiMTERUqkUx48fR2FhIZ566ik4OzvjvffeM7rd6upqREVF4dlnn8VDDz2kcxk/Pz9UVFS0eBtshYIxhBBiZampLBATHMxiGiqVlcDBg0B0NJCYaL/+YeFC7UCMUMjSd+bOBUaMAAQC9X0cBxw/DmzYAOzcCTQ0sNt37WLtrFtny547JLmcvebJySxGJZWyBKK4ODsH3QghhBDSbiiUcpwtTEVWQTLKZEXwkUgRFRSPiE5xcBbZbockOTkZ58+fR2pqKjp27IgBAwbg7bffxpIlS7B8+XK4uLgY1U5CQgISEhKs3FvbomFKhBBiZcnJ6owYTZ6e7PbkZPv0CwCr+bJ+vfq6RAL88APw1VdATIx2IAZg12Ni2P0//MCWV1m/nkUh2jFVFpSq3E5NDft/1Sp2u8MMSyOEEEJIm6VQyvFjzkrszlmF63ezUVdfg+t3s7E7ZxV+zFkJhdJ2OyQnTpxAREQEOnbsyN92//33o6KiAufOnbNZPxwRZcYQQiyOMgO0FRU1DcSouLuz++1m7Vr1ZaGQDTVKSjJu3aQktvyUKeoMmbVr2QvdTjl8FhQhhBBC2ryzhanIKTwAf7dguDqrd0hkikrkFB5ET/9oDOpimx2SoqIirUAMAP56kV13gu2PgjGEEIty+PoodiCVNi2zolJdzSYmsou8PFZFWGXaNK1AjFHprUlJbL2vv2bX9+xh7YaE2GorHIoxWVAUjCGEEEKINWUVJEMoEGkFYgBA4uwJgVCErIJkmwVjiH40TIkQYlGamQGhoUBQEPu/SxeWGWDsKBaHn33IBPHxrEZuZaX27ZWV7Pb4ePv0C5s3a8+aNHcuf9Gk9NY5c9SXOY612045dBYUIYQQQtqFMlkRXJ1075BIRO4ok9luh0QqleLWrVtat6muaxb6bY8oGEMIsShL1Edpa3U34uKAceOA/Hzg8mWgoID9n58PjB1rx1E9+/apL0dGsmK992imt3byCoWvWxA6eYXCz60LcgoP4myhRlQtJgaIiFBf37/fBp13TFIpm3RKl8pKQCZrGwFGQgghhDguH4kUtfW6d0hkymr4SGwXBBk+fDjOnj2L4uJi/raUlBR4eXmhX79+NuuHI6JhSoQQi7JEZoAj190wpx6OWMyGZ0VHq9fr0cMB6uiUlKgvjxypVazXpPRWgYCtf/Zs03bbmfh4NiSvspIFIFXKytjoLQ8Pdh8N3yOEEEKItUQFxSOvNAMyRSUkzuodEpmiElyDElFBtkvLjo+PR79+/fDkk0/i/fffR1FREZYtW4a5c+dCbMLOT1VVFa5cucJfz83NRWZmJvz8/NC1a1drdN3qKBhDCLEoS9RHcdS6Gy2phyMWsz47VL0QzRSORk+2yemtjaNm7VRcHHsvHDzI3iPu7ux9X1zMRnCFhwPe3urlHSHASAghhJC2JaJTHK7eSUdO4UEIhCJIRO6QKavBNSgR3mksIjrZLi1bJBJhz549ePHFFzF8+HC4u7tjxowZeOutt/hl8vLy0L17dxw6dAixsbE620lPT8eYMWP464sWLQIAzJgxA9u2bbPmJlgNBWMIIRalLzPAlPoojlp3w5EzdsyiStMAmoyt8ZFIcf2u7qiaTFmNQM9GUTXN9TVf+HZGXxZUbi5QXq4diAHsH2AkhBBCSNvjLBJjcvhS9PSP5idiCPTs0XQiBhvp1q0b9mkOj28kNzcXPj4+iIqK0rtMbGwsOM1ah20ABWMIIRalLzNAqTS+Poqjzj7kqBk7ZgsIAAoL2eW0NJa6cW+okknprRzH1tdstx3TlQU1bZp2rWRNVNiXEEIIIZbmLBJjUJdEm8+atHHjRmzZsgUnTpxAhGZNQQP27duHf/3rX/D19W3RYyckJODo0aMtasOWKBhDCLEoS9RHsUR2jTU4asaO2SZMUEe9srOB48dZMV6YmN567Ji6XgwAJCTYcCNaB0cNMBJCCCGEWMr27dshk8kAwKQ6LqtXr7bI42/ZssWsx7cXCsYQQiyupfVRLJFdYw1t7oB61iw2RZUqZWPDBj4YY1J668aN6ssCATB7tg03onVw1AAjIYQQQoildO7cuV0/vqkoGEMIcTiOOvtQmzugDglhEbM9e9j1nTuB6dOBpCQARqa37t7N1lOZOBHo1s16fW6lHDXASAghhBBC7IOCMYQQh+SIsw+1yQPq+fPVwZiGBhaM2bGDD8gYtHs3W76hQbs90oSjBhgJIYQQQoh9UDCGEEKM1CYPqMePB+bNA9avZ9dlMmDKFFZxds4cNmzpXlFfAGxI07FjbGjSzp3agZh581ppRMo2HDHASAghhBBC7IOCMYQQYoI2eUC9Zg2LLO3axa43NABff83+IiNZQMbDg01ffeyY7sI5Dz/M2tFDLmdTg6uCWFJpKw9iEUIIIYQQ0gIUjCGEkPZOJGJDkxYuVGfIqGRn669arDJvHgvEiEQ675bLgZUrgQMH1FODZ2ez+jvp6SzbiAIyhBBCCCGkPRHauwOEEEIcgEgErFsHpKQADz6oPTRJF4GALZeSwtbTE4gBWEbMgQNAcDAQGgoEBbH/u3Rh9XdSUy28LYQQQgghhDg4CsYQQghRi4sDfvoJuHaNpaxERbHoiacn+z8qit1+7RpbzogaMcnJ6owYTZ6e7PbkZCttCyGEEEIIsZnY2FgIBAIIBAJkZmbauztmOXz4ML8NkydPtupjUTCGEEJIUyEhwIoVQGYmkJ8PVFSw/zMz2e0hIQDYEKS9e4EFC1jN3wUL2HW5XN1UUVHTQIyKuzu731jGPB4hhBBCCLGPmTNnorCwEOHh4fxt169fR2JiItzc3BAYGIhXXnkF9fX1JrV79OhRPPjggwgKCoJAIMCPP/5oct/y8vLw3HPPoXv37pBIJOjZsyfeeOMN1NXV8cuMGDEChYWFeOSRR0xu31RUM4YQQhxAayxwa2wtGKlUf9mZ6mo2I5UlH48QQgghhNiHm5sbpFIpf12pVCIxMRFSqRTHjx9HYWEhnnrqKTg7O+O9994zut3q6mpERUXh2WefxUMPPWRW3y5evIiGhgZs3rwZvXr1Qk5ODmbOnInq6mp88MEHAAAXFxdIpVJIJBLIrXy2j4IxhBBiZ601yKBZC0Yz86WyktWCiY5ms07Fx7NtqaxkQ5M0l1Mq2f2WfDxCCCGEkPauTqHA6UtncepiFu6Ul8Hf2wdDw6IwpE8EXJydbdaP5ORknD9/HqmpqejYsSMGDBiAt99+G0uWLMHy5cvh4uJiVDsJCQlISEhoUV8eeOABPPDAA/z1Hj164NKlS9i0aRMfjLElCsYQQtoNR80+sUaQwRbbakwtmMRE9pjp6WxbRCI2NKm6mgVixo41quxMs48nEACbNzvea0sIIYQQYmt1CgW+SPkRpy/lQCQUQiJ2xZX867h0Iw8Xr1/Fk+Mn2ywgc+LECURERKBjx478bffffz9efPFFnDt3DgMHDrRJP/QpLy+Hn5+fXR6bgjGEkHbBkbNPjA1qGMtW22psLRixmD1mdLQ6WNKjh+nBEn2Pp1QChYXAuXMsgOVIry0hhBBCiK2dvnQWpy/lINDXH25iV/72mloZ0i/lIKxrT8SED7JJX4qKirQCMQD460WmFA60gitXrmDdunV2yYoBKBhDCGknHHmIiyUL3AK221bNWjBKJavve/MmUFPDAkKDBrH/xWL2l5jYssfVV3smPx+4dQvo2JFNma3iCK8tIYQQQoitnbqYBZFQqBWIAQA3VwmEQgFOXcyyWTDGUeXn5+OBBx7Aww8/jJkzZ9qlDzSbEiGkXXDk6ZWlUqCqSvd91dXsflO0dFuNnbEoPp4FYcrK2CRLmZnAnTtAbS3bnmvXWIaOpWqfqR6vslL79mvX2P+NCwE7wmtLCCGEEGJrd8rLIGkUiFGRiCW4U15ms75IpVLcunVL6zbVdampO7kWUlBQgDFjxmDEiBH4+OOP7dIHgIIxhJB2wtLZJ5akL8hgaoFblZZsq2qI06pVLAulpob9v2pV08BKXBwwbhwbHnTlCgt8AEBDA9CrF9C/P8tMSU01rf/6qB4vPx+4fBkoKGD/l5ayrJjOnU3f3sZo6mxCCCGEtHb+3j6QyWt13ieTy+Dv7WOzvgwfPhxnz55FcXExf1tKSgq8vLzQr18/m/VDJT8/H7GxsRg8eDC2bt0KodB+IREapkQIaRcsNb2yNViqwK1KS7bVlCFOqlowf/zBsmPEYsDNDejShQVGRCKgpMT0mjf66Ks94+EBlJerg0GmbK8mR64rRAghhBBirKFhUbh0Iw81tTK4uUr422tqZWho4DA0LMpmfYmPj0e/fv3w5JNP4v3330dRURGWLVuGuXPnQmzCjlVVVRWuXLnCX8/NzUVmZib8/PzQtWtXo9pQBWK6deuGDz74ACUlJfx99sjSoWAMIaRdsNT0ytZgqQK3Ki3ZVlOLCYvFgEQCDBwIBAU1bc/SWUe6as/s3csyd2jqbNM46uxihBBCCGmZIX0icPH6VaRfyoFQKIBELIFMzgIx0X3CMaRPhM36IhKJsGfPHrz44osYPnw43N3dMWPGDLz11lv8Mnl5eejevTsOHTqE2NhYne2kp6djzJgx/PVFixYBAGbMmIFt27YBAJYvX45t27YhLy9PZxspKSm4cuUKrly5gi5dumjdx3Gc+RtpJgrGEELaBUtnn1iaJQrcqrRkW80Z4mTvrCNbTJ1tzqxWjoyygAghhJC2y8XZGU+On4ywrj1x6mIW7pSXoXOHQAwNi8KQPhE2m9ZapVu3bti3b5/e+3Nzc+Hj44OoKP0ZO7Gxsc0GTHJzc/UGcwDg6aefxtNPP91cd22GgjGEkHbB0tknjkqV7VBczGq3lJcDCgUQFQUkJDS/reYEVuyddWTtqbMB+9cVsrT2lgVECCGEtDcuzs6ICR9k81mTNm7ciC1btuDEiROIiDAuA2ffvn3417/+BV9fX7Mfl+M4HD58GGlpaWa3AQC//fYbEhISIJfLkWjlnSEKxhBC2g1LZp84osbZDj4+gJMTC4gEBBgXmDAnsOIIWUeWmjo7MxOor1dP0a2qgSOT2beukKW1pywgQgghhNjG9u3bIZPJAMDoOi4AsHr16hY/tkAgwF9//dXidqKjo5GZmQkA8NB3ls5CKBhDCCFthCWyHcwJrLSVrKMxY4Aff2SBFycnwNmZTdV96xYLyixcaO8eWq7OS3vKAiKEEEKIbXTWNbVlKyORSNCrVy+bPBYFYwghpI2wRLaDuYGVtp51ZEn6AiqjRgG//aY/0GLJOi/2rvNDCCGEENLeUTCGEELaCEtlO7TXwMqhQ0BICMuCUQ1T8vJSD1M6dAiYPLllj6EvoHLmDPDBB6y+j7Oz7kCLJeu82LvODyGEEEJIe0fBGEIIaSMo26FliopY8CUoCGg8zLmgQEcwKzcX2LwZ2L8fKCkBqqpYlCQgAJgwAZg1i0V3NOgLqFy6xAIyAwcCoaHq2zUDLZas8+IIdX4IIYQQQtozCsYQQkgbQdkOLWN0MCslBVi7Fti7F2g8xWJlJVBYyBpatYpFR+bPB8aPB6A/oHLnDiAQsP81aQZaLFnnpa3U+SGEEEIIaa0oGEMIIa2MoZojbSnbwVLFao1lKJilUAB+3kocjVqI0dnrjWuQ44A9e9jfvHnAmjUoKhLpDKjU1LBtqqlpep8q0GLpzKf2OhyNEEIIIcQRUDCGEEJakeaKuL78ctvIdrBksVpj6Ru6o1AALiIlRm+cjtF3djVZryEiEsJRI1knq6qAtLSmUZP164GiInSS7kBWjqhJG25uLCsmMLBpv1SBFsp8IoQQQghpOygYQwghrYixRVxbe7aDJYvVGkOVhVNcDDQ0AOXlLAgTFQV06ACEf7wQYzQCMQ0QoMArDKirQ4f8Erh+8YW6XkxCAvD668D33wM7d7IGAWDXLiycuBBPKdc1Caj4+wPXrwN+ftr90gy0UJ0XQgghhDiy2NhYHDlyBACQkZGBAQMGtKvHN5XQ3h0ghBBiPGOKuLYFttxOVRbOqlXA+fOAjw/g68tquAQEAB0yUjC1UD00qQFCCAB0qbiALrVX4Vpa2LRWzCOPsNveeAOQSPh1Q/asx/MhqcjPBy5fZoWBL19mAZVBg1jcRvP2/Hx1oEVV52XxYiAigmXTRESw64YyheRyVt5mwQJg2jT2/9697Pbmnhdz1iOEEEJI+zVz5kwUFhYiPDycv23+/PkYPHgwxGKx2QGSTz75BKNGjYKvry98fX0RFxeHU6dOaS3z/fffN7nNkVFmDCGEtCKWLOLqyMzdTnPqzDSXhfPe2bVaywvR0PwGaNaLSUwE9u3ji/0+XroW/ovjmgwlGzUK+O03w0PMTK3zYu5wL3sME2t1zJhNixBCCGnr3NzcIJVKm9z+7LPP4uTJk8jWVwCvGYcPH8ajjz6KESNGwNXVFatWrUJ8fDzOnTuHzp07AwD8/PxQUVHRov7bEgVjCCGkFWkv01ebs53mBhAMZeEE1eVh+N09evt53ikSmW5DAIkznGqrEVlzBmGKc9oL7d3LIj03bgAARPv2IHF9HhITQ5q0Z+khZuYO97L1MLFWpQWzaRFCCCG2Iq+vR+q1a0i+ehVFlZWQenoivmdPxPXoAbGTbcMAa9eyE1slJSVmB2O2b9+udX3Lli347rvvcODAATz11FMt7qM9UDCGEEJakfZSxNWc7TQ3gGAoC+ehks1NxvMqIcRPrtPwtd+LOCHrAS+3SkhcBRD5ClF8xx1x4gN4PXAbgjMPQ6CqF3MvEAOAHcBv3gysWGHUc9ESxgz30vWcmLuerWfAsimlEli4kBVjNoaO2bQgalq8mRBCCLE0eX09Vqal4cC1axAJhfBwcUH2rVvIKCxEekEBlo4cafOAjKXV1NRAoVDAr3HBvVakdb8ChBDigKx5QNpeirias53mBhAMZeHE5O/Uul4rlGC29w7sESbBVVEGd+ciePm4wNmZHWR7eguRLojFp73r8dSUqej53j8Amaxpw/v32yQYk5/Ppss+fpz97+YGdOkCdO5seLiXOcPE2vTQJqUSmD4d2NV0Ni1ERgIjjZtNCzt2UECGEEKI1aVeu4YD164h2NsbHi4u/O2VcjkO5uYiOigIiaGhduxhyy1ZsgRBQUGIa8U7vxSMIYQQC7L2AamqiGtbmL7aEHO209w6M6osHNfCXCRc34z+N/bDs7YELnVVkNRX8stxEOCLCTtw/FISXGuAju4VgFLAB2IAoK5OhM6BNRCIBDjaEIKeO3YAU6aoZ1RSKSkx9SkxmVwO3LwJXLrEgjDOzmz67Nu32cN7eOgf1mbOMLE2PbRp4ULtQIxQyKoaz50LjBjBqj2rcByLfm3Y0GQ2LSxcCKxbZ8ueE0IIaYeSr17lM2I0eYrFEFVVIfnq1VYdjFm5ciV27NiBw4cPw9XV1d7dMRsFYwghxIKseUCqK+PmqafaVhBGk6nFao0JIOh6Dh/xTcHHRWsR+tteCMHpbgCAABxm4hNEPiXBK8njUVVYDy9RIdxltyDkZKjj3OGB7ugbUgeJmwvKSiqBpEfYQfvXX2s3Vlmp+0EsKDWVJWq4uKiDMQCbsvv6dSAwUPdwL7mczSb155/A1auAt7c6m6amRv8wMXMyk1rFsKaUFO2hSRIJy3BJStK9vEAAxMSwv+nT2Z8qO2r9emDSpLaTwkYIIcQhFVVWNgnEqLi7uKDIBvsh1vLBBx9g5cqVSE1NRWRkpL270yIUjCGEEAsyd6hMc9r0EBAzaR7I5+ezLJDLl4ErV9j01I0DCGPGaD+HXu5K3PfdQsTkG1kDBAD27MGwPXuwesgcLFY8AFfkAyIh6hqcIUQZurmdhKTWGdVVzggM9mXrzJnTNBijWQjHSpKTAX9/wNWVPT8CAQvIKBRAXR17DzWOCWi+z1xcgIoKFjcqKAC8vNhzGhfHZn7au1c7iHLmDFtGF12ZSa3mPb1WYzYtodBwIKaxpCS2vGZ21Nq1FIwhhBBiVVJPT2TfuqXzvuq6OvTw9bVxjyzj/fffx7vvvotff/0V0dHR9u5Oi1EwhhBCLMhaU0+36SEgZtA8kBcI2PNaVMRur6lhQYTGAQRA/Rx6uikx88B0DM43UAPk22/1Dicadnoj/s/vdyz3fhEKgTvEkgb4ejbAw1WJu0XVUPq7I2pUT7ZwTAwQEQGcPatuICDAws9IU0VFbPt792YPd/Mme25Uz0mXLk2DHar3WdeuQJ8+6iBXeTkL4IwbB7z8MvDhh02DKNeusQBOp05Ny6LoGtrUKt7TeXks6qQybZpWIKZOocDpS2dx6mIW7pSXwd/bB0PDojCkTwRcVKlISUna2VF79rB2adprQgghVhLfsycyCgtRKZfDU+PHvlIuh5LjEN+zp037c+XKFVRVVaGoqAgymQyZmZkAgH79+sFFTwZPY6tWrcK///1vfPXVVwgJCUHRvZ1qDw8PeOjb+XZwFIwhhBALstbU09bKuGmtNA/kS0tZ8CUwkCUf3L3LAg4NDeoAwtKlwOLF6udw2rGFGJyrDsQoIURm6DQM/kyjBsgPPzR9YIGAn844uvQM/uW9Hds6JAICwMlJBEWdEvUKJVzdXRAxood6nZ49tYMxCQnWfHoAqN+LQUEsuNK1q/q+y5dZ1lBjjd9nmutdvsye299+0x1EaWgAMjNZZlKfPurb9c2AlZzMnprSUtZPzQLDAoH6PW3XoUybN2tPXz13Ln+xTqHAFyk/4vSlHIiEQkjErriSfx2XbuTh4vWreHL8ZHVARjM7yoazaRFCCGmf4nr0QHpBAQ7m5kJUVQV3FxdU19VByXEY27074szdITXT888/jyNHjvDXBw4cCADIzc1FyL2TEwKBAFu3bsXTTz+ts41Nmzahrq4OU6dO1br9jTfewPLly63RbaujYAwhhFiQtaaetlbGjSMw52BbM2iQnc0O3lUzNLq6sud+xAh1AEEsVj+HfW+mYMw59dCkOpEEqwbuQE6PJOyM0XiQqqqmDzxqFHD6NF8DZETuYeT1HoY/hF0hl9XB08MNYqkz/KVecBZr/MRevKjdzuzZZjxTpjHnvWjM+0xfYLB3b1aL5vJlNpqnuRmw8vNZexUV6iFUqgLDXl5Ahw4OMJRp3z715chI9qa65/Slszh9KQeBvv5wE6uLB9bUypB+KQdhXXsiJnwQu7FxdpSNZtMihBDSPomdnLB05EhEBwUh+epVFFVWooevL+J79kRcjx42n9b68OHDBu/Pzc2Fk5MTYmJi9C6Tl5dn2U45AArGEEKIBVlr6mlrZdzYm7kH25pBg5oadXFagF2uqWGXNQNVqudw7DV1DZAGgRCfjNuBQ4okREgbPYiHR9NCu2lpwNKlaFixEkKO1QCJyT2EqoeX8YsU5N2BX0eN4im7d2sHY1xdIZd2Q+pe62Z7mPNeNOZ9pi9gIxIBffuypywiovkZsOrqgFu3WNBF8/VTKNjtffo4wFAmzWFqI0dqzZp06mIWREKhViAGANxcJRAKBTh1MUsdjBEI2PqqYIwNZtMihBDSvomdnJAYGmrzWZM2btyILVu24MSJE4iIiDBqnX379uGFF15A7969W/TYCQkJOHr0aIvasCUKxhBCiAVZa+ppa2Xc2Ju5B9uaQQM3N5ZRoaJQqAvJagaq4uOBwhN5CL+urgGS3mMajvknQZnP7tesATJdBHRq/MANDcCHH6I6fBA8z6YDALpePg2Psluo8ukIWbUcnJJT14vZvZvVC9FsolOQzbI9oqKAP/5Qx4LCwoBnn2WjpHQ9hjHvs+Rk/QGb2lpg0CDgo48s03+7D8/TzI5q1Ik75WWQNArEqEjEEtwpL9O+sfEbnBBCCGljtm/fDtm97OGumuOjmzFXYxhwS2zZssWsx7cXCsYQQoiFmTolszGslXFjb+YebGsGDbp0YUNbFAp2H8ex2xoHquLiAO+Vm7Wmr/7Cay7y89lzOPo+7Rog5/v3QaebhU0fXCaDx7kz/FUBOHQ/9hN+7f8QOCWH8OEhiOQKgMeWAzt3qmfRuefa4Eesmu0hl7NRMCtXsqmpxWJWH8bVFSgrA7Ky9JesMfZ9ZonAoIsL0LEjG6YkFLJhZvX17Onq2JHdb/fheZrZUY2Grfl7++BK/nWdq8nkMnTuEKh9o+b6NphNixBCCLG1zroK0rWjxzcVBWMIIaQVsFbGjb2Ze7CtGTQQCFgmjGoGx44dWUmXmhrtAIJYDIwoV9cA+cs7EsKRI7D4/nvtXdauAfLnhPEYm3wEgnsFXGulHeFaxB5E0CjAEnXpEDw8XCD1d0GHT3Mg0CzWq0kgwJcesyG6bZ1sD9Wwr2+/ZbMgubuz4Mb16ywg07On4YCPMe8zSwUGO3dmo3V69Gg605NMpi4wbNfheQEBQOG9gFxaGov03RuqNDQsCpdu5KGmVgY3Vwm/Sk2tDA0NHIaGRanb4Ti2vma7hBBCCGnXKBhDCCGthDUybuzN3Fo4jYMGHTqoZ/BxcWEH8roCVcLb6lod3R4fiY/W6q8BUh7QAVcHhKNXBgusuNwqZk++5lTH97jVViHi2HfNb/DEibhQ081q2R6qYV8KBRu+pRqupVCwgrkBAc0HfJp7n1kqMKjKbvL11Z7pqbKSBWZUGTZ2HZ43YYL6DZqdDRw/zorxAhjSJwIXr19F+qUcCIUCSMQSyOQsEBPdJxxD+miMkz92zGazadl19ilCCCGEGM3kYEx+fj6WLFmC/fv3o6amBr169cLWrVsRHR1tjf4RQghpw1pSC8es4JSJNUDSHxjLB2OEHMfSQd58k6WG/PyzwYfiAAiEQu1hSvPnQ/qz9bI9VMO+6uubFjUWClkGSkiIcQGf5g7qWxoYNDbDxq7D82bNAlatUk9vvWEDH4xxcXbGk+MnI6xrT5y6mIU75WXo3CEQQ8OiMKRPhHpaawDYuFF9WSCw2mxadp99ihBCCCFGMykYc/fuXcTExGDMmDHYv38/AgICcPnyZfj6+lqrf4QQQtowXQfklZWsBoyHB7B1KwsGWOzMvok1QPIi+uGP+FgMTj7MbpDJWDBm2jRg/HggJQUAoIQQtSJ31Io8IBO6QSEQo1vtRe3hTPPmAXFxiJdbL9tDNeyrcVFjgNVkqakxLuBji4N6YzNs7Do8LySERZz27GHXd+4Epk8HkpIAsIBMTPgg9axJuuzezdZTmTgR6NbNKt21++xThBBCCDGaScGYVatWITg4GFu3buVv6969u8U7RQghpH1ofECen6+e9VcsZkEBiwYBzKgB8tMjScCtWxicdYHd0NAAfP21VrNVYn9k9JyKnkXHEFyqI+3l4YeBNWsAWLcYs2rYl2ZRY2dnoHNdLiaXbkZc3X50uFkC79+rgG892PMxYQLLAAkJ4dux1UG9MRk2dh+eN3++OhjT0MCCMTt28AEZg3bvZss3yo6yFrvPPkUIIYQQowlNWfinn35CdHQ0Hn74YQQGBmLgwIH45JNPDK4jl8tRUVGh9UcIIYSoqA62P/oIeOYZVvMlKopNwxwUBISGsuDCwYMsSNAiEyaoL6tqgNwzpE8EhvQJR0lZKW4UF+B2+V3cKC5AcUUZst5+A8o5c/Q26y0vQez5TboDMfPmseCNSMRv79KlwOLFQEQEy2KJiGDXWxpsio9nQR0vL1Y3Z3BpCtbmPojkaz0xr2oVwuqy0aGuEM6yShaUys5mKTA9egAPPshn+hhzUG8uuZyV3VmwgCUYLVjArsvl5rdpVePHs9dQRSYDpkwBHntMHdDTpCrW+9hjwEMPsfm+Ve5lR1mL3WefIoQQQojRBBzXeC9CP1dXNpZ+0aJFePjhh3H69GksWLAA//3vfzFjxgyd6yxfvhxvvvlmk9vLy8vhpaosSAghhIAdmGdnswBMY5cvs6DFRx/pXteowqV5eSzwoPrpe/RR4Kuv+DbqFAqcvnSWrwHi7+2jXQMkNRVYu7bZejENEOB0x4lICZuPZYdbdvBtSkFW1fCiwweUeOnqQjxUsN70B5w3D9OL1qC6VoSgoKZ3FxSwAJLmyBtTtqXx8KeqKhZAGjfOgWuaKJUsw2XXrqb3RUayOjKqjTl2THdRoIcf1grKWUNLPj+EEEIcR21tLXJzc9G9e3f+GLw1iI2NxZEjRwAAGRkZGDBgQLPrHD58GGPGjAEATJo0CT/++KMVe2g5hl6jiooKeHt7NxvzMCkY4+LigujoaBzXOJM4f/58nD59GidOnNC5jlwuh1zjdFdFRQWCg4MpGEMIIaSJadNYXRNTggByObB/PzvIv3qVHcwHBQESCYu5NDnIf/BB9bAToRD44Qfjhpyo7N7NMiPu/XzKBa5ocHJGrbMnqiQByAlOwG99Z+H3opAWH/yaE7yQ1yhRGj8dnY7pCRyMHKluKC1NZ+Bgv8dUzPLagf6RInTurB0/aMlB/d69rB6uruFP+fksO6gl03pbdRYhpRJYuBBYb16AC2vWWDUQA6if3y5dmtYjaunzSwghxHZaczAmNDQUb731Fjp06AAnJyfMnz8fx44dQ05ODvr27YvMzEytderq6lBaWooFCxZALpe3q2CMSTVjOnXqhH79+mnd1rdvX3z3nf7pPMViMcQOeZqLEEKIozF1qmtVsOLbb9lMQR4erDzHjRtsmE7PnjpqnFiiBojGeYyl/X/GrYg4q0y9bE7tFvGShdqBGKGQRbnmzgVGjOBr5ABg23H8OJRrN0Dw7U4IOVbbJKFqF5bVLcSyP9ahpAQYMIDFEVq6XdaqaWKTWYREImDdOmDSJJYdtWdP0yFKmgQCVqx3/nwbTPvEWLMeESGEEGIMNzc3SKVSrdueffZZnDx5Etk6dvJcXFwglUohkUi0kjjaA5OCMTExMbh06ZLWbX/++Se6WWlWAEIIIW2TviyGMWNMm2lIFaxQKFjWjGodhYJlAgQE6DjIV9UAUWU4qGqATJsGzJnDhpw0DlgcO8amJ965U6sYq/LFefDpGIczjQ5+FQqga1eWsfO//5mfpWFy8CIlRTtzQyIxHGgSCICYGPxSFoO0nOlYfmk6xEoZAOCFuvVIrpuE1CtxqKhgGUtyOQtwKRTssqkBDmvVNLHpLEJxcewvLw/YvJm9yCUl6jdtQACQkNCkKLItGDtDFSGEkLZPDjlSkYpkJKMIRZBCinjEIw5xEMN2Pwhr164FAJSUlOgMxrRnJgVjXn75ZYwYMQLvvfceHnnkEZw6dQoff/wxPv74Y2v1jxBCSBtjKIvhvvuA2FjgyBHjzuyrghX19WzWIBVnZxZnuHmTHQ83Ochfs4bdqKoBopoh6euvTaoBIlq3BkvrtQ9+u3YFysqA69fZ0KqWZGmYHLy4t8MDgGXEGJnxk5wMZAcmYUuXHXgxZQqfIfMP57VIlsfhxg3A3x/o3p31/T//AbKyTM84MTXzyVh2mUUoJARYsYL93aMVZFxihaFSRrD77FOEEELsTg45VmIlDuAARBDBAx7IRjYykIF0pGMplto0IEN0MykYM2TIEPzwww949dVX8dZbb6F79+5Ys2YNHn/8cWv1jxBCSBtjKIvh6FHg5ZeBYcOMO7OvCla4uQF37mjf5+zMsjl0HuSLRCxQoasGSHa2/oiBikYNELFI++BXVbeja9eWZ2mYFLzIy2MPrjJtmlYgxlBx4qIiZxY0CkpCeo9pGHqVTd097PYe9PDOw93AEDzwQMu2BWCvoymZT8ZyhFmEbDJUihBCCDFCKlJxAAcQjGB4QP0DWYlKHMRBRCMaiaCovb2ZNLU1AEycOBFnz55FbW0tLly4gJkzZ1qjXw5JWSdH4cm9yNiwACfemYaMDQtQeHIvlHXta2wbIYS0RHNZDPdmVzaKVMqSV7p0YaOJFAr1fQoF4ORk4CBfVQMkJYUV9dUcmqSLQKCe/nndOr3FWC05LbRqqurKSu3bdQYvNm/WrmEydy5/sU6hwBcpP+KLlN24kn8dtYo6XMm/ji9SduOLlB8R2FGBqiq27OH+6im8heAwo3YzGteeM3eK67g4Vng4P58VAi4oYP/n57esponqfaBLdTW739o0g4yhoVaYlp0QQggxUjKS+YwYTZ7whAgiJMPEH3BiFSZlxrRnyjo5Lu5cieKMAxAIRXCSeKA8NxtlVzNQ+mc6wqYthciFTnkRQkhzDGUxuLqyIUpnzxqXXaDKtPDyYgV78/PZ6ByAZcX4+RlxkG/hGiCWzNIwqSDrvn3qy5GRrFjvPacvncXpSzkI9PWHm1hd8b+mVob0SznoM7AnsjIHobISuNoxBjf9ItCl9CzrQ/1+JHdRD8Uxd1sA69U0sVbGjSnsMlSKEEII0aEIRU0CMSrucEcRbJAySppFwRgjFWekojjjANwCguEkUb+xFTWVKM44CL/QaHQaRntZlqask6M4IxVF6cmovVsEV18ppNHxCBwYR8EvQlopQ0Nvbt4E7t4FoqKMG+KjGazw8GBDg/Lz2ZCRsDB24J+QYORBvo4aIOawZF0Uk4IXJSXqyyNHamX6nLqYBZFQqBWIAQA3VwmEQgHqJVkYN27QvaCPANmeI/lgTABK0Llzy7dFc5uMqWliylTVuoJWlZXA7dtsCNt77wGvvcYCI1FR7D1h6ToujjBUihBCCAEAKaTIhu6dkWpUowfMLNJGLIqCMUYqSk/mM2I0Obt5olYoQlF6MgVjLIyykQhpmwxlMdy5wwrFGptdoCtY8be/2Xf2GEtnaRhdkFVznI7GEyiXA7//5ovLZyPwm8wXnt416B15E73C8+Hk3ACJWIKy6jK8rvE81heo1/dEJWpqbJtxYmr9lcbvg/x8FptqaACKi9X9FYlYwC8ry/J1XKxVnLgtMCWwRgghpOXiEY8MZKASlfCE+ge8EpVQQol42CBl9J4rV66gqqoKRUVFkMlkyMzMBAD069cPLi4uNuuHI6JgjJFq7xY1CcSoOEncUXuXTnlZGmUjEdI2GRp64+PDam7ooi+7wNFmjzFpaJEleXioi8vcC8yoghrpKX9DrUIGL08hiq77oSCvA25e64DYpCzI5DJ07hCo9TwqZ1UBl+41JfDEkSMsSNalC1Bba/1tMWeqas3+q4ooBwYCly4Bvr6soLNCwV4LkcjyU147wlApR0SFjQkhxPbiEId0pOMgDkIEEdzhjmpUQwklxmIs4mCtnZGmnn/+eRw5coS/PnDgQABAbm4uQowY/t2WUTDGSK6+UpTn6j7lVS+rhru0HZ/yshLKRiKkbTI09Gb/fuDcOd3rtZbsAmvVRWlWQABQWMgup6UBHIfUVAEOHAB6dHdGfulNSMRiePk6QS5zwtVznRHQpQA+3W5gaFgU34y8lkPZj2noeO/6HUEAqquB8nL2N2ECMHGidbelpfVXVOvfvs1Ga6mmPXd2ZjWF7txhT5cl67jYLQjn4MwJrBFCCGkZMcRYiqWIRjSSkYwiFKEHeiAe8YhDnE2ntT58+LDNHqu1oWCMkaTR8Si7mgFFTSWc3dSnvBQ1leAalJBGt9NTXlZE2UiEtF2Gslmys1t/doFdsnUmTFCPk8nOBo4fR3JyDEQioFuQD+oafFFSdhcCgRxOIifU1Tvh3JlALIgPx5A+EXwzf6w9hhHFZ/nrB1wS4O0NyGRAWRlQUWH94SUtrb+iWv/6dXUgRsXJiRV3tnQdF7sF4RwcFTYmhBD7EEOMxHv/bGnjxo3YsmULTpw4gYiIiGaX/+2335CQkAC5XI7EdvaDQMEYIwUOjEPpn+kozjiIWqEIThJ31MuqwTUoEThwLAIHttNTXlZE2UiEtD+UXdACs2axsTmq6a03bECRMgYeHoBIKELvLiHw8fBCcVkp5HVy+HiLEODWB0+Oj4aLRsRC/OlG/nIDBPhROhtuzqwQbmkpcPgwy3aw5v5SS+uvqNZ3c2NZMJpU059nZLD7FyywXMDE0YbMOQIqbEwIIe3H9u3bIZPJAABdu3Y1ap3o6Gi+joyHvh+MNoqCMUYSuYgRNm0p/EKj+Zl93KU9aGYfK6JsJELaH8ouaIGQEBYF2LOHXd+5E3ETpuOrqiQALCAj9QuA1C8AAHD5MhDeB3DRzBzZvRsDL+/krx72mIgC5278dVdXliFj7WyGltZfUa3v58eGKikULEOmro61IRSy4UtBQVS/xNqosDEhhLQfnXVNv9gMiUSCXr16WaE3jo+CMSYQuYjRaVgi1SmxEcpGIqR9ouyCFpg/Xx2MaWjAsynTca3nDvzVKan5oMbu3cD06RByDfxNX/rO12peobBNNkNLM6RU66emsgDS3btsZqX6erYNXl5sGvTISNY+1S+xHipsTAghhOhGwRjisCgbybqUdXIUZ6Tyz62rr5SeW0Jau/HjgXnzgPXrAQAiuQzvXpiCgyXT8FOXOcgNikF1jUAd1BjHAWnHgI0bgZ07WcTini2u83DCXR31UCjYCChPT5btYE0tzZDSXH/fPnUdouJilhETGQl07swCMQDVL7EmGnpICCGE6CbgONXgctuoqKiAt7c3ysvL4eXlZcuHJoTco6yT4+LOlSjOOMDPWFUvq7qXdTQOYdOWUkCGkNZKqQSmTwd27Wpy11/ekbjRNQadensgpEMVRL8f0zmG5PeuDyPh7tdwkYjg6qoOxHTowKYfX7q0dQYtpk1jxXuDgpreV1DAasjs3Nn0PtIycjnLUlIF1qRSGnpICCGG1NbWIjc3F927d4erq6u9u0N0MPQaGRvzoMwYQtqh4oxUFGccgFtAsNaMVYqaShRnHIRfaDQNxyOktRKJgB07gIUL+QwZlW7l2eh2Nhs4q3tVAMC8eej31hpMmCfC4cOsRoy7O8se8fZmB9CtNZuB6pfYBw09JIQQQpqiYAwh7VBRejKfEaPJ2c0TtUIRitKTKRhDSGsmEgHr1gGTJgFr17I6MoYSYQUCYOJEVnMmLg5eAD77rG1kM2hmZZw5A1y7xkZj9e6tHqZE9UsIIYQQYmsUjCGkHaq9W9QkEKPiJHFH7V2aa5SQNkGVxpKXB2zeDOzfD5SUqKupBgQACQlsWuyQEK1V20I2g1wOrFwJHDjAAi9eXoCLC5CZCVy/DvTtC9TWWrh+SW6u9nNdVcXmdg4IACZM0PlcE0IIIaT9oWAMadfaaxFbV18pynN15+rXy6rhLrVurn57fd4JsZuQEGDFCvbXjqSmskBMcDCLhwBAp07AlStsau/KSmDQIAtl/KSksCykvXubZiFVVgKFhWyM1KpVLMI1fz4ruEwIIYS0EbGxsThy5AgAICMjAwMGDGh2nW3btuGZZ54BACxYsABr1qyxYg8di9DeHSDEXlRFbC/uXIXy3Gwo5TUoz83GxZ2rcHHnSijr5PbuotVIo+PBNSihqKnUul1RUwmuQQlptPVy9dvz804Isa3kZJYR46GRCCgSAX36sL9Bg4CPPmKxEbMDMUol8NJLLKLT3HAwgN2/Zw9b/qWXIK9RYu9eYMECVmB4wQIWz5HTVyEhhJBWaObMmSgsLER4eDiysrLw6KOPIjg4GBKJBH379sVHH32ktfy0adNQWFiI4cOH26nH9kOZMaTdas9FbAMHxqH0z3QUZxxErVAEJ4k76mXV92ZTGovAgdarztmen3dCiJpVZthpNERoRUkVZCIP1GQHIKfrBPzWdxbueIYAYEWJi1o6ItPAzFWIjARGjmSRoKoqIC2tafXg9etx5WARVvvtgMBJBA8PtkhGBpsOeunS1lWfhxBCCHFzc4NUKgUA/PHHHwgMDMSXX36J4OBgHD9+HC+88AJEIhHmzZsHAJBIJJBIJHBxcbFnt+2CgjGk3WrPRWxFLmKETVsKv9BofqiQu7SHTYYKtefnnRDCNK7l0uIghJ4hQm4A3Oor4S8vRHBpNu7PXIWcrok4GD4fl2XjWz570sKF2oEYoZClt8ydC4wYwQojq3AccPw4sGEDmz+7oQEA0P/8LrwauhDfx67jF62sBA4eBKKjW3fNHkIIIfZjlZMeJnr22We1rvfo0QMnTpzA999/zwdj2jMKxpB2q70XsRW5iNFpWKLNAx/t/XknhOiu5QKYEYRQKnVO4a2PEBwir+9B5PU96Bo0D+KFawCIzNgCsACQ5uNKJGxK8aQk3csLBEBMDPubPp39yWQAgPv/XI/zvSbhYheWlejpyYJUyckUjCGEEGI6i5/0sKDy8nL4+fnZ58EdDAVjSLtl7yK27RU974SQ5GQWmygtZTuHNTWAmxvQpQu73agghBFDhOolHsg4WgXf82noVa39vfNQwXooPy8CEneo57g2xdq16stCoeFATGNJScCOHWiYPAVCjmXIjM1ZywdjgJYPozLljKgjnD0lhBBiORY76WFhx48fx86dO7F3717bP7gDomAMabek0fEou5oBRU0lnN08+dttUcS2NbH0zEf0vBNC8vPZQX9FBQu+ODsDd+4At2+z6ac7dDCiESOGCDkBiJQDqSkc9nx+HNGnNmDEjZ18AET0/S7Wzrp1uh5Bv7w8NiRKZdo0rUBMnUKB05fO4tTFLNwpL4O/tw+GhkVhSJ8IuDg7s4WSkpDRexoG//k1ACDi+h74V+bxNW2qq2H2MCpTzog68tlTQggh5tFVwB6wb+ZlTk4OJk2ahDfeeAPx8bS/D1AwhrRTyjo5lAoFGhR1uHUmBSInV7h26ASRixsAzupFbFsL1cxHxRkH+Dov5bnZKLuagdI/0xE2banJARl7Fg8mhDiGujrg1i0WdFHFJgBAoWC39+nTTAMmDBESi4HEiQJgYgyAGOAn7SFCWL8emDSJpYEYa/Nm7VmT5s5Vb5tCgS9SfsTpSzkQCYWQiF1xJf86Lt3Iw8XrV/Hk+Ml8QEb+3BxgCQvGCMFh1IXN+HHoClRWssQfc/dVTTkj6qhnTwkhhJivqKhpIEbFIgXsTXT+/HmMGzcOL7zwApYtW2bbB3dgNLU1aXdUAYbL3/8HQmcxPKQ9wAk4VBflQqmoRejfXzYryNAWac585NklFBL/IPZ/hy4ozjiI4oxUk9tUFQ8Om7YY3t0jIBK7wbt7BMKmLabnnRBiHAsMEYJQYxdIsz1j7NunvhwZyTJx7jl96SxOX8pBoK8/ggM7oYO3L4IDOyHQxw/pl3Jw+tJZftnB82NwKzCCv97n2n5cvswyh8aONS0+pMmYM6LmLEsIIaR1kErZRH66VFez+23l3LlzGDNmDGbMmIF3333Xdg/cClBmDGl3dE2t7NNrABQ1lZDdzofQyZkCAvdYa+YjexUPJoQ4BhcXoGNHNkxJKAScnID6ejbBUMeO7H69mhkipFDKcbYwFVkFySiTFcFHIkVUUDwiOsXBWXTvuz0pia33NctKwZ49rN2QEOM2oKREfXnkSK1Zk05dzIJIKISb2FVrFTdXCYRCAU5dzEJM+CAAgNhVgA6TRwIfswCNj6IEEREtr9diyhlRRzt7SgghpOXi49lw08pKFlxXaWnmpalycnIwduxY3H///Vi0aBGK7v2oiEQiBAQE2KYTDowyY0i7YyjAILgXYCAMzXxECLGGzp3ZWbkBAwA/PxaM8fNj1zt1YvfrZWCIkEIpx485K7E7ZxWu381GXX0Nrt/Nxu6cVfgxZyUUSrl6vTlz1Jc5jrVrLM3TjY0iGXfKyyBpFIhRkYgluFNepnWbyFu9vp9TJT76iA0LakmdFlPOiDrS2VNCCCGWERcHjBvHMi0vXwYKCmCRzEtT7dq1CyUlJfjyyy/RqVMn/m/IkCG26YCDo2AMaXcowGA8V18p6mW699LrZdVw9aW9dEKI6eLjWfzD15eN8ImLY//7+rLbDZ6xMzBE6GxhKnIKD8DfLRidvELh6xaETl6h8HPrgpzCgzhbqDG0MiYGiFAPEcL+/cZvgGYAplEkw9/bBzJ5rc7VZHIZ/L19tG/UXF/z9GULxMezM5+Vldq36zojasqybU5uLqtQHBUFBAWx6tFBQez6q6+ybClCCGmFxGL29bZ4Mfupc3Nj/y9ebNvC7MuXLwfHcU3+8uj7FQANU3Iolp61huhGUysbj2Y+IoRYQ1wcm6nn4EFWl8TdnWVhKJVGnLEzMEQoqyAZQoEIrs7aAXeJM8t8zCpIxqAu94ZHCgRs/bNnm7bbnIAAoLCQXU5LYxGke/0YGhaFSzfyUFMrg5urhF+lplaGhgYOQ8Oi1O1wHFtfs10LaO75HTWKjfRKTmZnSevq2AxKHTqweJDRr0VrlZLC6gTt3audZQWwKFRhIXtCVq1iaUrz5wPjx9unr4QQYiaxmH2F2boI+8aNG7FlyxacOHECEZonPfTYvn07Zs2aBZlMhgEDBli/gw6EgjEOwhqz1hDdKMBgPJr5iBBiDaozdtHRLCBQVMSmcTaqVoqBIUJlsiK4OunOfJSI3FEma5T52Hj6IGNNmMAO1gH2//HjLNMGwJA+Ebh4/SrSL+VAKBRAIpZAJmeBmOg+4RjSR2PH9NgxdTAIABISjO+DAYae31GjgA8/1J7KWixmT2ttLQvIGP1amEAuZzM3qfojlVr+MZqlVLKpzDVn4jKE41g9oT17gHnzgDVr2JNGCCFEp+3bt0N2b7bCrl27GrVOUlIShg0bBgDw8fGxVtccEgVjHISuorIACxAUZxyEX2g0FTu1EAowGE8185FfaDSfseUu7UEZW4SQFjP7jJ2Hhzpw0miIkI9Eiut3dWc+ypTVCPRslPlo7hChWbNY1oQqq2LDBj4Y4+LsjCfHT0ZY1544dTELd8rL0LlDIIaGRWFInwh+WmsAwMaN6ssCATB7tvF9aIa+53fv3qZTWQcFsac0Px945hnLn0WVy4GVK7UDQNnZrLhkerqNUuaVSjal+a5dTe+LjGRZUh4e7D2RlqYOtqmsX8+iSDt2UECGEEL06Gyw6Jtunp6e8LTQMN3WhoIxDsJas9aQpijAYBqa+YgQ4lAMDBGKCopHXmkGZIpKSJzVO3YyBct8jArSyHxsyRChkBAWsdizh13fuZMd6N+b1cnF2Rkx4YP4WZN02r2bracycSLQrZvxfTCTMVNZWzoYk5raNAAEsADQwYMsg8fqafQLF2oHYoRCNqPW3Lms7pDGcDdwHMt22rCBvUYNDez2XbtYO+vWWbmzhBBC2gMKxjgIKiprWxRgIISQVsrAEKGITnG4eicdOYUHIRCKIBG5Q6ZkmY/hncYiopNG5mNLhwjNn68OxjQ0sGDMjh1a02zrtXs3W151kK9qzwbsMZW1PQJAWlJStIcmSSSGXyuBgL2nYmLY6zR9OnAv7R7r1wOTJrXRYjqEEEfDNa5rRRyGJV4bCsY4CCoqSwghhBjBwBAhZ5EYk8OXoqd/NLIKklEmK0KgZw9EBcUjolMcnEUamY8tHSI0fjyrI6I6yJfJwE2ZgoJR07ArYA6OC2Ig7STAmDHs7kMHOXjnHMOk/I0YdGUnBJqBmHnzmhzcW6vGilTadASOSnU1qxdjafYIAGlZu1Z9WSg0PmgGsOV27ACmTFEHz9aupWAMIcSqnO8Naa2pqYFEImlmaWIPNTU1ANSvlTkoGOMg2mtRWZpBihBCiEmaGSLkLBJjUJdE9axJulhqiNCaNSyScG/4i6ChAZ2PfI0F+BpJnpHI8ohB0VYPuHNVeIk7hl7VOqIgDz/M2tFgzRor8fGsncpK7TI51pzK2h4BIF5eHiuUozJtmlYgRqGU42xhKh+885FImwbvkpLYel9/za7v2cPaDQmxYscJIe2ZSCSCj48PiouLAQBubm4QaA6nJHbDcRxqampQXFwMHx8fiFpQR4yCMTZkKPDQHovK0gxShBBCzOIoQ4REIva4Ombo6V6Zje6VeiIQ9+RNnIeQr9c0KQhrzRorLZpW3Ez2CADxNm/Wnr567lz+okIpx485K5FTeIBNie7kget3s5FXmoGrd9IxOXypOiAzZ446GMNxrN0VK6zYcUJIeyeVSgGAD8gQx+Lj48O/RuYScDYeiFZRUQFvb2+Ul5fDy8vLlg9tV7oCD/WyqnvBlnEIm7YUANpVlkjhyb24uHOVzhmkZLfzETZtcbM1XSizhhBC2qmXXtIOgKgKss6Zw4YtNS7IeuwYG5qkWZAVYEOELFCQdcOUVAz4bS2G39kDIfTvWjVAgLNdJ+IL3/lQ3BeHjz5qusyCBSyTJDS06X2XLwMREdC5nrFsPc20KtNHXwDIqrMpRUWp03IiI4HMTP69cebmXuzOWQV/t2C4Oqv3Q2SKSpTW5GNS+GJ1hhXHsbZUdYaiolhbhBBiZUqlEgqFwt7dIBqcnZ0NZsQYG/OgzBgbMXbq6vZUVLalM0hRZo1uFKAihLQLjYYIoaGBZS58/TU76I6JUU9VfOyY7nEyOoYImeuoSxx+GR6HCM88jLqwGeE39sO5rATuDZWoFnqiVBSAv/ol4Le+s3DHMwQFBYCbnlop1q6xYva04i14vKVLWUaPKgDUo4d1A0C8khL15ZEjtYJ0WQXJLCPGWfvJljh7QiAUIasgWR2MEQjY+qpgjGa7hBBiRSKRqEVDYYjjomCMjdDU1U21dAYpYwNc7Ym+ANXdy2dw/eBXcHb3gbziNgVoCCGtn4EhQsjO1l+kRGXePBaIsdAOrqouyp2gEPw4dAV+HLoCx48Dd+6w+/39gRFD1csbqpVi1xorVmLrABCvqkp9uVGEq0xWBFcn3fshEpE7ymSN9kMajxkjhBBCWoCCMTZCU1c31dIZpNpzgEtf9otSoWgSoGpQKlF68SQKfs+GW8ducO/YjTKICCFtg0jEhhhNmsRmuNmzR7s+SGMCASvWO3++xYuj6KqL0qULcOuW+rJKc7VS7Fpjpa3x8FAHTjQDMwB8JFJcv6t7P0SmrEagZ6P9EM31NV8YQgghxAwUjLERmrq6qZbOINVeA1yGhmc1KOogdBZrPS+1t/NRV3EbIhdXgOMg8Q8C4HgZRLoCTIEDxoDjgJKsQzTkihCiX1wc+8vLY4VV9+9nw0hU0YyAACAhgU2LbaUZcHQVxpXJADc3dr9MBhQUGFcs1x5FdtusgACgsJBdTktjwbp7Q5WiguKRV5oBmaISEmf1fohMwfZDooI09kM4jq2v2S4hhBDSAhSMsZH2OnW1IS2dQao1BLisUb/F0PCsW2dS4NFou2tu3wQggNDFFUp5DX+7I2UQ6QowlV3NRMHxHwEAbh1D4OzuRRk9hBDDQkLYDDd2mOVGX12UhQvZ/YcOGV8rxa41VtqaCRPUY76ys4Hjx1k9IQARneJw9U46cgoPQiAUQSJyh0zJ9kPCO41FRCeN/ZBjx9T1YgAW3COEEEJagIIxNtIep65ujshFjLBpS+EXGs0HK9ylPYwOVjh6gMtaBYYNDc8SObmi5k4+fHoNUPdDXgOhkzMa6hUQuWlX87ZHBpGuAJWLpy9unUmFe8du/HZx9fWol8sgAOAkdnPYjB5CCFExVBdl8mTLtdVemTUL1KxZwKpV6uFrGzbwwRhnkRiTw5eip380sgqSUSYrQqBnD0QFxSOiU5x6WmuAzcSlIhAAs2dbZyMJIYS0GxSMsZGWBh7aKpGL2OwZpBw9wGWtAsOGhme5duiE6qJcrQCVSOwG+d1bgEgEtw5dtJa3dQaRvgBV5c0/IXRygVdwGL9sze2bEDo5AZwANbdvwq1jVwCOldFDCCHmsPXU0m2BanrsAwfY0C0PD5bokpHBhnTpnR47JIRFtPbsYdd37gSmTweSkgCwgMygLonqWZN02b2bracycSLQrZvFto0QQkj7RMEYG2pJ4IE05egBLmsVGDY0PEvk4gb3Tj0hu53PB6gEAgGUCjncfLtC0qEzv6w1M4hMKTAMAFUFV6GoqYDsdj4fdFHKayAQOUNw77KmtlwTiBDStpkdVGjnUlPZcxYc3HRSo4MH2ZAuvVlE8+ergzENDSwYs2MHH5AxaPdutnxDg3Z7hBBCSAtRMIa0ao4c4LJWgWFDw7MADn2nL4XQyZkPhHSIGA2v7ndRc+s6qgqvmZRBZE7NG1MLDAOAs7s36mUVWhkwIrEblJV3wHECuDQaXuUoNYHaAmvUNSKE6NeioEI7lpysDl5p8vRktycnG3jexo9nU5mrpkCXyYApU4Bp04A5c9iwpXtFfQGwIU3HjrGhSTt3agdi5s2jCsqEEEIsgoIxhFiJtQoMNzc8SzokgQ9SqTQ+4DYmg8jcmjemFhgGALcOXVB7pwCK6nLt2+7eguDeZc12HKEmEND6AxnWqmtECNGvRUGFdqyoqOlzpuLuzu43aM0attCuXex6QwPw9dfsLzKSBWQ8PNj01ceOqYv+anr4YdZOG0XD5wghxLYoGEOIlVirwLA5w7PMySAyt+aNqQWGAcC1Q2c43fRCg6IOlTcvswCTXAYnMZsTtr5OBtmdAoeqCdQWAhnWqmtECNGvxUGFdkoq1R0fAdi03z2aO78hErGhSQsXqjNkVLKz9TeuMm8eC8SIREb2uHWh4XOEEGJ7FIwhxEqsWWDYFsOzzK15Y2qBYYDVhJF06IKOA8ehrvIuH2AK/ftCcBxQknXI4WoCtYVAhrXqGhFC9GtxUKGdio9ngYHKSpZFpFJZCSiV7P5miUTAunXApEnA2rWsjoxqliVdBAJWrHf+/DY/NImGzxFCiO1RMIYQK3H0AsPNMbfmjakFhlUBqo6D4vRmk3QZOdns7bCWthDIsFZdI0KIfhYJKrRDcXEsQ+PgQRZTcXdnwSulEhg71sRYSVwc+8vLAzZvBvbvB0pK1C9KQACQkMCmxQ4JsdIWORYaPkcIIbZHwRhCrMiRCww3x9yaN6YWGG5NASpNbSGQYa26RoQQ/SwaVGhHxGI2VCY6Wl3TpEePFtY0CQkBVqxgf+0cDZ8jhBDbo2AMIUQnc2vemFNguDVqC4EMa9U1IoToZ5WgQjshFrPsDFWGhqrg7OLFVHC2pWj4HCGE2B4FYwghOplb86a1D88ylsUDGbm52unyVVXsNGVAADBhglXS5a1Z14gQol/joAIxHRWctSwaPkcIIbYn4DhDlcssr6KiAt7e3igvL4eXl5ctH5oQYqLWPnWzNalnUzp4r3aMdiDD6NmUUlJYIcm9e5svJJmYyApJjh9v0e2g15gQ0trs3QusWqW74Gx+PsuWoWCX8VTBLX3D5yi4RQghxjM25kHBGEKITdj9oN8KmSct2ialUvcUq8YwdYpVO2TdEEKINS1YwDJhQkOb3nf5MhARAXz0ke371Zqphn2phs/RsC9CCDEPBWMIIQ5DnUVygJ+BqF5WdS+LZJzxWSRmPG7Zf1fD6ZNP4XUuDwJD33ZWyjzR3TElMH06sGtX0/siI4GRI1mwpKoKSEvTPZB/6lRgxw7DARk7Z90QYhMUbGyXpk0DamqAoKCm9xUUAG5uwM6dtu+Xo6OACyGEWB8FYwghDqPw5F5c3LkKbgHBWjMQKWoqIbudj7Bpiy1e0Fcpq0FZ0hj4p54yfWVTM09M9dJL2hkxQiE7spg7FxgxggVHVDgOOH4c2LCBHVk0NGj3c926pu3bMuuGEHuhYGO7RpkxptNVZ6eqiv1kjBtHQ5EIIcRSjI15CG3YJ0JIO1WUnsxnxGhydvOEQChCUXqyZR9QqUTdxHidgZhqqQ9uRnVC1RN/B+bMYZkoja1fzzJXlErL9gtgB5CaQRKJBPjhB+Crr4CYGO1ADMCux8Sw+3/4gS2v2c/UVO3lVVk3ugIxkZFsmxcvts+2E2IJSiULaMbHA3v2GA7EAOz+PXvY8i+9RO/tNiI+nr2UlZXat1PBWf1SU1kgJjiYBbGCgtj/XbqwWjGNf04IIYRYF82mRAixutq7RU0CMSpOEnfU3i2y7AMuXAjJwWP8VU4gwN2BPVAc0x/V3TuiMv8KvLt3xsC5H+nPPNm1i2WX6Mo8aYm1a9WXhUI21Cgpybh1k5LY8lOmqPu5di3LL1dZuFB7+JM5WTfW2nZCWqqlQ/zWr2djM5ob4kccXlwcmzVJX8HZOJoMronkZHVGjCZPT3Z7cjIVPSaEEFuiYUqEOAi7F7i1oowNC1Cemw3PLk3zyStvXoZ39wgWGLGElBStU6INziJcfWIMijo6oeb2TSjlNeA4Dm4dOmP0qlTt5/ann9iBnkym3V4ze/VGv3Z5eUCPHuoz+Y8+yjJe7pHX1yP12jUkX72KospKSD09Ed+zJ+J69IDYSSN2/thjwNdfs8sCAXDtGquJ0WjbIZEYH+wxc9sJsSlrD/EjrQrVPzEN1dkhhBDboGFKhLQiqgK3F3euQnluNpTyGpTnZuPizlW4uHMllHVye3exRaTR8eAalFDUaOeTK2oqwTUoIY22YD65RuYJJwCuPjEGea53UXYtE3UVd8Ap66GoKkVV4bWmz60q80Qo1NmeLia9dps3aw+pmDuXvyivr8fKtDSsSktD9q1bqKmvR/atW1iVloaVaWmQ19er15szR32Z41i7jftqbtaNCdtOiE1Ze4gfaXXEYpbJ8dFHLIjw0UfsOgVidJNKWdKYLtXV7H5CCCG2Q8OUCHEAxRmpKM44oLPAbXHGQfiFRlu8wK0+1sjQCRwYh9I/01GccRC1QhGcJO6ol1Xfm01pLAIHWij7Ii+PFfO8pzg0APk+CtTm58PJ1QMQ/X979x4X5X3nf/81M8AwwICIIKJ4gERtIp5CkkZNNzFIf4k5tpuf2XT7a3Pv3TUbrbHZx2btdh/t7j7aO7rdu7WJSevu795ut7uJ7tqmplr7w0NzUNMmJkQ0icYDROUkHoABhgFm5v7jYk6AMMgwB3g/ffBwTtc137nmmoHrc32+n08Szo42utzQYU6lueJlGlImcOcXniIlOdlY6MEHjdOHvsyTXbuM9V6jG8uw3rvf/Caw4Pz5xpn8XvvOnmX/2bMUZmWRkZLiv93hcnGguprSggJW+ipVLl1qVKc8dsy4vmeP0TEm6LWzalVIICasrJthvnaRqBrtKX4iY1x5OVRWGnV17PbA7aqzIyISGyPKjNm4cSMmk4n169dHaDgi4XN3uaj/w24qX3yat7+7isoXn6b+D7sTMosk6gVur2G0MnQsKVbmrtrA3FXPkjWrBIs1jaxZJcxd9Wxk21r3yTxpf/QBHHWncHc5cXd30XqlkQ5HM+3JaXSkT8TZ1cUHe1/m53t/RVd3d2A918o8GcCw3rumpsDlZctCzuRXnDmDxWwOCcQA2K1WLCYTFWfOBG40mYzlg9c72lk3IrHUJ9DaL9iIi93s5mmeZhWreJqn2c1uXPTJfFu1KnDdF2wUGSfKyoyuSbW1Rsepujrj/9pa1dkREYmF686Meffdd9m6dSvzB+rGITLKfEGDi5X7/QfCLdVVNJ+p5MonRyJ7gB8FUS9wew3Xm6Hj7nJxefd/4P3xj8moOk2KswdLjwdT1gRMublw331YVq9myu0rB83wGXFWTp/Mkxl/+yI1G1bgvHQBV3c3HaYkPDmT8WbkkGo2Y0m3k+nt4sjJ48ydXszSeYuNZQfKPHnuuQGfcljvXXB+eJ8Kig0OR79ADICpp5vZjR8y+YP/4u33/s2/TSbbbIFousOBd/dufKGd9slZfFK5nakXTzDp8Alcv/41axoaeLarC5fNhiMzk+O33MKe5cvDy7q5xmsXiZrBgo242MhG9rMfCxYyyKCKKiqp5AhH2MAGrPR+fzz1VCDzyxds1P4t44TVarSvLi0N1NkpKlKdHRGRWLmuYExbWxtf+tKX+Jd/+Re++93vRnpMIkOKp2k9kZCanU9LddWA9/U420nPL4rKOAbL8ujszfLou13dv9lNx7eeIfeDT+hTsQE6nFBfb3Q02bTJmMy/bh2sWNHvuSMSYOuTeWKxppJ9w2LMliQudnlpbW8j3Zbmf4i5uwsmTsVsNvHOiaOBYIwv88QXkAhebx/Deu8yMgJ9WPtM3M+326lqbPRfN/V0k1PzHjPf20HK1TrMyVbae4rovNJA85lKrEedTOx9rNdup+d8Nb0TrejMtFL4w5fJOfsCJiC4bJjN6WTClSsU1tTw+V/+kj/Mn09lXR1861vDfu0iUTPYFD/2sZ/9FFJIBoHvLgcODnCAUkpZSe/3loKNMs756uyoa5KISOxd1zSlNWvWsHLlSsqUzygxEi/TeiIlqgVuBzFQlofX7aaj8RztjdXUHno1MB3M2QFf/zqWlfdjHygQ05fXa0wLKC83OqK43SF3BwfY7NNmY8spMP6fNI2LlQe4WBlGsc0BMk/827a9FUtQK1tTdycmrwfn1JuwWW1cbmkOXVdw5ooj9H0JNqz3Ljc3cPngwZAz/eXFxbg9HhwuF6aebma+9wuKf/8fpF25gNuSRKrFTEfTeXo620nNziel6mP/sj3pVkwdgS5IOacuMuns5SHfE7PXyx1Hj/LU3/5t6HsS5msXiZrBpvhR4c+ICWbHjgULFQT9Phhoip+IiIhIDAw7M2bbtm28//77vPvuu2E93uVy4XIF5my3trYO9ylF+omXaT2RErUCt0Pom+Xhdbu5euYDnJdr8bg6SbZnG9kqp94n7evPkvXuR/3W0VEwkbZZ+XisybgvX2LiJRe22kuhD9qyxciP3rYNegMk15OV088AmSe+bXuh4mXo6sKSbsfc3Ymnq5PLtomcb6zj0qWrzC4swt3lCmTfBAV2uswe3vvuqgGnTQ3rvbvvPiNLCIz/Dx82ztQDZUVFHKmr40B1NSl1VaTXvEdPtwuTJYWUtEwy0tLwurtxXq4lrzWJjEvt/tVenjmR7NoLJHWFBrh8Ps3PpfKmEmwTJmDt7KT4o48o7FsrI/g9CQ5qBVd5FImVwab40dAvEOOTTjoN9Pl9oGCjiIiIxIFhBWPOnz/P008/zd69e0lNTQ1rmeeee46///u/v67BiVxLvEzriRRfgduJs0v99VLS84tG3MVouPJLy2k+U0l3h4PkNDvOS7U4L9diTkoxprtMm0Pa5OlM3f47st495V/Oa4Kri4q5uPRm2mdN9p+1dl6u41yKjTuWPw0vvmj0HvV1MtmxA9avhxdeACIUYMvNNaZFgT/zxLdtG1Im8EHFfzCx4zLejlbcXg8mr5m0pHrc1hxyzrzNie0bjelQySl433rLn1nSlYK/mHHfaVPDeu9Wrzama/kyYl580R+MsSYlsWHZMkoLCjj1v3+F2Wwh1WwizZZGeloaJhOYkpIxYSLv9ycC6zSZqJ2fT87B0M+D12Ti6qIizpdMZu+sObxWuIxpmZnYrVbwein++GOW/vrXfPbwYSy+8ezYAU8/bWy74G0qEmuDTfEjnyoG/n3QTjtF9Pl9oGCjjCNhddITEZGYGNa38HvvvcfFixdZvHix/za3282bb77Jli1bcLlcIdMAAL75zW/yzDPP+K+3trZSWFg4wmHLeNc3aOAT7Wk9kWRJsQ5Z4Ha09c3yaG+sxuPqxASk5kwlddJU7CcvkP/7QCDGk5zEh/fNpeuuJf3W5w+MLV1q/Dz2mPHj7J1Ss2ULPPQQlJVFJsDWJ/PE/cbrXLR10HCkguRLF7B5e3B1tuPxgjcpFWuXk6mXTlMwoZ2bZ93AhTf+m6un3mNCfRvzjh/3r9Yx/0ZsOQXAwHWJwn7vZs40Jurv2mVc377d2B69XWGsSUmsnD2btzNTcVuLaG8w09V6OXhGBvkN3eSfbQnccP/9ZHVaSHYGdYMCTi7M5tPFNkwmB8uy02gvKuJAdTWWtjbSU1I4NXkyu//sz3jy3nt57Hvfw+R7T158MXTM99479HYXGW0DBFp9H4xyyqmkEgcO7AR+Hzhw4MZNOUG/D7xeBRtl3PB10tt/9qy/W19VYyOV9fUcqatjw7JlCsiIiMTQsGrG3HPPPRw7dowPPvjA/1NaWsqXvvQlPvjgg36BGACr1UpmZmbIj8hI5S0qI2/RPTgv1eK4cArn5Trj/0u1UZ3WM9b0bUHtdbtJtmczoWghE4oXYrZYyHszEKTwmkw0f++bXCrKDq9myoMPGtNgzEFfPc8/D0Sobs7q1SG1JBzfXOdv093VdJ78y9WkdrvosSTTbU3Dm5ZJVloGUzsaaTtbhfPSBa6eep+8t08GXiPQdPts//UR1yVaty5w2eMxgjGvvRbykNTsfHqcbaRNmobX66G7rZnOK41MOFbD4oOXMHlD1zftg9p+T2O/0onraiPtjZ9C+1X+6rZbeXbpUkomTyYtKYmSyZN5dulSvvDXf42p73viYzLBk09e3+sUiaT77gtc9k3x61VGGfdwD7XUcopT1FHHKU5RSy3LWU4ZQb8PDh0KFO8FBRtlTNt39iz7z56lMCuL2Tk5FNjtzM7JYVpmJgeqq9l39myshygiMq4NKxxut9uZN29eyG3p6enk5OT0u11kNMXLtJ6xqG+WR0t1FWmTpwOQcsVB1sfn/I+9uvhGsp7+FnnbLVysPIATEx1OM61Nl+np6saUu5jM1hlMcvWQbO39unnwQVi1KtBedtcuqKmJTN2cPpknWX84TsGNn6Nt8WwufXiYZFsame2t2F1XsaYm9U6LSqLzagvOy7WkZGQzpaGH3I8u+lfZWGClxdNKGhP8t42oLtGKFbB2rZEVBEaW0COPGNvkqadg6VJ/5pfFloEJExmfNlF8zkthvSekKK979Z9jueEGrIeP9HuagnMdXJiWwtW502g+/QHvb/wTJqbY+Kq/7s3ywOek73vic//9MGPG9b1OkUgabIofVjawgVJKqaCCBhoooohyyimjLNDWGuCllwKXEzzY2NXdzbsnj/HOiaNcbmkmJ2sCt81dwK1zSkhJTh56BTLmVZw548+ICWa3WrG0tVFx5gwrZ8++xtIiIjLalJsoCSsepvWMdX2ng006/HFIVobnz/9vf2Asc9Yifv/vP6O59hxuSx5d9oU0d8zm1P/3Dmc/vsTDq5cFAjJPPRU48Pd6YetWLM89F5kA27p1/mCMyQs3bjvE2ZRUGrs6MFmSMSel4O7ppqeznaQ0o0aNp6cLvF4mX3Cy6PfNmIK6HFXfmE7HpQv+gBREoC7R5s1GsdwdO3o3pMfYHq+8AvPnM/mznyX5gpuOs/u5ua6FrFZPv1U03jgJz/9ayZStW0PG62PyQukfWjlmn0iN9TLdHS1MKFrIheo/cPLAAdpSPoNlzp+y4I/mUrKkiOSSkv7BmOAsHpFYGmqKH1ZW9v67pp07jeV8EjjY2NXdzc/3/op3Tx7HYjZjs6ZyuvYcJ8/XcOLcGb684mEFZIQGh6NfIMYnPSWFBhWwFhGJqREHY15//fUIDENE4lHfbJXMY2f893UWTib7K18HjMBYU/dcjreuJOfGLFLTU0gF8gFnu4vjh6spLilg8d29Z+CWLoWSksB0gT174LnnIhNg65N5Yu52U/yve0kvyuTsjCSu5qbhdnUYARgAr5eJTV0Un3Mzrb4zJNhUfUMal/JTsbg6/LdFpC6RxWJM11q/PpAh41NVhbmqikmDLH5x2c18fGsuWZX7mfKb1/23t+fZab+xkLxDRpcrS4+HBf/nLJMKbZyb66HWBlcupmIBUlxVNFUdoPKtt5nU/A6Flb8LbYU9aRKUabqfxJGgQKt/it+2bf6AzKB27jQe7wkKbCZwsPHdk8d49+Rx8rJzSLMGGip0dDo5cvI4c6cXs3Te4kHWIONBvt1OVWPjgPe1d3VRlJ0d5RGJiEgwZcaIyDX1nQ6W7Hzbf1/KfQ9jDjoIOPrWGcxmM6npoWfhbOlWTJY2jr51JhCMMZlg2bJAMKapKbID37yZq4d+S3blaePpvF6mnGlhyhlonZDCpSwPPRY3KR+fI/tSF1ktPf1WcWX+LE7fkY274QwmzDgv1w1r2pS7y8XFyn3+LJ9+bbEtFqOT1EMPwfPP4921a8AMFx+vCVpums7FO+fhmDONpMt1xlSpoG3XPMVOwxeWkNzmJPtode9rh2nnnEw75+Sy/XWa8rJxJyeR7Gpl0tWfMrG5deAnvMbZVJGYCWOKX0i1a6/XqBHz0kuhndzAWE8CBxvfOXEUi9kcEogBSEu1YTabeOfEUQVjhPLiYirr63G4XEYnvV4Olwu310t5cXEMRyciIgrGiMigQrJVvvlToBMAc1ZWyOOamxz9AjE+trQUmpv6pENnBLWxjnSqtMVC55b/lwtrnmTaB/Uhd2U2d5HZ7LvWPwgDRubJ+UfuIKOjFU+Pi/QpRVistn7Tpq4VcMmZdyenfvlDLlbux2S2kGTLGLAtNgBlZbg/dydntvw11m2/IKfmKsmdPVhcPXRbvHSlWuhY9BkuLb2ZromBTjH+qVJBbXp7ks10d7Zz9n/dQ+Grb5N38MOQ15XjaCfH0R7eNlT6usSjIab4sXSp8d3S1mYEYqoG6ND26KPGehLY5ZZmbH0CMT42q43LLc3RHZDEpbKiIo7U1YV00mvv6sLt9bJ81izKikYw3VZEREZMwRgRCV9GRuAgPSgIADAh1865EwOnQzs7usgr7JMOHby83U6k5ZV+nhPPrObSr37BtA/qyDl7OXQaTh9eE1yeNZHaxYU45hbSU3cGr8fNtD96NDR40svd5eLE9o0DBlxsB16mo/Ec6ZOn9xYJNgzUFhvgYuU+ai+8T9ojn+NS0OMd505y9UwlE4onkDnxGi3cM/7b/57Ys6Zw9lItnWYLn9w1i7OWRmacbCa/oWfw146JszMXU1xSAL/+tXHjKLwnIiM2xBS/AYMvwdauNQIxA3R/TCQ5WRM4XXtuwPucLidTJ+VFeUQSj6xJSWxYtozSggIqzpyhweGgKDub8uJiyoqK1NZaRCTG9C0sIuHLzYX63kyTgweNaQC90wIW3FlMzUf1ONtd2NIDgQtnuwuv28uCO4PSob1eY/ng9UaYb4rVxdmlnD9SwbmzZyg41kBOzRWS2l2YHA4j4JCbC/fei+eJr9J99TSeIxVYwigefLFyH43v7cVsScLVcomOi+ewWNNIsU+k6YPfYc2aFBKIAaMtdmdvW+zgYEzDkQp/QCdY+tQbaG/6lLa60733D9BhKug9yb7Yydz/+W0a3ttL59UGeu68g6obzlKfNRPr//mYyecbSevuIam7h54kE870HM7NXsYbuZ8la/FNFP9iQ+DJR+E9ERmua3YM+sEPSOmd4seuXYEuSwMxmYxivevWJfTUpGC3zV3AyfM1dHQ6SUu1+W/v6HTi8Xi5be6CGI5O4ok1KYmVs2era5KISBxSMEZEwnfffYEzz1VVcPiwv71syZIizhyr4/jhakyWNmxpKTg7uvC6vcxbMouSJUHp0IcOBerFANx776gMdzgFgS3AFOaEXTy4/g+/wXmpFnd3JyaTCZMlGbfjMq7WS/S0t2KyJNPReI6OSxdwuzqwWNNImzQNi9XWry1259WGfoEYALPFQub0m+jpaCVrVsnAHaaC3hPTsWNMcWczZc2PgODsnQO03T6J30+3Y03uwWyBHvsCOgu+iNPp4WqDg3uzm6PynoiEK6yOQWVlUFMDW7cahcCbmoxMsaBAK6tXG92YxpBb55Rw4twZjpw8jtlswma14XQZgZjSOfO4dU7J8FZYXR26DdvajEzI3FzjO2YMbkMREZFYM3m9g51OirzW1laysrJoaWkhMzMzmk8tIiNVUwNFRYGz0H/yJ/Dyy/67u109HDt8lqNvnaG5ycGEXDsL7iw2Widbg2K/jz8eaKNsMhkHAgnWYvbAN+6k9dOPSLFnY04KtJD19HTTcfECmMBqzwZMmJOS8fR0A17MKalMuW0li78emGJR+eLTtFRXYZ/W/8yl48IpsmaVsKg3wNLPEO+Jr65N3R9+y9kjx7l0NYl26zzcExbidHr9wbIvHtqK+b+2GQsl6HsyHGHvqxIzh46/z8/37hywY1BT8xX+dMVD47pI7TWzhuaUhN/Weu9eI7to9+6hs4tWrjSyi1asiMwLEJHrpwCqSFwLN+ahYIyIDM8DDwTay5rN8Oqr4bWW9dm5E77whUBnkwcegNdei/w4R1nF6oV0NNaQmjOl333t9dV4erpJyy3EEjSFoKezg+62FmZ/cT03/6+/899e/4fdnNi+CdukaSSnhdaGcV6qZe6qZwfP2AnzPblWAGL+5eMkrXo0ou9J8HNdaWylp9sNQFKSmYn5WWEHPkYjaNLt6uFXWw9y/PBZfwewzvYuPB4P85YU8fDqZQrIxIEf7vgpp2vPUZjX/zN2/mIdN0ydwTf++IkYjGwMcLsHrrsTjjFSd0ckISmAKpIQwo156K9NERmedesCB/4eDzz2mFFQM5yAzM6dxuODW8yuWxfW0w7ZKjrKktPsmMwWPD3d/TJjvF4vZksy7h4XnrYuTEnJeHu68eIlxZ6Nqzm0lXfeojKufHKEi5UH6LxWbZjBhPmeJFuTWHz37ECLcTDeky9/6brek2sJDnZgMtHc5KDlktHFKWtSOq1XnNR8VM+ZY3WDBj4GCpqcO9EY1rKDOXb4LMcPnyUnPyukA5iz3cXxw9UUlxSEbiOJCXUMGiVut/Ed4etIFWz+fFi2LNCR6uDB/kWRt2wxOlpt2zYqARlXTw/7zp71F5zNt9tVcFZkuAFUr9f4u2DXLgVQReKYfquJyPCsWGH8Yvf9QeB0wiOPwKpV8NRTRg0ZU1DvHq/XqBHz0kuwfXvoQf/atWEV1Bysc1G/VtFRklW0gI6mC7g723FjxpyUhKenB/BgtiSRkjWJrOk3BWrGpGWSNmkamE24Wi+FrMtXbHji7FJ/sGmoAsIhYvCeDCY42NHW4sTZ1kVmdjpevDjbuphcmEx6VuqQgY/RCpocfeuMP7gTzJZuxWRp4+hbZ8ZUMCZRp2SpY9AoWb8+NBBjNhvfFWvWwJIl/b8rDh+GF18M/a7YscNYzwsvRHRorp4eNh48yP6zZ7GYzWSkpFDV2EhlfT1H6urYsGyZAjIy/sR5AFVErp9+o4nI8G3ebPxi9/1h4PEYNWBeeYXuG2bSPMVOl7eLFFMKE+odJJ+u6b+ORx811hOGi5X7uFi5n7TcwrBaRUfDlNvupfnMUcxmCy7HZdyuDlLSMrHac3DUfUJKehZpk6eTNnl6yHKOC6fIKLix3/qGU2zYJyRbKLeBuYtuILvytHFn0HvC/PlGQMb3x9qhQwO3AB7GezKY4GDHpycbMZnAkmwGoKuzm8sNLUwqyAKTg72vHLlmkGC0gibNTY5+6/SvOy2F5ibH8F/0KBlpIGW0souiQR2DRsHevaFn1m22wTMbTSbju2PpUuNg8LHHjGAvGOt56KGIdqjad/Ys+8+epTAri4yUwGfU4XJxoLqa0oICdQWS8SeOA6giMjLx+ReYiMQ3i8X4A36AlNnk0zXknh5i+WGmzF6r9fO1WkVHQ/DUImtWbsjUotwFd9PReI7uDke/GjBej5v80vIRP/9A2UJH75rKDd52pn1QH/rgqqqBgy/BIpjGHBzscDm7sCQF1mlJsuBy9uBxe2hucnDh1EU627oGDBKMVtBkQq6dcycaB7zP2dFFXmH2da030iIRSEnkKVkR7xgkRq0JH7M5/CmmYDxu2zYj6853gPf88xENxlScOePPiAlmt1qxtLVRceaMgjEyvsR5AFVERkbBGJExICb1VCwW4wzLQw/B88/j3bUL0yDF5LwmE6b77zfqkQzzD4FrtX4GSLKl92sVHQ2DTS3KmXcnp375w+uvAROGAbOFcuDCowVcKjrO3Is2Ug+9O3SBv+t8TwYTHOyw2lJoa+4AjLo67h43towUrjQadWSyJmUwZVaOf9ngIMFoBU0W3FlMzUf1ONtd2NIDnw9nuwuv28uCO4uva72RFolASiJPyUpJTubLKx5m7vRif8egqZPyht8xSAw1NUbRT59Vq0IO6MLqzvTgg8Zyvm54u3YZ641Q15YGh6NfIMYnPSWFBkf8ZK2JREWcB1BFZGQUjBFJcDGvp1JWBmVlfPQPT5Cx+wC5F9pJandi6ezGnZpMT7qNpmnptK1czs3f/ul1PUVqdj4t1QNndvQ420nPLxrJK7hug00tGlENmDAMli3UPGsSHy8vYdHPt4e2vnQ4wG43Wl/ee++otb4MDnbk5GfiuNrh76bk9UJOfhaN568CMLlPQCU4SDBaQZOSJUWcOVbH8cPVmCxt2NJScHZ0+dt8lywJb38a7VoskQikJNKUrIGkJCezdN7icd3COmK2bg0Nzq5Z47/Y1d3Nz/f+indPHsdiNmOzpnK69hwnz9dw4twZvrzi4UBA5qmnAsEYr9dY73PPRWSI+XY7VY0DB2Dbu7ooyo6PrDWRqEiAAKqIjIyCMSIJLl7qqbSaO7haPp9LOQX97nNersNi7rjudeeXltN8pnJUp/1E2vXUgBmOsLKFZs40DpIidKAUruBgByawZaSEdFPq7OymrdlJ1qR0Jk6291veFySIVNCkr2RrEg+vXkZxSYE/kJJXmB13tVgiEUhJlClZEgW/+U3g8vz5Rq2JXu+ePMa7J4+Tl51DWlAHq45OJ0dOHmfu9OJAQGzpUigpgWPHjOt79kTsO6a8uJjK+nocLhd2ayAA63C5cHu9lBfHR9aaSFQkQABVREZGwRiRBBcv9VRGM3tlxK2fx6DRzhYaSdZH32DHlYlp9BQZmTFJSWYm5meRbrfS0erCbDH3W94XJIhE0GSwMfZr8z0M0ajFEolASqJMyZIoaGoKXF62LKTo5zsnjmIxm0MCMQBpqTbMZhPvnDgaCMaYTMbyvmBM8HpHqKyoiCN1dRyorsbS1kZ6SgrtXV24vV6Wz5pFWVFssiBFYiIBAqgiMjIKxogkuHippzKa2Ssjbv0cJCb1dUZooDGn2LPx9PSMyvYeLOvjVOUFZs2bwoe/rxk0SDNUsOP9333Czq0HhwwSjDRoMlpGoxZL3wBYl6uHlivtZOakkZ4Z6CY0nEDKaGUXSQJqawtczgj9nXG5pRlbn0CMj81q43JLc+iNwctHsI6LNSmJDcuWUVpQQMWZMzQ4HBRlZ1NeXExZUZHaWsv4kgABVBEZGf1WE0lw8VJPZbSzVyIx7Sfm9XWuw7XG7OnpxpyUTEfTecyW5Ihu72tlfbS3dvLGq0f5Q8XHZE1MD2tqzrUybOaWTufMsaK4CBJcTxZQ8BQij9vDlUYHlxtacTm78HrB0+Oh29UTdvbOQAGwjjYXne1dnPqglknTJpCeYR32NhrN7CJJMBkZgcBJcGAGyMmawOnacwMu5nQ5mTopL/TG4OXt/acajoQ1KYmVs2cndNckV08P+86e9QeU8u12BZRk+BIggCoiI6PfCCIJLl7qqUQye2W0xEt9neEYbMwdF88zefE9dDmuRnR7Xyvrw9nmosPRSbI16ZodkIKzQbpPnOLM2u9QcOQtbuxqI6Wnk66kVNp/kMGnt36O+3/47ZgHCa639otvCpHH7aHm4wauNDowmYzW3R2OTnq6jPWGWztmoABYdp6dCZMyuHDqIul2KynWpOvaRvGaXSRRlpsL9b1t7w8eNGpH9J5pv23uAk6er6Gj00laaiALq6PTaCV+29wFgfV4vcbywesVP1dPDxsPHmT/2bP+Nt1VjY1U1tdzpK6ODcuWKSAj4UmQAKqIXD/9NhBJcPFUT2W0i9aOVLzU1xmOwcZsTkqmy3GVRWt+FNHnvFbh2MsNrZgtZtw9RovM4IyQlkttvPJP+wGY33GWpJ+8SNLu3czt01rb2t2J3dlM/r6X8c5/hcUrVzL/yTVUpS3k6FtneOOXH/g7KUUjKDOc2i/BGTTVH9bReK6ZlqvtOK50YEuzYkk209PtJiU1mfyZOcOqHXOtAFh6Zir2nHTypmXzxLfvjeyLl/HlvvugqjeLsqoKDh82akkAt84p4cS5Mxw5eRyz2YTNasPpMgIxpXPmceucksB6Dh0KTHcAozOb+O07e5b9Z89SmJUV0qbb4XJxoLqa0oKChM76kShSAFVkzFMwRiTBJUJGSryIl/o6wzHUmJ2Xa6n/w+6I1sC5VuFYl7MLAKstqV9GiMlkormxhe4//wuSTh8AwNRvDaFMXi/s2kXSrl1037Cc87d8Cas9NeJdiQYTbu2Xvhk0tgwrSclm6qsvYzaZSEq24Or04PXCxMl2psyYSMP5q2HXjkn0FtTxLKz2rxFYJu6tXg2bNgW6s7z4oj8Yk5KczJdXPMzc6cX+1zx1Ut7Ar/mllwKXTSZ48skovoj4V3HmjD8jJpjdasXS1kbFmTMKxkh4FEAVGfMUjBEZA+I9IyVexEt9neEYbMzd7Q7c3U2c2L4p7Bo44dRHuVYHHkuSBY/bQ05+FlcaHVxpdJBqS8GSbMbZ2sFfnPsvFjRW9hvn5byZNEy7ie6UVJK7Osm/8BE5F2tCHnP76QPkJnWy/+G/wptnj2hXosGEGwQZcBpRrp13953A2d5FT7ebzIlp5ORnMXGyHbPFPKwgilpQj45htX8dwTIJYeZMWLkSdu0yrm/fDo89Bg8+CBgBmaXzFgeKfg5k505jOZ/774cZM0ZvzAmoweHoF4jxSU9JoWEc1utQDZ3rpACqyJinb0ARGTfipb7OcAw25q7WSwDYCxaEVQMn3Poo1+rAk5RkJs1uxZaRwoXTl4waKb1Tc/5nzWshgRiPyUz1vDt5Y/JSem69PaQLBF4vliN/4K6GQ8w6/hZmrzHtqejEYTr2/m8Of371iLoSDUe4QZCBMmjMFjMTcjNw97SSOTGdOYsLr7n8UOK6BXV1NWzdarRDbWoyag9kZBip7vfdZxwwzJwZu/ENYljtX0ewTMJYty4QjPF4jGDMtm3+gMygdu40Hu/xhK5PQuTb7VQ1Dvyd0t7VRVH2+AqsqobOCCiAKjLmmWM9ABGRaMlbVEbeontwXqrFceEUzst1xv+XaqNeXydcg405yZZBSmbOgPVkTL01cIIFZ3dMmZVDdp6dKbNymJifyfHD1Rw7fNb/2BlzJ5OWaeVKfSu1Zy5hS0/hi1//Iz73yEKam9ppudSGx+2lw9FJUcOHLG885F+225LCr+/7S1p+9M98mlOMs6MrZBzOji7OTbyBlh/9M7++7y/ptgQCHPPe283U6g+A6EzPWXBnMR6PB2e7K3SMfYIg18qgycnPwmw20eHoHHT5oZQsKWLekiKuNDioq7nM1YvG/1caHLFrQb13LzzwABQXG2dnq6qM+gUOh/F/VRVs3AhFRcbj9u6N/hiHEE7710gskzBWrIC1awPXnU545BF4/PFATYpgvloTjz8OX/gCdAbt52vXQll0vjNdPT3s/uQTnt6zh1X/9V88vWcPuz/5BFdPT1SefzjKi4txezw4XKHfKQ6XC7fXS3lxDAOr12kk2z+4hs7snBwK7HZm5+QwLTOTA9XV7Dt7dsh1jGvBAU9fAPW118JbVgFUkbinULSIjBuJVF/H3eXiYuU+Go5U4LxUS3JGFnjBnJxCVu+Yq3/7Uzw9rgGXH6gGTjj1UUqWFIVkz0wtnkRnexcdrZ3UnrnEg19bwuxF03jln/Zz9aKDjAlp3H/hXf+6PCYzO5Y+Sedtd3PfNTJsglszH33rbna0ulh1cIs/Q2bekV3UzloYlek518oC6ts++loZNBMn27FlWOnp8VBXc/m6W3THVQtqtxvWr4ctW8J7fG/tH3btMg7QN28Gi2U0Rxi2Ybd/vc5lEsrmzdDQADt2GNc9HnjlFeNn/nxjGkRGhpEBdehQoGZFsEcfNdYzDNc7VSVqmRURygArKyriSF0dB6qrsbS1kZ6SQntXF26vl+WzZlFWFH/TYQcz0u2vGjoj5Aug+r6PfQHUVavgqaeMz2ufzFMOHTKmJm3fHhqIiWIAVUTCo2CMiIwriVBfx93l4sT2jVys3O+vBdPjbOvtkHWPvxZMw5GKYdXACac+ynC6C+3cepAZaZ3c8NtApsCpG+/gxJSFPHRnMcnWJFZ+7Va8U2p59/VjNF7uIiMnhVvvKmHl/beSbE1iwZ3F7PxoAaduvIM5nxjZNdNPvUtS/Xm8btuoT88JNwhyrWlErs5uJuZnUbJ0Fu0tnSMKosRFC2q32ziT6jtQDzZ/PixbFjhQP3iw/4H6li3Ggf62bXERkBl2+9frXCahWCzG+zNQwK2qauDgS7BhBNx8AZg9p07xu5oamp1OctLSmJaZycUwD+hHvTvR3r3w/POwe3f/zKDgLLBNm4wpI+vWGQfI12BNSmLDsmWUFhT4A09F2dkJWyNlpNt/NGrojLsaNDEKoIrI6BuD31giIontYuU+LlbuJy23cNBaMOHWwPEV7a07e5krFx1MmJRBTn6mv9AsBOqbhNtdyJdRkv+T72MicADz1rTP+TNCut0udn/yT3xo30/GgxYmJWXQ2dPGh97DmD45zcPzNvjXc7DpTn8wxoSXG3+/G/uTfxWV6TnhBEF846w6dBanoxNnexeuji4syRZuvn0m9/9fd5BmHzibIqGsXx8aiDGbjTOwa9bAkiX9z8AePmwUlQw+A7tjh7GeF16I5sgHNKz2ryNYJuFYLMb789BDRiBi167+gYhgJpNRa2LdurDPrAdnVDR3dtLQ1kaS2UxTRwcpFgsL8/Pp6O4e8oB+1DIrRjEDzJqUxMrZs8dExsdIt3+ka+iMyxo0UQygikh0jbFvKxERQ/A0n0i1fI6WhiMV/oyYYMlpdjp7a8FMuX0leYvKuPLJES5WHqDTbCHJlk6Ps703g8aogRNctNfr8eJ1e2i53IbjagetV9qZPmcyF89fpa7mMq2X2rjS6MBsNtNyuZ1JBVkhAZvgGi6+jJLuHwW6MlyZPIvF3/oKJUuNrJj3L/wfjtfvJyetkNTkwGtxdjs4Xn+A4pxSFk9bycOrl3Fs3hSufLiNiY01ANzSdZbkUW5rPRzJ1iRWPvFZ6qsv8+Hvr+Du8WBNS8GWlkJTbTO7f/r7UW/DPer27g39Q99mG7y4q8lknJFdutTIpnnsMSOFHoz1PPRQzFPih9X+dQTLJKyyMuOnpiZ0io7DAXa7MUXn3nuvq0hzcEbF1c5OrBYLWampdLvd1Doc5KanMz0ra8gD+lHpTjTGMsBG00i3f3lxMZX19ThcLuzWwO/e662hM+qZUvEqCgFUEYm+BP6rUURkYANN8xmq5XM86bza0C8Q4xNcCyacGjhHf/dJoGjvzBxqPrZwpdGBx+Oh8Xwzl+tb6XJ1YzKZuNrZTVdnNx6Pl55uN45mI2Az8zP5mC3mfjVckq1JJDtb/dcnfvFeJi6f479+tK4Cs8kSEogBsCUbBYaP1lWweNpKIzNl+Rz4wr3w4x8DkOZshTgLbJw4co7L9S3cfPusIadwJaTnnw9cNpvD77IDxuO2bTNqGfgyZJ5/PuYHAcNq/zqCZRLezJnw3HPGT4QEZ1R0dHWR3Bu0SLZYMHV3c6GlhelZWUMe0I9Kd6IxlgE2mka6/SNdQ2fc16AZxQCqiERffP2lKyISAeFO84lXqdn5YdeCGaoGTt9pRzM/k0/mxHQuN7Rwqb6Vzo5u8gqzab3SQWpaCqlpblqvtuN2uzGZUrjS6CBzYjrpWakDdwdqawtczggNujQ7G0hNGjioZLOk0+wMLTAcsvz1nO0eZeFO4UpINTVGzQyfVatCAjFd3d28e/KYPziRkzWhf3DiwQeN5V55xbi+a5ex3hgfEITV/jUCy0io4IyKtJQULnd0QO++kmyx0NHbiWeoA/pIZ1aMxQyw0TTS7R/pGjqjkimViEYhgCoi0adgjIiMOeFO84lX4daCCUffor1mi5lJBVlMKsii8+AZXL1tp81mE0nJFixJZlJdVjraOuloc5FiTeLcJ41MLpw4cHegjIxA4CQ4MANMsOVz7mogqOTphivHrVw+ZqX5koWJeZm87/kkUOg2eHm7nXgTTgHkhLV1a2jK+5o1/otd3d38fO+vePfkcSxmMzZrKqdrz3HyfA0nzp3hyyseDgRknnoqEIzxeo316mBhXArOqJiWmcmljg663W6SLRa63W4yU1LCOqCPeHeiMZgBNpp823/fmWpamttou5xCW3cXySle7poxizunDr39I1lDZ1QypUREYkTBGBEZc8Kd5hOvwqkFE65rtWQGcHV0YU1LweXswZJkTCEwmUzYs22YTNDd1UNyioUUazIPrV46cHeg3Fyj2wgYtRW8Xn+K/4KCcmquVOLsdmDFTs2v07nyoRWPqQdvkglvQy47tx7kzLE6Hv7zpSQfPBi63hjzFT72dVmqO3sZr9dLVk66v46OTzTacI+q3/wmcHn+fGOqRq93Tx7j3ZPHycvOIS2o5XNHp5MjJ48zd3pxIINk6VIoKYFjx4zre/YoGDNOBWdUTLXbaWpvp9bhwONy0eP1YjKZqHU4hgyoRDSzYogMMJcL9u2DigqjJEx+PpSXG7EWf1JInGaAjRZrUhLfuHUZn7xewOvnztCd6iDdm439YjGfHizih/VJbNgQtH1GWcQzpUREYkjBGBEZc4YzzScehVMLJlzXasnsbHdhSbZgS0vBi5e2ZidgZDeYTCbMSWYmTZqAfWIaM+ZMvvb0m/vuCxS3rKoyaissXQpAyZQyzlw+wvH6A7R9mMvVYxmYs5oxW3uYlDaVmROLcXX0cPxwNfOpY47vAB6MOe8xFFz42Gw2M9nTzL0f/4Yb6o+RdaADm7eb7hQbnWmZnJ2+kPb8JSy4c8nQK45XTU2By8uWhdTMeOfEUSxmc0ggBiAt1YbZbOKdE0cDwRiTyVje914Gr1fGlZCMFpOJyenpdLndXHY6yU1N5c4ZM7jvxhvDCqhELLNikAwwlws2boT9+41aqRkZxldaZSUcOUJowGGcZYC99XoS5w/M5q7C2WT4SiZNAocVDhyA0lKj63c0RDxTSkQkhhSMEZExJ5LTfGIhkp2gfC2Zjx+uxmRpw5aWgrOjC6/by823z6SpthmzxYzjqpOebjdJyRZ6ut3gBfsE28B1YoKtXg2bNgUOcF580R+MSbZYeXjeBopzSnnl129hsrjJyppATto0JqZNxWyyYEu3YLK0kfS//zmwTpMJnnxygCeLnmOHz3L88FkWumpYfPy3TD99JKSFN0BKl5P0tivkXKyh1LQTr+cN6HkaVqyI0ahHYJDaP5dbmrFZB27bbbPauNzSHHpjmLV/wqpDIwlroIyWu2fNuu5aIRExSAbYvn1GIKawsP8u3C/gME4ywFy42Mc+vpVeQd3fNXDVm8+0j8qZeqIMS48Vu90IXFVURC8YE+kaNCIisaRvLBEZcyI5zSfaIt0JyteCurikwD/dJq8wmwV3FjO3dDq7f/p7qg6eJTnFQntLJx6PB7PZjC0jBbfHy/ylRf3rxASbOdP4K3zXLuP69u1Ggcve1P9ki5XF01byhrmdSQU9ZOf2rwVT0lTFrONvBm64/36YMSPs1zgaqt74hJXvv8xtp/aH9XiT14vpN7vhN7th7VrYvDmxWt4OUvsnJ2sCp2vPDbiY0+Vk6qS80BvDqP0zrDo0krAiWSskIgbJAKuoCGTEBBsw4DAOMsBcuNjIRvazn7pJFkztGVzOquJSYSVNM46w8P9swNJjJT3dmNIVTXG3X4mIXCcFY0RkzInkNJ9oG41OUMnWJBbfPXvAqUa+QM37r5/i3IkGnG1d2DKszJg7mUV33ThwnZi+1q0LBGM8HiMY06co5rVq18z45PcsP7AFc/DUgXXrhvX6Is7tZsl/fJfZZ/7Q767LeTP5NOcG3LY0bv3sNKNOTlWfKXFbthhHJ9u2JU5AZpDaP7fNXcDJ8zV0dDpJS7X5F+nodOLxeLlt7oLAerxeY/ng9Q5gWHVoRCJlkAywhob+gRifAQMOcd79baT2sY/97KeQQq62ZHD5CmS5oNvqoHbuAXI/LWX68ZW0t4NmBomIXB8FY0RkTBqq5XO8inYnqMECNWFbscLIBvG1i3U6jW4jq1YZtRWWLg2tXZOWwuQLH3Pze7+h6OO3QgMxa9fGvjPJ+vUhgRiPyczZzyzjw1vuo3HaZ6j79Aoz5kzm1m/fawQfDh82pmdt3x7osLJjB6xfDy+8EJvXMFyD1P65dU4JJ86d4cjJ45jNJmxWG06XEYgpnTOPW+eU+KccXXj1v1kVVPvHXV7OQOGoYdWhEYmUQTLA8vP7x1V9Bgw4xHn3t5GqoAILFjLIYNo0uHQZurshGTsmj4ULN1WQ/fZK3G6jyLGIiAyfgjEiInEkYTtBbd5snDrescO47vEYBS5feQXmz2fBZ+8gramZ1iMXmX75NPnN5/uv49FHjfXEUM/u35LkCyoBXeZkdt61lsu3/hFmixlnuyu0jo7JZAQtli41MoIee8wIRoERnHrooYgEl/p2dpqQa2fBncXhZS6FY5DaPynJyXx5xcPMnV7sr+8ydVKev74L4J9y9Ge/2uVfpccEO26aySPd3f2mHA27Do1IJAySAVZebhTrdThCYysOB/0DDmFmgCWyBhrIwPhdNHUaNF2C2lowm8BtTafR3MDEWli+PPbxcxGRRKVgjIhIHEnYTlAWizEtZ/36QIaMT1UVlqoq5g62fBzUWel29dD01/9AQe91DyZemv4YH1zOJevIp0zItYMX5i2ZNXAdnQcfNLbBI48EMmSef37ERyp9Ozulpqdw7kQjNR/VG23BVy8beUBmiNo/KcnJLJ23eMBslUPH3+fdk8f5XHUdt1R+6L/9kwU38/rVRqadPNZvuWHXoRGJhEEywMrKjK5JBw4YX0Pp6UZGjNs9QMDh0KFAvRiIefe30ZBPPlUY28pigYULIXcSXLgAjentFDiLePbZPm2/h8lXILiCChpoIJ98yimnjDKsxO90YhGRSDHHegAiIhKQX1qO1+OmuyO0BkFCdIKyWIxpOXv3wgMPhBTHHJDJZDxu715juRjXVzn5yzfJ//D3/utnPrOMjrvKyZqUQVtzJyn2ZCb+8UzeLGrnT3f+kqf37GH3J5/g6ukJrOTBB43pWT67dkFNzYjG5evslJOfxZRZOWTn2ZkyK4eJ+ZkcP1zNscNnR7R+v+BaPb7aP6+9NuRi75w4yqIPP+HRn/wsZMpZ5b0r/FOO+rpt7gLcHg8dnc6Q2wesQyMSKatXh34vvfii/6LVarSvfvZZo1FSWprx/7PP9mlrDfDSS4HLcdD9bTSUU44bNw6M30UWC0yfASVLHXxmnpvv3VXOypUjC8RsZCOb2EQVVXTQQRVVbGITG9mIC1cEX42ISHxSZoyISBxJ5E5QfmVlxk9NDWzdarR9bWoK5P/n5hpnklevNjIyrmHUp+b04XnpJ5iD2ld/VLqSSQVZTCrI4tynl3i3wMmV1mosbWYyUlKoamyksr6eI3V1bFi2LNBS9amnjOlZYExn2Lp1RG1vj751xp8RE8yWbsVkaePoW2dGVvPHJ4zaPyEHsl4vHDrE8u+/QMm7H4QEYt4rv4tPSz6DreXqgFOOwqlDIxJxQ2SAWa3G3YO2ad6501jOJw66v42GMso4whEOcAALFtJJx4GDS1wigwx+yk+poOK6M1mCCwT7pkMBOHBwgAOUUspKEqvmm4jIcJm83uDKiaOvtbWVrKwsWlpayMzMjOZTi4gkBHeXi4uV+/ydoFKz8xOiE1Qkdbt6+OWLb/JOxce0OzrxuL2YLSbS7ancVv4ZvrDmcxEPyDRNmkHuZWPqzOW8mfziz37kDz683VLPm1nNfHZxMRkpgaCIw+Wi1uHg2aVLA21WvV5YsCAwjWHBAvjgg+se1w+//l90dfaQnde/SOjViw5SUpP4xgv/87rXH8LtNg5OfbV/gs2fbwRkMjKM4qWHDg1Y8fT382az/c+/zKSJk6i71MANU2fwjT9+ot/jfEV/fXVocrIm+OvQqK21jJq9e0MLwNhs/bq/XdPOncbno7MzdH1xVDQlklN/gtdVSy0XuEAbbeSQQyaZtNGGGzf3cA8b2DCs9T/N01RRxWz6B5JPcYoSSvgRPxrWeEVE4kW4MQ9lxoiIxJlE7QQVSZVvnOKNV4/S1dmNJclMUrIFd4+blsvtvPHqUWbNm8Jt5Z+J6HOmdwW6ozRMuykkC+Rji4OUZEtIIAbAbrViaWuj4syZQDDGZIJlywLBmKamEY3rWm3BAZwdXeQVZoe1nuBMoysNLXS73LRe7cDR3IEJE1NvmMTdf7yIRT/7D5Lz8wes/XPNdjO9dpfOY+s9n8Vdf46LrVfJsKVdc8rRYHVoREbNdWaA8dJLoR3TID66vwXxTf3Zz35/J6QqqqikkiMcGXbAxIqVlb3/drObTWxiAQsikskSXCC4r3TSaSBOi9WLiESQgjEiIhJ3frejkg5HJ5nZ6ViSfeXNkunpduO42sHvdlRedzDmWtOfFrgDNQq6UwKdfpztLhwWN7kTBw56pKek0OAIrfFDRtBBRt/7himkLXh64ECqX2enQQQXAQYTV5tauVzXSk+Ph+RkCympSXz8zqd8+nEDZx9ZyBf/6YckP/SQUYB4165Al6UBeEzwwZwifrFwLlWzpmKxJNHT3UXj1UvcMPWWMTflSBk9Y8AQ3d/CyQCLh+5vfY3m1J/gVtfB7NixYKGCimGtO7hAcF/ttFNEnBarFxGJIAVjREQk7tSevoTZYg4KxBiSki2YLWZqT1+6rvUO1pnoM0mp2GgHoOtyM1cvOnB2dOF1e5mxIJuOjIF/ZbZ3dVGU3SdQ0xbIsgnpk3sdSpYUceZYHccPV2OytGFLS/GP65qdnfoILgLc1uLEccUJJrCmJuPxeLDaUkhKseBsc/FOxcfMXjSNxWHU/nln1lR+XXIjtjlz6Wi+QmbzZTq7XGTbszCZTNht6WMqQNHV3e1v420xm7FZUzlde46T52s4ce4MX17x8Jh6vWPWEN3fhsoAi4fubwOJdMAkWKQzWcopp5JKHDiwE/iOdODAjZty4rhYvYhIhCgYIyIi40ZwUCK4IK6z3UWLyYat9/oNrdUcslrIK5zMgjuLWZzn5v/9w9s4XC7sQe1DHC4Xbq+X8uKg7BSvFw4eDFzPzR3RmJOtSTy8ehnFJQX+bJ68wuxhFTMOLgL86ckGurvdmEwmzElmPF0eOp1dTEjPwJJkpsPRGVoUeOZMowDxAEWIX/v/fkhndxfpZjOTJ05i8sRJ/vsutVylua11RK893rx78hjvnjxOXnYOadZA9lRHp5MjJ48zd3oxS+ctVvZMIvB1fwszAwyTySjWu25dXE1NCjaaU38inckyUIHgdtpx42Y5yykjPrexiEgkKRgjIjKWVVeHZjW0tRnp97m5cN99Q3Y0ipWpN0zi43c+pafbTVJy4OxzT7cbj9vD1BsmDbL0tQ3WmejU1Pnkt1wAYGJjNd/4k2nGdAXg5p4ePmhq5EB1NZa2NtJTUmjv6sLt9bJ81izKioIORA4dCtSLAaNz1AglW5NYfPfs6+6a1Nzk8L9ml7MHvF7MZiPryGw24+4x6mBYkozaPM1N4U2tysmawOlao+ix2+OhqfkKTb3ZMd09PcyZPouu7u4xE4B458RRLGZzSCAGIC3V5m/jfeucEmXPJJIIdX+LB6M59SfSmSxWrGxgA6WU+osNF1F03cWGRUQSkYIxIiJj0d69xtne3bv7n+11OKC+3kjF37TJ6OO6bp1R2DJO3P3Hi/j04wacbS4sSWZ/kMDd4yHNnsrdf7zoutYbHJTo63hJOcs+2oPJ1976xRf9wRhrUhIbli2jtKCAijNnaHA4KMrOpry4mLKiokBbazAKffqYTPDkk9c11kgKLgJstSWByYTH48GMGY/H48+ucfe4MZlNTMgNb2rVbXMXcPJ8DW0d7Vy41EhTyxVMmDCZoNPlovbSRX6+91djJgBxuaUZW59AjI/NauNyS3PY2TMSZwbJAEsUozn1ZzQyWYILBIuIjEcKxoiIjCVu98B1EK7F6zXS83ftiqs6CIv+6EbOHq/nnYqP6XB0+oMEmTnp3Fb+GRb90Y3Xtd7BOhM1WrI4P/tWpn/yjnHD9u1GG9velrfWpCRWzp4d6Jo0kJ07jeV87r8fZsy4rrFGUnAR4Jz8LK40OOhydePpcQOQakuhp9sIdmXmpIdVFBjg1jklnDh3hv3vv83F5ivYrFbwevF6YVpuPlNzJ4+pAERwJlBfTpeTqZPywsqeGQvbQuLPaE79USaLiEjkKRgjIjJWuN1G8MDXISTY/PlGu2Vfh5CDB/sXqdyyxegwsm1bzAMyydYkvrjmc8xeNK1f16Nw66QMZKjORK7/+0l4tjcY4/EY23PbNn9AZlA7dxqPD259u27ddY0z0oKLAHtNYJ9o43JdN67OHpKTLbicXTjbvaTZU7mt/DNhFQUGoz31l1c8zInzZ2lzdpCclERqipW8CTnkTpiI2WzmqqOlXwAiUWuq+DKBOjqdpKXa/Ld3dDrxeLzcNncBe/7wxpDZMyKjYbQDJspkERGJLAVjRETGivXrQwMxZjOsWgVr1sCSJcaUGR+vFw4fNqbibN8eCCDs2GGs54UXojnyAY20TspAhupMNHP1Mjj3fiCzyOmERx4xtuNTTxnTlvpux0OHjKlJwdsRjEyjOCn02bcI8JVsGwUzJ9F6tQNHcwcmTEy9YRJ3//EiFv3RjcMKdqUkJ2NNSmF24SwmZfVv/903AJHIHYl8mUBHTh7HbDZhs9pwuoxATOmcedw6p4R3ThwdMntGJFwuXOxjnz+4kk/+oMGV8RYwGe72ERGJJyavd7DS8ZHX2tpKVlYWLS0tZGZmRvOpRUTGrr17oTyoHoDNFn5Gx2uvGRkdTmfo+uIkkBBp3a4ejh0+e+2Mm6EyjJYuDWQYHTo0cBvcRx+FV16JeYaRz5CveYR+uOOnnK49R2HelH73nb9Yxw1TZ/CNP34CgEPH3+fne3cOWFOlqfkKf7rioahP4xlOps5Qj/W/vgkT+2XPxOr1SWJy4WIjG9nPfn/L6jbacOPmHu5hAxvGdcBB20dE4lW4MQ9lxoiIjAXPPx+4bDaHH4gB43HbthkZIL7MjuefH7PBmCEzbiwWY3sMVHunqmrg4EuwOKq9A0Yg5ldbD3L88Fl/J6lzJxqp+aieM8fqeHj1shEHZMKZvuMTbzVVhpupk5KczNJ5i685xnCyZ0TCsY997Gc/hRSGtKx24OAAByildNxkwAxE20dEEp2CMSIiia6mxuia5LNqVUggJqyz/g8+aCz3yivG9V27jPXGeSvXUWOxGFO1HnrICEzt2tW/K1Uwk8ko1rtuXdwFsY4dPsvxw2fJyc8K6STlbHdx/HA1xSUFI54KNpwARDgdiaIp0t2PfHV05k4v9n/mpk7KCzvTZkJGJlkZdlraW2l2OBKmno5EXgUV/oyPYHbsWLBQQcW4DjZo+4hIolMwRkQk0W3dGhooWLPGf3FYZ/2feioQjPF6jfUmcJvXiCgrM35qaoztsWcPNDUZ7cHtdsjNhXvvhdWr4zZwdfStM/6MmGC2dCsmSxtH3zoz4mDMcAIQ4XQkiqbRyNQZKnvGp+/n05qcwkefnqa1o43MtAxm5k/jaoLU05HIa6ChX6DBJ510GmiI8ojii7aPiCQ6BWNERBLdb34TuDx/vlGst9ewzvovXQolJXDsmHF9zx4FY3xmzjS2RQJsj771Yao/bCAjKxWP24PZYg55rC0theYmR0Se91oBiK7ubg4df98fpHH1dHHV0UJ2RiYZaen+xw00pSkaYpmp0/fz2XjlEq6ebjJsGbh6uvF4vRTmTbnuLB1JbPnkU8XA0yLbaaeI8LqejVXaPiKS6BSMERFJdE1NgcvLloV0+xnWWX+TyVjeF4wJXq8khIHqw3S5uqmrbsfj8TLzM/khARlnRxd5hf07IEWKL/Pj7OG3+KPfv8+8E2dIc7SR0umiMyWZDnsGJ+ffxOu3LeBSdlZMaqrEMlOn7+fzYvNlzJhITUnB7eyhqfky+RMnxayejsRWOeVUUokDB3bs/tsdOHDjppzyQZYe++J5+6jLk4iEQ8EYEZFE19YWuJwRmrI97LP+wcs7IpMxIdEzUH0Yd4+Hs8fruFTXQubEdCYVZAFGzRiv28uCO4tHbTyf/PRfuPVHm3ni49OY+9TcSevqZmJbB9PqL7K84g3OlS7inRUO/qH+QlTrpAyn+HCk9f18dna5sPQWfrZYLHR2ufz3xaKejsRWGWUc4QgHOIAFC+mk0047btwsZzllxFd9qmiL1+0zUJenKqqopJIjHFGXJxHxUzBGRCTRZWQEAifBgRmu46x/8PJ2O5JYBqoPM3GyndYrWTR8eoVznzRiSTLj7OjC6/Yyb8ksSpaMQiq/2w3r1zOvbzeqazB5vcx4931mvPs+U+66g20ProhanZRYdj/q+/lMTbHS2m58Bt1uN+lBwaFY1NOR2LJiZQMbKKXUn2FRRJEyLHrF6/ZRlycRCZeCMSIiiS43F+rrjcsHDxrFd3unKg3rrL/XaywfvF5JKM1Njn6Fes0WszE9yWymrcVJSmoSeYXZLLizmJIlRSNua92P2w2PPQY7dvS76+L0aZyfU0x3qhV3SytFZz9lyoX6kMcse/1tJnW4eOXP/zQqdVKG2/0okvp+PvMm5NDc7qCzy4UHL7kTcoDY1dOR2LNiZWXvP+kvHrePujyJSLgUjBERSXT33QdVvUUMq6rg8GGjGC/DPOt/6FCgXgwYXYIkoUzItXPuRGO/280WMylpySxaNI0nvj3K7+v69SGBGI/JxMd3lPL+iruonV3sDxSev1jHDQXTKTh5mqJXf80tlR/6pzLNfed9HpyQyb/e90dRqZMSbvejSOv7+bQmW7EmJfu7KZlNJs5frIt8lk51dWh3sLY2I8MuN9f4Ponj7mByfVTDJHrU5UlEwqVgjIhIolu9GjZtCrS3fvFFfzBmWGf9X3opcNlkgiefjOKLkEhYcGcxNR/V42x3YUsPHGBFoz4MAHv3QtDUJHeqla2PP0zDsjsGzsz6zEL2tLbw7tf+lE9Pn+OhF/6F5K5uAG6peJ0jc4s5n5E1umOOoYE+n0tuXkxWhp2W9laaHQ4K8/Ijl6Wzdy88/zzs3h34vvBxOIwMu6oq4/tk5UpYtw5WrBjZc0rMqYZJdIXb5WksBsjG4msSGU3DCsY899xz/PKXv+TEiRPYbDaWLFnCpk2bmDNnzmiNT0REhjJzpnHgtGuXcX37dmOayIMPAmGe9d+501jO5/77YcaM0RuzjIqSJUWcOVbH8cPVmCxt2NJSRr8+TLDnnw9cNpvx/OfLWFPdNA2SmfXOiaOcrj3H6VsWsPPrX+MLP/ixP0Pmjv1v0XHn0tEdcxR0dXfz7sljvHPiKE3NV+h29wCQbE4iN3sit81dwJqH/nT0pkT11vAhzBo+eL3G98muXbB2LWzeDL2FhSXxXG8Nk+s5sNbBeHhdnsZigGwsviaR0TasYMwbb7zBmjVruPXWW+np6eFv/uZvKC8v56OPPiI9PX20xigiIkNZty4QjPF4jGDMtm3+gMygdu40Hu/xhK5PEk6yNYmHVy+juKSAo2+dobnJMbr1YYLV1BgZFz6rVpH8hS/w5e5u5k4v5g8fvk/tuZNktTZR7O2g5MxVLuekUXrDTf66KadvWcDHd5Ry8+F3AZj30Sd02RO7dpGvvfe7J49jMsGVlmYuO1oAmJiZxdW21tEtVjxIDR/mzzfa2WdkGFOVDh4MTHn02bIFGhqM7xMFZBLS9dQwuZ4Dax2MG8Lp8jQWi/yOxdckMtqG9VfZb3/725Dr//Zv/0ZeXh7vvfcen/vc5yI6MBERGYYVK4wz2L4z304nPPIIrFoFTz1lTFvqrdUBGGe+Dx0ypiZt3x4aiFm7FsrGd8vURJZsTWLx3bNZfPfs6D7x1q2hU1/WrAGMzKzPzr6ZCZW/5mL9H7A5upj60SWyTzWQ3LGVJW5YnJbGVauVD2+6gSM33egPxpi9sGj/m/D5+6P7WiLo3ZPHePfkcfKyc3C0t9HmcjIhIxPw0t7ppCBnMplp6aNXrLhPDR/MZuN7Yc0aWLKk//fC4cPGVMfg74UdO4z1vPBCZMcmUXE9NUzCOrCuvimk9pC5rZk1GW6+mpvGR/fN5K3VU7g8s2DcHYyH0+VpLBb5HYuvSWS0jegUWUtL75mdiROv+RiXy4XL5fJfb21tHclTiojItWzebJzB9h14eTzwyivGz/z5RkDGdwb80KH+Z8ABHn3UWI/IcP3mN4HL8+cbB/q9Llbuo/tXO1j40RUmnKzD1KdcSXpnF+nAtPpGPKbDuFJTsXZ2AmCpqIB//McovIDR8c6Jo1jMZtKsqZyp/RQzJpJ6M0zMdNHUfJn8iZMwm02RL1bcp4YPNtvgGXMmk/E9sXSpkU3z2GNGYBeM9Tz0kAK1CcaFCydOKqnkIz4ijTSmMY2pTMWCJaSGSbDBDqxv29vCjOfXwu5PQwKwycAkB0yq72JG1Qd8ftMHHF85nQPr5vHaitE9GI+36VFDdXkai0V+x+JrEhlt1x2M8Xg8rF+/nqVLlzJv3rxrPu65557j7//+76/3aUREJFwWi3GgNVBtiKqqgYMvwVQbQkaiqSlwedmyQMaF203Ss3/DwjePh7Uas9frD8QAcPFiBAcZfZdbmrFZUwHo7HJhCfp8WSwWOruME1Y2q43LLc2RffI+NXzCnroIxuO2bTMy7HwZMs8/r2BMAvFNGzrLWdpow4sXJ04ucYkmmiim2F/DpK+BDqxNbg+r1r/N3Vs+DOv5zV6Yv+sc83edo3jtTP5zcw6Mwq+XWEyPGmnwJ9wiv4lkLL4mkdF23cGYNWvWcPz4cQ4ePDjo4775zW/yzDPP+K+3trZSWFh4vU8rIiKDsViMqQQPPWQcOO3a1b9rSjCTySjWu26dDrJkZNraApczeg/ieuuV5L7Z/w/0joKJtM3Kp8vjIskN+Z3pAwcMm5qM9SRokDAnawKna88BkJpipbU9sJ3cbjfpvV2mnC4nUyflRe6JB6jhExyICS4qfLmlmZysCf27Nj34oLHcK68Y13ftMtarttdhiXW2hm+q0TzmkUoqtdRiwoQZM6c5TSedPMqjlNH/u7/vgbXJ7eFrj+3nlh3V/Z+ot/bQvow/0NZWzy0HOymsuhLykAe21DCtIQm2uXFZeiK6XaJdqyTc4M9g7384RX4TzVh8TSKj7bqCMWvXrmXXrl28+eabTJs2bdDHWq1WrNaxX6xLRCSulJUZPzU1IXP6cTjAbofcXLj3XqMttg6sJBIyMoz9CwKBmT71SrwmE1cXFXFx6c20z5oMJhOOC6fImlVC/lObA/VKtm0LBBF7ehK6Xsltcxf4CxTnTcihud1BT283JQ9ecifkBFp9z10QuSe+Rg0fCC0qbDGbsVlTOV17buBCwk89FQjGeL3Gep97LnLjHKPioZitb6pRFlksZCG55HKBC3TQgRkzRRRdcxx9D6xXrX87JBDjNZsx9ak95GI3P2AT07xTWXi4g7te/JDS7Wcxe4z9cNGO07jXf52NL0yO6HaJdq2ScII/ZZQN+v5/g28MWeQ30YRTuFhEQg0rGOP1evn617/Oq6++yuuvv86sWbNGa1wiIhIJM2caB046eJLRlpsL9fXG5YMHoaIiZLqcO8nM6ceW0nbLZ/y3dXc48Hrc5JeWB+qVLFliBGU+/TSw7gSuV3LrnBJOnDvDkd5uShlWG1d6uyllZ2bh6uqkqcvlb/UdMYPU8AkuKpzWO4UKoKPT2b+Q8NKlUFICx44Z1/fs0fdJGOKhs0zwVCMLFqb3/gOoow4btmsGPoIPrG/b2xIyNanblgTbtpH84BcHXsZ0gIalFt5a+hkWPJbG3z72IalOY6qbZcuPaX5oHoVl8yO2XaJdqySc4A8w5Ps/VJHfRBNO4WIRCTWsYMyaNWt4+eWX2blzJ3a7nYYG48stKysLm802KgMUERGRBHDffYFpRlVVEFQvzms2U7v2f1JnqsN04RRJtnR6nO14PW7yFi0nb1FQkOXQodBAjE+C1itJSU7myyseZu70Yt45cZQJGVeY3psZk2xOIjd7Yv/pQZFwrRo+hBYVDpaWautfSNhkMpb3BWOC1yvXFA+dZUZSwyP4wHrG82v9t3t7aw/1DcT0XcZ3MO548G6ObXuY0ke+h6m39tAfP1/Pv5ctCVl2JNsl2rVKBgr+uHFTSy3VVHOa07zBG3jwMJvQrnZ9X+dgRX4T0VCFi0Uk1LCCMT/+8Y8BuOuuu0Ju/+lPf8pXv/rVSI1JREREEs3q1bBpU2BqzOHD/rtMq1YxddNPSa7cR8ORClpba6m63UTVLdCad4wplmcDZ09femng9SdwvZKU5GSWzlsc+bbVgxmohk+v4KLCfQ1YSDh4ed9UNBlUPHSWGWkNDytWVtbcbHRN6mVatSokEONywb59RiJcQwPk51spL1/JP5atxF+l4EFg1Wn/dLc7dl1md42DyzPtBLve7RLtWiV9gz9u3HzAB9RSSyedZJNNHXX+2xeyEEtQ5WJ1FhIRn2FPUxIRERHpZ+ZMWLnSCJr0tWYNlhQrU25fycTbr11LwbHzP1i1/b/w53D4piyB6pUM10A1fHoFFxXua8BCwsHL20MPoMeiSBTejYfOMhGp4TFI7SGXCzZuhP37jfraGRlGUlxlJRw5Ahs2EAjIBNUeMnvhzq0f86vnbgt5quvdLtGuVdI3+FPb+y+FFADmMIcLXKCRRmqpJZdc//QwUGehhFZdHVqHr63N2PFzc43sUNXhk2Eyx3oAIiIiMkasW9f/tpkzQ+qVBNfSmM1sCihgNrN5aCc88th/+acyAPB3f2fUK/HZs2fUhj7m5OYGLh88GHJAfdvcBbg9Hjo6nSGLDFhI2Os1lh9ovWOQr/DuJjZRRRUddFBFFZvYxEY24sIV1nrKKceNGwehmUTR7Czjmzb0LM9SQglppFFCCc/ybPiFcgepPbRvnxGIKSyE2bOhoMD4f9o0OHDAuN/PV3uo12f21IQ8zUi2S0Re5zCUUcY93EMttZziFCc4QSeddNHF1N5/05iGBQsePFzggn9ZdRZKUHv3wgMPQHGxkQFaVWXUSHM4jP+rqozIZFGR8bi9e2M9YkkQ193aWkRERCTEihWwdm1I4V5qauBLXzLOjC9dSoUpqJaG10vxoUbueim06wpgrGfFCtUruV59a/gcPmwcEBNaVNhsNmGz2nC6jEBMv0LChw4Ftj8YXdjGsEgV3o2XzjIjruExSO2hiopARkwwu924vaLCSJYD+tUeSm/q4BSnIrZdolmrpG9tnNOcJpts5jCHqUzFgoWpTKWJJqqpppFG6qhTZ6FE5HYb3fyCf6cNxus1skN37TJ+h23ebHwYRK5BwRgRERGJnM2b4Sc/MVpS+7zyivEzfz4rl7bzuQwvOW0XKT7UQGHVlf7rePRRYz2geiXXMORUmr41fF580R+M6VtU+HJLM1Mn5Q1cSDi4ho/JBE8+GcVXGX2RKrw7ZjrLDFJ7qKGhfyDGJz3duD9E0IMnOCyUUDLgdonENLHR1jf4U0VVyFQkCxYWspAuujBjJo20xHz/xzO3Gx57DHbs6H/f/PlGcDEjw/iMHDwYCH77bNlifAi2bVNARq5JwRgRERGJHIsltM11sKoqygcuo+H35tr5fG7zK4E/XsdZvZJw+KbSDFR35whHjKkZfWv4bN9uHFg8+CAQZlHhnTuN5Xzuvx9mzBi9FxYHIll4d0x0lhmk9lB+fv/jT5/2dmPGRoig5ZPt2fyIH/VbLqx9O84CGdcqINxBB9lk8w2+QTLJVFDBv/PvVFChoEwiWL8+NBBjNsOqVUbdpCVLQrLE8HqN7MMXXzS+M33TbXfsMNbzwgvRHLkkENWMERERkcgKriuSmTnkwz0meO+BqTyztwTHC/9PIBAzzuqVhOtadXemMY0DHGAfvcU6gmv4eDxGMOa118J7kp07jccH1/AZqCbQGJNPPm20DXhfO+3kkx/lEcXYILWHysuN5IG+CWsOh3F7eXBZlDA/y2Hv23Gkbw2ZOuo4xSlqqeVzfI73eX/ENYgkyvbuDZ2aZLPBq6/Cyy8bGYbBgRgwri9datz/6qvG4322bOlTQEkkQMEYERERiaz77gtcbm2F//5vo7XKggV4Cwpw2VNoKkjh9IIM/ntDMV86+1meea2YrLIvhtZSGGf1SsIVzlQaIFDDx8fphEcegccf73dgDQQOmB9/HL7wBejsDNy3di2Ujf06F/FQeDeuBH+WfbWHepWVwT33QG0tnDoFdXXG/7W1sHx5n90lzM9y2Pt2HBmsgPAt3MLrvJ5QwSUBnn8+cNlsNqYa9WYVDunBB43Hm4MOs4PXJxLE5I1yv+rW1laysrJoaWkhM4yzZSIiIpJgamqMOQq+PzH+5E+MM4a9wq4J8fjj/na4mExGW9ExPk0mHKtYRQcdFFDQ77466kgjje30Ti8aqu7B0qWBugeHDg087+TRR433YRzUPfBNk7lW4d14nCYTLOL1Vob6LLuMk/4VFUZ5jPx8IyOmrCyorTWE/Vke1r6dAJ7maaqoYjaz+913ilOUUDLgdC2JoSH2eXeXi4uV+2g4UkHn1QZSs/PJLy0nb1EZlpRBfn+dPau21+NIuDEP1YwRERGRyBqiXklYtTTGYb2ScOWTTxUDF+top50igop1WCzGWdqBOoJUVV276IfPOOsIksiFd0el3spQn2WrcffKwcriDOOzPKx9OwFEsgaRRMnWraFZg2vW+C+6u1yc2L6Ri5X7MZktJNkyaKmuovlMJVc+OcLcVRsCAZmnngoEY7xeY73PPRfFFyKJQNOUREREJPJUr2TUDHsqjcViFJDcuxceeKB/vYO+TCbjcXv3GsuNk0CMjy9Y+CN+xHa28yN+xEpWxnUgBkax3koUP8tjbZqYahAloN/8JnB5/nyjWG+vi5X7uFi5n7TcQuzTZmPLKTD+nzSNi5UHuFgZ9BlbuhRKSgLX9+yJwuAl0SgYIyIiIpGneiWjZrCCoctZHlp3J2TBMuMg+uxZfw0fCgqMLlUFBcb1DRuM+197Tds8wYxavZUofpave9+OU2MtuDQuNDUFLi9bFhK8bjhS4c+ICZacZsdkttBwJOgzZjIZyw+0XpFemqYkIiIio2PzZqOQhK9eicdjpG2/8srw6pVs3hzNUce9EU+lmTnTSJdXyvyYMqpTYqL0WU7kaWIDKaOMIxy5Zg2iRAsujQvBLdwzQj9PnVcb+gVifJJs6XRe7fMZC16+b9sxERSMERERkdGieiWjJqy6OzKujGq9lSh+lsfSvj3WgkvjQkZGIHDSFjrFLDU7n5bqgff1Hmc76fl9PmPBy9vtkRyljBEKxoiIiMjo8dUreegho73nrl39pzUEM5mMAp/r1mmajMgwlFNOJZU4cGAncOB3vVNi+nVmsuRT/sL/YMVD95Ly/E/0WQ7TWAoujQu5uVBfb1z2TcPrnaqUX1pO85lKujscJKcFPmPdHQ68Hjf5pUGfMd90veD1ivShYIyIiIiMvrIy46emxugqsWePMYfe4TDOGObmwr33wurVav85DkW8JfM4FMkpMYN2Ziq7hw1l/421pl6fZRl77rsvkOlVVQWHDxvT8IC8RWVc+eQIFysP0Gm2kGRLp8fZjtfjJm/RcvIWBX3GDh2CY8cC1++9N4ovQhKFyesdLKQdeeH23BYRERGRsW+gA/822nDj5h7uub6WzONUpIJau9nNJjZRSGFIHRoHDmqp5VmeVaaHjE01NVBUFMj6+pM/gZdf9t/t7nJxsXIfDUcq6LzaQGp2Pvml5eQtKgu0tQajgLWvtbXJBNXV12zpLmNPuDEPZcaIiIiISMwEt2Tue+B/gAOUUqoD/zBFakpMOJ2Z9J7ImDRzJqxcaUzDA9i+3WjP/uCDAFhSrEy5fSVTbh9k/9+501jO5/77FYiRAam1tYiIiIjEzKi1ZJbrNqqdmUTi3bp1gcsejxGMee218JbdudN4vMcz8PpEgigzRkRERERiRgf+0RPuNKZR7cwUx1S7SABYscLoAObrHOZ0wiOPwKpV8NRTRg2Z3qK+gDGl6dAheOklIyMmOBCzdu24LmAtg1MwRkRERCQBjZUDx/F64B9tgxbl5Qgb2AAY08aqqeY4x6mjjiKKmMpULFiuuzNTIghn+yTS50pGaPNmaGiAHTuM6x6PUQPmlVdg/nwjIJORYbSvPnRo4Pbujz5qrEfkGhSMEREREUkwY+nAMdItmWVgQ9XmWcACjnKU/ezHhImJTKSx999kJjOFKXjxDrszU6IYa7WLxkqwNmYsFti2DdavD2TI+FRVDRx8CbZ2rRGIsVhGa4QyBigYIyIiIpJgxtKBYyRbMsu1DVWb51/5V5pp9u9TN3IjtdRylrNc4QpzmMNqVo/qwXwsAwhjqWjxWArWxpTFAi+8AA89BM8/bxT1HawRsclkFOtdt05TkyQsCsaIiIiIJJixdOBoxcoGNlBKqf8gvIgincWPsKFq85zgBFOZ6n+MBQvTe/+d4hSzmDWq+1SsAwhjqXbRWArWxoWyMuOnpga2boU9e6CpCRwOsNshNxfuvRdWrza6MYmEScEYERERkQQzlg4cIXItmcezobJKhqrNA8R0n4p1AGEs1S6Kh2DtmJwmNXMmPPec8SMSAWptLSIiIpJg8smnjbYB72unnXzyozwiiSVfVskmNlFFFR10UEUVm9jERjbiwkU55bhx48ARsqyvNs9c5sZ0n4p1i/Ohtk8i1S6KdbA2nP1RRJQZIyIiIpJwVPRWgoWTVTJUbZ4FLOAH/CBm+1SsAwhjqXZRrLN8Yp3lJJIoFIwRERERSTBj6cBRRi7caSmD1eYBOMrRmO1TsQ4gjKXaRbEO1sbDNCmRRKBgjIiIiEiCGUsHjjJy4WaVDFWbJ5b7VKwDCDB2ahfFOlgb6ywnkUShYIyIiIhIAhorB44ycpHKKonlPhXrAMJYEutgbayznEQShYIxIiIiIiIJLB6ySkYq1gGEsSaWgbWxsD/GypjsQiXXpGCMiIiISBR0u10cq9/H0boKmp0NTLDls6CgnJIpZSRb9Ee2XL+xklWibK+xYazsj9Hm60K1n/3+mjtVVFFJJUc4wgY2KCAzxpi8Xq83mk/Y2tpKVlYWLS0tZGZmRvOpRURERGKi2+3iV8c3crx+P2aThdSkDDp72vB43cybcg8Pz9uggEwCi4ez2fEwBhEf7Y/Dt5vdbGLTgF2oaqnlWZ5VoDJBhBvzUGaMiIiIyCg7Vr+P4/X7yUkrJDU58Ee2s9vB8foDFOeUsnha9P7I1oFS5MTL2WxllUg80f44fOpCNf4oGCMiIiIyyo7WVRgZMcmhf2Tbku2YzBaO1lVELRgTL8GDsWIf+9jP/gHPZh/gAKWU6gBKRIakLlTjj4IxIiIiIqOs2dlAatLAf2TbLOk0O6P3R7aCB5Gls9ki4jOSrEN1oRp/zLEegIiIiMhYN8GWT2dP24D3Od3tTLDlR20s4QQPJHw6my0iEMg63MQmqqiigw6qqGITm9jIRly4Bl2+nHLcuHHgCLldXajGLmXGiIiIiIyyBQXl1FypxNntwJYcaPXq7Hbg9bhZUBC9P7IVPIgsnc0WERh51qG6UI0/CsaIiIiIjLKSKWWcuXyE4/UHMJkt2CzpON3teD1u5k1ZTsmU6P2RreBBZJVTTiWVOHBgJxBo09lskfFlpFMWrVjZwAZKKfVPcyqiSMXVxzAFY0RERERGWbLFysPzNlCcU8rRugqanQ3k2YtYUFBOyZSyqLa1VvAgsnQ2W0QgMlmH6kI1vigYIyIiIhIFyRYri6etjGoL64EoeBBZOpstIqCsQxk+BWNERERExhEFDyJPZ7NFRFmHMlwKxoiIiIiMMwoeiIhElrIOZbgUjBEREREREREZAWUdynApGCMiIiIiIiIyQso6lOEwx3oAIiIiIiIiIiLjiYIxIiIiIiIiIiJRpGCMiIiIiIiIiEgUKRgjIiIiIiIiIhJFCsaIiIiIiIiIiESRgjEiIiIiIiIiIlGkYIyIiIiIiIiISBQpGCMiIiIiIiIiEkVJsR6AiIiIiIiIyPVw4WIf+6igggYayCefcsopowwr1lgPT+SaFIwRERERERGRhOPCxUY2sp/9WLCQQQZVVFFJJUc4wgY2KCAjcUvBGBEREREREUk4+9jHfvZTSCEZZPhvd+DgAAcopZSVrIzhCEWuTTVjREREREREJOFUUOHPiAlmx44FCxVUxGhkIkNTMEZEREREREQSTgMN/QIxPumk00BDlEckEj4FY0RERERERCTh5JNPG20D3tdOO/nkR3lEIuFTMEZEREREREQSTjnluHHjwBFyuwMHbtyUUx6jkYkMTQV8RUREREREJOGUUcYRjnCAA1iwkE467bTjxs1yllNGWayHKHJNCsaIiIiIiIhIwrFiZQMbKKWUCipooIEiiiinnDLK1NZa4tp1BWNefPFFvv/979PQ0MCCBQt44YUXuO222yI9NhEREREREZFrsmJlZe8/kUQy7Jox27dv55lnnuE73/kO77//PgsWLODzn/88Fy9eHI3xiYiIiIiIiIiMKcMOxvzgBz/ga1/7Gk888QQ33XQTP/nJT0hLS+Nf//VfR2N8IiIiIiIiIiJjyrCCMV1dXbz33nuUlQUKIZnNZsrKynj77bcjPjgRERERERERkbFmWDVjLl26hNvtZvLkySG3T548mRMnTgy4jMvlwuVy+a+3trZexzBFRERERERERMaGYU9TGq7nnnuOrKws/09hYeFoP6WIiIiIiIiISNwaVmbMpEmTsFgsNDY2htze2NhIfn7+gMt885vf5JlnnvFfb21tVUBGREREREREJE65cLGPff6W4fnkq2V4hA0rMyYlJYVbbrmF/fv3+2/zeDzs37+fO+64Y8BlrFYrmZmZIT8iIiIiIiIiEn9cuNjIRjaxiSqq6KCDKqrYxCY2shEXrqFXIkMaVmYMwDPPPMNXvvIVSktLue2229i8eTPt7e088cQTozE+EREREREREYmSfexjP/sppJAMMvy3O3BwgAOUUspKVsZwhGPDsIMxq1atoqmpiW9/+9s0NDSwcOFCfvvb3/Yr6isiIiIiIiIiiaWCCixYQgIxAHbsWLBQQYWCMREw7GAMwNq1a1m7dm2kxyIiIiIiIiIiMdRAQ79AjE866TTQEOURjU2j3k1JRERERERERBJDPvm00Tbgfe20k8/AzXtkeBSMEREREREREREAyinHjRsHjpDbHThw46ac8hiNbGy5rmlKIiIiIiIiIjL2lFHGEY5wgANYsJBOOu2048bNcpZTRlmshzgmKBgjIiIiIiIiIgBYsbKBDZRSSgUVNNBAEUWUU04ZZVixxnqIY4KCMSIiIiIiIiIx4sLFPvb5Ax/55Mc88GHFysrefzI6FIwRERERERERiQEXLjaykf3s97eTrqKKSio5whE2sEGZKGOUgjEiIiIiIiIiMbCPfexnP4UUhrSTduDgAAcopVTZKWOUuimJiIiIiIiIxEAFFf6MmGB27FiwUEFFjEYmo03BGBEREREREZEYaKChXyDGJ510GmiI8ogkWhSMEREREREREYmBfPJpo23A+9ppJ5/8KI9IokXBGBEREREREZEYKKccN24cOEJud+DAjZtyymM0MhltKuArIiIiIiIiEgNllHGEIxzgABYspJNOO+24cbOc5ZRRFv1BVVfD1q2wZw80NUFbG2RkQG4u3HcfrF4NM2dGf1xjjMnr9Xqj+YStra1kZWXR0tJCZmZmNJ9aREREREREJK64cLGPfVRQQQMN5JNPOeWUURbdttZ798Lzz8Pu3TBYmMBkgpUrYd06WLEieuNLEOHGPBSMERERERERERmv3G5Yvx62bBn+smvXwubNYLFEelQJK9yYh6YpiYiI58I24gAAEENJREFUiIiIiIxHbjc89hjs2NH/vvnzYdkyY4pSWxscPAhVVaGP2bIFGhpg2zYFZIZJwRgRERERERGR8Wj9+tBAjNkMq1bBmjWwZIkxJcnH64XDh+HFF2H7dvB4jNt37DDW88IL0Rx5wtM0JREREREREZHxZu9eKA/q1mSzGRkuDz449LKvvWZk1Didoesri0HB4TgTbsxDra1FRERERERExpvnnw9cNpvDD8SA8bht24zlBlqfDEnTlERERERERETGk5oao2uSz6pVIYGYbreLY/X7OFpXQbOzgQm2fBYUlFMypYxkS2+HpwcfNJZ75RXj+q5dxnqH0/Z6HLfRVmaMiIiIiIiIyHiydWto++o1a/wXu90ufnV8IzuPb+Lc1Sq6ejo4d7WKncc38avjG+l2uwLLPfVU4LLXa6w3HHv3wgMPQHExbNpkFAaurweHw/i/qgo2boSiIuNxe/eO8AXHHwVjRERERERERMaT3/wmcHn+fKNYb69j9fs4Xr+fnLRCpmTOJjutgCmZs5mYNo3j9Qc4Vr8vsOzSpVBSEri+Z8/gz+t2w9e/btSq2bUrNCA0EK/XeFx5ubGc2z2MFxnfNE1JREREREREZDxpagpcXrYspGvS0boKzCYLqckZIYvYku2YzBaO1lWweNpK40aTyVj+2LH+6+1LbbRDKBgjIiIiIiIiMp60tQUuZ4QGXZqdDaQmZTAQmyWdZmdD6I3Byzsc135OtdEOoWlKIiIiIiIiIuNJcAAlODADTLDl09nTxkCc7nYm2PJDbwxe3m4f+Pn27jUyW3xsNnj1VXj5ZWOqU3AgBozrS5ca97/6qvF4ny1bYN8+Ep2CMSIiIiIiIiLjSW5u4PLBgyG1WxYUlOPxunF2h2a5OLsdeD1uFhSUB270eo3lB1pvMLXR7kfBGBEREREREZHx5L77AperqowpQb1KppQxb8o9XOmopc5xiqsdddQ5TnGlo5Z5U5ZTMqUssOyhQ4F6MQD33tv/uYZoo+3CxW528zRPs4pVPM3T7GY3LoK6NvnaaPv42mgnMAVjRERERERERMaT1atDpwa9+KL/YrLFysPzNvDQvGeZMaGElKQ0Zkwo4aF5z/LwvA0kW6yB5V56KXDZZIInn+z/XIO00XbhYiMb2cQmqqiigw6qqGITm9jIxtCAzPW20Y5TJq93qF5SkdXa2kpWVhYtLS1kZmZG86lFREREREREBOCBB4wMEzCmAL36avhThwB27oQvfCFQXPeBB+C11/o/bsGCQGek+fPhgw/8gaDd7GYTmyikkAwCdWwcOKillmd5lpX0dm7yeo11+TJxFiww1hVnwo15KDNGREREREREZLxZty5w2eMx2k4PFEwZyM6dxuN9gZi+6ws2SBvtCiqwYAkJxADYsWPBQgUVgRt9bbQHWm8CUjBGREREREREZLxZsQLWrg1cdzrhkUfg8cf7FfUFAsV6H3/cyIjp7Azct3YtlJUxoEHaaDfQ0C8Q45NOOg1cZxvtBJAU6wGIiIiIiIiISAxs3gwNDbBjh3Hd44FXXjF+5s832ktnZBgBlUOHAtONgj36qLGea8nICARO+rTRziefKgZYJ9BOO0UUhd4YThvtBKFgjIiIiIiIiMh4ZLEYbaPXr4ctW0Lvq6oaOPgSbO1aIxBjsVz7Mbm5UF9vXPZl3PROVSqnnEoqceDATiC44sCBGzflXEcb7QShaUoiIiIiIiIi45XFAi+8AHv3GkV4g7ssDcRkMh63d6+x3GCBGBi0jXYZZdzDPdRSyylOUUcdpzhFLbUsZzllDLONdgJRNyURERERERERMdTUGG2j9+wxiuQ6HMaUoNxcIwCyejXMnDm89RUVBWrQ/MmfwMsv++924WIf+6igggYayCefcsopowwrQW20H3/cmD4FRkCouhpmzBjpq424cGMeCsaIiIiIiIiIyOiJVhvtOKDW1iIiIiIiIiISe9Fqo51AFIwRERERERERkdETrTbaCUTTlERERERERERkdLndRoaLr412sOG00X7llaGLBseQasaIiIiIiIiISPxwuwduox2OcNpoxwHVjBERERERERGR+DHabbQTSFKsByAiIiIiIiIi40hZmfET6TbaCUTTlEREREREREREIkDTlERERERERERE4pCCMSIiIiIiIiIiUaRgjIiIiIiIiIhIFEW9gK+vRE1ra2u0n1pEREREREREZNT4Yh1DleeNejDG4XAAUFhYGO2nFhEREREREREZdQ6Hg6ysrGveH/VuSh6Ph7q6Oux2O6YBeoq3trZSWFjI+fPn1W1JBqR9RIaifUSGon1EwqH9RIaifUSGon1EwqH9ZGzxer04HA4KCgowm69dGSbqmTFms5lp06YN+bjMzEztiDIo7SMyFO0jMhTtIxIO7ScyFO0jMhTtIxIO7Sdjx2AZMT4q4CsiIiIiIiIiEkUKxoiIiIiIiIiIRFHcBWOsVivf+c53sFqtsR6KxCntIzIU7SMyFO0jEg7tJzIU7SMyFO0jEg7tJ+NT1Av4ioiIiIiIiIiMZ3GXGSMiIiIiIiIiMpYpGCMiIiIiIiIiEkUKxoiIiIiIiIiIRJGCMSIiIiIiIiIiURRXwZjvfe97LFmyhLS0NCZMmDDgY86dO8fKlStJS0sjLy+Pv/qrv6Knpye6A5W48cknn/DQQw8xadIkMjMzWbZsGb/73e9iPSyJM7t37+b222/HZrORnZ3Nww8/HOshSZxyuVwsXLgQk8nEBx98EOvhSJyoqanhz/7sz5g1axY2m43i4mK+853v0NXVFeuhSYy9+OKLzJw5k9TUVG6//XbeeeedWA9J4sRzzz3Hrbfeit1uJy8vj4cffpiTJ0/GelgSxzZu3IjJZGL9+vWxHopESVwFY7q6unj00Uf5i7/4iwHvd7vdrFy5kq6uLg4fPszPfvYz/u3f/o1vf/vbUR6pxIv777+fnp4eDhw4wHvvvceCBQu4//77aWhoiPXQJE784he/4Mtf/jJPPPEER48e5dChQzz++OOxHpbEqWeffZaCgoJYD0PizIkTJ/B4PGzdupUPP/yQH/7wh/zkJz/hb/7mb2I9NImh7du388wzz/Cd73yH999/nwULFvD5z3+eixcvxnpoEgfeeOMN1qxZw+9//3v27t1Ld3c35eXltLe3x3poEofeffddtm7dyvz582M9FImiuGxt/W//9m+sX7+e5ubmkNv37NnD/fffT11dHZMnTwbgJz/5CX/9139NU1MTKSkpMRitxMqlS5fIzc3lzTff5M477wTA4XCQmZnJ3r17KSsri/EIJdZ6enqYOXMmf//3f8+f/dmfxXo4Euf27NnDM888wy9+8QtuvvlmKisrWbhwYayHJXHq+9//Pj/+8Y85e/ZsrIciMXL77bdz6623smXLFgA8Hg+FhYV8/etfZ8OGDTEencSbpqYm8vLyeOONN/jc5z4X6+FIHGlra2Px4sW89NJLfPe732XhwoVs3rw51sOSKIirzJihvP3225SUlPgDMQCf//znaW1t5cMPP4zhyCQWcnJymDNnDv/+7/9Oe3s7PT09bN26lby8PG655ZZYD0/iwPvvv09tbS1ms5lFixYxZcoU7r33Xo4fPx7roUmcaWxs5Gtf+xo///nPSUtLi/VwJAG0tLQwceLEWA9DYqSrq4v33nsv5MSP2WymrKyMt99+O4Yjk3jV0tICoO8N6WfNmjWsXLlSJ5LHoYQKxjQ0NIQEYgD/dU1LGX9MJhP79u2jsrISu91OamoqP/jBD/jtb39LdnZ2rIcnccB3xvrv/u7v+Nu//Vt27dpFdnY2d911F1euXInx6CReeL1evvrVr/Lkk09SWloa6+FIAjh9+jQvvPACq1evjvVQJEYuXbqE2+0e8O9S/U0qfXk8HtavX8/SpUuZN29erIcjcWTbtm28//77PPfcc7EeisTAqAdjNmzYgMlkGvTnxIkToz0MSSDh7jNer5c1a9aQl5fHW2+9xTvvvMPDDz/MAw88QH19faxfhoyicPcRj8cDwLe+9S2++MUvcsstt/DTn/4Uk8nEf//3f8f4VchoC3c/eeGFF3A4HHzzm9+M9ZAlyq7nb5Ta2lr+x//4Hzz66KN87Wtfi9HIRSSRrFmzhuPHj7Nt27ZYD0XiyPnz53n66af5z//8T1JTU2M9HImBpNF+gr/8y7/kq1/96qCPKSoqCmtd+fn5/arUNzY2+u+TsSHcfebAgQPs2rWLq1evkpmZCcBLL73E3r17+dnPfqb52mNYuPuILyh30003+W+3Wq0UFRVx7ty50RyixIHhfJe8/fbbWK3WkPtKS0v50pe+xM9+9rNRHKXE0nD/Rqmrq+Puu+9myZIl/PM///Moj07i2aRJk7BYLP6/Q30aGxv1N6mEWLt2Lbt27eLNN99k2rRpsR6OxJH33nuPixcvsnjxYv9tbrebN998ky1btuByubBYLDEcoYy2UQ/G5ObmkpubG5F13XHHHXzve9/j4sWL5OXlAbB3714yMzNDDrYksYW7z3R0dADGHO1gZrPZnxEhY1O4+8gtt9yC1Wrl5MmTLFu2DIDu7m5qamqYMWPGaA9TYizc/eT555/nu9/9rv96XV0dn//859m+fTu33377aA5RYmw4f6PU1tZy9913+zPs+v7ukfElJSWFW265hf379/Pwww8DxlSU/fv3s3bt2tgOTuKC1+vl61//Oq+++iqvv/46s2bNivWQJM7cc889HDt2LOS2J554grlz5/LXf/3XCsSMA6MejBmOc+fOceXKFc6dO4fb7eaDDz4A4IYbbiAjI4Py8nJuuukmvvzlL/OP//iPNDQ08Ld/+7esWbOm3xlNGfvuuOMOsrOz+cpXvsK3v/1tbDYb//Iv/0J1dTUrV66M9fAkDmRmZvLkk0/yne98h8LCQmbMmMH3v/99AB599NEYj07ixfTp00OuZ2RkAFBcXKyzmAIYgZi77rqLGTNm8E//9E80NTX571MWxPj1zDPP8JWvfIXS0lJuu+02Nm/eTHt7O0888USshyZxYM2aNbz88svs3LkTu93uryWUlZWFzWaL8egkHtjt9n41hNLT08nJyVFtoXEiroIx3/72t0PSwRctWgTA7373O+666y4sFgu7du3iL/7iL7jjjjtIT0/nK1/5Cv/wD/8QqyFLDE2aNInf/va3fOtb32L58uV0d3dz8803s3PnThYsWBDr4Umc+P73v09SUhJf/vKXcTqd3H777Rw4cEBFnkUkbHv37uX06dOcPn26X4DO6/XGaFQSa6tWraKpqYlvf/vbNDQ0sHDhQn7729/2K+or49OPf/xjAO66666Q23/6058OOT1SRMYHk1d/RYiIiIiIiIiIRI0mPIuIiIiIiIiIRJGCMSIiIiIiIiIiUaRgjIiIiIiIiIhIFCkYIyIiIiIiIiISRQrGiIiIiIiIiIhEkYIxIiIiIiIiIiJRpGCMiIiIiIiIiEgUKRgjIiIiIiIiIhJFCsaIiIiIiIiIiESRgjEiIiIiIiIiIlGkYIyIiIiIiIiISBQpGCMiIiIiIiIiEkX/PyLk7S6wTu1rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_data(dataset['X_train'], circles=issues, title=f\"Inferred label issues in multi-label dataset with {num_class} classes\", colors = get_color_array(labels), alpha = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "32465521", + "metadata": {}, + "source": [ + "### Label quality scores\n", + "\n", + "The above code identifies which examples have label issues and sorts them by their label quality score. We can also take a look at this label quality score for each example in the dataset, which estimates our confidence that this example has been correctly labeled. These scores range between 0 and 1 with smaller values indicating examples whose label seems more suspect." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c1198575", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:53.983266Z", + "iopub.status.busy": "2024-05-24T23:49:53.983082Z", + "iopub.status.idle": "2024-05-24T23:49:53.986649Z", + "shell.execute_reply": "2024-05-24T23:49:53.986142Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label quality scores of the first 10 examples in dataset:\n", + "[1. 0.888 0.8224 0.9632 0.968 0.6512 0.0444 1. 0.76 0.774 ]\n" + ] + } + ], + "source": [ + "scores = label_issues[\"label_score\"].values\n", + "\n", + "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" + ] + }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "### Data issues beyond mislabeling (outliers, duplicates, drift, ...)\n", + "\n", + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, drift, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", + "metadata": {}, + "source": [ + "### How to format labels given as a one-hot (multi-hot) binary matrix?\n", + "\n", + "For multi-label classification, cleanlab expects labels to be formatted as a list of lists, where each entry is an integer corresponding to a particular class. Here are some functions you can use to easily convert labels between this format and a binary matrix format commonly used to train multi-label classification models." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "49161b19-7625-4fb7-add9-607d91a7eca1", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:53.988715Z", + "iopub.status.busy": "2024-05-24T23:49:53.988423Z", + "iopub.status.idle": "2024-05-24T23:49:53.992041Z", + "shell.execute_reply": "2024-05-24T23:49:53.991481Z" + } + }, + "outputs": [], + "source": [ + "labels_binary_format = int2onehot(labels, K=num_class)\n", + "labels_list_format = onehot2int(labels_binary_format)" + ] + }, + { + "cell_type": "markdown", + "id": "a58200c8", + "metadata": {}, + "source": [ + "### Estimate label issues without Datalab \n", + "If you prefer to directly run the same lower-level mathematical functions Datalab uses to detect label issues, you can do so outside of Datalab via the methods in the `cleanlab.multilabel_classification` module such as: [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues), [multilabel_classification.rank.get_label_quality_scores](../cleanlab/multilabel_classification/rank.html#cleanlab.multilabel_classification.rank.get_label_quality_scores) \n", + "\n", + "### Application to Real Data \n", + "\n", + "To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb). That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "d1a2c008", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:53.994026Z", + "iopub.status.busy": "2024-05-24T23:49:53.993723Z", + "iopub.status.idle": "2024-05-24T23:49:53.996930Z", + "shell.execute_reply": "2024-05-24T23:49:53.996373Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "A = set(issues)\n", + "B = set(true_errors)\n", + "jaccard = len(A.intersection(B)) / len(A.union(B))\n", + "if not jaccard > 0.7:\n", + " raise Exception(\"issues does not overlap much with the true errors\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/object_detection.ipynb new file mode 100644 index 000000000..1d4072faa --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -0,0 +1,1395 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d299c1e8", + "metadata": {}, + "source": [ + "# Finding Label Errors in Object Detection Datasets\n", + "\n", + "This 5-minute quickstart tutorial demonstrates how to find potential label errors in object detection datasets. In object detection data, each image is annotated with multiple bounding boxes. Each bounding box surrounds a physical object within an image scene, and is annotated with a given class label. \n", + "\n", + "Using such labeled data, we train a model to predict the locations and classes of objects in an image. An example notebook to train the object detection model whose predictions we rely on in this tutorial is available [here](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training.ipynb). These predictions can subsequently be input to cleanlab in order to identify mislabeled images and a quality score quantifying our confidence in the overall annotations for each image. \n", + "\n", + "After correcting these label issues, **you can train an even better version of your model without changing your training code!**\n", + "\n", + "This tutorial uses a subset of the [COCO (Common Objects in Context)](https://cocodataset.org/#home) dataset which has images of everyday scenes and considers objects from the 5 most popular classes: car, chair, cup, person, traffic light.\n", + "\n", + "**Overview of what we we'll do in this tutorial**\n", + "\n", + "- Score images based on their overall label quality (i.e. our confidence each image is correctly labeled) using `cleanlab.object_detection.rank.get_label_quality_scores`\n", + "- Estimate which images have label issues using `cleanlab.object_detection.filter.find_label_issues`\n", + "- Visually review images + labels using `cleanlab.object_detection.summary.visualize`\n", + "\n", + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have `labels` and `predictions` in the proper format? Just run the code below to find label issues in your object detection dataset.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.object_detection.filter import find_label_issues\n", + "from cleanlab.object_detection.rank import get_label_quality_scores\n", + "\n", + "# To get boolean vector of label issues for all images\n", + "has_label_issue = find_label_issues(labels, predictions)\n", + "\n", + "# To get label quality scores for all images\n", + "label_quality_scores = get_label_quality_scores(labels, predictions)\n", + " \n", + " \n", + "```\n", + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "8d552ab9", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "You can use `pip` to install all packages required for this tutorial as follows\n", + "```ipython\n", + "!pip install matplotlib\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0ba0dc70", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:56.480943Z", + "iopub.status.busy": "2024-05-24T23:49:56.480771Z", + "iopub.status.idle": "2024-05-24T23:49:57.659606Z", + "shell.execute_reply": "2024-05-24T23:49:57.659043Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c90449c8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:57.662104Z", + "iopub.status.busy": "2024-05-24T23:49:57.661849Z", + "iopub.status.idle": "2024-05-24T23:49:59.030721Z", + "shell.execute_reply": "2024-05-24T23:49:59.030040Z" + } + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/predictions.pkl'\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/labels.pkl'\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/example_images.zip' && unzip -q -o example_images.zip" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "df8be4c6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.033267Z", + "iopub.status.busy": "2024-05-24T23:49:59.033060Z", + "iopub.status.idle": "2024-05-24T23:49:59.036452Z", + "shell.execute_reply": "2024-05-24T23:49:59.035889Z" + } + }, + "outputs": [], + "source": [ + "import pickle\n", + "from cleanlab.object_detection.filter import find_label_issues\n", + "from cleanlab.object_detection.rank import (\n", + " _separate_label,\n", + " _separate_prediction,\n", + " get_label_quality_scores,\n", + " issues_from_scores,\n", + ")\n", + "from cleanlab.object_detection.summary import visualize " + ] + }, + { + "cell_type": "markdown", + "id": "2506badc", + "metadata": {}, + "source": [ + "## 2. Format data, labels, and model predictions\n", + "\n", + "We begin by loading `labels` and `predictions` for our dataset, which are the only inputs required to find label issues with cleanlab. Note that the predictions should be **out-of-sample**, which can be obtained for every image in a dataset via K-fold cross-validation. \n", + "\n", + "In a separate [example](https://github.com/cleanlab/examples) notebook ([link](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training.ipynb)), we trained a Detectron2 object detection model and used it to obtain predictions on a held-out validation dataset whose `labels` we audit here.\n", + "\n", + "**Note:** If you want to find all the mislabeled images across the entire COCO dataset, you can first execute our [other example notebook](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training-kfold.ipynb) that uses K-fold cross-validation to produce **out-of-sample** predictions for every image, then use those labels and predictions below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2e9ffd6f", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.038570Z", + "iopub.status.busy": "2024-05-24T23:49:59.038262Z", + "iopub.status.idle": "2024-05-24T23:49:59.045099Z", + "shell.execute_reply": "2024-05-24T23:49:59.044578Z" + } + }, + "outputs": [], + "source": [ + "IMAGE_PATH = './example_images/' # path to raw image files downloaded above\n", + "predictions = pickle.load(open(\"predictions.pkl\", \"rb\"))\n", + "labels = pickle.load(open(\"labels.pkl\", \"rb\"))" + ] + }, + { + "cell_type": "markdown", + "id": "35d49e5d", + "metadata": {}, + "source": [ + "In object detection datasets, each given label is a made up of bounding box coordinates and a class label. A model prediction is also made up of a bounding box and predicted class label, as well as the model confidence (probability estimate) in its prediction. To detect label issues, cleanlab requires given labels for each image, and the corresponding model predictions for the image (but not the image itself).\n", + "\n", + "Here’s what an example looks like in our dataset. We visualize the given and predicted labels (in red and blue) for this image using the `cleanlab.object_detection.summary.visualize` method." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "56705562", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.047278Z", + "iopub.status.busy": "2024-05-24T23:49:59.046960Z", + "iopub.status.idle": "2024-05-24T23:49:59.537254Z", + "shell.execute_reply": "2024-05-24T23:49:59.536629Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAFdCAYAAACTsKMnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9XbIkSa78if0AmMfJ7v8I18E1cS184VK4KO5kbneecAMwDwqLU3eeakQ4ki1X3FqqOiszT4R/mAMKV6jCuptnPetZz3rWs571rGc961nPetaznvWsZz3rWf+zlv/pA3jWs571rGc961nPetaznvWsZz3rWc961rOe9f//9bz4e9aznvWsZz3rWc961rOe9axnPetZz3rWs/4HrufF37Oe9axnPetZz3rWs571rGc961nPetaznvU/cD0v/p71rGc961nPetaznvWsZz3rWc961rOe9az/get58fesZz3rWc961rOe9axnPetZz3rWs571rGf9D1zPi79nPetZz3rWs571rGc961nPetaznvWsZz3rf+B6Xvw961nPetaznvWsZz3rWc961rOe9axnPetZ/wPX8+LvWc961rOe9axnPetZz3rWs571rGc961nP+h+4nhd/z3rWs571rGc961nPetaznvWsZz3rWc961v/Atf7uX/x//3//f11ulBlRhmHggRl4N1TTQBmUG16FNWz0+/o3uDkGGEVlEuaEX+TemDtlAI0bFM3dxZXBpvAI3ByqWBiZybbGgH+sC2u4K9lR7IadQDvusLwpfTRBE2YYTpXTlZgl7VAUjRHmLAu6Nm1OW5BduBndBeZYN7kTdycdOowXwX5v6CZW0GZkJbRBJxGuv5+lq1C6Ou4OBtUFNDo6pz3YWQTGZdD7Bm9shW5MN97QpfMzg27IuRftRlTgDd66ppskaVYbvpztYA1fFlQWOxPcaGvaAAwj5nptAnDdRO7e4EaUPj/M9R1dEE52YBRWzXIwN6qKLmPhrFjcbKqLhdNAYroWmTjwiovuIrtJWnvQHG+wanCobhpd67ZkvRZeRTV0uy4Mjf4Wuo/VevNdAA6X7vHO1MmZadc6vN9v/tevX9Sd0M1aC3by5c7u4q7Ner0wd+7vDaELlJl4uJ4Tg+6NW8w11THc742749ciM7mAy527ilxOW+umdtGlX7o5dEE1K5zLg67ivTcbCHdWaI80uj7ZpXPqohtea+EYb2A5dBV1bzDjdb2wG7KSDLjDqE5e5lgz16Z1foa+34yisCq8g2ULLHn3zW3BasOyMDPMXY/ETv23oWvg+tz7u8DPuRfhxgKWBRvI3DjGWotvCnbq85drn5SeIbrxufgRoefLILupiUQBXKXrtGdfx8SpKv2Bu1PWdBvdunvu+rtdOY9iz13VMjPKmjSjHXoXV0FY6B46mDVFffZ8WOgeV88WdMyctIRsDMUgM9OzmY3Z7FXTOeiYmiqodsUXmvDW8wckBa7nx1vP/07tpXbFDSsjyrnn+7CmUvv/CsXkrsLQ/obGrAm/sG66m66JRd2Y6ViYP6PnDpiulfti76KBCCdzE74oh2yjO3GKMKNb94MTn1qxsGgWhpuRYcon1bjPd2bP826A05ju2+xB3cMm3HBrmGtTDbVTz5Q3ZT+5zTjP489+0X3T56UbFzr3PdfoSnhh5OTFcMfN+O6iHWIt/vX9TdgiDPrerCv4jfaa+ey0aqyaUHDVuWbRBtua/8//6/95tuOz/uB68NODnx789OCnBz89+OnBTw9+etaz/uT62y/+VhvbjPskPb9wmkwFC1oPYOlZx3C6iwjnzsQHsJhBZeHeAqIeYE4nUEXHPGctUOFAhgJkdlPZRIN5kAEWQQM3+vkMaAusm9dluDl5N5WGL8Oi6dxkAxRY0zFQ0ZXGrHuCVbKr4SRkF7ByD+7cWJ9k6+xKga0wOgSMzKG78MvpnQKipC5VK7FETPab03afJFBNZwOF1yT6hionLh3DLoW9O5PwSbSgZI8CsSFAYm2sSYIRztt0TWs53Y1P8K5MsMI8PgDnAOzAWDag34w2w1vBv6KxFEgI0zm1G/fvjbt9js0o2prLnGjwgQ9tkKb7VFW4Oysu6CQ758/hroZWosqtc4uvYJnRlTQK/Lv1azcXyNbVnWsr4NPd+ApKNwR26vOAFQOiCt5V/Hq98LlJDXx/f/MVl362CqqUtIDdxVUxIEHn4qEkVhvu/cbNueLCgK/XYk9RgelaZaaS3nuAr5uus00h6E0MUDMz9t50Fu7BdQWr5nno5ramHD036Nmxhnrn7BdXQnWI6wKD3Rur+fvtWJeAyAH/A5ZsknS7UJPP9TAMH+D18kXj1L0x055vM3ZuLgs9N5WzQ/TMhF/gumbuzuUQQN75AWgN7CrKBpxOoSEQxGfvCqzrc5lYZMBugWfDptjrARL1l0fSPs/qWgO2B+xU1dzf0PM+z7XAzhRF3bRr7/Ucl8/xlAkAYa5nEyNbAFH7YK4pxv4L0HM7CLUpdxVtWZ/7Eu5UClBe4XpZUAmddJtATzeW4D1Fg8I3Zj6FJFzzAuHloYK+de4CyU7WnqdK930wP+w9Bbkgs7vihfa1csCKYPA+5kbmjWG8YrH3jVdzrWC/byqA66LbqO0E0H5DOV1roF9ipuq828D1zMC53k1m4RjXWvQuqosyp+KAQAF+92AZLGtq9r2jGGxu7IlkjtFVOn9r9hbgr0lcgREoN2xS/20qFNzg3gnheARVKgpsGbuK9/c3mcl6vWiKNN0LK5XfjmOlXIoZd22dM0bQ2BRYz/rPWA9+evDTg58e/PTgpwc/PfjpwU/PetafXH/7xd/lrqDeE1StqUpqAqvZD+BkWFixEk1XiTOpxkJsAij2ZusNf1Zx4VgbCndKKODkMtx9PmceYDuMkBi4rBLQQgjHUKLT01sInQ5YG8bEMMKVKAp9h7d4DD/MionV9TYB7M5h6cQwhEstXXmTuzG/8HWxHCCpLabGMCKUZKyHuTdYiOHNrAEuYMPchSm4vl5Bd9K7sSUmetdmVxErwAKPBe97GCsbAKyATTRWNcyaQQqwuzvZCWVYC1i4qaDILtacsw5K99TDqCxiuhXCdE7OXItscCW7XcX/dr20F6x1DinW7HJXsi0B2XKx9Stiips3otR6WEYdx+VMYVE6FlcxpWOZhBgt5rqGQWslcXFRYpEzU4WKvzBKwHy6ISoFQiMWK4zqFuM7bHXEojrxZVRqj7xeLwrYlfgSg8wAlh+wnHiIrb5i4R7k3mQV1cZO0dFhYlE9nGglUtzJKmyu485i01yTrBoxvBbOboFbR9e1w8ANuyeTVRNxYVHD4sJ7b3In1VsJv5MK52tdYjWr+YcHXgO2pngICxyjbhUMAtJNp/M7E1KAIgy+rhedxb7V5fCP9YJ2dm3yxItS8bRiCQQNg2glABluEEtnXAJTPiizPs+7rrcNYAozcm/cF6BnuboFKubeWkObQQgYnfh0iioDdubnMwXAp3DrKdXNxMoeMDwdF4U6W9YAXLo/oKoZ8DjxJluxBRvWGiPLeGMEC8JU5OjEJ0o2rmD3A2w9xNynYNYyY7lBG33DZUFbUWY6PjeCIFvFACFmW10d6kJQoaqCNSxIj7lHhk3ngu6Fk65nUBFZF9APsOcA72GLAZv9pOuie+hurBWU1Qc40+o5WaZQE+bqdGowK3bfeOmqGKVYUVPMV2PTPYIbXo15n0RBTeEUE4u+P8WoEa7jsGI6ZIZZPwXLdI6UG9ums2a6JqxzuolcXUKtvaoupznnbsXkOTa9aLDp8FHMzylMvI1o+0sBqRcZ5WKsbXLTOm9DnvXH14OfHvz04KcHPz346cFPD3568NOznvUn199+8Se2uFhmXANatqK92KO/vB4XYVqEqSV6xXm4XAF6GOAuSSE8TNKLVpLtUjIJ00Oed2GuYCkqqtjdvNq4M6kqXqGkdG+16ZoZvZXkscYvG9gCFmsYLIHqmuf7sCyOQJBJ46LEfifdN9da4DZMgVN7i3VYQRv8/n1zLae9EGBWgKk8sEmMbFgM86XErth15DRFlXEoHY+RsSyBmPcW2xquJGwN7CQ8xNo2SmZzXywcTKxHAOHGr57E9N60BYFj1QIeS2yICP0BwNNS33baq1tJwcCGEW833tLNsKrF5E6L+GG6nGCZmP9WxqK7hh21YS6ncBk9zK4asD3goBJDMgUs2PvWdQsF7W5jtWMWOt9h5Yomu1lmfH19UUgudW9lo4gmItRF0KXEu8FXsPdmuaQOVWKR37mHhRKYrioll1hkbSlJqnS+DZ7qFjDE3O0cNmxAg5nArYFYQTeqNmBYCeAsd3pYymro+6a8P/KX2mABYHQIiLOT6mK3i60rJc4btduzb9wDi4uqLYmQGbYMC5PMaJI3k7AFXH9YSrG34OVTyOr6tzaIrs+Rl0yitpxuBEWNYZpde1EoZ35WMaaqibUE3EusXYx8rUU3foCr+Ug5bPa5OxZBIeDXrQ1uRwaE4a44tZhYNAXXAao7VQD62Ydtnz1r1iPVmZ9DANInXrlqUsUZ0dB4QfT0QbQK6nCFOHpkFnM+0ROq5/nTPjN4b5abCqJTxHfqHOc6GHpBUFuMrePzYkDPYA1oK0N/lgKnNnI1Sbd0vWkxwpn3SG2MTuUGswH5bp9YVtYDyqewXP+9Q6eHvY91YRa8c1Ouvbv3zRVLRUsmC4dQ1829k87E4s0q7fM2U6eD1UQophB0Ce0mxu7SMyamvvGRKVmra8NM0rNsiKXCEHd6K7bh8xLG1BFl3cpZnmAj6msBVYCFjURFsYhu0oBL+zGruTy4Rg4mqYxeHijPMGy5zyPRA+LPi4WefWTTMdafffis/4z14KcHPz346cFPD3568NODnx789Kxn/cn1t1/83akW8dcl4HF3yv/EQgD0JAwEUDvldVE78bUUlEMeKF3gyxWEuz4PWRmkFWU1DLY+b7UreCFOpk0+FOVQEVQ7N2ob3sBVxTJ9586C1ZTfRIEkNKZ25jLcAmOCmf38d9em2KQ5ZosVzr4VVPa+CYIwsTvtBqFEudZFhNH5rYQVF7mLLokyIsTIufd8j4Klm4qDHobSMKwCd6gt2UK7Uzsx5RGxTm+BDC9Yv0LgKTfV01rdBSzulGwhDL4quDB6QFGXifwCsgVyPIKsGp4XcPl+VIlBtlayCHPCjL2T8qZf2g+1m5e77uUUK2YhBq+NYk9iNzrFjK2l4/cJ+NMJD3bpAg1zLfa7+c7CXQVShaQunRsr47LZ2q1rdzw9spvLBMI6dW7LL9RRkSqi7LR59zDEzSuW7o2ptfz3+41fF+1Kin3fYnCP9GpAcZ8OjnKCF/f3vz+SpwNg2gN7JxZiP9MEeooeaYS8PrxheSBdV+AW8snIVIL1Syzl3rQV5rDMeZm8hX7PfXjnzXJjD8iISfQQAvt29o3R7y1fGdczr24PFTPRYgUJsBWSqWw9u2FLexifczwFzF8kDd3s+8ZelzxguqnxLmp+qyBj9jGSw2QXtpzrcmo3ed9gQQcqUBkwxRSmblg4NyPbSclowhdXj9+HGRw2tCAYLxsONhDq7GEHD+gy+gNecYH1HC+lI6e5c2PIg6R65AiumvQqJ0pdGbuLVITQFeqfK2XufJmAnKoD7R5wriUwk5liXG2O29cHfNIqnOnm9saWscr+Ii9piqSi+GUv1rw4OOBZHlZiUNuarQeWC8Wps0995F0k41c1n36AnRlrpHlZA74tPt1Oiu0xwFzXo6rlTTTsclpz16bihfsN1iNla2K9uOdcLeaFQZeY9I3yjynGibZu6d/aBrzrtw8b/XVpX+57k+9bxVZI2mbTqZT8dAn0Srzk4UZPJ5Ie8emwYmR8zXbG38f+8gJCd1/xkh8frdl71aXC3JQTzLTvMseXpoMPIgfFy2f9R6wHPz346cFPD3568NM5+Ac/PfjpwU/PetafWH/7xd87Qq24JsNo2lh6eT+mrQoW5sOuoifV6sJND78hzT7eP2xCihHMEPC0ae/1tZQIgbuTC2PFko9JiXXcJp+LwxS93HglQPFd31iETDur2Ri2FqSS8QYxPiHGcaUBkrtsX2x7SRrQyWXgFP+4lpgyu0i2zvF6kQbvnawrWNVcGGaXWsy/awCrmMTdmyKHzQjMCg8BvJ037XCFi11aXywv8v7+MJuE/GBoI7vF4GB0GL9bUoPlJVBTxp3B8jfrWixzMpPvurnN+BWLq4O7il1vADqNEnKa5JOYLTKDrgAbucUk89Pmn5SYxjzMf7OB8oAx1z6yHkkzIEN7JxsFfFGM3HsPKDLWtWRSO9DajE/7/z3f8WXyCXpPwl0DTN8p1jhGzkGKvWqKeworKXC2QOFHZjHdFG6fAglzcqN7VsBaeBavFHvU1bzWIrvkfxGOh77ru4u4dOx5BysE8pYhP5eNvuO++Scypj3J+FpO7sQ6CF8cmEHftEnClN3yGzEVNTHPXlXKPNz0nF4tCdY/vy4VCDRuDa+LO5Osm2XiM6PlAaRkHmPOK3mTF5g1u2/W60W+33y9LmkHcDKKtMJc17W7aFdB0iXPHEx79l9uLCsuc64OFZdVdCz5PjW83FUMTJdI3huPm5fLWL1KfiHVCcf8eoBoMv48BuTN18gf3I19Nz7A5pwjCTfyFMLyA/qsR17VzfKYYu1NdbJ80eZ851ZXyPy5wzDfA+EPw9uSdWBFXUyBnTK/L7GgDEPdtGRO9c11qXjK6eqovbFYH+BtZTLbN8MpddIcxISL7Uff9baaZ8mwDi6LGTrQBPJVKm++MyVHmuKYFlCyFdgGOglTbG7UhaGiyrhC3Qmb5u5UA0+rk+Xkggbegqis1ECAixiZS7Bcz0K65JEgk3t5fakvJ1Enilez0gl7aX9ZY2uxFGAEHhvsw8gH6wp8Onl23doHh42+dZ0Dp8zJ5VQ4/X4TJrZb0iXdy9hLL23G16ZGhtlRLAucRQ3Uf41fEA5t6rLK6cRpIKp4lfGm2e5Yr5GhnKJa99yHkS9qJFY23QeTL571H7Ee/PTgpwc/wYOfHvz04KcHPz346VnP+nPrb7/4O74ypV5YTQXzRe774wXS3bTlh3XNrVbby76IhteAj7tudh2zTqPyPexoENSPtMBqwJmCSXZxM43ghib91LSko+QcDTkP7M7N7vFIwHjvt5Kjz+SlAPmmwLLFrptuqNxUq2f867roSizl5zBiG5Ed1aKeQpIIStPcdm+FZJf9QZhYOyVU+xha9xz4kBh8/fqFAfe+oZ3f+821hrVaga0gGTlD2idoJcV3bYwg1ms8VqDdaW9uswGYwxxH0DT/GllLG9ileyOPHk2gM8Q+UjfZMoENg26HuUdmCtLWgcb6DfBrSTZswxUXyxDw6GE/ZSohw2tfyItGiWCVWundzsQwBeF2FSjM9de/5jiqucol/7AmPfE9xtADWoewZb/GvLfq401iVwxAYaQN+tyuYgZBcZkPm15i2bvYHrp/Ln8KQ0x/jhG7uUzBxSq++Ye9xtA96Qg6fFj6QeSIaVP3ApIdDTP1fd9juq7Pay/8tehSN8GdW/4Vyz8+F0Ew1C/WyZrzc3PMIXdyD8gbjRMgHx6Ae288nPXxyDHcCloSsaqke46f0xxv82fNGplAVMiMGReIxLB2/jcX6Kd0TTCj11yTWLiZJCK5x3R5/r4o5nmOdN8us5GhSXphLvBYd0peNz/Te3OmpNnZx4zsyhnvrcIojuTLEHBT/Bt5W+u6RCxqjsVjej/qGLvzkQ8sg7A+R/6R0oAmshlN+Y/c5exxQ4Bv7y1Zl0ma0rk/cVTnIQmNmiRK3QApOY+Zcd+3Ps8UEQv5jIk1jc8AAV8xvi+tolrjPdmfbhrHrbH2j2ymrccEX6bWjUEmWQyjXXTr/umx1c9USVjhCETrZYXyiQE1gL6Y5wk9D9d0O51oddhgt5rOifGAQcStxbDS3TIL93nOKjWhz2DvlBJSD4GKcRtpWCXv2jTGrzDm3c347miXFD17T9fNh623HmkMKlKY/a8CpT859jw7Ya7JerSe11QnhVXphQI+SUPSLDN1g9k8xvaJjT+f/aw/ux789OCnBz89+OnBTw9+evDTg5+e9aw/uf7+i78BPspvRjJRwULT3gz0IEnOYS4Gwx3WdemJygSXd0VlasR8hHxJPMjjwzGPeWF0qOX5vH23CfaG44na8E1tvJ1J4+R4oBAuFmNYjWpJEcJkiEs31qXpb+5QIxFo+zCmdW9sAkR3sdYl1sUu+edUKtD4MGYu2YZ1s2IJRKDTFzM2Y9QbsYUY9/1WC3IrkHO8TdY1gVQynp3F3fVhFMPURXDTsiKplFdPixkMB48ie3xeWr42y8fo2427lCbVFq1R716JIfNn3MdqZpK4Qdaw1w6aYFe84p+8v78xM1a8ONOcViwqk93yNzKg7luTqnJ8dAzK4LYeg1oFdMOgZXztKFH17MEwHVuawISjwsgtSFMreds9fjNjPHvyhDnhEPXjlVMmoA6IlRoWayEg0DQx/zgCtsnibf0BDLsn0Q04gJa3jI/HSqs7InNLyhDDijOs/cgdwqDrTNWyKQzhjKBvH9bKlMQ3AutxxcglJCWQl8pURZOws5r3+42v4PW6ZGp7q5iQwfgi7812JWDQXjxG51XFNb4w+4AgV8FS84xIkhSfRExDpwDOtobZv94lE3ebczKB6rKGbeewtQ/mzxrGZDolv3BFCgpskveRHeTsna+REzE/X92KNePfMo8js6VoKxUWqPth4ZJmmY3fE5y/Uapuxii7iTWTHccrq7pnb8lI30yFUtWA0zkpkfiS43TpM1Vo9ef8TY+DDJMnlghojzn8nN8u7f9XxOcYmKJQDPUxpm9qRg+2M6yyukNcB6iiy4N24ztvcMWAKnUZ3Oi5rQZrZ7UPaGvJ5UodAZc5EZp4KAmXnjVzGfTLI9on7uu5gOnKYYr+eUFBN5k3jcn/DNQlsm9iyXPGavKUo24oJLMyTO7TB2TOHomIj3F8VX/0JeoO0d4P5pk4XVmp59FQvO1QfVwteaP2WqqgmmejsZ9JhPzkhkZdXj7dBafww5XDzj129Jy09bzCEaiPOcYPID7tEs/6j1gPfnrw04OfHvz04KcHPz346cFPz3rWn1x/+8XfmvyXemoU7FoBS14Dk7RasoSaiURlcL//TeCsUCBjpAViExqq8SUAljlv2s3IUJD3LebLfBJYF17F3cMu2GFfinQFzF1iDVYsbEsCQzc9IpN7pod9hQugtYll7wEJ3ZLNxBgKr9Y0LQ6bEvKi2YmTnBBWrA+4KtfErq6GFqimGXPg5LouqjStShOkapjC1nS2LjHAVQzfgVWyW2xfAXcX6XluCfe9CS48TBOuvFnjJdFdeLU8VYbhqmG4NJbeZaRcm85Exh+gKX0+Ybuwss+51CT67sSRUWvtTdP4Cu6uYSjhXWKEYsmAWMy29kM7H8ZHdr3jL1L1ue9mrot3AO65p80nGWufKEn3awmEVtPIVyWriCpWGZcNu9iSrnSLnFb8H0lU98cTyaYoq5ZXDQZd8vMJ1BXg7oQ179qfKXddJi8YD75ry4PG9WcxrOkGcDkC7e7pFEB7MgtDP+MmVvHOPXtTkg+f7ofsJHtDqcV+jTyILIFGM/z1RdP83nvA2jS5z3kVkhM1xVqB5BFbYCcLWka5kgCp0NAerQHVjeEjTVLBaO7D/zIgWNfr3m+BhikcOQXW60Vm0p36Hp/rC5IAlZ53dwef/QCfz3f/AdpVmu7YA8Bxo/14qJzVs8fqw4J/HHVasKI+ANvIlnwBc+LzHS2ZTQ4De1jyEy9tjk+lvUAMhrWmJlqDyTlbTCjozwzKnWPefb4LwC1UPPbnLOYXM82QpndSBmstda30+BpNHC5QbHAHG58ojGVBlyZg8lrTRZHTZWJ4Ngux7D1CiYWe0f78TwflA7j7/MbE+BiGXvttYsAPksfrvLA4UpW5v0udIdvn+s4kyOT3XGTJmDomllSrM2Xuec+x2DnGWYVegkTreevSvlnAmoKx6M+FVmSc2G/n98a+v9VJEt0HjlPtkqUdGVHr2DCx4EmDTzyCj5G/CdOr62NAcI2fm1lzHfB8jqv6Uxw868+vBz89+OnBTw9+evDTg58e/PTgp2c960+uv//ib6nNuFJBxa1p7894+kRTgZZpalBlKbB7c+/Er8UuBYSQIYiYohrD20niNUS4MqIYJdFLevRz6KXcyb6W2DTkZdKuILDcZKA6EgdqY8woe33wjIbnM+1rV8trhzEgdjFPPSyVGfSyacuG3PdEk6REQYi7MMkDBAhPoi8xKaKrJvFscoJxNazrRe+bzmKtxb7fXGNWbMM6hoGvAyN9ugcU9JY5K4K7NuECCnuL9QhUTDS6zmrDR9dnWE9qGLFMvDWZrltGtOrsHl+MbtSvYD/B0eWfoK4GBVIBGIHMnsLCL00pK3d6H+8UJf9GSZ9uYgW7coxkS9Iixr/INF3Kmk8rtz7ISNNJmBl9b0lWMoelEuXn5nDLI2dchnCaF8b3FGOu3DHXxNVlwUhnTD4/uwXYLiT7UCqWyTmu/fl6rSnwZtC9B/e03Mdy9vsWI9ryLdGV7c9eOhRuzDlV3RyT92tdNGNKXCWT7AHTMYw7LaB1JgaaqbXfzdmlaxAfMCSJWeZWO/yA1JPoJTHSZ1WXvGAQAxihguVMBMx9OGPBs7QUs4sNvJFMQZO51tx/fYebCqhGwK9qJGEMa25J9zB9JiTYbuN7lHPtZBI+2/rjb6TJdIcVro+/0pF5nKKE2RdiF5O0MWb2+HiJ7EZGxSVZkQ1LC9oXMc/jAYHZAvDdDUMo1iccGdaSWuSRntiR0GhPtuleKxYvdbBsFaIHRNXEAkJG671nqqUZHpIaaRvaeBqBzPp7ukEScxlHl9nE4jk3d162hnXViwb50RivHnDYuoZtYm6PybKdlxxs3EOyivLpHJi9Ef5TNE630OmQopVnZgvRwF05bPbAxmy8nF5OTozJYW0vmA6qebIa7rwFztcx05e/ToTkkzJtd8WNuV/dmlQ5cyKVGwZuzw1QnGi9YFC3TVMuKaP8h4w2/+wwvew5n/PzAqYMKgw6iZ7zdj0/ZpBoMERMZ8yo6U6pNdvqr4XZs/7kevDTg58e/PTgpwc/PfjpwU8PfnrWs/7k+vtTfffGEHPk88BmbV7IQ+K057s5ls3LF7sbzLFQ8My9We2wZxJdNWSJVS6Z0G6bdmATI+klc9ltxa5mu5iYWMGdm8uXGK1q2MV1SejyZcOOtYIRJeaxW23ivkJBOPPDhmbf2BIzxExEa+QZU5aamtYK1mU1yVzmx8JoIYDnkh6IpS48WgC9lLpXBBBEiKlxc/Z7z3EY7/c3axm1BDRaeE5MeTdWm0RsM26aSFTJdekzy95iwszpEphJk5zBQtdBk+XUCZCt6X3uIWDCSIj6MOVQJtPlRiypdZHVArm9MIaZzpY8J5x33rqGzQd8F3DfN04N2629pFZ1JazLxLSZOTkg2UYKYeuAOh1/mKbEtUuyIXmGJEa/jnnRsEEg0PfvlkHy7cNQZrL6SAmMF8HC2S3wrAmG09JvpaJpTsz9TFacpvEqrtc1shMbZkmJ1MJ5IZmWfnzgnRe/ZnLgXQLf7osw03RHmrWMLt0TM9iZYM61FoMGxY53Yy6Qpu8QvMTQdzfkLXPkKwJNctzDhstYV/WVZE33fXM8UWqAz+RKMWjTUVA518qOVEEGz83Nzk2Wvt8RW5iuRHyY9qkTtJ9DJucfRMa5jZpmWO04CzNnH1aaJmyAcUoS4KbW/jAB1Zx7ODCE9JbXExO3rPE2urYK3tC+DdclrkxsftZcsqj33ty5eX1dP104070jyYmApdHjETWgR1WDio+u89dIl4zGkJ+Nys0iU8dyui4KdUBYy8Cbs5dgZB4qCs1MgLcQKHVJG5bHFO2KP8uCd20KdXtkNzWm8psm9iYGlN6VZGhaXZSMlE9B024q0LKmY8ZnkuJANTs89oA2pgvDtAF8rrD12WNTVDcY9Slq5O8lnzSbwk/g1qn26TIpohrPjcX18Sszc3XxtPafdg+fYiNzUzt5W57wp5cepuJgZdPjRWTWnE6oqPEOMhXDihfGZqmeoJWHuomaQrtr9qiAu01etDUvTLaA64l5y6BxLlzeRyVj6u31AfXqJxqg/6z/iPXgpwc/PfjpwU9zOR/89OCnBz/x4KdnPetPrL/94u94POhtuH08SD4BlP4wggJpNQykcTmwZS57rYuu4jvvCf4a1xUTzNOaXgroPi3f2Sj5G2rBr+LLApu2alpygbXEJrqrld4Qa9IFaTKupgeEDUjJPu32xlXyKLBSS3K4TFp3F3HJdyXrh9Ge2ITZkpE2Qphuxst0Pm8rtqPpSiXWI5DR7fs71VKvvmgY1uh//eOLO99iIXbiBPTIhEwePqv05R4yRS43EvlVHBYba8qb8EVVijGvRDYbkmLUsB0VDMvZeEK+c1hDI9EEM13+4m7/SAPCwXxkPIc1zmSZ7FWD1OS8Bttij7e15BUIUNYHwCm4V255fOzmyy8uW9wkFT+SKHeBZszkaUJ/fHd2ibn5ipjWc7FuYq9r7gHE7Gphp+blR9IjCZCFWsyjta9PQpXhMpqQ+DHYtU8S1rR7TTDE5F3TKbAYJZaUrQ4NmTw3/voHYQ0DsDpThuQhljD3MFEjK/EQy+xZH8nBRlKVSk0l/Eg0Zt8HNjKN/iS56iI2mtA4yZ65xlEDFt0+BZpkSNqHR3bQLclEjOeRmTor7rynXd4kvbDGZg8f7Ot7wE5Mu3+LPbxEuH+wy6RuvAJGdvTJzC3phA1OxEaAUEf2IGDl0+rQjAdTu2RWzhgFG5XFWgaxuJsPKN5W1F18/XpRNO+9MUvCx58FcBPY6xzZhQkE6j8Uywyjs6YgC0nEWqBjdxEeSMo3hTVFXEHf82wiaQnDfO+drKVphbm3mG8X0u6RpFgjIGROTIUQdnyqnO+SEXhHaL9Pp0ylCqAuxcv2IHfSFXhdetaXgDcDgPN4FRlELNxlng6Se1BG2qfnRueRTakFQMX5AGQzdR8J3MuHy1oFlasqghypiYViPKoA3LS3ZAi+wNG0uw07JWPE+9O5YW7YXDNtKRMwpPFQUevTtVHN+BodcNhTOAnMhiveVSknbBoiZm82HiFQ36li3yRVbAa4610DmwGz4SyDmqEOReolDGLNQWw4Pl1Jree/+/DYz/rT68FPD3568NODnx789OCnBz89+OlZz/qT6+8P95igVZVKGuGsuMQCTcuxgcaSz8MsZkuBpEqAMqvGe0KpPifx45qupilJ46riCra21R5Ow2stLlMyCNcUo9Py3PO/qh5Nv2D2+ZNPG/znzb4ASZWMTQEl1gbBKqBSH7NbDK4rwfnhkrKg9ngLTIt5D0s2njzZxasFWncVu41wJ15LTFMXmFq4cye1U34a0mqwbI621UaepKQpiHH5zpRXQaBkPOzUB7z2+HO42B+fpLCZgWs+reE17dQeIx8SbR+IRekSI9zD3sjotmS23KMoWjIlzlKCoRXoycRKxUCYWCnlLeODs0VCUT2fUwJTdyX7A5AGrHgMWBS47izJVlrf7e7cvWmCd268zyRAdR4EKmS6x5fCHd8jJwqxrkGx72/5JPmUbnMMjYDKjimPjqwFgR/JNpg9pWsVA6hjvGZOV0Dl5vv7m2wBUxtvF1yJVB0iYoUzU+yxG+9M3EPPwLDVAtj2kdyYhxJa1nj1NO3aH4cljXme8DGnrpvaG/APAwej9jmI1yQZwk6Szs+1odEEwgG+w0GO5MlGriTe+HqFgP0kf8txbxm2FQQM3UZS87moxz5aIJ7uAUg6j+kJmDhkMGCgZ4oiGF9xjWF3krVZLK5rUfwWm1qOEzJ5N1ivJt8bN+flwd6bawW2Lh3nTFzzkK/PLnGQR7RzJhT2OU81J0yksQ8AVP074gWTz4l56Joykzw7xWyGnreeDg4wem/dX/pYvWCtLgfjxww655nNahXPpesVUwC0/iXgGjbSN0WE3HAmxZ37aj7dLHuufWofeAuMecNuSX/A5nnV/Ynxyjkg8PgRWaszSs+kpIm75aej3TGb2JmIPoWswbUWC6jcvN/feFzA7Gc3dRadorOnKB6vHB3X+KL1YdntpwBs7e3DQC+bIrpHHlh8vsenaOn4ec4cwzM5nlBF0XVOQ0UqO8mUrOt4QNlMi2z7Aa1iwHuKyZP/mt7Ns/4z1oOfHvz04Cce/PTgpwc/PfjpwU/PetYfXP8XpL5qqfWIYQkVLItjAn0pQZux9x5GST/7Y/QKd8l0M5bMThl/iETsqiWsrQDa83vlhrUmv4Vr6piYNRvGWsyQ2pANS5MBxKChw6aLuav57f6Raph/ZA4/h61Enwnra5EUywQqvr+/+cfrS4C8JwjjuF/0mAP/u3KAt6QPtlNgKYJCEpW7xFAdEORmpIm5kj/JJJ4pAsJ7AL18FXJvegDZy4N632KiPt4m+p5rLYEVa41WH4RYplThA4Ct5K+T1bSLpTfEqrgDiUyGJ7FdhiQODZh8ZTxCYDw3DuxJyo2YLTG+apMv+Hj+uDVXD/BrGXUXRtet6XxA78JCAfvjydCFv09Rc3Emlvla5P0bD+fySxKSa1G1pyCRZ0jNcZjNtL5u8r51T67gijVs2Y0Mrg/vOP/OIiS8YU37+gaxRc2YZQtYWTf+CvZO9hgGuzu+Lq4y7kzaBE6S5L5rDIan0Aknt8CrZEoC2LXlR9Km58rNed/vSaiBpxJ0IeYPG4bWpMApX/rMewuwm4OHHoQYEFMlich0eHQXs/X1bJmKrMuDboHsVwSFZFrHZ8f8XG/Fg80eDxpB28vXHNsY/M59ru6/SHH0WatV+A5i5vMDpxJyeecImug4zQREq+H+3pL12Hg1hQoekD9PVQtut1O0Om8MeUdpE+GueMcpihmQGgEVn2s0Ajze1qxSaf6pHJgCHcVD3ZepMEcKRd0Hm+l0W1Illsk3rGUkvjx0Lxmj9I8cZo5gipt774kVYqh9CiRK3TSNsSZ2x3jUVDdrqVMoU8+YpZjo3sld32QYv+JiebDzdE9cxBQAbf3xMnPZiOmFRUsGZKaJhx/flmFyxehKbocBtaEF1Lr5SIeY874RuL0rMWuBVlPxcCAvpamD2o9zcY9U0mVGjRv3fY9XWYCXrk9LGpUpL5qImLjKoM8p4lzxLrsF2N2orSK7fSYDcgoS/WDVbOPJUyuCaxmd8rY5ZWBzzr9ZxsiF9KLA0bP2rP+M9eCnBz89+OnBTw9+evDTg58e/PSsZ/3J9fc7/uIS9zIBsE8gdP9hJFtBqSfIYMNYmdE1wb6HYXIxxTZs3KfZP0LSAPRg4857b76WWOzMZFvSMQbHPa3Z89k2QbE+LIOW/C162vTtkzTUyq50U8NcCOHKfHddr2HeJT1xg1esYfROYL/oUkDqHtPlJaZQps1gl6QDPVFpmVrnj2mvm5F5z9Q+teP/N5ZtzkWtyHw+R9e2yFtQLtbCgvGLkPzlAF8l46RKjKgYZAGJ7h+sn6l7EeEzia+GxRpQtwJa9zN3jiRhYQcR6IKT94YrPmzWdMlztdgZBeeRkszZzcUWuDXnzh7wrIuhvWWHPALXRDuyyZAp+ff9xjO5XJ0Ma1069k/HxZyfmSa7GWDOnZsIJ1xM8p7uDJtE9pEIdE+rOtonLm8UH/ZNiXZwX2jsfGWObEQANGLN6HpNoHuZEuXprggzyQdo7bV2TW8zdX1YwWpJQBrG5Ns+LfI2XRU+ez/c2WY4M8FsmN+ImXq1Fn7Y4AP0fLoT5oS6BHhtQFgy0/MGLFiMVA3EvKNnJsb76K/r/Fc58uzpY1ytvVknzszxH78ZUJxxVXvyUKkScJmfPeem7oqzZ+Y7zx/bGBOP/MBcYPz9vlkvnfOIYj7H/l/f/+Yfv36RNPfeMsXOJHNzXS+WL9655R80DKJx9q38ikB/tLBPJ0BPHOmJSfIrEZj5xEc7vjg2e09s6oH3Uz98JtZly0i5OM/eZ1aaQFY3K3TN9f1JzR461+tjLg1QxTJ519z5Fmiq5mu8bkCm+hgaQjA0f7d9TP+bHONr1yRTnaI6iOyUt1NoHO+iOW+Q0XybESvw+j/FdyQr62rsMqiUd1QWy10s/3z6qdjc/vte/HzW5zHQcbgdPxhwX5KKjD6pw1VQ6eILLLpiRrVeTvzDvrhzk0AsyXG8oVrHOO9XZusLINsUXVboXJgH3bRn6RObzjkYM9pTYbT7A6Cf9efXg58e/PTgJx789OCnBz89+OnBT8961h9cf/vF3wEKIo6mndgkFzlB8zzkEfLlAAacwWEXzoMmKcZfWtL76P1/GJYhVMUqZ8rweT5TrN7n0HBmWhZMC3FNGBQ4iJPEJlqJFJZRqwCz02V0j0ntsAVQ3Lso/GPOGx74+fwwsaO7qPHHORekqhUgZxoZDmHBwrBqOpusm3aNfs9bQDwzNYFoBbhAUHdx2tejZV5sDte64N7svPGvi20CrYUmB9qZbIeSo3voGHsicR1wrPNN6VWA5r43VUnEYbmbeAWF7kcj+YC1gImNFOmwOcQwYjnFS/jHz4VJSMvkVRHY+NP0SH18grl9klIJh/9lKXmUC7xTGzPHl4tZK3l4SDbS7EximNKTdAz/dFScQgvrkXUYxMw062HQJ5Fb/oCj45dy9ocPu3XkI9tOcvK5v8WecfMRwVfMhEQf36Ac421smLcYA/Rp4Y9LBG3Jf+QAsQOAMIFj3bIploZRlRQr6WE1BWr2hxmnW90J6NrpOug7/ACQ+T4LyWQ+wNBM3j6t8+rpKnF3ctrmu/QMGvLdYCGwUSP/6vE8GQz639Ywg14jS8nGQoWrpj/KZwj+4s8jwvnsFkB7UlPixNo6KjDNjNfrxa5b32UnNgHuLL/Yc34WkvGIyVYYrbyxbl4xhuX9A5a9hNIcscOny0aT9SZuoT3kMUCagjTCx9x8YqOca0aehIDskU9kKy6vWJ8CxTBwSa+OfMX/Anp2bcXI5QPs1d1Q42X0y0PfYTEvC5q4gt0bi2DPREUzBmT95Ig0gcZw+FoLz4JdMsVux6+LcMlRegrC6WlQiBqZxlpBrMVdMoCPWLrnnyivuKfJfjJ09+no6K3BBoSNtOeA1vO24+SRKeZsIk6B1XhAzd9wM94tnyvv6UgJmb5f2PhEtaR1w84PrJR59nQhnQLczX+eK4qSUY78cKbgXKE9WlWk6fx1a0aSOehfz76e1aSGCX/Wf8R68NODnx789OCnBz89+OnBTw9+etaz/uD62y/+fr//zRrGjONv0ZowFmZ8TStylZgFC/u0Weck+fOG3TisgLwzTquwO5QZtykpRRtrF7HEJrbB61piGKu54tLUrAnE/40tZ5K19BqU2fisTJyaY8luBYBqakvmYZO83aE9aRfDSCpo9N68OjQtr0uMLSUwti46U7IK+LAxK5bkEZm8d35O2F3sd4+UxcN57yba8TI0UK/pRBOzWufUBe/7Zt8ynb7WTBzb+8OE5c4hZ4o1vhlmNiC7qCWQ7SZfijCofIv0sAEUBtgxQlVC2WbcMzrrupbAna0PqKu9yYbXddF5C+S5QH4BVca2EsNLD1NZ3PRoYuS/0lnEMi7Xd+d4Gfn0YHcV1mpv7zCojVO4pRJOvOgWMNWxFIZ8gpQYjSY/18V2CjQvY8Vi03xvSU7MjfYevxpmgp4Sp6aFOfctr5q4llg6G2nIR2Lh2Bb4+rWuOYeE2vzOnKLJWb5YSlXc1WK50DQy9yWIP1KRMnjzU6RZ24CYKR7qB7hmGdYpjyfzmYZWvCJomj1mthH6jnz/gGL3KSjnm3JYygPgaAGMXRu3GICrP9/d4DF+VvNoutL5fd/0GHVb/HhsHJ+dmnszW4QOZ8XCQwXeLplbfzw7pmui8wQVOBHB2z4FhBuUi0HV39c+iOvIx1RAdQuIOYET5N7qBJiOG33HgM9ulsNaLjayBjS3kRjeQXQgy+IbPGjTRMjP+Y8M4vJQvJhrtp2PbwvovhcqoLzBp8OjEai2SgGx5r8dyynqX+vS3jMgi3Vpx2nPng6iBmsytwrr3J8uo6Yhi9/9htb+uMx4ubFNoNumU6W7iQVGYT0m3QoE7Pet4mL2lY8f15H45Ck3BoP5bPRM5RlO8TxxTkxvElPMxsjLyhuPRZoMqU/XUk+s827t8wbX0dPTI2FjLE83eaun5JMPRmJIJldcFEXOZ5Y5hHHvrWKkG7YK1g0sW/OiQx5Ju4seyZK6QgRW73JNz6uGazyJzE5zj66TScRiHmBNRVMPY/0fsx789OCnBz89+OnBTw9+evDTg5+e9aw/uf7+VN8IBaIeAseMCL3V/zxq1cN8ivXNaZv+TJCaYDGxSO3DE5w9gi61Ihv6jLDAhMYgmDH3jF9Gy1x21fk4BcmSGbQMlNXmfZinu+SdEzMhqK00xWi+z6/gfbw+cMKNXD0t/8OahgydbYN1c7mTNoEkRn7TkqLEJNzupr9nhHwEdQ1z6wrsMhcWaDIzriUvhaoSg2ti936OYmQlIRAv7xkTAEDMUtHcrQB8xdJ1WJrQtDsnp2uKXJl9WuCDhVtTpoKhgLvEjEiKIh+T6+tLxrEthjXrTVwLuwb0ZPHv3Fxx6CDdeyWROUZTwtJEMDH45tMRYEU3rBWIf9H17QOCTYbRZJH3xsIG8PFJ/mkttm+Kih4lTVmoKCkB2RXKAOtaSor3VgLyEMNv6obYWR8z4LcJRDjqPghT50OH5B2dAhynu0IdHAL9VU3Q+IAmt0W5mGAreSEVzf2+5emy9VwUaMLgVno8PintPcWfTVLX/Q2Xn4i1y0S9BbpiKGlHYNxN068WLsCE8e/v33hcLHfd+ylsLOVVYwX33lhqopnBxzujRopkrcl2oIqmQ1IHn3O3NjKLcAHMPQbXTNoWUey4jxTDF4JEAkXMPexq1lrEkRQg1tb8R25ymF7dk3EpSZN/jhtx6bOFjvmYFdf8LG7c++a6QjKq1jlIYqKjlTF7c49L9bbpepiiz4BC98gsMDTxktT+XBGYx1zHnwLf2uY4xsDbXB0ehrxq+keK1hbsW4DzcsOXT3GneygEq+cpS9f+FQvM5CmDjSRp7kP3dAodIIp8bwyur5fMk1GRW5Xs6YrploTMSxIdu5vdNeb6MmbPmejHD2n8Yyrec79sZIu1qVsxPk7M1dM3cbFpc940l2lowTuTtOKl5EGjnNSVw+DbeOQwnTZFmAA4TDE/bzAU15vOzT++vnSsf+nCMneZf4fifk4B2e1k3R/WXtvLMF8yGG99jzbzdFYxXRv4SOkWq9UNdBvqEDr7oeW1RdfIuZTPel44POs/Yz346cFPD3568NODnx789OCnBz8961l/cv3tF39qc9ev3SZg5wRWO9L4aflnmBS38VGYfDRj2tOmXdrFVRrIGNimnZcJhHmrhfpLQY6W6XFWsl2fpzZsmWefSVs5waSyiPn18pC5KEqWCvKNR0/oA1tiqHRCag/eLZbZzbmANHh3cb2+YG+BqQHLmJgF8+N1IxbLAS/nbU0qh0+7fVE+zPr4onSrxVkeBApWESMvqWGRENsYEUTDbZvbiuu68Fayri2XizRJW7r2FB36/6+1oIttzm0Mc2cYgdn4Dc11KVGF4+UxIJOW5wJKmuu6aIP7/RZLG/LF0FS9abkedjG7uFr3altCaL/Ik6FxF6tVpUTRrsSdMxmwAXPjsmCN/0YZpBmeEK0iq8wU0Gky32QLzbQPeOmCncipw7TH0L3wSQ7Mv+9mPIr6k1g6YuRZsPcWyLrEQlqBmwyvKyU7OWa5xxxXSQcxXTas2C0hQpmRCy6LAa4jU2mB7jX+NWZiwLNKoN6A60i7DkgVSLmuwAfE5pGvOOx969lDhWKDEm4XVjNVzOR5VJ14O68QgKsBOSL8JMXIw2RjeNY8k6kJlIogHxnFr7jkQxJT4G0xy+XiKjUJL6coDtzEVG4kJblWQEO0QGfVyJZAUh7AcTrUCVNVeBZBfK4l5FgrNeZFTdeK9lCPbE48s4n65vj/rGFo33tjrQ6QrJHauLop9MlJx/gelQzA905wuDy0F7Owwc9VW1MpMcyaCx8zf8B03+VLovtYPgWLB7WbbJ17+HGhMcZMjLb+S3E/BXrlh/mn+RTdDL+emZqiSGEz3a7RdMflMuEu156pUly2HKNzU1HaFsPoTowz5Q8ZKev7VHSd/x43JGsWelHSHtyHvfal+APsiZu3GV9pREoedqSJZc2ee/paFzEvF9QNJA8YXyOrOd0i+43ZS9e0cl7WaDCAQOrSHumUv1QnbmtY9aaHdi9zzFV2CBPbSMZGdNTqhlg1XmAEu9WhgOsaJDlxS+bh1j2SoppprszLjcm2N/Dg1v+Y9eCnBz89+OnBTw9+4sFPD3568NOznvUH199+8ZfDNgTM5Cagm4vJWvMgAcO2jimz/ZhQu4sB7fMjZnSopbccjVFv41oX1UUiY+HMTZQSoxFKCOGstA8LtYAzPco/MFosYfUEtmwlMzNea2Ex3imd5J0KtmMs0SUJzRXGDmcX7C2/kFcvvnuzaxO9hllbeASWw3F1f47CTNfETcatVcU1LdTv8XfQyPYQQ9kyMnYHW/H5HLHK+v1o8aU3zW5jtybrRQsAYodBg3dusdbd8C4Wzsuc33l/OgQqC/dLSZEBU1WQMqCljbqbXE67plq5O4SY57hGcoNY5nVdmDvv//oXx0T4+D7USJde7lztWIrJrIiROon1KkvuO2VwHUZ4c/n1YZiWGasds+Ld8iTJ2Ve+xFPW3A+3Hw8XA2TarUS401hrklDlFAhi8aG4c6br+V+8JkAgu8Xk3+IiWWhyXHd/TNNzkstF8M+C7sJx9rCaZff8/YBQy30hFuzuFEvq6uB4783tMiOPBl8m9s0CluRYecvM3dxGloPADciwuCQzEjhQMSAzaebXzteXpsvtfQ9dPYnUIFCnR1vTywa4qkNiF5SDzzNfdRg0JVyHDzBvNxbGvm+8xUR+pt0141uk47JhfLeZ2vVLHjAeYo97FzIVUQHcMDSowHu5pqwVJy6psDnFbqXil/CUjksAW34hy5oVr/n7Y5TcqGvEF5dCzfguTYG1T6HJsLJND0spyYSmSF5XQCGflvU1z6KpkGjtdf8rrcsRdjQV/rmPvYxma6BgTck1MqmeuDstLkT5R27zpsiRVjXndo8jTuYUST8mzSCW/vgTjaEOVWLTP0AZ5plxau/PPWeYfgP9GlSUuDqdTh4R1i51Dtiw9qYum9XqtBjRmvbASPKMFgCfKaKGPMVWn5cUivPdRizHo6El9yOL2qlOE1uT2n5kN26uTpoIfJ0Jo+eaDMy3KQBoij0gVbkQG+8wUzzoD4jVnowaj6Hxe+tS/HgLAxOp/XousU1XTod9XpDYPHOPVuU/Zz346cFPD3568NODnx789OCnBz8961l/cv1fmOrr4HrwFRDl42LUX5hWRn4hlshQoqSHOTlP3CdBDcMtYwD8uuQV0yM3CahovJyrG4a1qR7vhssFFFvSje4kK4l4TZu+2Oc7c1qpBfqOqez7+y3AMCa70QoYfYCxBbVv0jRKPMwJZC59WCuZGxe1i/tOfunktQyO20Ajxq+HDRegb4bCUMv3eBFYTNqwIlZwpowZI1EZ4NMtlrZsKSA2MHPNDF3WrsR246HpTL1k5PvmFhNS/SNVcUQ/phhva8boWixsugyy6zBWPa3fGO+9R/ohn4f9fpOVfK1rWrzFOnqEzMargSIaeXHQ7BjGM5XklXjGD+V42rTYGXUJpBjEl5Jkc4xhC0vJiD77taeN28WWVp4pXBoVzw1cQM/9TCUvH3ZbchUbhg0dS4lx3iS46RrNRLL2UrFU0K6Efli6GnY51hQEBwRoTB2fCWUeI0Mp7ndSbN618V8LLjFrNNy3vFoIZ420xlrgJQbIlx020LEpaAS04Hr9YtdMzWMEUdaEv9hbnSfXWoj51tTFHkBVNn5O4WKAtTGmOJiulBZj6AOkkqYGjHi1AAPIQ8j0WZWJz/kZk9znM+XDM+A1UwVCq2vmdC60NR8vrUwZz89jeQyhu5oeSVSVnqfTbdIIpNXnWbIJMgamPXEALKX/d1PhcEAIPSb3riKCSHKKtG54Xb8wK3KPzCAW9/tmavEf+Kd2AJ3TiQHnWpzCcxjV7mQN+vxrxwUmRrMc7towErispsImZo3Z9f8JELJHDnNCtcnLK6aAlcl+fZ5vDx/A1+y9xa6Hf7DsMZ63uZbn734A68SWLjHVNjmiW1IQlewqKHQ/x/ydFvBEwwbCJLO5u3A2MYDxIPSspPJHyFQps2l1gDQ1Wcxnz+iFgq6ovMrGJPwDbCd3lfa9xxovnkl9n5vG5CYB1+rxuUHF1EbF24WpAOn+yPOY62IjQ9Fz3qxWscPkx27/7Jdn/fn14KcHPz346cFPD3568NODnx789Kxn/cn196f6jscGE7ChNaWIkan4JFwb2gMxCnZ8RCawH++VrmGm0Hv97NTocBuJQxh4cNPELrwgXO3V4Taj0TdYjV+DjffJfGKpHf+Mso+QmXRWygvDTGyXafIbw2THsOrWim/VrUAfwYoLsS8p0G79YXjXeCCwFRgtxNx0pQIJ+v90gYWy5vhwgJgaH0ZU17o+wdw+bCsHhuGAnFTkFxENluNV4HPOOMv0h5nTju/GbUXGeLyUZCGSt9xU2CdBWTi0c7vMcRvDt4DXWhppn1XEyF7cjHXOoTT5SwGZD5jRJZNkR/tJ2L1lWEPEoir5fb9/QCMCYUe+QvcwUU7Vhg0daOqdz+Wj8dIx0QK6On0xw9k/U9lwyF3kuz5eJ0NrflhaG0B2GLqWGZOKqCxWTKov7ftYPh5NNTIvmfy280loPfKcK4LyBT2yiHO/q8YQe6Q15iznA4B3KYl5BK/XpYSHyf/n3ioiwtXuPvnafXxcRhIQZpJ0hdg4yxQbaw6dmo5VSqBDn5IEiak74GxXgPFL+UhRkNF0dY9kYBDXYQ4HKF7mMv2dPbdry0eEH1lUdQPj45TqfmlM3Sx+znE6AI4/ldsH6H6KZjuuMXykUZg6V2AKlVSXyZSbQJMjMcnS/TgACoBMvHuOSdfE3dnVmkZZt5jqSswvFWR5PJbyx68KY539hphVGvmfUBNHzp8NDkrtL5/C1k3mxImUKTZyuT5FskH0mGHb+P/Yz0TPhikk1SeTLcNtMx/jZ/m2VBVbFaY8jJD0w2w8UwYA10hXfP5Mkq0pRD5gXHGgUj4xPp5i1k2USqmajaYOAoHf0ylFq0gxF1tbzH+bfcysm8JP8WQmWWKNsXUE732zc0sOgzq0Yonptm5JLg/6tCaW6XLWKdJaUzhLDLu+tD9Fw8mJn+6CbklMPtd9CiJrEt2/qyUF9Iar9bzledgOCEbFkR+G2xVbZZH1ANf/mPXgpwc/PfjpwU8Pfnrw04OfHvz0rGf9wfX3Pf6qPw+NOIRpDwbkbWIfFkKTpZKyVDDxY0IbakffG0omp3qI9fnXfI8z7bn3Jh3+H1//JO49yE1s2nLjtqDr+AzIn0LM9cZgGOoQC9Zik6LnOM3AgvtdbE9sgU8bOWbk3nyziSv4ev2DpsnfN2aJrWELXIwXyCeia8yL+7SyK5itWFxl/M4tb4OR5siQW3453vJgMA5Ylfnpx7OhEEs0wd5LDPuRSHjrmuwCXJ4kuTVNCoMaMGvGB6TsmUrl2Exlkn9QNtxVRG2x+6npe+3O4od5srMXysSAHZA2AfhrrZlENszTgNjDTFXLuDZcreMrm15Jd1K16ZaJ7TIVOzDgpOX3oY4JgZksAbozeQwfZrjEgvd8b9dmZ7Ep0uWysdxZy0ZCU2J7pjyoLnK/j1kKPVKIHO8X8fnGVcc8WPdHoFQX6Yygt2w69HPdR/ox3kw9DPB4EglrNdaa3Padeq6u5fLluAJMbFtM74QYuKTs4uv1wrFhFAvH2Fkfjx8lQ7GY7yzAh/k1uhw6aJJryaDbUhKWl1KpZCLjTbLRlEMzebYEAiY2WEmmxAVrWLQ2Lka6ZcXejaWKIdzZpPxeWseDOSKl5SHyAfaICU0GEE2XzNCK88wc42GBBqM5Jt7LFrA5RGmbYtEaM+wzgY/pViDGR8qE2B2GHYa0mr8HPUCzfcBsi+3MblYb4SMbS4GbOPzwKeYH8IzFiY4/ZlMf5niAbZs8SdzU2RLrUueOMx0Auhc9/lAXrWs7BbqbujFSbSFi+6vneYdtQEvGV9UjLZH5fFYSa6lY7FI8z6TbPtInXfHZL1njo6LLejZIT+eK2xRuCFhz/l4Y7q1Jg9MR4Ncaz7PTRaPuiSsWNYxvIAmgCs04mWxAvPj52vf4Mg2At4PvFY/VmZI4MvBOC+66CUPSl268Jxa0AL5qtJGU1F/AK6d7QC81Pudi9pFwnY4YDrCdfTnbQmDUDAZgn26mNP/LC5Ipbuyc87P+9Hrw04OfHvz04KcHPz346cFPD3561rP+5Pr7U309qNwDqhSI7vFOOEaugUBiN/h1cZf+fiyZ3mZuusf3gdZr9QEtbprG1dX6vQkcy513JmvkEZgAo8Z4u4IyGgFuJqPVqp+pXG4y47232rOvFT8t5UCsxduD226yxabETD/LLO6ReoQ5K0LJifp4QPgAnKFF2CWJQ5gkJzlAtHeJgVgXHho1nzuHUfQJYoWYXzGpjiYdMYFIPj/BzjcyDxbzLi8PYNihWP6Znubri/+6/6VJciY6N0yT8PawbDYBNyJIku2F+ZKcwp3LnUWR2EgTxlTcbMxnjXhd8BcJy4RaAbkseZS04V4fsAwTiHvaz9sEph1ev14jgzmGw2JmgyaQF4k52JI/S/kY7k4Sd3dsugUwMJN06ciglGzFRHpLmvD1uhA4lnyhB6gGId8PN2iXz84kR3fn5Wu6BQwPtZrnfcvk2uwDDj5FzR4BhC96GduSa0vy4Gaf7aB7C7c5168XAFc4ld/01sTCZaauiN1cL8deX1Dyo1FRoPvjjE9Pi8k1A8uCu3itxbv2eFDZB2zRyLsHxEKmgI6t9WH1zI1oSGd8qUbqkTXfq0l3ZpKAHY8Sq0nSg2IsgmrIvbFLHRxmzLlMYYikU36SdM/PlYq3cGM1SLLQ8xk+RtkMIhmQolDy2acYkgAwYA8V0OHnCXfeeQ+zPE98Da6K44uj69qu/VrnWXOj0+kZi9hjRO40NtIfzITT3cktD59lYyzdSdg87/wA1+jTSaKS6a6iK+fv2TlBppLUNbLA3XhncefGbOGx8Bom2Zweg2zzJlgIMSpGtOvqWThX+Mj+kuO7ZPbD7iaposMCXOzzQseeQCIvF/lCyV8mYiZ2lgp8wuQlppGIlJCc9hcjF/TAfVHWdN+DCxtwek+hMbKQZPaVKxbK5Ls/xbyY+OkY2sWqHi8edQzUZ9OqW8LNWCEZ13dq+tyI4kDbF0yStk/FP10YPmBZe4Exlz9W+SqENX3vxDB9RjMva85ONv9M87NSUbqmiHzWf8Z68NODnx789OCnBz89+OnBTw9+etaz/uT6+1Jft5lBpDfxxhh/mnwihNvEXLXB3noxf5mrXdjnYbOmHZiH24FXLI657YrgrpSZrDlsfd53uCYTDQh802zeWIK10zN9KSb5nrf7WSnmx41YYlpq2ru7t/6sjCvk85IHKA4Y212stPF01US1GvC+EnrLn8QusZ52kqjp/AS+5McRsZRg9i0PA79oiraZFMXxVHFiAL48cJR/1JrfRAe3NW8mgZWLwV5zf8roCcL//v2bFSHzXi/JZEpylte1eL83exc95szLnLwbsyBizKQbgUdrQIbWnH8Q4P53F00SqHigjE6Nhk9iErPxzlt51JcS6JanDAbXS8kk75v160Ut49+Z/MPijIXDga+5JppOpoQZPcdaYrCsjb61dzI0WfCKwFvMbmBctiQxmsKLneo6WIEtuPcb9yBWsHey7xRY9kk2nZJrtQzCtZem6IgXlSMTOGCmZe4eU1R832/u1PfJy0TGutkbo8gxEFZHQU0nwv5IBhawFli3fJltkXeJ7R/Jzxq22U1T/HLAfE6yXB6kq2ugpyAl1Q1xEZ8CNVwT6L47JZPoFthoscjdAnfhKspsqTCobuIKog2qpGbBZKhO8yJJnDIxz5l6fn4NeEw2u4tqJ20Y4m6BE3QMbsYbdUxc7fxyx5a8oXaLBXVUiOTp8KjiRp4nuCYHujXXekHlGC0bqwSWseaynAfRpnPBeaN77n18XfTfq6GZaW25qa4xbDd2biqLVzdryTdmo+tFg7djPYDZbF4aDGCBkXqA1Q/4627sMspVcXU1r4i/SClMXUD8xDHBr6J6D9gUEo/Q/vIU6/vGp5NCMXXXlgdMBsejLEzFibkTPcb8JpgV3lg0g1YxnLLmXYWZJICqAn5kbmVTqNrEq/k5VApjGPgwuilvscjTWaIiw3w6Skw9K0lToeLgyF6O9b9aXOSZtNDLhG82t0nmCNMNNWAZfOKa8uDeNyGbKHxeVhz2+55coOszRaAuhLp2CKwdb1eucHmiuf+lA2N+XlXk5FwzIi5wx291CnSrq6Ecdu+/nd6f9X/zevDTg58e/PTgpwc/PfjpwU88+OlZz/pz62+/+Nvve9g0jRzvI0so6ejPG3VbkkB4O14KZpkHoh6D3mPsjCQmrTZ4quU5YvqzzBIQXHp7v1teCupg19v5ZYJ6ySTKzI/viHLMyGpMbEUhTb9kMiGGtNHUu0wBCzdJNkj+2RMsaCUolNRzCYBg8K2m5/FUYAKmPBeqFM1qhYxHs3nvTQSajPeZujXyhUq6kBH0+KScANYlE2KPl9xI2iBbE9kqiQiur4v9/WZ182VqUXdbfJcCNyMXEkMu9rkvp0wm3uFAjsQh5EuRY77spuThLlbXsWFB0VQuhplsSZjk01HgMuVu0Yo0ArSGUZxJV1NQNFwsomV8W5nY1wVX8a5bjJVLmGAsmcmS7K2R8G0uhrzg7WIco1VQgFj/I6GYu0qWjKRfPqzyXO8I+cZU9nQ/KM0xYKgaIviAwWNYLJJqpgiee9c1sgkxlO7Oetkkcfm+AMNwxo/JMTLZtYbeYibxFsB2x+p0TZiAdYtBP8UVJcPwnOdoXYvvvKluVix5tAzQEdxA7flzv8SI6fnG9UtSe71bXiY2LJvo2lMYOYR8erpaai5CMqSuz75utAdzJ5PC2e83tS4ixJCvlkF5zHVrehL3D7N3pHKYJCYG4/UxUwmHgRfLOWTu+ZeqQhzt3Tcllrx/wMJn3zCb5y9kYOfhJ23MxEeW1UfwJHBJq3hXzAxw47cVHaEjzsRry+MoFnlvMjev18Lt+sSxsMYLzMaQ3uxzv0BscbRhyUy4mwlqxw+lW4ytz/UFrFqeRyRpPV0FTdl409iYm4NY2WLY/x8J2idX7MRfr+mm0ATDLOFWHaOKjS/Ap0sjPeg9JutMd0Xl7Eg+fmOqDQtMOUgnNN9vhl0X2XpZEVfoBUK2zOojaDN1jFTxiqDnRUlmTyeUDcvsVF8zve6zQTiJ7lzDoul9AwUzpe7jy9QqYok93R56Vn2kULW/1NmgkIYtp3wrr5WN1E17LVu+azXFxSlqsnQNrilqMOW8jbyznvWfsR789OCnBz89+OnBTw9+evDTg5+e9aw/uf72i7/FtNubA1veLJ1YxUDQeZu/ZCwaeSaf64HrE1xBSQfjipgJTQpUy+0zil0TvYpXuAx9J+i3K5F2wNWSXDA/j4s9S/srY8IkLC2fZGfDuBoyWLbWFLNrWrW/S4HxV1+ky9C5hjH1wxogYNJoRLoDfgXv3HRNC7urlf7ee6QONe3vxxei/hIPdX5SRIhhogWKJXkQ6H/nm9XGiwlqJuZq30n44r43ca2RaRSXO9uct0YcCXDVgJBQ23mhCXXcza+4xh+jMBcwZsmvxSaZnyQiQF0sBFYt9LvlAibf+Vaxw4AtY1i7aUWX0QyNfu/FYnVT97Cocek82oGLbfIBsgLLrS6A5Z+bbMh7Ylexfi36LqyTWBdp8Luby3T9j7n2nj3Izs+xdOvTOtV6L/Dg9ACmwCmTD5GAes/PaOPlewvshyb6VRW5k3/8egm4LElSsgRO/iuLtb4E8EsTAb+uC0MMp7UAA1PqpKt9v44nCKGJYRG6AsO8a+KV07nJvlGZWUPQJTeN9RrG8TwlYtp3pRL9fMYBcAKzMUx5D/CTNMRNTGgjcP9de5hfJw5itBMtmnbdo66UV1EEYV/MiEXCDPelThVUJByz+Tb5/OwSkF0xHjeZSuguDx+nRkIwhtKDQdKc41fzV/DVjQAHfCRtNqDZZpf1xKf+yym1rpyAD3D5mWbYI7/QxDLrJi4VRe8tcLHMsTtPgFLB4UIoVQmtjhyfY9EDUFxrfT5/9ApTfMfs8ZFVlfyn1jCjaTXnNfIkMzp6CswmXZ1FqinHN6lOYaPvSX7ue9MjI2l1XpjkEgB9Okt8vFgavfTwhn1TKQ+ZbuWUtZa6M/bWlZ1ujzM8wM5LjylQjm+UuasAq1IHz7D1RdNhFEnlfE6omN2lz1kx97ZVtHSjTqg5V6M/eaRN4D+mMGxk7p710xnRJ2aV5Gs1/kc9RZSb9mZZk1MAZGsSnqnS1d5ySbyYax/rYrbF7FWdb+XsxRB4vrN4v2+e9Z+xHvz04KcHPz346cFPsy8e/PTgpwc/PetZf2T97Rd/CpBqkTWDr3XpAds9ZO7RzI/vSRXW90dmoef+tFj3sA0CQAdAODNFay1yDFHNg32/STdOZjVFc6pnStWAUKyHO9bx/HX1+XzGP6IkU8me8eVrxsQPc7qHiUskM2mT1KKYwyglUSi1P3dRDW//mYrUM+HNPLgS6MJwfIxmMwtME+7E04Cp0xhM/jxdjnUpQA5IWiPHCQ9JJ1o/tzrglv8Fbty9sYDffeuYTH641gr266D6kleD4/jSJLvqm11qdY4x4dY1FbPqLhRy/CqoHGayJoH3x1gbJsDOcZoZ28dZaNq4BToMa8k1rDbLxY7ve+MVrPhF1lvJ1lsMpiX/Hi+dGoNdH1CwZFz0YYW26Z+PofD5++PjsqoEFAaYGAKHYovAB9A1TLt7fPaDANGALTd8XWKNBqiHyX/DawBO/SQcqglfMlev8S8xm9ZzgV6bCZAcJtl6iouZSDbMVpukP2mSXqh40X6Uv04RsQR6u2dP9iCuEm6aLo8+nQYHIvQUBZmk92finWEjq1JCzpy94JLCeDh1iwc+ni/Vxq4GnO6SqXXofD2C7E3tJEzdAmY/rKWbwFBWUu7Yuj5s8zFct5EgFeoy6frLtTsgZI65Jki1iwH0MoGnlhE6oMl8A5RsQDCu657DTJ9YJweiMVQ3RsZjn0K6KLLfXL74WgIqUVOkrkudK5msS94r931TR3agm6+9wYmjekkgOZT+WoR8miQRLHWrdI+Uwj+Su+bsJz7s8ERY/ePG3lugczoyDmC00ebYFIIHTXU3e6v75WXBnnh1tRGlq5M0WxXDR/pkI0+xYbqhiHh9ju2UpuGH+e+PbEyXxvBCBuoG3NO7UJAnLs95tcFt2k+veSlz9o/NuZ4vPYX6OYLdc7zaRGNQrWKR48dkPmSzgS3Mzp7zj2TTfRNqOcAKaoPkTUZbzX4pPSOhOEbm7C7U4cVhxj+ZjnDnZTGF7rP+E9aDnx789OCnBz89+OnBTw9+evDTs571J9fffvEnXxVNrjIbAJglQFkMXJzJXiFvjbpvGsPX0kNdkg6s8GE6JiD4hICaANqpqUhddJbMf+0EqwFZKS3/mYJWLjPYrnF6GSbKfUKwTdAyH6YwByj6TC9ikp6CgqfYkXN+h+lWYjKNIx+GyIfhWBjuFzUAWgRMK3l7Q/5cp0ZsRfgA2RLwtfHLqBlxf3mgOWT6+wIHAiQZk8dSIGa5fDmu9TOBydx4p67JKh/ULRbkfX/jppZtH9Znd/HvAYenAxwX82mj/8kUs5Z15BoxYFnX20AmqQP4q07CFwi3RqCuJzMcxF7Nd938WheXfZH3zf1vTRhcl7ZqVNO1IeTHsQEbf4ww50y8Mzsm5c72ueJbLOKdb9ZaSpI+gGynGCaUBBrITjFbvoaNG2A7DGGBwB4tkI3JaL0PxBk/o7bZk017jG8RKmLcMb+4Mqg2WIvr66Jr8/371nMGlE0LPWKCcwqBl8cALgFFmWab5FGl5+d934Q51yW2Kw/LO8D16+y/rPFSmuTZAphVAhm6byMt6794msx1r0x6Kq/PnshUoXFdMC5M1QalTJt72GQXCChgVxFroQlbAgxZYqHd/MPazqM5nh/ab2eF+9wngX4ZFjtlfIrbddjPhqkW5ppMl838GqYwPyCD4+8ykgWLuU8qDk83B2aKYYqCmpI3zwFdcJeK+Gh6yUPrgN+0JBO6gkxg5VDhcSxLdBS1J6YFjmKHYdz5VvxpxZhlNkyn9mQMmHaMbBV0OdjTTd40eqSNms4Kt7/EYTM9JxPXa4AwpnhgSPJ0ZIy1lroZtq5ltrps5B9znjufzpyf65TzQkCMr+QXYSP/Qv5UNawtNLVV8NopoMwVv+ZFxAHFR05lIStp+0sR0G7gMqU+DRmKplMDfv575GiYpoKazd7qn5/5y560U4zq5mnKIdPFQ6n7qoJeJvlSn06HYw6uPecw0/Z07PLAms6ZlixGHlb//eXNs/7cevDTg58e/PTgpwc/PfjpwU/nvx/89Kxn/Yn1t1/8mfu8xW9ynxHuRo4JrQKNCdTQLFuYXfqSeA2oHDmHK5lnph70UMQ8niZ3FR3OujQtqW750lRpnPtytdu/Q2a3NSBI7crzZr8muNYEq4bv3pjVj3TCD8vReMkkN+KS2W6+6Q21ZLYaE3DSNKrdx7/lgBWrZoUR7fz+/iandd7N8CzaZUJ9AtkxSrUGdtM6eIzATOD8Mnl/HNYScywCUqzkNvuwTAvjG01JaozaqWly5vw2JapVakkvCzUaRLDcuSZw7hbT9y7JQbxjPBCCO5NlxkV9kqEmdAXxunj//vcHtB4W9jpT+UreD4d1HH5PgNRD4Adjv5MKyYLy3lTBFYsuG9+Jt+QOqJPhTXFn8isYdtPE4mQSK6jl7FIr+D/WIu7Cd3NfF2bGve/xC9F1CaZdwGWee093RtvIeFC7fTMdESFT2ao97Cfkvemt1vcIh09xkVQmFcGdMt+NCO0RwN5KMk3zJiEgroXlSAKOpGf8N9KGGcTGCLklOcpN7Z4uAslyzv3SFMTgvjd7zSRBF4hSAlfCZ9j/I3Go5gMovGU+Teu+HqQjxlEM6X7f0GK0TZeNuwboZbJ3U7UoX7wuAeVKMdrES98398EHpFgYy5A3SyfW471iuj6VicdircW+b+73ewznx9NmqrCsJjngbEhEekC6QP010q2m8RWfIuimwQ5YEWsJYOMhdIpeFfYO86yIIZ+Jg9OhQdrHyP23J/+yBCvWv38TEYQvjgfQ6+uL235DmkzXG/3/7NsDtGnFkRiWWv5bjcclwJ9HWiVG1k0Fyj1Mbbm6ORQ3B7EFXNfF9/t79r8KpUb345wzc00l3ZNUhrx55zeFq9C6JNuQp4/O5RjEJ0nVTXbJhwt5MOUMKrBY8pnK+jwHB+WfzoTuYo08EJvCeqSEFzZdP1PkzGuIIuXpYzbeYj2G9407KvCqPyDfp5aZ1yHTVSMpSYSkQXcfTn4kdKXcV7PjqmeYQ75UC3vKXNt0DjkvIrTdenKmjuB0aXVN8WSqZ/aRcLlNt1h/ivhn/fn14KcHPz346cFPD3568NODnx789Kxn/cn1t1/8hRm+Z4S8h8iTljnqgSKOccU1coXErvF5yLeCvMN7iVn4ehuLY3zaSshVlLv8cFpPZAfE3gMagQh2btLBaoBVzThxZ9p2jbXEAN4DCttiaC6xbrjkEd4ysL3DgZn+ZE1dwebmOv4MrSC2C8qcKiWsruTXdZHvN7YW7/3NcviyxXVd/Hvf3KvHEHrYHgSWohV0kmFPOiE3VxiYzLi/exgNg5K9KyKONcGvqijbhAWUs98bcLDgTZMv+MVi35tynfe931g4nkqO75Xg8Hsnbl+4F5Y33c0V8maJ7gE+zhqGjtrcfPP7X79Z9k88k1coKW4kEvhd3/z6urjMyb0FwixYbrxrc3fT7816OXEFuY3KxfbCQnIL9i3+rGyYGei9eeF8rS++O3kNMKnluDW+kzvXh63L9033Jhb0LQPqtS6gqXvzj7V432/MAxL23nx9vai+8Zbx9c7m+BJZbrwOU6Y9Ee68fn0BI+3Zm8LoJRD78iAJLDQxKlzt6pWpQm0F1xX8fr/Jd7OuF9zwK15KxL0Fwmrzyy+6jfq+YZjEe98q3i6ZW7uJaQwvPJp7wX/dbyyCy4L+nslY11Zh6CbGawPZrNc/yFvFgg87vapxv2Sy7UUseOfGbOn52YktI1fxe79p1sjc1D0QGP8YUHjz5svXAOAlCczW8bWFEvT4n7QVFsUdU6zd8MXiuqdgCLkk7UzcBTrCGMAyRUEXV0s+cUz2GUkPBb0lZ0vkq8MwkOau5+XeH8kLJtZQEzeTRozxKoi7MAS4ZPAu5jqtwcTau8O7Nt7GV0KUcbdxXf/Ed/NKdZB8s/nuBG/CvxTL6jfmiUWT9+LySy8CaIhTEF6sHh+h5XxX8mXwsteJIh8530JgdaOpiV5ivbcLiHU1rOCumy/X1Lb3v35zxyKWZEQ9Lw/ownnNdMElM/pm0FXIN6l+szz5uhbv/S92OmEv3NSlINZ/yT/bi22aHvcqTZ7clDo1EDhVZ0NjBFXGjZpPlhlX3YQbe7umdpqzazO9P/RM2yxTsWJl/Gp5yqRrAiancwXje2+qnGsZr0u+Xf++t/xpLhnhe8l8PM25u3jVxWJj0ZgXO7XP4HsY6SYtyKUuk3TwdZG3BD3LxZyL21cnVdMaEjGdFjEebplJsFQgHw3Ps/74evDTg58e/PTgpwc/8eCnBz89+OlZz/qD62+/+Pu3D4PafMDXwqgAkHHpbk3AcrdP6zojITA3sQ/ZYi1WcKekERQsC7UjD5vJaT82jdze08rbLQ8ceTKI8e3hTMQ6iT27x/RVxHoLs+Yw5tMC7FUCkDM3/Bu1xIdBdOu7FeE5U8fIHJZSrExmcTtYvDB/wf2tNvsq7i7MjcuM+77F9szxXq+XGPvOaaEWw1jUAI7mnZJk+DBTy5xNs02JOTOJYX0si3Qn1oV8cEJSjtxibQ8lh9iQOAUDAvb39+br1xff798fmQ89/i62leBdRQvWZDb3ThUW5li/WdcSmz+sV75vrteCGn+Rci5fdDt5f7NczDMvMZ25VSRkvmlarHP2MDdijqNURImlKbruocqGSc4S+4/TqCU9RmJFLcl/rot3bfa+59pD4+qswKjwYYX7h52dlvhgGEmz6XxA323wJtW90LM3Y6aBuZH35vtOloOb2tq7oVL/XJfmSr3f72E3XZ+1TD4pdQoWB5OPiTeaLNdisi41rsNbzDTmbGtukzTJByBZa691TsK3GMYPGK7VHPK+1SZvTs2faG/rOQwk83jh9EhX3O0DZiyCLGe/k+xbv8/xokFJuovjHdJmYtCR9EHs4BEGSMfWy9m5CeRtkzWdKj2sookZpxnz6JHVmZEmhQAGFmjaoB0/HsajyljjB9QngGx9x18NvA0+HStiW0dqNgWUTXFpY0zTrRhirr1Spc6XdeRKIFmVFXEFv0dm0h6YN7lvaqsovWLp/mRiV0x8qo+07EwqazfFimyuHhbbSkU8w4KeLqNqTXXskSXpJoh3N2iKyw1Sk+O+Xl/sMvYtVt5X6IXG8Q6rkX8whtwjvchbU/fM5vpzSXLTMyTAxkx9CmVQvtBzo/0RtGSCpQ6AsPHogU+hc5jsz82a+9FTiIBxprzpHczcJ3fysNIjnbR5UaFprC1muorvW/H9eNrk+K59Ohfm+WDY5DoSGQsVndYyuMfm5USBS47Zb+VEdTHVdPukOl16JJh2GPC/eCeNdEb+V383uz/r/+714KcHPz346cFPD37S0Tz46cFPD3561rP+zPrbL/7UDqxVB1i20VsP3pk6J+8C/4DMmjfrcTT1JvD2XT0/4zILzr8Yz+rRU7vtbkkolvHr9QVbBtl3bq61ZKCLgoQClf7/M01qAgsUPS3lP74Cald3EwNvHHCgX9vIXcTENJcvyhv3ENtkSeem3DWlbDekkS4PFoHk4mqnTTIcs8Ai+H7fJJpmZEzQnOBbyEsjXprIx3QK8CkGoJORgASgKX60EmLljWWOz4dYN7/WwaKfJOGX8f79jbN4XV8sC37v/x3za/4xMCUffMDoFB+E61wAKvl1GeXFv37/xsv45/WLVywlTow+RuINO+VdsQb4J82exH6FGsg9QoyS1YfNVHAX24c1dZm8WN7i8pUolDLaHPOci9oDwgWUeimXXRHyBCoBIEt4d7JDMg3DxKj2sOQczxNTUg+bDgol8wOawp24LnpLNqJ956wITQyLUEu+nizM1IWxJqF+Xb/ITPLecKYLon0rHD17vYozHS67sTABsfF2wgO3JZD+vfkygdxjoBsmucH71rlBj6+Qrq8hyc0KyYnMA48X933TbZ9r5+7UnnsTzr433YVkV5JkeNR44xRm4wriJi+qiSs2IEHG4AIBZuru6A4o472TrAEP3cRyljsVOv7KTZfgqh9Wkx7wNV5YLqBL6VsEZhWrsPoLWAamkDYGWPf87NwLaCpcMhumM8XOj83P1XT0TIFVp8C/FpXFe98fVjwrYcn0nFYM5E5+vX5x3/IL0rbRc4/1GVinYzFoK64y0pyN8Srjq53fFN+o88CGlY4pFHxA1p6CzRC7H2Z0GJkyr6+RAfpS0RmmFxlVOeDP8D5SD5+iR8/XeRnx9XXhdTodxoulJaNZ60gAddUDx3Ji/v/pxcjpTrLwKfblX9Mnh5hBqeDcNWy622efiellYtwn6s+1Byt5NvkwxIVhcXFdoYl5XZ9898OAqwA6PmnXWqzdU6z8fDbA3do1ET5G+3oOVxijqFHcqcLjkuzPZqIncEz1TxGlyX2TwKo/Uqpn/fn14KcHPz346cFPD3568NODnx789Kxn/cn1t1/8/W/pUAIIFZCuN/BfPWwLBigI7TvpLso/T+MnyLidKV9N+1/G3Lc+r4dFmdwpphUnsylubA/rDOydYu5mUtppz/dYk/xQNpwHWOa+YjtrZC369DEbjsM2GLsknVnXS9PZ3ARmJqj/0yRxSSsuK8IN9ua1XtyTjM1dcoUTMPkL+1FiJ3pA2xrwqqA2Cc4EmE5gCjsyiWH5wig3NlAReMLrtT7sWFWpZXz9d0YDOyC/uV4vahvdzr/+9//in79+qX17Am8dRvEcR+jqH9Y2XOC+66b6x7w8J6jn/Y1dMWDTKDbmk8hb9+y2gg9A0pQ0M8i9x1T5BbypThnfun6OVseBhcyzX7YknVL9IHNqDPzS/Qgj/BLIGPCXt1hrhnHKKuySt8nOTd3Jay15lYQPK1kqfsabyLIwnwlsc23v729WCRzLa0VTBo/cJKvIOnyqqXugm9pFklhrgti28bM5xU1BW0x7fc5vgDn4UlFZgKUe7jgJ1Y2OJeDRpxgbr6VpgR9Yh1jG5td1fZjg6uLem987qfmW9qB2cdliy3kd2zUA5EVla/8NCDZD1xGf75/EfECI/fidHOAHRfWY3mOS0LiMf3ZuIhbQ/N5vFZXtLNf9y3mGslWwWut+kZKZmMcHIJ0YZrjAzOcY/nKMMUB6fGa69ewqNsyz5Yo3P0zojwm+n86A6UypXSyTZOo8M53NQS3hwXI+NLsPID7Xi/aR5vhnol8fadvn5cIAy/4B8MscD3V3nMmRznSCOKTJ+0uMu7YYqQ4Dcxm6vyspbsVdm6LKegrLRd+aaunmI/NQB0aaLmrO9RP4c3wpFZ3noGGM+x1L4723jNPNCIwMo6O5W+eqyaZJpPKO+SIazrRGX85POjjTVX08fuZlReu+CHjqZ5uTg5i4p0ENH/nTsNq7N9iCGpNpwErXtkyT/Tr0EqVSUyh/zeREvaSp8Z3RB2aNF5LPvXdj9ZhRe2gf1/E9Mnb+sO8HGLv/tQB71p9cD3568NODnx789OCnBz89+OnBT8961p9cf9/jb97m5yAYH7Y5aA6VbdbkpL/Dbn+kAAOidqnl/TWsXVZRDuFG10kAiOGe7+rRpHRr+peYIANZTMiQc9jucLV+nzblj7Ezpqltdj5XTO49bJK5gvdCgfGNkS4zaDO1JN9bLccYWLnARcQwJI35fE4ryATOjbExqpVgenxNXhHgAjBdMuNWEuUjJcjaSgrTJl2mzoAvF9TYpRbzMpNkopOdmvJ1JsKtCFbAzv0Bq0pAgiph45BtsK4XhkPJP8VA09A+I9QFkKzlP1OZLHeWh6REJYa3Sjmfy7Edw/SI3dx5D1AwPAVEGT+IV881nYlSe+e0pqtVPXvkIwhAir7d4Ett+GxWqijIMOIjDeJTJFgUmWqiV3E0LG1ubIVMyK2gUiD8ErMlg+fQNWfkObN31jqGvTK0hubr9Qu/cxh6+WzUAcOmZGgmXxp91pZ8Ksb/Z4osFTicnSF2GEmy3EMPmsn8mwNaV3C5EyWJgyHZz29yZB0uGVjXpx2f1jaA+gCge+fIzPh48TBM5AHdjboxMMnKTtv8eR6CmbyI812b2sndmmo4dOfnOe25F2Y2bfYqEs0cQkDza7tkJyOeORMPuVS80PKSCupzT04il6TAPmBFk+cE7M4ldiA9fwoKZ6YMqvA9TKRNjOspJuYbplvmw4MzyIPK+shY5GszninV8vVBRaFH0CnvL0t5RzGFUHeMvAQyC3okHV0jxxGYMYKMgk6uFKv5754rlkw8E2jridGgeGP4dAg0jHl13onbAZYhw/XarGVzHIDritVI9Krl/SNrsAHkJq+mU7THMpmfMwAWOCywH1nefXPZyHtOXZDTXzFgWYVbqFPE9ueFhYy8ixoz/0bSJD4vBJrTJvTZs+S8ZLDprGAA4RSPA6rtyE1KgwZ2Na8DMs1nwIGmDtZySTpdD9lhx61jihy96PEB/jVF/ufedPN+v3GWJDlzPU7xXfPCpkx73Fqm8GEPcP1PWQ9+evDTg58e/PTgpwc/PfjpwU/PetafXH/7xd+3iZVL+CSny4P+GObKU6DMJN2IeShLATsO4EMttJ6SaaQ3mxzphwxmT5t20J8kI/b0PMjjr4AC37Ix6xw/jU4FKbfgIBc3edFUF+n2MdjWXDyU/KtZJRapJwm/3292b66viztvvl6/ACO3S17hzl2JZfGyYN/f8g2ppndiM8UpAu73TVezQh42nfsDIJXSbBKoAOVyKOSx0juVJMK4Q8Ck/n1Pu/5i7836Ugu1m6Z5QSsxbAVRX2vA84Y2rBf3+1YiyhQYvptfcZH5PXIPH6nJgN7evO9krRfXaxE07/e/qbW4CLwMSlME35W4f5El1q7dJc9ZAlyVmtN0Z5IYXwik6yOK1yWD4p03X9eCNv613+A6/9f0Kvxmkj6GV1FW+BV4SUaSlkp4Lh+l5b80xawE+K4QkLttA61z2PqMPtiqC1tiSqska6gsOgJfi0KTvQgwc36/f3OlCqltYujMGouZSlY190c+RS939r4Bn4l1PszwAIzaU6TJB6RTwFfeOwKhNe3pDh9/FrV3FNuBkl9UuNE97CzBv/oNNd0b5gOCnTsFPntAnpn8Z9wDdn6mhLVp4p5MjAzMeN/3+SV9N6sdXOfPYagPkHMfT40CF1Be8YJObNhx+ZgYv2AKGhWNeavgyFKB8KsvmU8jo17FEV3TQgXSjdjziGHyj5dNGRDkmolfB/T2sIHjZXUYbgEISY1UBDHxpj+yFEnJpnDcm5hnMFvXzAciU8WuTS5N3fxyGYxnyadqmbM3zAFNMaF7WKlJnraYKsQ0TTNhEWwPfnNzdfA1UsEugUumUJB0CT3zmewahhvIu/n1CmIF77y1F1Zr+qGFYu+ejgQPEpeEsBtShVPP/cOde7+JBa/XS5Kqhv2RlI1EcWLf3Ykj6U7NR8B0DZjp+ZmOCP/LXtJkUoHRIwHsHsb++CAVVCqXyfBZe3yFUWWSVbnAr6EXIzV7RT436raKcJyFvWXojwflP50336WiDv4ix+npWDEbKWWwa8+1dXwpFvt8RgNrLdyNd+4pfOeaIcNw7T/l552asvqs/4z14KcHPz346cFPD3568NODnx789Kxn/cn1t1/8lQt4VBVRsIax/HfIl+IVzjXt49Zw0WBjPmuQoeD+Ilg4Xcn3/jc3sJYTpsB4f3+zXtckAscbMiRPMWRI/DGi7Ukek+It4uMPULsgBIM9jvluSs7CRZdBbfkB0DPdCHbAuyeRjTfKiournNf6Yo+56sXFQibS4FgseTsEQNNWbIrtQbrxawdrAvK1nO/vN5nJ+uUyYa1QITDQfe8bo/iKF+ZquydSyXwn2wVYXx28q4jrl5htN353sgL93UqaL41lNzE313JJY7hpL2h9LyEQue/N63JYwff7jaGEZA2vCl6vC3DuOzU1L1506bPfuQlfYvZykk2KIbpYfI1J7Xe9IXTsl734Gn+OQ6CvECjrbiyM9sK6+HWJK9QkKrFxV0Ht5G1ORhCvhdG8U6xhmAA8JeD3r95cHsQSWPz979/84x//kLm6gXfz8sDbyITbjMKJDS+/YE3SDzGmOQXIa1i900XAano6LKQ2CDzF1rk7v2KpMwH4V91w3/zj1y/81y/+9/0br+DLTYApD2NoRBSwxQLWImLJ/yJrOjxScp2WefUyyUa+Ke0Vn66Gnn9CnlKrlPCuf/waQPrNXc7uha8vat+sFGi+kBfJtWyAO3QXKxzzRdn+KdKi+c6bXjE+Lw1Z1L25I1nlfEXwCocDWFIyiJ2JuRFXUF1ELVhGcdOerP91kXvz1c4/4oUV3Pkm23jFwjIplwRu5yZsaTrg3rhLOrEpSWBswHWrk2FgNW0Bs/8NSZSKVGzrlvSqBBiXDaBpwzvx0tTAZWum0qmTJAygqLpxd5kv76JyYQOQqpIco+e2F3dtLGSS3Q6sxNPxnmM7MhUrolUg3aSmSU7HS3lymeK5fzoMNlXwX0f6NS8ZrhBDHutiV/Euye4AvOMoiSQnc3mneDW1Nu01fjp+GmImbjdfXy+yNt+/3yxfWATRKuTMRqrYIzuKkPywE9ubbCAuHJ3Ptj4ZCrpZvRCZb7yj6WwWwVqGlWtfd09BPuy4q0DNFvxVQYCmObqpCyu1V3y9sFvPV/uY/u+bsMbWS9IRWi8KrLlMuY61KFtzvWu80nSfPbS39XeauiUBrXtyYSzsgne+iRMH3GWmbuqN+O7SyxMMIyCciOvvpvdn/d+8Hvz04KcHPz346cFPD36CBz89+OlZz/pz62+/+IPxULBpVe/m7lSQaMgxohVroOSkJKspVpXDIliTppbvdV3zd5PaSZvat8MFCJrjtdLzxl8BMMZbIMLm4RVDVNUycvYXvsS83bugSsavGJvEe5htExtwAqsodZvWYQW0ry/5dHSdIe4Cqbc1aQK8y8QM7hJr/c6bdLEz1fVpHT6Gvt1wXS+ul9GOGJCe1neg6lab/wAhMTBJt6Qyly9+d5K51ZJvxrWC/f2NzU292sUgXkGl2qcNJ/emO9mY5AUsHVMl4eCXs5BZ6p0p6c7IJ3qSVg3b1WgvrDXt52bEkRvMOcXIUMygcmsKIS2wZEfyUGopr6RNrir0kRIoMWlCFcTrAn4mVoUHaT1sjvZg1VybuIbVFdgVgdn8wxd1J9VbnhdxUVumLnsmKdopdsIwSoa7s1eqGk30s0MY6docUFZixj6eK93TNu683CirMVG+sZZ84oWz/vlPqpt/f/8m1sjAEpz+UHU+3yefGbGnLdz1YbfHQQXojwSEbl4puUznMO4myUxlYwW+XvS++f1984rFFWv8YQzLwgu+lrpK0tSFUN0qjrLHpLqh38N6w36/MTd59bTN1MDxpgrjHzYTAHdSa6nwNV3PiOBraXrj/n7jEXwvAUZ6pB/7lh+PFetzzgJgr07JCHQTtI/dfyYHtia7dR8vHzQRbBhPw4Z5FvEvs3pmeqY8XZZrc+8SO44tjsH2nmrJTFI5dT+MSTsTdHzulhn2dbGbKa6NWOvzgsCAX2uRuen3ZoXYyLT7w6Z+MJyQr87Iis6UnM8ZsBdzDbVHp6lnulzO7/3sne/7pk0yGnf5sFjD3ltdQ9M1c2SCNR5OH7A/1897mPnvTR33ZRpquPEBzGJddc2CRR0JzUjGssZ7Z2Rj17Ww1hTM7eMFYzbgX15PmuB5lD/9uaY2rwqO1LG6Na3RbfalLOQ9XJK7kRken7U1z1YYJG89j8hzqhruKt3TXX/ZN4ohbcoHWTLoVxeJOhYcWBEzORLu9x5Q75/LNmkWx9g0K+LznN3jsfas/5T14KcHPz346cFPD3568NODnx789Kxn/bn196f67oRhpyk9+D7mqT4Pj2KPHr7sMWhun5b109atQP0ZI28KHzJ+5hP4JqoCpoCFAo6kHAIHuxG4NbVsG4AZv/cba+Pll5iFkQX4tWYqkQ8gtk/wWicgTNu2vC0SrxNLNZUoUZRP75kSpMl257u9JgFMG7zfie+N+6JMAPZ+38MQG52IcWyJZswZfwck+Tit0SbzYzNj75KR9rX0zZl0viEmAZckH7sFancn0Zr45gAedBg7USCcIC/DZ/+Ms49wCLXMA5+CJavhE0CTfcv/wo5/kE+id8OpqQeOn4Tua3+SEzDeDOGtc+65/n9JZGdqVm21j0umVNy96TGNFmul5Oh98neSKUDjZqy1qPeWnbnpujJeJstkfK3dOGyk+aQiZYoq8eWBGPVw+4t57ZzO3MOfPTvH28gzZooqn0M+NUQiY912dWosl++KjJv12VUCZt4+5rMuD6HS8bkZ1oe5ln8JIwdY6Pm9Wyw5c7/CLk15qx6/Gfi+b9YCTGbENjqBVoPDUJDQW5IQgaZQ0Vf1YR6ZDg4aXuYDFrdkEN78r2vx3c09N8xQt0Gb/IwWweJIKYzb1QEhPxKDLcnLtuY9PlC5dE8NHd9sX8kYMj/Gv5/7Hs6aZ/eYt9cwoB85QBVfR3bkRprY14X2cSxwC6y0R8MX5Ys9AG2+DiiO/81AJt4lgL3WGvPiJBtsQMguCNfcxTBjxSW/pPcNkdNlMdtfjySECs6ljaBn2YpsuBmgbOPXMy8Vjn/PeY5h9vFy5FfjHzBUXXxdLzDjvke+MoDuY4hOjxdSf4qc5jDGP+DSWnv3Y54/j0V30zPhMCKwtXBGNlXyhhLzq0LXPKaLRH5c7oZf63O8wbDh9SNfsQGoPUWJoa6DBBJX4V3F3ipC4nQ4tA2jH3oxYbDrrRinikTFCy3pCj/7sOaR0H0JqiQT7PHXMjOSZPmien9M+yOm0wo+shROwdX1kxtb++G/R6Vn/cn14KcHPz346cFPD3568BM8+OnBT8961p9bf/vF3+WhhJjycukWA3GPzl5MQk2Oalg+oKPH4HYYQI7fyWGMDmANJXD4+GEwDIKPUa0AkA8jClU/gHZnTbhw1pIXjYU8OBrYley3Aqy7j5XDyb7//VxPsuou9pYhtoVhFgJiHlS98TF4jVQi/PJFf795vULs+C5+tRFtH1Dqw2bh0A65awxwpzXeBXrDdHPaTO3ZcNDx+COkmKFJgWbOu29gJm0NC1Jm+JqEPSaoZUqfFi6DVNRlEG7/LQH1Aftm9E5Oi7e5grOBWMgas+sD+scvxYcFktEt48czHi2tn7Vh9PRXdM0bVyu+TUE052c9jHLZdBr0ADQlZCslsTBT4fBJiP5hbYVHGl+zLzo/+8928RUzvn5vJQA3UUwrMHd2Fl36Lnks/3hIqENDyVQdBpOkzfVc7GRTw+yZQOKwyN7Fv/cbXgt3eQd1pzxtzA7GHEBd+LnP/HQQ2ADPLjGGx6Q9eyaPuYopK2P9pRj4V24aUzeDq5PEXB0Z8kIBX2K3vysl/ZlCU10MKmJ23h/m7M4x915GIfzafsCvjdgI/lXJuwt/vdh38bUuuG/KtcPkMzP3NIuvNq6GWOp4ePN/sPc/u5ZkTZYf9jOz7edGZtVXrCa7QaABaqSB9P6PIPABKEACyCZEUAL/qtFFqvvLjHt8m5kGy9xvFjmJGhQjB74bX1dmZNxz/bjvbbbMl61lKT8pD7JSBuCXJCSnqJ7zfk1ZlKn8Eqs37txVrb/voUl2NXvLVQTBdKgYpGvqYW7Fwe6UpGIxe19sugCf9tMFBMOEMKtg09gKPJZAMsbxmXi2zIzb9LyOg10nVHF4kA77fEs2GAdXd8gXywwyj798jD7UDdJXTEg8FG9rgKW53YyzzMFTbD7QEerYaRUoy8f4XYh6zvcUvxODw+9DMVP8mrPGIHtJfkIPUIOv659uD6aA6DboUAzcOZNFIc043O777a24eRWMHs46Dqo2+33q+5kTNQX2XdgxfjY98Rzt55oulRiPqPmOhHGOX5GV3efRrPGZslrY15mE0aRcueXGm0SbzoXClIpV9J036g6r6plAZ1hIWgRwoeDrhcnr8j0r7a377z3rT7Ee/PTgpwc/PfjpwU8Pfnrw04OfnvWsn7l+vOMPZuIW/LpeHOvQ4aivkeS1FGzcmDfxJQnKhLPm8i1QkOwQ86MAJ7AlGYrfScuRUXMOCEj7AqvXocUMlN8EjgLyLCplBh0hjwkxwWLtrkDkrilQYob7BrEXm7NsQWt8eXVydhOtSUKygRmT1oZemiIW5XRuvJLX+sYK57dbiJIyPzUx3u6Nl6Zg1QRuQwE9Grplunz9twIZ3GJY2u2TU9F82ME1YcoGDMXc64tV7aFHjcbKJZcYIIWb2uhHPiDD5WnVdk3Z66rbjyRMXhthMLOgbibWQi3XYdCTAEFT53pAcaEWb3UIiMcbHH0HdxDw13dvAfthlNeyfwSSxHhORsSQD7JY2xLhhBm8PiR/yM7b7JauW25hZrQLSIQH597sXfQxIH/g9FyqvhN9J6qwYaOnwLqYsLZmHR8QMlK3Kry1F9yN+DjYXXgKwBVfbfnJSB3MZHjekk/Jpsc4LnBHs2dvX+yfmQyRdxc7BcitG8tSwj7G2Ps4dD+y+PX1wScnBWyf5xdQbSPdauaWY1YkRSKJzxFxs/3dJoNlg+91CojSuAcezudOPReavrw/ctjZWOr+mILYjSmc557P5LXG8VNAQNPrVFh8DKDOVmy4wKONPERTAQ2zGrmagGYg4JgG29Qlc0lLcnbqQdDWhBtuH+R+s98CsMda5FaRH3F1wKg4vboXauJZ5RQVGHk2ntN9U5CW6qwxvQzwcNLgvU+o5PV6kddevP11tBcZeYYj6Z8muTkrpmZkQGv1+MDIK6tgOiEUw7slqSgukHkx3c422R+vtTRNb852VV09H/f9zipJ1uazqwcwx4iEqv7ROwRXlS8pW0Pvee0xcaq7ZYBOsVyePWfqzOKhCaj5HXcB5d3JTkmqqpt2dVVd1+fhX1PcJk9gTeaJhbOOoKjx0ZpyemvSarsKkGq7gWuyp0thvGQo7gmtdxeDK7bMHgj326fM7epg4b431825XvzcqzW974pdPkVD38HtWT97PfjpwU8Pfnrw04OfHvz04KcHPz3rWT9z/fCLvzPAj4OqFoCdAOCuALNLRtS4jw9LyiyVFigwBQtzg7xYFQEl0IGu2mLnGCasm+Pjpd8FgDxdErXsH+SFCojFAGQZ7MrvBMQ8G9Sw5a7P0N+ZZNKuSXRdN2C1AbHnKZNRH9ZwNXgYqfFjE3zFBG6Ab4fGw5upXd2K3zOpEGPCeJ1kpdqRlWGItYbBaQGTKrq/QP9ckb5fyxviZcbC+bTmBI6z9d0QqDgKrJM6T92m5bSJgQvGG4SeiUwy7+36aiEnhjEEAUbrAWJ+B1Ibxq4Rpdol09gYGubMmY52sTjVwxhNkrmBI6i9O0mpob7YsQGSm9LPhd97JDv1Oc0kIhVO+p+e5QhNMAy3gEyoGn+RSfAGaYvvKYNsX4f2TMPLg8PVdl40bi0/lIIcNq6up2PjW5NNrGnXb7Haa8lFJSuxnE6OYXCtZWQbDTF7bodM4GkB1q/GDQMvksRM+8V72tO7iPhKWFXXfTaiZn+FOkhyfFUsJIuRYbOKi3q/gZM4ZGOuuXBTaLXOil/7wnXvX+tFWMAuVk/BBFxdFAlUCCBqgqDx4oWZcX4/WeGcufEPebO83+oK0SQ+eYqwlhj0LqLH++d+xk2HzgeGpiSC2MKCdmZaJl8TLKspU5eGWXDu5lcT+MFb8jou1tuxlDn/hSd8ORB0qjAXceqwoM6twmCeu86LYl2MWf9ZYoGv7oPPV3ApuACsSme41cWxTT5V60NeTWduAhtgNDvRFKPCja7x9AkVVHad0e5bQsjEaG2YvkG1JqbpMIaPZEkhlb1PdrWub4qkTJ3FGiOlGrDmIZDo8//sD/KVzr69wr5eSOiauuHsfT3F+zxf/kTrYsVrU5RkHHHMZ3+Bu2soAe4qbjLZ6IWGmGYVX//oxnPJ35rsre6oABwsk1cvDgu2wTlAtG1x9gUs9R2ytFlsYhI9f2Zoomkn9lIs3i2JVmcSIb8mSTebI8avbIqDP+yQeemjgkHtFSoY/3cA91k/bT346cFPD3568NODnx789OCnBz8961k/c/3wi78cdiPGQDMRuNi5sWGLkybP5OVXGFabb3VBcRvW3i/SR16idmpnrYPKug9roCRw7uS1Psh9ahKXGdlqh669+YhgxRi3AtsDWwbmwy4YywRSq8HSCDsoF9Pm1hih62lNbEszTsQWHSGgpdb+pophO12Ty4ZxsrN5v2TeGoxpdW7M4cOWwDQC8D2/0308FRhfhio+zDXV7HWMtGI8S4b0vvx/MCNNBQCnQN0RLzhPsbUgQ9lYN0AUqyez8JR7NEYSFpxyOL7b1hvjMDh8YV3UWwBbuKyIJdbO/BBLmSlvGJBfB857vm+aklRYc1RBxIhWEnLjtqaDwFGulB+KDVqzYdMdecmICVVgdjRVSl5GNsVK8fv5BgP3xfILMPQ/MkheERwWdBabvj01Kmy+pwqAD4K1nHO+z3YXK1mGs+WvcxtZG+XjN4ONrqFZ3mSdU7xcmcyIaliGZ+M4fcjUVshIibqyYTkeptb1du2fli/RlRSF3YfZu45ZixXWvVPyO/uk2jjG96NPJfeTUhcCxsFL9z98ZAvyTFke1DLevYeld9oPrnx9hORMVaUJlED5XGfH7aWSpe4PTACwSLXv70JKiobahEOFjOZdpiQClhFTXOh5F4mb823iQhwBNC8LgYLWPc9WISyvnGL5yO1KnRHp6BmlfsbNMSsVPe7kmep6odg78Wgx3xi99+0N5SGwt01g0Ju7MAQB6WuyoSE5YFbPGRp20yXT8BZ4MwR4GcD34YeY5gFdHvJu6lDXCEDNS4Z0FRvy9wmsFZvPrWvx5awCPYmeZ258j8IrWQRePdITeTcFkslYT8Hmxs5PyZR0dLGaKaU0WVuyxF505fyzwKr5XGeVJiy666xjtI9pvCnxBMUlyzF3vXxodQGZDcttYuV7XqikwWc42TUyFwFtaxn4l1IWeGG19Y82TH3ZlzisVci9zeVXNMWl/tM8B3Pc5p+3iokO5aQwvaSIMoylAsomrjc0Tp6KI9bar79VgssMfXkoBuT1gmSmlqKzrzqt2H/E4c/6qevBTw9+evDTg58e/PTgpwc/PfjpWc/6meufIPWVgXOYMedxgnfcbflYyzSUuFmt4QnB1N6uNmoxaMDdWp1dvExeMFVfJ+48T76fb46WPCMiBkwG361kEm3OtpJ3gEN0gI0x6LAxYgebu10dMaEm7EDm5r23pClm7C7KNYkJGE+AYVOqOY6ZslUzmQ99dp51f+Y95akVZDK3EgtKtt4CsNgEzWEWjca7yZo2+xZfaAh8qKV6JotN+/sxwN3GJyLcObv43JooFXM9l1ly0dgE0H0mx1JgrgHh7T1AJMQU4VgMcm4ltd1K4BYugF49SV6f/36f2DCePgBFIEvfpYbFsl5wgflObNr1vQ16GPSRC9l1P7oYGxGYzgW7KiJTgjjWi0as3MX07PEocRcA2HvTpQRnR+DD//nkIkqA2EOeHL035dCh6WwrTCSRtZJT5rSsw96XsMGnQIOoJnzdcqnuHsnGHp8iAZ0cmRGmxHyEsV3FIaVnSGtv3cyii1m9PKQYwuqauFaMP85SwjxTEo3c6kBRYp1CKAKL6WLImnb6UY0sG3ZPMo7L2DdzU/tN2pLZe+u/3XK0Bq9mzJrAh7Gcc0sWa8WYSG+OY4m5nwJlrUWnmMWehH7dCxUuizWyq7OYIkSMYo8kqHMKRzeOdRBeOIklsy+mq8Na+8nlxK0JaKK9rw4FC01kbDaOpF+E/n6bAKnOp/apOdhMxivEunvrWSfcQOmSGakMqrl1g/bnuXd/eW3V3B9Ae82MvqaAzvkRCS8gX6XuGXU46KwWzLVOnPNh8/tr/1w+4xdGWgvtgxxwaHqOL3/p2qomll+Rq+/YOBv767yi+GT+FQ9r9g8mMHp1CMEVmy4D7JE3RlN1Try65GI6l2k209+moNf245rKN+9lJi7pma3Q1Mxw5R6uPaVHIDHO9V26qdqYy9x6TvwUcpK5aEJd3sbzXC9CtszJL1+ZW3LCVeT43fGV3XQmnoWVfJ72dAVc10b43N6vffGsn7se/PTgpwc/PfjpwU8Pfnrw04OfnvWsn7l++MXfJQfQRC7kW9AD0nrauZkgp9fu989o0hF0fzESjd2Gxtky/JV57dXaf7VFF7/+esiHpZoiee+ENGzAh7mCjQhYGe9etHgb1LBGNszQMklmmr4wj9qYj0UMe2nmHMdxyxq6Um35w9T4sKc9cgcFQOPbZVzS8otQEoppIxYwd3NJENzpFuM6/4C7PD3Crwb/CbYGHQqwR9V4wUx7MkGEk7Y0Ka/kJ7SrZH7rYuIE+FIfZBcDowDsGHZLU1ysbvWAxmYqErWjr+B1fPC5N2n6T8ddBAh8dw1AGJ+hY57pJW+IaPYGazHbRRMHYt53654wiXaSnHtw0UrXuHu3yzenbyaQSfrqbkBBf3YxBV5GLKdqAJkHfoiFvYxqSSXSo1qTxUySlV/WQVrzyeWxIwa5en5vyzba3fBKARKD7hwT3aXrbMmlskp7LkxG5XN/fCQCnTUgW6jRrDlivH86ZapMkcZd3FySBE1yi2HtVGjasHxFCZCW2uKJ8QsZRlysdt3eUPpvCys4hyF+XWxZJ+lGxKFujy1gSTjvU4D3wMQkhtG99WwA/DWdIg3kmD9LtpOlQoM2Mc7s8fCQsXgNcAUVju4Hldr/leMLM4WwR6hgq2StJZZ3b31vmCmGxuGaRCZ/j8bGJd25gB56Hj4G2yOhkckxF1yhqFvm9Vpj/G7NZnPKbAhSBXoMkC4aOrFhhJmCvrolibliStoENnVGWOj6elj5qpK0ZArUS8Kn69Q9W30jSNr1vzXH/Pr3Akg4Wqy0uy67xyNmWc6RGini+Hh1TSeBHgxTxete2fzfC+zNhEHrHqlGT4zV72ymU8jt7syoRobu2I1ldfzi7j64OjgENqcDpTWdz+blwPW0+gpb9wfpmq+mEZu4X9lXJrxjjM/e0+3s8VhTYWeDhHfueVmjfeYm1nlX3vfIzDhWqBtgciCt8w+SFTWmonnY/FiXhFG5r+w6W8kfPYKe9fPXg58e/PTgpwc/PfjpwU8PfvqKMQ9+etaz/o9f/6Spvl1fE50w471PLhL4clDxnjfnExQVWPSX3ME7sByg0VdLrw5flabq3CwxjNRFJrlnlZLnCqqab+X371ScMniLdTlasaJKbfKFESuwbnJv9tbfc5N5a9bmPE/8cPlYZFKZArkmtic8MHMyC8Yn5pqel6125DAltszm3CeGWC3djkmynQIWlCaTuXMx6WWa1yUmF6wGzF/gqxXK70lvE7k7k93FimAtyWJoQRkPgYvq/kNQBNjD9IC7eCuzxO0YRkb3n0l9MW3eAr9TG9yGrnUXKpnyB1ojJbimLVmjyV6VdG8o+YKok+GkSkXRHaRLJuDnaKEaFR+7h/lyeXNUF1l1Mz3XpK3DX8A1AU1ssLfRKYmFzMEdX2N+TnP58DB7ykwAbDtD1wpI9JgO60ZN6/5VSDXke2MeMoyeMyKTo+t3mZKpO6cLbDIsFW7yw+nL/HgY+8pb5lR9mTyLccvZSz1spUxqxWAC8niZPcYUMW6SqlzPGsBSRdpuBMKnyLvoam/j3WIobTx1ahhrC6X1q/hxd9IkLRIb63gI4BWacgiaSjgQiqrk7M3yDz7fbxp4fXxwxLoLjZp9f02o7Oq7yLqmXHYP4GgbA+gUKMgkUvuyBtjgdncAdNVMxNP36tqEi2U+YvE+c54FAxin26SvLoy+z+aFsiznbDgkycZZpmmPPtewKbGj0w50k7MDOK/71nsY/r7Y6gE/wxD3td9SG/Ga7ji/nrbQubl8v+b5OhAlQ3yBfwFG96Ctvorz6C8PqWSMrKdgpKmhhK/pcQr9Y8RtkvRUaorlWpJcuKtQvveE1UDCL7bcii/W+jqK1phd+7vo3qxjunma2WgpE3Zb41MzjHP1FLazd5Gp89X0UqDCH8f6GmCg2H6ViG1g05VFjSm96ad7KPDrDDCxJCbW77113s2mONO5rJHg0F/g1VweamVQY/QO9YeBA+DlehnTPqW+jPuf9edYD3568NODnx789OCnBz89+OnBT8961s9cPy713SkzX6BrY+6EwzngU2PB+4ow8xYeYBjPTHp8ZcQmXJKNLT+TqzUalChbwcjGu4YsvtcmrDiOJe+HXcMcXRepsenfzFlhmuqGTRDqu+3b3CWJ6Ov7yKj428eHpApVM+XM7wTPzfSJ9TEb+hiGqRCwO/dmvRax5C8juYrJcwYmGylhd7uC8RX8Rh5h4UqMowyJFptyBSp/BbX3V2v9JBsljhNDAHotJ3tzvjWd7xULW2t8cQSEcGirMcn9msZ0GcaO2IYrG3kb2VCdmlqlL0XvxKZN/+qQtkJTm5hQb+p4qJZPTNiSiS6G2WLv9y0joS42SoybJufFdB0Mk472i7sPsI57OlYN09PzO+kBxTSJ/G18xYB6JRIzFUFgXJO4rsTewLu2QJlBLDHqWeo4kCeMS7rUIwOCAYnam7EOslPSCxcLHG43qD5ewWrjs/ZtFK09NyDrAuulvaCO9PhH92nQtoB5Fm4C9Jie+RoQagO03Jy9k7LGuliTdHseol/J2PQsreX3hOssYwNe2umSgTNcrOB44JiKlr3Hz6pV9SwPAXAzLMY3xZCX0RGs4zXPpunzUwDedaa75Xek75pQKa+nvkCtCpicQtLnOpc7MZ0r27QvL3RXfXUwGGup60AKFXUKzA3h8GPYQYH8d4q1XlO4MPs1XDGi9tZ0zmWYr+k02V+SBPvHZusqUltnCcNt0TMd8nrGFg7/qCNBBaE8qRQ/rj6Nq1OIGtkVNlMEB7xOR0OV9r3Ouu7Xy4LtcwYH3Fdrjx+1aIxdumdm6o65Qdf/Zq3QS4IrQFSP/CkV/yzsLsqtlE+O42OK7LyfK2ZECKi7XQXLFVe0J+QBZngs3GY6J9BbFvPLA/eve3cbXU907kYvNSzmO19xW11T0xOjPxmU7lbzYmF2gRtl4LGontwzP1NdHOvg8spqVT2S77ndXVhXTp33I5JimWlgQ02x7T5eaxqSYOW4XZLGZ/0Z1oOfHvz04KcHPz346cFPD3568NOznvUz1w+/+Auze+qVTmBT+6R8DeMqs89GwfQOm8N0wJga03Q0XaO3bwGRsDXEraQrZg6hoPj+6yaOg19ev8ijZtjk7CTioGCAkOO2+OyNp1gIa7tNSqvlBxKHY1db+5lkNrGMOC4fEgWEEvIc+goMMbE9HiSyBzaxYjQ07GzsMtGtxsPYe99A+Cao3akUC1OVMpAeH421FvUegIQ8D0DfIfmaamS67ZAKhK8QI+JVGMXHtxdVwW+ZN5NnhVrkuyctSrbS2A02mqJtc3nsqMVfTKR7sMKVrCI48033TPtCQPcCXC39BtXFexLMV/L5oKs5z08wZ70W+TZNdVoCTGbDXnuPh8MeRluyh1JGkdzlAir1hylZW/KisiamwIqGGiSm6YlN5ea1guQUoOsQ8DOAxveVBANbaquP8RfK6TCAwLxxS7X09/jiJDerWpmSIQ0zXbvYqPhqd/ZZIz0ZX5P+AiqYpFDmPkbdKhpy53ReXPcbIl40kqHcwN8uYN3zwRfTC9NywnLjowUet8PWh2ry2RgtuwWWiXnPczF99xqC0GDFoeu5js54yuxugcSGaMd8cVhztvyk2p3Vzosmz7f+ni/A6D0Mas+9qKYrBRZtUQGVeYMOsezOuU88gt0luYzD9/zEGJA9iECFwTzjS4DQibu8rNybz/PNbgg/OM8NlRJUhV+YZ2hhPbeqIgA7Dhlh78RcniW+ANeZyjyxAu/ClvxYWluPoV6/JEsuv5U2gc7VX4Vcr0WbsWsmzvlUngaWzlScNMM6x5yxmYq4FaLmzOpG7kpdF2BWUDo/1q39HnJjuZ61isUBylfHjImdbhupm0kydL1wqJwi2Jxd+z5rjk1cH3nI7KUsXc+USNBJOKzXQZ4DYNEFae8HVsZBgOuMLfc5m3OeUCFSfV0/lF0vXSZ2Oip7l+K28RXjur8KdnUKTGzpK9bOsbuK+hBofr/fA8RD96an0Lpj6FZ+oyYHMUXGJSETkLVl7NrqBjDTWTz3j6b3Z/0zrwc/PfjpwU8Pfnrw04OfHvz04KdnPetnrn/CcI9itw64O+wutuhODNcBRVNzLkkL5sNa+w0cG5Px7bzdtxnxXTSWCjYKaa1EbcHHOsgSq7bzPQxDEDi2ixrGolt+I6fpGtd4HQDDvl5gpah9BQkxkuYGWxKMCJugUcM89jCSNoAxFFAG8NFIHtAts9oubgNY5M/hEeKHbCvRtdqUZTZcRNUASCDn2ntkJntPEpdPxucW0ywLlp7vZ0QY4fKrCYpl8o54eQ9oaMwF6NnFaQxrE5crxFdC8ZEX9LDWpo4CSYuC7iTPDSixg9OdlF3+EybWawmgYE2x6ZmQtkzccZWeX2+xyxYy7rXUXilvygErYuu7ui9Nzcsa35ck3SmXWS2VfHsd5CSjaLE3VVvMaA/DtRNcPjNh43/TAqmF5DUyX08ON7H67pDFywcg+LX3RwrSap/vkRB4DBtKsU1m3I5hdbFkNtP8Jnm6kuk3tzlHNnIhCCSd6BbLXqWpbsYY4HYKtPUWoxtKqBfbfYiCF1C2ErvlzSuNtAG/nWMNVHjZtOsHdKjDwU6gpllDZxkzzkwVYsjwevnIzybBm4UmIg5QvCQImT6dJNf+Q1493y5PGQGNa3/uTCzHf2eKLPwqTlMs8DCsYeqqqYkndcuZXvf3eq0FueVBZZc5e4/8ZkCNCSSbvzCMc9DHWosVi7PeKpamxjhLgK5PxSMLG8A+Ep82ekObfGzCnThM0+MwvDWlU8zwSJBUx94StjJoa/bI4SxkyJ/A9iaqBUinQygWApspWdViy5OqEtrxWOw6FVN8OgeqeY9cTybqAveBiaUd6ZpYV/DuYZFV3FUrrqdtdl2FsoDWZaKt7piacwDVMsNX+tAUyKqWf45dWF6MdZSu8XPi87fZumY6k6rjnD0xwu2KHzaxMNTVlFt/dwrI/qoaBaox7aOWTEqYfjywZmfqhcZVnKs4u6Qmq6YLx5iXNQLAuN/DCjyYGAqNuoKY/OSG2OfpPGhTXL2mGS50nzsVj9c66D0dSc/6U6wHPz346cFPD3568NODnx789OCnZz3rZ64ffvEH6CBZwMz2WXFQ1WJiruSfYlw8ZLjc84Maz+5kG+r21yH0VqDuamoXhBi8ROyWW7D3TP+5GJgWsHjhbMQs1rIvlUxD5njixEyO66Jx7GpvRkn2YmW7h/1kWGBTa/UetuaaJKUkK7bG2u5pUjYJk2n1F0uzOHDsgJp2YoybmWfkOebBSoHPwsSklMsY251zmLjXfLmFWs0vc/AVwYrg7E3ngPaXCejQMog2yQFWHBwu1v/7TjalqVKIrvIxA253zAqb3+EWYx4+ZtnODV5qmDUPgxkpryQevGtrm1nf+8ZMPg8RIaam5fEzD0VSCfQ858PxGOZ3kmieSeB8xEu+IibW0Yzby2TvZJnzLQ48nO/nm7Obj9I1yGD91MY+UybB3dBb8oRhCGG8hKZQ6Os7N6x2zkrCF72bnYX7wZokU6LFuIyzK1DXRxaHL16xaJYkMG7jcZIc7dBJdZBV1OUTgljXKPmbSHoA7QKJ6gRJXWXHLYNwnCOU0NuBYU/d4SDoOqGT9/gWySD9JZrOxCZe+/vyRcKcaoHytOkGQaDlmgQIwwqWgEO3kivmZJ4j+biAjFMkaU1wyR4KR10cNBwhnxl9rgGXV8ec32FTpSEqJfUaWDyg4DKmdzf9vcyr6YZKzbJ0JDVpZp+3QPLlZ7RMP3vWOQWzTLnXOnBV4iP5GWN6UxEjn5JgMI0+x67JdE2X5GvuKuKalmF4f5XhVTIlT4fXzbBr2cVgM10b88LA3FnRdBc7C6vEdsGWr425jqhisuDY3FW2OclWGWcuxh3j3Bta1xpD1VelzigqUoxB837f1QGQrmc3vjrFdDKMxKtbXkEsdREx8RHEsssIvXnn1ouKhvOdvI6Rz5WAp7pwnPAvWeEt44qgnbvLRfGvOUrn2y/HcR8/oJZ0UoWUk6kXIXI2R9/JRiY0MsYjFp2fw1SriL2mxd2yTJpsFV2UcoqaSvQsZYyuFzkw38mnvC79+sqTj1jkPD/zRa+vffGsP8F68NODnx789OCnBz89+OnBTw9+etazftL68eEeNa3yisg4Dd68g/EYUIJSnFoMDhyWWsypZADOQbDNqHJqN4fJTwaSmKB3GVU3J/VyhWKDKpf5cW1sBR3OOa3FhythLIxzjxeIHRpDXnUneaOhk64iSfA1wVMsld9ePCWWjb5lAD1t92VwTTG6PVlmBNkK53BjeeO2lVAHc3uIAe+L3fFhdQ0B7+pbXtBWWJ8QM2ls5C+v14selwkjsT7xhu1LZrdcoEEA8vX6Zdj1gmoyN2TxES42xRRAA/mIdPbN5h8hrw4xSwqcn/vEvbFYVE/yZwxo+5IfOeZFroa9eXkQvjgrKXNJNASXAbu9UIrW9w21l680jgrSjO8mtqcy6ZTfSi3ocDG+71NJzZzcjY8s4qyNp9MFFvqOAgYh1hg9H4EtF6Na07JuJ5XNmUAEn5mEB7thWQiPtxG2KIow7f/KT4H9sttgOjN5++bb68XqJdZ2Wt1PsykzihhAKcChYia11bjkAx9+8OGLJPHlnMPa9xI7ao0kU1WSOlXx6doTr/XCWkCku9nVUi+ZURbqKInFRmbKVSMFOBa5TzolITGM3Juu4uNYhA2vbOPVk6kz1ZscWUgVt8l776szpdjZuH8ViT0TD3s8OwQqx4sl90glQiAPdMNYY+auZ+Imb5qsm+6l86Rm2uH3/cnLnZcPDrfm148XO1UA9nSRqD4LFdlXfMiC8RZJlgDrYoBwEbGoV0yhfRXKRmeRvSWfCmcdRp5JpXyyipEC1mV0btTWmbDrc8IVfwcYmpqFNA2xYZWK2uHppwOlxZAejS0B5BRNS1jhSE7XU7z7XLF7w1Lsxi65lc7VMZPytPTCYb0OTlOpBC3zaSQ32TS7TqLV5dKlOIMb2wubYkwynKIsqNb+oo0YQ26Aer+RUAg+YrEi1LmyC1vOa7qcbKQi2bCW/n6nOjqqijdNGfyyAi/wLQApRaaTK0ZeKa8gR1JBG5kPU8iaobMDU6SrsDI3ajofaMfK7iJboF/3nFJ8KdeeN1MhdRUPEh/qxclqh83kCfnEyY9Gv2+fW8/1Maf+06wHPz346cFPD3568NODnx789OCnZz3rZ64ffvEnaDp83SQBo6EMd8kpuovXemnMfRflE1xNiSe7WF0cLubOrelsfDwDZqyV2GJfYvDqSl4DirNnsJDzexevdj420NDRvGk+YiEvBoY1FBAKGzPcSszE4og8FCNpprZ7KRYEKA4fvX9Ni7DLADR7ki4DKACmBfsI53AIa3yYxBhA1d3sVFLvCeAewyi1wVnM1HNwyXau9msMmuR8f8cDGXC7s5RT2DDyjcuYWNfDeOqo8GiWCSzvKnD4OGwMbZNseLmmhx3hw6hB13wHdwFcJLfJZqQTMtW9GLK5HdihZN2pe1glgOWhpFc9ic2dWPJp2Pvkc77zlUC5gE+q/f8yln3nxo+FNXwsTZ5K07P6OCSRynMz+UtA4HAxywUrBNp3JraD7pppTrqpZjJBVhfCocThi52pD+xkOZiXuiFi5FSx2N2aItc6PevjoM83pFr3E5/WdaPaZNTtNoCyZl9JorH4Okc7ta/P0P51E4t7gW8Q8PAIuuDUX5K3EU2fbyVV5H/0+Xliywk/KGvdL2TGfQFJkdU6r5kjBXEbrx44TN9zb5lN45JF+XVATAzcKJju74Jdibn1XUDXmNPBQAlUu85xm0O4OkQisAHINoxh/fEsegywy4lXMok3k6TMWrIUs6B3snNTnRzHB9naM5fUbVdjXZJUwXgejc9WBN9z4z0SnCM4u26ZTnez5kkOnUp7qeskdd9sftNxXJMci8wB6wh8V8+zGHmQGZyZ6JSrUwDkd6LCU3FU3T+692k5N9khneWGWQ2Ym8l2zR23mYJBx2/AU+n5ROhpVaViiakLQOyzXjaoq0bsOj0TK13M7kXbdzgdyic2RfNtad/DnJuKOnex5d4qgHKrI6dKhvSG9qQ6ZvQZ4TaeUbqevu7RxBNN6BsZU5iAc8o3rR3O3poYWOoWMnTuqlW8gOKjejFUvMYy6JaXUbQ6uUovPWwKjrKGKfbkq9PTRQM+ZWy2CkprdeK0aUBADBM/zRQsjM/3m4+PD8mntmSAz/pzrAc/PfjpwU8Pfnrw04OfHvz04KdnPetnrh9+8bcNLBT4mfHxfbUDY6xYkj98fudYB2ve9NckbXclCqukmIlqomTA1Frf3dRuJRcXqyRz0iJaU97Ivlmjt20si49U2H87nK7f6eHTMi2wQkFZ3W/5w+Wd0tawxRL5Eji+jT9tJtCN1ECshKlV2cReiU8cYDnfweZ/AjTz5ygP75L59cVWBK3EYZLtHAFkzTQjI9+T1LppJC9YPqAve9rha3xi1NYc4WKaTJKdj1BBII8RG1a1p0iQH0SxBd5W8+14cTgocYzZ89LPBY2/gveMrK+Sj8wbmQ83X54o5oZP67q8QeQLZF1KPlzFj5J7VuLAaklEahLau4AuAZuWYsng9kfZ5yaRKbISk5jt9pGfzL2/+Duxp5qoVbVldEywTIxS1njdNAN+5LsTOB4vuuWjAoUtcF+S9YT8Wd7nm16H9v0KgenchB38Gh/QLVC4BMjlzxR6Lp1kJdlG+FJr/8iHrLXP1gpOa3aogMMcy2aFw1a3hwHr9eLk+l2OT4F3nievQ+fLcI5jUQbvz8+7W+Lj9cEcbhmw14B3xsNjzr8ZeIl1bWYvzdlZHlwT2OAiN+1mnWn56Fz7m3luZi22zfpmFgXu5IlSXUMEq4PmmhpYPf5IFyM4gN9dBuXFgCugM+lMSc3GR8kmXpxZ8pxCZy2vWHfYxf/qHK1FdnKWvK2WuybvYUKNU/B5taRfXOdCRRhTxC4LwqeA3tyxVQW3QHpwscMXlFboPFuSrzJ1ctDO4YHjd6FoXAywYVO8UODIP8dNwG7hU2j1/A7FFFLPZRC0ZHqqktBUPUNls+J8VN8Mq7nTrgIuWnIdTVm0+7t0MWC6pli0kbQ4Avl2y9euq6qdnKG+nUF6xAoV7YxH2vWsHGi9bMh5K+DoM18eVE015Ua75HXVxYcV1Sr8G71QuPxiskeOc32HnhcxpYLFV0BLGrbqkmNOvIsZUjCSJFHTxTVt8ir89SJEcdJnH+sNjb6Hmcn/iHkptNb1YxpwcHcTPOtnrwc/PfjpwU8Pfnrw04OfHvz04KdnPetnrh9+8ZddYiFaPiGyj3Bek4jkT+JsNuWa5uQ149VbgUjtuQp0QbNM8hAxEs6KIEGgzIDSIT7Mx19CQAKHtOZvSq2457J5u59Ewe4tIDlsh4LUMCWuUFAM8ANub5aR3FweGwCbZBE3w1aTBKKmXbwuLn8C9SR5cc3iks5dmCVuPqwKrFhiqQ2yNrubowQCvI2ykh+HGxDTLj/geYCMJBKhlm4vIvU7PKZFGiWMY59TIOg5HbHA4DXBNsfDh2zKg1f4LXm5zG3dL05tTH+raG8C49wnrzhGeiFW5fIN8Xfi/oEf2mpuQEK02Ch6QGb1+KBcBYFBJbsGhAx77ag1vwewGEGdiYVz+kkb2FrkTrKUj967BszLSWOzlYBw/XxDE6Qr8QQMi5WENQd6Bu+t6Vn7fGP0fKY8KSyMXUzXA0jLpCRnDrU37++fd8Hitm6T78rN8kO7Uohbbe/2+pJEwRh2j5cNAoa9VUAoca4b1FkjH5opGqqKzp7OgEMsXm7e55t3KumvjxdrLT5//65JimvRJTa4Jwa0x21A38OmXmbG1zPqvqRYNvIr7WMDjiUWPQfgibQchr57Wu4BVwFJ65qNq6icZFxiMKFlyD5F5lDeqBoaMG020xx1PyT/EGA0DzKbM98UOh+BwPoBdKeYbWOkKxNPBvRmFx/Hi/Pc8oJyOF6Lz30q8gywswFKNaCwxmg95t4VQkW5FR8E6rV3mlL1NrKqPcWku/O62FO7Plux8xUHlnnL5MDxZTgHncgTJfQ5l2Gy1fwOu7yS9HyPPm7PlasI7BbA1/nV71mhgQHpNabiA0oT6n2y1qHzUz3m4JLBeTeeivUn45FTInrNZLidXPKOInCO4+BkfMdSRsztAopu8oYxc/Y+Obc8hLq+gOYlY7FY2ptm5DUp1ULG22rzYVnQOGlFuWPvreaqKXSu/b7Q/uu5QY1jceDekuBM2VMBb0uiEk/tp7AZynCBVZNXERdw7ZEPohJhT7bxGlli6GxVlth5VKw968+xHvz04KcHPz346cFPD3568NODn571rJ+5fnyqbw976RIPiBm9zKghZ2T3xy8yC94TuGMYNfcgym+gasNSGKgNeZg0PLhMOBt9ZlaRLcNnn7Hm3cXqxWnFpwssrTRWA+HsSWxZzet40WjClg8YEwOXtwTEbYx7WxOELnPdZfEFFmFYAx/PBgY8IXJvAi18MXfdMp6VYWhfHJA+y4zM4izjPYnhwxzz0IQ5nBVikwyuafLjtXP5D5TarXfNJLBJJjZj73F+UWXA2cO4t/x/jpKc4DCB2fgW4jDdoTWB7TYiviQooftPKGhWq+V+OWBi4CPHI6Obl7+UkHOTdeJmvNaBUWox75HUxGLFQVuRNV5FlVCFrRhZkYCl2QV4xBD/ul6wIF0SKUcT3/psfCQYNuwSDR/u5L5Y+8tot/FDUpNwYIVsSFBys4Z9vsE1uew4FhbO+5zJeMhnxVzMkVlQeVLvNyucbyu0t2zd99RwFrCWsXu6I8zF4rbY0Z0bN7HRkjo0Z6WY0JRJ+U4ZtJ9W9Ehnum2kSCpCsjav9SKHFbukXGFGfAuym7NOqk2yghyj4aqxN/Hb+Ba010U6ioXF5UslQnA6LLoxDPdFmhi5hesZTzE0urCv81f6XUrAX50hzjD2bUrIbZI/dZOmvSrj/JHTtdEbNOiyvwyTtQuGEQ9qC5zF8umEkFzC1U5Djc+Oe+j8hs/nJFZz9ncRpe/TVdR5MiW4wJvZxDX9nUDFzh13amsyYQTH8ZIMSgHiCxStpYIeFTb6zz7FvfyeArvobt2/YWfbFKMvn63Km8vVc2z0maYXCEKxX/cs93WObOK/CqczT+TpdRABtGRMO+QlYy5GmC46xyp/9p7iv7ojjGa1kQisSUIkhtvuaKlnqdjW7P1mW0uuFOPzEk5TbFQoHgPkr8rr8owxRmrYXy8N3BbWOlex4gbB0Sq+cl5ZyDh6OkimSLtyQ9u1XyWLofVnNbmwDBVQEimpyCjunGSthKy4+8VOe09XVE/3lLukMEDlVsFSxuee6YihTgrzu4p71k9eD3568NODnx789OCnBz89+OnBT8961s9cP/7ibyaOuYupYktiIY/Wr5bZrsTbSBO7bQ0+/g52B0VgEiHdkgD4SB2GyYDCrYgDKHmX2Jix5IC8MzSRyidphC+s5D/x+fvv+Druv9/DBlQrACz0Mxv5suA+PgDNNWWoMjnQVDBlHQVdB3JGvccA+axil/xfcKdN08pwge4aJk7GtsmZmzRl+kaBKjNJM952yVOcMAXGNqg2tcK73VPa3BToaMPX4qxTrJvBgZhlbEafo+Qplu92ONC8qWGoXxhdp+REJfbqDppMkLaZQGjKd/GxRgYTrDBIBfvTmvTAKZY1iyC3JqzdHQDeyNXC8DTaW0XP8SHAaJoelZl3shGmkK+Ot8E7KSBePlMSP/l4fVDUPbmtasxvzWCH/EguWZM54c0xPhjdYs+xkd6YyYDdVLAsW8P6yWfCDgEmd7u9jM588+21BPRya0+78S4BnvClv1tjRBtNhfZgNKyCs98yBnaHSroFNL9YWbHX504YCcByAf5t2lM2IMRMoCe72FXqWmgBB01l0/Xt2tTsj0Cgq7tlSF0z4c6meySgKM7digfj8aF82ePbYTrrbvS7sMz7zzuCOE8u2QljLN0DYDQJsjkb1niE4JcBtv5XOGc370xiYhA2LHU1q53lKgDfG879xiOIFbwrWWa8XF0uVHOE5BtT61Ed0BCxME52JxtJSLyd3CquLqbwWJrauRQuxSa72PKvbojNmm4a9nXvj1uq0AhYdstDyLtlkDwABsRwdxfVSbVY++X+BQonRpbbdM6o8yIrOQ06JBQTODRs/MQKF0tfKijbg/rQJM9GXS2j7JOfDi4m2Iydb+3lvbhePdgqMrfkKkvx6rBFlLqO6A1MkTIvOmyAXM9+VXOOfGkwyQBxdRzgcBnxe0kCU0vn1VPyod89VVy4Cm3cCbtklypU05Moxb8aWEklrj4cfRs3sjf2kheWtwqcRH5fZa4hCN0cIIab4qMVw8ov8/FUkTHORVcRgWufq7+ip7jlLrjKm7fJTF69NmqyimOxts1kyuuFT99dBs/6+evBTw9+evDTg58e/PTgpwc/PfjpWc/6meuHX/w5CGyUApwtlzGqh4LoJGwxVXXLDii1Gou4FqNBI5mHwcXu7i72MKEghjRCWv8+BXKuZKLALvZMDLNMn9+VMhbOVqd6NctD49szsTjEdgxz8/LrGjdlModwN67Jc5oopBZnsT3D3vZ1iQKrV2AlLpNj4Bhj5VJS2ZeR8sVyVJHvwrOJWGrNt3FDKQH+730qCTOAujS5yhtNsnJTO/tIWKw0WeoqBqzEYjU+EohkmYJ2mNGh0edXx4DNP3sH3n9gmIaOt2GDZbZsNzMeEWLNh6E0DxUDJJr+lyO5AEyeJUYIFJkmi1XDbiXdtV4DIMEcMk+1tv+BLe9W+3p348s0Vr7lY9EefKYmRzEt/JexTQ3j5UeAFy9vnDfWRfcH3bpjtFrDceM9U6wC1JI/z8O2mOTOBmeS2NWSXuxMXqYkIxDT1Ap6q7V+mcCD5Evqjri6JtZyMl0cWauQWVfCKk2iyq37GaV9cPHypyOgXMhEeDlthwDudc/Gw8ncOD6VHM8BEKRY929lnHsrYVMCe3uLzTUBnrAlf976Q2dHjq8RkjxkSjJyA0pvzq2ulpfpWn7//S2jdQ+yNrF8PK56ipxmM3vMxOjbzQAK/EsSItbQht20crqC3pI/fPiBVbO/nxCheDFnS90CQZ56fmXczONZmtyWPmyvTRcFKB4OWM8qzAsovJ3F5RXT9MgfqosDmU1LrhF0le6TNcdxjJRHjOxG5svu4/UEUGLaTzeoYeEvprf0vNrq3sem/08wzF3F4+zpmpikelBdLBdTnDRtJ3mBNxtpYTe5j8uK5y58i5b3ijlXvQ+mwrwuQ+bN6M1Qh0xwGX1rf9aE2ZmSiOLZmmLKGsr6jmmWQMEyvxogcDfWCtxaFP3SsIOelxi3/Asxxo72b8+LgqtEqJYpv3xzUAG7+o4r1j4eZoV1MLb2TLDBge8GXpvoIKaj6WRDBYX2cnffANaldfli91GnRhtjeq49aSVfLmHg2fvT4VC3TuhZf4b14KcHPz34iQc/PfjpwU88+OnBT8961s9bP97xN2xflw7YWsHlZ6Bg0HdiuoKOWtm5W6XVfKtk1PUVHNXuK+DmrgCEizGod5G1puV7fGUM4jjYn+c9crtKiSYN9qf8EBId4CvYGz1yjwFeiFmlm42CrXXod7RalsXpCpjeAQl4hY8vhBJED4PWiJXkZILmeEQY7FS7vpuY7vBAfJJpmhzNaSVw6c57TLzNbAIRvI4gWq3WNgEVZHLrAa910F3jF5PEOtQ9UAKdgVgzUR2S5ER/tYzbFYzn+Sl5t9qlh2U2JjGidvYAWMFnJlm61rObNMfz5OtJAxTC1sFkyK990vrntZZMoztZsabpXyDxTMlTukxsvwGH7kFRkvm4SzrlAsVeAoaXHXbFdADsjZvfPhrtwcXiXkBIpr3GWk6UCUSagzdnyTg3c+MpzxunCILlgaUkQe3GaU25ugjO1rPOMPBg7+Zbz4QsU9LeqTPiJWlSeMh8umcCmMdX0kIFI6Um+JOrg0OHrkd28vF6YagQeBmc8x0jfDxDjGMttiVnymeq1zybsukmMU39G7kTHjQQPp/VOis9+3UgtAzgYaQuzuEjWWMmHV57d5cKnVRb/jF7VFWMpF13MdXze8NUcDTUfk+8UayyEMu4d7HWi3B1WiwW+4pTLabTzKmWKfLFDrv8z6GbPIv1+hCAOZPqJNYi3KkBRSo0xbifUySFwWp1pmRKirUWY/p8ne0pwJliY5jud27OSo5YXL4xPrHGzfjmIa+gnqKsx0/Mp9ic0+et84IbsVr7uFUIgY20z2g33DZGXaQ3tvQc9QjiD4biuvYsyWwi7JYZuU0xZ8Y4MHOU5BrmBSU/se4BlCPjqyvW+rDpNb5oIz2sq/tibz1jn0mEs9ep5nC9NLgkJNawaRUbNkx8XsX6VQh8vRCZhKdiK9T5kPvEQ+e6yYlXyUDvO8LFyArVUaDHcL7UWWPzWG4Z0HQa7da9Nm9iJGrV3Ps8MNbIBq/zsszxrZj8fm8qxsvJBoybztmz/hzrwU8Pfnrw04OfHvz04KcHPz346VnP+pnrh1/8fbFJTVeSWyPrWTJZtmE81O7MBUkpK2ibgCCg636hlPGCkCpAI+3H50M6fwEuCxlXm2vq0y55slQrSF1T5JaPpOV62+8K8FmlBFj/m/bdUgDvuoLrQl3eJWa15+9f7KVdPhmQpCQhLpa5SizXL69f2O83N29xtXjPlKV0GZRejGLVxNxhJDQ6PqdAGG+CYSjWSGN8fl5M9bBhrRHoAhdfnht7gJO8JGpCbMv0ehgum5ICmDBetOn+DT8lRquayQ5Y6Z6kOdlwAuf87YtlbyAIrql+Yro1iaxLSSrnMVy/n4TuTfdJWw0zaUqyXVglZqFx9COXKQR2hPTsDvACfWq97zEFMaEWGVe3URVQYjHb/boAmXG78y55lkQ1ViXZ02r2Ehhtv7b1+EpsMbaBE8gH5V3FjqKX83GqlX0a9CVpcudbOWe+sUCyk1PSmG+2JA3L5LRUO/qc2srznkAXZhxuWISmoE1xpq3zVUT6PEHbm2io7DG7VTFSPR0ma/F7f3Ich1g6jNqSuNT1NdEzEX0mo2UB07hNxT1k0K1crzMfrkRclOQGBS9fHG6kG6/Xi03OvpepNnw97yuhW6pDIjw46zKHX1dJqgIpVOR1y4fn/f6UQfvHi8zEW0WyxwIzdklG0FdBMOAeoH2N78uwtDVFKyETbnROBSqDDOOcvxcNls3RzmbMlHsmOPaY+U/hX1kCgeZo0t5MBvSvc8XEpkvyklxgSPfBuYy+59qHLe6qKdJkYo45jYOJYRcM85uJpqfUbbgm110m8R7TKTJA3MdHKqdzqFrPYE/3UOfVmZKsbFYKpPXct3LuFxzeSGY2D2K3kQ0ZpXo3uWNNmgyb24u1k5CZDZmplyEw0+oSK4FOQ0XjH15hKM75xI6+TLuVtzSdcnLDGklZxB1T1hQd3vP7XPd2JWSdetY5myr6/nxrRqqEXmLkbDrT+fm6OhVyUer4mT6YC23f3TujKMXaB7w+68+wHvzEg58e/PTgpwc/6c958NODnx789Kxn/Yz1wy/+zEwJ2XSIrwAqI1UFGG/xhoHevmsalN0H2hqYN/oTTsWq8ZVoJVFwqge4Xm/du29w7NlQ++twd48Ew0eSYpy1MRbumgrnEXSL8RDx2GMyKiC77gApRsTCaEvuvDwByeZ7xDFGqCXWWsn4uFm6av2jD5Bnkr8ShdhOUm3Hh4dkBlactjm5TGiRlAbwcJmwGmCT+LbY3+XB8bEkExqGHtQaf56bqCBcjFTSlDltIflNwzX2fZ4EF3Btc7WaJ3jZla4kWTFgyb+ha4shbslyuiAqSUYSU1cnw3hRlAKsnrdRg/60B3wSoVhDSZaOr2TdRXvgJn6YnqRY8vNoVFgJYq+RoOghynME+q3vGQRnKoG7G5Vv3DRd6u7yzjs3sFydBOl/ZIV6irFhw32ecbtYUluS8pC8d3Kqp/5mmA04UomuQV4eDHDGBhAPGA+j2Cr6aNo0bS9iQbWMrEF7dzxtDMPWwlm8bfMCljc5HQt7jMTdHWunx0PmeL3YW+dMrfT6jh768j7yGRUhTZi+i5jT8fnpL88VN93z7sJSBRdVtB93i/55nipvI6bQ7T9WNlMUD9Pd88ep85+V8l3yKc1aYNz0nzEzjjh4HQdZb87z+30GzAzzNcAkJTtDQEBhabx+1sG5N+HGR6irYpu8Va6pZxeovsA21mwrKtQZEhy8cM7+pJGhtgqtOXeNJAk0jrozjlJswF3F9MAWesDYXK+bfKoao06Gcba7CJ9byLSdQCsWZsNZcJS+s8XctFaBaXNWr2JgjYfNmcmxnGPBseY8JGSo8yHn3p21qVJsfXfzbr+lIfiw0MzZ/eM5p9l+vVjQmU/GvP6IySUqwK/OHuuaYgpyOoMOoGxNLN14zzzDbrYZ3s3qptzYGNGFTyeTDNKRLKlVuNpMW7ykiIn8mfSCYMKGXcWW88vEpfLWPjNDrVJzLqwnlylWRWlAwYSf+zn5LsIGuFfq95uzjsWunFjct6zJHsb6T7Me/PTgpwc/PfjpwU8Pfnrw04OfnvWsn7n+CR5/OriOGKIc9q6sWCbmU8zrF7gSm3OJMa6z2sMYTJBCoGCXALC7U8N81IDAA2Ofm3QB5xWLMOf3Pslzs8wlnTGGQb4mlxV7g3uQJf8YP2LAW0PXPQ0oAEwsh4dhS8kQW/pedbG7ikyZqezJfJcy2prz/Ykm1s0UtUHpVgwTMU3N1hp5LjRPVFEkJ2IlzQ/CZNrN5U9hM7mLk/Ag1oHa0AcETPCO5bzPU4HaxF5dQEIODT5Tl5QsL28PeT7o799yEC6Bh3r2Kze7Jf3wmdBVLeCvr9L0LmInhxu+PsSoX+n2AtUDfPySk3CxP/K2WIeCMDBdDY5G3/kfiqZhfCIIhxViGq+pXj7JhivxzLXGlq+KH8Y7TzAZfvdn4SEvjKpJ9u5spnvAgmjg3DTN4XAsTUDM2mwXcO2Q/MXb2Qm8N+bNt7V4H3O/s7DdRMqXp92IFSTqyHghUJWrb1mXj/xDPsJzstwHNHM/Y/laGHTSX5Q6Z71n9xo7C/fFWfBhA+zsYjsLr+Jv/NAZR35UxOL7eXJ44Fkwj6SvotLs6rGYyVp66tkqJMyge8yYze79qElnznurGD1rU53adeasQzIUGZvbGOHbLS/AHF+wAqybyhzjcL99YryN/fsn6+UcL1OcascoTaarFjjCqOCWulzFFdiobfw2pHeaj4jbd4sByNeejp5C0I0K49ywSz5VVQ5l8/wUBe94s4JdMmNf5tMposIkS/fdQr4uFY45dM6dL8XIbTY+UXcFrWB7eYcBXcnO5t1Jbk0MVD9NKWC1in16DNxNBbAjH57AOF6aRHn4dJQsI9N0VAdAtvX4YSlOVjnbjMOhTFMtQZ5JzRhhd5PWvCOxNg5zdQ5Uk3uzXwfekrNEwUFgHpxXMfmHxqTMJm0TLatp+XhNETuFJyM/Y+KgCtOr06bJPR1KsfRy4yrS0X5zm6JnzLgkrdHv+Gg456VBT8GQOzG323S8TOdgebBGngMaToDJW6hqk0i+h0t6uHPjceje93SJAJjMsJ/151gPfnrw04OfHvz04KcHPz346cFPz3rWz1w//OLvApbGlWiDcsPaWe03kMmGyiSAXfKIaXO2SbYSDssUvC5mepuDLz4EH6EUPMKvKWJbgWGYHK3mIObNfHPWKQ+b1VgfGCXwgHQwTrJm6peX4NgV4+RnkAw2E1u2ocslHUBtxbtLQQ8jWJq2lwI7pzXfgRc9QXCJvdtvDjOoIsN5mxL9gqH3Tirg+4eY3v12Ygd2LJriPJFRdBbmqUQRi6yZuuV9t8YbM/2qlWwvYHBMSzbo7y4uz4cxw76ybhZeMuhtZBge5rg1J1ut7wa9k3PSOTiHHKXpbt5vTVL7mw8XmPsM3IPPTt69gSQsyDjoTg6vYYaSvIJ1NJWbMCXMyjcekhx5N11vwhdYMEPBwMYA21ygoB2rDZbE0nSz2kmwsPWmzHhPcvvwD/ws1tFUv8F1f08MXvKeiQIq2XtT2RzrGNNhsVLGlTCg9jleSoEt++pyAGzHSKFGcmSS7mRtXm4US2yyCYhdyb+6xpjWedkSKEXeSOc+MZxXLHo3hwVnf5Itw+tOFR9/qeDyg1rrRZvjVuN/0TfTHAFtxbuMz4ZY6g6wnE6FUoeImwATuEzkcapSKbo0Cy3Wi8yAvcnerCXJmeQwwZFNpcCF43SInf3GLyo8S2XDdXBluu7QRu4kjoUv/Xy3zrdZ8DpUQHdraiWp8326fKqcgJSkxqbgKUpSpwaoYVNHBkLgdbKONXIM44gP2OPV5C4Zi8MevcXZ6uR57RLQD2N7UtsJ/xjpWIuxxCFeMs7fKQ+sC5lHYATphUXzDYhuTtOEQ8N1dtz5vk+O46BtXgSYs2Ji0bkpV0FA95wT4bXXCr5F8D1P2o2Nj18YOktAoA6e7eCvBWl8zyTY8m6x5k2qMM4TUDdEtvMuSXQO09TFKjhdrDM5HTnDtkYYHtpL3zJIg7Zk98a9+ZtvH+xT9/zr5UfeHQThIZ+zHAC5XB1UrSmqPX5EEUZMx1W3cswaptxege+i2CpYzebFS4xZdWMdY7NlnNV8mPypAhXnZxdvNr+l8TpekphsFR++guNY7K3eBHUtCNCfI93sYl6CGKdBRvCu5lXqqjFTRrbNPTuvSoGmrfk8P380vT/rn3k9+OnBTw9+evDTg58e/PTgpwc/PetZP3P98Is/oZRhOkxvxrObXckRhyYC2RwcmrONbDGUvsS0kj0eGGJzoiVhOYBso7y/2LdRdpQxY8Cvt/1DLKCJStc7ebWkG9EyWnXROHR/EgtiNVmLTKNbHi6VSeVmrYOwJR+DATMxLBrZmI2vBOOFQFN8slawDnmgfDSSz0SM6W0iCYMNu6hpXGLRxeCtFSxeAgwpxv8VIwsZis+9CJf8R/40TmTLW4Ni2SSXEvCIBq/i2wq6h1nvkQaYDXE1YNHErpgx0h1JS8DZpUlYxxA5O3va8sHXwrPYu2ly5EIneyc7t7xaLKhaqE1+YwaHL7Eru25+eql9QUAZNAWwawy84+4MWLbIRtIIU8dEZeO+pgtAP9edk5R8DGy/Ch35FW0WwTU98ZqIFzGyqF50GkGovf77xg9NmwqDcsMPH1ZRps9VAlDdJnNlBCLMYphZeVtUn1hfjKeAOK2Cb9OclaSBh/Eyw/Nqg4cVYqZ3NfUe03L3LylBpgDsnANfja/GegtsI1Nsd+0LXVOSuTkdjnYOpqW+S10dW0wcA2iv6Y9l9QUmaTCUjM2HOVPRWd10vsUeuuEdRDjv3OxqPj4+4Ew6k8tUGPSd3r2xcMokXbLWVLwPW+x3CnTEInv2QUiiocluY/g78eGwxj7ERidNb+3Zd0hasBwWJjmd8YfpaFd3iT6oTEVuhCZdfp5vXmvdsod4LT7Pc6Y0Fsc6bhPkBoGt8VzaJM5McPsDa3pJXKq5OzYEUAofoU62Dkz3sPd6BFzeTJV5s+cXmOnuWy7W2YQFrxss5kindNbPMRIvU6yP5SoSliDZ3lu/rx0PTXTrUgdMWfAuY5vO9y69wHi3Jma6hdhwHy+X1r3Lywz9iudmkheGq+igFSu66HozVQmVLSZ6hZj8ZIrguXFumCNZICaWuCRnibk/XSXPMSQbytzskYd0M8/I9fmYpDKtpNNz79ec993wruYEzA6W2VzUHzqKIu4Oh7CYa2oNL/C4Pdd8Ojb0DOXmExEqGC/GfVh3Q2dMcUsm98f68fT+rH/m9eCnBz89+OnBTw9+evDTg58e/PSsZ/3E9U/o+JspRi5WkPHQWKEknSm2tGqrNdyXglA3lmrr9nn77sxBn+Dz5WchJtVcnz9nm3M0/IZMeOPqKnYFdJl0CoxYO12bdRyatpU9Bz3JagGKYBJbcnwcuC/qneAhtq5trgnCJ3kwfivDBAs2Fqc1eW4O0zS9v55vmbJa4O5ilvYWW27g5hxLXgoEyOlXbcjmRpgmbcl0ujDfStK6AmGFnMhlDVYju0E/2M3em5cfgAxUL1cgQx4I6sguKIFhTH4qmU2tkaT0SG1KSTWr2aeSj8USKzXXINy8OV565u938s7U9SqTcBmpmiuZ676Wpk6Z2sKPARw+bfi5T7G6CPwGMoBul5dKIT8hfJ7XvWNGBmUqHupOGoF1Umdjy2XkutSOn1acbzhCTzZMIOv3dxKhLovXWngsvr/fZBfH66BqcZ5vGKmSNqrJPNf0uRJwaBqhK+Prejon6y3suxjoCugj2Mg3I62xmglha0DKeHq4y7MjzGgrnb1YAjOuqVySlkFWc5pxhI/UZSzJl+QCgCQRdTFhrSLGVPwIuHzo/K6Adu3ZboxrkluTOcl1BbVTRVpLLqZpgalnvVSU/L6AMGp8jCSjGHnGyD5qfIo+jkW/N90bkNeHlUCa25dJu7kgXpaAnlsRHpQBl3SlmrfrZ0cwo06V4i6GNFms5+wMENub7NQEwpDs7eySLwjcwMRbgKhzOkjm89wWRwSbU2cY+bf0IOSI4/biGqUMusLzBqM9MpQqeQRd+5vgLvwZkAR8ASGXN8wXMC+YM9Td/J5vMcftX0VKl3ye5lR1McbQpcLmpZcTba4iqJKTS5JmZIcKoVIxM6GcS3BmcJtyXwBc3kDyybI2Xi7JRtCsOHjFL7xz87lbUrBsasykwuQdllxyqSkq2iib4jiayMRLBSSmFyi0XngEwWX+r52hXKTGAp1ju3x+8jrbet4bG78p5TdPh2NYcLP7+VQVde45G+qCYOQt1xQ/BtTbFEuGJg6qs8S4RaDdQGJ5RUvu5/2sP8d68NODnx789OCnBz89+OnBTw9+etazfub64Rd/S4juZqkuYCeD5paUYskc1dvEmuwZ6T6mnZI6jA1r5byhN4il5D2Mtv8h6Gammp9b7KokGQYMUAZ9xrCui2LzViDvEADrwPLA3yfflgJwbkkmwjQi/vfKYW/la1Lj85GXMW3Ll8BRgFqm1vzGKCtOF7tmS8amImVsvAsQ+9aNlZiIKwkCAsy2JMPITVoRsYadiBtwUsWm2ABt4+VQAzRSE/nMqEre777B0prPwGRmfQEEP5t9npwFFgt/ffC2Js9PjgGPexexFnhw5ik/iUpKrqmYiSEyY4C2kLf1gg6yv4uMMwEjK8l92uTBcbYwtAW6Vzs1HS4WIA8Ixn/hAiI2TKO1WOAaU2X3y39CoP9iwDIHfNjct4gxMZYUoKrkP+Iz2W+fZG5+/fVvBHAjWL7059W8vh187uLz/K7ntJw85aWBO1TzMqddoLAuE124n3m4PveSQqxCgNeUjjYFx8hcxoCZLPDQ96+vBKXk1oQpgWowXvN+n3ysF7ja/nuIsrr2ssuPZ8/nXFOyMCMscJ/nqQM7Bt5Fnnr2fvvfBJiTXezxH+Hd7GzWemli197sfbLCeR0Hu5rvn59TYAZm08kx0wNfoS6XPGWErJiy1R0QYvkqc0y1kcyqL7DiOkswhZ2sj23AZKUK32+lYqeAdMkXii8voLbLn0Yg7zUF+z43aZLwVOkaXq+DvXUW832ylrPzxKYQYwW5gdxQRdSWzGFeACDcwrll8m0Rw27rFjd1yxe2CWC5axravqjLmqs1w0Myve6WRKLHd8mNdth39EKFFM1upoPkku5oL+bevNYhsDXxq+ZlRKb+bLXPPpEJN+jnQabxKwR6szT18ToRPcCxAfO+X064TXcAzSucb8dLLwsyqWzWWpx18hELK8m1ypsuySXvqW1CfzOdUld0jBeRy6RGL2Jun6FmDbNePR1MA6pVa/fcr/m6gvCTn1IdKSPvi4Kw1GRQ/aL7BRBwFwe0ikQLMeZlek5W6vLqifdmerFR08nAdWnW8+ca7HCB2dznj6b3Z/0zrwc/PfjpwU8Pfnrw04OfHvz04KdnPetnrh/vZR0myyawWcteelkQXehluQ27ucWwhoKCzc8LMF4tt0YsmeE2YuQ65yBWD/EnuYL1cAY912Bqub5ZA7dpwxZr8W2Jra0q+Qr0mFUfcB4KtBc4OrPY2cOY2CQTMZdurmCAzKwHS4vZgtuU+1gvNsXbB6R2azy9CaS5H9QAr6xiXQHVjPQc0BFj2iu/E6zI1G/y+f4+4LMssJ7PgEl6AiDOgO8UQ5TV8jqZ5JCT+LrHF8RCHQcF9T41Ej7lCyKjV0kBagBNotqlCoayESMUi/d5Kkhb0MgPQpOi+pYvaKLdFB/mNDFTqVRQHIeTu/j8PDGXp8oKgc2cbKEBXcHrZexOduUkpUn2kzBBIF7BPO5W/B5g2z2t7r5wt2Ee9czMxNpdBVN2Up0sFzNXJUB/MZUxbew1CeTMDctprzuBtzr0ByyIed9V7PfJL+P/Ew12yvS93FnDn5mpaKkWENYjTelnaHU7vF4wPj/VTawXHpJSrJcLFA54M0xTF7s5DGxBlUBgmEx8kzdNDQN7EEgGVjkT4EKGwd1KpvsClkdQ051icCfnVxysMM73m8zm23ph7yKWYsNqw0zF2rveMHvtFWJ5K7WnRj+js+SmSWid2LqkBqfwhdlInxy2/JzaDAsl99fIFnbLa6jmu+hqTEwzPR0VDAAKWPIRyospvgrS2U8qEjRt0l2A/txvso2XHwIpHppAaLMfrw6ZsHvvZebdiWERWLamsg2KOnri03gadV+AVt5DPsDzklQ0wAUcZxoepkKmDTxmT8GMQzPCje0+f28Mxy85YUvu1lVsTxbyN/K5Z+d4MzkCo3s6L66C+iomdb0Ce5p8qC6L5c6H63l67bvrYGdxbl130BwhU+dNkdsgdY+yJcGJKex7JCY+xu9XCDP7eg6GXUq+QdMTYrXN1G01kq45xiooBuh7NdF/6KSZv1eNfHdyChOmyNLYRbjOdOulisDol/H8UO9YN7tbAUd9Q5OjwCxGumYz7bV+MLk/6599PfjpwU8Pfnrw04OfHvz04KcHPz3rWT9x/fCLv8wclk3J6GwlsOUBXVTKwpWAwwwPBbTukpZ+AFWaQGZY48OQWItlOP0CpZo8BGLKX8MkiXkpypvMzcGiJihfAcYMvMROBDL4lWNAiq1hXSQG77c8PZYv8mpzRy3/Yl+dw1/y6+giQz4z2T3fKfGsYRklhWnW+A4MGEsB8bM22WKPl0ku4N6coc/LlNGsU7dJtg2Y7vIBnjkmqwwKFVtxta67O3VuMcNdvF4f0MX7/XmzY+0DcrN4m6Qzmuxk+jkSJ+lOPhFI+n6eWBvxWvJ3cD0zBhw0xuc7aZvfMT833d/Tc19YhMxYexMFiQ3wmuhP8v781MO0F4Wz4qB78/0z4e5WEPiPmUImzCfHoiplkWtiVJcP8L/+G3QkM4dQHiKT4GMdnO/fBIAKPt9bQLSTiKJrE+vg9XqxP9+0wfFyzu9vvKeNfDahCHvJGPDAhpI/yHtilcCEyddoOWQSbSy4PKnVWWDOdTPzOo+dApDHurtHwkLg0Z3CeH0sahef5xt/HZL6XAjmPmuFVdMOOZKFqCbKyCjOSoGPFrtm3SxnppMlVUWWUTjhzTGg8r23ihTdGMIP6GS/5eESS1PoBKyL3XuSr8BMVo1JuoCmCuIadlveT8fLOUwgvaPwl77v+71lvL2W7l0WfZ40BUdgh579mUk1VKqYiuW3J4v8qnqKJbHde292p2Q3EfLqaRl1n59vBMng28c3sk4Vnm3YWrgLvFlC7xp2tfV/DXmx9Oxn4wavIC+gqubQhpgYlGQWr+OAUIF3AWl3xZGYgt7MZMDd4nH1tmDAsnbZgEux2IGryDZJ/zaS211+KTk+VFYFK8SuoxcHZk0cLnCdktEY4K0CEeTp5caAfHCTV9QFAu3GWwLtQUMn3/fmM5vdJlN6c00lPUwypvyU7HBeEtiV5DxUsZokK93GO6czxqC76Lq8rbQfu/uWjNQfOj0c46gmR76D1TDSxRmLV6nwsJa5uAr5MfoflyEfsH/lxWt/KZ7KD8vnXndNd5gxfz57ZHISc4YZsFrJdFs11Q9j/WdZD3568NODnx789OCnBz89+OnBT8961s9cP/zir9ckiK67Tdrb5cFRxvKD9GnP38nnueVDk8nL5IsgTwSjS14kYisgSlO8zJbA1zBR13Q0vcHX2/nVTadRBP1aVArgVhY7k45gmdroPUXTxuvF7qR63z41DHNSSE7gh1O5hyF1bLla5/cJHwsrv6fZdcOqwjx4T2Jb6xu0QF1umZsCrHXAbqyDCsjjILZYSbeFV0LvO3hnJpYH7T7gt/nMN9bJiiB8KRkoL2C9aDPOSr6dSg5F4muRpml9EHM/WnIgBO5eOLXl/8IkON1wZ7kTNoDeICgidQ/yreTREWyDs05+fSkhilXUd2eCbLk8b3IXHi+26K87acicW9nqRXCsF9nwud+8McxkiGzGGP825/nm/GzaDftYeva9OdahQqo3ERAtBnqXpDG2FqmMADgWQebmdSysEz/WbZCd53dJX1zj4V/+ge1in28im7YiXk68vk2iHqnRSEqCxk4BvdqbiAWHjIm3n/IrqYNXHdAnTIG2MfAlj5v8zivGfghNpLPavLtJW9gOvMf/yY2wg7M3RvO9N30Ebi+OBHLr3L0OiiLz5DiCKmNF0DvZW0x5uVH+khk4LePx2jM1zkd6pfsYy2W3lCbmNzeLEkhIwJa8WnLzWvK2SWu+fdNkx9/ODTEs8Pvkl48PYn3w+X5juGQ5fXKYEv3OZhcC7dWsZRzl2Da2HXT0ePQkkZtfQizz1QVTuzlpdWeY3yCBmUx2noo94dCn9hENfcR0kci4PSLAZr8s6J0cS+dvsxVDSufCyvBOTXZbzme7isUt+YEtfcbnyUiwJNFTY0eQp0DwMudX3W2Kk/d+gzmX/4lbERJPgDs2vmFWApfVzH5WtW8AA3i/5ClFhyYH7ixeLkSZrs4kx3kBlcGBczSQxWny7Yl9Yl4cNGE1HRfwmSdtKsQySybbS90tu/bNIDuKM6ubX9c3IMn3W0B/N91qseiJ29+j+DwTK+d1BN/CedU5/jF6vniN/M15n0Wak9gUYyr6MEhLXLeXoukqPJEPDyqe3i5wHcjQ/NWO2+I7CSFQG+1EO70LW8GxDp2beTGz3TgwTpIyV86pZteJW9Dt7Fbh7GaKY0w3w6Hibey/dBZ3AYlHaz+UEe/4pyOCZ/2zrAc/PfjpwU8Pfnrw04OfHvz04KdnPetnrh9+8edMuzaaNgXynqFO/dc2ahddhju8LDjMyUvi0oYxo+irqTzHcNNljjteGGbyT9kjB1hrkUst8scyjjjohn2eCmbjVdEMqOnWwR7Ade7Cew/7ooAjjlIyE3OxK1cL8eUfA2MmGiMKSBnNxrGII2BvsCI0m5zqLearFVRGQSAWs1LMZDW9N6UfxUKTwERRA64ro2fMeqEWdYdu40TANoZ07OzpgRabeY4EoUoAyhCTqeCnDoHKS1oiYKxpadMWbbC3AH6sYLeuxz3YwO6T5Rs86N4jM0Kfsz+GXVcHg1RENtd+tRSInWlkqN2GfmY6CJREFYR7ng9lRDjpNqzYtfcCDyXgfSYvs2GGDfNDEoSZzlUldk7jqcSYacLf8N+m3bBzZEB2/a6v1vqw5ix9FzPTHih5+BTJOzdmxloL9+Bzi1t+vV7ztZUQFxDx4jSBwdxvqFNt7LqZYJr2WF0yy55ndB3EsMWHaZKcx6Ja3zWHDfOSl0pmS5qQTe1ihaZknbn1OR7sT5l+V4kBr72VpNciT03RM/NxC1LiNpf8qGva5OdsaXLWVKN+yTxMNGQ3tkKFrrm6NXaiaV+Buzo5rq4YP2ViLTN5pyr47BzJm0CFdSLvpaDDVKS18+LyY9GlaLKhjR+7pBYGvD4TC4kF2iAdqnL2pCYejghAMisu3ycV8ZnqatGjadwFFC4ZlPyjYnxcim+vhYdzlgy72yaGGpIg5Zhot+5rZtGumHQchwy7G2TLPj4mqS3T9OxN3WfmeQDyW0FMLS05zW0sP5KRL98au7tMErG02RMRS505zNQ3b5BNkePhUyhrgqBkOiZpUSnmGD4Su5JYz5qdYq/NlgB7TmxDv/+7J96tcHtFaANMkwX36boHrQl/vH9nRXCEYgRTXF1EvTV8W/Kg2a0zXW0Ts3QvskpA0OvOAfL+qtn3kyNMQPLOFaZ7bFfsg7vbYmdBpozRUX5wkwyxqiQFbQ0hEBMu2Y75dBMg2Y/ujd1m1kYrR7nTNV1TC9bh0yHwrD/DevDTg58e/PTgpwc/PfjpwU8PfnrWs37m+uGdXaX25Ku9toB2TQxaISNQyxqfD7HMK/TxZpr8te8W2po/t/sg4kbv8WMY34keGUJ2Uwbfq6j9iSaTAS1NR09gYhJwvrcmamG0i0FIimOiV/UFoC4PgTHEnkAB3NeRu+hduBmvY9E0n5+/8zp+5Rw5jSkf4ADVFwaf39GwZPZLyTdCPg9KMgIkdV9T6dfjZtgAo2ZY9pY/gVfKu+e61gEQhSYh2bDamWNoaz0AW634O0+1/R/yfaldbJe8A3PeZrQ1XpIo4Mam2WWcBOEvaLWzg259tqQ51xLAHG+bvrwoGrMSEPO5cfPz1o7jVCd1FhXyF2G8JMQYyUS6p3PA5+eXi63bW8A7Do2Fh1BzQsrPSPtQHiyazCdwmXvTOX4b81ki9gRtu0vetaYER08SnMRzt5sruws0DVj0l0zd13IxoDvFuLaYyHUY1pvVi7MkMyCCvUuIJBZkgiV9g+tmYXiXJF2mAmxXss/kIxZuQdapv+sqIN77zToWy8EjaDM+35toG0Pgha95IJ0cLtBObawNZ3Eca1r7S8kzv0D1ikV48L0+qTkv1vIm8ZGglLkUANZKtKZnvt8nmJRLXYbVWz45mVTLz0feVjFAWR0e2mtJhvx+jiq+xSKBjIkBXZJ9BDM5rKfW1h5axIADgavvMYbiUwy16dnHSDvC9UyzBCqrBTxWhLoikBmyEUKnERzHAmvetUnqZpjDF3RxjnRBliR9x8eL5VQXhgrRRlWeCN+vU9dTFFLyD+oBQ20IPLexfBGuGFhXYTHxrkyb2sbnxPUmAfMliZMMv3Ab2c1OqOQcZh3XFLezFNMlj/Eb8DMxgSlovdQJQwvmmTlLH6P9jV6GlF0/dhWuRlsqz1ydGt6YN5+nvKS6fLxrVAwlyIzaNFn1W6i4+b4ZKSKcLTBsBr6+ite80ktdkwd9vu7Er1Aeq2K6shTVemK9mV6OXDEx6uoO6PtZ/gHqUqaYbdMp0JcEbvba7h5hnth9m4+oeamklyUmk/Vn/SnWg58e/PTgpwc/PfjpwU8Pfnrw07Oe9TPXD7/4C2YMtw9QnAPeDe+ReFwtv2VGW3AipvltKcY4YpI7hL/G/FmWn+6OHyDCa0xXa4tBa1jhEBNMq6DAX5KTzDt+MjWy3SfSXSanmACYtyQy17UCk6QF/MSl/IHpWUGsxVmbztSkNhfAokPt9/Tt2xPunOc5viI2yUFm3IaS7cU2b2usN9uadP03BUbTP5vYmXNv5T5bmM/98oUtyXioHr8D47UWn+dm16kk4M6xFm4yDb6/l2ty0q6W2TCmlmrfuC/SlBWjDUshRYFnY3OQpe4DNzFCgm7fJ9Hqe9uA8POcRD7j1CfWS54i3koszzyK8pBMYoL3ZTatDmxdl+CDkhFzjy31Xc4tA+HNTMoCJe9JDLoFTbWYt1f4+NmILQLo2nQnFtogKirivi8e0+1gmrLVLaDicbHcSdgx+0Df2Qx+//5X3Nd4CjWVYnvdaoDQORKDosepPVM7yMff6awmaU2mc6NSYPdweVvsKWLMoHP2+rCH7ksAuErTwcxZ68A3twm7D/jYexPRHLbEMIfjfUk1BPrMx2+jSx0HBm2FhSaYvXeyXJPThPcHQF5Az4LEBIpHAnesQ6wtAhGdReeGHMNsV+HbvQkOLGzkZpqIGWyojZvJO6f7NtKu8QuxYcF3bk3OHOPrquK1xiR+gKv7xKxqzvdJdeE2soN5LtWpSWImb5RlLktxm7lvmXreJY+pOBYXK36enzqX4fiYsVuLybZYN4NsvBWFpyruAYBpDp1TaOmA7UpWKU4aYlP1fGRaXzuv9iOdMcQOd9h09UwRZvr3GlYZruJsCrULaFFkN15GrAALPhvqVBwLD0k+ivHNuUD27B+aHpmQ9UgzPO7pdObQU0yenXSLOfdhr332Ynhh3z50zV2cw8x3DNBXtXr/3jDjZSWZURlk8+4991vyk93cLyACXdc5BcyugilCQAXN5cmj0KSYmVyFeqhb6yqkrNUl0cYeXK/OgslPJVnUF1jXvaoqebeFOrOyilVXllEJ5u48QpU/z3rw04OfHvz04KcHPz346cFPD3561rN+5vrhF3/LXYef4VMmoFQt0tQy/uGGW/Cm2QZYUEsAsIelrJKEYtmiS63n7mIPxIbIWHotp0vGux8Yn6m39uGBHUugb2+oGeVtzrHUm762jGRP+0r63jr4aUp0bmP6azMNyBjpxQSIQRttNga69sW4I9Aa83cu34HuwkL+PWFKxphakZONp0Bnu1M2JI9LilFyQVZyackrrBtfSoBiUYV6KyWtyQEaYfreJfJHrOsSI1a55b1TStAeMhJmGKBYSyzhxYghdnJ1YMOpYDYTw6D8pArcR0ogmoZ21EXAH1m15pfQRD7jqyAoEJsHf2Ctmx4TXkkHBPiVPHUPo6cdfEoVY75vyaMlPOAQ6F2uoK4OggF514VwTTsUK+QtvwpSDB+zP5bHzax1ixEVSy9m8vq+mW/cjF3zHS2mQCnyM/Ew1lKCTZzjWBg9HQ+GsW4zZVznaq1FY+TW1KqL4bLLGLm3dmto2l6eGzPJta7C0mdfVsmzaSAeR+ha5dcEHAJxlWMkbD4gV14wRmnaVjAt8TXgWPdVBwpITdTarjMRHjoDfU3BG8BSPebsknx469yDsc/NpugVuBXrCIE3matMoQVZ8uGo2YPv3JI0GRSlKY/SS835kgbiFTFG0Ian5AqVpa4WLz5dTKx1wEhw5IuUmK+JFT4ygSlyaPnRDHpvG2bx3KxYrHCyUs/UppNhmHs7jKog9xQcofPvA5i0xQrCbvnX1F6STcx50LRHg5Fg1JwVWrIYxe6mLFVoDxC8TlLYgH/gkhbpLDddG4vQpLM2rLSnugwLKPevv/tOdZs0Y2QfmI/JD+MJ1vN3p9PBptvF5jNyQ7kmQH7EIYPmG2Crk+i1DnUCebBc99Ld70JIjtJTrjp0b5itClMEp9hrM0nVOo06k3Pved7XWxbtv+zpfOnJDVz9Tuo8UsxkOrHGC8wa2637dkwR23UXvtYtAJySo0iaNNb5PecRIXq7cu91/+jpHFEsus567Y33uv72s/4E68FPD3568NODnx789OCnBz89+OlZz/qZ68c9/tw0panETlgYhuQLaS65wORBBSTH7A+Hp1utwi5mycrpfUo2gNrsxZgpMQoTmhJOTfDBeE9SxoG9FcCqxVKtRXWSttgu2UG7JB+5E9YFSpULLualJyjoc2cU/PzrWXvkI+MFAJxVfIQAiVrIxTzSxfr4VaxQaoKeEpcYVJtW76JIU2I5KlnbOCmZpcr6RMmwGw9JVHKfQLNwlgVlE8RNrGylpu7dbGro9+X5xjto1/8SY3cS5hxuWOdIh1o/Q0Np+ltSWCDwMEyMl8vTxZfY8mFFz0Yt7hNkL+C/Qv4MNd4iZvKWseF1iqIGpIaJjXJTUu0uIg6sfAyvB9VNgjMbOUkfUJr6FGZ85mb5i8wW87yUxHYmNaA1Vig/lyavJTZTAY0aEGUI3HpL8mPtU5AYtTftfRcIhwdnJu6L43iR3wUsGf+gPIsjXgKElVS+JfPyF3U228RmCgypQOkEr+IV48tRgxGz8AuQtMqLu9Oim2PJu2etgJ4CIZExcumuuztlLslMSBYjMlnASOC4pjgocIGd0W3cLB02rf55mecOKCoB1GWSKpxVrBXyDUqxyL1LxZ8qIbXa78sVZuRP0SN/KIH7uiRVMilXVWSzN0zAD9hT4GFNknNtkir1zbrDsRbnmbxMjHHtZM++6gH8h4WmSsZ11gQyIwS2PjunKFGXDO7yqwoBc0pyIVA8k6St2HurqyZemtiYNSBUPxMNS1ozTVFjCsK7yJepuCQcW/e8wYnbhN9joK5f3lWzJyfmadKZwK8KesXZoY5VuJfiQ/YY4puKc22rkZr4TDysIjzxuT4zdelo1xlVNuAzsJhnn/MZ07lSJr+YxHgXlE13lMurytfi5WAkRzQrUgUFTvVbe8GdGk+eK15cUyktQpP39jlyHT2PNucVLzyS6pO21vTVOWE3qC+GcfaZWqm8eMXI62jM0+JbmVhuE+tNoc6rVA45THJAJ0hZ03NFIPk0TYdPCYiro0LdMt5AGJ/skS9Ox8XVfvWsP8V68NODnx789OCnBz89+OnBTw9+etazfub64Rd/SYkNcvTGvp0+m9VbreTH4juNTQu6uZGWtEv/H+aaElQazf3ZCQHL4BvFy5w2H0AGVs3hARveXmCL5UtswluyESX0ppZTMyGPLraZIrKlWJYLMGMcyT1qvULM8voDmFxuREkCUNZsa02PshgfkK1AZbA70bj3wHfh2/glnN/fv8l8eC0+2/lww86Nr4/xeimOdiIloWmDYN1MWLeMspPkHFZxfRiHHVg7n/vkWE4YnKcm7dla7PPEexJfwo6k17DPR/Af3p9gTvfmtb5N4VF0+x0UJSnpYXbH06aLtdS10KnpSY5kP7WCxrEujlaHwR5mMt6b8+irPmBFUJUsc75fprQ0y0ZSYE6HCqROyXNoF4AeZrm7ydpYOBnQM62PtQZAbaqLcH2HtcS8NsmxVICVqd28tszP6cS6OY4XIBZS395xBMByb46Pj5FQNXWm/j3hfH+nlpLx+/xkfVua3nW8yF2sEhu135pGV52SFYSRbvxWb7Diw4OXSwZx7sQOwznEEGcRpul0WclnN2HBkQICrMXqNQbGxZnJy+AA3pm8XaCgfXhD1z7xbHza87ta99wlSckpiqxqWD+lYo/LoH5kPiU5xDKngA+H00vm03Zw+KI+3yoUPEhvFW7ZHIfhvGgEyF+H5Am7m7bQ1MAqsj8xaozEjXXoPu1KEjjMWEIvkstM+75fnRzd8onBBivVYPrGg2FgwU37Beb7VPH799/A4Vjc3SmqZMTMBkF0cJQAPC7gta0xb5awExhsF+hbexNxkDXdKdZENLsLd4gAN52dMINcAl3dqt3Q57TD+110yUQcK8wT2YRLKtN9dbMEfgjMdULvkUHEl5xCmEt7K5gJkC1fJNyQ+bKLlb+eh09x08bx+qAt2a18YVOBxd6S2ayXOkQ66XlZgZmmtnF5FGmIYOaJ+QEF7/fJx8fBt1ew93faD0mQTPlI+7rxKdSaWwinImKkXmXOWfD790+a5nXouYYfnO9iZ5PHB+82rPT7PWuqSBVRiTpo1rGgJFHcZ+IHdH4VB2Yq/vYBxzyLcqePkSBiRAXLlKOKzfKr60RdSZL96SVAuDobvHIkMDIUZ6R47cOU56kXAPGIVf4s68FPD3568NODnx789OCnBz89+OlZz/qZ64df/B0EVjLpNTOsoHbxy7dfOHxpOhyQtRUkvenceIRkId0YLi+Dnjf3Aya7ZKScecKhSVB7b/wVxOtF5vtuaw5lfDEkJJlqv9Z1iXeJFgsxygj9bCM2xeaN/7CkNgxkDmNxMeQ1DE1TCgLNtG2XWuO3Wpd9HcSAt6I4T7HwAtEy6U6bTn7h0mkvl5xmuRMmtlOMvRKLGRyxSAuSnEB/0ttIT/IsnBqSPXBv4ttrWNi8mfhu47RivzfHsXh/nuoE6NTEqNaUpGuSVrhYPbtYfMRo5d7gmtR1XaMmvem5X74nXU2KRNMEs3kI172Tz4MTlbrn1Zo8iPH93EQsYiYB2oAUASQZbxepiXqh/342vJnOgxZDhItVfw1bel2ryCtR62NXQW8xiNoDn0quoovIMauNZfgR7HpPMhCQfn++YRke8PH6xvudLHvx+R++YxF8nicf6+CwwrI4lpH9wbkWn6vZFK/c/J0bf52bXS0ma+emWp0gWYWbQPeu1Lj7WLyQnCNTP2OmoqLRcwRTy30Po81MI5x/ppvlMdIhdXLQDTn73MWCxxjs7tzzd2V2rF/h40mlI9YleVgcwTqC3gIdAhK6tzmfUTbXfe2P1nlMms5kV1GnEesg4qWrrp4JkadYzB5A5UamUTZM7lqY1YB+fe65TzKL8AOP4Pv7BFIEMLood92/Qp4+qoGddSzO8z2eNRdjb4jJ1fVekEkbysd3qsbXynjvrVjwknn6cslhpKDSE4r5TplXUSmg6v4C4z6TNh0hu/aw7zM9cGnin/X4XXGd9Ub6qblWk+Tp7v4pmdGbDybvS4gxPl8KoKxwwpo+T3r+2cPnI4rsUzHILkZb7Ow6Do4QcKutfSYv/GBvxntLm8hNnk+0qSuk4eP1UpdDFxHOt9AUuzVFc52XtERFVdew/+ZzZp1MmYC/G87poIlsog1s49ksBD6DpExyI90rmeMrHsiL5ny/2ZkcxyFZm9ndoXKZe3cbe6mzx7YkfbYCH5P3mrx0sdtXZ083KoLM7s4crnM7stHSRpBcsYJOyXg+jnmBkPmD2f1Z/9zrwU8Pfnrw04OfHvz04KcHPz346VnP+pnrh1/8WYLV1doss9sO4/w8KUdTtKY1+3rLnrl5udGpVl4FIyVLhTUBWgAL44iDdyVt4MfipKhMDi5fEnmmmBssv8Fo1xfIUtu2AkIZMx2KOzhbQ0wr/1klv4A2KH0fEAvQhv69rgSlZLHGNJXFsKNKBAxYZievVwxI1pS7GK8aMXsCIAtN2urWNWuiFVxGvz7eH0qNPayrWvHDFQjDYoC8gtvZyeUbMtYgUMVpmhC4SpOyfAW5R+oAeDgR+swr6K5jkZ+fVCZ4yE/YtAe4vEXcsVj6/jFZ1cdXw8BiMehCTF8W5Zr0t8wJN8lEstlA+Zr29ksW0Ur8AKbJgn216bdkJEeJka9qNJ1QzzaMAfaSEnGxbA0793gUGZXFcRy6RpI2SbEEpIIVmo/1/XxjUXz//hvf1gexXtMNfoI1v/3271kW/LoW6zg4DdKM3m8Yyc9ZxW6jdtBvNLUtkozmI46Rgsmv5fJ1olIPcq49u4UuSiCxzYjlAqTC+FRLElHVMnVvBNpCz2+5EZPTVEKNhEMO0mCasNZz4oTRbKZ3FeHrSxKyk51XhWiwE1uMHMUlWwkZRbtrmqT9wUNH0yBtpEjMc9dX/PZ68U55+ViJofW7oOE2A+8WSNmITc6WLIJ9Sd6GeW8l+zZ5Y2m2V93fjznq4eNZMmevWqw9I2FS7SpAamb3vfeuUczIOnm5JoZ5XWz+oPu0KXT9lkHMFRPdXDIuXNDT3e/7o32q73LFwuMIqq7i01TMl+KR2SVfMbHfLiPnrpyuA31XR5MzxYJrsugF/G7AHFN0AtuK5UFmchmpB/IJ03645Cdzz91pK5mQe/Dyhdm+5SPpmhDYlwfRGOL3xLTX60O3Lt/aRy2mOkxV8tVJktfUAWkb7xj3mcluI9E0zcZYlxE5sPc5vlTQKTZ7U8RS/tgpYB1rsc+tYuRihKvonaTru9g8J1odXN8pXrjkUKZCdPdMNL2zy1Ua2BTY3PvFWrEtTUdMZvrTHcEw9qVkYW0okXy9NHjWz18Pfnrw04OfHvz04KcHPz346cFPz3rWz1z/BKmv0aFJaLvFiJgpgFksgVU3+QhU8XIxwVKKfIGHwWBigK/UMPjQaOJQEM3my6x1jEK7R6uPZA0zc+kLtKKfaWvK5jPmZ0Am1478UswnSeo/cXGjwpFqfbbwMXgV+K6q20i14aLoBKodWH4DvMzE48VaixjjX2AMZsXimAXlLbZ/J5l1sxMRQaeYfPmsSDrTmXg7wUv+PjfYLapP4pDkpdBI9/ZDwexdGJtfY/H5ucVorSVvoBZT7iZvmj1+GObG4YsV13QmMTJZxa7Uv9fJeZ58fLzENNqVJNXS3T0gewBHmHxKfnXR91UKyGsm/rXJiFnJcgK38QeWsHE0VU/BvfhdI5zm59Ra77X529mv1Yb5dBUU2NLOy1KCV3t84y35TLghfyXgPMk9nRVtfHx8AzPO85M+k//4734hlpHv3/hmRX7+A//Dv/mv+Zt1UG6s1wtbH8TrV/7uX/wn/NUaS+P3v24sgx3Op22iZIh8eXNIKCMG0z30nKo43C6LEnI8OyRtutgpnY14Le2fvXE3Po6DZpOZRMujA6ZTY3xuem68oQI1u1guY+XP87yBv9fl2SNgsmZfGCroMJlXZzZO6O/ZxcTW7X1DNR/umAUncOa+20zMBMwZhnCtl872Hg+PMYHvVufM3omFa8LcdNZg/mWqP8XI5YWTe8zVp+jDRnLRkn1cIDVLhdDeaCql+cSg6xwbq1UAL9N1QxPdZOYfis9iMUb0LUacrAHGPcUa9L44XsUuDN3HZReyYVpK7i6RGO+ciV7zn798ZHTvBdazNLXviGCtmNqw2NVwFyugqYDq+OiG9uC+qIm9R8uHTMfObr8nWyNna8WQ65yOcEagyrS3zPRO4bN0zbtO5YxsncUwcjefv/8+wFEB9Lf3d16x5L0URoery2ki+cXoV4v5veKZY5DaW7XhjNaZS50T79RUzziIjmGNFXO6jUrlKclolB8MvXi5C4Gr+EYePZiRnZxZKlrCYSRjht25TQX+SI7ouyvCxzdtd3LWVhGe6sa4DOhtOrGuziAV79e+eNbPXg9+evDTg58e/PTgpwc/PfjpwU/PetbPXD/84u9zDmUPEGUORi8nlmEpP5OrlbuGFchsMRcW1Eg4vBScDbXemg9D3BtSjHjYTBWDaT9ngmHLvPmiIiZQfI0177tN+grifkHNYUtlRDqN5d0jHxEb2HAnZbqxLJorIHwxzu/zzULt7CDz0TIxM3vajS+Q3UhqcAeSYVcFMJtkgyUfryA8eL9P3u8UM9gya46573uXWvPnWeQgb18yTgbJCKqKwxaHO0fq3kcEn58nr9cLujmndKA2ZfInsbkv706W6bmc53lLFKzVfSBM0TdRnbv57I05vBCjlIDHQeUpgMjcZ4wzjd7F3s36OIjl/H6+yS6IkNH5JIDh6rma7xvYexKq6f5YzB4wo0sgZtNjttxYa6KUxtPHtLLLcPzqTjjGDwa4E0J1staLPuXlc74/+Tiavf9//GLF//rf/lf8j//Tf8t/82/+n/D+nfOv/8B/9p/8hX/Vn/zyd3/LPl6c8Y3v2zj+9j/i27/8v/D3//r/xPr17/n3+abP4Fsc/J5vjpeA63luef6sq9tCxVNVyf8pB1wYnCRkskrfRdP2BModJWvrkUrNPj63PJbKJLdayJvHwwWeMtmVyDfl4Mwid7OWa3JWybR5bIAwgnOnvHdMoAeXp0Zt+eusY829HQPfOQdnnlgoHgTGZXxtEZIN9cm+pWr2BT67sX1N7VoD8hU30lS8XoUO3UToXFU1r9eLtYI6t8CMOfj8fRmuDFOrYmXgiDxVPAVwQnGuO/nAWWaENVQpDphxtuEvZ3lwvt9iuU1cePUWWMS5J8u5yYzdXPjw6oJh4tEfQC432OFmjEEglLm/mVe3QU+Jr2lofhx8LD3ryqY9dE028dN7vMJOefa0pIEC2SquVdAOUz4MuSYm2nSW6Het6QronkLXXMbUwDUpsLKxKtzUORIu6cthM9EPOLskT/Nm58laH7Q5n3sTiH0uG4a8L6bWpyAZqWEljvHL4Xw7XtTI5aq+aoLdsOMlcN46U5UzsbMll7PJI12tYibHD6f0K2/Z1ZyPy4uMUI6USTVc4NT662f0AmHeiaBnqwJlmqdccs9LMjlJjONQ9wD9B1nLw1j/adaDnx789OCnBz89+OnBTw9+evDTs571M9cPv/jDbA6S2BIzu9nEzsSrOPdW27+p9dxsWord56395RXSrGGJaHk8EHrjvt8JlTKmHm+JfdiwXDZ+OFAtI9cWocCK0O9zBQxAbfkENskSc7aixLAokxBcxtg5JsViVcC2SZoxYeTytMFkyrvMbwZW5qXOuZvXElN5lqbJHVYQ65bUeBjWMnf+XifuLuNkayrf5D4Flud/hrwgwg/i1WPyrVZ/DH1nF5joAZRiUorciW2x0+8u6nDeneNlo99gbjezK4lPcOZbDCDN+zxZxwdgA8YlJancQPDx+kXPsAu8hhlD8pOUr80y/b53ynxcTOSSzMmQJMP6bv//u3/7P/C3f/1fZi9p6pcxIKO/ChcxPD0T8QToNgUrJEFSZhwea6QGa5J8pvwpJlnGsLN1baqu8TMSCKfgL79+8Nd/+O/4f/+b/4J/97/8j3z/h39L5Hf+rzQHxq/LWf/9v+OXv/nGv1jFt+Pg7/8iw+61m3/4r/5z/sP/4/+G/+2/4D/9j/8z1l/+JenfSNd0xz3SKE2/K3mQuLFCBRJtxDDt26Bc1iMrGemQ0bV5V/KKReBUppJdiOmvFNOZIe+d9Qk14MddMpeuIjzwCM5UBjY3Pv/y9/yv/+pfi30+82bcysQYRkMcMYn4YgnlhXKxvCt8TLTh7U3tk7UO1goVuoCdLXNud2J+nguIzn7NkteV2yI6sX0VnT3/oAKOC/yZs5arEMlNREuK4P7F1jtYp7pepuy8gLa7WNmaKXTuMT8nxtJdYaCqwINjrTEY3hyvIMb92c2IDr6fxR6AfHZRCavFDFfl/bnAHdOu+zgV9O1pY6a4krv/UXdHTV+PjM2diz/vkQFWNdih+An0FB0CbtOFMDGwKjGK5Yot38+/cvih7hpXwbIpfP5s9WX8v3FHBZAFy3VOzS6wFpJxrOOWV0XLT8zSsPq6/rZNdXJYiPnG8BTAs5IUboK94sTN3ireJNeUzCRoDjfe5zlSmsVO2O1i3r15RehsNHfOawMLDWAwUxwMcxZira8XKz3A1c8B7eFiqztlF8QlL2JkN44mcmrPhdv9DC4PMckGVRQcrxdh154sGHnf/Xef9edZD3568NP/gfiprvNvsCvxUtfNjZ+4crrjPf5krZcu3leHqHKPTzr1yeBXN1ihTsTeqc4wX6RpOEhXYp2aqmybmgmk//Ivf+Hf/8//Df+v//t/zu//9v/Db//f/55z/8bLmlcbf3kFx7//t5x/+ZW//zX49RX8y7//W84Nxy8f/M//7r/mv/uf/kv8P/pX/Pqf/p/59vf/ml3wWqGuoK0XzSuCruS3lJfaigNisVuea1by8OowlgULvVxwM6pOzky+LeWx2psaKf6xPsidvCvZYcTHB/1d3px0ES2fy0rJw3Mkseoem5dbYQ9+evDTg58e/PSsZ/2U9cMv/mr8LULD5ChvztUcHQPujJfrZUteL0yGUum+uEaxx+bXv11v7qFK3hLT4EuWwMdawTYBpjUjiwyBkZIuQi9BWoe9+oJ6RhjQOUFVJtYsIOUdERhYcdaWkfMwTd36fMfwDs7e1LQc2zAZXQI1vZNOAe0s8amdYhHDneWLLqc99BKnkyOcly/6s/hYL84qgVyGFV9Lxrj9It8Kiv9/9v49VtctS+/CfmPM+b7fWnvvs88+t6rq6qrq6ra73e3GxvcbNo4xF8sQQMQKASKEQUoQiiKIhVGMogSHRCKKCFIEQiGEmxJIwi2ImMSWYhvHMrZJu2Nju9t9qeqq6rqdOve991rf+845Rv54xvvtQpG6DxK9q/74Zqu6qk7tvdb3vZcxnzGfy5i5wyLQcIDeNDGAPgRawcRgujFTm6plsJ5WBUeTrOvCfj7LNtKNbSgzIpBtgRw0YLVgQTxi9gWBVrA6SKqSLNa7Gb5r+pqhBsI8IIPcBehnJGtXoKzNwBfJ4jOygn01kS1IXnvnq/zj/9Pfx7rd/9fzlF/Xf21rW2/4X/2z/y73n/w+BLHFBGYBsm5O7fMaoWcGfuRpODMdht6t5l32l57szdmanmsyWPuqaXhp3HjHHcY+CJf9JBJ2ZNGaNmXTMoEhq3c5iBfsYGblBsu+Y5Ty47AVmP4MkQQCLaQY5uYNpgLNg29XxFSjFZrqOFLATkHGicXU4W1GhTR7Tex0ojlLTxgDU7QNmYh7t8QqN2mPIIBTvDgw8N6IAoI91UxkBJbKTRHzrM8h5U39cPT98cRcgcr6Z2XjyZokqNa9rCIuRhpNI2zeK1esAKarJmcWQHYq7LmX0GIS2aHBiJB1JwYtU+HlVpYxM4Hmlkxm1Vhj7c4g2DPpWX/fFuYsVlgtLK0C1TOgL5qqqFa1EWlk7sJ1FsCkNSqcW8CYixoJiJ0K42Jupa4qe05kvGho0X6TbgzUMOswBIT3dc9urBOp6Z6xKxMtA7zLqjNTbH8mMCZR+1Wr58GtEa5n2ZdW4fGzGHEdjmRvXBjwdgxT+KWsBNf1X2Vd8dMVP70s/KTDSB3gfPBu44MPHupw9nKAVweV6J69+ubgwYONu4+cZx/c8InPPMXm4OnP3zL2XtbFqONbGF0ZjJad7/3cjlvwra/JIv3qJ3aSxjtfuSXH0CGXOcnA4ynf+OiLfPNn/jLjo/d469HbfOZTr/NzX/1lrO0rPHnwIZ3XuDt/L/fxkK9+M7lZnA8+eMArD1/hdH9L48xnXrnj4ek5H370Ll9573PcfO4G58xH34Jnz1aGr5BwE4MzZRl2fb7XPrGz3Aw+er/x/NnCJz+vIRff+MqqOECyrLUa7qFsuAaRvP599zSHd7+20tfk8Sd29g2+/oUV7CQ7phlLu9XBogkr9DV4/ZM7I5NvfLHzypsbT15tV/x0xU9X/HTFT9d1XS99ffzhHsXmeBpeVgtJZRu9d5iS9eOSnB/5Cm4FVs0Yo9hpAw5WGGr0OWxjSNnlerGTYBtBNDtIpyoctceE2I7jfzUERj2+7ctVYVAuRFY+jotZ8wauYhQWeGYFugrYip0Qo9utFwsvqX66s1cOgxhvFbHbtZNRE9lcmRT7LAVVfZ5WyqpsppyYsYH1KnYDJ0gfNYZ+0GnsKQZ2VvFvTYxZDKm5OlZh2gMwRhysB9xTkvw0Yt/1OWLiXVJwq5/jmWJT3KC75Nju9L4wikWb+4AZLP1Ec+M85wUSGgLVQd1n4IH32uxTzUjJ+2dYMS9Sqilc1kgPbj98l3W75z//G/5OtvVW4Mc0t8vqe4EmkOn+NIHpSPYHj/jpX/07iPUWGwOzruamcpIS2B2IVEizm4BWMZaHSNCB3o377czaEs9njLtvcv/2l3n7Cz/FAxvs53vW0w0wydx5eFp45cENp0XqvJiTR7c3NIylNV599Qn4zs3pIbQbPjw7H50+yfObT3Luj5k19W02J8KwGRegZCkbGEh9eLC/hhUok8RdmSIDC4HWgZ4VQllSF/QOF1aXUAYORzD0nJzawmjJmLJygfGpb/4sf9+/8oe4/eA9PnzjM9gMel8ZU7kkrSkwPOLI52gCjxl4jTzzOCT0dmFqJ1mA5GhMTUHmY3CzLKytsW1nvYeunClIFhcwSE+8LRhUplOWLaCDKz9GS8Hfvemz7jGVJ5WzakcBMWuyRZTqxs3FCoZsKmpwda39AK8HK+71bgeaRNYNUkDKUYb7iOA+Kn/IDG9GT+UnKZ9rUPEyNBL8hUUiwwSuK3fLpLlAdpCjtpYFMKKGAuiexxx47wK3ATEC9yKoqyYrE6lqXJbFC7u8p00BMuClAMn5IoMoBDYnmkynoGVjpJG7ETRlUSXkGMw9yJZqDJuzp2r1jJosmmCzX8KkZ6qBI8XDj1JEDKT4lVUpmZOyAUWBt6ZDBl5M0sRgH0OZS91hGnPOYv5LUZWyc0EnTe+QzmN0oEEe6qCFzFJ9UCoa1EQql8kuTXZzylrjAvymzDd9t0YOTTU9jHkZsNtkt2p+9mTuR3aUJkBaqxpQGTXH4U1rH1/Qf12/tOuKn6746WXhp6ghAE8/OPG//YN//S/6bP6e3//z/Ohv+yY/+Rde5Y/9H7+fP/S//3GaOf/Bv/E5fv4Lj37Bv/s//F//Fzx6Nfjj/8GnOd83/t5/4mc5Pzf+lX/mB3+Bv/V7efLo5/hv/pZ/kN3gj/25f51f+4P/Op//0f+Qr37rt/N/+RP/1C/4O/9bv/NP84/9vj/Bn/mJh/zz/+Jv5Q/+4T/Pk8/f8Ef+4+/hx/7Um7/g3/3v/I++wPf9qp0f+5Nv8Bf/09f5H/zzP0lG8G//b36Qj95bfsG/+4f+tb8IAX/kX/scb376nr/993+Zd7/a+Nf/lz/0C/697/uVH/H7/vEvMHbn3/zDP8Lv/e/9DD/6m59e8dMVP13x0xU/Xdd1vfT1sZ9s36fCS125Kp5wQ+PuvGGrgG1MyYXdFSjde1MmTPMqFDut9cqMobiGg9gWONRBBmApiwtgZTss6lGBpyQzdrCaTJSVCWBGE6oVa+6S+RqwpF9O8nVooiJ0yLE11YxiS/V9hk2anyA7MQZ44J7gnTHESntZcvSZxIZ5P4ynoSyIDIxgMQH7fe5sNrExGdtOWxZwKzbEcBsE93jvxAyxFunk1IHV6k0NQuvsNnmWg6XdFOh7AdpZjLnvrH2BNOYumXOm2Haqsejm9K6DpaCKpClYOJFsurWFnE56Fc4ZxLZhiHF6YXmpJsFlAyGDZelsseO9afMr1rt1PYLbrumG3oyoKJ/t5pZ33/oc23JzOavyaigCNRUi6vU8rds9fr7na9/zAzy/fawsDKsJazGKqaQsBhM5qFzsP65MDxQEmyTr4pzvn/Jkec7Tr/0Vnj97n72diU99gm8+fc4H+Q7n/X1efeUJb732Fs+a8S4bbzx5zOuPX+O0du62e5am8OW5rDx65TFbM/riPHzwmPO5YUvj/eV7eG+/P+9EDQABAABJREFU5WwLvUsWcj8XjZgvNYZZ5RIl5NRhX698ETNJ1A87QUu/hFf33rCYmow2Ew47SiatG2OKKW59Ub7N8bw0Y98nMwVaet2XtS9lo/YLqLGcYgAjqhkUEEgTUG2rMl4uh6resCYQ0afRQiHXw8SE95oCFmPn2dyrhjiNWYqJAo9msjf4iuHsdbh7qFY4PqdVPhHBmGUFM5hzYKaDWUd2DA9do6MU6dC43vXeqm6VgmYGS8+qSU6ibJ8RezHbDVmwVHFGaIqfCOiaJugu8DInYTu4MnUWZMcbDKwvApSDAvcCmdTnc/Qe5Jhko2qiVB/NnLYYFmLf9fzH4UDBj4rcHPcUa5tRkysn3WU/dDfMUnXKGwuHbcxIkyU8zMDOZctTSo3NOuNwL5tIsJhAoQ4BRrHeDbLhOK3q7ByyvQUKIGeV/UdMrw5OBBqTpS+sSJGg/WKSKDdpH3upGbwsOzpc3+o58wn7PsnWGO6yx1mUKsM04S21WUUYs8LgD4hKSmlE5otnbcq24rYQsZeqQ8HW3lTD54sejpmhIPYjX8mMPfJS5zxhHcasTkMguwNJ7Aqe53j2m+PHA3Jd3/F1xU9X/PSy8JMBlo2nT28A+L3/4Jf4xOeef1v2op4dDUaBx2/ueIMf+o0f8YnP/1UGUkP9nn/k5xlb1cuc/3/4yRwePh6EB7/zv/3zjF0HD/02+Qf/J3+NpRv7dsejfs/d2z/L/ftfYXz0PvH8TJw/5Nn9Pe8+fZu/+Tf8Y3zvJybrcsP3vvHn+Cd+3x/k8cPHyt3azzrsAJa+8ODBQ568+gy3O37Lj77Dv/A//rf41JvBt/L7+V1/R/Brf9c7tKaDlS0W7UPfhp+efPJMZvDX//a3+eFf+z4tdXj09/8TX1DuYYhWbWlMd6IOny2CU1nk/+5/5Mt4G9gMXn115x/4Az9d+KkLP43B0jq4MUbQT5PxvJOZ/P3/5M9wejj5z/+fb/Gjv+Edbl6/4qcrfrripyt+uq7rennrYx/8tYDZDrWRsiFaGq01bfbN6ctSp/5lSznATQoUpkHrLjvLnBzWjzlmZUno51n9c1AxN/KyQc2ZWHeplZqLmULgdEYU6FNAqhUzNlLZBa0mK0k2L4ZdUv7ELPAqGIf8WTRWnTQVAyfmbZBjqGjNBAuxDKlMCxX5xtg3rJgkh0tgd5DssbM7Aow1kS0yLxs7YUR0FT1esEUzUoz4HAquXhxfOjH2Cnk9BoOl7EUkN9bJUZO6QPYSV1j2GHsF6x5sR8hqZDrgyRkKS8Yrm+RgnYPWjNubG3DnfuwCWCWnb1YydA8Be0vWpeteujPJysQJseGVch327VYA49xXzn2VRN+oY6YDHId+V1P07gDW+3tdF5yBqYExWQYs1NwsrUk2n2IUPb3GzTuEmJ8tdu7HPTdL8t6Xfwp/70uMb/4ccf8R5/Pk8ePXePjqJ9n9dVp0Hj54lScPb/jUW6/yzje+whxn1ke3vPHmE7bzHTF2yGQ5dTbbyZ7cP3+P19fHbPu3ykrzOd5tn2bMjo17Wgy8DuBeTNkKmMr9azjMendcKpKk8gpbB/OS5ut/G1FT0qxdrh+VsbSeFFAdoSDpPSZLNMxQJsmh4qCYXXRPIyatmd5HpJ4wawIzF3uENvuGwn7V5SkUeG2OIUtKQzUmS+2S9RJ2q+lpM6C/yF85frZYwR3HBbpcjYLAUBYw+LapXQXKmitcGNDGn8ckrxcMY9phh8gCevrPbnX6HME+tpoMp1qg+Okkkb2BYhHtUgMo5hUx0IjtJQvgJUwGrTJ4WuucY1BcvmwSqRowrTJL7EJWF1ucynipzywwo7yuA6x70zV3VKP3rX5Oo2wbsuCAWO3jvlF7gJQAdnluxpSSZ20r4qvFfvcCZdONbU9mTnrvemfHdqmPhF8a5Zm1b9SwRe+dGQNNUDRaBaHPOXRtvREGz4eepcWNCFiaXxrxY5Ll2HSIEOjgIqdqqlsnafis5r7uiWwrVgcjYN3KGqQ7TdX8sODIpkl5cpQZZWeCiXurPdGJ0GAH/XPHmqux9nY5vHdzrJqSVZIoWgqUnueAQwE8Jqels287pNEWxyz036/ru2Jd8dMVP70s/OQc9lrV5jc//RGf/N47KSVN+XEzD0um1DOJ8corwenmOZY6QH7yqR1ysjZN65y77HHremLMXYe4S2em8+pbd0Q6hH7eW9/3DLONG5vcf/kv8mj9GZ7x08zlI843k8dvvMa0Az+9y5MHr/Lk4ScLP/0cr9ze8OqTJ7zy+OF/CT89efx64SfDxzf5Td9/zzYby76Tb3yOdz+pzD/Le2Yo9wz/dvykgTmvvj5pryfUQcqb37Nf8FMvi/k0Z1jo0GkOxtSe/8an7pgzOZ+Tv/JjT3j2gRRw8AK7RKQyxmqL/MpPSfUGyb51/vR//Ak+/4NPefLk7oqfrvjpip+u+Om6ruulrf8Kwz2OgwU4JkRhRl8W9n1ni7hIzTNS09IiSLdinqvQZUiGHiFFlr8IvvXWOSbaHdJoyxRYKkZa7Ji2keaVdGMAJvWXuwY7hF9COt06FNOeUwGqR1Br1AbUvNXmnZJxS+ZEa6tGiKdYkqofOGK5IgekWOQZUYwNgBPT6tCm6p/rgApzWu/cLq0yXASqM5XPoNwWh2xEa8yYdAdPSaizmPlpiH0zZ10W2uTC6Lur0OaYrLmw7Xux8a776EZbF0ZoE7PKthhTm5fX3231WWc1Bn1pGM4YU0U5g/3+jBXbaZE12KuaifrZIyarOXPsNDPl8VgXgMVYllWsTlmRQOApD/alNsj/xh/4+3ny2U/STgvnD5/x83/hJ/mL/97/S8oIZAPq5qwVlqxx8AINizsE7PtQc2G6thHa2LFSL4wgGZzWIJ++y7tf+lk+c7uRObmzSZySu/t3ee3Nt/j5b33EjZ94Pj/kE48e8gOf/TwffPNrvPbKI2bs3J2f8/jxIx49PDHOZz54/zlvfvp17s737NuAmJw8+SRf5W4zns9H3J/ewrKx5L3yTSYMkiP8woDWdPAXlKTfmw7xSsYfaFrYJGQjwSpUV2oFWpBpFcLbSkZYweyeKA9azOgLK1KVAnR9tAnPAoQCg5H1p8prYdSkNYCYqgHmlywo23a9KwUIJyb7iGmASavGjpp8psaQamyRBcwdZpCpsG5MdgefUicor+dFU2VWx8dzMA+Gv5o3x9jSIBxlSZvCrlNQR9knUnBkFR8LNQxqLloFDAvSCLh6Nd+ON+U1abKY6pmngLB1h2hMm9gcROj3mDU8h97neo6P6ZtSltSAG+zyuebx+1wga8SgNac5ZMqiI71mMftUdpjDzCM3R+A6SDQSLY4CTAKtLfXMCBD2pjwwppHhuAWNwG3QLLmfVcO9DiFiknkcVrjUPiHVCK57J0ZYbHFkcr8NZgSnRYN+xpiq8Utj33bGmCx9IXcxxmoWJhsKmm6ZZNWu1jQxcO6ytPS+EFmqFVQPwwQgqecu0/CG6nyKSVdvVIH6edgd9Y5aM8Y4C8B7TY1s0lPMKPBZgHhZxLL3xSsLyGg1aS7rPoQb05LTqYLj6x2JOfGj48iEDLxY9ev6LlhX/HTFTy8LPyGr+Buffs4//i/8OKeb0B4KtZNLwdbUntMS5XiZ9pbFtDNc8dMvjJ9GOM+eGn2F02kcZ2mgy0QJv6gUGSxgbM6zDwobmZ75K3664qcrfrrip+u6rpe1PvbB3/TKIikmwzBGMbx9XZT3kMmyrC9UU/uu4mu9pNSS0isHQYojsUQN662yKoKxD/LYsFIy78ygt14gUEB2CYFEawbeZAcx5367u0i1CbEZFlPvc0oC3Y/iIREUE+VbNFNI9kyDaZqElEGy6/OlEjJODUYOycqLkSVr4tpMPIwxk5Um9mDf0dS8yqzJ4KZpip3QsBUL1LSJNU1exZRZYbMRiaanIWCIVbDrPlhNuTt7TsKcbIsOccK4i8Bao6NNezlq2xYalW5Jxq5cDqC3riyROWTbqalTCt2WRShIFUoHb1KAtfaiWRDBpUyNnANrxnkOXR+LyoyACNfmT4WFy9sACJyYK4sH0wHUu1/+Bl/4c38ZA374b/lN/ODv/o188PV3+Kk/8WPafl0s/D52uvoVSdbdaUtXM1FTamcmOQW2HYOmYF0HaMZqO1/8qb9Ee/4OMHnztdf46ns7xODBzUrc3/OwddacfPq1h3zq1RPvfvnn+LU/9MN0Hzw73+OrszSDfeN73nqduw+/ztIc+kI4rDcr93HHk8ePePOd5zy7/3ne9xMfsupwLRSuOwX1cXfdL5MtQvkoTTaASD0PBQI1xUoWBRGNek+ymkxvjZgbsDDGEIjqpslenuQuAJHFHpbYUsJINlo/4WaS0mfWBDpliRwoeM6p6VkYOWRHtm5E87I3ySIzU8DLI2lhUN9tH4MxBjenmopoXhk3WeBVuTftaIKE4svWBBaVKROqG/r8VqpSZ8TQ89sbCYwx2LOrcS2VKQVDT2tjqwnTuECOJpOFgDilJoFqQvUh/GiIUO0YOdhzlM2tV+sm1UtrU3XVNeUsMfaUdcjMGHMohBkBvjH1/lkqmNlMR7URO+lRKg99/wjVx0irIHNZ7CLURESHxWDsk5hiy8HxRUCZek/SjZETsjP2QfOgLR1zccMbR6i313OqQ4LGZHXVnhkT5ehb5cMEhOoNNGY2xnRiH7glSymeEqB1PhyzQL/a17nr+1FKllGgf5tizrc9mB7cWE05RO/KNCl9M5Nt7hhe1/ew6uk5jkC5WgkMMdhZ9XemrEU26y5X85aE9gI76X1L1dDSYhE4mKbemc44ZFXMRo6o7Jq8HLlHBIOoYQt6p/VuG4OB24IZEIb1YxL4dX03rCt+uuKnl4Wf4tv2h/5IBzK49qNRtau1snhHsE3VlCxMsO87lnbFT78IfrKmd6SvSV+Uc/c//yc/yfd/duW0Oh98NPmzP/6cf/X/+g77kH3ULWqPA2spS/sVP13x0xU/XfHTdV3XS1of+8nu7mUTUM6LmF29XN41AQvA8MpzaJpMRtT/pLH0djC6oSqUiHnFJG3vzVhap7kTkWwj6BZi2VKbQBSr5VOsrChkAzdmToXjtgKnB3M2j4lC+kgeVJCuPmtClRJjsaYDjUzaDIEG11SmqE26apfAl5XUWidPAoCJvsNUOG+zjnUxdWGaImcDFu8l/g5Gir89VSDu6MXsL87MlMWnOTnOzABbusKjZ7JOY0tNt2MP3OcRDcSIYHUVyIbRm6ytYclys9K8EUMbRFPlq43Y2YZAdmiXoBcznJmMWczvupDFqmZqCpiR0AyPpqBYE1OXbsxMbqIpx6Kk8DmUM2OmhuJyOYGcsrKGJX/+//xHOT18wM2jWz77638Fj7/nTd07SzxkZ50plpoDcBfQqlQO1t7Y5yATWuuX39HMsAxl2DX46N2v8tWf/nE+dzPImxMfPjvTMF5/9JiVxt3T5zxcVl5/tHCzDGI85/bxDcuqZ6uXai63nf7whojkjTff4P7DZ7z2+Ak///ZP8/obr/P07hlP9+TJo87bH36L7fQmH9irxCLooFH1HQ3wcCwmEQq1jTnF6tXBqJmmr8ksogmRlrPAagWnl7LPUs/pZLJWwPL0ZI8hWbwvRMiioU1X4bsRoXeu5cU2ovv2gskDfY7IYO47GQVkujNd79rIqdycaqQsjawg9+6UlWUlMqUyKPVL1ntfmFLMqzXcuYBX906SjNA1UsN9PFlSqZg1lnUlHe7mIGqSZLgaUcvEvZ7nTD0jmbSWWAocmTfmrO+cUvWY67pMlOnSEGgJC/ZEA1fMWLzpGQnIEOBqzckZzFLMWE3ibCbVyJiqYeaHDWXywjUzjx5YSoYCuJi9AH2RCvB2sakz0c80g0j2Cc27mPJsGI0ROxzPkVUQP8qOGVEMbQFnEjHUzS/NVAxZz9ycxVKh/gbW1NhE2Ra9nh1ZjyaJbGVqAXQwEqWQiFGZWGb1VqPhNXMq9yWTTGOOWWzxgpvqqFyRYrvDlHNpWIVgK9zfLs2P9h1lY2VdS01FPJpBmWucYZro5+Y1CVGHIVKTWNmVyhJJ1F5Z/z1DlqPU+6Xmk2ruat9ATajpD+HWdQBgUXVCE/T0iGdZy67ru2Fd8dMVP70s/KR67Lz3jRN/9N/+Xv62v/fLvP7pe2YpEq21eg6UpxZNCsKoPDzPoJtf8dMvip+83sHD4g5f+PLGn/hzT8mEv+dvecLf/rse86Wvbfwnf/wjKcWyXeyfcMVPV/x0xU9X/HRd1/Vy18c++MvCn1H8SmtiVCIkt/cUNPWpLLV5HrgbrS9ickZJys3ZYpIpNReZjBTT1YAYO26TzEbQ6qU92C8dPKQob2WK6PVWkTp4gLVrs6sXOovRChNL2tGmdExe6g5YXDJiJPOVxVTTiYQAzcWQRgwSDYGg6pkKmLHtQ8G75izLWtdMIHAOSbmVceHc75PWGxFDgbGu8fNrOoEzSyLtzZRH4RA+ebB29pncjYG5sy6VQdMMTw1oaHU9NSEp8UzG3InupHcGOvDJ1hg2cJvY1ISjMVVUmy9kqrhqA9TGvCydfd+JOcT2VOke9WfcamJSgjfJqw8LiuF4OuxWTDFSIVTIRpom9UGBnjFhEQgjtIH8nf/sP8rNKw8A+OKf/Uv8zP/7L1zaJigWzJLzHpLf43RkB3BqnLyhnTNki7EjWBmrzDvniz/1l/H9AyaT5a3v4Tx2blhYRvCtb73L6fYhazPef+9bvPX9n6WdOg9ef4Vhk5veOS3J2Hf6svDw0SvcjyD6IO+T7W7w+JVX2baEuOWdd77FL/9lb/HsJ3+WV9/8Ed47TzY6g1ngUOxsQ2xjpEAQGG1ZK1B90EhiKpy3GbArC8ZKKr/nMd04L1PYImZtcgatQyRL6MbImdFZ/NvUElmgJiqEV/sojSbglWXnoGT9QLZkmGkyYYJZ0i30fcbApt636VaAzXGKXd0UKp412eUAoKbwK7H4QuAyNlhZXZaymUwoeK6nJCtS2LKmxTWa97JjVGPtArxiSKWqiPrdZkGOQYZDM2aI8XQSr6wr2aMWSNntjs+VrhwpD2XzyGokJj0m7JZV14rpzYCYWBPw74tAUEYWKA5yyrIyC/x6k21Jdrkp26Dr8zcohYMO0gX0h65JmmpA17uQMemtk2bV8Ep5u5U1JzM1kdSSfQQZhofYf0MZMWPAmKaGPsTSz5Ryp3oeOFr31IAd1VK0N1RDewzxaci+0nPSSyUQNSUv02i2CAy6BgUI9yetcrdGZikNOmkdctTvlOUmY4IFmFh5i7wMIGiu/WVUzYJkaZ2Myv2psaOT+C/b30JqDip3K6wUt1k5PkjpILwt25E3KyWP1ZZUNdAdcrA2qW/UpMmuRNi3KTWAbB9jZ7+ul7Gu+OmKn14efhKuyZys68Bc94OpXK1+mWRaxSKPiqv9/IqfPh5+CioTDx1OY8a/+u99wO0tPL51fvuvH3zme4QBmjc8g3HY1eFyGHLFT1f8dMVPV/x0Xdf1stbH17L2RlorsCdG0oA1DwBhiDtIRowCA4s23ZpA2lBuyB6TZVnEPMxJy2QxZ8kXU6kyNaK945wroFObj1iAOZNlEastpiMgouwSG+4do0aZRzDYiCMr5wivJcT8RLI0Yw+US+FlXSE5R9LS8dr8zJxmK8YgprJT3Kymr2kyUqYKubmsE2nOICCNzjEtC2axSzNhPbIGzNiBnAMPMScZU4XIG3MbTEu6NfqchMOZyUfjjlOuCLzBPrTJNjd6s7L+nIickNoELVM5JjmJUWxUHsHRQWegybEK253zYMFgwUhvkt6PqWmDLhm75QG0IPyQxavYG4g9W+IS8NqroUkmnmpytMqOWqyU18HTn/qX/n1uHz/gR37Pb+Fzv+FH+cqP/RRf/rGfxM1lC2guC800MexDoeU0534Mlu5SN0RtMFZNmBlLczIG3Z0v/sTP8MsePuLu7hvsLfnpn/4CP/CZ7+PpR3eQnUcPHjLPH7Bt97z79W/CNvj+z32Gbe6cHj6U1ccWMHjw6CEffvSU9z56R7J679w+ecJHHz0jRnLzwLHcuH/2Do/jQ258ZU+xXxiX8HUpPhRGZBEYjZwbOYsdN0fTvfQsjfBLxkz3QFPTBA2auf6V0Jvy+uY2WYGOsc9RAEg/W5s1xAhiFM4rMHhJPCmRipsJ/JD0m5WdwdznJQuGshB4UzaR2SBC0ycFYOCck4nhlqyufz9qid5GAfKRyj86QEZrjZ1UwLOLHY6qW6TrnUrYclwOlFsafWrq4+aD3l32Nwv2zGrYs2qV1bMoW8PMnSM0uh4tNXCpHJnIqM+jzy/Y3ZgZCl8OuyhkxqBAuJo9z7w0IG1ZWE0s/F42MvfGCHBcFqA4mu8Jq1fAc9Ktk5FsORVujaxDYAQ67L3pCk/e6/DBcEYoYH7OSQ09Y6J6ch5nlmVh5GRMWXgMsNFU3NLIqgVH7tSYg63kPr135ch4NTgJuJX9SnWjNhs1GZlC9xnM1kmqQe8rZDLHYCp6vyxEXoHQkEOHHu5F3VtIQTNk0WqtMpySS0D5RpQ1Ug27puApQzQzOJ93sgdLX3T/dk0KP9RXk6xJjXW4wmFHjPpO9f5YgdND8TAT2wNMz3JzIxwyNahB6pQgvR0/BLOVSkqiu6xLdmWsv3vWFT9xxU8vCz9JvffkE8Hf8499CUMmTe+dXlgih1RhOgTSQYOZScWfqldX/PSL4ydHKqzVZaGNEfzv/pnP8vgV4aY//p895Y/+qaeXk/+sXDE4trIrfrripyt+uuKn67qul7f+K5jYJdXOLKaopO1ReR/myryYEZJoFyCcc4eEU1N48TGVSXkvU/aRSChLYbRkpgqml3Q3azdoTaAsS3qv3I5ijIuB7vV7G9qo5kDskQXLkTvTqxiRZG/sM2jptFXseuxRTFhjOnScNpMYEzkg/FKcPI/ioJH1XXsBdCuQvTNTbF13HbKsrkl+aQJPApEqfGvX7zwm/UmyLHuHY5grJ+PBsvDKunA3N2ZObh/csgy7/Mw5FcDaWxcgCYGGOROLGrNuCqP1UtJhysyJ1hRCXTabwyIEJXmf+vPKKgJMBT5SgbD1SWWhGGoojqlgpDJsoiXWC8BHImnZFJMnXKRNphQBUoWL5Xr7p74EJXf/bf/o38P3/9ZfxZf/Pz8pTrdY/sxgaUbLYn8cRu4MK8tGScGPgNock5iD+5ic1sYH732L/fn7bB48aifu7yaLn3j769/A7nc+8Ym3eOVBpz18hed95/nTZzR3vvrVr/C5z3+afd95+uwpfT2BwQcffURfVyI65zk49aYpbR3unz3j9rbz9a9+jccPFu7e/SqvvPEaH24DvCtAN/RgtUaxhGXLmLqes95JvJFT4MZR3tJhD5vFjLbWZT8qxQa47D71LLu5VB7elDeTZc+6BDM3/QyvIHkvkGLJnoPpkucn2uzNHB+TnJPelTUzKTXBRI1UM/axASsZYi6nqfFpyPblGYypvKHj/rlLHXG2eVGQWEA3gUyzLGtVVBZLfWdD+TqY7BQo00SPmUK/j6xJTL/f6jkuhwIH7x9mFzZUzrxDRaHg6+kcopcCpVL9YEezF2oi9wmu/KHmjtdBgLnTWNlncJ5T170Y34jBiInbUvacsvoUEAuXzsHTL+98ZlYAO9WIO97Ejc4xiIxLYPQRVn+4uzWHreo7eibSVJcOtn9gl8mfjkKq1VQZWKscmqP5EEiPsIs9AwPPUiOgeybIeByNGOmy4EUaC2pOVl8YJguauSbqjdA96dglW+kyribjYpOKSFqTakL3UXajw6EyKi+sNzU3bs5p0bTxOSYzgkWt27dZS9Rw28lln6wm2bUx6LubgOulvrqz9EYzvwShQ2I51Dx6Vh4aupYIbefxPoEsh7zIyrmu74Z1xU9X/PSS8BOqY5GND95rPHy4YWsdIBhYDTqQNVQNs54PVy3JccVPHxM/XSyFLhUhwD/3L3+T1x43/q6/9VX+xt/4kP/sL9zxZ3/sWeU32uXgDZfK9oqfrvjpip+u+Om6rutlrY9v9d3GUYb08mE0M7LLFhIo7yAwbDmmFQlcRAbbHBW+2jCDGcFuKn5umv5jXpOfMplpFWJNMUzJLpQCxbalJelV7FJhxYaz1Kj3GSG2xzRZrYeDif0eVUiz5Nr6nQXSMumpPJ1zbT6i4cqvg9O0MxFToM2aSUofG8071hUmTeqghICexSSQ2AwBFwCX9WLOkM3FnQ3ZVhJovUMKfLo5u1fQ8/1G5GBZFnpKiWXNKv+hKu4Mssakg0kGXwdpkaEJSQeotLqHI/CyJ0gKLtvJkR+zz8AyaAV2g3ZpPECMT4Q2tW5gU+CxI9tLBGKRvdVHlCTcLEslroKrHIzKF8F460e+j+//TT/Kt376K5gbP/Q3/XoA3vvKN/TnIxWgXQye29S0X3MyjMGkL41tU86FQoqVtdNSwHe2YH3gfPPtt7lZgnVJbk63bPeT893G2p23njzk4QPD/Z633nqDh5/5FF/54s/x8OEjAvjG29/ks9/7vdw8esjz+zNtWXh2f+ZBW5j7wmtPXieb8/TpR7Q5ud8/JJ4/5NnzD7k5rbRl8sH+jAfrJzmPykVx2Z08k9gm0+IyNe2w206TNUMtZb6wUqFne0/KyiNlwsE8jww95za5aQsNMb6ZQYzEW9d7W/fXm0M3NR5TzZVFMluSrSxfnmUfSMImvTb77s6ek2GyT7RITI41yfSR1bsTmDwtek+q6TV/8bwKeEmpMHJg3empjJfSMCjQ3PTse4Vne4WhC8wLxowCdb7UNZtBSwGihtHSq5bByMlOCEBbohHIYjGP/sEwWoFXHZ5aZQzpdx8T2aKsLJjArcL6lWESofdMNodqdE0AL0wNrzfHR1bGjSwaaQr836fyYE7WLu+wd+cImZZiiLJ2tGoEZL0Ys34vletjZRus76l6ojBv84bX9Ew3pNCt+p+MS3B3RJOSqAncKycpj6cK8AsoyywLitVzaoAL0JNWhHgdntTggUPdcflZRIHS0PNKPWdUbUTXPAo8gqZcZ0yW1pUTNofA/dI5JK8dhYRrymiSDutpZYnKSKvDC+HfYLZG2hEULmVWztQexHEQpL+jAPLJHjuZUjA3r3eOJGMy4TIEwAlIHahY0+ebMVDD83F39+v6pV5X/HTFTy8NPzUjm/O1n1v5N/7wr+D3/9M/ySc/f882Bn7sQ93ACzuMOjgZVTeMck9c8dMvjJ+MSGNkci6L4+Kdn/iZnRkbAfzB//4n+N2/7RF//sfvlEFmUszpRgPtip+u+OmKn6746bqu6+Wtjz/coy/MpKCW1EHF1+iFq6ywGHFhMsVkGGatmCvoJuZnQIFVxHa4aXrZ1CZoaTUOvEaD56gCJUuHwDMoAFVFubnsioHAsvekeWPfJ/s+aRmyRZTcOV1sQ7eOYdxvO96MpSuvYs7BjQFo02DxyqgwqBHmpNdGAumN3ht7BLFLmmzWWLyzFuu7z530JBgs3mpzheFJ9gq/tgMUT2W2eNCAxcEyGda0qXfHrIM5cyThTX+3SYXlU2AuMnHrkHUvCGX8DJTf4GI5CglANGJL0gbWEmuNUZuZdN86iIsCDdlaMVKUWs+oxF18WZghNlvMuYq1h1J0MhNLFWZH9+sIVc3MiyUAg/NHz3nymbf47K/7Icydu/c/4i//J3+av/gf/SntVxGkuidcTw3pwUC5O3lparIsKi9sL62LKY3mhMM3vvk1lm7gk9Ojhbv9GeHKGNpzw06vkAt89Owjnrz6mB/6lb8St87Nw86I59ztG76uYuKXEzePX2Xsk+4wtrOu57aBNx48eUJ6I89nHtyuPHl95dnTp1g8wdtCpsBPVPMxxyQt8bWxeIGSanQcaMKEXCabmZQEs653FuV6MJbk1LNths1k33ai7FwHSI2p+wkwGUw2EtUEy8RnMY+9AFwcwd/GXlYlR+wyleOSFfoeMyuMuevnhdKmsoCjgp2NrRmLHSqJFzkmbsZqHQ0rUf5g5mRPKVqimlx3w1w5MmSyjyG22Rs5UeZS0/Pn7vS+VEM0iSgmd+3QFjVZvAAeni/6WsOJah4Nsa8ZugbTspr1kDWucki6QzDFllL3J2Xn6ulEDOUoFRxkJhGDffGyECq3ZmnKsGmhvJ9jWqNlVeuYykZpDSNKRVL1EmXOWFvYp76vt07OUJDzoT5o0HsjpmHeAVli1Cwmo54F0L9FcGmu8GqsqWe1SeESUeA8xYw3ZHfKOiCwus5ZqpheqiMzAdFIHXgw8wKsj/rhzdlyFtATYHcT976PqFws2Y5iBL05S+sKzY4kW/3ekP0jIvT8tVbfL9hzYNaVE1QWPHNXjs62V8PXCIKtwO4ENerkReWsuxtYl+Ins/baFAvd6roqx+jQD0Q98zqE0XefxOUo4bq+0+uKn6746WXhpzGnJkLnAqguN3MsdtW4Upolh0NC9Va5ZFJIeb/ip18MP0l1pveZ5vz6H33A7/oND/krf+0ec+dv/5teAeALX9mEaWtPWm43fvvf/WUevnau4SFX/HTFT1f8dMVP13VdL2d97IO/Wax0FmAQO2GMuKe3xuJLWS6mAENaAR2j9UazRWxBiMloKYXWMU2M5pzEJdBdEaQHkxxMsLxIcTPRVDoCEJsdBaZmTrx1tjFoIbtCurj2NFP4bUjG20y20lZF49HplmmTfR9kampUq2lrw2QHsClGcKXJDtKUqbPPiXvjbh+kO3iBpGnse1QGymRQgbQmObinMmJmE2M69hdZNydfyDnF3GSytvrsqFiu64k9B/s2uO0L2TVBKjJkmQEylW3Su3IojhwETWxrYCHWpqZbeWU7LE1TBQdTDLWVfcRQDoo5U3SoNppWEv4Z7DEwkrY0bJFOP4FoXjaDEEiM1EZ9sHFodz+myGUq02JWqO37X/oa/48//K9CqQzSC7gOZZt4sf2kGMd9JPRFv9u1MWcYy9oZ+6aJbgdbD8X6SUfw3vvvcfvgIffndxk5CB/cPjrx7MMPeLU9YHjjfN758IOPOK03vHr7CvvYeTBvePXJA95++z1efeN1Pnp2z5tvvMLz53d86+23+d5PvcnP//zXefz4Ncwe8PT5HevpBvfJ7cNbIgbvvfs1Xnn1db657eTSiTRZiGbQesdW5XOkacrWLGDQrFUotRJV5tyLdRRjPYJqEpqsAfX3+lpT+giar+DK77CudyTmLOVlXSczskkBEAYLjdbE+pmQYk0oE0AYObnPoBGsE7xpUltmYk1gPBN6W5gx2Ocmxrms3jMVeTKUqcyMuMjwY8qisiClRSJ1SnjTlEQzTYAkL5u8LoIAbjOj+woOcx91fVbVqcpvypz0ZVHz4AWS5qChgScd0DTAAohZYdQpXtYLnIbJdtYdbMyaHCgViP5sVscBRf2Ksa0AlzkFRXrvytGag/McLG1FVUE/hzT2Wd/dvVhaSAtZhJqRFmz7EENtjVkN5zb2S3OeoXDopa+0VgcFpoPfLco0Yq161AJzpMLnrR0kMLKyNcYZxjZJn+CTnlGsvix2egcry+VQ/RabKysdXBQpldkUpiEB3msauAmAGnE5rE5U70ipXAwj5iRmcFpX/edtZ10X/OaWOXfGvqtJ6wv1EyBhWRbIoZqSEzDZfKyaYzc1YNVEktAHtCMXKzWNkQK8AN1KFRBHLQwIUw2uaxDzUIB5denKH2sGbsp1OixUVmRJxPi42/t1/RKvK3664qeXiZ+6vZgeu82dGUPZae7g9dx47dnbLDVQJ1CG1hU//eL4aYbJIuzKhnv/w8H3fe+J3/xrHuIO774/+Xf/kw/4t/+j9y6HYebGepv8db/zW5weBXNe8dMVP13x0xU/Xdd1vbz18Q/+KkCVQ65eRWK50XTVvawXdjm1gdtlAYIxdkBT5kYOnKBZo2dXBgCS7kZqKtOs/IMexkqy25kMK4YT0p22NM7sBbYaNlMHE97oxdLkFKvRAjwnizsWxihQfbapHAaHIGhHYG4abg1m2WNaTdCbAtlL74yczA7U6PnVOx4Kf22nhW3f8Sygm9DXhX0MHvSVBO4Snu0Ty8C7X9jIGIFHYx+TdrMQ29S0voD7g8H3Rio5hx7QfAKDuB8sTZudhcKZYzp7k2x5BWJXUPM9gTUqp6aTtAsjgyni1Wax0EeBTDHPuyXZKlC1rhnHhDEXK+cdeks2BqN9G1t3MPHFlB0/P5EaYusD6RmK/W6d2U3ACSgZGk1+AGLIXpHy3qi4l1T+mHzlpglo6TosTA8daG1SRizdmTHItrG2V1gteHhK3n76jJtlZdwLSL/24Al3YXz0/J7XZuPph8/IfefZRxsffOsrrItz3h9IiZAntnvjZ3/ii3z+d36WL33li7z25mvs6Bl//MYTvv61b7Btd7z22qvYPrmbk9ODB+zPJ+cPP2S9/SwfTi9mXvkjZgLumBjqaVIhGMaNN9yc8IC+cN7VWLk7c56VbzONFlxk8lmN00IjB8xVVhKdp45SmojhrGxitj3oubINBQHTC+DNxL3jzUkTi+fpLNU0lpJe9yeSTGO7hOsmGRtL6/R+ws8CaunOXIyJ5PfT9LM6yvrIFNCZZsxVtptTAYG0xmiOB6wJbQzmSPYeWOu0XKSQ2GWLOdKzPBpzD/rSWLvLSkUojypCCo+jAcaZBmTUnyms1pqez1SD5YcNrKjKUyYn2/WdYiFwgbDqBDPqahvMDDXcRVZvBUisddYMnMBtSOETRlojFikZWqgB2HPSvdNMuVlUo2zu3O2lROn6Ti1KxZBiT89TShllWgsF7znoyy1jl32udYVfR1Iss1QVWW82JGs/QTTOzRgF2B1NNk2fYu7NQEZANcRLNb0MAUU3WTImAomp36DsID1zzZIWwdrEGo9U8zDn1FQ756IoyHmGyvTxDGX0oD3JUNMzx856OnE/zgStWH7xxRaaPN6anvPpMBzuhiyEqjPCmjl3uidtTlok0xY4cr6yrFhmcNgMh56BzKCbpnEO4wUrzs4eg744WziYmsEZwbqsYMvH3d6v65d4XfHTFT+9LPzURnDiBqvBEWMxdtPeVKOKayAIzG1w8rUGiISe0St++lj4yTj2n6Dh/OzP7vyB/8U3mDXFQXremkntTmBsJPd3xs/82Jt8/69+h/XhuOKnK3664qcrfrqu63pp6+Nn/HVn25Uzs+87fe1ilObUy5YHGyr2mQj2eV8SXRhzY6bVRCMUHGyahDVih1SWmDcVqjmDkQqUXq1pUms4+5zaWFNgTAxZaNqTiwVSRobp9N9DIbQzuJtCPuY17t5UZA2wGZcwUDNHnNNkqdycZpp8GpYQg3OFURgvQpozgzUbNmFPyetlS1EBn6SYriamzF0BxTNUkFfvZBOg8OY0E0BxN1lLSPaYDG9ll5lYDHqx9a1yeiYh4Nsap3XlLp6zeYI1ujVWwGewO2LgClAcTFlL5Wu4aZpe1r7mJuVCzjoMQteVqal+3rrCg1GuQuyzLCM1AW4O3EP3rFsRNPZCgh0wp3MorM31KHXR5GgDBOasrCMr+TxledJ3SFMuz7J2RgT7volF7E0HhfSy6Ehqfj+HWHI3cuws52C9PxPn52zNePfpM956/IpUFbcP2O/vef+9D7l/eseNr3zjGx9gDB6cOq8+fp0P3vmQm0cP+Gv/xc/w+utP+MLPfIG7+2f8ml/za/irP/ETvPboNWIE+7bz2qPHfPKV1/hj/+mf4bM/+AM8erDSboL3336H/sozcj5ghDKhNH0RYgw9v2VrECtpjAxtyiTEZOZUIxnBUnawiMl5bLSbhZzJzbrg+wYEI5ULMis/hinA2rzT0i7Ziw1jxfGwsogZs/KM5kx6JmsTaxepfCKrqYcjFIp9Op04n+8FqseUOqS5rBRunE8NQuzjqS3MmuIGkEOWC0PTFRfvdR0qUyaRnSdk8epGWaoKbIYacDwEPiyJLPtPM+YMbNGzH6mMo+08SnnTwPIy7RJTltMYe1kx9H1sKhNnzl2NQau6kwLso4CRrBkK8U4Tg20US0sxtQlLk0ImQlkn5lIFHANWkqxA63YBj2nF/hbdmqkpht1OWAbdV7aoLKA0bEY1i8U+u6w/aZpk6JUhRCU251kHB5NkP2ppo2xlCXmEJOu7DEfDB2ZVRDeGJWY6UMii1tVsOr3CwpUTY6xtFTAbU5kzl7/zIg8tlcZOhBo7WlV4ExyNmLr17rTWmXPImpjK2/Emi/s2dtw6M6US2PaNfQ48Ozn1ueaQB8tTjWO0TZ8/jBtPOlN7QZtkOqTsV6DG39Iwyl6ZsgkB7HOnl0Ir6oAekyJI4F7NmwLaHaJxsyeTYFQNN1Srr+u7Y13x0xU/vSz8lJnMPksNBksYPh3qXuUcLEsvNZlVDqSVskkHWUle8dMvhp9asvTGEpNeduFMHfZJcaa9TbZIOSyI4Pys8Uf+D9/DP/xPP+Xxzbzipyt+uuKnK366rut6aevjK/7mpLVeCTVAaIrPeQu8C0hNVIAX67SlEeH18iT0hspeIwLGmMyU/WBxJOMti0uaX8DwSDGnlvLjw4vA2BxABs26pPIotyEoBjZDMv5KuZ6pzddqBPkBCps57QDcJhBgZYHZY8guM2RFaa5JUhG7LB9TYF0bTn2PiCruVKCrNsDWGtv5TM6JF+PWe2fLIAfaOGdiVqHOMTUFqaTxCqTVtDgrJitzHtm4jAn7UJi220JLY5x3WtPmcs/EExassoONHFP3qEISliYAkgltXTCSLealuKYIYWwmzSSddtPmOceuPAyrA6G+EnOjWS97RF5yLPYxBMQoa+4BvtvKtAZAmKTmvXXGps2r985elhsBbYEdqiFKS2YLsZK5sSwrjljJViqL/ZzKxDFnIiWhm3PTVp493eHRLQ9efY2R8OzZM5aHxvtPgzefvMa2TdZ+w7vffI9HNw+5O2/Y0njvw2/xA5//DNscfO0b3+SzP/B92hjH4IN33+Ov+1U/ytyCp+98xKe//3We393zzbe/xQ98z2f4yhe+yMNHr/DDP/or+bmf/HFeu33Iw9PCMzc8TJL/VOPjde9IMVeZQXbZQTJEdk2iguDFgGbJ3HMUMChAsDgsqalqlkl31Cy56581XlgIeHHwNy24j8GCsRboGKHg6N4bPgOmGN4wZYCcVn+hNnGFFC/9RJZ1gmKMw2UlGThLcyzmheHePStzB2jKkHGnMiE1cXGMnWmOF4vfI+meCot3w0IqDzcjzNm2M3jSl4UklFuDsSwLMyZ7CLQph+mY6ljTAKPeweO/ozPrOEKdp7KhmjsQxJyYJ+adGTVzrh5jmlVtrQPuwhyGXrh9HwKzZReieFX9DPGrfsnuEoixsn5hJkVAFkDFGXNiq7PtOzSF47cQyMu646DD9OmyToyctKnvRjq9X8w/l5wuK65X2VN6Zg5Fyp6yjLeEmy5Gfdv1jra+4MXEUm1+HCA/anL0t4HmSCmFKHJ3DjVJ3Ru9fqdaMe0nToWymw5FzNSgRBhbpA4S+iJgSyifiA4WmnaXL7LXIga98mlkN4SMZKuGBmDpnW6uQ5kuoOnDZTkxZ9T+ZjVZlcrdGqHpjc2b2GxXvdzmJPddkzfdD24EDQfQIYyWDgZiKyXRdX1XrCt+uuKnl4WftrnRTo3ZygrXFizuMYN1WTnXJNtwKauGRjeDN6mejsp5xU+/KH7yOkw9bJxO0qs+mx//q5aZbMIPXtv4R/+5v8zrjzcWa1f8dMVPV/x0xU/XdV0vbX3sg7/YJ0t3YlQeCknu43KqDqHTfjO2OWCXTDjqkEZTtQKPpNOLHHXJnyt888jKMK+N1o6MAr94/o+shHQx2WNEVX/ZPWYmrRiEWXLvSEhzAV5LJCtPybIxMZVRf5/JjKTXWz+863NlMCJrM0IM+sGUmIqOZZJLI1y/jwqttanJXMu6spake2kLOYNJcm4Kki34RTDpwM0RhAp488qO6fRdU6lGC6aLaRtmjL5oY4oKdw397htbmAV095iEGUtdR89gMQTYA9gF/AbJ3ELZPLzYEBJNrBM7FJcNcwB0Z4auh1k1O5m4JxGSYrcj52RagQlnr2vbW2Nk1BSxekDvnzPCWFJMGBUibM3BUZB5BOC0/UwUC48rY2NOjaeXQlDNCN21qY2d3ho3bWXug/1uI+2Wp+b0T7zF++czn3/8gJzPePrsOUtbufvgI27bwvnujJtxuln58O4DHj5+wJM3X+O95x8QDcZIwJnbzqfe+iRvvfEmP/YXfpwHDx5hGD//5S/zoz/8w3zi8RO+8aWv8Df/jt/Iz33xp9mfP+e954On9yfGTccClu6MMPZtZ/GaTFeAChRiTLGcWYCle8fxav7ElK2mCZLKQtpZlo6Nwe6a/NbNWNxo04gwxqECTIGj41ncLLizQaRL/TAK3maSPss+nNAEYMY2WNZFm7KgN8/vnmtyGrOY6mKhuwBBj8ohUXgK4c42B2mTXmrPPQcx5sWW1lOqA1+agPduej4QUzsru+hggaNNsenusm+Y0dvCOeA8di7TGlO2lRhRjLFytCgwZTlZl0NRojp4XC+zCozXmyImMSo82b3UK0vVwIlXnpOUA6pVibPXffNiqCGrgSx2OU0h8FRTXhYjqpE0rBj2ANOfG2mybXmpbsodkynrnljuZJuDk0khEs3IsGp2gQiqd2ZBtdxOXYHgqQD/bSY7qps3rRH7IO53+tLxUjZMBrKuZTHoFOxEkw+BPSrlPJP9vMkSZjUlsQ6lY0YB8QO2HUqWsiFak12twG/MVB5R75VVpcOT473KDNrSscjaJwZWUz4jBoayb+YMRusKk49kTBiRkA2bNTgn9f4d96L5oVhWcyK1jxp+Eu7PQ/a+xZXJ5Hp3jsZiRuLW2PbJuR0HCLJaUhNOr+u7Y13x0xU/vSz8tNcAhGNy6D42sgXdmjLgLJnudWaYeCnT0vJiHQeu+OkXwU/dTrIqOoQL2TQ3PNAhV41QiW8XDuVkWiNuN92nvOKnK3664qcrfrqu63p562Mf/Jm7ZLuRuItBiBklk5c9oLumE+XgEpBpZlhrNBOrY7WxJpW9MBO3rE1We4EYY5X6NFkpzI4yZpABgdgtL27FZA2xdcUDGKPiFIxReQbHJCmx1I2cVQhD4JbesAbMWdaKOlBqrRjz4JhCJ9AqFsQqnDQzGXOQBeaw2q5cG9F57HVg9aKQ5xYsEaw3J+VfmKbU9eb0NLZNeRTdm9iQMDEgTJSp3Mhi9WZtbmkVvgq0rsyKcr1IAo02sJm6E24KeD2m6UryLuajWd2DUg/gL8C66mNcgqV7U3CrW6P1xradOVUo65ja9MM0bam1rqBqS6IY/TFCoeOmnKPt9AoPZrA9fbfYVIHepZCUu56vnIPiXHn+4DHTFk1Js6brl+DeoZ5fSy75HDkH4wwdJ5qo/xGSjafB/fmOkffc3qy8/fa7vPrwEXOGQmobnPfn3N6sdBQy+9G209rCfg4cJ2PQe+Pd997hw6cfsr668P7b3+IBjZtIPvrWt3jlwQ13X/052vnMm09e50tf+iavvPU6HyJZeqBNK9aFvnbYQzaU4/sHlTV0sNte1quB2xE0LuDkezBnzfTLZBbLFjnwZowxtXGH07pfAsMPywr1Pbu4cCZHYwhLc45pcDOTRtMEyQzmvut5MeVYyY6AwFzZ2aL4zkjDxmBZVuy0XLIEb70rLHhOZbi40dZFz9CAns5iwSDYZ9kDSqlixWg207UQw6p8lMWUYUKIWTVvjDHozWlLNagZFY4fVa/UiGUYwdB0tkMdWWwt9V7s42i6FRCPISvMvrGPyh+xytXJrAYsyx/WMJx2qA6mDgmqEtLc0KRJvygYjCwBygHAymJiVnUX0ltNAiwlQRTjfigHOOqb8cAWPI3cJ2GJ905vXVPrVOR0jQogn2NQJebCaKebNpt9k/XptFbovhJpshoQQ41EVn3JzLLJJMpHM7wbtkuVoO8n5j6A5ZgcetwDan+IKCVHAdxMzBrYEIA2F5Nd1ztChy2ErnmOqVpaIoCoA3G3YsTNYJdWJiI43dyQrv1gGVnPPnWI46Wa0OYV8hZpDzQ9ImNWY1r3x+p9yrQKZNfjpkmsQ8+u6cDe0ECE8I+7u1/XL/W64qcrfnpp+Mmd2KFPNa4zd3bbISdGkwppTBZf8NaY+1kPaQBV982u+OkXw08jlRm53auGL66D4KyDMZoGZERQx3UwtmR72vkj/9Iv42/7+77EW5/crvjpip+u+OmKn67rul7a+tgHf74smEFvjefPn7EsC+6Ncd45rV1AZJ/ESB62G7LB/bYRmSzrUuHQyTHRzIuBGnPQvYDTjMvLbLVZ48b92ACrU3+pvNxgy1HFR3LmbZ9kcx4alZ3TaK1VJoKTprHy+gztUqxbM427r2EGgQoCGZzcyBxEiPU7xoH3fmRGFM9sSI6cFFAygQOS3YJlXdj2TZuTQc7BqXd8pEK0M9n3HXeYPljMiXgx7jz2YsBW55mpIHb8kgfhOG2EohjMSDd2S845iHBlUhS4MEo1t6ykJXsmNpXp4QndlIlybMDNjUNCPw7mxw03jWyfKbY5Y9a0sCC2SS/m0lKHRAczM2cow2dM0sHcOPWmwFav6VfAF37kb+Sj7/vlfGT3jJaa356w+qrdN/Q9LkxOwugdW25Y09hngDXlHqUOuNydZQYxdmxRFtAIbZp7S/Zt4+Y++IFPfppTJu1kPH//DkL36a6dsTl49cEtyeTBsrCEcQrjZAv7/cBvFtZ+w2wbixtL73z9m1/ndHvi2QcfsrTGW2+8wW1INv/g9sQX/tL/l9/we/9O3n76lHffvaM9ecR4+py5J+cwclmhdY4cqDHnRSr/wqoglk25LF7WL5ijhnSsjcUgYtLWzp5iO29cTJrsAAk0MpsI2TllzzCrZhRuwridVuHfxiwGz90gnd1CrFsE46xA4OY6SNxyJ2Lnpi/EtoM7Y+j5WayxzSkrRlMI+gHMb7zR0oht6hkKYx8bY098UU3Zo5ra7hVgLKYY78qfUi+jd21OrC3Fxh/M84uco+Zd3z92rNBKIrCt6ZsCed4MpwvWW8PQdzYMXwV8fUohkGNclBOz6oa760CbahZCCpQwNXGEgr6XsFIG1fQ7Csi5GukgLsCVDLodTc1RkAyQhXugRm4OWS5iyAZDmTsilfR0vIfLVJ2RHUp6lnGojFoXwx3BaJrQtpnAWQMsKu8qnGZDDYrDOXbl0JjjMaRaqHeUug/H9TGAHGSqPjVzrC9SMpVFSH/c2OZOVJi2B1hb6NW0zTGZNnUdIlmWhaQVgNa7klN13JKyS6pOzTFY21qTBXWQ0ZtUIcorUuB4651pGjowM1ia0/dgz0nU4c8CtNyJWZNeU1arXta2kaUqchdbn2U9641906FKS0rtlbKN7jqoUFPUybrP1/Xdsa746YqfXhZ+2jJpOzzszmd/4DkPHhrtZMTUqfLNUvhpT6JUe5Z1gJF1GMsVP/2i+GkO1oeT7fnCfqcDZ93lOrQHRg5mHOpcI5jctOQrP/GY3BZam1f8dMVPV/x0xU/XdV0vbX38g7/9DnBmsY3uGje+rI6wprFFMCw4+3OcjjdjpcFIojWmOXsoq6EvysLo3nDXRjxNY9dbxGV4w5iDJTVFasQge78weHt0WWEQK3jTF+a2a5Nxk1S+NZam8NFsmowXIZl49vbC3hLJGk7skjpPg7acdPCRcUTOkM2JGcxzcvJGT2BMWU1MTFDMIOdkXVoB3iT3nVvrMCWXz2KgJ4Gvxh5nbm6U0/B8G5gtmHXCNtriUmbRmQ4eG8278nY8aevCCGMw6e7kmKXOMqATJotDS2MkzNagNU4mS85GUwF1hwgiuFhKMnW/aJoQ1c3Yz7uKJ05DhdVYwAOXz4EMJ61zn5OeEwgaDcKYWVk5rZUg3tinivUMp2Vl/K0L759uONsKlvQuAH2fSa6S7ys7aUH5f02NyQwV/RA7HkNbW6u8oIEsEfcRtGb05QRj4mPy+PbE87s7vu8HfohnsfLK/Yb5DfcBizVuHz3io/fe4Rwbd+czzW+4fXBi2JkPnr/Da288JjZY+mSwMfdnvPv+Vwng6dNnPGDh4cNXee3JY77x3jf53Ftv8PZP/wR2Bz92fshf/Lf+ZX7P3/b38lPbQyw7y+kh2MLdGJjD8/05PZ0ZjmUnhxXYCWiO94bnZN/PrMvKjGSvqWN9Kli5nWQ1M4wxk1MmG8meKAh+pkKuPfFsdCTnP6xfM8R6C6wZxk5z/fPAGNvOmi4LAMbSFva5YxHcpNFshS1pfmLz4H4MdjO8NRYre0lly+z7ztI7VpkllkZMZTutyyP2uTMq8D2ynp/d6RHcrJ2IyV7gprlyUcghu89wWX+GMqOgSxngO9ErJ2okRmOS3ITsO5fhJ9ZJOs2Sfe46IPVG645PMbZzGxjB0ihWUpPjIht9aWRskGfceg1L2QHHfMFm4U3GxcqnHBMTVM7OhlcAvhjO1Rqei0BMQIwNGzu+rgxz9tjBg8xO72Lj050RQ/a80ZQL1BLrxnnuzDTWvl7qpSGr2tJWIb2WjCWJHFg2lmg0BEgpG0iY0/bGwLirtOrVVL+iNc4zcW+k69qOoe/crWtKKJDmMk8ZtAm7B3svVUgMbtIY2Wv6X5CmgOu+QGxdTUpQyo4gY8PS2fdJP2la6Nh3Vu+AVQaYcplsveG+OheLwckbPoIMqT9yAatperhzl4OMZHVnb7IIttYr58vYUV4OpkOYmGoYhgWrNTrK25pzQqleWuoaaxJjY0SSOXVospgY7X0w90FfFoY+zXV9F6wrfrrip5eHnzSF9ROfuuMf+qf+KmcL2KBnWRbHroOeVJZZQ8+i9iMND7jip18cP6038MO/6R3WfeHMTrops6+m86ZrWMesHEvvMHPj3a8+5E//kU/r4HzGFT9d8dMVP13x03Vd10tbH/vgb2kLcyoc2UtP29zYoZhmaL7gKNBZuElMcDCxKJalppbNGZIaZ6hgpawlzTuaEqVNj8qWOeTiDpfMmMWaOBbjwt62YvWi/pVju4QiK1r7YHUUfGrGZYJS9waLRoSf51D+Qv3OxQWYJwpF7pW9k4C1hntTpgZiQRmTmF7FTxPQ5hh0c/qysE/93NldDI91YgZxv3NT4JOmsGGFC6ck3ZZY65rwN4KwKdYmNfjCLoCVS9lyE8OmzJcsYCmbJib2JlICAdrBcomR0xcsG84uZkeMfL9IxGcqC8ZcobCYKacnpMpzL3tAiA2klSzbYcZ8EfKL7utxwLRbhZMXg1ZkvCh/48IqGbxgcUkxmsYl68YsaSkrieHsjiwAIZaSiJpquDKHM3Y4j8Zf92t/C//Fn/wP+dRrDznf37HcdJ49fcaydJbeGNPYzjs8eMCDBzc8v7vjyas3YBvvvf0VHqwrp/XEvN/Y5o7FzhbGaV3Z757zyTde57Q0vv6Nr/Lrfvvv5q9+6a/ym3/r38B+0zidJ/fnYF922QciK9R5UQaR697M4/nvTdehLCEtDTtXnktf2OYgbBfrPAb7HMo86gtzO54VMaXU5EfrL8KpEy5ZNYkxQk2Nu2PeL/cuzWFZOcdkaY3TurCfN4hkMGm9ixW14NQ61luFWOsdJyvXyQ95vt5PWYqTpXWpLOaAOcAFCkfqWene8NaJoVD5EZM9keTf6n04sk1CzLGyPpK0qWmFJpYygDZTDKkZ26JnuCHgpPcpmEtFDIfqisWFTqSlbGRulS2Ssmw0pCQYMVQvkOUrepctzhyLuFg0cinFTtSvKUvbyNT0ZWQrcxojohhnY1kXCIVAW2vcNFnSIsVSezNZDA0Ivb9jKjezW4eazDZCtpTW/ALQIgfk1PdF7zqZLKYsqzRqEqDa05pFp+uH10ROWYgijqdMe4tKlQYHWNUwWRtDnw8wU0UXUIXoFbKdx6OkvLHYgGxKA7BiomtIggG9ddVHE0id6BlIpqyQLiA8UvlGS2oAwZ4Tt7p2F9ufnlM3x1fHA0aqoUvT3jHNoMm2JVGWqUmZSQ+wbuyEpuSZ0a3TppFDyiR3I1zWxGwu686glDe6jnPOI/b6ur4L1hU/XfHTy8JPmcZuZQi/4qdfUvz04HbB2wT0vHULTYlhu+CnOcuh2rQ3tEXP1R7JHnnFT1f8xBU/XfHTdV3Xy1off6pvJIPKE8gX4AczZbTAhaG6aSdmBFuG2OxmtDR6GmGBVRitbAspQJlir2MesneNZc/UhB9z1xQ6S8xdLNQIrDfI5Hw+F/AV85S1D2JHtsMU6DVlAgShzdiOfJkKreUIxq5A7coesBCTEgXujvjTSIn6SyFOVGBvzKC52B1v+oPH75ozZEtZOmZOzCG2B2ep6X0jgxlDjESiCVw0bdhLr8DTccRiAKZR8qbNQXJvbQqU3B8ECJYmG44NbXRicWVDck/m2NjHJCqkNYol8jRWP4mhzhf30FslviXEpDKFJFtnHlLzCns1pUkowkP2B6ysSVZg11VwpyvXwVM/I9E9tfq+WJahgguIxio3wo2b06ksJmJW55yQg9E6RDB3TaACZzVnmzvd4eGjR3z5a9/kN//Ov4k//8f/ffYR5HSW5URrMO7uefDkAVsMlmqYHt4+4sOP3mc7n3ntwUOaBas/gKHnfbUk2RmRnO+ekecHLA87OSbGxB894lfcPiUefprx6BE+J5NGMzVXp97rmZiQFWhsME12nzxk65mkFbs1KyenwRZDjHFblRkVCuYdc7DQMO+Yi1E9skwyo+5RBWJU9iIGraFcFpSZMaeauBHH9OWygvnESE2u9FY5TUB3tthoA8YMvW+YgBpGtMCjrGFTAenj299LxNRbNTcjk2mqGRPlHuWogSTelCmUUktEznpu7GJvkipFze5tqsGpLonIxj6D2crUckxiRDkqw6X26AW0w9WcqaF60UTmxYIhZYdbsvSuJvCwUtBYFwGysQ+SpJtAt66PMrvCjxB8FPg/xepOJltKJdMPG1MGy6KMphyjrFyVhZMQFYvfvJPTaL3rWZpxyZlxbxCqW4aGEuAFqgu3HoHQnrAxOQbYESkGuwL92/Evg61qy9o7SYWaJyx9Ub04rCimLJj0JJvJhRRTeS/mhMNdBF4NmZfiKRNiBGmzTgHULLu1y3XwRbXMAWuqz+mpXLUIpCsqW5IbK1YKItWZA7D70pn7qCENUlso86aUNmXF9O5gAstkXGq4moHQ58Vo/cjLKauUaf+sy60S6ELjI/cKvD7SpAq9X9d3xbripyt+enn4SakoX//SLf/mP/sr+Yf+0F/hU597fsVP32H8pGrcjhsgFVJvV/x0xU9X/HTFT9d1XS9tfeyDv/Oc0CQVDgttTBmMmLR0FejjRQltPhb6s8oOK8CYE42eDzIbWCOQrSBi4rXhbWMHUyjztm1ioWYwtl3j3CuLwk3FO5d2CaO+saWKYAi4JmQOzcIzK2CkAunH5gMEmhDkrq+QDuN+o4espyoRmp419sTqIMQqcweTvNmKQskZmpBlsO8bi3dmMemnm1tlG+yDh71znoPWxbhvY0BtHpmmDS0TL+16TuU4KEdDm3dizH1wjGg/woi7C+A1oxh2ARoilD3hECFWyV2y6JwaZn8k0zRvl6ll3RojKJYp8KaEjZXGIC6ZGJmigxJniyn5O8oT0vQksXEZyjZpkSXdrmvJwUSp6Tkm/0WUJcP0Lz1XUaCNaky04Z0yxOokNRJe9pmcYgSXxWhIXTBIbm9OnLc75oSn20f8ut/6w7z+5uvszz7ktq+snrSYnE7O3J6xb3fc3Dzi1DrzvPPaK6/y0UfvcTcnD28fsLCw3J5Y15Wnzz7g8cNbnt/dsZ/vaQ08Bm9/9Rv4vnO7POTtu5/ntn2aed7wG+f24SOeh7GPYp9cz0co4IeWhnfYZ7CNvDQAgSbyenOSEOhCTcrd/aSF0X1lqfyLMfVcHMoBQqHVHPfS0JMvWlFh6EwaYtJjTkh9NlIqlMUU8DxjY84Q0EheTG8s/jJqqprYVsdLJXFYyBZvClOuOnRMtnNT6L1bkkyaN8w6+7argY7gdCgLxiS3wb5rGrS74YvqTfNGUgH71ajuzGIhNfmrebChbENL2aLCYCfYmTAcn6EmBik4DsbWrZjFFIBWDosUAoupSc2hxriVUsRyVJMsW8Mwow8dghNqECbBLCWJrBxW9y1UQ1P3Zmaq+dGLofwWd7IGt0z53ehVN/Z9Y1n7BYT21pkp20hGvGhWMTU6qcOHOEBcJrRgBsyypDhcMiJtJjYHjljo7lIwZCqvCUMgEX03zBVGXuqggx3OJgXU8bOr5cJNhxazFEUulM9uG80azdvlGmo6HVhKmRR1uKCGX423WyNKtZRmZOh9EpAuhQ5S+WxDFijPrDwhZUjpATb2USHmuQP6bDF3pkPSCDfOliwJS9W3acaeegeziJCGhuu0Oem7GoctpoCw17Uu1cF1fXesK3664qeXhZ9wTUJ9+NrG3/rf/SKvvrbjZbe84qfvHH6acfy5We/DxGK74qcrfrripyt+uq7remnr42f82QHbEPhrdgGrkQqCluRaY7UtJdle5UiQ7aB3PEPS2gNgmTIC3DT1LSKx5iqYczJj0qwRSU09E3vSrBOLCk8UO2MYuQ+2cRY4Tk006l7MaCY5U+xeSeOPIukmNuLgaC0Dz6C3TuudsYmNX105GtS+PkMMgl1sEY57sqxNbEvWd6/rJvbXsaZwa8bk1LuydyLY5sZuYngITYAyE3g1a/Sls22boiHMMQ9leqTXJpySQkNZdBD71xS4Wh4iEUkkGQNSwFvuB10rS7FjliYWHgHffSr5wN04Jr1mJvvYa9iDK9sjdT1mseOJci04/tWUFRRxjKHXz4vkwq57isHeBVW0uYkMJPOiPK+cG6QKgLrPAWsnR1z+oLIdgmb9sgl7S6wDbpzHPTeL7FV3e+Odbz1l3g8++cojmIO1JbE959XXHuLjzIPFWRd4+tH7dHsV5saTmwc8vl355Ouf5OGjR4wx6X1hnQ/Yto1Hp4X9+XNuHizMHHz1y1/m9QevsL33IW/+sl/Os6/e8+rNK/zce4O7+2ec+y3hrkl3c1yAnqYbyp6gPiQZxzMcsjB4a3pOp1hPq6BfBzVaqevvy6kmWE1yIrBQzY/CgpXhYhZVC4oNJME1CdEPtlNeMiKS3le9dwzSjZGT29OJmbCdN9ZlZVRIsdfzLq4ODOVEWYWHW8LijUA25MDqeddzPSKgRUn5G5myCBwQzMzEbq4nRk3Nm7lrSp2puVPDBxmHGiWInHTv9OZq6DLIRjH4qQKaxzWRnWIfmsWWZgWOst6huvpmuK9qDCPLyqFJiYQC171rmmCUOsezpk26MpYwqVEUj6yGPY76iTK+thjKnTJnbFuF03cCTe0LlwrBS5nixdDPGGCV25OB4arpJH1ZCJMFyKeRoX0gam/Yc7KkAF0nKzhfhwpzG8yYUi2ZC+RFvfOFeZe+qF6acd4GvupQ5GLfqSaKebCz1VAFl1yzmcoVM2TvWprywLJYdWsKlN5DuT6H0smrlq+ts8dgH0m3RvVpF2aaVoHiEfg8DmSCPQe3fWUfQwc6S2cbO30GvWpzc1nKzO2izhKpIbUTi6v92ZP7bdM+S9kiSx1kU3YuptX1kIrDWk0ftaQ3wysr9bq+8+uKn6746WXhJwt9wocPJ7/qt30LA0Ze8dN3Hj/lBStoXfHTFT9d8dMVP13Xdb3c9bEP/jrKRPF66UdOvBlpUWwRRAwptBZNqLNMFpwcdcq/yKdPWSgylHWynwdrV06Nph15MQHg3YmpzJbWGlYTgSwhzqMYU6mOmhlL6+y50XuvUd2zNkMxOllBJ2kCvETgrYmxmcUsAVaZK0Tgp84cu0D3EGO39Bu2mERqw2ndsJjaOBKWpXN3fg4E0UxMFRp3vo/J9vw5Nzc3eFMw8zwKEMapJukRFW7bXNPHYjJHYPW5zTUFz60UcVHZPGW/yJStZ8auwmytNjhlRESrwF9U0I9JU1Go3BC4yUjSo/65UnbNvFinYrrsyGKQCqDXdxk5aZZlW9FkOUsY+stka2Koixkd+8F6g4fu80yhVTs2LtOUuzk1Ia8SfDGUt2HF9J9NDF5D499bAdvpxbjrUWDmZM+BE8w98LbguWCx8OlPfJb+9Ku88vgWiztOt42Hp8ZyuiEyGVPh2Pv9HY9uHvOgNx6eTjx4eOLBo4Wvf+MdHq1PON2u9GXFto3X3nqDtjaePvuQu2fP+cwrb7I/v8PG66y3yd1+5nbeYDa5ZzL2SQuvEGaqudMm7TitbFKzZPMnNwZSSLobvaYS7mNnKUvKjB1jggdbiO3LDNrQHYzL83LkgRwcppi7PRT0bUKqZecJlt4FNE2/extiOq1YcJ/KOunptJkVoKv3LiMvOUeexjknA6liTjgrEK0Rc5QFxBlDGU3mxro4o6bPJUmkkV22ljmDPQKzZJuyKFkLAXysFCdiMn03TZMz/RzLKSbdjVFWEVLM4prKWRmRjNZKEdNY+6pg+kgg6h0T485MfGranJouZZeY6932lpCTsW1gNfEupXzZLJmmTDCpNII5VTkEiNWs7mNnRjJNzXtrsmWbhZQGOXFk14gRYlP7KhshUvoA7OeNpenPuatB3GOq/k9nQXY73Imm62BzcLJOzwO4Kvx6zEk0yNVlC5ply0igWw3qqWtYjeYeE0M2ula2uozklsY2BsNSOWgzYRMYp+lautWzFZPTsrLNcdnDgrhcG+WtycpDJn1pjHSB8TRiJK01Tn0hLTnnmR6BjQBTllGY3smon3HsXxFq9teaHuipiYjU56abmqKRzDE1lbTBZlGNadWtDCycCCkcqPcSVy0EPaNRaqalAPJ1fXesK3664qeXhZ86ariff9j4yR9/zA/86vd49Gpe8dN3HD+lnoc6WN4m7HnFT1f8dMVPV/x0Xdf18tbHPvizHCxL45whKZY39jkFTEOgxq0xh0aWJ2A3C88Y+Ayad8buzDSsOzaHRq4via8qfNMWugWZU6f51jEW5txZeycMzibZsuPcjIDVuT821+mS8VvjflO+gxmspnyDOSfRG9MFJL0ZYX6Z3mOhsd/bPliWlfsh28O8v6eJwmPijObcxz29Ob07OZPzpss5F7GKdzPx0yImxRos9TsRuz4NTfwySNP4eoGoIM5lRekdGOSYLGVdiSH2mY6YYHO2fWNZG3uxWJ4m4NBV1DIamQq9tSE7ynAHC1pbyFmMeHMimxIZXEq71q1ybsSIxwyWEL20gVghM+bSSoI+Clg2IkyhquZMN7kY6mrHOfBFAddj7rh3WtYGWMBoR9fnAKxuE5+b8ji8sxs6gIoO84zZjpmT7mwGc+ySFUSxgTgZk33baWvDejJiI1MBxLsZy2khRrCuK++8+5wf/rW/g5/+M/8Bt9a5zeD1Bw84Pzde/d43ee/+G+TzM33CvLvnfu2cllsweDae88Af6XPeP+d0Wlg9ePjwMa+99SlOb7zJV55v/LW/9CV++Hd8guWx4c/uSG+0ZpzXSTBYeqM3NUVkyDphjR4AyRlNCPS20JamsfdZ4HAXc5mmaYSrLYw5yF5M1kwW7yw493MIPPWOZwUdt0ZOTcHyagqoe44PzIpJS2dpK23pmCcWN+xTdg1rG+GD8IaHkWMSYRelw1qNUquclyh6cMwUCJuTrohq9lQ+z9I6PhPGUCj+qmvkDXIGY+5EwLI+ZNvOZCifal0a7INlhsBnPwnUnE6MsalmuWHy7NBax3rnZI3cJ3PRRMoWiBWPYJjTV9kRZh52l8aWUxMaD3u0G4HTRUoSNss6ZeiVDNw0FbChIHVckxNHg7bvNO8seQQ7m5QL5liHMSZj7GpiUwHdqweMSTOFlLeGAtlH49QW7mNKHePOcjoJ6Kbsei0XbAY31rC2MGJnn7IPNgRYe29ssQssmtM2Y8mVtXdoxswdtp2TSy0aveGLDiHmEGifpgyynAKHW07SjCWch+1ERjCbMWMy96Hnr8naKJDZmREslrSuPCZrpViYmoY5gXn3jOV0Yne4nzvraVVu1Kb7EKiJzjGJkaw07rdd4c+ts8dk2870dYG+iqWPQTcNJRjboC8NawkL2JQipnlnP51YrHNaO1sE0Zw2jRaB9a56GDttJrftRPbG1o3cdzrJup4IpgBvToF8c3IGbSqnJ5saxJZJjmSzsvVc13fFuuKnK356WfhJdujgnXdP/NH/0+f5Bz73nFee3F/x03cYPx2K0iPtz9ok2a/46Yqfrvjpip+u67pe2vrYB39px9QbyeEjQ0GpKUbBTSfy1H+2YjojQ6foFfCp/GdZQSKD3PeyYgS9CQhlzrKUiFVNh/PY9YJ3r4lPNVl0RjlnGpg2j970n7OYq0RyfsmqZfEgJjkUUqtcGr+w2NYa2VQYvC9YybjnnGQarTUxGRz2h8RSORu2TVpTxTimAlkFY1/sFCa7gNjxg10W0+YooJpUHoIh1mmkwnPpOgSbIzStzhdozjgAGl75NFY5FdqIIqJAkTNz4l6AMiTvP+TbCRyhz+4C7m5i/cY+Kl/EL1kOcwwx4MVqRQaDZOSEUBD2IeU2M3prLN64P+9SCCCLQESUgqyX/BpaM5amzBMz2SucBbcK+o7jeRmymxzgZgZGk5w7DzsNFHWni99ejINvVtOvlsZ29wzHwBbe//AjfuBHfjU//if/I77/k0+ID79Jts7tSaqIhw9f4aO7nfuxwwx8u+eVWDmtnYeL8forJ77/M7+ab33zm5glS2u8+vgBfnrIzZNXePj+LffjI7749a/xhjk3Dx7xwbvv4bZyu3Z6TuJeVg4qJNow2szy6ij34ziUC8p2UO/hIMn5IsBXCkoxlBEKHmZMhRS7DliPEHGAed6gGpMkCwjox5tJpXE853MOTflyY5ZlAqzsDo3Dqr1n6Hq3TjdnS6dZZ59lX1i6ArO9JPozFfDrmrbW65/lESbsBjkJFoWNz2Bpi3KozvdiltsiRc0cJGIsmzn7TCyMOGsiprueE1uXYm6TEbuaQdP7lfUcY8iGwvGvCkevd26G6oAZpKldi1BTuWBiR62UHxWG7QjIbnMyPKE1vEKvg0nODW+NtUk1MsfUpDT0bJ9OJ8yN8/lMm0FLZG1oxh6D+wHdNA0u52TzZJY9r0XS0pk52LeJLQtra8yQkkNFvukZTCkjzhZMFzvrEfiAJZVpc953mpmUThmVc5QKb8aqRhs5xGQ3vJ6tCk0nNYHP1JwrZFt11kzPdqD3/4hrNlNjfwRqR9SQA4fT0iss2rlZT7J27Vs1+apbUjmkgtxRmHbvHcyYu57x/bzh07HeCDP2mDRMFht7kQljRxEzqXru7+81hKH32idltTmm8rWl0Vdn7sF+HmRzWm/MObjbz5dD9xhTxIjpHcjIAvCqDZ4pVcCVr/6uWlf8dMVPLws/KZYw67BOt9uv+Ok7jp/2MbA0XvvkHb//f/aXeP1TO8uyXPETV/x0xU9X/HRd1/Wy1sc++Bsl98bFCHiBUHPlYJg5BMqpccQETLGr3vwyxS0By6A1I2lMJENmDDwqY8M17762JsKh1wTRSVwYtNE6c+5whMwmKgxzF6CtwGhtNC7b6AixA5QE2FQsq66SKJR0pqZbdRQo21ySZYVdJ8Jl2vCbGwuN1fzwYGh0eoRCRNG1iUyypvIptHbIrlMbuQGXYG/UALS2MAUFlBeC0XuX2ooogNeYY+A1NksS5iNjIwq4x8XWkgVq00qK/205QppCthJjY85JXyS/ziHWN0My6cgCnej3xbbpU7tpchRemRtR4FQMm2iqsttkAVCvbIlZ4djFWh45QWTUoA8Xc0tFZ7vsSDF3Sd8bEIaH03H2MQUwaqM7pgIGNW2qfk83bSQzxYi1vjBC/263Jz77g7+Od975K7z56Jb7ubHkRwKVZ1eGxWps5zPbVDbSo4e3/LLPfYbT6ZbG5JOfeFONnjdamxWyPbm5fcD3fP77eZZGW294+v6HUIMzbrpxasYNHUvnXAYkTHkaUexiZllwx9QovwJW1ju4rqlNZbVk5aSMui6tLXonp5rPmGoaLVMS+KFgeW9GTtly9IgaYxSQNU0odO+YKU/JbYAFGUZMh+hqdpvBIutAzF2B1cvCPqvFy2AOATo3KzYy2Ya+p5SgUmOokzFoWYxfMjZZrZprytn9/T29LQLrOUmSpUvCv+0bIyocOaH7grtpEqTBedsIF5idGNsc9KRCgvWSTdAzfDzj9Ta4q7kUQFFWkLsCw3PWRDbXe9OswvGn3lVbHHpjy2DuO45sB9Rnac0YY5ARYu6b1AczxFhnM3xxXD0HVgBunxBdWoM0q0wV1TsrlrMXG50Wqu85mbHLUkLl7URegOus8GwvS1t3ZzHZQGyCNVX8MQfD6tpAHQIIsC2Lrr+Z7IfOkfmlxmCiOtYxNV91jQeqz6pbdV/QvpBYCVVMNT2SxfT390jirPfcs8naZqp94V5ZSvq5jSb1TOjZOeyPjeS87+xTDf5tX+lUiHTZBY+lww5Y+0JEMGIod8xTtpMssJ7JFrN2SLDIGphQAdxTNa97r6mL9QuqwYt96r5Yg36A1it4/W5ZV/x0xU8vCz+RyrCyOoDyqmFX/MR3FD/tc+r5WJwnn7hTXtv5ip+u+OmKn6746bqu6+Wtj33wF+b0shYYKijbdmY5LZUDE8X6NEmm3cDFHNsc5BwCMd2qUC3FIsLxsqYrGyMtCCtBvOnlbzXWOyPLDjPBF9wVuNrN2cr+srQulsVVIGdoOplnXoBdQ4XSMsjWMGtscxcTkSXZxhibNmFfV02Ns2KS15PYFA9J1scgY2dpKzODcYCuY8QdUWATsdYuQHYwC2NOGGKfetMGPTI00TaSTk2tMuUxLKbR7BbKLrBxqAFUqF/8n0Cpt0aivLzWFdY6ZhQrnAWsiokLTY0iwcbkZl0IM7Z9r0+bCrY15dE4YusVMg0Uw+UuRQFONREwt6lMiOZk06j1RNkKlwyVAwTUxn88KJokqE3TDGqqO2vvDKbCXUXmYKRG3JsRAYOaqOUHy6mHS62RXewdaY1xGRvfef9u47f97r+b//u/8zOsc/CYTufM+flHPLp9jVwWNjR17/HjV/j85z7LZz/7GR48epVlWVhOJ+7PGw9ubjnvG+SAPZj3O688epW3Pv05PveZz/DKa6/z9W99iwfrIsZtH7Rc2OYgcbIJiEbCMD0/uF/yXIjQdS37gvuLHB+BfmMyi+FGjZypEXFvGMqRaciScrBiyii6bKf1/zXh7rjHylcORuxSY/S6b2YQjmWjJURMZkitYqnA7J6tPkMxcjH12TMwk3ohoqYkNuWj1LAzLEMTGz2wkTRbWJYOMfV3YlSz0rDuzKEJfksxkXtAelNmTSaeeo8X7wI0TfY2KOazrlu4KedIkhX2eJHt1FIh2E49+1RGDNBm4qFJb96NGLsm+tU1d5PiYgxZaZbW6YBH0sqSIWDupZZJ5hi03ujdmVOfxdfGqAY5TUrNZsZqnTiaD3M6mh7XcLqrIe+tyTqC8nV61zRIq/doVs5Pb501YQxIJqMUMSMnMfV+N2/knAdCh1n1wmU9mvuO4ZVtVoHL6th1INKMnDDn0EQ5Ay/QdgweOB7LBEYkLWqinenNPhrXbUj50a1XA5QvystRcVLN9bRgH5N+NIFH0211AACVQ7ZwTM/bxi7IbYAHuN7BCKlI9pyFxtFUyt7J9BLPlJUnE18aHQ022OrveGuqCTMutlDq77Uurn/sCtrGFPQ/U9lN1/Xdsa746YqfXhZ+cquKdjTQkm5e8dN3AX7KND5658Sf+SOf4rf+3q/w5K37K3664qcrfrrip+u6rpe2Pn7Gn5c9ZK9R2ktnOa3FliqguiF2elYxniTEC2vDsq5Ml52E6NpAG1CsaSA5sMa3U+yXGIX9vOm4oWmkuEVQBC4zp4KiSSwb+4iaWqTK5ojdiimZ+rKu2JzEnMyayJQx2WPSU6G0a1twc0buTMRyHmHVMQbRO2aSg2cVyFkWnkPOvlSBHIcNw3VkEqhIO6ZJ5QhcWknbjwgGMwVSZ44q+GLDzhR75Z3YB4amHe1oYxMc/rbvnmKbJYsOnKYaXfc2UxYUozGnNilc137pAt6xbViIoTIvxh0uUunsHUbUd3mRx0MJyqP+3VpNv2rHxlKAN0MyerPL1DMB7TjqPYfVRM+iAtJtTHCvqX1l0ZkK8NVvFdgTw5kCrqmMI9wvFoWgLBAmUN9s4r1xd5+8t5747X/XP8yf/WP/DvvdO5zWVzl/8E1ee9iwhw/hvPNgWfn0G2/yiddf43SzcvPKY5aaIHh6eEsGLOsNsT1nbY33332P9c3X+cFf+SN86jOf4Ztvfx1zZzvf88rtE+a9sZ2DfXFIV9NSkv9pL6xVB3F1XB8/qNChSW6tusN0kxKg1dQrqIYr6MWGuisjxd3YYl5yZPSj7WInMKxSY4xunXRjPxoNswIU9ckscdcUuJYHAJDVYmAwBr21AnBRYCeYBnf3Z30nr8+byhPhAN/F5nnKjiH7A2xjkjk53Z4AimkHXzSjblQo8nJqYt1JtpxqBrsRU6Hzi7umiaWChP0IpqbUJ3VdZuTFahWZpAtoHLk+lLWop0nVksb9NunurItA0ww1lU5yKqa0ZdLNcEPWj9YBfeYqsXh3NbhTj3g3Ab1B0t2YooHprmlmMWT9a9hFddRd9zOYWEQ1x7Ko9b5WTpHe6SzAaEfQeKasJN5oN4vY2vtxeRcj9PvTKbDcuD8r62VZF1pr7Kmw7TYF/iNTe0iW0sk7i7lyXwCa0UbVTfUGygAykEipDCx2sNaTdb1h3zYMgfMxxXkLhnrdx8ouMj3HM2UHkUCiVD6hYQOtNSySOaS80KTUJia6ng0dIgTdltr3gsXhpi2y8kkupUyiyubadyla3IyOX6ZChhK3tSfWu9atrCkZYKrpedTumuJ5Xd8d64qfrvjpZeEnZSK/0FBFNe9X/PQdxk/HcJi98e7Xbsi9sV7x0xU/XfHTFT9d13W9xPWxD/7mrhdtaV0sSDE0FllAgAJZNSEuVUiz6YUbNYFpJhpBHnmREkeMyp6gxpiXxSQQ492pzcsLkokVAicczuXbb77oz5gVMFOobx6Ftgm8nPczPsW6JJX/Ago9NVRMEsb9WROMajMAoxXTGcUgezFzw4xxgMEpPO6I4QlH9ppjUlAVWwqMmh3siVjHfUzSG5xWjS3vfhkdn8AcCXOwtkYUODN39twuG8YFxKWKoBgeFbVZbHprCzEHkJqMNMv+UHlDzWoDqYDgdW1sNdlNAFmsPqbwY4kElAnhUQqF0KeOurZ2AC89PdroSuLdSw2QxbSYO2EvJtFR30d9gqudSDGHls5qrZjtAVYMaUKYGDDl8gSEpPiUVDwMcGWhxJGVYsowwjrvh/Pw0ef56//G38eXfuyPMvdnPHjQ8d4wNx70hUfhPF5vWKyyfcZkiwqstYAuFnY45Lbh7Dx//gGf+PQb3MUdrRveO7kp3HwMCE74clLA8KgQcIcdTdQK04YNyvAQ/WWyLQWs5pg1osUFZEVGDRwTAlu6miNDTcgI5XioCazQ9+OZqlpgtSFnDCIdvGGF6JIkopqSTJpJFeEmxUmLrBDkZEc2CUism6wtIUZVz0Y1nykw6U3vZY1hExAyWbyiyYKWJN5h2xWabZb01TjPjRkG07EJPY02KljbV2YMSGVC7fU9LMQQkskR+h6GPj/HYaieSXM1XI3UZ5pqH48cFY7n9VCTtE6aprvNnIwUe34TUddJV9MbpIeYfxOg3efxU41Glr1JljndheCmNSImI2SVmRbKEyub3AGsrOqd8qF0v2Mf+n3ujE11X+1PZW5akiH7iTKlnLFv5K7kmGVp7Ht9j9aZqeYgxlAuS6kVIicjpBbAFMjd6pBgIhWLgGanmTPnzohJayu9VA1H49yq8erHdysvh5da5u7+TOkIpBwxTf8bofe9uZEjS9XiVSu5HHa3Uh7NmND1k9gTw5lUQw+V06UQ/CMnbRsbYzkm8elJMM+jrcbTNKVwwuqL/t6ceFhZmRp7HYA4mg6o/C2B1hlRSqs6IKnwJD9e2Ov6jq8rfrrip5eFn8Au2AQg3ZXNd8VP31H8lMjm+eYnz/wDf+CvQgxiXPHTFT9d8dMVP13Xdb289bEP/jQ1TkySMkiKyUKAaI6hSUkuoGSRmt6ENtyReunNjImze5N0nqCnAQ3TX4BMbJbdoTk+8rKxWoEfDEbsQBMYq+LTMtkN6MriiNREJndX0GpAC2R3cQHrwKEZCwrF3bfgXGPuFxtQ0mrRpo63hWyhseBHkVogcsf8JFlxCLoupulaIzVVDMvKiJCM2ajsEC8biTn91JkjsAru7u7F4gwyYbEVt6bvYu3CemwTXb/uuk9xKA20qeUMYghVe21A1sBTNpY0o3VnpHIhKKbvGEcfR6FsAnweYuDxLjk2UVN4lScyI+imMe/rzIttKFsH61hOYAjlZ+JocpnXIzeGwoONIHJoIywlQ1oyXdDZUebDkb0xrb4zHW9ldZhi0YLUVD0EeDN1kNW9YQkxtGnm4uxzYNFxOh9F4+bJL+fX/B2f4ot/5v+Gvf0BlvD40UMe9cZtGGuXTas1Z982Xnn1FZbTWjYdJ8aA2NgSckDuZ55PJ9I42co5NtIb59549+4jzn0h4x4worf6vLrmVvJ25UaZQqFjwjaqcdF9xCqLxwNz/V4zUyMZiWfjRFeDJj5QzqCp8N8jp8XNmDXMLvvEloRwMcgVpE5U0HX2mu4mcDVzkt24P+8kCqOOqaDkacEYU1PYyn4Vbqw09ihW2KGXpSJjXmxPgfKtLIw9NvbUz+llXYtdYNGQVSNMliVahZEjxq97smcwtqnw58UFTkMTFJv5JZS5m7PU+0hlitwj5rSbbF8jRwEmLkAiAvDOnSWtGc0nSWObAibWkt6MMeK/ZA0qwxHZF0BNV6tmesSs96MUF9UoLs3pbWEbg9sHNzzf7pi5keacQtPQshsVakTSCJN9yFsXCJqaShlljWjV4Ky9CXzPZDfV2qU5q58Y25loAmszJgoCb0ybdIxtBGdXMxdzB3f2CPbUkIC9mZRImeAdcGxMPI1RSiZfZJtrxKWJS0sWwGapWAoAL2ZYOlmTSq1CvaOuoXPYuAYzS5WEmhqv/76HLHyxDcydtqza0zaFYMfaBXYjZKOyRqBMN0cZbdMXYCpzy6SoOeXCRqguoJDwc5RFTq2NwvjbolybnNxWcLtbJfFUqDaeGqYQUhrYjDqQGR97e7+uX+J1xU9X/PSS8FMa7EOHX4AOUfYrfvpO46e0JC1YXAf+V/x0xU9X/HTFT9d1XS97ffzhHnMHBCR7ocfMZFQwcF6kvJX3YBVEGrPYkqypPV4huUlvCmddmgDLHgO3LtYKsWznfWBTG0GGMjl6d8w77pN0WRDHkHXFgfs5aDXdzIvpHUOWDpqL/W7+/2PvX2Jt27Y0Pehrrfcxxpxzrf04r7j3RkZGELbJwEliMHbitGQhXMDCNg8ZWRRSCBAuUKIACLmKRIEKNUCARA3LlBKDQEggJCOQwVLY+YhMpzPD+XC87r1x7zln7332WnPOMXrvrVFobcx9wkLiOB3e5xZmV+y456yz15zj0Xvrf+t/+/8Wgd/T/FUGapaeLwHOdZYgkS0gNi7p4xKb2l467RKb21In6HwoaQZMHYbhHuFo71YUfycZ1Py5lIKZs24tq6WFD12wkoFJL55gUIIVcjOKOpLmqlECHd+BK6IWcpkSXkNhWDwisHoAtW4eoEi+JeGQggoMF7Y2GKMjUwB9lfDFwKLf4OhOswGMKNmWkE3ILozw9FcQT2+NbK2eHeZUobgyl2SDIElP37duPD1UxB0TvwEzpUdJtyT7T2yeKiVlE3t5tyJubMlSsT/flIHotFB0wkfKsUrFbVB6o3pDvfKTc2H88n+Cf+ev/Sa/9Guv0G2wTDMqFlKIEjKqw1SoRfdq9EjGiNb286Kcv/yay7qxTAfwwlgEtRl04esn5atrxXjBLrjpe9Wjg+pu/B2fu0shSjKkzTqzTpgF0DSMqmHabT3YVS2xaVatjNUCkLhnMghTmbBBJivBKu/d6vqITmLiZDVIVEIUjedtnvWBEpcm5pQR5fhbN7SEjEL3agUP/yEh5GoYjMqtokFVkJoMarPkzj3jD/iQMGXWus8chKgWURWGhKxAFaZcq7NEsqw4bVsRFaappDRAs5IkwC0jKjeGFhgDb2FWrBLX1iwqOgpR8dHFsyNbQcbOrA4oTreOEZ5SWoKBVpXEwEK6OOfcN7KRMirJKqfp/jRlxUSuLdxCYpPgdVis2Xa+4iUqUqTM+LWF8X4boB5+NB73J0T1kI1IYmut1FpYe8wJt05vuwxObrHvsm2RiBLeMHs3OPc0bAakDWot6aMVkrqdVS4e1U4WJHFAPgsQqioRJ4gKjVgC4Wdltd6uofdItIvWlKiEZ9WkIUYxjW5wAcN3xj95+EwUPCuJhnyoMyhFmbI7n1lUY81TeKMZIW0xyeosoprBJWRdqp4gNE39b4cuEkDZQUp4kQXDHfdnFl5lww23lnE83nEkg9Hh0PFsWADQECnhV0VUX1XZKZT7+L7HHT/d8dPHwk8t96B9MzS/46dfFPxk5vzhv3viX/6f/EP81//F3+JHv3a546c7frrjpzt+uo/7+GjjOx/8ae7AMlIsIsbwQZGgZjw3aINYmGYMCyPVXd9vJLh1CzBqBtIZrgzXDAQjzZdLlswPphrsb6gfknHIk33rWRI9oqwbiBbiCeh2X4UovZdoeqbBcjhO7YNSQl6qe+TAMYnuYPGIsh29hPfBMEvGMDf2YYwtJCnH3ThWHCPL0G2gurB7r+wRUjRKi+N5RVIQviNOKZVunZ2ij2ceG4qVrDHP8n9EoASbFyX2EZCxaHGvGMM6Y1K8pl8Qgu4VADsogbxGpY0tum4R7HSd5mSC41mltU90A7MBpYSpdtCdBLdPmNOmMbYgzJrt3UeAcPJX+i5zomOeSVIyfq4OEiXucMPwuX0mK+l5taJUjU21e5R0OyBegr0aTrNQvgRzqEldG27RWU/7BiJoVUYxJi1s6wApPM6FQzHOBf7E55/S+8oyKcfjkVenE4fDxNhWtvMziqPTDCW6C4oKRRdUnMNy4rf+6r/Fn/oH/hRK4Z1tzPKCOr3mJ++Vr9oLrL5CfMVZ47pKCdbfB1lWcAMR+/MNDCmUQDS4KF2CBdZNwzw5cwJjhCRCSxjMuzFpBYkNGpOcr3p7nxD+JgW5bdSWM6VoAj3Sp0NAxOO5d5i0YrYhYpFUuDGpYFIwjd8r7lQtrDkfnUiGA1mEJEs01mEYB2tmBjsQyeVQd3mNMoYFyCQkdXUMxGDbkz8lvX0iTuwm0LHuYr3UWunZYQwRStmvI3+mZHwL/5IiUQ1gAN6pNUCKSxg3WxdqUUKEYPTu2KjUrL7QEkjIhoNXah6wDg+Db+thStMl15oqUjW63UlUC5Sp0C06gFrvAXrcwwtrTy48l6xISjk0ZTfRFGAkiAqgHnFVNOSHOgbHOtG9Rzwuio0RXlMl1qsl80rvUByhR0UTyugxfxett++L84GsCBBBSxj3Vwl5h48eBx81qijUYaQsqJSJSqFLcvH7AQl+Q6ZGVA1Fl/A8YEn/taiAiblklqUsCTrV47Na21hTChb+TSV9gDLJtwTkEgmlk3uVSKwa/fBc9oois2i2UBNsukYys5tLl6IZogJQI5KHEDHfFMITSWDviifITep3H9//uOOnO376WPhpWAcpvPik8ef+6T/g+HqLitM7fvre8ZNI2nKyH67d8dMdP93x0x0/3cd9fLzxnQ/+Si0hzfjWwtRkU4cFk2UewMEFSs0NMMGjAqWUOG0fwQrHthLyByHMZZsFg+kZPFQkvU6im5m4hreIRAA2MwqFkmF3L60OfjA2JFENVsI1D5AGDkxTpaZhqwjhUeIBVMOrZAdX2T5egk0YNsB2g+fwU3EP6Uqbg5koRZkQZlXMS8gTMpB68pBhpBp+HK2Pmym3W5Yf5+fv4DFjanSAI9j0kG3kte3sqHgEMg/YOnlsNlcz+taZUCqxyYT6Jv1vbPdNiPdWS5SLO4Tvggu1lgy0yYJDsNBm0SVJg1HG07tIszuTA3hUiXmwkyoBh0YyVk4wejsAsSx3HxaePWU3/ZV4EMnXBYsrFdwZnfD1IZgnz825EA/IEzAXhOofDrNENWQmAqVURBbW3ulqNFekHnjQC5++/T3kZ3+RP/tn/35eHSc6Cz47hxenYK6nmC+9dcbWCURTcQ+pjDLRrFHLhPeYM5d1RQ8zwwfX88bP2gPP0xFXz3L7/KPxgoeHJGTPHjTnye4HVIrmc465MkSyOiNAoVRFSs7lsaJWmHSiao3n3cOPaSqVgLfJLCc7Fv+TAMeJdy05h/LdcwOWMTl7S1owZRaWLKSGHQojrz86Rxque7KcVKBZKjViXRoBbIpKVk0Ek0myiPlWUZlCPi4xL1CCxXejW4DweZpi7o0O8m0ZXgDbMFjWm5wnYhphpI0wFUXNE9iHzw6Aa4+KFQyXEglaYvACiBglE+KIa+Gf424MLIC6RZWCMZBSQlonpCTIcB9xX9+S8amkPMtgrjPuA0XpoyNa6e7hA8bumQOqFUUTrIZkR0vZT99DZhFwiGFRqTSJUtZk0eOGmEdUWLgGiGvJOlcXGD0PF2q862RU3Yzh8ceQ/eHE/MkqouiqGaIcDEzj3kMlEv5SqOLWbsk+ZIfRHvMi84uIw5kEgyMS/y2YdG6/rzvL7R31qH4o5DwqQODsPPAQxtg/M9aFEtURlnHVZa9YCvZ9EN+3J2dVQ842kr2GSEhaizmnogwDqtL3wxSPJHCaK71HN1Rzg573cR+/EOOOn+746aPhJ3FEndOLK//4P/t7DAbD7/jpFws/xXoRLXf8dMdPd/x0x0/3cR8fbXzng7/m2dkJ8GFIdvgKw9/Y+IUw2LRhwEgWKg7v3QzvH/wu9jCIarSXd8FGbBpTjdJyGz3MVIkNYzcgjc2QOK3PACGqIfVg97MJ1mnvjeb5/1UlStvdmEv6PoyQeaDRIt1lSrkFt/JmRrBvCESb9PgsijDXKeQ1LcDnHuhFNDZNF9w6nl4igiEykhkKAFqS1cWDZYxYGJuWjwD2mvIbkt0dWdst5IZVosQbCBbutuE4U50CMI9OJTZIJVn33O1EQEwwMbxIer7Ec+5jgBiqlQqZbBiUYMq29NNR1XziH0DMXtLtHsmKm8W7Tj8ar2EoDmFybbmhCbsJefx+QYKayTJtPBIU0Rqszohqh30z0LAvik/ymAk7sFYbYONm1I0oRSfMW1RUpCzgVAYvZuexf8Vn6+8wPf+EF58feRBnEmNoQWZh3TqX7hynB4ZMSH0APWTpfGz24Gxt5bKemacDf+u3/w4vH17z2evPsA2eRfiawvv5kdUrl+0dc63Rzc09AIgHMEWDDfUeHdRU0nPIDfWYFJa7p0p0tZOk7wcDk5B5CVCrMnrDB0x1QmUKfxbZoWB8ruWzMsKcfq84iBoPcv7um3lIi0jJh2eCW5eJlsykIOE5TlyjaYDEhlMI9k5yHriGAbfu3beyQkHz51UkQVZWgQCeCZ+4p1TOoztaFUQKxYSqha1t8bc1kmXX+N6SObp7JrAec8k95mCAvMZUJiQZzfAKsgRTAejiGmORRjpbEOkZF5MxzWROSnhVuaTheMa97gM3p2eWWopkB+y41l1WRK5ZnPROSd+VeWZdn5nKhJvTMGqNLp+a4C8OHOIQYBDgtPfBsiz4cLAwRyZjbM3uoErEim7hJ6OZyJL37Cr5/OJnwxzr/kc6yEUQLx8kj+TBSHa6NI35phqVDisdBaZamTximFShXS7gEyJT4rbo2ldroWQVhYvc/HykesbkHGYZi0rGYrtVRcR1jUjEifVV3aLbX+43knKteHMJ9UuErTwBiPVR9nc2svIhnlNvPeZ5qSlJSz8wVeY60dvAVCNuqVAozFrAAvBaVjLBHbf+Io07frrjp4+Fn1wVkcp6hp/+3Rf84NffMp38jp++Z/zkZtE9NWOC5YHHHT/d8dMdP93x033cx8ca3/3gj0GVQlENDwQJE9Crd6IjjyI2wAgz0WR1UL11kPNh0T4coeOMmmDCBTVjOEm3xAY9aZTBd3Zg5QzvARJVkCFUnRLIQDej4czTFIGkj2RFk8HEsLFRcjeyFn4NpsEeqQ66DqpERyAcNga7BCB+LTbFqgoK3Rtqjrdg4SdKltanVEWzI5wHgyzJ/LoThrDERiX5XFWEaQrmKBg3SRPreFYCUbJNtofHg72UANfu8ZlIMEdgnL2HabGEKa+N3aB1Z596kJ8IslcDTCU2F1KuIAEUeu/xThPsmgCeIH4YrcWGQokNqEh4LYiU2MTGiP+uUQI+zKPsmmDcTQtj91lwwUbDdSBSMTdcDC/JKOZG6D5wK7nxR3JgLuGNoh/kUfm1ye6FzCASk6yQ0AOI4rZyYOORKw/+JT84f8Xp+lNO8p4ffP6I2EydTqzbleul0daN1kCmCXjEdcHKkU6heA2gnCByMFjmA71v/DP/9D/L5fnK+ekCLnwpzs8Pr/lyEkY9sMxO7+v+1m9GtCHbycrIfO47a4xZ/PtU6OLIGBSFSiYh5lldkkDPlFE3tBYYejMQL9Mc64UAeyKa5r4xt/b5h+/sLgloQyajxHPfq1tEFTLR7K0xzTOIsFqDnPdCsLFN/ENyax4l+BLrZCQo6Ls0KZlAN4dcJ/F/eY0Sko6q4BoJl7UwxJeidG/R8U41QVlet+f92A6wC21dQ4aiJRN1IlGSYGXdw2vHa8HHQDpMGpU0rXVqqYgS0jicMLYvWWpi+ZwGNgyzkvcUXQKnWsOTKed8NaXwweMJ/Fu+VvG/ZZpjDReNKgSJ549BU1gx6IOpJ3ATQj5HzLGQ4xQ225g12GPVYN51LmxjUHzgbnQkTaOFUw3PMCSqgkhGXakpfVFKjfnsGv45KhqR1uMduUfsoUTc6FlJMCUzvFcrqYeB+PAws1ddKKYhwZIB1bCp0XW+JQ9h6kzsCBbXXKJ0J5Pj+DOy2kpKHC64WPw+If0SFyYrFIwO9Iw1++9HQ4GQoLgbNkLyYkRlhu7vrezfmYckXlIWZLQ2IgkipJrFsiuix36j8dcZ7Qootc5xauEee9R9/EKMO3664yf4WPgpDmve/ezEX/if/wZ//l/8i/zSf+R6x0/fN34SyT0kYoK5fzho5o6f7vjpjp/u+Ok+7uM//PHdu/qS0g+yiZjojUXapQcZMZFkhJRYYLtuf66VMFQO9sHSh8ZlL7FNhpbYoITdzFQ+BGgJu2MVBQtm2nqAPK8KGkyLROyN0nEPzw3fGWJiY7URvjJR2m4JwEDE8SyRV0mDYcJvp+dhhw+LVuUutCyjr1LyWaTARCPwuhjSozNT8NVKtxLl60JsRvZB4kHPa5Mol9akQDxLm/euRcMGBmluK4y+dzWKYephtDpNWDcmLxQpIZ0t8Q7TmYbkH6Ns2x2sJJgINtAsyqkB0BIw2gmJifs+KwIUajBhht9kD7scSVQYvYUnSMknlSxnd082KIBp88E2RkpuYlNNXAIQRtwOtoW3jUrIB9RD0oJF4tJvEhxwHeABcvtwdDoyRqOI80P9OfP4mlM9M63PHNuZR71wbM+8enlCj59xnJTJA/DKNPF+fcuX7y4s8yOO0kbBfYExQamYl/DPGR0xu3U6Q5Tf+Pv/FG4B5NwHX40jf+if8zffKL/zzTc0Hhhlxlun4rg6o9boqJjSk6mUWzKDhiGzWLCqounT1IwqkfoYnsBMkBEJgruwtQYDavqFWF9v642dDc4KFIVYXxKzZrjFoaA5Yrm5a0kCeTfSNYoI3gcTguyuy0URwtfENLyaRIh4QKx7Vb1J4QolPx9QR2alr1uw+ey+VoZi4Y0lkSCOXJNFgundpTyjRzWHiGO2MU1K62m8rCV8Xcy4ti2TKkMkZThaoE7xPiKPu1VrdAk2fM7/XlN+Yb2BVEyyUsdiXe/ynEZPVjZjoCZLm/qbeBUJmvu32NPhEaMVNKszg0GthMm1sSxzdM/TgqqwjZCHeY2IEbI/YZomeush5xkDptDp7f5ZAIxYW0MGXhzXGghKBVUnurCBDqEZdAsgFV0VQ8o3zDJ5j2qTke9YU/LmgNdgjkdWL4UhvVJLxXzgngA4pVwiMyKezmJx31oj5e95GBDzO2SP4iEDGaLJ/qc3jOwVPNB73AuiKQsSpBvFJCo5RjL1mp07BWoNgEwa9oNGLNcSMZaG9IiZsZcWNgNTZUr5onuw7Z7Us0unlJB2FhGqVIrGYYV7Hsx7rEHR/X7v4xdj3PHTHT99JPxkHXHn5Q/f89/6H/3rPLxMv7k7fvpe8ZMUo3h6YWYs4I6f7vjpjp/u+Ok+7uMjju988HfUCW8dRodasaKsjCAyPf0ZAMOi1Bqh1AAQwZKOOEhnB7kjW95LnNgX+fBlmguXYG6nlGDcytOJoDAs2syX7KwU3X1I9pUbKxFAIdhfybjrmrIKCZZrL0eODSw9YYJPjqZIGi3RyzzR2pZ+KYJ6bLhSCqrKsAYEwxFfZOztyiWZw0TEWXLvNzYQFMzp3fFsn7CzZzulFGAygUOJzyqqiIUPxM66WTJgXkIiG52qoveX5fPwHaAT5qlFApQMc6xlub8FgNBA9LFZef4diXdbZHBtnUOt4dthg9GiEiBMb3f/lATZed9FAxyPnWWUmB26B2oFmSeqTFnXPYL59pQLpAyjziWe8bCYUx6bqqQXSZJ0AeY8/Ia8NWzAoPNqHixPP+YzecuDPnHcnvHrexYRTseF6TixLBOIU2pFy4S603rjMox3l8ajGEeN7xujcb68Z10rx9OBeS7BqjPY+oZoYdKZ9bzx7s3XzMvMcjrwRYVPOfPLvwR/93Hhb/z8HT/uB0znMOAdUSli5kw6ZxIZ3iRomJbHc/gAatQhNscAAmQyF8lOZ4yO2sJUK1J2iYGhqnSgDcMamXRlSuQfNkszo6W/UBWhxr6ef1vDX2j3qVLFFeo0Zdl/XqellAGlkk4kuqdnkdWMlAHQQErMu9Y3wkc8ZBfiCloxWxneI8HrBIguKTUZUUmjhGQtkuOC3KzYo7oivEkszIJFgimvGvIvJZKIlKNBCSmbCkXj852KmbG2hnt4do0RvjgyPLppmlM+1AXgXuhSqXmdHSha6ZSo7hCgBuAbrbOEw/otjt6C3h7H6CyHOapCMv703qhMUQkwPCpLJKoPRINZV49EtZaCa1Q3+O5GTzCtAe6CUEaVMcJE2kS4enZ1lBI/w2GqeWCQ4N4Gap3OoHvFTaIzngiiGvElNTfh/xOHCj4MxqDl99cyM2mNyiOPQ4c+NhDNjntz/I7qzZcmJC9RWSXFGToCHLqithuue5pKR0y2ff1YdEGVHo0ZXMDyRCeM7sNDagxnKnKTh0VlR1R8iTqtjzyAKSE5RG/rWtxp1m+JY6yBANOqZFOHKfZAjG6Nmp1WU8GCamHLboL38f2PO36646ePhp9UY04sgxe/BJMsd/z0C4CfJtU004t36e6YjTt+uuOnO36646f7uI+PNr57c481Sp1HVTYsWUBYiPJn0Q/kFgAWWvvRO1Kim1HvnaphrNlGMlIeUpUiYRp983hwRyiYOYsEMDY+yDN2A9g90Il7btIkA5pgiASIosGm7YyL+23zHGm2rPl56hrd9oCRNzTMgoUdI0CrpKfOvolbZzRSShAbXZQkR6Aj/WlCwpNeH25A+LHsHftCPhmd1ir+YdPfeUIbbDbyniJQ2xj4MI4y00bD08iVAdWFop7yFAf91u9it+uXXV5LsIIl2X0pnh3LHC2F7k5wMEn5ORRXljkBq6c1eAZP39+HxP2NEZUHRafcDP3GDrk73Xb2GxRFXYOtgqxCiOOnkYwr6phfcypnNULRrHBfGMPDz6NEQXlszhvLpCzFOfgzP+o/59P+t1n6G14+zrT1ikiYOG9jpegEqhxrZSkTQ42uRjfh+Xyl9c7z5czDcQF11nGhqaMNzE6sU6UTvj8yLhyOD1yuF67vz7gZc61cu3MojUd9y8vynk8+fckvTTO/+dON3+8nnucXFCto3yhLibXQLH1JSP8Sh6JoEbR7yMKkMIrQBLx7JFCyV1UYqmGkXUqwmLfXOpxWohOeOrANRkvTZUmY5yEjWWpu4MNu5vK1EF4lxKZvonQGSqwBkZAk4MGghpVSJE5qYFPM6X29iocJLyXWapkKtcxRhOgRHfoeE5RcowVtEoCWAFGj79dXMsYofUh43xDSju6Oqd4AmmUirrZFkjkCPOKDymBIMLE7mCMTZANWC668bbHWyjShVUDDs8sdzMJzxA2kLIzRQJTuAQTX3vApUtLJQ/KHp6yr9YgdCrukSQlg5hjn7RJrV6IagSkaAGganuMJpMVvjG0YIUcnPtsM647NzpBIfksHNUWOc1RC9I50i3iNMbJKCAyvStGCidO3Fkb5Er40RWAhkpIumfyX7EhHsNraYh7XaaYT19ndw9QbAWtYCV8YzeSmTCH726xlHAbfE3EBs5iHpAfT7okjHn9BEjB7zmVVCQP1jN1T7gfTYaaZ0UU+gHgDcUXFie6LMCiUKZLtrT2H38x0zHcfXjzWndmgYtFVT+JQJuKxh7G8KyVqMaLaQvMAplbU96qv2D+czs1F/j6+93HHT3f89LHwk0rBh/H+qxP/2r/yK/wT/+Xf5fXn/Y6fvmf81IVoMJFrw7njpzt+uuOnO366j/v4uOM7H/z1MUA1GGYRqnl4ssguBQkG0Z0bs1lk77wz4mR+WJSjj2AIitZg8vqI7k3uwdCMwRjJQomwbQ2tGkxRsleGMyUjohKgUhB6a4h/qBoLXw29sdi7vzRw62AnQElDzxu7aT3+PdBsbMCevgIegLKkz0UaKyQIKWx4eFUAeLYLz4A4sjx8KsHNhW9IGP8KEgwZ8e83kC15zfn3KJIl7AFE2GUJo+ed6Q0MFoc2OiYB6EQExgjeunhce25i7qRZc7DSaLS0Hy6M0amWVyTJKPu3wKso3TpalGmacQ8gYYw0S07mx2MzMNs3DMtnTHqeSL6RAGM2DBuDqUaHvDECCMTXB+tq2mMD9pD1eFZNMLiBCc2HaGZMWmmt8dnU+HT9HT5tf8BB3lMOTqexWsgFRutINepUKLVwmBeKQBuNJk4Hnp4vtG6YrZgYyKC7IVaYRLm2C/3asOLIJDwU5flibNfOuG68fvmK4Y3DPNEVtmnC1RHO/MlPK89d+cPf/YoxnxhWqCkfGB7rD8hKCWOIo2mGrUUp3cODCKcLTJAAFRRLhk+ok2DeGRZVENHBz5lHJIR7mf4uUekE6BQXClEBgITvCZoMrwbrGSxhMLPuRpFg76NCw+hFGB4s/EivGrUwLyarXYRg6907SHR6DmNnx1rcv6aJb94UATxiRReJTpIVhbnemPY90e69R9WJRCK62S41C48lEcGLYn2Ex41rShtijZa0mcE8fExGyLpcCiYS3cZGrN1CYYyG+EC1AiHp8jDKoqQERIoyrJPpOkhBzaFtLCilLvTohIOk7jo6FYKrMrpFd0V3Jk1JxGZQYdw8fXZpm95AWS31VpEQay8qYtzlFtOKKFOpdIHWGsWcWWcGyuYjDyqy3kCI+JTvtpSC+WCMHtVGpeKu1JESHI8OnQBlSiBsIfVotkuEArxpSe+x4bf4Xr1HsFSyEigqm0TIqoiIl6SMyo1sohDxLEzGyYYJnsbVexKf5xJeQjIiwmbjg8fYiGqlXeLnFtUaPb4MZVBKyDitg3inxkSLZFA8K67ifeZOlGswJEmrB3iPhgkhl1FVehmxLs0RC18cXeb//xv7fXyUccdPd/z0sfCTFMXH4Pok/K2/9Bn/6X/yd3n9edzXHT99f/ipC+HlVpyHV2tUIZnd8dMdP93x0x0/3cd9fLTxnQ/+ZA7/FSXxzhDohlRn+M5gsiObYISzm5pkEItSZIhgXBACcO1AF5c0aIaphE+BjQzKgHvKYIQoZx7BrCDJBNvus0KCvX0Di7blEY2ypXhucoFDs7xcNdhv3UuMHRvRTQ4JZruUGpujBYs1nOiYRGz6Wirae7B8JWQae0A0t2DahZsfjbrh3rEE7Zobfk+mD8nLZjdRjk1S8WA8RmwKVcPYN3xxNKUh4XOxl6ED+AjJR8mfez6LbwP6MBIOnxBQvAgqlZJMSTy6lBEQpeyWXelkB1E+AqR7eHLIPjWSaBpp4P1Hpgykz0Reh0dpexgBB+MzRkdVoyMW4eOgMrF3SNsBcO/heyJZGSASJunDnGNRaM9Mb/4OP5h+wsvyxFOpTESZuOL0S6eKQutICf+bYR1NXyVxY/TBelkZbaBTyrEkZBfulWZGs85lfabOirWOTguXNTrAvZiPjLZSZeKVFMwnhjyghwNHNVg7/8AXE//2V+95sivdQUpAAgRKzTmuEpXs5jCMARSXm+8HtaQ30KDMYdLbLPw7wCkac3LkPQ1g1sLsFeu50Vf9VjVKVnd4wpPIJlNiVCMZlEhMZARrF9NSKArmERN036CHZQITALsgYYy8R49hVBW8EAmQQJi2JwATubHs+ThuCaOb42o3MGE+Qva2J4VuRPTKZE+hSsXpFAl7lkjoBJHoPjcgOv5JzCdlBEgqAXBIsH6rBlHdaykiAe4dlc4ogu/dBcWpAsV6PDs6eKdoYSrCaIaYMSsU95hLWihlolu/sbxmcSArXtCh9N4RTXN4l5A70akeMol9YVpKyYQAelE9EzI/6yMA7j63VXCNz8YjIe4QMpeS7LtqfnYeSOT69P0PEobO+G0u9a1RSgm/IjPatiG1RjVBid8RQKrS0o9LVELs4xbXMbYAbyJMUx5GuGcNcdrQaygj94OQqKQZDNdk+1MO6NyeqXkkhiBYZtpmkfSXjC37YUc80NinSr770cObqk5zSHhap5pTNTyeRpT4pF9a1DzH3dotTpIJYd4UOiyTTGMrjhVBp2iBZyltuY9fjHHHT3f89NHwk5IHeXE9esdPvxD4SSUOXj//4RP/7f/xvxndqv2On+746Y6f7vjpPu7j443vfPA3tFG1ogPG2oKlzI5DaoJTg9kxwKJc2tyYpopZA4nS5/TPTEbTgyErGeQtTFlVAmCJOxOKEca37nbr5qNZfm9E6bGbU0phyW5X7pbGuMbu22CSLAYBXnUHRxo+Mx2i3D2BZiFkBEOiXLyWMJpdSo1N0HYGC4LFdtYtrrXmBjqwCI41GVkVBGXz9I3wHdpHNYBbAsESfh7qQJrfelG8KrXqbVMsWvNalYt2pmlKr5YwoDZx5tSmdPHYcKfwNnA0DIqNZBBjBLsWAd56vAdN9g88/BwyATGICoH0FFm3DcOpVYNJHRE/bYSBbM2/Bx0kTXZzgxCJLmLDtviBj2REw4Nm+EBKlIBHpUEw4W5TbIOy+xEpIlPIJjxlET2DOdDGWz6//h71y7/G9MWRjnAqxlIr81RgrNBHXFs3sIGPFptsCVbNmzEujdEb23blsCz4iE5axQE3zq3hIrx9unKcK5MI3+hG60a7bBxeLTzUiUM5YAPmF0d8qZisKApT5QUbv/HFiZ/83jNdldUG7nMy08FeRzeyCfURTJhqvqeU6Uh03dJSEQ8W31BKnai10ts11rHC8BZMuBeuNqJSJNlTG+F5MSFUAsi4CyIK6U1kvcfMUoVvJ1UEY9hbvDm3AUU5yoSNSAh6kUiWsnWaVgm/HYxaJwaW/kkxqWqpyKRc1iuTTNQyBwyyjltLJlORObyydlaWkklMVjPsh83uA1xZlhogbHSqFGxA2zaoM6ghOjCxBOAVmmXcmhIgK0oN8CGOjx6gRhUTo2phorBZyPIiyY7Kno5QpNykfFWiaqD0gapTanRzbCPWfCTPdgM2O0trY4Aa0zJRa3S4a1vDzagawEiz2miXOJQa5tsjDbbcodQCLWKouoMMGuEhhDkUZS1Oaw13ZwmxUcbGWC+zhvSsDw+5UrGYUw6eFb6aZvkdp9YA2b1tMDqzBtAzCTA9oRzKRO8NVClieK7zbvEMSokKqd5bAFEJCU686/S0skg49uewJxu3tCZQbfy77om60KzF8/Iw3FYE7RB8dYB/jxahRDvETqkKo3C9DlQG06R0ie6sZlEKpGT10wi5pNSIZbtPEE50fpVMlHQ/SIiOfzYs9lONJNt8B9L38X2PO36646ePhZ/6aJGoZxzXjH13/PT94icfzkEqIrFv3/HTHT/d8dMdP93HfXzs8d0r/obQti28UkpIP4YY0mDfJOOMXfHhtw45vffsKEQyJsF6mBMyCwl21UcwEKWG0L+NjrpTa2XtyfKKBrxzkGHBZFu0ZN+9Ddq2oVNhZAcizVJ33f9ZBNnZViWlLMkC2gfWtIoGaB4dF2UuIaGpWmlj3IDeXn6tgKQ0Qjw61tkwhvcAkBryDEowWw4wajDyTpbwE8y7BDgsCJIeNXtIdAkmMjoxBfNdPDfAIgk6vtUgQywiqu4l7Z5yoQDWU41kwUdyx8lCFklDarh9T7CDhP+FkP8QjI9KSIiQ9AdJr6GSJqqI/3tY8WT2/MN3ICU2x291UxL5AFwFSd+bLOl2MgkpuBpOspHu4CUYRZxlSlaqOw9z4XD+ksPz7/CD18qb8zNfvP6CR13pZaUpXP0Zq4b1YGC1TrQRyUNbP7BHUdQw8t0ooDGlJ2VdV7p1XCvX6xY4vc5Igaf3V7bLxicH2Grn4aBspSB0pqqUEuX5HUMNfv3zT/jrf/iW5i/paDBmrkSzOwOJRKEgSDKypoKkl5JbJIJDC2oWawZhIHRrkXhGcQJFpxsb3NTxEh3eRMLcGEDNEYsNfXg873j+JKsp6IhkaU9MRr7qYRAwrYax+2XED6cSZr+7bEobuN6qKvowttEoOlHqjJBeN25M04SkR0wQf4qWORlqwXr45WiCDMv5XnLuITVY6OFUFN8a9B7zLKtcYt5GrEHiebhrduCsaCzymxdUwUN+p2R1yrcYdDT+5LvTG3Ec0osiBdWQOu1ruKhDkQBHpaAzjJR0RBpHMNDuIQVSxxhsvdFGssQaXfmi9oRMBj27dQYg7nuibXG4IArTXEN6k+/c9uIQi+qZ7pGMlCk8qcwHdarfYoLDe2guE7vfT9zYuB08FD6w/bucrWhB85C5jx6+L/n3rDe6daYpzKnpGz46RSpuURlUVJmk3iqtVOKAwhPo+oiqCSlClZh/+4HLSKmgS8jcQkYYMU/zmkfGKbdg663EfqaaZQA+EvhGiCgItRaGd65tRaYZIWV/I5IDgZA6icehhujt/Zb8Yx57VjD1EnN7gNqguDBpiQqPnXK/j+993PHTHT99LPxk+8Xl2OXVd/z0/eKnKkoFfvb7R/7C/+o/xj/33/kbfPKjpzt+uuOnO36646f7uI+PNr7zwZ+O6Bzk6YWwd/jqVtAKu56+6IQXGLT0J4BSZ9jZ2DBLAcKLobhQLdtoa7AlA0GmBTfYWho5Y1HyLRlE3RCr1NxMOrGRTBnsugFClDgPQSWAJSMFHyKYOiPbppdkstkDPIRJrnuy5MEEuacRr1iUpgfaDGgshaIdR8IomNxkCuFDk/ueWUeLB3MiKaHMwIVYYC5AmtwA9o4WrVlIJ0qhZ0l5KYqYc6SGGbiUMN+1gXfnwg4KGtZGstxRUm41PDAsO/wpYRDr6SUUYEAwEYoKk9RgLy02tRu+tJGAPUCijWBOZYRRNxrbtYc5A6JTPA+DKiHNGaZUJbr4Emy7A95T1pIMqe9AXkpOuzWupwhTmRjujB7XHUzTFmBPKydZaX/rL/H6i8pQR2enn5+xVy/pdsWvDds6PjpiJdrau7OaMTySCS2K+2C1K8/tAocHriZcN+OydnSesFIj6WgbMjYu24UrzheffsbPfvqHWBc+eXzkUIW+HVnW8EHx5YizgA+qdLxU6vqel/MTv/v8CaIzbgUbDbWctxKePiKEH4p3bGisI7LsXQtdFPeQQOy8qqM3o/Ld98WTCQ0oHgnTDj4Bvt3kPjyaYhKYh2xt8uzehoLC8GBPhTDRtUw3zITuYYA9sPBccaWaolLTdwe0RNcxcb3Ng56+TLOWZOEHdUrGFb+9e/U4pAxmOt6lECDGLcAxHlUp7sEUjusKKnRRzi5UkWDuxegdXKd4zmmGHfx6x4YFACrBiO7gwxmZoNbwPnIFVUSN6rHuw3A4qmTAIxkblnEvutptHpI7lUhoQzAx0DRZNhtkVsVcCz6EPiIRNjFkCrEGrmEYjuM9ZCQ1Wr7RNd6/jpKxx6KzYDYO0BId8mw0hIJYYdEa79nGDUzNKGYNlQTWLuBbssCRODczrMR3qwsyLObzDpo94oviTBqywKHB9KLQXegC2g3pad49AUUZrTPaQGqNqoVOsv2DLiN8miaNzoQWhyfNR6LDkITsptXV81ACKHN4iO0SuHiuFdeJqTrdw6MKESoVDGY90doFly1jn6I6I2Wi9Z7SNsDDP2uvrMEkE7I8VCiEbNJrTrrdUyf2oUo8u122eR+/OOOOn+746WPhpyITw0ZUJ0IckNgdP33f+Cmkmcb80Pgzf+5nHB7aHT9xx093/HTHT/dxHx9zfOeDv8AJIXEQIUv2/YNXiUZAasOi5Naj849+i9V0EuloBtosD06a9XbCHjp9D6mGALspKbGx4sRJf/59dwMpaSQKvW0B3IDet+xQpSFNMW7M9RgjAQ+IOtloHAPG/g0aQWLY7uOQBctTMOiYZFl2tJWnBtPiWX5c5prt0SVZ/cChwQxH9RQQQFckyuhxHMNKyG8kN19PyU0QYZEA7Ia0YQNtNN/LtmOjBRIkOz4UtQC6pUh0xWp2S0JUwxfILTZBlfCc2b0hcOi7+Styq/iSBDlZrxDgAgEj/DMARCgW5d0OSO9g8QxEHNECNjDRALrEQVO/semC1N0TJeagJBixYexGOztHE8bdZ4oUrHVKmZi18fzTf4cfzsYPXiw8be/5wx//hFdf/CrtfMbE2LZObwUpSlkUq0ZjxVphHVCnSpkq3Y3raGxquAzMOu/PZ9r2EusFtx6spXfcBtfrmRcPDzSHn/7857x68Qnvz+958TjxzfkdUk8c54L2lbBB6tl5azCL8nickXPM1UgCjSaDIhOlFnprDOuIfljSwrcqBCAAlFvIhcxpvVGq/JFqhLKzlx6mxn5bp1EBANBHeKLoLomxvXMiaTBsOQe+XRGy+ybFRBIJQUBXoUgwgxYfF34dFrHFchNWDfnBDpLHGLE2SqGvGzY6c7TCow2jjRHJqsQ9xLMI9m/k7NUqVM8qFoGtgBcHasoX4rv3mgQpuTItyyXyM913oBAyiyLKunZ0ODUeKi1BzWqWUp/o0ic1O2B2g+FIneLzvEeSRjwYz2fj5pha9GCMctjbfIj4FPHHRvx9lZCGKZFgd3W8RDwRD/A7emSQguPasZFAVoStNbRM8axFsNbBojNnsxYxnnpje0FZx8AauEXisleYrH0Dj+54KhKyFi10OqZxLVsfiIVpNSLhCyORBGSEDdkTChLzQLsnBw9WhdFaJC21hHeaRHgYHlUIkl5VSFZPjZxnZCyS7OxHVOGI5PMDxENSFB3nImVx65jDNhpSS8ihRDAttNYpfYWsAsLjPas42IDR850pRcptve7DPTyeBMkKqNgTRvesQhKGeXgCeVRFxVyMBPs+fkHGHT/d8dNHwk+7d+KNqLPseHrHT98zfooqu+Xhwp/7L/xeSLnhjp/u+OmOn+746T7u46ON73zwt3s7iMdiciRLmT9o5feycgdqic1gpHTA0ztAc3MIE+AAtbZvdBbMxt4CXEPhwC692DdRd7kZNO8GxqT3iyeILBolwzoARnSCkoLLB1Nrd0/fHMGyA5RKeMWYGf3GrsfwxOdi0aVPVW9AKgKFMBihwMjraha+KVo0NqbkAAPUEEwssHfOC+mJByNTHaOBEZ4FCVqhRIBK5jaMcdPONEGEpwl2AP+Oe0mOskCPTm5CbA7hd1AxN5qPBPh5szdJSbzX7tmZTzzvHVAP5jGlP7nd4sMSsAfA1GRUSLAtGlUMLh5m4BY+FrtRbgAfDaYJovSfZKw9CvvddwRrKXnqIYtwY6kxxYsqtRSOeuH5ze/xoxeFFwcoxxOX337mcnrmxYsj6/WZNgykYhbs9DzF97W2ReezqtQSkpQ2BrVOdBNsa3id2Z5XppcnLu0JIaRUtQjeG6UoA+XputLH13zx+Quu7ZmlO+4zIobYhrgiHtKYvq5UTjzOSm9neq24FXQqeI/uVN02ho8wNmcw+kA1wAbEnBrpQzKXQtUwmdZhjN6ZXG6JQEzGfN97AongHp3AYq2lie4uT5OUqHgY13NLaIIhdQFDP7Cssv+XeL9CgIOAfobRUc9kVfZkJYCGe8jfdlnD5XqO9aTQ2hqgZirMtdB6p7uFcTCZeCYg9T1pHoa6MJSUSBibOfM0RYJr/sEcPlldsUyynehUhzOXOSUnzhgNVaPKhJtgfWTFiTNrybixxTlq4K80b470zxi4dKRUJi/YiLhGVs9IxkgRoSXAH/mcd9+m3lom3pFYxDMXpkyAR8bcvWJGIPyMtAbLnCDJNDyORusIZARJJrZWRh/03vARcU1VKUIkob1l9ZLjolAjMVaJ33NzvDe6N3QRtNZbNcrAYx5LfKtbJqf6YX6hgrpTJHxwQqrYbkm4lkioW++x95BeNJ0bs9+JhCm8avLj+/hwOBJlHBEnU8s4rFPKh2qdG4NthphQteR+xC0pElVKzewsyQzRwZTVX5rpVcS8+ErL399lh7EBhcwzqsE+rL8o/wkDeSTmut89an5hxh0/3fHTx8JPyLd8tgAtBa3ljp++Z/zkRRAVtqb83t99yS//fU/MR7vjpzt+uuOnO366j/v4aOO7N/cYIxkNv4EWSLaT2OjNogsPZgxJr4OdVtQAumoeiwyCpcQzKESA9J3pynJlM6NqDc50RzISMlCx8CwJBihuxQwmLTcz5H2DE00Q6dEswuNuCPVKdHwiWXWREhuOW5SGE9cXTFt+t3DbUD2BNoXo1IXfWL/eOqXoDcjGeUkcblnyE0UkAhIB3oX8XIttXISUBHALjrv/BxLd7gSoXqgewHFn9mKTi88S8fQKSiPXvH8SiJLJQUEpxs2/bQ+o5mluHdnGDdyYQ+uDOoVfQk3ZTwBS2RuJ5f3LhwRAFBMPKYN1hu2bdzwsEfC8P4jnLRLm0PF5ASA6UJFb8C8iUAodozehujDoaHvDYTzxsAjzQXnx2Y/47b/7f+ZHr37AN+f39HINo95WKbqgY8EusbFcp84yK6V0Rh30YVyfVmSDaQopxfV8ZrteuD4vTMcprjt83Nla4/3TE7/ygz/BN8/v0ccXXNZnup0YHj5Otq2MEj5MCNn5a0Db0CHUorS+IhaGyKXkgdxwtJSUYhhSSyR3lqbF+IfksBS23qPMHSE8dsJwmpyXYX5bkASP7InYztLWgmt6xMiHNRbvbE/AuH13TMedCfzw5jQXrLqBx/2YR82ImVFqZa5zrMORXQ5TmrPv5VrCBF3Nc83Hmt27A6oIJIvnQhgVa0hvik2A0D2BtQgqBZF4aT4sOq9FVEBqxKtaIqEbw+kW39m9R4JAJGBOdAmzBCHhiygUU4pCd5irYuaIdcSDteye7KwHo4wZ1no807zp8JKJ97EnrKQsRpHoBuoOJWWFmtfvymSGDmcDumZ8LpJMcEjWFp1wSlThFEEcplpxh9FGePAU/ZDYGsklxxodyfC6hqQOH7FSVXAJDxjzcF4ppUR8r4kPNe7BEpBPIcDIybT7XH0rLkp6x+yyPfeorOqGDQv/sB7vvpQa8kMbaFYyjAJWPnQqldHxLQHfNOd+FAca5I6RlxKVBioMojJATW9yRO/RQdMdSM+pscVCqimv8h6SGcNxjw6SojEHPasRPPe0vWpLax68lDAgdzdqLQhbrA9izksJCeJ9/GKMO36646ePhZ/2PfmW78ZudMdP3zN+cg8/tHdvTvwf/9d/mv/a/+Av84NfPd/x0x0/3fHTHT/dx318tPHdPf72Y3S4gaoi2S3MDLNgriPGDLARp/Qam8MebsTCFNRzM3Nx0ACr3S1LqzWBVgk5RpbR7xKF8JYx1CuyCzssgltsmHvpdnS+kp2RwMIzwsK7QZJhNfEMjlm+rRps6siy3yz3DjARIECFKHcmgi1pBls8+Kcd24lrSj9CbkGCyBGamfie/btTiuIaAC/McxXUMpDFvY2RchWJTWUvqS/EO9Ks6N9JuTAyHqBREo5YbiiSrCp4S48TiffSneyYJbeOcwHSo+w8WDxuoXEpU0gOvAfgQcIPSNP8+nYtBEtf5Ab6EcV8oFpShuM557KkWwNgBTaKuRS+DACGZBm9mmG7WbREOXotlUqnzJ3r13/Ij6aO9riXL375TyCiXJ7OvPzsgb616GTVGmVRhJltC2DS2qDIQq3QW3jweIPjfGLUmXfv3+O90/mMzTrFC0KAp6KFMk1ctw3zzvn8xKvHh5wTASjb1tgul6hIGIMyz9EpsTllGNulUcur6Eg4EhxZyIVINnnkPJB9rXomL0VACzWrQixNcBVyE41N2dzz83YWLFnnBK237GsHtGlevrNqPoxmI83rEwgSiZqT3SRFI2Y4t7kvJPunuxyNSB49up3tiZmIpJTrw+QOlceg2G5673/E6FeKYD5u1RVxXR7xySomSks4om7UvUsjIwFgrm/ZE8AR6yI9j1QVy/lkY4RkIBOOWoxSS1SJuOHd6GPFKdQSpu3DRnhJaXzk6A1Q3GuwwyV8vAbcKmQC9MVS2it58P35BmhCYUh+rnkY63sau8MH0PnvHSP9qiiU7KLnw+ge8VhKSeNrwXqaYpcoLRoeni3dQ/4kLuGNldIJQUCglABXW2uMbC4gPeNFGi9L/j1y7oiMWwWF+QgD53zne0w3cdSV8ArIuY8wl0ojzPIlY4gl4x1eZDGPSokvVikUIboi4oxOHiZkL0zVeJ+WQD3jeUmpYxwseHiVauxFqhqHD+65Rxm9D0oteb8JjEXSSNzz3cWdFMmDltFi70yWXNgrpeI69iWq6t8utrqP73nc8dMdP30s/BRxxPn0B2f++f/+X+H1Dy+43PHT94+fYPT+4ZAv5aB3/HTHT3f8dMdP93EfH2t854O/qUh0HSNMOiPYFkBv3ZGKVtx6yiQsuhbRs2zWKTVayOP15g8DuaEoDHFqUdjbtCPUUnIT5sZmuwcbULxmRZjTbdw2Y6dHoEjWGA/gZa0HO+LlQ9l6GsyShrqBOPPaLKk3YtN0/AMEHx9kElFOH92+pAcrtndWqmki3VPOggdbtksxJAE5LeU7++8mcB3e6X3gMtJTTTELVjpK0yXL3LPMO5le9/BXiA5ZNYCDRoAeFoyZjYFSolS/O1Wzc1aRqKiOpxGfdwOFGXzZtyJHLVgj9eySRjDLauE143DbyPYRFj6Bfg2LDk+50ektQYr3nFMhEpkEUIF/cwPPH5sZNjxBNtSq2NaAlcLG05sf8+kJPnl8iHk44HE58PbrN7z+pUe2bWOZ5/QH2bg22IZRpFI8mg2Pbug2WJvx/LyiWmkOl74xcN5ennjtjxx8yoQmjJS7OefzMz/5yU+Y5kprjePxGJKAEeza6CONDQ2pnglboUwLjIZ4/J0qQtXK2mJtSfpAQYDJ4Z5l97nZeWy6U4JG1eCNPSVbIqR8I3fJTFTwmONOMIt7l8LeRwDYPXGSMHB29iWT4MhC7kBej2dlRLeYl+oJcMnqDB/ZdS/MjbNYIjZ1AdwZLbqc7VKSdb3i6tS6RPKawEJFQyrlCZR2KUqJOCI+KGiCBAsPmIxTanpbu/scG8Q7IqsJYgUPujneIhEMUBfXrVOJJNX7rYujLLn+Lf4wArR2RlS9IKgaLgUfKd0RQ0voFnJZsFf3mDhm/eZL4qq5VkdUpuwBkZCemAs9Mgm8FNKE5QbyS1VKWbBrD/PzudwMnfe420ZIIqZ5xlrI4SJWpAG2QikHaAbWsFycIgXFsW4M6XE/I9nWHWFJxA0zv3n+dB0oCcRymgtOkfCJ0oypwz50hzSIzxRn62HE7lPB2kAJGcuwjuEcfEYykbJMmL3EnlJGu8Vpl5AA4ZIHESAlmhZoJnDhe1noveMeSbP7HnejYUFvgyJR2VWnGkbmkanRrdO2Hkw8USER6ySaBkAc8mhKzcQELc7aGr04lEKYvo84wLD/H4nJfXwv446f7vjpY+EnSalvnY1f+tU3iMU13/HT94uf0Nibe9+7mcah0B0/3fHTHT/d8dN93MfHGt/54K+NDYiAEDr4gg1nuMTPEIoMxBVjujG9N6MZye5GCRSLeDKhEdRtL7u3aK1dkw+13mlSoiQ3pS2FQpUAXiYFEZizMsyydBoxiiSw3gI0Fp8RL8myCMMH3kd0kvICOiUTKre28qglYwLYAIWSZdZVCs7OWEGtBS9K54PHivQAB6WUm+eFm4BMDBwbYZw8JkWHo0Vo1uI7R7DYRSdGMkTiguiCeEM8fCOC4hbW2imuFBdkePqwCU1SGuSCN8e1YFKheG7uGQwdeinRTdeNojXKvXHqpLTe8RIbhFgyaBhVgy0dqmxDUC/ZMU2i01M252iebLcIzQalas4F4VBmvLcAnxlvZTgzNT1OkumxvOd945Y9kUkoLXFNKhbMPoqJcvBn+uXnvHp44NXjQjkemOqBRYSzvefZvwmgYIYqzMshfDC6s7XOUitjdFQrrlGOP6pAcR4KPD7MvHt/5v25UfzAaIVp7ijOMk+RUNTK3/n930XrhJnw9P7Ky+OJ52djOTrztGDzEaYpDJqL431wkcFGobSN+fCazmAdg7EnjgnqdsP2msw1Ggdzkh36Ron5FWbnRrj2BXDDo2pj2LixjOZZ1GcW83ZECf+syqz5XpLV9bHLEwJcTCUAy+ZGK47UQrXB1reQDFCpo9DLFpUoOGWk74pDw6goVaIbm0t0T5MiiCUrKbDIEox0j81fCpgPRDwkDC3uw8QZGutYhQAMzVEbTBCYINlCk2RRq+Cthw+Xkwmw3pI5RTgqsNRM8gw8egHOHglEGwPXikp4qEhK9trYQpaQLH2w6sLQQjEo6e21mVOXCRkb7oOiU0jDxsiqE6PWSusEU25ZiaPJTZsSkr2C15Dl4E5xQYdH5Q6weceacaBSRTHNrnGbUEaw0lILJSXe29goQ0Esqlc0q1dGxLRhMGlFHIr/UWlR5hMs8xIVGq0RHGx0MHRC8ieELKN7DwkkcS+Y0qbolLl6Rx0mVUoP4+48asBF6Dgo1BZdN8eIcFlKRTCa90hGRdHQ7qCawpsiWRXk2BD2SiR1Cc8s7wzrqAZXrRgyfD8mwPqISghGmHCbM0lJj6844PDh0ONdTqJ4FbIMg1kmEI9OoyUOT/bGg7Ue2MbG3vDBIhIwpeZmjILEzL6PX4Bxx0/c8dNHwk9DQr56eTvzW/+PX+Mf/s/9AQ+v1zt++p7xk3k0/5iTQK2qKSG946c7frrjpzt+uo/7+Djj30dzjygdlx5sSRnZLU0BkulsAWrUU2fvjncLJliI8v0SHhZDLNX+EUSLC10lSo3NPnyxk34EseNYBtroykawLwBiN5ZMMsAZIRPpGQTDMDs+49uGrc7uxwJisRkTtxWtyXMTKaVEKT9Zmp9l457stKrQuBHs8fO4xPREiHJ2kll2PnSYMxupbQm2bZcdFD58Dx6+CN1HbgRRBl0y1kGwo8OTVCMMgz0PzXbvFyM6URmkf0caoEowiJ7JRfdgJAXBN79VLAixESbdHKawHiDYIJgrQKYJITwpPNnAtF+lZIKhWW5t3VAp1Klye/wpEWoeviMho4kqAb+V2Qdz6CVARXSXClZRDJ5t4/WLmf71G+rlPcfDCZ2PnOqBMlWepTMP4fL0HtMD5nA6HvASJtCNzvl6pTw+0kW4tAG+sbrQWg+z4VIYveNjcL1eeX5+onBANQ7FjvORuSz0Mnjz05/QNkPqgvVCWxvT4wmx2MRis4t5iQtVCkOEWsP8u61bLtuQTshu2J2pkrvnO/UbGPs2K834MC/zIdPt234XNRnDSAQ9k59v+8sMiw6IQnig4ETZvISBOnjIDuyD/GPaAkCMUhmqtNEx8fBr6ZEQ1lIx4hmI78bvEgsqZWFFd4Y74ofIHgNCphIG+dFf0vb5KlHzL7t8JVFUAFRwjecjskuwQn431oADIZdQonNlsrP9wxxNU5x4F5n0BQCTD88fB09DZuHmOYUGGyke3k0jjZGL1GCfNX4mEhWXRiSJTsj1iuqHtWUf3qsPiYqHIlnFMDJOBcA267cqoCLRW048/J4svxeI9ykp2WsBhosTYL7EPPP0Oyo5T7qN9JKJUKdhOMYYkUyFf5KzMWJNZ9K1V+DsialKePqYlzAB14wJI66hqt6gmRJz1TNehpwrQaZoemI5Iimjs0xgVEPKhdyeY5UafxdJtl4yKYm4Pgpk70wUKNGakVEKqhEXxwivoWC5O52OaBzAkBKXntIc1YVhEj5H1bM0wUK25CFHszHY5fWW86hMEmbcWtDsbtjXRhGh6pSx4j5+EcYdP93x08fCTy02edo68Tt/8zW/8Y/9mPmF3fHT946fwutz5PqMQ/s7frrjpzt+uuOn+7iPjze+u8efp1TFwqA4rWXSI8EJXwuJla35z7nBpDYDM9A0zDX5YJgrEEG3aqK+2Pw0N+YRYowox04+AokuWy2BW0S7CDGh91fYDyYiVDO6ByNlsUFrkcTIwpDYkMJ9QW+b28BubAsq9B4BJDZovQV/x+ndMd0d6iKYFoTiKaNIT5L9cuMqo1uXjNBjDLebqa0Sz7gnINF8prIbxHhsAt0HOvarjyekqvF+8vfSCQckrsksWJqMhdxQbD7DaHkeGzKimO2BN/yAdmbT0t9hlxWUbIFu1qPKYRREnKIFwRmjgw+UedcVxbxwcA/25fYAic1uYPndsItkzDwBhzJLMlvjg9xCFGopSHEeD4V/96/8m/zjXzxyWAZajeoDr/DJr/0Kb3/rb/LpF58wpgaTcDpOKBOi6VWRE6C1znE54ChjdC7PT5ymJZ+3MNaNaz3TGVz7Fe8BLimV6Xjg+e3XvP/mGbeKMDN6+nyMjveOrStdBbFgOKHgVjAu/OiLz5GvvmGqSm/lNt/Z0yyRfAlk8hMbbyitYr2WnMeRCMVHjDGiIsSS3aYwLKUTJd73cENcd9UDzoeujPF98ZnDYg4Ke4eveD+GoJYMqATYVYWlFqz3AHqyG0mHwXBRCT3VGNRaIhlJeZuoxvPZ8X2W+u+SMb4VK3Z2kEwQxWOau3gw/cSz2AEP7kyZ4I7haJ0Y3TGD8kFRgWRSGJ5Ku2hrlzUEQMI0GeNd6jGQ4uy0eU9pknjOeQGtJUysE5BCANdaJvZuk6oBEltrlKkSFRq5fi2WVRhdR1XPnp5HszSJdW2wm1mXpJslmc+Rc16M8G+RD89GMwEupPF2xj8iHIF4gEHd/cvSrZkAqIHtY9GLWxhW52fefISMeH6iTJQAa7veH43KJ/aqpqhc6RJm2/OIGBZypEi2SsqgIrbkW0qZy+6xVsuMVk0Ze5hnl6q4G7ovnFxTN0mjZ+JCifnmTpcw4u4eEi4p0Y1OPOIRa74PhW4dywqkMeJgoMqHd+yB+lEtjOFIiWRmtDVkMWVCteBe0OGUEp1FSS+eKvuKvY/ve9zxE3f89JHw095x9dMfPvPn/4f/Bg0DueOn7x0/yW2hxdrItXzHT3f8BHf8dMdP93EfH2d854O/KgMhA40IQ9ND4cYsOSolSrFtRDAWCaPkUpLe8mxIF14sZNmu7oxUdtVxy7L33GVKXYIRTEioBICODcLTcJYElLlLMbJU35Hc2Mz2AByMje6GLekz4B5gOJiTDyXpRTSubQQTU0qBDFT7HyE/n2Svk+ET8zB89TCYvrHGuQFDlGdrSa+ZRF3madS6bxgajIQ4MKJLlavktWSCkBvArXuVh4F2sNbcfB90lxgkM0zER3YkEASM58aZwF9uOCF/Ivk2YtOe9v+eGyBaWduW4D0cFvbExswx6dQ6x8Yxer6fBCe7B0p2BZO5BhM04v0MS7Z9EIx+zpkoM6+oxDMfvfHioSJvf8Iv6cbnh8q8FEpdOR0f8XHlH/qH/1P87/+ff5lfuVbEAFVkCGMdgGHXC95WfKsMK4y6UA8z0gf0jk8TPUFgVaW3zjfPT5TpMaQQCn0Ip5cvef6dv0Pvg26Fa+tc15XWKuenM6dlYlWj0BCfKDono//AGGeOy8qDbhzFuGTZO76z1LHWwkfDc3vPubM/c//QxQuR2z+HUbRRNIDKvgHf2GrfMbLfGGB3o49OMWGqU4Ahi85x+5of6RdjBEAcBcbwZAWNMkK2oRK+VWU3ybZIU40RPkIo2+i0MVjShBwKw5ORJe7P1WD3ZbHoFqci4duSNQD7DLZ9navGXHeIQpnwzxFx0DjcLIzwgBkwvH9Y2xrm455VO4YFcJdIGneZUPz3iJFaCjrprQshuSZKVn+YGW3rIXtwuVXVqBIVAN+OKSm7GfnMa9Gb11EkmB3zjhHeW54VJRASFSWuTROImfm+0mNt5xwhqwb2xHnvQBjfG58ne7VLrEq65VGBhRF6yfd8SKled4uUXgC3kM8QCb3nPAvhh7MSBwWuEYxNJH632606QjzQepEEmqL5ptM7zENuF5tHXOvokbBoiYqDzhb7l4TsT7LZgeaeIviNnZ+ZwrMIwUrBVOku1PTyQcMfK6qSuFVR3EC+x7XWKiHbkYaXkLhUjQSwSAmPsfQ2Mx+J/yOp0TQ+mqaJdY2Di95XVIOh34H5ffxijDt+uuOnj4afJOJhdHPljp9+gfDT3pEVwEaPw+k7frrjpzt+uuOn+7iPjzS+u8df8TxdD4QSwIZbFVAwnzvDGYCDEcy0Fg2zUJfo5OaEPEUyuJAs1r4BZ+FXAUjfmh1Fiju7SkH1Q2m6UiIwGxRN0Gs7uMoAVKKD0fAEJcMIIkNuIGBnOxISoES5vSQ4LMliejIsext2kWS5R5S/a1aik0ahxVPmsjMz8U3BbozOrNltK3D0bVOJz0gAqSltGT032uCh9/AU/i8BSofllWlIT6KQLkADWRZfkqq+mTzvkpK4owBEZHc6AkDHzqnsnboUSSIoWBJFgmlUoZhQJrmxnuyvUTWAKSOes0Y5vaujlv4m+c5UgkXzHXQRLH+qlCIJkYHWMO2GuAfxQVXhcb3w89/6Tf6RH73m8bCCTFQvrNuGPl/5M3/qH+R/s165bD1Mn2uYL/cewKL1K0LHxobUY5SPN8VGY6qFNgY2a8xZnPV65Wc/+xnqxouXM4fDkhUbxvP7b6jzgeulYdpZx5W1zWzbxPN5BfPs2jgxj47WSgPm5cTUnvjhY+XHb97iZULUiRkVZs7OzvrDzRyaXRYRIM8sqvRsL99XiTUtYdQsyXbVUjF3tuuam2B42+xrqdbCXHO9eQIdH7f5bXhKhsIzqgc8pJQU2Wgg4uady4iLrq7Z1dBj8WgmKCNMl0ExTcmAhO2Rm1NL+KaYxIoNo/aYLzvQCv8iuyXDrimY8qjqcCGAsDt7B7HdY8vckhnMyoqyA5JB9/A9KWUHJbsMI9as5r06YVxs3cFHJgrx/G9rIplUKXp75lLifkUDCO7Jq42RjGqYWA+3iD9EbCyidMvmK1IQrxRxsBaxlzDRHiM7vdU9gY9EcAfLjuNiiNU/EuN2WV0IWwpImCgP8ZSEZPzSnQ23qNpJ4+7h0YlNU5q3J8Z7t8HIoTOb9hHVFZlkhcRG2STmJBJrPQ5AMt7KHlljDZjFx5lF9zYpRJc9i650lu+KmkmbR3LjwyklKxe0xGHGXprz7di/v8SUJ+EONhLoWhqgK5u3m+9Yy2tGoLPi7lTArsG0u1rG4HHbh2wMNP279qRAF0UzSdu2hlaFqcD++ffxCzHu+OmOnz4Wfiopg/zD3z3wF/4X/zD/lf/uX+aLX13v+Ol7xk/xiYGf4j1wx093/HTHT3f8dB/38VHHdz74e5feMJNUZhQdmoEn/4L4HwFtVcOic/iIn6vjVIwwi42W77HRjdyk1AiAq3pj1cDTvySZoDFShALpjZrXIOCa7IKABSAbHkbSpSZLLMHyVpUPm5x/q7T95n0S9+a9IV7CsDWZn3bd0Ny8JVkJd6f3Eey7CF4ESYClEt2vbES79h3VOtHhb3h0jNqDpqfDr5bYWPuw6KKqwdhNGp/Xkz3cO2it28YswaSpO1YLUgtsIzOLkHjsw3KjHXx43mZGUaLcueybsUXptA2KFJoZY0SCUPC8lkGV6FbVt05r0WWuyQgwlTyqJbslGL2Fh4KqMogSdx92K9Hfy7ubSHjq7F4corHxe5R39zIoU8UGWO/MRZlUUYP5cuaTfuWhhBn2ND8w+RHRBb90Pnv5Cp8Hz+s7juWByQ90SOnSoPlGnUv40grJhDrb2Gg2MI+OaIfTgbO8x0Zj3Tba84ovBSnRnfH69J52ueBSWfuVwcb783u+mZVTXRC5IAYVRYbjQ1kOBZsH1la8v+dFecmxGGsxunVEOuKV6OQVyYq4pqzBbhV6pKRnZ/z7MJCBeKEPQ8vAXG4dyhYVWm/B3gvYMJoNWoL53jvbuuEj5EqySxOICgkfhPm1CCqVLgPxTjWhj4Gr3AzcbTkijZz3RrfwUlEbVCpuwjZ6sMeHA91XIA+D3cGyC5cEy2oEYP2QHFbaKOm7lDKvEvdVelYxqoY5vgVYadbjmU3C6J1SHBtGb4NpiW6DYdY/WKbKdQ22GipFa7CtfVDI6pASnSgHBOhwC+nfiKQVQsq1zy/z8Pmqu1G9OF6EfmlUrdRSwiuoGYe6RIcysmrFBMNYe8cS+AjCXCYU6GPDaYjGc0WEKjOWvjIlE/WO0+kYMOspnmfocrKDpDOFVRJmsFlnEJU3UybItZaQZ5hREa4GzcF2YI5HwlTS6yxj9y5hBL/F8aol9gyLCoe+rahUpMY8W1yZBmxVs0Ig579H5CkjfuYIUgq1TCHlMLhVVklIWkRLGGp7JHrbtiFSEaIihLmgHgbiusuEFKQGL74fesxTYS4VmReGKFsbsQbaxrVvFD0wLxNNrkDECWkOWQVWp4oTQLwWpfUWVQ8seN4P3tBJECbmeaZLrBWtheOyfNft/T7+Qx53/HTHTx8NP408HDJoawXXO376BcBPnuu8zhd+4x/9A7Q+s122O36646c7frrjp/u4j482vvPB36djwlXYLg11Y5pnGsZojbrMDOtUF0qepLvCGIZ4pdaJMZxtREuAaZ64bhfm08IYDbaN07TQWhiuqjvSo8T7mt23xJ3So/y2ueBSKD38H6TAGA0lja97xzB0njBzpmXO0/wS5q+m6OYYHZudrsZUJ7atJzfg0TFtGHMPgLwiNwnNSGZoB7t9hKdH+EUIrRsqNb1hAhCqRTAREa6XK4+nE9t6Zajz+uEl9nzBi8Kxsj6vqCoX8zDHngvuSnejqzNJo7pSR3bFA9bRKIeJ3o0+BodlQcdgO5+hQmGir52OM9SoVTEb9DGoyxIl7oFnmD2Sks071DDO1a6IR1dALQsX7bh3jnViPa/Uaebsg58/P3GYZ6oOjlpgvTJqpQsUH0wUvBW6diaJrlUTlXW9Uo4Tz5PxPs2xVxs8+xUbE2pwKIrYwKyhUugEOT7bjKxrvBMmxjqYq2EPM29+9jf44uHK8fiK+eQMEawqtTiX8xtOn73ki9ev+Ob9iiMcH080G5zPZ2wMhhRUJ1xqSK6EABu7+fq68tBeMs8PPB3f8jSufPX0DWUWptmos8LpyO/+nS851tdcLhsHn5h75XyG/sWBa+3Y5RseT4XzZSB+okwBFEdbsWFs5zOvF+WzSXi7nVl9YTm8oj9vTIfC0I2qig9hGyvLtKAj5BatN5ZlZnhlqpXjomzbJeQspeATzPORdjWKC94br5eFjQ2KMqYjVYxjdhHUWnh49ch67pR5jvndVo6HmY3Bdes8PLyibY2pKG6d0RvqwqRHtm1QlsI2LhzlhNXOPGlWkAQaMilUc5ics23MpyN1NerhBVKEbduw6uhUGZKspAmTzxRRtu2MFkPVqVVopngJv5dJC2WqPLWNce1MhyW6J3bj5bwwypFxbVSUUioNpyOcXh745t0bigyO85Ft3RBRPBlt7Mpc4el5xeYjh2mmqnC5PHN4mNl6o9aSXfUsukyeDnSNg22GscwLlpU9hnOsB7RAa416eMEYAxud6WHhup0R23hZKjYVri5MQ9l8cCzCcVoYBq0ZZleO88Lby0opyuPygPmR4VFlsahSJ2doY7gx1xMHP4Ibow/KgO35DCWqUFgKm27MfmJ9XmnquHde6MJDmWij06+dr87v4DDjc+HgzkMtuDi9DVRnsMp6vbC2J+ZSOJQJmqHHB87XjbkWii6s184Qo0ln297zeHjk6fwuOhyK8nbtFJ3YpCPJWKsKo3XmWqnSKUVp3Xn+5oqI8GpZ2C5X5mXhuW/YYaKPxqFU+rnjsjDpRHUwO9PaGpUiImip1KnSHS7boE4LXsKIHYfnvkY1w7bR3v4cnSo+z9R5YZoWRhsUqTCDi+FboVih2TNVjJnYq64CfSq8fX7m889fsz29oT5dmKaZ9xg6HZmY6CM6OU41QLdSeP/+Gf6F/8wfM2S4j7+XccdPd/z0sfBTW42pwWozAKuFNPKOn75f/OS9IbUyHTr/zL/we6znQplf3fHTHT/d8dMdP93HfXy08Z0P/nrvlGUKFgvlsq5Yrbw4HLhuV+apBjOdp/W9N+q8hInq1jEP3X4RpQ5nkgotWpaXqeLbFrp+VYrWYEJT9nnwZIslStz3LnDuazCTpWAlDHjFhUahaJTbT6ro1nnU6OrUarQiVwMxxatTRqcW4fhwwocg3TkwMWicjwOtE47gLSjyUiqjbdQiVC2x0QBUQVZ4PAQQLFpCbiLBYmhV1jY4vX7B1jaODzOLG2zPPB4mmhvDO8tpinbxtfA8NoaCtcGLMjO5MOrEJkInOqMtUjhRqd2gVjzlIVKVx7Kw+sakMCisPrAqaBVqB6kLW28Mc5a60EeL91cL02Fha5EQWDNGGxyKoKPzgxJJgbXBw7TQ3TjWiU6lp4PD5oOHqlxGC/NUgbkWmg6W5rR+hVq5tBa+HedGpbJsUQJeXKANxuh0mdg85BmTOOP6HIynC1ZnfJwpZULKgdEbfTvz6da4fP27fPpi4np+w6cvHphliaqDbcOLYb3x+Wef8fYP3/DyxUzrK5frM5bMI1WD7cVvjKK3Fl0VLeROT09PlHnhsy8+RQucL89cW+eydXh35nE6cFk7rVaaX5CiXLYrsx/58ss3HOorXk+Vd09XPnv1is2gumPXC5fqfDN3ZILP65l/tBq/7Bt/8cfv+Z23ncv8wHY4crGeG9hgzM5Cwa4NcaV1A50YoyFujNE4HA8M4Nw2pBpzmZikBoASpbeNeZkxg+t5ZSpw/vL3APjrf+2v8pO3V4bBdQzaGExekBJysLY2yrzQemeZJkq/8mruPFlnzCd6E9b1ymmqWKuIOs0apYYsbSDIYWKW9Jepwvuv33CgsoqzrRvzfKTIgugEUmntjItjrVFLycqTkAzolKy+G721kGnYoMyV4spswRzbJJxtowyFqWIirOvGaTrgW+NSYXLQ1uPaiqLzzDfrObxLrFBEOJ0OXNqZUZzLdYsOYZtT54XLZWU+Lbid0bUjHglv74OlTJQ2cFWet1j3OhfWtvKwHBA8fVmg9ZBAnI6V2ow+V577yoNPtN54urzhdDzRuvDw+JK+XfG+MSQqP8QK24COsByOzFPhcFCerxeenhvCwtg6UxFcKzPCq2XmxWnm7buvKIfCu+czVzceX7xkctguK5fRaTqY68RYjcPygFHwUhne6O3Ci4cT/doYm3GoD8wFnCvvnt+zLAulFJool7ZxKCFvKXW+SeIc46lfadcL5nBcjkw6RwdSVaZS6NsGYzDVEibqq3FcjgyEJo5OhVOtbG2jrS3ef608n595/OQTihvjcsaHczyc2NYL3RqffvYpMoxalPPlmdZ7SKm04kXRFlUPo4KJ8fLhxG988QXP7880EXop/OztGwzhzZv3DGtMywwbVCbKYnRtTEXC7EeVshwDiP7mG/7+L75gQfjxV3/IeDywdacwsZpx3c54Wzlq4cXhRCkV+G/+McKF+/h7HXf8dMdPHws/1RYy5JJSY1tXtq3f8dP3jJ8gDtDO7y+U/gPmx3c02e746Y6f7vjpjp/u4z4+2vj30dyjs64bWiLI1jJj4jydn3CF6+VKJWwFusDYOnXbKEWj85ZLdMAiPBrqVNlWYx2NY52ZDQ6j8n5buW6NSYIddRHmtbGJ00uUomPOhFKmhmthXRtt7ZwOR8SgpWeFmYWnw9ax3ljmhe5wtoG1Dn2EQa6Hsa4uM12EvjWqOZMI1h2vlTEGxR1nUOfCszR0pLRAokMTk/J0Xnk8PWBtsJ4vTLXSewM3jqcT5+uKEzIUcYNSaM2iQ5VqdCYqBV+vHCa4Mhi1cF5XJg1T1oNWWhu4h4QgJAKdWaKEPfxACpMp2g0/TYg5o3WGhGeIu2Oj8/jiJcOMp6dnpuUUVQZAa1uWb0tKLc6cXj5itoHM9G1D+4qYMDyTD3e21ihFKC9PbNsVNWW9duo0MdZL+NNMB7xf6BjT6cBYN07zwj/0G3+av/Fbf41f//oPAPhXf+tf5y//9r8NTShMbK0xKdT0KSlz5bxuTMvErBas1nB8XPniVeU/+2nlT75aeXmYWaRgY4V2oBRlnpXr+oRfn3k4HnnTv6IKtO3C87PT64G5zKgs0Vk4pUTdQ57SsyJDSw15hXWWw8zrT15QJ+jb4Hy9siwLX339huf1SivKclhozxfOlzOHwwPny8qXX75jfv2KealsXrk8n9lSXjXNhUkWaq3M9swvLxe+eHXl1z5f+Df+9jf8b/9v/x++mj5jO7zgYoNmI4x63Vhq5bKGD8x8euRojm0bRQQrwteXZ2wqLKWg1pkcztcrzEc2h0mEpc5UYFZF3vwUgB//7KdcP/8B75/e89Xze0Zd8F4DzGv2DSzTLen5bHZ+9ddf8vzNe95+857f/p2vqI+vuLYrL08LNjqfv/6E9d0TOkIW8lSN9fyMW2MuwlRnPnv5micK63rl6A3vjTFasMJXOJ5egnTG2tl6Zwyh1gq1cJgO8TzOZ4ZAaysPhweeq7M+P/GyTrRLY12cX3n8Adf3T0wubM8XrvrEZVvh5QPeO6d55lAXvnn7NTYMnQ588uoFp8PE2zdf8f7NN7hOlGXBmFCdKbJyubxn805vGwvCi8dHLuuVizpbAX+YkB4m7HJYmEMDhzPxbrsAg2UuHI8nzt90Rhd8BFhfadTjwtadOi0cls8wnemb8OW548N5cVgQ6bx6fODyzRkxx/rK3/frP2I7P/PlVz+nD2F+fMnQCaTT/MqynGhb4ydP73keM/og1Oo88Jq+vuV8ecOpzEyHhUt3rA7OfeX1Z6/RLtCM7huP1fn8i8+5bhfkMdjyd988IdMRscJhesiEuyI2mIGX08JbOj+3M4d54dPpxKE7r5nYjkfW0SnLjGvlfF2Zlhk1OM0H5lLDx0eEinGYJi7XNSSORZiA+QKf/PALruvGN9uV5UHxsVGLUj55ZJri0OJUHhk26KOjRRA1HuYjy2GK6ix3ejkizejXK8thotnG5frMX3vz+5yWA+15Q1FOx4U2nM8/exUm8MRByXGaWX3jlz97zcta+Y//mT/NX/yt3+L3v/yK8/PK4fUnPK+NNgk8HpheHDktB8Y6kNGgGYfpkSMKW+fly1d/TDDhPv6Djjt+uuOnj4WfnlunHyrt+YfAP8a/9pv/Ooe/8Yd3/PQ946dtGKse8K8/4et/88/zH/0n/2dcpn/njp/u+OmOn+746T7u46ON73zw9y//n/53lCXKbC9PZ6ZpZjNDZKJMCm5MIlyvK6sbL04n5hpgprUWjLcU6qFQZ+Xrt1+zvHgR5f9t8EJn+tMFPZ14ul5hwFQL81zZ3rzD5glbKqaChuUN5ivNoNSF3gZLqRznhWGNrTdkKmy9o6r03qky0xF8LizLAenGdl2pEl4wrcBGY56Fx9PMohPPbweWnhZTEdp2DbNdcZYyUzw67g0ZzIeJr1rn+nQO/wILrxWtM3Ks2Jso0Z60MCG0y4U6CXWeeVo3Hl++4s3bt8xT4WFemPvgoJWC0reNizpNnDrPYWZrFoCxKlaF33/7Dgrhl3J5ilblBvp+MK4rxzJxOB1RKVExsMz8nZ//FC2V69Zo37xD68SEsTCYi1KrcjocGOVKZ+Jn759Zi6DHynIs1FGgV77RDRWlF6fWQt+eKVWY1ZFlYtLKZfTwEypQlol1u6L9zMNx4mm78pf+xr/FdnDOj+H/c/HOKgOWCarzdHlmmmYOhyPbcLxM2KHySS14UeoyeL0svJw2Pp8v/Pq88slBsfVKeXHAa0hbni/PjOE0Gut2wQZcnlsYl7fO2c5Ydawak0wcJmGuFUGC2Upri2GGQ3R0Exh94+XjA4dZeffuG1a74tMrfv7lz6E4rW9Y77fObK13VArvn848LTOffv4Zb5+e2NYLA2deZsq68ks683Ca2dTwI1R55sX1Df/Un/6cf+LP/Tf4X/5L/xf+ys++5OmzX+PHzxtVhLGtjCq4dV5/8hIRpZ9Xjq8fcBt8cz0zvThw9YH6xFwrcxEOLx54P4w24PWnLymu9MuFIlC3AwD2YuZvv/uD8I369MjTZWXTwbFUpF1ZryvLfODxdETLxPunJ/6vv/nbdDFOL1/z+vWRVa/Uw6A2o0wzX371FefLM8vDMebHxfnRFz/EvNG3jXlZuNrAREJa0jbUGkU67saLly9YFuXpfIlqjCKIF3xSVts4rxfkEhYjp4cjLvD2+sww4088vuKhG9+4c1kqP3//Brk2TlKZDxM+CXYSihr9UHnbr6znb/jk4cSf/hO/xu//9Mf8/Ovfp3/2iote6VNlM6eszzyUwujO4+OR0oWXhyOtD8oK7XINid2hMPrG0ANr7WgJuZiEgzuFyoMeER/gjef1zOHFI60Lb56e+PTxgdE33J0yH3h+eqIhXNczNpTT6YEBrG4wnXjz5pmHeeZwrDxS+PGP/za2NdCFaZpo3igY5/NXjOtXXHXh5Wc/RBbn52++DFP29cpD+ZQXU43uatPCc49ucvLNyqvTEX0+czoeOfuF02lhOS68efoKG52aXSZfloqxIqcjL3RmXK5UAxehTRNXopvii2WhXTfeP2+U4wNbvwbTfjiGdz/C8TTRjrBdV7wNpBaGx2ELOtAJFkYeGgBr43AUnraveTca/uoITTlthYcahxzXbaONjkpUa4HSadRaOT8/s7YLdQkZ4aojGiN6Z9oGn798pE+FL72xLJGgF4e+XtFaWdTY1o1qTnGYTwdUlR//9A/4iTp/6W/9VfQw89wHtR757NNX+NqZZlguPe6nOmtrHOYD7TAxzFh0YvWNp/bHihXu4z/AuOOnO376WPjp+lBZbSBP2WBjEuzhjp++d/xkStMZW97x2T/xP+Xp9GPqi8MdP93x0x0/3fHTfdzHRxvf+eDvsx/+AJkq6/XK65e/RC2VNga9Lly2K1hHx+DVZ5/w3KMVOkWyA9MMNrhcLkx944U+8MOXn7AxqLVG2/m1c/rkBXI6stgjYoOqREv204xMlc2dZoZLmL8e9AWXPtBpRmvFk9GcJcrkfarJaBxY1xVvwqxhhr1MlWKOlihbPiwLuLE9n1mKUtoAXzkeF1brqCinaaIcHzCcOk88na9ct87p4QFpK61vHLTy+RefsSABjG1QTye+3p7xbFIxaWUWZX75QLUrDw9HvrpeQZzj549Mc+WbMfh5V5YhHFwodWKZJ44itHXFH2Z6hbUPdG3MvfAnpxeUGk3Qthczb/rGU28crXCaHsCMxuD6HLKOo1ZezCdKKbw6nBAtYRJdhbdvv+SzX/qc41L56s3XMMNPvvop0/SCY1G8r9g6aMws5ZFlBFMqDsdSsQ7ajbZ9TT080K+D2p/55PGR3i+0p4VPjye2cWVyoU+Vc+tcvNNHRNzPfOKHywO/e37PWAevrPAwzZQr4SU0hOtwLuOCTxXtg+vTG76Yz/z6DxdeT8Znh2B0TsvCcjBqrUhVTDrX9cr67j2q0e2QodhmWBl0OnilzEYhOgbW9KgZGKLCvExcLlcmpjCytfBoWlBePRx5/3zmx2+/4ut3b0ALvjZozsNypItxvVzpXZBDoduVy/qetTVEhKUdcKnoodDKRDOBMjFNC9o6x+XA+fkb9PqX+e/98/9J/pX/11/n//Bbf5vPHn6IPD5yvgrWBZ5WytPKYa48K2ztSpkKUmAplcf5Ib2fAoAvhxnalbKt9PbE2hUxYV4WpimkQ6+PJx6YsOuGbCuPo1NmRduKjk5dZsDxyxWRzlIm+JO/Qq/OZWvMPvPysnGwmXeHimplAj57OCHi1Knw8PLE2q/UOvP4cOT8/IxUxdfnuB6pPB4+o2hhuzSETvGNgxZEC81hG8bl+oTLQDX8ow5T5fVpojdnnaCJ8J6NbVFaV8Z5C3Pv48yb9Upbr8hlULXw6cORvoUh+8uHE7oZf/2v/VWGP7McTjz9/BmXysZG0yeYBs9DeO4zz/oKG4KOwtauVB88Ho6MFRiDl2WiPF1RjWqTdbuy1UpX4bw1Hr2wTBNu8PLFK96+/YYyzbx8daAO59PHE8/rGRsrjy9OMIG3xqFOWA+vpSaFN9cNeTzSBb7enqlqHDR8q0YxxK+Ma4frxi+/PPKf/y/+c/zeT37K3/6dn/DWBJ0ewij6cGQ6PvKj1wsvHg789h/8jLpMTBP88JOX9MuVeQqT9OMnr2je2S6dqg/oUukY2zDeritqnWV7xjbjVT1wKJXL9cLaNy4O3jYWFV6+OLE9Fr7sZyZ1Sr+wjJmTTpTh2NbYnt5DrXQ3vDQKim0r63Ugy5EiwuY9OgyaMhdFpfCoC8/fdI468Uk9IaPj0jjOlWphow2FUpWVjdEHh/lIrcqQwWFWpCmrDZZjeBw9vzuzLBNf6IGvfvp1SNRGQ+eJy/WZZals1nh9fKTYyiiNzQtni+6qy+mB3q88imJPZ755t1IeDpSrUWRA3zhfLpgr/eKs1sLIvcyoVI4P8x87YLiPv7dxx093/PSx8JO7cNicR584A21sbM/v7/jpe8ZPC87hOFMGNP19bN2Qd+WOn+746Y6f7vjpPu7jo43vfPD3VoX1emG0xlWEhegW1J47wzYqzmmaaNuKSuEoBW+dp+uZzQeH44F5mpNNNqZp4VQ1/FH6YBLhsl24rGdknqnu1OLRVnsUFl2w1qOzWylct2BIEeHSNh5fvcB0Q4vwfL7S+mA7G1pnjhKd2cThsMys2yVP/icoMFjp6xPFCsdpBi+s5hyOB6Z+DpmKpl8Gwmgb/anDFCasb95fkbby+nTk2lYGHamVbb1y7o0iG8vWWM8Xjocj58uFocoFg2b8xAV/fKQP4WGamTqwDn4oM+99wx8m2nBOk6B9MKqzPr9HikZ31Q5XF+bTiWqdeRhLPfDJVFmmiVeXLX4PwZeJ7eHI2gf2tFJUqOps2yU6u/ng3XODuvB3f/8nWL8yHUKW5I8Lq218fnjAnzZqLYxauNrGawGrwloq5+0JWsdHhzLRR6F1pzBz3YSJGSuF5+uF06IcSuGyDcpy4HEMPpuisuypX3m/XaK9/bTQy4IfZmR0FsBGw21LNrWxCPzKi4U/+8nCr03vmWVDNuezh094mISqRinRGfDargyM4zLze7/7e5g5vUXHMAhfDHfDHZRodX+YZlDhm+sz1qMzVx8tuqm1xul0opogWpkOE7Kc+MOv39BNKR2KFWadaFwZHh28em9sfWDjyrtvvqLOC07hfL4iPrE04zxf8cPg0CsHFUZV5DRztEiOyuXMf+kf+Qf54ouv+Jf+1d/km+tnHA6fcimPzJ9+Trueeb6cqdPMdJjZrHOaFqpMLLLQ6xkphW1rvHv3hNbBUQbtIliv9Fao3RmXKwDX6xOcXlKG0rfGaI0xLqgLRQqHh4Uilet147Jeo0qkr8ziHFSxAu+082aCpYFLdjsDvnn3FqnKG33m2leqG6cBxaCeDqg43gbHh4ki0Vl4PgidjjIxlQPb2nF3lnlCvNMdVne0TtjWuLx5x8NhxtUp3VlNWEvhNM3IJry7bEjvHEbnoVSuPni+PvOT8zdMTEz1QB9XyuFIPR6w+oKrO8tBOUwV1mcYhc9efIaa8POvv6HpoLfOUgVfVzZxvrxemR4ODDHYBp88PFINpA8eakWnmTW9nSZRvMPYjOf2zHZ5Rlv4NM31hG3Oy4cjdr2w6cbleaP2jio8HI6wHHk3hJOCjAvejZrd8BaZ0Hnhao26FHxZ8OORcjzyf/9//yZ9OFYP2DxjFubVh2liqoO1bPStwXCWufJ1f8t8fMW6Gc/rhfUabO3aOy9PM1MZXK5XmjvP28a1N04PM80dH87T9ZlnF64yeD+urG1FqlDE4O3bkPhMRxjCMh2iqqkqWpRe4XQdPK1n3veV9iQsdeKoE58eX3EsQqmFs0ejztGjqrj0wcu68KAzXgvdtuzSNzAbnE5HhgnXS2NaDpTlwEThoR4xd563M1oKxwFvpeHTjE5Hnt8/0Q1mG9HwEXh89ZLL5cpDXVjKxOPpAb+svDqdOB4nfvr2mcf5BWVSLpe3LMcTfXQOywOTTbRrR4fhNtBpQubKVgoP0yccq9HWM5NHd1Txyx8vWriPv+dxx093/PSx8JNOyju78NRjvxYBu+On7x0/VQZczzxtL3n+W/9VPvnVfxUpX97x0x0/3fHTHT/dx318tPGdD/4+L4OuE3I4cCwTl/dPaC10a2yT0hxUK9s2ePbGm+2ZF6eJh1dHemuUaeLd0xPrGLy7XjjNB9QBgflQ+fm7t7xcTjy+OOFEB7Rlqpwv77HjieeLMK7Gy8cZF+flq0ee+1uqg5qgfaWvK1ec7XmgrrycDhx0oV2uzDV6hvetMeuEurCslSJOx3hYjlwLeMpa5kMB2/h0eWTVylfvv8YPxvvzlTIdOb04YZvxeDxSqjLWlWHC2+ef84098enDIw/HJXrGjU73DarTrfHw8gVlnjB1hsGhFBBjKROn6cD63DidHpjU+ayeGApv3r/jyzdf0tfOi3nmoAFaZleKFg5lYR0dXw68fX6PvH1Pe1559eJTZJ5p0+DN5S1yvfJ4OPHQQY8Ta2s0HKYDHaHMMz/UmaMq2+lAUcW2hgtcsZB6vP8KOb9nmg5wXNjqEa1wnCp1NCaEropOR0o5MNrG8bjw8MkLWmucz1defPIqOl6dn+jdwYMTEtnAArAujwu/9Oo1x/N7ynTkWhfMO48vX1K3DTtvSDOe5MrzOhiXr/jRDw98VuBhMiZVylyQedANDrJwmGeKONc+/X/Z+7NgzbL0PA971ryHfzhTzllzdVd1VfU8VHdjbkAEQYISQIkK2gqSJiVbpEiFpTAlRzhoh2lKCjvskC2FJJuyTcoiQHMUZQK0AVKEKEzEjB6qu+bqGjIrpzP90x7W6IudwHUHAVbj4rwRGXlxMk/mv8/eaz1rf9/3vggJJ/fvcd7tWNw8YowJlQpaQI7TwcQ6oARqW2MkZAlt5Vh1PUoIRJ5a6Z3RlJzJDwFXKEPI06FLRgUp4aRhUJ4oAKWxSpKFZEye06Cp0oK0CpjasC0jVhu0MPTbjig00ThyAoshdBmpFLO6xcdM6TZ89zN7PHvtu/kH//R1/t6v/ib6yY8STE3dNowbhQodJWV0LpQyEPKaIVhGoRAIlJDUrkUJQb/bYnJhUc8Ys6eEgIjT6FAlNdbYyddJVbjZAukyoSRCyBQpSFKwy7DKEbJCjwk1d6y6HSHnKUlORIrSzKSkFElwC4rWiBxJJaCkZlbXmBQYN2tKGNlrWpQ2yFIYtruHY2gJKy1j2mFrRQoJoSuKKGglmbsl6/UKoyFpy7rrCcKikQzDilnriBFOux19kswqw97hPtl7rNa0MXNJK7rkoYAsgoPFkhIDWgg2FDahp1uvODBzrlRzRjIUQVs1HN7cYz0OpOLRBEKV2XlobY1UjvVuhzGFg6ZGbRVJF3IJhH5AiUJrJbkYQoiMOTGOU4ocFFbjlmAEl/aW3Ll3F1RNpfdoW4tII1Zoul1PHhLGtYg4QhkZgiD4jHQNQ578t1QpjD6hnMCo6Z6o6wVCRrKU2DSZRKciSAJS6FidDDhhmGvF2J/Tjmu6szN80ewdXsVoixRTMujgPdvdiFCJQsIi8ENP7SYfr1m7pJIVGkEUiauVZbv1JB/QSk9rt9HkMvlopTJy1p2QckIbjdGWmZOorGn1ZG6f0nQgOu03VCFQuWpKYsyZ0HVYZ0g5cbxZY4wDpdF1TYgBQmB/uQcJ+u2ODASjcFlMYQLjwM57bFNhnUIUz4EypJLZna3QBYIf6VijrMIqi4geJxQpCVJSaO2IleJMZ076HdWyolIVjBmtl4SQ0E5QdCHHxFIZohCEXJGlxGmDFoWSdiQfcErhrGMcR7rdBbj+XtEFP13w0wfHTxmvBmZzi9QDR87QzGYX/PRt5ieItKaihH3ef+O72b/5ZexsvOCnC3664KcLfrrQhT4wfcsv/vxuwKdC8BE1W7BoZwirUEXwYLsixUAOhX3XsFcZzryirh0yRZIfsSWzZwxeKnRbMW9arDL4FCgic7jYo0Jzen5C32+p7AxyYa9p2ZYRWVeMAoor7IYdqRtonUMbgw8RYmHp5igBQRe8HylxZPQjUinCmBHaootgZjWy0SRTMGSk0AwxsBtGUp6qY5WwjN5zP/UU41BS0dYNKeRp84hrok/0XY+z6rcv59VmjpYSoyQiZGwqWK0QzXyKrk/Q9SMpDFN7eM7M53NIibDr2JYNKltyKYzEh/HiicvCcmXviBgTQhScs3RpYBAJHxIhjDTG0uVIXVu0ALdcMo6J09KxP5tzfX4FkTN+LPiSMTLRzCwxJnbdQC5TB0BWmtEY1mFAF0EMkXEcsdZy0Cy4dGMPFQfy4DkdE7YU6gwieLIf0SVhhcRoO43qiIwpBY2mmc3Y39vjzukWqxV1NcH9ejMQ+oi1Bqfb6XIOUHqBLRUuCmToyFbTr84RD+83KRV1ENQl8fzVI56sB2a5QxeBioXiI7nySFVjKwsasohTp4TMvPbOXQZxwOHRM2yPb7OwkMTDihAZaaZUq1wA9XBcBYUcxindUBmGYcRqixAKISQpZkoeQUk2mxVGTxXw5OMUFW8spSSU1EQUY5I8uLeBWFE1M3TK7DcNw1hABcKu0OqaIgRD55nXDck6rHUUnSlKUjU1JSYutRV/8oc/zw9+/8f5z//Wz/DO2YKzvJxGZZwj5Ix1mko2pLWH3CD0OI2EKYmUmmEYkdIRrSA2hqITOSZiN436TjC9ZRcHpLIM6x6VPSFHQhaYVKb0t7ZGVpYx9FS1ZLtbU5s5TW6pbMPge3AjNidKEuRh5MhW1FKwih7XtFijaaQlVRplDFlphnFktdrQtnNSTCQ0wRl2XU9dCs65qbJcBAORLAt1UxGGAaMsl/f38DHQjedIrShJ0poKJQOMHYbE2I0Pzeg1IhcqXdPMZhQEWmokk0fRsNtRdgOt0zitESlyNmw5HncUJVlWc1KRBKCd1WQBIYARFkqHNT37S0kMhdXqlDJElDFIIahNxZjj9FyGHSJnyANNpZntzVBGUm9mDKtTtvmcg/mM082G1i6hgPeQjELoChETIozTiGERWCeZtZYSI1pC29Z0fvISw09jH8fjhiGMWBVJRBb7hyjVEGOmmdd0CCqrSePA/kzzyRee4cb1A7oOzneR3/jyy4gCe/OGrttxy3tSZemHDqkkrraQA40tCF0oaUuOA1lISg50QwapqIzGD1skIOV0+By2HSl6rl25RiyFEBMpFcY0IuuGhTHYMs3tZaWwMpK6DlUSPkZ23ZZcIjlXSDl1WeSUsU4yhJ4YArVVxNix2+woUqCNYbc7IRpL3OZp/C2DDonUDUSlIUv8GJg3NbooyAUvmBIRYyCnfqrua0eIIyGMWFchUqI2jjh4Ntkz+kCIaQp72HgqZ2gqzWro8QlcPUObCvBkH+mjQJLZrk7JoWM5qxB++N0jhQv9jnTBTxf89EHxU2MWtEVj7R1e+IP/ET57XJQX/PRt5qcUJaOQaGEAWI1rXNpc8NMFP13w0wU/XehCH5i+9VRfGaiMxbQNumTIPT4UIoJ66VBB0iqDkxJfPC5myjgQUqSEwHazYW+2oHEVtqoRObM9O0Haqa0/Jk+vNW7PoebTAiClYIw9olhQEqENMQp0rGmlJRAZUkLVjhgCPidqIUkiUs00Tkl2uzUZgR8iWihMATF6RuHZdD3bcYuRFnTNmAtd55m7hsV8NrXv9wlJQeWM3/RTshuFTT+gouTS7IAcB0IKxFyQRqC1QkiJVgqZDaUUjJwqLhI5VXa1RleGQoaSCSljpEJLgzUVwmiGnAlhxFDQQhJHz+A9olYkFdn0GzByAuMc2W5XSNPQGkftLOphJTxnQfQ7gg8YNJqKha6pnSfnHaEk0AUfA1JIjC4MYYdTEmcMuSQOFw0KQR42bFeRkgPzyqDlgPGRhindbizxYZJdgmFAKkHwPcVq+l3g9PgEpS1IRRoyURSckTgC0lqyCmS/AaAqgezPMbXGxIyIEeXmCGeRtWUMCaVrVI6Y/gGPzyVt7tE1bIXnkqgwCiqj0LJACVAK/ThScgGlefmtO8T6Gnn2BOPqDCd7KjUZhsfEVMk1BoyiSElRU2XXGYOxFdL0xJgIIWFIVMYgEGQSZ2enaCmRWZJyQSqFiIlcIqXEyTS4aKRMnKfCvfMdnGw5ODggxsypFRzOamayIq0Vu/WIcwpxIBlCpMqFSkiKAO0MSk/Vt7A742bb8L/6136Q33xvzd//tdf55gqyvclAQjpB6HdUtSaM0yiAtTVSSAoFax/eu31CdD3oRKpAPTygRQmLZc0yC/ww4qUkSoeUFa5IXDZo6wiy4ImEVCGLwhqNUw6iYNztWFQJIR2yJFRjCcZh6oocPNoLFvt7CDIldAwpElMiJYWViqP9JVJookqAoAhBqS2iJHSlGfuBUhTWGYY4oiQUBbWVtK0hJsHe3j4UjSkVpgjW/RqtDJU+II49OY6UmEk5su632KanbefE9FtroqKyGmtqoigIaZnbihwq9tUBWYIfA1o6IoJMpjYGoSqUAB/O2W2PiRjq6oB6scC3nhILlTDoUjC6YhSJulJTQuKyZgyBmEdyVlxZzJFNjRGJIfRI0WDKgFYtdd0itUG1ClkScdxRtARpp3s0BrQFQWTwZ3gRkQ9DBlxjaRcVQ7G4ohCqUBDTs11ZEIFGB0Lv0Upxtt7yUz/7SwhVUGUPaWqcM3zs2cd57OocrSJff/lVFosj7t27z8nZGVIFkhOU0iG0ofd+8jrLBaGhjB4lW2pn6ErGajcZcJOpl4aYHH3vQShIgdopnG0Z4+QF5bRESIilMHZbyjAwa+bEYeDq0YIoMsZUiCLI3qOVxvvI4f4+SIEfOnLK6P0GHzyxBI7m7ZQQmSKNsUQ/jam5yiDn9ZQWWlmkMDhliWNg04/s+h6lJCIX5rMGJTUIQQhlSuoU02imVBWhJIRJNNqipSSPeuoWkLCtFCaBtgIhwjR+qWHZVOQsKLMDEPt0/RZbV7/rwHChfzZd8NMFP31Q/JSGM2ZKoksm+/6Cn36P8FMXFaqZ4XfTmnBpUaFtvOCnC3664KcLfrrQhT4wfcsv/g4aTy4jVmrymEhJkkthzy5ZnZ6ilMBaQwgBWxmWUlKEZudHYgqElPEFytARfEeOiRAjKmtS0qAkKSd8HFDaoKSmHz1OS2ZhB9LQtJaUBdJKWivZRTElVcmAVB6tBOOu5+x8g1KJtlakGLHVDCslPg48GHacp8Kea7i8vMTe4gikIg6R092OZj6nbWagNDEOGC2pawOjh+BplaAyiqAWzGyNTIlEwhhLTJKiMkJLkBohFbnE3wozosjC6Htc5RAqE5JHmyk9SgiJspIxjPgYIMtpUSPhSybnacxSNwZpFWOaIKxShlprfDfSaIkoidRtkcmgXU0tBcJoWqlwUmCLJGRPNhDjQE4jImdUnr5XpqCLZ6kiMUREFGghoOuQQiJ1RVU5hK6wuiB1ZCkr0q6QpKTS9VRJjQWRMj55dDsDCjEmKtMgpKWUTAo9TkDtFEYkfA4MeYS8nT6r6DGmRzk3eQgpR/Y7qnq67lpJQh5IvuPpA8v1eaT1hVF43rv/PsHMuST2aeYVrbTEfiAPhSQtcUj4WLh9suLq059gh8C4hhQHNAKNJkZJ6gNFTpH0mYKWoK2mjhXOWqTUSC2RRSCRKDU9UkUIdp1HqYowjBhdEYKnaI+UILQkioDUhr35Afmk42R1RpQwrk/p0sBy1hL8wN5swaWZhRBJuWDHgCGTRog89FrSmZA9SInQjhwNwvd84smWx5/4DP/oF7/BP/ylr1HtXWYdLFZZghgwrWem5uQ8Ge7GkmldNaV+tRZrFORAHEcOfmvRiCM6dZhhQ5szxVrGyhB9B92ORrfoMhIBRySSsMYRU6K1h3RDpqks7bxiqwIyTl5NlYyY2KGRrI2kDBtC8OTYkVIgS4lJApHBaEtVNejaYI3D+4HkGnZhIODxsicpgy6KJmVmsxmlrkBCLoHGanwXkC4i2CClpLYSKxf4bkdbKUxTEZOffv5SUHwidwPaOFJKaKNIKbOhx7YVKiXOVse0yqKVJYhIrRSVLZytN5ScyEYx7lYYMTJrFNq0DElSfGAI52RjmaI2BUpKYugRRKQ15DLiXEPlKrZjxxCGadRDGYyzROBosUcOCSUhy0LndwwhoWUhxR2tbUjRE8aIkgafPEkkpBEYBNkKggyI4lGlYDJoOSPnSO0cBU/fdxNk6YwymRgjGU/VaEKOiHJKzIrcSb7+5Vu8Gj1j3yHrFmFus9t5nHNIlbFOkOOADAMlJ7RykPN0wFcJq3ZoETG1QMpESYkQAsUu0VIy1wZVMh//6Mc5O7nL8ckWHzJ98GSRKGryqVGuQdQVtamp5nN8jjiRiT6ihICSuLy3D0KCNNx7cAI5o6TAjx6lBKWA321wew1SJrZ9h5I1y/0DyImz268yb/fQ1ZygFMVknNY0s31inLPZbthf7tO2C1bnG1Ic0W1FyJlYBvp+TRYCKxXKSYSRpDL5udkkGcYBURTGKKQQxDEgKWgpiXnN5PSkcFVNJWfM5vPfJUy40O9UF/x0wU8fFD+JHJm5hu70kDd+/U/z1Hf9FaJ444Kfvs38NKdBDoEQRwDcuGXhugt+uuCnC3664KcLXegD07f84k+MJ9jKopVBWDC6YkiJ2J2yX1uUNRQBXgmEjFQRrDVc2b+McDUn5yuUMGTvKXkkpYgxDTFGhtGz18xhWBHJlBzYbXsarSF7tDZI7VmtTyFadJKMcjIkVTFinKPve3wKtM7x6NVDCgmZw1TxtQbaiigl67FCKUXtwW9HvCxUjWPPWpazOTEVQJKVoFYVOgakDgxjh0JgjaSYgGs0Wk8LWjd4pLST54OXCC1RrkYZhx8GRElEnVCzltOTnujXk8+GttgoENuBtmpom5ogPUUVIgXZOCpr8H4gk0EpEjCTFUppPIXVuKMfBoYYWVjLyema/eUSGQIpeGbzBfMikdnT+zVD6FEFZmJO0paoJJU2KOEIEYqa4HkcCoezfcYYKEowrxpUmQxdYxTEFMk5IFKFk44yD4SQiCkh82QSrq2ijgqtFWPoWfUbUpbTQmzNlEBGQRSPUQVtLFo7Kj11/M3n+1SzPWKePoduGqSqUbkQuw1aZUqO7NfwsUPHTTlSmxbpluy3c87v3WFIgbPtGldbKq0QZdrUxt3Ird2GTdGoumK9O+P6fE45O0ekwNiNNIsDGlOhiqCUjFWCykqklihZECVRQpy8ZOTkDSGkQArJdrcjUUgPR0ByLqAU2kwGyVIqfIxoFbA68sjNmzR7c95/cI9525JTYtuPyCCJWVCyYN40KAGrzlMXTcyZlAI6aIZxQBuDUgqrB7zccDC/xrCDOo/8ue/7GN/38Zv82E/+HJ1+lOPOEet9oglonyhIpHZs+45cRioribrQDRsMiVICKU2t77NSqHxE1WYySB8ibUh4H9FGY4VnGLYkLSc79yIRaFSBMOyoq5YiC5vuAcI5+iEShoH9eYOUCjDMa0PImYxgvnfAEEY2PqCRSKByFdF7tCxIkRGiRyJZNDXWKsZO4IxhVs3p+wGfEv04+Yn4GCgho7pCCj1VKym54KTDtUv0rCaHgLOWUgpbPzLmxMwZhNLElEkpIQTUsxl7pqYbBoQQyIMK6yq2m266v52hHwZso7BNS9/tkDFTi4LMChksRlikkRQiIUisrWidI+42zCpJVoqQMlpqfL8jTksUIk3BKiF5gh/QzrLd7WitY+xXSC0wAoSYfJSiCAzDmkpZrDUMQ48AUIWUBU4syHoaG3FknBBAwYcRraeDPCjmlSblEZ2mES5RN+yCxeeCdXNy2qKEYegDSRmkVDSzJTFnnK2o64ceMymQwghRkMT0s0YJlDKUXFBIRICQA1lIcvJUxuCUYhSQkqdSBkvh3rtv8vgjV/meF7+HN197ncEP3Dq+y/sP7lK6jKpnGNeQme7Jo6MrrE5OqIxj160wIvP2G6/TdQPSNuztHSJzISswSqK0oBaWys3ZbM9pFzVjDGQRMTLi+y1/4kf+IGcna77y8pus8sBus6NWGrRGlMylRc39O+/QmYq9+R4+DhgFcQzE2KHUdF+VpJApE4eeMQa6WKhNhVaWRlQg1JSyaC2iZDIF0cxJ0VMricmJw8VsWqwv9HtCF/x0wU8fFD+pMUzBEwcNm+tvoLVn1lzw07ebn3ICKWFW9gHQTqMX9QU/XfDTBT9d8NOFLvSB6Vt+8WetwpeIjwkRBC5IJIZkJdgpPlwohVKK2I/oaNAS+tMVUW+mBTTvkCmjtSZTSLHHZkHtHDYntLMUaehjRs4qpFIoJXARigzM9g8YgiYLPVU7gCm5W7Cc11PrbwoYKTDSIrMFW4MURAFJambGYR6aaqvDGqKf/GFih8gjtdCUEEghYVyF0ZpkEvVCY7NBlgQyUoZzuhjYyYJrHL7f4tSMelGTyAx5x+h3SDGZGQcfMQXqZUsqkIpAKIMwktgYal0hCogYEDohsqeknhALOQYokHwhpsKmGIxySFNjUkILw9HeZUpJzB47REjIoUPDtBDKhBSZRmbMrCEJwRDDZN467BjJVKohjQVlLYt5A/WCMgaSTMjKstqdYpiqPxpJyZ4iC85oKIWcAkZKnFBQCj6OhFQwURBCxljB/rJl9NMoi9IFbTVWSkigsiQUia4MdeUACCSEVVjhUD5OpsZ+gBixIoFIOJXZzyNzmVC5ZzabI42hrVsWavKXCdFz/+wcaw1SSUQSxCy4db4hzw45HxIIgXYN692OxUyQUfQ+shsHGtdihaDkQM6gxFQ1qqxB5YxTEiNBkJES5osZbx+/99B8GWytHlaXoEQJ2aLRSFGojKOkEdU0PPrk0zz5kef4+X/yP7Bo5/RZIseMUoEHnOHFSNEL+ujxwbGcNxilKUmCUBQhKUJNBtZKE4YNRmq0FIyrLU9Uln//j/0hfuJnX+Irb60Y5R5RW0JmGgOJmaNmj5ATQkq6EKhkTe0sUXuqygOQNMi6oosdOUpKsQipsJVGl0wYt0QhkLbCqpa6WeBDZFZXZA8lFXIemRtNg8PXM2JdKGKkSInPhjhsKEXijKPfbMkSRBZIY7BGY7WhhIASBU3GNjW9z6QMoetJ40i/6cjO40tEmwpVCnJM7JkKJQRxr5B0Tc4RUzJN7RjCipA8hIzvBaZqppGBolEl45xi13lcpfFjT/QemQR1Kmit6UMkikDjJmN3cmY3esYU6H3EGkW9dxVTBFpkVIhoqambGmcU3WYAYwne0+7vk4cOYibESCmJUkAbC6IwhimJL2aBEJJh6HG1ZvArSsqQMlqBEoUQJSlrhFZkqTBCMasVSWS8CEirCGGg+ITNYnrGlSIbNfkHiYIQD0cIhUJbifB6Go8SBSdG6sqQy9QRklGY2bQOFSOI1mCLRKSIViBLQiKAmiAsQQqM04SH10OgkEKhxGTGPJbJQBsBlIzyiRQjujGAYL0d+fJX3+KnfvUVDmcLKmOQTnHt+hPIECfAzxkvFEEp1n0HQiKlpG0XtLWiXbQo69iNCSsMrdQUI9iOW6rKYpRCC8XCtMi05dMffZInH3+cZVPTr8753i99kb/z1/8ecuyRQrNf17gk8CFRN4Y47PjS517gM5/4GHdv3+bW+3d4//4ZqhQO9g4ZUqYfE5AxpmD1dEzzPpKToBSJkpoExDyZwFujgYwskoGIMppUFIMohJx/V2HhQv/suuCnC376oPjJyOmlJvaMJ77w/0WIjPL6gp++zfzkM/Q+kR6euoYsEOMFP13w0wU/XfDThS70welbfvFH1KCnh6nGkr1CVC2t1kQ/0th2MuYdAo1aorSi9wHpNDInChFVCtGPlDi19DttqeoassBZSyg7tqGnbltSkFSuIuUAckQUMELT6MkAWCA4jWWCGiVRUpBiZKYbGm0YugGBeLjYFrQs5BzJeUD4SMEzCpCpYKWlxEARA1JpSklUVhPGM4pu0RJizMQ8MPotyiasVsgsaJRBeZi5qcrVZUEsEqEMOWeUzGRGyjCQvEJoiTV6MmjNeqqcwVQR11PFM4eESglRMtZa7HJG33XT13JBPIxV977joG5wyjIOI1m1ZCQxRbANYdhBSdhUcE1FsEyGsAkOcgVEQlvTtHPimChBYd2cQYy8/+Bt4hBxrsJFTSlgSiR35/SpkJWYKjFSQwaTR4TQKOUIMU3m0EKDAWccAkE/9MzrmjFFRCpUriaFCAJSSZNxcjJIOZkft0aj80jBg9DopJEEKmsoIVFiwsjEzYXD4olE+jRiVIESiWlgCIF2tgSl2Y4jKU2jMEks6fUB7eUG6Q5x5YgDm1jffo1sIyZLYvYMpUJojUAg0+TrUWpNNXMIDQlPVjVYRZKZKCE7Q59GhJoMY3NJFA3DkJBJTBuytEiRUVqiKon0nlokvu9L38FTH3mC//df+3FCkLTW4n0GZTjuB5KTLLWlUQ05G/ptgMpCBVIbRh8JKpFyRusR5wy2ahHF0GRQ254f/fxTPHNzzT/+tW+yE5r720yrGhazGYWO4+2KIRuqtkY6S9ZTgu+ldgmAqxzKOqzI08EuZrRS0yhHDNh2SQoNtppRUAQ/gXDJBW00ymikaCBnYvRINJUSKKlIKTHGQi4SYyxKMY3fKA1p2qyJmTiOzHRNTAFdV8Qcp/vCJ2IszNsZ1BnnLDEnpKkJWROyAKnwOaDYIVJBxAIi0/dbMoGYzihFkIti9D14hUASk0KWFiMEYRwIMYIQiKQIPuKMwFUVo09IoycAk4W2aahioG4cMYxIYdC6wtpARWAIGUnh5M5dnCxTlbduWY0dBmhci1IZQcYphaDQDQOzZonIknHccePmVc63a3b9dkpXkxIfeoqZrqsVjiZPRs9aCmKYRuysMfhuRBGn5zsnZLYIKSgiI0QiIQCN0poQPGOKKKBuakoRGKWRYhr1iX6HMNP6F7NgHHkImwIpHIjMcjlnt1tjrEIqhRwDjTJ48mSCrxQCUFKgMkQBi2bGarMlxoQ0jlppjoxFZEAqspxSRx9TDYqeNG6odAU+QfbksQMhMJUji0gImaaqMFKTgiKESBaOnAttbVA+QYz4bkQQySWjXIMsgUbB8x95nn/lX/z9NFZTWQVkigj8kT/yh/n0Z2/z7t17xJhYHZ9wcn7GzRvXeP65Z7h8dMDeckH1hc8wjp5uGPkr/9Xf4J07D6iaOU1b4X3ESEFrJEO/ZrGc0Y+CYQSrK4QubLs12kisNeQQMRlq59iGnl0YyVKCsb9roHCh36Eu+OmCnz4oflIWVwJS1JzdW9LsvQsqXfDTt5mfbrRLtj5w10+FbaMd87a54KcLfrrgpwt+utCFPjB966O+cgZlipY3qsYuZgzGIkUiG0nOk7myMhUiC7yeWs6FFJSuY69ZUiMos+mBymRC8BgtyNHj04ZN9hSj8Ckwq5fElGjaBmKLQODHEaE1IRekVjw6s0QfEFoy5EzXjVSyIuczrEtsuwGkxAiJHwYq1yJyxhmNFoohRkAgMzRGPRx5CRg3J/jIrK4JfotM0GhDCDA72MfnAU+mqlu6zQ4pDEVoikkYqVEoYkyoXCjZ0w8eISGpqUaTxgglEfuRWduw3XVk6UipmvxdgufgYJ9cDOM44vtMa+fM64qcpoX7bLum70a2cc2tk3MW+/vUbaBul2TtpspsbSGPVEaTi2SIgXHoST5MFfMSMU3N2WmHlprWGnKKuMpy8+qjbNYbFJJx6CEmQkpUZoFUCdfWKCUIfiCGQIpiMm9mSjazwtBUDbtxhygOJTWVcbi6QvsBlQNOO2w1Q1tD70f6MbP1Hu2mF38yg8VgqmZKZbIKP+zYaxriIBhCJm3PqUqFCJ4i5NRyrxQh9FSLhm++9iov/dwvcPXqNY4OD9CycHj0CK/fWvOV2xvuCU2Qt1i4FrGoUbMZ/XiMU4ZpMypEJfBAzppKGYw0DHE6iF0+usJuGIkpUVmDa2reu3ufTDMdnBjxfjeZlRuN0gVTNCkkMokoIPjE4WxOXSJl9YAjE/lf/vl/mx//G/8Nb759h3lbE4eEGDzCJ7ytkapliBGTCouyoPiAGwtaA6Kndo5FPaNkiH5kubCUPKCSoDWRx5bwx3/oRbwCYuL43gZRClcutRTnuHU68Pd/8evsRslZ0FjnGE8nV2pDQgWPBWRKVNaihMKnQkJim4pKG8YhklIipxGjQOYAZfICynnyuKrnFqscY7ejbWvG0WMkSNOijWbXbRiGHl0yc1fhDvYhFMrOIzMgFCELctHkGMlhRDFVeIc00CeJLJJaSnLxwFRBlHLiKUWmbQwxBMaYyEhILSFmQoblYkGJhVnTUoikVAghYNQ04hRSxFmHWbRQCuPoWcxqYikIPf1borY44cg50cznVFqTxo4QtqSUMMWipMJlyQ9+z3fxP/ziz5Fyj20qZFJIL1gsa9I4IEtES4FzS4RyIA0ltsRhII2e1s1RML0oEAljwGmHzBLyZBpfipg8YqwhF8Gea7CmJURQ2hNCT+1ayJIYA6XOKG2JBQoFpabxIFkEylh8iHhRkEZT1w2l95QEtXGYNGKNpm1qojV0oyflzFNPfYjdesPp6TGVcmSpkFZimxqdM3Tj5BVlNVZpxlhYLg6mg4IUxLFDZjGl6BmB0Q4KUHpiWLFcWIbNGRLJrtuhTUUIgQpJSZmj5ZKSJSVmcgJ0jadgawNxRApFUYXZfI5xFmEUw3bD+viYf+9/8W/y5M2r5MS3JLMAAQAASURBVDFRGUnlLMPYU2Li9PQBN29c4ebNaxijiWEkeI/WmlIK+/t7jOMIzuGcI8fEi59+jlt//6fxPYz0VPWcPIycn2+QDJwd32W2uEyJhqwVJSa0kaQ4kkikFMEYpBQczObYTlOSIkXxu8UJF/od6oKfLvjpg+In01hElGweHPHl/9+f5Yt/+D/n4MaDC376NvNTP2yIomCY0i0MoC746YKfLvjpgp8udKEPUN/yi7/FwWWyBi0FcsyEmBGqkMKI0QrvIyhFLhljDFYU2mqKX4/OklJi7QMKSdzsJi8TCaMEBUitcA8rVpUy5KHHSsP23glLt0ch4/st1aLGVYp1f45+cI7WmiFmona4Zs6w3ZHxGOcwqkJqixCS1s4pacRKxbALKOtwukJryOOI046+32FR5DFgcoKQsEoynxnGvielyPaBxziD1RIloEZzdHCZlBNjCIQs2HYDi9mCUiYzYz8ORMUEdjliBVghECkhJIi2YTZf0nUDlXUUHRi3Iz3DVNkVitB3bFZnhH6gamqWiwVPPvkk83bOjRs3GYJn9Gdsh8x6zGx3PauTHSJ6zocVMWkQhjFEjJL4FCAFKrnAao0uhX63xlYWaMjCcrB/E4RAafFwEQ7EPk4t9eszUvJIbTAqkdpCzBJtK0SR6CLQQuLqakqbUgrbVHRdT+NaghJsQ0BlgU2KlA1VazDzgBiOARBKoWXNbtUjW0V3fMZnPvYc3/OFz3L96iHWRv6nf+KPUJ77CM7VtK5FMCWiSZWp9yxf/O7v5EPPPceD41OGMVBXDe8dK64/9yLf/z/5LvYOj5g3Dp9G7tx5n7/0F/9drl5d0p+dUdeToXQskVgKqagpITEwjVxl0FlSmxbn9OSJ0s64f7aFUqGVQgmJLAEpBIGIzJkYR1IpVHWF0ooiFJvVmo8/9yQmjsyyZ3f/Ln/mT/5J/rMf/+vcWa3Iw8g8ZugGdgnevHebxbzhqFng1xuU0LS2PPTQGRGdRG49WkqaGrq0oyjP8vAS55tjDuYtm+05zntqabh8MHnIGDrqyvLY45f58AvP8uf/1/8R7ugxCodMOzy4klloO6VElkwfRlxjyUVTmYqQxslXKRdKCcwagR/OCb6AkMSwIScBQjFkTUkCIxRSeqSwBB+xUtOHjuAjbT2bPFJC5PT4BBLIUCg+orQi9JEiBCkmjAJPmhLAqoYUQSbD4PNDbxuLY0qyC0FhjUUpiVQGK5Z03UhrZxSp8SFQ1/WU3iYFSarJK0oCIqNFQRnQcmTcngNiApQYcUZTacuQFUlMxuYpBMbVFtc2BD/SDz1WamLskHWkbiL/8Kd/moNL+wSV8XHEigYjNf24xYppNCzljHWWVKCPiTgMfOzDT/PNd94hIBjTSBGShWlR2ZNHz+gDSJC2YkzT82yFxVUNISbG5MnaU5BUdoHBQAm0taULEak0vutp23bK18tTFVeSkTJQzzQpPTSoXx6Q4rS2GSMJw5YhZNanG+aLBYt2wTtvvj4d0oExjeQCaYRxDNMaIiVFaUCRs6ZxFYmMEAHvd8yVIpfEtUeucLw6Y332ABkL8/keMVSYzvDCs4/z1a+8xPX2Gt6kySZ97KkpnL/7Tfb299HSsll3KFtj6gaVpxcUMUWkVnQ+YFFsjo+5eXWfP/9n/zyX9mqGzYZ5bamNQZaRxklOznsO9vcIpUDJDP0OKQvaSKQoFKDrNsxmM5QqDINnuTfjuWef4fh4xS//xte4fnCIspZu1yHaxJ/44/8Gf/W/+qucnO1YLI5Yhx1CWayqoDIEv0UJj0uTf9C43VDXC1K2pPKtN/Rf6J+vLvjpgp8+KH4a/UDyHqEUAP0m4nf5gp++zfxUUqZWBdke87nv/XEuH3mkbS/46YKfLvjpgp8udKEPTN/6ne0tNmvGfoeTEiU0eQQhJUZNSWlTDSiTYsRo2Byf4VPE2oqjwyOSEFgjmF2d88TjT7FZ7fBjwtmatqkpeeD0wT0uXb7C3sERJUC3Ouczn3+CV155C+sajs8G3nz7NkdPPsMXP/s0ohRc3fD3f+qnuXHjJmnwvPbm2yjrUKaa2vSFZLvdUldT5Xrmlqx3A7EklrOGYdtR2QplCs5prl27wnLhMEbRj5bDg4pb77zB1SvXcM5SVQ5dFNuuZ9sNmLrh6994mRATQc+4e/ceUmjqumYcR6QAgaTkPFWSJeScEBROT085WC5RWpP2EqLAYzcfoR92bPozKmOojOVgueBgOefwYElbWfqYmC8P2G23CCU5225Q8ohQDK9+8zZ37x2Tdppnn/oo29O7fO2rr/H885/h6rWr7LYrgh+4u77PndMzYpSUIvjwh5/mfLtms96ikyetO5St8AX6nClCIFDs1j21tQilKFRECkUOaF0RE9PnTRlyRAvJbNGyGUdcVU3Gs3E6nFRGE8KAxCNlQOUd3RApD70VpMgoGVnMLCUJHr35Atk7/uFP/wJPPHaZPN7nwDlmrSElj9INKU0+LcpM4xRaai7tH3Dj+nVCUty7v+H+EPnSj/xLyGaBKYJ5pcHNefSJG5iqYRcSrdYMY0/TOnIYKWZg7CSdSjTWkESkEMk+UDVT+pNWis16zWZzitYSKZg6F6RGUJCoycBYFlSlEUITfGRvuST0O65evY4UHpkLlTZ0mx3Xrz3B1+9+g6OrH2Z3ck7anbM7P6EZDK43HOtztNPMljM2ux2ieOpaMav32OqMtYaKkVpq9mcV98/PGLJEiIr5Qcv58TEPVivm8yXLWYsi43Pm9PQezd6cH/nhL/F3//Gvs1zcQNctAHVVAxJjK6QQCGfpxg5IxGEk5UAIBa001kjCOJKjA1HIZHLOoCSFxK7ziCyxyrLddTT1HHCoPIAS1Isa7z05ZYySVEKAkZhKEQaQQtCYekphS9P3jTkzpkQsYI1GlTT5upSCDxklDePYI2XPEDNrPyKlRmBwtmHYjUg1GW1H31NXlhQ9QlZonSllusdjGIlxmDo5rAMhJwPp0ZNToO88OWtGMXVzyJRopCINPT54DvcvMfY9QiZ8GEgicvDIPmOfKcWhtKGUhFtA2EVKToQwoo1hfXaMMhZdNWxWx9x9p9CdrZBNTSYhlMHnSOkHWlsjY8YtKtbdDqUqchzZ+hEzTCl7TgtqnSh5pERPSRqKZLKIjmhg5iRhd04II3XtMEVRUofTmV23Y7F3RIiF7fEdnn76CVIcmbUzPv3x74KUyIMn+My94wcczTT7V67wtddeoWorjvYW7FUt2hfev3OXN+/dJySJkRZrGsJuxdHRHkO/4fu/61O8/9a73Lx5nftnpzzxyJNcOzqgVppdH3hwb8UTTzzKiy8+wy8+foXf+JVXudetGXdb/tS/9kc5WC74+Z//eZ7/2Au88uqbLGb7uHrGK2+/w2tv3+La0REnJ/dxtcHvMk/dfAwhrvLch26wrAXdbsfh/mLq+KksMQYQkqPDI7p+OpTGlHGLhpwzOSfW6zXL5ZKqqqZxLD/iKotUgr29JX/oD/w+nn32w1y+ehO0QJAxorBZrfh3/sy/wV/4C/8hQQqqpsXV7mFAQMJaSwgBLwopeUQRqDiyvn+Xtpr9roHChX6HuuCnC376oPhJGKwzjGLiqFmjIV/w07ebn7zUWJFpW4mrvoFtWpJoL/jpgp8u+OmCny50oQ9M3/KLv6du7CFy5uqlR7l85TLXbl7n5/7pLxCwbLY9fd/hR0/daLQQKJ34fX/0R9nfX9DWjgcP1ggkOcNqveHenTs8deMqjz32KE88cYMHpxvu3T+hjI+xPDzk/eNTnK648tyH0G3N/uWMoFC3I1/84id46903+Mabd0ljoJTC0eEjvPaNN/hXf/RH+dgLLzD6wFtvv8vZeou1jsevHmErwW67YdyOXLl8hWs3rjOrK3brc1L2PP/Cc/ghc//uA+6+/x7Xrl+jrZfMWw0Raltx7dplvva132TbB9r5jKwUt+/e53h7yny+IHmPRlBy5N5776KN5vqNa+zXhr3ZtOjsXzrkwekJQ/AobrJoW2azBiEF9+/dx9maxu3x4Sc/B0XiR49rK5CFXbdjddax7Qf6QWKkZDusefWbr9Hvdtx+/w67YeT3/+Af5Cde+TpH+5/mB7/0eT7/+QeUNI1fII44PDjALAx3jk/5v/3lv4r3mf39OV/++kukIpg3M6R0LGyLQWFdxTjuSH6DsQJXSaRtiEVR5JTe5XNGKodICUtEhpH19oxu3JFzYRwmMKnbFr/Zsek32NqQkiCOHqUzpIJMU4u1oGAMhLFnf/8KBwdLxmHN1159iTffS9jdHb73s5+gJpDHLblMCXohJZzV5BjYDT1SwHbbId0eL79yi+/8l/8Yrq4ZYmL/cJ9C5GR1ziW1x+GVq5y8/xbLtgIV8TFSUkKVDGkkhkTMNb4EAhFVKbKYDNcLhRAGIKFFQKuaIiGlqZqqlCWFgFASMpRSMBhyn2hnNaZ2bLdbXDUZhcf1hs9+6guY6x/jZ7/yFlee/Qiue8Blcc6dd9/ljbvnGFFwFtyDc2ayMHMG5wynuudgeYjQIFTh4HBBGCKislR7l9kExQhcefpjfPkX/nuk7Tm4tI8uhc2u5/DyAe+89DJ/8Du/yDtvH/O122dEMy0Xq36gLCWIyTdFi8S1y0fIkilx5PR8xeH1q6zON1ACvkgihpQ9iEgmkEsmhIiRNdoYlvMlrjKULBnHjGJkzBGrK7IQWKkwQqJKxIdAAdAFP46ULEkioZSgoFHC0GjL4AMzV3DWc3R5n/fv3CMWidKOdr5AJcGQPEEIjHWULCYDbLXEh2kEJeVEzhkpHakkhJBYq9BSkrUmR4PVButqcoHddkdbOYTMJAHbmJBakxPUraWtLE5lHl/u87Wvfo2DvRtI2TCrb3C+PeXoasv6dGT0hnW/pevO2OiEiQat1TT2YCSz2Yyz83PYnfP8Uzf4/u/6Ij/7C7/EaTeQlWTVdxilSdEwhMilK1d4cHaPo/0F2We6Xc+inoEopNQzbiNKNwgt2L+0YDMMCC3Z9BuqoujWKyTwkWc+xNWrVxj9QBlhtTrhk596gZ/4yZ9gd3yHxeKQxx8/5Ae+91NApmlrdqsV/WZHMoLlwZJnPvIYr7/2Ov3Q830ff5blfMaVK0fceXCP/fke3/n5T/DKa2+x7gbO1mtKLrzxxpt84pnn+c4v/ih784b0hYGUIl0/MOZEbTUiBNrFHkJa+qFnHDq+8MXP8JFnnmPMibPTM65ePkLkxI/+oT/AZrfliUdu4kzFZjNgjeDVl7+Oji0vfuKjjEPH0499iKefeowYA5oO4T1Hly4jyfgxEBEIZZFSMXRbtFJoIZEiTEmWRjP6qYvLWUdKiZOTE46OjiglM/QdzlnGwfPIjWsUIfDxYVeUMlw6PGS73fAf/KW/wOtvvcff/cmfwq9OMNUMLWB1fk4RkV4ZDg8O6NcrPvT4DT73w7+fw8Xe7yosXOifXRf8dMFPHxg/KcEYBsS0S1LyyP5+e8FP32Z+SofXuHNyDxeOuP/Od/LU869gm80FP13w0wU/XfDThS70gUmUUr6lP3i+G4suheg9iYTPnrqquHNWeO/W3SkdKwZqBfO65vKlJePQc+v9O/icON2tSEBTzxk2I912gx87HnnkJnVToVzN8uASV/cakoSuFMYhcXrrDmPYsmj2WCz2qWvHm2+9xdnqlNfeuUfyEW0c55s1i3nL7vSMg4MF77z7Hk89/SGuXbvOu+++x2LWsH+w4OaNaxADb739TdbbLVePrvKpT3wU22jeeec9/FDYWxxwuD/Fjo9C4rTBKsu7794ipWnjbff2ePXN13nsycf52te/ztnZinEIGGE43N9nVtXcfu8dvvCFL7C3v+Rgv6VtKu7duc/ly0cM3nOyOiMOhfXpiqs3LlO3DWfrDcM4Gafuzk6IMdM0DTEnYgncefCAiOXtt99FZcn67IzT8wfsX9lnubhM4xRXD5ZcvXwZHyVVs6DZd4SY6buRg4MFVW3YdQNhs+Lo0mUenDzgb//tv03KmrNd4qmPfBLrZrzx2uusz8/Zbc5xWnF0eMClg32kgfvH99ntdpQoMMri2jnCVg+T40YamXnmiUewTeHxRx9jtVqz3va8d/sex6crau249ugV3rh9m/VOIpLF2Uwugb3XX+I//m/+r/xv//i/x1uHV7BKUTLcuHodVyk++eIL3H77Jb78k3+T5w8bZo1hVmeM0Sgzh6IxCgIdRtRIMl3sOFlntn3LD/ypP8OwCWy3PTjBh599knHTs7fX8n/4v/zveennf4Zn91vGcU2zXHLYNFxfLlk4R10LbGuIqXB8tuJst6EbYH9vn3lbc3p+yp3jU4yskRgQkpQH+rEHBNFHUoqkEJnZiv1qzrDpeOYj1/nCFz/HydkJWhvIGqNqbrsWdfkxbp/2fOLFz5FK5PTO+whp+cYrb7A5Pub+e+9x9v4tGj9CPzD6AacU+7VDpoQ1Gqc1sQwMZcMXv+v34YunWSqW8yv0x+cYByWNPPnI48SUwGl22w152RLUPj/zy2/Tf/N9/u3/9D/g//in/n1eXRyS4oqmUpwen3Dn3glN2zBfzrl05SYnZzvadg9rNF2/ISOQCqwz+BiRUqOUxe88Smq63RptBSiJtS10AyMFLyVZCLIP1EZjnGYIgTHF6doGT2sdIXl2fUcpCa0kMXiMFMxqRb855sUXX+TlV14jhoIxDWEsGDmjWe6zC1CEIPqRodtgW4fVE8jmUgjBUwClASFIuQCJkgNWycmjKRWqZgYIchxQMqPqml0sGOmwQpF9jybQb08wcuQ7vvAiX/7yy0RaNj188jOfZX12i2++/jrtfA7WYKuG7KeREO/9ZLYdRh579AZPPfkEv/pPf4GPP/shxmHHr3/t6xQ7JSs+/thVvvqbv8mP/MiP8OZrb/PGa2/wxc9/grOzY2LMzJqW9XoLCKq24drVq/zQ7/9BfuGf/gpvvH2HV994i3ZZ8eSHH6F0BSPhO178HFcv73P79vtUlcM6y9VLh2gpsUZxvlqx3uyIInPv5B6uqmjaGW+8/k3aZs5yucRqhVOayiis0bzxxuvcvH6d1WaFbhyUTOgTRjfsH1zGWMtsWZGSZ3W2QSSYz+YUPEpMqWyr3YZcMsNux978GierB2AkPkqaeoGUhdxtWK/Paeczbt2+zY3rN7Hacbo6xTnD1UtX8Rm2g2e76bhx/SpFQPZwcnrCbFFz/co+OXTkIqkqi9aKmBJaaWJIlJQoFLIoVFVFjJGh68mlIJVESYWxhjt37lBVFbO2RQDOWXKBEDObbqCq3ORDIx1SFBCF07MVy+U+56tTfvlXfoNtN7Jab7h69RK3bt1hvY2M0VMvGp546lE+/elPQMp87LErF0Y1vwd0wU8X/PRB8dPp+SnXr13j1lstP/Ff/1H+pT/24xxeenDBT99mfnrTG7RRvPn1mr/z136U3/+j/3ceeeT+BT9d8NMFP13w04Uu9IHpW37x99VX7pXWGESOIMG1FcpIznees5NzDhZzDhYLZq3m7r1j1l1PO29pmxYhBEpCKZDF5EeTvKdyhhAyq9WWXGA5a9idnZGAZA2b7Ya9tmFYn9PWM2LKVFVD3dYgC1FI7ty5i1SaIU4+DLWx7C8bYspo57h9+zZkONrf52f/yc8SR89HP/ZRlvt7vPPeLT71iU9z+/ZtnHVcu34FUqKUzNHhHOs0J6sNd+/c5/LlG5Qi2XU9VW05fnCGVJJ33n2bkDy1Mzxy4zHQkGJkf7FAS0UKka7r6PxI5WqcMVTOYbRCqsJ2F/Ah0o8j/TAipWXWtCAjs7mjFEnJsFmveOTGJV55/S2isYRxxClFSYlqPuPuyQm33zuj+I6XfvNX+f7v+16Uqrh6/RGaSjP0A2Pf88QTj3BycsLBwSGLWUMoid3Y0w89d+894B/9458l+sjQDTzzzDPIHPj85z7BrK0YQ+GXf+NlVttTnnr6Ca5dusrmbEttK6qF46tff4Xz9Zpr165w/dIRh3tzshxRQlI7x8nJGYv9A5KQXJo1pOx5/Z13+cVfegmjZwgiXcq4l17iz/2n/zv+N//qv8Xx4x+e4ueFJIVIPat54tkn+KWf/Sn2t3f4nmceIwtPYxM5eap6TsmClBKoTAhMZrZScn9V6OKS8dLjfOk7vhdVYEw9i/05OklqB3//Z/4eP/d3/zqPVhppC85WLGYtB23L0hr25o7FsiX4xJ2TBxzv1iz3L1NKpnKGew8esNmNGNHix8nnoohEjJ5U8pRqVwopjdRSUWeL9JIXv/tj3LhxmaEfUdJMm22CO2nOs9/3BzjZBL72zTd46+5tzu/vaFzNbnWKkJLFwR4hBt5+7S0uHx7R77a0TuN359RasX5wSuk9m7u3MXbkk594gVZmHr12hU0HoTtn1W9AZn74D/wghIhQAjfb4+vvvsSHP/xxTtaW45fe4PP/zv+cl/5fP8lLsyVf+Pzz5BjYrHuO751ytl4ha01C8Wu/8VXGMbFarYihBwJVZUkpE2Ki5ELbzlm6lnY+4+OfeIGuW/PyK69yfLJiHDLFWLJ2U0pdnMzvZ4uG0UeKVEgtCWHEastu6BljjxSRMO4oKaGFwklL7Ho+8Yln+eVf+FkO9/dpmxnf8z3fza077/D1197BzY5IKfHcR57iYK/lK994lYODI/wY6ftx+t6jJ4aE94GcoW1bxqFDyIKQejKz9pGqqqitZugmKMxIlvMDQh+IfiSFLdev7vNH/+UfomkqfumX/yk+Ce6drejHxOZ+x6c+/SxSB37l177MZhNpqgOSKcQiCLlQO8PMwocev8bVw30+88lPcH6+4h/89H/Hd3/p+3jrm2/x7NNPcHpywo2b13n5G6/w1htv8Wf/rX+dGAsFQd915JTIRWOdRgpwulBkZrXZ8ZWvvMpmE7h//5QrNw95+unH0Erjh4HlfMZisaDv10QfSDEydh3D2JPLNJqIFGy6Ld3oMbZiOT/k8qUr3L71HpUzxORRRlN4eC37jsPDJcN6S9PMuHNyRipTsEA7b1ivV8zqlsP9Q5ytCHmgxMhuu8XWltEH1ucrLl+6wuB3CGMY/ZQSOPg1VZz8hYRWpFJwtmZ7tmbdbZnPWyQgpaaqZ9RVw70Hxyijscpy9/49bjx6hRtXDhk2a7S1SDkZYyulqFxFjNO9MYwDxk5G1DFEQgi4qkJKiVIGrTUpBVJKD8fZxLRXaUM/BFIuGK1pKsc4BoQoU2XbR2KIVFZP/kQZdruBqtKcnq55+/Z9dl1PVgqhBI8/+igHywU3D+sLcP09oAt+uuCnD4qfTs43vPfubc7uX+cf/K1/nX/lj/84V68eX/DTt5mfvjnApetP4UPNW7feveCnC3664KcLfrrQhT5wfcsv/l755llJYeTq0R5aS7ZDz24cGIYCKTGvHHEMNPMZJ+crjs/WuMrihwElJXv7B6RS8MNATpm2rblx4wgh4eTBKTlHbt64ythFchYkCqvdilwilapxTmOMpusG/BgwxmGcxvuBdlbj/YgPgYODQ/rtFmkMp6vVZAi66bBKQ/JYI1F2zsnZim4cuXnjBvfu3uH61atIUXBGUVUGSqIAfpw2WlM5Ys6sNltG71ku97DGIkqGIvBjT8lTdHuMEWcsVmtKSiwWi8lnI5cpTl2KKb3okets+p67xyeMPuLsnMPlAfNKIaRHOU03RGIqSOBgVpFz4XTbo1XBaIGPmT5K7p1syDEy9B3vvPUmzz/3EW5cvYbVilt3buGcY+w7KucQpXDz5g2UEmy6Hd0wxaLfevc9nnz0EdrWTWbXQdJYzby1U6UxJfzoEaIgAD9kclKAZP9giqZfrzZIpYm5MI4DSktELjhrsE6hjUFbQwmBcRhIOeG9Z7FYYq3BI+A3foOD7/kufuW//Gs03/ndUApFFFZdRz+M9MOav/KX/xM+drnhqYMGqTTz2qFLQpSMMgqEoCiB7yIIy93NyK0NLK8/yz/6lZdomxqREh959kPUdUvTznjxox/hv/3v/gYv/8P/luevXqL3A1eOjlCycLRcsL9oaSvDfDFDGMX94xPu3jvl8PASttKoSvO1l1+lqhckn0gp8VuP12TUXMi5J2WBViDTQBUNeSv50T/6wwjRIeLkC5JNTxSa8/OaR773D+DtgpPNCW/feZfNcYfRlvPTB7jacePmI2x3Iw8erLh0dJmrlw+5dLBg9APVYsY7b7/N6vScS8uWl1/6Cr/0d/4u3/HE48jiWa3PWd1a8eatd2gWNX/yT/2PeO6Fp4gElJjxXvc215aXGcwSees+N/74n+HH/t2/yPD8R3j11a/xfT/wA2jTcOXSZZRS5FIYU2S+t3jozxRRQpPGxHa3YT6fkfNkQH792iXmrqVoTaZwdv+YzWqNj4lm7kgx45Pkzt1jzldrvvnNb3L7+IxxzISQWO/O2dtfYkzNjSuXeebpJ1guGy4d7XH71j3u3n6AtQuGmLh2ZUZlIPmRF154ntm8IpWRr7/8Tf7Jz/0KH//4x7lyeY/je7e4du0mm82O2WLBetsRwjQek0vk3bdvUSI8OD7hw888zXvvv8t2u+LpDz2FQvDYI48yb2te+urX6IeItDW/8dWXuHb9MY6OLnG4V/P5T7/Alb2WkgtSKsbgOV2t+NVf/zIKy7/wL3wvUsLXvvYSAJcvX+Frr3yTn/+Vr/DYh59nuzrjQ4/s8UPf9yK7zZaqnk3JmEWSc0ApKOiH998ESFAoBZQxWDf5msSQ6LtA33v2lvsYVTBW0A87tpsNzjV0/cjJ6QnVrEVXFmssy9mc4gPRd0ipaJqK27dvM4wdKUWsqUglsu3XhJKYzebYasbQBR65fp0HD+6Tc+LK5auUIlBCkVNgdX6C9z3L5ZJhDMxme8SUSXn6v5ecmc8aZk1NiCNSwnq9Rggxfb0AEkoSFGnY29tjGLestscQDVXVUDWOXbclx0L2iZAng/PGVSxmC7puYLPtGeNIU9cMQ+R8s+EjLzyLE4m2MoQYEEI8HGGSWGvJOVNKYRxHUkrsdjuapmEcR4QQaG2RQlHXNTEFrNUIOfk1xQA5w27bUdc1UkqM0RSmAIeUEsMwTil2WVIe7iNV5ej7bjJiF5qT4zNu3zumPdxnsVzQWMu1gwtw/b2gC3664KcPip9izrzy8ut846uOP/M/e46/+bfv8JHnxwt++jbzU5zt8f/5+VfIZcZiWV/w0wU/XfDTBT9d6EIfuL5lj78Yei4f7NHUhhQTs9oxDDuuXzng5GyDp2Bmjgfnp1w+usTBwQKpIHrPen3OfKYIKbEaAovlcvJkiRmtJDevHDH6wPnZGmsUWhvGcWQ+m5NyIY4Dm+2Os/MTrKnY3z+g63tElDhnuXvvPiVlnLXcv/OAFEeMc+SU6PqeHDNFSJbLPYQUaFMjlGaz2VBbyxOPPkrKGfUw6txai1GCXTdMyXJKE4aIqyouLQ+pGwUys9n0jD5ycnzOYrHEmAqHxTUGYwRKZdbrM5zNNHVDPwRKAWsnrxiBojYVTz/6CFJJHpzsyGlkHAuXLi0RAqy2v+25ogAlBUIL1pstu24k5ULjWp66dkQ/eBD7PPXoNe7fvcNsZjBGcjnuUUqhvrRHDJHoRyDhx0jjHFVVM9x5HyMz164eEUIPIhOjp3IVzki0hrP1lCbmnEUgGIaOyrUYpVFScL5aI2ShqgyrzRbnDJrC3uESP44IUbBaYbTkdLsDASF5hCoMvuN83eOqCjYrAC4dLBmKZxwHOj9StCSlHe+/9zq16Ji7ClFGsoAxCbIAJSVIjU+JIY4s5YIH9zpubUf+9F/8S/zmK2/zoU9+gqeefAqtwBjBr/3aSyz393niQ4/z7v/jLWZNhaklzXyGUol5ZbEyQfZUTUPWIJ1CaMV+s4dG40xFkiC1IeTpoCGVmmA1JSCjlMCZihgFlDKZKRe4dv2QhS3cP77PbLZPkY6hFIqp8NYSrCSUxHaz49Er19l7ZIFrG2bLhjt3ThjGxN4y8vxze3TbFY9dv8L2fIN0FRLJsx/5CIXMeRr4w5/5JFIWfuK/+C/44t6zHK6uMls8zxPPfRcvv/Yb/NpPfYPHH30ScaTwxeOaGavNjmtPPMHq1TsAfP8PfjfVZz+F999L5RqUkezGHlEEjZ2qfa1T6Nke779/C5RhsdijaRwxBA6vHPEzP/Mz/Nh//WMIJWkWe8xne1zZO+Bzn/sUjz5yxBsvvcRiuST7nutHMx69vuQ7X3wWpEVry50796hnjrv33qdt5uScEeXh4WBY88zjl/nSFz9BKpIxCca+Y3O+Zeg845DYX1pqVfjMx57l8ZvXEUKy22w5ePRJXOW4dnBAjJnDtqUIyTiOVLXkcy88i9OO7abHVgZtX2TWWvqu5+zsjPVqRa0LH3/2SZLQ3D054emnfx8fevoj+NFzevw+V49mlFiom5pxCOQCWmt+4EtfQiTBsOsRAp750NPknIDEi5/8MC88+wT7R1dwttBvB2rbMJqIEDCOHSkJDo/2gEROMPSBqnaEGNDKoJSmiEROHZXVqMqR4wilUFcAE/g2Tc183tD3k9H49atXkEaz7Xbsz2fkELBasVzscXpyRlU5HnvsMe7fv8/p2Ql13XJ0eZ9vvPx1Uj9w6ZHLjGMklICWiscefYSh302dvMqy3e7oui3WaGazgwnelOfk5IQrV6+z6zq6rkNJMGZBzolSJuiv65rdbgcI6rqhG7acrzc411LXjvPzc9abFa6aM3hP5StKziznC3SjCNEjJOwv91ittkBmsdfgqj0k8ODBGYt5zdB3SKcZxgwUlFKEEJjNZpRSpq4spVBKMY4j3nuapsEYw263I4SRGDPaqIcdKxktQElNlplxHCcQVlMVO5eA1hKlJDF6jFEopem6Dq00TVNTKAihUFoTY2a5t6SZzRFWI6RA5W+tqHehf/664KcLfvqg+MmPkaPFnEsHNQDJ79isVxf89G3mpwdnnh/4ge/j7sl1/tyfnvFf/uXv5+Mfcxf8dMFPF/x0wU8XutAHpm/5xd+sMcQw0HcJYwxGS+Z1Q6ME8xsHdD5SEAz9mnmt0doBBUHN9cv7pJRBCA4Wc3Ke0qSkLECm7wakUtSVo5SIqxRVu8CPcPzgnMQENE8+8SS7wZNSRlnNrutQSmFNjbKghEQrhaw0u36qOCznU/WwqWsgg5T0Q48UmZvXLk8JVEaDECijGYee4bgn+gEpBMoYnLUs5jXWSGKE4jNjGJC5oAXcvHGFuq3odj1pDIw+kB76GNSzljEm/HYDiIfVlcJy2XJ8fM581lAbSz8OVHpafJ0pSBKSCaS1VFDKZI6LQInEYt7Q+QnOG20hRZSbEu+kVOw9/RiVFSAKe4vZw4Ve4uYNDx48YBh2zH4rTc1qnvnQE3z4ycemyrtSVLYiJYUsgugTUmquHF1ltVojgHEcUVLSVJa6aZEqcLA/px9GlBIsZjUIiZKFmAN1W6G1ZrVes9ltcXXLZruhbhf0Q4d2DgtIKRFKAeCsQdQNUkqWBwcECvsfWvDL/+QnubHfYEikIFBKI1EooUgpE3MAKVFRcL4deft4y5/7D/8SernPpz6+oPjAg+NjztZrhhB56kNPMJ8vqGaSB7fe5ZOXj7j2yCFOKZwUlJyZVQ5JIZaCUYo4BghpMrHWCq0FsQR0pUkFBAYBDytOmRwjAtCigCzkULBmhhh79g7mZJ0ZU0dTWkrWICQ5SAoGbQyVazjY+wi7fkvqAjGPDINCSU3tHG0D3nfM5jXb6LHLOTl6xtATNltUiixnM4bT+7z45CdRH/4f8xn3cYqTpFoTTM8Tn3+Gn/qVv8WrX36LF777cc7iiqtuxp10Bptz0nYDQIwj9x6c0TQ1EvDnA8op2nmFH3vaxqJIpHHLpYMpcVFqSSmWqpqz3W75zi9+jo9/9Hmk0dy684DrVx9Fl0xTwersAXuXrnF05ZCYMrsxcHZ+yruvvkMcPVcuXUNrTb8dCL1nF7fYpsa4BqMsUmikc7x5631KClTGkkKirfZobMPR5TlCTt4xRgmWswatNa2tqV378NqOaF3YbTusNahKYlRElUS/26ClhOwpUbHZSdYbT90eMtu7xmaz5fqVJzg9PebpvX2atuXs5D5KSB65do3KWrIShJDIQMqJ5WKJHz1aSJraPTQ7T5TikUrx/vv3uH7lKlU1dYUQYb3padsZJQNlSt6UMiOlYDd0NI3D+xEKOGd+u6prtHpYcU3MWsdi3qKUIqZMzhJj5G9DWFM73r91l1k1Z38xR5XM/t4cISCmgfliRgiRcfQcHBxy48Z1zlcbtHJcuXSVvu8ZdyOXL13h0Rs32O06tqs1zhlSzkhgMZ9RSmJvOf1eVTXDmKdq/jDS9z117bBGs9ttmTUNCBiGAe89u92OqqrJOdOPA9YZjFVstquH0OewlSPnaQ2sqpqcErpyCDJCwPnZipgSrnK08xolBVDQqqA1GCsRojAlr0KMESHEw5ETjRDit6vVU4Va/3ZFu23baXQlJrwfqevmYffSdHAupZDilCCplEAIgDKNw6RAShGQDENHztPet93uyAVcNY3p9MOUZrlcLggklIC6dr9DPLjQ75Yu+OmCnz4oftIalsuKS0eFH/qhnkuXLNeuXrvgp28zP8W15/rHPsqb73pefVWx2YEfL/jpgp8u+OmCny50oQ9O3/KLv6OjJSkkSsqUkokhYZREyYRBMq8NIJBXDlEE/BhIKT9M3BkYx0DTtiitUHIyFe37gZgzs3lDDAlrDMjMMHrSEElJsJzVVPPZ5A+z8ygp0dpQSmHeNjhnWa+2VM5SUiRFT86Zm9evcnK2osSEcxYlJQXJttsyDD3GaGIYqJ3F1Y5QIimDqGuS98iS2Ntb0A07rBFImadkM6Uw2jzcIPMEmUYiRaSdaWgkfT9MrcYSYlSkkBEIFrOWzWZLKZH12tO2DVVVUUpBCUHtFLVVuEoSfIdUdvJgqBzaaIzS5BQwSiJRLK2b2rMnIxaQmaqukEoSYwQh8D6g5dQqTckIkTnYX3J6ekrKFXVdU0omjB5rzDRukEEgmLUNOXis1ZOXQihYY9F68s3R0lA3DpgSwcYxYI1GqWkhd84yeA9S0IWA0wpT1+hUoaXFyITTNcUIFAotIcRIGiMAQhu6MVBVDU3TEFJkt9rwm7/8S3z2w9dxUkLROATCJ5RVWFvhcyYXgcoNL79/lx/9N/8sqa5RMTJXiugU+8sF+/v7gEBbTd91vPbqy9REPv3Cc4Sy5WA2J2x7NmFgAJzWjDFifZgqjtbghx6ja4TWVM7Sjx3zxRFpAFFASYUQmVgEOUVKAvJ0r5cItmq4c/8+p5vHaZcHZBRkcNrio6J1Mw4PDijSkGMhloqsFLkktBI0TUUKUNWWTMUYR7SxhF3HonL0ylKUwQrJ6//413nvv3+b/ItrPnP0KZIVpDZS95aqcSwv7fPR576Dl7/8KkEc8+HPfJgQB5bK0G/OGLYDAAutybVCNgCBqkikkqQU0E6hrZwqa8bQVI5d11HpqcIn0cxqRymF/WXLdjsirytyDrRVxXLu0LpgJSA8UQqUEciq4sqTT/Pe8T188VhnyRmu3LhG7WpkEjS2IvhC27RIKdimSJEwjCNXrx9BNpycnJCzo64sYRSkGFHagFAYZxlTRkiNMtD1PfPlPjF5jKhoZ4qSMwe2Yhw9KWd8jPhhYF5bhChIIsl3WDlnOV8ijUEpYCmpqwY/Dux2AUpBKkXKmbEPyKKoXTWNtZeCkFP3RcqKnCOLvSP6IbJeH3NycsLNRx7jfLXD+4G9vT20kiwXM7rdjvlihlYSqQTGOJSSeO8fdsoIUprAqpRMzuJhZRRyTghVprWrFLQSJKG4cePalPLm/cMDbcI8rLx6PzKbLRBC4v1IylPnkDGKxWJOCJ7a1XTbnhATSsuHAC2nlLY4gd58Pifnybh9t+u4d+8edTWNkPkYqBuLM2YaB8wJIXg4+jWNiJRS6PuezbqjaRtSmir5KSbGbgSlqesGAKsNOeVpTC5EpJCEmAgxcHB0gNYwDNNLEaMEm+3AbrOi2t8n5TTtJaVQ1xMswwSywMPrOgFyzpOheFU5Qgg0TTUBZ04oOV3/GDOlCIzRWGeQUjz8bNMoTIwJkIBgGDx+DFSuRhvLOHpCTMSUqJuKSiukKJMhvZuMvqe/e6Fvty746YKfPih+6obArK15/KnE/+k/vk9VuQt++j3AT9055F9/nYX+KACyAswFP13w0wU/XfDThS70welbfvGnlMBoRwyZftdRUmY2a1B2Ss0pMVGQ1K4m58h6vaauaoSQICRN22IrwxgiiMJmvcaPnvl8jtEKkpgWMakI41R1bWqDUYIkMuMQcNags51SfrSitpBToantNAJSW0IoGKU5Oz1HCkntKqTU7HY7pJTMmxmLWTNVbELAWYdUoLRh13l2/RZSYn8+w2pFsgalJqBr5y05QUxpquhoibFTPH0uhWHoiSHTWIeQkm4cGcaANpr5rCWEhFISpRW1cgghEVLR7bZYq6mco5QECIyZNlPkVCERCKQQUzVUaYwQhOCJKaKVRdcVWkx+L0YYBILgM05XCDm1Vxtr6fvJR+Lw8AClpmSllDJaW2JMWFujZGbXrfHRc7C3QJRIP0xQ4lyF1gqJftieLQnBk+J0TVLKFMC5KXrdVTU+BAqC3c5Pld48GeE64xj6gflsuk+i0kgl8POpkm60pq4qtDL0u475csavfuXX8dsVVlyBLBhiwmnQ1k4+QCGQpWJM8Mbraz73h/5Fqqs3qFSFTrAdewQZYxTbrufK1SNWZysOlg1/88d+gu/97Ge4vJwzKIscC9rNsIsZw26DkIXlwR5OK5IPKJORTtK0c7JUdNkj0fgxIZBIOd37Uk7VPyVBZT9t3jmjhYWUCSXw2svv8dnPfJh+2xF8IvhIlo4tgSKgELHGclgt8MOAriz9rsfZ6aAB4CrHyfFIJTLt5SXdbssSR15F/tr/+f/J/CXF592nKZcU4/6OujI4cRkOBLmKRJ346HMv8ptvbTDOYaqWb75zh0bDO7ff4FOLjwPw2k9/g2c++lmSAaUglUDVNISUyHk63FS2gICSwGpHTlBXU0VyggrJer0ljWKq5ktJLp6QNCDZjSNCFnof8b5gtGO5N2d21NL3nqEfOTi4gjWS4DMnD06JyZNFZtv7CW6A0U/pdTknju8/IIRIGGcYrShoBBJRBDllYo5T1VI7EJmmtkgBlatpmgoU5JSRTOC3Xa9p5wuIAqMMIQRa55hfexQAmTXKaaTMOCmxrmGToRSFNYqQE0Jq2nZO2zhWZ1uWey3D0D1cAxwEgRIOpzNKgZAj1242tG1L5WoEBSUBJajqmt2uQyAwtiKG6ToLoXCVemh0DEpoxjEQY3y4vPzWPSoRQiCYoBAhEBR8GMglsrc3R2tNjJHRB4wxzGZzjJkOJdYZrFVTWlv07O0tWCwW5AzbzUBIAaEt1tUYY4gxkktBlUyMgZw8QsBms0ZKSYx52j8ohBBI0SMKzB+Oh6QE3nu01kg5Vey1rRHSsNns8L5HS/VwLRypq5r5bIYokt1uizRTJ5CSmuXeAblMZtKlZIQUDKOnnS8wdc1ssaCkiGKqMCs1Vf2FEJPfz0NwlQ+hNqX027+MUXTdjpwjWsvpsz7kyVKm9du6yfB6Wv8ncC1lGmURupCzwOiCeAii4ziZ3Ssx7ROzWY0sCUEh+engU/I/CxJc6J+HLvjpgp8+KH6qXIUfAxTD+VnDlcvqgp/+/+z9WayuWXrfh/3W+E7fsPc+e5+xTlV3V49sdjfZnEyJFEWKtCxBsWzEA5A4CRBLSGIHCBAgMBAhERTESAwhMJK7xA6Q5MKRJUWOHNkSRUkcRFKcWj1Xd1V3TWc+Z4/f9A5rzMXadejcdSSqui++5+YAVefs4f3ed63fep/n////APDT537k3+K3/x9/wNVtBfxxGm2p6rTnpz0/7flpz0/72teHVt/ziz+pJd4FwrXkBMqLmUyinyasqkFIdkOPrS0+BBaVxliFrRtCyAzOYUprhK6pWXTlBc/Ye1JOBUilwKiaTERk6IeeGEtHomoswzBS1RWkxDg4hCidE611WZya5tqlVDCfdcQQaVtDXc9JUaBedmcSUUmEKGPIu3HETWPp2lpD19VE7xEYjK5ediF88pBhN244unGI1oIUI9vtlpSgMR1KCXa7ntoa2qqiH3rc6JFSUTc1KUWMrcgp0/c9u77HVAuEAKXKwpdygly67Vqblwtl6UCUjVgrgbU1PoGPmRgG6qph6B05C7SyBZa0LGbNOWOMKeApy2blgkeKjPcOff17DtPEbNYSc8ZaiRsTSkmqShFDYOh92RyNxvvin6C1QgjJ5Mv/U1LifSCMnpiKgbdCIJUlRF8WbF3hXCQlcL6n61q224HalBHrYehRssBx17TUteJ3fvcfc/N4iXcDTjdUsiWkCMERcgJpENby5PySw49/lj/x5/5V1r2jv9qhtSQ1llkFdV1xfHLAOHmMlTx58oCH77zJv/3zP0O+eMa8m7FcziAJ1m7LnRsHpDChG4VWCoJmHBSNVmjdYOsWdj1WdyhpCD6TtUJkhZQKYQVGKkSySEac69EYZNAgEu999wlf+Oyn8B6ykKAVPgsO794hXvtfJB8RqTy02UfG0dHNWpJzSGXwIXHjcInSkckmQlT8/t/4Db7+f/5Vvqg/xsfrL7A2I83Nmqa5T1AZtMdLRaZ8Do2ecXhwnxfnz/nRk/tcffkBJ5/4BM9+/QEvjhy3gfhG5G/8pb/Jv/aX/lX07Y5mVtPvHCiBkYboIiSB0pqcoNaaGBMShVSKaQjEGEkh44KgqlqqWpNDwPlIFprZzJKRKOURrWK327FeXzEOA5WtmVcdfuOwXYOKitvHd0k58uTJE2xlSAnqqmO9veDm3QNMY1FacuPoJilmrK2JKbLbTrRtB2RiikhhiDHjY1mTpC7TGjlFqkrTTxEfE8H7IplIEVVrshTM5nOkBO8LgM3qCjdNpOCxSiNzoGss0XtcStimLvKHBDEI5ouyHlZ1RQgjq1VPZec8ffKCmye3iCGitWVyAzkFrC0vE4ahJGWGUGQT3nu8T7jJl/WQsmTHVEBVSkFVXXfSAaXB+wmlipzFOYdSimEYMMYgZGY+7wCYpvFabtG8XHdXqw0hlEQ+7z1alWsGGWMUMUI3b5mcw5giUQneU1UWKSUxRpRWeCdYr6+IMbJcLMqeMfQcHByw3a2L3DGl6+9lUari+fNnfOxjH+PRo8esN2vWW8et2yc0dY2b+gLaPmKVRgvBNI64KZBT8YhKKdO1ltVmw3zWIWVGSck0DvgouLEsXXc3TZATpmrKNIFSL1PpvPdlb/AO7zNVVVPZGucdXdegtWS5XBKuD2zT4EniuutOQslcEkxTuIbb0rkGyjSRjwRfPHmMkYzjhFQGKcpzVTcV3k9U1xIkYwzpg6ky+z1v8fv6F1h7ftrz04fGT7Zm2A58+auRf+3P3+Lv/b0NP/Fjes9P32d+OmwmfuTmz/IP3yiWKenSI3K956c9P+35ac9P+9rXh1bf813tY8DF8BJYksiEFJAho4Umk4khQEo0SlMpDSGRTCKG4pvQ1AYlJSleQ02K+BCRShOvu9A5ZWIKZYxXCXI2aClJRFwI2MpAFiBAKo0A2rYuXiAqE1ygqg1NWxOix2iNIEMuC3RKoSyqKWKsKiPBOSHIWKXISWJN6ejkXGLCYwwlYjwlog8oram7GTlDCCX5qapsiaoXiRAyIafy9TKkAFlklBGEFMmUJD83OlLILOaL0gUzZfFTuoasKCaopRsDpYv0h/4FClCAQJEIYUJkSYoCKSw+eFAZZDGA1tebkpS6jKQLQUqgpSZlh9LqerRbkGNichOLxYK+H0gplwV3DAzjjto25OvOTd1YlEqkCJky3h5CpB88KQkCipSLV4sUGVMJuqb41RRPDYnzkd3OERNMPmNFuS272QJX1ygpmc87kor8o3/0K/z8Z15FiQkqib6+F8bsiEhyMrz9nTNmJ6/yF/6n/yO2my1NXXORPToJDlSFNgrvPFKUA8Z21/Prv/7r3FscslptMEpTTZ7eXTE5T93OQStmbUefRqRZkHJPt2xBTcwyZCuJumN5fA837rC6YhKJw2DYqoiRUKeMqyzWGxpqZDKEAFFFdGN4tlmzmFvGzYbaHrPejXz0lduoJIs/TgrUtSJKTXYUU2Or0BiwxcRcZ40XkWrl+JX/+G9z9V895k+1v8iiE4y3JF13gicT5YRMpVMoZI2QujyPKXLv6CN87VtnfOuXz3Avjvn6+2s+ffJnUM9eAHBreZvZ+FH+8f/2V/nJ/+BnOPjYEXVtSVJilQDvCUaD1iQfECmSRSblTPAZYyvwHqUNyiSUKhIKe53YpUU56IRQPJkA5vNZMT6vLM572lkBdWkFwZX7MkXByc07TG6k0Zlx8pzcvs04TazWF8zaG2x2nqYWCOk5v9qSY8KtI8EH7PUBcbPtadsa7wIxOpz3KKMxSTM5T/CJlGCxqMmZIt3KCT962rYcfIXMSAHTxgHFL0QqiYqJVT9cH64DzawB4RGqSJu8D9SNQesWKTwpZeaLBahMTgGjDWOfCSGDSFib0aZ0dYHr57pIOIzR5TCsBSmFIqVRunzr67+/2+2YzWZoXT4D711J1ayql4dla2ukLIAWY5FWICSIArIhBJq6AwHOBUynIZWurpTF20Wp0kHNKdDVFV6Jl2ua1Bo3ZZS0HB2dMAw7Nps1QkpWG0cWC9q64eqy+EoKKQlhYrXaYquacfLEnDg+ucHNW5bTF88ZtuV5EcJDFmhhUCiGfgAkiCIDiznhY6BpDClNCG2ZxsTYJ7QxpJTwYbqWj0hiFqhriQwUqQmU7nJMnhiA7NHaolUFlCkeYypSlKSUr++Xcn2sNTjnyLmYT+cM3sdy3ZBMUyCEhFIa5zxKarwLuDDQdS0xRZIWWCvwvoB02bPiB8NO+/oBqD0/7fnpw+InVRlst+CHPw//2V/b8YlPipIGu+en7ys/6ceJXRq4tbwNwJf/0z/g05/84T0/7flpz097ftrXvj60+p5f/ImYqZUlkXDXXckYi/lmiJEwxZJKljNudNy4cXi9kE0YozDGlsU6Q0olNzylhJCG3a5nPutQIpf0ozCVDSELcha4UBb2jMRWpnRMZUIKibo2ARXX3RMh0vVCoV6OOQNIVUxgU0pIbRBakzKEUJKAci7+E2WsvowY13V13UXXCFl2FqUViOLPMgz+ejRbk2JGiGIu2g+70mUIgZyLeXJlTYHtcglw40SKibZtqOuy0EyTQ0pBijBNHqXLSDzw0odBXbeZUipR5h+MSxeZSJGngMTa6trotIBolmW0O+dw7e0AWpcxa60LqFsr2GyuaLoWgyblxK7fkXOm6+ZImRn7ntpW1wtwzTSNWKNLh5aEVIp+5+jHsUhoqgY/jVhrEFoSY6BuyqFCaY0PE5eXl6Wbo4vPzW63Zg70uy2VAGsUoxv55ltv0G97bp3cY7h8hMoC73uEkIzDRN0u2IyRzej5i//u/xAhLFqDD4LVZsetmzfZjp4maU5fnLOYN6y3a2bzim9/66vcyZmnpxfcPDnAGMmzMNKf7+iebVgeL1h3mk4pkrgkmgrTGqpsGOqMTpl6pjiqDM8S6FQhkmLsJNWU0TLTYrBMbJWg0xIVBcl4bLggNw3n51dU9RFZGKYoGIKknc1fmtx+8LnlcgJhNp+jculkZyPL57npudpd8f/+X/9fOf5yx08tvojXFYvPHDIaw+Q8ORbDbKnKg6FEIqaM1hY3TTT1IV/45E+zfjFwozpGVwaVNLUsnepddIhFxWu7V/nNv/qr/NL/5hdp7y6L/44qAhCRS0ogSiIVuO0ACOq6vn7+y+8R0kTKAWsqpBJooYnRMwyBumkx2uC8A5HKtIk01J1EaYEwhiwEIQW0rdDK4lzGxUiORfLV7wY2fc+Dhw/4wue/SJaKQGY3eLybOFwsIQuc8NeGzJq6Lt3U5bKj78cicxOKYRhp24q+d/S7AUQHRKIvEp3ddk3XHpa1w1Tl4GvAGEMm4kNAoDDWXK9VimHncD4w65oCz0oRfGS3G1guD156oBgjicmgpKJtmuKxIouEozz7ESH+0BfFmuJfFa+7skIIUi5SG6UMQoAQBbpSytfrS5G05ZxeerwoVfxRoMgwrC1dZu88AkXfO7SqqKoK593Lv/+BEXbOAhBIyTUMF5hOKb4ELSFgvmgZhxGlNeM4lE6sbQg+Mg4TB/MF+vgG/bBDikzfT0yTZz5fstlsWS6OaLsaKQXDsOVqtWa765mrCmsqhBCMfiLl4j00my2vp2vKmhg8dHV51tabEiTQdcW0m3wtO1OKlBJaqSJnEeLaIwdAUFUVXpTEvJjKukouhxyXI96nl9dR6zJpNY4T1tryTKSMFCW9dRhHjDbElBnGEaU0Sip88AjBdcdeIoTk8uKS1169/XLS4A8lMub/Xx7Y17+g2vPTnp8+LH7KOdI1LX2+4hd/ocNas+enHwB+slREX/gJ4I6/veenPT/t+WnPT/va14da3/OLP42k74dr/4mKyU2stz11pdG2YvITTdvx5OEjDpdL1I2yYWldl4f+2kS0+EAUU9TJl3Hdq8sNtanRGoa4IwuFNIaUKR3smOhmNT5GpimgtSpmnkqWDkrKCC2uzbD19SL8QTc5E3O+9hDImGtgTaFs1imVxSOTmc86zHX3x/lIP/SYqkEqxeh8AV9S6fLGeD1WrBHX3XulNLthS9u1iJki+ALXtjLkWHwLypizRhiBtAJrdfk5KB14azXeJ0JKWFWjlAbKgpdSegmuH/z5QQqSUooUJUJKvPflM7s28ZayjO4X0FXFUyeVTUooyThFUpJMLmDripgCdVWRYklgU7Ik4fWbktBFTkzjCES6rmG72zH0ZaOTUrHZbNHG4KYROXm2mzXzecfyYEEmAgltNMM0YipD3O44vLHkyZNnNFVFvP75h75nXkkuLs4RMvNr/+Dv8lM/9GnyONIITZUzSUVQCmlqdgM8fHrJf/cv/nsc3HqF4Eo63dNnzxj6HVdXpphCu1w2hMnRNQ2zrsYHz9dO36N9VKGSgWnN6z98i+jXHDQNm9Md0wXMTYWTgdXOcuveCfN5YJ7vcNUP3BgChx97hRdvOBaqxjWZyWeqBnIl2Y4bpJrBdAXUSF0jIkxxSTvz9KPDVDNW/RqRLIvbJ9w4uUUQAilLWtgHBxWUp9YGlQVJK3zynJ2fU/vEf/5X/hNe/84rfKL7JNF6Tj53i2GRCc6To0dLhZSCmCJR5NJKVOUAKhCEwSOTYKlPIEqC9yhhyKFMTnSxZlc7WmO49/Qe//Av/wN+6X/35wiHCpkM2oDwCZEFkEji+vAo5bWUwwPluV7MW3bbgZwj223PfD7HWkPTgPcfSKhEeQankWmYGMYRqQpMNE1N1zQgBO+//4TKdgxjjyCileFgueTs7JSr8wveeOOb/MSPf5Fht0agOD44LNcyQdIasmC32dLMS6JmeQndc3x8XABRC4SQeD8xmzfE6K89SkasrTBGs9sNVHWZXhEi09Q1Uhm2uwElFTl5jLHXEoRiKu+miX6naRpLjJlxcljTslrtmM1qjJWM44CUMPSBqmohQ9vUCFFAdZom2nZGXVeM43i9VpQOaPEoFgSf0FqgVJk2Aei62bUhfbyWo9lr2VmBshjj9dfJL+89rQ3eO4bBUVX1taxlLHBaF1gq3jj/jfuV4gcppbj+mopxLCb+KSX6fou1FSEEjo4OEUhiKoCWsy/mzk3FbrdiGPprzxZL349cXFzQNi11fQfnBpxzhFg80569OOezP/wF5pXg9PyUjCpG/UJeg3rp7CcfWF2tCaHIThaLBbaqiDFjjL0+ACS00qT0wfpbrs8HHlRSSoQtB4gir0yEGEmpXN9SGUXp9qeUcS4idfnvQhSfNmUsImWQpfssfSBlgVYKQULpcihIyVNVFVIuy3SHKLKfECLTNLJcHnyv2/u+/gXXnp/2/PRh8ZMkMwnJe+/2/P1fucG//q+fcet23PPT95ufksQqSRdrAOq55tblnp/2/LTnpz0/7WtfH159zy/+zk4vsZWlbTQpF7NMgUYIzTg5hsmxWCypmu6/obG/fhhj+fspZiYfqWrN1XpLVdWQoZvNGKeRxjQoqYkpkWJJiYvXaT4pJXa7HiktkMlJUHcN6brDorUlZ0WMuYxkfyDvoIzIK2VwbkSKTJaZkIqxdQHjiBAlYSnnou9HQF2XMWglSxJdJa+hNyVETtiqdMiFlHRdg/cJayu22x1V1VDZmu1uR1VZiBFjbZFJ+AS5dMqdDzjvr6+ZZBhKMpNS+noDKSPSQpRr+UHnMoTwsmNdxsGLF940uSKt+aBbkQVCFFDJqXwWUZQFFZGvv29CytK9MsbQ73peXLzg+fMXfPOb3yLGYpZ8995dXnn1HjlHYsrs+oGUIl/72teJIXPnzj2+8IUf4fLyktFNHB4ecrhY0LYNOSVSiEzTwLOnzzhfnfM7v/v7LOYHVFVL8IGPf/x1fNfAtkyWeR+4uFjRtC0+7Hjnja/x+bvHyGHDYdcQwhavYAgZLyr6ZDm+/3E+9cOf53y1Qowji4MlSiZeu3+ngD2SzIhtBd28pV9tuLjcsZ0EL25+lo/d+xxXJvBjr1f8zJ0VVf8WPtVc7G7x6/2SL3zic3znja/yyY99FOcnVnLgnXXFG/oWbCPVoeWpu0KerwmD48S21DIThKNdNtxwjoV0THJGToKGRFaHDO6SqR+YvMA2S55tRl755D0whuwDMaZrQJio66p0zUQiBHDZsRlHDuySv/V/+L/xyrcX3K/u0880dz5zh8NXLA83V+S++AkRM1pJxjGjhUDKikQmCYeQGaMlVtcMU2R008spDnntaYLa0ewku26ivdfxkQcf5zf/j7/BH/+f/wlkZ0gCsgQRi0QppkTbdmRi6T4Dxli8H/AuUlUVFxcXZfJgKs9BVVfENKGNRkrBen1JTJ5KWcYcef7sGW3XsZjd5/1338PYiovzS9brx3z0o/cxpmaz3nF2fsmD99/h+dPn3L55Ez/tSN7hBo+timxrGj1t2zGOI1lI5EtAs7RtyzhOKCWRQhW5gFJstxtu3LhRusNVde0fo+i6jr7vCSEWnxQfEDLy7MWKeTfDKEnOEdsYyJn5vEaKhLWWnAUxJKypi0zBOZxztF2Dkp62q2kagRSS1WpDDKpI9+AlCDZNTdu2pPhBMlo5nCspMMYWbxUfiddgm2KgHwfqugIlXk7CwAfAWdaMYpz8hwdlYyrGYbgGOhCi+GqVyZf6Jax+ALwxxpewrLUmxmsjfWPK+kh66Z0TY8ZYw9XpBca0LBYtxiikLL5oIcRr42UJGZaLQzKJ7XbLfN7gXKBtO4bRc+PoBnVVISgyjyw0VdMRQsQohciJSiuGwREDKGWwlWWaPN4FtPnAtLvA4geHuxRjkSNJWaaMUvEEMtZcy0oGnCseQdMkCKF0sFMK5BxewntVVZBLQmHO6WXXOadEyOE65a98xm6asLbIZz6YekgxIES8ntL6QPYCVdVcrxn7VLofhNrz056fPix+MtqwymuePDH8R/97yy/8qY67r6z3/PR95ietVGlqqx0AXvo9P+35ac9Pe37a174+1Prewz2MIZJ5/PwZVluUrBgHR9uVBWw3jKw3A243UglNv5sQsvhojJMnxIyQuhjCDg6lLNPoyKJ0zoyp6F0gBk9liyRmSpEgMs4FUOVhHfsJrUqi08U0UtdV8Y249s9RWr/sOoNAKkMs6zAxlij0mBMZgUDS1gKbxLXlgmS97gmxAChkpBC40TH0AzE66qbi6Gh53TGI1yAJm82A94mUyiaYk8D7iDUapYqnwzAN2FwjlcZ5T4wChMBNiXEYadv2Wo6ikRJyEmQgk65HoyHGQM4wTRM55+sNr8B3SoKUQ4mKJ7LZjCglabsaIYp0pwBqWYTltZfebrfl9PQ577zzDlJazk5PESKzPDik6jq2fU/bzXl8dsab77zNrOuKf0POpBSZLw/JWfDk2XPOr36Dm7duYaxmtd3wIEXe/s53UbJEzjtf/CR6vybkyNPnz7CmdIbm8xnfWV1y+M47fAr41ptvctr3oBKr1Rn91SX2pKNqy+8Zs0DUDSIoBq8YTcPNO6/wlTfeYkwRIzWnX/86H/noR/jOe1/Hj5GTGyeQRlZTz64f2Jxd8u6DR3z36RlHv/iv8EQsufnp1xBccrFKPHpe4TngzScjf3DzhzhWHXnqsRe/SVIz3MGn+S/yEU9md2mqx4T5gvUv/DscPX2Py997wNXbL2ijxr/7kOM//2OEOvLRcMqn45obF0+5M5NQr2iUoao0QlREmdmFHfdf/0RJ/9K6dLemgBCCEAK60iAkUWSUNRxEw3/9V/868e8/5YeP/xgRwUd/6hbh0x39dx8xX8+4GEeSKgc5QSZlicoK5z1oiVCSQJGHtfWMcX2JsRUJScyJwAeJWQnfjKhgcYOjuSPJb3ue/vpTPv1nPsnF6pKqrVGJ4uuU4rWvVCJGX0xzTQ1ZMk2epqlomobNbgMi45xjtb7i8PCIlMFqxWw+Z73e8LVvvIGpKr781a9T1y3fOXqPb3ztqxwcHWGqjo+89nF+47d/j6q1PHv2jK6dlWcsCc5XG/7gy18hjJ7XXvkop6dPuHP3NsfHJ6RdT9PVmKrI1larNV3XklIkpoC1LcVvJDCbdVhb/EVyzkxjSWiTSjI5z3Y30HUzhtFT2YZ33n+ED4mqakmhSOB2u5FbJwuEiNhKlUROUyOFQGqJEIkqlk7xODhSzHgXEJRUSyVhmgZsVQAm54xz/qV8kGvp3gdTOzkVL6cUi9xJSV3kLjHjfcSYXKR41740IZTJkrLGVNed5/wSSK3VNK0l+NL11Vrj/HANeEWKWCQu4uXhusDqhDEGpSRd1yIl119b4pyjrmti9BT/F49SCecdVSXpe1e64GRGN0GWOO/pujkplwPQMAQW8wNiihwuYT4/IDlHkjD1HqEF1mZSCJzcOSHHcs02PpByAf1uPi/d7FQmjj44+Cv1gdRHvZT9fdDdDyGRsgQU0+SYJoebyuefczHU1lqVQ4T6wDympMfFFECUlxTGFB83SdkbKqOvr2MmX3uLaS0Zx566qqirGk9+KWm01jIMw/+PrHFf3//a89Oenz4sfoohMo6B8/P7wOv82m/8Ol/+2pt7fvo+85MQAW0Enzza8Pt/4Z9gpcJtw56f9vy056c9P+1rXx9afc8v/n7n93+PR48eEUPglXv3WcwO+chHXsO5wMXlCtu0ODdxcvMmwnl2m4EkQChJlpqsJEJpdDJE7zDaoLQscFdZXAhMLrNoaoIL+OjAGhKRcUzUnS1+KFVF11i0gugDUiuU1kglWK9GYj9R1SUavh9GshCM40TfDwgkdd0QYiaRWa8uiX4gupI6VNmak5t3mM3mVJVgNmuwtUBkEE2LCxIpyiRaTL50fHximiI+SKTSVNcbyXYzorXGVsVPI7hcDHyB7a4vpsAZUroGyAzBJ3xwdF1NTolhGFFSIhRlIzLq2hOhjItfW0cQY4JcFkRr1HUCHRij2W6LP8fkJtxYOiWQOTs74+atu4zTwIvTJ9cdlZrKCu7d/wibfsXp1RUgeXJ2RgLm7YyqbhHK8PT5C05u3iqLPND3O1557VVmswUvzk/ZXWx5//13OVku6doZN49vYI0FqWi6jovNM9brdenaVi3ex2sJg0AZC8C2H9kNI/N5zd27r/C1LGkqi89blKwwZsEqTriQWPWR7vYRk1D83V/++6x2O1S7YD7v+Np336Hf7AhD4GC+5OZiiZo3uOhhDIQs+JGf/Gk2k+Xr4wWb5j6tWfLtd17wuR/79zl7eM7T934T2wcWu69Txa/zx14/4sE7md8965Hmk2wPjhDDlqeqBn3Mx35yyWYy3L3zQzz+R19m+4UfwZlDYht4kY553qzpouJHFofc9Q+YnV8xm1mEtgzrLbrqCFKz6wdOnz+nqTuOjm7w5OkTvv6Nr/K5H/ph3nv0jKgNNgeu3nrKt//67/Nv3vqzxI2m/YkB+9+5R/jtC9arQB8GrFrgiASVCC6gsiAHgZHgYsTFDEoyTZFx3CFTzTQKXIxFUnV9w3khCUnjk6OqBMKNvLK4xRt//5vIEzj41AkyU3yjlEaoIgNJlJSsaBIpClJMDP1ICB5EAZWHDx6gtMHaim9/6y0eP3lCcJ7dbodzDpTENh3d0U20MfQePvXZH6VqLe8+eMTbjx9SNRVeQraWtffM2jnN4pgHz85ZzCpEgMk9ZLV6wZtvv8ds1qG14sXpC5bLGT/6hS9ydHhA12UyMAxD6eRGxXp9xXvvvU1MgTt37pITHB+fYKuKaSpQNoyOw8OaKALr9Zqrq0vu3HuFcey5eeMA5wLb3ciNGx2NFYjST2UaA1VlSNHTduZamuNJEZra0LY14+gIMWCMJmdHShFR6O9aAnMty8sCrf+wowoUk21VzI1Lt9SQs+SDxM1xcOUgTFmL5PXX9d6/7DpDMfNXukg1pIIUoao0zgt2ux1a12glX3a4oUgwShplRKnqGojN9YG7yCyM+UP50TD0nJwcI0WN92W9jLH8XjGk6845GFv8f4pkyOEmaOoZ3axB6dKdB4GMcOPoGGVrtNU0dbnORpdDg0Rgq5rJB0KMJdTgGkitLF9HKvHyEGmMJsR0/fuBEAqtykFht+0xVqONYHIlfRNGck7XkpUIQiCkJoficfPBNa6sJYSA0Rql9LVXUPG0iSkSUqSyhqaxSKkw1941HxwYgg8vX7qE+IE8Zl/f79rz056fPix+0rYCl9n0AwBSiD0//UDwU5kGjFFSI/b8tOenPT/t+Wlf+/rQ63t+8ffkakdzeJ+UDN99vOLwcODNR19itd5xdLAk+Ymbx0dIKQg+Mp8X/4ckAuOwpa01jdVIaZlcJCm43FwiteLg4IhhcOxWE6RcxnMXLf24w+9GWlExW7QoJRinkWF0xAipqtnu1iXmva2wWuEnj3cZUze4EOl3I1pb/DDh+h0HBzOm6Ah4jo8PEeOEyIKsDdPFOavdSNvUhOBQxuCTQAiojCJHT86BEDw3794luyLhcEIilOH87JwqK+YHCx48eA8FhMlx+9495q1ls93y2sdeR9uK+bzIYIxS+LRFa9juBoysGYcRIQJGW7b9tmzw08TTF8/oh4mx9wQCQpVOSHYZmRTL44YXzy8Yes9uGJgvZoQ4cXFxyc3btxHast2suXW8ZNFa3n/6Ljdv36dd3KIyGmUNu2Hi+WpD07Qsl5acMoeLm3RNixCJze4May2vvnoPYyqGYUJrjblzD+cHLq/OioF13fKjP/rj+CnSVJq2NlijiUIhq5q7zX0Ouy2b1Zq6rrm4WqOrmplV8PQ61XdxgJ8vSGEAFJdu4CpsmUuJkzUxZUQUnK0Ts7ufwZsD7OyIj3/qJsc37zKfGa7WF0xZ8PDxGSRPv36Orj3JBbSAS39Bd6vi5PCIb+62/Plf/CXerw85Q7L54is8Tp6bNxuet4Z/ebbmE+nbhO6K9ekBfd2yOvkIItQs1YZn7oSbNlHbkeOg+d2DFvV0S/65H2ORB9b1QKU82yj4yq0j7PZ13nCJ16Xhc0fn/PjuFJc9sWm5Pf8IDx4+5K33vkscEzkIkrKYriWIOb/6W1/m6fM12VqWLy5pf7fnlw7+NNuVg9cdr/17f5zN8xc8/NYj7DCnmRLeJKRI6BSQBDQl7S5Jhc+BQMRqicoBKSFZCyNUSSB9JIfifSSlZPQTVilUkmTZIIXk5rbl7MtXLO4e8c6Lt/Arz7PLnugyfQapMkZn2qqmUpZ+29MuGvppwE8TuHIIxBgqY7Ezg1nMENdJjQrD2fMr1qstjkjTVBy0HVXOnL3/CKk0J92SfjvgxpFFd8zgJqaosJ2ls0vIcHp2yov+KYjM2dmGyzcf0XUzbtw44v33rvgn3/o76AxMAStKUmTbtgxuzc3jI2ZNw+3bt7i6esTjp8/xMtMtWj7++qu89863ee3eXWLsWa+2zNolXVXxrTe+gWpqola0taXtNMbaazPpRI6ZHDy5SQUogbo2VEZhrCVHwTSF0jnVEiEsWtXFZ+ja42pwpbPdzmZUVuOdx2qFFAkfSrLeBxIWKQTBl9S7qqlxIZB8YogOoXTxtSKhhcC5saQWhlhM+qXgarMrBtgxMvYjldV07Yy6aoFykPbu+n6hyGuMMoRIkXpQOuRZcG04rZDSIERmmia0tnStRWVDyjW7cUdKgZREMVSvugK9gJ88lbHlexhPRjKMUzF0FqW7b5ua425GiuVaEDNV2zKOA8ZWvPbRV7m8WqOdJMVAICOkKPCbCvwqVWBVpDJHBIqMLIeuGJEknAuECDIbbG2Z3IBWiawyUxix0mC1oQ+eLDXDMGFVRQiCtrFIkfGTozKacRwZvaObzfAxsN5tqZQka1l8bwhs+y05ZYZ+om6LWTvCMHnPOPV84vX7f2SwsK9/9trz056fPix+2g2O7saS7rIrN19M7PnpB4CfZCBgeLRu+Q9//VX+lz/zDq/P/Z6f9vy056c9P+1rXx9afc8v/p6dZ7y/Ypo8B8sl7z46K2O2URLxyCw4X58Rrs1MEZfXaUeJaXKkWDxKtFIl/ntWXxsjT8TwPkZbamnp6ooxTrgUyVlSmdK9jQ+vUDIjtSDG0lXIwpJzRBKYpjOMUmipyCpjqgohJfP5HFXXyMpi2hbb1nS1Yjdt8FoglKBSlqF3SG0JCdZ9jzIS4aeyMOXMOJbOSl1VSFnx3nvPmVnD4dEBWsiyAOmGSQfWu0sW906I24GjxQGr1RqtBXU758tf/QaL5cG114Wk7VomN+D9RG072nqGUpEsImMoPg7bzZZhmshSoo1B5ogwlt02cXG1QwrNolvw9PlICjXKNNy59QqzTlNbRV1VjN4xhsBxvovI0DQzOp5zeHCD4C/w0ZG8o6saZu2Mi9UFTd2w2VynQF1d0bYN2CVZG842W1KcqOqa7ALD6Qus1eTccnJ8TIieYdwwv/b+SCnSNIYQJsJqR1MLxr4nxcR6tcVqS1N3DH4iptJhM9oibU23nPHi2SMsgnE3MV8ckNCEFHny4oqtOOQj9z/BKkiutldIkZhITN/tmR/MwVRY05Gy5/DkPkkY7h7e4Ly/hJtzwtGcnWq5LQRpGrk1rXCt5WdlxW9965t8/JOv8+LZI5obE89fOLr24zyLdzhvXuP0YsR/8/f4sdfvg2h5Y+X55Kc/z+99421eO3yV839zRPz1B9z5udd49uZD0ukZtxav8uRZD2FOrzRfC4mLtyZu3RJ8Xh9xNWY261Ne/PoD6sMD2qbD+8BqPTKTDU+fvWC5WCDvtLwiG9qHigUReeWoblUc/PwrmJM57/y/fouZv0PKMEmHAoQssJCUwImEVAIXJmKCHDIhJCbnCKn4YQSfiCHTdB3m2u7Cp0zM4GIiASJHoossmiMe/N4Zp9PAu92atu44nUZU79l4RzdrsJVkGi6Yt3Om0XMxPMNHT/aRVluEUOycwyKRRiBkSbi7uFqTtcXUgq5ryiEYWG1GlrMZSRrGyfHo6TPquiKnyItHD9lse6YgXpr2Wlu6pYhMiD1SaowxGGNZr7fElLlz7w7JeUTI3D65yTBN2LpiGHacnZ6ihOHtxy+YJkcIkeVyyfqi55vjdwjO8aXnb/CVf/oG3jlIILJgM/bcvHeXs7MzPvOx1zmctUzzAh5n5xe0sxkxRW5Vy+KlIjNKG5IoSY9JRqyQbLc7dNJoremnHbWuiGNAKkkrKoY4IaaEC8VMX+bipxJDJhOZ3EhVGfrdxG63o65rlgcHXFxeIoSkqmqMEEgBShZo16iX5ugpS8ZxLLIVIsNuRzcrPj7zpQUlridjEtM40bZN8by59tDS0jC5QAgBpQusagVSyGJsv+7xPlDXNdMUkdJde7JohmFgsThgs9lByLjoy34jDEqakpQnQSoJQrHdDnRtR4yJmCaUCnjnr9PxDDFCXTWkFOn7sXiRmWKwH2MkhoCtFVVdMQ4j+Xr/ErpIR2K8PkhIRcolcCGGjNEVUz/Rx13x3FGBqiqG5T4EbGWRKMI40KqKYRzKlFGSpSMfQ/ERCp4cIjKnIvVr22vvNUU/OkIIbLZrYkw0XcOQHDmA0RKZJUeLgz9iXNjXP2vt+WnPTx8WP4UUaCqL0UU50S4PuTj/5p6fvs/8JJRiCpFAojXFJ87luOenPT/t+WnPT/va14dW3/OLvzGBbQ1GB/q4BptJqSw2LjmEFGSREbVhTIkQik7fWEvSksE5pJRYrRmTw7mRmALBB5q6QSToR9huV2AyumnI2TJuM2Y2IXWJt48hkElIo0gxo4ymsjWq0jRNgzUan2EYRnxwpF3P+XqF94HGVkyxI+8y0kqyT0ifqGVESVO+ptZkkYiypP7UsvjeKGPLaDGSKUQGVzoU04tTphy4uNxAVJgbC87XV3R1BZPn8fNzDg6OuNie8+TxU2bLJe89P6ftFhhjSKcbUobaWsJ0ichXWCNpFxVJX5trC0s0JRnv6uISkeHiaiCLuqT+CXh+9oKkAsv5AkMGCY+eXLGcN6zOdxwcLRE6U9WWcXBcSIupLI9Or7jaDmQZkSnSqox3E4MbeP7iHKkMwzgxTY7HT59z1Rdz4d12i7EWJSWHR4ek2HN0eEhVzWhsg7WSO3cOSqCeNpjZnMv1mhvLOcezmvcfvkeIkbaZoWxZ/Lf9yJTgpFsCcLXZ8PTsgtfu3+SNb36FezcPCSLz4PkzxqQ5ODnBLhd89PhjhJRIQlN3M+ZtzeHRMf4Enp++4Or5JRdnV1ytL6lbTXdzyWO2XG7O+Mmf/mP842+/y9e25/zlP/0v8x/98v+TX/ihn6DfjPyDp09Z3rrN+faS4ae/wOpTn+SNf/AP+bM/8hP8ZkxsZMstA+KVAzhbMx0ZfBj53E3D7Y82XMVnHOr7/Kc/+iqr2TE/++MDn/vNt1k//DJfqhT1Z36S33z3lM3TxINniWf37rGWh3z36VvkoyN8tWR0go0befT+I07u3OXdt97h5OiY3aVDGEn99Ax+5wXH7jVuHh6w+pTk6Iv3cb/zADXNaXLHuk60VOx6T/QJYTRSanzyDG4EIUg+4V1gNa0JTUB2CdW1hBTw24E2T+ixmFITAkYaZFbFX4OI1RoB3JVzHj0cGO7AaX9FEIE7B0cMm4zLkYvzS2IMnK5WOBfZRUFIASMkV3FXktu0xESQ0TBNgbaqqedLpujIQhICTH0PKbHeXXLWWoLzSCEYxx1u6kkpEEORZOTMtUG9xoWRlCkyB60RArQ1bLYrtNJ45wihx2hDjnBxdUXMEK49PwSZQE+OkboyqMZQVU2Rm/iJ+/df5+rqgs3VisXcsl2vkSmyqA2bzYaz01O+/Du/w0deuc/rr3+S0XkWBwt+/KfustttaOqqJOCpYorsnEMIwTgGtpsNx8eH5ZlK4KeM8yN11bDpe4IPCKnYXF1itS6yk5ghZ4IvLwKkVPgQCTGxPDjAaM1u12OMYdP3rLblM44+0NQVSkpWV1fXch2IMdP3O4QQzBcd/W7H8+fPmM1Kx7+ddczmC7bbLV3XYbZbvPccHR4xnzXXJt9gjeXhw4e88+67tG2HtTW3b93i8nJD8JGLiws+/yOfRynNan2JVgqQnJ2d03Vz/DQRRo/Q5cWCmxyVsfjoilRDacJ2YvIRCcjoXv7u2tbIDGM/UBmNyIlMprI1aRjIsTiYGa2ZpommqWmapsBsTKSUgZLMeXS4LIDpEy6BcwnvJoL3WGvwk0MriakrpuCorGV1teJ8veL+ndtoLbFVkQtdXJ1x+/YtpNastxvOXpwRQuDBe55+t8NYy9VqzeMnz7hxfMLkR1KObLZblgcLPvaxj7G62rBcHHP39l3efv8BN04++0dDCvv656o9P+356cPip25+xGq15mpznWYMe376AeCntq9oaHilyfzVX/zONT8J9vy056c9P+35aV/7+rDqe37x1293bNYT2kKMHiUtOUviGIkh0rQNtm7wbsDWFabtWB4dM4494zCwOGwAyDFjbEsSiZQkZt4RJ18MOY2itjM8E2MoUe22rYl5hZsSOUm0rNDK4kdPSB4mwemLS5bLJaP3gKOpK7SqOLl1kxgD49RjK40UlPHsCP3OMZsfMIw9GIM2lK70OCI1xJwxRrHLkaqSODeRYsb5RFU1TC7Qzpd0i4ZlZXjloy2PHjxmmCQ3Fwt2w5aUPabVPL7cYbXi+LWPo7XBuEDMIKuKplLlmumKu0cHzLuafrdh10/0YwDAk7narJAIuu4QlOfOq68x7jxGCKLfoWXFdkoYZaiqiq6tqW+fEEPg3v0GKTPBj8TJIceMyZZpyGzcwOADiTIe3d1YomaGnR84vCFwISCEZhhHXv/Ep2hU8ado6ppuNiOlWLpGbceLF88ZdhNnp5dA4MnjxxzMlkShWF942qbhqt9xdnHK/Y++ztnVmhenl2y3O9qmQeZMRiPO1uXmrGccHN1ks7qg6q/4mR/+JMtacf/uKxye3CYqQe8GXmwC33i+xvkGoytOX6x59PiKNWPpiGXJyckh91+9gxeZ5qbk/be/xo3H7yO++Q2OH1zyF/77/wPevNogDo75iY+/zq/97m/w8599nTe+822+8f4f0M/u8jd/9Xf5pZsf4ffNkhdRcDxb8Ne+8SU+srzFRdfzxY/M+InpFt/JA8dHM+6o13hyOfLTH53zq2+9xxc+e5P5b/1d/twm8e8cHfGPvvIG5lNf5J/evMeTF2e8+7hnzQI+9hG2ZzuUslRNQyUVn/zMAcM08elP3uTsyQtyzLx6ckT/X/8un3a3MChO8zmv/exPI87XnH39OTfzCRutiDly0fdYM8MNEzoLlBIkF6m1YTVtiMFDK7Gv1FyIMzZpRVUvMVpiFlANCX9epAdbsUXIiO8pB1YJfvSo5BEicjBJDneC3WFGbLZ8/dkT5otDyMVg3tqKYRiQWmARGKUxUpLHCaMyqpJYqRhjZjZvMLI8Izk5yOX3yT4ggIPZnEenj4sxcwhIlahrg5ASKTXa2OIHlRJKF8NkSUkXG71DK0UIxZ8qhkDT1BCKOXJdNcSUyUKSBCgB1hq2ux2kRBaGfrthe7UqSXAi8eDJw+subUatJbUxSCRaSaSGe8d32O3W9DLz1e++ybxb8t6jB8Q4sZi37C4vmC/mNG3Dg4cPuXlyQjeboaQmhMD5i3OObx5xtdrQdDVn5yuGoXhsSSXRUtFWll3fM7oRrYpZ8fnpeZFppMDkPavVitOzU6ytuDw7x6eAMJrGVozjyNCPaFUSR10OL5P6Km05PDhECsnVsKFramZdRxATT56+SfQeUVWM00TKib7vSSlT1zWzSmGNYrfdcnFxgda6JC1OE8Pk6bqWg4MyzeNdYHCOi6sdR8s5N48PMVZyfnkOQhAmSdM0ZCkK3OeMNQalFbOZJ+TExdWKe3fvstpukBQD/7puGYaRurY0TY0bR6QQ1FVFkOll6mDx9Sn+ZqvV+mVaZ8oZhIKcqSrD2dkFk5uIIXC23rHb7vDjB11xeP78GauLFT4nDo8OaGzNe+++izKaq+2amBKTG7hx44izywuauqWxFRpJiAF7LdsKIQAF0NfbHucjSIFtDE3bMY2Zf/LbX2IKmbPzP6CfBqpW85M/vgfXH4Ta89Oenz4sfhrOL5Gi8BPAbrva89MPAD+5q4ngBkgNfjrmICes2fPTnp/2/LTnp33t68Or7/nFX6NbMg0hBYSEjEQbS2ss5EzOgpxAyQKku11ks96UMVuhyDlTNxVSK1JIZJkRJWUbaQJkSDkSpUJKTWUEOQlaq5jGlsooYoDJBXzIWNvi/WMqW7+Mrk9ZIJViGBIpRvzkidFTN2Uhn6YRozUxCpJU9NMVeLhwW1J2pBBx3pEBpKBpW3KMaC1I2aOlIoSS0jT6ibPLDSpDViWhLseIFQuiBFtb2qZmmhJSdUwxsT3rsUax2WyQ1hJiwk8TMgu0snxHPGI+N0hESUgSEkQmlQgkjFQMfU9Whofvvo0Wkq6t6FqLwKPrBiEl3idOLzZIoTDG8PDpmvmsYTGrISnkB2lQw5bawOB2kAN+gkdPR1w0XG3Hl+ay2hQj8TJxIJjGCR9KCmBKxaA1+6HIECZHUy+obI13mhfZk+KIAK6uNsQQuLq85I3vPqJbHLAdAxGB7TMiheJRdFVe/F2tBs7Or3BPv85PfvxVPv/KKxghCLuRi6u32Uw9ola0t1/hyYN3uYgH+KioTEPIivZGR5IakcDFifXmijM3sYwQvvImn3z6mOXDh/z4K6/xjf/yP2f6M/89/qW7r/ONL32Vp+PI527c5sZbD3l7gObjd1k+ueQTX/gIv392yfL2Z3nr21/idrXjZ378o/yf/s7vsbi0fPGjd+m8o7FHDLXi4XjOL8yPuawzv+MC/+5f/J/wjf/wr/BTT57zJ+tjTo4841EkD7d4np/zcLuhdgseToEoN8xjpBaGcbfFOce8GzEo6nnN7vFz5pcCk2dw0nDwqQUHZs7Tdx4Qt5YXF2vUoiOTQBpcCFR1g0SwHdaICs77C17kFYtFTaoTj90lYSFQuiJOE8M4UUsLSbIo5wietRdke86BX9KqipQSWmpEyiVdbQD7YA3Bo+uK2fIWu12P1ZoYMjE56maG844b846QMmHy6LpGKhjcxCZM6LqiqitEzIQs0MJgr2UCvfeE4BlWA1JqDg8WTMOIkJGYHGSoqgrvoDIHgCiytmujZrJDWQk5FlmUMeRYfFWqtkMKUcztAa0FVmrq2uKDp6kalFGInFDG0syqaw8YQ20WKG1QWdDUTZGV5UgSCR8j68FhqjmOQNVqpKkQMfDNb5Xkxqq2gCCk0rW9cXKM1pq7d29itabfbpjPO/ppQBmNCpbgy/r51rffpGlqFvMFQ3RUbYut6iIDERC9J2VYb3p0bcF2YC3dsSnrV04oKZkvjxGidHe3u4FsoW1q3Dgx7gaE7dhsdoSsGKJkdb4iuFOMUlTaoILj4OAQgPnBTfrrlLTROaSpaBYtd2c3gMw4Dsy0JkvFOPacri/QRiOk4Jd/9R9iRMXBokOSkFIQSYScUKqmmxUPK600i7ZjuVjgXJH0xZzZDSOvfvQ+q6dXjP2Wo4Mb5Bxp2/LvNpsNRhfZzxQiLg5luiEErLVIoRBCkZLA+0SmJOv1w5bVaoUgcX5xjvMj4zih65qyOQrSdkWIBTbztVn0dx4+xgqJTJnFrOF4tkBqSUoeazXLG8doXeGmgNWauqpLYh/FILxtKvphx11dsd0O7MaR1XbkcnVGiJKqrhlGTz0/wc4jtv4g/W5f3+/a89Oenz4sfvJDT1U1XK1KuMeL977Lz39iz0/fb35Ki4ZgAm+85/kr/9lP8X/5b/0+P3LL7/lpz097ftrz07729aHV9/ziTyhPvE6tCjEjlCLkQM6lB6SVYXJj2QwIBBEwlUJnSaUrovMIPkghCggpCbFseuMwIYUiA24SpSMlwU8Tvh5xbiSlTNt1aAP9sGL0gRi3nD0/RckKhKVuZkgpaWdzxnHC+4AUmavtCtvUCGUY+oiUEp8nhInInDHW4IZi6mnqmnwNwD5mhFRoI5B4QgiEFAhTBNuwHSGMAaEVMTlkDoR0hbQKNQrMJTSmRmlNSoqMwIeExhBcwnkPiZLiJCqkDsQU2fY92nZM0SGVpGtr4jSy3e7wbkJrRVs1RDKX/chZPxBSZJguEDlTaY3VhjiVLl6WuSQuTYGmbdmOG1wYqI0h+gxJoK3GpcDoU9mkhSwR825ECJCyQCqypCB5H9HalEQ8BEFPCOFBJsbTDTFojLHUVkOYyG6ktoaMIglJ3q3pt9DHRECWKQMyIjmOUwbAJ4H3kc3zx9z56A/RR08ms5zN0Dnz1jff5dGLp/zIzxzTVDMqFvgh4IQCbZkuHMkIgpHIWvHO6WM2TcXX3n3Kz9QL0viM50Fz4+d+gfzZz/PdG7eZEzHPAp9e3uehzryXe5bVjFubif/Pm7/Pr736Qxy9/imu3Ibnq/f55L0OsXqAXj/m8O6fwElfvFxIGA3aFRPy128c8+6Y+er8Hp/6oR/jxZtfYfb4fT754Cvc/61f5d/+X/wl/oPfXfKffPs5vzh3aNFhRMdq09OrCYJHSMF2O5IHz2dfuc3FP/k2nxvuUoeGODM0Hzvh7OEFfpWIk4VGkZNHCwlOQgUpOXZuwiwN7zz/Lk5NmI8fsut3ZDwShckSuQGvIlJbKtMhRs0QywTF6mBkWK4RQWGEQEweGUsnWEXH7OCQ5La8+fRbvKUGct2WzVkbrNJUtmJKA03T4NPA6AMpJGzTgsxoq7HRkDVsxgviOLJb9+x2AweLBT5mYpJIY1FVS3ID05AwskZZQcrh2h9ZoSVw7bEipIGcyCTabkFj5yACZI8S0M5aYki45BinkcWNQ0hFopJTot/uEEoTssBNCSES2tRMITFMHp0hhEBKRQq96x1dU0HyuOiQSpNTxG99MUYeJlJ37TnioKlqNtvIOA0IKdH1EU8vRrQxPHjxGJVBpMR2+w7NrKHqGqZpS11ZqqpCHx0zZXi46Wm04Wq3oR9PqeqarqlQIhNCZHIRFRIuBhATmYwSkhwCyfvSAZaarDQhgVCJp09flM83C3ZqIqfS0d2MAy5HZG1wStILaHxg+/Q5wziWzSNnUs7l89AVxkjIASWgqi2H3YLJeWyjOTCa45Njqqri6OAAkz1T3zP2I6DYDBNRSMZQJDyr1YrsJvq+58XpKcGPZCFZ73YcHh/xt/6Lvwk5seg63nn3HWrbcnF5ifee119/nVdeeYXFfEnXtRitIWceP3qIDwFtLDGUZLf1Zk1TN4QQePjgATduHHF+ecbJzRN65xjGgWFzSQiJs7ML1psdCEE767h56z6bcUDUFbOm4/bhEcM0YEyLNRqli7QzuIh3mZwzO5cY40S/29HNZsQYeXR6xtnlOWSDNmWaot9ti8dT1aD6AEGxWq2ojcTaPxJG2NcfQe35ac9PHxY/WSUYxkC9GPiz/+3fQo7f4s6N+3t++j7z0y44xmrD6qCsCVs74E3a89Oen/b8tOenfe3rQ6vv+cUflPh4QcYoBVqSlUAkQY6BmAIpOFRWKJepTUVOAlkrnAjo2jD1DiMMJENyHt1YAolaSEQWCKUQShdAFgLbJiYfUXqOFI4xeay0LA/voQQoJEfLnhAdzk2EkDC6QguJ1oaQMzkJTLVACoMbdygtSBlSENRSE6YJHyeausMrGKeRVmqqXMA8ykT0gRg8dV2ja0MKkewjLniqWYlDb/WMuqohRJIAZC6LmXeI4NBZUluDmwZ0pZg1Df3Fjhw9SUd2fsO0nVBKMe9mDONEyBI/7Fifrsg5suk3VLWl1hNZaKS2OF86x6TEjWZBCJkYMhJNsgZhA10qCUWNtky7K5QQdKaFOFC3Hcq2kDxm3CF8oqkEUkayzqhaIoUiTo62qrHKMDmHNgJblXsipYjzhqZqydlxc2aZXCAjyS5AbRh1ZkyRcdyilCRlR/Q92lTE6AlZMDiHkeBjGWUY4pYX33jIz907oQ0SMSbqRnF+ecob33mbr37jLf7Yz/wJnl+u2HqHyA4tMsFIkuuxdU2WPcOgqK1ht3rOvPs47z5YY37qMzx1ay6nc76T4EtPHaPONHcP+fr4HjdOlvx8e5un0nIwn+POHzC8qPAfeQ3hBevdd/jO83f44mf+ON/abljfX7CeSe5MFT2Cgyx4lK64NRzyN/o1P3U4QwnB0xFO/uTPsfny1/jM7JiLG/e4/aO/yOM7r/If/1uv8Xe+9C3+1m99iz95u6PxPXWl0HJEmxYlE0ezJeNuxdl77/DKtxs6WjZ3Aq+ezMhuxA1AL0pKlhSkIEjJIzWYqmK7jWgduTo/Z9SO/v5IHE5phWXMEZ8Dh6kCFO/7HbOuRg+OW9UBuSrLhZwyV80KeTchngRe4S4qO5LfQe3RP3GT1a98h4/duMnyXsVzF7BS0bQtSimssRhluDy/YNj2NNYQW8GYAlbW+F1kDCNaF18ScsWNo47DZWTynrmui02LUvR+YGY7tFJYWRLFogdPpJ3NcJNDK4OxlpiKoXEiI4Uk+MQUI5W2eO/JKSK0ZBVKCuK0nQijQ+ZIVUFjG6Q2RDcSyVSzFqQAN9FWLVprQsxkJM4FdpttOTiGiFSSRGKsEt712GFdEhUfnbNcLhEq49PAlByz5QE5Z/rdBBi2g8dWhskn2rpl3tboSjNfdui0ZHIDQkhSSjRVS4gKWzXIyiPbBlkZnp1eoqSl0hqpi89WSJntOCKEomsabDagLHa2IAm42q7ZTT1dNUNUc5rW4mMkCQO5yDmO6qbIdpBkKfCpGOurFOliIo4j9bzBtjXz+SESxcXFKdX1odf5QD+BrTpmrWa7W/Hk6YrNrnjuLCqJkQIRQkmxU7AZenIwhJRRVVUkKNZghEDbCu8CQljWlzukMlT1gqfnV9RNhZcTdjHDAm8/fsg333yLy4sNlZ0RfMQo+Mirt7BWgoJMopmVdVUpwWLecPPuLUROVJXlybOn2Kpmtjxk0QqG3cB8MeeVV+4zTB5hDP7igpwXmKrjarvj9PwCYy0+rUA25MkTpoGcE61dMPSBy83I+dWa2WKGv5bcvTjd0h3eYBcyQYBMHiNmSFkjZUWKgVlTc/Noies3KOIfJSvs65+r9vy056cPh59gRp966jZyr/0Vfu5eveenHwB+utQOnwRyKo3ti5MrznPc89Oen/b8tOenfe3rQ6vv+cVfTBTTT6FxISKzQkhFjtB0LVpBmgXGYYQEUpmScLX1JBI+e0SWJDHQVBohNbvBMQaHkgItQBEIU0+mwBIItJBkURaN2takAGM/opWALIHrrrKtyaIYjxIcmowUGaEkKUy0TYUIlIQjpck5Et2AQpSOVAjklGiNRsmMSxOejKAiR0mKgmE3kXwsUe7JI7VA65qYM947hr5nGFeM40BtK5q6Q0tbOmxak7Pgaj2VrlW4YDabkZNmGotnRowCP3qm/hIfS3e4UprKGKRUdO2MyTvGrEAppmHAVoacPYLM6eUTjFYlNn4ohrraVsQsyCmTVSCIiDSCLBMiS8bR43drai2ojaYxYIQhOo+fIlIpMpHOtoybkVBJpLIIJfEhkpMix0xKns12pK4bxrWnsi0og21BG0MrM+M0cnxUunbzrkMIiXeZzW6HrSvquiaJQDMUL7nbx0f87hv/lE/8ws8zbtZcnF0yBMfFdsvv/9Ovcffua5xe7kihQdY3SFODcyO9c2g0u/GSkMaSWqU0MU2cnj5H3L3L1C15JyTs8THrx49ol/f4N45n/PL730LdvYtenLDeTEQpaRY3+Nu//A26+5/gXCl+X91gdypxtWRqKh6Pl3z6k/foNj0bVXNPd9g684XdIX8v9qxE4DsusqxrfmdTc/vnfpbX3voO/+DXf5vDP/mn+eadL9JvVuxmLbe/8Bl+4taCX/2Vf8xPzg+5vdpha1sskbcj2+2Gm40lPFhzIBdIY+nmHaqriCKTvce5ERDkZAgBcjZIXbxAghVs/JrzfEU40KzTRJdqzFRTZ0uSHis9kwrcNDWjzwSnePrkjPmuGJNrrTleSYwH18E5l8zznFEKbtydEy+2qI1kNmt572KHaWfIFOhXW3Z9z9D3WFthlSLGgX41EaVAKIOWBpElSEUiY41GGFVS1mIEipGvFBIhBW3VkELAIBm2W7quIhHL4Sv3CBERUuBjxKdUfFwUkCIqC4yM1LUBJZmmHcN2JImIVAJtaqpZR0qZmCZ6JzAIlO7QRqOUZnATtVwQQ0BnjSQjhOH2zSPG44mYPEaCipHoPW4K6OUSUWWM0OSY2e12+BgYnSen4rnV1g1+mKjrmkU3px93VFVLiAlJ8b4ZnUM6j9bXUhM0o89kodlOE1VjkUowTo7l4RFNPcftJpbtjIBH6kxMAecdPgRMVfy/QoxsdztsV2HnNa5P1K1l9ANWFl8ZIRTtrOFoeUCcHDEG1tsN87YG0yEyGCkpdt5lOufJkyfMZzO2/YZYVzgf2PUjZIna7Xj77YuS/Nk2aGORxpLbjilG2oWFnLhx4wY3yYTNmt45fM746OnaGi0FPnrU4JktFSk5QshIpahnB2QiKSbGYUcMkcpWfPzjH6GbFXPstm1RAqZ+S4iJyWcePHrE1bM1KRmsMbz1nbeRppibHx4s0KbCBcHF6ZowjcgskDEz7Z5hqordMKCvp1hCXFF3HRu3Q+aB1tzk4txTW40bZVm3GZmmARc89XyGpxwuoh+p2hnjmFntBqpKoUUmZcXy4ACZJZObcN7z9nvvk/1ATuGPHBj29c9We37a89OHxU++z9S2oxEL/s7v7fg3/n2N5/men77P/ORay/pQl8kowK7B3dnz056f9vy056d97evDq+/9xR+eaZpejhtXpjy9WYJIERcGjJFIGWi6OSkFGqMQEciZcRyJuXR+xzEiRI1UdfGM8a6kYylJjpkci8eMUprKaia5Ifie1lokluAyRisimRAnYg5FRoEmZEVNQitNSEWWIkisV+dUVUW+/nkqaxFCEkOALMiCkuRkyveMRrCZBowucO77qWxAVuKdo5GAyPSXL3DeM+9miOAxdYVSikoodM7klKibGi8Vg0ssDm8ikHg34uOEkgKjFNZmtFbl39oKoSTKWPw4YI2iriuc9yhrEapMxI2TY5gGYvT0uy2pmWMUBD9gtMZ5SFnTpIiUEHNAC1G6WzmSVYVQikyZRCAJlMj4LMn1ghQ9WZZu+IQmGVDKkMr2jBIGWxuiH1nMKgSSafQctAuGKSCUQcqE955pGMgJhu0OKWDoHYv5AbPZgphVkQH5hCMQlQRg9/wpn/34PV559Zgvf+khZ5st7z455StvvEVla8yLS/ykOfj0q2yCoh8SVbugqiTCCwKeyICSHj9dMoXIudty6/5neeYPeHLvRzn6dMX8xjGPHz7CugvOHj3hh37pZ3jr+WPuCUHfHbI+u2B88xH3fuaHcU4yyYBplvjmFr+929HOKg6B57vnHN044cIHgtvxLkveypdE2XISK2KVybHmzVXP0Y9/jq/+w9/ih9URp1c9rYYvj9AcZJLZ8Lk/9eM8/+aXOXCeYYIuJRZ6ziS23HSC6X1HnStEY2m6mmAVo59QYwSRkUIDAgQkIUhCEnJmI7es5IZ+HvDLYjDf+Zqb6RCxVqynS9Ii4Rceckb2oNYKewUnsXh7ZKdwiwa5q2AlyUMmq55qllnevclXf+1LHLd3iTjmtWEUCpcT0XuUUMznS7IAJQRx2tHNaiKZzbYnpIlZO8dYTdt2hBgZhgEhFcooUkxoa4k+EqZAt1wQr82BbdVgq4rRTdS2YnITxnRk0UCG5aIj5YgLI8pkurnF1BajFU/efb+M/FPWnozAWvAxYasaIyticCQy/biFSTCbzxA5shs9TVXho0OkjFXQWslBNUNZyaNH73OxvkIZja4sPkekN4x5pDKabCTadgidIQoaq5ApcTQ7wgdfIKaaQRZIrdBG4UJE5IwOIBBIUzG64mMyDFuUyLS2Zhp2hAjeeU6fP8IqS78dSHHE1oLDG0sWs4azyysudz2CoRzkhWA2WxKCJ7pAvyvm17thoLIZpQwPH5zyvn+CFoKmrogpMvlTcoRuPsNYS13VGKUJkyNEzXYbgJooamyjaJcGLRUyZw4OjhlHj9KS7bhheTBHycxmt+Vqt8Mqxe69hzS2ou83+JQQVhNzZAwOLSVN15G1wKUEQlDPa5pqRsoeUqKuKkgZq4oXmIvw/MWGEC/IKbK+WrNb74hZ0juHNAKtFdM0cfvmIYfHhsvzDV1TcefmEavVim4+5/adu2zGns1qxbjr2W1WVLMDdPL0O0Hwnn6YSGcDWYCpFZvtC148f86Nw0NydtRNgw8Obcq9P02JYRwIIdBWLW6MuGmitTVCZoZ+x2y2ZH15CSkhtCppetaia8Pi2sNnX9//2vPTnp8+LH5CWcI4cfHuFV95839GNv8lm81be376PvPTMQvw5zzLhW+jtdBPe37a89Oen/b8tK99fWj1Pb/4s5VEKoGUhmmYOD9fI4VAJkPGMU4rBJFpnNhuRqLKtF1NdoEcI957dFVR1ZbGNig6oqgJgJICKQLKQtVaFAqyJPrENG1AQtdUXJ6f4YbMfH6ICwqpBUpJurpDKoVzCecT2Vh655i8R+ri8TIMAy7KEiUuIiEGYireDLaqmcKE1YZqVFyOI1gFleViHCBGWmuJOZODR0rDxtrS4V7eoBEZnxPGGJQP1K3E5ITRkiwzUUtyFthljRsz2ljQC4TOTP2OCom1hpg8znmEgNFPGBGpW0MKjnfee4+um2Oqir7fklLCTYnJB7yLRfKBorYQw8Q0TqRkAIkQE1JkJucBjTSaEAQxJ3x2pBSRtsJUHW0n6YUkyIrGKFKIKKUI3lN3LX7cMU0DQhl2YzH0Jkf6oUVJRYyZ1WZCGAlClO5pzrRVBSlhraW2BttY+mFg+2JHSrkcKhCMY896VcI9FnHiT/65X+Cd976BUJrNbuC777xHZVt0lOyeX/Kp+58iz5eknaBddITkcdOEyRpjW7RQ3H9tyX/1d/8po56xjopbh/d5MzmemkNs0JiN4u6NT/NrF5KTL/4ZXGhx257+xVNmXcOb337OuLtCvvZRFBYjz1i5F8gbP8wQK7zznJgjLlaO95uJV5qWk07xK989RyTDnWqG1IqH3/0aH7v1SR5fKR59+iexf/k+f/foJj+qDIPUXCXF+U7h8g3MYmK8a3jv6WM+c/xJZkNkd9oTdY8dM8tNixE1dIaoElNKxJiRIRX/EJHIRLIMZBHxCIQ2rKYr9Eyx63uQGTlKbNbETSBceiaZiUvBpfRIYTiYLFffOuW19lX8RTELv3l6xHbRMB46dAW7pz0232E2VXz3K+9yt73NIGvGcctca0yluUyZrm1QStHNZ4zTiNIKFY/xITBbLtDaMPYTIivW2zUxRhrVcO/ePc4vr4gxopRExgy1wKVMTAlra5LJaGvIZGa6xZoKBoeUipRASUVOkqZpmesF3o+E6NhuepTMzI6OyFmw7nuqZs7BomPoB7arLSl4+mFH1TW0XUvV1gQfqGxV0soqR1vX5fAXIzJLVusLwuTp2jn9OpFSxzhkRFBYacGBUAKvE9bOiBFyElQzTVVbNBmVElXXMoSJRbtgs92W51mBMiBkQiSP9xHvAi8uLujaCYRAyYg7dUgpqZuG+cGSzCUxTGA8xHLPPHn2ghgiLoKuuzJxMjlqbRn6kaHvUdUcKcpaWbUdZMgp03WzIuPzHp9AoKjrGUJI6q7Dxch6cmyuLlh0M2Q29KMgZUPceLzfIZUk55GmEhhREyO44JktWq7WO2orqOoGlEZEqGtNZypMMyMhGL0vLz2kIJJ58vwSPwVms46DRcNunBjGNeM4YrRhOVMkH5BM1LbGi0zWGqUyQig+dusTpKjL2jRtmM1nZKGZtUsqoxmHFZ/9zIy2rlldXVJXDU+ePuPi4orzyWGUYjGbkauWjYtIU3HjqMY7z6xThOgRWqCt4dVbr9D9yOcZ+i0peV6cvUCZjuO797lY95yeXvLJ1z+BINNvR/r1QD/scGFCGolYzDHWEFxgtdsSY2A2X+KdI6fAZrf9oyeGff0z1Z6f9vz0YfHT4OBWF7l/8ylf/9t/jauzb7De89P3nZ/c8x235jVX0w0AnPUMN/s9P+35ac9Pe37a174+tPqeX/y9eH6KNoaUBG4qCW2SjFYVOSeW3QFKSWLrOTkSmGbG5BPWVOSc8d4jRCb6kegnQoD5oiUrXbrGKRFyJAXB6CZEFljTULcdLhRpykc/+joxSHaDIwuQWTC5nt1uR0oJkRVCaoaUiIBt58RUzI8PTm5dp04Vg+l5Nae2FWEqnjI6RiQCnQVN3SK1JhvBrJ1QUqJQeD9BskAmJoESJWFP5AhK4MYBnGTle6SIpOTIKhPJmJRRQhFiJqTM4DxRihJTnyMQCT4gkLSzJcMwUTcV07Rlt9vQtS1ZaqarFZVVjMOI1RYjNdJqUhYIMTK6iRSmaz8hA4z0ChCKJARGa6TSeASNlnSqGKP6IXF2sSJIhzKSMEWM1KQQMabCtg1OJFQFbdcQYqKqGhpbIYRgGiLeeY6Oljg3MoYBU2na4xsFbhOkGBlGh64su3FAKEnXzAg+kFPAuUBbVcy7GoA7reTmwvLg4cgffO07PHz0BJElse+RPvGTn/8x/qUv/ji/tokoo5ECrNHolPHrEUWFC3B6eoawNae7TDo5Yl0b1lfP+MTRAtvNeIvImV3wcZP5eOWJm4d8QiXu7CSPRU2/jdTtMZ+qFLFKvPtMQn/AzdcO+Wx3wtYEaiz3FooxWs6vJh5erLlA453kbuX55jfeZ+FW/MRdyW95z9uryO7gNpNo+bY4Y+5m1EwgDBfqVab8gKOP3GHz1vt4zrl78gnycccnPnnC7/yv/u/8VHoVpMIcVMhZRcqC3AdGL5FCknMgiwQqgQw4kdm5kdxkhn5ECM3oJg7ljNlgyNuJumqRdccuRmZTA8kgX3huH94lNQ2L2W34HahtxZ3LBafrDevbnupG4uJ8jfZLrKgJMZMMNFrRTROncWJQEpUEw3rLarspZurDgELh3ESMD6mqqkhQELRdjQ+B9XoDQEbQdi3eeypdIShd8Cl4lBAIJClz7QUDJJi1c7QKZHpS0lR1jZsifopoXUGy3Dw5Yttv0AgQkmUzZ9z27HZbZk1NmixNVWNODpi8wrkiQ9eqwg+eNAWMrVhf9VhjiCGVBDWhMW3DOg/YZYsOiQVF6mKtIuaJdjanHweMyex2PbPZginDanVKpQwqZUbvCCLz6METum7O0fENUg4kF2gqRd01pJQJWbK8cUJOCVMZZI5Yo+l3O/p+5PTsDIQkYhg2gRQVoFHSMusW4Ad2u3N2mx0pRfpdfy3Lkwi9oaoquq5j4xzDMCKEQAoDCLTW17AsUUlR68z2ck1KGSEFMmfWmzVZRKqqZpomUk7UlQGRMcbgo2AKPUoZshRcrNZkKclK4VzPwXJJv+3JYSzp0mkgxQwIUhZ4MrYyaNmhG02McLmORO8wyqBUR2UahqCRssIoxTZ4tG2omo4UAtvtlidvneFcImUJErZvP0YaC/kpWoEQAecc5MjBYsHR0RFG3+BsdYmQDTEU6Z3WkhAnbG1pxI7GWrRQ3L51h5QVY8y89fiC58+/jSBjjSAJsDbz3SdfLybxtuW3fut3URLWV1u0NBAdTVv84baTx2iJFRlhynO3vrpg1/dIAbU1f1ScsK9/ztrz056fPix+qiqF2D3gtbna89MPED8dHR4wTlvqiwoA+9SyvhH2/LTnpz0/7flpX/v60Op7fvG3nN8gJkoHqE5IAVoKXKKYF0cBKOpWIYjknInB4w24WMxZVc5IYanrjpQDITmyLHKSFDI2twgSjTKknAgThOhARraTYxompKqJUpNkRvgEZKSSSJGRCIzSSGPIQpKyoKprhEikENBSMcaRFD2bcc2AQqNQWqOtIgrJbgpIFMIplJXUemK7ndjtSlR50zW4aURkAzEjc4GlLCI+OmLIRJGZvMN5T9N2CCQuFijLKWKFxlY1KRX5R5SeYbclZ0HMsO0dOWliMig948bJnBwT4xRJ0bLeRqzuCCnjgwOlUMYgo0LKjqo5KKa4SITUkCSZjBAgZPkTqQguElNAKkE167CqIsgJ5IQRxatGCs0wTkVqEAMiSoQsPj1KSpwvchulM0qCUZHZwRxbHeHChJtGkrzeYIQhN4p+cti6ISfwIZEiWG0RSRCDJ8biJTevYbs9582HT/n2w+dU2hKyw8rEvZNDjpcd29UldXPC3Rsn7LaB1eaM1XbNsp5htGe2OODJ2VucrdeYG68jT4559+E3Wa832I9+GlEfsFk/4/aNyOVq5LRd03rLxrf8zReP+NQrM558/UsYv+VTx4d87e23OKzv0x8c0dkFBk1nl1yut6ChFpFUadTphjrP2ex6Hj713BwSB81H+JWvnnH4qROWNtA0lno7csvOeT4Kbh5K+lWRc5zuVrT2nI/97Gd461d/m0XfMfUStX7E4kyiJ0FuZHmCK43KEuklTitEDuQIOQHKkIXCx8BVvKLHEQePXTZMYsAkgxvKM6RmFdYE8DW6N9S6w+eeSUSMARuuPS98xoiKeRToy4lcjXjb46JGRo1qBXWOdDFzfjWx7iKDFBglEbHcfxJoqxapG9pZIkeHEJkQAsZYjNE4H9BaM5vNCCEUA+mcr6c7BFZVNPWSFALCZ7RSCJ0RMpFzZNxdMflUTLpFKuuHKIfFnCbcKDh7/rxMytiKjKQ7OOBHP34HbQTbXc/QVJyfXTH6iLWaqi2TGDklcqNIuaTTHc0XTM5hTIvSlqurDcN2h6kMVWNRrSCliUVXsehaJIYpJBaHx1irkDKz26wYp8TMHqKyRCRBkoKtc9y98wrOlYmWnAOKgEuO3q1wPrLtx2tj7AxkrBYoBJPzaGXYjgMYfb1mJUIKGGMIMXG5lggh8DHggkOp8mwvbyy5eXTM5AcygtV6yzCMjM6hjUHSI6VGSssweZwL1HXDYDQyQ76+X4bosLOOSjbshoBA01QVIicUGaPqkmynBU1TfF12/UhV10y7AZESQ8gE71BWs+tXdJ1BkBnHCVL5+cdhLF3/usHWDVWjkCwZ+wGkZdNnUhyp65r15pzgHZMb8cFT6YaumYOQTCERg6NtambLA0bnUVojVfn3y7qDFIkx8vjB05K4h0QphTGGJMD7jNQV/S7TC0XjJY219KdrtruRLBWKzCt3PoIU0Pdr+n5H6BMZTUCSQuLw5DZKZ9rFAfPugDj1rC6fsR53ZK2JEjKB5F3Zn9qOeddQ2eKXtK8fjNrz056fPix+CiIgGNhs7vCv/I//OH/6Z3+b9/f89H3np5qAkxJ8WZe71LG4nO35ac9Pe37a89O+9vWh1fee6psNWkdMJRAoKmWZdp4xTuha4WOJKB/+v+z9Sa+maZ7eh/3u8Zne6cwxZORYlV3VNfTEbjZFuWlTFAVDkkVTlG2tDfkD2IYML+ydv4AX9sIwDFiAYdEEPNGGTFIyR7GH6qm65qrMyozMmE6cc97pGe/RiyfMdYFdyOrFuTaxCSAC57zv8/zu+/+/rmvSlEXBNA0YA6SO2s5h1KAwdY1CEKJDpYgPAZESVWmIYaIwhmWzpGwaumEgIogqklwgJDi8WcPFO7QPjHF+uW1Wp7N1Rikis71i6Dr6/S3aKrquJfgJqUBbi3MBlSWlskSniU4RhEBqgxSZ5Ee0Kgg5zn9XGUJKhJQZQ2AlijmhlLniXRmNNoqy1kwhUG1OSTlTaMvQd1ipkCIzTi0he/CBSi9AWKIsEHWNKSxlYYnBIYGcI0lpyrLETyPBB0IILMsztMwUFtYnDS45uqmn8AprSwQGpQ2jd3Rjzzh5cozUxpJSxPtABlyOuCQo6gXWlCipmMaAVhUhOLb9jn6cKHTJolgiokboYi4KC/MGAjmDUHRDhxIF/XCkLCOCRIweIxM5Jkxhccy5OiJLht4zBQeE+bBiCwyKnCbCm2yFQkUYJT/41sdcPnybd778df7+/+3/xEIlyqS4OnnAMx84Cs8h7cmq4uz0Iacnlwy+53RREqTj7ocv2MsCeXbCYXdkH46sT2v27kh7o1ki+CWz4rPxjqvRYoPj6asdPD6Fw5bhe9/jK19+wqPzit97FQnbWy4Kz2moeREcRS+g7/nyowtuhokySbafvUbuXvLbzQOGKaMI2ODw7S2X+YS2DTSV5lT0fL084Z9sR7o2o1PiXERC8JyVlpftlqvffJ/td468v3yI3U2oNnPRrMjLglhoknBkEuSMyGkOIk9zs6MPfn4JShhywKuIrWdr063vOWApek0SBW7oUVFTyppGQBrmg5SVmdT1vHr2km8A7euWVDpOF4Zj29OHTF86+nqiOiqSVwgcxhTUMqLNa6w1aGkRWZOSR6TI4dCTVYcyismPnJ+fUi4WBO8RUlGVC4xuCDFhqwWqzqgpQoqEMFKWFtIMGU8en/HwwRkff/YJKRumXnL+8Anee5CaEBO73Q6FwI8T49BzerJC6pKXr1+TioDRcPP0JZ+MJxir+PzzF6zWV8QM0mqeXF1QVSUpJsqyomkaDrsDk4sM40htNMdjS4yOpgQlJAp4sFzTNDXt0BJFnLNH2h1ZKG53B1abFYd2T10XdN1Iipm+Hebpt5KEFFFaEUMEId7ka2W8m8jeA5mTsw3DNOJdQipD8gHvHDF6xtgjlEIlw9jNuVtFZfAi0awaQsikCEW9QL55pjV1xaJpUFIScXTdSPSBZd1AiFit2WwuiUky+kBVGZQQ9O0BmSJSZpwfgMyqLJBE2sNrVusTEIYEWFmipeKw3zGNLU1VMoRptuIFz253hxtHcvTcBihMTYgRYxSHQkKGB1cPyTLT9QNV09CsTjgcenya2N3sKIoZ4PvDkdEHiqLiZntEkDk/abh6fMrqdIkSihfPr2mPPTllkvAMk2Ns3bx1FSQpJ3Qh2bU35BTn8gOhiElwcfUQbaGuFqyahtu7a1JOTJNj6D1Ixfa4JedMFmqegqfE2L8i+oAQebYlZUd0EykERh9QVuGCQwjYHvZza2cGbco5yy0HxiyRPpIkhO6AH3qEBKnlzw0U7vXn1D0/3fPTF8RP6eEVx0925PPH/PEPr3hv9ZonH97z0y+anz57dYcuasLdxFdOt1wWglUb7/npnp/u+emen+51ry9MP/PF33hoQWZ6ApvVkimNLKsFwswV7zl7SJIxOLq+xRgFIeLeZFGEJJhiprIVhRT46CiKgsIWxBAYR48uJN00cre7wVhLVooE+HGk1iW2KFEkyAENRCGoF3MzV+/mFXGhIaeANZLC1hQnJUJIqmpJzokQE0lklkoRXSC52XajEfMEoxuJQF1agndkDIVezi1JWqKNpCoXnK6XTOOIGydQ0A49xlqsskhjkMaitcaITEFiCiOITG1quuORorSUpcQUkiChHyOJHp8GtIoU2iJlwegdOU6smhIXPXf7gbvb54gcCW6cw6nFvNJupaS0NWMfuLi6ol4u8GkOPY0hkNBUZU3TKAIZpSRCaQaX6Pqew3GHEpmUI1opKnWKrgTGKpTMFLXiOM2ZQ/PkXVGWJSEnVosNILFFjQ+R9tiyqGuKwqIEjG7EGoUwFhkhDYFGCnIS80PbFOQkCEYgjnsAXj59jfzNBbunR568teLi/C2+9tf+Jp//7r/Ab3v+6I++zdm/+W+R1cWc95FnWG4qg6lrLi8esTqv+c/+7t/l8ld+i++2AzFIjKpgek2sD7ihYLt5wj94esOViRRxi6gbXsWRx13k1bGlu7qievBN/tEPf8rvnWhOu4b/wdfe5r96fYsPgQfDEZFH4usJW2xwtuD88oLj4SWVlFzVJUd3pCGyWGr0eKBoJG7KhMUJ/7CHTT0Hzu7bkZXW2GqDcHfkAkZZsDc7Ju/5+Nsf88t6jU8RozNZZnKKhDyHi+cYYGbWeUtBMU/agocY6P3EFD2qT5wsNjTdAtF6UpSMIWCqkvX5hpQDBM/56TmHw56XL19xtloCUK8XfHx3wzLU6EaRXZ7BGMfKniJ8Zhp7RC44tSt++a2CP/v0E+qmpF4sUFaw2mwAhe+2KGNQxvLy9R23r+8IPqBOCyY/b49kAbvjdt76SAotE0Jm3GFg6CY2qwWiX3B4vWNRNghtCXVmtag57nbc3d1w7DsWTUOOic2y4vLyHWLy+JB48v5DqrrEu4HNquEHP/gpy7MT/ptf/TVub4+0w0hRGdp+4PPnz3n2+TMWdYOSirKoQEWkFJRFwaJpsGXJod2zqZeMw8S+P3Ac+jnMWiiKUlGXCqEKHj95m5cvb1DrmhgjpyerudWybFivFpSFQSqYhhEpJCBxznE47ChOlyhdMo4diExZlzT1ipwlViqMFlxcnKGU5Lvf+x532zseXFwyTSO9V/gBbl47lk0DRCIBoTUCwcvn14QQiCkSkqcoasqiIoyRk9NLlFZM7ohUlpwixIiyirLMBCxumhB1BTnxartlf2w5W204WQt6NzI5xzSMlFpDBqUkh90OSBhr8H6irCtWyxUheupygciaECJ1XVDY+ZA/Dj374x5TKYbQs/vpjhDAe4f3LSerir7rMYsN5+fnFNbSPFojsmB0Hce7PU9/8hHH4wGBoLAlzs32I9PMYec5JaZhQBmF0Q0P336LEEZevnxO13UsVhuqxuJz4NnzF/z40OOmDq0tShYknbnZ7bFGE3MiC4EKlgqN70fKqgLg5tlLVGExQqKRBO/x0RPyfJAtCotLASklWiqi96T5W44RhjGMGKtRZY0be3K8n1j/RdE9P93z0xfFT1MfMbHk5dPXABxf9pz/8j0//aL56eLiCp8FH76t+J+X/0+WuUZwz0/3/HTPT/f8dK97fXH6mS/+Qr6DIJFC4b1m6I8cD89Ynp0jkpgDV6VG6UwioqXEu4nVZsPheMSWJZvFGpUFKkeEUvjoSSmRjUIJhbSzT98IQSKjrIIERi7IKeFCD0qQMwRlkNbSuogIDlKmMAY/OmQCN7nZrpFmO4stChAShGIKjpQdVWFQhSZ7j0CwXq4BkDnNbXhhQimLkHIOntYzZDVlicCzqDSqsQhgsygZxwEXIuvlgpQyEugPexZlQWCefIsoeHT5gKapGFzP5DxuirTHwxyWLQXRD5AFpl6SU8RIxdY7ikVNfhOmLcjU9YJzWzLFDFrR9nOOwdlViTaabmip6xkuQvTsjgO3ocXFgIsBIy0pSZQ25AylnSfaY4rkFJBiiVUlGokwjt618zRUzvkfOM80eWLKWC3xceDY3iG1RUjNoT2Se+bWsBRmYJKKQhgKLSmtpjCGGANJRpQtKVTkYj8/cH/0kx/x/knBX/3Nr/Lv/o2/wvf2Pe+++yV2Hz3l6cef8PCXvsYnfSJWmT44ck44YQhu3ix4+fz76FpQP3iHmykx+Yi1kpx+CN0er09Q5WMiI30TSLFmVxg+fvqUTlq+enbF0/ZzyquHuF/5Bj+eHCLVXMuS//xHH3FXntHIkb/9zgWf/tl3GZYD1zIjkTzOlodYgu95Md2RFxK/PRIbz+EzweKd9wjRsA6RByoQkqIPEWstTAnjLEmc4l3H667jt558yPjjO/rP9lxs3iNMAmNASkg5k2KEOFuTcnpjWRD5zaHRkZOn0gp5cc7zT55yXjXksePU1/TjjuHQ4vvI4mSDXitijqSQCGlCRNDK4NP8e3EpECV4IREYZCg4FSv8sScUCZmgMAUpSYyTyCHwl37jm7SdA6MZw8Dz66cobVgi2R92xJx48s4TVss5CH27m1idnpAShJQ4NxdMbpqb8tT8+VTC0BRLrBRYmcl+QsoZmherU/wY0EKzqhe889Y7KKV4fXMzW2JiYho9IUZ2+wPaGIKPPJdbTLVi24389A//hHGMLFZL6qkgxQldGR4+eUjfHpECDv0tx65FCklhC7z3cxum0SAUShtCzGhdMPQ9UihIEZnehNnr+fnS1BXWWhLQ1DVCCfb7W+6Sn7OxHDTNgq5rGcdxtogpGFyiqObDvwDc9FPICmsURVHw/R8ppBCMw5GiUJTNhuXZKU+fbRHaUVQJn17ONraxwgHWlhS2ZLkqQUiEzOQsCCFTliX9MBAnh0WCyPiQcZOjPczbJ0F5XHDkPB+CTb3gfLGiEQXHw8Bx6DBWY82bEG0Xqao1RmqMViijsXFJloKcJRJJP/nZqqIVY+sRCaSAnDPaSPbHAwhAKULKFMuKVVGxqgsev/0O7737Ae3hjqE78urVTzn2nsM4EnLCGsPp1UO0FvMWRM5opUkZElCVDSJCCJ7D0PL8s8948OCC080KPw1M45FPPv4hIUkKU6O15uL8bYwpiEFRFpDxlFVBCJF+GOhHx9SOrFYrXI5oa3mwWTP1PclnBAKbwSUHPmGUxU0OKRJGG0LOZBRK6jc/iIQ2FSFFRIxoWyG1+jmiwr3+PLrnp3t++qL46UwkzIM13/svfwjAr3ztPf7jv/HhPT/9gvnJpUQ7TdS2uOene36656d7frrXvX4h+pkv/jaXj4hB46fMrutpmgukDIzTgBSWjCGlGTaVkhipMMqQSaxPzjDG4n3CeYeSknHsCTlRVDNk5ZRILiHR2KokpUwkzc1ZUkLyRB9QUqOQJCVI3lMYjdAKlSXRe6wS2HKehM/ZNZIYAzEmvHekFKikJiMAjzWWZrlECI0jI3JG5UwmUlpDCp4QEzEFxnYk+AGtFat6wzSOGKWx1qJiQoVEVZTk6NFCM/Ytu9vXTEXBIBNZKAiSm5s9d9sdSQZyVIBFixqrJXVTY9+EvY4p4N3Iumlww4DL8wuiKtYoATE4EhofJqyxaL2g0AU5JrzLNOWS4Pwbi45Fao3OGU1ioRWVing3YowlxoiRMI0TojS4nHDtHVZplosF3dQR3Yg1K4TR+HFCxEzOiZgzRhnGYbYdWCvZ71u0LhnaHqsVIgWIE6WpMTmBqsnKIk0BJhFSZEyQAnTpzYfu4hHf+f/+Lg9/6W2++6d/yJOv/SY/fn7Hl37jL/H9my1f/e3f5P/98VO82xMkiKwICfAKrUtSDESvmdAcfcAYSU49wXpGnwkpwhRhEsTlilsr2O6PSFWyOHQ8rA3/6JOfwhi4soIeTRojWcNTu0DJBR2R/82PXvJhueERiqqPpPYF3/knf8TXf+u3MEpxsVxhG4P88C1+fOcpGsuYoFSW1kcOzoGs6X0mZwkITLHh+asblpzyztkV/Z/+CHl34GTreViXTEwIo+aXk5DElOZVejkf7FL0KCXJMTC6AZcmYp0Y+4FCZHLqEZXHyYFcKqbDgLWG9WpJCm5uDJMCmSVaaBblEnf7HIDkA8tVg3eRMU4oAaXS2GDJKuJ8wuEQumCMgeu7HUknzs8f4EKgNDUPzy0vXlzz0+trTs5OWa5O2O0HbLEgC09tRqbhDoTgcDwi31g0hkmgraYfe6p6NduApGRRZQ6H1zx69DYqKJ59/JymqtBG4Hzg+sUNKWecd7gwsdvuyT5R1yVKS7r9EbJmf2jpfMtiUc6teOWCMA30aSCLEiXBO0HdnBFDoLArzi7nrJrKljjvmbxDWcs0jvRDj0GwXK7RF1ckH2kPHdM0obXAGEHdWKqqmMEmG8ZxIufM6BND7/A+kmKi8x1CKorFCYY5VL4uJpRSyKKkKivaY4v3nuVqTc6Srp8gw2J1hhCeV9dHendEKj1P24sKa67mZ13scS7gwxw873zAOY8iEWOaw73Hnpzn0Gopa4KPiCzRSpFlRmnJNB0oi5JMZgoTZVkzTZ7gJpaLJc1igY8zaGup0WrC2IJ6VUDOtF1HWda0bU/MAaU1MXpyyjjnECqRxhESuNGjtPlXk91FXXGyOuGth4+4PFtB8rSHnk9+8hOmccfYH5hGT5QFZWnnkoEMImSmfqDfbgl+IueEUJrLB49QNmGk4urqirf0I148e0GYAipblvUapODVzS1vP/kA5yJFURDTxIvPP8OoAmk0bXvAlpqiKgFJPzgqLMeuxYuM9BNmHKl0QVEYpFZkLTDZ4txIipESgwsjShcIJJmElPM7TuSJkMA7j+97SqtZV6ufLy3c619b9/x0z09fFD8lA/bsHC7mYofzdx7c89NfAH4a25Gisvz4uuF/9o//ff5X/41/yPunh3t+uuene36656d73esL08988Tcl6PseJUqqxYredcTssCSkCITYz81YIzg/oLNiUS84tEfKqqTvO5qyQmlNYp5MZyUIITCOA8l5KjnbO6ZxJLzJnsk5wzASiECi0iVKalL2BJHJSjG1gUVRo4TATY4cHMf9LULPL3YlNUpIRI4oJZBq9u5bXaKVxMcEGnxMaCEQOTOOw5x34wQ+gjSZnDTtIVIWimQ9L69fYZWlbVvOzy8IMVAMI27ySKmwxlLUa5yfMLqkrBdoY3n9+hY8SCGwRlDXBiEVQii01sSUcC4wjRGhDdt9S6ENZEFTVBwGz6ouUUaQc6BuStquQ6v6DbhkVsslu90dRVXiM0ihiUmQhJwh3jmMkshocM5TVRUxRIyoCVlTLwo+/OAc3x25fnHNsjzl4qRinAZGHzBVgxsmbm5vEEbRtjMAp5hQSWGlJpN47+23qQtLzgldGKqygimAVOwPO1IKOD+B71g3FWJSpGkOtXV6ybuLhzz6tbf5F3/v72JffsJ/9OSb/Gc/+gHnv/3X+fu//xHp4orBC4QQaC2ZUiALh0oTJgfcEOizICiFlYnxsENoS2knnJkI5R4j1kQ8u0qz2cGyWNCLljgO9NdH6vUTytUVnz/b0o0tqCP2197Huy3C1uxEwe/R8tgHLpuC5TLyjb/9N+iNJCbJi6fPaZ9eU/3KB9T1mueHz3nnrfeQk+R6kuwbAwK0l1yuCrwPdP3AenXFVxYrfv+f/heIjz/ir331K9wB4zDgZMJoRUbOIdQIhICQAszx8Cg5t9OlEJi8I9YCYqQQQJo4xj1Jet5+/P483XWacl0y0ON1T84ClTVkxbJeoA9zG10cR7waAUFV16QU0CEjlUbkxOO3H3K3f83oI7vjjt/6d36dz/rnvH71KY8fPaI93CFT5G/+5a/z8K2GfvS0beDZ8zsOvWdTn5JXK9CS0Q0Yayj1nLuyf71ju7vhq+9/iC1q9seBaZroJke1esSzFztc70k+sFka3vvSE/ppxE2RsijZnK5AJZyfuH7+irEf2G63/NKHHyClIiM4O7tiv7/j5fVLvM8MQ09TW5Kcv+tlIYlhYLFcoqSiHRxkxWfPXqH1nL9S1YrjcaQoLP3xSJoC52fnFEZTnK8IaXjzPfSEKLm5GZDakXUgp4wQEpEVV5eP0cqQDUyjRwhFP/SkFFmvT7k6rTgejkih6fuRk5MZyI7HgcknTs7PyRnGvoUoEEJhlAfpmNwRpUpSZLYcpUzIoMy8rbPb76mqCj9MxBjQRjCNI8M4QRYIleYJfM4IIUAItDXYmBEJqkXF6Xo153uFGX5DjAzTSEoCJeybSwGJCJHp2GKkRCrFNE4ENyEkODe9gehI09QUWpIMSAzV+gRjCjanJ6w2K956+y1+/MMfM/Ydf/zHP+HYHkBoBNAdbykMNM2SmAMhJaRSaFswuZHSWmpVcXd3jTVz0+Px0DJ0E4XSXF9fc7vfcrI6p64qhBBcXjzCp8DVwycMxxG0xPuRftqh7QznIkrOTte4OCFEwhoLSZB8mC2EIkOec5SOw0iIESEEkTRvsKSEQqC0JTP/fKRSZB/m30POxNGhi4KmXrI8v0JLuLt7/fPihHv9OXXPT/f89EXx0zh6tjni9BzN8au/+qsc//QP7vnpF8xPahqZgmPDHf/JV36XMw5USd3z0z0/3fPTPT/d615fmH72Vt9asKkbhuOA1ommVPhkEGL95oEPpjCEEMkoSmEZuoGzoiYFR1MUWCnxIZCEQho9r9iH+cUqSbgwsDv2JJGZppGqKpECipgIhcVnyeF4wCARWqBsTUoZrS0hJISUFEU5T1QUaKtwfvb0d11HVZaMbm7vKUzB0E/EmJDWklRCCInJGZMSWlvIAiUSSWmKumEYeh4+fpu+72jbiasH7yCz5OwcQooUSJhamtMNGckwThTVEt91yBhw48S+b6k2DVZahJdomVBaEGMCCd0wMjhHoSsWdUM0CakKsgsUGIQ06KakUAoZPIS5e+hsc4GL4zw1RvD65gX1csF2f4c0Eq1LQmCGCzFDzTRlrC6ommLOdAiJslpRKui2HX/w8fdmAC8M6bCjtgcqmQhCEvKE0ZYnT95CFgqr1JxTkwRlWTG6gWHq2R9Gum5iGAeO44CfPI2pMaWgWpa005Hr6+eIOCJfBepkWB7nSfXi5AH/9299i//k3StWb/8S/+Kjj/j1zWPOLh9xuylwXqGJFHisrABD5we01SiZCTETk+a2HRkWJ6RhIiawSeBkydQr7HKFv36JNmfY5l06oxn6iS9//Zf4XEzEoyQ+eMIf3I0c1iXlqcLd9nD8iKJ6l/HYY1XDVBleILnJmbUu6FSmQJIWFvNL73PxjV/meuy5TEceXV3x3dcv+PZwQ3f2CO1g6QNf0jXD1uHUQGLkwhbcffI97O4lV0tFSnuSkIyTRK9KslCMUwDkfIgRkEggQGk5h5uTSTEjkkRlQY6SpjnBB4GMFhNL0hh5ePkQK0qCzuz8iGhmq8u4bxGjoKJineZVzGl0ODlRWMNwPKArg8MjCUzDQHW0aAOVUNgp8YM//lO+t/uEEDJZZH769CeMbuSnL19Q6XlzMEaJjxKPJCJwLhNVBp3nrZgQSVOgrmvafsd3n74kJ0FdLOeQYAk+OJqmQcoCXZd879NP+c5Pf4iRggeXjzDa4H840rsOVEZow+H2CEHw4uW3QCa69sCm2bBY15xfXvHk7ffY73fkFAiToN40/+qZ0/YjMYC1YLQmhoCUmrKs6KaRarUAMm+tViyrkq7r8NETmcOtC6WIEVJUmFIwDg4pR4wVnK6X1FXJNIxE33M89qQIShlUcOQQOHZ72huPlJrjcc46kRKev3yBRFHWDf0QiOT5uTtlZIogFFo1pGkOLbdF4tjt5wB550FkCqNZrt7YZ6oG7ycSmXq5oqzn52NIPcRE17Y4N82XEglcVCiluDv0pGNPjBkfEkoKysIilUBJRRaeKQaElGSfiD7QJUdVlZSF4fLylKHdcjiMvPf4MdZUKCXZ7++YpKG0JVJoMp6b28/47PmBf/LPhzcTXTi9WLFaXSB0Se5G3n7/CfWy4tnTF4gsESLRhwG9UGyqS6YxoIRiIyUpRZCCbpyIKTNOPUIJzq4uSVPgbntDXdfsj3tOzk5ou47aFvhpYHvYITQoXRA96ODxwZGYmILj1WGYyxQKQxKJMHhKWxAyc7udlcTsySlxOHZEH1gvVihZkPP8mVFaz5cwQlBqQzaaUUhczuxahyBQLk9/zrhwr39d3fPTPT99UfxUlhtGKVicPAAgHvw9P/0F4CcSjH2PCRN/9fRAoQzDMd/z0z0/3fPTPT/d615fmH7mi7/TxRnj5JHLgiwVXdsiskBIMUNmXUCOxDDXpQ9MCAWFkqA10XvKRUWjDJnZV2+sxKiMVgI/TYTokVpSlAXOOySC4+FIU5eMAMaSXCI5j1GKyUFSgpgE3nkIIJBMrmdzekGKCckwA3ASmKJAFxVte2TXtiih31hoAqQ45xIIhU+JMGX6sUXJiLEF7fUeMrj+SIwBWywY7o7kDChJVvMkuNCJoesJQeBCgt6h9GwfkAmMKhgHj5eZEsMUPMpqjDakAFqWPDy/QAqIfiQKAVoSEsQYCSHQ95EJie96Sqvw3mEKy/nbV9iy5PbVDUoqQvCYUmFUDUIBiZwzMgsKoTB1JKaeLANjaNF6DjhttGa9lBTliqJa4eOEtZlKK8qsyVKBtPiQ6MeRyWX248Td3StUlnjvkFbiwghCYY1B2YpGlYiFwGoLpWEMjqKuePudc3Lw1IVFJ8/qox8AIE+vaH7l1/j7H7dM6jH9Vx7z93aBernhpKopTw3aJrrDhJYWhCbEJShByIGkV1zf3pDwgCMlBeUabzfzerhQTPmU9eNLfuXiLY7dyHeyIwXB+fqUIXnE+QXqrRMu37lCPH/J5zev0Rom4xH6JeiIFBsYNNEqNlHyfrngQV7yWmRyDmhXcD11HFC8SBXdZwf+nSenbD/teL7d8p6yHGVGZotOe3SMdEkRXn5E/3v/V/7a6ZJhikyfvuYiNpQxzkHeZFIM2DQ3YyEFijn7KQtBkoqYMsPg0WVBoaCfRorFgtfPX1GvV/hJg7KESSJzJuuE0ZpxEngGClUy+QGhxWwZA3RZcPnuA169fIFGENM8I3dyZLNZMLoJKyQxesqm5tWzp1QXD4hC8dPnLaJ6i7KCIRmmIBEIgogkE0lCkNP8WVViDtc+Wa+5PD+lO7bEbJHdAmMUAkGOCZETbpjtFzEnhBIoY/nKV75BoQVumMEPVTCMDp9m64MIksXmElKmtAY3dKyaDSkmDu3AEF7zejfSNEtCDJwuS4xUiJx4df0SHzNJCNq2R0uNFAJjLNvdlikGtK0IIeGU5+X0mqaukFYRQ6bfe3rXI41kmiakUKisMAimMPD5Tz+B7NFyhmKMprCKwhqq8v8P65FisaEsalYbGL3DBceqMKg04VxL8BmlS5LzNGVDs7AMrmXqI1WhkVLjwkgWkcNxoGka3DSCNiSfGNyAUJ6qrlkulxwPR7SSiCypqktyDpTlEi0Fx0OPdxEv5ilsYM7hEfLNd14KlIiEaWCMbn52R4EUIDLMySyBru949bLj3bff5S//9m9z/fnnEDPbQ8tnz64xpUXqgsM4IdLEel1zfnqBjwveeVBRL5f4nDh0R6ZxYH+3JSbBs76lG3uktFhtMRpiTvT7FuUERlraY0siE4nYyrLarOcJd3C07YGYA8YqHp6cMw5HvB95/eoFIcJ19MQk5ssFKXGDRytFqkpCCvigSMqyuVoTQ8aFiJSAFkwpokyJT5HucKC0CqEty/UaYy0xeFIWKKGJOeP8vBWdgCkHhJgtonlySDNPtqfof16ccK8/p+756Z6fvih+8pNjqTW3cQHAP3vWc/X4np9+4fykJGTNqCt+0H+ZL8lvc2L9PT/d89M9P93z073u9YXpZ774yyhOL85wKTMFT7PeoN/c7E/DwGq5YBxHDocDMc9tY26cMKp4kyexJmsDxjD2PXWzYHAtn71+hlVq9vIzvxyH6YambjgeWmKIhDVIa5jiYZ702JLGFjw835C1IEnox5EcYNUsCVLy6Sef0rcddVng+5Gzk838Ms+ZqtQ0TYP3nq4bkGLOmJhcQCmJCw4iVPWCftiTRkddzM1By9WCw/GAsBFr5kn9mCP91FHXFaU2HNoBW9cUwpJJ5BxpzAYRBVJIkhQkkdEpI7Eo82a6XRja9sjrT55RGEOhFdaWaFuyPj1h8CP91PFgU4GX2PMlMfQ8efIlQkh8/uPPkEhOTMUYPYU11NZiyhU+JvbtkRwDq9Wa7AI5pLlpKiXKsiElGPqepmiAuZ2qax2LxYLt62visuJ1t2WaPNqWCKUJEaQ2RCyVMaQUKYqGKDIogcqefhwQed5QGN3E5EdkUSByptIaP4zkHPn4uKc2lnh7B8DNseXzuxGDnHNXlCGz4nAH0R8otGDqD0ib8SnSlCVvP36LKXmMURRVwba7xU8TaegQeQm6gpjRwZArSXX+Lj4tqJcLpjAQxw45SE5rxU8+eUrx+JLSlpQuMIQ9bnxFXmdsOOfR+IpDahmygtzwNf0O/97JB/g48sxo1CFxsrH0TqDNmpvBcRMkjSl5/fKOl53it5YD/237GR+FzHf6L3GQHVJKfvKTW760/4wv5de84zu4+pCP/uAFj/QFwXu0kkgjQAtkSsQskFIjUkajcDHMwdQZcpZUpkFMPY2yiBCpbSaPA3q5Rt+0uF1iUZ+AcEwhkoKkqlaIKUH0NKuC2EUAlFEMkydGsNIythNilfC1IOiIiBKCpCgs1/lIFho3DfQhUC02+JgJPuLiRGkMSiqiAmpLlhqJ4fHpgrqcGxzb45EXT58xBYebAsvFgpQg5zhbrGKaX/BFSZZz2LoWApkiQ+fIIqEKQxIZYwxSJQQF2qyom3nDxQ0jAUNVljSrhhATh65nGB2RgX6caPd7rFKU1vDo4Vu4FKmWK4beMQ4DOQWGvuf86hKUYuonurZnHEeCEAzDQJkLBILlosZ42B62lEYjcma9aDjdbLBlQVmVSDlbQw67A69eP2N795K6NrTHI0Y3rE82xJgZh5Fj2/Ly5hXWSAyZ9nBHVVnOL69QzI16+8Md1y87bK1w40RVLPBuBn1daKLztH5EonAJrDb4EFg36/kwc2hprEZpSDEwdDtsZfD+gC4KdBVAZtbFEqEgEogpkaNk6gM+RXJOFNZilGWIAY2kNuaNZRBSmlhvasxjy9g7vvu973G52qCMRpWetz/8MvtDy+5wmEOktcElwUefPkdpgU4H5N0dYwg0iwXtds/SWJyY30nGlIDGxcy8v6qIMTJ2uzkQuihZnZxweX5GVWgG53h9c8fhsEPkRF2VHMcj+91rJtdjbUUWJVFqivqEwhaMw0hwE3VTk6JH6AIRFEoIBJHg82w1SczErjPKlEhpeHj2gFIJwjRxGEbEG7umm3pKW2CtwvlICHM+TQzzITUqMCGyLmuksUxuYLlofo6ocK8/j+756Z6fvih+Mlpiq5Kb2TjBT0dB24l7fvoF89MxDrAQ7G6X/K9//5v8L379Y85Me89P9/x0z0/3/HSve31h+pkv/j757Dl9+xNyZK7PVuCjR0iD0ZLPP3tG8B5T2DlMNAi00vTZk5Vh3/WoYBF0+HHkcGjRhWSzuUIiGcdIkpJARlYNfcwUzWIOaY2e2EUyhuP+QBwnxrajaQpGN4LKlFVBVRZzTbcs2GxOObk6ZbFYEEJgmiZeb2+IKeImR5gW1GXDsioxtkQIzeQc2hgKa/GTJ+fE6uRdiBB9hJwprOYqX/H01R2ESN92RKnQWZJGRescOUKOnrIxGFNijEXJjBtGoncILVksSgqlWRcWHx1+XaKqgmVvuRiXpDCHvqYI1ha02zuQgs2iQYpIPw1IVYCUfOtb30YIw+XDE7QuKJXmzBQYJVk2DbfdnmPf8eTROTkl2v2Wvm8x1jJ0cxaQFJJpchRFxcsXr5BZkKXFmIqxnwO5D+2AsiXWVvOhwFh0TrhpIKvwJlw5kgSMbkQVhkZaAHIO89TvZEFWi7mtyVhk9KwePUDISFlZjKk5++hHAJyfP2C3vsBqQ2EVVW1oFg3DOGKEwEpJVbzLlDwxQ2FKtjdbFIrJJ4rK8cnnL3BHB2VErzQxeYg1SRqyLjD2hN2Y+IfPn2KSJkaNXCiMSjzJNd9+9QLx1Sv+61evSN2e5tUd09UaYxKv9jdMeiI1BeiKMUo+UWt+/+7Aw6XjQtUsg+BKtLx48RGvVxuqcskj3/Kl9Jxf3yge9T/i337HsPz+S16qEz5dVnz/93+PjT5j/+wH9Hcv8OqK9776kKf5NUYUhJiQOWJyRgqBlhIhBCkJCBkpmTOCsoCcUUphtEGmit1wwEtPWStud9fYReTaOrxIHO96LBJVKKpyyXA7MR1HjFEMacKaeQKWTQKVMFJTFyUOR6gmZCPmLZY0/79SCuTkkQaE0ogEMUX6oacsCnRhyViGaYfVJf0+EkKkLuHju59idQFZo3WBLQqWq9Ub8IT9fs/t7R3b7R1l2eB8xMeELUukENRlgUqRLCPluiIG0PKNpWp1RkqJIWTiOLJqanodkE3D5Bxhf0AZg9Gaoq4QSlI1JWIKEAISwZ99+zuElFF2nmo6P3F5fobWIIkcd3vOT05463LzBq4j3TDOoc1S4VNA5oQbBmLwczaXm9jvbrm5G0BonEuEkFBK88G77/Nrf+vfZrFQPH/WkbJh8o5uGKhtgTWKfuiIcSRNA8M4su8O3GxvmMaJ5UIBktEbEpnV+QY/ZbQtUFaz3+0gZIqyRhtNXZUopVksFyAC7WFPqS1937Nvj0QBRkT6l+N8mREDQklsYVgftvT9QL1YkpWeQ9SlmDcQkGSpSUqjUJiUyD4xTJGcBUlErq+3FLqkO/bo1PFSa6KQYC0uglGW5WJBs2oY2o5+nDg9u6IbOqYwFxz4kDjsB3JW9GluUy2qElNVpCTIWWCUQElAKGLODONEXTU0zZLd3YHbMJGZt40W5YroA8F5hDBIbajLMyKCyUdMWVKYBW6a8FEghKHvEoVpcGl6sz01byZFMiEGRJwPB1EINJLoAtfPnhGCm6f70qC1oTSWs2aDUpKQPVVRzZbLmMhaI6Tkbt8jpUeVGisVSkj8rv8548K9/nV1z0/3/PRF8VPOksFPXDzouPhf/hdsNpa6fuuen37B/OTsRDCefJivTLRU9/x0z0/3/HTPT/e61xeqn/niTxvL6UlJpYt5wiTyG2CQczuaVHPwsBScnp5RlnbOPXEO8SbDRmhFcB65XOD93FjkQ4SUgTeZGjmRyRRFRXSJuq4QeQ7vXTQ1ldGcLBesmor9uMUUBVIqxnGi7wZKY2nHgaKwrJYNwXsOh5HVsuHxW6fzhGOcyFng3NygNUxz01HOmb7fsr0dSCFitOaTT3eURUXOgtVigRBznx0ZmqKkMUvG4LHWYpSiUBqlBUrDOPa0XY8IjiQUhVEUTUUQkEkM3Z7UCcqqQJWG490tx+2eWhdz3s5qRWktfgqopmKcHJW2aA2L8yXNoqaqDe+895BXr24ISeDj3GAVUyZMHjdFZPaspcEdWqqq5NHjtyneszQnK4ZxpG07ootMzuMmx/vvXDFNPT4IiqJiCp6Ywtz+5GEYe1aXF2glWS0XCMDFjHOelBIueMqmZHQDljkvQknBar1if9gz+okUZhuT1Q1VYWmPR4IIdIcb7GELzCv6hTGUpaUsqzcT9AE/dZSLhpfPXzH1A1ZrpNE0VcmirjCN5dXdDYvVQ14fB4p6RVINstBoLRDJEBcWYRvcbU8uIZYW3Q6IMKKyYnd3yyevPsGuEutKcJgKcifoFw0pCWR7IBtJMiUqrcnhip/IBR+/uuZqfUVhIS8iUq84KXu+9I1HdM863uHA79iPeKv9Z4Q4YFTH3XMY7VfYTzs++t1vzfDoAn2/Q64fc8wVySwY+4RJluQdWglyiEydR5YFIUtAY4QmhogwgmGcCOJNLl/wHA8dMkJVVPiqprIJsc3EMVPpirIsiZMnZ0XbtsQpQsxM0dHe9Kz9ND8MZOI4HajWJUopykVBt5xAZXyvcM5glMZPDgwsNyva0rGqZ0uXi44sIpP35OhQcmIcPEqfUzcFWvWU9hSQ9P0IQpBzouuO2MJijGKxKLDFJTFkpDRvwD3SdgNKSEqj2CzXqEIxZkffjaSYGLyfJ6ZGcXluIWXWzRKhTwhkXEroaAhpbszcH4/c7bb4caI0miwEViuevPWAlDIIiS41UlZolfEpsSwlJ80ZwzTS9p5De0dKgnHy7LYHBu/xIiFcoFQKN43EnPDBU1eWlDKTD7jJU1QVWht+8vFP+cM/+n1yDghZcHn1mLPLCyqZ8cbw8U8/ZgyeyweXBOfY7vYkkUAIQsz4MGfPJCTaGlzMdOOENJK3Hzzm4uoBhSi4294xTAOHrkNKhVKakCImZYyQKCVYrhdELbE68XjxDkPvuLvbYQo5//+9o5pWKFvhfGScenwcSdFR2Gq25SHm72oIyAwuRabgKJv5eTKNE08eX7Ixkma1YCTx+avXWFvRmBo/+tmqpzSFNMQpEF0ErQjeUduCwhiquiKkyDQElBa4MD+8V4slJIefJoqyYN93KGPohoEwBbybEDJBhpQSUgikVEgUUlpilEgswTsMGeFH2s6hjWS1UASXkJSkKEAWZJXIMZBTQipJoQp0ockpYI0lJ978/BYoBdbY+RAV59B37z0pCbSRWKuYpjhPu4lM03wgKq1hyBODi0ihGabh50MJ9/pz656f7vnpi+KnLARlvaAuNecX7p6f/oLwU2wSy8169qwDxaJANeGen+756Z6f7vnpXvf6wvQzX/ydnWxw/Uh0gRgjLnj6aaRaLNisV4ic5gpvKRmHluef71FKk1JiuVwSY6YoinlSagzOz188KTI5CypbslxUaKuIKc25MYXCGEFZltRVg5aKHBPj1LLbvaJNB2xR8/zZNU21RssZcGwxB9Ue9n4OqtaZ7f4107XnsDsgUubs5BxbVJiiprQSYSTaaJpmhZ8qUgjUZcX5+Zq+H8lZoI0mp0hVFUxjT6kSpycnJAFFWbBsFkBCCIjBgzhFGcUnn35KiBaFIoTEOI1MfsJ1LUPM6EERoieTyS7SeUdSkmm/Y+oHiqLE6rklabc9otQCqRVSbRHKEVPAT4HgE2VV0I8DCAlC8lpuEXFktWpIOdNPI3f7uQ2uKgwpzYG627stl1ePOB6P7I97Fqs1RlpSnA8dwziR8ghkhr5H1CXFcsE49Ggl59+v1AipEcHR3VwjROJumCAmhBQctyVVs+Di9IxmUTP0PYtqweHQUhQ1XTcQ4sD29hqA7evXsDlHIehbT8ZCjiihuL1pMaZhcXGCqSyj6xFasB32iJAZ5cjTZy+4GT2TSBRag/CoJAg2gYFcaHLy/MbZAw5+4KOwp0jg2hFbr7netaSyIKWB0B9JbUYVp6goGE1Cty1iioTGoooNolgQ2x1vVQV1UWASDFPLJ7Hn9vnEV+PIk+P3ebt8QZ6eotPIMkWKsuYr8sDvf/+f8t8ZBM+s4amF573kzw6at967YnHxDsR/CdPczphyQmaBkvO2gdIKnxPDNCKVIrlMIhGZ7blGKkyCJpWMrwOVWsEhoXcDCkEcOrrQMcWAVBKrNUjNYr1GCk0QEXP9DIBGrLid9Gz3VZnFoxOCOnAY94BEa4P3iSlHhuDZDyPH6IgpgxCMbsT5CSEzRlpEHshoZDni8eTUU6nlbNmoLYtFiXcDICjKhmHsuXl1TVFYhFBEL9AaTjZrHl0+IaVM37b0fUuRC5TWVLZCak1dNcQQkQL6o0dJSZsj3XBkDJ7BDYR+IMTAbr/n8uEjLi4vuDo/w+oZNPr2QN+1TN1A13Yslw0hBo7tgbvbO8qiIEcwzYLjMCLI5JwpbEldLTm2LVEmZAAnFcvlgrosyCmxaRacnZ1SVyW7/RYfPFlkimLJND1mGHoO7cSxn7j55BNEt6cQiqIsMYuGz2/2eB8haYyeLwQm55GqJMY4B2PbBZLEenNFiIK+G2iPR1SewagoLVrNjYcpgcoakTzb4xYhE4Mb2fcdkx8JY+DtB29zdXHB0B3Y7W7oBYwukZKktCXZe7RMaCMgRWqrGWNianc459BKsxuOFJVm9+IlwcV5s8ZqbpJAajk/E7XC2mpuPLU1MQZiiviQ8CmDFEwkFnVN2x1xRtMdNbasMHZJypGmWZBipj3sEdljlMQNHU1pGZ3DWE1wDmMVVbOcf3fRUxYl3nvc5FmUS8bRAZKFrSjLmhAGkJoYAz5M1IuSsXcgFVkIyJIsFCFkUs4YaxBJoLTBlJp+mFgUFWRP3w4MdMQQUFbjM28uR0r80SNFSwpxtqIljw/zhYH3HofDCYFSs/3nXn8xdM9P9/z0RfHTbr8loTjsNvzLf/SX+Pf++z8mnRzu+ekXzE/t1DK+mGjEOQBTG+j0dM9P9/x0z0/3/HSve31h+pkv/qbjjqKqoSxQyiKy4JGxjGGc6+iNIqWEEBlrSuqyAiRKSGKMlEWFBPpCIbRC6wIfBspCURcVfvCMk6c0JdpKnBsxUmFtwegG9ocdMcAwjKScsIXBlDXjmDnZXFGYmpwz5Mw0wn7XY42E7Bj9yKHdoaVAC4mfRp59/pRp8tSrNfVqRQBSilitsGq2MObgWBYFjy4vUbbAWMPrm1dUVUX2l2yaBW4cOQw93dExdDvGqUOi0MpgzdzcZPUCHwfaoScFmHzAh4AUGmPh9GzDs8+fMo4DtmxwUtAsG4wfaaqa9tgyuom6XnG33eHSC1KG5bqhbW/p+4E4gb56SO4mbIyMxyNNs3rzoj/y+fMBpRSr9ZLFYskw9Piho/hX+TeBn3z6KVcPH3C5fpfr1zcYEXj58jlKKKqqZLVZ0NSWq4srshDc3N4yjHMjVV1oyAIjJQ8vz3nvrQsKKxFKsFmvqcqKp58+47Nnr7j+9BlDCggpWC5XrFZriqagWTVoe8HZHEXOxcUF+uIcpTKDG8jCI7NESoufEsvVgpxgmEAVNTkFyuaEkAOlabg7DtxNARpF0oGcHQyat5aXLOuGTxFMOnO7e44oapS3SBExDTz7x39A/e1XxN/6Grtth+sHtJUIbQnKwhEIK2QfkfICo1aoYCkXG06VpphGTrUgLqATgUth+ED8kHeLn5LbHzLstjTFGrc0FEHx6sf/kPqQ+fDiKxyeJR5/+a/xSlqOYcXq0ft88vQzbEr02x2r1SlZz8HCicjkHFkbRGFmC1nKSCuxpsSPPTEmUor09NBU5CkSPr3DH3o2Dx5we3YgpURwjto26EFxZhYQNToXBJfRJFbrDQBDO7D54IwoQCtBL0amHAGJlgYhLAgoqgW6SXg5EFNCSIWQipPTM4ZpoKgsXYbQDSzrhrIyGAm1qQmyxoWAtfNU2eQ5s+T57XMWy5oHDy558fIZ1pTYsmYaO263jt1+T9sO5CxZbzbIrKjNfBCNITJ0A8F56rKkLmr2xyM329e0/WHeiCkL1qeGpllQVg3HrsMqix89Xeho2wOrpqJZLHlw9QAyKGmZguPQH5HF5yQf52wtBCenDcH3xDBBCvTHW1ZVRQgRKoM0lvc+eI9hHJAImrLCTRO7mxtubl7Ph+Cc8UnSdQe0USjT4JOgrGuazSlnyyVu6Pj02Wcch56T9QYhBYd2R1MbjBKklGjKinp5iveB9rhlPHYUtqYfRsrKzm2b3R6jBE3V8PTTz1mvNlw9bGi7FmM03mdW9ZIHp1e8884H/NZvfJ1XL14TfaRtD/zTf/ZPqcuCb/7ah2hjGN2EkYoYAkM/8dknn3Dz8hlCzYeYODmUKREyk+JAoQW1rpEkQpg4+IlCKKqmZIiOIcylCCH0xOCpypJApqgqpLZUQCTSrOv5MHwcGcZAPxywVmJNw3qx5N3HjwljS9ftabuWYTjy4OyccXLkRUk/jDSFheTIUkAcqIzinYcPePHxRxTKkpWmHScOrUeITAzzJlRVL7nd3qALA4CLE1bPWUxCQEqZYztS2pKYwtwsmgTTuCe6nqqZt2LiFKiEAgHRBfowYU01Q7CKuBhJSIp6SXIJKedgd2PsfCERpp8nK9zrz6F7frrnpy+Kn96R79G1E59+BDnVVGVNVY/3/PQL5qeqqdjfHhj28ybR8nLD6lLd89M9P93z0z0/3eteX5h+5ou/p59+wqO33sZUC0TMpJDo+o5mYXFuRAo7N69piGnC+zl3oagbxn6g645M/TC3TkmNFIosIn5UdOzIUeKD4OXNK6SaJ75+8qQwrxhrXSJ1jTIFPnl0zOg+IZG4KRDCjpg8mYgtVkgBwY+k5BjGHm0VY4pIMsOxoywLbFHiJoff7hnchMhQViXOOZLzFEoyxpGMpBsn6rrBWINUAikFC1sx9j22qjiOI4dji7WZRbWgMBVWWdbrBctVxcXJBa72KKXxZIy1c0YLEWsFv/IrX+Pm9pZPnz8n6wIXIlN3IHrH+cUp2+2R2+0ti/WKty7OMbrk9vaWzeo9Hj98jBaWy4sLZHQct7eslitety0UlnU523mUtjjvGceOjKAfJyYX6KeRi7Jk37Y8u76hKFuasiQMEw8fXhBCQBlNlJndMLB7/pIYMtoYtLUE5AzlESpb8r0f/oTSgCDgwwBSsFysuDi7wvuINIpSlRRlBWQimRg8N9vXHNueD96Ue0TAxUh0E33fEkKmKtZYY4gx8/z5Fi0FRlmCC7gYkQicd9hFxQ+fPgNToksIOAoUpVXs2wMHOSE3Z1QpYlNm1U/445E7fYccHDff/Qm1Nby8+TGLtz6EFAjuSK4WBCzFXhNXa6KeELlitAH0wMoYCjLvX5xi88DzKZDcgp/udzwfMtv9ipOp4uGl5fNPf8wvb36Jjz95if9uyzefXALQh1OuXyWCqjl5WHP9ese4vaM/7CmKM8aQiEOPOwJri6rUbAVwHiMKhJJIMU/PYgwEAk4HprVgmzvOmyXmRUddGm5ji5cdqZzoyoFRB0pVIZNhk8ybTCUDCGKep9++cTzPn7M625AzTG/ya4zUiEEwTgNKaHKcp2lYqMsCbQ39NBKTQ2koC0Pcj/hs2O923Bx7MgGFQb/5fKQQWdQLcoA4OaQ2uBD5/PkrjLWMbiLEhHfzBLEsFM1iTRZzFsrnr2/mzJq6JEwTYZw4WSzpd7dUteb86gFr0xDjElKAHNnd3XK3vWXoRrTWxCRQ2pIAWxiGfoCc6LqOaZzwbt7gEVpQlCWFsfiQ0Qr82JJyADFb80RMuCERQyQyMcbED1Pi8uIcLQTD0PHi+XNSSChAwPwsU4rFspp/H8KxakraYctNX+CmibP1mt/5nd/BTQPj8UiWgq4/MPYDAo2SJUiFDx5TwjuPP0Rrw+vrOx5dXeG8p3zymPOzNdcvX+CmiS9/8AEn61OG6UBZlyATKXqePH6L9WLF9mXHT77zA7SV2Epz8XDJv/u3/i22W0fftYyu42zVMPpIFxNlU/Ho8QNCf8CHgRAjslnSDRFjDON4hARVXaIEyKZhoQSu6+nHniEHspZorchJkXPGIzBlweQDta1wQ0AYQ8YSQ2BRFfgpYwpDDAO+vWU37Lh7+XT+HY4tpycr/vrv/GX+y3/4DxidQ2hNWS0xdUkMI1rOuU9nl2f8G3/5N/h4mfiT73yP3mXqesHV44cURc3Vesn161uefvaKRw8ec+y7ORCdAjeOpJQxUhJjYNXUDF3Hw4cX9NPA3d2eplojyjW9S0hbYVRBjB6ZM+v6hJgzQqs5Ly1mbFEQkiLFiJYJJRVGakBSVYba1D8/UrjXn0v3/HTPT18UPzWLFUpoTq4U/8P/6Z8Q48TxeM9Pv3B+CoHmrMAHB8C07jmsjvf8dM9P9/x0z0/3utcXpp/54u/9975BTBGZFUoKUikZx4EX13fEKEhJzevNcUKpyOQDpS15+fyW4BzTOJJToh86lJGUZYPWlrKqiTGTE2itSCLiwkCYBlIMFNqgc4HzPUlM2KpmdI4QAvM8QJJyIqZEURqkFLTtDVoJpEy4aaIwJUqWBOa6+/JkhQ8jwgiST2QXEClBgL3rSFpS2goXPaGYG5Q21YoYImTJMDh6P7JNRyqt0T4hiobmdK5l74eO3k2oPHE4DmipEeEZZVWy3DREEVht1hwFgEBmmKaRRdPw1tWj2dLjHU5ekN1IoSSH3YG77YG+n+vV3RjRquBw7Jm6n6K15Ec//gHR9SyrmhgE6/NLDkNHd9yhVAHS4JIDIZBCI4VBqdnmgOxZb9acnmzISVLokrI0pBgZxhGRLUN0IMBWJefVHKBdVhZbnCJlREiLmzJKakgBkSNZZoRR9EPPddujpMIua2Sew7BjhLadKCvLOEakLOi6eSK6P+x58eoFSmSsllTlgpzm9rWcA01Vz3kafYeOgkOes4JyCqwWNfv+SBYR1ffIyqHSCS7tsFaibUWhAidG8Xa9hKnnmsRZcYpZr/nqV3+bZ//g/0xhJON+IMctVmUqdcqRAmcd+i5jVEUEdOxYUHAiFCoPvNoPrOqSJkyIcWBL4Cf9hjsn+IaRqOs/5HLzgM+ezYcFc7kg7jR/EFb80H7I7s4hXu95793HfPDWYxbG8ZP6c7LVEBU5OaSaM5OS8lSVIUlDjAJ8IrrxTUuXmNfZZUCVghUlw65DGImKmrJzsNe05UgoMz60LKkooiZNiUoq+uDIqsSI+RvnVxN7c4fUGZEkPkRM1hgHJjDnAFmBlxGhM37s6aeRbOaMmm17QBnFbq/QzpOUnlvphKRQa7RoECqjhQaTmZwj+UDyiZBhipKYC8KUEDkRgyMmiTYlbTdRVwppJGVTctGcUlUVxMjYdehVQ11YtncjL2+veXXz+k3+R8LFSBaZqrTIJDBIfOiQ2qJMSfQRrTXCGJCKIDJeC1SGVVODligkwkekFISU8C4xxUDWisXqnEYa1vWChKSqFqxWK0J0CJlQCpQuePvdd/AxsGoKrs5qCi2RSZO9Q5EY+o7j8UCWAm+X9FNgt+vojnsenl8g6oqQRrpGUpXvcLdrud1uudvd4J1DKri9u8YUJeMQiF4ipcLazMvnL9msV2Rpud3tuN7ekQgoKXHThNWau9dHvA/s71q6dmD0ERcDUmcifm7w9A6ZE6YqiFJjTM2jR4947/138UOPUZJj23N9t0NYz3K5wio1f54TjKOn63ukc9R6ja4ahJ8D73NKSKEwhZ5z0JKkKmpkFJyv1wwp4/1AaLezDTErjvuO00XNdNzTucBx9Fw9fJdFXfKNr3+VD7/8iC+/+3foDi03Nzccu0C1POX8dE1yjrbviQgOhzt+9Ve/wfe//x2WqwUfPX/G208u2N48549+8Dnf/OY3uPjlxwwjHEbDYejwqYLK0x5u0SKxrDU5T3zw/hX/8X/vP6Dr93z6yVO+9cffZ39M1EZhKoE1lncevcv1ixdsb+/IOSOTwkWPI1GaBl0UGKMhTriQyEKwWtVsFhXqTZbUvX7xuuene376ovjpcOgA5mKXIVIWgdKKe376BfOTFZLetvjVfPHXqwO92t/z0z0/3fPTPT/d615fmH7miz/3JiQTAZmMkdCcrLg6P2e13rA/7OdcmZSJPqDe2D4iGSlgsVjQ9h0JgS1LQoj4EPn00085tkcEghQzttAUjWa9OcdoyXG3x8i5bU5IQxIKGSRGa7Q0pBworAbJmwldQghJyiCyQuqSkCUxzKvyShqylAiZGZKjXq2Yhg6NgaTQCKIQZDEDeiUSOQpySFgjySREgNPlgpQCViv6vseESBwCI6CVxk0DwU0YYyi05SsffkBVaKQUGKPQVUE/TUgkMoHWBjL07cRhP4CUjGFiONwx9nuq0lAaTbEuWHhDP3hGl0BLkhKIssBEwZQ8u+iJSdHe3pJyBAwxCWIcKStDXTXstz0hTTg3AQkhwY89yExVNGxvrskpEmKcJ3XOoo2hqi3r9Yau7RE5c9gPODfRxZGUmC1KMUMIRDfNwdUpkDKoLBBCooqCrDRKaabRQQKt5ZufjcS/KZEYxwEtBXVR4H3HZ89+iKTirbeeoJTExcA4DZRlQaNLKtugEeTJ4GLHS9/RMfBkUTEejwS1YyodfT9ydr5AjopCKGyOPL95yTuniumf/yN++/SU9MmnXOx25Le/xJ+Njjw4dGUY84g4JnRpkMsC9lv+9pe/zIvtLbHTpKRoLio+kJHjMMA0wm6PVIqbOPIawY+c4qr8Mid1x6d/+i2KyXMsLUIvCGnNaGrawzXfON3wEMH3/uRbKOMo/YAbO65Or+hkPx8SKSlMgTWG3kXc4LFJYwqJTw4lILeBZlNAmhDKINcrnBnpu1sWSVF3C+QEtWhIRDZiRTUqXI64PGeV5DivwgM4lfBF4uZ4y8XpBVZrwuixsaQSlhw1yWWmwnGXj2zDHmENha2Ykp8n0AgQgmJZk4TEkxjdRIwgSCgiPgUEGSXnf9+ngFYWhEQKQVXVrJcLrs5PEcYgtWa1WRGDRyHmQGEyd7ev+aM//kNCyGhriSnONo+LBzNcSYmW8+Exp8Tu9khpS7SCha0Y3IBQmtu7G6Zp3sZBzKHyi8UCUxRzyPs4vjkEZ6SUOCzNYsM3vvqrNE2JtYqmKLBaz1PRssaNc9C41qD03H5pbEGIHte3HF+95vluy7NXt0xToO0mNqsz+q7l7vaGiwdn/PLXv0kpFMaW6CTIWSKzJTtPNpIH55dcnp8TY6Bte6ZxYnvc0k0di7ri7PySB+fnPDxf8L3v/Bl//Md/xGLRUNUlWkmO+wOZSIqeen3Cy0+v+Q//w7/Fg8cnOBf56KNnvLze4mPkeDyitMGqgq6b6EOkH0aIiZvrW16/vsUay9hPIAxZWpQu2G6PVJVFCUHKmde3d5iy5NAPyDBn0TSbFd5nrKrJ1kGOWCXojjt8H6iMIfqRwTn+jX/zr+A6zU9/9CMWy1NO6hO+8v4H/N4/++egE4/ff5sPf+mX2e1bVPR8/KOf8ODyhOViTV0tafuRTEJmx9nFik1c0o0T2+2ettHcbQ/cfvo5U8783n/9+yQfWdYVf/onf8bXv/ZNTk4uqWOk6gy/9Zd+nbPNAisjhRaoNxcWopBIkcBnvvzWJV969JC2nyirBm0N2+28TWD1r3M89Ly+2fLs1WteXb9i1x6oljXCSK6vX0L0WCHxCca2JRUnXF6d/5xx4V7/urrnp3t++qL4KeSAEIIXT5f8X/63/z7/o//0H1E+eHbPT79oftKSKTqcmi8Udv0eCu756Z6f7vnpnp/uda8vTD/zxZ+wPc4F4pSRwjAOnpwlPhxRRvDorSvGaaIwNYWqOdnUpOB58PABr29vGaeJqlkiteB43KOtodDwta+/jy1LUoxUZl6n7vqJtnVMPmHMRPJbQsqElMkhU5Vz3g2yImVPiD05eZSySCFQxszBnkZRaj3DrDQIIRlGR1U2mGyZXEucAk25BJGYXMaqgoQgeI/QGhkj2miUmduJlIbC2nmV2mqmOHF1skZFUFmiSsn5xQlKS5q64uT09E3GTOCw3eGmiZvbI1EIdt2Rw/5AZUv2uyNSa1JMFLYgxxkmq0KhZOLV9e388F4ssXWNlIaiKKmtBSFwbp4inl89QEhFzJLkEyk4ut4hpESLCMLj/cTpZk3Kmeg9dVPh/UTOkeWqoSlr3MmKJDOBhBQSGST6TQiyy/N2gFEGfGRRXeElTH4CAc+efz7/vIASTUoS+aZ+ngAuzJNBISJNU7FsFkTv0FrhwsByMa9Yr5qGz48HXn1+Q1FKRu+wJvGd736LoR8pqzUpz0CepkA2mpNmQaElQ2U4ZslydIR0xDYC2X9GpQW7cTm/DJuKrREM+ztEWXL2oz/g7Vc/4OrbL/jlsuHbyvBCeT7ebVG1xnVH0rLBFQW2D8CBVEL5vOOFGbGF40QI6j6ySy0heWJwOBU5hoFlXXBjKz7d9+y7Ex7/4A94Ig26fJ+jazmvey71U77ma6bFgi89vKTf3rJYrFidacInPcpGbl99jnmwQMsVYUocdgN6cGCK2TJGwtbF3GaIpilq0jFQ65JX7ZG722e8ff6ABycPeX57TZ0MG3PB7vYWu6iIRnLUEWmgiAmcxGiIad7EFNJSqDV+8BArurbHhBIrlkw+YYVEpoiyik50FBtBYQUutbiuJwmJkAY3OWRumHwiCyAn6oWi0JYUJ4RIhBDQ2rJcLJHa0JQlxhiElKwWS549fcrrly8w2pBz5kffvpnboLWh2+459kfGPGGMpqoXOO+RSCprKbQgJ4EbOky94Oxktgo9vLgk+IhSkpQ8h7Zlu+v45a9/gy+//wHr9YIUAstFzelmTWnt3KrmAxJBcnPYtSgN69WSaXecJ75pDv4+HnuULnGj4/xyTQye436LlQZdGoQAqS1ZLyFYTqqax+88RNiGrCpigvWioikNyg/03YjQhrKsOR6ORD9R1QumEBkGz+HYEyMU1qBXNb4peOedK6wRKAlvPX7A9ctP+Hv/+f8ON008uThDqMDobnFTJIfEorGQM8PxGk3F//F//3+gqBVlUbNcnfHeu1/max9+mde3O7793e/wxz/8NrbeoMoKa+FqXaOLzMubG/bbic36kma14Ppmy6Zccna+outaovO8vH6Bj4G+y5ydbrg6P+N2d8fgD0hlSN6RUkSKTFMavvLL7/Pk4SWvPv+cH/7kR6yM5s9+7/dQQtD3nr69Q5Z33L18ztXFOR9++BUePHyCiIplWXJsD+xeH7h79ZwHlw+wxdyk6dzA5Ea2N9cUdQPSsFwucTHzP/lP/8dsty3bY8vd9ggRnA+crBc8//xz+sOWdz94n7/6wa9QGc1xe4ssDctmyfe/912maSJJixQFCsVqsaKsCiorub3bIo3F+8inz15RVQ1uCuz6kdXZhg9+6X2sVex3r/mzb/8Jw81zlMy0w4iPgpOzC0Ssyd79/EjhXn8u3fPTPT99UfykbclquaK7zQA8+/wTsry+56dfMD+F1BHkyGYp+Zt/6Q9Ymgixvuene36656d7frrXvb4w/cwXfykq6rqmrioEAqU0MUZEfouYAoduzzRFhtSRw8h+15Nz5MVNi5ASIRVSRrwfKayi7+ZmqpQiUs1ruQrFOHpShiwkg3MgMkYlMjCOjrKoIEmUUPQuIoRAyhKlSkgZpSQ5J6TQcz5c8mQgOo+LiZwVouu4Oj9hcXZKjpnRjey6A56EnxwKSakFw3BEJ5gS1EXJZr2kqgu8d5SFRWhJ5waKosBkyaKoqJuKYewRIfH65TUf/ejjOYjWGqZxwg0TKSSEliTgdHOGsQXrs0uUMZAzbpyQQGE1bvIoKShqj1QGpQ1JRQRybggcE+vliiQrkHkO/B0GZBII9WZjYKlxIVIUNUZn3DCSosc5h7WG0lpEjviQcUPguH3BOHVgJD55xnFiWS0Yjj1KWYqmphsGBOrNSr+GDFlnokhIK0kSsIroBKqYDwMxglJQVzXaSpSSFIWhb3doJQkukXNkGloA9rtb7GbFalVTFIbKJ5SqyElxdfGYYQxIpbFWUJqCXd9iEYxTz8F1iI++x+bFKx7/1d/g98MdVXAop+e2NBdYYYi9w8tIN0Z2Z+/zzf/o6+T/1/+DsL3Db3e8V9X8qBl5MR05PzvBiYQO0LdH1FnFB8Hyg/0dK9/SvFOxSUdujo7JFtghoKTCaw0usRo9N92B0dfsr1/yYWFIxfv8wWtJY08w6SVFCGx2W05Oz3i4ALV5Qrla8fBBye//7g9w1nEyluQE2QuSUHPuk1IoPYcdJzExxoDQGj95spRMIeJiQraJc7Fg+3pHOIekFEfXcaaXFHuBdIHycc2LaUtjLTrC2HmaqkTqNw13IrKUhj4GLJCtxrUBWWqSNkhTkF2Hl46bwy1eSSY3//u6bEh5tkqZsqQuDbQjSqnZ9mQ0fXsk5oCEecswerrjEV2WyOTIhWW5WnJ784ybm+dIBIN3+BxJySMl5JBQaFShKc2CnAIpeXIISCz9ds9wuEPkxDSNDLbkae/Y7facnhjKsmG1XKO05uzskq9/9de5uFijpECSEDljlWQ6HEkikaQgItHKUihF2dSgEtb1XGyWCGXYDyOD88RpYndzzcnmhOtnH2OMZrVYUJQFIQskAqMVdbVA5EhhDFJKJp8QpuDYHXDdnuPRYYTGuYDUnt3tDU3TkFLg86ff47Pnz9gdRhKGL33pq+QoECojZGTqJsq6pN1v+f/87j9mt7+lLiRnqxOGoUVbRY4BUqSqGjIzmMU4Q+z7X37I4mQ1t+EZy+B6/vT7f8zDhw/5K7/5W3z9K7/CoZ+gkBjlOF0osshM7kv86IefstsPCOcw2RO6W3yUnDUNOSueXL3PYlnx8PICMbTc3t7ySw/e4bs/+YhPnj5lUa9ZLC948uQxv/Fr3+R73/5DXv70I95/+wmllbSHLZvNCcuTc5abcx5cXlKvSvzkMFKC0LRth0hwqTc0leLm7obT0wvW6zXee/q2JafEol6y3e1ou5GUBfVySb2oyNPIarni4cU55ydnRBc5DHvOT1cQDqSYOV1rRDhSlCc0lxcIEl3fEzOMPlGVipwSuiyZUmAcWkyhqBaGcei4u32FjxEhJIdjD8qALbjZ37BZ1Jytlvz13/lv8Xf+1n+XrtvTjyPPX7wmITgcj0h530r3F0X3/HTPT18UPw1tx/7ulv1uCUDTlKyWy3t++gXzU1lGhA5c1I6/89t/Sn8YsNT3/HTPT/f8dM9P97rXF6af+eLv7be+TEoeckRpOPY7EoG6aNDGUi/P8N7PNpGYQAukUnTHOeg4x4QUguBKiqJC6Xn6OY4D3dDjnefmbkdhLEorhErUlaAsSypzhk+BM63wLuFdJLjI6crg3dwAJRNkJpQEXRaEFKmFoqkaUkrEFBFqzmWpTIkiUBWGEBPLRcWDx5ccXcCNicpaXOxxwaGDpm87wuQJk8cLCDHQTo4kQBnDse/JMXHtbkGAkILwpiJcKUtMEkaHMhq0QBeKQmtS8JAy2WeEFIzDgJKSuqrw04QbIykJpmn+UyMJIZBFImePkpIwjbwaBnJKlHUF+4jVlhAyprQoI7GFZKUWeBfxbuBkvUYkGIeRYRjYbe8QUhFiRKBBWIxJhOhRWaGyoO/7uZ1JCqSYPzhSgpBgraWxDdoKuqmlWS+YxhGjC4iWIXlQgkIpijfNTIW1WKMQIhEXBSEEpFSMQ8dmuQDg8vKC6u236Lpbckx0bWQcwcgGIQqWqxolDePQ0w+BolwifOD04Qnf/ejPKNVE4/fUyaGGyIVZcOxGgp4QcaLAoavImDyHMbBiyd2TR2zVyMUycHr1hI/3zyhcwSJo/GHgLz94wLMh85NwoPzW7/LrX3+bX/uXnj9WAxcP/gP+tHcsigbvWwyaoCT7yTHlgPcjU/ZsB+h2r3l6UfOddsPHomDoL3iVz2mO13gnebdSlGVJUTc0TU2RBc3ZhtvUczEtCa0jrgLoAqvtv6qeT2le6099oqxKZIoMQ8diY+jGHpM8F5fnPN3fMuHR3lM9OGHqAllbooS7ocUXAW80dzctbh9IznOq3pR7vIFDLSRjd0RpTSM0dbKAwKvA/4+9/4y1NUvz+7DfSm/c+cSbq+7tSh2quzpMnmnOUORoSM6QlCxDomR/MQTIMGCIEGwMLEA2QAfIsCCCECTYhilaggwHUYRNy5MDJ/RMd1d1rOpKt+rmdOKOb1jRH/a1PrdHjWp+OP8vF7g4B9hnv3uv9VvreZ7/H93TK0fMc7KypKgmrJqGrrcIqYhR0ncdwa0RYmsu/mw5x/lA8ImsyNBCYKRCP/eEKQCc4PjoGTE6mqahKkoOdve5tjsFnZBpm8DXWc+joxPataVIGpNlBO/IqxJjCmKEvmvYLOe4bo0WcOPadf4H//qvkpUD+t5T5AWIgBSK4CVaJ+qyRKntWFVuth5OyVt652l693xMJRGIJAer1tIKT+8tNgSc81zf26O6ecD8fMGoGDGdTnDW4X3ExMhsNgOxNdzuuo4YJZnZesSIXlAIENIi1PZLaAQkHNev73H07Al/8Pu/R/SWkGDZOG6+9GmUTqzbNVmuSN5j8hoQrDYNR+cLmnZD22wIQ7DWg9t+Z7OyZL1ytG3PZDLjc1/4LFcuX2E8nqDTdq2OIdK1DXVdY3tLMjAoNTNbsGzXNG3Do3vPePz0iOXasrt7lVsv3GCzaRhVmr29IZvlMc16Q5lpNotThM85lRsike9/8B4PnpxQjKf8xM/+NJ964UVGxQiTGbQWXD7YJ79yCd/3HOxPuXl1Zxs6ICXaKNbrBavlGVoo6mpIMdCMR0Nc27BsO+7e+4j33v+AN774RbRWNJsFbdsxHs9AbtfzaLdhC4Qeb7d7zLNHD5js7DCazEhSo/Uuk2rA8JUBRkpWmzXtasN594zj42d8+MH7LFcr6uGQLC+ZTScMR0MciZg0rrMs15ZBUePWLaOixnm3/WxIhU2eEB2PH53xwXyOQDAaDBnUNbuzGYeHh/Rdx8d37nDz1i2m0+mPFBYu9BfXBT9d8NMnxU8g6K3HtzsA7O5OmYzDBT/9mPnJ5DloxaKLPHh2jSvVgwt+uuCnC3664KcLXegT1Q998Xd8eh/vwtb3QWqEklgbaOIKIfS2IhkdSoL3PUmB8x6NZHmyIFhHt2lJwrFul4BgOh2TlyVCJsqiYP+gYFCPCEGQkkJpTd/3dJuO1nb03iKVRqAYDSb0zDHGEKxHICnyHJIlJE+R58QIiYgS4J2DENm0G5bOoQ1ILahHI5IPbI4auijQKmPuPUk6hJFoa8h0hjAZRmts39F2PULp7b+yx6eIllsQ92mDyQzCCIJLdLbFOk+uNXYTMFW5rZJ1GwwRXOD4+ARd5iijMcbwrGkp8xItc0yW4VMECU3bkGIiQxNTZOM6qmHNcrUgEAjrBUYIZEiQtr4fs0szhtLw8KM7pKgpioyzY4vrO7Ln7e1d7wgJYoLTuGA8GlMVNbZfIZ6boJo8I0qJ9QnnAyJBmec0Xc+63TA/XyF1QsrIZrUk2kB0CZHVdMmjMkVhFDIGBlVJr7ft4PPFKYvlnJQSSQii7WiOnwDw8MFD7vY9QoZtiqAe4pyhHs4QKpLwOGfZneySlGJlW6Lqme3u8ezbc3Zn11jdechBNWVydkpeeLI6EdtImh+hZmOM9+yXI0ZonJszzhqsO6PUjvsfnMPhF7kvO5QY0meC7y4esfYJMex5o4jo//d/SVMEPjM75Oz2IVdufgHpLVJ5Gm+x6yWVzqiExuqcJz5w9uwxm+yAJ+eG5CXKaEaXJH++KFGj13mhcMyOjzh78jFCKLTOGanAzs6Mp80Rr6kbmKSQRHx0WBuxJHTS6CIjM4YUEqHzZCrDGE1eKsRiw1o5tGpIwmJXHTpB2UUskl5KsjKn35xQPj94nq0XZLGg6yNN6gDwKacPOdLkeB/IRMFETyhDQVQJHx1CJ3yhGO9cwlaaelhiKsXZfAFCMRmNuXr1KqvzNSSJNoZqkFHWNXlZMxqV4DznJyesVxuKukKZDJkkwVuqKkMKiCHwja9/g7ffepPxcy+isqqYHV6iFBpVGEpTQvI41dP2Lc9OH23BYbLDT3z2Vf7ST79BqSL9Zs03//wbDKbX2NnZZTKoado11nYYXSKR+M7hYqSz3dY0OyZybVBZgVDZttILhBhAavJhTdeuETJxOBmhU+DoyUP+5I/f5k+/9ieEGPmrf/WXuXXrFkpK6rLkne99k/FkSFVVHF6+glKGo+UCmyKr8zmZzrBB0McEoSUEh7Md8/M5b731Jo8fP8VIw+7+Pp/9zGtMDw5IRKa7I2JvyVRFDIJN65hdusbPvfgixJ5ufsajx4+IKbJcL/EpsN6suXppj9c/9yVuvfgy1vacL063B+gyEpVmMhujm20XUTbIcW5BqTNOj88opWOyu8NvffPPeHb+jM5H5otT7tx9j729Hcbjmr53XL9xhR9873t859vvomRCiMj5ekHQOfuza/z1X/nvcutTr4D3JNsxm47w0XP/4X129/a4dfMmSkD0nre//Ra/+bu/x8IKfvlX/yavvHKLoRIsTufkSoMPON9zdvSEtmu5dOmQay+8gDEZfddgbcegLhmOBvgYSDIiZML5jtSHbcL4ZsVoMODBg7uMV0tm0x16bzGqIXnLn/zhH+GDx4ae2x/f5sWbL9B2LfPlCn8ELgYOD69z5fJlDnZ3KbKcbt3Qrhu+d/fblHVJIpAXBUopFssVQkROT56QhKB3HpUXPDpZIk4Um/WG8/mcV195mV/8xV/g9PSE//g//gf85D/8Rz96arjQ/9+64KcLfvqk+EkISUSxON9aczx49ISkzy/46cfMT+tVg6xznpwO+Pv/z1/h1//Wf81geHzBTxf8dMFPF/x0oQt9YvqhL/66GDBKoqJgMhjhCWy0oLdhayCLpM4G5FoQ4zbBqSpyjAYptsEAu/uXkDrR9y3tJrJcrqnqkt5aBuWA0iSs2HA8P0PGjPOnx/TNmnLvKoc7MwAyI1EyYtsNTdcRg0WZQFmMkMKwXvek4HFJYCO0vce1PblUKKnIc0M2yMgLjUwJu2kwRYYZ1WhTsm56IKNrNmgEUfckEwkykpImacjLktYnskohFaRuTZ4LqlIg1S5d1+N9IMUICkymSd5RKtCpIfrtCE41qDAq58aNV6nKHBcCJ2cL1psCZz12s8R7DVrjxDbhKwpHs2jZ291nd++A+XK7gIboQW09bsqyJDMZo/EI5z2d22CyguAjKXQE1zEuK2SuETpSKIgRiqJESUVEsWk3lHWJkiXOB5q2x2SGLCmEkoz2DvDOMVQRJQRqAiFFEIIQPa5vcbbDx45aGSKJzWpFs17RDgcIua1CSq3Ix7ssFmfb8ZxySFFvU+mKesRgeg2ly633kABTyW0SVefxtiVXCSWOGO7M+NT1GVev7jP/+Bnrh3fY6Tv2rMOujyCHj0Rk1PXIeobNAs6tmGUDyig5Uw0x17THPfqlL/FB/4A8HCGPH3N95xBXrZkHzTNZ4kOgOGvJdvbZWUd2zhdMl5b+8X/CT3zlr/P+yz9Nu1cTn7fGGyFZug6P5OzonC4FFBkC6HVEJsGX65q7YsrRWYvJ1rx884voNEfHhnpvSNWuOX16xNHoHNk7+uUGIUY46cBotDaE4NE+YkOHMBKMRJeGcTHj4YOH1LokBEG76hFRk+clrvekAEu/RI1yvOspVcnZ8pRRYTAzjTCRStbYMwXAyA8473uC6aiyIXKjUCFBbBBBgMywSnCyWbFIltU8MZl6YrKMyyGHh9dASs5Pl9gu4foVMnnufXhG03dIrdBZYncy48Wr17k8mzAcD5BGkGvDlf0ZlQbJdlTptWtj3vv4Pk+OzliuGxrrOV+u6b0FofBRUQrN3mCPvRfHXNqfcLg7QRJZbla8/Y0/54Pbt3n25Bmf++zrTGSPSi1P7t7F+oDJMqQJtM0p56crqmrEaFRTDbafY4/E9Y7RsCD6fmvEriTB9qB6VLSk5Pj93/4jbt9+jyzLQCm+9NNfZm9vj/PTU7797W8QfODDD28j8PS2Q5uc1iZu3XqVmzdvIZDs7+/TWkvSBgvINiCVxCfBou25dP0Wr33uS8z2dxAkQu9YL9e4GMmLnOWix2hBVhW4GFFKgxNkqmS0e4VLl6+TBEhtnlfYHaU2eOvpmjm7uzMuX3qRvMoRUrOcb+ibDikMaTs/hS4GnJ8e03YrNssVf/an3+N0+Yy9vSv81E/9HPsHM77z3W/R95bRcIyMkQ++/120TFTDkv2DyyQ0r+/u8pnPvMagHONdJLk108mQIq9wXc+TJ4/QYuuz9d7b7/L44WM2bcP+pcv87C//GjqTfPYzL9Ouz/lP/7P/gs+9/gaXLr/IZLpLTJFqNGEw2SWEQNc2rDdrmvUGpXJyPaRf9jgchclpgmAw2GEynhKT5fT8iHXokIXggw/fo8yHjMcDmtGAvZ0xX3vzT5nt75IPa0YH1yhn+8yfPaEXOcbkiK7h5OiUV2+9SpWV2L6lty1Reh4/fcStl27y7PgJNnhiEJRFST2oKYa7dH3LdFLSdR1lobbjmySWywVvvvUWVZ1zdn7Myy9d+5HCwoX+4rrgpwt++qT4Kcuy7eHWjgAYjF+kGMwu+OnHzE+dtdRxwKeHDf/Lf+3/Qj2ck5X1BT9d8NMFP13w04Uu9Inph774+9S1A0QSBB8xxoBIjGLGYnnOer0hBcnZScewHpFlOcZI2m6FVwmjFZPpFCUhhYgOIENiVA1Qemt6nGcaGxpMnnM4PaDMa/aGQ4QMRFHQdj2RRBIJqeDylcvY9Yg7d+5x8vQZjX1INRgy292jygZkec560yOlIh8OEUIgSJhc4f3WRDk3BdPxmBgT66YBAoSGECJ1keGcY71e0/c91nuUUEyGU+pqgMgc46KikIrrN17idH3OvSf3WW8CwQV2phPy3DAa1dSjEqF7UgyIJHC9R4ptxTslwd7uLsdHTzk9OeLkbE5ZjyiNYXd2QGYKRBIUWYbRgq5rsIcglSHLCq5cuUySbNMCg6fISzJjCCFgnSXESJRTbl27+TzJL1BlgkwaZGbobI/3HuscpyfnzOdzSJLd3T2qskAKgbWOs/Nzirqkc+vtM2BFSo62WSOAtne0Xc9oPMU5R6YVWgqMSGgjMFnOreuXyY1mNp0w7wLzxYpBXdM1a3ZeexWZAkUFkzsfAHDpyg7FzUt8fPsjdvb2UFoiUuTywSVi37A7rjg42OVwf4/xaESiJ1jP/+NPvo0UJbEcshJL5gvLoB6ziD1BJLzNyc2IsMppJiWLpuO865kWQxatoXz95/FFx7z5TTqVaNIxBTVDMgqhWcaId4mHJ2tGTeJq4Tk0mrSJuA8eIEJJzL/I0rbIzDDaGW39RXzi+MkZoarQbWI9AuUSSSb++Niio2PYJq5kkp/6mdeI6zXToUQZiY4WuzziD//P/yW6sqwahxUebfJtcqBIiExjYyClLdANJiW984Q+UGU1qQtUecVytUEohSkzlFGs2zVxIBCVoJm35F4y00PmYYWpcybZELGGkG1HfVPukSoio8b4DNlFxlWBcA6XEkrDuejZefU6YihRsmSzXpJwtH2H7yyDwYDhzg5KChIBpRKka4yGI4zRZMUQrRSL+ZxRXSGiI256Hpze5/Y73+L6pX2W56fsHV5isW4py5rPvX6D5XpD0/XElEgkQtyOstUqRyGIyeIJPHj8GNtHhpMBm95z+co1dncPOJ/PSTQM6wLne6bTKfVwwNOjp3zvO2/StZE33vgyVZlRaEgEWtsRYuDcd1vvqgRFnm0rljbS9S3f+s5bPHh0n3xQ40Oks5757Y95//bH9G1LdIG9vT12Dg6JMVCVFbPZLtOdHfKyIjcZZVGhpEa5yMY5fAhoqXHBgzTU1YirV24xHo3YtA2Z0az9nL3dmt463PPXNRiURAFVVlJVFfWgxnU9ttkgVKKqq+16IiTPnj1FyMRkWGO0IXjLct7izxzD0QhCot0scdbigyOmgA091q75+jf+hMePn6GLmsFowmsvvYxdr3CDgklVkYoS57bgHaVktV6zf3CZq9euc+3aC3z04UfkMqNdrSmLmqIsSM7x4PFDNl3P4ZUrbNp22zVQ5mijqIsJh9cus7szo8oNvlvxe7/7uxydLnhysuD6rQoX0nbEo9xDSBAyUhSGpmlZLVcs5gsW8wV1XZOpjIEaka1XKCFYLZ6CTOzvTDhfnNO2DUfHT6iKOfXwBst1x3e/93UODvepRyNEpnnh+kusNwtee/Vl9vYuoYUmxp7RcEpdDgmuZ7k4w9qGx0+eUI1KjufHoLZ7VF0OtxcKwZNXmoTcXtiQtl1YqyVFntM2DVIInh31GC0R4kcPDBf6i+mCny746ZPip6QFq9byztsGgOTm7IzkBT/9uPnJBJZyiRpEdswakBf8dMFPF/x0wU8XutAnqh/64m+oFKYscDGx3mzQUjIdVOxOSpRSPHt2SvAQPAgpmYwGFJmkys02ZS2CNgW2a3FR4I3DBocLlrbtePj4IUILQtfTLhukhLI2rDcLtKpQmUEogzSakCIPHh6zOjtGac3rX/wS+4eHDIZjzudLjo5OyLOc/ZnGWot1jmJYo5Sg71tC0EghSS6wWK0JfeT09JSA5eanXqC3jvnpeguMJqPKc4QUTCdTnAv0vaUyNafrBkvk+3/2CE1iZzTi5RcvM6oHSCSrzZK+b7l3+xGrzQrbO4aDCYN6SEoKrTM23Yp79x4xm43Z2T1gMN5h0/ZEkWhj4GR5xma1JnQ9UiTG9YBc5WR5jlRrTCbJiwIhJIPBCNv3+LbDeU+WZYjMEFJgMBgQvKdrNzx6dowMoHS9jVU/O8F7hzGGLMu5dmWXmy8eMplMaNqWLMvROiOkhPWBGCIueIxWSLZeHclIEpK+98SQ8NYSQ2BQZgilaboek+U8e/KI1fKUYD2HowFlLiinO1w73GU9P2c+PyettyMqZTK4qPkbP/Pz5GViMCsRMRJdT3JDCp2oC0Ft4NG9D7jz6COm+5f47ds/gJdf5WEH9JFUVDQxkQ92WB6fYQaSy8WYPOltZ8JIMskTs+KYiWrpvMbZku9sLO3lxJMoGashOkRka/HLNSHLeJwF5PVdZn2J6hsWo4rTUcXol3+FN+drDvMJIQUePVuwPxnz8N5HhM6jCoXMFdI5quM1bWWYZzvoicS2j/n84YyXr1QcfbAiukg7T8Qq51M3XkZdmfL4zgqtK5bNnCpT4A2m3HYbdMFRlhkd22qbDx4tDaUskSZSDQecHp9z9eYNTGFYrJZsek9RDuhiR8o6OuupsopkErkyFFGz8WuKfLsW+Kyl9Q0mFGAFk2IMIZCEpCxyTpdHmJsl8vKQSlgyLzjYOcTahuFoRPAJJSVSRIRLJAMq00gB6/mK0LScHR1hyopyOGLdrMmlIvaO8d4VvvnmQ56eN0zHY9ZHDdVgjEiJxdkJeVFQDkp8sCDA2sh4b8bqdEFZlqAMm80KUWg23YYPb7/Pwwd3yXNFkecIEicnpzx79mjrTRMjVV1QD2teevXTHB/N+fjuPZ48e8x0MmJnsosqCpTafv9WiznDuqLvGkJIWO9p+5ad/UMGs+k2KbMomYwnWNtT5jlaKKqiRCtJVmXkZtvxs1quaPsObRQJQfCB+XzF/fuPOLx8heFkjEiSmDRCClJI9M2Gb77zA6xzIMLW9NoYXPAcXrnCteuH5Jkmxoj3jrLUEDumo5zh5SkhOj7++Dbz+Rkg+OxnP0dZVnznO9/l5Picz3/uCzw7PmI6nXD89AlVWZJlApDY1vL4yRNyo4jC8cUvvUFr3+T+4xPe+NKXmU5nlJmh7xrKPCOEgLM9i2VDMRzhEnz61dcwOqPdtEzGE+58dJcsyzk8uITWgo/v3GU4rLly9TplXeFiZFBWGC0JrqcLAYmn2yxJVvHHv//bfPfb3+LTX/45JjuHdC4QQ4dRmuQTo/EAJTVFVjAaDKjygoP9Q9q2xVqLD0CCT928hZaRp4/v0/Qdfe/Z39nnvffeZX9vh6vXr/C1r/0JWiqUlAxGI1xIvHbzNW69cIPf+d3fwvue+dk5dz/6mP39Ka++8jqZLnC24/HjB1jXsWlWVKMCGxzJR4zeepZtVms27RK36tFKEX0kBYGWBqNzzufHSCUx0iBIFEWJs/2PHBgu9BfTBT9d8NMnxU/rjWOYDyjTtkP/5z//RT77envBTz9mfopDWIkli3bE//V3/hJ/60vf5Nbogp8u+OmCny746UIX+uQkUko/1A/+09/4bur81py5Dx7XdawXc1aLOevNChccSilCDDjvSTbi2w4RI5DIspK+jwyGNeWgRuUVpsiI0m8rMSKjLGtUkOxOJhSFpqgKVu2GrotkeUYgYX2k6x0+RfJa4UPPydOnLM/PIUqW8zUyU9Rlyd7OdFsRtT0+RhJb3w0hJEIoJJK6rBiUGcOh5uatfb77zg84Oj4lOUGIGpXVpBBwrme5XCGQeL8djdFlSdKK0WhI6DtKrVkd3yPPC2wfUCYnaYXOMg53Lm3T2IwhxkhKkRACUUCS4KzdevwozWqzeV4xAsTWkFprDSRETNQIYkpbT5wY8CFsPV7QpBjJTYbW+vmYiiW6lqdPj4gpYu0aIwVaGKbTGbPdCUWeU5Ql49F2tKVpFqw3c6QyW6+bEEBIUoBhOcUFS1lVuL6jWa9RUtL7rXfRZtNhlCHTimFdcL56QJKavChxIdB3LWVVsDvdByFZtw1HJ0/p+watEt3yjFfWK37lf/J3+dp/+n+n+Omfo1BQSMd7777DBx/cwYfEfL5ACoWz3dYoPTjON2dcunKTtzaK78aKVSeYdEvqsKQsBY+xJA9B9BzqMS/uXSLonsYu2BkMUVmFEz357hXESuIH8O6fv8VT1zAocmIfyKSCPOdUCMRmwxclvLpoGZQG9fkv87i+xJ0YSFViEAyIjCNnOV+tOP/ex5hJTZ8XSBtQ956Svf+Y9toM8fmvUJiK6uEP+J/+7HX+8i/8CmebBpH1VH7AuVtz61LF3/vf/m944Tc8Xxi+QiAwnO4TkyJIQTkdEXNJlAFycGkLrTpl2MazPD2UPdHrAAEAAElEQVQjpMSqabh84wqyUKASJ2cr2n6NUB3kPdQS6gIpDZwHaluBUNT+Nr/6T/5d/m//vV/ncXmVohswU1NmpqJWiugTGrh7/iEv/Stfwb5QggYdFetuhZKCzXrDcrHBGMVwWLI5O6Uc1kijqaqKcT1GPK+6uyQ5a3rWXUQkSSYNJleMJiOKvKDvtyNhbdNAtIzrcmuorgTReyDR9R3f+MabROv5/Oe/wGKzpu1a7nx0m973DAYlzWb53Hg/EUJEqoy+dwzHI9p2C46DQQVyyGi4i/WeEC2Ls1POT8753OufY39/j77tGA5q6qpCKUWKCW0yQgzbA7eI6MygJSzPTikyg+s7nNse9qSUCBNxnaNvLSEGNs2Sk7NjTucNRMl0usON6y9ycHhAIkFwSCVwLhBCxHYdo8GA8WzGcFQzHtX0vWUyGeN8oO89bdswqCukFJyfnzMe15ycPOMH736f3/vd32E+P0UpwZXLV+h6y3rt6DrHr/3a36bIa4bDESlF2qYhxUBZlQxHw63R/XxOcJHz5Rnff+cdXBD8lV/+VS5dPuTpo3t431GVBSE6rO15/PgxPkLvE298/gtURcXi7Jwiy8mLnKazOGe5fu06ZVUymYxo1hts53AhIoTgheuXcK7n+Pgp3/rmW1jrSCLx7OgIpQS7uzOGe1e5dv0FtFAMywGud9jeY7KM/YMZmYoIETk7m9P1jpS23Q5lWdOsG4xKLM5PWC3PcFJQFhUpQj0ouXv/Lnfv3cFkitOTE4qipCwHdF3gxgs30cryW7/9m7z08iucnC4Y1hVNM2ezbug7x2y6y3A0oLcNNljyuqTtW4iR/Z1LVNmAs7MT1u0coRIppucXBiUxCFIELzzRO0KIaK3xNjAcjvh3/2f/i4u69T8HuuCnC376pPhpf/+Azku8f5l//39+g//wH8z57CvtBT/9mPmpnwRW5ZqH5xP+/f/8X+HX//o/5Qv76YKfLvjpgp8u+OlCF/rE9EN3/Blj8GkbDy+lJlOaLMs4OLiEUkAKJCIpgdaaZe/QWcZmNSeGAChMVpI6Syk1mAyVS+pBTpGVuD7R954UBZ1r6NvAojP4oAnJ09oO2/ckBEgNKE42J6xXc4pMcfXyAdPBLpPhDKEhyYCUaVv5znLqouJsuaTtHatNQ4zb2PfNasXR4oyPP17z5ne+x+nZCQJNnlVok5F0i9Fqa+Kb1xRFidYZi2aJSg47X7BpVvS2ZZNrcm1oek/0idXZEW98+UuYTBOtxdvAZmNBCJRSxBDonCcmgdYKgaCzDVorFBIdASFAZSAkUgiSTJAiRgqUBOEDucroe0uQMBgM0UoTvEeIRJbXKFkzGk2RWqKVoC5LZDII1dN1K/recnZ+zA/ee4fFYrHdvIVisemYTPa4evUa2mi0lJzN50gtma9WRO/RUpBnimbzDCEkWZZx9eoVJoOKzAjMo4K2Tzx4dBcbPFVVsl48I54/5dXXPs3VnTGfu7WLUomub1jNF/DmtwDYyTxHR7e5d3zEyekTHh8/xuQDVo1DFoZqOCCkIVV5Hdt2TEVABsPx4iGtT8Q8Y+EkxmvGG8tBZcjykqe6w7lA054yzBMFicOy4owcnUtU3/HgbM3LX/w88Z/cIYVzWpMxGF9CqZzkIghDShn3hcRdm7EaDdnk+3gnubmbI22gI/DELZF9on33Y14dTDj5+AnN4Q6b0w2yl8Sf/CxiVNOVkYmRTLOcy1cOCGHFqIAgHUaumKiOsij4K3/tl/iNf/y/5/XhdaKVeO8QWoIA7zuS0gitMD5Dp63Xj/OeLDeo3OB7t61mdZaqqHDOMTAGtxAMJlNW4ZQyL1l3FrfxZF6TMoWvFMvTBoAQwFAy1CMGqiB5SzaY0q5afOyoLpW8+eHX2TzosG1DNajJC4PzDq0LvIPFck7Xr5AEYkq0XUuWFWhdkJJgPBiyd3iZYjCmrEbU9ZBMa0oVcfMjVkISY9oeumILQnD/7m2+9rU/IQT333yfqsGQ2XSHtut4//13cCmwWK1QArSGzWpBSgEfIikJnE+UquDmS68wnkzR2iClIDMGKQzInLyqUDqSgocQIQVWqxWT2YThYIgLgSQUUoIUgt45VIoIKZjPz9FSIFJAaMGzJw959Pgxjx8fMZnu8OlPf4ZHD+5zfPIU67YjclU9ZDya8dprn2E226PMc5QWpOhJQZJlOb21PH78mLOzE54+6Tg8vIwxht29XYwxHD17wnAwJkbo+o7l2Xy7BiXPenXKm9/6Ou+88z1292YcXNrFZJrM5JydnpMVkqKo6aNnWG+T5vq2I7pIWRWcr5Zs2gaJhCiISIQqeeMrP48xJVcuXeHo8V2KTLNyiQSkJKiqATdeeIE///qbHBxeQSSJbR07s12id1t/nCIjzzSLxTld39J1LXVdb6v4CaqqJDiPkon52RFlIZjOpqw3LVX9ItPZLrOdXZz3LI+fsjg/Z293n9lsH+8jLlhsXxOE5ePb7/PKq69sx1708w6K9ZKuP+d77/2A+x/dIcsMS99z5fIhe7szvvb1d3HOb9fpNtH2DS5YYkrs7x0SQ8d7t3/AweEuq/WSw8NDhvWA01O2++ZQQIysVguQkBRsNhuyzEAE13VYNFpDkWmklBRFwWK+IARHipIiryhkTkyB8/NTdFGAkLTuomL9z4su+OmCnz4pflov1+zvHWDdmn/0D/+ck+Mjfu/3Lvjpx81P53GBkHHbBQXUqmag/QU/XfDTBT9d8NOFLvSJ6Ye++Itsq0giSlRKeALotF201xvu3PkY7wJlXiPQxJDIteJgb5ed2QytDNoUdFmL1JIgBI3dsDw946SzZLLACYHSmiC3ldDgDINyn6zyFFozGQwwJkPJjKyo2Jm9hBCREDtA0qwttk/E6Nj0DZtuzWp5zuZ8QVj3rPsWUeSs1y3WBbx15Fqxf+mQvBpw9fA6L7/6WZz1rFZrkoA+RULvUAkUGpJgs7YIXdApyTrLiN6SJQhnS9Y+IlIidj12s+buB+9x88XrhJBIJif6iNSGEECSMRnVKJO20LrpGFcjVm2DUoKQtp42Ukps16Kk2h4gBIToSTFAiGSZZjKbIjLD8fExb7//AZPxmKzIqeqash4ilHy+UEdWq5boBCEElBKkJPG+ZDx6kcuHA7LMEdKGJHOkKZBS0TYti/kZRS6JNiFVQmaCxeKcrNdcmr249cPxjpOnC75z/ztcPtijLBLHpydMBzWf/twXiSnw6OEDFienfHTnQ9br1fb3nCUlj0+G8e17fBm4/cFtjvseLyWy3iezNVlWMTkYIoUi+kAmBMMqpxoM2UTL0dEZy3c+JivHeLskCQta0G8caTykE4K+N+SZYm0dtZaUecHpect6mFPpjKw+4FGRYTvJwkrCZIzzgpQNEa1lJKEIFoFmaQaI8XXMpV0iGftGMVkfc2P3gG8fHVN3MFhJTk+XzAcS3UXqRxum2ZAHaYWmQpgpVTNgLS0u5fzGd2/z7d/7Y2wuiclRKIGOFhEDey99hum1QzbzFa7TlLt7mMKAgCASKQZ01PhNhCCQmQQSjd9Qj2p054hBMD87IysM1aAgtw3LAFU+o2ktq8dLdkZTVp2lqmusiTS5pcjjdjFwCVpBnZeYAKOyIsVI3/co1ePriM17UmgYlYpVPyc6SV6WnJ8u0LrCux4hBFFNqIqKT33qgLIcMt07ICtr0J520xCdJ5eKYaYQyRKjJggDUuOSx3eWTG/B5vtvv8OnP/MZZrMJVV2jpCaQ+KM//mNC15OHjj5s/ZjaTUNeFFRlie0dVV0znOxQlBUvvfgySMW6acnykhQiEpgOC5p2OwLjbE8MlvFgxKXDXZ48e0rf9Wy6DVIbjFYQE9b1FLnGB0e3aTh98ghjNPWwZr064fHThyzXSwaTAbsH+6RomMx22b+8R1EWTHb3GY1mZFLRtj0xwHKxoO/XCLEF5pOTUxbrDVmR8cKNKxgzoVlu8AtPipHpdEaMQFCMxmOCi4gocF1LVmqeHj1ltrPLYDhCaUVMkd4l2q5DmZKAx6XI7/7hH/CZT7/Oiy+8QFQCgqJ3fusd5jz9piX5hBUJFwXaw3A4INgOwhofFXbTcfrsiMuXL3N6dsx3vvMtzhdr/tav/W1sF7cdDf0CUqTrWtquoypLAMqqYnLjRY4fH7G7N2M8GuCdo+9anjy9xz/7Z7+LMJIQEt5BkQ2Yn2341je+z3z5jOBahIRhPeZnfv6XkKpCZ4osh2+/+Rbf+uaf8ft/8Jt86tXPUFU1Dx/c5enThyiZyLShrEqEVvSLlo/uvodQN2jaU4piwHrTI2RCajC5xIYNi9UR1cCw3qyQUlJVA6TSlFXNZw4/x/1773N+do6zEW/T1odGRLRU4CMyQbdpsK0Fub2I8NbT0xO8hwRSGkajIdPJDr3ryDLD+eKcrCzpO/+j5oUL/QV1wU8X/PRJ8VPfeYbVHfJcE1K44Kd/TvjJqgCh3/ITUMgCE9YX/HTBTxf8dMFPF7rQJ6Yf+uLPpoDMMzZtCwRSDKQAQQlCElx74RZFWYFSdG3LdDLmwYP7fO/hB1SnJc2yASso8wwUkBmyqqQucnbGIyICkxUIAbkaMi5HGCkQIaKLHJKg7x31YIBSgq474+nTJzjnOT9dMJ8vWK9WFEVBbz3WBzq3bXMeFAWZlIzGNbow7M6G5FkFGIia3BhOTp9y/85HnK03uBCpipL52RllPWA4mjAYjTlZLrcLdYzgPK7vESkxnY2QxrAIFikzhEzk1ZBXPvMKhdA8e7ZGZQpkR13XhL7FZAajEwlBIrHqFigt6UKPFI4YE9Z5MqOxfcQD52vL/UdPWK4a2mZFt1mipQAXIEIIltlkwuuvf47ZbBelS5LIcL1DSbv15xEGISRKNuQkklS45MgLhRSSjT1m7RPdZkOmDKfnCx49esTOaEpZZMx1pLeO8XhIlklme0OabsXX3/0D+vMlMnhm+zOG0xG+aijHlzi/c4embfmn/+S/4vTshLbvKAdTZjt7ZFlGlmVUVbk1KvfghQRg7gzLOGZQVCiluXn1BbTSCCRlXYLaHqhkUmy6FflQ8ejdOVJN6JJHWojzbpsqWEpM6JntjxGLBcKesdstuVHtktI5Jy5n3RqkHrFul2TjIR/ffYbbq5GLZyg1IXUtUXkWncLksGMXDKsJvpRMm4ZlGfApI/aG2w8fkWxkFkvePX9G9ulbPPvwMVk5wK968Gukgvj4CLtp4TOvkTU9u7rhC5deh72KLnZkfWKTe/KoYdXQtsdUN0YcLXoOiwHnT0+5citjkQdkXlN2ghAblDYIo4ghYYRiYCpstKhcE6UiigGL0zOyMMNZx85ghGg9tR4jtaQNHeIwsHDn1IMZTbtgwPa5hF5TDwZM8yHKOpSS9HZNxNJmiYdiznFzgqTitPPITLKI4BYbhFQo7zjYu0puMl64eYthPaBbtRS5QQrQqSM4BUKSjQZbP5UUEVITg2C1bpBC0VuLd9sRE5lJfvFf/BXaZk3wgbPFghTZxi2GSJKS1nravmcym/LzX/1LHMx22D+4RELiPGyanpTg6ckpRM9omCOSQ+WKejBAq0RR5xht2Kwcq+WGBx+/zz/6P/wDPvO51/mpn/l5eheJIhJTR24ylCzonMNHhSmHXL76Ag8f3+f3f/s3KHJNaQq0Lgk+keUZs8MRkzBhMprhXY/tG04fP8CYrQO9UgohAvfv3+bDDz+k27R8/o03+Mxrr1GWBavVHI3ihRsvUhY5eWno+0DfBdq+pzt+QmYUPkROz865dOkSRtVoCS/f+iz3H9zjbH7GpusBhTEZ49kQScHOOMc2gug1eV5QlorT8xMSCZcSMtPoylAq/XwcxKNEj5aB/Us3+PjObU5Oj3j48CHvvvc2Td+SZzXXrt2iWQe0lOzt7BK8RcpEVVV46/jmt79BFJGhH3Dvjz4k1xmT3a9ytpwzGY2Yr+bcvX8PlefkqWATGpQRrPqWqy9WtO6EG7v7JCl4+OwpHz95wOCDd/jLv/BLnB+vWC/W3LhxlT/9044YAufHj+nKguNnDxmNBsQUcS5yvFoBgiv7O6ybhrsfPyQJg7UerSW9CxitcV1LjIHl/BxjNNevbs2p227F0dPbJL+mrj7FsN5hONghJdg0G0KM3H9wF1NV+BiJtkeknjwz22ADrWmiR3YWqQQCuHLpMsPBiJg8ShaUgwmLZk4IHUVR/khh4UJ/cV3w0wU/fVL8tLYbHs1bVqtb/Ef/wS/x6//eN3nxVnvBTz9mfjJKovWA0G+9F0dZRansBT9d8NMFP13w04Uu9Inph774cxZijJiUAwGI5EqRMAwmM8oyI8sEUViUmkIM7H7mU/z8z36Bu/fucvTkmDqvcD4hlEHrnKIoIEWC62g3Df1iTVmXBCU4W69pNxt876jqip2dGVoLvFXITNC357i4bVc2SrE7mzEdjogxEkigNUlIrLN4a+k2G1rb47uerusRSZBQeJfQJicKRZQKaWoGWhHajhv71zGFJstzBAJZlWhj6K2jC548y1CAdT0qU+yaA9rjFTvTybaVOkTWocP5QKYLiIl+s0YrjbSe8/NTNqsGkqd1DTFKvN0aO6ssIwm5HUchUg1rpDHsH17i5nVNnhuK3DCoSqTQDOoaEQRCJLquZb1uaVoHQI8lxu2m7JKnd55CJzIk3lqEThA8yTkGwwEnixWkhA+W2c6Qq9feIFnLlf1drl/epaxKjk+f0bQLjk9PaJoFm/kZOkKeZ5zN5xyfnZLdVYT4EUZrgtsgpWbv0i1CCriQ6B24kFhtOp4czQkhUGYVV7fZHuztX6O4dguj9fag9LzhLPjAYrNCGkmMjiwKbLfmpavX+eDR79MqQfIJpQxBahbR4nwiX3cUWYvMxmTxKWP1kJldo6Qm5TOeFrBKEe87Do1mvj4ijQr8SU8QjrAO5BNF8AtUr2EwYalKxiLHhEjhPechci4DunVcnu3z9nsfMW+WMN8wWnqq2hAHObaNLIY1shcYNQYCsp8zyhKb1SnYJePpiLJQdNYRk8CrDuslN974NI+++w0uxSGNCyzXHaUq6GyHSDnabEfKIhCS2lZ3hSRKTe8sTbPaQoH3nCznZJMBOiRibNjENZvSkoaCvMhxouN48whkYmgKAKZ9RWFmpHWHyTIUGt81zH3Hzmd2+dkvfZXH6yVaaYoio7cRgcB6iw+eGD1VWZEpibdrXB8oCs3OzgAhEnmRsVr05Nn276iqAefzBZv1mnXTYUxO026QSqEyRUoJHyKPH52wDeqKaF0Tk2cwKvjqV/8Kq/UaYwwmM4wnUyASbcf5yTnW+u17FRPaGA5GOVUxZrNa8fTZOScnZ1y6fAWhIMsyurZBEAneMRwM+cVf/CUePHxM13RUgzGBSBAB7xMgkNqQmS1ouJR46dXP8sKrr3H7wx8gk2J355DhYIzKJN525FnO6ekpWkFVaopiQAiW9XrDkyfHnJ6cIpXi5os3+NIXv8hy1bDaNDTNBq0U5+dL7t29i3UtXd/yMz/zC+ztXqHvLZBYLdecnp0jpODe/YcUJsP1nrIY8tnPfAmpDNIYuq5hMBxy9fIVgg+YLCMEj8kE9+/d5+69+4jnqZMpRqy1JATOem4vN1w6uMT1azdYzM8YDGtOjp7w4OE9fIj45KnqAikMO/u7PHn2kCLLqYuc4aBiZ2fKfHHCH//J77Nab9BZQQyXOdy/ytVL13AuMBwOKMqS4bBkb39GUeZ89O4d2qajGg/4ypff4L133+HRwztcPrjC06MjBpOa3cmQD37wLbJouXnrNe7cb7h8eY9/89/6H/PWm2/y1lvfQMlAWRbkmeHZ0TO00ZhM4azj/qP7aG0QUhBipO1ahBAUudl6jTmLyQwpOubnxxzu5Vw+3OPpU0+72fDgwcc8e/qQejBkOp2xM9shkdN2PZcPL+FToLM9ssg52N/jyeMntH1Lu9igs+2IY14UdE2D0QkhA+dnp7S9Y7Geo0xEoGnb7kfBCBf6EeiCny746ZPiJ6VyZntXuHTlkH/1v3/MzZd2GE/sBT/9mPlpku2xfmaZ9jUAqbGYsbrgpwt+uuCnC3660IU+Mf3QF39Nf0pmKjKTEUOHsz0pCFQGDx48ZbVccvPFmwzqGlIiOsFiuSZI6L0n+Yy1dfTeYeqEdoHQO3JjMEYzm+2gRU7vLD5F9KRgtntI13WEEFj1luXTYz64/R59v0KIhDKavnPkWY4QGtv3IBJaVwhpEGYLfyltwUwIiTY1w9GAmALOekLq6UNHVlYMhxVlWZFJRSZGjKoBmS5QSoHamkQLJUmA0jneWaqyoG23HhmnZ+d0MwMxooIgBsfGW2yKpL7FWUtuNEWeE7ynKkuuXz+gzCSmyMiyGikz2rbfpnaRKIxBikQUkaKu6K1DIraWCH1Ps+lBOI5PzlEYond4bzE639pniIQoE3U2IIZElIaRNPi+I3QtJlO89+F7aGBvOqFxnqyoGA6GSAJJRlbrOd/+5teZVQU7peHGzevMl2e8/e47TGc7OB8pkthWLp1HlznKR0ySROmx3qL11mzcJQtSsGkaQFFVA6rBgCuza0gpGORTLk8ebj+cyhA9rJrNNkkruOdpWoHWduRVgdKCJlg2zZynTzPeXZywmFxGLCziWYPcWBgZ1jksQ8tmueTmpYzL0bLbL0gqkSvBtdRwvUh8eJZxVNzksXS88eJN/vzNd0GNEEoTbKI530BYsVMOMUlggkL1PW0e6FqPlgXCaEw55q3lEecf3eHl4pAPeosqx6yfPmbn0mUWZ3P03h6pKFD7M+LTJ0xzy0uHI95449Pcvf0DdiYTblw95AUxxIfEcvGYfDRi1MPt3/0m/alDniTatcVIjRkWeOuQYuurEreNDMSQcN5TlDl1VaKznE2zxmQ5qhCcn8+pcoEqIyJvEIOIL+C87RhWFapTDPIK+/AEgEtql9UqoHNDiInVoiEiOJNzvvzVr/Joc8Tu/gEyZEBiMEyIqEgElqtzJpMhH330AcvlOdGuWS/XW7Ng69i0Lc45dqeXSMB4PCLEQNv25Pn2vZ3t7CKVRmpD2/ZIuU14JEliEEhpMFkGKrFYr1kET57lZJkiusSDO/fIMsNkMEQmz2azRGeawaAmzzXz44e8/dZHWBtZN44XP/Uqy9V2zKEoIsYYJAkbPFJp8qLiK1/5KYzJ6dqOzjmqYY0xGVJqRAw4a+ltR9t0rE9O8UT2964wGU6QIiPLcqzvMKbEKMOwHlDXGUo6fv8PfoeT46fEGLG2f+75BU3bMBoN+NRLr2D91pdnfr7gU596ifsPIs+erWi7DXfv3IFkiDGBEMQkqEcDUkwszs5ZbBoGg5rW9oQgkMLgu0SelbSbhod372NdR1lmSCURQpBpza1Pvci3v/0mH3zwA1IMFEWGEoq267h69SrPjh3f+943ybKM/f09RpMhSkFeFCRZ0PU91kWElvSuoyoKpJTUdc2Tx4/5z/7zf0g90rz62mc5Pl6QouTG9Zu0mx7pIylCihHvQErJ5z/3RV69+Vmabon1lt/5vd/jB+++zfXrhzx+9IjBYEi/7vC+59rVQx48/Jjjk2f89M/+HN///mOmkz12dg75G3/jb/K9736D1fKcqixRIhFcT0oRIUDKQGI7NqK0Js8Ezlqa9RIlNWVe0nU9RabZbM75aL5kOtnj5Vc+TVUO+MF738cYwfHZU05Oj3hU1gzqAYeHl7CdxLcNikgKCdd7Dg8ug5AoIfGu5ejkiPPzM1JKvPf++1w6OGS5XhEIJOHp+4hRhhtXX/yRwsKF/uK64KcLfvqk+KkuR/TOYTLFX/+bJ1jb4+wFP/24+al/2jBYDSnULgBaiAt+uuCnC3664KcLXegT1Q998ffxvSOqYkzfWaLv8bYHBFmpyE1OXR/y4P6ctnlCpjPWYZtgF7VAZnrbwmt7BmXFZtkwHYzpQ6LpWlz0OGvRQqO0oXeOrCyQWmOdQ2hBs94wGMwYDGeMpKDtOow0TLXB9p48zxFC4JxF4pFSkpDYEJFS0ncdKQVC8CzmcxIJozWTnV2uXr7MZDpl03Z0ticvS/q2ASnxLhBSQKsMZRT+uWnq+vScEBybdoO1lsl4wnSyw2Q2Zb1cIXxEAAeTEdJopBbkeUbftRgtGQ0GdO2G42cPWMxPWS5XrFYWpQrarkXprXlpt+6IYZuih9IIpbY+QVqTFSWHly6jjNkm1LkGSUIK8LZHG00iEjrL+uQM5zyPj44oygGXD68wqXNMYfgX/vJfoWk72qan8Q7ftzy694gYe6phwdHJU0bjEcE55q1lc/suL732Mp/54ojz5YrlkyMGuaHtOoKQhCAJzzsBMrndmDZNy6Y5JybIs4zheI+Dg8uMJ1NSTNuN23YUuiTFrQeKJCJ8z6DMcL0lOofWktGoRmdjdJEzrCoGmWJgNO9//DGNk5iQo72jX2xQEbyDIA1KQrSBkd1wvcwIi55YSFCOUvcY01NmBbmpSWrAs9tP6DeCjF1Ctya6DYaCQarYTYEUlqAaoihZxcBZsPQm48l8TjnIWZwvCRs4MQnVK5bPzri8d5WzozOy2ZjN2RL92Rn9bqB8Z8ONnQFVu+AHP/guZV3yrbff4fd+57f4wpd+iYOr16iqMX0n0KOca3/tDT76J+/yeXeV2FrcICcEv4WKbZsDKSRUTAiRthttdHgCQiWm1Yj1eomScOXGFVrWnMtzFlkgFdvq6mxc0Z5bsjAgrDWDMADACE0QgEx426Fyw4OTR7z8Ky+zVC1ZXiNjInmByQu8X9J3G8ajAdc+9SLfePPPeOvrf8xgWOOtJThPVdWUVYXOC+p6SNsEhICj01PWm4a8qHDna5zvefDgIT4kbrzwIi/evLU1jFcSQaKqxviYWCzOESojMyVaSEBi2x7vegbDjP2dPQjQu57Dg11i8pycHPFnf/Y1nj65Q1kNyfMR54uW6y+9xmhnh9lwuB2lKzKOj59hQmQ+n2+T2KKirDxZUYLUdG3A60BRGEKIIAR1VTMcDrkkNVJJlAyo510zKYFQhqg0dVXhrOX46Ijf/M3/F0274OBgl27dbsFJCZq2pa5L3vr2WzRdR2Zy6nrE+fk5jx4/oaxGLFc9B/s3+OIXfwbvEo8ePeJ8eUZW5GRZxmo559GDBwzKisePN7Tecnh4nSuXXmC5XDE/OkUZ2JlMkFJwejpnNJqiZE5VFqAsX/jCG7z00k3e/t63efb0Gc5ZikKyWp+RAqAiUkvu3b9NfT5m3bS8eOsK9+7fZbleU5UzJuMdcm2YTfeo8oLT43OatudXf/VfxmSa3/29P+Bf+pf+O4xHU6SQ7B/u0fueIsu2lwkpYfsOKQUmLxkoODt7xo0rl1nMj/HOInVi3SyxLqC0YTDY4erVT0Fs+Z3f/McM6ilS5Hz2M18gxJ7xaMT7H7zP977/NoeXDpDPQwGC94jkEElQao0QAecslVFYoRGo7d6YEtEnQkq41lNfHhO94nD3Kvam4+69D8irnDzLmM8XrFYrHj54yKAeEqPfVsN94sOP7mJ0zk/95M+yO9vB256imDAaLVgu5+w832+axqMzgTAZRuV86sXXeO2Vz/6oeeFCf0Fd8NMFP31y/BQpM81qBd96s+KLX5Eg2wt++jHz0zgYLo13uXe+PXYFkWgv+OmCny746YKfLnShT1AipfRD/eAffPtOEmT0nUcIjxQJ7wLOK4xSeN+R55IUOtp2g0bj/faLtFw19K3dbiBK0MfIYrnGx4QQAinStooRIaVEjBFtNCoznM3PiUiMlIi4XeAREqE1Wnh8iMTEtqpMwtoeETwxgFQakEixNYkti5yUIpDQ2pBlOXlegIeusQhjENogtMQYgxCBWm+rPKRtXHxKCe8DXUpY39PblpOTZ0QPzaahKmvKvGI6mlIVJblWW48BDUIkINH3Lffufcz56SkCQ9u0TEYTSIoQBVILnLRY5VHJoEWOMQUBQVmW1BpgC9Vt12OMZjgcILWiyDKUFCwX52zaDfcf3CNFh/SCFOArP/NlrHcc7l1jUte0tgOT0Ww68iKnj5E8g9AsOHr6lGcnR/TBMh0OWC/mOAJKGtZNT10PkEYiBIi+pcgrdJ6TshxrHbFzmGAYjIYkIdg/OCDTBqM1yBwfwPtAjOn5/0Wk9OzcfZdf+B/+a/zOf/h/4tnVF1E6IzOaMssgRbSW22crwDpPY3sOZiP+8Nvf4u/9wTfRlz+DO3tG8cEzbOuQOxX9HsihRDQdPz0uuJyfkoU7aKU40JpFPeG94Rs89WMWumJtG+yjh7hHj1GLSJQWj6VIhpdGknE6Qk4mbC69yqk11MMRz8hYlFPSZk2RIpyuaWyPFhnqSUM661HFGGKLHRhUMaT8/DXW5w8xt3teuW74my9N+cJLL7B75Rqz0ZRMCEBytmxwzmFtT24iQff8/X/77/Frzevw2GH2ZpjRGK8MZZ6jhURFgURuR6OUIiJQRpFUwkePyQ1t3+Fdz0Z2tJWnL9zWK8gGTGZwa4nsKqb1hN2TD/jp3/gf8c1f+U84378JIkIUnLSnLHYX/OV/82/w1J5QZQNkGiCUpe3XjOoppA0ff3ybt7//HR4/ecjewQ6JrYWMAIgJqRQhQEQyGc+YTMbkeY51npQUZVWxtzulKLajY5tNQ9s0LBZzdKYQwMcffwQksiwjL6rtgc4Hiqzi4GCf2XQMeH7rN3+DzGTM53OESEgF8/k5k8mEejwiOIhRc+nyDV7//JdYNx0iBHZ3d9BaY61luVxi+x5ltmuPUBops23KpMkQUmC0osoNWm0T6oQUKGWQQkGyBOuB7chdICCUem703dA2cz766D2E8MznC6SUGKNxrqcsS87OTxnUI4IPDOoBo9GEqh6xbjr63rEzmzAYDFksGpQwbNZLTKHZOzjgW99+i/v3PibLJMF2aC1x0ZGS5Bd+/hdJEdq2xZitT40xOYPBmNFwxvaJCUK09H2Dc/0WtoTg3ffeY7U85uT0FOc81nlC3HptdS4yne0jhQYJu7s71NWYmy+8hO06DvYO0FIRg0cZgZDQrFu6tme2s4MPnrLIKMqCoii3645IpBhRcjuyBLBZn7FZnvHNb36D23c+QucKCKQg2D+4yu7uAZ11vP765/iTP/r/cPz0HiYvsD3s713jc6+/DnKbrrder3n3B2/jXI91DURHrnle/YfMGFJMpJToXdhWtQHrAtVgzGgyo66m7Ozssl5u8MGhZeTe/Y8QmaCuB8znc/quf+5LZsmznARkpuDKlRtMJzvUxRAlJYvlEmkMZV0jBWRK4X3P0ckZvdswnu6Q6RqjM1K0/Nqv/qr40aDChf7b6IKfLvjpk+InYyB4x3vvan79736B/9X/7ju88mp/wU8/Zn7KU0JZz+3VDv/Wb/wE/9Gvfo2XpqsLfrrgpwt+uuCnC13oE9MP3fH3zrd/QJGPmIx3sLYhLww6M3jXcbpY0LYNkDBKg0g0zoHOqOqa09MzjJLIECiUItc5B7MJbdzGwG/WK9pmjfUeoxUKiD6RpYxpndNtEppEXeWs2w0ik9iwHWERQrIt92wj7ZWSKGUQcZv0JgGtFNpkOGe34yrabH0Smg5nwRiNLAVaS2KMKKXwfUeRG3yMpBiRQmB7i7dbf42RzglKU+/t8PL1q9huO0Lio8KluE2vYms62tuOSCICvW1ZrRasNh3TvX1MXhEiZFIihWE4GLFs5nSuBW2YjqbY1hFTonhuyGzbljKv6NsOYeQWTFWkrGri89Stqi7QOeTHCqUySlmSKcPu7pjhzgjfC46eHqO0pqgE49JQmu0nYro74smTJW8+vE1eVQTbs1gEpACpJZkZUFNTFCXWNfSuIQaJjx4dFCIqdF5QlCNUHxC5YTAaEFQk4JFAdNvRIUlEKUGMLdE7Nq7HHj8F4O6D+3y4akBptJCI6DEabNcCgtlshygUxXSXay9c462PP0bWE+zGEcsMpz2ikKhCY3JJpiHTiqB6GjNjZQqEVpSxwzKii1t/HGyiPLxK9/ETlPUEHLEN6OmEKvSU6YhCrijjjLM2EKopUJGXA7wPVELhpce5nuHOLmHd0qqeVFoElkwGEoJ4bcy1q5d4+s1vstZXWLuWL37+Da5OBgSZ0S4bep2Btpgqgz6jLgzOtVzanfAz//K/wJ/8B7/PXxq/hm2X1KbCVprUWpKUCGOIMtLjUcIgk0YASmqM0sQU0caQ6RLteirrWbctQSQ0UJRbs9/M5AgH4nnIlQsegSdaR4qS+2cP+NV/59dY5iuyUKNEiafdGkqbjMZt+Gd/9Ns8fvCQQVVy7YVb+BQQSmwTHL2DFIk+gBBMRlNuXL7CYjHn8YMn+JAoiprzk8Tt979P227o2pYiMzSbDT/xlS9z76MnHJ0cU5WKECxaZkiRUw/HHF65QpGVtJuWh5sVbbditVlQFIp6lAGQ5zm7+zv0tickg8kzXn35c9y49iKL5QqRIlJC06ypqposy6irIXu7+6hMsmkb2s7S9wHnPUiDEQIpxLbKGRMoSXCRmDwJhcCRm4wUBUJKpFSYTCFEoqwMw4Hh7e9/h/39GXk+om1b9vZ2OD075v79e1R1xe7uAZPxiPn5Oe+99wPGkx2G4yllNcJHsNZT5AVG51TVNg3TW8Xh/jX2dvZxruHunQ9JyZMcrFZLfv/3f4siL+n7gFKGN770k7zwwg2GgzF5nqE0JByxz9FSs0kN680KpTQ3brzKoPgcm3bDuus5Pj0hpi24Tnf2mM9XgGRnZ8zh3j5FMWBxfk7S0GwW1FVFlufY0OOdR5lEKTOs7aiqirzIt5caWpJSwDuLdx6BwPWedbPm/OwJ3//2N7G9pcoLNrbh0v4uRmWkGFifn/JzX/1Z3v7B97h77w7DUYlPHl0UPDl+QvuW59XXPstoMuXgcMpkvEvTrlmvznGu5ejoMc47gg/bkUIpyYxh11RkmWSzWaBNzs7+NUajPZJI9F2LTxatBcTEdDJlsjPlydMn3HzxFr3t2TQNy+WSoigwWcHOzj6T0QyjMtbz9XbvKjOkNiQlEUrRNA1KwPXrN4jC4xwU2ZAiVyxXT38UjHChH4Eu+OmCnz4pfmq6hvVqyb0HA+ALvP/xbdb27IKffsz8FFLAJ8lBteDv/8rXuFKcEW264KcLfrrgpwt+utCFPjH90Bd/X/7iT3B6PqfpWspBSbQBHRXKKIq9giLLMEaB2FYaVFYSQmKxWHAw20MqgdGCtllvo9wTSCfRWcl4OKWuKpK3WGe3C4LJcc6zXG0Y1Qofe2xyTGYzjNQUeYVKkZ4IuSGQ6NuWuihRQNd2kAQpBYiOw0u7jCcz1k3PqulZN/3WwKP3kAJBepTcvn6lNc5ZlFKkpAghQEroTBJFwNFBSjSbDe16RfSJqsogWfogCEJsTVpDpGkbYkxk1eA5KOQMJjPq4YQiK7BEVusNAUlvPcvjZ3SxZVhUVDEj9oG8yKgHFSJF+r6jKApScjR2hRIBaSRlIfHeISVILfC9pzA1r730OsvzOWVVEkncf3JK8/F9BJKJLrl6/QZkGllm3H9yn6OHdyjzyK0Xr/HG514lK4aczRta6xFSMigL6mK4jYgXkc4uWW1WdF2GdwFlDNZbWtsjkyA3Eu8cm3WHHGVIERG+xaY1bRs4PlngU8JGTxISkuTK+QYAaQZMd6+AAB/sNu0pWMrBlLwsUUVFEhohJOfNgtt3j3jppVe4t7L084grB5jNkkmZc9atuDEesjOTLJ3FhCnLOKIYFIjYUQ9KiqSZi4BKkaxpCHlgsbiHlglX7SG0YK/s2GGJTAFZ5bi84jSWnPUbnMqRIdLXFerRnESkLgUboQiTDHKDdgWhEZCXCDHjww8f4OYbymsVu6cLRlrRtpJiDLkJZFIgdUGUEXTEZAUh5oRg+df/1b/J3/3Hv8nHizUvzUfYs2Mo90gxQwcDPhCNJEqQ0RPMdtM0aEIAUkIJaGKPzjJqM6BKExIJJQQp9CgBIVm2jtfb4peKGcEbfAx8+PBdvvx3vkh2+ZCjR08YykTbrZ4nBgr6zoKIfPWv/DVOjk9pmhYtDYTtgeX87Bnz+ZzjkydI6UnJMV8esWlWhOjo24bS5LRtRxcCIj3vNNEZ1rYoLXj49AExRKoyAxkwOtuWwmOHd5Jmc8aDuysO9g+4detFfvt3vklZ5KAlMYFR2/ejty1Sa1IU7O1f4qWXXuPBg0cMhjVaOCICtKJ1HhEgrzN0rbEONn0gxYTRivGgQkn1PJVOUlQZXdeCFBQqY9OuEVnEdQGhxRbcRcRog4lg+5bd/Rnf/e4PePTwLmenT8iKCRBRAg4PLjMZ7TBfLMFIbt+7w2KxxAvBarkiucTo2pBxWRFCJEqFl5LktxXzID03b90EkQgx8OnX30BISbNa89777/DmW29yMl8wm+3z1V/8q+zt7aGlQaqM4LcXAqDo2p7eBqxLJJHRWUeeFQglqasRVRXZnUwJ0dP3LUoWDPeGeOcoTYZbttAG+k3DbG9nW5FXCmPM9gBTlggghECIkbKs8NbSrBpCt62W53nOpt0QQgIkIk9cvf4iV69e5x//V/8Ft16+Tobm9sMHPJ4fgfNcOtznW9/4Yz786H32difElAjWE62nMIbl/Cnf+c6Sn/jKT7NZGYaDKVpVKGWZTHbZ3b1GjImmaYBIDI7RaEQbetr1BkfGdDLi9PQcaxXD2SFCCXZ299isTnn69IjVasnH928jhODk6AkhRqRSNH2LUTnBRh5ld5nuzFguNrz26ue4cvk6PniUKUgIbNdSakVwPcvlOSEkjCkYVTAeDfB+/COFhQv9xXXBTxf89Enxk2TbcSnN1ppjOJ5RjsIFP/24+SkKclOi+sgrsw0+JN694KcLfrrgpwt+utCFPkH90Bd/62aOzgSpj6i8YDod0TcbVosVUkh8K9BmWwWTShATDAZDRlVGShFnW3KdUU2GjKZXMVLStI7T8yWLdYP3PUYKxqMBbdcRI+RZxf7+Ab23SA3O96QUcH3AukgVCwZG04eASIG8mEBMxGhRMgMkWkoSnuOTBcfHc5TJEdl2ZCU3OUro7cIaFCbPkFLgg6eqh4QYSCkhYyL4SJZpslQSgiNEwWh3D28TdbGtVLTdkrhsqfIM6wM7gyExCaRSrLqeSKJrNggiucmwnUUGy/5shghbT5G2azHlLkJIokvoQhNF5OT0jCrPESSsf264LQpS8kiZcXrWIYjUwxofIiFqnNCkpBkdHhJjJFOSLDPs718m0wblPIvVimf3z5iv5pydHnG4N8U5wbe+e48oNF6c0lkHKZGCQ8bActmQFzXDwYDxZMju7g5GK4aDkhAjQ6WRRmJtzygzCJ3ROo+1PZtmRbuY4xNoVVLqIVKBMJLOJmLsmY62qWel0YyrCmMUWZ5RVSWZEmTGUA1qopJ0bSBzjrMnR3RJsGkXhB6yu09BRUQe2eQJjYZNZLNTkHTAKchTRh88cw1Nqem6SJUlRNWxWH/Auvk+Ph4jekMMGaYcgpQ0sqCXCVFXyKLgFTlgcvU6f3j/EZfKISOp+KjZIMYVT05O0U2kKqZ0WaKQYzaPH2GGHZfrwPr+U07rKSo75qC2lFWgbz3LdaCQGp06TL5NX1N6680UEqQUOD3t+bf/3r/H//Hf+V+zX73IaD1BLixxJGmIlEWG7f02udHUxBSJPgI9wXu01lRlRUo9yEQMjhAjKUSiAK8dUhpkntNuGoq4NUUOqsWtG47aJww+P+JTP/NZbn90H20ETdcTUsTFuO0cERLvIkd3j0hCkqsaFzwIWC9XzAY77Az3GeRDbt9+m8wU5KbA+oi1gSqbYDdr2m5DPhyQFFRlRZltPXkArLN0foPWmjyvSSlsk+aEpLERfzSnrsYMxztsGsuNF25x5+5tqnyIFAmRtubG3vVocroQOTufM1+utgl2YpsuZ+0WoFKy+NCQ24LNpsO2LdVz35dMG6L3qOSxnccnWDYCZQwpQWYEg3pMZhKxgKqqMGo7frJYzDlbr9Fa8Pb77zHfrPEpIjODi5bget57/5gHDx8SIlx/4UV6a6iGh6hswsnxU4aDAaHvuHv/Lvfu3cVFeOHWK0x3D1EmY1APtomXPmxfpzKIJIguMajG/PzP/iJvvPEVNpuW3b1LeJ9IMfw3nT8xepSUpBQpihyTZ1TDwfP3KJFnhuB6+q7F2p6u6+i7Hq0UPllWqxUpJjprICWKokBqQ28tdVliTEYM22firUcqSVFWyOeXztFLBmVFCJaU4NnTZ5ycnzKd7jKbzmhsz7q1XL1ywMGlQ7755tcpVIYTkvFkwpXDA54+ech7HzylrAqIgTor8Ei8jPgQUSKxnp/xtT/9Y37hq7+M7S1ZXrC3e8DZ+TEhBIzRZFkOKWLKkqbZcHL6hPWqwWjDO/fvYbKC6XSfQaZpmg3BNdy5/S6np8fsHx4wHk22ptPbYS06Z7dQGgJZpXHBcnL8DKUybn/0IV3f88KNFxEikpDPu7OAKMmVxIuA6xvajSG4Bu/djwQSLvTfXhf8dMFPnxQ/VVUBSbAwW7yf1DXXD/UFP/24+ckoUux4Ykv+8bde5Gev/BmTC3664KcLfrrgpwtd6BPUD33xR7NBq4K9wYwQAv1qiRQOLSI+OIbDMfVggIsB6yxCJlbrMwgJow3r1QIpYLXZ4EJEa02Wb5PTqsEQnRVsNg0xBbRSoMC7nn4d0ZkmdgEjt5USKQWZgSQFSUGeJFmEJCIhBTJVEIJApO2CkFKkNjVKCnwMRKnIsgRhO7qQ5QOSUrTddtwmExld3xFjQkqxfT1svVS0zkgBohT0NpGZnNPVgswoisKA3i5yPnR0bYfzESkF9WBEb3vywRCtt0uVNx4fLCaTpD4gk2Q2nuBjIJAQxmBdj1KC6WCIjBElJEKVSCkIKWKyrSdGShBTAwJW6zVRCIRUJARSbU1cc21wfYd1kb5tiNFhdMbB3iWuXXsBrRVJRjKhUcLgRMKLQF0V9OsFMnoyrdDlgNYn2tbiOovrOpQKhJhASDrrUGE7EtT1gb5Zg1KsVituXL3E7muvcP/BE7quZ282Ynd3gJICKUuiFLhv/CkAo0HN4OAQQeJ8seDs+Byix9qO3lmkliiV4ZuWx4tjutmMI+8ZVEOa1RnZzpg4G+CI2BS5bzsu+wGZlJy4hv3JPpu4JtcDdtSMe8ajVMXjk6eoeIbtH6PqhHjSI2XCCzjxkqrYpUwaljV1XeLdik0r0SRmwnAl03yQKfAJlVWkEOmtByGw6ZTxbsenvvVNXv74Y74xzFjtvkBsFOPLe0g55uRsga4NTgWijehMYr3DGEOWZXTWbv2SgmR/f4+f+Du/wHf/4R/y5foLxKenZH6EHFX07ZIsKPKs2n5vxNZbI8YICKKPdG2LyAAEQiRE2hpZp5QwPhHYdnPkeUFaxe1SYFd02Zr1oOGX/o2/xseLY5KLtL2FtIU05xPOR4xWSJGTS4P1nt47kNDZjrv373F2dIxUGbO9ParpZRRAhGQEda7IpOCgrBiNBmR1iWvWPHn0mGbdkp6PYsQkMfkQIwVaQAwBmUuCVDjviCmybju+/84PUBKuXjtkb/8yXWsJvsd7R5HlVHlNQuBjz1d+8qdpNi11PdpWncsKpQKd7SAFRoMahEIIvX0+tsUHT5csRiqcdcQQiQE27daHxhhNnmv6Zo0W/z9vLU3btc8P/JLOJ7R+bjJcVmRlTUQSXEtwAZNpQgzEKKiKinJ0QFWXONuyv7fPN/78TykyjbOBqiopippyMGA0mULYHlZSFBidYfICoxXWO5y1GKHpG4smY2cyxHYeY3KkUuS5oSgySAGtwHtHPizxMWzXau/x3kNI9G5r4L/ZNEwmY6zrcM7SdGuUgRASNjqkkHTOMh0MiNHTthtSTJR5Qa5znHcICSkGdJYjACfAe7s9hKXEcDLFJwg+0TQ9WZFR5poUeg729/guMBgPaa0nesvjJ4+2f2uRo7MMvCcFj1KSFCNaG6TeJu9tuoavf/1P+cpXfo7JZJ8nj59sPYFCS99bIBFjYL1uCd6BcwzLkqbtGE8mFGXNYDhmPMh4/+33ePbsIYNBzsH+LkImtNmaWQ+HQ549e4YP4XnqaWLdrCmKDJMZDg8vs79/me999x0ePnrEtRde5PDgEn3XcufpYxbnZ2R5tu0WEJLvffeU3d0dXnr5Uz8KRrjQj0IX/HTBT58QP50tzjl6csz5YFtA3R1PEP7pBT/9mPkpxp4m9pxsEm892+W1FwP/4r/xly746YKfLvjpgp8udKFPTD/0xd/tO/fJ8yEmG6CMoawkzje0nefS/uG2ZbizdM5RVBVZIdn0HUdHz2jXG1IMGCXo2p68HDC7tA9CbtuEXcS7FlB0jWUyGbFZb7Bdz6AeEtqeejDcps75QJ5LNpsNq8UZfdNS6GwLZcHS2gaqiojA2e34SVmWONuTQqCqK0xRbCvRSaB1hu08kJB48mIbuX55/xJSGbq22S5mwGbTIIXEWYcTEWRG13UUec1yNadrPUlsTavrOqfIckxREFMiWs/OcEJKWwPuEAKd7EnSbI2CswLfW6IPhOebLcFRZgajFSJGyrwgxUDTrWhdT1XX2KbFh0TvPPlggEiCQTkj+AQxIpCEGMiERAmFzkp8CKAlvvekECAE2tYSUqQPnlFVohFsvCOkwLCuEL1jUOasbIOXHSLP8X5r9K20RjxvYV+3HVIoUkhEH1AIdJbR2o6iLDg5O+P42VOSzlit5yw3zzidZ2gl6NuETYbZo623QpSGdefIpCTLB5h6/Bz603OTX0FKgt1Lu/yT3/1Njt0xMh+wXjXkr9xAu4xlcmQuIoUnmESZ5wy6IWcp0NiI2dlh4SO2E7TliKaNlLPLnD28g84ydCnxOkJWkoTmXAhSkVPkJYUcUgfoB3C+OmNSDpkHy0cfvY3Ix0gkvu9JBFQOWRJEMi53lteOn7KPYXbtVe4WQyZxzk98+Q06Zzm4vMOmb5BJIhHoIsNQbA2MU6QqS0qT09ue83XPT/71X+XowTHf/a/f5qev/ATNsSVTOVmVYRDgHb5vUBhC8IQg0Xpr7h1DJPUJFCS5/WymmEgiUcmCdbvGlJGuaxF+e/HnPLyzuc3f/vW/w53jE6wKqKCQwiBygw0RgUYgsQFi8DTNhm1NM2D7ltl0xE998Q360CN0SVZUBL81IM9kTvCW0/kZm9WS1dkZxw+eMl8vafttZbooaiIgtKTOS5RQ2xTo6Oj9hkgEKRAq4Xq/NaDWW5C9c/8eEqjLmoODq5ycHD0/XDgWiyU7V24wGk1otcN2Fut6NhuJTJHRpKauC05Pjgk+IaWhrofMRjOIkdVyyXJxxqAeUAxKTFliLZyfr+i6jqQSZ8sznHO4BP65KfdwWG8PoVHifaRZL3nnnf8ve38WrFua5vdBv3dc0zfs6Yw5Z2VNXd3Vg9TqVksh2TJoNBgLg4fAusABOMAOrDCowUEouDHcQBgFEECADTjCDDcMgWwEWAYrQlZLtJB6rsqqzsrKzJNn2sM3rrXemYt3d3FJhboiSxffk5GRNxnn7Pj2+tb6vet5nt//t1DCshrOcPMRs9BM9+mRORc++/7nfOUb5xw2E5SMQvLT3/hZ7u7ueO/LX+Ktt96AIhldQdsGVQxG1YO41dVXRKkeGms0OUpInhgTwQVs06GlQqo6IVFSRIgqlC+lEKInpggJQgyQKpTGWFNBP//8OX/1r/67/PRP/yQPHl4iiyCnQvAZ0Agp8SGxud2yPj9DNy0CUeX/fr5fG+zxvkqujVZIKUEIcsqEmGmsgaIYxwNN0/H24zX/0X/47xP8ke999jHvvvcB42GkMYppmliuBnSv8WGuzx9AKEkWoHVDypkYHUUWhr7jMG7rdEO/qOmHWnM4Tmhj0Eqx222ZZ8ftzWt22x3OR47TxNWjBzx8+oDdYaaEz7FNx/rsAfvDBt1ZUorkFInB8dM/81O8eP2C4B2tbikSbGNxIWJNS98vuH59Tdu1rNfnDF2LkrBcDJg33uDy6pJPPv2Ejz/7lMViyXK95PPXL/nk+Wf8qT/zT/wIceFU/6B14qcTP31R/JSFQumGLA0APuQTP/1DwE/GdrhkedRu+Rf+0F/hn/xLJ3468dOJn078dKpTfbH1Q7/4e/T1rxJ8IUZQyhCNRNDx5pMeN05oJLppWQ8LDscDsUDTrfjy165Y9i3rZY8xBT8XXr3aMLqAvE/L8s7T9wPORTabW467PW3bsl4uCSGSjOLF9o7WtuQSEaqAzSwePGKtDONhur+JaXTy3O1eARkhakdhniPBeXKm3vj9hFSCxlg625G9RxApJISEw6GKQI3pWK/PgFzXI7oOKSRWW1ycSbEm5xnt+eD9J3TNGXeHA36eEffg5qcDurEEP+HnEaMtzjuEELRNSxQFssD7GUHEp5m3330b72YOuwPyXsqtlELdy27PzgYymZTrDb1pWpRpeL11HPYjRRZEFlhtEAVCTmhTIVBYg4szGUXXt+SU6doOP3vS73Uro8MaiU2GzW7P4XbHouvZ7hzKatq2Y5pnpIKQAj5FzpqWBAyLBdY0SAqkTGNbUskslkvG6UjbWIxWRGE5O3vCamghO3L0lFxdGoupjljrbgm2J5aCbQ0uRkYfSSWjFTTakFPk9tUtn3z7eyzbBevmgheb1/h+IG4zetGRy4Z3U+Hmt75FvljzueqRqsGUjLzbc2Ml/bCqMfPmQGuvefRE8eyjiXJowawIqWKX0C3bWeAFDGfVk5JeOy6alraf+CwGXN+jncHrhDWaRTbMs8NJST8HVq8/Z91FXtrAbasprUbeBN5++ha31zO2i4zzjq4dUEIw7kZAoJWuDzQfyc7TDRbn4fVr+PP/8n+Z/2P5n/A3/9qv8xOrr1DGLSYUjhS6VY+RiVhiXVOQFSBTkSilyBIK1VdSMggJQgj2OZKMROfAUgpwMwCv3B1//i//S3xcbpmcpIhAkpmQEtGNrIYBVQoh1K5k27c8urzEKIObJhZdw+b6NZ9//DGPHp4xbo/cOs9xt2F3d8v181fMIiG0YegHWm3QSmCMom0vCCHWw2CpB5hUIsk7cggImUHU73L2M0IIztYrUi5o1eBc4NGjB9jWknzgOB4RpmWKExdXj3n85vscfeL/9H/+q/zsT/8cb735Jrc3E1JKgpv58Nuf8tmn3yelcO9PycwuM04zl5eXvPHkTS4vr7i+e0bMkSzqFMfl5QP6rqXvWqyWJCkpQnKYHeM0cZg8cgwMXY9Q1VejVUNScHN9xBiJ7Ra88+b7lFxFzH1b13KEKCwXKy4vrlCmwdiWu90dL57fYu8l8fPoGGxNfswl38Mn5JzxKValT5Q/6KS2TcPZes08z2hjKCXRNAYoTNNESqV+x6GuDOVMyQKZJX3XE1PmD//iH+GDL32Ff+d/82/z+PFD3nvvPVarMy6vzgihIKSkM4bdYUvOkmmuK4bOR1KKLBYLJhdQuaC0REiFpHA8HgkhIlA4n+n6JWdn5yglSHnib/6tv867bz3FasV+N/Hg6jH73YamGYjZI5RElUwpud6bU77/LAI5Z4xSpOjJJdA0Dd/69m/x1lvv0bdrlDRY25FSpus6jG3JyfP0jTf5j/7W3+H9d97i/OISZQUiC0SxICfe/8rXcfOMczOffv4pPjmOhw3TbsPf/Ft/m2GxQGmDm2Z8iAyLBYtFy4MHjxEonn32CcvliocPHvDW0zfIBaZxorEd69U5T996n77v6bqBvm/56KPv4vz8o+KEU/0+68RPJ376ovgpCcnkAvp1A0CSFturEz/9mPlpmo5cj3tuzZ4//9/8Cyd+4sRPcOKnEz+d6lRfbP3QL/5W3YDD4UrAakUOiabpCT5ydXUJKaKEQEnB+eoBLkRm57FWA5nr69eEMBJTIUaFT5BSIKbMPE7s9jsaaVj2DbYZUEoSUmSxXDLPicdPz2mtBQLryx4XDry+O7A7OsRCoVSLQaCL4fGjryNNXQdJMeBmR/CeGOuN1gcHJKZposRMFhYpDXeb15hGYzpLjjA5x+6z5wiZiX4CoG1a+rajG3rabs3t53dkPfK970PwhtXlFZ1tSbMjh+oy6JYDSmuMNeRUgT7GwP44Iyk0VrPoOy6uloQwcTze8eL5c6y1NLbhxasb7jY7DscjMWSEUNV7ZxRaa5zztF3Hev0Q23RAJmvFRCCLgjCALihAy1IdOt5TUiKFyD7F2sXOhVU/kFRLpkadv/fmJSHXDpJuFMl7rDS0skq4A4XdeGSaR4TSuJDIbabERKs0o0+46PAxoIxi3B8RQhBzoDE9x1uBKBljNTHfd9YO9bN2zjPPjpwiOXlyThSl0bYhhcQcD1htWCwMm88+Qb/3ZV7ePac0LXncowdNOt7y9FFH+Lv/H75pLfnuFvfuirwfSaXwx772dT4uE8fZ4w/PeDZ/zpe/+ia/8ckRFR+S9hFhBoQ1GJVRRrFoWh4ozXkObAhswsTheMO8i8Tl+1BUXT1IgeAmJtmSc4tIBl0OPGw0gkS3foO9WdBqySAE7nDk7maPUJ52MHhX0BJ2+wMpgtENFxdn2MYy+4QTBqk0OmW+891b/uy/+C/y18z/kt/6D77NN5t3mO4KenHG7DwyJWRbKBJCBpRECkEpkmKBIslCkCl1sq8UlILoM8UMbOcdzj8H4Of+wi9xqycImeVVj45nxHJENAJjLDJlspsxnSHGwGH/gtvnB47jTEp1WmM6Hjk7W/Frv/kp+zGANaQ40Ui4eLxGmgbTLfAhIoskpkAkoYqs8mklcMHh/Ux2E1YUinA1CU9KtFBYLG3X067WTJPn8uoR0zjTND2vXr7i+vWruhKmFcvVFUG0RCcRAt5//wOcd3z7w99mc3dDjhFpWmJImO6KXmv63tIPDYuLS6TSKG3p264KufuBV69eU3Ki6TTFwMvNDfnVLYuuR4qCT4UiFVZbrNLUU0PhOI44P/KVr3+D7fbANDkm73E5EPRA13W0QkESSK1orEVpw+evNzR9j4u3DG3P6uwhIlefSdsYtCookckpESmUUgX6IRWKkJjG0BiN0RJRMtO4rStRRdRVjlJTQJXUlKJwwVdHCtwLpSUoRUgFIQqHw8yDB0/45V/+S/zar/0av/07v82H3/2YL//ET3F28aB2v0Xh4vwKkGQSUhsQ0LULlFTkeH9NovC5oEpBKk2jWkrK974YhbWanCOCgZ/7mV/gxecfsTvMvPnuV7i4uEAJzWa3xRpLiCMAAlEnHZSsayIFWm2QBUQqTLkgFTSNxhiJVrpOKCzOSLkQvKfvV8TkkaLwp//0n2G/PxKTx01HSIkSA9lkaGC9PGeSE1/50sD+eIdW75Jy5ubult1+z2pxWR1pMdL1Pavluh4GhOKb3/xZjLb0fct2u+f87Iyu65knh5SGVX/OMCy4OD9nt98hs6W/f1lxqh9/nfjpxE9fFD8lMr6Ac3VVe5xnrm83J376MfPTs/AZx7fgyS/9p/nD/8Tb/Ov//SNf+Zo98dOJn078dOKnU53qC6sf+sXf3bNX9F3DIKCTkcWDJUJLnMuk8YA1DcZUyWjyge24xwfP5XqFNjVpaPKCzz5/SfAghcRow2p1RtuvK8yEEaVK7RZkCWg2myOERBxH+q4h55ndHtrW0Ip7z03MtZtnDULAZvIE78m5QMks+g5HIelM07ZIs0ZQJbzb/Y4YCkO34EsfvINpIVF48XpLjBKNpBlakFUePe9G5sPI+vKSvht4+70PcGlCG81xcux2I1YoZDNgjca0FmU0kYQPVfYb5kRnlvRNR3IjrTEMi55WKoZOszIDjy+egjX1ZikCn798zuQKUrUY4Sk546NjdDPLfmCwCheWaNNhjCSLjM+RzX7HZjOhi0QKhS8RJau/RxRojcVYW4XgJeOCq53rIvARpt2IMgIfJ7rcMrvAy8OOzloeXT2gUxqlGva7QMyFxXJRU6uMQgoJobBeLLBdw+wCMSa22w2KmeKhbVZoq4gikJOmiAyihkioEpHJ0RlDNorD5IlR4qc9vZGslgOznxm3L3i5ecHl4pvc7LbosIeuwbuAaQ1yPtJsXnLR9Dz/zsxXv/mzfOIFc4n81rNPaFaWs/6M57bh0r5DuW7x6inSJZK4JVsFytBGxTFEopjZ9xIzFUZhKGeWo98TxgNl/IRMA7JFeoU2BlsSI5E2dwyffITcfsYBgV8syJzjvOOdt3sevnOFEgHbLBDSIkuLK5GLbgUxQy6EEAmppn+V+ySrIqHvFry+c/yJ/9x/ll9Z/1/4tf/d3+Gr7dt0c0YJC31Hjh6LRUlFkQL6hmQNKntCLoRy3xVMAmImGCAm9odXvBxf8OY7C/hV+HT8lNefGBaLFWYl2N7dst3esp+3jNOIKBklq8cEUdeDFRItNT5GQsxopbi9vaW3PWpRyAoSFinqg1r5gIoBUwpaaVSRWCQlF4SEru34+lc+IATHi+fP2W1ukNISUyRliW4GJB0uZa4/f0WKmc1uQiuDNjucm3nw5DGrs3O6xZKrywdY3SKFpORA2zRoLfHOIe/XE0zTAZIQIo215Bzx04yWVK9UTkyHus7WKsNbb7xNt6opbKVkFouHCATzNJJjRAcPSLSWGKXJuRCFoBnO6FdntI1lsQ6M40QInpTAWEPfq7q256C4RBaFogWrszNWywEpBUoZcilIUZhmh5IS5x2eVLvLUiKEQmqDMQ1KCLSo0ERW94mcoIRGZogpVDm9lAghK0rKunoCkpTk/f2tgnKmrgYdppnRwQdf+SZvvPkBr25uMLatEwMlM01H4jxSfGS1XldXlVIooerKVI60bYs1Bu8DMWZyVqhSJyzaxlSPmBaknMk+Mh89OSmW6zXb/Y6rq0e88+QdBvOcVBy7fSYXjQsjOUekVnUlTBlErp6m1jTkOTIfE6oYchKM0xEhJSpVyf9i0SJKxAfPZ59+yjbMvPHGW7jZUUrh2Wef8tu/8RvYRcPbb7zLg/OHNKahW7Y0jWW/3fHJ9z/lvfc/4Or8McY25JzR1jC7mf1+S98vSSHTdgNd06CVJuaZu+1LPvv0Gdc3G7RqiEnz5/7sP85uu0fJ37ue4o8cGE71D1Ynfjrx0xfGTyQkhbPVxJ/8c895dJkY2hM//bj5qf+DFzz4o0/41uefMY7vEw4zInLipxM/nfjpxE+nOtUXVj/0i78/+AvvQyoknxFSsduN1VuhLbPzHOeJphNkBD4X1otzlCgct3fsD4ea5iQkD88uGOeR5XKga3tub/eMziOkYvYTPnq0lsRE9ZSgajen0YiuxeiWzWbD95+/ZH22Is4eWahuFwFFC4Z2ifeBs7NzvPfc3dwxzyPDQpPFRHaK5EFkiU+Stu3ouo7lYHFhpGkbnjxeU4rGj5HRzYzHmZILbXPF+apHW8d4GCmpEFNizDO6NVyszkgxYZWkaQxZFBKFhRlw0pFLRqi6ZqK1RLU9SQhunMNk0CojEgzdgqZoOtOSc+H9d95mcoVXrw/srw8cx4mbw5akBL/24rssTMNitWYYGrpGYq3CRU8qcNY/gFzoe0vbdewPO4y1qFJQ96lh6/Mlichxnnj4YEFnJSTBomsxCqZ5y3K9Bt1yu594/vk1v/1rv4XRLVePHvH08RO01sSQqqNCKS4vriB4Ep79tOdqsSKlwptPr9C2MO4zu83I3eYlTWtQReBnh3MOAO9m5uMR2XWg6mj7oqtyaUNAWkPuJI4jw8LxdPNbPBKQRcevbUcOfolctNyWI+++9Yjd9R3N5YqX+8xOnmH6hi1HHmRJCJInV+/glaEfliw2t+y/9dsMj94hHTP/iT/0PleXD/mf/cqvY64eYWWDz4Z9nNm+eI05Eyhg3l+DXZB1IMcFq/6MVhSOt1uSaui+9mVevjojXr7N9+WnjPToneXtD95mezfhfcDFSBaJEj2yMQgKsmRSCIToSDkyyiNKbfE+ohuLQGKMYa8yP/cf+zP8xM//Mf63f/mv8NXjyKNyhgsz2p5zDDNJaWw/oHJGOk/yCSMkKiVy8GQBmUKXNZ/sP+Nw5nn7T34FPX0KwPZmw6294fZmQ9tZlBZorTlbrlmvlqSUaspbTnWlJEdScFhpkFKRKNUflQEhsKWAFsSc0cIgpaaYRCqZGAKb/UjJmRAjYXZ0Xcunn7/mt37nQ54+fcrFxQXtsiY/N96z2x/wWdEuzlgtljxuDYthyWJZPVc5R8z9RIsPvwcukjBOCATr8wpQKURKhhgKWjfkmHBxRgjF7B3JB0T97ZBzwscEAqQSSCUx1qIpxJTp2r5+90VhuVhUCXao13kpBSU1UipcrGsZMTjmyVFEQStBawZShNu7G371V/4uzjm+9tVv8v7b77NYLWm6llwSIXgkMKWJWApGK5z3NLbFhURjFE3TII0mlbqSZIxCFyjBI7VGKk1GkqkHmRAcmoJEUrIgiULIsaaRpvvOd/C46DBGowtoqTDWVAiVmpxhdXZRp01SwlpNjJGFUUzHidv9gRx7VFMPL1oq5rmuWsiSmY7HH0By/fkSSmvGaeT8Yl3l8a6w3bxmc3fHgwcP2LsjPmYOhyPf+t3f4ebmOeAYFgO2bTGdojE1HU9pcT9hPNdOdlFIDIuh50tf+QlEEUzzSNt1JNNiGsvRjXSt4cXzGz6/fk3Td+QUWQwDNzevee+D9xnWA5ObmA4zr29fATCMHUlExv2Bs/XAfrvh8sEjpnFCa0PwE21reefrX2O3P2JNi1KS7eaW7374O3z/049wcaJtW4xpiGFi8olvffj3ubp8xMX5JbYxGNv9iDDhVL/fOvHTiZ++KH6KBJKAYYj8k//UDX3XkeKJn37c/JQeGj67u2F7U+8JL56/YLE4nPjpxE8nfjrx06lO9YXVD/3i73sfbrGdBSlQOiOLpmQISYMWlJJqBL2UaCHZTTPHeaQ3mvXTN8k5sz+M+Hnm0eVbLBYDh3HCtorttKftGh4/XNJ2Ddro+/WIgPORMjlygevbG3yK2Kbh4tFjjocN1mrcOJMLWNtSpMR5T/CBZ8+eVfHresnZ1QP6znK9ua0PEt3RGEOvLMpKSorcvN5itCHOCecdqWRKKjRSslovKEVxnAO7aU/rR7qmYzxWWa5VMB52aNUx9EOVSB+P2NYChegDV6uW1dmAVJJXN3dsjlvmIMjJ4FykyQZRAsfdkVbv0MJxcXYG2bNcLZC2pVGJs7fqiPM7suBlwYfIcbtjYTqCm5GyUHLGhIgPCZEdJWc+/PC7HI4jb739NrYxLLuefrHkweUaazRdL5h94Ld+8zf5zocfstnvEUrSaoFMnqFtabo1Zw8f8PjJG/zSL/wMUhvG2SGEIcVIKRkpFaJIttd3NI2iCE9yjt/8nQ+rfDY4Uqc4jImhW9L3DdNmx/lwRdt1DENNo7s4P6d7800QAhcDNtdDU/QzcwykOaF6y2985zusV5rV9C2kHPhUPMR1PXI4I6ZInhX64m2ebRMXT97lk2nidg6cmTXDuiXahLGFlY/cWY1eLLnYHIj7W+arLxGPM//JP/oH2G43lPlAbt/i9X7H1ZtPWenM3ad35DmR3Y4SEso+QOoVUbRsXu4QrcJkA1bxXXvJy/ffQXz4q3B+QNsDF9uOP/oTXydPDpcktl+ijSWFWL+gKSOFwDSSvm/Rql7j2tqa8BUiTdOhlMG5wEfPDqzPG/6F/+G/xt/+P/w1fv3/+es8mgcebyNCW0zbQc4krUhSgIPkI5pMEoGwNLzwO0Y/cv7NJ7z7x9/n2h5pP7EArFYXHM4vEChCnJFWElImekfJhYzEGIWUDRJB02lU4/GTY3844EuhbVu2uy3NxUAp1BS3UNACkp8RtkVZC7qlu1hzdXkFGY7jDmsatNY8ePAA5zx919F3LYfjnkKhbRts0yCKxM8R7xMhBG7uRlKO9d/gaRAVQMZj7SBLhUDw6WfP0Epi7mXWCEEqhW5YYI1FKInW/z/ocUGQBQiliDlSYkCIAiES/JGzs0uC95QYEVJSkHgfiTGQckRqjRAZKRRCgJUttm0QwlJyZpomYsx471kuV/zSL/4xhsVAY/v62aWEO+yBmrIpZQVOI2pntRQFyDqpUAqzS6Q5UERCKcE0gUgZXQAlAUGWAoRESIlRFrTESEEqdXUEJB6JMhoKaCXpTMei7yjeIyUICikmgg912scnpBD0Q894PELKWGnxwjMsFhSqKFopTQyRGBPDcokLgegDQghS8qiiEVpQ7mXhiIR3npQCr29ecRj3cO1QnWHollyerRnffMQkZ7QqxBBQTUMqCTcmtND4HLHdQNMv2R8OhFCdRj/9cz9PLJJxrtc2JaNEwc8T2kjmaaLve959910Emc8/+ZjPnn3Om2+/xYvXLxkWA327wJqOeZ44HLa8/uQZZI8SmtsiefjoKd/7aEc/LDg7W2OUpTMNf/tv/g2+9e3v0PcDtjMcDxvWy4HziwVFLOt0QSlICU2r+JVf+et8+YOf4D/+J/9x9ruJmMWPjhRO9fuqEz+d+OmL4qekO4SShEny/OOeqyuPNP7ETz9mfmpMy+OwZr9rAejXK7Anfjrx04mfTvx0qlN9cfVDv/jrVz2RwhQCaUo00kBSyJJrl0JrSi6kFNBKs7AtfduSgif4SE6ZRjecP7ogxMRunCg5sF5aHj96k6axdLZ2UWY/o22H1IacE4YCUhBTJpb6oJ6mmUUriD6w6Dqk0IRYR/m1gcXDCy6vLhinic12x+G453AwhKhpO0NjDCJHhLgfAVctpmuQAAQaHRiWLdoqrJR0bUtRktuj4MX1gTRCFoXFaoFpmuoksZroCsHXrojRPfM4IYDLqzXLHoYmsRwaHl2+QRSZ/WFiHgM3Nxs2d7ek6BAiMB89jsL27hVGadbrM4blgn6x5O74CjdOSGsoRrPoB1bnC1wsSGUI3uNDJMZM1/S07QKtFZeXb4BUpBzY7w8UJNvDzGEMUDIlR5QWPHn6PucP3iZKgbIKoySDkiyM4rB/xacvXvO3/86vkoLijTff570vfYDVhWk64kKgaXqcd4SQOHrJxeWSVdPwkz91TvC1e9mfD2x2I69uN1zfXlN8YL/9jFIy7+92QBXnzs6RKEhjsLahtYZJZErbEFPibNGTX9yx6pYUucXLwCZEvFEkvUEYiRWC7S7gZcK8esXjq8coJs6E5Uwq2lJocqZZDuiguBiPjH/v12nf+Sk27YoLYXj3Kz/Dx89f09u/yuMu82qORAt+lGRvcOmIxCFkprg7grwCPWCHJSG7H0TNSzkw6QnUiMmafiy0ccNXP3iX19cbzh494egCZGi0rg/3riE6h7EaUer1Ze9l4JnEcrkmxULwCaM1l+05IXgOs+YX//x/ivLn/hR/5z/4D/nWr3yH6cXnNAfokrmXvReUiySZcTIhHixRj654/PWv8ubXHlGsJIjAipY23QLQ9mua7gwhNDLOlBJI0aG7Ze24hURje87PLyjUQ+Gy00RXReZZK7wPfOObZ7Tt/XqM0oyTIzhPYxpUYwgxkQFtDCEESs6UnGqXuFQokqpBaUMIIIolBsfNbkPOkbZtoAgEGm0Uy2VHKZkqrhekWGH78uqClGL98wGh+npPM6p6T0RhdhPz0RGCxwhDDAk/HZFS0JjqoGpMg9QtMXj22w2HacR7x3g4QqkrHjEmvIsUJNpofHSgFNpY2rZD5kj0jvvIuCqklwqjLMvLJblEFosKLc45GmPqSgcSrWu6XEpVOI1IBC/Jqf4ZSiqgrjdpWe5F3gUhQCLRRdQpgZLQSoESpJiIMSMKZMV9IqREKkXOHqUMSgq0AKsEMgekVpSSq1OKglQSIQRCqCrzHj0hFvL9s6XYhtZUEX3Iklgy3geMaaqIPQaslmglsbatkwA20zUNL158ziff+x7eTbx+/Ypxmnj06BFD3+CCQxjLyxfPabuBn/9Dv8B3v/Pt+vtAsl4siS4wzTO6bUBJUswYaRESVucPiEWQi6CxFqMN436Le/4MIQS2NYzHA3c3N0ChWfQoKVgMHd//+GPOH1wx+YC/26KsRhgwVrFadMioyajqiypQSsYaxccffYh3HmXqpMCbbz0lF/Bx5OrBGqs0QlpS1jSdQhBJyUOJvP/OW+y2G/6v/95f42f/wB9msTj7feLBqX5UdeKnEz99Ufy0ujxjfX7Os08afvm/+g7/3f/Bh3zwdXHipx8zP6kokEXT9isAbLui6cOJn078dOKnEz+d6lRfWP3wL/4GxeawxyqF0BpRBLaxpDiiREFrhZaKEFIdq88ZZTRFSqS896P4RCITqPLStlWse4PAIVPATxrbWh5ddWgjyEnhPSidUcpSimB/PKIoLLqeEntyBlEESmi0LUxjokhBLolx3CKk4vJqzfnFitaa+w5NwR88434kZ0MhMwVXO199h7GW1WqN1gIhGkqMODehhOTp1QVXF2tu7kZ22z1+jmxvXoGo4+nn6yt8DBzHQ41sn2auX7/i7//6zIOLJTqPnC9XWNsw+ZFi4ehnunaJ0ZLruzvcwSGkRluNaRq6ZknImg+/+z3utteMQbIaloQQsLYlx0x2nsXjc5q2Q2uDkgpVFKYkjnNGKYEgYqwmJUHb1A7RbrfD2iqgXS3WWC1pbUNjAiFnkoDOtMTZ83p7pGmuePPdp7z3lZ9DisThmMgIZCoMw4BNHqE02hr6fsEcEinXw0twscqJc+Hw7CW3mw3tcsl7b70DCGKoXbPld+qIeo4ZpQ1FQATwnuwczt93nFJEicTLzUuWZwIx7bBh4lxfIItBekUuhSAEL72mXT9i4xU/c3mB1TukMlAs2B7ddxyYWNuWy9vn6P2eV4/+EGH0/Nmff4+0LzRqzZU70O22sEmkMfGVN77M5rPPyMIjZSL4IylOCHmg5AMJjfCOnA1NtyDKgsUTFpmuC5z5iZ989wI7WK6/t8XGghs9C20I0VOAYC1KSubDAXKma1uc8xQpiCFx2L+iJIE1lkxCyESm4W7raIxgmm748h/5eb7xJ34Rf3CM1zv2z645vLjBFmiWHY/eeZPhySViMRC0Zn90TDhEkqxER/GZ1lwDkITGtkuM7sglolQmF0hZVI9LKcyzY/KJnCMlVxF8dB60IclA07Y8e37N0ihyEaAUUitijMS4w7sjKMmwXDC7mha2HBaUGDFaE2O6hyFJLPcrYPeeEasLzo1sd7u6NoNASlBKEO8P1v2wBG2xfUfwDqEUTd8htWaaweVcp2VKrB3BrqMxA26eUEbRtgY3z1U+Pu4pBVKuh5PWWIw0tKtzjDE10S5E5mmmJNDaYmxL2zUICUUK0j3ASFm7jFIocq6fqzEGgWYcjzSNYbvdAZJcItPxSPCB4D1CSLquxzYdpjFoo4G6tqaUpWRBLhml6j1VlExM9bONuRBSJBdAZrSUdQ0vJjSaLAulyAq6CASS4R7mjKprPyXXdMAiG0Kszh5B7XKnXJCpOm+SSJi2I+TEfjwSQiDMDiklfd/TWMtysSSmKve3XcOyt9xdv+Sj7/4uzjuUDCgB3/veR/RtQ9tatIg8fvKEcbclpUS6X2G8Or/g4vIh/dCxPb/iw1cb3nnrHUpxIBQlBVyKtFpzcX6FFpbV6oJ+fU6ImfV6jQB2m1teXT/n04+/h2ktT5485qPvfQ8tq9OH7ZbLi3PefecdfAi0iwVFScrqkmk+Ik0BIi+cJ0WJtpZpmjFtx9O3HhLdTA6OrrNgJOdXa4zuMNqwP9wxHreQ6wGgsS1Kqvr7i7leYz6yGBbMbuZbv/M7/Pwv/JEfESac6vdbJ3468dMXxU91xTPy5PHIX/mf/i6XTzMRceKnHzM/FZHxxZFEPXa13ZrlSp346cRPJ3468dOpTvWF1Q/94q/4wkUzcNwfuLpacpiOIAPaSJRWCFlQGkRp8XN1bEQ8/dATcyblQttp3JTRLmKNobemOhJ09SSEVFdEplcT3jsardFK4WV1WuRcb/rWmto9iEdirB4JkIR9ommaOokkFefna7yPlFRvnGGccSKyvTvSyIauNSSlyRJaU2XZTW8JfmY/JmSBGCJ936BkR0mZOCZEKVxdDjy6XHB3s+cVNeJ8cjPb/R2I+sC1ShP7jrfffhOBYh6PlOzZbfaopuWtp29yiIm8G9nc7djc3WB1z5M3vkTbGOawRUmJoMXqjp984ylCelxQGBRIyevNhnlyqCLIpkWoehOdjyNt09JYS8CRUianiB/nuk4kYeh7ztaPSBmO48Q4HTkEz36vcN7VlROhmOZATInVcoE8joimYXO7o9MNXdszLJa0VtG0A7ZdM04jBUkIHpESVgsyYLAo3eCDx1ysGVZLcsyQFXNMNK0l+oBR9bLU94Ay50CUIHPCSktvl0hjcckhw8Tx2TMeXHiWzQUP08zAgVcm8GlZg4voHBF9x0Ef2G63nF/f4IInu8AbDx6xzZmmtZjplmff+jXOV4ZbmUlZsjwkvv4T3+TF/pq3PniXP/bNb/LdKLkocHz5DNVb5N0LYufBBlRS2GKYDzOqC4h8wIyJsl6To2W4sDT717xuHXopmD6642d/+pe4fbXl/PwSbSzNco3KhVAiSpk6hl8S/aLDakMOEZ8CSMlcZqxtMEojAJciKResh9Qr7vyBvl/z8ruv2PsJoQ2ysfTvv8XVT35AYw2+aF66kfG4x0wjJcDQLZEIpvlI7gOzc+APAIQYKaVUEXSK1fMi6qF13NfVrb5vgEwmkCnk8nurCzMJOEwTrbEcU6qTKFNkNSzoG0MUgrP1Q0Y3M8+eEKtk9/Wr1ygkUGhsXVdRWmG0vl8nAe8CFAm6o+36+8mUhBAZRJ0ijSEz+4hImeA8rW0wynA4jPXnTYmm69DK0LYLcvRIEsfZoZuOaTrw6voVrdV0rUUZida2/gw5Q6mJZ94XjkeH0hKlJf3yHK0sORekUkzzSAz+PtHOUACkuO+aa5SEeZrZbG9ZLgZyHnn+4oacLc55uk6zOF8hUajGYkyDbjuyvE+Gk4UQJkqpqyU5g5AKrQVaZ1pbobpUVT9FySo2NgpjNErVhD5dDFCQqlBKRlDBOkRHDImSJQpBzkAxOJeYnSOkWF/aF0ipoMkQQ02Bi4FxOtK0DWeLAXW2xBgNueCcqw4qCbebO95545L/x//t3+PTTz7ijccPEaIwLAbapuGdd94hpch2u6FbLO/F4S37w5azBw+42e54dXfHuJ85Tgf2xwPvvPclBJIUAn2zQEtLt+xBKJpmoERDRONdTUVNKeHciA8TDx9d8f6X3qNQ8Dnz5vsfEGMkxcjubsd03LPZbAjOIZWi6XqCFNzttmy21+SSkEIjdY+bHRdXb7A6f4CPBT/PPLg8Yz8eUMqwu9swNJlDKHh/QAgoChIBoQTe18Na3y4IcSLLiNKSVdex3V0zjXc/Ekg41e+/Tvx04qcvip8UNa1YWui6iTkH5nDipx87PyFpm/4HPJNSJIQTP5346cRPJ3461am+uPqhX/zl+IzgI61UHF5vsd2AQNF2A01Tu2s+zpQisEqSc6ERAuVnjKwOi2l0xNnh5xE7DKRs0aJh8pGQNaJUoWnwkUY3dG1LiB6IGG1AaCSSFBN7v6/dnlLIZFJ0WGsp2ZOyYBz3xNeBrrVMk0PQYLRk9g5tOhCSkAJSZKzSLIeO2QX2+z3GWOJcH7RSJCYvkEpATihB9W8kQCgeXS1549GaEAOFyN5bNrsjx3HGec80T0w+kNwRJUFrxeKsp20sMc+shgZjWy5XDeWdB+QUyCHhZsfZ+uq+c6XrKk6YkSqhFAgyznvWa0u30IQQyD7RtQaEYN0v67pKdpSSaFsLudRun/eIkjnu9+jJoRqDUtC2mqgSo5/p1gPWWLwLnK8H5nsgsKqjiMKTJw/RSpBiJMQ9c2gQunAcEzGG2vkSkoyq/hNdgcO7mZgzIWeapkc2guQTZ6sBYzUxe8zL6vgbhg637FkYRcgRkRI6KxAtGZByQHWKn/ilP8Kr7/82u7klHe54fnOLXDWwaClDy+wTjYCVLkz7PV99csmn3/8+2+2WhX9MLpnHciCOMx88veKz3/oNdiy4MPDGecv5k/f49qcfsnMbetVSdtc0CZarCza3d+izM7IIlFTTrqIw2NWCMCYenq+I+1uONzc8PX/C1ZngMN5y615j55bz5VOePviA7c5xdBMpRSySlO4dMgGkKIgSsEYipUAKcw8REasNZMk4B4w1aFVT52RXKGnm8XJBFpLhgxUXWqCSotw7W1LJjGOo17kTXMgV0bnqEdoemFUBnVEZTCuwbb1d1NF5jyChpMC5uSYQIkgpEpNnHHeE5GoCopQEX6AUUqqdZqM0N3e35FZUkbVP7PcbFIX1ekna79Fag6yJYQVYn59jVU1qzDkhhLzvRCtcDCghMVYhhCSXQswBIesL5JziPcDVFY1u6JFCImJClYJImd52hBxJMiBKZj4cibMjp4gUUFCUlNFas1qtsVr9wFkyuZEIGGMxWiHJWCUZVgtKKVWKnRIhzGhtSDnTdA22WIIPSGSF1uxJGVKcUWiMalivewoehObJk6dI1aKUoeksLtduZQrx3hWjMdaSfagALCU51qWm3xNyCyAXweQ8OVWnVCwglUTlTIqBFCSNsbUTWiIpVZ8O99oTrRQ5Uf+OMlNyJsaAENz7d6qPxzQWZQxSCERJaK3I0ePmCZkTaTrw/eefMjnP8XjEGovRGmM06/NLimz59Puf841vfJM3nz7B+4nD8QBS4FImuAkhBNgGjKWzC4p3PFqtMF3PcP6IGBLz7ohLmQfrc2zbsd8dmT14n5HCovSS3eHAq5vXvP3W+/RdjxKZzd0d2khy9kzzgWefPeN89ZCzizNs07Ld3UHOLBY9Mfh7N9me8bDn9fVLFus1D958ny9/7esoBbvNBtNWUXhrOyiCw2GPn4+sVks+u30ORTIfJkAyTw4pDY3pETIhrcTFgNYGqQTRZ4pQCKUhw/n5BReXD2i7BSlOPwJEONWPok78dOKnL4qfnPe4GHj9QvNv/1sr/rn//I7LR+7ETz9mflLS4CdPLtXx56OjlHjipxM/nfjpxE+nOtUXVj/0i78Pv/0xjVEc7jashiVSas7PLymi3hDbvvmB42ExLInU8W6tBTknpsMBKSwy1dS15CN2GCgpIXKmNQbnPTILhkbRND0+BGzb0EmJQBFjQd9HzitlKKVhnkeM1WilGccJ7wKFQmM7zlbn5BI4jDM+ePCCfhgYfcA5x9C2LFQDKXLcT7gw33e8E0LU7kyMtaOWcqnx7EqgVIJjRkuF1YrWKISEfpA8WMHVcsnsekIu+OAJCZy74Pp6y2G7YbvZkFOgxNqVOUwzu8OEtR2r1RLI7HdbHlw9wZqWphmQAnIJdIMlJlc7rrNHSslyscQrSTNAThPBJ6Rp8CkjlKZTLdZYrDGUlAhCkVKCXD0vyScSkRQDQ9czLNfMs8MdfRX2hsSg1H0XbiRkx+HoUVojpaVvF0QhMG2DCzPH6JGiyssV+d7FkRinPSDRqqGzhs70IKGYjJaCrtE0XYO+WAKwWHYcWk3X9dV9JAUpQYgF5wPtcMYcHf/In/jPoBSE45bt9TU3+x1/4+/9Ks2zT9n5Ncf2gqwV77zzDt/ZfY59cEW5uaEbluyF5L0PPmCz23B3e+DNhx2fvbhmff4+h+uX/OI/+osoC+cPHrPZXnP+xlvsP/yQP/1P/zN8+9kLwrDkW9sbmn5BnjPjnLEXl0SjacqeYbwmvPoN3tXw4KPfRbzquJQH4vYFD+W73Ny+RLWG/VhltY2gJqKVQmMaaGC9arg669Aqoa0hobFKYAAjJd4lpjmSKGy2O8ZpYooJ7xPzZke8nxChySihCPfrHiVVkCzK0Nqe2UekbrDG0GnNQme8jzX5KiaUuH8huzijXDyqMvIUWSxWaHU/cRI8IWVqephASAFkyNULI4VAFoEukEMkyNqNDj4gtGIKnmP0LKwh+ED0cz0E9wP7w4iWgr5rUaKuwMVYavJdqUl41UkjUEpC8sT71LnxOBJDYrFY0BqDEHUlKhFQtt6jrDF0UiPv1wD85Kio2xBiRKERErifSE0h4p0HMlq196JgQ4pVlCxEZvJ7YkxIaaAIlFB47+vBy2jIgtWwYr4/0DVWoYwlx+rgEaqm9RUi1nSEmFGlsD/u4KCwtgUhftBJFmnCaoO2mlKA+7USWeVbiFIQRRDuE+lEkTRtR/a+rgnliFWK7DKBgFKKbtXTD33tqCtxP+2ZKC6x7HtKTuRUXT5FFITUlCIQotwLpTPeOcIUAUXKEt10lKw47DfcbG5pm5au65CyunaMUcToySUTHcxKIFSDLx7VLeialphmdGnQ2jDNnvX6ksvHb7G7fonIiRBLXZ+yYM+WdIsLihKoxvDwSY9RFqvr1NTsJ95uNPM4YpUmxYw1BqUM47Tjs0+fkbKn7ToO8wQ7xdOnKxZDz+Gw4zvf/RCrJCG6+jtsJTIbFouWcb/l+XSkbSxd26KFxHaaEjPzOBHGHd6NfPJySxGapu8wucrQx2km54zIIKXEWE23tKzPz1mvzzCqoRQY5wPH/RGjG8Is+OST79E0Lf/oH/990MGpfmR14qcTP31R/JRyZnKOl58L/u//7op/5p9PnA3qxE8/bn5SGj1Uru36zGKxpOvkiZ9O/HTipxM/nepUX1j90C/+otK8fPGKr77/PsthwYvPX/LZy9e89cZDrm9uMDvJ4bhjMQxszDWTn+j7js8/f8ZisUJi2e8mpGq5vHpEloJpv6PvW6zRlOxYLGvkuyiJFCNSCkrMpJQZhp6cZigBkTIlaQ7zkb7v0Vrx8uUrpinQtD3OT4hiuX65pZAJItMvekBxt9lTEDRdg1KS/WFHaxRtO7A6u0TrUm+IWiKKgtKjpOY4++rfuR+L93PGh8DOTwgS2ghcmGhU5vLiCq0tLgTc7Akp0F8seeuNc3h6RimFkjIpBfa7mRAEbTvc+yMyy6FF6UQBtpuJZ589Z1gsaXSDEILONswh1I5eLmxevUZpQ24U0zgxTzPrqwesl+cIrdGywc0OARzmCaUUTd+CCESXKryUgswKPyVKDGgpf+AbKbkQfCDF2nE6P7vAdvXSCSFhtKHguL17jVCWs7NLlGxws4c8VcGvhIXuMaohhIwSdY0Xqiw45oBze8KmsLzb8S4QQ6HRDct+oORATgGkouu76p5JGecMw2AJCbzpefvx+2SR+Mf+sX8Ed/2c/9ov/7eYxchnXnDeXPDwyXu82jq+/FM/z8effMbOF+7GwLQfefPRI15879cY7265Gs54nSb+2C/9Ii+3O+42G54+eMxyOEOXv8FHv/07fPLiOa9DYN2vWHRn6E5wt31N9NecxxV22nP2+vtczq/5xtUF67AnjRtU9vx0u+LZRy/55vs/xS+8+zYfX2fO1mu0LDRGUYRgdoEAzNMRPwmEsQSf8dFhlaU1lpmMVor12YBQ8PjxFQjwsU49+JAgwfE4gR7qhEeJSFUT2YZBUWRhmgIlCaJPzPPMeDgikqBVLTGVCi0hAbC/vePmxQu0aRD3qxVS1m56zgWlDMZYvPeM0wRklIzMzt9PTVhkEShVhb1SVOmwj6HCY9+hk+JsbVHSsN3tGBZLZu8xQqCkwHtPjB4hBVorlFDkfH/IDIHgHSnXa3Y6eiTQNg2f73fs9jtyyXR9S7Pu2Bx3WCnhOHHWLsitIPiI0c39ZEsiC4EVXf3uikTOFeSHbmAYFmgliccdgZFSBG2/oOlbckmkNLFYLAnBM88Tum3JyXOYRy7X5zh3IKbE4zfeYHsMuFi/g+ZeJC+MQklDCIXGdICgaTRt3xBDIJeM0U392WI9nAgE2ujqw9EGCng/VxAXIEpExUSMnkPyTNGTXQQKh5jvD56C5XKJjxuGxVA70EZjjCFOgdl5xsORFAJQ8DneTyQorDFYa9BaYaRAaUU3DMzzTFICqRrcFLh8+IiHDx8wHY/cbbZ457FNg5snEA4hI6VAKZK+a3n46CGH4xGkolEDTWMxxjL7hBKGm+sNutROP4AuVZytrKgpjkjSfUq4kJKYCuQqpNZCseyXBFfXh4TU9N2Sy8sHPLh6wvGwI8RA0zV1wgBBKXBpGy4uLpnGkWk+4tyMMh2L5fJ+iipxPBy4295xVyALKBSUVAz9oh6iQiEE0LblMDmaruF2f0CImoA4e8eiXyJFwzTNZDa8fPmCnDLDMGBMx3K5IsdM0zT8gZ/7g/fpgaf6h6FO/HTipy+Kn4TUVOdfD0DfdqwHdeKnHzM/FR8pFM5Xt/yP/s3P0KbhOJ746cRPJ3468dOpTvXFlajj2///65f/2/9GuTq/QBZBZ1q01AgpWawGcg4Mi5bjYct4PPL06VNAsFwtMEZxd3sDCDa3d7x8eUMImffffQejBefnK4yVFAGjczRGsexaYoh0XV8fbiiETHRdHfHu+xXT6BG6Jlltd3umOdF2VWRbRGYaE0J0KGs5hpGQM1YZRM6sz1e0jWZoLatFi9WS2QWUFOQU0UrQNob94UhMGucTPhakbpBaU1PbC1opjILZTQgFiMJhrA6KeRyJIaK1wlpLSg4pQEpVU6RKHaEHiQ8epRRSCrw7cDxsmMaRVODBwwecna2wVnMcZ25ub/ns5SvceMQKybIfWC/XWNtydvaIECO73ZaCRNoGITUxTCgpSTmhjKGI6siQUL0QBXLKWN1AVkxuxMcZASghaUxTBbkCpBIUkdFW0bYWIcCqQmfrdZSS5HiskO99pLQGpVQ9JOyPHA+urt/cK26FBKU0OdeMKiFg/eFv8Qf+wp/it//3/y/Gr/4kOdfPURmJD4nD8YiPEUSVvcoSEapjubhEUCjREdyepw8F/9Jf/C9xd/M5ce+I9LC4YHj8iG989Wvsj0fas3O6oeVw+4LDd77P/vp7vDk84u9+fMdP//E/zl/+136Zjz7dYE1Pdonl0CEbyfPbz0EFvDvwr/43/usoMtJ7WinJxTMIz9pIrnTmgdVc9mc0aokaFCtp8EmSOWN+8i5/8p/957iLDVoruJc5V1+zIWagCGRWhBCQspBJNZ1vPKIUxBSY5xkQBO8x2pKLBFG7fzkljFUoFQkpkUhIqZld4G6zR6dI2zQ1iSxHhqEFEmNwvHp9g5KGflhy+fHv8mf+0n+Rf/+/97/g8OVvkJGEUhBK1ZUyIVgMVRjvXajuqAI5J3IK+JiQShFcJBdJY3sy96looiCUIJVIprDqF0zjxNAPPzikICUyBIQQFCEo1PWIeR5xzqOV/sG12jQaQSYKEMZWSXJK2LZ2KHfHA7vdAQE8efKIMDlkyRAzuQRKoa6HpUxC4EIk+TqdI5VAa43RlhAi43xAFs+qM5yvVwjdcHeYacyAVYaub9FakUhsdhsEgpvbG263d/RNw+X6DG0UR+dAtvRDx7LrMQicmwglUUTCu4zE1O+qlcQ0Y43ChUBKud5z+wUlZooSNI2t6yQZuF+X0UbViZ+SWViFILGPI/vpyLpZ0DS1K25sSy6y+hxTBXWtFcFXSNXagJLkVGFXm5oimCiQ6kFGyfp9VqJO+khpMU2H8467uzsoiem4Z7+5pbP1Ptk0DYXMcrkECqUkhBR89NH3MNayPluzGJZcXF7Uw7Y0CBSlCHIqCBIlhepOQpKokC4pUCRK2vughAlEup92KFASKTratqFkaJqa2JhzQgrqlMF90mEukf3+WP8+IfDBY62haZs66eA9pRS22zv2+x2leEoqCBTWWIRS5JJp2o7FsCTlQk6FgkA3DVJLQnL3K2ACckHf+9ri7O4PnoWSU11ZEfX/3253pFiT0F+9vub88pK/+C//K+JHgwqn+v3UiZ9O/PRF8ZOSCinh+7878M//00v+1//ODT/5U+XETz9mfpJS0fUtyQW01Cd+OvHTiZ9O/HSqU33h9UNP/K1WVxzHgMiCfRpZLpYgEy82r7GNQd4ckCIj0Hzvsw3TnDB6i9IFKTPWKnIGu1yjfCJkaHTtNEo0IUT6dklJnsN+ousaKJLDfqRpGqbpyLPPtvR9h/PPOOyPbPY7jscZ27Qo3dD1dUVUtRql7tdDsaTo70ftDauhZ90bjJGkOBJcwcgOQWYaPY1p8CEzj44Y4RhGvM8UoSFAxqG0pjWGJCJRQc6KkqEIgdF1xUUvq1cGwGhNjh0pFUIICE31aOSMlGC0AgHaKLQeWK9XWN0QkyCXyOwOvL69ZblcYNqWp+99mc3tHfvNLcF03M2RpRb4uw3aSMzQkgu44BE50RhbU5ME9QET6ucRciBFj9UGiSR4zzwHYklIJVBKoYUk5ojM9UEoBLiYmA+O3Xb/gwdZAdw807U9QlG770bS0lVgaAwSBTmTSiFQb8YKRaG6bEDQaIG4v9VKkRkGC6U6eEKIJJ8wytA27Q8+MyMLWnZMrqCMwtiGvZvxKaByw8XigmN6hVaR6D5n+vb3+Z1v/78RUtIs1rgwcz4YFsYwNI5WZh50mv/CP/tP8fKzG0SEnGY62zEfR8ox8aA/I+HZuhkz3vFTHzzl8OLAVXtGp5YYPL2WBL9leTYQdYX3Xpi6tiElRWRu3B3xTNA7TQwZoy3T7EilEEuALDHSIuTvgai6h/3MYtnW0X6jEUWTk0AQQOyQumG3H4mprmBIkdGikDLcbPZMY8bagXXfcDwofIBpHnHzgdttRIhIzIrlco2xLdbegzXQNoJjOZJTTf06TiNKCRCC17tC0zZYY1ktV3TdglIEKWbG45FUCvb8jEI9EAqpaa0lp4AxuiaZ6QpErdZ471kMA0fnyKWw7BZ4H5hDIhewTUvbNKSYiKl2ASuES0rJdLp21EPwiALT5kAiIxvL6uohbdGkXUDLhqQEYqFRcxULu9mxPx4wbUM3nOH1VKXNUuCcYzqMaNvQDmdoUdCqsB8Tq/OebjFgjUbmhHMz05hACoZhCUJx9fBN7vbbe+9SqWl2Q0QZRaZwd3PLYC1n52e4FHD+QKAKnZWSjJsZNx3xobpotKld6a28rd4iJVFGo6TGaINWsk6OqHuBdk7sc8JISTKFlCK7wxbtZkJItN2AVIqcCzEWrLVkKYkCQCC1ggxSmZpGl+5T65B1TYjqD/u9f2IEKWHy7h5AH1FyYhguuLx8jCTWtDlVnUWJgij1YGqblnc/+CpK1UkWgOBzvYcKICekrH6kEjxaV+E22uCCIxVH13TEOSBDoFUGqwQSiSt1IirnyOwmQnSkVGjcTIwBHzxNYxAF9vs98zwhpEBJTaGmeSql2O0OmKYlpYIxLYvFkn5xhYuCOUw8fPKI9fICaxqU1vgYQIp6+PGBaXJMzuFzYtEt0DlzddGRokeIzGaz4XjcQ/LMbkIJmKaZ3W5PzqCM4f1332e1XGGsvXeAtb8/OjjVj6xO/HTipy+KnygRkQtS1JeBQ2/Ryp346cfMTzVJt3D9sue/869/hb/4r/4mj5/sTvx04qcTP5346VSn+sLqh37xtxl3aGGgKGzTcesnYor4ceJsvQIyRku0rJ3XVCCEiBGaVrdkoUgodtOe5AVmXx80z168QlvN6mzN0IGfjwxDw3TwGCeIqTAIGJ3g8ZtfI+VIWxKq3/H43fcIIfH55y8Yx5mXr1+w226Zkmd2ida0dG3P2dkV67OHYBvubndY2+D8jNKKz+Y7DocRKSUXFxcEHzBGoZRmmke6vidnAVJSSgAhUBnCMdC1Dd47Ys4o05CoQm5IpBQxViOlxoVCyDukgizTvbC3oEqm6xZI0RJSfYiLYvHO42MVnjofGdYXLOMKHyK6WXKYI/3jjsX772GVYhp9lZiWRNtZus4ijUYIQQiB6eDq+LWUBH+k5IzVioJFippCRaEmz50PZCnJ9yl2OUYU4NyR3f4W05h76a1BCkXTdBhjmEqiXa6RRSIkSKPwwd0bMgQpVKl41/Y0TfXQlFyq4yMElJYIrepLv1SB9eOPf5dPjjsao+i7Hms7+mEJQtN2HalkQoCgE41weBdo9IBHEnC4ZFibJW66Y1IFZwRTsaz7FsYJVRSLoaFPikEVjCmEktnEQjP0fPUr7zJGw+4wkzO1g6QyKSZCBK0kKgrMJDg3a1bnmZUUdFoSikcHuHp0xeiPLFqLipkiIkUnQpyxqqMJjtYVjt5x3B/wMaFtS79cklJBiEjOE7a1WBMZDxumceJ8dY6WCldmylx49fI1oki+9pUv0XXnfPb5K27uDhhjGcc7njx5zDBcUUi89eQx+3HE+0JjEu0KpBD1dx4DKfnawQuBm5s7ZneDkII390cAphBRbc9qWNK3A0IkfJgpqXYQpRZ4P/P6+oZPvv8JKYFUCmMkgrrepFVDFhpkYXe34bg/YO9T0pCC5eqMxw8fopXCzQdScDX58TgjlWW5WJDuu9A5zDQLCwJKrlccCLq2Zb3oUaJwd3dHzgJ7fkWmEHNmPx0I80Rj7j0nwSFTRBpDioH1YuB8vWKcJ4qoXfQY6hrXxbKnINHGIqQixYjVEmtrUt4nv/NtbjevGTrLvJ/ou56uHUiSe9eV4elbb7BcLsizwzaW0Y0UEXEh0jUaN008/3zGpcjQG/quY7UeeHBxyXSYySGjTcvsHULKe4Da4eaJWAq51M/H+0hWUEok+0zI1SUUnUcjOByPHKbjvXi/+nGgdkSN0bTdgt1uR9cvOLs4x3nP8TixWq6JwbFa9FxdPURg0LLK8Ws0nwBJTbyD6vfJmSIgpYSiQqpQA1JJ+rXC+ZFpHBGiJtdZoTmMGd10ZKXQUpFzZgwCoywCSUwRiqeUeh+ZfETqlt3Rc3a+prUr9rsJLQVXV0uSd0SfKFmRgyemWF09dqgHfFmTVi2FLtVpixg96/Waq6vLel+NCaUsKRVW63Ns0yCsJgXouyWI+3WiDmYXuH69w7sEUnOcJ2Z/73LKEyJnlJRIoVivVljbMAwDxIQSBa0Fl+dXhBg47ndcnZ8hZaZtTU1aLIUQMnc3e7z3aGPo9O/9Hk71D0Od+OnET18UP5WYmP3Ixx8/B36O3/zNv0fO8cRPP2Z+6roW21gwhZ/7gzveeOuMd95+dOKnEz+d+OnET6c61RdWP/SLv+X5BWRBCPXGriWQNZcXK+I84Zxnf3S0puGw35MVaGuZ9pntrq5UHA5H+sWSOTnGKNlf7/HeUZjIuuc7H31M3xmsERhbx+N9TLRNB0Vyc/ycrrOk7LCN4tn1a+bJcXV5SbcUXDx6Wh0BKeLmwHG3p8TE88+f89knr3n45G2evPmU203tPGnR0i7OuLjqgLoKkVJA6toJXXFOSTVKPfjaIZNS1vFlFZmdqylzQ8c0h7qC0jRkFOF+5F6QCSEhkqndCiUwSqFkIQRPCgndFHKOTOOElBYp6oPz+uYFykqmMJOLAjTHw4go9Ua3uz7yeylTXdORk2E6OKKvOwIxRrSxGAN20dwneYH3CWs0uSjSvX9GCFBaMvsDqRSkMohc6jpAigzLjrfOn4ASbPZ75skTQ0YqyXLZc25GostVaj15wlRIJePNgBQKkaqzz9i6cpGTwAhBozXGCIQquDgDBtMYAL76ta/w1te+xt3NK+42d8zuyHQ3EWLBNi1SKNqhw+gBGUYE4LJDWsPsJW+YiUnuCcZwns7JYcYVxzFCay0mS1TMNEojU0SXQt8s2IeBr37lnZroBZyd9bU73qyJMTFNjvEYmcc9T9+84vzyEhcyQhW8cSiZaMsaKzRxynTNApULRmRkLqAlUktizPSrFeMhsz9uWAwrZhmYfeTVs+dIKVkvHpAibG62WGtYrR6gmBFFEoIjEZnmI6tVR2tbnj37PiVnsrAsl5c4Fzg7W3DYR3Z3z4nFY6yk7TQX5xcsF0va3mG1xbtEjFUoHbwnYykIxuOEz5HVd6oz6OLqIS90x/OXr9ntfpfjYYeWAq0MJIltDLYxnF9e8dPf/BIFQdtZgh+hJELIXN/uMLalX1ikeJeha5iPE9c317y6vubly5e8eP6Mtm34xje+ztnZwM31DY0dQAiOhwP74wGlFBdnZwiZ79dQTL02feQwBm63N0gFSuoqGp6PSKVZLwdWNuOGhtvtge1+S2cNJgi6szWLYY2kwt4lBqUVuQjcPENOaKlQtiEXULZUabQUKFWIceQnvvoY1FMOhxl3nJlHh3eJMDugkMLExx/e4cYJqxRSSoqSdMsOIXWdjhhnnAv4kjluEuhECCPfKgWiRBWD0D39ckHXd7SNRUnJanFGQiLuV8TqGlNGyrrag5TotkEg6WxHDJGQfQVXpRGlCqXbRmNNTUgMsXbc27bHx8jheGD2EcgYWdfZYoLg0/1KTF0/FEpRSgZRQViqmvYpxL1bCEUqglAK28lhtKEZ1kghiSGgUqZRksmPNdnQqrpqkvjBwYVSwVgpzRgyJRTKNBMzpCkSXGK6G9kf7vj0o+/S9g2L1RkJg7WWmEGjUFLWFZfgiSmhZKnriznUFxFa4Z1nnI4IqShFM8+e7338CSFE3nj3XR4+eMrtzQtyAa1rAuKwWJISCDTeRQoSY1q6oaHUCEK0lDg30VmF9zN304jICQVIWbjbbZHKEiPcXu+I/oDzB16+ekYRBaU05+dnLBYDtYWtaLoe+NqPhhRO9fuqEz+d+OmL4ifVNpyfL/nq154A8OZbT2n75yd++jHzkzGaaT6SYuGtd16x3dzx935jd+KnEz+d+OnET6c61RdWP/SLvxR6SvRYpdkf9ujGEEPEmZZMD01D29eOda8sB3esb8xLwo0jl1cL1m3D7GeGsxbTa4xQLPSAyJmYHMNqxe72luXQ03cDMUhShu1+wmhFjoFvf+sZFxfnWKsJWRFj5Hj8nFXXc5hGdN+QjWV2hf1c6NuBq7dW5FRYrpYIWarguiSePLggI9ntbmiaBiubOipeMuRI0zQEIiFnskjIUpBCkkVCN5qmWZByHXU2WpGdux8tlvRNg20sMSVarVBIQgykXBhdoTGWGBPHw4RS9eEgtSbLTCpzHYXOPZPPoGqqlCi+em6swSiD0gZrNY0VSJmIPhG8YZ4jMQBKM3uIPqFNIYQZqSS27ej7FZH6kEm+ME8TQsDjqwuapq7RTHP1YhyPE9Po2Mp9FZ4asI1CU8gpMs9HrA+4kBjniFAKgaRVkly1J+QkSRFimMnCg1AgBEJLSqTKXpMg5YCea4jE3d1EmTOL1SWP33wHFyPOC6IvuPsHjDEKicSnRKcNjVLMcWZWGZ87tOrJZYdVkDCEJBlKRuSMVQJbIk02GN1STEQqzXxz4PEbb/Jy47l5vme57EgZcqw+jt3xwGa/RVlJuFxgG4kUM6I4YnDEVoPyBCGRUpFFIEtNFBqNIpLRKaNaw6QSamGRvnCcIl3bY5XnctmhhCLlmXbVUFggpMTFAwh/76sRZB+QwHQcubu+puRwf7iTHMc9Qhq80/fd5sJ8dDx/dosoCSs/plEC6Se0NpRcxbm60QgjaewSqQz9sEZqw7id673ACS5WF1xedMxuzThNHA4OoxtEUQxdi7GG29sNn33+nHHyODdjjeRstazCXdNjm6F2j2OgHOua2OMnb/Lel76K0A3THEEItrvXaJF5/PhxhbAsWXSai4VA6UIsEp8UbrpfbTAdXaOQstx3MwEySv3eoVNhlUSqhtZKHnUrhJAYJbBWMfuZaaqrCjknkg8oIVHSkEpCqoIrM/GwhSLQjeHz5y8ZhhWt6VivV7RdR3COy2Fg0o6wSEzjzCNtcSGCNqTkiNFTBLT9gDYK74+4ccJPM8uzgbP71Yzt5rquXok6CWJ7iZuPRAq3hxE9KnSBVhmKhCIMuSTaroFiELohi4yxuqYUyokYa8qhtBqhBINSTG5P0S1zlhgVsSWRqXJuhMCHLdYYjDYo2VSgT5nRJUpKlAJCKkTO9btcLCklpMoIqTC6ZxwjTWspuXqHSojElIgS4hTQKWNtQ6J2Y5sSWbQtUyikALFEEpES6zqMNLY6aqKgFwqUIEtPiJ4XL16TkLRSMwwDy7NzYoFERkjIxSGEp5TMNHtKgZwEJdUVdmM0pdRDSUySGBNFGFIupBxR9wfgnBx3mwNC3LJarEFInJ+xjWW7G5nGmbbtMcayWKzqpFNyHI57Ssw0xiBSZn+zqZMFZMiFnHO95yqJsgbZGuI80pglXd+xPjvHuZrGenA7Xr1+gYgZYwdU43+UrHCq30ed+OnET18UP1kr2W1H7u46YEE/rPn6Tz468dOPmZ9mBJnMtFc8e/aYD77W8/SNEz+d+OnETyd+OtWpvrj6oV/8TYfXdMbgZ481ghwSMmaijGRAGIHzHl/gEPZkIdCqjm5LndkdtihjiFHQdj3buyNW3ydJlQSC2qGwHcV0bI6BQsR0fY20F4Ll+pw3upZl31f/A7CfR/7+r/8anba88fQNNrdb1g8eomX1mNQo9MjueGQxDHRWMI9HFsszRHLcvL5GW4uwitZ2jGN1QCilmI87+r5nOhwhw9D3VGFqTX0aj1uarud4PDLNnrbrMaJgrCDnSHD5B1LcIiTW1BuekJKSM0YKmuVAId+PFcv6HyEoRVByIaGqPFWA0R1GS0QOiCIpWpFzJPqIMaCMxJiapDXhKaJ2nMmgpAUDKWXGY2AedxQRMUZhlMEoiRCRze3rey+FxIeCtR3WNFjVILIipYJzkeg9rayC62nvOYiMjxFjLUPXI0QmeIehoSjQViIHS9O0aC1IITLNMyjDNEWQDaJY3LxHEgCQIvLy+jVKF17f3lBkSwgFqRq00bRtS0mBkjMlJrbHic5YpKlpU9JoSgGDotctUxrpbFNFvSmhKRilkFoiVF1v8FHhSuG9n/g6L3YH6FtuYqwTC6n+PqNsMOtHSJW4erQmlsLd5o6HC41KijIJshE0TQKZsarHSkWrdP39l0RJBS0lxQVUyLg4I5Hc3GzIyZNzqc6dYpmnI84d67RBCAhlaTrJ4bhBa0vT9HRdT9MsmKYdcZogCbS0mKYQyszs9zSNpV8seHT/GchciN4hVmtKKvS2IcXIeNizvduQ1RGtG/phwpiGt2MEwHnP3e0dQhayyMSoiFmx34yQJR997xPWZ2tW69o5Xa7XdL6lsZJh6JFCsjtM2GK5vBiwesH2dsPd9Q0xCoyd8DEipaUIwbBsuNtc8+Kzz3HjLTcvX2O1qgcGq+gWF1w+eJOHD9+o8J08bg60bYMSGSkLje2qE0pXObNImTncr2ykhLEGskeQacUS72CKcJw9Uta1Lys80zwSY0AoSfCJYRgQh8TTh+8DmZQch90dm1uP0S3WdoxupO0alssWowVr07LZHZjCzKLvkVJzHB3b24lcDoyHAwpBbxWxZCRwdblE23N2hx2vXr1i2u+qHLmxgCDlSJgDQYjaqdYNMU7sN9P96o5FG4tu27pi0bVkJDFLTNHYItntdrXrrWDoWkpKGCEpWFIpCF3hKfrqbtFFEfNcYVVUV4sUdaopxoJUkuQLUrTEFAhiJLUZ7woxTQQ/IgVoaWsKnK1d4xwS0zwRKVAyLtWXAUXauiooweoBkRIhz4gSsQrmeU9SmVIyu/2O/X7Ediuatk7z+GzQ2SCURIiCmydyDjS2YQ6eFDUpJlIq7A5HhCws7kXnSteJB2LCSEXTtBydJ6VMs1AsCjRNTfJzviaGtm2LCw5pWi4e1jRSow1N3zAsB2RJPLy84OXLa16/esV+t4VSBeqLRU/btkRXr8+SMn4+IoXlbLVge/uam+tXrFYLoCDbDiMyQz+QfMDFgiunVZV/WOrETyd++uL4ybE6G/hUVI7abDZ872N34qcfMz+dX1ySUuK7Hyn+lf/KY/6N//GW975y4qcTP5346cRPpzrVF1c/9Iu/ki3BQQwSq1qkVEgyIY3EHBFIUo4YpUBn5mOi73oO+yPGVunsfuuR2uDudugCRmoEmqZp8cmjhcCNIyEUtJb0w5L9YY9sCqUUpnmibxo+f/6CxhiSB9V3nD98h+kwkcUCozXTcaJrG2TfVcGyNUyfTXzrW7/B372+5We++ZPsb1+yPT9jtR4I08iyleyu9zVBLiRCThhjuX5xg1YGJSTzfkYqcZ9ElLFNy+3NKw7jTDcs0VYhRZU0x5ho256mtUihSTkTMqSYatc8l/v4+ISQVWAtKCAkpdTVlRonLlBSIYSEDMElVMmkFFBaoXWFsxB8jTnPHm0a1s1ALBkkqCSggHOypjYZCyjAY6SktU29OatM8KqOaueC8I4YNkyuYGR12iBqJ/Bs3XK1WtCYTNGZWAx3G8f17R23N68Yuoah63F+om0t/VDTwETJlJxYtoknD885To79CCFltrs7loOha+oNt+8b3n3vLRbLhpAyIUhCSIzjTAgexETTWWSWqGaBURotJC4EUJEA+BBZ6xa/uWG5HDjkAC4hRV0XEiIjRAFNtemIM1QHV4/OSdmwWJ4hVe3GpVSIIeJDJOWMdzPzBH/4l/4ov/Orfx2BoNUtC9OjkSCO9+tKPSJoSgo0jSUlBVpCFrSmYdl2dO+t6JuG3t4LyVNC6oacJIJIYzNKFEJMzHOmFI2Pkhglu93Ize0tr29ukM2AkA3FJcZxAhfq36Uk4zGzPxSW63P6bkFJmcXCULRnGifGyVUP0MVAtj251FTF9eoMrVvSyxcAmKZBtx3H44RSLULCcn3Gk6dLZBHcbW6Z5onN/ghCsVhIFn1HYw1CCQ77I8EHDmmPKHC+XjI0ay6/9ABKYXfYcxwzCEMpgv3+lqHtefe998nuAb/4838IqyVKS45+5ma34/rmwGHc1ZWtUuiXA1ZbtAbvx9o9tC0IwWE34u82JBSNtXUtrm9pmp62s+xf3WDwCJu5fHBOQUKRkCJKXrDZbNGmIebqdCk+oETGuR0pe2KoyYDHw45NvGMKVbrcDx1Kwmq5RMSISZ6wnzC25awbWLYDbX9O01rcNPHppx/z4PKSm5trvvvdzzhOB7qho2s6Hj99kzhHtoeZ2/2Oru+RWlBSwc1zvV5kJOeRy4tLnMsomTnub5lL4dXrhOo6mrYnRzhfrFgvOtq+4WZzB2qkaxp24xFrFtjWUN1b9V8tNSl6pKqTONpatscdPsS6FiQrxKcY6LsWKQMhJPaHhhgKRWScrw4lUWQ94Bc4Hke0MTRtR8yZYdEzWIOWmpDrZI0ShcxMZwxSCiY3Yo1GYRmnSE4ZaR9ydqnRTY8Ulk5rKIWYE783vaCERd3//DE7hs6SqYmdF08gpwA54pwj5kIRmlwKohh8Mmjd0vYWY5u6LxhmSkpM45GGzGHyLFZLxpA4zFtKLveTUBpKptMKSmG9PufBg4c475jmiem4Y3Nzw6vNa6SkyuelYPYeLRXT/gYJPHn6hP1+x2q1JJRMLgkrJTEHpJXY1fpHSwun+geuEz+d+OmL4ieQaB356tc0//P/1YE/+sffpO1P/PTj5qcYS13RbhoAXBSkdOKnEz+d+OnET6c61RdXP/SLv2bR02hNSpFQElpaUBljG2QMCCk5jiNFaJQSnJ3XtB3bdmilyFkwDAOZXMezpWDyM0hB32hsa2lNy6QURmpKLmxvr1mt18zhSNt3hBRIOdF2PcHNtOsFLteH1GJYkFKiX3Y4f6xgQ2GzuWO5XnJ+vuZiWJAePmJ3HAm3E/v9jtkd0QqUKDRNw8OHD/F+ZhgGbNOyP9ZuyXK5Qqoqci4lA4rD4Y7Nds//l70/ib02PdP7sN8zvsOZ/uM31UQWyZ7VrW421bamyAO8SAwlERA4CYIggIAssjTgXWAD2WRpZJHAiTdaCDCCxHACaWEHTgIncgxLoWS3WmySTbJrrvqG/3Cmd3imO4vnkPLGccVNFRvRuYECPnx16tQZ3vM81/Pe9/W7FutLVJ4Y9qFaE0rlJaScOG5npAiV9yp456u4V+rEl1FoUaRYk5GU0iilKs5VVZ5DKeVnqXcojZZcR5hjTWOqr0mjjascoSKUMlNKAatQqZzG9cFYi9IwTRElhaKEYRiYp4KxCqUKKRemUFOiYpwx2tBvNnUCACAnYhp4eBxI8cBx3jPOhavLW64vFji9IYwzXhs2ty3DPHMY9szzTJwC8zAxHfZoJSxWS3zfUZRFWYvRDZQqjKZR8fj5kU8+ecBogZzRxtJ4T+td7UgaRZFI0ZFxPOC1wTnLqjMsOo9zDSkM9F1HSYnWu9rhtxpjFKJAuwoUDjnTtlesHfTtisOQmcIDzhW0qpud15bOFEQLQwbJmd/7vX+W/+vf+t/z9q9+neHxgcWmRRkDoivnJGe0dVjvEATbOMQokoDxjt3ukc8+jPRNR5qPGJcpKmN8j7VLcop4W/VniBFrW4qCh+2OtllgrGe12tD1S4oSlFc02hGnQCkJ4zRNa3FUqHhMwjRHjseZ/XigtQ3LboWzDbEkiso8u/0aN6ueru2YppnDYajfPdRUuClgjaecupU5w2F/RKNQyrC+uKRbLDGmTncoyYwhMu1GOt/Qtpbj/sCbELi/u0NSpGmaGuLStIgGZxzWWlxzwTAdcG1Ld3GFNYKz9eawTprnzza8+27LYX/kzd0dShteffIKpSw311ds1kuMUpVZkhPL9QZjFU3T1r9P8WRhy4Qw8fzdZ4zTwP3DPd//3n/G9m7H5foK21lev7mv/BLj6mESxTTuECKb1QKtNU3TMQ2JrmsIMdAtN4xT4HAcUSL8+CefgXZ4V8Hbw3ik63t841l4Tym1Y6s1bHd7uq5leXnD7dvvoLRi9/DIm4cDFHjr+TNc1xByZrNYY1CM08ThuKdxHucWbB93NE0PBnyj8ShuNpco50EMFCHOA59+8pLyhWBMw9XFUw7TRMyR4RCw3qAsdF2Pdy05FUqe0BjEKuY8M5dAKJG4e0TrQk6BRb/EaE/KlY+T0oSzLc65CqV2HsnVBmaLsFlvMI3HGIc1pnaXKZRMZes4jzVCAuYwo40lFkcJmtZ4lp2v1icDqWSEav07DhmjNcpUcLZStv6enSOXwmK1xlhbLXrjgC2aEgRtLNbq+l1rTYj10BtDAlHM40AqO1JOWFV+ZhWLqSAiPD7sCFlhrAFV4e8inhgDUWus0my3Q90JbAX7WwXL5QZvPPYEPH/YPaBzJs0DuRS0dXz62b4Kfz3Sdg1tv4QMZZ6YppmX95/+SfXBuX5OddZPZ/30VemnnBTjIWM0/NIvbfn0k3DWT38K9NPDwwHftIRQJzGNdojks34666ezfjrrp3Od6yurL33jL+ZM2zZMYaBbLlCigcT1kw3HcUQpzcXVmnyKlRdRTEMgjhmtHTkXjFLEkrHWYlxNkcoxnTplhmkKrPoVKSamacJqhbGasM/YRpGLYQqBZdfTra855JHjOFKicLVcczg+MMzU9KcseOd4/mzDOE+ntKIB063oFhdYDVdXa0IcapT86baGUmCEyq45DNzdbVFKsdvtORz2VXST6dqOLMI8RxaLNU+fPUdpg3eetu2I08j9cUdBI0rTLZb0XYcWwehcOyWxsi/UiWUCoLRUUK0AUjkP/BSKTd18RRuMNzhjyDGeUq58XVwVlJQxCpquQRshxyp+cy5IKWhjWCwajG7QCkrJSCVCVGB2aUD1NE1H1xUUgtYtadYkEWLJUBS+cfSLJ2yurhAUKcHhMLObBjarDYLw6u6BkAqpQEoZpxRt37JaXZyCqxSH44G28xjxjPOIO1lUskw0neJyucHZKn7a08aulSaEmXkKpAJRhL7t0DlTwkhvDXev3vCNb36Dz77/B8Qw0PkqGMUCKlNQNUXNGDLQNS27Q+Tma8956+1nfP55xjSKkhJhDoxhRutASoEwDmiteHW45+mTpyjjiVmwjSXJhKRCpzqsEkQliokk59Epk0qpEwFeM+TI43hgnCHTYOwaZxQpjrhg0Wi8X2EUaAVNW7DO4BrL+uISRBFCJMZCp/2p+1aY5xltDKvVGm8NjVW0LiInGLCoBTGvqr3sUJPDrK3P63zlnxwet4z2yDhNlKI4DWIiBazS9fHeIdQpDqsMTeOxzmG9JcTAPI4oaorXNE9sNj2dbygp8uT2Fr2YIRfSHKEY5rn+9kUcu+OW1jX4RmNNQ8qFh3kgzQcWjcaIZrlcsWg61quOZ5dLvv7uFeOc+fyL1+z2Y2U3xYBzPVoZ8JamqQl5Vmus0WgUc0hMYebh9ZbjdmaajhQKz9/6Gs+eKfpmiTjh9kUip8w8jMQUMBqKPMV5TwwJfVoDjK6ge+sc1rXMMZ1E5xuM2zPstqz8gt/6lV+n65rKZCmCiCdLPk2NJB63W3a7HRebS0QX9vstMRbSHOjbno8//Ai37NlcXKAKtG2Pcp6iC5ID19fvEIOglOHu4TXllFS5f/Wa1nv8ybZ0sbmgb694nPdI0cRxwJqG1WrFerni8nqNKHh42FKypjUt0hpyKZQiGOfo+xUpZZonCmsUQp2oKMXQKlD6yBwmpGjmMJOTJkV1svFZbAFtDaqx5JjIKaFL3XuMbUBbjLcoEp31NN2CItArVQ/s04xRM01vSRRyASFRcsI4W78rVYgpMY0zOWZyngkpgHbEVNBK1zU11SmVpmsQq9HWVRg5itaCNtTHlUTjHI339G1DmI84X+2JMcQ6EZsicR4RVfDekVNit92Tm4bLzSWdd4SUatpdiez2O+bhgFGQYiDnQNP5Olm0WCBac5hnVMwc5kA4BuwQSNqwWF2yWD9h4zu+3nc/N6Fwrj9ZnfXTWT99VfrJWoOYwstXir/9f97wP/wfJ5694KyffsH6SSkIKSGlhtd5q1kv27N+Ouuns34666dznesrqy9948/qNdMg9M0tD/c7GmtpdcOPf/wS7xtEKmOmbR0pDxiXMdYh2ZzgnQXRGaVrWtL2OIDRNMahY4WaBjJFJkoWtKqd4Yf9AdEtu/3EEAPaWg7TASUHgjZocZQx4qNQUk+MgTDPOGMIVrF9HClSaBcdxi8Yx5H9YaT1lsiettFYI6y6Zd1YdltSgou+Z7Pu2VzeEmMi58KzF88xRrHbP/LxBx/w5u4O7zxvXr3k7s0XjOPI9XKFaxo217csN1dMIWGblu20Z/XiLSwKUsFpSykRpQ0aQ8mBaZ5RWtG23SklzuCVwViDUop06nxrZQnzjEFAZTQFpwCjKVLQTpFzZBoHrNNo1QJgTO2KaKMpJUFRiIAgFBGMtvSLliKWORasbzG2bpJkBUrwyqO1QkqglMLuMCFHjT+xcUQ5FmvDEEYMCuvWFYprPG3nWPUKpyPGKY6HI2TF87evmKbMcZhRpiOXeodpuVizsw3zFHkYjigRmsajlSKlhDe2WnVKoWk88xxpUHTeczjsGKeB25sbfjANvHN9TRkPlFw7iSlHRATrDMZ6QhZKShgc7339PcYwon1PZGIuILZjzIUUJnIK9F3H89sremdZryzvvP0uu+OO24VhTgNWFRo60ArfJ0wDsxRMShSjwDbYxhMofOvXfpn14x2v7geOQ6RZX3PVrJh3B6bxgNI9sSi0ViidmVLAlYa2WUBRaKOxpcbTK3GoJCStOEwDd69ecri/w4hwdX3J5dU1Bcscxypww4xvGmJK9F3DcfdI1IXee0QrvLPEWC0hS1uXi65t0ZsNvqkTHNY35KgYh5EcAsfjAWUUztbplZwyoPBNQymFOUQ657l7syU9rmidRfKMklShyhhEKfrVknCcGB4OvHrzkuVyhWkc1xeeJ5drVu0SimKKez7/8FNWy47lZsWzy0tePP0GhzHwoz/6mJ/86CccjxNXlzfcPrkhBViterSBIhZnLH3juL5ac3t1RYyKojLFCsd54tWbe15t79Fjj1YWjWN1tcZqyCngfEcMVcBZa/FOkfNETpnHxx0vP/wE5RTOK5CZxbpjuVkiOfOjDz/l+bO3MAZCCCxazxQCMef6OxVLwTIeB7SG9956B60hz5HxeGQYJ8acSUVYL1c0tsU11Xp1OOx4dX/A2yXGai6fvgWmME+B3jpIgXk4cv/4wOeff44INJsehWNhC2+9fc2zt17QOo0oQTvDer0ijJkwJVaLDd43hJDY74/EFGlsw3qx4O7+NYVEQWG8w1gwFrz2qOLwTcvaWlI2xJIxqqDGiHIa23skZbzSaASrQBnPXISiBckzMmdCDnRdizWa/eEBpw3TYSTmwhgiSv+UOZNREuvhnQrJtsZDMRgbsQ5SKTUlTykulmu0UvVmgoHdOHCcA2mu7KjcNFxfXHK9uQUpDMOR3X7HF599TCkBVMYYi/dLrq8ueXJ9QdMaPv70Uz79/FNENM+ePiOFSMx17Van/U4rx2pzye3z5zTWIDkS08T+uCVOE8eYmEtiPwb65RrnlhhtkHFidf2E9c1T8pQYhpl5F3/uguFc//XqrJ/O+umr0k/DMNE2C3Js+Fv/Xsu/+C89Yu32rJ9+wfrJ+wXaNnRtvUm92fRcX8pZP53101k/nfXTuc71lZUSkS/1wP/5v/k3ZDhOqGK4urwhxoIoGLVgtcEpA6WQUqkiVRIG8NpSjCEhlALaGdIp6cm7KjxiTqRS0MrQKINDVxYCEEqheIUuhV47UpzxjSekWBdwOXXAUZgiqJgR40knW4cxBskJZ0CUQZShcZ4cAxqhcTXRDKNZL3s+/uAnvP/e11guFqRSiDrQGINXCsg1TM1oUphBNNMcWfQtP/7hH/Ls6TXj8cB2t+f1m3sMlovNJRerC9aXV1hrWS57nHWsV2umacZYjW/9abOvFpam9SwWPX3jKakmNCmtiDnVjaJkcimkEyvCSO2yFFW7NEpbrPd1Yy6ZUjQ5CZJrRybliDWaglCkxskLUIpmCgmNYLRUrk7ONWXu1FmPc031klIwxlDBuJn5lManlcH7llIErRRKa3KcKBIRKcRYyGLoXINWQtsZ5lAnHtq2I4XC6gd/wNf/u3+Zj/7W32H3y7+OsRqyxuuWhBBT4BRGjzOVUbHdDxjTYI3B1KlyVKv5e//Pv82//b/7X/Pnvvk17PYOdMvKOTKJOUeShjlnlHVcNlf80UeP/PV/7V/l+p2vYcwzikoUk5CikJzQYgFDjDOpjIzHLb/xK1/jX/tX/zqHNz/i7cWCjW0Rr2iw2KxqKqEVjNU04gnGsLIrHvfC6jd/m7/81/57GN/QNp7Xr7fc3T0SY6ZpWrTuSbGgJNN4wfcOpRxjmIFMv+gBRQh1Uw1zYB4jSkHb9XjforWlkInhgBKwShFTwp+us7kUVC54rRHJDGFiNx4wOaOVpe835Gwwv/9d/tn/6V/j9//mf8Cbd7+G85quc+ScOA4T928eSEkwxuN8j3WOUqDvWiBUIWstMWYEiyiFVZF6dNKIVjhfAcTTOJNzpvGOvvV0TugbjVOJvu9IMRNCIubMw8MD2+2eNAcW3tG1HucN7apjtdngfMdUMp+93LLbZzSe1is6Wy1EIWX6rkXljDca0fnEfhKMb1HOsDseedjuoQjrxRqtLCjHOEeKSjijMQriNGKsAgqubUm5IJna9U/Cbrdjv98hZKyv3J/7xyMpGbxrubhYslw2rPoO0IguaJspyiIhMW4P5FTQbUPF92e8tTS+gSyQYRombO+rZS0JIoWnTzbc3b9k0Xm861C253G35+HxjrZpuLy4xtk6ARNL7WAbhDTsMN5RUl0XCom281xdrxjHwH4XORwS2np8D7fPVly0lad1OCQedyMhaEIC8oTzCq0MIRScq+8/kRAtiFhKNjWhLo8g9bOTnE+Q8QquHoYBZwxfPLzkzfYBydBpkOmA9YvasfcVQu1PhzqJQlaKqApiNBILS9/XqRmruHpyy9VmxcVqWa9GC7EkxhBpradvPdpklFXInImTIqTE6mKFypFlU6+Xw3HmcXdkf0xMQVisL2ntyHLhubleM80TP/rJx3zw0ee49oKm7bFGE0Igk/Fdi+R6s0BE0EahqYdA6y2xFIw1GFtvBjXe0rmGpiiyFI7TwBwjWhuapuFf+kvfOhOq/xTUWT+d9dNXpZ+ctT+78TnHcNZPf0r00zBN9IsFP/5Bw//kf3TDv/03PubP/nY566ezfjrrp7N+Ote5vrL60hN/05DIQeGsZxwTSlXgtLKCqEyUgspSU4OURrTDiFAdFwVtNVqBypkwTrTWY8UQjjNt1zHEuUKftRAt4BzaGgyCS0eQwmqxZPs4kHNk0XeEEE4Q6I5hf2AOiVXXk7TGGEsWSCIUygmaCs457rY7nO/Y7w80XYNTCnJmfzywefKUP/7sMzb9itVyQVARK0LnasdVZYh5RilBAcdhJuXC9ZMXoKFpFO+895R+80iImd1+z+eHLR+9+hSjCl3vWXYtm/UGb2tXQ1uPNYau7+j6jul4YN23WIRshJCOGK3pGs88brHKo0pGA4YqVhbdglgURQHKkEIEa4khMsSItq4KoFO3t2k8kOuG1DZoXXkNTd9RcqxdWV/TqEr5aWoe6LaQUqJkKKUukNZaKI6Sq+EFW8fU0ZXC44zDuwZrNWEupAQ5FpQuSBFEQBtDyjCLRscCwBwTkjNd51BeEdLEPAe0ciitMaoyLDpjaLsN2jrGcUBKoutacJpf+/XfpOtXFBGkBN5++x1ynnlz94as6/XpvaUIWNdzmF7x1rvv0W4u0aqnkMhkNFXUpTkzzwWswaklVlqmo+PP/e5f4T/4Wx8RkiFrTYkBq4TWtSCFOCesatBaaK3FKkDV5K6f/OSPkSTMIdIvllxe3aKNY5xmnFM06x7JGWXqYeJxe8S6BucapkGqyDctQsY5zXq5pIiwXC6Z5kgMGUkJpQ0GQ4iRYZiJWUA5sgC5gFOICDEA2fC4DYhkPn/1GQK8J7UD9rB/4DA9xxXHbgg/g6lvx5EwB549e8FiuSTFTOMcbes4bA84q1kvWqxzzLH8Y7EdY2UNlcJw2GOdZbnoQNdR/Tns+eOffMBx98g8DGzWF3jfEGMEpWuKY4k0VpOy4zjBFGcKmc5bTCkkKXi3JETDzdPnDIcRuiW2KKYYOBwOeKNxRqOdRSmDQlMIKGOxvuHtJ9fc373mR9//fRrfgrI07QLxTU1kQ+GMorMdvnHkEln0nq5taJsrrAFn32YOCaUdxzEwz4ndfmC33xMDON9gLBwOB6z2qCQcHrb0fY93juu3rivcfbOkIBitGcaZIuBsg5RMShsO08TD446s4XA48qMffcF6s0SpBfevt8S4xXnPprvEtUvCCHHeIwQihc/GI945LpY9ZYp1/W4arFZ8/PHH/IO//z0WnWK5vKDvN9zfv2a17snzkQdX0Loe8IpoSgKyoJWmRFC2ABPWwfWTDUbBy8/f8OrVK7r+gtY3qMZjTF0/ckloTizJVHjy9ClpVFxcP6cYxZwSMYzEeMDGwmE48OkXn9XvrV1wjOBUxlqNK8I8z1xdXNM23ek6UzSLjhgmXr08MEwToGn8qk4JzYeK8g8DxWSahpoAWABr8c6z8A3LxhNTIpaMtoaLyx7rI2n2fPrZlpevHlFa0S+u+frXN4RSU+qctaQUKUpwTUPfNOgM0zQyTiOH3Q4likZZjIp1PRkDOSWYFOIDQ1EoawgZTNOTs1B08ycSB+f6+dVZP531E3w1+mkK9YaeLQXKWT/9adFPFzcbSHC/H4AbxpB4eTee9dNZP53101k/netcX1l96Rt/y36FXlhK1swhYEw5sVQyUqrVofKUpQKXdQW3Sq7palqb+thcWHpTOSOicEbjFDhdR/GzAoqgY6SdMwYhNtB0Lbu7O3Iu9E1HnCNTmHGNJ6XM4+OWzXLDGCKmayg5AQpj6wairKXtG5yzFG3xTYdpPLe3twzbHRIjOE2k0KwvSAV2hxHb1q5bDpFpzvjGYRtHzpmUMpgOqW1stDF0F1dsdzu2h4hrPFc3z2h8Hb1e9g1hHqBErDO8/OIlw/ARbdfXzV8yjbM8ffqUD//oe9xc37C8XLHdP9J6z4c//hHf+Z3v0DZLrHMY7yBHFp3n8eElXb/geBwR0cQsKGPIuZA0FKU47CdA0S+XpBTw1qBKIWlF2zSUNKMlY1RNBVRkNELdNUCkcHHdM8+Vi5OzgFTmhS4grnZxYkk454g5/yzFLswzJejafc8ZY6pgKbqO9wuqRt4bjT6Bh9GKIsJ+P4CubJycBIhY67DacDiMFd59GokHQZXMfr8HpXn+9G2Oh4Fu8TYcNM+eXvHHLz8imUjOpaYiOkeIme0+8OT5C569eItXD0dEDkzTkfWmY9k3tE2D1oaYCkkyQsIIaCW8/823sb7BuI45RrrGoJXGWrCikWRpbYtVQkyRrt+wP97xa+++zZNnT1n6lrZpmWIkpsI4R9arnjkEcp5Z9B2pRBbdAtGGN68fKPmn4k3RNB7vLH3rERLD8cA4Hsm5Tjw0TVuFq7FIbun7vk4gxIizjuN4JM4B5yzeNWhjcGbFPAeMM2RJyJuPAWg7z5sUKKJxtlqXun7JarMml4zBVl5K31BKJseRm9sF15eXSI6M455F19B4SLLiwjpCqMl4JYMWRZ4VaEHEkaLwzju/jOTEfr/lcfuIbVpu37qkbVtSyszTAW8Ur1++YggTwxxx3vE4HElx5GpzxebJM+Zt5Ecf3+MbyzoPNL3QtA3iLEaB0TBnhUbjbEPXdOQs7LYHjrMmpYbrF+/zuN1ibMMgigaDEo13lZ90/7BDa00IIKKxmmrhCxONM1gPba8oBYpA03Ss+pZoM8t+SbP0lCcXSIR5d6C97NkdtjzsXvHpJw/M88T2zRuMUlxddjxsdxRlePPwiCgBNO+//2tcXT7Dtz1vP79F1A3aGfrOc7Ve8vjqnuNxxxevXvNwDFxcv+D64pKnt5esli0lw+7NI36acb4wp8SHn3xB3y2Ix5F3rq+hsSit2e8fefb0CcvVBSJgmwr8HoYRSqFxHiWRmBKgUVpxcbFhvekRIovWcvXNJ7z34oLPvtgxx4GrJ9cgimkQjkMkl8I0R7xrmEPENYZeq3rtF4u+2qDciufLHmeEGH+Z1292HANMURHmmThNkCLzOJGyENPMOAvawBiOhOOAU7ZyYCik8kiicm2UwGLjKSjmKdL4DopwjJEhjGy3A0vXIKom32kP88vPsE7hzVO6ruV4HOm7hjxWK0mMMyJC33e0bUvXtGilmI8jOUSM0dxcXvH0+oacM8bU6yhLIZeCSCHMAYBhmhimgKFaHUvOtI3/eemEc/0J66yfzvrpK9NPp0nBH/4A/md/fcn/5n+75Zd+JZ310y9YP6VTSmvbLQEIoYC4s34666ezfjrrp3Od6yurL33jbz4e0MbRdAtyCRirTnYSoQAiCqUtRlfRqpSqHWqpKUBQQApFZaIpmMZymI547zmc7AiiI8pYSlGkkkin/1ZmYQ4FbTyNM4S5oHTdKMhCzDOXl5fkmBAMYRixtgKxMwFlq8B+/WZEqFBadxgxCC8Pj+RYEO3wy54xBjTgtYIo+KKw5mSdSRW83XZ1gbLOMw4DRhturi+ZQuBuGDkcZhYXT7ndbJCYappaq2k7z2K5xlqYx4ln765YrzqkJN68fo21htWyR0pmuVgQ58QXn39ByBNv5onPPv2C7/IPmEICQFvLYrXko08+5q133kIXMEqzXl+QUgHjMN5jtWKaYoV2A0Oa0FqTjEFS4m6cuLy4oGk8TdfSeouSjAI2mzUiUuHDrmGYR7y1pFhh3tZaGueJkjDGsLE9KUSMMcQQicqiSoZiyDGhVGJ90RFjAd0SUqw8CVMToVIcaFVdjEuaQStCErxtsarQ+RorrygYozDa4mwLWjPHUP9eO0pOzLHQNA2/8Wd/h48/+yN+9+2nhDAypxnjLErVtKtpmvDNkvtt4uKtF0whcxwjy75hvVpQUubu9UNN1HItzrdEiWil6H2HbwqiYZiPjH7kYtki2SEmE0rAWo/VtgKgvSPNCWMdOMvi8hqlG5z3FMlcXq6wjeM4Jl69vsMYx/3dFiWKxcoxHB/IReh6Tdda2m5B4z25JFKqnd+UDLe3N4SQarqibwDBOhiGmcPxiNOKrm2IwTDFTNd7nLVoJWitsK5DK83j4yNd19G0LfJ5jbeXeebFkwu0atnvR3zb0LQWFIzjwLjbU2Li5voKZUCbhjTDR3/8mjQHLjYrHuOW/eFAUR6Bmvy4XNL57pR6V7uxKcx4X1O8EOhXV7SLC3LJbPcH7h4OGGPIsRCmmb67RpnIshGmMPLO136D1eaKrrPEOPL0Ep472O8f2H3+yJtP7/CNByXc3t7S+rauViIchgP744Gu7VkueyIGZ1qiHnn2dEHTL4kJUphYdi3jOKCVZrFYElNCzSPjPCLGMsSZxjcU40ilMB7rtMc0zkx2BsC7hnSITMMRMQUthU4rPv3gJ9ztHwhSuLp9Qtfccvubvw1JICX2w8iUC77vMd4RYuAf/cE/5L68ZA6Ztu8xzhFTxHuPUZp3n7/gvXdu+Z3lt5hE8b0ffsQ4jnz+2Wu+9+Y1MZR6bWvFQUWWmw1PXrwFwPrpc1QpxClzd/eamAL3+wNztijt2X32iHOW9XKBM5pxHGuy5cIzzRPed8QgPN5N+MZxfBzY7x4RMaAcqSg++eQlh8OBxjRYa5ljJswJ6zIpH5jzlum4p286nHYkMsYJn+bIYffAPBx58dY7TEkT8di2xWpdE920Js4j05j49PNHbGPwzjLtjugCl7fPaBdLjHVMMaJF0VrH8WHCNp7pMDMPD/jeYxcdyiowhSHMTDGxWK9p+p6bZ2/TeovTHWGe6Ra3DMcDKFivFqek0IraiDEhKdbpEYRu0dKeJonqeicchyOffHbP3cM9x+FIyhklsFou6TsHaNq2J+5HcgpkBHj2X08ZnOvnWmf9dNZPX5V+Mkozz5Ewtbx6uWQKCvRZP/2i9dNxGJinwMIN/HP/woGvv7OgMYezfjrrp7N+Ouunc53rK6svfePPWUMqhcNhh7GeUhIiGW8NqQi5qMpDURpNoai6rtpSKksmF5QUOjQ6KlQWbIRpt2XRtuQ4Y6yQjScpS0ZRnCGiKDHjG8s4zljniSljrcNQGSzq1O3GgCJBEnKogGvr6kZRBNqmRRuLSgWrFLpkDrsHusWSog1pnLGqxn9NMSJZiCOoqsAREYYU2I9V+AgDKSVa37D/8DOk1M0jRGDIpLBFpYwqmUVvGWdVO0oKdocDBcU6FBZNwz4YlqZD9JIQR66fPMMYgzUFSkKJ4r23f5nFckXIAYViDhNZMt16xTBN/OAPv89777zD4ycfM4XIfpiIRei7jlcv3+B9y2Kx5MnTJ4zjQNc4Pv/0M1b9kq+98x6lFJ48ecKir10t7x27uzcsFj1Wa0o5Md1SqhYip/Fek2Ki0dWKFOcjYRq5uNigUsTaal3SoqGzddxc8imFcKZvNctFhzLmBAFX+GXttGyWDd26IcSEtYYYBE397nIuQKbpHCVnCgmnE975+lqTorWCs8Jv/tZv8X/6z/4T5N1rUim0rucwH9EovPU1Lt47SrY8f17TBVerS4yu165hgTFLRGoEvRSFUQkhEVLmYf9Iv7jBuSc1cS2OaJXRTtduv61j9kkKuzhjjUOMZRbF6uoaZR2v7rb4xnEItZOepaZ5FdG89e67lVHTFNablhA1IRZCDCilMFbRNx3GLkmxcH+3J4SEQjEeZ3YPB9q2oUiFu7e+oeSa1pZjYJ4LSgmH44DRmuVywX63ZR5HoH6n3jfcaA3A9WbNp8MBYyLOKaZxy+NjpGkacs7cXF7gtSHEiSKZ42HH43aLFs3V5SWrTc9VsybLDcdjxBhL23Y8bh+ZpgltFaKOGNfgbaHzihgMYQxsj4GcBWM03ndYk09dd0+7WQKC8ysWqx5jDJ3XWD3x6tUrFqs1RnskJFa6Yf3Oc0SeUkrmOI5M00yYE1o7rHOgNTlEdvtHvHVYoG00KgyEnHn16Qdo26K05wFAMlAnEpy3uLZaR8ppjicWYYoTqhRUCRhdxYakXMVUijTGkGSmaatV6f6w4xgTfnFBmkY+/eQlJWX+MPwASYXFquVhd6BdrhlixDrLxWbFi3fepfUdy2XP5eUlzjvCHAipsNuOvLnb88UX94R4QBl4+uwFV63HyoqrxTVJa4JEGqd4nlqOhyPymFhtVpSpVA5Po3ny7JaYEscx8Hg84H2HcoYswv54RCOkMBPmmSnuKAjL9oK2XWJNnVSw1gP1wBBiAi1MIXJ394guc00ALbBcXoJkFl2PS5ZNf01JmcN+IswDIQ5oo2iaK5YX12wPiqbtKbHwcLhD63rgtcZQdME6zXKzxjUOjXB7cYUVTSiKcZrpesvtk1t0Ebb3DwgZ4+DyZo2EhnEaOBweUMZQUmGxuGFzdYXzHU3b0HmHVYJRM5cXPVOY6VuPNRpKRlCVs5QSIuCMQ1MnNZwzSImkLDhrcQZ039D4J6w3a4xzaG0Yp4k4TRgi3jd4Z9k/vGYOW8K4B37v56MUzvUnqrN+Ouunr0o/aaUp0vH58hSS1ltWC33WT79g/bRYrGj6nj/7Zxz/+r/xY4ypKadn/XTWT2f9dNZP5zrXV1Vf+safwaKMRhmFdY5pmjDaYHJBoyhaI8aglIAkClByqalEohEpGKUQ4xlyQQG6qT80EWoKVJMopaDQWFVFTikZZTUhR5rekUsVwKJqfL0SUKex3ZIrS0EZfUp6g5QzRauaRpQzcR5oXEdRhozCLzbgDBIjac4sFkuSFHAe8WBzhWfnUvkuSqu6wKYMCpQ2HIax2m6sZTrOGGsYpshoavIZIgx31RpSlCIpCMVjfUfMsGNESkMuivvHO1aLnlDuETWzdI5N39G2Hdr2ZN0yzzOSEk3TYSRzfdVzazWr9S377Zab2w7nPVkbHrY7srEsbl+gtWWeJkZRBK3JcSTrwqv7N9XSkzKvH+5YLTytVXjn2G+3vPv221hryDnSL/vKP1lUkbA/7Fktlly1S5TVLDZrdAkMxy1JMqvWVVi00sQQSDnT9C0pBpq2dk1DCIgqNJ1iCJZcahencYLSE30LGEEtHWXOlFhQ3pJz5eAoDWiNNq5yRVLBtB6lNXDkz/+Fv8C/+zf+LUSZ+r1FRWMajLaMc0D7hqIUuSi6rlo4hmFkuazpfFpHlMkgNclPaY1WBZTGu5bExJNnT1lv1pS8JcuIaxZoo0DnnzFunPcUrTG6ZT8MZK25ffEWdzthfbkk5Yg2oKxg8ScAfKJIRCHs9xPHo8bqjozGugUKYR5nShasFeY5sFis0CdOkVKGRbtCa0WRSMqpgsMBazTWKtpVSwhVvFIEJNM3C1q/IuWIb0xNxDP1IKGso+tXWF+tCm6OjK+3hJQZhwOSMpfrFdrCGEdc57ix1xhtkQL7w5G4S4gSHt68IsXEsxcvaPuefrWk5EKWJQ+PD4QYeHl4DdmQQ+YYIjfX13jrUAhYizWVSdX3NWnONRbfOtrOo+PMwnuWm+f85OPXtFbxdH1Nmicex3t2uy3L1YrnT58wjJHjMDNsA4dhZJgHtNU4Y7gf7jjsdyyWDc+f36C9ZUiRVb9h2S0J48DLl6/IKdJ0nmEsrPIlIoZYZrSxRDJK1U66JnHYj8xTnfRomoZpHlmsWrzTKFEY5cBYpL9iubzhrc2SvoH7N2/oFx25RLpuwTBHgijuH3dM44DT8PLVG6bxc26uL/j0s09Ytg1SCsM80CzXJDy26egXHVoSRhl280A8Bgwd1rc4FE2jaJYV5vzmiw8Ydo6pzMySeHb7Auc7UgaNol2c4PCNo2k8rXPEOfD4+Ij1muvFsv52aFE4rHEo6k2NytlJrBeexbLB2DVf+/oFaZ6qpaco4iy0zYq26THAfhw4hoBdLtFKmOYDzoKxDqUti75n0TXkFLGqYU6BKY7MMVR7XC6I0ogGpwseTZkjplkQc8YbhW0sVmvefXZJiIFAosjM8FAqB60YFv0FF+urnyV5tn0PFHSZkTJTlGFIEW0sOQvTccYphShFyDVoAKo9yihDToExDHUix1gIEOa5WiO1IeXE/d0DuRSc9ZXVlkecMWyWPcNhx7B7Q5x2Pz+lcK4/UZ3101k/fVX6aZ4Ty0VP4+ok1LJJLBvO+ukXrJ+gTnjOg2K/v+D2mcI3Z/101k9n/XTWT+c611dXX/rGn6i5wlKzQqLQWtAmYYtjjhOFCaM9WjS6pMrw0JqsNUkpUs5EqclNiQol9s6jlaFIIRdHmQzaW2zjSUVANEoZjCRQCm88Ic9kqWPsyihSKljj6yISE5kCKoMqCJmsEmhLTgqRhHcaI4WSKlBba40WVUW4V5AjzggmFSJCIJNzQZ+g20oKKNA2/6x7qY1CFAST6KwllVz3/6TIc0SVwixgnAOjK8BZC2qcsBpKjMxT4urmBmsdu+OOPrbYrHnDTNtMGLsDYxmOX/Bks0RrjbUzIpnLiw06a959sca99xyN5gff/4AQJr724ilDMTyaAzEEStuwWvUoZZhj5P1v/jpGweVmxXG/p28d1lZOiVL1kJBTZBwOKN0wGSHFEZUiD6/v2N4dscrRlMLrxztunj9DO88nH33En/0zv8lcKitIRLi8ukLr2jl7dr2hXy4YD4+4tqldHxF616JaA0CrYLHsEFM7OyVl/KJjniJzCGhrUBqE2qlOMVJSZtEt0NoQdMEUxS9/612SW3I/HVj3ljE84jpDzoHGwhwiKi7o2sJnn39Mt1DcYPDGMk6BMB/w2tYJAm8wWjOHGY1lmgNzytwsF6w6z0V/SXx5RHSdkmi8hwLYBnSDy4GiFW27ZFce6RYNFxJrAl8ogGYOGWUsGEEbj8gJ8N7WVLeQCyoJhILzrgKRfUMRoXEGpWvXVBkQSRRJkNXJNqJpfEeKM5pC02iwFmdytRylTAgZ8RptLFppjNKAYJqurgUWdOfZ7QfG44iUgrMKZYWLmyvapicJSJ5Zr5YkieTeYk1H43qImZtVS+ss6cmK+8cD99uBx+2ENpauXXC5XvL27VNCnFi9/y59p8gZHreR/X7AWUvbtPSLlpxmhsORIoqUC+PhyHwo7CVjtWJvG0IpdG5DmAMff/YZfdcj9gLTOR7HgS9+/CHOO6xrECtY47loO4ZhQGN4+uSaX/+NC4oktvstKQa+9f43MWiiSSQlfOs33sdpDZJYrVpKrLa6GCLzHMloUtE86a6xJtH3C5Q2DIfjz9IiP/r0J8Qpo5QFU2jbJW2/Ztl2mKKRpPFuwZv7e149vELRc7G5JsaaOHm9umbRN7z73gvevH7NbnvksDsyJoVrLEUvKcGBUiQtYB2LbknSmkY7nE7McyDKgZIS033ian1F06/obwLHcY/1PX3TMCaDPiWCNl6z6h3WW7q+RWNAoLm8oIwHshGGIWCMYdEIl+uGUgoFixjNcq2RkDk8PiCPW3IJjOOBH3z8MXPKXF3e4LXnzf0jURQ318+4uX5G1/e4tqVQuOk2GKOhCFYprFaIZIqpSafLpickSyoJFFhnaBpHmEZSSjjr2B0migGrQEuBlMEb5igch0SKCWtbmrZnc9FyFerhul907PYDJWUkBmIKNJ3HNAtKEqyutrpMQjnPfj8wDxNzSWQEZwytD1hr0DoRp4kpFLRxZIRhPpLTRGMNy8WC4+GAYHg5brm5fcI7b91ye7NhOuz4gy8+5oNPq83tXH866qyfzvrpq9JPnbGoPNGeAkUWi5bGxbN++gXrp1RGYp744QeW//5/5z3+rb/xIe+8c3fWT2f9dNZPZ/10rnN9ZfWlb/ypZkMqBYzgtCbnygjJSlMk19hs4ymxAFIhuEqTT6wJ6ywUQSmDFBCp/JoYIxSh9S2qscSSCVHVxCWjwUhN79KaKY2gwTWaUhIpQSlSAaJQxaCAaIeoUruYWqHwWARRFXxMrpZFY8DY2hknZzCFXDJSKnNEKYUVMLaChhUVNqsN5OxQpxF0UQVBKFIYpgio2j0VjXGmJl0pqeI2V0C3RmGtQ0QQY9BemIKgkjBNkYPJWOMwqtCEiCqCFM0wDoxzomk9aMgx8On9Dm8dkiKuqXHvy8UV1mo+/HSLbj25gDYtRmVCFLQCqztSFIw1/MHv/5B33nqBX62wVnM4bPnRH/0Rv/ed3+Xq4poYZxSa9fKCMQykMnP79q+htGF/ONBE+K31kuM8cDweuHjrXYxxrFWdQjgOA1/cvWaaAsfDkcfDE8IcaLsG4ywxRcZ5xBZL+w+/x18EXn34MQfvSVJYXCzRTuFcw8N2R98t6Ber02dYDyla6ndaykROQtdUW4JxLb/09fcxastyvcBvLdZ6lO45HGrin7cNXhJxf2RhHe3akOdE23mk76r1QymMrcDvxnsUGr80lMFjlDDGwBdvHnliG0ooFBGUFyRnIKLE4o1FNz2ff/qK3/zN36bRBmk0MRZWJytV8JkiqopzRYV/n9LXYoi0zqC8rmJWJ5RRxDQBkFKqv01bmTGInJIDDSLVvpJT7YZ5a1An/kWFkSe8VShtiDGDCqepD9BK0Zq6XFxfbFg/f0J+IuRcCCFyPMwM40AqmcYaurZhvbjk2W2HUkJRinnK3D3syLpw2L0hes+6bXnr+QuePoPtdsv+sMe5WG1eOKzRbN+85nWYcM6QiqJxDTFEHo4H9g8G5xyihSQZ51uWmxXkXA+ZwDjPJKlWM200uzDxsHtksVzjrGPTb7habeg7T86V/7TdHZljRDtFpDCbzOdvXhHTXNcIYJgj3npEg9GWx/sjJUacgY9/8hEpg6Dpuo5ysvO1ixXawJxnhiHgvGMcJxCh8S3vvPgljsOEdQaIp+8vk8sDWTsOx4SgaLslT1zDfhx53D9SMtxc3dD3C7QRdAarOrrW0DUXjONAkYTRhhQj1jmc0VhjT7DlhsY3FUef6sHbNh1K4M3jqwrwto4kNYGS4HBOcdgdWXYd4zQyHPYYd7oJoBzL1Ypx+IK28awXa4b5nofHRz7bP9A6z5Mnz2i6JSkL2liMNgxR+PTTT9nu7mhbS9etsShCVlxfXdMsLnnY75mmyCeffUzXt3T9AucbnHPV/lMyRmmcqcJVFDhtCGEm5YxvG3zrOQ6JOFX7mdGGadyTCjRdX62AUigSQNfDt5IaQCAkShamKVAEihTevHmgbxuUs1ht6JsGZetvNhghpUhOEeMsxlnsyrBYLBjCxHbYMRx23L85MEwzXedY9D2lVGZP2/dcXt1inSanSA6Ry5sepR1dSExz5I8/fs2rNw8sO8/7v/xn+NXf/B1K0X9igXCun0+d9dNZP31V+ikcJ95+9pxXH26AX+OD7/2Am5U666dfsH5qWsdqveB3f6fw7/wfIr/97Wf0/ZOzfjrrp7N++qdEP333u9/VwA1wQQUZnOtcP48qwCPw5tvf/nb5r3rwl77xF4pCSsGYgmhBFcHgiVJICEZppHo3MN6dOCOCyrl2D4ympIzSNXVKFAgFyVUoohwiFbZplUF0QWtBSoTiSblQksI5RwqpWgxtQllDKQqRWEGeCgJVGSsRans4oTJV2CpBiUYpjUaQlMlSKRJaV4ZMkTrKr5VBU0G1peSavKcElRUEXd+DqgJXKapQ5fRn1OnxkEshSUDrKiq9taDUSfjWA4BWmlLqyHfj+voZe0tOkakUnHK4xrNwHcccuH88ggLvHDJGSBOtb0i7QFUsn+ObhhgD61VmnhMpJbxXKC2UDNY4urajb1qsX3OcYP58y2LRMI4jolq2x8TLN1+gEbq25c39Hm99TUELmZiO9G1D8Yrt4cDhsGez2XBzeYNGCDmhleGzf/QHfOc7v8fxeMB7B+KZphljIabaec85IkXRHI8AiNM0myXT4wPH3QFVCt53/IP/9O/y7rtfo+sWSMkYnSs3x1qO+wFjNCFGltcXqJz55m/9WV5+/BHf+fPfYL1esLlYMgdBpB4wrDUowHrDMRzQXhNjwveW7d0bri5uMVqAeqDKZPquo6REKhMLr1k1He9+7Wu8/vgHlOFA0zR18kEZRElN9yMyF0uvDPeHI3/pV34FLSAp4o3HGINQaCxoDcuuQSkhzAqDoRQY54AypgKUS900janpcsZaQGGMQxlNKYLS9ZqkFLy3aF0PKsZoUsxosbSNQ2nIJaONIRZhnCOpRHTRSIaS5ZT0CONxJh6G+ls2GmstbWfxTQ8IMUSQwuFw4KPxkeHwSN+29P2KPM34tkU3DimF+4cjRR0JcULpwrL3tK3D6Z5pmkAp2uWKmDzDEJimgZIVpWhSjARJ6JBQTqGcZhqOzNOEpIy3dcpAWctivSbETMmR29trtIYYR7RoDvtHSpoJreb6+gJlWi4velIB2zZgqDwuCtpeUiQzjInHxwMpCpIL1ja0vWf78EAICY2tdqxFj2s6rLE47wkpkVKAUtfMnBVt20NRxFinWsFwGI94X2i0xhawrWCNsFws0LrhYX/E6yWXN9eEOXLYDcQ5sX14IMVA6zzaOlaLJdM8g0Ac93Rdx+bqGqU1wzSRQmKxWFJSYRoG5mlEKxjHA/vDjuPxiPEWay1FqWpRE1XTGeeReZwZdo/kHCk5st3eM6Ujy+Waq8trrHEcj3u0Vjwe5sp/WjY8bh/49IvPWC7XXN88ZbW8wjUdrl/y/q/+Bv2qB8nkcSSKMBwndNG0i4aLJ29hMYzjrk5cADkKivrD8W2D1aaGIeSEsQalqBMJ3nHyGNJqhVrVBD0lgmvrta5NtdrkklFG1z2h+mVO9klLikJKEOeIUpWXVEohhhlrLDFGighzSIjXdM7TOguSmeaZMufKQTKK1XrD89sbOm+JsTDOR46HI+MYcb7HOk/JhSEGhELnWvquYxxGlp2n9Z44eVKYCDrz2fYLjoc94zjx27/xL3/ZLf5c/wTrrJ/O+umr0k/kQgkBcae1kcJxN5710y9aP6XINGQ0hX/m9+pvGTnrp7N+Ouunfxr003e/+923lFL/C631f0Mp9aXvvZzrXF+mRCSVUv6j7373u//6t7/97U//vz32S198ZT7grCAxkIJAUijtSAhIADEUZsggVpOVgIAqCSkK0QpKQrRGZdCmwnobp5ECVqa6IBaNCKSSUK7yMowsaJ1nyqmKYFVvQqgyVth0UYiAMdX2og0gtdld7SUJK1WA6qLQUse6kzptOkJtdf5UwIqgs0blQjl1y7UxQGXm5BTwpqmilIJWIJq6GNqfpvApisqAIqR0EsygVU3oK6VGqVtN7axpoWQhh4TVGg2YUFP/apdEGMNITKfXox2+8TUBTnt8YznOQ7UXaI02mlkKynsOU0Dj0FaTJJHmiNGOrBTzceJ+d6Dkwv1hrhYgMtbAMCT+03/ww1Na3oqmmch5RBeLFs2yb5jHfd1QL67qwQGYxz0lPaIQ+osN83Tk5sn7fO/7n3B5scKYTAoT1lqct1xePGGeBoRMUIJdLAHwmw2zdVw/fxtlKhzde89f+at/lXkOJ+C4Q5Pouo7tbssTYzkcj6w2ax7u72mt5j/6O/8vnAr0zvLZR58w58A4ZQqWmGuXlzxz1ax5jJEvfvBjhmlg1VXmyd0w0iwWNE2DsYaFN/hGwCqmsdC0DY0y3Nzc8PDRD1k1fU1CVImkwHqLaE0x9TorxnBAeOtb30IrTeMt2tbR/lwKRkkVuxqMsThrUVKtGr5tyShSrNdQSvXAZVQVF9MJxC7UQ5azFqcNJWe0Fhpv6DqLNoppVFjjIGeMVlhTbVcqF4x1GFtTH0ukCjRfLdhGG5JypDzXDpoUFA1iXD3kGY3WIDiKztDCiObxfuS4P2LtROMdKSZM4zkOA+M0EkNAI1hjWDaOtmvp+o4PP/gYwWJNA75jte4wTrNcrAFw3tbfQknM88xi0dP5Fk1Nf4w5o1KhM9UKp0Sw3jAER5wzy7Vn1XfE+YDkmq7ZN5aua1ivO1AJrQpOUy1E1O9if5x53B4JqTCHQOM9T2+WhKnaF4Yp8bgbmOapQrenmogpIqxX6wr731eOiBTIKdF6R79e0q+XdI0hHgNpFMiemAvzNPC4f4lvejaXV5UJlAudM+iYmYaR42HHHtDWY7yn7VvaxrD0S4yxjMO+wv2Vplt0SCm0jeHZ0yc03jDPmZQCKUVKTvzwRz/h/vGBb/3SN3n//XcYh4lpGLi9uSKlwN3dgXE4oBH6xa/y6etHUIZ5jDjnMW7F5eUlX/eabtGgKDhnWXQt4zCwWG4oYjgOM6UIwzAybQ8oBfv9gbvHHcZ4rjaX5KLQP9VMCu7v77hYr2hcR5gyU5qIWWOMputaXOPqRFIR4lwI48g8V3aYdQ7RdQqr71psZ3HGEuZEzjOUgtEWTOVgGW1QKMZJMI2hbT3LxZKYMrv9jiTCOAeyBBb9gjAF+sUas7LonJjHobKHnK2fC540B0IMda2u2hhrWy6vOtYJchZSzkxhRpeCIiFR0I1l2Wju7t8wDgOtaVESKViW3tBteqbm3FD+01Jn/XTWT1+VfipS0EXwm7pObm6ecPEin/XTL1g/xZSIpfDyC8vf/JsN/8r/4Mj1k/msn8766ayf/v9cP333u9/1Wut/r+u6d58+fbrz3h/UCcVwrnP9SUtECCH4ly9f/rfGcfwz3/3ud//it7/97fBf9vgvfeOvlT0eh5AppSBKYVTGlYI3oFSm5EwWIcUqOK1WVQQqoICUhFK6pjKJocSEc56cMinUH4ExGoVgcoasyKWQzR5dLA7QucJMndYo42sX4SRcpQg5Z0zj0FDB1ajTOD7oupdDMRQqZNiq2nZOIZEloLScLCIepaRCr1Nl3ZjT441WiEwVqi2FAqis0coy5QoStlqjUPimQcgk0afXUE7sF6GIQhUBKT+zE0RVgIJTGhMzUhJ4C9rgncFowSvDMI2IJIxUO40qgtMFZxpCiqBnhmHA+545ZazxWGvJeaJIxFpqZ1FpNBqEaqn1LSFODFNktbkihkwAvng4YrVFo4k5sD0cCJJwrUNpRfvJWDk+xvLq1Ss2qxVd21Lij1kslkgR2qZh0e/xjebx/p71asM8T+SSmaaRvu/p2pa3P7/jHeB40Oy3htRYfGvJZSaGmWkcsUazWHQc9kcimjYYQtCUHNisb6pFYHPNzcWS7//t/5Df/Z1f5cWTW25ufoUfff4BP/rjT7CqRanElANhHPG642H/yMN+x+5w4Hg88vrhDpeFMocTBDZzcXnJerMmijBruLm+ZhpmlqsVh/2eW29QvoJ6Y85Y5xEFGIOyNX0sGcXlkxvevHzJcr0gjHv0SdRorXDe10MgGaVAqKcx7xxFqcqiEUsprv4exaCUxp5A3YKQUkJyqul6RlFOiVxxjoBgjcWaugpozUkcV1uUN+70/xWULphGobu6XHSdxS09KE8qhZgKRQw5C1kE507pg7kid/v1ZbUALDTXtxbJQpgDSiuiTPSb1WmCw4BowhgxMtfnMbC6fsJ2e0Rch2kW7KdAbxryPBHmEREhp4z3jsWiRynF/f09kgrW1gAShaIoIBRyCehJQeNo+/p6Uh5wrcUog1IGjSJOE6Mk+oVHGUURICViCMxzBAyXy56Hw5HGt4QQOAxHlDZY67He8s67LxCB/X6PEuFitazsl3kCpbm+XqO1puSCdw6tCiJC2xr2+x2HaQZ6jKoCWunE1ZWrbCyEzrfMw0jICWOEQqrTCgbGNHHdLlGlcH9/TwoD3jdstwf65ZK27yrAuW358Y8/5v7hDWGeWSyW3N5cs9lsaJqGb7z/TX73akEIhT/+0Yc83r8mp8B//vdHnj5/wdff/wZd3/Lq1Uteffgx3/jVX2O1XpNT/f5FYLt9RFMIccY2jhgTD9MWbzTb+zuMdxg0jW1YXq6QJExzwF9dcfvsBaoYxsOAKGGcR+T0GStt+ezzV4z7kUW/ZHWzYbneoIwm5sg4THjrKLFg7WlCZ9ETYyLGQM6aOGfeHHY13TIKRln6pj1NsfzjJNE6dSJICUwhUQpM04TSiq7vmJPgW4d3HgGubzZ1L2tg0y6xuh5WhjgT5ghzoW8cXeervUc0WQqoOiHlnKLrDFIK13aNVsLd68+5u7vjs49/gtEwTUfatmF7HHCNR9naLR/2x2oD5Z//0uLhXP/k6qyfzvrpq9JP68WCRddxPNwAMA6GMOmzfvoF66emsWQRfrTX/K/+Tctf/W8rNuuzfjrrp7N++qdAP72ntb59++2375bL5fjzetJzneuntVgsJudc/PGPf3xbSnkX+NF/2WO/9I0/z4zKAsqgtSWmBCpjAKMUWSpw2lhPoXaILBXmrNGcmgZAgRzRSp2EaCaHiHGudrlLBDJVvjoodeGIpcJDSy71ibRiTtPpOQ361EkqKlGS1O43qjJpABQIClUUSgqFKhKqqK32DaN1TeaiUCRXy4SWKgSkUFJN01OlUHQBDUorLAZdDBpDtKAQRDIxBtCalBLadiAFiRFUTadyrm7UOUPKqdo1RMhFEGtpFaA1RltSymhRpGlC2khz4o4645mGAWMtloJOCSe162l7jxRItjJ9RACV8c4CgooFpcDoekBAFONxAJURErvdY2U+nDafIQxYo3HecnO75HgcUcqAUiSVmWOEGHFdx3YMiGsZo+LxYcQoR857NAljqOyPN5+TcsEYh/MN88MRnXZsX73iLwH/4d/5h7z84IBRsFx0OKexxrBe94hENusl2igsGu8npBSWXccX2zukCBeXK4KZuH/1hhdrTykJ2y24vr7l+3/0MU3riFOohyUnaGd5tX9kcXPNk69/jUZbboY9gmKaJq6vr+vmVjK73R5rLbv9Du0aTKtoVj0P+0f+/K//KtFWBsw8HnBGk3P6GecoT4H333+fVy9f8vDBp2yuNohEnHW0bY8xlrbr8Lah2SxQRtG3PdoZYo44WzvcOUW8NeScSSmTc6ZvPaIUMWas0+BOPzwphJJIsULeS0kUEpGEbTVog6RSLS/Go4A0xdP1UVlPGAGgceBcPSgWXRMpCxl1Et0xQxZFCBmFQmtFmCPGaIwpRCWIzljvaXNHSDPWW0KM5FjolhbNmjlMFElcPX/C1XNDEUWIoU6rSMFg6NwKqyylVHGuXeWC+FPKYoyZmBNGaWKY6LqG1nYUKVjT451CucQ0jJRYJ020PrDbzRjn2e2A16CMqh18KaQYmOdASJWDZZSua5MSjHMUMcyp2p/m6UhMNZGz5MSw3+GcZr1oEK0w3iEottsd+92eeZqZjgecyRirMc0aZRWi69RL13qM0sxTIBwnphiwviY/NquezZMrUkpMAiVn5scJlQvPn79NUQmtFV9/vyNLZg4T3lta7/nWL38N33yLeZ558+qOw+HAZ59/QggRZTusa1gtVyyXK548+zreWVZ9x2EYef36kVwKq+UlLz9/w49/+Ie8/c47ONuSY64H5mlimGdSyUwPlc3TWotxHqMVzJEown7eYbzH+x7nHcfdkXgcUWKwyoCB3hucb8kpc3XxlKuLW8bxyP2b1xy3e46HI3OINI2nb3uy9xhr0drUg8VpmsMYzcpbrHbsjgnBUKKQg1DyDN5QqB3jnKsdLsdAGWtCXL/oWS86jDeUEln2K6w1jPOEUjDuX2GNYff5PV+MY7VrrVd0Fxsu+hXiMlNOzCdumUhNVyyiMCcrZ44B7wyt15SSWW82LFYrHh8f+OKLzyAaMArpLVFrjPPYbsnF+oZxmL/s9n6uf8J11k9n/fRV6afOeaZppPGWf+N/KXz/I/jk7qyfftH6SRAMQuNOOkpDb8/66ayfzvrpnwL9ZACltZaf55Oe61z/xTpdX4r/int7X95nrk9daSmkXNBakXMG7chJMKJw1I6hNnWkW0olDqZSO7Qgp7SluiA472oamTaEIhQyRTusaRHRiFS2jaifskoUSme00Shj6IinzSxjTUspgtYNSpnKF9AKberzKKVJQD7ZWAqgtSIBRqrdJFPho0qbysSRgtUOreqocpH6d6INYh3m1NkqqYBWWG9rIJ4IkkEZQ1Ya8R6VS2V6NBadwBSQaEilJhJllQm5RpwvvMEB8xzISpCUEAARnLFIgvxTXg4JbQRREYNHkShpOvEZMk43aKvq80g5jYRGlGhK1DinMEpA10mEkDJOWRyaoIVQZoxSeNE4qd1JwSLJ0uSEM0JKAXGKtnXkkMF6JhORMqNd/XxCGrGugsmTssRhrrYa75hjYBomjPIU1TCWelmO2rFVlkLh/hBwGHKZKF88AtC1j6wXPRIHrLOEOdSObkl0fc+oCl97smI+7nnrrWu+9e47LPo1ftVjm+9VoHmuTJyUZ3I88qxZ8MHv/4B3/8xv8JghPuxpVi2HOJHyHVoZrDa0boEIOLsmpMiz22fEOeGanuurJzgfMTYzR6nCZHcgpYleXbCNheXTWxbdivziKY2HN9uRPM3IcMAqy+FwqJYGb8kx0LmGRdfjva+dZGewrQdj8E2HZMFaV9+TNThjsMbiXQWTt32PVQZVwBmQouvkhIVhHJjHib7rEOA4TXSLHuscKSViDjS2oVTgE6XMeK+YhxmjLUpVvg9SUwyNrbDmbEFL7bjRaHIRYk4VAi0WbQwmQ1GWKIXcGpRATgWnFPNsELEIoLUhlUTUCqU91tTD1xwivmlrh/wE5lYoxDqiSTS9IeWMFHCtBxEyhSyJEAbmUiHfIRRQBsmBxijwPakIvvG0bVcPAaX+Rhrd0xU4DCO73cA4zyy0oe1apBQ632KbFk1GJDHHBEXRuCWddeQ0I6raakKYWK6WPHtyjTGa3cPEdrfj/v6ejMFhmecjXgrWesZka1cTQTuNNw3aaLRyKASvFOSAjxVQfvXkglQy1hpSTsQ84Ream6sNd3c79vsDMRu0M4iNLNualPdUnqNOYPQ5WEJKLJcLpFAtaQK7IXN/fySe/l9aKd77+q+DjCzbDShFKBMlZeYpUgq0vsEI5DmgU+LhzStSGMh54m535Dgrbp+9y83Tp7SNw6qMc5V/lLNlCIHdbo+2ifWyRxvL48MjMRQWq7dQLuNcZWiFeeB4PJLmhI6RTuqNh+F4oGtqmmNMAWc1UQz7IZCKYrlYs1x2J+EolRPU1KmFlAs5zzzc3fH64XN+9NGeOCcWbcfNzTVdt8b7BmOrhTPnwnx8ZDqOvHo1MwwjOWsWyxXXNzdc3tzQb9agNblUi6Axplo70VhtccpQplJTTbXDWcPtkwU3t+9U5pQB7TVFwTDPdSpMzuToP1V11k9n/fQV6adjURSvSJp6TZz1058O/VTy6R8FOCgRc7qpf9ZPZ/101k9n/XSuc30V9aVv/MWssLaOwHPiSOgiFJVOnSyNVpksuXZGs4FSWRVKVw9yzomcEkoZnFMghRgCKEvjPZLrJq9VFaYi9c+61C5ULqWmJmlNVpqcAKMpRiGmjqSfqNdoXe/kZxFSKnhtMQog/4z/4bQBEUrOUGqHW07Eaa0NypkKD+annW0oqrJl9MkeYtBoqe9FcqJIOnXba5cLVbkf3miSZBJSBTamWhhKRquMopwSixpI4QQTdiQNohVS280oa0gxo7RBaVXFrDM4qzlOgkgi6cKi7yjx9F1I7drXP9fvxSqNdbqKaeqCLtQujj7xUDh1KxWKJBlKIUkmZ0HrakEqOZJLQpI+aUCp0whWkyTgjSYb6mYrgRgzJRtQlkyFj4vKPztgoAtFxdPrzTUWXtfx6yS1y6nRGFPh3q8fH1l2HlcUSRm8b3CmZQgzvW0Jnz1wMwR++/oFi2PCy8z1puOt9RUffvGaXITdPDHngB53PH3xnP/73/73+edMy+wsJSb8rkE5gzEzOecKGta6foetx1h49eaOMEca3/L87beI4ytuniyogxQWa1sO+wMffvAF94cdF+ue2+srxnmmaT1vL59gjcNaTYwzi2WD0nVyQVCkENBKMY4j8zCybBvmYWCKgTEe2G0PtE2L0Yb5eGC/3dK1LY+PWwSNMhqjBGc91jj61mM07A97rq6uQGC9WhFSRFuLvb0laItvG6ZpJE+WJpyS78JEHvbkDJISi2VPpjI/tFJMKTDngF80pFDgdJjTVtPbRf0dzzNaG8xPQfIl0XlPTgnnFUUV+rbFGkdMJ4C9tjgM8zjVsXyjyaWm/xXJtE2PEghzFaohaVJOaG1xtmEYpppSqSo/56cCTKTCiovAOE5YrfDeUUo+rVuBYZ5xpv7mpC4XLPqO1WpTE99SqpYvVS14u+GhsnBsFeUxJkajGDS03qA1lRNjNGmOqAxDDFht6VvH5v33KCJkyfjGEQ8Djw9bJBQW/ZKma9BacbFuiSkzToFhmHBG4ZYLjrsRkTpd0voOpTU5Z8bBsN0euX/9iIhgtCFMEyHOdF2LtQWkrzcjjMGYjs0ms1xe8fB4T7NoKblOv1inuLx9Qt/1HI8j+/2eIiP7w8Af/f4PySlxfX1J4z1d03BztWDYP/Lq9Sfs94+QE7vtA4fjniSZKSm+/s3fpFn2bA87DpPC2Q5vC3rcsd+PYDRX1xvatgWEMM88f3rD7jAQUmbOI+McGI6Rxiuur5ZY13LcDhg0L55esNtZ/vB7f0Apod5kEIXr1yw31yw3G3a7PYd5j2s0rV3QNQ2JVGHuStN0He+8+w7vf+sbiDbMQ0Bi4os3L9GqYZwLKgZymQlhZJdHVrcbrpcb+sUKb1umYeb1F6/4yYcfcHlzze2TJxitSXPC2YYYE6IUNJ4pV5h5Z1qMqRNjIQRyrnuCnG76NH1LCTXUoXEO58786D8tddZPZ/30VemnTJ2u2b3Z8H/5P36b/+a/8g9YXz6c9dMvWD85ZxmngRR6YFGZeqGc9dNZP53101k/netcX1n9/zDx1xCzVOuJchhlKbmgTfXvV6lWZwyVCEpVv32K1ZahTz84ELSSE8MiEUNCdLWWGCkgQBFEF0RBEoXF1bv4Uu0UqMrK4DR+rIwiKV27WqmmdAlCUVUIF107tlYVTElkETRVbJaUTp3xBuG0EeaIMqaOUJf6OkSoSXbqBMIugqZgNBVOrRSSM0lX4YY+CV3JKDRJCilnlNUoW5O/MolsClYJJtdun0giSgAySlkEjYgm5yraDQrraqpdkUSMkVyJ4Chb34MSSxRIVHGpi+GnKXiamobllabmq5Vq6TH6pGwVWlsSpSYEaoOo+hkqr/BKUXJt+QtCTBFtDE4ZQkpkAaUSzmh8qYLVaINqbL1OvKVkxXEWklTRIaqQpTCHiDWQSr3BREmUEGoHMidc1xDCiDbqtCk3tG1LKIUcE1IiIRpUEmLOtG3mgx98n19+9zltLrSdw3aevm15stnwxx9+ihRN5zt6v2JsFNnCVd/y6R9+n9/6K3+ZP37zkpgzeYrkkvFNw6J37HdHloslbz76hIvLJX3rauhFmBnSyKKx2NM1NE2Z3Zs3PHlyS/+ba9rVF3zw0ff49//df4ff+Yv/IoqO1lqmOZKjQvDMgwVdEMk471n2V6QUWV5eMjTVYrBYFw7HA8vlkicxMI/1c3t595pf+5VfJefEO6Kw1vHw+EhzSuCNc2X8QMYPS3TjeXzYMc5HYsyEFPjsuMOEhLeW7faR7W7HNw4Hfgv4f//H/wlP2iXbxz191/Pk9rYCfI3BWIduDEUJuWnYH470/YKu66olKo5YY+jXXU1hVJZcCjZSD8baYLRmngOUhNMaS7Vt5JxJOXG57ok5IarQN4Y55tql+ylHqqk25MWiIUVNTIGmgcZajK7TLFq5emAViLE+vzaW6+WakNKJ+yN1KsE3QGXfoNWJTSXkXEgZ1v2GMAdiiBSBeZpprGaeIjFnivopq0WYcyFNdYInxYQ1hsY3SAn1umbEuYZFZ09MqVyTHJ1jtV4yT7FOCohDQuFwv/2ZnW29cCSpS6hvHVkgpkAmk07vqe9aVosLUhhZtJ7NekXTepwVKIrjEBjnzOs3j2z3DwiW451m2k2s1ivmYeIwDHRtx36fEJlRHMgnkW+NZbG65RvfvGA4Hnn96iX34wMxzNw+uWK5XrJ58Q3aaaJIxu0eeeEavGv47POXHCfN8cN7VusVTWvRdkbJEYkFimKxbAnjI5IMYc4ghpISbefI08STyzXLfoFRhR/+4A/40ac/xjcLls0lShn+4asvKJJYXVZ7mDaOvt/QdD05C23f0HWOFAPeWpxpqdx4U9NHjSXEhBTY7ydiTuSUsaK5uLwhJcNSW5wzGCssFi1Nm5liJsyZcZrZ7wdSTDx56y3ee/+bWFuFqDpNJJVYMMoRJbM7jmTqfinWYkTIecR7h9bUtDwjlOxJU8JqDzkzThNDyfD+5uckFc71J6qzfjrrp69IP2kl9aaEmrm+fcSUEQnhrJ9+wfrp2fPnzPPId7+rgX+ZH//Df8SafNZPZ/101k9n/XSuc31l9aVv/Cm/oMQaM690BTsLhSy6wqf/iwk1SiiiyTojKtfF/tSRLKrU7qSuwst1BrQhxgzIiYVRQbBJBEGYJeFM7atqbdBKU8qJGaNBtKWUhLOVx1Eo5FwoyD8WmyXXXnttuFcBrBVKatKQyAlCKvUfyanaZf7xm6oCXOnaIfvpa1W1eyVw6nrlKrA5CVipo/NG1e6YztUmUxRAhfkCGDQ5lsqqMXXzrt02xemhyOnxRQn1U5ITVLjaaPRpgyxSCHOoC6o1VN9M7TyrKoVRIuQSKRSUOyXZqdOb0VAjkoQat1eFOeangG0w1mCNpkhNBMtjoO17lDV1KkEKOmWmmCpHSCtSCjS+IYugPGjnUdogp0mHmAolF1pb02O1teSTcDZa0foGBbjGo5Wi5GolSoBW9XNeLja0fYsAjcn8+NOPeW9ZGD9N9JdriBBUYd12XK03POymyobQjqat1wk28+kXH7L58Q/xl5fEokkZvPeEeWa9WmNs3cB802Nsw244UuaZv/Cdb7NcdahxIoTIou/ZLJe0uqkcClP4+nvP6Bcr/m9/7//Bhx9+xnf+mX+em/eeMYyB/X7GKMc8TLTOs9l0pDTXz8BajNE0XY9vPFobQkzsd/cYDapkjLWsu2vu7o71sy4ZJZk4gXKVRG3cAmUEoxVxP/D28/dYX0Xy6fPXSuGdxZREKZkXIhhj0b//nwPw/q/9GuXJDbO1iCh2JTAPI71rKTET0sw0j/RtxzwFNBDmiZIzi75nHAaMMTx9/pzZWRaLBY2rKXWN83Rdy3EeabqWxnt0LBhjsM7iBJQkvFOnaZNEYyCkiGsbSqoH46IKJc3VopEKSKLrHDkXdNF1asTq2gG0GlGKlCOgaTpPSgmlbGULnQRC3zWEGClZsNaQFTROVyHZCM4qcqFObLiWeTTEKMyxkAQ4HayTCEqD7RdQhP00462nbztERcYQ2H52f0oKtJSSsc6AalBWAamyuIgU0XhTrRnLVYexhhQTYSW4xtXDZDmxqIylazzeKqQkwrAnhkeyVBvR9vUDWTS2abldeZ5cXpNEsXvI7A97to+vsc7SeCGlQ7WrtS1SquCapok5RDCB1ltu3rril77+jN3DPVopckjEOeC9x63WaGtIT59RtGKYJ9565wWPjyMlG8Z5pO89bduSciDFwjRFpmngk5eveNxtWbYXrBaX9HOhPASublY0WhPGkRQmri4veXrzjA8++Jg3D2+w1jFOI/OJHWasRRuLtYHLi0tWy568P+C9p7ENuiiKCMdpQinBWl9tTZIhR8b5JCoFVBKyNSAOpeqhEODx0dWbJaneZEgpoY2laZqa9OgEUsFgmaeR43RElCZKIZWCdg5nLYf9gTRWttvhsKfrWtq2AaCUSFaOvutwIsSYyLGGRZzrT0ed9dNZP31V+qkUKKJon0T+hb/299FKocWd9dMvWD8VKRwOBx5GD0BzsUb68ayfzvrprJ/O+ulcX1H9uT/353757/29v7f8zne+c/i7f/fv/uAX/Xp+EfWlb/xNCZxpUFqRUkQVjWksMZ6sI0hNoPvp+DeC8gWl8smyYShJSCmjjENrg5SIsicujAoIdWRcTuPnymqUVhWsfLKVIJqEoojC2frDFWUqbJSa2lZE0Nb91CMDCPYkAHPWgNR/h6K+3FL5ZaJqV0KZKkgBbQyCIKXUrgF1LL5aVkCfFihRGlSFRUsplFIFfsm1e5aVVMFX21fVPVIK5mfCWmoynXEULWiVT4/R9TWJQlPfTlG18+yMwSiNSP0aBUg5Y0RhlMUoBalQSkA7c9Kk9b2LqBNvpBAlnwS6xqCRXLuzCkVJchLagiRFkoLOQjx9HkUJ82TRSdDenaYGEgrBKoXV1QKgjCZnXZk+ubDsPdZ6yEKIM7EErFJoZ1mcyNvaGqyv3R+dMmE8orVm3O0oAl3TMf9/2PvzWOva9KwT+93PsIa99xnf6RtrcpWrPFGYgjYSokkIMVFIy5G6E8AiMepICGgsQVsQJcI0/gNaskRbDjKSaRIRMOYPgpSgxLEMsi2nIRDbctlQHsvlqm985/ecs4c1PMOdP+71vmUI0J+NXZ8d70f6VKrvO2effdZZe63rWdd9/a40WHynZqiZf/Xmmzy73nJ+ecHddc80HPjsgzd46XAHbt9hc3PAp9uMj64Yrra4pieJY19mGApNv+Lh/hkv3fsA//KnfpptUprNLULXk3OiX7X8ws//Iuu2JWVlsz4jxMKtOxsOj57yNa++yu3zDd3ZisNwzeEwcnrSkbQyTYm+XxNC4Ms+/Cqu6/mXP/cWP/R/+7u88lWf4hv+0/8l4y3jonz+lz7Hhz/4KhIiwzhRVRnGkauba6RvqfNMTZXt7oCqstmsKGnE+4BKSy6V62fXtJ0xbdb9mjEXgjSIh+oqKsrF3deZno1MU6ZpO+ZDZhoHzk837MVa1tYnJ0gplJuBO4DvVpSmZ3UZaJuWEBznTmiaxpgxTaAJHq/C/bfvs9/u+dDHP8I0zozTAQ49qrCXws2TG26eXVNL4enjJ4gT2rbj8uyc7WHL9fYaVHnl7j36pqc93eCCZ71ZExsTmG3X2ec0KSygbq2Vtu8BpY8dJScUGPd7QmioVZEYGUdrPA9Ng/NCqRmSUmtdGjKriQCtzFPGu0BsLBY31UTTeIIYYH67H9BSyXmk5mnZjAcT2AlKTRQVe6CdM+OUCCHgQiSJ8my/p9Zi0R08cwGS0jYrDodEqTPeV1RnttNAKZl5dnRdS9+OrG529J1df1Iu+LZBxOGDxzvPYTpwUzwlV7wUgoNxGEhpZtjdcP+tLzDngm8ih3lkvdnQ9GtOTl+j63tOVivaNqBabDqkzIzDnipK27bcunVKSoXHjx6w22XK4Zo0z/RNwy/+4mepaeJkvWJOM/2q5+133mK323N26y53Xn6NGDxaAzGu+PDrr9B1DfvtluvdyGq9seuwRO68/EHjEhVP41Yctge8Fw77LTfP3kbV4xuPaub0dMVHvuwrbIKiZuZkn0HnGnbbgdh2bHc7KJk8jeyngdVqzVvX1xA7xHluts/IeWC1OmHdn3Cx6tn0PX3fM+VMmYsB2IsdlxgbYuON01RgxhNXLZvYQC3L9RGKFKZxz9V2T9+0rNqOdtPRrlccZjt/pjkRnOP2+Tm1VFIpnGxOuH//Xfb7PWfnJ5ydnSMNzJOg0dFEi0ClnH71yuC4fk3XUT8d9dOXSj+pCwxZGebI1dNTbt8baV066qf3WT/ttgcqiu9WAHRn55y/fHHUT0f9dNRPR/30G3Y9f1D2yiuvzG+//fa/fL/fz3H9h6/3PvHnPXgPmNucxZkwkryY1ZVKxTuhFsGHiIhSdDagMyAhEqRFq5IyONeYGFTF+QiyTHqxiCJn4vHcryz2IpUsSqZSnNAgWExfzEmoBacWC3GCjZYvBqxFMhT1FjlhqYCnsrjk9vUmD00oKpCRRYjb94kDtFqpAbpEWMytTznTNb3FNZ675UuJz6yV4IyDU8VRvSK1glacmjOCW8z0XMCBp6EW48cEFbxbnDXncZrNWVcopdr7iJUKiLPjGL1YG1Y2EVzQFxMH3nnUpDClZlJO1j5GgFLwoqiDXCogBHHGAHKOJgLVobUgIVCohr6ZZkquJiKcUKNjHkYKAsEZIDxXRAJTsou2ZsVJJUaDglepeF8B6FzhJFRr24uQvaNtO6bk0bJAchtrA3NqzKKzD73MS/Ndnt7suSrCVe95++13eOvhz/ORy9t8/KNfRnd1yo/+wi9whWP2I2MxdtAwVPLTK16+9xpvvf2Ywppr3zHfPKVtO07PTshU8jwzHgrBRx6/+wVUR35Gt1yOzzh7ZU0nFV8dp5tTxjRxcziw2vQ8u3mG3Ew0TUXcxGsvXfDaS3coU+HTP/tL/MO/9e3c+8BXEE/v0W3O+dFP/wwxBkLwxNhYi9bJKXmuqFOmYeDi9i2QZbohCtM00jSOPM00Jx1K5erqKf/vf/FP+Z3/0e8h6wxSiNGjqqzXG5SKX7U8fnaDKpxfnpG0sGpWFktKBpLvurVdDCZoUqDMxeI500yplZt0g2s9VzmTi4m8J4+fMhwmulu3aZo1m9U553cCaZ6I0fPSBwK7my2ND3zZV3wFu90eCZ6b7ZbLexe0hy3eOxoX0QJXN9ekOeGc4L3n6urK3OTVimE4kMeZrm0REe69dA/vG2LXMU0H2taiHzFGRLwB9FWJTYOWmeAtEta0jW1OU8WrUtNM9J5aA8E7pnFPyRXEImI+dOQ5MR5Ge82i5FpIk20IRT3rLi5w42Uyx3eGXS8VFw0cbYBt22yLc2gVShWGaaRpYN2tqVoZh4D4QAhC34lNyQhcj5mb2TbgTiLlkO2zLsWuUbUaAyg2eOdpvEeaFt8IF5cf5PL1344Lwna3xXlhHA+8++A+s7Y09Fxdz6x6cE453ZxwslHae54H9x/z7v371AJd11NGi52N+9GmPIY9n/zk76B6aPqOcRjIOXHntQ9StfDWm+9y/50HiFqznfMj9+8/oOk7mranWzXcOYncvuiZh0ied0zXTykFRt+y3pzb9Etcc1IbtvuRwzyTSubZ2++SJuj6wOnJipOTFY2rRJ85v3vC9W7i5O4l83igbc5QrVxf37Ba3aFKRJ3w0S97habzjIeJ/XbElczhsCXXgos2OeLFswqREFr6vkGxyYZaA7NT8jyRyohDSfMBEejXFok5Ow24Wkj5GnENrhQuek9zuWI3ZUoV5lQZh5nTTUdsGu69dInzdg+b5xkRiyB6hBCC3QPD6lclCo7r134d9dNRP32p9JOGQiiF/eMz/s9/7ffzp7/lB7n1gemon95n/XS6PkVEeHMpC3XJ4bM76qejfjrqp6N+Oq7j+pKt9/zgz4doRi8mSlUhoYh3CAWpS+U6SnKVVMxRFQm4Wi1YURXRgnMWAamqC9DVHFhVc0edWIucV5BayZqpmJASt8CrnaDFRJiN8VsQA3FfdIVRi80IC8BTLY4i4EURp1R57jkbQ6W+yLJYUqOqtS2BX/g7C48nJ2vGEm9CehnnT9OAiL1PrYrTL7JhnBOyCkmr/X4+oKWgRS1iUiqiCY9SqzCqorUQUANrq5rVnaCIUp057s40r4kMtd/ZWuugiQ04Zxc2KiUbiyI7QZwQrfccFwxGWwuQ/cLdUYuNZDVRGyymI84iL7lCzfa7F6eLw2fOPWoXWu8iWgpSFTB3PFi2Bi0OLctB9VBqAc/SYAiBSpT6gp3jnXCY9jiEKI5pnqx+XRweJbQNc834AHdundK1K4YHcPqB23ywf41GHeNlz9M8cu2UicAhJcY8cZgG1G3omhXb3Z69D2jXEzYrvASuDiNXjyf2+2v6JhJRgot00tC5mXZVuWgit9RzEnrixYarw5ZOW1Z9ZUgjd8/uUJ3DidJ2DSg0UQhdwx/4jz7Bu09veOvJEx6/+4yfv4LZnzCkzNmtS6qAV4POjnOiaxuiVPq+Y5hnfIhcnp3i6owX4eLWPa6mJ4gU+jbytb/ta5B5JrhogxzDTAyemAtJRzZdw/nZipIr2+013ntyCmyvr7l79w773RZurgCLkF1v94jzXD+9JjhH0wSkOkIOuCJ0oafUyp3bL9O1K3Y3e4a6JaUZUDabNQgM04HDbocT4eWX7nJ9dUWIgXV/glQ7R9frjUWsVHHSsjlZ04aGnBP3XnqNKc2U5bqSpsnOFe+ZppHtsKetieA9b737gJPNmhhmhnG0a1Cp+BBtkgabFlCt7HcWWXDoIhYHYmy4e/clDoeBaRppm0DbRLq2Y54TY6oUsQ1hzmpMLi3M04R2DXghhoBTIc8jzrsFIKw0rSfNidN1R6kVnAPcErVbk+tMCNagfLruKEnR6qiSmFLF+4jSkUu12F0tOBftGlWVJniC9+Q80baRXLO1bgbbeCBAE2hbT9NGvBdcuM0HPnSbkpWc7Dq13w2kkrk+3LDbW+RGxDHPmXW/5vzsnH2zI90ka0RMMymNfO6Nz3LYz0zDTNtGXnv9NYTK/fvvcrLpiUFpYuDk5JzDYebRky2vvfIqm5O7pDyyf/YUakHLRJkH8rCj69bkNPF4mpBmjcaWPja40HLSthQtvNSv2e5G9tfPeOettw3ofbYhANNhh4aOW3fv4bSyo3KyXnH7dEUthXHK5FopNxPDFkBYe496T+w7BIePkZwK0zAwlBlV2O0Gckl0TUPjImd9Qw2RnBLiHJvmhCY2HOaB2Dc4UR4/vE+eR9qm5f7b10zTSFyfcH55l351QtO2tF1gmgf2hy3NAjgvqdI2K1KaSZaQpO1aqijjfgJOf5XS4Lh+LddRPx3105dMP1UlqhmmgEWVtR710/usn2zyEO6+fMG3futDLu4kHj4dj/rpqJ+O+umon37TrlIKf/Wv/tW7f+fv/J07b7zxRtu2bf09v+f33HzHd3zHW5/4xCfm51/36NEj/8f/+B//4A/+4A+enZ+f5z/7Z//s/X/4D//h5b8Zu30vr/fqq69+zTvvvNP8yT/5J+/v93v/j/7RP7p0zuk3fMM3PP2bf/NvvhljfPEzv+mbvumDP/RDP3R2fn6e/9yf+3P335eD9BtsvecHfyq6sFKMA5NrQZ2j9eFFSxNOFsHkqU5Q8S8g0BaRgKLZbpxiUFhrdvNQlk8dQhVBqLhqmY5B8ov3IdXEGlXw6sjL63rnkKqUWiz+4YRKRdXc3IrgMeGlxeCwzn4cpS5O7nOmjGnpxRG2sXHBsisq1USYFGpWcIHi1Fw/UZSM8x6cOclCMPc7FdR7qrfjRK1UNTnsnKNWFn4MsECbfYwWF6nWUFQUNFda8WQJy83N+BNBqjnDNtCNiMVWpjnh1KI6QcBVc9i1KBLtF228I0oDItQgEMRatpziJDJLRbwDr8wpUerS6BedCV0Abxwb9da6F53HFw+6OOfekXMi10RiwlXw0uCDh1qYUsKFSK2enBbBWqsxNhBEDPactBIEpIILDQmlpMF+Lx8gNgQXSIcRV65o9hPuqnLzdM9m0zDdmZlUubx1l1RbSnBkb9MQJXlcUZxf4U5eY+5uc3Z5h+0wsk4Jlcp68xp9jJx0LXdfusVp2/HhOyf8ix/9p+x+5J/g7p6gTzaIP+Glj3yM8bCni0Ji4Ob6EW0ueBfxRFbtBpFImQrjhfDhl+/hPvs57s2OylPm85ZhOmUoniFVzldrPJVXX3mJYTiwCo5x3NP0LXNRHl1vaUSJzvET/+qf86Ev+yAhZNI00rcnaDUuVNMFTtYrg4brI8ZpT9NELm/dYr/bc355iXOem2Hg1t1b/PP/z7/gU7/jU4zPeUrONjbTODKNE3Vpo0tpZkqJ3X5AELquQSmMhdPnEwABAABJREFU44jzER8D3aqhlES3agzWXHv6E3Pl/9VP/xxt2/BlH/kI999+gPeREFvefPNziIP1pqdZr3j05n1qnjk9OQWBOSWaVcf5xRl1gQhvh4G37z9iHA68+tJLnF+comEk0dH1J5xuQMX+Fk3TgeoiqiHnkc3FJZv1mv12S0mJfjMR2oahZHZ5JmthGGby9cS83TEdBh48fMwwZEqB/X4gbjpwcLo5JXYdm7MzXnn5FaI6+m5F0EjbeESUlCZubdakeaZrI7lk5ikRnEVdQhE6b9dhlUp32i+uuTDPAe8iKRVC3xG8R51tjnMqyyQK5DyDs5bM4j3OR9I8cbbpCDFyyImGQrdqLMaGxe2rJJJWXAzUHNg0a6ZsEznTNDJOAx/48k/w6P4j3nr0lOAcvtkgQShTRV2Li467J2u8CxzGA0+udnR9x8sf/Ag/+zM/w3qz5s6t13n08CEPHj4E4Gd/9ue4vHxI3zWgCSdY093lJf/i536Oy4tLFEfsTrm4s6EJkf1+ouSZvvd4gdAqZ33H7bMPcHJ6QsqZnBP762d84JVXuPvSXZq2ZRxGtvsbbm6esJ0ym/UGYsPJZsWcM9c3W3KptG1jkzIO9ruBeZ5pm4hzQhcd87wnFyV2HW106DSwu7rh8tYttOnBB3b7gWdXN5QqrNYrxGXuvP4h0rgn4Dg7uwUIswRqhjRDCNDGhnW/4rA/MByuUS0IkeKqxaLUpnjGeUadLo9fjus3wjrqp6N++lLpJ5nrAkI0HTVVZShy1E/vs37aDwO7w4FXXrnkP/tPt0xTYjoc9dNRPx3101E//eZd3/RN3/SBv/f3/t4dgI9+9KPj48ePw/d///df/NiP/djm05/+9E+/+uqrGeCP/bE/9qEf+IEfOAfouq5+27d922v/Ia8H8Lf+1t+6t16va9u29eHDh/Fv/+2/fferv/qrh2/5lm95/G/7mX/5L//lf+vP/K223vODv7IwSYyxbCJQgkdmE2/4QJYKqdATSMIChwZE0arGg154NqVY04733pxudYtodBirxr4fIMbmhYg02DOgi7Z5YTArmgvOKcEbO0Wqfa0uQk0xR72CCRQEkYp3FXEVMHaLw8RxpSB5cYvNhmahvIJzlFSAbMITa7Nzztz8nBIg1Go5Fyfe3qMWeynVpfFOUPziroN6QbUiWemzBydMuYL3uBBImkla7D1SYYFw5yAvoNP2du04a1EGZ6LYC+iSOKq14kvFV8H5haOTC7C08eUZDUL11mhXlrxOEYvVOLG4C4urjRNKKXYMqczPpw9QfAjkWsAHczZFEIE02Oc3tBGvQhFPFYd6Oy2dD3gf8c5RVMhAcW6Bv9qkgvOOk76l9Q27w57rw8Ha9MQxquMDH/0IH/7t9/jIxQXed0iMPL66z0/91GehKL4UyBkthbYNVO+I657L115lywnDDEGE2+sOHxyqiXq45vrZyNVbb7O/EX54/5BHTz/Hh3dPeOuNz9H2ju4gbPc3nNy7TbtegQbuhtv4lbNo0HAAZmDC+UzMp8R1z0d/29fwuZ/5WT54Lty+F5jihjdvMn5zj+2zGxodmW9+kdurllXTcSgDr33kK3m6LwyjOZ7oxOqko+s6RAoxnhNcx8nmNtM8UcQYLtM4sepW3Ln7GqUkhuFAIfLs2pzl+/cfcHNzzZd96EN84a13eNkblHocDgSnuDYQFqbMMO6Z54GTzYZ1bwyYrovUKijWWLbfjTRNpOTE9uYZ0zDSnpwTYuTNN9/kwZOnxKYhrNZEDxI9SZT16QnduieVkWEc2Q4HpCpTvqLtOnxocBO88Ytv0DTG5Lm4POd3/85PcdgPDENBxLNZ32aeZ4YB5jxSdMKJ5/rqLSuV6TpCdLTrlnfeeotbty45OzkhpUrwPaUJlKJcvHJJDIE0z5ysVnR9yzAeqKnw6OETNCv7mx2Pnz3m6uoJw37grTc+T0H56Z/9acjGvWnbjju3b9MEa6BzzvGJr/oYwzhyfnbB6ckpja+kKZFx5DlTvdJueiYd6FYr0uHAemXssE6jRWTyiC+Vk5MTtHWMw4Tzjrb1oIFcrD2uoqzWp6RxInjPRo3WVWsll0p0wrydCF1D9AHBcbJeLXE1JeVKdC1BlJIrd+++xHMIfl7KAMI9m9zZTYOx7kvl9OSCGCPXN1dIu+KTv/P3MQwWP3rty17iAx+DnDMP7t9HaqFQUIJtvBvhF77wgK/8Xb+XWxcX9E3D5z77WRpXuFwHplYY9plh2HE4jORxpm173j4cCG2Dd467d+9y7xMfQ+eJeb4hD1e4Irx8fsqqjTx89AiNnpQS1w8eLAykQM0j4zyzahqGw562i4zTxG5/Qwiel199jTRlHj294uGDJ3jxdD5w/8G7xLaj6XrGlDm7vE3Trdis1mxvrrh99xIRz/nlXeqcmMeB/XAALzjxeBxjmkn7kVWwaYjN6oSr6ysO+wOlzDR9x+npihBtg+9DQ65H6fobZR3101E/fan0k3POprsWHRVDwHl/1E/vs346P73kzt1z3n5r4Ed+5JT/4f9gx2Zz1E9H/XTUT0f99Jtz/ezP/mzzvd/7vXcA/vpf/+uf/zN/5s88ub6+dh//+Me/+sGDB/Hbv/3b737nd37nO5/5zGfa5w/g/sSf+BMPvvu7v/utn/iJn+h+1+/6XV/5q3m9519/79699JM/+ZM/3fd9/dCHPvQ1jx49ij/0Qz90+i3f8i2Pf/nP/FN/6k/d/xt/42+8/ZM/+ZPtpz71qa/6Uh2f36jrvUd9WWIazoDNssRNZjHOV3QeESjO3FUDOIMsNfUlmyMt4ix6IBCXJjRV8N4q1RWLLCiLc6o2Ji1iglIxeDVqrVrPG/Ioi3PrBSW/ULW1KrglZiImuATFVWtnUyzK4p0H9eaZVxaXXQjOnK2qbmHtWBSjFCH61saFqaDgxS+iSlExAZ61oCpIsNHTWosJqyXuUbXamLhzy5FejpMD1YyrniiequBKJeLIZJyqcWJUKVRyhcZZHAcVnD4/Xsa3kaLL7+XwgOZMxmKb4fnmIVucxDmhlmwbgirk6i0BU4XIwtAo5t6jisdA1whWk+798rtaO6BxiJyxE3Ki1oIj4IKHinFpJBowW3WJC5k7pTnjm4ZKppZiNy+xjVQpBS+BUjtk5bm8vODWy+fkdCAddlATb3/uPu8+vCH5Nzk7W3N++5zdZH+f0ETGeUKALnSMORFXJ0h3wpQKJe/pY49fGeNEpkIXHVkLEoVu03F+4qjpjJFACJE3Ds94+zM/zvnlBR/sv5LD4T5OK92mp0WY1j1dv0J8wzg7m7zwHbU4Ds9u6E46zjdr5M7AqpvxfuLNh2/x4//0R6lJOe8KZ6fK/e0W73tEIo/eeAj9LebqKVR8a+5lEztySnjnmdPEMH2apm04vTi1vxMerYrXAs4TQqTUyjzOBO85Ob/N5a2XqMAbbz8mv/WATwDv3n/I9vStF47olGa6viNGx3Y/ourp+47DVBinHTEGVqs13WrDeBg4OTkzRtKJ8VTmlPjgy69z9/Ium82Gm5sbcJVale3NFRcXl+ScrUlOHGXOfOxjX85uu6OUyn5/IPSe080Fw7CnauULv/QF3n3bPnOKTces1ht8iEx5olDIC/+pX63x3tobb7bXpFygBp492TIdMv2qJ6c94arS9Sv215kYGqiVB/dvOL1zwYOHD1BgmmZiDOzmmabf8JFb93AifHnJ9neZEwEoNVNzQVTZXt8wHga22xveevtt9sPI5z//Jk1sOF2vSeNEK56Tsw1NG+j7nidPnnL39l00mGvd9itWmxN7SJBmwsmKfbqm61ZIyfjY4NuGPI44yXTrNXPK4BKxF+OmoEjjcV3Al4qgRMQmexCmeUIBzRaZ6rzDxYCsTpmzsttN1ArbcUSdbS7HXNgdBqRt8CHiRGmawDRNnJ5ekqaJIWUEu/bnZBNDAB/84EdIU8F7YZoHak40TeTs4lV81zCOid12x8n5Xd595z73H15z545xZpqmZbM+pRQrMjg9OWGcRzZ9y7oL3Dx7gs4T07QjipKHmSdPrnDrNdVFtmOm4oj9hv70FO8DXTIuWKgwzyNaC+v1mq475+bmmncePCKIx8fIax/8MJvVCWkYufXy6+Q00bUeJdF3PSVlbq6fcd56Nr7Sdw3BFaQFbTtefuWSccqIOspU2A8H3GnDfDhws73m2c0zQgy41hOkw4fAMA34zDIBNVKrA269ZzFwXL9+66ifjvrpS6WfUKXmQsn2YNCuxEf99H7rp8eP9qgqb799xn/1bR/l7OItPvTB66N+Ouqno3466qfflOuf/bN/ttZlv/7N3/zNH/rmb/7mD/3y//6jP/qja4BPf/rT3fN/943f+I1PAb72a792/PjHPz789E//9OpX+nrP19d//ddf3bp1qwC8/vrr06NHj+KjR4/Cv/kz//Af/sPPAD75yU9O/+bP/K243vODvxg8VHOZnQBZyaVQo7mL5IJTQ1RnvwgZTLwsf0cbjQeoQoOJ1ro40YpdYL4oUKFopdZiYFow5xfBuaX11cFcMyVXWh8ILqA1m6Pqgo1kizmnIhVFFz6O4arRahd6NaC20WpMXFuHnce55w+iCrVaEMR5j5eAU0VzRZ2JVvf8vzuhdcEEsThUTPipLpEadGHA2PFB3ZJeqcaW8NgIfs04lCAWodCc8d4A1RZKKSwUbrIWG1HHfpBirWMiDhWlYBc0EY8PDucttlJzMSaGCOIdDrc09XkTpghelmY8FFkmC1yxdj7BXGOtyRruSsKiMtY+V52n1moXWQdpnim10HhwEqkUUk4L4DzgPPgF6O3F4UVxJLwUfFC8ets4eIEQkJLY7p8wzz3qI9lBcI6okKrj9Nbr1Otf5M7rFr8o3SnPnr7FLMJcE7MriHPUajDXkzuv49d3kbimnwq1JlSFGCNOPQ6l7zaIVHJ2jLnh1Vduk+Y9XVdpTz0vv/oKlch8uuYLT57SR48+ueI0AyqM47gI+GzHHpBwDk1EWhOfUy3UJpDlMU/2Mye3z/Eq6PCMUWdks0GlJcYNA46cCzNK13UWZVi3aBWCdMTo8a3QbnqcF3b7LRwgT4k0Z5og4ALTlAFh1W5w6nhydYUPy9SA92z3BwAePn7Gg/4dQmhwPnAYRwNIt5FalFysFdF5KDoZlF3tjH1w/yEXl7dwzuG95+zyZImJJLz3C4g74osyz4mUM6lUUkpM00TfRLz3/MxnfpqUM01siCGSpontzQ1937Fa9Ww2pzRtRLVYPGq7Yz/eUEplmkdiY2yR4AJt01FrwQdH20aiC5xuTvDeM88zJUHfbmgahyqsT07Zbfd0bc9hGJiuDvgJ9uNAt15xGAZudjuCb/BiG679NJJF6ZqG66unKJmPfPjDpDlx+6WX6LuOYThwdnHOfj9QslJKIYiQpoHSe3LfMM4zQ50YnfLw5gqmkeA9wzhzeec2795/h6qFTdOxajpi8By2O84vb7EfZ6pU2j7Srze0bUuMkc9//vOcnp5w684dCML65IRu1VNzIgrUkilq/CytipbCOB2o3gDnOKHiSFppVxtOJFisRUGT52zTMeRMyoWSEpILnbP5odW6tzig8OIfA7I7Si2ETUAczHODaiRNiRA8fdNzwPFsSKQinF6+jA8R7weC8xz2e8ZhplSl7TpO1j3BKeP+hre3T7k4O+Hm6TN7GFGVOmfUR6IUXOxfTCe52DCMBdUEYvefcUzcbK/Rmtnvb/DB07YtkzhW0ROiY5gzqex5/gzl1sUlqwZq2uFroTDzZPuEm5stnXyQtHU0wbNZ9ajAdnjGyek5436k9w2+AddGcn/O+a3b7Ic9wzzy9Ok1Tgqn6w3qYJwTKRVibOjjC91zXO/zOuqno376UuonKyWwJwBCxks66qf3WT/NY2EeBrrVE/763/gsITQ8eHrUT0f9dNRPR/30m3994hOfGJqmqb/8373++uvzv+vrfy1e7/z8/Dksw8wHQFXlV/szf6us9/zgz5W6REUsRiKqBMAvMYYkSkJBCwFHI8ZeKVrJteKcJ4oskZVFkCgvYgtZjXsTnV8cShZeiwJ7RE1IFjwqbhGX9iIpLxXuwVOpOHWImmNsQtJesOQF6ApotZgK3n4nEQcyITovQZwWNFAwJ1a84ApUtd/LkZFaqCXZO3UREKSaAHVLqsUhSyNcwXl58b5FAefseCxxGymKqBDE+DpV1cbGxY45AqoFX51NB0i1OAoszrWBh6Xqi40DDtpsMSFReeG4UBWaQA2RWhOgS5xGqKXYJsJZy5GU52EaG1kQcbYRWGDYFYvxOLdMEyAGxRalOiXniubMNM8oige8m0llopaC8wufqARjzSyskDv3v4DmEfVK1oqomHB1nuLMeZeameYbQlghzZqkgsPjayXKCNunnKTAqd7gm4K0V5y9+y5NLow5M+aZUipBWqR2nIQnaCckfYxXQDwaIzlnAhaBySVRF1ZIaAP8q2s+cP2U/nDNh5tL4huPuHv7gpPrA8NhuTHWQDMWxvMRVydUhHZ1Si3mprapUJxyM048vtlRakPOjkPybPo1IU2QM1InQuPts1YnXC0UBrLfoc5ZI2AGqcWEtjTUmokh470QGs+d4Lh1eck0zXhxbFanPHz8kCrKPM3Mj+8TnaOQmVMhzTO1ZNzjBwCkaWAaR3bpgPOBECNpnrm+2YJ42mbDPE+2CQmVw/6adb8mxoY7r7zGME1UHFKF3dOniMI47DlZrSjzzKrrGKdC07aEENg/fvris3BzdU3XtVRnENhxGunbjhgDIo77Tx6yWq14vltOOdGvOtJskbKTk5VFhaaZ9eqUlDIlj9bYVhMiymq1JueME0/X9VStfP6NN5jKxN179/jJH/l/8Xt/7+9lt31Gv2rYasadrTm7POXp1RU5OF798IcZbg5MNwf6vkO94/qwY0qJO7fuUtIM2bFajtXhkEgFbq5vmKZMLsL5+RnjuIcQCBqYthMheE7Pzrh3fo+A52begzguVyu893z43m3aLjKMCVGlEUc87M2pf/qMKMJ+GHh685CSEqu+48d+/Ec5OznjfHNKSYk2Ri4uLoht5N0H9xm1cvvuHbq+53A4GCtlteb8zm18cKzWa8AhrqDjNZ13eF/woWEqo3GwOrtux7gx1z4EpjQzTgNd2xJDQETJJbPqPc4Jzgdymsklo5KJTcN2GkFgmg64ENicrnHOIiO1FHxYQVUub60YpgM+BNTZpFLbdsQm4L2957g+Q51NFtdUKeIMdq8ep4qPFi+s1Vx0J2IPF1YdZ7dOlmuZ4H2gVmEWA8jXUphyRtUa4nwTSDlxqIXDbo9HuH52zX7K9KdnPLnecrJZs98eyPOM88pcE08e3idKpHENoe2Iq57qAhcXt1n3kab31A++zNMn11w/21JpOewGCp5+1eDCUf/8RllH/XTUT18q/eSKQAFXE4AB/dOAqEOqBx+ozuEFXF0eSGiL+BZVZ5zlUmndAWHNef+6vV4sVJdIdaI7CdSUmLM9eIyhw1eH9z3q10xZ8C5YxK9pqCm94DHOeTZ+ZKy0J/Dk6k3amlmFyO3bdxENfODl21y89BL7dk2txkJsD5nD7QOyGwjV0fcnlAzzXOhnJXeep3nk/tNrMivSwbObPXV1ixKUkmac96QukFShKqVGMh2JFvWOQ/Xo5NnvM16DPVytCYI92IptYL0+497du4y7PUE8ZxeXvPXu21YIMI5M+wPBeTLJHmxNk01bCWzWLVIiWeWon4766aifjvrpN81SVQ6Hw792UL7u677uYBPpyjd+4zc+/tZv/daHYPfwH/iBH9hcXFwUgK/92q8dnn/PP/gH/+Di9/2+33f4iZ/4ie7nfu7n+l/+er/7d//u/Xt5vfeyPvnJT47/5s/8qZ/6qfbf/Jm/Fdd7f/C3CLDnsGetxkKJOTMLTMGjCD4tbXKlorVar1hVqIVcs33UvUeqiS5xxmFxYs1s5lVbZCII+CjkNBuvRMQEH2ocF6AJDhVHLYVSQSSAOFJ5Lt4UFxzO2es7/AvcjPtlNolQgIKSLb6CXYwKC5enGjFHALSgZcSJEIJQpKLMFn8InQGbtVp7nthYuvCc7IONyDtzeuPijqsC3mIgRS2a08SWokouS3zk+YW9RqTxVCkGA8ec/nFKJuZUkQW2LShFFuC2FmpVcvXGfsjZOENOQRQnz+NEJlrdAiT3YoK61EKuFe8gBAe+UlVQUVIxd74Ui+IUt0wi5NlK57yjLkwi+2AXgleqN25PLoUmRqTC0K+YY8P/7Hv/xq/Zif7L1+/+dXnVf/s6/xL+rC/FSk2L3rnNZr1mGjOKIB58EPrVhmGqxOBp24Zc7Cbs/Zmda15INSMemhgQhTpZW1rXe8btllXbImPBxQacZz8cWG/WLMMTXFze4e233mRzeoKPnj6umaYJLY6SJk5PN4gzgRGCx+VA1YAPga6J1GTcpiLw7PoaJw7vPMEHnAvUWrjabokxoDpzvbtBEBMeux37vudDr7/OL/3iZ+nahq6J+BitUVIcWipd27B/8Ji6HJtxOqAezk5WlJJxogTfksbEk+0TVqsVTdNQ5sQ7Tx7z6qsfsMjHzRWXlxd4B3WC7e6G27dvM04jh931AkkWnPfMz7b0XUvVyrQb8f2K6K1ps6jn/PQCdQ1Prp5x+aGX2GzWCDCNB77xd32Kx0+e4IPDqxCdo2kiwzhw9uEPUPYHrnc3KLDbbyl9z8NHD1i98w5PHj8ml8KdO3d48OAhOSmvfeRVDvPExcUldy9v48SzPjkh9B3jVJcGQ8+q8QSglpGSKyEE1m2D12RXyqTkISEZQoXx5sAqdqScuZ53VGfALS9wvgloFXzTIwJNE1BdI0vbZS3RpqGWcyNrwbue2Aa8CClVUqnkOdH7hlYcSqFqwqmnLNG9ISeKW7RPrYhv7H6hdt4HhNC0nIQVqBUmDGkGvPGXmobgWzYXr6BlotZC33d47ynTzO76GTf7K/q+Y706QRTe+KXP40Lk7NYllxd32N/saNuIC0Lj4OXzc1a+4Rc+9y7b6x395pRh2OODAy7er0vFcf2yddRPR/30pdJPWg1UX/V5SRrU7Lj/zi1uX460m8L1ruXmaWsPCuWOfa2PVHF456Bkbt9S1nHmrWc73rm55BMffcK0rbx5/5TrQ2AqBZyxyqAh1BMO7hXq+hZnd7b0nfDosT0EvHVvSxXP575wYn8755hzQSVw0dxjervhZGy58Gd81cdu4Pw2/+InW+40A3du7Xj3OvPugwvk7QbnL6klE3ygZKWJDb4/Y1MP3L684f7bhc/df43N3ZEahEcPT7je9bha8FrJNYN3eCpSBWg4uz1ycsvz5Kmw2655+eWHNDFw/50NtXrmPJCSNS8HD5/+sYesug6nmZc++IucnW94cL+l686489INJcG775yRq03Kbk47ako8vd7y+NGK7//+r+SP/tF/xt17u6N+Ouqno3466qff8Ovdd99t1uv17/jl/+7bvu3b3vwjf+SPPP77f//v3/5Lf+kvvf7d3/3d91arVXn33Xeb3W7nv/M7v/PzX/d1Xzd85Vd+5fz1X//1Vz/wAz9w/l3f9V0vfd/3fd/5/fv3mxijllJePEz8yq/8yvm9vN57eb9f/dVfPf2BP/AHrv7JP/kn/9rP9N4vPN3fuus9P/irVY0F46x0oaRMLdVYElqgKAFHUKz1zXsmlIQQgoeiBnsWjzix1xGPIwLVbsJqUFQJJmyg4GsFaRAJS3ObYZm1KhIKoWREK7pEUFTNnnZuyerrIqBVQDNOK947XCioFkp2X2TTYBc3FU+lQXFEb+DprDPi1GIbqktLnOK9x4nYDd7BlG3kXqvDOQ9k/NJkl4tSfaRUc/qpihRj4SRR1NtNqKqgycDTSRTnjE0jIhTv0AoqSgbUWURGMHYEriJ+gYBXgepINRMjRHkelbEbnleLAxU1N1prIQCtjyY6awUPzjtEIqEG3HMjXIyHU59zb8TiDFKN44AzJ16KR8WOrg9xuRlUnIsLJNsq3J1vqAuAdn/nFf7b//1fo91tXxwjcBCc1cOrmgjKBj0OLuC8NR9K9WiteCfUtGW4foeu3nDWOVZdZBj3bIeBqg5Vi9aUAt6v6Nav05zdI4UV5cVNzkbNl/EI1FvEKizcjhmll4K7uU978y4fu3fK6bpnfeeWtfDlCahMecIHR9+s2O12xKahCS01O9Jc8Y01y13tR56NyuB6Ro1M1TGhJsjF4UuFmmzjJkLJ1TY4QEYJPiJqUSZz24wD45wjs8RiENBKcA6nleIXMPxyXItWawukIMtGQBCCc9SLO1ydbmwDqJU2NOAzw3yDazwtAbTgpNJ1nlQLTdNTk32+pVZcLcg00DYdxN54Mapk76ldTymVWipFCsEHqLpwN4TtYcfp2Sk5Jcqs+NiANKg2iPOkueBdtWtH29N0HTfbwRzpYrGKkhOlVlwfybWSc2VKM6vVilILcdUZX1KVto2s+hXeO4azNVWhbXri8pkrCukwE0OgaKGUQqFipZG2ER0PA9FF5v1A17U8ffqYVX/Cptmw2vTkNFLHiXEa+eznv4CK4/zsjPEwWftgv8JLg3MNV9d7VCulZkL0kG1DHUMkl0DX9cbzmQqzq+zmiRACh3G2r/MecmH77JoYIyklHg1PmaZE8OawziR2+wPOLeyu/pTbm1OgcnJ+jjhhu92yPr3kVSC4wHAYmJue87NzfIANFj96utsx7g60j5/QdB05Z1QLJ5u1PaaoyrA7LNyxSttGurax430YSEUYppHDfkBLJQ0TXduh/YraBM5v3yEhnJ+csDlZE6LQdtE24s5DcNTZ4ZpIygUnSyv1L+MxuWoAftcEigMopDojMbyYnDrsZ4ZxJqdKs2wIVEHLSGg6muhJ+YAiEFsa8XhL1dFGi584b+y2UioaHE04YZhG5jmhOVFLJazPONtcoiLWIqiFV77iaxjHAw7P9ZCp0w7xnuYphFrZtB1XNyNOIqebNeor1Iyj+VVIguP69VhH/XTUT18q/eRcoDpozwsf/fJ3OTubqPOav/l/+E/4X/yv/js+/tve4F/+2Af4x//od/zbTtUX6w/+T/8pn/yKf8Yvfe6j/IP/x5/iu/7in6fWJ/xf/vGf47Nv/PZ/7/f+F//b76N7dceP/OOP8+DdU/43/+UPUij8zf/mf/zv+I7fD8Cds2t+8L/5bmKe+c//4n/Cf/Y/+lf8mT/yz/n0z77En/mv//C/92f+z3//z/NffOM/5guPXuZbv/0P82f/yx/gpQ8+5Yd/5Cv45z/8iX/v9/6R//U/5RObN/ipH/8qfvD/+RX85W//v5NK4e/8H38HDx+c/Xu/97/69v8r5fqKv/t/+r10feaP/uf/HdvdCf/1/+73/Du/p2kyzaahW58d9dNRPx3101E//aZdf/fv/t0vfOITnxi+53u+5/YXvvCFrmka/8orr8z/8X/8H9/8wT/4B7fPv+57vud7Pv9N3/RNH/yhH/qhs/1+7//iX/yLb33v937v7c985jOrruvqr/T13st6/jN/+Id/+Hy32/m/8Bf+wjvf933fd/6jP/qjm1/LY/CbbclzkOJ/3/orf+3va33uZorgl09udZUqhVoLoULAW3xCoYCN74onPodKixJEzCUloupRrZjAM55McWJOEkqeZ3zToqng1KKMFaUoREmId6SUUUxcOW9sGLDRVBPA9hAn5wzqCN7jJCNSlhiBwbYhUzWBeKp6VB2Nt9hIUYtN+CVqUuaJqor3YWmWAxdMADvxGCrGnHUnBtVFhFzNwA9+OR5VQexhS6USvEFayfY62Zn7HOyHkyk0s6N6z6R14cqoRTYElOWOiglXxTPnTNMIwUPNxuTBLWPVWqlOUAdQ8c4R1aOpIGIciVoK3lsUQNVTS8UHNfFcnyNsIQSParabE6AikDJN276YQ3De2Y1VlODBU40YVJVU7bwSEbKYQ16rnS8eDwVytQhPwTYKqkLOxUbjjRtuINjOc/3sPvvHn6PLTzlvHeuuYZj2TKFB1FNLQUtGs5DnwJ3XP0k8f4XBdRBb0pyIoTHIOizntEWDooIPjuQrroy4m7fQR5/jo3c3nPUBsIjH2fmGVAriHVNKPHpz5EMf+TKmDDk72uaEnJSpbxirY5fsn1kbqkSqVJIUVNQg48ZBJ9u+BlFl069J2Y57jNHg3Ta+gXN2PBHMLXbeuFDoEgkrSLWvkYUXJU6Y00zbBkquNiWyPOhsYkOVjApE1xiAXGd8MHFJ9TiWkX4nzClTSqUJHSkZXwQgp0zOM22MOG8b4sMw0IQGLRA8lJJfcJZcDPjQENyMLoB38BSFOVdiaGhjoAmO6K3JEOzjVbDplJIzpWSkVrz3xDYyTzNSoG0bmmgMrV2yCLRzQvTmqAsYCNhHUq6kVPDO2fct7YmqQiqJOU2UMhu0PzbL38N2fILF85o2MufEatUvzKKZpm2Zp0QTG0ouTOPIxfkFOSXatmcYRqpWE6z2B+HxwwcMw8RrH3idp8+e0XUdd+7cxQnmgpdCzpm+b+3nixKDxepQ8CGy2WzYbQ80bUPbRLquJc0jw2Fn17BlE5pzoeRiXC0RprLwvMRRkvGCRIT9fkuIgd1uh4jQtpEmRLquIaeMYEyXm5trlEyIgfXJiT2wF2Gz2dhki8Jht+dwOPD02TOGw8h+uzNBfHPNk5tre3gyTFxs1pyfnbE5vySlmQ984HX2+x3rkxPa2HLv7gU3u2u6vkdF6GKDqNCse6oIITTknK10QSvDYeRkdUJOI8NuixNhfxiZ58wwjXTdyiadQmBOCR8CPnhCbPA+QKkW1fIeFzratqVi90nnPW3TUXKyB/K1klJ+wW0qODJK23imOVl8xVmkLYQeRTjsDzalo5U0J3zscC6QMy/KBhzCl390fcyr/AZYR/101E/vh37a7wIn64zUwLtvnnF6vqXtZ663DTfbHlTIpeK9beoFKDnRtA708zD+S9hP6PgyH3ntbaa0493tB5nnNVoKWgtahJI8F/e+nHByh0ka7rw2AhO7m3NSdty5t0MV3nrzDAWCLr+Lr7gyI/sH8OxtPnSn5Ws+/AgY+LnP3+a1lyunJ1cc5p7Pv3POswczr7z6GnOBUhxNXFGyMreRZpXoTw883Ufeun+bW/cGYpd4fNWw27cElcXFhazYg3BV+q7n9OyG2AyMw4b9tuPey89AhEcPTinFnkDkWv4t+qny8svXeA9PHqwRqdy6e+AwZK6e3vqifgJAiCFSpbDaTNy9nY/66aifjvrpt4B++vEf//FPhBC+/2Mf+9hutVqN//3f8f9/67Of/Wx85ZVX8mq1UoDPfOYz7ac+9amvmqZJ/vSf/tP3v+u7vuvt9/s9/mZfh8Oh+4Vf+IVNzvl/8qlPfepn/11f954n/nDeRnMRNGckBMQJUwUfPI1UnCacg+w8JJsoEjFeTHAOolBrxpFxYg1EOXskeHwUUOO9CIFSMKhz6JgXhzqKGEjaCQSLRdSiuNDQxJbDNOGFRRSzWAoCVLMdPAieWpWSCyEoXgAxOLaIVcJbLZKgRRHRpZXJYifueXtcCEQnBjxWq3B3KBocKc2gELw9YJrnRBMsJlAnq4ZnefDko13wXBVyNuaB4KjPxW6tqC5xGTOk8f6LbrATh5eME2tvKks8SFWM6eIcrbfthFSDSSsmOv1yAmQqtZo3I1WW7w3G8GFp7tOMk2DxG+cQI9MQnUWFSiloSYhU5DnQe2l+UyCXBaSNR3H2UKuqsficjciLOLSaS+MdJq2kgnPUaoI0BosUzDkbANspTQAfAtM8GxA4BGJUbp+d4IeOJq2IZHPKfUDTSKkYC9CDYpuUVBO3L8/ZP90jpeDlOW/o+UMxFkEO1IqbEiup5HlP2m0Ztzfs18K6O6dpzumjMkyFYRzxsaHSUG5v+JmrHZvzlxlrQHMLONJYmTWQaJnEk1ImOGxDJWp/Y1UT2RKp3kNQak5MNQNlEV6VkqvBhJ2nqm1sPEJcokKl6lLaWBDv8WWJSmFthE1oaKOjTBPB+RfRJfGeOSdKyTaVQbbYllYoxkzKy8NF57zFm9QiSlVAQiQVg7vPWmhXGyCTSiH6SFVPlWju3nKOumh/65SeT3fMFnMK1gJYSsW5ljlXxnlEa4Jik6BtaAgxoiwPM+fFtQ0BcQW2I8EH+8wFYZgGi5K0PdPyWek7izSVnNk/2ZvoUzteKSVCjHRNyziOlFzwS/QrNp7GB5SRcZpomobgPXmewYZVFpe8w8doIP3DDUGFHRN9tyIl5eZ6hwgMw7C0gQrDIZFLwTlH021Yb84ZhpmuW3Gz3xG7Leu+Y38Y8N6uWxWL7kzjgFRzc5umY54zjx4+QSuE6Jmmga5rWK8MbO2DgftTKuz3IyebMwNINw0RZRhHpmFknEaeTld477l1cclh2NOvTpjSyDhnxnFmu9vZxJJGvM+oQqVQhpHd9kCIDX3b8fjhFarK6dk5uErsek4uPc1mpjs/Z5omLl56mY81ga5r0WGk8Y71esU2jQz7PXSB2xev8OTJM7Y5IQ8n5mnkZrfl2bMrzk8uCNUeoBisvGNOszWolsKcs00GpJmSZt58803atuP6+oZHz57y6quvc3p+zjv3H3Dn3h3GceD2rZc4PT1DS6XvW+69dIcyZ/q4YRh3rFY9XkyQehLZGfzeO6FZ2/20lkq3PLj3pdJ7wW9W+ODYbg9IcNRceeneObthpmghA3MtjGNis14zjjM5JbtO8a+VoB3X+7WO+umon94H/bReZ2txQbn70qNFP0XcaeLy3B4gIhUfhGmeib5BKTRRYXQ8u9/RNCM9b4DYtOrF5peoi35yHrQEcgqc3O15+aOXvPP0sfECK5yd70w/LSzGV199hgr2vrXipZLnHSm8wTj9IrdOzshq+ukrPpYopbDdOXxUPvDyMzZ3hLn+ImfnLzPOAUXx6hA5MGvgUNdMrefs5WtwnlwdZ2cTF+d7w1EWIUukeJuk1JxowwFqIYinjQOb9Z5STT/deunGppzEPgc+xH9DPym+WGnF7XsjJWe8a1j3ju7u4y/qJ/n/1U/z5I/66aifjvrpqJ9+S6zv/d7vvfiO7/iOl7/qq77qICL8+I//+GaaJrl161b+83/+zz98v9/fb6X1nh/8lVLMvXEmqp6DRBVB8DgJiKpVYHuPilWt+wXoWUtBHQYw1ZmUK6INIQRj31BRqWiFGBypKjXnZWrJo4sbnLVSqmIc5YUa87yFzQuZhP9lkZbn/W3oEgVdHLDqHLA05omharKqvbZT065O7Ua83KgQFqFk016IoFRqsSY8rRVPYzeKWlA1d8YcL2t8E9HFwbbWOF3iOVBxFIuhEKhLdISq4EC9ucJe7f8L4MTcXlNh8sIV886DGBhcayJ6ARJoAedtQ+AgFHM8RW2KTcy2RrH4ilNzXYL4BTytBvBVB6VSeT4psPT8lYQTxTu3TJqxQMKV6MVQRWkiOEeRiarFpgFwFiXiOa/HaD7iTAzZxJpC9NZcJktcydtDMZVqTlNcEVxDTTMuz+g8kw8DrkxIF3ASqDXTaSWVJU5THClnWAC3wzAY46ZW2ylIRYs5Q646xFvMByks4ShKTYxpYKoz96+ecJgHvARKmujadoHbBiqO3K+pYcOzXYF4wjjb71fFIO94ayyM3hGdI6ttKtQtkwzPnzyKiU6VypxHi/iESJ6zHUdnglFLoVBMbJeK5rps5gyYLg6c88xzJoSGUpX94UDTBIPzFl2aJW06MosSfUSqwrJ5EXWQl8jT4lKH+MWJTajUmvG+sbhAzbRtYJ72CGH5pex4Uu1vWUpZri32Xg1XZBE41SX2VRM5VYIzI98Hb2UryxNaTUpVITbR2EmW4TK3PxW893gf2Y8Dw00Gsl0tUjaHu1Z2k0W1vbOYdkozqpUYIzUJu8NIruB9oGlaxDnyPHIYJujsvT+9vqHtO2vAixEnHh8jQSLbw0jKhqzIaWbTRWLTsR9mgvPMKbPuW1Kel42fsyjP8/iOKrthXJofIzF25qyOFp8ZxwMhBHJOtF2DlkoTIzkXcr6yyaJikzJ+gRlP88D+sKOqbQAuLy+Z58phP3FzM3I4DKxWPVfPnnJ6esJ6vWYaBkotzFPhncPeGgM7i0q45XrVhIZcMg5HFkU146Oxw4oKjWsYpoKLHet+xWGaLMZTtqRSmKaZputwviVNM89ubvBRLK5eCuFmy2bVcLI+wROYxszJyRmnF2fUNJF2W/bDwMe/5ndQkhJ9YJoGThb3v2IP2sdxIrQRicbLGoc961fvkUvl9PqKDxUQ8Yxj4vTWLVzT0Dh49/4DDsPIOIxM44HVZ1uQSu8twtO2LW3XLJsbiLFhvTkBB3MyYHfXttbM2DTLw48AalMOpWScy5xsVszznr61z3kuNnUTNifkqsxtQHxDqi/SE8f1Pq+jfuKon4766aifjvrpqJ+O+umon34Lrk9+8pPD66+/Pv3kT/7kehgGd/v27fyH/tAfevZX/spfeedDH/pQer/f32+l9Z4f/HkneGfixASQ4LwaO6UKRcNyAVKqusV9NMEYnDMegQhFrAVMFyHsHcxayGmiCVZFLigljaAQmwBjNYdaoGJi2JVKlefRh0JJM2EZM3amhIEvxkWQwos5f2lw8lwIq0ncBcSsyOKYWaxGgiDVQbGYDs483FSWVjwEXMAtEZ6cKw5noqxkhIqXAE5QZzdR70wIV2UZAy92cfdCrYUqCwuoWh19FjFgtQpOTS6IKD7YDR/Vhf0TbLy/KJDxgAsmBmutiFiUs9ZsNz5x9nOrgire23GzcE9Zptntv5UixpXDGp5sTo5FHM8LzLoiatFRqjX4Vc32tc7ZeZOTgZW7aMLRFYrY8RA8SruIWNspiLgvOuzRIVqpag41S8tfLhYdsBbvjNdEYGZKA6KJqjO5KrUq+zTRgjH+qjPppQHvOrpuzTwmgjMnT6j4aM6ux8b8eX5qiU0GZFHcpiPvBG0dhzITSqAPlW4dQGe0ZJxEpAjlOuNXDaHxDFMhSCClhFv1tomg2CZsqTX0NZNRstr/d1RcnRYxb+IUEWQBeZe6/N1kUQtiQ5NeDBAOEJyYc4zFlvJ4MNFaLMLroidptk3oEj8ThDkX8J4qQhO8tX4525LlKRGb3iY4arJNoy4xpKKoc4uYavBOSOOB4ATne2qeqXMiOodQmKeBEFqLQ0wmiJyLNN7bNAvLRguLvUURi1zl/CJW3USLIeeUbPOhS+RlOafwFtkZh5E5FUJ0NE1jwxHLZA6iBO+Y5nk5HzzzPMMyoRKaBrxnmEZjIS68KudsU38YR5qmoT9ZM+eM87ZhHoaRRu1hQK1CDO1yjQ1kTWiuqDjmlKlpYLu9pu1XVFVyzjb9IULTNMSmpRSLqVEKTdswDgM1RLwLzHNG1ZFzZZ4PaFWcGy06UQ2onfLMNE+0TYc4oVSooz008N7zzrsPaWJPrYJzgdhErm+eLdMAwvXNDT7Y51AVcsmkWtg+e4b3Jtanw0hsWyvDjLYJd86RbqYlOui5erIlxmhPEQBE6FYdXhyrbk0MHdc3N1zd3LDuOnzw5GLnjg+BOSlvfP5t5sPIvcu7hBA5TAOxb8hSmecZqfDo0Q0nZ+dLSYIum5RMmmebOnCRvusIUtms1wzjshFx4LQhdBHUc9JFbt95dYH7V26u9/T9iq7r7SGJU7quIeC42W3p2h7v7XPTNAGfQMZiD4DSjMSG8XrPbjggwbPf7XEiHIYDLBO8vuvIeeL27Uv22x1RhfOzC/Z5YpoSt27fwYWG9cmam/2Wly4+/ivRA8f167SO+umon4766aifjvrpqJ+O+umon34rrm/4hm/YfsM3fMO/M356XF+69Sso98jgwxJFMBGjWojOM5WCVo8Xa3UqRWm8RzE2WXQOV5VkPiwSvT21r0IpCUVfsMhyypQyIyixCTiUWNUu5GJtUgFBaiWLOXDReWquqCacF5wEc5iV5QZkFeSlzqScnmsiEBOZhWJj+zESxKOoudA1EeICIsUqpqlKFdBqroNpg4hqpWZzjGNwROfx3iIAWipzqvhq3B2tlVyet82Z62oXciHVSq4J5z3eVwKBqpBqRbCCB3NWCk6WGImYeM61gBgoWlhcxlpJ1X5XL+ax1iKoV4p7LuUtkvKcRVJqodRqQrYKtbDw8wRVGzG3Vj2bFjD3K9EE94KzB0JWKCqklKAoTQy4GKglUecVWaBQyc72FY1rKB5mqsHHl4httaNvTWG5QK6IOlJK5mqq3fhynq0hMN9wuHlCTTe4qDYBQUKo0DlCe05QxzwmyjhBDdQC05BoSyWXjCB0TSSVbIJ/OWVKLmRnkSKHOatOEmk/0BJopdKHDh8ih2FPmQZzoaojzwkcbHfXrLrbaNeTKLjWGfxdK1ozWpXqIlUiwSlumQ1Q8ThfEUwIl2Ktieqg5Mq8nFc4M08cBtc1YWC/l9ZC8A3VPhyATVBQFvZIDOYWL9MNwVnjmqrifGOi0cEhjfjGnFCphbbvmWdjx6jtV5efK4w1L6wbIUhgPOxwJIpTCL1tnKoyTAfaLuJEyVppY7NIZhOCJY0E1yLqTYyyiNVqbl+txdhLPjAMOwNiL9MOMQRUlTTNduHz0Xg13tE3DXNOpDkjTgnL5EcuFq/2IvTdiiHNxBApObHdbunXa3xsCa1F5fI8sz/saaKn61uCc9zsdjRri6NMaWa73RFEbEMpQkqTXaecEINfYmZKqTYhsOo6otjEQ5pmFM9qtUK8gferYCwoEUpVnjx6SqmFNjZsb3YWKZpN0IIQYmCeR6bdHrQyzxOgBN8wjoV5TsTWIj4hRPo+UnNlHPbs9wN939KvWpyHccrsx2tAmUvGORO6TdcxpowPLakUypSheob9CB6aOpJn28TkVAgh0q3WTDkRRHHBM80zAuymAacG344h4pvIyekpaGI/7KBWGhxlmBnnA3FzwunlXa6eXePnRKaQtpOd6ylzttqgqbC9vmE32wMUr7YJspbBntV6w2G7BwpPn27ZjweLFLaeSmWeR1KCPBecOPqVcYiSCON2T58K3nmLzTcT/brj9NYdpmlmNw6cnp1T8kw57bhROBwKQ84wTdy+uODOB16ljQ3XN1fcvnULtDCNE+Oc8G1PJjEcdtx6/VUOT695+vAJU5o43Zzy1uff4HR9xqM33yG0Eb7iVy4KjuvXfh3101E/HfXTUT8d9dNRPx3101E/HddxvZ/rVzDxp8xlMjEhQK2YwZlxFFiiCCre2B8iyDJDXrWQZRF83uNcj2RzgwShTLPFQYqAOsR5c29NN5FipfEgpaClkH3AxYiKtxIDzFXqY4vHmXjW8sKhQ60VLggQlKTZHD0nQEELaPE4reZuKwRxqIvUXEywiElUUTE2Bpmis7mrpSXg8MxUFyjqllYhE3/ilcb5ZeTYhKb4xdUHRBNkY3fEJbIgWBNrUotT+CImoIOazswZ18KkFVwka2VBhuO8gjqqOqoEXFPIuVKrOX5miAsUY1eIFFwwcVZVQT3eKeI9qDF6vAtIrYtLWpmruT+CiXPnhFyKTTYoTKqMTqHONF2DViFV8NKAa5BqjrcxNITiEjPD8t4aam7Nha0z0YsJtVwoCcLSUKjZuBvidBEsEamFSkN3ds6j+0/JRelcpBUoWSk5MTrBByh+QmWHDx0htty6e0mOniqNQdK9ufqF5yJaoJibGXxrsac4ULZ76n4PCrPCgQkfEs4JhJYhK0MZ7fdETLiUTHGQ1CHZgY60IeB9ZFRzjr1YjChkm8IQZ+UijrCwnwpeFY+nCKhm+iaQtZhNXWZEHdU7BhEDLkfHlNMScQKP4Bcha8xjxWS5x9UZqRNVrTE4VajBmehFKTkSpAVfGcqExiVyUsFXayurxSIoxXZmZGZia5MXTXDM8wGRgIqjbTdLlMyg5+kwEXzEO5tKEWdwd/CI82hNBiZH8GoRH0WoSaEugHuPfcZzQBCid6gTytJ6531CveLU4izeV4oGfKk00jCPBd817MdkvCix8z3EllqUNO9xEqmzQeFDjEjj2U0zXQicrDaoFuZ5pkyJPrTE6ClpIjYtTdMwzYmilTklYvTUPNC0NtWgWqFpGA8H5jFbw1lS8jTSrhukFHbjQGhaxAV829OFBlw1AThMS1RwOf/TniZaY6Y4oV2tlxZAO9fbzkQYNbPbH9iPN3TxBC+VzckKLzCNEzhH0UweJ66vr1lfnDMlpWs9aZhtM8kixEVporDWxiaMykzTGoC6OGN4zvOM5EqZR6q3KZVutbLyHZRSK2VKME+UMiLBgohzKgxppI12vKbDiObM7nDDyckGJx7JSieB7nxDIbObJ8abES2RNnpCVA6HLWM6sNu/TVW4vLiFU6GqIsHbA4/ZwOhNaxDolGdUCsPWs7050PUrVl1LHgZySjgXEeeY0oHz0wubDkmZR9ynbR3qPakoMbT0bc9hN/Du1SM+8+nP0q3WbFYrPvPpz7Lf3nD31i2ud1skRqZp4rWXXuKN/Z7slOSUxrc8fHTD2flt3h0nmtjwyu17/6H64Lh+jdZRPx3101E/HfXTUT8d9dNRPx3103Ed1/u53vODP63uBRxVtdhI9uKa2Hi2o1QFHN5HVJOJSrVmHu8cKgpqNxZXjUpRagFn4Fb77+aMGkLZ2CC+UZ773d4FnLRQPILyvLqga3oDRC8Cs5YMgIjFUKqaAHUS8GI3QM26OEWRCqQ54UKwth+EJgZjmahdJO1AKNSytMAZorlqMdEnMEvGOxPk4ixWolUJmCvyvEVZ63LzX0SqOBbQrjcHpioZgwoLjuAEnCLOBGotUOaMBFmcaQgumlVYvyjARbCSiIXjI5oRtTHxKsmEoncIHq3m/DcBnK+kWrF9gSwxIRBvTBHnHE7BVeOgTExICEwSSNXcxOAtnlTr8nsrVBLGSAnLyL/FgkQK3im+Nva1zgoras1I9SAJfX5sX7jihblMrIIJr2G/p6SM04F5vGI4HJCUSIzEEGnahpU0zIcddRHMbThhHgMz1g5XfKa6jI8tc5qQWonN0rVYFFcFxCMVcql2XHKhaTw6zYhM5FqhdhYtcZiwVizq44q1FkogZXBNwP60nUWmVBbujVj8iERwuny2ALGNYKkVEb9EntSEnFZKsQ3iAgjihcwUa1S0k0+WiAtU55bJErdEBOx8pVS0VsLzzUuFxjlSqVQtRlxyLNEni4G5YhMNjoB4m1QoNS9RGvsn5YxDCU6Y5mqcoWrv0XmbWqlacc7iGCqZVAVdgPM5W9ubyHNgul178IJWEzyoxQ+eg9RzMTdfqFRn0wgV8OooY6K6GfsDVcqUcb6xtk0nZJRSZ+o84/CLm2/vpSxOfgw2cTCMAy54XLFr2WEa2de9XYOWps0Y/Iu/4ZRmvIuEBfRfa4U003UdKWWqE7wPbK8PTMXc1cSezrU4H0hTIg8jzjv2N1tKUWKMnKw3VM30q44QHaUIh/EAqpyfnPPsyRNSzZxdnBmXC0fWRKAQfSC0LdMiIMU71BWmnKizt3PVe4u8xIDLlaZtcSHgSlmaB4UYGm6unhL7Du8dh5SILjDtRmITaBrjsjg8OJvIoRoPKQa3gPmVeSqcnZ9wfX1D167sHiSerMqcEzhH03VLTEatubMUmq5jSpmmbci1MmplHpK1Y8dIv4F5mlCEuSrrsxVKxTWO09NTnHqowpzte6jVNkbVeFoVK8Z5Pml1cXFBrgZqz9kg8HYfqgQPu+EGq/60hyVDsfveOCV7KMDSvq3Kbthb7O3Jli5GVJWnT54yThM1BIietx8/toc4JVGdxc5SUrbbAY+n7zqePHzKV33NR96zGDiuX7911E9H/XTUT0f9dNRPR/101E9H/XRcx/V+rvce9S15qWh3i6Qs1JTMdVVjiMgy8svS6OQkgBg/QalIMVFaKzgfzLGYra0NZ6ybF/EPLYDdFJNWnFgcwfsAVcl5ovEQmobDOGM8BYeICTbnHN7JwhVZ2DT6XDA6ggvLNSSRU8a5aFDnWvGycAtSolJx6paGNwGtuKIWpfAeRMhiroxIAClUFKcFCzMsbXcKurw3y3pY/MILePwSyagL6waoxm2xtjx772BRhgVzzTQlRKIJPqlEv8QEFi6PJRGSRVNqBXU474wXgyKS7WWLQW6p5mTnNJOnEXUeHxoDMi+sGPAmMACKtceqCDEq1bUU8VSKvZ+glOy+CM0OC/xaARLueZ6IZWOgYucACjLaxkTMQX8O9XF+YQg5wYfINGa0VsQrq66l+gAq9A2QdzifCLMd15pAU0VTInad3YAVnG85ubjFMIy03Tl2n6oWZ1iiS+btPheIxvFQEdo20vgN1++MSJ0Qr/R9a+KnJkpNmDQwgdU0njQpEKgSwAWqJrRYW2ITnP27Ck4ElaUNsZh7pt42NVXNqQ1hgVYvEaRabDNiJzvLDINFl0zoqp1PTmzaQhwOgx0XrfYZFrsR5mpQa1miEMF5ogSy5oXdrWjNFl+TxYknIGKOuglqg8tTlvNH3HKDNu5SwTgpSDFw9TJN4Zzahsn+7AYfr2DcdaXUTK3Z+FfeYhpl2ajZ9co4MlJs02WbQ6UAtSq1Qi8O59qF3VQRByE01KoGQ86F4iCqJ6pdmGThOpVSF4fbM82TnUs4SrGYiTjBu0BR426FJlJrMRE9juQ8IeIJsUOLxddEoA2eacpUYD8NOOdoY2Nop+CpUpjLTPQBr4GsQusim03HPM8Mw8BhPJDTSAgORaxVOgQUx/3HjxgOB2Ljubq5oVbwvqHtWob9ln0daNtlQxscqJC14INN16RsBQJVDD4eEELXL4wqTOBRcVromwjOYZdchwvRNvzOoSqMc2IYtuQMq80pofH0JyumYU/rAjdX1zgfefjwkTn+2WKSc9rjQqTUyjTZccQJPgSk2AMKamWcZtBoGw6ygf/VNhFtEHwUgm/YjyPzPBNCoG87ypy5/+AB/WpDaBp8wNoEqXYdchFxFmuc08AwjHTtirYLlJQpVWnEpra8D8R2zTQvnCyMsVUouJwILjCOI32/4ud//uf56Jd/lHt377DdXRPFcb29ogkNRTzrs3OmnNjmmWE8IKlCKazXKwozcyl0IZIr5Crk/F7v7sf1672O+umon4766aifjvrpqJ+O+umon47ruN7P9Z4f/LUhUbCRZ3EOL/YhDNJZ3EFtVNsjlDIxp4J4wQUhV+WL7XUg5MWp9uAK4CgFtJhT8RxyjGYQRUsA73HeUzW/gD7PYyKXxsauvUdJJoMk4D0ED0XL4qjZeLzBp4XnfVeCo2ACLARZGugqsDSyYS1pWg0OajdsA4p6jYsbV1iovrTiF/HscMsBVrUGMGupe37zs3FxV8GrUBxkqRQvVGd3a6ny4rUAqmbMx3Y0IdLKCl2apCiVkq3q3vhBJixEK5mAGc/FuDNODdqrSwucvTow4Z0Bsq1R0NrtqpoD7WrBFYtKVCckNXHhu0gUR3IerWJRI1mcdAtFmIHqzPdXVZDFJcSDBqydbNkckG1jpBV0ccgRvESeg3Z9sNiBExv35oV7aG1OT548ZhoT7EaaktC+QVRxxdP4ipbMOI80IRrYNl8T2lO6fsU8KNM4ocHjQ2TOE0UrXhoKjiSKo+CkkNKeZw8/zzRsaYKg6rnZzeAGvDdeUXjuwCmkYSKXjlUIhBAZisVQXNNAskhXAWoQqhMUc7SrQi32OcIvMZUl6pRTtqmG4GkkQF3YJbXiWY5NVoqbUDCBt0SMbPemtqlcXHFrOzSRjsjCf1GmYQQUH6NtRrWaY7c0PJZiIGR93hy5tBOWkoGAW9zdstxYRRqyFhPVahMOtjcsJnrFLY144KQxB1uNX6O2O0WcNxhyri9EifPGNjKmVKbKMj2hFlFR14A6Jk3L91g8BizOodkmW5xY1CKnClWIQamlmNBmOfZLcWSaE4htPtqutU2LCsOUGHLFDTOo0nlnUxjiqS6g2T560UeC94xlYhwGXAzE2OBCQJ3npN9Q6sRSkEiZ0iIW/SLehMN+T9f3dF3PCNzc7FmtTwixW2IoPaG1iEtJM0EcZIuMuSnTuoBrA/M8U1VpasNq07M93ECpxurpV0ypsB0mmibQiKPMiavDjraNrPsVsQmMh4FVv2Y/JoZkDXs32yvaxlg5pWaqQuxWeBWutzeknLh397Y9JIlC7Hpi06Bk0nVmTLOJ+65nu9vTNC2qjlQKPgRqKrg5GcerFPqmh2wCW8OIcwGpAZKze4165pJIU0a8Z5aMVKVvWvp2g7rIOCbETHWCC/YAwNmUip3/jrZpECDNI+LsXpVrQWumbVqePdsTYsB54yTlCrgGilo0KQTmceBjH/kwUpWn7z4wSHoTCE1gO474qOTrPXmaoG+oYgUNrXj2h4FRZ6Y5s58r0bfMJeOfQ8eO631fR/101E9H/XTUT0f9dNRPR/101E/HdVzv53rPD/6akMm5kEoFtRr34DwqBSnWPAaAmKMsmDOBmOhTNffj+Yh8qYUyF5x3oHW50RScCya8SkLERuX70DCOI1POtF3EB0ea5yVKYu44ggGSm0Ct2ernsZuoAuL9EkHBxsLVRqMbLzgfyS+EnoGpFWvU0jRZy54LBNcYkBlnvJJFADuni6NrVfHPYxSCRVVKVlww4YYaUFqfc3SqR9VRMP6IibqCE/DY+wFzKlWsUUsUa/+rQkkWGfKLYBBnLhWyiAqFXD1OFCcmAko1N4+6bBQWBxvsLuq9oETUeRPkteBdxQf7vWqtVPwiRoUQBLI1o3mMBeSdo4q3oIRzS6RBbCpAK0WjOZfVoji4hWe0vOZyq8D5ZnHw8yLGDbpda6FUCCJUrAUQlGkeCaHSrhqmbSY6cKqItxuYS4UiMyq2CZpThqzMxXOyep1pKlSs8YtS8M5G/UuxUXJdIkNVzZXTUnj26DGtd1RN1EXIibPutKpKNaWIIESsDS2nidrMqGuMO4K5kbUUss4QnAk48dYGpkuz4xIdUrUwl/cmjKnLZwhdhKN9HL04HN6g6EvrIaJ4b8LWOUfOCRVvjp86E3s1ERY2TKr2N3QxGOS5KlqeR9Ts71UUc6OdTaQgYm61mOquJdkmFDsXisriVDtUM95BDB4H5LREuEwj2Pm8XHdSSYgIPlj8zVoRDTYt4s0F12pibGGd2Ptdolql2A1dxNzD6pEi+GjTLDmzTElUXFWaECgihOgpebRNnVgcz0mwz5LaOegIeG+RlGGacD7QNC1VnMHen0eBcqUo+DaQi02mOCfmdiLExh4GGEw8k6pS8Uw5gfCiPa/UmeDBhUjf9wTxjClxszsQQ2ROFT3MS7wGVrMwzntECjnNeKBrOpwoKrYZLDXjg6MNDU2MpCkBkbbxxtnC/l6xaezcFmG13rBya1wQht2e/WGi9Q3Pnl0T2s4mD2qhaTsqLE6ybW6q8/TrnsvbF3i1lkHfrNkNe4rOMB1oGk+3WbHdHmhix5gsCjKMI03b0TrPNE5UNWi9hEDNlWGcqJoIscWrt3NbbKqq1krNFlkKPlDFUxBySchsXBy/NGHahA+0IQLKMI3kOSEobRdo25VFB6nsDweQQNd1xBAQV+n6lpQLc7L2ziY2lKWlcEwzgtD3PaUUcsr0qw1oZTdskeiIbcM023ldxR4FRO/QXDlMI7FpmGabumpii2qlbYRpOvyKxMBx/fqto3466qejfjrqp6N+Ouqno3466qfjOq73c713xl/OOBZ3NZtzgzrU5UVMVLQW8HEJHpgQ1WWk34sHXYSd94vro+YuVGuzCkGIXqjFGDLOO3x0pPlgPAzxpGSC0IceUaUNnqzY6L63Ef8QbPQdTMwIniVEYxfbmg3kurizOWU0GCdgzlaP7l0gzwNOZ1jYF6pGmkGgOiw6gSJSF1fbXLqqyzFxYq1i0S72FheR5TVM6GeEonYjdeKQasDhEEwg6XN3buFcqBNqrosYCqAgaqyfJsRftlFYogMOJFlblBNzaqGag2rjAyhLfERM6DpZWgerxRakVjuWDooX5jlDcXjn8VWQ6shVEQ9BK0EtnqNLLEGcp6ZiY/HOg3iEFaZbM2ixYygFre65h4rWQC0e3ITWCec86sxjd2IxCbe4lq1vmIY94gux9VzvBuZ5R+MSNY/M1W6UpAk6q4oPPkCCWj2ejqZdm0NflSBLjEYVryb+DMZtf3PVhBNPdBua0EGquFApmokx4Hi+GXguMkGrGJ+mVOZpwJ3YZMLuZqCJjqA25h9k8ZFLpmIucMDjxVsMQm2IoSrkZDdQ0YWdIuZ0Z1GbHsA4R2X53+fxErPdbHOXxeIihrWxqY0KNN464WbNqAriPakW3AJ+rpqZ52ybObecn8t0ioqQSl4Em1sayxStiarmCFc16HDbBLyrpDyzcMYX+LQu70mpZYkJqLzYwD138YMLeLHJhqqLq80Su1FBc4N6j3d5YTzN5DyjWoliYqTOM+AJGqFJuFyRpQlStVpMSI0BoyoGy8YicaVU43ItH+9xGvGLU+8kUrRSajUHGgeL+KjZGXtGrPmu1oQghOCs1VMLNVk726AzzkWqeKYMRRJQCLNtTob9gdh2nJ2ecXM4MGc1tk9S+m5NmTP77UhwxlVZdz0SYHfY2wMCJ0idafse5z1X2ytON2cWGxLb0Dg8+/2BQ0oU74hNZB5n0mEg1ZmzsxPaGIl9ixQllUSuiveRadyTl0bL0/WKxnsO80wTG4ZpAC20RaAU1DmSg7jqiM6R6sQ0zmQV5mGk6xrmabYJplyZ5tGaHIuSvTWShq6jpBlxgbFkZIIWO2drPkCxNtPQBGOL1cKcbaPati1pOhjnTME1DSKOlCZyMiB68C0hOEqaKFpQdTSrSNcK4i0+ppQl3qj4AA4rUXDFzhsVsfIAVxnzZOK7KE9vtvSr3kS/ZjRX6jARQsCte9QJmi3e1ESLA63CCkVofQAtOE2c9s2vVhcc16/xOuqno3466qejfjrqp6N+Ouqno346ruN6P9d7fvA3zYATg31OE0oheEg5IcGR02wXdnF2gxSrrUeVNkTmaU/XNkw5UyfBxQbFMU8j3jlzv1TJTDjvaKKJT4MTzzgJqG/J1VycKI4Zh8uexkdUMwShqDDNe/q24c6tWzx494GJZFVq9bRtw3a4wflpYWXYza3O5moGb0I6q8M1PS60+AJa7LWzOCpCJ37hszicX5PzTNEDVZUoAQhoZeF8FJx6avXgHUjCe8XlCjUiVShkmhZUMk7NEdUKSER8Y/GcUojBU/Dk5SbceAc1mUuvtjkwf1KopRCiI0gDMqMumzjWSMnZXPuFL4K3v7MCtVq1fCVTxaFeFhfcxuabEHDF1FNVmFUQX+2/Ly6hrwXNE422OCnWpidgMR+hyIgTITi3MGEsmkAQFI9oBEkge7tpajAmUmwgJfq2kqZHPHz0Bm7ZNAzDSK4F1wTGNLNuAofJIdJyGjaUonB2SYrXzEPF10jbB4SWVJR33vxpPv4VX2uC3AfUQxonqInVumeYJiqegKMPmbJ9iq+Jk3ZgO+7AR8ggxTYtXtVEfAXfVPCJuTRIE83xo0XnStMGQpqpUlEHXiGoozq3tIXZBkvVhGyu5YvcJO9NBGaHlooPARz4OZnT7yuJbJGt1GCs9WBxsxAscoWJ1sJskwMoKOyzEH0kqoCDXKFKoPrn4HhnzVu1IGUJflXwWkhSbAMYgoG8SZQETgUvJmLFFfos1GSRtIonS7X0UvYImcY7nIc0V2oVVj6C0xcRNI+5+Q2VVDI4MG6W0Djb2GmrCDYhIi6Q1ZFF8TEgNRn4vTqqREr11HkiLwB+yckmKhQ0BFSEgBK9Z0qKa1ragrUVRoukFRHGZBMKTqtdu0TIag14vhe0CCmNdJ2gJVOmQutWeM3UnKjeNvwqPUUCIRr7hmrcn1mXpr7iXkyTTOOBZ/sdVQUJK6gJ1QnZZ2pxNl1ExeHJyTFNlSIeHz1DSfYeS2Xa7Tk9OWWcZ2qxKZfJRQ7ONk9d65jmkegj2QVC6FiFDVoq+1QY9Yq+bQkxWNxOHeJ7gma8F4pWnu1HVKH3wTbL3hHXa1QcIQR8npnHA+u2ZSqOnDI1V2LsqAV8E9lPI23T4IIzEHpUmqoMhwNeKiE42k4IpZJTJUhAXMTHlpQT3sOcM/OcAEcXrUWu1oyPDX4Bs+diG8q5ZCsacC0VGKZpiTgp47ijLQEvntiIAb5T5jAV2pTZ7va4vrXJjzzTOJvUkaovHq90saVdBeoqE2PD9nBgmAtVEu2mtfvjmMnB063WJJfJcyblTFuXDbOONF1HSolcjlGV3yjrqJ+O+umon4766aifjvrpqJ+O+um4juv9XO/5wR+MPGc8RG/EGdWyOEoF40tbW1Qps7lXRUkpMS8NcU3TklJCmWGJTYSwuOEx2gi4ClozOmNOJs/b1MAVMU4AQpkTmYTXYAJAM6L/X/b+NVa2LDvLBp8x5mWtiL3POZmVlXVLG2OgcBkXfKrmIq5/AEsfF5sWlhBgAQahNmD4YbuRuFiWbSQQEgJkUIOQuAghjAS2BBjUAiOERIkfyAgaA4ayuwtMGWdl5e2cvSNirTnnGP1jzH3K7saQZcou+/tiSmnnydpn79gRK9Z8Z7zjfd6IfYBw2Xf+yw984rn7mnOMom97jMVrira03geSCmLGcJ9waJmOkrHvASoO3k4Cjxuo1ZWhYGMQ+0k4us+b59wJNI7HqDYd1+lY0sAGow/UnZwrScLxH70hD21unoL1MVrEeTCC8/wQqWmMiR82UUoKiHgfewgdghEjYvE43OgOSRzJA+mAh2h5sK1tNgM6ChrOi0g40LhBG8HtMCenaBxkGEqMo9sIsK5rOI/NLs+ZIUynOeV4TdrWQDM5L9hDC5vGwWR4NJwhHZWA+4rHpEAW4dw2PvX0Gafh3OqOaOL2uOIIrTeWZWW/u0eGwxD2+0YbMT0w9s6xHrk5HHFr3J/vEBmUQ+b7Pv4fOZ2Fxy++m1wytRasgUiimyE58+zZHa/fv4Hvr3M+fYK1XEg1YWkBPbKnguxvx5h7rsG0lYjYZN9olkF3+jihGNoFzctshgPvTu/hum4IOScUgdEAIZfYAO0BFEyfsSGeu4LOA5xcUReMhFmeYGCj7UYXD1FmNgcpdPI3oJYFa0Yf4dYK0W/n1ieIPVy3+Gtx8Bwj+DcqiksEn7pPBo+WUOQzbjPGp2NYZvZwAU67WmjeY8ZkhONnDqlEs2X3iBKQNSDUYwSHhJgYSSniWsPDgUx4xEGIAxLuIda7YYS7bz5C6JmTS+Df3Yw+4h5X68Ll1DAGPRIbDHHG2MiHTtvCBRV3Ui48mtDw3neQQdGYKhl0zBX3AjlxGQM8omwQXC8zCU6Qg48WoOUeIG6RmFhRVQ5lwWuwnMwDMA5CSku8BvM9aB7RGNywrJxtkEnsY2eWwqEqZApLznRN3D+7o5RCUuXZs2eUUllqpc9I4fG4so0LbRitCTId3CzC/rbjvZM17oUqQcCKyYUQh6VUxoh2xZwKvTeePX1Kmjynuiw8Oj6i71tclyhrTXOIxFiXitng2dOnHOoSpQJZGap4KYiCizMoPDvfcVNXxhjsbQuxmxTH8GEsc8pquzRubm8iqmidZYpkI6ZirCudwZZHRKpGZ9Xgcx3WG7qMaBMdndyiHU81o9LY+pnx9MLtoxd4dhdTUTkBOhluElG/YZnRGuN0xlXZR6ePOZnjwYXbbdDPBnu0CNYEwzNmSm/OeWwAaEqfiRa4rh/XddVPV/101U9X/XTVT1f9dNVPV/30f5z1yiuv/Nyv/uqvfvUbv/EbP/m5egz/8T/+x/qhD33o5370ox/997/0l/7S8zv5O1/xFV/x099+++30Xd/1Xd//Y/253/md3/noy77sy372a6+99q/f/e53jx/r9/mJXu/4gz+VTh8e0MucY0OUGIW3YYg4JQcHIBy1aFnSHC7t6M5l2+fmP4HQY1BSgmTgjWFQcn2+USKJ2IKhaIbueJ83WxGyBUQXa5h3MsESSLlgvZNrjnr0khkMak3s2zl4NUbwcGZ7lMlsmmPGBAA8/mzqDAXU0RFxjD4rf1QCAC0AorHZzEiKTGaH40gKKK/M+MPzRjq1GNO3iBro5PrYMCzyOZPjQwiMMUgpnAh7LmSD+5HGbNcSD6EOwAjx6ImwAuOGjcQYtpAQC6pOxBgMl4SHyc+YbVmqMUaeiJYvU0L4+AST24NQAiTcxeGOqOEE60aGY9pRdYpmhsQmiAc83H2QJB6mmAeHR8BwdhMk3dLbmTUtdHNeevmLePdSkN44n+44LMrp2ad4lDtvfOoT+HgGYwfbOJ9hHwO2zKJnzv11todRdcA8kV+ofMHP+GJEX2RrwjZ2XJy1JkbvPDSt3dwceOnJe9jvlU98/DX2p89YMKQMSBvDA3Lbx2DzBkPiUhbCJbOO+uDczuAZxqCRMJXYbCT4PAE7joNAUiXrEsySvaFZ0bxELMpCoGmOtjTD0MlKkRlPSU409iHThQwwbs2FsT/wfwQfcYBSiSmEbk4zPs2j8RGXovP8gMbzqJpGZEQzpkYPqRsHxRERGJ3vhxGIKEhOSpNdNNv2rEfLZTCtytywA+xuHmD6h5hV8JViuiJ4OHHYFZUQzTrfj9aDr0Oi9fj5YkTLnzj2MGEwo17Do0mw5sRw2LYzRQ6YGCYhYE0MHYbnDFpmzEZII+HdQUccTOYUgPmM2aXg0vQeTYK5JFQJhgkFNBoA5eH5FZsRmXhHB8Ep+FieJE6JDqIOA8TG86BU3KRCNLoLA6eN4G9pitdj7HswpYZw3jo+bPKFEpd9Z986h/WGlAs+m/W6O3vbKfUYEwne2c8NG1DyMqNMIeIEWNYaDJ7LiMP75FZ5C1C3m8YhuDfqslBcaaedjtP2xu3xhrtnT7FhHI8HfGtY69wcj7z2Q6/ynve8B0/CaYufp5LYWyeVxPH4BCEOIOrC1jsynGUtHI9HTs9OGPFBipmBRLSvb43jzW04z5edvQ144MqIxIcMEntOzYVbXRi9R0Rpj72pZOEiSj0c2c473g1H6C5czhfWw2E2JRr4oKBQY9ppuEfsZYyIQ6nSRekY2Zw1Z9Za2Vun59g3Us7zECfszd7p9n5dP87rqp+46qerfrrqp6t+uuqnq3666qfPdH3sY5VXX/3RP69573s7H/zg/hP4iJ6vf/kv/+V/ePTo0U+iJ+u6/mfrHX/wN5qjqZDyQi4Lo0+nRYw2GsNsgpkFN6GslazRGGSumDp9gKSAtboTrowopcK+nVlKwkXp7pgopBBtZsEaAGcEPTZEgBWS1ohVDCNJxjzRu5NSDUdCAu65t40+9hDYS+Zy2cATgjL6vGanSGIKZxVHNJraBsFmKZ5YJpQ2HLtw3gby3KY1i/hHwLvj5m2W8TH5GnPjFbdwaedzhgS7RwiWh9vAPXg2Om3lEAgeIhnBCIddXKfwfgAGEwwYc2IYOhxw8QoycGskJdhBcz1sjAi4DBCQGWVRAcRIXiYPSMDCLcwyHWmBxMDmAcLd0VQfnljcR2yKHr9rzQfMB+Y9mDNumEXT1kNroD9/XI6MHW8XRhssubB1ePP0lLpmluMTttY53L5CP72JtTcpRTABlQBhJ8Jpt3pkqZVmcNqdZXnM8eYRCfh/ffc/53Dzfh6/+D6evPvdAQ13x6Wx1IW78zOa7ZzaU9p+Yn3yHpbjwnj6Ojo6pRhGJ9WKeMPFEA2nWAQ2K2xeyCy4HJFcEO/0MRhMgWgyR+CFJQmJEWJkvg7hzCWGS7BTiBa6JME/EeK1j7fJZCDhQEOSUqfYER+MdiFpXHe9x2uu2Rm2Yb2R60KqE6A+Gkkl3qM23/9TOPZu0zGOHx69fXE9qWsA3rG4tmCyhsJVdvNo1hMJAa5K8h42p3u4r8T1PczIJdrqug2q5nDzcyHnxNhbCE+zcGg9HPEEuEVMYjy0+wnhrE8WTlz6UzQznd5hQBwA9vn1aAjHNWfSgL5bwOEtvldaCpZjyqYQTuKw4NgkceizKbMHVD7ZnPoxQ3oHdSRPppY4roPEvK/AdG3BPdGbPL9PaiIOin0n6wEn3quqcT21FkDmmDLpFIlpoe18RmtBtZJKns43tNFjEuT2XTRz2mkLSPcQtmeXGHAosO8Dxj4PPEpdNVx/Tcgu7Ptg3wTr0UqYckZzovcRzBZs8p4SYGznLRriNNMlDmN39ydElDH2CYYWVDPNBy+99DK9WzQKNo97Zla8w/nZhbIUPBv7sNlyGFMze+/RtKqC5ML922/TMMqaqalyf9557a1X6QwONyvLYSHlzCOvmAqfPL1Oo1OWTDOnp4EUiYiZGW0MtG3glfV44Hh0Lqd7ShW0JEo5oJq57BdSCdj63jqX1vAcsPVcCnkeEuM6EnLR562L1hzbWoCwRRHv7NuG5jxh2tf1k2Fd9dNVP13101U/XfUTV/101U9X/fSZrI99rPLhD3+YfZcf9Wtqdb7ne77nc/Hh3wc+8IH+E/0zr+t/bek7/cJ4ky2ILLQdxlC6BU9EtWKe2Luwd6Gbct6MZ5fGpUN3ReoyW8oKfSRcKuQVk8xuwmXv3J/OnC8bkpS8xEizC+CZ3YhP5ZeC5xzilxqtZSkjKQC4WMB9fdbYiyj71sCYolA5318ioiI6K83BXMJFkXAMRRIiifHwfYbD6NiYzrIIYgPvDe8NumHdplsSbVwOjDFCPA5BLJMoZMmTWxEivbuHMJfMGBE/WErhphSWBGIdbG7skhBN4WITzre6R77Ao5Ws98G2NfZmtA6JEILYYIwQBErGXegW4+LRVOdzQ3TAcGuID1QG4h0VwxmoDxacGrQccgrB8iDi1acjpuFgqkPSB2eyIFIZPYSZiABGYpAZYD1G+ieLWObXqHTgKeux8cYbH+eTr/4nznc/wK2eqJd7tjc+SX/6KS5v/ACn176f9vZ/ZoyE+UJKNziFXG+oyy0ybhmtkvWWF5/8NF64/XykHTk9e4OUT1y2H+STn/peXn3t+3l2fotL2zhtG2+9/QYizguPj7zxqR/irbd+kK1/ktdPrzIOifToMdQDqR5JEI7wksk1UUom5WD4LOXAIgeO5Qah0iWRcyGnTH5wN0efUxiDNQlrTihOt8bQaFr02YCYFMQthKeHU/0w0u8EIykc3YZ4Q2mUZNQcsTNSi0iQRsudloQppKXS+8Z+/xay37EkJuMoIPXJhSwBUl5yNJeVIjGJgVJI5Mn0SapoEjwZqKEaEYYqaTagVXKOJsRmAZQ3N9wb5ntMWaiiuoAXhocDa0LEumzQWjicPexYilbEEzlXcj0wXGk93Ni8JKwwWUKQpusb3KnQzMCnRZYZQwepBLQ7oyRJmCianXVR6iJoHljaGHrGdCA5oynjrgEUboTYaIMsSlFh9I53Z0kLRQMXpR6uthGH3aTK8XDg8aPHHI5HUsmkFBMHWWKCKMDukaNpPSaAhgu7NYZtETOyTk5Ca/FnbHCoCzVV+hT6KSVSSowecTonY0MQzbTW2fYGGm1++6UxmqGaWZcDNa9YG7StsV0avTt4Ak+zcRQu28azZ3dcLpf5Jo/CgPvzhW2H4YmBM7zTemNvDcPRUlgPt5z3zql3dofuArnOaaDEzXrgUApJhbXWOT3T2PdG74OUckQDU4kDjPv80GWwHo4sxwOSMtsYdE0st494/MKLrOuB1jYuz55h58Z2d+FmPZI0cTmfwQa+7WSHJWVKqqgk3AP4fzpv7G70DKkm1iVRctwTluVASZWkhVpWcl4i4qIZc0U1U5cDqolVM0uuJJS+d6x7/Jyxw+jUlHh8e8NS8iwiuK6fDOuqn6766aqfrvrpqp+u+umqn6766TNar76a/4cf+gHsu/wPJwJ/jOvNN9/UL//yL//Cw+HwkZdffvnnffM3f/N7ftEv+kVf9Lt+1+/6/IeveeWVV37ut3zLt7wH4Mu+7Mu+8Nf9ul/3M37499i2TV588cX/7c//+T//EsSe/of/8B9+3yuvvPJz13X9v3zRF33Rz/mrf/Wvvvjw9d/5nd/5SER+/t/9u3/30Yc//OEvPhwOH/nIRz7yoX/zb/7N8k4fd++d3/SbftMXPPyMn/7Tf/qH/9gf+2Pv+e997dd//de//8UXX/zfbm9vP/Jbf+tv/WmXy+X5c/0/e6w/Vdc7j/qmzOixSQw8mqiAPpxUSkQYnOcMAjLhyojETY4cTAScnPN0hRwTY7SNdMx43+h9J1miDEF7tPq4VAYh8MaIVq41F0a2+Pt9Z28nRB3rAqmG+CQ9H8FXCcBpzZVUo3WrtwdfLWIljkzHOcbkBUX0CcmhpHCOfDqsLoUsAimcGXMJsdUaIokkxNiyRbTHJdrOzDrmjVQsmDYarl0zm/ydcFUYPhvCbPJHFJEcjIrpWtsI5zgnwZxgA2WNkXWLm7J7RIk0Ez/PHTwH8JiIMYQNJtMVh+kpxrj9dO/cfbJJjIyQpmM5VVMwR0TCyQ5AxCwFHOB7jO2r4KZgBcmNIIQISRQxCYC3fLpZzJjPg4ao0FwxMZ689F7u3niDJRfadmLfd1wr73rpJU5P73n19R+iyk6xPYSgwOn0NrkVUk7BgfBO0cLlsnO/v4p7Y7CS0hPcC49ffC/LzXuox/cyeqeuG0tK9HZhyQtLXbBnb7Je7rlJxlIM9Z3WtpjEoJBqQkVoFuPzKQkqO1k6up/JB2M3g+IRw3pgxTw49GR8GA+oIxdhJOXineQd9bjOVDPWo70q54JKYnjD3SALoiH+fUR0Q5CAycwmSVPHhyMUhETvHdeINGVxkgRbhy6YLM+vFRGB6SK7x7VhY8AQVApJZjyFiDKQIqoRkxdxLepQNDmgE0djs8ksISWhE4TdW9yuNBXO7cwQp9RCk+lIz/eR5UR3IZFYqHjfP30oM3/ebLiNRpdOdiGbk9M8RJoHW0hTTGQQB95UFxZJ03G2EFOl0HM0tokJMUMSgi4Trq1PUZRzmr93i7dYikiK2QOHS+nD8ewzqjff//O59m6ctxPbfI8aTs6FRcZ0M+N9LVKwrgxrlEVna14LEPhyjNhREfbu7Ba8rcNywETQJFzahkrEEB+iei4DTdHkqAprreHAo9F8qALe8eFEtqzEdAARm0pJwcPRNgmulc1pB5EQ0VlTTEINaK2hOdoOzYM5VZfKZd8ZbaCqmEbkBBVGa6xlwc3ZL2dKWWLvURgycA0wtQ9j9MG2hfO+LJmaItrR9g3Jhe10IdcMCUw65gVpSqFwmx8hWXl2usfmPVkFaiksKtztGy4We4FDQ5BUuFWl58F9u497q2U4DWwMJEescWud0Rs1Cd2MtKwRCWojrsM+kN5YU6HZhgvkFO71sGBYOcLpfAnmjSqH481nrgiu68dlXfXTVT9d9dNVP13101U/XfXTVT/9VFm/9/f+3s//7u/+7tu/9bf+1vd94AMfaH/0j/7RV/79v//3xw9/+MOn/97Xf+VXfuUbv/N3/s6f8fbbb+uTJ08M4Du+4zseXy4X/cqv/Mo3Af7IH/kj7/vbf/tvv/St3/qt//mLv/iLL9/1Xd/16Pf8nt/zhe95z3var/t1v+7u4Xt94zd+4yt/8k/+yR943/ve17/6q7/6C37n7/ydX/iv/tW/+t538rjHGPLKK6+0b/u2b/v+97znPf2f/tN/evt1X/d1X/D+97+//e7f/bvffPi6f/Ev/sXjdV39H//jf/wfv+/7vm/5fb/v9/30P/gH/+D4c3/uz33iM3msP9XWO/7grzPCvWGw7Re6OyRhWVbwQVFDPYSqa/iPnhf2vZElkUXJqcRo/eRAxAYtZDmgSei5whgMEmeLm3nyDC40NzQlcqngkykhiowRG+DymF0lIM+EAzi6UVxZ0gSh+uBmgUc3lfuL8WYb7H3GQDwAyx7WRzgQg+duVXefI9+C9YEniceQne6N7oprIunCsI4xkOQUcdR3IIC7OfN8TFo10/Y+nXlntxZj5OK0Ptg1o1pwScHzUDARxBS1BmngSrgaZCzFqPjWgp3gHqxJI0Nzkjo5O5f9xEDD9Zdw7LLNg0SCrEJC8AQ7wsaDs5c4uAbAWuMQ4WbhiLczORfO246j1MOK4FQFm6+ztRkpyo1kGi5g4GtiI8DxlGljgMRjT6QA7I4HBlGnJOWkG/f3T+cIvpPLkbs3O/d3r5NXAMfPDTdwV9Z1xTRBzqTmNDnSqbTLhcSgLhnfE1oe8eTJe5F6pO+Dx8dBR/G0IktCUrSzvetdL/Pf3nqVRRWVTrs8JeWFJa/ovNYxcHNKig0O66R+wbTQ/MSyGLYbJYUbnTWx22BkKKk8f35395gMSZU2DB+JnDNic0piMoxkThR0H7SxB9diZHKpJM0M3+itBe9EhG0MBIWeQlQzSLqRFbatQV1AFywndneUHKV1Exjt9IgzJcFdsR4Hlod4T5rA3VIySaBvgvV4DZCB+AjOkRRG66h01I2jC81jYt06iCuLJ6wZFy7PJxl885hZniBzV2G3TCJRHFx3RB3vEfmQyFvhLmSprCJ0iyY7nxENG5AsMWRg1nAXimaS5Yhtpbg9lBT8qaLQe5pOcRw8ZMaFMMEMUo7DwOVyT6mJZVnY24hGPBxJaWKanH3srEsmSYgWR2jeuG8xFaCicS+dB5ELG2SluSE2QDo5KZKMlDbMgoUlXbGxYUnZukYZgBs2WjBbNKMa11WVaBnd2dG10PaNotH8lkiUupBQ9vZ6HNK1xiaRFGOwutKsQX4Qzp2UEtu2cbw5olkp89CeRBEykb4Lpo9bRC+ihQ9KLvS2IRL3xmHj04evnEml0tqIBsi00N3IVejjEvE9L3QcTQlFKRNOvXXj7u4+2EVJKWuimHCsC6fzmbUeeHZ3x3q44Xza6PugLgv73jmslUWUfd+43ztnLYxSkG3Ee7cZJo7SeGucYwopL6gIo+903/A5TaUaF5UrdAc3ZTRjWA+G1HD2vUUT5RT7g4HmxH1rEQ8ikUtGi5P6iOjM/jlBvlzXf2dd9dNVP13101U/XfXTVT9d9dNVP/1UWG+++aZ++7d/+0t/6S/9pf/Pb/gNv+EZwLd927d9/PM+7/N+3o/2d77iK77i7d/7e3+v/Y2/8Tde+Jqv+Zo3AP7m3/yb7/pVv+pXvf3iiy/a+XyWb/3Wb33/3//7f/8//epf/avvAX7Oz/k5r3/0ox+9/Yt/8S++/MM/TPuWb/mWTzz8+Q/+wT/4Q7/5N//mn3U6neR4PPr/7LEvy+J/5s/8mR98+POHPvShN/7Fv/gXt3/n7/ydF3/4B3+lFP+2b/u2jz969Mh+wS/4BZf/8l/+yw9+8zd/8+f92T/7Zz+x7/s7fqw/1dY7/uBv304kSeS0kDVcRE2JNN+87p2UFMkaToIYkgo+enAgRptMGomWLHeGeYhhTdFKZgdq0gkr9dgEIMC088/T8qKPCb4VwbXiSWKTyuEI3d/fsawrkiKOgYCnylvPTrz2yVchL+TDiyFAxyAnno/1P2zGYZQaSERAeOC56KcdO1GQITMyIAFsLRkwxuhkwjkW7whjjmo3RBNjhBh3ZrSG2fZFQtKMzjgwW8BMYrxfFHQQImE45g3tnWENqfH85hxMH0KTs++NOm/cWTNGvIYOJISkHrlvgYFj9nCBeDjUHmLFvOPqBJxcg/nRjVor5kYuAVWOiAmc9hNOJ6eCpIpDAH5TYgzloc7dZzOZzsiK5hQ3dHOyCl4S275R0krbYL15gbff/s+0/iajbXA6kNMjSqoIN+xd0DWe16QJ2o4M4bje0Gis9UgqhS5K28/oyIgO9nHhqAnRhSUvAUwvCccDBO6FmgsXTTQ3ei342BDfSZpx39jODTneklO8N5IKJSvWd5IW2t6gbXjv0CaHyIW+DzQrqyqj9x8GOg+H0gWyhQMsI66nEPUt4NW1As5w47As9D6CHdMHkiPKVUpMS/fen7NIiibafsFto5Y028gi8mREvCjniDa1vcHo8d5Qm1a6Yr2DR8OgWEDGJfDp4aD5nHCgxwUZJwqGd7InkBFRmRlzcRugn544YfJ5jrOZLH5euKaIkyQzNM0pj2jeG8ORJJM/M91XgpEkEjEQ5n9Vc3I3MKF7OLQpLagqasEcGW54dwSLg6E5Y7Rg9+Q0WT/xJhrDQSN2NsxBhLockCy0yZrR5LStk3MJF9eAHuKvritOAJ6XnKg54iqjR5wradwjth4MoCSKJiW7Bti9RUwmqdLboA8noyF+9iBzuw3WXFnrGpEUTyDC+bJxc6gseeHULjy+fUK73GMSP8daNOtliYZQs4AnjyDlsxWhOxPSLtHIt8Uh4Lzt2A6pZLIrZIkmt96JaaYEkmlt0PZGTpmlVEop7G2nWyNpouSFuij3l429nSnEvUxUZuQuru2Uor3x/rLFdS1KLQUbcZg+HA5xYFbnsp051Mobb73Jo5tHlLpySTvn85m6VA7HaM/TkjhvJ0QqZam4xiRFH2NywpSUcjDAstBTYb9sXC47ozVKzeSSERfWUmHuGykV+t6w7iw5Gh/NBikl8prp+4Akcy+ymGCxFpwbh3Z/j2Qhl4KUzOjtnW7v1/XjvK766aqfrvqJq3666qerfrrqp6t++imwvvd7v3fpvcsv/+W//P7hv7300kvjC7/wCy8/2t8ppfDrf/2vf/Nv/a2/9dLXfM3XvPH06VP9ru/6rhf+8l/+y/9vgH/37/7dcrlc9Mu//Mt/9g//e601+eIv/uIfMUX4C3/hL3zezvt5n/d5O8AnPvGJ8sF3yDH8E3/iT7z8N/7G33j3D/7gD9Zt27S1Jh/60Id+ROPvhz70odMPLyb5Fb/iV9ydTif9/u///vr06VN9p4/1p9p6xx/81RwtTUl6AGo9xme3bZvxiCnUVMkEDFUkmq1yCk5AViGnEGNDJEbQu4HkuakBkhEf8+/HGzc4OBIsAYKTgUTTl5syujCa4WkA0UB1e3ug9Y5LYhuNUKOZXG+5XQ80G2xjBGsjEcLEY6OLzTgEg1sHZDJkHp4NiU3LY/zdZiOXW6e3jYcW8BCmoOIxlsxMfhioJvoIF9w8IN0pKUpEXNzDibQR4FaRKaTFAuY6W+YEmeK6TacsOCMw4wNAWQMOjBfcE6oO3lB03gTnr0w4rK4yDw1Odie5B9wXoWWZT489hxq3sdOK0vpANZFE6KPjHhtRG40+ttjUPWDGzRpiNr93/DyXYNzEdii4DfZ9pxNtS+5K7wqysq4v8PpbPwBaWNfC5ezsvWMSlfTpcAixZsEVslnpfrqcWR89JqXKdn/P2E4c1gOXLlCUkit1vWG9eRep1IgkyKC3hlPIWmhbY7SdR4+PKCdwQbWy944r3NyuDB9sfScnp+QcHCGJTRlJ7Fuj7o2b5QgWcPechJwTmjINo+3hKKsqzQc+wp2SeYDx2bomqozWaB1yShH3cJssJRCfvKHJhhndnr9+qnEF5RLhDrPOZdvjQFMzo4foiea7HFebPGCn7fk17SIM7/RhiBk5zSkLCcGHGSmFq246Is6RCgFe7yHG1cMJFwLQTUyFjHn40yRY64jEgVVzRggR3k3pRjjXCTwlsDqF7/5cvIJFXGtIAPAlzecnrr1FBdNEG8boGgc8bwSLPa5DgNb2cKxLRXKfEbaIHUCIfxtjHswSwzzg8DanLoqjKKnkyUnpqChLrqiOcDx7OJTeBllHTChMceQCMjk807ZHTYnQAtHcSaLtg97i/tIE1CBLwX3Mg4mxs2PdSCJsGCbC/XnDxo7mxM6Zsbdw6cXpfUckk9LyvMWtlrg/DhuMPGIqYm/YPoIH40bOMuNmHmJtROOiqlJLZdhg3+N9aqaIRzOcGCgajXuT+XI+nWJ6RxNLSdA70fiZ5+SRBw8rxXPw+GbBgb43siZaazN+J5y3M3kpLGVh3xqlHLhcOpftjmVZOJRDvH9waslszRmUmcaL68UQUq5Yd07nM0kKqWQu9zsuSk6JeiwYKyohVBkOe2O400aj5EKtK0MHrUeUT1XpvaOT2dRHRLck+YyThVBX0RD4OdEe9pofVjxwXZ/bddVPV/101U9X/XTVT1f9dNVPV/30f+T123/7b3/91/yaX/NFn/jEJ/Lf+3t/7/G6rvYVX/EVTwGePn2aAP723/7bH/uCL/iCH/HJ6rqu9sP/XGt9PtknDxF9+xFf8qOuv/SX/tKL3/zN3/z53/RN3/QDv+JX/Iq7J0+e2B//43/8ff/qX/2rd5zf/kwe60+19Y4/+Gvnt0laMSkxgj3i95as7KdGXgLC2rZzwJO9oKbIiOjIaJdwelOBCbSuWtj7wKSRy6zRdmPM8X7UMOuoH8gp3Mved1SDw5Gk4xLOrnajeHBALm1ulETLj0/h0w36AB8eURKx2dwVjBkbECAXQ7Dpuk1n+oE/AZPHM56LXQg+h7ix1BRum0wRogFrjk0sgLNLXQKSO5/b50b8CDisisRz6c4wyDp9NYuISJKBknCPDjizgViItmY9LO0R7o2oYO2CSAkgNyHUg4Fh4YC4YR4tWibRkBcCaYAEK2Y8593MOEIfSAqnTUUZokjKM8Iw28k8fqfsREWahYOHQ50CQjwOKJ4kEhAmwerxaBDTVONxjYx0JVcw38E6jw4voekFcNjaU5ZS6B4xnct2j7bBoYYw8KWwPLoFEdpIXPqgHA60/RIQXl1IqVDrkd4MGx0SLAtghhalN4/r2TtvvvE698/e4l23IUTdEuVwRCVzt19QHeSU0JLZtob1wbqsbJ44deP4ZEWWwnnfwRoPp5227yG0COEXuicOJyYOCcTiuhxTGJUUsG+34H9gEYXigSPjxPOsStv3YKDMF8jnSENMYGRshPjMtUSiBI+2yTnJoUlmNOWBMxOuYJoC02YELY5EhisMA/U0hemYLnzEd9R7MF5QfPSIwGEsqTxnFcVbPISsSwoQtcfUhogwJCIWRSSiO+IMcdxDxInGwVpEEHPijiQULxhOp9HndavqiI3pasfff85oSQWDeK4nkaa1gUncRpWHw3dMdnQbKJlUEmMfk5UVHKo2NtwGJVdszINtmk2CUxy6JUpa6d0QTUA8JpMRxQBuJA/2SvcxhwfyvH8oo0fbn4qSSqH1QZ+RPE1KWipmnc7AZcKgp6hMmiZA3/E+WGqZUOuGe3BxdotIi7lTa50xOyguLA5ZlDGd17Rm+uUMJqQUbBuz8elYjydyCqfakZiIykBR3JVLa/E6Tr7Zk5sXuOwbd/f3QGLNCbGYshBVeo9DncLzA/y+bdgYtKax+anQ26DkldGN82Wn5MJwoeTCshb2vtP3nVoU3LicziRZOBwO9NEZfTaxjs6lQ83BrBESBmx7CNI298sHJWPDyR4fbgS4vc73q5KT0HtHklBrZd/3KCUgOGcisRuNDm2PCYpDjgOY9I72QVkSkj/rrOfr+jGuq3666qerfrrqp6t+uuqnq3666qefCutDH/rQlnP2j370o8eHKbvXX389ffzjH19/8S/+xT9qzPVLv/RL79/3vve1v/bX/tq7/tE/+kePf+2v/bVvLsviAB/5yEfOtVb/+Mc/Xn88o7If/ehHbz/ykY/c/aE/9Idee/hvH//4x///ykG+93u/93h3dye3t7cO8M//+T+/OR6P9jN/5s/cX3755f4T8Vg/F+sdX9mZPp3KHRx0upg2nJQT7jt9s8nOUPrWIdXpaBV0tBhB943hQk5HUqro6PG9ZMEtoySKJNQEHwNpHbgnetTCRU42yFrwyxnJBRENF3eEw50R2vmEqLKWSjcYYwM3fMRNO5eITNA3lIJqpo+oa0cnfFssxCRz0yQ2B0VQDfCqezh/SQAPwbbtDXNBcgq31DpFc0B8AckJH52cK32E0EqqPICiNYHrZNFowIfDPh/gEwj+nD8TY/+CUMoUOzI3fI1NcGwjGr/oIYAGKEYWC8GgIRb8eRufBIR3Th0YyvAHtocQDVjBnlZAizLGBP8OY9gIToZ4xHg0/t0lgNgiQvH52HC6hWBpPpChSD08dylLiUp1HyHofWzgF8x3Dusj3AfPzq+hCQ7HA80qB71h35/A6ZO4DXJdWeotO8ZmAbdlWVkfv0A63OIMGiBNKKkg3ujbU+wyyLUy2mApC7Uc2C4bb57eZB+N29tHjP1t1AQjMaxCynTvSAvOxraHCMrpwNaUs4HUA5Yrd9uOkUkphzM7Olmi7ay3gT+IS7MJ+vUAxFu4dniwe877RpZM0cp5a8EESookDXELJE2M4XHtpBB6Yzqg4hGJKDlR6w1op42OtjicuYMzMA8RgIYsHTbFkoerHmLW6GOEABWJ9kFNiBbcbHrccWBxwrQTC0cVotHOiDxWtx6/y5xuCbkxIwkzujXmpItIj+kH65DydKN7CD1iACVSLdGkiQf83jWub1Qgx73Btx7vd4/4hGq4f603HMU1BKgg4AORFdzpbQMfaFEkh6NuQ/Ee7/uUFJVBHyO4NAJ9xKFYs9J7oyYNN3xC3s13REe0eDLPggSMWjSmOlShpHjvoRYTLMQ0ybpWRMPFNAk49MUaxTNFE5KUlBWSM0yoOaYpgtXlDI9WxE871cF4GeaYCcvxGHD8EbBlXGFrvP3W2yx1IS8rI8Wd53C7ggu9GyVnDkvEOfo+6ENDNI5tHqJjEkgEcqn0Hk695niffOKH/hvrulKXhVpKHIjcsRlNGt3j8NviNex9JyWoS7jsPssAzEbA3HtELc3igBlw/EFdK30I5/MZcSdpJkuC4ezbHs/F6CgxgdG2O8paGa3hknh8+4h932dLYNz7dMaJHOZJhTnRpGzbJe7ltdCtse87ZjFp4nPqJWmmpDkhJAJJ2bJTU8Wt0zCG+pyWuK6fDOuqn6766aqfrvrpqp+u+umqn6766afCevHFF+0rvuIrXv+Gb/iGz3/ppZfG+9///vYN3/ANH3golfkfrd/4G3/j63/1r/7Vlz/+8Y8v/+Af/IP/9MO/51d/9Vf/0Dd8wzd8vpnJr/yVv/LuzTffTP/sn/2z28ePH48/8Af+wOufjcf+wQ9+cPuO7/iOl77927/98Qc/+MHtL//lv/zSv/23//b4yiuv/IiYcGtNfstv+S0//Zu+6Zv+2/d93/ctf/JP/slXvuqrvuqTKaWfsMf6uVjv+IO/JUMfO3sLbkBJElXq/rDJBEwze0Jk4L6RcHCZDtDAm9BoAfj1DTszR8kH/RJMCKeAPIi8TiALKrZHDCBLwocyPEGDXk6YGsWFTGFobIAlabAPtguaFHGoOSrRcWf0DfMLSzqgJC7tniyVgc5Wphl78T3+H32OocfGDSmEsAfMWlXBQggelsqwEI9ZZw6EAd6pdaX39uk4iY1gGRAtTq7EJtOj4j3hscF4bEguzi4LSGzeEVbJZASVaAiTGX9hOKMPqsYYeC4RJ7ARjltszmEhuzoYdLP5vZ0kFs62hUvtLnR5cF7CkdltxmqmaIV4XGMKa5U8X+P4XqRwXYIppNEkZgkxo7SBYGQ6D5AcbQOG40nxkukDRCuqmbv7H+Lp09dI3mi98+b5HiQEVMqKjYA89wFJVpI5h5Jx7+T1MV1W0k1BuODtTGtnPvnaf0F4nawLL7z4Mk8evxeG0/qFsW/UWnnh/S+xtVc5PXsWgpEYY7/cv00W52YJIDR9gA2WeiBJYbsMbg5P2CxT8gq5sk++kbuRJCPG803VmcyTqVJV4tAilkma0SK4NFqPe5lLOIFDQro8OLziBuazCazQbTBam9GCTpXZ6LVFE5hPEJJZTJGYebyHRKd8DtEknlEXkDRb0SboXRNDBdWM9x5cEx9xDZGQDEjD2KeIzKjkuGbFI2IxBgZzlMOJcRIF21FxNE8Wkk8nWA21+Pnd4igiPlAp4cpLiOSw/OMb7/RoixRFPWDPPsWApuBqhduZw2GViJjhQh+DIhK8IrsgQMmgFEiJbQ8B/elrH1QiTpGUEK72MCUQjY2achxiU8XVUalkVdo+QsxKXCs6Dy2YM+gxvZOU7iPg/+7RyDbCrVYGre8hBHOJJsMch86qZQrPTl0LZk7VhPdG80Gpyt4vz+9V8fgWkEyfubuHTrSaEn0fpMcH8I5rIlrpEuftQnxaoOzdqArsDZXxfGKhtRaFliMib8LkmbUQl6rxXKok3vXud7HvfbbWdXprqEJHMItmz0UzzIOqyCDVOJSXVKKhtBQGMQVyvL1h3y/BdZE93PB9Hpocaq4clgNJlD4Gz+5P1LVAEtZlRdw5P92pJfP49sj9szMuKSJhaX4aoY6YUXPBSaSlcD6fsTFmFC9ibXhEfnrv5JwxM/a+x3PUL6xLxanYaKgquWYutjMkohCSIzrT2/+54dQ/mdZVP13101U/XfXTVT9d9dNVP13102e03vveTq3Ovv/on7bV6rz3vf2z/aP/wl/4Cz/wO37H7/iC3/SbftPPur29Hb//9//+H/rBH/zB+j+Lun7VV33VG3/uz/2593/gAx/Yv/RLv/RHTMv92T/7Z3/w5Zdf7n/6T//p933d133d8ujRo/ElX/Ilpz/yR/7If/tsPe6v//qvf+1f/+t/ffyqr/qqnyEifPmXf/kbv/23//bX/sk/+SdPfvjX/ZJf8kue/qyf9bO2X/2rf/UX7fuuX/7lX/7Gn/pTf+p5KchPxGP9XCx5gHj+z9b/40/83733DQTqskbsoO0MKZwvG1oqKceN1q2xbSdqXaYLGm/2YR1JGi6EFi7njVoL5sZoO1kS27ZzXI+4w952BCMtR7oZniJGwYi6+b45VhRZI9ogQxBPMYJsA00pXKBSZgwDxDMlrCsaAy8VVEOQ5xpOlHswTeYeZ66zGS6gwSUXPAkQLIUkQk4x8t9GI6WMSERrQvUOIN6TpVRaD7hrwHfj0/NuI8SAKDZCgGqJ6MBaC2rhnidJbFJIKgT4t4eTQrh6Mm9+ZuFumxkqS4B1pWNi5BQtTiUVEGijARbAVlFKWWPSgAdWjIdjrWDSyVIxoLtRxVkEmmZ60JtJEptHgLcVm3yUnDJm6TkbQ2cDHyMaumgb7kLJS2zSInGyIf4ZbqS6xJg+zun0JtvlbSqD0+nM+XJmXTPP7t7CRsNJ5AStbdzcHKnLEmP/qZPXR3RXjofC+fw2bd8Ye+PZs43b47tRvSHXG9abFxAXRrtgtrEsK8fDwlvPPsF+egO/3FGlkx+iN8MoqlQxROP1Uo9oVR+d5je88L4vpLzrC3hrVHYDwWgOtl+QfWNJifXwCJuxhj46mgMcDPF0hPs8yDnEJGIUJSDAkpBcGVPoZLfweSVP1lNHrAcIfhhNDCQxBnGgyeGmisEYg6Qppg2myIPYgNUbM0AxxaFh3mnDaegUtHGoc4AxKHO6Iw5sypgMF3OfQiumJDAhzZhDCGJlmIHtgE0hncNBJjOsxXsioCe4xu+mc7zfiedLNAU03+L1iW/vwd2ygbdGLgk00R+scQ/2U9Fwv89tJ6VMSSlaMWXOszywf1Keh7+IwDmGezjLSQPM7yhbH6iG850k3Hr3cC4dQzWe+32Pe1nOIYT6g7jWFF8njiSNiRuDJHHQsIf4ioNotGu6JEQjdqE+Xxt5iI3YjBeGqO1qSBGO+cjwEWJqDKKJLrF3xxm4dw5LJktmO3W8lPgQQx2zBjnThrGWgg+jdQLm3HbEjTxFaipx3YGzLDkiTV25P51IuQT3Jq6kuIaJdlOZHxy00SEvE3Rt1JTprYM79TALA9pOzSWmbkhsbeN4s3JzU3l295SkCiiqC8FGG5zPZ0YTUi6MYeRSSEUY48K+Xzish0kJyth+oahwc3PLeWvcbReOxxtqjoiVuVNzpW+NIcZl3wLuXyo+BiUXkiZa62x9I5cJvfaIobXeqCXNpsMR4HMEzXBTF8a+gSpzm+Tr/29f+T+2Zq/rJ2Rd9dNVP13101U/XfXTVT9d9dP/+fTTd3/3d38o5/z//OAHP3h3PB5/1HKMH3V97GOVV1/90Qe13vvezjssvfhfWU+fPtVXXnnl533Lt3zLf/3ar/3aT/14/7zr+szW6XRaP/axj9323v/3n//zf/73/mhf944n/kpRDusaNy/3OeYeTWjrksg1bpxFleERS3l8+yL3d/e0rSMqHJcjTqeUFDfU5GCdw7Ig60Lfd/YWLUPLslAM3IX7tz7JejyglBBckljrwrnvSK7stpFSIUkiWUdcaO2CaiUr9O0S4q7U6QgC08Uy2/CSsN5xP8N0rOkdtRQ3DcmgBZFCmgDovQ2yVsQUQ8NJlPhn9P15tEJEyEVBMyoBtY0GJ0dSjU1Pdbpr4YJnzegAHYNSMm2/YBDixzoicNkbEPwOkXAYXaC3Rt+3cNBKAY9NCQzzHaNHVEedMWNHbiMm9ZPQR2N0MNO5SfFcMLkEODt5Q5c12rsEaA2OS9TOa/A4VMPJlLBfYASbxEYcPsw9niOVKfwTIgvdheYSr9d8/nrvWGu4R7xmEIJ/qUdulgq2kZdb1n1HkrG1nd4vZFGOx4pzQHNMG5jFAULNaNuJux7/TVwp6Zb3vvu91PqYx0/eQ16ObL3R+xYuYFCP6T4gKZ4SppWeMm3cgxklLWiq7HaP9cbNYSVpbGy2dxKJZ+cL5f5MT4mUp2OZUwByjzXE5GjhcEmIA4gWNCXYQg9OtnRwMcgRJ1hKxKqaBedGCQ5MScrldGG4UZfM2HfOl3M8x48KSz3iqbBt49OubU7BehIN0DuKpMToI+RicmoKUdo9oiPuA03CIcfhrQNYPE6SoN5n9MXneyYEpLtE26IqWWPC5HkLG8GeciCa0+ZNSaZoHpA8DpzQqZPNsW3B6VlytCfig5QV12C6KFP4qQRHimA2yWwI7Bbtac4Aa5S8hGASIxWh7RtizpIWRIVcg2+F2XTYpxOtMzrGnPzo8TsvKQ6DErY2Zo7RECvkrBH/G4OcA3Y+Jt9ndmSGEy4hMiPqEGDyMSY0XHVe84OaKoZOOG5HpuAzgzFh/4l5v8oV8zFZUM7onYFPx38yrUbEjSIyExDt8+USB08/zK8JPph4fM/Ro8EyeDtGqQlEyYANw+IMi5uhrvF6qfPCi084n8/00Ug5Wh1F4mCdIHhaKXHZtrieJO6VDnE4drhsnZKFmhcSOlvzFKFwf3dmu5xJGXrr5LREe+B+5uZYeOHmhsu5YxjbaGynxnrIuO9kgX65kHOl9TPHdWG0ndP5wjY6ZVnY+6BvDcwCyG33VI37NVknSyxusD56HNAgJoj2T3/Y43g42G64dVItiAWc3X1w2U4UTdjoSFZqLe90e7+uH+d11U9X/XTVT1f9dNVPV/101U9X/fQZrw9+cP+J+GDv/3d99KMfPXzP93zP4Zf/8l9+/+abb6Zv+qZvej/Ab/7Nv/mtn+jHcl2fvfWOP/jbewOHbd/RulLXGwaJOnZynW5l67GJeudwqOzbPSLG8WbhfLrndj3y7NkpQNAmLKUyhtHbwOgsxxsqSlHl2dOnrLWy1MpaE92N1htrSeEU2c56VDbbqSmR86Bdwj0Yw2NTS0a3QakZ6+F2adIAnk5BlVxQyySNZip3w5Ni3hm7RfwFZaCYJjRnLlsn14pbi9iHh/BKSZAWN5fdjVxqjD87s5koY31HJUXDk4ZwF4soi3dobZBzDedkOO3SAuJbCkMbZMX2e7IqpSx4jzhKuFcPMGZj3xsPjXPDzuGa0Rl953xqqGR6G1GbnnPAXHOwcEbfYjOwgeQ0obPhyK9zw1bzOITkhGJcdqNjlLTS+iXau0a4SnlyNNSEJAo5YaQ5Uh7irI+IFnjK8bPVw3kjuM2DOBiJRDuXuMJo7OPM5XyOWIMKvndUMrWs2DgzrIWTOuvnyxKQ15QTN+mWVGLT2C6N0+mO+2d3rOWO/fI26+EQm9UejB/VaNVCg9HjeYGbzHLI9P3IaA0zoWmh5gP7/VNOZIYWrO2gBa3H4LeMhkijEg5iL8L51GlayKWiKVrl3CajyJwkzPiXIUlIBNzWBZiHgawlDoO50NsAM8bYac04Hg5s5zP9fuewLJQXXsCAizd6i0PIOpsQ+7ZjJbgouJBx8IE6DBmzYTIOPd2cSxtxmLXY4Nc1XGY3IyGsTPfdO54kuEYGqQ8ghbPsofvwiKnY6PM96c+jFjUvzDkS8AfHdEYbBLIAY2e0RlWhlorRcRvUAqJxgHPCXRZnNmXORsSUyS4BlcdICubx7rmcz6SS4/DaO0vO09Xv+DByjXuAeQ+xKxFvCch1imvGJF5T+bSzbW7PndhEmg2NQrd4XEsJsdsbz91iM5sOtJM0oOBSMmie0ytxQM+aQGNqyK3PaYBBSRKTEtaD/YRS8g3baSdVodQVhnDpF+77FrBoDf5LJKcc1YFoQcjRCuqQitItnv+U4+fHxFI0d0bEiBmxiYPLmEwaTQt1WdgunX2PWJCx47tNl3/GuHJMXjy0TeJGIpFLDhZNjmfALQ7PhiIaz3Mb0dg4XBnuZM2subK3M+3cOBxWQDmfThxK4f7pfUSthpEWJ0mjHl7ExsahLvicVFAXpCxcthb3f3O6P7xuO8d53UpKlJLw6UJnLeB9TjfNyQozHgoVAHItcXgw4wEcbm7s245IimZENWQMUkpUCT7a8wPedX3O11U/XfXTVT9d9dNVP13101U/XfXTT6X1rd/6re/92q/92rWU4l/yJV9y/0/+yT/5j+9///s/67Hi6/qJW+/4gz9HyKXEyDOZ1o1cFkRTcCxcKLXSrGEIRXb27RROhW2UaiQuIDvdc3AvcFJdEFGWWulm1KUGbDRFLKQ7YClAvVlnM5FiHbbhLOsNfTjtslO00LYdzYrNMfpaU8RAClgbDAXN4WZ4wFTCeZ98B01CTuGa7VtAelMp4ShgaHbwjvVGKZWsKUSRe9y8d0dYAojhjvkWLXgWoOPkjno0isF0k+fmZRBxDF3Z8IgoTIe+UNh9oFUR37EB264IGSUzumDS6R4Mnhivr+FgjxHuTlaKGjAQn/EKBgnYx46bUNclHFxzctLYXMJiDMHEoK7C4ER2AwtnTEZEdsR31qzgIToGTEYKIUYcYhcB3MklgwjDGorQ9xMOpIf4zow0qEygtk/Y7wC3HbFGloFDcFIwntwcGWPntHVUC8NaQMWThJgYhm0NSYU+2T+GUJZb9v3M/Xlju3S27UytNZ6/UbkMR/SMaMQf6uGG3Xc2m81kKTYmT5WnvcP6BENwKTSUw7FwajEpcb5/m/UAOU/uyIhWrdac8+lMESVngRSuqnhQZ8DY9ws5p087u6QQPt0gJ5oNrPunX8OUkQSXtlOXitYQPs/2BjnhWsCd5ME/UVHqeuBiNsVKfC+3jnqIhWZOH8LwaGvTEmB5H4J4p4iEoLSHdkaeX4eMEUJAhTTB686MqBAwbC0KNmHRPqMJFlGq5yueSlKKiEcIwvgZNQfAu/d9Oq3B1WFGQRIScRwNthMSBysbHXIJhpQJLiPeowkOukSsDqA3BsHdCc4MtH3MiQwoKYNWxhiYhSvt1qOxM4UbH47vbMtTifeYASkOIaLBk3Fm8xnhxCLp+WNHwb0Fm8oMJaEpxOLwEEdm0Sw4vzjYODkj87pSlH0f7NZQFdponC73iEKqma3vlIf3jgUkXJJG3Ejiw4ethVvcR6fmaJRTkfmPBqIlC0YAxeMeaHH/mtdK78awPdpJcVQSIpneA5xtA4J5k4PPkhIk5bJvSI9JnpRCmMtklT2A0ktJ0RLpRu89YNEPEwRmOErSwr5HmYCIYinDWDAXhnSwnd0ayTtt77hUWmssy4FmRkmJlEJobvvOcjjgrtysC9kj8tfFGSP+iQZHwEZA1j0eh6vQJ+/MzaEFKL3WOIy2vVNqQed9SHFUA+6dELLCMHs+7XFdn/t11U9w1U9X/XTVT1f9dNVPV/101U8/NdYv+2W/7Pzv/t2/+w+f68dxXZ/d9Y4/+FMt9B6bZ6kr532n4xOomlhyja+5nCglkcYgiTAQSim0y85lh9sn7+Lp+S4iL9Y5SOV8uafaCEcoZbwuGB5j/OagmXVdATid79ndSSUzrHPZDPFEkkNEQMSR3sBltpgZ59OJui54mjdO65+G6RLZ/yI5xohFaD1cNvHESB7MCndGb3jvYB33jutAyDBsolRCHLqH23g+b7TR8dhB2Xuipjy5AkaphcZgGOF45RTiMjd2BqaDJNAuF7Iv0HdAEG0UzSBK0go0zuctnF0TYpw8uDL75RLurY1o5FMJB5qAGPfd2HtGfEZ39jNisbHIHG0X1+d16G0I+RBA27UcOW87w52SNowE3QP+2iOSAFOWOLj785axDMhsu7J5kx3u1BSXpFlDLSIReJ9REcOb0i97iBs1VDpFQxDvE9aqCrYPSjlQa4gHzQISkN6UMm6JmleMxta24OpI4d0vPyZZeKi1FFrbaX2j5MLl3EklgRin04b0gN6CseYFl8FondEdm2+tMQzTzBAnkbnY4JCV0TacDaiIZrz78/YvLxlNSttbQLmJ6EhKwQyKKQRD3Wd7WCelTFYhjR6CL2tAoM3x1mAoOSe2rSE6WA9HUgsxgsnz2EO3Th9OzuW5yDOV4LEDCOQSDAx3Jgh6ws17gMxTjliWeTxeMwkeFEIpFUbD905yQarO92qwawZxfQym4DKbMGafYiSuIwfUeH79iCZUlCQgGKUEGHo77yA5GhohRKsopgFQf4iRBFRbGaNj0wE2t3ANJdG6c1MKbexkmRMvksKtteCauMwpA1fcFPeENSUlJ+lg6MA13heDjEyIsoh8mhMzn4uI8RRI0McFH4RAno/LGeQcrC53yCnR3ekT8J2I7+0Sz9dzAS2JYcIYcUCBgpLIOmL6YBg5O6Wm+HstxGxSRad4Zh4ycg4GTM5l8ls6Gj95NssR0zwQ0ltt8qrynKyIyFnKlVyFTqNboy4xfWDdOF86uRSsB4Q85zxF7UPzpj4HO7t5HO3m3pNSgMof0E6xj8X9b0kJUoERUO19N+7uzhyPNzy6vWFrA0uFkYzL/YWSMsvymO08W/+EEJtaOF026rKwbxvdBt17PI8W15+mwaKJlAomIUqzKFpSFArMA4R5sIZ0ThMsdeWhWK61Ti0Jdcf6TvISAH4NaL1149nlnpvDEddo14sChOv6ybCu+umqn6766aqfrvrpqp+u+umqn67ruj6X6x1/8FfXWxaNyvU2Bq13Doc1xJwNxJSx7SQBMM6nM08ev8j93jj1RqoZE3h2OqO5UIrSzhv7/T2HtfKuFx7xet8YYzD2C2VdkZm3b6PR7qMKfUxuijkMbahMJ8OgrAtt7NiuHA9H1GFvW7QJlXCu67zhoeG0GjLZKTF+H5BQp0q0gj3zM0gwHaoMMsKyFprFzbW3DevhopRcOPUT1gOw7KOzLDGa7RkY8TOH7SCOZ8N6jBerSHApxGBsJGtkH0AmP6osdWF/447RBrUU1IOFs40LJCWVDN2eRyr2fcNao3hj8WjY6n3Q3LESG2CqlVoW3Fu4Iz6CryPKkIx6iHB1RclgQk6ZfT+hPsj5AEMwEZQzTsJZ2R7cpAzZo7pdmG6bCpI0Nl8xxhzZLrkiU3SLGCrgqtMVNFBFVUlFKJLBBfOdvQ1ab7h4AMmJQ4C5zkOEo5om40Q4rAmRxHYe7JdGSs6iBc0Z6WfYLkjKXC47HI5oKuRs9L5TauJwUFSNJReGCwfPCBHZMAsxoyrzuiKiLSORjxVVo1+Em1xCDNqO7/doXUlaKDXRtjtySjRXtGQGTu+dmhO0EDk1L2gKwoprp7UtxKA5tg2O5cBbd2+xM3jh8S2HBJdnd6z1hptD5Tx2/HKHXnYySk01XL+qLMvCrhG/WDUOflvrSK1zSmKj1BxuqQhFgvchSBQ16iDlcKBTVhgBfr9sAVhGFU0Lsuo8XAEzuhGCbuAK7gqueJ8OdpCbMR88FBLZFLROOH/dR7h1vXFpg7qu0YRGHGLNjZxCKPe2Y2rh3kq8XiJQS548m2AkZU24C6ZC69F8hkDbd1KJ6Y7hs7UvBRw73GUH30lqlBmdGCOmUjpCmt/f3NEpwEJIxkEEBOsR/xMuCCspCcM8mFJ5HrxdGL2TS2IfHZeEqjLaiPd4iT+7AxKNlUU13i/zeQwRm3AflKU8514JKWDyNmKaQSRaJSPo87z1Mj1M8yTBZKH1jZTiXqoP91eziCh6CG3xgWscvPbWIkozGV+qKaJzmrl9tHA6nVnWSkrQeiNg3pnWe9wTUorrYRjNWohsVdQhz38XYDufOfWNnJRUl+m+G40Qi4+fPELInE7ngJu7kgt84JWXOT27MLrx5NG7UdsZI8e0hgjb7rjt5JxZ6kJeF0ZrbPcXjjnT6axLDui0x6HYu8cBQ0GLIJLY9zigp6QkoLXGdtlZasExxmgkGzw+HLnsG62HEy8SDZFrXVFV0DikMo8Z1/W5X1f9dNVPV/101U9X/cRVP13101U/Xdd1fQ7XO/7gb9t3trEHD2AplMn2YNadWwvxo1lprbOuidbvZiOVYHTK8UC7U6ouXPqJ43pEJEaNX3/9TQ51JQzqxP22h+AbTvYYrY4ISqZdNpI761LAhFSCwbC3M6LO8bjGaD1x40IG9J01xdh8GBhOWir35zPhxSQ8C1pgbJ2qwX94oS6YKZvH+LR4ixuiRKObp2iVS65gxmFdojVK44atBAPCxOkygheRIkKAGCoBkkV8NmVJCMnRKKI0O9NtA7uQUyerkkY8NhVnrel5Hbsg9NFJQyPCQUfFsO0+xsUlNv6cEiPB8I5KwT1Gxc12nD6BroZSY5QfcN+QIkjayBotZ63vaC7RYjUMtUbOsO8DciYRzVJiAX1V1RijT0qwIyzcfTxcRZPwNVNEU8w6o8fYeTjXA1K4oSSlNwnWhH36Om19p4+AoY/ecPdgOLSIQaQkqBiaE5oVbATvoe0kh6SZsTs362OyFlrrLEtl852UomFvjJ26FHp38ETJOZykGcWwEb9TkkpJhdEfRtOdFx4f5yj5oKiSdGe0jc0zp/OZdjpxe3NDWo6kUmEIY2+MHcRDfKuWAMTLBHh7J6fJ/xFHfed2zTQT2rNn9DYoLoz+Frbn2NgN7LKxaub+/rU4UCwZr4mcKjkv0Ab7tmOi1NtbSlG6OGW64vO3JBGvmxEOfRseYOn5khlCLgFY3sYIHkmMMPCcwyMh3lxkCtkphmeEIwkY4T5Gg5rM/2mimpWAdwvkZcFQhiuuAZMfZlM8OuIzCpIWhsfEwQNLJzhS7bk72/eOzeui9xO+d+qSKbWAhPu594Ymx2fkJK5nJSvzkBxOdnB44nWSFID+lBwlgOIpJdo4gSRyioOzOlQ90D3H7xw3NXLyOcnQpxsvZHNM4znRpMiMpA0LtzulABt376jH+wGHaNxLFIk40T5GxBLd4hBIAoMuAR4XEVobLFkJzegBzU+F3lvEY6ajO8xgthlG/CZg3+4W7z8VEo7oiGiFZNo2Qsgy2MeOhtRHZyhr2KDFdyFpsI1GC4ZalhnhmPE/3JEhZI0JFGoOyL7F9xlAzjMW2XaOh+BWnbcz29N7bo6VN974FL05KoXehKIRpxMi1rhkuLu/w/MNWQbdd9aycntcsT2urdE7QwzPibWsGJ29b7Q2WGullIxo53RujPYA7ndqzqSkbM04XXaKKGsRNGWyxKGttY6LcLy5iUY+jw8Aemv/q/rguj5L66qfrvrpqp+u+umqn6766aqfrvrpuq7rc7neeavvoXB61gLeWhOX+zP94giZIjl4BSWzD8Msc3s4sF0u4RbmynDHbUGTA8rtzRO2tuNJQRMDYWi8GQeDsi6M5mQ0GuNmjbqPxrouSO/ktCJZGKOz7QETfeGFF5FhPL27ex5R8LYz2pmihSqFw3Hh1bc+xWF5RGJjTUdEF1pyLuPCNi5oWXGcsTHdCTCJHXVrjexCtw4SbVN764gJ/jBSreGO2djRlKlVSWTMWoz128A2Y8mJpMFtcB8Bexahz+cyi3JYFqwPxhYbTtLEtjeaOYfDylqU3gwZRta4cbsmhhm9depyQFMOt8yNvFaGG8MDSo0GEyZLpXfIGm6ZElwLV6dbjOirKzpH4KnRglVUEBuoGFkcrYPeBjmtbH0LRz4bOZUY4SbT7ndcBa2Z1hv7tlFEkRKuZieA0jYgp4qnGHhvIxgaSAhWMaYrHQJ7yEDyCFfNgl2z951SlgAYa6Ek2Pc9hBYevIfJkNi2nVqPNB+IJGBwPm/xXKYRrWk5gOXowE1oZiiCmZOTBHzbHBVj30/UVJGkNBc8h0PvGH0MxnbG6Rg3+OjcHA/RTLXdgWVonWrhIOZSac2ARPagEwVfZzZTkalL5dJ3FKcipFRxDbD1tj9FWocuaBeWpCyq6FLDRTRHWqO3RrOd2hraOrlUaBtdBzl7cFByJWrkElIXTgabCuaKDfAkDIuDSaqJzU4YIyIKI9F7IVGQuhHz+IJIuIvxBG0IY4LADRchabzOrXcKaR4ILaZA3CE98JQCGN/6QBLkCZ7PqcyDUPBKtvGAhYmogBu0rYUIhnhMGiIAV6J/Mg4omkpIW+sUIl4y5t/qDy56qCeGd3rruAtqiZILRjSJPbRS9j14Ijllhj9EhwYlC0Uzrfv8b0bOcQhte2NYo9YVlRBrfURsJ7hGPdoePdHsYcynsyRBcUQ0oEQi8/e3uA8Rz511j5bJUL7BCyIaIxnE72COa2aMkPpJnSQpBK89HMYnPkmdWjNjxEPxEe67STC7fDJpcCGJYbZFRCsr9I4DKhkpMltRx4wZKZ7jNW33PaZhPA45eTrXozc6RANcThHjEOhD6B0UoaQUrKzk3NxkrCtt28kpoymmN9oQuhWyKodaWGtm7zuHVSAXZEZH2nYm50I9rqQt2ugoma03xBrJB7fHI1trEbE0wzwHt2keBUcf85DQ8MnMOQ3n6VvPONSY+hIVhih3pzOnvUeZw7qikjjcPvosSITr+mysq3666qerfrrqp6t+uuqnq3666qfruq7P5XrHH/zd350xg8t2po2ooF/WFZiV9E1wDVfBbbA1Q8pCO3cWDUfv9PQCWRhiNBzRaDsb3kk5c2ob3huSoEswYjKZWhYsxXi0m6EpBJNvJ3Ip9G3jyVrpffDaf/0vaFb23nAZHNcjpWRuj+9iO2/YBumw8CU/+yP82//wH/DmOBsujYsbVjLdC6een8ccVDM5C/uIVrK+G02cmhZonaSZPfXgyiqIKFnjJtRGI5fEOJ+pdYmNGee0nbk5HikphDlEnCeXGBmX6WOZG/tpgDtFF5ZlAUDqIFsIlqRKd+GmrIzhNHNyqZT1iC7h/ow5Lo6mYOK4MCxiMjFGHuZgSg8bleJp5ghE8YmyXlKmWQMVVDV+flJcDXCG7JAgFYfUEELkpiSIdOg7SRek9hCuJeDC5IL3gSTHdDBsAB3UUe0x5k5smBCbXtL86Y1LhaEKXtGR0WFkWsQQzMhDGM2gd5pYbOgquDVwp7VoSjcSz+7v0ZThciLlgAg/ur1lb529NQzn3I1lqSCx95uHVNy3jqQZVxDh5vgC1gPeLilEdiqV9bDQ9kGnkcoBaZmxJIYIozXEneqOeiJJPNcP4lg1DhfeG73vHNYFakB8kzt9Ti4IHtrJ7Pl4fgQQcoDDzWlJyP3I5XKJqEAWtjHoOOvhyLp2kHDXHENMaWNEx5xmvDdyiliOJUVLpQ3jvLUAy4ugo5G9RaMbCTPBuzLE4hDk4doahoxwUsOZB9XB8B4NYzxELmowXdzjcPHgvirgfU6QAATLRB/A8yP+mzg4QjLDvJPESYQTbmbsEu9h82DuIELbO1UyhWii69vABYomshmjtzjA5EzReE+LynSNBUmBxLYB4o3FA469Ww9HuMDujdwzJiPiKtoZIjRJaAkGl3lEMkQcNKOa57Un8SEBMb6hOWMSHxIMd4YP1iXhI4MrYwpVRPHB86kAl+AIDfcJRIelRMTsuQPMfKotpnVG9+eNnrkkkgodwA0f8YZNBDvmfG4xsfJw0NM0G+cmQ2nfKWll79Fw2vdGLZWcZmHBMEaPWJMQbJZI3AjDBanR4FhEwG0yhwSrif4gpHt8ACASghXriDqSUhxorYMKWRbS5G2llFiPldNpQ9OKufP2s4371GYcaImmxpwoJXPZLiEot43qg71taG/c3d1xyZllXZARkw29R8vk3i6Ukp5zf7Ztp6yVUgvLUhGgekafCI9ubrjsZyTBGIN1DX5czolaMr1vqF/h1D9Z1lU/XfXTVT9d9dNVP13101U/XfXTdV3X53K94w/+RHfe/eK78XHL3k44xrJWTvd3MbabHNdgmixrpW0nFOHxC7dRdf/AkLFOswC0Bhg6HG8RgZIAo64Luxm9Dcbe2FOMcQtwczhyuX8WLqkP2nbi9njkdDohIrzw+BHPzhdubiqjX4gxdEHzSrNGx3ntzWf81zeeovkIEhX3RszVa8khqAhn2L3Se8Ns41jSbFXLtNSxMTjmhb431lroEptt21u4JiM2k2HOenMEJ3gSuXB8nNnbTtujFW4QDUMPjplIVJkvy8q5beFkzLaq5rPFSKAewp2QlLlfFTWBDjY03FxTGoOUFZ0AWQFSziQP52cQbu3DoaCkjI9OqhquqhloJqXCpQXDZlkqW9tJpQSjw4IDMyJTQUpKyRWV6ZT3BiLUGt/bUvB00pLwblASSRZ8RFuV6kDTMje/HiKiLAw3VBPWGlkzlozDojSBrhlQkgnSDZE9uCQ5s10aoom2d9a6xGOyjrcOClUFa1EDH7Jp0H0wOiQV9v1Ma4YZAYTVqKjvvSFDw2kTZds2NCklCSaQU9TGP727x0VRFbJWaonGqnpYcS/U9ZYEuBjqhtogmc9NPtoKNWWSGrhwbhfKYUFl4dx6XKtEHGbRyRnRYLt066jGNRZRimA9eQKWwmkbyHKDJqHR6GaQKncc8NFwYjNPueBkUt9AI5riBqMIJCGPTjLnsCyMWkPYEm6kmiHquBiWdkh7HFqtTPc0piZk/vuwJ5Fz8RZxL00IaY77O0NTtLBN8nAc9jxiJRLQeTBKKqgudI97jkjCpwudVFEXsgQUnBRCrUzmSbM49MXBbSOzkCSCdwGcmhkpCbGSJpsIc4qWuIaGIZJRQDUzprCOww2U53wcJ6FxmFdDUghyN2FYYsiM3pWF0Y29N5bn17GRTKPpTg3D2a2TRUATWVM8l7IhKe5LOYcDHe9vR1wxS7MQwHCgrgt93zEZD+kHzALcnUSQybpyg1zrZA4NxmWL6YNcMJxCTOPkJPF8wHStnW4BrC9FaWOLe6TtjDFIUwTisG2d3ueHHSlB78/vke4huG0MdnWSEfd8nCHQGZjXcNvFScRhVoaHYFXiwDgMpJBqwUXYm5OJwoAxOk/vnlFKoXOiJKWshmAM3xgD2rM0WUXBZXKJ9+26LCQp2DDWeoMrbANk7ODB+XEczcK63FBuVmqpHJbgU2V1MoPD8Ug/b8Gw6c9YvGHDKSlxOCZaawiNJVXMG+LbZ64IruvHZV3101U/XfXTVT9d9dNVP13101U/Xdd1fS7XO/7g71CEqoPtcuHFR0fuT/fYfmKtingPMK0YyMDG4OZm4XI5474H2Dcv8yY56NvGo8OBvu3UWliPB9pojCGkskQ0gUauiVwz595IWai1cvfsKWupVFW0HrlczmzuyLKQcuL+sqHlwM3tLb1dOJ9P7GNQhuFL3IxHi4iI5oztDaFg3VnzijJQBjBY18rp4tysC2+9+TYvvviI877z4u1j3tw6x/XAOO/c3BzoGM2DqbDkxLosbNuOR50UzJuYlkQb0bSUtMbPdOW8n3iAc4gIJWWkh+i6XBopCaVMV09KgE739rx963g4cnf3LNq9yKSa8aQ0G4wWjkgpmWxx8+69oxKOE+6UJVwYVSH5gG54YHTIWcHCdVYtUZHuOqcT4vDBSCTJwd6QB88xU0piazs5VZZaYRijdWoN6O1AnjtYA0hSyBK/Z0oSr4XsDAamwcqIEfuCQjixCjtGm8InJSXlmKBwBBuN5TYaxHqNCQR3h1RZlxxxCDGKJ0bv1OUJbeyICufLhqow3DmWOiMyHiBeM2pK0czoIWfKoZBrIjHi4NAuLDlze3NAcwk3KlWKZjRVyrKGC558Mj2ifYpUuIwLSaNmHvHgfLSIQonl4Kj0gbeIa4gFVHqLTjdMiaiXD0Yb6CaUWlF19m2n90FPO3sWSqoTCt2iKcsNGxtJIc9oABYiXz3iI8EcUqwDY6A2yGJontEHHeHIecNTnxMYHiwdjecxy3x/zAOmhf1IyjvmHbcWkxTiEwQtzxkozFiKuFBScEiMOR0BpPkYuzsuSh8WIGNVAsYeUw8P8RaSxaHLpuy1cDFVw1EWS9PFja97cLWHRYSCFN/TzOYUBUBBtDC60Q1MEmTh1DfEI7YiFgenpMrujdEbNh16oSBakX6JJrYWDYU1V3rrDBXEQTRiQeOBcyWOqAQzRixiJgZ5Tq/IfE59GEUSqS5sU0wi4GNg1kg1rp84ZDguxMTQQ+PdtK+H9/l+TPHiSDj9Zh5sqxGCEZH5QUdwqqKwc0QrW7uw1ANjjPhUw4ySakzV6IxkDYtY5OT1iBCjNjOupEmiHVGCaoP4hGAHvF2RuO9ZCGgRjYNd0oiDzIOxirMumZIzd3fPOKwVlbgekxZsH/PA5XHIz0qaEybWBpU4aLjw/AOB0Tq1ZLa+TzZPw6yx1vhwxM24e/MpZSnkXFk0kXtjoXB5esafpphw6J2Shd53DKPb4Hi45XK50FtnXVdymh8WXNdPinXVT1f9dNVPV/101U9X/XTVT1f9dF3//fXKK6/83K/+6q9+9Ru/8Rs/CSAiP/+v//W//v2/7bf9trd+Ih/H133d133gH/7Df/jC937v9/77/97//p3f+Z2PvuzLvuxnv/baa//63e9+9zsaDf1Fv+gXfdGHP/zh01/5K3/lB36sj+tbv/VbX/qjf/SPfv6zZ8/+9Y/1e8Bn8MHfKy+/zP3dRjK4LStNLgyH29snvP3Wp1jWlf/2qTd54aWXGduFfdt59OgxSynUUjidNlKJdjVuCvTBkit4Z7+cWQ4HSJXL6QxSefzkMXvrtG2jpkLOmZwS+7ZzOB5xF7YBy80Teu/07QKSqceFgKEmNB3IxWfV+YaWyrO7zrreMIbQXRm7s9wecd0RIgIhOUaN+x6MC7Rwc3zE6I2ixpNHShuwnZ7xrne9zP3pHh+DtSRuj0eshe9ZS6YN0CwMD1ck50xaFlrvQLihWZXzPshFORxXTueIBaQUkaCbmwPoYPgFEYMBfd9Rd7Ire+88Oz3j5eOR0Z3ed4b3yQ9R1rLMuAIEQ9uw5EA4cuWwcjpfyKVwvpxJ6uQc7AOSknLC+kDYYxRdMiVlLpcQMmY9NnjvKD5hr47YCPExYuSeLmRSNL2lGMkWI6DPBGTYsBAATAaGd9bkLCmzIwwL0SNZUDOCjWskcepDpbuGYBHJpCyczx3VcDZzKlMcydRL8ZoMNzLO+ujI+XxiPWZaa6w3KzbCeSy1BsdkblS4kl3pW0MTkAWy0NnxbUcMlvUAKDVXUGW9WRits11OqO0k36I9UTayKn7ZaGdH0nQEHXoLodgRMI1NLRvZDZfOUsDHjhCj+qYhvPa2R8RnDEbvPK5HYKedLniHY17JWtHkIQJGbOQ+m9/qhCurVYZHjCbXiqVMV8FVEAMd8doNNUhMTk08x6pCniJOJWEd3DOSClmdJBZRqikAbZrAqmdkilIgIO4yKHkJNlEShgQMWyTcyQCfEBe5BJzYzTC36U4Ht4WuSMqUrPiIOISKk2tMzCwlpkwCiB2OaE3QGPOaCZdTlGhStMG2PaPtQllKTHy0gfVG6zuWomGtaOLSd3qL50un6IjvlzDruO9zkmdBRSNeIY1D9hkpexD+QvNOqjWmUNyYNzAcZd86JlCAVFZsJNpm7LliqcLo2G4oiSyF7ALS4kCrQpJo3NSUUA2Bf7mcUVHW5cC27ywlR5RMmM8hLFmQurL1mITRUtHJ4WL0mM6ZjrjN/1Omo57d0LGTpEJKmI04AI6BjTbFNqCKmWAjXiMVYYw4bGUBH0ZKC0mE0c4cqqIlHOnQuRIsK4KL5G0nuQaLpmYe3y64D27WGw7rAbfHlKyMsSGSefYs9qzL6Rmt7/jYUIQqcaDvI2I7JYdw7hchLwWzjcs5GjTFBEkddcN7DvfcO+YN35V9c7Y2EDO2UmIyoIHkBGNQNFMYpKQ02yMKqYlahZwkDqtj/7Foguv6cVhX/XTVT1f9dNVPV/3EVT9d9dNVP32G62Mfo7766o/+ec1730v/4Af5yfOAP0vrP//n//xvXn755Xf0wdr/7MO66/r0escf/H3Ht/89vuDzvpAPvP8VXv2hN3Fxttb41Gs/yM/4GT+N83bPk8cvcHu8ZUPYm/D49gnn+zve9cK7eNdLlXMbvPn0DQ7HhUMpnO/uUJSb5UjKldPpwrtv342UwnnsjNbQIlgb7PtOV+F973kZn65nSUs0GZkEw8AglYx54+7uTNJCyoXdLog2UincaKLk6Q5iaIJte8poxpoXTBOy3iJppRwWnMblbmdZV3LKlAXevH+bkjLrC7fcnd7CHHJR3HbOz1qMx5OoeSG4AZmt9diIe6ekcJtv1pW+XegJDlVIRVAZ1ASlVLwL2+UyWSiOkDje3NDOg+PhiJjz5ltvcTgsvPd97+G1p69Rl4w0R/aOEr+T92Bx0KOVrm0bt4/C0d/3Ru8bx1y4u3udL/i8z2e73HN3fx9OnUOS6di54b5TdSHjnPd7XnjxCc/u7yg1sbcd8UHRFSRGyfd2Zj0cGQi9zRvttsOu0NuEEStjtBjzzoZpRHzEDRk9HEsV2Hu40DadMYyyFC5bxAGEjkjHJZw1b0rSxLIc2bednGuM5Uu4fu6DpFByonhCpHF//zbLUhl9J2lQimuudO+MfSdp4ua4svedtncO5YAtjo09mrkIcLAmUFFKChfweDhw2jbWyfCpOZ4L0UHKhbf9niTKoUajWBdnt42aNerr3aNxSxLWT+x9Z2RIRRndGHtwNZBw3gC672Spcfii81a+41BXOGSSK45y3i70khm9k0RJGsCSkiun3tk2oyCk5cA2QdhGQ0qmjQ4Ydam4wNbHPIgEe8rNEIloVLZjNIiNC+YXkoYDi0W8qGgcTIdE7MBHsIyQNM3LGP2XtoUTZ3H4UZ8OtT00HDKjJR6A9cm5ySkHD2k6iNDZhpFdUYKzJNJpbcN0zK8J9xyfjXkWERaZsG/3iGyULKScaQT8vbcziyRUjaQpwk/W8N5ZJUS3za2sm9FGR5Iz+hZtga7gg8bG8J1cAKsxMTAamoXtfAnx19KERo8QNCKUZWU5rpScGZcLqRh1uaG++ITuG823iHHsG4eyoOpsW8O1MExJKVNrZXjcd62Fs/r+l19ARdnPGzd5Za2Z0/0FVaFIsJPsco9pZV1vJowdrHVKTox+oeSEuOMzqhMHo8Z2fkbKA/FBrQHN37cTCM+B5aoCbgRnaaGPiKJpSvTeGG6899GLHF88cjmfefb0KYsa++nMmN8na5oRqxmRSQsHgdZasLsRtOzY2DG74403WrDTbeDW2PaNoQVBaPsJkUHCsNExT4gm1IXRg6vlPlhlYXt6Yb05YCmg2jUnnIGU4HyVZYkPStTB9/idsGCwWaOWwmXbGTY4rgu9NbIEW6uUOMznUuMDkllKoFl+7Mrguj6r66qfrvrpqp+u+umqn6766aqfrvrpM1kf+xj1wx/mw3t4a//dVSv+Pd/D9/xk+PDvcrnIuq7+2fheP+2n/bT+2fg+1/Uj1zv+4O9L/6+/kdP9mdEGb96dWA4HLuK89/M+jx/61Cd5dJv5glfew1t3J9KaqPXAp958jXa6Y/R7lptbbl58N1pfJImTtc8moxyj+ClzfCFchv1yR8a4WYxL2zmUlWFwvlzY3dCcKIcD/a5xqAEP3Wf7mTQjp87tS484d4FU6fcgI8WofO8InTVn0nQqKZXRjMePX+Dtzbh96WXOn3yVhOCeWW8F+omcBKkFG52b5TF3b73FCze3tG2fjp1ws96y74MxHF0PPF5eoO07Wi8YA7O4WT+6PeDDefHd72IfjfvzHXWp7Hvn0fExext4hqUWlqyoLuxDWfTI4MyzuwvL4cjy6EUE4XB8gSeXho9Glw1NUGrlsNzw5vY666GiAuvhEa+++ilcleX2RXTfQSCp8uJaosVPnFyUbXtKcufRzRNcE5ezUdLKsi7cn06sjw5s1gI47udoyyJTk0aDngpFJG7Skhh951gTPTlbu1AWYhNKmcUj4pISdDxanBBqWWiXC67Ooa4MzTQPlyxn5fHjW7Y3XmcQkwYJUB8UMu1iWDMsKYdyBFfKktm2ZyTr5JzIx0ecLp2+7eTqlLKwHm65nLfpqMfPWkR4+fPeRz0svPb6G5x2J+eFYQPNjhSl6oG9DZIWchba+YyNjubCtp1AE10U3DAt9JwgK+KNlBPqikhAfN/1+DHPnj3FbdBHoywrd6c7bm8ekasiOWEjDkm7OcvjI222tyEx+p9XIRWn742cM4qyt3uevPCYp2+9zVoPWOksy5HT5URXQUthjMGwM6UYN9WhP0Mp9DGijc4SqSl17KjAOA+ERLZBKYWxByMEd0rV6RqnYKyIhGt8iWmGVI/0PaDXuVRUI6bU+pm8HCK9NUHceOfx8RFP7cRlGCUdySj7aXAoNcSmCsky+75HdKVbcJE4MUZjDJChM/IU8HkRpbvh+2Ap6blD6hilJPbesWas4xCTBOpo8niPp4zgtEtEiUqukBOqcdjo+xYu8jCSJR4fHrNvO7cv3PD07p51OXLedp6sldTA84rUwj4GLtFsOPrO/d2Zl5/c8EMf/35SUQ4p8cbbb3M4HGmrcLrcIff3vLgeeGs/8+qbb3Fcb3l8fEJKmRdfeoE39xOkxHK44bJfeHx7RDbh7nympEIlMYZzuHmCtoIn5ZAHy0G59J2hZ8yMQ4YiCWlw2Z/GYWZMjo3BzbHysz7/ZU6nHTPhv776BsfllrQu7JcLb1/u4v2rjtBp53sWg9acXI+IN6omSh0Ma8H9IRhG3hpFJQDdFg77YT2yqoBm7P5NXv/UD1BzInscpjzP2BVK8Yx3p6bMZgMfJ3LKGMZ73v0ib7z2KnJ/z82See0T348NoZQjozWOy4KOnZIELQtJBlr0uWNeiKbLZnA4hDDFHe3B0VoXZdtaROlQxrZRbv6/7P15zHVpWtYN/655DXvve3ieqqeqq6rnphm6aaF5QQ0q+EpswTBIFNMRiCARQWb+gMYYIdJRE9Ifg0aQwaCJSiCAX0igwSB8yPTSIjL3AE0PVc98D3vvtdY1f39cu/pr/Wiofm1D87LPpPJUPbXvad9rreu4rvM8fodmkglRFJ0yVFLjGAFSywN7p6IlnNieOQRkzm06RkKR4MnUDFalds2lFkSgDqylY/3R11E/HfXTUT8d9dNRPx3101E/HfXT+1N37qD/oEM/gBAQd+6gP9AHfx/7sR/78g/90A+dAX7wB3/wXGtdP+dzPufeG97whqflYTL6iSeeeOVrX/va+29961vdj//4j5/95b/8ly9+4Ad+4O0/9mM/tnrd6173xK//+q+Pp6en6TWvec3Ft3zLt7x7s9kUgHe/+936sz/7s1/4sz/7s5sbN27Ef/AP/sG7/+ev/z9bfd/2treZL//yL3/yp3/6p09CCOIlL3nJ8i3f8i3v+LVf+7XuDW94w+PPfgzAN3/zN7/9S7/0Sx/cv39fffEXf/GTb3zjG09jjPIVr3jF/g1veMM7/8yf+TPzs1/nda973WPf/u3ffmtZFvkpn/IpD2/evPl+HTjevn1bfcEXfMHzf+EXfmG93W7VU0895b/qq77q9t/9u3/34Xu/LqUkPudzPuf57+u9nOdZfNmXfdkTP/RDP3S+3W7Vy172svn1r3/9u//qX/2r2/fn+/nD6jkf/GktOD1bIavg/MaKUgv7SZLFFmUzISfuPLiPsRtyFgSfuXqYeMXLX8lqcPSrjtsP7iLLwvXVQ26enTPYEapkNa7ZLXuiKKTUYrh715Fz4ez8nKQzD+7fJxPaTa80i99TcuKJx17A3Tt3GOzAyXrDndv36LuB89MzdtNMzoX12Zp79+8xDKetc6laJzZnODk5RZseO654x53b9OMJgxp46vHnc/vhM3zIC1/E/WfeTsww9j3X+5nz9U0u7l2gpEVKg+0122mP0Jp9XIA2mhzSTKWJyGVZsK4jpoiUmpRbulORlmnv0XYkpUyMEGVud3mOONt4EDlD3/XE2Mb1x5UjlcK6s0ghefDgLs44hvUGP0+Hh5ZACE0/eLQSKNUSkKztWG/OyChML4gxsPgZpQwPrmc6N3KyOiUsE7U03oPteubpAaiW7jSuTii1Yq3j4uIhxijqAb6dUeiuwxqFKi3hbJp39KpDSMVqHLCLIsXYfpfzgqCilUQK1bi/tVlk/DKz6jqWeY/UAqMl08W2JV+VTJm2WG1RzlFEZZ4noOJzRA4GZKWmRAoVJy01R1ZmwMhCCB6LxA4DXoAyCtdbHl48QIrK6bqjpIiogVoTt+/+DrbvQTiGwRHmxghSRjP7CcgMqx4pNXGeGTY9NSak1ljr2PtGj5FSYDpNUQKpJSl48hQw1mGUxodIjYEaPX1nUYPFh0RvBFomJILJL1QpQbZkO2jpjuPqlP1uwVqJr1u0qZhOk1Lizjvvc3l5ySs+/CPQEioBYyUhXB7sSRotBdO0xxhD9AubzZoYM7EErFOkvDTGR64oCjlGRtdTa2G/u8AaQ5WS2Xv8MiPHHus6lDvh4cUl/bjCSUmtgpJAmYVqGqA54RFaEpLn9HxD8gtWaEoIyBQwWhD2kc4qTlYju+stRLixWiPyjBCZefEtua8WhmHFMk3IUBC62asSbeOrlURUKGkh10rfWUpNZB9IvpJKxGgFGCyAVJR61fhLRRB9YXBrHnvkeezmLdv9TMwtOXLoezbrNbvdnqu00HWGxx97krvP3OXh3XdhO4e0Ett5bt56hGmWXN27jcqeMlVe8NKXcvfelvXJOfN+5sHDK+793u/wQBb220vuPP00j926xWZ9yjCccuvWo5zf3PB7v/mrnPYWEyybW2f4OfHSF72M+3fv0Q+GuoPz81MePHzI2ckKYyW7/Y7OCEqeCQ3fzPVFY13F1IDfSmeEbnYyKRXT9Z6xH/Gi8WzasyZRU8RIxfZi4b//8h2U0nSdI4WJfVYkND42KL1MkpoSspRmAzKVQUhknCjzHqM6kIV9vqIgMbZHYlBWQI5Ul9AUOinI/hJnO3KtFBTdIMhhbpMoWjeYfG2TOzlndG/xKSGdQeXMyilyqswP73DSSeKyZQrgnKIUiTGCajValQa+R1AJWC3INVNLxhlNEZqSmn1OlcroBlL07HP7/qyQxDxDtVQ0qVZSzvicUCLQHXg8filY3SaEhMw4Z0g5IKqhMxohn2U51TbdAQdWWbNVKakQorzHnnesP/o66qejfjrqp6N+Ouqno3466qejfvrjVD/wAz9w47M+67Pu/8zP/Mxv/uzP/uz4lV/5lS94/vOfH77qq77q/rOv+Zf/8l/e+sqv/Mpn/vE//sfPAPz6r/+6+4zP+IyXfc3XfM27//W//tdvv337tv6yL/uy53/e533e87//+7//7QCvfe1rX3jnzh37Iz/yI79tra1f9mVf9vyHDx++zzOpq6sr+Qmf8Akvv3XrVvy+7/u+tz7xxBPx53/+54dSCp/3eZ/38Nd+7df6n/zJnzz5T//pP/02wPn5eQb41E/91Bd3XVd/+Id/+C1nZ2f5W7/1Wx/55E/+5A/5rd/6rV+7detW/s7v/M6zb/qmb3reP/kn/+Qdf/Ev/sXtd33Xd9347u/+7ltPPvnkc053medZftRHfdT0tV/7tbdPT0/zD/7gD55+8Rd/8Ys+5EM+ZPnET/zE6bm+l3/7b//t57/5zW/uv/d7v/d3nnrqqfgf/sN/OP3Mz/zMl/3SL/3Sr7/yla/8gKXNPOeDP6UsfeeQApZlYl4mNpseUNhOoCT0bk0IEtsrFrOwWT3Bf/1vv8K027JeD3zYKz+EzcmKmgM5t1H5rrfslyv285adnwjzwnrYsAuewa0QCUwHq3WPNZp7d++haIDhk9MbvPV33oazDmssPhaG9RqE4O6dO2hZySmCNjzx+OPsloUqClUqcoz0rqNS8POey3nH/f1DbhR48uSM05s3uJhuc3152UaLjWopSEVAktx65HFCCFhr0U7jTk7IVOb9hDykkykBq1XHfnfJalwBkpyh1sayyDHx4OqiJQ8ViTGKzclImGY6axBSsdlsiCkhlWK1OeHi4hKjLNYZtrtraomEmLBS4WOismC0xcdEjIFSAqebNQ8f3KPve4SQrNYnVBTTvHB6esayeJwdmJeZcXXKbrcjV43WAzEulFJZrVcMQyYkT9eNpJgwpieExGo8Qx6g2vt5Yn2yYZp3hDhjrSXGwGq9ZjA9825mud6zGjuqaAl4xjioufF3UIiQeOT0BtvdlsE5lmlH13dkmsXoxo0brIeR6fqSlGODPjdaMWEJnJ+foaUmywRKMk8TIheGcWBeArMPmKFDGVi8p+sVY+8IwfPg9h3Ob57R945lXhhOTlh8YPGBk41m3GyIqZJSJXX5YHMQKKtZFo+UCqUVyRqk0rj1utkSlGLlOnyISAMlF6xVWKtRQ0fYW6xSpJTpNxseXj3k0efdInrPNM8t6Q5NP/RcX19jegdSoRBsNmfEGBDCNGtQ55DiYIURUHKipsyLn3qCzYd/GLNfsBr2856KZLVqli9BWywfu3HG1cUVjz3vCa72W6qV9H2PVZowzZR0SF2koqTEOUWKBS01qlhc1zH2G0LwCEGD5w6Cxx9/CXdu3yOGxGA7qtZEYVj8gjKGm2cbQopYP3NiN+zDHiMlyhkimt45jDFMfkJrUINGFtC2cLW7xFqJNhElFVIISryiEwllJDFnnLMUqw4dZ1jZnnk3IZQkysKyBMZeEsWC7dqzYQke141UBClXpBCsxpGxW7PsPCJtIV5zvrbsppnOKh7c/h20P2Pa77l54wxkYnf1TiSRT/3UT+Q3fvM3uLh+gBGVsH8GEtw6d/jrmavtFW/7rV/iBS/5EGBHrBMvf8ljvOBF57z73ruxw4v48PwRKCnZPrzklS//EKY48cy734ZysPV7urEnC0XXwTve/XactVxd7+k6y/biPmtr2V49RDpLLQnDAR6t2rSKsy2dzomWbrjMFwgh2z2VAo/c3JBDJtKaYsYU+tFSQiEsC3pcYbTDaoP3CzfW58QcmetMNyhEgTAvGNWeqWY0yJIo04Iogk5ZpMpkEuvOMoeWzFZLoLeW6AtF9SAOPKEkUFUipSTUPdQGly5pQVRNrQJne6qAKCvUhCJilGobx+rRooIoGCGYk0cbjev6w6RF41klEkoUciwNVj+uEFK0wxAkc60Ya5C12StzLShlMbZDSUVKHqka5F0IyTiu8CXSG4NTmun6mmIkQ983JpZp0xS1QMWQQqS3jTcmgBASVco2tRADSlmU0qTsodAsjsf6oKijfjrqp6N+Ouqno3466qejfjrqpz9O9dhjj4Xv/M7vfKeUkle96lX+V3/1V/t/8S/+xa33Pvj703/6T2+//uu//s6z//1Zn/VZL/j0T//0h8+GdLzyla/0b3jDG975yZ/8yS+fpun33vrWt9qf/umfPvnP//k//+Zf+At/YQL4ru/6rrd/9Ed/9Ee8r+/jX/2rf3V+cXFhfumXfuk3b926lQFe8YpXvOcwbLVaFaVUfW978I/92I+tfvVXf3W8e/fur/R9XwG+4zu+410/+qM/evpv/s2/Ofvqr/7q+//8n//zW3/jb/yN+1/xFV9xH+BbvuVbnv6pn/qpjfdePtf36EUvelH8hm/4hvf8/B/+4R9+9yd+4ic2/+7f/bvz9z74+4Pey7e85S32+7//+2++9a1v/e8vfOELI8A3fMM33PmJn/iJk2//9m+/+W3f9m3/fxOR/3frOR/8SdURU6XExNCvMaZrgFVlidGR00JMmZPTEx48vI/rMzkFPuKjXkLvBp55+hmurq4IKTGsbrYkMyqZyHC2xqw0euu4LBekmtlf79jJhSdsR94vOGlRxvDIyaPs9zPrccXT9x8yDiOgqGj6YY3SASEqZhyIfkcIkKvi+nqL1JKhd2hjoNoDnLTS9ZroJ57/2BnpynN17528852/xvqRE8J+S/T+wLOpDUY9hxbz7hzCKFAarVVLSjpYb6SQWGNIybNen7K/3KGkpLcNdNz3PSUltDUsIaBtE645R1gZFAKrLPEAFvYhcO/t96BAZ3tQlUpGJUXNhaEfkTG3BCmlsEqDBK0s49BDFSzLhFACqTW5JHpruHpwHyEFRlvG01PmeWZwPalUQiygDEIKHlzsUKp153fT0kbFfaZzHVIqdvOeFkFveffte6xWPfs5N5i0bjDi7X6PFhpjDUuSpKwJWaCNIYYJrSVaK2RnuJ5nfM44axB91+DVUiEw7JeAUJGsDEJJdN8jMvgUufHY4wx9z3430VdNqtD3GuEEVbVO0Wrt0BI6KVhSplJAQnWWF7345ex2Ox5uJ1an51wsEXC4YUUpie1+QRnFEj29G0ihtpQ5NEL1DMPYuB5FI4ViiRkQlJQxWtN1HWmJ1ApIyW4/cTIMGGeb6FUFoST9es1uXihIhBsYxxU5ZZYQWJ8/2kRhBacNomTO1yfcuXunXZMWYsgopXCmRwlFVpnBGi6vHoKUSKUYxhUhREDhXAe5sMwLxWpOzm4ilCXkinSWGCtpCXTaUqUm5EQBtDakKuhHixTNNpaFwjjDOPQsPiJTpMbCndu3STEx9COddoQYWfLEam1QMhN39ygxMEhFvIReqwbxdgYU7MKMzQ26HKcFURKu69nHGXOyJgSP6SwyF2SpiHKILZMaLRSlCEJMpJowVpF9oaZM9hlhDVJoUqygVetEikqVkGqiuWAGtNFstwtXFzskAgqk5BnzCl0h+4lVp4nTlsEqpqt7ZBL7aU/XrfjxH/uPSKGxRmO04Hq/J2RaFz8GumGgasHTt3+3XUcpc/++QOuI6zqKVzgz4JQFO3D58He5++AOZzfO2KaEFJqcCvtl4kUvfDG3y10kgsGtKTmhtEIrhdEdpbYDCWLCPQtAppAFhJrwOWM6R+0sKdfG1RpW7ELEKM162BC9J3nPEheMlgyrDdOSmOOeUtrU0bQ0DpMSkbR4nOlxxiGNwafQNsEIxMEyEiWHNDyLiAYjQUvNNF9ThETKlhxaS2oJcLoB4o2z9KsTwlzRVhPi/pC6aYlxxlrNZhgIIdAJg4iFYhRLbkl+buxJIaBcj1IaJR1aKlIuZBr0OiOxtqPT+j1gcWsGSq44XVFKkUtCOs2UMtoYrH2UWgK5eLqho5RKy+iraBQ1RyiewUiEVKQkmqUxZ4xpXB2fCkKodvBSKqkUtGmJmJWMkgrvA5v10H6PojLPywdKJxzrf7GO+umon4766aifjvrpqJ+O+umon/441Ud/9Efvn7WiAvzZP/tn99/xHd9xK6WE1vo9r3nvj/n1X//14c1vfnP/Qz/0Q+fP/t2zid2/9Vu/5X7jN36jU0rVj//4j3/PodhHfdRHLev1+n0Gefy3//bfhg/7sA+bnj30ey71X//rf+2naVI3btz4U+/99957+ba3vc0BvO1tb+s+//M//957//+P+ZiP2f+X//Jf1s/166SU+Nqv/drHf/iHf/jszp07NsYoQgii7/vy3q/7g97LN73pTX3OmQ//8A9/xXt/TAhBnJ2dfUBZh8/54K/rB5RsENiwzCh1iNAGuq4nxQYZnvcLne2aACuCeUn4ODNuHmkPLOtAQS4JRCXnjAgKLS03Nuds1o+ym7asN4/w4P4l2xCxUmKlw1pD6hznwzmXl1fEEIk2tWQ30caGN6crYlgI3iPdQMmCvusJV1umuXXzjO3Q1mCtpaRMlYKuHygp05/dIOw8zlp6BGJlMXrF0I8UIKTIyY0TdvuAkK1L8vDygvVq1aLpfSB7j5AaOYzkDCVX+mGFs4ZCIadE5ww1Z3wMuHXfhBOglSCFxjYIpeBTBK2oJdF1DYraGY1xmiXOyCpQpmO/29IPjlwzKe6RsrEzKHB93b6mc67Fl5OpEnKoWGNwfU/wgevdHmpFKUnwC0JKur5DCs3uemKzHkAl+k5RakUqhQ8RUSpLKfTOkXJlc3KOUjDUxm9INKuN0paSKs46dtuFYRgbJ6hktJOkGlkW38b8t3seffRRQpjx+4BUBqks63GN3O7R1kCCnAOhtg2UqgLrNBeXV6zGDcJXjFVE39gaRVSyEJysBy4fPKDrLEU0Rg4i0aG5vndF1xkGpZkvr1GmQzvDft6jlMSY9n1qJxC6UiIUAClJoRBjxPuAtd0hJE0iVUtNqzlRMgx9R4qZqiVD12OFIFWPEpq4XwDJuD4DJahac3l5SSqCafacnp5ycXmJtbZBfqsghkLKE6dnj3A97akx0/cjOXckHxFS4rQjVo8bR2LMDbtcJdoa+mEgx0TMAduPzDmhjWa3u8YN44G3UhAKnO2YlxmpDMro1iELkUrj5nS9odTIlHas+g1SSHQyFF9Y9yMP/UNy9hSt0FoyyGZzSSFScm1TKlUQSyQXjzEVaxWleiqVFCvKHDhItU1IZKspoeBUT/ERJTSF3DrdoaX1dZ0jxoDTAl01VtsG/FaKXDJZCOohITGU8p7kOykhxoRzHTWLZnXQGqSglkot4GRhHHp209Q+X6xILZCyUlNmHLvDxtZQraREUEBJnpIz2nZIbdCdoSLQnSb7zMoNlNgSyIiFHCJKQlmuCeqaXklEqtwYR6arLc4avE84ZbhxsmLeX2BUbvDywnuedUJpetMfWEQZ1SmC91ihEUqigO00oZ1rGwDTI2XlRS94kt/9nd/Fat2A2LEgisBqR66FJCQpgbGSYbCUCLlGqqygLTU3GHSYYltPlGYKHi0kslakNRQa60dIgaaJtiVGkALtLNJqcshIZoSsiEpL6VOtC5x8QYmBxQdcbwhhoeTGSyo1k0oklYQWom1mKnS6petlWalaobJpEw81HiY5FF3XI2VPDB5RJbFmiiikVClInO2ARC1NWCqtsUZSlSJniTFds12V1CD+StJpSYmhQc51bewp6Sghsx57YgzM04Rbb6haUWuDvqPaBkPZliAZ/NI+vzUtybQKQGLNsWP9wVJH/XTUT0f9dNRPR/101E9H/XTUT/9Pq3Ec/4cDrmma5Gtf+9p7X/3VX333f37tS1/60vAbv/Eb3fv7Nf7nQ7TnUrvdTt28eTM+a/9977px48ZzPkD8w+of/sN/+Nh3fud3PvqN3/iN7/yoj/qoeb1ely/5ki95KoTwnP3i2+1WKqX4uZ/7ud/4n/mSm83mA/a9wvtx8LfdXWO1orOWYRhIKTWbhhWN7ZACWjlirjjdozrFEicwhVwSQtiWkEV7SAmhSCWjxEDyoE0TXUW00ffufOCxJ1/G9vqa/e4BqWikNGhn6YYeO57yxAseQynNw/sPWa3XzPOOq+2eznTs5xnrRvr1OSEEVusT1gWElBjn8DG2rqKy+BQRQrFxHUpbFiM4OdlAmljmHUYPXF3tGTcbljQRlwK2QynNbrfl5qOPkkPEzwtjr6kIpLAoKahVIJU+CLjGqtFGsIRI9h6QJA9LCLi+jcfX2lgKSgmk0aQUcL0Do0ghIHUlxpnearQyzHuPkpLHHj3jnU+/m/PzMx48eIhWHb1T5KRa4tlgmJY9nVNc73eUrMhCUkOLsEdoqqDZJZxt1pBSsF1L9/MhIGSh1kqVtUXES4XtLHNslpFSYoOjZkFJAjeMbDY9uUTiPKOVYp49j968wfX1DiUUWiqErqzGFbVkaq70XWV3vUMbxQueeiF37t/Fh8w07YFCKZFCYFwPgGWZM1pZckx0piP4yHByThIFI4DUYNk3NzeZ/Ayi0nUdPraJACEP9pNSuLh3n5uPnOG6ijKKq6sdpmtik2IwZtUg6mGhiIwyglokUtbD9xYwemA/L9y4eYN52kGO+LDguhEtJMopdn5BO8cye4qMKFEQQhB9YtrPGGeJCoZxpOTCahiRCG6enXFxfc04ts2WAGzXsZ32nN24hSiKadnSdz24TNjPxBzACgQS01tSqljjWJaATxGrDU4364CTgpAD46rjZLXm8sFDtOzIORNzIueKNhZtOkqtKJEbOFhZVqsTrJO8+/Y78SEDmmFYE/OOaZq4cfMMBE0oWUefHVlUCqaJKqHougGdIjG29DQFrFzXusMxUAVYqxHOUKXiIizUeeaFL3gR7/q9d9CPI1E0BtA4rhGxQvZI3YC90xSQRaKNRJRCigvaWJTWiCJw9oQYAzF7um6giAZRz3lCVNqEh7OU1JhKKRUQma63+NAEk5QQQ6JzPcvSktu6ziGxFFsxRuLDjlozUWmks5QQ6JVmO+9RWqGkpu9H/H4BV7Gih1yoxSGlIIQA2wIIBjuSRUVYRfae3lnm/Q7rejCaHAuFgjCGJDPkRE0F5wyoSimSmiv73ZabZ+eIrmspjrUSCnTKcnnvAbYK1q4jptAEGgKhFNF7pFZIo8lzwGCgVIysSC2RCpQbkFVQZabkQg2Rm6sVDx7cw0uJG13jq6SCrQUpKkvdU0SlyA5EpVQooolmbQ3UQk4VJTpyEmidiWlhGAdCvsa4ypw8vXXYzpEkaCUJiyfVhC0VpzRJVmKJGG1IU6KUxikaxhNKFfjksUohFQglKTkjhaLvFRJD9PE9kH8nJSlGrNQEHxCmskxL67JXQBhqkfgaKLJilKbWQMwRLXoEgmXashp7jOooJUDNSGnIAhDQWQdkYvKs1j2lKGqRXF9fMwwDMWYOW+pjfRDUUT8d9dNRPx3101E/HfXTUT8d9dMfp/rlX/7l8b3/++d+7ufGF7zgBf7Zab/fr17xildMb37zm/v3tuK+d73yla+cc87iZ37mZ4Znrb6/8iu/4rbb7ftMVPnIj/zI+d//+39/886dO+r3m/qz1pZS/sff2cd8zMdM//Sf/lNjjKkvf/nLf9/gk5e85CXLL/zCL4x//+///QfP/t2b3vSm8fd77fuqn//5n1990id90uUXfdEXPQTIOfO7v/u73Utf+tL5vV/3B72XH/dxHzflnHnmmWfMa17zmt378/Xf33rOB38ix9bZ0Yp3vPsu5+dnWAwPbl9xcnrSPPS1opwmJ0EKlVIUfudJyYMIKL2wnzxnp2cUvwAFZTRFKWLxBN86ys4Z0uzZXVyglMJ2p0ihEKUS/IyuiWl/yf17F7ixZ3N+RowFpwfm7Ras4+R0OHQMobdNFCsyNUekrFjTYu5rTrhD5znWQAoLTmfCFBj6EWsE3TAybgy7eWIcWme6SMm83xHmhat0gagKiWJRjZGhSIS9J8XcouylQUiJX9rItBAZKSpGu8MDcCCVRM6ZiuDsZMO8vyaEiJCGGANagbKKWtvrKJZcCqIK1quBO7efZjUMRB9QWqONoBCJ8xZrOlR1jN05S0w4afAiEVNpo9MCpDKAQHeV2e8w2qK1JebI5vTZrqYn1Yq0DislpEgJHqcVg9UkIVE06HIdLMuysL+OKCNBSaQxmJIwa0fdXyNE4HR1QsyJ6/0eZQ3GOOoysR4M9+8/zbx/QL85J8lCFQXjFNp2xL1idw1atjQmpTXK9Mi+px86kgAVK+erc+b9jtWqx4eJ9crh7KN03ciqSnyMGGuo8579vOfk9BSlJd5PDK5jW3ZshhWlCCqSKjIxzaALTo/EkOito9rhwK44YRwGtLPs5j3ZJzqhsWUgAdJIlsWjtKJQqL1hM5xxefmQ/qRnZS3L0rg449jhfUBKhTaWWhNGFh4560BKFl/RZmhQWqFZtnviElgNA3nODOsV6qRnCjOyJoRQICTUiLCgJehoqTVTlULqnjksdP3AfrrGRANaklNCK4N59mEvJKebge12h+kspWR8CGy0YFr2nJysOTk74+mnb5NrQq835L1F245QZoZNh98HspFQCn2/IsSA0oopTagqufHIOVcXF2htmKcJa3t89lilUdriFw86c+N0hTea27dv063GFmulDZ3ShNmjtETZobF6cuYFL7zFvXt3oCwIodHKIkpLzYs54qzF9hYrNCEtpAOLypgOayolNyFhO0uuoLtmfzDKYqRu0xGlYJ2hUlh1I2EfYQY1GLJIzMmzxIlxGBnREHIDwdcFRcVoi0iVFGekrWAL1vRoYZmvJ4bO0WlNrZU5ZaI2ZCqIhBvbfSidxQ4jwUeMFlhXqSWBgColPi+IJBBZMsiR/bwnJU0UFuksOTd48jD2LPPcWFbjyD4lqpC4nLHaIITEDgahDalCHhIxJ6gCYZsFq6SCLIAWRFkpQlBTQYTCjfEGWkHVmt0yY5RraW5IVsYgOsk8zxhlyakgpMaOHSkFTGdaZzZXVKpsTh0PL3cUCTWNWKlwYyQumZQkGE0thc0wtCg0CQ8uLxhWfeNkWYM0itV6ZPIzPiTGYaDuJwZnEDUzhx2r1YbtnJG6I3iP0JVeemIyBCzKWSgFVwXSQUCipUUqzXa/ox8dtUqMFKSaqThy1oT93KZKcuU6BkpJ9G6A1DZMylQsghKXZk+ZA0U5hkEz7z1WZh7efZqTk1Okfs6IkmP9b66jfjrqp6N+Ouqno3466qejfjrqpz9O9cwzz9i/83f+zpNf8iVfcu/nf/7nx+/5nu959Ou//uvf+Qd9zNd93dfd/oRP+IQP/ZzP+Zznf+EXfuG99XpdfuVXfqV/4xvfuPne7/3ed7zqVa/yf+7P/bnrv/f3/t4Lvu3bvu0dxpj65V/+5U91Xfc+T1u/4Au+4OE3fdM3Pf4pn/IpL33961//rieffDL+4i/+4vDkk0/Gv/SX/tL+hS98YXjXu97lfvZnf7Z/0YteFE9PT/OnfdqnXb/qVa/afdqnfdpLX//617/rIz7iI5Z3vOMd5j/+x/94+tf/+l+/+PN//s9PX/RFX3TnS77kS170MR/zMftP/MRP3H3P93zPjbe+9a39+xPu8eIXv3j5kR/5kbMf//EfH2/cuJH/2T/7Z7cePHigX/rSlz7n9/IjP/Ij/ad+6qc+/PzP//wXvf71r3/nx33cx03PPPOMfuMb37h51ateNf/Nv/k3r57r9/OH1XM++BtGx34/kZJic9JS6XwMbE43LNEjlGCeZwSSZfIEX5jnBSUrvbMgC6JUipJMOZBLwOjmzzdGMfkZpyRCSHZXO3prMEXQG0sxihgiSmq0s4iS6YzGPnmrjdxTcdYQQ2R9foNaaXHcQpFzQcv2kFSqwUMrFYNACcE0N5EnZabW3EbNASnEgQcg2e9mqgjEnBAKEBVjPJaA6WBwEHzAmp6kDMvi6eyzgshRACGaVSTE1uEJvlCrYPELfdexhAUlJdpoYszcuXMPpRTKGEqtaLdCa0WKHisViMDsM1IqrFtTOSR7FQMCjO2QAnLKZCuZResU204xp4QyGiMFFqgUSi70gyPltoD29owK5Pd0pzNSC6w0WK1JpZJixGnVPpfNlBzaSL5UGNcYDp3o25i51UglCN7TDz27qy1nZ+dcX10xx8A8T/TWUqVinnZopUEqhtUJyxLp3IA2hRgCWml0kchUULpxc5bFU0RCUjk7OyPlwPXlNV0/IIXAOUeKCSUNu6uZs/NzlqVZSsgFLSBIxWZ9zm6aUaoHKtdXgZPNOVIqYkxtFPzACZKy2ZAykiwBLVn3A9vdjn0K1ArWOkw3UmJCWYcREaUUuusxxhJCaBMAZJQW1JpYfEtfPDvtESXTW0lMkFLEOMcueUStKBHpxzXepwMvxeKMIRlJyZF+6Fj8jlAbqFoVSef6BkPXghIyndJULUmlYK3Be09nFL2zpOwouXGIqiwHwG7GDR0hRR5cPWToB5zruLy8wvUD0xwQQqC05fqqbX5Ww0gKiX49Mi17zGAwxlKNoGoJRWAEhFSaWF+vCfuZEgp9N+C9x3YDKRc2q6GlydXK+vwUHxbIFdtZohBo04EAnwKxepQFheRZHkVVitv3HzYrT5xJpaJ7A0XQGce8nxAUOm3xfsIJhTEOZ3oCC1opFp8QqNYhlg1YL5TBp4JxHSVEqAWpHaUISs0YZxC1sF+uiCJzcrpBqBW1Krp+xbTfY4xGi8Y1qaU2DpEU2L5nnrZEP7GPu4PFo5BLYHAdvXH4XNo9UySyRoRS1Jxb59Raog/k3NI+53lmsx5ZjasGbheVefHIzrEeBiI0wdqPJO/ZhaWJXaPICjICpABrCblQSuMwRR+pom2GSswMdsDo9jysVCrtvdL1MKViWmpmLJ4soR7YN9poYm6srZwLIjchn0uiHzpyqZTcEvKUVGQfGFxPjImrew8xpqOkgkYgasVoTe0MVbTrV9EsLs0CI3HDCjv0pBwJIdENK7b7BdN1KKsIuYLSbPcL61VPPzqmJWOMYxzWpJCoJVPkilwrUmicaYB0qgRmhNWUXEhpoe80RldykoQYkVphrKGoAsaSKSgl0LojpQzIBgt3tt0LzhIzzMtC162xZmB/Hai50hmHPpG4XhHiBywE7Fj/i3XUT0f9dNRPR/101E9H/XTUT0f99P7UrVska6kh8D5to9ZSb93iA8qBe7b+2l/7aw/meZYf//Ef/2FSSj7/8z//7nsHe/x+9XEf93Hzj/7oj/726173uic+6ZM+6UNrrTz11FP+Mz7jMx4++5p/+2//7e9+7ud+7gv/yl/5Ky+/ceNG/Lqv+7p3v/71r3/ifX3OruvqG9/4xjd/6Zd+6ZOf+Zmf+bKUknjJS16yfOu3fuvvAXzu537uxQ/90A+dvuY1r3n5drtV3/zN3/z2L/3SL33wEz/xE2/5iq/4iie+8Au/8IUXFxf65s2b8WM/9mN3z3ve8yLAF3zBF1y87W1vc//oH/2jJ1/3utfJ17zmNRef/dmfffcnf/InT57re/SN3/iNz7z97W93n/7pn/4hXdeVv/W3/ta9T/qkT7q8vr7+HyYY/7D38vu+7/ve/jVf8zWPv+51r3vq7t275uzsLP2pP/Wn9p/xGZ/xATv0AxC11uf0wh/4/v9XHfqBEhKgEEKTcqHkduMJIQghYo0jhsTi5wYbVpJaG/PCWEsogioNOUScUZRc6Iae/W5Prw2r1YrkA1oK0hKgFjAVY5pwLqXS9Y03kXtL9hFZwJmOVApCabRsMGCrNFopSk7EuGCtBgpSwuIXrHUIIfDLQqXZBEqFUhpPJcZAyaHZTbQlpYDQAiEr/nrBGkuMmfVBXGnTgRXt4WIM87IgdIt1T3FhvRq5eHhFRWB0h1KGGGdWY994P7Uc/hFIIdtD3/vWiZLqIJg1olSstuRUmaYZazusdcgqmJcJqHS9IYWlJRg5QxWyRZgLSaWilaR3juAXcgyUkrGqsSpqFVjbE3PGp4BUjRUhhaSWgu0bf2Wa9nTGoqSk1EStglIau0YqSYiBwY0Yq8m1UHIm50iOkaFfo51hN+2RUlBTRBeYwkw3rogxHlKcwLmRWoBaG28jl7bwVZBGs6SF3XbP8596Pu9+1ztY9Q7vJ07Obh4gzQbnHNDEgHUjubTFcFkmtJFUCjFlam3sE0RbeCQVSBhtyLlSSyXXjDYCJVq63HCy5uLysr2+QAwRsx7x00SnLfN+wfUdMWcGTUvPCuk9dq95npGdQVBJaUHptqkqJbHpRkoq7KbAzcee4Jm795DGkJPHGk1pqfSMfc/dZ57hiec9j/1+S44J6zSxFNwwsCyBNHv6rtnMBIIUYxvbFwJtJVppgk8opSgEQvIooSBXetsx7We6rkMYCYIG7U3tmo0xY7SDKttIPhEhgQI+eAbXI6tCakWWGWsdfgrIGtDaAhLvI0prGl+jbT5DjlQhcEPPtMyE7TWnJ6dkqahCsL3aMjoHMrPfTzz22FP4nNlOV3Smsr/coUWHtprZe7pxhbHtml22F2AM0+I5XZ8wX1yhUsGedPhlQct2zTnX8+53P00RgRs3HoOiMcYwL3ukEmRAyJaUWQoYqUjBU7DEXJG6YjUs045QAnbskVIz7/c8dvNJdtczOUeMq+z9DmccaQ4oFGpwBC2wS6QUGl9ICIyVTNMOLQV9v27C2Qd66xCiUsggFD5mELJZL1Kid47oA+M4sp8mjNFY2/5/SIVw4MHUAsZaYozITh+A6/VwH7VJoOoTQkAI7RnRJjAqsorGrlG6bahoG9+iBLUUiInOGPwSSLUirGnTJrVitcangO4cmUpJzUrWWwsUcoos04xxA4ufMVa1pLZUqamiZMb1qzZZIts9VEtgiiCkRhWwWlOoJNp7k3Km6zsqsL2+ZtWPLCEg9bNiM1JLxihJLRlnLKkIpLHElHFW4f2MdivSEhpTzQpiqUQ0Nk1oJQ6qrYASFEBKR4yRQmk2NynIpZByWwOUtMiqUEoQw4Q1hhIqUlQE4FNC6HawQU3UXLFK4aOnHx1CVV77Bf/wOTNGjvW/r4766aifjvrpqJ+O+umon+Con/6k6ac3velNH6q1/tGXvexlu2EY3u/UkLe8BXvnzvse1Lp1i/Syl/H7Wln/V+pjP/ZjX/6KV7xi+u7v/u4/cMLvWB8cNU1T95a3vGWVUnrNq1/96t96X697zhN/Wkty9NTcwLfBNy7FOKyIIeK0paq+LcK1cn5yoyWXtfuRKiDHTPAzyASlEmJqXcxpQtdKXhYeLDPCaKTSKK0IIWGCQESPkBaUYAqJrhuYfMAIg9aKZcmkWkEmnBZ0zhJCIqdMWGasVaRQ8THQxKvgetoTU2HoO0KIKGNxbmg8j6QoGLST+CVhdY+xA4jGBbDukG4nI1Oq+FQpcUGGgtaK/dys3X6aKDQbwX4XUNoiJSgtsFZgTEdMESjEFLDGHhKw2kNS1MKq6zBdT6kF2/VcXF8RcmYcBqRucelVVqKvLdWqtm5WqhWhJaJWrNVNQKfYFlu/MMWMkhpjOrxfmJeEMwNUSKnQDz1OdKSckAL83LqDOTaBYVQTTjWDFJa+79hPMzFFrJIMw0CePKpWSk4M48DZjRtIIdjN11xeX3B+dsJ+3nN2fsp0vaMbBlCSbDtyNYS4UGo6dAZL+3mFoJARVGKYCT5x4/ycB/cfYIRk3Xe85KknePs73oVSjRNxcfceXdcfkv80Wht2yxatJUqJxsaQFWN73DCy3e4QFTprUVKx220xRh06ljNSSNbDQK0VqQxd1+GMJS5L+zMVRuXwuz1OKmTJKFnxJSORDTxdJdIZeqMQsn3uFHu0kex3l4Dm6bvX3Dg/5+RsRc2Bk8HSDz2x9OQq8NE3y1XNPP7YY4Ck7zfIkcbMyIkYMs4NDP3qwD6SDdpsNKlWum6gEg9WsbZpUEI0IPpgySGhDXR9s27Yqum7Ht25g6ApqM7hY6KKitYa6xzeL+ScWG9OyLEQ5kKpGR9827SFxNgpjGmbO2M1q9UavwT2u3uM6xF74DQ1e0BPkivm4Em0ZL2u73Dast1d0hnLdLUjiWZPUzWwHlZI05FzwtSM9zOlNgFmbIcdR4RaCDFy6/HH2F9dEdhz5+47eMETz0NJicDzxPNuEGtkt/M8/tij3H/wDEonTjan7KeFzekpt5+52+Ddux2rvicUT1YFaQS1VsZVRy9HrucZY8C5gQf3H9CZxhqqSuGyQxaJTRotFWWBVAJqNEgknRV4vzDYDpELsTRbiKmCs82GaZ4pOWMOVhNZJSCwriPqQEqZXCpCNmuOsYbtdIWgYpTCyGaVS6WQQqDreioCIRVFVDTPQrkLWlsKFTuYw+bEkVJGKNPA6SkdYPeKUjJVVWxvkUVhBPjaniVCSqSyTPu5XbPG4GPAOId0ikwlSdhtt6zHAd05ihRtSgQa84zDNFKR7KYZ4xw5V4rIVDJeglGKWnOb4qFQpGhiT2pSKizeo5/tGGtDzhB8QkratTYOLPPU7DilEmZP33fM+6mdKxiJyqpxj0qiSIW2hrJv6aJGCbSxh065Ihzg3kYbEI0hVBFI2RItcxC034ZAakMqUFPFDh2LX9CuI6SM0BptMrVItOmZtwlfDjCbY31Q1FE/HfXTUT8d9dNRPx3101E/HfXT+1svexnhf8fB3rH+ZNZzPvhzdqAEDxRqSCihkNqS89JEbfZobag0rkZI11RRoUj20wIItNNEv6ClAaHIArSyhMWjZEXkirQa5Qz7aUZKhYAGzDWW4ONB9Cm2uy21QhCCUGlMh1ooOeFLJZdIjqWBP4XgelpQqiWgSQXJe1IqGN2RqkFoxewThcq8ZKSqaC2JpVCqw0eDpIGmnR3wYtdSvFaGnFLrQlSIUVCpxBhaJzYnlJaARBuLlYZaMkpKaoyIKjFSIzQg2mKGVKRYELUw2sZroBaWeWE6cCJK8AgaGLg8222XEqk0MYRmExkHUimomFBVEHJBIhG5pWmllLG9o9bSYs2FBt1DTZA8sWSQrXMIgnoA80opoVasNeTSxs2NMlQkxlk67ZCibVKMcW0xsgatJd4vTUgrwelqoMRIL3WDLGuFLJKUKlJqKpKxt0zTTN+1lKZlyRgzIAUImalYEIGKpKC4njzTtOPuvTusT85bp14UuvWItYYQPHG6botXLty4ccr+eo9zhkhtyXwXFxhjMFIyxZlK23lp3VKgxr6jlEwInloqcb+n7zoUAuU6dtstfjfz2K1blK7nwcP7ONujamFJmZgSQz/iOkmMia5zXF1esllvEEISfEarAdc5nK1IJZjCjPCJzhpyWEgJlph44qkn2E97jNIs+6W9b7kS0sL5jQYpf/TW4+x2O7xfWsdZtK55jBmBICwJHxaUUghRkVKgteVGfwMlBMIKYkhYq1lvOmQFIyXIwjBYYvRNEGuF0o6cM/LAfcpFUpUgxsKwHpi9ZxzWUAXWWYQWFKmQXZss2ccdpWb61YAyhhQiRlmKypAKwjhWvQUE87y0TadfWJ+c0ZkOicTnZplIM5SSeOSRR7i4vA+ytFYrgt4Ysmg2iBIip6dnXE8T+7CATFxcXXN6suHWo4/QdT1FwvZy4oknb/GKj/xIfuon/yPLMrHbKbQZuH3nHkhFPIjCFJtgQkRIbe4hhgS6Y+g2bfNVdhgrMLIQKWjdgVTkWpCdaZB3KejsmlI8VQhSaZaPOWSEbOI7p4RUmnmemYMHJUk+tvdY2zYh4ReMM6A1qRTmsKBMezZabQ+/94quipIrtpdtEkm2TYWWgpQqcfFoobBKoRDkWhFKkZUip/b+FjJQEaLibLNjKdWeGd1h8sfnCEYxOAcoQkzorsGXSy5oqakhE0VGUjFScbLeUEsDjKMM6/UGpWSbnNEdMWasMuQc0AhSjmgjMdahqjxMmySUlAxuJOWKSBlKbfY+JVvXuDYrkha6rUeyoqwGKuN6JMdILQKlHH4JWKvJKVLi3ESnatZMKSo5J7Rt0y6RQi6FJRe0cqSakBVkLlALqeYDGwgokr4z1FyIJaO0oxaQg0D3hlo8prfUlJCqWQpLaZY313Ugm7g+1gdHHfXTUT8d9dNRPx3101E/HfXTUT8d61h/lPWcD/4kBiEOHI1UsLYtHlOZUVpSK8S44EZJrhNZJEqGWhTSGFKuIC19L+lsd1g/JM5Z5nlCisLY2RYFXyu9McgMEkGkMs97csqk4JGioJXAKYfpO2ItKF3w80wKEe06druZrhvwKRJDwFpDVQdBmzNSKzrXQ9UU0awoJVRm70E0uHKugSxmYq6UGpFS4/cT6/VAqe3nD76gtUGr1sWxo2kWgHGEmlmNfbNB1Iw1ihRSG2mPGYUBIKbYuvtKsp329MNJi2+nIQ6Sn5G5oLQFIdkvLb1qmWdq9lhn8GFBqxU5hyYsc2ZeYmOPhMw8J4pShBTorEMJi5GSsMxk0SDGc8gE0fg8wohmU5Gy8XoKB6aKxzlLiBFrLKlKoKXlCVonueaEJLYUL2VRoiIEXO63bZS+ZAankVUgsyAsAaGHJkJrZXA9uUrSIaZdOItCglDY3iKEIudISgtVwOkjjxBSJSnLYydrFBFNIh0676lk1ps1KSfQmbUc2vtNZV5m+s60iHjt6LuRUgoxRZTSSAm1VAqCeYpAZdX3xBgP13xCIxEysVtmpDMsy0JvLQ+vLtFWYVaO3bxlNYz0xjZeCoKSCiIXso+sRkOIe2pVDMOKaZqblUCblmKnwS8RosCaNr1AKdy7cxtjDElIrO0pqWCsBKlBFFyniXHBLwtGKGRpHVDd9eSUUNpw8/wmMfXkmrh77z6r1ZpcIvPOM/YjFbC2Y/EBqXpSmBGSBm12Gp8WckkY6Vh1Az5GYq1oI5GmggRlBRXB+nTDW972Zl764pcRSaSc8DGhrCST6ZyhiEjOEi2aJWSZG6A350jSiiVEBtu1rm2tFFGQ0rBfIsZI9n6mFMFJfwrRc7nbIpSk6ywlJRSa4j3ICjFyNqxw2mLOHXo1MDrNS1/8oZS4EKPHdo6n797md37rnXzC//kK3vHOpykCTs5OcOqULB3T1YTrLCFVVv2GHAKiKkbbs4R9szHJJtCG4ZTdsmCUoqQZaTRdZ5GAFiCMaKlvZJzuyClSC01cakXShjm3zea66/H7qVm5hGibP9u62xpNXAJaKbSUKAFLCozrkegbS6iW0pLSEEjjSKFNhxSgFEWKCSkKpYLSEq01isa/obaplqvdFtt3LMuMUopKwTlL9gvItonX2oIvxJqoSuL6FTlPyCLohwGlI6lkYkxYZSAWjBJY2TZZCkEqAqpCaIMwhmmeSCnRKYsstbGrTJswkVJitcI6TSHRCcnV1XULJtAakSKOlhbqU2hddSXJtWA6S1ianUZK2YDeUpAOaaFCV0qs5BwwCpQyZN0g01I46iGRVIhMCgFPRGnaJE7JYARJZIps659KGUqGIklZIKpqYG8BVbT3WYju8EyqXE97pFYscQYqOYJAY5WhxBbAkGLEuue8vB/rf3Md9dNRPx3101E/HfXTUT8d9dNRP/1xqV/8xV/87T/q7+FYH/h6zlf2frdwthoQObCkqXW/tESLESUk6Mq023GyPuPi4SWjs4TsWW1WhGnBuRGpO67DjO2beMl+aSJDg1SaJS5QFX4JCAFCC6ZlQqbWdTBCUDrHPC+41RpVBCFDQhKXgg8FN4xcXi9Io1j8hDMa02msteS4ReuENj3+AIcWMpFJVCRuBUYoDC1m/mofMGrDeOJYlrmNm69HYnq28xLxfqE6jbEaVKUTPUEHMpEqChaJDAnnBFkIVGcpuaBMhZLbOLm0GNVGi8eudSxKqcQaiQqKbBDcOAfW/QrpF8ZVT0gSrKOKhHWSHFVLvosB5RzT1RWUgugcFIF1mhD3IBRTqFhj6VyHLIXkM7ImEp4sIKaCP/CIBmvJy55xcAwrS6WQSmHZ7+gO3dsCkMBqA1mSsqR359QkG8xXGYTu8FURQjzwYFonqLoeL1QDtRYwujF0asgMpiPrluTkhpGUCzFnqtYYfcqy39MlyWgNg1Zcbq/JWiPMcOjmZITMpJARQrLpN9QSqVKQCzhnGvOjcyiVCWGmNx0r11PQxFBIZWlMGtm6XpP3SO0IIRFj5vykJ+SEWw1cTVvUoKk0HkuqbeBAu56MIKQtlUyunpQyUmgEHUL2aCKIRIzXrWssNaYIVJKkolmfPsY+Bq5ypZK4ceOcZZqZpogUin3e0lnH2HVUOkqySHqWfWDQjiIkuUIVlhArtQq0Utx+5neI/oJHzk5ZSY2skqQqurNgJDlmhrHDl8gc5jb1ECtKWPyccf05Ukj2844peHrToaqglojWBiEqVUHXdVzt9jz6yJP4kFFaMogVWSSyLMSqMAx09ox7l7fRrqKdoOZmTEpVoEQBVSh5RguFMSPK9MQUEUAW0A0djdIScdbg/dSYRKajioKShhhmlBBoZwjzTLhc6IeRsN/jbpxysZ24vr6i73rqNPO8572MuC3EcIExElUUcS/QfYQ8c3PQVA1JCaSsmN6xpMxMpUpDKQmnNLKAKAUlEn7JSNWxRyCNxKdIqQGRJEqqlmrnI+uuYx8SMUu6zkGJjFYicsZIwSIFUdBg9geYuRSOmDJYqIoG0D5Ml6RasdYR5wXvF7SUIAQpVmJuHKycEjJnZK4IZ1Ci4IwhxrbZkLpNlExhocrKPAXGboUVEEuiJJC6Yx8CynVknzh95JzL7TWmCFgqap7QshLrgtCWUTmEa5NByEqhEqtACMWSI0LJlsIpoYY9g20w7utpoh/GlgCa2wb6WZtj0ZrFVwqevhvJOVMixNLCCGrOGNVsINoIUvDUkDBCU+oehKDqSimgRYefDxwgKQgpUWVlN090Q98g83mhN21TV1RFqAxRYMyIls3SI2NjtmkKpALKspTQEvyUJIXU2DpVIHRFGIkPO/TBAqQ1jX8TKylFrFGIWsmpNgi9UWhp2e/eb5TMsf431VE/HfXTUT8d9dNRPx3101E/HfXTsY71R1nP+eBvvWkJRqthwJnWTV2mBa0dUjTv//nZo5RQ6MyAKJXVOBJzYFytoVa2yxVSKfz+GlULOSaqMYgq8CEQY8Z1Bqk6tFZ4v6frV9QIxph22i8ka+uA1hEQonW1ERIp2k0/GIXrLEKBsw2ETQporSlVtm4AzfIiZbv5pTT46Ck1cb2d0doilCH5FpQjZAMz51wQ4v+X+GOdQcrWrVdSMaeZVBJSNwh0oOCco1KZ56XBuLseawwpekRNyFownWkd6JLRxlFTppeGOUwYY1AIQkmEsLRFLnp8DPR9B6ISU0tkE6Iyjo1h4DqFkpqQGwxYKUnfOWxn0QdBYg6L1jxPaKfg0JVxUlFokwk1zpwMDmMVoVamZcH7xpaYlhkhBFY4coqtS5wjzjmmZaGEjO0HlrBgpUMITc6FbAwpRVQtgGTeXiNKG21/eHWBUYaSCz41cLiyjlLBe49xFoRAK4kdR0xpI/KqwOm45uHlNZthw5I9wsBq2FBKYrfbkVKz3TjXYRANDlvie95jlMUoR86JQmDyW/p+QAGiZGotOGOZ/YSWGtW7Q3e2Jfr1zrFZdyy7hW7siTkilWoQX+8Z12fk7KFmzEoTfCbFBHmhlkSpbcw/V1q6VokIA4NUzLsLVp1FOUm1kunyLn03Il1j4oSckDVByVirCdFTRMEMjpISpih0Z5n93ADi2lFy4eTsJnfv7ViQ0HXMMZNFplOOefL0zjFt9xitG7sjVdLi6foeqwVLTmglMLanc6Y5nVLCGEvOGWssORVCKLiux3aOed4zLxPCCGrNzNsdJ5szgo+YoWNcnRBTW3idcW1RlpJUKkoaasoUIcg540PGWkkgtzH/mojBsxo1y5KwtiPs9+iDHSyVgDKSmBYkAt0p9ldbqij0Y8+0n+j7ntPTc2KIlFK4uLhGOMN//+1f59ajN3nyxS9iv9sxzx5RKpv1wPW0RyvBw3t3UFKyObuJzwlnJUZ1LLPHdSN+aRM6K9eRa0EoRQweU0DYnpQzGoEUqokW38D1RllEacwSSqHWikiVleuJKVFyRgtD2gdyjc3qJAQpt415UQJQUApLDEgB2lpCDGgpMUogpG4bSCTGWCKRnBJWG1Jo4PKcMxVItVBERlmDE5aaCrlxy6ml8bGMse35KxoMXdWKtRY/z4RasUNPzIVaWjdd1IMAl42vImqbhpJVIkpLgaQWShEgFX6ZWa02LflTVqbgGcahWWGUYDe3rm7JBcmBBaUVinYthBLJB3i3rO0aU2gEiqoElUI5dPVzaT9/KpmcKlJLrDWUg/XL0NZFHwu1SlIqCGUwSpBTIsfcFl2toCQkrVGdC+QQETkjjW6TC9ZSiMSY2uGL1tRc2q+PjDWGsesRB1smQpBSaQyeElECjDl2rD9Y6qifjvrpqJ+O+umon4766aifjvrpWMf6o6znbvWVLcWrZok0lpAX3Lpne7lnPa6b/SJXasoMnWM3zeyud0glWnQ4oJ1jWTzkilCHeO0YKEKgtcNYfYgZB60N0KO0xB9O8wdr8N43m4EQaNG6JzEmqAKndYthp7ROi2jga6M1QgmqUORcW6dKayA33gGmcWFKgSqxXY+1HRlwQpFJCKXag79UlFSU1P6sNbeUoAwxzPTDGbrKQxJeYS6Z2AlqSjjbkUtLP8upiSBqIZfUUBYlIoQgx0ROlaFbk1KiApk2Kq6sZEoemTP92FNKQQqFFIaSK0q2Ba5ag5QVpSWuCmoGJSTG9Ejd/swht0UFgVQCrRVxaQIqLEsTZjWDrIe/S0Q0uRTGfkRKyexnOICCqywApJzIS0YZRSYjZEXrg5ElBaw2XG+3uK4JqpQSnXUUUZiXGQlkCjEn4pwJKWBsBBTWGub9HmM0cZ6gFKJUWGdJKdP1PY+cPQJFsu4spbYOVyjQdw3mLZRECUnJGeskNWukqJANq36D93u0sggRGVfdgfXh8PMeZy29tTy4e4ebjz1OEpJlCeSicNZCCMgUWTuLM5ridBtRrwmlarOZlA7vJ2rOzcIgQMoCpVKKxDrLvOzpnGBZMlIqjIJYFlj2LP7AokmZIgq5NjaMn7dYc0YMnhwXxrMNTqrGCJGVHBNlSazXKx5cPMRYjVSS3q5Zn92iKEGMAts7UqxYZXHKUXJCSkkKuXFthG4b1+CpSZCVIFcoMSEyWNUUYqG2j0uZUiDEBW0NQtbDM0WyTxObvsd5RfILtUpmv1CqpFZJjKXdi7nZYbKSKKURSBCSnEtjdJSKlgapBDEVUszkVHC6JU+uxhU+tmubWhi6DuUGQgyEZWa1XhNSA9wrZZgOTCspGpsphMDNxx/n5MYNLi4ecD15tOkQCWQx7PYTwzggFShOubq4xKiMVE1kSgmPPHqDe/cvGNanLIvHGX3YOCXWzjJd7zC2R0J7LsSEpE0ZKNFIzDklaqn4FFkNK/ziyaWgjcEa26ZAjGH2M6IkZEwNDq8NPoUGPz50t43SIEBYjdaSkhaoTVhJ0WwfCIHOCSUkiw8YJxFSIKQglWb58wcujla6XY+xPS/JBWctkw+4vmvdWqXxPiC0ZrO6SayZ0lDjlFoRSjQAfc1NTEpFKYVSAEoTxLWlhiI1QjuqUJSS0FIiBteSQENG1MowOGLwLVU0ptaZdpacDs893Q49RG6AayksEk1OTTQjJFK2r5tjwmjbhKp+NoWvHYBQQVQBWpGVQAiJyRmJQMgmWGs9pPnVDLS1pNYCQqK0RFDRsk0L1QopRqRuKZeitN+/0q1rrwUNsq4VDWENUmuUsuQim6VGyf+bsuBYH+g66qejfjrqp6N+Ouqno3466qc/kfqp5arX+sGTGHKs/8fV4fqqtOvtfdZzPviL04TDcrrZMJycIHvJ773jbRiniHkhhYyVEi0hhIVcA+NmIORKpY0UC2xLocsL89y4BRWF0JJaK50SWGcoqVBKRCkoJWCto9TCvDSArlUKKRWEcFgUCrLIxlxJCWMHUoiMrmPxrQuDFPhlQkmNUhpyRiuJEAIfFrreopXGSk2NBSEFWmlEBSE0PrYkOuMMy7xQSiLn0Ea6hYRSGntEzyy7GUrrzE+idlAAAEzXSURBVMTgQSp2u0s6ZxvoGBj6DiUkQhhE1iyzbw9VBFUJlNH4lFCHsehaMkEUclxANfBqiAKtmvWlZIE7AJz3e4+QFSk0tQiqjO9ZAFL0GAy1enKuzGHGOYceOrTVEGacG8h5wVqHMYbgF7b7Pc52OGdZ/MRm0zMtCxqFtQ4fYrOXlMJqtSaWSKmFYbU+dLw0u92WYRjJuWCNpsTUbC6lsjvYk+qha3S97Ohc38DbEqSSGN0RwkLfWS4vHnJysibVTKyF/b5dG9OVx2hHSpXVsKKUTC4NFKy1aaBt2ZLtam0TDxy6g4XC1dUFXefIqZAECOHoh5F58kg7Iq2hSMFjz3sKbQ2pVtbrNfM+YLVlc3KTef8QkTUlVqqoFJmbHUY5BB1GQZICUTPKFNzBdrCQ0Ea1blUGJRS3btyi5sxuf8Ujtx5lnq+pquCXBaklDy7vUatiN0eEcdzfbuntwKOP3uTi7l1qSdy/d5cPf/mHUgbX2Cc5IshoqRFa8PDeXVSniamwLJ4bmwEZGqRY63aPGGPItVJLBtGeKVVApR66011jB9VKiBG0QipF9oFxGFh8wkqLULKlDCJQShLiQsoKpSQCCME3kLHQGG0JYSLESKnNQhFyZdWN7LfXuFXHPM9YqxFV430GJRHCsl6doaTFzxGlFW6wjNZwdfWwXXu1IqRr9rOxI/iA7VbMKSNrxhxYQsYattstfd9To2DaBR658QQKgRSCxx+9SQ0Zv+zJBJ555l34Zc/jz7vVpnNSS/hLKVFIDKsBaQTrYU3YTVTZnhuy1JYulxvX6vLyIX3f431Eao1RkkoTSsY6QqjkUuiGAX+wj7Q0S0GKBWM0igpaYaQgIAilIgXk4DHGNcB6avBkHwJOSkppwQMpJ7LWzGFhMI3H1Xc99dCRbvlpLcmu6ibwBbVtqoCaEsZa/L5NRxQBScl2DxJaclvKUKBzPVUKoohtsVG6Pa9yJpU2+aOMbfdubs+VzjnCHA4BCc16k+aZ3hl8iNjDszuHZhHKOeN6g88Rn2ZKLSip0LmiqgChSSVRpSQhKEKgkNTaRKQ8PLe10aSSEUqhjGoJjkqhhCQdDmGM64gxoYSAmKi5IpUE0aaBSm2WkqolSInSBoEhx3BI0TscElWFNpLgAzFGetMzmJ4QPaJaptnjdUbqgqGQE2QpEAehreSxY/3BUkf9dNRPR/101E9H/XTUT0f99CdSP92utcb9fj+M4zh/ID/xsY71bO33+6HWGoFn/qDXvR/hHgpRC0+/8+3Ed1WSEmxOTzBatRQhIwkhkGttoGYCOWtiEhjnWHykxjbe67oRpcvhRF4gxAGQWsHPEyF4tBJ0VuO0JhVBTAkhQStN8J7Ves3DBxOyszjnWOaZXBRd11GlIS6eEBJCKOKhgyJ0S5BLYcZIRRatS9u5HqskuxgZR4eQGu8jB+IrMQaQEJaFabujpIxUrVMuWhYZMUSMtlxdb5sgQJCRdG5gWRaUkOymCSFpo9peYJTGh0xKpSXw1ZZIZXRFd4bttJBSIpfMOPYopVusu4/0/cA8z+hRs99PlFJQtokLo01jLxwSoaQS5JywpmO1Oidmz9X1DqUsxjV2SYwRIQVdPyIR3Li5Adoi1XUOd/MR9tNEDBmlNdvdllwLrm+LTjc4am4j2kIIlNT0XUdOpW0USsFo3TgXonXdUk1oZTC9ZZ5niqgIIeldRwrXB2tEgxZ7PzcRXpu1SEjRxrNzQpkm7gFqLcQc2O8mBLl1/GvBWtMAJlVQUkTUghDQ9wMpFXIRaCvo1cF6VSTWDJRaKanijMM5x+xnnHWEEKkp88gjN6nJwzzTaWhwDoUyDmst+92eUltHMfoMuiWy51BZrTaknNpkxbxQhEBozeJ9A97Gwnw9M4w969Up2/2WKjT95iahXpBT5vTRE66uJ8ZeEQukyXNy85yf+i8/w/nJBlkzfdfx9O13s6TK448/RvQJK0DmxDzv0Eax306sNie4cWDUkkk2gO71bsvp5oRpnhFSIpWhkNFOoYUk19psTbkgartgcmnWgxoSWimgpTzWWhGyQZNV11GyonO6Adu1JoSE7Wy76JRoG59hIKeKqBphJWtl8WHBdh3ee6SEeZ7o3QalbRNAh/dUaU0VbUN1fXXdINmqCR2tLPvriZPzU+b9rtlfqsJ1jrRMzAeLg6AlFy6LZ9ruMEKzbGe0VgQ/c/3wIcEH/q9f+kVe8cqX88QTj/HL/+2X0banG3rWm5Hd9TVaGVbrE37q//NjvOqjP5oTdwKykgWszs5wWtN1I8u8sN1eMI6W4bCZTLkw9IawtM27lpKxs2y3e1KWTUQa2ag8qcHdtciEZWqbSVEbSFwbhr4jykpKGYXA2Dat41NEa00uMI49SwyEODOsBiiVnA6/3wLayLahRFFTZHSWWlRLLjS63VtVNG4KLUVPaknJje+07ntIqdmntGvrBoeLpx7mVWqmlIw2beJBSEGVBSEVoEglInX791ITHDZXNUas1PiY6YeB7AM5Z7TSJApIiTYa7z3Be2w5TBQoQRUFqTXCtGukhIg+iGhKpYgMKSElpBQpolBqe1NSTIhaWue4ZkRJzV5SBaLKw89TkAiUti09NAXKQRgrrSi1QfelUnTWIlVm8TPKGLTqqEUSUyUlAaJSqybmhBIVZzRViWbJEbSAhePB3wdNHfXTUT8d9dNRPx3101E/HfXTnzz99OpXv/r6TW960/fevn377wE3xnGchBDH2OBjfUCq1ir2+/1w+/Ztm3P+rle/+tXbP+j1z/nKTlJgpGA87VhyRvUDPmRKSgerhERoSxUZnxeUdASfKaKNY6fkMdaglUFpTfALSoFRghgX+m4gRpBCsxoMkkxOjQ9TY2Cwlpibj7/kyMWDewyrU6I4CFqtEVUQUqBS2WwGpu01xiis1pRayDWjTXsQ1ZxJMYKUpBCoOXO6WbNMEwaFFILZ+wbFdoYY2wK47jeUnNlPD0AK5iVgbI9xA/v9jHCtK1KrIF1PdM4wdJauO0GFpXVKlDywWlrvR2nBahjaKHX0iApxWhhNh+o0pRScM8x+T5GCLMHPC9YYlnkil0QpjQFUU2aj1qQUQRSkkCzeM7o13kdC8EhVGYcRqqQUWoy7NNRU0bKNWWvRxC6lib6UQhtL9x6hYZr3dEPPlHwTzD6gaBYQdWBphNkzh8pmNRDCjqHv8X6h2RjA2MYwiTmBURQqJWRGoTk7PUPU3DpkNaOUaYlXtZJLYr1Zk0tBaUOcfZtwkLKN2itNZyWpzK0bN0dKkagqSTFRZKWUjNKKpDS7/YJWFusUzmqWecFoDdG3ZbdWnHXImhmsoabIemhA6mWa8dsHrJxDisR2msEqsgzEUqg0kR7mTEyJ1blj8QGobHfbZo8CtDSEkpGlMIUdVmrWrqNSubq+RmvJalwxLRN+uzB0J++BZA+jpR/X+NwsGuuu4+P+9J/h5HTF5fUFs5+xpyeUiz1+nuiMbd3JnDAIFvYYqxC5JZjtp0uE1CgtUKbdU9pqSj2wmgClJCUmam0iUCiB0G3KWDqJUE34ylobCNo5am4ckZJbR1Vozf7ak2ODjeu+a3YAKYg14f2MtQOznxnHNSEFZA1oo1jmQO8cy7JHSbjaXvDIrSe5e/8uxjagNbVZBIIvjUFkDDEkRBXkKLBGscx7Sk6AYJl29Jt14+rYxlAqJROCB1EwXZuycK5nv9/R9Zb9fouxluc//ylyKYSceerFL6brVvz2W36TW4/e4NYjj/D0u5/h9PwRpNJcPrzg1o1z+vWG7TS1Z0WqpAonNzb4eU/wE/vpkpgqQtvGfioZ5ww5B4TQrMaBmFS7RnVLvYu12c+0a2mbSbSkSKHAKUHxM1YJVBWkFEAokIrBWHJIrIcVKSUGZ4lTQBuQqqOEzO56256lpdktnGoTIAZJTAVVaZaxkiipIKtASEkSDQZthMEpRTxsCpRWLNWTa0FLhVIGqmjij7YxFTkhSkJLQy6tU55z28yvug0h5AO7KuCEQMhmdxFCM4eM0QZF2wxK06w5pQiUdDgpkRJyyiA1SiikEeTSPk4q2VITfUBJiTEGrSSltMmIekgvraXNIQnpMEojksCJdniQakHnipQCoRQZQT5YB60wIGt7BuSKqALJYTokp8bQyZlOG4Q2pFRYZDuQiPt4mGIQlBxZakFJRyogaBYYcXT6ftDUUT8d9dNRPx3101E/HfXTUT/9idVPr48x8vTTT3+OEGIAjrbfY32gqtZaY875u4DX/2Evfs4Hf6VWPOLAh9Fknw4T6wJxuIljBoHAuJEcc/v3KigpY7uDSAkeEGhl2mKgBVb2UNqiJpViv99RSkUJTb8akSqx311RS+a0O2U5ME1mvyAPolSrjhQ9net48OCKGBpgOFOoqUFFpZKEEFvcuTAtOagkxvEEHz3ztcfIthAU2sMQHMZpSm2j4LurHQpw3Zr9fEVG4KcJJRQlRpSTjMNA3zmm/R6/zGjdI0VFpoJTluQL0irG9YplaZyVMHt0Z0gxo5Qkx4IohZhmpBSE3XzoOrfOa80CqTTBBzozsDpZc3950EDZKWCMxvuZYRwhtZ+773pSCOSaiSFjraLkhKIyaEsuECpo3WLTc05o2cCqqQJCMA4DQlTOTjfsdtvWxayVrh/IKTeeQm5dnevrK5ADPgSU1mitiSFhpG78mpLJtSKRWGXorSHLiXl3xebkJjFk5nmP0gXr9HumIjrniDG2BUe0a0m6DiEFyzJjnWPOEzllQgiUWln3Ky4vLln1AxmFVBqtFLXQYueFxFiNj6HBZ2NBKkWiLaLzskDNaCUaI0cptHGEWKhVM+88WuXm34gFrTKBeADvVnJuIvvh5RU5V3KB9eaEsOxxnaXmNr5fksDZsbEqREEUwcOLS17wwhcw+Ymr6y3UghMGrdbUDFpWaqoYIcklsoQFISolRoxQdKsTJAI39IzrE37qJ3+Sj/0/Xo02ku10BaXy1JMv5P69S6yxqNqsQUjY9AMpZR4+uM/jz3uKkAshzBQl0dqi62GqYXDU2jZQtbTF3BqDoHX3pGgsDaUlSgmMbIwgM/SY0qYxpv1ElYqYC1kk+r4jxYyzrlnLRAMV55zpett4T6XQ9yOuBuKyx8rGyDFWk0r7PNo6pmXGHoSK05b9dovUCRE1m80Ju92eVddTETxy61Guri7JYWaaF05PTrG64+ryIavVQC4LPu4Z1gNuPEEQefR5j3Djxjn37t9m6Aam7Z4/+4qP4+79u9QqGU83XFxd8OqP/miWxRNz4eLqitW4IUwLxjr8tGAU1JxY9gu3HnseV7st6CZsC81eIasi5ya+tMmknNvzJ1dOT9bsdzPUSt8NpJpR0mBKQZbSJn+UxVhFJbarW7V7q+SMIKFlZdrvmkVridhOIEVh3LjGVSmV5io5TBJURUr+wJJRjSdTG4No7Dp8KiQJOebGKpOiXRNFIJVBC7BWk+sBsi8Eogr0QRdVYUkBqlAgOEy9ZDyZItumDwqhFpy0pFwxB4EtpSCEcLBVFbQybXJCqPasVxCh8aoOhx8N8g8xJ6SsuL51rAWCJUZkBXE4rKGCOIC/c66UFA9cptjsQgKSqA1inTNKCiQgVYUiyCHjpKCIChLq4aAHaBNEuiWKBj9hnKHUTEyxJd5ViVaCFBqkvQhPVhlRQQuJPOJkPmjqqJ+O+umon4766aifjvrpqJ/+ZOqnV7/61QX4x29605u+GXgcOLZmj/WBqgI884dN+j1botbnNm36o//v76kVyLU0/39pgmM3XWOcQ6g2NsthIZv2ewDGYXW4yRvLQgiQQmHtACIja2yfSwiQhevdFuNce9hKB1WgnGTab1GNI8p+mhBKs9tHXNc3kHXNzH5Ga8G0X7DWopXCx9iYI7kgqJRacLYBh53ryTmTUkUpRZj2aAX9OLROEhI/JUIO+Ljn7OSE7cMLlt3EeHaOtoaQM1pKBtchS0X1DikqnbVYq9nPCw8ePmQ/TeQMWjuEUFxdXbHarHCdxs+e85NTpnnCdQYjBacnp8ylgXFLbJ3meZ4Yuv5gbdEtISllSi4tXl4WrD6AjENACMk4rMg1ME8TksbK0LZ1f40xTMtM3/WI1OLMq7UNBi0KQtSW5FdaclaKBSVbJ1uI9juLMdGZDl8jznWIA48j5YC1mpJaQuCyzBitUEjm3URMje1QEUilGFYrdrs9WtIA4KYnhozrNZXIft5jjAPAaoP3rbvamBeFyQd8bDyQsXNo2bhH42rk8uoaIeDy8pKh68lFYK1lGAb84jnZbJimCdNp5mVubItcMNY2VkcuGG0RJJRsG7ESC1K1rmCbmFCkENn0I/M0kWugCgG68ZFCSNy4cZOriwsEEik1UmpyjlQK7sAJybU2OPU8c7Jesexn+q5rjJOSUA1rQRUaodokRc65wdp142wswdNZiygZZ2yDc4dApi2ej57fYHt9ibGNF6MyTVyNa0JMWGeJMXC99fS9oxC5un5IKJHVZoW1K5QwLPsJWQU3bpxzvd3SDRrnNH4RbYJFgl8CUhoQGWMadDimQOcafyVWMFLx8N591us1l1fXjONIkc3aklPBHCDRPoT2cBFtUZdKUQ8ighSJ3iOVQhtNCKG9UEpSSWitkQexvOxnNps1+/0WrS2r1ZpcK/tpR0wRbQxCgHOWsHiMthhpCHEmxIWuM82Og0arDqkL8zxjtEGQGLqO+/cuefebfw9rDKfPP+f0kVOW2dN1K2oBqzVZQPIBlcEayzO3b3Oy7rGqwaMvt3siBbe2WOEQtVBColawtieEjDIVvywHkSYJMTaeTq4YY3h4fcn6ZE1JCWKkiAZQFlU0e9shZQ0JInkojW3VDWMDr8dm99K0SRsfA0ooetX4W65z7KcZqQ3q0OWNMREXf4CUQxWSSEUJiQSskUDbvBWhG4RaQKgJ5GHa4GAPizWTk0CIliZXSOQSELSkOlklJR+mPowilWb/MKYdAgghDvdG45dV2kROrYWaMsIohJQo2n2dc0ZKeUika9+XtQpBG4CotaLlQWTn3P4+lXbvHbg9tbSvLyUs83x45rcDHp8iymhyzfgENWWcknCYFLLoBqaurcudSyLEePgZFClHqpBAY/goBEoJQopUkcmlbbWVMHR64LWf9yXH078Pgjrqp6N+Ouqno3466qejfjrqp6N+Otax/ijrOU/8CdEeKFq2VCPk/7e9d+mRZc3StJ7vbmbuHhH7XDOzMk9mZatBBVQ1qJFoYIAQAlQjBC2B1APGzODnMGHAP0BIDRINI9QIBGoJCSjRRVdlZeXl3PbeEeHudvlui8Gyc4oZSVeirE7ZO0nlOXFi7/BwN3s/W+t9XpBemaYRY7Uph1aptZG3ohOvbySyAzcd1hqc0VmErrx7hQ9jKCbz8MEbnY4vmfn2isGQeqK0xlIy02mg71eRMI4Y6xFr6E2hrTEGpnFSEHOtpBToXYh2ZzW08m1z1bwu9C4aX6iVlCL3beOeC3POWOMIgHPCKYw4Z/ne93+Hmgu3WS/2U/LcX6/0oE16KQR6qyzLwroKNngenx4JQ6RjEOvJtfLB+IZkdYoSHhKtZ8Zx0Ip4Mby+3DHnMy1XEKE14TTpTa8ZXVsv20pKEYIhS8Y0S+uCGIMzjlaF5b7SyVhjiT6QYqJ1ZSu0qq1Sr+sNbxzBRZwI3mlDn7cWsRZQwLd1atLZOTE+BjVI1iGlKE+n6s3QGp1k0TutFgVP0yi9KZsmeEJQVkPb4zvOaTuhYm47xulKeoyJcZj0fbbHI6ZpUhj1cscYAWk8PjzoDfnbCWln+yZ2YgwffPgh1lher3dCDBqNoVP6vtmQizI4vIdeMb1R11Vh2pMlF528t6zfvzXl9ZRcEOkE7/jq3ddE76kobiNaT64F4xzLtu2QZWW6pOgo86YGYJywvmNNB6lYhF46aRrxKVJvjRgSRpSVZJNQ+6Y3Um+ptbJtdYd4e0IIbGsjd227E6NRgDGNvHv7nofzhLUwpAvO6PvLukDvRkHzIXF5qkjfcMAPP/sB716uGOsoW2cYIIwBa2C+PjO4Edc7dSsMYdo/911h3mIxztLyndOY2Jrh6y+/JIxnjassCzZ4csmk6DF05ucbKSWsUwBwDAmMx1ih1IzthlIVOF5LxgehmExwgbq3fVkszqDsDtFoWu+d3DMxeUqJAGzbnZgSQ7IYI7SaOZ3PtFY4n6fdYFfEdlxw1C4440Asg/fkXhnSmdYqaYgs68L5cub8g4/55bsvIc98yId8fHpiuRc9ZLmMCWrGSu+8+/Jr/su/+1/z5uHE3/ybf8CPf/xj7NDxRhBrqK1B73jviM5TsoLxQ9SDe2uVLo3LZSRvG9YEPv/il5wezhjRCa6xDhsDTTolb5jeANFtGucRPKb3HbS80cQiTRlEY1SYdWXjPA6s9wUk06oQg6UbYcsL4zgRnKeZTNwZWSGoUXTWQRNyLrtR898+yADlU9VadSrv2KNeHu8dgEaKTMMaqP6bhlGLjQrez0YIxuFxGNSwxrhDrQ0YY5UFZh2tVlywWO808uacMnucPhDY8obzXksItkIIQe9jvdOsaLMlAh1u60ywluFxUii1t2zbzDSOGm3Z36etNJwxBOt5efsMcSClRLPQ6XiBXhoGPWw5bzWuY4xuf1ijh4DS9KDgAjmvOJRx44zDELXNUQz5L+cNDv0adfinwz8d/unwT4d/OvzT4Z8O/3To0G9Sv/KDP2ci1nW803iDQjUNLlrWdaHUguxP5cO4Tww7pJSQ3jWj3xulbLhv6uupYPViAJZVKrWuesOygXGKSO+YXjgNA6RELmooa2tYKwoCbZXgLHkrUA1r06nNPM+0Usk58+HTG9ZtAQMhQesV6wKn8cS2LJgYWLaNNVfCkIhRIcW0jWFI3O531i2T18w0TYxTAGtovXO5DKQUMCLknfOR4qjThpbBGc5RGQNPn3ysoN/a8FJpvRJT4v3zja11uvE60ciN8nLX5jwRbDP0VnWKYh0xRdy+4t17o7fG5Twyz3dqbYhzWGsptSJGG/JyqdA6OKvTOyNsOVNMJ6SIwezUgZ0tsWM+DAbZ19zxjkbHxchaGjFGRARBWd7GuB3+a7nfZrwdcN7jrKXUTAxhX3nvfLNtajHc73fllohOmrtpiKkIetMyGOg6QQ9Bb4hln+RgOufTSSeaYnB7pMGgk+ecN8Zp0vY+RA1ycCzLTEiJ6/2qYNtvJk3GkpLDSGN688DL9aoQdbx2sgeP8Q6q4KzBhMDr9YUYA+fziZozHmXu5HVjGHXiPF+v+BTY2kbwgTnfqVTOT2ekbvv2RsFZw5A8l9NIjzo5c1Mg2MD19cowDDTbEWn71LvvGwgOjH59yRXvI136tzdx6YVOA8lYM9BrZZWK3X/f0TpK2fAh0TqYFnh6eMPr6zPrdSbt38c5bYBM48S2LYzDiVaVedNzw0+GbbtiTNkZRxOv94qUlbYu4NSwPT098nK9czqfWZ1VaHjXA46lMyTHvC7655Rlb77b2+zyBugEEQO5LIgtdAO5rIxpxDah94pgKbVhncUabUZrXXAu7KY/I70wDgGRQhhGfHBkqUirjEOklgYxapudcWrQY6JmbYCsVa9j9+2OSCGvmY/enPjhD38fEeH13XtWG1h7Zzo/0JfKljdKtVA643Tib//7/wH37cbTw4l31zun8QJGWNYrJiW9bpaKNxbjLdEGjDGM40hvldYa2zZzOZ+43TbevHmDj45cM9F5vE8aF3GG5ByiA31q0/dIszqFHk8T831mmk7QM5ZOXTdCCoRvAPnSCNZrdNEFjZbYSCmdIagRdfs1qPdGLSvWaySpVKHXro2H3eiEWL55MKIPN7RVzSLG7QwYwdiOc/qQopeGtY7kvUbBegEjDGlgy9v+s1k64KN+tn0wtK4Ncc5F2A0taLSjI+S8YULQjYLeKLlyOk2ICCWvpGFgbRXXnTKxLJwmPai1JjgbsMbgHKxLUTB/tMqfwhB9pC2Zj89PlL2QoQPNOiwWq8N3otPpdEhx55kpWwmslg8Yi1iwwekBFIPpYLrCwDU+4/5S5uDQr0+Hfzr80+GfDv90+KfDPx3+6fBPhw79JvUrP/gT6XvlOLTakW8KaYzbJwHfrNArd8B0lD3iHduq8GdnITqhi+b3SxHWbcYCw/hANAEhY2zQCxV7DRJlv8B58loptVJ6YzxFpBekd6IbMM4xxcTWPbV2nAsYHGmYWEtVrot3lK3Sm9DqxtqEumW9eCKMp0lbwYzFRwVu59w5nx71Qlg70g3GyT6FEabzoGvFpSAu6AvrPWNIbMVSembEs7VKu91xvYN0HMpGyPPKZZrI95nmDG9vd3wD18GEwLau+wVb4drdGMSAEzCtEZ3Fx8C8vDCMA1+9fU+KkYfzE6VUqjhkvzAbY3E7B8HjiHEgGMEbR8kNsYKPQdf/OxjrMCLQO701xDswltw18jJvMykljLPU1hnTyLquGONIKZHiA7VmurW0bkC0fn0rs76XettjBEbjQrkoiwOYppOulKNXc70JdmXneI+xli0vtN64jIleO713YvC02nTaLp3L+ULOZV/LV9i2vv88Q4q6xeAtbc16I7F6R/n8lz9jiB7jLKO1jOcTWy5MKfL87i2nNLIsC08ffKiQWhHWnBlj/HbTwHtLsroqX7vl6c0T83rDOUuMkSVvTNPIyXjeffUVYxpxwP0+8/UXf86nn/2Obhe0Sq0aHxLLzgZSXotznsvlgW0rLPPCdDqTS9aGMANDjHhrmdcrpneWAiIF543GiJYVZwy1Z6w3zPOdYZiwWN5//Z4U1UyUXgghUoyQW2G5LvTe+OLrdzxdHpiGE//T//gP+PrLX/Lv/bv/Nm+/+jm0yne//2Pe123/vZd9Wuj52U9/Ai6SU6L1HXRtLVsupMGx5hkXDJhGLhvGuj1eoTGY5APLuhFjIhewzimsvHZqq/TSkGbwfuTh9Mh9mQnBYRBu1xvRDxrP6ujEc6300pE92jPPdx4vF/J612mr7NGxLjifeH298eZy4r7eqFWU7+M8t/ud6TxRy8b7X37O9HDhcr4QQ2KycLvPyB4xsHR8tDw9PPHlu/d89N3v8PLuK773yad89bOvOA0Dj8OZ12XBDomGpYkB68DoQcwgYA00PdjV2jmfL3z+xec8xgtG+s4HW2i9MqRIbxlnhOBHTNdWxsEPiBW2teBcJOfGNE4gCzUXWi1YDL1WztPIPK+AxdvA4+XC++fXvV20oo2QBWOV/eS9I4RErZ0NBdOfTme2ZVOGlVOYs9vZKt2A27OJYtp+H9D4BhgkV70qGME5oOu96fMvPufjTz7BhcD9PjOMGhPZ1hnrHE30e1nrlI9lFKgP6P3NGH0AYw2IHgpaE3z0BDOw5hXv9bBOF3rXxkkxeriupTBME3NdcFG3e3zUDQO7t3+OcWC+3/dG1MTWC7l3uuk0Y3DWEr0n3xcMXnlTUtCZurLbZI9tOmsRGq4qq613vXYZ0/G9/WMbg0O/Xh3+6fBPh386/NPhnw7/dPinwz8dOvSb1K/M+Pt7f/c/U//Qu17YYkCAkivnKZGiBdP37L7oE/Pa6bXSStGLpLP46Mm10/H7enXWJp40QQjc7wuXy5lWKyWv0DJpsJTc8W5ETCBXbStz+/TEWailIk2ZFtYpYFp22ClGb2rJemptNGm44Km5MAWFWNfeKAhxmFgXBdlu24YdRoY4YTp463Vl2AiYTKkZqXW/KHtKyYQ04FGmBtJpsiFoFbmzgW3rVAEbPEueEWlIaWxro+C4bRvRR6IYnHSc98zzrByUqOwMg9lhzzujpnestaTRYp2hIazrppEDF7DppJwZEezOstAadcM0aVOc0xeJ1YIPBtOK3iDFYqQRDLRSmcYzjbq3HlltKRPYyoJ0Q/LxL1rHAOvHvcFO4cVGRBkv++QI0d+T88pYWdYFEW3YOo1n5vmO8yBdDYYPgVqV2zCMI8q6yBhx+rvfJ5rOOaoIvTSC96zryuXhga1keqt6g0LIpXz7evj9NTFeJ4HrOvPm6YTUzsvrKzYmatUJppX9fR2HvSJe8D7gnWMaB8o6a4uis+SyYY3hfrvx177/I7ay4pNHLGAM65Z5ffuO73z8KX/yf/0JRgx/7a//Ll9+9TkpDFxOD5yGM8ua8ePEvRS60XWCbcv7xNrjnce5qAwmCwaduJqm/ztMA7Vk1nVmGAasc4SUKHnjPt+x1rGsmd4d4Igxa/zCeZZlAxT8G8cIxlG7HjxKnQmuk1JkHE9cxoF3X/2c7faeUxr5+OMf8MXrih8v5K4tiU4KJS+IKDS+Id/C1ksuDFGn2rlsrLnwwdPHrFun94y1wjgO3O530qBtjnYHF+MdOWc1tbcbg9NDsFiH8Y6Xl2fGYWcblYTzgrWCd3sLo0AzlnW5kaKl1I2P3jzx+vJKnE6suYJNWOPppeBNJ0yBrQjWBErdcE5wzvP6/J6X12eu94Wf/vFP+Bd///f5wfe+R+4VmRLddsq2Um4rf/S//5/8K//qv8ZtW3l5fsun3/kO823Vg1VZ2LbOOE3KLnGQ80Jwhtb0dU8xkpfl200QjWN5rEU/Iw2m8cySN+IYyPOdkheG4aSbGA1tlfQak5AOIobz5czr7Ut67oSQdlNn8Rju+/vodrsBEOOA9wHrKsZ4aoEtN4157GDt1kUje0YPqmZvlLP7hFak7ubU4p0HsfjgETqlbtpU6hzilOkUUmKMCXrVQ4DX7RD9XG00UVaPkYI1li1XnPO0UiglM6ZRtyRE9u0X3boyVjeEEIMLQU2hVJ3UoxBrAUQgt4rxlqR5GJp0jPNqlFvDlMa2bYQYWWvFWKdm13aCAalFW+6swZuA2Sfp87owjiOlZpzXLaNaGtIcwSW6qTTJlJ6J9qIHXOlYo6baY/jb/+F/fDBq/gro8E+Hfzr80+GfDv90+KfDPx3+6dCh36R+5Y0/jS/sXBlv8M7SWuPpdMYYmO8znYYLDrfHWYwxWGcYhomybnjnabXTmjBOgdoA46Abahe25c6QInlbNK5iEs6OXG8v2sDjvU4evdfH9eiFW79nwxiL8Z5SC8sy6wS0bJwvD4Cwbnu0werUxdu9Ttw6fIf7/UaIgXH05HVlmDxuTLStMoaJbdmQ3gjRUXvBikFwxKir7WKU7yEWEMGC8lG6Ze6Ze1lJYaTligXGOOGwSIJcnylboZRCLRvdO7x1tFWjMp1OHPbJiEAFEG1o8tZQpdK7oe3TzegDUSxSKnnTyvvgHNKNQlutVf7HVgjeU6u+rt4apBVs78p6MNBFf4+96eSn9kraW/eenp5Y1xWaMA4Kj9YNBkPNlVavnKbElld6VxNpddSCNmIJrWSk6LQq+IC1nroV8jxjRWG5ygiBXDdSHPZoTMN7g4ihVYO1Ae9h3VaCKK9InB5QfAzM64z1FmsrpXW8i7oevwOkpawY9hulMSQG1i3TS2cczgg6GKQJ58sD9/sdjMNZIQ7KWBGBeZ1Zlyvn80Qtmbzd+eyzH7I9nvnq/VdqMraV8+VM78LDcOb06cjteud7P/gRr9cr96Xw5s0nXE5n/tu/99/x2fd/wO/9M7/H63xnGAaQzv11ZfQDbjC4aLA+8sHTJyzXV/I601pmGibypgfF3hohKJR7nm8447Bid66MQqzXpTGmAecS719npHbSQ2LLV8JQmbeVD55+zE//7Jd88MGnTCmxLp6UAFGuxk/+/Kf84Hvf5ae3mfP4Ic8Zmvf44IjWEtJAcgP3l8b1XqgNQkrkUvEh4n1Amk7fjPE8XSbKtuFwIJUxJOqysN5uBKfRqGat8q6qILXjYsCFEes93nSFSRvhfD5RykpKI0UsITpu9xdiCsQ4UGujtkxpna9+8RXf/53vUqtwu935nQ8/4ba8IwUFMJ/PZ27Pz1CgFSGdAi5odG8rmYeHN7x5eMKngT/4vd9HSid3QaKnilDWwhgSfvJ857vfw1rL6DzDR5+yLZmYBm73G71XhhC/NUrLmnEOutEHBKU0Wlt2dpil5MLDmw9Y1jshapNjGkdcCNjWwQTCeKLbQLNeuVXLRm3QW6eWFe8dxhpyvmncwnem84XaOq1kQggEKVQpxCmyrRmfPN4byrxxPie2LqTzQM6N2mSf8urWzZozJbNHjzzwDQhfIc3WGGJMbMuKFUFMxxhDB1wXgtE4hm8Gs9U9xubYtrvuOYlee6cUKWU34uhn3TlL9Ilx8Eg3SBM9SFursbxvJ9fKsMFa6EKMI72VvY0VkL7zYyIxRGzJ1B0Ub9BIEV5b8FIcaQZOwwPGONa8keu6M6u0oRUj9JZpbb/fGrOXJ+j12rDfU4IDOnld8IMC/r03bLVjRO8r9+sNM8R/fGdw6Neswz8d/unwT4d/OvzT4Z8O/wQc/unQod+QfuWNv//m7/7n4iy0oqDhYIOaoK0QhggWqlQEjTTUXPH7pMJi+PLzL/nkg49oYqgIaXC0Xgg+AB4Rw5I3hhQxXVjWlfPlgVwKtA3pQq1tZ8dYlnXFxahMDtGLjg/acNS6Nimt60xrjcvlQu8GuuV6u/L4dKFuK6dhwITI+5dngrXEGLDe7mBSnaSVXHEmMe5TazGd19sL42nC2z3eITo1alRdfRfhfr/jrOHpfEFK41Y3rvcb58uFaTrR1sxyvTOdLmyt0j1UMbjgsFSQQgojUiH5RG2FUhdaLzjjqdZhxZNfrtRtYXwcKaJT2JgCv/zZTxmc46OnJ7pPOB/29fNKrk0h0lan3jYYtrJinJpvbw15WYg+kdKgrUhBwbFmn47HlMg5M00jrTY16vt0trWuf+dSqXlmGCdcTJRSlQXTBOvVfDapOCe0nPEWyn4IGULAduVf5FIRZ3FTYJ2vRD9gxFLyhkgGY0nxER8cr9e3DMOEsyO1zEjXzYbaC0LDWBh8Vx6QBB7GB2rOFCpSZrAO4wbEOIwojD3ngrVOobu1UqQRUqSUwvk0sS3auFdrpeyvj3OWXlYeL2f+0T/6Yx6eHhnSSMXijeXx9IDFcH294nyg18LHn3zCy+2VrRS8dXz95Zc4nxingev1GWhMp5Evv/yKN2+e+PjD7/H3//7/zB/8jX+aX37xJ3zn0x9wfd14fv81js5HHz4yTSceHt6wbgU/JLzXWJWRwnq7czk98Hq76TSwV5wPjNOZ+22l9ILpgcfzmXl5T2VlydpKGV3i5f2djz78FO8cQidG5SsZJ7wsr/gUiOOk7V9L5unNI7/84hd8+ul3eDw/8PkvvuQlV663O2kYWdaNYYg76F4Q0Ra+db0jXTifTuSsXCRnHKU1cmtq1sQyxISThrRGaR0XJqRXpGw0GkLb+VeeWjpTPNOlcluuhBToIjinYGZjLK126J3BW27XF8I44lOiiyWGyDpvjGlk2RaNRFhYtoWUItIt9/mGddrI6azH4gg+IgZy2zDSoCkIfN0jN98wgrbSSDESXcAZePvyjnE6a7OaVGIy9LYhNTCNI6Vu5Lyy77MQ0kRtG9ZqLC/6UVv+mlBLo9tOGida6cqp2TacGwm20eudcYps2wYYWgXrPGYHI0uvpBh4fn1hGBNNBBE9CLsg1NuCNKhNWLbC5fJIB8boKWWjNn2frbloI+V0Um5Q7VyvCiX3XmdS3lnqtuCiY2vauFZW3Qyy1rLMy37w1i2YENQI16ZmL+eC9Z7WNoZhoDSNulljGKLybxCQpk2fKSZqq6y50K3Cra1VQLrzCr0GKGVlHAekd4Y08v7tez54eGCeN2rLjIMC6JGA2EaVjHEB5wakGYIzrHndH8BA6wveGfLWEBMIw0DeNoyzxOhpvevPmTd6Y2eObYzngefXV4JJdIHoEr47XPDMdeNv/53/6JhY/xXQ4Z8O/3T4p8M/Hf7p8E+Hfzr806FDv0n9yht/tSi0s/ZO3C863njG08T9fsPFgE9BIdW9Yn3E+cjr6zPDkPj4k0+/XTueziO367M2IVnP/bYwphPn6ULOG4OPdNcZfKKuGe/B+8hWMrXqh/3hYWBZO9KFEDxdGtIq0CklM00DIZ4QMbw+v4KxfPzhJwyj3hwezg8stzumdp4eHulNIx/eetzgCVHZMK1XxqSo4U4jBsflPFB3UHSwCjpdt1XjL0UbjM6nE4Kw1oKzlul0wsfIuq5q7KUzPF4wwRMwxCHw/PxKMlantxYoFY9F8kKgYSVT+sbl/MR9q/gY6cGR0gPj5cw637Thz1v+ud//Pf7Xf/C/8NgHzFZ5fXdnOF+Iw8QwRWp3SBWMVQ5Q9DsUe19998bqRd2gExULNmo0Jiad9CKWdc77ocEi6AW1VZ1Me2spXuvuS95206DtgJjGuqzEqLXxy30mxbCzcjJzLXjnyfOClM54PpNvd0reKNKIYaIUhaWPPvAn//CP+Bf+5t9gnpX7Y2jU0hH+IkICht6KxiOMZ1ky977Qa0Uc+7Q00rulVfA2aOW9EawxGj2xBiuWdVnY8kYtKyF4Wt4QMbsBK/TWcS7x9devfPe7P+LycGFZN8q8sNXGc7myLAun04V1ywwp8sWXX2ExnKaJWis/+tGPeb7e8CHw8aefsuWVZVk4X4Rfvn3PJ5+dCacTP/vFF/zR//Z/8O7TF77/2V/nBz/+p5jGQHCNLa/Y0XG+DJRNIwCv9xun0WOC5/l6wwQQPCKeP/vZz3BO+SlpPPH5z7/i5z/9CX/4h/8GnsjpMhCjZ9s2zL1RzcZWdWqXS6bcr5xGz9MQyfONRwO/+PnPCUPiz9/9ktu68ZOf/ISf//wL/uD3/3nEeR4f33BfFlIItKaTZbEalag10/U3h0gD5+k4au3ENChMeRqhW26vr6RpoH2DNJdKiB4TOutWFPJtBWkZB9S60HcQds0rzge8i+R1Q+jkrJ/l7jynhw9wPrDkjRA8y7JD9J3h/HjWCFQteB9Yl8L5dOZyeqOHLhohBW63K2vJpCHRmh7UvmF9eR/UvI6RddNptXGWrWdtmXPa/pjLynQaaG3B24DsDxAQj3eDApKdZV0V3myMIZesh8EYFXDdMr03LDu7qhSm6UwtlftyZ4iG6+tMFxhG3capXci50npnGgaMNVwuH2j8rHWG0wO1FmpdWJthmk7U3BiToXlLGhQoL85irMc4kJxJw0QrMy0HjSiFoE2WORNToLWV+/zK2T/ggtNCBO8YYtrB60JIek/pvXO7zQCY4DFYrBdqa4hpVNMUWu090hutQXIeWtdjTdmYywJmj8oQkVpo7IDupe3/zusWUa4arZo3kM51XfXfO0vZoy01F7C6mTMNgWXeaEVwpxH2SF5vDUdASiXYAC5iALdHLkspbOtKDQHnPZXOEAJSC7l2MA5rPeMwcrveCHHA2Ebr66/NKBz6y+nwT4d/OvzT4Z8O/3T4p8M/Hf7p0KHfpH7ljb//6r/4T+WbOm+/s16MsVAbHeWVbCXrE/whsWx6Q6lFwbcWQwqJKsLaM4+XE7fXK9En6GokujFs84z0xpuHR62pd5Z1ecF6ZUw45zBALQWIDMOISKfT9UJmoJnG7XZjSBO1KL+jt06KAyEGSim0LZOcoxuDHyKlVmIIbFveJ+CGkgvOWKJXgG8aEmKF0go5bzw9PHK/3gkhYp2jY7B9n3pVhTcba+i1Ma93PvroA7ZtxRqtl9+2QqsN642yZq1jXQrP79/yeDlTK2z3O96Cc8LD00RvjVIFFxLX28Y4PSJ7i1NyntYr3TTi4Hm4nHn39mu8c7w8v3K+6NS0i6V30ekX0HtVGLixzPNKiJEQPSK6Gq8r5J3am7Y8OQ8i9KKTH416WHJRI5rzRgoRK4bcoLX6bYSplrJzZLQG3hq7T5zqfjMVnHdsvdLFULaCbRZplY6Cq42JOl0LHms6dV3AdnJbePPRR9zuG8ZEZZxkZSC1XrFGm8PGGOnWKVfGOI3IDIl1u+/sGod0+//4GWasZ18ZV0BxqWXnRnRkj0nFmMi54XyErpBZiwJs7/OdmBKtNaZpwlnL9fXK5XxhzZvCcHPFYwjWYWOgGaGKVs3XVogxgmjzH9YQUiJYz7Zc+eijR9Z5ARzdKHi97ZsXIvre2uZMGk6Ig/vyDEDwA9IKW+l4H1nWhTEa1vVK7wbvHQ7hT//kj3l8fOD7P/iMX375JdN0RsRqTKQ1xnFgu92IIiz3G3/6p3/M4/nC/fXK67zwz/4rf4sPP/6I//5/+Pv8S//y3yL4SAqJMndSSHz99h1PH3zI8/WqzA/naa1wngZoVRvjWkO6J4RE74IIrHnj4eFMKwV6Y77faNI4Xx65zosCiK3Be+i17JB8h4ilNyFXjV1oBE+nk7U0wjAwr6sCs42B1hiGgXleGE+Txpb2SebWMzFGei0468hLxtmAdEA6aQhsdcE5q9sI3gJ7G6fo78Aap62aQaHIxuo1xDrDNA28e/s1MQ5gHEMaaaXrzywdA4SgMxzZIx9rrpS6cnkcWedMraL8qtJJw0irq/4dm9Vr9hh2BkwhRs8yL3gXyLlwOp3YaiFEbQVFOtIrQxjIeWEYBryLLMuMkNmo+DCybYLB4feYTcvrzvSyiBR60ya5ljun4YHWux6IMMSUdPtJMilElq3Q/B5P3Aqn8ULbPxNbWXULw1pcGGit7yD7fXtovvPwNDHPd8Q4nPFYtAVR85LK7TJGSxh80PeHdAjB0sumjy16Iw4jeTMaQWyNGAO3243pNPK6ZVJMIJ0uC845nI2sc1YYvDO0YjQitzO+rPP02hlSoPei7xljWdaFNA744Ni2VbM31tCMobbK6XTifrvvYH+LZAHvsRiohRgcWQr/zt/5T46J9V8BHf7p8E+Hfzr80+GfDv90+KfDPx069JvUr7zxF2Oi1oZ3QdkR1tB7ZZlnhnHc1/M9Pjpk/0ALBWjanNMF57XO/Pb2ztv7lXEYyPeZy/kNrUHvDe8sW83Mq+b3e9V1X+sGSqvYoDdvMYZWGq13lnXZYzHohdV2hjSpGW4bzsBpOoEI1+srD5dHSuuEGHm5Xynb8q1By2tmGIedDyB0IwgN6wK3+4KPgTgMxJDI+Rvj17VJa5ywRpjSQDZ559RYiA6Rwsvbr0lRmQceyGXFi8NkAafQaumOYZp4uc8YMTw/P3M+DXzx+S84P5z4/g++Ty6dEY2a5K6r6MErOFinFzoZ2dYrmIRxgeHRY2xgXasCq7voRc4puFsHZxZnna5r94oPHvampXE4wbaC6/SmXJtSFYRbayOEAdlbmkArk5z3BLsbX2nahOe05a4UvSHWWlmW+duYUO9Cl44Ngfl+ZxhGeu1EG1nnK0aEGBO9Qeud0guAmpzHN8xrpXRBZMb4BLZTu2C9AqtDcMjSKK3pxsQebcrzHb9/jYi2/rWmLJvr9YU4eVIa9ha9gGkGBGrppBgwAr0plFikg7GseSNYNeWn84XX11e6gI8NY/afcVtpterU31q2WqmAE235y7no9zdGD1y1E3xiW1dC2PTQZjr3P5/1cGBAijZgOSzNGEJM3OaFGBzzvNJMY7yc6NJxLtIXOE2eeVUDMJ1PzPOVy/nEl1//AueE1/uV7//gM5xzfPTmO8zLRt5WhiHiaLw+f0F0jufrlfHhzKd//Yc8ffgxa638tTDhJWJJ/Jv/+r9FLxu/+OlPOZ9OfPjxZ4gIl9Og/A+jrW/jGKhZQCytGW73jcfzibpu9IyyrRCiFZartjB2afiwt6tJ5XIaEDF0sbSeyaIcptM4UUrFWsdTuNBa5Xq90eumxqQX5rlQWmccRnrO0Bovz+9588EHOpU0htfrlQ8++pB262zLjDVgnLCtC9/99Inr8zNDcuRyZ7tfESNMpzPsEayKgvM72nTpdg4JO5skek+TxrIsONfAlJ3z1TCirZdzfsFYu7OpGiEGOp1p8pTiWOYbrYJzEee1CbG3Tqsr1gnGRDBqGHNe6dIR6+jG4+OI4LjPN0rrxHEimETZge6lV5rpzOuMs4VtWzmdA7YVvItUNCIzDhdu9xvBJZbSsFhCOmlM6H7Fx8hSFo3CtMK6Zob9AYgYx7IWsHotCiHQt0beFtq+ZRRSoLZCzZnH4YylUmslOEcpleQtpnUeTw+UrlGdUjLeGtLDmdLat5tGvff9sAvWeizQRPZfuQcsterGgzOWVioheLaSiVFjSa03bV7cYyg+KDettULwEYNQWsU7R9ka0g3Nux2OrQ9lvDVYhFYrQ4y0vVVzqYXkHLY3gjWY1ok41lKQ1jUqRievG8b/akO9Q///6/BPh386/NPhnw7/dPinwz8d/unQod+k/j9EfQVjteocRKcbLTNOo1Z7t6bpfQFnHMYKMUbEOqgV5wwl69r2ZXxA9pairXfmpXCfF3K9Ib3zcHkEC6VqUxUm0ATmXCAEkK5sG2P1AhAjBr3Rg8fQaM1gvePh4Q2tZKyBbV3xzvH88qyAUWPwQ9KLltVJdkiJedGpyTiNrHWmL3c+/vBjZFN4a2sCThuWQhp0wm3U7KytQdmwQM4b92Xm0+98h2BPWmNvLdeX98ptaApb9SmArYhY8lqp3ZJOZ4Jz+BR58+YNH/3OZ4iBOAz41vCl01gxSZkXpgjNKt8luADWY/d2NWUlOHKpmB1kmjcF8FJ1wiUixOQZphMxRXpWE2qspbeOtE6w2shXqSQ/kPzwbQsWBmI6U6oayWXdaKETXSK3SoyRcRh4efce7zzjaWS+36m5YBCag1wLGEcrjWFIhA69ZG7zyuV8xnjHaRhBPF0c1ipHRCwMKRLcRCuVwTs6N6TMBOspXbBoDMeiYPI0aStbXjad4ltotVCz3pQFKE0btT746AnjFG6+lQ3j9c92+wYHHe7zXavre9fDjAFEqF0naaVW0ph4vt7xpdBqJQWdMNVcuFzOiDVUC0ur9K0qqyME1nXlfDmxLAs5Z54etaVrzTMhOpwNyuholULH4ng4X5hvN3rL5OsdHyObFYxxlG3jenvPwzQRbWFMJ0KKzMuNnO9cX0UnmcXweHnEecMf/uHf4P27O/d5pSBcPv6QqWSkaSvj9z/7DHxgyZnzNLItdyyGbd5Y7wvBelzVm3Lykd/56PtYa5nnO7VkvPMEZ5nGkWYsD9OJEhRO/PjwRr+uQuuAM8pKAR4fLqzzFTEGIWCd5fnlxsP5Qs4rwzBhMAQbSZdICI63b9/SW1PA93xnnu/88LPPWNdNoywUnA8YZxFp5GWGWomXgdv9mXGYSMPE49MDpRbGmEjO0rtGEx4fz1jbMa5z3xact7z58A3zvOiktFtSmgihMa8LterU2TQhOW1gdDjWNWO8JaSIHx50Y0IgeOh94zxFutNtm9YbaUzUurGtyr+xVuMO4zSRi167YnTM+UapC1ILQzwTwsC6baQ0sJbMNJ217bB3pmkib5XRWHqpVOm02uiixjLFSCuFGBIhJmqbMRXm+RVvTuTtRt8WpjGS14WHMVBapbVOpWNjxHsFyI/DCaxHbMSHSGkKxs9L4/HxrM2cxuLSwLatypypldfXK8ZaxtOZ7X4DEXLJhGGkb7NGdErHimBaYwyB5B3bMtMlI6ZS20YKBlrF1Mx4emArnbrDoa1z5KKG0+0xmHVdcdYSkqe0jK0dsUJ0DiMe2/U1t9ExeI29GXEYHMY0em96KE96iGy9Yr2n0sAIW9novfFwPuk11IC1QhwCpWwY0+lVwHrCGPDjiPSOFKDq7+rQXw0d/unwT4d/OvzT4Z8O/3T4p8M/HTr0m9Sv/OCvdcEj+/q0xTjLNJyIVuHFPesTeO880XmKdLZFJz0G4bau1NZ3VLWl9QoYhvHEer8xTQPdOIwNNNNpQEyR2/XONETWVrg8XvYPplBb4X7TOnrnPbf7K8M40qswnUeNRFjH7XoleG3J6wLLuhDTABbmeSFTwTps8BixDGPCOYu1HmNgTGrObvdXnVQ6HZ5sWyEGT2tZX8i97UisZ6kF0zrTaaQ7w7vXZ7CBGCIvy0Kc3vA6Z4xNVFPJZIJ1lLVymc6sRRvcjPX4kFhywRhH6wYvXg8KbJwfn3i+vxJCYBwTW1lxIe2TzYJB2RdS9ptYiDjvWNaF0grBhW8b5Ph2KqM17sZCkc7gPHEaddpsHB4FEddNDd5fqDOkxLbNRB+xxukKPgK5YCRQ1sIHb572VjxtjRpSwjvDfb7yeDrRu4XBcr++6lTIOb73ySe8f3mmt4q1A6UoK6aJNgRKhl6FUgu2W1xwzFtjCBFEY0FGdDKfQmQtGpGR2jDSefv2S9LpTIpep4fSNBJUCl0i4nVKZr1jHE600kGEdIrcr3dyq3jnkY7GcIJuJWxrxjr7F/Eca7mcLoQUkdjI20zLhWkYqaXSrFDoZKlq4Eoj4fDDwO16wwfH+XxC6PqzJ0/OG/RK8JFgHZ1AE8Pz64y1Bhct0jU29X5bqVvhkw8e+OWffU7MBZtG3t3ulF75+Lsf8/L+LX680KujdYc1OqX/8599Tt6EVgqXMeDvC17g+fkFayzV3xACWxHeSsNYYTqN5LwyTQPXecaHyHR65Pm+YIzHdKht4Xa98fj0RFtXikAKnvV+pZSGMY7r7co4ToDQpCDdcHp40Gm9dAQP3VNLxRjPp59+n7yueGcIfmDNmXFIrMuNsmXOD08E7wkIbZ+a5nWF1slbZl03Hp4GhmHk9jrz8PDA4APNNe7zwrZlSi7EccB6j+2iMRUDYoXeNn7yp1/w2e/+iHm9ItJ5nWe8TfSu1z+NUuhh30d9LXor9NLBqgEP1uzXtjuX6REbGl0qxnRO58i8vjCOJ/rSoXVi8izLTVsLW6fUDDiWpeDdwJhGSlkJzhKmM600sKhJ2hbO8UEbE8tKLZnglb0lrRLSxFYKxnrGcaKUgmD1c+RgWRT+3JtnjA/QVrwLmG4IwbLen0nDgPOVZV1J05lSMz543X6yovyzacKEAt0QQ2LZFh4f3rBu234jEmquxKQPGnxMOBFSijuX6Jt4naO2rMD17qgNbNkwznHLN1or+p64XwnJM/hI3Va8MfTeKXmldUtKke50Mu6s1fZKdAvGeEcTZaKFGFjvL4zDRBwiiAfRQ0opGWc7OW+0KpzPj9SuDKHxNJDSwLIuYCG3SjpNtN72abnyzGxwFBGMc6xFywVSTIgTSheN8PXMMi+IdIK3+Dj8Zf3BoV+TDv90+KfDPx3+6fBPh386/NPhnw4d+k3K/r9/yTdfqZPL6LW9SbC0ZpnXlXVddcrXBamVsq6UdcWI7B/yhvhAMZ5uIw1HtZ54PtOsYEcIo8cPJ9LDE3acdALVKg9jotQNMcKaN+brjWQ92/XK0+WJaXzAu4kYB8ZBuSTbsiK90+puHHont04tWgvepdNaxiJMYWSKI5SOrI0yL8od6RkplSgeLx7vgvIHUKCzcZUl37mvM2lIlJrZtoWaM3ZnmGzrphwC7+kIWTrdDxQ30fwZO4zgDPROz43BJVrOjMESrJBs4JIGfTorFdsadi2EmnHW0HrBA6ZWbtdXpFnofl/1T7S6YFrDW4WXttaUVyKeaCfiMOJDoHf2CElDRGNGxlmdonWhbhsxOppRHpELjiY7m8jt69W1UXPGi5AsnOOIqUIvjTE6knN4gV5v1Logveh/6wxFKsEbXBViN5zHERsi6fKgoGEDY3RYA0506mk9VBr3dcEGZbrkXjC20loDM0I402wAH8EFnB++veHM9xtSC9Yop0RolFbZWqZIwVk4jyccDksk2kTNBdcc0YykGJmXF4yrjKcBsRYfo6Z0MJhuNL4ijRC8fhcbiDbgxeIxTEPABagGelPodbSWCMhSCMViasOKmnznI4JOv721WLGMwwkfA7lmtlppvWJcw/gGtlHrBqIG/cE43qSE7Qsff/wd0tnTfMZPHR8t1+dXzsOE6YbTeCKXhpAo3YO3GLuybe/543/4R1xfXpnvC+l85uv7M1/f32LPsIYVcxmw5wfu1dDdwNvrRvMTm3jevt6Yc6GJYVsLrTlOjx+yiaEA0jvLyzNS6v5+VL7H9f7K+5f3rMsNaY35fuV+feZ+e6WVTtkqdcukMLAtm8aorOG+zVjvmG9XnEGZQbVxe7my3VZ6g6+/fubP/vRnxHgmhBOPl494mB5wWB5OD2A8c6385M9+yuPDByCW5B2naHFlZYrQ64ozEILj5d1b8rJhxdMr9NqQ3nm93XBiCdaS64alYslAwTsYY0TEsnbIO6uplQ1jBJGGdYY0JnIt3NfMWoRaRDdSzD6ljQP0QN4AM2DdgA2e3DYwQnQRbwZsG0jpkW6UNzamAUwnemGKhlZmQtD3r7hEM46QNMLnvMV5Nd6tZMq6kiZtp4tuIleLGwbclDA+AgkXLjQzcMt3fBgJdsKJMIRAa3o9s2L0wG0763qllZkYDXOeMU6wttGbMsTEGKxzCpU20KUTrQHvaMbi4kAxHfEW8ZGeBsw40r3BD4FqBGc8weh2TqsDuVoIFpFI37cI5nmmixBTxDpBmrKfcstkKnaM+HGkCLr5YoQlZ8rWaF24txWkId1i/cRwekSsljIYP1C6sOaVLa/U0vDOs62bHnqbJYilruveCFjBOEoxeDfpdhMwd304xFYIXdtBG4acj4n1Xxkd/unwT4d/OvzT4Z8O/3T4p8M/HTr0G9SvvPHnY6RvG2JArMU4Q+0db8E6oxdWY1nXmRQCwTqMdG2Uch6Cw5uOYOgGwnBmHEc1vYyMaUD2P6fkotPCXHBiECv4EKgIznu6hXCaqNIwtWJdUGi1MVhrEHF473TCbKrGGUQoXaesDUPvypkQMdS8YaowTSfWssA3K8YI0v0+XdIYiHVuhygbjSrEqMBiY2itomQBQTo7ABfEWFovgFXgc2vUWuhSaQKYiHSNAhmsQqBNJwRP2RaqNPAeEcNWMrZ3fAjkLStTpTZoHReUQ+qto4tgnUOsgQ61Fpq0/WcWvNWfa8sbZdvY1so4Rbwf/gKaawPBBroBbzzVCM0IziooXIwBa7HOEHcjba3ZK+9nYjrRuq7e16xxBKwlpaDvodr310kQMWrwm/7/FCNiBOdg2a50abSmTCTnPcYYYtDvk1vDhkAcB6SocU3DNywNZewYYwhhpNZMk0KVytZgiAOffu97LFsGY3dItyDsrWgCplesVITdGGLQjjuz/3wWa/SfiBhdw68FESFvG2Ma6K2htxdDbR1rtU0xphEjEVrHWPNNOz0YQ0yRsu2TZ2vB6Oq8szuIWGRvrtL3q/5DMAK1dYwRjPHYYHBh2Ju4NNJiTdRJftdmtD/5Rz/h00+/w+PTRX+PztNLx7kRU4R1y4Rw5vs//A5vPnrFGMtWGiCky4WaZ+b7whRGWu3E5LiVBT9Eaq24GL/9+5baKTnrwbZ0rFWocjcABrynGKgdjBhSjNQt46wjepRPsmkTIqjZdcaSSyYWvXYgovG43mjSaeudtTecMxovK537mgkMPFyeuIwXQki8e//CeJlwHnqthKBtmFYa83zj+fk9MUTS4PWaZw3OG15enhnGUY1l0YbCcUjcF8O6bozjiFD10AvkJRPGwDpnLg8D27xxHia6QT9bGGquWAvjMLHlDSdOG8eMfs5D8JTljjWCcZZWC3krnE7n3ehBl33DqHa2bdWIn7UYq1sV0g25NejasAl9h/MrCNoYQ0iBedmwxuG9p5TC559/zu/+6HeZX16g6++1tUoz+t/mlim1ESVivMbEYkosc+ZhCqzrQu8VB1zGkeWuXJgU1IxWB8k5iliMCK0L0jPRWoYpsdUMGHzwRCPQu7b3jROmN5oYxFiM85S6f/Zax9DBGVIcyLlRu7D1jItCA163O10CiYDpQhNl0cxb4X6/cz6fcSjI3ezmuYte453VhyStVOjKl/HO7jB+Txd21lTFh4QLATHgnWUg0lsjOENetLQgN7BOqK2CsYh0as3U2nd+zYYxXqOT4USrnY7gbAADUto/lik49OvX4Z8O/3T4p8M/Hf7p8E+Hfzr806FDv0n9yq2+hw4dOnTo0KFDhw4dOnTo0KFDhw4d+idHv3rU99ChQ4cOHTp06NChQ4cOHTp06NChQ//E6Hjwd+jQoUOHDh06dOjQoUOHDh06dOjQb6GOB3+HDh06dOjQoUOHDh06dOjQoUOHDv0W6njwd+jQoUOHDh06dOjQoUOHDh06dOjQb6GOB3+HDh06dOjQoUOHDh06dOjQoUOHDv0W6njwd+jQoUOHDh06dOjQoUOHDh06dOjQb6GOB3+HDh06dOjQoUOHDh06dOjQoUOHDv0W6njwd+jQoUOHDh06dOjQoUOHDh06dOjQb6GOB3+HDh06dOjQoUOHDh06dOjQoUOHDv0W6v8GqYtB1svZZTQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "image_to_visualize = 8 # change this to view other images\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "visualize(image_path, label=labels[image_to_visualize], prediction=predictions[image_to_visualize], overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "ff36d97f", + "metadata": {}, + "source": [ + "The required format of these `labels` and `predictions` matches what popular object detection frameworks like [MMDetection](https://github.com/open-mmlab/mmdetection) and [Detectron2](https://github.com/facebookresearch/detectron2/) expect. Recall the 5 possible class labels in our dataset are: car, chair, cup, person, traffic light. These classes are represented as (zero-indexed) integers 0,1,...,4.\n", + "\n", + "`labels` is a list where for the i-th image in our dataset, `labels[i]` is a dictionary containing: key `labels` -- a list of class labels for each bounding box in this image and key `bboxes` -- a numpy array of the bounding boxes' coordinates. Each bounding box in `labels[i]['bboxes']` is in the format ``[x1,y1,x2,y2]`` format with respect to the image matrix where `(x1,y1)` corresponds to the top-left corner of the box and `(x2,y2)` the bottom-right (E.g. [XYXY in Keras](https://keras.io/api/keras_cv/bounding_box/formats/), [Detectron 2](https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box)).\n", + "\n", + "\n", + "Let's see what `labels[i]` looks like for our previous example image:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b08144d7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.539700Z", + "iopub.status.busy": "2024-05-24T23:49:59.539441Z", + "iopub.status.idle": "2024-05-24T23:49:59.545327Z", + "shell.execute_reply": "2024-05-24T23:49:59.544873Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bboxes': array([[201.96, 101.71, 334.78, 334.68]], dtype=float32),\n", + " 'labels': array([3]),\n", + " 'bboxes_ignore': array([], shape=(0, 4), dtype=float32),\n", + " 'masks': [[[290.44,\n", + " 200.04,\n", + " 286.59,\n", + " 213.5,\n", + " 285.63,\n", + " 224.08,\n", + " 290.44,\n", + " 231.77,\n", + " 293.32,\n", + " 235.62,\n", + " 289.48,\n", + " 251.97,\n", + " 282.74,\n", + " 266.39,\n", + " 281.78,\n", + " 271.2,\n", + " 280.82,\n", + " 277.93,\n", + " 279.86,\n", + " 287.55,\n", + " 277.93,\n", + " 299.09,\n", + " 276.97,\n", + " 307.75,\n", + " 276.97,\n", + " 321.21,\n", + " 281.78,\n", + " 326.02,\n", + " 290.44,\n", + " 330.83,\n", + " 286.59,\n", + " 333.71,\n", + " 263.51,\n", + " 334.68,\n", + " 261.59,\n", + " 319.29,\n", + " 257.74,\n", + " 295.25,\n", + " 251.97,\n", + " 290.44,\n", + " 251.97,\n", + " 283.7,\n", + " 250.05,\n", + " 283.7,\n", + " 243.31,\n", + " 303.9,\n", + " 243.31,\n", + " 316.4,\n", + " 243.31,\n", + " 319.29,\n", + " 247.16,\n", + " 323.14,\n", + " 251.01,\n", + " 326.02,\n", + " 249.08,\n", + " 328.91,\n", + " 227.93,\n", + " 327.94,\n", + " 226.0,\n", + " 323.14,\n", + " 226.96,\n", + " 313.52,\n", + " 226.96,\n", + " 303.9,\n", + " 226.0,\n", + " 293.32,\n", + " 216.39,\n", + " 283.7,\n", + " 226.0,\n", + " 236.58,\n", + " 228.89,\n", + " 226.96,\n", + " 232.73,\n", + " 219.27,\n", + " 239.47,\n", + " 216.39,\n", + " 240.43,\n", + " 209.65,\n", + " 242.35,\n", + " 202.92,\n", + " 240.43,\n", + " 185.61,\n", + " 230.81,\n", + " 198.11,\n", + " 219.27,\n", + " 215.42,\n", + " 218.31,\n", + " 224.08,\n", + " 220.23,\n", + " 229.85,\n", + " 217.35,\n", + " 237.54,\n", + " 213.5,\n", + " 238.5,\n", + " 207.73,\n", + " 239.47,\n", + " 204.84,\n", + " 239.47,\n", + " 201.96,\n", + " 237.54,\n", + " 201.96,\n", + " 228.89,\n", + " 205.81,\n", + " 224.08,\n", + " 206.77,\n", + " 220.23,\n", + " 218.31,\n", + " 191.38,\n", + " 219.27,\n", + " 185.61,\n", + " 223.12,\n", + " 180.8,\n", + " 226.0,\n", + " 175.03,\n", + " 229.85,\n", + " 167.34,\n", + " 231.77,\n", + " 159.64,\n", + " 236.86,\n", + " 153.25,\n", + " 240.46,\n", + " 151.71,\n", + " 253.35,\n", + " 149.13,\n", + " 254.9,\n", + " 147.07,\n", + " 250.26,\n", + " 143.46,\n", + " 247.16,\n", + " 140.88,\n", + " 244.59,\n", + " 124.39,\n", + " 244.59,\n", + " 115.11,\n", + " 246.65,\n", + " 109.44,\n", + " 249.74,\n", + " 104.81,\n", + " 256.44,\n", + " 102.23,\n", + " 262.11,\n", + " 101.71,\n", + " 268.29,\n", + " 101.71,\n", + " 273.96,\n", + " 101.71,\n", + " 277.06,\n", + " 101.71,\n", + " 283.76,\n", + " 108.41,\n", + " 284.79,\n", + " 110.48,\n", + " 287.88,\n", + " 119.24,\n", + " 286.85,\n", + " 122.33,\n", + " 286.85,\n", + " 126.97,\n", + " 286.85,\n", + " 132.64,\n", + " 286.85,\n", + " 136.76,\n", + " 285.82,\n", + " 145.52,\n", + " 284.27,\n", + " 150.16,\n", + " 286.33,\n", + " 151.71,\n", + " 290.97,\n", + " 155.83,\n", + " 293.03,\n", + " 173.35,\n", + " 297.67,\n", + " 180.05,\n", + " 317.25,\n", + " 190.87,\n", + " 319.32,\n", + " 191.9,\n", + " 326.53,\n", + " 192.42,\n", + " 329.62,\n", + " 192.93,\n", + " 332.2,\n", + " 196.03,\n", + " 334.26,\n", + " 201.18,\n", + " 334.78,\n", + " 207.88,\n", + " 329.11,\n", + " 209.94,\n", + " 326.53,\n", + " 205.82,\n", + " 324.47,\n", + " 203.24,\n", + " 323.44,\n", + " 202.21,\n", + " 320.86,\n", + " 202.21,\n", + " 316.22,\n", + " 203.76,\n", + " 314.68,\n", + " 203.24,\n", + " 313.65,\n", + " 200.67,\n", + " 307.46,\n", + " 199.63,\n", + " 297.67,\n", + " 198.6,\n", + " 294.58,\n", + " 197.06,\n", + " 291.49,\n", + " 197.06,\n", + " 290.97,\n", + " 196.03]]],\n", + " 'seg_map': '000000481413.jpg'}" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels[image_to_visualize]" + ] + }, + { + "cell_type": "markdown", + "id": "8f62da67", + "metadata": {}, + "source": [ + "`predictions` is a list where the predictions output by our model for the i-th image: `predictions[i]` is a list/array of shape `(K,)`. Here `K` is the number of classes in the dataset (same for every image) and `predictions[i][k]` is of shape `(M,5)`, where `M` is the number of bounding boxes predicted to contain objects of class `k` (in image i, differs between images). The five columns of `predictions[i][k]` correspond to ``[x1,y1,x2,y2,pred_prob]`` format with respect to the image matrix for each bounding box predicted by the model. Here `(x1,y1)` corresponds to the top-left corner of the box and `(x2,y2)` the bottom-right (E.g. [XYXY in Keras](https://keras.io/api/keras_cv/bounding_box/formats/), [Detectron 2](https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box)). The last column, `pred_prob` is the model confidence in its predicted label of class `k` for this box. Since our dataset has `K = 5` classes, we have: `predictions[i].shape = (5,)`.\n", + "\n", + "Let's see what `predictions[i]` looks like for our previous example image:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "3d70bec6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.547360Z", + "iopub.status.busy": "2024-05-24T23:49:59.547174Z", + "iopub.status.idle": "2024-05-24T23:49:59.551274Z", + "shell.execute_reply": "2024-05-24T23:49:59.550726Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([array([], shape=(0, 5), dtype=float32),\n", + " array([], shape=(0, 5), dtype=float32),\n", + " array([], shape=(0, 5), dtype=float32),\n", + " array([[204.42398 , 103.44503 , 337.29968 , 336.21005 , 0.9978472]],\n", + " dtype=float32) ,\n", + " array([], shape=(0, 5), dtype=float32)], dtype=object)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions[image_to_visualize]" + ] + }, + { + "cell_type": "markdown", + "id": "cf95ea28", + "metadata": {}, + "source": [ + "\n", + "Once you have `labels` and `predictions` in the appropriate formats, you can **find label issues with cleanlab for any object detection dataset**!" + ] + }, + { + "cell_type": "markdown", + "id": "3daff923", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues\n", + "Given `labels` and `predictions` from our trained model, cleanlab can automatically find mislabeled images in the dataset. In object detection, we consider an image mislabeled if **any** of its bounding boxes or their class labels are incorrect (including if the image contains any overlooked objects which should've been annotated with a box)\n", + "\n", + "Images may be mislabeled because annotators:\n", + "\n", + "- overlooked an object (forgot to annotate a bounding box around a depicted object)\n", + "- chose the wrong class label for an annotated box in the correct location\n", + "- imperfectly drew the bounding box such that its location is incorrect\n", + "\n", + "\n", + "Cleanlab is expected to flag images that exhibit **any** of these annotation errors as having label issues. More severe annotation errors are expected to produce lower cleanlab label quality scores closer to 0. Let's first estimate which images have label issues:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4caa635d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:49:59.553272Z", + "iopub.status.busy": "2024-05-24T23:49:59.553085Z", + "iopub.status.idle": "2024-05-24T23:50:00.453136Z", + "shell.execute_reply": "2024-05-24T23:50:00.452557Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered.\n" + ] + }, + { + "data": { + "text/plain": [ + "array([50, 16, 31, 29, 45])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issue_idx = find_label_issues(labels, predictions, return_indices_ranked_by_score=True)\n", + "\n", + "num_examples_to_show = 5 # view this many images flagged with the most severe label issues\n", + "label_issue_idx[:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "66d5fae1", + "metadata": {}, + "source": [ + "The above code identifies *which* images have label issues, returning a list of their indices. This is because we specified the `return_indices_ranked_by_score` argument which sorts these indices by the estimated label quality of each image. Below we describe how to directly estimate the label quality scores of each image.\n", + "\n", + "**Note:** You can omit the `return_indices_ranked_by_score` argument for `find_label_issues()` to instead return a Boolean mask for the entire dataset (True entries in this mask correspond to images with label issues)" + ] + }, + { + "cell_type": "markdown", + "id": "5b501dc9", + "metadata": {}, + "source": [ + "### Get label quality scores\n", + "Cleanlab can also compute scores for each image to estimate our confidence that it has been correctly labeled. These label quality scores range between 0 and 1, with *smaller* values indicating examples whose annotation is *more* likely to be wrong in some way.\n", + "\n", + "Each image in the dataset receives a label quality score. These scores are useful for prioritizing which images to review; if you have too little time, first review the images with the lowest label quality scores." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a9b4c590", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:00.455795Z", + "iopub.status.busy": "2024-05-24T23:50:00.455302Z", + "iopub.status.idle": "2024-05-24T23:50:00.752529Z", + "shell.execute_reply": "2024-05-24T23:50:00.751911Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered.\n" + ] + }, + { + "data": { + "text/plain": [ + "array([0.97489622, 0.70610878, 0.98764951, 0.88899237, 0.99085805])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scores = get_label_quality_scores(labels, predictions)\n", + "scores[:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "349521e0", + "metadata": {}, + "source": [ + "We can also use the label quality scores to flag *which* images have label issues based on a threshold. Here we convert these per-image scores into an array of indices corresponding to images flagged with label issues, sorted by label quality score, in the same format returned by `find_label_issues()`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ffd9ebcc", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:00.754763Z", + "iopub.status.busy": "2024-05-24T23:50:00.754558Z", + "iopub.status.idle": "2024-05-24T23:50:00.759046Z", + "shell.execute_reply": "2024-05-24T23:50:00.758591Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([50, 16, 31, 29, 45]),\n", + " array([6.95569726e-05, 9.03354841e-05, 8.57510169e-04, 1.58447666e-03,\n", + " 2.39755858e-01]))" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "issue_idx = issues_from_scores(scores, threshold=0.5) # lower threshold will return fewer (but more confident) label issues\n", + "issue_idx[:num_examples_to_show], scores[issue_idx][:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "5a3b8aa0", + "metadata": {}, + "source": [ + "## 4. Use ObjectLab to visualize label issues\n", + "Finally, we can visualize images with potential label errors via cleanlab's `visualize()` function. To enhance the visualization, you can supply a `class_names` dictionary to include as a legend and turn off `overlay` to see the given and predicted labels side by side." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4dd46d67", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:00.761194Z", + "iopub.status.busy": "2024-05-24T23:50:00.760856Z", + "iopub.status.idle": "2024-05-24T23:50:01.220128Z", + "shell.execute_reply": "2024-05-24T23:50:01.219487Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000009483.jpg | idx 50 | label quality score: 6.95569726168054e-05 | is issue: True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAGFCAYAAABt3T1lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz93Y4lSZKtiX1LRNW2e2RVdw8Bkm9E8A34TrziDd+SA845XRnh21RFhBeinsXLPDOnkY2GCZDI6uwI973N1FSX2PoRVRVPPfXUU0899dRTTz311FNPPfXUU0899dR/rbK/+gM89dRTTz311FNPPfXUU0899dRTTz311FP/8+t58ffUU0899dRTTz311FNPPfXUU0899dRT/wXrefH31FNPPfXUU0899dRTTz311FNPPfXUU/8F63nx99RTTz311FNPPfXUU0899dRTTz311FP/Bet58ffUU0899dRTTz311FNPPfXUU0899dRT/wXrefH31FNPPfXUU0899dRTTz311FNPPfXUU/8F63nx99RTTz311FNPPfXUU0899dRTTz311FP/Bet58ffUU0899dRTTz311FNPPfXUU0899dRT/wVr/Nk/+P/6f/8/q6j+SzIqAmXi9sk/CBjGdSeXxG1w82YAA4MCJDZFZCHAqoAkCW5tqsSVHwy9qfuNayIN3vtmXA76oPQiZKz8wkZBfTAuY5DMdAzxji9kYvpvJIPYN/v93/kYIkosjCzx+eNvSMUwMO/PojBcRmizfFMmFBdGYWZEBZix9uJffBC5cXekSYYjXtwupE3WF8MLxyGNvY05CrdCKYxBVbK8sCnIxeDFXjAnqAKLD3C4641NISXv+6auC7vhg4m52JZsT163QEVWgolIkE3QhgDFAImyIr2oEqqi2ECCDPcLwvEsjJu0DeZUGCnjbTcfu7hKlJxF/9VPNltBuNhZVBjX/GCtG/fJ3kkBr9eLvYOML8zANKgaZCbYQlG4idLNzkVKhESm+Bi/sX/BNKHcFKIKctws20TB1ItKI7V5cVMbhi4kY0WSSqg3bhOriwwjypEZ6YvYN9e4MA1+fv2OfDNkmAZYsSMoChwGzozBOyBklALsjZRUCCQoGGbEXrgM7UFVPxJ+DaIWyeZFsaJIDaYuIoM0sREmsEoqN7sSfOASLwpbG9eLtIt/z00MUBhTF2ZJ6Bdw4wkZhvuLKsDOOinH5Awvcr0Zw4gIcOOdv3D7hBy4oHKjgpgX+b12zs+5qpAVWxv0QaQw4JpG7JuoBS5WJarB5IORk+nB71oI+EinavJLxuUFuTElhlAWJGxfpINMWEJtKHNSN0hYfTJrQG5ivHEvRg6Ci0QsktLA3In9k+kARclInKrBR92kkpJhNZklBsnbg9gXaJC+kCUwQZOxNy9Ldt5oDDLB1Ne6KikBciQDBWKxU9gYJBtTIJKs3ygtbBixAjcwNnvAXB94TlZuNB0Q807QpIaTFphD3El5ICUehlUhE5zvqoAqYe7gIrSpnVwMUkUYlBzKzj/JUEHdpAKmswU/dj9TW2A+kYwq8BQYBIl5/7fMAnthO/jkxjx4R1J6YTbJSkQBgRCGgQYyZ69fiM0cg53q+5KO2AwF7k7IeK9g6O+YFZFvdt7gfV8/yyCNVeAD9nozazJc/R0xsJu0m13C6oO+WguzIlNUDQpDo8gVSBvZYguyjA9+UfUvwIvSTzJvTB+wHTTY2d9vemFa3Ij4flYTrDbDNz/XTY5BUpgmFpOLFxlfpP5BJvgYrB2AGOZ4iMIwm1RCRKAq/u//j/+b/o8AhKf+59SDnx789OCnBz89+OnBTw9+evDTU0/9lfWnX/ztRlOQwb4XExgulA0kqMLZDBNhvflEClI4RmUhWQOESiI2jiE3HCdJqoJ3LuQGNhGCcm6HaUnGL0YZA9Au7EoEkGBhuIlhRg2Rlqz8YtsX29+YXwihysZovjA5UKxMqoqB4XJMhoVIwJmIws7ma+ZoGpB90LAQN9iESuBCJNMHIjBdZIFfUL7Zub9xPPLCRrFj4XVRDF6vyb3/Gyjx8TpbuVFlGAM3Qzv6WirJArIYgl9yrnE+RwVmN243IMpFKZF5A6/aoBeIBjCAYShp8DGKa4O2ERPeVqSKWS/MkqJIK1TRC8Q+2OsmBcNHH9R5wE0s5nAQRHwhissHmUFl38M+9BrsZfXSNA2EoRqUNrHf2OhDrmw3UNFg2KSqoKIXdPXd2XqBRx+KMmpMCqPejuFgjkZhtUllX9tpRCU7NtM/MBbISQwr6P9V1AqSzS/7nXJHGqgEMbGCql7T5kXmRhIy0EhUTkpkFeBUiW1FDiOyqCrcxmnrkioQxfBuzqIg68XPFB+zP2vV77x8sdmUTyxeVA4wQ/WJCnz+o9etjJ1vbDhVTu1BRq8x8dFAYxk2DHGRZb1mzVGJygAl5iLPCu3PCKQhO80ForLISGQGCZecsv7OyxNs4wkgbhVo0U+lkWwqk0KYxLgGyh/d5FTfB3NIYGjyx2bABkuEsSmWgaoayNXGtGkoukCzu4jKftJ8Uymohk/Y5Eb8yhs7wM8ovMCif26+3pTfRInuxq7TPPVeyFnj0FtolVMY+Bv0pnaCLqRXPzc2uunUpDJZ2Y2+lWEk7nX2S2fN6u9bm4yFu5GXozz7HMLNKUFGErZhJErrfS2En2Y3x93gnQnlvY2QzFmQgviAhLyhTLwNaoDo7+cZ5N7Iisre46iJNHGbVAWmxdamKgk5fsC8/rh3Run8U1CxMOvPksXZF0UFUCITiN6bKEOWRAWlQN4/c0hsc7K64ZEVPuxswiC+SIKqSeYP1P/XaTyKHW/MYAwn7jdjGSX1JalCJS4fEE6leq9h0F+gzwEsMUGl9X4c8GGLJPvFRsE2ePNFAVcN7rqRbYrNqi9wY/mFshuPOS5q53k5lEQaO6GsqJFI+WeP96f+g+vBTw9+evDTg58e/PTgpwc/Pfjpqaf+yvrTL/6uFJFJmVHXIE38jM3n3szhRG2wQqMP+EpAhs0+7Pa9MDOmD3ZskDcbZULlFNksRhplxi6DXRQNJIaaIRhyrByrQdYXqgm6cBvIweTNelYffcPgNsMZB2r2HpxMhJ/DZuMz8LADlsEZDHqDEg0cXOrNXmLfPzCfGG+gEBeRjh/22wG3iwzhNtlaAMjsAHgnlc3g18XHy8n4ReQNNRnXB4tqcCejSEDNYKXARPVHbaAtY0nInFiGqkE22lg22CkDubAS2oD196P6MG5m0DAWZiLMSHPkxqyALO68KZJtRTRnjMvZOPgEa9BogJth/iIycIkiiViYO2LhM4kSEbvBvRfGiwyhEm5GppAcd2PdC3mz1N8KgsiN8UIyho5CwoqUeNMHYuQGotmccsxfh9kvkk2qgc5rN2S6zbjNWdX3W7UxW2SBqYFlnUNBckrf4M0wu3Bd1L37oKtAEoVj5kQGmDDzBnTqNRcU0X1eN1cIHeDbDdf5dwirIm1RDm9PTAYxuDSYtUBCeB/qFGbCEBkflJz5Guy7IdgOeE01cGFzexFqbUrFAIxG3Ea3K62KgN3NqIuhgSr6numA3KNIqQKwgykTdydxlpI4P+cqJ4G3Fyh4ZRKM/rWyBnskpQZrDTjOOjjPZytDis0B1WaUxgEXjjHxAtVoRrSEdCP681KB1CzvtgsVjNMsbiDkjNxA4coGZnk+Sw44nzGtkN1o0GsbYQaScAkvUdUMa+Xdz9aYWL7IHGi2ekf0uu8nKfnQhSN2fFGj2wXXxfLslwdl/fwKVgVD1UoHqZsqRFZQ1eoUd4N+pA+IL3Yu4PxOCQjoK0qlY3xg8t5XVfzKN8P63qqqn3frFwhJr6PI7HVAYjkwddO29IVZ4HofNcY4jdxZqwVVvb+YT6K+4eRGqj+UHKVWIJkG03tt7tiUArOCrH7fcsHaxasm2tlNlWDFQnpj01B5P8+VlG4Ywb7fzOHUFrHA7IVZsKJVDm4TS6FtDbANpDpKnO97WKfJ7s/XTYxY/EZv5YUymTi1/46Vo3Auv9gV7Nq4j/OMdiPEUQyR/e80IzCwAZ5ULZL3nwYCT/3H1oOfHvz04KcHPz346cFPD3568NNTT/2V9adf/H1VMIcz1FLkWptPDW7fyCF2gQ22vYgd2Njs/WZv8RoX19UWj9zBFGgUUvUmkX0gimaNVZNKRxJzDt55Y1FtGTAjotlH9yJdFGKpkGCrkE9yXGw2K5Ob0VBSC4222JQ1VDM7zE1TrAeE9HEhK1KbisAEw5rdrRL4b723KxtoqAHeMCMzW3osNfs4RKXhNQ4z46iMXc3cmA3u+80cDVDdP4gtGM2umPWBUxWUtxy/rShJRDZgKPGjNiMndxbYJNXS7KsO9C5R2Zu8qT9nCIpqpgxoqXhiEunNpJjEOIfpsGa1g2qgVgOZEflF6dvMxAHV2VJt21DRINuu/ix6sWOxK5FfGM7eX1w2GIKsRTNYcUD7wHRh9mpGioAKkLGyKO/7GGc96RJXJnT/Q2agWFRsbLT9oQqsPxRIhCAqWdUH+OUXQ07lIAoiNksNQsqLWc4rxLabsN0y/3MQDdtITlQ1gxmww6g67VMVRWBqIGR2kXHzcmdYYdk/L/MAZLxZ1BJmxmXJzi8yIPUCXSyMSniZcPtgZx1FRQNsqS0Ua2XbVvRqMG0/qTKSD3ZeZDruE+p/Q2qrUrLIOt8pYdrFcHHHJiL4HB+4xJ13AwqKzEJmmJ91n9UWhAOwqL5f4OdZatrbTKzIc9B7NxkpVm5KN3bUDxUCJmIca8Oxe4jTtAnVZtT7gIWjjGltCsYPKO/7oU0byMQvBlOFspvgCUxzPIzUaqWIGWF2lBlBwxNRBzhdZliJxLs5l6hMdvSexxwM+8RT7N2Nk4/daztv3LzB4GhlSvWDiI1BzSRWkrGRBl7WIPvbTrc339gzTwPx/R+ciVIMm82oJzAmWQ4MRCt20GH+lZgutn3HwQbUjbT50MJsUNl7y51OafJRn2TeMLqhk9SNwLgZDquKDGOtBsQTHRDLueetnqijPMmiG2wEGBWJxnnhUQ3imo1uW5iXsTUoA6voZzxffR9lWL1xLUobhij+Rmxrm5F+9kuQHKwYRN5cU5TdVH6RNvhdH2z1Kpr0fe6XL7+AdZQT/2zwVMcepn3WaCFP0n62hac++n5rg776LErrTbQlDrgJy2SWWJmMMcjYMAYh8UbYcEzCq1/c1P7ejZ/6q+vBTw9+evDTg58e/PTgpwc/Pfjpqaf+yvrTL/7+xQYZ2QepG2njZBmAmzebO5rdqRJWvdlP8z7IqnD3lu8eVumbGcsjI+63+hdeg8IpC1KJ2TyqYm8JdYmqi6pB1iYUmDYux8eFpR3m2tvSkpsfdnFzHf5loeoDZZgdGXizySaxM4mmsfrQsN74zY1Y2QzQxy8U2dkZVaDFGAl19XemyLUYc1DcDWKh5eNHMu0U5RuzQb7/Da8L9BP8htiMeIGLLCOZIKcK3oBHooLLLpAT2SySKMaA8j6UirOB0xxoHz/CfBwLRYO7kg4DWQQDfDLvRDtaEs8gFZgths7GSFGWzXWrGUzkDJst4d+7LSSHWedc34xi5bszXRyoG8qZlrg20OAPEp3zckWALlTNeu31xsoY/iL0BTJ8dHbFXQ0AfDfoahuDUBnyZqkS/WGFofr6/fexQeABVyUfJPt9w+hD8fvQyerMIsrI1YygY0hBZjQzaMU+NguyrUWZfYhDPw8mO9aptiAoo6X0+c1Si+v7c1ezU7uSBGa9uNLBssGxAtnN5he7SU6KARrNSEYR/u/NPGcwL6i48bwIZq8OL6gvTBujGLOVDCtWM23WANirVQ4RBQXDJ4YRudkZ/UyZU4hU/+yhjYZORpV4YYxKMl+kA+rcI8opOd5BKoeRM6RmKJO7VQOAslnZbm2aQQy1VevbZoE2rn1UA0bQ2UbYJ14/mgG1Vl2QxuRiJzQ/3/auNpYca1d+HTtJZ2glgddPxmFOwans/CNiNRc8aCabo34xa2Y0EhzcBZZsBRYDpZgUWQtPw7RJOSsHZdbNKsY0g/S2xdBNF2q1jejGR5VE7QakJoxJbaPUKqGyfoHAyeOhAvLulwpqW01kkhWkbczAK8jcDNSWGAaBsVNgbXUJshvuDHSa372KuguGMf2Fex4FkjWA42ylUW1hkyEbBIFN+rrYB7GTUqsBwDuvyKv362hwHhhZca54YfmFu1HpBOD6wHIQtUkM9Opnj+/P2y8uxvWiMjF9Yu7ce6MLPsyxTCoXq8D8YnDRO11h8la1KNuupz53ODofw/jYf2OvOOsDvjDC/sbIzTXh3oWNC6NtKKOfKFzCZISq9wa81yebjH7BMaq/41P/OerBTw9+evDTg58e/PTgpwc/Pfjpqaf+yvrTL/6qs1CbnYwE7+28Agi1/Hf0Q2NE/4UTusnJoFATDgDcGf0IjwFMIouom1caIzo89qa4601p8GEf5HYmFxNDaUB0xo1tVHkOeBEszDtg2GJgpWYuTuBqWxfa7mACy8Hgo60LpmZvRoe3Rr2bwaH/bgHDOiCWmrzsE8mIWsggV2GuzjIZnbORBVvWmz5tI9DJ+6kUGc41P4DO/bizmBJj38BgyRAv8JZzp34xZLzQYb7FDnHPC1k2W5Q3VPAa84BaMRKoPMDKQdFCeLMjLW8m1crxFOHFUmIOMycRk6+aeBWDBQpCRSoYGy6/KB+Hrq6Wwwt2NNtp+rbpGOOw3qre5KeEp5F1A5BSM+J+HfyycTPWfXPNF5dPWIXtwrxYawHCD4gEMSZkTeBFFmSuDiu2v7eEPXXWQTcoLzNyv/FMhsObzf3RDYKXGHLECX5NkAf72lSBY20XKFEUC0MuIt7oAPAxRC6AorK4xgXR2TyRdwPMEnckL7/YWQxrto9qsIE6j2NX8TGc2sEo9XXexZwfrDIy+lr6AJRkLtAHkth38pofrOjD7WXqe7QTuKESy8AvI0/Irdy7QYpvoEM3KoB5Zz/psPlZAfVt2DIyYVPYGNy5mIKXqwOz62L7plhcIajBrQvXfX7+2TASgo3bq0H5CTN278ycXiMTfFDZAK7j8D+ImngNzBLLX3AO/8CIXBQ3LmAbiuKTF0s3aUV6/17qjeMNLulnpO0/b4a9MNqG1M1vIN1MCTRZFeyiVTnmUBPFBfp30H1Y9AvVBzMvzAZW/Xypov//fpQY49XAx9qiQmTvU1bceZQ1s20S3SG3MqP+2I9gJUwFVtH7VNXJhSo67Tvp7J6PflnA75jBViA5aFJ7NPjNYvg/G1WfUPMm8gtEP/f2wnWB5VEQOM7gHauhnLcCRNVEuUkM74br3knqxjyJDAYvahey6LV1mOGooGrxig9sTMTJvLK2dlELGxc3SVarRLwS0rths7uBe/4rVu8eCnCffLKTwYbEkLD4wgLcivTga4q3Fv7VOTzgbQM8bypkX/1vtXWrspub9EnUwvycQ3t3nlBVZ98YuEAEFjdpzvKJ5kWVcDm1jWEDJ8GDpcXKYGtizD97vD/1H1wPfnrw04OfHvz04KcHPz346cFPTz31V9affvFHXsCbqjfj6pwBGJ05ETf24UBw38Fr/gtwsUlu7mY4s6fCxWExXi4+isPCFV9R7fenJxGtvYiRyAe6N7I3mqMzThiYTeL6tjI4qYsbo3Lz8oX273j19KzN4PddjJFcFFMvXgwsCwcUE/PfSIlNYhcUb/b9k/F6deCwCdh8XJO9nDE3I4LMn+jjg6hgRDEuETekipqdlVK7mGZkDXa+QBMR+BSVN9cree//D7Gca/ygt6qFXqOZk+jw0UH076kLKQhLpE1G8vlx8aVfzJhcOfHxN+4TAp4skp42Nn1gVuy8mdbBwxk9Sc5mB4dPL6oWa2/mNcm9zlSxQrpJXURdUKOBeIlx3bzXG7fDHFVBwB6i5iYzgFYjWMVh0Qd5bANZwbsS6bfOBbLDpu+NV7Oq/4jFNS/uWERsNDrXxvfNdX3y8+snOQNsUOk477bj2OrpadqsDGwIVeAnA6NKRCSv+HEk8jexbuz6QHlRGKvysHqBjbYP3fXmK4MXA8/RuUxzsuKE/5a4/IOOmE4i4aMmZeeAqQ4TVolic42Lqj6t7h24mocqE+07cKzEB5scm6/aXJdxb5AbGYOLC88JI3nv36kd1GyFSc5PYt+M12CzSZs0sCzMBxVv3CeZrSCp1fYf/w4TpsgB2m30mIKKYN+b1ePTGHTgNTGZ1gxo2mIpGRl8uPOuN6t+8jkLSmh/9mQ9fZH87ObXnLQblTHsN+QXwRsq2RTpxrLinW8+rO0aUvAVv3A/Iey3IX0SJ1w812ba5LIg9puQcE32nsgNG0kRbBWbF2GGKhg7uBjciPHxr+xc7EjmmGybWIm1N4zTnGarFdyK4M22pHC8LsaZnrntZ0/6W8anv0iS5KsZd3fuqMP6F5kvSi9S1vaD6gB4lfMeX223K5hqBY3HwGqS3A32xwU+2RUki5pia+D1YiwxVtt6vhSUJyvutsloc1mxA9x+kGWs2MgCjdVqGCWMDqWex34YuzB7QVxcBbY28pvb+5q/JIgvLJMP+xsVF1gQ+UV6Z3JFGJbCrPDRygx3UfFm+gATK351X1PO5Aemf+G2X2zv53VEh5HHKDw7E8dssLcOqz7IsSjbTDmDu6+PB+Xnu2bbj6yE8sL04qffTEtGFpbOrIGV88M/uOtmGz39zttupN02ybS2Qs7h5IKomxqDVaLDpRevEyy9Kll7kDUZ/gneK2RVtT3wvCDSvEnekL22PvxvjOg8rcep8p+oHvzEg58e/PTgpwc/PfjpwU8Pfnrqqb+u/vSLP/k/aOymc7i3pDz5RYQz6gcomPqFW0/JMjuMli5UTlbLxWtcLAUrVmcMeOe7dJCoUJwsgR3UFpd+40THELZY2my7sbr6rf6JYHiNnsrjo1mNoqdWTTde9sLYRG7SDNdsxtqgbLP53zrcU30oWyXTCssOn86C0CLkcF14Om4Obty54EjRkw4edoldG7zADdjIvnBvW0VbDwxto+wTDz82kMWuHkNexyYwR+fJFIGbuLfA+cNqUlVYtv1m1OCywdf7i7Lg4+W892jezzszp8qQXiQgRX8PNlQHJmcE1wCpA16srFmxXPzw0WztyYZAbXPZjAa+qp446H4yMjYVDYysBusOxgFrKehR8HWYntWy6zIqF1WByqjamC+mfTG5MazzcEyHJR1UGa/52QAgk+EXO/6FMUDxZudXTxyzG9kFkT2trvp7ug88IHBivNgNp7kyKYNQ4BooT/aDN3ttJeQNvDN7OpgJ5C1bN/paWVYzgd4sf5CEmuX1V2FhFKunVkn47LyNZuKSnsGWnfdhAQYZOtky+0RZFMEi1Lk0fg3WhooO5Nb9xcsa/Oa92qJlg6/8dQKFW1WAnVwg/VtbBk4KuquDg/uWNfOH1x//Laul9OYdhlwqMhe73sghV2I+cZ+clrEf3DJkG7QZDGa9iGz7EywifqeTYprSNBMnvZhhEzfrcGOdoOA8wdkdVc6LTdkgbQB5cp5agWJHQ9KfpOU1Vf+d1qi0ssS8J+X9yE3uiVXnvNT7d14jSAaagwIyHWVboILOijG1bQe64RfiSseGs+VsJlFBKtj6wvFWgciPvUxs2tLWO0xgCiIXm2orjXqtdZRMsfKbIW+rRsZGtM0MFVVvSsY2I2ue/eYwvBptB8rNyoUPQd14GZf387oryWrA/XUCqE2bQTGs2ergV98zOlvrM3vSWwedG+Fi1Ql/j1ak6JwR0M9ceTIDxj4ZVAqWJR52MqsuIoLgKA/s7rUlxxKcjw6718X7vViN+pGgWHi98dyoBthAmkRNbBt/D6cI0E1x05Plkt/S2zJ3no1vq82v8avtMed3Y23zWbO4ePERP4h7E77Z/oYcbdVJEG0BRUIMBmDj+/7fiBsjO3/GRtuRcmLVCqHFxT5KmgjrvcX1PwgHnvqPqgc/PfjpwU8Pfnrw04OfHvz04Kennvor63/A6hsNFOXnr1XnkqjQ6IdbVVz+ovbAq4OV17Fm9J9fvWHHBfMwT5V49MHc+TZJRLN1QxOqD6CqnmxUbj1u24BSS3mr8Mr28NdqBqSa6bAB9+r8FTcHZf+OEpktV3eJ4c2e9XSrlncPvWhSzVlVoMlOMcYHinfbdarzVKoSmbGAl48+fLLZpTLrg1I9Ac0A16T2CyQsL6ocGVQtVIb5JLXJCMz78OGE/Wo00K88KQ2j829k3SBIQhG4dabKtG8bDL252aC4oPb5GR24O8xOeK3BfqMSPicrisSRGR77ZKhAC+A7IyXywrzvc2fXeB+Cq3D/PAdF5xg1oI0DOsFleM3OCaLBT1RP9XIN8AYYV31gcT5jddZGZ2e8+yBBiM10Jyv5qt95aWJVjDSkD0LXkfH3dSp1sC6INQui+Cgno21Sb9snGLanEn7L40VbYl7W9z1rUd6ty5TY1RkrBf/MvJB1vksO/JtBjDfm8QcQdG8WXYK133j9wE/I9S79MekslecefE+CqzOFa5Mk0werZ9Mz7GJnwkjWd97NbNB/x/tkgE8sr7adaSMd69V32HffQDrNuNdbB3Ef8Km2q4Aa0KrtKt85VJZtJyC9QVI10PMRiInxcaZN3rj95N/tv6N64fV3xI9e074ovpDovPPGzQ1cRlFqe5SlMDY1E6JQVNvmNPo6FMd+1raiKWubSZ0AqfjWUnSjUDXBnG0v7tpodm5NLEAf7FhcAzJ6YmVUMedgRyIm49hUEmNb7xXjNANosHGCXuO/nXyYm7b3bBUBfKrXdodcrc7JGVC6SfX6zzKqPoCrc2kczBKyrRYSDD7RnoS+2n5oTjLbBlXru9Xq+6lxbEmBZ3EpqWiLodvFqAafd1XbQ6LXg8dvba/R9zPQFqTveyd2f9vuCDvbyTZotPVRwk6+i0cRiNsmJsfrZuRN2Gc/tyEyDJsJo9DXb1j2C4u0TWkjE1FtDZH6HNm5GWbMEhYnI63U16M612zmQubIBhtjhRE45QnqyawATqHcncuD986gjtQvDTyCDSwNuAZTX3zW4j7TKbVPYLXUkxpbiMUwgEXm3VPybGL1G0SRFcfOdAKvv9VddOB81iC/A76e+svrwU8Pfnrw04OfHvz04KcHPz346amn/sr68y/+8n8h6gA1K8q+SP0EXn1u2YZ4Y36x3sGo2bkNFTRoLZxkVk93CtV5zEEJXtVTdQ642rTcHBNmLZVHdcDJYXtnj+h2M6RxWJ/kk6v/fLZY+2ZTPhjqiWoFjZjMMXcqRCwBiYaxSWqINFH7C7gpGUMGezMNis8jB277R8WGYzlo6NGTlZrp6/Dhqh47L0ZPZxM9tt42lb96tHq8kFYzsjUoGWvTYBaILWxAf4sT2mvqEey+SYpfO6gJ+MW9k2FF5iazqNpIRh2WEzmVAWXE+T2oGK9PwNi7Q2rlzr02swaqZAhkOlkyyfT+DGP0NUUNYJEwvJlPgjGMvRPZOqDAT06PkXlR3rkqFZPOY3Ha/GJN/Jea5S56LdjAvJqVAiAA2PuLmm92OpdNnM7TmDbZe/X9ZzRHWUVV8WFvdiVvXZQLanJVX5OoYFchBRqdmVPZocb7NF5ikgEu5zJjqyXnQTZGQUy1lcN5MTKbza/FHkasu4EWyXVd+BB5T6IEXg0qTKSMPOyjqpuZIv6wLMSGWm0LiYSK+yhAHOk6cv0vsjbXmNwI46LUwcjyTdXCTvh6Py9GGm1pAkwD1ECaUltzdNZ/rQ6xNwcbWBlenfdi0jnUW/GQMbuBsnfnE2WiFHb9n5uFB2Q/e9pbJm5Qu60D0ybJN4BfFIXb6zRAvV/UhD2anVSpG78Cqw5zVqfrw7lHqJU4qvjj+WhY4YxwhsdRJTTbXw1vIQdUtmVo/eq9qkcewrn3fwB+S95kX+PDSg9EZvK2VgY4gxHHiZGwP4rqzh4k0um1Xz9Q9mdCRfKL1E9cP44qBsC64ZexaZtW0Rk/pmpgy2ksz3OS1XutOWR+B+EP1n03G+wDs58gxytxJs7E8js/ZoH31EVlZ7Zk/J2dhWwBC+dm+vvsE06Zo91nASNYin6ZkBPPgSxYtgnrRhcF5s2OV12srwHj/mew9Ris6LUt62eXqvOC5YKAqEEarTiyZtetbtDgyz4hE6uF2UajoLzVJX80bKCjPEm8X0IkmIKG7JO3v1AmnjeXt2LgLmdlUPkTz8ItqbqRv1pJob7x/Vsm4H3HfJPZLLnp4wRqC23DZNx7UUrs6qDtp/5z1IOfHvz04KcHPz346cFPD3568NNTT/2V9ecz/ryoyJ4Q5YeBrYvt/186/Pc3qn5ggpqbohmRip6I5ExsD+TOsoZ3u9SyXu9QWIsEF/bqQyUKVGLbwgqGDKszSr68WVR6Cppp9Kh4u2B/H6wA+4/Q7FACdRi1PlhkBVWHUQzkzZRsFWmTyA+ozrYYdjFG4gpyLH5pk988xZm45WrW9s5m13VmfkV9ATryagFvyjaZo9lbvzE+QPMAukD+wVAdxtBwDSpbpt6TkhrGNyOkZgmVxJliJQ3GdaFse0ceqbhkfM/y6kmBF2ZO7GZfd27IPkwNsMPmXWOQmS3DpgOA3UYz7Ws3YjpT/pI+SG04e22m25HXv0+70kGtHGDYAbbi9kXq5BXlN6u3G2cehrG0DhAxzAZrb9ZdfHy2oiIruF4v3C5ibcodKsj9xlSM+myLh06zYoUZpAZymmHMoDzYFcgHvZgT2TmkqkjlH9eoWdBjhcA7EFdqnC198/h8vX6S21B8dYi5b6SN8be+llUM0XYwjBh3M1LaqESc/BjpsPmHTd6dhNuAzifk7mZQAodd2ZkcpQ5mNhFBP5u2gC/cenpdmwI2FefgMztBudYHfDa4LrwP8OwpWxygefA1fyDPEs5FHQaRo7RI7ARJ64DmY7sZHWtd2aCvtNlVRBmvMUg1E58SEQEEYztlH6QG1OjmdtPKGF9UcJ7F6u9xgLWdprp3im7QpHez7d4WrswGwWmD0ou9fwMZ5ovSF86gZ4b1BDJXkdGWE2yeRraf1FG9JkLFjpvpAy8YNanapHRsMpyf1xoQ6pvTHsesInZ9N+O77SoMNr0PtB2s99k6rV9R5B8NzsSxDmivbyAWDLWSoSqp2icfKdkJ7wDzj7bhxSL0hprMsp4QCEQFd06WOp/FMEiRabxqIX11Q8dk8xtL1nk1Zy8dQ8xqbh4Szwvo9drWyAtw0iaVq0HlsXckF+VGw/NNepDV4D+is6kGSWUwGN2QWlCWvW8cq6RzEVYsblziZScUfidZQqOfEFVf3W1FZnZWjQahwkaD5CnjPtM+8WCxybVwOdMNAaUiBDvA6ImOkvrslJ2XIJDHGuimdrVQZAaVu+2HdgGBGVh1Y/TUf5J68NODnx789OCnBz89+OnBTw9+euqpv7D+vOIPkBdiHUB4IzbOv1EaNCvSAZwyyP3Zm6H/ar4nm61pi0LycQJI8zCQBZQtko0bWB6Zefam/z3RDSVGIBXaF5dPlN7s8LwoBbcFUwPMqejA3JEL3KghOFJms8Lose3pwnLh0ZaEqUHFgDpZLjbZ4UhOE4ibw4udzACDYQwLIoqljV3N1F1VbP2tMyt8wQGsZp/N1p//XbrR+GoAFx3k3dOM6EwOjZ4Alv27zVoOTwr3V88gWjeXXR2wW0HWPlaJjwaJUh+CSuSdcbN32weChY/EU52rcW8uG1zWm/rNzfZiuvBs4BnZXOxXBnN02HHkxkeDwDvvVh4ood7McbJVeFH1zyaiah0b0vnO9DTBioV5YjYIvCetKUANOEyzg3qvDvKN6ulV7sJ3kBILkAZujs6awsZhe/KwrME7F5eEIyKj2Uh9oBCjepKZyo8KYVK1jmwfRiXFzeINPok8bKqKWZ0j4gX5dqp0AqGNMmftbjamC2VigpW7WXAz7FhlKsUo7+yL6tQaZaFxWGNrywVnclpnQjliUBJBUXYCim1hHWhyQGdhlmQGpovKyZe3nciKbmSq+nvaaY5oRto1TwYPYNUWBbKvbZ38FxnJDRk4vd7AkH2rEj5ol8LCfEP86oBjeZOuDKTfWOtXA/WmKZkuBuC7QMnPbGA0pbbFrG6Smnk96hlryloSpjPVziBkmJxRRWkQjN7q6sYquHz3VDMrpEHxpvSFMdFRptQuXv4JuboRrsU2I+hJml6gGMS4SN1gakuLB27VQc4W5BBbQZmISi5LLAd2VCrBoDQxvjC+8BJWH1RdJMn2G6wnU6raOqc8ax3D9TpAl7NnF1atujH1NcpjhSgCe/3g6w4+5mCcoPy3f2DRa7IySO/fm5YE3uAeZ+gbSNFNyrlWUxdkq4lyOHd8nUai87+MnvK4rQg2WcIY3ZBW24CUBrEZ442uxa/824m7L1ZsXmNge7PpbC2jX0xYfPW9zk6BWQQrk8bZ3Wp8lDpMf588Kxk2JkEyK/DaFLAxyoyxNqk8IdRvqH1+5yLLCSamF2kb8YvBB2YXq4KyAj6o6ID6IPqcVVDEERV0i0T1JMGe/rooNsxNMRlXTxKMneclylP/GerBTw9+evDTg58e/PTgpwc/Pfjpqaf+yvrTL/5mvdu64dUBsCbeavlzk5eboeSiR2Q3G21YfVIUbxVcDUY7DubuDIUDBBDnoFWz4odNNNETtEqgYmieUOHiVcHwwaobG5Od67BfYtkm6yay5fZmYl3BHYuXD4hsMGoGg3NEFTIgO+wWvzoc1eaxgvRGbty4fmNiUN4WExmVxfIi7av3HA0U5/MPJ+5i2sV6L8ZrEgr6DFUDtwMyU04p2PWT+frBvhvsJzc+B74Pq0RiZoe9WOz4ZMh7THp8MSwor8MMd2aP5MdecIHZCdxu1r642qpgnT1kHy/uzD5czj3q2YOifLDvu6dGyXi5mtHN5DUdo7HqW58dTEwS+8XE4fBrbeFpJi9ZGDefGs0c0VO9ULHZrDTEq9lxwEazw7uyc1AsybgZ3szxHc7vFhg0S0nnGXVQ7gdZIpsWQwY2nAxnWxB5Y69BpSBWg2TrgOGV2XkeXoSd3JBqQGuaaHTI85TInP2zrRnWyEGmSBI3oZUMdzKCNTo4V4KtPvQHRarY+1hhRF+T7FylzBsfyT6sZqmZ45TzZcE81qydmzAxSgwNdICzqp/bNS48OuQ8xiRLfDJ42U3lRDEpFql3qxB0tSUhGmTInFSyLSjEqBdOgeyPLKmMZlezNhrWjH8VVU7OibgZ9QuqWFyYLnZt5AFy9hZDxsiehDYNytogFDvaJoAxNSminycLjD7kpybr5EjV6GvewKyD530MMjYewryIfdi+Uk8b9MFdDST/2TgZGbPvqW3MjKiNzxd7OaVBVbTJQEnWJhit3sho21oOzE5uVgqNYul3yN+wcoa/D1v9CTa4wxBGB9Lf3DqWKokxihW/SBe1b+YYVE0qhM1mxKOgPCn7xY5/IJ89cS57qqHS2oY2OocqytgnNyk82KZmVsfsTKGTy1SR3VtzYfWJPDu3KQuricfmxil/EXZTCl76nVHxx+caFCXnLe/9osR2GGw+gI1Y9uJXwYuidLFq8fK+H1+5GPyDrKSTaByLgenidP/nOQkYSSia/8/CuDC+hQxOVfb300UK7tMw+765GLiLlep9Yb0ZRv/vahVClcjquPMaH1zpzN0N6LbJbcldyZUbL4c4n846aNvVk0Lb4HQCys9kyMtEvN89tVCDXWLVxAWXd+5VqNC4/g+Bg6f+59WDnx789OCnBz89+OnBTw9+evDTU0/9lfXnFX96EeoD8jtY1CsZyR8sbmqxlSeMGZRG7dEMSwU+hVXi1aO1+7EcHRRbSeSF20cDiuoJQFSwh/WBHIZXS7unG3tCzmAn2MgGyy7ia3ONtp9cqIM67814v7D8gbtjNrg0yXWj0Swg+udENdfFjkKWEAaRzA6nacuA/YNOX3E6K+YDtwlfb8w26UUxWDjbYSLGeDE1MesA7j+sEAZkUdHXQ9hhewb3T2eOT0Qx50XexSwnCVYIfFBVUG/G+Il4kfmdc7CJ+kXuvx0lwBtMVP0A/Y29/hvu2cy9jM/PH+S6ib0pNTMpqu9n9gGZ0eoCdGw3VYxsOBt1JuRVW1pEYRZ854WYjUaJiNi/OsjWDXcnYhF5M/LvQIOWyg7MLksq1HkwtbgjGANMxY5F2asbnmOZcHvBmHwsODeMtOS2YF+bj+wgXtONKtipM22sU2tUhVtPfAv1v8HP4VegaItS0pPqjtUhIg+g7nv5ev3ga9/c8cUwRz7+WPfVzoC+jjb4qOa+wmBLlPXkPa+N5ZGvcywcp8ko2o7Qdo9unIxCMTqPQ98qj4LTCPQ8sGZm89iVRiZhbRVwmtUPg54E9wKboDNxkMRx3BL7ZvHciLqPkqVZSj/ZRbtOHo1/Mafz9fUT+cUw8b5vikkAXjrAZROA2WBylCg1mAxUi9dY7EqWijqNrtuLsM22N16fqAZxmP2di2Fv3vcX15h97d4bO9kejlpV0P4MrMStC6yn0rnUU+yMzowqI04ekpnw6mDpBpOLYRDrRnQW0ZgTsanYTJ9tySmnwnHEy533+m+s/ebj9YO1L/ZYmF0MtUIjyrnyX8666al8poVU9BDDCeqw8H4DILwaFLu1tWeHgInigxeOsdixUDqqF1GQY9OdxmlCJSwHY9wNwBUccw/OIKI/T6obgs7bGRifrPhvjPF7M7xrU7pAHVit3t7b/WWiYqA9uNSZP0hYBlQQ3rlJpm60RiVXFm7dqHW4fk+vpHoKYYoOtFdB/CLrjewEnB/VSZ2XFHEyfIT1NMWzxvvFiajspjHLcPXqVvUEuDBDPvuLEKDduVIZZMAcL94l7vjZz9Boe0xq9FCE3D0YwURFTxJkGGvvzhOPthUZeSxJnUszqrDpRG2CAh/YhiGaJWcwfPyPHO9P/QfXg58e/PTgpwc/PfjpwU8Pfnrw01NP/ZX1p1e2/N0y3jqS7hxcKUIN/KSi4utI0QeyCQXDmpWLvfHU4Sc5Ya6dNeNEs0ujgdvaNKgxSN78VolrEGakJW/b7AEf8YH25pKT78XncJRwX46NOqHLtPzf1PkYE35Vcg+heWElPv3F2kWlMccLEFXFa45mb1d0jg5Gx+hM0KADpIOod+duyMnxozMgFFgJz2J8T+QqY+VimrPiZkxjp1HMnkZ2JlY1KAyIm7+9/gZ7QyX56+ZjfOCWhJKSyDOhrySGgh3RLIlfDCWqRPMnmZDZp1vaL9AvxjSmTSIarOW+T0ZK2ykGRtW5hp12zeYNx4ow5yCjD3ysA3vLesJUCiRx0fkKA3qaIJvM4Mf4V6qSO75682VgejVDyCJzY9kB5lEw7YVtJzXR5WQstIuXf/BVMOxFlqFIwDCjOSg1M7rOuHuzM7FLN26rwWAaWZOLzhARA0LHhuPs+gR9YF4MbSB6OlcWDmD3sWDZHyA33XkfttvP1Lo+gJqZsqStIifnIgVpAVpYJZZXg6EDRry8H746WVGeuBtU4N6Wlqq7LSEBoxzPBrbdWhWmN52t0ZPF1A4XrhBfE7BkVoKcGgXxRnU3IDkZIo3RBzIDayYW6+thh1trYwEHMPfy2NUh8KWrbVrpDAY5mhn2csx+gDbDktrJ9A8yOuPkNYqMX1BvyprVzzJIx+vq3B3aCleVYEkHdnd2i422PkGd5q1tTbJWAnR+U1tXdl4d5l29tl1ORbDG7Kl21gHSUYVpnPmEdNM7BjsW7taAPWGlgAvSGCcLBl9YQN3i5Rcan7z3QN57Sn1bAuvqCYP132mNSmJ2oeosHn9/tSJEHRQ+7QWhtkr4L0oHhNUgwhljkBakCmY3oZnvVkN4v5jQuU6qvh4juyGt6imApBjGCef+/0/BgWJD/IPLXmh9EtEyl+VvsN0WwpgNVrPYtvp5OHY808ITdAYNrJOnVNWpPZ7FVW2D0vFRfTf6w9uaCB023xP1slUluk6jmZ0hlMfeheN+sXeHk5c6iN6wtjqqg7ZN2c0IonwRfPV+rYWNDvSWT3Z1HpVcpBoS/0vuY7ns5qdDvNXWO4mQ2t5TjvGJ2cC1sboxwKrwDCw77U2nedkZrd4a4Lo6H25789s2iPofQAJP/YfWg58e/PTgpwc/PfjpwU8Pfnrw01NP/ZX1p1/8fcZkBNxWpIxgMDRIN76nOHkWo2DWZFlLw3uC02jZcjipm+SLstHTilTAAt1sAdnS9IY4LTcPfYC9WrptsHNRa8HVeQc6B5EOo5hnIt2oBgdf2Rkn235hdnPtwbgbDGUZO3vrteticyYXiWaHaBm0+eiDEe/A5d0T4EoNZMWF84K4O2Oi1gH5DdicTxQNPpIeQ27VB1kRHTStIjJJAnQCfe+eBsX5b5XFPd+0YcQaENIHbJGk7mMPuIAXIz/wXM2wkg22D6sVmWQWwzv0e9+BrC0tkW0noBqAln1bib4PeuCwdaYBpXOt/J/3RAa77UlY55T0CRnEWmCJjQ1G20KOHSnZ+ACrBmZVRUbhTKYbdzVIcr1aTWC/mj33zqYIFive3PMEbAf4FleJweDfx4JyxDwHV3QTkMEKQ3LsTNxLegJcqgFT2bF4VDFNeImdq0GbTapGh3sPiFxc8yKjWPuLcRQbfQHPqSIwwVcPWsSqeAVcWyDjPQdlTe9JfV07aWXjnADhc6Bmvkl3yvXH9MVNQXWMO4w/8qJV9QcovvWdn2LcDuXWoDdO2La6GRDGLAjrLJZmZdvK4fhpTIr8nv4lgdqyRnVm0hgCGii6Tcjsg7aciAnmmAWbd0/AOxO6qgJss5YRY3SzbHbY+2rLR1mHEdsGNlRATaRPIqOn+Qk6cwoUbcFqRU2CtXVqVjeXqr4HYd55NTs7n8WNYSJW+7fMve+5jW7YxiCoP6ZFJhPzi53RwcgnLPwytaokAuzqRnDDtAuzG8831GDvQuMGFTr7AAhV58XoWOU2nKazFUY7hdQBx1nO8B9tIdqrP7esc5pUYMHKE+5ffb+g85wkUWm9zmxCa1Eo7vNRjipBAYj0waaDwIefpj2rWXGOwqV6UmXIKCuyepiAkWR9x3kns37vZkcfbWuqti9SgeUbKik7U+8STO0/qxLEaDucDMr+KThBDLNj1woqNi7DTSf4HDKzWWMa+DognFQ/BzCRib109v9e0zuyp6sa7BXInJf9nQ2883vXbhUNuklWX2e3/vlU50wZRLVFLsuxE0q+6t3NhGAYxy5Z/FKwTjMsnO9JmE/956gHPz346cFPD3568NODnx789OCnp576K+tPv/gbdSE2quCLIqxZg8/swyMSygY1nFVtP5m5Wflm1yKscO+HMaszbig1GCqdTalZOjsHUlYfhrNulL8akPokRhKCfytvhnO3vFrpFMntMM07QDmF2zg5Hv8nahuvmsyCUYNlXyza78/wllDXORtoK4mrP28UPTLdX4z6IFgY0Zkl1XLjkScTwgB0NuOeKmYzkHco8ahi18btgmxGrMhm3Cw7T8aA/YudiXvnQmQNbn1gtXuyUs6jzS7K/w2rN4xF1i9ggc0O3baTgaAzqYziXY65Nwqt5LoGkatDrSUUbcbBAqyBb1S16uBk3QQNvOaxTagaIlMdoPwaLc+3EhFtgcmTl4PBjpaDK8Xls+0oewH2xwHtLmq/G6SF497fI0tnCSeR716f3p/How+vPiQgDhBt19GGmKg+MZzMn4R+YvMi0jEZpmwZfY3Dx3UWjLC2ZyCoDSyGW0+LCweNBjX1bmCyAtfFHMbOL0q9xtR4spUQKj53skygieUg5Kwh9rkPPSsOGNZS+joNQk2kAXkk+HVTeqOy08gcYHIO2zrBu92+NKhc2lzZvPZtzaB5iPuC1KbZy3GsGxvL2ay4GVU9yW7M64+MKB17EQkVjZSnzc5+ibv7Ezk7DeMDM0EliVD1OmJMoslzgM6XUWeciA4VTiWc5lZnApc024aiC6X1tZFh7iecu60nSdtjEjCDlYmbNQvNm0qjzTMNVjDvvKeAsNUNzWiFwrQOaTc5KxIfg7VWB0a7MSUidwfio+bzrVhrd+M7GmpE/OyXAd0GoFxIs/NS8v8KCixX7wskst2M+wmUdkRW/0wbiSm6kajdAMy/2OnUaKtN/5zdTX8lfoC6TKiiGV0ZnHDzZmtnq3QEa9346PB0HdtQ/92islUYwwLPYGry/t7rxZlc2eoQnamIorBq1U6pcCUjsqcqUmw18EuNzhTLNyC2Rn+22nwowSZiQvWUymaxO7/qO1xeNtCBirnvbp5rI4rXEDvULx6AUcY4zfhWUHyBAtn8gxU3g1wvzCfRcdUHYBeVL/5YTX/kbt1cXP3yprqJU4lYfpqsk7Njp6k7Vh+3YK2b4a3uGfT+WZbNyLsfichqNclT/ynqwU8Pfnrw04OfHvz04KcHPz346amn/sr60y/+fl6JR9LZFz02vTR7ZP03ED0HKpkMPhGvw2LU2RhmS8u9GemSHfb05G3IGVbU7hHj5oN3FP+YzssSXzceYvCJ6ZN7/uzQ2AjG64MVzTK4Jl7QKRzNPoRaxh0Ub4xboOmYnKuCOjkSZodlqxM+y6RFxg32VMZaBWvCKGwUsg218Rlk/HY2NWeW8AIr+LnEx8cPVtxcPsncuH1iGYzqMef4meqmTdWk8sX1evH1+7+D1JOV7OJiUdUB1X0aNlpLjNqTEc3eoaDsPiPuP6i8qBSlheonY04wseMLTtZQ7+qB4Uz/0ZJxfhK8kTeqrz1w/2i8a5tkNfubG1cHVKepmdoIhGM26QDnzrJoGbWBj86DuYP9LnI0pKo/rnmDL5uT2r2cBpvQzR4Gmi3bV0GsXk90CPeVh20vqDMmPkoM/Q1555O4IGvi/DjWi256KtfJv1C3J5pAHGl8s8V9Lo1/NmAC1xtYzRBXtT3BXpQmEZt0I9GR1QfgZK62AOBQF1avZsJZeFYrNQ7DV3aAf3sjGlhY2znUnoUOyt2dLcTwBgSZLOtpddYtDGAYxcUb8xcVg489KHqyXfABvCAN5avBkb7YCrYnYdUg81gGGmWqm4pzbd0MO9MdlRsZZPV9AGeaYfWrf9+YlASsBuT0teY0KIV1kDqBZxsHyoqt3kuaUfQDaBO8m4vs5F9mezGw1X/euNoSZWobgDk7g+UfUMVLDeBq/cLnhYV307Zp5YcNIrtxGqMbCT9NbAfGNxhUbmbrVAjBHW80xfzt7+z3JiKZckZCzk3Fj3N9Rls0hpH8A7B+7rM/h4B91r2dUOWdX2hOqInxQUSSh0XNnVjCpQ6gz9iHme4GMe1M3TwNtIm21tRRn6gVRlW7LTOzm50sO8y2oYCP2kgXO423iuGigrY8jbai7Tyh4DgWRsU4qp0OYU6J0/13flHVOV8KmwPPD6YAki8GVTCtsGhrXULbsYC0gnrTeUZGBKy18fFq5n1cZHVjThUWvTfJrK9jtSakM4IC5YUSpA+mDGrRc+16iIDphlpUBcOFts53aDVIOawy0sRWq2ZKk8UGL4ZNhsHi3eqnXETdGNa5RT6ItLYYmrVlzkDmEL1mZyX2nb7/1F9eD3568NODnx789OCnBz89+OnBT0899VfWn37xFwSmgZjMClSJyUEfhxVJpsDCYDupjUYyLmNl5xjgG4Vhupp9zJb/ltETmQhMIlgdGlodhP2xN69hnYmgQdlkF3xUh1aXDqBJIXcyDchmLKeRqzMCRvzihyV3GllXh3yqJ7t1hsigAtxOSGlshkRYW3NEW0wSMUb0tDGqcxgYkA2wORLoVLGqqOFYFfJg2xuzIiK59CJLbBtnvLgYcmA2WJC47zfzZcBiDiP2YvCm7Hsa1K9m4QzQvyO9iHxhdVGhwzT+TnlP1YszsclI1n53+Ok4Fop64zIGrw6XVk+d47CrlcYlp+qF6moZPEEQwN/Ib8BpnVUyTuZKCEIBlURkf1ZbmOaZbhbIW/ZeNZg2G/Md0JEhypt5HF7U3khwzbaATC5gIb8OU15tOVJPMnPZUSKc6V+IavH4maTVn9dCnSuEk8wjGV+oPql8gZ2siNqHkWuA0j83MM/OQaIgZzdfc7LXomrh1gz0KP0RerzZnTOkBAbGhY+BdnCVsb2nqrmcFbAjOx+EQ3uroG5USWoT2q0emG2baTsUSEnp7oZBE6jObmojDts6CPcjN1Wb2xazRn+V7GSplvzvZrHlhy1XT+irBtiqatYyvic9di4K9cXWwr3ZTSKaca0XSfAdBgycZ7FBf0sQEq+gqgN5ffTzUVG4j2O56b0iyynaOqBMhhURwbxmW0JEN6fnu2+6US0FUcLs6vwWpwF8nBmKO3paoI8ODi/H7MIYDDr7J3tDo+0TRXIwt4RbQ9eq4vJ/JW5jrwHjIm2xa7f6pRwpMM0DSpyqzRy/WNvAZrPPdKMpV+dPEUfg0UoFLFn7d0xizknkwj17uehF6iLDG2ya9zOsPIxxUGqLyTAxsvfDRe/ZrrZlXPZxntFuREzez7gbHoupJP3NphC/MWRU7ga/auuaV6HalL4VB2d6Ib3/pakBoMRQgzGrDtve4qyFYxnS1aHrabi8eyk2UiF1YLtqgXVLhPKA5H7+hovaahCOgTsjv21e1UA2jRqbCmPHYrj33sONvNlm82bme2+HZf35LbthjII0w3UzEoZdRL2Rf2FjUNvJmudMAWrBMUrm7gD+yrairOrcrVdfPXb2PL5WgfyPA4Kn/mPqwU8Pfnrw04OfHvz04KcHPz346amn/sr6H7D6LqjesAeGq1nWgZoJ/M4nEdTsJ6YKKrxBqdnJIWnrgBVNjopmqTSw+mhAKyjdoMUYo7Mglhq0jn7DTxYxYVt0eCkLmz0Bz/J3hg0qR0/Ssi/cNpHBO+HS/0LEgDDsw9ixOwIGP9Ls3vzL2hpzlfNOwWuy34sPhPlsmXP1Z8c6mvcu9VS7TKjVBwNO+egx7ukoHKVj44VxM7JF21LPCZM1w0s5uy6kJON3aicXItLAJ0ODnkKUZCZ3/F9IbVJfaH7RQOg3VraVJ74PjEqkwZWJmVNAqOXauWBoYCqi3mxrxYFxoZoNiC3Z+W7ptBzXgLwJdgNAJiStPsDZKrZ6KlpVkm5YNktcAZm/mNekvDMoVCeqyHpSVCRUCnmRsfsg3oIojM0+9+ylweAchOgcSEXm97bfWRqyziASUNGZFB12O0ng3gl2UT46b0U/W7qvwSwxyth+seTs2KjE5ReYuCMoJa7NBkxFehygBJZnhlkmaZyJXsIDvApqUyPIcdOQOlnZNo4wJ+kcHk8HezWvnw162oo0ST7AnczE2HAmA77shKGnQIZczYjFb3SGhxEGqn6ODvQ6AHmDN0NrNEi1FO5J2VfbeOpCqT/YeqftXcshywg3lMXITgdSJqE3vUpekLODqW30Oq5Xs5ZakAsLO0Hf7WExMzKbZfx24zRIaaCe+QVxMfNf0W5QnRVHWQBoY+owbfNNVDB9oC12LFKby5w5nVwJ109KsJLT6nReSNJ2nWY4kzn631HWWU/nSqIOZr9UXPHRwIkO2h7yo7ARcLcypHqyWu9pP7BSAxvuDt6nOgz5BFpTHUquneRI0rpJlK7DOic+NmR082mdWZQVlHeul5+sJl2TiG5IpJ6QyMms6olnjuXuTCB3mAH1RnXxyzYfJT7iBeu3bvD9J0a74nSyqrI6G0gHaO3IPyweOoA29SYDygeWkLnJutljcHPsjyQqI/yCSnwUyjeVu5v9XFz5A9vq/cXF1GAfJ4f0rd/QaV5G/859o9rsqs40SohoxrzUwDDPC5yqSfhPlCLSedlvYE6mU/WTsiK8g+0768sJtRXQmL3va0DN86ESZ3aDVI7UILlqEPvNnI4P+0Mx1k2SqFHksTZW6n8fKnjqf3o9+OnBTw9+evDTg58e/PTgpwc/PfXUX1l/+sWf+790QGmCvFleN7H3f6d8UGfjGdYscJ5smKo6IbI6IC+A3QdL6eR0dOh05S+owE2Yf5KoZfnzJuNEQw+RdTMux3T1NKkC2cDKiSgu/Z2ByI7mxfJi+G8Ma9C7eRP+v/K361+wO4haMD8AY+8OlcWdHUUxuC1xgt92sOqLeBmlH+y8kfXktMxEdmTeBm/rA3U0vcOeXxhwObwIbr3RDH5ZnFyUySXH4mbGTywuti7KfrH8jXkgPmA7pQsYBAM3a7ZyL2oWeSdjXA2MziSod/7rIQM3ymrwzGz2ZjtRLX/Gi6VFCS7v/ISs1eyuFWZF5Zusvn893r3tCcrO65EmVh1mS4p9dbg3NBDtmUk0T1pfDL9w7xyOHdXZDNWszqDtOEkztoZTFWT1fYFzoI4k9yQJSr96ndQHZqs5dEs6Ndi76WHTUJ5joWqG6eYmDeA6KoaeQjjqxSSpTNAm8ovSL8aYhEeHfNvH9w9jencAbTdoNqytXI5l8MdxIvr3tOcINxH7q+0TDsrO3nDqZOb0AYsVGUkWh/nrNTvM21IQfhQH/TtSAQSjBmbGO6NJvlGsvLn00bkppT8AoHk3SFWF2blrcSYVMjvY99hGqAY8358x4dioWkYfEjEuyguv3XaJ6tyY3y0696WymwMM5+J9gnw6TskQE7dBmAgSs+jndDdwGPa/UEzu/Q+2rc5omVcH6cfPngCYgTKbJcVYvHAVI5PpzqpN1C8u+7e2f7EQ0RFQA6quDrL/ntyHEZnU1WvIZBCdx07AGDfDgr3B6gPjYkdQLuL6ReEkp9nX6Kl91ca4TlruzJ8eX9dqGdRNneENSG2CXVi9sRKzHKsg9+aSYWVUBpknz0TOokiibRbZjaIbeAWXBus8v+KF2eCr6ObC1FlakQyMmEHcnQVk9sVaXwz+jQ8+MW62vUlLUDe8u34RZ8JoB7+DRj/XqO0ZHWj+nQpVbQWztrm4WTcWR9mzi26E7NhwItEQK76QBXhwS5TEUltpsiayY88xoXBGDTK6WTAzmBeKG4u7rU/1/Wy2Fc94kUpsdpB0W+uMiN8o6zD1zGCOZOUXY/pRdQjMT+NqLG5qJnGsR1YfaI1+jtSzOqnk21SmoHObbLCqiP0Lr+Iag39UZySZ2tI2GUQ8VpX/LPXgpwc/PfjpwU8Pfnrw04OfHvz01FN/Zf3pF3+Vh0E8TE8D0JMZcQ6XpowgarWc+0xZcxvN7Kyz+WU2c6iBTIc12kSsA4aOZD2DXcU1x2H8rK0iGS07zq9zkAo7B3jqWGiyqBLjmlxXULtgLdyuHv+txMZvsMD5CTVaAkxbRoT1lDAvxnsx3fgZb/wafRD4YTk0qJORYOf7bHZvyn5yKwpmXKBJSNxno+YOfkuAF+WfZCzMxWSzd0vHIwzp7+hs5clGNtnkYal6alhVMfwNJBcfED8aEGUHucqOlB37I2hbsyfZxXZUPVlwumFZ1EqQ4bo6S0g3UYehqh+YOseDvKm6GfYia9FkZbO2qDNMxjduFDhCWZT97Uzs2t0AxcanqNwMOfNkHiXBsMMw5k1R7DLQBTmZiFck60yvW7oIS9KLsWhge6wHfNtSosXnOrAwj2oi9hvJOhqjbjIWboXZRcXVa7Ia2FOdVSKJMa6+Oxmd42JG7olpUyyKOODEmEyqWjnQfycp9eh6mYgD3Acv4IIsnLZPRW72YeHsTLUCDsArTNGMp7IDi3GqjOSFDO5896Hv/RkyFlbW+TgykgMgsz8P2Hn6vRnsHVij2gat2oBDvjpUWt0sqnT+7mlcK3kp2RVYgjMRg8pieBCHeU5PtrVyZNar94LeKUibhDpg2tyo2sQOpnc4d8Q/kCVzdlh4abDXIDXOtxChjXmSNNOYlijqTC78+GMiWfFFJ8AUO1uD4eaw5x+5Rj2brHCvnlBZ1dlbajVAugiNY41qZUcoG1TL8Zq9y6h67yCPzeekcRtwLEylIAKy1HFU5n80hxZXW9XoZ6wn7wnZ6viZRn3dUJ/pdXlap6r4gxFPEnlbXhjOnUnJGD7RXm0hmYPNYuUmlP0MWEBtrAbTPxt88sWOya2BtHEtyA9ME+yNKU/7KqggMNA5W6hem+f5EBPU4K3q8MoyXscKVdXrIaqtV6WPP2wpVUnlxOpFnfyYluf0XmgU26pVGgg76hWrZpbN1DHTGsemlZ0RgwHR++F5PioF/gafZBhWDjlQdBeTEiuP1XEFlznKwcB7nysRqK2BvfQIjvXJ6qwV45LxM4IyY/gPZhXayct67bRtchKIVd/P71N/dT346cFPD3568NODnx789OCnBz899dRfWX/6xV/GYnpPWWpAuQDH/IM8o6PMW0a/dudvBPvkl9Cj4vvRROZktGTYoDXACT466Leq5bZYMkTLdXHcJ8rzd6p428C8D1WqAVkZ2P5iypsRigQ2Zpt5ARte88W+f+Ne/xy9/ir9E8yUqCyuKi4v7gmris/5g3cW2z+YJzS4wyxmH2I4RpA7wA87m52TohDpxdcoNsmHC38H9zD21cHNWcGLZnOCDQ5WvzNHb4JW3lDLRG/lnbbiJqwGse1I8A+Qp+XKVnfD+3OwbRXBZmshBj4GXomxjly9R8OrEmi5e2mw88jVdXfjUqAyXK8GF5nIEpTkaOuNrc592VTL5umJfO/VSNJGYt6ZLXf8wmigX0H/fSWVdTb0woYTQU8cKwEXd96UvRtUxN+w2KR+kjWa9TnMreh11vkqjWfb1tCT2Oa42nKQbasZI0GLrUVUg/uy/hFW6jymmJQP4oAYy93qgbz6wNHua3I+RrodtvcczMf2kMrT7F30QdbWDbcGv5kL6YTQViEStw7g5fxTtXst1kfL7yv+aDIDiEYmh8kEZXJ1Ojfy5t2kDg1um8Q8+S8c0H9+t/1CakAO3jk/h+rO1GHODGNgCsTmqht2UtWAPCSiVttsavT396AjggefcSFr+whY58OYUEZbcMTZR4Kywv0DJCp6vbhZqyEQkV90MHSQ1ix/VDHkVCxKL3Z20+naBF/NHMuPfcBOY/sL2bedLakzBfFVH3SXO1jZgfibY0PyouwibR5rxsTNsU3vbZY4iamfl1QHKsv6RUBSZLUioc6HlwyTIIqZgIzQUSs4oCIt2attJu6w9j7WFMdl/SzE7hcHZmySbdWqJPVkvaxirS9eDKIS4lhu3EkrRhnz1f+d+sBV7PximsHovd7q6n3IguHVQeXnMzdg7lyrfkb64ZK8X3RUM/NmSdWC6pcFkUUNsQt2tb2FoZ6Ot35yzZ4kmdWz4EyDtxqQ17cGpBar3qQNfJw2y72ffbLXSIoxJnsFZcLl/dxWq3UyijEGVUIuIgaBkfH9VRb4pmKe52HiDCLemA0Ug6ECZU/cE5S3OoHsZqKoY4fiNI6trsg6v0fGcMPjpuTcGaTOxEr/08f7U//B9eCnBz89+OnBTw9+evDTg58e/PTUU39l/emVPV0MU5MMMmCScoYGRVLfE3SicwOyqR/mGM1Q78XLmu3aOcCSojMKjI18YRaQnS1DDLx3YVJfTB/McfHeizkujCTsAzsgpKqorT6Qxt8xg/f+Byu+2jazPwj75NYXs25cyXX9ZAe4Pk+o6casmpWMZjnfGJ6DuxJ9vKh38rc9uPmJe088s+rtV9EHb4MvR2kgkThGB/2OEx7q1oBn1GbcC+vwGHYGP6GzeLQZ9cG1fnQQ8NwkP+nx5AVWkNmT5grSbpi/8asGbouh3zH771A/qHJUAys1m8MN2ayNnQDX741SaqZerBM+24d46ROrgQ5DntGB5eYXmT9B36y4mimVMa0/ZlSyVL3RIqbD5k3G18kwcmSJceF8HKCU4Im6u2FHoGFnot8bq8XwOEGthqtnyKkKyxdpk6KDb63yj/uENVNG9gGVJ6y2Dptv34HWJWIHZZ0joRLBTdiC2AzzPhQLknHAcDLN2NY/W+fAqjRUk+38E5wc+bwAZQdTjxq4JdSm+OqLZ51X494o0gDbkNlTziQ/A7wa7AwMUax4YxMwY+WZlEeSsfsSWHZ2EAlmyKCiUJwJezRQ2NWs8RxCuyA656esg9SNwO1nN7A128ZU/c9g9+S41h4gfZA40hv42SxkFVbF8CTToQZLIDqPhLqY5n14q5lEqRnfzrTafOkXckMWuIHpTcXXaXpP+Hgexl39PeQOozqDRD0Br/iF7KOZYzNqB5nRA+580Mk73ahndbOW1Uyn13fWSTcHqova6ubZErPdgN8GX+5MCY1mKpuddy5lq1CyWX/TN/g6IC/7Grh3Fhb1O/XdtIR3A88CBZPZqoW9GRReRtV3mHd2/A9JCE4nQGWDaNex5GRgXgcoWYs/hndGTv2i4kLqwOz2G36Q+ULjF+5v5g4sPtj2oq2Dbb9pZYgjN6ib4kZbUI75JGXdvCbYONlS3mx1Rv99P2qpyMDdz7qAXQszY7rY6x/4ePNjTyz9sPnq75vV0zPpoGtm2zxaEVFEdnPmnv0yYlqHu9dCJ5y8lSEFLMx+J9MZ4zdiC/lFMQnejASPNicN9cAG9266hxfUYOjqnxV9jVwJnMyetAOeDVYyTdh0imDHjczI2tjojCFqY4r/nbDgqf/Z9eCnBz89+OnBTw9+evDTg58e/PTUU39l/fnhHvZJpZGqBp5Hrk0NxOqx5SxQb3xowNrwzdgOx8q4A6TRLET2JKKWIA/2blagSk1barNjY/SI98pk5wINjIT1vzLmOLLxebJwgmVByXm5Me0HX/zivf+/MH+RAam/U/FB7ovY/94BDboOaBOJ4daTrO4Sv+ZuUPv+xcVHT7ma6u8sNXNnLclPOnsD9eaHBisL143R07WSZNUbzUl4g4SRN5cZyrYKyHsqmvyLzC+kDyonURMLI203DFGzoS29v0gPVrwpcyo+uOqTrbsP72pG3lxcDIyPvtaVJDdZSZlYdCaKe3XGSKmBr4R5T7KrqAaw/KMPLZso67DI9L9TpAdKbxWAdjO+1SGvxUD2A9OLHk3/SexN6TDvtYm1+oCwq1nbzJMxkQQLJ/jEWekNKrXa+qDPP9ausv98B94W5nBnB1d7U1AELW13JsoPMluDMO0HaLUVQQPjE8UHMzolKLgZuhh6kTtRbGwa+E3ntxx2PS+Mi6gblf74HJVH7N6jGVvlIB0wtFFOitc5mJLM3UG51ioIL/V6y8M0K8B+7xBgCuNF1qTixv197BQtdU8VuzbiOgoAoA4jj7cqgQbjUjXj6UBeVF09wYw+PKsCMxrcWlErTkZP03crB2VXX+t6I96YLdCkog9ny8QChonfPf/4vajtC4TADLfB3vDewWu0imBr8z1VrSd3OZXOdGOwOrA3dVQmhocReGeaKHAvvLIDiHmx7jdmwedwhjnv+92BzXWyssz6Wnl1bkhZh55H4NV5Ru4BZuwq3Cad1TLJvdl5c2lgcuI7XDj6Z5QGpbZpybppfN+/sPHC5+h1UJusQKOQFYajbMKacpYgzZDDjgDUocphva/QLLiqn2NX86ngDFXbtoDr+uS2ZmgtE0X/uSrxek32e9IKhLuZXF7k+Afowve/QG6w79D93teULXzp6XrCRqtwyoTS8XGR1SqWq3vdDiwHODksPwIYEw3na707qywhX21dzICN0Gt0c1etrKgDBJOC4VgAX7uBr4uVyTs63L5c3PuNGazYmEaz1rVPM/P6Y9qlSZh+tPqlCp89MdRMzUJTXAOoGx/Grmak44/MLe99P4+8hjjnaLP4fqZtrj9UO0HtRbDIUUR2Izd8tBXnj8ynp/4z1IOfHvz04KcHPz346cFPD3568NNTT/2V9adf/EmTsCLUAZmzDC9RvjpHY7zaH/+dDRCbqeaK+pAczdqpMNs4J6fGxS5rubs1Y7rzRroOeDNkPfWpKDSSsJvOuDDkLxInczKsNxXWD9CN6Qa1bz/sszfmM73oHouYzSo1z9fa8ajz+RF7BZKYEsEF3oHIVjDM8A0ajlsSnkQWs5wF1LA+SKoYBldN5D2hrfMienuyeje7kJOqC9dspnh/AZDD2TNbxr4T9w9iNCNR2oSi7Qp1FM65eDGY9dngxzZXddpLHbsHZXhdZDpJZxsUgpqtEjBvJutefQDZ1RLyVDNM+olpMecHlc3yfA2hulC0PWNYUBq8+WLXC9P8AwzvfcKmXYQ64JcqjEATdnyB0Qx0XFS9UIhLIlYwhvV9Be4aLA1kuyfZcXExyQ1f/pOpzhTRt8wfkWEsFenGDxkzikVg2mctqMGhqtmfo8LAFlZwBX8Axs2rDwp+cpnj3sxqW3eA3XkxwxJXUuscng6mYikOQxZkbPAO080EzBm07DzLkYOqSC2CQGZ4dM5Fqe1LaWoGPpvhS4qo3ZYJRNaGYwGIMyGvFIw6vaKJt4LQZlvL+gedpUJt0hypJ911M9AKlqwOM6caiO+Ty1E5mDV55QCaBYRWdojPBlxKcLGzgWkJVAuDtqMY7Lqx0+jk7ibRxiAkYPazHT0NsOpGY7DVP085IONk87RGY1wXXsmKQR2DjOsD5Q/cAs3+nrVv5B8M/6CzRlaD6N0scimZdbetq5zLxaiCOfiVm02wEJfNAyyNSmOOTwjv6ZxEs7nupE12Dcpvyn4xSLRfXJ92GmR1LyDHB5Q2GcJ09R6rtkUMC9b+nemLoYQwrt2WH8kPO5qYVa/LChxH9tF757WJEmEXpd6nqQX+vSd2/pC/eiBBRjclKMjLqdgME24vdjnzm0m3tuwNNl6rLXnQ7L4LrIOcKzZmYNvY75/Yh1h1jqx0/p2bim/RziLXL1zFqz752pDq4P7IIsypeGN1cw3QNt4bGBMqsdxYBPvXV9v54DTskHJ+vm9er4vr5VTepwkXqJ+PSMfHZNdPStWsdySz+jHZtP1So0OwK+DSJysmskmwuuHkJ1jbDDPjhGKPznzLN+6Dd4kY/SLhUy/WttMcJz4mFeCa2GkSn/rPUQ9+evDTg58e/PTgpwc/PfjpwU9PPfVX1p9+8be5KVezerMgW5Ytm71xlmN6se8bN+MqGAWoWNUxBj3JrsNYMy4i2+Sy7Y154nlBBtNavn/fX20Z+XEDjmvyWW0d8Zod9lv/xkpn21eDkfjk769flG1+lnHLyf3mc/9E9iL9gzMLChLSndSLoU+kX4g3fkEB99di6l//yaJTlBZhi2EdNqv2VDS70IgA1EzkOFkgDUzeoMLryI1tdkB0dZ6H1IGzqsLokG3VxPPv5HbkIusN+YWZnZyMjwPW5snS+G+AHfvDN1O0uDx4vzfmPxjjYu8gynrj/Z4YV9a2H3oqVXpwjQ8yq3MghhgC7Wh7jg12FdCSbJ0QXzX6ISiykle8Tk7FxCvx3cwxDY3balAB5ZDChw6IHqCrLQNl3Lkod1wvIhaWnGBXYAQbsbkwBq7R06P2Bjs2ADtRGhjaMAZgCSsZXHzihF3NInG3F4S2RAyuDr61TWf2GFHe61qJrBua6McC1BOi0OzupEQw2Amv66NVGA7vdeP+2VYjC+SHoSVAC1kRuSkz8BfNRxqqF6ZgXs5exa6F/OTx4C3lxzG+1SDH3hGjGdcTZtwZLQEalMQiEB2gnBRE58wU17ExbdpR9f9j74+WLUmSNU3oU1Uz97V2RGRlVZ1z6GYEGOEpeAMQ4Wm4413gBUB4GASZuYEZhh7o5vSpOpWZEXuv5W5mqsqFeuRwmcI0ZCGyTKSkpLIyI/dey938N//1//5WIrV81rreLkh7XNdv02K+XNkKQq9Ih1DtkOEVldJG+CqBLHVsKHG3Ueo9kZaY1n+Qj5qQ4IpU1e3GWnc8N6TdSNlLbqfjK5kSaAuWXMweEmfSxoY0pVHuvlyw5n4BpZNEDEaesHXiXOim9dlmRemKr3LWVAfBzLp3k4S+YdKQcNoFCk4rNksxZyomgTomjqpj171QrvUdpdFar++p5hmILNi1iXI6KEprN6A4NZkgMjGrWImyI26Y3pGYGANrdrUh1ide8Y/r8CGNSGXrnXDY/VYOuSVTJysOZlI/VwhzBRpUnGglPurAFzIxO4pUpoGMhtmNFckZA7VgZLVk9lBQcE5CvaYqEnZ5A6/D1uGUwx0L3Z05JpJ8v+sRFX5+Wn3GDZgfrDjq3oiNbslcFQMK1/rviGq1U8NXYlZMoohB0ecrxNZ7Q9SZy9n0B9YcmDb2fWOyWOvEMEwBd7o1WF4Hyt4hGysU2HBORBvJ8f0qux4dFXuRMLrsjLVAhN46Y05Ugk12XDemCSuFqR0147MEyydQ0wcktae+1t/Feumnl3566aeXfnrpp5d+eumnl356rdf6PddvL/cwqzFqD5pCgZFr3Naack38s217wWHbhs9FRDXUIYGHAzUWHnlRQQS6BCqtWCVBNZKlExm0ZgVlxarmvTzwchYEREc5xPXMw9vJOTeSGzSl9Y7ajnKn+WCLpIWwXLg5nNZY+o2Qf6HHHYs7zK1AthT0WBhgkxTFtZOy4UE5LALhFUmA2gixC3Qd5byIdk5pSAgbBayOlIuL/Vbil3cW3xAaqm9XPGciErgXjBcdpBT4WKWEfKBkKh7wpp2kU9SZ/JXl4aMA0hLVBGY98BgVZxCFqMYmsxKTjTuZnbZKSBUg3BEv9/V7w1b+yuS4ohJAXnmHgHow9q3iQbk43VEJeku2pUg6qV4uDyXeJSkhryXEQmaJSOU6QFTERC9n2OfEQoofYjUHsfKJMtnaBle0YHE5uSJsanz3KT0KPNswthQy7EJ+F/8EFtiGRyDqCF7CLZMMp2kgdNL1mnS4nLbrgCaipJTgzEiG18Mw4hK3lyPtWQyZYrYUzwahpjUCMhQzKzGxRk1wNAULioMUzLlorUg0qnW9fX8glg1cn6cqF+fHkEjcFoGxslhBSL/usUljx3InogDXKXFxd2qCJPK7iPz+nRsZq77DyzHzdPJiUikFp6+fKUl7Ejh2TU0koK3jLpgpkte/KRcq9SdAcWbq5FwHoSZPRA7QvVhMChrrckA3kvmrC/qrk9ku5asgCpqJpmDZ63fN5H7bWB5MEus3kIqpWBa/RsjLISz4vklgKowL5CwJW2tsV0vnTEfsEim2owWKIcRrmmcFqUZIZ0UHGtoN9e/uo6C9YnCtGdpbXZsEKxwxqxhTQC5hzUClokQWQcYgczKi4M4RebWGJp5PcjV260QIz8MxXah/MNcEM0Q7mQba+Dr/wtZ3MoU5ZvHIMtgwuhrTwXPR9sbpSct3zJ+s7HWei2Ia1VSRY6LoFUlqtjFjMdWRUGwVOLpdjCvGQjxJ6YQaT+CRifVkZlS8IzYkdlR2Uh/AqG06G5kNcaPj1wEJ1AzHy5lPoenOjK+EfLB8kPkJ4QvL9eLyOGM+iZzY1ojRSliL1IuEZqTAjPHr3tasJm2QSdggU5DsxfpKqWvAYPgJpswAwujbn5njAJk1kXBFIuuIZmhagd61DmFet+Vr/Z2sl3566aeXfnrpp5d+eumnl3566afXeq3fc/32qC8nRFwj2RvCDWh4/kLrRi4IT3p/Yy3n6UFcm3g9eBKJgpz694eiJRpKjh204Tp/feBlUOBPbcToYI0lBZ6d4hwyUN6ufH5A3jEaTR7M/YF5p0WHFTzinUOe3KVcleQkmjNbw3crwOpqmFlxWfxRonmv6E2EkNxJFKRhzfBzkBcvQ9b1IGqKX6DpgqcKIdVilSmXU5hEeo0fK8BJcIm1CyLtUg8HpX5v3ec1Qt1JGiKTDCfEUatx+Ugn5n65pFZuC1xu4SSj/gyJauRKGkiNRddhgBISwKLq2LteEOpI0MRawqp2QJ+juCUokg2zy5lMv/ZLQWjkXEg4JsYmxV9omoT4ryLItCHSsVRWXHX1mniNNoAmbVVLIArTK6rwHahr7NW+R/Idg5zq9Es8ln66JiVysvRJZJT26UnqSfhJ5MDZSHkD7UR+oDKrSj6DRkVUaqqgeCbVUjau3weqic1IGeR3vShBSh0O8nLB1hzse/3c7RIfIGgocrUdJop7/fUU6gCj9b9BGOOKWPQrNoBWY5Uc1zh9rygRXOygoElFQwSpv2YNkbOczig33KgDgmsdHjVL+KT4da1+78Lza8T+u2vtJdhj1tQGUc5hBGg1S0oIEXIJJjhD2PpbXXuRFV2L72Bvue4dyKuRMXRcv75e13c9qDU7VTlnFYORWe60OWHXz0+ANgJhEbBVJEA06h4SIJxHQL/dMV/4CiwrVkXbOOOJmrKZERZIF5rCOSeC0ltHUHbbWQKZk0YiF7hd01HRcnZZrEgyzys2opwksZ4YjuZO+sIP52wXkypq+mCuRWsdj0lRtYQVxcSZCZ0qBcgodk9SeydUwyVa11dExQnFgjO+0uTGeXa67Xgk5MJ6x6MmkEyve5LFFm9YVotmazu6N8452LgzVnFtUDjmWS8v9IbHBT7XROKgAaF7vXyQhkY52I26ds+YtKxDSquAFZrOYQWRFqqxTrIOEZvdEOrFSJOkax0a57rVlI5efCEWquOajqjr/TreQg5EpOKXU9HY2dobKXWfairFkEmsFezdcVAjpBhg3ydDJlfj3gW6XulV4iBJRnHffj2SSEH8h2dN2pCkF8dtxoF0gRlIDKyo+rQEmTCk1/PFqiWvjomv9feyXvrppZ9e+umln1766aWfXvrppZ9e67V+z/Xbyz3iRuRAdQETaau2y/UFSSPzpDcneaBtYtzYtJq6RgwujnOxP0xYXqP9xa25jCWVelynEFoQ0qDe4pdtKjS73F4rWGp5jwWIzss5M31DE4RJtEXGKPaD3kH2cnJyYqvap8wDywW2WDIJDYhWTWEmuBQnhYQWTnNnmZJW7p66IKlECrd+PRSpB4Ip1Yp3Wfr1OZQ7a1nAX724C6UwJthHScm5kyzkEnkRC22GxKdyR4OCU1s1Lc1rU06qnSkyASO7kL6KWyJyjTDfIDciobFQXQQHMGnSaNnoM2g00trFTJjF2EktEfJdtFzCKiSLY4Nel9ZGbAv1AC0XdrIIHXRdIEqkktEpBvGA2K7Yz0LyicpEJHFrTNlRpGC+6eVuKwhPWlazWUhxlFKE0+thX8Dn+swdEFcs6mdMqVYriYmLMUlQR+xqAMtWnlDmxUC6YkQmRB6X87pB3kos6SwwdbSKJHyfYpByzvftj6w5EF1olNNfHtyj3K7rEFEPsRL41gzNxNfl3qVBMzwXZDFTNMBkK/f+ivDUs81Jva47FMus++b6LFyvBr4Lgiu/xrgcb1yCrw4TTaqJLqP4UvzqIBuIkRmI/HfNYx7X9Sh1jJHv1vD3e8BAY8MvKL1ejv2+N6Y/0CzxuZUvjGUxWKohsZGplwivaQK7YNYWhnHDxTBxujzrMd4qFhZZDZux27X/FGtHU2itM7MRmqgaGvUbhjjNjKQDwVqJhxEj6XYjRBjxZM6TZsmIJ6Z3/Jwc1EFVEWJ5TfW44nmWU01goVhsxFzQB9NOZp4EnbbfiOcTlYoB1SH2IutkAbnFow4D21acJI+65KRa9OqFgROahCx6BhuNFGVFEKn0/pkmjTmSFEWac84D9b32Dck6mFjgvui506zXn7kGPhIFZnyjmRHRyLDrUAqyFqj+dyIxqfstAi7mzXeI9UmC6XXorECSaAC1D02DHh3zDfUbLUrWfltPZDOyOWN+YLHoTVBZNA2a1bXqoUwfqNU8y3JFW6/GRjpmjscHGY1cd1Q+17OBQcu4plKESJjXlE2jGkkluPapJCzRNMILIr7mZN+LlRQahBwVmcQgbxCfcE+2ZgiTrhNy4WuwbRUZM2BqcMqq+zoDN5A0JA1DUft+wHitv4f10k8v/fTSTy/99NJPL/300k8v/fRar/V7rt/84k/lHbKacmZCRGN50sQJDzKF1u+c55NunS4NyxpTD1HYGhHBOke5cvIZtTfSEvdnuapr1th1KqodNWHNRbOBS+Lu7ChNpARVPGj+ByQbIz8K3suOeRKhBVZVLQZEBOiB24mI0mRxi8mbd2ZM3JTIzowbvVu5dGuh6zPBQNp7iQwXmjdmKyFhlnQ6InqN+gs+DxBHrdPaxkynX85vCqgqjZ10Lkdp0FuHy0Ga540U6CLkahSzYmHqNE0O/yjXRbUajbLiHtKAbKwJagsyC6Cbb1gT1nwQebLfb/g6GPEV8cCkl6DIRHWv7wsFlXo4R7lblRBYpEfFHCSuOIYwvaJLKiVltaqk6mARq6rlRTA6SpFgAIJW0QcRNBKx84JoFyXEqOhQllVKeLLJRheQSGasYhyhbNLwrIflQpH2hFi412GIS7xt5hDJ8rjiFZOugz1v9AwiB4STy9ErFiTuGBszYTBRC1J3umzlRrcJUY+VyIbEoiRzidOyj6KmJdZk6waXsyv1y5XSzEQuRk3Eqha4i/2hqjTba5L+grYX82kVl8dagZtto2SykxYUSLruDQlHfCHWGJGMFO40pF0CTuY1MTBBy/V06toTqZ67EhJc0w4ABXwW6uGMNFpT3Bdq14g+FWnIKK/7u6Pdm9O0VaRL6nec8+De/kT4ATEwk9oPwljyfdJDLqFc//bUTmbQdEEMVIO4/j6PElrFRArMSkCPjwHZ6sAYEyFpFxz69GoPy+/RIgMZH0jxjBHvdL0Xz0l+LgbLdy88EvTGzglr4nZN74jAqkPeXCcTsA5NG0TDw/C9E0wyB4LVoXgcJUIuN3TNs5rbfJHXwV0FFK8/x4WMSVNF6BTbyIkVeK8Ylq8gsvhPxd+qyNuISWuN6QNsoP3EmEgKsWCwk2KsaKhUW2eNgixMK2oiCH4NlNSrh4BcNEb9++R2lQ78gWQDd7Zr6sOvaZPIQbe671IUlyyzPReSg7fxdt1Tk7DJbIKTfBJjxWANZzOht401i8cFzvTBXBWHsgYzC5g9Q/Dh3PobBoQ/aV1xccQmHpOUTm87ugYxF6mJ9Y41xa+9Vqg9vbVGJjQ1mu+4gJlwRmKyM4cgTTBOQk6QRcpJKDRLch10qwIIn87W7+SUwuZ0xXUyrgO0mV7uNsSs6ZHNqH30tf4u1ks/vfTTSz+99NNLP73000s/vfTTa73W77l+84s/51abJovWhfAJMrlJ4nFnsHM4hBkZEzMt1K0WjDW9nBb6VqPk/iDXgaJkDhpCz43UxCUJgnBHccy34lD0N5btSA40Bqs3Qk+aGXYKb7KjkTwbnDlp0pHZ2OeGxANFK/kggFi1ODUjx+QmnRkUCyOkALDWsDxro/Li09CEmYMujbvDNr2clk2ZWbhRV8ckQZTpBwiovtXYt04sDqQ1nlnOndEumPMiRZCuEAU0RuA7vFaywzJuGngGxZdu5TyPQO6LWIPWjSblrEUOGsaYiehGZmeNQHPQrUNqTQiQLLiaswKVhZtdoNikmuoaRUM50KSAvGYgjqSxXbGCJ04YxHxgLlWfnl4HjZq3R+JzwZ71SchHte09KyajGrASiU6zHc9RDzMR4npInAquNZJuvSETlk9Mk4aQSzAPmg6g6u1pkxHXeL5NlEnjBrozs8bNRauhC7fi4OgJ+aSpMXXhosVgIdlsJ5YwJWjqWAw8lOx3tMklhqQmOiRZOeg52czQlZgkmVGTEJvgC2iN1Mn0o1gkbhgd07jk4iC2RWZHtTPDC/RsxtMdMWXTJGXV9YTQZCfDUFlkW0TLK6LR2CQx30icrSmB4mKIKW9AyE5a0vqJxMLcGH3Dc3FrVNuXQTLqkEPHBXZRTBqnT0JhC69L2ZTpjm0bYy5SdlydmSetdTQ7mndWOCmzoOLjatzLB3NrsE66vyM+0a0xRBnX1MjIxBIyn0DW9a03jkhSGxqLuynEIrVc0pUK2kAHj/mN9M/0ZnVP6Q505jPYbWONcd1TjvNAROkibFOqIa0pXuYuLarpkibYmuh0pN3wi0PSUXJJXcMyEFt8pNDshrDVpAonzoFktdYdmVgHk0lbwVM/1VQPFSUzWVhuTOm4OyIDrjjTDMcWQJK2GJoVt4qaDhKt6Z6W36cHFLJhuYEMlGBPGGOSm6LeIOK6bwyRVhG/TKZIHfxy4VrXvjSY44HtCw+BdSC5Q/h1bwU0Yc1Bi4qWMcC3zqRzrDoYmQhbOiMdl7wO0kqq8DVXhSgz+BqOW7WldpRjfKXdtfb+Z8Nkp6VyngfbfufLlxubBjlObr2xZidiMfUb2RuaG+N8Z6PEavhirYEqzDXw7Ue6L6Qp77JYKXQ3WE/6tjHWYm+KrgOzVZM5KWQ28mIG1cRH0LWh2S4WmjKYxd7Z614lYPs+TaMdnxNVJdVRJrhh2f9T6YTX+u+5XvrppZ9e+umln1766aWfXvrppZ9e67V+z/XbJ/42xz3qgZff4yGCi4NNxB0EmpSztTHxXEyKN1Fj1kKyM72q0E0bEcWh8UuYfB/RzwzEDDPIWdGB72O5FAWZnheU1QPtnVMhVXB50Fp5NbKUtJ2lQV8NU0EbTI4SCAbLBNWCfZo7sRaqwr71AtA2LZA0l4hj0bKRCktqdBodGInIDdOtGCFhJFHuZtRotlxNVhnVqifU+DXJ5VaWs6vCVdeu5PUZlqtshBSTuK9y3pY1vAU2q/Ero9wLaxuZ5fwCyMVPKX8xaVG8B4V6AGjU7xe1mYoWNNY9IBQVRbkXcFxWufLUPz9FebTiEN3CaAuGGC3XxdWoiMAYzt43ZnNyDW4oRsfTmfY9DlI/j7Z2xTWErhsaBQyP7EjciVxMTlbsmCQicUVbCvCrskMsoFezky9MLvZDJkkUrFkElWKFcFHPM1t9l3HD5UmUKqFno0cvPgWJylG4lPCK+LSdGXt9ncz6bvUTmYa1Ser3QEo1zkU6GUmXG9IXok+QRbWqvaE4uzVWTMKd1htkxaHEFmYNMb0iIxM0aBf8mNVQ3QrOC7xZw90Qu0DUvRzgFlu5pFIwcxI8TtTqmo4INIGoKNjd4JhxXd+NuRzSkSinX9TI7Aj9Aj0vHjzr+hdhxULdGGuy2RuejsesQ1I8r+uxk3KWE6sb7mdBgP0NlqOmNDbm82IZZQmGkdXW1fqOpjF9cpFCCgycncMN6OVsE2ySBM6MJFUZerDQCzK8QA68O7SKKklApuIES8Bxemts2SCT9O/Nms5YgUdNaqBKRDBjsARMrfadhBWBRNIbiEfdw1puvAlMPqPSgWohhFHxIRPmXHWoacExTnoXuigrF9kK5r4YkFmtcJ6YWAGXfdHN6uCWhvGFDMfioLmSy5jxC+zFDnqPYLngIeh14BEJ5jzQ+vW5ZaOtxTBHutIcnhJ4nvQEf3/Q+p3pBymPirdFMqP215roUWQG5h32g5OvRHZau1dTqf5SJC3PX7lRqUG7b/zy7Rt7rwgkPGl0dE62Tfl4nLTtB/wRfGnBihPbDNuA5oQFyWRKsdgygq2B5oC12HRULAuKWyR1KN1tY8txCfmKsXSSLQbLal+NFhW/9GJLUTsRqsU1ygWqjRTnxFnUy4+I6+VPKwe7IlqKURMu5MRa4lHPXNViIn2Hbr/W779e+umln1766aWfXvrppZ9e+umln17rtX7P9Ztf/H1ahkeN9IpuTIPQZM4PtpbVLKcgSI3hXpXprnq5sVmD+83wKLBxb8bzOAkmprB5Fsc2koxAKbG0TKmn6SSpVqnWN9bo7HbDcZZPQpO8IiLqSs8N0GskOwq2SpDhl2hQgoarsKzGrMMLHmuizHNUPINCfaYEaYlmIOEEggt4LHbp7KoMn0Xt0A7a8KhRZEuq8au2vGoaQ6EVV6NCFHqJGiu+9OVFBbUxk6ucezXchEO/HwiSLUGjoSHVRlZeKRU5WahcolRqJD/CgYqoZFBOK1VxX85oIpUJwMQuYRQgo6IC0hG50dNoqSRfcZESeCQxnU2Vrp1jztpszcqJio7qWe1kopdr6zQtJ0a1DgUeXEyeYMQBVjyYyAXyC9BJdloKay32ZgW+9oUJEA0oELJoAa81F2K3ajvTa8xeoEljrBuiQsgir4YozK8DRRbfBcrxAoITlRKsWKvPNQONheqd5I8kB9ofTF+ovjHXLMizJMFEDbQbOZymVi6WCe1qTtv7RvqkW2L7xlyOYtybESYgDU0tEb2dkE6nMWZya9v1kKsDZsVXrBxqr3tBWJyRiNXnEJH1AJXkjCdd82qGW/hyMg+sDY41oe9E1pSHZbUvojd8Th7+oKmRCtMDaLUnqEBWy2IBob9egOQNstf3gdQBz2FREOIgyWz09DoQJyX+xOjS6PrGmc7SRVoweNLSad1RrXiVTENyQ/I7qLgg42oVe4HEWudtNiSMbh0RIeIArRhARYradYAMQp3WBM1ZrY2yFTgp1zXpISiNytHV/dtF6BdE2KOEt0ugkmy66ppNKVe9cNXs7c6xymX3NJY7e0t0neQqJHuSDD84fLLnxhgDb8pCIBs6jZs543zURIVM1jrxZmgKfkyiJQ/ZGeyEJZHvfFlP5uY8lxf/S24cYxaPaz5prXowbdQLh6ffUQliG6x5wFis1tjNcek85w2Jeg40eWfHkLmx68WiyTL63YNpP+HhrAS4ESNr+qkbLk7mZNN+uecb8u3JPQwL5fSTroauydwqnrPLznbCyGTyJGXxw9sfKhIWwTHrELIyUBaixWwSrzictcmg+F+aAtSzShIsnAEsNRClSWA4MzbmAjCUhoVVYyhxHfRKZHcDkWRlCduk3HgVwaRdh7vigCklmFMWkGx05vUcqakbrpcsr/X3sF766aWfXvrppZ9e+umln1766aWfXuu1fs/1m1/8/dQWklLgTY3iPmTSbKvNejkSBTVNUSblxphKVdnHKhcILmcxGbM2adXGnCcFKKWcWdN6cDnkJpgEZLXiiZWD7Pd/xbdPSDTaknJYUovznMX50CbVBGQnctsIpRrcgmJ8sF3g59p89m1DAric0knSkV85KkgxAHJNsA2xDfGNQJkrEYti9lwun1hHxIvdkSUeullVqtslYDOvP/87jNXxFKaUkGwCmo7lQjNgXdJSHC44r0cSrZM+MRFMterpETL2gsqy6oHKAAmGndX85wX/lWgYWjwKqiEpyatZsDZZo8AkCeWIZDkvLZ1PbpwEQ4Ow4Atw+le0gVuJaJNGzoNt7aRtDGDEya5Gd0DqMJD4ry1hKgEYIhtaEBwyazS+9MaDt9uNMYoP0nUvMdeKYdPaxooFMjGKEZJUWyA5qSNEL3CtgmiSIaCGRrLlRHGk5/Vz1aFFpNqzfJXocy23/KYL9Z/waERWNb2w0fjEtj1BFNVkrigAMhvsQnrHU8BPxB607YCzY1oiaawHKgV89+GkXgJnBjBJm6wIhtekQe+zrvUMRiyGQRel+UJWItS1kLazOBEVTDZIwwQeK9nsgh8nxX0iCuSdUfdtgJmBcAneauszsSveZChBWkOimuFUvoO/lUGHlPprTNIWTlwPd72OSwdNq30yZActiLFHFItDwF1ZYVdMRLAMyt81hlhFPfJg3+zSkLOa7KgHfN2D9Xta+nVNSJ3V1kTUUSsB7llO8vc7QceixUAo+tIIQ2QRErjXoTnESaqhLgUOiYt3JVhSPC+Cn/C6J9WImEReB03/P7Oyke2O2EaMwSODlT9BGn1rzHlcYqaxhyECqwXDF0131BtnGqKN8GT5QDUZUXMxouM6OJwFO89i3Uwx3p8P2rYhDumDT61zroO8WFMZzoxFb40RP+OfDA1HRyL9C1vuzJkMkjuKHJMw4UN2YlMiznLUv0P8nbpf28laHeFHJG8sn4gOLD8I3/DRrvjYAPugawNRjhUcKOydbBVnyzlxaZxMojlhgy+3jSYPno/gh/5nbn3HI2imFZv8mIiuiyMEY55kq30xtF4zqNS1MNwYUs8fU0UqKYWdNTWk1mgxMS3HG+8g/ZoAclTAfdK+T5QgdQj6vuNK7V2idUDI7763CnHOa6IokbjidtcV+lq//3rpp5d+eumnl3566aeXfnrpp5d+eq3X+j3Xb37x94d1Q6jN1UU4rFzoDAEXGjtGMqgHz1LFpCrMeykFwoIQq2apTEwbksmKQW+Jy0Eg9WMlpEpN+qfVA1EAjSsekkh+YY1OC2XXhl1gYQ+rMWYRVmSxVBakXg1e1M9M1MNbEtIF1ao8X7EQEcRaxR48v3sNNUIe0Fsrx9sVAsIUZNXPJVHtfVIfb3iJQTUl3UmR4rRIICQi19OXcvqFawOn+DGKImmQyUKZt43uQfdyoUdTTk22FZiWkCQvJhBKRpb4ueIZhF2ufvwaH5Br/DqzxqlNBM0LPq1R0Q4BkUbLGu0PFqGLKYms+hw65UCLGB5g+gfCqPF8D3bb2VoDL2cGKWEqCKTQtl4AWinXNtxpAl23+gz0cbnJGwCpJynlMPVtLzHvirZG5oltjaAhkTTbK9DhC6Gjl0NGVPueIfU7SQljUjApmLZKtbst6vvZ8tLs0ekoLg3Xcq98Vmtb5CCz41MputNPrJk1s9CEOY5qpluT0E64IzSQicdRfJH4VAcOu7g12ZDs9flLILIjLuVsdZiZ1VbHRNZxfadKRLVkqa2KF8l1APjuEKpUpMFPYkHfin2hotd1UuPxaMGCc9XUhkVCKI6hGnQZdchUK4j9pMTOrUSRZNbhI/I6pJSIJwscrdou8R3X92WQo0DMAYu3ui+0GvbChVQh82uBrinWj2GAobnYEdBOxA3OJOZA0hl94ViJf2pqAh7XRISCXtMcK0oMA6GQ1O+RmSwFWRudgcpi5sYZG2aUy+2gESwZhCw2DAurwzzGUiHlwrVH0vIGLKwv1lpECELj1kpsupeYkfWGZWfIP7NvnTkC0Ua6o9ZYudcBdI46SDQrDoo4qcH0BDNEkiMG993I1Ym5YSbF5ppKrjuz1zSFLPBZB5XhAfnEffzKH8sMxlr0tvF4VBPpnc44npiMqwFwv9xn0Jgc51e2rUMUCHzFqgOyUPtr+wNr1tSByFci37H25HzfmLwTCCOr2TNF0fiGhJFipDX++refmc+anghLPvykbTuSyT/+4RP3f7xxZBQfSWpKIMaAWzX7qSii2wXoN7R9Ab8R1KRBCijUi4qWpAQIyFosD4YJzXfUCj6/3FHprF+nX6L2Qa19GKlWTpteB7K8muUyqz1T5HqBw7V3GeHKEigYfjWhSiS8Sun+btZLP73000s/vfTTSz+99NNLP73002u91u+5fvOLv8OEjIp5qChIcVf2vmNTkClcNUTYVgDntZwWQhdBbHFKsFLYeo2txzyx1pGchE963klRPO1qVqqRdbZyCokgmyJNQMDmVzbu7P2NdTxpfUek4LXaCoztCfv+hswGPkoYqnHGSfoksrrPNvuCkZznQWuNtnW+PQ/sfiPdIUrcIUkuJ81QDFVD1EEnZxy09vlyiYMVE2Wj6Z1cAVnj6gUk9YojYNdDu8QmGWAVi7BYIDspWs6GbmQoeiougl8ClVC6J0uqDYlVEwVi/XI9fkFbuyrrS1SpbGxnR1LRLrg5UwfTnaCViyrlfJSYBnSxxJEowCtojWWr0kN5qGAB+yzOxEdMmjU8FilK3xSJYM2DbHu1s7G4aTn5q1WDnSj01okEa42Wi+VOUWFuSB9YO8lQ1jCabjTrHL5KNPearBBv6KaM1QtyHLM+rjzqQCIKDDJWAYr9Ex5BWjVEebxjEsQqZ9jFmTEwr5ZBAdQ2dG485mS1LMjvXEQ7cP8DCMz8G80WwsWaCWhNiTXY9IZ4I6UX50MTUyccuv5AyM6MEwiWK5bKpjeCBzNOWq8xdghclbWcrgfhHzRTfCnwRpMdi0nGgTXBJRFruJcIX3MSVsJRTYm44jq50KiHbAjMOJG2Xa500FNqcME60YwjnkhMUgdDE3od8uy6dzQTw67omjJGjdu7H2Qu9tsb6TDkxFNJF0QHaw5MN2CxxqJXtoDhkzSlL8MWqFVc6CNOVqvD8TyBfgfp5DqR+cGn3TieTujOzIYptFzIfCKykerlSqZCbmj2Co20JLUmRzLAUcRunL6QnKQqcbmzWCIElpOwk9DEV02pTBE0hJYN+X/jFq08SA6SqKY77ajcGOuD7FJNY/mByUZ6Z+sd9ygAuiuqxhyBdsXXicmByST8SSTgSotbNczNpDUj18n5MFKV5/wJtY2UBnlCfmU7lMVZn20IrsrXdfBZqjlUFM65irWiBu9/YZPGaBtfs3OjsSQZ2rmZ49/+yqdNsW6cKxgXe0uzDjRdFZdgjkHf3qEdrJU0uWHSEP+E2EeB+dk4B8BgMfgaJ1+2H2BCruT924N1PGuyJxeSwZCDxwx++PJPHNxhTv70hzeCQJhoL6aRSE00bP0GWnETNcM4MeNib0m1F64g845dB/FG4ChTOm3XC8C+GPNE+73+fNOa5MqFpxJx7bsEIo4rpCqZixp/goag6QWgZ2OGstLwFrhfkbrL5U5/MWr+XtZLP73000s/vfTTSz+99NNLP73002u91u+5JPO35dj/9/+H/126ONZhegF9JaHnzuIoJ0/u9LxhPsh8EhasjNoEwxDXa3j2RK2a1QIjBZYv0ALaxgVbNan4h/fJLRobDWehLau57HI1VZQFdeOnoXwhNXAGXrkGnscvaE42bpjAyoO2/ZH985+YeWCm1ZInCxGYMwo4a42YirITUhtQqHOLZGaNwmsIvSsoOA+aG12svPtWkOom5ejP+azohmYJ61h0a6hffJqrel1EaCvoUU5QXueCTFi3jbVApJfjrEnmd6dVUe3ETG69E7Nq1FNOxE7AYXVavrFw+t7wtfB5sPXGeQqt34gobtAZB61nNZJlVirCslAdrqhvdL3h+SCklQMYerXbQXE5FirOklVCSTdCCrodsXCfmBmZwqdNgRMxI8bGPBXZFVrio76bczy46rRQhB6dZBB5girzap5rcYOZxMUuCQ00G+E7Lt/w+WTvf2COxGySnIQn0AHDV42Da+tEKLGUpp21Bve3xnh+Y7OogwhXu1R2Mo1lC+uPy3W8XbGfJ1u74yto1srdyopxlQvoSG/lakXQRVEx3K/PqDWkdZ5jVPRAhMgB0YjV6a0g0/TBGr+wacf4AV8dM2P5RO/JiA82U3QJMuHYopqtVqJcgrop7zpRfUO9IX6y9WCN74GzhVuylhBTudmNxUnqA3KQfmfxmUWimxNj0iLQGbRLBKQZp3wFSZoqawxkQZPOIOp+o5xjkcTnQjZHhvPZdsQnIcFSY0XSSstCGmk3zgxgp/OGcEJMTNrlHhYPK2/GOQeNiteoKC0g5UB0ssKJ3Eg2RJIpTrZEI0sIKRB3yGq4s1aMpjmCsIbE4i7BzCfRFUtjzUF2w/2GZGeOk25K08bTJ7ErsZI9AA6kD/RUTvvECqHnB3dzIoThAvaJmZ2RTsYHuyV+xfa61bTGOge37UaqcDA44523TbAlaO51+Il3hhRMOVQQNzZ9Y3soduu8W8ND6OG0lvhxYOJXRkl5hjF1o0+4hdPkJCw5aTyeQWwLlUkb0OXGGtBNeMxvDDNm3JgkWzfW6extZ4x/Zb913j9+5rZ3NJ3j8YH1zqZvnHOH9oVcg88WuDc+5KS/GXE82VnYtti2TvqNmZ/5WMG2w//0f/SP/NM//BkwbtuNz58+F3vKBEPYSeZx0G4buu84grhg14QBOJpcghsezZCALUGoOKTqDjqYHr/u7+lOkcd6mc4yac3q2RU7cy1oURNQEdeU1fVszJrwiAjc64WJ6WJLxWkspLDWqRCN/8X//H/2yqv8HayXfnrpp5d+eumnl3566aeXfnrpp9d6rd9z/eaJv23bONfJFaAgVxabwm+YtisGIrg/kXTMCuCrKrX5B9y3G7KccXqN20pBcEVAyKucrV5EpiaTJEzYM9Gs0V3UERKNhcuPIBdgOakReoxgr0iDfhQ8mBvr3Mr9xnBJQozlyVsKogpr0GcwtsajKWkNXRDzo2IcF1dagC4XOyCKRfCdnT3mYrOKlQRKWrkGhpLpOMm+bSyfNJT5fTR96sUwENAk/axIj+2ISQkvagRaM5lrVfNdVKTFosDfhztq1Zy10quZ7hqtD/RqwrNiHWgSPjjHwjCsNUKS7I71gxaLzILEJorJDYmgyWLkJLK+W01FI/CUi+NBxXRiEb7Y5DP5vUZeBRGpiEFqRSdko+uGT2fN4P088fwojktuuCvznGg7UZ8kDbwj3Iio9r+ZB6FVTa+aJV4Qhg/MFVFlOKxMTBL1OgiY7OSqKFAxNnq1vKWRUY1fKtUCZmpoA3LSenI+HzX5kL2+MwmCWbGSVNSV5RNEKpqBYe2NY4y63qTYMWR9ZiknaCNWw+SGyolwcixB7Y0IocsG58mXUEK0nNb8ROYEeyflK+ETWzu5ds4G8BWyo+MOOVlfF7Yb354nmdUM+fzlvJgoSW/C8iciC/edmEc1w8kJjPrduBcTKQcqG2B8+AfIpG/GXMryB7RnMXdUQBe+EkFpNhljcr/fmXMHoq4Ve0O1xGqIX9MViaRfn1MQU2kNDp+Y3EmU0AMxGLTisTRBOdClbLoT+cGygZvXQScdycFSJWcnpyDacAkOWYgpYzruytb3cv7igBjQFJ/AmjSBGZPUA6EzhlfQrlEHClVMjOfhtN6Zj2BvRpzFnMKejPylpmb0RugN8W88jmAs+PH2BY6JyiTlzplfEUkC+DmDowtzJsbP7C2Q6Jxr4ynKJ2+oKt/04FwHncDHL8Q5oW1EKu8k5zzwthh5XbeykVHw6xWTW/vGl9P4a1vkGfyhf+brfEe3RD5OVIXIiuotMVyM89j43DubD9Y8Ed2R6Mz+RORg54rGaUMlOeKJ3e+s9YQYzFzcuHHmzkOC6aD2D0RueMB2V7AFOfm0KcfjA06nS+fWnN6Ex+Nksw1pHTcn1x3NxrbB+/hGpvJ2+89INzIb0lpNJRF0q/t/STX+tW5YjCoYwJi5sbzg4631q6XPr+hhTVMJgCSeTovOJtQUEVLPRh94BNb0SstNPGYxyIptjSfFycqKG5ZQLadcELRZTRXhzLi6RiUB/fXneK2/j/XST7z000s/vfTTSz+99NNLP73002u91u+4fvOLv+f5N6RJCRRJ+makn2R+KkG4Bq0BGoQ7ZDFc0Gr1yqwHUZdGb3fSCohaMrQAwaU+HaPq2YMo1yWVSHANXLPY1UtIHZeQbsj3Bh4x3N4LgRGfsNxY/kDla7nQ/c+4JNNha4KJsLxAstYKQm0u7NrKmUEZLESy4h5LyRGw6QWzLX4FCmIlUIKKkaRUs1gTI1jlTEqrViErgLBqQ6yxonql9GLoVKQiCLOKcUjxEFoKLQs8qwa4I1Ew3U2FyEXEojcDFu5Bs0CyOu4ijcBxOVALLA3LakVaHCCTyEVHWe6IGmtVHCLD0VbfyaJAxyJAViOhU/DwUviOqnPRVCkaCsh3EHA7kbWuCJASaxErL4h2K8EiSdNqISOUjJ1MuVryAAkiroOOaMUERMiog03YLJgzkDIr6kRDE9wXasLKs/55Ju5cLBYpXowGnuUuNYHIRaajYgRJuw4VkeAhdTuJARCcNDXmKrdexJhjcUdxT3AvLkwAKxjspMD0Z5Wa+QJfdO9Imxz+zocu5lh0uaGS+Eya3sj8IHhCvBFu6PbO8E5akHmw0cj14Og1vr8fnTUHnid9M87R6lABPPwAW8WbaV84Vk0CiFLiud+wnNW89/2Wk8YKxwx8FXcmu9IsMa8WLYsd142Fsdbi0+2NmAe3fPJcA+2GWCPORUeYW3DMQbOOhuLDue031DuE85h/Q+xnxiE0/TOP3GhbomNgdiPaG7+cv9DaVzaKBSRzZ+bGQbXA+bbV9T6fRSjSO0uMYCKtnMHntwc9O5/6G0f8AgSRgbgQ3PH8xBIBG2ADleQxFhmGaqfrjfF8YiM4xjd6d1gnpkrkVlEbmdXQpjvr+ZkhFXn58J/oDIgHMZ8czTj8hs7P9BY85a9gC5v/gIzPiB488l+IvvNp1OHx3GCpIz65EbTRuG9fiAE7b5DBY/0N+9JZ8QbrnRZBV0NcmKL8c39nU2EBP8+FSPA+HtAapjuEYkvZtLFHsMvBPQciC7aF92T4k9BAYlQjYxRnarhz62/4s9EkSU10g8c42M34bMm+CWsl6xh41IF/6MGPnz9RHC/ndmvkOpjxCXeFhL5/Zua4GEiTcZ6ovNFtZ4wHKQeR16FNaoKKzHoREM4mC9Gsw4vtnF5MthZSh15V3CmelSlNH6TH1YKZlyhV/Exab5goa1UxgGpNZJlpHdBiXmUOtWe7A7oB7XoBVHLUQ+m91Y61vOKcWhM21U+aF/PrYpW91t/Feumnl3566aeXfnrpp5d+eumnl356rdf6PddvfvF323/knBNJQ1SJGfTe8Cvm4XNgahU/SQU6okGkoyZVTR9xjdN2IouJEJXWxzVBBfPLV76q2jOF0FZQbCtxoiKYNhRF00p8XT+noHjcMCtHPNe4YLg39l1BtnIy972A1Rn0TJYI5y70CL5MR82ZAsJ2gbMTn1RrlXVSSsAbAR6kGNIb0x2RiqKkFMC7SbFnzKyEpBqxkt42VkwEL6cuqfFmNpoC6bQs7sB3l6KjWBS0NL+DTY2LcJFk1v9XTjcV1eEBWZBbkStmEI6lVguZJ+kLteJDlIuzkVHuqlxAZoBMQaWjUt/N93akZNWfnVxcj4aKMcni5ojgzCu6BJqdrd1ZIy4X8zoE8Kh6d/QS8YGlsMLIKFi4EyWmRPEMmlYUJFyw7zGEvCYAVn0OJpASiCu3O8xZURmYzDWxBm9SgjakgRlnTEaWQNvVeI6DrXXCJ6oG54Ocg8hizCANDy9AcE/mx7P4IfLEw+h942/rydVpVddrFPPI58CalSiikdEgGuh/ZPjEtjfi+paf66di54xGl4XIAQQ+jbQ7az3KRZ0N843ehFwPbECTnYajIYQ1WInKiTLx6dz2nTFBtTOPr9jVxhYpCDt+Kpl7iSw/yTxJezDzg40b/oBTBqKfIXaIE6H4KGcoYTuIMH76YOvCtr/BMvLp9dmr4Aqf/iYFJDcQGTQfrMcHX9sHLp+I+AQqhA5UfoIQ2nlHPXmOvzJkcOjGHn8g5xeONhniiAy2GJgPHt9+4Z1gSPJJhVv+jRgH5+0zczSUGzEH6e+oPPHjz4SXGNg1Oddf4BYcq+6PNaO+M5KUB12dORyVNyTesGy0VjGcqYHPxERRnPSTfVuc9hN9wRadiA1vwhFBl/8x0/6Vuy3sPJjHjtz+DefzYOlXtP9Myz+w5Sfa/Ibe7zwPIwbcthtLg2/zxD7B1yyR9Na+kX7yjEbQaflg71H7QW6EGbIJK2EnMIUxTj5tO7QbrPcrJteZK/CtM3XxkRsPjL3fcIIzBkgScUd8L3hyxtVwd5AWHMdZnQR2YrKYDis3NDrTHGdyxJOxTgThz+Mf+OFPja/Pv/LzOHA+cbiR/WfeBNbzg/78j/zTH7+wL+fMn9hunziOJ8t3+vaG8Ucyk9AHpyy21mk0UCHbG988SD3ICZslG1EvWey4pk6UlVL7nRg+Hc2OmqEGkV7cqb5zxJOUxLaaJqrpn9sFm75OgAm+imFWTY8FlM+AVLkmMRbLD/J6DqnVSw5foKnwXbDK91cFr/X3sF766aWf4KWfXvrppZ/gpZ9e+umln17rtX6v9Ztf/CVP2mZ4LDADgxEnEU/EdrRpjeqLINsbKveqU4+DRlZldhS/QRRShJBGZvwaNZErCyJRYg0t59r1+/8PmVqNQypkO69UQtKuBriMRcsb6RNps8DLJ4i9MWPQNkFWIisKLLob6+FsAQdCUAJ6SnJ26K6EQwKmdo0Qx+UMQNMaI54ZBE5a0lTYUJyFW/18sQrGq2qkCGMNtq2ESmb9M52KIASBNEW8NjTJgthaCJsY0qpB74gFl0BVEWZUREhUy+2mYKqOIFJgUxPFcitQrUoJrmuEOhHUbngoK7UmETSulqOFmDApALMl1cwl4C1YEfUQFiXDyDQ8lJRqMasStO9OSrLWB61vF2hcCJzQhY+TxMjUaqfDcTWSRDhK8oWwHMy2Ar7GO6QTPmlX+xMizMeAUZ9N2GJFoKE8H4Z7XhMDwRgP1C4s7AoWjTDjzMWMCcu52c55Bnu/MecJFNgc2zn9LKGsjl3gYn0vgeZromakNB4fJ3NOtCvajHme7NYxGpIPmB2yOCRpT0K/8UnusBqmwRlO2MbkC4iDlHgXbqCT7F/RdlY3lQQ+DjKFIwyPQCf4tnjo5LlOIInlsMbFXBHW2vAIjm8Lc8V6jduHKxaKEYRCmHHMApk362QIZpPwatDDnVid1k/QB76Evr0xjw88YDcjHsH6FtA2HstZK9n7js/Jv95P1uNJE0HjAhX37ZoA+JdyUEcHdp7zg00aP8Xil3hH73fwhj8WN/sFD3AmIKSXE+sKX3twl2Abo/791jlVuPMTsoJNjG3rjDXBlNkeeBwoJ4NkuZLxCbwT+UFKHd5jddR+wFKQTNzkAgw7gycHiutn3E627igT88aKxkzl1o1xLOTWOGPQ90Zb/09W63zwiSmdzZPbCCwHK99YAiO/EmqsuDOPd6yBSWOtSc20TG7zM20oI5+EdkS+FCPnDrEmZ9wZdEyDFQ/yscDu/N/14Acan3znb7+cyNY48xPqwsaGn4vZGo6UODvfGZGwKbEtzJIj/kYT4+PsrFHTHZKDf40ntv8BXYpGI9fgvr1xnAO2BVNwn2y3DdPO+8cH/7q/87e/fCWekz520p3wk7grQxOVna8xeD4HvTv9+AP31hj+YOo3/vjDn/E2aO2OSQlPUeA6zBILmeNqE71B25hZu5BJQCQqQpOGp7C8mGZ16KyXB5FULFDimmiiDq0e1bgZzooggWZ7TctkCVFcCFmICmYVo1kzAaFfh78IxVftp6bf+W/1jK0XCq/197Je+umln1766aWfXvrppZ9e+umln17rtX7P9Ztf/KkW5LfehwtXkIT77QsxgZzVzmaVxSeoOm9T1OpmrTtpYbKuP6cESVFQoIth31vMFFyScXFRrDxMPJWGYmo8pEN2JHfkam8LkiaTYFZrUO9EE8KDsSaWSVPDLFjunDH50BNrikhDMdQa4sI9YcpA6ahXPCIscFmodDKiYhpCOQ9SDyhNpQvIqrgDF7PHPbFmiAjbba94ijYsrZzDdDBn2cLVCugdiVwRiCaGiHLyqPY4KXe/YZhD6xuaeYm87zGcgL4DSaTUyH4Y6sK8CSMD1WBvWq1LuhHi+PqgWeI4QsMjaNIIESSLiyMiiCYhgl5+jmQiEqSVE2MuVY1OOcimhkUwpRg/mYGocq5HbfAdoPPxMZmPB8LApWEBbT4ZfoIKx3Cs3ZgBU4KbarXBhTMjSCuOUo+GCiwdFTOh8fRWTj2KaTKnIpk8NAoeG47nAPWKsEjw1Rdb/4GP5SxftL6IedBisNkdaKRrNaORTOSaDjAQcHd8QWgvVzqF02tcfUyvaFAepAxOD1KV6cpD/iPik/1ZzWgzGtpvPFI4jnfu+8/kckQ6x3JEVjnSKYz5QWydIXcmNzI+aLPja2AO+xR6KH+VO5sqjcTXEzOpVjACrGYe8I55sOuAfBLWeebGOTcknJsA+c6cxwUV/obrQXbn2/PJWo1P+x0/VkHVbUe1MT/+W9BO6o5oY3pdvV07EotGoEQ1YjJ5tr9gsXPjByThyF/gBmu9gyVTE3kcyOzY3Ol0LATaIjcHLQB3I/kss/axpmz6iU8X/PnR/pnelF0rVjPUYH9jrl9ophgbMYO2bTwI7ppUUKvaGKcokWc1C9rGsZ40UyKEkA0fgS1ovJHuTJ6YOOmT20imTA4EP09uYrTHYLF4iDLbkz2+EUuJ9YV3PsgIumyo7IwQaInEjRGCi1XrnS80nMO+EhqkGePbg8/bG92VPJLwjaFejqo0wjcyjfPuTF+MTfiXxwe33LFTWPaBzvo+x5gs6wwVGEZ3oQX0CD4141MX3pnst088f0q+vQeyK+3eOb+9cx8J+onA6/4+JyuV4/HgeRyoKj/2P3HOyfv75O28sXKy05hn8dLCiocmw7FMxO48fqqDZOeD2bZ6vrTOP/3Df86+f0ZHo9uOdqOloSyaXk+5rqy1aJooC4kF6QzrNJN6nnm9OBAxJNbFWILwRV5/i32P47lXFFL3mgqQqEIBhIxim226Xw2cibTr7/EFbL9OG2XO6yncaJdjXa9dGpLfpatRYLXX+ntYL/300k8v/fTSTy/99NJPL/300k+v9Vq/5/rNL/4iBW9OoOQUzDubBj1vDJwhQohUvMIA+ShUiXziXMWnaduNxItjEkL6AMpRhA1fk9TJwoEbpzu0pHuNBYvYVQPvsIHyBK1mqozBQsgm7LGR8QMpB8MPdN25OUg6Gt9FrREXrPhTfOI+b0QmZwxcB6llU+98gQywywFIaHYjA1SMkcDlwGtc3Jg8idBqtGMjqQ2wWyfzIOTANsWXlrOYgugbeYlO40ZOu6IigsoigQXMBIk7vSVjPhETXIWVBS+eMeHXzax+rs0TY5UZE8ZUmG3Sc6ErKwATG3s28gimPfG28PyMRInhZicSzl2MJRDq5CpXMtjZm0AOYhUk11QJGYS1qknXS9CuJHJDbCOjI6uugze9XQ8dQ6VxjgcjRk0szOSZwjmd3YM7nRhwtkC3agD8xU+6QD+Tvt358OTGYDAKXB0Pbt1Yz3e27c4ZXzlX0rzRxZnxTswT3f7IaHc+zhJNbRnZO/tI5i/f8A10DWLARwwakx476cLJz4g9UXbCE/OCip8SpJ/8eNv46aNG/xMlPXhagdGX/sjxfIAFbIKPydtSdh38Mos/8dY/OPUrfWxICKedPL8p41xo23k8R9HIBT7bJ46HceDY9kGTd45n0i3BB3Tj8ODw5EtTvkqDpdyWIBY85GSgRAy0JWtNWhh3NtaanBLI3lE1LJynwDMmetto88k6Pgp6Hp/o9gNye/B+1kRBIziPd/b7nbZVO5/YIGUSOutgfDZMG67G7J3HmjRrtOyoKEd+ZaZh+SM3h5t0wh2PJ5OJWid6uYzDHyz32kdwWA5qHGui2bihrI9/hdsvfJ0HuxqnNoYY5jc0BR0Hv9wm+1zFe1oBH403bhxIie8rSjX8g5MT7VENkedGk530gfMTNCV80PIN8STbwtvBisXnNGKNigiRfBvJ2X/gEMf5qImZCMZwjA/gROgs63yo89zgebwXt8WVJp3UpI2TZOHS2eyNXRbnOnisAxXFuOFyh/NE28XbkhOfT9YqAPv0yfQk1Oh6Q84dj+RbG8x9klJRjX0KNw+OtniK8ee3f6TZoMXBMSe6/QmVYH4cmDfe+CNC50jAT24aRCs+jlhHAqaffPjPZCx2OdnORZN7PZeAJYtB8JhPRg/egD1O0uFtGVv/xJHKsMaPf3jjxz/+idMUvyuTpMtCV2NrjWM9Md2Y88ZxPvn0x42Ikz0K+D+kMQlUrRoORQHlXGC5kAzMhDEDtY3uT2brpG7YSnbtDCBzkjFoZkQaQ42hgfjgboanEC6sAGuGYWQspi/a3ol0fNYxTOzAxWAab1kRlpPzP4VGeK3/BOuln1766aWfXvrppZ9e+umln1766bVe6/dcv/3Fn3RkBJ/bRufGkY4DHu+1YV3Q6EyvTTe0brwMVCeqgbFw94qnoNh3p5cgZKI3I447ezbET+4ELK2ISxnCOIJKlRLt3Ghi7K0DXHycBC9XGgmGT7bbZ57riWug5oj6BTAWtoSBsGIhFwNEwxC1arCKhkpc0GQvpzgDlb0YNJRjbQJ44v72K6vFV5FIQoW23fFQVPcacR8gy9h6MmIVRFkC94Hq9XMY9dlkYtqqYWlR0ORYvwK5M6Nc9nFwa0Z48X1MNpp0HvqNwOkCKgvLIHOgWg1INVN9/Y7pbNlp61aHFEk8leBTfQ5+FI9HBGtAejko61Ygbqt/ZuaB9gQXimIcyAVlJUBwyDqMZCYRIKkkA9uVvoTP9zu/fP0F8UDHyScdtCb88vVnbLsz44McwZ4bfSmnCw8N1vlXNgVbO2GD5zwxu/Nxgo/At78QpoQbpj/w9cNBbxyy0eyD9H/GwnAajzxoZ7J857w33n/6yo8Ej3Xw0e+Y/4DN/wBx4HkjZEPyL9hcrJYccxKuoMq/Y/LmTmYjZGOsRFv9/iN/JuZJa0lu8Hw+6Qt6+0ya4mOSAyp/cHJ4INbw8aTtyuInvCeMSrFM/3fc3PicP+LrTmw7or+w7MTXO7IaYZ8J7vz0+MYnvdFi46NAIWztS4nA3hg5+CI7NxrLbuj2RP2juEuhGEKKsLNhH3cihLs1RCfBA82FPKs5sWmCTzgHkUmwKqqGMjxwL/7UsTdaSrWojUV6xddW/oBLgAYLZ/jPjPxg1zvhO3DD84Y2ZfpXQoQlVnyaGNg6uGdykxsRDc3gF3PktvP8+o0f2o2/zJOQijFtsWpSRQbjb1kRAS1n/JQBuaDV5EEeXvEUScSEMWHEJPwbJqAETUECRvxMl70cxtPguOP5mf9WvrL1TiynN2BrZE7e8hvLHcQI3RhmfJvB++50oKegaezDuK1kxskn6SDOmcFNIXQxYtAjGGvj0B84mnHqpOfkS35FhIrahNKs0Mj3Y+eRB6tP3m6dY33j5Mln5eLrgPiGyZ2NG20bjCVEe0O2wU98sJ0K/BnUWJrM9l7huLiBbkyDIVEQsExWDE7pbLzRRMgUkJ0pcOTk2TdUek3PMEgGZw683/ikylsUn4y+894atznZ2g3T5MdN+JMF4/0rW7uzbRuf989svaZYtPUqU+hB68LyJKWj8kZEsAFiJ/CBoojc8dFQE0SclRPMCAWXOiTVaT84NaodcQSSekUtqcmJhPR1zW9tCIEZNHEa1VynYrS+830uSVXxANqN04W+3zgdPOqlwWv9fayXfnrpp5d+eumnl3566aeXfnrpp9d6rd9z/eYr+9PqnCYcvlh5cusbRDJwKnSiQL1hzyU0kRr11xp3NwJbUhEWVYDLjVXSk4gdHzvaTmYOhB1fhqijuhARwgDVapUTUGl180oxWFLs4sSAcKKx2EQQTmaeVdX93fGOBBqmhnZl+KBLQ5GKpuTVHnfFLyiZjnK10AGuQlxIFCNpUnEc1ZLA7lGiTQKVanJbUT/z1jfWPMCFTZSm9QcFO0Tj6qajKs5XNQ3JUc1v0oiciFxufyaCczZHJKvm3DoiMNNxuZHZkADzqipvV62diF4Rm5o2CLz6jXLh6qRphQWiY7qRcUNyXd+LgytZs9mYCJGJqxNSUSbNCUBE8WYEY3leUw2JWK/rZhoq4H0yc/AcJ//Vf/Nf8+3rz8xjkM8nug4OFez2mR9//DPP918KFt7+jG4Vs9iA8zHZ+p1/WX9jyle+Hv/MtnU471j8EUtn+gOJxU131qxYxs/7QNzoT+WT7ryf78Q9eT8Wu3yiheHz4GdZrCb8EifwN36Qd5onc91ZckNUYE0sBmyND9shOttqrHliamQGC8Ob4gYRT8ydmYtoMFPxtjHOwVu+s7Vk2Q/IIcz2hPsHosFbwL4aEso4hLTPPM/GmzX27jze/5W+77CCUxRnw9cnCKM1RfLAQxnzScgHhy08YfeOn60c+zU5rPOezljOjYksp19RqcjgkAqvWX5DtbNIzuNJitDtjXUmwwekc7OKT5x5XPGamtxYSwArpssvT9SsrkkpftVYC9+U4CBjZ7IRPNjVOZnMOS9OSKKLgmeHIXHj1sDzgyO+8mGB6sbOzj/8+Z84ntWAxufGf/jbv2Lc4eIpSQohyWBwyiJFGZFkKEgjIzj9SWuKoZgY6dQ9YYaZliPNolo3jTUnbgvEMBoZA0tn08lnCdIdTNGciB903Yi1VWsbyfLFMsdvVKtlJJmDVINsqBqiN2bUHTfsOpi2Wx0Sl4EuNlvF33JHRZkimAWEo9qx1pC41cE0JhuGzURWcXiScYlHgPoOM588R3BacVzaFKa8sW+Crl9IeeN9dM5Y9D5YbuCdtT7ABNOCMYcGKgPxD0x3toQf9Q98iDBIJuOK6hmWCyJQV+492MbiPSb9dmdbhraNb8Ctd7aurNuN2TbUNhyYWodMlyADuhmEE+tAdGH7ZMXJCEc3QXtidFgbkhtKRwj8iqZE1nNA1Co6J7BrvXCZslhk3QOhrHRckpBAouI9bu2K8i26FD0sJa4XPoZKZ3nFVWrvdto0bhji9bw2tA6Ir/V3sV766aWfXvrppZ9e+umln1766aWfXuu1fs/1m1/8PWwR6WwqtHSmv+NmVy6+RKukoKm18VjgIjhKRokr9Q1Fiz+TBeysPqcEXQgTkc+MCLQtRg6aGp9OqWlgr/FgRHGS1U4iYWpCCCobkYarYeKow63dmWPSQ5lnVnOP1mY2UZ5eEZBsxeAxDJPK92dCiF8AaQcJREFN8QWpSl7New7lRuWTRAnppFE/bwDjZDfFBaYIz3mCTjQ3dDWUYPmiN2Omgy6g4NK4XsKyPsdkYlquuFCuv/vibjtrTSSDW3PSPyCgWzkbSoLG1cQE0BEM09ocIclYLFkkTlLgZMOBB8gTF6NnQ6JR3XFgYjgP5Gol9CwMtU+4t0r6RFZHkiqo8KsrZeKYbAhabXTamQH/p//i/8J/8V/+l7zdd779/I0tYI0n+Xbj9qXx7/6b/yttHHzS4Hb/D/zrOBgRmAZTJ0cOfvA/sEIR7vhSmh4I/zXH8zO2T1o7uBk8nu/YvfE1d+63P7MeJ5LvaMD+/AMRvxD7Vx5D0NZ4+OJz3vhhLVY7OEM4uNF6sq9BH1/4Wd7xbeH+gc7vTJzGNx70PPCZ7PvGiFV0k1lcGtLJmSyEI50fpMFUPiI47WDzJz0mbX4i1w1pybfxATfhIwdLPpgWvK1VzWbbZ4YHjEXYycjBkERc2deGnIJ+Dj7iiUrQr0bJby0J/8buxYs55pOhjRBjBmgEO8kZB56Ds5c7l1Ow/EKXO/ADKcIznBUnYkIGDB8lVM/EciNzkZwXw6pW0nhETZJMdWzrZHN8gOQvqDaCGyudGT+SGMPf2XNhVBNmhOM4Ic4Pblgs9iyq04yNs228L2HTjT/0T5ic/Pt4cGuDzOu+zoZjDFE26yhZB1ISbSU67pF0hLyu61ABUYKTCAG7AZ8Que4vD6YZ0ze6KqqO5IHIuKYZsg6mcdCvZkvix6upcoGfEEHbjNvQgnfnZFo5ouiG6oNck1AlTch5opFEF54ozDtb/MAfdcP9YEkQ1mmZhGdN9DDBT5b+mdY6MOA8ubdOKhzLUVNC6rA6r8mUmxu2Fdy5rQ3zz/QGexoz35F8INaY8YXTP3hrE81bta6JstCK17SKTwVGk0nXA9V3Qr9xyzvu3zcURXWj906LjdumnPrOaYsvtrh3Y7cf+PT2GWHyoyp9LjobYe2C7RfnC3d2ETyNx7qXgxw1jROx2O2NMTYWT7oOhAceithGsJOZSDbUoWXDZyB2kpaEKLsnMgSsE2pELuqliKGibGY4wcpnvYRBLyi2IaZYEa+pwFeSIrRmyFxsWhNixdpOWOv/I1HwWv/p10s/vfTTSz+99NNLP73000s/vfTTa73W77l++yyrVBvdmauAzaLVHCaT7/JTKVgx6bj0S/hUY5BmOVMBpCee1E1OYTZNNloT5jjYCORM7mEQwlQpp5gSXVXxA2+rQQrWGmsJ7WpUc13oXk/BFUbTYLdytDfbOMKJKGd3RjnuOPV7JMVyQEhVTKutDTOgQKTfO9yURBM8quVqAip7tQVJqxhGgLiT03j8/I12S/b7Z0537H5Dwtn6wv3A2o0IY2s35hpYpW2u39urIW6rz6+ZEVExnmr5C1K3ipCYM3EyFtYVXYJKq++MiecivOFZDpvUJ4pcynKlVnSEG2SHmGg+KxojRk/HZeAJkW/seUP7wfLAekNwxprc7FbWXZa4NVUUo1lniZPq5PWdVt/ZQhI2u/H+7cG+fWItUP0BaR3dJ4/55Ou/fOVz/8Q//ul/wt/++h/5698O3vQzweLnFnRV9glfOcgw7rfOjAdCx/KPtAauypnGmIrqj2QKX4YQa+BxILLVZx9/oWnwl1MIu3H/mFgK/z6fRF/g8GX+GYsHH7r4y1rY7Z2md/z9A7Kj2pGVmB8ct8WUZMyBt6qWB+ccCc0w7ah3RD8xhvEt4cM+876cM598acnn2Fnng+128rMP3JJYStvu2NHoviG3D6RNPlvj2+F8NefNDObGlhueyTBYfbF/3Fi6ITGJuZiZHFvgqfwkwtY6/d25p14RjVUTIs0wFzyUuYQTRWg0Fof/5RJ/nWADTdYKmgibKmbGMU+6NTLWFQerOFP45MPuBaHH8TlhTiSC6I7EjYg3nCR0stq/ligeQeonVhgiTvZq5SPe+BnHrUDrnTuWG3tLejp5g//H+hv37PzbduOMWREDAZHAMDYax/xEKrQsToqug9ADjWKVzKx9bRHIJZxFhIwko/oYXRK6kOJIflxxrRsZP7L8TrSfyYStbSyXiwnT6e0bMyr6ZboVIHsYrpPU2r8EYZMOGMe8A58BY0WyZRDnYIyEfkOaMDxxH7gIS294gMmBbJN1QffNhM/xThIc81HNgL1xJmy92tu4INhhN0Q6U3+CkWyys+2JHD9B/yMfP+8c8x32r3zadkIb0xvRrGJuktRs0w5W94Psb5xUtO7sN4Y73uBP93/kyMmSATKu5rdE++T8+uA/2z4Rc6PtP5Bvn1GS/8G//Tc8j1/of+j4pzd8FKjfohhfYrUPLiaLk9RB3/aCpMuGx85cDTYF3xAaNeuysAbqFStsZlSaqlxp2xZPnJXBJ21YKmcqQ6rV00TAqxUyrKExuEkSJtW+mpBKHSZkIWlkyq/TRqHCMnBfqBlLEo9J3+Q/jUp4rf/+66WfeOmnl3566aeXfnrpp5d+eumn13qt32/95hd/RrlVQfwqPny0aj2SEldKIrpwjxJ3qcV4QRCZhH4goTQ6kk5oXqJG0TT8dEROUpO3v31j/+njim8UP0WpKIa0irpolBNrW2Muv4DH8CM7zjtqrbgwMmjPoC9ju3X29YGK4DP54W9/QURxLzeedFaCa0Os00PKOdBydCUTweipJIln2cZp5cxapXHwpGAhfmIS/PSXBz/99S/84csdaRutbbAF2I5b53Yr10X1RpBEHKhUO5TYRmRFRlQUjROkgXSWe7noKkjUWH1KtRqpGOF+8TH24sVw1vSAbIwy1q40TTWyhV5j9gBa0RUuaoJQEwnbVJY4w0rC9zRSgvHDHzn/zT8g8mSTVaI++68g7yRwL7/FUWjV6ucrL7NyMc8T68nWA2uD59PJ3FkJz3kgMmm6+OM//Rv+9D/8t/xXf/33FfVQSAxdikVDpjJuibXF6d8QaXz7dmIMPt+M53nyEY6vxlt/I46BxpMUCGl4TJDkqwS6kkOFhuNjctpiGsgoXtDH+X9Dxcn9zmMMYiWZjQ0B7RwZdFFuBPY+WQ3mEn5ZJaQUI+WNkQvPhfnJ3oPpAeIEDQ3ls08yYWJYwljUeL1MzGF7OqIbZ3/y5XZnkxu4ER9PPnfFDFI61j+z1sT1RLtwhPDGRstOtEVvWY2E8Y2lyrG+kTdjysJ9Ypa4wCmtJg1S8GxMH3QdpDZCE9dg5MHWjHYYzTYUyDFIrzjXzBO9uCSkowABe1b8y8xwFp6BXSLQ8hOkEvJBkw0TSDdk1b2ZkQSd0B8hnA0lcNoV69A0uhotog5tEnzaOs/n4K/+4JZ/ZrSDJaviVN9F7PqJTAWteIYHhHY+wss/FAMzPOq+iGx0EXobZDxwn7gqrb/B6tWctgaii9CvhDxpWVDqvhL8IHUnUBajoPOtYnlGEi5EL2A30su97B0i+YNA82CKMw22cLqB2RtpNxbvdD1404ZHMXwQrRbMdqtGQootNnmiTdhTa99TJdMQfUPWYJNAgdCGcmP0f+B+ufqu0JZy0PDtA23KJ/1TsVnaxtAvFXZsg56B0MDupDoeB6HvnJFoU7oIn/VOtIrxaE4aXvGMMGDj/vHEt87H8awo4y780I3pPzFyo+0n+9sN6U/8mdzlC5qCxMKzgNhmDXA0B3HOX0sCEKE3weWoQ3gKkg3ReqlhMYiY0BqLZELxpQIajZYwW3Iy2aQ2LRGli5KZeAhDtA5VCrlqiqOLIAnxPSKIVrNhb6QKc52IQkuBlSCJpdK+NxS81u++/n+tn9CduWo8zLE61FEMuu/HGXcpuHpLPCfZhHB4484aB9pKX4RNBs5sDduVmLVnKsnGKv1EY7/008zJUtC2oXFNLQrw6ws/Y1MjPNGsyGxSMVeVOqRF1v7jqxo7/8Nf3vmXf/4P/PnHT9z6Des77IG1G1vbub/VS0ZVI/JAeFQkORvabkSWhiqUe0WEVTorFgi0fsO9pkoyq8HX2s65vCaFuBFeE4OWStcb56WfSKp1+fv0zNWEiy6C42L0VaDbUrDViVRoDrJIDuCGXhNrL/300k8v/fTSTy/99NJPr/Va/99Yvz3qm4Avugp32YiR5axQ7m9VXxuZWuJLwNVBn7RsSHQkFGHhnIguhI5kr/FuzopPyJ37X3/if/m/+l/Tzlerzv8/Ld9v/B//t/8b3v/tn0nuqN+RdtAkaQrh1eyXOZAUJKuBDnFWlIt+6zvLD/7xS+fjb84tgr/8/BNHdmYEsU5yU+YmPLbg5+Odzy346gs9N3Yxhjn/gpLj5M/bVlGbbTK3xfEunHEyTBjS0AgeY+I5UD2JmTS5odo4ppCy4TkJPmgspgTDA81Gi0aLherBkc5xPLDe6bJx5ANXwdMJVWLb+TYHf1rJ83iS0sut1ZNUR+ejYj/NkAhaAtJBEo1FF0VUWGEcbGwYfULTD5YEol+ICDQP7tF488EIYe5vnJtQ9KZO5mCPX9gy+PDB3Iy7FgtGdiGiJEuuZEoiObkRNO14NpbCnUBXXAJtJ3NnTmGXhq4PRr5j28bNP/Mpbozn4o9pfF1Pxs0Jcza7cxt3TvWKwWmjF/4autNmuYdhjUOTZsE9F9vsNF1MeUJ7MmKH9SMigtgHzi9sm+Je0wlnJN4Wmzi5HhXZkoA4Me6sKbztb2hMfnp8I23jnAfiwpsG3RdLjePuvHmwrCEGDCGlM/uN3gfMwGygkmy+09wYMRD8/8XevwfdumVnfdhvjDHn+661vsu+nUufVrfUuiAkhJAxuhgZW5hAxQ6YSsWhUk4ldiAmENs4ZTskIY7jVCVOCNgEm2DHBLAxJlVgO0URU2BAQCAIg0HcdENS091Sd5/uc9t7f5e11vvOOcbIH/M9B/0ld1Oi1VX6ZlVX7z69v7O//a215vvMOZ7n93BFwSw5ZafJhJoxiVAjiKpQDe8DEL2qUKaFU96zyz1TzKw+w+4pkYH7eC0KFbpg2gicqEJqpcyVdr7noAOAP1mhi47XqhgHncAbQVD0Aosdlg3JFSnjcoDlnp0KUg50P3DyE7VVJutICp4zHsKemZQF5DjiHZH0TApCZXzWe0wEFS4qu92B2/sja0JbnH0NtJ2oUXAKd6zUmmis9BTWqvTyHgdf6bJyf3iNthrL0TmZIG0dLXKRaFUy7tkhRFuZJ+XJ9YTYmSe7HZTHGIVSCjMX6DJjxShpaAQ7mZA0AKwLYZUbHwDsUq4IX7EMiGANwUwYtQYrkxjpwirO3gqEcJ+BSbAzOMdui3Mm3pYxMFKnhpJqeDiayYTTGW/85mN4kx8crnJMwctEpCM10dIIT2YZDadpo0VypiPExmF7WF8O60upn1KM1CR1NGg+f1c4vXtNDd2GlAKWnKUwmTIpPHt2y+WjzoubHTfPK1/3NeN5/eM//ojVnxJL53ZZ0aLs7QI88B7cPn/Mxz76nGorn3vzkmTH6x+6w1vnkx+/2uKHW7RPC5lC78FcYarOqx99zmXZ84kfuuDi1TNXT0+sz2fefPuCU5yZbeZ4d8ePf/I5fXnEp6eKUrjc3/LKqyfObjx/+Yyv+5p7Xn/tFZ7fXvLiNCMyUxKsjD9PdRquuAg+9tGF3X7hnReFd9+b+dqvO5Op/OiPXuCRG1NQtsHpcCiOyHHj67/+DpXgU59UbAevv7FyXuDHPrkfk1/JUbKRRtrF+Gd0DpeND3/4REbhhz914JXXX3Jx7dy+uOKtz8wUqzy5OvL6azesVh7004N+etBPD/rpQT896KeH9bB+ytcXfPF3mM5jypBKazqYG2qInX7CxGlMJU0FDdmmPYG7Y1KxnAnaMJ5JQZgR9gy0w4rKSqQxv7ijLAvf8+t+LVdvfZ5yuqOkYQHoaD0ThZXBdimi23cpg42yf8Tb3/btMCVTBBnCi+gs65mqyTwJ597oUXn2+COod6TfIKpjKhQQKYgqKW04+awQMXgRdapYPxMZ9MmgOSVhKcI+wVty1mQ5nTh//l1O58ayvmAq4DFAqsiIb5xX8Cwc5h2Pn3yIyyevYxfzmAbTEE2sVEwqbQlMoGQdjXgSg2VhbJPoK5AgvW88mIpKYckTwNYCOOx8EjOenRTHVAZYOoLwPlqgMMJGzIjsI2oQoDna6Nw7Ku+3yimHH/s43/B//r9S7l6CvjYax2Sh5x5ixGMkgI0fkrFiZcYjiFwo+9HcdOzJinH5FV/Fz3njY/ydj7/Ne8t73L285XR8h8tyzfnuzGu7D/P2D34efS/Qa6PiLKtwM/mIU+WBR+uO632Bcs9tOXOstyzTGTu9Sh52lITdaSFk5e4Sliw8SqV25ajOAhw8qDnaEC0HMHzanJVuwmktmD9j3l2S6azR0Fy4kInFEm9nLqzSjgnzgbeqMJeJeRH0CEwXLBOj6UxuBl9CLyAPNLmnmJGt47lgJkQqaY7vDvRuEBUtjs4OreBtxma40TNnE6bdI5bVeDJdsfQjpU5IVyYmJIPlLOxK0v3M2c+IOnMxiMDWmdkqgsLJcJJTWbmvSS9DUFsmyGhSJISeM6ZXSC/cpzPtglnOvFeUc0v2VrkUCG441obmYTheBCzA0ukulOrgSWZy2M3gQWljYpiyUqeJZo/HYdZPI37UKrN9BG/CYV/xXJm0srYFcOb9U3oUytSJ/i7zIVFLzsstp7vnRO9cT5eUMlFoVH3M0hvVGoe4oh2OuCSTDfi3enIMR/Ua5nvSjBBBL4dbV7uiMSHtAFHY7SupyinP6HzD2l7wCMP6foveTFzlRPTO5fkpaRO3k7LaysFXvAUlDemNfRFyXWlaSEs6MZrc7htk0Oc2GkK7Iy0GRHxN3GYiOh5HmkxAkAz4sksdIPAiA/a8rkgUxJWTnrnLCcqCynPohS4BMpM+U3ImxfFyh6Vz8o7ViS4TK8Kjy8c8urrkuN5ze1wIjIsEy85eBPHAqrD4Pd4TsQn1GTtf8HyCx2pc+4Fbkhdy5rgGj7QiLZllws9j33pndorB4dk1cXkBCe/Gmcc5j2IE70wFJmt0TrScweYNlu8UlSEkQygxYmYuMThqw/CDSSHTaO6YViQLkcLZzxTVAesWGbFBjKp9RHC256HKiN5YKiFKJKgo1Ub0xBnNdqKCZ7xvGAKM9HnMwiVxF6Ink87MDObamYLLcIz1Yn/vyuBh/ZSuL6V+ShcSRxBevJj4l379f/+/8fv7Df/CX+OX/rIf46/+Vx/j3/ud38If+SN/msKJ/8e/+wv4wb/99Cf92v/kP/6veO3R5/l//t6fx/FU+b/8H/8yban8ht/wj/6kX/dVX3nDf/Af/VmW9cxv+I2/lH/6n/kh/kf/1Mf5i9/7mP/Tb/6On/Rrv+s7/hT/1D/xh/nEx7+af//3/0/53/zz/w67b7rl9//n/wh/4k9/9Cf92n/rN38f3/bt7/FH/shH+aN/9EP8of/8z5EZ/Kbf9B28/c70k37tn/9zfxrS+Dd/y8/lqz52x2/8jT/I59684J/7dd/+k37dt33ru/zm3/zXON0lv+bXfSv/xr/+1/gl/9g7/Mk/+Rq/89//OgB2O+cP/J6/wLM3zg/66UE/PeinB/30oJ8e9NPDelg/5esLvvib+mMa4Jl4dEJjWHa9kKlIGoIgOXL6EsJkjAmY93FBJEmLQs9HpN6DrIiuSCYaYOwwtdHQBpxee439y5e0qyuYdoBsMBVQkqiViKBYZWMrY8sZ9eD5V77Ocn1BTop0QY/O+XxGTLBiNF8IbxweP6WE0V0GV4IgRcZ/SLR20hX3sRGlBZ6NWUe8YpVgQpl88CfW4x3H85E3X7zHcrPw7OoJ/sQw/TClGn25YVnvURV6d1oM+O1ND97MlStOvP7qI/bXl5jtR+RFKqXsCF/Z7SrHRdGiuPhgEZQR6Z0ztnryoIegOmFScZ1wd5CG2kLEgklhtGqNQ4cwWAimimTi4YQZmR3NBNvhaYOps8FuUWgRUAo+jjVEXkBcojQSh3LcXhtF9YLoIDJRGYBm0USt0rwRocyZ1IRnhwte3t9zmEHyBfPsTPWS25cv0H0h98IPfvpHmJ7tOftKpXAuQZsK69qY+srCQpPXqFWJuKV4I8+jJj7bmTU7fbN4TzfKWo2bTO69ozGa807RyQQp430+LoE30DcdL0nf4uGp+kEkevUz0o1pt+MuFkotTKtQPGBaWM3xXVDEUFdCghIViwmTxOxIJUlzxJTCxFQmIozWoUfCtAzbej7CY2WeztQ6s9tdImtnF9CXI6/sOtN0y2V5BEVAgoqz84aYMZdXWGNAnJMVXU9UHH/0bDBgljvqU0V3M9mUS3cmye09bCzNNpfJaDT0nnSOXGRD9MBpueKxK34J1e/Z9WDJiXn/hIhgzjqES6xIVpwLrDrjplmpqoTNmF0S/QbtF0zLjNLY7ZMmhfSgKGScsGKs/cS8m4ge7LVSUETO4/O7GpO9wvHY8FjZHyZ2+pjJOu0UmC2jcbM4NwpVdlz0iRoNj45LsGaM1keCmjdYVHxNPFZSZ1o2LE6I7VmYaNGRdsckneuArsmtTNxNO+ScmDXu/Q7TA7kO946uYCus1qjtET06Ww8AayaeRi5tRPI1Bt9Kx3T0zErHASUcap3xcPbdmaIjTGROIIZaJzWRdEoT9jaxyspqKz4FtSs1jV0eUTVSX6GXQHyH1kbmPYUjgkCZaOWCEoE15zqEy+lAPS20VXnCBVeHPaVOZE/qrlLmpMct41oDFgOrhVlkuFiuXqe8uKNeTljvfP38mPR5axrsyLRnIaFAa0N8HvYTlRF1bD0IWelF0EiMAybXtD4cTKUUigqZsYH6AVcsbOyzueK6kqmYDZZT4qQkaYWODhZVDHcQ4ogqkcrigueIAIrqxizqRAgmimQgMSKbzZMWY2KtaojJlsHL0T4qScYRLdB8A0+b0LTRpZE2DxSGDOwDrjysL4/1pdRPJjkOaeG8fHcPwP/81/4lvvZjzwfPSpNC4tNEeFDKxGuvnBEVvvMf+ixf+/V3NDmzaPLr/td/i+W+oGdnWVbERjy4eyOj88rVNa9dHRH2/Npf/XdwT5LKbi/8jn/3LyLFSd+YdyKkJpGdqkmdnNWDyYzf/m/9BR4/O+P39/ycr/0h/rXf9IOsL+951Ath43MzFWVt96ztxKOrO3YNvu61z/Mbf/Vv4/H0OT73qeQf+7b/gn/8l32E+eKA6jyaHKVgNhPRmKfC668uiCj/5K98k3/4H3kTk0qE89t+81/BY7gCPQWRiknBtRL+fiw3iVz43/6mv8E0KybJGx+653f/B39500/CugjLkqTpiFZncrgq3J8uiAj+77/9b/DaszuOt4Xv+PY3+bqvf8lnP3vgt/7Wb+T5y8c8e/3uQT896KcH/fSgnx7004N+elgP66d8fcEXfz0boZUIpZYD6Su4UGQa1eyZmBoqo70nEPA+uDUCZCcSRDuqQcpK0lERpI8KdSUGlyVGxNdkONzaNBO7CVToBKqCZg4+DYUolfDEBKBj9yeqQHfFFqiyco73sOgYlwhXUPac/Y7VV6yUAZaxUe09Lv0GXJYeKIWp1NG4Fo1aBnslGPiWjA0WfXvLD3/mU9i7b/Noqky7mYu94TS6F9LH33eqe9yTLomZ08MRlPPq3L18iX8yKNPEs1de4ekrryO2o8pEYyX9TNgQexs4BygIQuc5psNJgCtBH9Dq6ANGkz64OlKQfP+lT0aVvJLJaFgalEGQQBhw6YwxLVWB3n3bpAMMWvYtqgQpR4wB3U0KfV03YPaYUpOBtxOSyWR1+5M6Ykn3Dn1lKkrRwn7/iMyXSBaKJee4R6tzfbHDljsOeWKnsHqjbVjZqybEGYxGswUrztmDlAPNky7TEBcy3kPVjcKBkJmd37JXKKIc6TjJpBWyo5oERqpSi1LoeCSzTpS90+KeFGWiYglZkhUhLKjpFGC6PHDMDjR2BoecBii5HDjaLapBLTMSO4oOQVHNmEwp6tSi1FJpPdC1MMkA6IY8I6dE9RZL436B+9XoCN4br1w95Xq3R5YrTt7wWugIfYUqhWN/F8qOtAPhHaQwVyHWRGKCuGJtQV+cRaCzG699LLTTPSoTZkZrKwLIujDFjrBL0mDXTqjs8FV4EUKWSkeQO+EQE2MAF6yy0ESQSZGlULMiGpz8CHOSObNHQZKX0Tgj1PuVAyfMjbVD2U0Dvp5JWxpaKp5nlE6k4lSKJcfT21hMBMLV1Z65HLg9PifPC6d9Qp+Q9TkFODNxu2voKogVCsLaTmg6WuAcCqxkB9MCfkJywYtwjBtSTkylog1kMdSuEd3xOG8o3nBLyqRMsadIAV3ZFehL0soOL9dc+nAYp4JUJWQl5P3BxITJY5QLphpkvkD1KekFE6Mg47LeO0yjxdNsHnuSCsiJoA2nQRq7UpB+ZkYwCqsJFMdliDqjIbnQSyHyQDahioOcSHWEp2Nyy9+dtqZ2UhqiRs+glJm1dUqZCIEil5TTGapwqklEsENwg5xm9vWac6l0VZ7lnlMFjzPKiPFdlEJq4K0zqbIuJ+rFnhcvb5gPe8p0ptbgMF+w3xVqKcSkFMAc5vf3wx4oQk8bIHEDT0dwVIQKCD7O4sXo2UdBAEaVHWwxkbrtqaqKcCIZbaqJM6KPg7smkdgWK0SMKkNAqzCg3xlbW2cOtte2FyeDiyNqBIlLIClkdwY5SpgekipfNutLqp98cHmLxsang6/52Dt8zc96QWNz+GeiZVw42DTjfcRbnz5aefKk4Rjdla9+7Z4qjfPxPdZzx/QSsSu8VM7riVeuVkopeFc+/BW3+KafVIWv+dp3UB36SXXTT9nQwmjfBMiZjOQbvn5hvb3jhz899NM3X1WmZzMXMv0E/RR0X+nhQz/5Htt3Lt/4MdamnFeY9z/OXl5Q+k/UT3tqFVq/w6qzZoJVnr0iPH6SwIwgfNXXfB4rE2x/d7BNF9mgHP8E/fRVH103B0uym4Vv+NlHIuB8LvypP/UKL29G+/IHhSeyMQZlfOYl9+Pgq2M3ON3tgAf99KCfHvTTg3560E8P+ulhPay/f+sLb/WtLweU1BR3mCaF3hAO5CaAxlTyfYjmfjzcMjAbrJRxxRSYj7aqpIzJX0yQ4DZKN5TtNj6djME6iBwbCvi42EohffAeNMu4qMoBBZacqezpkVg4k1VaXCF0RAoRJ6CRdDwOYBORd2Mi8AGEmgEkRYkcDAHJHFX3GHURmCuR0LXz9t1LPvU3/yb3ecO3X1/zWJJzSbofsVzY7wvns1N0TByPbcV7Gy68ANMddRo15DcvnrOE8fmbF3y4LTx95Q0uyiO6JFWFEjO8/7OQEdcNCTIvx88SG66BLQIdeaLYeAwN1g54H4Udg7orwHA5wrgATLEx+WBrDtwiRJjS3YdjMDtmRu+dTeUC68a82OM5MdtzkPG+6M7mzhRsA/9GBpHjgtdUSDFUK9N8xY9//k0++5k3Melo78RZ8FV59uHXuJwOzGWGaOwtOM0TvXXcIQ578qDs7q/BVjQbcZwHF+TRCaKABEan5ErVMyDcyZ6d7jExGk5TEAqX0ZnSGT4JxRSSNmJZotRumBqdle53VEtUrhG9xnEibwesXQ4clpV6uCJkIVojFU5+RuoF0U6s5z4mWg7ZG7up4e0MBLldumaC5Y5aBJ1PvFx+jGM7M9ljdvkMzp3QFfLEkyeP+Oy7Z/7rt97lqlfCkrs4w+WO82mlYDyejmQN7pZb0oMLu0RXo5QZz4ZzxnRM5Y8+sysHxFcwH86IcoHUHbEsVJnpcaDaCvpivIe0knJk1xTCaRVCJ7wF1hVlQUuymLPoinJHXZ/gWUCDMjvrekOLCcvKxIk9d1zNlXVRduUK6MwXwZIvwBJLY1+vydap6pCNUnf0SKolMgvsgqWv1Okd1JRpd8PTqx1Xx2vee+zc1ksuSmXXTuzkksiObdGd9XzGZOX6YmaeLkhRmidaKgsnGit+MTHtJp54Uk4nIoywR0TdEbJS9RGtTjStTJ5ceNBLEuXEZEGsRmcHNqOaZBhVd/TeMHNCFlYS555SRrSP9ZK5vsFJ7jm1I9UqlYLE2IuLFXqHlJm1BSlOZ8Qral4O4UznjLLWwpqFQygmdxTveBhZDLeKxNMxfKhntJwhZ3rOKJXWT0DHbMCbW3QUmOpMLMrSC42Ga4D3gWuYCpGBrOOgp6JEKPexEjvB9TyA4suJQz6im4z3XwtYOyFB5chkhSmTK5TUiUkqr77+tex3Bx4dLjnsd4gGvd+DFXpCN4ZbuucHzqSMIbRVFDzRGBcqcDHcKwnel8G+0R3ISuRoJ9DMAZ6QQJnIMLwPwakiCAX3gX3QYPx5Eig6uGA+GlBH/WPivSM6nj4ZEGLbPmqIw0W/JkvFaZg2Oo11c2E/rC+D9SXVT9v7dItmAUQ60Ek6WCVTyL7DyoTlRObgAWYmxiWmIHF80E98cfpp7caL24l57syHQNI/iOi2CFQZLaxD1aJVuTvCu8f3pfiDfnrQTw/66UE/PeinB/30sB7W35/1BV/8ldNXkCVwaWQGLhVnWIC1DgvwgNUqYmMiBjkmnFtbm4dS0pmp9CiENNAFyhH3pHlnsjI2CkCkDOedKogS3vmm/8W/yuErPopOE/3unuff97d484/+FyhBd9/qvRc8b0k5sJixmqLzBS0WvBqynlHvzAwuRuaYMxAyJgWpqBSqVZqA9xPdV6oZSGFdE5mDU79nT+H2xTv8yA/9LV5dk2/+2FfwqN/ifqLUKzgHErCuJ7wp4ca6DAlPX0a0IXa0PuHeaRloqUw2cfPee/zY+Yivjf3Hfhb7eSb6OqannqNFTiqBjgGIDEA4MS5PVYcrYLJ5tGllDrEY6xCTUkZbcLAdPjaxLobHgEdbDrmrUlBVChu0WCFRpHUOUgjZor56iXCNitEQNK7G9FDApdG5RQ1ELugudFFSK731wSYqj7lP471+x489v0Wv9rz72R/lImY+/OgZ707GxfWey6cHrr7ikpfnG8oyc5ADtRZ6TPQ+IRwpF85yDugrV9m5nJL7tdPlDUoKnp3VVpKVi3XlkSjOQggcUpgyyEiaKS0TzYao0giWDCKhZmE+O3TBtbMAVpTlrvGkVCKFu3SyGn4+c7FTTs9P3LU7zOHKguLGc95hjmAiSBvx7r1c8lyD2+WOuptxfLSz1UI/3TOzYyqQVrB8DF5Iew8q3KVwebWnXgjri/d4/brjfkeVwqM682I58fj6GmuFtlMyJh6VS6apME3O8fgetMrl/hVMFeKe1BOPa6HI65yPRw77ZJqU1jtJsJPKFTO3Derjlb06eq50HuGTUSaoesZap9olIZdoBrtyJhDWco3OgfA2Va5IvcJRdrPj3gn2KMKFCDXOpCzIdCDiFRDjHHd4cVZvXB6uMZ8Rb8xlpZiTupICxSuTXtAm5X49wmRkCCXhMFfOanwswWJGrdDyTKpi6YQHHWjSkKkz1ySXhZIXtN7RueJc0lMQTVihNqdcdWSCJQPvwoFLet5DFVoaq+y414lsnbUUTuXE5W7i8lQwUdayktHp6iw0Uo1UQ/1EER1xul4oUlnbyqSGxg6wARvXgScPNwoz7oaJk1roPmJH6MJZ7gldsUwuYs91FzLPeHXO80L4JTUO1Lhn4bOI7geTJTtERbikemM37QezqY1D2K4MVlVxp2hHzHFym7oPt0ObCrgw+XBAhBQ8jf0E03mhLp1WJm53xmOOnHW0hxZmIpVzdh6lME0Trzx9DZWJZ69UeiSvvP6Uw2GPeVKts64nerxkLpdAQXxFU1EVWjiSQelnil1SdWLp63DnRB8tpJq0XJHaMYJwRzS3iGBBo5O5kLY9CWU4SJIcgHQAldFWhxA6rmVscwD5uGZBbCtkiDHpzkxC5IMmegMQWOyEqJN0RNtgwT0I1y+b9aXUT6bKaO1kPPdhOBtaZ5orQQGthF4MRnA2zIK1d1IKpreUHAepB/30xemnAVxT6gzzTsdF7fsx5xSU0T4pOvYCwRE3Psuwlwz9pA/66UE/PeinB/30oJ8e9NPDelg/5esLd/yVl2PQl7CPCXFwrXRvVElCOquMpjl7364vSk9Dc4RRU6HTIc9E2lYOIWRst/wYGSueY0qtQFE4i5JWwJP7z36Gd773exGBD33XL+H1X/SLWN/+HG99z58fw1d1RJyUjiLMPgCoR85knrCccGlD/JbCMRaqCEUCERuXjTG+FxWls2DkeFCY0Vtjv9vT0pn3wY//6Pfz2U98klemHT/7jdc40NBakPmaZUlwR0TpbYj3RU6s25xJ8gQObW20dj+qxrPRlpkyXXGpwfH5Sz5+//2oFL76q76WyQqpKyCIKzudkF4IFNd7kkbRYVVOHJdO5MSgafQxDWFCZDeKRiRHk7sZ+IgFmwiTJOmj9t4IJI6oTDhlbNzCOMBkYrZNoLfXLCVw+mA10AAhUVTmwdBJRsRaC+IdwSkaNFnpfs+uzkz+Hh97VbifZp7xYdQrLWfWt+/YFTgw88r0eES+K5RVKfXAzf0R7yuynvF9o/VKWxuPrydO9ydON07Mb3HfBJMJNeXGnfv9gWg3zKFID5iVc1841InaZtrSyBS8TNz3GDQNdSgTXRZgVNSfVqfYFToXXsTnwW/RekR2E30/UzCKOI8PSs3BXlyKc6gz15NQemc5JedTx8s9Ic5UQCehtcb+slBqkI87exXiVDmdVqYKX/XhS54+qfRiSMCcwc6C/uEndC3McvWB+C11R1tWLqaJvL8YYmXulOIEztlf4XGB3XxJTyflAhdnjYnQpxuAd2G1oItQUKbeKCkkM7t5InRERGoqixbcEhQkAtERo9KzMc8dT+hcoEUQuRyDQfakFFTGO6jIzNpWFu+kXo+LZ5ySd5gYnJxoym6+GLGfw5EIYc2JRRPYU7VSChzPd1juqfOOVQLHMYGeK2s61ieKMcReGDWCRRz3AJMBDV+CPIPyiBBFfIJ7o9qKRqNk0Hyl14nUGVkUcnymVhHOekCo4IKxYHqEnBAvTH5BCpz3jsU9EnskFWnCpVSiO6JBsxmXCpt4KtWQViCHu0RyAL9tGIBYaXQbjaLDp6IUEWI76GtPahZEhADCHEmlpHKxXBMoXd/F9Uj1ikgHOhMdtaD5LbVOrOsQUqUOlqlszNEMGY7hZCtSWklL1DrtfKZMe1arqLz/Hl6IpXOe4AVw8Jmrdc/L+cVwkLRExTAdk1zXlXm/4/UPfWhcboQRPqJAA98gpCgehsolNY1CMOfYq3PMlHEPIjomnfRAsg43lSqZbfysckEQZBOI4hVNQwu4OGlOl5WJPTChIYg4kgz3ugsZgZP49oIkggt/V3RKDFwDDDh+7oY7zBgT8bQNRB3ICMeh7hjChX7hj/eH9fd5fQn1U88Y/w6EuvHJ3SpdK0UK4YIYJPdoBpKKE6QON5vK4Bxr2IN++mL1UzqjcG5c+Cnwz/6ar+L1N3ZMVbm/d37wB+74E3/8HdxzRKPH7SXwoJ8e9NODfnrQTw/66UE/PayH9fdvfcHvbEWwFCrCHIH7GWqgViiS48MogqSwi0KwskpjYeT3yYJIwWNPi0TtDNJwVzIuB9shz3jOiA7eSQAZZZuGDwvxj/2//1Omi0vK4YL1m7+F/euvYygqFRHQcBIlbKJVRrxDDGKHUughUBK2jWf0+AgeIDYKLoLRZJt9/FZjIsToPqbv0To2w4996of4/h/4y7x68Zg3Xn8N14V5v2d/eMr9/Znz6SVMxro2kkoLOLeVLAZdx4S2dSLOpJ4BR1OAdUy/dE8JuDuf+ZFP/h0eP/sQrz16unEOxnSjxqiIb+H0OuIrKYrmgKamKF1GREaiQAQiw94uoohUMsfrN+TlYA0hlWiCqBPZ6L2h1sEGz29smHzQqrTPOt4nCT2HbV4ZsWuFAbm2cagAJ7Og1OEolELkeUy0quKxMNvEq1ev8erlI1693rGbdrz18o67cosAp2UFq7z69FXs/o6sIKIc728IdagFZyHlhJO89U6yHJ2L/QXtyQ3tvSMSO673j/i61z7Mp3/883i54PbuyOuvvob7mcfT1YguzYV3P/MWB50QCS4m46oqr10cOC2d8+EpF7VyjfDWy+fcEOzkzKOLiblcsPYL7ldhYeLqQnn7+TtMpZKro3XHUgJNZdaCu6Pi2K5w5Iw2xWSGZuxy5vXDI4iF+3ODXJjZsbt+TMotz55d8+zJ6zSCeUqeXe5JT7pUTimIwlkWlrZyWXfEckRlxS5PZJkp5YrqsJzvmbWResKrjoNPuSSB2S7HobA7Egd2O+M+jlyakMsZj8pOH1FLEOIEhmtFCfZbFP9UKi7TYHLOnTY+ZEQILZPQS2YRRuJfcQqSA+B77Cs9oeTggHgqix4wKq2dqKGsbcFRKHW0YEuwZA7wcC6EAzbYHqUlJWFVHeB5Mw4y4zZEn/Zx2BNTJDqlGMHGDUGAebSHeSBWiczN9ZF4qVALRQIiBw8mwfHhgLDBGVGgZCLhrLowJ4TBko5KGTysGAwvESdUwIbgSYPWcvBPzIlYmAVWBC8GBBKK55A1KUIlNu6KkSmgBfcFCUdlIoYqwmVFbJQHSIy4T+pExA7YkXGPdzDZg47Lg65OzSG6PCFFkFoQMTzG96OFcYgWIVASZVdmpn6i0zlVJZnRc47XKZ36/kFcGycrA/xuBQkwNbx39mXidj0x7w7UeR6weC342jZOmoyonDoeK6pCUAituBxwVpyFqShB4NrROVnTEXZkN1QgsxHpFC1jLxSjlKQvYy+WNDJBZexvjT5cRKmY+GhxRfAoOCBli3Em9ITFA0SYayFwPB2zgjFiRkOwxuAOhaOpjKrXwWlTK+AdX9vfszB4WD+160urn4ZjIR0y5vENxHhv4J1JdHuvCTubmGziHEEVgQC3sd+F+IN++iL1kzFA8mLTONBq8LnPnfmbf/0FiPALf9EzvuMXPubddxb+0l96Pg7RCVcH+Od+zad4/dn6oJ8e9NODfnrQTw/66UE/PayH9fdlfcEXf4tMo9BBgpezM1LwnYu2gAsiY8KbOF0XCJAs1Aw0x62+paPWSHPSAxclCwRnuiR4x8RQHRtfV+gFcnPwoZAEP/df+zeoF5cAvPdX/wrv/KW/tHHpFKSg3airIftKyigLKRlUO9PSmcoB6RPehDoV8ImkEz6mNkgS6lgKmhXE0BTUO7taiOi8fOfE937vxznoK3zTh76RD+8PiCzsHz/mcLHHDmeO3bl/eU9YpfvbdF8YBeUz3TuZTo8R0YmaSF6gMWG2ssRC+gQBjy8u+Pzn3uVv/+0f4fLnfyuHakQ2pqnQlk4phd4TpaCykWhye4HFyBiXctujC6WiYWMa4sEORSKJhDTDPWi9oVIwBji1TmVcAPodRkWZkFRsi8aI+PgzJMambnU0FW5CWSXGYSDb+D1ScUnCxsM0wuhW0HDEYV8uCGnMu6esJyEzub665MnhzPl2oSg8u77iZXvOchFor2SfWNjTozFZJffw8r1bzqtT9jPrLukH4elpR7Ud96cz8mjiPhbuS2M9JvO0py0rpQSzTZjNeNVROx+wr/D06TXX15WpQGnwxtNX0L2xtiNPn01cn5Pkkqs97CdHLbk5nrg9r9y8d8+1PGIvB15KI8qB892RuKv43tntwW2Facf9TTDHHkvDSmOaDNxZ7gPaDpGOTmfUDry4FbocWOKeHvdIeUazZ4DgG0xYUEpCUWPXC+LTAEpncF4XVlVa61CD0GSiQDSsBCqjPWtMYQ2NEUeSrFSUCMOpUITVGyKCaqWvZ0qdwfd06bg6CBTpFAKtg4NDgEkdkbbsmOl4oKfQ2QSQCGWO9xNXhMsYDEghxfEC4UkTY9IBt7YQHCjF0NRhrEgZrCtptAJOxcUwFMlC6NgDPH3EujRo4iA7ilYsOmyAc1EhZFyCo530wRDKNEJmIJm801XoE1hPSleUSgwUCa5KTxkTy5JMHUoXMm2Iy66UbcqcoiwEyCjXGTHAimgFBuNllZWeMxFlQI1liH6VQNOx9PEzLUoPJ3N8RotMkGWYBUQQDMkgWeD9/VdnMmYkJmpcDCiyrXRttICWM6GNLAPmLlkwqYgLqYGaYjEOIiFCyGj5lN4ompCCOtswx8b7xZPigMR2GO1oueScidQRbYyW7Kyw2z8B3ZNaR/FQXzB1zA3Bt8gOkBULWHWhWxC6w3OI9o6CTLSAkD2BoSXp/TjG/BghCloRCpGdNVda9XEYRyEq2YRJK8fyEkVRty22Al2EVNvinQnkxvKS0TKK0iMJq+N78sY5O1JnLBX1oATUNAxjJYgctUyesvHk7O9ZGDysn9r1JdVPGXgGvRhtU3hBJ0vSxaEMDmD1CTLpHsPNsX0PZXHMFEwf9NMXqZ9OMviAbe1MRdAQ/ss/9g77gzHPyTd+0yWvvjoPR1EOz1VJ5eLQ+JW//LM8euSjWfNBP/206Kd3bws3dzPT9Ijb69fHRTidno1RoNd5dPUuO1k43j7hreczX/HqxzmvC2++fIPTyaA8IYpT8dGyXQyRETP88IfeIwVevPsqQuHJh15iYXzmzY8SfQUVJGamIog+o7cFKxeoGm+89iauzuc+9wZX1zc8vrxh6Y94562r7blUNnKkU9/PPKYwX97z6NEN6zrz9rvXPHrl80h50E8P+ulBPz3op4f1M3F9wRd/bom2GHBZgTDlImaaNVaVwYDD8N5oGhgHLCvCQspKl3VMLXNMYEQrQdAjcRumaUExVmxriJXYjX8aDOjnqLXjh3/v72J+9Ig3fvEv5ck/8PO5+f7v493v+z6CJBnNTV2dRQJ0WJPVFF+GDfn9xIbgA0BqRsbgJYi+f6FREIGwhtMgArPg3M5IVX74b/51Xrz1Nt/0c7+FD88XXGVy1iSmPfvHT9n5yvPbe+6OneZByzJ4Db1CGm1Zac3JSDx24FfEBpUmBQkbFyI56uCf7IxP/PAPcHV9xTd/0zcgaqy9owItfBPthklimXQZU4/x6HPSK5mPCASPFXQZzIVMimw/YyAERDo7G5swOOFtPBw8xsVgJkgfgzlG89KYwoDomHKj4+UKXo7JlOiYjqUyyAyVcHn/DyRziFtJxczwcmQ6OGhg0wV1Ug6l8bOnj/GpH/048/4M8ZzXnhx4+2YhBaQWsITSmWaIZWI/PSbKQr2AgzT2pbHWQGPHfj8xP7qmhbGc4eh3NC2sC1zqxP3NPdErV08e05eCS0HqxMXugmk/kQR6qLwjnbIGU6uspwOnJZj2jSYFXzrXVxeYCdGCi93M/f2Rd863vJSA6JRFiXpH1ILOB6QFJYTLAr2fWLNzuBDKhXCXN/RSKDlT1FjyyPF25dwqYaOdcM6K6MypnykEtQTpC5nzRiyB3lZOxzsiF6qs9F7wMNZNNLQlmURJ65R9oiWICCTuqfIYw7Cy0mXBc0LyihQj44RIYFoBY7JpiCv6sO8DFoZlYEBTJxjvVZEcrokIXHLQO0S22EriAhaX46AXjFY4WUmSFh3XhcgkVJA6j1ZMLbjoaP5iMJZUC4gRMSbJAojliBGYDHfrxhEZkRrZ4gGCe6NmIAymqNRCsEXf6aAjPmBSthlr0hhRnppKsMN1ix9IjL/fJteDLWKnOmJiooQPR4gymC4qivtgf1nCGo7pjErdQO+OmVCjobESMWbCBZh0iOQWAwKfmkRv1Bg/GzIG5yRGk+h4r4ypMrnB7WUeYliP0BIre9xnWJO5NkzuWUNBywZqTlQG8yXdyChICmyROJVBbpEoSOyYbUaik3miVOOcA5wtblR2g4WTiulgBYUmyZgCh7cx1fYV0bG1jF8ok4xHXaoPgWgVIoaTPKft0O+ENCJWBMF0tKQKhkrBXbBJ8TiSMdxZgn4Qz0N0czHExkBNXBOhoowYn4YS+r6gHJD/ouPvSHTwJEMwnShqrB4bFH08Y7faKwIGZoHhFDMfh4JG0HJ8nnSav0g58LD+fq0vpX4qaYiP0pANlzyiqwEiRnQQYyBRMobPX4cThwQt0KSPz8+Dfvqi9RMEVdtwUBJEOP/iv/RNHC7GHvQ3/vpz/upffXdMr1BUk2UV/vxfeMp3fde77HYP+umnQz/dLa/xn/6h3/rf+Fn+J3/5H+LRN/1FvvcHfh5/7M/8av61f+FX0Xvh//Nf/o95862v+0m/9n/1z/9LXD9KvvvP/ndZ14n/yT/7O5B2xe/+Xf/yT/p1r736ef7Ff+H/RgK/7/f8On7JL/5u/qFv/Yt83w/8bP7wH/5VP+nXfut3/Ff8t37Zn+Rzn/kIv+8//NX8c7/+3+bVVz7/oJ8e9NODfuJBPz2sn3nrC774q+pUHTjiTEOasHflbh4AZ02jhjCFEBJ0aYNREkEgIBXJedvKF9QEYjR7SUxj+kNDQscHGCicMRwPKGk4iSAcf/STrKYYwlf/M7+GJ9/6bTz/oR8gfUyaVB2ToCRoFNIZKqoVrBbSE5GGaiPkhJVC9vcfICNWQwwbd1clJJgmJdcT7oJb8jf+9l/h2eNnPL6qZDnih8LRO0/nCdPC8XQcbAZTXFZcB7clsxP9SMSC67CBq054VoIF50i4kmGDF6OBryuXh0csc/Ijf/tv8ZUf/UoeP7uktSP7MuFdMCv0dGomSR/V8WIQSY3hogo9kyp0YmMhDPBp0yHaPZK+sRKkKJZKxrCLYwMibTKm5S5jU1cMkxEzgLFZi+ZWtR5EPCElSY0PHjAf1K33pIgxFDQbr6ERBK0lIpXuK0wrPZPHF69QdM9bu7dAjG/8hp9HpnK8+X5aHFnzTJ2S3lc8j1yqsaZy7M4hdzzSa8q9c4/jXujHE2e54UNvvM7nS8PXI6UVPvyhN3j37beZpx2+BLfvvURyYkVZA17e32OHikxCkZUnbc/q42Gl53vqXafLM3R3wVQd74pk4qfO+bjy2bdviP2Oc2no6cwr9Rl7zkiuI/ywV26PK12cnYAhyDpelxAlu3FqndxDWEF14jDt8L6wmy6gJVKci/2IVeGK5UTPM8hoiXzv5j08VsreaOfkdHuP95U6X3B7c6KKcW87UjqnvVCmmZTEqqByhyUc9gdEK1UrOY24U1scLT7aH308gDMcsXtCBheodEVzOCYk+wZGfv+hP9oJe4xJq6SiJC4Dfl9FiO28U3WLQDAaGD06itIiiC5ghdRESiO3aejIEAzhmjlh2SkROCtSAOkD+BvbAXJ8GDCtnNeFon93CjiVafw2gqojZoAMEaJqFAlcghVQD+aAYxhnEbA+LkgzNhpXksDJY4vLscVjEhOFaOP7lwHRVk+mLepBBOHrcBUIH8Rgsii+NXUSgz/VCFwHG0UCzINZxiG9ZwOJ8bqIIVsxgOeI/YkGKRN4RWIm5R73cdFbbEW3BtDRPVoIEZCgSse0ETFDVmBgG0ZIxUkCpKK6x8+GieByHq+J7rDt8jdCkZgH/Jkjs1Y8nNhiGxqN7kfm+VVGzqlQyo5030R0J7yBTHgkra/U6kwiTHnabD5ByoB3k0HxaTwz0vE8Ajqa5pLhfM4xbTYZxQNjP3dCOqFBo6HNxmAkk9gieiU7wWitH4GlIDNAOrtakXR6a5gIUocYpq9MOYGNiBIyPieZnWqycW3eF83g8QCn/nJZX2r9ZAyO3Ydfafyr/+L/l6945YTGKOhSFyYxRLcok4JVG9wrgaLDdROpD/rpi9ZPMQ6VJmOf3W5f/+Af/DEuLyrf+Q+/ws/95sf84A/d8APf/2I75io3Lyv/4e/7Gn7W1/8lvvZrTw/66adBP93d7gH47/xj/wkf+srPcHl1SfYOoWTmaOiV4MnjG57fvMdXfPQv8j/8pz/OsQ/99Iv+wX8H9DHnZaGIMulMilNnweqIf6acOB47v/g7/l/M0wE5Txwk+fW/7t8jotHXE8Uq0zwRPrh5mU6pK6ILJhP/s1/9ezhMZ/7G3/wFvLy95Du+4/83NDvbLf+4wh+X9ECZVv7Kf/2tRDd+8Xf9aZ5c3VAe9NODfnrQTw/66WH9jFxfOOMvlV5GW06KkB4sBBeL4JpbgXmQBt2S7sIubUyaEZI6MvpWaJl4m5FQdjrmOj0WyB0RBc/xADbKEJ4lcUsefeM38co/+K3cffITqAiv/aJ/BIDjZz/L1raOYXQRzlXpRT+YUg2L0EJyRotBTmQUyEvCJ0z79rj08R1LQSl4FEI74YF052K/54c/+0ne+uy7/MKf9Qt4Kns84K7Baa0sx3veXc7c3txxurtnWe9oeWbtgveCOLTjSo8JrZdIjlr7JvcbozDp0dDx/KDMhcgVliPPDo/57MsTP/Ijn+Jbrr8Jk4KiiBhJocnYuCJjcCxEsBY06TgCugctqK+IdJJKmtIzBj9DZFj5xQZ3IwrBgL+uDkXLAHWzCVrKsLbHqFsHcB8buUcjUpnymowGOSLbQhLuZAVXR3QeU0NxbIOcmxbmUmirU8uONU+odTzuMBGur2bKLFxfXyN6SX38nH5+G1kX6nRBnJO9Oe1wQ/aKnYw4C+d5QrXy9ps+HlKpWHZ0WZjXE/N0waPrV7CoaFRqVVY/UrNgAWcSTWcXK5M7z3aPsGic2pl5EvZzoV/D8zzz6LKR9czdeqaEsZxOnHyl7J+xu56JcK70xClO6L7yiNdZ4gWxnrBSh3XflXYCj4k4KtNszDthr8qd3eNVqXZJKcYkyrTccVEueN5PlDxgUiBkazCE8FuKQjueKWfnYt5zuj1xd3PBcgxCF+5ZWVi4mHbgo3WwnWBue9ydUlbQhkplPSWmO/aXBc/juBRUG3ByhYwyYrtaSa+4OZoBsuDa6bow82jENWRM/0RyCJWw4VxJIVVQkyEe1oWMHC1fGYSPc4+pMaVQtAxLvwBV6CjONJwSMQSQhJEKbtDVCJRIoaYzuSA6DYb7NqnO7AjCpDOqZRy+Q6g2oYsBC1qHGwNRUsalpUcnEWooQme1JGSihKGuiG3zzQ8wBUbpDpK07MOtk0m1wpTQGKIUVTwcF6FKBQT3lVJknM/DiNQRh8CGiycTxIEVk2FP0WCbXAuRQS1GqhI9xt8ljXTb4mSbGmLE+jWdqa6c24RwRUqn+S1dO8XmEbVg/DvGnx8UW0hxGhVPZRKj5ERIsCggjUyn6oTyiJSg+HnAnuM8JvcyLpoXDdQYwPiAKOM5c82eizqjJD3HEb2YgBli8gFPrZuyzoLYJRGFCEE5I9Ipsht4CV0RUzJGlG4A/YPUhqhj2qEnEUGqDv6Nj+NX9hjAbIRCRa3TcSJGtI/M8fPOcbng28S51Jneh8taKOP9lKNF3Uywnng4KTniL2PGgmvf4lLvFxMkA2n9sL4c1pdUP0UfsPuEJ3vhH/pHP0VKIcRIGaUArkIRG1rBddwduTBp4WRDD0g86KcvWj+x2SzFRhQvh8voE584oTIuY3/V/+Aj/Pyf/4Qf+P6bscdm5dmTzh/8A9/Da6/d86Cffnr0U21HAJ699iO89vrbvPr0NfzsRE9SYe3PUYV27PjZeX3fOZWPc/fu0E+78gn8IMRh4WLeMft+uOCAuQz9tN6urNqoekvhktv3hn56/dnHsSq0dTxzpv1+mLOyY6KkV3ru0Aw+/ManOJ4rt8vXcHlx5vHjl+OSCBuxcMZFjeUYproMZ1dbC7fPlT/+x34F3/VL/gRPH90+6KcH/fSgnx7008P6Gba+4Iu/qRV6jKmFbBtdAmc5jI0tFfNOQTE3NGT7UG3NZLlgYqQrogX0PDZ2LxTbUziQsoKdoLxvyBWGnbci7sTNLYc33uDpN38zosp6c8Ob3/3dfO67v5uiSvcko6ORWBuu5hJjiuvSUZtoGUyikGOCGiJDuOW4zNJN/MnmXJMIijitn6nqqFa+76/9Vd44XPDaZFzkmZoCPlEbvPj8Z7C64+XNkfu7O8Sc8/mejEb3BV+dlg20sC6JRUGNEemJSvY9+EK1MXFY1pVaCkX3rOfOTpNPffzv8NVf9zGePDqQ3Uc00wOblXQDBmCazWLd85JgsNzUA4s9hGGlgwWZnQ+iQgoqbZSkZJDEgAgDQtJ6IDqs6Bl8wLuR9zNFG5w3cosI23skQc/xMBSpY4KqSYoTrBsjA1KDwkT0BnGPsEIcUHaoJCoFqERc0VwQDtRuPI2Z25xYNHjRYI0d7Iz9fs/d2yfs7oThnNsdtt8Tj26weuB0d2K2gsXE08Mz3lruOWeg68K0O/DklSfI/VtcXh04P7/jeH/GamGH4C8+y/x0z/Ho6Lmw219yypWmMyUaevsSlZXraUdh4uhB2T/jXI3l02/x2vVjJjrrDDdy5hM3b1JyZl8eUazQ79+GeE6bJ7wVar1Ea+Jxy3SYyHNjXStWBog2NPF+oPtwxxnKsoC4Mk1Ky4U1hHDnxfMXXJY95xZ87q0XtN0lUpxiheNpoZSZOBq3caSUESvSVLI3pANlGr2K/YjlDXCJyhPQGbVCz05ukZHWnKnqmM5pDDZfKiGVUCN/4oRWhlNXNFCHEdAYbz5FEFFWqajmcJkyWC2Ik9GJbKw+2h9N2GIrOpwfjIOZFhsOCpHhsvExak4EKZUIpaeC+IhOaZDeSRf25Yql9+17LbQ10dy2qRzuRLY/L2m4JhpKDcENVnMyGxC0IhRNzAXzAYUnhagFNocjomO/TR/8LATT4STpCL0osoLqxiTJ2P7OUHzFupMiTGlMIagpi9iIeGQngy26xmgGFd3YMkN8CQO8rJmQM6SimYjeIdzTz08wGxD4MwsUHfs5w5XpYqhsraNiICdCGx4xrgeyUDGSmR7j0kBtZWWhh1B1GmybIkgBjRU0catYVGRNijjaO5YjUiSiW6RGNpi40FvDZU9RHU2jHnRvhDdWlDRhtgEAFwrEDndIBoemeSdyRauQtsUhBTwbIuN9nigtBxJBRdE+mJWWRuSKx/BqOaCbc33t42KlqowIEivr6qgaZlsZguo4bK7jEFRMkBCy99HAyvj9p+hjDw4lckQYJ5W/N1XwsH7K15dSP6VB+oSk8/w5/Nnv+QZ+0Xd+gidPhqNPFehBqxNCoZQ6QPl9fCYsx/4o+aCfvnj9pJgMFq5l8vVfd8HP+5ZH/PiPHQHh277jCQCf+9wKWcYem4qacHWRqD7op58u/URtXF8+B+vkl7l+cqmkTtRyotS2uYJH9NE0CB/B/6EZAB1RyXfajr/1fd/Gd37n9yBPXz7opwf99KCfHvTTw/oZtr7gi7+zyeAcSOIETYaFedYzmjmEbMKawz5fARWnMyYvksN5JAkWOZp63t/1NUgf04Lhhx9/ZsiwPDdVQoS7H/sUP/hv/ZbhXiIHHDSHSFNVijBiKzr+nWKDH+DiHDXpocgq5JpDYKvRWgzXmrXRVOtBMXB3UMOqggeuM6sW2kn47A/d8pVPv56uB1arlL4isYIHvTXuONNlZp6vIFei38AaSC+0FHwaTXTLeaXqHguDuCIdYvt5ZcYmnAXimuV8SRZnVzrH+3d487Nv8vSVn0P6DS3OuO2Z2o6ICbRSvI+HmFSQoEgho0M6otDx7eIOTBTxjSOjPhgSPko9Wmwb+LbZdhkHj2QIT2hIrtgH5R5DyFaVAZ21efB/vCMbH4NawYdFW9ks8CitDbu2mYLu0DqzeNDrikZj4pJFOjkJUYxVHK3JedcQ23HQ5PrJnpPfIAen9U5MK3LRKYcB6o12w+uHHWsJajp5c4uUxxynO3yqrHLDRVGe7Z9x89aZ3W7H8uKOugQX6w5bJrReI1PHvbKsyXRV6XOj0Nil4hywbKQFax4xUc79RLPgdPsec2m8e/sej57uqHNheeslrTeqVKQd6Z5QBeQZNZX17o5HB2NmoU5DNE2mrO0EJOs6cfTKrT/j+fkCj5XdrIg6TiNTmGgcFnhxs3KQK+5vTxzXDvaYGjd0d3o3TAutOWIxYkVcgB1YckVt2aISSaVivYzJ4HJEqoE9ohTDUimAE9g0jc+UBFUSI3ACjyFMmwhoHZNT7whjYjuewUYXxekYA3LvRbG+jHiJKGoF6YpinMvE2Y2KYDGElzL2nrKxRIoVugdFBMLpmQOML0HVQrVChFMKRF+ojDKUzcI43ufiYw+SJMwxMTwHZkCyIzkcLlormNLFCFUY2HgEKOO3Dz/NNuWOXJEcrZKmE4QinmQkrUyQbFPRTsdYY+NxZZCizN2YJSnaP4Beiw0XTEbSHSAZ/SrGqsGSUKUylwnx0dY2/o4dAiQLJe5xHZ/WEgVhwqmoKlUaakGXBRGYMzfYN4QMgL3kOibaMRFhVG2YNIKVJgcygpKditIRmjaKNUres9QLkso+DfFOE7jrnbLfo75QZEWmpEdiXhHdsWB0NfZWyGVA2S1BYyIxUjoio8XOw6k2DgnBTLVpAM6zkbWQNm8Qfkeij/CUKqQSMZwOqUaKQB5Jq3goViYgCTlTpJFpKJVU3d7j0MnB7pEg8CFqZbgrRuopSG/o++9fqzRg0kK4o6I0iXFAYkI29toQtB31h1a6L5f1pdVPW7RMlLdfXPIH/7N/gG/4prd4/PgFZgbmdAJstE1Kj3GI1+FQK0VoGYx33YN++qL0k+TQTwGKcrx3Xn19x8/+xitUhZubzp/7c+/xZ/7Mu6PxFkcIbl8e+N/9H34O/8t/5Yf4yEfuHvTTT4N+eu31O37NP/Nv4vEczYsva/1kMVyULoJpGY6y2GKfWxQ0VXBGYZCQ41ylY0Bv2beyoAf99KCfHvTTg356WD+T1hd+8ecn9qZkdFo63Wyz6ObGF2FsCiqAEzkgoWmJqm2k0O0CSXQ0vhkwtiqCRpQJjWBAZQB8TDVFoAxRqZlbe1TgOaITKmVYvrcWpAzBmiIOXaAp42vXMVWSyfAUIgX3951qnVoOnFqnTobHAuqgI9ISvSMZPH/3bdbze9Tdnh73nE4zWhyzTp2U1vUD27JEcn93z2G6oMuJiEaVYeK+P92z213g7X7YyXVM3y1ho0aT0SkmaDjej2QmZQpmF37845/i537Lt9IkSF2QOlPOzgB1M1oDN0v1GitVd9StUctSwGeyjo0Vhk3atynONvABBlRWUhEdbIaqC2ile1DNoDuqZUx6gHRD2YM7xjSmk94xCrJN1UxtoHZli8Xwd2Oe4R0pimM0V4oVprijReLTxPH8HtRbBGW2C9Qrfp7YuVJqpbBQ4gUX3jk7HNTGA6I5qsJySrw7sRsORt0ba8ISM+Uo42e0qzQx3rx9zoefPaWfG9pWyskplwfeWc987Uc+jJ+TCxWqNaaYSN+z9ud4Pud2f81eZ4oLNScuyiNe3j5n2s/Ml856G9weg4MYy/qCp9dPuTpcoQr3/YzfJ8Se4s7F/hm8PMMrQt89Jo8rmYosuzE9zs6L+88zX74GalzUp4gnlopNSrJyWu5Jnbg/Bu6VY+uc4o6ejeoLZpA+prgzE7oKXoVQx/2MyILZOED0qRJaKG5UL+R5QN7xe8rVnt28NVhGbhPLpEqiMZrOLAWRGJ+HUkYcKoMgsRTSlRhKY5sB+LhoTiVzHJghiRR6cyYTJIN9GQ/7SIcCXhTPoFBIDuAFQSksmCRNZEQUSiGisfgyIgECEoJkJVIRlSEu+hnPEWMeQme8bzOGM1a2d3JKRQ26K+kDjA2dlJWUBDVE3mcfChE+YhmFwXYhic3rmGIkRpFGC8dD8By4aY0hskUXTM9oBukz6Qe6OVEcydwA1uA6WFG2cV0inNi4npPCXnU0RAKeY5odEkQZk3DJacRXUIJA7Z7WE81CkYqkoB54WYfrRaDkcBCkCkSiKeCD2SIoyGgENenUrGMfyIro+88SEAl6C4obphM7nWAVZiaEJGiMp09n1T1SZ5IyDoBhI8q4K1AK0TpFR/yji1CnOqbg2TEriOV4v+WKdkXcx96mBTZHQJLbBcce99GKqqao74AxERfGMxGruNQhcOGDZ17EQpUrJJXMRpOkG4gqkwvmG/FSxj+THNPr5m28z3S4ApYW2DwhjeHwkIEx7ymMq4GH9eWwvpT6SXt8EOP92Ne8y+/6A//ZOBQ2QWM8tyWT7qfhUpMJRfAs49DUG8Vz7GEP+umL1E8jEigykCef/cyJ3/U7PwE6mplHgYERMaD0eCBSWFvle//6E+5vpwf99KCf/hv1kwGSQQEsxwXIv/6//8V87GOP2e2Mly8X/uu/8hn+4z/wN2l9sMrGk2ssB/xBPz3opwf99KCfHtbPuPUFX/ztyoTFMNrWUkdzmAfpgWVBxegKTVY8z2PiBKja4E2IIToaYbUk3sfUhNQBTk4227ZSYhOTCimguUFYGVcAbNEGzdjcfsMllOEk67B0h2JheE1UYdcnPM80OqqVlrk1HYGxpwf0BrXst+iEIwixLuzKDoqzxsInPvtDLPoSm7+aKM5de4GkUN1Yex314irkuW/lBspF2bPkK6x5z65A6/d0FUqpuI9GphDoskKsY6KhsGagaigngmXEP3qnpPD8s3+Hdz7z47z+oafjOLDcETXobgiVxLCcIGYkHPRM5ImMUXUu9YhszVmS42KlqIxyjxjNSKKbm3LLB6ko0pxwoeiMeNl2Z91M2FBqhQSTQnTn1H1cEKajwRbJbsNtoEDKxgMZkzthm/SUe5ofmerliAg1YfYZi0s0TqQKK4X5YOyuYWnj3zEVZTcLva5M5UDIEYoQmuwuDkSpRN9RS1KqsabQ2DHV17m7/QyhCwUl+4loK7IGjw9P+cy7nyfnQgvn6X5PX47cufLo+lXW7vhpuBwld+zKBUt08qwcrp9yd7dwzjPrLNy9F6xLY3+5Zz8/4vblcz705A1e2b/K/d1L9BAUGpdT5XzjLC7I2pE06v4ZN7myLgtPdp2ryzOrLlxdXyPlEYf9gbkGzd9k1guQMS1W3RMx8/bz5xxPHY8zd+eXiHZmVVheBRqqnTBoaZhUmhtujdBbUjuTHRC/GJdvEmQ5ImZIVNIn2jmZ5obt96hszdxWIIVVK7giaRsCyUnpEH1zj8poaNsOMrquqPbRmKjDvSJurO74llsRjCKQmnSvqBzYacFjHU1oAdIbZjbcCtZoKiNWojaEc1H69pktVggTSjTIgm78l42kTvg6IjNqpJYxDxfBs40GxmTEBdQQBDyoCcbghWRu/o4c0/KBhRpNcCLb/58Vl8GZwgzVEaEwX/GIwctSGRH7dC57kiZ0U5oI9wV6jon/xDTELCPu4QbpwyU0xOc4nApCJpxzlAlkKi7jOsHF0P4IJDE1VIKeC2ssSBkZItVpcwgEYmAyDQB9BjVHjLF1AR3RldjcB0KHPI/XXMe+pDH29ibjO9ytjpTxs+1lomllUTjocDaEQ5eCmuEBNZ25GEUSHxsOqUJTYXTICLJly10g18R2o5DAE9b1tMVN2rgk4TA4R6lEllE2wIJYZfWOWh3GK8ByPE7LrGRrg2ckw60+ANkDFC5sY2VZyBj7J1LG0KoVmjc8G1Z08zdsCG/PzbHgwGBsqQrpMmDVmeMQFeNyqLyPX3hYP+3rS6mfLEZZx5oxmtBzRLhSxiFVckR+LR3TxKxtrsGVSCWZqDEYgA/66YvTTyrv66exKYgw9NNWFpI9iRiv5/ah3f57XM7UWiFPD/rpp0E/nU8/i9/9H/3L/Pd+5W/hIx9+/mWtn9wqqZXMZSB5BD71qed8z1/4FJD88l/+s/nH/9s/izc//ZLv/pM/zLDY6WB4AyEGWh7004N+etBPD/rpYf0MW1/wxZ+NwhxMKr0L2YKiRsQeyYJK0qTh7098mlH3e9a+jk1KyhCVNpp6IgWjQhrKxKTGnDaKgd53j2GgxnRe6cGYcJIgiZpQYh5+bx0wWkMpzUkT1gkoMS4KI4fomvac19MA2oox1wmJZHVBbTf41SJ45NZm1NkJRFtYl5VzOm+9c089vELGI06nyuFC0cnoraMhWNHBtbHBPph2e4gRm3kZy/i1V3b1wNruEApFlFRDs7J0I10Gm0LOZI4pBDoefieH01S5vTvx8U9+gg995CuIHhjCER9A6EGJoJBEO7O3QCIB+8AWnTKhsbWGbQ8us8IEowFri/SSIzzgvVOrkBr05tRa8L6iKvTY2qwAj4WUFU8QHT9HwrfJtuDeEcbkRYFShltzfA85+Ci9Y3mBpeANUjppOjgM+8DsNB4S5xWsotG4DEW04kyE75m7ctKKVOHF/dvUSbhpJzDhUV3Yy46bm5Vp2rNKcm/33F07NZLrJzuW25XrufLadMm7777g5MZSwE43XD4/cfmhjzC9suP5/TvM9pT0E/vSaHriHIq3wuPDM04vG47QHTRnKlcoHQ9nWe/I1ri8foXPv3tDKcZedtRZOfUTTqMlXNgdeVE5LUqrt1x9eKLe7FnPM16c1YPLiwuW5YSzp6dhPg6E6IKzcmrOi9sV7w7SEDXU98x+TeNEDhnBQtBVSOmYHEnet7tPLDnhAoe2suudbmUIDlVCV7p3uJsp8456KB9c0oMPJ4Zsk0oRMgOPZKnDlh8wpnNbycdMHREOhqiV7QGuGaPVd/wvqhmrD67VSLGNh7dJMlEIbDQ86kqXM6GVyEoyo6y4jzlzxhBzWhQkiXDMbIgAhSRQElSH2yUcyTFF38nYs3xr4AwfKIK0IGqCs0URdLhqwjBTio6p7eA6Jc3P29YnSJTBfhIIcdQqRQRXH0ypbDjK8eBIL9APJMqsncty5twF9To+Q6Lj5+WOhVKiblNNx3FCDBWj6rjAj80bkO8XrsQ4xBNspT7TYEh6H2LWBIkxNW46qggic0sdjqlz5jYlF2W0fgN0ojfMd1juOVkSJdhm5iRJV0VpxCYeSagRaDakC+JJtXH9kJFUS6bslGg0S444xSZm0dFCbsm6LAgxLlMkmOr7FQoGVIruCBXCFtZ0Ivo41G/iUaaCxGjXJGJwg6KDOkFh9YlCJbIhJbaDOR/Aqnskou/zvbapfARFOoUES3rKiLv7OHgoOtoJewxngMh2qNkigDpaC0UEy0RjREIf1pfH+lLqp0iIMEKdT3/6it/+W38h/8q//Bf4iq+8JSRoJNWU6pdAjMuzBDCKFc42Lno2pfCgn74I/VSV7ZJvXGogW/jSHStDP0UHqzrceSIEW9sn0B/000+bfhJ5h2/+uX+eaXekf5nrJ9lKH7oJMn7J7/39f53Ly5mLi8q3f8dH+YqPPPq72go2T937v4Z80E8P+ulBPz3op4f1M259Ea2+TjHDRPH07eY9t2y+wwZkTQXJipbCeW1YHR/qpTmz7Ua85QPL+oiwqA1zdkuHUskyPszdjGW3Y39/h7YR64UxQFIRJBspgZZNaKVAKH59xaQFyWTXxwMuVDh7QWLmIDPeO9rHBYlSBxPHAo9lVIAzsa7QI1AJSunkesvx/vMIt6j9KG19HfYfIn1H+EusLqhdsK+Fy/2B+7WN6c7pzMube3o/ky4sS9I6BJVqScvjeMCaEWWbAEuCjp9z4rh0mgVrQsdwP/KpT/wA/+Av+GbUgqkEVnZEvG+ab5glpkn2Cn0eUzE7E3LCI9HU4bJCR6SkjQfVeFsoSgHN9/UrLgP2Sx0PYtHxcBrg4fHaDFncx+FFIbXT25nKNvEOp1Sl/M8OeQABAABJREFUb9ZtkREDAEAGV0etMPkFa8vRYihDNMwyHBEZR6IX5PAUrGJa2SecvXEXgdcDs030codk47Cf8OyIrcwXhreVH3/7nsX3lL7jaey4fnmL9sbrr7/G8XimtZUzzic//zatrZQqHNcTtSaPXnlG7yvcd2aE2Y6kBXVfuF/hnCu7VbjUwpv3bzI/rhwm4/hiZYl7Tg3WZkS85OnFxN3xXWRSHl29OsSKG/frQs3BPPJMhIn758FXfc23cHP/gvfub5j2hePpBdPhgpu7hdV3LD6TckTKhFrBfQGUTGE9n9ipcGxnWl3AFnw5Mu1OtKVj9YDKnn5Wil6MNi83VHbABS0h9ExUJywHiypndqFMHEkc8/0AYpe6NUQHiKPbZbLqAKan2Ig4xDi2jKa38aBVNaIM7suIBgyWy4AdN1QSl01I+ZjQhXaUQEMRGp5BSmJSRiwhhjBRLUgamkZK3QbSCrThsEFG+Ug6Jp2kM5qRG0VjcyQmEjnYToB6bNJCRsBEdfhf0ykB1odYD1HclRZB1HW8J9/n10jSYsVkNz7/KaPFEydyJXJCyW3amqRWEKOvEyUdsxNpSQcGmsRQHGQ0zTlB9RHvOf6EWM0Oo4Yx6YBW9xSc0ao3ui6DtEZiqMco8lEFm1lc0C2aqBlUm1hQIsfPsuv4WZk0VEcsKdIG+DkDUcOsgNTh005n9jH1P5fCakBuIlUKHcUwJklEKyID1hwCLTqZQRPFJiOi0SMwGU2gtk3Te45YJBJUynD0+ETvC6U4xRzVM/iRnQ3XTyCsOtFRImEv4/ufyojeyXa8UtnRWYi8Ra0QXcFnjOMoBtjaQxnvdip9uNW3SEmKjmgXAe5k6saiGU++9BFbAaFFxyTwTGJdsdk25Ns4BLmMOM3D+vJYX0r9RBrBiAqux+TTn37E0sZnUWUg/9U3vlIOV52agRvRlUM6xNAOD/rpi9NP0YE0jst22Zjj/i8ykJZkFnLMqtkgf5zX4QiEB/3006mfvuqjZ7712/84yREpj7+s9ZNpHYPPKEyxXTVl8jt+2z/B9fUMwJ//85/iT/7pv7NlcZQmygcepvcvlB7004N+etBPD/rpYf2MWl/wxV/oiOS1zK3+XfB+3nhwATI2hkylrVszpyXuTilK643uK6XMSIwtfkxLG5ILSKdVo0dnlq3Vd574/Hd9F72dERmbxoQyyWD8xb7j6YgIqhWJCkyYKW1XEYEyPuecJmVpTluOlOyoJipjE/U0eg9KSUTHBMD7ipWKi0J02tK4ea9xfLdwiI9wkR/i0bzjUBYKK2KVwhVizm7acX9/z2feeZtGkmvnvZc3eHP8nBiHMSmzCqL0cFp3RGW0tumAahODWxgkK40ugiBct4KEs376Pfzdew6vPIK143KDiW4RmKDHAKjuyo7II2THYqYykwyguPcVTFAr0HWbqhhrOBU24cy4gHEh8oKpTHjrmEJmH7y27X1iVjEt29RqtHDVSVF3ErCi9OhMtRKRZED38XdHtsbDdo/i7OYzyEQLQUzpBhFXVPkw2Ro7diNqJM46r6R1ri6d25uX3Jozd6dEI84n5v3M5dUllDOffzPIvOeNN5xTf5susJYdacnnbm6xeeLdfsZR7s4Le3OeXkzc3tywe/aMN093yA6++tFHsFRubp5T9heU+RHr6rh1KAful5X9bsdscPPuc/TW0f0dcd5xXgrzPFEvAvqZsps5+w3LvfL8xQ09F+b9xKEldzGx3t3w7NkTdDkSL96CS+PGHaknyk7oLfB6IusejSt6lBGJkPHevr29YT29g+oFaZeEXXL2ew67CW+7YWvvikpwWQLJW4rPpHVMT2gZfBQVsHWH2QB/D8bMjHoBF7I32umIXB8wGY1uoobXPRHjYDJE3oxqBZbBMBGIdFQMUWHaDpwDJiygFWSi54m+MZUsIbcolIdQQqkyQa2s0mkUirFBhSvEzOQFwVFfhoCzCW8rYiO24n6mSN2iVAHZR6zAnUjZGtred8F0DFhtxGVCFE820PR4b5snNQPVJIVx6NeKMNN7onXaMAaClTqkrxiIUlQRWTHrOFs7XId0hVJAJ1T7EDkkaGwDkXEoxTvOYLG4BzWgpmwhlRxg43Bi24v3GGLJimOZzAkV5abZ+F4IRNbxMyEw9miO11x8uILI8n6+jRBhcafEdrDOjoWPKIsMUHS4UkIQbawlcN1eR1cskhqDLRqm9AyaDbh+Xcegx0xJGa1xKU7ZPyO0YFbYCfQuzDJtjqakh6PVkObgjpYOEpiNWOA2G6ZFx8uBqV4ibYG2UiSxUvBWPjiUFVW8txHnswVSMb0iYpTrrH6mlAnNRnonzAc2QRPpBYkCVQhxXI4kMooCHKxMlDK+p8zh6mmZmOqI9ZiMP0+E2QsZTsfpRYbboDxEVb5c1pdSP0UEGlBVmXSLDG5uiZrKzHDVxf6Onn0ctnNCqIOVFz6aK0Uf9NMXqZ/2s3J9HTy/MVobLKzxrbzPqy2YDr6jbv9PkhwO43rmQT/99Omnc8InP/Nz+PDrn6LX/LLWTyvzcN/JeTTSMpxRv+3f/h6ePNnzK37F1/Od3/lR/upf/jR/+S9/GsSIjYUOQ9KYPOinB/30oJ8e9NPD+pm2vuCLv7WO6ZDGYA3gwWQTirFIxzWJxTiI4doQbWQrmBeydeY6EbljaR21RmiymkMR7FyZdcZa4pv1FzZ783yJlCsknZ2BSNJIrFS6FByjVB2V997oKXTxAYnuhtVAc6Wswi4cJIg80TSBgmWFDvPB6H6klj3R522jcDSTpLHmkZvzC276C64fXRLrkUudeWQzk+5ILRQz1kn49POX/PCPfJK7deX+/kiunXOvVIGrAjtrA4irObgbQORCrtBdWLwQLSkJDbD9jEyV8DGlEDnTLLlN4VNvv8fXPrqm1pnsSSmNvt4NcGoYSN0u7QxPR62jYkQ3TBKzYJWVTMfsQKbTpZM6JiwSHdEyihVUaX76QGi27gO1IDEOH4wHdYmJIAkJ5gg6K10HxFW0Dlv4eQMXa6I6nIUew85tckn4ePAHK/MsnI5Hwg3xxKXRd86dnjiIsNYk25EMwWNByonunZp7zhy5kZfM+pSqj1G/pMS7PH76EWYLJpEBHd4b777tHPbXXNdLZls5nm8gk+lwzYvlDi4nXrTkQi+Zr17nmMrpvlNkJpfOvjae6YF2f8s0vyT3kIcDz88LNh3ofI7rND5//+OUUC7rgbivsLvg9rkjpyPn1hBZeDwLL9fn3Hcj40CYklfBrbzF/HjHORdkOfKa7qhdWM8LfgzmfkUuJ2xeyawge8QKL+7eRuYLmhqZK9MyGr08bkF2rA6zzpSeRHZihvB7NMF70nOFnEn2FEm0jHa2womSjkilT7D2O2id/Ukp046lBzbv8BgtiMZ2mGSBOKE52FNZC2eCfRHwe9a0wbexiruikqic6Qg0YSKRXEYcvc9MxejaWNSH+6MXAsFN6bGOSbklp1jYbYcnEyWjMW2sFbao2ZlEVVk8kZzH56ck5gWRSjLiU2qbkJUVD1CbsRzAdkUIdzDBax3txOug+NdS8dia7eJEpjCXA9lHZMSFgSvIlfAVQZg2MesSpAXCSskVTeiWrOmUTQTGFmXw7IiuTJEIg7nTcRZZCYEpClMLunb61FhiJRksT6LQY0RASplwD0Q6UQSyIB3cViQOSBairpziFqEMx0+eKThqM2mFHh1yx2SF7Av/f/b+L9a2LEvzg35jjDnXWnuff/fGjYjMrKrOqqymu+m23YBast0CHvqlkWXJQmCQMBYyD35ACIwRsmR4AAn1Cy3ggQcjJLBoLCweWm6BBE8gW+AGBI1AqLtRt7u6uiorKzMy4v455+w/a805x+BhrBv1wkNiTEQo80wplFJG3HvO3nvtub65xvf9Pnzsk/SNKAseC8NPTBpZeBAbocHV7phkobcTJa5Ec6o9MOuVQLgEOwtmoo/OpAtDKwNBeqdQ2KJTq+JURF8zrheibejkaKmMKPvrnui904cQesClsLVsP5xE6b7voyIEDUoOPFwDk5xsTxjRIhsLS0LUL1SOWlBWztHQYhzGhMrgGldGQAsoOmPMEEGUzhrp1JG2USxdVZjufoNgtKBqurPHEGSCPhoWCQo3XqIq35X1TeqnUvP69KF8LN2q3biLkgUQkdd99ANgmCqLKU7qpybxop/+XeqnsjT+wl/8CdsGixrRUj+1yCcta+9UqwiCf62fgt/9XeOv/Gu/+aKfvkX99Pjzz/k3/7f/Jf6z/8n/Dg+/8fvfaf3UWRFfUR+ID8KUxuD/9Xd+jvpGROe/8i/+R/iP/oUf8X/8v/wky2akfT2grz0o/qKfXvTTi3560U8v61dt/cIP/qRNyZWZZtbhaZntkhEEcgMvZYKREwWh45oRPZFsTyIak1UiFB2dPauwN8xnjEFD/6jUF8+bKIJqsPoeVSkzHUuLcES6nfZAoIjho1I0pwAROZFQVYYpQyqTpF3YQ4iq+AQqaXUvHgSade4MvA8GhtlrHt/+lNruESrlM4NpgXpPx6izsvZnni7O7/7kHzBsZYsrZZ4YXile8d4YWug2JaNDBNozRTvuyvkavH17Zjm84nzZqMuMmRBPndu7icUWemuECcEjl+uF3/v9t/zWH//TjP7MIo6NijHnZFqgxwracXWgoGWiDyd05NRDFgyBAKMR0TAxXCbcgdCveSISxmLJs1HYb1DOGD1FEhBhSFRMkukQ8cwflbFIFoQIsMys/YTYCtFRLxzKQnQlfAeRS2UN5+pBZ0L0gJWBoYSnQF7iwNEPXLYzNk8Uf6KscF8PYDfoUGQUjAI0LpczNg3evPmU6/UD57Vh906fguOdczw0ns4f8LhDQ1jmD5S4MHNHX5Whws1xcH3/Jet2pNiBpgtyK1zmJ07Pp2SODGMyaP4Ik/LVecXnew7rmQDujpVXxwPXs7BeZ9a10b3h/cof+8FrxODxfaGsHcQQXXj88pn7V0fWFtA2Xjejxh3rRal2YI6FGUX1gApMHNmicd3OPJ/fo9zTR8f3pi2zggEhZzYJmhhSKkbymZoaVQMdDRkDLQ2qZrO2b0RzQipNFrpUnI1aKlubeP82+OTzG8ohWxFLTOnM3aNRCaISlA42iLFRBHCBMHSqbL3jPRCrYMrWG5gChosjnlNrqynSgpauj4hkRSF5+NRsjuvhiDgjcj8I7vYoimd7NSMPXtooKIQSo5AbWSFi+3rqHvJHzByTm4wpdyCCIo4JdIOOZ/ucFmpN8SnSkej7e7FD/ulgweiRsXkxRLKJLOHRA3rGS8wOSCj0oMWVYZ7vB8mQiSFsSnKvdMI9EQjGDAiVRo8LY3Qo+V4pShl36XLZ3SOh6agufoRIMdZxfP+7t5Hvg4mgYjmFxWAcEJ+SvWo14xleuABbKYR3ZoxFFNoFm4JNjnR/RfGBxUqwEF5Q74Qo1Y50ASGYdOPCikhFdQIy0jFNR+ZwKgMPoARrXxklmLthVpmmRGbRFZGJHgpRUZmy7U8H6IXYLszcc5gq2+a0cKKWHIjQ0pXgspch5GHBfEF0gGzpzPCFSe4xecZCkZioOjG80/2acatSkpXjiowFYUZ9A2/olJNnyoSXkgMXBuGaDXouedgHio7kjEUhBpgG8jVf6mV92+ub1E+5v0PqpxRTLs7q40U/fQP66WYxDkuhRqQLTNNpkvcuJWKgyM4udIY3pnqfF8qLfvrW9FON5CwuOrPI8Tuun2TX5Nly/Wf/kR/w5//Dv8Xf+TtfoTj/sX/iTwHwu7/7Dhf2a3BwuDnzT//T/zNevfkqC4Fe9NOLfnrRTy/66WX9Sq1f+MHfhBIycsOTjmmKEO8NVAhX1LJZSR16eD55p+2Mk0g7ug3CBxadxEdDVxA9UMaEiWbbE+xcB0+ALdnaC5DP7BXzjpQZUKJkPGK4s3Wn6LJDZdcspBiHZIpFoV4VqwWKsLHuwmpKuMMIhA2rgXOhjw3qxPPjxvrYKdvE3eHI3f09WhakTPSxcrlu1El5+3vP/Pqr3+SyPnK3PNGH8Pj2zPNxy/9ufUJ0wUIZ58ZiBWzh2pzH8xWdZ0IHd59MeA0mU8ba2dZHqAtzXRjyFbX8FNm+z+ntW96//R1+8P0/gelTbrpxZYRicqSQbId07RW2rogEIzYUUBcKU26IOnANRo7rETHESCDrXqwSsQvWvLeiO6HB7GMhCwwfX0NXre7MwB14nU2EGQHI5ipNN6ELMfKa0KIEHe8XlM5cFd8G2wAzAzrRO9XThl6iMuktl7Vxc/NA5WdYN9yCeXqm2Fds51see3C9PLM8vOGLyxPtwyMHuedVfEKXDzz6wniC7cOF67XxG98/cn9TGLbxBz97JGShTjOtn9m2gs8N1Sem8gnFbli3wdPaGFWJsnK6wrLcsJ4aS8xc+omx/Bbvzic+XR5wOdLGlceLs5Tg7Fd+7dM3PBxmvupPTAfhscFY4UYnYl3x58FoeeYZZnzog0s4dTaoziXew7RxqAvXNaiiLNcrr8R5rE9474RAkRntldGgTg0vQqMwunFgonJg7RtU+dqVUG2g8oyUBZOKhGExEzKxhVC6YRin3jm1E8f4hAOVKQawZhxfKuF7pCGDHijZxlhKzthCS15Tamgef3DvINBGy+8rZEyBjLv1kRE6wnGPbJSTjL8olREOOKrpREEc8WQYOZGuVZGEdrukaEQyakyC2sMTsIwoppbRgZ0D4iH5nZD83xjO/seSoyMdZWdODd/ZmRMRiqnjOCojeU2RQjtIhiaq9DGYrKKhbJ7f0WqFCAPbD4XsPCkBMaMPx3u+JitGuDO6oxJUgTXWr5vVJq0ZV8N2rs1g4DgNG/llT45QCrXQyo2WvA7bRoZpQGRgNkCdCKezgmxQgqkrGoOuRtfKhXwvbJzRcExuUTKa4Xg6vlFWB50PbKHI2PZr6J4+nrG6IjIQE7xvFA1MV0Tm/NwimUjFFJeVdVxxLoQNehh4Qa1QxInYQNbkKqkj1mnjkjxTkbwOe6eUIHbeECqoKUSn+4fcv+gIkgdymZHR8cj3TzSj68PSEaF7/LJQ92s9HdShznD2fVOy7VQUPK8NdmC6x8iHP2Q03srM6I6Y5735ZX0n1jepn7pviDohyekC6BpsO0LlRT99d/WT86KfvjX9VPK7cqnv6fX5O66fFmAGGsLg6XHlhz98xT/6j/4GZsLbtxf+2l/7W/zVv/q39gdaqVtUN37zR/8O07KzC3nRTy/66UU/veinl/WrtH5xx5+eKaqsrTPVGUalxEzzDaSmLXoMTFKYBoHW5K8QYHXP0HvDRNFidHc6gUc2H0W/oFSi71PqCEY4h5iI6HuphwNp3b1yICyFK5INPcMH8zSjeiXYMD/sXI5B55konpNq7bgEazSmWFnEwQKNQsSMx0BicKwLT/1CbM/c6jOfPZz50W+/5lCOHKeZGI9EXDke7ti2wqc/WFifB++/GPzsq84X779i9JVDEabJaC14LkLvneVQqICMK9drR6RSygHVBC5P6hRx5JBNeVt3goGUIz3eUI+v+OLpx3x5esN9/3VuiiBSQBfE0xklOCM2wPImt7dCmQ0mH6grGpWBsUVJJ4B0hMbaViabsGpIRB5GdjiqA+E5AfS9uQ7A1XHdyEc2insWhmiSqoHccGus2dw0bhgIVp01PjDayFgCgxJgPiUTRBwrAnTEBqV6RgTigif1jVImtv6OoQO3wkkHfTlykplpPrKNjiyVbbvws/NPuDPj0/tfhy6M9T3vn06U8hqn8Wt/bOH21olxw+P5TA+lewKD5+VInSr9MHE9DA5xYro4txwYQ1n1SvdgJii9cVsqbXXWmHj39ne4u4EqK9qvRPyU209glSNFj7Dc8rOnKx8Ihgl9rAkEHoWixvm0EVYJJnpz3K7oBN4GcX3DzOc0r4ymTLcHVAbj0rm2Z3qZswgnnLZdkgNlhn1sb5GeDk/6PuF8xxBjLRPCBEwchrCG02Ww7FNvkWCi4TjX7iyy8XBz5FZPrH0Cm1CfYI9/BQOxhqrR4kLVgfuG2MLwbFGTllevJIaD4Y7idEm3TES2dfWdseJiqBkRu0tQ92mfp4iSHI+jlge3IPknI2pGWsRwjB6FYhshTpr9I2HG2jFJVyuRIO2RGyNOI3RvvkQJ2flLgOpgkjzcjT7SuQPJaXGle5aZ5J4JKgZEtp2Rr0G15KQ4gHCCBgIukgDiiL11ci/aKYKooiMdATIc0RWxTijZtOcNU9A6YVqz2axe6aPSoxLI3uoNmySI28IoXskfXjnERuhgk84Qzc8JT14MyalBBkMcHyRvzFNoDYSOUuYD0nJvUh1IKOEL3VbEzhzH3urmNyn4PTBaXgcAY6HHxjQJvV+Q+oDVCdOJaMEhDHNB7MBQxbXRohNuKHO6KHxFdSW85Z4ZxywzKs7qLVvvHEokV1Lc9msm9yrVnqxT7ciomN7t4nvgsoEfcRuEbgzpQCX0Bo2R97MgH9T4hRFn0CAKjNHTDeC6t4IeGJHg7QhBNP+8qTJ6MLL+OrlqeF7/L+s7sb5J/eTe8+AisR/YYXI48qKfvqv66Ye/eeGv/Kt/g1/7wQXX/qKfvgX9xJa4GvUDo9XvtH7CDLHGsCuhG3/v7/+Uf/m/8b/BI2v5yCQsiFJEsvQlnHWb+Ot//S/w5//x/z2v7p5e9NOLfnrRTy/66WX9iq1f+MHfxR9YIL/kPVuugkFYMATQOZ+kB+BG0QZ+xbCE5I4Jjb7Xh09AxyWjJea7x2+6ou6Y7VBNUYYoZ20Q++xIAARzMLkwejYWheaEwARU57xxjEpOWa+gSmyOtqDUnKZEhyUKyzgg25SMGy14dIITESciKlNp1H6G52d+9P0fskwH7m+MImNvX3M8VnofPJ7f8nf/9t/n8bHz/jL4sDasVFpbsQFzmfG1c1sWfvPVG57PJ9YB0Z8QgufTe7QeWL9SjtNrbo7Osgg6OVaCUg1ZH5i3G3h+4uH1A9N5prYn5PCwTwNTMKoFKis17omQnLZp0FvHSiVweuSkA80bekFxz3uOloz4bq1hxTAha9dDcpLC3ugVlpNsILQTlvFsQfFRYL8uwmOvoh8MH5hNCehVBQcTxSNvEsl0W0CM3jZ6uxDeMiIlhR6dRsPLhs2ObH2fnm+ct2c+++yW+fwFeq3c6QGTlfmuM1fh9JVyXg/0qXAaTjHj2m7Y9IqWxiefztzdz1zWlVI/4XSteL9mNNVvWM9GuZupCjYMYdBYqYcDcZzoZ0XGbVrl5cS5rDzKE1fbiFWRtbBtDg8HHo6/zkkbW7vyZrpnvN8orjzozBenE3K6sui8Q3gdl045LEQfjN6xQ05XoyX/JySYxhNiyb/cCL7anjmpYHJITopAsY7JivrKGK8ZPtCqFDFkB4YXy4lq9QnVgkonLNso1QNE6RG786BTBqhNMClP3pnbxmGeExavGyHktFM+sl4KPWwX5hPIgnjGJMS2tD+4U7VisjOM9tiTe04NRRUzZYycrsJIN43m1DZGgO8j/l2willO7m1vA9v/AQHJ9zl87GK+JFQ4NtBD7hvhGYcRy+9RbHh4xld8JBjYSkYZegrTfDE5ffQ94qFFKRYgCRcnwDT3rJIqHxDUjS6Bj/xNU5R7Mqc8ULLYqAh06XjpKcLUMCZiBO4DNfIawqEHYxREM1YWw9kkJ8SBJTvLBaHQte1tf4EwyHFpMLpDGfshvyAUiC3ZPFRUK4qg0RnDcDOQBtGpDhqFWkqCvW0juKaQtxkv0AXcD0QNRmQbZ6jiEpTRqCVLEGQIMW6QuEP0QDAzRs04ed8PK9boPvYyqIbVoPdnik6ozggVlfpH8RNnb+2sBEYfg1oULblXBbvrxnOKjyuqC+oVZc5GuejJxfEU9RGW1w4womM7g6a7E5YQbsKxDJ9kvE+TYTZGR/D94JXC1D0fVHho3hfD6aMh5LWnMv+7EgUv69/79U3qJ9mjnk4WdACs6lz1RT99V/XTNAW/9dsngnTyveinb14/ITsP08+YnL7T+in2h2TZoJtRUKTudrUs2Ulhkw+dlKAHjK3yN//Wf5D/wD/8N3i4fX7RTy/66UU/veinl/Urtn7xco/pAsOZC2zNqeWIk1bdrTdKUdCVMVawwhQ3jGZomRL+2YxqE8IV8StbrISC6oRKIH3Qy5XhOZ2EZEAMhIiVyQo+BGNisgOEUrnkgwObmSMb8AgnLHkkVgSNhe4w4okwp5VCaAruQKEZh1DmcIZAj9zvihVMZqIrh8n44umJuFyZ7w+UOhP2xNYPSBe0Kuf1kVoOTKcHfuv+txgPKz95/wWnGFzXDu2W5+dLPszs8IM/9uv88De/x9/+u3+bPlamyRiXYJJ7ni8VscLmH/BzTifmmKn1wDQfaDfPVD1xjMKH91eeT4Pr2rB1IKUxzeDNMamMraE2YQounR6NYgACNjFQuldMB0ajdKfHgJKxErN0EIyRN/OpKO6xb56SH5VLcjBgv8FEms3DqXbAkRSzPlAJgsEpgtmcIReqKu26ES0opCOhy0aY4joxpOGtIyGMBlBBB12cFhvCStHB1jaMQZmE03rOKvp65nz9KVN8j8vZ+PSTW9blHZdWuPTgqI88CDzUV1ysMsnGHQN7bBQ33J84n/6QqVhqH1fO74R4fYQtWK/CfPeKMV+R6YkWV5TKVf4+zV9hfuT6Vecu7pjWEz+/PVGqY+H0o/DVB+fEkRiPLP4EOKd2ofTBpEablbVt1GLUWjjYgUOdubRn1rgy8wqicr5eGNvE5hVkZq4TYgt93djOhvUDSBZ+aNwQUfDRUtRZy5ZGDayf83ObC5fYKL1wFweqVZ65cl2cGzpz5KGlS9CBCSEqXLyjF6GWmXdfrWwPxt2rO8JrHmr2OEbOewXVjlJygjtKDjkj2CLh5SrQvKU7QnMOaCid/PlBtiWGNLKyLSfNw1PEKoHszd8ekdxKKfk9N0m2TGS0oMigqDMkG86UKWHpkXyuFobI3nztGYmJ6JgHRZXQdNhIbLvAg/AM1onozpwRxAdmELLRekM1G8aqzUQzJJJxQ8QujBIgvZSCYqxjMNwwKiX6DiOe94PbhRY9/34PhiuqM8pCH8nNWswwE9ZLoynUJfd471PGifbvtXgyhUKuSCT7BzqhlucLnQld2baGDKVSsRBMTkAgIWi0fN1mjDGRrZaXfJDLYNuyFdOk4rEkK0wcjxvoExobk3XaOGMOQxxxx+R+/wycaZpYt2RxKa+BQ4q5AsM3ZEpui+iEiDN6w0dC+tFgHc4UdxRZgI2hz4g2FjkSoQwPXIxhKWAXBaFhe6xIx4R52bkzDXTbQfmKckimzVDEl5xAW3AZZ6om26fhhBbw/Oyz4TH2iFjeY7sGbayUuKBaCc/iBmFKl0nP73CRvHf58HSivKzvxPom9ZNJyb1O9GsnvmiQO+OLfvou6qff+9nMX/nXfpt/9j/3O3z/+6cX/fQt6Cfv6UhbpeL18J3WTy4XnA3RgYhTpOwuLCAGXWJvqN2bcCMA4+72kX/hv/jfo05nVMqLfnrRTy/66UU/vaxfsfULP/g79JzEbCWlRYxgNqVtZ2ZRpHekFIYa5p2VE6Nmw1DIQK3gg9xwS8G3idIVbYFKMCQwWRjRyGf0MHnlzirdr4zWECq1GtJXJIJrqZRa6eGsMmPlAM2p0hiRgNLNzxSrFAoW0EewREFb51IHYRtTbbhNXMeG2cZMUNVpYzBmuK5n3l1+zP39V3z+yjgvxsotB4K2vod+4XA4MKsyfX5HC/jyiy+IFY4CZUy08YrpsDL6iVIm/ty//x/C/S0RZ4anu0lmQeozd+EsZWZZ7kHuaW2gZkzFiPWMLAVswibHt8Zoz4zxAbUbilRsU8ydGBkTEoHufR80C6aCe2db0zEwyUCdrEcHMIgYTJEHCgwc3SO9nZDkWbi3vKnVgVrGJGZRWjgWBzTuWP2MRk45S8nbefPKJAvSAtvj3CKVKHAdQUSFqGzriVkV3W5oV2d6Y7z3KyFXlrFx2GZqTLSonNdnpqlS+JSFllEYv6UdVmx65ns1eLYLzBN31zsu8XPqImi/w7fKWk8c5wtP6zNXKjf1E+Yyc1m/5JPjLYtV1suJfvqSicp6OuLLA4utTOt7Fq2cYkIOD5y+eseYPuMkB3pfuUyD1i+06ZnXTjbSFkPiibu68UaNa3E+RXh/KXwxFm5Lpcbg0+JcI+i9M9uMxIoKeHGuOFWPrNeJ8yrEMA462Noj0+nAcv+GteakcMTALNAhEGdGQBTb27BuspFxbFQNqnRUGzeRQOURF3rtCIMHN4rewFQY0nFWYKXVyqAjxbFhzHTmNhiPzlYnZO55SGVBUCICC2H0QhhoCcLP6QrQyqIHmjeYsiVPoqUI9YFS9hIgpREMU9QLUxhGoaFsIiAVGx3pz0TtKZB0JrxTpFP6ytWVIQUzZ2KwDKGxfGRn00aKZkGpw5DieM4rCa2opEjIw5yA9v3vd+ZQBj1b37TQe6V7oeiA0ZIjVW6QgDIG1aHtXK4eguDJmpHASkdbYGNK0LGCxsDUaOPK0CsxGdGF5TKjeuCqQTM4xKC0DZHBVI7ECFrfqMUxd6QXTJWDNYYI21BMjFpAR8e7EyVour/GEGI0LnSqK7NMTEUZY033ErfUMEpAeGdTp1tFwql0imdUGwyRGzaHLfKgBtB6x+lMxYlQ+gpFNtwKTRa2cgZGtgpuQe3BwY0yhIe+Ymw0NW4o1OhEbwzL6a2GM1lhGwqjUqtQzME+sI5nVIzoK4EyqJS+Q38s42DFlOYXzGEWYWuNYQHTTF1v8TEY4RQZVG20eMQOM9O2IhhnqbhWjvVIb42LCEw1nRV9MEwYOqghHDBi64xwjlMBK4xVUJRSC+t6ptbG1laY5hyaIYRvFATpzsv6bqxvVD9JReKARfBnfvvEX/kr/zq1NtTLi376juqn4TP/4Hcztje/6KdvST+lO9b8xHQ6faf1k3nBXOnnA+toiAl4MkJFKtjEFgPRDNtKDHpXCEd3N9aLfnrRTy/66UU/vaxfvfWLl3vITHf/oxYcc0Q2pHzcvIUxFGHCR8vJRwxkNGJsacMVARuIGKqSDIjBPtEsaX+3nk1BJC+u9SvhE1aS99DHinjlUO9x/xI8oaGUheaKF6hyg8SCBPnvd7sx06CeLgiCHwrVhbWtPMbgTowbmfAYrHTcZ0pM9LgyLoNP5tdMt87N/AlfdeEgH2hekC4c51vowTquNNZkNMRg0gX3DcS56kqdwJrx+cOn3N4e+er9V9RYqAza/I5JNmYmxrghxPB+oZYz07zzImSh1BnxTlU4Hiq9VEQFm49YPbCuV4bBVHPSEqUQccn3XgV3kKHARC07kDUUoe6cH4CcVG2RLoGQbB4MSZZFyBXXa84Ko6B+wPZpKT05LninjxN1CSQcfHzdMGgihBdQQRhEbAxvDAaBEaJp0a5GKumgb40rDfeJIq8JTnQRKMrEgVWemaphmlGa0ZXQxtIDHcGpNW5v7oleucQjUw0+eXjF9n5FZmPqR7a28Wqakapcrs/E6cJ9XxnHykmDJ2n06twGjBo8yZnPChSbeI8yWaVez4idWGxhkoaz4aOxjUEPpfQJcMZwrCotgt4GB/kRp9Z4Pz4wDgPRmXJJYbnJoMng9asjx2K080q53vEw7qltI+SJOK4cbr7HoHHVBa8w+3vYEgE92RE7T4gOhlzw2ugowwtNhKGAF+5s4RDBFMrVghayR+4zmtYDZoESI6fC4RRRNByxQC0/7zKc1jqtOaMu3L66Q2vGErKkJ6HJxfLBnjuoGWqS0+ne9wd9ZAwgKuq+u01AY+evuCPdcRVcFPnIXwlH+iXBvvNCRCFiBQZlVIg7tDiTk9ENnEBpkQBlEaGJMxiggpnh47Jfj+lE1HCMhlZjRCT7hKCY4RGsUvB9uhsIKgOjUxjM4liAjw4R+VoRYlSGgO9xFCzF7EdaTmjfmU3p/LiGMBfL93vd8DoxZoXYslXSA1Ho1lBgpbOWZHS184ppoCUYUVCfkolDEFxp3jBGiv29bT1I2Hy4Yj7ln5eGjysuV8ScGA/pFZBBlA3XTrDhJeMs4VNG5zQY1vd9ROmR5QNWQMTTySOVq3RsmfFNqV04XMFLA1VGdK4CWnJfuT8aOhfqENhGcr2WisoAz096SGK3UcloTt6Edm5kflbgeFwRKXs8MqfBPpwthNkKIwKplgXVHlB2NpuwN6JLOgzYcHXyscDIw+MY9EjINwARzJLIhDE6ok4bThqDjOGef6nX3ZGRkRYT25lOnrFB9iKIjwepl/WdWN+ofnIhNElyPq4sk6BletFP32H99KPvD/7H/4O/SdDgRT99K/ppPmwArDLxPH239ZNK5+a4cj4vnC57UkIFkIxORt7rRIH9wbF40Ibw3/9X/kX+uX/mX+UHn3/xop9e9NOLfnrRTy/rV2z9wg/+Ygz2cELariPyxlWEZBZIct4iAavNhCEkfDnSYhzFcpoTW5JnxRgfmQs90A4xRU6XgB5n6tzxbohMbKsyTQt1Uq7ticN8x4ixRwEr4XmDGa0xoqNmmFrerH3DY6A6GO6sTZinikbNjcc8IafiLEPorpwRLI5c+xWxA2W54Sc//UPKr/8Gs91no1IpRP9Yea/cHm/QV2d8u3KoM+u14M2Yto77yiefvuHzzz+nHAsf3nWQQvWZkFeUCBZgq0FXR1awPripM1ihQU7PRscY3M4TX11O3NweONy+YtsyniPS2Hzkbk7an2XnoYkYpgVBGH0gpB3awxlsWEkIq26aN33JZq4SOa1eSfCs7Fy/tODLzlXIjb3YDJYRJvl43exsD8Qw1XRx7uDqoCBRcsI++n7IYd/mt4SU2yBUKGIUqWyh9AEeQrGZWie6n5A6EgRrlbBGvTxR5MpmSl3P3Mzg3bl/+JTn0zNbf2ab7mk2sArb2xU/bVzMuETlQOVeJx71kfdl8DAqMZSOY1LozIzNmA9HpHeeTytaF7Sf0D4odEQ6ERAyoSoQW7o0uhNxJbRR/Q6s8YPXC2/mxvbuif60YT2wUMo08fzuA3ZYOMwLz89XpBaaXmjW0JvKs280d2YrRFkYfoP5xvE4YbeN8u6KMuMtb6gqHRNn8g2XdOGJGk0catAI+hgp2gRKSVbMkIUhgrvjbEwlCMnvHEOYSiEqjNbZWGnnR5bjkToZW79yWA74MEYXphlGC3oMNHKz6NFyf1DJ79XewDZ6Ask9suBDwrG9nWsQDBeKB0gy1NXBoxAygTQkDI1l5xw1+nDEAyN5NKHG0Ir6xvBBSEZQsnVzIGw7Z6Qkf0UzBtP6itaKqdBHZLQhwDzB2uF7891wzDuIsumBvfwR10i+PoasNyADGCBXQkZOwTvZFinZ1iZkk94UmmVIpruAHsTYCFWKg3rQBJoOJoelVYrvbEWMNjpNlVINiy0B2GK7eKuILruQFWrKcnxvq6yy7gyhoI0gpIIItreR9r3pMhiI579PCHgBApeByy72pVIBesa6VcHMccuSAG2FNPZ0mCujJCNLNLk/GmAYkxVGbwwphAk6VSYqhBGy88p8oNowGxQ9oCRDKF+zMiIjkqoJ8PYe++9Y6H2wsFBFwYPy8fW6sbESmvusk44JLUrtl/xIbYeUi+O6uzF8TTdEMbwNLCttEpngHTFDFXofmKaoDzbGGKg6mzvowOIu9+v9lQz5I/LSy/r21zepn7wqrTsyGm+/uud/9D/8x/jn//n/B5++eXzRT99R/VSk4J7v7by86KdvQz+N+pZ/+M/8dR5urlBuvtP6STX4s//Q/xMtytYayEAsy2eG5+eP7PrJnSIGw/m9n9zzb/5b/wQjFNEX/fSin17004t+elm/ausXf/DHhkpBKQxPkToihZTv0x4zo/eNakLQk/0gJEvCK+4ln7i746Ph4gnF3aepKUic1vJJu8kd17NR5hUNpdiCO6zbhTIFp5ZwWCuVqRzo14FfB25p2ZVdGAmGaEH7xqNfqVq4KQcuAlsEd8OISMisYMjHKXcIswc/26A9vEG3wRc//wN+/dMjN7efcF1/SrcLh7JhMjN0TjuzF9SPVK2EPeJySju9TLy6O3JThYdqLNdgap1uxhQPmCvaV47TlTZf0RoseqRgtFgRe2YYRLshApbDzFIGrx7uKdMMa2NS24GnOQHzAJVDmusdgp4NquG7oB+MUSi6UGxhjGDIwCYBjBZOZzDpPqHbbft8nGyHIu4MsvpcTFmHZsX7YWL4Oafl4Qkvd4FQSqQgCVpGKKqjXBkx5TUiQiJ6nYieEdBRWKJz9g+IrpjeIGE59TJniytegi0uLHaEUTnaZzC+5HF95P7Va96/e6bXu+QA+S3baFQ5sEwTf/+nX3J+vGeLBt+7wuFC/5Dv48OW5MJmnWU46hdWChcpTNq4PT/TS2ebOtcW3EXs8dRBkYy1biPYivH2+sTD7Q1WC2YHNu/8zrufcH+44eF65PzVxmkIdjzQLxuX3SIfozOZ4WK044G6zPRmrP2KbI3QK2YNb4ZapY6ZY5lY44lJ4GKdohMgFJeMD+GEKKaGf2xPiy0nxlF2yaLoGBnNBa7lA6LgUhA3pC9MshCsSG0Exnp5hrGxLAvNL5zPX3H36rM84/ogXEEL17jg9jGi4ogErkH5qOoGOZWWArJPdfeJbZcgLGgxIIKC4CIMNcJqHqIDSnSQnq4PVYbtjEFPBk4QyYPZUwkXAbGdSQTICBhCMWNEocu0iy/HpSVIPzp9CG14NkpaZYjTouE69hY2oYmirhzcEioeu2Nn/27q9A9wjCIL1gTrxqCmqLZIoH+0nfUUXK1x1MIBS3cAnV4kmYgj0rUTki2ACMOMSwhjCCGGRjCFMYkwPL+jtkfTRiSzMx0rsQ/rG+Erg0EVcHfy8YSheiBQil5yuErk95YZ8YlgSjcKG2jDcltgtkKJQb9eKCqYCb1/nOBvLMVgKEODzTdUKzf9glPwqLhPXKMSUhhToYpS185sNWNeBLO93x2iSgSoH9CYdyG+36dQRAoj2LmT+bpidwuIVARllMo1HCnJPUJy6DGPbJ92SUbliCDCkJ37U1FkWL5bkQ9/DrUyYrD1jpZCH4J6YKqo5mcGYGqoGj32WJQKoUZ4UOuMbHkvjkgYd7YmvgjX78r6JvXTtjpmR0yDtgbL8YpIo9j0op++o/rpb/6dyn/+v/CP8T/5V/4Gf/JPXV7007egnw63P+af+Iv/U7wpMo7fef1UFyfKiWneCzNMv2bxlYjdXQe4U62AB1M55v8n+XD8RT+96KcX/fSin17Wr9b6hR/8iU0IhnchXLIFzsimOc8OsszldVBl7gmLriYYinvyBDoDsbSqIwORgUgatVvsbJTcB/DYqLOyjYKJE35CNSeu+ITraYcnO2OAWcKZzR7w4TkRcs2NRQO1SpkmNITeBkih7C1QpoPaHSmwWm7ShzHovKcezwSN6WSoO+u7Zw6/8Ws8fkiGy/1UaNvGOga2HmnjzHX7ijGcbVwZ/Yqfg4eHT/nNH/4mzTsfLu/58U//gGEFolH8hMtgKFivLFKRIljcMLwQ0ZC4IKMxqjBOYExY7Xz2vU8J70zzYPQN0OQ3DMc0BQiASLAPx5CAHlPKkh00nbGatrupLCdsI5vkxLIqXpj2+vUNCYWYISY+FrIgQFgSvqVlfTr5Mz/+65xypUhwLxmdiYCuO99RMgLDxBj5cyyEMnLSFQJNRgqS3hhstOGUOqPS6FuDERQPnuoFtwt3xzu+Op041Mr9J8HPf/Jz7u8eWI63tDr48PTMTz/8lNvywKHBp3GkXYPLgKd1w5ZbrDvX5w1f7ngo3+O2Gas4o2j+nkUh0sbfcFqA+2CpRoTRTyvbs3Ort7xZXtPW4PF85vJ0oi4CJrTHzvblysMPXrPFhRIbZpW+dWo1rA1627iZlcf3f0AMZaoHiMo9dyxtRjoIV+zwyEVBjgt1ec27d09YdKycQa87mHmmyYLIQpEJ7UmRKW3j2QUphkmlSGTlvUCJ9BmgpFvBNybp+SEPhR4YE2rG5dLxybi9OdC3jtTCGIHgiHYGHbN8f2I/bBVRFs8IgUjekHUnw6goIwvecPa9IzL2YbtwTTEIokawpvvBF9QGIufcF6Kmg0ILIjmxVFOKCpt31Eq6KdogRk4rc6CZ8alg4OEYUHdOloQwlYQFj5ZT5aKR0SmHPVSASufAiaE5hS4oDIEQmhwRNVTq3k2Wr7270jQIyb9PQkCC6kqY8qF1Os48z9S+H/RMv55c1pEPGKRfuIlgG3DeGmaK1UIfBfwOY8sJsXYQp4/AbcYcytffTs9CAVlQ9RRvJRh+JQi6jGxc3r/1qZ2VvacSkbHv/TntVc+/r5RsbvcQ0ErRmWiNYStNlG4DicYUt6w8JBicgcRGkRMiQWmv8LYhh8pTX0EGt654K0TRfYibboQRV6ocKWpAS9+DCz2SCxNq6T7QwDE2oJZK6SkKY38vIiKdzqJ77CY/MyHwcI4+Zfvifs2GKs0c+1i9J5YurxCqTFCcbaxUFN2Lk0JLRrh2Katk42J4NglC2+0Png/IxdF4Ea7flfVN6qe5JD/OffAbPxz8C//V/wMmtjfAvuinF/30op/+P+mn4/iEx5/+Jp/cfMX0S6qfRP7onvyin17004t+etFPL+tXb/3CD/66L6jLzjwIpHR6rNR+pETF+VipXvOJOkKGHzpmkoDqpFrvFduCRCX2KvURikcyS4pMACgO2kGDvgnGgaIzsIF0pjCqCBudNjq1VLoH8ERIRyWru0MLgw3MqJHT1laEMoRojqpS48B5Z3NMpPNoiCC8ZpaCbl/yyQyTvaMsP2foJzRWih85P28IjSiD59MH+rhwXR/pozDGYGsXhJmbTz5hNeGrp3f83R//Du++/DlmC85Ax0aPjtYD0SboE/1Q2BREPa3PviA64xrocsOIyvc+/T6fPDzwIVYaG3U6EN0YI7J9TjrEioiiYvgAIm+MiO8G7eStSYDHYIgzIphQihlUYRvr/h4vBBUfh2xY0oHIFd0/s2qGhcNooFfgSITna8QRyXarEYJq2rAjsqmMMvBmjEgmTlLejJD8cz46zozbazaBgiOlU1UpsRBtUEN38TWj3rho4XD8lMenJ1Ym3nzyI87XL2lNqDZRZ8f9A7MKx6h8+ubA01dfcXlciLqwLRubrRy8M7aNqw5kUjhuPNwurG1wjonH5cCrBerjV1RbaGNO5oYHkxV0mrieO+/8A/f3hZCV3hO6fDzMPLy55V0/c2qPcHthubuhvT8hrBDgGJfroOgd01RZT53+LByOBadzaSvPrbFWR+uZQ8yYFrwGlSufLoOnm852GYQsbK4ggZXKMk4ZnwVGGM0iXXi0nKKxYXucSaYJ15ltOC6dOgndVzZvFPJzcCkMDZoL0yff49d+7YfcxMjp54DwhpaBaIfRU94kmIWiGS9btTBGwwwGQkLRgz5SqBYHiWAy0H36KlhOVsMpvmGRjo1NhCIrGgXrM6IZkbjER/aTELFhfaBxZa5B61e2AC0VitJiEEP2VJ5DBJMLUyg9PMHAuk/cuzNhDJG8zqOlOIuB0olobMVoGrQINAqTVkpXCrkXhiidzsAZseXhf2eoKLlnoZbNjZGHHkNQ3/c1D9Yy6ArmTg1oGngRoitbOJQZF+gu2ZBmgxidMRpKpdhCEKxywkOxmHdBPSXDx0/pdHDfGwLBxLjuB44sv3S6JIdGY82JsSsSBbXOkCtj9Iy/4IxQKDMhlU0qMRmFCwdg+OAaGcOTaSN6B/ZYjwlWjTLPuMGITtvh2yMaIXkMaNHZGLh2VGHUCTOBWCEc02A28iAdmlB/VRpCtIGVSmXkVHpkVNORdF9JYeAQ+X5LOD6C7J3r+500731BZ90h1JZXN+6C7oK5hzNjTJEsnGHGOjZUt4S3h2ZrYxGGd5pAyVNesuEIqn58XPCyvu31TeqnqkrzjjNow/nqw4H742DW6UU/fWf102vgRT99m/rpp2+/x7/+b/3X+ef+mf8WP7o9/3Lqp51blpH3F/30op9e9NOLfnpZv2rrF37wZ7ruXAuHaMRWudE3uAQ9nkCvlBhMOrEjiCla8CgJSRboZaJQ6NvK8I5pRUOQHpg5HSd5t/vNSSai31LkGbWNPj6gPlF0gWaMRdm2jaqFmQO0FNatO8v0Ce4NkQ0dFdPCdlqJYYQI3g3XmlOdsRG+oRqEnDEb+AAdxtjb9vRpgsuBzz//Y7z+/hvWDqIzfRtMN/dcPqysj2dOPgh/zXWtdL9wWp9AH+ib8MXz4O/+jb/F6Xri8fHn3CyO9BMSHRmCxvfoazDPDWVjrM50PCIC9M7oIPWGJ5/wqfB4eubP/+N/jutc8NPGrLcw9ga4anR3POUnKhuiDalC80G3To0jOiRZETH2yeCCDYfhoEtOtDe4KUdcOyNZ1hQZwBV8JVMECUZu/QK27TX2RrQN0wpoWvrF8L26fvggbKBV6W3DR6chaC2MPhIaK4ZqQbUhU0JuJd5zw2AuCyFGHVcqI1u+PCjFafqB9fDMNBrn8x8wysTtdMOr2vmdP3zP609uqPGB7f0J+973aBoc7xLOe/PmDafzE2OceKh32DTzdLpwFkGmAwc5EmeFTw5cy1uidypQ6y2H4w3Pb58TllsXVO/ZThtlBsqFO2scS+Xtuy8YIujNglnhsp65mwvXcs/86a9xvjzzdJq5vX1DPz8hfWMp8OqmYNr4cm3ocSIWofUrnWcezz9BuIcteKyDaSr4esWWhf7qQH1+pl0mGAtdzoheIAbhBw42J9PFnc0kobemaAiLTcgwWpwhzoyxoqNw1AltwkYlVHAr9HDUH6lywGPitszUuOC6Mz2sEpoxMHVyiqzKAPoOmC4YYfvhkY6Qk2EJo/rIyIZCSdWFS4B2hkB3A0/+nxu4TVhMqHdGCFhBIiA6VpQWV8KFKqAaDBoxjkQMTDrQdpj+RPcgYkUdChMCbFxBK2ZGcrocMWeTTrigHx0zZnQPVgc3wzTjJB8nm4NIhlekTM9MWopVRBArHHBi6+n+iUIfhk+d8IaIZ9skylmDG61MAjE2KkEJpfWS3BTdEH3GmiBtYjre7EyeBroBsQOcV4Y1pB/zd5Se0TEXosO8PPChXbAycRuV0q/4lJELdaeE4DEjIzlAWgadlVJrvocCcQWvM6NWtO+xoK50a8Cg2g2lv8J2MPkoxllXjnYlWmWROwJYxwmbnYvNvNaFxUeyhoBehbVvHOcCVyWYOF/h5uaWaD0dC/pJHmA8uKyP2JIPO0IHHgnkVguu8YRXQwWmqHQ3wkfGmDwQFzQWTGc8VvAzmwZQkJgwmdPUExuTXFGE1hPIPpeJEppOIKl0gmbJG3IddHpG3lGk5DWMB1IqHeju1Dlv6WM02tj+f1MHL+vfs/VN6icXRWohhvJ7/84D/9K/9Bf4y3/5f8UPf+MPXvTTd1Q/RdwAL/rp29RPrv83/tn/9F/ik5uf8oj/UuqnOdtnEAuqveinF/30op9e9NPL+lVbv/CDv5WaG7AMnAbamOSCjYSPGhllCYKQbZ8yKrJv5h4O0enRUNmwOehtTRaEOt4bRe4pmk/gIaMV4T03ATaoM5fdfWtWmXyAFwKjD8dMsBJsrmxyJrtDJ9RaNvQslRZXfAwmO2TjUnRchKsHIUoMQTyZFAxDykQdF6gzcgM/+hN/hsv5kevSubmtfHX5kp83YfDI6leKFh7fvmM05fHDiQ9Pjzy8+pzpRtjszPvLE4/PnW275fF8gbqwbldqKLV0Hl7nzahdrkhz7gVu9va2htNkoGNA3FDqgTeffsb52glqNnEBH6m3EoIOJbQzoqZY9xMunaL3acdm2/83wNMybZGQYETx3eI+RjbYRe0pI2RGuIW4gxBMfwzkdDH/AUKY65RW60g2m0fs7IVkXXjEPkEviCrb2OjkjRht+81b6N5ySj4pZsHaV7YNRtzg5Z5uZ0KMYSvDlKGDab3FESZ7SgD41fh7v/uElRtifcVpVNbrlVeff0obP0NtAp1pfeO8dQ7LDa1PvD81lsMrlnhH7Z3W3iE/+pTHcWGOe7atpxNinUBu2NqZwjX5GaMjElzOH+j9DFb58Rdf0npDa2FCGaPzerqDbXC8hSbvuZw6y+vXfPhwYlsb8xREzet0GhP1Tnm+vEfakRqv+OTmezxchPs28d5PlLIQ3SlR6atzW95wefuTXUx8wHQlQtJJeyycW6OKEFbAhdkmyjijEmzXldEtGw69QFWsTEjMybHZHSqdwbW95/7OOLcrLYTPbhfECqtvKJIRgd3mr6IYymiOh6AlQdCjd/g4oY1IhhXZ/KXdcXVclEG6HyKS8YIIoqAW4E5vgktOx13G/u9rHhRJTk7uS7LH2TShNqFAoDvY3UdOSwszaju45iO/R5zefY8tJPxdJGMkFMU9iJEQeIhkPHkhtKJ0iC0n0OJENALdhbUjFETmnEz7Jf87kqeCJj/ltAXVjCoGYzBioKXQOrQ2siBSgoFjUulRMvrmI8tRTEAGYzREZ8L3ZmUsHUQqGHXn6eTBIixjF+s6mKQQA1YdyCz02BCf0p0EsMdb8rOu+T6MDFwIitU7ujTauGI7Uyx5ZbmHsTWsNtBzsnnGxI3eMV06UYSNJ3aiDHWbKbPjrCk2R8VkQvxAlSt9TU4XfXBcDGGllGTStLVhOjGXFIYxFOkTVkbujyEI2VAX+56oEoSnwB7eEBS1WwRl83eAM9UbzvGc70Ro/gNotK/bUoXAJI9na2R73dgZN7UY9EZxYbac4jv5c4NOJkYN83QjFSmM1iha6V9/Bi/r217fpH5qo+1xJfYGdYiwF/30HdZPntWXL/rpW9RPb5rwpz/7fd6PE1pufyn1U4zcADwiv98v+ulFP73opxf99LJ+pdYv/OCv9idCF0InlCMMx0JBrphEwpmj0H1kkxLsUYa0z6YAFYyCykQwEOk5GDUhihJxyUbYPVtvWrBYKNsFF6WWhR6gMmN6QOIJs4qQ+X0n6GMltNLiAvu01mWgYojNuJ/xEWlRHwIYOQQYyd3YK8tDAyTwUA51YtXBuQRcNuxRqDcHumxsw3l/viYcdlQuG3y4dh4fz2ze6DfBdXnk+OqHnIbw5ge/hn4489Of/Zxt7BwXLdwtr5gmoyydbTPwB/o6OOvEKM4kneEDQom54L5wnN8gbWKmMvqFUTq1lBSZPgBNwK4VfOQGa3ZIJoYrsVvhszRhv29LoCGEG8EA9bSb71OxgTGCvYhB0okQ8fGWBFrJrTfyZjc8bwKaXI0EqybbwXah8ZG6ECEYOTXOkoe8KUqAMkNUxpZid+hA2RAJOhOdy/56KyIVFWeSwRaDwhVoPLUrfRbmeIP3jdN4hxwG4xocClwnZVufCA2mJViOxmid6abi48pBOyMGQ5QrwjpSUNaaTAoNRdYT95Ny6YW2CSUqqkA4cznw47ePbCOx0LfTDcdppnjQqvB4MhadUuCeJmJ9YvSVPjoaO7x9CH0Mald+3e7p0TnHiXOceacLj5bWeisK3lEp3ExH/uD3/wFrUw5zMFhZ2ehuTMsN1q9MYujIgpZSDDmvhE5QwNQpS7ZMXj25GyrZOubiDG0onRKFh1KZxg19gzeffMpnNzNjPNPtmMI1HPeUrh5KlezhGkqa+WOgmteJYoSC6MdrC9hGXi+hDGFvJAskCh7CIKfMClSdcSbCycgIRvE5r1065hmTcWLn1qRgUx0JUgdUCqYgVJyWMZUdRu1EslZ0RiO/Ux/bOSPAzXE6GgMTATyjYCFozBmjc01RFzBGR62CtJ2vBURFvKAxgNgFVB7khUKRjKYUPDFRIjR3mihRdBf9QR9954E9MWRjiOeBkZKHA1XMCiOm5CjuP9/EMArs4m2fPX/dUliaIwKrBC02Zg3MA9sF64jc9U3J6xHoYyBW2UbH1BjRsUH+rpFkmwjyoQKdbQSmFVGj9sHkK9OY2WKl25XQAn5gsjsmO4IXiJz+FxUkBjMV7w2xdOyoCW103DTbS+dK9ODacso714VqM6IreMtoVAgqlnsV+bpFAjXJQ5YY7gGyEeWCu9D8gIbkgUiCTs9rSBs+YGJiskKEs8WGVaW7pUvCoHseDg5qjJFuV9OMr2SnQ6S7ykBEab1RamXtG3Wef9Hb+8v6//P6JvVTb+kqKTahkQgO68oSL/rpu6qf/KMU14rTX/TTt6Cf/rD9Mf6Nf/s/wZ/7D/2vefPQfjn10/4QMPWTvuinF/30op9e9NPL+hVbv/CDv1s/0HYeg0dgsTKbs8WB4Q1oDBl0ChYHoOE7p0BEyEFPgljFs8qeqBjZoCP5LQXP/xaSZVEsIwsSJPTWYaoQ15WYNjDBwyhSUEsosslK+LRDl6/QcxNQHxxGTtVtOLGzIHCooxLR6VEZOtFL1sovKjx/eM9yt/D04cTj8wemL8989vmvIQTreWMuEM0pF2PbBmODFhNvL437z34TvznwOBpFG6UYI85MB0XrDev1wiyV17cLVh/pfKCNFbF7nrQQ20Bbp84wCsms6YJYY2tPdJ6YCvh4JpjT9h+Rlnkkb9IRBFcQR+QGccVpOW2MkqJdAxhpr46c9GyewGE1z5uLVdRrzqOj5wYtOa2zkR9aCaW4Ipo3w61vmC2I7O97ISeEbUZ0SgfEcMQHPnpO8STy8CONQeTnqKc87IRQygR2S+8K28wk76is+GhUr9SmsA1OtjJTuaPybIbdCtfrM7ROkSCmklBZCn2sXD501A7YVJAtsPmW9bzy/HxBpDHNhteBzcbz6ed8ttzD4xPqRwYzvSxs1ztGn6nyTC15LW/PV67rmbVdqcuRp7fvWJYD3pRSJxYTlJXSlPVp8P7pmVf3n3GJDzROqFYWbrjVmaKdU/uKNhYO8x1PPKMazFIwFy4b6FzxtnGcO6unuH/39g+5HY5dSP7ItDCiUWlUC2K7oG6ILkgXJnFaq7QOUTRZGAA6Y71jIpimSwUCHYGYs8ZGDCgHY7mrtD5wT+6MCfgYmJBcKATv+fkqAiNw8V1sZPPW19czey+aGhKD8L2hbY9hRJ6VMSGFZgTdkwXi1tikUSVbDiVBLyhKhmSChE3r7r5wQneHxQ7eVwGJW/yjKP36z4D5hu2RE/YH4IpSQjIKpHn6cs3vsLtjrCBOCClOEfCVwRW1nm4fsyS4I4SUjJOpEbBP1fNnRM+YWbEUq51Oi7G/vv13laBqECMnuBLprA5x2A+ROrb8e0T2g1hgbpTouwlmbyIlwf9eCktVRmswBsusLC60fEZBSCR/av+cYedSBShGHwlqTsew7JP+3RFAOlmQA83PUNM5AAs6jox6oTjc9QNeKteAWHIyLuh+2HFCtnQntDwwI1BViSZM04zoxwmwY2oImkBqH6g23E9Axu10P3wMj/zsYJ847z8zJkasuyNowTB6b3hJsLmgMDL+Jfv9R5nQMMwzkoUma2j0gRcBM9be9wcLzuCMyGG/JmrGrxxm2XDP78cYjUmSd/Oyvhvrm9ZPg054UGyP9sGLfvpO66fXANQX/fSt6aexfsL/9f/+F/mTf/r/xE37/V9K/RSazYkRwXBe9NOLfnrRTy/66WX9iq1f+MHfoxtahFIqGkpvRmsXpEx7Vn7QLS3kkxvuldFzw1TZLcgIzTeqeE4vQig2Mxhs/ZoAXM9JJ4C3gXtwXfJm482zptuyvv5QDwmuHZ1BNvjISKZJtlAFHlck5oQls2G27fbiBloy/x8gbIh0JAYuhTAntNM3h6p0Bpc2uP3eZzR94nfbe2wprLcH3p2fsd6Z5hmrFR8rF3nmIiu2HFjFOV5veX18xdufvUU8uKszp3GG2ZG6MuQrLtsjbgtdjkQ0ZH7mqtmYN80VwxB3PkRlqpWbwz2fffYbPF1O3NdPeOrPyZogwcPBSNHnF4wZwejjSvhgsjtEFvK2Zvv/5i1cv74pN0Q0wam6N3fJM7qPoiQMyNa5j59Z3mYFoqdF33Ka4u47l2i/OekMKkQkr2gyhaLJ0nbwyH+APNTEAY3XlOqg72mcqCaU0jE6EmeKAjJTtWS7lsgOy1UuWrEofBZKHKGIorZwXZW1Czf3d1i90NteWe/Gu6/esa1XhjeWmxmmyvXicHF+zW7o58End2+4XDoxGdtyZraVD3/4c6Z2pF8HF/fkmdgBC0HXjUknFiZudEY9D4Pv33/Fw+0DsPGjz17x9qv3CJ0pFjavwJFzDw7DONhC043n7WfMdsNTM96PLKSa9I6tP1ORbA6ryu//5Pd5Pj3z2as3HOYbPjw2Lt2ZbSP6O1wqYUrXIKxjCH00dPmSpRyJMTF6INMBZUba2B0Fg27BUFDJKMS03FBdOZ9OPL99z/HzNxyPR7aPk1b3vCYIiMBV8DFAC6XW/SG/o5oQ+4/xJvecKPsOo558Z9qo4ibUfZI9JKfPEuQkWwoONHVUC9UL6UnZD8yiIC2vW3EEI0ZDyehU4Ps0chD6ZTpGAkQSjKxh2FjSrSAD8Ix4CVgEjPzzHWcEIAVVA+m4diIq7jmBRAWzBMUjKUig7aymdN64kI4OzyODjoZpSqeGM8bY3SSB7oPSQBCzFEx0tmgUXQjrqOZ7IQgRyWvxGOTUfxB9n8yiCIZIdqANcba+0kQoZhyiEG1vSNNCGHy0m2g44g4auKTzJcaGSmAUTJ3w/bAgwY7Zhj0KVOQAQ9nWM0VglI0WK0c5oM0oWtmk4bKhPGOqhO8uJk8mUi2NbpEHaTFGB0q6GSKCEZ2ytxJmVJF0QYwpI006530hxtcRkTzUVBjZN/hR1BMwenb4lRrQhdjjWaH29fVRCKJvrO6IClMBiY767qjKIwKu6QqChlgQ0Rn8EQxcitJiY+C59xuM8K/NHS/r21/fpH5StYw6tZ4OCmCdgrO96Kfvun6CF/30bemnm/2c70Ow8cupn77/G3/AX/pv/tcQhx4v+ulFP73opxf99LJ+1dYv/OBPJ4VY8X5FPeGiIcDkRFeIApFTXzjlZhMT7i2ryFVTkIiyabJPqsz0obgLRW+JHAXx8fsmcgWesnI9crMuWgjPBqJtzWlrWFbbC0ExYYxDbhRhhB+wadDahuuBq+S0pWBoTAjZXNWoFFWkOxrZPJSzMacuNzw9vsPsyPJm4cN1xbYTt/M9crjn6fGJiKD7inLHvBxYtpXlshEfNs7XQS9Km85Ie+QwKZfzmRCY1Zi0EpcNYmLrn6PlNSHv6PEBn5RalFEWymrEGYYXVg788X/kz9JVuVpknGCf+kHGTsZoFFVgzsmGgtphvxkHqmsK9dxRSX9Bit4xVkox3PbDhFV8NDz4WiQQoJq0CdccGQ5xxl43H7IhpnscxkChRdsdnX0XJp3QQWgKjBS9sU8JP1rC8yYWMZIPMSAkgdfuFeotjS+YpnQMrNootlFGoYthVrhZG4dZ6XbhMr6glRve1M/RtXEez0xyxOuWUahyxGTi8d2XwBUmuIZzMwp1zJgVarlB+iOvbHBpz0Q9sG3B2K5U72icKRoZwepBaKfMhj4NDmLc6sSiE+fTmSjBOCirnZl95nKG5W7iIsJ6gr5eYVxpl5Vab2G6Q/sB9QuPfWNQYBO8Kufr4DgLtQW6wu/8+Md8+faRyR64/fw1bb3STmdaC6oWoHDoNyCDJr7HP/ZmK79nW49UWTB1hl8RTeGtIjQaG46bMFVjI9i8cRPzHkEYME889YZZTu0GgYgkp8aDsF0Q6d5G6Pt1ZY57JyISlC3KcOdEZwbmMARhE8FFSDpS7EJkv44UDIEoeSjd4xPyEUujtv//kdyavQ1xjpxaijhugUqkCOuKygwI4RfwQGVhr1ZkV5p5BAylRx4ezJJNQgeG4boDhKWRAO6R3wfbduZWclIIQ+io7G12ZDwMFI1IKSkdRPcGvGSnEAO1fY/ryQRCc6qvMRC/EnT6OFFUiDjk90mVkMKILQ8OJngITVNEy86+QlLkz9FoBFIWpphYm3M2TQEYCbz/yHIRnCEZ6ZiKQk/xFy33CCcjPs7uVpD8eSonlCO+CbMaLieGDCZ5TfPBVhrFINrgwW4ofoP6Ifk8sgtG6bRhdIlsuhw9mwurIprCFRUknHCYSmGqhseGaLJ68mHAfi+UI9BoozFXyRgQAy2RTikE5MLwwWhGqTPuI+9f4enYGsEoCqXg7vQICrIz32DgaEDJ0w4CeORkfIQhoozoeFwoWiljyQcFoXvEKL6OW72sb399o/pJBiJtP1yfAbAAe9FP31n9pFPns0+vSB0v+unb0k97JLb6i3560U8v+ulFP73op5f1y7l+8Qd/XVCraZf1sX/BZ9axEWUjECod007ElUAxDcpIVHHguCZmgh302SQb4iycQs/acl0YZLZebSYwbAgjVtCOR8NYqCirJhMgJzakvbcbVg0fW97EROiegi2/1MaIG0qpiHeIjqqlyMVQrohf0XBGrDnLkcqHLbg5PLCNjXeXK6/nCb1dOD0HzzJRmRhroJ8LjLRTX352Qlx5fDoz2c85zIN5Hpwp2HzLzB3iT2zSOG/Gtinr+S3LjYINSt1YysZsFZWFPimnfuFSDhwOB37wo98GoPZBKZVWjkTfMIlsBZOVTa8UT24M6qgsO9djBVcKJQWvO4NghNIkn76qSPJgPCMkYgrjmEwL0uI+Iu32Mj4+rlVcjbWD2cJtKH00rELTPJi4DNRqQqwl4bDuSbUIHzkNGvvkBiX6ldlWNJ4ROWBWSCpHZePAJk9Ez4ZBykqXR0QmFt04a+WdOL0Yc7nF18q1HCEutHLlGmc+v/0hIUFZDrR1YFvH+zUbFmNhjCuyCM9jxRwO5ch2biyv73nqDfdCjwPDnMfrRinfx+0DxSuTLIywZJBczxStrDQ2Aqa8CWnbmFGWcmB7LNw/vKbHI7hThtK8002IuGfbHhBb8G1FOkzhuG6ErazaOcU7Hg63PL878e79M6M598sd58tGeOHp/ZWxNg4RTA2q3OFm9PCcmraOMZh1gCysOFe9YlVZ24rt4OPJKmMkmWisgthEtQOXa+MUV8w6lYpLTpHHWJFyw/CJiiWYXDaQnp/bGIh3Qp0mTh05GU5utO3i0pnW3EOGdTZ3WhTQhTYGsylFEo6OQngwYsNFsJ4i0mMQErThmCwIldEaWiPPbALRV7aquCjaB6ZK0848DjltjJHiAU0B4RtKiq2BMEKwEIYGTQZlgFGIEPqQdN1EMIagk6I41qDEzBojnSABIRcQQWXK768vyKi7wE5eDWw0d7oYoYJQsVhwT6B7/RijsUrXAlEoovRtY/oYndgB8hn8Sa6LUwgtDBEY8+7oSaB37HcOd8+DaTgrV3rVdD/s8SgJp0vaB2YTJq8EFQ9jyCA0cOspxt125wwU8TxISKdbwePCYgHR2RjcsuB9QjRFqWCUgDKUWWasTDkZ33Iq3hiUcsREibaLwiL0caHYAdOFaA1UGAyu3igyo/vnCIKb5dS/Cxods53PNbbdUQNFtnQkhOE+pSOCdHgNz/bEFj3FsqZ7ABlgDp4PEER3ES+VGJUShknHxxXTZC0JGaHSDAFhvrG5E0UYqgwXagjT+CMX0cv6dtc3qZ+CjOmKbXngAmQ00MuLfvqO6qd/3w/P/LX/xf+ZUMPlRT99G/qpySMAZVaeL+svpX56/IPP+Df+l/8Z/lP/8f85D5/87EU/veinF/30op9e1q/Y+oUf/IUNwmBtDRWhLjPblvXopoFJThnxSkShhyDekwdBWnO7dko0CFiLodFYXEA7TbK1aojjjI8/NScYQxErmCkxjAile4Cs1FoR8wQKl4qUmRZO9L0bTcHRjAlEo8gV14ZabgD4jIah3vZNI2kYHoIzoQLbdTAxcbCJ9fGRV/PC925fc3rc8Gfy9yuD+W5w8O+zPa/c+IXv3Qwe3/2Yh9cXurwmeqG1Rijc3hekXbEtCJkY40Jvz4isTKUhZcE0mKdKXY6cNzhdnZiOvMZ5uD1g6ly2Fa0LT+tgsmzWcqAxCMkB01oLbefAlDjlxM86PYKIGfU5b4LWwa55Q3EY7iiVIpp2+bExGIQblQVh/nqSM5V88KfRWGqwD54JPyMyGCMneRILeMFdQSXbuFzSfh+RLA46nkb5/DQEVjFCFpY645yofmZWpfjCJM4yzWxtJUzQMuF+w3uDeXpDb39I44nndSTIwuFQbpC2MCu0xzPLq4X3b5+wgMaFtintqmDBtFSOtwe+evdzXDe2eM9clIM8cF0r61qoZcblkeHv6VExKRRvhAkXOhe7cI4PPD8phiAlWHlijSeOFY6vKl9+uLIdKvNnwR/+/pnLNWhyZiwXRISbuOFhqcjYuFzecTgsdLnh1DfUCps5V9k4XZ/5wy9/xlwryzLRvRF18MXTH3LuV0I7Jp0VqDphzLi2/LY5WCT3ad16cnw0wAfqhvVC82CNjLTQhWhOTM5lfU+thVkr7hPrGb786ROf//qndN4yWNHqICUF32BnsAzU068AKTwtZ4Bp7w+AZMNgttv2nVBL5hVp2fcImu9T0n0+bWrIACQh0K6C1F0otwvicNBCDKdIRb0g0XIvkwSqayRXZYycXAc9B7eW3CWJHQIvybUJJH/evr2GdnoMWqz0aLhXTJTiwRz5u3aUoUKM5HQhI50bIogbnZUMp2TkzkmI99AFH3m4RxKGnYfOgocSzOAT4ULboyNigmsko0srXYRQR6zjYyBSEZ8Qn6EH1JETe5KV08QzRFEMIyie0bYiirhhERQi44ORfCvE8H1qPSL5jIZ8DaTGDIn9drQ7FdjdMNEHiFF0pgzwMaOSnCR1R5sjDCbtWPnAOs4psIcDFbGabYURyEhLQ9ge5dqn6UUCkzQVBMm6OciEuVPcaWN3Ooygy5XWM9YkkddwKQutD5Jd7lnKkFcpPgY9PCf0exGAiGYkZn+4sgePcN0PE1QGjVVOKViHYVEz/oQjO5TJ1FBgU2dWxdxxpnQX2Itw/a6sb1I/ZZTK97jqPpCTgpXpRT99R/XTUi9sveExmKblRT99G/opH8lw2c48P/70l1I/ldn57POfEWW86KcX/fSin17008v6FVy/8IO/TQLtI1ukBIZvSDW669dTKY20hX894cD3DTQINkKCLo65sYxgyGCzoHinuDPEiLhCXACIUCQKFrKLG8XJSMMWg4M6Lp21NQylLhPbdcXRbKGT3G1UJdkY7LycUGII+MeWp45yRaUkSNbZoxPB1nNKMNUJ88CvV7736g3PbcNlY7mB0wrnMJoXsIl4aLw/wbuYkeOV+fAJcycnxhwZaly/eouKc+iv0Dhw6J37w5HlcAQzrh2u/Y5SH7iOC8tNZV6EtRXaKbh9fYcenTUemW2muuSEt1RcgmvfMAVzRceJIo5ZxaOwmfHkV24Qpph3MWfARsQjHo0kRdgOi/lYE297Y1ya8iNagslD8L43II2Zfk6bPJqTGitKHwP9eINkMBwMzTasvVGwSTIcfAykGOEpYYOcEpZoSCitXWkyEFOaBFVXGmd8ys/Ze/KPrAulfcFdectXz888FeH46ZF4VkY88HwKLpcr893COhREMYHH9x84HBcOdyv3D5Xbg2FxRefCl8/OOt3Rx2eUdo/rRtMn5nrhICvluPA4jKVB7Q2zkXwS6VxHx6NznCr9+hatC3evHlhPV372eytz+ZS7Ovjw935Me3ZkWjjYkd5gks5DNer1lAB07VxqYxvG0yoc5yOvVTmeC5ez8Pi28/0fvGa4s/Y1DwBPJ2o3hmdsCPHUSJ5uhgTIT4RXOorUwtBGaxeqwiIT/SpoySjScKP3jH6pBE0al+3EIkeO823yjaKzXi8cl3tG7xlZcU+QcjQikn2U3w0j9tYvN4FIdol77AKnMD6SOMSSMwTEWDP+IoEY1FIgwMfuvDBNoUbQfSDDcHUu9Qr+MQYzmMsBjZlDOGUEureraejeZLlf+/sUU5080FH4KKyDncwswMgWu5AgNH+3iUIxIzyFb489ipVpLJBs1xMxlGy7Ey/gR0RT4kYMRAYmlS0090kcjc6QwdCGeQVXXOacvBPAGURpEXQtbMOZS2Hznu9nHPDYSFh1Q2VQdFAkIytIze8nsTNQPh7yBxa79ApB40h4IBZM5oxoTGpc6Ww0QDGMKgVxw719zBel2PbgI/RZXTl4ZaghodQRbKrElA9AzMBHQwheHQLhE6IFxQpROu4d8cDpyXMxQX2PwJHthDFGOpMw1IN5byzdBHQkhhz3PaKjSJ0RT1C+MRFh9A4y3eRHGAGafLaxN+9ppoUQz8NQeLJs8mCe/LbIUXbeoyTZXoPANfBaiLFHuWRkfApgd1qFDdjPGKjSNNIt8LK+E+sb1U9knFPCWObgT/2JrzhOgvrxRT99R/XT7/29N/yX/+U/yX/3L/0t/vhvn1/007egn27shj8A1g/C+fTLqZ/uXj3yT/5TfxUVwWR+0U8v+ulFP73op5f1K7Z+4Qd/FhlpEM9n+qLQR0NKzXYcOoO0BoslfFUkiP2LahH7VMpyoq35pSqZeKBTyOr3xsf2eZMJ0wWJa8JLI5kDmCNlkL1WlsDjgDEU0bI3XQWIpEVeIu3De3eUu9MBWHN6TcKPRWS3PwfovmHJhk1BjMFl2/BaKXcPlPXC5e0Tizo308S1HZn1gdDCV1/+XZ6fr4xxQy1noh2ZDI53Bj24ts683BFekAhMzxzLGZ2CaV7oDnUKVm28f3ri/uEm38MuLCyMO3j9/de4NqoEtnVmDmzkhh+RTcgqufH7zu+pAb0XxI+MMROy4dJAG6KWzCHAvSAxUWzemTAZJ3DaHiUpCHWH9GZEJPb2wNAB6vv1sVJiSl0iIAatr6CGlbwuJAwVQbXQXcAb+A7E3dEgqBAa9NL3a0SxUVFfKP2GwOlyQFSw0TjqkdoLl3qA+cS13tP1e9xNyqvDM394ecd6ujBjbOG0AvM0cVgKfnKO9ZZPXs8M3bi7q2xPgfrMUSpTPXN4deR5/ZJ2G0QV2rRRSuWoR2YVTpx5FOfVcSYELs8b61oxeUWZvsQU8MLolccPzod3G8vywHNcKDNU6Yg9caNOv9SEtQ/ny9PKW1WG3rJUY76seB3Ug7McK7Ua6+nKtjWsd8Z2Ymsb4YN1G1ipDC9EwBigVhihzJ4Paosa4gviE4QQOFoMVHCClUDnI217TzXBh6BiuMBlW+nakBK4d9pYWSZjmSemqeZnygxjymmbNEwDp4A0dggKIGiURCYFKS6CnFyiaOwiIzLW0OkfZ6P5usKhjRQLovSAvk8mC6C5fWAoY9R8nd4wBlOky6VheOwHXRN8h6Unhp2PM3I+xkXGLjh2NbrD2AeiA9OgRTbexc4PESmYBZsFq3cUZ3JFnf3ANvZpeflaJBfJzw3J5kBE8KiMuO5iMYMmIkKPnYkjQZQ1p+iqxAYqth/aU2irZrlAiWAeGWsZntNij/137YEygU4EjpGHUA3JHVVTUCUXLAi90mgMzX10jJUVxaMioUCydlwGeWVlVIN8peyfOiOEQqGKcJVswpTojOLUnk1+pRS6KzCoskB5RkfkPcaFWidMjT6S5ZONdbY/TImvuTSIEWnMQDwPsa0GLj3h2pLxysDovaBa6WMjZORE2Rs1KtmvmK8nIiM4jhPi6dKJdDZkS2d6ctgjWR9ZSD06JiWdA31GvFMlL95dP3+NRfIIJITquWFu4oQ64YH6R+f8y/q21zepnz7el4WJH/5G5y//t/93yYvq9qKfvqP66f6TlX/qn/yC+9fXF/30Leknbakprk9PmP9y6qexCe/eveGT1+9h6i/66UU/veinF/30sn7F1v8XjD/fW5osPTf7w/BDS44IFFw2hBVDOdNp4dhuaVdyqhEYPYkyadkFgtzUvSe89GO1/BjgkZubyx5ckKTWaAw2KnRQCipk05Bke57QEY3chFBUC3gFORP6TOiVIR10YYxKMOX0IDo+8s+iUKrTritaYb1ulJsbrlI4zwujvOJYHuD6BS0uFPvA9dx5+/tvoW/c1ELRe7ie8LJwbUEF5uVA58C2VXq5ELpSdWYbwui3qFSC4NqfaP3CPE/IJkxA0c4y3fMnv/cDdBtQDdWZywpWJYugBMo+NIOCxg0xGp0U4GorB3FEDink45wbKEeQGZUBAwjbp4tGaCfCmUvNTdfzAEAEEtBlA/L+PXAE6NGp1hhOTtu85mfrhtUUVB4FV8NsB55HtmkJgYlQyGIXiyOjHaBUlunAtVxgrKg1VAfOikZg0VhqQ/TEQ3tEOXBkYqvBUoS4TLyqD1zUqd45Hha0DWS7cpgOBFfKoVD1AfU3XN413p9+zuc/eMNXb7+k6BvsqdL6lfU20LtBaXtrmU206xXf8vDTt4F6Jc6VOHfKMJb58/83e/8Wq9u25Xdhv9Za72N835xzXfbe51Kn7i67bJfLNhaQi5RIKCAFJRApxFKU8JAIiUQQRYqCBMobL5GDiIIAiSBzEYkURbzACwkxCCwEETjGxlQZG7uKosDlqnOpffbaa605v+8bo/fWWh7aWLvyYulAzDlb58wu7XPOPmvveRnfGL3/22jt//uzP14Rkn13Lvt77s9KtuCTh5W7fg+3leX+nsfHxhsfDA1usaG6cepXlmVnlXssOtagt6S3jTGTp8f3jHeTfSaff3YFdU6nO3KbzPuBSmAZ9DlpU2EaY2mgisqCfdgSdCJRjKa1HYJ4d6w7KYq1zvSJHczeSoJb2S831pMiMliWyVe+cleFxW60nkRUaliEIXlPSt0H+cVkiZMIDEE1kAyqb1eTMT1r1D9yHGmJoH2pLmQmSNmllEoenHDMPBQkumV1VSMEfIVwWhOGX0jfQRsb1XU0CUKUKWVgmzlQKv2ypDTVjJAkJX4Hqqxl84oj3TBjoAYpJbRLXDQ0kqUajbhkTV94Qg6wduDxBTQRecRdSKjrJFJTH1KMLQlFsqwTza1S4WRH8PrMj84qVFGfUdbCDKFpccLs6KJHTsgkcla3PjoijYwEdppMlMbw4sxU0QGeTmTSdSFaMXpUBbWFNMWm0w6RFlmTCJmBaIG2q2CtDn4WYAxX4XbEVIrCtFnnht6TCCNg0pFmxLri2Spj0wNn0jSPe2E5CrbEo84clbLKlJ6sZzaOYqSrYu54TiyTTiUFDhT0ROakNeq8UGe5a8Q+UG0occCojSYLrpPIQKXOotSDu5bHPUTZZL5IA406J1UdZdRLH++ILuy6V0f/2CuTpFnSh5F6JF1LouJYzu/1eH9e/xWv76d+4gNMHY5/7lk/fdn106uvPPL3/D1P9SIk8lk//QD003Yrp9G7z6+clx9O/fTmt7/BP/XP/m/4X/29/zhf/8ZffdZPz/rpWT8966fn9SO2vucXfxKJq5LLghO4DxZbYX+CbKQspAyKz5dY2iGcnABCDFhIgBi0rE1vWnU+NOqnaVmR7ACqQdoO0msjyGPTytqocxXMoR3R7GEHmyWCud9QOxg1GQwv0dgy6Cm0bCidiDMzG3seUfRUp0ijLMZxiGKT4NwWoNHWBXm88dvf/gw937PGEWjx/h2/cXvLb71/pIeT64l9nLHROC+PfPXhNS/6A7snU4PZHsk26/DUD7jnYN7e4H5DGyynzmfvn3jZv8ZiYH3n537fL9DuX6OqzNhhCbwNUhq4VaHQpFKRpNPi+NoNsuchSPLoWBfvIml1WPGIEJguiCyEzy/SriIU3Tuegerxl8w6bI5KpmmHaAiVtmc2jnSx+nlqTD/J2QkW3PhiMkCZTHFQqUQzARGD1Brxn4M+hS13QiZpVmyicWMNrzFyGoPOBWU5LfRLsuTkzh3ermyXE+MuEXtiOU2WdqIvnbSdp/09RhIG+3yDz5V5DV6/fMX1+sTT/sTanKftPadvnPh0Bq+fXiHbjc3eofcPXLZZz0lPLj5Z+sq2Bu/HjeDCdhmIJ6f1jn5qnAVOuvPRA3x2vXGRoJ8mJzmzXDdeiPE0jOTE/Vk56YWTvaedhJsbZgtjd5gBsvN0DW6jpis+fnhN1/q81nZCNyMabHrjdhaGrexj4WVsLClkQGMispN6oUN12UJp0lgSGAO1pYoThWTgDq0tRCZf+drX+MrrO14+nLl78YLLlsx0tF2pVv0kRIF6hs2UOfOQlpWIp+KMkVhLPgB880gozMhjKgZaQqQhQ4k0IibaykoXcxAKLTsZSZgXeJpkfhC0BkngBNOqY2mtIeGVgulR3zsC085kILogKOkFEa6vOarDLFQx54A6YismC8yy3exeBgmVVvvdwafRupCVtslkygBgpuLp9AYaQtCr8M+o6REZdBouHxId/QMVB5cbkZPmC5od00Yycd0QTea+4QJ7TGxR5oSQFRQcp1vC3JEMRl+JmMdX3mvacp7YDoqQptMTWhYLrGG4dkYGvicyG3MKljuL/g4XRrIS6ybJSKGJgHywkETxoqYT2riLhUjYA17kGRs3RBszooYFMliibDYqS+0FacRYSFe078yIA8JdTCFS67wymEcK4TRn6kT0zJzBPERtE8MxbhEsea1iJbMse16FkLDUmadOMg7uT0ey8wW8PCvl09PphzVOskSoSCIRdU6pMr0622iwp5NsBJWu2LSXjUtqzwxZWYAewaCSQbM/W1W+LOv7qZ8yjokUcX7l1x/4B//B/yH/6P/h/8Xv/l2fPuunL6l+eny/8h/9hdf84T+4sfT9WT/9APTTKr/KH/r5fxCX/4g326c/pPqpznHRSdP5rJ+e9dOzfnrWT8/rR2x9zy/+WjfCghGz+BBm+LxVZ8L38iJoK2YCweJKOxKMgiI3VJqZknR2bZgEbWyoSFlXPKp7czxv4pPuztAFPQCyZFTHNJXrdE4imBTLQrNhamwZWKvuDpJ0MWQmJhsmA6OhvhY3oBc/R3NlkZXh29EBqkj4TQXVM7m9p7dgZ+fF+SW/9uf/U54+/S2+8jPf4Lq95d1F0Llw/Q6YvMI9yPcbKleGC6fV2f3ClsrLhxc8zbe0ZWPbD9aHLGzTGduGSjBpPO6Ny3WnK8hpQO784h/5PfzML/4ebrqxSEfC0NGrKzsvIJCWxetIAU/mcq1DHUXcEBe6GTMmKb1+P1mP+eeG5IbKjpgcI9cAAiYEOxbF+Qkv+4+qHd0siNgQ2arzFYHGHcoGOT8MceMaFKKhY2lkbkjuGOBsh9UmmBGMSKyt7LoRLemLMp8GzGBhoc3GsHuavSzekBpNP+J22/Flog+TizzxxMZ2bux94dV6j1pCr1Q9AhjCy9MD2zbxfUO58nBO9MU9p+j85m/8JmdAYpBq9PWOPGA91h5IwI6DWDVYNuW0nBE35u0tEntZh7KmE9Ym3OaVxZQu94y5YsO4W4UlNrabclPY+BzUaGJEdkY8INpoKKtMMhZUzog4ocHjbZDbwm1OWO+hNUYuNDtz8+oGx+zcjU7kwmAh+yMhMEJwgZQL6JWMhZMsGIHFrMakJtdwWE6EO8rOq/uPOJ1est43Hl6vvLjvZAyu20bOM4udybgRoyZeqt87kSwRVV1eOzp6YCIERsasoYkPu4hUgZMfbANBwYDD677Qg6UUSRxWDUlncaqLF0FoAfA9obljJHPb6c1IaWhE2QJSyTzu60wynI5DjrpnRMFaoZ1mWQiq51g4gurgO+SOOWQakoYdjC94AgLThiTE8bOI5FFsKJJBk/IkKCshRqDFvSFBnJF22HQcxau7fYjU/BDrl4nnRljZP0QVkyRm0tpSLCo5evuemGq9PEhDVNCDLZNWs0niieRgkYQ0lAVTRzzoLdnjHYPah8ScpSmaDXcnFVR6TQ+R9X3di+HaOh4TrOZnVIRO2WXIwP0GMcE72GTIYGogrdhiclgKQ6jrxCB1EJZ4yPF1QOVExEAYNWWQNYGDUsLx8DSVS67hEVxEq9N+gLi/gFKLECa1l2ZZYJQ4bH8JsZFeLyQUkPoXy/7iZc+sUiFJgxQhJOq6iKHZDyvLjZRRd1hCS6tZrgzcA/9gB5SAmoU9jFXP68uwvp/6iQTNgQR846P3/P1/35/ja1/bKHHwrJ++jPrpN37D+N/+Q3+If+GP/xl+/nc/66cfhH7K5cL98q+S14Xb1B9K/ZTHSzHgWT8966dn/fSsn57Xj+D6nl/8TQKJGz03hE5SLIsMhzkwNhBh0UYSoDsheUA4a2QZK5aDu1K5RdXPNjXwwAVAvhjlVS1A654b9mFTztoURBsiDZfqKkQmPZOcgyWURnXawhMz0ChOQL2UcjIaGZWqZDjhe02qyY5oMONCsztaJFBddQeW9cRyuueX/vyf4ve+/gb9dqM93rDofP70La6//Rm63TOOw6r1xv2rgfeOPKyc7laWHuQ0Qk614Z9WxjhSisaGy8ZO4/2mjDwxRzD9LV/7+lf5hb/xv4naA2mjmC0pJLNGzRGmzNoEw1mtV9pWNnIqpBTEl52NEm3VmdY6FI5OldAKynF0lT50jiOFmZUmZVpj9JKKyYJwBkC0I/Zh1Lzum2IuBKorc4Kbgd3A8wt7ChKkNLoubPuNdb3jtr1HLJlxLWB2dJQFlRXRKxGDyQa9MceGGsdn9cQdyfmycGtPrJy4Pirnk/LJes/uwZjKiGCy8dHrM6eudA3e+hUPofk9nXvevXU+zzeMvpNN2cegR8feGK9frpzvjVvu9PGO+wvk1blsg1Bl353TsmIO+I61hqayWGdcr7z4WKCf2S7KzZNLfs70gY4gttfs4x5yQ+SG4lT6maKnxpbK2BQPuGuNHjX95iSX22RqdRIbEHljx8Ge6rnTYLNkxIbIwnnc0Q0kbqjB7sC4J/WOdFCdqEz6AqGDNWD6jXURfvanf45PXr/mck3oK7f9ymV3Wtd67o6Et5RWXTQJCjqcaEZxbpADSFyA+5SkW8cPcVb3mZRtIovDRLaSApm0JjjvKX7KiRrzP5FSDMDeE5UgMglpJQ7IEoehCDUV8UEgkY8FpxejgvMOPw4FZ0+Cpgqx45mssqBZorVamIkThCkFyq9ZFCXp7mQmo09aFEcqQ5nHtWlZIg+UdnyvcGfrMHNHxGiptAw0i3KiUQyVmmApQHVG2VZSAHMiHedUO+502Ivn1JcLjAXlXHwvv5XVYk6aNFrruFt1U01QF8oPt7GkFVpGFGmwx0Y2JaQjUVafCmMJzB2T/KLTm1FTC66JaNCl/nswQOMQgK3u+aM3XvB4xXOQ2tniQhp06iXJnZ7Lmtg+iNCJquIo3oxVhbENwKoOVytrVjYEJUKIcauOflRqXXdjpjEQrMNqhzh0x+woUgjUkvA7oKwusMJRorXUmmiIsuEV8LwxfCJtIBJleREFVUYYuzsLG8qKxYrICacKKUklpiHaadKqKFPwipRERViyIyH/pYXB8/rru76f+knUqjh14aOXwt/yt/1KaZx81k9fXv3UgWf99IPUT9v4Kt96+3dwt/w/oV9/KPXTB8ZAYgTLs3561k/P+ulZPz2vH7H1Pb/4Q2tMligrh9CQSLYGei6IcbqztBMRkxlFeqt3eFEdSHdgkHqMnqegcgJZ8VndKYUDYAq7Ti7tRojic9I0kIOtsHYj5o72jluNWpOCSSPMGWOrlLxuPImTZ+Echo2GZBBZLIuMBY8TMhZ8LszsSNaYe+gRbe/CuDuTsbLdgj/x7/xZfv2b7/iFr/wMa154iLd8flm43By9O/OWxuP1O3zFBHl8xenFCx4++QZf/eQltr1Hx8ZX77/B5TLZzbn6ztJgOtzmhqwrzZX1aTAvFUP/1a9+jf/+f+e/zY+9umPnguTE8ngBEsL0pN0tjM0LwCtHupMKc7QS8AKtFVY3xJGuzAwy90qHwxD3Eiu0L2wimR/aIZXd5O5UeJiQGezzwpLVSXTfgcSLXM0QGHBkdeVx8INlr4H0jEpjko7nARi3O2Ykra3s44a14kNkKjIbPVcanT1u7DmKtWOCy4aZ4t2Z4eiy0/vLOrj752TfGGNjXhM7nXjaNiKC0/3gdIJvfp64vmK2yXX7nFXec/9yYZ3O6+Vj3lyuvMtgm8r7pWPWOUlDpGCy21jZQ8jlRsQNU2Vt8OreSUve396TbWG48fDwEmvJtz/9Dku753b9jHF6T3bjfj3z7pu/hsULOl/F/UzElUzFTXl6auRxVbspzo0ujsjGZU5uy8JJ4EyyxiREuARsywvEi8PUNOgxaAiXdmZhp0mZtZzO8Eb6lVBBTiecjokSw7lrr7jNCz/+Ez/Fy/NHPF0+w9a7w45QiY/aDY+JqTPiwqCRVFGkoqhJJdCloGbMo0AUU2IGpoedQbLEetbo/sxTdWTTSEAscE3CG4kwP1hapCDnIY5LCQilo1nFlia47ATQrReMOh1whpTlIVkppHWr+y/kELiVVkeWINzVSXFQxXMi5YNAdCCxI0hZ0MRJAROjp6AHg6YYKdURTcp+oaV18BgEVeiW8DnsIdReubUg95re6HRy7sXWMcXNymqnSzF3diW1Q96AjaV3mhanR1rt7yE75PH7WCXO3QoEVk3t+WFvKHtehkP4Afwv0XU2p8WEw7pTHJgdjxPpdoQ3RQmrUMx6MXey9vCs/1EA65yYCmn3pN8zji60aCc4Y6ogFZxg0WhyT2bieSX1iug9mh1PwX0w4xGx27HfdGZSLB1ppCi7l7jumqwfrvRhwbHIo8C6w5lgxVkjwNwqQZAClPNFx1gYy9NxBhaLx+IA8ltHtHDWWq8DQJUFqYIgShiH1kuGiFEQ62bcorrXxmGraveMOSECawuShj+zqb886/uqnyoJdVjw+bvOn/rTv4u/6W/6dT56tT/rpy+pfiLvgGf99IPUT8O/zm9++vfx4z/57/Kqf+uHUj9FLnWfZSOwZ/30rJ+e9dOzfnpeP2Lre2f8aZDegRVhQXQidsGyH6PLetgLnBkFN1XRg1BTvWklEKluN9nK05tBRC/wsRXfQWe9+Mu06n5kQGqNyiPVZRhCP/jVxcApq0wdcCXq1lRiFKyzuuELEcqYg4ydZnBwZmkMlibsl0C60qwzZrIk5HBOX/mYX/oPfpl/+0/8SR4z+OjFx7x5H3x2VqzfcWeT1+q88TfEO8MUPs8n7l40TssDnzwsXPZHllRc7xh7MUbWrsi8MsekqfJwfs2wxrt54dE/48LGj33yVf7W/8Hfyjd+/se5sdNpBfGeFItB69AbXl3NRSotyr3S4TDBDoqwx2RGlKUDwYKyeMghDtGCtIoQUUyN1OJ3OAX8Pfpx9TMAHCBwqFHuA9xRY9gyi2VDQM4S1MeNV3QKqusjEOGkjS/A53V4Fdrc8oT4Upu1TkQdpAMnNAeLfrA5CeoNvCHyADlJ25n9xtCdRVce7s88jZ2UpV4q5wPDjdP+Oc2UWzqLnHh1OqHXga1Guz/z9P49U4XT2vh4VV6dzkQauEA7sceZPQWPBZ/36CKQg94bJ3/N2/c39jlpemLfjU8/f8ceK0OgnzfuF+HkH3G+vaq0vGw8xZUtrggbq3W6NkQWrK+I9JqCDccFBp19DhadtHUpyHIoq51YXWnTuWh1kV/MIGNn65U+FgGEoik1qi8Dieq4XmcxM5pAXzrXuXNx5RrCg3gJUIKUC9bysOovhAfarZgvZAmZrO4tB5NllKOE1Dq+dwKxxL0SEzUPcXDcNyYdEKZPPJx1USIGpjVRcdCUgOPeT8NTaaJlE0kICojtOhAansWvQR0ILO4Knk0DPbrU7pxiqamNKDEckox2TFxETYyYCaqVZNcczEEl2QSGFTx4QTilAHGg9+uZS6qLGjGruA6HDJopbZYNIjRJzePzhtQkTXEP9qLAk/ohAMXrmWXBUqsT7YJ7RzkfNpZ6ptQDzXqhUN9DGPY7e0BtHollw7QTNPIALiv5xX4f2krcp2KutcGmMdmJFETrLKlkwiw2aBhILwi9diJ2oOx0yhWJBcfY5crUSUpjDcqKl8KIoDXDJVGbVfxmQ1jr7JGNcCWyofKC5Pg5zDAmLYqphSjEBgKn6KBL7X8cqX+eREbd4+y47JCBSUNtJWddd5GynHCwvYgXxaBhlrAlieTgzAjzwxSrGOGCSNTzcvxnVKwAojXFMDimvyTQSCyCcI5CCNK9psbkmVHzZVnfT/0UU+v8VuU7n77kn/0//9f52X/kUz562J7107N+etZPfw391O5+jd/zu/4GTO2HWD8dFDt3fG7P+ulZPz3rp2f99Lx+xNb3PvE3X5K5gdQocQoIxppOzIlZK68+A7V63MFLjHxIidISRtMnKUEhYkdtGOoQa4Gqq6VRqWQp+Dw2onRUDJVGhBYnJ8oOIygWxaTYRejLCi5MD1DFRPApzGhENEQEa5PMURtMOOSZbnIcREITI31Ab/z2p2/45/75/yuf3L/g1Vde4W+Mb/PIw/3GuT1x0s7XWuPbEdx/NHn3fufMmdhuLCfh8bvf5JMXL+n2wNvP3nP38EDo5P01ED/h8YTHwEm2uTP2AXuyYvwd/92/nV/8vb+P27zRWyNlRaISlaQkIWiinpjYMTF5iEdt3MYj2gzVTgiIrSx9oe0bTCcwQoQpiYscqX5ZI+0qR1JVHjaB2pwzjyQuSeyDs4XatIUjbSkOFgPzAK/KIULjSCicB2+jxtaTYOogwoubETUuvztlT5klTKZsTGbBdKWD3urrpBHeiFxLGKWj8gblN4+D5gUj7rm+m4wU+nnlenvk7eMb7h9esp2Ux23jNgfRwJncL0Lfk+27N+JS6WSsE9ZgfRHVkbRB6MbIdzgDlRtiG7dhtH5iphFsnO+S/Ta5Xj9FTyuX2+ec7h+QDJ5YuJeOj0G0C+2uE/3M9nZju0alefnhEvBkaRzPYRBseBo7RuSKboP3OXlUI3SpLiENJ7FpuBjvrX4XceWMYrljuld6Vp6qINU6+Pd9kM2ZErTTmStPPM2FN9dHXonRrTHnQNogBqj1I/GrFxMpleW4dzxBPySiJcRhITHtfIBPm0pxihD8SFJLSdwCmXEIhGBpNd1SNp6SV6qGShnQfudONCQo8aFloUhJZi4IRoRgzQ6uDKRPugpo2aSUibTkMlfEGoLQUcQDQrClVcJllA3DRMCFIcJQoVN7ik5YUo99sCYJPjw3yod9x2kiKMnMmtLINDbTEkXhiDuNEm23cFQaIlnXUpVJ0hMEL4YPeVToA5FJa0JfYMwbaY7YwgwlW6tiIw2JwLImVIbBzOqcll2nrlVG7cfVaa8b1DIga+9NGhIL1YN9QmwjdeIxarqIsiSSo15qQCXuHfv8xBmi9Gx031jiiebCOj9i2ixrxgG9l26wJCqDkBWJE0J11IMdkR3yTKYw5sR0IKKYnJA819YWNbGhIhid4ZUUKBJV5Iviafik2F5QAtGlJhF0FITfPxT8Ui9Fwur+lJpd+PDcVoGTpI9iAYkdNp66jzmsUxH1syoKLnhE/b6AhxarSRMzOyaKdoJA9Nmq8qVZ30f9JKrHpE/QCpZES8PSnvXTs3561k8/wvqpyGsgTJYWz/rpWT8966dn/fS8fsTW9x7ukZ1kI2XgUt1ryZVdnwh1ugqSFcP+wYqgX4BoS1RV3PgE2VBasRtiAwwxLTaGCCf5wKHYsbhB9tK2qngkO462hs8Pm0x1pJrVC4GT+9F8qjHghiIBrnt1dKaRHx74hMjO7h2PEyDM2FEzfCbNBH2444/9Q/8wsrxirndsjxPTzre+O2kJP/8TL1hiw3nkZ86fYJcLm77nrU6i/xifbbW5vfcd/LcwnPX6hHWl99f1O20XzkuNf79588h1B0/jd/+en+cP/5G/sUaVEUKTkHc0AaIRseJphMLCDQR26lqlHLyf1o6G0zz0rLLPG3IwFsIH2ip9b0Z1WboqKV7j1yk1Vi71okWOT1UQSEfQLwJZODgKDcUjUDohVcR4tLISZeBSHcyUPFIID1vMVHpbGNeNrgu3fWK94xRDx/UV11zYaQSTmVdYFzYWWi+RRmv4vDBO72A2mn5C2qe8mZ/zJMmad2XP8cnrF431vjF08Ob6GSdOxO7cbgEol+sNWVdmwqL3nPdAPWAv+PbaYYsTu8GQG4ahe0N4T7YXPE1hGwULdzYYGx+/amQ+cnfeePnqNdfLoK0rYwuuImzb5Hz+Sb796RuGX+jmdBrWFk59ZYvJNQITZV2K8RJjx7IRqbyPEz4TsZXIyZAL0hrXdkVygeN+MYc1lc2UYZ1NhW0OltbR7PTc6UyWVgXR5vD5U6C2oB7MLbg8Kq9fnIDJmEKGsyyNyIkKxMwvBETdLzWdkAqRSqe6pB8UnFD3WJKIND5YN1ImyYZYI8pLhbTGnLOKNdfiULUEHUQeaXZpwAqpuHTADotUYqGEO0LWP5cdjY7IY9lb8pjgSEUimLqXQEDBq2MqqcygLF9SxZyJMq2y1YQP9p0jhc2L8RStOqGkolKilKwpjg/debRYNXuCi9AkK/Ut9QvhmqpkJk3LtsBMWnSkG8FeFgsvY0tqFfkZg5nvGCFovCbUcRmI3hOzYP5k1ESRaBWxUpYgmKjXNU91hlZaG5KkTIytJlp0J6WBPNA00HjCtBIBIz/YMpayxMQNOxhMGdVpzyZMN8IWkB3yBtOR6AdQuvb9GoMQFil5XA0ixbQmAIrrdGaJ1+AnJCbkrdhkcVfpoDKP6w0zBGvCokq41ASN7uAGsoIonu/RTMyTTD8sPoLmuQqNo3D6Ag79RedYEV0JOYILE5SoQkbqnzYtq9WHgutDMaepmBraJpoQUol4WJIawBXPYqlx/LvPVpUvz/p+6ifkw4TgjuYOVO5E68/66Vk/Peunv5Z+Grffy3/+V/8xPvr4H0D1134o9RN21FaaSLNn/fSsn57107N+el4/Yut7n/iTN2hC5kqyEjimFUOe0grAGdBDkMzjYa5Es4pcr7QuESVZ6yET6i1+UuDS5pWnczzoklbAWILISSCMgJnOqReMtWH0epdPeD3w1it1KCxINXaCHAFsqFUXIENBO7Cg1svKIonrTsgNoXF3esFvffaOf+L/9I/BJXjx4oH95izauYoQPvir3/4uZ7vj66/OSBh3befV/de4HyD+nrjt3OIz3j8G26vk7jyQeOK0vsQvgbd37DmZcmWfC9stefPW6dr4yvqSH3/1VcbTxnpaaGHkBmM5gXhxdPKGKJVc9wGQizClxGvMHTX9gvtgBuQkQng87ENmguJEFK9DKL5NFR41xk4YaYrq0XHhGMn26l43Kzh1sxIvX8TK64pJq8PflBnJoBg2pg3kAPjWd6JxB0NZ7FScIU1u2xNNk7SoEXA5oXZGeQ/xlpwv6nN3PSDGiWyDZfsK4hfup3A37+inM7Ik7I8sB59l4YHmHds6X3nxwONnZSd6uLsnRNnUiIRxe2JZO6EwEZ4iub8GLzjxdJnIIrx+eMCkcRmdbXZiWXAxdp/s1yRHR5YnxJTt/ZWvvP4x3j1Nzvcfc3n3LcZo7EDPYLy7cW7FuVG5Z45kiwX3xhSlpXG3rogJ4zLwp4H7Xs/Hcs+LuxM6EzNH1sTHlVfXlb0tBMo6BfKOsIXVP2N4Z+od3ScNsDZp8QKNSTuEQ2/ClJ2eJ6ZfmU+f8ebbG5f3zsuPX7EsHxGU/SBjVtc5wWRFdYWcx95QzA2PnbtjJD+yANV2jODjjlgn0S8S29IdtJNWPJoRArIQCV13khtxpI9JGqZngoEzMD3VJLEUcyTSq7vJqFTqDAxQEtH7mqoBrN3hmcwxWdrtSBavsjpbdSV7BEsomDDTiainEMmygZCEVtFZbJPar+QDF+cAcwMFq04OW4qAFptmnXHwvrQmSw6Bcz8N3EEnIYORgraCdhPVZS2uV8ABsA5fifkK0USbIbmyZkf2yXQwK27LFmXh0agiU7sROUkpxlECMwczjb5Y7RcxyTyYU3LYKSRrpwlqykb6UZQYjqNo2WmkJpCEQKPTUlhGILaTOpnWmCiyOH10ohUDpyw0CyInItaDbbPXNBIdyYXQybZ/F7dJcoNjT2ozMJnkcYZcrhfWU0f7RtoJTElvNdEDpAVNFtQVjbLXIQ4Ccyaoolppc/WyIWm8r4kdOIoTJUSJsYKsZWfRrM67aVmpMujHREO9YDBGVLqqIEdXu5HSQQPsSk5hotXtTsO/UM7P6we+vo/6iQCLmigUOexLOWsC5Fk/fUn1U0nxZ/30g9NP86qM8XuYcs/Hdy9/KPXTetr53T/3l+mrM0Kf9dOzfnrWT8/66Xn9iK3v+cVfyA2lIxjDdzSCVSsK/QgyP0TFsfEgx7it1UYSg31shXrVTmYWM6CtzDnKlmDVPRA5xtE9mLtjsjDY8CFY3nNSo80bQ7y63qnQVvZsLO2OkcHwQdOJzYTotLYyJpCBxBNKw+SOy3bD2o2Vjuwba09mDGh3/NXPHvkn//gfxx8H9y9e8O76OWu/420oyQ0nGP2BP/+t5M01+frpxClvLPLIRzroU7lxZe7BnQf+bnLZO63f8Z1vb5ybcpbJ3AfTOt+9bIzbxlkb98sJEeE3vvkbfHbbeH3/EaTQ88YygtmUYUma07Nh8wOvpJKPfJ/0JkQOKq6tV3LW3JmZqN3RSDR3NKvICJFKuEojspMYKgMhcBWmCwuARnE9UmrzDEWO9ohGID4rmVkFjysqBbGWLoy5MaluYeUzLYf9II5hhYp6D2r82+dkbYnfkhiG+mBl0ubAMjlFMGND+8T2QLIXS0UaaYPdJ7kW+0b6A/sSxHbhrAt2G9weL9gr4/6u89lY2GXl9KJxvnO2/bu83z+nt4/5yuuVexs8vbuxzc4yg5zC2zmZy0QU1mZs+87oN9ocSErxTUwJBssqfPPyDuaZlw8f8+azJzZP2p0w4jXXeMP9S+WFCTqd97uSomyXJ3o7M9S5zMGr+wdeKDxYch1X9v2C9Uo2YzqvGPRQDEX0Dp87KsZt6ZiAzCvOxPSEjGQsjT0D0Z1FEsm97F/VFOXmjpkibmgsXO2OacptPDLfXtFH47IFr18n61I2qN77F/aGyAnZqvOGYAYTiq5MjfebLEwqZU2so+71M1hUhxKjcWZMsKi/E45Rf6UEja5lc5ICR+cBvG7SEVfEBWt8UeS6Vfed7EhQNjCfkErTAjUnQqShtuJSv4MdApDMsrHghECIERjTR6VqMolwXEqAk45ICfJwaB50rbt/iiDWYR7dUwKJQUuhiTLUikkkjfTq/Hs4IyqRDEkiqmiz2EkRJlXcIhsLhu1UWmJcibhBu8P3hUWNxmBKIpJkDkwB6lncdcOm0TmxZ8fFuGVywmkkIyY2GtOl/p9QWmuQE88rU52RicRCz6Sx4ZJMcVw2lCTnpENZQoDIHTHBYxZ4XAXPK+KOzYI3z+7c4gZizPUlt1NnyESksQ9AqC6+bKQuRDfmmBjr8WzuYDVxkKKINi55pfcHpgieF3IuhHccwaPA2FVmrDVRkFoWk2iEfWAwJbB9cR1vKZgeBJkYkAORZPQAWhVsctgz02svJuktiTnQVtMdYyrWBfUN8zzsTQfbaa41RZCTOJhhKv2/rC54Xn+d1/dVP6nRQ4gZ+KhzOdOZw5/105dWP1WV+ayffnD6yUedvA9M1th/KPXTx6++y//8f/rPlX6a/Vk/PeunZ/30rJ+e14/Y+p5f/M1YaRKkbqQk0I6EKK2RdChRKBRwNItZEGR1khWkGTmP1DRVPJwtqhPdrEa/Rwjj+LGEMy3uiO40Gi2qOUAEnhAmhApNlRFlt0ADn1dMslgLlO/f/YJQo+qokMMQuWc9NYgoWHQmentiXW+MB+WP/eP/KPfXhZfS+Y3bd7m7e8DfP/Lm1DjhtbGqsGXjr7x95PFqvGifspzvMa1NuPfOLY1YEmvK+8uF0/meiwejNR5jZ85g94lacHc2lkzuz0Hald/6znuuj4989fVbQiaxtDqsUdInZlVMZOvk2DBLIm70teHTCWksQ0GEqcnIhG7VTaYh2QvMKwVPzZjFBbEagU+fxSOyGsGvax91DasPhojUSycgMUTPBaZOPbhGxaaZU8lsmNVB6UVUJQUmQSSkDITt6LyXKCA7U27M7qQuWKupheFGtK/WFEJ8CnNHzYnmXPPGfZzR3oimbHNgw1kQhpy47E+Y3wgL2mI8mvHkj9x98pJ9G7zfA/FXfPTwdVSTh7tGjMGunUkjuSvBnhOhktU23xmShAnaYB9XunC8FBVunqwu4M5Fdq6y8+qT1wgbLS787NdeMeSJwNHTA+sjxNhBgpOtXHbn7v4Fr9aVO5+MtxduMUDu2NXYWzB1Y7dBzGARRWcdYJEDb5fqlDUntISNs6G+1eSIQ0foMpljJ883riMRXViWBYnEgkNw7DQGTVbCO2/fPbL7hfv7O9S+UowoyvqlAsiNlMmUsrBplghGtaxKLeuek2J8qJboJClLQ3JYOLYvLE5kgZoRUJRIxWwpELBmwdq1ksJmCuelV+cxIE0Z+YiyYlod7lQrlMvRoY36CTh6jHjuHB6VQ4hmgfhVS7Qe7J1mvQDB2kg+dIwdzcS149IIKYaIIgW2FkFUcK0ub2bZIOQQckjDIw7AtqGRdDkxLSoAQBra6oXANif0VoaHDDQF18auzkxITsQYCDtygmvsnJaFpDPnTkQUI8qEZkYfK6pZ7DFxWtY+7FtD7EiZEyWb4QTNty/S/ySS3HdMixUWCTPAA1w5utsQi7D7KIuGgFO8H80JegdWkxYjbjWTc/qcqWXr6ZxYE84uRGxoC8QGKU5aI2iwbZyAnIGq0m0lwxAzYEekUutUEk1nySNh0jZUo3hl0clcEW419cSo/cq0Joik7piQmt6KVCRaJVfmYcHKSgQlgkUrKEGodM6+nBjTUV3qvnAjZweUjCPMgUlTKXtTHtYvktCyNxVdrAQwB9/tef3g1/dTP6EFkLdILE5AQf3XtGf99CXVT/evbvyd/71v8vJlPuunH5B+GlbJyqNNtnn9odRPHjv7vnJevFh9z/rpWT8966dn/fS8fqTW9z7xl2cqncchx3EIPZWPP6nOHInpAZfOentfI9tBRJZlQsDzdx4uy6hxboFg8kDjRdZLpGnOdlZyThpKA1STVCXaUrIpAY4xXw1G7hg7Zkq6InREHY8b1gPnjHLPiPdctu+gemJqw5fg1I2H/nU+/e5v80/8o/8M23eEj16/4rElL0W5Pl3Q1VjHJPtCxMB90tY73l13nt4PVnng4enEiiPzkWVNzm1g5x1ts/g3CKKd6TtjJik3rF+5P9/xsBi+v6E35em28Ju/Nbg8wkM/8ebxMzY6ZhdWPdEdYsTB/AiChihl91HYtUF2WnoxQVSOj7ygysisyQFmFRjHuDYiiM4vDlWRhlB2oTrKazKhipXaRD9AdoM4DnY/7AB5gKwpmDXyxch8+qC+XQlgVEhdOCLSEClxnaEHn6csRumT3icDuA2nmRVvyBMxQVtjF2iZeKuu8RyVerim8rLd8dY2/MWJMKc3YZnGx7c71BeGnegn4/3tLclydOHh6bYRA4SJ+ues1lnvT1zeXDi1MzJ2uIA/Jqn3nJsRPrBIWu989u4dp7wnPZFz5+6jRG3js+98m4evvuD+dOb2qbGeP+LNfmNphs7OpQvvtwuvz/fcyyTGE9sqPM0ryEpOY96cc+ucVLjs7xENlCtiE+nBnBsmZyKDCCGyl1XIGsy3qC3kwW9xWcsOMx/oshIi7HND8sq57URsSCiL3tPFmXklc+F6SS7Xt/g04MT5dEZNkSybRGQ94xyzL01ghBAEKYOZhX0WadCc8CSzIL4JEMWWSeL/55Cujra1Dj5pGNMnagoxwQ4RhDP5YDMp4LqOte6vwzQhDFSciR3skWJjiRQDppDReYgSEBRoZbQSxb0KdWuK9LJmhE86s+7lL2DTnU4lzqXUN3Hy6Ha2sstYhRlllK3LLfD4wO45nqGDbVNNUjt+2Ch+SZT5omsjhjPzA3i+43PnbPeIOpKT7Mo29oJqI7TWEGn4pBL9fCVlZ+RkxkAcbAoi98duMJHwerERDup4KCYLSmfGLOZX3DBRTBvuAT5YmxaM3EEoEDQIlvU7Wut4GD47RHXU6UtZNWbHdCmYujzQ9Q6THWYgc2IdNKU6/G0y58BaIl6jGCadjCRd0KZkOks3mkCrre+YDqifeVJbnx5Q87Lg1D1YTJ9WLwC0roNmTVS1XMjy9NULAxVS7ChYsmxJYuyZuDZaDiSuRNRnoiIgztqkUugoSLhI7biS0D9MRQiUOfR4gfS8vhTr+6mfWijTk2HCvipAfW/0WT99SfXTV7++8b/7h34FS8iQZ/30A9BPqx+2+FEvPn4Y9dM3v/UN/pl//h/gf/n3/uP8xI/91rN+4lk/PeunZ/30vH601vf84s95i+UdzDNwQmQQuaP2oQzPOhQiK0HHGiMmHNHm06P4BA0yB+KBhJRFBKtN3TdIIaLE6nCYw8miA9RoeO7VgaCS5Thi2z88xMhEJQgPwq1CALQOmDGcyZW2OEUiTUIGyOBsHfYL//af/1X+lX/932R/Cn7ixY+x7Ru7JTaEk5yr4zMH+OTUiuGS+04ycRu8D+W2PXH2yT03zIPz3QmNHfHk1JX0K02P7sWpUubWPNHnxpKPSCZtLlyvA+kb78db3t2+hphw6pfif8xbMSHSASN9I/SuBKMaWwRIJ1CiU3DZnMgHlpAmkTfgA86iRK1QDB+f4xAdR+cJIOZhP1I8/dgeq0ipawzTB55X4ABkZ0Gq65A/phvcQeqwL1tKAa5FBBcnZFY6lE2sDTyCxqQN4xyJz41zTFaS7o9Yf4m2YF1PzCioMQGLnbjEI8hGa5NFQUawzUd6V2IL7lbhrjXMG7cW2BKMGFzeXyo1VpO5X1hePLCEcxl1Dc9rx0N4+xTcnT5G/Ib4exaEh3Xh/TS2cWFdgtv1c/bceXhoPG0TbR2Z8PTkPG6Du/XH6NL47M2Nl6c7lrXxSb/j6f07bpfBYzq3DF7lQMcNe5E8zVHpXjyy5yBaw/QFMo0+pe45TkQG2wzEXiA3wezocDkQiemNvg/ACGkQVh03aWQMzAwNrUQyhX0OUhYQ2HInooGc8OCYTjE+++xKt3d88olwd254lH1ANGlaHBgOqG9FxVWamqej0ul2ImYcXerqkgoCGlWEpRwip/SCIBCjxvSjQNIqRhMHqdSyzCj+SituaCY0TlX4Ru0bxEAlEE4FmuZ3JnEinAw5mFkH7JmyYKl7TaiIMDKPl5PVRTexwzZz4Ial0VKwKHEZqqQaU4JIx4gq+CM55DqZQkpZGFwS0Q/gawo+ncfYR1Z6X9lMQKKS0LoKiLH5JGOgupFyRfIei08Y26DJQDUP5ktB7S0MVWNrg+5BnwLZCxjdhRnJoiWkfNwOkaXsWgl7HY6mQEPFwB/Lsmad1gzF0RzMocxU1I5WeNZepKG0LKA2OJpx3C7K8AfsYKBdZOeyPnFdP+fOXhBDEe+YKl07M2BvnZ0qiLtBUmyvlEZKMbLsgJEXNytLhPrCB55Nyk5IfBG8oFIvoT0Kbm55pG8mtS/SkDBG7NUJt7LzRSbuyVWC1ht4YCS+31jsTNdOKtQogDEnuA+sG2EFQq9JkMS1EmC7V+okWumjmtWZf15fjvV91U+q7CIMB591z81MZsazfvqS6qcxOn/lNzvf+No7TqcJPOun77d+ynwCoLlwbucfSv30lVe/zf/47/q/8JUX38Uyn/XTs3561k/P+ul5/Yit7/nFnyjVAYod0V6QaTfc5hcwVlVjzsRswaZiIYRspDg9C1o7WXBpkDvCTtgkZa/OUTbcJ10P3klLzpls1Cg3mnh6jTC7Fm/iaNkUdHXSWiXh+TFC7jjpBURVM4zJPp7Y98Hd8oLlQXnz5jv8pb/0n/Af/Nlf5j//1hv09JJlPfHmdmVrC75tvLhbOc3JOSZvLWhp+EiaroyKgcN9ou3CZU6GCE/blZfLGXtM5P4lkZO1KTCYOCmJy84qL7hfPkbjHSrvET2xzTOPlydiGr/2V7/N+qD8+McPfCwPSD8mBOQQ5lR3wpkQldQXHphV19hDEAkso4oEXUgbmAuaikuNV9cGbojLEYGeNBbUO6mTdmyEStkJRIuf4TOKvQA0VXrr7GMQWXDcFJDWSC/7kB4bt9RNRc55dOGUYCNlItGQ0CPgpQ6YXZNLu7KtwkU7MgenFvi8ADA9EVNWS4wnrglTDWmva0IhbvR+Zecl7rDaCZ6esJ5MdT5tgTCI64ZuGx+9uGPfnCnB2gZv8sLFhLkZv32bfOV0x6v2GgZs28ar13dkwrtb8SmkBbd5oa+G5ZnrbeP9/CYPes/98oqUwUV2dF1geyRWuJ0a16cbcRPevr9xtcE2B3frC27TWU6d131h7L/NYs70M5f9zC07OyuLO00m7x4f2TxROiYd3yahb47p9QXljLlgPtmWjlsVDnIc7hhovkPoNFkQNYYqt1ROfoexFwCYE7090NiYeWMXZQzn7dt3LA0Wu0eOhLDGYYGIEgYzhcZaAlUbEoGhJcRmFaOiic+97HHhBTYXOR78Vl1lEUS8DuoAM6sJF22MORGUpS/VW/QdpKZnglnfO+v7RNaXVRnF26ImZSJLwkpkWe5EOEZl8BhMTSSDkEOoehXxqvXPewjDkxEBOUACrGwtHxLyIhPSMBYiozrjooCQKbTxhB4NyPqzSgCt370+ssxjqkML+Ow52RmV2qkgXpND21DcH1ANTN4VWN61uqxiVVBizMj6HlpA9F0nMwcrj3SfuL1inzsmAxFotrJPr8TA2oSRmg8gwzA5oSFse2PahJZ1T0hnlZXMvWDPKRUekIpbFQlm1QWOORGfrPJES0F8IdM4c2b1tb6uroisde1IRCaWDnOvCYwJqXeE3LPHjlil+WmAezLVahInFafEKKKMDDIVyzqf5KhsJA3JRrNW6YnpxwRXTV7VJEHWC4IE0bIVnfYN5bCtyyRMcNuRgPQdVcHDyrppE2XQcyWyfFSmNR1Ut31QNYdUpz0Ce+5Yf2nW91M/TQ3cFHP4sddX/ugf/WW+8tENlGf99CXVT//Zry/8L/7+/xr/wj/9p/mF3//4rJ9+APopxvrF8/rDqp/aOfn5P/AfgDauz/rpWT8966dn/fS8fuTW9/zib9EfQ3Mj7YLqBTQrNpzld8a2U0o8qLAHqBkzBPeoDkVCeLEDVKnULxKPRrSGr8FpUnYYKCtId/rtePt+dG0kGuLBSMfUShgdB0BrjbFvuA/aYgRJhmBtIeeGeLLwEtYr7y6f8ef+3f+Q/8+//xf57vudl/cvOOcr7N1gs+8yloHJCWtlt3g3IPuZp7ZwfnzDmPDq7gXhNU7ce2ds70FWrjHxnMwdTiq0tx0Noy1wWgwxp3fF/YbKe86WtACVMyOTT99deHeFV1/p/D/+tX+Jf/+Xf5K/5W/6Bf7Iz36Vu4+/xotXX8F74F674WKKsR2HsKIRNNnrM/ITvVHj51lcnavv3E0t04AewF5NPPcv+BJlFahpg4yArnjGMSkgSAhqHIPTH7prAWmoGGYrnuPoSFt1qgE7Ou2tNVQcQkucZlaHK1bwlZhGjEngtNyJeM/cHml6pvMCH48sYaS12uyb4jFQHSiDXVb2dNKcXJzZYUpwcuMSwb4Ir+9ecJk3XubK66Xx9HSDmHz8yQNqkzfvPud++YS83JOPT9wvxtv9ypLJJy/PzHgPdsKWe0aeuGzBbMLY3mN9ARUkhdv7K+flY5qeiFswNyU3py/KjMnprnPdAn8rzHc7e76l/cTK7brTPofFk9GMp3aiPwoarxmyMWMH2VibYXvQRHCD9f7Ebb7jbI2cwck6NxpOdS1NBGmOyI0p98ys4mfRwHxHM4GV9IZIJwO2GURfmTnwVKa9YObAeMtCR0MRHag1bk8b7+yJh7uVuxcNl3l0QwGU1A7aiNgOlofSEFSciIHGGbESlHigGswoxlBEiYKUEnWKcktwaTjOIo3wSjCMSJauiDeaJSmHIPMNzwuIAYbQmAf7RdkBRaTS8ji+Vy8NRVIWLxHBWjC1BJ6k0UWpfiaMuTO1oP1iHRPnmItlz8Ssk7MmmbsoqoJwq0kQFcBrEsCTPgS0kwJx7HcjB1hZXA4pRUjpZpFAmoAqw53MvZ4tEXRxrvsTZg+oPjBjcl6U4YHHYf8TIbVYQU/2yMmNHkZLRU2IQwirKaoLM4NsC9ka099iOetzlFaWlRSgI22hseDcGOwEQpdKJvVMEkFaMYzShSl6WNwCj0G4M6czl4U1FcnGVEPXFdXGNa7Fk2lLFfBM0iY8LbxqL7len9AmpMHjeKR1oyWkxyEYqXsEpUsidgO9EtLJWEgaIVcy7ZgSOEhGUuydstTJkYAopMLYA1OhW6tpg1QkOiy13zYxNJyTKowS3sNWzIQxA9Xq7o95w1v74J+qiQbJoyhJUgP0w8RJL97S8/pSrO+nfjKfxB64KK++5vzd/6NfOqYXnvXTl1U//exPPfHH/8k/zU/+xOOzfvoB6ae5lYYNhfXFD6d+2h9f8uf+o7+ZP/wHf4n7F9dn/fSsn57107N+el4/Yut7Z/z5WwouWoW3ZHEeWg5ansi4A4fV9uo6UslBKKiekWyoTyRvlTKVJywSGDQMG0qOJ8ZS2VQAPc/sUd2myCSmYNIQ1YpF741bCmtbCQ9UlDF3JO9odoW4FkujG/tI7jFO3fjV3/gW/+4v/2V+6T/+Szx++i1erMpHJ+UydjbtYIrLQnBHuyl384r7e+ZJsZh8dSywfIVbfM6WV1Jg9yix1BUdgyUDt85IJTPY5xMPbWFxIffk1Z3xQGDripw7764X3Baue/IujE+nMa2xXTZe2Wu+8xtv+Ve+82f4C199ye/7fd/gZ376d/GzP/PjvHz4mLW/IGOUfQihS8d9x3PiPUmdZPbqHDGxhLPakXZUzJKWDc3q+ntCqKEqDCA0jmuepHeYRm8PRNwY6YhVtwxARIl0aLDFe0yXKnKY0IrnMMNremEWw6EsLUEILNGZPkEnwzacA2o8BjGSpq+ZexRLpAc3Ce7tzAs78WZ8hp2qYBL7GOGelpPVL+jTznJ3wqwT88ILVVY3xtsNN3j1euE+nzBZ8PYa/AW32xVuyuPTlX0OXr54zZUL6JmX569ye3tDHhL6DZl35NOZlhdCPmVvgx7QmnMbV/Sh8+76GfPxLXd3dzz5jp+d9dSJObh9vjCuT1wm6Po1lruFlzFZgXcLbKmI34jHK0/txNo6vhsmH7PeBuuycs0L1zaILoh3Vj7CvCDAWxoWG2IPxSthMCVwMc5+YhU9WCKQmgfnZEFTkTwho3MmidhBrqQWf8q0urMRN+5aweo3UZIT188bj2fndH9GmzFiY+mNOSvHsuYj7g57AogknkpoJ/te0w2emCqT5JaK6YmIiXpgEihVkPV0HMdwPDbEDMeObrkfhbXRqKSyJIg0XMrGlRToGG3ErGkKkyq6UQU1UmbZEhBEyqKhAS2E3owRyeY3slV64tAkpR/fOyEmIZOWC2ve1zRJ+iFw7GDpAHFGMTIvZdORZK5ZInYYvXXmuGAtYFbXGzUChTA6hlMFnGSJ5ZpogYxJm8EyOstywrTXsG4KRtnPZi6kGF03TC4YHc16ZkUXNECn0G2yM9mlxLluk7tsbLLi1pjLZANsH7ycV0KS1BtdDAO2FKItOIGMKwudsM6VHfI9i8D0juuC6QooizkiQYudpic8k6UFCwPLnWXeFXRdrujygMxeMO1T8m7/HD8HeHDKTl9XTir4daf3E/ueBeMWEBPGCBbuixMEnNRqf9SNyIbrCWlLJejJQLJSWEMaM0C9SqIHW5jhpH9IaRyo7HgAIswQDMP9uP9yoi3Zd6frCQvl1E7swBiG00kT6IEz8ZQ6hxeBcGLacb/G/98C4Xn99VnfT/0UNNZ8IDA+ewz+s7/8dX7fz/82p+VZP31Z9dN5Df7QH3hE4Fk//YD00+fHs7p3YfyQ6qfPnr7Ov/Zv/l38zE/9p7y4e/esn57107N+etZPz+tHbH3PL/5aVGelZrVPBMKYyUmsks0yQKI28xS8ZY2PR3WMJSG0QL8LEJEgCy7G7smUBssdk+2Ll0gLk3MMbtEwrLpsdUqSMTkd7AnxOnRCGi7G0AurfozmI8IV2T/m/tR4+/iOf+PP/nn+rX/nT/P2OqB38u4lT2rcrpPhky57dUe0Iam0OUkpCOriJcav4Sz+hDbY5ga6kKKkLby6KtNhCuwWTJnsvuEoEcLuCxdpiMHpAVquvOivubz/lE9z8GkET9fJdFhyR7zxHYNVF17egv/8m9/kVz7/bV790l/hD/zcH+AXf/4TfuH3fMLD6TXLq7sCU5tjd8Y+g+iNOXdOwOILTMVdGdZYtRgXSh7g3KhR92MUGorJIQnHqVfj9xSLIjHkA3vjQ3skgCx+B6roKLjwnMWp+SBSPaySCRnVJlIvho4qgWPHhKfHYFmEMYWpgpkwcydjJ8maAphw06C5sMZC6InbbWDtc3J3zm1y7gvkyp6wuXPvAg77ZfDRT3yFTRu9LbyX77LJG7jd83K94y2/xbuW3N9/lbvV2a43dO18Hu/Jrrw4f8K7txv3Fry8f49tg8fPlbM7S2vFrBXl/fXK+6eJnRJbAw0hwrk733N73PjOeMemV+7Oja+fX/H6o0/49vU7XLcgokMac+7k4kgfhN1xnZAyiLMyYueSG2hZPUY6uwXSqEnZdGiGyyQPmDAZBeqVrcJZosSkkOQMVqsENhUn1ZA0Gp0RFeayUH+mOOTE58QNdvH6zH3jzdVZb43z+a7YMCHY8SxoEVmY6UdH0477xhCfqEBLKduHCE0b+/iQNFesj7KaZHFvSv0CZSexCAjFNQl9wmmYnEGlCl9XJJPeGg6oHWEhRZ8h4vizSCTk4Mx8aAMWDyalupXDgxTFzHBPTBc6HY8SrZmOREdkRdUI84KEh5ZVQTciq6tvUp3Y9IEV4YDUMzOTXSA6TKuku9NYEbmBJhYPJA30CYmkQCd1fRIlU9gJLuFMTSIGp2ksSlnKYkUYkAX1ToE5BWtnJMfB3UmSQegN5EUVuV7XPpmkXuus2GtiaBDQGk8eRwJclpBGSGoSIi3JJZizzCU9DY2VlsKmJ1IC951FjqI4FbJDNDQbuNCy0voWvQPfGWNnEPSkIOxRm1O9NAmMApNvc5YF0gdpigeMLH5aHGDwthQ/KSMxAY8VFQV3zBS8/c5E1cFfIg+LCkK4H/uW43PQeyO8gN1zBq110qG1lW2fWO+QgUWwtAXP5DoHoYJYpRROr2f4ZMqcE7dA8qFeBugAd8RP/4UFwfP6r2Z9P/WTZWISdILPf+ue//0f+1v4R/7Yn+Tnf/bts376kuqnz75t/N//5Z/if/JH/wpf+/p41k8/AP202S/zlZ/6m2l2ZaT8UOqnGfUyI7Wm157107N+etZPz/rpef1orf8Cqb4HLwHqfCBRD2Y/QVMiJkhxTcgatTaRglCngxxv1zWqM6NxpDAZYVaG/2wlbqQeuIhEpiG9Qx5pWAlCp2uHmUgbIDsqRviK7HdgT4zY0F1Y7QXZ7vgzv/SX+Jf+xL/IuFy5ixMfL503t+9yssZ+a2xzQbTRmtD9htyekNy49Ybrgm7Hi8eESTDzWmPHXnyDUz+Rm3CL2rxCC1x9CmVxY9h7ZlzY4kSMleV64vX6wPnsvPdv8l3/Lp+m8mZ2tnHChtEkWM7JS79ym8kjd6zzFXl74v3Tp/zp7/wyv/Ifv+Qv/MLH/P7f/5P8wk//Iq8/eUA7NE3O0Zk3oRPQks0SrCwB5+BIpPOKjKci4rMXfBqPGsfHD1EAKTvZNtI789ioK7nO+IKIi0EWX0gpKZLHYV9j2jXaLVo/S0alQYlW3PoYlXznWelNzTo+qnhwSVShqVM9zMDNuKnxZNC6YPvkhcK+v4X8hPOy8Ga+LRj4Wj+qjEaTpQ7iM7z46KuVQmYLcv8J4/EdXznBur3nq/pVOhvvn97waA9cmrKPwZ47mg9cvnsld0NewlU2niLYWNDY2PdEpaEB43GgfqK3zu2WhDv3Lz/GNzBXvv5wZfeVlRe87MF8/xZ5Z5zax8y80HTnfIKHtWM2eT83rroU42Ps3KVyt8Pmye20lF1k35EmaDg+k34647GjudOg7ENpaA4Qre6uKKkLqYlLkDpRGyUOHNS97DemmAcGxUv5sKGkMT0QNVyDd08D+86VH/+JlfOp47cbqlpclDxG7VvZKQRQ6wyftPASBwd0uYJ9ikXTraYrcg7q1go0qnAeWRaVRcsykuxEGjG+WvaYvpNyJbLM6e0o0lRKejlOy3YAprMgv0zCdzJb8W8k8Jh1j5ogVDFmWjDnMQZ+TOtU13Ajj+THYvIkfny9zOJHJTsixYGy3CutzEtwIknf97IsCOTBU1lswQ+2l2aJssTLundwderJFuRIMdNskA2sOuHpe+3HRVSuCQQPYIHsRN6j3qmsy634JwhkJ6WYLVXsADjO5KL1WbbdWVonPFm0M1RwhfBAMsrQMyiouG3MBEvDjq83SYZeQQLZB6qnstJIw2WhN0NkFpDbFkwfeIrJ0GDvSi5W9qacIIZ53bMTqX1ulPDUbowRIHXFWlemj2KgpTDmJMQqmW441tfjM5tozCrGpB9npBdj60iT0xqH5gPqvLf6e1NlRrD2Rrojoly3K309gUBGFWMZ9fvtTFKCdtiUPjCAan9R5lITE2a9kutU0eeG9ZdmfT/1k0lN4LtPfubHH/mn/uk/wUcvHwm5PuunL6l++uz9C/7Ff/mn+Nv/tu/wta/5s376QeinEWzx+EOtn5DDLm6KEM/66Vk/PeunZ/30vH7E1vf84m+zEpQSATlpJF2ObpqU5aHgpgnRcalOjFFR30iwz2txZLRe5PUjUcl94jIY7Uqjo7IBMGUnm2MyIXqBSI8EKWmD3UrsWtyj0WhinHt1tcYWjHHl17/7a/yr/8a/za/9xm/w0BbuT695ehqcx855H+wdLnbFcrLczvTbSogxVMjmbPIpTU6cjg5H06xDJYovliToIMSIKYx8quS2NOYQlAV1LXioDrwHl/GOy5v3jC34sYfG+/kZ7/vRFH68YTSydXZr7JeNu3CuceP9MjF5ge4vMNnx5bv89uPnfOvf+5Rf+o9/kz/yi9/h537uJ/i5n/kaP/mVlzysCwq4nog0alsOxCCY1f1LZWkN1SN+flKsDBWQIBnAKKEpzowSEuLV8WxqiCrj6BSGSm3aERBJNGVmEEX9ZY5JE8VkoKK4ZAFfo0EaxA0RqZj4AKE+z0SYsTFiJzXrL4qT1Jnc543PubIu92zhXF5UT2yfN5xg84nsg0sEp9xZzw/cYrDp5P3+LV4jnGLH6dy/+AZymby5vOEqA1blk49eo9qxJ8gY3G2BzcaNyfkUIMbl0ti3wHSyWYlxmcEqxqvTAzLgzdNnaJbwGu6gyekEK68Je2JI8q39yu1y4VXeM924+UDkAgLX/URvd9gteSUFI95kcBEYi7M7nMZaRUOARo3f22LHZELSgAXKYiKGRvE0hsLtGMsPNc5RQObWJmKCSxIWIAOyOoyeQpoR3TCZKDvdFqYOnEGmcX1Sbk93rKqsSyt25xiYNUQWYk76wbDyuaHa4AMk+7B5VAKckHMrq68IEl5AbSnBbdL4kCZHCOHzmLIwRHfE8vjZB8JEtKMI+5xIM8SDGYHSyHTUsixgWlBptYXpB3vFFGuNMUddSFHcq6upWd3OwI/7dBBMQiBpR8e2uvCaQsGY6/lRgNhAqvh1EfacnJcJaPGw3Oipdb1EkXhAsyDMqBNyT+oGTA74E0VPURaH84SrO33N4u4IhCpGcXJMrwweSTG0VQFNKhIrEq0mSfR2pFoqjV48H5TdE20Fpa/ZBwWVgqLHrI5xlHBtFAPIhpBxV7YdKq0yEHYZIBPNl5UEl07ot8j+29j6U+xbIGH080oujffxnpecsJjgzuIDyypiZgafxRXUuAvlPCZ7T8Qa4vXzejhEYJHkVExO1b2XDWwirQD/MxqSk66VmPchoQ45QY5jQiGO50tJPaDbqogaOQv4rTZLmEYiTWkLRN4OISyIBdNvaF/qY0SJcjZhuhAO6YodSaKwg3SEuypc7PZfVhc8r7/O6/upn0SUIfWCoZ2Mr909ghsyXzzrp2f99Kyf/hr66aI/xZvP/2E+efV/RM+/+UOpn/AK4cN3JMazfnrWT8/66Vk/Pa8fsfU9v/hT+ZAcVvBpMDKTFjsijelxiNJqX6lCijCjbAumBW4dKUxrwKCpkWHssYPVuLp6q7Yi9e83XQuYLBvaZ3VTQoEFtAO9ugmnYOan/Mpf/RX+4l/8Jo/vF7796bf57P03ebwEr+4/YdwG29YgF977FV9PqN2R2wZjB1nYDC62M2zHxGjjgdXLqnJViAiaJ6sKHtVoF93xfUfmgnGh0Qk6ALsWEDn0hKcRMpFV8e586p+zf/6abXtB3DuRV27XwbI6ajs6wVi5yMCBJZxdH4EN4gUyz5xtQ9sF/+wN/96//55f/su/ys//rp/iv/U3/yF++htf5cWrO3oPmibLwctxCYbGMZ6e7DKQo1DoWR2yKVGCIKpz3VAkDMvTkRSXSE4adnSd6z4JivmBlK0lU49uDTWynUJDamONQA64MEeHW5Bj4/8gTMHaQuREYsPzjCNHsiuVJqZJz+RsjUih9ZU7WfH5CSNuDLnS71f2ccNiQ+U1Eic0Gn0B3xun9cx1Gdi8sl+/w2VLnm4XvvbJS+5fnRjyxLu3F9ptZfOd6+Kc7w2NwGRnDsHsjnMTPG4EzhbO3bqSTztj3wkMTeHufIc143J7h50Mz+DN9gbVE1sqt37hyd7Sc0G006Rg4eaG6cpdP/Nuu/JubEwL0Lq2roJZR8RJ31ksUEmmlHWD47MEIyLwDMKSFg1IXPKAjx+wcD2h7PWCLbcCSRN47AhScHGt30mjrAplYTmVvQNoNPwmvPvulYdlJVUQUfpqjN3pGazN8DnKmmLGHuN4sACk7CCHrVft2BsSRKzsVQecWdQwaSDUvWuQ3kmEsDdIU4wTcgh6n4NQZUp93a4rGrOSNAt+A2hNIWOMGJgJploFdNa+Vglq1P/HkY5XcZmVjplZf04wZS+hF/WcxYdefygRHTEB9uPer/s8UEZvRT8+WDGpytULvN60bA1VaCqeg5Q8bDVVAEgWPFsFpia3A/gskaRVZ3dE0GkkSuokdNJlIV1w3RDZUFYiFlzvkLwUA0d2RIyZVeaeoyEzkdbZMqFRkxJ+FL3H90brypbGS1wH+SGVDiE5LB+8ra7yVGac8HnPqQnNJmpX0A1tIHbPNa8MnKGJtXKNQDCsrsESBirccFoCMyq1U2vqSlVIH2hdSTwm2hsjlRiNhtIsET8sRFKddT+A7TARvCxGHIENzLqfVIgU1BbysMJkOOtyxudEFTbfaboQURM+ftg/ybLJSNaVQWqixyNRGjZrSiQ8URU2n+gzo+ZLs76f+imlUj9FhE+/8xH//P/tD/A/+7v/HD/+9c+f9dOzfnrWT38N/bTrhtgT0gbp1x9K/SRHsnQCPOunZ/30rJ+e9dPz+pFb/wUYf1u9MU8DWRnSmSE0+xwkmAKR0E1BofukK1hf6qF3QV3pruCCaKtYcJF64DSZLkj2L34syYRRnIaMRmYHd1ICa4JfjH6G9R5+9df/M/69//cv82v/ybfI7R3rQ+C5kLzgJJ/Sb5OHeeIyrkQ700ywSB63jU0WsEaPgeVG23daNkzPBJPVDW/BdYWpcHLlFCX6ltOJ6+0Ry6SJ8DSFJZQmiqaCKokjceHOFiTv2W5JyGBpwdUdBOy6M9SR04kZwsMwloCLbVzsiS2uvBwvuJd7NvmUbJ+T+ZKMhucj1oMX4eS7G3/xz/xFPv1Pf4uf/ekf5w/84d/LL/7sj3P/6hV+usdVEG8sLJCwxyR0FGtEBhKJhzEpm0hZdw1yQRNkzGL4SnVIzIVwoXO8kMHZmYgEqtAnNNOyxczg1HrxAHNhRgkMlQQGSmB6VD2RuDuTHZ9B00oFs2ZsYx4TERQnwkGmc74mcX/iEsr9XJkxsdMCy8p1TzpnVlbeh3PvyZ2szOuN67wyPj6h4rTryue/tTHvlfnqxvJxI/YLdnLe5RO7GjDwcYHLI3fNOKnyFBtxpwQ719tnLDGZLmQ6++0RB24OJgtLPxEEp7sH0q8MH9jywJBkbR15TNRhb490EboY+AOrnnl1uuN83vn8cmNSQGmjEg3P1klN9njESDyeUIydZObkPo0SgvX5Tp2ECU2KwUGWRcSiIu17u8cy6e4IjivMnmWxcGriwYOTJGftzCbcQpl7ks2wLlgAM9mvwu0Kp1OvQ7qBaKOjTK9JF82AqHH8nYKhS8Yh4pLpSUjxccBoZsQcREKaYWaICzGDIApjYkLGQvipCDjq9ATxjuYTewK94wgNJVMZ+gaVhYhG03Ml89Fw3lZzOpySVmXT8HLSYFqFffokKaZOy4Wg0vKUw5oswkRL20qBsDM7Kcmm1ck1EXBBU+liLNs9SyY6dyL2gs4bXHKCXDCdaJyYsbDbFcLKxpBxCKmy9kycx3lhGJwUTA3RhZmPsF7JcYey0jCYhuqJ4DvHKdC/KFqzbTS/A78BO9hAjqLk4oG1KtxLjd24V5izVYKkTjyijDQZEA1sZWaicUMSuhlBK26NDKyVDUnaGWkr3W60kRAUJysDzytLZMGos/Zh87Lmbful7ntRdCbnvrIxqouMkqaM/bCSqFZK+SyryczAekMFfN9p3msqK5LW6yXMJEgZCAOTeUx3KREUe8uUCEfESihnKwORwbY5TQ13Z2kLhFUARFdEqoBJd3rFz4Eq+5yYFZg8pe7O9DOqxswrLhOOlyfP6we/vp/6SUULah/O41vlT/2pn+aP/p1/ifx4e9ZPX1r9dAae9dMPVD+13+TlV//XjPAK8Pgh1E9FiIPAwNZn/fSsn57107N+el4/Yut7fvHnWQ+BitQ4bmysoiR3uH+IUwfGjuEgk6tnjfU2I3OyaiAMOOK+UwTJQTsSe8SMaTtbHiO20RhupAkpyjacvixk7piCroN3t0f+rX/9T/If/tlfRvSBfv8Jd+3MHs6cE51J169xAy5Wh5qFM/rCI8IMp49kmZXKZBl0F265MeRCi+BRP6HZiXNeCZvoeWHfJ9OM97egta8x5hViYOvXwA1PwWPUweGTLi/QLBhqXxozhT2TjEfWNYnp3MsZjTOPO7w30H7hvk8e9p1VXqK5ssvkyso5Jh5PbHLP4MypKQ9+ZviG3Z359Or89p//df7iX/5N/s0/+IL/xh/+G/iDP/OzfPzRHXLXuCK0uXBnJ2KuTOnVO7NE4srSJuET0agx9HQgyb7RZYFQzM54DmZORpSg8FgQuUctCB+4DsINodEl8Fm8iGFP0BSfRrjR+311vPTKmFFpdmx0glWDGAnDUDEWgheqvPUgbEH7R9A+4bZ8jowrLzvAjjZhDOe8vKbxgpCOr2DziV3fMvNawFhWbqcTftt5N3fmi4AXzicvzzS/MS15925lf/81+sMdwSPXJ2drsNwvYE9om2gEqi8KHJtOb52nDT6fnX3emLHxIp2xf47edcacqE80lbFt6PnM8BvbDNw/gtOCb2XpuM2Ni104dUNTue31iNxJJ8XZJctukEZOJyxxFTSMTqOHYnlmMtnaDW0b4h273XNtQBS8eD3fM/fBmsLwK4ggUXwTb85GMCLRbCxH5P3FBxuTMR3XleVklSaoj6QoI05cx41X+pIeytoM4glN5107keFfcElEimFyzhN7KHuHtCqsmsM+AkwZEozckRZITJo2JGuKxLqw+xESJJ2Q4rRAdfT2LOE5xEhRJCj7RW6kCad8TeC4ZnGQ08nYmaqkKr0ZEVuxa2Yl30UGUwxrjSlSaWkqMIXEiBzFPaGjAsZeYGcrXpMcz1qXjZjKcEUz6XEk6PXPuKZC66h1grLVrJ6s/RUxnRmBqwNSX8savivIzpCdyIUnqsDissC8Z7ZWwQIuWNb+PBLSFnaSa3faPFfHVIWNSZOFNjqPecOARe/oWvedCDS5IrmTOhjijC7seaKtJxqJzIOb48LZ7thzgDq6O7Ge+WzunKTThtLbmSY3bvuNSUPmyuKNUCGkbI4v+mtMHzB7yckuxEjGTHoIIzcGkybB6ZiEiWbcmuJp+B6svVdzaQx6uyOzsx3THF0NTadHiUVJQaSh4oQkIybZktCd2A3NhcgVt0R64ha0SLpXoeMIW05UklWSGBuLJQE13eMLKWBLVAJkDMSUVNgd1jiVmLfTFy/ARVYiYLUb7u/LvtQU9Nmq8mVZ30/95FHhB80X5nEupzQuU5/105dWP5VV8Vk//eD0k8uKjK+S8S2kbT+U+ok5AZhMrnl91k/P+ulZPz3rp+f1I7a+d6svdWAU+bTGrlONMZLeFzKS6c7SrARLCNYWfPejw6P1QBUQoeZ8GfWW3wbmic2VNKXL0ZVqg7k8ggiaRuugciKyMXPhP/xzv8qf/FN/kjdvv8Mn/Susy2ve3oQttMbNjy5C5ABPwvQYfw7YBQvFuAPA9cbYr6xdkaWRMxgReNwxM1h1IqHkLDjtzL0A1Ity8ydsCdInMT+nWUNCwOIAlQ7Ihs6gS9BSadZ5e7vRT5Nr7NydXsBQYgRdlW1eML2x52APIZsyFPasUfhreMGdNZFRENV93ghzxhaonuhm3HznV//ylU//yl/gt37/zh/+xZ/lp3/ma7x6eEmerrybbzj1OyJvxZsZtTnHUaiUWyAJ30tVqBCSRA58JqmOKHQpdkiBo7eCz8rE7ZHUBeEMGDmrK5jzHtGo7k4bmFIAZZH6rrkTMhAJwouZMqFsM6KM21b3jA9gQ1RIWcim7DYZywnLzwgRQgczP6PpShfg9JLNk55SvJgN7ueC49xOj8y+MzYjP3/BZxo0M3IO7nti2Xh/27D7hvQrO+9RaeCNU7/jtu0gN7bY8PFAaEOWK5E3TDseA+RK44T6mfPykrG/KZZKDnoT7l8pksb7+Y5NF5JOWxdUwTN5d7kwVUCWsmqgQOBewi2jupPaluKM56C1jo5JN2PSqmuMYFaWJLOyCfnYSoxYJ6bTutFEikdDp60PmBRyvMbwHTchdbDIwn0Y6Z+SOUFL3BKTKRfevvsWLx5+ElCCEwr0dMiOZjuINGURkD7IKZXcBoh0FANzUgWirDcmgmUy2IspI5CeNG2oGLsHZsW4kQxaMwxh+E5YEj5gJkvr9BTSg5BeXyeczHkgXpyzTtINwkgxhghDlFUdIUgoi0FWclh4A5y0R4YPQjuYMhkIDRJsGiJanVeSjpWgVSEl8ULh1/WJIHMjqQKup0KbBPW7pIJoAeHrodkQFEklZsd05eSK3rayvZwG0beaDpKk8wpPoaUWt2U66jupvcS7D879/8ve38TatmX5ndBvjDHnWnvvc+5970VERkba6XRW+RtjI5UpqZAwHSyEQNBDogGCBogGSEjQoANSYRBCtIEmEqhQIayisCjLLgQuVakolW1ViSrZVYZ0Or8zMjIi3rv3no+915pzjEFjrPvSnZSewfkiiNhTerrv65yzz95zzfmfc4z/7y+E3xCBTynrW4aXvVCTNGGdgbpBtJpvkrQQQrYS6eqET8KFkM4UxaeyxIoOIbMxtVXynrynxUAQFjGEnVUm/RDY04JcznS9cfZnNp9EKqlWU0QUaKRL8dUwiErgVKD1spf4Hh8zEctCF0ITK26NVFodlaeIydPBHmoEvTqvUumW1fcc1bmT44Bwt+L3ZGY9Lxkotb+0Jl9a+ZppGYu8WFIqSqbV3JCyPolNBEO05lum4hkMdTJ3wFFZkWx83LLv40c/vk79NARcnNANb6/HC7jR+u2un35s9VPNj7t++tHpp237U7z7wV/l00//C3T5935C9dPRxZQdvN/1010/3fXTXT/dx0/Z+MoXf10KbZxkwYYPKElKMh1q2U1GFHy0ILYbphMJanNtC+5+sG4MIsmoqhHiiA9UDisDAIFYEv4pc7zSzZnzA/1y4a/8y3+FX/rV36bHynfe/hHePb/yut1okgTrwQsoYZWeaBpTBkN22q2zsPCprSTB69y45QYajKwN2cxYdCV4S/oVZ9JC6bogkgyq6hU5iNyPTSXoemJGVfbXvhK7o7qw5Mpgo63Celp49+6Vx+UzNN+TOejTaHOBEOa4oTKZIWRbS0DPgXvQTJB4hfg5ev+Esf8u55YscSJ1I/D6bNIZh0XBxPj8wwf+jb/zt/jV7/0yf/7P/nH+/J/6j/AL33rLQ1tprXHziSyCSyX0JsU/yEhUFbPKMRt+tKTrsWllffJErZLCJGMvRoaA+FsyG0gHDdBKkxNPJJWMtRZ5maA3NNbinehAc8PFSe34NFrrxO74dPp54XWMEilTWbxjQ8qClDfUX5D5puLiI5ipSAgnURZ/wbqS9sCeHcFAv8FvffEbbM8LD+cLHlfstLLdhNttcurBabkh6mhUJXxmw3jEHXrr7EfanBCENFzgtm3sRfxm7JMQYYk3SC4oL9x8Q5eOLQsfPnwB4bw9P1Zq3i70dub5ujFGcT2aAHTQMvcUF0VJ6WQUC0V1pR8R9yGOdWGMV5rVJhepiJ6BYOStALtqqMIcxWbaPIhYCS8gtbSyuOw3aG0gGQTFk0o5k3oiZGPmDRI8ziArU0H1lYyN15d37Ps36W2tzz6FHqMs/CyFU6FE1O47ngK6oDQ0jUrjei2Lh1r9riJkJmdtSJYFR7uyx4YfnJsWjupH/hFEOHOfpC70ViBqCT06IoQhwccVSI81Dy0rTYTiWd2VGJXMJhzwZeo1HRwgeK33en4CvoHeyIPDouIYgmUjMVzLdjC9HfydYrkU5NjxXBBxVEsuaWh1GfRkpJNWKWdNpGDjqaRXaqRIcWCIYEknfOPGJBRcjJYdo75fEIQE1WOSqE/cdiKSOZzME5kN047kC0j92l6eESJhl0pFk6KrHFwVweYJMFwGykB1MNlwCkhvegFfMJ0M3pPmXEaCJ2InpjZuOomebANyWbmmc5Yz2VZu7pgJ7mVtkiMasLeFMW71OlQQpYDb4sdFhtSz0Y45VisCpDBCkKURHnQxNCeRL7jAML48dGkk7s+ICiqtLt5JmhqRUIYhYWqCJI1k7DuYQUYB/YlKB0gpnqVqJd0dwjVxPEbNNSqZTrRkr+pOZgHIPwY5yvzK2/t9/AGPr1M/JXKsSRVEAeBTaJp3/XTXT3f99PvoJ7IeFtGFpZ1/IvXTmzff5y/9pX+JT97+oOytd/101093/XTXT/fxUzW+8syWbBz1XshjQT1S2pCqJBb4VkALLh0TLIrF5UeyVBzwVk2rxTWTqCeTbPOI765to8eJHmemvS8grhhtOfO//z/8NX75137At84PfIhXXuIdy9rx2Xl2pcVEGSReMFA3dK6cNuUkA2xnxDMvcWXqibRiqeiylH0A4WQrU+DD3GgZWLOD95DMEZg2iEniLEIxLRS4NdrS2fYbmvDN8zdxBjZhLg2/CN97fs9tTr6JcNK3eJzo61vChJ0XfN15eX1m7o9VTT5izy1nxbpPYbTPebn9gG+8fUBuO8Fe3V5Gba6+V7qcTNrT7/CmL+hi/M5v/wrf/94/5Nd/6R/yz/z5P8+f+DN/kjefdPp55WXupCVdkzaLS6LWUTrpJVw1lfQ6d6hAphVHRI+pdCRp5bEBPLIwESKd8L3gs6JIPKAaYDc8dtI7yqdEOJlXlIJoRzjkAshRARLa6cT19soHJuezsvUvGO09yRXLB3osyFhIOaPaEXYGZ0Q6EcnKjjbledvIEN68ObONJ14lecng3BYe15Xb7ry+DGYIczqPax2qHKWdLmyRXLqS/sLMQVxXmj2y6InJC6o3YgfNz1Amk+/zmk8Ib3n//sY3vvmG4cbrrfPd77/yeHrDZ4+NLa+8uz1xOT/Q14DthWVJminWNsa8MjGmd5h1ENRmCLVhNbUS/3uw9F6boRkbO7VlriiG6GDGjVZHD2Yk0pWZxZsyXdhzsPkNzEEbSYHoFeq9DS0hlWAZlQ7ZFNVByMDiLZafkBL4Luzb4HJeiuWiWal2AokwjxRLQZBci1+kRqFryi7SvZLEsmqHuGhZBvDjIKWsATKTlep+CKKSvJrCAT1fl0bzWd01Gdi6EuJ4BET9bIlDsEIdFKKT9GNuO5KDU0vCjfCGZolEOWw3yopPAQm6TnYfSJ5p0mhMJA3EqhtDK6FR5bUYLdIwGi2VdON28F9UAsljTSbxQ0ijUtXLg7dZ+KayjqgKYjBnWYd2jBE7PSZtOkagYUySKck8fmHrgs6AuGG2cF7OjD1BhJvXWqEiCAoiWFLVWknyOFBkJkqCg8Q7XKvDwqQVmDoFc6Nb4O2FER9IMVoIhGFxAKy5sLtVNoEYsSgN5RzCY3YWXennM357LV5Qb2Ba8Gl35BCqUKEHtXaNEnjSyKzEzKXXe+mxoeKkBmK9OhdKWuJ5YcaoQ5JQe2AmISVMJavTQYCuKxEfjVhRjKNMkjosFry/eGARSWZxcRJwLcbNx4q2Uvw3OYIhwMtmFdDjjKoQNpi6kbxi9vH4dR8/6vG16ic3GmvZxmKtF2BXRMZdP931010//T766eMwUTTkJ1I/fXaa/MV/9l+vvSz7XT/d9dNdP9310338lI2vfPEXTgkOrZymTEExZuy0dqTSedDbUhVIXxBZmEm1Wecg5kD0XFXq1OObTkJ2Qhxp/Xi2j2o4RviC7A2TE3Y68W/+rb/N3/1//X0+/da3+fx5sOSF20swWlWrHrQjWpXMpDHFGKms1jBWbnlmQm2KHrXY5g3YGNOZKXRpZCQ+b5CC+4kZjuuVZp3khAbVhqxBTkezI6msJmy5Yzpp6TSXgop2J8UJMT68/0BnZc8b+KCvyhY7kStDzjztwbCqrk0aJsIqCbljnqAnoCw04yWxDJyJqmGtE7OOCGs/FVsmJ6/bZNEzQ8DkxN/7B9/jV3/jb/IXX175C3/hz/Jz33jLQ05AyACVxqQq1i5BEpg0unbmHEfaU1Kh84bI76WtZgiqhg8n9HMyq7X/aNVCpZFypVgaikqBsjP3o6odIIZksY0cEFPco3gungTGaXnD7Qb7Jxe8dbw/MexKrpNYnFCnpdAlMS0guBN88M7jckHiSo/BRQctJm/Y0G9M/HRl+37j9gW0bynJwKITstQBrDnDB729qYOOJiY3Wg8iK1FM9kbKzmpG2IJHsq4dff3DWEyWJVn1DbeXV9RvPLzZ+M5nD6y28fnTO/RkrI8nttcdcTCMU1vo2aprwIvNolDCKgdIYL1sJJH1LIaDtoVMZ8ag9wYRpGsdAsRomVgmc044LaRqWTHGxAzQVgFtEjQbaFQAj4iBVJXNwkkLhi54nhn+gON0SbpMMi/47Ly87Dw8nFh7gZF91iEXc6o0V0mIIg3ByUjCFQSkgUjxf2pDV5CGHiyYJidGwj4r1S4biCctDyHgSWRVxJs1GB0O69rYQXvHmuJboFkVZPIopIsQccC9o1gumRPSyPg9kRYEKnF8TYI6CUickLmi/YbqC0TZKEKtukQOkT2zxHtkFgzehXTBTCvJ7Hg9QpZ1SUrqp5cF7vD1kAIhUVYlCgDvbITC6AEOjYWWiuVSlwp6QyUxotL0VHGF5g8liilukTbI7riekSxrkGXN0Y6AK8oxzyRQUWx2Uq0sdwhjgs3ALgV9xp3dA1ixVJo1NoLXlixZa5wF9IDuwhZPkMqDNh5t0OcTuk9MVm4xIYohI8dOEsxKyyRrXYmyn1hriCj75gU/PxJRncPmkgqzYWF1iFYDPVVKZEYJd0nC6qACVva4rJ9LJOGwitLS0MyDmQRqQmRZPp06LKocFwLHOpxZz7MccyuPI1FV2jnS78oiWGYbPQQwWN4r1j8u4+vUT3LMksSIKGufxSPW7a6ffkz10x/6ucE//z/8e3znO7e7fvoR6Sc5cDXIJPCfSP10uy38w//3n+EX/+jfZz293vXTXT/d9RN3/XQfP13jq89sK+sBlGCLnIhXNWfuAxGjWyc8MTHMBsMdbGGoMLYXTucJoozRIBYMRVmLKVA5TWTuZVsAhu5ceeWNXOmXT/ilX/9N/uV/5f/O209/nteXqtjtsdM6pLzSw+D2QjQ56lTgGkf60KDllVsmWwMJwUawspA5iUhu4khfDkDuBCYnVcQvNITJM4Hi2TDdsS7kdHoT3CeqJ4jGiAHa8b3SwfqlMXtVMOYXL7ydK5sn4xHUO+tcWayR4nQ2RK9s/sotAsm11j93YgaqDc1O6I1VjZOcWM4LsbwyX505dzIMlY7vG5k7U4xTOyEDliaYVwqS3S78rX/t7yKj8c/9hT/Lz37rU7wJkoocwkZabT6hG+TEwlDxSlmatQCbCF+29mfQgSbKHkHkZ3xMTvKc9amEsGonYid9gHhVb5yD/RBEGCLVnh8ZVTlcelUzR7J4Z47JZ8uFt9vK1RdyCh6THp122CyaGssMlixLVMwbj+dB0yembpCd193Jy5m3J1j2zg+++0oMYS6DTx6NPgfzObkNQ3qy7e/55M3Cw7rQVyE3oenKNienizHHe1J3FPB5o+ngcmqEr7xeE/WV82I8ffG7xB6s+hlvdadtN9Zl57OL8TKE69Pn7JuwtF5k2uGIWoHcM1F3ulkV5hikFCskWz1bE1BdcAX3QZcCs6cLlh2jIOoLQhPBRJihhFQVTbUqejkLrNtUjwTBa9k15ILIA8gDHqA5Md2Q3Gj5gMSKyHvQKyFvMGm8f//CNz57Q9dGxCEMJBF2VMFSitHRys6BKJ5anBhRPmKsBUVCMfTY4NuxcSeihs8NtOayR4BWlU+0UtW2OUs0TqeZooCFozMRMVTqd64VrngxJyv7lsss1AmNkUuJPXEinaQq8QJMOVo78sTwHfpEegng0CAOlSIJPYQVYecEWQI+pGDTkZUUmJU/SJI4TlDrq0TAXnMhpV5r6CTkBmbMYZj0sk9l4tMQTywXIBiyk9JILrScLLkTc6P1xKlKrGDEgMVOeFQnS7pXHTbK3pdaf06tNSJlJ2RisqDRsBwF0Gahs9C14yHsPllMkP25yEVuzLYyUjizo7mT7Exr7IcNrLdH3HZ+4C+clis/f+kQrbhj1QBVYQmSaMxK34zqsqhtr6NaRqTpjohifSmRHw4mjDi6CmbWIYsAEzJ2LAYtQOm4FFemS3WiYqDaID/aMusiYDksKAMhxMmouSVpzFHdGbX5BF2UGVmXRQLH8Y5QQaTsOIe8LY6XGT6AI8VQUlnuVpUfn/E16idkkDoZYmwUoPx8gl/7zbt++nHVT5++cf7T/6nvF9om7vrpR6GflLr4ixbIIj+R+ul333+b/+P/+b/Ff+O/9j/nD337t+/66a6f7vrprp/u46dsfOWZvYwTg2Bo4pqoFaNELTEJAFIOkGwa5lXLTCaZN5bTZAYInTUV2a54F0YXzOGSxjafWZYTH6+RPAyxRzZ9wz/4Yud/9S/+NT791h/Frk7cJqw3xuK8sqNzcsbIBps7i53IEawkiyQ+J3vvzHCaTwzIRZgE7sBonKQzbteqnnln1W+wyxOv8n0shM/0jI6VayTwSl4TM2OuynMGIcLbDC6piCcz4APwWXYu/cz3fvh9XrZgtBMpxnYzWhQPw/cbn7x95OU2uG6d1AuXVZB0buykJv208PntxsNyIvNEE0d1w1iw+SneXwnZqeDTxpiviLzQ7EygRDQkjJnJVV9YmiDxyN/4t/59PqTyn/xn/yR/+o9+m7ndCAE1Y8zk3BeWwxKx+aBpVUWGUZWqzAOMCqQhLExXtDXCK4bd1MgRLNo/rs3IMf0kBLwqdCOreude1fBVL/TcmfOZER8IWZBmQDIk2PsG/T0vcmWzxqkvLPuGhLDFRNeNfd0Q3dFpNJ98a/mMp+src0D2xvtt501+g6cH4Z3vPM0X3lwG6hvX1xPNHkndae3KnF5Q65vTY/Lm4cSunW0L9AS77Ex5pI1k+g+5AHso5/XM+9szacrreGbflLgWJ+Umk4XPmPrEE68EZ3R5y+v2RNeFmBtY4NbZXIlslZIGjNYJNVQu5HRw0Kn05YCvZ7X8jzFZWnVj7ukgO5oN8YXnHki+sixGZkezM5kgg5M21LU4Txhiyp7PrO2BTz/5DjC47u/Yt4JTz9uO6gPDJ82UmQb6AJ4s0fDbztPrE+fzJ1g2rnLGBCInMzdUk+UkValLIb0q3kKBqk3ObHIibGdlx2JhmLKbI5SYMA+kLQyZ7PZKWxTNT9B5wiJQfUbjxi6KixDSaGY0K6DzMGNsN1Z9oNuZEROXK9vcaHLGWMkpYM6UDaWRSbGhDkZJVQ0/Vvo3kFuBr7lAP6O+0Ahijqo8x06QNKSYM/3E8I7GSuZkHhXLsCjbgwsajfCXEoX06gAScK8KfeOMTqqDSCc6Gx0qfU8XbCaqiRMHnLo4J5GC2ul4nidGK0tFJKihrTpsdltgwipH3poPui3cWMmYQKKpND2zpyA2iVbdmrv6YftIks6cK9Y7N38lLOv1pCB5ZYtB65+i8QmGE3Fl8I4zK51HTnyDGI8MMVZprD7JqVwDRle8Oc0DcpLpqJ0Kep4gqWg/85o7oV6pq6IkjZYrJrcKLpKyO8V0WoLZQtjEea0UOSlLzYygSydD8CGYJmoLWzqjBREDZbKI1KUPWawpq46AdCFZyo6jA9OyhWUIxkJMJ632WhJGTpbWmT4xOWPiJDdShPER8HYfP/LxdeqnLWGEMbGDRQa/8iT81X/1rp9+XPXTDz5P/sb/7ef5z/yl7/PZZ/Oun34E+onxCIDuK72ffiL1089/+4f89/77/2OsP1fH010/3fXTXT/d9dN9/FSNr3zx9251ZAbdYUXwpkxN2rwg0wkCb+XDzzI5fFld4QA+a1IPmDbsbEzf4XjYXzxZlkeGB4vXz1wS+txJnfyN/8u/xElfWcfOvL5ykk6fb3jegsVWNDs+dtwESyNn0rLTLRnbDZngMjCZaOQBcF3wKHGWOhn5hC5GyAPWOi/jhkzjtLSqch0GGgw+9AuLgcXAt42zKjk2RuuMOVla4Etwne8hNpbnxvP1xuSEZ0XYmwZzvuemjU/ffofrHmzhtAu0sZOhzB7Y3JnpuMIi4HIlUEbs5G1jzhPSHNdB+MBkgQGSZ0hFMgqaiqHRIIREWXNH5RmPM//Ov/53+LnLZ3zn8m0u54baJGYgDltOem+ED5qO4jEkpBVwdY+k5wZA6gDdyi4jQtPTUXks60hoVfWGO2aGiRDeEJTeVtI3Zl6rYigw9u1Y7BvChTkaagsig/CNfRN8XljXz3gnV/a8sfOBqR+4rH8YH4NFHlj1DT6Ck62Er9w+DNblE7C1KqwyuUgS2lkePkMtGb2zI+wfnvjW5cJE+RBg62fs9pYRRvgLoye+JedI9jnYtMMqzJth3mAK27sNvznX5uQ+0exslxVx+Gw1Vh34MLbrJ0RWF4fejLSBy05IEJJoJkJjUdj2Ky4bbVkJn+QMRI3BxrzuiH4TUhBPFisGDFAJfhlMvKxC85VmoMNR6jC6f+xI0QPoax+rbE7cOt/5he/wM9/+GW63HbNvkxpcb+/4jV//DcZ8pq8P7PMVz50UI/SBl7ETLbgFXKO+Z5Md3GtzVoh03EH0SIPDEOkIC5nKlCvEVlVM2ZhWnBONWbBe6QUBHkmqofoWppEKKS81/6SSyyxPNIXIwIPqmcmOGPTlDKGMcEYdb9ma0UTRMCwSC+GUQlpBx1X770HCE6aUXW1x8FzYJWjD6J6kvOJ5wMYzIQfLsjL3qna778V+EkF0MAi0aSVfIrRm+CzovmSrTg45SrXiBZZHQMsakRakDvZ54SpnIl9Y1x1sYHrGJyA7GWWIKDg9eAZu9fRFOjF3oJg3S8yqjKJ09WJ2zQnLjUjBZIXsVeHug5YrvveyruTEclTFu45ghMDIG0ixsPCG2Vu0bZBJ5jOrbYi9cuKR3IPdN9pZGOuOq7Fr/c4Xg1Mql2yow4ddQCr0RqUj0mmmDM0Cem+j2DSnBu5YwIyy0n20rKQEmU5m4m7VSSEgJiCCS1mjZDpNG6ZGqBzdBdUJgSqZKyMEYsDRYaF6sI20OhM8yi4kIsRhd+nWSTk4cCSixVwSEZr0OnS4M7OYQdr1n4BEuI9/EuPr1E8xvea0wB/59hf8T//y/5W/+Xf+t3f99GOsn37nhyf+N//CL/LP/Md/wGffvOunH4l+GtXxN9l4vr77idRPoVfW/gHu+umun+766a6f7uOncnx1xl/upAougglYfGS8zKrMsCIhpFxJe8VdaidK/aj1yqSXyYydTRKzoEVSGrIzciFj50vfaG6IDP79X3rHb//WoOc3ub1uNL0wVRm+lx0iDgaDKJs7yEQozoSOQTMwK97JkoecjhLUMhNzQ+XMtn9BWsEwWivR11rQIthl59kmyKS7kt6ZnrSlkbIxYqO3RuyDrhAxydhoTG7XD3zYkt0b1s58THKL2GnNaNlgF2R0zs24+nsWV4Y4sxUTwzORDDqNnWv1YWfiM9h9VLt+NySErlkLLAsunRnPdXBQRWZBZEWMIResC2Swb4P/x7/97/Cn//wfYf3kjIYgAV2N3Z1YFQ+jS8O9bmY1FTla45OqcGU2clZKk6oe6YCHrUWUyCQA61Yb4RERr2LsDsRSkF/qPdrzgG0fy3/YKNBuvFSV1U4gyZjVBq8KtpxwlBk/KFZRnsGvIDBi8Fu3nV2Ch36mWSBr8NqeiOsr88OVeZ2cH8/osnC7vnA6r+hiXJ8+B4RmMLYPjPhDbPuKTcG9s2fiE9ZbEv5DYgoejeiDjclYnO3lhW8sn7AP4XbbeVwaD1ER8nsaJjvJEz5e+PS88jJ2ttiZKpADC1j8SK1KIJKx7ZjUsyXpiAzGuJWhIaVYKWLs4wGTZFEn2QgG2gXbodPxGQfQ3GkZND0z05lEPcBZTKe+dD68vuPRF5a3Z6ZPXGYBmpdPGeHsU8lsuO/0hJbvEOqZ2Z+CfKPI5QwxMJESq9JoshBjgnys9lLCiysuk1vunFKwnGzccGBlZZWCa4+caFtK7GYis0Q6fYBOHMF9gWi0TFQOWZEFekY6PgaqxpTE80aogybnUQJ4MnFNmgQtwWMrBpOciVDyOCyGZf3smWQa6EKTFQvHbSAC+5w067S2Fk9IDJMgow4VJVGCyDM5E42GihBZh0bx+t6RxZ1BHXIUO0rqGgFJJGBmgt/gNul0ZFdaNyInKo2hG6IcrB0AqzXfwLeNHklTqd+/Tq7VxRLBJI8OFSFiFKvHijGUkZj0OkD7hpkhuSOxFUZbGqEVVFBsoqUuIiKZmbS2ECEUNduQODH6mXDHWiNjocWJrg3dNhizDsQq7BZV6Q9FKS6NNLBmeJTdK3syLOkJl5m4wq4HrwtjZj0TziTVMWlHWIPVN0vHfSKt0gVvWUyseiaDsBsxAvVea6EY0yo4wARMPjKR8si1WhFtGKAHxF0BLIhZhwWkOGAERAgjFWQvocsDQdDuTpUfm/F16yeVARlczsYm3+V3v/d0108/xvrpj/8x56//1X+z/vmun340+ok8ntadMa4/kfrpuz/8lH/tX/2v8J/7S/8ij9/81bt+uuunu36666f7+CkbX3lqX2YQrTFN8XDSnZbJlB2xijAfwJBJPXLFGuHgPFipNeSIDBelrCS2sElw2wdNGtYSWm3Au+3Mk/O3/97fLrtLAz1PZkx2gueo5LIMpx+gzoidbknMQbOOKeS8VuVOTgidJklmsVHCdjRvkFfWDnu+kDbZ5jM9T4h2YkzSZsFuJcltYCwsbSF8ohKsCW0EYV4VGoVFFnyvrcflhvQN7IcQjmonIkg9g13Yxw1dkj2dGYq2R7oPcirPx1vS5spAIDaCiWKYnFGMPcoaY6FIOmo3RuyELqzUxhAUDyMDuio3AdNk0URm47d/43v88Pvv+dY3T4yY9KNO3ESI2w4NrlobriSYVz4XqiBHeqA3MioVS6VxxYvRmxVxL3nUW7QTU6oVvtUm63OHdNAdj2orFxtAJTrb0pg5CgbdHVVHNRANtFEg3ox6/3RlD2ftCzZ7MYM88Qy4DS4N2vZDlrbS+sqFb/DeB99//znf+vTnUGskTkdJGbzMjRHCsr5hvk4s4G17g8wrNxGsnVjCGShXVTZ5IGxBEFq8sl0/oB48XnpJRlnoU+kJz+OFTuJq5DoxG4i8QKv3mfmRG0NtkgezRWxBVBlzkhYHCzk4NUXbwgwhTRHVgpfblYbRpRPR8eyIN6bd2GUpxogV50VtYfaVbW7M431uXrDv3I35ekb2T3nevqCfk8iClM+4ETlZ+sKYO60H+xi0ZeU2nEyjb8rrVDSSy0cOB4qEobZgtjDjoxAvVlQyCDZEGiodzVnvh1hZRfZK+dKmzAzAaVKLQqZhojQ5VyWWEsORk2QiuWO6oAeEPR1GBGFCaqGKG8Y6E7dJajKlmCGpQBjQkePwkGyIOos4KsXEYiRrgGpZDfiY7tcuJaan1HMVW/3MTOQQwe6CLknOEvmqwh4OzchRjJ+UghvXxJgsUoBiT0W9qukxBc+dtkwiO7EYz2zoCSQmMoQDv10HYRFSGn070kUVRkaxXnpjenFVPJORiamCNchJ00SOTgu1lRxCyo60AGtoRrGWsOpMSKeA23oIQwHbynqXnaaVMLnviUhnk8+xpqg2lmWgcaP7iWFU+NzRKWVRXR6hZbWJnAc4ulXXRjprNh5S2N3ZiepKmDuYIHEBIPAv2bMOZWnJEtIZUdwnko5BRKXFKQSCstQ8i1o4ix8UJfyz/SPUSojjsCH60XZUnT008HREOSrVHF9R6YmLy2EvFJLOmDvp2z+WGLiPP7jxteonC/bcmQRfvP+M/92/8MdYT49cLs93/fRjqp9cLmT5HSH8rp9+BPrJeaG1f5eT3MifUP00xpl/+Kt/hrFf7vrprp/u+umun+7jp3B85Yu/kYMlhNWFEXAT4daEHguSN0RfcHHST+R4pOkOJI6RUhyEjImZ0qURc+LSmKqkC4sqMSqPLrxa/lLOPL0kv/3Lv8ZbvaDXHdhRC7opcyrXOQ7hGMjtxirwmgq2sgUljFTQzGIGZkd1QEIwmBK41WJm9oZ9XkGqRb+jeNyqKCFgY5btIgerTIjJcGqBk0pSupkzzJFMFleaLgSK5QPKYI5XQFA9Qza6GKdwTuo4O7s657Vxve5EE4iJWNAykXkj+sJJVmbsCIrlikqjyV7VX7H6HMQJ2Sq1SDqHQQTRVtUPSc4d9u3KHjsPy4ltPvHb/8G/y5/7k3+JaXX0SElaKnMPjMYWiZpVeJwfm7dAcq2JohtqGxnBDCF6bRxVXeVQYknON3RpoELmLN6RFjcis1K5Mh00kBTCOzE7bslsBnGGDCQeER7Zt+/TrGFa4sP9CvKWlEQ1sBbcXjeWpdPmguTAGlg7sd2UnG95jS/QS4czvG7PxBioGRaNvDn7dTLiyi0m6wLX3FhGQ7SBrOyxk6IwD35I7owo8dLPK6sG15dnoiWazprwydJxJs/5uyz2SMyV8XLBY4XTBfx9sUccBCdiZyCIlNXLxMCUkQECJzUigmansoodqVlkcTFEpCr/B0+qork60ytxcqhDFktveDIFPlLpk2REICu8u31g/43f5Lp9j9PDzmn9hMYDDGjSiJFINKwtzBzkSBDBpOHX5Pr+yts3J6Y0xkyW3glg3zYuy4rI6yEEtVIsaRAri5VwmjNQ0zo8hhGimHZUAk1HLZAczKhOG8kTNh8grMDeWlDmj83FlQQ2IZ3WOltAqoAENqB749YKO5A4FsGSnZaGy1oJcxnAVhM9k5h7HaxtLRi0DzJ2HIVsx1pXB3wRwXenW3WmlJSpKn4gqHMcdqtabGL4DCJmiXOhKuVSoG3NYB7dQBJGz1YhADHxsbOehMwdMWFsF9b2gOo75KN9RKpyLSjLACeYCNkUpYMrLZ+xciESOVAXJJRhO56dGOcCRpsScatqrCx41OUHoSRl7REmIg6xkKxITkzrxD7nJOVGtlfSb1hfONNxn6REXUr0zuaCq6AiLFSqpbpBJiO340CmoM70V5pWxV1F2aPWqDWlOjeoQ7hSB4qk+DWZjZlSYPCsJEXVQ5z6zm6B9+rSaUGl/u0rElQSIoHEhsTAagZUV4PWkUGcOqTpYUeheF51zV2vVcRwDyTqFiJJsu0kWgme7IglGXdGzY/L+Fr1E8IWii5nfvB543d+7U/xp//EG/r1c+766cdTP/3Kr8E//z/5c/zl/9Hf5Z/+hde7fvpR6Kf2y3zjG/8lLAPkJ1M/NapAPzzQuOunu36666e7frqPn7bxlS/+pBkj8wDbSlXiPNHm5G5kvqGJ0CUhX2npOL3sIGLHg+QMp9gXE6IrrwQkXFSRZcP9hh6VgbM1vvjuD/jhFx9YPjnTBEZWStN+3VnibYlfdmYGXcuyojywzZWIYk3c9udKjmq92puz/P0zk10UiTMXP5NjInxGzs7JhCY3Rjc2kvTkNI3WjC2T15jVCm8L2sBI8CNVyxTmxOZklUZI8hoDEIxLVdZozLyhfYEwenvL1XfiFGzjPaHJTmPP4DEXPAcvMVlbvU7TREUrgt4TyUlvA+QMthDzRqPR01ACz0mqIVYx5gBzS6ydkXZmY8Kp8evf/YJ3P3jlWz/7wBaDXR2hxJFEsspS9geqQjwl2TV4+AhCTaGqd0Up6i6kO9qMGZNowiRZZaJJLdokcFQ8yao4WkOAsTkZNd88dqxAJEdKouA52P2J5aT40wQvKO/JPsNvnX4RxtjpYix2wmJBeMEzkPWBPWBwY4sfYK68OX/K9Xpl+kYq+FS224bvV5p2Pnl4Q587nSvMF0KMZb0w44ZriRaPEk3oe2Y6+CMinZQbV4GHhJw7Vx18UGMVo80LK2VvMr9A+4S5OdddyFiwECJfydxJNYxktQkKMyZitaHNQ1yqCNoNzYGOna4JR4LWTpAmBY/3nZNXZT0YjPGCtRMxloKDW9liMiqJ0FsivtG7F2zcO/5OiDV4me8Q6agYUUVjhJWWvea6CSorsYHf6nnZEJZmjIPjoR08bhCCaM0pSZCsQy2j0txyUSyhebJL4i2YeUNmUHt+HZbhUsmOOGFVDZ5UNXaOSbMFopNuiDgizogAXYhwFGeVhXUuPOk8jtVVBR/S2LXRvRLa/GDZgIEsB7dmsrpxi8FNHPOB7YB2erMvD/S99+q+4FRg55zMdFQHns4lT8ycoFFVTw8shVTHJQgUsQtNerFish0V96NiLQLhTOmkfcYYysOD4flKk2txgvSwi3PA+1WKpXVqZT+iUgpbKDIDXxem10FTxUowS8cQ5qwDahWODcuHskhpMH2Q7IgmIbMOIzFAjt+PxHQgXJl7p+WKeKUvBqCxMsWwRq29aZwwLIWxKzkN04ZLYxNl5kTMyDkoodlrToXTbWV6PbMn62UZUcG0Iy5Idko2ynHYKPC2WFYXE5OUBcxoRRmnTxBRImGI0OOFatdaiEzEJ6skXcqKMwRKlDY0kwrCm2gova8MpwD/rZfFEq11ViotzyQY3FB5Q3iQvLCoIQd+4T5+9OPr1E9msGaytM5Zf5lv/vxfpi0/y4y7fvpx1U9zdH7t1x7Zt4/dT3f9dNdP/+T1k80yoWZXTO/66a6f7vrprp/u46dtfOWLP3VhZhCa9LbCNjm1leFVEfpoTKln0BhcgSumJ6YYW/4eXJdMtCluQkRtWLskzYPWzshRlVp14Xd/7Tc5B2gKH8ZGnLJYJnmBfUe6MqeQuoAo6YHlhZUDfr0HTU9EBD53VhMIGNHYrbOFYyN4mEaqE+xgiYahqXTrjF5QUiOZo9L0PC50XTAx9hGEKGMGqwwIwdWIs/Ky7xjQ10m4lwBDuO6Ty3rhQRuLnrimV0rc/orJ5IPvyDQetLGP99y6kKsg8kxIO6LKg7QNYeD+ylw7fXMWb7g2Ru4Hf8+OjWIisuDAtAC5MvMVeEPG5O1l5Vd+/bf5nd/5Pt/82QPoPBVrxmhPhLzQwmhTkAPsOsPpIRTdluqXr2ILqBZ4WoxwR726AE4IkUbIZMZArAMF7FVuMCZBw6Ta7sn6vl29LA3URuzxTGqD9gas7AymnRRFW9CiVzVLF2K8QTLY44q0jcvylhmdmRtyeiWas66P4JNPzvB0m7zMxDPZGWALpHG9Bg3IvEBeWHXnQTrv3GkszHHD5Ub6ByyVRc7QT3QaOZXb7QVwwpNFV+IatHXlbW9ECO/3jef5wrqe+fCSbDM5NafPic9E1ktZ4DPo61oVUL/S5YSIsk8lpJExGXOjmWJ0zJPIjZSyXEEn80yTMyPeYdJoLOR8ZNGFyIFrQ7Q4GsJa3Cl2biRhMDPIdmLGwp6DviiMKKtUA2ej2SRdDwaJsYcwInl+nvT5hlgnSzg6i8OTdsKjobkR6cVc0UpKq6q0IRlVqY/GNl9AO6ZKUiDtACIMkYc65OSsORkglDWgJGbZFwTBU7D6ZBla/CVLKWGAgu5l57DikgSTjL3EfzM8Jh6BSsOkkzFZ9YCJ507Tw5rhVYEfLsUa0VbPggOeeBYkGWl4TNSK1TXGa4mvo4sEhBFOtwsyqhMau9XXCwwKgKwKzeAag2u+1p8xObcVn2e6rowMrFWlc2aCdKwplkHklZuu3CzYZ3BCMaN8gf4ZLhuoo3Fhn0HrirKztmTgeIwCQbdWwtGjvu8BIJJU8h/5k+xEdnbfCHGavGWxhnscB9qDP7VsrDYZ241L/0U0RsHNFeYcLLriY9D7CZ9ac0IUC8NyPdg8zjWTvgipk6mNa1bSpmrB2IOXeq3aCRT3ZMksq43IweCiOGI6ySaMnGXF9MBE2VqlOvb047A+cUsKTV0dAOENT6v0TutfhijIFEyyLghiQwXcB6ZGk45GvTejJ6q3stTQCqjN+P9OFdzHP/HxdeonImk5OevK7/7mb9/10/9f6KdeE+Wun35k+mnOP8fnP/hrPH72X6S1f+8nUj/V5g0q1TV31093/XTXT3f9dB8/XeMrX/ylrsUeySRn4D7YMhBW8qg8RE4i6rYe69UWjpIO82ijRh0HnDOMTvOdlBu0ZNOF1p3BBwCmP/Fbv/mrXAYstw885mBuHZvJ3K882VYMByYmxtRir6S/J6NR2fSDYGe4lG0mhO6GstJGhSHoMrj1eQCUIWQww3mwhe5C11ECK4SMnfRBa4rEK2Kd9MGWipqyx2Cls0QjboPWGp7ONhsxOsaCtA7cIBQVJZjs4hiD8ynJWdW4ruC+MPtb0kCvL+R8T54+w7QTIgxmQV+tk/NCkwdiBt4n2jacZ+b4lCSwtAIsIHjOYiZmWRAkBduD1/ef84PfeWL+R88Yz0g6Mc4oFzBweaJFcRTSoJmyZHEt6jvLoRE+smkUlai2bo1DSCSRC4iBdCINDhwuCelS5fAmmGixMnSAvFKZiJeq7OUZodFU6P4p3N7DMuoIFSutLbjvoILKxppXTvZE2lvktsIuYFdSnL59m33uWAqyBcveIJRP2onvzmdGLwh4l4ZvG5+eHljGBc6f8Sqwv3yOLo+EPNDlBF15frqS0pj+wpSJb8/sY3KTyenxkciGhLInpC+8//DCyxhkS8b2jtZ6AZXHTk7HtJVgmwVi/ggkFm1kJB5eSWUqlaR48ESQhmgibcPiDRZvCISUV1Lfw6nEy+4TuhFsmO24LgcsV5BYjs8l4EhekygrVVMrK1QEosU1mjFIC6YOmIbtJ8QGZoN1PaEzmE/JiSQl2CSZKH3AOpQ8NTzrd8yDyRMpuG8F5i4/BtknVctejkpykClkJplSwtuukEoe9gWhxMmlPOq4llrxVvD07onEwDPxLFteP6ZoRokjpDglLUEyca8OCtVelXZxSGVGIyTIpvUZWD0fCyVGijUFSoA7i3IwdIw8qpKRzj562UrmxMMxq4o0UfM9EvA4uDQNkeruUFfGNstKooZuSWyTbQ5uthDSgAWfXlVSWRA6cQCWu8DVNlwFk45lw6cTIki+py8L4UHXHV06SWfWm4N4pRwiwky42WRRWKdhGLsoz1JA7hUjRaBtFVAQivCGsON1dSEymLvT25k+zuS4clo/ZV0/ZRugTdlDmKmcAO2JtCuSG9u+oyiGHvPJiMxK38xXbuMZ653ejZTB6/6Ctn7Y+qp7wij+VtMVKN6VyXLYA6syL9TvbSSR5c8Tb0hIJfwRpOWRcNfobSmLz2Gvcm6kS3UgpDCO7qqmCy0nLbxsSVqpkt6UDArynROBshJlpVPex4/H+Dr1U+xfILkxZvB3/y78yq/8Gzz+U/8dHtf/8K6f7vrprp9+H/2U8Ruczv8DNH+Dk/1k6qfhO0BZXu/66a6f7vrprp/u46dufHXGn8uRGFQVk2VdqyU6Gh4B6mTCjEFvDfKM74IdTvxGtdUmA5cN5QkVZ7GGZSd2MBkHqPQMwCtv+Ycfgu0bn/Kep6POZMymhMEinxVvQSfMwEeStpIyiDDmNMKuiA6UMw+csbEjmdBh8x2XQZiz+8DoiHdEQXUy2kJw4SYvREsihNA3DAkshOkDawuatfhqa1w1sT14i1X1Thujdba8wRJEXIl4gUwWe8OiD8Q01rNxe3nHcn7Du6cPLMun7PpEbld6PiO+4tEx+wzPRkSBsKEOBE0XVn8tvosuRC6oB8oBr41Gm2v9aSAEV6kqj0pxOYYpfl743tP3mHEF6ZzaW+YE8GLJsBBWCUokqCRBiQv4SFWgGLlSLBaRsga4aLXPJ5BlpwCryl0KpidCGmKzEgUj6jOcE9VGZC/uBAWztlYVJPVGa+/oyw/p7ULkha6K59PxsztiSROw6HyxBZ886pFM+A2QwHXlQZ1tdiIXXkfyIsHr6xOn+ZaHSPIykf7A8/XGhyF8Kp2UySvBsjRaV9wS04l7g2bMSGYK7kKzE+2svNxeWBu8Xl9ocuJ1H8xRSVTro3BeF5Kd83nnug9en5RkobVJxDNLNEaUHaTphdZL0O3uNDUWDE2IEcjaQYxtBCGfYiJIvh7WFPB54sEbLht7bvTeaSM4mfCEQxqZHbwVtwOjcSFG0jVLn6VCOzHiikkAvT5XhcQIVaZNmnbmKCvJ5Jkf3H6H7zx8csynmgdNldazmDupaC4kQuK4D5QVtNacpCF2/IwMVAIhUQFLPdpnjPAziZaAFztsG5Pdn1GVsnqJY0zCB4s2UGMCO4lL2e1UjTisYSlGSB3IW1KdOJSImO5VWUzDo5EaiJRgkXaAhUMODkpgKnQTsjlXPYRIKOdYaoF2J5YOMlgOnpZk2UKizarmx1oMLulIBJo3LB3LhjQDzuz7YBsbjUAMXIOQSc7i7sAsLk9kVdATnOSmG1MEtYUtkpxO7wtjGreb0sxAr8T+AvrAre/oCDSKqUJvbOHF5omFcMVohDRUoEl1cWZOUvZ6v3iLyYXUZyKyqtqquDiRcAllWkO1MXNHzTGc3gKJIGRUZ8BQbqPhsZVbROtzlEgsBUVJb5z1M5b8BB8dWQpcLX7CrNYmOZoeWgZO2f2GO9YU0gvYLcfXpdaBHSEj6RFgwiaTwfE1CJIbmRNo1elAQ6LXZyGHpT3rUGNRr8OJsoJl4LkXg0rtYAs1SIPU4+Ig/n8SB/fxT258vfrpAddHnuRTfvMZIh95tsnDst/1010/3fXT76OfZn7O+fxXDv2kP6H6aQEgcsX9ctdPd/101093/XQfP2XjH6PjbxRrJo2YiZkWh0C/bPquinRaVSB1kEekN5RQMqEql8KxUGUBccMZOGqdcEWiNicfz2zX77PZQstHWuxE1K28cKYBnWChKlRbFDh66KjNllogkopj35WCqqpA1qLQRJlj0kXoNtjildQObWWgqL/Q9fUQw4LmQgupDexoG5a5o9YZ+2RtivjkKgNbpKpL0TBpJDfgBbNZ6aTemeOJy8MjH+Yz5zfG8/ULlnXhw34jIjnLiT4nN+m8iHBrzilXxnzFc6JNUWmIBGsKm+/QFwQDN1BH2pUcBVRVUaBgzUZZOXJO9FjwrDd+54ef87onl1PjVqUwWncyR1kWhKrOhROjVvTIj4I1yTj+HmHoRPUo8WVVYSrxauJUFUrkyFcqnYQYMKs0KHFCj8U9w9HUA8o6EN1wUaYr4W/J/JQo0gp7Tpgdu6xswN6EW0+Yk94mmifwhvUk8oUmxlWC7z59YFne8jSSqwyGO28+OXNaB+uq7DenP74tSPUSvOmDZQi7GsKgyQ68MMYry7qwv0LOzrgpKhfmbWdRxbJz7gDK3HeUwc9888Ict2prPz2APBETJFdUO8gTohuLCjHKgtPsRIZXoh8COlHbyyqiz+xsoB26MjmBOJLV8m6yFIcnlGlRAk0FsRVPQ31DRVH04G5uwIbyyC4wJWhIfSaikB2diWbDWjuSBQVVZXAlowMn0MZtfsF33/0G65vGw/lCQxFPpk623Ok+S7haQ1W+5P5I7r/X4SiTSjULUrQsSllisMDBWZ0PaFXeNUip6m1I4u3jc5L0FJYIMoTXjFojRL9cJ0qzC5KCJniWmAqFPTdSBkhB8CWObpOcR3qZ1NyWSgg82jIoVHEcyWlBunMWJdTwAM+jj0MD9FxVZxNUG7gRYVR2ohwHDDBzTJ0m9f+YaAnRmCwrnEOr4r4qy7kq7qkD02BRYfcdN68DTxju0OWBztE9IDvaEpFkkQtTb4QMtnDCBoMX1N+gITDrIBETZnrtHQKvWatDI2hHV8EuG67X+l041WFanzl5OY2gDqo2F/TmzMf3bO6YvQENmgQ2IWVFIzE/qu694e6Eg0agmmjUmlOdFfvHOFOSQWQSPuk6WXgGGjO1UhfFQKS6DFTJA28QURcE8dEa1Diqx8JRQmYycfWCaUfSU3EuTK+1FKnXolJHym7KkPrepNT7SRJdj0o4NDkA5ukHGF0hys4kFNT/Pn48xtepnxorkoOxfWDfvgAg9IJyueunu36666ffRz9FfIPN/7Ms57+Oti9+IvUTeQNAY4fc7vrprp/u+umun+7jp2x85Yu/mBsiS92QB6QpiJWg9aLTCFbCKKzax7NsKyaJEixUS3dOQXLFKY//fty+P87Ac0PzBYDrDbb5BvVnmrwlZsN5KeAqKzNeEFHGAeL1HDiJbCckG6oG8ZbwMz6phKiYeO/EdBKlo+gwWhipxYe5uSPTWJYTI1+xnATx5SZZ7doBXfA56Jm0rI3mtAvSTlz9qAaH0qYT0bE4o3wLNch4Jdhpl8mYT9y2DbLj+5XLY2O5DmyuvM5gLh3PTo+Ob8+47IhkAYv3iecs8HYoWBDciNk4LZUsxjwT0Vh0RRU8B5KdZB4LuaPuzBTQ4Lvfe8eHD87jm2Sfn9PMSDmTbmQOpgpL61hCRGJNETsWSamELKKqNW6TpKEHQEKREp4tKT2QmExEsyqfmZA7ZFaSmK5MVZCByBXJ2pDVDXxF8nSUkibYCy4TdMXWhF1RW4gxcRX2Jrh07Kbk+YW+JmMa19cbr7sRbjDr9T+uZ/z6wmfnB07rGesLr8/v6dK4XjfonefXlcf2wGNzvpdfkFP4pn3CPkpr7Hvgu7PHRkSyZQkKVeX29Ir12oxWNaS/46Gv7FMZ1Ht1myuSCyqKzxLtqQt7JtOdZgDO2K5EbEgzJIrxkek0vRS7JY8Kv70CRtCKuaQ3mg5C3lDIZmHfQWnsGJo7oiB6VBLjWmBeOSNq7CiYsoRBBA2jJYdgKqaVh3NqC+d5QtVRvdGjYb5gz8bLu1e0L9iqdIKLKYs25izhGQyIICLKAuVXNDqmHdM6+Hhk2eVSq3vkS955kplfik5UCII45tc6WqUfirCrFLTalNR2ANjLwtUwuhivfq3OlOOgdeSBkTbheP8ywKTWv8ZEREiUiLKeROaxlhRnp1ddE5mTiKBrras3Ai/NjWhDEjKEmFW5FVpxXYZ+2cFRlrA6uolcai2URBr4HIQm0g2bF8BovtJECnautUabOo6QdNIWUEV00gmEyczEFMwTa4Mh10o4nJeyvdiN8/Hf1QPJwMUxCW4xIYOLt1q7CHZmHThIInc0HoAHxF6Z+cR7HnB3+noiJAkLOtDnYISxjAXhjMoFQVF3miomnZGz5sJw2sfDdARhVckVSzI7wsoYL5xOjW6N3YUuhuWoBL1U6oi2VJ+H1MGv2XFQyqCZsHt9riLgkag0QJlaoQpo8a10JoYiEpX+B8ws215xhQbEXiJeqAOU1rxuo0IVXGHYsadlcspWfWGZZSfTLBvNffxYjK9TPwnJTON56+x+AcDyRMzLXT/d9dNdP/0++gl+jtfn/wUn+/uIPP1E6qf0si+q1EXVXT/d9dNdP9310338dI2vfPF3bo8oxZyZueNeIkGjlx3CAZImWq28saBRwNGKgz+WeZdq1z1abklBabg1PiB0HJ9HQux24xwbb/qKunObwdI+YRs30CvNhW6X2mRUMb0hsXNeYM/3lfIWK9CRdmX5KDhj4BqMBGlCE6PJiT0aaZNVlR5CT3hqRjs2JG0X5p40hZY7IwfEZEERh261oWTAuS1Mn4joUZF9QmVB8xEPZR9BOyu3bZJXePPJtxm3jcf1wsvzK4bhORn9lalfwFh4aN9kxCTaXlBdWWoxTaGFMTOY7Agb4oHEwqSRBMhkqhNaEfSuZ2YIitMlcWnVSdXh/dP3eH7326y/8CeKIyQdZn1mTqUSuifmSa+P/VALfGxQIDmOMllo7I/6IURILUivaEcZiDgwEF3qwBGDiIFoSdsRL6iCWUOmo+YsVi3cIhPjlVWUHt8sC0Cb9OZM+RzYOUvnTTrjVsDlbRl4f8uHp6ey2cgC/WcJ/1Ag2gbtAd6eVk5t5bwn223H1ZjLlVf9IY955rwJ8dr4cHbO2lmkuB74ZM5e3QprQyMYcePl6T2fniDSEIzT8gZ3oCsjrmz7wpxCa8J1vzHisPJwo4VDLmze2WyiSyUluhcEvncwOzoq5sLt9kTPhSUVjpQ6z2TIIHSUWHJlZWWwIVLCkwRhMLiW9UPBVUgbBWfxR2wGTZNrCo2OpGL7RrYg1NA4EuHUCQYhnSaN/YClX7fBSU4YJ37rtz7nn3o48631zJJJzp2XgG4NlbKQeBT7imxgC0mHg58z3Y9OmgLI58Gd+XKoVzUy6/AnrBBSqYnmZCTali+tG6JJDq/OCwlClUgnw3ApHoxmJaRJViKgUpV+z0oZSxX2mLRUFrHq4gFCgilx2BnKjm1Jve+qgPGi1bLh7rSmGCCepL9yUiUwmIkqJXxUj1+3qsMegUg/qpxRQkuLHTTnYBsTz2RNZQlYpGxBHjCsE6Jlo/ZEs6r23iYML1FNVbJb1AHIx4llrY4Z950lT8X2Uahz6CwbkQpdAxFFQ4v9konmZLESdMOFJBDZiEzcOwsDXY3BrURZTDrgrmgW+yV08movpDR4fqG1jsWK6gLSaLbgsuERTA3Uaj1EAtWGxMTWifYXPItB42m4CKGBpyOFxD4WMcWznjWTwzYUQm8Nj8FMmAmmDaHX9xclP3ZRaGeksfpagQcy6i9u0Ch2VS6YSKVBAlFtWogcXRNqSN0MkQQZjcxK7kzd0TSU81cWAvfxB4mOhiQAAQAASURBVDu+Tv3UtheWpsj1lVMUoPwsgd71010/3fXT76+fQngBmq/Ml/yJ1E/f/Jkf8N/8r/9lPvvsAyGnu36666e7frrrp/v4KRtf+eJvApITjwEyUHU6k+lHpToPPHH6keozieYkgfsBsJ3BNCcsEV8Iz2rv16JBTDGURkgtxcOdGYnpCddBXIJbDraWzBy83ZO02hQUpfXB9J0pirjQciXjxEwISW5tY4+gS8MyUBwTqRZirpVUldXiG9q4zSvaimchU2i5YCkQg9k2UjacK7cmzKk4C2afkHPSDSY3IuvnqVYqHTZwboje2LJx8zd8evk24+oYjZftA/aY3PadWyRNFlp8gxRlMLnZVvwcdyyFdpRICsr7BnfFuuLdeeYD0250eUNEMiQJH6ytI+kYSgunI+hwrAkSK9t84d2HD0huyNwQ7SVErcToQi9QMVUpdCb2MdVXoip5ogSJhNbCCpUYprW5MhfUKZtLCEL7cnVOr/Z+qNZy00SioXEqIaJaVfl8LqEoN0ICZ8MkCDE8Vpiv9CUQNha9ofJMqrLameen94xdWPqnPJxXLG/EW2O8r1b0tjvn3uDlmZsbrxG0t2d+8PQ5Jis2B12e8QZbds55JsPZ5wayk8uJPQcv22CblcTG0mhn5/n5RkZHtw0TWFRQO7GN4OnlhbYmusA+BzFP7MPxHDRTZsDDw2OJkOutbD1HxVEUcl5J2+i2Icsrt9wOyLDh2ct6IkuB5NXZuDFkRY5NPp1KX8vBqlSVPKpS7sqRnDVIjgp6wqRTyXHB4HBIaYBU4tuUibeVkVLVNEt2cSI29gbvP7zjcZmgYP3EYmVVywzyOLwgQi0LQcqoyuMB/00xEjvsA16dEFJ2sukTtaBJnag8y0IimSRHN4WXxaRZIAFoCeZi4whO4t0LTp8FuZcs+5VSoGzJSkts0ihzV4miiRYHBq3K9fH6VXaQjnuxvTSruqk6mVnzeWCMLOh3ifjqdhCSkLL8aQhpMHMSUTQwY0EiUTuez/Av1zVpyRwbizSSSWhC7PVeU10soof1JQbajFWK6dKpQxhZBsHNXvCu7DlY5IrphoqwZQPppBmIkmMQGHZ0roTAVMgUmnQWCdIHYu3onHA0Ssh7S1ozZC/b007W/iFLra2rsV7O3NxJUy79dFR4i7wfeSPiBn4k0ll9BlPKVrewMgeMMDyULnqkCjbGYTNpJlWhTyUzCAnCA44EzJDqXPAIqneLqsD7hjTHW7J6YKPS+OKY085T2VS0skpjOr2fySPUQSiWj4fjMstWJsXDMW+IK42sbhQ1yDpAIMeBTP7RE9x9/CjH16mfXAKTznboJwBviSx3/fTjqp/irp9+9PrJ6yNIe6W3n0z91PvGt37m1yENn3f9dNdPd/1010/38dM2vvLFnxypS5UC12nZkVkVE8FqUU79sng5/EawQStrxKJnRJRuRsyNMW+YlrWl4KoNVEgJxGoHbjowBh/GlS4BPjilI3ugdqF1JVTYxw11h3AC5ba84eLwgPOsk6tesXAYV0wbI2pjapqMWRtM+l6t/xmMmczWsH5Gc6IyUZ1ovIKUnYb8Jj0XJsIQYaoSRxpQ0870UYuzBhKOjaTbw8ExiFrUZCX7W142OAu0JqQ21vWRd8/v6M0Y1w8sizFkY+qN1EGMtWw4Wil4JJgqWx8lRCMwghlg2kmfiMNZFlRWxjbBnCU/pQmo3dgZVZCUzsYbfufdZEPZSFIDXZKZV2SHFoKwkmJMEs/JesyTSg87bCipB9yVwnJkEF5JX6pJMmqhzarqlSymRKt0MpPpxUayAtew+2S1BW1aHRBTSX8EPSrebKgOUl8QPdX3ClBdyTyVXeaArNMHp4cbp5OBGmuceNCVl5cXLm/PqCtrO9MeVnTe2F9f0KeddV2YfuOmr8yYnOQTROsglqGEg+cLEdXGvjanR1kA3u3GMOP8tpMW+CZsU7mukxzvcQaqJ9r5gWu8wwYExlDHdXJajFUmirJjzJj1GWelf2HBnjvtEJnBpVg00VARLBsMxWNH+mSy0fNEysLRW0DDaazc3FlbQ4CZwY0d2qSroB60g58xtCwRUAeOXQIFWpZQkR0ak6UrMx2XxK1g2EMbv/uDiezBL/7Rn68qIhO0lWCMwwYn8mUKWKt6Z80zM4JgTEfb8e+pND5ZjYyOBzShPvOPXoJwjO2o+nlVMLURKYj3sgaIotEIIMWL+XHwSoYYhqIZhB3dCSkISfrAJFC9EbGQ80TqjZArEmWrSG5kHp3NJkQYnr9X1VQFTSlgsQQDr2q0CZZg9Ujh3kr8lFrHdCVjwbkRsaNUtVgc8MDc4baj/Q1uVulm0kg3xLXg1FadKWkb1sD8hmiZnIwJUjBro4IKwBB7i88brs5JBy7JPr1EZBTzS6KsREYwxixoO8bQo5Ng6QwPcgYnMVTrdQx3xAxxwz3q7/MB951MJXdhWRd8JqGzLlAkjspvdX14PtNIFllQXUgSU6FFHbq7RaU+aiecL+dFCihSnJ+sA5Jpr4NfBpED1x01YW4r0spW1CVJgohktmQqLNmKizOTdjImow5YkWBaXQg0BCGjDn5YfR6S1XVQkXQJaiTt2Ht3MkZVx9NQWY4Lpjuc+sdlfK36qU3UoOtezyuw+UDv+unHVj/9sX/6iX/l//Q3OZ0+rjN3/fS166dDVwwZNPvJ1E/PH77Dv/Vv/+f5i//cX+ftmx/e9dNdP931010/3cdP2fjKF399viAYosqOMGfVLrGJ+6jFXaWqpxqoK5lnqq65MHdDXbHYsRgsvVfU+5y4dno/YfNgk0gt6CE7W3yB8IukB106c74CN9yfCV+QNBiTrh3fHFNhl42IgesGWilYFo3VO5jxokoABKzR6HYmTZlxQ3PQEHBoTfFRbcFNtYRxDkySPrdqM8YYXheV04POoEdDsrGzsFulsYkJmwemhgQsfSVuk30E2gVpNyKuvF3f8PS7ylv9eW75VFWX8YrqwgKEB5qNNMUziYMT4gJ9JLAzmZBCz5XzWPG8sdqZuFX7++X8yM0nIj8gMmj6hmV5w4bytH9O35X44ZU+GmYXJA0Zg+GK6Bs+Wl+QQWpV1JLjMzuEoqQc6V/FNFJVZlSEu3ZD41YWJ4xI+RJUXvugHRXF+v+TJGUiuiPpgB8pZCV2g4EwkLwhPmh24qyPvOi7el+6YRZk7mgu4EkLp7nz8CD47QrLIzKEJYPlMen9mduYvMqnbB+cHGXN+blPv0VfGs8fkiYPVWmftSF5CHN2Rq4s+QwYY5ucVsN64+X1yrXfEJI2Bd+E/cVhgpwW1ISHy4IS9Ff4Q/nA7MoVZ8+Fbe6clk5sgSH0DLoYTXsBlEcWeNmfCyQ8d6yf6Kx0aaQNYg5AaOp1aIjAoqC8qQ2QqnTFROwBgMwdI1hp+Ey6HJ0FmUge7BV2VDqLLuwxCBxpWumAc2PqpGFoIcnBS6DqNIIz33+e2OfP/Nw3T1xsZ3NBKz4RkSi2kt+IqHlUFjAlvewPq7VK6zogviJOxIBMTBpaxW1EKp1QRMEvJFKHKxE0elVjo9WcVsPoZTMZE7PXaqQ4GDOSE0mnheEcFVKJsmBE2a9gQVgR2UnZgfXoyjEiWy3BEqTOqta60fpxEJlHcl0G1pcStUcnRyTMPPgzMch0VMqu5jiYIt7RmFh5xHBxpiqjJyNv9AjSlVXPND2x7zcQRaOq45HCGDvXpew4KROVvYDkNJZhNFuYBCKQTXCBZVfMOkYSMlEbVamPE4usqAxQ6LIe77njNg7gv4CWTUQTFgucsn+onjlHx1I4tZ0Zg2+2xuNMTksjEt5HAftHBiYJmQXjbgU7RxrqCwslBk/NEd1LZAeEGROFDNSSkGRGnXc8AuudDCHNSPED2F2FjiajhKRHaU4z9kjOW2Mz52rCKcq2OTLrcOaCe1nJxKqajwKSxJHQ9/FQGnnsW4d1TLO4XpmNyRXVHcSOqrj94+iA+/gDHl+nflJpR0fSjT0/AJC+0ORy108/pvpJzThfEtC7fvoR6acx1+NZccLnT6R+2sen/O73f459rw65u36666e7frrrp/v46Rpf+eLvel7wMXEmrkpEEhrIDFpUy3RIcR2KiwAcnV9mQszjdj4T0ZVIiHCWo/I49w1Nq3br7AAknX0atA8EyrY54QNbipaitjMJhsyKrddiB/C68yz1GiwaZ5TZgmjCftuR1sB3Zg6kN17nxtIujIiqAC6diMm+P7NKP6oIinuQvmDWIJ/xKD6AR1lhast4xViq9VyclAnWjkLDPLruByaO9Unk58R8hbUh7Oy+Mejo8pb99gWXx8aHDze6XPCpZAhDroAxs1r4VSrl9CSDzHYAmxtTk60VhDtGcOorKfAyJ94MbQ2JnfRnukzaML5zfuSLlx9yjS+KaSPVnp9TMFsQfa1NKINMQ+ZCshwbalmGVPRj7Zn0TkTZYlQGcCsxQlQlC6mNgNocgiA18DkwE2iBz+paSJ1IJJmBe/lcUpS0Uy3wKKKCqWHS8dfEWqf3leHKZK25Z6/IFM76luYXUm5I3uh2o7UPnB9OPD19IFFe8oVoJ96cFswDW+Hd7QO3Bo/nN5yWUtsuG1sMUhu7eqXe2a3QI/GAiGDthukvMOd7tnFD5ZVYd/qlY/6ISWNRY85kegmu27iSUqB3TWHfduTj+ycD1XYk+hqRsM+sireVFUX1mcFzdYT4iSRRU2BCONM3WhF8K01SiisVEixsLEilAroxWUjvTH0hdZIqTA9EDvstN1KuuFX1tXHG6QSNYDBjI+VGktVNIA90mUQI1+srL6+T55OxXL7BglMQqRKu+ES81pzjkz9SLo+qnANuSDTEpLplckcyirUjin6sVh+2jUSY7oc15Tg4iTD7+xIqCRkFr04FzU5+FOzycWUsWD0iTD5SsbNoXvlQX9veIxga3yBxQl/IbKiUBWzGFVFHDGYEZUaBFD1+v4lSkH7JPD6j6ng03SH2OmxIca2mdU6sxdKJ4u4EVGdNGJILiGBdSJ/s88bUSfZbWSyCgtenQQjNW3XySjKpdZ4QrCViECOZsxLXpCt7vMe6k9GwNDQuxGxsuXPNL2iy1YGXTpc3NBU8d2LsmLaC3VOJn6paQoyyloiVPej14QM+heeT87J2dhpoY24vnJsgRy13+MDHROlo60xptcd0YcQgBfaAidAFRBNJJ3Oi4cc5IVGUVEVsMnI/5pOhYXgYEbBQh+nIWgd9L6ErYrQQhk82S9ramPsoMHlqWWA8jhDEjzyvOmlJek2BrLXOVVFxIm9HRdpqLpkg4gfEnGN+z6+6vd/HH/D4WvWTLaQYkWtZifWFKVeet9e7fvox1U+/8VsL/8v/9Z/mv/vf/gf8kT98u+unH4F+8kNLOCvY8hOpn779ze/yX/0v/8/q4k7srp/u+umun+766T5+ysZXvvgjFyRhyeMBi0nzyR7tcNJbQUnTEVE8dzydxOmtk+oHjL+jdLrUhuf7DRFhbcaMjeJaVOR8eIAoe74v8EUYzVb2mWBnJPzgACqqK72fClC6P2EzYTcmDdRpfmNPwdulGDKiaFN2mUwRfNwQq9dfYFpF0yB7VTJ0r1bzlqR29pyI1AY9Rb6sNNzyFVGnf7QPZJAT5uhlGSBRWRhzp4kTIYwZ7P2MyhnMWd90nrdnbBWebu9gSTZ/IlUJdvaD4xAJJr0KHAqfyyuLnzjPc1WD5IWdZ7qdiN547cLuV3oKujv+FFyWzs995zt89tk3+A9+6T9k6kboM+nOogu3lw80rYoKaWx7bbBIFJuDskrwj+IQMomoRLBmy7GXFzNBmeCD8E5Jh48Wi1ICxQbZCWZVpDVxHDng2XPfAKW3FWud3ZOg119iZCqBkzk4SWI5yEim3MglmDoY0QBnaYPrfKr5unV2fSbN+N7nA8u3WG8EwcKg+aSL4D7Z9xeEtXghrdr1J870nd4FZbDtN0YKYcGQd0wSOSXn8Z7zsmEapDc2X1jbJ+xnZ993rtf3uHt9XU7m6ytvH9/iWQlsGcKyNpIkIrhtz3RbQBQvPYFaR3XB94LTKlk8jVhJcQzBneqslUbqWl0DQIYgR/La7tV1oBK4TAaO9J3w23E4XSopjYJVV+JazUWNSprc8ojokyBpZD7i6UwJ0J3uwkkn62J8/ju/io4/DN/8w3z2meGx13ogEO4E0A++R+3lcsyhOgQnUXDqEDzBdAEmkbMOzQc3KTORcNKzrCliqHIIsp1bGN3Wgyl4AImzHWL4uONO/TjZ63sSRIwS5RRzKVOJCJLDDlcGMuT4Z/coK4kEeXS9tN7xnHiACqgVq8TDyfDjQoDi8qgcut348oVlYtkwF3RmVT4JnMClhNVJHsjhjN1xGYfoUaBhHxknuZE6QJV17wVmbzA9jzv+ZKpWJ49Z8XtikpkM/Rn27LhvLGys8sJqQuobdl/LfmQwZnF7SEV8oX/sOCgnBqEw05mpqDXChcxJarKOMxHKgz5UkIBOyMFEkZCCRkuU3Ueqe2p6Epr0VnNzLslIKdFrycnApBIYNbMOOtTrkUNMpiuwkFEXFVDrWi3/Cz6LubUuJ2ZUBXn44GJKT+ElnamUySRrLou26j4gj+q0lRuFsqZYCnnYZBLFUCTH0QWhdeDyuigRhHRqTjG+8vZ+H3/A4+vUTwKIEu6sl1/ij/zH/hMwjH2/66cfV/2ksnC5VErwXT/9aPTTzL2eVTNUL3f9dNdPd/1010/3cR8/ceMrX/y17UOxEZRKAsqBuDPaBGrBCTn4ECTkCdNLxaC7ET5QlargZbDvVxYTWuu1oLihaqRuBLUBb9sVceVN/iweA10g1Ln5xpaTT/LCojBtx1C2MRgSrC1R3XAPqA5kiABP0haGOE7QQ5BprG0l5WPST2fOgVnBbufY0NbIGKTt6FFE2tuOyYrPwKxDzmqPzxMhDZejtXkqLVbIBY9JW1dmBEtb2fYnXAzaI+9vCydbuJwXbq9Xlv4Gicl1G1zOnd0nZsYck8UeSFGmULyMMNZlQeYH0oTdotAGDudCSnDllVvspGycdOXP/eKf4Y///B/jT/+ZX+Cznzvzy7/16/y97/4/eZIz4/Ezvnvd+eI1uCwPRExckohxgIkNOGEHpNfCiuNAfbaRB6CahBxlVwpB6Cz6CEz8EKt5bDCCFjwXgZks1qvt2gPTM+Flg6k900qoqIIM4Ad1QHAnXdDeWdqZm34GLODCop8i8UST9WC8XNn3DW2JWgdbEC48bTtPkVyaYGNjmxu0CxInNJWbvzDyxFkX+jS6JdDxqTTgzAmJV0K+j0/FEjJuR/Wt49bIaYQbHjde8oe8xjs+i19kJjzFM9oDy41PTNge1gILi9Fa8UhaLxE0htNNOa0d94n4xCzpCi1WZFswPVPR9BDtVhYwCVL2quqJMj1LJX0suIocPy/IcEZMssPQwcxBS1hyLR5GGEpxbfZccXmgTadrQeyHDGYbpHaWPNO9Y6H03CG8Lijn4HU+YevC51/8GubPvPnsZ0krQYiA9CTVGVFix6PsIk3tADFDymCfG816QdGzqoepyUxqUy8dUmKABZETEcsB9S1IcuvzMFGVAFCRSgCUg8kiegjUqhyP3BCpz7/+W9myyEQwjlomyShLNr1eS+yIBhqjKtE0RHsxtLBaVz0wSypBrSr4EVngbVV6VkeIiyNSLJ6q3nsBrC1JKX5Xz+A2d6YqS1tq3nuB/JXiF4k4qsLMyaT4Ni6vTFnYQ/BImjYais9XQhLLBdPGzI3JxBlkLAW51s4YdbngVsUbkaNDRYRwYRCYGGoNyWRmHUBSq3NYxv+HvX8Ptm/L7vqwzxhzzrX2Puf8XvfZD1rqlpCQxEMgydiQEg4mheOyiWIM2DFlO+RRTohDihhSFE4cGyfGCVTKSXCKlCknmDhUOabiwiZFgnk4UIqRaaIHAiGr1ZJa/brP3+93zt57rTXnGCN/jPW74LJpbgW5++rqzK6u+t17z/mdffZea67vmGN8P1/hKA8JjCU2Qjrmj7EoyOERi2SBGLEhreECRXM6CmW/tieGD6oohYKvnomqtVF1S2tSZGFKjGQfaUGkEA4RgqjQ3fep5n2awQ0VzfAFLgzyM+phSIO+25o8lFqU43AiBqIFxDG3LGLc8+DEDZWgRCChqIMGSCR8P6zQuII45HYryvAD7o4Wy/fcAykBLwrZ+/U1X19d/bRCCJfL6V4//SzRT5/46Mrv+d0/vE8ica+fvgb6yUZOv00yqM6HUj/99Bc/xR/5I/8i//g//i/w+us/fa+f7vXTvX6610/36+fYet8Hf5sUys6m8FBCDlCEUMPHnua0j/NaZAR80Y6IQRgSKVzpTpUJ6kS3ke2tWjCraJ9xP4HlWPYYFfOZ59WYS6e6I1vlRh9wPZyQM5UAO2dXDDjUh0zra1y4o8szSlyYwtjEkVrR2KhTZQynD+W6HggKGw6m1NIAS5CrBrXqnspWMWvEcMwVSiOYiaForVhsaUGJgBFpEwhhYuZKr1llZQvD47zzWhxtjgWcdWHGOLYrJAYxBjLBtr7Fk0czl23FSeFdaYwxEerJyLHAVdK+0AelKmp3uA4u24lyVOpx5uufvMQ3vnrkW77pE7z2iU9SH32U6gWNDZ1nXn75m3n10TfzU1/6Msfpis/9+Fv8+I/+NL/kF3wEpUNxhjgiD/aHjuZD0Z0RnRez+yFBNp0UVHAxVCqYEK6otOx2x5Zj4bJLXFeEChGZSqcV9+zUyK42zDrD0hpEFMQTYK290USY2hGRW1xu8bjlZHdcyTVTnSgVbDkzzwp+wlzpY6bJAYmFrZyZr65Znr7D4cmB7fQcWTcc46KFSwjFKsOMdgiME1KuqbTdOqOoF2o4pRuT3xC+MZZA9QndzrQjbEswtkErwfE4I/KYwWArhtjKR65mbto1fRgrG8TG82e3HNqBeSr0vuJbp9SZuR0QDWKsCW7PhiUFg76gdKZSE5AupMAjsgMnLdMXzVG5UCgvmnMomkKqL9Q6IVrYTCmmaDnQJCietjB13d0fBZEB8Rx1ocWEc4NJQzCq3lJiRWQhiuJScT0ygKNVHjLh7mza2aZOi4Rpm9k+zKDYlrYvZ+8uC7gItUC3Cx5GqbmlZee6IJKcEdtZVUCKyxL7yP+aBZYIoka0TpUCRnYJpeX1GTuZRgq+iy/HIMZubc/Oq5sgpVBeNLSJPcFOsWhZoDnJWMLRsPw8KKhUttVhL1JCFHcFrzgb7gMtSklPQ9on2AgZya/ZBVTY2IHhAmovKklKV6ZRqFaBxuk5WJmRVigFqi9MmuXh0JkVJ8I4UCFqMoaiUG2ixYzKjI28F6MIyEw4HCT3hEwLVEwqgSK+JmcrIFypEXhsac8oIIy/wWfRABMkDqgr1SHC0ei4d9qUrKVSoGpNq2QEg7EnslUCYRCswxC/JNdFBEGZizAscwLxAVSmWiEMt4rv1vksqgVEEWkQGyHPkdKoVMJmwiseFXMotYDsoQdVCUkL4fCBh9JckYCt+G5vdEIGGfIpOYVEfrb7kQshaQ0UAjytZBLJo1KpafGUnBTLr3IiYuc13a8Pwvpq6icpE4HT+y2Xyy/gs5//vXzsE/8zrqYfv9dPH1D9ZKPy9Gnl0eON0u7109dCPx31S9jh93PQL35o9ZPuzw2k5TVyr5/u9dO9frrXT/fr59R63wd/sxbCLW+geGFHEIbmKLqE4B2ohVBFNXDPLkpEJjzR4z0//hBl7CJGYqRtRQLTgZOn8UWVpsFogccJi2Bhxj3QYlRbEZ9y1L5csrM3nKW+i487Jt9yvL/OmPV9Q3Mmg+oVE+PkZ0yy6zjFvD/UkxNR2IXsLsozSn0g02AsI7uHUvKhQW7AIoIPRz07TkOcxd9ldWUdwdQKQkdLPvScA5dxoU8LVyWYemFqyrrdct0Ut8CH7glzBSHocQd2YZoEDck0tlBaURYG0Rrj9k1+6Td8il/8rd/Ea9/4KV597TUOh8Z5W7hsnXfeeotw56OvfwSkMN8En/r6R7zxpc8x1Ykvv/lZvv+v/gBf/40PeXj1AA3BxikfMOHgRhpNdpEp+aQWjWRi+N6NDkcYCV51p5PD/dXjPRZg94S8UpyiArWwxIYh0IR+GdQoiBidW1wKRWa8O21qhM700ekyIbWgahzaQ6qc0RJ0FqgrrW0QJxYzaJVSC3b3lFceNB5K4L3w5PiYdYPSC5fty1y/dMS14acLr70klKp4eUjfnqFT0PsNlY2yd/g2Nqxu2LbRxfCps3om1LXyiM2fs0lhiKJuaIGrOnO+nDjewDx1bp+dKPEY50CrlXkyhnViLMyzcpgrOoJhwmnk9IVjNJkYK4TPmBuu4OJkL7VhcQIghlNlzof92KA5uCLesiAoHeeEyzUwoZV9QmXsn2fLCZXwPQWso9pBguJG0cBiZTBhesRTNe9wd8/OvTsElFZABQM26ZgpZTxgiY56AM6sE2M1iBRO4YOihmnQfU0LVCUnBHwGK9lRpO82FcVrMn6Kyf7wV8bI1y4Y6o3A8NiwPXWttmu6FcI3qjrClClz1pKFVJYcB3FHVHCZ0jrgg+IbXjvGAGc3GGRxFtScsGAkD0ZaWkliI1pL8PRYEQ2USh9TduwJ8EHZu9QRQS+S/CKU4g0l7ThVB6JZLDpAndg8kw1xZ3hnHWmjqWpsBMdD4+FRYQukHIhiDFvAUzweppnVVjpG15VzLLRJqSjbGMxFOVoKeCPwKiw9xaLj3IgkdF7STlJ9P+jYrUgK+T4QqCqzVIYPtAQbz9Edhm8xM0buE27BAQHvOB3vxqE2mgdW8hoorChXiMwUczqRHfIs11AK69htlrFlAqZVSgk8LnnATMNH7Emqj8B6FoJidNlYdTDHFQxD8gPBY+R+DQnx7k53Z2oF9cDee7qmfSw2uJIZQolSGCxQHBXdJ34qPdIlVTXwYRyaMImzeRb/3R0tezpsefB3IA3u18/k+mrqJ+GIhFOLMtU7jo/+EtQ3MTnf66cPqH767E894L//z3wH/8d/7S/y83/+6V4/fS30U3mbY/1XCZtZvX5I9VPq9IKDjnv9dK+f7vXTvX66Xz/H1vs++Ivu2SURRchOj0SnD6eUidBGNCHEcoR5H3MWNAHCZLdbcUQXeiQTQUV3oGYHPSF0QvIBq3Wl1JWr7UD4hIsgdcaHM8YK1VmtM3vlaA3YeFrPzC60KeiuDFdmeUAjUFbCMq5cBdwHJQYHCSYRxs4TCAWhYgjdV1wcqQCOuGdaUlXCL4yx5MNejxSODHFKzBQ/Jm+gXFjlhCFMcyM8ocu9r7RJkO3CvDhPymN0UbYy4QxKmYHCspwS1joSsLpZQcuRCEWpWDhulVYbvQ+KDFQ6H//UK/xj//Rv5PHLN5xvg899/k1cZq6vD9zMhVcfTqi+jNZCH2ceXr3ML/r5v4Q//Sf/DK9fFW4OEz/0Qz/Md/+q72CejzQyrUx95Oi1Ox4JaBXVbENBbuhjyySsnSeSn3EhcNSz+yeiyQKKFK+qQZApXyU6omAeyXwYOb69+QUtTm3OGCfaPOi24mXDZUV1EH0gDiUKMYKxKGWa2LaCl4IWY94qrTpaL0hZsriwhxyHMK9GkQuHx/DgEx+nHGe2rXNQ49F14XRZOW2Ft89HTufg4eMVUWGshSUUs8awI8Urbmdc8p65no6c3jwRdaGVStGVGJ1tWxnSsPPK1YNPcHe6RWtwaCsalTfPF4Z7dsQGlDqxDUeWldic4cGihpVCaRPbMA5htKZ0OjNGBFQ5cODIiIGJEVzyfmokZDoWVA2RmYhG0cdUWXFZ0nYhoBqIC6YV05qCSRxxo3jC542GUVIsArBQyc80JCHAmZLmqHSkJ0J3REc3p2pj6YOnT1defvkh1tOWVmuDEfk6UTQq7snfCd8IJmrJDmpRoVunTQ0ZTgsDy699IXyNhDWrGhILESXtK75CPTLcSbh17hVEoUjHfEG0IrVi3hHJ169iID33P3OCFNpOg3jBgJGE5yPASP6SBxGWYGENtBbUK6Jlt7455gs1dkFEMKLjFEQbSE7LNHGqAqYUIrvtARZCEHSMJTqrrsxHZaZwVSpugzYlXLrQ2HyhHg4MzyCCokJQMAqjpyAbsqBVmG3NYlqyU2+joXZIsHMTxHeBWgvdDWRms5G41jAEQ4oiBrMUtj3Rb0IIFTYZmTQpFdGEOJf3iqYVFWU+NLI0O2CmSAyqHHKCyqEwUyw76iGCRZYPSqanulV6TxuK7hak7gsxNtQL05zPrhg5YdBKzYJH9i1PHFPHVfI5EAUppPU+Ry0YJRlJVlOADtWE+9fEIohkw6SoUmJjSCWAMEMj2KFgUJQiGx4XDEGnLPZiwBzBGGldQSacnNS4Xx+M9VXVTzEICUq7cDj+NB8//AHCF5zDvX6610/3+ulvoZ+0vMQa387R/79M7fyh1E+22xdln/i810/3+uleP93rp/v1c2u974O/u+p5Y1LzRD8cj84UR3ovOYZdGuGDViqMLTcPJaG1EVgknjVbwPvNaJrz8Z45QiITyiV/qFwDVzxGWePIeQTNW8KCdeI8rmhiIAtrbJT5yKG37PDFhbUH2jJOXiIoVEaQ6VElLTfFFSU78ajxAgog+M6laJhu2fkQKCg2MqlNaDkaLwnD7XZB5BqNioZhkkBYAyJuKTSgoXJNlQm1RkxBEcdOE3V6gByvYT1TJjjFBTkcWddbpqmxbg5TjksLmWCFVmotLP3CuIbtzjn6NdvyhOdPj5gpk3Y+9soN2oJ2VO7uBrfrgVt7k3bIMfQf/qv/CX/s3/nTtAffytadB8156wvPefuN5/y8Vz9GeWEJGMvfxPNJERA4otl/CdH8DEUAx7ST26e/t5EDoI47KVy1omIYnTU2VsnigpJQ2kJFrCLjGg3H+rSLiS0hrdbTIhKOIZhUNqmMvtGma44PKtIAvSE4Yjcr1JEduldfZ7kM4viY42sz1882VI/MRbmSB1QrXNYLy93CT3zhTD1cEW3QXXh0/QDkjIVgEUidkbohsXKeL3go3B0ZQznpQB43Hk0Hnp8Ct0adb2C8y2l5ys3Lr7JGZ5aZageWy+DW32JZN1QnZBes574xwvG448ErM3LZiMvGsRzx7YKWKSdBArorW1em0jCrRAyGDHxygoKHUKVRo4Bc0g4RgXKFx4RGYURO1qlCE2CnC0X8zYlXgseLrUQZpJgQGWgMagTFH7DtqZUhhspK08Diiotm9/WBNiQa7949Z3oLjocrjoeJWoxtW8mcMXLvsIIPSVW5X4cuI4HKkp1uoyKiiM+4KZl0WWDfizQ6bhvTlP+tu1DKTXbufSQ8OhRlQl0xSftA6MAIQioSO1jYHWQl3LJw0oZryfdTY08bC4wXCXl7qp6mOwMRIjbGuuU+SFoeVJwqhkSK2E4WjOkr6rBlht3QLPjRlgyYWPa7rUI01BstZkap3C6ZymjbRpsb22nQ2sSVJiifKflPtTR0gyoOnBixMR8UDMSvuLbCcGOVnrh80bT2MTBN4STVGap4cS7rICxFfJEUiyGCuuFubJNTMVrAcGXULGqDgpvk3h1GiFLrNVJmQHaBb1AGF5LPUqk4GXjTi2F2ztTHckARXEZOUchGaFqcwho2KsFEOzQiVpaxUstEnXYrVb+l6IXggMkEVIyZoOFc0CKY5QTDcENKwd3fYxeJKiECEtQuCS/P8D+sBJcd+k8EVZW6JxBuASVgqgng7zYwHwRCbRNhIwsArfiA4ULGXt+vD8L6quoneYj5AHmI28uUy7dQ2mdY43Kvn+71071++lvop235CP30RyiPvwfhr34o9ZO/+JGu+Fbv9dO9frrXT/f66X79HFvvP9X3xem3J2hTOCBkclSmj6VFYFkWahOqXhEONlYithz9fgGJiIpQwSsRASTrZpGnqMLmzwG4ngePb5xntxveJrYoCBAjsKJsBY6rcs0NWzmw2mAaK8GKx4JK0CYltltKDcIzRSt5AwngHW64CqqycyicEoMgEKlMcsVwp6/JsROZkKhsMShMEI1hK6EXqBs9wHVNALYMoihmlQMPcMsUubFlctW2rUwzUAbnK+GsF2xdePVqTtEFtEPFLwk5Ng+sOlvfUIKptrSy+EboBtvCdXlI9Zk33nrGX/uJH+MX/uJPUOYD4yKUc7A8v3C+XPjiG1/m7edPeeOLz/jiTz7l9tmZ0goPSydGJ8oNMhbe+ukfo/2iT+AGiaMQhmeCkmp2w8J7PgjIoetBjswTKUD9xWfMzs2IIPZDnMAR2UAHIhvFBNFKt5HAVTF82yi7GPHIoiGiZwd1CC0KBwGxlDVWCt6OqDxmjCOnkzPNjdc+dmSeG0wFWYybcqCMYBTj0J/zsL3K/OiGy3LgrbfOvOtv0PyO6IrWa8Zh8ODJNSIPOJuhLaBfAcFcCiUUNadVYbGNGsG4LBxLIeqBVcp7n5cIDDNWUyhPGNs157bRWSh+TWyN4Z0Hx8raO3fLHb5be4TCw6uXaCg97ojScMt0SFentIUaSqn5QHcaqLDVtIghFbVK9caslU5Hy4FhIychWuBxi6ll8ptUkMaIAqE0Nkp0DEkxSAEqEgayw3eF3cgk+VT2SCBvFIKJiLp3VAeiaU+4DKdpWtlOdxe2ZeMwTzvYO7egzTsRTqVRRXHZJyAoWA9qO2DWKapYTyi3xUJogp9VnWHGcMuML1XMKy4H0MrwQCU7kpKGi9yyUJwrpJBd/7HSWiV/8sSOsgZJfg0kR0Z2Q4KQnBEiExah7PYDpWhJ21c4lUqRSrjskx0CL6wsgO9TQ7rb1loE1EIPZXOg7uwcrdRQ1AUFamwIzqSDSYx31jt6VGzLFLvtvDG4JCj5PBjhTHqgDIHpGcREKZV+fjF7tHKpV9m11QwEKNFROrVeEyOL/6aNcKe0RrBSZ2WYJdvIlG3LiRZnAE6IY/s0DFaBAy5tZ7d0TA2T4BBACFM74FaSe+aD6ieqG1MVNl8Y40QtHYsF0SO1FISJ8EppyXkZ3FEkDxC0KuvoCZXWAJkwKt4DUacURfoN6JHQwOOMcya84PtnnkVIsmbgb/Chsthgn5oaee9IRZFkukleCxukbRN2q2fs7B6IkaEHiFA0OTxmwq2klXGSQnggKjlJdL8+GOurqJ+sD2YVHhw7U/k4P/hjf4BP/oJ/GqmfuddPH1j91IB7/fS11E+tfJYHL/1ymN/KKbsPoX7K5yzAoMq410/3+uleP93rp/v1c2y974O/yfJBw4sHx65jpU3EuhH9jJbKrAEubLERgJQBkRaPCMkkKxR8Fy2RXawSwrE/xNQoLAD4fMPhlY/w1jufQw4tGzwCmwcXhBYbPYJzPaLlgJ/fZrJTQof1yKRKiSPDHClCsIGu0LNzUhS01oSEhlGiMJWGh9Edwo1it9RCRprn44fBQMMJ26iqtJoPlmXZONbsJoeAi1KlMFvAmAgCQ3a4arIhvA4u25kSZ54weKg3XFG5tRP1eOC0LZRpQrqjU/DcLrlBkiPJwzbG6OhkmQ7lxlwvjPGcd7/8oxy/5TGnZyurV7709rv8J5/5ad780tucn554fneXnc9jpZQpC4lywTQImbk+Ns7Pn6Ey6FS0HJIntAtIPN8RIlO89iti32SN8J0hhOdouuSQfiEfFqGexYIrEtnJH7HRfeAIoeRkQRPwjTYJviZXpFWnjwtajvj+M4sGbglpFQlGNaLlaP+jxw+Z1w3zwVwOWKz4nTNq5cTGVirXdxPvfOHMEk/ZdKFOR3x16jzQQ8FPj+njiMqb1HLG+wNqaUxT5XJZiDGoGqgZtR9YfWHMydi4PT/l6uolJmboJ7QNSqvEBWBi+AWNmafrhC/BPC48vNq4qtdgsMgGLVPkCpXJbrBTR31GgPNqlMNEsHFAETN8HbSbKwIlQpndKKWweLB54NoJ7eg4gndEBymxCh4TYkpVzQJlOMZIK5bnPR27DQcFNwUZoBfEO7IbCIiW3W91VJUaCpEw3x4K/pwplSdL5JV9VMH7wunuKTc3j5D9OgHN1+Up6Koqm2URJOwNOitoTDkB4y8mKSxtdpGcKfWB+2CoULSBp1gsopivoFN2e4NMK9O8nsI2VKBJTSh+D8ICLVmgSUhCkcMTql0aQtsF/AvLCxCR3WYCjSzkIHIvjCApKjkRlOK3gu6pne9tvQkF1xL5OcSMenaTiwZGJUIJLAuJWNGyMZqirXATlZkD6wBKY43G1rOwKk0QXzkvz5hEk+sDbJtTStpHijinOdAhNBTRwsUWwPASySVS4VAaYww2nCYbx6kSDjUqTRqqBa8lDwW2hFK7CuqV1oUoI4W774zt/T0adkutRmsbKqd9asE4lqC5oys0DuCFdblQS2HWRtPIlEh3wpTwGe878wyHomw+KEVQGmGg0XJPNwNGAvMlYe6FkhD1mIhYcReqVgjQ2ggBsy3FJDmpEBKoCJvI3sUOGIGGU8IoWtK+JYGJoXjaBCXt7UULVQyzTpWGeyCl0UKpRl57FYb19/t4v1//Ba+vpn5SechiG354xPz4lfxxksmd9/rpXj/d66e/lX4Sgjc4iCZ67sOon2j7VXavn+71071+utdP9+vn4nrfB38eFSdB1M7+4ApgvWaSmak6agEBFpVRTjhrjk97JDxV8v9qJAgU3+e0OyNgBebWeKGCjlp4/eqGOwQfwaUPJNLwYFrQESztzBYnbkZjxrBauWoVzNnWQbE97pvkgyGdeQe6BrDYQGTsSagOJTsPXiplmtE4vbdpGcLQgknhRpQoK0UWcKXJjOhjhj7DmBhxYJAsghoXSu25IXUHcdyUeZpY7zbafGQ7NJ5vwUGEfnvmME/UZUVFKFLwHrh3rjR4HpnktvYFUZiKMLxT7SG1OIs9x2bns196m//4+z/Hu298nh/4sc/y5fOGtGtuXHgZoV3d4a1zHie6Deb2Em6PsVAKG2wX1nFHmbLb1t1oLlSdUoFG5EPUC4wX0wgDYgU6EReavJQ8m5SiFLLrOmIGNURSRECmhlUvhFcgE7HMB9iAUNwLRQ8QM4FTyw1bjwRyi1EbuA1kODLOjBg4xrqdcVuRMBoQLpQK5TjobLz84Ibz3cqX+5fwl85cTTf080z0C+FGbRMuRju+RZkrLBMHfwWJwNszzsMoh8axTswIpVeaH3mDiTstXPqJJzcHbsrGm2++QZGJq+kxsQ3cNx4+mriLI+fzYA6BeJf5ADdPXsZuoUbQRNj6yohKaRN3o3N1nDmUoJ/v0L4laFqM3uF6ninaKXXjsp2o0zWjNKQV1KDaYI5Os5VLWRlREGYkGsON0I3qhUrJaYmwPJQvyflgd9mmJelFSVcJP2aXNJzgQPgDgoqV/IzZu8CO4ZIiVbojVeiiBI72ASVYzgvKy9TqbH2BEFotIB3CSLSyoDJlt1cr5oVSZtycabdNFEnbmEQmRWoMiMGZiWLBsUwUKRRfmXTjLjZ4ITKiZ+FNXkvRs4MvklfyVCqmlhaPnbuFkDyZ8BQrJF9GMFQhCIiRHcWQhP7nPAi2T89KgpYQFLNArYLm3+1m+x6pGJkKSs5AosOppbCWLdlC7DoZJaTh1bnISvv4gTGC1qGOhSe1MPrKzfSA2+e3GRb6+Aa3wjMRzDbgzLq8y1wqJRoyLkg0YsxsWjkx4S24igWJwboumGryqEpL69Q2aKWg1ik+cGDbu/ZiJ6IZOjcmC+owtnYHeoPqvHe2IbTgPiFtQlzxvaEbEWyAThVzZ/MLXja6nRJe7TMRhmpOGFivGAuU57R2IKwzNoWYES1EQl9Qbft1rogU+m4tgexMhzkSTikzQeDuFG2MzXBRYu86i+zPTEkh2ixDHURhC+ciRil5wIMrUdgtfZnsCnnt9LFSJRMmq1a6d0zrexYsr0ZMsRcS9+uDsL6q+smhOlxr5aXDEYCrkZM49/rpXj/d66f/fP001o/QL/8ccviXeHD1pQ+lfqplj0TQE8479/rpXj/d66d7/XS/fo6t933wV32w2IYe0x8vEVRRDqrYMBYGqkp3S+CrOeoN4YiqEtLpccZsY4rKQKCWdMBYdoRac2QsuD3dX1zwda8+5PuvOirOprBsd9jOy5klu4NbKEsEUqAo3I2OjiDjjvauji0MHVAqMKNuRHSqNiSE8AvenKgHGIUWnSkGw2e26DuHRqjMHGXC7ZYhgx5G04pIUjGIIzWUto9d49lx6LHRoxIFWnGUlR4bchDcgrYISOVtjLnNWBSuqUzFeL6eYT5wPgfHkqxDL8m3mEJQLzRvIIohiN5wJTd86TODP/Ej30uUM1cVXi3CiM4ihTfcOWyNEpUeEyYTGwdK7TgXruqBS3/O9eEV1vOR43TN1g1vGXu/axBcKlEh9rFoVdDo6FAmfUKvS4KIQwmpDBNkt4eIZlqaiuT1EmW/2gL3kXya6EySomFoR7Tj1LTGRAUbFBKg0m2lb5VpPlKv36Co4aNwdXjCZVkwP6MWxHZH12A5X3h89Wh/QCrTXHB/xO3tRiwrrQRygPnqgK5OPR/YRkWuZg6zcqXOStAev8q2DbwPaNc8O61czmfO64XtfOFwdcPt8wtP1zOmD9ESrGbgytQe4atQBR5PIH6hs3F184htMbZwLDJ5rRjUeaZL5W5Z8Vo4SmWqE8eyYYBJwWRwWS8E17h35qkQdHDHxi40d3YSZcKMfVLkzOTKJEqXQpXsBG8RrKWicmDuziDv8eod3wLTOXksLCgbKg2XZISgKxoLJtnhljhQvFF0weQuxaqnXeI6Su4lTTlK5XKZuNw9QB6uwB3mQhkDLZqFdEhaIULokvaTFiB9pbhgnpY0pyUsWYTuzpCGl4mZRhlQrFDnmhMk/YRMx3yPNK1rvkOTFz1yXSesd0yy0BI3NkvmVZ0qfQ1UMnlYw2lFgA33FaUg0ZLNJOS9mlIME4iSQlY9KHIAV1Sd0IUIzcQ/gqEDV8GolJjQ6nu39JTWCp9T3BagCMqG2EClMNmRY1zhY+9mekFFaSFYmbFoTNcVCHClThNXdUXsSOEBXD1GPScUVjFmlGGdRTrNnINWttMNUTzf0zlYz0v27UvHCbYIQgtqjRIzjUKMLVlgMWCBMSprVAY3tE2Yq7Oy4FNDS+WtdeOj1wXKCa+Ni9fklFVl4QxakvGyKTIqXo6ETiyxJ7apU8oGrvTtih4PUJmQAlMAZjtDRzMN1TshhdoOOBsxFpQXEwmFokrfgjEF2ozwTnfoZeKB36BVEyouG1KE4YWQsu/fUEtJZ44ZE5G2G01bi0smmnYhX1wMPBpiE5uDNgcJPApBze523zjY+yd53K//YtdXUz+Zn6AojcpHntwAsE5BmfxeP93rp3v99LfQT+t4xLL91xiH/y2X9bMfUv20cHPzDiJgPt3rp3v9dK+f7vXT/fo5tt73lX0pG15g7SuHdoDNKS45Vi3JLIlwwj2pDjqQkl2iCAUXqlwjkt1LJ782Ik/eC0rxoPgLP392Wh49eolZr1m3joyFQ1ky2ckPbLEiMme0t5xxMZYOppXp2DA6k3T6uFBbYCMoobiDefZPcwy95o3PhllHInKEOgS3AdaQ0EwIagVvOyeFhKtmgpXRI+j6mMIAuewJWtnhPfgVDCVCMkq8XzL9rhndLrRa0NgoA+YyYbFwmTtiC3UurOPCg2NludyhshE0wjI5DzFcNtZyoOpDVBrLeIZUI0rlShuOYe6YQdG00MjQ3QLgOIpJwxFcg9NqTPPEF7/0lC9++Y5XPibItKIx75u1opJAbxdn7BamZNeAq7JG4HZASVaJRVqOWitpVbLdrrR7kAaBWL63SHZFI5Ln4S68l7RlTtEVrUvapORlwg2XTLOK/GSoApNAyzg0hilVZ7bSuLvcJTS2ppWm6gbjhnVxLrcLgdKaUOveay8zXiTZH+WKirIMJ6Zr7J3n9HXD6pGnyxuM5cylNxYfeBFGpF2iVDg3oxYY40zzQrHk9hxaMlikXBE68fwiLOZclUIpB8KE2pJ3YeOWZF8Uro4v8ezdDeuKVnAD5RFVA/yKGIqoIQymOlg8GKLZRdbKIKPthb2jS9/5Fwn2LbWA+I6oGmjZO74Mkr+S0F2VwH1m+M1u7xiYboh21EG8EQTKgse2pw8WihkhFbeGMlMFJIyOEXbh0j/PTTxEttcobgy9ZEEae7dcsv89iB2Mng9vFyVUKZDdv/3aNAt87zaXzWhVEMnu7lBHtVE8xWQmkQkqaT/wOOA909RwAzkQNkM9MwisB+ZKbSWv4QAsdgGdqeSqipfCsvfA2w79tuh0gigzpRjug0olPFAqakDV/DnZtqWVlqEAlhMsHhWRGeKQKWi74A4vaR2ShnjdGSagpeTeF4qFcRlnWpsYDrUkSFmBgygujg+Y23W+n5osrsKMxIaXWxqNZi/TplN+plyDKFO90HQw+l1Cmw0sCs6ER8NZMM54TLhf7QIMwjbcNvx65i4udDpFN2bJ4sk5EnZA7RqxCYkrJG6pUvLaRegWhDYswIfTRKm1IO5ULawdsInCASJB0gGECsZAdcJH2QH64N13PlBDrBDhWZBQ0DIoFMSVGINDTW5TyBlzzf2mAF6wUTABKZIgGhyN2A9RAFG6BN2CUoVWJyIKfVRE0+6TDK+gFjDfckpChbDsslPuGTUflPXV1E/hgUVCz29uHgLgo1P19l4/fWD1U657/fQ11E9pUEX9hloffSj108svf4n/3m/5ZyFAotzrp3v9dK+f7vXT/fo5tt73wV8MUE32RYJiBbFgsCZfIMEku5c+GLsgEnmRRlZxFyQqQcZshwqqQcl2L+s6KKVQyyF/aJm4ur7mpYPw7tPA2qus28oRZTHY1DA/4cMgHhNlhjI46BmNwWFWGJ2pCt43FN0fKCltXDQ7aWEJg8UQ6agUCocUrtxRo3GoV4gKa6ys/TnHesxek1Q0wDyH8I/2lBbJErG4wqOhMeHlRG0wLHktdXIMwzwoIbhfMF3Q0uhsaKkIwlwVwwmVnBQohepCSHY/IjStNaEcZSD2FPGBcgE94HoFQJed/YCiru+NV4sWVCUzAvcR+YNB2Srt+Drf99d+gte/+Qf4ta/+Mh7VmUVeQHZzsy2ygQxcNoCESUdPvkJxJrtBCRAnZOBhmBi1yIvnOoFhYRBBkUIUB3PcHbOeDykVCMEj4bj4C/vAwBxKFbQoFMXixUNgpclAtk7xwE1YKJxOTxGBVioWhWHGsgoPrs4syzs8fvKQWo7EWJnKjAKtwGrCOjp+d0reUg+6Gxc21qZsYzC1gvTslFUyfQscaVCnwpOoLNuJsr/W1TeoFS8dhsMWNJ1oKLgTrLgowzMFMcxgdI5txsbG6fyUy/KcQtDkQC0V0wmNjnWBMVMnCLmwlY0ReQ9OMdHGjIcwyh11F72kVEMtgULdNpAX0GRByXtFYgIHiYrQ9oM4R3TLhy+KxIR4S1uYeFrdYtsJSyU7slFwKZgl96MoqHfMb5BauTwL/JFTp40xzrgdcC+oB6JZLHeMSZwJsrgMy/vR8j127ZgPVIQ2pUhbt0GUIOg0KTQ9UKJAH9g0JQvFYWoT4gMfG8oJpOKeMPB5rrislF4hOqWdMQbFDox1RkrF1bGoiE7vFe0qwmRKk8IUIL1DNA5VWDehlHwPCllwVS0EwUDoEphoiiWvmJ5wsdygAQtPYS2BvuCIiaAkABu1nBDhiPiBsEB0BR2EWh5CyIssuLSJVTZElaFgo0NUaqkoK8EEHFFztAbImaJKRKHqjHkwtSOtDi7hTFPdxZmgdcrJDa6p5SHmObFArKgsqAt1eUy0iRMbIzoHE1pX5gdnrg/GVAxhxWTDZDD3FHMiCfseFnlwokopjaYFcfZ0PEF9Yao76F4U1bynnUaUA+6gkrD9spdIbgESmA+KZuKcu1Fqik71hg2hFGWyTqiTSYP7NENkuZe8KdKqtIvakBeWv8B8t4UNmHZvmBP4ANEU4IFjbvn3oAn3Vtnh6i/u6fv1tV5fTf3UysQ2Om06cLjJa2BeYL7XTx9Y/TQdjW/71ne5Om73+ulrpJ+KTABMdUp7+71+utdP3Oune/10v+7Xh2u974O/o0+EO5PMWO/ZTSyRTJAXf02AFiG8o9IIL0Ss+UBjj0uPhnqKx2RGKOGOuVLaNT6crWcSVDc4PHiCP3rMs9MtZe3Ug3AaxiFmrJ4Y44xooAjuylSPMC54dLoMaigxJEGyGoQm/yJbByDSERkgCRQVSV7ECIOYqFJAC2Pkpm4YpSlbd0wCKTt3R3MLH+UEY8b9GuSAVcfjQnAhyA6hheExGBgl4GpqLCa4TIxy5LYXrpiYbKW2wmXZiDKxmeXDYHW8XYiyIKLgV2AzwYSqgU80eQkbnWgnkIarMCxTrJIfYrhue7c4RQcSFArBGWljB0Uf+I++76/wzZ/8Jn7RNz2mtYGxg3ElCCFH4MujfD/9mqYvAYKZUWyAD9CgamCazA8PUqiQ4N4Qfw8+HjFw76QyckTH/vkmELyVQzZ5pBFiuXF7oKEYUEK4qlfYegN2xOyW4zWsbbD5HfWUAtCFLB7EiBqoP+DxzTVtOuKj42VlvaxM9Zq1Q5hSp8B8wewMR6e7cKFSZOPBGPiYWLmihMHmMBLK3SQnBfoq0AWVgkqllgJubJeFm+ubTIQbmUG2nG+Z54Jqw8J3wdC4OT5hmiaW5cTd+S3aUZjrNf004d2J9oxhnWETEQ/yoRmg4wmqDgwkOsNvcQI8E/WEKd1drhC7dUc0u52eRatJ3kcpbSqhdQcqbyiDEiDRsMh0thdAcpdCWN5DpSRo16KwhWWhOGXn1DGGDVr5Ir5dcXn2MXx7wDK9g3GFanJ9XBNWn0JsoKMSo+DkayPyvgzLf5ZWER8pyqkpCAsUAjOnhyU/KZRlO+d7brD2DtFpmt3ES79D6oQi3J0BFcQHEUIRSVtRGSn2Y84Uwn2ih0gYf91fo6CIS1q0vOGmtEjh76oMyZmArsAIhhtD0xYmIfQ+kJbTEDk1lIwfk04N8s5yp5JQ5c0HxiF5PLoS0TNhNCqqjVZXJIKpNbAFxfLDs8POXZnoNiWA240yjlA3RDrNK80rVjpsN3s3tSOxZtHjjaIPgOwWqw1mhSkc8wJekWJENUIU4hoJobTG4jC1ikanmSCnwSvXj3g03dC0IdKJkimgYjf5nlaFcIpWeiQMWpKETxGl1gkbQfUDDKV5pks6WVD02GCHpafdsOehDMEqWUa4OCEBAhbB5BO+GaVWQqCPQQ3o+/tbMCQcY80gB59SDseOLw9lSBb5sic5TmUmhgGOMhA21FsmISq4RxYBaY6EGjSxfBi7//+rC+7Xz/D6auqnMTraZtYB81VO/N1dN1zu9dMHVT/9/E9O/IF/9QfzOSz3+ulroZ9OzzL4IuKOMZ59KPXTO++8zv/9j/92vucf+n289tpP/2310+3zh9wt1+RQ76BQCSqnbVAUigwePHiT+XplvTzk7tkTHr3+Y6g23nrrdcY2kQnCOZG5joHUuusfePmVz1Nl5enT15BaePj4p0CMt978eRSZyFm83CfYbb0VoZbBK6++gbjwxpe/jpvjLVcPz9il8M7dYxzfDxnz4A5zTBUTON7c8ujBLaeT8vT2Y7z08ucpLbh99grr5SGKcn048eDR03v9dK+f7tf9+tCt933wp2oM62iRvFn2lDZUMvo6wG23rNCTG4LgVpLVooAkG0MkmRzh7F2vkkWrQVVlLvmyFMet0/pMu/siNhsjTjysR0yvmCwj5CmBxwJbR8cD1ihIKwzfKK0yBhyPN4y+4pIJUtn9hNCBhIHVHF8ugunAFEQa3hulTJhmV8K80KIRRbC9aE8w6sguRtSdjWN4PRPSCbmg3hhdMCtoabhtoJFJauGM4WzjQm3JI9mYmeOay7qhWhguzO3IWBOcS7S01KAJr1a4uFCKIVN2YHxkxxLv+JyHCQASaTHp2N7FT5ODhKM24faAmDrNLzyUiTd+6g1++K9/hp/3iSe8Nj1k8YF5JyIo2vLz3DtmpQZBJrTNRXMTH9mpG2EM7+guWmX/HBSoexcLdcJHPixEYD9wicgOe9jI1ypKqDBiT2zynTaOIKEcdELKYLBBAbeCjxntjVJO1JpR8Jfh3F06x3qglUOCst3ZxhnVjXYVLP1t1uKU2ji0A30rLDERxaA68xDmrdCssGyCy0z3087mEfowPAwnH9I6SU4tRGFuDRuDw3yFbyu1Cp3BZe3MxwPHOrGuW6ZoMfKhWybcFmo1JBqihW040CkN1nGBMKQoLoXhjmpn2gytmfbnoQlaV6Wa7NdSEDt4t4RgYxAtO2sShXCIqUDphA88BIuBiQELglLiCnYLGDKADXEgJiIagePacTGcCjJl8WsXkC0nE5owTGhTYx0LW1+Zj4XRDbri0TBN+1sJp0mKgV42VBSRkdcSoEwoM0XznuwdjDk7stuKKCzROUsQahSFOYxtHXl/C1Q1wjqxXeFTpdsJIWh6YBsNrSvuDbEbugcSCyKDqe9Feo20Gkml6YyLpPVDnC1yciKK0CM7oKFpp/GQnN6IQS0V9g6n7qyacCe8YZ57rWhacgLNDrYPhOzsi+Tv4rLh0sEPiB8JCUI3gjX/Hlfes4bt0xZVje5nIjYoDwgZ9Dgz6yO8bjgXJHpeH9FAnyO6oM2QGIRXuk00vUY1JzsAqgsTjaKDTU503xgRiM5IObAfyzICtFQIY5PAJ6W6InqDxgwWNClEV6JM2G678vCccImcjlHJaSvCMIOg7P6wQKvQ3dJyVxpuheKO6gsjlGHpYaFWBclr3Bi45+SPW1BFEHFKy45xjUZ3f29fUkjgvjjDnReOpio5NdQ9MBIwnlMgBRNjaOQzRgsqE7CD0wVKqTAsn7OQljCXfVrmfn0Q1ldTP1VtLDH2wma/184X4tG79/rpA6qfxDsiUEph2L1++lrop9gN12YrouuHUj8d65lv+5Y/T507qx+/on46nR7zr//h3/e33dt+9a/6Q3zy2/48f/1Hfwnf++d+C7/1n/nNbOvgT/2/fgtvvvFNX/F7/9F/4n/Eg8fP+X//R/8ovT/g1/y630sfwh/9o//8V/y+l17+Av/Ef+v3sAX84X/7t/Erf+Wf5Nu/68/ymZ/+Vv79P/7f/Yrf++2/9D/k7/1Vf4Iv//TX8+/8u7+V3/SP/X5eevnLfO+f//X8tb/6ywFodeW//d/8F3n08J17/XSvn+7X/fpQrffP+KsnhneK1xzjt0wJg47uNoKEJziqAbbmTV4KETVHvyVtGh6DpoURgxiKyoyI0MRpBDEyTUdi4brBzfVMTFeoF0q9YRMQU3Q0WlsYekd0o4jSYiG8YJsxFyVWY2Jm8omYCgtrpqSZgCcYVNUhfLfjVNyyG1EbqHbWWAgRpqkg5lgIEQfMIu0VvBCDjtFpxal1ZIcphPCZJkGbCssKDKOVQo/BsM7qgzY9oERBI3IkeuvYNYx14+HNIy4XpwG+dWRyhANhO0RXOqoXWiwoB5xK354yqTLrFZtDRBCSIjlnpQ2Livm8d1MGatmFmjSQ2CeVZuinhf/wz3wv3/Wt384rB6hNKXMqHBswuvAo8lISqUxtTiuMBb0MRJM51G0wBKZaUU8hJMZ7thyPnICIF6PkRcAV69n1q5psHLNM93IZrONCEaiitFIopREu+BYEE8sI5kPjcgnW06Bao9Mo2tjGxsZgmiYmqZi/g1bn6fML82HK19shxqCKcHWc8rWszlyvkA76/MTxSrk140tn49iOsK2c15URTqgywtiGYTF40ATV5J5IEU6xEQenaGB9YQ6oobx6eAxxYBnGaRuAoBVCBku/Q+PE9fXMZkecOSPv9YyPkZYV7YhmOlfERtWEfZtEXmMuFBRzgfIYtUwTNF8xTfh8lLZPwhUmUSjCGoEyUWLKopSCx0BKFm4hjkglpOC7Ba2++Owii90gLSYuUHRCfVAlk7e6Ca5C54bhSuMthh2o52skFioToQUrBSsCI6i7dUaplFJR2X+GBVKENU6s3ak1uSDdDCuVjTvwnil8pSIBtm24ziiFomVPYxuIZJFiFEyuaRTWsTLKyjQq9IZOQsXBAx+KRaDVcDH62LCYQAL3iTZPtEOh9wWLFakFVc2ZvZDk04y0/oV11toShexB8ZwcDEhxxtj/LPv0ALQ6Udkh1Yxk1kTguVvhblRJ4LLtdg6nojrTo4AeEB0QncqMVmc18joMRySw8hSLh5g/QOwW9IzVK1SMcMV7RXiQYjYqc91wv8MKRKmsqoQJxT35ZDoxFcGKs/hTRhjKDY1CHY7ExmoJ5j6J8dpRqBOU6KgXtFdGq4QMsA7kfsJu8YoCe4gi3Tq1VZZtxegssWIKJspwo2ileNCH0aa0OA4LxCu6jmQ3vThYcaHWiWEbc1EsViylMmZCaZHPh4BCwaJhoWxFGJIHuMdQmlQayiUGvRgMzQMQCawEFsJcbuhrTkiV2hEM90Bb5OtRIc960n51vz4Y66upn7Z+oVVh+MbLD2c+9vG/iBw66o/v9dMHVD997see8Fv+B9/B/+kPfj/f8s239/rpa6CfXFYACo1S6odSPz26eodf+cv/PbZSsVK+on5Sa/ySX/jn+LpPfZrrB+9SiuIDhtfUEX4CHxyvv0xw4es/+Rd4+df/ED4GSuHX/Op/nW1VVC2n3ziySU5lVQrmG+X4JjEq3/Wd/ze0HqnhaOn8un/kd6Gh1OqEOt06JRqTHFBvHI4w60TvC7/pN/4+bh7dojr45Cd/hN/8T/4vMz12bfzEZ7+Vda2YNgqCBsztwg/95V/BGJXv+GV/ls/91M/n85//FNc3b/Ptv/Q/YIyZH/4r383WX0L0lnv9dK+f7tf9+jCt933wV+wIMhMehCvqlRoVm46MPiiRBa+FYJIJaUKlRcUhE3l0EDEoWthCGRTqQXAWfOsEwqiN0Dz4W+3CiI3jnADUVmbkMtLmJoE1YdsMPdwwanBQ4XrrlBY8s2DySiyFMR94ZicmH7TqnP2EVGWuE34KVA+sKsQUyYxBadrpy5kiV0xloluwdaPVGffBoheipv1giooPWLpT2pEQ5yIdV8MNJpnAJ3wNWjjM2fGxEnjATKNtPSd4mqYQQPFVubp6ned3F66OM6fTU9q1UPtIC4wMwgYjAqNQ5Yjbinhn0hR7Jztzo0dmRv4vLqzMFK+gCS4mNsIGEZVRnJMGaOGKyliD48tHvvjWZ/kL3/+n+fjX/cM8OubhiXOgTFDsksUKcOdwDkGmA6Nn8lzYhRaDozpDYOkrtJICQ2Dbf1/RAj7Qqizesar0MZAq2LphMZgPB3w0qjQmhFkDG9DnifNweizoXFmOg4XnmWJVZ3QTDlKz8zYqZ3FGc9pklJwrZ9TgslTO4wE+KnN14rLivfHgYcH9jm01nr87mNqR2/PK5jPb00wEm6/gdjzjvA2m0tASyfjwgehg2KB7pdXCFgOLBDcfY6IuM1ObeXp6B51gkoVDE3p3Hlxfs/Q7jI7IltNmrQGFuQXnywnRyihpZQjrDK08255zvE5+irlxrinAaghwRcQRvLBxyyIDqQm4LVERaYxIi4b7hVUWpE5gUx5ySU9R5EKRIz2OdDdmdZRnYJ1aG64za3eaLGl1lStUXsJjJewOk4CaAlp2O1gPeKCdLQrOQ56dg8N1Rxiw1exOjguzpeWNWhgUJCqj9+SQiDJQdKS9jlI4Lc8Z8RQ445sjPOTAQ6pVVD0nMWRi4YTrTKhDDXRA9ZkahgZMmil/6p2bSMtTKQs6ntFD8Vb3JLlg+ATjSOERJvCcFYkzx3VjCmWuhVIKNrZMsBtCkZoWkfRwQTlgBNUD0cpalE5Hi3FcFETpaqDB5IXZCqwbXZ2tKFETQq1G2p0tOOgNow+oG6jhtWIYzdecXBCjGkw24TRUFdMz6JmqB2I9ctvepeqgZCwlB73CxpmrqITMXELooWhxVBcG4EM4SCCyMPotmzQilHk6skamBtZQGMLDMlF6Y23GKgsqG7OdGT6Y9RMEwZnOiLzHt8PgGCdK8YTv24EqA4+FtQ6SljZDOG1W1vGUUSvDGyYTGo0wZRaopWPcYpMk18mEqRxRDZpNeAluxx203bItnTIFHjnxIp4Fq9aJMhSPyH1trCRtqmTKopT9oGSweAcmWj2yxQA1SjV8DMSEY5nw9YKUgoRSesOjsoXRWhAhqO/T8qJs2/YzpxTu19/R+mrqp7OfKU2xzXjpFeO//Pf+KT79gz95r58+wPrpYx9R/ie/4zNcvbJyd6+fvib6yXaYv5fBVj+c+mm9u+ELb30Lr7z2I1zNy1fUT/P1mb/vu/8tigBT4TT+Jv3U/4Z+wgINoU1POb56y8IZ15n2yk/RCHQY1UtOpUohNCfRwlamyHv8tSefQSPoPfXTK6//yD5FOYEfYbdRD1kRd2apXC6pnz7+0c9j1lEXmm5cv5wswWW94kuf/wZurm6h5RS1UPIgiMGkcD2eYzhdnHZ1R/QDd++8BsAYFy6y3eune/10v+7Xh2q974M/M8vRZQWXADE8wPq2g2KTc5Fee0BLcmgw6u6775Z+etG0ieDgwygaRCmcolE4MHMDQPPrtGvMF5bm3I1grle4B6fRmS6Dpk+QteH2lF7gEkdGvdDiivDGVk/gFyjBFlfgBbOKRLBKwQiK1AQuOxST5KboTEyOj4H1gVKpeoAdvHvlK1ZgmHFHZDcQ0Gg4sG4BtdLKARvKUjuiQYm0p9gGeOZ0WVHkhZ0HGLJbaMotmFNKpfdBbVcMBs5G7ElU5kaCtoVaAokKaPIY9mj7KA0zoztIqZnclR8JhBFiDHU2NgIocsQXYRzTdt3f7rzSXucH/9KP8d3f+RZPrj/KUQrSrrj0jenwGG0P8oIqG6J3EAWmKdkhfshOuo1MpVNFLK0umeCcse/uoOEZBR+gkUQRC0NkRsguck5BFIyCa2GNDSxhrW1TpAcHKscyUam4CaYTaxhdG60NOncMN9we4jExxom2NWJTmjm6DKoassCywLu3K6flzOorm4FZ5/a04mXCcQ5TwABDKDIxd8sOfFRCWnIsyCKjb44UZXgkhHqaETUu20KoME3XhMHd3cJhOiJF8CEMz4nKwzQzTBhL5ISXF9o8YzJwCsMr1ZVrn6ijsgpIO/JgFbQZm3c2Vaw4q3euFcImvE9UFUo18A62oXJE7JCpXCUYuuJuLCEQmcYlpUAkbwkrmOeIvXtOvblAV2fsF10Ryz1Fs2idR0EQrIJrAr27nQhgG8btXeXho4k6zViTLNjEKbZbnHonpOYYvyqigbvh3pEKXZxtK/RoRDxG4mF20S07uWmSTsh17O+F7QyrPD50mgrmQYQhXtl9UZnwJxMSjseGASElv9OXnF5RY4yFKnVHHO+pgCOQeiRcGUOpAq0kv8li7JbA7A4T15nKqA3RtGXFcIxBBJRoRAhGsBWnIqhWKjD6QBBKpAhznRlUpAKyJwT2wVGSCbiR3VQpjaqVYMHFdgtEwQZUnZDxCC0dkZ4AcFFMJm5179KHMrDc28LRAeoztVzl5hN3hKwgld4V1Y3Kio/sXnevmDV6czpOkUqPRznV4BPRrhleUCk0BBsb9fgAt+w+SwR9bJQiVJnQUnFXAsNNkDLj7tQq1ApjXXFTSk3r3/ApUzyBMoJiOemztLQmKkaj7FM2BvIg0TDhRGhOCXnF9UIE9DCo+5SmdUILw406Vcz7Du0PfDhVJkIGNgyRnEbt5kglbV47rzKhXiDjgKokh802DNt5VPfrg7C+mvrJotKGUMyQOPDOOHIpyp3f66cPqn46vFb5nv/6O1z6Cdju9dPXQD+p7Ad/XplG/VDqpzfOH+GP/fu/nd/wm/6nfGT6ya+on5al8MZbv4DXP/qjyLb+rNNP3ToWxlQvlCKUyDRel/0+wTPpmWTYIUKPju1DDKKFit7rp3v9dL/u14dqve+DP9kjzGMfA0/WS88UKAEkRWvEPqoSEGGM2AAn9iSliJKpOpJcAffYwafOHCt4QdnDPaSz6cbjw4FjVMyvWC9ZzBfbeQX+DN2SQwDCOd5lWOUQyia32HRH2RbwKzqgMaiRTBOXgTdAMmFPHYprWiVUkTaBCFUT8BrSWe2CzgUfSnfLJLQA6YMbKSwyIIKmJP/BFqY20TZHYgCOFCG8UpsmkyGUKJG6VZzwyFQ3X9CuPK6PwHPMv/eRzAY0O3HaeIEuNbf9I62A7DyTfXBoh9yqym4tcpbwZBxEIA51zybT4tgUjLnjfaHGBOXAF++e84Of/RG+/hse8/C6snKCq8YF46rmw7KKM2NEK4wxEBYokp+7xQ4rTm6ZROShRrqGCDzTmcKoonvnBzRk5610ely4qgVpg1hviXJB5IZadRe9kTYNFzQqmNFjo9SNIc+QqaKbMJdHqDSGBct2YVuDm5vX+cIXv8jp9pbDLKh3fMukpyjC0iGaU2+Ed58+x0ujxoqoZEqXGe7O1GYqYB64pYAoqrRSWX2hSsHNUYHrmwfZvVqfUmvhydXLaGksp0sWfRq7wHbMcuLLWxYBNgZhQS0t4b+muCVIVyKQUvBSMUmWj4UyLqfstkZaQ2urPHOh6RHxwghHWlBLUJloMePUPbVxQwUoS15zUZGYKTFTh+REHisqKfrGXuyWWvN3IJknSO4JoFCF1gU1Yan5bw9jt0MUw4Dz+czojxLNpB0PqBRi2N8Ad2vaCcKDHskdEYWgsq5Kt9hTvzzB5AS9CL5P0BQvzBbMezLa2CcGxw6EvohQPK+rEgUVpeuUQnUIKj0xXBK4WYLyXanWc5+hsFkmLteS1rDuzjoGVWcy8oOEsksKcI8UiyGgvmSRwIuCb+xweAHb3w8SqrzoYC4FhmMxqLUwFc20JBS00rcN3ZMiS6v0IWwxs2dcMrkjvqIshCXDhVLYCJboGHATU+4d+2fpoQmaZkMiKBLvQb0BNl3pYllkhGYnXBrJZ19o0ShxzfABLW1ZXoOgUuIxNUruoTFoqpQ0J6GuYMZBdtZZVMID3DDf0FKIrSTIWkG0MWygZcL7Ka0124ARTKoQhm5QmOmR0HzEMA2GBsOVGpVqM00rFsFqhtSeXJjwfE6GY55pfyIV96BoxRk4wcSJ4sEUV3SDsEotM8OCUnNP9PC0xQj00fONLFA0uTtIIAZ0gZrxLho7N24vZO/X1359NfWT41gkj+oLX3iFP/lv/x/45Df/U8ztS/f66QOqn9bnE3/mz77M3/MrTrz06F4/fS3008RP8vjhP4jxFta/gXXccLfesIpgo3JnivmFwKn1C0h5C+QV7paP8uDmJxEv3C0/j0kPFDUEqPWQh5fk8wzZONx8BnRwvnwd4geuj29ReuF8/jpgD8vBcsp/uuNw9fbPmH4aO4ubEGL4V9RPz25f49/9934Hv/4f/hd4/OQnf9bpJzTveUdo0XOyjEy/JjI0Jsi3smghUCLAXtSf5vS+3eune/10v+7Xh2q974O/CcUDRgROQuPB0TLlabySXWiy8erihKakCt+7HVpQb4h7bsfqROS2FwjYikah7Rtvk2Aq8Mr1kWPPDVslDxcmXbmbZrb1ROmDg85EH3icML9hjI5REX2VyRyXM1o8AdQI4kGPgRbFZEtLHynuvHtu397JaPS00xEQpqhPXC0db42TDTaFNteMIh9ZniOCi2G+orEg9QA4Hp2UwfmIEDMEx0vCSWUEilNKQ+UAXbEwruaZWBfmKqxbIJA/QzWjyaNmWiCKh0AoU4EiOSGVHS3NTc1TWDw0ZabRw1l6gekBrkIZMInTV0OjcZgec+4ZNvBjP/hZ1u/4Fdl10h22rc6wd/Iz8yPX5WXm6xk937H0E1IqNnLjr7URY3sP5p3pcvv4ggRaMs0uEwwV1YShI0KQMGRn2y0Dlt22MWjhtFLS+iLBqk5pA61GKTBrwc6GiPLstrNuxmoKbaBlQ0W4e/pFlrvPZ8qVKs+2MwO40gdwKYgHasb1VDFTTApjT1ctNZhr5YBSyxWr5lSBbCtqK02UYyvcDksGUUBoZgBuy4lmmsKjAGEcp0IPGFvPh1ytqAo2gvX2ghaj1bQUTaXsgQ+Cj4R1+7FyaYB1xhYs/ZY+n7OQKhUZClvQirKWaySeoT6YtLDohA3jweER03yhTkJp0HtPqLg2lL0QxQl/RgmhFMluHSMfnKSQq2IUE1zq/vt1dOfUbaJUK4gXdrcqcygahxRsAoyOmOPdaJLvU1EFy3sg0yHzGhqRiVxFJDkqYyMGVE3LjeiSIiSUKPPOa0phI5aHaKNteOQe0Uba8goTl+k5taYwUFG0KIPILqw4hUxe7O6UyORBI7lcWqCJUi0gNrxsqATdJC1NNRg+dti4Jvxf9kMA9YQN73wZHDSUSSvKRglQy38vBCOcoYpLUGtBFbbtsgs9kK3n7zRVOtnF3qzS9BrYqB4cXDNFTTZCQdzZ+orjSGuYDhorioBPaMzJmyGFt5Cpo7IfYEQED/UmBaufs3gRQ2xmeNAlcM/PvTKxdUdr4JJ2pDIaM4r2TARVzky+MJFFAlJAWk4XacnAATqqRkTCrCcpRDgqitm+zw5hng60aGh4MmR8YOL0lvyYQyg1Ig9LLFPz5qJZmEbu3T2MObJIVXEicl9TAswS4h8VjEzbQ1jXjpSWQPBaiNLp3NF0yhTIyCS8nTlNFcWjUEdk+ACyH4Ir2vK6l8jyhkg+zv36YKyvqn4SSYZbBB//6DN+wz/yv+NHf/inKNHu9dMHVD/9+Ofv+L3/q1/M//kP3vKJlw73+ulroJ+aXkC+j9vln+W0/i6e3/2t7+dHr/6PuT7+X1jO/1Xeeet/w0e/8ZOoD976wv+edf2Or7gXfNd3fA/T/Daf//H/IcOu+LZv+W2EXfMDf+UP/me+VvXCd33Xf4NZf/pnRD/VnptMMUWtfEX99PLLP8U/9Zt/G7U8p4j9LNRPGYiGKCKpWH/9b/hF/Fd+7Tfx0Y8+RFX4537Xn+CHfuCLmQILORW6P2+HgLR7/XSvn+7X/fpwrfd98BclxWW6TtJaobF3P9zfs6UV+Rvdasff66TwYsxbIjsInmk+QY7fmyo+HzLRTfJllVEp68RWjwyt2LohM2mTuZyYvVHKSwkrlgtbP+F6BA8u8RzEEbvCytUOnK1Yh1am3Fi9ULUQtuG6MUoCXCkJz8UKTQ6YdUZJoV3rQIZzOh7x4UBFI4gtu6zOTNMpuwsStDITY2GjU2qnyGCOSrO9m4oxmuJMtCgUN4p4wntHwQlMslsOG4zOFIK70wn6figwhUBpUDTDC0b2rSQKEo4o+djy/DtFoatC8RTcpVJoIEaVhRYr0wCjsm5PuT4+RMfCD/21H+JHP/tTPHr5l2CxYWMFjMMefS5lotZr5jZzNQuXi2OeAQc5si6oFUwygZQXxY4kPLsW6H7CDUpRaq30ccFDESYKhvWJ0JqWIklmw3Dbp6QcFWe+vmJZVq4O10jMrIvwpS/AthnOitZTCoKtIWLMhxVOR16/epXLeuL2+ZmwA3WueHEu+i7TXCjidKDMxnp6B50aDTC1bBppxWQw6jUiQYzsLlYN2hTUqbJdOuYwPDg9e04MY765TmEqxmobRQraDgyD4T3vp9hotaaQUCHolFKgBttY0INRaudwpfRJ2WLl2XJhikJVQWwjxNm2E8JEnRtLbDsEGFqF4S8mDSpvn58xjcLBK9flQGl58CRulAg0j5kwDHRGVCBGduOjUEvNCZbh1Ci4TAmpZyV3hfzvnnUeDQh3RgxUYPiGaCFcOZ9WHjyZIRZUawpOoLvnven53mfs2N69tgG+UsqFQDLFi0BkpjEhSxDF8DJyGnJSOhsHlBFg6fbCa6WUIzGMUMMkO97hOTmiO8SZcMIUQWkqLCFYmSgSiBtXkvD587awTUHTQkSGb4gYeUeTU357OIgoFASRyw6YzzdLSTsQUZCqhGU3s0qgrmk6i8ipD5Hcc0MTZByaTEiX5O14YRLjoJ+jawebsLjBteB14DYomvD4Espk+Zku1TNhEkm7IZEimUb4yN8bMKlEyW6yhGGxVyhRidGAipSRZiHp1HKk+EwM2S0tA2QF0kJkATI25lbQgAxiqSzrBWlOYcqNRXL6RWOCHRLvdIqD6MhLRZxQSWsKljar4tQKYhtCfmYhylphtc7EJacva2eQYSwihtij3G/dKCWDWfLg4IJHgchpqNyMNX8bEWKQNwD1PTvoUNt/h3zfCQUtOYVkRrjvUz6FIjX5VeQUTIbR1Rd/uF8fgPXV1E/Vg+KBduFYhI9/00/w1390ZV3jXj99QPVTTvq80E96r592/dTXVzB7zIRSm3As0JeRNncVnp4Djc/x0sONiCcs28eo7YcoUhh8C1s/5gSUDGyfTsuppmDrnXn6LNTgvLyK8zKn/vfTjm/y5MnvxOWEm1PzKDrTXMUZNqB+AZ+DUv44N3rHNq6Ypzd59MrvZqzfiJD7fanC1AptuiIVjtC3G5pe+MRH/iiX5SOM7Qmqwrd+8/+c3nMCT0XZxkf43Of+Ozx75xdzc3iIy8R89TlKe5exvYRtrzA//DFc4HT5BjqVwNnCmad3qPMX/nP0084tizy8/kr6SWJwc3wD52epfuqFTIYmD+AiqC34vu/7SX7lr/wUr7+eeCLRDIEAEGlcH078A//QH+TRoy+D271+utdP9+t+fajW+z74O3kntyjNDkIaIChWd5HmiFryp8yQfWMfSZtCEQTP7oW8mF8ORLPANQu0KN0WBhcA1uqcq2OyIGVlmhvndaOVQuMav1T8WLirA2GGdsUqF+YQFm8J2d0WltlQL1TVhJzWCYXsWCuEBWEVL4KT6Z9VUhxgya3oEcRwDjJTKbxtgzmUUipRhSU6m3VmOQEdrwVD8BE0mRAy8csZhE5YaRln7obtFqARFQ0nxHBx3AcbwqjCbb/l6jizPD+nqNeSTI8C9EEskRBaTStAAmyBEHoBRHKzlbaPOEMtE4MOJQ8HLnbG40RpxiyCWjBEKFcV7MwszrPTHd//l3+QV156GZk25oPw4PrIGNcAnH3jcnmbi10xXBlRWccF1Y5qz8JEK6EbkHBuQZB9kzWbISZqnSAcd/DYR65jME9BKVtCtemsfeUcRi2aB0gEJUDGYNab5Ds04SK3nOu7rCLAQqGgWqhyQXywdaE/Nrw6d5cLVpRpOrJp53xZmGtjmgMbM6dLo/dg6DWH6SUowugXRgGtDdeJ8J52kkjhsIliBshKKGzd2ahsnqyha9korRAF1tVYz4OmN0iAYwSORacUgJFA9TEjtWFF6DK4eiRYF7YC29ppJJPJJegY1a8I2fYDo+SRCIZMC94bETeETjgdLQOPkZDhE3QPHj8sOBdqVPC8ppELQ1aGpOV3QnOKxcAGabkQYeAM2DvKazJiUh6z7HvHJIozuLAxqWDFUJlgwLvPFx689IQlTpQCYkZTwaOjBYaByBXs9jde7DlaMMtCT2omYQ4bqBxockBZ9o74SE5JnHnOI0RLNovDEBswLuCVEKWHE9FRycM3k5ScIgkLtlDMnINUdBSGpPXlYoYWI0qjeCGGE6Ukr0ozBdPjjMqUTKD0U4MKbsmjQjVPaAPGyEKwlLxGcKdqo1hO+xzmisTAthWRAlownehaUSnJb9G8r4pWtmgM8Tx0loKFYbHRdGUDvE1pqbEsclcU1TPKSqUTlsyiMmQXrsndshDMhYsY2Qc/7AeShjZnkmDbBi6C4ZheuDo4l7szotc4FZcCRRmsXOTC1fwy5zJxjuwej7FhvnEoE2EDkUDECOuoXjOasOkgZMM1KUEeAy/KVkYKyJazU8MXplDUFdWSdjMUN2GYU8vE0h2Vlr/HCI4KyIKK4vRMWCbQANrGGI6KYJFcGVNoOrP17HKbr6CDUpXFBlJaXoMhea9GxTHUN0rsdsd9iidQbJ8HRQYeW0743AvXD8z6auqnkIEXwVrhzecz3/sXfg3Df5h5Xu710wdWP30USP30zuXde/3knb4+5vNf/HN/23trvvqdPJA/xmn51bz5xr/MRz71Daznwe07v5fRv/0rfu/rH/lutLzNu3e/A3iN0V/mdP7U3/ZnlvYjHK/+SxR9k9Nbvx9/8q8wPfnDDPtG3nnrX/uK3/vg5i/z0uPvZVtf54tv/kY+8pF/g9Ke8vSdv5/T6Rf+Z77+r//Yv/Ten7/pW387j176M3zxS9/Dm1/+9fw9f/evYxHnB37kf822vfbe16le+Pa/63s4Tu/8p/TT+sLGykbo9hX10+3z1/j//MXfwN/1Xf8GNzdf/Nmnn6iwHwy6B4Tzf/23/hIU5Vu/9XVef/1BNlzyGBLC0ajMMvjUx3+Em5uBhN7rp3v99DO6Pv3pTz8APsp7VNr7db/+jpcDX/zO7/zO2/fzxe/74K+VRkHxns2RuQnmZzbeRaaEPYsqo+d4LXpIrshwzGM/AEhYKj3TgSwsx8zVaObQO0WFqnnDCQOVCx+7ecI8DS7r04SCbhNX5cBzCs7bFHnG8BnKDTWuqDbxRIW1nzm7Udwhgj7uskPtmiPkurKJoVUoFti6MukBiYpLcrQmc9YYlHrNFA9Bg7NeUHe8Bmh2cUpUYKasJ3SujKhp64nO4QjFr1m7EGXDmmCxEdaQeiC4cO5vwvEJVirVCu1yoZUjm8C6rRyachmBlbTAOE71jSs/J3z6+kiNQAKKedYFkiPXTYIiM+EVEfIIxoVKR0MYVthkIyrUksmljmakegxse5Y2ChrX0yM+/YM/yOHJE1Scb/jkR3l0U9ne+BIAz995m+Wdx9i8YF5RfUDzOeG2O/fDtKB2RVUjWBEZKfL3jl6Ugg1PoR2B7EwXaNg2MHNcB0VXipypKNILncZSKhODWYyjnKhh2DgwHW8oUjmyspYTsj0En1inFbNbHkej1uDzb72BILRScDqn9YzKQJmhH5mKo9PKpS9ITMzAjTcW7ay6QXVqv1AUFlnofst1nZg8qDTGOHLuG6oTV00pseARbP3My+2Gce6YBdPxCEunqHLnwqQ3SC9c1jOHw+CqgI1LFi+HRi0TvYPGjA9DyUkSNCdNfCi1bGze053BhIZQmOjrhhTFWIEVKTBUqNuUkwTROS9vo2XiwdUVNa6pMrH5ytBgc6cwMA3WcmCOCVOly6Co0UIZdkWRArWzjo5JoatQzak0mszZxESYAEI4uFGigDd8q9i5wnzIglIVC6XJzBgbOjnnuFDvnId65LnAbVHEnOot2S4XRctMac8YfAazGwovpVWFC2YjuYYahG/ISPuLSGBxZqtCUaXGbkuJwG0DHXQXvF6z+cBUkZJYgmqFyaa0RZeO+wXzQPSK2gTxC9CZWkG0MMYNm3W0DZiNUKFbSX5WOaLR0tZLx9nYJuEYlWKVocaoNYchdbBulpYuucajUzWo0alu9A4iheoHZN8Pt3JgsgY2ME2LXhkN04aJ5yG1Dw7DuB4bNjeEI8LMNp7RpgAK8zp48/wOzxkMm7mpN0R/xmgJJFcC6Xu3VgsiA5VOLzkBFWNL0D5Qx4S2QueIxVVOfkijL50aE7MckQ5FlFKVGMZAkVKJYUg5JNB/JKenSVCALYRzFGKfUGi2d4YlKFTcJjavTED1fH1jGK3AvFszN1XCZZ+MAi2FTRRqpQBOZyuBbgc2g/mQfBqJFPpsM7UUvHpaTLwwmVLD6H0hZE8TLBXBUDXMLrhUmjTaMFQc95VoDUHyJEMbSKZh3q8Pxvpq6idehBRE5/nzwn/8F/5Bvu0X/psM/ZF7/fQB1U9vvJGa9/k7b3P7zrN7/aSw+iMAXnnyO7luf42iFRvCMjquBa3C1jeEn2LrZ165/lNcf+QH8G0wHY8cHv0uhGvO7ul42FZWXZgm40onzutCzH+dfoDHP+9/AVbADnz5J/4Uj1//rWj7DJBDlW5wKEaPsffi0qJamHj40V9Hmd7EZKVd/Ule+bq/j1Ch9LpzEK+5nH4t02QcZ2cSY64LKp/jYx//Q2j5PKqdx0/+nzx68r1oVMxn1v6E2+ffzie/7g/R6ruIKu3mx1n7kYev/D+4efyXOa03VBrf9s2/B/HKoHNeX+czn/nn0e1Vju3Zf1o/xZQbklRMpq+on768ND7z2b+bb/6Ff4x29ebPOv0U80q0TOxNDEH+PWnr3a29JXZ+qmDieKlcxjXf9+l/gF/6y/4Drm5u7/XTvX76GVmf/vSnFfjdpZR/UkTaexfh/bpff+crIqJ/+tOf/jeBf/k7v/M7v2Iyzfs++MOC9f/H3r8H27dldZ3gZ4w551p773N+r/vIvNzMJBMSySQFMdU06VLBQkhaxbZCQBEIMbpa1AopsTGkukotjeqyq30EhZaGWLZBycMqHxFqF4iUAdhdos2jeJkJCAL5vtz37/c75+y91pxjjP5jrN9NktLkmmQmF/PMCIib53fO3uesvdac3zHG9zE6EjUB1ejUtsfjiEdgPXKS7GmCqnVFK5u0L/k3bp7/OyBC0VrwElisFDEkVswS7AE5tYmJl8sjPNI+hqdG59Q6z/fBZSlUKyjnzNowGq6C+AWtgS9HptqZdnu6G72vFNGMLY9K90Hd0sMIwYuwbzvwQh8wrLPbn9NrUNcriMKpZPobDrsamC1IKFUKKhWzhdYUYqUxmJqy9Cv66PSxy0/HBJZI82WUOBpT2zFJw08CPZjKhIszmrIOKEzs6w3s6OwILv0JlphwOUtJZQwKRqhm8qcXiLzmSKS0wZP1VCQoOnKaYo1CQcQJHPdGjbOkheuRorqxnTMhdUjH2hFl5f/7v/4j3vxrfjVFbnF5Nbh/kY3mJ574GS53Bx7/mFcw7yeKnzA7MU9gmzSpiDJMcUpKMuWBGfkWUhAp1UGC8KSph6ygJ6wsRK1QGuElJ2jDKTuh1vx7PYJaJpayQyW9gzDFF2GWPYMTU8woE8/fu8/ZbuJGO3DunYMtrF24eeMR1pODNlwV85Vluc+t23tEp0z/qsbwu3Q7R7VRiqO+4D7ockBCaVZRlGME1pxeO2Ir56WlR1sxfBKUHXfvnVCBqe7wBbQ0ajWsOyKFRRvYjliFox/wfk7Uhd1uR5gg2rHhOTmMQsURz8Ss6uBUkJqeS94ISsoiUjeTB/fGanBLI2TbzM7FhX7c4TzEWoWokc+wTNQCqoa7wKrwYIYmjoSDOiInrCsaypnehCiM3nDdZcOxnBDpmAQuaSRsvSAxpVyqX/D88Qlu6mDpR67WBVsDlYk1OlfLJaU1hIKNAK1M84HTcsXpdA8Vp8kBYU9oh2IQl0RUatux2zlTUYoL03xkaoUQA29IuQk2oX6X4pEgKQaEUQQk9nQPcKWEUzUlEh4zgWH6JPgEcZOit4lyYrETQkUDKoJbIQyGrLQ25ZTUFKUylz1XckpgspWQuQQZtsnA2RLzHBlQp/RrcjwN6VHUA/MBKtQmKMn6GGGINppPGRQyz5zc6MPYt5ldX5N5WoS1OKe6MuhMtbGe9kztFvPuBmF38X7Bk08Ldxfj+fVIbcEIiBHUGpgvlOLUCIYJpjNdJo4jZXZzSSedwUKUoNrEVM+4Wk+UdsFcGztp6HqFxhUuP4NrQ7jJsBvcaEtOctUZ1okYBI7KAj5jPoHMiBQasPpdRAUtlRhkap1oTvhrMEQxJD8jsqfSDUaUlJ+IILHJRHTKfSxIv6wQ+liYdEqRV0DxgsgObNsvVMAPhE1ICKYrRYJZdHs+CzE2v0yTDApQTUk+aUJNEarXDHuINHR3SSB9vV4i6yOIn5KG0pDS0GgA3K6Pspanr/HTSxQ/XVyk7PCJJ36GW7vnrvGTHJKpA+zK2wh9K0ur9Kkjy8rN0phq5aoseEn8dHn5XlTey0Tip2l+N7UatXdEGgudagsNIcaB4oPoe+bYEeVZpHWOF58AQG0/zTy/FYnET2mvUmFrwOITETNBUKYfRVRxqygnSvtJHKWogUyU8RC6PEfVS+ZS0SKgQZVBrXcxBiJObU8j9iyVwrAdKve48fK3sS53OC0PQwhy/+OTFRyCe+Hy+TdvTY0BDBwwPwfAreG2fz/8xJgBuHv/SSLe/gHx0/HqYQDe/dTbub/++C89/LQ2dFSmaY+Lo6SnW3kBP4F4EOZ4aOLgGIyl8KP/+k180if9C87O717jp2v89KFa/3lr7Q8+9thj69nZ2ZWIxM//I9frev38KyLk8vLy8MQTT/zB3jvA//0Dff+Lb/yF0ZriLqyj01rj1DshSqlbtLkXihaoYLLisZGoH0wBYku6KoINTwqzBe4TLkKX8zxo43kAmgm6nIi90gtcLCuOEmJ0P2HjLOUoUoAC3tGAk61UFXQI0Z1aCjLNrDYyDyCUmYmNGI1hiCS4ncqcQFsy1YkHfjIS+X0q6c3jLROZLDYZSEYdLO40JVO1uhGm1PkGw7dEqChgQqkTyDZkJFhdcxIxNxYS5A3zlLPQuXvxBOfzDkI4UmBUdrGjxETnxFE6dQRFCiITIorgiK/0UGQDibKZGLg5xFU2gZjTPyEGIffRKGD7rZmUMhKNNOwe2tjHgfXigts3znAWkMHo6R3i7qCF5+7dx+6fePT2nlq2ZoVKGtiG4PUIorgnyyvECZKh9IK3QvgmPcnQiLzOQbii7DLd0M8hCt0NxJlKNr08AqsHXI15rozLhdoaSoFxjseEUJhl5ub+FtXhdNpBe5QlFp46dSrKcXSmuTFNRmGFMbP6npNDaGenhWUsTJrTrKaHlPJGQDRUZgbCQjBKpcx7Iq6Q7W8nZpCGz8ZxMtyNfXRiGSzeuaUH1IL744oLGxyo2Cic/IRqMJGmzoOV3Y090SqnywWibF5Hlr5LIvQ4bRKxmizAB7bwKkmpR7frX/LkkxkLQAzRIyee4jKeZtKXU8rNB2ozAmX1oHijykSIb+T53GLMyQRhrcjYUoelU2SlNycsNsAw8YCZ7w/cWjSIMlj8yJMXJ45H6JxSqhINFeXkQkRjHs4lnbUph+7YceUUYDIzxvMUPRFRE6QRmF0w4kh0QU+dKlCicWN+OeEr865w2B8QLoHBrP5CIYAkWyXvy5yiSygFqB5EBK4LEYLaARNn+BXie5A5W6MZCom7MCwBVpTGuipK2xiZFUYl6rT5PBlGTjgjKk1yYt3JJsEc6RdjTj5HkgnOKgWJyvD0hKkRaOSeloBMefALjQATwbRwCsHLDu/AgElAdaG0FR+OlMIqA1sHLc6odov75ae4GwMvO5a+4qVj2sAmRpT0gNHt75YCBSwWZq0QHdWRn40UTPZEPEN6R+6gdWTuRHSqvgEfNxB2uAyozzLGnc3nRYg+YICoUFBU9qQ1fEHJ6f1KkDyFPJ8s0vulbHu4S8qTQNLvx53hYBSCtnnkWEqqu1Gm/Jr1gRah1QkfggrE2imiSK14tGzWuqIyoygmC6b36T4gZrRkoRKb2LOEUJkgJNMQVbNZI0LpsT034AghlXjgan29fvHXRxA/TZuReg3QdQFg6DV+einjp36Nn/4N+CnLk7E5An+48RPljTz1zq8HoJCsoA8FfnIxXFY6z7HEoMotfv/v/0w+//N/Ja9+9R1UlS/8kr/Od/+Ld1ByI8ijWwpmt6jlPkVOlLL5TTJSkq7CqNOWChQbYtoxejaRjaD/HPzkF3cAuHd5gZfjB8RP6/0c5ltMXPXllxx+CtshXrPTVNL/UMRfwJb5iWWIWp6z+eUbZ/f4j7/kv6LsL3D8Gj9d46df8Pq+7/u+m6WU3/PYY4+tL3vZy575kL3w9bpe2zo7OzsCD7/nPe/5Pd/3fd/3NR9I9vviU30bLGNN4/26Z7UTbVLGKT3MRJROxwS0Fcx2IILJSJNqqYRAIxBPE9ZhQRSl6oSGM40l6bnklPrExN2YOclKn3PzlyE0cwpwFEtTzhjbdLDgfmDxYAzjXBqqwdVyhZZKq0LYZpavwrEvnNyorcBYMiVqpAxzNUd6R4uyTmnLO5kxCE5lpdkZVWrGhWuhewdVjnoCKi2UwkRtOy5PgZb07VEpiBSGyzblSG+JSWdcICPUnSo71Cd6GN1XRJzLYez3Z0wjuCS91RqF6o0djVVOG8hMg1wRQUIZrDllROmbebgzUUtjuBI2Y6IYK8Ixt8lo6Q/joLpJjTBUgsoZpns8zlj9NmaDMZ7MG6pU1nXlqWeeY42Clo/h0Udvc7KVVqcEza6UkoyztDmo27UZqARG+tfkZ9qQKKgH6r75ntkLh0geHA3VKSVIp6CWSmnpE6ME1tdMuKqdy7Fy0eFQFcXxWjmNDE0oOnGUwlWBPo6IdWqFUoymg2naE2OmjwJlBXWGH0A6St+SrWbMlMmvOALHolQVwmFfJsKFxZWrojmp10I4HNYEIa0U9jS6d6IWrrpiKyzVGFMHMUYEURbECrv9y6hTp9QTFqAyJ0twzcKwhzC0IVrxcYFKGsxDQsUogO8RT/zoKqgKYkEtBp7SIo+ZowWxNPZlYZpOTGGIBaKOhyOiDFE6mRYoCK5CRKFCTrZjUBvgHaRT3TFvhDcCRYrj3rEaIB2TE2ym8fcvKnGoRIsE41uyncVMJ/C+gBTm2uC0YhHpdeVLsh7UIRrhQl8a7vnMmRgxnBFKwVn6j4M3dust7l52tF5yOD/jZtxgrgcALApF5yy85YIhy1aYkZNrn7MqZSA6KLLDoiDSoSxoPGCXKH19kC5ZEVdUJ6TMrHbCxKiqiGc9IZJ7m6JZJIhgTAzlBcNzKcaI9yUDezgRCr4xRKJg3ZCohM64xPagHykIwzpaK7taWJcjF2eZqFcGFDeqr1QZLDzE6is6XUDtjJ4N3MsOIufQU6odBqtN7EplFgPLoAJFKA5HjCUcpVIMbCidc6Jmyp1ZRRDMOr0rjTMOtxUtB4iSAHM9MtWBtxOU2DyvFoSV9Md8CKExyhHEUt42AvdKeGOMwL2/4A+mXijbPRmxFXZZG5NhbzlPTkNoQ0oGL5hnAR/eKW3agnL2mSJnnSBNzM2TCcsmGxRvhM6I3kDiioLn/gREQNnKFZOSck0nfbksUhJZCrgRHmjJ4B3GdePvpbI+kvjJUZZwVoSLNE5gTDus76/x00sWP6Ws7Bo//Sz8tOGUVYWq5cOOn06nlfA834WBhX9I8FMGExS6V44DJh20WfnOb/9RPvtz3sArX3knWZoiGMIgmfqn9SGefupzeezxb+Js/w4eJL3WEhAdZKAyb8zPLQQohAfx4C6dLvfeDz9VeY6Xv/LvY+05lp8PP40MvPBfovgpe22B6YOAD/jkT345r3j8Jrdu7gF406/9WB57/CH+0bf+eHb+RAmFgaLSrvHTNX76UK3HRKSdnZ1dfShf9Hpdr5+9NibpgfSQ/IU3/mzktLlUUj6A09fOVIQ+Vlw1H2MJzJU2Cq0W1lix6EhJcBs4p1ioBTLWKSUbeFLpA3+f1FcW5qnTSuV8Kqyne+wOt1jkga9Ybhy44RabUevEJAWis/Sem0NpYM4uwAxO0lk1WH2lhdLGlJMsBqqVMZR5nuneOcl91mY0lEkBNdZyZFbBh+AIpUyYrvRYML3Cy57RK+5GyC4nsVEw85yKKXQbqCqlRnpW1EpYZ/iCWGwx6pe03R6LYAzJpo7vMV8RBnMBHRmLbjjaCh4jXzuUqabMtAFEz0ZIPPCFqDhnuHdc7jE02QfuO4Ybwj1ENEGuG4JRqlD0wLCFHitPPvd27jw2M097tOStFGMQw7DRWcfKs/cvuP3IQ0QoBd1e09AYKQVAyLHSA0AV+Xn6QBFEEthJNDQSbCYtrFDKTIRioyc9vM5MmlPa1U8gg0jqExpCN+dyXSh6wBiMsTDXQu/GKMJZPMX5YeHeM09zkAlcOOzP6S70OHA8GU0rq92nr++l7fb0mAnyffOsSB+9Yo5JZ0Qm0BUL5mhcHp8hAw93GJmKtvYTk76M/XRg2OBi7QwpDFfcjni7oh46OzkSAtO0Q/XA8b5zaSvNO7spGHaBsKCzYOYsa04jrTaQiaYPIZ7SLImSgJBM9isiSHhKsQSa+LZvVCImIjbXDQvqWvBpzoQzgRLQIuW9xsogQYmKYiKMrSAqJZl/PQ6EHygq6HKTKgsmV3nPI2CgbTPdDcOt5/2slYgj5kdCRgK/3nFpOXWdKrtwYr3CYyW2Yi3ZcTMuOZ8kTqg4UgyLEy6WUgUrjJH+RNoqV+sF7vdp+8blvae4rDO3btzgMO+RKJSxA0nmiz1odBIpQZEGPiFheNzH9QRSECbEMl1MI/e+nHpbzlFHgxZ0O1ImJzzokVLtsDSR9y2p13F6N1wFJD3EzAZHS58wCQUKGhVCqFIJWUCucsvVKb2otsm5EvnagJiBd3YWjKNSRbb7RTlJGv+rLhzaTB9CHxPzVFjkAmsrS1/Rtgd29NGRXaf3JSU822RVVYhquBlzOsoTWhjdci+zQPpCacoSgpQD+A68Ucs5wYSz0LQy18pUZu7ZIGRQpZByx4qoYSwU6fl8iKIc8JiRWNEQxAPxQDXZBnnoCUWcEkFDUw4UylTzvozYGKnbp66eEkA0p9sxBqqRRaQH1MKIoETK4IeDFEWaQQwKlTDPsAbd5CkSm2VbMnZCAvVITxs8JaDhMAVYICap9MRfKACv1y/++ojiJx/JotCg1ZT9HZryzDV+usZPv4Twk3vWAeaDauuHHz8t76vJTY1hy4cIPw2CJXGCr5gJf/Ev/hOqwxt/1at45SvvoAHFHWekf2Y0tBw5v/n9UO7iXKEKv+//8hv5gi94E69+9UOoKl/6u7+R7/nuf43LCuJECHN7gl/7H3wmRe4l4/Bn4ac6/xSv/eVflQFA9j78tCyPsNqrqRFwZfjonE6PA3C8/HgiVqbD2ynTM4xlz1hfzdnNH8bixPHqNUTcQFxhCLUKqo2L+7mn1F3lMH6cy6lQ+UR27cDNmz+DrAeee+4TEO5kcF3NM79KpUYlolF04aE7P4briWeefS3nh0sOh7svCj8x7UANk04LIwje8tmv47M/+xNf+Jw/7/N+BQDf/K0/nlJgd567OOfrvv6/4D/6HX+JRx594ho/XeOnD8VKm8lree/1+jCu7f7K7egDrH+Hxl/B1bcOfqSJdI6nwYKmleoBfUusc0FckELGjwOqilDTkNlHpthFEGZYNKKcE+6w+blMNjGvlaUp01yZCnhfEINJZ/ArJCbUD3gMjJWQlZMdU+0wpa8ACGMxQtI3TV0pfXBWdugGmh0oVTEzpCjdO1Jg9qCuiokypDDF4OZpZHy6FZpMjNVgyrjwiTPoDR8VKKgJO03QbtKp0ikEFimD8chYeOng5sy1EkQKXyZNfwd39lOliGTCFJ5ShNgh0XCM0BOiDWKbGYZsPPjCbtzM5CMZyOSYZopX+AXECZE1JSDWsmFDIyRT2yKcYCSQFs3kKivU1njiiXfz+te+In0lNnmJCIR1wlZwWHtnWRbOdo2wjaqN4JZeGUhkchxCuFBI7xnxBSmO1o5Fxzgle6sugDJU8KqYroj2NL/2zVK7rMQE1iYGzk527GjIMjG7pseLragYO5SiDZPguFRcC8XOKFLYtRm3wjI6aBZkx35JlZVzeRTxA9Ya5gOdM5LeSTsSutECzkNQD1YfDDpdjcl3HMbMWB05BFfNGNMlU6lgJ/ohqGdnnNXGTo2j54S9+j5BQ7nBVBrLnUtMj7R6g6K3aLXjcWJdd8lSsCuUQHFsrEip4CMPNMl52IjOJEbaxisdTX/AEEYIaE0GRBhVeqZirTMysqgRSUZjNUM9GL5SNNlohcLqgbtQ5JA+fzZwBTPBAiY5bc3+ByyL7aDvHcY5Vc9ATvTxHLduBQfds7iw+Iq50kUZGpSRoOLSLM/wUplVmcy4ZLBaoZQbOZWMYC4zfQyiOi4dj5kiM6VNCerjiNb7IIYxY+tE8cLF/UETON/N6b2IMeuMvjBp921vDNA1J6e2S2N4zcmw+QmdBLyhHFDSo3FsRv1BJqrJcFo0WjRCTgyzrdFYQDLRsujYZCiS02QNeg2aGj5GSup0S09jRbD82SLpD+aZ4Na0UUZFVRmS+5OK0JrQomI+6GJYLUTsEW80dyQ6FWem4q7YUKalsazPInqJ2iHN6QdM4ZnEJ+kbiQvmRj79jTGMOjVcAlVYliPTJg3ykql6rkIpTikVZGW1lNSoKsexorsJ1HEXzBtYwbUjtVO9gO+zIK6wcJHBCHVi0kofyT4tmkbhxgAfqA/Qim/smskLA6MzCAeX/HrxlH3hWVyaWe5tesU6ApkO2GhMAbstkTRKzWaCC7MKRS4oLrjN+dyJbJLDTC9dNvaQeyZty1QZouwsqJHJnB1S+qfXGPOlsj6y+MmZSyBjZRppuNBaucZPL2H8dPvWFZ/9mf+cWzcvP+rx06qPEOsdwl4DQBmvZYzBZd1xtMdoY2LvzxH2DD7fxuMOY/oxplLpp1ew6J5ytmdXJ2ZxlrhgV5ziziKVw/l7mBvc3z+EiXN242lU7tBPb3zheXXegA9QfYbGe39h+Mn3KIWKUGKgo0HTTVuauLlRaJFNTtXEMuhCPX8rIldozEh0pqnwnd/xr/jst3xSMgU3RrBHNnllq/dsrAjz/w4/zXGb5y5eS9n9FNDpolz1h/mX3/W//Fv3rp/+kf8GgFe+/r/kzsf8Tzzz1P+R9/yr/5pP/Y2/nKjOu37kv+V491d/wP3vk37Db6SdX/G2H/wyJG7ymz/3z3A8Nb7lH/6ZD/hzt2+/my/4j76K8Mq3fvN/zRt/5d/hDW/4uy8SP4F6MLlSajKBv/ov/FP+/J//jq2B7klB27CqhgOFEOHq6jaYo2bX+OkaP12v6/Xv1XrxHn81u/tuaSA7Akpo6umlJKV90zYUMdIXTBFfqZEdfSLbEELZvEli8ydJXwzxJSVs2wM3gJOAsnColbI6tQpl7FA947iC4LgaIUKP9JKpk3LZn2XYFVM5J/rMUgpKp9qKjJKbfi2sKDaSCjziKpPDbKXWYKyXVNlRCthwqla0jzQKlqSq+xCGLds0odD0LJlQGJN0vF8hKsycJS1aFYpQSiSAWJxJJ8KD8EIJOEWnA1geJL0bixg2Ljmbd8wlcC3cNweMac5p4TpWiJx+THXepAeK9acpZcJFcTNU2LzZKo5AnGOWUhQvA++eaaoVkEFpCnJI7wo6RVfEK08+ceTqstImYfuNMYNjHwxbqd7wdWUsKzLNhAdeFSqICzFKNky22PqQmv4R0wxxwqXn5i5gW4rrkB0RglET1NOwYUwCJQ6MaAQLVfYQldCFqCeQI+d7uH8UxqnTqlHKAs1YwxCZqUXoDMqsnMyIqhRpSKygKzRhscHihbnO7GRP7QPqEfdL1hCmcs4slSFCiRn3exAdCajV8V7QfQU1drcKukuAHGWlEdxg2vwngqqeTLsx0WKhiqSMqw98SUq9V02Zlwwk0stk12a6Gn3z4tguFBYXIOlzoiJ0SQPfuRwwNyBomqDJIogYWAyEGylr8KscxkVw9+qC2+dnmXA3JH2N6CAn3KcsaCkQK5N3ppjoY0JqZ8gR00P6y8hl/l2W3kNFNRMhl4mp1G3odsDtyHpybu1uUhxkdK4sDY57bbQyEDmCrnRy8h7kxC9IRhyR03e8E3GiKIRXEAhZMFlwGlUFt4qwo8hKJjhORB8c+4qGU8uOcJjohPZM1I1I2QITsMciG5mhCRZLKSmbQWk25cS1wjruJthpe6zUBJievcOiDnKVhvMExEIpBipIEWYXxrjafFTAQqkUpOeeHKWwSmC6QATNYa+FpefvEZIMRUZHzQgKVlIq2LKsx+n0kpNzFRBqGoaHcTCniXCSFbMZGQm6RB9lDVhFmaaKj4WIlB6PKEQBx1BJRqaG03TgfoFIgClFCqWcs2hQdeBxYqhzUQ/cLhc0PbFTZYyB6p6gogysO4Wy7ecFbMAUDA+q7hkhhBnRB1XB7MgiHS9BuDOzsXZqStapwbpNmMM7VoI+Bq3UZBdB+sloZKgAzthmbuKRbKYC+BWT5DU1Gq0W3I0eKUM5eVBUCWlUmSnR0TCGBqdWWBFkDIobc0vvTAx2WmEc87purCB5YJZ5vV4a6yOIn0Qh4yaEZXv7XS3X+OkljJ92N5/jLW/5p4jNHNePXvwk8Rre+dPf+X6PzrPP/8X8j+ff9zV52f+Nhx79e9y9+M089zP/Fa/7+E+gEfzMe76Gq4tf9QEfxVe+4Tcz6pM8+dP/Oc45hzd8BdhN3vHDf/6F73nmHV+d7yNXvOwVn8Fcnvig8RNREE+JoZABPcflxGE3v/B+EZtXh/S8zxHcdhyXl3N29myqIqzyl/7S/wKl8ivfmEzBIR3XvvkdJubp/TY/+i+/lk967f+DdniSn42fbH09/59//lf5Db/mC2iHH2GYcDw+BsDHf9KfYj7/ISBlx8vlx/NTb/0LvPqTvpK6ewe7s6eJEG4+/I+5+aa3ZciNVx7/pK/CfEqGFZVZBDa8InSgcKj3iR688jV/nt3ujFPPlNvPfsufoBVYPRPKVTwbbTbhoZTWeb7PIHs+83P+AqXe5Sff/ut51St+hGnuHxA/+cgdElkyoCavDqrJ/gKoIbiv6Wu3/cZla8ZijZB6jZ+u8dP1ul7/Xq0Xz/izzWLXFd98VkQeeHkp4QlKUcMIYE1pSnRqLaxrMLXGGMCDqQyaoGT7/iIDCcUlKfdRTtBW3A/ojTvc2yvzbtAvr2j9yOksoF/RIqV6HeNKOvtxA93tUFthpGyjblILDyFKJvasNlL53yb61igoAVorzkJoxzxQ2aMK4isiQY+GyI5woTWoTVjGiWx0TFiFsQtCOhxPSFRWVqJWTIVQIBxRY4RDC1yUBwOGxVeKVvZrThhVBy6CVEc0sFG3oWPKVMZQCi2NS8kpVpEZdMKjIJOw+NXmFXQDYSbkgiGWEQxREAqpHlpxHUjbpYWx5dRs2MBEkUm3KTacFuOZe/e49eht1NMzQ2SmUzmOTlPNjXntjN7ZtUIRw6Nv16GkN4MMoGOsG8vbM/WwCKU0RhhhQq2Ntk1viqe5btWC0zBfME5I7Xlvrme02IEH3cYmoIAxjHE+6D2Y9JzL4VAc8SvOZNBk4mw6J646s06bxGekSawlnb2VgkRnjEHTyIaeZMoarjQp7ObCc/efpchNrCvreI6b88zDj/b0SpKVkGAAUpU4zZzMkNHTlCIKHd98W5xjeNL88ZR+9oIYRBWirUTtiAejOFEGzIGcBcsyWN2oZaaN20Q4GoFISWDgxklHeiiJMRgQayb1siN8RsSTMRDBqoLLYF4XHh432EXDRDlJB62I7FNa+8D7hYHqgllH644og9N6IiwoZWaq+zRyjyAoSbUPoeuRziVmVxSZEVtzEmBXlBjMtI0dMBh6hUehjEYJhajbfVEYMehu6UFoR0qs1IDikmAiajLmKqgE4cLFKFQ5UKVuhtae7BQq6ML9q6cps/Po7ZdThrKsR3TKdOOwgVsHN1TTpwtxzFbcBaGg0TB3XDxTeIugroQFNTLtL4u5iQin+0qrW7WJpDzLGtC4sAUtlVIk0xmHbI3nBSeImDLJriaDyAROdUdwM6UO/T6NI6FwWWoyLmVCVIgIzIVFGiENoVK2e9NDMT3D4grxywR2Wjl1hwh8BOaOMdDizG1meGe1Qcjygq8LoahPRKkcN5C205mdTUg4z85HugeTpPNrMm8q3h5lkZsoBd+k4hRhYs5ES3WGnDBxgmCKR4nNbH2JTmsVXwuFlACOBwq4SDl7soAivYQouCooVMmmRC26eYllElz3ziQF2STuHikjKQLqB1QqbhlcIATDdQvfyetVS15vRQkGUhbGdjJaCBaySUVrTtAdilYIUDe8KOaSfjqy+Uz5NXB9qayPKH4KBwJqQD0DQA43r/HTSxg/9ctzfuKnH+bjXv08JuOjFj8VFh57+Z9iN72Hi6vn8PF6lHex2lPcfmzGz47UotTdO2C+4rD+fT728e/Dq3Ay49GP+wrc9rDZXASKe+Xq+V+P2zkg3Hv2N1Acav0JEOXZd3weRYTbD/8Dnn/mt9P2P8F89n2YGcfnvogLv8k8v/eDxk+BY7ryIC00xKmjc247ZGsyWcBK2fw+BTdY7Yznnv8s9rufwOvTSJkQdfo4ZkOLbCJJ1O3eF8wrCsy7n8T1eVZ77v3w0435x/msX/N/5mz/bjqNVQfT/sd5zev+BA899E/R9nSeyVq4v2H6uns78/nbUHXUV+a6UHYXdBWIyv78PUhdNvykrKNQOXs//DRsQqIynb0LjyPP3P0Y7j39BYyrVGFIqbgCPhACoiGSQ9knf+aXJZMZ6P3AW3/o8/ncz/2j3Hnk3R8QPwkHgsDcmNr6wl4cmz8gFBYfGc6iksMDEzRN6HBOeCzX+OkaP12v6/Xv1XrRjb8ix22wWDaKesdjQSkUl9Tpb/4WOWUJljFAFTNAMiZecMJHxq2XNHe26ICnR4mk/whARBqHmmciXj9esZtuoZvp9b77C74BYyRInmIFOqLpYSIOu0k4M1jDWaVimtJL9xVBqGpMVRlroBYUCtZBpBGl0ddKLYXFn0ebo3VCohF0hq2oLtQSRIC0+wwRThYcUWYO7OWcYAUdFN3SwCJ9eJRIKUQpqFSKO9XTt8E2AB9uSGhGwlunjyPGQpsnqipqhalW1nVJ5YDkYafV0jwXh3pCNHAveB9oXZEc18DoiI/cZCUYPtCxoHEgmFhLcFHzML3hBbP0TxsevP2n3slrPv7VhF/mZ6YLnSu8DpzK5dUlY2Rcu1l63bSmeEyZ4roxw0yckI7IkRiWB0pUxDJDbYxkXdWxEhaotW3ePkCPaJmp1VGFkJJ0dj+BLwxg2k9QV0o9gs1MKkTvzFPDh1Jp+OmMOiuz3GeNSxrK2pMEYH1FTLgxzzRVbDkRGniDFXBLg9lSCl5g9SvabNh6xXwDbj5UODxyRj8mU8FlYu09PTmWB3JcI8YDTodkgfAg7ZYJj5xgqmRSm8nAVbgM42SkcbsIh5DNtLZgW7CGUFjqFeFBcQFKShwKaEyI92RdaPrEaJZxlJhQuSTk4oVGVnBJj86ztmM/HWgahC0EO4T9JgnOxMeQwHViLTMSM24jEyN1jzBwu6QzUFGqTOm5oekS6BHUsknVpDKHUF3S30UCk8FOO91XTBUYKa3d0gtbSHpLRdCxTIZT6BRENeVSeIK1rpu6q9AkkFggLok4IarUYlgIVRoxznj+2cFDNwbEBVO9QffCsJGgITz9UKRsIG/z05IHtgtb2mMEPhzVQqUhpkyi1FKIElubT8HnbHriULaUyE3SU3WfDT7L9M9oymU3oBNRM2nZCtUVH8aNQ0OqcmHOcEfrnqF71IwbY8nGQRVOVRg1OLlt3CFFNz9li5TNlHZgeCN0D8VxUToL5mlyPZeUncSwZESiUBoV0OhE7wRTwrMYzEUpI+XQSH7mZSl0D0pNwKfmjOXIbgo0jPBKlRtIFGLodnVzLzbvuDpSlUrutyaGa6ejRFmzYC8zvQehBaqw0lEt4JXIOAXcjapOk4B1k654JLNUlYFRQx9wsCgRD8pO+tjYW0E29dnkWZpSefEtLTNyGt1jYbBiUQkSnFZPppFMmWzauyAlGawuK11b3vcl7+PhmfJ5vV4a6yOJnyRqvoUHD9058cVf/J1EvXuNn17C+Omppxp//X/4PL7iy7+RGw999OKnfTtx887/G/yK83qFrT9Im2B+yDk8cod+vMjGiATraUL1RCn/CrfIMIr2E9SWbdgIIbwy7Dbop6HlifxbCQij1Gdyr5StITdnEM5DD38zoc9ydfHqfHbZIUwfNH7CDaEnO0sU58SbP+31/PLXvZrbD2XYxW/8zI/nY19zm7/9t38YxSiRQ0EAl8LQ3aa6sPQT3M7/8BXzDKXJROBBa8/zyCv/BlIuko3G+/DTXk+c33orIxaubMNPep/2+DeiGdvzAn66sfspPuWNv4fd/h04fEjx03PPKON4oJbnOcyZ8mrhSDU0IkNUpMFmjRAEbnuWq7xeqkqRD4yfBqAIfT3k/QDJjAU2nhnCjFuGgAAMnzftUtoXyDV+usZP1+vfq/Vrf+2vfd33fM/3nL/pTW+6+O7v/u4f+8X+fX4x1otu/KnMCKTprEx4DCAosWx0ZskdVcHDqFq278//V/IfKBtxRaIinp4qDx72cBBtqCQFPmImojKXezy6h0elsFt3LHbgNAaNhd6UoyrLcGQoM0KRYDml0SlSCG0UNrlkrXQvdFvR1ggbdDuxWCZiqVYIpU4HTqttXiqVad5DuWAZC0Rl9PtULSgDxRFpuDeiK1Ur5wRSBiGdHhe0KKjnNdIXkuPSjcY2w+hGo4SjbqwxWKPnIV+2CVRAH4FHRUoGKIBmg2EU1CGKZBKVW26GPhBxCjcIy81MVcAeGLN2wgdmjquiTTHNNNTilRKNooOGUUpQbUVFmbVRovHedz7Ds08tPFbn7XcsjFUoI/+e3eT46chYztF5gjJzWi1ZVi7b5FITdMgABlqCNk3EEGx0tAhFFRFw1vS1KQBGyBVqzsSjiKwMF0wNqScmndJrIwqUnL66d6gniEYtU7LDJOVVos+xmw8cr06MoVwcgyGVbumj1OqOw/6Q3mklafeLZUOnlol5t6cSuK1o3GJdCofzKx59vHLf4N5pcFiyGCmlUL0iUVh7Bk1o1Ey1jpx6qQrmYF4IaUSOzaklDXPxTBtzz2JIXCheQAPtzj5mijV8CBbO3d2abI1tipcQztmNA2EGIswtnzkdjtdTslJMcD9A7ZgIhUqxHX5RaYdpm9iDlwYSYB2N9DqyaITkNDzGkRILVRvKQvdL+nRgJSd/JSruYKIoE+GO1IaHgFR6OKuRKcmkpKbqRI1zBsFKFi4SnkbDEqAD047ZRMSEIqhujTFh88iTB+NKBKN6QyVBR2zyO5ETl1GoCnPbs1x1TkfjxnxGSMEwpDaKzMTSszlnNVmgdIoKosHoCx5BaRPQc97v6UVStoCRBEQksAlFqVROCVi3CapETZBtHSnKKkEnGOJYA40zpDeanOX+PAYaQsgBmRo3z2BZ76d5e0+20YLRBqhlWEszkplYB2xNWSWS6SJOixPDHJUdYkAsiC5EGJkWRxbfkn6Om0otvVSi0GMiyoGgohbsKahngeu6sJbCUZS5TriP3ANcmVD2uqN6oblSSjaeFWGIIFvTXFioDtUqTZwYgRRnmifCoXfQCaQE3o0H0h2LlabpZebhOIKrY/EglXVK0F8KjCwhplJYwnNiHXkPGpEgshpSa9I6MJSOBqxR0q8nguKREnYNjILERLO6FSwB1RhiuPl2T6XheLihTalSGOab5xCbZOp6Yv1SWR9Z/FSSbRLB2dngMz/9e/lXP3p5jZ9ewvjpZa8I/q9/5L/l4YcaF1cfvfiJ8TBPPfnbuXPzmzkeT5yWL+K1r/o61vbeDxo/uW8BVzoQVooGGoPsnmfATERQtkTRsTxMm56k4dT6k5y7Upbpg8ZP4bcpoyHVAUcp/J7f/Rv4oi988wv7w5d92WcA8Lf/zg/lPRftBTagRkl2k60onSJ1ayxCqNJVKNs9EKGYT6yXn0jZ/ytk8vfDT89fPcpPvOt38bpX/Q3K/C6qTsTySp56+jO48ci3M+2efx9+alfsH/q+9Ij8EOOn9arTu7M7BLUlY1VU83nteXZJjA3vGCIwRPMzgxeu/wfCTyGDNl2xnG4Qp7YNVDJEKZt+Solskhkkp7UIbX/MDyUONM6v8dM1fvqoXg8aZY8//vj67ne/+4d/sX+f6/ULXy+68bfEKUd3khHmIY6ygvlGzWaTtUkadrogWrGR0+OcgaWkDzI5x8PQgJmJkEHXY5pMxwmAII2TW+yYz8/x8x33DWqBygmTBekwG2mgKkmNDu/pP9BmegiLQms7xI3RO+Iwy5bg5pvvggUlZiZpuAWllqTeNyNicP/+80nDr2cMS++T7sHUZiwqYzi1zJRiTEOIHoQKVgpSCr6Z/Trkxqrk64UyXPAcX2CuEEGUSlgmgSKS06vNINU8wd4YmS5WKJzMqEnmTvmNpkS0SOAxKHGWKXnco5SO201idFQGooXYDIJ7lIw0NxjhDDXMO710woPRV2qdgY6UxnN3L/jhH/0pXvdxd/JGEWOM55F4lqZHYr2ZSXUujKGgDZXNnJyBqCebwcEtoKScaFhSvUUV2ZhjURe8HFMWqjsiFixWpD+MrYLHBaEnhs3EKtRGprCNQWFCXSjSGH1BFJQgJD1wnEDWm/h6k/v3Fk5mWFxRD0KMhXneM7X0t8jJnOIdgqSgK0qdJkqs+Bis/jzt7MTtxzsLJ/q4SVTjUtd8DkTy7PGUJs0+pZ+Gp38TBLUqLpcJoGTagLuBekKeyOfKVekalKIIg1XvEXvHS+d4LBStFBWK7/Lv3CaEEYMQOHJJqTnFHQgRMJeWElpOuNwA3YOsSYiQgOJ0Frw0TDubmwoBmKwYFWVGorEMuFuumIqwqwkqHUeqIOZ0hRGGuqXvlWxNOzruKRVSXfHiHKPQbEZtwql4Idlz25QaMinMxXAxKoNmA/FCJ4uakJzvFpNNarc9kxEEhrUdFoGEJetyY1MU34Mv2MlRGutq+LzHxwkrkfdw7Jm0sY4lmY1IFuIP/JbUUakJznyhtokiDbOVEWvK4nwrWMIoZVA8PaJcBqGBqFPkRBPhWAJKmhXjoD2YRXERDMPiklBj+IruZo4B5XhA1h3OObudQDnRcYYW6AFrehcFTgzY2x5jh1PS00YGRQcyakqP/DL38TIRK4hOlO05Vgu0CCHOLBC9MyKQLTnZ0SzYCO6FITUoNajhqCzUODHLOX0YvRWGFva7HVaDrgbaKQpmC1NVKufJhjCoNoEJtWSjZbefsQjWvt0z7rjP9LHDbeTPhVB0QsyQWHAGIYWQTEsdEUSRTG80Z9Js21QtHLcptUTejyHZiF29UGNCDDzGdhYGlJpyzu17TbfGNY3KjuowRU7QF00ZT4kE5hTJ30WEShA9gx5E814m2M6J6/VSWB9J/BTbHu4SXF3ueOsP/Coeevl6jZ9ewvjpN/z6X8nZ2ZPUdvioxk993Obe3d/Bfv5WdBaW+7+eo/1NXOoHj5+kgiwoCyILiGMIPAhKka1Z6wqy8MxTX8LtV/xZZP8eHrr5uUhcIr8A/DS4RZeUgSrJqPpP/vDX84f/8N/mfLfL4Bci9waBISPPm63xN1y5G+mn9us+7eP4+Ne8nNsPb0zB3/iJvPI1d/gf//b3IO5EBEu/zbt+5L/nkz7pi2n1R98PP927/Fh+7F2/m1c8/M3c0GdTnXJ6jLf/2J/kdTd+hGn3/Av46bQ8wlPv+D08/vh/T23PfYjx0w6zACrmJ1zhi3/Xf8Bv+y2fwitfcRtV4Sv+07/LD/7Ae3Pvk5FJsLqxIN0Z4/iB8VM98prX/jPoB5rU9+EncYqkt97Kz8FPEtx97nH+t+/+bXCNn67x0/W6Xv8erhff+JMJ4YTI2DxWhOKOeEWp22Rmk7KF0BHWpVPnhlv6w/R+YqppeO+x0sOpOlGiYeYZzf3CnIvcOMVZmdDdgWiNdZDeWBMcJaUv6YeQEd6dCe9HqhT2NFQ6dQpCTpz8hBelOGCOidMLrBJoachaObngzXAZ2FTZeSXHMVA5J8LodsV+Pmf0pBnDQDgBK74GJiV9aqZByBXNBhM3CZ2wgBHxvumSBzsNfCQVWoGuGcfe+4BSiKJ091RBQwIXD6pnchwiDElvDEPo7pQq4J2mMKLS/UiGL6yEC+gxJ2hSKQhDQFTBK2sE1EYJoUlOq2+aIqEsQIjS7UgrsEzCj73zRxkv+zX5odnEejJ29WFGr9CUK3OO1rlzdp4SBjNMN8NcCZA00i5ak92G0O2KqkFTtuCHgo/tXnMh1gkV0NixyMwoB1QnGhOFiSrGytPg97lzfs7F/SPnO+c0BLm6w67B2u9jGiyL4mPi7JFBlwu6LIQoO7lBW5RSBq1pSmdd8zP0ioVTSmGxlX4K5vmMSXaoKru6cPbIQ6x2wfCLTaouUG7gMRijs2uKRKS3hYBTMv2QlHmYZYCHiFNJKYloMLZJVNmSdB9IwxgG1bNwKY5PztpyCla3aeRAEGoWhgGIYuIpyw2nkwegaqH5OYuDa6SHi09MvlH3ZeYqhJ06kziT7whXFl2wTc2mbrToVCnc8keofsUswuiNbg3dFU7cx4rjFszmVG2IOCffowJVOkLQNANMPALzhuJMZTBkZVcaTVeChVAIzULRUdAZpjNmW5jtuPkJzgQ7bHKCq/yatGTbyJIeWgbhBZUJdODlRLFCs5TpjhCiLIwqnEejChzdwdO/RKcMEOmeoERUCDKdUqXRQnA64T09v6pg0XEN6phxF8AgHAnnSo64KxKN4jNz7AmdGLuL9HBCKbXC8GQFmVOKMuwKt5VRFWPmyZ/8MfbunD38cmRu7NijpbBvO256oUyV3oKT5YTcp84w4eSNPqCEke6CgXNCK0iUDC3wzuoLS3TchVagqdPjyPAg4oDIPj8fGWAniiZAdpUtbc3o1kGVNu3xcQMZMzMLfRyROLIvyr6WjVGwpSC60UQJv0uIprm6OkFlFKVMp5T/9GQwZSrjwKWx2oLUTOfDlSq7TULkiKZXpSNb6mdhjJxAO2larQrGSgmoFMom9TJJ4Ji22Sn4KUh6eqoz2Yx6wen5WUs2gIoZWk4McUYpjPD0GjN5EEKYvllSKbWxrMecaz/Yw0UzIfAauL5k1kcWP2WhGDjPPHfG3/iGz+TL/pOfusZPL2H89InveDPf/k8/n9/6W76bdX3PRy9+au/mta/5P6G6cPbIGY+++gsSP5XdB42fXD2VC2KI5lnz5V/22Xzx7/w/8HGveRRV5bf9rq/hn/+Ln+BlH/ufMeIG1Pv4uMPaDKP/wvCTKJSBUKk+ZetQGksITYIqQd1w1WDgCrY9VwCqwhw30Fj43Z/3Zn7H570vQff3/75PB+Ab/qd/RvVA2VQXwJCKPbA92fDT8oJ8MV7AT4/c/mH+w89+/f8OP10se+49+xv4mFf/z8yH5z+k+Mk9GXlWVvYlvdzmSfmuf/6T/MZP/2U89thN0BWT49Ys2/a0B6EctdJm/XnxUy33qXLahiKKSCrKppiZtOEbfpLQ9HwbTtS8RqLBiGv8dI2frtcHWmbGn/kzf+Zlf/Nv/s1H3/GOd8zzPPuv+3W/7t5Xf/VXv+v1r3/9C+aaTz31VPm9v/f3vvrbv/3bb92+fXt8xVd8xRN/7+/9vYd+ruz2xbzeK17xik95z3veM/2BP/AHnri8vCz/8B/+w4dUNX77b//tz/61v/bX3tlae+E9v/RLv/TV3/Ed33Hr9u3b44/8kT/yxC/KRXqJrRfd+NuNHR4bMO1JWnbrhAY9NE2fw1EC8U4UQScwN4rWpBpXxUiDZ3MhjZRXIlJ2IejGLErZqDIRY89SOrtDYb8XjpcLURpeOn65Iq0yKJiBDtibcmozVKjTTKMSrPhYWT1wdyYyQGEgDCngQTWF4aQp9UCjM21+J+5BLUkp1lAO5QwzRaVQtdBHmvkOu2QqYLKwCixhiBem2FOi4SP/zirCGjmBDh8veLd1H4Q6QwdFJkT3hKYBsIyrnJ60lpIWFJHKQHApeJkw2+O+ohjVpjz/1dlxhtMxh9IKrskoSHWOsroRojSZaZR0ZfCChlEVPIIuQVGhtT0ErDaQWtnNE3I6ov5c3lD1BD0ZCkNXXHdYXZF6wv0KPGULVpXVe37unqlkrc4vUPmrCOrpvWKSbjRhSqsz63Iik9UUVDmRiVviZ4RfIT6YwxgUmj7MWNLDx6zhYlxxn7VXhBnrTjTBZ6HeWDlMlVuHHacu9H7EfWWeD5gni0oExHJCq6q4DLQOtHakHvHRYBgyG9O0Y7UVrYH7M+zaOfQz1khJbh1B0JESRG1JCHFomhOtiEGnUKNmEl8E9qArrsJognoWQY5tkoUC47AlYzemkg1B6x0pheJTSsUK4BWNGZEFHwtFjcKAcKoZqufpDygnIjr09NHrk2Gyol0YyzmH/Z6k4AvNoangKgxfcD9mE5AZszzM1WDnkEioUn2bvtEIm2lRWAicGYsz9mqc6X0mfR5hTxNl1oXWBipOrZVhhZA5PVEk5bBEzqLBUBmUJqjOmO8ytVc6xpTTR2nbz+2QCGppaMlnz1gYcYnWPaqXzK3TbWGKiXO9zd7ByqDNgvlAh9GwZPiUkoUsBUNRVapUmmezzoFSKhRneAfJJF+39PvSkkwf1ZkUuAgRxogT0U9YLGjNFGX3iovl3gtopLl79MEcM8ul8txTO376ctCev0upKw/dPHBjd8ajdx5iPwlzAW17HtYzJjqndsmpAgTSYU+D04ngyKVUWkwUnxEmLo5X6fOFEmI4Ay2CDmUuhrFiCEFFijP6ms//xnRqdIoUjBkJBS8MWTnOlyhjm/YeGfNdzvRV7PySoufEOiP9DGKi6PNIKVg8YMdORDSwxroW3JUaFWHQxZGWMjUV6D5ywq6CEXneieAbU8sjjfDBU1aZ4+FsvDu0kO0cy8JQLZmrMhY0Or593t1SwiO2ULSiGvkeRMpMdAvH0U3KsvlapkDJKZJnTmkpU3TRlDmFbRL3DIx4AH6u1y/++kjiJ49kS2vAqx6/4C//1b/C/eN9vvuHrvHTSxU/rVdX/Msf+UTe8tn/Pxh+jZ8+hPhJfCK2988ECZjniW/79rfxWz/nV/Cxr3o4mydiqAZFngbZM9ZXcO+d38vDr/w8XL/3g8ZPIU7HU6qojlXHGRkWMXZMU54pQqZSFx4oGDZZayxIHHGHr/qjf5f/7I/8fYgCZWWo4QVqNIJCeKN4235uwuz2++GnutVWc105m5cPiJ8O5+/kZZ/+OwBQ/9DipyKX3GNllsYkmSz+t/7Wd+FR+BWf/DE89thNqgS7ksE9jmJak9UJzAqH8uHBT1bqdv3KNX66xk/X6+dZX/qlX/qx3/iN3/gowCd8wiecnn766fqt3/qtd773e7/3/Ad+4Afe9opXvGIAfMmXfMlrvu3bvu02wG638z/9p//0K38hrwfw1//6X3/52dmZz/PsTz75ZPu6r/u6l33yJ3/y8Su/8iuf/je955/6U3/q3/ieH23rRTf+qt1nlEze1KhUkc1wtJLk6yxjM7ltJa2EyybhgE2hglOBiZSrOEInAmpRPJbNa2HzWJALql5QZcLmPa3NhJwoMRH9BtrSr0H8fROtWo057hDbREN0YDEY4YgfEFcQR7VSLGg+sFjBO1OZ6EA3o0WCp6UIUIgwgoWigjKhQzDS3JYYoAlEi+8QMpZeIjADj4mjF2ppCElTLyKoNzwuQFa0tsRsAcUbssC0GaRWS78Ykwfpp0FTIRgMy69pBysbyNZ0BYOMWh8yqHUihuGxpgG3FyJu5dQ61hyWRM68VQeCUWGjyOfmaAFlBDISALg1bAkOorjk+x2XFS036cUZdpedVWQF7cBuRduM+QRiKJXiOQkvkcbgEYVwR01SxoITuiWgUrAQXJLqnh62M4Vt0ihBExiyEqLcbi/j3tWRUxM0zqjcRk7vZGq7fF07sStQy47he6bdHU7LXW7e2bM82zmOiTI5dQJfDbRC7+nto56MMs9kxoIz1wR9Fp35RuD1GcQG/XTOVG4CC+ZXFNU07OiDUp0uC26BmKIuGSVPYGYkfUsJTwmSa9AARmyyE6VGkiqEgMlwHUy6h0Vpw9CYGAHLlmjrYVlokiEgVhfQQuN88xrpiBgLydwgDJiIEnQc3RyxxRr0PYebt2G9onvHO+jiiKTP34Mw2i4F2rQ9Q8FU059G/Zza0wMoKAxrzLpj5oJe71Pqyn6qnJXGrtzBYlACMMVi3qZ9C64NdIebQVQKDXxQZEV1BQ80GkUmrAiuHff7iFZcWkqPI+XToYWqgsRCRGz/fUjmpUBxI0JhFbTXBBsRaDiqQtWZ4jNNnYjBiRVkK0ZjQn1GBSwmVCsiE+6dcKeWTlHLph0TQmMEaMnPO6VugY4O7uxMsJFshlIboiX9aFrbvMKSZdhQru5f4ksHlNPFihBcPXcfLyfq7RPzHl55o9BuFh46e5jbHChtz2UV2nxgtoWzWJH5Nt0fxdf7GVgQg2GZQio2sVrBZfNLiUKRiVYcsUCsEQ5QUiIYWbDBgulCl4JO55Qo0J29ZKE9YkfjQAnBTjDiUVY/Z5Y52Y21U8pA2AEF90yNrMW3a9MJGRkAAJQorLoHJsR3FJm2sIIOlgUqOB6ZRKlFIXTb51eIZF9qJLBsOidraTOrxoQamaTXdcVZU/ISDQmhhWA6cMjEOs/r4ZHSnvEA4I8tBEYdNkCbxUvkWdAHbEMBDfJciQeyK3/RQOB6fXjXRxY/GSEnlKBqu8ZPv8Tw0660j1r8dDq9lne966/wca/7fdw/7nnb9/1DPvaTfi83b/44Hzx+EthCbBChAH/hq7+FAN70qz6Oj33VwxSHOD7GM8/+fur0Lm4++m2oXnHzob/KXp8jYv9B46eIClFwOWMgYIF4+q15P1CnQ0pgNyZk+nU2xDbGkQVmCqXSyWCzqhAqqO+A2FJvFYu85wGE+5T6nvfDT1flAav4ffjp/sXj/G8/9P/kUz71v2S//8mPCH4qCJiglnJ0jUjvY9kaQrA10hudAWJUAd2GJ8oe4uaHBT+d3Xw7X/HlfygDKeQaP13jp+v1b1s/+qM/On3TN33TowB/6S/9pZ/+Q3/oDz1z9+5dfd3rXvfJP/MzP9P+7J/9sy/7mq/5mve89a1vnR804L7sy77sZ772a7/2Xd///d+/e9Ob3vSGD+b1Hnz/y1/+8v6DP/iDb9vv9/6a17zmU5566qn2Hd/xHTe/8iu/8umf/Z5/8A/+wSf+yl/5K+/+wR/8wflX/+pf/cs/UtfnpbpedOPPasPEsNhMZKVgNLorGmzJoTktGlJQm1AqKiOnDW6IaMaYB3h0QnpylQJcKsqeYQtQtjfdZYjB6ZKdnvHI4Zz3nt4J04LGnLINd3ZSKFoYnilKN0So88T95chpGOYFjz2+JmA0cr6mWplcGNqRpjRXNBpRZ8KDNQZLv6SGMkWOxF0yAWpQc/6wnphUkGNQZSLqDTSc7ifmJizYJmnISd8y8jX20w7rF4gvCdBqIyRBy94FH6cE3iVTiQgQlLUHnU5QaFqYpVI3I+B7HNEKVVM2EJ4NB1dnZWEwKC5MMlFQSlkJ75QIhAbecK2ZkLWSnjnRoBRqCKjRWk7VJi0Zfy6GN2FENuGXrpz8yDw1itxiWmemdUf1A+vRaTfSgLkOYWIzIXdjqm1LZUtphbNQpeUtakHRFdEj5isRnuboUVAvlBhYzXSmuqUSjqpcjEsu1kD2jaL3iToo9RZTuY8NYcSMqjKXyuwr8wApe+5d3kOtM5dgPzfMO6sLZQTVnVoF02QdiBUmblCG4MsOxBi60OoNfD0n5HnK/Aw+KrLcRnzNQA4pFJ0RHF0viZJTM8QzxCMvP0VKgjSBEEELOZkSo6GUUpDIfMOcnTmYUTvE0ZA1ASGqadLNgorSx4RoJWLFx8Mo6WNSxBDJArXJTLfI4mhLpEMd8YkWIAyIhVMf3L23cnkCYqLSCBdKKUylIr0Teh+dcqI2zcpSgquh1FbZVWEqyiSApK/nzjuTHhE5cihntJgpdiDK0wTCKo3wwqqOR8f1Ai8V94ayeWVFB+u0AMqEmdI96f6qypAzPBpEo1Kokh4jJ3FEFoJTTgnljMIOvDPXPUTDpKLtnCETqgkYijvhE0hDVLE45dSUoEqyfMQF9UHV2Hz/Vjw6VZQiO3o0lAd7aqEYlHB8OKEpu44YqAY6CSFn+DpQHaieMIv0deprSsIamCpRG8+uRy7HkRhBrc5+P2PhjDLo95/j7P6B598lXE0T75qf4vFbM7dvCPX2OWW3cNbOgTOWavTdoO7yb7KT0XqgGrzshuIBSw+WRZBoVJ2x08KxXBKTU6cZGysqwhpOrYWpNHBjuCM+EA9wZ0jDxwHxjpYrqhToM6aDHp0SuUcILSUwnk/B8EgJD6DF8JjpD/zUtON+hfmR6g8xdMI80z2HpnF79QfSosjQHAnUPQNo7OZWVKdPo3knBVWCSEGwLFBcCJSoO1wy7REKJZ9ICMG37ymRwDXCccvEbpFApCLkvuDKVhwm5URRCKOJZBAOsUlwSKnOBwUJrteHY30k8ZOUhthNxDtPPnXG3/gf3sKXfsl3XuOnXyL4iY9i/OQ+Mewxqt7E+x63c7Rd4Nz9oPGTU/CtoaRaMrhAYmN95vNZpFBrp03vYLl6E4z/ler32Z19E0UvGfHB46ds4Nwl/CFc9wg1JYc4Piqn9cDxmFLQPMvyfvXN63w9FcRPyOaPXJrQFVYTtBZaCFVzyGrS6ZLqur0s7OTi/fCTSGbWdlGO3ljV6WPH88//StYIJukv4Ke7dz+e7/7ur+Mz3vzF3L71Ex9S/CScJXsQEN0Yy+EQ9YFSmWxbZ/NF86rl0BloMdhxjZ+u8dM1fvrFXN/1Xd91FpFX6su//Mtf8+Vf/uWv+dn//j3f8z1nAD/wAz+we/C1L/qiL3oW4I1vfOPpda973fFtb3vb4d/19R6st7zlLc8//PDDBvCqV71qeeqpp9pTTz1Vf+57/q7f9bueA/jUT/3U5ee+50fjetGNPySTk3KSkl36iPQVUM+HGkkpoklJw00C186QwDCKJjgqrog4wvxCSmWgmN5DdH2B4i6xx22HaFCmyq1bZ+mpMk10WYAVPw2sF0T2IHtKvQVGJoKNlR7Z+/fuFF2J0unueCiTTjQyOS60EB3MOgPHNCfwVWAWoZlgA4ZWKHsmKkiHqtvhVLdDcKVJ4JaeCCYd1Jl0z7COk14Cax9M5JY7RoGqdO0Ig2kSZDXMZsZ28NWpMUI49pXWAtEgJGcSw1c0SFaRTog6ZkecFdXBNBZMUw5qUlk1A9GJBfGFGkqRNKIeVREZSJygKKZJmc80wcqwMwoQNtJepsDJVpari7xPfNAmYXcaHKViuz2rrixxxS5uYL0AVzkpjEh0Js7qK6IQNCQqoZGGsHFCGASGmaBlYvgV3a6Qtscw1nVispnFFtYQLIQdCk3ZT1fs7UTzA3ZaMT1C71RpRBF6AcRoRXEWzna3ufvcAH2Gs7PAejBGTiMnSc+cWuA0AgtnmmZulBv4EvTjIKaAWil6ltNeBhET4i0lW+2K6I6U6QWGwL4qp1BUZJMRPZg0BdOWSugeaMSWtpWSsBLppeLhuEcmosWEe8MWYbk6YuZE7QwZEDMhC0EaRhcKISeqXFFw3I9I2druIvSeZs21gJSUo3nAkOeptaK2Z4mZS2vcs+Cy36d4IKOwGfShlmmJ6itiUJYbTE3QvTN0ppQOFtQYtGI4OUmdShZ4YYUyGhEnRr2gjvTP6brgRVEG4TXBHIpuyXOFTrBCCdYSpCwup+3qUHAmja1IkizwNp+QEM+D3xNilACi5343JD2SRPHR0Tji4puQ1yEMY2xSias09JbzZPpF/l6itqWdDUICKAQTRGOyBIOZnsdm8t1z4h/kJFI2tmcRxjDqVFBxzE64O1Xn9MKp2UhwhHUx7l0cc9rdOuwUa06zxrwUXvExr0Sb8JNPvYvF7zJ356mnhGeehjjbsT8oh33hZbcf4ebuNrvpQGs3CVGoQkwdPYfpfKX151j6wsW9ldOFcLoESuG838KugjopmLGrA4uFITOnJZM6tVR8ODWUppWVBdnMz1cPqIpUZxoTzScIZcFZZGVSZbZkQ0UpaXS/+UISTi0p7ahRUCaKQ42ClUFfO5MPRk0foWq6SQgzRTRNpzOAxmOHW0crUDz34lQ6wsagqpJyFEe2lEFPr6dt34aR+0EEbDL9YJPFbCeKoC8UOilZD1wS0JcHqa+e0poXuAyxscMgJUDX66WxPpL4KQSJG0hMnI5n/OuffgUjdtf46ZcMfvKPWvzUt81LZb8NzfJvwucPGj95zbM0GVK+tRhAw3lQ3UdA1buc3/ynLFdvwocylomx/iZ2N74VL/c/aPzUSqfd+AdY7HAM54qqFfU9U73B4fwWS3keO15QPGAoFCH4WEp7Pce4oG9MURl7ahGkOaYTE9nMQgSRxB+yKaZm6Uw/Fz/Zw3l9dUXLCWVAZBmoLtSfhZ8UY9g5a4G1fIjxU6QfXYpClxcwbR5e+aEYa0rBZX5hf9i1Sz71k76V3e4JLK4+LPjp3r1X823f8R/zlv/w/8Wdh5+8xk/X+Ol6vYj1+te//jhN0/vRJF/1qlet/7bv/1C83u3btx+YllJKEsYi4vqD+3nWi278pagQZJNw4IFF8ozAMk0unC0wbStqM8JbASOABpGUZSTAGkRuPnnQ3UaLgSUIEoHhAu0AcmJ/44zgQI+ZS7vCovIgoSeRW07Aj17pfcV9JfzEftc4rUeCSJ80IKQS2rbpNSgVqTXNt70TdCBoziZXDIhCkT1TuYkf76UMcgoWD7zkRrXjRFUhavpvIANVYawdlYlJFXNDvWfqWHRcAt3ox46wek2/DFWG5sZn6sn6QnA7YVGSYl8rFkFpShOw3jHZKNoY3p11S0cNBQmlRVB8MLwQtkkFpCTFOiKNUH3/QrJdhIEGEqCxEq0kmA1HpHBaTzywLzqu9/HDba5KQUUY7cTCjpMFh8kQvaK44ur0MdBScIIxenoqRAdJYO7wQlETm+GtmwIFLU63K567eC/nZ4PCTK2BTUo/zRx6ZYrByZQlQKegTU47CovDnJoDrmSwRmGiUvc3KXODHYxFsCXw3mm14e48SK/rw+g9DWtdAlOjtpQsOEqpDa0XODfwfguPgsZKbZ273ag64Z6TPa0TYgK2EiV9myRH14TF1gTPhEPxQD0/i7IZ2Tps9wrvOwTVGRQ64JpGxyNWigoRNZ/lzfBaQ9Fxooii3iiSUhNzYzAI7ZTNFd08D8jGgWpCxED0gp3ueOzmgfVGMPzIOArdB1d+SXcnrGEmYHB7d2DeCYfzDuUee71DDaOEUXXNpEk1tNeUZ4hhfoGg2dwcO6RAqw/YLorHDvWJKi2ZF7FCHBOnaqGLg69UlFaTdYcJxSoupD8M6V+lAqJXwC7/T7OI8hioTowBSqHqhNhgLp5FmEsyDaKCVLSAMOU+VkgvKpNkDYgyCMImpAgohNf0s+K0TR7zEDNxvLAZU2czYLO2JzyIWDcGwfakVMFZGaR4kCHUOjG6c7p7SYxBbcEsLZuy7LkqE4/9ijfSueQA1NMVo18y1pXzo3Nxz+mniZ9R453PvZtbuyc4p/DoY69hanvmaWa3qzBBmyu3dIdOhp4J4sLF/QuW9ZJnT3d5+uJIH4quhR4zK41qwk1bEd1xjJW1DtZwiimTVrqNTc5zoHt+Zlflghv1wE4LOirFGjMN15WIZNCMn2XoL31Ga8VYWf3EVArISlDBjcDxkiZRQsGo237INgUOJEbeU6KYd0qWAVhMKYEssT0nkQmi6oQURFeyzbsVRAIixrTtJ9ubbAb1A5GSkik2A/kA24RKGpHG5aq4O779jQ/+Tt+KGwFqucY/L5X1kcRPMYAoiNjmBZgsu2v89EsDPx0O/lGLn8q6STnrFU6SMmIcYJJfAH4aWffj2eyT9A7L/tKDKj9wb6zrywFwcYbf5ur5P8qd+XOR6eIXhJ9ELoi4BJyZQvVBxBWF+5xNK/s7wnrb3g8/XY5n6Hw9Nh6h2zkA+3JAG7TJQaHKnhIpl/ftb23tOSDbYUX6++Gn6Hl9awwaRywUicQa1Semn42ftqb5CpziQ4yfZELCaRrbWSZ88ie/gle86mFu3doD8Gmf9st45Sse5h//47cRns/R1Bbe9Cu+hTJfYHb4sOCnUq64c+edRD3SR7/GT1zjp+uV1+Xq6ur9Lsqb3/zmK5E8e7/oi77o6T/xJ/7Ek5DDl2/7tm87v3PnjgG88Y1vPD74mb/zd/7Onc/4jM+4+v7v//7dj/3Yj+1/9ut92qd92uWLeb0Xsz71Uz/19HPf84d+6Ifmn/ueH43rxUt9I1kzHkYJxTFC1o2OawxNqYJ4QYcSOnITCEFoG+ituA4oa07eYhCkpw3F8SWnlUjeIyZPEXVPH0IT+NjHPoZJ/xkxjKk6x9FwDY59IfoVKg2hMkXQitNkMDbwVqaWnjJmlCi0uqfInAagsTLMWUZOFaRMqAXSO+7Kqg4yiOoEJ0YXfM4DPSzYS4IPCeVkhteC6C49JwSaJfDuYYg5UxG0wogjQ4WQjE2ffEJVkSVw7xlIoAXXQdgJwWml4NrQjfCsrvgYFNUNEG0AQB0JzbAEnRkPpiJRKKGoD1QuYArCBWMC2SEhGI4Uh3gw1VRWj5RD4AwJplKpprSo1Jipmk2OaVJEZ4ZUNAb7dUFHUGmMsVJ2ByKE7nkA5OQvKOWQnjNWk4Lt6TsjxYEO3in18IJfikhhdOPyrrKP17Ksr8L8iiqOlbv00iklkOmETXAchS7Gqk8z1JjsJjomtFSYDHzh3jPPELsDz773CQxY1s5ZmyimnE4dmzSnhW6YgWhjDOcq7rKfK7s24aszxUxwD5nvpuxzfYTogz6e46h3OZf95hGUxsXDTwgVQlOCIymjEtKceyUYBBOSXjQEaEpFRjw4HAWzgZhRJL2gTsNQnyhRqDQ0OuIzwztT7agZxSq93yDkhJQjac7eGF6o+5lhQR8dCdveRzd/FsWj4Zp+TQdZOZaVpSo3yjmqaQ4eCGITVSZWu+T22ZE9jphzPF0gNRAFimHV6H4iYjDrQ0hpeCh9KZiAtEG1SkU3r5cgxBjFQVMiTCy4XIGueMxE3EB7o8qJIgNB6VFwEaoe6VuSHYBG+mE1h9CRqWIyASVNweMCdUViQpjpBoOZJhNRIwHu5rmkbrk3pqYHc9+S7AqTBs0WiIkSmsVaDEQappaT8c0vRyzNiF0TVGVNs00vI/CysjIom7x4YHQ6O62oKyMcDThdHbm4fxePTDIrkol4S9zFdwfqmbPeg7PdTc73ZzwnM4TBPYdTZyz3YAzWezPPPwu04Kfufi939g9xezrjzvmOs7OJ3fkBzu7grmgY89TYP3TO5Mpt9rzCgrsXJ8blFev9S55fLjkdB8SE07Cw9JKpDS3BYNBXY187TZ5GQ9jLLcxvMvoOk6DEyiQLNYyFmtIuj/QlKnUzsQejM8Q2nUhhyI6mEzqC4jCqUlypTJmcLY75ZoIfkPosT7ZmDCQc95ETYq2I74lwwgYhkhNvVYi2DZwV9YqaUItTZGFYz0NYAIsXps1dskR5cP+wsTkayTaV0CxZt2KGjTMBCdDSQPvao+alsj6i+EkHHldb0M/jAIRf46dr/PTSx0+cHjhenpBpY0FyRozbHzR+Wkhv4kb2t4Pg0978Cbz2NS/joYezofabftMv55Wv/AT+u6/+rQCM5WF6z/rQTr+MYkHUZ2n6TrqBxOup+nZaDE7Lx2N+EykLw4zQipkic8N8oa8DLe9Fyl0iHsHtlVDehkdjsddxuvcIk3RCT5gEs+7ZV2dXgkOccePwT9m1E5enO5zv4M7u7TDg6bsfi5RbiZ/EkRoMXzge079+WT+B2/J2+lJ47vg6dvsnUM+GmI4ZHXtCDJPtnJAjcO8F/GSybN87Mbl8iPHThHvqJAQhCrzlt34qn/0577P8+vzf+SYAvvUfvQ2PPItXrzzx9Mfz+KM/zFT8w4Kf2q338Nmf9ddQr4wR1/jpGj9dL+C9733vdHZ29qt+9tf+9J/+0+/8wi/8wqf/1t/6W4/8yT/5J1/1tV/7tS8/HA723ve+d7q4uChf8zVf89NvfvObj294wxvWt7zlLc9/27d92+2//Jf/8mPf8i3fcvuJJ56YWmth9kJkJW94wxvWF/N6L+b3/eRP/uTlsz7rs57/J//kn7zfe5ZS0v/1o3i9eKmvGrAl7ogQDloK4p6x15obuKhuZqMgUTBXimaSVE4/BZcpY8TRF5oY7isuHY2znEIDHgV0h+oJZeZsd5uHbr+cZ+8uVJ85+bvTLLakoX74zBg5OQjriAeHXeFy3EMmaA6TlZQDas3DZKwpEywFnRQzIwKmOjPXfcpT7IjxgMreERHmkVTydTjedPOhMZo3wgKkUShphhoORVlHUuEzmUhRbUhpYJUSmVY3qTBsQSWn6KfemUrG13dbuVpXouwpFKoUVMuWfqUcR0O1QVmTEj2Cqc6cWWVlZqAsKF2VkILaPqcumvwgqSdU0tshQmk0mhYGyhqBljmBra+YJpW8LwuvfsVjPHL7IQCuLi6R3cs4UOmahsDVDWxB4ibDGiE5VVKpsB3Sc5ky5l3XZDMwksngDYcMbRCjlh3dhBE7SglaG5TpnSz1jGM3wo9UBCuNmGemxTisTi0FadC1sa6N5ob2SyoFfEZs4pn793jq+Uu8nhNyxa3bZ/ixsS5OiG1m6Mnc8pGuI1UhuCJk4CRjQ+Uc4nHcnsR4EuoF4jvMC6XcwUfQpCSjw5yQHeiChyUjQdgSuEDLTGwgJbRAUZxkQUg4eE6zQ/Lp1GiU2DG8YOMC9573ZVGGC+oz1QvqCz56+gPunyRMEFPcCkXS72PtKx5C0R0qbTO8zQJsjU5U4dahZqLemJKNokemquhwdqWlOXLMDA7sDgLlKa6WYIo7KSurKXnzMMT7C6ltsCR7JRT3gssEUTEVRiiVA+aDXo6YroCnxCkUp+UkMs6Y4yaTVIZd4nKf0EzaRSZWH5gYRQYtZpQDajsmeYYRK1ECl4H4DdR2lHKilIIzMTRZJeiObgulRBaHqkgI7k5rgrsyekF0ok2C2Ykr70gRRIKqKd1Gs3GIpIdORYmRohthSwvcWAayGeb3UKZYqZGGy7iwBJTaIIJwS1mhKFfrSmk1RTxNuCvGfp7QtfLo4VXciEc5+nPIfKKMwcdMt6i7id2dikwn5rjFOgyfgrv373L3+ae4+Z7GuAfPyOC9TzyNnk3I2Y7bu3fy2J0zHrpxCxsHRGdUZ5TK2e5AnZ3y8ArDuezO5Wnl+PyR+/fusZNK8YGuAxkrUY7M7UDVYMiC6Q6d7rBXZYpI8FiEsT0XwpZ0GTwQ/GSx4jPmBk3QZqy+0nUwl5k2KuE1/X0CtEygmaoXQLilfxiZ/Oj1eVBHS9vS8xolJoZbPgMYSBa5RQrdl/SAlCwYSjjFc78opNdMRLKRYMPIkmwV2UAppHRl861Pg3mBKMlgKS4bo4Ft73TEX/zxfr0+zOsjiJ8KwgghosDWUFLiGj/9ksBPF9zayUcxftoCG+NRwp/N/6zvIerTHzx+ipJCUlWQZAJ94e/8dXzh57/5hcfzD/3+zwLgv/vqFZi4eO5LXvi3e899NQDz/n/m4Tt/GB2P8PRT/4SH7nwB0/RdXI7P5Xjvqz7g439256uYz/5HTpe/hXvP/VluPPYxRBWWp/8bnnziV37An/2Uj/uD3Dj8AO96z3/K0zFx/trfjfJKfvinv/kD/tyPvfOP8NjLvhn3wr/4kb/BJ7zqr/KJL/sH/PpP/CrOds9iPtPLEd98/yQygOEBfopIO60zucFkNz60+GlUQiuIYH6BavDn/tw/4s/9uX+cB2AERbOR454qilJnjqdz/t4/+i/4gt/xlbzsoXd8WPBTcOCZi5dx+/xJaolr/HSNn67XB1hf//Vf//bXv/71x2/4hm945O1vf/tumqby+OOPr5/+6Z9+73M+53PuP/i+b/iGb/jpL/3SL331d3zHd9y6vLwsf/yP//F3fdM3fdMjb33rWw+73c7/XV/vxawH7/md3/mdty8uLsof+2N/7D3f8i3fcvt7vud7zj+U1+CX2nrxUt9xRdEzYMZNiQEtKl6hjzVHyhLJbsFQayCSgDSukibv5DRuexxVUldf5cDap9Tuu2QUe/4LfRwpUTEN6g7Ob+156vln0bawtwpjIcxQVdZIkVt4ZZIdIi0PAQmqBd1WQPGYGSu4baBVtiGGnMAWSpSM9xYnqiFq1KiENJbu6FZY23a4HaMjJSeP+/1E72sGMLCDEAaWk3vtdDFOEqgohcY8oNhKaQULZ4mcgikF9SBKgsZlCB3BpkzCcoOpTfT/P3v/Hrtdlt11Yp+19t7nPJff5b3Urau63Rd32912N8aGMZKVmUy4RGI8dg/jBBCe0cSExBgzmgTikQyZDraFRkTRmDEoIkhjkgjZBIwDwWFIMIJkYjljjxkM7Uu73bjd7ktVV72X3+15zjl7r7Xyxz5vmYmALsBdfu3+7Var9FY973M9Z+/v3mt9P982AY1pPrDkQmgXuJuUyKJENI5UGk9AqBA4ywKwQSOhYqg6RAegCk4JZUwjmGEYWTKkgUOdGQBrwSxCqwf+jd/6G7l+9BgA8wI54REUL7RsVFEWh600mlQ8lKT6yxBmVcx6wl9o72QQnVAEMwdJZNkSzZB0WDu7gjYfGGQhTBgtcSzKLJUUMykGvJ0zxQ2DJpruuI6R3O4Qy4SUhBVjsWC01BNYa6IkAa0QGTlmvHWGioyCJKPVmZw3nZcjPWMxrLPsJGekBIveoPkGt0z2e5hXmkoHuzehxoLLQritVoiM1wRWSHnT4+ltYpCAOJLCCQpEr0qJlvWwrJKJNXURJByV1FMEfYPEgvnM5MFGxg4pjm6zaC1T7cBSjCXO+oIqDY2lHyaGIbGQZIvKBjfHY6akxKCCR2EhMWQl+Q0RwU4KOxdKyVShMzLazJgr7o8QWwjvNhwphjVY1EgxMIqQpFL0iXEsumQTpabAmPEIFu/CfhgGluy0tJAVxJxC7TbaSFgoGxKDLRCViuBpQ5ZK8oz4apNLSo7GwEj4lrkmopzS3NeNiDGok+VIc6MmwXXCbGIjheI7sNI3YVZJSUCU6or7gJl3ax9HPAJz+oaVGdHDytPJNBQjSLHpvJMQqjslF0SChQdoHlDPJBv7QawHprralBaEAckDoYpJ7RV6X5hcefnyMSYVD6fKhiIjyZUkSj4p1K3x9rNz3vqWHZFGPI0MpbDJ69SeNshmoTm0OnJ185BPfeJlPvPoETfXR9prD/Gba3yuXGnw4LOf5c7+AWU8ZXd2n/PTgf1+ZGTBaIQk0iazL4Vhd5f9nRueX/bMc+XmOHO8mJlujAfxgKTBwkR4Ac9cL5dcMHM/nTFK4dAaTRM5jaAVM6i22v7aQspCKrk7ScKggTVB2RAR1NK7ZrP1eWvRCuE0awxSEDeS+sosKkRSKoa7Mkjq9yur7UVANYEIaa0sj+R+sO6908aF1W7kPYW59wgRAqbd5pDoc7dZ6/NDJDQppo6aE9TOcaSzPzOCkzp7TBpZU+/+uh1PxXgz9VOfY3a4LGtYGpgv5I3f6qenVD999tHN+jsNX9j6KfeumyVd4NaLgOLDv5J+Us8kHCJwEZDMf/Rt389/9Ef/IhIV7xQSJIKzZz7A5Wt/mJPzH2CaC236INuzb2W7/SSRHtM0kcqRe/e/nuBnOCRD9z/Ayfj/IbkhUUHXYqZUYER1APkUZsZm8/9k9/w/xLTrp+fe+p9wpjvyWggAI+dCc+vz+fEez57/NzS94otf+pMEhqDk8Zqvet/vomoPTCgiJDmSO6ySFE4pzrDqp69+/zdS8isgD3n27v8VxoHjqp+eBP3maAzir+un/CRksc1U/5XVT5M/ROJADkU8enCcG6r9oK0ZhJTX2dXd9yJsNo/5d7/uj3Pvzic+b/rpwYN38H/5gT/B7/mGb+f5e79wq59u9dMX9PixH/uxj3yux3zoQx/67Ic+9KHP/vMec3FxoT/wAz/wC7vdLgB+6qd+avzO7/zOtwF84AMfODx5XErpcz7fpz71qX/0Rt7n888/b3/rb/2tf/xP/rs/8Sf+xCuf6/P8eh9v/OAvVsim2+sn5x3d4qstpfv8oYOpZY0jt+QrV0G7+AEahqrg4gjKYnMHgHqnSjzp+0z05LKmgczB+f6M8+fPWD75KcZ2yrYaixo1GZUF8cquzaR0TqsGFlTr1fCcR5BCiycsm5nmvToqlpElSDmh7LpwbAI0WgY3JUkGlCGBVaOmhVYnwoJUetJQtC7yepJQAgtKc6gNG6XHohOkHj+EeAPNq10mcOspShKBRH8M3hO7JDq8dXHvDDQBsxl5EmfPhsyCUKAFidRb3z3jeuifO+iPt/6emgz9M6eEEoj1lm2hIeLMS6O2mVIKSpBbJWlljGBMhaurmS977wd44Zm3017uCdvJBgYrWDv2ylANlmXC/AlgujKUTU8sk155ixAqQdDWdCZdeSEr/DyUJo6Jk0IoFFINymI8u7+D60CxDRtpZILmSwce5wuiVtK4IxVj0IWDOCWNuDcYCtE6/UEDzJx5qUg0kKD5hObCkIURhWUgx8nKg7im+YGURzwK4hvERtQbeOfxpRjBthA3wA2hl6QUuMXKk/DOtdDW7Q+Su5ithob1qPly1n8z79VYieBJ6hE+E66EdHiv0FO0mh9XaK3jZrjNuAuD7mji1OjXKVrIUsjWCGtrB3+iyYJR++eMire1HT7a2vHXrQRJG8KCuXK4NtQSGwmGU6GkBSkGsrBY4KoomcwZ4RVplVGC0rY9hRJHJIO1NaFtRCKhAYmGRF/oJxcGHQhLkHaoQyxBYovHgmRH04xSgQnTQpiTkiIMsPRUuYSQxAkd1gO5hRAjjZmaSn+vFhATmzRDOmLRoeatJpIPbIe+MU5lYLHauX/BaiPrYtakVz3xioYzSCYxYG2DqCMREOuGUiBSBZyIuhZBOvMwlW5bbrYnQiAfqPkxYzyHeeckaWpY3KDijL6nWK+i3szB1dVCY4/IkW2ZCU9I7BG2zDcZkRPSSecWzhbosIPcu3/E+2ZT2FBbxT0Yhw3ve9c7eF9+D+5QL6959VMf56Mf/TCfeK0yWeLhwwmxG7YbeCCV2MH955/hvBTun+5ImtiOe1yMRmEYn2feLGz3QXomMU2Pec6e4+LihtYOXD+eER/YtMD9grr0roRRCy5CjX4fqyhZnSRQRBgbEEcCyJo6g9OEpJnBExENb23dxBeUgRZODYDSK9fhfQ1jYBfBHJXWWmcISUeUZ/ocq4DUhnivmU+pV801lX4Pi9P9WbHaTPrdG9Hnjb5lsvWz9P53EQdXxBIpBFFfOUUJdekcy5yx1fLkdHj67Xg6xpupn2Ltfcihq0kYWILz7emtfnpK9dO8/CJ/4H/yvYhffEHrJ/GVi+uJtDJy1bco/i+vn/xe12FUenL2k5uyB05EPGk2cTT1hhJNnyGlPQ0Q/SlS/nlK3tHcaXID5R8i4WTZcxKfJeQVNAHJaLLQopIFIjZIDP0e9oboq4h8BtWun8bx59gkZb4yYun66fR0JIZVP22X1y3Nm/HTZMmEbVFmntn/A9xX/STdbZGjkciEn1HKQngm0bi3+3DXT+2fop/qaf86rCd9v66fpH8XxmNSevwrqp+GNnb2p4MOmeYNlbzWPnrhF9E1IK8HQ4g3Sqo8f/cVCor47vOin0S6xXz0QvZ8q59u9dPt+BUY3/d933f3u7/7u9/y5V/+5QcR4Sd+4idO5nmW+/fvt2/7tm/75x4a3o5f2fGGD/6yrDD/kG4wkY7VdGsrtHMVrkGvnERgHkRRLIA1ZQg3vDZSTn2Sl8Cs9irwKohNn7xqt5UMGXwYCZwvfvaUX8jBzdSYGAHt9ka6MMxlpJlTBqHVyuIdLmzWG4Mdw2PuIso7s6LkRKhxPfe0tDxsEbqQNCuEaK9KtAM5NZrdAGekyD10QbUzRcqOtLQVei1YtJ4mljJjkp70ab62UAsqypITM9HTiLTzoL12y6CvlV+idz8J9IV6ZcSE19UakcmlAIJXY5dGcs7MrRFJevU8dz6bW9BaI6uQZAJmJLy3cYuSpAPECUHzQMkDJUFuRsKoltDoh0CbTfCuL3mBB1cvc58CQElGxKHbNHUFpEpPbhLp14tRCdWV51jWjU63CFnEKhqDLELS/nc8HCuwWHDjxigCm8z+2TtY65uR5DB4IXECsiU8U9oej0LKPf3tgTtWNuhc2ZuQSRxr5UoakgdcV25O9O6CwDhPmc0qpkUzhuEcqV4R7yKnQ9k7r04S/dBPF8wvCF/ANoid4emXiMiI7DpfwvsGT3lMThuCnj6YdMDzdm0/r6hGtzxZw90ISr8W1gqzqqA4eLeDhTdE+vOAklXweSaS42uKlrRMmEI6dlA4mRQjEbl3MAjd3rsmO6r0A0f3jNWEFmWQjJA5zDNzg4xxsAO7HGzGxDafoxJEOvTDNzU89cUZlMEbkWAORzz13yyXbhJwxUPxGAjpViUbr7Bs3ZKQO0De29Ltbv8EO0RMMRuBLURFZerXmDjCkRQTvXtFMQfre+5+H9YFrzDoBjwxLxs0bWn5SCYxRGaTtwxpi1uh6QTSQcFYgOa1KydQpX93CENKxNJFLE+SO2UF4UtPuutb9W47SEUJ+kZ1O79IlUZjQqWCO1AQuQE6A/JJ4h7eu2NcAi1Cu57I4cwuJD1D6kDKDU9X5I2RTyZ2J8KYQHJilweaJOZ5Io89uAR3VAqbpP16LAMpglT6vTbcfxu7u89wI8rp3YccHr9GPT4mlgVbbhCpXF3PXN0khrbh/M5n2J0pJ+fvZJvvsB8TZb/gydGygDnn+3NObeaZkz2a7nB5eQE+wazc9T3hI4dUcFfy5GxKAu0pbdYMq0YqaRWAJ3jQE+IlaHHTw3LsDkZGvKct9yCWPkcPSO8agt591adiWjVCnaSB9l4RXITkuUtQEZobKp0t1WRAxQmpmDXUV0seICR0hWA/2Y8qvbKtdOGqIdgagNCUlUFmuHYwu3o/MBdivf4DV8O9/ovqgdvxeRpvqn4S1k6YhERfl7VsCA63+ukp1U/DILztxU/y+MGRCL5w9dPaZKYMiC5ougauoJV/Jf0k2jUAHIno17I86WDSHgzQj4+eMAZ/me+VtPyq6Cf0bXz64X/Iu5/7P5C3H3vD+ulm/g38vX/0l/k3PvB7ONt/5HPrJ7/s7ysqNabX9ZPXfvDaYgT3X2H9dE6RDbVmXI9A7od43rt5ASISLdZDdRIRI3Xa8/d+5N/na37TD3B6/urnRz8tq2VUFrTYrX661U+341dgfMVXfMXxbW972/yTP/mT++PxqM8880z72q/92kd/8k/+yU+/4x3vuP2y38TxxsM9zNF1U63iry+MEiAuKx+in74Thsu41p0rPbVOqJ7REFLUtYMpEAnCO+TTNVOb9cUYsFBmF3SBAaj1yPj8CfUuLDKxzEufBMwQ72lbVbuNo1ahRcYBiwQmXYARNDdEnJxKZxOEscgCY0AKms5QJ8Qbms9RHfAQtIxYPZBUUVOybGgCszdaNDKZotor1gKw0HTBybSVX5JE6RITpPddEawFjLVdubcyO02EFk5CenVMwKU/ZvHGmHpFaxi6qHY5gAy0GDDLGAl3KKlXQ8wcIhECmoIIIzSw1IHTgSKilIASTs8SNGprncuaoWZDZOBmqZCVazOOUViic4g0VywuyXlDNWVMTrOF1hrNjKFsyJJpthC6phoK6yFJ9HZ0AA1cK6oFt4S0YCswxzXEQ0hDT+7LGzQN1EgYFcQQX2AWTvM5MzO1BJGEFD1r7OiBZqXlnhLlZmzLgOZVwJM6eHiqhCRaKywJXGfCD1goprt+3YQwJkGzo6ViTN0+EJtuZ/KZZhN49FS1vKzpuw1/cvuFEz50C68KFhVPDU8D2ERz68lwFES0pwZSWHUSIQmQNTXWSFq61YZA2CDS1mOo2u9f6PfrOhYKnoyQvrnAFMyJPBDRmXWIryLWO5Q9FrZlw2aALBXdVjgseD3yaDIuNhlpiVNdONFM2TbGLbjV/rljR0ojSS9wWk+hjZEkhVI2hL6CeyIoQOqdJRqEnIEWwllhvN2WjIMhNJMuBkIR2eIyduSRtc7+0W6pi0iE7TBWvmAnIWHR2LcN6IKmm24N0LK+5w0egYowtyOkIG3OMF8ouRDV0NQ7XUSVZW6gA1K0g6lbkDyjCk0cyEQ4WZWIgfBhPUC0/sPKapdT5UquqbIQUhkxSvTM4JQPRMrMJpgpWcb+Xah0uDaF66uZLPtus9pVSA2VgWojEnv25bxXo4EwI1SZDHLacagNlQ5CFk+U3DlNRGYrO2xeWOIRD2/g05+5Yprvs71zQjl/jtqORFs4Hq65OFwQxwWxwGfjwUPh4cNLNP0c4+Yu41Z4/pkT9qVyuj+hnJxTxUhrl02NA8NpogxnLPOEi/L4+oqtLezGHZETVYWSBuZmzDgtBUsY2zKyya1fJh4s0a8dzQVPI+1JAEFyQhY8GiUKQ+TeRaTxur0yotEUqjdKdtQM924b7Juj6LNmCixL36BF78jt9kVdN/JO9JhRXHp3w5O2BZGVtWRrJZveHpZVyeFIONX7ypHI3e6vgssC0tfOCFC5rVg/LePN1E+iCbTQHOqa6qt+q5+eZv308OIef//HfxNf9YH/kt34yhesfhrLf8uXfMX72e/vgh5531d/ObVNuG/+pfWTeYOYIDIRI9H7L+nuXyNQEBBviBw5u/dfIDohnPevUrZdb73J+qku7+Szj/9d7mz/T9xJb1w/DfsHfOWXfQtl/xFqOfK59NPp7mP8jq/51ynDa1Qrv6yftJDTdT9NXxN8f6X0U/VLUnkNl5eoyxbVRFgPIutfumJzT8tW7ZpDCEScn/nYf5/f8IH/kh0PPy/6Sdeu00aiMt7qp1v9dDt+BcYHP/jBqw9+8IM/+6v9Pm7Hv8DBX2Ugqaw8Bl/b4wVS4knEfb9lO8hX0oGUC9F2aCjOgsl1T9RhxAAkMK+EJmYzNCljzowrW8IdUhrJy4KnGbfG/eEez+7uc/HgZcS6DcYlkJR7klxYn4Ci/zsRelVIGuYK3tuD3YWUOvjeo4NGVQVHqN6TUcsQLPUVRM5IwznuQi4b6rEyzwtjGfqEo91WmUJYsiJtjbWn0cRYIli0VxZHpHPOrE88nWXchZSHY+gKzxVI0nkhvsaYE7gCCZbJwDObzQ6zCcVQe4GQTMWBhZQDtQXxnpBkEaSsK+RW0NbXdFWlhBOe0ShdpBCvw00lBc0b2MwmpCfg5Q3VGud6TrkZWPcXxFpZJzogNeWRlHuVfZkr27ztViDZA05ITy/sSXMDkqYuZGWLhXZRl26I1hDboLbvG5V2CizQGhKFIGGpYiWI5kRqzHnB2quUyEg9IWpwTEF2RxRacqo7eSxstEBTWmuIgosxxIRLozXHLLHZFsy6bWuZo6NlPUjJEeZeOYqKS4+e1xgI24EnVPtdZJJX8Ho/rNK16jTXASej0vpCKUYWoedQrYdJ9BCLXpt2QvLagQHmneuSwrt4z6V3lUWhtcDbxHbIXYQ2+kVET7gqCAzSd6GegQH3AUTQJKsldenCG10vzcTJ7pSE476gY2O+WShs0AoeA7MK0zjyyIKTCuUI++2O3bZ0e0A90lLGfEG1J9C6OossjLmL5A5u7olivQq3Y3GjiOJt6e9NhGDpFb1Q1AqFAdjgdO9A8g2Os0jfYCq7fjimRjCTtMOfFaM5RFopIqEUKUQTihia6Js5b+yGguqCWObq8US0TpdyEdI4EGZkFTQNPb1OpHdoeFltLErEgdAJ1YTEgCMk7VVPSQOLLwSVURuhG2qcMvlAjd5ZWubjOsd5n5el4sUwa+S0wSIx1cZslUmPqDZGlOSnaNowDsrZToj6GNcRM6fOjcWVJsomC2YLwZFWEyVB2A20wicdpMKyGJ43XE8Tx3rBdsg0LVSFYbPhdNwznD9LLhueu3sXsQsevfIqjz49cfnw09TjBfNceHhT2ZQdZ9tHSPrH3Lt3l5fuvpNwoQxHhpRJ0qvCR1rvfrox5qulh8RshLvDnqGM2FzBYbM56ZbnOCJJMXLf+OnYK9UtGKzS+ZmF0C7SVWCxzsxM0O1A3jtwJBJKBl96twOKSOoLlvauJEk9XEXESZ7WirT3arR2do2E9MN7W8UrHagd6v1gI/XOJnOnWaXQuZXdDpq6zVxAwmnumC+ICioD6t5ZObfjqRhvpn5SV1p1TIS3vvWaP/WffC8n5ze3+ukp1k9THfmFj7+HL/+Sv8d+5FY//UrqJ3U0PSbsDj3oQ4DSMSndqNxD2Va9oeUVkIxox041U47H9qbrp8l6qvArLbNcljesn2J4wEtv+b/335/yufVTMsb0Sez/Tz+dn/4iv+O3/psgM7RfWf0UeuBd7/yb3Lv3InNNTIflv6ufhrKmemfSdsBoJBEuXn0HP/YPfzd4xj1/XvSTlc5FDTFa+K1+utVPt+N2/Loab7zjL206xFkMD+/JZQIavRYj0W8opHaPva2JlX5Eo5NnqjRMClkVNyOpdPaXKN46ZNNrQ1uvhqsH1SvXJ8HYDJZgN97jPS+8m1d+5pNU7rKUYMqOkUluDLNyjKW3/aeBGkdKNpbpkvokNVQTVh1S94aIJ/JazVARRnqiXPIZcsF0xEIYxkydrmgywW7oVr0AxVEPvAZ1X8CNbEbWLspSEYoo6rAJpYSCKDkry9rOrNpZIx6OhfSJtK3WUdF10luT8GLple+8Y5krSQdCoPkljQLDgKZu1UkIROcDhSTMGst8JJfAS0OHQKNXyBKNQbRDdaMDVSOk23+K0lwZ9JRIW2Zv3UYYM+jCsAYPUnMPPODImJ35MFHKniyd05DyQGLoFbDe7oAxd/sGCp5XiO5CV7CpV9eSMovR0sxcLplk7Ey1rOTlGiSxRONggI8kG9mLcNyBbR3yyMn+Ge5cJY6lIdUZLBhQ0nbDYanokzQ/uq1ItjuqG0UDdUOj4NWQlIAjJWUGIEdFTXtXhGx7e7kUNA3rYY+9bkkIu0fyzmwhFLVEOKTREAvUleQj6pBqJgbvFhFT/AlUmdLtJlHxEFpbhasOqBpIw2zmcGx94wiY9EphCmGIjGqiKVgYQ9yDcoXJEdOGJJA0Y3ECwcrvgeork84Hxs0pJ8PziB8RDgwj1PgMTqWlhKYAlH0zvN3weDDSoXA8KrvcdfLZyYY2GkmhKGQBS/2QP8cpEtoPNx2CI84EsoB0i1lYF+1JBPcRolu73FsXonJB9USWPR4J1yNNrggqSYUW9IqiC2EFtHTG4TAxmYKeoAFixpCCwTJmC4s3kMx+cw+bEq0Kr718zVg2/Z72RpSF5BWNG/J+w2a/YdxuwRKtGaU4ERmi81KUgSEGtDTCG0vr97uT0ZSocwfrD2qI3zASDO5c54XmSpINInvqurNNdkUuI4dZORzgODlsd6QyspWRaLWzqZrgx8RnPv6IC7smSeZt73o3xwq1zlw+fsTl9ZFmF8zHingj7AapW+p+g1/PaBPu3rtPVuHUjMUbRxfaatspAUky2/GUt77ji9icDDRXbq6vePTgZV7+1Kd58NqrPHzwMo8ef5rpZgflHr/0GH4m/zR3d8qL955jtxHK/oAOp2zsiG0SE8FAYtMS/mjm5e1lt0GKsskDvkycpB5WoFGwMJr1DU+oE7n35VRTLFJn8aTcixciPc0yuoXeVnthrlBSJgIi9X3g4sK2dMErFuSgH5LEE+KarK1JvSXJvXPPkiqtH0+/vlEMnIgFt74+hQaSnRDlWK0nqmqm0VP5MpDTABhJE+IZ99bF9O14KsabqZ8ymUJnClqakbc6rbVb/fQU66cX3/oa/9P/4M/Srm7IX8D6yev7+Mwnvot3ftl3IjrysQ9/Fy+86w+z2f/sv7R+ymlhf/5/Q22HeMEoxOv6KWjrwV9RR+0uN4+/gd3ZX+U4z6Rxg8cDFn/z9ZOt1fSoNzwu129YPx3thM98+g/z4vN/k2G8+Jz6aZ7exk9+9H/Fe9/z3ej2l940/XR+sqfEEQvl6uFrq34qXT9ZInmlhpHp+mm/3XJT+t4wifV1+fOgnzzu9NdgZJ7zrX661U+343b8uhpvPLamzagmStADA2AN6+4t8hqBpox5Z1YgFbeFQm9tt0hE7FECtQOY9RZoURpKlgJitCwc0/q8OjPEFeMxE7rvbeb2kBeeT5ze33J5Xai+IG54c2gDqqc0rlioZFnIMeHTzBAGIms6kEIzJC3oZmA268ljalArY4xk2dFi6C3/OrJPW4oFNTZMYcx1QpKiLRE+EiljwOYwEGmh6cySlRwbpCrbXBDzFbQcvZq0dFZLHraYBaoJD6ekobcqxwKRMF+5CS6Mmhhy6pNuRw/TqbYgMrNJylIXkveEpLAj6Ka/TgSDOOMoRBqYWmGDgE1oziwm+JBp7bi2Rg9oykzNqAQlKRZGrQtD3sJx4Zl7d7maH/ECU//NIkEMED3RbaNKqQmOR4bdltYqOmQmGplC8i3iMGCUlJgQjGMXkbYltx3iMyOdIzKy4WI+kGrnyZgXmjRO2bAzY8tIywvFGxrCtd/hLsoy3bCkicINtCDyKS0L+BUuC3mzRWVgsSNhR1KbiWh0RFJisERUY7Au6LeMVKuEHkmuqJ4zLadsxgGNI1MNPCaOzATKECMJoc3BoEL4sYdvRAF2lLmzJ1wWqlVyTrS0rJsiaBa49HZ6WJDogHIJJSFEglDHaX2jGEHOE0udaZ5JKTPJgvkN51GQ2HPtELGQU4W5opEZ0thtxdGrbi0qJl2ABYWRAQnnmfvCUC6hZRYXZguIEbeZsErJQpItzRdqNNKyY6MHmt/w6jyQZeSiTuTkPLM7ITC2p8EUEwwF0iUaSvgOjz0eWyyv4RhWGaRDxC2G3t0gA+ELOWo/UPOMMDGwICJU7faUsZ6i2i0JObynIaZuvPOY0UjkWiitYXJDHsZufXPtzDztm3BzxXWDBWwH2G8yh8MMAWOBaBNzzlxHIh8WpFU208xue0ZLFZcDHiO5nOGyY2mVIXWYvUliycpRO+ek1N6V435kzA3XhTRsO4DftyQfIA3MzJAmdu6QB66acwiYDpecayJqJo1bDr4waDAMW8q4Y6nXfOxjH2aqiXe87e28sNuxsHBA2N95nt3jhelwl/nqwPHihjqfgDl284AxCyRnvzthOdSe2BiV0TLbvMdtRkdlWiqxMSaC0hJFgxfv3eWF83t88Tvfx9XxwMNXH/LaK6/w8mc+yaPHr8J8xfFwSbLE1as3bLZBOYXh5IyTYeCFs+cZhg2+yUwalFA2x11fmaSxyA03cs20n0hM7DYnbMctSRdqa0ycMmw2VGnMsVCS0vtBAiqdPSUT2Z3ceqW5cYBkhAcqI5J3hDdUenVa6fdgdUHKhhqyMnIcjW63RxKhsDRjGJSwSlb6IYfkzokMQaSweGAaa4dYo6hALP06VQUvaxXfKF6Q5kTMhDp2q1ufnvEm6qcanZ2k0bh4dc9f+xu/g3/ngz/O/fuPb/XTU6qfTvYj19NEigToF6x+SrplM36cxSuhNwzn/xU1HSj/ivrJY8HTAXIGOhJFgPDesRfa9VOb7nDz+HexPf1Bxs3PIvEf94Jr/GroJ7gBljDGZfuG9dPsz/Phn/+PuX/+/2KTX/mc+sljpNo5zTM799f10/XNS/y3H/7P+aoP/FF2Jz//VOinwRsALhc4jz8v+mmQxwAcrHdm3+qnW/10O27Hr6fxhg/+Bu8BAscV6JxCGWej5tWW4Q1ao0jG3UkD1BY0T0gaqBZEypAS1ROKkyQIaTTqKsSetM+vVl8SzkBooUZPLRuHgc3ZXXzYEkWwKVCUGsYsCxVY0kzK3caQfYfPW5I46Aw54ZbYpA0RlbwkkgRLrlQ7UNQRq3hUStlROKGJkGSt1viMxUIqQphRUkGl0BoEiuZMbQtpLMxtAa0gijUlkyA6QNRZyHSwtHljrg1ytwGllNFQsBEPOgRVepqRecNsheiakXVEtC+umivVHJUNsLJdKLjMOA1IqDXceyU8abedWFsrKJqBgqK9iqfaHTUKea3iSBh4ZdCBshP2m8rRDsjcYatNK1Wtc3xIzHHDmAomCUOptZJLBzxr7jByxImUehKUN7oi69VOkVir+b07wtrSYb8KmqXDot36tYSTxGnS8CQwbFhat2oEA2z2zOMNKQ6E0kHAsUOYMYfiTiYRuu0dD+bsXLF+gfe6Uoq1qyBoEpALrVbicCBtR+Yx8JgpAiZOIzrs2kE9oVzRJNPUUVE0RlJsCVloHt2uI2DWSL2G3/Mi0LUrpLNleo5Eh+jqmmpozTFY0x4D9aDQ788UYLGh5V4pn0KYMYqkNXGr/2+2yhICGNiRiIZFo2xGRBJpcc5PNmzHzn2SlsgoQyyUMNQNZ6DIlv2d4GY6ovMpMSsH2SI+kEIxhUsqI5nj8UAJZW+JkZF79RTb901BpCOutc8NmjrzUxRPENF/C2lLB0t7JYmQpeAuuA6948N68In4ag0Q7zaVVEAWskwkEtm3SB3xoVGKImYkm8ko2eAmJfBzLATRhaKZMbroHreVaX6I+wwy0pYgS6L4QhlHprlbCKYyMe4Hkt9nMEVmcJloOtNSEGyQaowrSDkGwVOQW9/0twoiO45VwKDm9oRYhEbCozCZkcrClsR8EZgpF3Vic5LZ1iPbCCIFkY154yzbijcoFjxzf0OSA1oXdnngdL/n+f2A+QnTbCwTXF4defDwgscHYzlOLMvCtQg+JkIcVjtjSRUJI7feifLMdsdZyeR1s11JNFEcON2f8+zdF/jit7+b6+sLHjx8hccPX+Pi5c/y8U9/mmtRHi+vMj5+jfLwikfb5/nUyx/h9CRztjvhbPsM++09dP8YF0hli/lAeGKZlMWU62Nlt8mIViQtnN/ZcLy6YFNGihuFnvBZl85qUmkMLmTd0rLgboxSQDIWCypBWw7kLHibIPZoKkikni6pikpCokJ4B8gHmNXeqZoSDuvhTUAoFkqm368QXai6EeGUkrttxvrBvpBwN2pbUB3I+iTdUGiqtNtUuqdmvJn6SSXh6/ppMXCYN0wG861+emr10ysvv8j/8Xv/EP+jr/8zvHD/M1+w+in2n+Dui/8b0gYsO2dv/1NEEybTN0U/pfyzvPAlX4FEYbreoe19ZP0IOeY3XT/l0+DRQxjyjmTlDeunnE/6Z7SM8bn103b4eX7Tb/yf414Rflk/aVq4f/9HUTmipk+Ffrqwvs9wPWeIi8+Lflqsb4vHFOSD3eqnW/10O27Hr6vxL2D1bbTWvfxj3tCWzpUQ7dQxIhAP8NoFxjwyprt4dGuEDAZ6zdIS2J7OglMCA2wF3+bOM+vd3EhkxDOLBC0WtltlmmZOzs+5+8x9PvbyR8l5QCXR0sSsQQyKeGVMI1IVsUtSqogUIm85VMeSUq2yGYTiRmKAJSHuPT2VnjIXJIIAacx1otYFC8fyQJWCaHCsfeHLG7BWKe0MsjMdj0hRfAV3TyUQbH3G3ppsJFIoIj1xSDOd2xNTDyRgXJOFOjg3iRMS1OYgnUeAFKop7h3Im/OASOe6iSqtVYquzBnAvHY2gnnn04QgMuJr50CrAq6UZJ0JEq1Di2Hl/uxQh2W54bkXzmgxMy8T4R2EbFJYpCE2I+6cnyRau8b8HDLY0DjqAfcOy1boDBLpFVuhV22alC6opGLRCBoRDRWhlKBkR7JSa6PZwkxjTnDUjMWmW0CWz5BaY0vh6IEHzG5sNoJUpyxB9oIlx9VYcgdBh0tnSTSF1hOnLLQLVPr30li6vaeNHAAvjZPhwBDXaFSsaedaVIfVhhqeyHGChVCjgjpZDHzm0K4RlZ7yJplweN2qQ9fx7msLu9eVedMXUxEn/AkwPhF+2v+eZzQJ7s5SG70RotAQLDqHaYhEkowTKwvD+zWLQBZsgWG7Z4ogk5CUOL3zLGUI6twrtBCEKcqmt/Pn/nxlGDjJhu4y7XCkRWKZM80EE6FFo+Ujbo0hFeZZGN1pvjDM52z3e8adgzbCnUTvgiA6B6ZJB2rnqCs7KHqSpRruRpPVWhPOEB0wLJJAjYZT60hKqW9qUMQ7N8QOrCIMBhPEjVmc7IlFjrQQ9sN23UJ0UPLpnS0ehYtHjxj9DkVPwEZOBuFmvkBjz8XFzEkaSMNqIdNudyAHRZQWlcmvKdqTMs0WhN49YHIAVao7mgfMDMlAHcieIIxBnMiBZYh2lyGfc3P4DFUMy4HoSJUM2n/rTWwpbUueBiKE2A6cv/Qc6WRk0zYss+ANFg1yTpwOhXQmvPD8jlbP+PTjL+bRqxdcH44s0bieH+BF2S79nj1KECqMouShsNudoGuKYS6KE7gYKWXEgrr0ruGT01P2Z3te+qIXmafHvHuq/ONfuOS1lz/Dcvky08Nr5teuiBPh+njkSq74VBg2HnnP/cq43yF7RzbKdpdRbZRhw3G+YmmXDCnhS+/sUVu4c2pIbkzzBcM4cLI7pa5V49KEJkHLw2rtcWbpgrT3axm4o1HxekDSQM70LipZFzLfEdGZMUIQbVkDGDoTy6VbAkV7Il31lf8WT4DwjQjHmnXelRSMfq8G2r9LyYSCt97FpKS+470dT8V4U/VTgJCQEJ6/f803f8tfo4UzbG7109Oqn9zuUOuWxvAFrZ+yVVp7C2w/iVXlePk+8vhxss5vun6K+h4O13+Tk9PfydL+wZuun3rSNJycZnLMb1g/ZR4DcD1v2fjZ59RPyY3aCqq1M89W/ZTGT/Lu9/zJHlTiT4d+WlaWG9ZA7fOin8btkbe99GF2Zc/Fld3qp1v9dDtux6+r8YYP/g55YYzEpiYGD6oEN8komrFqvcMoQTQnaepJOfWIKIxjotpM+MKgA5EmpFNguhiKjLLGFgQkf8L4Y12xF7J2xkZBSSnzzne8xC/9/Cuo7JmPjdKERRtGovAsTKCt4vWakqG2RrSJMQkHa+SsWFRKzkzTTMoj47An6oSmDv9c6sKGmdDWLR4p0yIzh6CjdzCyQnJBzAggb4zmT5KclMSISCZRV0sPK/dtJHtPKPLUE/pcg/AFMX+9KyCJdQsD/bUkw0CmNUiyVlLFKZsBYgMkEs4SMxLGMEIm0bwXgiHWjoAVfFpBPCMSiDqlDMTi4H1h7WwcSCjhzhwTkjdEwLDZMmzOu73ycLU++xG0oNnImrhkZD+e0dKO401wv+xJFaQI7t2GmSTTXHp1Wnp1NpG6PUKWVegb7jNDGRgGoaTOt1ncyKmwN2dH5eBXXHOElNCTDaYgNTj3wvMWuO1ZFmfyteIsCW2JTRjHIWFVaK3DJ6QpugShjaatg5PFIRopKcMQaGp4QI6EqlC9kKKwiQU16wI0+qZFUqzM7tRDx0QwT53Lw7HfG6FYhawjQdAcEKUJuEavBhLEyr/ABVtPyp+wMDK6Vr+C6tZtwEX7pkekW6ZoDBKMHjTxdYPiuPQFVVWJds3JZsTaTM4JrxMvPPs8JycZ1wt0c4BBCQ/qlWJFmEkMGVQNX87YDXeI/JihjJRl5Hp0HvkMbWaYjWPL5IjOwXFlLsqDPLOJCy4PhTIrm+LsRkdjYaM9xARvGBNSBBmBukd806/p1rlJQsNtQHzsCbeiCJ3nlGiMCEVOoYFFo6kTqZLklLw4JsZ1NlwbW8mcmGOuNISz8z3iTlXH4kjJwvn5juNNYTrOtNo7P6LMTHHgdDOgnjm81tiyYzwXZglmgqKZYkppGUtCxag5YakwuJLnSqFzcUooYorR2Y+SDLT1Cqf1TXEjSHpkVvjs9BqzVVKk3vmQAknRr8lcSHmgqNLMSHthd55oaSankV3u81O1tUvCFkIUV2UYCu96u2LP3+U43efi4Dx4dJfjceKVyxtaW8hWKa1vMG0j6H6Pae4cFYGwiRS968YVrBo5l87RsopoYbt/KzlfcP/LnmX+4ue4vHkrjx9OHB484Jc++xkevfoa86EyqjAvj/ip60DSDZvNwJ2zDef7xJ39AFvYbEbG9TvEJtRew9IpD26U07Md2QeuPnvNpV7iOPuzkXF7CpJo1RhLplmjJUEFvM1oyqDCsDmBm8AR3Bxf1y5VxaXDwkW9b/RSQ1IPCOgbkxVSTz/ksDAsCY71gwYVEOlwbDJZpK8VEt1+GYmWFMIgGjmUQXoHw+14Osabqp+i860IaK5MczBsDJ/nW/301OqnaX32I+jhC1Y/Hecv5eVP/hXe8b5/h8B5+HM/yFve87sYdz/zpuinOr+PR5/6izzzwv8M0s+yOfsf0MonIP0q6Ke6Bzr5ZLN94/rpJioAD49H6qP5c+qn6+UD/Nh//Xf46q/8BsaTn3ldP1kbuLr+ACe7j5PyzVOhny6v+n0yiND086Ofzvef4Xf9W/8pXrZ89NVb/XSrn27H7fj1Nd7wwZ80oUhBVkgtWWneKBZgQkhgyurwz72yJnMXBpFwCtjYO3BogGPS1gVYgW7FIBzpmXWYNEwaKk4zI2vurfkkXnrxWZ7bCY8fXMKaBjao0zwgJqpf02TBVfEYMSqDgrVglzfUZSGXDEvnQCx+QyKQqKQYMHHmVIl05FgnwoNSRlwKkzm7RfFmbHNnm7RmFE80r8y1kcfCvCzkUigKN1aJMBR6y78oqHT+SLPefqydn5M0UyL1Cql0OnBIZ/dg3RYkJJIM62cXWutt4eFOHhPbUjjOC6GKp4HqDaVDVrMGzQ2RjJpStIDOCA2rE8lHoIAHmrq1YLABIZjjQEmKWqMkg2aoF6a5T87FC6VtcQkWSWzGmaiPgQFyY9JGzoUtd9ZqfW+7DoNQQ6ILWSUjtN7RIE6E9KoMhZJGsvRUNrXK7MZBA0uFqZwQdaS0xHB4wA4np8BTcKAyaWOOvmEazUjmzO4c1bDlgM59E2T0gzPRHl9fQ5HcF4Lkmd2wYdxsWIA2T+h87FX9UZiAbduiVJK1lSFkEBVPM8JIcunfiSfMlSK7nmrnmahODIomp1Xr9t0QQgSNhGL9O3M6u8INsvZuCq8EC0X2lALVGrVWKH2zFFIQk9c7TZwuZMF6+p0EZtFZTmVL89If58Fmt+Hk3r3+36Kg6RRr0u1TtfUkySpYOJtNr6KGGcZCiHeRlAdONOPLDiJYbi4RVTwXPAqtOglD5YbMCS0Sx3rkZp4pCcZyzj5v2OXEINu+pYuFHIqY0EQRVRTIpvS0sZ4U6JG6OGh9o2gRiPfNcmgQGngEtIUlSbdZuONmHLSSzTCFpAP74TmSNKoesXBkKQy649l7L/HyK6+y+DXYAa8BZcvlxUJeUyGTnlCj9nRCV6Bb07Jk5npAs2LNMDNCBkrZsXBFIHgkuvrpvMfBOiusSayMlH74K7JluiksN9v+HrQxyszgRmqAFrL2jpAmXfQ8N76FO+kEtYRYJgukNKNjUC2wUjAylcRSg81RGEkMA5ztR55/Zsv19Q33j/e5mA48eviYerUwamY3GlkaHr17yL2L55x7cqiY9W4hAdMedhCq3NhErUdsVlJJDHfvcv/OhmeeeYm3vvv9HK8OfPbll3n44FXG4w1Xjz7FMh05tiNtueazn63koXByAnfubtlsCndOn2E/nlEobDfByTkElQevXXL56IrjzcSrn32VPChf8qXv5Mvf9z7K7IgbodI7j6R3BKlkqsMyg0rGQtB1WQ2Lfi+nvma10PX36XZOpB8+iPWNW/9d1w6lBH2y7+K0l7N7lb95ny9JvTveWkUHJbx2vqfwutXzdjwd483VT9FnCAk+8Zln+d/+Z/8e/8s/8r2864se3OqnW/30VOsnZLUo24j2+FySC9reHP20mGPtBSAYhonmP83S/aG/KvoJwKJiLG9YPz2Z+1sYx2afUz/ZMq7feS9PMFzcAAEAAElEQVQUPNFPy827+fv/4Af5Lb/x6xnO/tFToZ+szutnazRfPi/6yV0xu8sy+a1+utVPt+N2/Lobb/jg73QZwNeWWISwxk4KQyRcYYlGMwdKr8hJwVPnowQdRJ20dyK5C5EqguMqCBkhETFD+OsVOBOjqQGCpkKsoRHLsnDv/j3e+u4v5tMPfw5LhUMoJWdaS+yagp9wsBkZGtUOJDJH7byRFB0I3dpETiMSTkRlrgtFBhYrtBCcgXrcU1KvpmYXLAUmrUeOK1SkV6DHAiYstZGHfeelJMPahOfGwAAhpLCeGBRzl+Ca0Vx6RyPg3joPThNDUqpb59TkhKvgOGoLQsbbgFAYxkzzIzkJeMKbk9LAkE/6wYdAo63dAYAK1YMxZ5TSU7+akUr0ikceaD4RLH0ujbQCVguj7hgkmOcHvOX+KVFvGFS6gKZ3G+SYacmJrBzqfc7GLcQ52I40nzLElipOUpCIDt6Wgj+xXHTQAhA9uY5+jSAJN0XYIN7FSidcHEkOBWO0GWcGzaSSaBJM2kjDhlmdgy1gSvXK5BVp3TJjyToxyDOZxIIxJ6dk8EidAVFyt/i0YFfOORm2HH3iYXVufOGMDSf5nKl6r5rKglIRAvepi8w8oJ7I7nTq0oGKsJN70BISisZCXQ6QZvq7kdUqHEik3uEhQhJhtpmlzQj9+giUoHRGSmw5SVtmn3qbe1YSAyX6geBEoxqMYYQYmoSUBBVH3Nl4XjsXFC2Jt73lecZY0GgQDWtb5oMiaWEslW0KRku0ORg3W0q+xKSidgay5RiKU9mKQXLmITg5VpahIruC14weFnYtIXKCa+/Ui9StYVEz2pwzrSzqZIK0SUTqKYzWDJNEHgfcrG9eZKSJUKNhkgkfyJEBp5UZi4kkEykpSQpLU6Z8ZECIVgkRhiKM1jimhuuLjHrGmAaKNqqfkbWSULxlTk92vPrwNRITy+HIkO9yM28Zy47dWeLs3oDsB2ZNPU0tgjBn8UbN3a82eoIWFBIumSPSee/0LoWkQriRNLqdXBOm3Z4waIZQqho23bC1x9wMMzYUNrJj9IEWziafMOZzwjdkB9XKvWc3pE3rokohUgd0V7nDMGSkNjYJsgSLVkjnzIcbVAzEiFDunuy4s12IfJebZ+9yPCRulpkH02eY/JoTCqXs+lqRBjwXojUyICq9s0gg5wFzZ2wzEQOpnHOYb8ij4nPDNyecJmGz27B97oy323uxi4nPXr7G9YNXefjJj3P52suoFuq18/DaOV5eYnFkv3vE2faE937p2xn9nL2dc6jBdHXJ9aFxeXPJg4uewscu8773v5eMYdWIMaFW8WjdrtKEcdgwt0oMM60ZBGQtJJGeTB+96yhCcVFEA6MhruScMXy9x1e4tUJrhmDkxJrKCJoExRhKxiwws3URF9T63Kmpg+qrG1VuxevTMt5U/SSrUYKgSb9GRDPBeKufbvXTU62fNukeAG5bkLq+x7Ly5T7/+snXvk5rgdgX44dvZTv8Z0T7xJuun7bbn+aL3v4fsEmvkez5N6yfNr4y0peBRdPn1k+trN+505q8rp+0bgAYbEuy3VOhn+699ci/9cJ3sb3zkKLbz4t+evDgnfzlv/YdfN3v+Ha29lO3+ulWP92O2/Hrarzhg79FMpG75UGVDs61oMmRpS6dLlL6QiE20ah4KOFdHCEV5AInSLlANPAN+KZ766ODao2Fpr6+ZiAUkD3SFkSCSIYszvYm874vfg8//jM/xeWUUb1HPVwyyhmtXYIYY3aERLVMkmCQwmwV1yMLiaqpV21xBqCF03TPMe0JaWSfUB2I5dAXiZzAQJcF3TTmZqiMeGTGPDCOBSajRcYMRAaiHGi5Ql0QPyUNd8CvIa4QUSIKwsCWWOPHt4R3gZV0Zj+cYq5daLoh1Ul5zyKVGhMp9dTYMiSOdSSHkCLT6oCRICYG31LoFeGURzQES8YcjuoNRY1BN2jsiJipXOApCAXxRE475gDUSOqYZEracLo7YTksDGfnHSoNeHKOFHBDW2Xc3vSOq9hCjIg2RCbGKLCKZscQ7fweVUWk0ZYJCDQVlpWbk6ggC+jMbIk09ATAmGc8w2RQJWM0PAIpdyAKlYWwQE2YKLQ2Ez6Tw0lOh3Crs/NCykJVIwg244Ysii5bkp9jRwNdqFzSysSlL4yuPL9T7GyHTJXcHlNSxiVjccSXBdU9Zj2JyuaE061Q6hMijZSCZteojJglkg4MvkfbgI6NayamqAxW2PkALrSYSZrYy4aNrN0NKdMB5IZYZWl1vfZ7e/68dt8tOhBsUCbaaGzrSG4bdOoV0aoLdVyIxSma2IyZO3d34DNHU6wFtQ1YJNSNwUENpnpgiZGxKM1nJLYU2VEXY5NmRmlYVNwTISOHZWLOA/fHO4yaOIxGHTZU27D3icq8VuIF9Q2DFIa6MLFwE42cRgbf4NmxVhkj2OlCu1IWHymSKFJorpAz1a9JcmSTdogPzJHIeSRcCHEkGS4HpGQsEsVHgsQxHItEKidEM3Y7I9vQxcoYTMfC7BXKRDZj/+yzvPrTM8lOuYwJ2QRvfeEZToeRGI3FZvKUUMZ+nY5QU8VjYRMZL8LNtJDKgIlR68yY9oSUtVg9oQpzGJ4ObHVPMpgZuarGGMZG7/Lx60terZXaFB8GblTWoJnCHe5yUvcwjlxyjY+wf+Yec4McPSHPTInhHoWRaM6g3dJmODIWTiTYnoy0MJaYUVEsWHlXM7u9c3625epRv5ZaTTw+zozjkTQUTBPL0hiHTESvtoo3kiYWal9vmtKaoLqQs2AelB0sh4dY2oInNuwoYyK/tOPe205Y2js5PP4yfuzv/C2uX/4Yp0NwrcphnhgSXF5fc3k48tblbZykxCULzeHq6pLRB+ZXFjZt4KpdcP+5PUe7YtAeqCABRTd4ZCJSB8zXxm61/S2aqSosoWgEkhM7W3pnAEqTEdDOogphccU1M0VnDoka2pQUCRHpjJo1vRWDZtatjfS5SsMwGuGVhqC68muiksutVeVpGW+mflrUu3aK9cAHUBsR11v99JTqp3arn5Cpslx3ZEwSwaN3d4UJ1t4c/bTYhmsgtUZtI9P8P2Yo/2fG+Mybrp+yKvdOfpI6GyP5Deun6bDr84gskNvn1E83a8ffowMk+WX9VKcBgNeuCvvYPB36adM4Pf0xck1o+/zop7PNp/m3f/t/wSSfutVPt/rp6Rgf/ejAK6/8s89rnn++8Z73LG/iO3p9vPTSSx/45m/+5lc+9KEPffZX4/UBPvKRjwzvfe97P/AjP/IjP/01X/M1xzfyd77hG77hHRcXF+mHf/iHP/Yv+7o/9EM/dPp1X/d1X/Lqq6/+g2eeeebXTBrMGz/40wmR3KunARpGcoOUKWtiWQvw6L3fWXvrtLv1CogLsMMDmvYOXCRwXYhktFjw2JB8g/opAKkOJIPFH7EpAx5ObZUkhqTEnbsjv/FL3s1/8+O/yCjBzIzrK8y5WxvClSIDkftEOMcBGaAQDB5s8titkdEYIjHIQFPD0g1hBouzT1uaKFqcSSuNhu6csdFjwF0JhI0kWBqDzGh2ljDMneROzCBJIAeLzYQEKpm2cmIivLMjbEFCyFFYoiepVXcsrDNKwhlK4iZqn9iJbkWxRskJbwuk1Fubo0F0rpy3Xl3HOxloSAVvR0SvScmQyEQETQTPheQFdUE0wLV3FAQIlRSNnLYsPnDv+S9i5oY0Cs37vRYRqLRuOLSM1N6pIK0h0fBmRB5xNSD6ZUGCUMIVp1dONfUKrXsg0gHesbIfu61JkJUpMqfGTO2t4wE5AHfMHdFE0rwmvM20ek0rU6/eM5LY4NaQwXHptithw2AJaSPFMmFHTF5jkaCUE7b5DidjY7cxxu0OSQMyB495TGtHYr6i2pawe9R2Td5cEtKwOoJcdxhyCOAkFcQF0jUeB2oEFgWJ3FPNJjpvQjJ4ogWEZiwcj8DWapivHR41gtBEEce82xiSVSAIzf2ftA5xlkINQbzbzJr21Dv1xOBKJEjbRNoEpkdujpVoG1Drfy9AzfEwgtSt+LlX6ea6cHkT5DIQJsxtIUmQ8wAqmHXgrrqyRFBQdiQaUIuyU6FhzNGYvGEy06RxNCNnIetAeGaeAz82SE7Q+gZKM6GZ1mauqLScGOSExQX3I+qH1Z9i5CpoU7KPFC0IG5RMo3KUIzUFS8o0VWRJnDCy3468dpxxWVA7gMwEji8JqwVrWx4dT7DJQI0X7t7HMxzihmkuTLLpHEaMiBmdgiRbkoxc1ys8bgiFAait/3YsjmFdxCCEbGiitCgYBUH7xkjhYA1GZ7o+kCLDWFAyQxjKwrBJ1JMLrvaJNJyR2ZE9eH53xjZOOyEqhMiVpg2za0QSomOHKkcmolvaY2UaFVFGEt4yM96ZQ9awFsymzJExd7QuPUHRjGbGMGz6NzEbQ86o9LTFTBAoS0tIPtLsClEhMWBzYj+coiJMsaAqqLJ25gwMeWSTgjFvudpteCQ3aAPXRMuKL8Zzd+9RdiMt9erxvBxQXTDPXNfK0mBIhWfOztmsBkkLwaOndfffQEjRbUNC9GTQ1OdSMSgp4YvRPPBBadpfu6gwS2ODIjEDQlJBRQjL/dnWezEieELtEmnEOK1A+n4gI7FBBTIVpUPZe5BBt77fjqdjvKn6yQrJHYmFtC6ZSRvIcqufbvUTT7N+mnqTH82W1wPjXA5EPrwp+mmKAGDO+jrb36Xh0t50/fTo8hluDv8ep/u/zJxfe8P6KXI/yNuOI5r1c+qneuz71aU1Lo/H1/XT1DpP75ILQupToZ8ePn6On/nY7+RL3v132G4ffF70E+mSd7zrJ/jpj7x6q59u9dOv/vjoRwfe//73syz/7Dc0DMGHP/zhX43Dvx//8R//mdPTU//cj7wdT8t4wwd/zlW/eeiR7mYVCQc/BXdUesach3SPfAMwYuWLRCRENn29llXMEp3/FU7zflAxeq9aAEi6gXxBagWJfmLfk32M1mZke8ZzL91n+Nmf5nBzSUvBXEE2ExKKLL0iZFQqE+IDgw/kMHDFcmERI6KRW5DTANbZEpkCsuMmLim5knMitQXxRsbILqh0Tg8CapVwY0yJlEGif0aNbq8I7cl7rS1drGiv1iIJM1BfetWGPmGZO2RjigmndkycO1o2pCWxUWVprYN9SfixkTV1USBOtIaH4+7kEZZ57po2Ke6NIqyskYzopkeYx4THjEghReppdAqriQboCbHH+phn33LC9q5wvOzf+eb1SXJBdNvtJnLTbUGiBA20MxttfS6EtQW/x6hLBB2vK92WgvWqD+v7COuPDVmfoWKyINrZdj1drUO8CQGtXVTECBKUMpHzgbHsUC34oiQbKSmoTKSAaA5mSFsIu+pL1nbD+ekZ59vEbtsgTT0sIkaW1piWa7IZrgueM8sx91RZO2AEYRvce6Jd0YGIQoR0nkQLEDAbOo+IhuNICI2CeiOJkiT6QV4ELfXvSELAO1clNPp/e8KowHv1MDKRlIKQqqwA6plImRClmjBnOifDjRUZhKeEbmZkuwU9oTZlsQV8xqXRQrGloc3JYTjRNwB0xoxF47rGyuJJRHM0hCSOEj05LgwN7fwmgzPrqZQ+KJ4Xhqwkg4HC9VKZrOKpL87mQWYka8Fs6pvEBPVJ6lsoKnSLT1WsHdGYkdR6x4APDB69EwXnSOPA0m1oZSb5yBBbUgyUFqQwDvoyN9s9fjeRhhGtxpGKtxNSJDQaoobZjOk1bTiCXHByN5DkHKcNRwUrT2DnhuaK18oYjjRjEWfIiraGzgu5OUUEzzedCSj9d/NILJ5x2SERJIxgwYuytIpH5XB9g1uwpGDbDBGjSaPVTEkDsxQKhtQHvHBnz9leEb9BKIQHKQUeFU2rFUgC6BVUFYU8r5ykQGVlXoWRtaAtkVJhsczsCzUPqLQ1DVNJKWGtgleEwlh2eGtrhTYIN9xmPKyL8sioKEKsiXe7bjHUYDMEm9znswghSuK1wzUvHy56+uiYKeE8soWqI8mD0+2WyIZsGyKVy4sr5qNzXI5c+zWuznbYcG9/BtU6lFwyrkKzBUFRcRDtU0104bq0ipRMESFZsFHlKpTRlTESRxWaCoMJKTkRrW/8IhExIGQsAkvW01FF0e7b7Ml1sQMEkxVcTZAkkWODar8GRAES3n7NFCB/3Y83Uz91itQE6Qhp5XeFgfmtfnpK9ZPe6qeun9IahBBGs37w1HyANr4p+qmumKEFx1cpYUmJnN90/bTMJ1xffgMy/D84ts+8Yf2k6bO85S3/KbuTl1F9A/opDgBUWThK33sRSl0vyWiKHZ8O/XRxfcY//thv5YW3/b+J/eHzop8ur3f8o5//N7Hjp3C/vtVPt/rpV3e88kr+5x76ASyL8Mor+Vfj4O/FF19sb/Zr3o5/taFv9IFpPiHXM4qdkblDcJeWn6VFoTm4e+e4CB20KSPobk3t6XaEhUpjRmLpkGrvJ/vaMrmNjOJkuUGkt/u3KBzbOcqAVQUfyLpD2EFsIT7Liy89y/nzL3HNCVXOKMmRqsRUkDZgc0bahkHO2KR9F1KRyWSo1hkoKhwFrtw4uiOpT6yhTqSJSAtzPbIshvpAji1o6pMWfXKf7YgnW22dGQ9BkhAapJIoMlJIFGAQpTCulSGlkDusVRWGwpSERRLuheaZ8LKCixPuAh1XTE49cjzJ+s8YqAa1rS3VUkgycowjlQM1jhw4cpSJUAPJBDuCbYfeRj+o0egQ2maCRefGGULF8U3h0U3ji9/zr6FxSo7MRpy8dMHUasalsbCwsAcGWgjNwKVgOrCQMQZcMi4KyUAm0EPf1AS9ykMHcyN1JSlvCd+B74n1/2IbhgbZok/0SfEEloT0+qan24FKSpS0IcUp3naInBFsuiBcJm7qAw7+mFYOpPPGnXcOvPWrTnnXlz/P/ZfuYXcLlxs4lC3V7rEsJ0gYJ0WRE0FSIB7Mmmi1cayv0OSGaSkstVdq3U7x2ANb3AcsYHGnLVt8GREfVutEECrMA8zJqD5TbaL6hLeF1pxq4CghaRWLnXOx8UoxQwO6pBmpMnC1EY4jhMLocFKFO5My1g7hrgXmQZCk7CKzHXckGWiLcDwEx+vg5qpyc3CWKizVMKu06NXbpNHTGS1AFA+lWrBUobmieYOv6WjugnsQAsdWuZxnLueJw1w5Lo3H1yccjifQdmw1cVaMO+OR0+GEfTqlWGFpjUNMHGXiaFdct0su/cC1VY7VObiyeEHbSDsmWEZi2WHzBpt31HrKUrfUOjI3ZWrB0oJ88yJ+3HEzTVy2Sy5j5lozs225M9xjFzuup8RN28Fhh8VMlWucIykW/HhDqpWlBgvPkfOXc1PvMufA0ozYxN4Nrh0/jKjtwcGXa/YWpGnBW6MJHHPmIcK1wg0wEVS6OA474twwyTWzHpnjgHtFc+ZqnpisQuqbvN7KAUsSah7I7BjajmwnaDnj5P5byMOOxSeqPcbtmlyDsW4RRnqaX+6bdG3k0ih1JNsW8S3uWxobKiPjWNhk2A+FVBIXh4s+P3rvZMmaGHJhLIWywp5dhSUcU+k2rlQAJQzmqVHSHm/K8WYmk7ijmbEJ6qvtLhlTETwphvHo8jWSVE5SMM4HtrVyJ+c+24Xztjvn3M+JMTJEorUb8lA5zlc0z9QonN+/w8nJKeadRdZU8PW+ZE2KCwkcp0kjFVAxMo3kjbAJi4XRMkaiSWJH5qRCUmGOykTFNDqXRgITJVKAtL7ZD0PCemgCoG3LIFtyQFGnpIUsE52ybngsRCxo1M6Suh1PxXhz9dMFoZUaI5OdAODtVj89zfqp1EYpR6ymL3j9BJ3RNbcHAMw1v4n6qb9+NuNJDdEpvyr6SfNHOXvuv4fz0X8h/bT4Zynbv0Jt8xvST7P0s4Kj3fx39NO0BhxoK0+Nfjq593P8zq/993nx7B9/3vTTtDzHj//Xv5vr6c6tfrrVT1/Q49GjR/r1X//179xut1/57LPP/obv+I7veO6rv/qrv/T3//7f/7Ynj3nppZc+8J3f+Z3PAXzd133dO7/2a7/2Xf/kc8zzLHfv3v2KP/tn/+x9ADPj27/921946aWXPrDZbL7qS7/0S7/sL/yFv3D3yeN/6Id+6FREftNf/+t//fT973//+7bb7Vd+5Vd+5Xt/8id/cnyj77u1xu/+3b/77U9e4x3veMf7v+u7vuu5f9pj/+gf/aNvuXv37lecnJx85e/7fb/vi6Zpev2Q9XO911+r4w13/KkImb4SijuL9cQcSU+yrVgXTSEiQ9ArcC79dD8CwyBsrb4+SegBkbG35rcB4oBLZ0sgGZWChZAVkMC8gQmFHWVSnhuFr/rS53nt5U/hN88w+JaJR1QxSNB8QUMYZWCKmZkjotpFZDOG1m0lcxmJpEgd8drhxMHCgCBrlaEVwUWp7mw5Yc0kB+lt5E/SsMIh1k6n/uUlxAqEk/GeVrTWZmHpCXVr+Tai1/FFjSSOJ0gWlKBPlNGYxGkuDGXTk1wTRCrkSJhWLIwcaY0jF+b5yJATSE/6KuOGaE4hEJRGr0SJZrLsyaq0uAIxkihZGmJGk4T5KaLGW972AkudUC8UPyWsV7WESoSQNQMTzkKrinvC2oJQEeYumKNXXSV6F4REoGsCk6/fkEhPzuoydrXPpH6ggWZEErRMYiBJIctAjQoBRU7QGCh6SooguCbsDikPHOYr0ImkSsLY70545uQO+2HHbnuOqXaobJuZjjOiE+fjBltOiWhYeoRuHKkjdRGCHeMw9DAPO6Jz6+390kAvSYxI7HtVVyBEESkQhuI06V1aGo63iiqIdmHv9BS13uMRpNbb1xt5vYZYrz1dAda98pyi52OHd8vYJhkRoAwESk1BUyCMUYS9KO7KTDBpsJ332BxYuyArZAYSJ6utrMPFcxKiGY4ikvsmygOC/ru6kkgoMIRQvSISpKSdydMmShhhjYMkknR7UksDx9Zo0pPhVAaSDDhb9iXhMfJoPjK1QCUxAEbFJJEoFOl2CuPInAE9x/SUxoRxgHRk8g6Lz65kH8i+IWlQo6KScDnBXagobsJuOuOZd72NMoIebygJljT3ThIdsBAqidoSEWeU6BwvXxqaFLPCmCtFKyzBad5RA2pdMBxNicmVcCNn7RXcBps8cLMkmmeKDjQcrHV7UkxUnJYK0oKNOUMRLi+uqe6oGNukSC7dVtJOSPke++GcYz1yemdLk5FnnnmRYIdZ6+BlMiYjbpkWrf9eJSESiLQuNr2haej2EtbfVbTzzNdNyVwXzGa2KVCEXAaERLTOo8pJaGGYH7udTxJugYbgi6MtkdVo7UhrCzkVwpRjvWBpmZwHShLCOm/qOCyMBIdXP8s4LbA4oYkbEWavRA32+w02CqqZUQaOB2M6CuEbppuHjFRmX7h350WyFIhuHckqhM+IJLSvaut92TtI1IOcElED3CAJkxiSNiQLWFMNm3oXlZIQLX19IGEWuM9oEjJKOGg4KpAUEMNioeOoIZFR7+9PkvcuFsv9/hN944v77fi8jzdVP+WKKxCpWxxhBQve6qenVT89c/6LfMvv+w9xdSJ2X7D6aRpWJqV0O17/w81qqf7866d+MMyqn/rLhwde668Z/dTqKfPyr+P8KC0fP6d+gs4W7XbIX9ZPT5JNl3yAUr5g9FPR/rmbByO3+ulWP33hjm/5lm9520/8xE+c/KW/9Jd+/sUXX6x//I//8Zd++qd/evf+97//8E97/Dd+4zc+/KZv+qZ3XVxc6Pn5uQP84A/+4Nk0TfqN3/iNjwD+2B/7Yy/8lb/yV+5/z/d8zy++733vm374h3/49A/+wT/4zueee65+7dd+7fWT5/rQhz700p/6U3/ql1544YX2zd/8zW//pm/6pnf+/b//93/2jbxvM5OXXnqpfv/3f//HnnvuufZ3/+7fPfkjf+SPvP0tb3lL/QN/4A88evK4H/3RHz3bbDbxt//23/7Iz//8z49/6A/9oXd827d9m/2ZP/NnPvUv8l5/rY03fG1XdUTW/LhQsvfJ5eCrg16CCMe9rbeVgRl4X1BUekqPiXThSsbFcHoST0jF5AZZq6MAGo0hJmYCUcdtRlJvs/YqzDowWvCel97Oy+++5qd+6pLDfEGW3FuatVF1Jq2tvnkOsoyIRAd55oJoJZmTY6IalNgzxAnIkZoWJjkFm1iLNSQPRpQ2b8lDJtqMDqBP2o79urdRmoF3+K2YIjoS0dDi1Fp7hH0OIo4khDFlwgOzpbMKwkAEoaCWyC7kDIvNDBEMuWBLZ3yMFJZWUe2t8imMZJVkEEkYpVBWC2hoxilEGNkKRMbVsDRjqWHiYAWpguTeJi1If51RObYHPPvcnmef23D16DOUnXIx33C+pgeiQbQbxpKJOiGaurgNkMXQZuTUVruSrBuejLiuiXmKZEW0V19DGsJCj2TPIJVgIWIgIgGZSCMw4NYrWMWEpMoyXCPpVSTRRX+6QMpEunnIi3f3nJyfcjKcM6REysKh/RISB3AlakZwbL6CViEVQhMRjVISyc9QT9ggpGFidOcq4GqBYjvCnaLKEhcYEznvqHNii+IxECQSEAz01vMDQpBlgBigDbgPiKz3U6z8ltCVH5QB7dYahZQSQmYBZge1npyoGmSxbqNwx8hoGhERTCs+wJkpRbrlaek4FEJAWkNRxIUs0jcRPiG5J6K1xbqdiQ7qJRJe+6KZtLcTB8GwgnXVKmNyUKF5EJLIIQxeqGrUtRKoFSCxuFFTJgxKGkgpE/kCFxDpG7ssidQg2wjDhigJaYoulchGGnoi+FQrmnsln0WIBVLKFE2kpEQI1YzFG5GDvhXtCWNiikbimXsn7MaFulyTFcwSDIWNFkQLN81YkjLlgWsyc7vm/CRRh0uWVKEG2XdY2zDj5Kw0m1Et4AOiO6o2NGVau6HQVlG2MKrRr56CRE+ZNHUymSnA2ZAlCA9yQDp2q0PUmX3JzBgShW0Yw1ipNpPKlvDE6bbw3MlI5oaiYD4QmphlwjTI3pNIjUSooEnJIkQBl0yrRmvORoOCsHiwLTvMhcOxr41aG5AgKcfjwjgUxt1AhKEYEUZroDKSJKMhxHJD0oW6CEbh6uoauCSXxnB0at2zPb1PuNKsUZIytN4t8vLDh0zhFJwcQZWBnDLhE5v9lrTZsMt7xhh5dHzM4TijUlimyugFDect9+9RSB1C7cqYHV9mpnUNQfq88sTI52SkCaNkRJxjGEtRsoNHr2zjQSnKgnd+WtN+76iSxNZESEW821REpNu/vOIaeBIsKqqrLT4EQvDaVh7XSefamK3v6nY8DePN1k/NnRyVEr2bx7RS/fJWPz2l+mlRYzNkaNMXtH6q6cB2//8lEQy5Mu5/iNBPIfn6TdFPbd0SVesddQCDGkXefP1k9Ut4/Ph7efbOt1L0o29YP/nhrTx67X9HSr8H311/Tv2kPlPyR9iQKPn0df1ka7jKphTIT4d+un78Pv6rH/0TfM1v+U7u3/ulz4t+enLgqwjc6qdb/fQFOh49eqR/9a/+1ft//s//+V/44Ac/eAXw/d///R9/61vf+hv+WX/nG77hGy6+5Vu+xf/iX/yLd771W7/1IcD3fd/33fttv+23Xdy9e9ePx6N8z/d8z1v+xt/4Gz/323/7b78B+LIv+7IHP/IjP3Ly5/7cn3v2nzxM+87v/M5PPfnzt33bt738e3/v73334XCQ3W4Xn+u9j+MY3/3d3/3pJ39+73vf+/BHf/RHT37gB37g7j958FdKie///u//+Onpqf/m3/ybp0984hOf/o7v+I63/uk//ac/tSzLG36vv9bGGz74S1ao1nkXTQNP4B6UnFbhESgVXWfNiIxoRtwI87X1tqfrzG5EmlEJ1BzzeZ0DAshEe1LpK0wpSEtB9Am7LFgERBpegoXEdn+Hr/oN7+SwfJif+kXwuuV4M2HhaDohpw2LzhAVdaVJtwdYM1S7YMwqZBkxjEM6oClhbdOr9NIXDzHDc+KIkjY3sGxIrlhtXaj4COmI577ISkwMekQsU2XoVXgxXI3WFhBjTAN1AtiTcwad8FSZWmWQTDF6C30ZGJJAM4xEqgMajcY1zTImmZQDFmGTRhBjYcZbYtSMeSDDwIhii9FUqAEhHe6cVNjLDidTBdJmS5ihqj1lyTs/bl6u+dfe/X7K7GQrjAMcjq/i5bJfJynYItjkkPaY3pDSFk+FyNbTmSyRM0AX5iINY0FXAcFadYs5wDukudLtGpqFmpywI6eRqQ6TgGclWufV6Kg0M5Ik6nSHeX9GGR0pztQq73/vM5zfC+b5globZhtsceZ6xiaPzDYRO+fxfKBqsNWRIQZgoAxjB4lLw+vCECNhO45cdshyZO7eHbm5vmB5PHPn/FkObYacaCyYaOfOBbg3kln/jdNAKb0bJCUQD5yJFEEDGopJkNKTZLHe2ZcSJMpq650pKJXC7ODawectukhL0gWn5iMawU4F1UTTDcd5Ikdf/ErOmGciGpF6dX0OJxHk0kgyY2ZEUmbJPZnRBWkdIG9jpiokcTYp0eol5D1G7zCQ6J0L6g0rzuJ9flC0w9B1RHWhUfoGNhkWR0Q3jLKnirOkiTlNLA3QgczAkLqANg1kaIRPKDBm2A7BoE6bnLkmdDMyeX89lSDy1O1xbcGib7QGUWZvaCmUNHDnfMQWRdOznf+TjdnnlbUzowohjrrBtOCyI7aJrFDayDTNyH5gmZUisHjfLGZNqEGJQrTEonm1VzlRF8DYY0zhVJ1gswE2DEkxU7ZUSimYj9xMTkTh01ePqL4Fthw0gzopgiwNTRXPM6aNl77oRd5y7z7nYyGOC9uiWO6i3dwpaaCFdoFmleTCGAnVxCEZoYYUQWrGPNGSknO3/pkWbi6NvAzYkHonwKjIYAy7DX0mU9xy7z4pAZowq8zzDdWPHJtgi3M8PsbsSJUDzSqH4wbdZPLjV7k37Tk/OSG2cMrIw6vHLFeXlKFiUWkE4RViILPnzuaE/dhZMM0LUxMsKbII7cIo24G8rWzPnOt8wHVAPeFH52Q4wZmAJwfrAxsdcE+oQo3KJA0RhVCGozKUCbO2dmBtiApaMlErIoJqtzziHdafcoKcqK2iRO/2yJnFGqGKuJG9IR4IGwTFSzDLmg4YvRdM9bZm/bSMN1s/ZRXIjo+N559/wKCAjLf66SnVT69dP8vf+dv/C/7t/+H/nudPX/mC1U8n48t81Vd8OzfXFzx4fMHb3/W/XvXT+Zujn4Z/wPaFdzLXivMBAGZ3fHjz9VP/jC/Q6IeFb1Q/lfHnefHtvwWTRnU+t34aP869F7+O/x97/x5t73bWdYKf55lzvu+67b1/1/M7l5ycXEkCQUFFEAFRoGxpwEtalO4WsbpHUV1q2WJbbSnYUWtIW4NWGrUprQHaNHYjCt3FALpLxVGURLxgCCaBQBJycjnX3/ld9mWt9b7z8jz9x1znECwgByUnB7LnGBkj57f3Wvvda7/vnN85n+f7+YYh0vzoBf1U5nMWmx/AhzNWy5eHfnJdsJ9uoL6gWPu46KfJlwBUX1A5vtRPl/rpk3K85z3vGWut8nmf93nb5//t+vXr7dWvfvX0i70mpcSXfdmX3fuu7/qu63/0j/7Ru2dnZ/pP/sk/ufJt3/ZtPwvw7ne/e5ymSb/iK77iUz76daUUedOb3vTzugg/67M+64V03le84hUZ4Iknnkivf5Ecw2/8xm+8+Z3f+Z03nnzyyWGeZy2lyBvf+Mafl/j7xje+cffRwSSf//mff7Hb7fT973//cHZ2pi/2Wn+1jRd9Z/uBHeUUitV+EOf10BXbGSluFTdBdYl5J5sohy4eFRwBawzeqA5RY6+uuGHSo8Z7l1DvHqtlj7We0tl6/zPmhpgzaIBWaRYwnJs3bvL5n/ub8PTTvPt970dj4MjXpH0m1gtma8wSaAFmq7g0JDnVCqqKskaJGJ0AEw4FCeycFAZSWFHJmM3MdUuIa8QNjWC6Bwy3ABqYc6WKMIZEq3aIFp8JNMSdJMoyjljrYOGmRvbS2RM+A05SIUkhKAzLAQsRq5XggQUJkZEWKtUMkcCYFui+EGIEyzR2VAoprUkh9Ao4frCCGkETNdaecqWGGxQzimfEOVx7pokjQUljAqtoFF736ofZ1QuyQAorGivI/VayKtRaiGmgamUvIDHQ6JU/do31OlFsj0tCSWCOmiIeDmBVR8XoBh5HVJAKQXtVVt0IIfRutthAZ3LZskzDYYEVVEcmj/hqgR47ud1HFpXNlcg2NxazUhiwOKI+kmMllgJ1T0iOUTheJHIzNAgmGV+FDgiuxiKO1DSzi2eoLxhdCUSkLGhlwsfIzUce4sbNmzz93G328571ckEsmWoztWZa7bae6ks0ZqZ8TqCSYux2geCUHGkGTRSj/53g+S4RJaoTDq3stQ007xYrtPaNo7/gIOufXdBeAcPIzZHm3c6FQ+hievYOTxc//AW0g3FdFRPB2wLESKFgXvEW0LZGNFAkU0slqBLjYdPRMi2V3t4vjnhFKIB1NpIF0Ii21rteyKgq6ZBSJkCrjVJ32LgkBrBmYBAQmkCVjHjuEF+6+I8JUnJicKQlvC6IEmhxxmtjbbCzxrlW0Iy2QvLOTKkHSxEhYhWOrx4Trxh7u4/WxEoGUnOCZqo1sETygLtyVvfs4g6f4aqcEPeFFFZoHLAyAYoHhRYROzpA/ivmFxhD78rQ0lPIpCEC99PAbt4i1ljVxiYtWNILI6qRWjI2TxwNG9pcKGXLPBhVYK3KojY8JeY4omlgZGTjiQdOrvLwKx9imAobIlM2XIUwrhjGkd6P0NfK5oYDTYWqRgzdWoc7IhBFaDjVK0eesXbKNH+QTGNRlrQC42bBdH/maDzmaL2i5gIKuTWCVcR62mZuwpQbzSoxgvsZohmVQikTaVzh8zmtwr0yUXLh5sl19MqSZ59+GmmVvN+TFFQCDpScqe4sNkuW6yUxJWqZaGf3WeXG6X5ivzHO2h2uriJXbl1jESJeAQOJkYtm4IkYFQ/1QAvruH1rY09+DH0V0VYYh4RTIPY105Fu1fEC0YB+zzgRpHcDVHPwRnBFtB8QTa5kF6QEaMYwBppXrG1Jw6IzytQYcBKOiWD6MQujl+MlGi+tfqq0WnGr3Ly550/96f8HWOmxB5f66WWpnwYvPPboT5Fk+qTWT+QVeQIb9lx/6FGOj1/H3fP3MZfzl14/+fM24J4u+5LrJw+HuQOqvHj95EzEkAlhpP0H6KfF5oMcXf1PiVGRtnpZ6Kf97rDnD+VQMPmV10/TRWe7lTRhy/2lfrrUT5fjlzG++qu/+s7v+l2/6w1PPPFE/L7v+77jxWJhb3nLW84Azs7OAsA/+Af/4L2PPfZY+ejXLRaLn9diOQzDC38Ake4CNft53/KLjr/9t//21b/wF/7Co29961s//Pmf//kXJycn9pf/8l9+8O1vf/v6xf4ev5xr/dU2XvTBX7NGVOd5R75qL0kNjW4uMe/iyCPqSvWeiiXPCxB3FOtAWo0ISqiCmnWghvZWX6QRYj/4U4QkqS/Yhymiy1/rbBG3Q6U20ZpxslrzBb/xzTy6Cfyrt/8Udy+2lKXh5rivulBoBaGBdMZOCJ0JUswJfkLSJd4q1jrDhNQrWFIXPdVOVgRfQBsw6cmcLuFgozhEwlfDJfRq7IHdATNBrLNDgCidL7Krne3QNB+QNr2qPrgSazu8f8VbwWtPxAvqNKm4Ot4yasLgMASjtIrFhrXKEJZENmiA4IYc/madHaS0MCEiDJ5QQk8MjJ1LgxlOJQaobSa4MVrl5smKWyeJs+k2QUaCD9iuMByqZCCEmDpjRoWlJUYCdT8jR1eoEplR1EqHa1sXK+qKmyLivZPBvAPM/fk2774AWVPEAupgdUKlMOjB4ORGABZjZ7AsguCTEPOa5JWTsOXhE2UOV3lWG8GMVS5ECoMXJgFPibAamVsmaSLEAY+OBGf0TETwmDBVkiwJrkCgtS1DSEw6Yck4amuCBur9HcsiLHRBzjOlRbRNBKvgQguGhUqUwrAcgQVeEnhCXSHuCV57mpz37g8FkkaiKCIZEQMUauebGHZg3HgXGocESPWE1/4kuR82kiIMKCZGk96Jgnf7WKBXKhXDDhYFcZCw79XUFogMqArVTynWEIRRA1Ei4SBKRQOwwFxxt44XInVhyIxIRAgI5UD7qGgOQKV6A6l94lco1pd+rYFkieBKdoChVz+tYNYTjTUmhLFX9LVAOO3cI3OQiPqSpQvJBVNl35w6DKzTQJZM9kKTxiJFHrh+zKKAkwiyIMpALjOyWGHco6n1+qsKrcwczRNqwnECGpiEPs+1GbGEtZ5ePiqMIRCtfwaqRm0Zsx2Rw3OhA0VGxAtD+jkbzWwFxAiyQIPQwhmRwLyNWFEGh0WMSAjMwXAPrJYnyLAEGwiLZa9ueiPHzFYaKQ3ECj7vWRi9GjooIkqL4PFwaBnlEEIgvcI66sHq1DfzWQOnU+F0ByYjZzWzSoGjJdx++jYhVeLwABqU0jLWAgHHzWjNKU1pvqDkPbPNNFdKg+yK6pq9ZoZoaBJyzNwpp8x3+9x3+/aTtDIRXdEWCOaU1ogxoovIeLQkH+anKVfuTDN1XHJ2+5xFNWrec/XoQRaS2O9nYloiGMn6jF4OKav2Ak+sp0Kaa0/uMydq737GMvgSk4xJ65sqIsESA7mvm9aXYhFFzKlimMIggoqQpcO73SKhBUSEWlsni0kj1z3RU2cAuRAEihWq/zytcjk+geMl1U/aGVbuQrjUT78q9NP1lfOFn/29mOXD3+yTUz/d3j/M29/xrXzGm/8TNCj/47/8b3jzp/5vuLp+z0uin0p+jPPT/wvj8X9OSh9Arn0VhPf3jrqXWD+Z9YM/kRFYvWj91OorePbuW7l+/Rvx+IGPqZ+285u4//T/ixuP/K+Jwztf0E8SVrTyEMPijBD3Lw/9ZH1Ns9yQPH9c9FPb95+RqrLy4VI/XeqnT8rxxje+cY4x+tve9rbV8112d+7cCY8//vjicz7nc35Rm+uXfMmXbB988MHyd//u3732j/7RPzr+0i/90nvjODrAZ37mZ+6HYfDHH398+HhaZd/2trdtPvMzP/Piz/yZP3P7+X97/PHH/yfhIO95z3tWFxcXstlsHOBHfuRH1qvVyl772tfmmzdv1pfiWj8R40Uf/MWwxH06wEkjtXYR20JCTHuFDDAqbltUYofwHqpm/fC8J326RUQD1TLBMxLyAVA6gDdo9fCahJSE6ERAeoVXvbM9aiEIEKTzWQySBG4er9A3/Tqm9cg/+/EfZXc2oxeBhXU+zuyVqIJZwIzOhxDtIOt2p7MEzRAZUDkhWyPI1AUEM5EVQqBw0cVj9C4CPFIBafUgQJ3WpNslvFLpKXIih/endPFM7TwGAcRRHKmO+oBqb+dutRGCIcFoVIpCtl6BTLGjhlPZU0Lq8NPaCDowsCbamuK9ZTtaoJNXnFIbFgtJIFlAPNBCF42mxoU3NBohRYIGggt5Nh5846fQwgoLhdoUq4HYInqYJM0bTRQhUmbnZAzU7Z40rqnVWK5GihqpCQnFpE++ISi93qVY62xXDvwFJ3TRfYBBxJBQqTQvHV3TAsEDAemVV2lM0x6fITIh7T7r0bm2vMmV4SZn7YxlabgvOF8ONFdkO+P5LnE0qlZSKwxtIEZBRqVqoXqm4sRhpLY9NkGY12iISAnkqWAOszbEBval0UplqpWGYaIM0ZAwMvqSIIkONp8hVNI40DySpxG15SGGXqh1xlrBDJpDc+8JcGIY7bCpUxzBRVEdUOgt8N55LmYNaRXxfr92SrUgosROAcIPG0h1J7rRvVV9w6iqBPpmFBkP1pJCUieEBE1ptXdkqEqvtOFMdCtDlBkzx7zbkswd8YBr6gwQj71dX/rf1FrveEn6fEqhYG4MQ2KQAaViXg7hJd30gEeUDvrtB50jgmNtCwyIrCi1kEuGaIhUFhJZ0at/8+QQEiGcEOMe9xn3HTeurVktDBaRWgrWjGiF6A2fnZUoJUa2ovgQ8TGRViMpKLZM7CWRJIHnLs6SsNOGWyVgZFGSLqEpk1aqZBBjoQPIEmNkNSnCkkGV7BPZAp5GYKJZ7wooIvgh0TK4MbU9No5sSKQmTDiWBgZZUgk8lxxdLZFc2UenRWUZIAUhBQhMlO1EtKOe1Bn7RqapY9XQlGjmNGtYbaRBCTEhopQwcGcqnO1H4jBwUe+zWS85ObnGU0/e496pcXx9wxASzc9xLVRzhF69nmulasTTkmkqTM0hjP29c+GoGtn6PbDIDSdStPDM7cL9e0+jbSbGgBdFzFj7gLgzDoFrw8iRjqQC9/KW1vaMdWCuF5zqKTLOPPzANYYQmV0g9vRQptbZW0zgsTMU6QEA7o5I7hOUe+e4kfBS0BBQV0xaZ19aI6JkTxiChN6p4xTcK0Gc5IoYQLcIiSYiMGpP3izFkBAP0PO+vvRohP78VmsU/1VdlPw1NV5K/ZRUDwdBiSc/+BB/4795C3/sf/f/5KGHnrzUTy9T/TRl5dm7j3Jy8gF06Z+0+mkYn+B1b/w/ERa3aV54zaf8aeb4OHOtL4l+QgohvY8YIQ6FlP4F1Q48xU+AfgJo0VmEF6+fnDVT/nzMv/lF6adR7rA5+ZsEvY+yeEE/tfnTeeKJf8Bjr/7drDbvfVnop+c/k91gxHH+uOincgiVaTZTQ77UT5f66RM7bt2qDIOTs/yi3zMMzq1bv6IxxFevXrW3vOUtd77+67/+0evXr7eHHnqofP3Xf/3DqvpCB94vNn7f7/t9d/7O3/k7Nx9//PHxB37gB37mo9/za7/2a5/++q//+kfNTH7H7/gdF/fu3Qs//MM/vDk+Pm5//I//8Tu/Etf++te/fv7e7/3e69/zPd9z/PrXv37+tm/7tuvvfOc7V4888sjPswmXUuSrvuqrXvXWt771qfe9733jX/krf+WRr/mar3k2hPCSXesnYrx4E7sMWJsQ7aLEDpVPrw2so3Y1DAQpVDKHwhduRkcQB/RQB5vNUcmoZJBedXHRXiEzeeGyVMa+mTftIpVu7UCEZj3dThOIGymNaOst+TdOVvyWN72RV56c8PZ//TP81HufYJ8y3oxBI2YQiTihV6qByhaRqQshjbjTF3yJuIReAXPr7cEGNWRIEMNAyCPWApNlxhCR6Ig1xORQzcvk1qjmBO0pd0168pxL16/q0IrRpIuE2Zwq2oW6OYMKFZgdnDXmGam9elvFyG1PXa4JCPgeaLgWLGzxaNBKZ5u4IEHw0FvNY4VgRpNKdcdLo4hgIRBDZKow6qJ3Eyg89qpXsjvfsRgGGk5sBfE9TTsImNTTB70EUlxxP+0YkjIPxq7OrKk9zSqOHJjhGB22200JAn7IeTowVEQj1Xo1Hu8BhQjdTiHCoBWqI1EYQiKkJaulszie+IJrn0UYAnm/RVwYt5lH2oIpz+y8sJlmUgucXavUi6t4DJzlmYWDVKFVR2vurf6tUWulTfQYem1Mw4SUFWvfkEyZLgphTefcSK8uDosBQqA1I433D10dG1I7QZthdoZgTPsJVFmmBVhDrYIJWnvV3hGy9gqXY5grTcJBsEIPpHo+FfLg78XADGtCoRKkH42JaN8UeWUyRQKIBKxWqKAx9k0F/UEWt0N6oFJNiLpilAGrRq2NJpWQFK+Vfc3IEEkx4WJEEbQFEOk/52AJq1UR7and/jy8V6QDeRXEZlw7rNerI4MQWm/7bgjZD5+DGI09DqjLIdnQIBRiPEK5gdEgKSaRUrsQid4og2MDlLmnwq10YDJBLHBlfYVxc5UHb50QvXbGDOBaqRSchgXIcUmUgTRlhrmRzajBkOWSmhaYh8MhbKFYRoPjWro9zhLNKxobVc6pDiZOiokQlhSLXOSCjhEz7SxD6al7x8OG03p2qGBmqo+M41XuXDzNLgizJkZNBIssPTHKktDWmAXG4yXx6kCWRm7W37duekrhGJFloIkxq3Bs2ufxcugKsf77BBn6nO7QBCDgopSpsQoNufcstT7H3kZWHri6XOLaGFYjz92/ID77LDevXT+Anp3aDBGlupPLjO0LYd6z8saAME17UGcZI/vShfowrFloYD9P1DRzemfH9t4zDFqYy4QhaIpszajseWAzUEchj4mmyvZehr3QSsN2U4fHl5FrVx9mFmEhA+wbIQglwLnnntKJoJJAAubWGThsiXEAiZh5X1skMjfHUdRHUhypxSg0TLXD3Q9WMrdKw/s6iEPokP7nN+TiTrP5YM9U5ACgj9pTVJtAO/R0obF3fl2Ol8d4CfWTEHqCp0aONzO/84v/OVeO9ijhUj+9TPXT3YtH+O7v/7P8/t/39YzLJz559dNUuHntXzGX/qxsrvyL7sMN65dEP4k/xTJ9A7hj5SGm7R8gLL4T46mXXD/JgfcpUtFWX7R+ej4csVgGzx9TP0m8zeL4b+IH/fi8forjT/GKx76WxeIcZ/2y0E+Zw9mGTqimj4t+Ot11pFmJkcWlfrrUT5/o8frXZ971rnfxzDO/+HnNrVuVF8m+++WMb/3Wb/3wH/7Df/ixr/zKr3zdZrNpf+yP/bGnn3zyyeFjWV2/5mu+5u5f/+t//aGHH344f8mXfMnP65b75m/+5idv3rxZ/+pf/asPft3Xfd14dHTUPu3TPm33Z//sn33qV+q6/9Sf+lO33/GOd6y+5mu+5jUiwld8xVfc/eqv/urbP/RDP3Ty0d/3W37Lbzl73eteN3/xF3/xG3LO+hVf8RV3v+mbvumFUJCX4lo/EeNFH/zV2pkZSMO8IhJxdaRNKAuCJcT76X2gUiMUaZg6IqEnaRkgDZGeGJVCTxErbQBJeJVuk6jp+Z9KYyZI7NYXiTQxijeiCkkC+2lLDP1Bfn5RFWmkxYJHXvUg47IyHp3znsef5Ll7ztQj8Xo1XRrlwI0Zg+MtHaDPCQ+OsUfJvS25HePWK3qirRfz3JAKsUqHiqZGiBuy7bpq10jv5u7VjH5tAyEONA+01hcsBKIsabkwtz06QmNGZEassfQIVak4LSipVcao1OJ9kRyhjvTKegkk6RsLW0Z2lgnWbTOqCtW7UIgJUcHJvaIenBIEsW6O9KoviMPqEfOBKw9c58qt67R5j9hAlS78T1FupV4lq9JFcAwR8cq6AK0gcc96c50670nxYOkBXAdQpSK4CxIcoTNDnretYkapBcMJUbq4QtGwIM8zQTJDHPDaSGnFen2MO1wZz3ko3cRVcK/kvCNbpW7hXslQKvn0PhOVZTbCJlNwTkqG6uSpMIthMrOfd2xLryjbviDTTPDM+T5Tp5lxXOBizIvGRdyzGCLqTrDO7ggorTm1XiHLjuwzs8+9nd6EpS5IMfZNgyTcK6U0cuksG3HBUSYPVIUoqVtpe1EfxDHLGBWjs57MjB711zeZe1G09WTFoPTPRbpBRMVJDkigibOvhoduNZPWuVBB+j3RJOPU3oVih8RImfthY1CyOBoanS9fGHVAfKCa00xw7d15yEDzTPPeyeuHeq5oJIbDwV2AZAncSIMQ1PBQmbyy1YluX2uEUHpXQ02AHsRQobEnxICkykxmlkpJAAtiC6h1HtWuZiY1PEKIlUGEo/WazXqBzTBbw9qmi2OrSBDMCxIiYgJRQAumBWPCvbEMiY2M4EJoE1V3+GCUKqQWGTWhkjCn842koLLvHQnVSSHT2GO+Y68bkL6hH8KCXCvnux2Ko6EQgmK+JNjIfnufaIWEMwbBxdm540PkeFxwcvMmBrz6+Do3To5gNXLkEWvt0EGifaOKMK6PDt0OPVEyScBFMAO5qIgKMcZ+/QTm6pT9zEUauH02dW5Sc2zhlFa589xd1qs1p9uJ8/PnOFnBoII7pDQy18Y8zWjJDAFOo7LbFwiRNiwxSk8wHSrBIrXBPRc8JAbg/Ow5PO/wtqfRug38YHdrnrl6tGE1JLwaLRmnZ3cZFsLd8+c45z47ndlcu8Ly+nVoTlUnDolS+8YGh8qIMCAWMbe+pgUneKK5Us1whRCF5kYLFXUjEcEFSd2aGCzhVhHvhz9elaQrBJi94Oq9w0hgNIEGRRUNidoqKk6Qhlkh6EA9PA39qCgw/DLqepfj4zteSv3kJjQFpLI6us8X/rafwA+23kv99PLUTxz0U/sk108X4Ygnn/4CHnjwnyLm3H7yy3nooe9nmc5eEv3UPFDKq4nhQ1g9Yd5+Jcvh+/Hw5Euun4L3Q67BjejhResnO4QStGAM6WPrJ28bLH8hy/gjwI7n9ZPGe4yrHyLGDfZy0U+pfyaxBlZ8fPSTtQ9w6+FvZozPXuqnS/308hivf33+eBzsfaxx9epV+77v+74PPP/fZ2dn+k3f9E0P/5E/8keee/7fnnjiiXf+u6/7Db/hN0zu/m9+ofdUVb7hG77h2W/4hm949hf6+pd92Zed/7uv/dzP/dz9L/Z+AG94wxvyR399uVz6P/yH//DxX+Bbn3j+/3zP93zPC1//6ATg/9Br/dUwXvSdrZ67BU+d5nvwzpdpotQgaHCCN7CCqxEsMpgejiGMQCGiOBXReoCaBtz6CbvjJA5hBDzPdCyEOFF8AKuIwxCUerCAxDofJtnA7BA1AEq0TG5OSoErD93gi269hbP/zw/yzOn7Kc0QIKFEYCFGqbULJ7SDZlGiBEJcsKehnohiIKUzCDwiUXBzik24GCKJKKGDkU1JuiDYcKgQO+oTUVfgC9wyTWaIiVYHpCkpDiwG71XS5gSWB6vPhKky45gKMQllzozNwffMwbG4AZakmlEU1YCOK2YyLTWGmnBrFK8giajdmqumCB2ikcx6dV0KWEJt7F1qdWIxBup8zm9405vYyJYaJkz2mClzBYLipd9KoXaGkGullR14IMSRrJFtmRk2K2oaKA5RDCuFGJcdGmyChj1ooxIw156KV3NPDjMjjku2paBmLBSaFdCAqUJQVBP7OvVNTB3QAFBJMaDhKssQKesdj7mg6szXT/DayE3ZzXumfMFUJuZS2E4zCyv4VrmaR8QjXqAsZhprLkpl3DZ29++wWu0JVyPbu/eI4jRu4MUZUsNsS7WZpiNLX3XUm+/QYQ9ppOUFe6vEJngxLsqMS0CzkL3S1IkSkNaT24LFDp4VR8OCGKDZRBwC+1z6riwIJhWnczEUQUvCdI9Vw9qAW8BjwK1BaFhwBnfEIZsTJSKt4a3iMWBiDKYkYucIsT+IW+nVczpLUDySWiBKT691AnPoB5G15c7SCE4ITvbQuy+8IqF0OLUryY5ZrZYM0fCaKHFJjQlJO0apKBlNCYtKKnswxyxQRDGLHErweChYOGNYrUiyZFUa5JlRGpQBdGQ+CN0wNOIiEX0kjTNnNtHOIrJvtJWTfYeI4lYZIyySsagZHTY0MSQlaoJpGLlQ5WSRCEkwn3FtxBAoFTZhTWiJquDBOsPGaucfGYcZ03pCtvdq6WSdexolE0KhtJl9dZbhhFqhUMgi1HxGocC+Ma5HmtM7QImUlbK6OfKG111nqpnXPPwwy2FNSIr5jMSZGEasKXmeWa823RoShRAcHbsAFBzPhVIr4kLMRhKh5D2rZaCEM+a24nw3Q81slonrx1cY4glmkRCUJJGLsx3nm8zVkw21zTRvTHNhu53J+x0ahYuc0SEc5gBjUKUWkBgYtds05lYIIbEKA7fvT/gcEBVG7QcujcgQlZGR4+WaTXRGtpS9UvfCUI4I2y2al0ySefjWNTZphbYZ6Haw5o4VAQ0UF4YU4XDArtpTJjMgGvoBhzti3YYeUVQi1RNmvZoMEWojSOyH9N5e6MQyHboF5rDZE1EqiiRFVaA5A7GLWoNyqG5jdthM9kCI9nKxqlyOl14/uaNamefIT/3Ma3nda97PelUu9dPLXD/pJ7l+evqDA8/87B/j5vX3YNV56kP/MTdv/jB1fOol0U8XF69ld/sH2Nz6Pejq37JZfc7BCvzS6yd9PtwDZfpl6Cfz3rG2GRYcL8aPqZ/s7DGe+vB/y/qx/zmEn3xBP7X2AOe3/5dcv/VdrFf1ZaGfpHU75oIVqHxc9BPpWa5vvhPGkebxUj9d6qdP2vG2t71t+a53vWv5eZ/3edt79+6Ft771rQ8B/ME/+Afvf4Iv7XL8B4wXffAnssOdA98iIBY7g49MMekt4+Ldi2/6c/Bb6JVdBcHAFW8RYwY3gkSeB/+b9ArIgWlLtZ4OFW3VJ0ypuJfeKq5guujMjkO7r2tFrRECJBvZlsYyXWc7XeXDdwbKTjlaLyi5ISJs9zviegANqDVcBY0R8UBthnllTOEAha5IdKpBabCpS/BKbblX8UWpzYlyH5UKopQ2IS7gmUFgDEKp5zQ7BcmoXyVrwpaV2S6INbGWa4hDaYVqpVdsQ2+9F+2x6j4WWh1IYU0shVYEa9BiQrUxjiBtZtmWYGuqKkVmnF5FFxeCVULoE5yEhCMHILQiktCQkNgroymA2cwrX3mDs7ZDw4gVYUyRuj9lyY5w8PyrSa++YEQ5AGuzsVoP0Hq0fEyKpxHX0LvivILMPYmrAq5oE5r1KlHU2O+haH3TIxkJgdYm1qsVJQvroyOGxYJajSCB3W6HhEIpM+KNaWr9HgoB88CkS6InVsMVWtiyXCsrH/F8BC3iMpDrDm9nTDmzmxvb/YSVxrS7IGMcu/DQdqY9tkTqTLDAAzc3PHNxn922kVvkYp5ocyP6wIo1e7+LeOJqusL+7D6hTWgT7qUJLbWLO40UlDFYrxQyIowHa9c5Fk4J0lNq3QqJQC0FkcCSxSE4AjQeFjrpQFviEbu5EAch2EjOjkVhGzJJAkcGMs9clIKNkVYheO+yMA1Ub4hVBgQR76B5+mIeQm+oF4ekSojS0/xUepW6JUBIh0pvrTOiufOitM8dmOCWes9LcibLYM4iDb0qrE5tkZoShIGlJUJTlEVPdBTQ4FTpSWEahJgiowQ2ZUGsnUuVW4RoeEy4RLQGxrgiSmUIQvQdcShMvicYDOLs6kS1QgwLvCZaTlSJ5Bi4sqqs1oIEJYsgdWBIGxaLPm/1pBVBGVjEQBIhiHUh44mkmRh2iFbO9sdUDJGGs8JsonkHj4cUaVSSKuOQyNvKuZ1zvFlQthPrYcVz5/eZPMMiskmJYAGTgTMbeGD9Ch699XquX3uYMAZSXBIyHI3C3httsWTeFvJu4ubJDdhPrNZrsvSuGgdKUMzAx4G0dDzXbrFrTkyBPBdOWPLc/cpRjWyOr7I8WrGIJ8TDehEFjhfCOq25vl4yRKFq5GK/I0+F1ozT83M2JytojdZmWt4jQZEUiSj7uTFLB+5rFKrDvd3EnfNnsKFSvNJ8YrEZmOaZZ2rgxtE1FuuHWMYTgik5exe/6YI7cp88rAg58CmveAVJD50PZljLjMOSfc4shjU+zUhz8L6OiGs3Y4aAmZDC0OdAawy6OFi86Bs76Yl1tJ7KKg7WhBgGYlRKcSLWOXDmtJZxaZjGbk3JDZHYhXAzqjg2DtTmBBcGDd1CCrTWfsWEwuX4DxsvpX5yF8w6K/nZ567w977zy/kTf/Q7OFo+eamfXqb6aXepnwgWgEf4N/8aBn+EcvhMtrtHEQts4kxJP0srV0n1U9H924k2Me9eyV2NSG24GbMGKspghjXDJRGGJwlyTq1HVIExfQivC+b960hRmesekUAor+7P6/waEk5MTxLinU+IfrLDIVdxJdYXr5+w7pjKVshWPqZ+mjkGIMqGGDYv6CezR7j3zJ/k5vUf5ah84GWhn4Zw1K81OHj4uOinbRnZTV/Izc07GW1/qZ8u9dMn9fiWb/mWW3/yT/7JRUrJP+3TPm37Qz/0Qz/90EMP/YryBC/HSztefMefLvrC33rbPBbAhBTSIVUnEEQI7jQCs8w9TY3OjHA7VDukJ8u5LRBif/CpiNResfR4qLAduBymqJ/T/SXK3MDCApdADOdIE4YWiTb0wxDpVoY0bDjWE+azU/7FD38Pn/oKuHun0gbFc4EqLOOiVyEIB5i2UbL3BTtEUojovO8BCdrdJ2Kg3ghZaeak0Ct5pWUcQWSHSK8iVIGkgnjF2NBsQalrCBsIE2hCaUA78HcaFmqfoMVIrZBbxiUiB1sPCGtb4SVRvAcZpOBoMqbQCALZG4thwVz0cOhjHwXjLKg4QumTaQugCdGRVh3xzl4oZU/SAgTOzguf8eY3cfV4wcXpfRgD22rIuGZb1pQaqH4K9G4D8c4bShKwKiyGAa1C8ECUBK6Y70ACmjoryN1x7xV0oXNN8NLZGC6oJuxwH6UwMITEIEsE4fiqEgMMyRkHBYxxGDBb92orldoKc81Uq3g96q3rbWKaC7U1LI94igQO/KTgDGmJlpHV2Lh6PbBvpS8GtVBbYbedIQs2X3A+7TkvxujwyNGWwe9TizDXws4m7u0Lp1vj5v5Bzvdwtm/c1xV725I2kWG3ouUtIv33a61X34PNFKdXlMUpNlBtQ4pKTJ0Pk61iCJgQ09A3cd5QlHjYMPpBgC3HDaXtkdBYrJSdZXSI5FqZw8CwXBH3OxZWiDFCgblYZymp9E4EO/ADhQPERhAUtUhwxTRTaqY6PcnOnLFNNFq3ZphRmyOauoVNuiXGsS4GtJLDiMjAYhwZwpJSKlEydc60NNJE0VIhCxWHuO6JajqjVjEaKY4MGhGEbImpQZBE09A7MK2h3hMfRwwPjns3IohGtEl/9oZAaAVV7devEXHt4sAaz+0mGDdd0IdE3s+kKoRiDDFRqxJCIEjo7JWoL3QJqBgqjSBO8wbpPsGUwUaGlphroOUBYT7YecAl4E2REljGQJ0UTVepLMjzFrtYMcQVLTtpGUnDgpojjz74GCe3HuOuLKAUVq3wwFEiS0UM5J4huTGEQPFCWg1csGflA67dAmGqfQOTIj5nplpZbTbkeSYOS5IviK1hZ3e59tAGloGwWBDikgWwHgLqlavjMTEMiDTmOpNiRAbh9PZ9amkslwPzPNNKQ1vpCW0uTFPGNSBx7LBznGa9syWXHfu8BXeiRcwTwQRx2Mw7HnnFwwyLxD7AYlDO7t1hmicuLpz96cjKINkdjlaVzB6pI64KKNM8IQhl3hIV8IZL35C4d7ZSqHS6jBmdK62YKKEFXApIJmg3krjJ4XnoiabNHDE7rBcZKwUNEYJ3lpcbEWWpSgudg+nW730TiBwYmr3+jRuEFzrnL8cneryU+glRXBpufggYAGXuz9qlfnqZ6qfnXVyf3PrpxE+IaebtP/ZfvvDsvP+n/isAXv/r/1ve+OCO9z/+ufzkO/80r/qML2WW29y7/V8wnX7OL/n8Pfzq348OZ9y9/yco+fXceuxriMl45gN//xf8/vP7fxWAEJ7mkYffQtDbL7l+kvBjXH3oUcSc2Hjx+sn6vVQlwXj8MfVTmfs6EeWIMa1f0E+tLgEQGck2vCz00/HR+/kDb/ndiDWKho+Lfsr3b/D0h76RzeI/Y3n98Uv9dKmfPmnHb/2tv3X/7ne/+6c+0ddxOX5lx4s++PMae2oVoNIQMTRUTCYIvWm34bgJJmPv9PFDGt0hBatXvA9pVdJwvPMLaKhCkIC1ftLff46ilnorLu0wKRRi7BXclEe00sM/VDE1mjptaFzE5xha5vv+yffw5V/6Fn78x95HbAvCvpCsx3mHtGDfGiIVa1uCOqMmGCLmmVYrzaWzXRy89orcIFBDwVojaBe9EbqdwA1HsENUlIigJIp17k0JFQ8dQRoY8HJOyLVzNEImc4EhDGFgMMV07LBep1c+ZORCGpIKrZ0SyAwekRYYxg1JIupQWv9ZVRtj6Qcw1Y3WMjooaoZZBxu79MmueUO8i/OghvtM0AUqwqd9+pvYT1vMl4gd92p0SaQ6Ef3ihcNalW4X8kPV2s2orVFbb8Xe55nVckDoaWT+PNyVhoqDCohgtWGhINqoRRBP1ApD7ADzmh1dj+Q5UykIRtCCaujsI1VEGzEFBCENI0kH5jZTXWie0Brwuke9ULwSsndYdHNmK507QSM1R+YIURli6hD2AdajQQrM7ZgrzSn7ShPnYtrBTtlNO+a6ZV3OuFELno2WJ+bSyK1yOlV2OTIVw8427M7uMk1n7GvBqiDqqDak0ZPzRGkBPBRoA9EG3PZYrYwxdJusNIrSq/6HytXzYRm1FSQoGoZeCVVHk5C8sgyJ5AM0ZRGXmCQCQg2QQgNVnEIpheJOPVBJuuiUwyF9T6wMCm69jV+qQTnc8+6U3K0DIr2zr6f49g1L73ARVCMDhaPlEevlErUGtselIqGyQHFT5mCU0dHqqJVDBb13wkAXd1oTC1FclSq1f551xsqWPYGE9eqjNoI7Zo2i0j9/S7jPNAJjk165PfwcBUz6HDdl4WJnbEZlHZVFLpzUyhLvVqwQEbptAqCUdoDU98q0SoC2pJVECDtoXTwnO6NJI2gm0A8ORkkkByuVQQaiwt4zc0iYKnfOzlDr3Q6ixix7YtmySBsefHhkGCaYjZCUKMYQfu65m9pEGhMaE14bPhmGMA09CS2N3fKmXlEz7jx5yun2jFe8OrFYd66SuEMwFsfCIyfrziiLEbGGmxJD/0yGBJFGrZlBldIyyyCcbAZ22/svfF6t1W73UKGakVslxB4nINpjD7RVBlOm83PKxY6VRoINiESYC7Ea25BZLRcsPLJsA+wqbV9YyMjOzjmvT7BeJFYoN69cJZBwHWkeUAKqglmH41evOKHziQg8v7AlMUIIfa5zR1PAveJeQWqHUIuDRQKJpj09rm/0w8GwaX2tOYjebv46WGBcaZaptaHa7fuDd4A+4rgdLJfWEKF3+16Ol8V4KfWTSe3vL4rYgfflh9T3S/30stRP97gCgFzqJ279he/g4rkVH/7Imu/+7t/Dl/+ev8v1q0+wGe+ySEc8eONneOPr/gxxpUz1hDu3/ibl/ncxbc/I85apdY6uaESlURpIfAITZX39W2kyHg43Bh586Pfj3pND3ZxSXsed5/5rrlz/04zpZ0npPjHd7bbBXzX6aQ3AehzYLFcfUz956fOSecHso/TToWgwWEIJnzT6aZGe4s2f8rsJ6x2zTJf66VI/XY7L8WtqvHh6Zdh3UeMCrr1i44LpgB0Erb1AqegPnrigbnR51E/1HQNrIB1+6t4zqIIEooxk66fzQE/paY4P+VAlh2CBUHqVs1JQEUSVFgIWoKrTdGYjR7ztX/0kj936fG7eepQnd/8DSRqxJao3UhgoubAMA9YCIhHPGZVACAlTp2oha++oEiJJEsEabjNznIghMOdK8MSQlpTSkLhBLZKsH1aK1f67+Z7k5wTpFp5mjQTMMTOzpUlm4JihniBtRqmHSswSgmPeuT7BI0FWFDKIY0XJuqKx5uEhcLJsrMPE4M5+L2y3zlkbgBFloBCJqnjreXAq3X7kZofqWbcNmFeGONBy41WvfISrV07Ybk/xvGBQZ5kaica+GfjYJ3B6KlizTnZI6iC1Jy/FRm0TC03gBWXAzXANNOtwXg1COaSTNTFMQYP0dnVv6KhMpaAKm6MVGjIpVXbzBUlHanEEYdu6ZTbGFW5OCIomRQdlGAc2NRNSxDUyLDdYK5gK+6SdFefGvjbOpxkJMFmvpJbSuk+ptb55UhhrY2GQhgV5dBYpcOJCu7ZA2zFixm7ec1Em9nXmfG+sSoay59r2vPNXpkC+tcPsCLwwz43T84nT83N228h2p+yqUEqh1kTNlTYkplRpQQiypOLksmMRhcU0duYKjnoXWYixj4fjc4nEYQRpFHeWoiSP1LmSS2cVdcx8YRwG0tBb6rUlbDhmOlQtvZSenqcBM6MdWDiFih1sawHFZUlhBDWMuXdMiHX+EglcMA4dLSoQ4PrwEKt4FStgtifKmlwLYqekvMCrMIdGCY2hQlAnpoJ5O0DwlZiUNii7oCxQkisuxjbMTBSGOiBRe1XQDRASAZOI1cqCiFljRlj5guClz0fmWGj9dxZjYUtsC1OtECYu6kQbHBkT5oq4HUS1EccRpT9nJgvwFeqKSkOjU2zV4f+q4E7RxhwbQ94xhBUhdxt3FKGFwqk31osVNvd2mu35OW0USoRjHRhs5F5x1iePcbJ6HbKf0LHgVVkuVwTxDnhPkaOT1WFOVjSMlNw3InPt4PJhCEgraHNohdp6FTlvtwxxZFgMiCpzi8i4IorgTRhloLba+WaWuwXdlFqBOCDieM7kNnPjyhE1O8/euccQlN2+YWLM5jRzDEgIVnvHjYgyhMBQK9Ozt9mEQqKAVBDD6swoHbh/Y70kDMDoMBlcZJgX7HYTypKpVm6+4jHC8hHyXEmh29QNwRzk0LKkGnACrXXLlqoQDx0crTlBtdPYWkUDh8OMgxh1UIsoA9Bw6Z25vQLtiAeaCB4CJqF38ooc5lftXU6xH2Rog6iKhMi2TgiOhohJL8L8XJfS5fiEj5dUP81ARi1g1rsWXB0zu9RPL3P95Jf6iZOHzmivq9x8n/Dd3w2/6dcvuPHwwL5e5Xx/wqpkHip7yvbhrp9uBLJdHA6tnHm2X0A/rSllIMk5bvdojEypIkfvIUpPAc1lR0p9zkzEzgGzBaP3kJnT9gZUn0LDPUQfprab5OqMKOqRXLyHGIggOBKeYFyeoeEarbyCRfhJfIhctFdT2hJqfeGQTaynDFcP5FKR8B5CeZTt+TdztPo/UMITL1o/PT/tH8VbhLL9mPrJD9vAFCsp/px+Eu8Hf9OgrMLLQz/t82v4sX/9J/js3/xX2Yx3Pj76aSFY3LEJkcGOLvXTpX66HJfj19R48Yw/Hw6K9NChbg5WUZZdlOpBREpvHXZ6y67QqwpYZ8lo6OlWrS1wlqiXzr+xxrZ2Hkc7PHBVemR3zBuQhllGo2E+UTFUjUZANRFVUZShCc1H6m7P2RNP83u+5HdiT52xvL9E6xLGgex7WqmMGklzwzxR48gwLHu114xcMiaQYl9Y0QFYgHcmTayGOARTHGcqE/UQP55MGQ42y1IzJkrsZQisjkhYEOjt6QoEAuoJaxDdidoBwT4seoVf5g7wRYlEhrYn10xsE1eWsDrOXH3wmDe/6hGOF43k56zTwO3bE3fvVT5yVrl7Ubk3Zc7bHpsNsYQdoKlaHKynQnkQis8IQisDeONTPuX17HeVcVyR/Q7KEdKWEEd2FtCoL/BIIOKquDeqFgJ0AKvNqCVWcQN1D+OEozgb+lI0gifwGQlGsIHWDvebQ9AODw86cHJyhfV6gZFpPqOLwBAW3Hn6Hk8+8SQ3H7hJTIlWvNdVPVDmQpXCLmSeqca4rITgLKKQdCCkYyxEYpqJOrORyPJ4xLOT5z2iQq2O5V55LwplnqnN2QfBt4WFLjkrmfH4iOjnzFRkHBjGI275CVIzVYSWwavhapzvd+zmzLS7T84Tbc54hpvXjZmC1C3TnDmbCtM+MO8GLi6EszxxuruPNYE24i12m0czCErzyqFsRfNKM0Niv89oHcyOBmpphEUi10oenLIQKEbc1l7BlUz1wgJlKUtEO6dO1JDhwHRRpeTM3BozMLeIWzp0BjQsOtn2iBtROvcmeAcUmwy94hcMSU4cjGFsDIs9uky0Vml1T0AJhf4cxiWmEG1iZT8n8nBFiLhVkPzCBBfLyABoG3tnTYPkA80C1bobThgwUwYSo0W07lkJTGps08Aurxi9IW7ogaXV2kRrRkjORdsTq3GxV+7lwmpxjOkRogPVLxBtaOwb+ahDF13eodhOoXkXW9EyFQNdUEywlpCmzLrvXQolIihNK1kK4iMUZSUDp6cTS01sLRPDHvFGDBsigQcevkJIM9WcrAtCGNlVZ12d9XIDzViE0OfVGKg4i+XAnCtLGjGmvtl1MBRrzgOPXgfbIJaxnLE00FyZzGkpUavgHntnSnTEGtH75lBlwCQwldy7hbUHAuCNG9dOWK1WfOQjT3I6FxgDrfc5ERx8OzEMA82cKkbtQBZOz89I40jen/fkULp4FVc26wVXj9esQyO2Hff2W56re7JM5O1zXGsDW584uRmR8RyKobJ6gS/ULDMkp9WJyJoQtHeSYCQHdWMngaDK4KG3/bR22DgPuIG33h3UcMQrWCKgaHDcG80ghREHTBwRIYog1r8/eBez1XuXl8jBNporSRQ/iOjm0g/AuRSuL5fxUuonU8GlpxbaoWtB2oAVvdRPL3P95Jf66QX9VJgASOsVt67dekn0k3MPkT2373wjAKvlP+fhh/4TSl3w1BP/kBu3/gvWy/+e7fnv5bk7/8df8pk/Xv8l1vHb2O5+I2d3/xavffgz0VC4uPsX2e8/95d87ebW76TFu8j8M+TFniovXj/F9DM8fOMrWV85o7H7mPppfr6zyfl39FPXUKk6Q3l56KdYJq6cfKSvix8n/XR//wAfevZP8LpHv4nVlfuX+ulSP12Oy/Frarzog7+5eU/EQoHOG/MI+B6z+VD5VEBwtogJKoF2iPF2B0i0NgINbTNNJ4aQkBrIpohlFkEJtRx+qpBUMb9Pc0EOceBRAtEHbN4ThsQ0zTSZMVVyaaxWJzz+5Id5xSMnPL19gnq+53Q3k+KaYNC0cOETLSX25kStiG3R2qiqTOJUbSSB1FaIDBQLXZBph2l3MLUQQ+p2CpvRGFBLeH3+6hvimRBgZklDsFBQdbx10K7qgmQjSTdUrxQmquTD7+3ktKR4ZQwQmzHtd6QYecW1K7ziaOSNjxxx6+bA5srIsO4WDstrhEi9poTlns3NwPmZ8+yp8cRZ4d624XVFtEQ7pPRVN6oZJURmawxBCBq5eeOEq9cWoJm4PMaHK1AnYlSsVVo7I2nEDoe1QkBbr+Y2KpEBK06ZGqwDU54Z4oJqRyQdcI+YCsX3BPYEV7BIccEbB/uCYhViGLh59RqLsXc77LNx/drD/Mt//k4eeuwhvvMf/lO2+8orHpg5GhLXjhpXrwSWacV4ZSQtCicGPq6gBtoc2NmM0Nk1libWQ4DSSOPIYrlAvHI0KFEUDwFfJmYaxQplCa3OxBbIQ2BvlRad/TwhO++ixCpOwhOEMTCUGWQgLda0NnF0vOY4rGn1pCc65kqbYDdPnLdTfDqhzcaVPNHajLcZs8ZUnGl/k5yNPEemqbLdDpxu73BRK/tsXMwGMYEFxJ3RFSk7xgQumToba5aULKgnVjFScLIUWCihGTHQAeaSMBuZwoCWRmXLmEZSvEJdFUKp+NnMyAlrIvOmooy0uULaU4uR83QQjonSAhYCo95BGRjHo86oioGggRIc9T1RG0rGa6/Be4OiBcQIzCiZEgVpw8HK1Qgy4h4JZBK9Y2ErTosOzfGDGLQKzQuS+r2OCLNBY4tIwQO4V4I4pkah0ELDpAtdGLrg9eeFcqBNldSEdUgMg1MloyESGAnuBBlpJTDqgLHHwh4TcBPUB9ZlZGpThwwfDnJTM9riuIuf4BA66HiSTGrdzm3DyP3yHEVOUTLBjonpiDn35+fKeo2y79Y5CyRtzNPE7epMdcNqveoJmq4kF0IIqCvrtELS3MHhLgR1aq1dILXSLYUpIiFh40gxCCWjzQkGGrt8qmaoG+qKS6C54OoMYxdiuToh9G5W0cZ6lbh57YjpYsezux0lNTRUBLAWsZoYJKCq/bB5f46UGc5bT7hUx1EWcYFdFDYPPIBpIo9CHZT728xmTngxns17pgAlXWOz+RSSP4BwjnvrYQDuxNC7fIKMzK31/hwHQcECzZycKgsJVC+I9/sOczA5HE73OTKId87ZoevLvc8VaN/EKJ1BYweIdXDDceqBE9RKRZMeDvh7+p1IRHDaXIjaOu9Mwr+vLrgcv8LjpdRPc8mQoCGHbiZovsdDu9RPL1P9FMc9r3nsx1gM86V+Ouin0sNpefYjC25ch11ecf70wKtefUZarPnwRwamfAMJYM0JWtHYMIMpz+R2wQNXPsKVVvBnNyy1cPWhD1Or8ZGnHyPPjVKckgM5N/b7Uy72p+ir/hRzHinyISRl7tRPJfizPPiKP4Dac3h9LcPwLm5c/8+JDFQ9dBCFQBNo3CFwm8Hu4/XXs1j9OKvl76Fwi6ldZ73+bsbVdxNDZDGssaEhbWLeZ2I8I5GpK0HstRwv/6/oeI/9xa+jlG6DrxYp1te+QU8RSQxxRYzvQWOgtdfA+g6mOyIfWz/tQz/gExfgo/VT3x4GFbbx5aGfxs0Zv+nX/+2un8w+LvrJ7ToXZ5+NcJM5n3Gpny710+W4HL+Wxos++KtpIngAjz1Uxx004HaAYoriNoIIqhnqhIaERcej4KH05DcvaNmTonIeAqcVQCEIGzKL+Wc4np8BYGyNylPEeItSCsEhBKM0Y1cats3cuXeHOIy9PTgNZEnE3XPEeIyEPT/+jh/n7sWSj9xbYalR8wVuxmaxZMqFJkLzSMiBIQayNOZgqHJIRhtwjFYzMRXQilOozSAMNAVRw+VQkW5OeD6evDlowl0obpSDOBDr9h2kEdPYAawqREl0gwvU2JjrPULcsa5CzIewg1XkKz7jDTx4a+B4ZRwtB1LsNg9kprr1A1KUqMJSA8tVYK3CZrlhuRKeur/j9nOV0gZcAoSKhoYG8GC0FCEE5u05n/qGNzCdPQ3TinYxszs7Z5Emrj/0GHfOGxkHv4PLDgBvlVAFTQkxJUWFMCBxQdYVRTYMtqB5YAwD4tDUDl1pDVUlpA4qztpoFnAiQQM3r18hSCZKBySrO1ev3SQtN/z423+Mn3nv+3jwsTfy3qef5OrCeerDS2oqrIcr7EticWvHg+sVIUzcuJa5fhJZLmEcIaRzqiXmnLCc2eYJ9jM5w2q9IHjtC+XYaKGxGoRheUSWa6ShYi3jNZD3iTI3RG4zO+xmUI9oNnQ2dkUoseD7meDWE9xCpNmGcVCGuMfXFyxO1pxwrXcXYExty8W0ZSqFaa6Eac9qnpn3mWqBbI0HZMTnq2gR6nzG/e0Zt88K22mJtyW7+6fsVdg1cEnIAubgNEuMh4D7WHY4e2wxE8woccR9pLlQdc8Dy8Jn+zGPhuv87PYOp1cHchEeXe6RceLfPCU8HY9Yh8aV1S3aMrJZ7tBg7OeCMVBdyXVP9S2lbmg5EGRBsIikSLHawbx2sKxJB/CGqJ0fY4UgDUJl34wCDFJ7K40FgqyoorSQmSQzSCJ2fC+mkJMyu/f0zNgtVenAB6lUZipDjJQQkJZYWsCCsW8VtHcYtjqhMhKCYJ6JMjKEE0qujEFYLCIuW0yFMKwIbSDUbqHyoDQrB9A/WBDEI+qBWWvn3ljBBULqCZmhHaNxRwsTU1XgCG/HNDmnCZRaOd1uMVGyKxepV0KplXlI+MkR97OzloFRe0JmlZF9MU6fywxb5+QYHjhaMrQF1pbMQQirSKwJ0U4lahNYdnTp2OyEmIgpEIIi3g+Y942DxdAw26MauqVDnBCV6to/B0pnZrmTqvfvs4CKUkrh1smG5auM/KG7PHNx2mfGAWYa5zqwao0lA0MV9vfPyfOWoJEmRm4NJDC7IHHB5vgGyQKrFrGSaHPEm3B6UTirkaLGyVp4+Kpi7R7mTvJ4qPr+nDg0jKaGiHVIdTOKGyEOJG9E6xZ70449wJRKxVFQQREUR9xobSbFJWbh57htMoN0+55JIKEIgSqNqk7AGJqgrv3nihAU8G7Ts2YMGqgmFH3xJI/L8fEdL6V+WpXGxe6EYbWi8RzQO8nwcKmfXqb66ej4nP/ot/01gg/IpX5C5DZXb/UGgA8+cZM3f+rTvONHHuXv/r3P52/8zb+F72f+b9/6e/nABx78JZ+7v/ZffwfXr53z//7/fhHbXeQP/2+/ndPTwN//m3/pl3zdlePH+eIv+EpunxX+2Y/8CA8//B0cjd/Gc2dfyJO3v+mXfO3m5NtZ33ortv0Mnn7iv+P6q76MNPw0d5/5C1ycfuUv+do3PfDVzEfvZH/2n3J27yv5jF/31WyWA2/72W9nzg/8kq993Rs+G0mRJ9//l9huPsBjr/4rhLD9mPop9yiF3mX10frp0PBUpfP2Xg76KZfIxe5hrixvk8LHRz/V5y3O6ijlUj9d6qfLcTl+TY0XfWc3Nax1gaEHV6cEpR1aZg3HfQfmHcKZAqUJZom5QoojWJ+oVQJzdUSWnLizv/Nusj5LPT5i2N/j3k++E4Bhd4bbVW6Xc9bDkjpNbHeZj9w+5e5kfOTDH2C1OuaRhx/h4RtXmfY7zrb3eeDGTYbR+Cc//C9YHx9zUc7R8ZhSC8QOA6VVojsinX9CFGp0srT+O7VGtcaeStSA0PAq2AH6GUw6rPuwqLpHkAAD5LIHjeBCrUJajKgXohvurVsSD5NTmStqjZbm3o59aL22BsO4YsiFlK+iNlLK43zV7/uNfM4jr6K2wH7eEUMhTzvWyxWFAcRpcU8zp6GILUieyeLENHBrc50FSyjnzNt7aFBybrRJCayQGhgN6nTBZ/661/CaR2/x4+98O8PyKu//0ONYWPCqRyI39KexGlinEyRfJ5TOEsKPgCOomRgK1i7Iw0wbuthcSkZlxH1DKYUxDITmxNjhs60VUu2bgKR90saEkAL37t/j6GjJxW7mfD/xW7/gi3j7v/23PPzah/n+f/pvGMcFsdzhDW/6VC6agylPbU+ZJkXtQ9x9pvGB/QlsP8KNB4zFQvDpiAevXWe9PuXq1SPW6wXrk4EsjXG1IcUl827Cq7Gji4wWeipZ1AxSWS3WDJqIaqwXFZM9rlcYSaRFQyjYVJAyMrgx+czcZjw3cg6YR7JvD/YnR31kCCPCTI57wqCEFDker3FNFrhFzHaIz1hpTNk53++YpnPa/i4+X4A+yHV9JQ+WjLeMTzt0TlzsL7gzTzy9hWm7pJxFaOcULpj1AkuVECM0Zb9YEptyhRHcqAI6wyPX1vyuGzd4+wecBz71jdxoj/Pgg1f56dOZ5374nNtB2YdCklOIIy7K4EtymFgME5tx6ItxXXJ24YSTFc0GSnFEwJowxCNEFhgTEiGbU7OSQ0GCdGuUD8SwBISSGvMwEiYntomlZhKGOggZJFGLgAuxOrVM5EVF1EAiniNqwmoc2VkDArlEUkxUy5g0RgI95TGS4cCoKSziSJthrhMJ4eGTaxxtEhqVyQptnrGgSOisLdfK3IxET4AUwJt19g1CtcBCF7RmYM6YIsXPOmzbFlhVREFpHRJPZ59YU1oZWS6ucTQIOm9ZaGK5WPLQ+hqy60LUA8xSadpXgMGVVhu37wRO71SuHVVWq3MsZtZxyRhHzBOowXBBCNAYyZvUU/0EBrrNRw1E9oToh6RJDtYex5ph0tktqKACpXY7hwyRdrDBuCuk3k1z5fg6b3rNgvihC+6c7fH5iKhXuHKRmQejyEwqwv58xy43LGSGANLo1ezWYKGUo0Y8WZDikotdZVsaeTXwoedmdrKA9hFOVokri/MeGuADHFLnEDr3RTqBLcVIKzPEgMZAKY2aJwaNRPqhh4sc/gekiNUOQY8xdGENmNCTBh3wcEh4rQeWm6A9zoqKHbokDAwUgdrTXUExa4Qw07zz1ZpDkx4ScTleHuOl1E9PveNnuPHmz8HsKu7XDz9fmPN8qZ9epvrJTDnPD7BZtZ4GfKmfeM0rE3/jb/0g4zixHoTP/S1P87rXfy/LVWFuM3/oq7+feTfiHijuhOid0+UDURNCQTe32UX4X3zV2/AWefjmY9y6mvjzf/67evpnNXJxtvNEnne0+RQvO2JSrt58Mw+WzK2H3soqPMUm3ODO6bv5yL3/FXcmyPsF9SJA3fbjLt1jUknjfVSVcuXDPDC+hSvjbVQS8YG/xaPX/j6//eQ6n3flCu954gmufvqnctWe4vr153j8ovDD73o3PzGMLNbfxdUHf4QpXuCivOnTv55cd4xJGFJCMFqrXOwnQlzQLDGMARF41Wv/IovFSBpHjKOPqZ/GMXN04+/RNjvMFi/op9D6QWP03kX1ctBPZxeP8I//8V/ji774f88DVy8+LvppHPucqa2wVr3UT5f66XJcjl9T40Uf/OkheadPk9L98Vg/XW+9Hdykg6aFXsk2E5IuyKUgDtiBB8MCHXbQ7iD3z1jc+QDDcJerN1/PvZ+6w3i3t55z8Rzz08qwWnHnTuDDT55z586OO/e3NE1IvmAxLEAqTzz7AY42Ix969oM8sN7wb9/xIW498lqGI+Xo4oT7H3ka98LcATtYqUShA5nJWCxkHEkLYlO0QJQEriTroG1UejWZw4TDIcWtCdEDQSK59TRVaOih4mTWD180BNBI8G76ad5jw1UToh2A2kwQTR3MPRXaInEhe2R/xhe+8TF+62OvYVvPqVyw54y2Lyzjgua5A2C9UlthzhmrlRichV+B9Yr5/IyxGUfSePTWwPSkMpE4M+FCG9kLFhQbjaKFiwY/+/57lLNIzKc8dq0QFyPXVw/AbmYYMm2+x2K4incvEjVsyUkJdo5KpugAOhLdWHhEbKTKhsG6DcAJ/TMMgWxCCGvwQGsF94xb7gtBG/AQee7uPZo7w7hG45LH3/8EtQ789IefJZ5E1kfOa179APsxETXxWFPCbmJ//xHu7O+yPZ/YbguLE9hPxlN3d3zwrCB+mzXGerFiWI4sNiNHq5EHjlZsNkvCUlmsI8OoPbRCI2aRZnBnf5eUxv53u+ixGMMAyQJjEjzs0FGQ1RFpGoiaWR4i560KpSlra+zLBRmj0JjyDrVM1Eg+71yUECvK1JMQh843STESY2KxWqN6HWuPMM+dpbHNW4Y6U+YOFK5zI06Nq2nBI3WP5zNS3rGta7bTxNl2x8W2UuuC/c6p4SnsfEcTozIythVbFb7nzlP8o3v3semYR370Z3mQD3Hbz3kurLl/eoWT5TXkysSw9L45dGPXnmOaLtjvlKgbVEaE1NO+5sI4jmzWC2JUvFUsQu30EsyNRVRacco8E1VQNaw2gpee0Maapa8xOwPugmYk3ABZ0mi02bBcel1aCsRK8pHWCk0cyMRYsSQwdSuFWD+UdRpOI3hATHESSZQinVdV50pUR/WCue44Xj6ALK5hOhAJBC0E0RdSOVUaxgQEkERzx6PRSiN4ZQSSKcH6bKOdSNKfFW0MsW+YSy6YrbEGuVSsTRhObbBvTlIlpg2rzYOYjhQmpDQWYYNqTz0MosQYqFPGmzCJ8BMfepZxDDx84yrXcmKKibRsHK0SSY9YRGieWRDBnGCN4EYUo9aePigcTjfc+i9N70LpC0Rn3SCH5Gq6CK/NiKq0VkEV88pklfVmwae88vU89cSGZ++eM7WZi9A3eVYcb8ruYsdIROwuIQjZCxAIrXFleYUHj43gZ53RU2cuTp9GJNHkDi1t8bAgnjwK60fYt5kYpFvHeV46HgBt9JAbJWK120tEAkjv6sK6ZcpNIPS01EpP3gz0EIB2OEQnCEUyLkbUERd54SBEDrZQEadJ63AeBMNwCTjd9iXau6REFW9+sHplGn2TcDleHuOl1E/7Zyfmi/tEmRmy89m/6b8n797DTzz9oUv99DLVT0898wjf+4//K37vl/1Fbt5476V+Ouinh44mPNzHo3DtFcL1G5WqV1h65vj1Bat7SlPkef3khvmAV1DLSI7s98Y63CGMsDvtHaWPvuI+Io1EX88rgmrE2jHzfHTQT8pQZzYne7SdUOcN8aTx4GsX7H+efuIX0E+Pdv1U/xXNV2QfWXEfhlN+dH4377q9xOyYR953u+un9x/008XAyfIaV65MDMsPED12/bT8Mdr+gtIU9+f1k7NZngGxJ1LHZddP69tYHF+8ftL3c+uhb2adrmJ743n9NKbnePVr/s+E8Q75ZaSfAKQbVD8u+qm1zpYsCvVSP13qp5fBeO97GZ555hc/r7l1i/r61x+gnL+KxyOPPPLpX/u1X/vMn//zf/5ZABH5jd/xHd/x/j/0h/7Q/ZfyOr7u677u4R/8wR+88p73vOcnf6Gvf//3f//Rl3/5l3/K7du333Hjxo32Yt7zN//m3/yGN7/5zbtv//Zv//C/73V9y7d8y/U/9+f+3KPn5+fv+Pd9D/hlHPzFprjRW3e9J0gBqETqbEiMHTStjnsgxrFH1FegNSQ4pWR25/ehGSyM1WpBa8o2Dxwfv4LnHr/giSee4dXjFeA5PvLUliem93G2vckz+8iduaf0qEViy9R4wr1tQZ96io0W6l1hsa38y3f8/1gdLXnkgZs8+shr+ODjj/P0ezMtBCoz2lpnrNRGM8FD70qqreClEhGCzkhzVv5AnyAxTASzRm0OqrgUhIaaIiZEbQf2hoMXECeqMJVdr0BIBO+pZ8Ih3chqn5g8YK40a4wh4rF1nkdekhxe/YoFX/LbPovcKuctoHLCNMHF/fuMD6zZzT3JLuiS2I4oeYJ2QdSZYmdU24NNRFWWcQ0hMGjmovbIecfxWkjilBJZjkdcbO/z7F2lAYmhJx6NypZ7LGWF5Ctoa5hC1cNi6XuK9yqstAUmVxgsMZTIog7UXNiPM4u0JGjsk/VB/IsFXHJfyN17upkrq8UGFNwKwzByvt3xaW9+A+9+108iUflXP/FjrKPjs7M/v8qP/vNT7vuOL/jtv53zi2cYgxNfseB6fIgH6ikXTx1hwHbfODoJXJyfk/OS6fQOEwvunjp6X6jbu2x4ljCMlKisTwZOjhKbMXDlaM3VK0dsNkuGZaRp66LokKQ4XdynWYQgpOREEsEhpQUyKBoHgkSGMbAIAeZMSopFyN7Y7yei9LQx80J1YW6GH+5BLaDNWYVeQSUkJDhKZDk4Q1pxko6xaFyULYsxMs8T2zIx58Jq3zcDecpQKhvLPFD21DLRgNwaA2/kqe2O812Di0rb7Zjqjl1bc5oNPc48Pu1I25F9HvBh4Cgu8KlypS65IkuG4lzMPZU7tQW5QRFH4h4JM9Gkix5rSN4TQmJcj4RNL6cKkHNPQJuzsaxHeDMigtXK2dkZRmPRKqvS2NtA1Q2Zbe9EaQ31iJdubXKpNM0QjFA7aFxIiCpVM7ll5FALDKq01jqf2HsnorV2EASJWhv0PD1wqMUQHQirDXUQWoVRR5YRxJ3i0tkl5oRGBxRHJ3vDVGhi3Q4YO4xZU8CqwQGI7d430NYc9Ui0JeiKpAvub+9T54F+itC5NcSBqSYePH4YYUAWM1O9IDS4uL8FFHcj50zOXejlpkxtSfUlt5+uXLt5xEM3IpvjY0gDG526jU+0izRRRIwmTomF8zb335FAN2Z0udX5i4fAmSC01jugREIX/bXiZqCOeQMzQhiYZUGzmfU68tjDD7JMG566t+Xxdo8jGVhKgtywaWLdKkUitSkzAq6oBU7WV1nnyFHYUFrg/HzHJi2oF854XljNe3wNV28qYdhSthMxHoMrTuuJoNCT41z6gUwcaDVTqxFCJKgwScJEiMSucQuoQ7aCWO90skNsawixvx8Zl4ZI3wQ7BTMnyAI5rLG9qu0gPbWxWcOsBzek0IsAvUpNT9v23FMf7XlW7uX4RI+XUj8Nixs88WyiTWechw/y2PoD/OxPXuqnl7N+Wp58gC/6wr/EYvM4xfOlfrrUTy+Zfqo24rtPZenPkT9KP4V4h82N/w73SM0vF/2kh/kUtH6c9NPzp4shXeqnS/30CR/vfS/Dm9/Mm3PmF00bGQb8Xe/iXb8WDv8+enzwgx/8iZs3b76og7WPdVh3OX5uvHgTe+tAYKcDMa0pIrAcKnGA/pRmXPrcWeqWaiCaSIuEo1xczHzg8T2lRNImc/PkPg/Mz+F1oshNnt3fRq7e4v5Zp/r+zO3AT57eYJqEMgxkKm57kjaiBpb3hXQsXH9o5N72NvM4shuEi3NlmgfyciYNz/C+J25zOkQWMZKmhoQ+aXrsiUkZqGHAJCO1gjVcoWpF5ZRqTvOI+BJvAwMJ/LyDarXQiJgX3BppGNjvTxkCaFgyzeUAbx0o9DUluiJmneMQZqo3WgnEuMCtITbjzEgqhHqHR5cbvvoLv4grA2ybsGyVNu2Znv4QiyScLB/kfJ9gAPVEqP0PWwVMFhRtlGlHwqhasATz+TlXjwolG/sLQ4OiLAgkJI20YDQar3zsYd73zvfilhgssUxG0i2JEW8jYencr09w8zDfiF0QfCToeEhdmkEKVRLZB0aJjCKk1kG7mUpSRU0YQ8CkgjfQ1CPgJfHc/R33T5/j2tUl47hkiAOP3HqIf/Y//HNWRye87z0fQe0a6AVNT/ngU+/mM7/gM3jDZ7+O7/qBCz79Db+BVI0Hr6/4wE//NOsrr2fan/HAsrLZKHO5R2ln5GZM2z37s3N2FxeQl+zvXZDPzkCNp+5VnrwjJE1UqyTgmMiVk+scnxyzOnau31QW68DR+iYMFURpNeGlUts9LsIeCx3cnnje/gnjEIlJGPSIwW6wHMHllLzcUV3IuWLZERdadUyESiFbodaKS8C8EUNjGYUdgRkjDQMSR2oxVvGYG3qFOjjbq46pY7uJBYn785bzPLHPRt0reWfs3bi52fKYn7ORzK5l5uJMNbG9+7NE2/PceSJq5INPPMfsG2a/z+2cOds9zCIdE+WM89W2J/FFkJZwU8wVt0BhZGFK2QVSErYO9+fMUa1sxsQ6rdmEwM4M0YrHGdduQ5pLRFrrnTBB2cvMFAUPR1iNDFkYD+DtOQmTV8waownRAnnIiPT7WGyJuFHrnsC2b1W9d32IO+INl/6cN2m4RXLukOasXeqKw3q5RGxgYKSlEbWMlwsQJcX1zxkQ9KgzDMVRq7j34CIPjeoTEmAcR/a7HUNIYJXW1qif4BRUZppWNN1Gx2O209OITrjuWS4HRl8TC1Bnbi0WLGfBOGZOzlYTH3z6Njb1qmfBiENkCMoqbDiOgqUdNWYuzgsfPB9JqwuePT7mwSs3uXIysNxUbkoiSkBMqFSqOKEZHvpnIXRbYpCAuWOtYrUStIcYVBwNkdacJoInKFaxGMjViNJQawgjOStp2HD9wYF45PCBPRcGlhacn91m2l2gdk6hi+qFrsCFRmFcHyHrq0xhTbFGpVeTt7ViZcFQlDRFHlu8gXS2QkPsqaBSULpg7LaVSK+TN2prCJWogpCpFcTDz4GoJR6oR0AroD1pDneCBNQCboLH2A94EJCAS7eD4xU1OVijvB8UWefQqAuqQqHhdcLMqKr9/jQjeSDJ8ML+5XK8DMZLqJ/u3IHzOzN3TgO78hj3zl5N3DxF1YtL/fQy1U9Dgkcf+dG+r/d4qZ8u9dNLpp/m6XU8/vj/nTd+yn+Mjmcv6CfdXWF79ju4evI2bDx9WeindOAkBF0TZPy46Kcx7oF++6V8qZ8u9dMndjzzDPGXOvQDyBl55hniy+Hgb5omWSwWvyKf3itf+cr6K/E+l+Pnjxd98GfiuAgioSfpaEBEmFvDDZpVWuqTb/DeypuS4hhTmwjqHN2IXKvH/MS7b1NO4f6dmbNhx2YDP/XM04xygygj7RDn9UyuPBsizkSUGWsXYIXZF0y6QpaF5ShclDOG1Eh1YuVLalsTV4l5UfnpJ55kIiOp0WpC6SlyeKM1w2XEgjH7juDSJ7xacEmE6LQyM2O4NgbNaKhEaXjtceGmyvw8CFeFUi+w4FjoeVoeEg3rbe/WGWaqSlI5VCGUKhXcGOLBCogRZAV1JLb7fNln/VZee+1BLuYn2M8XzJ4RKk89c8ajj72eKShtPbGQSCtbjAlj7m3NGmmWUbVD27NDiMSw4EpKbOc9ddqxnyEOMyXMjJ7ZtJGxbEh+ncXmPsX3VK3UOCJsORrusbKCsWDQNdIOC7ItCW2B6ohLQudFv38iFJde4JszFsYO8zYOVoGGNsMl4j6gKqCFNDj37jzH7Sce5/wO3D0957f9jv+I7//BH+DiIvNv3vF26vnVnlR39Qq74TpMe/7L/+wP8OTZgv/Zl/4mHnvVVRYGT93ZcfN1n82wGrgaLriSIvfvGm//8Q/wng/8LA9fuYXZ0zzwUOH03tOcHK/4F//jj3L3fIuLUBIMGogUQi00E84l8NydD6PPQrABdUWXjm9+hlsb5frJMSlFjq9uGI9HVrEyxoTqghwWlDkjzYiL0O1Tdoekd1gu1riPLIaBwJblENHNSPNeVW3qzLkyopgJtRmlNQRlzkpszhgC8/2ZCqRxJOvAuVeG4ITagc6WllykzHJ9zIleR5pR6kxtmZwXyG7mIp9x6nvCbstRNY5LQI4+i1onHsqVed7x6lc9wsX5fU7nHfenxLi/QY3CGVvUTnENDLIiaGCMA3GoEIy6EtYxkaqhVGp0aoKQlYCR64yaYw2iCbVkUhzY1cI2V4oq2StkJblTZeqLOIFBlqABsczg4NWBiLigcUAtQFBqazgzQWaGsGPOdBHbZrCKNhCLZMk0emKYUhEXAonZoNoFSTNHV9aMy4LN0kVYKqySYMXwVoEuMooHogvBuyVONXZzR2moCLnOuAjJl1hWiGuKCCHuSGFGcMrOaEWQfeL0fiRPG4ZwjFVnjkJVWF0ZWDywoC2crXVofiiNo7hCFmBilKDdKu4ZdCKlEVgyupCkgWdsGrm3P+Ps/pbF0f+fvf+Oty276jvR75hhrbXTCfecG6puBVVSLoSEkIAmSBjZIiPzMJg2YNIzBiPipx8If3CDjcB28/QQ2G0wqYH3sGkwgjZJyAiDUAAJJJSQKodbdeNJO6215pxjvD/WKSHzJFF6DeX6NGfcz/3j7L12WnuvOb9zjjF+v4qNU5sczip2xiNmVUNdGWotxQrBCiJyXIUzVDlZATmebgTDO0PVKAouCyFFnBckGfihMlLK4CRtoaChoxw/73S2wZmbPGV/hXaRo6OWiKdvKlwuuJKJJaOmVB62ZoGqCXiU0rVwdEjsEnm55EAyq7rj3Kkl0+tWtL4jhy20OEakYSHuhjlvyLC7AS5lANRiCbOEVJHKhGAMmmNkVBQL4HXI3lsxTIZ5w1TJx3ozhhvae5wO3d8IooY3Qb0OOjc26KLFY2h1XkCPs/5FcKMKI2DFUByqHslPEnI9iSeUny72e1xbHrGfx6y7m3j4kf+Fm5/yj4nVvSf89CTlp3Z+He+771N55h2/yWxyeMJPJ/z0hPGTxPu49aa/T3AX6XX9AX4q6Rbue+g7mY6/hlF19KTgp8eqsHqD/NfET6nMAOgczE746YSf/gbHC17wgqc9/elPXwP88i//8qkQgn35l3/5lVe96lWPuONN+PPnz9/5pV/6pVfvvvvu+rd/+7e3/87f+Tv7v/RLv3T/b/3Wb01f8YpXnH/3u9892drayi996Uv3X/3qV1/Y2NhQgAsXLoQv+7Ive8ob3/jGjZ2dnfRP/+k/vfAXX/8vtvrec8898Zu/+Ztv+L3f+73Nvu/ltttua1/96lc/+K53vat51atedd1jjwH4oR/6oftf/vKXX7t69ar/hm/4hhte+9rXbqWU3LOf/ezlq171qoc+8RM/cf3Y67ziFa8496M/+qNn27Z1n/3Zn723u7v7UW04Xrx40X/t137tTW95y1tm8/nc33jjjd23fdu3XfxH/+gf7X3wcTln+fIv//KbPty5XK/X8k3f9E3nX/Oa15yaz+f+jjvuWL/yla+88Dmf8znzj+b9/GXx+F196QZRZRTMY9koZsSqIWsPUTEHmpWgiSCF0ishVJDBB+jzit0pPPvmKcv9fW7aLjQVPHiwJskU6wqXH1WuXw6wY9rR5yPEjejTiiBK9DVdMcw6CErOgVNxC8k9UQsheygtaitsvWCzTGnWjtIrazqKGFbK4IokhaIFwxHMM9FAUKEzRbxAUmKuSVLAe6J6cs50ojjxUGqgwUkEHF481q/wYUopwwDki5JzHjL3Pg6aDWXIXNQIpReSc0OGPCcET8pCVVXQFl741Jt4/tNPs2ov0dmCvIC+LwRntAcN1c0bSL9mFISQMq7UpC4SuoZSVhAV3wd6Ip2Brzq61QITwVcJ33SogqUKtUxdObw3xMNi3bJo98Ev0ezIy4gVz2h6ij4HnPfEqGTtwHcAFDeiLSMwQWpoZEEwj+sDoUwpOZCkoSVQFU8MgWQFCw4pBe8rct8RvREnjmLK7u42k6qmSOb3f+GX+ep/cif/8v/577l8NfDIpUdppjW5KtS2RV4IL/qE57I13eRNj0TO3qZkb0inbM4a5guHy8qnXD/C5Z6HTo15y7vG3Hj99dz5zGdSl1t58IG7ed1v/Qk3ndnl6LJBqgllaEUyCsUN39tse4vd684y32tJCVatslwekm2PdFSzPCi8+75DTu1s0DR7LNtI5QLnxoXJpGN8eouN6Rm2bUI1WhKDEWNN1zkONdOxRhaC90NmVdXY2vF0KeNpaPwm3is+yrBYwgNGjh2GUYoRS6SSQE4Z0yPAkbJQDJxAxCANgvKd6eAK6Cui84xGhjQVG3KaXYGugGUhrRJmymo9J+U1oVviKYwmm5zzDevlEjMj5Z6s5+j67UFTwxW6viV6R+1qgkxRVTQ4UpUpXcdEHCTFmUfN0+eCmlJboM6Oo05IXceq7UgWWadM367pQsKViC+G78GXjLOeWAcKiaIR5yvwgXa9IIQ0OEE2A1CkEkid0oxqJOdBf0QHs5VSjFISOa7JegZci3dHmExYW0ZtxbTJuFSzPByztVnjZIVzFRShkwangpdIl5dY6ClucPKkOKy4oQ3GoBKhV6GJY9BAwCgG2RQfAtGHwcXS+6E1rRJShpSNrJlQBXBhEBc3YDRF60h2LRqHhXFaCaEao36N84nga5RM9IanppKKrAoEjEgoEDRROU+36pm3LYujNZdiYHs65fozu2xuRGpfiOpwVnDeUFHUbHDccx4nNVoSWlYM/Y6OUgQvHrzSl4zznmyGuEg2KKGAJcQNWkDOIjUjzo8TrjUuLlccpUMWkrESGYcarCeLI6kSvTJuxkOrD4k+KYsusM7GXDtUM9pltndvwOIuqSSqfAyUNsKsEKMfjtOM94IrkSJgFJw4zBldEZx3SIi4EnAlgyuYU8wN7S1iDhXIopj3aFQKDmcVAKKJKELWCo59EovqcUZ7aFMSMXrTY30vQwh416DdcH2JDI542RTvP2KS+CSewHgi+enoaExxoLoG9x6uu/HryO4unJ3w05OVn1ZpxNvf/YXceNOfEpv+hJ9O+OkJ46fcL7G4IFvEd3/OT429lU9++gsoJPrFk4OfUh66/rJrKV7/evjJhnkzm5zw0wk//Y2PX/qlX9r54i/+4qtveMMb3vvGN75x8q3f+q0333TTTf23fdu3XX3smH/37/7d2W/91m999F/8i3/xKMC73/3u+mUve9kd3/Ed33Hhp3/6p++/ePFi+KZv+qabvuqrvuqmX/zFX7wf4Eu/9EufcunSperXfu3X3ldVlX3TN33TTXt7ex92T+rw8NC96EUvetrZs2fTL/zCL9x9/vz59OY3v3msqnzVV33V3rve9a7R61//+s3/8l/+y/sATp06VQA+7/M+79amaexXfuVX7tre3i4//MM/fPqzPuuznvpnf/Zn7zp79mz58R//8e0f/MEfvP4HfuAHHvz0T//0+U/8xE/s/ORP/uTZG264oXu852i9XrvnPve5q+/8zu+8uLW1VX75l3956xu+4RtueepTn9q++MUvXj3ec/mVX/mVN73//e8f/czP/My9N954Y/qP//E/bn3hF37hHW9961vffeeddz7u9/OXxeNv9bXjbIMyAKQpXqHuDll6KD7SaIUUI3shWQ+iSBlexGVjZB6xlpuur9GtDTbEod2cG3fH1F3LhQuJa0crzspwwcVRTeUrQjJMKnIWigsf0DGYhREo1J1jWs3o+yVa1yRdo4uWkiummxGNjnkeIW6ONwWJmKsGzQTXYjlRl4qR8/SaUYbsQFGjqyaoZbCMqREdRDHUFZxBNggCFsHKmrELIIGM4XXQuVD8kO2SbhC4NmOtSnEBA9QFxEXMHKYFH4UqCFva88LzUw7aC6z3CjFEZDxlsw1cfqRlub9Pn+9nND5HXwatBisFLYlcMs5X5JzJOiepI/eFykcq11B8DzJlLJ5QDgc1EC1UrgaryDrsQHfJEJngA5go826FVg24QN8WppMxaoLlocLYekclAbM5VjrEPCYNzjWo1PQInkwtGRNDyccKQB5Pwac1Yw+pDzi3QTKPDy0bN8546zvu5banfRz33Psgf/rW9zIenWPT10Q18rpnvDmBdeLWpz+LX35LT3Xas1OMPQns4XnkAeXSZeX8qcu0T7me110o3Hy64/BgzZmnnKY+5XnB6R3+9Hd+h8XhkvdduJedWtHG06UObwFHTclCscLmZMb1Zyek6zYYjzbolwty3uDgYJu8X/FIX+jmh+yc2YX1VXy74oFLK656ReWI8P4DwvJRbpjO0HrFzs4GWxuO6QxO7e4AM/zGmF4UywuCV/aurkirEVX0+GpFFYwYIASP9x5zFRKmRDc4Lg4uV3xgIaUKmt1QKaBuyMBaCwWKGaIctxUYnRMiUDnBidI48GOHNoaLFdvlOkox+m4J0pK6QsmBdrlCc6HtFhiZ0h9RuzU9G/RlimhAujVOM60fsUhrcrcmOA8lU3JGaKE4aoZNrKyFEqHkNV3bQhJGcUIJI7IangWurKFMSdnTuxpqPwi2K1iI9GqoFpJFogWqovh+EEU2LThzkCIhO1RWQ0uK1RAMqVqaVJNdS++OyHKInyix2uB8mLE9gUvXVhyu51w9DJw9EwlaKCnTl4rgq6Gtza3QkrHcIG6EWI0Uw+MApXfdoE+SHZ6ACXR0VOmQik1G6tACYku8LGlkm2XbYaUAjiqM8XgCmayZjc1NfFWRcsGpsFy1tEsjyBjxnspVBFeh6oFIcA4zwQPiPCKe3qVjCXSlohDU0K6FxYj7L+/x4NEVbn/WLZypHWf8BK/Dwkak4MUwSyieqIYrUFxDkkJGh8qUMhiSFLHhN6x52FggI7I6BnEH4gE36Gk5T9NEfF4Q1nvM0pLohT63gGHe40OgmoxxkwlVPQUzjuYHSGWkDAd9Jksh+szObDyMOwVElFSGNhqKoy/HYtvH47VIT/DDoiQQhnG7GBIEU6OnB1dwPjM0lDkMN7j6STk2dwiYCY/98wyKTC4LPhrJZ7JCxNEgJDLZKUUcNqiogWScDE0/kTIIUsNQFfSYQPZJPDniCeQnkRm99tSTEdJBcA9gAjnXJ/z0pOWn4Vo94acTfnqi+antz3K09xWcOvUjeHf0JOenQUtcU0aK/2vhpzpe4Zkf84/Q+DAbm7ef8NMJP/2NjnPnzvU//uM//pBzjuc85zndO9/5ztG//bf/9uwHb/x9wid8wvx7vud7Lj329xd/8Rff/AVf8AV7j5l03Hnnnd2rXvWqhz7rsz7raavV6oG77767+r3f+73N3/3d333vp33ap60AfuInfuL+5z3vec/6cO/j3//7f39qf38/vvWtb33v2bNnC8Czn/3sD2yGTadT9d7bB7cH/9Zv/db0ne985+Ty5cvvGI1GBvBjP/ZjD//mb/7m1s/+7M9uf/u3f/vVf/Nv/s3Zv/f3/t7Vb/mWb7kK8OpXv/qR//pf/+tG13Xu8Z6jW265JX3v937vBz7/M5/5zMuve93rNn7+53/+1Adv/H2kc3nXXXdVv/iLv7h79913/+lTnvKUBPC93/u9l173utdt/uiP/ujuj/zIj/z/VET+/xuP39xD4+CidrxTrzLsiPdaQAOSh9aM4hImCfOGl4DlQnCKao93GVcKy8OWUBz3XrpC389JbsYjB55HrvT4pia3hwB080AXM2m8pJbhO3DimFUCmkgERp2wlTxL7ejD4FJ1ZXWVzc3dQTzVjdmfXySEKbkvqK4JPpCzklTANzgpFEm0mkhmFIaWCjUl2+EwcBahN4dzAS+C5gUiDs+QzTAxkI6iESWTTVEcJn5wWAqRbIOLnRNBUIxAtDGhOJQVniXOCpLDAORNoAlj9q4Jtd+lbXuO1tfQPeNt77yP65+yy7Ne8LEcLJYU5+hXc1K3Iud+0Ndx1ZCN04o2LymuJePAKkLYpJRC8HnQPQiBYhWpBJyPQ7UAHfvzS+RieK/UMwVrwZfB7rwE2jYxmowHHQ7AdIlohZdMSZBlCxdBdYW2jzLeug4tQi6DZk8QQZ2BgkdYC7QyRmQYrkOck7uOBx9c80dvfg/f/6+/l3/+/d9PTptoVPo8p68qTk13aDqPbp1hr7mDejniuc8qaI7UybjnIaO/mrh87d1cH2ZcOMyMJ5E//NMOX9V84h3nuHtR8bZ7LvLzr3k7brMH5hyWForH29DOXFJBvae1wv2PHvBnDx7w1Oc9k3M338T796+yuXMr8XzN5GmJGw+vcOPFHksXOLLrSXLEDeESpRYOF6fIrUDVc2+3z9EB1PNHkf6QaeWhJDa3xkwnjtM7m8ymEyajit1T22yOK9oyJ5VI32esZEKIg9i3S7jQUkUhBgNRYnQ4EWoXMecgOooNbQuIQ9RR1MiqqAmooQYmgVwGEWwtUDyoAx8maBYKQwZv0szwfgud9hRb48qMYJG+6xGMxeqAtl9gnae0RraeNBkmYt8ldtRxXWoIGEdpyTpEVjngcsRnj6bEul2zSomm3oK8RGNPjplU5ujWirZbMw4ztIuU4PGxsNZrOO8psSG4Qu5afHbUORJKIfmWLnVEV6hChSYhJQ/REZwjaMQKaDGKCiWCj5mpjJnEyOZMiXXGZjs4IufjBuHRR9D5ApneQlU7kiR6NYoExBziKpyLlBzokhHFhuqYkCmlIx9XBFUEXDGSDO3BXjdxZYRlj1hFTg61Eckch+vloD0lieCMYEotU+Z9ZnN7G1xAzJMXK6zt8VZhXslqg9g/gIOsg/Omlozzx7ebogSQwZvPxNBjrR/6nk0pjNrC05uatj3CYkRig2o/OJFKoZRBg0dkTSZhLpJNMe2JXoaFr0R88MPrpGE8Dc5j2WM2tGM5evAdSgGtCSPHMi3YW10l1Ea2Ao+ZppDoUuG6rR1iKGQdRLu9doR2Sb1S5NqC0bhBg3LbdWeIfUfuE1QVLsQh+4uStBCOk1FJjRQCSkZIeFtjUshRGJXTxxozDDs8pkgpRBnac0zt+HHgMbITkILiQAQTIzvDtKdDyOYYa2BsIH5o7YrWDEBqgsdRCTgHnYwRCmIZkzJsBjxubDmJv+54Ivmp75TSzejXjjZtMV/9fU7v/jTOXzzhpyctPw0X68BPRyf8dMJPTxg/5ckW80e/iNnuL4Bbf4CfjtoN9i5/P9vnv5dRfOBJwU8mcRhQ3V8jP3FIPVlwZdWf8NMJP/2Nj+c973nLx1pRAT7pkz5p+WM/9mNnc86EED5wzAc/5t3vfvf4/e9//+g1r3nNqcduMzNUlT/7sz+r3/Oe9zTee/vkT/7kD2yKPfe5z21ns9mHNfJ4+9vfPn7GM56xemzT7/HEH//xH49Wq5Xf2dn52A++ves6d88999QA99xzT/PVX/3VVz74/uc///nLP/iDP5g93tfJOfOd3/md1/3Kr/zK9qVLl6qUkvR9L6PRSD/4uI90Lt/2treNSik885nPfPYHP6bve9ne3v4r1Tp83Bt/cbAFI4mSKIANmgnVCJ8dvkDrepJrqUpLoyOiCE57XGkxXWJ0VMBRv+DRh/c5POiQMOOodyyS0oxkmFDdcK5cXDEaQUmGmRL8iOQrOjHqIBzRE+sRC6+0U4+pstUXNseKlA5oSX2NZKXu13gqCBmjA9fhEIpFkhi9FFw5dgtyQ8l/cAFMcToMRj2ZRMGJEWyMMWRYxARNQ4ZYg6eIUtQwUZTBwa4/Hnw9MuiYmEOSUVyPRKW4QxwZrEHLhKwjFqOeowCzvGaZWsajDdzhigt7c+Is86mf8XyWRz1lUbGYX+Ha3hrrEuIdKRi4Jb5kVn0gOU8YTSAX2pxQ1+PcFqaQ8pysjnVeorEjkoiMEB2zXiWqukMsEHWbRgYHPIKjaioW3RFdP2fFcN2sgL21MRnVIAkLh2CeqA211Vg/lNubesyH4TzBAEwEvILKklCvSG1hfx/e8Y6H+f03v5kv+bIv4tG9+3nd7/4BZ898HGXU0WlLM53iZmMebOe84BM/m3O37DDbWXGkU+iUOiQOXCSOlGfcfDNPP+1YHnXcOJnwhkeWfMbfPs/hOrG1Yfzkv30DK1N2tcNsQps9BYcUGDnwwZHIJBK+nrLcz3zqM1/Acz/jk3jno0vGkxEz3+D9NR666z5ec+Ht2PZT2LrxdupVjxtdoilzbipr0uGCrldWfWJvbx9XerojQdsjBMfefs/yyhaX7ttHmgexEBjPzvG3PvOTOLMb0L7FsqHZ48RjeEx7cj7AsqdIAAvkOEKcp7cWcUN224Uh8+ecw/k42N27wUMMO3bdcgnJilfBvOKdDO5sfcK7SBAhty2u9oMeizjUPMH14BJ144l+QtNMj59aafOanHvEjL5LLPLQorVeLKicY6P0VJaZ6opKa3wvkHpyyXS5MF+3uGlNWrcs1onTzQysJruGLhX6ZabNidZaii5Q51j2a3KKYIPwuorQlUzlHFoCwXnUdBA2dpGVKS7VuKI01YrpxFP5EW46RiojxswkCI0foxpZ2RJIVKOK2fYpDg86Pu5jn89997wTUsEsoozI2eF9g0pCXEYqUPIgbE9CyTREnCmNH7KfJSeiF5ajTOtaoi84r5RS09uEUT1jf72gS0PLQ9CIlEyqPDRjJjtnWWXDU5i3K7wFghzrInpHRlhjBG84U/ADAIqTY/gasqtBhAKD+LI5nEErQl4uufHMKSbFmNRTHnPwRIbfkuBxg4EdGT/AsXlEDac6wLFAdgVTO15MDTosGHgZBLTB4agRi2RNdCLga/YPFlg26jqS+p61j5A9XgPWd5zd3mEWMlHWOGraldHmir31Pm29RkhMpzXVzpi5z7hRhOxAlSLtscC2HW9SyFA5VRRHoHYTRCM5Z1wIg6ued8MlZDLMms4NixE85obbHYoYeBSzQgGSDIsGHATzVFbh3SD8PfiTCiJKbzZsfByf394pWKEr/XE5WY+TDDK4ZJ7EkyOeSH7SlKFqcVqInGVx+HlsT36J8Xj/hJ+epPy0pgZO+OmEn554fjpwMy4BN247Gvfn/LTQLR5tPxZKIqfFk4SfKs6cfTsxZqTyfy381K93eOChr2F6/c+f8NMJP53E44jJZPLfbHCtViv3pV/6pVe+/du//fJfPPb222/v3/Oe9zQf7Wv8xU20xxOLxcLv7u6mx9p/Pzh2dnYe9wbiXxbf/d3ffe7Hf/zHz3zf933fQ8997nPXs9lMv/Ebv/HGvu8fd9nofD533nve9KY3vcd7/9/ct7Gx8Vf2XuGj2PgzCiaKyfGmnHm8BUQzWI/TwlgMZxmvmVpXuDJoBJi2iE8k7eitY3ecCNuFzTqzv7hM6StqH1iWq3RMCP5YxyEoLVCXQOUcCaEVGcq+k7Brnio5wko5M6pZpjnFFU5f35BthblCrwtWBy1ZeshxcPUqYBZwjkGjpiSCQIXgjgfOLIoqiEasFGIMw230OAe9KM4dl9SLDBOzgrcR5nRou2DIVIAjajoe0461LzwUCn0uOOcITkglkkuFDw0hTFksr9Cnmu3NhkOuouUI2n3axUVe+PHPZNL0XHz4KpJrVteucLiKVNICgx6FlIZQxgRVfAXBZ1brhOgIJyO8L5Q8J/U9uDHOjfE+oAz6EpiyXh/Q1GWAfpti9QaoYL0yiZ5JVaG5RdfDD3V9KCTvKL4n1MuhFaWMUBkhTEl9wJpI3xtOFO+GEm8RwURwvsGFivff9yCPPnTE/rWe+648hDWFz3zJC/jnr/xBtusznN2C+fyQzbrBBPbaFc88e55/9KI76WbChX7EI3uO2252XDNPLj3Pf7bSpBn/6fV/ysfefJ5n317z3Nt2mdaZ+6/M8er4w994K+c2F7hugSSYSKClYlVanPV4B1mVuh4xqyr2i7Bz0+184tNHvPhpIw7LkksOrpRzPHTVY7fO2J1VfOXfuo7xzHNp2XP/fWvuvrDH0dEB1WKPZ8RrTNd7OJQ3v+mPeOQoQQ2tO6ALayb1Nn3rCCVw8aEVf/b2P+PWz3oeycowUTYB8GQD0xpXJohmRJSsmeQ6DCGqx3Ie9Ef6P3fICnGYMM3pILzsHNEPItLOM7yG9oMmR864qkKLDS5xkilWsOIQ7wcBXm1Q8TiBNreId+AbcnCUeoyzCQ0V0844q8JalHTO0Jzp5kuC9xyuV5TkKV0ZWtDSmsqU02fWaOmwImwVR24VnxNJj/DeKMvEctmhNiV3M0ofSTnS6yHLdMSqnQ96TS6wNkNcgBDpraOvjKoObKgxHU3YGDVsbXqmo+GzpNCSpEX1RiRPSfIwSVqczWjnPXVTMZntMJ/P6fKSzAojEV0ZnDxlqGDJOeMxfDiGQ80D4OEoYpSolLBGVUjpWFA7O7yHoIWgipIJroA/pO+uEk2o3IQgG5jztOueyXTChBGsjaryuGZMysaqTRSMGMeIeDDDGbicMXG4YRAcRi6DaRoqldQpyYykSp8STidIrKg3J+SoiBaCCam0x3OEG3QMBUwKTmq8G1rixApIPch1kSllOdAtbmhZcoGUEsUSYgpEnDiECqeOylak7Gjna5DIOic6y8etWj1iSyYbgel0cLsMTEidsW4TxcG19ZJ1jGhK3Hr2PBsSkTYNrUFOMHEElGOp6KH6adDNRq1HJBAlDp/RFNWA+dVQiaRgpkOLmDmK18FtE4d4xyBU7Y7PsB5nsI81bIrhzKikh6IUZ7Siw2OLR6nBDSYHJseNfgbOK04UJ4KzoQ3GPmpMOom/rngi+akPga5kLDr640aYyOCoeMJPT05+Wp7w0wk//Xfip/riOQBuvuE0p0bXPsBPl6+c5h7gaRvnGI8fflLw02S25uM/8Z/isT/fXPsr5qeecywXN7Prtk/46YSf/sbHn/zJn0w++O83velNk5tvvrl7rNrvQ8Wzn/3s1fvf//7RB7fifnDceeed61KKvOENbxg/1ur7jne8o57P5/5DHQ/wMR/zMev/8B/+w+6lS5f8h6r6q6pKVf/bL+35z3/+6l/+y38ZY4z2tKc97UM6Ht92223tW97ylsk/+Sf/5Npjt73tbW+bfKhjP1y8+c1vnr7kJS85+Pqv//o9gFIK9913X3P77bevP/i4j3QuX/jCF65KKTz66KPxpS996eKjef2PNj4KV9/BPcehg6ZCNoL1NGFJ8UNp8VihUaEvGXXt0I/vHdn6oRTaoKlqYt+xsTuIKLdbSk5KWS/RNrOQi8wCcBecysapynEwUkpuCc2QwdC+HSy3abhS1rgAt/qK7b7BSmHUnGZt11jrlKtLR041MYzI2mPagGyR+4xaR7YFQmLkPONj8dgsSi+ZRKaqIhQl+IZYJjir8SokieASRo8Xh/eBkpXIhEAhW4dZwYpiIozYJLiKYoU2t9gxEIyjEoC0ViofqIKQZUGfr7Ezztx569OocsKzxaP3X2G9V3P61C1cd+Zp3H/fPqmvaFc9fd6kswOiqygpYK4muojTSC2FKo4xSfTlkBgjJfTklGjbnj4VfO1oqgZQsCnFBJM92vUGNDvEJiF6EdZXmMSKdWfM14nJdEoqFRqG3/PaWq6uj1hTEdqac7OtwYadjr7bQzcbVjkyaapBekI4tk03iiYO1sKfvu8hXvtrv8P57VNsNJF8OOfTXvwilk75/Te9mzNnn8NaD+lLpvHnqZsxi33on/Gx/NdVzSP37zM/FD7uuYXPOrvBXevAuRsr9rLjvXPP76Upd7/tkIuPKEdFKGzi2zO85vd/Ea9HjPyjHPSOmAJiBQlGkEKsK3LuMBeZVFuQK3aveza//Ov38umfdh3npo4cxhyZsN+u2bx1wifd8FSuPwz8nWcnvDhiDvRPjVyzM7xjWVj2xi/95K/xB297E3ecP89Dl1c4qcmrBZWfEABtW2pfE4Mymk6YX8qU5QTNhmC44DEvBAcuOrxUoAXnhKxGb0bWMqh7ZIYTriBlmDJzJ+AVdfoBwV11Ee0HAXI/qsk+IJKJvuCdDK0HBMRBVY1YdR2qhboCrB3atwiUUuNdg6UCS2Xq4+CQGHvMZ7ILBD+U7oc6oNNtssCuBPoEJkJXKpZdQK0Qrm3QLZesRVmgtFMlijFOp/DFkFnPNpA10LfgNdF3VzGdInYTqSt0q0zbruh1jlpDqMf0rmOVE+oqQrXEuzmegvnTJGmAjpHOiG6FRMPFObkY5oWkCb+1iZRMaTLXFpHffvO9bI3HbNYFxyCE7b3DxYDL4MhobhGng1Om1WhSYklIJRQdsvrBRTQLXXB4RoiB0CNSCFE5ujqjHG4yskBEUG2h8mQLbGydYjmsZsi+QBA0eKJTQl+IIkgZMqIBCOIxhva7YqA6AFvnh/nSH+ulNCq0fWFuhzQuMakKQRf02iEhDE5uUkEJgMMHB7bGm+JRVLtBPylAi8MxbEx4F8i9Usow14hEnDTD4tc6zIbcb9KEi0K7GrLc3gKWe4JA1oSzitJFZltncWxgvqbTxHql+LJJbI16fYnNrMxL5vT117FPxkcjmBsy6sVgWM8NzTwFHgPP7BLIUL8k0kOlZDEqDTgTgsRhPkBJplRFjvFUcG4oDuFYyw0X8IBTwakcj4Ued6zlpdEoboDRqB5nghRD3bAwNfE4dZg4xMVB60g9on4A7pN4UsQTyU/7XcPF/S0uXlMOxXER6FxHaNIJP53w0wk/nfDTf8NP9bGL7XR2PTu76w/wk1Y3AnD2/ITT2+efFPwkvqLkET4s0bz6a+GnZuNebnnW/4ONs+dP+OmEn/67x9mz5KrC+v7Dv6Gqws6e5a+0HfSxePTRR6uv+ZqvueEbv/Ebr7z5zW+e/NRP/dSZ7/me73noIz3mu77ruy6+6EUvevqXf/mX3/R1X/d1V2azmb7jHe8Yvfa1r934mZ/5mQef85zndJ/yKZ9y9I//8T+++Ud+5EcejDHaN3/zN9/YNM2H3W792q/92r0f/MEfvO6zP/uzb3/lK1/58A033JD+8A//cHzDDTekz/iMz1g+5SlP6R9++OH6jW984+iWW25JW1tb5fM///OPnvOc5yw+//M///ZXvvKVDz/rWc9qH3zwwfirv/qrW1/0RV+0/6mf+qmrr//6r7/0jd/4jbc8//nPX774xS9e/NRP/dTO3XffPfpozD1uvfXW9td+7de2f/u3f3uys7NT/tW/+ldnr127Fm6//fbHfS4/5mM+pvu8z/u8va/+6q++5ZWvfOVDL3zhC1ePPvpoeO1rX7vxnOc8Z/0lX/Ilh4/3/fxl8fg3/orgbIa3A3R5hY1RxNdzrBhVHi40044Shiplr4KIp6jHuRGUxNgCpIz5EVL1uLhkNjPW8yVhJ3DY12zFGVM7AOD02YDvweXxsaBoR+4XFO+57GG0NmasmB7us3XDWfZzpJaIMqe2CS55FprJeYnWYwSPWU/LEalKYI5AQymeeV6Qg+KaOGSxXcBpwHUVanP6fgG5pooj+pKwas3ahEoqLGeKrom149A6KinkNKfzg0151BqznlXXUzc1Kj1mmShjSjGSy+RYSC6zUgUzKlNuueF63GSP1fwa/QpWh5fp2yVnbzhFWl5kfXmPdW8k51hZR7FDDpMxqkeMfUGykRE6FylliuYaZIKPmUyhlw0euHpArsbU9Qr6FYTTFBmTWNM0W/gwIsaWIGvQiuAjvkSyh/l6CS4wq0aMdR+A2WjNKDZ0y8SiB9dXTGaBqXeEvsfnhJrSpzUiIySM8Aq5dNx9/928565D7n/oMrtnTpMNri17SI6p1fzsv/sVwmSK+EP6hSHViFW1RNImefcUn/kln8It1wXONpE/2TvkubefpUs19zy84k8OE3dueT739gn/w3W3cvViz56N+O13ZX73Ustt1ZJ3vfbt7Fx/itWig5xY9Wvqakbp5jhZQH+Gtp/TbmyxVZ2mbZcsN4541vPG3Lo1VDTsGJyTnjSLyAQWknjT3pw93WbHQRJlLQ3XTLljIjQefu6d7+CR+wuLB/+YEYlWC6GO+GzAmOQ6enqKr8B1XKNirg2u9ERfKMWGbJo3St/hXMD8UFLvY2DsBM2C84arHRTBSoVRyLYiJ3+cPTOK5aHMvu+QIIOmUdcMAFUKOUDGQGx4Ph8o1tHUgpkN+hihQnKFK0JqoJOOmHVwZcwMLRh9AWeYBMSUrD3ZCyEO2bZVmCFOqYLHhxnj+ixqEKbDsckSKWfWq0zqHanPWFqiuqLrM06V2KxwKDWn6fIA01UxZqkgOaJdIalj1S8G1zRrWC8Le5XHUSFZyO01jrrBpbHLM4IECAlqAT8hFJDgMK9UVWASI6cnKy48cpG2zDi3dRrVBdlDwFEl0OxpvQc/OG8aBe8GV88lcagG0grvOoIkMi3BO8Z0BAukULHWisbNWJVEG3rWumJUCdNqhNNIkypOj8/QJ4d5qE3QThiNA1IV5m2iWItzg/6MxEApEEwQ/XOAdTg6CuqGTGpEhla4BujWLCXy4LwwSxWTKIgKUjIuOIrmIWNtbrjdPGZ+0GOhBVE8AU2DnIMEBmD1gb70QxsPMrRg4QiupmCoN0zh8Noey8P5sDmiw3G5VDgLpH7FdBRpGk8mUPlNjhYXaMuCVUnsr+eEWDGKFVubO4i4D8C6k0LwjmxDBt6bxySQZFgETJnSl4KrA112OByuFHLISPaYVai648WbYtUE02Hx6MXILqM+IRaGz3/cVJLxEAIiSrE8LC7VEdSD8yTxGGUwfXAO1QAoIRp17sgIS4wMiB+qTk7iyRFPJD+5w544BTeKLI7xXOJ0cK484acnKT8NmwOz0ZomlhN+OuGnJ4yfZD1U/E2mW0y2tj7AT6Njua21eyYHTDAKp88+wEx7DvduoHRzptNHWHQrDo6exqYLdGvlMPfDZlwJaB6013z07Iz2CBLYX55ntHFAM0mU9YTl8etX3hGDEPMB+1fWpGZCPLtNVT1KPb4GaczF+1/IG//om3nxi7+dqr5G19XH7aQNOQ2G3yIOL4pzPbPRAziOyGmXvtthY+MhUqi4tH87MWxwbZE5TDVmhQYYpQbXBbxbnPDTCT89cYDwEeKOO+jf9S7edenSh9+vOXuWfMcdfMiKtv+z8Xf/7t+9tl6v3Sd/8ic/wznHV3/1V1/+YGOPDxUvfOEL17/5m7/5vle84hXnX/KSlzzdzLjxxhu7l73sZXuPHfNzP/dz933FV3zFUz7zMz/zaTs7O+m7vuu7Lrzyla88/+Ges2kae+1rX/v+l7/85Td84Rd+4R05Z7ntttvaH/7hH34A4Cu+4iv2X/Oa12y99KUvfdp8Pvc/9EM/dP/LX/7ya6973evu+pZv+ZbzX/d1X/eU/f39sLu7m17wghcsrr/++gTwtV/7tfv33HNP/T//z//zDa94xSvcS1/60v0v+7Ivu/z6179+8/Geo+/7vu979P7776+/4Au+4KlN0+g/+Af/4MpLXvKSg6Ojo//mR/SXnctf+IVfuP87vuM7rnvFK15x4+XLl+P29nb+2I/92OXLXvayv7JNP/hoXH1lj8wBpDmXH7oXt7FJ5ReE06dwRalcwOPo0xqtDa8Fb56iAZOKEAKmgZI7JCYUUFdjAn48iJKOfUCzst1E4C5uOxU5dPscXu55dOnZz7tkHWMs8baGqHR5QagEXc8RLXTjXRqLeC0E32L7B0Q6XB6jphg9FR1NcOReUA14c1SSiBaRDGqOCkdWKM7hnKPkjlAHUlrhfCACouPjUuwjnBOcbWBtwkWPt4qog3CosxZXllgppNKgJJwbMiHuODtBEYLKIBTswIXIbHOHxUFhdXnNo4/uMT9csTXdovO73PdoS0kT+uNy5qN2wTg21FVF9I6cMqXrUVWKQOOUnI1QgXpjnXseWbZcXS2JdQ1q1NWU5JWSDtn2QuwSAJ1VhJyZhhFBAsEMb4laMtX6kCat8TpodNZ0zJqeVUj0vuXCXmG330R0TDg1Zq0wtY6Ya5pgBJvT5T3uv3CV33rd+2nyzWyPz7AKj3JUDojjhhgmvP2ddzNfHnFu9zwlGXUMZFcYjzZZHhzxrV/9f+NzP67mqgp7e4W/+/RtnjX2LCzzSPa0D1zg0z/mFkaNwtgRd4ROez7zjoa93PJzP/V2RlcS4WwiL3pGU6Xe2iIfXiVpxvsxVVoz0prrwgbaRy6mGZ/48R/P137R80E96oUiRtQ46J2ExP5e4F3zwi3bxjkH2RnvWiV+50qk8wfouy7xnj8+4MbTnsVVMATVNZVUiBaQNVrWhGMwJGc24wZ5cYUYOjKO6CokOfByDJIG6nAuogkQwfsIZY2KESSC96g4RnGD3pb4HLEuUEQomnAhYxQ0g2miqFI0UUxxwQ+wnAXvw6DV5DxNCDgZWmAqGTKXToQqRgh5KMcvZfgceNQ8PmecCGpl6NpIjpINcRCDI/c9McZBr8QHxDIhOryLjCWwsyXkUsgKVqZo5+hLJGlitbpM6hak4vFdO2idJEMSiClFtvFaGJUIvce6ntmoY6RLTFeYtljxlL6mWwdKtSRIQFXJK0e2BqoRPQFkSfIttW+IzJB0MLT1+Eg1mUFKuBygruhCImiL2jD+OBm8xxwFiZmSh4HDSRxaRASMQPIV5jydCorD+8j6aImnwjmHdxnoQQax8ukkEF3Gjp3mnHNoDjg3JjYjUt+BgJDQkghSIUCxwXzAyeDGVhWl2KBL5tQhVggYtatY5sIDDz3I7nbkpjObOC3UcVjkRD/sYrRde6ztBEjARwHtUE0YGXEgoWDiKOaGrK1FRDzBFQxP0UEkXM1QHMECy8WKrl/gpcX7hJaekYuQF4R4xJnts4zimrEf0euaRXsAEQ6urcA1aC7sbgfObtT4kvChJplhTjFVRkSUMmiOyaC7IwLrcuwumstQaVGUoMba+6FFxAZhaHEgTnBlzbEaD2YVop5gNSqGOYbMsxmGMpSUgKp+wMiA4/sFHbLdKKJy3EjjcKp0g6QPIkLlhGBCKCcaNU+aeAL56fR4l11fs+WPsPaI994Np/QyKXHCT09aftoCTvjphJ+eeH5aLQd9yXM37HDT9XyAn3zVEWPP//Fr//cPDGPf+PXfTTM95Nd+5x/S9oEv+rs/gFvN+Mlf+ncfcfjbnDzAZ774KwkS+J03/nOedfvPcdstv8bFK8/jjW/9lg/7uD8Bnv2s3+ATPu6nWV99Km/8o2/m+R/7c5zevMLb3vE/cs99f/sjvu4nf+J3cmr7zTx478u48OBn8Xmf81V0KrzlTd9N2+58xMfe8sxXn/DTCT89KeKOO+j/ujb2/rKIMdpP/uRPPgQ8+KHuv3Dhwjs/1O2f9mmftvqDP/iDuz7c895000359a9//d0ffNs3fMM37H3w32b2tg/++6lPfWr/m7/5m/d+qOcbjUb2oe7b3t7Wn/7pn34I+LBVij/wAz9w8Qd+4Acu/oWbP6yL7ud8zufMP/i9nT17trzuda+758MdD/CHf/iHH6wz+CHPZV3X9qpXveqRV73qVY98qPtf/vKXX3v5y19+7UPd99HE49/4c2cwE+ZJuPfKIavlimllxP3EqK4YxcjmxgR1mSYY4jy5PHZhAblQScRcTWcJzONDjWnGV4G+68DNCFXGuyMAxqOO26432us8z1o6HnrwHvbyJvvpFOtuk9b3rItD2SW4jKZruFgDR8fZlQ1W3RK1iJYV6hKaHQ2noHdUVWJZLmNiWOdRV5AyCEoLIGLYsYCtlgDOU2RJqIC1IEScjxTnGFotbCjDdwGsQYoDK2TtiT4iUche6FVwNpRse6sRraA4go84L4MOkPc8st/zX97wbpq0QkpmVteIwf7yKpaVIDWr1JFLTz1Szu2cRYuxmC8H7ZtQ0+eE9zVd7zGF4CNZFRc3uPfCRXonROlxOSJEpHRUUdGSIFZ0pdCuezankX65hpgpYriRp4ix1/Uc9R3TdhiTVmXGYlERNXEmOLYnl7nr6r3M1zs8dfRsyBv0qkxjoU9XufTonAcfPOKuBx7h8sE97G60VHGbmBObfpOuwFI6fN4bHPRKYTIZUVJHHT19u0+otjicz/iRn93jQr/kVJjzt//eU3As2WLE88Yrbr25sBEHIdjOFPNj1OC0Bzlac/+b30C9eY16viLFjs2yZnMrcjUpdBBaz1FdGPlzNGr8sS15zlf9A779c57B7eMVvVUEPMoAWS70iDr2Fj23j6fEUNC+50+7Kf/7uzNHe/vc/NTAr/7ib7DevERs9yl9hQVHcYN2UVCjCX6onnCDnsV6fsR1z3gKtroK0qHOsXAVfjweFmPdihgDqMfHwalOBkGL4TpWx+BSP2hbaBYyDZUIo6kjayHLmJTASUsMOmSwxZFMMdNj8ByeAytQBu2qXMBUUArJJZw4Qox4jahFzBVcOHY8c8PMXmtNsULtarpUcASiF7rSggNVo0sdpsOYgquI2SFAClCiEbLR+CkSPernVNZjvmF3+2k4EdbdgpwzOWeWyxVeIkeLBYs8gbSHEPB5hstKDC2lv4yXTZw5rGRyXpH7FalPqO1ROpASaXOm1YZmdZYYEp3ts3aOZapZaaFdJZpLR+ycEiaVYrKC6IijiGlAXEC1IaWMqeKjElniUiDICDSgDBU/G7LEyhpwVOIZhYqmLOi69x4vHLYIMhoWKg4sFFyT6dPh8Jv0Nc4cfRG8BKI4XHGYDlUIYHhAKcfOo4IeO2sG88fftgMTVAcnucY3tNrSdj133/sQEePGc6dRD8kyZgkz8HUYtHdSQo4XNqaDPE8lDhVHQilZMfN4F1EU1Ty0/4geU9kAf85HnMLlq49gviWXJap5yIynghZjWm8wGW1T+QlSIiWtWS4OGNWb9LkDTThN7O7McNLhtEI7o6kqVnmNc37QzpGexCCc7wycGYbg3HBOBodRh3MQkkPE41xg0NYuaCngwuDm59wAqnlwgjQpIAOIy7HhA1bQY8F+7wYBeS0ZBKKvcGKoDYs/M0MxiiguBrDjyhUGoXHTJw+4/o2PJ5CfpAhZO2aTlhvOD7+BFz5VyPMTfnqy8lOyB3n20/8VFtcn/HTCT08oP0kePlsTZozH+x/ET9v8mx/6Ta5cK5RcKKWwtbVBHbf5nM97A8vUwmRCNfJ81T/8IVwxgu+Yp328uMGFVzOltKBHbEwGfvrcT/8qxtUBLlzm9O5v8Hde8BDBZ3oOMBHWueLilQXix5w+tc25M4c47dnefg8v+9xvYXPnEt4pz3/Br/KsO19HzgUzQYtSWFGyJ8iwGT8aPYJzGzzz1v/Mbdf/V9AVlXhe9Cn/jMiU9z58F+s1RDclhgY/fFWEes1s91b6lE/46YSfTuIk/i8Vj3vjb64HmFcIHbu7p2nKmtV8QdQ1R7IgNJELV+ZMQuT0Rs2oKVR1wDUZiQX1jo6EqSKM8CYgg8aDF4ezTC5rXDBMhtZqHzfwbsKsWrP2a57yjDG3p4rFynHQZ9r5mouHh0yajCs9O1GYiOPIbYBMMU6z6h2FBd53mC6pxp68XuECmBmh2mTVrbBgx7oxg2D1MGgcOzBJwDtHLmskGpoNbzXmlxSglIAB6ucDsPuISiRYjUPQoGg2HAkxCJZxVgiuoESyDRb13gK+CMkGR73ltYfJu9vEaUXCsQiR1jL1qqPyjqPlAeCZbk44dWqHdVrTrxNFHeIbOs24UTPoaHSZKI6SCtlX7C0Sl/cX1NUIK0uCGybOpgp02rJ0xiI46uI4U/zgDlU5JEY0tVjuCFVhVmcaHzhVhknlzjPGRp0p6ihhBH0iTU5xcb/w0Hvfw65z7LhdHtpref/7L/LQ/Zfxwbhy7QKb0+uAhvkqEdyIpp7SiOHcEQ6P2oi68nRtwvuGkkH7DosH/Juf+nGmZZM48WxdP+bXN/8Wzc4uZ07PuOvue/jkT34mrQtEC4xLT9EWH3sywtve8QBved9djHdgujfnlpHyaAo8+s4LLKKnc0vSpEfKGWS8yf2rjv/hcz6R//dX3cmEORJqtFSDaLUTEj1RI1Ycz7lZeBYZZxW+qrjDrfn4nZ53tGvufePD3P/O93FThkW7JIym9H2H+IbUK4rHesX7hr5dD20QwXNqe0rqHfdfXnDpcJ87br6NzXVCRz1UmdQrVVWjqaAeqipi3o71Z6qhHN8r3jmSGs41mCqpLxQUDT0uGGJuWHA5j5nijivNSnaEYy0SywUR0FIoJeODHxzMdMjaldJBvyaIoA5yELyrQCJIQCqj2JBpj6MxmpW6qXDE45J8aNv14AhmRpPdoLkDRHXIUkk+kqwjpIhnhnOKuQwcIRaYNeMhW1t6dremZDJn8hiXAm0+oO8zaR3puiVtKuTqWYh05LJAS0vUbTQLtVsPYF8OCaWlbR0rS8j6GjUbLFbbZDJmC27cjaTc4eIVDrLQLaBJjm4SSJUwZVhQ1HWkEsVXAiIU28bVNWbQpRXZelSEmEck8gA+BbzzrPsO0mnoW6T2OC/kHJAyodk5jVa7FBmhLpB9TSDQOMWzJsdA3xhkIWggumFB444hbDjfQ1tRUqOIA++PF+9lqELMEEKmwbF/dcn9colRNWJ7MiJGj/dCSj2BAYQzadAJswoxj7cGUYeaQ4h4P+hTqyqmmegFLYPbm+Jwx+AqWmgXcw6uXkZKHrRYzA//wxozx2h2mlBvUySgPrPYL4z8FnkN7VGLFyNWyubuBqEZQxq+D8vQyAQtQu8dJgEHePV4g6DgqFEFi56UjeLc4LoX5uAEs8zg+AhCwLIfFgKiYAlxBuIIxxVLf74MHAwBxAewYR4KTvDeowa5DOBvko85/vgaQqgMih6bCjg3YLD7P4MGJ/FXGU8kPyWn+GZEKNt4dx0AbjLmKTecP+GnJyk/VR0859bfYDqu6Bcn/HTCT08cP+Vh54rcZ/Yun+ZwWXHTrVeBI1aLmnE1wjVu2MwuT2VZCqd3lDPZ05dznL/hEdLpwoMPNxTmnJmMyblw8dIU046gG1g5S7GbKFrY3F3gyy7YDZzffQDbfhtHB88huBW+OuDyQYWlHXLpcWGfK0vhaH+HKgtz1/Cuuz6Xj3nqrzIe3ctsK2Io3j/GTxGnH4qf1qTpHHMRKbCz/TA5wTjuo31LXUeaUU3JAbEJzZkTfjrhp79+LjiJk/jvEY9742+zd2go9NYgp2+k2BGX0kXCsmJcF7p+QS2RvUXiaNFRjXpcSMRoTMYNs2bMKIzwsUKaMAjqloxIJCdHjDUiPSYek8EIxdcJVwey36CymmxzOlvTTOC6dUJPbXOuKMu2hUpZ9qfor1X4mWC+kP0+yS4NwG0Rp4U+Lwg+0nVQ1VM0O4JEki0HnQLXk48HU8wjeZhYxC1RWxOkQawZABYlaSZb9wG7cnB0efi7dhV2LEyqQQaXO5SAB/GY9KgYxRS8kAblYKIrbI4Dp3ZGbJ/dJLhM6pTSKvQB9Z6VrvAibMxm1FVDt1bWfcYRKCmjVoiNR10m5RXeDQ5RKoEuCPdcu0QvCadCKQZRKeRBDFY9EhyrLg2ZNAdmLZX3VGHEKE6YjoRQramrNV56Tj+mO1odMj4DoRomjLiMbJYxcVS493LiTy5c5v2PLrn/4v0cLNcUHLEGP/P0pcPamo2tCc1WJJUFUgpTy6RSWEvB4SEayRKCEGpPKYkdv0dn12j7iiv3Bv5f//ou0qSi2T7PhihX7mnZuu42zt6wy/aZlqfddIpNEXKB/89/+nXcxJHbQ6abnmZ5xIM54TRCKCRXUdanOS2CDxXLayO+5GWfwn1kutWYSiMLEtc1xrmqpQqObIMIrfQQ6QmupveJTQ9fcEvFJ56+gZf/wq8S5pfoplNMZnTlCNVCVSLeD7+Jrm+pvUf7QuqMnJR3ve9eNrb2eOjSVfYOjziaK2dmNc942hma4IeWrAKqhdInSu7wUShmBD80R7lQcMENuiFSUIv0GiB4Sl7jpCPTDMLrZoDgJAyZbw/eR7wI6vPwzVsAKwQELUYnkL0bBhj1pBJAB+0Y5zIiw+Te9QEVIdQ10BNdGLJtgPMOJ9DEiugDVoBQGKsCSpJCKkqwYZGZi1FKQa0fTrxm3LEod1PViAwTu689SQthVDN2O0zEAEcuM/p+m+v6BrWWtjukbVeUTkitkfoaC2tUa1xfGFdr6hAoNkfKiNiNISu7eYGmJYddTzGocCxLR2oUJ4dUq4KzXXI2Wj98Tg1DlY6MegYUiVR+TIxTsg2wEqIABr2CVOwv5xhDq7C4atC3iYpqS5jVLLUfhIut4MPwPepgq4brClVvFDOSM1TA29CKgfqhhUUNKWDeoW6wZbPjSgdzg3ZNVoViRB2xf6XlrvAIT7/zFsYhghXMCUMzk+BlUKI3PIijyJAV5xiYtfSDvqHzWAErBecCcvx9qxbMhoXS3nzJoi+ssxCDMLimJhyJ4jyjrZoc+qHqRjv2szGXinW7Yi2OuWXGY09zagvFk7NSV5Eu9VT1jL4UvGSEhEcRHAYUMcR6MoZIRfGG+IAqxNyBC6g5VDyBiEPImnHO8PrYOQR8wJnh4Pg8uEGfR2xIXCPHmyeKFgXxOOcwS4goaoapQ5xgGH0eYBZxDE0sxy0/J/GkiCeSn1QOkNjiK4fEobIi1jPcJJ7w05OUnxZ5xPsuvIhn3P77bJxpT/jphJ+eMH66/vwR3/k//Qa7Z4/49V+/k9f//u38yA//b6CZ7/3+v83e/vQjjm2/8p9+CnD863/7Us6fv8rXfMWbePDhMa/8iS/9iI+79eZ38Pe/5H9hNcn8rz//aj7/pf8rTz/7h9z3yIt44598xUd87J3X/2dKl0746YSfTvjprzH+QnvqSfxfJB73xl9Xt+ATPm4wa87T6haXHzhgMV+xuVqyUVZs11BczaoS3EKpvSDeODjqqIOnqSp8dUgYrZhtzogx0sQpKXmqagROsTwjuA0Aosu4vmXbjVEB1QoIlDqyCqBpxTaFydaMR1ZXOZw/wP7yHuLyxiELPJ5g3YJKA54ytM7ZFFUjxkE8NHiPJxBtY7Cc1xbVHpGhHN4Hw0pEFYIbhi/nhFx6zBqMBG6BOI/YBEtGlg4fBHH5uPxcsEYxaQnF8DYaBj0rmGacgIqjTxmxzDQ6JubZkoqRZfrSkrSwWGZ0ZYg3NjY8GzNHqXvmaY0Uh3RjgniCCfVIcE1hlVZIESof0WIkJzxyOOeuq3skFwjO0wEWBPPKsk+MqzG5X3DK1xQxWtZsbUdOOaEeZSZhgyqOUDehbgbx7yYNo6SUTJMU6WC5hksyYl01XKajN+XCvQ+SZcQ09Gxtz1hoYZlaLBsj5xhtVcjEobkQLVKPtiliaJozcoNw97JvKapULpL7lphmjKnI8RLeR2Ke4hrlVCvMr72d1Ht+6Wffy3JU4WVKVZ/mphtu4qabn8mpM2P+6I13c9NmxZF4Lu4r99S7BH+N3ilhmShxG1ciy60Rbt5x60ueycfc1vC691e8/26jKS1uLUy2GzZlyXgcedlzCluzRLAaZMYyGyPvkFIxKZl6dMB9v/1mzo0d83QRZ5usV/ezOdpA2gA+02tGY8uq9NQSwSpUIpcPVnRVM+jltGPuuvcRHrp9l5s2n8o4Z7J52pUxqmq8GJozilKkYCVj3lH6JSZGXU0Yitt7JApWjOgrfNlAwwA2ZoYzwYcwNHG5cpxJdeD1OOPqqM0Rs+Gco6lqOjdkNX2E3oFpBeoQU45FR8AyIQS65XzQ9PABNXBWE6tIb5mqCnhviBrOTXG1p4RE0I4RDsPT2yA2Tx4Wjhml8iNc8XiEPhVAMB9oU8JcwCQRqKiCG3ROTGiqGbkCkxETPYXzBnT07RxXCvtqzPuEWxV0UVinlr4v9OWAZrMnp8wo7rJa1NxYtdAvkDxm3m6yLAXKkr46oNPLVDKmXYOa4MyRcsEfnUbUMOsJjUGlLLolu+Mhi+oEqhAwgYdXh6S+YJLBZbIpTdzF0ozx7CzFKgJD9nsYQG1on9NALkJvBXEygJkqFjzFjgFz8DfDoWRJmBUofngODO9ghdH1PZUFRB19n7l85ZB4zwPccdvNjEc1HFc6OBzqwnHm2lEoFMlIHLRYfM44FJGIGYO+kfN0nQ7tgqZYKYgoIXgO5onDRcbCmJ4epSNWCv0MK5lYeWLlEKmQHGFxH/X6EFmv2dIVpismPrC7MYWkxBgGYfXKmJce70dUqjgzxApFBlF2ccYklCGjLEMrjhTDSqG4DvdYrxBCQSgGwReCU6Qo2HA7XkCH82riUcKxBs6QwVZVclGCg8fc5UwVL+CcIMfeZ06GjZHuMXdUEcTkuG3lyeFKdxJPLD9F5wjuKqotZyb38Y2f/8+4eesRajvhpycrP1279iz+8x/8M86f/hLOVPMTfjrhpyeOnyae55++Cub4zM++l4//pLvIbuCnV/xPvz1UXCmAYE7oyZhAFIcnILnBS8u3fsPvUVfCdBq59VbHv/6B3zjmp0TqljhVjtRYpYy0SlXWjJsbcShf+Q/+BafPPEoImRd+wru55dZ/ShU7SGukNCw7R6sKZY0PDxFHD+JO+OmEn0746SRO4qOOx73xZ7pCZAPM4zQzMsemZC5du0JygcMcOKwghp7RdmAkYxgtSdYTdYo55crhZQqOSdVQX+jYnOwzmtxNqCKWzjKKFYVrEAaNP3PCqNmgtxnZHZFKoXFQ5czUFDslaNolxAnXTxo2xntocSzbbS5evsKSFVVxzBVcKBQZD2XE3RrnhgkjOKXQEb1QZ0/OZSiqdoJJNWRvMVyB4CI+KGZr+pKobEUFdD6gbgwl0jil8Z6sLblfE5xQq2FJ8FYzcmNUhNYKyXk09gTfI1mJtYM+0yVY5SkPtp60zFQt0Nd0JTGXQ27YjJzebJhFR9cLy67CuQmWjzCbsbO9yXRrwXw5x60nQ6Y+RMZ1pMrw8AMPIn3AScHEaOpmaB8EKteRy5oSZ4gzfJ+Y5Sk3bk+YVpkwDZi1jOqEs4T5QkTYOhqErNve8cB+w6ofM948Q1rWPPzoPo8ctKR15vRWTTMVVhS2omPSTWjziPmVB9k+dZrAjNViQVslGq2IbSQRiFVNCIU2Gr6qqMQTs+Gj0sWeS2Wfsd+k6grOJ7qciWVFKNA3jrqJNASwFSp3c9d738M7//j/oKlhd2vMkSZSbvE7Qq1LpPN4i/TRCCkTgrLRTHlo3fH3P/dTeO9qg/0LhZ2SmFWetonkdcvCGn7rD+7j3GyTz3zqKSSsaGNDrAIuFzoWqKv533/iLRweXeDcqTuoDjPZMrPRdShKrgpdzrhQ2PAjHNvkEDkqe+RqTbAAVxZozkx2lM/+mGdw601nufjgvdyTM6dO3UDTNIgtcHREafBl/OeTXhECDUoh9x1eG7IlfK/4oGRZU5zD22AaUcyGjFmOROKxrobhiiEiFPEkoIgjhMGly5vDKzhniFeiUwqD3g7qKW2i8h6zQtF+qKgwoWQDC1iA1bpDZBCsX7NApCChxToFJ4TQEGMgOqioBr2QKIyqTcAhOErJ9Lkn+0xwA6KPcCSDkh2entQba2f0WYlB8QjOD5A0aOMI9WiDXmq2gbOmVJqxAsts5N7TtmtW3ZJFuyDlnipMSTlSfI+4a4RZyynGeDuD9omSlvTi6bVgfYus51RmHLRH9JYoYvTZUVYjQonkfITYNlrDgR4xa04zPoxs9IkDKgobNG4wKHGjNaOgzJxQuQIhkvpMZRXOlFIKVqASw1TJ5nE+oj5hKROsIpogeEwcoRgWB+isTRE1NEO/XjIWhzqjsyUSIa2V++9fMB1NueXGmzAViitIUMiPtf4BzmHFURVDGCoa7Ph3lkxR51HvyKyI0mAlg3e0vVGFCRcvXaBmDWmNs4jYJvQtuMB05Dk1G34b3gv90T79qiNORjx8ZY9DNQgjzuxOqSYNOXisFLzzOAvMyATX0amRpGBuaIdxeMQcffKI1IN+D8PvZUTAS0PK0JsSvEPocWaUkEmAd0Jlgco8RYWOEVAIKIFB+F1JCINGkVSBknu8EywGUg+VjlBNKEtEOqDCU1NLIGO0mvHOE9TwegKuT5Z4IvlJ4tDuKiJsbwRms/vJTliWcMJPT1J+ek7zbr7/az+Og9Z4YH92wk8n/PTfhZ+uP5O5/qwB5xAc06cm+rwkaT7euIeCkgw0Oyr0A/w0ObVPDJE+CSH03HbrJUQGoxER6GVw4K1MjvlpyjLfQe49tz1lzaobf4Cfmq2OkuNgguKusa0tngpvI7Q/TUnjE3464SdO+OkkTuKjj8e98Ve7bfo0CMoWVcSNGM+uI8Ylsano1msu9+BXME0BDQUfPBtuk01TRpOWUazorSZ6xekh88sZbXZJZcV8Y47GhqZas5n2AfAakdIzcz2pKCoNLlQk7dEm0PVGFWYs20xVB6omgAqjmdCMI4etp3nvkipM6LISBax0OMmoJnysaEuLkRFlyEDHxzINGcEIboSY4TyIODKOjOCbhNeK0iumgkiHsEZ9z2BANGQMTD2oI+ZIOK4yypZRy3iGkm8DgiqiCUPJLnCYCmV/ie8OqV2F9xtUMbEzOqSuwew8h/MRxBGLtGa1PmRnbIw3lrhJ4dpRpl2PWawK9dRzaiJgyrvvXXBt3zONsEDJKmQUJ4P7XlaPHjsgdXlNVIdm49zpGa5cJoWG4AVyS0QouSFWM/bn9wMg/ibWOXLQdlw4epT9q4WuakmhUO9MqCpH7xdMlzuEtUNXLQcHVzg1jsSSiMueelJRNhpKEQ4PlmgBWgjqcI0MrlghUEkcwMnBtt/G8ggfEz4cEaTjsIQhG3icrcuup/OZSQmMNjyTTY/0MmRCmVM7g1JAPCEGtCg1mXHVQe+w9jKzaszRgx1Hp3tmzlg4w0ICiah46pFw6nTDT7/2Udoc+aw7R2yXTEIo0kFuuLJc8Qu/8itsnr2FNt9HosUaqOqIx5P2W0Y43LqQ3YrgC+aMUWzJRXFtZrxRcd1TznP7bWc4Na145JHLzJeOLgv96mGaasJkXFFFYVxD3Qh+PCe6GnHV8Js1GXQ5XDcs5NQoyeF8hZRAbgviHnPjUsQbRRNS9XivRBkEzT2ekh24gqMcC/bqIIqNYU4GjRODIDJcV03AOxCgaEB8RSk2COqaDW0XzsAy5o5d6yi4LnGcUKV0a5REFoMKiOCcQ5xDXMC5QIwwqcqQmU4OsUAvQouBz/gyZEozhRAFZ5m2KJ6Ic3747eGpYkVdMjg3fC7nMWfUVSSMeuLMs+k2UZ0iqnSrNakU2q6Q+jO0XWGdFqRygEUl5vOolqGSpmmJGzMkrxlZT586Up/Aaso6IFZzNR2QLON9wPeBlDL76YiFdlgdCPUApPgRrtrAVTWu8sO514KEiDhB2w6XC04cSkEC+ONWZ+kj0bvB+U0yYj0YKH7QZLFCwSGWB4gT0DJoEeEN1SEDTt7grvddoPaem2/cxVmBYvSAYpgOmismnlyO21ecgELRoV1PgJITuON2Fi8fEEY/OjjkkUevUZJRFYXcQxjgOKvDV4VmlKmrFusD9IbmRBLPOnW0NqeplI2Nc1TOU3KPJZDK44PDSk/JihOPWka84rxH7Lh9x9yQUWdoZZEPALdREFQVL4YICEbsB80YcQEJAQXaUlAy4gaxf/A4E6IG1CltWSMah8S2KhQZNBw1EbwnHMNvoUaoyWWFc57ax6GdTIxyolHzpIknkp+2T62wXJjW5zg4nPCmd30un3znf2Zz1p/w05OUny4fXGGZtpDRadZ5fsJPJ/x0wk8n/HTCTyf8dBIn8Vcej9/VVwylwyQN7mpmJAcrX3A+klAkOAgdc67Sp0CtU3JROl+40B6go4oQttjSERFhUkFhgYSawwPFu8TEbXDlsAXg2sXM4eiQw5ESvFL7iHaGhBGtCHEk5LLAj5Wua4lRKHlBnw+ZTgrJRqT+KtVozGrVE92QmTAxUMVZwSxT4iB+qllw4pGSqVOmopDjEQ7FiWA4ehuqhZx6RDwEwR+X3Dvh2MrcjvUBPJjDSyCpQ72gvie7QVvDzEFxkAreMl4K6oTsHG1JtO2SRR/ZiMruCLZjwPyUxQLIR3gpdJ2wf7BkezMynQaqUc98dUjpNzicJ6omsHNqRsOchw4XvP2hy/i4Q69Xh0GaQUh4kI2Ig36E2qAXEQen3j45JG2S2wVh6nF0eN/Tdx2h2uHq/gIOKgBWXc9Rr+xdO8K8Y1UviLFm6gJBF+RDYzFPLLInL484yD15JFTTEZf6JVvVlNObG2yMPLrO9FVBvXHUH7Loe2w1aHf03ZpDvUKoKqKdZRwLnV1BJpFIzZQZtXckLxQxLLeDTX1pUTlF2y8JGCOrCWIEljiq40WLx1zEkfEYRSDhcb5HfMev/+ov8/rX/zGndjbYqDY5c91ppqe2mTQNIU45vei5tneJn/vf7uPCi+7ki//WLdy4VcgW2JPAr//Oe7nv3kfZOneKfHDIlOuxdBkRSOJQJ7i6oLKgLy1V2CS48bEbVeKGm7Z51lNv5tSpTSpXs9w/pGtbNrZrVrmjz7DsV7Tzlhg8zi0w69neSNTNhKbeIIYRMdREH1FTnHcQDFXDmcc04lxGdViIOefo0xrvIqSEZEFRBBtEcl3AB8N74FjTZjAxG0SXTRxiQxbNrCBeyFYIGEhE3KDB55wikqnMDVCCIGaUMmitqJfB4YtCLuW4fN+QnCEfAxCCSEBcpHKBKjhSUFyAioQ3owkBL2OCKt5Br/3w/DnjDVIegN1LoORCTj1oIomjOMM7Q1RxweGNQctJHaKeygeqyYQQAiUPMJUss05HZN0ml57cO1KrtOtM33akkui7jsZNiNWcaramlAXhlJFT4hxnsIVQ8iEHsWexHsYhpCGoUHWAQjUe0dQ7VKEmoxTAu4B3Qp96tG+pRPAuYqLDIoAeUT/oFQGZDA6CgA9Czg50gEY7FpAO3pMyx6LJBUQxA+egS4pznve9/16mo8B1p7dIbUcVPUXc8BgD8Q4vkMtQzTAs4QUnetyuYUMrhikhRlbrBVWsWC9XhGUmSsBqj1SeaBBLZtUuOXf+eqZ+G00TSl1zrdujrR2rwx5bZTZFWXb7bJ7ZBecIuSCuAgUrhhvwEycMc8TxJoQYmHK8iBrMDcSVY3c4Qf3QYyOAk8EhTjCCBZx3mBNyLqgNoutR1kAaNHKsJmiDmEdiRqUDEVxwaFaEQe+nt0wpbtATcpFijlSUGMAZBBX6PFwnQ2nASTwp4gnkp/WlyKQJLOue/eL43Xe+iNtvfx3NljvhpycpP73r/tv5vfd+N5/+wlfTr66e8NMJP53w0wk/nfDTCT+dxEn8lcfj3vhbZ0NiJJcOU4UQmZzaIleCcz1NWQ0aGmFEVwLJdxTf0TllPwXIN1EXT5AFadkx9jss3R6jZkEVQMIMmRSW7SOM2gUA9y+u8PDlKTO5xjgENkczvETGG2NiI3TZ0dT1YBOODBmp0jCqJiAL0BliR/RtDVbRlXQsvptofMA6o/IVXUo4CYgOrktChUeGCbG0WHY4AiaBgOC8J5UxSdb4MIizkh3eTyilUHIZREKdoWY4cZgzsiQKBfEeT01OHiceLwnJPSEGeoM+C+IdLgZWfkzKiq6VJELoxkiucGXJuTOBPl1kPIPZdEodA9pP6NaFw4ND6sZz3ekNwuqQC/tz3r82Lq7WzMKSvoqgwyQubsgGUYZsI04papBPgy5p9ZCH9h5mVq3x8xYXhMlkylFf0ecN3vPwITdUMwDe8r597hufZTTaRP0hp/Rm1kfXaLuONk9pu0gqiaQHRF0xmU6ZbGzRrDvcXAlnIodHc44OO2oqtBfCKNAnT2LMZDrCFaOUCGVCUkcqS/oktKYgEZ97khxnW6sGH2siM6JMECnM/YJoM6J4pKwoaUnJQ1YMcWQ1smWck0Gkl8wktvh+jEhmvf9mDq68ncP7AyoTUp4RXM32zg6bm1uUvsdXxmRjwm/858vcf/dNfManPp+HLi54930r/uhXf4N4apN0mLm5v55/WPX8i4M1ZXMMfs327oSjvWvMJlOKjglWYX1hVkWe87zn8/RbzoOt6W1O6XoOr15lNptQjyK1CJMm4MxTuqGVJGvPctlS+tPMW+NAM8GtaKpMXQVGoxW9b4jVhOgDYmtiWJO9h+NWDZNM0kwRxWnAEcjmMB0yerg1UnTQyJCA8xHn3CCAjaDZCBjq7ViQeNAdUavA1aQugneIZpwfIMbJMTyIg9DgcBQiRTOZQilDgYGWDtEOKKBDCxo4TBwJxTpFFILz4CBHKFVBzWhcIARPkSErHb3iXSEXHWCbwTAEzUiKdOZJqkhOVOahzxRfBjHtECkGvbnjVp5BGDx4Rx2UOlR4dlCMln0qGvpWMQl0JdOlRL9c03VjlusjVLbp+h4ZCbNVJG07VJbU2fHIew65aAVf7RO9B6koQWkD1KcicpytFi+DKH2bSG1GxdAQCDgqVw+fS40QQHwhWzq+BgaJYzFBgsMNsizk40W5S5mSHKEekXNLzokQwpDh90tWSVgnzzv/7BIiY3a3miFLK0NFTKIgmgZnTsmoMoCaF3JOQ9WM81gexJyLDRngKnoO964xX18m5iVRO3I2VuYIccKCy1QbNb6KVC5SFYcu1kxLRV+gNTBvjCcbnN8+R8gMGV6glDTAqAzfJ8cVHdgAtIgOFREyiGWjQ+mEWUAtkPIc58KgFeMcHItP95rRYyx3ZkSM2gd82kTJ9L6niFLcGkTx5hlpBb7CZRs2EgyygLmI6lB95JyhljB6jGPRGnOgBRsKAE7iSRJPJD/pWtmopiwP9wjNZf7Hl3wq0gYOLp7w05OVny77Mzx67em84d1rtsfuhJ9O+OmEn0746YSfOOGnkziJv+p43Bt/3k2hgGiNRzFrCGWFz1sEpvSlYdEnUoTxuOJv3fl8Di5doi17PLq4wuHKWIuS0iG0FSMEX8ZEVxN8YVxlptdWjJpEZQ0Ao37KZHWKNcqawmJdIVJhB0oziWyI0IyvUVVQ+9MgDeIX9Nkg9Bx1sNRMCT2uZJwMrkxmg0Arx1oJrkBtHhGh00xHQYPQaWCsFak4nKsHiLFMheFcpncRRRAbfKQy4JkNWbfgwCkprUCMKgQoBV9kyFJbpCYO2W8nIA1FB8j15lGLqGSq1JPNc0kjR0VoSgcBzmzMOeoP2WzOoXnE/oHhesGKZ7VcU9eJrQ2hW1xjvUpcXQceeOQInGcVWgoVwQQvgzmC2mBnjsugkcAI0Q1EAquUeXj/LOPYkfIBm1unqFYN86Vy8ajjXfctubq3AuBoofSxRUpN225zNe9D1+EpFL9P1oKYUmtmZzai3thhpTUHiwUm0KzWuM5Yk1gGj/cT3LIDy8yqgLQtQsQJhOAJ0ZE00peMmMNrxllh2bf0Jrh1TyRgLpKCp1QDSEUZEV1NdIEYG3IutNkYNCMypkOFQhHBGJGlg1SIVaCqV4xKxBdPKntQXWRkRndti4cvBGrfwWTGo/kU00b4/Xvfx5+99QFGyQijI1ZXrzKeKKFcZC0b/BdRfDXGa8/WqYZiLdVozNomlNJTyZqnP22Xp91xA7PpjHaVkDKjzSCuw1eeru9ZHcJ4c4c+RzamNb4ZQFzFGG+toBSyFfqUKKnD8oo2Z9bXapAVLu5TRUflAqMwolRjQhWIYXApC6Gm2OCu6FzAHbdrOGcULejxgg2ArMj/l71/i7UtSe96wd/3RcQYY865Lvu+c2dmZTnr7rLLxvgAR7YwagmD+gksowNCWDS0BC92tywhYR6wREvNxUIYH17aNBLYBiwk6+DmAVm4W92WjTgY8OUAdpWrMuuWmXvv3Hvd52WMERHf1w8xs7oO4uDsQ5GV6MyQ8mHlWnvNucYcI+If8f++33/f/tQYLw5RcQtoEMSaayqEtnEyQ3wPPjZF1XEMd/vK64lGBqO1LWiAPuC2T/Olwwi4G7W0JC+rgsiM+Y6cErvsREvEHPBccdlhxCbmgtClSBcEYSZ0A74X1yn2dEGYF+CWiKZInlGvmBlSZ6waIu3r6taYPySwAbdAySPKjiAbVDp6PSGoEgZwqQSvHMeeeBJwO6HWR0yTMRdlnGeu8luUXcB84LU3n/Nk+xz0jGhbVt2KEGBHxUw5XgxEB6SBvvN2wscCRKRTamkw6hpaApx4q1SoMoMLSQPvwJULhuSZJEJAyWaEkKjZCOzt6+rU2VBzzGCxgPU40/WnPLvc8enPP+aTH3uJ4yERrQHPRQ03I1ndE1ra7xIJQMCsEiUQfMaDMOfc2oLceevzn2dRCqVO7GRGhgG1DrKw4j53lg/oQqI45BK5yUcEL6wvH6Nlpla4/+JLLFYD7BHcmKEBUCd4wK2l9bkImLb2KxdcoJi11i0XgobmDHs78BAJrb2nAt5SpFUD2SvVhT409mTOpa0dwZA95wbtMBqE2qW9lpmh2u75Wo2enpAipWbMJqIISYVc34FcCxq6PUz8IF3fL+O91E+rdEy9gFU4IVp/0E//Veint4Gmn1YH/XTQTwf9dNBPB/100E+HcRj/Bca7PvhTKlaNQQNlHOlVuRWNOx7pUcYuMYoRonC773n543e580JPZw954WbJ043w1llh2p4w31wyjU8ZIkyzMk8Du7ziLZYc2YLF9hyAi+0xVyvjJpzThZ5F6egyJHem9YbnKVPPn3F6OiBWOT66QzfMIJkUCzclst07H1GEJBO7MiHq1JrR2LO2TE5GkUDyQpl2iDqdDKgEJkZGaQwN8YLamr7O1DoiwynVVkQRQhrZliuO4wC5UF2xWpmttvL9sMDMiUJrl8GQWCilpatJHJjnTEwdC43NpZZItkCMgtrIZJGdd3R+xZQz2w0staOU5kpuN8KizyyXhaOTlkZ18XzH+TjxmbMtV9cteWodoZsyUQNVE64dFXCtGCNBCsqOFJxSZrY+o7eXPF4/YQYurh3bZb7wuS/w9tUNkyY+sGvt2dN0zfPrgONkr/RewCqzG0V6ggbCnDk6PeWVD73EW1cTFzcj23mLJKg6kzJ0ooQa0RAoWYm6wC1Sw8xsG1BBQk+01mI87yHfi+L0Xc+6zIQ+kcWYXNjVDi09PnckNyysERkZ6DgajnDZtjp7adDkhLArRgmJ6pUUti25ywI699i8hZjZ0tNxjNkGUsE0IqIsyhVFb7iZIirw9PVPE3BKd5uQjDBvKTJz1p3zC/OEHwmaoWw7kgdW0zWzf5mXP/oRPvTBj/HwVk9SwcaMz5WsM3OsjaOybzFJQ2u16eKSMm1BHZUEEbo+ogTQVohfcyZYJeBM40h2Z87GPDslK7vtROWSlAIhKCEEYtcRuoEYIpIGVPpmY4YG8nbYtz60lDXdJ5tRDfNMRdi5IdLaIobY43ZN7BIhtM1flxJiSpb2cTReiWFemjtNSy0z88buQNAQMW1/mwLq1kSQCUqP07MrDkmQWjDbYV4bQ9TLHooc99fBUK3oDNkiIpFl17UNjF6hEZIOaNdjzHgM4CtsNtSaWyhaGec12ZUaOooFSh0RUaJEyIFBnW3JpMXAVAyRASUyUogxIOIM4ixVMRbcqgM1g2jh2RtnHF9ndKdUX5IqFBmpwUnpESfdh9AcKV7JXpDZGEg4iuRKFxSvLQ1O+4CrkqWlxfUS8LLnAgWw2O7LIIkgkalWggRyzsQA07zDbUYouDd4s68Dy5iY88xm3vDW04mT4yUfevkuSYxi4LFtGHJWgjZOjlnj7Ig0ztCcC6G2thUErBa8OldnZ4jV1oJUKtUK4ol5zLx4P5EGIfULTBPnF5dUtgxFmNbnSMrsdplHL71CIGMWMUukWDGt5FyJ2hFiIqtj9R1+V0CNFvYSQ0t8k4LLhMsMngksWnWGtw2XiyEI0RRTbaJXdJ/sGBipKIXoleCJQMRQlNY2lWtDqTsZEAKOlrm1PNJg2cFATbDY4yTmqqi0ihX1g3B9v4z3Uj8lnzhJK46CMvsD/j//7q/xHd/2f+KFW28f9NP7VD/5/0w/XR/000E/HfTTQT8d9NNBPx3GYXzNx7s++Ct1A8GZI8yS2XmkhgVjFUJsQmfpW2pWNjURLbBcGAyRR/e+gUfV+J3jzO7inM3NEW+89Yxctjy/uebt2ZnoiFNhyjNnc3vgvnRRecxAJHK8MHJ/Df3AUQos5g2up1h/n91Nwbc7hvO3ScvAbbnNMByzu9oQ08CNz7jfcKSKYUxVsNCRiyEh0ynIJIQCnbYycykZMWdKqaX7SEZDRhHmIphCKCA5N8EFdOkOVYWZCmSiGauoTF5wnbFBGM1Rr4TcSvIH7ek0kpnIIeNSEQTpmiMh/RFSAj2BnJ1JKxI6rjaREiuE5ywWGU0zXT7i4SpwEm9R65I3rp7z7Gzmre2Si61SghODcVQjXRzY5S0hGCVfUYKjKSKu9N5jddg7IxN9WLJarajLD/KZx0+5/MwbTOcZC8JOaa5gl2GCjkid1tSYman0dsTEgjTBTEZPICwXnJze5uyqMO0qHZlNaE7Qdsz0siASiTaBjXhakC1BzXifyW64R6IURDIxB/o8EaJRXRlFyHMgpI5BdmxSA9OGcYK6pmqPmqEysa0bttXoo1HyEtG9O5uEEAJLEVyNoCs8GJIheRNkJQ/tEQqFnTjFR4TCusAcKqkKnU2IQAmZtWaqFVbmLETYSaTKzKLLWB1Y7wrXsZLLyEsv3eM7vvW/4c5Rz+ABKca0y5RcGDQRLdJjmE7oUKjZWmpi49iSoxI00hNIotTsWFICQJ0YugjSqjSO+2MEx93Y7XaoBua5MBbFqpGrkLPDvMPskhAjIXRI7NAu0aeOVUh0KeAhYlYoNhNDc6y9Op031gvuEIQQlOIz1ZSy2/NQ3MlhRnpl8srRctXSIEWJIqg6xXdIFHYUPCidBKTSUhVdETNCUCqOdxFFSBIJ0Vr7AEbNM6rKtDNEHa1zc7rnJgcqSjEQd2KdsHLDrk7YcsG8uULlhhQCXWwbqyCRIURCpFF7tIPuDh0BNUHLTC4LkAVqiYxTgyKyIZd1E+EkbO6QeaBSWpqfFJBK7JQhbkBOqTbg84opD8w64VLQOqMd1Fw5DZGSMnM/t83LZmaQCF3fINKeyDZAJy09z3oiitRKSI7lSidKFxS8gbG9jmg0LGVCMOYyMXumWEVTR82G4WTPeFQSAbdMoLUQ2mh8/vW3iGQ+9Mod+lgoVSkekD4y10IdK93QMdcZESdbYYgdUoxRjG4WNJ7w+Pyc3dpY20wMN7graokStozdRLr9CoSRwSdqPWK330Sf1zVnY0XjCcg5D1+41yoDciEGw20iiO3bslobVMjeqgrEift7t7TgUAYJiEeqC8UqIRSq7UBa54urY+KEoFj1hmzyBgXHlOrtOgUXCJGKMdkaQqQApolOA7J/XQ/gGrAMRqa+QyDShMaeSUGqoWIEKTiK24FO/X4Z76V+okYudkZXjCgD4/QC06VyLQf9dNBPB/100E8H/XTQTwf9dNBPX5vx0ksvfeqtt97qfvAHf/Dx3/gbf+Otr/f7OYzffrzrg7/YLclzJmdHJBHCwHJQ0Cs21nMjhZsAR1Hppw1pckIaqN4gm9krsljSD5HhA8ri1RfJ84YHV5fcvTQuLox8dsZudrrRASix8Hg8p2PJ+XVH33XIYkcfNtzrI9muSLtCRAjdgk465DLzuP9NpJzwpfMFOd+FEhl0plgiEUi+YfIdHjuW9YhucopXplgxB7XCpJCTtVj2kBrQWgSrsTk/sqDUSr+oTNMNURYNIFxALRGi0KlT50IXesJcUDGKNKchpghRMTG25RKVQgotNStIohYhhUB2ZbYKZqSwYBE6Ri9MRbicCmFYskrH9GVkeyRca2S9qbz1+DmPyzVvXW8odk0JYNHJNiOmdGFFDkZEiRFSCNQSCBaQOOH9hps8EqSnk3v8u1+/4u3n1zx5suaII4qtycOWEsfGt8l9u1FKYs6G7MHHF1IJR8bRSUVj5ujkHkt7QDyC28cdL8SZ4mu++Gzk6VWm6wRkw7NppLcVR90JY7lmZzekvkN2lUEDQ7diHhMTA3NfwVboHAhS6boKMWNV2bjDLESPuC5aVQJgVvbl4Eqxghffp3C1NLq5Kq1c35EeJIJ6i7dPGkh9JLsxUVAtCIqa09cmnt0VN4hYc7PqzOAZNRBNrMuau496zi63jNvIVJ7CEBhOb/Opl7+Zb/7Ay9yKxs12w1QNrwKybE6aCVY2eMhYUTo9xrqM14yKkDjBTImuew9MMDVqLc1p24PTzVori2qrthdXTk5PeCd58khW5DljxcEgj5laKrVmqlXqdqauRybZJzlKpvYw9CuCdnRpoIuLlnYYSmsDUADDfAavIH37PET2orpik9EVZR6vMUBTQrpIpZBSREdY9B02Oxod00ixQnqHHeKhLeI1A4XaOY5i0iEoEhMhBLpQ0CAkEm6OZQMCuzGTTVANRDUoBU1NYOGGuTFbbdcT2buawpA6Qoi4NAHfxUjnDXgfhwVFnGpCFyFUQ9IS80ypxm4quI+wmJmnjGpiO80EjSA943SHGJWr9QVvPn+drb8JA1A7jIhkkLCgf3CfhRv1uTF7osYFOQS8Qjc7qkrVlm63LwgAlEBFbIYgjFaZUaJ07bmoSjSQXImq1Crk2ZkAccNE980WDtm51JEgQq8d0drGwjYzT19/SmeVF77hAVkaPynNMx1A7NGp0rkyVyPGnlyd0ie8FgYCxSJvnZ/x5d0lqyQUHCMQJGClYvOOuy8m8rLjSgOLbmJn50wSubgpSHJme8LqGI5WQuWKirWqDgPxrj3/3mPilFAaKN5k30rSEjBRo1RQEYoEami4mkE6GlFnf2tjUFublVtGaSB1I7dKE+1bip5AJNLjLX0uFlwyi+zM4pSYiKUnVWgcpkCEVgFBQAyCVZwK0g5R9nCtw3ifjPdSP+XcQ1WyTFxurwB4fHbEbrp70E/vU/0Uc2o3SkktDOSgnw766aCfDvrpoJ8O+ukwDuNrPN71wV+t4N6hBNxavPiyCyyHQDFnFRSZjBUziLEZd5x0PX0t5JKJOlC0J5ct0ZxlOkWDca97xEfuwHbM3EwXrLdnHH/2y/AF6FcrjIF13XE0DEzjCFbowglX5wN9N5IWRugKR4NQ5IaFTNwKD5gmCPPEImxxFljp6QlIECYiUoVBewTYaqVKRKpSqRTapLSS0CCq0tKvEMHdiaGHGJimiVyNPh1BLahfk9Kdxr8wa3BVjCARlQLQUu9Su+yuoLFxQ8SMSEIsorGjFie4UyNI19KyoCBFWAZhcrCw4HIr1F3lOC6o61uchUqdK1ezcV6EGgfwjIoi5kAiaUQMamgcDqe2MnCbibFHLFDLMVFvE0KPkXjtS59lO14iWsg6IOJEhegnlOzUxQwjaJzoNGJ9j/ULlt3IcHSb+90t+pPEyd2el24dkXBcJqpkbrbCB9NDTlPizrKlN11OHZt5ZvaJPAXSeAvPC0owZl+jwRgwpvUNJhPq3Z6rE5GaiH7CGJ0sHYM7yTuytuseI61UX5QQEkICGynWouUNWmk8e8jw5LArxJRa44Q4Fhq8OISBGHtiglwKY2lgb5uNXZ4QrySBPnQsuyWjObuaoQTsYkG5NnYSuHfnFb75I3f4hoeB24uI2xkXo1NKRA2QisWMyRYXI0YnhkDJjnoioIiPxNQxx5YuJkrjvASDJAzZUG9tAKDNnUcoPjU+EkL1dt8Wq3TDgCNIcmJI2EJQj2zrjNFaHUqdmaeReTciNUANrK9nrG5JUUmhpcSlxRGhA02RGHu6FEhJMJub8NmDf9WNoI51DcDrJtTSEuFMHNmMaJd4Pm6QGOmkY6BjuYdhZw3UFEGbYFQKUq3xhvwd/kmrKDYZqVXa9XBp7007Vv2KqXqDE5dKLYqH+hXar1WjlJbSlquhsTF2xnlGKS2dLiRmmUgOIRiWwLuIqBKiogmQ0JIwB2GxciTAtCto7Imxbwlw1TEKhcBcrji/uuHk9gt88FV4+vYN83TDJAqzEsrA9eNrLnjKEBYQYkMiW4POqwqitFS0/U1ezXBqa2/ICimQZUIQlCWqA7PPLWiwGkhEqyHFSUkobpgY1Sq9hCZf9xUd6lAtU1UaTHys2JMLhlu3ODleApniEykmch4JIZGLEfseXInV0JwprmyLMdUtl0+e0PtMjI7XAWLEqhNcuXN0xHHpWeg93Ad8vKQfnzbnerxBu8h8HXnl5Y+Qwm2ENRoqEKgewTrcQmuVcaeXliqq3sSrAUXb56Sludnu+9YaHFPDvba/XWhCngaWVmrjxri0DQPWqgT2G0lXxULAXegsoQhZMqKZAaBmzAURb++RRNA2Q+GZDqWqUkOhYgRzwl5EH8bXf7yX+untt684uxA2u2PW+Q4Ape+5nueDfnqf6qdpoV/RT0H9oJ8O+umgnw766aCfDvrpMA7jaz7e9cGfU9DQEbRNFF5muiHi8RbhesPtvKOzDXNwtiHynBntejqvBIeggaxKCRHTSiETOqAYgwWGriP5He5xi1s1wS/9j3zi47fYDJEn28r27JKyFqbcc5krerTl7njO+a4yj0J/2TV4cRe5NwRyheucGN3ROENZk2pPqcosbUGc55lZJ0qMDLKgc8GrkN3R7HQ14iHhZsQAZlMTrtJgqiEmYozsbi4YegHZMfsVLtaSlVCIioTaUodqbbDe4OS5INVJKB0dtU6YgoWKsaPrtcGPy4xJbuwWHC8j4saqW2FZKGPlXCOXJbAK5+y2W9wF0pIpGFPI3NKKmGPeJt9OHLdCLaCxI4qSPUBq/BJccct4uAFZE+iZp4qFSvFCDZmAEsxRV2INrHwGYB3XlOUxd/qO22nB3buPkCPlI/duI0eCd8BuzeVUGTcjmieiOkcxsHhhQUyFlOBOEWyzRPSEq3LGzW4LpbmvN9eRWhNhUK7XZ0geEDbQzVScHRFNC24ydOaMGFK3dHlk3sNireYmlIIRALMZ1QaEFW8tDE3CGqlGggmeKxIawLrmGaXDPVCiYUnI1ai1Ldxj3jDlxpqIJvQWyRJR2zCdRsZeefbm27xysuI7vukVPvjxjqiCMjCVnu08U3wiUkmhxd7PmileaAyYJWYJZGIfxYaVgJRIKBVB6dTB9wmD2qoh3A2omFcQQRCQ0K6FKLWUtuCKkGfFLCD7liANEffKkUbCfhGtGpiXHZyssJIpteK+YJ4Lda7NYDPnZrPDd3seDIEUlC4Ji65HFgNx6Brfh7aw77wwxB5xRz3gtRJEqEGpJdOHSJ0Ks1RyKOw0E6LjoUOyklAWIaAhYSEiIrg011y0JUPGGlplQQ0ALQlSApZ3JA04iganSx1FClH3bqQ705iRoOQ5U9wRU6QYVhtgvm0IMtVnKJVaDZtatUN73qCPSyASUkC0IA4pLZDQUQocH6/wfdLfOjVX/+Jzj/FQufuCs7wFzx47VzcjaxGszAxXmcfjU44evsLRyV0Glqgp5mAxod2AmaACezlFFSOFSFPXe8FvRrBAHzuyTGR1Ji1oBJ8ykidWMTBbZaYy2gwaUVV615bOWWeMikggWyYTyFeV4YtP+NirL7JYClUqoxszcBQTPrf7dTOPZK/YtKVuJjYXI6VWHr/1Ba7tiiBQLWLmlLzDrXDr7hGph7SqoJnNmaHlNlFXbG6+TCmOe+XRywMuz5gnQXXAYwc47o4xI2QER1wRVxRBXagquHhj+6iioR0GtDsFZm3pdcG9XV9RRAKTrxlSwqu3+hGNlOpEn/fhAK1CpHGQIn3tgcCUnCiVVDNVnBy0mdAeCKIQwLy2dcUGoFXguLe/pe02DuP9MN5L/fTg/kSp8Pzikte+vOTJF0Fv32BMB/30PtVP0Wd2NP20WNaDfjrop4N+Ouing3466Kev+zAzfuRHfuT+T/zET9z//Oc/P4QQ/EMf+tD44z/+41/4ju/4jt1/+PN/6S/9pQc//dM/fe/x48fdZrPR4+Pj+rt+1+9a//W//tff+JZv+ZbpnZ/7R//oH53+lb/yVx699tprQylF7t+/nz/1qU9t/97f+3tfvH//fv3tvl9r5S//5b/84Cd/8ifvf+lLX+r7vrfv/M7vvP7RH/3RNz7xiU/M7/Z13qvr+H4a7/rgT9QpeabWQgyCh0ols1xseT6fc6ZbpEtYOWLeDZTctVLeasQU8GmmFyd5K4m3ooRhSbZM9JmEkUOPC6S+AYdfevEe6aWXsM0lm+05F2c3XF4GLq5nzq7OOJ8CoURW3YqbKFzaSBwr2/UZXXfK9QTFl6gVpOuYc0dncCtV1pJZ14noykkRyFtK6AiqDN5TethqxEfBqKRgLTHIG6OBeYWHG3Z2QdXCaD3qAyZrFjGiYow+t7J1L3SxJ8A+AapQbSYBPiXQhKlDCs0RrRMaI2JCJzCZUbWSZdc4Qb2Ta6YnEaWj2EyRyHPfMS8Usw2qjtoKLTBKaHBnlFxmStlPvLah9wmziJAQX2B0aB0JoaUcRYnU2ch5JkToNeAxUOqM9o7FTDFIdQFrePDoAZu7D3np1j3uL1YsV8f4EmRXeXudeXq95vLZGbd6pU6VPiS65IR+pPg1/ek9yJGjqBwdRQhAusu97h6rpEwl8PrnNzx+84ZV1/HSS/cJxZmnQi3Crk5MeUIp3K0dUmAnBSuAB2ofWljTHmBstYB4g69ra7cJNMcJr0DFVMkqmBghRDBH3UhdY1GIV+pc8NkIBSrKKNdkZswNk4SGBYJRZMe06ZBu4vf8t3f43Z94yJ0+cmVLbJ7xuiNPG1LUlm5IxfYVIiqJTk7wksCdqgZqWJkRE6J0UJ2cRyTuN1zv1K5nQTRg1rgZboUgggiYRVyUahC0Y55nQhcRgaQRRPa19xWXgnukcaG9sWCioinS+cDgYOIMZngpUCqlVKZSqJaxatQMngtzmZk2O8pVu+CdBPq+p18u6CRRuoq5kIYFHpWqkCqoK9kKEtrzpBSqOXmqqBbMjCzCKE7UiDAQuo6QAiECYtTa0sdiiLi3hEozI+cJ6kQMPe6tBUVCaz2CJoAFY7loKZXLXsiloCJQjZIL5sJUmwNfsn2lPanOrV1BVNiZMeYJmJHRqT4jQQlyh9AHcsmslor4hEvlaDBqjdh2RHeBQW4zxIHFqw+pz655enXOm7sbfC7kK+P5TeZiec7y/gNO79znZHWCWiCPlVGMAUXc0BBwFYoU3A3JkRQj4gWTmWITpRYIgtFYK5kRHQwvEMUbLBxtcyOQ94lqESEQGSRgpVA8Yx54/fEzcoKPfsND7g4L5vUOcbhZX7PZFbbbC/JYuNrdcJ5v0KpcjYV5s+HJ5XM8GrsK1EDHxBBhzoHh6Jihv0uYJhZJuLjK2BQZ5wuYMn23JAzOvVu3iFFRWVBLq3JxHzHNuJf2TEighIi4UcyRIJSkZAUrTi8JpVCkJSlGc0wbbFpwzCvuTaSag4m2NhIXxFpq3S4VQmycGq1OV53ohktmFiVaa3vaiTTYtDmzzKjU5lzT2qYMiLFts8XeAbTTDjAO430x3kv91A1w1EVOTgeW/cv885+H7/qmD9CFy4N+ep/qp6Ov0k+37+aDfjrop4N+Ouing3466Kev+/hTf+pPfeAnf/InHwDcunWr3Lt3r3zmM59ZvPbaa/1/7ODvF3/xF4+/9KUv9Y8ePZofPnzor7/++uLnf/7nb/2BP/AHVq+//vq/XS6X/tZbb8Xv+77v+3DOWR49ejQfHx/Xx48fd//0n/7T2+fn52/knOU/9f379+/XP/kn/+Qr/+Af/IP7AB/5yEfG58+fx5/7uZ+7/a//9b8++rVf+7XfeOmll8pv9zqHg7/fbjjEGLBWrQw14KEjrVaU80v64R7P1xuWKXA8F+xqTffyKbvQs7ZKiHsHrbSFM8UdVXeNkeE9oUY6V7IEYly219QBs57V8T3S6oRbDzN1nthcz2y3r/D46ik3F2vGjXN+OfHkeqSmzGR32O0ikxYsFkodMTcWaky0hVqJHNWK2gZCxoYesTYJT1Kw4rgYVSMuzlwnRNsl8xw4iZWd11ZSvbjVSr61MNQe5uZEdKHDQ4TZiVnovMfc2XhBQyJocwyzF0rU1rpSjIGAzTNmMIQVWFsIct0RBZJ0TF4p0QhSqcVJKnTWoUBWo5Md5oGiE+pLvAZEElEU1Glz2gKRiHr797lscVuTwoIgR0zzSHEnIAx9IHsh6wLzRKcdx70QeiMdddytAs/gUy+9wP1HL9EvIrOvWU+Zs2cjdm4828HOZ2q9gQ30ccE0F5IH6i6T4pJpG+m6nrHf8VzOWa0Gjm6/QJeOCMnou5FXXqm8cKqcygnL/oNc6IjlNdPmkt1W2W0HdpNzOY9cqzDPTkCZPeE1MXsHXggOXhTBSJIonvdkWSGGRLQelcZIcS+oClGb6Euq4M5sjVsy10x1kBAwd9Q7kjpz2SLS+C2bUqnHHR+9e5vf+bFHfPDVE6Y8cjHu3c55RmshaaDkgkdDpMPNgQmhNoFtAdf9YkjCvUfFCRGKb6B2EJxigV46kjSGSUkFF0cl0mAbLUUsJHCT5sQRUE3NobN1c7NJQKDUTAhCCaFBe90QHC0gKEHatSzseTRJiUlYSGSpA6XOzQUsAZsLVmd2Zsx5puRMHWcu5xvy9oaOSBc7YuhIsSOmRL8Y0G7AFZz2+90NM4eQqB7RmlBv12K29txHCmV0fNd4JkHDvs3iir47Am/MKI8V14KnQJHGczETrDpVFMWwnAnaHN+gYFbpwwAOEpWuSxRowGcveG5VPtu5EHshuDDvJkIn1NrYU+ZGNWsHAnbGuGkCJ0+BJE4Qw/pKqZEpXjHGGyJHiEQoEJeRjy1v8WijvHmz41wN1jt8DVOtXNxs2J7eZnXnDsNiRXQhWRNQQQAF90pVCJbAIh4CY8hsfGysoQpDrsylcjOOeBQ6Tc0NnypRWrJlcWkMLxrA36wyE7D9MyCuUBLPn1xz3PVMq4Fxt2W925B3xs31yHYu7MwgKcuQmOZK0YHN5ppuitQCWzUWdASvBKnMJJbHt6FfkOhYeuTNzSU+VKbNOV63UHccHwsnRyukHmE5gafGqmJfqSKCemrvs3pLM0UQnJEMCpVAwFq1VYhto2uwnTqi9kR1qhUaVzrSxwFyS0sMArVkUhTMHG8U9PZcBMWs7nlKSvbIYBBtIoeJEgLR+lZlsnelnbbxyGmGCqFqm+NRjPK1UQmH8Z8/3kP9ZCmSvRC0x/aprUe3X+Sllw/66f2qn251b/Oxj/8xHj2E1fLlg3466KeDfjrop4N+Ouinr+v4zGc+0/3UT/3UA4Dv/u7vvvwn/+SfvD4Mg7/11ltxt9v9R09G/9pf+2tvfvM3f/Prfd87wM/+7M8ef8/3fM/Hnj59mn7+53/+6A/9oT9089prr3U5Z1mtVvZbv/Vb/+7o6MjNjF/8xV9cPnr0qPz6r//68J/6/qc//enuH/7Df3gf4G/9rb/1he///u8/u7q60o9//OPf/PTp0/QjP/IjD37sx37srd/udd67K/n+Gu/+4G8cif0tiB3mE2qZpcBtEs/pkCnxsJ4w1YTEJRY6ek3olNqkrhVh3qf+7J3BDCvpCAyYOybNjQre3pYGR1MhEzBdoHEBPnF0xzm9l3hQHuI3IzDxS//mf+L5M+PbPvKNnF9OXO+22GRMeSTENWoJt46iOzwIko8J6a5eLwABAABJREFUrmjqyNRWRu2NuyJeSNWwOuMpUE0RNawWogZC5+SSqbXQqKYTQRLRFyBG2bczmDlBwD23pKuUMC+EOhM1UD1g6hSdsWCYOrUaokqShEpg6zOuhUCbBLuQ0DEgwZmskJmJIoCjYQUl04WjPejXm4sYlWozpi3hSF1QV1yXFAozN6gKWgPB4557sCPqFo0DU+5YHN2nD0bOGzwElsOCQQP90NMvBk6ndbuh7vRoSsy7xPm643o9MfoNXmdWqedeWGAcsSETzNloxjpjutkwecVD5fYcefX+bbrhNndWK7rTnklHUimcFFjqkm86XvHNndDVM76wSVwOS64XgcfdzEvriQ955N9d3vAv1Xi+fRE9f8Ibacfx1QVjKczdC2z9hLQb6XpY2wwxUnNhidFLJRGYLVFqS91KKKk4ao4Hx8RYaGSaCz5HQMkAAouSSN2SrS/YTDtEAw/u3OHbv33Jq/ePOOlnLJ+RNwa1Y8CYNbPRGQ9KtI6YBY1QCLh3UDIuLTVOTbExcHT7Ps+3NyTVlnDmmYWGdm8mpYaKeCW6E1QIuiDOsd2HqqQYKbViFFxhttpceQxIey5GK5G3/X0j1dtS7hGhtXCI7126kIlqDbBehergKmCVwBI0IUmIsSCSWLSeCUqGUmBXC2Md4WaH2Y4p71hvO0QiIVb61Bb5VX9MlzpSCqRBsRQJqYOaiTEStIl29wrMDYJdDYLhVqmjNwfen1Ork+ZjYkqIZkZtAjdKJMXQ2hOiEGpACXu4lFLdcQkUn1Ag7Jkm5gCVBMQQQSOhT1hrNKAmaXOCgZWAycA0dUiIjNmwumORBJtHqlu7L68rYsqrd19gZfD06Q21dBzLhutZudBjfNnx4ZcW3HrjgqtzuLi6JE9vMo6POb9ZkeqL3Frd5+U798k6kWxJrAtqLY2mIkKnRmZiDmDBqVMBd3KpDWBfK2SBIoReMAGLAbVK8kBnka3vIAiugSJGxhExkjQINp7ZzfDlt894mjPBlClnZstsxpHqTgg9K1mgc2MqLeYdVzdPyeWK5R4EX+vI2itdqCyGyL0+QpjxYcHT9ZrLsiHowHYKzOWUqDMv3lpy62SJ2oS5E4JRyTil8Zi0JTW6C5M5FppLH95xjVGi9cTQHGrxBtk2dQQDbWEC4kqKC5CEMWLMuAjokiiAb+htv8mNDRJfKhAECa2aJpqAzBDn1hY4BzoiLlDYb9gUogrR9gJcpRXjaMHF/tepgsP42o/3UD/FPS9Jo6OxGdouPcSTg356n+qn+33kzquR1Am6O+ing3466KeDfjrop4N++vqOf/7P//nK9y3Pf+7P/bknwzA4wIsvvvi/eGj22muvdX/mz/yZD37mM59ZbrdbfeffA7zxxhsJ4Nu//dt3L7/88vTGG2/0Dx8+/B0f/OAHx0984hO77/3e7734fb/v921/u+//zM/8zFfe1w/8wA98ww/8wA98w1e/h3/1r/7V6t28ztf2av3XM971wd9iOCWXQCm1uVGueK3Y6TGPXyvcW5ywuTnH+h27/IzzzREWHmK0ku0qgtWZmJpzYeoNykllplA0IuqkMEFo1aNiRvDmnglQJyeFJWZNyMkqs5PEg/sv8vz/9Uu89Og+3/n7PsX5ufFbn33Mr/7q51lqau01dHhIjHUDRYEZCSNuBc89TsTCTNWZiFMY9m7dDqPBeet+6fGa2ZURDZEuDYSQmOa5cRno0NATvE3IwSJZKtl9j72uqBpBBUhkn6hM1FwRbQlZnffgkSzgUpujgbc2Fk1AJCqoRMxyu04YEzPuGYph0hw0E1qKmUhzOX3/e2pFdERlIoaRGLrmrNaMq1IECkvKKEQKH3954GiVcH+FbrXk2XjD+fYGzU4YJ7bjnvH3+RvObq2QvoNQ0aMNRxjRe6Z5QOKSbe8chUxcF/puxdvMWOo5Go65HQOfunuX+3d6PBWiKBdlpveefp2IWbnYrfnk/RM+9bsfkb/0hI/ahDHzxme+RLd6iQcfexX55H2+8Rd/k/lyw9v3lzz9ho+T8oLzqw+xeT5xu/+XyHpN3y24Wl8Qjk/J44bUd+SyY249EWQiaCsTr7Yml7H5Vb7ECNRi5Cnv3VvDRFCN9GHJ8/Ecs2vuL5yPf/RFvu2//TiruqPzTJ63GI7Xilhm1y0xDyR64p41UcQRK6hJg+ciiAiIsM1GODrGTm7x5M0zVkOPExiSErVBtZO8A3iuaFKuqhPqTEIIURAxIk7IFdcZk5bKxj7dTekxa2l2UYVOw967s71bBgiIGObgNHi7GI2LI7G1s1gloO1rF/ZNXwRC20SpoklJqaMPymwTy1tOqWvmkpmnjmlnlHpDrTvmOlPW15g5Zk5MIHFJv4z0qTDEY6Is6Acl9o5LYponQkpoUDxPiDsheBOhnpnyNXlum8U5CkGkpeV1iSrNIV/1DihIh1hPiB1BO0rNuAi2J+wE0ZYaZrUxi/YJd1Zra+HoOtBAMGu/DyH2HUECRxmstsOBEoRpzkzm3MQFkoU7L30DGnfcP3HOH1/w7OqMGAOhu4P5KT4tuP/CKQ/ubLk46/ncl8+4pms8k9d+k3X3Fp+59TJ3P/hBTk87NnaBxI5qynG/wDKkbmCaKkESRyGy8w1FjaLOWDMlQZ86vI7NMQ2VIhXzfVtOCKj6XgxWjCbqSzGGIVHdycUYszHvZrS21pBKm7PUIIZAVRjrSDalLJzz6QJkYu0ZEWGWAOEIk4nFMmFd5dgS7AJ1XlJswNQ4G9+m9hMSCse37raWKQLVnKSOSePouChWBbNKUFoVD+wd7bYGqYEzUazuZ+QOp1U1Bcb9RqngAsYG9dQ2MgLFFavbdtDgmRAWjdfmheBKCl0T+j41oYxQmTEtqLXNaonSniln3xTTvGmf273lFvYtlTMSvoI5OYyv83gv9ZMzomIt6GJvogYEn+Sgn96n+unZ+h6/8mv/R77lYz/B0er6oJ8O+umgnw766aCfDvrpv6rxG7/xG92f+BN/4iPvVNl98pOf3NZa5dOf/vQCoNYqAMvl0n/1V3/1N3/8x3/87i//8i+vPvvZzw4/+7M/e/cf/+N/fHeaptf/9J/+0xf/qe9/9Wt+4hOf2HVd9z87pf3ABz4wv9vXea+uzftpvOuDvzkaxrbF22vGcXKo3Dk2jrpMCkYMgczcXIk5EjlhCjM1zBgjSRvYtRYhhLDvClCqgLVlj+IV132gttDAn1IpVUnaAJwxRbDMPFUWXUBq5s0vfZHf8Y2/iw/eeZkb/Ty7ty6oJ5l5q2A9pRSwCZdA0AGvYHUiElCNmNfWIlBCawHwiIYOakEIrbw/OF4LbtAPjYtRqzfui090i0CeEj0BL06ksT9cBlJsKWDVHLO927X/O5WAE0imDDKQijKbYwPgAcexYtQ2M4E7yWRfDt/EgShYlP3kW3FvfBGvRpGWT+TuVK+ogFMIZnQVog9I6SD0WGxCJxVHlj0eAStcbc6YxsrJ7cq0ueTB8QkvrE7Y5C2TVvKbrQrhzTHx9kUg6YgsZrrOkBBJwymuiZQiKhsWtiKeLMji3OuMF+8sCatAOTlG3DmvYzvs3RY0HrObDV1Exu6aO6vAF8pdPvArS07PJsLv/Di2M1740CMWLwjT84np8ZKZu2heMvSnrLoPcO8b/ve8+Qfvc3STSf/3gd/96j/j2Rh44yJRbwqxO+H85oZ0dISEtjCpB4pt0GB4VmI6IolSpDK7s9lVpE70Sdl7Vowl473ywQ+8yCqc8t989AN84P6SPN9Q88B6qhhH1D3fJiGYRSY3Zows0JswVMFlxqWjVBCJuFRKnVn2iby7ZvvsTY7DzKCGMxNiT/aBWloPQogJL7WB0nshO6gaKt7aq2oDV4NSfc9VcW8sFUrbqLnjoqhGSimYelu0fV+yXytKY9oAuEVqDQSNaKr43sETMaABqmUvZPM76Vne7uEg0MVA9QrasRyWnKxWeFYCd9nayJQnzCvjNDNOmVKcucB8U7kpmchTlMpqsYAIablgMdxinqDEwCL1jU1DxUvj07hMuCoaFiSfMKsUKzixVZaYYlOHCKiMiLZ7Ai104RTVvqW97VtYmoxtcGJEqS4Ub4lwWkFc9vMK4EYfGyq6I1BSR5ZI8Z5kmZJnFrtLnp2PfOnx1CDztceP76DXhXkuTGPmdHCSTeShQePv3LvFt9855vnzKx6f3fD2yYLLumO++A1upi/xwvGr3Dn+Bu6+8DJjyMxSseIkjBCdxIRNlcEC2kVKNabNDp1nggOa22eu4EDZt+up92g1nImo4DGidFSZmLy1hS20Q7MwGQRtLr9LAO2/IvK8GhKaU9xNQrdTKMpCA+vdxEIiXeqYpy23b59y++iY0heIwvWziTIq6hm2lb6L7MYdd+69RPElVowUB7IZDpjKvl1LiBoac8idfv//DMGclvgW855f1QDtSLvHw36tDCE00W4TIjPiEZVVg7/7jiKlHTp4QUQb36e09i4PjW3j+3vHJFJNiBIRjbg2fdNaDQPS4u+osTZpHXRvlHVfeR4P4+s/3kv9hNQ2T5nzykuP+ZH/6/+FUpVw0E/vW/30/MnAxo758mbB3Xlz0E8H/XTQTwf9dNBPB/30dR3f+Z3fuWkVnM6P/uiPPvyu7/quzw/D4E+ePAmbzUY//OEP56/++V/+5V9e5pwF4Gd/9md/6/f//t+/+dt/+2/f/rN/9s9+6Kt/7vz8XH/t135t+At/4S+8rdpymn/v7/29H/2lX/qlk1/4hV84+sN/+A9f/ae+/+f//J9/+s77+uN//I8//4t/8S++DY0z+s/+2T87un37dn03r3M4+PttRuEYlRklY7mJMA0LThLkm4qfZkLn7DRS6op53BEYYV+ia7VD6XHzfTmwIxTMC9FnCELwABYJddVeVASTCVQQTRiVoAnHG1A4BEIVLi8qJdxDTu+ztcj/9P/+NL/rd3+cZ597wuPzmS4eoWzIDjOGy4TKEcodFCdTmGVE9YRQOpLQFlutVG9/q9XmT7gFNATmaQRpLoimALlSilJlwklIgx7gVFqFeit/dgJowMVwgV4XmA1ka89PdsOCIZ3uSQ+CEjGBohUxSBIIDmq2dzatyYwc9kFEDbqLB6IEcEO8uYoBISXFJWAu+1QuxWrEUiKHQtGZYdkYJYoRGHj8pkHuWC53pBQ5vrdDBuPWSeS0T9xbtPd/64WeN44rZcqwHbkoEVvPHK9H1ECHCqvI8TLSk1iFnsXtBXIrsF5fcnJzQzBlHqHrTvausLPUjhQznVe2tTKmJ4TVju7DrzC/9ls8fv1N7n7sm9n9+tv8j1dbPje/zfO7p2xYkqMQa+XtB4Htq4F//3rhzlnggywZ/A4v3b/N0UsL9Boev33GW2fPsFIZUmxJhXFBplC90ksrF99OGa8ZY6IfAkpLX5PixLLj2z654iOv3GF19AJhkbgpGcug8yWlVMKwwCmIFNQqk2awSjJau5A7RdqiJNpK4UMM+8+tVStEF67PLtBSETfG6YbF0iF1LIYlxSu50qoXRImzt/J8KYhWgkGShHexAYbd2uJobcVzdeSd0nc3zCvFKmC4Nwgu+zaVZqQLXp3qjtAA1lp9D3QOCJV3kv6AViUiGZEmlEFpHO7MoIliASNQmrePhEgfVqTYIdFYeaFWJZcAxfG6pcwbaoZxrIw+Mm/XyHZEdURFSDGSQmTRLeh6RaOTFgMaBsyNomvUA0G8wa9x1FvS3FSuiSEQSY2zg+IEClNLlZNISJEUwl40VCQIISZQwYPvRS1YqQRtoHOsiSW3yuyV2Q3tE1adRRc5vzzjS595nX/7m2/w5HziZjeRUrueEWc9K7UonDrHQ6AOHbvBOVol0jzx4OExq7u3iM+fc7W94ea6UG7WnOcvcH71hCebR9y6+4hbt+5xdHSbqTglC8QOvBK6BrGe8kzOTpDUuEdmuLSqg+Lt8KHKO0luIBIa00iaMK3ewO2RlvAY9humVuXR4N+447VtjMycOQZq6KhPzyijMc+VO0Nk6DtqnnG7QmXN8dGLpLCkN6FMI/N4Segqu01lqgsqI3234M6d+9i+tSQz8pUUPtW23lTDa6UiqDaOz/9vLQKntZEhZd+utf+cteB1AEkUa5s9lfbxYpkWx6loyO2QwXpiCBRr83IM2hjwruCyb2vZH+eIto2jC1Jbh4V4a6vRvRs+SVvKxQTx0JYce0dKH8bXe7yX+sk5xoKB5IN++q9EPx0/eM5HP/xjXM6ZMR/000E/HfTTQT8d9NNBP319x8c//vH5+77v+97+yZ/8yQc/93M/d/vRo0fH9+/fz1/84heHv/N3/s7rH/7why+/+ue/9Vu/dQz7lvbv+Z7v+eijR4/mZ8+epf/w97711lvpu7/7uz9xcnJSHz58OOec5Qtf+MIA8C3f8i273+77n/zkJ+c/9sf+2POf/umfvvfDP/zDH/jxH//xh8vlsj5+/Lhbr9fhx37sx77we37P7/ltf897cAnfl+Pdp/oimLdSdpUVSodWpTu5R0aIKjBO9N2KniW7mx0pOlFAQ6JKh5Q2CzRR1U7Y9zlsKN5SoOjpdNFeU3TfZx/Q4JgXKs1xFWCZI34UefJkTc3GS3cf8K/+7W+y7JRPfuwh//j/8YRueEjgBCsJyo4Y1vtJ5xhnQfVMdqgsEatEyQ1abJGaBQk0R6C2xCK3thAt0ym5bil1RNXoQ3NlzGeciMTUnGSvbcJxoyJNCBOBjJsTquBFCSFAdGbbkUOmiw0oHGmsDA9Kp0Yphegt/lxCy0AymssokoDGE9GQIDspdDjT3jkDQ4gEcm2uRxajS4oHA53QZMxWCCzpuYXUGY3Ctha0h918hkyJGF9ES+DzIpQ+cOTXAJzOO15Kwup0YPB7jLbkarxi57C+EdYbR84juzeuiSdwvBQe5kDeOM8ur7hcdlioLEPkNE94qKROKebMOUG6z8A97soFy4++zPoDD+nzF3nBhPA7HpE/r1yWHV8OS6ZUWZwu2dQdy6R87t895qVXbvOBX3uTt770aX5z94xhN/OxT7zILtxw+vIHuKZy/dYbrBYdN7stJoHOB1zDnreSCKGjN21hb8VAAtNcGDdb7p2e8LFv/Dif+MQJYRHRnOmuK6XARpTOFVFBCS0Rz1vFhrCj+VSKeBPBVRQVwb0JN1dHAwRay0dQpVfI05bd9dS4J3ni6LQSdIuJE/oFospchKgdLpGxCEglSsBDQXJAtG2CDGmsFRrvwswxb4u5ektUCxIR0cZjobm0iLfnpjqIEYI1wVsMVShWELXGqKLB1vGCiOFeMG/CF7S5gNlRj4hETL255CJEo8Haq6MihJTo+w6tmWDHmN1CgjLZTK7OPO2wacd2m5nzRLHMbjdyWTZtzko7+sURQ7pD7JzQbVh1p8Qu7TfYAXEI4rjqXrApFHBVnAaPFozimTIXsgteC4SCptamIiE291WVILRNOgK1uZHq7drn0NhWNc/gsLmZ+Rf/4lf5hV//t6zXhnLC+sJYLY6ZthkJELqRmi/YXt1w77Tjzm04CXcJ10LsjjEGjmPgWx90bG6ectkJX3p+zVrWlLIlP65szzPbuxt293Yc37lLUW8ssk7JlhBzSjFKcRYpQvXm8KrsuWJKpTFbsk+oQyeCeGx/j5V27QjNy3cnmBND286wn7mstja66oZHJWrPSjveHG+wvOM0BGarzMVRNVwn0uAcHw+s+oFNTWjsWI9vcbo64fKNLzBMPWsbefjKCyyHFe65rWUOUQKKt+TH1gVCkOZYt4Yqh/1/um9ZsUK7N1T21RxGiCBhwiVSTDCX/aEBIAPVHPe8r2Lo9y0ureoJQgsqsIpKau2EXnGZETEUULGWImmCeGuxEmvrsosQuoC4tZV6/z3//wPhexj/Zcd7qZ/QgaztoOXt53f4H37mj/Df/Xf/hLv3Lw/66X2qnx4MxnHv3H4AuhgP+umgnw766aCfDvrpoJ++7uPv/t2/++Vv/MZvHH/iJ37i/uc///nhjTfe0I997GO7D3/4w9N/+LPf9m3fNv7Nv/k3v/BX/+pfffH58+fp9u3b5Ud+5Ee+/D3f8z0f++qfe/jwYfne7/3es1/5lV9Zvfnmm72Z8eqrr45/9I/+0bMf/MEffH52dhb+U98H+Kmf+qkvfuITn9j9/b//9+998YtfHLquCy+++OL8Xd/1Xdd/8A/+wZt38zrvzRV8/413fWe7P2+lyWmBlgG1itSRo0XkdBFIc2Woke24Iy47bmYllx4rgoRM9YKkipi1RdsV1YBLwsWpItQAapkSW1BEEGEIx801cG8/V40UuuaAWU+2K3a7JyzkgqN0xWtfeov/3Xd8J9fPQOYHBHN2u8+y6gTxxmLQmCgyk+WmLcS2YCVL8jyhouAzHp3iubFyoDEFlK84M0GEEI8opUccnEytG4YwUC1QtSPbjogTCYR35jAUTHFvkNFqGSUQQtfUuHTNxCoV9/oVWGpb2MHVyHUEaaXMSvgK68NSaQKnVvBC10WkFCTZV9wYq04WJ9eCxgGzgkXbw8MrCxFWmollpNgRkwOSqXGkVmA07p0mrndv0q8W2FjR88KuVdHyG599k0+/PXDr+Jg7p/e5tdxyshIeLBJ+AiEqu/GC8SKwnbfcnD/nC5eB8z6wTLdZXV4SFzOTGzosqMuedc4sVycswylzUk4t8y9xHn3uN/j4q/8e/sBvof9CKZeVqUR6uUbuXeAkNnoFnLDTz/OdRxeMv/hrvHoNn/vmN/n3Tzt2+pRfe+3z9OGUew+Nz732JqFAsIh0C3xo97RlgTAAAagQR2q+Bp+52kwshp5v/NQLfOvHXuIDL9zhatpR65qyuaY3QSssu8AoEykIWEaooEIVoZtT83NFKdpaibxWurDEXCAaQUrb4Gkim3FT1w30vDQur8/pglCnQJcDntcMsSPWCsQGiF7MEFaUEkCboVVKIWpzoSUIXkFiD+5Qwn5Bl33VRhOaIopK23IWqwRtzp27E2mH9dUmhIigmFmD8Jq3tixtnJpSC4M2V61Vg0DblUaMBKHxNswaBN6LUzV8hRni7qjndr8bpFhb+5msSKGjGyaWCyH4bVQ61rs1pWbMhJyFab2j1CXjbmK7foYzg0+k7oIYB0IYWC2WLPvEoovMwdAIwf0rTmd7hiekNue1uhJUUW0ivGTHzBo7ShVUUJwuRGAmxkAKcwPfxwBqxBAxEySs+M3PPuGXfuVNpmunY2LOX+ZoOTByw7wUtEaiT7hPPK8DN+vAxdXE/ec7+pPE0Z0lp6tTzJXSBfTuHe7efUR3+5yLzQ2Pz8/YXb+N1zW7t7/MxfqUOzevcOf2C5yc3kZM6TBCbImhVYROQDwzUYke9uLVwBuDi6At7dETapEgFbSStGOcKxadGBXFiW4Q20mE7kVtxaliqEBfjORbysVbLH1NL5ldnkH7PXNsycmwpEsDSWY0zVzdnJO0sB0vuBzfgiOoZzteeeGbiNKc8FqVKEvEDPOCme83FdLSFb2xmMx9X3HE/v6VFlSAAwkhYa5YNXpxiglJW4WReCUGpxCBDWoFkQG1iEkl5x2qqW3OSgFzNHSoB4SCSsWlthYud1QcomMVxH1f/aGt9avMCNbaYvBWFeEHOPX7ZbyX+kl0xjGCC6u+59GDc4bYNpIH/fT+1E/P9XfyLx//I1568Y+yPP3sQT8d9NNBPx3000E/HfTT132oKj/0Qz/07Id+6Iee/ce+/+abb/7br/76+7//+8++//u//+yr/5+7/5uv/vr+/fv1Z37mZ77wv/Sav933obWE//AP//DbP/zDP/z2f87v+d/ieNcHf1GWVJ+xmnBrCVSC4/1ElYkcVthRpNiGtTxByoKd7vDUDuwURasgWjFxashUmWktHE2EahhwJmz/vIlHoG94UylghRRa2IeKc91PLELg+nLLJvRci9GFDY9eWHC2TaxLxxjA032qa2stYdHca1pkvXhpiW0lEwhEHdoCykzwQswRgqHSJGi/V6BW2wMh2lGtcRGyzSw5YkYoZlQLrUSdlvYlBMRbm0jFUI+EGHmHA1JLBip912M0Jy94wk32mFfHNJD2zAQQ3DJhzw/J1hZLc0X2vBHRSqVSsiMSGwhVBWJgCCdYHpG83U+QgpTmdEwhspOCRBg00ZXQqg+OBKUg08iqT2xLxofINF4CUDWztYA/vULeMJ6sbtEvE8uVcDQYd2+t6LqH3Ll/i9urNZa3jOvCC25cXhrrfJ/NqKzrjvPza5a3JrKf4+s1pdugg/BYB3J3zD//4mPuX7/CUfkUv3H2BT73W/+GtQ88XQ7UaqzSKbqc6JYnTGw4EUPra7yVM2feMcuG7S4w3izoUc7evmA3QQiJcT3SDR3LYYWmDg8VDa09qI6FPBt5G1EPvPLCPX7HJz7ECw+PiDIxXV0j00isM3hgigtKMMxnOu1bmpQoUZtTpuYt4l4CUZo42uYNlhxP+42PB5CZoEYujs0ZdpWbixtYX9LnNadHp9y6dUQK12DaFtByuW8F6MhjRDgiynF7vc6RVKm+bCXy1oNEVBT3LUESSMR9RnGqOUGV2TIpRLwGxHuKGBqb4ya06gLTCkpznRFUHZOAWePQsL+/szUWlO/ZSexdt6plPzc01/AdN9+rwR7u7hL3mqI0IVk6xBet/Uoc97Rvk2lsnKPFAteBTGM4ldMetUiZMzmPzDWTcybv1lgp7MZrpnHi3JorTZdIXU8XE8uuI3aCdrCMCaXHaDhhEdtLB8DZv35r3cAT1YR1GYnR0RIREtnWDCvHp54YB4QejcqbT694cr7mJNxiHm8aX8v2TqtGTCbcIkkT0gWmuuMqV8Zrox8L98sRuxPlaLlkMVZWy4rHwnLxInePldOj55xdrDl7conkifX2hun6s+SnF8z3Xub43gvoyQoX48Yyl12gRzlBUelAAp4rroEclFiNjtZ6EUxxa76vBGkVNETU9sEGSbEQyKUgBhaMYpC9IurgRkgDb09rno/XpN7ZeGFliUJFSsduDjy8f5vbt++gXaXKEXlT6MdjfMxw0+OxEKPw4ov3wSeQmS4oUnaN++TSeEoC4kYhf8WdfsevFlqrjYs14WqFuGcSuUXMUnOPfY9eV5pZZa0qq7UqNZiP10InSmcDLoEZKAIp7Z8Dz6g0YSqyb2GxSnHDNCIi6Dvi2h0Ngn7VwUYVQ8zbZuIw3hfjvdVP7QBOPXHn9sQf+SP/T9C2OTvop/enftqNrWOi6ad80E8H/XTQT3DQTwf9dNBPh3EYX+Px7g/+PCAe26Mc26JSzIlhYLW8xVh7rrKhvuT+YsDmK7CREGeg8QhCBbQj0wSV+4RKJRLBmvPT6ATNxZLgVEak67DaFsLsND6LGn1c03eJLhl9HLBpyenJI2rfE13xvKYjkOSYUI2RCYkJJ2DmeF2CWWsnCaUxNqzgLqgnEgndT0STKyEM1FKJgeZ++4wr5GxETXhYtHYXHJeKKUgQimXMM4lWou5qlDoj0oDAglA9E0JzlpFI8JZKlKxvojdVDKOa09PvOSU0f0eMQqVjCdqS6MxrY/rEQLWOWoQYI0E3iGeEJrTFHVWYXUF6Aom0dyFTcISZrsLCI6rCjEHtUD3CfIl4QUog0drlBxOOatinBy6pBK63I5vJeVYLj59f0h9BZ8Ltu5Xlcc/xyV1OVmvu34Vaei6ur/EQuFkfs904eU68tXFk3ZFq4c7SufDMv5T7/Ob/7RlHq2t2wzFTBUmwikfcWt1iWK4pckTJM6wTrz99zltvPuNJhk2e0FroSqYi7CQyjgVw+i4QYsS7SOwCXa2gSvDA2fkV4zSynS54eO+YT3zkFT706gNOY6XaFdWM3ZixukPUUU2oV6IYLpmguue8RByoZUYRQgK0MObCMt2i844UlGoT1JkojsiIzYXdeebyasN2N3M0DKxOepYpIzoSkrRWiBQI4Z20tL4xZXxEPBNlBBOqtyoFk65xOmRF7O5S6bGYWfYdu+2ISGAec3O0E2iNSMkoExqEKRshrKjeMXkki1NtRMgkragptbZFVd2QStsEiFJtX/7vtMqLvVidZWrtbDE20QsITixOrY1a0xzG1trzDodJNbZWiCCNbFMDTtfaw2z/HmLBghEjaIUUEsOiwyRQ3Kllg9TMXAqzRXZjIU8zcdpxfXmJSuKqOl1UNEGMicVixbBISDJi15HiMUJPCh3VZio7hJlSMkEDHY7nAQmQ6xoVmG8ioQZ2CoWZWrecP34Txg12AiUZRSLV93+b1+b4hkCthpRK75WqmdkMZuPNp88JF2se3r9NbzN3bw8Mq45uMRNj4u4qcto94u7yFhfXT3jzyZt4Smw31+Td2zy7vkt//FE+8OhFVqenlK5SZ8OLkjS39jeFuq8g2GljcVURSmhOt2ske4UqJBT1/WdfnXk/37mDNe4+ESWpEszQWpHdTKyG1ULf99iu0sVWDzFZ5u6dUwKwmyZWxyvG+ZxRnfOba6aUGA2WJwPHd5bMdUbVwAw1awcERKK0KgSTNne7SBPl1ihh7Lk2lbr31d/BjxshVsCpNdEUZNkLXqOYklwJDPtwgDZx77HvCG0NBDBaxUIQR1wp9Z1DiHZIoRL3QHhpVVIGboaERHFFBfY1S4hVOg7C9f0y3nP9JCBqjGPh/Oo+t2+9TYoH/fT+1U890PRTf9BPB/100E8H/XTQTwf9dBiH8V9gvOuDvyBbYmqLTMFBWwT3UThhubjN801FlqB5R16vCTPodqBfCJmJuYLHDnFrD5R1VA/A3MCgWslekKBofOdBrkBGRlDJaIiN9aAdISrHPKRfdSiPOQ4r8mbN8YMOD7DJb7OzLRJPmXzNIg1QK7XumptFwL3ft5r0hFhRMrnOgDXXDkFioXjBNFLrrtkX1fFcqD4TQuMuUAQpkVx7XFuynbDXoaZ0JELd96uoYt5EpdWRBukWoiRUAlIixTIqmUiPutBJIogxW8aCUq0xZtpkBtkFbIcBlYp52fNMlJkVEgIRp9OeUqQxRkKFlDEyqorHFiE/1z1XxwKhCClE+v6IIhmJu/Y3VWX2jCehurGWxpkwbe0LNU5M6sSSqXGixDYJ+9zhlwL+73njsoKuiP2SxQru3l5yejLx0u0jcp154fgYE1jvLigI11fK2duJS1PO9DHadfh0yqqcsLwonPQwsmXMax6cvspmCnz+zTd548kzri+2KB1dWmClpX+NoyHWYN2xj+R8ibjTdSuGYSCGSs6XuEV268p6s8PdCV3h4x99wKe+6QO8sFwidWSuBc0FcmGymT44QTtqbaJFiVAiWea22LAXWdpjmoipY7utDeZrGdctcw1ETYQYmbczl2drNjcb8ijcHlbcXjrdrQs0XBMB8QXqCc2nSJ/ZlqvGi/HUyt/DKRImSt00J7c0TkeSHVGhzM/xeENNtylx4HLzBoEjhviQyC1qCWQrWNxQdMQk0tzlzGwXTZB4IuoKdUVrQGYwE+gi1WdioF0rb8DdEK5bqb1oc/4ktTaNPmKmNJx7S0qcS2YZGvupumGu4I0hMwOikUBzCLVW1AsugkikWpMZrUdnz8hyWhuQNMcyoYTq+CIQqCwcqkZKMbCK18KUK+N2htkoOTPOI1c3N+jNSBBwn0mdsuiPiUHo+siwWDXYfAxIGNpnHyrb6YYuJswLg/VIjmTZUW1DoSCunJ2/yYsvPiRPV8x5YvLWDuF7rs1gQrVWlZJra61r9TA9oykmE9Pmhp1sOImJ83KCXjmP7q1YLR2PM2EFfee8ePcBw90lT768ZWOBnc/o+ilXZ9dcPv8ct+6/yJ3Te5yujiBXkvbUWiidoFYYvPI8zRQbWKSOXhssP+fawPxemS0TgtJpaDO8OxoTXeqoxbDc3FYbK9InbmJmunibW9G48co6TyxSR5CRWkdkJZSFMcUO6Y94vl1zlWe0H3h7d8EYJtbjNY9euk3qYTcCPmCmjZVGJQiNneTs32fEDcScsN8EOYp4q9oQ60EG5pKIKnSh4jYySW7sHQSRliJagyDV8WxEEaIIswobL1iciGQGFxKpMZ1UMd0D3R2CG26Oh1b5Fer+WXGh0iqPLEYsvwOtdvB3KjwO4/0y3lP9tN/mmzlPn97nv//v/w/8n7//x3nllecH/XTQTwf9dNBPB/100E8H/XTQT4fxv9Hx7hl/odXCmr8jxAJaHB8mFp0Tr0YGg2nOLJcLtnXNpoyksOdVqOJO65/31lLh3qMCSgPZBgbElOBDe3O1J3HMok9IyMQ+QOyoonhwarlpLST1hnXZ8WzMrMId3Bbk7UjKxiIERHd4zhhlv+BFgva4BLKWxs+gMSPAGiQ3tslLic0Jw3EriLdkq5lMwMBnAh3iNNeaDNraeGIU3Mu+JN0ILaqpgV/rhEtLKMIDMSq4UUtpYlgyBKfU0uC2++J3CS2FLgTZswgcQUkeiRgV25dLG27NaRFpzEQJA8UCVQcKkWA9ce9aV62U2lplYgioJoK3GySpQNdailJcECS2snKfCFGJHjje5+N0FPogqI9EM2pc0HkHO4UgWJkJ3MHoG5C7E7JdM14om8tKkQsWq46TxcCtoxOOVgvu3XqIqXHvBefRw8xm6tnOzphvsO2W6SqQWTBfg4iw3rxNsF/n6pnx9vUFmzoyLAdcndGu6fKAmzJboKQBqtHVSh8GgiirYbF3tQrT1tjtRuaSGWTL/QfHfNMnP8KDh0s0zOi4wcfC7JW051TQA1mx2krTzSfcK4EBNQXPqIGIE6JCDBAL0zzRp0V7L0kpozLeXLK+uGZcTyiV28fG4uHEUXdB9QnrFbcjdI6IFZSRGFZkd6BvrjlA2Ta+DI6bEkOHWAHPdGSKOSF2eL3Bpw1JIqZCtxDmm9cJacEkFR0CnnskLloLi0RWoYOxonHG44SVisTUkuzMCdLhNUAUai0Ec8zBVQm2auX2sTmYqhFQ8tTu69aS4gQJiCq5ZkKgJfVVKO7EEFFtm7XGDmmgZ5GISCVoYzr53g1njx0R08bu2YOGKYbU8hVgsbujKiQJpKhUeo66iA+VaM1B3ZWRnS+ZdsK4EeqcqfWa9fqMOs/EOFA1IkkJQyTGnmW/Igosl0doddL6Ajt7gwWZ2QfCnDnqlmy8h/MNZivMOyAjlMa9ciM6qGtrYQiRSuO8iLUNrVtBo1GDM+7W4ImTGVKfOTNjd9RztFhwPPV01hM64NQ46SP1uuet5xuerjPan7PLW+rTHeX5c+bTO6zu3Kbcut9SRM1wjUwqKJW+Gp04gYoi7V5HKQnmaK11UUGq71lIrZXISgVvog0JaOyQeUu5uuLm+hxbKtESvfRkIsW2EHbcuWssj9YEndjlDhkrOu8Y5sJoBVXj0QvHiG2aEHVaRYNvcMA8EBptvM2XNPC6fKXdaJ+8yDvg9oKxgzi2ihCHKE6Wlk4Z3BB3TMGDEEQouVCjIyFQrTCgexC1gCqVDqsBtYDLjEmDugtQxalS960oSnD2EO0G/pZcSW6oFzKOBaFgQP5fJQoO42s/3kv9JLQNjBhEVgAc9UfcOp4O+ul9rJ+e0fRTF/JBPx3000E/HfTTQT8d9NNhHMbXfLz7VF/tWloODd4Z98k3GnYcr+Dpl69ZxiWoMJXCzoWLXebk7nEDSseIZCNopVD3rh0EVd7J/wnaGADdPkV7seg4PVnRxxXm2+YeY5hXXBwSWM70cWBjHY8vhE9+5FXGEtnMgmhCvCLiFGZCFLx0iA+8kyBnYYO4AguUQpSWtIQIVYAaiUoDRYdAmXMrjQ+FECDn0hYJb8BerKWOiTcBXGpFRWDfhYKAEImiRALuFaTDrFFoIFNk95XEI5OCRqjM1JIb60d9nwpWccutPwPHakv7Et6JJA9ITfSqzLbDpTKTkehU2zLJCrSlMJkHahVUhKFWUq3sBmeMMyITfTUWBHJRNCghOsUqGtriI7F9aLshMB6fkrK2toIgpJKJtZBFqb0whTP6PKDarl+VHaETTIzkJ2gOXO82zJvC85iQJxD6yOoo8OjWwIlGwskd1nqEhY5ys+X8pnJNZDUu2D3f8u/PnpFvKjIkQjgCE7QWUg2MoYBFBno8DcwhU6rh9CwXC2oytuMF07jj6rxS3Ll7P/Htv/PDPLq/4tawpGxmxAwKBAt0bg1aTEUq4D3uzUUV70EEjdpAtBJpMOi2EUELrpXj48hCA2WeuT57zsXZGhsLq1548c7AYkiEVCAYEhwjYihBelJQ+iSUusHDOYEVIkPjL5GRMCLxGdUjrguMJUJBfMbLMUYHYYFT6ZgZELzuuHjzc6yOT/G8YBFOsE2AdI11Z2hSXBMjC5yBYIGQpbVnuVHV8ZAIJqS6229em6PneONumLTyfjOMilMQVdQWBElodbCCizexClSvqEoTudoqJtTyXmxWkEjlnUQ5xUsh6D5pz5sgVhWcGZF3UvfeqTAxZt23A4iSac+teaFqB2LEJNRa0Q6SRqLf4+go4ncMt5l5XjCPd6izU2bnejeyzRvyuKaWC4LA0AWSd3Sz0t1comevM8xnLOdTUoFJOs5kgdyMXCJUg+qRTgTVSjSHkpl0xILj2tp8xFsrXp0yKSoqkWqtSmKZOrplYlcK5dJZXxZujtZc39qwXAl3QuI4D0xpYHcy8yDt6Kcdz7fCzTNg2nLjz9nmp8Sbl4nbG26d3uE0rPAusVFYjh2Z5qA3QzVCbRB0CqTYrquaE1yJBrJvUWoziJHNWutSTejVjvl6jfZLzI2+tJqcOba2n5fuvcxQT0i728R0zHz+BlESI4ULKYxaOVr2PLj3AaZtwFGqNz6ZUyEERPeVReq40NoMBSC0hhK3FjAlgkjArUMkE1MTtGYBCz0pFvSdfps9wBxzqAXpYEvBfWYpHQuDkI0SKqPApG1d6KyiBi6tlQxpLS9Ya3skNIi7vNOq6AZlJu5FroljGEUqRvnP0QaH8TUc76V+CiEQQiSIcnzUTNRhsaAf0kE//Vegn+ygnw766aCfDvrpoJ8O+ukwDuO/wHjXB389gWLWHB6BQsZjxuYdy4WT08iOgiXHakW0cHHxFh/78CcpFTRkSt6AKFUjaEHMcDU6VYIGQkpUN7ohAZAWkbgQxrrF65ZQDfeAuyJBGcoR2me8S/SDcPns88TwYfzaef7G21xMG8ZbC4KvMINeClVAZSJIpvhMYQZxpI6NTYMiJlQyQqBYS+gKAUp1JEW288hMoetbKpVZRTUw55mglURo5fSlNsioG2jFpFBqQViQQkf0qbWYSHPwVAMeKhlDvDEYXAtFMpkCIeLeA42l4cZXypKzGR6aCHBRcGml/3s+R5GJKhWS0Lkx2MwoIzt1olWCdq0NyGCSyKyBLMZqmThKTu+FhBHnd1KdnEBALBKko6vtMzvKytEkCIEgjWEUPFPVmLQjqxF9QsI1USs+J5ZDQJcX7PIleZxwDwSfmabAMtxn3Ap1e8nmauL8aU8MzTlfrnoe3F9wmnpOXjymzJVSK7tHL3NrNC5uZa52I9vtzOxKihELStYb0q6HWXGJWATEqJbZVeHqbEPJF+zGc05P7/PRVx/y8Y/dZbUUfN4wrWd6GZinHXMdAWPV9cwi7CosfGgiTcrekVqAVmrcIPQQusaF0YB4weuEzj3j9jdYb9bcPF4xcMK9u9A/MlJfCWGNeyR2t5nLkqgzqUKwE5SKyBqNjgPd4pioA9VahUYVo1glCkx115KtSmsrEYvM/TV9WDHtbshWebaZyD7w9I2nXKyvWN1ZM6wGXn7wgOOUiGWCXWaZjhECFtbMWvAYsLAg9Ue49Lj0QGqLb1xT50jUbt8OkLFgGMPeERTQhBdBNEIdEa2AoGpIUCq+/7eOW2OBQBOVAUfMEXFEW0MdKIi2z8D3Np+3xd6tsUiChPa11+Zyq5B9proRQ8Lab6F6JYkjGHWa6WKi5oJqpKhiFCQWnJkQldXyDlGdcdxwLLeYS2a3ucFz5maz5nJ7ztnZG5St8tKtD9I/+CS9rUk3E3GujOsr3txesFm2JMebs4ngBfXWMlP3LYMzTV5ZyaiDU6guhG6FBWG92+H7je6YZ1alJ9WC+1M2447tJNyMxyyXA+vjjlurFzhZdUw682Rr3JUP8tLpmk0YuZyuOR9viPmak/Gaqy+tyCd32Z4+ZHl8l8WwIhGY9qD71lJUMGu7dquKhIRqoJoTRVBtQrKWmRQhqKE5t6odK2ymG6wXpqr4WIlReTJfsAoRJXMyKHdOA+gVuZuQKcNceX52zsX2htgrt4Yl3VHPzjdEbamS2SCmRNABbJ8I6Y33RVBouQIE2DvE1g4CcJwdihJqqxKoUqgykUqkujfODft7rkpruTIlERrgOgizNAYZLqgZsTawe6soab0zpRV2oRIIbsTa1t7WYuXU/y97/xar3ZrddWK/MZ7nmYf3sE7f9+1TlXeVy/gA2H1QItQ0ilomJHQD8g3KFQgLXwBGgGT7gjsIkiXLxlhKFAkbSyBZASESQUuRbCw5IpIFSjpxtzGxKZddrvKuves7rtN7mofnecbIxVxVmHQiVTeuYrdY42Z/e61vrzX3Wu8752/OMcbvr4YFQASvcZlMcSd4xGtevv9jfSzqG8lPkiIxLBM+oV2mLmZGch0f+eljyk/UDbDwU/vIT4/89MhPj/z0yE+P/PRYj/V1qK/5wR918Z1I0AfZ8ozHQhMvWG/ewcIt2m4ZdjsaM+Kc8SEh1lPzjuCQYrO88UJHCJEkRhOX1Y+gLebCbI6GpUvtvohvqwpRI0EETJc4ehVsPqBtQyChoxBL4s1vj8x3H7K/u+PdboscBHJC6TmmE7NUYioPScGCeMNiIJjxUomppxpgjkTBVSlVGGulbZbOskqkqQn15WRXrS6j7Jqgsrg3VDFriGmR0yIFsRlhRmkI0i5j8Uy4zGgTHi7KS9JTKZkmKkGWTh6yrArVulxsMVgk3h2mDzHuoSxpTuJ4XeLInUwMI5CpJqS0ItSGSCSXQtMEWq3gZVkDUMeSodrw/jrz/kXPpk3s5xuKt9QhMJaZySsVKGYLnNIAsHJjXQ8Lr4RKLxUPG2ZWrFbLSbyr5+AvQGaKK+vtGdo6ZRJq01HtRGDCayGPlWA9fXfOUBo8GlNVdgdjtoaXt28I68hKGp5tzgi905+1PNtGvnV9zhjO2U2VYQrc7gdOXtjvFVkJNS5S3VBnmpMxlD3D7p55zJyfCZ9874L/2X/6e3nrSUvwAc+CZUFrZTxeL2lQrWFiFAaKCKQEBKo/XKwRJEZEMxIKqgXXDpFEqYVyOjEdTuze3BNqS5eMd94ZuNwWUhrxukJoHpIYZVkf0iPVM2gEOYANkGZC+4SQBIuHRZz+sFoUZYvkTKsHoCApMjuLI6eCtSdsvmUlHS/uZz77wRvGeMn9sOG9z3w7u1E4WIOfjJZCjJEohbPqrBjYNAEpEJMT4456vMNQtFkTQk/TJoZcEOkhbBZAVUGD4gzLeolB0O6rMt4Q6zLHYovQN1SlGIiGJW0RqBWK12WkfxkyefByPCRyeQYNuAaqfCVjjIcLuvKVBD5xf/iMLDe4unQitZTlRlYUTMmpUGolxsDJHdGWIiB++mq3OGhDkRmjIqxIaQWixGismg1rNfa7A9e/PHPeXOHnI0+++QpKpAlXNL3gp4Gwu6H+6q8gL294FjvGNEGuqBWKFQgt3iQ09wRRsNMiihdf5PdkXBVpEu5OLjM5CtPYMucVh2Tc1yVZrbmdaO+MdSsMlyM3mxN9N/JOG7kfB+RwzrO1crVWnpV3eXl9zXH3ZRq/4vDmwO3hlu3qCW9vnzJt17Tt+eJKqZW2SdQYMDPElqRR8bg4utyQapgLFoTaCJ4zasuaxjRNTPt7fD4S5z3BFIrRtwnGNV1Yc7X6JmxY46uWYSiMNxMba2iGyhkd96cd6WlHSQJhSVmUCkszOOISEDNSm5ZutAomi+LZ3Jabc5a1Mh6mG1RaoqyQGgFfvE82Lh1qlvN0UCU8rLxUSUgxVtpiOFOtnKKRRGmIJDPclmuaP0xtiStROkQLIhNaAVuSQYssEmqsYA/i9sQKJIIVYnWi6XIteayPR30D+QkJOIabMZeHc54GgraP/PQx5Sd+Bz91j/z0yE+P/PTIT4/89MhPj/VYX4f6mh/8nVJFzGhMiRqotcclcCTTrCOeR2JYIbaIl7WJ3J5uKeFI28x0URFNpKYhNQ+R6izdlolACQ3UeYm1F3s4uCXSPEmg1IilwFQPxBCw2RlTxHeFUHoc8AS/9uu/ztOrM25PAyV2TLklqCDMlApCQkOL1UpEoS4OD3fF4kQmYxIpVgkuFNsBQgwRq0awpVM7i5B9GSluGgebcROSLhCMKy4NU52pnHATOm2Xr+MF0Rkzw/MEPuKhwS2wxKM7hjPO0OJLh1YBMu7zMp5sApIoEnE3gtRFMI2DBbw6Uisx1eWmoTao9EQis814TDRBiA+rLWYO6pRGUZTzuOaty1tSPAJXrJpA0nPmdsZsJDPhIuxPjmjA5xMAgxiVhmQJywaNUkQI6oR5RjFMB4JWRM6QtqfUSDtf0tuIBsdDpNZAjjNzOuD5hNeRRUrSoX5JCifydKBNZ9hU2J0yN9cz+2lkve54dnXO22eR7sJ463KFTYFPvH3F2ATevLlnOLyhTD0v7zKv3tyy3w3M445V2/HO047f9+1v8ZlPrdishOM8U2VLHUZCPWF2JLURZLmxKFIfJLRKLEvsfAGibnCHEA2rmSRrhAafMvPhlmG/ZxoHMHiqhX5baHojto42eyqC+ATSULXDrGDzcemGa7e4NbxB6EGN7AEJiy9EwiLQdWsXJbOPmBxowopGe1I84fHIyQqpKNeHwgdfOvL//s17Lt57m9AYfjpy3gppnDlfbRA/4m4MpaFZddyReXMK9LUhlzvOLXA2QdKJXJV1PCPZgOZbQhRCeMMwC7p6Fwsr1BPFDU8P4uYCoQRUW0oSKvYAoAbpYTpEhGr+0E0MiAXwsnSvBQxd5NYiGIbasgRRMIIsfg8XWdqRwOyCmaEIURQ3oxZbkv14cFO5YQiUTBcEt4x7QfRhrcCFoGmZAtBAcKFJQi0TTYShjMSwQSwSVbnff5nb6TV/4D/6A7RdYDztURGSjHT06GqDrs75/BdvuLndUbwi49LBDeHBoVIi5hHs9t908TVA/Tf+IckjSwCbE4lM2bmvO9DIjKGlsG4uME8MU8HmgVy+xNmpJa8i5xeJq1WgzsY0BgId719c8u7qCTfH93n14hVhf4LTEc0DN6dXrI5P2TfndO+8QysNjbeMD/cQvaTF0TRlUqxARbyldyVZZaqOZ6exhmKR2QrH4x3DdI3HmbFZ4ZOzmSGmGWmh2Rhtp3Qi1LsjYgOjKG/mE9L2NKcT711cEWrCCMxuRBdawrIuqRMabJmgsAgkJCyZc1qEIIt/DC1IXNZHooJxXG6KXJAKjXxl5WWZalA3ZFHGM+n8IG5XxAMxCtUnkIpZh3lD1orriRiMEAWpHV0JyDxjuidrBF2BR2YCLpEExJqpXtBQQQLZK4UTMbSI9b8rkPBY/+71jeQnfGEXQQn24FmqHSbrR376mPLTbfmQvv0NRh1Ij/z0yE+P/PTIT4/8xCM/PdZj/e7X1/zg7zxumMcj6kbSSDaleINoT9c+SKNxYlCoAUvC3X7HW9tLsgAxMIgt/haW9pJqBct4nRYnS22XqHibACg2AwWTA+iKXGdCmshDYdwlys55Mxz58osdPkRS0/P89gD0VFFUjZBOxNDh2em1IZfFN1Dcl66SONlBYli8LtUXWXFM5JzpNKCySG2tLLLVFJRiMzEGTB21SlOh9UjW1RKrrhnRAdWKW8W0o1ilZfFahKpEIiUu6U94IATwulwQU2gIaYN4ZixHMGOdEgE4SaSUunSocKIaTiVnQSKgisSwpC35zFArfbNBzfFxpHm4qCd3koA8iFCjKI1EmuRs0kRDWTp30agG43wiNYqmSqAlhRWbYAQx3p0XEerTZLyJzpgX4XGtzzBGIiPqhRQbQrth8iVyfhOUMhZCH0lrp4SCVyHZ1TI1EBJmi7jYZenK1XKDekar4iPE1FFPA+M8czxO7O833F5Xfrt/yVuXa77zm78Z5onucqC5UN57AvGshXnFZ97b8uX7FW/ujvzWF/4l3/b+J/iuz3yKdVNwThzHZfWKsoc6IxSCRlRX5FkhQ7MOnKY9GpzUyDJif32kf5oI0bFgEISxwvzmi4xz4bAbaT1y0RWeXVVyVGIyQmjw2mFzS2SD+hmmgsmIyAQaQLuHkXtY8hsLQZeVJWdNsUtcBkgFq0KxBkmXqG+R1pltBgnEkggn43O/9Zzf3m25N6X0My9fn9C2wyVwNzi3x1vap2s+/1tfIqSG/+TTv4fp/kBGEd1QWRHSFa92e157oV1BQyXdHDnbzJjdc6bnNN2Kvk400wvmORPjisQFU7OmtleM0i5bAjGznDRkWbtSKEAxx2wmqiMeljUtyQSfKLZMb+iDBH9ZWQlLCB22dHkfBNfmC5w2ouAPSZDuVJsRjOjtcnMImBgGIFBdoUL0B79UXaZn6oNMGNXFEeUKtiQ0+lwJsYc6oqLsPfEbX/wy77zzCS7OzklaaGJmduM0jNh+We2IzVN2+xXqFzQxcy8CLJ1f7GGFApj1oaPOIqSOKYKzrLfZhJuihGXKxQ3xmWIDtTqJQGLGWF7XYoV5FK7zzP2h4+5onF309Jt7uq4nhRaRQBTnydmKzcW3sLuZeP78FYfpFi8zx/sDjCOrDN3mHC4apO0JVcjtTI4FmQOxBEzBwiLtl1xgVkQ7BspyzpwnpjLTxYY6CxZacqrswp58PPHJyys6dRpfJPCHMnHcOPv9zHHOaCxsg/PJ/oLzoadEw3RexP8aMSLumT4KeS40cU0t5WFCYXFPuShFllWqWIVgCTGnBqdoQQSiRiKRSkEfPDa1GkEXR1D0jHmmoMTYoSq0omhtiJZADJFp8UPVhHqHeVw8P3Qs/rQlGVFdaUKk+uL50QeRd3FI9pBCqgmTQHpcVfnY1DeSn3LdL2mcpkBdDkALuQ6P/MTHk5/eTr/Gt5z9L8m1JVv7yE+P/PTIT4/89MhPj/z0WI/1u15fe6rvoLTaE5pCLhMSI1RHhonzDrZdwX2knA6s05ZjMSKBzWrF3XyHR6NRKENGYo+ZLZ0nBGXp0roPhNqiviTRiYLqwDQ7Oc+MI7x+cUOZB467A89ffInQNLy83pNWA4fyESEqpnucAuzo4poyZ2o2YmwWcXCQh+7WAq8EpdpE+7BiEjwwl0pKDUWMudpyMkvLyb8IrK1ndJjqg4eEQIodkwm1Lo4YTRMxgc4tIfXYnBGzZVx5ziSU0ESEbhE+O0vnzQPqFZUDrkKNAaGl0pHnzKjH5aemaRGEs8gM5jqhMYKE5aQJ+GyELlJKoSlOo0L2CiKUXPGgWFiG+FtdOt1zHsldxWtHbAK1ZFIMnG0bah4o3pDrFqlr+niHxpd0ZwtIXTwRnp6NHPJAFiOfhDLNhAqdrDBPHE8zMSpRMrMNdKsnTDXgkhBZjq1tEuSMxAltgGKL4JaIpAjeIu5EdVIYKL5nFYzLdeZUD9T6gifbZ4ynG17dOk/OnnG6D4Rjh5ytyDJijKQ48Xs+Cd/2fuC73vv9tF3DVJ4zIaQqyNFQdyRUYjDMKjkHUmowDA+ZIIHYrAFFY8c8jbA6EWJDqMK0u2M43DIeD8w20oXAJzbCk0to24BZi4YzyhRA7mnaAakbVGdEP6SoL24lIuprnDVLbtqD0FwdkUioDVgLQDUjNoGCYJ5JqUGYMD8RNWGS+K0Pb/jgReWL+0TaZJJX+tiwWW8xP3BcVYpcM59m/tW/+DxBMn2T+LLu+PwXv8iTd9/i3fef8tkv/Eu+5TPfCgovXzzHusKT1TltSeymC9ANQ8jY/Y5t19FPQhOcJt0y+DVWyrIQUAISzqhhQwpbYkxIXHw++AqVliInokaUSHXBUIqnBxHvgPrSiQ4iy2pKWbxTQQWphldDVIkPsOfFFjeUO0ZBpRB0xEyBBN5gRKCh6gDVH372C0hXFYgPwmxZut841LKsNgwhsC6BWgd8pbz+8J4vfHTN7+3O+PXf+BKH0y0lDzSeWDc9We6ZLPOJTxmvx9+kv8zMuZCGgeqLaNxDIRuIRPCLB9CaUTHalVDKgFVB5kVQrxaQIiiBohmjkh7W3fJ8Qh2iV4oXJOjSoXdl2E8c55Ht/QWrbeByu6ZPKzRMxNbZaM/lexNPzoW7+y3Pn2eOw8yoLxmuX5BvWuzmknh2zvrpFSu9IsgFI4lTgSZBYpEomzgrGsYiHDE6hXw4UI8Kdk5o9ojfIUVYhQtojpxt13QXG04OtSrDbOgYKId7lJFpjmxXa9gEjDeoLzeFwnq5qQlGdWOaDGxJ9xMRghVUFtF8lbxcLzCCPsjOPWJkqj44bewhxU4Xsc2yXmVYFWJcAFPCw00OhmWniUuggAPicTk2HxHy4luSRNFAleVahbA8BPFK9hmRQGjiMq1RM11tmMJyLuiLIFLJUv/HcsFj/S7XN5afzih1pEkV0aWJOk+Z+9v8yE8fU36y1Yo6OyEKmUd+euSnR3565KdHfnrkp/9+vXz5Mvzcz/3cdrvd2vd8z/fsUkr/vg/psf4nVl/zg785ZJCMe2YoJ1K3olDYrFY03nLSyrbroS2ciKgq96/2mDUU6SnFWEkisYhfRRWxgBJQE4orKQZsmpCHNJ1hdF59dOS033E7jrzaOffXguSBaNdcp46tt3R9i26N2/sjl9Ix5ErTnZOLEOJmSf/ygYxRxYElNctFsAdZaQgwzTMSehRFRaglI+pEBHGhWgWWBDaPkblksgqpiYwOxzLRpUVMXIm4d1hxahGyFUQMD0ZRx1OkaiTMGasV1RarEGlYUuUqkpfj1ah4FGbPFB+pNpNij4aIZaOYLwLTOCMsF2PcFmVCUEpWOlm+rhVHNWAkqiVIDRmjWEaiIrJ0Wjx23Owm3CLrPqDFqcUJYYuokVIHDjEmqrfUMi8vFBeiKRexw70QLirzpHhJYEtQS64DNrcc5wltlZxvkJw461rm0lKtoZNzolaKz6g4bQclVzItFmAuM2YnapoorkxNg1uHlEobZoI6m9pzc6y8uh4o4ZbIS86bxIq3eXkq/PJvfp5PfPJTyDTymW8642qVme6fk083bM4usdoSw5pigdR0jNMdoo7GQJEJXTV46BkeZLpWF+8GqqzXT7i/veV0cw2nHa0oT9o1q6s1oZuIfaXYzOSO+0TQmdQOiAfMGywdIXS0ZYt6WC62tMuqTzyhkh8cGUsynZtg1iBeiXEgimAl0GiD6AycmKWhrR33rz/Pl37rLX7jzTeh33LD21crbp5fczooo1b6syPlJuOvzgntGevQktOJ7qLlbjfw5qMPibHncDvxur7k9uUbvhyvuDy/4PX+nk0842Y/sPJMV4xTNV43a0JcsVVBhhPrGFlPW9bS08aBLg0EnahhYAyFesiEh/WU4o7GntSuEFFCXOOhw0Sw0OAaWc4kFTdHACRQK7jVr94MsbyzwZfEyRrkwTO1xHyJBBAl14o5oIJQcK8ELagv768qsniyRL/anXRfOq+4Eh7WIDQKbTaoQvDAmw9v+aX/7rO0acVpVIo7c+l5fTdyezqx398R9ickwh9oJvbjgeNYsfkMppulG68NNQRmy5hVmnDDnB2hoYtbYtrgssY4MdmJQFpeG9UhLJ1NR8FsSeYLsnTYH/5/LVQ8FkIzE8xwRmxU9nVkv79lnK7YbDpCVs7aI01zRtMIz965o9uM3N0EPrxvyMfCjGAz6IuBcjjiFz39RU9uCkWNLjW0NVIyhCCEIkQzolUiRjlcY/6SipEkkuoFmjNqBYmRy37FRiJiidHh9Xii1co0VaxEQnJSC6ndMFq3/P9JQT0TTHEiJoFThk3f4SaEGDAfEXXsK1NNLjiF7BFFyaHg6g9pcQG3RUotTIiGZc0xBGrNqBhqAauOiS2uG1dqhar9MoFCxoKDJoo1dF5RArDCmTAG8IR7s0xGiILJcnPE4iqTYCQ3RCNFwDHU5n93Qnis35X6RvKTBmEuhZyd4/093/LpX+f5lz/HBy9ePfLTx5SfXt1+O7/wS/9n/sv/+Z/icvOvH/npkZ8e+emRnx756ZGf/q36e3/v711+3/d932e+8u/vvvvu/PM///Of+67v+q7p3+dxPdb/tOprfvB3JlvmMqApcbZtSJ0iwYil4YzI+/2GfH/A5pETE94+ZRwmJBdCzbh+Rcw7P7yxlje4SiRIIlvlNB+YdvfUNy8A+K3PP+fXfcv9aaaUG9pW0QLeC4cw8aT26DSQCMRhxxahozIdl9Hi4KD1QGoFZSQXW84TqlDzsnLgAlYQJohLBzpqwrMTJBBqJmrATZjzkjgUFcz2tCJ0Ikie8VowjVAX/4CxnNBwwfxEWlpcEJaVgnHKiFaiClUf1kWC4nV56OkacOtBMmqZkidKrZgVQupwC2SDXIwQIIZAdScBSSJukWyZqoLKRK2FlBKqwjRlVHpIgvkECEELhjN7JhhUa5lqz5vdzN3pxLZN9FFpukgbK2erCjYSglLsEpVrYDkZm54Rq9EHxaoRG0M7EM+sfWJLpfGJ/XEga+TudKTIhl0JUBqSgVkmJF/WAGqFEBGEEDKSZhqNqJ2RwojXkbRODJNQPNDIBjXjVKBLZ/Ss2N8P1Jo5BXiyPvEbH3yZ6/vXvPXWM37lv/k17q7f4z//TyKt3bK2jO4L2j4la4/HgbneYVoQ7UE2tO2KKZ8QFllxUqVYZToeyacT+fVL3Iy2d9IzpVk1pC4SS0L0BeKVUJ8hTU/primpEGmIDqFkkiiihRB6PBiebqAK2JI+pRIX74vF5QIrdUnDEkcErNoyMSsGZaJLzulY+LXfFn7ti87ZlRCvRuY3DTenHfUY6NpIt56pVZh4l9plDuUVu/3ItrngKs2sQ2SnK5rzlv3xhg9vZzRe8OajG+5e3TIXY/1Wg8lESZFZE3dfvmXTF0Kf+PC2sFmdIdvA/njDqBNtNM40c9k421JIXSXXjhAFZUZ9hnzEafHSUPSApIgnh5CI8QLV9mFsX3EJgCIeWaz6dXFYGVQXMJh86TTG4IjlRVItAasKcbNIiFnWgNQn8ILmiAdhlCX5sZGE1qUz7u64LJ1reeDAGccpjI3zG7/+Jf7lv/zX3FP54//rP0IbKlepJ9XKVN7idijcjZX7+ztev3yO2kCvLROVw/SwWuGVWg28ITysepkdCGFx6ziVdtWQTxM+O158cXCLUHU594wFNCTEJjQULIB6pMxgqVtWojCi2+IV84xzoMjijXr1auTuuuXy8gq/uKTf7Gi6mSAbVquW1WrirbP3uf7yPR8e7jmUV4TZqPvn3I4tm9O7rM8/wWp7QQiRbDOzgGti1nmRq48zoxVu8h1z2tN5Q5oSeQ7kWDiGI2+FFdttD6EQVZiOMzqOzOnIblg8PNN4z1uf+gzMWzxtcJ2pusMYgYBLh0nAg5O9oASsLmt8QYxFcg7BBfNKxnFvKH5GKLY4jB7W/FSNmttlusEM0YBQgbCsLPEAsWpIWBxokSPqy2qVUXBfZiPMlUXNNqFUzJd1qIoTav+wVrk4yFQEDc5o8yJTl8ioEREj1cdVlY9LfSP56TjPXB9njveV06sT/9Hv/Zfcvnzkp48zP23aG77zM/8HUnfE9OKRnx756ZGfHvnpkZ8e+emrdXt7q3/+z//5b/6dH3v+/HnzF/7CX3j/n//zf/4b/76O639IjeMoXdd9vH6w/wHW1/zgr7vMhBxo+jNS0zAMJ2JQchYmdY4TbPtLtDOGeY+kI15PHO9uWMWW3Qi1XZHzCg9KjIW5XLPPr9kfdry533G4n9Cxof/ChwB88MGH3F28Q0o93oGvjqRQyKWj5yncf0RtIrta2Z43nF7fc0qGtj2DnyirTPWZQzVyEVqEFJygjgcjBKeUiteMa6W6oE1DmYykQhsT2QoZw0WXLrNXijsSnmIVUjHaJcwcLFA5oaEgIkD3cLIqTFYJqUFcKFZpmpbkguKYVczz0km2jIhRVZltpkWXHnZeOjMgTEWQEAgpPYzJz8xMhLCAs1TDypJYRJvovKWakStIiKS2wz0itS4C6xhIsaHUCbdKmxRsotYOSYm5VuocOdSJ4CfW3iE1EploW0HUOJMliTm60YrRJyHMA7V9gssB0yOxFhoTWltxijMXV1c0BN47GznMhX05cii31Ckz5RYNDRkhuxLtCeI9McxU3ZO8oZFLlIbaBNLamPOOVkBKYrifGNLAmVzQsqG1nhx7TCKv9ZZbO1Czcf2F51wFYaV7Lu3bmcfEpCfGGFh1I+L3QI/qlhgrKh1mwpjvUA1IXiOWud9dMw53HHavSclYX65YpYZNn+iSEWLF/Y7YV8yuwDfEVtA4EekXP5MHRBxtBI2R4qATKAX3RbIs0i4TEV6o7g8S3AqacTWQlhSfYj4wnPYkKZgb19cnPvhwx8vTe7w8GUOaEDeEN4wH5dh2lNXMVluaO6WrR9pVQz2cI6L4WnlTz3g9vyZtDnTtGXF3xmqzI7Qzp9xxPx3YXlRiNO7vC6/u3/BEjXx7gm9OtF3Db7/8iBoyxHP2O0c2kZDWvKzCVpz16yMdA2H7Idv1inXb0KcG9UDM0MYRfAKrSB4xczxcksMaiQlJCdEGtEVC/4COIHGZsBAzQgwPIAguS7KkuyAeqFVwyVSHQFxS1DK4Oq3OS6dbC9VZ1gqcpbvoYGZYNWoQvBqdBSwEfuX/+cu8fHXi5qMdf/y/+l/xycsnDxRdyTKxWrVIyrzzbMXum7Z857c/pQ7Of/f/+GXO1y1wy/Ob3Vcy9QiuaM1ogRozpSwdXwlCrZliGfBljUINCbrcUKtjKG3T06qQGShUXByioqEjxmaBKy9Lp7Y4OUVMoJSRJhhihcPNzJvj57i6epfzs3P6VaFveihPGN+55snVhnboeH59w+7VHcey51BajnczF6dbyv0V4+YJsn6bVX9OyBmNkSiQSsFsJgxwPj9hp3DbHJD+QCqGTMr6Exf0Zx19WFIlD8OevnHmw1Om3T2K0zQd7UXPFF+R5LCcP00w78kBEMfDQGwC4zzRxA7xSGoaXG2ZuHFZ0uXEMA0UFWrcEWpA6+IMU3SZwArLuX5JBi1oWJIpsy1C6iBQ6yKlrgIiK3DBpVBVcG1wW1IoxWaUiSAtQdaYHJf00rAkiAqVoBXFyMWIacugExIiISuQGR8E7I/177++kfz08m5gn415mFhJh8gF2iq+fuSnjys/vdcZb/+ef8SxGCrxkZ8e+emRnx756ZGfHvnpq/X3//7fv8w5C8Av/MIvfPaf/tN/evbjP/7j7/2Lf/Evzr74xS+mT3/60/nr8X1rrfz1v/7X3/6Zn/mZZy9evGiePHmS/8yf+TOvf/RHf/TF93//93/i537u5y5fvnyZnjx5Uv7kn/yT1z/2Yz/2vG1bB/jBH/zB9372Z3/24s/9uT/36m/9rb/17vPnzxsz+6Wvx3E+1tdeX/ODPwkQm8gshWE2Gl3iuMUn2nBifdFwdxReuoGu2Fri7ph5VYUnq0hgR+XEvswM+wxDZnd34s3dyJwjb64FSuTtzRnzuHRtzy4aXr+dyKKcbEudevopILPgBFLZMuCUBo7NgSKV9Qy7fEe32uBjJFiLiuE+4bFlNkfmgSZGogsmYGFxdri05Gy0LF3iQMNUMyXB5BC1QYC5jlQXmhCZ7EgN8+KnmSJRhaCRUifEK14FlY5GJkAxbwimiyZHKkUMD0tHY8Cx0JMQMMNKJrsRNBGIFMBiQL1Q6oHidbkIe0WlEEtLEKFKpQbQ2FFLJGIIIyQh+9LVM8nE6LgsF67ZlTIH1umKRKaWCTgCEVUhNl9xxAgHRoabSNIzurYS2x3b/bi8UKoTQoe5EeNMCbtlvcMTxISI0YrQ1jOKRMwnWjf6KJz1kVtVvLa0RRmHzOFh1edYngMtqTwlxidoGDEZidKTfHEcNTEuXoYmIasE1lLtSGiORC30FbQq1jQ8uyzc3N2zy4EUC6kmJB/QcKLaiba5RELDVJXmwW3USMLcsDpjPjDlwnR4iZ+O2FRoY+Kbn1yy7mfSSjCtFCLIGqPSxIwWQZszqgSCzLShx+2cFEbMEyaKxEopAx0t2tQFzmp4uDgW3B1QUKHqtFworUCpaJAlwS9X1k1DNefFjfD5z8NOzojPAuf7M25uCu3TM/BnHMItq0bYdhsOuxM1GO2TLePpyN1xYr29YFJjGg60zYZtq5ThhuNwR0xbknXY/sSz8zVddG5udxy0oXYbPjrtyOvCtMuE+1s4NtAGJkbubq55K36CjRm7w45hG6mNM0okjpfcnjbENtBHoTXlcuN07Q1NUNqQaNMGt4LKCeMEtYWxQ6SlmBP7SEyGa6DIGaTNQ5JYRQwIEa+FaoZrC8VYhYSVieKCLxsBuFaKOuYtNTuiiU4Fs5lZDdVM9EgokVAjaot5ZW6M692R33x+4mxzwbf+3sjZ0xVlPmFegbj8zjOQlIk9MBHniaZpGZrCcSjYAESFUhF33DKxCVg1PCpNv4LaLN3W00Q8Dux9xtYwyEgjCakJtGHdC02Z6A3QnhLAfCR1M8RME89wDxSbqZoJ64DUpWurTc9oYBpJVQhDx82LE4db5WJ7wfl5S+orW3+XsY6smsIn3jrncjuyu73m5s2OOhsyT+yPr2nHmXA8EC+e0vRb2njFdIKDrHAKUx2Y2wNSJrpSqaVFNFCZaINSdMWuruhrZH+YmHPDfthxYKANiZU6q9DQzA0lZCQ4LgkNCa+GYstNAA1WwHQmphNlikTtifqQNudGEWcWpyB0Y4P78jszh2KL+6gNzcN0jVPrcjOktlxnRKDIMq2EOylEpGYEJT3cPFXLVDVqDGBGrIs7KOIEEYo3VEtIcIpAFieqPniTnAalTANN7MAqq6/98v5YX+f6RvLT9WlH2sDluuV69y38X3/2b/Cf/Vf/W9b2+Ud++pjyk88Nu+F/wSef/hKbLY/89MhPj/z0yE+P/PTIT1+tz33ucy1A27b+3d/93Ud358d//MffA/jsZz/bfr0e/P2lv/SXPvEP/sE/ePbDP/zDX/rDf/gPHz788MP0q7/6qx3Adru1n/7pn/7C+++/n3/pl36p/yt/5a98ervd1h/+4R9++ZX//oMPPmj/6//6v778R//oH/1mjB+vn+l/qPU1/xaq99QKZQmUY6o7JAamWGkcLmNHqQOdFA5T4BQaQvNNHG+Vcxm43008v585DjeMdy+ZMry4vkNUiLWy3TbQLP2ldb88aW9sRTr21LCnFaVWWdzNE4goR3xxzFhllVbcyx4LykVOUJRy1pEDnA53y7qMZTQltBWGPOPFWZStAc+GpHtimDEVBlPmqqhDrkZqGpZmQVmEqrpnri0icfkapdKQKUUIYQXek4vTpga3SkAwc8SWJDzVuHS4XZfVGX3wDTjUIg9rCQEVpS5aHapAqZUUO4JOGDNmEHW1rDCEjFfHq6Nf8Za4EyyQtKcazF7RpmGZ6r+l5omuv2QeC64D3pw4mBPoCBUaU6IHRBLq0GJonNBwwCwzjIbPmfuyTPy9OSU+OilJM2dJ6OseIRBDIhKJ2pJcOZUJjR2ljNBlzCdME1u9QqTQNoWzvuHSlWE8UG2ilMo43TFPPVmciR2D7OjTFuJI1JZGVksCF5nIibhWSqho10JogUQ7NXzrxYqhL5S2Izf3zHKDeU+MTkMkSgCPxLBGQ6QyYjZj2ciDM52U4/GAcMv5prB5Ak2jNM3SFRU9I8SlcxXUiaxoU4OSyWEmaCFaWrrUCSxUhGWKICCE1FEKmDlBIsQlc84eXj9BBKsN7h2BiFMJOoOOmN/QyAXzoeHzX3rJf/u514zyDG+v0I8y93cH+mdrVucZvTekT1xuL/GSuLk/cfX2lsEG3ty95PzqnG5rvH59wKyyPXfMYNjvSU2h69YMJxjzQM+W4RTY3Vxzdh5peueYlyS9YTUyHUa0cW6HOzhU5mFm2jnajFzfvOI8bHELNH1D31xxmEbWF5FcZl6+Dry6i0Q9p+9g3VU2faHrTnSrgU0ISG5pY6KWQhQnDztkbpDa0KQbqt5AiBiJ2G0pqUO80hKRVBnrRI6FSl78M9QHyXXFa8EJhNRSC1iNiEfkoYNtbqgkJCrZMhYKfei4frNjHCeQe77l93ySzUVHzYXgivtAjEvKXAodZQisdIvLirv7A4213M87jrZfXtNBHjzFcVlTCZXGR4Lboqe3SsgjDTNNCriCWqF/EBsXG6gYSIV2RfXIHIQl4C9A6JlyQSiEUAkAM7TWYDhFhVmMUmZidWZtkSo0ZWY8vmJ/f8PFkw1lLfRnlSBGDBuenL9N6bbcrz/izc09d4eB/akw7zPtuOP+9iPq5pJ3PvEtPJEtWy+82L3k+rSnCy3JA1qX1UFyIRXl2cWyMqdqYJE8CE3dcNp9hHhhLJWLt54wORxFaS0RVTEri+NGHVVdbloeXE9SHxIKa0uQFgmVGpcuv9HjNdPqQFvDYqE1QUgki0t3X+qSMGfLmtOSvAryEFbg7ixNZMHrclcUY4OVmWyF1C8TSVhaHniYg7DIwnE8CEjG5nkBVlfMBGNJIRQF90jxiNclffGxPh71jeSnMxOa1JFKy4Ue+AP/2f+e8/YF4ZGfPrb8tC/fxX/7uf8df/D3/Smuwpce+emRnx756ZGfHvnpkZ++WtfX1xFgtVpVVeXy8vKr6SOvX7/+ujxRu7291b/7d//u2z/yIz/ywV/+y3/5GuD3//7fP/3RP/pHDwA/9mM/9vwrf/fbv/3b589+9rMv/vE//sdXv/PBX85Z/uE//IdfeO+998rX4xgf6394fe2pvl4INOBLRHcMHV4rqTpzM1D7NcfhNavmSM5bPBtlfsNnP/t/59V64H7/ITe7NTdjTwiFMyu8d3ZBTYna9hQvND5wGpzNMs1Kqc5clif5no1YhCiJOQgzhdx25JLJBaInYmwoIZCIlCp0qWXVKnraEbKTPWE0zNXIpoTQEGpArCCyI/i0ODFISAq4GCqyAIM7UiDY4rWROpHFsRQwidQ8o6UicaaWFcKKkEZmOxF8RdKE2EMUutQlEaouFgOoOBNVDEhgAbFAtAawB3GpIUEICO62wKCuUU+o9IzTTE3rpQujyyhz9YG5ZujPGacZNSFGodqAI+A9Sdd46aj1RGgSo2VAUCpSnCqR4EIdQYFslaaJdKmh0QbFUYk0eVheKEdnDouLaIgDQ5gIKdG2iSYKbVSyOSmcgU+oH1E68A1qSlMmgs1oU8iSCNKy6ZWVNiSPDFNhKMZUAmOpjPlIPmXQhuEwEeOe9foclTWns0AQaNMKs0CoLW2zJmwmnm47Prm/4sWrPW+fv8d7F+dMMUCYyLWS/AzoiJoZhwPqyniYON0csSnTp8Jb54nV+m26NOHxgOmMNvawPnJHjBe04ZygG1SgiULJhqoTo9OKQxXMhSl0RBJqdXEZKcQkQMSr4Q6igRAEswxVSTEuMM0JDYYGw+jItmVIwv/r88/5b375yBjew5tAmnaoJea551l3hQzC6TajrRCp5DKyPSukzZ7b05dAWrrYY2OhHPdcnJ2x0ZbD7hb1Qt93zNOBYaxszzpWnXF/PKBypLfCNFWOo3DZX1JtwoC2b2klUceMt8oXxjeU8URcZVbdCtufWI1rbtcvub6bsOaSft0w+57UVCYXhrHlzR5izLSt0aQ1fQhcnSW26z19LKybFTJHpAbmMrJOAT8daVKk+ozngOoZXdjgtqb2IKlwrPf0sqznmAVqjYjG5abTJzTEh/QyQ8mAIRjVHUcQSVQDCPgYyNeFmy+94fd957fz3uUz6mlZi8taOYxH3GE6Zuos1GGmDjdcnw4MU0WHExtGvJux+SlujuoiHo447oVTCRRXQjBUHlw2sQMPDzedRo8iXhkpNGFFDBB0IntBfIX7FWKKzpW5zFQqhIDRYJYW6FJhtsJgmUagCQ1CxsoIHhCUYSqcTm/YvnVFc9qwWT3h/OyC0zjRN2dcnK14crbndLfjzYvM7fGW+/EDYtdSxz1vnheMS87PLikH43L1lCl/AbeBLDNJO8SV1aYjpIZV2+B1ps6OzgfOCfzrGrlfrQlzIXUrjla4RCjmzNOJoJmmEayCaodpxEQJIriAmz64iUC8kn2k0KOygpyJMtOxYVYoOMXL4khDKRIWZwzGknkKuOMyLY6kr4QyOJRqOB24ohoJvqzRuFUgA4szCRSXuHxFs8XJEwypM0ETHhJjKTiLaF0lLM9AVFDXfyc4eKzfvfpG8lOZhGDOElm75513/jmWDX3kp48xPz28UI488tMjPz3y0yM/PfLTcuF85KeHevLkSQE4nU7BzLi9vQ1f+dyzZ8++Lg/VfvmXf7mb51n+2B/7Y7v/X5//6Z/+6cu//bf/9tsffPBBezqdtNYq6/X634pDfu+99+bHh34fr/raHX/JyXlYLqAoohF3o9Q9rZ1T68x9zFDOaU+JppsZ+5Z//VuveHrZkrxFzXj3oocuEYIzqDFMM3GaIGc8zhQNIEv39igjBz+yzolCpSRjjjM2j8RqlFHZhrR0Hrqem9OR1Bm7sw15qjyrhXPracOKSYw5KDO2jPqLLl3kUilmiPYEaWhqREukDZUsA5URBHIFvCFpwstMWxo8zJzsRJEItERJqE0QRpwZlZ5aIx5O5NoiDqICONUy5orTINYg+MP6Slw6nrVCWCTDSRevzVwyLkKQgSZ1BHpyXqA2ppkxzDQakBAWOTcNHSuOCh7bRXhsE2aZGNfkOdI2LdiJ8zMBFebSQzU8HzEDTQ0uwsEL1Wd2s5FKT68relX6kGlC5lCPAIwyMmnBw9K5pV7A7BwHIcRC1xkpOmd6IJLpkiIWcWvoQmJWx0IihR61luQ9oWxQnZibEd3M9OxpamBjoPSUyTiOJ2YCQzaG4y3uJ+phxaqP0BfWfUvbKCmfkHAGbeTJ1TNuPnzDJ9/f8PY3X3GokePuDV2YaWNhHu/xAqfdwOH+lhQHtitjdTGx3Y5L8lO4JMkG0ScUNQKBqE6MmRB6VAMaj6DT0r2ySJAVXioWjkSJmK1R76nFCKbEoBgT5iMeeEidU5a0QgWNiBsxThTbU/KAsEL8DHJh28989sWR/9uvfI72/DPk4x2S90RVBt8yFWO8vkfGA7vhyGq7RZuWMg+U6nTxU3R2wfnbA13XcfNyz1l8h6fdGePhI2yIXD59G8KJN68Gkp7TN8Z+99uMk7HunhL0yZLayJ7qkA7GeJrR88DSE870qzVv6Rl3JWKNY7lnNwkfvjpwthF2d3B9c89777zN/g2cbQJvvbXlxc1z5uKcX36Cw65QOdCZcn0dFoCPlc35jn5V8dMNZ2LE0IOvCLEjy4HUg+qJQ5lpPGCyJq2fQEgc4x2p7QjNCostFhLESPRFYlxk6RsHlsQ7t6WLX+sBr4blEerIHQ2vjx9y4jUnLvnchyeOxx2lZKZhZJpbhlNY4Hp/RLSy0z0HN8Ra1qWh2posQudpST5zpVrFWG5+YxPAElJbMKX6TLUDjZYH55VTXBcPTVre47U6U3aSJhoaal3WqqqckOS4z1gtiDcEDxy9UGqmYISoSDEoxqkcCDFRXZlqQEPES+T6g1ecn90znb9mfy+89977zLkhNYmcE92TLe8+OXF2fJ8PvvQOp7s9Mo6U8YY3dc/9sMN9IAx7gjRgHeKJKkq2HRfbltVmTTWI3YoPb+/Zdy2vTxMvr4+kpIQU2XSBs9OB2CmTRGKj+FenihqmXDCDgFIpRK1LCqjMdCGTtFJ8wDUQ1KBGtLZkTxRxihtmM6oQRCm2IsoiA1cJOFDrIqoG/eq0geBgGVEh10xUQWOilBkRRXV+uAYmqicgYVUxT0RfESgEKZhVXAIiAa0FfEZZbpwVMP+6bH481v+I+obykzqZmaMUjuOW6y99D+9+4heJ3e0jP31M+en4O/gpPfLTIz898tMjPz3y0yM//Y761m/91glgmib5Z//sn61//ud//uwrn/uO7/iOr0uq73q9/v8bxPELv/AL6+///u//zA/90A999Mf/+B/fXV5e1p/5mZ+5+smf/Mm3f+ff6/v+4zU6+Vhf+4O/PPuSfqbGOJ3IGabJuf7yjvvwJa6nCbFLopwYU2YuLRWh2h3nl2/TlPfQ2jLHA6d8TygNYylIEmY7oD4ylQLNCtXlDVcto2FZG+lROozRJo5SsFTRumUqlShCFeP86SX3xxMrm5inEaziKTAFZ9cFokIdBqIErBbcRgQBqUhcXBSVHq+6CIHriOoiFq0ueHSKZ6rMRA0QlEY7VFpidlRGVM7RcGC2E0rLqukIYaDaMlYsyHKxW7TLWJ0Qd4IDKCoFlRECFF1T6gg1ICK0IRJixL1iVik2oZqoPoFkUrRFlEpimT8PIAnVRa6N+YNvJlFdiGkR8QYpfPK9K4gjw6QMw4xb4HQY8OqUkskOGhSzyGyJas4shak6rTTU4Qp4gY8C/RHCgPiOMY2otAgtUhLzMSAKg0dW7Tld2yCx4Ax0TWHVOmosUlw9UtsTNQnJEqE2yxi3jGg9Eog0TY+3mc15YTZhLh25GMfTKwRnGGaG0rPf9cT2itXqCWvdsb3ccqYjz84Sb719gSSl0RX3p4KHgeM8MJxGfKo0ajw7h27trFcJIaK6IrYNeEP0BgmOxpnU6JJmqC3u4CzuQy+JKh0xZYoJVgTPgoWC6ATzMgkQZFlh8hJQU4xMUkVCxOrS9UoqmCzAouLEFNEQMM8EMr1sefnFG85XT/E0EPsCeYU2I5InxqrcH4RV3SCaGJ4rL6+HRUpcnHCz45u7Br+cqTkRL57gdkT1NS4T0kONgcNRyT5zfrFA1HhqWLc96+6S20NgKM62C4SwgyHSaWTVdIw5Y6USm0QqR3Q8LL9LAt08w0NHcbVuMD9yc/ecw94x39C2zt11JLbLTcGYnzPnA951ZD8xHYW+3XI/g9eZVt9B64xbpk8NyStJM9szB3NinelTw37eU/QVxQvr8BRECE1D6BqazYr12RmWFOl6UrNBiDQpkKeZ06kyTJnTaWR3f8fdm5fMpx0ni+xzoDl7h1//wmvil94wjjONQmQCXXM6Oqumx6eZpIs8fhWFXBZ20QJnsQOxJc1TBFDwZYWplJGoFZETWCHaw4pCdVwFTR1CSyhKzUYTl1UVlzWRHjXBfI/YwLoUSggIhYnyVbF3toKmgKhTvTJbodOGdZVlhUIcWFLwSq4EFXavb9DTGev+HT46wvqi8uRsAeDu6m3MA/3ZS37/dzTsby/48n3hze2eOA/EMnPyGQkNkRUw41IxBc3CxfYtTJ6S2NDVRDjeEMaJctzThcShg7NWCG6UxpZEPneiNniFkusyeYChVoleHkTtimhYZhBEqFVBG5CCy4GgCeiYHTBQWR42BAWnYD5QRREUFUWDLlNI0mIs6ypmkYCjorhWXIwqAr6szgRNoGAYuLLkG9aHlZdC9AkokJySM7UqKXW4G5gREMQEdOmbP9bHo76R/BS1Akqpwjw/4V/96z/F0yef5aI7PPLTx5SfbLgCeOSnR3565KdHfnrkp0d++u/Vn/7Tf/r2h37ohz6Vc5Y/8kf+yHd85eN/8A/+wd3Xy+/3nd/5nWPXdfazP/uzZ9/xHd/x5nd+7hd/8Rc377777vSjP/qjL77ysQ8++KD5ehzHY/3u1tfu+COyu7tlOB2ZsvLy5cTrNzOTv2R3esl4MxHqmqmsmbgFEYrdMI0zKV+RpwPSCcepIYYV2JFQM8UqNRsprLEYME+IH5Zvmiu9hOUinQuTGCU9dGiKk4hLetc84dVIIUKpmA7kZuQkxkYXgW1nQrs543Za2s9al1NC6ntqyYRYGDmQZSISkdBBrkQXZhaxKSFTawadqG1PnivKmlhbQtnT6pHQnVHqFZ1u0binliN1XFGTMJUZrZUYF1kpLH9OoQUXxqlSKXRiiDqSCgEBDJUACHV66FLoDA+j6V6Mpu0ps6BeCNFRLWRGqldSUWoWkgZcBo7zCeKGKFtCXdGmM/r0hMINaROI6xbihtUxU0fleKiM00hE0FkpahQ5MbmRPXGyjhtbfmev8shHx45EwzZcsu6FGCKqjsSRKiMaCkdWTO7Md0bXvI2wpY1H1u2RXlesmx5pbsHuFlAMW6r1CBfL70GuMVmi3Ws2Yryii0JgYJ2Up/1bVL8nxTPGsTBnOM03jPsbPrRzNje3rINxsXZs+hLrIRC6c3anV8S6pnggNcrFpbHdTFQ/EJo1Ifa4NmijIJGVXhElo+mAqRM04LUhBMXrCohEzVSZcK8PNxQzKSaCbZZ1nXYGHxGJZIsIW1JoyfNEjMsFUpzFgSKAF2bdU5gQelJaUyyT6wGJ8KZ2ZA14aVBWWDtytBO9XLAKJ7isVE54VWTeceeBvt+w3w1suzW/ffMBrQ50xw4n8eydFaG/oboSLz5FnAvVK9OpEDdrQrtif3dkrj0bjUz2RW7zxHl6l6sUuDvuqbWBTjnNIzlDDGuCbnkz33GySByV1pzpNBI2HV1aMc2VLIa3J84+sWEuN3zx9RtqhaYaL1848+Ssuh6iYiKk1PH65o6UIk0SZot00lHjxGR7GklsU4vnmXbV0K0KbXdgpUITOuZTReKXmU9OnTummxV3HzXsdM9da0jfEZpE8Mw7TzfMZc9Hr55TpWV99jbVe25Oid1tS63LKoeIoCbUavS6oaiybzLZJ3IzMmkmtUoskWTNMr0TjIEB90ywTGMRN8FpsK+kESpka9CwIqBYnfFgiGRcXmNyosqGCLTa0hVHS2BiOZeNdQfmZC3kUNjJ4kQyElFa1AJShCRHahWqOYRAVmfSiocNgxVqWJxJWoyoEdNMiB27MnK3/zycEu10wVvHnqfrjr67pwsrin8aize070ys3oo8u18Rv+CcbkbGVcsuGls5YVN5kDwXopx469zoN0eSZuok7IbX2Krl5Zt7ujKwHowuNWATIStzKYhsGI6ypBumxDRXPDlJIMz1ARw70ITHRJW4XCBiRTiS7Z4Yzqg0qJZFHo0TVBCcXAzrhmVtxwU8LtMl4lTNLFpqpzx4jQiL1DrGjupKtUKbIrUa9uDMceoSPBAMlQJk1MCCMxenomjosRqofiSIgwZyBiVhHzM59X/I9Y3kp8ZnpGaoM63oVw6AqTzy08eVn6rNwMJP+6M/8tMjPz3y0yM/PfLTIz99tS4vL+2nfuqnvvB93/d9n/nKx9599935p37qpz74en3P1Wrlf/Ev/sUXf+Nv/I1PNk3j3/3d33148eJF/JVf+ZX+277t28bnz583f+fv/J3LP/SH/tDpn/yTf3L+8z//85dfr2N5rN+9+ppf2b/2q7/JeNhxd/ea/Xzibn9k1Z8RyxXb8K20Z8oX7j+i9YHRZsb0EZqgiZdYVCpHmhCJZaTxHszwcg9RoNkw18oqR/ouYM2yDq6Ncpj3XHhHjpWiMJYC0kGzxfaLy8TigdkHWBXKDroSuFifMRwG8jBRDPbRyLpHNzsON3tULsHXhCjQjAtg10ui9GSfMDIWKlDYFGWjKw7ukJQ2KgzGebNinAqTVOo6cayXlHKg0zMikZLjIjZOiSKVFA3RAqLQJGwETBYRquuyHqOZ0SGoo5lFzBqWXLnZwVJgpYk5F8QditPHhFYnmxG0QUxwn5bOqURqLZTgWBIkbJYkNw0UU1KnnD1dY40S7JyQhR5Hq2EJxmbg/PKEFZBTpe6UmzozI3iNFA9kFeaHDf69D4zlXYqs2Nc9zXTPulNEjNU60kqkr0qrIy4TKQbQO0rtGMeRu3Gm0cq2MVZNi3JJ2ztDgKYNhDrQGKSwZsojHg1rKu5HbOpIcUtsJuCWFCJtGzi/jKhXgji1FobDxJv9PZMkhn3heG004xobb1jZROh3nJ0rm21PE88J4RJ3o2vA/URsCgVBQyX4R8SUcDJJlCg96AazjGCoGrUI5i2igpQdUTYQInPcYV4IdRFqmxWiNqhErDiaApkecSOooBYWt1DIqDotTrEBLxNREkKHZaEJPVfdgaac0KklxESz2jD6DNbwrAizH5maAKsN745bLApxUzDbI03iaFvGo4ApdztDw9tcbSLvXg486YWhTTyJZ8yhpdJw3B/ZPl1hVKaaaDTTtoVMYMwtcZ1oG2E8KNRCf+kcyz3H+UTTjLQ9zDIxjzM9DZPvGIuhoWeahLNtYtNFtDlyOBpTrpymAUXIoWXIYDkTTZhHJ7WV7rLn9ObEcDvTby9IzYY308TrMBGC8+7mnLvTGvSG8+aKy/U163jJpt/wbheoYY/Hyn2eaMvAlIU8jsxzZpbE/UeRFy/2fPnQ0G2N3fXneOe9J3zLt57x5q7ng49OTLMxjCdShGBC1cqclZADKe4Rr4R8hkqHU5nLiOsBRReIrRUNEx5GQkiYQyAuQvJsnIeAzzPFjaCGBvCSmaVHSbSxw6txqrfLWlgQ5iqU0mNENEGgYpyoYU/yBneluFNVCVHZSGLyupwDaoua4Gq4TXSA5MWdNZoxRaOLzpzn5fxTI9ES+Zj5YGcczyM3h2uePTFWmw15PKdPDU/qNWdnK6Zv2zIeB3j5gnCYOQVoU0fris4dh37A0xVd6HFpOM2ZwAVhSnDfcOdKH+BJH8g2gJ5jU8A4EFJgcsNnXRxPkqhBGAj0LUSr2FRJqeVQ7li1DVoriYjEpVPtjLRENBSqTwiJwAbiOep7Mk4VpSEuEyfixFIRjKgB0Uhxxz3TpoZcnGqGaoObEbWAVswUaiDFBtNCsYEQKj5XgjSoNqgqk4+Lu8wEJzKKY12mWsH84wWu/yHXN5Kfjl3G3AglMOxOywGETEn1kZ8+pvxUfgc/Sekf+emRnx756ZGfHvnpkZ/+rfqzf/bP3v6JP/Enfvlnf/Znt5vNxr7ne75nl1L6un7PH/uxH3seY/Qf+ZEfee8HfuAH0rNnz/L3fu/3vv6BH/iBN7/4i7/46q/+1b/6/jzP+t3f/d33P/iDP/jlv/k3/+Z7X9cDeqx/5/qaX9mf++1MCs7pOBEb4+3LSzZhzanJSLvjcD1R2kKZNmh8h7W9JuaMHAQfI1USt6cD2giT7aBC1zZ0FqgjiDguA/UgpLIFQKfIet0SUaobXgsiD+PRVEpc/DEaG7QCZJwB8kDsO7QXjpywWrlsI6vYke0cW9p/i39mmerGZLVIpr0gnhf5a41Ev+QUe2aZSByIDmWMVNljWdGwoiESRICZWUFs8VYgTi5lSXT7ijw4VyoZNSPqIkgVHKu7JWZelGABr5AxgkB0x3UZgRYicw2EtKaWeRmploZ5HklhcSWogLk8rEqAabOIV6XBKssKz0NSnJeR802l1T1BEqW2JBEimVwDKQhGgrRBzpxmY1wWgwx1NoY8M0mhPpBraM85hhFKZhVbqj9hP1RUnNNUaULLWiC2haa9IERBfET1hhCV5BDcmUtmmiulOs3U03ZOnO/pY6RvhChO7CPVK0ET6iOxuwUxgkeSNFhYIRawDE0XsTrQr1d0vbO+eJcqxjDtsdmwvKPdJOYcaNcd3SqAGioT2h1BjD4+QewcjU62GRDUI+oRF1t+j94skmIVYHFcmIBoAo0UemBxSURbPyRYFTRVss04M9UyIpEYHKRSPWM2L7J2j8try3vwHsFYXvwGoSI44nvef3/m5jTw4ZsTh3xFnjdsvYVm5sTAVBrq2NPUM9QrbgPrRpC6gtpQ3alBkXAAu6NkYff6jPnFmrgu5OaeT2zOuNgI1k5803c9402esLzhV3/lRHd+RVlPXF9fk9IZa90QbCbPM32CNO3RquQQ2WxWjGXHMM54u0a3W/IxY76j21bWl2vKYcL3YL5lOO4gFM7PVky54LFlcOd4VLpaiTaS7yKnsXIYJ0J7RrtxbsePGK2SwgqbnPlyxXnX4jnx6qVzs+ppmhXNh0cuu554/i6r1Uy/fcWKE7HZcn51yTycFpeNJ96cXnJ6saztdavAeHSePF1x9rTh93268uWXz7ljhNKQxwC+AhwPt/h0pNeG4EYt8yLDDyMmjllEfAsSMJswMcwFc8VwTICwrMdlyw8rdcqUZ0QMkYTQgEWEZeqhmCEG4omkkergVjAfwTNRN7TSMeeyrNKJgAm7MKGmbJszcg6UYAyMJAs4FfHlNVhxcslYddyVJgSoUGuhlsroDsm5PxRO45GnV5d0XUub3mUlPYM+Z9M+o19f0TaRu2PDl673HN5seC2JNtzzyc0eNsrgILUynkbKNOE1M5eBNg4EIlhimoWxGiUvCaphWtNoT9crWUeKR1ZVCLJjyE7UC/oNnMZrtv0ZMhZKVLIo6kKsShLBJKO0iPSI+5KoyR5qAhVQwym4L4lxHhbZdWW5EVy612F5n6sTg4A45kbxinjEJSwyahNUBPNAcVkmkx6ugBi01iIWmWU5Z6RiQIEKWOCxPh71jeSnlnOmOaN1pJflpkAcvNZHfvqY8tP1v8VPLx756ZGfHvnpkZ8e+YlHfvr/rmfPntXv/d7vvftGfb8QAj/6oz/64neu9H6lfvInf/LDn/zJn/zwd37sr/21v/bqK3/+iZ/4iS//xE/8xJe/Ecf5WF97fc0P/t558opSQeIaiSu8RmYLpDJwGg2bwOoNfWyJagx1zZSNEJ/itkIZWMVMGR3RcwgdxkQlPLzZZ6pVPDo1LmujEk9Ub5imC2oIoIUUK3MZmEsmxg6TRBN7ynG3CJ6DcprXRLtk3TWc7ifmw4HL9pxnq545zsypchxPZAaC9pg3ZF8Sv6gzojNeK6UUysaZ/BXBIVlDsQqdInNZsoi8o+SK14EoR1q21FqAJZq8miHBwBqQBCHiljETtELQAA5ewyLN1kiUlkLFZAADKxUJiosgIhQdsIf1GRclU5HW0doDDUuiUUJ1AXRPM3maMXOi/hvPzcxM1xn9NmAUskFtEhNCyIHggeBKa4bJw1h3WSLY67olbZ2Yj6zyibcc+BJsNy1PXbCQGepIaZ5h84lcTqy6lrkEphLp5reRw0iME117Rp+cmE6YDMwy4Q14iLhGxloZ9oGoZ+S45mCO6kTojjSrmdRWtq3SNxeItXgdCQwLCMeOMjt4g2igmmEC2uxp6Oh4QncZiU3geCrkXAgJRAuqghKW1ygJfI2KIl6WuHkWIF9uDxQXw3zCfUY9EYIhnlFZ1lrMCiFVvEbEA+Hhv9faUQt4dVyXJMQgkUZbjIrZgMiMyIz7BF4XiKmL7lYk4AQ0tKQ+4lZ5Qsd//h2f4n6XeX2T+cKXXvBm3HKaWiRtWTWZWBM+OPvVQLUVgUsiJ0SXCMI27EkIwhlTrww+c1Ofk+YVjD2fO83Iq5kUoU9HnjxdozHTNi3f9v4TtqvKb9vAi5dGcw63+wNTtyasthzywHgYeXbZIUU53jtJG7pVgw8nhmnk/Oma9TawTsKogcM0sp8PkJx1F2mbiWE8YXmGnOlN2a4b3DLH/Z5hCkhYksburxMlC21q2K4qlgbG8Y4gLTEYcwhoc0lpNuz3L7kbnPn4miQT6xW80214Z60MOrO9eoJV5UzWvM2BXy8fMnPBdAik7jXzm1tyfpuLJ+e89/6GeP2a++s9uVRqFbKDSUJKj9BgkphFcUmsfQMMZGZcB0QqpR6BcxxZbqzFMMmIZyo92SNiAa+BUiGGsLDLgxdLgyLaUeu8gKvqg1PFcWy5+feA1pZaZXH3RMG8UsqSoBd9kVpThRCU9CBcNjNUDPMCy30WHpbk0uKOWUGsUtWZyOyGkcaXYINxmmiaxNWY2Tzp2TQX7GKgIeHbM55t1tzyR9j8l/8pn7+eefmP/k9882cyfd8TQ4sajMcBBW6Ge/Zlj3CBeeU0GT5XMi1t6umrQpy4DwN67AiaOFspQ5co2nOWWjg5jRZMCuM8ELWh8YBmobgxx0JtnIYZ9xlw3BeIdHGitl/19YhUFlx1nIg//Jsqy590WWfBf8ff9QDaYVQkQGoTbiwph9ogVJDEnBXVHqnQiiOWqcFRrygFISPiD1Lsx/o41DeSn5wdJR/QBNUHAMwWznjkp48nPwWH3QM/tY/89MhPj/z0yE+P/MQjPz3WY/3u19fu+CvPGMcZq0snw/OMk/HQM5bXhK4y10pKZ9xNL/E0021WvN7d8u78BNdIGxJ90zJPS8JQdeU0z4g6ySfipKSYaOoSJNM7pDpx370EFKlKax3JVnh1hqQP8eEtbeyJ28Tt7pp9VM5WgVadKQ74qnIbB/rsywlYDI+CakvxhuKOxoKbUWwgkpd0oBSYJdJWRUyYpaEibGgRzhAfGMtH0AqiHXnulg57mEEqhhE1UcypdiSqIeIghWqOuUAdlgtFWgOJmZmJe6xWVDpSs1hqIFJMMQfUcXw594nj6oiCy55iy6h5lQzyIKWudZFSS8DrjIugQQjzkfffe49VbhHrySbUkJnSntwWYtgQtQXzxbtgihE41w6rgaGOiATCqieWHoDzzZpVe4V6pd29ALllzoEQ3mI6GhJOmNyxbxqyTQQKcUzo0dj0yiomgkAnIDLRxEKoJ0KTmMpIJKHeoPOaVbjk5vWeuHLmZsOpq7SrI5uOZV2EAmI0fYuLEkJHrROlm1jp++TjgdiMmDbM3hK3BckO3iK2IaWI+YRiiAREB0QNs4qScOIi+qWABJBFdA4FtaUvtYTWK+JCcSX6hFNxHsBAlJDCA4TGh0ucU+vEYGBhQmVxfyiCGUACLVSdcRdwpVSjloIpSGppYkvfGWfnI2+/PfKt37ri5fOPuDsYn//SiX2+4lA76rqytRVZ9lR/g+TlxsnVKPMK9UgjDesEXROxGBlXI2MeKKWDmlCL7KfC7ssDt/t7WnVevYTy7B163XIVDjzbdrSinLqGUz6R1otw2C8ihREJA+qFYjPTaWR1Feif9qzpsecH9m/uuE7O+sKXVYkKnpW2CDmPrLziMuKTkk2hMbrtGcI5+92AlQMxwKo9Q7Un0RPHypvhNXOaceu4GFrWtXDgyHm/5vKqY7g3vnQDr5sVX3yh5PKSy82HXDbG21dvcXs6UlJlDjvmKqS5x2ULdc/rux3nb2+5ePtdNudPePX8FXe3B2TMtNUIooSScfaEEKkqlOqYLOsLxuI/qTgiwyK2B2JQal38JRkhpA6ry/pOE9tlnUUX30zNjroQQkAQTGbcT2TLFE+IrsAb3GeiZ1QFYmG2E+aFJjVQDG2EoZxomzWpVro5M8uKkmQBt5qJBIJGJim4QqUsdm0KFpxOF7gqFjlMxpgLIfbM8w2rm55nVxek85mwHllvt7x6CWd/4j/mt/43n2Fdjcn+Y+bXyuq0Yr0VfJ6Wt1sMHMrIkIySX9AkoRiIO3l3zyquuR5P9EkRS2AbSIH7sxNXTzquzt6jnApNMA5zxxgFCSObh9tTRRe4fCBPf0gUDRIRj2C6iKVlcc04iytGxMGXm1qkLuDJiPCQ/Ke6TAW4Lf+MicrirlFXRB33BUBVI14h1An8REgNVaHQQQkPqyqOqWNquPpybnisj0V9I/lJWO52mqAc6uL8PsV7EsMjP31M+anTkbc/8fd5epWp8s4jPz3y0yM/PfLTIz898tNjPdbven3tD/4OE10aqXLHLFDjmn3uWR1PrGVFEDhvdpR6YrXqGAuYCdkyuTG8ESZb5JqxM8RGPO/Zag8Y5gfmtqHWDVkvADiVnsnWnGWhilCERYzaGLNObDlHMWye6WJgdsdKoRkCKRy43CY2vfLl00QcArq5QKKQbX4Qe64oFdyPaCoE6dHYEkjgRkBZ54jqW5ziyBSOtCYwCh4iIop7olRQXy4q1XzpMjJhOKJLBxG6JcnIl063i+NJlpNbMVxb5mzMDqlRktgyAl6hFJAQkKgoILUnhW75uh5RiYzTiaYRRB6ASgOmZemkuEERGlHEFQmKPaz9PHlyTpVKRfGgZJlItSHWSyJrqgtZRqrMBIQUE1MFwwmhYVOVeKqclwrASrY84wKkYFcNuzqyWQVqFnyaGWpLsTOSF6QkzFdYAPOZw6lnwlE10pwoeWTTRnqFfl0hVSYrhCJEmdmNL7AwksdInYT7fYuGRNdk+jjw5GnPFAvrdUsTBTelS1tGzRS+jPaRaUyEtsdc6PgEpd6iOhKbwnKlElJsCb7IhV0C1QJBt+CKM2E+ox6hRkSMoBmV/NClWiS3rhD1YfJC9kuwWD3HiZR4QjUgNaKqy8/OJkTyMm5uLeqRIDPiIzDj3oB0iC7JVSFkqme0Gn0NeChUrUgQJHSsmi2f+syWT3vk279l5NXNji9fZ17fVXa3lcHa5ZKaJqruyOJITuQCxZ1SDS8O2oImLruAzcZKGvI8c+wD5TRzsU0gieuPMocP7xiOO/qNMOw3pA7y7o6zPvHpT7/Dbn/i9j4hJpz3K6IqPk/MFArKdH1iOI6Mr/don7h6+5wmKbv7A0M2rBg2KyEEwmrLUA/ksbJqL9kmpxyX1ZgGY73tl/WpkGhqT5mXlLOmXSGpxTKUozMdRmZgsInhZUPrPS7XtGdbolV2pys++4U39LNz0bwGPTKZUD3RxC3TUAgY0/yGVgP2fMars930fOrZe7y93fOFDz9if4IiHSEuK2hmSikGtocgi8NcAFc0rDFbblCooKGh2gSeMMnECFGXlSZ9gN7igrlTiqCe6KQjagSvVDdCqAgJCNQK4ssqXZkLrnVxh9UArrTeUcTJPiDVCaaLY0wzrhnTEbe8rN2JYaXgcVkp1BBBBJNKIBBQimfMM4VArZFjmUjpxG/dvOTJ/B43g/BNfAu30/t80ze3/Kunih8D3X/xXyD/l4mrpx8RzRmmzP5wosaeu7sjXqFzYRWu8NqhGgm1UKxQR2G0lozimkm1YG8y464gnxKkc1Yboy+Zla4IBcyNoxc0BoI6jUGcCkUrSE/0M4SAS8E1g0BEQQS1JR80iFOsEoIBQhAWV5WAmhBoCB4RiRhhmeGKCm7UskyvKDxIqyuuSusbZAqogknFtJLm7cNEgy4rSPjHTk79H3J9I/mpTU+ZZc00D2RfGnJ96WnoH/mJjyc/bZPx9rf9HxFr8OnikZ8e+emRnx756ZGfHvnpsR7rd72+5lf23o90bmAg03Jew5yiYUnOMSeFxMkLu3RgLCPr0EPInE53rDXSWINqwmSJAE8ihLK8YUdmvIlMeaD4+HB0jgUl6xYzx8XAMqvktCHQVWibhuk0LO6aGbp0BkcjVWHWgl8l3Nccds7qGNlsEhoXcSg1oYykkNHohKxAxByqGVGdwI7J9zTSEcaWqv8f9v4t1tYsu+sEf2PMy/d9a62997nELSMyEqdJbFfaIKXbAsrVsmQayxKiWzzwgBDCAslCMvjBIBVytYRlZGPZ/YzEA+UH1IKHErIQDS+21BeEBBZUUy6bauNLpjMjI06c676sy/d9c84x+mGucBtauJJyOhyIPV5CZ58Te6299lpz/uf8j/H7OzdpYZQFiiDxguABbYI26YJErLeUx75ohyBUq31UxJ2I0CTSJFBDRKyAChoKqRkbG6EVqjaiOIgh2mgecRFyMGgLWWPnlkgjqRMa3dOSgIuzesGsoi2RWmLQLWbaTRSpXOQRXQRLJ9BGkA3iA80XWmiYV6o3kMLodhbnRlBnobLiaFBcFJ97Kp2bETb7LoxbYJsHNC6ETWPEObSBFy8bx1fGOEQ0CWah/57t0GPVq3JcI7WNWNxyfTgxzonNcEWKL9lE2Iw78IaYonS2iyah4ZxOI+gFH8wLw9AI4QVXV5FpVDbTwDBdIB8Bp8eAW2ActkSLbMLQHegGenaQpHUgLDIQIpjcIfE5VgU84XLApHMxRBTUKCyIR4ImzIzmCxoBEm6JIEKIDq1SV0dCBB9oLXQgk1ZCiog1KBVMEe0bn1kDWTrE2hNCJIULkuzgzBw52oxjaIgMeaCtBY99U909vGDYBd7+VGU5rry8vuWD21c8O8zcHAMv7iJiO2J8jGjGvIGcwBqxDtQKxRp1UGot5JTJSRl1x+zWE/KyUw1KFCRHfv1JYZKGHyKbByP7J5VpvOT58Y44KbsHGzQlTvsjVZ16DPjdTLUVf+OCh2884pEkWhkZLnfst68o6wFJxroIsQi2TAQXpmHAzTnNdxAOhBSJw8ipFO5OC3s3SjGGXSZagbkgBo2BJTTCsjITOZQ7di1AU5q9omlinRcChdIqd3OlBpB0QaiRaJU0Hqn+ilITGl9D1okPPjxyezfz2oPIwwfwDd9wxfPrwocf3jCvRmBALRMlUbXzZYKC+YlmBRWjksAd80ZAaCznz+wl0uQ8+qTUtR8oGzNGoxo9QU0CKQ1EySSZaNooDaxZh9y7oS2hLpTVIWSiBMQiM4aXExtVWlmpOrCIg5Y+VqYrhEbShrVGkPHMWKlAd24dw0hUb8RhRaWzwMY4kXDmKmzSxO31nqFc8e/mD0gULu++hWF+l+Otkt+/oF59I5UPCFrYz8cOeV8bssDWRmJ1pqacygwa0ZApszCTwFcaEWkblibkceXgJ371y/+WHHZcbDbEOPPgzcdcXLzO1Taj5sTqhOCY9A4BDRmXBdNX3VkmoiTaUntioQZCD7pDg7KmI679Isc8EskIkcbcPXGJNIuYCCQFUaxVAp0t5F4BRUNiMWEKkTofyTlR1Sk4NVUc6WsXvctLvx4K4b6+LvVx6ieNShigqWHauxaabHDZ3OunT6h+Ks053n4b0/hFhnv9dK+f7vXTvX6610/3+um+7ut3ob7mi7+QIMoGWxJDDFSfiWHPfsiEtrAsR56uH6DDY7bLhFYYJKMaGPWCCzKTVcp6w50cKHnC6gM2/ojqKzU7rbUOK9Y7AKpNrJaY8koOEQ2J6gEHAiP5WFgAGKEuDNOIXW54dbij1i2+ZLLeMgx7nuuBcFKuHn0Wt0hUWMuROG4Qz4RTQ1phtZlGQmWDekBkpZWF6hWJGwqOxkiYC4iyGJgokcwQM8GOHC1R40MGCYSlEMUo1dCYMDGCKiwrY0qonah6Ym8OIaGWMB9xiyQxWlsIktAWCW4gK3lYqNqh060JYoEcAl4LZDjWPSqKNUFtS2NgRSgxU8qBJI2o0BiR8JDWBoJYp7FUQ+OASUCskasRVQhUCgs1RcwvsZZwWVjVOGpkDf2tFHVA6kBjwYMABYsRl0zGSTGyDwv75RnbzY7pcotIoF0XTnFEW0S9Y8ZFYa4nSE51Z1kiqW54Xm/Z5jsuQ2bSkd12x6SB0+FIvMxoMEI7MOcFY6QeJu5OMA4NCc/Jo3E1PuLB5oJNCmwuDLUPQJQQDAMkDFQqxO7mretzRHfU+YoQLxA7kM9jR0sTkAGk81HEBbVLOosiYLb20ScTWkuEkBAaLiChIVoQnxB1pBnuHXJbvSHW0BBAoXjsvKfYusA3J7ghZzaFi9O84b5ljI9wtPNN9MiwE0p5iHtAUMZhS813pM2R/OYFb9eH+PHA8Xrl5Qt4+qLw3qvnvFyUk0ZaEmJ8SDs+pspL7uI1dS5smPA1UI6NtE00lJwT49BodWY7QvOZI8qpBgxlXVZefOVAVOdQM6+pwuGGhw+2XCThq7cnpg8qw+6K9sYl8eHEa0R2Fng5OLbsucqG5sz4YMvtaWUpAT+sYCvHZcFrh6+PmwGThVYqEhOHZWGtJ8Y8EOZCOwbWkzENmbgb2B8bjSs2oqifOI2ZukKsidvbwvVx5XKYkO2R58se90gqOwZzsq9UgRoiLQeW+YiukTRsKEd4eWgcj8qDz7zO1aZwtXuD9778ZfbrgbLu2aQr5llIDq06zSNBI14LF3YkkKg5MkvDgpKaUaQfaGlOMyEm6a60ClUUa46VymE9YGNllx+Q4wZJG1Zuu+u8JlS34IapoSFhrlRPVB9xWQlhgRIZZMLrSjBF3bAkHJsQdMBLJrR4Hs5KuClrFcYQ2YpTtSKpf64JgawDk2eCO9ac0jowu8ieaAv704H/6X94xR8bnA+/aHzxV24Yc0Pbhtr2zBZZJXOYX1Blz6lNiK4sYaYxM2qGEjEVlMy4i0gs0GaC9c+hN2c7bbi7vuPucOijNtcvef7wQHr7im958GkulztuJlimSx5aRsqK+9zXwjCwtoXtRUJLYjUDiThOisqgAXwE6ywgl0DBMTEuQsaWhiQlpsTaGrFB8RMahOrSDwC1MaRAdaMGWMSIkzDbjEsfbdnoeAZSZxqRSqNgX1excF//2+tj1U9hYS0Razs03/H5b/2/cvHgJdP2Xj99UvVTOX4D/+b//X/hv/72/5Yx/fK9frrXT/f66V4/3eune/10X/f1da+v+eLvVE54VloWQgzUErsYK1dUWdltX+P1dGK5M9YZWtowz4WLEJGqrK2xMBM1MsgFRQxnpoT3KCw0MXIzctsxLH1s9DIfeG37mDZGzBZq2VNbwy1SLXJjM66RjLL1yHBS3qw7nh7egwswfYj5Ax6ltyjtmpd3d3zw4MitBJb5wG7cUs0pdUVsJcoEMdN8pfAUFydZRjUSvS/UlIrWhssJlYSo0JPE9lRR1rODPHhksEbVhVMoRMlkbXSQcSOmivm+u64YwR01Q5oTk9GSscpCUUM0ESUQvRExzEZqbZhGQhpBEstaaGFhao1NhazKoTVmGjIUzBuNPTKsOI3mwrhTlrHSqqIhoDgqgeSZWAKOYmrUWFnUEXdSa7iDuJA8EE1IrkjtXEa8AneoVFwHvDXMB5yBKEIrJ2y/Z1qVHLdsdg9oNDw1vBprExaH0hqlFtwMWxbcjZwTQoXQuG3Gi8W5kB16nGBY2eTI9m7hsq34RabNhqc9MRluiWXdkNIj9i+VU1h5Efak4FxcFrY7iOkR42Zk3CqDRkIxohsqmeJbsEYa94g31uXEZsjgEZOMhtRHCVzwtnaYuIXOtpEzx4NKOsOSrWWEAVUYdEXCCfOC9/5zVBwx75seCbM+VqDBz6K34G4YhlofC4CGs/Z0Rxc0JHJQrGZK6dB3Ddo/tzYSeIj6W6jPBG+kbeFyc+T1d068s9zwLXXgw/dnXjyduT6ceHb7jDI8Zi+wGExhILQj4q8IBOrdQKiRrBNBBmqIsLkiBWNTZzxXGAtrPdBcOM1QhsyTm8Krl/AknVAx7vYFeRAYrpQhVDgdeJ/G1XjJ3bPax1M8sr+bye/uuHp0yczMph1Z52NPS9wXogbcG+HUQdA31dgH5/Vd4sLh1dGw4MgVnFgoa6PNjuvCSUCTEg5HQnOeLXukJpYHA6LG5niHzy9Z0w6VWywKswSqKg0lriDhxCxHTs1IIbOULU8/CDy/FT519SZvPx65+IYtT16+4PmLFyynI0NS2lIQtHc1iNIarKlBhVIbJ+9wY9cBXVaSOBKUGqF6oVljpXSYfQiIQ22V/dpYDKJGHmnmtek1DOUgjimUtifYwuon3JXABtaJ7ckpIeMxstgRzRVrATfwBhsSNEXDxBpHYjtAO5LccQUJCsHZiLIG5yjGhs7+mtsJNJLrgKnQzCi1oksFFn7tX/5tnn/pS9zygM+8NfPOuyeePahMe+fVzYkhNdp8y+HuQJtmJhzxTIoTbVXWMpNGJ4YJolNDI4SIeuqHjk3GkzDqjuPtvl9mBEGe73n17BX/90fP+UO/73UeXzyEdaG1xjpM5DSwev98hgjlVCB2ipBaIytInZEU2J6mDroPQlPvI2TAbEZKmcULrRZCVIwVcUUtYyhBIxK1M4uskVPqh1sE8dgblqxRKOCdp+MiPbUQ/zpKhfv6ndTHqZ+yNZLdEIdLHowXvPX2/+usn+Z7/fQJ1U85/wZ/+At/hd34lHv9dK+f7vXTvX6610/3+um+7ut3o77mi79tfECwQPOCtJUcK4TK7foSy8LBBM2BtCbWArRbVI40zezbC0K+YK1HJplJq1KXkSEnwKk100SBGUmFGM9PKwqHtTG0Aq3AMpPcz+27xkYPzAirOWvuQvqUZzaTwbrHD8pmmihyjV7MyFLYv3pBTA3ZNIZ4ZD2emHSDy4jXCupEmXE7ITgmAfDe9tsq0Vt3jsmIZdTO4FIWmi9MFhGcpa0c6SMm0FBfzvHgAfdAjhOn0mjemTYRIbTa2Q8GKpFgkRpucbmj2UisE+IJC+UMpq64L/h5MQRhNSNKHyWKClsRvARMekpejAlriVaM3TSQtIOrxULvrXZHdEGCoShJpbugNIKCNKNKf0yjEF0QiyTt7dEurzD7FOgOxwk0TFeMU2e0zisbFdaUsGEiycSwruggbDhBCqxBOBms1UkGEoXj6qwxgVWKGcSAETk2ockdFyeQvfN0CBxsg9WBR3EmDY1hqEwDBDGW5Y5tvmRphWK3pBBYbgKvbho5P0OSESfjwYOJh0PkMkOLAmEkxoFWHbErpjDhbd/Hfkz6yJA3Umq0ZkiotDM4GlfcG80XwjkoKmhFxUAqzkzwCOJUsc64AKKB6fk94isinT2BF8wDLoFwBuYGPbOxnd7V4RGvsUfXe0PVib4jhoi3BVFH9UDzGwbZU2uisqOyQ2ViGnc8JPL2NwUO7x5Y65H9YebV85kPXijPbg/cnW6YS6T4gAVnjSdkSNRmSDlBdXRWQhSyC1aNYUjEqDCAxwNjbvhirIeVWSuzN/SNLa9n5TgfSfuVcpw5pUi6SPjdHbUeOXjh5I3JDjxokK2RpVOFmghNHNqCl8a8VNZ2IE2JK63UtfB8KRiXbMLAViJ3d69Y3NE8scgJsYBdF8Ym1Ng4hhPbrOT2On47cne9IGHH5RBBZ1ClkUFHkicGEUQXmhfWqoSmJAz3AssH7G/veK9e8ODNHQ8/lYi7h3z4XmSdCxoKEuBUZ5rV82ElowhigjgYimogphOR5QyzbjQ1Uo7kdcItng+eC8hC9RVr16wu1Hnk1TpwkbYMnpAmhGEkMqA2U+2EyozpCR1nFGMxJeQZX2eyP+bluEHrwlRXJhpWD0icCVMH4FMF837gqqZoqAR3cgNJSo1C9Q6ob9LQUHE1XMA8o668cblQr/8HPjM84vZ94Svpkv/64lOsnoipYLawv1kY5CGlHokhEYFSTqgJUx5xhJ0Goiu1CUkTwRPNnObGzWnPZhiZHmw53Fyzn294sNkwpcp8esL/51/d8Pidx7zxDe+w3XyazXJCDSxnVltJmlETigsJZRBBW8HEqd4I4iChc2ppVO8rY9CAaB9HEXfWcuqflTAgDs37fiDy/+OeqZ0w66EDKoqEQJCP0gWFRsPofB3ze+H6SamPUz+lkAmypanw6nrg5suf5/VH/wb1e/30SdVPNS1MFz+PSMLaxb1+utdP9/rpXj/d66d7/XRf9/V1r6/54u+4ecZ2GQk1c2x9PIMWGDYDdT2iIVCHhaeHay6uAnq7kooSFiWcMm2ZYJwIzCRbUXmIWKDqC6bLwpjHnl7mI+t1B1Lf1cJ+esrcRpJPIDvEG8KK6xEnIJoRN6pV3GGTE9W3DCGxnhqyTqRxIsSXbNPKJI2jw7EIpUbUr7AWUA20utKk4SpE3ZFEKNZwcaobLg1NgEIoE9Z6239URwNQK7kEQgyEqKxn0UqZiSEirljrINoQetS4qVGsEBFUDFXv/AkKSQQXpcmISiIqRBrFISdltZVaKyKNoAHzgKlSztBSVSOLE5fYDxw5gCUqEVNnM+4I56eoGNAwVooUUEOJBCLNFGkZOb/+jdDB29L5FoFIoDP+qjSKnuG68YieLoij0OTIkAIvDwuJR+zHJ1xeRNSMyZTVlBDH83eutCho6q9ZmkbSItTi1FqY15Wmnd7rgMXI2uDFOvN8Eh6sgTbP3FQhD4p6YRsrj3fCLg9IuyYMMzF1kGtdFsa4oR4jHgKHg3K4Fp6FA1fjgTAIV4/fYrNRNF4zjF9F2uvQHmB6QjT1lvHWmRMNupg1RUMkRT071opwibHvjAsqQkAkI3aBiKNacDGCd9BtNcGkO9hgqFvfsHCcguA9et67k90hwyPiE9ag1QWJhZgcX2da7QwN1QDSEyaDPsQwCILaitdCFGctFR0m4sVIEGFzAZ96rHzuNDDXN3l2s+f2eMd7Tz/g6d2B2i453kVKGmjjhJLRKrQZXgUnhZVlcWgj6bgl+BZpxjhGqu5JG2H1RtoKvJqQU+UWYbZMWDZcy0SwE4sH5hTJr12xt8juANtxYl6P6ALzqaJVmU9HijkWBkwXRjdkVa5rwK4ukOAcDrDeGWsJ6CVwGQnPR0KBu7tKyZlhUC6mCT/dsdzckuZIjJXxYuojJbojkRgtgyurLdRQSH5iCJHEBq0b5BRQL6hFjtU5rSduTpWHb1ywe7DlM98cuX1i3Lx6wVyOEGsHEiOktu2HmWAkr1RxKpWDR7IoSh/1U1G8Ktl7vmE1Q7C+PjXwIJhE7soZND8XrtyY4sBSwHUg5bEzbcKJlA3VC2qIbNKWUzsg5sj6Gp9ev0z1Sm0gnlmWRpGItQuidMB/VFAqqh3SnHxgcqFVpYj29z8OcaShmBiuinu/FGhlTxkOvFiPpFPisHyVpxt4vH3EfHqfpgPHOkM7sMWxLJyOlcDAw+kxgYqHGY+BJrkn/qniVmlRsZLIXOHziTFHdo/e4MlXPsRSZPv6wFxecBka85ff44u3K/Ktj/nmixWr4DRiUrQUsgc0RKIYWSKlBlqMNJd+MfGbnStdiCYytSxYaH1ETgJBMtK0p2HagnnDvPU1Tjpvynw6H2C1f+/aGW7SGno+uH2UpRfkPpXuk1Ifp35aTo85LXeU8QUv5sC/+lc/yH/zv//vuNrM9/rpE6qfjvPv49d+4//IZ37ff8+Q13v9dK+f7vXTvX6610/3+um+7uvrXl/zxd/08gIfBd0FhrKgRFwzx5eVjWxoqlzFT/PhXCl1JS6NHAaOxbhZVzaaGJtRTjANj5jGhulzqvZEtOPxGRFhOV5Rlz0AgxjbkFiq9SSfEDE3Kg1nocgGNfC2onoijysmJzwdqOkRN9VJ64G3Nxe8rRc8neDaZo5tQTbKUhZ0GFjXE2rOsLnAWmKxBVjItLNr2MWD4Z0d0lYiFfGeAifiKBVrC8cwkE0YV0Fj5BidkiKtbXsbMRWk0toRkQWRiLtSBRBhyInmtQ8eBMU00KSn3c10yOyWyw5+NSeoYpa7aA1Gloxaw+qREhqzV8bJMD+COCIbnA06Omkzsroh0eAj10OFWJ1YCk7BJGAMVJSqmZQUs4qL4easbgSvuHZakLGhhiOiCfGJNJwQ3WDLxDo3bm4PjBdCvF54yyPb2kAFa5WmSnGjiSCiBFWqOatE4m4l2y2xOFOYOJXAOkNk5ObUuPWVzThyUY3YnDU4cxZObUPiMacDXN+emNLC5Qjb6SHbnZKik1BWPxH1hOiCs1JaZl0myvIG1k588OE12+1Dps0leVx5/LCQ9EDORggZVcFi50g0ItEzjoDU3gUg0lPA/ETQBmd2RasDTqYZmBTcusRtRERyPyxpA2mYrT2JULpr6WI4en7/aE/Ow2h2QGWPROnjGpZoJZGC0HxGg/dDl4+IXLG2A+6NSH8sVyFI4m6aCXJAqyA2YXYFaUccbhjtyKcfPiS11/ns4zewBoHA85c3/NrNC35jf83dOrCeJjQMbF0xu4TgEBbMbrHamG3P6bBBbWKzDmxCINwuLNs7Hr0uvGoHBgG7OXK73rCIMySIDna846uHA+n115Fwxe1+Zr8s7E8LqpFSG54bm10iHTLzfkHGCAkmCjIbx7mxtMTu4pJMoTw7wFw41YLtBpbY2I4Deb/nxV3lLmeGIfK6RBZfOI5C4IK4CkMYUCoiM00r1RRHWbkhxj3qEWegVGdoCS1XyFE47F/SHkQevfuIN982NtvC0+cr612ktEzWDXOBcoawi9Uzw0ioOCJKVMFNUHpyHdLHflRAPBJlgzfjYEc8FHJ1Ulmw1niVlNu2MJQNlRuSQVRnCBtC2nH3IDGNcJU3vKkPiKyMXKLrhnUQFq0cliNWV5Z1YX9SxAOshWBOWzs4+XTqh+KaYKjOsColwirK0KB5P7YSFFejAqEK0/yAJ/GAibG5hV/8lS/xKH2JG7njYCM3ra8ppWRMhLyZSCQIRi2NnDItnJlQIgQ18IUYM3NrhDBQy8BpdVqAuJ0IVzt2j19nU15jNUPCHR+e3uP/+T/+DO9/0xf4A5/+/WxiJEvFmveLg3WhibCERhxGVARCIvmpQ6ybgjhqjVAb6pCSgkCzSop9LG0+Q+9DFLxVROjOtSrNK/Gc9If09DoVIVjr7So4OAT6wfm+Phn1ceonaTdovGPUxpuP3uO7v+fPMOWI2r1++qTqp7VlvvrB/4k33/6nhOl/uddP9/rpXj/d66d7/XSvn+7rvr7u9TVf/El2JovkdeTl0TjR5/HHERYqhQhzY3RnGAPXs9Oq4y60dWHIToqNvBuIfqAcV1gesT/NeDiiYaKUSrVCHXu4xzwH6gCJEdoJ8xXT1m/+PeHFGMOAeGBtysE7rPRiKnh9RR5G2kmZp4c0XdFdZLk+YWVlYsAq1FrJHsg0tO1prZG1t4FLUwrWU7lcEROSO1YMGxSs9RGE1Qgxk2WHhcbaKi7CSY2TF1Q62DmGAQGSRNraCCGRNGMUXLwzSlwJHnpHgClJMyKRqoEqigRlrRXVcnY7GsUNl8RlnbCYWARaCAxJSGvlGFZUDFmdjQ6EFsjS2KoQ6okcexpvbRDjRGXDKWbkzEFB+++62krfThYiDqI0bRhG8M5lDBLplI7OWKm2kES5mDY8//A5aZPwKVAtMISRU1g4pkpahbFlZoQYA8nAqxE00YhYc1QuEDGcREi9ayIFZTPOlLXiouyXShsScjKGNlLkRAs3eIpUg6UGbivEmxPj9cQUMldXDYLz2hDJKaLseiQ8J1p8ApoJOvJq/1Xu5kvEH/DieWXKX+LB5Az5EZvdlrxVSAHt8XOIVByjeY+oUhGSH/thhw3NE2hB4hFaQLz2hEJXGhEnI76gGK6gEjrkmjODQv033T1k6M6Wxz5yZN6tK299HEYd5IIUI2hjthNBZlwWYjfDCaY44AkahQvLmCnogElPniv1FVHbOXlRQIS0mXr63ZS5eGvHO8uG/eGW233j6fPCfn/H4e4lT4/KXh9xt0RiyqQJdvURiyhVIvumlHUgt4G5LKQsXATF/YRfZEqNHBZHW6HVlcO6MuTMECKHlzeUdcbbyhgS7jBuJrxU6o3xqp2QZDwaM7klTrczSROPt4laV4IVlrtKK4mb4QTJGNXYFMWWA8+WnoCWA0x1JlEYBmWSTIqZ03qgyNlhFBhtxEohhAEsdPfQKoSFRVcOqgQ7EiSSLHB3u+HwG8Jrj7Y8vnqDIQ3k8QXPnr/C1n0fp1Nj8UZEO7BeEkGPBF/R1oWLmeAEqmdAaN4RxRoMYmNoyqAjRkWlsIZCC1B9QYJSWmFZC1kq6J75cENZHuFxj6QturlEtkq4UqpHxmkia2CbH9FwjuvKw8uX2LpSDk5d4GCwNodBMFuhLl3omWOro+qYHVHd9ENYWUAXqitzEw5lTxBBqEi64MPrgXlxmr+OxJmtCKs0dJuYYugjO+60ISNT4I4jKSwgEYgY4KxgrbOatBB0Bi+04lxst4RF4CuNh5cPkXecu/kR8nTk4vhlnvzSbzA9N771m38/4653By0mhDFRaaANOOHNoQIx0nAMx4P1MTGHyUe8FDw2Go3qBUKmuiAqDKpgtQPKzUlhIJrSB9YMMGpdceiJl+fLBzfABTz8TvXBfX2d6uPUT2E6UUrBjz0EYYqO2PFeP93rp3v9dK+f7vXTvX6610//meqn1hq/9Eu/NPzrf/2vN8uyyJ/+03/65rXXXmu/F8/ll3/5l/O3fMu3/MF//s//+b/9zu/8ztP/1u/zh//wH/7mb/u2bzv+9E//9Fe+ns/vvv7j9TVf/M22wpCZo9M2CZtrd3zqjF4NFFY2o5JFKQQkX9CqkCalemEaIr6esKoc1kQ7NXIoDDFSa6LVBRRqcObaH9NCYI2Z7TpxEMGlstHOS1ndidaoUehN/xElM4hxNRSe3j1hePsRT5694tJuiEHZ5DfI1sBn6hL6puEzZgvNYbaZHGBwpVWjekSE7jzQWQLqStQJLwmnUKWAVEw7bNRKYwoRUcGAmEbKupJQzAVRQ8XJIdFcaNaIGnFLwExtJ3CIeQRRamtI60yF7BVtKx6UJTgVI+B4Maqe3R6ZMVsxFbxFsnZR2dpIIKNhQmyFMuN17YFJ2pBayGSaZywkWjv1r4WM1AzSx11MDKF/L3OI0lBx2vk18lZJPKYurQuu3LDwiruj8WJvPH7rAfOxkP2CISS8zIwu0E5saZhEVlOUgGKIV7CItIkUBPNbShNULlA1xmjkNsEwcK0wZiW0QMqN+TiTwkOWZcUpuFc0JgRhlciCccvK8xsjEHhPD2xi4MEw8WBUzFauHitZF1ppbMbEbK9o2jg143BolMNI1Eb1lwy7yHa7YcwjuyshjzMpvYlSaXINMlLLBdQEorgsgKFt7FBqnBgc9dxZRMx4E5QNzc5dlbFSW39fBjWciElEAHdDXAgE0J7+1awD0WN0zE7gGW0DaoIGx21FEtAEc8UsYi1QMZQJ5wbRmSgrqnOH73KFtJEggcNqzBy5vFCi7qFW4jAyDoFHjwpvvuWURZkPD3mxv2O/DLx8BbfXJ47HA8UuOLlykkbLxiLGGjOBLTftiLUCx8plzIw5MWpBmToPJpyYHkTm+pLj3NASkOq4rtTYMKkUb5hFLsKGGCJtNdZSqNbg8cQwGO26cnfdRb/lyj7u2TLhp5lmhYNVyCNX48S87hmHytXVhsvdJfvbhTdfe4Pr3TO+8vxDiggpXrBWR7QiqzOxJUrGaD0tLBSKGDTn1GofVQuJtr/jw9U4ne547VMXvP2pT7HdPuArX3mPeR/xGkgyIm1GpRC9crKIWUDc8Qguvd9BVidoREOgWaFYxQeQGlmL0oKSBKIFgjeqVUq7RtPE2vr41H4VaMbp+KqznIbA3cuKRMfiBwxT5jLuudTumO9xypSp64R55FSgVWNZK27WwfdMOCNzLYBDc4KDh37J4S3QakNj66Nfotg4oxrIbUtpDR+eUoaJY4RRVpJXYo4QDWHuoj6MFDofCt1QRAgshNRFpnpkFafEyjZH5v2RUZVMJsrEvDovQqMc7hhXY3e5YXr3ER9eF2JZ+fBL7zOa8tk/8CmuXn/IcW2oJQJbYghY2RNiwExxpL/+IgSP/edtjRKEoOEMlaYfSK2iTD2lEoMzQqGPUgbEnKR0gRqUJLmPUsq5m8UboopJoLb7VLpPSn3c+inpiCHcHd7h137hL/H7P//fM+1+/V4/fWL10w74SD9d3Oune/10r5/u9dO9frrXT79ZpRQ+/elP/6GnT5+mj7724YcffuVHfuRHnv5ePq/faf3jf/yPfzXnfA9U/Bjra774C36FHyua9qRUKINgacspzmxsz3YGTRvcToyyY9XM0hrBA211Wpkxu2WuMy0NpCFxtEotDRkV2oYwGzuf2ZwfU+vKbr7Dq6BRMZ2o3tkuLpFNeIpR8ZCILRJKB5Omi8d88b1bHpSBt/LI7W3j8mEm2C2JBVdosuLs8TaT80i1QPDcHYS1kVIiD5m7+YgAoj35qblBCAR11nZGgWqkieAxU6kUV2ILhJJIekk2SOFIZaZawWvpAkOVYhGrW1Qyecg0N5a6UFpFUFzoiUY4AQgiNIk064DirQqDKMUznhZECkm702vNOmum9Q3MpTFzwzQobmfXC6Vaw0WIKTNLAw9EeqJV1EipYKwgK1ENVKlWIUDgLFDPZIQYFNFIygNJBGqm1TtePD0iuiONgdNhJg+wDgeq3vUxoGi8qo6hiIQO4pWKsdDU0NAB4m0FVEgh0NYArkSZCSqMOIMkVAPLFLgYGtVvWesL3DJSJ4aYWZojMZzZL4YQUB84+hXLmjmc4CYEklxwfaxMw4kpBnabSJMb4jgQrRGDsK/GkCuzL9ydnOvZCOXEVf6AzUVjjMZ2+4C0FdJYMS4IQUE7Z0JkwWSPSKCWzqognnDfg44IIy6N2lbM5s4F4twFax1+3Z3szsBAOgC5j7gIHYauBCLF29nBFmIQVPvGVtpK0HTeKDmPPiRqzcDQoe0OREVkxCSBHpCw4LURsvTDnQvIFtMBdEbDnl1u2AZ2D5WHdomVHXXJzPMty1x4/uzX+OD5Bc+Or3Erl1xXZW6ZLE7gxAZnngJPtTK0yvaUCJOCOo/8Ep6fOA0H1hgJntG14t7dwVYrTTogflJlqQt359GEi2GHHGbWmz3zbMxrpGWDVPiUvcZigT2FMBXGUnjoI/XQuNhdsnkwki8mtCnbNPFgmhmTc3c9cKgFasHWjKRA8aXDxFkpLqxNqdJQWh+nMGP1I3U23ArCwodPZ/anCy4fvsXm4gHf9M07XvzGDTfXC1RlbZES4a41cnqOrBGxLVISkmbwOzSvNBNMBnIcESK1Os0bFiohKKF14Hw1Q1ypoTOfRARDelLoEImtd0jc1leMCiwzVit+fI2TGE9DH4dps5JlwjfKGhbmdiTGfpiQstDzNzPVjNYKKTtmleBKaM7SjqQYCQJBR8ZhYLYTVfuanxKkJCyi2LByoYGLlomWMIlYiKwldAi+K+aNISTUR7Rse7cIK8UqgylLKDQUbmcexisCHcS/1BMpKa1WXpXEelgYbp/zxmsXvH11wZpvef+58G+f/xrP0wu+cPEtPNxedJEaZ47rnnGcaEQ0R3AlSIduBxeiB4IKRQ407SOYahElIXQeDeGEN0UU7DzqZhQ8LqhPPWCAhstCkEZs2w6x9kJbDdVIkq95e7+v3+X6OPVTA6oEWjmSj86zF3+Qz64jYvf66V4/ca+fuNdP9/rpXj/d66f/vPTTPM/6Wy/9AEop/9mDCN98883ftmNxnmcZx/H+YvDrWF/zO3vMrzCLyDBxmhtejEkqb6Qth3BEH05s5IpB3qNVwds1QRZEJlYTVj8iUhmkEk1YjxVhg7Tuhs61ssaIFWetfQP1esRtQ9AXbD1TSRyBaoEoAye7wKyAgFrF6kz1xlaNx3EgHK/ZTAee3B5RXxibEZoTPQGFYidogoSMn9u9kyialNUq5bQnxdjHDWgYlUqfBAgoTRrNIYQBq4JKoKozWyOdRYKshWjQrKAqDJoQaVRbqW05M0YKrSWqSheDOuDNSTTQjGvAGxQpmBYahruR5Ny2DoS2ULXhrSfWIUIzB4lki6BG1YJ7o7TAkC+JG/BQMYfgSpZGXA9UKi4RkYhI6Ilr6qgmpPXUswUjqiNeEOuiGrroqbbAeaziuHvAq5s7nnPLZz69hfGOWV+yDYaXGfMJXQbGLJzcEInEM83HPeJSkFCockOxAWFCdMH0RRezdkETA+/QVwGCFaIYo0Xmdkmd7yjtFvU7fL1kDluSKzkIOQZCUNwCLidcVxYTltqQUhmXiM6CFGM7zeSxcDEKO4ywEWKO1Hak2itEhaB3OBPXJXP70jB7Ss4z42ZLHAtXD64Zhy15yAQNRBWCjOALg2p37SxBGKkuqDohdIGhGjtEXBVxw5phbsBH/JvUD1i6doHqQpCuOfGKqvbpFWuIOLWtvQvDrsAUdxA5r6/N0LhHZcXN8GY07x0EEu4o3kHXpQhBO4jYXVAbEM+dj+GBIEr0yOoLMR5oWhizcnnxBl4f8vZb38jnDsJxOfLs+je4uanM+y3v7/ecDs5JL3AuCItiwbHxltYmAlvulhNBndp25JAI1scxJAnulePcIAUQ59b2lNYwy2zDxMZ3HA4zh+OCpoEpZ2ZfWJcDa13JltnGxP6woheRdZf5hk1kM0wkd0YKS1259sIxOi1mljCyeMXlDkPJusHXgaoFwonilaogLTDZhAqY1P75sg4ZX4+3NA+sGnl6uuHha8bmMvHo04npovLs2XOOeot64nJW1qq4NaIuOAUxRW1HoY8/uEmHltdCOIPNUcHdUe+4dDTRJPVDX2tIq6gsZy6SEXSiKCytYhpQ6+vkyhGn9a6CAAzCqSkcN0hsfc0pjlQnBWjegcrijvqKtorZjMcrqoxYXFi9EkJmbiBUUigM/joahJgPEEF9w6v4gtdsy60IniKpQXKQcB6HsUJUI+iMuOJxi/k5OZBMMghr4BgMcsItUwzMHE0LLcLioFLR2Ls5nlwfeH5ceW37kCnMvLVtfPjFr/Dv8iXf9F99B9t0xNoNIRS8BtwNs4UURmIIfR+x1pMiQ8DaBvFMR1YbqgtOxbXiGhAfcHo3CjQcRxAKlaL9ABockiUCBdyoXgjqIA339XcsEO7r61Mfp34KcgJ9ideKW3/3TL5n4nivn+71071+utdP9/rpXj/d66f/zPTTxcWF/fRP//Svt9b4/u///m/8uB63tcaP/MiPvPn3/t7fe/3Jkyf58ePH5c//+T//7C/+xb/4EuBXfuVXhh/6oR969xd+4Re2n/nMZ5a//bf/9m/88T/+xw8AT548Cd///d//mX/5L//lxd3dXXj33XeXv/bX/tqTv/SX/tLLj77/fzjq+8477/zBP/tn/+zzX/3VXx1+9md/9uH3fu/3vvqH//Affunj+nn/S6iv+eLvxbxjGxKXNjA1Y9peMKULolT88IKyVA5emF2woDiRKAX3Qq3gNkAdiLYnyaF7Y+fIbAkwYFAiJUA8y6CJS4yJQXbU4uCCh9qNMWvUVEAMMcU9EOKENFjshnETWZoxbB4QjnecXhS2F1vw56jMSHOkDcSUaK0RDISIKMwYizqoEpqdRUDFVbrbbRBIPWnOjKQBQsNtJpQr8IYGI8QOk21SkRjAI2bgonhMEITQjki9A90gNuKmREmYF0I4O+Ju3YGjEbwgHgmiiCQWt97ijKIG4kJrnakTPEEbSL5gBSROfTurK3Gk83ZWxWRgAdbguDQiEL3hBk2tcxVCFyLK0NOvguFee/cAjtDns90hBKG0FSOyuX7KzbPnvJO3PG5KOF6xPyWO6Zq9rBQ1cjQiAdfQBWstmHURLDqCF0SspweHPgpVWkREaKGLsOjeHdUm4A3XQvUTMmRkUOq8604iJ+YWWeaVB9sNMQfcKtUbGaHMC4RAHBKWhaMZSsI8cKoVmUeenRJTMXbjie1m5nKzI8WRbI0gSgKWFPD6AI23LO1IuYvUG+fD2w/J8pDdZsvFdGQ7Nq42l4zpXURLZ4kQWGtBwh3NB6w50IiEDjM3B+0gafEG54w6N+v/PW9iarH/nZ9dr1gRUfCESgQSUYUar2mmeIuEMCKSKKWiOEZGxAmhu9+Ynt9fgoWA+coYRiKpPx8FrGAsuM/UVvpYTRCc+eyqGfiKxkjlkvHhkY1vudr9V/CpxrJcU6vywfXM6do5vVr44Bh40QIvWyPI0o82u8yhQlSlrSc67be/HsrAEDdUbax+5NgSgZEcEm4rt/NzXtqC5YFIgrUh7uzihGVn9UINC5dj4LXtwLsPLhhCQaJQ14LKyjRFjktgg9J8YVNPyBqQsKPUEx4XVu/9HOIRIfdDcwFpQAL33N1hCx0sbRed9XJcacys5cjFfsenHr3BZ67e5J3tG/zie/+Wl/MtRy/UdSB6hrChVsfbzBCMVhY0BSDQaiV4IoYJk0bz0gUnnetUUJo4Ge9OuvcDoCOs1bsoFQgh0ixBDUiNVL1FAp35Yn28pQpobFibwWsfB4yBZkbhADGTJCHV8LP4suCUBupbKMZ23JyTQAviiaRT78SwFRy2sfHAd1y2gYMoJQZSXZmaMQ8CNSKMffxDrI9oVQfJVDFaqhCX3ikgiSlvmI8nNnlAV8hssFNlG+BYK03AqkExQhJe3u6pxXnjjU+xlJmvfvHXuZwe8PlvextbLxglo1ZBrTvNte91KIj2A2LzPlKkNEQDQuisGemjLWbgv8mYaYg01CNRRxoF1YJIJLWBbCOVheoNQ/pabUIr9XeiDe7r61gfp34KFhnKJYZzZABA6gh1uNdP9/rpXj/d66d7/XSvn+7103+G+ukv/IW/8Or29la///u//2N7zL/yV/7KO3//7//913/sx37sK3/sj/2x/XvvvZd+6Zd+afzo73/0R3/0nb/1t/7We5///Ofnv/7X//o73/d93/eNX/rSl/7nlBKn00m/8IUvHH/4h3/4yYMHD9rP/MzPPPjLf/kvf/abvumb5u/+7u8+/sce8+/8nb/z5l/9q3/1gx/7sR/74OP5Kf/Lqq/54u8bHhREjaIzRWZM4Obm0FuEbSFrJWhjSoV1nXHPNIS13tHCgoYFW5aOLZYLqgpGRLJSKKwUrBzI3tcYgGPIrC0Rw4a5zZg2ojpBCkENWwtBG2KCFyEyggVehsTylsAT4/K0YX5UePH+StMrWt1jYe0sDhtAE9VO5GCs+wOaIjUFFukf+mTWHRbr7o4H6e6Cx+7O1rmn1EnD68I0DNhHzbeuWMsUT6xlJVolakBiT6ErtTFZJpKRkDAXcCPHRpOGi3awsVQIfSQBj6h3okFzOzvHuce/W9/QS5txMVQ7d0P8REwDlYh5JQ+RYUo9qQlHSJg4a+gu08Ydr+AeMRWanwHd1pDoSCmMMeC+4CwgTpNzt67LGTzbx5SelCMvJfDp1y9ZuWYQYDxSFkPYEi0TZEO1PZwBuRIMEUMloTqBRKIK6oZzQAmIbDust96SQurhbyKA4AImwmyvI5Jp7UTzZ+ABtwfE1FjbTAgjaUyd4+LC6WZGiQya8dWRKBSMGhaIieJASCw2cYqRF0VoL09s7zIpNLZD5c1d49G2t5irZMSUkFbwW1wTPn+Okx9p68zxphCtMqVr4tWXuNq9zmZ8xDhMjNOE1tdpqSKh4LUDp92F5hWIqPTkK5EAKIad4eGGSO5OnQRcBJfWAcChb6YQUMmoBKw2NCRagGKGyIpp7UygppgVXI0gW5CGUIhJqNJwTuSYCOI9Rc8F19oB3KJYXfBWsSoYE6oBN8GbojqyWRPIBpdbdPwAyY1QIjG8wcNL4fh25NV64NP7a8o6c31rfPnFKw7rQD1uuFy3XLeEjxsslb7BL5XBC5MWllrJophneg9I4xBONC2dfaSJpToutY/uBCXajje38PqF8+DBwKHc0fKBkoRJhF0wolROGnn65JZ0N7GZHEZoDksVVmCg/eZBwVvETbuANUfUMBGqDxQLvVvAnShb3CtrXQhxhRLwY+bJ8oqvPqq89qnX+eznvoPpq1/h/dtrDhzQligeaMGxpiTtnCMnULsCIsWIqZ7B+X2ETbynmK3uFAQPK60uTOOA1X5QjdOWtgrmBdGC+4xLoEnCpHNVcLDaIFpf820lxe6uuhnVhaCCaMW8YDb27omcqaa05FhbcIcpDrgXYCZFBb8i2KkHEugI0lBbKMMlRz8779o4DI27WNkoaBiJZNQBCqhQ5K7zuVxJZgxrgLplN4wstwemqGBOWQuFRDXHIthg1FZ4eHnFmLaIBvI4cLo7cdSFyzcvePXec37xV3+eR299B7v0BmhkHAoxVloDZ4c2PY/fCRI+6iLph82PUjjdHD8f1pUA3ruFRPvRVNUJXsECTqbPtRSaHFgMPChVQtfIDqL/3lTIff0e1sepn4oJByIhRIp1ibdYJJnc66dPrH4q55/5Xj/d66d7/XSvn+71071++r2vV69e6U//9E+/+RM/8RNf/sEf/MEXAN/6rd+6fO/3fu/+l3/5lzPAD/7gD374Z/7Mn7kB+LEf+7H3v+M7vuNbf/EXf3H8whe+MH/2s58tf/Nv/s0PP/p+n//855/+3M/93OU/+Af/4NFvd/H3R//oH7370R/90Q//Y39/X7+z+trDPRjQk1LmQoojcyiUEYaTsERnScbOnavtllev7igJWkuoPKIsM/WUGahE34MVpjSyXxZcjFqOpCjUPCDL9py8A9lWNiFw5BXz5IRgTGVBakPyQCm5i7VotHhibivkQFiNqzGx14Wb+RXt0cL0MHP36iWmnbdgaU/R5xSJmEyY7RjCDlrDrfbRgNAd24QQTBGEZopWh6HRrKEhnh1SgRCockcTwcxIVZAWaCKEHEnN0LrSquERonRPcPGVII556Iu9QMMwzTRbgRXxgLr0hS3cdfdYO5Q24IRmuBrWGhoqpEazgjgsCNSZet44BpRNHVi4ILkwmpJYqV5Qr6CVFnq6lYnRvPSFVZW5FSJOag4oxQOuRgszAJoy61LIMRNbpD2/5o3LN7mMj4l2xFBWPWGn93lDleNyoARjDYVYM6UFLBRiXJG2Yh5x+gYrXkhnQRvpkG9YCeSuGOSs8SUQguPTDWKFVJ8ylYjKBtfOZMFXqiycWkXP4n8eXlFPjav1kk3cEARaucVyJIQdyRpmM4WGh0DTGQ+RE8ZtKTzbG0/uhAeSeeCRKb/g8rKwG7cECeQc0NCdzNKONAFl4ngaWE47YkhE3zMNH/LosbG7ENJwwTAkclJimKiuSKiIOK0C5P4+EMO1gPQujkhATGjeybeuCiX2cRIxaj0RJFCb4K0QVADDZEa1oL4SeBuVHZUTzolWRoRG0AXT2Ltwm5DVwY/nUR8nigMRIUIcIThu2kULcz9skjCrLJuzo+0D1v4AdVnR3NgvkCblwhZyXikP3yRzie4r3/r7hed3r1hOr9jf3PDk+o67feJmady5s5pR3bFBOFkjSETaiVhnMpFKZBXF6koxAyopV8ZY2Y6JT+8Wft/jyKeuBpoHfv2rUPbOg6tAjrC7VHKCsQUuSNy8v7JuHDsq1FswxyxSNfUl1mPHCcmMyooKrKIUF+YG1ZwhC9b2zLaS4iVBI7WcCLJwWk6MIeDXifbyGfLaBd/wzhWXbwS++kHg7vrI3e1L0IxIoJRM04HmgnkHizdfsHrEXPAo504HQ0QJGjFXooHGgYaACtEj0oRZVjQ0VAopgGGdaWVKrYVGpbSFqCeiCCYT7kZbVqY8kcNAqWv/fq6oD9AbSzD13i1BhFBpQTmZoRJxUZId+shjVOzM2hEbGE7GmoSdCLHAGjNl7QeRECpBX2E2U2tfF04ygQl1XXrS4+oslrlbGsM4sHggeGC8GAjhREqJcbjkrdeusGUmpx0nz1yboZcT+DXr8w95eHXBo807vNgX/tm/+CKf/6aGlj3f/Pt/H1PY9mVJAtahVH2dOr++aoqJ9lEUaZg0QgD1AN4/j3jDzYDcOWih8tFC5wora3f9pdBU++FaAwntI4v39Ymoj1M/JQt4nUkxMWrXUvMwMwyne/30idVP/eLvXj/d66d7/XSvn+71071++iTUv/k3/2Zc11X+xJ/4E7f/sX/z7d/+7b95gfeZz3ymADx58iQC1Fr54R/+4U/9o3/0jx5++OGHuZQi67rKNE2/bXLKt3/7tx++Xj/Dff3/19d88VfmlVZXLFZCHEinyE4eYDSiGeuiSNzi42MWKrLcMpjSZEPTkf3tkc1rAjXgpswzBJ/QIYIOlOXEirJGWGMXqxYSp9hYrFJFcFNWHwgOugYKR4RGA5oKixtNYAgb4snQFHmxnHgwb9kMgZfDiaWC2wiuZBHwhMkWc6FKJYiQyATLYAWPhnp3ZlSFZoUghbpGkAShjzEUbziKrYEUwzn03NAYyd6ZJ9VhyiPilVIWxIxVehJfDEZME7TMamC+4l67O+nSRUbfMhh0S2gVSiFoIsqAFe1t+to3o+qNhiBBCGFHtRNRhWYdJDulSyIVZMXQ7jiqUcRoBljnmYgbyRRkABLmhqhSXPuAhCe8ls6lobvGSQMpZk5r5a4a715m1MDWSk6FC4fr1Sm2o8qWkwkSnSgFUYU4UKjdpXJw6YcH8YkaEmKNYBW1j3hDhgVBJIIq7o3sgdUDvg5Ee0htezStNF+JPnTItkDACNJlltA3WB93LG3D7c0dmkaiZbDIkBMetG/aMSLF0BLxkHCJkAYw565F9hKRMpNejSSc7eRsxplH8chuuiTrRMy9Xb7FhoWElwMmcCqZD96DmCNDvmXcGBe7gYtNRYZMykLKkRAyLolqM5gQxM/8mfyR1EfIOBEFogjigDZE17PjqIg1sA4EFnkNUNQdswXkQAgreMH1PGrSEuIZr3tCFNCAW8LR7pRJ7KLEah9PoRLIiG8QmUDXc3paZJBIK6Unakkh+EpsxiSps5BEIe7YecQ80/JE4pY3JmG1B7z57pu8vT8STpm7m8LzuwPP90eezc7TJpTqmK9U29I8MhBhNpzArAuXKTA6PHow8tql8NaDgXceVIZ0R9DGs5cX5PGCYQOHBm1RsgfuzJjzRNtGbl4cOM2JY8m4PMBEqQyYrNR2IMYIFoiyoXkflxDx/vlUI4ohnDtmcz9Y1wYx7PohS2Ef7pg0cjje8OUP97zNI969umL3jvA8jjwpt8ymLKuCLlS5PR92HYl9TYlNSFo65NgFb0IVx9WILgw+QAis5Yh4Q93xBpoDsZ/iexcOgdqU0RZSGqnirAyIB2ITvC5YDFRGlpr6qJV38LoYJImYw1oqGhIxjIwy0bxi5UTSDT15cMXCLWjEzqmbKk5MI+EIOoCHSGmGVBi8gkRUBddGqdDccHqHxKGeKNKTAV9WqKKgM/+7z38jy9HYTFdssrBLe/JQqZJpZ+h1jSO3r/YgStwbrTmPP/tZHu9GdvmKL33lOc9fOW2B2/WaG3uLVhI5ngMGSL95+ZDcz47y0r//uXNE0S7s5SPRaf1zotIDADxiPoIURFbcOyNtlZFoE2qN6J1hpRL5ZGXS/ZddH6d+UgkEJiwoS+zvgipOvddPn1j9lMYP+bY/9H9ms32C2L1+utdP9/rpXj/d66d7/fR7W9vt1v/X/k1K6Tf/Te+GhtaaAPyNv/E33vq7f/fvvvHjP/7jX/nCF75wuri4sB/8wR98d13X3/Zadbvd3r/8v4v1NV/8Jb+g+R5wpDUGjGTX1EWwIWJBWX3P2p7hvmfOglmgHFa8OsvSWPUSs8YgGacxhsztvFB1IFMZ2KMM3TWFzrewkVozIjd4vGFJSmCLzAMaQXEohtMT22p10ECOkcuLidPhiJ5GwtAIm0LbHxGNyGpEV8T64kQ4s1E0ICjBwRqI72h17eIxDrifMD8So1M4YMGw6LQWiHHsIxO29Fb0WLs7XhpD3NAKFEuobMie8HMMfBAQWt/orbd+C4Y2CCHhpqhHGrW74nXsrot3R7qJ01RIvoNQcbrQNTdMKu4rWQT1xFqEHAKjCN4iq1eqFtSM6Fuq5D6WYIXgAq2iHvCWEAm4nqiyskpAbCTYiPiActN/Z2UmThvwgdv9gqUN0y5ha8VT46jP0XTBSYRDFZIYQytIVWpZkCSEBngiaUJd8WIEiTQycxGCOkLBrBAItNZHMUR6+3Z1iKZk24FUYrhGNVJLxYHaFjQEkiaiO9oqwxgZLTGXPXXYU7Txar1jqwPjnSKLUUelBKGEQtoIsVVcF9w3qEQ0RII6jtHiirJh8ci8Nvb7E3onPIsbtgIPs3CxEdLGGS8cTjeMcepOsEBUkKVQZuV4jLx46mS5xcbGxUXk4cUl46BsLmbyuCelLe4jVrT/jFwjCCqXKBvwwFwSeYiE5EhSSm19nIbTOcq+4tK5QyKtt8LLjGCIxy5MRWm6oOqICVE3FA+IGiKli+UW8CbdlRTHvXdKuK+9DQRDiQSNtPKArLc0PVLP6YBSF/BIICE4xRslrISw9k4EL7iNbDSTNXBx0VguAtMbGx7MI59rlyynmfffe8aLW+PpacuLNlJTJrGiOtM4kh7CW0Tevbhk3Jx48GiDECBOMCiFyO18x7ufeps0zP0QeXC0Ca/Wvi69frljXmf2pz0kQasg1Xl4kagiHFphmgbavGJrpUEfd/PWx46qIw7eEirDeTyhoaFh7SPOiaNz4pQqRVfsoPh7geMr5eHbVzx++x3S7gXvPfkK7W6BtuJWUXdK62Mo1YUpRtQTVrUfbqRRfe08LAGXiLHHQ8E99zGQXNC24qWhH6XVqUJMzGUh42RXGkbxlaLOVrrIQpSgjYAharjOVNH+fpQE3n+nEcFbIHjFXREtmDeCRYJNWB5Yu6/L4A3WEy6ZWJy6rpRiuM8gB0qdcBloZNb20bVGZWeJZW1YHGiSEF0Rf8Xrl8o3XEWu7Y483KBiXMqGjV/h7twtr7hdb5DtBUPKrG0gmLIphVFgiScu3xl4PAsvrp/x9P0D3/wHv5nEQ7wFmjVCLiABJ54PbK2PpeiK0egqtaDSmT2lZQKZoL3jxMQI0vqonm1BMkEVZT2/nzLWAiqKnC88RBzXwH19Murj1E/FVwoL2gbEMgDSBOdeP31S9VOOdzx8/K9w054mea+f7vXTvX6610/3+uleP/2W+iN/5I9808///M9ffPTnH//xH//0T/zET3z6n/2zf/Zvv/M7v/P09X68b/u2b5vHcbR/+k//6eW3fMu3PP9P/f//xb/4F7vv+Z7vuf6BH/iBl9CDQr74xS+On/vc577uz/W+vvb6mi/+jAJRqZ4wqeSwYvWATI8prYA3cojk6YqTOJ6PLKdbUs4IvQ144AGnJtQooIa7oip93KQ+ZLR3WIoRvI89mN8gMhB5hJJx21DPjkNIc4c1A26OELpj4korc3dWh0zebnn5/I533niDbQ0cFyVko0rvTtU0sC5G8EqQRGmV4idS6i3Oa8uEIIgKiznVMyFkCLfUFmkkRIQgheQreRM4nY4cvWISCDIypg1DG3ARWpPuymqhyYmhZqRe4IBJwEk4Tmvl7FT0QY3OgjDUnaCKWMAYWFsBP5ByxjjSWndohvGiJ/xp4sRLYghgobdCSyHEBc6wV43TeaGDYreIBoJmmglnQMJvck2wDQFFvBG0c1E0RrR11qd6QKmIH7jZf5UhXyEk1rWR04Zil0jcIeOe2Q7EYGxy5FhXPAltaFSLpPaI5hX3A0Eqpg1o5NoB4QuF0IxRB7wlCkfwBVOl0ajizPGAqnHIp87hKAHVjCw3VItYu0QkgS4UWwnmBCoS9hALUY+EIsyycMzCTVOqgTVj7yeSRLRlYoqMgxBZiHROyhGj2RFIhJxo1VAdOVZjMeWuOLw8shkzY85cpkbcNDZDYxo6w+iiJapvOKkTdSVrpJSBFx8OXD9txPSS7Qjb7cywPTBeJja7iUEeM4RvQCxiVFqbqXZgO2ZqmTusOEI4p961dIGXirgSQk/TwiriA6C4O9UEaMCMROmAbIsE7S34LucOAxPcF0QdVUX6UBGm/ptwYW0B9UrQl6Bf6TwOLhB9eIZrV4Kv5xEZQwzct5RlSwhPCNJzC0XtvPFvaVIQHWjXG053xu3xwE0x1jiQhpGd3nL1eOLh1SWbdMfIwJVm8qawHQJaLwDHkzGFN1jsbd57dsfV1crlbiXoLTlfMVzA6bBncEcOB4bxEhne5kvvPWUtC26FTQ5cjom5BFQdXTo0ZE0Nqf1A2cKCqHZ4cVNceofIYCBnmLhbT3ATgTVGqldqq2RNUFdON694vj/yqU/PPH7jincvvoGbmyc8/coT1ttCkQEZJiYitay0MLO6oxY4/9rAFBMhiqAulBpAvQOQw0ApQhbHrCIKRsYt4jYSpVGXhirEEGjmBAl9nEUcaYZawzzQNOL+GCRhIeKyIqJkH1CdqG5kcaYYaN5HnloYEMnEasSqNEmsYeK4FnLY0JaXFF7iVNQiVh3XE6L9QNlccO+i+aXPWHSGYSHhDA3ssLJ7sCHaqWMl/AqRzLzcYmFhjpl1s+PgmW3eEu2OFA4k2fGhPue1sGPriRJH2jCwTFteHiq78YLke9QTEnfE1QlRaFI6HFyF4nSoOLEnCYp3mHxLNIEWjCCCuWPNz3tMT9Ks7rh75x/hnbGltX8+pTOqjIb9r3q19/Vx1cepn2JaetdKfQnyCoBEJN7rp0+sfiqHd3j/g+/l3bf+b4zTs3v9dK+f7vXTvX6610/3+unfq1/91V+d/sOvmRnvv/9+Ar7ul2mbzcZ/4Ad+4MmP/uiPfjrn7N/93d+9f/LkSfyFX/iF6bcb//2ovvEbv3H+J//knzz82Z/92e3jx4/bT/3UT7354sWL+LnPfe7r/VTv6z+hvuaLv1ZuaJqoYaD6htkrWRpZtzR7idsB2gNSvKSGWy7ahB1O+Jg4hpUn+2e87W8BRrWKtIpIIKn12Xwxihy7myPz+VEz3gIx3ODNsaKYCqgjccGbcd4JCSJg3sdYQmJdC0Wc6XJiObxiPRRii+gSQDK1djcox4KvK1aMVgWTiARo1liXmThUYMakgSgaFFSp5RJNPTmJBtG3+OLUNRLDDo+NVQwzx6rS6k1PArMJZMRapNbQIcaxUbwhEsgJaE6x1pkDbSYAMXZeTWkrhN4F270YJaA9Nj71Rc5NqWu/hAsa8fNiF10JMeNeSNPELg40qxzXI4LRamM3ZWarHSh7Zr0A3SWks2NogtWIoBQ70OEW58tabTQJQGQuge3YU/DQ7lMiGyRktGWsJUquLL7i6iSH2CbUNogHqt+AvCLFieZOoJA0srhRQ0/eoy0EVhr7LnIkn5kQzuB7bG2MPlPXlYFN/10kpa7C6gGTCREo3kc3UhyBCfOEnF1DsxdIrtQ2oOyInmgHo2qlSSXWQm1KlsqowphHpqa4OBJ64pQ5uAVqCjRNFBzLA0dzpAQ+XAZkXnkoK5dToe0qD0ZnozfooNDguEKLgRCOxCq0Ci+OKy+Wgr5qDKLsthlN7/Ho6g3yoFxcZsZhQC3QvB8y+jHIaM3AYPWCuqECQfoBQbSgcuggYhtBJqx1tzOEirXuuoUYUMCsH69wRbXDxQVwF7ARsaGnQUoH61Y/UdnjMhHsErMJwwhaCDIAR4JkEAFtmK+INqxWIltaC13YpsYSIsvzO25fPuHXnzTu2obVJ25vMoeTUEKltJVXdWZfrtilgdd3cFiOcKt882fe4EHaQ7hhjh0kfnsdmU+FR68N5HDH5bTl2Nae0jguDCEwMXC8g0Erbzza8mKvHCyyrImnrzqTVNzxtiLDgssJs4y3CdqOpg2XFXTFOOFA1AGznv6oMWOtr1WTHlg9EsMFqzk39USZZqRsePblO+zmHS4fvc67V5/mtXcvefnsjvdubrlencEhFWcMykkOVFlxEiI9nTB4f0/UtuCUc3Jgfx8YQmKCGCnthIiRk7LW1o3W0BMpFSXQIf4L59Q1NQKCa2BVIVA7iys2zBeytu5W+wkPI6IDKicgU4ojoUIZOfpKCQGjEssMc2GeFqotGBFVxfo9A1r6665aOqTeGladXcxUnFIWZquYJnQQ0maHuTKMsNo169IP7TJvGaYt26uE5BPzapwWJeeBOSw0YJce8+qw58n+CamsvPsWfOlL13z16Qs+9wce0zgQqDS7BMuY9BTWGCLB9bx3ae9I6P0gIAERBzlfWIjC2a1vVvt7yHt6oCYISN+brI86yVnkeqdf/yeJgfv63auPUz+50jvfGNiO7/OH/+gPMOYP8Hv99InVT9Ue8/77/wfeeP3/wUZecq+f7vXTvX6610/3+uleP/3W+pmf+Zlf+cVf/MXxt35tmib/k3/yT979bj3mT/3UT30QY/Sf+ImfePuHfuiH0uuvv16+7/u+79nX8v/++I//+Adf+tKXhj/1p/7UN43jaH/uz/25Z9/zPd9zfXt7+8lrp/wvqL7miz9lRR2iJIo0Fj1RkyFNyHmkNbC69A0vGKts8I1DW4ltQeuK6EyxaySspNgQF9YydzEaejqTRaHQL5HcjWJrb4W3GUIlxIT5gLUJaX62d1ZUz3Hlzbr4FEWopNTYbITrm+dspose1a1jb60PJ1yOICspjCADi4F5IzKQQ8YrNFdMGjGG86LQINx0B5iIOAgzKRlRtjQay7qACjlMJImkCKIBrLcr6xniaxhNEs1jT/9aZzKBqEBY+oZt53Z1aajUHq8uARNBNRIlItWQkIihO8/uKy6B6g4eac1JGlFJ1NYoFtgX6Y59rsQAbSnQNpjNqDruZ0fQDcH7OigFCQ0cjKG/FhZB+1upOlRqN7dzJcsOtQHRldqOkFZ0Wgi7ieu7hd24IxI4lgM6KsGuyfWE6hVVM00uqRKoDZBIDAmsdpGrCW+CceojBh5RHzHPfUwjXODntn3kiAHV577ZxUSIgWoVM0eH8Qx3TngbqGvEvWDBWOtENVgcchSySocaa0H8BJY4rYFisJJY5kIWI0ZlGFL/TETF3BnKhuKGqVLc+s9A7OLKI0cTPjgG6jzzIDr5GLl6bcvrF8pOVkidWzuwhaos4RbXgeAFKcp+Hjn5Nbe3T8B2XGzfZLcrpPEluwefYhoGQpC+sYdGyCPS9l2EOFQruBtRHK+7nvSngoYCYUF8j9iElYBoIyaISWkW+3Ji/etmhp8PY3jFW+mvl0RcCh5XPFaqz/3SuCVa7Ywf9RPW3oJkiB4QOXYgPQNtBKsryRKTJA6nwtP3v8gvfbHy8jYTwhXNAscCqz3gWGfK8orNAOvxxJP1QzaqvEAp08i02dPGhT/06QeMAZSZ07rhcJq5vNiStHK1fcQoOwZRlnJHiJliBTmttOORiDINjdfGgTjCq1cHDqcCzRmJbIZMSyvVG9UKwQaUjGEIoQPuzWnNaGfYuCFUn/HgSILDWiEKHhZCo3etLEr1A8Eix5s9x+PMoRSuHgce7V6nfLghf3gDx0ZxpSG4X6IVRHtqZYcgC5gymxACONbdVhNEDPPcHWtJqDhuC0No1LqSQqdMuxuqPTEzeWchqUaUDtxXa0ho5/S1AJY7G0mU0gotHjlV4ViEGDu/JsUtrSpWFjQtWGg0BZ1AuO4ji+z6mBULGowqEZPzwUkMCefdqxXQ2JMYPZBDpJWe0ji3gocNpIwMhhJY6kwWIdw24mEmhpGTn/jy9RNi2bC/e8k2KYfrI2n7gIuH73Cx3PAkXPOVJ+/z2c9/muVuZhi3tDzjer5k8YJ7v2xwVYyIeOgdS+duDUP6yCOOBpAYcO//QqN15o/Vnmjnfh78GlBT9MyjMjH4iHt0X7/n9XHqp/U89ipuiOwZxi+CzaD3+umTqp92l+/zR/+bv4B7oeL3+uleP93rp3v9dK+f7vXTv1ff9V3fdfyu7/qu/2ga7u9GhRD4yZ/8ySc/+ZM/+eQ//Dt3/9e/9c+vvfZa+61fe/PNN9vP/dzP/dpv9/1//ud//pd/65+/+tWv/s+/0+d8X799fc0XfzCgBGJtjFSaGuYLZgvOSGsBWmDQEZnvcD0S2i02V0agHU5EF6w5LQopZNa10CTicWA5BURGSl1pbehPzh4jy44aDyQ2qDneHGjgB6gXXbh66otjC6hDkYxi5LBgfuDBo5EXpwN3qzNbxkrFvJIjtFU7OFcD61ognh0PuuvSKIQYaRaoPuA4EgzxiraV4DNBOltDGcCFqLCTQIsN544ozmIFJEMcWFfHKyTZdgiwRFwyhrLaDHSOjNJIGrtpR8bFCZKQYFgz/LwwKcIQI7Ud0QDFK6q5O+MEUlWCF7KumPWfO4hhac8alJXAWmEMI+KNMaSeXnXm5XRsqnbXsT2kxRnXlWaNGM9ga+9rURTvzrxvkLpFLRKZWK0QdQJGKgtx2LOUCnLJvAjj9AAJlbI8QWOkWaLZBR4GjBsIXXDOIUKrxGaoDpSYCC0iMoIBHrtzRSXWRrBAbgMmSvGZIIViGW8Vafs+9qCKMlFJSGtkXwnBuLOFFgLZrwgtYXpCW0Fad3ixQGiZpNp5Qbqy1j1LSWzS68jiHI8AjRAbaQgc4kJIiRgazU80PTFuJuIiTKIsoTFrRNZLTnWiqHP3Uvjg/cal7JgeOLudcZUPDMMd47BD2VBtz6oLxRop7ljaHeZ3zLfKs2tFZeFi/HdMw8Rul3nwKJMHgbpH8iVROmy9MWIYZiv43RlkHECGnv7HJY4CK7DQ55g6W8U9IaTzmIsAFfB+IAiO1wTuCDPBG14zYpmo2iHnZJA9TY4QXuCesarAJbT+OTUr4Hs0Ltwejf/lV2/5n35lz828wXSCIbFSObYTtAPoDqv/X/b+JFa3LbvrBX9jzDnXWl+x9z7VLeJGOBzGxnZi+yFb4qWUCCEbSCT0UPZoUHVTMjhp8ISEqIRACW6ksCygBwI3SCFlCyE6ICGRQEqZgEzYwQNcRtwozr2n2mfvr1hrzTnGyMbcEXq8fInuA0c4LL7ROrc4e3/FWnP95xzj//t/ivXUSNtGlIYpzPPCentHe/WMf/fljL0RfvA7H/PpR0/4V1/7MoNccT3csBnWvqnzhZQMVYM2oHXHejxz+9IpUyZNI9kbj7dKkkbcn1mWwnpXyL4l5cyjp48431dOr9bONsJwN/AEXnATPE9kMkGj2bl3fVXYJqVGY64rLgOmA6srRR7j64S1RKzG174iHNrEdz/K/Jb33+MrV1t+9c0rDq+NfHKyDZgmIpa+UX6AwJsKjUBkh6135DwTnlDf0kQxL72T645bRRU8RkIDIqECop0pVqS/r5BMOCR3ilV0ANeF4Ij4mYigssPom+mmUCMzuDEoZK9InKiDc05OSGHwgcELJj0JVGSlxQIxgD+hpgoxIywPUxhCoOxkT60zkRfQyhoFzSMSH5DSpzjKc+7Pb1lOhSfjNbOf+KXjR1xl5aMPX1Ntw8vTgTMnsivXzXkRO5i2fOeTJ4ylkfcr14/gzUdvOL/ccLPf0/wNKgX3EZUBxFlrJauQxCEywfgQjuCYJpC+jqagT7qr4/JwkNAepkKip6RmjBCIiH4A5Eqo4Ar1AZlxqW+H+hbqJwo5rkkOh/trfvGr/yc+99n/O9vNxxf99G2qnyzuSUl7KMhFP13000U/XfTTRT9d9NOlLvVNqE988NdUkRhgSYxsSUVY7Ew8pH1JAmMkq5LGj7lOyu18z7koOuy5W46cxoRePcWXSqtCLiMWlWbOKEbiSMorOfUbTnRm2G1ZfUu2QGnUeiDESKmQc0XcCDciEhENXIhUWJcDSR46vgiWnCVOMAqNhZATXkAk06p3S3EuNBZqmwmFXAaChVDt3Y7UR7gtFoZYmWQkWiapEOKsdkBl7KlpakTtCW+SNoRuMDOSBikHJEFbBTs/JKINhBrogkTgUdAYcad3NDSBOx4NWhewYx6xMILANRDfgqwICy4nVCsemaQ7UhiiDXFjmkZ2V4GkBbeFfckExigTbU3ksunJdNIhttopI0Q+Y35PixGTDc0rJTX4hr2gi1zMyENjKAtz+yIyZJClw28tk2TLZ3bOr37lixz0Eb7NLMvCLoxN+jRJnCZH1A79gaSFJiOzNMSD5BV87WPoukM1PcCpDWylPy2Ne73DdWTJM7ctSCa4DCRLfQogHMXIKZFVWMi9W6srQwqSn7HICA3hTEneBasJqoUshRHHfCXaGZKQUqYhHHnbE6gYO4dkqUySkPYKlpGlJbbTDdYyMhbW8S2bSBRNRE5kCVo6c9YToEw5s3ji7tT42r2wLRNjdh6VlatS2V1V5AokryRbiaWQsuPyEmcCrrldGrenFX9xpjyHYWPsrzKPtyPTtGc7PWKcrtAskBqQSKnidNZMt4MVmgtulTAjfCEczAoE5NQh6Jp6x81pNK807RMGuFAk8NaFv0tCLLA4k0pDfIO230xlxlkJqQ/f0waJieRO1cz9nPjCf7zn334p89X6CB8rygIHY0qZXR64j5lIR6ZhYajwvd//WTZPB8yMWIS3x3uOb47c3b7ln3/hi3zt/gnvXSnvPFU2+xPT/sQ4LZ23kvfUOhHjhOlKKhkfKi/Ob9Bl5TNX71CsUWTDdPMuY3nKui68WF5j7USzMxvZMGU4qeEhFLoNIRREu7VD5RbISEokMVoE5sK5nKCOjHpNyAheKWKc7CNIIxB4S2R/wunDA//2qx/zwQfP+OCdZ+ynT/Grm4/5+NWB89szKt6FJRVCUBtQyUg04IhKo+gWxIh0JPxM0kQfQxGKCBpAkb6RoNuSul2pMevMgiFpZJAEEhRdCVXCMxLduhQ00CCp01qCnBiGSnJ9MFOdMN2Sk1LaAlkRceY4M0ggIbhU0BlihQypXQOdfdbdGoKEMOeF1RtFCmNMyGlhiIXz4ct86csLH92+YLFKtMYX54ofDZXCF+yeddyTWRmaMMqIGTz9jj2f/txjsmZ8fc1tOIM949H2yO3Hv0g9/xJs9kRaCQ9MM5o3mPTvVehgfZHx61SmPqUkM6p9okG0EWK4B0JG6dYikC5cW+1XUBhRGq05EgX1PlXl+u1nVflvtb6V+kkQYl0RVdL0hPPpuxCuyXJ70U/fpvrpdPf9/Ot/8xf5kd/657na/fJFP13000U/XfTTRT9d9NOlLvVrXp/44G9NR/CGM7DVDRrgUSlckxfpPaxwPAsiG6optS3k1Nj4CqH4cSbqmU01Jt2ymNGsktQoqRGVvqCnAkAT53Y9M5SExIMlhQXRgWgDRgET8MSigaTMKLC0M6ENt8R62tI88JgJOdMahAw0dmBOTsHZZnI0rnUkmZLItBAMRdoOGXLvoLSVJA3VzmgZ0oYWjaASPPBxNBN0m7IAJWWaKzWMKSnZDJMOuvaQLiqk4KEdROsKcYZUweWB4dATjlEnq6FtJJdrWhVcFiIZczhJKhLGOGxY55mcC+FCm5zFVlpAootH0YHFK+Ij41LIwGKVNgQqC2JOpEx4wptA7gl3TcEphBY8NSwpEYnFexKzkFFRfF3ZZWFdR8wHXBTzSgqjsGNPQe1LnNdXjFMhp9KvmxhZ3EkpYXIPeiRkZG2FEntKKIEgw4R4QUx7h1O6uBZRwhKhO5QCIkyt4rFwHQNo4jY58ZB4pVFwjON6pKmwJOEUjTESSTIRdBtUOMUeOkguaJYuzL6evAYYQQRYZAoDihEsrLHi0vCqKDukDBxb5VgX3E8M9cDOlKaCakLWnow26AipAANCZk4LnmbWEO69ITbwNm7YHIzdveB5ZXPtPC53XBVjZ63bUnJQ49Bh0jGgaaB5pR7OzIc7DnqN5qDkhZvdK64fKeNeGcpjSp4YyjUaA+YHVIMiK7QF1dxTEn1lSANmPfXPvKK6Er6iDwwaebC7eCyQCh65262A0BPNjxRGwmaQgnpGtDM8lnVlLAtmL0Cc2oJ/98u3/OyvNE7+mKxCixMmmbTttrDtAGYTc82cj43NTeG9z75DszMeDRsqN7sN6zvX3B0qr19MvLj/mK/d3/E/fOp9dvsNOY/kUjCOWO1cEfOFUVakzhRzpCUO/j6/8ssLn3o2sN3mLrQKpGlHbmc+PtwxHyvr84JWGDyo6kxNIBJr9BmLFF3sm2RMBJdANZF0YqkzoxUSgqkDgjRhrzcIC0sqHCKTZGHkTBLlSy/ueXUWvufTT/jvPviAt/sjz18d+JWvvMBiw9JODKmSxZAWZASvTshArAVi0wVu3GECOhRaKNaEsYxInZldEE2U0G490QaeGFVI5hQXskMgzFIxbSC5s6Ri7ImFFn2aaVkZh77pcWt9oyvBGlApSAtKDnKGaD2BMszJukFQkmeUBY8FSf7w2jJFFFpmmxNRe0pqyXuaNZ6/aTw/PMeioa1A6xvPJGc2caKUDecsqB9AjZpg8YxMV9xsncXeUIGBLX5aeVoe8/P3M3fHOz715ClSrzlrJWc6/J1EThPJDRVDBqVieCgpDeQwxI0qawfww4NlSEET7o0F0HEECwaHgZ7c2MLIksjeJwVyLr9mQuFS/3X1rdRPQxnwZFQzWvklfuS//x/JtduGL/rp21M/zQbL8gxivOini3666KeLfrrop4t+utSlvin1iQ/+NvefZh2NpZy5S8eHtCGjlcYQA0NzWj2AKpoqUkemfNU7UeuZmAWdgzFBVkWpqBtjWhFZIOgpSpawpcOXRXK/ma1DaV2cNIysi1E0sAdWSgRUb9Q6c2orhLC4cpwLy1IYkrGuMxL0bmV23Oe+SMfQGS80qt2TEmRJuCXEYcgVSvSuZKwkN1iNYdwz15mqnSNQUkIJFjmjARqBIogEVRawhqaMR0U0oyIkzZgPRBSqLaTc06sigiFP5JZx7ejXFoIJiCqbIswcaVqR1BgSqIHE5iHJCgoDicDVkJYp3vGx4hPT9oaBa3w9oQKm0i0/ucfHN2as9A6T0JPHkgBiPZEPx+1M0QpRcW+gDxeKgialeWO72TKf31AwNBpmC26dG9HGE3mXsWOhyIaNZsQ2/fOQ0wNAN4NMhBgqKwXvjB7yAzA5QVpZzUm5YC36aHqByorag7VHMspKaMP8DHECAUuJSgGHUraczt2mLGK4BLkUsNLtGjlwBX+AOINTW4VcUCkPGNgAyZAKzbV3w9WxBz5lI1j8EWJCC/rkgRtuK6+lMaXCJAWVxKKGDCN53CMirFJRbSQRpsikaDRdqCx4DtYQ6twIE37F4GYzsc9wvVU2E2ymxJWNEN7tAn5mTFtyfcq9H0n5NTE7x7unvH45Qn7FZv81rvefYr+/Z7Mf2I7v9JQ7mWnW2JWnjDFS2wEtjlG7qBf6g1bGDmNuheKAOi7QcDwPeBRytM5tahOkguGYVr5B7YggJSEloZmxqvIrv/yGn/+FN8yb99kg7Grm3PYskdnuRq63oL6QTivntfHm9Jayf8Lp7RmlcX/7ivV8Ily4Gh5ztX/C9Xc94+3bx/jdS9b6jLFcM+lMtjs8HKIQnskazGvD54lxGNluXrO8umM1eE6we5z54F1h4yc0F957/xHTYcuLrzaWO2eJV2g+sXGBMTh7sFphiGuKjCy8RJIQboj0tTJqY4ormjpGkL2RPDpbSbdIGTi3E00rq5ypeuS4VL5ruqG+eMnwXU/5Hb/9/8DX3v4qL29fk/75wi/84sdc7W8YdwWR4PblHb7Q7R+0DqP3Dhef3ZAseJ2pgOfEWYwnFl0UCiTp4soIfM1IERq1M3lUWSN6NzX64YTqw9roFTBUFURYW4UmJC1IKNmFqo5mMKnMPneLR37ceUgMhK/9dUSnvEhkaAMJR6VS5ITGNVH79I9mpUngRWl6ovpCUiVLt39I6U2n2ROrO7ZWRoTp4QAh5Zn9sCPsMcNmT5RzTzNPK8fjgZvHT/nlX77lN3/HgJdbQJDYQjPKuIA4SXeEpG5tjJ7+qS40yYSvjFmgDbQk+KC0WBEPJI1IKPIAh3eEkD5lnTQjBI4R4jT3XxuVcKn/6vpW6qc2ew8ozH2je9FPF/100U8X/XTRTxf9dNFPF/10qUt94oO/8/XHuCqyGrkqxRO57LhbG4sUFjVsgO2gvJe33NXGogfErhj1XZb4Cqf1JeNu6pBRCoGTFVptrAGrJlSFlHrgi4chGN4cScrcDCyhWrBasdMRUERSZ4fMR1o9cwLuj0GtAzlvOPqZdZ0Z0ohZYNpFTBCYBRpDh1pT8Wg9q4KguDMtQZOgIlQHS4VcJlKDk1UsJyJgMkgBNS0kF0p0sot5Y7XePW4RWIDbSnhiqYKKkXXuXe/aO64qW9YqLL509gAZSD0Byp2MUDGaBmhfjIco1Fgeutsd1CwP8NIxJpIWCKe1hmil+R3CStKBRqJF57TEKpgalhzEyBrk5CgzjmHWqO2ApExSx9YzQ8kM3u3ZKSqtHaFkmhprK7Q1ox7kKLhCc/DdQqiw3if2V4+x9Q7XnhQY8hZ0wX0LdgNaiTjSkN6lTqUzdc3RyGTZgJfObpAgYgWZkbxgzbGSoE2cV1AZGahUAlImyoDVSo5AdcYNWr2CmJiX10AlpGLeIBeSZFJ0YUEY4YlalaSlg30DzCqSG/Hw0A4Z0TTRakWGLxP0pLrWBrJu0BiRcuJklWM0Sh5grbCcGU63aIbI3QazSXt2skW0QBqoMuO5mwXMCi47JF/x0fklz+MevT1zPe2YSmE33vG0rLy3G5A6UnNmls7caMeJlBK1rkh1NO2JVrh98YY0LGz2yrT9kM1mYNg84/DWebKfucJIxZjjjEml6ETiitYyoiClktOJaAYPdofmldAFZ+3d0hDKA6Tbc6Kpk+uMWyWVhBAsy0zSgbdfPPGFD18xvPcu+TjTkuF1oLmjYzBcJWIUToeVeXFuz/echpUPv/whZQ2ywu3pDVVXFhqxFG5u3uGHfuv38+R6RDZ71jhyPK8Mm5m2vmG62jLXM1KGnlSZjTbds7txPv1+pulXub8L5uURpxdOs8Szm4GbYWCKM+PVyvY7Vl68Xvj43jmviYiZkgyLGdFMjRWTTf8McyJ5v5Z4YMIMFNbiuFSGCAqZqgJy6OyqQcmeqJaplnlmmY9f3PJGCp+OHctqXC+f4nh+TElveOeZc/3oilBle/WIVy9/nsUOiENiejgQOIF0S0VqgrhTIvDsmIJYIWXBzTpoW7qwy6V00ZQSOQ94SyTdoQLua09do+ASeHKSrA/d7kKrPRFcdMJbJWSlRTfLJUmd89JWLN0BQw8r8J5At9hM0iuChkVn3uRwwoNGw6JD+HMeqG3tFpoIfAmSBIVgCCFH5uwBOTF6n8RSuog3r4S8JuRLpDRhy46JDSkHa3GmR9fIqKSh8vHrr3H2E8Nww9VmZLcdONVKeLAfuhlH3EjRGWAm4NlxM4jGykJxYWyZ1Q1PytiMTQjSar8+NAhVWlJEwVrtSZAiGBeryrdLfSv1UyZRrWHeON5/J//8//NT/LYf/r+gm5+/6KeLfrrop4t+uuini37iop+46KdL/TdZnzzVd76mSQ/NTkmQOOL1xDQ563IgWzDR2Fgi2xFcIU0c2kwTIzIcWzAS1PWMFDpPZg0G3VPdKWlkXRa8p2/T4gBhpPKYtS7kYcK00Kyx1BlZb1iqU5sTqxI1cAp3ccKbMwakdmK2lZAdTRKmDSNIuYAEYSA+EZYgL9S4J6yhHAgN1imxShcgRRLWvItqRnQcaALWwDUTsT5EySuhuadASSA4pWxZmxNlIKdGNMcsoaVgzDTzzo6g4jg5D70BKgFWUXeKQ8JIciZLtzbUcGZzGiDaQIQkigUgiRYQ+RVjUjQK+Mhm95hheMRaD70vGA8JRhIP0eg9ij4iyGRSj5gjvOGqqHRejqboYsSDIR4WyVjRPLFg6DSwcOYczqDSD3C1L6huj9hMmeWwYMy4nrHUIEZ6yPrUwa1RUaldhJJgHlGtaFrIkSnev9dq/cEikRBzsk5kOvT4PhaydcivBli6gdZgHinTCAlaElJqiC5EFigrnt6SGBgksdaES+4w67CH994QWdCUe2c8EsSAiNJ8JasiGGYrQQKUYZkgJxpQ3amsPbFqaVgETSE8GAJGA8xwF7wlXJSUVnJ+TZKEVEElutCRzJhGFg9WXjJMATJinrgz47hW7uYNL1rmo21C48ij7crjbWHLhAxbQhzVBdeKh7AsFWFPWwvz6wVug5TvmMaV03rgo11leJO52l6zkQ373RWbzcBmDJqdSGjv/mOQRgJDcDSkJxWywewELiTpHWyAoKGpISS8ZnriYGNezvy7L73l7rTj6Xvfwec+d8PLj7/KL95/DR0HpiJMEvgizMfgfHTqUQnZ4Wp85f7ccQFiIEJlw8zKfPcVnvyq8ZnPPOXkR26m3n1d20qWHV6fIOG4LKjv0Mio3jFtDnz63R3VPscXz43btqEy8OL2Dl0Debplv99R2HO1aZT3gnEyvvLqwO16T1JH6pEpK4v1pM/hoevY72Gj0Yg8dMHXZ1cIEZoEhlJE+9pRCskabhAk7lV5284MeuDj//gv+X/mFzwannJ3Cu7qkaun7+I+Ip6xubAdt9T6FvOlX6tWgELSkSZnzJ0xKykcwiiSOnNGAgc0enIm6jiAjn19DyPTkKgPqWszEIRXWhiRK0kDjUSQ0FQ6xD9lmlWiVHKasBpoKINu+1qUeoIkkaiRMIFInWsTMrOyEGkE35N9i6eVJic8QM3Ae7JfrQ3NCRUFGs0WWiQ8Z7RVRgqrCoYzA54Gkl4zpWe0t0bOByDIJbNMxrwqV1fX+PKWX/iffpaYrnG75WqE9x/f8Jnv+B7StKFxQkUQB2i4yEOSY2BZMQmUmaQCDCTPZB1ZaawpSEPqjKjWmMpAtIdDDA1EAHkIF7jUt0V9K/WTZqi60uIIcQD6lND2op9+g+gnueini3666KeLfrrop4t+utSlfs3rkx/8URlTwpMQXrm3Dole9A1l14g20s47rE3E1RVlObPXwkFesuodORWiJRyllswqBiiiwmyNNCh1eYNIF3wAIhs2+Zr5tJAU2tw4zo4H1GXBauPcwE0YDbT1hCKPvkCtQPiMDAIVggnR7t9XcgcAm5F0htGJ1PAqhExkEVSckzQw2EZm8hEPZW4N23YLgiRlGEesVVKuJDPQoAm4O4kOr/bqmCnkYL+dmO/e4qqYp95xj0L4guYgWDBr4KWDrBGyKgUlRcJkRw8gT6jPrD7jEqSaUYI8BBGNlAcSCdfCEoY0Q72StbHOt3jqCUYaQRJHYkFy9MXUwTwIChEj4SMhDdHOPrB16R2snFnXleVhjVxCcc20BjlPUL7Kqb2kFaGM1rtWTcgFrh/D8/uZ+xnG8YajvWFXFLFMuCICSReEtXfQJBGa4UEgIgmRLWIJTQ3jTMiC6IyKU21CxDmlMzWdsDwgFXRRRBN1SCxDJrVKrsF5riRNuBhzO5EGQxvEAhoZYSQkUVkRr1hkkg70bVUHfQcFkamzYBTCrbNzIrrtwApCRkS6JYEBi8w5rSQtZOkWKRNhGZTcMuannswngcfAXBXVKyJdkdPD74jKsG1Ur0hykisigdAf6DkLsszMqfBcElbhzevg1UfKOJ0Y9xvK5GzSPY/3hmqjDM9Y5jtETqQMVjdEmzho7jaT2VmOgt0VPmrCZuMM+RVPHwubjXK1uSGnAU09dQttOLXf460wpl3fqGnrG0pvqEKJFVs2lAHQU7dHtZG7t9BefZHfFo+ID7/MfHrLRoOcKmcPxryjVTgsldtz47yeKLxhs7wiNntq2eGMHYzcKpvRSKa8v3/Cfj3zuL3mSbrnetowjUqNI6ncsDRAHVEogzx8p4lx2PN4K5TrN+Ttwodr420aedvu+Mrdyry+y2cf77l5cuBcXkIJPtg8Y4PyxdeJow8cyCQKGmeKr+zzQIpMuLESROoidbGFjKKWaBGsAjx0tC2B29yFrTdUMmuq7HZ77FxJeWRZlLd+pkVf9C2UlDadg5WNVk8gV1h0cD+akCiEDoQFDSeSIoC1PjWjYZh3O1zCSO44DY2BlCbchIgjkivGARCU3mmNhw1gh1sLSsLi66SnyloXIjVyDqStZEskVSBYw0AGFMXdsAjcFE2dW4UORBzxBGscwI2Sck8VDIgwUppAlDLsOS3QRFjjBO4M05bqxkRFzCk54d6nQkT79JCtjrRXVLtnriPzsuO4TtjSyHbk3UeZJ9sBvd7iccOXvvpV/vUvfcyHS+WH/7sfYLAZaxskFcjehWbqG4GHxZcUhWjQJCGRWZth2dm6oMtMZGXNwVkq2pzAEe3PHPevw8Iv9e1Q30r91Niw0kMpxrQDIAFx0U+/IfTT9qKfLvrpop8u+uminy766VKX+ibUJz74k7Rjbfd47YuapQ2rjDyav4M1bqmpIWwQE0ZpVF+Y1yPZlXF4B1/eUJe3DPEZolbSWHoS0zwzEVBh4IpVITgBoNJox7eYTZxPJ5ZzsNjEao3mC1nAm4GBmsCyQCxodmqMxLBhbpBbZQola2GxznNJLfXuWa0YJyorCUHyhAJuZ5rNTGnsDJva0/Mij/iQcGYiVmw28iiQgqXNXMk7uFSaLphXhEKRiRwZKYkmC1fbkfnVGW1G1rUnTDEy5CvqsmIMUITFG/rQ5+tpRNDcqBIPvJ1gFCdppafKvYdoJWmDeiYXwVFWGWjtTCIYirDfZzYDnPSAufV0JKSni1HIFLIGISvE2i0H6rgo1QbcIOuItxkngIE5DQBEHqlWmPLAsoLPI1G3pDzizYhoHep9OnM1Ol9NX+Xt8hHvPX6PXDMhRyBB7FBJiIDYFomZ4MxQwNlgTFjA6mc8gshCa0dSVET6M33jRzxgnxYCoS6ZEiN35TWJQq5n5OxEcvK0YRgm3t4agz5hnDJ3y4dkgZyViExFadU6X2gYO/A8TlhbKKpoUcQzEkKSt4QZIsJm2OL07tqiBzwaLQJJ8iAuKw5MFuxNKC3RsnBOlZodd8d9IuuWkIk1Zsxm8IXRJmQeidrf3zmEtCls8spUKhqKs0dsz8BKzsduI9CnrEPiRVQQQc9n0jF4Vj7Hy+cLV7uZYQOb7cymPMbqSMhLzJ18nBCMdeh8o2KVWE80OXMO4/6uMWhhN82Mo3B1rUyTk4eRPI5oUlzOfc2IhscKkojowPAcG1qaCZcOofeEtcY0CZ959Jint8Zv2o/8sy99kS+N17T2LskX8pTQBeQYsCyIn1nyFiuPSMuR3bqyK5X9tvD0U4+5KiPvXhfG7ULZNUo5cT0UUgmIEykbxsJQHGQBu+7THWK9y6lvGeQF71CY0obNV1Z+9dUbBjUsCrfzkeNb46UnPv3sN7EXmPTEzZOF/SD8yqKcyVjLZM9MURlXI+fhgS+inTViM02cjSs5Boze0cwaVHuDlIHaGptUCAvwvpbGqUEUatljfmCJxrIUphSUXeO4vGEaHvPxV9/QFkPKW1IEInvCEw3HonFtGdOERRd4KopYEArdFSEdFB3Qt0oHWjVErpCUOFvFVJl0IHmf3FApJBUaDfUZMIiKiBM0QpycBaqRXMmqVF9pBIzKwU8MSegpnNanWxzUKkqisO8pbnmlpDOxLqhA6osZoYnVGrIeGSRh5uS8QJ6xaEgZu/2rOmpCwcEFoaBq3N1/lY1PLGviHM6p3fF4cHbTWz73XvBoGJh8Yo7EHCvf+85neVbOfOHzP8ftzYZPf/Ap1lWRMdOid/mjQjSnaKOIMug11h5YTSUwr+RVWFnRFASGrcY4bbCcWVmR8AfGkCLyiR/vl/om17dSPy0Eknt663zuE3+n+yPr/eGiny766aKfLvrpop8u+uminy766VL/jdYnvrJrM3IWzJ3WVq4HwaySlwWbEqvBTmfa2ViGT3E/fo1mK8WEWBXVPYdzxoc9thhJC/N65IrMZN47InGktRnqGwDs1czRBt4Uoa6KuWBROawnmlSyDiQLwt+y4DgbplyQjZOWE2FHVB3ySK0BXtBwCjMlBqol1pwwWUkouzTiSx9LlqFQrTHqSHMhhg5PdV97V7itTFrQsiEisbri9ojCI6qf0ARDSohFB+1KotUTZRMMw8Qw3RAYq1fykFjXDtqmTJwWI1GgFCIqmOAU7BsL9ZmUT0RUkig5gCigjZCgNgHdfgMGu6vGiqOj0c6vQa8xrhhMmSwhNBa5RzYFXxRt227zyKAByTLmiosjydGmTDoSAtVP5GKU9nChGGgI1IXrIXM9FuztPdfbPad5g2xuiVjJkUnzzPvTDV97feC99z7DvoLpQE09Ta4GmHUwsYiiNTO2TJMDku8oskFtR8vXzO3MFDB6pUrlIK1HveeCy4pYotge15UpJoaArcCQleqNUhsTwiYrYpXUBoa0pcaBg5weGBkbtlpItdHO/e4JhFF3IAMWvdU/JCexA4xw8FpoBDI2tK1k2ZAczA3SymLGoBmLyikpWScAVHsyYYoJIlBz1M4MkvAYQCtJT2fWK9EAAQAASURBVCx2JDEhy5GImTUycE2VhCZDhiNJG2ILV8MOUeUkJ9Y841uhjg1ZHHXheX2NonDbGM+w+di5Hu6Zds7u6l12CmW8x9tK8kJJSptfcbNJrO0NxBZ4govy9nCH3K28fXNFGXfkdOLm0REpK/ubp9Sa2ZQbJE6ErRRNhDfQhA6Nag3dCNHuudaF9/LK933wnE9fvUMcv8bX7AVfvnVWTsRuwk4r1Qf0pEzzy969jRtKqjx+suPTj695tk/cXE+kKTGOC0nvIBqlbAl5DGVEBnswS10RsWD1lpw31KhIKtiDZS/rY0IKsj1wpcZ3l4QqfO3twPNTYp8Euz/y9piQ9pLHzyaudsrENfvHT/icK9fa+OjLt8xJmVOQ7EQVEE2d32VnrkvB1wnxhuOMTKTaGMtKYmA5NYaUWKrhksgqJAeRgeSVHEIb9n30IjmmE/V15+BYa6yvYYg9dZ0pTckK1Vp/r6G4JAaU1iqRYBBlaI2VM6OOhAsmAVoI9hCNHMGQjPDahW4qeKu4GCShxopIJjMQvmW1ua9rqiQZ0TRga0PZcPaMDIXWFkZThrXwbrlmXc+06ImZSRVrK4WJEo0Nhp1XJE1IesbiLzvL3hPguN9TslEjGMcr7H5miMAMKtBaYLLlOCamOLGTM7M4oXvSGnz5hTCvO55sjF15w2eeKVO+ZzM9Q9kx6oY3hwONSolE4SPeH25574c2sHyJdoYSE0U3VB+pFFLeoDoQkqEmTOE03pPtLTtX0CuC6y7UMdyM6oJYIGZYThQZyFVo7ni5WFW+Xepbqp+ikWZo943zq/5gvj0oueSLfrrop4t+uuini3666KeLfrrop0v9N1qf+OCv1BMEaHqMK8ytp2KlzZnII3YyIm3IqXCF85XTGVIhCNQDrwbVSfPCsB4pbKiheBp5XSvHEpyqMd82rl73NJ2vngZ+eXpCOffks95FXghbGMcC8wnVxEqwOOS8pYoiNR44MSslNci5izhptKgsDq4rkSFccdtTQmCFCEXHieLBWEdqqVQUk0LWDrFWUUp09kyLSrPaE/MEFnmO8BjaDR6BppGa78lineUihVSVgZFjO5Nii5gCwmq91Vp0j1jnm6AJScq6OgKM44Rbxaw+dF4yIQIoZZxZ1waRGXIG78yZughp95i5ntlsrpnK54gZWrmnMlPSiMQGWRNEf7BYKEv13snWBCkhwN6VFkGl4Wml5hnNBql/ZyUq2TrjpCVlc/WMt2/PPKWSto2l9Wj2KDck2TPsCn7/NeaTs409mYUIx8I6qDygWAVpeACRkHLNapU1MlMpVDkhXskBKQo1BJfesakuzNWoBDp0C4qy4xgrYcLVGgy50BDWCIxgeAC9uhkpZ4rsaE0h0kOHvhEpUB0Qm/pouNF5ROo0GudYGIcE1XsnTUE8OCiofx2qnUgWJA8sCSE95S84oyjSIUW4B0bvlItCROspVqJIBCKKC1QBp+Bt6KBbX3A5dxp4LsDIbAM5L0RRwvZoEh4vgApVGlVWUnJoldqOvPUbXszPuDkE+9cH6mbmZjMh8yOGsmXIyuMr51hvKWVLSVuMRrVzvy68C49zPeFH43weEYQ8vqKMt+yuN5SiTJuB3baQUsXTiaHtsFiJcAbZ8lTf5VEU3v2e70IPd7x68WVu5I7fvMzo20e8qlcc1kqThcjB/sa5mRL7dOTptfD40YbrfSXpHaEJzdcMMZDTnsSEphGywOCoBjTpa4GOhBoWTriT1EgReDgR/Z6PpLg0NruR3/S5a/T5wvrRgZfHhmki2PL6xUQ9TEzvC+NuZh2cafeI75o2bAJ+8ZB5ZQNXp7c8s0SkwFOhUJibMJQN0boQ9DiBdCvb2SeaOpITbg2XhEomzwueM0tyaqydb5WviDnIx8rHz+/RIXh1/Bp1apz8JaUlguGBrxUdQB+Bh7G40CTRwjBpSCmEdrti98okiNItWhRCg8V72pyoId66TZACOD3yrjdzFm0sqTGFkqJPfKg6JsbqDxMyDUbNDJLRSDQzlMKgmZwUryuDQKQtcz2COMOgoCshRmjCKJ1r4wnVRBCkENZlQcaVkyVyegfzRLDiunJYDpT9HrOJcRwZUWQ4cT0J3/9dcDOC1z2bHQzLnlNKHOobTrev+oZ1HLi5WbHzPVkbm80G2WyZl3tSWpDljHim6AYpM6IDlG1P78sNqxnN77FkZ/YjzktGthSZMAuGEoSdUK7JsUF9gNoQP5Ok/pqKhUv9l9e3Uj9xcpY1ce8TB7kGYGmJFutFP13000U/XfTTRT9d9NNFP/0G1E+tNf7Fv/gX2//wH/7D+P7777cf/dEfPV5dXV3ihy/1v6k+8cHfyYypjIQF2RNDyqzLGddEahn1AiqwaajdY6qo7siygi/spoQsJ8hnlukO1YWCst43zqeFjz5+S5wWwoPT/RGAON2Ra+IspXNn7ESSRgrQ1YnszG3FhsaKdE6MKoNFT/qKHYOBhiE+46URYyBquHaI9GACc8WLcJzAG+RmLBHoAFkzhrNGJUQe4LqJ5AumjUUWTCoi2pPGYkNOr9BQwjsDxnVDnmemMVjKylfPH7G/FnbtRKwD1TLt4b2oJrZli0YHVUdUiGAq0rs5JNrDwutuJMlkLYQ56JGUFK+JzK4nKEVDrq55ux5IecBTEFPnd0hyBqu9y6s7zqFkGi0OuCiaVojAe3+OHAFRcZTQgqtj3pkzGt2qsianjg0amBmPN8p6EBCj+oLIFTUGhjrT8gnZn1jzW26PH3F9cwXWkIeHZ2hCItDw3vEXYQmBKHhA4IQsDG6cpXHUwCRIbjwKx6RPE4xpQ+VIq0dyMlozrCiMmTFlBgeLREpPaO2A5pdsypasJ2qd+vsPSCl1gHh66N7TQd4q0LD+79QIN9z7Ip0lkVLC3FmXmXHTJxiKJCQ6XDZEiCggSlJ/uGcA7907i4CIDgIO66JJesJbNKHnthmOEBrgByxqh4hLIjxhq1JpBK8oMZCHBHbHoE85leCqDGR6ateazuh2Iq2GJagcybXhp5n7pfHVk6JLo8QdMjWuPHOtlaeqXI/GsCl4aqQi6AhRZ0o0kmbmeof5TKoFOU4c33YrVMqZ/b6w3a7s98Zu3DCNW9QHko+8XCpvk/KxXLHmwvJOIV895rc0eOd44o2fOHkiYiALjPoO16NSciNtnOYNbEL8EaYV3ThagTCSGCk5kZVqC7kYeEYRVJVww2iIDqSYO1vFwKQRMVPrwma7xRdHdOU7P61s9oVf/OrMR68qLhNr3PPy+BHxlSvee/aM8XHivRsYtyunp/CbJti/OvJSP+AF91zJgeJvqWRyuiKnI+4bggHXI8FM86AlJaRzjjwy5ivGiW1W5vXMKkoergjZ4r7Q8sKH91/ltHQuU2uNw90d066hrjQUkwHDyVQ0HphbDi6ZEMeorCkwT2gIOQSRqcPZgbWcME2szdCUyD6QbCDjEBWlPTx4FKKD7T0piyYWMjmUfQRbhBgNpFGoQO0HEqLcj/07SGnsPJdkZDqnJfJKSo1IhokjkhnKDdaEQNBkRJppfibnxnm9p2w2RNmytDfdXpWdrQnjZkT2hTPBe4+uuZKJt/cf86l3V55cJzAl/EzSgudbYh5oi7AOmf1jZcMr7nUlbRpJlKVVrmyDuuB5pQI5+jPUlgcO18Y5s5DyNWV6B29XLJ7JaSRl6yB8SyRX1JTGSh2dxd6QcCiKhPL1vIBL/frXt1I/rbNThiviaGTrVt+lnRE7XPTTt6l+enT1If/H3/f7WeuJ2jn5F/100U8X/XTRTxf9dNFPAPzrf/2vp9/9u3/3993e3n7j3Obx48ft7//9v/+Lv+f3/J7jr+dru9RvrPrEB3+Pdk85L28IXdCkVGukomRgmRdS2tDqitSZVBceDcpymlnPR1qBF+6c8pZ314l2v+NYG7d3t/hhZqkrS8qoX/Hm9JZ3H7z1VRun5RYZE50ufYYuN9FQFsu4CxrOlGAclE00xIMofdQ3krJGpYkTdURDyWlF2xWpbhl9YcMBwahzhTyg00htKy6G0WGmEhViRrMTITQdesaWbBDZoSSwYGQEOyAsqBrNUh/TVsGtkGJHsolqwmHOZKm0OBCSkOHrfcrG2RtrD84ji5AkCI8uiB54EKmMrNVgrQx5YFjfhWoUVZIq83xLLo1WoRSFpA8JdEJJwujbHmUuR0IqUhUb9hj6YIuAJInChtSUiEYrqQt4UdQrxfXhzwrAWTPLqGAHrlKmDZmaFk5rZasnRhK1LUhKeAuu8xXv5kesbyv2zp5lPqJaOhMDesJzFECxHJjJAyhdECrhR6pksuaHrllvfogqZyqWCjUn1hKEOCQh20yrK3aeScMTsgzkNPK6zcS0IbIxr4JrIcuA2UzCySidoCG4ZzK5pxqmfr16NKyuaATXusNqRVMHsgdKHvbockZ1AFHMGxaOSCK8TzS4Oq5BCiV5wjXh0t9PiGHeuSC9dS2Y6wM42QjpDywJBVaCjEjCzGixEjloFkQIXhNunYFyWp17hM24gRSkURlCWctjwt9S48DbYWAZtv3zbyeqCicbuE6f5nCnvGoLH+qRkSOPNsLVmJly43prXE17EhuqH8mDk0vBoycmzmYoA7KO3L0uyCsog7Hb3rLbBLtN5monZF0p6cRiM7OMsM+k6ZphveLZzUdcSSLanlQn3J1VFtayEqF4GOSZot2qUFsQAZIClTMpnQlGRB86hQ2yJFTSN0DKkMj5DfiZcCHpI7AtORKi12CCSqOUxsTMp8bMdvsOv1LOfHTbeHUGSRP3LbG+OLI9CE937/PoyZbv+tQVb89vud4ltm/u+NLLM8syEbpB2hmWt0QeUHU0N3RYEVV8HcmRMa1E3JGTkz0Rnpl7z5kdispKTQd20QhGVi/I1Lg/viKnKzY8xU935FSRENycMEcR8B48qQlUg4LikcGdWjcEoJIoKQPWuU3VSEkpLmjvEzOos0qhhfZNMIAkjEREo5hTSiFkJBzWaAQNIkhJaF4RKqr68NgyRBPeuiAseSCsAgX3IELJZWQqE+e5kTFSNFQTLRoDsJk2ODCOH+Aysn80cr3vIQCSlGksvFeeUobg1fErvPPuE9oqzMPK9aZSTnc9YTQX7DRwf77ibHfsH43sNxNaG5OOHNZGzhsGLUzTlhaJKIligPUplTRmGILZKwkh+0SaBZaPsPRFsoxoXNOma6rcYSKkYYexRfOGti6IZlyUhX7tPizJl/o2qG+lfpIxU49vmdLEfL5/eAUnesLvRT99O+on8S0zK+dUGAa76KeLfrrop4t+uuini376Rn3+85/f/M8P/QDevHmT/+Af/IPf/fz588+nlH69XtqlfoPVJz74e6W3xDiTCTZaGCIQb9RkLKU/WIcWDC2R0pZGH5vejcFd7cDWODt3H34N7lfu1zMnNTBlscQigpxWSp5I6wyAilGGRI4VycoavUeomvpitQ7sSqH5PS2cMW1Qm1m1EkPgnBkR8hIMlL4oTE4SJx7GvT2vRFRGBqYqNBs5hSAIozizCiWcUbp1QZPSvOLlhPhI8glCEWm4dMB12L6nJklFPSNtxXIgIZR55mabYAo+ml7STBAtRGQkEoHgKkgYw0pPKsvgbYFQEgOwIjkTDwv0mAsJxe0tQymYOc0yOY+EF0ZOjDKyrsFn3v+AnU80MyQXNBLSFJKgAjlGIiAnI5FpradAZZSsAyH0zpCveCwEZ5IGmwfBeDXD1f2G7BuGgELlJWeWu4HrJzuq37Nm2MXIqo2aE+PVNcfnt/jhhCogQbKV7o3SvtB7H3k3rR1WGwUVWAMaW/Z1YOOZJo1ZZ6qsTDTMIc3GuPbI+2XpLKB9zmyT4rJyFmckkYvTGgxxzZCuyPU5pBW0p0SFGU0MUyelsUO8SQ+doYTqQM6JLIGtK1qkC9cqCIoEiEwQQ0/zEkFyX6zHpFhLRNjDwwwkhFDD6TYlJchfF+YCSMak0XCyNNQTagm8gFZ6pB4dVh4Vt4lkE5pmWgRGh4GXBC2EN23pCY8t8d7VDZvIJNuy2MBiqVs8KpjcMcjAGAOCcdYTUm4Rz7g/4eWbxq1mhgFyWRnzHe8OR6ZtZkci5Z6yNZY9qR0RMUKOCIUwiFV4s254fViI9BW2Y3AtlXd3G8qUSPodZJRZ79BNYq3PsDLAcCBXQdYCVEoSwgfMKiLvgIBLRYcFT6AxICRUBbfAfSYQwqbeTJXWvw8SIiOy3uAShLSH69Q6DD1m2mokGVAdKPm6dxN3C/qZlcdXwi98WHlxVOZ2T4hzeOt8/j843/vBp/nsZ9/l2XvP+OocvP/4iuvV+NLtibv1ANZB6IgREkQMiI3kOKO8pGq3hjQDHmwgIisrguRMkZFihcEyOYxaD6T2hrvzPZ5rB9DrQyqmaZ/AIAgXNBUMaF4xcTSMEgqeWaswlIxgHfiM4qxEWpnaiLYM0cAWcqrAipORCBJGRvBIvUObEmRhcEPWhdWFWgTXgWnJqCgRC0mE5IJEIQWECM2NVBJShbBMGmdUGuYryzpTY8Ukk2zpsHtNpCi89+77PH38iLY2Xr14jajxqevCp997TCxwenskxZGrTeM47/HzuxznaxjuSCdjunI8DtR4n/V+T1veMIz3DI+F7T64tv59rWnlygeyDmjKIEKTBXIjvPSkvXDWWNHV2KjgnqiiFE09FEGNzIyeK1JvMSqaBBm2CBNp2KOawCdCdsiQkdQIW/5r9cGlfo3qW6mfon0dxN7IZUX1OZOufTLqop/4dtRPdv9Zfu5/+ov87773/8bV1ccX/XTRTxf9dNFPF/100U/fqB/7sR87/JE/8kde/KE/9Ide/67f9bsOf+pP/akP/tpf+2ufevnyZfmlX/ql4Xu/93vXb8bvNTP+wl/4C+/9zM/8zDvPnz8fnj59Wv/oH/2jL37H7/gdx9//+3//97548eJnnz17ZgD/8l/+y81v/+2//bf8+3//73/u+77v+9af/umffvpn/syf+Y6/+Tf/5q/+2T/7Zz/z/Pnz4bf9tt92/3f+zt/51e/5nu/59vNS/zdSn/jgz/1jPBIiV8y6ZdEjopWr44jmxCmMYYCFE3epssiZZAm1hRyOq2I1ePXiY9I6cxbjoJBdWc8LPm0QS1QM137Ubi3IJaPrCiYImTKOhAhrnfFNIrIDDQdu24E0GuoHLA00L6xeQFYirxRfmHSiWmb1hYX7h66ok9OZHIWNZlIYrayc00KOHYMrBWFdFyIyxxmKCEPsSW0LrkRe8RSYLUiescg9GSgvRHMyQc6K18adzT1q3QeannEqGhsSCdxoviK69oQoHTi1M65GpOFhLDthviJ5wFO3SQwSFDvTOBE4SH7obCbMGpoHqi+s+chZXkA+0rIycIPE1A9Z9UT2OyKCrA33I5GEGHcsJqwrqD1wIghaKI3CjHDM/Tsb0xXiwkHuaWVmh9KGE6/vV95/9hiNiodyr0dIGXXharjitt0yn8/sr3ZENNwXggAZad7j4JMEaB9/D094jH3DhIEtVHU8GchK8plImdZq79QTuHmH3npC60oqQhNgCiRO5CLkNKM4Ko7GHdYqroksAxpBhOFRkXA8KiaKIGgSiIXaKqZGHgciHJqhMVG00NZKHU6odPaK6IzKyrLMTLwDvkEZUdXeXfOEa+cqaUBO0q0DEagLokEDLAyJRrFAWvRUNa00z1gtJB0puVDD0NwI3XDmSMu34JnJE4MnSigVwceB1+s9T3RLyIAXxdMRlcCj4PGMYzhSEiUWpnFkXracgSwNsrE6zGuGVpAI7klsxy2x3vPkeuB660zDPdPViNsByQ+bVgotchc+yz3jsFJPxhu95vWbHT6eeLz9Za7GQDTx7L1rcrxisxSaB56dlhNoY0oJWbesHLB8QuUKiSeEQo3XhCwU2aEyggCyornhtW/ezBudGJ876LwJnh7uOVfEunVsmgaO7Q5JXYBjjcAYXXhMsC0F9wPj68aXnwen2PF2PHE8/Apvvnbgi37Hj3z/Z/n0cOAuPqa8P/EDm8SL184vvDlylzNTe4qy4L6SmdhEZtTglUfnQ6kRNKx1NlPOwqEZyRuTDOzrQItgMcNJRNrTbGGQgVQXUlqpOElWlNqFezJMEs6K50Z4RTyjTIin3kEWh0i0B4aYDhUbHKqQRTpnK2csMmsYnU/TuUomQhN9+LkznhIpF7JlBgY8wJLTpOFUPDUsgNptWDUqjMLq3nk6ZWRoAypCLgUSLA4R0Q8ExGl+IpXEsw8mbvbw0csZuYapFN7erTy5Koi9hfGecwoOnljakbYeGT5+wbjbMsqG+e6E6GdYRLH2hutRmR5NDNnRVTAKjpAlaJPRAjZJGbMwRmD1AHEFOlABtEDegIOI0+LI2RamKMwtSGVhtwlwBe/rUT0fETli8yuEgZQKayhLGsnjniHvf41kwqX+a+tbqZ9KSSznM1NJTPlX2O5+O3hiveinb1v9VIeRzfYrbMvmop8u+uminy766aKfLvrpP6nv/M7vrD/zMz/zJQB35+d//uc3AKrKs2fP2n/+b/+X1x//43/803/v7/29d/7yX/7LH/7Yj/3Y4ctf/nL5whe+MH3Svz/Ps/7kT/7kp/7W3/pbvzKOY/yxP/bHPvsH/sAf+O5/82/+zb//Zr3mS/3n65NbfdsPUfVjFr/DmpJtQmXEByd0oWDUNYi6ZXlzpNyvJDILTiKhSyNy4na5h9o4kZFBaTEzjAmaEbF2boT1a9g0YalA3oM4OTciFsqwQxg5Z6FGITGyHRqFO0aBVSfcJ+oanfMiQbINKhuObSU0iDQisSUFFIVxbWwJIivLDNU2rPtr8pz7AhsrkTIeSslb9pERaVSpaNlSvVDrylYeY74gumB+ZhBFsoIrrsGdH8BnihcmGWltQ8OI1AWuxuZhkFv66LE5Y75mobG6d7uBgiAMOCmcQYYHgHJDBqelhWozOSVSBDZOrOeJkq8pecDMCX8HmR8S2/KKxIDylFDtnEUczRNlnVkqVHGKZE5p5BjR0/9aobX+gKn6MQCL3NOKEmlAhol5PbHfPuH14SUm73JanjBtguxbineo8/Zmy1l+ieNqXMVILsrZEpYCM+tg72ZIFHjo4obOiNA3FTJwSsLMTOGEhnfArjslTuw1OBO0srB64pSNjRdGecouPWKxe1o6UerMgGHJWSUwTSBC1gkzZVUjxJm0p/VZKE2nLmLdCSkMaUA9iDaSaL3L7o3mQpl2nNaFIVeSG8kyRa7YpR2NUx/qD8W8YtLQYoRNZCYsGms1sihJIGnmtBzxQmcP2djtWVE7ULwNiHRBbRq4BkJv8euotBiBwhahxswS3sf4DTaWuC43kHYkCYaYSaFgTgtn9ZW63jPlLVu9Jq8bcoLwFWrQRDARnESNjOvEysKdLUjJvD4lrk4DOzJcv2YzbtiMe3aTMBVnSDANwSITJ4ccjdEFJ4jlmjez8za9RfXM8xdf5uZmyzjdM03BYAMamTK8h9C6KJCJMY/doqMrBIwyEezQaGiARib8ivzAMyI7rn2CxGqlxFtkGGgWuAdFDE2OROJcD+g0ITLgngkUiUxERoeZ3bDwHdOO6SaYhns+fHELkliLcnf+iOU/rAz3I++//wzPymY4s+5PPNs+Zt094ssfHSixZ20FjZUpoMWG11qoeUaAXEa8dQuZaGatwaQjJrBuhBdlpQyN9W6DyhOm9cBEprGCKNU3LBlct4Su6DCTvfbutT0mBZyWEzEVRoFRjBDr1ift646imG/BDRDCO1g9pS5SI6A8WMoCRawx6EJYougTausbBZXMHOClYGJsq1BsxGxkSWBZ2LRM1uhsLnEg8IDVN2hWsJXBg6uSsQjuOZMiU3xDzEHYjnMdkfMd3/3+u5xsJiI4rq8p0pC8JW/2lPOJ1BLro/eoxxkz565+CYktN4Oy2QnDztlc7cktU1MX28kXEmdEVzy2qGwxz33zExONG7xlrqaBEjOrLTAI1UBEyWlH08JRKoWZiMqdG8k2iCTacmYq0WdZdIOaI755WFfeMB8+5vXhkkr37VLfSv3kFcZpiyGo5It++g2gn3T/i3zPD/xfEQaayEU/XfTTRT9d9NNFP1300/9q/ck/+Sc/+Mf/+B8/AvjDf/gPf/zkyZNvSsDHmzdv9G//7b/93l/5K3/lSz/xEz/xCuAHfuAHlt/7e3/v4R/+w3949Ul+RmtNfvqnf/pLP/ZjP3YE+Lt/9+/+6o/8yI/8wD/9p/90+6M/+qOnb8brvtR/vj7xwd8b+RLZRzbyHql6T37zQt28ZJiPHJeVl3cr+b5wnAOzR4QqnhZSyuR2YMCxUjhG99IPWUnNidVJUnuXNAaUEaDDYb3StisiCc2KSMJTpcbCRGEqQWuVZo0QZwkQy4hDDkFzAgIRZ+O947v4iTU6zyBIiDuqzpyCox6RSckog9cHq0gCGtUXCMj5oZsSC6aOpQO1GCZniLdsRBkfuoC1TrS0RTHEnOSQh5GSMufljiwHSji2ZFQbYzl+QwgZZwSIpiRRBsk9zIkzGplJlGoVkRO4Q+mpavjIfrxG3InaGJeJbR7Q7FwNhXa6ZyoVdE8LJxrk1FPOWmuoNoIZx9A0UhjQpJgtFGkQQq6B+oDIhiaQeQVAyIKzgGXSmhmXRzDc8VF9y3F+znZrtDloWSH3LqOFcPXODW/nE+97JmYnZwEzxGHIGddMIpOS9MQ1cVwCx/HoiXXiRkIQEi7CSrd3VOEbQgpVtj6StGLpFs+O28zAAFp6Gp00JBkouCu4EWF9HFwydfXO2SgjpD4K3RMItVuGaiVpI6kAiSIFDcWWhZw7P0K7bwWLjHnv5AUPkHPxB1tW/29KMD7A1OPBqmINUhpovoA7KoVaK7kIS9QuWjUh0hlL3qJzfJJ0Lo4LoonwoPgGDaHo+GAomPp327otYywQqqw2ExhFA0omaeAs2MPP1Si9ix5noq4QK26J2kCkMrRgVAVJnGjMkcgvN9xRGcvCVFZ2G2czCbsSDNuJYdwQvmJ5g+mGqK/J6YTESKyPaFG5XSvC3Jkj+pbN1Wv222tSTEzbofOhQjE7k/JMUsGqkx4A9r0JeKT5Sm1QZO5AZlsQ6fYjicDjQE4K7MCHfq/ICfEFaqBqZBkhSuesaNCGBWlv2JaBD252bNnxJK185eXKV2dnjhvUhVdf/Tn0oDx9/Ah59wrdXLGtwm+6qTyOhV+6vaWuGdqW1jKqwiArJSa89eRDq4Lq9LCuHah2JhFsmrBfduhJkNOJsR45pHO39Ell9ISaEA4pBqJlzAdyUlIeWKJS3Hk6CksszAjzkBmki0ZVwCrJIIWQtH+mkQyLIFgZdCRR+u+xIOXOoRFxtDiNHmhgKGGGh+DeAwFIQmShhdHMaOZo3hC1UVTIDxtcJPD8liZOygknMfva7TAkRDOahKtp4ioL9faeLRNeheozmoQ1Nmh6D0wo55XTkrHF0JjR0thsC/evB6ZhYijCdnywKc6VKGeiD9WQgaIToltyGElBpXXQPglJGU/K6mfCF7T0jVlKqa/lseKcu0XKdrgcSMkZ0sjqG9AtjmHVgJH7pTKvrznNC8f5SF2NZf6mNYEv9b+xvpX6SXSDRedDWf0cr+7+Jjfv/J8ZNr940U/fpvoJE06nZ6TpK2hqF/100U8X/XTRTxf9dNFP/z/1p//0n37/p37qpz4F8CM/8iOHv/E3/saXv1m/62d/9mendV3l9/2+33f3X/ozUkrxO3/n7/xG+MgP//APz1dXV/bzP//zm8vB369PfeKDv2oDo2TGZFR5yyGduLeF5fmWu5NRl8BX5WSV5s6ogkpw8jPuSpYbqGC2YLb2mHITxBPxYMloMdHKSstnuIOYzmhR9lkxT5gJIvEAO+1j89I6eFSTMtcuHAihmREeiCs5j6hkRPa0qCy+sDLj2ggguZEfUpFmd7JmUmS09fh5d+k8m+j995wSJ58Jc6a8pVhhY0rIlmW9J0ZhUSOyY8uR3CquA8t8phTF25Ea4DJTRVDd4rEhbE/1jPGSKm8xcVAhPFBVNGWEIDfFaiLpBpVCzr3zK9JTm9wz6gNtXXqHKAeVe0yNr9zDZ955F28V5A4RI6WpC3E/9A6rrGhyMMVFQZxWV8YRIk4kz6S1IlGQPBAqlHjojsgNwhOyN7CGDfeMqjwegONr8vQec/56N11xwGpwvX+Xr715jlnfJOBOD3Tpna+IHtQGCgge0V0EIiCOhJMlCDIudMuFCiFKy4pJ6VDdgKH1p4tLMLdTT9OyTK0L67riRQiZEAWVEdXKWmdaDTR3qDEo9eH1SZIORPfo7AhNrAkEJULIomg4tVW0KETCo78Pi8CjdlvSA/vk6zmAkJlTQ8UZIjoqhy4iJYRB+8YFh5DA3ElD7iK+U3GQ6GJC3UHoQF8PVJSkCQ0jydr/P9EO/BYwTpj0z1JECQYWEtUc5x4pfUNAauRsiA5IOMiKpaDKilfDvEAe+jW0Wv/+smBJcZxiCWXg2CqpCUMTeNsYtoXtvXA9NB5vnO10i5Z7VjfGoX86YZBSpjloPGU9J2o+sJyC/XDD9XBFxCs21ycePR5QGQjfkIuTy0qxkSon1jgj2hlDQ1Jopa9RFFTGzs1B0JDOrREnWBAVslxRZUdE4CgaDx1ZE9a4Q7RRZE9KC0nueXY9stMtMnzM8lJ5dXzM6pnbunJ/v+FXTPj+JHzqyY6znlk2wTjteXc8c3sfHO6NczW0GZqMpk6IoVl6Ypw6azPO0ZBhQploMuLqhJ6QdEJ1hlLx6ONBIk4Tp0rf9CVJkAsrDbOVURTxBfeKCVTp9qdgg2CEGVjrm/KUUc80NyxLByR7h4JHc1QzrmDuCAreoe6eg6ZdvGGNMff7I6LQvFFxTDuTfVDtf5Z4SK0EI/q1+nDPiQxAojUjNHEVI2GNMlSeXW/R40s2VTh6Yl4dKSvLek+lkLNiayZwTvnA7gqmc2PdjUQurLHgKSE5cBJF+uJU+A6SHFA9kGlAxmzTDz4SmCwEKy5OlAY2koyedBmKVUMlkdigVkDmPrUU+nC/Cq2tnKpgLvj5wHx3z+GuMsc1SzVEdrT1GnBq+3qww6V+vetbqZ9id6TSGEIp9QU3/D/Y5TvE0kU/fZvqp/Pb7+T//f/66/z3//v/keurX73op4t+uuini3666KeLfvpP6s//+T//3l/9q3/10wA/9EM/dPwn/+Sf/MJ+v49v1u/b7Xb/f392SimgW8G/XrXWb98xyUt9oz7xwd8HVMwOvLo9cTonXt+fuTvesmHLEaNGY7GF+/k1N5uBIDE3g6Gg6YZlEVptTGSm1oixd0hUBqIU8riDOvQR6dyvnXHaMeqGOC2MZQc6dpBtm0neWPMjoh0R6XBp1YbawokFzUqYgIyo7nAXKgtVDgjOwETyDWKFhnMOoAY7FiLf0/RI1j6+7hGE9LFglYRqYskLUQNJK8KhsxokKPkxCJzrGZWBLInCxDlm0pAgKkNRQmCxBumKpQkl32NyS7DtIsAfUbwhId2u4QG14t7woSe2VXPMDXclLCgPXRlDMKsscSaSEhQ0G9v9ljdHI2fhnemaoSSchluGoqg2HAcKMTtDHjqj5ByMQ8asUijkBzGraSUlQ3AiOlfU9CWWWk9Rskxb7vH0GHbPeFOFvELRnhCFddB5jcpVLhxKcK4L07bgsRIo/WtxWgQqgUrv7qoHSp8A5YGF4SJUyVSld+ItkBSYBC4ZYSCLI35LSCFij7RHlCSoKJqNNIxIckLiYfPT6ISLkZxA1JDkrLXSamOcJpKCq9Ca4+a9W5xHzLpQNKcnbw1TB9NG6hsCFNGAMBpGEkfhwa4CaFDCKSiDCxj9u0V7Sp03cspdzJpRshKt9WQ6zUT07mCJgkphNsNT0Lwhqoj1dLZQARwLe0jFMywb+xgIDaotOMZ2CFav+LmRZY8JZB0YU0Ito9YR2g1j9Uq02je03sj0Dr1uCrlMqCg0Z1Htoj8UScLqBqLM88B8StyZ8bwUGGDabnkyHHi0JsrQp0NGuSFrxtPMcVkY0iOybpnr10j+GluFt8fKq5fGZnPHuF0ZJ2McM8M0knUDbCmy751/s4fNxANPhYqbgCaKKu7dvoI6GoqTMCqe7IHhIyB9MiLZSFQQFowNpiM+BSkXPn39fcR0y+6j4MOXL1m2mbME+9NzvvDhh9zO7/LB/inb4RGrNj643nA9GK+GMy/KzP1hRVyJmHBfSTjujXgAsw/lHQ6nhXGzkq4qR62kLBy1cUtldSe1oLggRfuEhAO0hw1URbRPYvi6xXLfxGrKbGpBz0EaVzxqT+3UwDQwWRm97zu7Y2Uga8LXQk1nYqy4KdoUZSK54mY9/U5Sb/d6dB5VCGbap3aS0KMJhGQQKKVsCDMMI0qiiTFVQZOiDxvBIfWkvPm8p1w95c6PPC5X1Kun1MXQ/JacTxSd2NmIz41sDloJhavHHzC4sE0rw83A/eEt4QXJEMWpBGMe0QhUzwgBD/dbypkygPAap+C+QePJg3g9s8TMNGxxS7QQyJlwJfvCmDK+DJATS6sc7g3axP29cDtX7g73jHmFdWEsI2deEAHD2FlpIitl+C9u0l7q17i+lfrJp4qwMJEZ0wH1v0nRa9DHF/30ba+fXmDp44t+uuini3666KeLfrrop2/UP/gH/+DqL/2lv/SZr//zz/3cz+2ePHnyw/v93j7/+c9/4bu+67t+zcMyfvAHf3Cepsn/0T/6R9ff//3f//J//t/ee++9BvClL32pvPPOOwbwr/7Vv9r+L3+Gmck/+2f/7Bu23n/7b//teH9/n37wB3/w/Gv9ei/1yeoTH/z9x49n6vKC45s31PMNIk9xBl7WF0yzoFKwEB6Xz7DcHSFPTGMiB5wOCjL0BdIWQlZyUsyVcdjjCmXM5AE8bhjW/rLyekVKGRuEVkY64hmap25/UShj6SyaVhjKSLMFCwNtaC6klIlImBmWlZoKDUFcWRsoZ0KDhUzxiV0olcaSu+V4dcHDQRXVgoRiq/EEx3wgasLThKcEMnIUY0OieOmLjybOBh6Z1VZEBJdCCkWWhtjMqCNjvcbjgOtbkB3OhqrDQ1c295FuF5o3XGZ0SLS00mxBZYOkCZexg19TkHKiUB5A0xMb2XCTtozjwuHVF3l085S0V6QkQqyLXF/oHeErBhmxtafGlTQQzTtjwY2WFA0jA+FCUSe0p6u5bwnf9fx6nDmeMMnAVXmXly9ekt6trDTG2CNuSErgves05oHXhxe8d/MOtjRKKoQ5IoFqtxOJOOAPCV2ChEIoEpUmUDUTLmQ3erSbdTHoCi4ogfmKa0abUpgQr7g0zlaZmyOiEJmUMqrKvCYgk1TxNkM4RfWhW1dp5uShkLKAG+pCaY66Idph0imELImlNkR7opZI7yurCGv0RDFF6F4cQ8RoUUGUyAVUuyWBRo4M4QhOiv5Ws3Toq0jpo/4Pna7+W4JE9I8hom+03EGE9pDy5ZUOPLeCx4amDvr15D8lpYnITstHQhPNu3UnE9BWRDOVYJV+T0jp3Kbmhku3jIUoKWtP7xs69BoTRhnxSNyfz0TKkE/UOZOkQ95TFQ6vKnd1YTtkrvawGzMbdXYbIw3BdlPweg+tMJaEthOkgTUq3lbqncLbjCZj3FbSsGE3jAxlZn91zzBkND9CTRlTYa1HwEk5E9HfR/gWkRtUwGQmwhkeJgP6zRrEA7A5FNwnsuxocaTJTKQNKhPDsvCb39vxTN9wXQpfPGd+9fURj4Kdtrx4vmW9Lrz3WNiPhucd+2Kkm4wOBRfhfGjEkskmjFmQNFGt9WuynthrpugWOW8YrzdoOEdv1MisCKNmxCugaIKrSCiO25FaZ3LODGVHS6kzmLSAQRFI6oR1ppJooCqs3rDmSDbsIT1OURQwXUGD2gKz6Nwyo9tHtG+gifaNyYra+uaLlPpn60F8oysNyYJIQcX7JiN66qPGREQiOiaHApit5ATWZjQWPnh6w2YIWiy4FKb8hLpk6nIg55k1ZqRkyrQha4d1L7my0QmbCxseMYQzDe0hkW8gZbD4EMmPSekREgMuM8TC2J7i6YxzItMIH/H1mlGdKU14g+qCWaLVxmoLt/MbrA28vl84LkHyPfV0ZmmvSdtrSlnwOCEDLJpAH1HbzBpnWjSy7Nik7/6vEgeX+rWrb6V+qkumiFFiRlbhaN/PdvPLoOtFP33b66fdRT9d9NNFP13000U/XfTTf1Iffvhh+V/794fDIT1//jx/Mw7+tttt/PiP//jzv/gX/+JnhmGIH/3RHz08f/48f/7zn9/8+I//+Kv3339//XN/7s998JM/+ZNf+cIXvjD99b/+19/7X/6MnHP8iT/xJz77Uz/1Ux+WUuInfuInPvtbf+tvPV5svr9+9YkP/j766i9htuE07xnGwvn0ZZJAtYbJQBKBlDmXzlfJshAiZGAigRSO9Y6WHfaCTIquyjhuqOYsUWnbhERjbQcA1nRgLplNjHg0atRuFchCTgNDe42GEalQ2VABHxKjjqzrGVVjSEFdZ1IysgjUQDzhZGr8f9n711Bb1+yuF/219lze9+29jzHmnOtWqUqqYmKy1cQEokaicEARRdF8MIGAYooKqB/0JGgQFCWgQiSBIipREhE0+XCIx1sQQdgIwjHmg0c5kuDZe8dYSXbqslatNS9jjH553+fS2vnwjMqOwuHUPrVSljIaTNaac401Zh9jvL333/O21n7/AlpGGhkRC4nelB4mVCH1iU0qGoVmF8w6SZUgQu1GDAk3JajRbaSehdbx4GxSaBRmzaSuXPyEpkLpKyEshJ7YZ2FDKCoED6T4jO6ZtR1xrQRZMBuHApWAAkEMPGO9YW5McUeSHbVGztPoHicUr5CYUUtcfXAmtY61C2Z3xFx55/mZL5s/gGrG3IniaJ6wNtNrJ+hLYuh0V3JbiDJRxahWsYfvQfKRKqiqlIdx3xCFEA1zZ+uFHGd6MYwVuLDdXUM6cE4yRv290hV0USxX7s+Vt/gyrEeUQG/bmERwJ3Qw6Q9eIMFdhyumj7F2YXwfYw/kBhetuProXvlYNVAciwsSAxIK+C0aO8ULkgIS8/hckodvpjckNExkjNwHB3Fal7FixQBpkUCrGw7EkCm2YbHRaQ9j5omtCq07IfXh9ZCRVB084jrhYg8LJopoQcKK2FjLadYQAiJKcsFtOHrUBpjrwzqMMri3eQcBDYFmYK3h7kNMjo3nq/cBB1IIovRmRJ1w35D+YPjpgkYBN1pbERc8dBqR0gc0izeiOCaNIoZPkVrA6sam4EkBWEw4mJNaB/roMKoSQ8SsU73y5CZQxQiSIERaFS5euZQLS1DKItz2lXfPe+bjjuBHbg6NlIXDMnPIG/t0JMhC8YSz4rqCzJhlgmSwzOVYQBsWT3jZuNtHdKdMVxtPWcgzxPTQeDBHFKBiksdKCJXeO8qMI1jfQNpIJwyKi+IYKg1vDdVCkEozRyWQp0gvwrMPRMLVM+qnjMvllq0HqnUoK8d3gUumvr6QXl+JFbJmbuaEP8uc4plP353ZtkonIB4oXemyp4cz3QvoStMLXRSzRu4wtcBLjB6FbkZsDROluyDaIDkuEfqM1YkeGhNCqCBZOfkFXQLaMtYd3Aim0MfraNVOF2WSgEqn2RFiQcuOlA5UNzqGBajawDc0VFq/jCABJowFjeM5Ec1xG9MUAB4Uwag0uhpBHLVKMMPjSkUR4lhXcUUs0sKKByMDrx/2aD/x/PKCabnBqnJ3fw964uYm00MgWCZoZl8nHLgPdaQ+lsKexiwrXo7EZU+MEBUyb+Ep0kOh2koAokSO8R6Pwx0W2mG4nFLn2C7cnVasCcet8uJ4xM1oG3htqN9ytzpND2RORFamKXJe7+heyVnpJNwnSm1o3BOmRrq6cNgfeP3Jh78gOHis96++mPy0bmeInW4XrHw17777t/hQ/hiS/7dHfnrkp0d+euSnR3565KdHfvrvjJ/+2B/7Y69yzp/4r9dpr66u7Ju/+Zt/zabnfvAHf/AzMUb/a3/tr33wz/yZP5PeeOON+tGPfvTdaZr8x37sxz7xp//0n/7Ib/ttv+3rvv7rv/70fd/3fZ/+ru/6rq/61f//PM/2vd/7vW9/9KMf/XWf/exn82/5Lb/l/sd+7Md+6dfq8T7W/+/6vG/8Pd/u6H6km5DX3bi77gHHmVKgSwc/Uco9loQUbgh+DaXS/TlVn+PzjsjMbppGpzLsgR0xXNBwocoG7kxprD1MzVg0kdKE0FArlCa4RppvxLQbAtPYUL1ntUaLwkzCz5VziLTqPA1wF050PY9ulO/xXpilYSWiZGK8UPtLXBPSJ7LOVG1EIk2MYdeIdFHO/YJEI9gds0Rmn4gmdKvMqXNqJwJGrImUF9ZotA5B90x6jZlx8Q2C0LoOYTZHDKfriqWNqAuhNaATOI/E+QQbF6RHgi5YKFQNlKZ0reRmxGj0YiALxICkC4d0Rcg6/D514Z13KuI3PH9+5NlrV1wddnS7UM+VkCKTJELviBpqjZWCponNhKCBwMP4Nx2RGfrCB9q4lJJFYksQlGCB5/dnzusdsTqn2njnWDn0hqUTPWb2spBaJVwpz/Y3nO5e0I6Fg0a0FlKEk694hM0Fx1nYCK1Q2UPKeCsPiVdOsNMQMqfOHri0gPXAub0gSWLWNDruKFHHys9Q3QRCcKR1kia0d0o/oynTLCCuqFRiN1wZkwPI+FgaVitOovnCpQdcXoE6Thvj5yg5JZSAutN7wyelWkEMQq9EjXQJFHGadSYPHHSi9UaxRoiCtU7SDDj1oTuNMNYsiDhOb4VZFQ9K8Y2igY6RHyYNFgV8OD/cO80aJRo6QfaKxsia7pjTniRXeA942Kh+JIQOHc62oSlzQ+awBVYaa2oDDrbKVI21GuhEcaNxpqlRtJFixAN06aN7GxwNndqFJoGQIxkjJUc1cSFzv3a2+oroM2mbqaWwhRNuJ/S8I95N3Id75l0j64mr6cRht6AYh2XHlBKXdsGnjW6NFCeqNygrKSj3xxPlrMS7E0d3wuzsdx9mf4jk+W1SSIQALhPNVjr3qAQkbFjfcN9QB7EJ8YybEbJR/ILlRPYZipLTha5HaBnScHbtr4WvDZF9SvzSZyvPZaXinMt7rNsT3vlU4Cvqm1w9cVxOxLxww8KT+UCRV9xdKueLQQsEVnI9UinjueqNWRr78wVy4DYYNRRu+oZZpoWZJB3rG9WdGDNbG6t5OURSa4TSOEulRtBuJAHvTtNO0IA5bFKJwMFn7syQMNZ5xDuZhNdIR2n1jGggakBTorQ2nEtNyFwTY6ZaH9DXypiu0AgCkcpA44lUG64bVY1iSghprKt5JaaM6pCwX2plmgO5NHo/02LjnPpIcGvXXNvMXb+j+8aCkMRZolHWlSnv4VTY7zrWJmgTsVdkcm6uJnYB8pyQWCAYURqlB1wETQYIrSX2nijNME/oOSI289l33+VsL2m9cDyeoSnNjLtyy7zs0RqJEsjRqfKK2xZxzeQAkzniM0UO4EY5vuTwgad82Ve+hvTC1Ru/nSY7nur6voHCY31h9cXkp2USKJ3QjNbH+3KWTpDLIz99ifKTP/LTIz898tMjPz3y0yM//X+p6+tr++N//I+//GL/vSEEfuAHfuDtH/iBH3j7v/5vv/f3/t7Tz/3cz/2/f/WffexjH/v3//XHffSjH3310Y9+9NWv4cN8rP8T9Xnf+Lte93Q61QoaLpAE10DtgeYXuhmtnZiWiaoTGhbcF6LsmHPH5R7aniATc0xDjJo2GpXNBNVMsk4rQmyjwzWFiSjGpd2ziwem+DoqE80rIiul36NmTDLWFQILpSiyXHNFIVnl2FZu6z1ZVqJPlJaozXEvSASTHdlnlpaYZHlIr4okCaMnEioqTlJFXQkPUt1oE2JDbFnE8GC0UIGJFgUziDFysUYNSvaA1JEeFlPCgnDehqQ55xmvDW/rGHMn0H10Rivgffy9l7LhrhymA2bp4fvQabEiycgtouFhjcKE3i5Mu8Q+HglhR2l7uiy89cE3ubtfefXOLVoj6dnEsswEb0iP5ASbr2xpxohEi8ybEHulJx2x7h6BjmsdXdqHKc07OrVG4nvO83PFl8KT6xmfIp9++b/zlddv0SNYvuJ27cjWWYBtdWpVkrzG8/fOxA853Z7TamM3fxlbnTDJiBi9vSKpEnWiNcYkggcCozs9Jtv1wS0khKikJCQVxAVrjVI3whxY0o7ehaQ7aEeWFGnNad1Iy8Lp/sKcrsEDTROrdCJG1odOWh1rCqqdOQgSOupK9SsUwWmYGVikEdGwEXXItpvLWNMhMCV5WAcyYkpEzdhWaCLwkKYlUccaghVaiJTwIL7mQcItAq7DFdOdYYzpxKjj+Qp0a3Sz4dTwgEqky4xYG8LwrmhP5HpA64EW96wBukYiSqqV3s4gQ4rcbYOw0BFElQRIB5Wx1uS9jnQ+nYfHSjJLuEIjBK9Y72z4gG6PuCVCD8wqI80rKDkmljzWFPSyo1xdc3veYDsibeHoiY2OZugFsu+ZzpBeRXbTwiFlnu4CKRgzneR7as20uaAObIWUJqw6WTInF2JbKOczz9/9NFMuHKbX0atImt9jzgeyvkkiwSqY3oGcce94j0P2/nCAcKYx2dKEEAOuSqtOCkJKGeuB3itxH0gf3HPIhV/+7MSnX66c2bGld+mq/OJ7K1+uN1ynwFSdPZVaX/EV18797Hxazjw/VdZlSKpznennzvVyQ8hXBElUnMt2xE3GNIYZWMA0PIi4K62cMTpBJwTBOmjYgXdiyNDakKxPCrZiNg5/Fp0uQnFnTxiunm6YdQhjmsm9Yd4euv8+Eh+7ETUQw4GAjsQ51SGIbiseV2KPpD4cYUWVVYUWI90KELA4UUTGkl2vSHVqgGNUQoBwPg9nDJHX88S8JlqANXdKbjxVI84FCU+Y/Rn94mQ1Li+FrV9zd3uLlcor/Syn+oIPXBWkZdIkhLCne0TlTPPOItdISfStYxGKK8e1cncSLg1O62c5rq/o3kj+BqcTzPMO7wWjIhFWWwleEK6Hpl4upNBxVS7daDLRNqOt94hmjkd4Fp4hu9eZ+569v859v+U02ftDCY/1BdcXk5+SzETphHDmIp+7BvSRn76k+WmI5O/oLI/89MhPj/z0yE+P/PTIT4/1WL8G9Xnf+Lu0TogBiQcsRFoD70LoK3OGao00T6CZON+QFMr5FapxeGNaZ4pjtF8sMndIFFwLm8+0tqP1kTAX/CH52SJBr5EwXhSibMPR0YUUZoIoU4aM0+oJ1UZKSiyFsxW6GM+IzG1GY+S2OvRIjIGtNVqrqBpVO4bRRUcXUC8QHGWkvEkfmmT1ASkjarygmuk10TpDzupQpYIMB4mp03oFAhoYImD8QQCs6DSDjDHsXioK5GnGeqdWQ5OMRL324BiRTkhhrI/ozKzDYSLdkQzmmVbHC3/wiJk/dB2X0XGxiWmGjVuuXy9Ycl69+gzr6QXXNnHYLUy6o1qnh4r0IWqNznCMhErqjcyMWKKJ0ILQEIwJgFwC755e0tfK62FHYiG5Uky50h3P4p6yN9r2ijwbcTbq/YX3SqXozJqhHTs3rz7I9fIVVL1wMafIStTh6dGwILKg7EgyodwhMjDRfciq3R+8OWq0voF33AOtF/Y1jMS6siGtsQ8LqU8c48q9FULIRDNSU574hFWoYRhkmo3MuIyjIQz3khnmFfOC9ka3gMaF6AB9jOVLp3sZ4Cg6DiZdCZ5REm07kdNMFGXrNjw7mjAe3C6MzrphuI6EqsmUZIIaNDO6jjd3NCJmRGFct70TRNisYdJBGR17D2QiXQpuBSFglhFJRJ2wqCAbahXZCqKdszRQJTp0N6oXNo0jXREnmtEtIJoQ2VA3xNp4HiSlh7GSkrqMFEFRuhtdA0EnomaiCMNu0pDuBDXmrARdCPOekyZ8VlITrFw4iSCXTKlOr8p563iY2Szw7r0x58x8d+KQnEOGJ5Oyi5C3gOQ6EjHb62hKXPwVIStbOxK9kuWGS1m4v1Tk5ITQ2E1npumWq0NnkjeY0jKuBQrm0HxMCKhO0B1rbbycYSCJebpCu2I9YH38nCUangsf+bKJZapMsfHpl0fe25SNTA6NT77zDrvlig+8tnCVMqLGfS6cvXB4MhEm43Q8DyeQNQ5vHnjrQ1d07lg1j0i3thI1UrXh1lABekR0R6AjuqFSf8UxEzVTuCXFhV6Hv0mD0r2gnkECKsMZZdpZpROsgUdEIy2MZLruD2mfpDFR0jtYIeAkCUgfCaGI070jLoRgYxpEnarDE6UeyAYaI7HPaHdUJ2ofq1zH0ECFQGIqAsk4zlBZ2QVlnxIpdCatvHVl42ZMe0YvSuMOu1cuxzteyduYzcx9h4WNmleuFmGXz+RnO5YnkcR+XPMc0WqctbPaynHdWNeG10o5X2heiacZrxNbqGzSkbDQ/QRTpSoIQ88iJDRe0btRNbO1yrbt6C3jHc7bPaZ7vA0vFClyrDecTs7+0y9wF2q+o09nDlePAWtfKvXF5acCvQMJ1SsAOoY/8tOXMD/NwCM/PfLTIz898tMjPz3y02M91q9dfd43/lp+hXvCLWPswBITiTwZ537HvBNyjkhQetrwlrB4wcJ4mw/9KdIryj2T75m4wsqFngYkmp3BX+G+4jKcjxIqnT4+ZzshfsI8oiGT8o7WV0oHEyXNCw3n0guTnpA8bkX1KXOcEpMF6CudindBbHrodF/ofqZqQsKERBAaxU4E7yT2uAMugzy7IwJmE0LCTMA2UjLELngIiHUiipXGJBl6x2jjcYeIC7Q+RrTBERXmeUats7UKROY8D3mzBJQGvYwDghoFRU3hIQksWySp8op1CHBNSAIxKUUqt9uJeVI6DfHxgjfHzBtXM76+4nR35sXxTNtdeONp5DAHVCdOJJo+JCWxItIwoDMi3z2ABh8Jce0AwLutc98qr2UhPDGKrPg8sZ4btnc+qfdcWWbKTzFWmhWW6ys+EBJrcW6nF5z8yHr/GaY6UWOl7PfE3Q5p20jAU6PQML9DmeiWEBgTBAxbTX/QMZs4tdbhJiGgCi1mNl8hQE1O8wuLwhWJK8vUBynuJThkwRmTAdmc6MNPsmnDJQxHjTRcHI1KlIg2R/wC/XPIabiM5DplrHWZG0ogysPBh4A1eXjzFkIYzp1uY6XEWkfMac2IMTxAY8cRgipdnarQORH8TOhCj5H+0DnMHhAySB/rLD48S4oTUgGGmLwGaCFRkjPZK1qEEhtuwzWVMVSFrTvuQ3a90mj6kGrY20gypI3kwocUwV0QDEf6Qxf7oUt/sQ0Te3D2GEJFzelhCOFFBVdHkOHiSBvaVm4kIpPSdGIx5c2dcypHGrBtxmV9ydadViJHT3StdK64PSnvrSeCfoYpZ57lmSdzJ4ZPcnN4wtQjG4WsEWuREhqur4i7mXK6R0So7US77+T7HSm/y0ESu0nZHzI5T0Ocrg+rGuZ4b6BjzU1MSWGit4JqJGjEEVJw0mFma41nb0LaOekzR/wzM3bMrHKFUTmtxi+985yb6yfcXD8jdmcqZ3ZqLPMZ6bdUD+zygd28cLW7JoSRjGibMZEQN0qr2OcE8wjjStgwO0FYGbcKznTJw7vTLwQZK4ZmlaydWsYUhYijdJCOJWdXIzTFmxAZKXEiSvGZ6qDaEAohgIgh7gQECULtGxLHtI/VjlukqeAP62XJOqFfKDKRY8KaYTRchp9ryor3sQZ12SmlndhJ5XrNTPNCtcwvPL9nvX3BPjVe3r3NsX0Sa3uyFRr/kTQZz8JrPI3v0ObnHK4mlvyEm8PM4Wpi5jV2Apf6kh52rHXhdL7war1HrULJbCsPNwCEqnAzX/BwRwkzzRaSJYTjSAAUAVZ66zSPbK1wWRvqO46bcumO+UqwiomzhUAMRtALPRb6/or76iwvEmv+LL19hlRntnN+HxDhsd6P+qLyUzDStEBfsDKmFoyV7i8e+em/A36KbXvkp0d+euSnR3565KdHfvrvur77u7/7+Xd/93c//2/9OB7rv6zP+8bfKjfEDqIBnxTxhuCoP+F69wSPjSABFaX2ipmjabyBFU80zwQVWnROuQ3vS1FcZ5o3OitzcrAbdN0Bv0xrEyWAeGLS10hkWpDhtghGfhDFWusUq5RQ6Lkx8Tq1FaScmKPhi3M5nehURIRundadKY5R/ykkas9oHS5BEaPbTAjhgVf9IT0NEBCBFirNDAkBEUGZEHMkVqI5mUixQIoPABr0IV1riInFHe+dFgPNFW+diNPbELvGGPBSqWxkhRggpIm1NSQmqgeqKUvMhJao6wWfhgQclO6JGDLHtRNulXM6s+wSIRRu5pm+drZw5vqJct4cfOZkicvzM6/vrtlPGZ06ObQhmhbH0kz1RJRI0JVJLixWmJrRw+hYr+/ec9JEfDpzdzyzk0LaAvV2Y/KFOe2YVwjuzDMEhGRCo5O18qHrHW8fCy/vT9gOylbQMiF3hWlxZk2sBXTaoxFaK3hcB4A5iAuiEW+dEoQQnJiUHPMYggiFWgzRkRqYEPCG93suLSJhppXK/nri3l9S+oYQUYMMTCqYBkqItAeAV0mjYyyAC9GVRByQ70PUjYyEOPNG04YHCC6Eh88TQ8ZqH4mKcRyS1Ma1gAAIKkrSjHskmhJ8pPmpjvWEyBCvK/sBWDUgISE4IoHohluhM8TmDUGDYLZDiYgoPcy0sGPtiUTBxEFGqmFqyqWfgRPqlehhJOCpImqYGEVGh9m9Y9aH8JhE6hG6MYUdO7lBeqXYhk+GAFECAVBrqBimDQ3TSL8LBqIET5hFJhGSK70ac4xoM1KFm3DNfVnRKcAivDgfKTtorVJORyLCqpWL3hN0Y9uuWe9veLsI01KZ5iNPrhNv5YUaK44wzRPSjb7dEoISwxWuG+Yrl3LFsWR6uOX+/Aq97cQ0k6cDh+sbVDuHmJiJGEqaAr2sY0JFOrUXYtpBj9RmTAt0eQESePpaZopfzS4c+dR7wmffq9zXlT45Ujrt7Y3yzsb8VmLRiY7SJXNz8yauV8ysLFcJYaVujXB1QMyQXnARqkdijA/JhE53AyIp7nEU8218z0PEbY8ZVFdMBGFGtkoMMhIEpRHMMet4gkYcEwsewftw9zioCAEHB3OgD8F88hnrCRVDQ6J7xSwgmqkCESNaABdcKi0VclWSjoN1940QjGBg/WZMUqE8DRExWDBKvKdv76Ay8eITr6hl5STGPN+zj/CB17+awzqTl7d47a3X6VshXQn7w1NC3tGo4E62HVZvee+9yGW75nY1TuUWq4Wr7JR6CyRC2KEyViJTPXAJ93jsbG0l9UQGTj2z1h1lBbU9OJxrZiNz2k4Q4eKNHiCElRSMRCB5xyzS5Cl1S8x6RW7OuX8WOHI4vU6WmWO6f7844bG+wPpi8pPXmd4i5kZ92FZKesPMBx/56UuUn9Z85Orm37M9f4eN8shPj/z0yE+P/PTIT4/89FiP9b7X5+/442rIP0WwKeGhk0WIHUg6utKe8e6kOOSup9OOyyp4VFwqZZuY18wyG2F+iUdGmlxTeteRosZMt8+lDwUkRXI8jVQkCm4Rk4B1CN6Z04QEY9tO4BspddZ2RKIyh8BUhQuRUPdEd4x7uh6x5PR4Res7AgGjMJGIasOl4ZDjjNeNjhAk43RaL3RpSOg0NyRkkIhppkimuTGj0AMW9mw9khGqHqm9kRRSVDZzNne6R6QPP0kIQsqJYsbWNnKEEEb+usnEpU6YB+I2uqWrdapUUqgIF6I03DdcE60bU2KkId87q1Xafk+aHNvOLCnQqpDCFbtp5sXtif3VgZgX3jmuXJXIm7rnKiyYVO7lHtfGVAVLTtFGUVCLUBrl1QgVCkT2N0+QyQhWOHHg9KqwbY1ZnOuXd5ymxDJHzn5BcPbxigIPAuXO6699gNuXt4g+4fDMuWyN8+mOfqxompFpRnwkHoboBFnGIcr6ED17pHcZ8uUuRJ5Q14q7IfGMyxk1IfdAuBgSIARjjZmzr0N+vm3koPTohJrAAl0rNSjqkVwmggmmRggNdQMZhw9ltM47QkVwCUQPRAKdjOrosFkbYFcaaDDsIUkOnG6doILq6HmLj/USNBA1ESwMp42MdDoMVBx6IsmMoGxWkRCB0XHOsieQ6VQKnSbCFiLex2qItI7RSUHIzQjzFUU6vTmJHcE6UOl2ImgAn1ESIor7hYbhGokEsiRWiRgBUWVrJ2IMqED3ikglZMd1RzQh2USwCNIHuHrAfRqJfN4QcfBApHCh0dJCrBnpCydxmAohOm2aCX1A/pITszRojbZccSmvcD9R20w9H5h8oeh7yE442Q31+BrvbJlPXl6QDsZyc8d8SbyW3uQwOaIV758T2k+E6SXNA80TKjP0ytaF46Xz4vaOnJSnU2KHo7uI7A3lQppAckd8o7SKhhu6Kee1k+UwVqzc2c0rX/2VkcP1keIraZt5fnLWrtSonKUy361MSyTkBAGohSU1lnxFb05QwDunEkkErB3BR+JfiIpv99iYAwEToswYaUy2oHSLmMt4rRZjlcKMkrqiOoTTYoFkCcQpXVFJY4VLw5iMkHEgE44jVVMVa0b3jPtw+JgVTCoeGr1vdIdJMrlHRBWXiFgkE4k+JlKsK5YzVTtBDDGw9UjaTfTYKbZxWJSkyg2JOQhXc2COyjQ/Y97NLPOFqzQhQJ5fsaTA5i+R5Zq6XhNaYTvN3JXAVgsU53KuJB0H4aoN1cYUArRxSC6sdG9jNYjCRc9EP5COT1lK4FXd+GVWTK/Zth1WFPUzIW5svg5hflQ8bLg3QpARzqDK1pSkYw1z04hEY2vPuehrtMtECzu2sNHtXbzu3i9OeKwvsL64/BQQDVhQJAYActxI6fjIT1+i/BRO/4k3n343RZSwe+SnR3565KdHfnrkp0d+eqzHev/r877xp1MnXjsex8g9PpJ/PFcoheuQmVAs73jpmd5GktqkAfMLjSOeFa+Z7gulOpMpTkcsQA00X0kxEH8lTWcj6fW4mx+EwOga9pbYmGnyLoITfST2xJBotbKmTKVTuyFByXHi/Gq4NoI41kFQkjjNV2o1QoAYRqetywD0ta3k4CQCXo0kY9S/2pEaZiKRJAkTY+t31MXIbQaT0XnUC10gxx0qmZwi+uCt6b2NLrUqaoEgTkqRjrOos1nBpoQ2IZk+dJYqojZG3+2e6zSz1Q0PHZ98dFT6jhB2nBTMEtonTr6NkfjV6JvQ7wvXV7DHiaEzKTydA74dyVEgnmnWeHF35uwLMoFqZW6KeKfXAEGRvrBdKutd42AbAPtd5gP7RJUL58lZLgeK3xLnzD5CO260V53w2oQsRo/GXb2gpmQvlCywdHR/y1qdm/lDqB6ZQqIcA7d3QpqU1AzdBUJIaOhEC8S+gJ9wvRBtRy5GzM69rVSpGIGkkaQTq1UuwVhyYAoTISiHkrlvhc0vdCbSlDifHRMnzpnaO601sghqG0rCXcd0BQkVcKmYyIMrR1EcEUdsw9VRX5jM6c0IEogqlN7QIHhwjD7e71xHBpcPP1LtFTyikjHrAybUcCrdDGF4YyYZqzUmAc1G50yn4xowM1wEEVATEtDqgNjwAN1JjO5nLCciiX2PNEsDHkMnuNNNaA6uPr5eAs0E00gKgdqNZoWVRpGCKEgGp5I5Yd6RpJAjc0u/stLTQydoBE9EKoWRcpccphoJBDREMh3voFaHY0VBgtN6QXQcINSdLP6w9jMRpyf05Skrd7ReaLtG3QoXu2YtfazExc7JNlp6Ha8FfVmJfuLFdEeIys0h8XSCaVLmOBO2gqSZUgo7pjG5oAUPFWvQSuDFqfJu20i7hGYhBXjz+im7dEWfCjbdjeugFOZYqa5DHh5P1LYi8jrPbmb+Lx858b+++y5br3ifqO2COLw8bixr43C9o8+KTE/o6uxCJKSM95Xr6Mh2YspPeO5O6w1tje5jdSaEgIoMcFTAnSCKSORyuZCnChZITLgFlILmxtYdcxBrzPGM2Qr2JlUzuBG80R6SRrM5okZtjTgtxDQhlohFUK1s2XFbCHLiKlYmy6Q+scpK0YA0I+cB0VIiMQsbr/BY2UVjceOQjOVZJMc7YnB2y4J452q/5+o6kXJnSsYUA1hjnlaqOPFhDdHjgdtT5Hwy+v0922Udq3Br57I+eLpSRRahboU0Xbj0FxiweaTFmeCV4Iai1JrZ2ljtOR6F0xY5t0KchVfu1NCx7T2uZMY8cWqdLZ3Qestex6RJQPEqpJCw3kiiSHXykqk4KQqLRxYpEAvqE8EWvGZ2PILrl0p9MflJdIMUxk0bHTf+kIUg8yM/fYny00sKtyfnA2/tuN7xyE+P/PTIT4/89MhPj/z0WI/1vtfnfePvzVmxWCEGeheCLNCMgzY8zlhUtn4BuZC90CTTotF6RWysb6xVWYOO9psHKgZ2wQAEokVi2EbkPaOLl+d7ZF0RXzCJ9K0QY0Dyyhyc3isFp2hACWS5Zt/vOMuJkDseCudwz8v5Fct6QEpEODDnSG+NgBEjuDgtJo5VqO7M2pnNCGUHopQe8TQcC00bvaXhZTCH2tEQoSjuiSlG3FdaPZNVyTIi2xWH3lGBFoS18eCFaKQH+XG1Ma4dPGBdyRpH0hdgfcMMWnDcGiFN9D48Jb0ZN/FA6BG1RJNGECcjbAruhVIqphkPyt1dobTMNI83W8XZLq+YJkfnHa0tnPsFkZWAkluitYjmIemeEO5Ot6zlhO+EWgoA1/vIPAM9wFq4r2+TsvJktyNHOK4nqjWevxtZpoX50Jl2w2/hsmBNqGvjyfIGty8d2ydupsQ239GWQDllynpmuz3DMeN5wZ8kLhKZl4lWCruwJ7PH6rto3VhYuQodyFi5UDwjMhLqojuhrlhxPHTKrnLpdayCXITYM10abqfRlQZUOqIVk5WmAfGMogSNYwQfR+yOmCfUIWgeqXG1IVpQN4I7URWhsySldyPEjFt5+LhA0IT0iIrgXoYT5mF1Cl/RXkkqJM2YDkm2SB+iYGujC4mhIogKwoYhBJ1IkgkPXe29KzMRzLEW2aozLY7FRoqJHMYqRamF5gFhwR5Swpw+hO0hIu4sAbo4zYwUdXTufR2OJ0lEmciSwDa8FVSeQIDGWF8LZOYemMJKSJEQd2jviHU8dbqvQ8DdR1fUJZBDorcLIg8HXWtEGV1/t9ElD7oRNOCMxEmn0rKxz09pFeqxsjVn7Z16+RT+ua+zLLxqAQ+B29sdnxUlp42b/YnDfAvzuxxuvpbtDNeT07nFKbRWkTSzOZBnSnGWLkgvvHP5DGf7RZ7Nb3HYTVRJ7J+9wdFfkLfKlFe6HblaFrb1Dp1fEd/a8ZH0JujGp96752WZONc91X+ZHPccb6/ZbXumN9+j5D1legu7NPISuLQjT2LgeDrSZcBmkAH4qNGtjIQ6cYJExKHVRgiZnGRMgbCiuhFJeAdvEKWQ7IbgM8ETp7ZiXpl2la1mcq5M1ZD2lC10qigpB5IXWjmRdlDCPdk6B5mwHFl7HRMAabw1xfWawom6nEjpwrR2nl7tuAmKx8a8GFcp8/qSuU6NevUG0w7EN2adCfGKKoneTnTfsOCEtJBE8e3C5eLUmvAtU0ti7ZWEU2ofLrD8iq1+mml5irLjUjZiV0JLYMKSlEu9I+rEci9sHji3HZeyUFanrCvP854QZs6pcUr3HOi0ClGcFAJrf5e8W6Aldsm4uppRm8mz8OL5LTHu6FUonighM4dA8sTUG6HCkiM1O0EmkkVmN4JtiLb3BRIe6wuvLyY/mShdEyqdOX+GZzf/hMhnsV4f+elLlJ9Or76eF+/+3/jwB/+vzPPPPfLTIz898tMjPz3y0yM/PdZjve/1ed/4i0kwCdQ2XAMKqEaqKFE6k3WyF07inGNnYk+2iooQReitEwhsGHSYPjfmb51IZwsQ0gxhIoSH9ZTwhMQT7q4+jXdlZh4jxdKRdkbb6PBKMDQ4sjUWnWmyG6PYbmht+Gljt+4IIrTcwJ2uYyx/eCcirSmUxOIzS6woR7AzbbTDaFIxK3Q2QhJSAY2GSgVp7PWKS1HWYLg1rG6kENgv+5FMJSO7jVKYU6YS8Cg0F3QaHZ6KD/9MVea4YLUSI9S2otEwK+QYqGZ0abTuo4MnDyLXdkZseBmmUEdHMSSCZ/LDgWFrBWRCPbD5Hdt2j6owJ8WMh7FpB7+AHDFTagGfrtgkIzqxWERW6PdKjE8IOaH+GQCEwuVy4rKNFYcnRHbLYcCTdK72C+et0J6uXO43/JUSmsAeShTaquR5hy23XO5vuesLUSeCPRty5UmQ3Uq/apxr5bgau3efkqZEsDMxjLAm95UtRYIIVRpbv6A4MYyUueBKKs7BFasbmiF7I14q2jpXu4lI4M4F1ZVIBc3g4NbBx8qSh0g0EBuTB+7jV7SF6MKl3tHkQoyJkITuhruh4lhv0BXVjMRE7xU3JetCDDNughtoEEJQGkPkbDoOPxpAe0A84h7GlIY3oo6ntZghOqRK3ozuhZAmFKeVbXS1Q6BZo4Sx2tNRQpoJukPFRnfTQQJYq4iByIyqoq5ECUw6RODNDeuCufKQhze+XhMyhqvTtYIGEgFpkSodiUILnSYNJYz0xwTqQmiKeKBLoXlh0j06bDxjnULOmGwoGfFMMBDzIUV2H8+voGgo1L4SYiK0BWRBkmC2cT0FJGaqwbFW7OY1LqvTilJko/mKh0rZ7ljjFblmzs9nfA5AJb37kjf215Sc2eU9MXaiFrZ2S8gzsYLWgHpgdaAHgj7h7n7j7uVL5v2OX759h/lJ4ODGXG+Y56+CvhLniG8zl+nE9RvO1984rx8i/+mXhU+ePoWUZ/i5cPF7XrgxfXbPr39rR9W32e/3rKsT8xNOp8Y8Haj1HvoQuAuAAjghAAK9XZhCQqNg1lANhChIU4RIlIBpR6Qw50hbnWpn1lroGpC4UUTQeGESEL8QZqe5MeUF6pBML1OieSf5niQKnAjhjiuZUZuY4oW0vECfzXz1tKe68eaceDPP6Bx5Oi/I5MgE6PW4zvXIXhtNoFni/tJIHNn6mXTZEdOBVpx3P1vprYENQXeQM61kml9TOVFDHRCvHWmvsYQP0FqheCGkzGYrmxndZ06np3h/nXIGumB01tY5Y2wxcjlkpJ/YieMVrsKefWlEEYpHajgSryISEnuEp+EpQTJdgVAIEUptmE+IJHYSmWLAaATZhgQ+7wg9kbWSfQOJnJm5xOl9gYTH+sLri8lPUfPwgoVEisZrX/P9bH1C2D3y05coP+X4ab78w3+BZf6lR3565Cce+emRnx756ZGfHuuxfi3q877xV9MNAngdqVFBjTklrC14O2NsJBEOsif4juBKDSvnErFaAaH4EaUyV2XRyDko4olAgjD8EpE9aiMEZs5HFt+z2z7Aak4TQ+IMGqjNKa2waGTfDazQrRN9A8/s8kRfL0QyUhrJMk06HkYSFAY5Jaw7l82IMTKjKJ3WOw2hSabHOFwDYtCHtyTJ6EC6Tw+uFEebMLlT/I6oCslxSRSPSBAkJkLvdIHqieLQRSlEQInq1F4Yu0AdqU50pbVOVwE3XGV4TJqBZHpfCCRidMQ3VhdiTuCKShxJZRKJPiA4SCfAcLU4SMygQisXukJIzrbeYX1Hw6AXklwzxT3ZdhA2kt+xXhp3FyPEhcPVnq12rIxL6XR7y3l3YOuw2+25ijOeOy1c6HJBq3Adr+hZuEinHIXP3im6RqYrZUmV2AuzCocpcb59yRvLm1hrRFWsN9QLSQXPC8UTmybOlxMuR3JO5BzpubGjQ++EVlG7YBRMhWlkYJGaECzQCViIXLbhcbnOe1pIvODMKcIskdr6eKNHcR+rJSKR6BOhDz+F6Oe6w4rHxNpWGpGUdqO72hULK4LR+1hpURnSXWXDvBJCJIQ4UstEkdhBHLcNeUhvM3FqCDRTUh+ib6dDKOAGPj6HWMNtdK3MgSAUE6KCxrE60qWQUsKD07pRvJIlj0NdDJR6eZD/RjxUHKOZ0wmojlQ6l4dfrnRzunc0KoZRuhE1YwSKnJFQmUNCfCaSx8GP4deJQUkOoXc2WaBXxM/kMFaSsOEiQo0H4iKHhGhHJWE2GgbuxtCej6lhaJgl8Bmxh05oDHg4QBcmg24FUeU6zzTpTJOPr/MQaH3huBaIG698pduKxsAJEJtZzoF3To17dWbpzEti2jlPniTstBG0DAl4Sqytoy0yG1zSRomVe7tlssz53cbzcMuSKnN4wrI8Y95FCAcO05GuKzHPvPWBBdfK4cXEJz5duLOJzhnhRD8vvPfCeCvvqJuhqrRaiNcTx/qKqBfmOOTU3cE8oDpCBLpfiCHxEM2JqyBxQkLC+j1uBQ8CmhFm4jlSxAhp41ruyKJcuKbXiLaMccd5BzVMBDO8bqgoPTiSApMm9hJZeiOjXD+7YTfNTDmyWxJXc+T1GJDlKU2v0JCYYyf4hYu8IrDDuyPhQq0OdiBVQCaQK/q5Y9xj9cIrF9b7ja0YYhNLmLGimDS6Kp1Cyy/H80MmtClzmHA2KivVjK0KvSnnkkc32uBiM1aV0JUuL6nxwknPdJnYhadc28SmAfFKjo1lN2FrQfPMdLXntevXoR0xN6LuCY0xReWVsnWWMFEvRoojna9NivXOpIFoCTOFFsm2MLsQaNRcqMs9fnX+/xsMHuv9rS8mP8XYEG6ZQkTKU67O34zEz4z3nkd++pLkJ+qZ16//H1xuT3TVR3565KdHfnrkp0d+euSnx3qs970+7xt/W9gNgXKKeD+RtLJZpacFiyO5KI23J1J+SWvO1huXItSW6fHA2Q2RRugrzsQ9DjEyy+jy4VdoTLgkANQDYith27GbYGUd3QJPrDITcmEvTi6GNMPChLNjahd6q5zbGZsSRz1zjhtR0kMXUAgS8Yd3XMExnPt4oUnFvRMapD66kQTHk7PKSouZzR2mTu+BLDNJndJO2NxIYrR2Go6M6TVI88O6jmEEwrxQAetCb0KzSuuNHBLgYGeiFqxDDHt6Lw/A6oSQ6Dh1ijRPiFzRmgHrcNeEyCbg3bDeCB5QE2JMD2LmiOqQGSuVzp5gM4EJqxtopvdAKpEprOTF8PKKu2PBJ2V/vSPXyv1lJaXE9T4y+YnLq5dYGVhnzVkOV0QzdlNEJKK9MbuPY0FNhLjjvizocqHnO7a109fKel/xaSGnCfHIIQVe3D6n1UxOaaznSBrpVyYkjcyqMN9yR+FUV06nyEHhkBL9kIg6czUvvEhOcWjdSWyIBjRNbF3QvFC8YYfIei/UtSOzk6bA7lLAFJNp0J4YIgHHCSIEXzB3OoWghoiAGE2cLh33TvUVeiOHaUx86ICrpAGJSusCbJg3ggZEOs02QtTRjRbBLY1UrwfQrTiNhquRxBB1oBFEieT/47r2josQU2ajUHvDRUgxgBuNTveIWsPEKV7RsNFToROQ5BAUk45Jw6i4Ki5Odx0C8BhBE6l3Qj9T+5kYEtU3jIpKZLORpBjZ02Rmk0qVM1mG4Dx2xX34lemN5gtLEpZQMa+oR5a+jA4eDRMQjFIrHqG74+KoCoSAS6T2DthI0PQdEic6FWcjyBklEcMEY+FmpOMhWDuQUkHDhZCFGBfmc0Np5HqkrmeiNS73ndaUakJLxi0nAkJukfrSmV9U3rq+YtkVohw5tI1JjDzNrGFFc8LXHSELpZ6Z455cn2BNuFhjO71C0wnTzkHfYroRNARybnzwy49cHS7o7gmf+M/voOWKz2zCJVbsvbdZ/MM8/fAVId2Brxw9scQdUhrSN4J/7jU3MrQ0RgqRgNCrP4QDBFwD3SrCQ5qmynAwIfTdhOf3qM3o6xVujSTOIoXb8II1VnbTzP68cTW9Rp6F/fycQ7rjMH0IlTeYDhcOh1cc5j1z2hHVUYb/KeqblAxbr7yVV87lxOZC6BNT/Dpqe473SrkN4I2UL7y4POHYzmx+pDcD74S0Y1070NGgNN841koK0GJgK4GcwzgkXhaCXVPLLfd24niuXFahh5njduZUzsS80EvFU6Ni1L6RA6hcoSR2/YromZkdMcDpsDEp6G6GkHj35T16yKSrRGmVKxKwsbWNlTheQxBi2nH/8hVOoNYTnkFS4lIv4InQHVRpCdYp4xjxwds0+57Zr98nTHisL7S+uPykYDvUjcvlLf5f//lv801f/d3k5Wcf+elLlJ/K+cN89vL7uNn/JFdv2iM/PfLTIz898tMjPz3y039RL1680J/+6Z/ef+pTn0pvvfVW/d2/+3efrq+v7b/143qs/77q81/1XV+MMX+ro0PAhquytM5ZZ+5iJITMsjauLg1TZZNCTxeECbaJxIQSqD5SuTBDsjKLsK+VGio5HDBGQuwqnXsx7qYXzHFhlkhsmRAYNwQbuFZq7iMuPBgBJVjkXio2Z5rCpk6YJ6iOYyAbzoXuhspIg3OPUJUQEi4CvmFuqFzRWiWEhrDivaK2Q3SHbxs5FSJGVygeca8PUlEjupGlj/F8g+KVkJTSKoggtTH1zmRCtIzHmbU3UlJ6P+PeieLUOkAbVTTMA2JsI+chsHVzBGWfJ1brWGiIXdjljPSR4qXqmMfRsUnj65OQkG7sVCnubOZEzTSP3G8XJhFyjezSEy4b3N9dCLURmNhdHzALvJLCZ3rhg8EBmJeEa0SD0ftKiRsxzFQ7jBWNKVCtkfIZyolDgsOVsYXG+a5xvBy40ivgnjx1wrTxi+/+Ih/84FcgD+4iD4orNIVeOl5O2FWgnhc8OLflPY4r1BbYpyuCJE7liKsQiL+SllZQFmCnQlKnr8/Bj1QBL4W5GNaVqjOenNovWN8YQYkN8YRLZZNOS5WYhoOIHnESMWWsMA5CUhHpBEuIFVQNlY3eHPeIy+gudjO6Oz0YzSreIceJKELAR+vZHZrT1QjBMel0V7CRJmaUIW9WEBmmGqdito1/90Dr4ETQiOYd3i5EnOqN3huNRh94TjfFBELi4RA21lfcwZuNnwOCSmJOe0w6pRtdxpqDYyRpiGemLmRXQjBcC2dvzBxINuHmEByJzmyNWRTVebxeqBK1U2umiGGhEcN4HRlCZTC3sYIhHRSaO6IQe8CC0+VCoxCzU61hbUNZ2IjUqASFUBs5Dj+J9XEowSNLCvQ+8aH9Uy7LSrczr+8L52bUc+WuXXi5nZjjFcf7I1OGKnB8dUTeC8zhwLPrTI4XUjTm7NzsIDRAV5B7KuCmuDtBJ7Z2h6jRy4FVTmi7I8qFgz5lSU+QtOM3vNaJvuN//Wzjy9rrvHx1pMuJTx4/gd6+xdNnVzS5YVczeStobVAb3TqEMA5HMlavdhLAfKSihcDA/kqMz4kiRJ/oAqIXglZut3d4rQfUO/1Q6Siv+cZhPvDl8U3y4cjVXFj6M/bzDk2VJ9evM6VEjALTBZ1X1lJRX7B6Zs4Ba41WAm4CmxGi8a7doaoc5EDfVs79Z9l6ZusTx1qpW0Du9sSy0sOG5E4w5XRRTBPZFdVCk20kWMY0xNr1FQuVtl6xyhV36y11e05dI67PWDejx42137LJRrrZUduZJEIQZa1GmBaaV55yps2duhuTJuqVGZhjYeqKpCccL4m8JWZXaEaOQt2clK8gXWhbJc9P6NYoxelS6KFioZCisisLURJiRgzOJo7vEt1fscmOojOJwIwwi79/pPBYX1B9MfmpeaPJikugT/87H/yqP8559yl28ZGfvlT5SeSKT7/7Pbz25P+J62ce+emRnx756ZGfHvmJR376XP3iL/5i+nW/7td9w6/+s/1+3//hP/yHP//7f//vP/63elyP9d9ffd43/g445kbXiW5CZGYShTixFGXZMilkQDHdUIQd4G0Dc6o73RxJigWhAyGm4bhIgVkT9InkE7F8bilA8RB4lvb0YuBGVyUQWMyIusMxTC+gK0EKWgKimanNWBdWK3jJeFRaHSLfGAz6Bbxg3um9EwUWV1gbRqNoh5QQmfDSx2oLC9iE+IEgo6ucY6fYkSkFpEcsZNQVNSGzZxcnztuKqxBRqld6aLRqoyvdGYlDbtAbWjsS9UFCvI1RcQ/D99EgYlyrowjaT1Q1gh4QFnobKw4hzkRPpB5praNXnb6dCJrQOCM60a1TAVToag8rDRuNMyoBBSY/gDvncmTLTrWRkDabcrlz2iXRp4C1iWkeKxG7mEGcGBJzFWq9x0LEYqKWQvZGlrGOkyUi7aETJkrYH7hU4/nLX+Zml5hn5+Zq4dXtLWuZmA8TqQjehmB3FxfokT6/OQTfWvFppSQ4HTvuB9aLYWVlHw80d8ydLRR6v5BkGm6SVgixERkdyxACpoFVjWNccRxpBlTwNtISw0xwHb4asdF59gpuRDWyV7RCsoUYd1RzSi1oWBF1NHTcHyCrNzbrRE0DCM0IIlgYXVwzw4NgXhGvqAQmV2iMFRsH14gID4+vIChiTpA+hNW9stOJ7h0rBQkJ4sTaOmnrJFOCPKQ1hsCBkdAoukd6JImNiQnd4b0QxxVIePgnDtUdd0AS1jZaG4c5EIJ3hM7khZ2PtZ3iiRgj0TJq6WHlpdN1XOetdcyUkAPQkNQp7YSGPFLTPGCS6D0T+0QMnc4ZvBN7IDDT+zioEjvWGiAgC+1z6X+a6N2x7iRXsgaqH4lyIMY9VldooJLQYGhrw0mkmbhTkl/YzXsmX9j1PbYZkiKX8wV8RTG63VD7wqff21DtXO0SyZXzHNmHxGUOaKzsdhOkhWzHcbgOka0XsjaKGXreE/WKVZRbu1DzyhJvCaK8tZzI7YRI4LgK5VR49XYkxmvibmGOkc2ObNrxnIYzzOEgga0XuoBZH+mIIrhWonfEIolEDIpGo/s9WSOLTHyV7vnQ1QTxjvZaYzfPfESf4TKx3wWmPFHDCVkM50jWinqhmSGTs7ULWpVduBmvPznQEDaJ1AgBZ2oR2WZOR7AKx7qx2obXr+BUN6pdSBkoK5Mod6kSEWQTRIQ5h3ENBMU0Yw9rZU5iW43S3+K4NaRe0frMCy6sCNTGtNtYWUGMswfQmVwKUiMZhdZ5Nu+RKaKTMO9AQ2XcWdnjnlEE4QJrI4Yd1AuZTkoKuqIkiJXNjnQmNM9IWdmbcFqHYHokVTrWje6QdMjdJw1QLuy3zhwXHEWDsywzOWfSdHh/KOGxvuD6YvKT9E5M43XXc+GD+18Y/GTyyE9fovy0mweKLzHjj/z0yE+P/PTIT4/89MhPv6ru7u70v/6z0+kUPvaxj33V22+//TP/LR7T/9lqrSEiv5Lj8Fj/berzvvF3TlcYkdETSqCdSqFiWMpo2LE2g96JtnFBEEmIHDircJegq4JfiPXMEz1wvewhCk0qtxFmCQS9MMdxp32xiX1IdAeNTg2NFhTpgdwTEjutKr1mVHcEFeiZ4o3oivdGs8IBME9cQgVZcXfcHZWMSkQ80SVSpCL9PJLgZEdFsHYiUogCTqKTMBFaD8QQ8eCsqzN14UoipzDEuTonZI6cfUOWHeG0MstEs4keE7f1HrVGo1LCxtZvyRoJKljZIfqMro0kkSBG6wWNhmhHMNSnMaYfEqITbsZGo4qNADANbBqxrNS1QlXitMPI1DY6VYhDMHrvmAmqE52NjtLJuN0gFGo7E2TCm4A2TJTigbIatTilJ2qYx3XSMmsPRElEj5jPVAKtd4IkvAsmM601YlBcjK1daMGJs6F+ovornm8Tszxh3n0Z7X7m/DLxNF/T/AhhSJtLcNBGMgAnRkPDnthv0H2nxyNtc05+oXvjUjvdhlzbemPphlilJ2OTlTjt6VIIpohPdCDRcXW2VkkhEDTiD4JmDPq2ITkQXShrI6YJB8QnggvaQdxADNVOMSGo4h6xqiTNBG+0EOguiASSCuA0q8QQ6T2AKOZlTHlIxJlQCbgYbhvqNvwrPoGAiuLNiKoEdcw61kG6ISHiqhQb8NakoyqYC8UFF2VtxhwjWQ50E9QL3iradzSLiIzuuUhGWVCJOAXvnRgiUQdou2eaCM0vhBgQAq01ulZ6ECZfEBvga8FxGZ1nz0p3RzHmEGndIEYMZyYTPCB0mjohBAId842+GbMMMbhxwcTxEBDtRFHEFsxmTBoTPnxQ+JB/h063QupAe5ATe6GL0jSzaiTJRjInOHQTsiR03hFduUaZdh1ZTpz3mXNbaCasmzwInFdiN2qrCImXd5EUJuSshFyIt3d8+ObAtd4QpWChsdtfY2XjEDpNCysykvZipFfjXG7YJKE7ZT45b+6UWZ1WA6dL53zZeHa1Z2PlLMpZdlRxZHHwxrlXNGcQpbqiEVJQ1F/yLN8zx4DLwtPovHHIaMpMTxNhNl53mNVx+Urk+gp4zpU5Fk8gRlQhM1GaI2FGucbsiPs9FCczoxbBO9bGQaNcHJeIVGdbL5z7hULmdBnumNI6XSqi72AIiwtUOPaAx0TRW+pq7KYdpzamcqIEaj1wrjPnFdbSKc05bp2TCKWvPFEjy5E1OSczQgQToXukiVH9zKIJlxmPxrGcefb0iqvrBbJTQ6HGzsJMbBOBGW9OdLBQEDHMTrR2pFHoacZ7IqijRHa8RS0R0zOFO9yNqp0mlZgWtGVmF/YxcN4uWIANp6fEtDvQZGWOSsTY54JOK8vhcQPkS6W+mPyUmyPsMINzf8onP/OH+cCb/3dY3n7kpy9RfkphHDIvLcMjPz3y0yM/PfLTIz898tOvqm/4hm/Y/vk//+f/29d//ddvH/nIR+p3fdd3fcXf+3t/78133nknHY9HORwO7/uI4jd/8zf/T7/hN/yGC8A//af/9FmM0b/zO7/z3R/6oR/6tKpyuVzke77nez70kz/5k8/u7+/D13zN11y+//u//1N/8A/+wXuAv/k3/+Zrf/Ev/sWv+JEf+ZFf+L7v+74v/6Vf+qX5P/7H//iz/+k//afpL/yFv/DlP//zPz/HGP1rvuZr1p/4iZ/4xNd+7dcWgB/4gR9444d/+Iffevvtt/OHPvSh8uf+3J/79J/6U3/qxecel4j8lo9//OO/9C/+xb+4+amf+qnrN998s37/93//L//RP/pHb9/v78H/iPV53/jL6sw4bA2xhkyOK0Q1uhScEzklNCz0TQhszBi2DU1sIBCLQxR6jrw2KfvcMRU2h2KVFk6sw4IBQClGOzs9GoSHEWr3ATvSWFIBmxHbI3HH6hdkFs5VwVZSqnRr4EruC0lmKoVGoYbRKdXeWa2wupGDMsWOIbRe2ZrRgFkjsQe8G8UvWKho6Ig7tc6Iv47bik9HZDXEFpLcMPOEur4iT4WWLmjYQT8gcWaTe3Ta8OaUqvQ44w9+kmiVkALNM/3USAI5ZTatrL3SYyAIVBUkgj64UII1svTR2lHoYhCF1E9o3yF9xr1DONKlkdtCpmF6xpPRydD3iAgSVy7yHNOVMAviFe+RRqRFqNLoreAiaEhspwzAy3th9c48FdaoJFUkyHCHAM07zU/EuFEsIG1H1NcIGum9M/czH9q9yamsnO8a58vGEve0rfHqHGj7mYnO7CDVICUaEZMLGhdEZmIw5nBPUOXERlPlnc+2hzQ1QS57pjDTS+d8B/P1TBdDfCQUVgrWBdFA6xnMCTKA3DWAOKU3VECWNBIauzDlTOkdj5nWA6aOa3+QaTesnojzFTgP11MgGKOr6YapYEAxR2moK+jwOgkBRTGGA7Pa6CzCWMdQNcQ6QSLdDRjPE0MRn+kI6B1uQ64eXElWCOJk6QQX3EGIxCrEFhCZMWwI0dno0jFNNH/oookiD5DcTRmvEJGqDcJGjR2rBTwAwwlVBVoCi2DJsJaQYIiOFEV78HOE+uBtMiVIIpAJNYBmNESkO2A4jY5RaKQ8kfsNdhnfe0u39LCBgteNaIoSaN7HKl3I5OYExs+020brK5M8wWxMC6DQY2ENHbaFkBzRBr2jGuiSMRsJeliHfiFp49lVQn1hNWXaTlxRWavStx3taPTLxiU4r8JD2tv9jqcs/MK7F2wO5EV5mjOvnZU5LWzhhERn2gVEjL6tJAu4JnqFXjNBMlE6V5ywJx0vnVo+y3ufPXNYnnA6V3a7K87rkUkveLigUnk979k77EIihMz1kzO79Ca78BuZ5hNXr73HEgQxIe+vMG04K7VmrvJEWYVTe0VcNqxXsk70DtJkdGQreEtISogf0IfDUC3grbL1xGXb0zcfUGkN643YjEUTxUbSZIqZqUeMiTXd4nGmCpzbyhYdyxfm9pTmncuaeH7eOFZAAuG0UmvnXJyYAz7iCwlB2VMhnLmtSqgHFjVMVvrlRNIr5nzDk9y5ngJ1veHtd+7ZzVe8fv0GY2yksoRE7TOzXxMkY3Jm5Yz5gnYDUZyJczvRU0KlsXVlvzxFafhWkPKSqCtRMtEP2GVDL40eCpIjxRr0Cz06a68EjeNA6pC7jvTJmAjLE2QJlDy/P5TwWF9wfTH5KRLRbvTirOsNb7/zbTy9+Z9J+e1HfvoS56cX98LukZ8e+emRnx756ZGfHvnpv6rf9/t+3/E3/sbf+HWf+MQnZrNxY/LX//pff/m1uOn3ufrH//gfv/Yd3/Ed7/3UT/3U//LTP/3T+z/7Z//sRz784Q+X7/3e733vYx/72Id/7ud+bvnxH//xT3zFV3xF/Qf/4B88+bZv+7av+Xf/7t/9x9/8m3/zBrCuq3784x//sh/5kR/5xTfffLO98cYb7bf+1t/6m/7IH/kj7/3ET/zEJ7Ztk3/zb/7NfrgZ4cd//Mef/KW/9Je+4q/+1b/6y3/gD/yBu3/yT/7Jk+/5nu/5dR/+8IfrH/pDf+j+c4/rB3/wBz/4l//yX/7kD/3QD33y4x//+Jt/4k/8ia/6Pb/n9/zMW2+91X+tvhf/o9TnfeMPvWdDIUGSCXVFLLH6iSk6oVfchbMod7GxGEhQyiHSm4IF+j6wxMxOOzlGVhkrB1knElBxugsPm754GrLcmUjrTkBQBxVDU+BSFMHAL7gZbnV4DRCQjqQMtuB6prQypMRUmgjFlWCZzEzSgnBGgtINCgGCowmCgHYlWMDZEOlIrCNiXoRqF2wX2IKy9h1RMyGmIT3VznS4odUNnXZ0U0oVzJWmO4JmVI9or/RwoPZIlIqHC8Ev7InILlE6rG44EzHt6L2P9QBRuo+VAsWYTJCU8Iees7nRmpPiNR5mqikSVuYsWJmIbKiA6YTpAKagTrQILBTbaN2ZNRMsDk+OQ7VOpWM2xsKnFCg+no8vLvecpVE2CPPEFYLOEU1KjvIgOe5sNRFESdJwuX/4egTVsWKxvy74dMdp26gW6VtgPipPdgu11yH67hDE6XnF7Yz4Qq8BQ+kegKfI9B5uzhQ/gK2dHF9xjidyULQ7oUzwYnReZZqR+0b0zrKPXKxQ05logfiQHogLTsfY6OI4EXFIPSCasOa4dAKBhmNJ8d6xoBhKYqV3xQlIEEhwaQ0xJfhIcjPrBPUxvSCOB6P5SMXTONFckdDRsauCexrSZb2gGogWcd9wbbiE0WUjDIF1UgzHraI+ZMLVJxodgmMYEoyWIKjjcsFiw7xgGJVKtTNBHJVE0zDcTRpREp1Op+BypnM3kgBJWNgTNRA1EjQRGY4OMUHEESqBz02RZLpBjwrqFOnEEHBpQAX6w3Ncx/QMQiMQXIh6hGR4mHHdIUTMV8AfJloeHDsxEj0TEdTAVXAFzQFrUJOBCupKJHLlMpw+fRtSchnTK5sIsTuLJBynYXRR3AOTh4d1PpAY6blQFF5cOpc586H9jstpYzUg7TiWjTYrF3MO28TlVHnn1YYcIMXGG8sTbtbEPnXmRYaXq91ylfYoytEip/XE1Q5O28aTJVLY6L1yvn2PpBPGxltvNHo3Xp93fO2bNzwNlatZSVkhREJ+nc0KcT6SsiL3GWePTYkaK1lnUj0Q0h2tDXfZdco0KkLG256oilujmTFNkVIb59pZHdYOdYO+CmUVzCpe1/FzYLy+R3GCFhobt6my7RNHO6GlMqswlyfUMvFqyZz1Ql5Xnt9fOK7XWDfujyt5esq22Zjq0A1LnRqcmDu1H9m8kuIeqUbXgO0D+xjY6UKXA+fLAZHCm/tXMDcu68zxZUWWyuG1a3pW6BNRdqjDTZkRhx6MLSbOqpA2CNestRHnzLt2Il855EoyZ2tvk2i4wHmrXJqy+gtiBKkTomOaIocJU6EuE9t2QUJArDO5kLqzznskTaQpE3RmlsyV7t4fSnisL7y+iPy0CeQZvDl1HQoOzAn9kZ++VPnp8iv8dAdy+8hPj/z0yE+P/PTIT4/89F9Ua01+/ud//r+4I3k4/NqOJn7gAx8of/fv/t1fVlW+8Ru/cfvZn/3Z5W//7b/91rd+67fe/aN/9I9e//mf//mf+cqv/MoK8Ff+yl9551/+y39586M/+qOv//AP//CnPveY/9bf+lu/9C3f8i0XgHfeeSccj8fwrd/6ra++7uu+bgP4pm/6pvVzf99f/+t//QPf/u3f/vzP//k//y7AN3zDN7zzb//tv91//OMff+tX3/j7ju/4jvf+5J/8ky8A/sbf+Buf+vt//++/+a//9b/ef/u3f/vdr+X343+E+rxv/HWZqV7wydhNjm6VZJ3cIzEmChubF1aGT0PXK1ZPlH1kabAvBd81NoHSMjMZ7c7qjS0JIkYsjuaJzvjZejIkdAJCtU4IEbrRe8Wz41wTZAPuCL2RwwzMqL6i2Ib5FcV3eOp4eAldoCvQcWtUA5FIdiOFTiNSvNFQRASXQGuKVIiSxwqCDIfIKpE5RcyPEFacK7w95ZxuUS+ElKixoBku9oobiQRrpGRsOLMdSTJjPqy/lRVHHhLoJvDxhnjPxhrBk4x1hNJIvn9YZxDcDPFOVGVVR9VHAp0ZEKgitNYJcgG9w+RC6pFse9yN7oqJUL3SrKEhM0wlHY1DmKyf8+WIETzSbEi9o4L3Qq8dDyOQpeuF+7oSuwzh7LaguaJB2U17JGU8O4Vb5jSjMuPVqL4i2Sg22oSH5YZkM6FX2rnjdibUEzc9cbttWJ4JJEJTaghAxd2AE+JGkI2KguzH9EI4s9kJWy/Meaa1jsvo7mwNzJ1Lk5GyaCPVT+uJqR1RmRERVANmnU4dUwI4zX0kxQXBacQk1Ae4MuugEy5KcQGdYLsnxeFWqpxAlS02ckkkUaLIw3XmdG80USSM9Q71QNJI9c6ikdg6HiqdDXfHELpnokdwQxkXrEvHxOjd0RDHOkgf4KtA1ddobKAd9fGcqGEiyzQE7Tp8MG4MJ09PiA5odM90i6hGhAp2RJqjBr3PiC00FVwaAZDe8Q7Rx2GgYg9y5I4Hf1gbCXhSegyYd5o0+udWtGwd3WHCuL48gQaiNrBtSNeTDB+RRRBFiYhMY32nO0pnRtFeCN2G/wlw7cQYqPVMjQohEYoyt8CEYNFYewHvJMlIM2ow1I1gQzLeJFJECcQxHQH0tKeHTLMTFk64nElzol858ZmzlEbaKlw6LzdhmiYupxObh/E8PjonN14dlWjCde68eSPEtvL02klSSOKoOBKEU70lZUe7MotyrkYKirTOTKfQafPCs8MVN3mHTid4rUN+l+A7oj1BxbHwktKVECcWL2i9YBbpUahhwy535Ckjvh9ploGRWBgCl63Tu9M7nF+daa1TamCTwMk2vBZSF6xlmgQIRgojfbNbJQC1VEqeucQdjciuKTetk3vhk34PdxvPX0ycV9j1PXfhinu9o8lKmCHXwhwnjJXexiFO1Yh0VAu7PJP3jbBPHK5f4xQvWL1nlj1BM7zcePd5oatz49est2eO/kl2b+7wxTjqypKeYC1CB58K4hfMHOOKrDMiG1oqOQa20z2xFtgdaG0hq4MXSjfOt426QbgyOkdCDGxHxzUhBlqcKAHvlbWeITSqbOjktDQj6QqdIGRj2e/IYQQpPNaXRn0x+enEhkshZUHiw5nARnDHIz99qfLT2GLqunJfXz7y0yM/PfLTIz898tMjP/0XNc+z/7N/9s9+7hd+4RfyT/7kTz79V//qX938h//wH/Y/8zM/M33DN3zD9mvxd37TN33TSfX/0Av+jt/xO05/5+/8nbf+/b//90vvnd/0m37T1//qjy+lyNOnT9vnfp9S8t/+23/75XO/f+utt/q3fdu3Pf/Df/gPf+3v/J2/8+53/a7fdfed3/mdLz/ykY9UgP/8n//z/LGPfezdX/05v+VbvuX4oz/6o2/96j/7xm/8xl/5nNfX13Y4HPrbb7+d3rcv/H/g+vxTfckkBy0rOwzvgAtNI7U6bXOmvBB9dNdaDmzq1NY5pInrEMFWjlIpjDHqRCC4UWMd4lcylgIyYr8Qd2bJdGl4UCREQhvj/02EjCC9Ie64Cc0DHWGanuGslDrT24S4of1I6XesreMSmWQihEQkgzWsG64zIQYmIl4brW8kWRH5/7D3J7HWbtlZLviMMeac37fW2nv/xTkR4TJs4+QmmeJiKy1jiSobZINagAFhC6cQINFADgkDMjJcJCMESDQsiqSRDZAoGsC1QUCHQpcOxsihFEZJ3gvmGjA4HcWJc/5i77XW981ijGzMHU4wxQ1wOIgr9jid86//33tV31rznXOM93mDSII8Wm5UjCiV5JA5UsdKD0fsLbpnTrnzoWXjNjdaV5KuuCV6v3Kz3lC3itAY1SAWkio63mcpQY9GV2OTBSehupDpj+JTKKlgu6P4HMcXUEAA1ymWkkzbQk7TPqI9kXPQUbqvXKow3JEoJIwUQdGOqWORwQ+08cjfiIkgnimBjRF9CuMIchK6D3rfWZif8xu3yTMBtBkPZIggkbh/c6GcjrTcWMtzujs1BksKtDh9XMkpo0Nor96ySmJJib46n94a77WOPQir6iPHaEzLQ++IpNm31I7GAeHELq/xceRI5qF9grIYXm8hFsa4kNYEq1MSuDQ+c/8aS4WxVWhwTDcsKrjP56k2wAcajqZEq4OcFkYEXQQE2miQFGgkB1pDpeA4iOByROWIiRB9x3uQsWn5EZk/4zNFrYbQR6DSkRgULcgQsgg4hAtqSnZFU2FEfoQ+O8SBpIcpXD/bBfdAk1K9IgZZE/s+OMrOFtcJDB+JNQo3rSApaD7QyNhYMBGQioojITyivCFAZF6TC0LCwAUb8zlEAN7REXgKPAldHe8NbHZ6eXwNRBKoceiPyXcCiJAizQaANibafl7rIxRPoB4cbSVb4tI7LfTx2ja6KCFBQ5BwEiChbFpQGqLgoeSeKAMe7DwtPAEaGQQ2dUpcER0EirswZLKNomRoMVlEJjiBjAEo4lAcYgjYgd0WagpePl+5LY73ih4PcDL6PnheM+dWuT8a29hp9w+cQthIbL1i2bi0ndfvVU668GNv3+WFrtwegutY6OmEYbTWWW1BXLgtnYf+hlQCumKaWRejUPnU20qlcbstPNfnvLw7oPk1yTIe73I4HPDlFcoF3BkdpK9oFY7lyOtrhfQlcy3oP07tb7heV87naaEA43KeHX7pD1QRqh7JTch0kg2qMVMMa6csKwxlscIxHagDlnvlYU9ctuCVdx7GxqdcWRyOLvTuvKc73TMJuI4r+XSg7XNTTwEON4QZKXeyDoo+Zz28y8kG+AXzxLG9ZJQvm16quPL8eRDnDX9ryBuleXD48Dt8qBzINj+vOQbFMh6DPQeLrEgbKJXsAQ65N9QO8ACn7Tly84zsheSDcnjBpz94j/v7D3j2Ujm8yBzGSxIv+eTr8+MmeSNlo8TCdWuccmLzhmnhdFjnBqXtvLy7IS0rYZldDVu/uODU/y3XF1Q/aQJpSCjlUeJFkjmN8qSfvkj1U+PC1E8e/Uk/PemnJ/30pJ940k9P+umz9clPftK+7/u+79mv//W//s0v/+W//P56verf+3t/7xnAmzdvvuBpGff392pm/MAP/MD//JPDOu7u7n7Cbrssi//bB4cA/+P/+D/+q+///u//1N/8m3/z2fd93/e9/KN/9I9++V//63/9h3/xL/7F58/1/nPO/569+bP256f6T9fnfPDneeMwnLTPrmnTlRoLr5eGDKWkI6VD7w1PiYNv3MhgGzOF6H1ZgYXVjGN0mnQwIQE+dgSnJ2X3io55kYwGVwaRYjaaeyWFoqoQjnHGrGGWqTWx+8rMw0uYJaTONK6EgyeUF4RO+G1GMYTRO/4I5x2tEm5gkJkL3DCl06kxWTcWRtZMHivhZ9DBSOvsAnEl50zJN5gsbHtlYOgyu93ESoy5mCzpjhEduIAGiytJMiE6GSCpszFIvrKMheI+xY0KFg33xmAgaS7GAKeA8CCbYkBy6C54HrjsEBlNx8mX8QtZnOS3lPGMJd5h+AOdN/S4MMa0rmRdaLGTykwVs5FwS8Dsks9IqES0Oq8TFJZbeq9YCI0rFk5VhbTS9kEbQd0Xkl8pcaGbkfIdgxNhG3DBZJBKYq+dEgtJjRadt+eddHNLEuNMRcuBpR+JCIR7TB7gcVrBSIzoaAe2Ay0JpoONhW6GmTG8U2Jj0caXPFdev70Hg7TcsDW4b4nFdHaoJQgVJDIWGREHlC6ABm00zIxaK5Fk8nkYlBDUEq7C2U60EaQ0Bat3MAquRozZSSYGLvO1FJnsExXFVIjeMAR04KJY3JLiiAwQGjUuVB2oHQktj13eYNFM0szed1LKIE7voLbQZTAesfMdA8kQCbEHTPrs54qiATkaJlO8Va9YGkiuOIZHYdEjyXdGVFzvcRoyjCVOLKWQS56MqBikJDh1CgpXwAhNDJ2dYdMy0+B0IdI6n68Kqg2GP27apn3lkAvSz1x5S6wJWiG1AwsrokoVY0iQUkKZUyeFRpPGsABL1A49FPeF7LC4YUO5yuCinfsQwhayTzvQwhTAV4yqBgNUE+aD8EbSaSXbDRqDHlDrwn49sh0yiySWZIwBwxL9BONF5/aauN02tpJ5/+Wk8JxeHeC+YbFz0SsPkXhoCZHGQwwOlyvJFqScMX2fNZ/oVTiUyYsxu8P7oDM4FLjJO2vaWNIJuR5YHm6pffCJDypSLsjqjDQ4Pgvu7EPkpIS+Ja9npFfGtnD/Wjhz5mH8r1zeGjpWtvNLJAcZYcTGzgXVQeh8jw1jsYrKBIkneZc2GlEuNAbXVvGeOe+Va9349J6Iq1HkBfcV3trKVgxa4yEZTTspD64Ipx1uTrfYcPwKy/GOHgM9FdYlkQjMgmTBwQ1RRxmkg0Ku1NG45g20UraGFmP5sluun1p57/WVUeBLj+8yWmHJhTY6VYQ4FCLO6MOBXO7o44qnVwytxMiM8gKkMdJrXH6cZ2tmSRmLxOXy42z1/8s7H3qH1W7Ra+dkBWPljVZ2FoQTrStdg56D6IMlbtGhHOrK88OBvFxI0sj5iOryeB3+lPXBU32e6gupn6zPKZ3uzt7nRdAi2J700xexfpqHjE/66Uk/PemnJ/30pJ+e9NNPrj/35/7cy+/8zu/86O/4Hb/j37n97u5ufMM3fMP1P/JjP+X6R//oH53+7T//wA/8wOmrvuqr9m/6pm+6jDH4xCc+kX/JL/klD/+5v/fn//yff/35P//nX//IH/kjn/z6r//6n/Xn//yff/mLf/EvPn/t137t9g/+wT+4+fZv//b3/637vPmZP/Nn/rQ9x//W6nM++Lu5TDizqLL5hW6d+35hbSe8KirG2S9o6hztQAxh0LDc0IDHlRiJBJy4snMmyJpI7YgJbL6TvFPahPypC90GyQ9kHYyoMwpaZCaRtUqXSjelpkJXaL7xoINTOeLXyt7v2WQjqByGsCpMwgkoSjweRAvC2mc3TKLSxUGDGIPhnYFhcsAkk3Lhbb2y6jOggmwkBjYOrNlR3mLrc9oAkYyPK3RlyYUaZxqN6lcqbY5NDyXnxN4qOSl5CPTAfUXkhCTBuILviCsqhf4oeAVhxI5HInugYowWYDo77WoMaQxpqAvH0RBtvK2Cs1IRPDayJATAFdWBJUHsMZGpboBRhiB9jsOHGa0NxhA0LZMxAzB2pBeSCzHuuSkvacMJB9dOY6c3B60EG+GN0VdSL1S/kHTQ9ivL6UDbGikHpAvLs8bxkNjf7rx/bxxZSNm4kaCOC0OPLNxiQ2cnMQ0yHRXHk2OHwWgVsZ3c3pL0FovTTCXEGRVuypE2nOvY8X0j64G7ZaG1C5jTmPwbC0WGoyETvE1jhGNZGX2+BybOUIeisyuJMiSwfsVoCAFxBRRJAcPwcGaMnU+WzxiEFiJmClmXgSQnxYLGwni0tYRApxKpUceOi4EVAkX7RvJB1syIholhHgzGI29H6A7YhENvnkipU/R9XBdC1snGkY76QIYQERMuPByhzo2T39AlMGt42+h5cPaBNqGEELJzjp07PT1ClQ3JK/T+CNkWyjCSwtCdbe2UnDEX+Gxfx4NOeYRgN4IdS4rvxmYNSY2qMhMDWYDMiB2kP1rABLGCSKb1jqriUfDaH20DU6AXXwndaV5JklhQhIWmHQ9HxOmp0Z0J/Q5Bc9CiwTAyB7pOeH93SGYstXGIwVbfklNwk59hCh6VkgWi43uHZphkWApHccpyoHqjfuQZy3pBx8Z7AdYcfXvlMoKzZe5dwCvWMyM+xE3LLAS5DbIMklaORVgWYy0GqyCh0AzPjV1eYwamCeKW2ILOA+36iqb3uB1ZbjO9n9F2ZZydlr6EaztQ/YLFjnsw0pxiKPsgZacVI2pGeQGRKAF+vUByHuIVV3+Ptxdjfzhyf3W2egAv1P0eTUcuw1DJYMGVRgrjeTtMoT/mhA+LkkW4psDKzqkcMG9EuiLHTFoKZplclfBHuHh0Wr9wUVivmfX+QE6Dks9EBiShdWVpxiXuGfE+vT3wUIVDeRdzow9YDgeufcfMOR7uGeIz2VDHtFW60GWQUd5Up+uCRqZpQgm2tzuiJ3R5h70ZdxhlBNU3bNmILRMcOWujy5U0DXoUIMkONqfDCONZPpKlEE0oNxnRnxbnx1P9F9QXUj+lvoILwzrjcfeSSNPq+qSfvij1k+obbg5/FI1/TXR50k9P+ulJPz3ppyf99KSffqK++qu/+t97QC9fvux/4S/8hR85Ho8/beEen/jEJ8pv+22/7Su+/du//b1/+A//4enP/tk/++Hv/u7v/jc/5+f8nP1X/apf9cFv/a2/9Wv+8B/+w//mm77pmy6f+MQn0t/+23/77uu+7uuuv/E3/sb/YMLuP/2n/7T8yT/5Jz/0a37Nr3n90Y9+tP2Tf/JP1h/90R9dvuVbvuV9gN/5O3/nJ3/Lb/ktP+Prv/7rL7/sl/2yt9/7vd/7/G//7b/94q/9tb/2wz9dz/G/tfrcrb7WeJM6rk52xTWxJSV65UAiqbPb/Ps6rsQ6CG307qRQFkt4bUR0ugbZQCMwBzelJYh9UKSz5cl5NB3cIWzayQZ1d0AYNiDBcV9oKeM5Ax3pr7mRC+G3CJVInVp3BnNEe7gyRGgq1ACNPoUCwIBdB+iY4+zDsbksT/uEg+gki9z3KyyV3a+giRrgkSm60irY0tlrIrSAVhiJXE4M2divhdoOeFxJKogWhk9+h4WRWXE70HrDowJvUQKkM2EFwsgbPjZKmgJ1bw2XjO/Gui6M1ghxOMz0MrMEpNmjDyeolBz04QjGUGFwhbhMQSUJzdNi0NvOcV2o9cxImbFClwoMRjgdxZLRY078DZsMoTUbEYk6hJ4N8U7zK5fkCEEZ9zPBUFZ2d5wPwATVzLBOxJXhlaFGWY5kXlJYGTcPvL0q1y2x7k5hcLMauz+gzai9MApc5ErhlpXOQ9l4Hfe88MR5bBQtoEJtZ4YXxDeWEqgZEgVxR9SIaIScEb0SoUgcwJWZ+LbjorgUWuy4dIyMSwYthFe6N4jGoj7FfuzcDCFEoQsDmayXGAyuiE6rxrzNMYVsig9h7NMupSoM36cITYkRjw9JY046mNJJLGOQPCCCnTGnH8QeE+Q6QZvXhYNwRhmMENwa1TrVFlI4MHACl4ZYB4Sm4GGMCikSxYXsBdGFUXeyHAlp9LY9Pg/FxxSo0gclKeqTp9RjZbQKpjMBblRSFkIOtGEzRTGu9Njna0EgcUDGCpEgKtiZngORTNpXVG6oBJdDI0egVad1SpXwSphjCUabyX9JnRROFgUXLr7R5QxpJ3QFX2hh87HnjMXcWIYqXZwknRiNQ1JGvyI0lhy0cHzZGdqQJshY2R7ecDplJN2TRhBFuaQJWr+RwpZ2rtEpS2HcX7mVwjIyr5e3yM2K6od5l+ds4xX92WveuULbrtw/NK5hnN3oOfMQBe3BMpyCs8rOM+nIHkRdqaOiByV6Y+Tg2p2kK5YHvX3AYgurLtS98Tr9MLQXHPUjjL7QNgMvcIGeroy4MkbncFL6boQFY91o7Jxb5iAv2IfjdsEb7Beo9YbruOHNLlQ1riLsbX4/iwHlbnKy5IJ6RaIjZX4Pbr3RU2eJI4exsB4Te6nsaXCyhWUMCjMtMbQQY+aidlVEMpaCC/uc+MEm56gGuc0NdqUzPOEpcW079w/3PLt7wV4X2n1iT53xEUe1kfaGqrBn5cA9ZokujVo3HCGZguw4ykMdUA7YIkR8wM4N51YmuwrHypX2yHPa+2CrHR+NNe+IwvBEHyuf6Tu3qbHWt6z6glfN+dAJrmOQDguRGi5Cb/+uveKp/uvVF1I/ncuFQXAzlM+26rOBjSf99MWqnxKfIMn/kxBjDH3ST0/66Uk/PemnJ/30pJ9+on7Db/gNb3/RL/pFP/T3//7fP7169cq+6qu+qv7CX/gLL4fD4aft0A/g1/7aX/v+9XrVX/ALfsH/SVX5rb/1t376d/2u3/UZgL/8l//yv/q9v/f3ful3fdd3feWnP/3p/OLFi/71X//151/za37Nf/DQD+B0OvkP//APr9/6rd/6ta9fv04f+tCH2m/+zb/5vd/9u3/3ewDf9m3f9vrHf/zH/82f+lN/6iO///f//q/88i//8vrH//gf/5e/4lf8ivv/2O98qv+8+pwP/j6N0jXPzlbAQuUdXYCVasGIxlESUhtNQaKgsdKZGVINRxZl8SB8oycIFPPZgQ4H8UwtgvkUk6+XwZvkLFEJUVI2aldChBadh6NjNhDdMHduUiH2jPaG88AiwUqdCXIkQoSLD66PiXnZhOFT5IkmtDdSOBGdkYRhxtgrSiLnIyJGZ4oa8yNk2OnsfackZdQHkj1H7cR1B7cOGFEVrhdCK6giCUIaFoUaTvfglI2CMkalP+aejdjBr5hO6CtMGVF7RcZgiYSOyX9wgLWwh087ixrujmkhJ6H5Pr/IW+C+Y8lgZEI2hu5zPN9uWErDY2evTh9gSejS6SmINBB3jI7GgDxT2rrXRzH7eFElUJk2iKZnDh12FVJOvMPKJkZ55Kh0wO01oheyFPYwPM2kKqEzaucqSk+CZFhS4vkNPOyvebjupOsNKiecM6UEmjNiR9Y4gcN9GZQG5k4rB07XExf/ALXGspyQEPKjbaj7BfQCOjBjAqT9PBkraiAVeUx6c5l8pSwXZDjuCVNlSCO0oppnB9pnh9O9032jHlaaB51EUFAJlEDd0UgoC+IJmN1gfMdUEUl0OoOOpIE6KMbwaQMIhB4DI5EiYxJEdAjIKaGJOSmAoKIQ9hOj7CMl8IJJnt32ZuR2x82oqBqYElrpfceHs/i8QnemNWOIMvKgxCB5Ynhn34IkK2HBZd9mJ9QS3Qqe8wSxm8DYGVSqGZDnNIAYx60iqlgpSEq0EIbpZOSwo9GQ+Oy3C+RulCikKGAJicoIR0dCfZmbh+gTHjwu83NsJxKGWhB9Z6BQ4aCJSEea3DGGEb2RpTF0JkCGGxIyYeBq5DbTKwcdpNJ1Z4gT4SSD/bKxpBdcNmVvhXfKcwglctCt43Q0Cy6ZPJgTAfWKZGEb0NOcqthTYBKsTbm1A80utEUpXfnyZwmJxKfu7/mgbuAVSY3h20ySbJnPtOcot1zPCvef4eWpcqeB3SRergXtF7bWWW9uGUN5qM6SjhT9MkyE1B4Qr1R3sBM6dlKslHw7px0uoKuT6kB8o8tO74k358rW3/LWM5eto3RqG7RY2fUOGcB4Q14cITN6ISdjsLN7IL2zLhlVqNGQArIWSiqczFhs8Ex0Wq/80xRWVI7sPRhpJxkcdWEXQwPM51RLtsFN20GNV8fBKAnxThkDonOtV7rBSK9ZDplnz5/z5tVb4uFMSp2b25WSjUEji8M4sG9CxJFitwwPoieKB7Io4Z9CBLTDwkqNN3h9xe3hBYfxQLKNIKN2wKuypIXkgsUE32vuiH1Aiiue7kA/RKQVLTvnU+busLCOTs4x14Dy/L9UFzzV57m+oPppdGoK3i+K73NPENKf9BNfvPrJ5Ui0/xs5/QApnZ/005N+etJPT/rpST896ad/p77kS75kfKFTa3PO8Wf+zJ/5N8C//sl/tyxLfM/3fM+Pf8/3fM+P/4d+9mMf+9j7H/vYx97/t2/7yq/8yv53/s7f+ZH/1H1+53d+53vf+Z3f+d5/7O8j4v/1k2+7v7//of/U73yq/399zgd/ROcUGUaihrNF4kYni+VAo7vTfDB0IRIUU8aYC4uyIzSKJnwYEZmjJoYIVRwbBmMQOeMiqM6HddMTfjB0dNroYMsj38PAO0KljIVlLIx2YZcLFCX7HBGvPth7nYskA5FMyFxkkMFg4I9dQga4TB5EMNAwighRAvDJJ8HxCFTml1+rhqhgdkZjUHSh+Vs83VDljI8FGe+SYiN4A74QembIG/a2c7CXjDFft5Y6irP3KwPH8sKIif9NmjExuo8p4PXlFDND8RakpeC9suUOvSPhrAhHKWRVem+z0x2CmGGpPN7Wp/VlCCpzfLvWIEYjJ8U0MVS4tooeCt0HxUGHQCiaEzkZXjvijyDsmAlhPXayQu/gHKAvUGG3Hc2d0EzrO4NGSjs5II9ESHrs6NZ5/wxGHfT+QB+DF+kZx6VjufEgwmV02sN7HFLBciJro9VXFL1BJdPGlRKOibNHI5mifjtT3IbT9sbhcEB1bgi6Q2sgUqZowxlMERh6mcwVWZG4Y4zO4vckTkB5tBedJ8SbW5CYXWh0dlcxmnQ2h0DIZjAcE6bdQ2ZHOKITEcBjmlw0RjBtMWl+rmZ2H9OSpBASqCuJROrCJjsDIemMrZdLJeWCuGKWcAcfjpmy4zhXinTyOJLHYPUNlU644sDwSo82r/8+NxXqCR0LEY9WCzpigmugo08r2eg4gyMn0IK6EW44g946RR5IKZieMUW00ENR3VCdwG9hJlKqOz29wTlg3ICXR/D1gqmABBfdaXZm98YaKxZCtp1AiQamB1xX9nFFkqMRdA+aDrIqZclITDHSYmNoevx3YwLUe8UlkyzhBKpKTSumB9p+TylgURl1IHqHtCN9XIlsvNo+gR2FxRIrg64D8eDG52ZlYz6HLCuG0IdDWrm6cGgDTxWROl8LWTF9hxJHNi5clgvYTjklviJesO3O9XKltkwfwr4HexciXnNpZ8yNywfKM1bqe5W7Mnh28xzNFw6jsyTnkJXeOuZfhtgZyw+PMPUFOBJymtazsVPrlUri/lUm1ZVtU1574jIW4rxAOrIn6KOSsuPWGTHw9AZ7BIbHSJRsVG+MFvQmeAzMlIfe6Ay0BycrfMSOiDgtHqjq5FhZ5YZhX0pvlWSBpn0ylnoldKA6JpfGC4eAwwigs0sFgdUTuT8GLMigm/Pm4e2cznAhQnnx7ksezq+5vPmAup0oL24o6+DGB07CH9M7mxujT2tYY16jby+N9XQiJKEp0HHg2t5SjpmTZVp0IikpFYZU9rgQesBtYZedHm85jMEzjuw7tGXjob7hy+LIXbshJ2fjjN2daOI8Hmc81RdDfQH1U1LlWQtaKA/HT/Ezvvp/QO3H6GZP+umLVD+5/x+43P8/eHb3a0n5Hz/ppyf99KSfnvTTk3560k9P9VSf9/rcGX/cksUeORdKHYOqDklIfXZJWyhRViQGHmN27KShuj92OZUIm8lSGhzCOCE8WOcz7CxpCshrmoy/HHBSI9VGJ4ikoEJ5BOWGFvqeGOlAy86VezxVTvECYmW/NsbISBL21Gd3PAQTCO90h54W0ILFYI1E9kbzPm0ZWpCeWE4ntjYwSaQY7JfX5JKJsSO+svIOPqYNwPI9p9OHWdY0LTs1SP2EhSByIlKixmse+CTCAYkLyYT+mIRLNuiKaMYf+Rd4wd1mB1sbJv7YSYTus8ue2Oko5Pl/mHBcDPWZEtYc1ApEYquB5JUhQbs4WRK5xAQea2GIIckZfQCZtRzooyMBKYzoGcxoMZPhliw/Ee4hJoxkRCw0jJ5uuXplIVhM5+LchaO8Ae2kUFKsiJcpivhs18qRzBSK4ZNz1J1r3ThfL+ipkZcV0UGrSm/OeVfeff4OiUpWeJscXNhHYAh6uYI5knQuoCIs5W7yYYaR7EQqhmwPREBIZsQy7REyO8TEeExkC5CMp1siDB8NAsIKlg6EHwgqwiBicl3CA6vPWYfjIWQKPqa4DTohg6EbTkzhGoaEEkz7ixB4G2isEEZlkLMg4oTPsXswPCmPmo+sBQ2n+yTsiAY/8Z86qDP8isSB6EroPWIGtuLpyIgJ3x6SGDKm3cTvUY8Ji/aJeVfpgLO7oSSK3WLD5qSEDSoDZVBdOIaiBmHBpopmHq9zaAbDhCW+HMNxbxjtEZId4LcECrIhVh/tW0bnQCczVCEr4jE3hQEmDhQCY4QxRCEZWQPrwR6VZpnhGWNBx7SurFaJHHh3dB+MdvuYmleIIaQRJIJqTsi05FiADiX5wuAFDSHlK+f9Ded65vnhBpFOs0IjIAVaAAbqysE7tXaiLAwN0Mred8byHJNKYYLBIxaowSKNoGDphl06ulyhvmU9ZZb1GdIzMYzzQ+VSB9tIjBpc+IC9XXCFZje8HTs/9vYTHHTh5s2BYzrw7KYgcuH58YEkjZTv2OuB6wZI5s31TOsv2fYJrn51PXMdH2Zv75GWAw+aqV5551QZETR1yM5DayhpJi2yEbKzyTKTKmWwywM9jBY2OVMtiNqwkmmivPLGQXZWSUgo5vN7TlQ4jyumDcnCGI3kmZUTrXXS6PTk7DiHUUih9OSQKuZz4qIMIUtwHXA4fAjpTm+N9XBDymA5+FB+zrWsfPL913zwQeV4d2I7LTzn8LjhVJIYxTIqna6fYUQmy8O0RNnkliV9jhRj08Euz8hxmA0ukWnvDCOiot5BweQAHoy+YuJkqZRSGHqL8pKlrKQMvRfs5hldvuBBb0/1H6kvpH7a8rQqHkPRciXd/U9sBC7HJ/30RaqftvjHvPzwNyJxfdJPT/rpST896acn/fSkn57qqX5a6nM++IvUOOtAh3M7Fg5NuI7M60Pj7K85KLywE4cmtAhGc9Z8hLJS1djDqXFHWCLalWNNeAT37vSUuRvG0Td2F05jHvwNhQ9VeNOn199JSDKSB7kLLQQpxkiNMXaOfsC228klkAXdYR03jKiYJUIzOMTYJ5tCMsMLvSvURlPBtCDRSZ4pHJHynK1W1ILeGzp21pK5XAQdzwHFsiO5UnchpQOa7kEKDKWUjdNqWFP6cCpHomdE3icvTr+CmdIeLStLPjDqoDUhkjE6tK6kyJQiSFJGTbhmNCVwx5ujoXOhz4EmhWKMJCRRrCtLOjBYMApLesZWNyQf0MMGoxFeqE2RZdByZw8nWaaIoCHU886z58+oreEhWD6wxw6tckiGyow+d8nsoyF5MPrGSqPsmZSfk2XhuF1oUqk6SOqorMg40Ucj8lvEocgCViaQ2Tc8NmiFOvIEx5Y7xlbRa6WkfXaG88ab647fd1ZRbovA+gxVkOaIJba8safK2I7kvHLdN25uHZEdkR2XjNiYyXipI9Zp3KMYFob1A0RBVHENWiR2brFUGXLFI3AKNo4sXojPCl4TQoRkMi0pGtReqdrpMhkzazuBDJxKl0EgqGQWKXh3GEK2NG0sA4ZAlUpGEJzwQNVoEkRyCsA2aH5lNyWyTBT54wSD09CkdAKtLyjZcG+4J0YydgPxAY+xLYEQIYyh5DHF8HDDZU6eWLJH4LvPTc4YFHG6ws7Ak6M2SCIEjhGYKKmf0BjTjjWM7g6LkOyTSDLEMkMzrrc0XZDHzy6ASANxksjk9DiUljGUIoELgFH9OK1oGca4UP1Kt6DU5xhK0kQ2x3vgJHrq5LjF+3GKS2kcjhW/DnJZEFV0BCag7ix+ZewOKdFcqGQk33IJZ8hrRD7N69cX1G9Y5JYsgUrlxoOKcamODuVkBbVEFGUXI2dDrxvv5ud80hrqU/C1tNAtQ3Fey45V59gGpXZYT5z1yNGN5BuRrkSqZAvubOXqO7VdeLV14I79DJcxyGMltRfc152mwqcvO+wbaW28++pCsZUPvfsR9jOc7x9Q6bxfK85n5jXlnSudOHyCWFd6T4QlFh1YVRY5Tm5TuUKulGJozRw58vb+HtJK0pXmwn7Z6WNjzUHpA8eJRekSRHVO5cB5bYgkjnHE22CYsKfBISYTbNSFPYyWZgCBbAVpwVUH1RwjI5aoOr9vjQqe2MU4H5w+Lqw88OzuyNvXV873Snn+HMF4Ha/h2ZGXtyvn9+55/ckz2yHoxwu3NwckYG+NWBSzRhvP0ZxQ/TQ5FXpfUX1Bbp2TMJPyvCF755CcS3UufWEnoXKB2CBu0XFHGx+wl7cUDH9YWE5fwci3nOOAhnPKmReHd5BLcKNPwvWLpb6Q+slMOAt0hbvzC/7FZ/6vPHvxd7BSn/TTF6l+MjvMQylN1HF+0k9P+ulJPz3ppyf99KSf/qvWD/7gD/6z/9qP4ak+//U5H/wdopKbTyZJV0peSfXCO73wjESSIKvQ9itWBHSgsVGGYGQilGgFCcdp+Ninj95BaiC2MOwAfqY8AqPTMF61hi5H1hZ4FWqGMSD3BXKn0eguhC8kPZJNuESlJKGNjc2gd+NuGEjjSqXb7FiLK8kTKUCL0GuQJbMkRVLF7crgDi6vSXkwro2UTqgfOLZO0kRXYeudQaXQubt5waI3SAvudEHI1K2SDHpujOXMdr5APhGuFHeiBiod7xvOdVpIFIoaJEN0gryLJOhlWhM8oO4cRYiuwDrTiXpljcQ75Y6jLFzlSjYl82yCoh+TyQ6WiN5xDjQ/TipOe+BghZSODJ3CIoZDdA5LwvcLKTphA7XG6uBbR6tS8ryUUocbeUYEuAY5KvuiDNuQ9kDKQskr3nYkTRsE/X4ml8VKs87O+6QkJF+RUK4+Ickmg04jqrKWQqud0TpOYuUlL1Nhf/OGqztiL5HnGyVvZAZrCKK3jCFkW8HBbKfuG2sy1MGTUEejV+coC+qFrAVUSSPNTqb0mVLoj5MD3ud0gRSQOgVYu07Yt18RE7on2gDNNxQ/0GvjkBc270AjAZo+IHkhen7k1wxMOsPvp4CRgg9FwnBVYGeRhnUFEtkLI4JsHemOj4Elnal8gEcQDGI0DMUiQy8QCycaUXc0TZh1coXNqcfZTW59Q0XIntHqLEPw0THtLHlnuFMkc+3Q0jL5MePKgZ3eGpYyVEFDubu7I5Nx39AQiifcbFpSLD/aU4REECMwguyOSYAZPWZ33KXiDLLMlK5rOEM7Jc+NQVFnGzsiGVVlI9BQbnIm1QeCBnpm6IJiHIcTcQHdSenEXo2qO5FWxG9pEaRlI7UryR8eX1ND04ERRrUJ7SYKBtAvM60wQ90T46y8WG45JCHnQCLjGEfuUA9223ktV+78hPky2UU2iOXAqx1eMrhEo0lHPGOR6ChrBIkDgpFK4tJ3UjoCgZdCG4FIIS+J5hdOpVDSiWc3Oz0uxItGv6+0q3PfDzy4sF8vLDqoTbhy5Md2WCXz6ctbrCxEG+i4Ug9zkiYxpyPUlbYlhi1INLLvDGA/3hKu3FpQjnd0npOTkzvcv69kCZbTxnLY2S9X1DaWHqxDcQ+Sg6Q5gmGmyLZx3E4cs6DSSI/2ohwL7m9YLXO+PmArZD3i14SfnTdvr+y9IWnw/gFuTokSC0mDZYWhbd5HdZZRMBZuovGhg+LnT7PcGKKFY75Fm2NS8cOZkY376wP3bwuyX3lWppWpStCSoDEY10DjBvFMMhjjTE4DsRN1W3G7cEgbaTzHIuH7a0bfZkgAOq08UUkIUiek/XBb0PyKHK95Fh/mLr1LkkLUB7IkkOPnQyM81eehvpD6adXMUVdqb7x3vePfvPdbeH7z/2GtP/qkn75I9VMqX83Dm9/L7fGPcpP+9ZN+etJPT/rpST896acn/fRUT/V5r8+d8YfSh2B2RJPRzellI+kJ44j3mSDWhjN6sBdFm3DTMnhQx5muO9mOyDgxdNCj/wTsWbM90kAG949BETUa9XTArhuFhKKP4kFYstL6zuqwJePVKnSEL92NsUDXDhKU4eRoVDtjrmQU90Hziqgx9Eodc6zYxpWxnNnXxKKZfnX2YRArXjcWGbBfJjtlyTQfhBlqyqgT1LvIiaIZlzNbO6Ol4IcA7Yy+IR1u1Nm4p/YJIc6WkGGsNrsdoYbHIPq0ooQOajT6SKjO1KNihhGMMSYI15Q+Tqhl9nrFo3HIKxnl0hrZg+ckPJxzONdkGJWkk7sT4dOuEkGKQGOm8iETZly70x1GLkiAx+NBXyko0LZXAHRtDJ22FumBqyMiE9KsE7yLd4oIw52IQOIxQUoM9zE5QqbUUdmHE9mJAEEwnRaE7o2hswMrVRlyodUzw7YJam6N9urMWjrFgm1rOAXUkBjz59QRCbobICTfabURHKljJZsQPjdZwkJJK81heGA5TVh5d0Zv024hQsSY6XY0wjvEgrugIsTo1NgY7BggMl9nccNDcX8EE9MIa1hytM73JKTNz4wyxf5QjAlqxyHCMQx1xXowzKflSgch4/H9uEXUQMajNabhOFkfceg6gcuigpSCthUZkEyRaBCd8I19UepQhgDREVU2F9QSawfpxjVnHqySXDhUuK6JFp2rbghjMl+isImQSHPqQmyK7WiT71EMlcA08LHhQJIzxuT+aMz3IDwwMwjB0AkC7x2SgBj0xPF4orZKlSAOk/90aIH3HRdBFAhBbOGh7iiC2UIfjnNheEZHpurgajtiAVflmReKBI1OBVSN4Y7KIHsju/KpD+5ZdVpWbD0xVGa3PToaFwzj4IOjZSyWyfGJyogrNTXq4pS2gj4jGQQVpbGmTIxCeMFdMXXEr4g3NgN0WghTCNozy7jFfCMpbO2Ip2cEbU5tLDuvo/KZujNujPEwkNcNtoRnqNYYMpC+Tdh6GXQyYsbeKguTn7UsxtDKze1gxAVLJ5Y1o/3KAaW1IC+Fup95sz3w3nnjnXdesqyDnN/SL++hfX7W3DtDVkIarV/RVdj7Pes6U/EiG9YmdHwkyP1KFcFwoGN7kFvj8t6Fh+2Gh30jymvCO9e9MNo7vPvyQ6SjcalXNCdKKMdItNG56KBpYMeV637h1fkVz9cXaGzg83q8KSfMjjy/UV6fX/H64Q2feePcre+y5uNc7+QN7joZVi3o50EhQUlodLb2PrIcGHtiMePV5T3OY4P8jGDBo9Oks5RCtBPEYPSGDMg9kZowni0QmexGwmna6WV8HiTCU31+6gunn17rzkpiRCW/+y/4v5x+KSUSQn7ST1+k+qluQW0/jyYZfdJPT/rpST896acn/fSkn57qqX4a6nO3+obhsjP0AYmE6Ykez/C6kNKCyE4qNqWnNhZPJM10CS6y0Q2yG5lC2EIfF0IdKYbqXIqChb4EuXcANksIhShtJnl5ZYuBmrAnI/XE6oZG5qqF1jvnLijOAw9c7A2SG2k3nBPmGXFBCiQ2fDRaF5RMyQfsrpBGZR2J/Tq4NmHrrzHpFHN6bJS10Edjz44Pxd0RXxC5JSSRlwfcQYQ5lu/Ouhjp6oxxoukNEEg9c/AL+wi6HBgdkhR8DFKSmXylikilS8c1HhdYIdJOxBTLEQXJR1yFkw9CEi1n5LRw0UEHajkRDskTDMX7iotP/s8IbglidK7AxYP0mBY4gHBQS4hlQoWdxlEyGZ1JeQreG5Y+m5o36DiLZBJCl5kIOB5Ffh8D6QNFCBVCFJEpmNyFrDfUvtNlkFNGH4WXmmARZKYgky4gkw1SLKNxYlBpBJqNS32fu/oSr1dGCZJlIhXqCBgbJhkkaN2JTRFdeNYzS4OmgyhC08ooDi3AB0MVywsWg+iDPjqDgarRe0VskFKm7pWIhlrGdKHuoGakNDjrW5BKzsa1jbnxsyNymYBwtYHYYNDmtao3gOHD8ehIKCkpuwVVBjUCwgkRFCH5BKdHyWwiuBrG3OxpL8xecCdwRjjNGyYVMQUxWotHKPdKSoMRjolN4SYLKS80D1q9YgbeMpIWBisWg+IbZQleyz3348rN4YB5osXAtLHkRFkmU2iLaWFJDosmkGD0TlkC8TsSRyQUBhMGbQs7s4OnXlCZMPsuOzcOx8/aR2TQosxNkRpNBtqvSGuQQCUzOphOe1DovBZbn73BZd1hXKc4GrNznCLND0McQVZcg7CNzRpndWhCHkY2I/XBRYNeBl4bezPWNaGHAcXoPVgTuDsuDQuBERQJxvgEnibfyWOybpaAXQbIgTEcYyOnwB02/QDhRJJb1lIockNKBQ+oj98pMSDoWNnxcIYkIq6MuOIS7PmIpVvWbnzpcqKI86mHznk0PDfEjvTUCZUJsk9GTY6Ne1QdWQYmGy+eL4Q2el5Z8g0qz5Ay7TtebyCcm5szzRrnrfBjn1y4e/fDlJeGXldSPyD74CPvFtaD8frNA0OUh1cbuay0AcTC0AymlKF4ykRKrKG4OiEHzjHoWXFVXm2D173i8uPseqZYQfUGH8p7lwtXPsFXHD6Ee7Bm4Urj0zgSg/ywk44H8pKwdeWDhwv59pbbUxB2BTey3FEvOyaNd49CPz7jWo23n+m0h42btNKXK1sIXRzFqWMn2+BTPeirkh+u9Lcd1S/hXzzc8+b6lmO5Q1lnCIANhE6Vnde8QQ6JugtXaZAXjscTypFeK2UxDi1jWYn9/HmWC0/1X1pfSP20AEOUs8EJfdJPT/rpST896acn/fSkn57005N+eqqn+s84+KOgWWlMHsxaBNVg87esckBRAiMk476gFiADY6dIxSRzkBdITRNYmwVM54yzd6R2bsm4dm7GPGm/G8Ftc7aIScqQYFFlGFyj4ofB5okV4cOeqN2xrPS2ERZMJDYctbDEQs3BxRuhj0lebZDyZL9k2cm+0PqBhwGtOsmEkg1jIWKnWzA0M0hUB8tGr40MlKI0r5T8JUSvJIXFCttWKWRqSlTJdE+EdnqCnWlhMDXSY7ctxgCx2Vlkpt71HmCJZCveA/wG1454IzThCle/0tlJckMwKMU4nU6c907xOYbdI0ipcAKOviNSqBKMRane8O4swxndqQGppLm4xqB6ECSyrSQMGY4lnR3WEais8zoJJTxmkpsHLdm0VwRUddwddaFYohHz9/ZBciHlgoWzaDC8TRGjCR+TwaNqmMgcV7fCkEwfU8RHZIa+JeUj110RueC54mOCntUb1oPUoeeFrXa8DcpqhGZGM6oXJq3iFVk31HeOkdgcWihjxBStPvABqstMhbNAvDPiQnglVCAW0ETYgpqSVBHvHBHCr0jr5JzpvePXN7TFaZFROTLkQKPPxROfEwQCWTLiRuxCUgjriNcpWFVnVzx8TglEIYUhQ8jzk0nXOnk+MK8tZEK7dU6ZmGVWKyRdZ2ctxdy8oIwIxGeXtTHoWkmWWVXJPicSLiX4dApWOVB64fn9G4hBlEQele6NFsJBlGSGSeIqC1mchOAT6IO4Ey5Ed8KgRaPonBS4y0K0wRg7UBnWMd3pmrikTLhjBoOgspEE1pRIo5IIpCcYiYJS8z7T8SJwN7ooiGCbsNpCiQMSTvg+09gWRdtgjZl4ecnOB9K4HUIzkOgw4I019jTwbrz33hli5XQ4oXT6HmRdkZiJaYLP5EWgebBnx9IAF2TETP+TgRKEFvQx4XBuZBKRTzhHYky4uAR4TSiDFA1LV4ZeqHTQTHNF3LkrN2hvVINXI+br5BsqM1n0LJ9izw+Q3p1TBMz3y/MEeyONY59sqxGFj37l1+CjIZY5qhL7jkqw741IQTJIfSH2x+TGt294Vjpf9pHELh/gIcAtdmhYecbp9C5lqVzG+zxsjb0NICFm1ICcj7RQVBJOpkdADKrOTZLmTNvg0+/dU7twsESyG7wl3JVcgsEbtqq8uZwwc0Ia4YMxlPNZ2V4V0gFq28gIl62yvrmwLM8JKRCOaiOVQM2R+AhijXxSjneD7f4t7fIJztuJazPOtZPd8bFz5p7tdMd120gYrx+E8Ac27Tx7dsv+cCFnmXulLizH5zxcKtmMsV85BNzmTGbQ6wPrsUF+wbkkruWeRZRF7j5vQuGpfmr1hdRPCjQXFnfa9aP8k3/1P/DfffUfZFn/1ZN+etJPT/rpST896acn/fSkn57001P9N1qf88Gfp9cgBYkVY8E8EdGw1QFDROi+E7IRKM0S0ToHd5aUuDoMNXJSUnMcZ+sVFSi6IEXY44pE41IawARCL5DrQnggY7DE7P51S+x+pqdBj53FYNjOdVH28xWPglwPSBdG8scOw5WSbAJkt43TsnA4LnSPmSDcB5+pV85ZQDvZIfJAOOKjkkujegVbScA+BktZOWD0a0fzgvcbhHu6vwXdGQLXCjV1JCbIVvVK0Y1LSwQroglLg/CGSNA80JSYbNE0E+/cUHekz44buqNFH7uOZ8QqY1lo185tWjgh5H3n5EYezpCZ0BXuqDhwZls6wzN5HFBP6JLYrBI14DItLIOBiGJZME2YLiQHpz7aUIKEEDXPC0pm185s8iWaP9oSBGoMwpwiUwgNAkwwmRZuokIcSbqC7IRDsSkeelRGbLhC2AQmMwQ8002I8QFilb06xW7J8oy83xOaQIWzb4gNSMsEfz8mNu29Y7FPeLlXTI0cAt0Jfdz8pJXoA+/7tJvbtNUMCXrs2JjWGjzhTAEuZMbouG9YWnFnppulfVpB7MilOpYW0lrI3Yi+IdbRMia7KYykAjRGzC6zmCFiJDmRIk+2S8zUPRljbiQkoe4kbCZDxmBIp9qOhaMhJJ1iVkXAFlSDQOl9kFLnsCoXHzgKEZMdE43wM4sPsgQBeFq4RMVswICjGkPOeL+waufsibM7a8iEw1Om4ApBENJYWWhE3xjZ0LQwHJbkoIGleOTTXKcBYVfUJ1AaE1w6LoNww8RQCu6ABhqJXTotBbcBlpyOM8YgW5nTJrI8vteGmRGqeArcEz06kpSQA6GDHgtKRZJP8cYBjRvKgDWCNzZ4m50cDl45v7mQduX2cEOJRLEDA2GIsIuSEbJ+9pvY6CiHeME6hNyV6IFbI1KDEEIrIYW+Z4bO1ydzJHQldND8NYd1QJ/v8eIHLG4QVlpUhisFY3EhtZmkqDgLncUSWRNdB7s1enlOXguW39LcOI0Eo7DpwqBx9EayE9cxuLm7IWXH44ypcEVIa8VE6e0IemLoTlsqrSm9v+T1+ZM8e/ddhhyQyJR8obUzTSrvvf/A9rBwu67s40CtN2jJmDsWTsmGKvRsrFGISNQEax3c4FwJVDJ973hzJCt9XDHtJBIiC5kTLh9mjI1XbzaOdycOeSFfdux1xXoQVPYdfDRMBHXl7aszJR853d6yHo1wf5xMgpYvJHVSGAfJpGVFDoUHXnHYC/7JK+qJkhZGHXg9I3phyMplnHhxl7kJQSQRJRhjJjpKhnPfcM1kVyyMhYV13KG+IJbIKZFto3jm4EcyoH79KcqDp/p81RdSP9Ws+BasKdEoXLevQfxAGvqkn75I9VOtj9bfJ/30pJ+e9NOTfnrST0/66ame6qepPueDv9Gf0ehYCTSDeiDNqOv7eCwsHAgPwgEMRkNM2VnZvBECi1/QkUChhuMBljMqBXFhE2FoRqoDsOkRHyfOqc5OZRWsD9gHTkf8AFmpSdFUqPtAuhLPvoR4s3Nqb9BVedPvudhgKQnfIdLK8uyWEfDWFXYhmjKscfELqgUpC1uHEAcOHHNmb1dWhfPlCmUlqzL2CyKVYxa67jj/jGXN1NrZe4a80uJMsg3RA5e+cN6d18NIesR0oY9K0JDoj4yZgQDhOwMjRFGEHEFOjvM+Nd6SyjPartQK6/GEVkV64tYWlhgM32liiJ/IKUNk6lgfF6YzQ94ntNApdMmQjFF3si2wOMN3Ykww8HwMneiDocLQoNNmZ0zBbF5KJelkilDZaEhakOFoUjxmipiooF0JrzhBEiEJKAJ0rm0nFSHlA70OFk3kVLj0e0aeXBbzQVFDApq+RXWn6FcQNMb4DCm9oNpMHWTMyQWNDL7MdCvlsQM7wCuBcbEreCaRiWocDydqdLYxCAkOGTQ2enciHekIPXYgTU6NzkVxb/N9GtIZY8e8oz2RSJR6mEwZSxxM8AjwRpKZ5jb6mH1kCYwBfSFIuFVGanRxBo3kM1kLVaAh8bghickVgoEaVCpNd5BO6omI8Qi6deSxE3pfbXa9UwacGsGlJWTxOSXxCOoNn4mNIypVlRYLHjd4bxzUsN7JKVN1wbQQcaW0TikLOw1SouvK7p+deEhk3ZF+j+pONaPJgZKOWBzpDXqAFaW3CqbkpDDmtT16sAuMZPO6sorqQt0b4Y5YUEbm5AfWdp7Jg4uwecMk6PFASQd8BBKKB3QfNM0YR8a4oJYYseLaUH8NyThrAcu0+sASg/t0oFvCe7B2IanQrpXr2yvr4ZZ0kxg5cXmER2sREs7BGylmt59UGN1BCw8KIyfEVpI6WY+U2Lj2DUlCSiuI4/ZA7ishisugtgu6ZIY/cr8siHGBaIg4JjcUXygGZ/mAetjoA45+h3TY5cqKovtKHhVS0Gwlxpm1Z2IktiUjIZwC7kmUm5tpk5ITOhqFwFNH4xZvSkmZ3TfEBbcTjvNwvqfVzvPbE6R7RmzkceTa78ATrVUeLq+4DpAbB3MetgdOaZkgbAk2v/IsMs2cwDmFMUzY7MIeFdPg0uqcXrCNmoTRHI1GNsU4s/cd1cy431kOLwktvH57z2dq0HTGHF63C8dFca+sh6DWC6/eSyT7CIflwGj3GIrGkevdmaXFPPCoDR3QfJDsliUduW+VNQsfembUEbwtSs43tPduqHvhkO5ZF+Fhi8kp6wsSCYjJjyoy3+PomMDFzsTS6TcLahfW9PJxyqGxS0BZP08y4al+qvWF1E8Zo0pw0YyPAwBbMXJKT/rpi1Y/zcbpk3560k9P+ulJPz3ppyf99FRP9dNVn/vB3zByCcQ32tgxW7CUufUvhdYobmRZ2GNDlge6dWxfWb1MkPUh6HuAOj3PJDnRA1u8T41XZPkw6gu0nerT6lvTzqaNd8+Zs1XEOksJtnamF7D2HDHFdTAur7gz4WDKB5vy0JTmENe3pNyIcYNXYwGCCTtO4wbbrjQ585AKo2dCCmXMMJHgwOivSQK4k9zY2sbhsHCOgTcjywHLgtedY04sfiR6QiRYSeSWkaGMusLSaFpJ+Y6aIMYO4/Uc/x9CSCa6kCShDXpXJIEBSToYvN13nqd3yPIC6lyYygpjTD5LOZ7Y0pmWXxKR6bnRFA55x/wVpgIu2LKz1ztMTrQWcyFsxm16l2U0SBe2JbO1BiNodWAGBaWNacWQAKEDO3me1aIOCogGC4lNFR+J1JVnHOh+RtPkzpS8MGLQUkMVfFOKOYe8YVIxb4idcHZa38lJqb3iYixm1L4j6hO8y4k2NvSQELkBv2KycYxKHYlmQR87rm/wKFhWRt2J6BxkgskjOqO/wGxhlI173uCaWFKm+8ruGcuO+xn3zmJGsYF5BQdnpXYjhqGjkSgkUVSFkYLaLogkkglb22ndIAswrU1+nPae0gc3UehdqMsFUsZ7pu+ZVBLJpsidVrCGuWJaqKMxwimWkAhojbWAoTQPjkCVKbovDQadWDoHFxhCEoUUaKpIuiePgvdppZrdcri2B3J0NleSZA77gDUz4jK5IO4cm3NtO/d+JWnl1N/CaFBuOLbECzFkwIjGWO5xOzDijlEF6TAU/KZNVpMKXYRCYa2K5OAcjZEz8pjHVts9KXeCoHehDOMuLWjs7KMT3rjkBTFl+JWuApJJ+pXctwHpHjqoH8ipk6JS4w2RHGPHxgMrRrihJFZb2c6V4+kdLtuFTSsSThGDDqYr+/39TBM7OOXYCdkZIzg92nsODkhhs7kpL8M4UrimShXHfOeojbEFVReqOaQE4ox4IElBxwkBlrEj0tB85H4zYiwcyYx2IZeGW8MdFgs8rlzpKEIZB1IYKZSkgnGioJz3C6sOVh+MGricGMtK2wcpHiZ3rBTSfuYg95yOmT4cPRbu/QFs2hYRx+MNloFxAJRDrnyqfwa7XdCRKNuJbhkzeFCjeZnfhTRyDsY2WH3nWIQmjTHgRgvP5UiRDbRSObCRCCplLCwi0IOmwdkbtg2KKJFPbB5YPiB955ArvZ7JfmRtrzj3jR2lj521GL0vlPIhdq7sUqcVyTJFOvf3b0m6cZOuHNeF3jtf/tqoLFRNkB3hyjpArk7vjeOhcJHBm5RJ+RbDiWvneNp5Uz9B9Fu+JL9g3S+0MXhIwfDg2BeOnnkrg12Nj8aJGA/U9Iabw7usZ+cjmtG94S9f8joG2ZzM/nkTCk/1U6svpH7arNMPMW1X++Ql5z1I5Uk/ffHqpwvwpJ+e9NOTfnrST0/66Uk//afr/ffft7/yV/7Ks1JKfMu3fMvrw+EQ/7Uf0+dS9/f3+ut+3a/7mu///u+/O5/P+t577/3Qsizxk2/7uq/7uv/zb//tv/1Tf+AP/IFP/5fcj4h8w5/7c3/uR77t277t9T/7Z/+s/Kyf9bP+++///u//n3/ez/t5n9MY55/4E3/ind/3+37fV97f3//Qf8n9f7HX53zwl3Wj1Z2UgyUJ9A2hsflbSnlGq0L4W5asLOPE6Bu2LOyjcxxBuULtQRRFY0FHQJwxwOJAAhpnPAXlcXz7WRuUfmZfOnkoSRe2oYi95DQMUejAZa/c5BvycHwfeE7sdHZREkfWeqT4DZvu9PKaxQUdGeQNza7EENYxbTNIxlqgozPiHimCt4FOmgdJZvR5xIakhOPsIeQ8YDEkHwmF8ArSGaXjBBYLpisiFeKBGJ/CUqHXTgCaE7UH4NP2EJ31CFtv7HUQtuADxFaajBnRPpw0hEUFE2MbIK1wPNyS7R1irCScIRXpFZHZbVq0sF+DZS307qQFginiylK47jubDFYtnOwWieCSOmIJHTuadpyGe6AsKLf09AEAroGqTqhqKLZXwoTOoNPIIiwduh8Ylh8tKQOTYIjSwpAohDgSkOgojYxgciDxyNmQgkcg4iQfrKaIX+ibIbZQ9MjO4JozeSQWgZGNQwwabbIfZI60B2m6XoaiekGjkmvmtH6Ya3tFHReCgseAmB18d6eNzkiBupBcyAySXGk+0/osDkSdYG61ziEHowcwsCVQgg4kVaiORZqgdwuurRNFWDCkzn9XLOEEW92wEESUUJlA+OhoNizS7KA5M2nNxyM3yJjH6UGiswxjzggsXC2jGnjv5IBjOlKuBVkW1Bxn2nzcYc1Hhr9PtoqzQ264HEFX1Kf1QqJhywVLV+pVcF8ZuWANMOFBKpIzZoU0gj0rIp3DCMSCkcEq0zoixggYGrQsuE2Gk4kQHTSXCff2M9oncNsxdldEDlQaI++oNgqF7HfT5qCN3d+ALmh3ShRSJMTh+ihCR3SMxymMAS1t9OEMT7Nz2gapBc85cB2dPnUr53B+/HzhQzfv8DIfGdczKQ/WpeB+wluh45yGUnqw6Oy6qjvrSBgN7xvZBmtShm8Uh47QTNnUaGaMEA6jkKMQj9MXa56Wm6IXuu/IWIEF1Yazk9hgGNgzVi9Iv9JkZ8+BC/Q2gclv3w6ummcq5bjSdUdLID4wF1Kdn701GdI7RZ19v8dSZ+23qCv43FwJg+Gdw1C6PaOc3+cud25uB9e9UghgIVkl5C1icxPioYyAWIxCcDOUNgZW4HI7cJZpi4tOao755B21pGw6OFunSieJ0FXQ6JxQcuvUPhhmtByYOFcZRHPcryBv0VY4tBuyBEhDxbEQmjs9rlybU18J9pF3sbLSU+falsnzSQOTxnCQscy01dMCw9g++QEfurmjm2MyWOzx81g2rtuZdjriB9jOlcUSEgONoCZh7ztHpv0Pz9zpM7gX8u2K5htEZpJqOaxIVDrtpywQnurzU19I/bSI8KwpPhqvx9S5Sa6sKk/66YtUP7U0P6tP+ulJPz3ppyf99KSfnvTTf6zcnV/6S3/p13784x+/BVjX9X/91m/91jc/Hff1c3/uz/0//uyf/bMvf+bP/Jl/8/n4fX/6T//pdz7+8Y/f/L2/9/f+l4985CP95cuX44/9sT/2oZ9828c//vH/5fb21j8f9/m1X/u19Ud/9Ef/8Zd+6Zf2z8fv+2x98zd/81e/efPG/u7f/bs/8vn8vV+I+pwP/lK6Y/RKBPTa6PXKYcmgsEdGU2DSaL5TZEVd2SK40niuynEojtJikG12xDw6yjszHcru0RgUSejj252Gs4TTdCXWwhiCDf+Jhccfx+qjGJc+WCbAhFUvHP2B3d/iFlyS8IqKjkFpxhxCfmC40KaMQUbCtKGeiThgVgm54hghg2SGkNAIQEiyoKq0NpOBandOpaB9RwZoOMkKgXINaPhPAKiJDfwB9+cgC200wFDLtF7x0ckJRviEPKuA2QT2qnExIenE7+56IeFkgYM9o0dlWVekBFQwESTONL/iKgwWNI5Ym5YN944lxWQQXtEwSspoWWaaVIcswjElRMDjsbPpCy6B6oyk9/F4KYmiKU8moxjZG9UHmtMUzrVjGDXD0B2RgWti2JFeDqThiA8iEh0epV0Q0ZHuZA8sEjF8jm8D2BRvJReSJlpkKkpNheKJaokRQd4HTYKiRh+OuCGWGDGhzt0KojsRO8SBrnfscmFQUQao4sRUhCZ0D7pmImwyTnSihp2dNjqoY9nIkWaKoD+qSd2I5AwPxlBkJIoVwpVRFUEY4ogOLktiDIjRJ+unD1Z1VG0KZ+kMFAIKkGTej8rcaoXP9yvI1KSEBMIA66gbEQvRGy4dyc4WfTJ/bm5YY0V10GMDnBHMBMFxInGcy6IuRIAk8NYw6dMu1IxRjwQbUaaAuvETS78jcietwdgvtOVAJpDoVBuIDNIQQg4gefI6LObGQpSoRuTgqp2WOieBI430WYFm87NWtRIIETGTG32BGKhcJhspBJUAdwxj0YK6Uts+N5IKzmTnoxNMHlkJpn1GVWijMuhIMvbY6NZBgvP9RmZjWS6QlRw3iCYkLqR0QQnowhBjMNik09LkPZVxmF3RJdHbxohGXhPXNjctgWGi5DBGD6o8kB4nFOY140hc6QOQAmoQE0ieMTzdgA2yv8UjU9VoMsHaKZRshYYhPu+nDyh6xKl0aVQMi4J5pmNIumHvZ3ocQQfJhDqcmFF4SKwkLXgYD3rFDxd2G0grtHpE7YzzAdgRKHgXiANO5xoDWRZSVFLJnFvDBRYPbmxB2WYiZJzwkrADtLZhCmsoBxVemXAO46YNVJxuzjkqqawwEq0XOELLzrZ3fFSQE9c4MHJlSMUYj1NDQkOhGFGcusP1wbjJC8ROzQOlwX4hUdFQcjmwjUpS4ZgHn+TCxsbRVmTfOJhCCM/tls9cg+uDINmovXF8/M53WWhxQ9ITIx54PxqHUlhCOBRltwvneJ+7fIdGkGPBo/wEh+up/uvXF1I/WQ+0O+aDHHMQoC8HdilP+ulJPz3ppyf99KSfnvTTk37636l++uN//I+/+9lDP4DWmvzXfDzuj9zPnP83/+2P/MiPLF/7tV+7feM3fuP2n7rty77syz5vh3QpJT760Y9+Xg/9/vden/PB32sbjMeF20XJacGysuw3tP6AJsfSgT6MUoQ9GftwFKWivApHsxG1o5pYlgNdneE3XEPpDLIax26TvQFcl4SllfuRmT0LJ1mb3QCt5O5zxFoKMQbZFUXZxoFL7DwsmS6OtEHpnSyZYJm8ArvCCLQbS5pR996uDDGg4FIJa3TtqK5cxoaq01tFI3MjL+ljm5DcahRdOdotVZUZ0qUkzTiPqWZ9I0uiSEENNFW2diKZY3qmNqUsCy4yE7c8sTcncmDZGe5YzrQxoAtYJmJB0ksGCRlC6FtySogFm5zJh0SvOxon1DJdNkZp7OM1yymRx8KST9S+k22Cp2U4WoMlCwlh6CCboARbe+xaCyRz3AchnUApMb+HRFe6CF07LkG4kMlID0wVLbdchrP4Ddo2Qq8zEU8rKp1iigp4zI5clRkr3zTPpx0yF05ZQIQ2zog9cK2JU7pDVbn2e7o4ZpnaoY+BBmQxYlGsKz4cAVSUQWWIc9LEqAtJEjkZrV3ADogLrVdQw1FGAzVBdJAIVIyIQhfFxelhKHVOAXBGRUm6IrEwvCECIwZhiWQHtBsblWKGRZ7CicB90BCqd8QHa07kYIKyccxsJrmJIGpEBE0GqCAMJIJgQsYRJYXhMnkbTRohQUjmqImt7XOTYMJw57p3JNcJAJcTYyiqgzFeowbJD7iXaTHpO+iF6ldcM0VvUe0k3kAXPG6oUqg4I+301NkwNK1YVMSnHWuoYjYtKA+qFJkAax+CiqMS1NKx6BxbEJKIEQxdgCsmbXbnLVNdybJQAnIMJo1nQroDx8e0mQ3PmAqNYGjjGhsnA2dMixoQsYEJMm4fU9CMbtBiYywO0RhrniD33nh4+5pnpxPlYFQqKTILEyrM3sDA8pGRnTaE7InjCMRhz0aE4h1ac7Irh3zktTrgGIpJkICEs6UzuxTUC01m8nnqoLJiacERlEEZG9Z2ho4JIx8nhldYKskSox3maxTK0MKO0iRwhNgLkp0hAWWhbvP21YS1LFzbxn5/z83NDRrCgzL9agExdHJbk9HjBm2d0ECPCyEfEHJGlpdIy5hs1O01lu4o9gIboPdn7vIJ6QqyEOa8OD7nOBxRnTsM0bl5S0HmHSyCws7zW+dK5aE7W1PGXpEIeusUT5y6c3cy9PlA7EyVna4NLQUbBfWEiMxlMmy+FjGQ1rn78HNexcYnLzvjdOBwOnAQB1+JWBFrhG00HTynINVZBF7noF0+Q+gtbTG6Kq0O2ppxOfHj7cILvWOV55PzZRdKGvj+lpMt7LUxUkYcbuTE0jLPyjMomWvdOB0E9yA0CBmfL53wVD/F+kLqp4HyJlWyZqwXAAaFSnrST1+k+umY3mf5sv87Ip980k9P+ulJPz3ppyf99KSf/r36l//yX+bv+I7v+KovxH198zd/81d//OMfv/n4xz9+82f/7J/9MMA//af/9P/9z//5P19+5a/8lf/dX/pLf+mff/d3f/eX//AP//Dhr/7Vv/rPv+ZrvqZ+7GMf+4of+qEfurler/ozfsbP2P7QH/pDP/arf/Wvvoc5Pfjxj3/8BqYV9xu/8RsfAH7ybT/4gz/4z778y7/8v/+3rb6f+cxn7GMf+9hX/K2/9beePzw82Ec/+tH9D/7BP/hj3/It3/K/Oen4H7L6/sW/+Beffdd3fddXfvKTnyxf//Vf//CbftNvev9jH/vYV7/33ns/9O677/7EG/+93/u9d7/n9/yer/zkJz9ZvuEbvuHhL/yFv/Cvvuqrvqp9x3d8x5d93/d93zuffdwAf+Nv/I0f/hW/4lfcfz7fg5+u+pwP/tY903E8plg86ALnxshXdBmMEDwWhh25WKc9UgOKK0PgHDs3GQqGjWf4/oLQB7q9nslhcqL3Ck0wnV7fYQm3BPnKUjtC4q11kg7W1qnrhA5f2pWbw0qvAaNztYWH3mi9z+6rJsQckWmBcDGIAyKv5wIbR2QYHlOUwU732REPM1yDPoIsiqWVYguxzU72YGBaWJYjJS8sCI1BpRG+kUQ5qrCXjeCCm4JmJGdk7EgMigqoIiMo9rgABqhlBg0IBJ9d8DE4+LQFdAYpMzv/4XS9YRXjdj2RsnK9wpIOCBUVRSXjQO8CsqLeKVbR/x97fxtrW5vVdYO/McZ1XXOutfbZ59zv9QIFqEgp3UBSJgb9qB9sNSYkfCBBQDEaMVohdpSAqZjYrQGjPhE6phEkdGtMDJ8AY9IJiTHERFFQXrobKAS6oKCq7tdz9t5rzXm9jNEfrl3VhQ2P9wNUeYt73B/uc1bWWWvuteea839dY/x/f+ts0Wm9c8gL6Tg7abk3kgRDhEvJ7HZg7Vd4PEM1WGKyi3ozksyxaNN0n2bnDAYsCzISSYWQQfVBF8PSThsXyDK7RiyYgEZH7vtroYGL0ERAheQVxIGB0LGAGLe4DXpSNu1oH3hU1BzrwZaMo6zkMC7SYHS6O9zDsA2m8BNoBM0LLgtOI2SjWia3fL/tPHAEkTn1oDRkbIRXJNLsriJYBOiCZKVFpfdGiJDVZuw9gaCIZhSbiX1jB5md2+ZOJCFZ4qoauOAis0sfQZgR3AvWmIJUJAGT/YNUugd2z6n2+ymLxQWPQveBWSdsfr57N7I9QryizTnpFVfjxLkMWjhCzMkAgeaO6oXwTtgVjcYi3KemnZABTd5CiDm9axOuXXymNm4dUheKdkQ6KYKhBpFYR0YQ6qKYzXNIfUzr1/w2InKDymAAw070ZlgtSApcOsgU8CKNGPtMISPoqTG8kOIxxkC4EAHZAO2MDm4FTQXteU6mhBMReAgeENpnImaf0wsdZyjYphzySvfCzdO38H5Ar58wuEa9E7bhJggnJrBFZsfagqYDMaPF7JydxiBpYquNRRcWTcidc8qCa5ogagbdptUq6Ynowog02TsuJM2EVLoo0VfECpahjzMlHBGIAms9kWuwpVs23dB2QkM490oZOs87hG63RJzpPu4TFQPTztAVz1eko3Jz+xbLVSZJoYyB2IZIZXhFZaarrZ4o9cTHbgpJFw7ZqPYcF46kBJc2O8mig62/SsmJko0b6XOiow4iK0+XnZIai6yYGIuM2WHfDxx4Qo1GT0q52nl3uWIM4WdefYN+bpwiEZaRFLA6L72syFJ466kS40i43Y8rBDrmJAsyDV5Dha5Q8kLIgZdeesQbH/1V+lsD80eU00rIcYKttd17xXaGJG5Kox0XuDzi5rzTgefsEdaCJJ0rCxZv/PKzN6h9cNTHRFcyGWXBgOhCk8kTS6tyo7doOXLTb7H+Hq6eXFHHYEmP8RFv/+b+UJ/x+mzqp7TMK5xqJma0LWVsHOgP+ukdqp8WCwa/hItT/UE/PeinB/30oJ8e9NODfvr/lbvzdV/3dZ+VTT+Af/yP//Ev/fzP//z6/ve///Jt3/ZtH4U5iffhD394AfjQhz70Od/6rd/6y7/39/7e/cUXX+w///M/X/7YH/tjT7/1W7/1o+u6xnd/93e/8FVf9VVf+JM/+ZM/9YVf+IX1B3/wB3/uG7/xGz/np3/6pw/f//3f/3PLsgTAr/fYp9cYgz/6R//oF97d3dl3f/d3/8IXfdEXbT/+4z9+MLPfFNfwp3/6p8uf+TN/5nd//dd//Sf+0l/6S6/++3//748f+tCHPve/ft62bfr3//7ff+V7v/d7f0FV+bqv+7ov+Ct/5a98zg/8wA/8wt/8m3/zYz/zMz+z3tzc2D/7Z//sFwBefvnld95O8W9Qb/vcrrrh0glphDcymaTz4kkrFF9IJgzuoAVJKsUSUSvregK54PUNdhojvUbiCSkWwrcZnc4B15UmGyLT67v0gdfGojvepue/5AlkHroj6d2M1mZyVBtT04RTfCf7BByLJoj78f+0MYaRWsfkwmBjBFS5w/wIgFhlsDOoOIpFwt0wlBigTGvB8I1IG9CIEA6HR5g29nidbkLVILEgsWBk1jhSY8NF8DjQ207WHcYtvTXMjqgZPqYFJQBJCaTi3klieGskW+jJiDFoY0dldvPwzqV1nn/8AqsGvVViyFwAxAB31pLpBL0kahWeK8/RtwuSglyMvc94+hE7lTPOzuFwotcp9EtKDHvK2DslMlkyoo0hZ4bN35maozK7wwmlDYckVII6OmkMyvgkZHdMRowo5oPkO0MzQUFUQDpIBe/klkkh8+bBYISTklIkEC+IBXBDMightApYx9oUyupBImiLMuIpKgmGMYaA3ItSzaQsmFdkbKwFYj8zPIEJlQ2XhKYjnYb7gDgwTVhOjo6KkmcvnNESEgdUOoLT/Ok8X7wjeZ5XvQ0WlGNWrO2ICFYSG0ob03Zxv3abSWsEEgZmdO/QnXS/ICHNJLIxNmL0aXG6t7EMCXbNIDB8JqcFDtLJKdi9YwakwNOFWIyVK5I2ht9NO1IHGZnOS7gLGPTYOCITqq1OwgldaD3ofaPSUXWkKRdtpKwYna13WBNXY1DcsDDcINJgZlmucwEgk50iaXZseyycBPLYGdKpaUetURkEinQDK8BgUUVDqGQuFLpWDtyR3Mnh7OnCGDuj3rCmKxIrvQmDW5LC6I1gJgj24YRNm9xwJemB7As6BMwZ/UIOxZ/ecaWJx4dC6CBiQ8uFzoE9EpE6EoOlX6HjjsU3LBvVElWcGgIaNG+4dXzsWDEsxrwWRWK4oPeLFYvC8EZoJyXo3lAxpFZKdkbqbAHbcFIcyMnwPtABYcLZOzEmEH+UM70lhqTJqxkQLtPx0uFEQVoivJPp7HEH7Y5jEi7tjF9uscP1/cJwgMRMHI2E9wZqPBOjZeeJVlp/AVEjx/keoP0UH2+ROGDMLvdNPKWEkRaDQ0KKcDQn5ETYoHsDFpIa6M7Ir6EVluEUCpUTVa/I2xvYmKB1Ox558ZXnKdtblCKM9AhLg5Se0bc5gVJkICHTtnbPywk1ulZcOiMr6RCcXkk8e/Mt/M7IacfWnZEHqoPknRKJXS/kPlh7hqXwi594i+PheSzvNK+sVrAelK68eHiOt2pnk43jrlzZQthCFOXm7hlS5nXG20Y6zKmvpRwZPtj6hbwoF39Kijlx9FDvjPps6qdVBoe9k8y469Ph4n2j7s8e9NM7VD/t/gpvvv71PPf8/w2VZw/66UE/PeinB/30oJ8e9NOn6ju/8zuf/+Ef/uHHAH/9r//1j/7dv/t33/uZfL8XXnhh5JzjcDj4r2eV/dCHPvQrX/EVX/Hsk39/5ZVXLl/+5V/+qfCMf/gP/+Gv/Kt/9a+e+77v+77H3/It3/LqK6+8Mg6Hg+ec49Nf79d77NPr+7//+69/8id/8vSf/tN/+qkv+ZIv2QF+/+///fU3+3N9+7d/+0tf8AVfsH3nd37nLwN86Zd+6f5TP/VTh+/4ju9496c/r/cu3/Vd3/WRL/7iL94B/vyf//Of+Ht/7++9B+Dx48e+rqvv+y7/I9qI3/bGn/kNRzUqAwSyBWdz9ljIqsSoqAddKsOC2uu05h6Uc9m4RCM1ZfUrsq64Cuf9TDk+whHGaPNax6Duc1oypLGxTXGTjdQhj2BoZhPhtCekB4NgXRa2eiGnTBt35PWK0TstOk/sEaVv7FsnJUGkMyJQO6ARdB90f4a4zJFkzQwttFEx39jGHQcpPNEDl925kUoWIUbB/MDjR1dcHQC5g5h2DhHwPruvMhojH1ApGE7OnXXdeHZb8bgg+UKRQh8dcSeJs42dIYZp0GqjamZZEpu/ydCgyJGaFhYprDUI79TlgK8Dl0GqwiELZ2lEOAcWfFcWPRJxRtINI4K0JrbeiN15lK/oKLtkGgvFAhqUCApCi8bZHdWZwhfiaIa8KHb/NczRuUonapvWIBuZt/YzekwICUTwbIg1UjtBS6x+IceOdiOPQi07N+t5pseNlRwDYQcvpACV2b3bCVpaWOPANYPmt+ziGJnUjSZCKU7zCz0d0KGkHSIfiTEnBzwazh2SLlyRYT8jXokCIevsOveNoYnQA72B7oOiCTGjy46ZkyIoVhg9kSwTcqbWnRCwnPGhCIXqhaJC6mNaVphw8kVOVKmMqLg3FjVcAvr8s1Hpo+GWaBitVtR0cihEOMjkJWUSQWbToIqR3BCgSIDDkhXyAa+OciGnG+76SjFBVKjRCVfWUMIvJDFsGKPd3/QjaHXCsCcCQ3ArdEn4/YJ2VIPUGMtGvVxY/BEqR9LYSbGzrJP1IqHk3nCDnowxFmwXTmXlGAlZDlRNcyqkd0w6ixYaFVdHI2EBrmdCILFyJQvSjT6MsGCXSredYqC9EsMRyagdIRYWyQQZk0aNG0DpbPQJ5CFFIY/CyVbaXvFkuAl9NLIq2QeX5Gy6MbYLb8ozXnnpXUh6yrEHmYVeF7o1TF9Du+IsRN6JGLh3VCvmlaM75oVdDlznx+z7oGpnFzBXusZMmYyOucGmrMVIOsXkYTfCCudxYc8rt+JkqRDBuqyMGIwhiC+sKdH9jGvlVK7Yz52RBnEKbu/uqLZjhyv2GtgQjvoYM3hazyAN6c5yvCIdVtKVUe8an7h8hPee3k31hTVl8PUeIC+T1xQJkyO3VIpeuBIlHEiBceLJ6b0spzue+WVO8LSdZBvDjcB477veTasDWvDCss7vcFoZGDudrp07XiUX4ZQKfu7YKCyt8rx8Hjf+caI7r7z393BYdyzfYbqCd548yrwQR17nEzy7bRzkXRAJ9cFIt9TIOCsxLhxW53NYGd549iQRw6gfv+VuueLxqqxSUFVcNtwqtc8JEXrj6vrEKRt2c8fjQ+JZPEPyka1WWHbWJ4a8WfC9wLHgzfE6pxrMMn3sWBw4WubQFq6XFatn7HknlZUUYLGQ8nN0jr+tYuGhfvP12dRP2+WGpSidTjr8v/gDH/g/YNJIozzop3eofup3B3r9fLIreVke9NODfnrQTw/66UE/PeinT9WHPvShz/nkn7/927/9U5tUf+7P/bnfte/7L/yFv/AX3vxsHs8f/sN/+O7T//706VP9a3/tr73nh37ohx6/+uqreYwh+77rRz7ykeW38j4/9mM/dnjllVfqJzf9fqv14Q9/eP3SL/3S86c/9gf/4B+8+47v+I5f87x1Xf2Tm34A73nPe9obb7zxThsE/U3V27f69mss7VzsTI1K6icsnXiEMLQxDs45OklAR7Au17gLtTUIIacTSQPpmREZF2c5JrpXfFQO64lkJ7wlij0PgLiRE6xx5pwLuxnSEokVHUrZd7IoVYK6NVpW+pJIrVP6DVd1I3SBUrlNg5wMc2bXVozugxROmFINaIMVITVYQggt7OakMBYzblvFLHMYgqeOiuE43W+wnIkRPLLfy+XylMVvOS3Keavk02PCOr22CXq9C6iJkg50L7g/Y2s35Hw3U7LkmswJGxeKKTVPm5CYoKJc1Suog1MWwhpBpxRFZefgK7IdUVeyd5LdcUkHLtFZF2it45bp44qnY5Du/20W2NvGsESKBHuiWCJFkBByh2iVNWROKiB4JHozCMGZG/9dtikeixD1QtPnyCuInaGfMVM6QtQgkREtDIdgQZdM1TE/x32lmzKSz7S4ISSDFDYXF67UqLjvuA6Gz04/KrgbimEDIMgCo92xlEIfF8ZwYsz0utkBFhh5gmiT4BHUCJILp/UxS9q47BfaaJgK2YyiTu2DNpwQEFVqdJw+x/OHY6EUMXCjhaDJiHRH9D5vbN0pueAx7SIhK6KZFI4OQQIuybnQWUJIdkC6obKSUqXZhgsQ06JhOiASEoKS6COwe4vM8EbyW/DO3pnMmpTZ2k5aE/SG95kOmMMR76CTiRQYntMEpXch41xsoAxOXYkDmCipFUISOV2otcJYyEkYvs9pjD5I+ojRg94HixklVoYHLRpJlJwm8P4uOWXcUiJYDC4Cl2XhcLlQzHF1WnRICU+Z3FZkJG7kjJYgY7A74joT7MaZLDsqxugJmpElobLRfS7Az9oYuXPcFLVESKJTcA60SOxpR2xMW1Cf9jIfAh0OnHj9tTse6TVLLGhLjLGTiqGSkXCyJZCEeEf8dTwMd2PICv2ARTByooXQvBMMVJ3whqYOETAUkQAxZE1s0SecnmDOxhirLdSoXLYzlhImK9EAFyTPLq/oY4x30Ublzt9E7YbTeMy+7Ryq8siNXispmJ3htrO1TtdB1iAFFDNoA78TXji8m2dvPOPujZXlxUH1tzBJaM4EyojGao3cjaUHhSuKPT8THceZrb3B6Zj43e8enKvTPbOfM/VpZinC577rZZZD4dXtKevpmrtyR+7K0SsLkKj07FyNl+nmdDqed1I4x3BOvnOXOk3OqPwKay9EuWLRBH2DpbAejjz3JGGvP+P2WadJ5zQGQ3a2PO9t17axHoMov4qIcaULh6vEs2dv8vRVwZZEfmToSJReKFzx4ghqu2OLSltXrt/9Xj7+6pvU85njc0daZA7lCb7dsJYrznbmVu7YGIgGptO2F0PI8QKYEqkx9MLQM+VwhdcTLpllLVgI3nYw/W2WCw/1m63Ppn6ydEVEY8SZkitrvMY5FXZ/0E/vVP0U5ed57/v+LFDZGQ/66UE/PeinB/30oJ8e9NOnats2+7Q/f+rgxhjyMz/zM+tn+3j+69Tdb/iGb/icH/7hH77+23/7b//y+9///v14PPpXfuVX/u5a629pdPJwOPymLL2/1Uop/Zr3FZlhR78T6m1v/G3ROYxMkefQ0UjDSGMCjz02xGZymEuZceeRENfJsml9doo06Bg7Ct0pSShiExq8nWna8AEj5ibrkB1bFmiPiEsnowSdXQI7Hnm9GsnhaJmldQ6a2C+NWq452w2X5YjaY8Ib0Wds+3DH9TjH+KMjUrHWwQeaD4gK+9ixCMwV84RhjDbZIK06x5RxOxEKeJ1doDiBr7xRLrS0cVRlhGFyjfhj4OOspqQhOBkjfaqDVOwxKRU8Om04bo4gqAtSg0UyJU1hFA1SAldB28YuRl0WtgbZhY3EJefZUdU0k658mfwROn0MEkcOHNhs0GNQEPBAoqFkdIDizJ5mp4jds20CFUV8x0SnXSHKTA/75O/MDnTJrLYge2NLgSlkFORA+AKsIBdCN5yK2EpEoUpn0zsQxeJAVadrY0FAlDMxx81dUU0zBSvN1Dd1QDIWk2aCGUkUUaP2yiEVok8AtsZjXCbU3D/5cyBETHBuH86IQNpC9IViC5JP2KHQWqfXnaTT3pIwNITogiuATxuOXtAA9c6IgQeQCjMILQjVmZjmijuMuCB6L0p8YAhFlRQKMoHV1QXXjLsQw/DImGUSiviEJLfhiBmTUDGIe77MCEN8wbuhJELmAlLumSuHWDGC2jqRFkKvSeLs3ukpMVKaYkqEnJ3sEGE4B5Z2ICITBvhOTiuLNLZRiaGEL4QNVAvhhwkYt44hmK33KY07JEWy0FSwcTWFW8Q9h0QZfcVtp+d5AfYOqSVSA1cjNMM4Eg2aVJo8w0zIUvCxYraSckJMGKPT5RmmHYmMygnrA5OOhkAkPJjg93tLnrlTUHKAdUVEaZ5o+hRGQrYzzz0+kJh2C7crhh7JpPn9G8pQQ72RotG1UNVAFLWdJJ1hjeRQw4mUkXRkNHB5CgMWOZBkQvdDobgjoyE4Fdh94Cp0HYyD4VHwUThoYcVxGZy1M3wnyrSjeSRKfoGbsTOScTOcTWCXylDnGAuuc5MBnfYV1cK2dR4drjA6V6cr9qdPOV+eErdH1tMVeDAicTic2OqFM52QBeSKbldsS2bpDeXAcjzi4xmPHr8yr6/tEW0zfj4+zLve9RxRDLSQ7RGFKx51YwS4zckODecQMPQxiOPjQlhiKxfOqTOunpHeMJ5cv4fT1UrkjCKENoYpBz0SNQg7wisLt/0Zeja85RkQ8GSFZKz5xLsfn5ByoDfjUAuWlXih8NrrZ15//Q1e0SeEDjgkznLhLgQrRkimsmPZOS2Jm5tbHj3/Eo6RlkLIgTpmRz6L0kdDRBBTeu8z0NIHl6EgR0Yc2TeDRy9i4Szp0ZziYJAT1HbHQ70z6rOpn8IKI3aGbnR/H//vn/0/8rnv+V84rr/yoJ/eofqpM1Nsh2S61wf99KCfHvTTg3560E8P+ulT9c//+T//uZ/92Z9dAD7ykY+UT1pTv/qrv/rVb/zGb3z1M/GeOWcf4+2h6/7jf/yPV1/1VV/1+td+7de+BXMC8KMf/Wj5rR7Dl33Zl50//vGPl5/4iZ9Yfjum/r7wC79w+6Ef+qHHn/7Yj/zIj5z+t75OKSV83vz+h6u3vfG3W7A0oEO34JndUEsl12uuY+VxDRThBrjJhXCQVslLYU3GGIOtVkZyhjjDO0WO4APxgXtAFjQPap1BLUNhH5mtX/HEFqJunPMOixC9cygn+qXiJGo4A7gjWFtA76SUER3QbsgDJDKhitpKAM4O0TA3lrimS3DXN6oKZV1wgrFVtgSaEtYd1swlOtdjn9YBGmU9MqIiCE+egecnuGQuw9Gi1NFBGpoyvW0EndAbml8Ag3GibitgSHbcKs1vyDoQMVIsSFOsGYWFp3LBY/A4FVyhIqyasX6H9ztc8v3FHKQ7SVaME33vwIHeBiIbtjgWgfYgOhCQmiM9IIwtnDr6vSBTmhu+ZNR9An5lWmSEyRgBMBbUjzOGfji5vIFSMZwohUszhi8MNURnQpqlBWHaRq7iit6FzYUiJ67FEN+oVpEk6AiSZxJG4FjA8AMhgUhHYkfFScXoNei1kcuB3pVwQ2SmRmsMYkwWECKzGRhOoLMTagLMc1HFaAjLciCbklfBNFDtFB/4MHxMTosAYzhNVlIEEIQoaDDIUAsaA+9BTgLh9xDpmTQ3fIKQuwZdBjYSOa10nKYVsaD3nWwD0ymIuzs+OqJTtDQWAsNSwr2zRyckzQRFnGyDCPAxMF1wKjqRIlgSKLBRuepzUTkCeutEODoc9xM2FFeni83X4sKQQAd4CCqCaIexUOxE9kFKR6iKJCak2xtbHIh7Dk9Ip4cgVpD2jG1ZuTEjm/Eo4FE/M7TSOzg6F5mxzxS3UAhnVRDxmYyYBPeEUpAo1B0iKaROjQshmRxHTBz0Du076nNipvfJFTI6jIqlBDI5Rzo6Pu5/R0mJMN568wbVlVyOYIMhmaELg5myuMqKNKUDrp0uF4Yq1UGGk9zRlFj8QCI464VdB84FFyffQ4nNAgllROBUOgcUxaPTNdFFURFsN0rO9LSyWWYToFdolYJO6wQFjRPRdsx2TIQxhEexcnu5Y1FhR2guM5FRptVsuLJJphS9P/d2TCrPvXDNm0/PnJ8Zp/IYkY6ZMS5C1pVdL3iazKommbuYgiKHIe7UUcj2EnkYgdLrUz7v6sRjTejIKJlsneFnljiyGdQEoel+gyGR5IwCqe24OZsENQfl0RPGq3c89+SK9XHn0ge5nThoRkzZfcHEeayFpW/sccN5dM69c70uPH7+mprBraKaablRilEuQsiF5fkLL26d158Gv/wx55X3vg+iEvEGR9NpIQvo+8ajXLDDidfuMtuNcrhaaN6QpVL3C9RgjYUmM0USF9j7XJjKGT0daHKDaHB99RxoxbJOVlHKM9GzV+R/SEnyO7M+m/pp768TAi6J2pTQyqP0HIdx86Cf3qH6qW/v5yMf/b/y3s/7C2j66Qf99KCfHvTTg3560E8P+ulT9af+1J+6AW4A/sN/+A/rJzf+/vgf/+NPP/dzP/czwpl73/veV3/sx37s6md+5mfK9fW1v/zyy7/h+3z+53/+/i//5b987iu+4iveEhH+xt/4G++NiN/yp/gn/sSfuP0Df+AP3HzlV37l7/62b/u2X/59v+/3bT/xEz+xqipf+ZVf+ey//Qq/tj74wQ+++l3f9V2vfMM3fMN7v+EbvuG1H/mRHzn+i3/xL14E7lOo31593ud93v5v/s2/uf7xH//x5eWXXx7PP//8+PXCSd6J9bY3/l6rgfXKovMimtqBdD6wHlbc4BOxEwo6hCtPs1OnTqIhPZC6UyzoQxBPHOwKaQkwcsrEmKloVirD5yaS+BVRH5Gi0s2oWahi5JoomzLSZUbGq+KrsEtH1kR91rC6cAqlxcZ5OOdFyM05kiZ1dTQkBi5B10RF8FHBdw4GOSpjazwqxjMGUp2DGxW4UUMiT+hvCGpHWldkOC2/hi9HbptxWK8ZbUO1I+MR9ZxYlkc4Qclnjh06UwQWG6SysPVGrzLFXL5waZWCsUhBm1Ai43UlqxN0Eo2raFgPorzIs7sDT55/D31c8HGDZEh9I9kR90JaFsa4JeIOrdMSYWI0gVp3Fu+oCFWccQ8w7jgXpm0Em+BoHYJI4DqIccHSTPXNWskp4X0QxZB+RUmw1zNejJEg+pkxEks+IWN21ce4ECqTyyIbxxEse0VCuFkqW1bMCyI+QcVqeMg8nyThahBtpolJZURHc0ZHINrRtFB3Q/XEonM6YPbk23x/OqMPsq2oK6P7BLHTETXMjbEPenQ8nJyFkjLHYtOuEkbvgXchWsOSQzg9BgG00fAqPLJ33bNJtpkwN+4hvlEAA02ICE6jj05VuBsXVIWUgHrmREAIbegUjZFADLTjKQgfCGVyZ6TRQwhb7idJnNGdrEZSpdaNstgULREMD8RBIqjmc+oBSBKAIEmx/ZY9BaKJ4pk9g6tTemLJCY8btt7wOGDiGGeSXxEtUFUiKrWeOayJEJ/CPi0z/a1DNsFNOMrCsS5kUZZlELmziTIaFBIHY1oS1BB1mjf2lEALCWMZM4GxpUI2mdMlzI696koZd4BRpeNlpxUnpULZAwvmdSk6bXSMRiJhHsxVecyOugjRVu7OT7k+XeHrEV1s2nFiQ/yGloWUVuh5ptuZ0sfzTOE4gD55RTHDjIrci/tsWI/ZjY8DIRdaBD6CiclXbrKyilGG3wtkYRkgVhjiRN9Zs1CHozaTPi0K4oXeFLNpOSk0fEw4uo/BWoOeMq6OLzutnYE2vzvZuDRYr5/nVio5K8aKpMfEpfLs/DGeW6+IsZFsfpfMEkszzJVFnIM3ju0ZizhVC0NBJVF9QZaFRSp3H32NJy+/C1sG0h0JY+zO8XrljdOZPKC4kEYmrBDqmBsd5c5OOCDjxNGFp7e/gKwX0uNCiQMrwUUad2NwKi9wFZkSF7w6lz64ZOfVR8ElBc+9sPL81UoXYZNMliOJI4sl0uGWjvJofS8vvGvldPU6H/nVj3D75gbXVyzHPBfl3XAELSs9hMOjR3B35tVnT3nPacES5Cx4Dfr8xjEiaN2J+W1GJXMb0Hbn+cPCATCv1D0opyMSTu8d0vw9j19jxHio/5712dRPfeyoJSSOLHrL7/vd/yeKHbj0B/30P4J+0lQf9NODfnrQTw/66UE/PeinX7c+8IEPbP/0n/7T/1JrlU8P2Pjtrm/+5m/+2Nd+7dd+wZd92Zd98bZt+tM//dM/+Rs99zu+4zt+6eu+7us+/4/8kT/y/idPnvQPfvCDH7u9vbXf6Pn/W+oHfuAH/stf/st/+XO//uu//gsul4u9733v2/7W3/pbH/3NvNb73//++r3f+73/5Vu+5Vs+93u+53te+bIv+7Lbv/pX/+qvftM3fdP7DofD2/6tf/CDH3zth3/4hx/9oT/0h37/+XzWH/zBH/zZP/kn/+TNb+aYPtv1tjf+nq83lJF4Ks5ZlKtUyOKEV7r77BiOYBEl9af05sSauDBQAktBKCSFhUA0aL3RoxPe6XSEacVY9ADMsdxVOj2C1+OOJM6TMcAHl0XpEqSUqOOCmbG0hlS4bbf0gBaNOhoprlhCCQWJhPkgW6a6MEZANkbsFKms2sEb4VOkbLFwdIMhhCZ6BAmb3V1baEPvNyqnDfnO3oPXCXMu+7QHaDqCvEWTM5f9jGRB4hlL37CAHo4wJnxZEpYP9GGYJEYSNpw2ziTtHHOmbHAgcSMDxDiIQHHu+lssa8XsY0R9k1KErQlLKH2cGbFSLwkzI/q0GmRJtGhctCGrI5czNoRF0kw2imAEmCYcx/sFj6D1jtiClnmBrLcbAL13ouzsBl0V9Uwj0cXg3rZ0nQpdziRZ2UPBOpt0umdUIHkhdSWWSksVPJFGAXOIHY8GWma3zDqWbhmkmYaoEApbaywGKju93SK6YpZBE11mx5ZQIhSxTowJCc6S0BEoOtOgxHAHIghigo3DaW1gmu/tT3dgAy1KWQpaZ2Lc8EbzAThFFdPEvr+GCORiM20wKe6BxxlIaGTEhUxHaYzkbDgjlOqKMViSze64CGDIfdpcC1AZJBwLQetAZaCq9/abhpIwWxgIA2dko/ULWTNmc4pgAU4t4Ch46+RQjja7YNEawQWNIGIuhqyvkJRgJ6IyJEGC8A0f9d5W02jRJsjanFDDrUDfQe8XtJFYJFG6zvPPhJF2mjgtHCO4RCLLQhpCGjsiQc9T3JkdcTeiTRvQYIB1PCoRK0UzHn0utMxxqbPL3wTpC0UEk8DGTkLRUBqZMKMKNDYkpsgsucAA+uDmjTMpG3ZSLjjalRSVEkJKM9LtlkHXRKh9KvVavJFpczgiYqYOrg6XgCHkYVitBAFpIdJO10aEYRjQOYzKKQaZyhBIlsijc6s7PQd9b2g7kGK9Z+UMNM6oVcIazqB3mZYpndfqGhUvxp0ruyaW6FjAgqJtMNToIqy7cwpFZNrgGI36xidYV8dkB9kpsuJkqEbGqdxS7ZajJbIqbkqMlRTGMFgtkcn84s/9HKGKlIzYwtiNwokiO5lOalP0Kx1kx2Xg0rikBSKRMbwF4THPL7/j+nTLgTO6P0945VEWmmWwNKcGYqMK1KNw6R1/WrlKyvU6QG4pvrCYQt5IEUTrWPGZTlmVJsHVVea9zz3h2ZsX+uXM1QvPU48dITAdWG60/RbVzntfuuK//OIv8NarO+/+vN9FS0diOTLkLUa7IYpiyVD3aV1pDU/Bsi5c5QOnWIlz4nB4gWUoK8e5uJIJ8A9/exaNh/rM12dTP612IkJwH5jApb7ATXmTIvVBP71j9dM8T3rv5Af99KCfHvTTg3560E8P+uk3KFXlT//pP/3WZ/p9vuRLvmT/z//5P//0pz/2RV/0RTUifvS/fu4XfdEX1X/37/7dz376Y9/8zd/8ayzI3/M93/NL//W/+/Ue++hHP/prNhhfeeWV8X3f932/+HaP+9OP79c73q/+6q9++tVf/dVPP/n3b/qmb3rXK6+80o7HYwB88IMffP2DH/zg65/+b77ma77mra/5mq/51Ou85z3v6f/23/7bD7/dY3on1du3+vaV1g+ICIfxJku+QVDeKoWhlRqVvB6pYZzaQFZhaGfUnSROzgmPTA9jpIGMWyLB0M4uDQiMA4teI/e20UTg4jSgKEjcsdmZWIzNDqz7YEQFBB0Lakcqxs12y5aEHvcx98820iHTfKdF56KVSMoYYD1xHc+xRmLrG5GZNgQf5AVuYxBihGV2kXt+ikM8Y9TOsj5mG2d66qxaiRBSWShmxO1TFu2gAycwy9OusGR8ubDdnVGMmdFVEU8Yme4Nl40aAwc0Q7eBD8fUyUW5jFtG6oQEt2GIJjRNOZIiwzjB2NCo4NdEqbR4nd4SR3sC4vQKncHgQiudIR3LN3QpVHlEA7rohDKnzipC3ndQpSgQG9F2kipDpvU+D+PkaQJtxbnoU8Z+xWG9Jqho7lR1NDUIp2Qn0gB3pDnigyVf42OdN1LdKX1wUMH7GSLo2dnlMjeGcS5yRrSgXZA+u41rElIb9Fwg5cl9SUGT4CwXLBLFjUWCve1EClZbwHdC+/xqyDI5LN5IyuxSSkW0E17ZRqLHcXakxpllCSIqSZVDqoQGF2/s3sGFqBshoElRzagHOgQcajSSAXREZ0fUMdSVIsJQY+s7KRs1nDUp5h36jqRCk2Cn3TOEhCsDA4xEa52QMy2fyU0wvaLqwk5FUyONSSRKoiQGFo2QjbYXUAUbBA2PThLhzIJU5ZhP6GK4zu+vq1MJVAXtHfoNIR1PCx5GLonIz6jSETPu+hRcWWROkciC5yt2Elck9lFxGxhBHopFJlu+T36c51eNwLUiA1Io2YNQpwq4ZEwD8QZSOIcwMIoNzAemR1wGljpqO1tUNu2c13VC9n3HRsbkgHkmA2/YHcuS6JedWAt3+1Nu96ccr07IkucCPoIUC1eS8QieiRIqGD6tViLYGKCKpjRZJJYmT8iZUzmRiB7AwKTRx0C0EKI02wmCEsFKJwgaChgjhKGChLN0SJqoMsB2hl9QF9wdy7Oh4mOQFmO0e/6MJl7fgy0vRAtWWRg+EKD3iukUexdxbtOFx/kW80pzR9Wp/ku867nPIcWGWkbCEAFJQZLKEGNEonsGucIZZIxHGN0mKPuX3nyLi7zFF3ze5zCkIqKoOX0/g2zk8hjpiupO0FgXY+udmS9wIeUTYXZv7ejocqL2dyE8odiLrFbYz52imSZCL4Oe7tilo1pIDV4qRzbOHE7PsxyvCKnEVISoKbU3xISmibBM687RdnIy4uVr7hK89uoN7ZnxcnkRi4b7hqAI1zTPPDrCu1458rHXP8Goz/F4eYEbr7gIpIyzkaQjIWz7GcmK2Ey6fHN3lpPx+JRIessqV+xsRF7oeg8hTu8wr8r/xPXZ1E+0gFFRgZvtffznn/q/8Pv/938JW//Tg356h+qni8zG6YN+etBPD/rpQT896KcH/fRQn7n61m/91pe+/Mu//O6ll17q//pf/+urf/SP/tG7/uyf/bOf+O99XJ+tetsbf6UPqmykVcGdiMRomRHK8XggN8cvQlmvGfgctxVnWRcsNsYA4XrmJkWbwGjz2RHsMSHTcuQu4HwPk+zJ2cbGIkcs6n1K1AkfGfXZYfIxB3vpjhWlhRMpId4YWyWaUI6ZizQsJWQU8EeEJwynSGXUnRaVkSEsTYCzO0WMJWYLtOH3XU7BRCZo2ANBkCEctPDYDpyH06XT3bGkk+ugwkWUHoWg4D0IWXAthAcumZoSA4XopEgUuWYNQcOhTksLEdhwNj1jabDqoNUKUTDL3EgQKfNWveVoN6wJsq886zs1Kn0oNo7slwAumA88gauy2hNGWwFhcAbfKbqx0OgBqR9wVS4LlJRh72hzVAw148RM7G75wJvke5sEHByw52jjCtWK+VtYOKZXqGyEdrYoDC2wTtHUxxnJnR5HOiuRb2njMkfVNc8OXpsCsaTEVhM5H8mSyPe9WKPj6YZ9OGGQbHaRWwSZlUOavBm8oRbTPtBkLoQ0ERgjCkMEMyBAJAMdpJNMiZgTG+FG647JTA0ML1TZ8DEYJsh6xMSIbSCnQhuN2/MF2qDkFUpCW0G00L0RVAhD5IBrQAyOCNlBQrh4R62gKog5JpPxIQ6mhmZD6sDEqN1prqT1RNETOd2BdAIQFzQK1jdMhZBgqLHLTMCDSsrB0MHwadFBZQqEFmwOB1kxg6AzxoJzuLdfJJIZQcU9aB4cNOGXwboYxTLKQk1Her1wMidLR/sdyxrcGmzZiaTkoRxkJekR4hnBxnBhSdfYSKSqDLsAA4uCixN6oXMhxoHFn2DRCX+LZDbTEH2eo81nR7/tG7kIrQfBnIZYLaGRiB2SGE9LgDzmwIr3NxHgjY8Hx7ryUnoOeuHinVQKrsqtCkWDqy50qTTZEAOTAx5HXObvYDjkpCQN+jgT2WZ6nk7WjgCFC9yD10XrPXI8YX2wBzQzUGFBWcQY6RV2B2UmT+rYWdxRMl0KNLAxiDGwroQs7JKJnqB8nO32QkngekmgAABk8UlEQVQrJd6kjEF4w72hkWgtESQeLYnkg6RGsxPPbs7I6SWuT8/BEOAIXvA+KDlTUjDaju9n7HRi4Qh9JRRuxi3SC9t5cPdG4/HL72UbhcULpCOaC5d+x8U6Y1Qe62PwBZNr+uaodiIGcIIYRB+UeI4Q5bae2XmLwzJB49Ub+9F4Tc+c0sIxQJKBPeJucxDlyell3jxUDtcnIlaiP4/rgZ0bTn0u1iOgpNNc+Kpjh6BuAvI8737ve7HlV3j22sf5+BtnXno+kRejdkFtRctOHUI5vovDbrz68TOn/F76JlTLbHQWzeQGEYl+WDmPW5LfopE5Ha/BVnoUkq24CZ6FrvfXZLGZYvhQ74j6bOqnLTrLMlld+3k25JZwlgf99I7VT84MZZz6qTzopwf99KCfHvTTg3560E8P9RmoD3/4w+s/+Af/4N1Pnz5N7373u+tf/It/8eN/5+/8nV/9731cn6162xt/kp9ioSS/wutCz3CxWxaeQy/OYz2iunC+HWAHPCX6qCQTck6oCN4OBMLQmHBVC9BMSgvJKz3OmB4mTwLwXkjHJ1g9Am+RTMmSpgDRO+7SaXb0UCSEYQc8wLnBLo0nXhhZ2UzofY5km4NJRUYlic30KKl42en3KWFJD5gc6e7QG0KAtHuQcSKk0GQhJKAHp7KS44DXQkmKdGe433Nhgj5AZfIUzGG0jRKJPsoUzAI9Mj36jE/3gobRZUdD6DFAQVSJEI6xEE1QNWChWWGThVMUcjV021jKHXEWzJ9wlH7fIcsohTEUzwdMAvfBkE7qFRmDmjNNOlmcIgUbAwklSGxt3viGK1mPjBScVfAEwhsAHFPiSg1hjolLPKIsQasfp+RBr06Rx2yh9zBpn3YeDixaOWqH1rFU2Ni5jI7qQLuy9oU+BuckXBCaBDaEJIGFIwSdRsTGGBW3hCUhzBnjDvdOWY7YWeb4ujj72AkLogeDRkqDTBARdG8McUSE1hI2lgk2dwgU7uG6QpDSOiHOnhiuWCTUZqfce6AEx3RgpJXzOHM8LeDBZZ/HOerdtA3oPfskAo0d6ITvdCn3fJFrjhzQVok4E6qMe3Bx0USMTrRKdKOnhIsROSP5ANuFoQdCBhLBAiyi96I88Ggz0c4y5CtGu6CuRKuIGERnxyndUUm0fGTxQt5Aik7RHgFq7KPTXKaVJcAQVK7ABC/GhXFvjem4CW85ZE2UpFyicYgrTqIojlBZrBIy2GmkbETvSOrgHfdgiNJ9wbGZLoiiGEmDpB33gSvzWjMWcgNpd4Qpg+CoV1Cdk524eKXkhd4DorOsmRh3JIdrLrRxw1mFta9YD+pziWdLY02ZooWIgebBkcIYwq0oRa54JAsjhPO4MOIypwvmx0X3ynAICo2MkGjuOMuEMnsFSZgoEomITg8j2ZHEPP/dgxHKGSNJRfyCACH3KXdqiCuqhg5YNBMiDGYwQHCeNr2YUPzeFeP6/nq74WXHcWoMGkqX2fElhIUD6QLP2eeCHGjRZreagaYd5Ax+hfkTTnbDIgVvb5ENRlkYYlhNPHvzluvDI56cHuMGmg+c/ZaQ16l+yyEnrvIVwoWQguqJbd+xg9HZaPIU0xNFFI3bOZEznCwD08SFQC3RRuVwSGRr9NZQrtA4cjCwvnGpT7EB41nl+FzmWJ7RGJDSXCQOYcl5MoVUyGTOeyGpzQklf5MnV8aBF/nFj34C3rrmyaMrbO2I3ZEtYaPh0Xj+UebVj77JzSdeBVlh38AqdyFs9+DtqEqOK5aUp0WqDjxfyAcwK4gcsSjoMExsXgv6O9eq8j9bfTb10+ICPTEQkj2aB9AyyQ8P+ukdqp8Kc4P2mBLyoJ8e9NODfnrQTw/66UE/PdRnpP7JP/knvwT8/1mM/2ept73xV/VEjLfQcYMPo5cnXHJiDKeHA8EhGvQ7hjZAWFTJZLQF3ndgoGmZM/Q+cAbhQRIldOEchazGgt4f3I7aDZSdPt4ENYq8SKIgOrs3iyjWIOnK5QImCzEuqJ9ZyNxFo0bQI93fAoRFM7VVXBqjNEa93Hf7pihDEh5KDJ8XKXEEnylsCBKCmnBpDWWmju2x0nQBu6DhaAQmheaDcKAkQmHIwP1CWhLtrnNbHY8O7OhIqBxp5gw/o9rJmnAfVAExhRD2YSQpLMPRAUULWfO8meTB3R7EuCbJSh2zixzFSAwWr6QwLATXIAnkCLpc2FPH8opKx4dMITAymNJscBk7LoaOTsmZxYyIwWUMzsu0Z/uAktcJY5ZgyEC9siRBIsil0An26CQ/sEhhkUqOp5gkEMfXhb0nXCc3RrqR7cBG53wPTD5QGD7Y1FHPkyMjTrfZVRXRCeMWxUdFIqGqSAs0Cc3vQbzSsIBEYacQPohwBCUJiLRPgaxFZkfYx2TEmK6MEALFJfAYk4HCwERm2iIOAmM0dAhp2zmIkLJRSuZRSdz5oMo1I2R+bqEIoFIoLFSUPZyQQRpnyphJdtNAMqYVJoHI7KYrQsqJRkPMIQbbvpPF6ZHwoWgIRkPaAD2iMnA28IaNSurbhHIj00wVPq0UNIY2NpQhiVWEKzeiB00qaGcI+LjQ25kkhkpmD0NqI1shbwMdnUMxtrSzh6MlUXWwjcqyGISy+IQZIyAyIcduZ0pS3J0mlZ2EJ0MloTjIBlQUJck1qSfUnWaJizZUg3WcIQ12fYrnhJhSR5BC8BFkuaJXwUmoQru3xiS/JXXlYkE9KO3VG3Q/czwdWFFyd1SFsHku3Mkt6GBlxXydaWG6YLKQgmlfgvtpgfvPV4QIhQg0hBSFjJPSzh6dMWT+nAGhQmVQIli8gw82S2zmEInEAaPTvRISdKBR0TSB1AklUKo7EkLxhqZgP+9ISux+wf0a5Tn2uCHsQrDTx2AglCosFLxXtAgeMyev6WAszIWdd4rs9HGL5QsuVyAD5IikRwzfYYer4xW/9PqbvLE7n/PSy0BmDUHqDUsRXApbKH0ErW+YdZJWhu2wcJ/IJ5Qw9npLE2FJCzQoY6dtK6SVWFbqduFxOpBvKqk0dhpuQfdO904uG6iTTBAqRa6JPaPpiuHzuZmMuYHs7G0j5QwJPGwuRvyO6yNcgN/zBc/z8Y8OXn31zPXLgi0V/Dinn05XXF2tXDp89LVf4fToOYZVigoyBmtKiHTu+kZeMj3uwIVSVlJKk/ulBeMZypwoyCRSpAlRf6h3RH029dPqgUSnSmPTMwBDnzH07kE//Q+gnw4P+ulBPz3opwf99KCfHvTTQz3UZ6De9sZfvhypuXOxG3xxijiHfkSOmT6CswYeO+UwENtoNJIuZEB8JqiFVCwG2ROLzxt8706EkKOQpbDbzk4FQBOYbpA79MoIpccZlQMWKxGJFs5lXEjWuHAm246F4qxsI3AJVjMqheSCjUC1gAhDB5amBaAQNIwGRMwsNtFBygXCsUjkYHaVPDDrZDNSKqTsjLTR05HWjQOZg2YiFKWjBGOcaRYM71hyUgHPThuCDSf5hnGCyFTpDKkcm2FmEIkQZmoXUHVeWC0g6bSveN+QNUEeRLpmGyfKYeFib4IuaDrRxxENJ+cdkzNbONkLiYWmzu47hz2R6+zKqLT7G2oBWcghHNyRYrR2oatgi5FG5dF9BFLVYBwTXhsWwRqD6jt1Sex1TOiw7zwSxXzFxBjljmp3uFwT7QrLTowzoislHiNR0aL0MVg8E6KM+zFsHYbrARkDNaWLIShERqf0YAwBNUQNb1DTfbKcCDkFDPARWOq4dNp9dpmqoLHR7juiaMVlMJgLM7WV3sASE6zuDREnYmAkwkFNwQTxmfjWrQNB1CCr4WacR+ewPCFLwlpmjAut7XhUzpJAE2kMNAaNM3dWkTQFXQSED3IISSbTaKRE7x2jk3GWpPgQRJd7CHwlBego9HFAUmLcJ/B5ryTb8HZDpBfoQ5EwgoZImtYKm4mAEoXwRA+jkAgZDAfrsMSCpATOnAQ5Krt0vF8YpqyayenAJpWyLLjP6YOlnBBn8nqGEyKEGWqFjLJ7wFDwQfeV5jZfT5yifabwSUNY6CMjUVilctTBoQctBI9HdHR+XiFEDWSAIozR2fMZyXlyV4CsQa8XUjmyVyV5IW+dN2/u4LBwdbwmcmZv83eUZC5+I64gZMLDgeY7LhvJJkBY0PsEwmCI4DEQLqgYIoIxzxvpTsSRmUUnlAjcnT2MPM6IBlVholEHqzuKkNUw5vU1khFiaK/kaGjMay8xqSmmTqYj/UBJzu0lyMs1fb9F0o60aa1KoSQSoYnnjlconeaOeCfiTDkqrucpsPUK0yPROxZXnC8XEMNp7Dxl02lZelKuGHvwiU+8xuPPeRE9BWs2xu1OuBCSCBRpKyUZSzqytzuwmfynaaX2QdjKcSiNmCnw1YlLI1vG1saLr5wo/VWyzXQ7XZ+jj9t7S5UDG6ROt0qm8MQec1srrokenWFnLlw4yCPMTvS+kZKzlERHgYHlmWieYuC9k8tK4Rp56cwbz265vXHWdqSssMiKdWE5Bk8+78RPPvt/8uabv8iTRy/QKiwlEW1OZRyy0sYZKYJoIDLm//Oc6VAv0BOSMmKFcOOBUPPOqc+mfrroIOcJwbc+J8kojZH2B/3EO1M/HT9NP5UH/fSgnx7004N+etBPv5P004w4iniQZQ/1Gav78yuY59tvWG9748/0wxR7QnAg6YaON0mcWcfL3PRMzwdqGBYXDjnjPSMhuFZCOrIUQq7YhtN9o3Qnm8x0uIDqHfIFK4Gc+zw4X8n+iG0EIomICyOeEV6RfuCoBXGni9IZXB8XUg0+vt1RcVyDxTqx35HlCURBsrHFGS9BUkObcNATFnEPYR0MqQypoM7QI2kYRiHrTAVj9Al41Yy68dxaWC24G3d4rDASRGbvA9cgZ8e6U6xwiWmtWXZ41Apxz5hBMmEZj3bfVT+h2Ykh5DQhwS0Cc1iGUcfObh0vhiK0rbKMjSJHnjs+RkZgqXGQTNl2umc2MTwNhjqIsA4jSJwj4zEocUHZGShiBUphRKcPJwssJc8pA4NAyNFJo3GlgeiEUx/S4KA7rhvq98ltOrvjVlb6PrCUMFfEp5UpcSR6xqNQXGHsmOTZYQun5JUSkMhsKcihLD04S+NZHrPzGndocmQ0iIy1hOdB4ChOxUHBcoYIlpynDUkUt0SXdea0idEtJtdlDJI3VGbSHbrTvDPuGTsISDSyzpRCCyOJ0u+FZETCEYYHGoYNuMvGqJVDyiBG2weSj3Qqi8LVIpgUdu8MhNttR9yQboyecKYtJOiIdxY1JGYClQqoBCuOByAK9+LEh03bik0bkbGD9tnhZ5+iyRLVB1giJyeVjdo7Zob7hHJL32htJ0XipCcsNe44M3ICCqMvJAELRb3SHOidJz3oUomlcfbBTSRuW2K1ecPPlkhpwUdBy0Lp27x2FWVk8KicIjPsihhOoqISmNV5PkcHMWKsdCm0LPTU6G70mnncMzIE8wDbacPJco154LVxSIlxf82oJvQxKEtCxqBtO8f0Attl486Eq3RFfGKj+QG7algSJDpqlaMJB0mknvBUeEsHz2xnVWFpFR07w4yLC1kSx7ROa1Y4jE4xgxh0HE+KJkFwjDs6QhIhi+MxaDpT73oIPebCVgHGwHQHv09DE58w6HQiSUFGxVXAQH3yd6DPCZM9SPGI1O+tZgI39hYgaDM0BFGI3KnckkQpy8oxnVjiTUQG1gr4ZC4JirqSQggx+gh8b1g6IQflsp1JQ/nlj3yMnIOXrgF5E9NKz4mRD/ToHBPsNxdMg31/RjocGU2QyPhQhu9IqoxDMO46sQsWFTlAj8TL77liLQHN0SiA0tgYVyubJnScyS1YPNEvC00vXB7f8eqrnRf6FS8uGRtw1Ct6BLl1igSjnzHTOUWVrhgIIp0lJ0ZPIC9T2bh+XslXwltvVbanlf3ZLXF9haIMy7zw/Mt83u/63/FTH/4wzTMiQcsr3ZTUlGUoVqFvwvVjI0WQpJNsY2uNR+XddBKiK1Uz+IRoP9Q7oz6b+smboD2T9EjyEwAS10SUB/30DtVPt3ZLzp/gmPcH/fSgnx7004N+etBPv7P008ciot3d3R1Pp9Plt/OFH+qhPll3d3fHiGjA/yqv8G1v/L2xvMKJFd3rhC5zhcYVdbzJcCP5Y8KNrSki991acZw7Khs1Gi4ZlYxbRphdHAF2Om2Bnqa9pUibB+eDtu8chAlyGCfUDWKheabmC6GdkAGWqWGcRyO4xnwnmzP1imGx0K3SveJViFFAG/QLO4pTIC2zqzkGnQ1SMBycQg5QT5hCZMVcuesXXDslX5G7so6Mpikoqp9pVLIOUjA7YDlTx+yEjphJVHDHGAHlirMaXQd5NI4q9NFxzYwUbL0ycBAjyTIT/7yhTUiSOVhhpAupnNByxMcFolFG4SzT1tPjgo+Y3BE5YnLLXXuTppkUhkQQImix2QmNhMqCpkqTPlkMHRhBT5kLOoWSKq08BmC40qujlugCYgWJI7krx4Cqg54TrXdYB5hgvpL6Spc0rRAeuB1o0qjmuC5sfeB+RqNQXakEEol1OL5ALCsSG6exopLo5cweRu82x8eTAI43wWzBu89OtTa6bERqWLtDyBgrrrNLG+JIFMSVEBgu5LySRkb7YLhT9yDEMQlCQczYBBgzUQrLNIy7EVCnwJXh3OfOoS7su99zYsaEeKeVoidsgSFB80FrFekb+IY6SBdSmcLYQ9hjusDUL4gUEJ3nj+bZg49PdmUhbKbtid3RKDQHsUxXYSdx1EzxTrq3TIwxNfBeQWISYGoTsi2QMndSGbWyiIE7zQd7DKp31IJnNNScx8fCFht7g/PdjpwXWoKLnHl03VmPDfyWbclYMkSF5nGfBDjocotJAMFCQRwk0n1q30DUCBdSh3wQ6riwFaFbQXtiiWnNSox7PssgyuCWHc1C7Y3sC06ntR1BUILeOx6BpsKz7RmvPf0llmPmyfqE0hOkRJXMRR03IQYMKiOcU004hctYyeYkgUiNFsHFg6QZ7c6ajuzNQQdNHVImGBxyZ3inNME8sYsxUjDM58Io+rQ1IEiC29RwucZ8oQDuAwnIMdlKXY3wQTIFgoZPAH060trAQ1G9pfmrpGLskZFRyHogvGMM1IMiyuqZ0YNzXJghhpnHdoWKTZsWG26NOwlUjb4pKU3BZv2MZrirwWsX4ZWXX8QUUkpsu+NSqAi9GXkoEgstX4irzkIn2oGFIxYdFRgdRlyB3II0WhNUM14EjcymiTqUkx4QcdbYyD0zYrAwX39rxhbOqgdeNOON/gnOt7DlFRUnOJM8aDG74oflCefLHaUseGwQT1B5QhtB6zsiA5KyDxgYx+uVYkG7veONt55xVR9zpSe4Tbz0+N1clzdo7YxY0M6DnAvug7PvpEVgNC5tpeyJq0Oadr/T87gZlgRNHWcw0iD0waryTqnPpn46SHAKpY9Ob9M9UQYc6oN+eqfqJ3vyOu+//tNI50E/PeinB/30oJ8e9NPvIP30gQ984NmP/uiP/t8/9rGPfQPwwul0OovIQ3rIQ/22VETI3d3d8WMf+1gZY/yTD3zgAzf/a89/+6m+7SXq8ozL+gZrcg5+QlvhzI4umRjPWOwRgrGPii5zfF9lUHJBKUQo0QemQvfBkgujVw7HQtJBdEe6gczDCjHWONGlsrvDyKyxIuJscodGR5Tp2fdM842e7ujrLUVhVGdDaUnwy1scFsgGkgtdlKEFtQOqgdpgSCAxSC4TMtwGaZJ7MUmoK6MPRoI7fZ10yESdseRqC6JO3pUoBRFYq2NAVUHHfUR4hz11LlHZs+F2JEnQCWyAeKIQRB+MkXDLWCSEybLISRh3b5FTpUiwRkLazoiK94Xr5x5xSomtwpEjtiXQa877jmqQFGQ0Mo1uisiRU77CfaBWUekIg2QzTUplMPJgE8fFGOEc00w8qpJIaljvlJipdIghKaEq9/aDQbMgstP3W3JaaXEkTAkfXGTQUyeJsuwTmiw2eTJFDY2gNZCAlcRBCk9p3EnnoHAa0LcOcmL3oGul605no/SFSMoYffJxJBOaiRTU6qiuCCdkVAwhp0YMofc5LesRhB0outyDZEFlIceC1vl5elL2oWjOiDb8kzyQ6CSZ3XIZ4CqIGaYdiT5ZPBJEGGKB+QqujOi02ElREVG6AiasZlzlFWJhb5VzvaPqxoXZMTUxvE6otU95QojPzmfkKfM849oJNswS4gr3ixjBCE8khdWVMg6UcHwIhKFAF8VN0BaYZAYNi31250XZNeZn0ndCB1gwekVN8KSIZdwVyRMin7txOZ0hKSGD5ZAxbRQz6p7QKmSD9ZApKTGoxJZIx4XRt2lb0YUmB6Q1Tj4mpDkJu0LddtIwFnHSeIqEkfXIEg24cBmPUFVcFSikyKwauO74cFoM+mgccqLuFbUj9c1Xubl7xrANPTyi5QsS20yZtHUuoEcna0Gso9KxmN9ri8wCSK1cJbuHozcil8nguf8v5dPcINgaqHOnE7KdJbCkbGE4YF4JHrHiqO60sTF8TtccrE6Oixh7n7DphGApMUKpbaeEILIz8k6Pzm1f4HDgLDfADuJUcdYWEEr3C906lgIdg4UnKCtNdpCNfIJb77SA7q+hNsCvGeOangZF4dLeRORNrpd30XXllBfe+OVf5rHd8K5HLxMOtQbDArONQ29YGbT9FnSnxBWpPqGhZIJVAh0JSydanBmy4XaiIcANY3S0PSKp0sZG6E5fnUQCS7g4g2DTA10OsAq2v8rgjr2c2eUNmq4MmQEDAtQ0F/8aJ1plpo6OnUc6cF4FMZSVIismykampwHZiOYs149Zjkf8rQt3r93y6qUxgMOLoBboHhQzhg+SzE0Us474hndh8yOPlsJBFLk0DqcrDm1jFbB7QHlYItLDxt87pT67+gmqKTKUEgcAdofLg356x+qnrCtBpslALB7004N+etBPD/rpQT/9ztJPf6e1xq/8yq98rYgc4YHG8lC/bRUR0cYY/wT4O/+tJ7/tjb+D33HXLng2mi6oHBie8XZCNdM9qNK5XgvWK3fRGTYhGlYHZg2Ly7xwaCXWlSYnTBbEMwlDYqN0na0H4DY7+yrcRSFrYiTnrjWyKwcUHytqdUJTx0ZJC3UI7jvNEyIHeuvY2rBjJeqC2hU9DWo0JAWmiTEEb4GzI8nRZCz9mnBBtOJdQQJhINIwDbIY2+3gdHiOWJ/nDb/QChy6c2wDGxMGG4dMR7C+orFg0nDvhBUuVu7HzXfaeJOTzWQmSwuXAWXNuA+SVTRVbu/eAjdSeY7mC6MrwbzZI8FxZGILzk8r59a5M8dp1D2jRQkq4RsmQlgmvJOkcJWO+HCElWBQ1emaCJhpePepb2qJZPu8gQoUgUU6xk5wO08ou5CTInRSVpY2N3CHZOKep1BM2d0IdUI6EXWCt6UjyRFRIhLhgYaz2uwid1l4gwvG4N1W8OGcEfowyoCsB2o5A42r/jKaNjp3uGy4HwmOUzxFneyfewZJSTDp5E8Yw0lqHLLQu1E7nCcmiCwTNr3RITeKTRityQHDoA9wMDEys6saErgMJHayKMJGeDBCUFWGOGNs93aTjqkSltn6mSFP8R2SZUIS2MKyTLuBHTNROtvtHVE7o3WSzsQy4xqh436HRcPUUBWMaSGJmMwaJ+MuJC4YMEYgOhkgNhJ7CKppwtnNGe0M3tE44WFE7ni+YycQv7pniTgqTHgOgmlGvCP7mbQeiK4s67RGPFmUt2olbH5WliYLadsVtTdQMj4y+61yuYVcMospsTkRlW7GCKhDKZJo3YmU2HE2dSIp1gZLzEWhSsY1cyfg0thkxzCST7tP85nsJhkiMmuaCzq2wSFd89pr/x+evXHmsD7ixetX0OwIg14OSFooquQY9P3CyEGPjOkBvJFomAxSmwDzgTEc1rLS944ZSHSOYfS6cdBPLioOWL6C7SkXOTOWhvaKNMcFqrzFiEHSTlggacU80RSqV0ygq6NymD/bSLgJPd8yUp3gET1BV1ac2+5EzAWxd4hlQZdHtPNOTkKMjdWVVRf2Y0EszzS0fmZxp9Y78qPnEVZQCAmEneSJIgfuzq8jtTEWpe5njuG8fvsmx6vnudQzV+WAeKI1pYzMoQ7EMm+SuJMblnziWBO3ekRiY/N5r/BoeNrp58qQxyCFnE5EXPDeSZZY90TXBaxwCCEvxkWFoJH8QvIdJDNwshx46fiYj6WdcQP50SOOOQHB3htdjKGdLS6sVK4CJBmDNxHNRD8guhBcMNsQ20nJSUkZFdpwXnnheZaX3sNHPvLzfOL1n2W5JFa5YFbwsVIYmG/42DFV+jhCvsKXwce313he3kcqhdv+Kmm5RtKcWEAclbnp8FDvjPps6qeNwc0KmDEOO6ern0ZWpS3pQT+9Q/XTxy/v5ed+7n/hC3/PX+f06L886KcH/cSDfnrQTw/66XeOfvrABz7gwP/5R3/0R/8h8O55d3ioh/ptKQd+9b816ffJetsbf5ejcHV7xQvn52iLsZXJhcjLFed2YT0UWm+cq1NS4lG6JlFIrtMm4ZONojGgDiQZkhYipn1gi8ZYEosayEw423TnY+lNnuyVdRxo2mm5wDiSeuNMJ0sGvyKGToHUOjIyMQQfgwVjbQWTA0Oc3TubVFp0qBkRY7gDdY72k/B7MHEiCJgiVyGJ494IB+sHjgXW68KFW1aDU+0UT8TojAicge7KUQo9D7q8BeMOA3I6kOLMhc6IlRPPo2F4VnbvqILZwqVeaGMmsR3zEwJmR0icyM5wx90ZLpTjxhvtllM9kPRI7c9oaWNfB0eFI2MyOdIRL4VDPDcBsLGxHIwaTvOEFmh+phwy2ZQ+Khkolok90fs+09cUIildAokFAOOA+fFTwqUnY3Now8jyiAOQu9NjR3NGJbGcQVS4nURibBjqeZ7KAqKF5s7OThwNv1Ra3QnP2HJN1Y07uyCxYnEFdFwfE3vCVREeIXLFCCPsgvcrVASXijOwZLh3Wpt8GGLQtjMjfI7vk0haKNEYvSM5EyUz2kwzVLFp/xAlNIP7TK8TJSyIGIRPK4rJnG4gCo4g97BokwvJCsLKGNNmMmSQEmgI0QZ1v9BbnzBplDxOvHB8jjg6d+czCFy2nbs2SGoIGQ8Q8pwYkUACPDLN5f4GCzkrHh3xRqjj6siSaD4/m/DZWe+xoHrEZHZyGYJFIWLcJzbqhOKGgwt0sMgglW4dLQW3xBBlmNFj8Hg9UtYEMVjC0MiEFs7W2drAolPyQvdB98YYgW0KXkjlMLvdvUMe7Bm2ZFiHw2b4Mr/BYwSNK0pU1J9yyY2mK2U/gQ9CA03gMmijYtKAzNgV6Sv7ufOrr7/BWyFcXb+MHq/oy4IWwwWKB9pnimERAwlcj+Azocw7oHOSo8dM89uzk1nJZApBGm1Con2l6IWLCmdbSC48utwQCo2ZPKcdmiTOS+aqKi05nhJLA6uZnQR6JKKA92lZsIJ3Q/qZNDolFHhEDZ3w+TEoeXC5uSG2RpMEUii1AA0NZ8Tk5twOx1Omjx07O8f1CXcyuNhCsuDmVjmuT+jtQqfRxx2HlJH2lNfvXoPjy0guXB0Gv/pLG2/WV3jp838XqezsfkfSxGInxjBuc7DHLayD/eaOC49gPRC+A89R24atb1FHQ/RdpKGE3eJyZs1HfGT6OFOHETonkfNo7KYkmywkjcpiK91XhhhDBi0qIUZaFy51UIchwkytW44sURnjGZFhj0wqz8O+43EkFWWwkWygpNnq1kf4KBiKrM5tf4Nn+2vkcqC8eKDdDJ493dHxhCDRvKOWESbEPCIBg5RuQZTLDtuWeOXFlZwuwIkQQywDisSAsb/d2/tDfYbrs6mfLMCic2MXtkc/xRd/8ddyjAONB/30TtVP2TZefP7/QUntQT896KcH/fSgnx700+9Q/XS/OfO2Nmge6qE+E/W2N/62HkTqDO1kFdKQmfzTKqrQ24WDGSJKHcKVXrB2OzuPOVPFCQ2yTPG69YrZASNYlpWlDkbL7Crs9xvhjyo83uBqvI+qhstTrsigV9yub6GbEiKIBBLCqBnfrwhxfKlc9hsWE+oQdCwgib2d8eRkdWRsiEyAtJmicqSFsEUn8f9t739ibduyND/oN8aYc6619z7n3Hvfn3gZkZGZVdhkJQUGQ3UQokEDEAjhhi0LYbcQSAgJCSEQ0KBDAyzcAVmyadAxkiWDjOhAGyEh2eAGSAiVcJWzKisrMzIy4r3775y991rzzxg05okEJFwKKaNCz+H1a7zOvefdc87ee61vrjG+72sokOSMaSdE8ZgmgDGcsG9YpfLOCl/IAjUo/sAuN6554EtCPUj3TkZngxCdnB3ts0nuwRt73hht4+Qn7m60k0J9nkXy90RiQSVBgKhy3+7o2vCx476BD4qcyXbGwmh98PL553x1WnlbFtooxLkQ7IhV1HyKC4FkTjsVyCuVQbeGL3UKc8kkLTP0GCO5ot2Y9V2KygzM9qwzaWW7AiAyiKg4gTsMVdwgSPQ+6A6JziJBNOgibJYQS8S9zlBlNdQUtdnkto8Z1ju0obvjEbSSZtZQHVhJ3PWKjM7az7g4LTkpOR5lhpJLBt2QdEf0OkOpx/x/iRbchTEauShJdQakY0QEORJpCNYHSRZaVYKB+IJaApmtVaFTJPQ+SB4zHPa1PQ+d7WMmZ0QWfExBqDr/vRnaXXDm12gSoBKeCQzLQrhTfUcYM4u5V267ojmRspDXjF0Se+/0Oqi1z1V9BZVKQ8jDkaR0ZvCw4sxETQHNM1XEOzk6lowR8zVQTXPbowL9O9Q7jEdknEjSIZxgxwG1BtIIYWYVRefKXL1fcsEpyHKitTZ/jyhLfr2pyzxsZHmadjcPxmjsMRAbhN8Z90G9CqELp0shl0CWzuW8gGeGGD0nIoRCwnpQYlrOmhWKQNEO7GCCI1QXmguwImHoSNR74/nTR17un7FFOa0XHh9XFqszEJ0TwsqD1bkhEIIwG8M89ld7lKE237sjQzOZU/sw1pwZe4ck7DMUCukN1RVvnYs1xAYbQis7Y4xpNwn7ixwwVxA3tBk9lNDCiUTtjrtSloXd73SfU0/RMt+37AyZYdy44+LcZDa4beHcSkASLjHosqE6t48ESCRWXTANeoKdQanGu/7I+0+V/kUj20rsQTqducugDhjV+NwTv/v0hjUt3Gzn0+ef882XbyjpZyRXllixKAyvhHU+W6UPY71n1pfC6cHYbOMSLwiVJQ8iNlZJaDSeoxEyX4+9v4An0Ddou9OTQN85SaCWWMeZGk/s2iB1GhUZSvKZbXO3oFwyn7/9zM0HZVnJ4qT6Aih6fuBzv5NTprZG0UZSQVRgOD5A1FG74AFmgbKhCu/ePPFwf+T98wvJzrz58hHKxk8/7Eh3EkK2goggqrjHFKZNeMiFpVwZ9U9p9S3n0wkVny2OLVAMRKc18uB7wa9TPylwcUd3WDj0078b9NNqH/m93/lXIIKIduinQz8d+unQT4d+OvTTwcGvnF/6wV8bP6eflKvOSYu1GZ7bbzunk6GtshKklKgqVD9hMS0OSeGcZYZIs1BHImtlbHdKMWq7omaUnnBXfrEBm3rhaT9z1WlPSX6j+QAJrFxZsiGRMU74ULI6vuyUD4OdhpiztfvMeTk5+/0GeaCirJFYWHGMPRq+b2i506XPgOgwsidS36cQGtOQn15r4uE7Sg90vKEJ9CWoXkm6sFw3ojo9g6+J6ILWKQJnSYngIzP2F3Qo1QefvYEkUjPMF5RGsjuIsNUdVAmH3Ss+zjgP5PyE9g15vZ087Z33ccVXKI/vyGumdyNFQtbMro3NK6UkzI0Wz8hlwRW2u7NI4TRg+IbmNivmfTYs+XD21gg6qJPIiAvRmS12f7G1HLh0mldC02t7UuCiNJ83TmiECjGmNcBx1I3iFVEltIFvM5NEjLAzyRdsvIpBOjFukKCjuD6w+luQHdOdgqCys68dqmExCHYiBhorGg84nV1u9Nd2M1HnYU303njZO0pwKgUZRqXRdIDcsVxorpikVwGQCW8U23C5494xMUhpZuK0MbcXEvTo9PQAIcQY4B2LMYOqhzCkYqaYKd0bITtjVBZbgEyIgAh1+KttquIDGEHKwn3vhM3w7FO5IOuFfVx5uT9T60fy+oDfKtmM6BWJNC8A3VFJhCsmgeEMD4qeUElYAqdPO4t39lGRvDJM2XSg2hEd8+YcAdJB9tdGwIyMzlMJznHjC2+MPq1YOYBTodbOqheW9UwIVJyHFETreMy/uJyNPSrJv2Dcn9n4jtv4xPvrGflYWFLmYQ2+eHpATyvxi3wjf+GUOxqF7oUuZzQc9ivYCwOZ1wfJlO5Eg/efgTb4/P4j6aSc3j5iF+GuN/QkJEnkMHzcScXpWwAFF8XSIJWBpme8C9pPZCn4mBssjqExmyT37TYtCDG49Z1yWkjF2Rqc0hnrV3zs6FJo44aRGbpyK8oSzsP2Qr1ArUAsuCQkKuKVEAgMj5U6giZBSs45bSwtYS3RxfC0YfoJRsXjws2drGW29zHoUVl8Yb8NLBc235EYfPGm8KYrXRNER+lQ5vbKt3/655y/eeGLc2ZvhVtbSJfOH/30J9z3b/nB40pLK9/90cZ5FE5PmZCdnILYrhhvUM/UPpAsPKiAX8l5I9sGQwlfGPLzeRC/P5ClIHxgWY0ROg8VXXHvDL1DCXQs3K5Kfsyc1PnU78TSgc65G6XO1schd1QaZR+8LTtXbizjSumdnRubZi618NBXau/knInR+NyeyWudn5ny9dyCtkpHEIxks5keB5UzaVF+9/Er3n/8c/bbB3b5BPIBzxe8FsILww0ZMrc1MrS0Iflb2rjhyz/Ci3/BJb7hbRMSivYAa0huuG1/WX1w8Cvi16mfuijNM6UL28s/yv/xb/9L/Ef/2n+fh4d/49BP31P95OORjy//AZ4e/yZi90M/Hfrp0E+Hfjr006GfDg5+5fzyGX/pidMo6AgasyVp8c+cc2FFSApRd3rfSMuZrndYBRwEZ2GFkdlihiCPupFUoStJV+59oDZIQ0mvmZd3Ldwks8dHTnfD7M44L1hKPPoDL21W1g9ecBqiRvKB7T/jTc4890YTIXTQ/Ua2grHgvRF9R3RgruRIqJ7Ag6JOj4YOwXvjpX2HLCdEEipz0uu9UpPQ9cTD5YGXKBQPTgS5N9RWJAS53+h0Nu0kHYhs85mmLYxwatpoozKSsukzJ9mQFoQPrh2wC6qd6kFKhdF3hMbqVxzBWiZ3J1nDSuVnOuiSGB1+et344eWBlJXEC9Ealz5zQIY7PRTnCbTQcVLpZAnWnqgjMWLW1Id3+tZRMXIOGjvSA8EhHA0j65yuAohWwOl+h5RY/Suk7nSfGwBWEqMLXSvDgqiNZe+IBntxwt9g9XXSazNkVV8DyjU6603YNaiLkoF835E9ofGOu37mnp9RMdbItOr4SGQLcgzcE+EX1BoudyRupHCUhAvg8+ClyRhjTnKTCuYd04GnQdAoecViWrA8Oh6VxXxOhxmIQseQ1/8axuxxE3zsCAk1QRWSJmIEZQ183Gg43meOzGl5onJFcYJOhJDSAigjgtBg0ZW63Yk2UFPcE60mIhlLzjyWlaend3TpfO7P9Kizja7vpHDWtBDjQkTGMTzgJJmLLGhfwDKdTm/PlASnpdB3Q3omDIrPzCIN2FwZPgVTuBCj4jJDyr05kQ2TjP1FC56QeiNr4iKJqEEILEsihyK2EnQGG6GKyorKyvKNkN7ulHrF7Mztk0HfqHT+5NudkxqPq5IWwbJwz2deEJJW1vwJvDJcuOQnPm93qg/Ed66fPtBrZddHNODxK2NdE+VhoWvlaXkkDSP1zELBCWidqnObxFnmxkU3zBuE4xRazwSKuFIk06XRcieAMTZUlSUtjB7UFIhsXOk0EU6SeKyNBxbcM1fNbBq8UScX2G4DyhuwM2l31rHTUuZRjKg+Q/WHMbLRR9C4c0t3igpDCgPDR6F457Q17vdO2uCLnMFgaze2/Ew+FWQElwL4TtYPvE9fs47BMgZDBibC7759IuJnfPxuZ4kHuDyT1s79M/Q/G/zox38FfzL0emf/6c/4wQ+eeFgXdF/wcSMS7OLcuRMS2GhYPLL5mZrOdH9DGc5dYVgn5IaWBzQuZDVcOnurM8g+znS7cks/I0bBPzfuH7/j7dMDi58Y8obUd5JfsWWlr4U+EtEKeKGbYueFOq58uiq2FpacOYmCVZ77J1DQ6lwonMqXmA5iOCYzQ0sjiNMLSU7T8qXGclK0b9zNGSXzSOJNeaJ+2Hm4fU1LQeiGj0F4nq2qAkRldKjfvaHkM2/PhfPpE/my8qkpJS8knTY3S4VxZEd/b/h16icR5eaB2UIsH/id3/nnOfd/i+V+6Kfvq3563r/ib/3b/xz/2H/wv8p6+smhnw79dOinQz8d+unQTwcHv3J+6Qd/Lgufx7SjlKEUVZpslHFn4Q1tL3hZ6KUzJNBuiGYalT12OoOkAgNSnb77VpQcSvGOmVJbokYn7LVNJw32VLEWvFwGKT+CGI0b36mgMVjTaTbFlU6Vjd4HPJXZIgVIPtMlM7bORRc0IGLQ9c7dwOSBMeZErrcTbidMNzxu1EW5p7dkOZG90F1mg13qmLyQdOWicMbpFTw1qjbuoYxIJFuIubzPfTia5gQwxkIfgee37PsdH4rFRmeu96OZSGk2io2NIDNaIiGobDRvaL7j446ZzEY6M5qeoBuXlMh1kEPozXFbyekB732uM6MQiT5unFOD0WfArK90DE3A6IzaKSnh7lhxNuncCXIoLkq3OTldROl9bvz5KGh/YuUNI4SXoVz0AYkrWKXKDrIQLSMSjGGQZojtCCesgjbMnVCZRoYxMO+gnQ3FyVjLdDdcTpAbKp+hNy6RGCHU1ymRJJlukZHQgKrP1PQ832cupFiwWAFHRdCkuDcqlSHC5jugKIZKnpYlcao/I1pRnJQSjUTnEc1nau8UuVFjkJeMeZ6HIpQWV4gVUaNTQQqhCx6DTsF0IDTSCKQXMg+oz0m1zIAZjI5Ho7tSUVQXwipOYZDoVIbeqfWZc19ILORy4l2C9ma2iKVtpd47L6Fo6tQ6LRLhgg7lIgn3oIUwmDfCiI37vhMW870Xy8x0fBWiHp0cgsU6W9nkNifdqWAyaGE8z/0STIRqSo4zwmxn08WQlFHh9RBQ5kEiKw0n2kLYoI/gfPqax+VLtAf+hdPSmV4XYjuztZ2fbt8RtWI+xdbogyU/smghe8C48kGecUn0MbOnqnTS48pyLuQ0uCwZauacHhDf2cnzNUv6al1LBGWesQDVQQc8HE2DkMbuTpdnUlLUL7hXxDbGLpjIaxsdhILIDCivoiiVc4HaGh/zivmZ4sEiQXbnNBKbveM5PfOgK80VT4PVjF2EZoNCRaRBdEBJmhk945zpUqE7aRhhSivGLsHeEjXPQ1UO4aQnRhg2EjIWxM40ubPZQunOkg1QTJb5HkjOSc98/viJPwso6YmiT7z/059yUeeHDysvOfjwvuF+4fLma8R3sIGnYKjT4ja/3zDWMIY0tv5M0s5iC1E7b4ZR48RuGy6VkDOhiqQdR9kcoj4j4dTxlod0530M3u+Dy1CEJx7sC4a90BhYfEGEsbfbfB1wqmZY9tlGJyckGxEbpI5Ih6HQV/YU7OnKSeeGgKKg07qmJcF4mKHzDMSEUAUTVI3mQn7IyLnT3l+pH18fxowX3IQhQmZljTOtfSZKZ/3ixNs37+iW6Z64tYYu6bUFUfHWMM74OLKjvy/8OvWTZMPbhpUF51u+sf8D1QQ/9NO/S/TT20M/Hfrp0E+Hfjr006GfDg5+5fzSD/4ex6DHgCFErCiB+CfuKdF0R9d5c0oEizt3YBsd1Qq+QTeEgvoMOd6TUhed68h9Xlg1jIwT+w2A1SsPYehJqNXwvaBSUInZvBMrEoNkQURhpExb7/DpDUlmhsvaT6RQlKDFDbdO0o6xgCeueyUZswntFLPdbmwM74zIZEkkkdkm1Bp9dCw5i2dOVniUhTzmpC4NJUmi2wtNBy6Z3AJtN+DC6OAxyFIRHeS4kUeDOE3rRw+SJgSj90GJhtkCsuAYQ6CnlYgrEgMRBZ2BxhoLP/TMdzbzXOzeiZfK9cH4xjrDhRsJSTYnjL2R5IKFsqSNfn9GUqPbI2qFcW/knObrPFNZcQlsPeFFcJTmHfEpXkmzHarTcTMsEtrhFBu674BjTLuGkGh1rtMnDNVEbQPDkFQZbAx3kmeyZFoyhgdeA1UQHfRWGRFIyrgUSnQustKrcyvCXSuP8UD3AaMhEqgOjMbiX5Gi0rySmLYRVWXZlaiOL4rkxG3cSEkwubK6kuyRPgqtCS7T+uKhLMuJ2z7IthBAkiD/opFu3HHpDDqhA7jg4Tg7IZUhFdFGoHOrwduccNsyb4I6M1rMFDWltz6zk9IDLYTmOoOoR8K8zHY2NqI7IzrNgyaNbd+xuzPKwFbh8XRCzjPQve4fuX2utNtGTheKGtt+5bSuMw/HxwxXFsEZ4Paa51LoUmgEowxOaqw9oF5xrxANIZFZKb7S+8xHGuGoBTogZWHJMzTYfWAxN367NAQjQhhVcBVSEjQeOPULJYKqnZo6mSCx4MVZzjuDzmM94ZzYrjujCXt7wfvORqPoTr4Yz6mTEB7yQgqhXN5SxflGYKjg8oZqgqQXhIF6JluBPiiaEE8MH2w6kDyvMdIH6h0Zbebz+DobHdtAA1QGEZ2U1rkhIdOyRR8zz0SdK6BqnFzICFsMXK5IVha1OQl1YARvLcjtTqGQsyKtk8WpI7inhdsYrJE4bUJaVvY2UDMIweNGlA3XQmOhemLzwdALQ18F+HA0CjLANNO8s/cbuWTeWmWVRKuDFonldCLr4GInli3z/s8/sz6cuY3K88eP/JXf+S1iLYxN+Pjtt3zxozfcnxQhcfaEmTFqxWS+3qM2Fs/IunBnY0Rn25+5rAtSgxwLXh8ZDPLrdsjvtS/4c+k8lyDOge2dH6QTWz5hi0w7TDywrGdOfRYNDBai7WhK5AR9CBpQAs7yli/KheeXn1C+esebdMZa5XpOiKws9wWJzD0G+3hPsSDbiip4BIyYDZ9qFGAZEE3ZFuOhragXPEDFKf09y7ijWhjxFiyo7uAN0YaxoUl497TAqGQKD+sDiyvnGpQMSWcYe2mN5Yio+d7w69RPbbuzirOMYGsXvnv+z/Dm4V8nfDv00/dUP8Whnw79dOinQz8d+unQTwcH/5D5pR/8dQmsvKFG48oVU8P6OzSt3Llzyhu5XjnHA9nfkGTwstyJs3DZCg9tpS5veCbRPChSSW1Hh9HkgQ1D047HoKa58ec6WJZE2wYFEJ2TbqKAG54aI17IIix+Qoey07iP9yAnhjxCVKLfOC9v8HZm9J1r3GhyYeWBN3pjic6nrZLyio7KeQgeJ3aMLe6IBVu7MqJjKRgSeDoRGvRV6D7IlzP3PrD+AFkpssN+wltGUmf4Toj8RY6HSoatIK2itlPmWIQYPrNdLKHuJEu4GDWCLjA0s8SbGYKbHI/ZWNQa/Gn6KUUS2oWrCQ/JeZMKnUpnI3SO1qqO2SjnK21kzrpS/QriVN1xD3IxYji1zryWl/ud8/nMcku0gGFgKO4DhsP4/1wl9+gwBhklWWWrc3tAPeYNXYwhN4K5Si+yMLyhqSDtEY8H0Pmaqwv3GGyxTyH0mqEReeZ8ZE1IczonPthA9IZKIu8r46S02pA0b8ISA7OE+FziNlGEuT4eekGXOQkOc0YI4sboDdMT4zWXxglCBmIgrkSHtjUWPdF6p7Yry1JI7S3Dd2DMbBl1QhqW0nxPArgRPm0sPZ452QXGGWMhkuN2p/b7XIeXaSPRBOGgkVkk063SpQEDXNDX4N0ZDz4FPwxGOMMUCadsQQqluACBnp84f3PhOoJ9H3h3cp6WGI154BAywzOMQeyDRRJlJEoTrAh9dO7D2WIh+yCrcckKbVomdvuIq3FKK+GDIvN7ue2BaCZhiBkRSnRHyjbFlWciEkLMKV+vEPPmLCGYZqoE2Rqr3Rj7R9QuPJQnVIWRM07i+XpD08LeGiMW0mq8sytPpzOPVmi3geVHel74Tm4YXyCu5PQTUlw59Qc+qhPiRAqadLA52SQG4Y0+Zhh1Khmpdf6OmdYBlYHGgkal9c7WA3kNEU4ic0uEGRT91gukxB4dRXjqmWfZGCjqYO5gRmJQJVFjYOpEGE0SJsLijdIFUWNPzj3N17JLQ02xOBHk2dKoV+iDUz2x3Sqn0RhzBk8AKvdXIdZnjlYylMzu89qEpdny6R/R9hlLmc1n0+TCzt/9k/87emk8nh55kx74wz/+lsvo/PjphH+q6MkYuhPduEhhBOzDiVK4d2h1594a53LhbXnA90rNDcaZRb9A9I5GYHLhplcuqxH9CrEhWejaaL3zVgvjeePxuzP5KbhpZdGY1iVuhM6MHUuFfXR22bjEhVMJ6vYtl0isWyIVZRfjHhuaOhcWlpS5+xnRhZQTKh3xQDTImjEclZgHAnGSJ5oZjBsLG0Wdl+0nfMwba35iGcLmlS47WKWxIWac+RLtwpLOnOIt63gzA9DFUD2zeZCXTOuzmfLg+8GvUz8FgyUJLh2PH/G3/s5/j7/xB/91Hs5/79BPh3469NOhnw79dOinQz8d+ung36P88lbffiJJRbhjpogvJC94mxaLkQ0kc1flWQaZROkX8j6DS28mDCrIwFXYQ2iygDvaNoKgKcCrEAK8BtETPTJoJeQZ2FB5S9K3dOm0BiOCkwe5djLOOO183l/obhRmY9tLCM68CIzZvcVt7Ijc2Ey5SaLLhlhlqNN90IdhPeEkLGV8bLSxgTjZgpINlQEyZmhzgi3tOM/Qd1KAG9xtw6WR00Krndp3FlsQUcwS7oO9OUsqhCr7EEQDS8IwZXhnG50qr2IrYoYay2BoR9ShBSkJsTVyfmQn8fMrfLFkTnohATmuxNioBCOdafXOGJ+5yBtyvKWNhbtuDN8pFQqC4bP5byncmAJwhFOGsAAayvBgzIg/pAvdd5p3hiY+xJUoidUWcgyiVUwazQ1IeBiOMqTgkZiL+wMIegiMwLsjFuSSp8XHBbUFMMaAFI2mN3Z3FltY1DC9snnH6eSUqCH0CiWMwUe6F0RWwjuS5kTwRuDuSMyw7ywruSzzhuZORExbA3NLQGIjp0rvO5pB+6CEom5TlCtkK4xwWjjdHaIzvEEEFifwhWSZMV6mcJOFEQFRQa5ky7gLEbOYfparyTw5hMz3SIBoxouwj84gaAOMPK0jNtvnlr3iry1s9xDuorhl0rOS90JS4VwysvziNdD5+oczhhFhmAQ1fWT3GwKsryKGviAKqmAGe7/TvWKW6ItzzzvpfGbPhg241YrmBFloBIGQsHkQIxjtLZAwmZ8xZ6e1KyaDvkALWCksFGqGvUOOhaRfE6xz6qidYTuR71xSoCEsTWl9wbtSaoYONx88ns7zMNnhrSaQTouPlMWI/be4uZH0TvMdTNnCCXVEwXpM4WSzWS6GMyPU7wzruAeigvKADAeBRRZEE1vruM02O3xwCp9B6CHkmFlQLnAKY+eGyEZoRVIik6BNS1EOJ7qDFkoAEtSoqBpja6S0MEzw8sQgcLsRo6MdVAsJxyzj7YaH08JeLXNKiSlcW6vgShKDLmAL++ikvM5PbcxtiwX4wDO3dcF/7tw+vuW3//0/ZnuX+bxV/vR65be+/pJ2GnhcyXYh1Qv0AaJky4Q7LTqRZmB9R7gO55JOjCGssuH+gskZj2lTtCTzPtGEs2RSLCQ5o/HAizXknfJHy2du90qpjcuaGE1I5cK+vyCm9IDhRvEL50ikGDysb/jJtfJiJ9KSWKPwVct8Hi/UPLj7xuMe6PKAiDEzTsfckpEgiZPdQTpbEUQTj80hoKsRkqne6dFnOPWoeDvPfCEK7jDrB42hsx2WpOxtZ287WhaaGck7ixvaO5XG0COj5vvCr1M/STioMXoQYx5ehgRVD/30fdVPz6/6SQ/9dOinQz8d+unQT4d+Ojj4h8Qv/eAvtKF+ZxmDzBMRmYUGaSO7c/GV0qCY8Swbe3niMQrnrbJn4ZoaCzuXMWDA7gueV8SDk1Usd65SKCXR7wMALSt7E5YuWFbQOcUe/kL0Rk+DXacoSPkGXoHOQ39D3T9NK0Trr9uCn7lnpfoMyMUbTiMtC2M4RSprpNlSFR2Tztl0hia3zwx3RCopD9ZlwV4ab07CA4EmobXBkCBsxyXNcF4AKlkFd8Vef49unwnplOVKaUGt4MOJdEJSZuB4QBZj7xUzyCUooTPse0wDgNoJlyDbgo0G3bhHZW/CyU/z758cNRA1kDOQkd7JvnLpCzISz0MYemP0D69NfEZvs0Ev5UxnWkJeaoWlIAGpOdEHg2DToL1eI33fscsJzBh75bys1BC8Qgolkel9oHJGJNFbYwRYmgG+oc8QGwRsKGFGjkx2JULmlDh8tmDh9AFhgemdUxcKJzwanm6U/oC6gU/bSKggfSDph8BsmUv5M0iFWBl2wtTQEeAdt6CnQR3TQqQ+Q4hNZ6182DNInxPtVkiSUca0sGjHxGdYNUpI0McgwiCYbYoya+pFghxvGN7x/InhFY1E6isqRsQgYmZbDA9UDbWMMC1WOfIM86aCCaYLQWDkOTWLmBN7m58h8VeBhTN6ZbPM2iurKFvdkALpnMk4Gh2JQby2rokOLC/UFgxrtHRl96CnjHsiVWHN0z60h+Nm+BDyvbDYiSd7QreGJaGOTrrE6yq+8YuJbZr1jxAbEbMOUsxJ2rlvSpaFFL+4fBnFEmENUO73nbTuDGmM3lgoXGJlUNnHzkiBnRIRQuvOPQYphGaNqJW8rDzelHL+QKQX2ljoVpGnwXIzEkof/mrdcEyFrTUQZqh5BM0Hqgl93TYRa7h0wgOxBR8dZ1rNhskU/AQRjSGVPQ/clYeIGQ6vxrmeqXpG81czs8U/oXEDcbp1TDs+VmopdA+6VxiDhyEknfYghrI40+aiG8TzTF/qDzRO3HLjpju+NkI7TsWbIrsSUrHiVP+W1q+sS6Mub/FtZ0kPpLHM9s1eeFwE2xv7p+Be3/P10xc8+hec+srt4x9zSS/88AffoJJJ8duMHnPzIra5VSE7w2dJgYWwj0an4Ul59iuuwef8QE6VpQs5zlgysMzwBxyZ+xo5SH3nAcGGcI0dexIWCs2dj2si74M3HogmVBMypmXOgnk60oKmE9twehVyTyzReHkQ6iJkd0rM43ayaTkR83kwtYzqQneB18+eRqAIXaYFamgw0srYTlT/kiTzQYHnM0QGqXirjHAWPXH2M3kTLMElrTzJGe2dzZ5pWkjrAjjJO0X8L6sPDn5F/Dr10/XlRljG0kq7zRvzGspFDv30fddPY99ZLhz66dBPh3469NOhnw79dHDwK+eXfvBXzz/nNN6R21t2cXp85pKNdSjqA8Yzu+zUcuF5eSBrmxfdNi/uFwpZCwr4tvOYVrYB4U6kzDChtA3dBw82p9S+d1JJjNxpKN0TWMf1BXjGSURa6ThVG7QNtLCuHbtlIpaZj2Mbe++UCGwIvhRcKjIqD/1CDGOY4y8ZFEZS6HekBkkyJnMVuyOM0divjS+WaRfZ2wYy5tcxOKPc2sLWHTVhiQSt4+Fz2sMbRE/TDjAU848UuWJFAaNHIiuM+EVeiU6RPXaSKyUVRtqwsQDB8Jl9ET44D2Wxgjgk6Yg0Pn73U3JOpPUtsb4BzagP0u0FG+8Qgz7eYwr1Pt8RSudxWejbxt4aFejJyKKklx0TRceg+aAmuBnc2QEQAr/NAwFi3F9e0HIGSdRouASVzug7KfsMeSVm+15riGYsniCcXTY6lQd3Vs84J1LS2eTnDSwIOhIJfJmT+/EJr5VscLYzIoP7dicn55QUG50t/Qk+CtIWtDzBaJittAgWTUTb6N6wi3LnBY9O0gdKuzDccHeIG6qFiG8oeVD9BbFKtIZpprPiPqjNSWaoGktS7tFQTSRZMJTR7rT9xrLuNM+IPiI8Yuwkdmq9kvJKhDKikxedwdRSQZi2kBDcG6GVpAlcpyVKDTFApiAMV2IMPIKkMe0z4Zy909ozt5RIqpyjsFao2ufvVxVVZcSg+TMybix00kj0W4X0gJbTzHm0O92N8EqOwDr0VokyEK607iyLctfKyIL0BUVIupDE0TEPB23MAGt77fVjGDKcZo2TLix9MKLRdce6MWhUS1BgWKO2yiJv8fiCvRnKM6slzDfqtpNT0NNHiq5IW7BdKHFCNuPFFuzaOdnXMJx1CaKd+LQOJGVqaxBGJjMCVjUSAcT83hs0BqcRnGi4bXS5M3yQ7IG7b2ySZ9NY1ilmvDPEuZux6IndOy820BAuJLLdGHQGNzpOk8pFEqdRgZ0cnZGCm3ZaBMUCywJj52TGtTXqElSvlEhAAVvA7kTvjH5B9Yz0Z7RW1DopBjICz9OuVncnLV9wWX8bvz/ww/7Atn0idWWPjqdM5MSnXehtp7dPtOS8/b3f41Q+cvuQ+Pt/+Kf8zu//kJcxc3jS6KjMrYsqwbrAGI6HUfJC9Y3dB2bBuSjWbzzkhX13TssdlSBiIbSy9Re8zOuB2UqNwFfhY/tM2jOhN9bTjjzfOfUrrRZwxdIJZDY/6qgzV8Yzenki5FtWnPxnGW2N5eEzTRdaHywxrXeRT9xzIsULqsaMKo950FSjoWg2sifW1nBXbglUT6TYeIgbvQWn6CQtBC/gL7QtYZpJgHpB1Nikcsnw+LigJ2GTOxGVsryhSCK3uaHSfe6cHHw/+HXqp6dkqMOoDXu1K+0IL4d+OvTToZ8O/XTop0M/Hfrp0E8H/57ll37wl/aVJtDyzs1vpOR0KdwQ3M5sDO7JyQhPfaG0mcdXs6BsIDvX6ERAzk7ICypKo9KlExiWzlitmE/fQ0uZrWTk1nG7MFQQGnl00oDQSpEgDBgJ4R1LLYQL4k6RMjMv4g5pZ2uDsa543ziLsesDz6PwmBZSNF68QQqSdXrs1DC6X9BIoIVwiLRCMj6OE48Pb/BlxWMjvM8A57xgrJjeQTYCIbrTveDxSHc45R2zzzTp+GsjWGZBZAaR5i6cpeBidHa6GV5O7ATDMuf7he5Gjx3PnR6VXM7cayEbxBiELcTYiVDe9xvZMxKJZA9kG4jfSN0YDYYMuiaGnek6/2zcd1KccIWmgzEaHk6VwWUkVIyeZubNslck5mXyajGtJzvcgZLOWBdkVEhTtMroXKJwb43dBgrgAyxQBsMNdEUZs0Esv2GrC6MNbAAoLhuqThjsDFKsU5/RIRtlWbnXnSGZyA9oDKzfKDaoW+JkiU6w20JzYYmZ77J7xzUTudDbDnYhR0LaSgxDNBAbtCEzgFne490Y0uneyKUQ83jGCMWWQmPQYyekIcCIggjE+EDOgnMCpoCLVskMLAJ6JukJ6af560k70a5YOCkV3AOG0kwZmpBY8M4cSWrH4042w0PmwWrE3HSQOdVsDMiJvTVKSYgIbTSuAVVhkTPhmWQLxI06PrLnimPEXVj1C9Z0oaszuKI1KDwBgmZju3/A1EnLmc5ODaW3wYMba35ARwIvRBGaOxGNxc40FkwCwgniLzYUksApwz2cqga9ckqZvWdM3zB80OROdmW1hfCg2neEN84RtH2gdmaJB4yVG29pfYbTW5oJAyJCjc+4Nu68sJqSxtzSuGyZHok1nUgGwxudwCSI0V9tRKCiYIV7r3Ozoi/k8kj3nV0awzI5FpaudAuSCuKgS6F5sPdp50NsZoDt8DE1SCdSM3JAKResB43O6olsyj3uXFonjxNNX0PXw7kyqJaJsWKjI75hMcCMFtMSkfxOqs7lFuzjkT0rbdy5yLRo1bahJVF9QN+w9IB6e23VS4TNtk9FWKg8po2P1w/8we//hznrV3y8Xvnpn/857775EQ+XB5LOwOUXv1NsZR3B4pm0FXYXahK26PQxD290UF8gJVpycgxqNUoyRijRCyVBHp1IxqBgfkKGkLVT80bqb5BReR6f2aLwdRXCjOGKe8Fr4iQPIDc87Twz6CPx5fjMgxsfb8a7L58orWEUTsxg+OpKE2VPg6KZhYXwwhhw90qsK2MsLL6SdNDjzjIanubWQOBsXblvsL0kLvkHrNEoudJ9oXZh2I1mVx7XFTFYUkJ8hthLEbSecBtU2UjsZEnz83XwveDXqZ8EiLxSs7K/vgc6J5q+O/TT91Q/Xf+/9NPjoZ849NOhnw79dOinQz8dHPzq+eWtvlFAMtFncoUW5dYabS3gkCST5ELG8N5xz4xXX71FQXpDtSOmlHOZoRJjzOleWhmaGK5zld8bACWcM5WeLrgNzKbv36Ti8Rn8LamsuDq3+kJeBi47t2shSGx8RHIjy8rY3yFxJ2VwVfoYNOtI2XkZDVwIFoxAuqOe5+qyLvQhCAKyoH1OnjVnckpYClrfiekHobYdbEEVYghwYujKvbwn9D3WQbyzROHUN/a+EeavdoKgB5BW7rVBhmQKKNoD8XmTwwdqN1QHIpkgMyK46Fzt7zro0th9TGuDLVgXuDZK7Oh45l0RXuJKDQU90WrCcuG6v6csxoqytsB8TEvQqwBKo1MRWgi7x8xPCKHJNOaMGEgMiimMQfVXwY9OO8UwFhR6RYqAKuHQu+AjaNlxGjqmNUjYqe0j6gspZToQEiCJ4Z0UCw+R2My4aYdcKDFboNXzDIZOyhid+wiwwtIbmcQQZYjxIoEjdAtGBBHTmhJ+QtqKvtbTu3RIQfNK92mvcXcsLagsr1kZ06aUaFhJtNERMUQutFopI8h5mbkv3ug4JEVFZvMgGWVO41UFHQANzcown1M4na+FpfxqjwAxne3K+wzFDaCoES6M4ZAyPSk2MuZlWkC00RgsHoQOQuZ72MiUWPC4zw2EMJIWyjjTu5P8CwZCbYJZQTVIY05HZewkO9ObUXQlBAiFkQBlCGzS0MVYzorrJ4iCuyKLEHpHtLHWBCoMg118ZnOYYrHMbYciJOY0XOU+LUKeMDmRSGgMWlyJPqe+2Akvr21z8Ymkn2aWSyz4WOkadK7I2ojOPHAyheQYTm8zLwgtZDLiA41OUcOnaYhFFQRGr2DOyIBmZDh775hmImZwlUrGJaFDaNIZ1ik+WEk8i+CayLVB9Plz2wVoFLZ5nfFCyMqIHfGMx8IwA3Z6BCoJXKheCTNEjagdk0YiCD1xd2UsiRGdVRP1JRhPCf/wiXMv3DzYcqG1F8gzS0qwaRvMxm3seAZJgY9AUVSM96Xwd+4/Yf3BO05fCdfrT/nZn+5kD377m7f0UbG8wnAetXCvTk8ZtXkNdAQEYjRKBC8h1CUj0nlrivVKC5uvs89Mmx0YmnB9ItToJIY6+MBiJzVn3O8kvyHRwL7i2t+y6o60zxCdlIzqjSpOLpXif8JiT3j+mrwsxFBGd5K8YDzOJtR8QjAurNCdoonXtwMRg5IU7y+ENW55bjeJ7xjQHB5OF6JChPD5dmN9zNzbznU4SCAWMyRdDOlK30CfHnnZlTfnFe/GkhOiz5gu87pIzGuCHBk13xd+nfopB+QwIhrB1FLJgpL6oZ++p/pppA+c3/7vQN8f+unQT4d+OvTToZ8O/XRw8A+FX/rB36Mk6I6psYjR6sYI58sKF5srv9fmeAasomkK3V0qYrDKAxZgYxBbZRSlrYGgaAfZnT0XhDzX6IGzLJR94HoHeYZQ+l4InNMp8/nWKQQMIUXCXGl75ew3JDmfO2g60cPwIqyyMGROSE2hSgW9s42B6spl/RK/CWhBclDZULnPUOiSiLHNpjgMyxXLZ3rPjLGi5qTFyWws8g7ZHpF9pZnxUT6z6kD1tSGtFe76wF52tl4ZJXPbO8ls5ofIrLeP6PTeSBLEGIgLp6XQbYAXRG5kvZL0QuEtj2vjZbuB7pB2tEPvztAFH41iibZ/JKlz352uGUsnUhtcxND7nbdiPO+NPdVpU5CZj+AjI3Km2xOf+yDnRB2NHoO8LKzP5/mGGk90e4drYiiIPxMxtwCDgNfsieaZfcBujqhTUiOsUdwICrcMQ5UchWUHi05PwRZBiJJFsH0glrktiVErJw36gFsEpMSbZqgGddwhBbkUrnVnzel1yjhzdkQUtYJKQqmMtM0MDzoCECdU08yLoCNJSXICDZA+W9NEUFHEBO+vfyRjTuI1UClTwOqcag4frDkzotO1033+gVjCgUElYrDkwWgbItMm0yXN/JUAi8yiCTGhtoqFs+RERAcUCAhmxosEGokeMoOSk5HF8XEl21cMFbrO4GrhTPIzbh9B9S/a1gyjhOH+iZApiKy8ZbEz6jMvqVknVGnDUFnp7Tq3CABVZ/jgHvP93NqOqsNlIZUTS36geUdSUPWG2uzDiwBzQyMIW+jsJBSLCzQD7Qy9ErJhVgDoPkPbRZxwoaoxXlsFbY7vMQ8S0HDEZuuahhOs87AVhgloaiCVsQUujnswxFCM0Ezk4GTMLB9v5GzUBFkTY68oiujrISqcRR8Ye6GnO0V2agqqFEo3YGPpSg1hS0JqlbdkZHO8CILSTWfmae0UM/bc5nVJjZpmxpIMBU0MVRrzYF7U8KXwbbvxVS4s9w3fA49MF3iWG3dp85BWN1QVFxi2EZK5d8EorJrQdOLZrtMOIUF4UKSwlBPxs++Qj1eefvAD6vbA3/+jP+ThQfnxjx4Z8pH0GsKv4VgE5zwD7X3cZwOiCOYzJ2rRhS/0wr4HKYKHc9BaJcmFYXBbE3u9s6ix2sKtXrEsJAlyc6w7iwlDxtw2esm8y29ZIiH6mRcaaTFWAvXGakYMaOORHl8jmnlJhfv5PRo/Z/NHzvaGbBeaJl5sI6vzxjL3ajMomkHKhgqYBbkmRNJsMZWO47gYF57YPn0gLTv3tCPrZ8Z+ZkkXtuiM1y0Ti07BSJ7pdacKnC6Ons9z08QHTT8j+haVM/21IdRU/1Li4OBXx69TP51tRXrnQSu9zZwikU9ofDr00/dUPz22Zx6//p9hvtD90E+Hfjr006GfDv106KeDg189v/SDv81fgIySEBpDHVeZbTr3jyy5ECWxJ8eTY/yMCMVZCS54CCJ3RJ3ujeGBZMV9w2mYCO/6SnjGY1p9P3PnkwnWO6WMmQ2iBbRw7zuP4tA2anfykmhivHjnboNvP34inx4ZO9hwnrKw09lxtMMp6fTx745ijOiM+CnDKoNBSCKlM/22QySkC0QgIjOgWHZK7oS/kExwnxPtvHdqquzi5NzmDdavyDZIIuRUqKNwr8a+CRYrtXZMjVWB/U4x51qdSDZv7Dia50R36xtDIUlFY+aELGRWhZy/powF92f2/kL0YPGV0QuKIHufOTFJZvi1FbQ4I13Z5AOhgyQnpCXKKERWehaEwakmbDix7uzsSIezzSwU98Fmr+JEAsYOfeNSEtfeMISQOa0MwGNwyonGa4aLwILh4ag4rp0UwujGcKNF0C0Ihc68oRUXlpgr61uAWkUI0lAuKOYdj5l/g7SZ4xPz337JOsWKz9DmiAwEuYFIomliaNAjEMskBIsK0mZGEnN9X6IT7DiBxkJyJY+MjDldHt7JGogOhB1bhOtWSaooMwRXccQ7XRfcO+5tvv/FEU30tNLijspnNIRMwsZKyAw7l1oRU4xAw9HeiAyO02qbQbcieFRWXuhl5U4heqJE4ZF3tHWnjUbzIMKoAosaEgpuuOu0knhDfYdoJOtky0jcGB2ITDVnsxnI3TQQFxRBGWgeIILTCZMZLX7fSMnonpAEfRhLEvSUIA9mV50gQMaRHnipGC+4ZBrBkt7h2Mwq4cYYN8wC1cxgYYgQaaf5ff7f3ChxRr3wojvdGu472RQfASOhIyMuWAgqA4kOsrGuK9Ud16CGElrYPRj7Ts9KmGAqhBouwhCFVFgtkcbcOGm1ItqoGoR0YDDcCQ3G0BlurEr4zpIC0wGqfHvaoGW+0EcshGu/4lox+QrrG1VeGK48XM94LHjqiO7gg2AgAot2ci2c68zHeY6YuUJj460p5+3O373vXM8XPvQ7Z3XetBun9pZhsESAds66o/4tTwR7AJHmnWFsSO38rZ/9EQrkLfOT/9cf8/bdmbc/XnFTehMiMvdr5WHN7O1l+oSsYGtGJKi3HVUoOXP/3GhDcRGwwd5mKyqykXuQrzvFG7EU9pF51D5zmHCwM0HiPjpYpdP47DfOp5WX5RnJLyz2liUekWjz9beMa6LFDvkjqop4wfSK7We+th9ifqJvCc7Kkh2zRvjOWgZwx9IF05XehFVPwJXUjNIVTNlVaEUZw3koP+DMyvXbP+M8vuSZShqNSw28GFWCFp3hgVmnjk98990j797+Hm0Ye/8070PpS4ZeQAyJHeFGsvgVyYSDvyy/Tv00aEQxnseVq04tZTqgF7b7P8r58sfc+06q37Df3tGHQzau3Xi+72zjhY/PL6TljPa/R/IrF/2GLRZa+ttoh8RfJ9EYdf5UI4Rd8yyGGCeCLynrH9FvOz7+GsqGyB8DF0b8I0hrtPoNz11xBXchSWKtd7bF0OXPMAu2+18lyifMB96/Yvhv0Xpmb8bnzx9wb9QxQOZDCK1/yJpvPG9vcP0r5Pz/BJzQfx8jzrxsCVewaEh0ZCiiZ0RP2Om7mYtV31D3DeLvUsaZ2v8xBGE0aNFRE3Yg6ULOGUtXYvm3CB30+h+B9pGSP9H1DdV/gAyndEOHwiLUXokd1JRV36P+LS+8Ja5/jbenv3Pop0M/Hfrp0E+Hfjr008HBPxR+6Qd/LTZYjDb6vElis8EN4+Eyp5OtNywyuQvhhU4lLVdScnwskAojOxoJ2zq5phkqqwKLUreOqOA6p9QWCdkNSW+o9w2zPj+83Om601NBxmxPym6MXenXSt+VtZwJGnlVtn3nk8irkBY0BupzrbqT0XFGXLG10uQzohnxB+K+UmSKGRnQSAwL2oAn+4pzXlH9iJvT2xkbJ/r6hrsowZ01dvALg8fZ8LRV1AtjBL1fST7Q7sQYjCysw1kwRp35Jh1FBFqdVpgkCXxaYJLtJFGEC0oi5AXfnWzBMLjWO0FgprSoJBzCKel1KimZvAtSOzwkbuzkJRNjPpwMh60FbXSyKikyJYzROkNuCC+cOBF+po2Fc9wByFLxslNlEFmxYRSZ9fKO0FLQffCSb9zc6W4oU2RUEiNVwCkenJsQBK5jToqHkNWIX7Tz/SI3aN+J3NncMTILYO2FbguBsvzCItAGJy3UX1h+0pi61oPkjuoLqM9JM06MBjEwXVCf9oWcV+S1dS7rwuKPBIUuA5GdHDdSCD0btRmhBY85qVURlrKQMmg3ZJf5ERShd8cEigVBMIbgIxFpkBJoT2jMnydsm0HHLCRTWm+gs8gNdySmaApJuAhNZqOd+AnGQLxi0jGdD277Pu1nSzIkZZTM7nBKr82KJnRviDiahNHPjA5LOeFxogdoCroMVJTeGqFOp84HwQQRG7iACCHGwFEFtFH7C73vDN8554yMEycJbIXIAlkJFVwHeX/H0p8g+bQcpA9AYHJijAUfA0Rf29+M5o1kU0Sb2OsDeicCSggyBoizRMxNgTbYeMHEMEmvc//5Og2/MwKcff4oaR60pQV1BM9jID7mZkJeKVZYU2HUxuZ9/u4uM5A8d7BY6HomRWOhIboRUeh5oGPn5AMzqBG8vQc1GzuDnUGTwdIHp6jcyo3ghTQSWwrwSngni5LVcJ+f46YDt45n4TIeeYgze71T7c7naNQsvPgLJg88OKxihDi7NZCBJsVjQErsBMWhY/SRySyEDN6/fJxC8XzmT+vP+fIHhW9++BatBR8zWD3LSsoFb4Ny+oL7vWOx0HyDkkjpguJ4H2ADsnJvL7AKORvRIInSVKgWWFkgjKjGZ9sxm4Hf0jrM6CtMVz69/Jy9/4zfevfApSykOGOtku09zsDVaGLcZVrZln7BHU7d+XlPbDfj3IOqP0fLGdOV1EDHBbUzxAcSGWkgbeNkNje00or0hIegIWhUtFWyV5INXkbjajfu/omiQn61SVb3udEilaGJHpkRX6KS2PcrqyrJ3pEt0+WOv14TkSBGoof9yoTCwV+OX6d+MnP2rWGWWOIjv/tb/yrqlU+f/gb/j7/9P+Vv/OP/RSzf+bd/8t/g/Yf/1L/zN32Hd1/+s3T9N/l8+y8z2n+S5e0/gcbgu8//CsHDP+AnfiHHf5oisG3/c6T/G5T1n6PGH7A//6sAfPj2//9XfvnVv87v//X/EfgT/9e/+S/w+3/9f8jTu/8LP/k7/xQ/+bP/yr/jv7gBX5/+B5T416D/Z7nu/xO++vL3aXXn5fbPM8Z/7B/4Gp3zf4GcG8/X/za1FS4P/yXMnnj5+K/9A78upz/k6x/+58lL5o//3v+Sr979y7zL/xuen//jfPvt//gf+LVfvf1f8fVX/wL3+x/wZz/5F/nyr/6T9PL50E+Hfjr006GfDv106KeDg185v7zVN5StBWqJcyr41tBUkGH48yeaNcQy6mVe9DUjZsSoRMzMgaqVFE60wNKF6obISolG7JUkwRAYPhvOfnz/TERn3N+TJM/Qau10gU5BpZEVVBrer9ya836vvPQ56aJ2cgMfO00HMRKlnBCvFHfuBlWUk2wQjXEHj4zIQMd3ZEsYHfUEBN0GVWDz4Mftwg+fN4idIXdEb1h8wnrimYVmgwtB6bN6vOU77V5ZbVCj8dKfufsN9eA2Gs0U9spJCiMyDYE+p9IqU5wRldN6ZtQd09fA4XQFMVIIT/3GsIU9CS+SCRV6h1pgbHdOpqSmqGToA+QD5JV6WyBgvTUeJeF6o6cKIbh0Qvq0XgSEJ+7jxLn8Hnl3Wv+AnW/8lTqzhHp3hs3O+97vGF8gJGJ0UIic2GPADgMjoayA0mhS6UxrhAuUJBSfkra2Kw0llQtOwd0YeqJPOTy3OG3FxWi+03InR0bCGE1mxkoS2nbjHJ30KrRCBoKRCbo+0QVCBqaNwjP4RvLZFNaG0PbASpk3xj1YJLGbMdSICPKYE+jm2wztjZWIRMScwK4oo26IJ1TO6LLQ/Ia1O0kHKlNMK4ngzNgbOQXIjtBokUEypWRG9ZmVUxZcAx99PhweDqKkVBgOLZyQxHUMHjXzKMJwp5qy58TiO21U5j/dUJ3bCBE33Ge7VvOBeqBhRDK6B64LI1aGCSyCtMbZhWvvhAS7V0ScQSB9hxDS6YFdhFqdooXRB6EJSwu9wW13+nXno2+cH06US6YUI5VEEmXJH4ghSEqEXJGoKOurnHNU8wzP7o1uGxEd6wnrCymvVNnodqOzkeI8g7slUYFInep3QisjMsMzPRZEFLEzvTV8Snli7FhUMj4PNBazPZJBsRPRO5sH914ZtfF4WefVViAMiheyKLfilA6rL9w10S0oo6Pa6XFHbYXbwJdHOp1Fd7I3vA0e7AG2QRFj2ANd59ZEyw28IV0wyZScMDH2tiERpFJ4rs9ISQx3sjyi3qlxZUuNUT9y8RWicJcTEgXGlRw79Cvn05nHtCDe0fzANpxVACqfPv592j34rR8Uxn7li/WR2GdjZ+j9dfNoJ2GECK0BtuAEQ2e7JgiqSm8dtGBb400IpQ3EjJEX2JyiC4sK2+0KOePpwrkro/d5uAUQBTovW+Yn7zdOX39NPCS8OH17vSYp8zXGMGAZjRI3VBLDz5zU6Ml4L7DlbeZQrQnVnew7TXfGKuTmJDrndSGG0HRu2hQ6u8FQQy1IXmcYeHkgJEEFb20eYDXThyNs+LB5kE6/mFoLSzJutx1vcHqXGHGj+byuh3QkG6TXHLY4Mmq+L/w69VMfnSGvOWWn9/yo/EuzBVVe+Mf/4L+G6o1ev+S3f/wv8zu//b9Fpc5svxa8f668XF/1k3dC/t7MeVr/F0j+X1NSQcbGu4d/hrsJTVZWMvTGADzaq34KFvlMovHF+t9C5Rm3SqS/SdN/gh+ffsQPf+sC8elVPyUsMtYTd2s0V0q68Z/4D/13KKef4sn45uv/PT/68v829dP+zP35hrbg1hutTP1k9i13Mrr8n3ks/zQ+hJJWHst/l/Dz1E/7jmnMDLRkkIwkwjr+BFfjB+/+RT7XK2pPtOqUr/5Jxnad+kl+oZ8UZIc8S1uu9cylwV/98r+J5D+j60cup/8T+Uf/1P+vfkqJ+1g5lzdkdzz+kHHeWOzf5K/+7n8O4ePcADv006GfDv106KdDPx366eDgV4xEHOusBwcHBwcHBwcHBwcHBwcHBwcHv2kc6ZUHBwcHBwcHBwcHBwcHBwcHBwe/gRwP/g4ODg4ODg4ODg4ODg4ODg4ODn4DOR78HRwcHBwcHBwcHBwcHBwcHBwc/AZyPPg7ODg4ODg4ODg4ODg4ODg4ODj4DeR48HdwcHBwcHBwcHBwcHBwcHBwcPAbyPHg7+Dg4ODg4ODg4ODg4ODg4ODg4DeQ48HfwcHBwcHBwcHBwcHBwcHBwcHBbyDHg7+Dg4ODg4ODg4ODg4ODg4ODg4PfQI4HfwcHBwcHBwcHBwcHBwcHBwcHB7+B/L8Bx7Th9nhftrQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "issue_to_visualize = issue_idx[0] # change this to view other images\n", + "class_names = {\"0\": \"car\", \"1\": \"chair\", \"2\": \"cup\", \"3\":\"person\", \"4\": \"traffic light\"}\n", + "\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "de0d7205", + "metadata": {}, + "source": [ + "The visualization depicts the given label (original image annotation which cleanlab identified as problematic) in red on the left and the model-predicted label in blue on the right. Each bounding box contains a class-index number in the top corner indicating which object class that bounding box was annotated/predicted to contain.\n", + "\n", + "This image has a **low** label quality score and is marked as an error. On closer inspection we notice the annotator missed the reflection of the person in the mirror that the model identified. Additionally, the chairs visible in the reflection were not annotated.\n", + "\n", + "Notice examples where the predictions and labels are more similar have higher quality scores than those that are missmatched, and are less likeley to be marked as issues and the number of boxes is agnostic to the score.\n", + "\n", + "Better trained models will lead to better label error detection but you don't need a near perfect model to identify label issues.\n", + "\n", + "\n", + "### Different kinds of label issues identified by ObjectLab\n", + "Now lets view the first few images in our vaidation dataset that are clearly marked as issues and see what various inconsistencies between the `given` and `predicted` label we can spot. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ceec2394", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:01.223264Z", + "iopub.status.busy": "2024-05-24T23:50:01.223065Z", + "iopub.status.idle": "2024-05-24T23:50:01.556865Z", + "shell.execute_reply": "2024-05-24T23:50:01.556235Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000395701.jpg | idx 16 | label quality score: 9.033548411774308e-05 | is issue: True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAGFCAYAAABt3T1lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9W48lyXKti31m7jFnZl26e124N4+gA0ECBEkPAvQr9KA3QX9R/0fAgS44ko60echN7rXIdenuqsqcM9zN9DDMY2ZTLyVAh9Ugwsla1ZU5LxF+MRsWw2yYZSbnOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOf59Df/WF3COc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4///43zwd45znOMc5zjHOc5xjnOc4xznOMc5znGOc/w7HOeDv3Oc4xznOMc5znGOc5zjHOc4xznOcY5znOPf4Tgf/J3jHOc4xznOcY5znOMc5zjHOc5xjnOc4xz/Dsf54O8c5zjHOc5xjnOc4xznOMc5znGOc5zjHOf4dzjOB3/nOMc5znGOc5zjHOc4xznOcY5znOMc5zjHv8NxPvg7xznOcY5znOMc5zjHOc5xjnOc4xznOMc5/h2O88HfOc5xjnOc4xznOMc5znGOc5zjHOc4xznO8e9w9K994f/xf/e/zIbRccYY0Bt7TNr2hGcyxqC1TgzwbFjruAfkjWTHfCPefU98+J58/5754T1xfc+0J4KNxDASZmIJ5pA2iZZYGj4McyO6ESTNHA8jYuLdMcDM6NYZMYHE3HEzMANr3GbQOpjpezDjsnUiB2TirusgDUd/yMSbkxm4O5OE5nhqXswMM9MjVIdIA/2/fo5h7hBBMwdrRBruBu4kA0jcG2CQel9m0Nw0Ea2BOWMG7oZn0nwjI3UvZoDjDgmEAW44DU9Iq3smiJj07UIkuDUCCCbeGjkDtw6RdHNiTtwdHKw5I3YwI8LqenV5EZPmGwZEJq056TBi0t1poTm13pik3rNP3BzMyEwMaO4wE2+NwElNNXveaa2R1FKaEZHEgN4ahgNGRGju3YCp+bQkQWs4s+bXa23WCACSpHmHhEwwdyIT89qbb9Y8IuhbJ4GMwDBaa0Toc9IMc7CsN6E5i0y81leX4NoPepfmA9N6RJ2FmrPajroMT3LdYxoWtRhukEHiRCTugE2aGxk6Cxlx3H9kkO5kBG5e15Y1z1rTjKlbcCfNay6Smfo6fZLXRkvcdX8RoX2X0NjI+mzdp/buRPOsOdSaY04D4jHhZGT959S81hroWg13J9dcZ92nZl2Wpe6JOgd1Qom6b7Oma8sEC7DQdWbHTPyIp96VmYwIrAGmtV97htRZPA6HTfBdvwuHrL1Xa58zjvtJqA+JeruTufZp4N60L820Pg7bpfPu6T2XyzPP7z5w2S64+3FGiLIPBmMMMpKIYB83Rgzu486Xl8/s9zuffvzEz59+5sdPP3J7feU3v/2B7z5+x6Vfan5k6zISTyeYtSfX2phOUUJE0KxpDuvPDHRtCRmPfRCmfbhGRtK8YSQZkLV+kEROrNUyphEzwI3wZDJk00ZitFqTkC9YZ+c4jxxnMFLnIXQ52rfushsWzLnXHjBIZwINmBkkIbsbATizbExrnZjyQ9GDyKjz2LHww/9YXVhGyFZlkp6YNzLKjMl8EPI+dW5lR9wNCIwgTNdkpnvvfeP/8L/93781dOf4RuPETyd+OvHTY81P/HTipxM/nfjpxE/nOMe//fjqB38bsrUxErcNstHS8RmQwcXkfDKDZuBWhxGIMC4xmX/9C/HpJ8yDneDy7h1xfWY+PxNPz9jlA7O9Z/aPZNsIjE4w406Gw3B8Ou2yEd7IzTCdVgEqT17bwNKwhJayRHMG3pJm0FKOV04CctY1JsDEXCCYELCUXZHxy5RDczOyjLDuLyATS8ebHFCEQEXzhiz2+lngrQNGzFGgSOAjMwXmMgXirAxuJMGg1RyDwISwRwq4GcwCJAY1JyBAocWzBUwKXAUFntIE6gDLIHIyzaAZk6j5KAcd4JkwoowmNHOs5tHKSchxJR56T4Q+x9zIEQWo6vrLtEaGcFdOOSiAdLyA2Vq3iAlmtHL8+HJKD2CRGbTmy8PJwYXAcdbiy3Hqc/W3MecoSON6j3mBpjWfmi8BuniAK1KgNXWV7o2YQTILbDySa4UlkjkF3rR+VsAKyCCG5tOt6Vqjvsnqf6L+PuZLod+ab/PEEXBJkhmGmZNzYui70sDNa+6MBZ9rI5BzR7MCtYjISxuZFS6YXp85WQuRKeCaC4ykMZlHULbmUXcekFP35wL8x9rU/xpWZ03nOqZ2r62gdJ3BtRKZmrcU0HFrBaLtTaDHcX2ZScQs8JgCGG2B0agrsJpjDV1P3atupuat9oYiGs1brs86NlAB3CRNrxGwsQKn+h4rsD4jfhFQZE7MEwsYM9jHxvv3H9lag9AceXsE1Cu49m7MnNqn1vFw2coLvExnvkv2fecvf/4Lf/7jv/D5x5/4m//we96/f+Lp+QP9cqG1poCu9qO/CQIP21SgivIB+n7HPcgU+DLX/ok6uG/RlWxeEKn94LYmuB5vlK1JA5qRdcZJju9zy8Muvw0W3fsR8GjfpM5F5HpuUA8OBCKnRwVBFdQkeK6gSJBxptbNAtx0fwu0mowhx7aPFTQl6drhBuR6EtKs7l2BfZjuGW03/WwB3SNAAT24cNL0IASDyJ1z/DrGiZ9O/HTipzoMJ3468dOJn078xImfznGObzG++sFfwzBrhDuRkDNpGDl2fB0qd7w7xJTxT8es0/oGsRM2GUwZ1gD/fMd+fsFsYJuL1c7Erlfm5R3j+QP9+x+4P/2G6I2IYnhmMD1pO3pqX4bLs2PTBLoyxUtFGUcmlkbuA9xo3uVcZhbDg1jyXA62yzBF0HovoyUDKMC5/ZKpsQITlgINLhRiBjkKhCHmW5ammLa0B5BKsOZkCNBGLsMadZ9yYokM2gKOB6guZ+WZYoDKPxYW4EGeRoHABOS8WP7cxDImMugsn7BANX4ArIN5ZfntxMuoGln3EkBjMaWkQZQDLoediHnW9co5RCaeELmuT0GI6QoKDCRpMGMqg8GXw9G1kbMY0IJf5ZAo1vRwGuv3B4ClgIxDTr3eqQ2iKfRySEexvC3gLUYvhj6/tbUA5cBasaS15zRrcVxzRpAxCxA8HLH22VqLBdKSWcGWu2FZ8ysITtTn2gFOg6YPJbN+ZgVwj5/X94TmV1tbs54EMQdOwyg2svZaJjSjwMoCAAXkMwU+LA4gCk6GwMsCexRITKz26MLxBYIK+C0ovQCPWdN+twUxExbYW2sOD7ayAPQKhBY8Xr8TaVyvDa0PC4hV9GArAFzrtsBIMd5Z16fPWL+3OluPM0WFkGusOc263rVHgNo368ylQGAm24cLl8sFc6O7gti0rCNiZE7mnIy5M2MqqBjBGJPmTu+dtjW2ufH89I4fPn7H68+f+PmnH/npTz8S++B+S57ff2C7bLTW6O2CcgoKTNY+fXvNv2SyeQSKNQGxfs+/GnVeskBn5MRbBTAJ0Mk5NXNlqzKyGPL1kGE8bGIWxHSIGBx2OR9fuezd2/vxN/Ghjq9sMdMFutd7a09EjGVC6vMee8p1qHRPxTzXTn3EohnHz9bZa27gay70Yd4M8/64B3Ox53OQTGV0Nf/lDZ7jm44TP5346cRPJ3468VNdwYmfOPHTsQ058dM5zvFvN776wd/YQ+UPTSjVCVoTyzVnoJT7pLdWjGKHUGkEMdjM6GFc+pWZAzrsMbHWsOj4gMg7YNh4Zfv8wvUv/wX7z8FTf8dsT9iH37B/+Mj+3UewZ3r/TiAIpZMHMkytiRF167i1MlxgntDaYTyOkoUsgAAYUWyXGBMzZwylAi9w1cwqtVrA85cG4uEKNZQsHzNVUpOwGCx3Z/lEQsAwQ2Uzc4SudVaZAjD3WSUuYgyV9p6swpoZsxg5BKrqvw8Gqb7arVKas5VRbXXpy9EUnbyY2pTxN7fDUZhDmJzsrNTydffLEGfo2tIEyAk5dncjClQuACdHpLlNy4dJDzmAOWdVYlg59QWCFsBLjolKuQb3Kl9xw+2AptgBtqM+awGZdbsLhLxxxhUFLSC29s2BdI9rasceIJOM/uazIGexogtgu9ZRoEhBTeYU8Ih1bQt45sE+GgEeBa6zgiZdSxAPoL52YoGkeSySgpZMMAaWra7fyJrTZlUSRFZAs1C6sjpiTV5WsMEsh1vAY73aHZgHqKPKRwwjrel+FJcUcEN7vFhE3a9XWYn2xwJ9C8Q6q3QljrKvjHUtC+DWGVjXvIKrzCPDZGV1HKCYlYEyaL29Ad6PYM5YQRzMA5AlYvk1n0I0WbYnxSxXILTmmzcg/7hGq9jIdG+ZKhnJmUQYz0/PvH/3scq7gp9vPzPmzsuXF+63O/u+M8YswJpH8BMRPL975vK0cbu9HHus98bT9Ynv3n/k019+5OXnT3pAsTsx4PJ05fn5SVFK055wd5q92fc1HwvsqYTMjvvDHpDNDtQWHIT+spy22OpGHuWEsokca6ngl6DOu/Z2MMGTVYIEeu/MUJnMCsoq+I9IrJjsZk2+wfMIctLKvCREK4A5ZgFxJ8Y8MpzszfVn+RBDD1iyzmVUNtKccQRubtr/zXUeVrYEVYInIF3ZN6xjXfbekn3uJMl+37nddm6vN87x6xgnfjrx04mfTvykceKn9Tknfjrx04mfznGOf9vx9Rl/fRNgKUYzMqjqhnI4YG1jn2JnW0y6w/DJ2GAnyd0wu9NImEZPx72TZOmuPLHHHTFESZorfXsGnq/kX/8R//POu97I5rTrf0VcNvb3z4x378nLM9vlmSgtGBk1E9sek1zSAF58g4nJaX4RsEnIUFq9dC8aGUFrHQrkQfnpGDLE1o6SFaWYV1nFwW5FAUsEwtIeuiWzdDAKjD5cvUCLF1A4WDjEVkRdRGQU+1Op0Abhqc8vFl9p2BTQLnC0SiOE2AVCC4SlobRrE7hcpIuVM81iqTIWm9kgF2iuAAHHspizEKDxyJrj+oTj++sasoBqusohgLRkmljWrIDCzIj5YKKTKOBXc1IlPG5JTARaXXotwvGPYOUxKp19gR0vRjKjgpv6rpn1cxQ42AJaupgVEHGseGncWDGVBYYWsz7nYno1b3NO3KRvkcXAUoC1vFMBWd0X5gX4DKcySYqpfOzHil+sridGXYMfKe7Q6p452ETNaTxAOSuY0T2HPfapsPsqWViHRHMYS/hjlRNQAY1VUBBGFCirqpfKCnmAgAyxlpjXJxiL/RP419xmULouK+NAr1OZiv9/BQBprZjWdQ/HxL3ZG/U9TCKqnGdpicgikjkFnPPNWyvuO876ioq0aY57e+wnWFkYKperoLMCr6XhEvH4ArPG5XohMvjxx7/y8+dPfPryiTF3PAwL+8X1KDDRNTw9PzHGnT//4x8YsePmyvhJzfEqS5n7jf32Smsd70bbkn0Pkh1nk+1LMcXLRpi3CgjzOEfSZ3nYyWN24xGM/SLgX3aHBXRdmRGxAgMZPDOnFfAzM2nD5Dzs0xGUhjHGlE03PXSBZGad11a2NlaGw7LBbxjkY10roPC1DgLM6Y+MGHi87oHIK8h+c4u9bE3U9jC3I0MnK9jBK78o9ZAhMxn7XkHJYMzJfdy43W+M+2COeZy/c/w6xomfTvx04qcTP5346cRPJ3468dM5zvEtx1c/+FNt/w5TYtDujTnlEFrvYtfKUbgphT8GXHzDRzBjyEGb457EGPTtypgSznWcMWFrnWTI8ZTzNzeIiTWDaycn+N2w13+hMdn+lMxmcL3C5cr+7h08fySev2M+fyS2J2iO0aRrknKErXtl5E8cp3kjzB7lByxWYac1sWCrBKS7HY7mocNQf1JIfslhqOygQGNWOrQVmDB9ZrNWQFFfrlKIWb5ORsybgEcA5mvpZNQbzszl6JZLLcAaHYjjgnR5VmK7CzhCaxtjASUzxhz0TQHA0sggoTVjrnsJMSwTve8Qd14Oqa5w6TSkGVFAZ5aOjVm9PnNxrZUGrv+yAjYCDvYm1R2JVq9ynwLBuUDCwbA+ALsdUdb6ee1vcyyrFKm+eolTAzgl4Ly0S+BY68xUiY3ZoYUieZvOiihUnfQGdh3lKi42vlWJy6H58hagrD+lDZJ2lIOAYaHvNzclwWdiUQ7QgDlr3RXEgQIry2Ke6cXUKZg79FNicIgJFViXHy6gvj5rzX9VythymrkABcc8Lq+tvb6uQTz50vtRMUF7nK/6ubD6g5leYDMzBKBzgfsFmB4AKauc5o2UTQHNpHXdr5EH2LbSBnmwnQqqshjOBcMjJxaTsDUftaZHyVuJzhdwj8pW0R7K42zbsV9NWlMu4f2svUd4RSx53I+7Ezn405//wM8/f+bTz5/pvePNaa5sHXcX6CzNqyTorj33448/8/LyQow7WLCPibcrW78e93ntF9y32ntZJS8DDDoKnMS+PvZpxiS9PYJkpcgcc8kKXFeQtI6uaV+uAG39QtpBfvw3tVdsaVcVlbzO3tJbMpPAvn5tdGssrW4BUNnElZlkKCtnjjgYd31v6c2wAkCT7lgqgDMzQoJNh70zUwldYquCsR6GPLSOjvkqG7ICYdl3fVKksg32fWffB+M+eH19JeZkzFlnQftYmVGhM561b87xqxgnfjrx04mfTvx04qcTP5346cRP5zjHtxxf/eDPcmI2oSdhjgXVZS2Y487Wn8o5iw3e0jBv7FMdfrZ+JWKQM5i5q9EaQyLMKWCxCeUxohyFBR0j7i/49sQMwydIeqABjelAC9hv2P2Gb43+6Wfm+Htah+hOfPhIPH9PvPsb5ne/I/o7CURncnEYc5BmTAuyTXpvkI1Mx5i0GbQCMYvl6yVQehihMno274cDSsCqe9iDXbMHu9YaRNBwGEnrzmQWvBbICk/SSuA4qZINXVca4KusRp3bxiydBEMBBQE+D2du1b3LokyklUBtsZmpIg88ukpzoq6fR1e1OeVOzeWQZ94UkND0uUeGdeCt2HqKPc/AhbBxokBOuQXXvpKzaWIGpwKD4rpIN0ZIs4IKdiyHNFrMH+K+qYKNmXK03hpOpaOHHax05BKOHUo593JCmWzWGDEEYFzfvxjxOQVC1Fnv4TzXULkNlVa/nK/ma4wKUMp5mlt10hLYjHLGB6ApgC3djWQFK3LMQTpEDiyaPqM1BXpW14LOzAKdQWCRAodW7GjK0a51OtB5lSEFpsA0V7bCZOnLLAb6wKbWWOUsDlWGpftvqT0VrrKOZqm9XPta+9k46gKqHAp0/0wvQOm4udhZr71Y1yyx7+rzVxkIoHKTt93VrASWH0HFrD+PsqvESFu7bwpACmOwYGSrjAjBjuoclotZnUdgVpNzgO2aPmVK1JmNypZZ2k8raJCdqcCTULBpzsuPP7LfJCL+7vnK7b6z3wfXZ+fp+YK1jYgKHGojvL7e+Pz5C7f7YL9N9ttg7Dtp8HRt7Ldgvr6y9cb1esG2Tr80fCtgF6VPxtB1ZT+CsFWIJHtXQUVW2djSTFrz567SLUWBuv9Y2ULqyDeH9tya75Gh76gfZAgAzhn4cVrW71Q65eGsDphkMFMlglSwa7ayNfRdrcDprP0X6PA0Wp1dw9uVMYbKS6J2e6xOddrG5rJDFhteXz/zYYszZgFpAWqvgIIMxth5ub3y6ctnXm939jHKK6hTZ9Qa2JQQ+8jJjJRGUZXtrYZ25/j248RPJ3468dOJn078dOKnEz+d+Okc5/iW4+sf/JWgMWYl8lntsK2TTMY+2LbteMo/E3LubL1X/b+eqrfmzHBpKoROvVV5RU4nhhhQit2OCLxvrI5C6tYWxLzLGLo6mF2vG3MXm7vlTaUX84rvSf/yE+Q/Q/9vGf2Cvfs98913tI8/MNsV/+578t07pg0ZwRF068QMwkOWIiFncNk6NoO0UcC0yTGYg3c6XWCLpLnEfC2N1q9EhECZkE4BNC9thSRXZ6wC8kExZ80EIF0i4TlTIt29M+bELdlaI8YUOEOsnvDlKrkwOe1YAHql7peGhNQPsGZijXKgch910pPcxiPlnypdyKJODRn9BTTMDfMkckh7B6qcRQ5ozh3MCipYfWZ1TMuVwk5py0jEOC2P8pkH00xdh0CDpQDPAl9Gos5f1L0bWHtT4pPFDqayEOLhXDNmOVgxUYsxXCCDcri5qNBcQueShs7qAKY5K6q02CV7/KMcd6X3h9beWgGZooLNVznOuvcqgbIFgg6YQ4yhNWywWGNMTJlb7SEKiCWYlS4Kj3k9AHI5+aWtYjXnxtv7OOjzddEEo9Zt3V995wJsWjVlHeDKPEBd1kTyZ+1NnQHefOeaOpJiUwV4BPYcIw6wmm/+R+USeewXoOzJQvhRDOBQwVH9PFNlKNjE6nytOycXVM3ajDVvtoTntX7Hz31WcF+lTUHpTnGUe6ks4U0QtNDY2viZGM4cwYzJ/fVV57s5vQLR+21nRPDlywu9bzRrNDPu+437fmPf77g33BNrsLXLMd/7/sq+3/jw/Qf61giDtr0pZ1r7NhKaVdBoFaBJQ8V9q7NBBbgLgNqhHbUEptc9GxRgzaMkp7VHB7yVAfM4N2uOdO4cY88l5m71c63dEQCSrOyFt4H86mroZrK3GEl1e0wqmKqQ0VplFVQ5V1SA1JzWFAwvwXFDHVEjtFbmvj6KkcEM2MfOfr9zu9+4vd7YbzdiTm5jV3ZY61y3reyiWOqIUMZFoO6fbkxXmVor++N94xy/jnHipxM/nfjpxE8nfjrx04mfTvx0jnN8y/H/Q6mvjPWIUFlHazDF4LXeVDtf4rER9bS+2pYL6Ko0xMzo3nXwlyhFzKNEwFJP4iNMDGbrOCqTaZ7EPrEGrSeWg0ayOpuphfdFYNMnzl5Ms5H2JIA3DfvrX7n89CPxh//E1hv5/gPx9IF8fk+++0g+f2RcroQbHlcB6CYDO+YuNjmVvi2GQ+xvjh2yVclD0ptVFzl1sgMOQEXdHxnMWaKrIYdtWexuCUzLWJY+hxleYChUgVDgLQ7ga+5HmrIcQFSK/EJctS4L3B0+OMihtvHm5XSWk4A3JRHLBdhxbSutf5UVrFqK4AHYlk6F1WfRVpECVMSjkha36p5WANKUEr50dla+uVhQTYIVq1R+XaxsL/ARAqatHM8kDgFiqA5tBrNYvV5scr4pe8lY6EHs1ENbpICsK1V8Me7pcdzX0imxYncfaxO6XwyaANIaByBcIOsNOBXA0h6Qns161+ILWQv6uL43U6xgQ85ZZzCYs651lVYU0HoAZQ7QuvbRoSuSq4SgAo4F66zAbgUfj7FKhB77fB6vAyyUmYGCVyrTIYhiv1ttlWLJWwlc4wWV+QX4W9v+Ia795vupNYxjtY73au8VyF5noUqSLN/eTpZuTVRw0Gj5uI7INUcFmiOR4HIegDUpAfl06fHU8ALDGSpDWPexgoa0Trs8c3/9zLy/wsjKkmjQHN86WPCyvyoQn2K7x66Q0VuTJpUb99uNOQeQtKtX586kd9l7c6f3RmtdJTEuu685HA9dGIOZQ6L3FTCx9lzmkf2xgL6Wwn6xTsc5Lg2ZtS5ao3wDhJGdpGyt105de87q95VhlGV2hVONLEFqY32kQKa0ntb3teN6DD3AEDuvwNZb2WbX+6zsjI5AI3IwrfzUDF5eXrnd7ry8vrDvkzHq4UDmwXxbGk+XJ9L1efvtRaVHpVGzAH5rjVWS06vxQrZV6nNy1r+WceKnEz+d+OnETyd+OvHTiZ9O/HSOc3zL8dUP/tKSGFmGzrGorm3NSQtGpbTnSCycy9bYc5dhzmTbGow4QEfrTrBDgGfHs4Ey7IkJ3ppATQIuQCeeR6wrOfCm+v1eYspb2wq0XZjFLrknNiUeS8Itg57Q6Fh7ItKwLze2+yvzx/8s5m4m18s79u2CPb+Hpx8Y20fyw2+4v3vifum0MF3zmFyEiBiIwZAMhUo6YpXVlAHPrJT8AkNuy1HJiVvKmIYPsbMFhrwlidK3vQBOxqT10rOZ+ozIrK5FLuBfZUWLVZLDl8Mk5aQWqlH3PunOsAz3+h0FYFZXsTfskfCeOgqSbS0YOQNJS7zpiicqsEBqff4CArGAr9K4hdVUKiCwLH0NaVFX+UCKbY1yQPqgYndXSQpy+gJR8chzfwNuDFeRjtmhOxPlgDJSQNu0DxM7mHHM8FQGgVLoCzjOBFZJSt1v7YG3orHrSiKHgGtpmDy0VPQdCzhb0cWGgNUc0nrJXCztChyynHU+7vX4OY9g5QDHoImV08+1TKE9izmrS1eSei15OPql4WSZlM4vazWDEJxMlbuswgOtbygoru+xChTW/1ou9nIhxSSpuTqyMOT4F/BY7/7XrO+hs7Recfy+uhfmYu5Lz4aVnbAAfBxAksdHH0Ebx2fXndc8R5VTZPoB0ATcqLnVh0XZg0fWSomws4S6H9ksUOUr7njfeH7/gf3+Sowp7bDpXK9P3OedTz/9xB6lLRNZ9kOL5AnpK3sGtq4uilZBWW+tNMn8jd7NI1A49lABNpWkoLK3BLPOYu2bl5bZEUllPQhBmU/5yzVbLPI6PiSHdssR0KG5NTPCrHpCZpXf6TUNBaYqS6vAgxUGrgBu/XfK3ljiDXUHrd9npkro6gyvkpxYDyciaM2PeRlzcL/deL2/st8Hr7cb+z5ki2LtjSrLLJAdMzBvmIsVp8p9em8KygLMGr33w+bNULdSc71/ZNJafxOoneNbjxM/nfjpxE8nfjrx04mfTvx04qdznONbjq9/8JfQ2kUHlxAgBKxXKrEnM4f0XUYyxx08YBPQnCF22dLJdOZtYC7tl0wjcbxliWCPgzF1XA4tHdL1eoJIAWgfiwEUU2tpZA/ohR3KETMFrN+5KTW4TSyTayg9npk026F1PJ/gZfD0emf8/CeIv+PaOmTHru+Y757ID7/ldnnP+PiB8fyOnBfgCZjSCCnApXTnwOhl/OIAP5QDUvp8MTrBAUDcHG9UmnMxK7a0G4aM1ywgZQZWnZ8MGbxiqxmptdA0yTFOsby2/l2OfYFHczvYWlssEODZ9J0uUH0k7vsqbZExt3yr2xFgrqyEjFpLipEvB2iLXZEALnAY3ixHapRGDMWCkaX586bFfNP36dKdmEnvG0GU/kN1n6tSEgk+lJM0cG8PAF0OLmd1eWpAZUeIzTaa0Dx2AEQO1nI5Z1aQV3OQmcWcCeTOMYt9X59hZByQ9nC2Oofl3FMaUVk6QBJN17+PwOgNMMMEquVoVZK1vj9mlQggoBr2AGjru1gBRV1ixjgcOCyQoffE0L7OOgN4AfYMBV8LNpR+TMwHYFV3wIfz/wWbvObgAJ4okCpaWUkSuS4DI94AVYM6O+vNKr8RSFngfwV1Swx8hRirJCuOvbGWt8qhai+vTIigMlRwZeBkgYhYc12d+CpwK5RXIHaB1qwGAKmAPd9ml9TftW/NO9v1HXYtu4eRczBf4en5iWtp3kSu8639GPVkICroy2LLW7HYUcDdCxw+Stw4zuu6qMgo4CWQm6G9tkrxdP4egQC+sj8eAGuVqK0sh1UihWXtaw7Qt/ZEhILGtR8tHuUqYqOXPk7tHIsVlR1zH8v+mYFXF71ppc8kcHqIcBPsb/c7wQydk0+fv3Dfd15fX7ndbgCM/S57wFpm2QvPCtDTCGbpsinYznjYPyo486buefu+c7tPmrc3gWYQQ8HrTGU9bW+CgHN823HipxM/wYmfTvzEiZ9O/HTipxM/neMc32x89YO/CKO1TQ68HEfMeaTdtybmNQnsUuwMkDPwcnzpAmUWTucJGJhJjyNNLcRxw3qxC2VyyKhylQRecYduTWUVdJiGdXEVBlgEzeRMV6t6miklPI0NaOHM5sxW0GsG1q8QjoexR9A34+IbwztEI+87fvtEu/8If/5HNnuG9sx8emJ/eoL3P8DTR+LyzN4v8O4d2SCaAJ9RrPAUc7o6oaUnaUFOsFhGf2I4IwQczRxmdWGz6o7mYtmYJZxtqRIdc1oTiMmpuaOAkBnqgEaW8wYWSzYlGA1BTgNr4KskAw7R34zD0a69sJDDqojJEp2mnO2cQyAmIeSxDqdiHF/wgIBW6CPLuRVIxrKIbi+AmMd3LLAhYDGP646YCnKsqWQqC05XoAAhFs84rsWXAwh9vzdn5tC9+wKCWZ/dyg/LOWlSW/1dgHr9XPRcnZ8CIubF5K8/uu/MfIi3kxKHnponTwpkGLO0PuTtKjqpkSVkYS7AqLltmD10OdZnLGBoCZaV9r50XxZotPW9j/GWgddt5gFOBBlbBRdiNsOjpjCJ6AUca59FMuPBOh9negGR2kPaCsYqQRDwLztTe4a6Vl1edf+jOmrWvR8gvvabhOTrrKylrD1hWVknaD4fQDoOgG9AWJI2K+jmADvr95ZR11YlEbGWvs7Wm6BjMaV6WMDx83UPXmVjI5TZ0k3sdhLQjOf3z7IDEbXn5xEgZe2xiElHgaoY5ocW1ZoLBdK65sgHaNP6PIBnoowbTafXHloZLg9mP6EqKazKfPIIqrWHFqisLKBll1Lnvq1gfe0Ns2NvZoHSxUvPXMF9q/KTR5ZAklA+gIw38yMbpvhqMAl14gwY+2QMuN13Zuzs+405BmMInK9zpX3puPc3kYbOVGYwTWL4j3vgCBDwhFjAGwWypoCotRLj9vJxFfSuBpKtNXUcPXHrr2ac+OnETyd+OvHTiZ9O/HTipxM/neMc33J89YO/tl3ItKqRByhnE8s5VIq6BTnFHLtJW8ZIer9WRzUrB+b0JnY6m9hur85vnhy8FilH05o+S99bqdQxcNtIaxgdiRuLIcY6GVWeYXeCnd50D9l6HXgXkHFXenAYhL5ZmrWTHFCcBdtF0zWLfXNrxP7CFq/010b89CfYX7HtwtyeyQ/fcXv3DM8fyOfviesHxuUdtA2LSWPSiCJrDbhiPSFvWHuSA6AM3UzILv0HJq2Vg1DNCYOkm9LMqdfPoTmcTLwEtkkj5kNEud5eqfoCFo4EZGd1owMxzc07Yz4caMygd+kNtSpBUnDiR5nNYvLkK/PQWOBgDuV01L1PrKtlaY1Y/RqxljLOftyjFSufzlE6kiGnlIWaLJPYB9473pViH3MS1V3KsKOTVKbRzJkzaOZ4iJU2pH+xBIu9QIr2q9YuQhoUagqVWI66bTl3N83FDHW3kqsx1gJklSiZi10DBSszlFlBTSFuArNzMa61li7AIg2SfDhC132FqRinIHuxwOUkcznaBdZ0L1GgJDOkm5QPcCjnrACJNw5S91viv94gZwVqAkGWAldZ3dcih5jTqGyEyhIgQiAVY1X76KMXyHEx9ZEEswIz/VvlPFGfrYBiKQYFvNGL0p9YAbMKasrhL2D3tpyrgJytV+o+3WGis6hqlFqbVHldGbIqZeIIRKSfFMf3RgFG4cKOm5hwN33m0njSZ89frMOKW6bnW4xUuw8ollznC2XThOa+swlwM3UvpZmzuvcpgOr13wJ3i4U+9mUmS3TbfX3xI6CZOY9yJezxudqrizl/3N/CxuZlBA4AvTIvovZPFriUXkxWUCbdmsSsVXnOY03dOq3u07I01DJ43RWQuYM1+Yb77cZ9H9z3yT4Gt9ebSk2GOsCFJSOmtGT0fKTMmh3ZKU68eRBTZTVl3/SAQZtxZVe8DVoUnDvedFZU2uV6MJODVTZIyo65yXbnpHImzvFrGCd+OvHTiZ9O/HTipxM/nfjpxE/nOMe3HF/f3MOyHFEZKJt4dyhjmCkdmEiJmsaYElGmgQeW6oqUsdO6ETHJkBOe9RTew+h0fSaj2oIng8l8g38m0sRoZfDUF0p6NDH3eqI/SxNBf/ftige6rsILXiyEhalEQTfKYjObd2LexFbOIGNA6cg0xIxaiXabQbNgPkPMF+LlE+31zzzjpDUxq09PjOf3xPNH7Pvf8/L8npftHdftmWYXbCoIGJb0DCZBb1uVeEzMkxg3fXcxUAIoqwQiVPbgXoBmAZF4aHC0JjZvqrzICkKJLUmVVZgARpBHyYSEl1XqQQjYL5HZjGAWYCME6kHGG3sApCyHrXfNAjfltGaUUa4tNrPYXYEowjDrxIgC0ZrzOSZ+6YcQ+nJY7qvUgXrdIEha78cczAKw7s4SF56xylxgsedhNYckvVx8jCC7NpJEeR8p97koSBbaosC5bokqG9Cv58FqZjFiLD2h+t4Gh2aImRNjqqSpabIiVWql4EQeP90W8X2czzBjsc1rfsYYAoaYGFataAGXEjAXkiRmgTFvtBWAFHBarCqpMpfIxdCqS9yBpvADfKZxzLs0RcCKUTS6sjkqKPDFaq49DzqTCPzM+hvE3EZpRSl+qXKHAzS83R8LLBQoD6sgBl2HkjTqZ/UZ67/XXGeUfk8FQGs2C0SoCk3rvzqxrdIqnVUF8oaVvpQdoGV9hxUgXR3JWglyS9hemQ8BxSZXZ7LkKPmLkG5JFFsbo/SYCrTNKRC1wN4S0qZO6yoxM3fZCd6WzbzNyjDWblprswLjJKu8wo/yI2XE5GHbjyyK4+jkI7hgifgr0Jj55jrqoFtygOA81rw+r2yL9Llluy0bcw7GnMw5GXPy5eUzY9xV0rjvLLNn1o9gV00YSjC97EszP0rqsLVfUPZCq7LLMNTJNNbmrHK7Ot+uzKuowLJV6WFG0Honc7A69pGPDqEZ0JsEs+eoLIxyaef49uPETyd+OvHTiZ9O/HTipxM/nfjpHOf4luPrH/xlkvOuWv7WxB5nYJXm35AocZrhveF94Ka0XTmkXey1TdJcTHMZGfOUrkAaZrNAJ8x5L7FPHVQzh76MgxHhSApkLyfb1SFoBlsTKxgjMBpzpDKjG3ICMaXF0WRklfYOy1hf20bEfpSN9CZQ6W5IsqQMtHmxWhLI9SHha2g4znSYLqWK+Xqjv3ym5T8Rf///oG9XcnsH794R73/L/uF38N33XJ5/x05yGRB5hy6NAvNWoGBntXjPmOSU4HUsI11zFTHJDHoZ+1woboHVQmVLMDnsKAhRWnaxhx4ggFpiy7k0IfRdAnVrLt4IUccCx+XuU5UWralkhOT4HOlwWP28mDsERB2HQ+NBn60OhIZZMvc70ZpAfmvs911aSBSQLo0UxmSf0nboTc7jYM3qKpcDGmX8eaP3YlllQ4ipIgS+WqxJr/IHks2AAlsZWc6U0mSqubcF46sCpRysshT8cHywyq6KmWR1DTwWoIDmAyjQqvQgak1ToDWhnO6DGVsfE2v7vwEMWgPqh1pj6ZDA6hjWWietuqYJFmrOVhc1d5UqJbg/uuitOZe4tNUeozSRCpTUuQy0l8iU2PvSc7JH4EjtIYmLK6BLkrQ8wGZWyYi0UPy4z0KXmL0BFejM5ywwWkzrCgZZQVFl7AjE+nH+MlJd3gLSTeC1mNbFzJZ1RZknDjbEuFqVWngFT1VK9GZLyLaua8cExNaew8R0H7az3pv6u5UGUVSQ5U3g+Bfr8ov3rjOtz15nWPPhmvtc3+dHRpB7Y587W9uYK28g3zD2a8/Vkq8gkFrPIJhjPAINAtzYc5dG0xt2e2bguXSbdD4ip2JBN0ak9MjSmPcbt/udOSZj7Nz2u8BrjMqMkp9b0Y/AZQnmV0HfOnOG1Z6sLJQCt+v8ryh11sMAr9etjBbDjuB1BfjuKkd6lJM5GU7Sy+7VUa8/ygRSVpG3ScQsRvscv4Zx4qcTP5346cRPJ3468dOJn078dI5zfMvx9aW+qZRcNyuJjQBLeuswwFJp+80NcuhANi82ohcQMemyHIUoDUzd21rX+2YY3sQLWtffLRwajLgJPFgjBmJWPMg59b0BxoW0UQ5rYl2OqfUqD4gp4GdyIJb2SPMvJy+NhVYOuoDYIdgbqA27Q9ojfdx2Mnbdp0H2RT6qiCbLqDpX3AOfO8ROvvxMvvyV8S9/ZLMNvv8b4n/+vyZ/+z08XckoB5UGJVhrSAvB0mim8pXwUG6ygTeJqxbPzJwPFkid8Uq8NX6B1VlYFhcjM2cJYvujHCFt1Ot1n7GEYGcCqzNYKNUbsddZrKZ0ZQosli7JoaOQBZmLbVp068O3lePMLKdU92jaUxmhcqe+0V0d0ubcD0egNRWYkPOKo1xnzuTo+naw7GIIcwyst/UjgZFD36IcfCZGVNq8zkfEW6dhBaggxxL11rwfTKMlvWi7XBotBrgrqyJT4DBDexCx0FnOu7lhM8mcSoMvUGfH8mrd6zTXfC6YscKV9ZN8rMMB4Gp+eFxjuW6BswVWKd2ehYAjas0LXbD+lpMmVe7BAkepMxn6EjnpbDVZmtc5E6c/PidNGk8VPK47XiGvAOMD5CuoC73HVjlYqtzJ1z4u0LvKLUxZDlFBiHkcc7FErKMCmzlH7dvam5ZHPJGZytyp61kC+hkqPWitgrfVPdGMRbUuZhjs2F+PznV2/Ik35S8Csfq9/i3QI70ZP/aVrUyRXDvizb4p3ZvDUChmw2iHAbEF2Axp5yB/oLKg0lHyBdw4zuXxgcBK9FBgQK1P6vYrMFAmhNF6O1jvFQg2L0BZ17DPnTEnIyYxBrf7zu12J0YSYx7sPkzGm3I1pwt0xmLKK3DUExjNpJlKAU3ZTtJ48kdQY4/5g0asUpu6H39jGXRuZtm0yqBJfc6jbKXOS6yytIfGVF3W8VBBZ+ukq39N48RPJ36CEz+d+OnETyd+OvHTiZ/OcY5vN776wZ9AgAz7aqHeSm/GXSyyGwIPhgBp3opxUUqvt1SZQ9vI5Zya03LDCaypBAKMmCilN6UFYwRq9hZYSAshyoF2E0p0uxDT8XYFG6xOP5FBzl2tykPaDsd3BWTspHUSpWhbS2buXLbOPqLSh8vAZKUMl86OL20VoPULZFcXs5i4y5iNuYM1GTbr4DBNXcXEnhs9HLdB/PwH+n/zI24D+/579g/fMb/7Hfbht+T1A7k9kffgUqnfM5PIXrondwCx9E1aQoa6ox3MCG9c++oAxWJ3yhDGSuVfwAHmlM6NfIRAxRKItsxDgNzcSiTb6rN4MJ6+WOmgN1PJRZcuzFgaNE1bUgGPPGRWkNS6KiOWA1dZy9J+gBhTDfjMBeTevBYgppisGVOMLdJc8tYY1TFrpaBTkE6bX05ticBmqkudJ+CLufvlXPLGMVsB8hmhc7J0OFbWAdK2yEyVdyUHy35kfPgqyypMGVpFaVdklfroctPiYBbdHmBGc9ZK2NZL/2OhkCRyAZSCoMkbgL/mMur3j/vLEqX3VqB2BrmUcutzzNa/OX6mjAoBm4MVTRgGq1OjAPWjnKm5M6d0aZy2IA8wHyAYBbULtGVplBylJiYYlwWslw6SMg6yzmSwWG+r2jaR5NqPXq8X+Ks1CIMCFZgCNgWKSG9H9H1dYxIrcsk35/MIEPx4v6oV1jzq/o4MBm0wFuu5Askgf7H3zZrWBVT+tSJRyVLrQ4qFPzIpUp/rlR2hMievFfGj/GexrQday5rT2usoHiEJWgH19ZWRKcDujrdOTn33AtJrzywReOnSiDlepVtUtsT9fuPl9c4Yg33cud1ujCpDYU6W2JGFwQy8hP6ptTQaq8RIJUV6SJFlNVtr7PvO1htjZWMse5F5lEatIG4ByKXB9HaszAJ3iabrKCqwU4xgx1lbmUAP9jse9lEH8M11Gu6XX9jzc3z7ceKnEz+d+OnETyd+OvHTiZ9O/HSOc3zL8fUZf70zYso2mT30T2wQmFLQ1wGdSbMug+VgdCySmA7ZZKJzQEvZemsQDiPxBiOmOuAtO2iDxGnbM3PcyKlk+NXVzZsEh1XWAmCoQL/SerOYUibWGmZdoCcWSgASet8OB29IJ2CzTfofvjHzLgcruhyr0oSs/PrAaPtQecZFcN1jsrkzvNF8o5ujVvUyRjPA5pXWjOG7yk72Fy6ZxB//Cf7wD1y9kXTi8gwfvoPf/J7x/feM5+9o/g63QXZTOUA0WnsqzQmIuOGmrkiLlaQcODVXuucC383F9A2VNWDJtBBLwgpUVK4DAhNmyjyQcHN9xZiSI4mVwi7nu7Rlchn7OYhiW2T4iz01ZRdYJNaayiJKxLs1V0e31BrNnDRrNDdijgKETuuNmGL3vTRsIhJyHuUj04LWL/TeJVodYoTFpk6MpjIBINzIVk4uBfDl84bAgBluUUBG0Mi8FStYW20x6AfksoLIJhFn7MGeoxR5Uq4wijZ3HqnqFqnroH7nAEs0GymFLDScy9lbAbPkYGvfMKtUaYeZdEAWkF/YZJVNSLgaVvbK6nwotq3AmK3yCjnzKCCclX2xgsFMgdRDcwOVTqwOaEZTyUhp2mBGIPZfiyMR32Tpe5QQvq35tAKvUSCqTsMSey5woqBhgex2XB9MsphzlcdMVgc5q8AZozo7lhZJlRQpoWMV3HHM5+RR/kKdtUzd6/HinGKnDx2k9gCnpZFysJ6KJ7VnKnhcrO7q2idcmdAEuldw6ybBZHweoErxqUrGbFGsqrupMiWt6/IHM7NKTep8YxVwSd9Jws32mMM6B+YuG5D5mKMqBomA1vpxv6017vc7f/7LX5gJt/3Ovu+4Gfv9rj1SAdbCkd6cKH0ZzCTsv+xfGOb9YKNjhuyfAxRA7Vr3UaL+ozKTVlIBzUm3o8ukAGY7zpaynIwIiJnqLJoKgNRAYDUKULll5JAmmTVMsZDm2JqCmRj63KVlxSObrDU1C4h86DCd49uPEz+d+OnETyd+OvHTiZ9O/HTip3Oc41uOr37wt4Rk20qfFm2h1FmWOOfG1rbDKbZeh3yJ/5JV6tKqU5oOr7RPxPYKDKoT1HI0MAkTCGrFnrk7ns4ccTCvkXfEInel9zcnptHoNKEeIpU+Ll+bJEMO0mDmXkDjbWq4HJhgnUvgNRtzvD6YPKMYxiC6yjo8uibIlDLuNoC9WLlZfE+BnJZMtfTDLIjcKV9LurR/uO+0W8LrK/4vf+Lajd1hvHsH7z9g1yfGuyt5eU88/QCXDyRX0oJplToeiZuY2WxizxeAbAVc1GkqIOLo+qXObCl2LwKaVxa9EdUmPQtkZGsPpxXFTPkSc50VqBhkKC0/gxkKPo7igqyOUfZgmM3eCPdmaXwUqDBRjgerprT/xL3T2wXzzhzKVFh/1vvCJnPfaX2jNWdaityaKrPx7pgJVC3m3SroyZUXXwycLUBaoE4sZoitLEfVTKLKWKOVloccpsopIh86HmYVRCwkiMD/YpqjQFidUIGHYp+X2HWaS3y9QEPEAlMlEG8q0VD5Us2hqEbdFys4WxHJYsvKBtR6CbAuZpMCtQIeqzvXsgELwKvMq8qOcpWEZYHs9R477g+COSp93+MA/LbOqq1pWmn9VoF2ATZ/7G8rEWpPlTfUP+oWFfg87rt+XmDNKmrQfQZh83HP+voazkNHJqm2hmsp696VeaMttNhKBR5uguwL+CepjnGZVar05j6xAkBajzjYT938KqPS5VX3vmMJk5iVQUEZtFVu0Urk+tC2WcGBMog0PdItKlR87JW3pVILtK6SM3OrcjoBx4jBjCH7ay59GD0SqQyTwdgH8yX4619/5Oef/greSqCa0mwKNrrOU503Sxc4tcpcijx0s9xKAH0FAKXxE1QgHdWgIBKJhz8CuswSgw6VvWCPIEQ6VlQgZljuer8ZvTe8uwSkMVbXOav9ItDr5ecqOImoNax91opVj0eWysoISZN98IfJOMevYJz4CU78dOKnEz+d+OnETyd+OvHTOc7x7cZXP/gLG2KEDaxlGRpYKeG9NXKUsXLHMmCfbF1s45jB1jfxVuWsHWXJt9aYQyLXcwZb7/pFJN2cAdIdyaC5DvDEyLjR2kYGAkEInIzxWhoGJuYbw2IlVhfzmlZP/BPzUFFCgKeBdSJDujkLLLlBbqXXINABYtvnUOlChuszhQVl/ErXJsZk25xY+j3FzJk5LZ0cTlojWb+XyHfV0kAXgLXsZBgzd1oGfHmFl79AQHMx6Wkbcf1Ivv8NcX1mfPee/PAD9A9ke4/1CwzpeUiYOqu8AWzpA1nSChzR1DmQMDYa+xQANU+8ZuIoq2jl8KOCnBqTiVc3QjGBCkTkJIqhK6blenli0riPV6ZprgRoC3TGSvNPsdJD+3GV1+h1xhw7InY6rcpRJDwr8Jssxmww7uo4uF2vZKo0yzPFgBMFZCqoiaBUzgXisAP4mTwWALYEhms+BCQNqhPZ2kWBuoIpC2SJe+teZ7HlAkYsj1gBXYA3rObSrZGIuVpi2AtUL3TWHM1BOdhMOTqV0bxJv0dzKmes71TCShajqw8Viy0QeDhK40iTX3o7ISpYwVAq40R7oVjTmjyB9knMitzMIQeLlRWzV2AsFFwIyP4StGpd1jTq93OqM58Y/4QSMLcscehUlomCoKX9kgu7g9c5z2K0EwVtqbKWRKVpUZpMXtfIm31RIaDOf4HfTCNdelhiPbUvAwWBYiWlP5LE8blWUfOjJIrjmgtbVxmO8ShbKDBV/5cszR07Pq9epUIhR4FNKExYmRCrlMqOoKXu0cDDFXBmsocyB7z2qFXbSZsrc0EX3bZWQLoxZ3K7vfJ6+8zr6ytfbi/c97uuIcT8uqsUbystltXZL2Z143QFmub6fAHVYt+pgC+TVk0IunfSBBKzzo1706ZnBRd22LqtlS4NyeaNkSu4qdIyjFXCqGyA+pkp44OyPd6sSmPUIdWb/IJKc5b+zWB1F1SnT69AX2L6vXdmnaVRn63VPXVqfi3jxE8nfjrx04mfTvx04ic48dOJn85xjm83vvrBn3lANhnZuBfY65htxD7JFKATCJrktlgNJyf0bSMMcgbdOxZdjKZNzDf65uRQmcdkkixtBOh2ZcSU7kWq21FPBADSWC28HUgPtnTcnD2CYFeb9Z74DJq1YrbsYOYyQ13xrBfbkJgpZTl8Qg6k5eBkTFqPusJODGhcsDQspN2jzngGODkDLOi9mBQWmDOIpLGVIUZdt1xp4M1FB4WrTMe6AJP7IJDx89aOT1Pbe5UHzRz457/in37CI4nh2HVjPnXGuw/4D/+R8fwD+/NHcutka5CbGJwZhGludhLbNmYkPQQdhgVuQUNAN4BhjZabyMaR1aWrtBtcRllC1i5wOSc0OQNyOXJo5XDn/Y71ztPlifu4FZAoXZADlOozNa9I8DcE8ppXunYEmVPdsJqcTlpnzMHK4s65RKXBCeKudG9rTs75xmk8gLMw1kJKAikUSMgCfus6VdLwYHhnJNZUQjCGui4KFLTD6c0C16srla7cKlQy8ujIV0GCrkBaOpkHkAHKuVq9vlhsUacK3rKySrozQ4ze5r3AXokKFwOvHa0dF6W3Y1blIDWHCwDNGAKIbkdGSdaegSTclA2QzuoOl7W+kdKiyRC4NfxgJCPA2nqPnH37V4HIWhOBvyo9qM5ymRBWWjamsgurLIHFLK/OaIuZzAoiHix1KtgqgIutLIYVUBiPdyVLO+dBGlfGxGIZKea+AC8BXiHN2vu5IhYzMerob+nnrG/StQicrp3xCB41pLJzdIZE6+emdVpr0NrKPpgqB/SmkpIxD/AZVDaLWe0FAc+46OECkXSasjFa0kylUb03rSdi4F/3G19++sLryysvLzfmnmRMZuxIPLxAo0lI3hJ8a0epYWaVrdV11kpL9wVp01ixwDOlFQUQNo+yLzu6CWq+3ATdvTkxhrKcjs9de0z7JEyZVKvT4ZEVkjp/WJWdrH0Z0L0zY9BbK99GldYpK0LrU2vpVdpSQa+5MgTcGtJJWjYJVkmTgP2/XvtzfKtx4qcTP5346cRPJ3468dOJn078dI5zfMvx1Q/+vDWxyOmYXckYZciC3q5FrEb58MAj6AQ2xWqmLTFqirFqKjmoNOK0Mpi2Utj15B6MyWCZ+COF3GSjgym2YUpHwVzmZZJYd1a3qhgDz8Rczgf3o8qAEhaOOamKEWAUoOxlHACURp2x4/asrnVmSLB74D2P+5CzbUikJ+VYZ0jLp34vnRS5kt5a6QvLyMY0YLHIurG0ZCI9ht6W7s4qBaDAbuBhEI1MOdd2FQPbP93Zfv6E/fG/MBpsT0/4u++Yz98zn38g3/+eeP6IbdcSgg1yvOravTGLi8GAUKt5S5VCzDd6PcuJ6b8Forp15lR5iAFjBK1tMrAzZXCVzlBMWEA0tm0jM0vgu1K5lxufVe5jVIq7yOQYASnxb7F7owCTSo3wTYAD7YcF6iyMcb/hXey3H+KvxaSWsxJRGW9YumIsF0u6UCw1Xb5OUTGEoetTinyxglEAxIV+03TP6poo0BNQDlSQhAhmLidLfa4+U+ClYGaBjIKcus5W6ftrTY8AwsphrjIyKrNDn6Of5Zt71XVQYD7jLXwsprDAlcBrgUCKrS1HG0dQsMpo6mxVacn6txnkoSVEgeQ8dIB0u8rAYAGyApy+AEDOBQupGxQ4DDj0WbAj2Di6+dU1BtQ+FvjXGi1gWXceZWdqNuwIaOYBtsQ2a+6W5pNKk4KVBSF7uj5XgUZm1rUCsUBysICtNhfHPjEeIHz9Ys59rU6BPd4EPLJLbwMglYBN2TTTXm62jOUCuTVXaVhr+KaSMjHIuufX287n1y+8vH7h08tnbvdX5ghlKIRBGI4Xm92I+p6157LK1CJHCTuXgL679grzgOvNWwWlS1x9YBn0EnJOpPfSvMmGBXVYa43XSepOs6aSuQrEV/kK5TesPfbXIzipjqXlz5ZIdWsKTrpX4FNBIrVH1v5b78X8ALgrM6jZI/MhoUCq4b4BwRyz/vscv4Zx4ic48dOJn078dOKnEz9pL5/46cRP5zjHtxhfX+o75WwNw3MrfY6kYYx9p7cN88S8NFCEJooBEBvmXanOyy0SShu2wxAnFBu3uh61Zsx5V+ewVOc3C2BOAYsmBq9V1y4wssRE0yqVPoKtt3KwVVrg5cCxAywKWDjGxKyXYVN6tZX2wdJl8QaPbk0BzQkzWo7DGYmpEBCQ4+zFNOh9zrrnwHLQzYhhciipMowxNyiW3THmENoWaJIgc3GxcsQRtDSsOTMpw6/rM9/q7gaRN/z1hW0fXH/8kTH/ntmv8PSOeLqQH57h+79hvvsNPH1gWqisyGTkY8SREh6kUu1BTosqSbGQeLU35r5jNMYc9NZVxhJiv8yLga48eGlLwLhPPCQk3kyM2TjKT1ReIO2MyQiVOAmovgGVIQfkKLV8Zsig19otmYelq+NUecqErXUFZ7mAXYJNVqGGyp3EDAmU1NWHnLdXSYe6tiXgNPMDpCnak7O2ArECrTo/mu885mUBTLNkdSyz5gdIWiAxiSojKyAIEFki4AqshNfW3pOwbpJHpkSmwLRnFpO5gOI6M/V/dWnSzS5HngvgC0TF2q9wgDGqdEfp9GvuNDKTGINW2QiLhV9iu0tMe5XjJG/m5zBYNTcFrEyRAr6CgAhyraRVAMQDrC2G+c1VvfmOJEq4XBjOK3CZBXai9koBx9T7hMOLJV7fVbbCUSnao8PZYp/rDkNlMBIvRgEydZH25lotj6s9yqRyQTnZFtOSHhlBSRxnSky6la0XO5o5tfqlfzLGpJkxR32la69vmwLR7nrt637ny8sXMdIvKjvZ74Mxokpe7PijK20H7q4ZI3IUQ27Hy9OizkftsBL5cWvE0eXQtT61l8PmcR4Kyld5Sz2USMdpVbZDZUhMZj1MWeU9aUlaneMqw/JmR3Aj4GlVOqKgEt8qlniA2gX+xW4vPac4mO+1bitrJeY8/EYz3XOGMg9GnRWVq2nPK/A+IuZzfONx4qcTP5346cRPJ3468dOJn078dI5zfMvx9V193bDsMJUK3Mo4RQS9dcwGYZN97mx9q0Na7HPC1Tvzdicc/PokUBNi5Mhk6xd19wmlQz8gzFAnsJy0sUy+g9khlKoyCHR9Lau+vzpblaGQWLAhPRvHUmnHZZEhjc2vSLBXJS2RCS6nItMv8N7toi5ALh0Ut06zSzFnhuXEWpVsFEizKtPIWYCFKHYSmi/H2chIuks0mXTcrsXOqUTFU2UxSyQaDJUJGTZfIIykAQ1nkHlj9nd4NsK67n8Eza6MvBNVHtRaw/Mz+fKZ/BLYX2D+v/9vXC7vmO+/J37/t4wffsd89z3ZL8RlY7eBzV0dB5GQ69wFIJdIbsZi4d46KJRB0Bq42sz7JkY75sC8GMo0ckxCCJ++Od0FfsWMUQ5dTmOanLtv0ryJkBMD2O+7ukHNIOJO6+rEJQABGcoIMF95EjD3AW1TYGA8XkuWUzQIlVO0NynyuqYVKIXArjU5tRkL5QlM1v5dzjGKCXe6VtFW2Yf24BiznG8KSJj2wtKCaVXS0ZS6AZmstvUiTLPqoow5Jq212oM6E54qFbHmSrWP0oAxk2YTC+SvjnRvwFGqBIkDmCdHhklYZXZEiTQnSwz47eeQi+V2Vvc5ARE7QJ2te6v1WN27DsaU0hdRbLwQs7JsqthG71NQTQqQP0CtgsOitOteVb527APt4sKOxcbnEZLXuTximWOOIkqIXbVpAl21T2Y4zZNpediGQ7CaFZy8BT8V6CRUsdIvvjBtXUdW0E0FYHZkORyTgT2w4WK3s9Yt7Mg2iJxsTWUf29NVPoDgNnZ+fPmZ19cbP3/+C7fbK/Me5BDYNreC5kZHTHMWcFSwVQG4Q+ZgMfSHyLLpuhxjzp3A8Uzass0pnyCWVms3j8XXHtF6pWykUSxyVDBfmT+ofGZrssXNnRy6dwlCIx2zNLq1yhqSRVhAcwm+N9eedZPYPlYd6Sp7JrAqs9TDG7dWe7eCOhMLn/XQJ0OW3eq8jpyV3dUeAdexuR9B2Dm+/Tjx04mfTvx04ic48dOJn078dOKnc5zj242vz/iLQWMDHPMdb8X2eTnEUAexS9uUcpxg3kmfpDnqzOVcWlcnOYYYHhfzOGJXuUm6nDzVsScDLydj24X7HjKcqBMebtJW8SbgZ9DiXkwlUE/xQW3N50TALtX5DqRpEovNqjR9CcQ+Op4p8X6SU4ZYLcUn7l2aHgGWDYotNg+lg8dgkZkBeJXqKA0+D/YNBBiySU8l9qnOaHYR3LMSMU052745M8X8LKDeuAocRAnOmhi/PtTcvVlCTCY75tCXLooneCg48M6Mcmyb03LS/vIH7C9/YJqR/Yl8eg8//Jb54SP78zt4fgf2jvQLkRuWvbRNtH573HHrKllIGOziChNut50MuF6vh9NJBMYcIFUGEjbZU5pHfVN5y7iV/hAmhxdTTKIHrW+Yi5mMYnYo9tWbsizcmzRi0giTQLO6HUY55CxWXQyY2GY5NKPhy0kkWGSxufko1amAw9xIm0cJic6G1jSWLg2TZl2fm/aGvUeCxf547yr3yExszAfwiCBHsZ3oXB2MV0zaVuzwhOkC+xlR/jz0p9L4Y2r+pTMjELk0f8j2y5KZBa1EH9ZPVjaH2M4ZiWd1JyzG3Q0y/RdBjdnqxiVQtvbzAlNuAt1LtJkC7oXmBFCz2PJy3GFeJVN1CiurYmUhCCAHc4F2OqtkYIFSBY/Fth9Q0h/gtrr4ZYFc6vIVO+RRokXNRVbhFyvbgeo0VoDtgMDLVqzZLoZbgZuyQVaCzMrCoILGZTfejgX6rWyaQWli9drKdfaa120lvW+kL4ZX+/vl5YV/+fJniUe/vHDb76X9BT4V6HnrKhfMIHJo3Ulp4mzLKK5ARMFY2sp2UKaQR4fqHKhtLttPZgVpFShkKiiz0iszZRWplAVlUGWd4y6hegX/pg6mdf+GVemjQDEoK8dC3x0rZImo71EZ4SwtKtliFJQcZ6EaHfDINFpr4F4ZUHV96zi5O3NUEGf6/maPz8w568HNirG04Q6QzCoRO8evYZz46cRPJ3468dOJn97c74mfTvx04qdznOPffHy9xl/vKk+wydIKyGIRGh1IYk4Z5DL2S5tGbEwK2M2kCUWBdUiJKbe2YeGYX8ioA95KztNV5jH2PNjQ8CBHCWRDpS/LmXiJejiOsx1G00i8NbLptn0ZO8CtkxFii9OYOcu4BukS2o2J0ufTibljLr2Bg22ZqASGKAdTzjJMzGxHpS9Q7IaVPkuxUuYShQ0xytJFKK2FSGxzErG1C7RaNpRkXaU5kep1llQnsPKtAcHEfBaoAmudiDtb37BLZ3/9ghHY1guMhbqVXTqRusdOY3z6CX/5C43k2i9ku5KXxnh+Zjx/IN//gD19D8/fg3esV3r7Prn2K/ucWgNTmnZzU2c5xCRnCqjNGQcTKQ2QQcykcWVrF6wbOfdqL98wCWuQc3Cfg8umUhMIOedKbTjS9eesUhqTpkaCTVMnwQIz5ESyG2KXVoepjKG9XU4yKqPAgG7aj6LbyrkWK5mlW7T2XR46OAKLVsAnKqMho7Qq4GCqH2wWdZ0CeJLpmEUSF9CcHABvzomngshVRqIgZwlPlyA0xapW0MAbLaCIYvYiK9izumuBjchi9Gpe0uwRWKUyXNLX9QiULaZwgbxYa1Ts+8KgS/jXfd1DSvep2NgoVtAWwC+wugS1kwU4ABrmUWdP71maVIcQeYHGQzeHViL2WtMDbtsKJGwV9OCIYc6aewHJCoayOg+mgqpVQpQYOcTiK+EhC6wsWF+lLgXIDxZfiJ8sQJ65Snr0vvYLQWM7WFbIR7mGJ5t1vMuuYzDmnft+46fXGy/3O59fXhj3nRhB7pM9dtw3mnc2u5A8NJPwedh9dSt1BccISOr6HaypFMxUTpIINOfIA75DCkxGKgEEx0IaXdbzAJGttdVETmfvLXCv80arPZABrpKXVToVo7RkimlOdMmGES57aqb1ymZ6CLLiSbMC4QLCC3zmSPAKfvJx1kFfqwBO85CpBw4ZOg9e127+CHrcnPTSyNGm0tlklYVy/L0A7Dm+/Tjx04mfTvx04qcTP5346cRPJ346xzm+5fjqB3/MC2pX/0jTNwaUQcwZ+GZsbavyhyaH6AWoWpPIcohRxCS+69VhKku7wXJCMUbuYq6z2DUzCUCPuJM26ZeNOaQ04a6yFul3SFi6t0vxC42V1i/9jLvsIY1kygGbAcGMibeAHHJnJUCaxRpk3LHDMBkxi/luRniWXoGYsVV+sMRyRTK9ATP5SEXuvpE0dQgzK0PU9H0GboFNafpkad+oo1ITCTcCb0vXolg5WynZAuIZgXs5PWBpp7g3tsszuQ9iVKv0DLp7Od7i68cda4m3pJsTFmzPnWgOXz7jn/7CJSatOXdv3C9P9A+/Y3z4QPvuPxKX37FfEtsu2JjEy425f8Zsg35Rh7xbw/oF3y40JjmrQ1to76QFMZKb7bh3vDWB+LlklitAyWS8qEOg90aas8/7wngHszdH0Fon0w5GaDGzaQp+1G2QyrBoep0riyMOfSSBLS89oVjs1Do/laEQMfSZ5WiU4h4kvRhZOXcJe3uxkMZis5YIsBX0pACl3swB4JamxiGEvMCcFfBMWF2rxLJnscUU+14C7wZQTBxWJRQqWXDsAAS+tDUUZejPgh5ZJTyZj3IVpCFCUmeSuptHaYzYZ4GSBd1UTvJ4zXLuS2OnDnaBwlnXNessrPe5zv3YK+S0Ck68Ml2iWFYFupqkxLORlMC1kgJK80jzn0xNcDGz+m/noTUjUB9GaSspONf8DjJdWQv+AKqW9fZWAtrEYR9izWeoAxu2QE6SVmLIGewx6ekVUFfZoRutN3q/1l4OXm83Xn76wpcvr3x5feF2v4vZTUGjygOgoX2ybY9MgJVhIZZX9x6RYsKb7OUMZZIsRj+m5t6bs8eurI3m0lyR0cWsEcFDt2UBf6/AYTpe2QA5BUZXaVaESX8pE3DZgjqH2plaxDn8ONuToB3bL9X1sFXgUYL24EdZU86JOium1tK0sxUc6yFKMGRTRHujrpLL9a7Ar3buCrZ8Caav7KYVuJR9sFUeFaXdZEdgZ7X2PLbdOb71OPHTiZ9O/HTipxM/nfjpxE8nfjrHOb7h+HqNPy7guxx6Obxe7CKe+Cah1rkPlQ0QAngoXbj3Ske25eRGCVpLhFdP2atGXyhB2hzllGcOvMkZ6UymDq+vp/MqLWlNTDBjPfWX+5yp1xcFUdo4TQx2Hfa3HYW2pnRmL/QRFHtVbKBM5WT5tWTgm9F7aa2ENGaMxsFg64VQoEX2VSY07KEDYRZ435g5odf1mkMYzYw990ODw2LW53g5lkrr95UW7cx5IzFaa5j1w5hLs7qcdZjw7qzec1at1OsaW2t4t2O9wrRSzOT5YrzkXqyUtFkuQHt9gde/Y/vnRvB/wZ/eMd7/jvz+O/p/+B/Rnn7Pl3ji/voz8fkPtNjg3XdwfcccG/36HrtcyXFn7Dc546Z91HBiZDlgXdNihq2c10q73++T1jvdezlMMXarsxMJuU9osHUB4XSVAqmDWQUHxSi5N82/uVhvC5rXHowQACqAoWz4cqxZGhMruCgudVVaZDGJZkWFTSs2bwE/gTgxw1ZrE3CIV9cZS1gaHwvTCkcKoIn11H6jmFOJ+aq0JOckUywntSchSoy4M5HmzkLlmUjQu/6taoGURkiVouWcTCbGYlU52PolfK2CLTnyB/BWQLnKRtbQOV1lLVHrvkp8FFwJ4AqgW2VvGMgWZM1H5qqsK/CXrDKbFcxSwQVR+jbrIJs6Fz5KWh6/BQmia+aylsNqjZRxkjpB0kWqtYFHxz3dp8DvnMpIoECMm7qEum8k1S2Nyp6IQZvGEipWJznDLw1rSfrkPnZ+un3hy48vfPr8mdvtRrzsxBBLPmYBsVYIrYT+vfbcLLCcOdHjhVaxUzDmoHUnJ8rUcKuHHgJXYwx6l26NpUBz770YXwHrZfdX9tM6Hwr2KqPBZAcsSifGFAhI90cPWNZ5XUZtKiWjSq1U5tNbV0O8KLtuKDPBa+5DJYnNGllZEWL6dd9OgeMqOWxmsLIGGvIDdR7lGx8PNKh9IDOrOc9Zfi19STwdeyKpbpoVZLpLdD8rICFrvSuGPMevY5z46cRPJ3468dOJn078dOKnEz+d4xzfcnz1g7+cYguxqHINiXguMCfdjq6DZwN1ZJtlPGH54kBp2EZT+QpG62LrYmlRMIvokSP1YrzM9fqZOtTeZSyzDJF7F1ttAb06ls1BczArdQGTgcdkpNxc2ivF2MkoUFoVpTlTjKGVs04LMbbzbcqwAHPfADdiF/DIbGIxKSdUeicLCCWJdfWy8q7ueTF2ZgzMO81kFNPE+BuTlqVbo1oF3BJzWKo77g/sstLsF4jNaWRIKNkJGeKYkJPeEkYw08vwlfEusEdKsDgW0DHpJtictJD4t3lnH/cSWzWIDRULdPgyuLz8gfzjP9H/+//E8998gP5Ev/6G/Pi3zOfO2CBNnajmfCGG0/oz23Uj4kYO6KbMhpHBjtH2Na8CYQJeUeyqrn/eB611ZUGYRILnlHVvFUTMuTPjTt9alRKI8ZtzHM5vad70pgDs4czAQmBpGhiau/5WFDcrNV6oDeXd6/rSBouFtqyOhZgAhBsrE8FMbNXay4eQMC5GNZdTLtCmHVHncJBAph9eLcgqqxiaD6j7VECUaZhLiyOqTCOELRXYFbidc+KtPYBkKnAwKiArIDBngV6iyn9WIclS8ClP/Zahr7nQfqwSlQJ5BwAwDmArsLf2vh8Bx6olqthUgDrjCNTIKbDlyx6o+6KtfzOgri9yBbVZccNidPMAt0soe4H/mHFkgKw/Mx7BIXidtwfiiNRecq+yqwpukhW03yowVpbA1q94u2IoK+g+79zGndfbKy+vr9zuO+M+eH39IqFz1rwZbheJMmfiNiCNGI9ubs1LTNtlc1ReEcpsILWPCWh6zVrLGat8SrayLZY+lb1B7WFfVq3Art5RZ0TpQpiV7hKySasMZ84Soi/ALlDc6Jsz1vdbVomYAV1s+gqeIg4xafCjDG0Fd8tW/0Lw2RSnWyrwWH0HDqC97rd8YBwzsOa81rEermRSOl7/eu9T+3Ex2Y8tsvapNNPsePCCUefsHL+GceKnEz+d+OnETyd+OvHTiZ84zsmJn85xjn/78fXNPbiV0/BDS6CVMylkyHpKH8UquHml8ouxkDHyOtQhw0EWYPVitR+ATh6mPteTMVMsN8nmjbkHzfrRGpyUg91zl9ZMDJpn2YFlFPNgUDJv4Ffc5UCZyO2k2CP3vm6JdlwL0rBhyqBVWrkw72TkhBZ4JJgrfZoyjofRy4cDtSRtJ5ng0oggGzPkpETmdQFXm0SMw2opaCiNhqTY5Godz2Lh4wAP6tJ2Zdu62LxKn7YWpA1mDs1PW45fHfwyDMsu/Ycx2Zqc6ZwDv1zIZgwuYolSKdqWiXljbxMn8dmZMemXBG9YTtrPTn/5R5h/JLb/K/600a/fYc/fER9/x/zhb4nrR/bXG9enK3554k4y78HFCuAtfZAJ5l7i3zBC5SpyakHvKlOKof8W/Qc5VwDmx9qMsdO3C6uDmdjPeTgRMksEumnvtMYcQ2yeu0SuC/zRHsBglQ5kAVdzPxi6JVItrLPKUBbD6480eXtsIUiyUKTWuMCDFcgz6jsH+1heVcGHtGVSuhvypNRmkwNtLvBzMOMrAV8YgmLPI1TulF77LX7J3sZYexMivXRwsgCOl8SOSl9sAbpEweIC+eQB0pew+wKsUcGVoS57Zk2B9GKr8fpupfgrMAAr0EU+AEOk5uIQmKZKMA5wXPdiDz0QWPdWaGKhVvS6mSG9lQPMlIhKAYxc5sC0znM8MmMWSDGhckRaFsxPPUSIGTw9PfP87pk02Pc7n15+4tPPn3l9eeXl9oWZg/v9TkQqaKncAD9yBCqAz3istTfI6s5Z15xpR3ARlniIq14LJ3AYJLMyhFYJxVpKewRHRJVMaY+pdMMFIFs/HgjY0hwCJPgMQdA2lYTN1Jo378wx6VYdMSt7BDdac2bcD0Pusex4HvvYUmU1YbIjyoBSINoQUJ5VDmWJdLEMZU3xyIIKS8LsEOL35XPMWNpBrX6nILNhvvzDgzWXb9C6J3Bg0IQMY7t0NT/IoPeNOWvvm+Z7TgmCn+PXMU78tK7lxE8nfjrx04mfTvx04qcTP53jHN9ifH2p79XIkO6Ad4MocHcwwDL++56oOZuMX84hlo0hBpmg2UYWyw1lCFPlHbPAqcSbndY3xm2KVWydKFYy5mRrF/k1W2ncMjSbQcw7zVuBgYQujZ0G5fwmmZM572Q2lS1kCUZn4C6WOZuRi1kJGV/3pVGQZLEyZiag1MRyS9WhxJ1tivEsg5RZGjNuYMGInd4Ma0FMI6Y6eMWcWBqtbYQ5MHDbyyG0o0wHEzsjfQbTXFsDJhmDTJVpNDcSZ44bKrMxRuwy1h2sOdk66eXScqgEIRx1uDP2DlitRzm75h3zgE3sVC/tijkGFrD1Zzm6i0C2VSnIsBewZ1q749Pxz4l/+RfmP/8TjrRv8rIxzPD335Hf/Y4P/9X/hHH9jtstaX4lhpEFRKPKCbx1ni9X7rdJjKB5KwcwSYP7PWj9ojVpxhy7SpbSICbWjLGrRMUqbX5mEmMIqCJwnoQEy02dCWNOMbKuEhmxmaPAiUo21BlxFmAqB2t2AIAlzqyOW6NOhx8s8KMk4OH8BGyjWEKrdSzmrz7DrDqQlTOOMNJVMmHpuu8DOC7mbgJNeiwU+HKVuYwRj1IWS/Cs+zKOMhOWQDXgAj1phhdQVLkGB8g9Ars0Inax7Fb7GwrESptlaXN4M5US4BIWNjs0aWCJN9vx2QvQCqzJNkQELMbPS4Nmza2vgEYgbwFNCdRLMyZs5QVU1oQtYFTi3sXM6/1xAGCwN+DUabap9M2WePQKsAWOxxjMGez7ndv9hTFuvLy+cnl+wr3x+csL99tedkbzQSpwzN1KL8UUvJix9MNImKYgMDIYY7L1jtO1r8yUnWMI0LoAJpPjvqi1JAfei6WGsqMpHacp4W+rYN8bjDm0R2awyhUtUKCmDUdMZWHY2isZFVBov4r57ngTeHVLmje8VeCAvjOtOHSTbcZXuYiCmRiDyKRtlaFQgVWmQH6YOlI2NzJUkrlQ+QpwpZVE7Wv5DK/SGvRVNKVjsSqSVhdRt/YozcnyrZUBsjKEKvZkzjj29BijunNSZUCtdLNWkHCObz1O/HTipxM/nfjpxE+c+OnETyd+Osc5vuH4+uYedhVzxy5ApR8WyAlivxMiOdgKYObYkdiuE2Z0c3K/M3PHe8NaL1C0YXNCDLbNyNzVpQ45Gt+sDrZDCX4usVa1HB8YnTmSS99IUwcyS4GE1qxyvp2Iewk0O9h73YeLrVsis1YWUa3Cdw4hYZ9EyMHElEaDk4xYTlzgZM4J4ZC9vrvKGSgmsMoOogA4LqWDMSaXpx/Yb38lGQjrls4CYlbTK2goNnYZ8yQKkGc5rSbQ7IbbhgBIBQoGRkIzul1wM2y6GL92KaZm0l0ApbVNLtcSX2Kpi+mpFHJCTFJaCT6bshh6M5y9gFwrEEGB/wvGz2IwewK7QPbTu+piGLR90PYJLzf457/n6Y//T3h+R9uT+/V78ukZ+/Ab4v0PzOt7pr+HPdguRutPEq2eDnHHvTFcYrJUmZE7tO7EFNsOLlyRo/QlFKw031ilDYpgqgwBmLcdmnRrlmZJHOylHE9vjTlmsVim4CYW+ypXF+VBFRCpNMYyIKwcWdUglT9S9y8jFhNLpdRnkHPXfeL1mYuVV8mZpWETNlaHOpmCmLPS3iHzl2UkUcEZC3wUa6uSlgXKak9WUBpW7B4rm6FuoRjyGTqLBxhHguKqDquOcwg4mSlYsKYgZUSoFGiaagaAOUpUvBUoK8DvBZxnHQCndGISvHWVPiAdHV/nPVMsbdYMZNJLB2dpc2EpsfMKMDwq60a0OBjK7JlRGiqOWRCxbIE2mfIBdrIC1iDY952cyb4PXvcXXm6v3ObOmIOYKgMkGp9fB1mf0WgKKOsMW5T4fnNlvWR9VwIFsrxBziQrKGtbBa1hdOtA0PoqfxrkLHl1R+clvR5eJFEZCQLJyawyLT8yH7TGI5NuArVaa4HUI0mi2HNLjqBkgWEzwwbKJup1ckLgddQcz9rn6Yth9goyG5GD1rL2hfyGtK+UVBVz+Yp6fQFdS6OZalM23xT8mUTcIwNpnvnjgUwFddofIdtQ93Hw8AUunY6Xlk2GypDMrMSxq9xqVLDmKwvKq2OpplWgWo0jAgVV5/iVjBM/nfjpxE8nfjrx04mfTvx04qdznOMbjq8v9U0BOOzB1kq3VEDW/QI0MS45IRLvGxl7lYYUs9273j/EbKsiY2cz9O9iKjIHGaa0XiuxUtOBHCFWwu3BgPYm9xu2C5QVcMLlAFnp1hZ4l9hr640xJiAmu0gFVkv6cXTiWhoIYtrMxC7MuQMyFiovkN5Ls0r6t1QZz+qoFnLUW+8S7i1DGKE08L5pQswoNlkUhUxj6fY0Lyeqz48MfDn+3nCSCImIO42MDXMts8iVSje3rTgxpVq7JZt3xt7rNXcioPeN1RWtudjBTDGF5CS9kXbFuEMxK+WhMRpmQ8vgYpYEiOW8sSkGdFbb9LqtuUAf6qbnTXoSjmHh+P3G9csNfv6iDAb/B7I38rqxX74nPvyOeP8ee/8D9vweLt+R04h9F3tkKpvQllBmhZyoMXIIlJgxY9AKvIkV6gXoUgGUVwAAtT9CXcxc67n0WNwElIk41q5VacxiUFfavjWntSVaXd0Ss4qPIkunZGk5VTp+xWVZQQspMOC+wFcB5DrLlsW8Usx6gbLlvMW6GeaTVbLhLjB5CPFS4L5g72JmBYMTLAggzQXGokBBVBetAnsNsKnrFiBNZqrzmZg6Hg642NMF3PW9BZBXCdBRqLXY8hR4DbHGvibrLY5apHR9TZRujPby2ouas6iAjZUhQ4kf89AOeQSSVY6kzV9ARl0PrZV2lyc5J7f7zuvtxpzG6+sLYw5e73fdMiq7S+po4TSczRqDKrlY82Jii5cAtwS2vUzRI5hdZT9UhoTEtxWwtC5wmaZglZrnFfhYzUeEyz5TBs/EUEeVfrX67jyWzmoOVshXItuZj4cGdW2rlKhiI10jugYF7dp5MatMpLqBtjaPwHq+CS5FLus6m/XSlTKMXqVous9W1tbqzKhkRtk5OUvXjHaURmYZVveGh87TUVq0WPhW2QrxYLOh1sbWJrTjvFujyt0ULOh+ivWPlEYclVWxQss3YDlIgfYTuP5qxomfTvx04qcTP5346cRPJ3468dM5zvEtx9c394hdjqZ1MRQ5iNxx9NTf6FVm0rEYSs61BtakIVMOsJvAb2wytB0ID/YMNmTY9NRfTBsRcoaL/bFGmFgWAWZ9rtqJu0DDBKMRGN67WPMcxFSnqBgyYvu4460LXCCmdWmVpMtAejGHYWqbLmMlumQJ8VosQzro/Ynbqzr3CVvK0fVtiVkb+75L6BUgjd46LHFVxOYWHGCx8pkypqtTUcwsxlVgcusX6SqkAxfAMVcHOvdG5iSYpBejWT9vrWM2yslBMwH27o1ZPl5svpdIc+lX2F6EnJNTpSndO3sZ7oM5jckoUdWGQJPlwOxKxMBbMvesVHOV4ITB0ilqJjZxjzut36FDe7qwxxRTOSY9Q0zlHFx+/BPtj/+ZjMl81+Hyjvbd32L/8b/m9fKBfXsi7AlQmQCtM1JdC68El2aMGbg1giDsrjT5VAc6b07v26H5IR+pv0cOPAatF9B2ZS8I8EyaV4dCO07VQl+6ngUACiwtwJkL7Jmp/AcTW+qGkWTtBdykmWRyhNq/q2TmAWDXvltgzAuA5RS7uEBK5Hhc3kzMejFhOqdFVesz8NLLyWJrxfZq9wswSl8piKgyNgCbLAF3sCo3EhCLkJDxApgSEC5tmRqrhGdRnWtqM4OR2m+42PJZYIWsNWtOEMyx6/syq9zF64wErTWBYlHMdferY52yCAQuNWertEnnUMGZykM0jxmDPXbGSO63weuXV/b7ZI5g7IMRo75XDLMAvzJhktoT6LwtULv2GSWu3HrnqIOouWNNUa3tWEx+syMw9cWeB2KQfe0V/wWIXH/nyj4p2xyApYJSlTAWqBXCKj0tlYJ56RUFrUBrHAA3WdfFUaZReRArJqaSfopB1r3MmLL1K6ugNq9hlWBTbHprAomtVcZEnaVKRlG3O33fYBaIViDjNVdElL0KRgxl9cTaPxy6NO7Ovkqn3CtAFYtutQ9pVECKNKNqze77Tu9Ndqf2UGt+lF9xHMGktxJtX0x1rnKnc/waxomfTvx04qcTP5346cRPJ3468dM5zvEtx1c/+Lu2astdwtQdKgW6EUMASiKgO5sjAdB6Yj+HUuml9SGGdTnyCLXS7r3DXGyDwOPSWwnT9xQPxJhyqJdLwJiHcRUL3GhLr0CWnRlT3YtIObdKCTafhO1AY0axJAEU+9F7J/ZZ99aKaZI+QfJg0w2x2M0Fglp/kuGI+s5iULJYI6XVy53nROyCqawnbCPoZEqMWka1BKlDudkKFJKIO0vzYsSOlR4NdGxrzNgrnfyijAOfh76BedfPsoINSj/CbgVkes0RjF0aLpfeGeWkSZWSeIQEwFOOq/ly+hPz0tqJqFTuEGOcAfmMe+O2D9QLXqnk9oZpEWCUY2zeaNHx2WjT2PepRvAWZEt1hCNoT2KjLCZ+f6GNT/DpH3n303/H1ZyXCfcPv6d9/A/M598ynj5i12euW+kApVf3rdqz6JpwlRDMKmrYts5+HwUA9ccyFFCUOLo3BW6HvkzW/jcj0b730kA52NlYwUrpBEVWu3kxVittPTOO0g9qjpajznqfSgf0glVW0lIM56ScX5VwiTAshtySYJTDV3dG884MMXoPYWYJWCdIuLyCjSSrO6XmU6+edRYQ0NBlk54wJ1Hb3Ei8+wOsIsdM3Z+6Aj60baSzwqOkpeZ6ueyHNk0en2dvy4ng+IwHsGtimhfIoCm4LPj0QB1Z4MkrQ0XXP9+AlpmTmDv3287nz1+476/s487LXfvesgmUFmhurckejVEAsAp4Steq4MoDD2ZC5AFoVibEsp+G5shSwY0ycYJD4Ls6KrbeJc4f4JtsqRji+hzzWjE/5tTMyubqYYObVXBbgWdW4OEKzHLt8SnWPKayQ8ao7nLpj4yImlBp+CzEXPeblaGxdGqqZGh1oqM0lbz2l15SmlpSVj8CuCKxETNc0fsR/lgFm/rO3ho5J1jqYQL74dfIqHettbcK+pF+FVVqqLAPh9ofeZTgLDAaVfrYvZddqKyXiLI/FbS4H2s09le2rQLLYru3/vVKHuf4H3ac+OnETyd+OvHTiZ848dOJn078dI5zfMPx1TtbBnZAsbVpjllnhLFtT+SAOXfpfaSJnahTvVL1rZixiJ1WTFI4eDZIJ5phOeWUcbBK6Y5ZZRANArq1MhZywOpK1egoZXx5c+OhaQAuA1fp4xGDtsmxTEr/BqP3ViUGwDxoBYEkxJK3zWV0y4lL10AOXp5WjExkEgg8qvOZGEuDCgI63gVsmlulNOs6WE7JnJi7fFU56hh7gR4BoOXQzOVM0xLzgXFHrtQwD4GRJXZdzKhAd2llKALAWupz6557p7QuwK2TTJWehIudbDvW5AxDAhO4S5gZHDWccnLX/aRV2YB5lSNt3AcCQeWAMuQsWtP3hQV4qDxqJjbUkQqb2EAgrtZQzuOOeWDRML9iXMnxgt/uXD79E/aH/0L3xuXpmfn+e/L9b9g/PuHvvicuv4Hte6xfyLgx4o6VUDNB6X90BVMmRmkJGttiR+edGY3eL0fQExkwUnHZ8sXl4BeoAg5ApNWIo7xipIIovSSUebH+zwwbqbktxtW7k1nr1tqhnUGmgpISySUVoAgfFginxNERsIoJwkS5SN/jniHFFNqaexNsKH0XEEhspSulV2Uxz3rd0lnP1FnKAilzSlCcqmY6ShUW81xTNmOKbWSxrLUT6nVRSHiBleau6iFUJrHes7RJgMqGqQySFFOt614lFX7M/SqN2Ofk9nrjvu/skdxud+73G2OfpZ+jwMe8yxbVZyzh9BkGWfozJJV+Q51wQUcv4BoCZxLsT7a2kTEP5pRUFoJlAXNfc1yzZgrsW2ti5JdNKbvQTNkbzcvuHJpK2iexOsx5ncWyQVZ6QYv1X0GZ4UeAFaksjMglSk3ds4pbZlZ53pt2bNqv+tfqZGouH7PKUDSfsueSxZH9NlMHPWUgDAVW+lJy/rIkq5bzKKt6ZHpUF0dSwVeKTe+mcr5swYyBhz3KsdaZMo4yHEJlK1HrlCsPpNbcvATL3ViC62OXiLfmTH7JbWkDQfcr6zj70tZa5/0c33yc+OnETyd+OvHTiZ9O/HTipxM/neMc33J8vcZflJi0DwyVkliJDY8RNDP6tlilYtAWYEujleG0+ZBtSSZewCWKKLCQfdVhnnhvkJ0xgt7U1QvE1kYY3i5inyK59Ebss4yAxKYzhpxR6jN7b+WovUBvR2yKbOLSogE99R8Ecwx1wAulUEOQJsZRFuapNDxcjGBMCUF7I2wv4yx9AYnzJr0v5lHaOe4XMhbrOCUia4412GM/1sEMWi/GbY4DcKQZrX2AVLp/5KBZkzYLg9YdN81jFAuHrYKY5UylaYMN0gaNTswhx9VdJQZphGmO0wx6Em0nXWn2za/1+QKn0iYvA4uAq1uV+UyVHthQ6r2CHoEWQALlZox5w11aRMwoENIEkt2w7Fgml8vGfZcuTAyHWivzHfqVjL3YJodIYtyxLzf6y1+Jf/nv2bwRzeHdB+K739N+/z8mP/6WW7sw6biJTZtjEjbxtuHdK2tjaXeYMgXKCd/vd3rvcpiVkVGyF0Ay51AJxuUqAFxOLY/0djm7iFmp8amSjwVkXCg4RulCuboTOkgQOaMAlwJIX84U5J3LCUYsIGrMBHdliFghvcxkddo7HHLzAjRxpM8LH1ZnxtoHsgVir0mYBF5gzOcD5FSlC3Mm3nXNx6angGwUe18lJI/OaAvcFWCaPMAfRrNSzzHZnTEmrYTY3a1sxprrPOaapYNllN5MBS6mjmr31zuvry+83G683F4lNl/VNlivQD3ETru4ysyJMWjeiREqYSg7FFQXxQJcrTX2fWdr1zoXxqjOhwrq9zKsfjQNWICQxYK7tJ7S8wA05gKss/Sh3Ffguvam9kuzOABUFNP9FuRFaSQpEFKgkvHo3CnAWWAfiSmPeRdYz4nV/DoNb6sboh46SDQe3mZ2jDnAnY7Y3maUNpOynmLsR0ZUolKf5r2CnDyuvzlVaqPgwR1slcsg2+0VEHjtizEG22XDCMbRRc/IWSLXtoTTdRbN+mGb15wu0frWnBx6vZtVk4KVbbDE1KNshP69Hoq0KvOyCgBAtnnEkO9BGVpuJ3D9tYwTP5346cRPJ3468dOJn078dOKnc5zjW46vz2V1J+kUeczmGzadq0nQd6bKOCRarFT35h0JGQsspg1octxjTra+kc2hSh7MGmF3hiebP+HZlXabRnfD4o7lZALpQaPBdAhp54z7HSNoLnDW/Er4c+kA7FhEMW9dT/dNPOQMOXp1uxOIy1SXqZ5yCobErDExHI2t2NViBgJoSNvGIZsYzpbP4OoQFgUIsrQ/yCBSIs4zXjE3Nm/cGBCObZ0x78VSBq0Z+x7AwFpCm8R0etsgG3PcaH4pTaDGEvq2bOVMq7yjjKC5nP+1X7QV0plbYDbwKe/bbMNKK6iZE+Y4zyQDbF/4CyPp1pUJ4Mo6cHcmhhWgyt6kExQqmcgw2uzcZ2KbulzNoe/q3ZjzC26dfpF+Sc7E2hMNY8ROM2PeX8VqT8dunR6GtYb5O8K/iAVyBT9pNwHXC+QwbBpmAiXNpOeTu2N/fiX/+b+Fv/8/cflhw/sP5Hf/NfPj3zDefSC3Z7DvyUHp7FzpPZRKnhN112sYKm/Ydwm4X1pj765098wHsMOZu4ITJ2gNRhqZHYoJzAIcAicCCwFYLirZWIxxjCn9jdLaMdPchScxhvZwOe3F1uasrlmzzsWYeK/XlQP1lRlRzjindKvMOLRDIkuHKlZgYpU6byi1QMxozGK0LR42JimdmMaIIaCNHPwklXSCFYBdgEkBoVx0Y0HVzEGAgphQACz2VCVNViUURuno5KM0qhdDe9/vZHWqG3PnvsPtthNDTPSInft+Y8YQAPGGhdG9FdC/K0r3kA56NjZvZCgjQB3HCghagVaoAETlOmsOj03AxNG5ZMIoRr45lAY9M/cDHMWcpHUB5jFVblFAPdPKdlgBLW2jTInvW6ijGrbKDaushgVUZzUoWIA2iJio5qWyhzCxxRYQcNuHslUWIU9jCU3PVDc+DAinZaO3xrDJZMesIYl6p5ljc+qBQzjhodK90mpSEKIyvrSJu7TJ1NVUlPTBOLupXC47acr4kQ/gKKcE8E1rFjEU9JspE8sFVr26OVIh13qYMZFQtTeK8a4Q69IYMWnZuHijubHH0I6LKpnCcU+sMk8aDmVLDKNdr2zbxuVyYbs03r9/4uPTO949f6Bvl6927+f4H3ic+OnETyd+OvETJ3468dOJn078dI5zfLvx1Q/+JN/cBYQ8JRDqyYiBuUyaOcS4iQGKAVMFJBZWxqDRvNjkEHsWuVKrxWBkDHq/SLslSnTTswQ6lzGUKKn6s0lsFJQKL4CsdONRLduXZgLeMOuIeEtlapvKH2BWFyHdr9nGrI5HGEzUaSkji3UC73awNNhyuneCnUi93tuVMYPe2jL5ZNHziTpAqdRh4r6Vbkaj903qHy59gojJHMbmT0RskBP3UNeoFOi0qm/ITHIabhscJQQFIJqYmDGHukZlMOdQN6dMOr00QJQ6LxbprvW2VJo1SvWXXk45Phru2+IYWR2Y3J2cAknaOwExmQzcL+CuDnw2Gaq9kMPNXWxoziqTagLctko7ErMN9ythDeuNewRta6VNZHg+Qb4ACaPho+FzZ86drV2qXGZ1WSth5PoZ7UK7dGI6/vNn7I//d1r779ienPHcie9/A+9/Rz79jrz8Bt59BH9i8ysxJMrtaYeIcObklpPOhSivneOO4Uw3gjtmzijgFHMiEW+0n7Ga00e2QeZklVAYbwSMUbfCtXdrU0h8GpQNUuxXSQcpDb7eq/PlAr5N4GOl6ytlX2zmrJINUIlDZGIzSB91Vutg2IOJpBUrnIuPLgBvrQCnBIwfJSYFml16KNY2aToJ9YipRwC1IijNR7HniylV97Jiz+vsrc+wtc/nYGQwI/j80xdeXu/s+2TfB2NIcynm6kIn0N99U4AWc8ERXacpmMbVkLAfZVTFDhuoS2UFJjOwJmC+7IyY2seeX10Dc5XzVUmD11xlsciONLiy7F/EwLyVjkyluKAAMc1rrSoTR1MCqW6b0oJRgAAcrLUZtaa63phi+RVka79iBdFMkt4iZBcI1x5Ls2O+zGWuQOVcgeK2kEHmrU5PBmpiYAv0J+DFcq8ul1nXZ4yR9LYRYwHNyrhJO0qcyvKzOkVa7fGtbSomSXUVbdXB0lEwKNbbsFElfKw+oipBccSQG6tMq0obi61elzpmyo4bUJkLl7bxdHniw9MzT5eNp3cXrpcr/XopvycbSZu83F+574M/31/4h7/8yOeXnf/V/+J/wzm+/Tjx04mfTvx04qcTP5346cRPJ346xzm+5fj6rr5Zxsc66WIlojRFetvw9GIBlvZEkDHKoRqtb2J+4k6zKSZr7Lh3whOhWDlq92UIlfa/gJeMm6sMJFy6JVZpxyFRYxnvVvX/eqpPDjmy5cx4dLJyS9JNGieVWo0VM1Z/sEr2N8C8BGDFCM8pwzanykFA92DNSreGgzUMVD5jh+NU2vtRMpJLuHkZ7gILvmGzHIKZWJcoB50hEGtGcAGGgoAocV0bxbqkmN1MMlfnLZW6WM1/lI6O4wV6DK8SFm9ZzhtIdbHrrdG7SyzcCjBFFpuFNFJGYk0OLJJik1L35I30+2N+0wTYc7H0yOFYq/IUgSozw9JRz8Be/smwVca079XVazGtHc9Oi4v0T9xhprRfUmtqtOpWNQm/Mecr7hvuHWW6Dznq1+BpGvHpZyb/GfqF6I59eI/98Le0v/2f4e9+w701cu7EzcjdaLNhw2B7xe0iHSecmXeCgcdV4LwAZS92KiIZRIH2YmBnsFivVUZAFnObxbiZyiOWRo1YSAevvbXYyFB2RpQP1yZfAsQFYxdTvWxBhM6MOUuDpFkX65mQxbolEuNeICALKFPYSeBHn3loldQ59bp3N603CFjP9YY395QFQszVXVDaVnpPROg+FyA0VNpiEAzmGMxb8OVF5Sa3sRNDQe8C917s/iFqb6ukgF9ombigDJe+Maa6YDbrR8CqyD6O7J60LHvQjnK2jPG43ypXMKv5qht3X+UQAsu2AHllQVCfhQksjqXBYrW/6ox6AV8qcAhCwUiBqUCC6HvGGw2hR0kKK4CvkqBGqwcZtX+yAi2vxTZlHx3XkbKEKgXRXhpz0LrEwecMpIe2fr+aF+TRsCAP8FxC1rUW2rZ+BAFR4NZ6QcfQZzIf4LaMsObeqLktcfmybb13CeGn9oGhByWJkV0b27KyFmrPBqFMrim7b62r+2DIbqt0yHj//MzHyzPfv/vAx48fePruGTb5khHBy5cXXm83fn79xKe/3Bj34Pay8/L6gpmY9JyBp1fZ4ylO/WsZJ3468dOJn078BCd+OvHTiZ9O/HSOc3y78fUP/roMhBimKgkxI8LIMQmTefa+MXOwtYeDbd7FCmbQugSaxxyQ0BdA2pS6HotVy0Frzh47mz2BJ3OKXXZXuUWWMHDMcTi+QyAZGazekcNcV5+BL0ZrGTOMnF1AIe+lQ1ECsSlwsIy1AXPOAqdO8xSr2oKwYLOLWr3PydavjDlp1ojYxTRhtC7gwGJ3vJVBB/eEVvozWxnpkAbCmDuO0siJ1XpexnlGo/WuDIBibDHps8zci1l2lWS4k9loPYicun4G1gY06fwY1elqgnlj3EOg1QW3iWJMI2kb2EuQpQvkRjFd6mDYvDp6hcDmISJt6uAm3ZpWoCzrPhQAXbaruuhZYOw4H9S9KrWPnMlQDRDeOjEmzTc5sItj+URrnbBBcANM713ALFFGRF1njiENIBfr20YQ9xSYvHgRfcmILme0f2aLjfzzC/kv/4j/w3/Dh/cfuG0fGD/8R/j9/5R4/zfM7MQwbnNg+2eaB707++608U5lXAx1e9wH0zs7TsMKgCrAoQnkeRZbNeTErfQosv6v1dEWwChWk+qA5Y+Oa5gWbAVSD6b3QJS4P/g8dX3T37M6mrkbY1cpATSU7RAHgBbHXiLXaRACeBSgJR/fnwd+eAOgorrkuRczqTtd5WFLk0XsZoCXOPyajVZlFHPnvu/c9juv9xv3+51xn4xdtm2QWGu0oMoORk3K6ohJAWYBwjj2tx+/M6xYaMO7giqJOMeB0r1B2lSgmK30R1ppe+m6ba2JGQs15kqNKfs1c0rHicUeQ1bJhJhllUn13rGmz9fPFazPsn22soUohryA2wLkK55ZrzUT3mtl4yUELVvvpo52rcpRYo7H57hKoJKUHZL5A0rXyauTmpetLS0pN82DMlcqhLJJxK494jDGI+Nnsf4KfLIC02BMdYtUB8BlYw6vxioZ2rzLj4w4vm9p+PixSTtkskKYiGTbvECu187Tbm3m+FQsufUNeuf983t+uD7z4f17vvvhB374/jsul87PL5/46fYzf/r5T/z5H/4TL693Xj8P9ld1+OxZTR9arVVlFrQqWwrXCTSXjts5fh3jxE8nfjrx04mfTvx04qcTP5346Rzn+Jbj6x/82Q3oOsjFSJON1lydo1CKrtFw28gpo5yWTNtZrd8JcO+0TUYvCxjK6dSJBJWXsNjnEncGLIPWJGYsR1tdiNbnmIy3UZonscupm5UzltFSmr70c/Q5idqFeenslPOuVOaDxC0nshiOKCOdFsUiXfDcSGtiAmPQ2nqPwNwsIV8zpbLnLAZkpVZT7HiKrRApHXhLgpcDeJA7aamgwboAcxYLtlhLpBsUYxxz2XOTY5oSmd56q3ubhN1pm5Gj1phW69xIuxMszZRyCCax5DRp8lix6rpjh5a1Hi4mKbyUK4YcUQq4eJehdb8wh5h0An1frnvJN98N0hpZgYlYtXDNna5BDnBmYnkn/S59jmi0EsI1NzHrJGaDHLuu0TcsNiyeaZV4PnfD7IIbtJi07JCN3OWIaRt9dNqXzvb577C/+zvi8n+Gj9/Db35L/+57+oe/ZdxepcXz/AP98jsGG5nqchjmBEF3o8d8nA9T9sRRTpXrvhUQsvbE2jdZZSsLAC7a0yWy26zTW2MWAF2aKAvpmlfZV4rRBhj7Xmygyh9Si8CcYu8SO8AA6ywW8JgZxaoWnCxc3Foer8sjOFzXa4wQo7nAGAtru2trRpYWj+7dLJgB931yv+/cx537uHN7lZaMutwZ+xg023DrWIlIGwNjV3lJ3hVkea+gtxjTyrhYneGUJVDAsgDlGIO+XaVJZSXEHvqdRJGVlWJWYvtRAtJVUmL+2OMUKBcYW4BsHrbRK7cmmq5gBhUUGFtbJTXKANJ3QuWHCFCuM1xZL7r+HVqV09S5e5QqySqYWXXvXJo1Vg8PKLb2UYLYKBtbLLGb4Sa9IMJkduszMlJZLmUlcGmXZQlYl4EXqKUyHeAX7LuCDgmYq4SoimfcIYeC5FpPbwuYV7e31J5izTkCzZET9+pgmFYPMOK47ubOnGLie3OaO0/XC9vWuX544uPzez48v+dyvdK2zv1+4x6TTy8v/OHnv/L/+ud/5PPnn/j000/EbcouNp2Dbs5Tu+ihhEt3bJaPI1WCFuU3HLmxmSb9onP8KsaJn078dOKnEz+d+OnETyd+OvHTOc7xLcfX57LGKMZCTKHY3o7ZlK6x5ZF+7CHrZt0YDLEGjspZSjpDjkzaEZ4LqMoA5JC+C9PU6jsSvLG1zpi3EplWjX9bzrF5gbaG2Tg6gGFDRtRaIc9K4x4u5pNyGDbr/XboMADYAusz8d6UCi+UfHzfcjJy6jL0SzOkty5gYbBaoi9x3baVtoItZkTfuISiLZMxiuUqp5FIKyMn0p6wlINtjcwpAJVJou5sRidi1zWZfq65b1QvKBobTKtgQGDJhX4LtydmQebQ3xSEzOpMyCz9CVeJTIKFmPg0RwLLUaBIBUDdJOTaPAsolNg4oZ8ReC+9HKuuZ80FriMFiAMinF7UV4xBM3XkWzOZ7AoQ8glsw/zR8cl81H2oc1+mugBqbhpmGyREuoKFws9ZwU9EcVOR5fQmeTHmdCZXcjMsJvaXP9L/+gcFP+3K1jvJRvZ38OEH3v3ubxjvfsvsH9m3D4y2CZDarDkXE+zeKV1rxIsVOC9gkQVMiRRjvDRoTJkQy48tEeZYos9r61VSSpJYSMsD3oDfApRZ+zmmmMiIqG6RVaKGSUi82E5AQR0pINq6gMIMYFbpiMAUtrJLHmViQcKs72cewdFMlX3sY3Dbd277jdv+yu0e7IMDyKgkYNkYsNZqP846x7rPVqVC6SrFCiuy2MS0ruA1UuyhwKgAjzWVbDmmdcoCtb4An8rRsFXO92B5k6wHAInRJV6+9nw66m5XYLZ2tpuTbgXkxciqLERBTi+2vNU+lTiy1TmeWPayFSop1D522elim8cRxAAVXB/dCqtbHga2ykOqzEb7cZV7ZIFNSPcKKsvmOSrzsBR7HsV6owyWGUlMYeicKbH0emARiLH1Kpd5dJtbDz6qi14FZJZWJTWt7BRsfpFtIY4MDbO1ScQ50wRQ0yYzhh6rTAUDl97pfePp6crzu2c+fvjIu+d3PD09cX3aMFdH0c/7nduXV/70+Uc+/fNnPr9+4uXlC/s92feJhR5aNG9stpFbA3OifFEAwwKbiYfKrTw75saowP5QKDPdK0mVSJ3jVzFO/HTipxM/nfjpxE8nfjrx04mfznGObzi++sGfjY1oAnsXey+n05RyLvAmoGJpchTFePTWSaZS27PhGM0q3b453kt4uVi3maMcq9P7U8HAgWVgBN1Kk8MEeC0db06wC1C6we4SXvbSoknDI0oYdyPjUgZtJ22XTk0xSBlKMZ8MrAe577hdMXP2eYcMmdZm1TnIIIcMNEBvsO/FPnPobGQI3EljR4yxsuqlARNRXfrmMpgG2XGKqWvLaA+STrZG+oXs5WxnshGM0pnp7cK+T7xBaxcmd4GZJlA+YycBTyvdjgDbaJnMlcoeUwKqK80+BarNjWXfve48q/RImQJi49PyALtK9w+YBRBaw20yq9Rns60ctGHemVV+RLNK4S8mz8C9SSw9gGY4G5FGstNaFpPTCJJWJUzeO3Ev5CH4URkEwf+HvX9psixLsvSwT1X3udce7hGRj3p1dzVeTTTZLS1FgD0gKeSAE/4AjiCccMYxfgFnHJB/ghP+AnAGoXBCCIV4kAKwWyAguhpdVVmPrMpHZIS7m9m9Z29VDpae68kBRKIGicjB3SmR4eFmdu2cffbeuvQsXUu9Bs6JtJ2yYFayNc+VJtAO7WlhnwHRFmdq7UybxFb4GHg8aL26USlzWtzJuTiZpDRMlenb5SP14edsP/9jHuKB5XB59yWvP/x98ovfZZ5/CNsXWLqAEouMKS5vCRSuLIaWOsuKucTUzZk3FrrKsBWUrxub59X+IqBKiF7LyQR6bVfh0ebK24l5mQSJlZ6HfKn0O9LkWlVesMBta3VGV5iY30ywawksVzjLjuqN9prJYrgz146qR+T1IdlUclkX5mXy6eWVt8vOdZ/MVZKPaaNp7WVXSKCEMWs1Q6tqjC3OmElytuZOxIms6u+BWqoakEn3UoJegxib9qMP7Z3S17JBmx3G09VrgBQjbZK+KMfVmWVLicVakouJnRV4kg9TdxCkZOSMQJ9A2lK3PgN84/AGs06Qcwko2wHzLLujJDqrkfxilkBjIemJQPFqOVR1Mhc6m9dsdruw1DqLTsSt2fyq9qFxOik3ycdMHRbNoG4yHAFY7UF5klXJyyqrwOqWOPgYzCo295ajqOKJlp6EGaQ6OmYmM5X0kGKeT6uYbuR4EKirllIV+NJzOxKQ1XIftyDMeffuHUbxcH7g8fFRXd+eH3l83NgeNrIWk8Xb2+SbT5/4669/xrcfP/H26Y3r2xtzT7H4q88iN7yKU7/IkPG/wsda2n8G+JEQawp6Hect0ayS6bm5YujxIasKqgjfvmt4v4/f8Ljjpzt+uuOnO36646c7frrjpzt+uo/7+D7Hd+/qu22AyoDXPtXhx4pMlSiXZbPHCmrNP0HWrZx4Gwpehf7OU+AAE8uT1kEWx2xjZnX7bm8GVl4iRWHDYabYbJPxrbk8c4z6zFSYmDQz4zp3xrmvrbrLVANRtSkfdIs6HR0p9tRNXbxGnHRIu1F1xdUcjEPLUktBsRrkldFBWyxe5lQ3PJekQ+KcTQHRQJ3XhtrP19HSHsZoM1rUUa7S8NgwAvIA5ypTF8/nzWQpMEhKJJgptvPwDZpQi3R5OaQdEpjudubBwduXBeHRz65Zp1K5ub62UTUUqJu1m7XjNnCymX7AxMaVvxER+h0ZFE7ZwnpJinHS/UecsUqyrro2JqteFbCBmSWvjlok6ohWZmTuXSQfeFcBiLlH3eZ8E2PfQEOAw8GDmhNvnxWzKYBWTWYdASInkEQY1czRaTtxWVOl5O6MjkrZ/ip2+KjQnfkCdozIRc6F/fwXPP7131BM8uk9+dXvsN79EN7/Hvb0FcRJVQiWzBKgmVYt2VkERWQpCbBm5mtSNeUbdC2UivS9nZy1l0rdHXmB9D9l8iLJqk6CtCYTsZkhsxUlmnsSJr8cgfwlitiKWYtho5MqnSeFAGskN3YdM4En03NaOXm9Xvh0eeOyC6zKC0fsba5inDayQUrb9AgctDzsYJXHGL9WyXBIfsSaejhH17xD4qTKlwb5Zrcz5lbNUt09rwqLA+CKxb916jMldmI/U/uRY10nI9Qh090lSav2NkkZNFMm03zsxgQf5u9HIqVKFVMSjN+qBFaDxkVy6IKGtZl4dYVPA1pV+7S5fxmhxdRrnWa4VWVipcQCc3m4WEv7OKomdBoODoYYcP9c/dAJvqQ//Wz6IK32YrIW4JCKA2CsmliYkuqubgkLVidDa04w57pPefL0ywi5YhWvITNrq8Xp9MB5O/F0OvH4+Mz54YGnpyfcjLFtkqSEDKazEt+spVmLt7cLb3vxs4+/5Nu//siHT594ebty2Sd22RVPGvQOc5zBKToJ3EbLFLuNQnYlT/sSqVMeff7rvka/uJB8xlqmqLNHCaRjqQRG6bgSRaky9+8a3u/jNzzu+OmOn+746Y6f7vjpjp/u+OmOn+7jPr7P8Z1f/K2c2CZpinuSzFsHIzN1LzrYXLUx3zlKq8PlwXDruNTBISkUX9r4M6I9JAIYuMFcV4YvyhalVmxifcpvrKm5SdNvLYU5GOg2fy7kfRHjfPPGKM8uDx4ccE9MzsEW6ZAtdooJhECxy/fAh0O2lCDBGAJY5g2I+xqwltpUM0KfmcJMUNl/M0pJl1orMMnQlRsYFDic/W/dfK1DImOUHb4vYkvdkvIJLU25VRWkmKHD88I8xIBbYHXTK6BycoF6/JjHbvWOAujxu48ufTqUj9AjMInL7DpL5tVZSfhOF4mDjy6lP0imDqgHRZ1iK8cYOGJhzKc6F7p3x6nZQB0BIALJfSDi83yRC0b0dQ+MYE6BIQMqlQCJNaSTjs+ARgDvAEULO6oi2hx47hMbMgqXlMZujNuqRWwDW2L4DUle3J1lA9sXNoF4hHVlfHqFT39Cxk+o7Uydn1hP7+GrHzMff8g6PVHbA8t1H5RhHcxnTaoWI5QYrlVEhuaqtLLdTaa+RD/Dlr4UpDbW7ZlUST6gRae1nX6sA+1lt9Fr4PAyKawlYrNWg7OWXTW7KfWa8bZP9jXZ1+JyufB6vbLvV6qWjOwtVDHAzTlE3k/lCtQthdFoC+vqfVHaWwfTd1u/bn0/dJWFN7j1BgHyJhmufnM0aAJ53BzyMeukMJzbmUdxk+Bl/y8agArk3VJwyfPon/WkQkmEElD7DPIAnRwHi9nVJq2hEQGs+3JhbY6KhcPbRffqStT6dDy6YQ732/oX3Mv2j0lJPbwlSKYOmweLXg36pXPRua3H8Nkfpg45yFHt0J4yOrer95ruRz+q6gfzlB9QLc1T6iXIbY22HKgoVu5scYKSRPB8OgmgPj7w3Czz+fHM2AIP55qTy9y57lc+Xr+VWXlO9rmzcjHn5PJ2IfdFTSVB+2UHtIfkSyNA/GzBOneCsaoBZd3OdUyJTvZLkOhOpYZizU2q6Jqt6j3KbcWrCqCMm2fRzXPNjEeMMdp7q/2G5n43p/5tGXf8dMdPd/x0x093/HTHT3f8dMdP93Ef3+f47lLfMIzFykUMb18DPnsr9GGxWFRegZaw0IfMnAILpQDpfYgf7O4IMU9m0d4xdDt3sTExTm2ALEmEHwyxJXkznz58Oo7gCke0KmDExj5Vbh1hMvXMI5jQAbDDQqFuZhhZ1/a5CHLtqPW3grjjyH9C7Itlg+hS8PRm9cRE6Xqqqo1Hj4B0dBXTP5Vit1aKaZRdjDV7K0Nht+O+PgNk84S1OMBx2RLb1Iw6HEATBaDaONj6wMlfL4U2OqDN26FaByNmRq69A45DNgtqhQ1hwyMoe2luZExMPycn/EFgo31z8K446L/DWk6Rnz0xQGxaOhRDcojORLIZZ0NGtquUbNDyo3FWZz231bIGqLpgsfWj2Hpej3myA7ur6qHE2BsqpT8Cy8EmDg/MirkvwgzLYu5J+FnPv5ms2QyoOr0JeA1/gLmoOKnjVBXmi9VJg6Xj18LePhDffEv+4qfYKE7DyXiA0xesx6+4vv8B8+kdfnrGtgdyFXMPqAEWeFzJlG8RlZRnG5e3rCEb2zRwOUyBZcBcSkxd3iwjBkkxS6CmKFZlVz3QqKKlXJm4y7dklXHN5Po2ue6T1+srb5crcy6yirkaBLkqPZTYdnBfyIRZ2Q/hknnEkJxJcpfjxJJ04pB6Za4G4XYDvjRzu1aK8fWWImUh/cDN+aO7JR4sq5h8oEGx5Ezu/tlE2yB8UwJsPUcN1NysWfoGwj3PVdwkTpLHOO7RXRnt2JZCpJ30mWcn69qjRu/H9t3JStL0uQm3s+J4NmauNfd5VshVfabq/ly5lyoCrGFUf13LtSsRzG7nfVkD7kOu1eUE8nrSuj8guElxwlwTi1CyHFpDAxmh48VkMWuHMjaHLU44wfvnLzg/PvDw+MiXT2fOj2dODye2k+RBa+18vFz4+tNHXn7xN7x9eOH104W3LIHKrnxyN0kiu2Ij61gjnVRUv3zwM5aLCMN9AkWunTg8maKT2jikSpKmrbW6IqpYBZ6q7OHGrvc5OyXnpFJJvmkeqxMBs2IbA49BuLNF8Byjl4XM19ec2PjuFr738Zsdd/x0x093/HTHT3f8dMdPd/x0x0/3cR/f5/juXX1xcs0GVOpipdbjDZQQ+3Ur3T/MW+NgsIujLJdSkPEOAoUCC3jr9Y9A0pDJk1oCYWM4ZUGuBsEHo2KmVuFmzST6ZxYSoFLsnB0M3q4S6Q4HRTJz6lqbHc0S45Z1AiYyYU59dzYo7yAUkVjsTN/kQ0K2GbcYFnW3arBeSebepf+0vGdr0DUUjABzMaK5Fu4Dq88l9Y28+roAlwChjuvrucWQse+tVPz4+YHXWaC5FrUSuhwbuAU1kIeMnoRYQbeBTIJ1ndXP1t3lNUQ041sy2s2iHMJPXeoPVHfC4zMgv5Xhm7rAySC6mXXkBWJ2JtPEZjExA2fgNlRVcTCLLFUQrCmA7UeJvwKRAv8SqNhOzCmvjpOccDk6bFEO1SXxoQSJ8l6bycprg9mCWpw3Z+07eZ2S4KRYbiyovc29y7BtKFqXsy/IdWXkG57G9BNjE6CuYw5Icl6VAK4zthx/LfL6AfNPLP9LTg7FzjxtrC9/H//i72Jf/B55fmaNM2saK5Mt1F1rZrBsY8Tspn8KzuocpvV9dO6TPqnBxQh2F8Az1xpXdUG2vbh8Msrgcr3y8umTusPti7d9cp3Fqk4MKFUVuDrPDR0ISshmdp4b2Ahsc+JIToE5BU7n7EqYTsLEEh57XcBL67/3lR2JnmQj7pskdCWTaOj8Lw+W2DAf0CAqzFoyJpZ2jF9jkTm2Yyd4tbTdStcnRva4jpbmwGfglBJWVem8Iz5XSNTx/0fJC4aVmNBjr5a5QHdfv5uWWVrdgKsDY/yar40LZII3kywJlBJJcdeqWuhzB8PLmLnfvl/30wb/1lUlJi8eStIt92gZjHUMgOOQtjI1wutzrfosCC+sgqfticfnL3j/xZd88f4975+CbQsOv6zLfuW6X/n25YVffPMrPvzFJz69vvLy+sa+T9acjIaGp9NJc1TG2bwlMH2WmUNXU5h3QleKddUVEJlXDCXoHImoyeY/b6bs3XXPJC+0SrbDB4nEUt08Yxs6Hyv7eRmG/Gs4kuJQjIgKtl5XbpISHi+HMvc2e9crgwjveHwfvw3jjp/u+OmOn+746Y6f7vjpjp/u+Ok+7uP7HN/5xV+WfE2qxB6AmK4YOqRy7jfGZq0i6vOBrJbmnw9rHZBB1hWzxCpuB3dFQiZp3TmtZDbrXbpdOfW1Laj5WeahmmqxKfKFob0gqgNVSC5Dl817Mwdr9iF+gDQxSQKLTq7F5hszWgrSzLPXrjLxMLKaOa+LPGi6E18BaZBuRKHg7w3MXeXrwjQCyepgRwOsZq1r4UM/W9msRhtVZ84GZGKQajbYdKiVDQaNsI2s0VH1kAt9DqLyhkEVATe0359VQB3ygPaJ6WvznnsFrkUdUNTFUoYVZRvYwjFmNmAAMifDDTKa4R8YSTRQdjdW0cBF4Na7jNtsEZFQgklpO25+88Qo9JxW7mTuDLPbXFeZnu2QJ1HhzCb0w8/ksgasCR24xLRD+VKAYVAc3a9o8KwfsQ5KboGPEytl0uw32NGM0jJMjc76953k44Pjc8NyMnnDtzNVIdARZxhDe2oX+GOILbbO0Nw27HUS86+YP/sr7LRRT4/w7kvWF3/A9v73mNsPmDHaV2qxr8Uol8F1LWpxMxDGElqeYEXLB4qqHUp7bFYy52Sfk7kWny5X3vYpb5s5yVrsqTXgFg3OghGDWdkyEfm4VMk7J0uJq5Kkli70nrRmWD02MaptUFxpn79u9LlzrMou/89kHUlWG3lL1uYN2k1zUEbYEPjMbKBTN2ZYXeFattESvKMa5HZm2lKXw9Lz1jXLZyb6vm6fd8ij6OSy/7753k5cG7T2XZVBpbcUTj8pEIOM/zno+2NNCsWK1TZo9l4vH7TVw45Unl63jvRwclU6pBVudqsi+WwCnoyu3llrUT4w95aNZYOy4/nBzEVaUe5Mk6/LeTvx9HDm/eMTz08PPL175uHhge10Zubk7fKJl9ev+a9/+i2vby+8vHxivyxqGutasEwvH9AZEi5BGvGomJMLX6UktBnhQmzyGAKRnj2/fjyLPh9r9cLS/K7qxMbkiVSrq5r6nHNUuaIP1OduoZhi6M9e8krahuPlDHesZIwOYB6Qxdwl+aSTb+3NdZOtHH491kB2zsTtxH38dow7frrjpzt+uuOnO36646c7frrjp/u4j+9zfPfmHjEUVCiigah8JpoBahawaVyVSJfMY2dOKpPNN0i7lS+rG1obwFIkSyXdoglI+zUD6FTreItzHxZTbcorOSxITb3DAcjDW+RgVKqalSm8TV/LwIezTICIg6kJActlR097Y2BkOXAEOnm/kDoE1Z1vgxhMLvIocLGfVmKILcQwl4kZNpOJ8sq92UkhqLJUsMjqdvJtLm0l/55KjEnYagLLxbTQQZxm2luGcxyjAoBtrutO5aL8wmAQBLtNGNGYTYycWD8Qos4OngKpWW1U7ZCOWHIKZ6dKQYmx3dZIZZsDd0ARuwXlpz6Am4UuI+zUAF6/+2CyCDFAvl/IsSAXTlFH4C+jMiCCssQ9Gb5jJmlVOQw7QdVNUnAw8fKXFnAtW4RprexM7EjQlgDYUV4eLTOwBjUyuS7cHlgHOGgJjhIGmXFbnQSwXYyqVzFTUic3w1IsvO0CX9XMcTXV5yXAv9bEQpUhiaobqsAziAW8Ter6NfHxa7af/gnr8Qfw/AXj3Xvy3e+QX/w+/vBE2bMA6iWZtnQdLmBvUZQns3auM7lckrfLK5frles+WWXsq1iryF9jIx3kUWSSiVECrHqeSdbOGIOVpX1Q2ecInQUEyz7LNLzPFTvaeFmDUvObDIwqSRx8E2PYicIhaSqrTnIOGZ2An4cuWIx0m7Bnsm0NMP0whu7LK/o6kmgJlxK4YrRh9LFOjnWmZPO4ZnTeObQhkIpQes2ISReTP+fe1ynvJ7lAqTLFq1lbc829FVVao5WJxU009v8HvFUpo30lhjzbH6uvLQ8mW35PxWrLHzuwk/Z91eeksasdzJIxZMBfVcyarOzHkzvhkn09Pn3Bw9MTXzw/8dX7d7x/98R23jCD637hw8snfvHpl3z6mxc+vb7x9vpJydB14SXAnJVYd6n0SMZpKEmVIxA3oEkbi2s39ZnafmTI06e6KqP6jHJz1tT6Wi1rAoNZsBah7EgvH45Er1T5c4rB1l3nhi3GJmnOZhBj62fXZ0Ounuu6VYYk2cmjzn1zvfQ4lvnhdeTULYH02OR/ExvRCe19/HaMO36646c7frrjpzt+6su746c7frrjp/u4j+9lfHepb6XYCtRW3Nu19jOjQ8tNIMbok9FIxIKezmeYzSDfiJ3Um/XyZmTQpsTA23ulilr6zTLe7Rb11d4AZH8/vemz2a8pIBgbrAZIzQRFdJe3hDpKiU2MV7WHzkF7+TByF6C24+Bq0CXySN3yNAF2u36d00YMJ6fa1d9AperMu4OVCqi9VOpc5s08WwPNY0719TnF6vmt5Nvb9Lf9Rkrg126T3Cii/0i54iQCXdnTVmbYoANiMyWlIFiUOjqZsSowZCLuHsQ4sV/fBLJsY9beHjLN+Obe60eVA/KBAOzUSYdA/AinKqiUT8XK4/kvIk56Xn0vKuNv1jyMWYs8QPtUqb7uX+X+fnTX6+SlOkk5DnatLcScN/OkR1QdwDuoAZvLdFqgwCgzcnZnNjfSNmYB9ZFqxlNgQgmL24nKo3rDKWZLgQp1wCvc2zuDfv52SAg0BUWDpmb/ZMotdjdzUTbJFIg0G1gFma499c23bB++VbIURp4G4wd/h/r9P6R++Aecvvgxgw3jiddcvLy+8PHDBz6+fORt38mEfRfb56NRpiuhE7/pN2lFtJlzWSeOZfpWP/YY8t0wSZz8ZnAPHg+SxJl35UWvS/R3a2nvjzjm5eiC1l4v7XIc0bxtAuEcRr9HZzYaPBznGw0MYzi5in1e2bbBWjKFP0zTzeQdQ7Pstg7WGNY+5T3ijYJ6C8oDq8iVzLlDKFEuq9vzta4kcZWpQMGw7jxnh6Sk5+hWKqH9VloRRHt0hX/2WbHG9J/Pg97XrkqQzF7La4oZxcnV50Z3ozQTkM7VZ96SybL31xv5M4ERA8M5nYMvnr7gdH7k+ekdz8/PvH9+4uF8YhvB2q+8Xt741etH/tXf/Blff/MrXl7euF6TnJOtqxbkKTZxD86xkaXKoeEn3A4Jn24yK/HhkkwtAVvv9SCJUoN369OgdDZ3NtEWWZLZbTYUx7L6bNVnbO54qsImKAYQoTnffHCOwDPxKtYNDWsF59JesAbL1V5fR6UBmdha+ndIlhcnxazoyh2ls0r10xBoXTvMF+pyYV5f9d/38Vsx7vjpjp/u+OmOn+746Y6f7vjpjp/u4z6+z/GdX/x5hw2BRu+AHlRe+01+ynCzWQQoYgzWbJ+EMhbF2BTMV5d3VwqQHZ4l5cVcO8O8WSeBiDATY9OlwFDkSESIFVYtWYkElwE1lVQtrLtWGTqgx6CZbYOlg3GtIzAC5bA+M403doaFjwbYU3Ibsc+zA3PjdbLZ+PaPqWos3MHAZGRs7P37BpU6/BfX2zVYIFDjAmvrkLa4C2S1ga7kOrrIXKBy8DgiFZgYqb47sUooaHsYMSBtsvICtikZOebDGmDYYhVYREsC7JaAlMscWLHB5TkSwarJ0SgOg3X46Rgkj5g7bjCZZAXYRrHdWHUPVOGAkp0wcBNb59adx25fE1tOoASAFAiyBpWmEnZqSUJgNCOuSocqSab2XT5FVaslBXYDvaXJ77VVCnJmUPLsoSbOSWu9Ws6A/I+MTna4ynek5x9aDnMwXsBhri4WMqkUKM8s5DDinSP1NZUxrwLo7gMbhfmg8jACLmyps+TIIuNExiODJF4/UR//FP/pn7JOGzz/gKe//6+Tf/9/zD/7k7/gep3s+1SgtKFkrCVDkmhArTZ7L61XPBoDVHucQBQUxcxdSZ2Bmzxp3OSdEyZ/KDeHJRBcCyUxqS5gHjp71Nns8EoCwj8nJUJ1kndpdinrzztOM4Ob55JrzXeuyMoLVcnYQqbZ2d5CSHKQLFqXpLXQDLP1+WctvTn2vSQSxZotnbFQMhTGPovhzXC7H09UiVezw3rG8qmqg3Wu0hmBU30f4fT52PPrAt/hfgO+qnrReWFVyEtMn2O0WXcuLtc38GLOydPTV4QHc5+sw9PHDB/J6XTmdDrjHrx/947Hhwcet+D56Zlt22AosVwU+/WN19cX/vSnP+XT6wsfX165vL6xrpO1JzE2YgzCnAcLcFfFToPI8K2lJUWU5sdb5njI75bNfoY7MU4SlOVScnVUU5Tm2Pt8OF5WHO8f3LV3rYwoSe5GFMOV1pwJoo/dYZsaKNQCnygdTtaU59rCJJVrSYzOgdkvBiRRkj9Sd98DiOjGCBOD9p4pPJfW7OsV39+wdSH3CzUvMHfIndzlmWVl/YLiPn4bxh0/3fHTHT/d8dMdP93x0x0/3fHTfdzH9zn+dhV/DYCqGjx1qbhetXcXt1u7pnYtMbHcuZotNAQKKhXQImDq8CirDtI0w3KjsMW+uQ7eo+z8CDS6hsXBQh6MsDXTY4ZkC4htUGlwfQak+RnE5ZoCTGYkAt02dBnqFiUvnrCtgVp1Z69JIQmGWXGYpsq3wGQOWynJTzpWhZNiIazvParDkACVgE4zFX3fRhwX08G3PWJM9yXW7mCrTf4/Ha6tEaTRgU/h5FYS/euEVozouujq59DdonIpgOdC/jQLy8PHYZMHySpYLqaN46CmqxzyxszlWs3WiC1cJcC11lUAtQRqMhN3dSTM2jmqEpJJldg+3GBN0hqorMTt14xj20cj3KnuFiWWUhxmLa1Bt4GBOtB5iDUCSXv6GkOooJ+PvDqKXUmMzwb/py7a2PsaQ15GddHaQ15OB1hQAiL2sg523g2rwdEhT93XDjmAwG+l5A9eIV+o0l6cOYkYCmD7ohLCNqIg5yRa3kA8YXGV1OkSnD59zXy58OH0B3z69sIYG0otB6p2WFjIX6ko7fmUTMV6vo8qh+MgKFMdhMD37GdiB0GIVTZLKAb0183Oj/REcghjrpaqICkGfQbcKhBuBwINStrw1wRa9H8Cc0mz3ZZdIfDZ70bH2mowcQAcyTnE0H7uKqczRgnEzUupr0MVPUcO6TdwkmhNrOzOmCDZkdtx5Ckh73vQntVPcvt7OCqDdGb1Xu2pv1V5QH+P990X3M5ZQ+BfMqm5Fh4bc7+wcrGdHnh+/oKH7czzwyPPT888Pp45nU+cTkPWPSQzr6zaebu88c3LCz/9659zeXtlbznTdd/hpvzTeh4WnDlhvlEPCb71IzICI7sDaYQzl+7tYHWnQ81kw29SL6x+za9HkH5PraPIwlJzeMg/3B3PiVtyGsFWyTA4mRonDLOuAIjP53gBnh1TCuqqM8eKXJ+TOueoPEklCqGzNzHJmvrJxKlgn1Redc9z4XPH507MCzXf8PVGrguZU75sc+GpxJwqNle1gdXxggmW/3pl2H183+OOn+746Y6f7vjpjp/u+OmOn+746T7u4/sc3/nFnwiBz4eiAM2icjFCsgkzo9ybNVGHoqMsGAKPPpxNB/HNL8EQyHBjIUayGgAXHeDaH8I8JWcgdRARzdyoExxmVLXJM806r72Dv/xskuIwenUDSsyImWGuwI+vlhQcHi/x2YfAxEhnyyluYPEGZhKyTWuPoGNiQauQh4qZOm3VZ68KseLtx7Ka7cLZczaQLLGDruus2puJkl+JfpbbM1LQtJ4XgYlKbuAMF0eOqWQ+YqNSz04SoBBGrqLm8cy0GLw9FSwXnoXNKU8fd8bYWGl9sE/MnTQlPn547DRrD10JEEbNBWVsW7RMQc/QB0p8wm9r5pALGZBTbFJVtCzlYB/FUnp7RVDHGqtmFGl/kAYoNwZaAdCzbt3aqoGkIJUAZ7XfkMKs5rVoE2OHygvYVCJVA9KbddzB6sYqHvN0BB39Sj2ratlRdSdIWL0f1g3sKUwruVT3xk7STMA+XDKrlTszi7XA8yJPoedHWDtWZ6rgEnB+fMLsndavy4OnOomJMJb3fFX0HvBmjI1D6nTknIUkXUWqOgQlbYenVS/zBowyP86SFKJSbLTHcZ6Isa4GcOYHkA8O6YjM2mU2HBE37xQH0tpIOZUg48eM08xzdQGIfHTWmmJd+3l4SzjWUsIto+lOGN2RiUvfvHH7uc9PqL1fDqnLlFxsRHC9XiWhY1Ipn5vj+wVUlT1bnz+ft7lxdG4Udmvmuzoxa7B1q3JBSXBy5PoFFsTYOD098tXzEz/44j1fvn/P1z//OV9+9Z4f/cEPWUtn98vlhU+XF3754Rd8ePnEvF65vLyy9gWrK2bCyNx7jRiUqyqpEx7f1L1NXkzgbGRZy6wK82TVwja6+12yMvEYSu4Stij5Ut0SeMWVaV0xk7CZca7AJ2BXIoLNjFMVZ3dOPhirpX9V7TOkz7NwZqq7Ya2lChCciIH3eVAGq/KzkfqWrJR3mTny7YoOcKSShbUzSGpNan+BD1d8fsLXG7ZfJVHBmSuPg4DhQc7JBMrbM+kIyqnkaWdidsK7a6flhLpLVX5bxh0/3fHTHT/d8dMdP93x0x0/3fHTfdzH9zm+84s/TBtKB+BA5spizT634B4tlTA8NohF+RRjk0kw9CbfvE1NdVhhAi9hoQrzlTiBhTENvBwCMb62wPZmJ/og6wCk5nRH1x8FVkvHqzs6UfIraObdnRuzWSUvENzJo9tPlBjaHCrPTgGemovZ7FaU63BzI12BOdgAY6W3IbXCebRXiW+S6CjQuoA612Z3N4HQ2lt+00xvyUuHkJSnK+R1T4gRcaFqPa8SSPcIajWT72DDkLl0fvZHoBnbJTbZXc+w2tfBMdw2LENphSXdZg8whjvzxtI1y2jJqite2Z4XkhxgRuRoOYmex8FEO+2pgRG+FGhrkevg0wUcWgml/zbYIqTusGoxjMy7yx8UxOhuUy4QtYXK+fEGo9nsbRt2RzNqZkZYY9sO9ocBsRk4Ys7XesM4C+jPouqKAmkH3C5LlzRLiVBZ/06T9MEztR27bN7dWTf/o07iigZp3vuxOolwsloyheEZGPJCWbnAh9grKywCrwCWUrhKJicsBrWKwQPrbbD2RfjBuoP1nMkbJDsxVKIWDSarmd2DNJZljFHWFQBLQAVT58Gy6n3RANL0+WncWO3DWB4E8veceMiLJ7PaNF/rxlo/cAC2A8ABpPln5pdmjKHZzU42qz1NuuNgxEnVAEd1TqlzGuZYJbWSXMdntBShJRTyOfLejn7zp9HnCvx23sacO2MYq2Yn053QV92qHToN17UelTktU6tsbybQoXCcrejZJcjfpZyxBRHOw+MDj0/PfPnle95/+Z7HxwcexuC6rrxdL3x4+Zavr9/yL/+/f8bDT564vF1VHTF3JWCcCJvqpqaJpMyxMcS8ul50aI34Z1PxSri21ASTJ1cY7gJzVomnPJXMYNaOuTFO/XKkCnIqqTRJorySLYow2HJx2gbD5CFzHtGdLkdXAyRWSyKSXKRvLBNTXgbV+8oPTyBXWqqESfEq7bgfVSBYJbSkcauFzVdGXam8ULkTvFBrp3IqSdyn9vuqWwUX7sx0ihNVxTCdZ9UJN+2J47k3ay4J3uw1smUIKHMhy3q9HU7v9/G9jzt+uuOnO36646c7frrjpzt+uuOn+7iP73H8LV78IZzQQVzsSNwOLSqoXwtCKrfvjkghU9pqXxp9f1Ilb5AYKvFeJSZa5b46qFSBrUPZDbLNjo1Ajbi9AZiBDf07VoNMOrAOXU8cXhIlJrPUYj07Ossol8YDRylw80TLGNbSBXOmt0xHaLPbuOuQEevGjclWGbEORP2MJBLhmouIwaql+17WHhMbmNgPAS8xkm6wjfGZnUY+IJb6zIMfK/S9UF1OfrBY7VmBo07nA3LDmgUDp+YiTbIaqsviczV4Hpi12bYpWVm5s3wgE1sFFwFWmFUNqhD4rSHpCMXMS8tQxCiXFcPtxhphN1IGtwE4XhtegqdhLRdIF09qgXdCIRAqIIopOaBBtBjD9igCzU9NsCTK2yImYDYcsQ3oxMFXIzmDlg1ZDKoG6lqYNDqT7045xsbhOZJY25s4FA3IZdKt0o2Tbtg+g6xbtUh3aFtz4iGZg5ICPetEVRSOWOZMI2LDbMjnolTRoVaPA6vJer1w8hMVCoC2DGdwXW0kTspAORMrPzCaAqmL2dU9cuBr4PMzHJ2k2urrulWxZAuq/JZIylRej6WsBGpa5hGxqYpCh4vYzq4Qyabtj4SYTo4ri0OqdsT/KtUaHPOmRUav86486URGXlr7LSFjHdUr2t8FLTvIvkZJ3mTW7w2s5L9zyLWoktwG1z5sRnqlPHCMcZtI5WbyOTErVTQUt3PtqMAo15zqfnVX+jxwHzw/PvPu+R1fvX/HF198wenhTIzBXJPX6yu/+PZnfPiLb3l7eePydhWTjqpgRjq5vzIi5PU1ZDpt5pLfoa6bMvbvCpLj2TB17paqkMhgdMJavZ6LK3sazoYMmz93xjOMExuZO8aVDRi12AzOseEGw53RszY6GVm5ywfqkKQxcDZgygTdouepzyvytj+poHyyrHROlaHEenayujjlxJnY/orlG07CSmK+YdbgvlpalzvuknJVtbysTOeuad8utC42N9aaJJK3lBu5122+hfvzFo8P/yr5b+n7VZFxJFH23xrO7+O/43HHT3f8dMdPd/x0x093/HTHT3f8dB/38T2O797co4OwDF+XQCrB5Oi2Jv8PcrFy4gMdqM066WDQZ61aeIhBsG79fvi9mDXI6g5xt/+uLkPH+pg62AqgxHAtO4CyDFbjwBccThf6HWJsg7UM93EDq9kGsKvZJruBE8lMjIM9a5tbk/Tk+Hsxu/QvPcxshfbdlgyfzbHagONgnzLY9upDdu+5Uul71SLwlgQsGO3nU9kBO28HmygLa5a8AVFdRXhEED5Yc3KU1JuJHYINakdyow33k2asinVj/xcRUywguwIxzloD6oSTrNLhfDzLOqCwy1C4sGbj5OWQeQWSwQP7OoJHywpKzy1BjCtKZsLOLHaqHC8n29MDP9rPNwjISZjAaB3UIM0Sk8RIqNBatfZVsQWpeSoC9xPFIkOVCHNdKTOGb7rA6qQhrBmvpnelDOLwSsLUZY9OZo5qg6PT2mqmF+ivqeuiksJNM2kp6QgKfpbgFoQZc5+UFasWY5y0XtOJELCQuXIID/c6kSQn8fSWh6m71XbS0pv7oiyZ1bIIq9sapSSToTQvVdy6qx0VB6YSEw6/jirdp49fM2CuTgaPbVWfAe3B7roHjrxxZHx9gJpmPEkZY3diZ8czaCZPdQVF0Mxq//3N3Lt07+5xq1yoBoiV2aBa++zoVHecQ5Xan5K+aT8dXQip43P8thdBVSPhkt5Ad5JM6xcCfqvSqJZqrezUxgOPE56uKg/TmYANci3WlAzJ/czj43u++OKZ3/nxD/jxD7/g8eHEWjsfPn7Lrz78gl/+9Bs+ffhEzqLWIbTSvh1+Zvwai29hWBarrNeNFunOTsyDyf081+auJLqMKl3rqtn7WqBLAE5DOVAxWIyZnC3YyjiZsVnitRMswpfkaCQWASuRKbe6k7q1/HAIwipZWl350HNoO1ETOOtlQuhsT3U46A5zkxMXIt/YcsfrgnHBuWB1IdeVqrN+f+7Arrmrga8r2WtprZKhNoXNrnaxIm3iaQxcgNX07KvPO72KUdXFUubRh2GfpjZw66dTE++XPtSGpeKmZbPux/lzH9/7uOOnO36646c7frrjpzt+uuOnO366j/v4Psd3r/gj8D2xUaQ50QRbbFtr9J1kgS/GMJK9W5tv7SVTrOyDrs06Vx0Gx2DV4AvQIXqgToGKGAIomQdbDgJmzeRQN2kHiUr8u+x4Hcx5Mz9ZEj3YwaZZYUxALJ+6akUHwNEBeyJPmCLsRCRiFdKaeVryU6gpfwUDmuWoBpM+jGI0k9l4y6sB7QZsAjRcm23wBnry4zCGrgMZrlqbsKaJsbUU+4qpjFn+FkfgpP8bDomBEoOjW5cCDTTTnmJe3QfhA2yReSVtgC+89CxinFhzbyDSz4QDG7uYojxYFz1LbDLzkYgzuaoDruQ4YsOPTnwHMxnUbGmD76TN/i0deJhYyuPFTM+TcKquAlQowDM2jiVS3dErbHB48SxbkuC4PssjqWVYSwiG9RytI9I0M5c7aYXHRtmZtEFxFbAsza+qJII124+IJo9NjLZMawWejv1WKaCj9WGqXGgp0GywO4EazbBWgauj4MxkjCFJhSUwe4+m1lMzg+Eb19Q8WTgMWDaZCMirfF97TgCgGjhWm5I3aHMnb0y+VtnwgVkx14RAfiII3Ja7zo8GqPIvopO1JLYNSyRTcgXyMUJ7uVnpEHbttQzW1QpHYu0WN5IeVoNjyUbUVRN1PUtU9XAQ+ofEpeTvU8gzK301W9xyHKsbs62k+0jS7eDCkXRHn5cNKFQII9nG0dETU0oSTid/oXnq5zwY1JSNdM7Ax2AbJx7CeffVM09Pj3z11Xu++uKZssV1Xvj0+saf/Pm/5Oe//BWX1511ac+iMTifz4RBecuhTOb5c13buNxu50KeuMk7WIAJEsXYWEteZGNTB9HZ3jTWLxFUlOMy9c5JkIwBmyVnigcrBsXJEhtgpaomef5Us7mSSTnOpJSc19SZYQL+WUclgebUmpVeXpTtwIUwdTr1XGxRDPuGrd442c7ghY0LUZKw6OXGZGWyGCRb+xEVlZ+UtBisTpjoBCZL1xc2lBy1R1h0FY9eZ6QSsGV4qdJArH92Ep23fbY5zLU4mhKstajuaqhEqOWex3rLjgkY2B24/vaMO36646c7frrjpzt+uuOnO36646f7uI/vb/wtXvyJWxOgzG5xrhJl6w0VcgimMqlmZsTidon3aE+Lw1OmA3gtMc6UMAF2sNNdbm2BmTrCFROzocBZgJnKdQW9hFvnYvgmRof9FmAO4NZRp0FsH+Z9j1VJxIkyY+47Eabq9cxmpCQHYe0NCLq83bgBSW/JQl5TR78VNYty2gPBm/E6vDCCVckwMfefu8sJZOpGBRKKZvNSoKoc+XMjYB/hkiU0swElz52jgxu/5hdBHZhWicNBB9aCms2obhx2G/II6us+gIxdYLyS6zPz6s0QVzM5gjKJpUCFIRBQ1iX9Xb5OP4tjvUV05UIuPUMvip3F4qjClopAoC1zYT1PAnqaNmigAYC8TW6e6c1GmocSH5TEFJI7uQ22gcxzSxIfsbIplr7XlJthdBVDZyUz142N9VJiJ/NkrTsBk6FHYM5KXfdaDZzdWSmJg1WXphf4CMKKte+UHV4snZyU2Os4HfImsccezp5KvKhq6YoAyjZOYtsNZqrr39RdCNA2IMtSwgSHTKoTIXfFyLU4ur+Fh/ZAttnvwcofgJDg6MGICbgepQoyVU8xqULFSuhSz/3wcBH4bO8ZZSO3Un51hdR+9gaL3ACmusppv1tvA33NXfIU6gCiAkXaKJ0xl+7rZv586453SCAO8NRJcSfgx3M6/LG0/KbAL/rZSj1nJfXBdnrkfHrk+eGJx8cH3j09cDoPzueBhbG8mHOy74ufffgF/81f/CkfP33i+nLV/Ayt/TEG/iBvqDDXPZQ6avbGYMSgYklWWNWs89HFU9+TFoQFoW2mk8yDU6/hcd7Y0tg8cRYn4OQQTKwrAGTd47dkd6ISDofuVClGtkpypTDJp3DXGeAw2T6f+VVUd8uMvGK7EWsSvDDyjRHGuS6M8Q0nh7OfiPlG4CyccnUH1eY6PHVAHDa9T3UeVC5mV35I9oh8ylaSEfQ2uCVTle3Dk72O23dqLUlmbqDTTElqg9aqwkv7w+SQ3z5c2ZUSmpdahU1VFkSlKhykvWPmhfv4bRl3/HTHT3f8dMdPd/x0x093/HTHT/dxH9/f+O5S3wEKP83FNKOoczwZMSQb6Xbyluq2pA5yMqNV3JDE5fCjEZAxsaKNRtKuVINWI27BQXIVASN1BuoT9whSarOEmw4Cb2B7eFuo7Jw+CPIGkhXLowGCgHDSeoPa++vqxOUEtUwyEUcsiTUNagoSR+m62JTV5rZtvG2JMRusBYrWXXJtAjMyGz7AlYMnlUvAx6LZXRfw6FlaIiu5dVUy70Nx4cMkDzJJadY+O1Ak7gLkh1eGrDt0LeFKOjLF9jtG5ht0FzCrJNy45M7qe6R0reHOWgV+wjhK2TV/huQdTIEoBaokvD4DzV53qxQ0vefWzQiTrKIKAZ86lsHhjSH5gTX4UMc5gfGwIr0/qyU/8tbY8CN9qYnZwnxJmuX0fOt+w5y5FuSUeTViOwWGrnS+oM9r74uDZU3mDRjj47aGdP1JVjJCkogD4AjMrk6MipXXZsALPBrQfvZdyRJjK0Bv6nDVe8I4gOEif81D5Ui8JP0I5gLrpFSsrNYAhbwzTL5MGA3eZSZ/MNhKEARCxKTp/s21AsRM9961avCgE8HcCRMYEND/Nf+kI6g3qwolkGsHgG2QWVANzrklFcZKsCVm0H30PKM1QqKuf+qkKAb08LiqZiaP79WZQzUgvSVIWieHvOVzxciNw+691h0KSXIle+5YBY+PDzw+/oAffPUVP/jyS56fToyAT/OTTKNfP/BXv/zE5e3Kvu/wluRan31vhhLF7bTpmPZUJ9CW4YVZg2VjhFhX7HOVivYNAmmsZs8lSwsLHk6DpwHDJudMzqeN4XIMi7UIdowhIIjWhSQ1UOY9FS2zuwE0I2zrTeMsb4FTg/4VTq4pn6Y1sTU5Xz7A9YJdXjnNV2x/hf2CzZ2oBeuC+U54scWJZcUa8AJctkHaglh9Ag88niiLfraSCFmbiy8zypaY40rcNqqm4kRdxaqn1tNcUw0abAissrTWFfqonHqZ0V5nh3n90cWVWlp7S3My86oqDB12ek3i3t1daZb7eAGRksgEHW+OlwD38X2PO36646c7frrjpzt+uuOnO36646f7uI/vc3znF39W2sBeCogpSEnmtUHStQGNGKHAsCXGxh1qFSyV2+ZcWDgRHUDZWWvhdvjWWAdzlfFXFsYgQl4x2uQT+Ygo4GTqIoWdj6AoI+XmP/TvlGeJ+9aAcpAs1lwMRh8AB8tj1NpFFqNS6aPLlYfkNIJj+qdKQVTgyxkjmilLViVhgVV0EFz6zNDBPraT7p9dIKIOhiz7ANQB2w4ugDfzWkj5kzfABDK4xgW462AdO3iqSdpi1VXzYzJfFYu1Y74Yp8G8TrKuDVkFGnwcc1CMbYjZMRm6hgVk9JwvscBR7ZEi9kml7qHDP1WV4C4vFNIZocO/mp21A9ikvCjkxTAFhKzZnnIwJ63Z1O4emEA4CpLHfGJ4B5VKsW1GUBl9Le07YoX5aOnIvMlXMhdWwRYu2U4oQVodjCVTcGYDQCsX6Kwket61ZOWzVCmmds6rOrd1ihDdUOoANkeHQDPYhpKGzKL8AGpCiOuipMRCYE2MV0mGkkauIsw4KhZsc3yVJBNDLPuak8vrBXOBoMzsNZNQ6sR1JGmYAF327zfq874wbpIDT2dVkSWwbGYMs66eoD2MGniWsXKpesSdNHQ+NPDKTHWEs8RCbHb3mKPKOLoP1gG6G9B/BveSqAhAtiyCxdhMwAHvPSSpSCKwupbmvjeonqtZV5eI3bUGxBKVAA3g1NXOkMF7m2ov53x64v0XT/zu7/wu799/yfO5mFx5m6/87Ou/5L/+i6/58OGVt8vCa/LgweYnpWabQHD41lVABizCJTOT2mywxVkm2z5VVRIDr8QqOfvGKQZbDN49veP5+T1jO3yRFpsXX21vnFjYPskp/yfqwtuulwf7XOQEbLD2ndWeQYaAFWWEB8tmSxSdVcff6/RMGfJgtYiZ6uo3L9j+NeP6Srx8Q+zfUvtHMi/49a3PG7HZmSWwSDBMVRdlDhZc6gPBSTLL7C6Mw8AX14JcO8OvYPIuiu2Jt2bA3fVSwDxUAZCl7nEFNoyiZWo28Dq3VDCYU00Utk2VKpV0Vc3OtIRwdVgtVVipO2t3Ss2pCqKuLsGm1vQyyNAZ1T5WZopFNEg+b0a2/CjX/K7h/T5+w+OOn+746Y6f7vjpjp/u+OmOn+746T7u4/sc3/nFX+1JDAViUhKJqsSCZoMOKcjBStIgCJahMuP2oTnK+8WEwhZDJba5mjm2fuN/yD7oICKgRwORaCYtUx3tjk5Uvy7tOMQHVTDoTlAUqyAP5ioc20yeGHWUvys4yufiMFUGsSyHgW7/TVWXcqdY0pJvwo3BzsKimm0Ti2ggFodFceXWst1pnwjdSzUzL3mOmIu1FNA9rPmwCamSd7UwFziOkKfJYdprPRvVwEHEXoqRciUYCcyS347FkHTAG0SagH7VDrWzr8X5/NSARUxp+PaZsQqjasdcpf3U0DVS5K4gjl+BluaUq4Tb9bwqwUOJhaJgkBnUGlg5ZWISvWUW3qBPj2WB647nYUBNdYIjEHywoUpyYK3Sz1uDkNzEmvmEWjjy2uAARSLoGbERtSsYG8wF52ZD6XktKyZLwcS1DyyP4GQCwgk3SZUJUFm50oaQvCLzSk6V6Cew9kVsA0xl/mMouZlVQHd5DGdOrY8Rm6Q/tOQlnJxX3c9S9cKsbIP27trVe11GzlA1BBO7tH7YEGAvMWVae1rPc6YqV7RIBAI/Z1gy1O20MpEn0jYGc194g+tDhmMG+5oMVxKbDebLvL09hh4IkjQcMrJM+uuHFCXlq1Sd0KXW/1oC0av3pzfInWvqjMDY96vWqh2ynTaXPtjY0t3kwZ5X73kzYgyeHp95//yer774kvdfvGN7dl72b/n46Zf8i7/4F/zimzc+fnhj7XAeG8OCU2x86QMbJ1S30mdHy4CKhYcx52TbBoXpmnGBQQznxOZwDuf58Yn3X37Fl198xZdf/YD3779kOz9yejiLRS/HTex98Uq9/Bl8+hnzm6+5viyul2K/aL0slmRq6zj/N7KTU26yLnXWq+4kd6pF1CTqAvNCzVdsvmKvH7HXb6m3D/jbC3ZdqjSZ+sfDseEsKzKCYHRlgTerHJjt2Boy9K+9JZCP1HD2ehXIa/NvK2cjWNlyQzkAUflKLKgK+dCsSfqVlasTLKdSe1hymt6N9arKLJxydW18JfF+yVIWVOvnPBzPa5/HpZhHduIEbttNmrPWYgxXEk4SsTiH47bJN2v1XK6rPnO+kvsLdf30XcP7ffyGxx0/3fHTHT/d8dMdP93x0x0/3fHTfdzH9zm+e8WfL8k4MIgBtVMuYOf12XvGsZvPBG4UQwDk6MRkYquhqNlylRFAgxpLqo5OYUnmjlngQyX3Zc1kW+HLmXnBg2YvxCobSdpsDxRTgEpDneyOAw11E0sgFZzX4cXQ0gR5WaDgZi1Bab8MlQ4rmJkbeFG28Chs0eX4LZVoJqlK7JaAgA70LKMqCDsaqpcMkzMESH22D5B8XMzF/n0u9RfDihnVpdVUS0yWuhYJdDV7FNHIoT7fYzlZV/mUYISdWqbgXQXQKLJSvHjJFvrwGHFvrwRbZEVLPrzZXbV2t1tr92aSsj1LjiAAuBczJVlRJXtgNW4APxngG+5LHfBMkqjVJemeYuqlGggCzY2VCazaEsCw0aBQbHe2DMG68sFCXcysglUXJSY4hXxfrJlZt0lay5eqMFY/I2vT38ZRVqzKDlCSrmQalp1cCAkjo1n9vDpbCcg2GdvVHwL1WGBVREBOlb2HD5XTW1c6ABWGpTWo31SdQHsJEeRceC6Ypg5pw4k4Q7PtdMJS0MbJkqioSZnuYxu6f7oKgC7jcA/tizr2LHhNyBLArqJC9x7N0JUd3ikt8XBvuZcAJpbseWVfSuaylGi4JcOCqiDNcXc8NlUn1GLbTJUTHjw8DLbTSWztOLGNQYzR8jTdmzWTuKaAyczU+l7AaiPnlNwtiwZIkoNZSIZyPp94ejrz7nnj+fzA4+MD6ZNvL9/y4cMv+cm/+hd8/PTC66XItWMZbNvGczwSm5Etj6sqyjVPA2vPFLGW1kC8lpKKuQtkn9x5HIOHkXzxcOb903ve//jM+x/8Ief3v8/T03uZqeO4C2g7nfhTvca0Niuduhq1B2s6MxfT3kgf7GuxbFHDyV37YhS4T7YhxnuLJMYbHlfCii0nkS94vZBvL+TrovJKxRvzNNkpKh5YMdXRrpK1m0Asu9aKCQ47k1xG2IOS+9XnQhSWLROzJakOQ5KYSr376LYFqnDaW9oGeyUZAubURmQIHHZwmKUKkpW91F0VNUlgiV6MrEOqA8bUixczFsc5dCUKVM3g+NjwUHVObIP0ndN2ZcvkERgVWC1GvuHrCuuCrwn7BfYd1kkG6iQWSwbza//OQOA+frPjjp/u+OmOn+746Y6fuOOnO36646f7uI/vcXznF3+57WKPKzCbYtpSbKoAk8riK1yMQPtflKmc+jDFBflOEKNbmScy7TUynVWLbfhNs+8xWCZmWaeNpAaZ6i43tjNqC263wJ/duU2Qq82S28D5Og/m3cglwJstvSivPujA2Nq89Ep5cpPBoKC0aEDV5cViRwPyKka3vXWqpT0yKCjKFyUNicCGbRCDuU82H5A77psYYgQqqUX5xCLaM2ODUsvzA6SKwWqmrmUdHgnd0YvaoAZUNAhYffjbzbtnjMFlgSdYeHst+OdEBAWmOthGZJI6p4nZx6CBh77BUSez1KFc1p3zFEywUgm3hxhRkrHpz3AA20T86ID+HZl1kxFEGMsns4qIE2qA2Kx41q3D1rH8sgrPgqHPuhkbkwiRKUEBMEsorbMYQ14om5M58QKrYrhRLdNyfyBzso1iroJwySlq9FoSwKhjZZrW7Cox/mXW7eUlZSr0TEGyLmVMvZZS1RHe0gmZUJ8gryRFbBsrxdrX8XNZTRRXVz9o7c4YbBWkO75gpvbCAdDFUuvfEsAsViZjBl7Fqp0MJYXDDMJIz072EivDV5ulN4iXF4yBQ5SS36hgUsyr+u5hxmEUPE6PYnzHxuN25vnhkYfTxuP5xLvnZ2IbuAdjDLYTuKekWqbswVldQbLJsydgceF63ZlT8ixJaRL3J9xgDGcM8OGYG6OeMaKTz+qqE3luGa777mqcKli1c90/8Mtvfsaff/PKz//VJ95e3qjrYrMHaiwsjI1BbJvM5kmBfYdBQMrJak4XiPeuSlmLLRxbxVM4mydfbMGzF+9PG89Pzvsn5+kxGc/v8K9+RP3wK9z/dSqfiX6xoExXa32118/yImuH3Dld/5p6+5p5eWHNyTp8f1aR84pdf875OnmI5OHdK9tj4OMB8yvuqZiRC7cXKgrLDXJ2TAhieyaeEtYrdhnU1VnXEFC+7lS+su9v2ApqJft+0TytEyTUXMzSyw0BQGNfS+fiSGDHo6CipR7VCSuYDSYTNR1Qop4JUV1a0TI1xRJnIa+1TNojRi8KVup8sVS3zL2rUrwg+ve1uhCPxMbqypdgnB6wYXgmp7ril4+cLjubXQm/EnmVc1YIhHsWTEk7rV8f1EzFm71gOFKoOPjpu4b3+/gNjzt+uuMnuOOnO36646c7frrjpzt+uo/7+P7Gd5f6VnXJt/wixhEQGzTRbOcqlU1nHbCRPlQMi2KldPOZySLFgmVSXEmX+a/MVK0Z45KMYE4iG/wYDAsyFDTFAAt0KMgq3Jo5Rxe2o7ycAXjJJ4fPkg0BzUl5G2bnhJYt2BGADYGnbGPZEkCsSrG8seFprLogM5YDr2azJ2Il6bJqurx7bEcXJPrwXFQ64e0VMZJkAkalunmZORHd4a3EFNYSEKVZmcPXxRg6WPUwGpaJrVWJtdjFfRfgBuQfY818U+3doiusw6x4RBsmAxUtVSgOYOQe8ppo0JspxrgqObkxZwncMlRdUJNcB3hoV5xs+tNkYK4KgSBIyTFKAG6tgoP9VJYihrdSZevpZLeJDxvse8qLw4GWsmSDbDMagEzcu9qilFypoqIdmsoaCybmA5r9M3ZVUBBsm7PqyioYnJi2mDUZ7lgWOae8iVquZR3lZIYeZCrx2udFLLlrD/hREZLViYczrzvhYl5rJjcT5a7+kJxEz1Ks+YLs7lijYE6GG5/CWa6yfetFbLeTQAypueMjqEw8i8jODBoPCfMbXkOSGtvJgxH1gDxkDMFiYDZ4OJ/44fmBp+3M48Mj7x4feXwcnDbj/DTImqzaWUtr/u3yxsvrN/zsw8+4rsVlT677zlxTLG5K+nT46LgZc5fxcGahDeO9vj/PUXWS6V1RgXmDcojthLuRdYVSdz33fhYGFvFZ0rA6V1jqGPZwPvEQj8ohY7HKiZYiVSXTJsMCy2JksPmmZGkMzr7zMIznbfDFyRlc8LpyzsV5kxHxGAsCxgm2eGBsxQrH68q4vmIfN+rxr7HT72LriZVKrmotyjYwb4XfTvAC118wf/EXzJ/9V+zffGD/+htefvHnrNevmR+ujPmRxwie3m08/HAj7IHMM+PxR5Sf9Zw7+cQhZ0G+3IzKddoFGUn5ho8znBYxF5Ybth5gPXFuY3lyJ+fSvGbBNHJPyCvkEoO8gkdOzNnJ2VqKJ+1jU5TY/XIYo6t/FmlioIMhKaDBrCtVikWem4zMc7LoOHYYSbd8c6VhtdhQwi/Zos6Ngb4v5sQvO6ypup5axLoQqf8eYcRQJYcPY4ReMlBX4mTM3PECT8fihNnGChdbbYVVwtHIIP27hvf7+A2PO36646c7frrjpzt+uuOnO36646f7uI/vc3z3rr616Q15OcVOugDQCLTx14JoQIWCktGMkVWzwA12HZyDdTwCQxGe1CrCo0veBSq9S929mYYbp2jq0BUh0Hb4n7i5PheV2nseoI0biHXXdfdLf7GDB4vWZqoKur8GJm5MZlG5Y6h7WX+wDox8BVsNDLixweo0t26MlrX3jnmReWlmeUdeLwWusuZCAbc6GLpvDbRlKG1MgT93ARb7HBCqDFIAW8SzSulXd7BSw67oeRZL4y7zYTMTkPXDjFgJhvsGuZiZbEMHuNnq+ZdxKjlVXp/Z3gsNZqXx0WFvpq5j/XetTRFQPyRPnYgcUPuYfz2wvDGorGDz0QmLviaQD5iLqUKselaowsKRfCTXzST56ITorg5cZVPADpSkmHxnHK3PA6LLqLzImoRLdkADd913s07mjJgyPC8nukoDkqWiCW5t6dfe0i6nCMJ7BloydCRExZFQlMzbm+mvZsoq5Q8UfiQHzc4d7H8ZmTuES1qzPZJlTHq96ME3+NOzCVxzuYpVi4ho+caS30cGHg9swxkn52HbeIyN7TTYToPT+cS2BdvYiHCc6EQ4ueaFfS0+zY/8/PJL3r69cLns7HNyXVNGyFnItN6UyFAi9ED+Ur1wBEZHP1NJGEY4I5ScRMu/EvnoYErQy1wJYXZVSYTATLUxNYCdRPim6awySenCBmsWJx/Y5pglXouqQVaQtrCW1VjRvRA1z88j2CwZVjw4nPKNE8UWF8IXYYNRO3YBC61ZTieuLJl2V6kT55wkb1wuScxHtutH1rU47W/4/kvs3a/g/Dtgj1QWkR95W8nl008YX/+S9fGn8PM/5u1nP8H/+huu33zL/qmw68TX4mxBrCvlxR7Bh0/PXOYDj3NxfjqTzx/whzc4nSVDNIm4rGQ+bSRV3v/k7b1H5t5Mslj59F3PN9p7qAY+tpaXtX9NTiwfxV4XrPmmiqZdZ0NO+dFUJ1KS9ShGJM6a8u6aNYl0SZ/2SeUiSJ2BC/k3zSTWZMxrG0tns9+myie7EiuJ2eeUd0ypHeo4xSTks1WSNYYquGL0vvLEUUfSqoLVZ2GcJYEyV7J7NFZYpcYPJYlUzV1eY+7yRb+P34pxx093/HTHT3f8dMdPd/x0x093/HQf9/F9jr9FxZ+xxUmbybuDzhgCqFakpcrnLchmgdWlS6B1rWKLgfmGkXjtgKQKYYPKKYDSrFfmZ2ASuQkI2pIfQC3KBIqK1KFoMikFsVnhkjaslccN4G4MEyPrLl+NPSc+BpZLaoWy9kwZGI6b/F1A1cZGe1WUOq/J/2WT/0sBXMXCm+Qm6tTXWArvzzrAhiQZqy74UCerNSdZAkNivXd9BgKWFg2gq8BmgwrXTA1dw+F/o5CezeijpGNBeKjTGdyCXbUEqBALiRtjDKgGp9WBICcjhoybq/t3tYeLM7A0bq3om2yWQknsXq5qX41FocO/Sr49bpI0HUmHoaTnmGtPI+tg42X6fIAwb9Pzz7Idw7wNhPtzNYWNhkOSCxlvf05IQMw6lYxxeCbJO0JykBCYdCUz6khWnUT0Z/tJvkiWDbIGMsHeCSY+OoFqIDhXqktYypMpD/PoXnjaC9HXiGREyHQ4V92Y6bUmR1c9N+TJ0my1EqP20EH+MGGBuZO2JO8aujdsI4lmtz/vHc1TyWw+k2ECGfvKBm3Bl+/e8Xs//jE//OIdpw3KLmQtXq7JZb9ymZ+4rE9cr1eBgt257sV+VcK2qn2KSr5FdFHMzEWMgWexeUjOFS2Rq4W7GGbrCotMXbMSxuOsaXDfnfWyQTyrmEtzRct1MBi6ebGQ4cw+SvS5AysBMk8Bhy02qGIrYyuYlUw3VjrDgpHFg8FW8Fw7G1eeArYNrDY2LwaLQtUyPk5KYm2ycijJ7a6Gh3+Qzx0qWVZMK2I7cXVjzGTwxjglZp/Y588Ybw4/e2PVL1mXN/KbC5f9G/7FN7/i5xeYf/VX/NP1QCxn7Qtsx3fHyzh7kWykbeyWMIYkZ7Woyyvzm8XF1cHzvN4T8wQPO8RJ/1CSqZXr3LKECqquMmkHzHZYOn9lvC2QCWewK5aL7O+tukKeIIcqjQCzwfBTg7hOYsJw27B1lZSoNtYEW5J8pYEzybmTnRiVTbhMfCXXeWWtnet+YZ+7EvRZVE3cg/Czfp9ducROWOlFSnZimbtSkyoI7Wk3I06qyAkPHCNMiayPpGxRVjjJ0FZjpZG7vLPCB5l0Um1Qi4tdyeqkDHXKHHGXqvy2jDt+uuOnO36646c7frrjpzt+uuOn+7iP73N85xd/MyfGDgVx82KQ30p1ENVbdARgfRCuMn3QzxxsYLZXxuajy9dN5dxRpLkA0QCqiNJhl4hdroN1HtHMd/sD0Ma+zXiuavjjweGr0aQ1mSVZQEX7vqhE20vmopmLYv/MNFuSQrWAwJ6NBpI2sAqZdJuBbzK0reAw9RWgOWB4swsNygTYvNnBQfjAacbdoxnxZgibBfZAJclFf1ZgbMx6a48aoGaDvl0Q0DdqyRfBAXWD68Qg4nPgzsKavdPsJqP9WcwO7xT5yEQNctLA0SgXo2fVXjmGAGvLABzUWaqR/BihUnNLJBCaMmtOlX4fVQkVvcoq8ZQ855AHZC3SJLdQwtPeOy3ZWFbyz7HFMkksZubNpyfClB/cJEv92f1MBAI3AYiCcGeu1YAYJPVZhCGPpLJOemCuN9w23B4E0u2tPXqC2XIUG844PCpw9kz2KeA9V4ndjGBNa5kTHbgPU+Ze99VSqpZkZHUnPwM7he6Z9p0x+Q/JjFnVEWoiZsy3nevzwP3cwVlmxFaSVXmI5zWHi0v28e78yN/70e/x+z/8EWODX336mp/87L/hlx9feb0kmQquVvKjCQvCjG0Mdn/TdSO/HPMgysUgxrF/4BS9xqLAkllXsckekAszSYVW++7I81s+V8eHxAidI6UzoExyIaPXSGcKNrzlLqpOkMcUYFciBmHBWvOWdFtA1mSLINfOaTM2jEdLnmrxOCZb7TyMYGOAF8Vbn2uDik3PuhbVzLs3A25DBvbaQ/JAIYLJlFcNZzYrHsfOOV5w3jhvRURyqlfGvFK//AiXK3x9Yf92Mr/9FZ/2xPONf/XXr/wHf16cf+f3+Is/e4Z/cOV//qNiH4PKCzVUXYGfoZPFytEyJ6e4QBr5IiP3uS94Z+TlCX+a+MMrsQVWQbIdBzDKsB1fTnIlO8G33LGcWC6dz+lCe3WBesNL1SFeBflJiVicqNwkk1xDezkchmNsOp+mI1+kZBuLnFdyv7CtHdtfsP2F2iesgF0VWHMlkUp2LS/4MrIGFVdVDFC97tRU4Pmo7HG9T8g92XAwNXNwD52LzXSffBCUEoROsoYHDKM2x+1BTRUuV7a8QtFm6Is6JIIJWgU6e8qCaYERrO3hu4b3+/gNjzt+uuOnO36646c7frrjpzt+uuOn+7iP73N85xd/D9vpMwO5Jt6SD0kjHOwoG1dHOAAyGqQshgF92I+OA6sUvAeBB5TLIPTwhKExhcttE/NFH3kKzLv8SsR2gMfSz5X4Uy/IvFKxPoNZC2KB9QFoVriJoU0LsdK28LFQVzwZz7oNWG3S4wJ8y0NAee1EBGaDVTLfFeMovxlIrP0mCogQU50pEJwdOD3OZO3NxkxhRwQaM9+I2KglUKfEoSnNEqixFTiJ2uIJII/YWPsOMQX2l0qzDUeYrZi5s3Lq05pdP4yEK6XzqTqY0aJqh6gGTsE1SwlEvjXoLcyDtCKq5PFKkXXtSgEn84Faj1QNIpJCbBfzAKyJ1EqLGEnWzjbO0FdfdqJsh7kT4eS6IkVTd2rb3xh21nPAWEuz6bWII9nyUHJiAVOAp0LyCyUiwapX3BeS2OxUzu5+NqEBcXHVxOXW3RH1NTdTwlbXDtYBY8j3qMTIDTTHZZLKhDtxGlDGnFPeEzt4OetY9yUp0uryfDGt1dUDhwRIciwx090BzrQ3bl0OW2ZEOF7BvBa+OePxCS/5nqxVYrFRgmUtH5tlvHt6x7/2e1/w+7/znp99+MQ//6s/5ptvPzIvO2EbEcE5AsKwFJhX90Kt1xVaW6srLLRQdG/eVRojjJlKwkyov59ZB+4qGSCjJE2KK791ymwNlQAmYhHNlQFLwtNSrN5H1QnviEDm5jJFDheTOsKJLJ4xzkzOTB4cHk/qtnZy4+SOMXvtDQojXZKZuSblRjG6EsLImtor/TulcShyXCiSB4ytdsw/scUbmy1OLE6h3+ejcF94XFEXR0mw2Ddqym+rdihcPjDP7+DtFft04mffGH/9zbfY/CU//7jzy28esB8paTGecT6ybGI5WPvE6qQzorriJNUNtObisi5UA9Kai7GcbR/UOGMbwJVaG8ZoE/mTCm5Q0pzZ3eKqugqmz2C/6mzKC1ZLyWEieeTTe9bzj1nlbJVYHfHnwtpf4fUVu04sX8j9FeYb1MJXwQqKuFU+lY+2LVJF0BiDnFfcFrEtamzMaaqmWALxS5sTw+XBU7DmBWy1of0Jy2Ib55YLXgmKs5+wuhKDrroxxlAFACvZxomyE9nnDN6ylFo6R5aqR8R7w6wJUfhRVUO2Ofd9/DaMO36646c7frrjpzt+uuOnO36646f7uI/vc/ytmnvQprjVNbdlBitvPiyKnJIOUAfEAHG2iTpvKViZw0oZRBPNlJYCdiIWTZEGjg53FkDuCsqILT5Yw0xJNgqDumKcyYLypVLmGlRas5ttJFsF+dn5xGOjpjoz1dqxgIqFXAKcNQV6VqYOc4/2w5F3iNXC6gE3dRSTEXf2oYvMla104Dd7SDnj0JLUYuZVIN6KWii4eYi9yyLCu9U5LduBtKUjrP116mjD3gd5xGDJUlX+BbULZ1XKnLnndl4m5meKYq3J2EKSCHNGBHNd9RxQybyxk+ZgS4HODJb8Mqjqeda9eQwZghcyNVb/MaqmuoR5d8cDqgOWIWNmWzKgtmENRCZlzmInogOdaxn1hHz2Rqr2VsGB6EqCakscGdjCEoON5EqWhcchfJJvxWdGW8y0fG8OHx5Ja9za7NbEkmWqE5apKh5I+YrcvFUOEOYktM+IpEgxQgC8zuyuazIrSa+W/KLMk2VLQJgG08yudDCuK4nhN28i631Vq72Y0PriWswhI/fY4fzwqM/MNghHgC7cWVnUhH/8D/8Bv/ujL/iLX/wl/8l/+cd8/HS9JUMR262CgNJaaload2Px+cyw0j44OhkKRC629o9ZmT13qoSoLLYIKlf7MhnLVG0SMZhtDJ9mVLVnkhdlS8ddDjYLVnVXsVRipfMlOkm88HB1zl78zpcOby88rMF5FKd4ZbNiwzv56L1gjvkQALNipljmhSQytiDDWEPJhbosGmk7VRc2n0QuHvKV00o2n2y5E+xsNYnYsKVEEL9Spq5k6rQmb6ayCZzav8gaxLxRc+d6eeG6v3GtK4tX3oZjzxs/+oc/5H/w/ke8fvgF/+YP4N/8u1/yzQDfv2V68mhnChnP+xjknlS9kQxiJpkLj9DZWMn6OHldv2Rbk8pnanfiNLHTwm0SuJK4WoDOZe/qCqerXmIj2ycr5yfsw99g9cZcXXWUO5ZFxcRPX2Efrvjbjr1+Q3Kh1tS5lwvapDpDKZF5gA0qdqr91QS2tYbKGzTnoto7JlOJjJVTKxkYe1dJSAqmBNNS1UaKY4nV1PzwgJeM8ocnI2CL1Z5finMj4rYnvYL19qZuqMw20JYvk7Hp/KmW8HlJkscAd3JXyYPZCfPtu4b3+/gNjzt+uuOnO36i5/2On+746Y6f7vjpjp/u4z6+j/Hdm3tYM7zRZr8GZUYMF0NxtN0uk0TjCETWnh6lg8BwWp+hg6CKLCMXbC7DXK9FtmxAcoQC1ClIX9/Umjx3LFKb10osYTg2rT01ACR9IWH4EJg1BUtHBxEkaUXuO9Hl/3NJauEerEVLEfzmv+JDAKDSuvxfJtOfYTAC2HaSlU2ZmCTk0YIXycRs08FaCTbbEwRAbHDhbYhsULMlIzTDo/mJcLGsTWCTLsPk7A57HreS5qSlDMJ1t98FIgy34VR7Iqw1JVZpdjx8Q/mBQQNaGlgXKcnLVWbP1WvALQTgU3Mptl3so65t3YClIFLeOh5mJrkSH6UrzBS7h4yisfbVWXVLDiTxQZKX9u8xy5YAGJRDytfDOGRCSqYwmiUdQDSoCa0ToayeKQHLWSpVF8Q6PIEUXFkCsyBfHzvKAbw7ovXvNtDeMe9kz1R10FIwWJwfN8BYa7EWEOret/fzpbs3VqbWionQ2k6PZC7W3AkPJqqgkCH0kvSpkvCNZfJ1Wm97J1K9Jzopc5eZeVH8u//OP+GLL77kP/rP/99crjtnggeTn5EqUaoTJFVoHJ0LM0vPQZuPLmTQXNwWb932kGOSi4QSMtxwLpRt7G0anbkIV4ewlUH4pj2fk7DSulvGdkpy7YhnNoiQ90xNvtqMd7Z48FcGyRfmnMOBHR8fqXcpf6Vyag2MouxKpgAdPsWSm3elRbWt/IO8kPyFyB1fg4d642QfiPXGqSaPfCLylUFpDboY0Uy9GAg6ieUjtWCV4xFaR5awBByrEj9B2hSweXvm48df8uHlb/jpT698+/IN/vjG+x8+8vjumf1h592/9d/jn/z3/yl/788X/9X//f+K79+wKP7EBjmcjx8uXH45eByPfPnl4osBT+uBUy0GMGtRroR4WqoKaE+CN9Ig88K4bJweHhhn+cUYe1dWqIMjY5JjwqbzpJaSsNEVDPbxF9THv4Gtk98qPBdlIWnTp59Tb3+BVbAs8HL5aXnHnSH5Yw7tT52dgJ0IO+kQzJ2cRdam9WqS01np9823edvfhrqjzhzY2PTyYy7UgxKZXdfWe3/JpHw4bsUIw8OJALPERtyqJULGZlSmpGCl6oqZixEyw5+HL1d3qzQGNy8q31nmePs2kYtcl+8Y3e/jNz3u+OmOn+746Y6f7vjpjp/u+OmOn+7jPr7P8beo+Ju0m4PYTkQqTyC8pRKYNnKZGO2S4aybmAJBBXkr5BKTGsjIE1uYlVgJby8NF5NVsWMWlGezuM6IDdvki6BucjKbXmsRNVDnoxKwYZOkoMTwbmOwcrFSjK5Mq42J2MRFynzWDNb4XPbuCSNYqxipoEgJQ826UDMxOyuoVLc8R/+YHSxyd7sC+ahYsa/Vh9787AXicHSwi9iow8S52WkxrdVgSSAg7Sq2GlUN2EC/v9uSuzu5t3TEgqP7lpl8M2IcndmsfWmWPEBKFQFjOOZLn7sWZkul2iwZXM+FoLbKyGUADG5i6g2TJMaj10ndWBqBQrE6mW0c7C7j8NB6oaq9YZxymYfLEyahWdUiBVYiyNwxS7GeLLK7/pn1M+GoGujrcL+1oteEhUxsUcCp3MVQWbFq/wxkS8DKxrFoE3ziiAG1EFPtN2nM8Tu5yb0MJ5cqIsy9g5Hhucs43Tfcjc0dBsx1YazAM7iuHZljb4w4y6Qb725VJd+LkmxGnkdLPjthVE5mDLyMt/3K0+MDl+uFOGX7PKk6Iq+T3Cd/9Ed/xHZ65D/8f/5HnB4HJ5dUZJ99vXh75CgZ8JCPjZcR7r0vuM1HP4CuTDlSKCPD8ARfMryn90P4I7YnTyOomRDBKie3Np9GMgLKGFvhPnmw5GyLsxtPljxG8uCTJ5ec5PF0FlDo3z6tJDHzwJYgyTXBtgV2hQzSHB8Lm8B6oOyN8l8R152neWFbX7OtK16/wOIjI75iC2NYgT9h7tSU1KGYzDRgY3OUoJkOF/Hhi1OeyFClTM1QdYTJWJypZGBOw6KY1+SP/4v/guvll+xx5esPJ+rxifO7L/g4k198uvLu8Xeplze+qsm5nGknYnvoBgQ7lg+4DX5+fWO/vvCD01f8zvOF8+Ub3teVL54G2wyyTGy1b+Se5EwWG7xc4eGVeAB7HMR5YzwIVFmdO1Gd1AC44p30W6HOetXnWgO/ImTmXlclovmAXS9d2fIsn7C5uDXZbKmcKoOcsRxWcZjUE0Vx4ag6IR2LPgfCdQ6/7UiVZ8zprH1Sc7Gm4Xki8oHFZK3Vsshs0Ft4aG9HlOQoFOElQ2u1mKTal8bdurpp4cNURbWg2BgxyJLXW2zWcWC1bFGySBr8Wr8cccDGzsp7W7rflnHHT3f8dMdPd/x0x093/HTHT3f8dB/38X2Ov53U11DprcmM8wAjfoCGSgXmLvs31+GbqfJgfFBMjNUlvouZKtE3FwNiocBd7M1bGdHl4FmL2AY2BQQyd4EPN5Xy18GGieWuNlSWhEWdz1jtDbPgIIeL1vIfXahwsGClyvOP9udmzlqT8BM1l4xSaePqvqfVYMioZtHesJCBtRU3sCOwbpipO1i4y0umxObJXHhweBJ0AYBYwBv6EdsprxG61b2YFbeSJ06hwN9VBd5ss+Q1OtTnlLdPuQkklVGhCCD/EOPo4gVDHig1oE5QmwxkkRdIhpIDsSrZcgKBSZkAH93GGmSWjKU1HXkzdtXTGc3iLNTByprx1jMz73m2YlUzwA4wBeSaJTaURCkgJu4nVk3dM5pLFUV0tUV7stSc8iipUil6V1sUkgxlNvvWUqoWdYAtEj0/G0bVjseAg02zUvVC7STRnimpOamuJNCsU+mS9riRs5l5N8k1yvAKxkrWWtRezGt3+fIljxUDD2fNlD9RVUuXIOfCPZgHYPBgejF9Ubko85vYbGbx/MUXPHz5Bf/Z/+c/58EHY3mzliXjKazXW89FS6eGK+ib6/7FQCPw7mIHqztsWUubUhOAb+MGbqMKK2ehNeAOo648xGKrxYM5zyyeNhlDP8Rk+M7D0HMfdkIoz5HTvfbAmotlkCNawkaXqHRHyVU9h4sxL4z9A1u9cppvjP0D1AvDXhj7rxj7K97m/LUWttS5ssZfgAWcHqnzexjPMuKPhOEyA09jX9p/luCIlS6DVQIiZQ6hjnci/o212sA8dcy+fbv49q++5flLeWM9DLjalTWDl4+Dt+2Zv/OHv8ef/eQT8bu/5Mt8wP0TFrteCqRzjSvLYIRxGo+cn3ZW7Hpee7DlRr4u1p7knmLxZ5L7IrjC2yvxtDhdjdN1sJ2e4OGBHFfKPynxdvDtDBGUj05WjXLX+luJryU7FpLwam+WgdXerREGZk4yqUh8uYybvZ8bBexIwiZzfjHjAoBUygC65Ot12+szsasxMiCdrdnklTA4M9NYbwtCJv2BUzYZG+0X9GuAdQiwe8eWoc4LpGm9y3S+fXJSFRs2QmcsClIRBwvu/VJjYs2CZy5WKcaFW8ejwuP8XcP7ffyGxx0/3fHTHT/d8dMdP93x0x0/3fHTfdzH9zm+84s/M5XV7u2T4mbk2hmASdsgMNUAJ5kYU3r/2sRa4izkLxEutkOlweMz+4e1ibMOH2gvCJK5rviGfFNAYNUFZjxb2lHJ7mLX3Q4UVHicBIzmAoxhA1xguKx0+ZsC7VolNncEa11xEzikBDLlC7E12zgpW6TJk2WVvo8u719l2GbUvjfjJi+NKjGCtRSMjzLqBGwYuRbDhkBl7T1HJqlQrQasKRYSBCZDgQxMACkl5VhT7Dgd7LBsvhu2LbjMHQt5QjhONk/mB2jPRQw4jH3nPCQ12VIWPcdFysdiLR2x7b+Qq4gb49g+NCXmFOggn5R1CX6ALXXaozpYmd+Yemvp0/FsBRe7tbzJK6hyp9yxOqGufWAm5p/2dykTSgzE5FN+k1hE6JokGwCLYK2FRWAkmVNAFLWGH6dg5oXi0hUXJ607UyqkvG/gpueJd5c/OlVqvxP6Hr2DmY0zyxfJjo/SPmM0WC6GqeLCtjO1FXMY+74x52TlRIUV8mqZVlQ5C1cydRhiI5Ldykgz1sNGXSBSicCieHr+gv/hv/vv8p/85/+p/D8sYLpM5zFJBJDv1LZtLT8ycnViadZm7Z14gfYLhZe6/dGsHwUnDy5rZ7V30ajkjPG+rjyfnEeKL0/OAxdOAe5iBK0mfagIoPqmJMcCgPTFvibhbRJucZPJVEu4PCd2+RX+9gFeXjhdvmW8/YLH9TMe2PHciXNRloRtpKN92b82KYYvmfGbGG9fF5kLv3zE+JrygVtgYdRpMM4/YPLE2vTMnejOgWJw903J9rCk1hurjNjeS2JUsHZVNdQ+8R0iTmS8sbPBOJEWbOPEKR7461+98Dff/IS/+7v/iD/86u/z05/8FHfYbChXnA8w3jCCsxd+FgNbbMCFzZ1IiLcLvlQVtM+JkfjJ2Bicto1tC8YI3Kv9YN6oWrhvnYheqXqBGVh3KoSCtag5b14+kV3KkIpDSrov8uCx9hiqgc0NeMETNS4oMC+9xLABt8qWriaq880bySg4OhQiEKkP0ruE7DzaO4EePtQB0RzCCRsMM1WqbKoOMnOGb9RQEq2un9ZSHVXfmEe/7JCkUmz2oGq/SSSVXEsqZX50nbxK4pYtxbQi4kSVU7VTNcBO3zW838dveNzx0x0/3fHTHT/d8dMdP93x0x0/3cd9fJ/jO7/4Y2wSMXjiOYHA2chIyNmGymI9vYIBLSMIzDcW7ckCuJ2IBoPD1N49C7KcQAzmRCXw4pAF+MwfJYMwGUarI5L+nBmkt+lsS03U/UnsWBTM6074YeopiYOHsaYCj+UryYbxoMNrvhAujxULBKpogO1TpsUJXqPL6Z2xT0S1JVVXIhJbk+Xq6JWZ7XMjIO9eFGozP7YH9n0XU2MnSGfEibLEfLJWYRlY5o3tOyqv1epcwNvMuO57M7qJnS+S13iI9apss+tkzzcOD9Pcjy58gTMEJEiIBnkYtZLNg7lfYRxVBa77j7r53Ky9y8j9ka07ByaHP81SUKolMJlAXaEDmm7j81xL7mSEp+QJ5UQkWS2DcOvqiEWVWGUqxHBaUfXarFdRvoh8BRt4d28SO6pEBJJhgaWzbLBsh9EBbyBzc4q1LlBBVnX3KZWIe5wEvjyY68LJB6TJ4+QwvA2tqaLaV2g2uFKAXiWGVIz/wAoFRRxJwBT8Vk7CkkEoUAXY487pXbHmZL8uLpdk3wfU1mvpwlwXnPd4KnjOKblZlWO14/ZIxQlPp2qyrPhH//gf8/btt1zmlSc/UwuSJWACTBZpjoWTazJCZs3qkIaA2L5rHcVGechUmmyD742tDK8rD6fi2RbPm/Nkk6ex82CTcyo4x1GBUYMaG+mvXdmwMd3VBa+u2JpK3hzCk72KlcEox65vUC/U20e4fAsv33J6u7DefsH4+hvy7ROn2nnckvMwTqcNOw/sbOQYGBtmMriONKiJTNqNKNN/AmUyF5YsbEAEzLf2NtnhsuMvhtUrIwfuCzs/UtsZRmBxZsUZ4yw5mJySKQvq0tK0mDDO1P6mZDqv+Db5OJ9Y48y+jKo3yBMPPzjxb3/1zHmeeP7Bl7C/Ax+85RWAWInFwl433q5w9RdOfpJv09xwX4xVjErSd3nFrMXJrxAD5ivDBxHtIaOsRHItT9x6T7ph45FMdYkzUp37LkVk4V2FYp6qNkEMNDYEOtVaVAU+tWizIM1Ly6HMSoUg5pAy3seW5swLuOqca9+vmgMLNRYgVJ1lDHwUJzc1NwhTwh6T4aW5MvTnSsJPkrqN7nJpR1OCoHNmiJY+rgQkn8MGYaqMyl8zvl4pP7Rsw31Vc6kqKmIj0wA9h5EuRj1PYIvr1b5zeL+P3/C446c7frrjpzt+uuOnO36646c7frqP+/gex3ev+Ft5VMp2gb88ZVxIVIbOKY8VB3KppbykEdWs6+oy4VKpuckMdOakBQVi0bIIb72/EG1/xhLLo7ZLYsjLWXUESXUGSwN1EzuYA4G5sQ0xz1ZUrfYC0ddkEN1lw66vy0Yl5bPBVffrgVdS01vqIZbOm1krMyqLLDAPGUQ3oyDj0J5PQ/KCSh3u3h2sXGX+lQtDJ58kQG1sXSl2rP1rjjJ/GRyLBawyMXIHGCrEutcOloQPlWwTVDPy1MKNrgCQGSpmHJ7BhxwGTIesqq1VWm7tldCGznu3l1f3pOQQNGFxA9r4xOsMlRRXMcQJZepcJ1lL3R4zJVberZOk9oWJGNBSFNMly/NBWqBmm0sd3lIMN33wHw9DcqfjWbTnRhRYP4Pj+0w/VyUAdZhdZ6nbokCyJDheqjioFf09mmMlQntLXWSq7DGo9iYCrVm3EJNfLaOqz9IdzUuKZo7s6xP7P7rqwB1OD87j2bnOxX7dWXnh7bIUSFkkk1Whao5rsVvKH8MVzDOvuD3w1buNP/jdH/J/+b/9hzyZ7juRNEieUZLAjJYGLeBaQC4xlJW6Ltf1nWPyMCZnnCecU+w8+SvvBmym6oY4OVFB7ZL9VDhsQU1npolFHLvYYrYbY+5r4rnjdcFzErVj61t8fcNzXtjWlXj7lnr5hnq5MF/eWG8buXSerXqjHLaHwSkG28kZ2wkbA07AWO0rcpyMqjowtN/JaklVdTIhHyA1XjOWGWEnVbiMDavQ10lgSmrx9oq9fhIAio1tO5Nx5noe5NMzOb4ETtha1GYySd5OYrrXzsvllS//yVd8ET/k61ewlzeu3/ySl2GcPrxQpxPlxocP35CPf8b5yzP/5H/670HBN3/2L/jZT/45b9c3fA+uF2ffPzAw3p0eqTVZXnhcmGPCXthW1CzcJuPR2bx4PDu+BfYY5Htjll4yZBnXy4k9NmpPHjJ4cIiHoq5JXJHvkLsSz1xd4aBOp2mSXv36qNsfjmReFTQ6n2iA69CstbnOYbMl6ZslZqfuehnAxNq3qabBMoY5OQorw2Kw2PHhFBvmRfjCasjTC8NcLLWHKoAokycTi6r9lsibd7c7KyB1BtsGOTomXHVWuSqtqrr6xYekLC5T9OoqJUrNHtw/dy+9j+9/3PHTHT/d8dMdP93x0x0/3fHTHT/dx318n+M7v/hbS12HcBcL2sCEw0TVFHArW6JQA5lVL1ZN3JLylnyk3RjCcsCSXIt0MYLlJdIR4dPNNzCV7WYmYQ6WAhgjaE0LxcEGC8jKJ0bXP1s+0cIOMAHjbPNhCrweFLCZKp1ucCLvl9DPlKslewo0WncBMitq7TIqPTp0lTXzsHGdFxiaPzKx3BuctKdAs4d7mxLHkMdFT5BYyj6vp4xAOCq7xRh7/8d2A9RVuwAtulYQe6LOSairV5dFV4kJtpYLmC1kfF24d+KwEqvQz9tG5qQsBXDxZqO72NuOP+9iF/uZkAdzDdjC+2dVwn5SIEGm0tykG9ykBsUuYMBo5lJBSfBBAUlrACA6wWpQ2gEkCzGGiH0ymz2NQTHUcbCuWtt20nNsbx/NA4zYbslDVTJGaL0ugd2qJGywElVkoKCaDajd7ObDkqmSd3VZk6/QWonZ0Pd6z4NZz2VLgeLwgkndSkFlsXLdQHa48XjaeDw5lcb1sfj0duXt+trr9oxVUVa4XaiT5Crlzmbwmhf+zT/8B/zxT/5c9+SLzFd5g/gJMJYbM52VTpQzvDhZ8RzFsxXPnjyP4oE3Hkj1HAvJ09xMAK1QkoYShrmm7tJN6z8HbmeB1dUGvHVlXF85rWKsj4z6xDZfGOtbRn7C1wWrK+4T2MUWpmEXk21JFnkaLN9YaUqKiK7+cLHLJ8NOwjPmQVlLpG4JnZKl4rOPkeQUq82QN+TJlfpvE0Ppx76tobSoE5QVTrrMpy0XzCusT3gtTq/F+vDC2i5s774krThxJeOE79/CSmJd4ae/5PLNt5x+N/kH//Tvcwrj7fr3ePuDP+IX/+Ln/Pmf/DOy4M//+Z/zJ9/+Z/yv/v3/A7//d/8XLODHf+f/zO/++L/i0y/+gA/f7Pzhrx75y5/8OW+fXhk++Z2HwakWOa9YLcKcaRN73Kgy9jF4PS0+PQ58vCO3wWV/42Ib1BNzyVx/v8K+LyxP2Nsv+V1e+De+fI+dn1Q1s95I3z8njkdSmKtB3pEu6FSo/qs+LeA481qO9rk5ALdzTUeG1mClPt/DZXCdXW1loRgwkxHOcHWZHC5g6QF0hdRRhWS0z1pLwZQj1+erzdS50+dNVoNo65cc5UAQjhLaWp8BeNbtHjMhu2ujF1g5Yxg5lQh5PP63B/T7+O903PHTHT/d8dMdP93x0x0/3fHTHT/dx318n+M7v/gb3dq+OuBbFbaKtXa208acKtkNa/Pgyj5bGkS06axVMnyglt2oRbwXwWfT4Ygu6z02sW+s2vtgGW3QrDJ5lfXSnzUJb7scVyS39tRZpYPMw5l5kewkDbMzEFSKMai6YtFALeVtIQ+LwUqxsuqMpgM4b0ypQRqn04m1RK24BZlCzuEG3TkPlAQU1oyfop9hnFxdodbqWncXWGSJoU0r0qb8Pkq/x6q9W2qjCKg+uFwsaaW1hMKAkKcQDXBEi+meymBFe4m0fwzWzz0xVBEgzxUx54lABEV74hgHLyyGX8BfcpuDvRZbv43Rf94Zrmfu5jiDqqn8gvb+wMTuDgHPKgWeYslQ2NC8EkpSTL9XTI+ChcCvgoo3syV/IEdOLCiRWKn17V2V4KHrR5Ig4akgjwCVswnjA7gMlZwjJpvhMvAumaZ7S4Y8NoH7qjZ974qJTlbclfhUXcnaVWXBwGw0bhJY/Hz/vcb9CNzqsoeJ2S8fnLepj084nc68vn5kn2+ssWEdmGPfibzACJ4s+N2vfsB//P/6ZzzGE5MdN0m5zpU8W/KYO0/DeBfOsxcPceXsOxHRwdkUvldQpYCOT623NK0gS9J2MNeevF47gUhsf+PEhVFXxv6Bcf2GM7/iZJ+ofMEoPBXsb8mOQ7U5Ps0GsgwrSUDWw5XcrkQWY73qvLETNFigDY59M+qoXuj1jRlkVym4kgtaVFdZnQwZuRmTxXk9dNXJBdgEvKqT7aLPs6lKkzUYJvaaguUnlsO2A1dwLvjL32Aff86IwDfD7ay9OArsSq0Lf/Ir+NE/es8Pvto5vb1n+wPnR3/07/EHv/+f8Pd//8qnj8af/smZx5+98l/+P/73bP/0P6LmFbv8xzz+Gz/g/b/9zA8fnhm/gH/y9vf59vI/46v3P+Cv/oP/I29vsJ5+xPX3Erd35MPCzldOlsTYVGlQX7NfPmJZPJ2cZx9YFfMafP2rN15eP3G9Xjk/f4l9+fv86csLf/qznR9vV/61rxZfPuiZlm8NQCVnUWY9weKGW7Vvq9ncbBmiK+ZYV/tEv6y4xS+9GSlvjyub+HiguArcxmqgm+Stw9xgrQtj6LNXHo0UrGOEAHTRTDTV59ilkxuBU4vB4eGk87j6e1UlJfP61Q0RCsexUEWYmiEY2yF3OXzaplFcdQLGxiIlA7qP34pxx093/HTHT3f8dMdPd/x0x093/HQf9/F9ju/84m+unXBJT9RpCSAJrA9rbe7jQLYosWkeuLl8XvRNZDo1ZayMqczdyhjIONeXvFAMBx/dGQ3GNpg7N6bcmqmsWpI4hMCdl8PU56q9k0HqQBFRpGCm8vBEjK+8R6ocyU9SB00ztStV4o9xAzGNnG4HUEEDhcJC4ExgLyHF5JbTYfxgH0YDJx1ykrboM8oF0KLnQQxX4p6KeCiG2o0L0UF7yIMwgRcvJ1cDdVpC0tIWQ+xMFmJoyjGiZTdAlfx+oE3Dk9U/e0h+0iQLGpxQwcBoc+W6XScUq1Yz6bCFwRqUVbOgks9kB321dXegJRyq15Zhb82DyKRWsz8m81YFpZDHRS4iHKtqVtxuVRe3qIcD6vhUTNbaVRFBtazkwkolGQK+ug4lZkYlhMnLRc8jlCCYQHfEZyNrD5moH+srqj173Nu8m16LcQOz1iDMfq2UndL3mo8ur1fy5F0mXybQHyHz48wJdm1T+Y0tg9NIvnof/PDLjcuL83KZfJxFXYqcibHhC370Oz9izE/8uP6S33v3zPOaxLxy2pyTw8nhYTiW6oznoYqWVUYSrDQBPg7ZjSoLfF4xruAnJSS588ALMX/FVi+MyyeCyVZXfH8j7Er5FRjYavY+jGzZQTn4ba0d7KSYfKugmv2unOBGnJ+IHFRdKLt24tXJGy5pCvT5IbmR/dr1N9RAC15nnT7EWi62qLUz1pm3Pfn5ZWOvL1n+RlRSFYxwTgZRJ6IrcdyuWJvCRzpBEUwqpjrjpdjXyoGd30kGEVeSySzDNnj3oxP/zt955v3/6F/nz/7L/5SvT098tf2Ixz/+PzF/8i95+sF7vvzDv8vf/aN/yB+t/yV/+Zdf8zf/7Gt++q/+OX/6r/6a0/NPuMY7Pn37Nf/o3/qC/8n/+n/Hj7/8hzgP/M7/5n/L6fyAz7/A/UK9/AJ+9S/Jv/6S+e3XnJ8kfbv+cvLLl1cu5fjpiXOI+X2ZH7D8lhjFu3fvsTIuLx/Z9mSF85P9iZ/++bf84x/v/L0fnaiSj5TZkRzoTKLayL5KyT06j/DuEGmHnNJVWeElIAtQo+PUwVIPksVadqu0AZ2/NqolWR0natPn+o7XBnnmJm9xR10PqxNr7eWjsuM4sAv0++3oINpVGSX/LtC/cx1Swy7fQh41BszcMT/L72ppzZDyd1OH2PVrceE+vu9xx093/HTHT3f8dMdPd/x0x093/HQf9/F9ju/84s8tO5gq7rvLaPlUg9XsGiVQWVQzcwr4cz86nCWrkjEEFFL9eDqguJjOg3qrlmeE4T7JtUMF4RuYWMz1/2Pvz35ty7L0Puw3xpxr7X2a20Tc6DIysq2syKysjmQVyWIjiaLV0IIACrJebBi29OBnw3+E3vxiw4ABGzBs2BRFQbQN2ZRsUaTYqCSRparKysrMysousjIiMrobtzvd3nvNOYYfxpj7BGnYiHogbz6sWYjKiHvP2c1ac47xjfWN7xtO/K70AMlSMNMY0d17+s3kz4ongLaYBEWyqU4kMz9kC7SGP4BpMtPBSIajy0T3HowxgMdocbNgO1VrMutxkTwlE5Zsbw81CEUVNaNLsGzxc2FW3JPVSMMY3BsWVziBTbIUx5gUydrdj/fIsYjRrimdyQAqHWcPwzQciZHtEux3MCfZlSBxf7VIsIzZC+7xsdJ4tWeSdqROwaqLpi9DAPR0aEiEHIBDkEzeQ9YywZA+WSIz4v6LEJP3BKxLbFkxTBppQkSUJCXAqYUHiNKREuw/YgGORCm1svjYY8kwk1IaCkU6kU5i+qCwR9WynVxGPRByCS0JxgJQDvAS3zH8iUqZgm3GcNuB1VuJCXIEosOPRmVCJXxsRKOpPn5uBtcw1iXAbtzTguuSya9kqjJcNRKqRwEQvjbhM1Sr4VwjckIVpZ4Vzu8XXtKZ/f6Ks/kDXlCj1s7dL3+ZcvOEX50vOV9CqiGz4HJANPZ26wHWi1ZaAr+06o73tIZyhdqe0ndUu6L0Z1S/ZOo71Ag/GTlEUacT0hesCK4V0Ql0xllwFrTMWQTuwwuEMr41eEF1Iso5j44Fkez66NDTR0o6Viyv70neuYqyieIRQ9J3CLejj4jjea1TCmdZqAq3wGgcS3fUG8+eTXzz0SlX8xarJ8zTOaoNVaGKRTHqSqWiNJCG4swIswaIKcuOqnu0NCYq1SqzbJjEmNuBTZ2YS3YDnMy8oor94+/y+qFzeX3J1fcXpq9+DF/77+Ov/0UO/k3a9Y+Z7+/5ylf+R9jhDnd+6+/y8Nv/G37y3k+4kQPIPU7uTFz/7f8l29/4C2x+7t/j/PV/JeLYw/8Ef/Yej9+/4YPvP6LcNL7whXswV9r+KeX0nAev3qN352Z/w+HqwOFww2HfmKcJrQfML7m5dmiFxSuuzonC0s957+kFn7sfnjJGdCJFsRCROOKfA0t2DIUUxLNoCYmKEqM6R8EpGWfHmY8zMyqfAIUz7vsEnBoPZQp53mqcvwxobh4T6FxwKiTDjDriBQtHfMxnQoqXBWjKTcyj48dwilSUGXQJWZtITF0lCzMhzaujKIpnHYa5RIHtFjveYghCUUW6s66fjbXipxU/rfhpxU8rflrx04qfIqCt+Gld63o+61M/+POSgIOCekV7R3EOLKnPV9zDqFnUU6YB4s6UY9djglgFi4ljqpKHzZg0GNHuCWc1mLjOgWEE4a5IcSyNkt3DNwY65ehbkF4pCqLBKHsXSrIYSMgFIu4J2tM7hBgzHvKOmC4Ec0gxyoT5HhMBr4EpKVhf6MlYCZIMehhF0xu1xDXQMsW1aLcAp4kFSLRk14rGxKMu2VKfLL/GpKswDe7x+XrBvFNUUgoT19W8IizRRk9McCs60c0pNQNfQkpXPwLawURTPIFjfI9S8/q5Y+aUIpg33C2YyKCJEnh1GjkSnWCRI9EXwgPGI4mIYL3Rm1BL+H1Yl/RnaQQbFL4rIfsIoBa+K4PlqQg1agwbXQVhEN4kwbNUVB3xitmSBY7ilmCPjhSj2wHxkBVJDymLa1zP3hu1bjCW+I5egwFjSHzS8HuwYRaT7qJrgaM/kJuiNczCVZbE2xW8ZvdAw5Zb0+OQrYxOhiWNwUOeFUbmBadFMpQZ1Q1Cp9sh9oSXSGCiUVikeKhoB1UKBza1Qe9hbFwVKY0qxuZ0y/3+YyZ7j4NMHO7/FW7e+9uc7D/k8sSR+gKdCZVGVUP7AtYQ3yEdijV0d8NpuaEsl1R/RKUjS3SliBsqlnIwQXwfzfdyv6nHVwABAABJREFUAlJxwtSXssVz0h8lTMPFC2rhOWTaEe1ZTAhi0Zlg4rgtsde8QtcAEmJQNlHoWEe0pU9MifPjEW+g4uwpQ2LjNQsRQMF7MN/DRF9qFHXm4bUUn8fwlNiZwYMXhD8/3fCkXfHT3Y4nuxfop6/x9NDoBhNGVY+imvQLqkrRgi2GUJnKKT2LS3DqZsJdsX3n7smLTOKcH664Y5dsDjMv+hVn2ri7uce9+3u6F77zQeHwC53XT97i5VOhtl/H2gb8BJkqn/mNf4U/dzjwc//5v8/DJjztCy+/dsULfBY7nCPtc/R2QZm+h7xwj7Yr3J3fZ3rjLu89mvjOW+/w81/ccnezQa8vWNoJh0PDfYfKnkmgzM5ugSIbFicY+14oh5neYxiBeZj/dztBpoZKw/sck0F7Soc8b1eZMpYrMGeXkoJ0JEcDDoZYkv+HTkynyzzQh0zEUJ3i1/GUytV8uFKTHVcUBW8hP4xtfPzfkKm1lJxEjjEcLTPIARvdFtnBIa4UrVjPBz3O8YGHpJk2WZCJbCgYrXMsZPPLI+KYdop1OmCidNl82vS+rn/Ga8VPK35a8dOKn1b8tOKnFT+t+Gld63qe69N3/GnFerZlS8gOVIbfhoM4U0lZiZPgIZ68Rxt/+kYIjNZjT17LMWKAzq2nheRUNLAIGCTgtJyJ1ztTmZJJDY7RhoWBRFJTCC+SnqPLsWDOmSMeABQPoN2nAIfeMG8JREvIPNwppSI5cUq6QFHKtIEEcu6NbiF1UQlGRchAZJrMmaElJCA9ZROqEXQ8XKEZHkDRFl1xqUDBJBj/YHEXLNmKuW6iIwAiGHsHUhqj8Y8i9B7fvegciYEsJCSm6RkBTuWYgOPaWbejYXK8t6KlHMEQfssuB/ASlsOeYaR98CWuZQG0B4tLTW+PZMClxNh1TXY8WXBPSU+AuOHlAKAptQme2r2FnRHp8QLgPYzMGUBcjvcDPzBYfZWcaAcpgQp/ntbCO6lbMF0BXTqeDJn7lMlJjnsrtv2E+jBrn+hejmBXxXEJkIxMWB/dAKB1ITx9Eoh7mG5jTtG4Rz2LAS2dIjk5cBRKKZ9yJxjVKgy3oAF2EMGtUjgFbympiWLMm9ClR9eDKiyP8c2XQHacPfoDSvmY8/4IphfYt3ssXil9YW4XzIeP2RweIxYmuloWbH9Ihq8guoligJAIBRCIDeKyjWKLcd9LRoUlPXoEJ6aZhTwlmHBJU/S4/pJMZXTWBJsIw6/meNjVs8vhEyxz+lMZsQ9hTA+LPRhVqoTpuIdUwElS9MiEpnH/8D1xSdmeYNKQSbh717knjS9awe2SXf8Rz3YLizvuM9027E1wmSki7Pd7tArdne7QfeKg4cfkoljbsvQJ285QrriZlOuyZfqFX2M++SIX9SHT5nPok++hX/oXuFwW6j/66zz8W/8pD5884o0vnfHqv/Br3P3K/xBo3Fx+l7b/AadfAL275U9tbrj3ldfxX/13aZ/9l5jqHZwdu+/9n9CP/iOmr32Z+rm/ir7+b1He+3u8+fpf5Ol33sJ/8H/A72yxOw05Wbizh3oz06bK9ckuJtEdKt4VPTSkxsS6UgBp+GFhu1UeaKX4At7oUhEaNEKFhGdzgIA7lg8fEEO0YV7Bp5TYhTdNdCCQTLHnfZ4jBhkUnSIOj6IjAh5OGFaH9CODmv3TTPCQPPa891PumYibJUl0z84Kz+mYtW7yoYTGOWbJ6DZeVVMJJbjUYLJZqFVorcVDFA2/G7Uwsw9nHEUdKtP/dyJf13NZK35a8dOKn1b8tOKnFT+t+GnFT+ta1/Ncn/rBHx4eCmYeBrUlgEJkb0j4mU/jI6FYN5BkB5xMTEJPd1wh/BZEaoDdIgTZJ0DJPGPJDpLZYvxrAN/hQ+GWYEYtc2KCH/cEKAlazI/MI4QBaEyTitcWSsowMiGZpg+P0XsLUKqOeZjrmvk/8X5DRuNOJDoJ2HToS7xufIQAbh7AsAiopaePOyb5e+40U0ygFIPjZ+iRNF1zeplg3sGXgPBa6OnPYHian2RHQU9XnkJ+fhgT4IbBtgf1gnXPfx+XPQGB+idGnQeYxWIHWN9HcSARZss0hVJEOuHEnbIB17iOcOxecOtRXHiYGEtKTIJhJn8yWr69W7KyMaZedMJ1MIYdsvhAIrgb4aukYqBpInssEpLVlX7cuzHy3rPSGqxvTBezLM6UKboUclKWqibIygLlyGKVZNQd17hXKtHJEB7qUXwBcc3NEiA5kjKdkEhoAuIEfe6QPkqiYeodn78mmO64L4HfUFxqMPli4JWOo7Xg1pjKkIBdYQWkzcgrv4JeXCIXjxFt1MMz6u6Gs/JumvsW1BvIHp9yr4lgzFBeiM4DM8yTQdbC8JQabB4JHhHN4+3gLa718BvxQjhzjP2ox6I2bs/473g9R6AUbicshs9JIM6cQkYAS4fsZAnwP9hBhGQ/yS6TAP0i6fmjEfMCxNwC1QA+6X0y5GBVwxzZFV8qXoRNgVenSrc9ooIdGlUqYY6scOqgu5AsSaH2SidkVy6C1S12cobNexo72lToX3uJzV/4d9g9/Aly+YyrB1v0F/9Vpnt/ntN3vsnL/afc+TO/TP+Dj1neeZv3/+732V/+h7z661/gg//qf8vF029x86yznSr1dGZ3s2N+4zcwr1y++3e4+fC/YepvsT3/s9TdG/T9Bj35PPb6/wCtr3L/5ffQ5QFLfxZTN5cZk0bdVVq5pjRDTWl94XC4oS/C7qBcXC9cHwpnLtz3ziQb2Fbeu77kzokwb6HqhJrhJaUanTh7HvEo7mSY4KsaaE6aHLIiiXt/tDFCGWbmQ9ZntuQZL8e452nSP4qV2KEjX0gG+mGcDTHdLmsm13hYw/DR0mNe0SyQo8upgfaIMt0zZkh0W6BZSBWw6DixlL2MBwfuFn+d8c4QRDqLjRi9rue+Vvy04qcVP634acVPK35a8dOKn9a1rue4Pv2Dv35AyhRn1fzI1vTWqFowb/TeKBSGaTQSbMFgquPAFYQWU7nSJDjAZTLSA6S2nqxlA4IZb9Y4Goe6h09GyTZykzjM0lENKUPvdpz2hUClHBmAANROoeZkoo6o5uS5W4NZw9BsGdbqYBEcw/h0plY9gjgVxY4klhNMVjDBNZBiBhqgazKZJYClR/t7ptIAXz2CaBEJIOaexUNMmetmuIG7UarSJZh/80Kg4Yr3RpFIuCGLyWtu3HrdjGAuQAL8MmQ3aXwMYzpdpySwDtCY4DH9cVRy4tJIKgguDbf4LuLh6xJGvyWzQYcS4FY+UeAMNpISnhJYOFYgSQMlyFYRjhbB5hT1lELU7FYolKnk52/07tQSbI67Uyal9wPqLdgmNL9DylqGAbFHURXeS9GpgM8BsBhGssMfyPJ7ebLwivuEYmGuDdHJ4R0tjmhlWcJrptY5WFtV8CUKP4vrrZLFkghaxo0LKYYZqAQD6xpTAEU82e249yqO+RV1Gp5FIeHpcgVUik9gOaPv9S9jH/4hW/aYFqaywcWRvkN0xstMc6FgeG+ox/XqBHPd6ehUEXpWa2O/ZbEjissS+857AEY20B0pOxBSHhbAFm+xP1O+5NHuEOc//WF8FFJZbByZZQ8/Ks3jz/gdDx8QUc/XDOPo1CnEn49iOf+fIIgG0+nj/ce5ldFVMTxzJtQ6HCV3DZeT+E7WgZOULhm+NLxER45hVFcKFayzr8LSNnSrNJm5MeXQK4e9s5dX2O9mNr/X2f70f8X25Rc5ffF15lfu8Y3/7G9wuvtfc+fRB5xMC+dtx3vLwsm9E7anW064i/Iiepi5Y6+h287hcMnbAp81Z/vBf0jfwfI7/4CLD56guuPsza8i8w844/vw8m8znf8aLL+Mf/DX6Q/u8eS3Duw/+j3e+NLnYed0bcyHTm+wP4DIOaU61Q/cUWMjC2270Frh+goO+4VlfwAar5wuvPnKaTQDFAOZMm7kRVY9FnZxD3OvSIJLFKdk8Zbl9wCgTvhQaTzwCO+umq8Xni+kPC9iV8buLHxEHNdP3HMbYDr2XwxLiHwSGHe8f83YGqb1QMiSeo+CUOJzl5z6GfHZ88zMuIU/lBsY0a0j6YPGUXYXRdu6fkbWip9W/LTipxU/rfhpxU8rflrx07rW9RzXp37wJ3iCAKGmL4Mz2rpJIJMsMgm0Shxks5ymlSvGsQd7aRaAqmgBaek5Ei8Y7GuAi3i6TzJGkbhjUldLg+mCSkzNMxuGtQVU6G4hv4g+7wg4ePi8lIrjNL9hKhNjQhDuWG8hVSkSwIyOOVQZbFgYYA/m0z3kAcOw2L2HfYlosgjxupLgUHoEpW4Zq/L6CUM2EtPdWndEZnAJkCxOO4T0pFsLoIIhNb6vpCRADMbEuSgOPD+XU0qwNRFYyYQcMh9seNDIEdQmJguZxfH75S96sJLeJRPJ2B+ARfqQbOEWUdCOYrRuAUDV6BbT4ISQ5IT6Ihh8b4f4ABqeMJ0oElRvk4l5B5MEaR3XYLuHBa33lKQUUJRunaoVRIKpEqJQ8TCCHnDEcgBjqZFMzAcYimujSHaux/6y9BkRU6QYZvtgXLXmtctrasFmosQ+lpZAU3DpCYoVTSZLjkVeGM86PSclSp4POzLmYdT7STY7z4/n2WMHGv5JZk6dK+Ib8OiqwBzfbJjOX8S/+V2kSBpCA6XQ5YQ6zYgZuiwB2mt2o+AUVcx34XHETTK4G5JTg6OflEexkoUlhHwrWNkZkR73ziVBahRIUbwmIE0DeXrISRhyo+xCCQ+ZAAs6GGkhuw4OyUSWOF8JZqR4FgwWBaBnt4sM1js/q2hY3NixNYHBZLoZ2IKg8fmlgFZUOm4L7vswqadgPkGdMA50g+5n3HTlWoUbTrhpJ+z8ir0qTTRM2g/B/hoHzuoN9193Xnxhy53PXrL9+V+D6RdpVy/wpx+/w/T0KbI5o+sJh++/x8ve4a7S7y/og3MWndluCz4BS+HeZuaunnK2qcw/+rv44mzslJdOTpDPvMTl7hGH3/8Bp//Sn4P6r2L8WZwn1J/7H9PnX8Ze+vd5qb2BXSw8/eCC64Mx64HiW3wxOkYzkH6g765hadChu1LKxMmmsC3KUoWmpwjnyHSNm+HWgBkpSzwcUcsj5WgBKTO9F8TnOA+B7rJLKCVzPm5jxKswbc+Ok7zP+eglO0oCeFoW+5pFEjkpEkiPosIRpMIRXMYyhvF+TND0KFjp9Oa0lgA3/d7Ms/AbD37y4QYmqFS69VtWHSMGBcReE4v9afLpeb11/bNdK35a8dOKn1b8tOInVvy04qcMiit+Wte6nsf6Yzz4C+PeeMyfzHH6icSRC2xhnslBo6Xf06Mj2neDjRGSUXSD/PuAADPOHsHTSyZGa6svx/cASVYuAIQRbf0hb5AEccvxfTxZJEupTWCMNNOm06UFAC9TsAM44uGmUXVgu6C6pAhlKvQ0fYZgBUpJoOaGtGxbF8eOmDDZRzFMB7OQZqjkmyTzYhZXwhG8CJ09IhNuNaZB4bgtNOsUgs12CL+RFnPJfPRjJxunJWUfR1AdQNathynv8UqN3wMxxVUTHC8pTUiWRwIAOSG5QIKF1jIhKL1n+7c4YVycjLM7zQ9RRJBMYUD9AJDk9VDIXnS8awK78N6JYgXcooiI7+/UGgWSW0OKZNt2MDtiBawGWMMotABCOU0QAgijJeQeHt0KpWRCEo1iqCzJGAsQQDTIpJDIBNi1LGZIBgyqCmb78JlBj4nNHdSFhqHtVoriWN4zz/3sef+icAvTcqFOIdPx3mN6Y4n399x4kkIgkQpqxMSzTp1P0ZsdQo09bo2QjE0huZE9nH2eZQa//ojmwqZF14i7It6g7yMzl4J5QTQmZUn6H0VBEaDSGGecAH+SXR8Scp9wid5n0aq5d24BxSiE4kZx3KPj3o0OCUoUVQEaUi6V7zMm14W8xQMg2wzWEaKrIrpeortgyAzISCIyvGkkC+6UC3icg6w8AziM7x5HI7xVxOI7WUWkIaVCLyx2w+Vh5pltudbO1QK7tuVgJ7jfMMk1k12w5cBJUbY4syxsTwvznZmNOaVBfbbQL96nfgz9m38NNaEwU2SLnJ2BTFCE7cmWzUnhY71i3lTqfJ9p/xGbkyv61ZbDwbk3C3fOwH0Hyzl28wzvj2FusCzc/fyL+N2vsn/vfVT+O2T7PUo9xfgM8kf/V+5ffo/tZqK1xmZzxlxh4QCtorZwfXXDzX5PqRWpJ0ybwnaunLXObrdgpiyHuLZbNdADXmpIh2pB08tHise9lPCmEjVcclojI6cI4Q2zj2IkY7FkIBtyydhPHXQE7Sygs6vnWJuU2y6r2I8er2nK0XA6yq044wpi0eEy5FhxjgvBehdKjTMdcj2y8ydfwXtIPtO/jSxie/cwUBewdsjzEtejZKdNX4Hrz8xa8dOKn1b8tOKnFT+t+GnFTyt+Wte6nuf6Y+zshBtuia4ioaqcUoRg/TwPuUmCkgjqgx2I5B6P8WW8tYaxa89AoNk2HgyrxtN3BaHFz3eNnxWNln+dbj1NBhsogvshghgVlYkjE4zRIVqTGckvQAyaAUM61sIXwRNoWLYB58tjAlonzA6RTC2DkmkAB1VEawCzTk4dyolGElIA15TvDNgY+O0YgMz29Fo5FQdt9CWA/2KVRkxV2g3TGZRaTmjJ2lVRpsGg6hKMoRwwQKWncqDEVXFQVxhT4RK8e3OspDmrhQRGRXOuk4LtwQ6w2aAqMd2JIW0JFrUcC5CG06Kw0Tn8gWWhu+Od6Byw/CyjKIJgcMQS3npILSy6Acb9kzLkMRJ314WqlYOFma+K4/lZugVb6aQ3UMpi3MPbxxxELPsuDJOQSoVvcXYcHKfTpdxmdAiIplzq+MnyM6ZshYboFNmMkBlpieTTBtmaZyXQluYR7cF2q9I5IIDKHCATS7mW5GfOHZ2J3fwG1MKo1vN7ieESBUWZGi5zdFdQUOKs+PlnsP0eXy4oJxuazGwyYbt3zLgt3iSujxSJ/e+CMkfBh2R3ROwBJMAE4ph0zBVN03XVCYcwu4dgAAeOKHnZJIEpw4hcEd9gviR2zBuQUqtRPPgAlpDeUYpLeOBEgdXzNiZISBbd6RnXSoAU1+jCEGAUugJDkqAo3g0JijQ+h4YNv3hFS43Jee2AeuHppfDjpwf67GymhXOfebnccDJ/TMWYykSRA5OFkX2cjQU2W7yE/47UijlMnMEhWdFScc2ioBjIQtEtNlfavOHs3gZe2lDub+Dm29TzA9s7W6brPdO14LOjT5V+6JRWMAVrhjwW7NkTfL5kmiZ47/+BVoNyTkcpy4HSK7RL2B9QnGaFthitH+i9471TXJAW3UVme/aueAHnND9rZyvGq+dbyiaApUwbBMWT+fUS51VLykKkI9TwwLK4d5L7TWQL2uMcekg+THJHyCjwYq+l7VluozDRFy9Iue04CV8zR2SKvCBLhuFxdnNfZSyHwrF26nHW3MOzSTQKIvd4oGMtJmx6J3NIiQK3tYxNFS0lJnXiiPSUkMU/zoGKYD7//8nn6/rnu1b8tOKnFT+t+GnFTyt+WvHTip/Wta7ntz59x1+xnPoWiTuwWTB5XSQPYkgQXJZg83pO/lJJuUrJp++eSSfadXGLvCFCFQFNSUZAFXSwhm5xkLO1v/cwV3Yi8Yh76Pp9ChDjMbGrSwBWHQkoWc4wq9AMRiE/aR5eNUUU6woilCJ4H6DVkaJYM1CLWGQLyhSAXTpGgD1UIk4SU+1iSlFKB1qjzBPeAgQI5QioBoNvXsGMb33Yeegbep94sVxxqgsnpVJro06wUUVdUbuKJN0m1DbsVfAC036DyzVLObDVUw5ueIG5eLCCBGPfu4VfgyT7TsEdeotkXmSOIqM5DaPMFZfC0k8ouhBTyFJuYDDpFm83GB3PtuvwdzG81DQvT4lFN5RgWjTlJpbsrfVGidx1lKdoiYDeO8Fg4bFfJNlvN6aiyUpnx4EC1lE5DbaLnkxRdB5E8ZGGsi28bVwaojXgoEt2YADSw1MJQXJqHAR0CQPt2Ftjuh4SxuulTgmOBS1G9x1IP3rmhHk6t/dBwD2mCsb3DlAfBYkEg3acyuX5+5qfx8OvAiXA2JydCgsqMxDfq6gjTGGJYwcQ0Puvsf/4MVtOmMppgCSW+Aw2x75IP54wqvf00UlGvhPMvaYBenycOG8ikWhxVE6iACK6DEQsjdin/KUEj7Fr0vjcIXtY3CQ1BCETCJabuBYSQHN8/ygMB1upR9AAEBKv+L0Aos7RvPxYUeY+k56eJsM3JIrN+PuCqOIp+Yoau6TBvSYoKggzUoT7J86vbAtlukTKHmt71AvFC9anuIZWj9851F01ugRIaZ3U+I4qSBp/D85UpWNaw19sdvz+lumlF5lfaNjLX0XPvo7Z5zh982XcfsL2o9/ELzYU9hyuL6lXndYPIEbZnsGywZc95WrC93vEG94b+ELxuBatCN33qDgbL9QmVK8spdNsop4o+6lxs1T2h4azpx2MZQfbzWNeunOPB/e3bE4M9U10zbQlz0J0xvgwPB/FwZA4FrIwkyzCS7DQvgGZ4166gThaSt7n0eWR+SCLIz8+YMm8QXYhecZ2Ir7EOZsZnQt+LGxG1xTREWWG9U5RDWDt8Zqek1bJ/VZkio4HF4puaBbDHZTofBEhHvhgcfZd8SJAD68yV7y1LLrX9bOwVvy04qcVP634acVPK35a8dOKn9a1rue5PvWDv5GkgwmKRC1SMA553nICkx+ibd0sfybMmyXlG45TJIJBGHQGA1BUwFJgkkEkfDkUb/vIeUQrumhIYsYobiDYJh9t5kFvKQ1UglEjE5YM95HIpO5hDOoeDOTwNegYeAsGryVtZsFUFwl2pRPgovdGLRVkTJkqwa/2ZJhE0lshP6sLRRRagLXAeQ580pNDUak83e/4D/7I+Fh2IEZng2pl6gvnmw0nNDbVuFM7L1E531QeuHBnhvO5M5U9J7Mgrkx+hqXHg++NZRrXI9mOlFt4YoGE6lE8MOEegVeKMCXjau5Msgv5hrRB6OAJroqVbCMv9L5EglGniUYy9QReJDboHoavKDECPoF+Jg9LMOA9mc80gg1ATCQydbobk1sCugQdvaEEQ+VjP7tmwZHvN0y2k71UDTY7klBlMMjOgpYAsdZzEp2WBKnganH/IZIjEmxlh9FKLwKic2ws9pDAyp1khgM0q2/AG+gSrG5LnyWPKVZHVg45FooBroK1invZ0TJTTNLfJ5hnFUX8QJjeFswFkQp3TqmPfkwphFSJA2w67jP0DVoUoyHSb+VA7ke5yZF+H0WDJNCMNoT8/OB6iH3n4RETUxrHufZ4nQQYigDjHMVUwvByWrIgnWMPjnOMMsx/47748frGtU9ZgSfjnzI7yfcVH2g7wQibeH8J5n10iiBhHG/DmT4lQ3SQo5+T52snpPSOoZRqVO+4TbhtqNzgHIAzvDjODgOqzJAdHRHLCuJTGBUXz0KHOAsixCS2CaSCzFityEbQl1+AL3yNdv9FRL+AzH8aK3cofkB9i+3ex+UKs0tku4V2QaGAHZAe09pEFD9s8M2E9x3IAbodPZrKXhCdsuATqgqFzgZH5wp1Dp+avqG1RmuXtGbU+ZztaWeatvG6LJlT4mFBhGwJs3oLmeQozMLDqAYmVRJYWhYSo7CI7pkoOuOeofkQRUKiJi7E4e+Rb0yjGNQRjzS6TiSMpUcHhzCRFdM/0c0QErH5eP8HEw0l40UDbah7PmiJPDZyRBT0cX6kCN5CDog5OryTEIrMdHaYRSXparTs/FjX818rfmLFTyt+YsVPK35a8dOKn1b8tK51Pb/1x/D4SyCZD/zj6f0SAYrwPolkKCjToEwiKWm0jXfJIDGmsKmGB4dHUndSbmBh1Gse/2hSMGPimXuPRARpjj20/RoH9xPnVTQSVkzqymDmt34bYSgdI75tsMmEOalOAm70JSfbMdFNQArW9/F9yfb0HENOBm91TQYjAQohbHALqQUebGKwlwUF2vD3ISRBTfdUM07KhvvTxJXvmHbC1WHHsjhXN4aUiU7B1Vk4MCvMWthWY1ZjU5TzAlsx7hfhpCqfPS38ybOKLY5qArn0OAgCSAM4J7soCfa7H3DZI4Q3i/gMbpgcgJpeIEZrHfWKSKEnM4zfTrfDDJOQ6Ix7B0IvISvpfUE0vHUsJQAIAQ781hA9jJprmtb2BCxZZLklSK5xDzRAMR4geSS4kKqkOW2JRDDY4Nud3xGT6EL3niApXsQJlh88P2v+hg1pV4BvVQk8h2fxEIxpQUJO0C0S1mB886Cl206AYYZnRkhiYh8rRqrHSpwpI9jCRqHolmCre4LZwjCrVt1TarTM4xNugpYOMtOn+/izbyAnYLpQCZAIEsbfIlA2cR/FEA8wQAm2/CjXkmDSAsURTPaxSsnXQhGTPK9R6CnBakdDSXSeZDNCFKYIok6RALBxQ7LjAhgygVEsH6eMHQvo/BXhWCgPEBCnOj+jZVGgWST5rTQpYlBOkpT8Sh7nSdxS2hLu5sEoe+KZwWMKWjb4kmBcAK8R5yyKIJVClSzkIIp1eoA0V8YUxVGwkXJALx2ZSxhtFdCNwPYudn4PHn2IlFP0/hYTo7ph/jG9zWj5EpTv0HcVPb0H/Qrrih5m6I1wVAp5jB4Es4pwA+wQ6RSNrhF38ipqnDlVXKa4thrAe56UDQW38ygqSgffAPGgIuQl4fuCaBg6a3QeoOnZ4vFwQ6TGvXQZxxY88pBLAFKTyB2xdyYgplSiEjIUiziOh25MpOJeco+mrOQogcqpcuIR+3Bgyi4Ti30yWgdsbDRiv5SKdAlJpDego+rZ6SMZX0f8iBjVLc6PTOUoBUUUKQ33hnun1i3Ws0CSgrP5/53Q1/XPda34acVPK35a8dOKn1b8tOKnFT+ta13Pc33qB39aWrBtpN+EBWRz12iflx4AyEB9gyj03iK5SvjKaIr0ZbDdg5VypTcHD7PhwASG+wEoWPTuEwavYD0nUxm4WwYhPb6XZcuwIiFfEdLDINhZP7YrT/Hz5giFWivmCwGmjN4t2vgLmCeY0IqTE/BIIFVqXqOCtXoEaQVJf5Tx3sLAPD1ZTgi5RvgJ9wBr1iJgLUJfagy+6gsbrfz6Ky+ztD2/e9EpxfFywcXlgcXgrnWmtnDlB24cLr0z1cqHWijV4+f1hM9fdn7+850TaTHyvkLvYXRcfIqPlInBvCfLmNd8rsFOMYM3wjx1ptsh4nQRzD3MXM0pxjGZhmfNTL7RbVFCSeFBFhl5jcK3IToIgmUN9jEmvyXbb8leMoy383q5Jcs+JEYEi2kJREdh5Z6ylTANd3OqhkeJtZ7SkACaohLyK6ngJd8zAO8ALWMaX9HwySgaScespczikCCo5KQ3z64FYXRflFJBCRNqEbAFxFGtkQPjg0PvuJRgePMLifTs0ggGMZL6AMPJ/klMdgwiuOI+5XC39JaZz+llA7srpJxSigdA8oaz4NKRUtBpDqla38VEwVIjqRdJ2coAiiRijc8gx0JEAmANlp5gQ0Gj8yPPDMit948UaNHxgi75nWOfHCdRSoABkRaFiyd4OtYikv8df5AwNZjOQDr5mbNjJiICyD5BCYiH4TcsEYM8Oz/GeyAQfR0RG6RGqPMANVIcMcOzA4TWEHZ0n8Mviti/ajP0Ba9+vDbu4aejJUG0RKdC4EQJxrJMULfhXzQpvlU4OcPPXqI8cvaPDNUP4OXPU9hGEX71EJ69TX1WsXsvo+WAX7+LygbccbmCJvH5vIPs0TI6VzqqNmrMuIYe904yzIsWkF1+t1NMHbqCzDhxz/Ca4M9x6rFokKFVE4mumYwbubFv7+m4Dt7IkYFxVkWia0I99ooMmYiPjRX7QG7/+3bYYHY5eBZTZAHoDbfwQQPSOyeLumSvh9H0KDhFYmKiYXG9vCeYLilvq5EXMzeGXCbib0i1Sr5P/lMiVwqdbtFhEbZehda2/3QaX9dzWit+WvHTip9W/LTipxU/rfhpxU/rWtfzXJ9+uMcn2rYlk2TEkh6BBpJBq4zJTCIJEM0pXrNlV44JDNrx52xIGIxgwAh2R1VCwCFC9x6GwgXoAUzN0msik7lIsN1BPebf2QCdhTE1qAsgHgxLD0lDaw3R8DSpdQ4myyzeRzm+T7gfGOYRwMIm4xBd7FKhaPgDeM+gVkIuIMFmR9KV+FxOTl4rqNQAAm40Aehc7qDpjOgJSzFOf+mX+MrPfZWn33/CF88u+HNfK/zW7/wu3/7+jj/7F/51fvVXvsRf+7/8H/nGd3/IS+evUOn47oari2s+uLrmxQeFOm0pB6ep4RMsi1ELzHWO4BiXhtYCbBWtWA/5EW2i655SLjgY7JcJ7QdKyUl+5nhvwRCL413oLOFJojMmhdYaxQZojURQq2B9CX5WlKJKOzQKHr4L1hPcezJYDnJAZEp2ydCUHIgLNZk8TUDorSE1JtO57YiOiQqqwdhKFCsh+yhpJj5FkUS0rgcOC8Bqbmip0T3vcQY0/VjcHe973ApaK6XMGBLTC5dPjrOPqWmdFgVSjDnDJFjOJLBAB+tZEemJTwTTeM+QegSgMQe3GvvXoahSpIThcwnwriWKpmmeYn/KghJSEbzRZjAalacpseo0capqgogKCN4WkPQPciVYvTEVDqKgSHZNs6NDgJSqRXESSEPUoITXiZkTXlSarfsJ1BPYeHpUDSlVGNyTnz/D2gCeXiIujPM7OlryfEXMGoA+ZS2eoNsDHHnPDhmJ1yK7I4SIdWjNrgsCsJjcfq+ckBnwtcU+o0RskI5ro4sieoJ6pVrEPfMBlwO0hawofXYSr0ZI9gRXwZRKKfikIZfRAy4TTDNsgDtKefCnkPI25ewl9M6bCPdx39B4Hb074fUUOf0xvpnolwd0fhc/dNArukfXhkwdt47UAFpY8rl+iP2bMkWH7BoZGDY7OjT8juJqp4dMPsAIKVIJ7zIqt15DFnvM0/9rFBg5ETQPSALLiA/RdFLi3qTnU3i7dNwOGXcDHLtbxBFGnivHOCPjMCaudW73Ih7TNEPCEt05blHoeUpFnEMUGSbHrqBR4MZGzPyABEB1o5SsgHrHyJyXUhr1Frkzu3NCmimI9DB8N82C4FhFret5rxU/rfhpxU8rflrx04qfVvzEip/Wta7ntz79g79WAwTILbtjNLSkkbRKnpORZDK5WqNIwTwOk6rSLSaUHVvyFYYZL5AygwhkPtgI6+Ad13CqgLSISK+OCHCGJas9jGVV4gCrO+LBBkjxTxAdDhoty06wR9INbwdGxJVj8gtGUC0CZUzNckamFolJQSbJNHq215tjIpngAyhDShssZBUxVUuCvQIEY9+FhxcVW/b4tuBWWMwwu0SvP+T96yv+X4+f8kuXp2zZ8cKDB2xe2yIvKjszXn7hhF94+RX+3Muv84c//hb/u3/wDXBodA7d2LhitSBaMVXCgSHkRGYtJQeOeXQe1OKYd6pVmhj/5VsLv/1UOZwUznvhtFbuzJ1zV+5M8EJZuL+ZOdHKJI07c0f1mq2DFqXTMFcKxrIAGg3a7oKXkAsh0FsYyQaj6SnTMHp2Iwz5UVHHeiS+IoUw1xbCFEKzSmgEUAqpg0v47iCgyRR5JpMweY6/M5eQKeXuCzARiS6m4R1QMrnhIJKfQXELA3BLMsulHQGyUEKKEe0XOBxb1Esy9PmFA4t5gPqQyMS/995xN8pUMR+sW04T9IRNDqo9wM04T1KR9NYRtQBSbjDfwa3hy1XIgqSmdKcxfF7G1ECVlFSkWa+FHoejWVG4kRxz6AB0caHS00WHUfStB5WbHm0+AgUHePAjI235+ilVI+RGcXsUpKYXiID2BEsjmWeHAWOyYRRQAViPqDaumxheBB2h0hNMjns9wK4MfC3Hs++02+vtLZh+EhQjyaIK0jpKD+Ni6+ATlIrakPilH0q+LgjUvA6ar6NxvYfcL76Rxc/VDaIzbF+G7dfpLxVkehWZ30RkxqVTmEBfQ89PONSJWjb44QafvwV2hXah1hmaRxwuivTcT2pxAbonIB++TsPzKfzLyOIm9l6ibzXwFt0VAjGpLSdB5vmVnMiYbTC5kWr+u9wmAxkPVTQbJaKTIWJ3Fh8ecSakMSRQTUBJ+HOJj9eKIidySQ4NSC8ccpshHnEjxIbIeKCTErXwPypY7wH6s1skJklqsuFx78YDllpCChi5KjodIk/Ez9UaZvWOh1eNhT+O6XgQVFCB1lfg+jOzVvy04qcVP7HipxU/rfhpxU/kNlvx07rW9c9/fXqpLwVjSCsEMHpvyYhFQnCJtlsXaO4UjWlkaDmytRFQg605drEzWnI1/wtGQuvmaA1GIWQD8WkGIwqO5EQiV8PVkPS9IWOdeCal9BZoPhKOJxPkKYdJRig9VXx8+aNpacQ8zMInIM1Fhwm3U4ipWsEihJQn/GOcTncJBtAzoGYrNw7B1Bki0VatIizLxMn9E3h8wL2znbbcf/mceXK+/mLlgycP+eCjGx7LlvtnZ7xyPqE7Y5423NmeIfOGXgr8/AtM8ynLP2ps3WkHpds2zEwXY55nzPzImnS4BScZyXtfiFTUaLJhyykfX1/zGGd/KPz0eqH0zvZsQ+/Czpx6KGxOO5uyYcPMWRHulIVXpsor08KD887JSeMOwj1i2pyXGZ3qMdF3LM3DR6ERPCXJ0pKm4iJKa4eQJREgd7Sdh4tQDQCpMZEPH14xcvyu4bVEJv6S96fj6ZdUXAbuyX0qlHIStYsAkr4SckigmPDBA7yI5OS547Sogg92b0i31KA40uMz6vG79wCvWoIf05BHuEXBd2RFVZiqpE+IBCAxjWQoS3JrBbVCLTNFJ0zlmMxxQ6Y7SF+YiiLF6Q5FDBGPwnCAM6nBjHoUfyG1iu88PG/cW8i15JZttE4yxIUAw2DqFBGQKV8vpQauyeSnzw0KqoiVlMPUAIkeBbAPCYA0kOFLE/crUKPHZ5YERhgBsApHQ2IGsypxPbKQENI8eOjNpOcuSOChBfotCJJj4eLxWSm3JKIbXZRiFZ0qfb+jUOhaUd/isuT+z6+cxa5qTkZTQbRnCDc8WfcwW85tpjNe53yBgmzP8XKCT69Ty5dwpjwfNeOw4JxRT76CmuPz2/h0hiwHkAkrDU25otKyoOmxZzsIKRm0jssuijOZ8rVJ6VSP4uMT98Ul7qu4JujNSYrHhxQ1Xpee/lTh/XU0nJaUkJhnV5JnXZP+USV9ZY7vWY4FjmfB4nJbiDiaD0Jy3wzT8WNny4LIDGWJvZcNNBAPLmLIQeQw75qxnkwesa9i73rmIM17lGfJ7fZzAWPCZBTIOa215GdM/yxzwb1SZcbyWnWbWNfPxlrx04qfVvy04qcVP7HipxU/rfhpXet6jutTP/hzdbovmMc4bZHwPRVLZjphnkmANDKRh3kywIIUI/k4jswL4DbauSeGhwYyDmwkjwAGgRrEQxbRLQGBKkMBYtnqHf7F2R5vtwwTWgLoDFQLiHowRgNcR5QNlmOwF54Awj3e36eMxkqnBzxyxzSCn3qNz6KVph1N2UtQW4p4TalGp0sPDwvG9w2PFz84J3eduW6ptXJw56fvPeNclddfPICc8tY7T3k4z7TeePmDn7D96s/x5NkTvDc+ePgUv1l47Ycn7G6Sgd8UajHMgrWepHC4CZDipeIlWH21lCSI474gWum2UFwoDjd+xXWHKmcUUX7jL/8Z/syf+BMcFuHtH73L9cUT3n/3R1xeXbNbLtmb871nN2xty++pUcoJ5b2ae6jwP/lc55deXFhQpPWwZx1FgOwD3HgJYJ+yn2AFO94DJOgwYxWCMVJFjkboyWQhGC1qBY8/KaNgkSk2NA40HB15JP9s+JrEz8TUt0MUXRb7KHxybo2pjZwmlV0bFWHIu0QM69GCLzKj2gNw+ZKMdjLOCfgEpZYasq6UjnUnJSjJSBNg1jFKnY573LOzo8iMmMb0t2mD6YzTKdrpEpIymU+x5ZJuC1PdHA3goytFQ4AiGqx9IQs2gJ7eIuP4K3jNcxsdH5ggNT1CvOPZUh94uCPJ/nn+nhdLYJ5gMqcGumiClzifqvMxlmTEInyzRnU8wKccAcMA6kCw2jl5MYINt3+XocdtyInCN+lovpKgOIoqheYhzbqNnv8Emx5MZP5862CFWie8HRA2IYXxghSjmoFtcJbwJikeYF02RywU1z7uDyUAX7xBQVTxqWAT6OYUr6fAlzA5i++XfjiizpjwKPIA1PDpHWRzFw7PoFTENzghwQvGmU9cryHzAPE05UdJ+pbRjSHkMANp+Z6S3i8LQ+4kMufr9wSQYxhBFpaAR+IBErCPbp/hByYe+0M8n7Po8bYmHIw9mKx0XEI9stK3crgoiCQfNMTZijwneY3JoQzSQcMgJjuZcvpk+qPlBYv4pJkxW3SBxMOZ3GMu0CyAfBaJPr5Tj7Mg47tp+jyRIFVrnolOq8dHL+t6zmvFTyt+WvHTip9W/LTipxU/rfhpXet6nutTP/gzQLUkI9XTPJpkZCJBawmm1XFcwtzTLECuakx+k9HqnjgumONKOQahSBaOpE8DDJNYINnEmM6lHsbSrp5fpcT/6iHYK7tlrEQkpREhZRHPSXPm8RoiYJqJQIOdizfEJZizMOQmAo1aBCyJ66DZJu35HuYWfj0pRXHxAKolrktA/TApRaN7WzWASgCuhhZl2S/0ZLwOi/Df/OPv8vpf+Rc5lDvsSufrv3ifm5+8S+OM8tbbXPkHyLsf8d/7N/9lPnrvKXKt3D+9z/c//AFiytKcpcK+C1sVulkQTt7Z1MrSFkqJa57N1pELEA6c83DzGS5PX+UwbXn4/X9Ib41Lq9x7+RV0I+wPe77+Kz/Hm6+/wm/+vf+K1z93DzksvPfhY56Ksnu6wz6+4MFnH/DTh5dcXFzwBz/6ESYLfTG6hMl1TIoSzC1GsmsaPjOYwCyO8EycmgArWBzPJHfcUxYm6o6FubamXEWI+yDhv2H9titDJLwjVJSSjPfAMnK832nKrXK8p6oFPbJXQ9iQxVWyiVGgObWW9C0K6Yqn5kFSntLpKQuL97MjYApT9O4hvUIN83Z8r/BUMaTE5KuighYQafR9JHOdNFhIjQQZfG3H51N0WYJp9pYFn+RlrkeAEnWWgoTXD8zHgmKwjGIBQETS40gl2T3PwjaBhqZ0axgHl2ArJQ1/Ja9kFBbC7RSyRpia6zFS+QDWx8mC+WFTDnEsbPCQWchI/FEQiCYLnNXwLcvsn/yf4z5wi0lnERccTxWFZ5HKKHYCt0dMsWTr1RHb4X7CohO1AaVRdMbakgb2pyiHIyMvOkAbASQ1pAmopEcRWXTWwH+zwQw+38HZhuzGQ06i2dkALWNUYbElZFbTCcwlwXDBpSSj64gXjJb3xvKi5IVRAebYg2aI17i28In7RN7LQrSQpJwpTGBib6XJvxOdAePZw/H/axSHHP9sFIVRKA0J2DGmSsnXGnkn/anIvZIdVyEjyS0qkkAwwLfgYQbvJQub0cUiuB7imht0t9xfn3iQ45JFX7xW+GBF0Te6uWRcRYmpoMOwHokYjUZZ3Cy+iargfcmi8PZ5kJeFg44ibl3Pe634acVPK35a8dOKn1b8tOKnFT+ta13Pc33qB39HNsZSVpKscsMiTiXTpDaAgIMqNSdvQU5uyogQrcHp0yElDuwIVPmA3y0OJqaUQKKYhQFvdAIbeE/ZiEO+TjcjOO1gtMwswG0aLQegjffubuCGVj2ST8cImYDZRuyQYHcsGcf4TuQUM4E0XO4i0f5vTlFBumEaScvSBFWB3oOFKnVKn5EIwuMzdgNvpxz6x/QeLdjbs3PK9pyTl17k8v3vsru54CnOR5eX/MK9c05/AK9dnvPSK6/z4UPnC3/ia7z6iy/zo937dPsukyg1PYBMnGZOWiwH0JIwChcpHJaOakWq0qxz5RMfnX6J5eX70TC9OaX5NRsvNN/QfOLyyVPubU9p9cBVvUKml/HthuXyCb/wxa/Q9te8/bvf4PT8Hr/xq1+kXjXe+evvIPaUvgRQ22wmNFvATQXVSvceHQHZpeA4Ou5BAotgfiNyB2MVG6loFlcOUgS1kgWWYRIePKimLGA0tcceMNrAbQwGS0YyJN4vtrTSE+g4hQaIhy9NGaygG8fpcUcZi2cyP2Ycbtn4RtFgbs162nQ45cga1wDwHu3rFChptkt+fdVg/GKi3wbEWKwhOqFlQjWKKvNCKQq+IPMZpS/M0zbqAsrx80JMiHOxsOoQAaYEDHGhAvBZJGzNhOwl5BQ9TJaR+HeRW3mQEtP4vCeIAI5IP++Kj/Qut+f/CFZV89rlfcikPyaQjZgVx1zAWxLamnKJiqvlPdDbWJWaAUEYUxAzSuSfB5iLTpPb2ChZZHiWqLgfvXy6x7V+dr3n/BSKScxTrGCu6GGPqBKTPPeMsgi1BHwtiiENYN09mM6QnVRca5qxE00DVdD5LpaMMbl/A7QXnNsOifDDAZEzpGxwCemXZ/E0AKaKJSM8KF/Ds9NDNCY5HkHpQKOhwYrXSKlZ3JDC8DmLMzeuHcdrHQ8tPAnycX/ltjAQoqAZ1zvPZkiORvWRD0C03BYVyUrHf48OB0vgK3xCPJnnYDqanA8pX0xjHMCxoLUg3lOaODozuC0ERUOi1Huqp5TeWp4vCYDqYfUuGkB4HOphej26ppycYpoAXKwjLhm51vWzsFb8tOKnFT+t+GnFTyt+WvHTip/Wta7nuT79cI/0VongEiyUm0MpOUUnWK8Yvx3JrXXDVVGJw9cs2/JLJupkn9yCiSs6JgGlDCVDfiklgIpHeI0AFQadIhrSfgm5iGMUUYrUSEBF6NJQMRodMUsyxMKzpNTENxF8gn0ysBGwLJhkswAKIiFU8JS/mB1NRYPxmTBbIhg5AfQ1gyMR2GqOpg8fhk63ff69IlJZlmGa27i8uYo/p9Jkz7YIy0H4T//+j/ji/RveefcPoU2Y7LjZnFM+9xK73/82tjMevv8B53df5rM//xd55a1vIiI0bxRXxAvdhHm7CaBf4HAw5k3cA4f0NYnOARGh9cbVxcdYv2CZzln2C+4NtxMevXvBH9WJ3bMb7t3b8OOfXPDo8TMevnHC/v336Xvhpl/BYaExcdmM113Z6RU3ukf6hsUXTDqHpTPP4RVSSVZdlI5SkOP9Uh2AoWPmVK1HJjj+r8d+Sc+a8K4QVOonktEAwPEbiKJekAQomt4w0fafTCiFo09RJm2xkl5FjjAFkJAJlUrRYPdUcpqXhOTDR9u6kPsrgMGYkqZaErCAloKWAKXiAZxbdmSUEp/NJJh3McFFkTLTm1FTckQRSt1weHZAp3qcaOeAycRUC70t6HwHu/whjYVSZkqp4SksY5JgtMlTSdCdPiz0vEaxe2Nl+z9Ab1EwjOlcMrpQyP2eEy61Jyg3nCWBqCJMt2iRwTTDmA42OhSG4XC8fpogM4qKcc7KUTpm9IhLGh5RA2wOE2mxlBWMAiOPc0QjSTBmCcACUIk7tx5UJY+/4cuew7LjcC1MU8et8jtXytOubB0+p87rG0VrA63QozPHLSQQQgv5SRbVReJeOwmqqkIVmD06apgQmVI5MQfwwWMPj82H53UCwbL4CVAYbHZ2imjKjSRjt3t8bcv9S1wHyelzoRn03Ap5jY4XT3AbHjQJat2zMOlHAChRbcanEQkgKOC5d+PhRJqzF4nYOwqj4S/U495Jmr0HHx2gNab53RY58Z1jU0bnQj5xgHHT43qUkcKSkfaO9yw6i8VkPh97Zc73jPPjDqohLSlF8G6YC6VEXHJ3XIl9qRmpbJjy57nxeF1zjz0hNTvIwmQeV0xSureu579W/LTipxU/rfhpxU8rflrx04qf1rWu57g+/YO/kWQ9AYM4WuPPJf+890YtUwDAnE6k6dvRe4BbJCfDIfm0PV4XS2kLJYPmYCx6+ID0aGUe7Eo3QZkzrRvNY5qVIgGge0z/KbUeWZAiCinACNCj4XWhRk/GA+0Zn0ZgdLQEU0iyi5KeJum2kzqeYBm6Cbgi5gG46kyXkINEUoiEas3xDlor3dJwFEOkBVivzuaksBw6RQ3VmUm39GWHqNHlDmW+5o3PvsYH7z7iah+B6+a1++xfqlz3Z+z3T+mX17CtHEpn542zClYVmyoTxnLobE+CMZ/mDa0tAZxEovAgJEjmDZEN91+4Szs95do3sNlgNwsLO/Y4B5056DUnd+Dnv/Yqb/34HPHK577yOb7/hz/g8dUpdf8M3+25ovJOO0U+/im+M2Sb0gRqBGsJ5r4tB+oUchHvpLdDD3DjJfdfTK0zH+a12VUB4CVaukUQDQNoJ71dXIhGhihMUEEoIYHqjkgULfFCw7/C8eyGiHyb+1UKOJi1+L1ag0HUGFfvWPo7RcHjJrimx4TleRigT6MojE6OSHkiGvKn+NhUnRCd6L3hfSEYs8G+lQCbFKRMcQ5KnAEX4eZmx8nJRKmdfuhM073kfBe6d1wqvlwHeCwTLlMCtyhcw5gKvIQ5jriOwXlIKYlE/RbYOCCO1IK1lue0RJHYWwLCOLOCMqbTDdAXN8DD1yS9nI7GxAMYSmKKlC1FYQFjsF9Aojib8T0cIdjNYG7J0xzAOdobNN87QbCGaTpH6cH4J99cJH6l55dWjnIX/0TBgQond+8gk/Do0PmP33F+7OdM84F/50VY+mNeLXBmsJSGM7PpLR8YGJ2Q2IgTUwjNkWKYTogYzj6uXxh1YSbJfNe8FsnWQn63CGLRPSBACyDfd1i7yimcBr7kd7dMCQEYZRRdea3IYm9AQR/FXU6Ii5UPOoDh+3QLynoyw7nf8hyTD0YQQ6Vm9wrh7yU9fj9ameJeUI7gNoBqub1to1oaDPWxG4XMOwWXLIjGmc2HE/HZUshn+Y8LInOCdqOkq7j13HOegNnSz8nDJ2pIN310rojhPc6O54TVsX9VQpo55KFxzWMoguG4H8Lg3R3vY4rmun4m1oqfVvy04qcVP634iRU/rfhpxU/rWtfzW59+uEdyfxGjCzFRqx0BqGbw6eaU0TKrnoAnY4OEp0DVAlZDiuAe7JpEIIxBUA3FIiiqUFwwGW4fAThFg82I4OXUAn1IDrxTKUfQEUmjRAuvEl45tWDLAEvJYnoDnUlEzZhWZt1ThkIy1RX6ksku/Dk85QTI8EgA0EyLEyQoCJ+RbFcuyZK74aJUCY+SogGAqIU7D16m//R9VBvqM1/9uS/z4IUX+foXBTm8w4PPvMKHDz/icGm02tlfXHC4uOB7v/cj3vjMG3zh83fZPbvAlz3NDWPIeLJNXxyzhSpE0EyWpFsw247QtSRwgUuH62YUGrvDnuLCrsNydcWTDx6B7Sg1JuJNpyfs9R4v3tlzspl48fwur3628ttvbTio8/L9e5zofXy5oE6n9O7ILJGEJIqAonNMRCM8hdT9CFzdnUkmui9RsMgUbf4S3htBkA1DasCzZd4lE0YwdZZfTsY0LDh62Awm0CyKjgCUxpDCFJ2BmFYWvjJKGEyPz9PBw1y7SEghhtdREE/haxIJM23TR+u8jNH14TkzQBiqse+7UZL5EhzzBXenaDCr5k5hijOU3iKOIc2Z7kQSl6kAh0zmxlQm9tNMMUPrFkow+iGxqmlG3UED1FJqALU0bvZSce+UWkJ+JVAGq0jKW1KSFSbNE4IjbvE9LVlBmxJMwJERpmPyiSlxFkUnZYDcYBlHJ4Aw2M3w1BKfAvhK+PkMABzxKf1OfOyPuNiDBYcp40F8jpBCSIAyk1uEnD/uKlFs+RIguUWnj9eZScKfxLtj+4Y8K3jZ8+t3C1+onel0Q911vrttvHVqUC745WcbXr85p9iMeEfKIX2YT3Hb4iwBDLtHl1A7QN2AL2ifkF5oXdAEnyInKQXMQiyZdmOYQhuyf4bcHGDZ476HfhMsvxn0vGd0nBbnwTJmM5hnOFLa41r7MILvyWZXkCmY6GNsqkSZv4RvlDdgCzIlsR7G5poyk+guyMcIEmUi4xzJJ+9J/OzAti6exargHkbTPgozyOIoYgQ5NVMwvMT3jNdNsG0av2uELGV0MxCDF2I7KZQ5yX7PIoyMJWFSPdB+TKMMECqqGA28RG44nhvAYjLemNx6nHAnJzRfGeuflbXipxU/rfhpxU8rflrx04qfVvy0rnU9z/XpPf5qtHCLZ4IOyIVaAEhheFeQ7ehLMMUJPoNRisPeW/5ZiRbuWpTWo8VfdADWaP1vrSFpnBoMoTP8ByAnyJHjuCUDQskkbclO9kbVZNXomHe8N8w7U52CZXQYrPyYViQKvTWUKQx8kxXBJ7SEQXKYdMf3r1Vo3tNHJF5jgKfhXSFeIsl7tIt7fifNaVfRmp3Xcq/hdaMgYpxuC3/6T73J3ReMP/GZc374ewZyxum9V0CdtoftvRfoRfnW7/0Bv/Ybf5b5tPLWj/6Ixx8/S/Nl6Law9AOTVtBgTl0lDFWlYb1TiPf1lF9gGkDMlP0h2qFNhKVZFBLFmPqCyIaPvvMtvn9xh8t338M//i4/fbLg2ni6v+Fe33N48CL7zYZFhPvTDV5aFDOeDJ/6EVAgimFxXbSDVJwJSR+NDhGspSAEax+t4MmCGUeAHi3wjTBRTrtcj2RZRI/eKoiEZxEcZRUoRxZtdDJgYULumUCRRsnP7ix0LLs2YoqZW/poaLBdkcBLwuohoTngXuLze8dJKZZZFk3x75oJG93grmiZcQnZChbwWzVYvqKF1hulCr03Wj8wb88h2b5g5AgGWjZQ5jhqteDS4rypQwGZggk0YqpYdHwk8VxqJPGidAGZppSEkZMDHdGOm4CXaNe3FuddSjK6eaZLMr0WkpGYYpfstVh67+R5P57buMeQrKJAUoURfyRdOySKaHrcT+DIGEopR/CQGoz8kWBsRSVANZaFXiMcoEtaBeVewMNU3iVJ1xLXtR+QKnhROFzy+NrohzP+yp2Ff/tsz3Yx+tmW2Z2Hy4E/aDvwmY/mA/9au+L15QSmGZtm3jrvPLHGL984U59Rj2l2eI3iAkO7RGFxEOg7hEuER+BfwnWhi6aaxPG8B+ofY3YO1xfI4RLsBvUWgHXpcFjwtiDZFeTuFG8g0a2BRafFkN9lFRZnk7z2WSjH/ZLwSsq/d484eSy0kqlH2vGsDEkaRQZBnp0O5Ptl/MVzfyfDmyx+AN4wB4/itgKjWAqwCZrFR04/dInXVEe94pZ7WdJkfRS9ebYxyzhU8G63D0PG/kwWnix4ux9iv45RgxYF3zBf70bIPkcMyo4BxLBmFNvQsxhHKn2VqvzMrBU/rfhpxU8rflrx04qfVvy04qd1ret5rj+Gx1+awFpHEgTi0TquGgEswJ4FAPKCMKU8JI1qCTAR7HQwOS4W7KxZPKXv4D28EKQ4YsFClzJjHSwDopY0a802YCcOdcdwDVlAJJtGtDHH71lv1GmiW76Gxd+HXCH9CcZEIZf83yUDBWBLMFtF4lpARk3BMoiBpReqAy2YJCbcG4pnYFfwBeMQoBzF0vdGRLDeET1H5w09A6YgzNXZ3TiPn17SdjCfGJ//3M/xl/61v8Af/kd/E50KvRZsU3n67JKb/cK9u/d48OI9YAmQpqBVWKxRpop5y4RXwu9kyHcyaQslOvTN2T25ZH75FVqark5pws31nl/42h2e7J/ypTe/xiubSvv8HipsuqH9hP0Pvs9b73zMng16+ZCH39yxmx/iXkM60ipewl8BEyiO2QERY6p5/Sno8ToZ1p1CmCgfmWeJToZSJdq+cw2/GotKACH2nDiRWCDYRY17Z/2WlXS3uA8OYlFYqEr8jE5ozS4DBHFNP5cAMEeAmoWdHJGREV5IIF4zmccPuetxX4V/xpCEJFs7QKJ4mtEWimxRNKQWCfqCqSP3v+K7Dg7zZoO74LoBFbQoUpxuhVI2aCn4dGtKLQhh1htAUusc4KtIxADZxLkuoFPF0z+KuCVRhIzvYS1eU0NL4t3xnv4mmvchNl6Abxk3N6uSkdzdjvctZA/GEXVKiDqGfELyOjotAYQkkI2i5HhLUNwSqGTRMY54wq6QELgzfFziBZUBgtN6PlnZeD1RofcbWjMePdvzdt/wrY8bL94553/+lYUHZ8J12/Lx4Yo7hx3vtw21b3hN4cm045E5f//khn+jw9l+oix3+Pyza+ww8zuvPOaruxPu7zeY7qkLiM5xyaQDB9qywds17J/g9o/Qkx34FzGfEF3ABGGP8AG2/x7Un4f9e7A8grbHW0MWg9bj3jaD3mLvSd4L87hXybLG9ci4f/TCGWdi8MoSTR5IngU77utAsiXB5jDNJ9npTzC8Ai6jqInzx3FCpYFr7IVwu4/4igRQl3HvxmcDJCYvimyiI8Ls+FqhVovvJjqB9KP6xk3yPOR+lYgntPz33DtGsO1SE3QT7L0fpVUSptUMoK3UGnlx5ChleIcpRSYah8iTWhC2HJomc7+un4m14qcVP634acVPK35a8dOKn1jx07rW9fzWH0/qm229EHIPNBlpCmOSnKrSew9jYxtP8RNgIgE0asW6JJtTgpXSkgChME0z5h3zBS2ZOHCOg4XICWq9oFrQEm3mnsGud6MOppBOWhjTjczit98jcJfQR2xxY/jeYIq6YLbPYBaeBVrD4yRYxfQOINI7Hi3GRxaTjtApKObhf9KPXg/hHeFp0i2i6f8j4IbZaP1XlIr7FL4e2mhMGMZyc0W3hevDY1Rv2D29gOsFbcZUKuJKO+yYT4xSY/qR97xnvaEuYPFd3KJZvBSCicqOgJB5hERENEzHD7ajsyClsLQbHrywUPQZ2xNjfmHL+WnlVM84n+9yZ+60i4XP/urX2O0v2X3v+7zy4gO+cucBP343/BSqtmSqDZLJj86FjtPpHYpMmTic4mSrfaXIjFkL+xQhPjeeRUkyZgbBLCqjrd0sgekRCMd3DGI5M6IQYFAiuUopWDPMs+U9k0hsmZJnIlOyhqcEZCu9Kt2WME5PxkwoqGzzcxj4FilL5tGae9uCiYYoYCQKOMmiocoUJJelj0uV7DSot8buNTyl2qGhkyKhsEFKSMpE4vy4zjgL3i+wuaBaox3ePgFgAWGDUZGa33U70ds+gAU5rUw9xFoWkjU3KKSfjAXDCVHsDnZYxOMsLzVZ5uHb4+FTlXvEJQCTHMFsJPbBZEf7StyDeB0NZttvk/kw5o7OiMRJfgsySDkSGRc4SlUMNEF8xj5PkKqu4C06IzyBcwJ2FaUU4WQ7M+8dObnLty523Ds9490Gb7f7bJqy3098i8rDi0s+88j4C184Yy7Gdd/zbDNRD87Gr9lY4Styxct9w7MHG8oTuHNwrAhiAl1BO94M9R26v4Drd7FnP4G7BT35ECl3ED2Hvgd7ih0eIVcNeUHg5gksC9L2+KHhB4fFE7w2sN2xyB973DPahmxknK3cIzLkFBktvWSHQBb742d1SUAY1y1iasubNs6BHGuG+M/BVguoHLuq+ETRLxqeZOO8a6kBLI8vYwkU8wGEZDdKmsJHzHaGf1IocGLzHDuSegDT4d0UuLnFtbAA3XqMpy0BP4yCO7ZnRSTPhwlmBRGjW0OY85qEZO4oTaFnYVlD2mmGyfJPp/F1Pae14qcVP634acVPK35a8dOKn1b8tK51Pc/1qR/8FQTvwcZoggF3p7lQtMYBdcJw05L90sZg3YRg27o55pHEI6gPBtvC88ANb8FoabarIxO4BkBIdsHc0BomnT29EZTw4tD0zYiW6MEsK2FCqxEIgIBpEDAl/iQFABF83SL51zD4JWUw5jEhSAA7WLB7KKL11reHRFHZjq3S6AfoBMsRrFdILoLMi2tqEl4H3TpSN8ynp3ENEKbNFvfO1eWOpxedO/cqj5/twgC7QbtwtANTZ7Fr1IIFOTs9B1midd48fFU8ppX1tsT4PCEmjzGkAQmiceLGO9Awa3TrGI2YmlShVD58vHD14Y5S9vzhf/ubXM2Fdy+eIpNwZ7ehfPEV/ujqkjt2Dc24XJyTs8rpvTAIttkxlTB1FtCilGKohkG0jOtZQaxj1sIHhQA6cuyECJA0TTWn2X0iER0zXdztKhny3Tma4DJkVelflIy1oGl2fKye4mWLJpgClSkZ5QNITPeL61hwd5a2xFlJyRYeUgYgmE2JtnNlRiRlIm5HQCUDmIskq24JuEIy4hoeMFI4Fk+ORKdEtr/vbzqb7WmwhKMYkR6J24UybfCiqPYAFcTUSS2V8OxZGPhPag2QnLIrLRuyjwQtFe9htC4KoiU+VwuAYjgliyWQkBN4nj8PNtsHOFHh1oh6gJRgJEWyO+UobSJBawIHj0ImXyj/3eLSjXsRyJiQGARgHZ0Bw69E1LPyTYZVMr64hjlz+hkdTfT7J0CTgptksQF35pnSdrRpz//05TN+cLXjG/tzuLlCKfz+RWfz2in3X6zYHuzhwtfuNAr3uXTn3XKJ75/whe0ZG0449y082fMD+YjzFx/wOjecX89w2NwC7vlAt6ew+xj5+D38yvDpMbqZCV+uZ9BuKN0DpJ49wK7ep7Y9HPawb/i+Ia2FP1dv0XmQXRnmHc3CHto/cUY8Wkn4pP/TeJgR9z/OSdQJyRCnh5S4JMuc90FiP8de0Kwt9fhAIrDrOOdRXCA1zkvRYwiIrpyS99dBSuwr1ZSKRBEINeN0wWl5XlJ2k6A3ZFYKi0HReNhipDylJOudUVw0901MrsssEjGPUegmOA86O+JQqeHPFcZECXIl04xQfMJZsO6odlBhsc66fjbWip9W/LTipxU/rfhpxU8rflrx07rW9TzXp37wZ3KTALTkdO6WZLQE6yUBinrvFIHFWiQciZPX2xj5HgFBKWAhYQmZCPgwRtUYRz7GvbsFcFIULM1HhWx1tzTPTXCBxGeiQhqeTtOG3nuyboJ6gApVoR0WypRshwXXolpwmRKwCNgMdLq0xDcT7gu3UUWBGmbKEmwhrrdsGBYMDw0tkZCtSzIO/cjgJFJCRCl1Rpg5tAOqIYOwZced+3fR6y1fuFvRvWCb13j06ILHHz/mehHmz7xCV2VTtsimMp0pjx4/4fGjpxQmapmCyUoG0nHqVtN82Km1YOQodRzP6x2wr3G4uuKaDbvDI2x3oM7bYLpL4ftXAvtT/uJf/jV+8euv89Hf/lvcf+nneO3E+d7Tj7h59ynXTx7xbHvCBx//Piff+l1+ev2I5cYohwN9OuBastvBcbXYNwXmOSajNVtQ6UwJslUF7JBsr1BLwcb9lZDdBFPkI0ekmiha7sPXSKPAYUyhSwTkty31R4Ysgb3m3jbpYcDuE0qN4kA6RacA1Lk33TqlKoWC+wHHKGUGoohAO8KME/tDtSfLPia+BZAUhe49mVFDq2MGnl4zRRWs4WjKLCRMfN3o7uz2C+f3T9CaQO2YACUSd9niHl5EmFHqFN/FomCjKuqFTkqBdMLZ0Xv+vkjcOw+wqqpYXwIo0LESk/k0C7XoEojkG3KtJT53+gWZeUqTSEDaEmRnYBoAh7w/A7MkSArPIziCgXEPI6rdvpAPEJK/mzIb9zReLgOtT4hJABh3sCUkZiaB2QTEAmR5ggq3OFOiTjP4rz94wt85vU/dnvA3f6J81075iJkzh79SD1jd8/Sm8bUvH/js9Q0v7M/5P3tj3/bc6DPu+8xZvcfbuwN/fjY2F4+5d6O8uT3jt+cnPH3pAWf9gtNl5pU6c9YqtAXdP6aX9+hPnzDtdiDvYrIB9ki5RHTB+xl2AB68CtcfYNfP4HCAgwcw6wvSA7zG/k4weESE43La7fX2vL4jzofu7Z8sEMatOd5EYfiwjOIB72lBZHipCUDr7V6AYIr1uAnidYiijuFp4/l4QvIBhSroFHIXBS9LFFsy4V7TUykmS4p0vMfPid8WPfQsGK0H2B7XRWLwgJYSr9E8Y68iusmHFktcDx9FYO4bJqRAbwva69hc4JLTNeP6C0m8y4yUGaTRRfAys66fjbXipxU/rfgJVvy04qcVP634acVP61rX81uffrhHBnQXJVpsF8QaExt6v8FUEZ1R2YAfglUTxT1Yt1LToJMAtsULLkJwjSOBeE5JD+lHdOL3NBcNJlLzs5imXMaN5o6ZpEEokJOSpphSniBRYqLVSFwuePdo5R+BlYyRHsne3DAx6CGHEHWQni3D2ZI91fj0PUbYS53pfYezD2Y/wbKUGQy69WAPMdwKw4jYrGUSKHSPdmpTQ8qO3ju9OH644O/9l/+Yl974Om98+WUe/XThtV+9T98bL37mszyqcHhyiehEZ8fNxTOevvuY7ZsT10+Etl/obniVZOcsE2uAIJFO0QAlooPpjOlHFuQJBeeVOyecTw/4/W9BY0GscHklvPH5c5Zdw5ZG2WyQky3n92bOXn+R6Xf3fPnPv8mGC97++7/N51/7VX7jF7/I//sf/hf4P/outtmCQbEAW6UoweREIWFO+DoAQqV7GBSb7VA2iJT01Okhb2lGlTlYIdVIKmkmrpm0tJQARkOCVUokNeuItAQeM6ol7rlITDQUkg2HohLHSHv+bsprugaw7SERUS3JUO0Z4LdbMMASZiLU4gzD2t4/Yeruw7tFWBZnnud4L8kkLY5bC3be4gwVCU8kpOY9nsM7px84Od0AC8gGpAXTmMVWbNcwcZYumB/Q4jjXiGwj2UtBJ3DZIdYoGnIrHwyuOGMCpZFm8RYyNumS0jTFW0zWC+SqGTME2hJFq0HJggpxwkZ8i3jDc7JdMIHyCcwkkNMd0fRPyTAXQCtBJZ8ACC6YJEB2x4tHkS3BdoZ31CGlVIcs1idYOk5IhsQiFkWMnBEJHysOe6wI9IaLcnl1zce65cWy4eq9R3x7ucfTCT4v8FfvK48P18xLY5qd9z865e2bU75dO2ebM7Z3T7i6UN5ZYG7Gjxblw37NV0+Vr5x17tVX+FOt8JPLPb9XK4d6wZvm/Fq/i0x3eXbxA05unrC53sHhBophOlNNcfYYJ4jvUL/Bbx4iV8/gpqVcJa6JHzpiipeCe0WWmLQoojG1rjhDboQTkwNJnyFyQp97xhfnVp50IFjn6GaKQtKPDxkCYHoG6FEUxt8hkh0Dlve6ZbyoiE649uiA0FsJVxRKsWelRAxHHdSj2wLHVZHx2SU6ovApOkHc0DJjS/ifiQNS46GF9ZB35TkXhvH9bWdM2hwlwI9rZDSK9iw8RxdVFK7We/bQgPnCkMyIdloPOeSYCIjMeO90G8z3up73WvHTip9W/LTipxU/rfhpxU8rflrXup7n+vQdf054WWgeQFfwgkkwYRxZwWQizCkudAh5igpoQWMePc32AWwZHgZpxinRrlu1JqtcOQ4YH5PLPNlwD4kIEqac4yl+FcVkjD2PdviY5pMt0STjiGKWRr4ZKCkBnDwBbJEZ0xJm1ASYcpyiNUC1QzahJ3NuKcOpEazcEHfMSoB6iHb2DLgeLsccvTbS1Nfcuby+5vHNwlwKOzUOh8Y7P3qH87tf4nJpfHy18Mb1hPeFxa6om8pcp6MX6osPXuSF+69Qag3wICO4B1C10rDqaV4c4D+AR1xL60aZJEC+GXRjVmc7Cdc31zjRDn3osGs37FrH9tdcXFzy9k/f4bDf89MfvEW7eRdbKpfvvwflht3VJeVlcL1hs3HKbmFjQgTvyP9mnkbZEax7D8mDi1OLU7IAcYuWc5EwWDZ6eNekxCT2zWCClKKaniISHfE1vptIdsin0Y0zg4ehrZhTRWgtJBtKtJuPbgQkptNpFl3um5QEVZAwQzaW2FfJhrsoLgUhJBzm0QYf3jWa3ydOR29xz0IOorRux+QqDqqeBrnBkikdt4VaKnjKuqgseweUMp/hLRk8JtD0lMEQ3RAFQzCsOoG5gExQShSRteK1IDUMg9XlE8xliZSbTLgkKA0D4wCVMoylcURryNMGqLRxHeLHw+clgP0AB0HzSZKeWYTKMIQP5jzYznif+MU0K3YSNQTglZwsF7K2kqqsALciPUH2hPkcn1M6UkJO09UozOCHiA9uIVk4CEZDTOibCVsqVYX99RV/6w+NVz6z4a/6nnsvV77brviHZjw4wK8s8MPtGZ87UZbTU378/jNgpkhBD8p8Xmi6Rc+gWeV6f8N/uzMO/ZQ3X6l4K5w/3fGmO9OL57xTt3zxibPcKfzkrvH+xTWTXPFVPeGV6w0uFZWFJuEdZL5HBVQNdh/iN8/w/TXigrQF6xrXRGOYgAB9Cpa29iFbIYpAr7lno0iA8F1S17iHR/P1eJgRRt5501NqIh7dH/GK0Z0Uzxg6qlMAu5w+OB6URHy2VDSOv4/ihCFpweM9JKdPpteY1OGHBGMyKZ4xwjl2doQHVuQJ0YiPll1VUQwFYHRb4uePXysL0cyRIgVrPfKqS8SBBqpjumZ0dUCc8eigCVmQ5MMPw8K2xwLsi0N3w6TGmV3Xz8Ra8dOKn1b8tOKnFT+t+GnFTyt+Wte6nuf61A/+VLa4W44fl2QyK+6HPMIxLWy0AJstjBHgJRmIZoalkW4wi8kQpfZ+kpIt75J/lmwX0fruhBF04OOOMQdL5+E/EwmzYe2QZr4BTsgpQKpC90i27hrBQj/hnYMf31sc1CtYmGZ3N1yMokpFcwIaCTgzWJtROATQFkE0vEaa9SA0kx1VVcwWeg+vGnPoXak6RTBLiY0vlZtLCyPv2Zi3G2pRBGOWzuLO490VcvEu3/nff483llOu9peUDtINNagi7A4HLq9v8n16SA58MDaR212UUieQilr0Eajn1LVakM1EWQrcHJgqcLZBtVLrjMvCo4+f8Xvf/An3ZvhLf+keDz77Bc7ff4vpkXHSz2j1hocfvsflcs3Vk6d8/MFDvm2PeeutDymbc8QWFEdrib0hyfKk2XDR8H4IDyDDLRKVpveMQ4LP8AwqySpFMSTH1xONbggh/G2CBe9E8gRQLMxSUGZgofeFUub4DEQisvQ9gmCSlCk/hSFpHB5yjZFMg3F3TzPz0c6OohSqFsxCwiJlopSC2Q0iNWQlafx7nNglEmcBD9kNTpEh6SgBeM3REtcOhGV3xbzt6CTQHeYeXRMWLB7FkXKGZvdCAIEl/GV0C1OFYsgUPi0x+Yv0zVCkGNaXKNYkmHSOwFKSXbxN4iFRy2SvJJBJ4BIXLF7DwsQ3rveBOG2CS0yUvGUso4A2syxSRydMoJH4TBnQJO4VKig1wcXwutpi5YBaSp18SQhWQRs0Rz2MgkWcpUOVKUC3dFxPUN+CL5TDBtcbTGZ+8njmY+u8WS74yfUpOy2cqvPAFp6y4f9+U/iD93c8qqds7wu7a7g+GNPLJ3g943K5h24btIfsbi6gKm9+9R728Z6//eSCXz+/4nNsqZeFn5/v8MaZs52cx+cz7/VrrupM7cJvXl/zZ6zzWi+INort8VKpOoCRIBcP4WZPEcdtiUKMEgV9F8QV904paYpceuzdPgp8ub3OkvHMKuJhEB8rOotg7LX8x4I5DtP+YRjtsccYBvD7Y24QiXPmDuIVN0VLmjhLydciC5oBpiGMxiLmDpN2g2S0lZCZ+MDRkTMQVIwxbEEGAK8g2YEU27giWoO5V+J7SH7n9OBBJLC0x/uQLLaJMIzO3VIyldMUS5lx83zgEtJM1RJ+OeJg0SnSqDT/tNl9Xf+s14qfVvy04qcVP634acVPK35a8dO61vU816fv+LNhzOnBaogkW1tQJAKSASUOIgVMktEiAkac345LSD9Ue/hXkAyvTxGfioM3tNwmMFWNln7vFDxBTQ+a0SSYLwy8JWMcTLkmc23WAmxooZYpfi0ZZeugFCZuzUrD9zMMg1WcTicJtMynnaTpSdgabcrkf1syxCJgCVbT3BnvDC8C8wZSKLqJICUerJAvYMbNZbDI3Qt1mviFX/4am7vn/L1/+FNeuzPz4Xtv8WTXeOuDx3zu5fuUTUerg1YaylIPzPOUYAnKHBIG1Zh0p4tBcbQGS2LJHLp1as35fNaDRXbj5HzDTVuo5xOuYbDal4a1PdJ3LH1De/YN2k/+O/Tqgs2DX+TVlzZ8+P4zXn/lq8yHj3n0O9/ia2/c5QuvnvHb3/02izdUC8IOo6BeMAvlSBLWOJYyk4CduCBM+QPhdTRwj7vTLVrgB04hWUgTo+S1UASsc5yEJoJzIKYAbkEcM0dIdoxhGi5QLf/eUNmiPgHDt6NTSkh9Sqm4pxzCLAyZHYrcymS8G80bWj3UMviREdQgzQLwlnj/Mmn44hhUD94KDSYrBmLNaZqtuDS6C6rGYbcwb+YA5bKJ4lI3mcUFtwa6wa3h1sK3yJQybTE62D4mdHWAA8gUxR2dblB8E8y0HCC7UBidGGRcIP+J4AEanRCYJbk8pFOjI+A2+7ob9IpoFBqYYkxoTjSUQUhnIRLgNH4/nYY+sScCJEme9fFzpdT42TRZtgq9hc+I7zsfPnzKq6/fo9qW7oWr5ZKtbFkm50Tm+KpyHXMoVbjpV/zR0xveubjkx09P+bfePOdmusff/PAZV9OEXF9x1wtXNzu+0ZXDTpi2Nzx8+2PO5xNq61xcH3jpa5/l0btPkKsLxG/osgNR3n3HON9s6ScbyukGnnlMJ9w/5Ad0Lv2SNx+/zq/Xxm9eXfLw4j5PDwcu7h34188veenmDHRG94aVkFJJ3cBTQ9qBg13jUlnEmXXDVLe0ZUdJzzH1nvsvfa1EwDS3VAOG/0qJMyQeUq4RZ4kHCDEpbphVJ64jgF22KiRwDPAqowLKBx/io6hLuVN2EMQL1AzT+VCElMpEIgtwWiLPSD54cR2dDyT4FBTFLT5HxCLNgXqOVsEXshkoiiJVx3s+fHGLz1nCn8l6D+Y92fQxsU+zU8vHRMPUtKg4Jo73QzyEycmdEkENEye6vRakKP04EXNdPwtrxU8rflrx04qfVvy04qcVP634aV3rep7rUz/4Q5YI+vkE370HEJKKWbTvqoTh80iEEIcfCTYBd9Bgw/BI+iRADMYhAo1ZsE3BJgrSY7JTpvCEiQVPQIgWzMeT/fALsWS4VMIL5DhSXML/BchAF94ynhOnguLuoNESH8ahY6ZdeIBI+lkgGTSTNUGgj6CKhW8FRsWzqbilf8mYNAZFg8FxD2ZnEJlKYXO25U7ZYE+eMU8b0JnPfv51dLPl8e9+xOt3hT/6zo85Od+Eb0G7xr/zffj4Gdo0TJ5rfMab6114rfSOziEJAZilUJJ1t/yccgzcEsxLst904+nlE1768s/z2TdfYLH/HLOZWivtsGPZPeOs3OHjp87b711w8f4FbfMR75uxuzKefvQx906u0QnmLmymmZPNxOxG4ZTuO2p6sZDsWMKNuLcGqQchxt5nksr/covgHZP+IjnhYXHuPm5vS0Za0TBaoSC5fzriU+xbjWSLTMe29yGbUYnOB8YkLtNsH89CJos7S7N2DdIsWbNgad09fXjCT0MAcaV3x7XjaqgWRmu9eZjBa07BwyxtKqLrQlQoNVl+d9wbtWyi0yI2O/v9wt27m0iKZULGZ7Zgpu3oWZRnZ67BRmIp/5nw3rJbIxngBIkaGTv2PfH9SJBBdpIcl+U9lQSb5jGAyzmCC7P8g+w6iB+XBPE1XzeZUJejz498Yk8ghpMyhQFiJe9lAqnBmPoxHFbUFnrJn2+KlIL2Hb/16MCPf6L81VcLLgsPnx34fz5aeFkWfvHsBd55/BHLqfHV7YYXTrd88BC+97DzzVPjbHOHpyenfFc7bz1s3NiGO9qZT4UXp/t8sDxDt4K/4lzvG90mTu/cpbaIVx9960P215d067SbPS8+qPiZ8mgH+/6Mr7xxnxeW+5h/gNQNej1xeniXf3zP+bgu7N9eYHPK2d27vHJ1oF0/4x1OmfqBF8qeaA7ZoO7hl3V9hfSCVecH/ZqH5tx9yfilRwtqE0JDu9CKoc3pc89CX2Kwmw1Z1igeJNh+SUbboyCPLoQEWCrHBweMeO9DAhVg0EdsDaQZE0Hd4wxJz39m8JArufZPSE+y04IArOPvXSATDOSk09EhkgmKIW8Cjt1KkU6EGFgan11LyGq8L3i3kDW1IWEZoFaChR++ZNRQeKaEZUgshwTSNQrokW/IsxU5w4/nU3RmKoUFw0qlHUaUX9dzXyt+WvHTip+AFT+t+GnFTyt+YsVP61rXc1qf/sGfZxBy0s8Cyjjseb6N9OrAkZQSuCiIhnGwEi3B3iJhuBBsguC2ZD6bKSXZwW5UCrPNNG+4GJKBKnw6MuhJzylhYWLsEobYaoS8RDRZqfA6MYxaoo3YLAyZ1Qs5bi9iaoI4HWDFFfGCuR09TSLAWsbXCCrqC3gA5zBlnQAlfBMy6OgA/Mm2i2C+4BJm0Dqd0rtzcucO9+6c0H7wAep3mHRGtSLWuf9gS7cnfP5s4npTcdugywV3v3PBvHde/9wb6KS03ULbH+hLizb+RHDmYLbgtUbrN0aVABlFBKQG42KCoZQyoXTaYc/1xZ5SU6YhYXisCLbsubyaOH3hq7zxxVd59PC3eO3nf4kXXtrwzu98j4fP9iyqsIOnbz3hB6K8//iGokI3Y/aZQsocEEopyVpHptAM5ngUDzG9MCRInqPdVQPwlvQzip+PveoYJoLW9H3xTvjiCGjcJ0npCNajHV4noAxiPCbddaEWxXpMV1QKJrvo1qCwWGfmlkGCmt5OpI8SqCrdwwS61DRI1xL7pMQZI6UpbgtaMrEBMUUvE5xW0JrwwI/dBjEN7hBnQwrWO+2g1Okcax07emscAnRyiO9ZJYUEheY7aj0N1l57dIWYYaogm2Dn2nVKCybcDhzb8X1J8ApCwdtgFpOZ9A49i1A/2u6SPRKoDvpvdKWU+N4KoiFdCaK+Ay0AjtdkS0clYHnvAmQbcS7VasamlEgYwT4Cbgsi6bvTJg6bTr8S/pMfww9fvMtnXnnK3//whtc2B/7wfeG39y8xKfy9D664j/Hndebs7jm7m0v+1kNnLzN3Lu/yldNT/o4Kf+NDxf0GfMuf6Cc8PJm5Olfm+xu+PDnFr/n2Txca9/jc5DzrO8xOefTTC/bthrPtRG0LH30gbLaVX3rjlNOXryhmXPkTLs6ecjpVzg/C58pdftn3fPPpe3zw4av02fD33uWLm8KHj274xt2FB6eFf3u65JXzM6zFPdGTjneBtuejqwvevVe5/0Vj3hnSpugucMEUPnx54qrA5x53pn10PYjEucIEz5gSBY7kfZKMe8S+c43z5xb3TMK/KLBq/LloyMw4dpdMSJkw17SiSWnLAKjjYUJ2JkTjhMNgqT3jN+T+SKPro99SPomABLV+ZLpVJ8KAOs6jDpmMlZD2ee5rGQDZOPr3iIYP2ujeMEWYAiyrYbbPzxpFtqbk0sdDILIxTAt4i9dW0L7HLLrGVIWl2/Hn1/UzsFb8tOKnFT+t+GnFTyt+WvHTip/Wta7nuD79VN+i+dQ92Dk0gKdbtNWqZnKQ8HrRoOAycYdPjVsJdkwrlBO67dER0LSgfYCRDCYK3RqF8C1xnN4lwcJCt5t48i81HEdaoxSly4R5I3i3GsyUDeZCUaYEOj2ANASQLpG8ujuldpSQA3iLn7ASHIKWyiJ71Dyng6cpLZXFe3qHKCoz1hXVnLuX1KRLwXXC2hKMIwRgKBPdYUo21N2RqSI2R+e9FO7cnbi8qdy9v6HsLrh7PtN3Ey6NWSr22jnlnbs8evgUbz/iztkZD/7yC3hdqFWQ1il9RiWua28LvilhhKwgXuiLoLPRUIoIWifcKjTj3qZSRfjRD94Cm+gpC/HekROoClst3H3wAnfun/G7H3yA9hc54Pz6F17jwX3n7N4LvPG1L/LmL7/Kb/7+b6FFKQAaptyTKqjTrAHKhHJrQmsISya2AI3eJSQXGrlEKLTuTFMwSeaGsVDSBNaaoXndY3MHM19Eg61LQ1yVKQCytWCvRMKvVgL0igT4630fTJc7qsbsHc/96z3uJZLeR6JorcGai2ZhpNFxQLDUyiiiwtdJa7DAYsmet5oJ2DHJQrBLnLspPFWwhV4MYYOqcrW7oBaFrTKppERsorjgdsC0BCNcle6dwgGwAKNe06B5j2tDDwt9ISQNZQN9j7EgbBOQJgBwRQZY8AVvh+gIcOLP3QOgizGkJtHJ4igb3HZAQ6iEqTUE0EnPqtHO7xW8AMn4MeHSI7YcDX57vCcCGuBWB3soJfeTgMy4e1yDybh6csI/eHbBN85Pmdo1l9stv31zxmcvT/jHFw+Z1FhEOD0V/mdfPuOV04nvvH/B398t/M7VXZ7egOyd/1of8csvF/7SC1v+i4uFZ135nSa8NMH5C3eReh9/6wNe353w9qMtPxblxw9vcC/Uume337OzzuubiV95Ff6gFx7OxuPSuTtt+fkHr/E3fudHXJ5V9vaUN0/hr8gVn7845x/uGrst6PWC94X3KuwtfJV+snvK+/IGfvERXitVPHxeWqPOO9pywl+8nNEfTRQ7cGgLyo5n7cDHdxrvnt/l6bTl8U3nTx72FJ2QHhIyyTMqEPHbQcYTBF3iAUjQxdGlpEuCrfSzkbF38ph6eMAglge9xX2UORnbLN8C2R3P9vhfd4kHFB4dVhQQib1l6V8VZjMTR0kLOeFQQkISvmoFlzgLIduKqtalZMeWBrcuMcFVpgkO+wC78YlzP28Cx5uHPNMaUmYEjfNZhOH3JJQE1fm9bUGJwRDmiso2PITEUVuyYNVPm97X9c94rfhpxU8rflrx04qfVvy04qcVP61rXc9z/TE8/uR4KHUKDxFzoareJmTVSDwe7e0qmqzyaPM1hmmnuQckccn2XXBi9Ha3JcCkOUUV00j8RYI9dHNcS4LW8DhQERo9JRjxWSN0erKAaaotEyI1kx6INzKTgsRTfs32+tYb1cO4VjXa2l0c0gOnlIK4BwssEFxcmgaLh6wlAVhIApK5cOIzeTKfON2CkdUy4QQzrlI52czhh1DDpHV3Y0hRyiI4L/GBfUwvxosvv4J5xe6cQzF+/Td+jZ/84Pu064WXX3qJZTnQu4VfDZ5yIKcMhufoIxIJ3L1CD2bHJJi+UpNxnTqf+dxrdDeKQqlh6hsM7IarJzs++KOfstvt+eF7T3n//Qu+rgtyeML7P3zGdr7DPdnz5Lu/z+76CvMKqixaKEeJDHFNawmg4Y6lfMMTx3p2KJRkGyWJSpVhshuBW3NqnbkjBOtlOFULRZTWosXdSKkJ2eEghFGstOSMoghieEio0yRa9EXn+Dxptux0ltYppdKzK2EwaVFEFVRnyC4PJ0ykDc8uipBvjYIopqzFvhggr0rlKA2RuHdmjkihdz+2zQsT+ytnnpwqjveWLLdAi79XqbjvwE/Adri16GAwx93ivBaPAsUdZYGmWbx2Sj2JxJ44w1OO4i7QHTOl6Cn0A7hgplEYHhUpnnEiBCTxvaI7xQfjOaQN+Qbuo5lfjvHlWI2Iw/Cc8oZnIRBTMSXeR5MVTemEpz8Ued73N9f8xz96xA/feJVTFWqvXF0dePtC+AMO3L93l3/3xRu+8fDAb9+ccOnXfPTunv/gycST61MeXjp3VTk/r8yqvPvsgn/vxXvs+xN+m5lLq5Rp4qOHN7z9w2sev3fN/+LNU26eLbx305nvnPCFe84X3jQ+fvqUswlefU/5z95y7LUNN9edR08X3t/PPLr4mN//KdTTLZsFnpZrfuUXXuHw0VMeH5STF+CmwIOzhXufKbxjgu+EF+cNP2h7/m/vNboo909mDnLF9sEln3ntFaY7M595csGbhysesuPbJy9w57HywXTD06Xz8o8Wfunkgs/eVETPcwhjFhEscf2z2Ukkr7G3uAcMZjk6dW7/jCjcE/xFRRqgzGXJwJBtUhBMM8T99ihw3Hv8jBHvqZmfyHxzzA/hGRZ+TgNkB2QdU+Gia8WjU2J0KjngORmS2MPDrD7eO7p98Cm7IPKz5t72liA2pWjjO4QZevxUnHnF0vNH8juGVDQBbUqD3FrmoLj0zSM2retnY634acVPK35a8dOKn1b8tOKnFT+ta13Pc336jr/09XDAehzXaDkfSUNwkwSbEz1b1QckFWIaF7LQaYhMwV73CSWSummj23IbHOAT1hIaD/wJs88AMVMwvhZ/roS3xXH6UHokjAl3nsFUJRgLgTByHR4VkonSnfDSAbMAOGPcvbthdHDoFkBVSko/Wk7w8gAfEZYLUkKa4h5T4XyA+JIAzbJluc645/QxrZgbN7vHCBr+ve5UKbz44CV+4zde4Iffeo9DO2erhV/+wgPqt/4AzNnvD/zwd7/Lvdde5fTeCd07+/0h5RHhjRLBOCYDdg/00LtF54FqFhQBCrUYiy80b4ie03fGow9uEJ2xlBs8u76mLxOTfsj2XuXs1VeoH/4Rf+blwi/8ya/z7e/8gJvygGXe4Gcf8kTu8PHTGz56dqCaRPs4ZDKI66Jq0XngNQCppR8QimgJwBoRnlIU7y0Lpojg3cnvEyblYd+imUTDLNawSHSk/EgcaAFiiWIkMkMaQsvYkwWhYAkaqwp4zw6LAFul1DBHtyFNMbBOGLrH1CkTcl9pfN5jsZfgTWrsiVHgFck/l8jnKdWIdneF1im1jtODeMjGds8O3L07U7wcwQKA+RTdJAmotZwgfgBrsMx0hDJF4vbeImT4AdTwJf7brKGtQNlHsLDBslVwsN4RS0+qHga8kF4oFq34onH2BmsNludEkSO6HUnex50JYOOFkLjEtRmyAB8A9TglL4OZVUI+JoSEwnAdfimKsYe64e2fXPE9vccLW2WxHef1Adv9+/z0vvPy9gy5Wij9iuuLS+61U775A+eNu9f8uZOXkH3nG3f2PHpl5gEVfTbz9VI5rQf+9B348f7AfrPn7Xcbjz8EmvDF03MON1f81lO4d1o5V+XZxwdOrhbubyb2LtyYI7Lw8PEj7r5wSl9OuLjofOPxnmIVv2o0KRxQ/tq7z/jSZuZu3XJJ5aXa+BfPt3zb36a1M+gTy1L4ke05+AmHa+HpE1g2d+DxNdc3j7n/oPITu+QdPSDzHX4yC+XFhfM7G85a5+0ffIgvnc/Mr6P9CqdEcZBpYRDG455AylAYEr59VpspYclcEqZYRhhSl+h20v8Pe3/2bFuWnfdhvzHmXGs3p71dtpWZ1aKqUIWuABSIhhQokKBIhiVTtoPhPuyw5QiHn/zm0P9ghx3hF0U4Qg5bUliWRJkiZYoUCLYACRRQBVQVqsusyqxsbn9Pu7u15hzDD2Ouc5Nv6QdG1sOeETcz78lz9ll77TnH+Mb6xveNAbSC9Ez9JrEjmizwRh5TQ4bE7GbPwBidQt72G10DjSWKUElMErmWNZBmcO1aiOmpY5NxhScUE0Cv1rpV2mEGhOaRg8R5Cl1ZfK3GZM34Woppm4T0Cm8PD9oZj8IsNQA/PRRqchpoqp8PsfXRFkD11MYp7NdPwtrjpz1+2uOnPX7a46c9ftrjpz1+2q/9+jjXR37wl9oTfBEJBrYd9PC/iOlkMZ0+Dmtk+NDiRxIjAJ3E9K+wKJ0kHdNUnQCYKTXNvyjmmdTGgAcCaEHNK9RgqxOCeIRBRPEpz3nYi2qa4kYYX8eEPbnx0wGJln/0hq1yj+ClzS+kVocUrEfIXCYOwamt5T13XQC5Fq3Na5MOOKUI6j2CoWptmlGl1ghMmiSAcwPt5uGVYWVOznNGMYpt2ZUtb/74h/zOH7/HF27N+OKXP8OP332HB1dXfOJqhXvHcsy89NItysEt8uwum+2OagoSM92sgfCYWqSoZLoc8oWYstaIJgv5A1ZIYoxSsLrFL695/ztnuGX6vODaRtyvOTgG+sJBXrC0LSLKaVJmqw+YbVecykPy8ZrThfHi6wvmi9dYfPOQy7cMUkLKiJjgRWO8OoZoFAmqegNIp+DujQUTcWotJG0FjjlJE5OnS631udk2IB/yGKq1BFCU8NMIs2cPqYg7miIRx6SyVq41VgnTwJF4TOQi/kxMU0xHDFbMfGJjO0RCXlMNtOtAw+C3oc0pxwUDlTwSmjU7bkmIOMULo9ESVky5E8ngJXwyJONWY++Ohu2c2XIJPkaRYEByJA0YGZKGAkBTk5QAkqDWlgyjmIoCMEycxbvo3migs44V9fDxEGhAt51dAaFiLngNGZi7EBVfAP1KJbkxpf5WlXDTJVALiD8HQ4B7beDFiVb+KDwCx7ab6K1IbsDW3QIAxSs8B7Qer5fcseLorTl//YVP8ifDAzYU/m1fk/ue7cmG96py8RD+k6sFu+2Gf/+zHYdk8sE9dCbY6RP+zcUdfveZ8KMna27dm/P523d4s67hSc8Pf7Tk3SshHRuv3Dniy6cZf7biHe1Z1S2fO+35X7z2lL/3xyv+4Gu3+OSnjvnipvLOasMXXjnijWNIuuNP30/oek5OM+aSePz4nFoq83nPs1VHugWzfuTp+il3j4946/qCK+8oj0cObsHG4OllAT3AeyfPesbxEbZ2rs4qLCrz+THv+Tl9byx8ix4c0s16+g7mRz0fqPOtYcOvSyLTMclSIOQdSOvYIUzjpwcT4dvVgg2VmFxXw6+lGT1HYdFApUoUlNZyiMfuCEP9aQBCdCdNKDD2g8TvDnf4BqhDbuk+gcvUHsx47DV3kBxnSgIMCkS3CRYStGn63FQ4N0N18+6me0Z0vJGdQfPG8Q/dB6+4x8RU9ancdJAJsLYzYHFdN1NTPQqA8MwBHyPuVGsdU8waMN+vn4S1x097/LTHT3v8tMdPe/y0x097/LRf+/Vxro/84C+Y4YTkYDEhB/BqCVtSBCBvMgFpSSPAUTzNV1WSxow2b3p9UWvpPvwmUut1j2SnARIKTBPHDCemg8eUOVXicE9moR7SBHdpzHoEnAgSwfyJ5vDjoAaIlWA0gWYqHb8ra9+wSCTikNfozffG68bVm4eJc/UCtUYgIwB9w4fxDyOC1RQA29cmttJVogCwFAm3W7IZtuT5LVJSiuwYtgO2cZ7Zfd78s0dcD4XZ8ZKHc2Uua876nm+89Taniyd8YeZcnH0JLxKj0SX8D8w7cpOouEEtAcpS14NXat2Fn0Pu2r12vDrz2YJLv+Ltd98lJaGWwmze8cbdW3zmC3co28TZ9TXvPO44v96w9MwH7z/mcn3N09/9PRbXV6T557j6f/wHdLMKb11gCqnsohtAQsJkLSl0GsWHOxQN7yNVaX4SDdtEnCfatx1XsAboYsw7N8nH3cgpUev4ocKkeSFpMxHH0Tb5DXMqBWhsl6XmlzNwM7FQFauGSkLpqeYNDEOtA+bNDL16+LZIFHCSIlFbGaBWcu4QtNVnzeMjRl5FQtYAyy6tU0LlJmGb0WRSrQVfBK+KKWxX12Qt5FmOMyES7L96FGFi4GE8jQoyGlYqLquQTtku7hWNwWt7VTzuj2rGq6F0IUNoiT/eR2PRrMZ7aNP/noN0b8Uj6IcwJB4FxHMJgCMS3SLuGnvAA9jcyICssZ4YbfxYxCHJWDOdbt/aioN2MCePGxlxBiwnZNzyxutHHB0uKPeXvGobXtct9WTk05stbz/o+O3jjh9crPj5V2fM7nZ87x3n9eM5tlqzWL7AP3lrze88nvPbrx5weiL8t+fw2XHOu9dznq52vH7nkI0YT3fX/OHFjDnGs7Xy0ktzPvlziTfvbLjTZ2bXa75zP/HlV1b8hU9u+D99+y6vv3TKw/vOQYr7aRthkJEXj5dsxFjegiIbHucFr6eOW8PIO9c7du68sjpg2w0MBxtOtKNW42o9YDh9Hrl395jt1TUH847xbM3sjuI5c1ALzhU1L5BUODJjtUhs15XV9hqdn8YnaWN8hjceKZNk5ENnVSazam9FRRxm0TapTQGeG1tHvARNOZomWlxGpPlbTaF6KkhS7EMRgh23mzhO67Sa1Cyxlz8EcGmstvct901FaxRoTMWVwmSKD2Esr5Ja94zhNkIdY/+mkFiaGWEG38CoeZN+TcA2clZI7UJeGSC47f3WZRSTI9sDkjaJUjRFXBDBvAuZ3X79RKw9ftrjpz1+2uOnPX7a46c9ftrjp/3ar49zffQHf2Q0zTAbqTfa+HAH8cb0hIdAJE83QaQjpT4SfPO5cAzzSk4g1bCqSGpeAB9OeCohDdCWMlNqACMCTNZ43ephxBkt6uCk5ks6JfGQO8AkfwCRybPC8RyBI0kA00hs+QYMcMNqB5iOgAEiCbMa2TacuIMt0GiBFybWI3xvrHnhhOTH8JtR5JGQVRRzo5bGnI/KpjhnDKReqGPh/geP+H/+v/4LNqst2xHevLzEdQZqpFFZHC1w23C+KSxSYrPacOvRU9754TsMqw3ZW4+AA60zAJycEl4Luctxf8XoOqGWgNbZG5MLPDu75HvnO7Y5fGU6ETYId45fp26O8NoxDjsuz1bk7Dx++yl22JEs83D5JdKsUj3xo23lwdY5H65iv/iASqGqkpMGiJNM+FwEq+5WUXGkTSqbxtqLtqwVbQuAYTIBIWmfqd9ITSzyU5NUJCaJgnpq7FWNzyk1Y1oLVqqKN3ap8ajSpFtATgkhputJComGWDB3SRrIumHFynOLDQ9w1z6UYKpUWwEVyTZJIpi7YGXdNKRUJnEtE5vv4bXjEs37KlFkXa/OmM87HCNRqZZQ66A6bhs8xfdJHaIrpVTULMC4RhdJvH7sc9GQDFkd2r3tov1eOgINEGy5NzbSAuyKZ8TGKCqbvESksdb+3Gsn3oo3ltOa1wft+5+Dlvi3g0yeOwFWQqY2yVpad4tWnvulBLjH5KaYCSOq+CzMHBMog2Crd/nV+ZrFWnASOSV+YVd47e6WlzM8WjtfuLvkn//wKf/v65f50jDCrvBib/zxM+gOjum54J/+acfXNku+zjX/608Lv/DZBbe6Hf/HNx/CS58kLRMP7z9hfnjAwe0l7662PNyeUDYb7lhH586Tx7fIl4dstpmn91cMq8qyA1LBjhdodm4vjzhfXXK92nF5ueOVFwb+3RcO+f6jBeuDnl/rRrI43zsY+W4Pj56NXF50zJaOkilFkF3HL9zK3GbNd/oFF6sZB6Xndj1j/eqWxfIOxw/O+OnNhj8tA7vac2oLVOOjjH3QJgxOEhXLN3KKMJaadBkanUfNI8y9hIxOBKu0GBBnRTxDVVyGhnn9+f+TBi6lAF0UU5P8TCfg3PLM1MKEE34ydvOAglY4ikz+YyV8z73GvjHao5Dooohui6mIahIsmhQFA1HsBnzGzEscJu+muI76/Pe7N+N2aay1PM8RTUAn05MYj66jqQCPexEPd0YTLPlHTe/79a957fHTHj/t8dMeP+3x0x4/7fHTHj/t1359nOujS31zj9Vgd4PVq6jnOExpmuoE6kq04kbyDxapD48XreEX4YI1+YkkICVqLeGVooJ2YXhrDl4FzRXzQtJZ82kJ9s9zHFpMSMyaP0yh1II5ZO1akHCcsRnTJkq1BrhbW7oH4wwpXEfa14Q56ADiTdYSAciNYL0Viow390iZcmPX2phLBCQSaGWsI0kFamPXRcK/Q2YUb383hWHL288qf//RNc9wpDtgM1aKrTh7VBlrMIpoT0oFr8qQBsarNcYIDus643y3pnz9T3jwzlsMuxUHxydIJ0jOaFKqjHSulCGkIAHIKi6GJkWS0yUoBUZPGB39UeK0O+T9x2e4QZGO5AOaT+i7Y8a+0ucZdxaZWjuGReITL9/jnfNzZndPuXvsPPzOU27/zJe4e6fH3nsXvbxEcmKsxqLJmwJ6NcPoJC05CdamMQkJNIVhuRsiFhYVFpMJcW8ArkTB4TGj0EWCnZYZkKiloFoRwrA8ZChdSFg0Eok2iYvGR4TVkZSbEbVIMLceiTFpaqxUM8NuE65itDyIKKVKY6miiBMxXBNOMNVpKnCIAW9k0Nb2r8kwbewxhuYULLgbVgsxECwkYFIqoxrjasvpyyeICEUctWiNF3ckB2YOY+uE90pdG0JPcsVGw1P4+Cghh7EmFVOJ90hxxBxhjM8nGdSK3uAKbYB7g1RBLBI8Ep40wQJ6FCBWW7cCz8EF3oqLDDagTN0prQJRWt3aCg6DkKREd0rcxFZgSuwFpDHdVEwy6juErvkhtamb5yO5O+Itm/PeTvnl4RGnw4w7MuNurrw3rHiaEvfXhb8/HrCbzfjGqiDlkPHpFbM+cTBcciBzvvv4kivrsIOOIx7zM68d8PC+8cXbx3x/5ohUXnv5Jc43A5ux8uRJYZGVXGc8veqgGv/iDBbiHKtzMCz5xVPncjfyhyv45B3n3nHHH15eME8LusUhB5eV/8ldg23Hv1DjeFX5qTzwe4+fcv/0NW5dOioXfPZTPdLveO+DHdmWXF2t+NF6w6/egS/NMn/y+Iz0rOdXXsl8b6hsxyt+fhBOdpnfMOGrJiwPZhgDpkKy2joF4v7GWc6tLouzHP/duk4oINHhIRCfTxXwEsBVFPcBn7yIqhEm4s18fOq8oUSHxdQQoR216vSxt+4Vbw8NwussCkppXRXtQYM6MLbiUVHL7SGGEx5XRvialSg6zXEbEWsyRqtRRLay1kvr4PJJxkaA6Qw2biJ+AHjzonEDBmBEpKdaTILVFA8eqm0wMTT1YMGwGyHPwwc6X0ZjlOyB60/K2uOnPX7a46c9ftrjpz1+2uOnPX7ar/36ONdHfvBXfAhmN+nzCXWAFb1pJ5fGarlEHPL2RD5poni9aWuPzuR64wUSCSbMkl2dWgDvyZJwLYA18DCSkwQDLlDNyBpafrfUmBBIOUG1MLomptm5T/3N2jw0vDGlNTw9MFS61vI8tkAX486DSBBCpxPt06IazK5mJkNr9zA11qC+go2hok1iMVoNSUqKiWKh1omAHSbDwWpsy8iz1cB1TeQukQy2ZpQBtqXgVkjq1NkcGUZMChnQZUf1OUvpKF7I3YzZTNjJjjSbc3wQXjxqgpSYbucpGL+kkSACoBQwoRIyIanQqzF6pU8dthE66anlnG62QEokgBFINqNo5aIOjEPHrjfeXZ2xKoXU9TwbwkDaZ4m1j2hWujxDrAQzawlp91gTMQnNB6onVDMqPVmkMdNgjAE0iILGmsF4SDkIcOYgFp/J5Mtjbk06NccsihURAkyJ3ABQZwJ2bSKex+dpXoP5itKJapWUps8xuGFprJp7SErCOD3Y6hu5hKTo7GAy546JUioBYjWFT1B00rfkrtMkRG2YrfnXZIL1wxDrcGnAnBmSD7DJb6btNDzhlpsnCChK8cbYO3g1JKVG7heciiRvNhmNwZsY5rEGc9dMq53GdKviNrb75zeDGUW1MZLRzeJekdZFEvKWSXvQgO+U8Ce2jq6RoYLbLoAoKc5gtYgBaGPLQxo0yQHiB+0mBE6eReYVSRWzzGrI/PhqxcWtY/6zp0JZ9jC7x1+5tUN2Be0OGD8o/PwI//JRz/3ZbdiODHTAiqJAv2SzFf6jP0s8GxcU3zIfKm+ej3xydsHvXGx4wItgla0KD56ckxdLvAtGX0vGirB+dk0vcza7NelQ+dQLc4rPSTIwase9g5E3jhLnvqPaEWMXAOynPj9w79j5b59ecXb8Eg/P4P114rh7hfsPrzg6Svza517m9378hFOEF2/B7nJNns35ucWGY+tZPHyXv3pyB+YrtEt8YnyZPxpmfCOf8+s20pNZLjJWC+Ideeq0aIA1ckOK7oPW8eDWfGE0zmSwzelmWzJNg5MasZi+/f8Aq+KL5jkt7SHC84/0hk1uUrekEsUQIWOTNoUTYn8jMULAvcUfpt9v8XpOdKc04Dp9PXJHo+gt4vYkqYyarO295lnm1ailkieT6Tq21w/plZugAua7OFuEl5JISFBE2vTKGtNJVTNWp/tEPCPRkEUWd4o/n8q5Xx//2uOnPX7a46c9ftrjpz1+2uOnPX7ar/36ONdHn+pLJHZrbfvRkhyJNA43N74vLs+ZvkjsNaQgAMSTd6sBgFsIQZMHkKuJlNJ0diNoUVE3aC3+Ef80JCTuwQg0QGp4MAAS4NI9TIAzGTym1qUcgSpARSKnRQt6wQq6hHmBUZohckRGb0zgDdCs3kyTvdnjGEUEbxKGMD5tLIg3uYMHfxOJXWJCl04eOMZYBypwa5l4bQcPtjAcdLhtURdkEF564Ta629LNhUU/p4qS6pZxfsx1Ni7ef8p2KMyXhZkpownbIbFLA4vDA4Zlh81n+LhuQbsBLw3fE2tALVjY8GhxF0pRzp894+GwZi2CSkfdFYqNPDl/m4vhgKN0wJ9++5rF0TG2Him7K0R6Tm+fsu4eQT9njfDAR+Y7OK8Dtz0m/40lpqupNmaqGTrTGFppYKgSQR4NENw1aYK1qXreEI+5hXE5BhYt6FFURcES3sgd1SElaxKVFNPjRPAGYt20Ac1gOuNeTa3wKcjQ1IBqHRsABpqcCwvgFe+g3kiyolDoQDJWh9j3xGuVMkIOYBpvJ36PVUNTMNou0ooqvzmHwSuDlYJ0M8atkfKMbjan1u3Ntd3IPdBocy8ePiCiTQo0BiOoTXbW7qlLucGPrh4gQH2yaopD2wpNAyZZFmJ4aTI2H7EqiKTw8SCAekwHmwyIWyFBGIHLFGSmv1MaAImoEsz32IrrFnca4xl2RjrhlfYzzZ+HFGz/DfMpPLga+J3LI/qTW/zwqpK6nl4OWO3eJ822SBJKKdzLT7h1vOQbD3P8rgodlX5xzPlQqUm5XhXOLfGJF2d8cHXFv/fFQ47Pr3n4AL4wO+KdJ/DURsgnlGFDTormEU+Jrii+c1Yboc5Gbh0I/907C7Y18Y+vr/g7OLPTGX/luOPZrvAvypysRofy1Tk8mwl/+6HyI8DGK3Z1weYaLmRAs/LWfefJasfT+z3zpfP51ysHL+9wGzmoI3ruzI6PSD5j7CO+r3Yjjx8kan/Is6v7HM2MJCmMlWUTsd80OpFaYREBMwBaRLo4lUHoBvsbBUoDkdI6NpohNOyAWdu4U86R+GyhTQBtfk3t8xW87b3YJuH3VNuPN8NzAsSKE9dAiXxi2i67dVq0PCMNTGLp+VZ3bZNN4+vxvoTJ3yo8pxxxad01gtvQ8qlFvmoFs/vY9nVMnlNJN18PqVfLliZAZpKsuFWSxYRLCCP9Km064H79RKw9ftrjpz1+2uOnPX7a46c9ftrjp/3ar49zfXSPvxZYou2fpvOXAGU8T1wxTSi+fwoiEX28gbNgCsIAWBBP1OrUCim1MeM2AOE1gM0DHBgNiNoNWw4lmAGAZtoZT/rDBwM0GA4x3AdSA68e8Sk8WaY3mBymaWWqCDlalT0CbHIaI11JIpjH9B+8sSCTr4mEhMJrAHadvGwsExPUYvy5NSALEhKdVghoCunDfObc7hasR+HBbosw46d+6tPcu3eHL38u8/O/dMnmW1f0f6L4vMe88iNehJ//BMP4IzYffJ83311wdn7Er/3F3+Sbf/L7fO+Hjzi5dYQ++QFe1+AjTg7QL3E/awUQkjemthMsG3WAR9eFb13uOCuKZEE7pepAYmQY1lxenvOkjvzwxxlTR4aOIoWUhazOLCm9HrBYOrNbS+rOWV3teMkF8Y5QmASAcvW2f1LzZEmEPKU0TZAjpCiW3G/2Bk1W0mhRbqZS+YQmQ6Ik2jxmLMBSpeJW6FJj09pv98Zyxf0ZA7SJkFIO4/E6gVelekVUb1hccGoZAoynMLw1DFVaIWdtb1awAurtveQ4VxKsrXhIRJwAxl4CxJnUGxlNs+iIE+fhkePujLsV3XyG2Q7xZpjuAdKBuNcSxZfjmGS8DKRSofOWfBOTqY7z3E+ESUoyNgNeF7yMoFA97qKkBhqKIc3DA8abojYuIooCMyOlthenVn+ZPo1gC0PIU4NdJpJ5RANpe8Gg+g3THmz45EkT1xvFSGMnU/jkVHdU4f6F8B8/hPO7J3TXl5yVwiwfsRkHXu1eQvL7vPPwgndXT/nVV+9wdj1yiaN1ZCuCUvmLRx3//IlxuRZs7Lj9wo6f+qkZfv+EI91wOp/xh8ML/HDb8ZdervzdB2d859Elx8sDxmeX2GXi6JUDDvLIxpSD/pDV5oLzlPldqVxdrbgcMy/PMrkq968LK+s4EmPFAp1VDg6cr719zeLgNuko0y96Lp6EvxjSsRqNcrmmbmccHpxwtr3i2+8WXi3CO28lvjdk/HX46mnGthd02RC7xQt2yb0qyIUz88QsLRGFaiNJNAoeV/CEkNteAaqCh1TwxnzaC+7l+Zn1OFvxGdMeJoDriDBr+62AJNTb/mldG7HvJSZ+eiuoRFuhGFPtgnBu++imgtO2e+L/+ZSvRFtMAS+12ZAF+MUaU34TU6Zrb9lEWgyrU1HloDnkNxVEetwL1bbBqHvIXuIMRQdJvGR0YARCTi0n1Qayw/Q+vhbnJSZhJswK1Z08Sb7262Nfe/y0x097/LTHT3v8tMdPe/y0x0/7tV8f5/rID/5UU/jMTkwbDQa01nj3imBI0/G7B/uD18h5U5CRm3QVJtRA0pA6iCeQXSTyyUciDSEzEAdpLCGC1zp17qNdakB5MvAlAKM76uGv4W4YA1gGn4VHiRWQLU4DulIxCSZLdeSGHZMWZycvAQm2DaDWJlMhfmd4lgRovTHDrQGEa3WcYCFECSbTFVVHUo+RSJJJqXBZK/N7r3NwvUZWj9EBZvM5R7fuIfKI9eoJXnq8K1QdSTgPH97n4E+3fPm3Dviz8wcs77zB4t6L/NV/95d56fXC629ec/rKnG/+3/+M5AtSagbeqmh2IMCAWkVxUuoYrIQ/QjWGEc7HinUjZhWXA0SFUgYuz9ZonpGWIF7IY4fmQlYnScbVKbUgvmFYz2B9DhilQup7io9YLeSuax40wfIoqSWQAjIGEyYeqqQpuViMpNcGrqz50agL1UakTUSMKU9hcN22I0jIGkpNqE7ATJqsoiW47I0Vc6w6XZ5TS0yeE412eJFg/sN3w5pJu5NSg6tuuIT0o9aY3pgkoQlKKTHhr3l7uBkppZa12yQseb7fpYLffG6Cm02WR63dfY2rkizjO8inh1ELEmy33xj5ys0PuVVK2YZfi9Ubec5UsGIN+CUBmmHvVMjW2OeCNLkJ4VkjNBa8RtIWB2/SIonf6Y1tpIZUxk2afKHGZ96uM6RvFdGYehdgd5oOGbIZt/Z+JIpQtzalsEGbkLY4YU4dkoEqheSxP6Qa331wxTuHd3nxcMujqwEbZ6zXWywJB6fPuFwP/OGTzObwBfq3Kp8+TfxWN/If94d06wv+O6eJ357d550O/nhXOFhm/vyvFLa7yu28AL3gW+MJf9tPkSP4YBRW/ox0mBhqxW8fc3J8yEE6hncfMjPn3ktL/ujRQBkGzmzH8kS4+OGGS1nw8/2Cr719xdHtI/zQqawwEn8gyvX2gHVKfOqVWzy6vkbV0C6R6xbTjt4S22EHQ6WOI2crWF+d0nHNRT/y/7kQ1p+syPKc05S5m9Y882OenFW+vD3j9PYh+ICNldz1rQjKAfJuHih4A2Yt8LcCkEn2ERoQwNv3WPsIo/to8owCQXQErcAcfCQY51bQtbhcS41z7LGP4tzXBjI1ClEamKbcFKKqEs9KEEjTgIHIH+7evKKlFXLS9nbssSmfiUfMwMKYW9QbUI18FXu2nSML+Yu1WKcNWFuVKPCc2LeTwY6FPC5yb+vGIGKSkFpdbrgnxCvFP1TJ7tfHvvb4aY+f9vhpj5/2+GmPn/b4aY+f9mu/Ps710XtZq4GkSJ4pgo6XFpAaipX2nzGaPhjaIHyNG2NQNxxHJbVEFS27QShVsITqHGcHePM2KIgkKgm0AwOd2LGkVI+fVVW8CiIxRlybWa2ZIjKjWCWn3PJaY0s0Jo+JZIyYHKeiYM2oOPIbri15NybQdIxgJzQoHYxpgNZotRbsxhOl0XAxqty1TS9LUBs7KikMuz0ApKqzPFQWOLuLiqcRlR3jsKFbzvjEaye8e79j/YXPkB7+kHp1zeu3FbmV6HLh9Tu3+fGjI7YV1rsZ84M7LI9mfO1Pv0vajqScY0qThoGzmaKaSM2Y2lQwcTJKJrPWjsNuwVdnHZezJQ8uHvPw/AJJR9x7+fP8ub/xVY6PDnnl7imM93n7R2esVEnMyXXFN//kjzk4uEv1HVfnay7XZzw6e0J/cEw/E4oVskA43cjzAsBrk5DEdYVBbXfDMCGGp8YKueGuKGFKnqq3CYpEYDcnaYDLWgQziT1QQaXDvEQBJWC1ApXqHgkwRbJRjWtzKrUG++yUyBEShZ2oxlTFBszC1ylMs6MGE8RDqsUk2fABdyLpmpOIYozmhUQK/yM3I5NRaeIdmwBzE21UR5Ji3uGDhXSm0zBhn1h6noNSF2vvu2A+guYAwtUghzQIop0//hFnSjRTSyscXRv4bed8nCbD+b/CNOPlho2D9toC7UKexwiDyfMqPDxa3UoDAj5JGbSdyYkJt5tOgZApRPdM/IoJOMfrR3XrKDPcd1CCXffjzDw5bgOL3KGD8P7auc2WT38C3n2w5mKz5BeOM4+WW148WPBvnmz53ptP+ON0zJmOXM2FdBfSuyM/9drAaV7x7Q/u8qQueHu1oCNhsqXngMd1yxWJk9yRDjtS6ihdz7UO6MkR7799zi8eGW8czfngWeXskXFmmd2l8m+8otwtT/kHlxdcWuG0u4vOK7Uueely5JdfPOafpZ7LdYdsFvz3Z1u+n4w/u+w5TJUhJaiJUZxhVLbbQu0Lhwvl8GBOp5UX+xm7u87aM398dsZC4ZXhmp8+6uMeShRuXkvrBAnPLhgaOGxDCMRBRm6mKwbFGzGWVqS0YiKcoEOK6NIKvqjW2gONEgMFAbEaDwKYCqXGDLvE2ckeAHLyp6FNu3NH8rQniDyUCN8cT5i3roiW17z6Dda2qeWpAeKIB4KX0uJQdHB5DXDq1eL1Y9fH/285Ao8HQnFPQi4TRvlxb5nwp5d2ljKguKXmuTS58kS8MIu4WTyG3u3XT8ja46c9ftrjpz1+2uOnPX7a46c9ftqv/foY10d/8OctS9l0+IKhpiqam6mzB3urqmAaAHFqBW5sWqNqqT5CkgYanUx4irj2N8yfuLWhQ9KYhfCecVE0Z6xmPMXvSTUgVkxVC5YVr2jKaAMJbo7lYLBRI9B2aoG1yUVaLk0yD4kJzSvADNFgQg0aaGreGc0fx20KyDR2RltgbkBMDLMBcNQj6Jo19hrIKVjtG8NcryQZUasgHTYEeItAO8ctU47u0J3/mM6NvFVG39Jpz927C2b9AopwsDzg3ultvjNecfY08eKQMEtobt4+LTEk7cKwmkKS6d6A18zpF36D13/hN/isOgd3Tvjb/9+/xX/1t/8hM80cnxzza7/5y5wcHnF7Xlm9/3V+5gt/nv61z6DF8Vp57Xfv8Eu/8ddIaWR9XSjjBf/7/92/x9X1Blsek5Igpq2gkPj8FUJ6BCllkJAiiDYj4xqypdqKBZ++H27uO9IFoFIBKu5hHp5bweLQmOJmXK1OFo2kk1IARGlSEicYeh9j/7gHIGoM9fN9CjYGQNOUQQgvIhekOGGUkRCdWuObxMZiSl3SLs7NxMAjNwlSNIEkKu09V28JvklqsDgPIoy7HbBArEDuiM6S5s1igjcQbnUIc/KaYuqkeZx3U2Boez0DJZizBjhupnA1PxEguk0kTLzdJGRrk1GxaSsKo/Ue2QbQl9ZxYmtEMyKKNdY5pHHe7svkpTR1BRRcElr7kO1owinBdNqACFTPNyx/7SN+oR2JGu/JHGp4lRQ3XphFwToMHavdY77SnTKI89P9BeLKD8+MzbLwXi+UWWacQ9YFf/3elh/cV/75ZeYRr/Lg8pKD+cAVc/7gLXha5mxc+b3xFl9YVOy6MnghdcrRvMOl0s0OSd2MNMaowPGVTNff5q13ntGPlVf7OY/PRm73xqcPMr9094gPrp7xNz53l3VVHh0ol7cWaOp492xgfAb+RqIshFueub2+4vXU815WVq54N9ItMoeLhK571ve3aIoHDlfnG06PZxy/d83T88r2DtyWjtWmcDsN9J7x0iRUDkxSiwY6I0eUdib6mw6fSCB+87AjOp6Y/hL7whPurRuF0nynxg9JQ2LSJK2oFPoAfwY0CeXNAxW3G4CJN/8lEdy6yFGtm4lW2EbxWxCPyaUmBIPdznpq8fJ5ceS4x56dsGbYNHl7q/4hYr51YWnELrE4a+HV1ro+2u9SwMXb5EufWlHaVM7curgSbtHxVYmiGxlb7okHRvv1E7L2+GmPn/b4aY+f9vhpj5/2+Ik9ftqv/fr41kd/8GeVlDrG5i+Tc/OoYWKiieSXKnVsspXcJkdNT+TbE/Tw9IhD6wSLbV7QlFA1arVmfp0jydP8BdQjAzWzZMTxOkaCV8WoVLUAnprwKhGcEHIX4NUYcVLEAWvJVIOBjK5gbVPKJn+BCIAyMeoeEoVkOX4maQSXeGONVW3sBg14WLAumhTQYEMlvBokGRHTpuQffizmibEkxhp8H0mmWEgSIdUMnVDWV+RlIm2XHM6Ui7pmKBeEnfOSYVCQjnEc+MrPvMBP/+yMv/V/+M/JOm8MZd+qCsfYReu1VPrUBwMlSqKyK86//NNv4t1IqQNvfu87aOro+kPe/P67/F//L/81/5v/7d/k+B588P6Ogxd2LLs1dw4OeHz1HldXTp4fsrl6j+OT22yHc1LaYi50UpnJyJAymjPoBDojAgfZL0ht4HO61znAnU5T1dL0MxVJ0fYNIbNyGyMZVKdSQwoiFvsAR7TSpdT2ZIUUUpDY+7F3J+Nra+300SEBDZkyVXZWjJxCtlRrXFtKiVoMldTem7TiKfZKK3+iRd8aU5+awXYKb5mkIVupk8cOceYCdDfvI7wBdWO73TKbH9MpmI2tOLOGMcNnw9zRlLCabu6X1TCUtpLC6NnCaDqKL298o8d9gdbpUUmScBmj80IUZYASHiFYJOXqhaQxoQsdEfNg7dVxOqzuUO9DXFINkzHYcEl47ZCxMlIgJxIdVgtVNqgXvEDJCa0gusQVahoQ6Um7HTJWZOwQXeFaKUnIdFQ1XDJJOj49m3H8yLjohLQ75O3yjF9ZGv/WpzvSOjPkY+pMeTLseOXukqFWNhin2vErc+PSZvzxwyvk4JjlqXINjFeZMpuRHB73Cy6vr6jjmnQwo44jC4Nisee8FEYVCga7xN07t7l4+5KjuuXTL/W8+uIJ1o+cPzX+4/uX5KMDlgeZS61cycCywryHv3xgfGPlVHqWZH5qOedl3uQ/e3bFbvEJ/GLHYpG5fZw4XAxcrXYsZnOGvvI/OD7n8nLJP3oy8uPZnK+cDPz4/ZHfs8SKIxYy4MsD3Af+lemEOg0tCDkHMplRE50F086ZMOWHpBQR+rTliIhB0iSR7bgDtKK2dfmotYIq4ngUpmM8KGiFojcJ5MQUh5dZ854ZC6Sm8SK3ToaKpMkgmvBSajlIm/TSGW5eVwhw7W2SI80jCWsPNSyueeqgiOIxPMBCd2etkWKS7NjNP71KA/AxYdGtNjkM0GQxE6COmJTj+lwoSZpZ9X79RKw9ftrjpz1+2uOnPX7a46c9ftrjp/3ar49xfeQHfykrtZYGTp1SxtD/14EYN55xixZ8cQMNABCMgDI1rYeoI5FaAm0x4Tl7WIdo9W/faSZoaBEaS04ESwFtnhQTyDQ85BUenjfhL6O4CrUOuDT2YwKWAq3JOCbbpemkBwOQtMNFqLVNwwMQp9qIyjxYA5c2USv+n0jC3AjPlCY9aAxNxcPjhwZgNWQrz4NXMKdJ843cYLszNM0QyeS+R9zpPNgMV6PXTKEjz6CrheW8Y9bP2BBSmNEyZXNN3x/w9K1/xvvf/RazmnEpSO4wqc0lIWO+IqmTc6ZaSJOyRlAsZeDtd9/k9GTObNajQwCnoWxYLg/xdMzv/uOvc/65wksHCd2uEQbefPMJi9sju4uHpLLm8vISSKy3F9hO6OuMjgx0iM9aomq+PyZxq6avekghVLWxvkK1uM/BbgVdJBrFAvTx2UwTooRg1ZpRkhPTEBWnWr2ZbqWa2udujRlr0+VaSgk4m6JdvPkStY1O64PHJe6hk0jttdwqpk1W4dPUxgaup4Pm0U4f7fUxvcoag281TlF4MtUAg13X7k346gBo7nETtkNlcRjnqthAkgQWib9tZlQIQK1KkhlVu5CgmYCluOc0OY201n2vuG3b76QxeNZ8PLQR8LUVpwVysONedqBKqQX1ER0BOkoKSULyLZiFoXmLDQYU90jnw47iCceotTCWwuhhEl7ryGDgpQMrjHXHxXqk08Rq55zefpFPfuWLdDKQbEXUOIb5SN7s8M0aH9bMUs/nL675XVdmyUizJae9Md9UUie8tKg8my056TL3EH60Gvje/RVpBlf1lOOra7azntR3FO3opGesa7xusZQ4MrCn19xaHjMOBR93HOceW3acXZ5T85LZHGzrSOfMgMOjHf2nb/PeLWe57NgOOy52G8arip7vWC4iNpRiGAeo9Vyy4k5/xpBuszK4unjEj2d3mHXnXG0vGJMwE0Nq5cmzK+qgbGaFryxGfvv1I66fGo+eVv7zyyXfeLtwIC9SSuWdg8Jr80WAsAYyJ4N0fJJNPAeMrU0JFwtQdyMnmuR9ITcKA/Hmx6SEj9SHYkEYNyuYN2Da4oELaAkA64L4EA8FVHFNWK3h6ZSsTY4M8KwtVmAlXq95h8XmrbGfNTWm25kmwgXr7IhkpKZGXFc0SZjGN+8Zqk+kdjyoEZg81LS9/2n4gRB5M6Yotvzg+vx+3jwIifs45VRsknOBUKMDxTPFnZ1M0zn36ydh7fHTHj/t8dMeP+3x0x4/7fHTHj/t1359nOsjP/grXoIFkPDKiMlzFUkNYDZuQgDNkeTNoi1YGgx1gpU1mSZFwQ0bTQrfFiHYAp/MgZUiJQJLYzicAIzegCc3ACB8DaxO7FprIW5BKuKEMpnTygQaG5CQCcwQTEKw6bURzwE2A0AEwET1ZpLWxL6UxlAGYA2fAyeAAXVs4Cu390G7tvDFMTecMdq/RZgtl/SbGbVeAcL50wvUO7ovvkjRp8x9wUUWZh2UbkY6uUs+cJI+pVRnxNltnUcPH7IbB97fJP759wZu+xLTpkCgSQVM0NTRhiQFwElCNSelROpnpK6nWExH2o2KWiaTuCoD6WDOu++d8cbRgp/+0sjq0TlHx0u+8bWv83Ov/gz+4JuMP/wzjl94iQePHvDqy7PYP9noZcDGAcsp/I8JoKaam/yCBg7rDYDTqTXcI8lJM6JxEuqt3XvymzGLFvy2VSzo09a1UG9QY5e6YItbUoUwwL6ZxEZMXwsQ22GtYyOAdDOm9QBvtYY8RVr2muQyqgEGwyC7TdBqjBM30++Em553j/cq7d9BinnDu4bV8Imy5p/jVJJ3bNeGeSb1wXrnbgY1Jucp0kCEhL+M7zA3art/Xhz3Ppg+G4PRF4MUbfy04jMIwLipIl3AATdEwkjcLeOacalop4itw1NYhF0xtmvlatjxzEaut0ZZjex2wmVxrreObZasS+aJrNmwxa4Tw1ipwK4YxZRihaFWalVccpOTdVzUkafXA8dHp7hlfvpzr/PvfOFLfPL2B6QkdF0md0qXOrrU0WfIdUUvW76y+DH+ww8YV0/pbeCXT2b0KYNec/toyexsRn4p8db5OW893fHeeErqTvjkHG5LQmYLXJyFdMxkh6kyIlStHB73+AdC6irn4zXbobAb58jDyuXFBfc+s4RirK9HxAtXs0xd9FzuVszOFmzOrynidDXRLxVG59HZyOwlp6MjFeHanauh42++OOe/WZ+x3i341fQBf/bugvrikpNFYXPRs72EB082XG826Ez51PGS/+HtBUeunN4qfHG94v2DJW8NCcVQjI7Mtuvx+hTRI1Smwt1bt4s25jQM46WFTmlDDG7WVDhNE+jECLPoFo9bbSWeIk63P7HtNYpDDyCnPhm5xw+JOiG1akUt0lheovOHSTLSUocDUnGJWCDWGOp2nV7jekQbg9zkl15L+52N8a67ALjW8lHDje4NtHsztp7kK26RyyTOCdYeSJjedHmFvDEkkyH76VCJuAy0rhMiNxXw5tlWSzz82K+fjLXHT3v8tMdPe/y0x097/LTHT3v8tF/79XGuj/zgT5I2L49IuJXWWq9tAp05uYvEat709+1p/HOGLjwmXON1Qm4i7Uw3s00JY9yk4ZdRbYCuGd+S45CLNRAsEei8hZkGhl0dNOFmMe3MwstEtUM9UWvzntF04w8wTakKkBTgpVEB3Iw3J4ErOXWoNVYVmlQl3qe2Vv4bo92m1TEbEZws4Y0yhfAAsvqvSAHMxoixqXmIuKEOm9WKIfckvwU1UxNAT+oys9SRPvVL6HLFu+//E/7kj5xx2TGbwZOzC4bVNfQvc3n4MsfpbcyJz8sIlj8pVjNosDpJGkBqk51GAemXjN6jacauACi1jswXc1568YBUVxzN1mjaUFPi4PiYPMvk5QHumV6XyPEJ+eyCw4MTSs0Uc6gxTclRkoZnj5nhGiAxrH9i/yRVrNRgShuT7FabpCOBOdUgteQJQk6Z0roBBOL+T8lDE2LhGaQSk7WQaJV/bp4ewNSnIku4mYCHe/sMjclMFg85kVe7mSTnPu23NgERRz0Y6DBxl/CZad43sTkmpnxi4OM9eJKb/RoANCEkzKKNXd3YrTbkrosuDINSHam7to8JgCcCkttZrVFCCVAsDN0rIT9xMCqpeeq4KYgFyzaBDEncGIRLfJ9o7OMfPZjxt/7oksvVjnErjKXj0o13nl1gKVMMtnWkWoqpeVVJJKpuKW7Mup4aAQf1kZRmjGNMEstdYqwhWzKH7bjBi7I4mnPy8h3cZjx7+Ijly8pnv/R57N0naDI6G5BxRqUwlh27bbCgebbgzq//LH/9N/488uwB23/2hxzxVgBxF14+XHG7PmM3vMZ1OeDRSqhdZpsOuCoD9cDpxYnpYM64UdbXVyxeOOBTr/XIdmBIPaUI/XGHzTouh5HhbMPihRPWPsCucrrouV4b/WZE5ABdVB69e4YOParKMilyaRxZ4iEDn33jNt0BbHcj82rwaORb7635C583bHPJ4bzjTxaXHMxewnPPbr1jrMLqGo4Wd7i8PAPt2c63/JdPtvz0K3P6g8Kt28ZBf8DTJ05nczY2cLXqqIcnIPV5wYW24t5vtu+Hz8fNwSDY6Qjfk5fMVFHav9JN0XQvTA83Jj+wyZvpZlCCfeicRltKTIGb9ngDyBOQ1NQqXqSBYSEeYIRE0Wsf16gVoYuN5/E7p2LSvd68R6UDi24qaRLMf0Un4ga1BjaXFvPdo7PLw3AfFJeusdq1PT1ovlOaMJvurWFE0Y7n6JhRpdqWJFDbZE2sI2liv34y1h4/7fHTHj/t8dMeP+3x0x4/7fHTfu3Xx7n+/xjuoeTosW1MdJzH1PUNqFVKHRBpB1hzJH5RrBpZBVeLgEPo50VaJzMNBBPswjT9TYlEWtsD/yRy46HiXum0x1obe3DVcZ3agoNTEBWSReCqBmiAy+aCws3ULVWwiibCONuDbZy4cLdg5aS98Ukek1IEBysV92B3i09t+9Hib1qZfE5umBULVttEcUkgXWNOC1hMN6pjxUoNmVCCXd0yP8gsFwvcz/GiHL//Ht3xjHqkzG/NSX3PTpSznfAzv/BFjo8OWC4y6ycDq/MrhlIQLSTtKUNhPpu1foNK0j4CqYy4xGdidQI0TuqEcXPJod4KuYIo1TLJFDn7HsdHt3jxhdtIETrLPHv4GB+FrkD3xpfxV1+FYSCPUEpiNxR0JmgWJPWYFaw0T5nmd5GI+8RN0RTeMNr8Y0JG0UV/gUaCS6KI8KF2egWvkdwQSI0VIiRNilKLYQnMC1kdswHNmVocTX10ULRCRhvrHcbe4EzTtib/jNyuzal1JOeMptwA3y6SvE0eEgHyUHAqZjSgnMBzY8UrsctqANzmY6MeRUecoxwJUaNwHMoZB8d3kRoAqtQNKXXtwFnbwzRJkpOjYsPVcR8wCkkS1Qp4QrTDSru2CsXCwFw0mHjXuKci2vyACtQOq3C56finP4RdmbGpOzbjjnXdUBVOvDDroVcjY/SScR9QmaNdh9dKJ07KTe6QD9FayAshJUHVOJj3nBws6KTHZIHdOmBx6wSfLbm6XPPBrbu8/qnPYCkxyoAgbKqxyELCmC3mSKeoFLRWOF8xskGOZ+hf+nXWjz4B999CH74H445X7EXeeVp4x95lU2+xkUS/U34khbeHA+bzys4SWQe+0sP32JJePeXg2Filnh9tH3C6OGV5KzOsKvMXDrA8Y3YoeDdSqWzY0R9V7BJm3nN9v2N1PmOz3jE/NPzggMsysLjdM8/K9dkZJ0c9p95ze7jgt19c8YmjY37v/fu8VY/Q/kV+cHDF2bMLbr1xxGI55/qiUoYBbh3Q1du4V/7wcstX783R3Y6vHvX8YHHBtjsB4NeWMw7Gnu+WLatOWbKL2Ic8j5c6FVhxNj1oWNqBaAVXe9jhYfTsXpDUijhtDHYDtjB1Pj2Pn6KT+XWLpT608wI1eTDVOslnAGmT72zyvKlRrMn0O8LwHZXWmVIaoBRCttL8ZmqJs6MtT2nCqiEU3EfELCx7LHq0nIhBCk3hIu0ZThS5bmDVmVQ5U66Jbqy4d+4FJ7cklBEUt5C0mA84hKROFUuKWaV6ZqfRPbJfPyFrj5/2+GmPn/b4aY+f9vhpj5/2+Gm/9utjXB/5wZ81QBjIoUNdG8nQPGKCNm7A01q8aCag7pTG0AmKNp+JpI75iLvH9C4XxlpR7cCVML2VJhcAmjQG82AkzeJrTOxCboAlDnYQGN5EJwYq1BZUY9JXMIAqQkhwCi4Z9yZHsAg8KSvFrEk6ojc4JmMpXqUF27gHzTo5/HsaqK7ujaGAKTxpQ+wfEuzEvYII6tWotckm3EEqaabooudi47z53cfcWr/A4v0fkl/6RexT90iayLOeQYyqibMnl9x+4S5Hh3PKvQO+/+yMmjI7HxGboRJeQBDB1CymSN2w1Q6py3FR6pycdpQOGNasrte4VtDCCy+c8JWv/jLLg0NOX4b1g2+S3Pnggycw6/AM3ekduttH7J49Is+VWiuDGbMEKpHcUnJMaWx9dDCEFMhvWCZ3j24GgrWOvfeciQ5kGeBtMgo3j4llYQoeLfPaJrJ5bR4wKQf7hVEpuBrihbahmkwk9ry0n6XGeXC3QNjuUGkdD82QXGIf4JC7hNXGdLfSSZLetKO7G6phkis897JQOqyOaAJtbH7kdMFw8EqW3M4BlBJMYu6FYhbgfxp9aAHOU0q4lSanEQqF6op4buAjkqpbDUPt4s0DPnwwmhgtwEl73+YWwgMJg1xRRd2Yd8LPvXxM1yvPrh/z+NkFSTK9J2azRJJKshm9zmIioBfIhAzCM70Te1IM6JCaKbVwfPc2x/duszzsyD3koyMe2gFnQ+HwMPHanRN24wFn9iqvf+mLmHeYZyghtRvrwOgJHQq5CNppFKKHh8xcsN1Ircq3nhYO77zKK7c+w+zdb/P560d8zpUfnHUcnCSkFNYUjMovLQrrYeTPdM5f5Cn/zvFT/qNkPHvZWGrP1f0ViCKDcTIXbFSGpJSTTGWgO0iI7ahXK3SZKSXz9O1n4Ve1GaizkZNPnODFOTiZI/MZ/Sg8eveKn5td8Dd/Zsb9ZzvuXx3xtfVj/t7Djs1WONw84/STwu3bB+jauX448PTa0aNjrsRZ3D1gpLLbbVjqms/MjSxH/Iat+Zpd82Uzft0u+XtnHV8fb7HaJf5HdwfuyEi/2JBKh0kYcAc2rS1vhH1zBON2uIHweXnOGgc7S5OBNHcVmVjfJl/R6dy0ziA3vMREwQCgJXLFlAMAb9410RkSvknYJJuR1l3hxKS4iGeijR0XBUq8ITfcQqpmhHwOA7HwtrFa2nlN8fxBQiozeaVFlapxzfGkp/m5hV9OAHFv730qBJoXlToQxvMh27Gb3OFikftanps6nDzR7u9+/SSsPX7a46c9ftrjpz1+2uOnPX7a46f92q+Pc310qa+3QwcBLE1u/FdiOhCNpUgx6QoQj1bhaQJYHH4PdrgldxWBLBgVJzKzSG5Bq7GAFoHEpIKHXEVaEAjGsjGSTjDEUpA2EalaTCiLWNFAhqTGOJeQvZij2XGpFJQwNxVieFyiesElGEvBw58n9BPPR4knfU451GZ47U1ukTVapyHuQWneBIH1A4ioN5Y/hxcQcQ0ugAUzZzbj+PAupazo5x1+JVSHBU6ZLVmt1zw+31DNmfXKdljzwbv3eel0werZBySMLhmaiXtAAKacA3yLBCCqFmxsr0JFkGqkAqtnD3n95Td4+Pg+m+sNfX9I1Y6cEieHiSJXrIcdFz8658VbmeKF3C24Xu3IMifpDKuV5TKxq2tEElnjT/EdQoUPmTeLCOKEJ5DGXgkgaiTxBrwiIUwylEiE0u5psLNOxX2GyAzVMbwoPAoul8lDqZmWE10G2vyH0ES1iqZIrNaYq5xzk7uE1wWTSkUsgDhR9EyeMyJKqTtAn0+6EsG8oM0HKRituI7YFyMqHd7kKsh0jU2epV0UOVRqHUkqWCkM2xFhRk4dFQtgbkJ1Q7RSyg7hMM4LBj4LMKVREA6lkl0w22FjJeXwIYkO+oEyXgW41hQA2I0uZ7QzqEZNTkZYbdY8OTvg6QhfegHOnp6zGJ27y2O2dcDEGWplcOG6VIptg+1zZcRjol8STBzTjKeEe6FPieOTu5z8zFc4X864FKVPSp4Jjy623H3phC++4tyaG+8+3PLsamBnNVr+a6ImRTGsRhyxClVaV4k5UlZY6rAEm3HHvZdv89LxCZJ2+EKZ/dnXEHnGz14Yf7/VLEe9M+7m/Gp+wtOV8OnDD/irh1f47pqDV05ZjYmnFyObK+HwcMnV5cjtccW9W3e5GDKkLdeXOzQLi3TA9mnl+hy8Jp5ej2w2G158Y8ndT9zj4dkZJj3z2QG2WVOGjLxwxJtHh/yDXeUvHg+cP73kn5/3LFKhW8LqAXR+wBMq4xp2XcIPhDrvOFwcclYvuTcX/sYbxsup4oPhsuHzW+P03YE7ecnBYsa9tOG67PjG4Pz4Wz1Hyfn1Tzt/6bijTzXOHU0a5kbyPkCnzHCtURxrbcVRap0jcWYnNBhHRhoAdSaNR4PA0cniAYSleVU5pZ2XBvhaV1UUeDUAn0bAnfIENKwoBXHBGPDaJGQWMpD4nuiSCq1UitheCnhB6EAkJHQ19pAZ0bHhHvmq2g04n2Qs3nJWANWRWv1GlsZNZ1O7N2aIOInJm0aoY4mHOBKFIjheQVNHGRNmFUt7xvonZe3x0x4/7fHTHj/t8dMeP+3x0x4/7dd+fZzro0t9CfCqIgFa8WCVXG6e4LsZtZnXmtRoQzZw1/BqkfCBcKkBAutz34DI4xpgrXkViDTvGyaQEKBSVSKpuTfA1aZnCcEeEEEvKUgzCrUGdPAGdAHXAhqAt3pAnER4yExTzNo/GiZ1UlLqODam2sOwlwlwZLJYqFIaGdNuQNhdN+A++evEZXTB9gG4B9BAgESWI4wOesN8xix3JHWGklnenSOPRlwHjEzKC2on1PMzwKhjZfDC1ZOn6PUnuNwYJyeH3O6cvFE41uf3y8IsWVNuniqRRAaLaU8pJTxl7r70Is9WT6k6QueYVnbDFvPKw/MHrK+fQBHuvfoytQSDnGTBs7MrTJyUZmiCxXLJ1s5wBCvh/xBTDANgpTwVIpWccrDJRKLQoKObtEMi4KfGUKmAJ9LNti7PSa8bMAhOvM9pyl1WwWv4x6jTWCaLAiw10+fWqaATO+Zx7zRlkoJR0BQTDAu1GWz7zd6JQkmYUnCafGmaj5O1jgjR1GQ5sff8ZrpjHJRqhmiOPVdBc8JKa1XHEE2UccN8ftj8mDwKN6uk1CGN1Uvk2HOMOGuEGWWIaXDVKsYKkR5Jc0ygeuH6auDsSWWzMao7SQeQAaSSO8hJ6To4nCsP8+v8i/optr5gpPL1979D3SyZyZ34DGYgMyfnBWnWQ6d0XSL3HUdHx/QppFJdN0NTou87utwx6I7ZrI8elOaNpalnNHh8tWJ2eMpnf/YXSBd/wqasMHU8OUMZMBLVE8VGRCDJSNJKsYwPc8QTpgVmjqQNj1eV//y//jt85ZOf4pUvfwkvxrhbMJMl5Gf8uRd6Hrx3xVt2wMXmis/P17w0bHmDNXeOIFniO6myEFh9e4U/XvHrB3DZz/h6nzn7duLJ4SPufflF5pvMlTjshN12YP3Uua6AJLrTQ+i23Lp3mw9+9JgnZzvufvqEPO+4ejay3W555bOZDyzxn5QD3pbEfy+d8dWTwpuncy7PKpcbUJ+R6op+0XPrXs/bD7YULVztLtGc2dmWLneIbrnqOh4+rNzt4VP3jtE0YKb8yt2et5/A9w4+zbZcUk6W/MlceTiu+fX0hDdqBRuZpTmJ0kDaDqcgRuv8iM6NmBoKk5/XzYS1aNsB8ZCwuDewGSE1iYAPhOylw00+VOgmcEHpoZbAhkxdLXajjXSv7WGGgHfRoUIiZCyzYH7NaaZNQEIk4xayFKCZ0rcHEd7ikDfDagvpWMgOlck8X0nPQbDUqHqw5zJMd6ZxjCINNDc/HJEEFgVm7juKt0IhqP4mV1PMZowW8WW/fnLWHj/t8dMeP+3x0x4/7fHTHj/t8dN+7dfHtT7ygz9vk+GmQzhNGBIZAw1oijb6MjSDZg/A6sEABmMgzUMj2CMlBQBsgNU8Enb8LICHD8CHZAXapsKpPGfJw5Q6gzYAMMkGPDxJogO4Pm/9l+m6iODUwIgSrfo4zQy4tQ2j0Yqs0vwAWgBp/iBmNHYj42VsAYdmrGwxplwVlRyeIoxMsgszQ+lQ7SjttyV1TLYUX9GJItZjAjpfsEkzqmy5enLOXD7B+/WIz8w6+t7Q2rGrO66uthRTDg+XpG1i1h9y6+SE7fWI9o2F6XZMXjsBmhtD29yCNEdgFQMls1nteLZasbnesBvXiCVcHU3Kg4cP+P6ffourx085+epnOHxJ6dRZLuDh/WfcfeUVHj15lydPHtOlShmEp8/eo9QR1RweDh5JJ2BeTPoTnGoFdSV51AApNzcjtyaFar4tAkkDUFpjpGK8e0suTMCWJk2K94wH2Ax5U5hMu4dBOiLhTZRS7A+Zuh5qMJ5TjqkBUK1VYSKOiza5Tyt8NDUJSmnFlRO+RF3zr2gsOgTj1trxmZLetHc93fx/c0eK3XQ0FAx3pRRnebCkVJ4XamLg481ERfcRs3YmTIAxQLkGS1ZHhbTD6pbra2d1tuTqeks1Q1N0rNSSwBNGZdw54oJU55kc8MPXP8948BLiazrp+JVf+zUkO9aM41V7cupaYt6RVBDpqbUGg5eiWHUP022IojilGTtzECXT5keWKChHRo5miVsnd9ieg6YZqrsoIGpBNfaO+RivRUZqjyUlJ6fWLUkhWc9Ydvynf/trfOP7mc9/omOThLxaI6snUC9xV/ps3Bsz4ziHgw2/eXrNcjNw8OIOtTBe79YznhwL87uVz93u+RvrgW8Pj/hWeZX7PzyH5cDJZ19lO6ypm8KzZ4XOM93hAWncgMKsdCyk8OjdFZcruPviSyy7BZiRl5mjZWZVYdb1dHXgD9y58+KSr77wlK99Z8coxxzPBmZlgwBHyx2Ly8IPasY6qCWxHJ1nG+H3nsCvLROyLdw+Tdw+OAwvoiIkHTjujb9wNNLdeRl58Q3uvPwqqZszOHy/VL738G12m3f55eGCT/cfAAOkDiE3GUpqDwWsFe5O1PFy8xDjw0t8YqrDSD86hQqqsSfw2qbIWStGK24xcRKZoolDtSbzgKmanY6VSAGbAGW0ZggdYvEQJgJ6SCKjUyP8eHys8XuFAJxjXFNIULqQsVCpXiclZ1xNe8hirXCO/DQx+BKAVoymxQsQXVuRxjTgQdq90MhnJjfsfRWjSr5h5ffr4197/LTHT3v8tMdPe/y0x097/LTHT/u1Xx/n+uhSX4022zCzjYMXU6nicFkJFlGZhXmvDzeHTlvSpsKNP4hKm/ID0NgBmQLTtMKEeKRGQtEU4GqKApMXBo2BNrmRpOAlmGdX1GPqW0rNEJVgNqX9tzu4WPu6Ni+ZDwFfU5LmFkfCZ0dSBEm8XbM25lEbq9+u0Uql0wySqBbSC1WotguWg4rgLU51N/ciZBwz8uQxoh2jC+fbkDhkOlazyrkWNCtZMrvdmkGMLnUcHSWuzi/wcYEdH5AuEo+fnPHg6YYvdUu0OEUNE+hTvpEcmBm5JXgBaN4kFOP9d37MPM9JnTLrF1RP5Dzn8nLHk2eZVHsOFge4X9GlGbc6eNt2LGaHPHu65uJswwu3M9VWrK+foQpZQ2agrWARMWotWEqkG4lRvGfVDNNn3aQlmrswlO4ytRY6nWRMTmr3M0xeK+4p/CnUovsheOXGCDcJE/nGWyLlLljR0va7gNO6LWzSpmhjTYPxFg1WLlw1ArRCwmm+TBIQ1xqDrdphriTCu8In5rp1Pbh527eBgcPDRiKxfSjTm5fo6kCRlCE51nx8zJxqTp8mvw3BZbhh0RAwK7h3mChVBrIXNqvC1bmwuTasDECwcKUaxSCm9sW+cSthfo1SM+zmM4zKzmCZwDRTfaDWMFyPYLANn6OGQeYzYSi1dY4MmDvVBU1TAjYoI91sRvXosoiv1mB229S8ou3zlkJRIbmgtTQFgNywiu7aumCUitElR7vE9foh3/3+e3zq3m1+65c+w+3FjG/84e/z5VdfQZ495NAKT9fKbpW5o8bnX7pgtr3mNM/Zdktm7fWTCLdVOFpsObm74W6eU75/ztA5F2drGJzD26dYUvrjW9izwnZ1wdVm5Pilu5gaSEfdrlifV2ZHC05ePYUFyFzQfsHhwYLLzRNsBykVBCEn4Y8ObjE7Mt547T5/+r4FyNfMSVd4uoKvnQscKHVwJG05/aSjl4XvXxV+iYGDReIbsuF123KnLHg8Cp86ERbFyLKkKlQp7MyYJ6XbQc0zLuaHnO9e4Xw0LFc8GamdO5CQbWicc28dTTIdrlbxOzRwaXiVmwcLISOL0s6bR1rkJmusdgwFcBwzxymk3DN1q8Q+a7tABFpxHFMqo8hV9chLkxk2Fg8ziAQmdI21pp3tJr/0CWR6+1qJnNeMsm/2L7Tc0H4mnhrEgw5pfmk4Vay93/Z7JLKcMTLZTYlErrLicTY17p1poVqA/v36yVh7/LTHT3v8tMdPe/y0x097/LTHT/u1Xx/n+ugP/irB1CbFZEoCMXFHsrU22ziYZoJIRlIAW0PbtC8NdhILg9zo7Q0fF6S9ZkUkAIrTfDUQfHpKj4Bmiu3CWURCvuJGJG6dkn8kJCwme6nXm/bf8OVwsPC5eW6a6iQhZC1eo/2/jrR+4giOQKlG1xFt2BDAuTHxhjUWsHleYHHPanxJmALxJIEIL4cA1OGvIDgUxep9bt97Sr3fkWaKWGa7FsaS2FnHLM341HyFJyhSEDJ96lieZp7Mn3K5cWrZoeunPD3boPMFx7OOKpWSAmxr88HxFsyTaLN/rZhXupQp4pSFc+dTd7l1csr16orrt96E7hC8o1olvfZJxvcu0GyUKiAj+s4zMGezGfjMZz/LK6+8yDvf/wMOj2b4YGEkW0e8ZkqNqXfBIElcW2pT37w22UgKZgi/ud/haVKhRlIM36P4fM3Ce0Ykx+t6mxbXWuRjJzhNmUTSAIzSOhqis13aZ18p0pi2cGaOroUpCUoUNFicBVK01EdHQ+yx6HQIxi2Kq4rXGE3vdQyPog91g8Q+qTi1mei25N32b/jUxN5zH1FXdrshzG49OhLiZPVImjXsEG3y1cBJ4AU8k1QZykACrq4Tlw+dq21iGEYUIaURt45KdJZUs/Btsoq6UreJKjFVL80SxRxP0AkUFEuOFaFUSKmj0syuJdPlnmE7cHZ2QaVy684pIfsSMiFHqx7eVpvVmpyM5IYkDQCbw9uqDFt8uocmTYwTBtnuhSrg2mE14TLDLQMFZ0RIFFP+zt/+h3z38RX/9p//Er/12RfJyzl//PtvYVshDUu6a2dz/ZRZWlKvjS/eM5bH51Tteeudx9w77dGqhIQHbvWJXz4YeWupoAN1seSub5gP8MxG+ltLRknoItMdZ9JVx91bL1Dmlc4P2V2OPHmw4e7pAfQFUo93Ce9GpBeOFidkuct2vES8UnMUE2fXG/7Z4wUvXB2wYotslU+8XtldOxfnOwqZvFIWLxuvfs44OegZDp/yWxQ+kRZ8y6/4o8Oe75WR307C10bn8Q7+XF/xMmLF0b4iFEoZWMgcARZkNtozqqJ118BcAu9wHxBpBaJbTGRLKTpPmkAv3N1pMSm6Zfym5GgPGNzboLvo+qHFTsgNSsauN5ternV94AEm8ZBG1oq3Dg3xDrSCtTPRfibObhhWu7W84SMt1TBNvnzeGRNn16mtAwe8tmEN8beW6cJzayxjTNlEcCuYhTeZeId7m9BHk7BoBUbEM16jAAXQFF0YorTiu6Nq7Pn9+slYe/y0x097/LTHT3v8tMdPe/y0x0/7tV8f59KP/I3WQZ3kDA4ahpkmFTcjqZDVUTWktQ+bQbFg51yg9frDBFGtUKmtdXwELNqYzRt77FAdtZj146UxxEzeNNIARlyLaEgNhBSTtFqCVmmG10EBtgATHjpJQTVkCNrAENLMiBuwUzFEKrUU3I2cE6NNU+yCeTGvmA8x0UwifDmQc6LUgnslNTNRbwjarE1E0yaz8YLJgLPD6oZFN+BcgkAZ12xXj+nsksPDGVnW7HzLdy4LK3eSrsNDqGQWswUv3j4kJSfRsdtl3v/Rfa4vxniPbFFP7eNvHQd82OMnQMnNdCYrzGdCWa+hOuN2Aw1wl7rl9HTBC0cj8+USxpG+n5OlQ1Pm+OAUZ+CFW3N61rgJVjqGnWElug86DdlPSJyalKLGmHV3A7XWLVAa8DLAyF0iMG7Cq9PlPpKalSgIoqwiDJy1scYZPHyNRKITI/yQOswNo+JqMQXPC163uG0JI9r43d5SagCkYJ9qLS2JSptoGADWmpksDTw1Oi46OcQRK4iHYbZ7wby031GxOgQzLbEnRR0kJuZZ8/Ax2wEFqyG1GbYrNDkpeYBeL1gdW1GZYookOUBbbV48cs047ri+3rDdVs6eDpyfj1gF9Qy2gHKMl4RXgwKlwnY0qgkPrwaebAtXo3C1g/u7LasaQHYnPRUPE/AuM1sukD7RzRKp15C9LDqe1YF//Aff4Ac/eB/bgUlM1nJxIPaauoW6KCkmEqCjAQ/MyaoBLoaKV/AROg9jfPMKqgFcyY2lXGOjUWslZfjWt3/EO2/t+Mtf+UV+9jNfZCyF9eUFw+YBr710jG+v2F7/gIvqzA6Ep8M1/VKR4rz3EHabBafLDtNddDp4j5vzxnvGq6sOUWfXJAg5B/K5uFpjdcRs5OT2koPbM37pl38N2S3ZXK44f+8pV+crkm9RN/IwklZrkhlddoZuzeKkZ76Y0y165rkn9cJMe5bMeHaRwXqudvD2+1se75SSOwYrlAPh8C50HcxkxgtygJ4NpMG4lTN3lh357pLV7YydZP7+ZsnX1hmdz+gymGWGYeT733mXf/r1r/NwuGRx8gk0wzhLmCwwn1EbvyQCzciFqVtDXEMW5jBNmJwYaqE9hPD2wxpI1ClgAezi5yrOgPuA1wGxARjRFDBW8ACYVhqYK4RkzDALqaUQ/7ZW8OFjyNdw8B1uA1ZLFITWDOVtRDCUFF5oTZpp/pyZjkzWeqomxty1sdmRm3Bv8k0lpfDpEmtySE+odIgLpZQ2vTLy0FRkmxUqG4wtIgPWpr7u+eqfnLXHT3v8tMdPe/y0x097/LTHT3v8tF/79XGujz7cI+fWVpyIRBmJIBhFxUqwo12nKB0h6XBUSnTaamMMWgsyboh0ccA0mMcYXS434NSp0Y7eWtJFBE3cAKvox00N7DjihWAEFGowhkkF9xpP9U0bQytYjWtxsxu/G0cDuHmY9IoIRgYGxGqYoiLglSw5mMTGNmtuMhTxAGTkFjyaBAbDfCSAlCN0wVJbMGkoJHFQp8a/0KEg2uM+kjWRqjGcfcDp8pA3Pn2bd7/VcVad63HF6VjR9DkM5fLpjH68g7jRdQtufeINXv/M+7x3sYVhANdo/2+gXzuCQdXG5Jo1U9dCQcnas7UV6/WOH7/zFpqh7xJbCZClzPDL+5Rnj8DnCEssCxWn1yWzeU93/138wQNOjjJHd2/z4P5B+J10SicO3S78WjyY5Rh06BhhGB2MfnBRqs1AvAhZ9CbhhVIjbuYkQYk31KQOMrWVTywTCBVzje4EG0hKJBZpTDTtI/caiaT5JdF8mFBp3hY0eYlTGkOlLVvF61Tiprbf1Vg5EeKapI990s5JjLeXqa6I12gXPTHxyBgFFU2+hWMM5P6AydtFNSZ31TI2xi9F/jfDxNjtKmUsDNvCs8uBWbH4HlKwZhat/KKF4obQY2PBUqZ6waryOw83bHzOy8vMITukdMxKnOUkFaMjeWPu20cUxr+E95V0zHLieD7nYNFBCoY/PldvnvQaXQvqzYuE8NsBfBra5zPMDE8SMUqVnEtIGYpBDeP3LELxSjJl9B2dZLZD5fjWgr/6l7/Mwe2OB0/OWV9e8nf/6be4Pt/wv3rlRb7z8B3+zlvw5aMDfmU28u15z4OV8GAnfH11wi8sz/mMrTj0HmFAzIE56dr54psbPnGc6UbopDLPkOcLdpcbLt97xvEbLyKaKbvKN7//DTbjhmHTsbuoVC8MFbKBF6dLmbO3n3H0wiFHry/xI8OKc3ByAHWDS0+fZ2wuLylPZnTJWc5G6qi8envLZ19Q/sF3w+/o4tGaLmV0ds6L/SWffSXh1z0nVI6Wp4itOd0ZHC45Wfb80eOO37CKo0gK4LneVFarDbVWZien1EcdXivqA4HWCjWFj1J0+TS21QXVEemknf3oKnIHUpx+ReIsemkgsJ1tDbZ68m+ajmocwmDDVXOrE41J6DGxxZPnjUj3IdDsiClCiu6mG/Y52Os4zgLeB0j2JjcRwB23yB/cPCghJDCUeHiCNhli5BFrD2DiOmKa3c37n5CuKDEsMbdOrkKt25iKOcluolcJqzucHWNtHllpD11/YtYeP+3x0x4/7fHTHj/t8dMeP+3x037t18e4PvKDv8oYrfYOYt6MgFtrriSQFJPRrIB2SHLwaTpXM9QkWDMIKUiwFpGcw3A6BfmkFU3EWPAIPa3FOFqHfSK9ScTI7khy0v5tFq3ESbsAOMThRyRa7NuPK40NbKDENRKeSAQKzBvgnpqMvYGP5plgoJoxiTBkBDOtLQi7e4wMN7kB1zFBKdgGJWQ6hfAmMHec6ApQ6YA5njKeR8wSvfS8dHpIZqBLI2bXfPXeIXcP4j31B8p6d4mUAakv8LO/+Hlyd8Ti9iFHr5ywfnbBZrgmieG1tgTRBBDejLJVUY1AGmy9owjb3UhyZ1YD+9og6HKOY/Spo2zWnB4vsa5Q1JC7L7N79AGf/8oXeffxD7nzqS8zu3cb3n2XtPg0tlszFmn+PTsqwUjSRswjNVhnJUAUAUwr1j7ThHrz0ZFgbibPI5mAjFh0BExj5RlBC+rh8+JCM2MmpFBW8YaKpO0QkRQyEY/OhihU4p64y41v0fRvaJPrWoESYLO2Qi2SZm332dwRb7IuJhPm2FsptaMZ+qYgukTQlvCnSV0Qfk+p6yi72vyU2rnwYKhFw4NFSIhCwajVGUZYrZVSYnpdMY/OkdTjkrmRiDVvKi+VWo1RUxjxVudH58YHfsrQV759NXJ9dcWxX/PXfsY40J5Sr+k1MeJoFoYwqropAidD7KEWLAndfIFJfN7x2URxQJsMqClkDXGcW/L3ODvVooAISU6ACPEQMIhPxS8hHZBACTUps1op2ytqL/yTP36TNx+8T9fNuXdwwr/8xo7DvvL7333MHz3c8Xs/OuLdl4Uf1Mfcev0ev/Oo8P5mgY7CA7/Hz9iMu4sL/uH6Fq8drPjV2ZauOmaJ0yfhyXJBRzrJ5FPFx47hKfiR8Pj9czZr2MlTKiPz0yN2dy+Yn8+jmHCjn/WcXxS2m8pgG65XO5af6JnPlGUfnRhd7rBtoc7g9msj46Zw0h3wb906hQ8+4IOLSrl9m3+yuSJdVQ5nK67XzqOXlLdeExbrLZ+cK7+82XK03XI47Dg9ds7pmKfM+IGhaqgmhlJxhdwFEO67Hh1HOLyNv/pXYLXBx4ckHwlZ1A4xwatQxzHiaV0TZe7EskbnR0gvhihKaVK+9tBBtEZEtnbutIHXG9kfTG0LjmPSRUGsI5AbvvSIzU1OE/HdoxD1OKuRq5pBPdLid5OytemVQpOuSEwmjZwUxa4wTbsjHnRM763Fj6koFYlJq3E9z6WRIuV5npQUxvuaMC8tMyashsxOfY7VHcXBNGRl+/WTsfb4aY+f9vhpj5/2+GmPn/b4aY+f9mu/Ps710af6ajBe0ZJLO9gxSSsmB0WCV53Uw4rQhbKgCkoJXwANc9iQGDxP7jnnYAMwsEojtHAgqfJ8gk9FGrhxaAnJgr1KMbWHlCMgoA1cxOuqC27aQGh4HVhjOwWNBCilAZ2OG8GJBC8QxsDx1icAGhdp7XUTKStlCP8BVaXUSlLFvaAp2rJ9jBCtjZGYwku8nKB0dJ1TLfHswZwOME8MxRnGAWxGIvN0UylnhZe2ldWzM47v9CxTpi7mPH53zauuvHTrDlqC6316PrDZCZLmVJkhGCqVhCOUdrdBJId0Amm+Kj2uh2he0XczVps1FegcTBX6QxazlzE/597dT7Cs99EONPUc3ToiPcnoiy9hB0t6n5PNqdsLJG3xssHLHM0ZqWP40jTgqem5HMkJo3LEqO7N5DkAp2RH0RbY/Qbgqnm0q0u0dkMYGk/TnG58jSIntAFywWZXDzCvKRKJphxgpwGgaX/RvFPMyk17/TRdLkAloJFgI/EZ3IBaGjMb1xPgNxK4O6Sk4BlHMGqYXvuIGCTtcWYh8yojKsp2GEl5RrTmBwiulRsQ7gLjbmQYC+MOhp0yjALMAhyXHXWsVBOSj4w1taI0JuCFUEAY6oh6x7k5b3/RufyhsHkq/PjBE+69eMK/+Rf/Ekf3DtnVkSTRvWJqVFVUEjaW5i3UTHhLxVw4OD3m5N4dKgnflQZOjBo376aDoFptk7gaSNVWIDpxvtpnAoWUhFlKJItCMjWfIMlCIXPoie8+ech/9s23eO/hihduKdmOWHQb/pd//RfYnf8Rv//mlv/wX15wPYzMFvD0KnHYvcJ817FKG/p8yGoHo3X83x4d8e56xvXtY45Sh6Y3+Y28I40hkfCup1SlaGK2uMf8zm1qMR7+4AF5UVieLFh3lZwyLmvuvt5zvDhgeFIZdkrnSpVCtYSsgOpcPttyPTfK2njttTm3DzImhetuy+2HztuPdrzwc5Wv+cB37htnuyWzO87ShLwQ/menG/qTGf/N+ZL/uijfuD/wM9c9P/Vg4LfuZdwSv7nt+IOTwkWG2zZHvWsdCT25c2wtmCiSFadjeOkV7N/4a/j9N0nlAeS74BUbnqJjhZ2QxxHfbrAf/wm6+0FjnZs0hdahMXV8eDvrk0GUl/Y4IfaEtH1g1goiwihdPKSTpNQeeLTuFfdghykBdDV6XJwoMH2K7QSAdCagKg2MRrEcq0lbmLzO2rW7hy9WM8/Gm8eVFMIYP7XXkCbJ0cgHmtvvDSmMA+YSMhWIWNje+3RvahVEepI6Ixmr+cbEer8+/rXHT3v8tMdPe/y0x097/LTHT3v8tF/79XGuj/zgbzISDtAoTMPjkqRo9RdaEgdVj6fvnoFETPhKmIxxDAXcwz9GEMSghQYms5hp0hs37FQDeDKBTmksdrQAK4LUONY3AEQa+4DH1C2JSWMTQEwJyjB5s0xBsP2RxhhoYwYl4c33JiZOKa6F6rvwOSHhNWNiJA2mrFhj1dxwUUYL/xVTIXmi+gS4Q+aSJPwzzGEYjXWa4XaE2hUmii4WMHuZmoyNb7k7y8ii58kj5cnjI17/8o7Rd1xcV7azOW/98B3u3X4FtFKsknJHQslVUAtQqjSDYU2kSXqEk8SDHWxt33deeIXXulNyt+Ru3vDtD95j3M3QUvg3/twv8pu/9RdI0nP39g95/4+/DXKB646+sYqdZiwl7Ogeo12zWj2DOiNrz6x3vG5BOsyhWkFTfNhh2D2BPIJpwltyqUzT2apBmlglLDhu7YGYgGY+kqaJbmjbT9Nn01hobWhYmrk53lripRUrcRFJJtbK8OqkNLWgN9aKVmipNtbNQdrrICRNN4wrCFaDAYwiqXlqTLmP6T4EkBaJ1zQ3cEUl4+LBQG8L89mi7bnSZCpQa3gh7cYN43ZkHKIoshrdAG4OKUNVpIKRyA08I4nqUaAWcQow1PC/WTPy44cHcN2z9mf8xb/6q7x4csrT62f0hx3L+THVnJQ6fBy5WF3T5x4tkfhjfxUYCjPN3Lt9i6TKdrMlN+NdEZAkNwXG4mBGGMBHHJIMkhPaJVJOZBWSKlVDaKCiZFEwaxM1m6eNh6fN+bDiv/hnf8DjjXDYKctD55PLA8ShT4f89Gu3+YM3v8+wnZFHpaSeV19Zsqsb/uUPVsjtQ1K/YOaV1djzzZ2xu17z0osj1MwfrA751ZMtPsukQVhT+N4wQw+U5dGOK92wqTvSsqObdwwYykjqO2xQZgfG3VfuUncDT78Jae3UJ1tOFz3dSWYrOzqJ7oTx7RV/xVZ86vghw1nlLUY+f2z8hw8TD54Kf/oD4eIq8/LLcOv1Das3nevLzP/59zKv3rvD5bxyejTj5M4Vf7RKfHN3xI/vrfmpfsPswvjCbsHRwTts9QUgQXHw6H6gdY0UDJdCGhM67JBdjXOfZ+HFNIRPjKcm66iC2BDMr8pzBnmKww5MZ3Y6C03uODHNN7yshRNV4N3K5BCDplbljrglpqmq7tFNJU2y16rO+FmLhzHR9eDxjGa6LokiiNaZIkQBHPY65aa4DaZaIsYLrWMlJFvx94gpQo73GAeu+U8ZQr0BvROzTbw1NHWYTd5L8dscMBMK0e2R9lPpfmLWHj/t8dMeP+3x0x4/7fHTHj/t8dN+7dfHuT56x98ufF5camv/j6fzpUb7OIRZLu4tQbSD7cHImYB5A64aT/6TdNNxi9Z/swZfNVglkZaUC+odOSWq7Ugp4VYjCTUAraR2wKORPXWCTdO/JIKKizC2pGdhk4PEeLkAGu13x4S2MUxGbsysaX422r6vUGvFJRj1kCJo3JuGOARBXQMYmTYQPL1GyAhyA7ZmJeJmF4DYOuDoFrvVFWNXGVGYHzO7fcrFxYyv/5MTXhwHTkdn2/Uc3Uvs1mtm0lF27/D+nx3wxT//CheP3+WdP32TJz86YxyVUYTChqxhGqwqJM0tqIY0KKQqFl0DZvQpg3ScnT1klg6pIgzXFekicN46uctcZxgdoxeqP+Kq/g5+J/PK+Juc3jqlXl9i/IBd/4S7i18mL+6g1XEZEOvRAp6DyQlVkrbphkRC8yhWxCsqNNBK7CVagSEVtFlSi9ywU9WMlGbN/8FvSCWIQksI3yIht88uTKRvpuFp2+/xym1SYnQgRL1W2x5r4HSSnLhQW7v6cz8LvSn6JjlL0gCHgZsnGRdRwHm5eT2XhGqO/25+G1alAecRrNCljJmClpBsVWG7FYYRRq/YaFj50H0LsQdTm36cuxnmTTbWzOURoSJUhaEm3CvvqvJsPefqcsWXvvrTfPFnP8fuyRU5dyzmh00OAmOy6CRIxuygJ9U45dKlG+NhV+Hw+JUbZi/OEyAxjdCIe1tKDdYZaYVteFZN5z9nRdVwqa2rJUzopyJEco7PQKDogm9+501+9KNr5i/Ouf2JxF/73Of4qcXLvP/0XXbnW75zf8WuKHmuHB4d8IWF8DfuXVJnT/kH+hLfPs94jalrwsjxYcfDi47LZxuOX5tzu88RA8qWopn/9Efwp3aHdHzMNo1cPHsQnkJzZbQt2gud9/R5weGpsHq2Ih322HzNbO7srrecvNAzPzqknBiLfMgwVqwYf043vHfxhN9fZX775cJvXiferAOPygGX7/dcbuHwKPHSz49Qdrh39Mx4Kj0Xz1a88AK89imYXSjlycBqA9/6wOHzRt/Bu/ev+Z8uDth5mOl7FWaLjEhHGYwy7LBSEFmyo2KqaFawDHXEx00MGDAP8/F2BpONYSpfgdb9NJ0/kQCzgWGF0JdNYyGnPw3guuASUhSah830oINaWmE6mcs3uaGXQIJ+UxUDCbHUfG64KWKb/Uxclzt4ev5annAS0Hyw2tmGXXTJuGMe/lrTdbuPuIVROq54FSYJp8jUhaGR66LpZEp3zSh7YvPjXsa0SmF0wxgpNX3U9L5f/5rXHj/t8dMeP+3x0x4/7fHTHj/t8dN+7dfHuT56xx96AwynhOHukMGlYO6k3NgGjZHebhYJRxJJKh40QZMcBMMbT+bbcbTpyf/EQjtBSVXEp4l41uBVQlMNvwlTbJp21IIACl4DUJgpqYGOAENKFnA3qpUbQCmTtwclJCt0UBxJGp481cBLM7YuzSsgxp4H8BsJ0+lgIoIdSyQJgGA1JAXFwIqTpY+gipFzgAUjgk5KHT4UKEoGnI5atqyfDsCSrHdYP7vPvazM7yiHrxvGEct7J6yu/gX37t7m1c9+inL1GB027J5dMksn2Bij1cdakGSYK7WGLCK8VSbj5h4wutzjY8fh8T1+6c+9wPzgFpZ2/KOv/SNscGp3QHf7JRa3jtnViviWwVfU3Zq7s7tIKnTdnB+e/Vfo/WdcPLxmMX+XIb+LV0eZozjJJTyKmteEt+6HKYirTGUFYS4tGsmz+ZC4gondMEheo2ABJWnf2KCKaIiEtIEy99JAWxgyU4P1yVlDWuSVYkNLENI6NrxVPU0SYqBaA+CZozqL6xDFrQR4YjLMBjMnpfDJmNgrbb4TWCVnvdlDSTtqbUUNRrUhgL0bKhnRaEkftwPOiOZ4fXdlHEaswG5wxiKYhEzDvN4UcmYa9xLAY+IVaYZ5F9/TEqSZUxwGC9C5HYyvn83ZdM5GR77ylZ+jDFvmLx7ywXfe4umTKz712TdYaoak1KqklOlUSRaTD6uVcB6RhJWKNkNzbUVLkoTV6TNtzfkarD+TzE1jTplbMPTTPg7Zj0VhlhMVo5iRJaNdD7IjlXP+7K0niHcczzu+fPcOv3j3k+yq8vrhC/yt3/suf++P3uPgeMbVtvA//tQ1//M3njBsMv/+7yi/f7jl5dcVmTtdd8jVcM3R/JTDgyhYZbvjZ2cxydG144/Pdvy963u8cEuYnZxwffaQ3AneFbqZcv1gQOc93dGMLi8Q3bA4dY5uVd78/UraKPOsdMtDtnOjPz2ibs+ZkeEo8cQ7Xn3tFuffesLf3fT8t0+UHz445OHgDF7JC/jEpw9ZpCsevJ/YXRnD9TVJKkMd8XoIfsnpbXA5Zb0ydtc95XLG6Fve3275D96fczSfIwvwtZFnPa9+4iVun9xikROXzx6H9E1TFKZ1i9iIl4L4gFpIEZM3sDdWGAcCMcpE9sYpdtpejels3ljh2OT1eQ5qDwkgRdySKCSmzz/i/gh0REtG06WJxfQ3F0ycG/7ZwzMqzvnzeDQVVfFgQ27yjbuDKdOERGm+aCG1GhALSYp7/IEmu6Si6liJOKI3eTVijVnsb9qUS1wjK3pBtOA2gqXYa8kjFqIM7ow+Iukjp/f9+te89vhpj5/2+GmPn/b4aY+f9vhpj5/2a78+zvWRd7ap4wmmqU6T8bImpYy7hmUzLho8mIfxLM2PxiyepmdRpDhh5AwqPUIOE1ytJFJLyhVrPgTWEteNiWg1jIpYJlt4VVR1vAvJh5phpZIkRdSBePI/OppTSEisiVyC3gyAbIKYIRoYdZIueJX4u0gkTgGTQlJBTbEGqsQrlNrCX2MW3RqAbkxMhdSCXPUxigATail4p5gYqgFq+pmjVjDbUjUAns4zXVpB/yOO5gfYhVGHKy7v71gcw+X2Ga+8mplp4dHD95BSeONgwVyd04MZB3OhXA5oWjbvj9R8g6IdOmlCvGLidDljBpYkJst1mc6hUCnVSNkRMzKF3bhlvdmwuhz53g8rn1zOGJczLPeIXXD5cMX2BaHXnsvHf8bF0+9jXQD1JAqaqDYiFSR1hKHsGACDvhUkwCRRaK3i0+eTaQbliQjgCmL2IRbWsalVXGh7q4bhdJMfiYDmjNXYc17DI2VKaNISimowVVatseMhVQLBJIBV2LKDTnKtxhC7RZIOpirY02IjqXUOBEMVnjAq7bc3nxhpIF08pl4ZRMK1RB0UT3M2VpGhUAuMo1C9MNba2DRv167P2T9zKgM9XSRtHagJ8OCxEaX6AALJ55SyRc15c6Wcq7JZrfiVX/wFNAt9r5hveeHuKd977x3+4J89pFNB+x7NmWI7Tg+XHM0WaErk5ZxFdxCSmiRol/EmMUmWsWagbjZSbcRq5dbJKdIpVYwyVkoxNCvmO8puS3XIKEmcDsEkk9KI5x3FthykGSvf8V/+7h9y//4Vj883qI3M8wnff9/5u+M3+JUXXuGt9z/gD394zvzoiNELpQqz3Zr5kfMvv9fzL0pP2jlDzczIFN/S90vyYh77bIQ3ts5L8w2li+mYM00olcWt22juOUgdF8OWMg7MUseD7z3k9uu3WBzPOJU3WG++z9ZXPHuSefDtLS8uMvOXD9m50Z/MoRPqdcciLSnbSz4Qo9xXXnj5mIsHI3/yZMOwXjBqRauB9MyWI2cPEsN54sWDBe+cXzJkmM3n1GK89Z5y93NHpK6jjmtO7/Y8rluyzPGF8ocPRrph4Dc8MUjBU+KVF29TT7dQd2y2TymyRuZ3sHQLLRWsIH10Jklt57AaPhiyG1CpuPWgiqgFu201iGlSyLHcwtSaCmM8mJgmnSK0jqAcZ9k8HnZIAEvB0Uhe8e3eHiqYAh1MsZuJzR4RiQLfTZCaETRyTnuwQutM0elcS0UtHlogrRvEJTo/kBhYUImHFynF170PhjrR5HIlcqjnlk/iQU4U5Y74GPFHakhuNIdM1OKhUMmZvlRKnSFdJt7wfv0krD1+2uOnPX7a46c9ftrjpz1+2uOn/dqvj3N99I4/TWHYi3MzmUeC3c0pxt17a8nVpAEap9bc6ak+U0IOMCnqwWx7MFjSGLhaBp7LDwytffjRuAZTLTSJR/xceNFMtGXT8zcSzpruP0m093sZSSnMhjEw6xpZ0qLalNwNqjmIkVMPJlgdowVejTA3nljRAAAAqAfz6dLuT7TYJ0mUcYz33VhqoQRAkoAV1SYja8dHRfQASSHdSGqMVRgHI+mOW68W+pLYncH8/8fenwfLdl3nneBvrb3Pycw7vftGPMwAwQEcIIgEB42WPEqu9lDlIRxWKyzZ0e2yui2XHYro6HaHI+zott1R0V0uhR3u8FC2S7ZsdbldcsiTrJZFS7IoDoJIigRIkCCI4eHhze/OmXnO3mv1H2vnfbSjygV3SQ2WlZsBAni4N/Pkyb3X+tb51vetyZQzF7aYTHYp6hwfK2lzn9e+/AIPP/AUF9/3LXBzyfLawKIck61DdcC8w6pRXeiy3nP7kRRMrUhYBmGoGNoLg83xUkIi0UURMZ31qHRsZOUzrx3ybz694JFneupwzFgKi3IC0y2OTu6S6wDH2+TFBkZlTIYnRekwLSGbIZFSsMCawm8laxdgzR2XMToKDFQ6lApWI6mhTVIkOF347uCYl0iGqjgDSTLCJL47L8GeBo0dptSisa9WLeoeTO3Ks0dEmh9NtJyLaWPJKp5GVlMLXeKerpyURcNkO1rSvRVjhldrCS2KI5GYYYUNwdY2f6SYYOXNqFdwE6o7y7FC1zGOhTqMWBVqFapHt0MYq8d0NBWNoqUtFcIvqbFxmpuHjivVYeITlrWyXBYk9SwG+NzxgG4mum3j0fddIncHSNdxcDQy3ez40Dd/I8McUhHmy8rJYsGVa69zeFg53j8EM46Xc8blCdCxHCqaMltnNuinmTNbG3STGV0/oesym/2MXqdM04w0nWB9x/OvfpnXr1zjYP+QOzdu8r73PsrWgxd5/Y3X0L0l01ybV80CKxFPNs9s89P/8lf47BdvQd+zMd3ine+coNMt3nnffTywdcLVo0Pm7ty/DTcOEud3Op64f8a3PXAeFq/xjktL3vtV4bPjhLq/wGdRcGxm5RsofGI+cv7shO+e3aHOD9k/UbrNjjJukwfl+M6cyWbHRJSclNz1HF87ZHsy4ezWFhkYbxxw69YJ45B55c5NuuoMXQfnE1tbmToVujSyc3GX/ZeOOR5HNs4UZrmj921ev3KXYT+RJyEHStm476Etun5EpOMD9YQ82+CKGsmNXkbK2DG/LRzfZ/SieK4ceSHPOtKgnCCobtDrFMzohhHxxEkZETNsAaMJ3iUsCdJlCkrnFdcOmS9wX0CaIvUQLWdZzG8ys2XrGgnwiDYw2mK3mYAnwhi6IKni5GChpbaBCB4yGQ1JmXhM6DvtHPLEqewjTj2riXItU0T8b10p8c7SOkVqe+/ogMHvSdJCjhVsuSvUWkM2RbDQcW4LVgbEFRUlfHi4V4h7GLUjYUCNgKpSSwDuWkPeCBYPO5p0jAagrcW8mMgKVVI8hDkdFLFeb/Va46c1flrjpzV+WuOnNX5a46c1flqv9Xor15v3+GtP87W13KrkADi1NOlKTJyCSPxgrS032n0jySdWE38a3GuEspBQijWvDEmQHNcwDlYqklJ73wnqjpiHcSelMR0Sbf/Rx0/KXWPJHVQDMCcJ6UDzN3FJiAdD7oQhs2sETGkG1NWDdcaDwZCkGIJ6BD7E0XDeYWXkqys2ZSWbwVEyIjFVKAaTyb2gRgXJlBKT4JSMAwnHJnFNoy2Rbg5ygvYTzt0/5ej6MYvZhFzmHOxDt/t6eAgtSzCc0xnddAvMSQUmOiHTk1JmrEImoRqyjSgmHCuGJKETYnqcGaMCXeLGtVukPCFpQYpQUsHyhNu3b/L5L855zzvexcFij3JibO2eoJMdOqDuH7M5mXH2zAHlqLKYLzg8iXb+3guUyigD3Wzauheim8Ea65Oab4Wb4NpYIm9TAJvsJDxswusIzZgZKcmpaTSq7cZH4qkWDBgQ3iWpmVVXC0rb2++k8MVpdivRoo7fM4Q1Ae9awhOSEmdAxuYik9rnKA1Ah1TEm2kzzdhXValWMW9FX/vt1eQqaQVgtQC8QiTO5TiGLKUqoso4GjaEFCZAa/vLaSyZnr6mS8XF27lNQPhkoPkUKKS+Y7Es0OQ7w7JwUyoHZ6bMl8Y73vcuZrsz+g3nYH/BsByZ9VvIsEnuCl12ppsTpmUG047z58+TcNQjDlAXLObO8dzY29vjZL7POB5z7fU7jMOAUyk2UsUhd0w3OiaTCdvbu5wcD1x55XX2Dw452jvive95lDovfPHFV5H5wJTK3BYsB6NU48XDn0PtDT762Wf5TR98jGcefZLzZ8/yEx9/kc9dm/PA7sD1sedHPv0sD+zez1M7Wzxy64hvfOIc3/nYjNn8KuP+kkuXEj/0/lv8iU+eZ/9WZeP8Fl1Szkjlw3lOf37BdzysfGM+hG4TlkvqEkR7Jv2S6fyYzTxwZJv0k8RoSp072zsX0J0pOjvmW7/1I/y//sZtrl+5wcZUcctce/0u5z+4Q53AZHPCdJJJG05NJ/QvKw8/kdncHRiOnW//0IwvfHHk2tEswN2Os7nleMlcnnb83ndd57Wridce2OSFo3325h2elL29wpllhgRbs57FvNINHceLyvGe4j5BdANS5iQdYDKSZYIlIU0yzJ2yrBSdcePAePXLB+zKbR54xEnuJN/gZHmTu/tHnFWB/QOmtWKy/Jp8EICs0dINYGrrtrhXOArh+xXL2oOLrsX35htFM2FXiVzV4rhZe9BBF5loJTuLZMVKiSLtv53KVppkRVcPS6yLhxVt4qhqdNPEpNYcuWSV7URoFjSoS1ix1ZXk0fBaUMkhq3JDv9a0OiY4IGQkeZPZNbN1jQLezKITJvft/MubTe/r9Wu81vhpjZ/W+GmNn9b4aY2f1vhpjZ/Wa73eyvWmH/xVGyEprhKMpRPmmTqh1CGAokP4XKzahEOiEQA2/DBSboDTKg0lNjYgZAei2gKGYraChGN7ut/jrmSidTmhkdAkQLKsJAlumNXw6tDmbQBoivdGnCpQa2oMaVxr6zKOoNaY6+wEG2oen1+gupMlNUDgTa4Qspgc/c2N7c4BUE0xD0YfDZYTwtxVvCJ1xD1GqA+lsjTHF3DzM7/IQR3odYuTOufg8CqvvPIqX/z0SNp0ju4sOPGO/OMfhy6jw4+iUnn6ffcx3Zjy3Be+ytbs5/gnP7HD/uGCC/c9xsnBPlqV3idYM4TxxlbG5MGKo1RSm8jmlKTMPMFiwZkHdqgNoBUByRtMuk1m0xk6S1jNTOp5zm0+A92ApETfLdk+29NtJLohId6xecbBe7JoQCZXKAnTQk4eht+nxRBUk2hdF2sAcYLgjcEJJihpR7UwSw8Wq8Tna8yTSLDhZoAbKYOKU1uXA42pSppYTRO00lhmMcIDo7Wmt+8+/tskfHM82C8zj5/3KGBSk2q5h1dNJJzYa05IX6rUVdbGrYFWoSU/o9oymGwNTyGrgcNrzYzVMToYCcabRLUmn/GESkzrqxjiKcB8Inx83LGqAdw9ptIhkexJwLDESdROqaOxEOcze5XJ1jZHdeDhh+5je6NnebKAhfLopfdw69U3WMznTGYbJFviImQVxAIIjOOAeg0mXzpmW4mtc5nLD50laYd4ojCiGGUcqGNlKM7h8TFlqAzDAkmJk6MbVA+zb+/gqBRcZqgpahMunT9P1szgguoWn3/h08y7ym/6ru/nA0++h51xwfX9I14+fhWbCB996Yg7e3eYyWVu3h15/fw5Hnj7/fyzT3+OW69M+K53zLg5fZzJYsFnDqZMNjLLYkwWQioFOUn8q50p5/vHeGUuHA6Z8c4tZmmXcxcmpI0Fv+9C5iF17vgdfqIIXd7hznJOTc7m+Q3S5pRiE/7FP/+XHB/eZJYUn8PWVs873v4Ym7PCUQ4DZCuF5aGxcd8Me+mY3ziMXNreQwo8Abz0EPxXn10i5zaQ7Q6WxqJXbhTlZ7465fjVJd/0WM/DZyd8ad6xHKBsT8nDgo3tGUOdwjhnMKhDT3Ih9T33bwrp8BrjMRzu30G0MI4Dk044GU9YjnMSws039vjl568wDHe5dOUOw6AMRyMmif3DPR69/4hvy3N2WYQM0KOwXMk77rHXYd6vCKweNqx8XmrLHdYKfg/JlTOCl5a9QqYiSBSA0vKOScToFfZ1i4LU4jGNtAmhYZLeEGfzSopNJ80rJmFSwLuQsdAALwmvfppXsNX0y5BfrXy4aq1RmENIr9KkkdkJq5XV5FBPkceqtQLaFHeBlKkeXTDimXl1qtg976n1esvXGj+t8dMaP63x0xo/rfHTGj+xxk/rtV5v4XrTD/4kxyQnvKI5N0lIM91tZtK0J/zRml/i8IucykZWJp9hMk2w19GQT3iPgGilljHa+kXJKXNqRmslAItLeJp4QfRr/WMUqAgBuFZTe8wswqBEFDodb58MvIbapIY0AZoPDeDNacQRXLp4DQ/PBSSYDpFIyC2mUepI1i5AkNkpOxiBqraWYlqwbAAmZWpRhhKM5ViNlAqPbA3cPVDuiECpdJrYnsDxslBOhFm3S2ZE6xIz0DQFcz757B3CZcXY66dcu3qLyUxZ7N1lECFvdlh1avLwPE2GmVFrSHqyCk6h1AFRYWTg+GTBmYuXMVOOy5L5KPRquC/I28727iY3b7/BxQfeyTd8x4Rh+CC9KXuHx7B1Dh0fZWfrGeYHX+Hc/Yf8yuRlTARSj+ZCzlOURNKYwORFmmRCMK2gtYHZYJRdrBUsJRJMha4LQ21zIymEiWxsvlVuCk/r6CZwL1SP/yIevkG0yVTWZEgxfSp8NURWkPWe9CqgZ+vQoBlqWxRf0ZbuTQZihMdMeOKICLUGuK0WluTuTtYcSZVGire9TPOFKmbUCtWUUoQatkiNYfZThs3aZ3fTeD/a9bQ7Ef4z7T5IfIJaC2qGZI0uFImujWxOSUJdjOwtFtxeOrcPb3Px3Y+zd3JAvlbY2trgbe94J6++8iof+/lf4D3vfidd73jpMB0YakdKwaSpWrTtu6DJqNWopQKVZR2iO6ZASs18PCV6hQuTbU4WhYNj8KT02xPOXTqD+kDnI75Y8JUXv0yqIx9++v08/oHfwLIMpA4Oj/Z4x+6H2Zxu8uD9b8OHY964epufef5XuFH3SJ6Yasekn7JcnjDpOk5UeeLSo1x+9Su8oTv8rReMfir0Q8fVq8asS0xmUO9U7KAwbmSO+pFrB3d5fm8LP5hxsneG82e3mBzMYJYYTpbokZE3zlJ2C6nvYDjizKVzpK0ZVke6zQnXXr7O8riyOdtGirG1c4bJ1g7D/h26S0vmw5JM5mQcmWnP5afO8ZOfvcGZ/fOc741f6TqunxxysFR2hp4yF2Ss+FDZy0sOzz3O05eEnZ0O9k442VTm3YS9IbM5m5AUjo9v4T5lUZzjEvFwk8RDy33O7t/h6sElvnJ0xNbZh1ATpDjL0XhgV/nIex/i2i1lIR2Hx4UbhwckMzZm29RaONlzPjc3nnnwFrYtVBeSryRZuRVtRKGqxNn0VbeIN9mVRN5oIrsoUueoZML/JTqtRApeg9k1K+0MJFgNNECa+qP5QSmBDq09kGhnPGRpdnqecMNrBrUWZ+yeVFJoyhtpD2MK4UGj92KH0+QsOR7uSHs44jFZs1Iin618cdRARrCMFSV5B5KoFtI+fMAdRo0HLHYa9dbrrV5r/LTGT2v8tMZPa/y0xk9r/LTGT+u1Xm/levMdf7VCbuO3PQ615oTXEoxcLWTNqBMHGgm/FSOARBLwsUlcOmKWVF0pScLk2qIVX8UboxCBDJ9gPkYbsFmAR5fWphztwW2GHa4e16YxLc5rMBurFmNaCLLTvugaOLQZCMeEuZg85jZSGoBxCbmCuNC1iW0RSKUB5faZW8tymBhzb6qWCIqfSi2sjtg4NrPrYBU7cUZzxCraC5MOJsvMEkFGR13YULBJx0mZU83ZVEidkHKPLQp9J+TZJjoJmUZXnX464+DkmKOypHaZcTLBchQc5iNmhqZg+hVhtILlCLy5OunkNq/9v/8bDsucZe25a86GLVnkDhtO+Fs//P9gLJWsiuWeqSb+9Ud/BuuMjh7rle085eLFDbamPWfPTnn2uX12z+/Sm6I6spRK8p6pCyo52r5Tq3iSg464KGINoGkzj5UA2SKJewIoAOd0UpSAaisYcMwWwUpbMF6qSpuTFn/XYInDm9yoHtKfFTAMBniV8AzXRXjAVA0gLMF2uXn45aigqXnM1C66OeD0PcwLyspIPQBwzplaY0qcGZgrRkiuxrFQTDHLBMMXAFTcEElRbrWiRHOi1kqXhVriLKqGzEUI0IrEREmVZlutfvr7JcHojlSDTjgz3eSdG5WNM2fY3NriH//Yv+KRhy/y5/8vf5q/9+M/xvWb13n1pSvcubHPdGOXcVlIfcLUEVe2djYwm2NlgCKxz1ywMeRD0eihDIORBHwoqGaQSORlHFkuFiRVFmOlmjPpOjanG9x85SqvvXSFWS+88qWv8mM/8eNIGbE6srs1ZbmoLIcoLEsqnLm8S9kYsDRhyUBWp9+Yspwfk9U4OHyZZ699BT8p3HjtmJuHS/aPl2xuJb7x8Qd5/vU73Nw/QXNlKj0pEcU0mcodKBlRww73EU1Ug0GM3omz4h1PfEsiJxjmI/0FkDpBteNYTrh25w6zboYx8vLeHdKXX+bcQ1Oe/l277Ew7jmqJIgv46o0Fzz8/p3ZGn6DrTrClIzkxmR9CalIvT2hSvtgfg2TMD3CxGNamR7hl0qbiY6UWKHWJpMREFaohXviSgXWC6VUm3YzNyRH7d6+TpSdlYWcz86XbN9DhPLdu3uLujVt0U6FPwsWzihic7J/QTTfpHirUmaC1b1KyVlQRU9eEzFhq8zpzYGjxvG+FWMQI89oeVISHVTzoMFQmuHWoa0x/E0czDWjGGeW0wyp+JxCuhDm0SQyw0zjXquF/U6uBZTTByhtNVkVv9eaNFuy4UYE2/dScUq110AS4rr6KQQmX6JiJziEjqVGLIdKFUbaGgbW2jiekIjmkoy4JczDRJpVcA9evl7XGT2v8tMZPa/y0xk9r/LTGT2v8tF7r9VauNz+v2jtSdZL0mBQqKbwwcsZtSZcq1eaYZlS6YBwbYxChRdGcw7bFBcg4FU0xfWscgwmvPpKkC32+GsYxiKK5ayC4EClcqcTUOnEJ9pKQwLhbsNupC38CiQlnKdJyk7mEpAY6JLeg4Al8xH0IbxTtQq5BQaQxkpKD3dBEJoyBXZ0aqCACCI6mBBaePEKlUjGJn08k1J2qYaYqnhERSqpARusGrx8fU4YpexXcloht0ImxdaYwyz395Czz/RPmBwukn7HUkQ9/67ey1c9ZXLvO3o0F52bbiC/BK88OS7Zm56mzka7cYZzOwtxZQZKCGSnnYHQc1BzzAROnyJQN2WMQwEe2xx5LUxiAukTHgrpQLMxnj8wQ6al1pEsBKO9U5bWvGMXAVckpcWZ3m1ohW0fq4zuJpOFIjiRBu38QQT+JtAlTjjooiYrFd21OTjTA6KArk+UawKsZhifvw/LBx9hjmkD7mGRIRl0pPmBSIzFJY5mbAblL04o48b70jCMN9MVeD7ehleRE475KwcWx5k8T07ZWJtdtn1rF3KnVKL7EquI14RaSi+IlGHSLSXNeBWpMhzTxmGrogtcoxFBHHMbRSU0yVosRTR/pVGpVbIH3wmiG1wlWEjIRKEYSAauU3DFNPfdP58g73slPf/zf8M7HHuD/9Gf/LD/8l/6f/PIvf5LZxow+dRycLDg6uY5bZSgFyRmkcuu2YKXGxMNxAO2DvSaRUketheqVnIKytNZ1klPPOIYpec6R4LtETL2zEuxiykyzMoyF23fukFZBLglv3FlQ1dBS8KQ8880Pc9Ib+8uK6oQ6LmFpjHtHnNmYkq0gRx0vPH8DX2YefNuMb/tdDzC/I5wcK9dvnnBwNGIlZEnWGaUGW+lSKGYYhUSiaz5KpS7JKVEJn69aF5TjQ84+dImbd4/xMjDrNxjvVK5fv8E0b5PUSTlRRidl5eC2sTjMnH9cGPcTlmB+dcrnP/oyxQq9TGKK39iTc8bNCGuWKMtUKxgcjxVliapQpDJaIUkm1ZGThZOSxnQ/De+shThikDVieh0LkFgeH2Db8PqtfUop5OYl9vHPfZWsGvI3DEmJmoyZChtpQslTsozsvWE8NBnY3kjsbvecnRQuzgpn+0qXKt2kJ007us6ZOGyrkycTEtoAY8h2NEUHFVLAJvGgwaP6luotA8XDEHyE3OQsMkOyQ13itUAFrx3SJsZpijzlloAhzr1G4aqdYnUlkamNDU9Q5ZTpdh/ROo/CQScYJcCsx7lyM5Q47yKRHwtjFI84QxFSmoX0zB2rXRQ96lH0ScZ81XEiSBoZq7TumTVw/bpZa/y0xk9r/BRHYY2f1vhpjZ9Y46c1flqv9Xor1pt/8Jc6aL4dbsEPa6qIFqoPoYdPPfgErG/MwcoIWu5pBVxC368R5A3HRGJKHMFAoxbg1h2RhLAy7mzJ2AIoijYfDyGCjEiwd83bRJp/TRhTe2svbqyEhNF2DAGK63MfWBkCB2lhwfIQHiiR9kN6U30M1iFFegz/kBXjuOqALrhYBBaPn1HiY4oqmQkuEixX6um6jqTHLPdG8rkHmJ47y+SVq+iNIYx+t87w3ve/h3c9PmPr/A3kygNcPtzgNZZ8frzJB578TkZ9kY//dOUNvZ/ddzzBhekxF29f44Od8LwZn796DXvjKAChrKZAhZyhmIdnT1A14NP4DO5IzpwsK3eWlb1xxcB02OhsIMwEbNpTqzMZIOdCN5tSM3SeyD6hKwPkxGgDn7l1yNKNndkEsTBNRg1NHZ4cMhS38AKq0ZGgqbWrty3kGKKptbTHd1MtOgRUNfYYce+9SUSC4a5NqgGrDSTNJyk8iGqYkPsKSNNssGNqlKAkVaxUaglgEZ4vI76aGEVjq0WD3VJpezk6FmguGBD+T0mb1woClhlNMKaYE8CjMVvVFGuePO6EHGolrXI7bamPC6IxctFpYWJxZqI2gFYQrHx93Ns1JyKZmyMlIQJVM2pC7YTJ29/OJ7/webIr3//938+P/d3/juc+/UnObm1QWozAJAoiTXSTMJu3BiBEM04i9bMA8W0KJGpYNXLOUaCqklWptVDqsn3/iTIauQvJURgFJ3KXmjfVSFpN9atGVkVqfO+jLTizPeMdl7Ypx4cMBWpWFsOc5eKYjZQZ7p5gd0fO3rfDLBsb52bcfHWO6CZVhQvveBhz59EsvO2py/z8v/gcBzcK5itz8ZjwVy32kJghOVFKFE61Gkk9OnOs4/prR+zcv8PumRlHJwcssnLlc7fQoxzlrhfUwtdoKYYtjZc+fki3eRbbGEjLGZ//xKscnyyYTQSkAw9z9sELArhJm7gYRVR1R7JQqmFDIfe5yTQMyyn8oGpIqDRL69ZJZFWwARFHq7IsIzmFj4rV2lhXSFno6UgpJkKKhy9Xpx0uyrE5Mj9gAP71UcYs0+dEsSWKkdWYZuhJnEkVOjiTR3Zz4Qe+wXjm7R0VEAnJk6iDZVbdKlHohrm6lSggI46lFj46rIyoJFxGqleSOtH9YTEJs1SEEUFxKe21lVLDVB/3U0LY64hJSEpUBRPFqfEzEewJn5zIOYJgpIihOKiQPOKYNf8qWhdUSC3r6d9Vw2Oqlniv2iZdVg9j69EW4Y+m0Y20Xl8na42f1vhpjZ/W+GmNn9b4aY2f1vhpvdbrLVxv+sFfqmHO6+rBSKdC8Ur21mJLwleHzMfG9nkwvTXa+qVJTJJ0p2lbVx4iFgk1TD0bgEUiMDnQvHCCmnJINIaakJB8jZcAomEWbEZOiq1e0R23GgxcCyqqilUniSFEsnQLs2CjNFlNSATEV638EJk22vtLtcAq1JYAVkG0tqAa8ovqI5yaqgbQwCOwpjwEMy9Tcn/Cgw9dZ+eB21w9PqZcm5H6Le5/8BG++zt+O2enX+CNG5+ne/ybOfeuZ7j7lU9w4aUr6LRna9hCuvOUzQt029s8+Nh5djcru+WEz9/c49bxIfcDXRVwQ3MkUVQDQNASgvSICcJINxGGMnD1sPLV457iASC76YT+3A7f/p3fyvHJbV5+4WUevO9RPviB93Dr9lfxyYzPf+Zz3HntiLPbm5w7s8Fv/O2/g68+9zkePDjic8//Mss7d8ETQkZsiPuRQj5BAx9d6qD5uIjI6bA/7VoCqTHpTRtYOwWkBIh14s/CZBZcOli1tBNgU91J2kdSFwc8OhYkmPFmAoQQ+yW2aSKljNU2KS9yG8UqSRRN4Z6x8qKhTa5zp7WyW5NpNQbaBauKWSS2EuQipQG++ABhNI3RpihanBQ1sNqm1kVrvWor6qTBZMlUq7ul/iAAAQAASURBVKeSLZEm6Wrg3S0m4nmT5/TaMxp4Sngd6cjUzQlXDw+49tJr/Od/6r/gpZdf5uM/91F2zmxxPI7BciZlHOO+ptS1iXtLvBUi1oqJSPCFYqUVqZHjrcnPBFqhEK3/XgMEOq2whWBIq8U9sxIgS9sXjeGSwojeCxd2Nnnvo1vcuD7w8ss32Th3lu0nzmIHB2xtdGSD/dvH7I1Lzl2aQIKzFzKpbHLn+gH5Fef+/jrnti9jJXPhkbM8/g0X+MxPvxaFKWEQ7B6yr+ThU1UspBNdN2Es8Vk7DZP0o7sL5nsDu/efodw5Ye/Va9x5+S6SDbcF0KNAkgxpQIFrrxyy/xNL3vntD7B35YCbrx4y6aekbDgLxLvoYPDVNE/aFEbHMUycZR1Puz7GIaRYpkruQcYlIhrG/lnRsTK4U3WCaoExk9OUPg3UWinD2Ap6bcVDAVYG/XGUFcHGCgzkCXhSqimqlT47iSW9xgaoFQaHkZAsLRcjN7yCKL+/OmMv5NaBgozgCStt2IEmJJf4rGYoXRToGh1JxQuaFS/toQpjmGJ7RtKUJOF9IzRZHOGjFjE9I6GtioLZiT3WYoaIUEv4kKWUWz4M6YtK15KQBaCULs50m5i68t9xi6mu5k7Y7rSC0lewXNtDIG+dOZWUV4HNKTXynZiQ85vn9dbr13at8dMaP63x0xo/rfHTGj+t8dMaP63Xer2V603vbBWjtmTn7tTqeFKEPqQizikLGi2yleI1hgoRfilZBDSmY63MoxMaB9AFkY4sSvUaprSET4BY357Utz8XwmC6CCml8Bi1eI+YOlSC9S4rxjmFJgNISaFNBAqz0RoBl4oy4mQKkUBFQMxQaZPMpLHYzZQbVgC0oikkMMEmJsI7YcU4xD3LOaaFudXm2VMQT8Fcryb4NfFFWc7Zv5moR0KnEwYfWSwKt/ZfY9KNvOtp4Wg+sLFxnjIqewcjJxfu8vjj7+Diq3d4+fPK9mSTXu9g5YDjg9ucmWxzpuuZCBQ/IRMSgRWjGYGxMZpUtJsE46KVvptiWrj88AUWVvnqK9eYJmFna5P3fuiDHL3xIofLgfsffifv+OC7OfeqINbx9Dd8M7evfJWHts7CzjZnLsDFCx/i9z39Ef5vf/FP8al/+RqT/izVomjADBscukrXdQ0MBPPVXIjimvBm+Cz32FsJrx28RAljjmpujI+hKVNqQZkhK7DWkkAkIIN6D/iEqazjVvAGCDmdltcmFBr3QEKTInVdB6VNDqP5a0gw0ytza9HYI+4hTTEzrCpYtJ6bBOyu1dpnc7AaRaMn3Ns1aYB28TC8XslzNMWdqtXCjLux1FHgxWuaxVlyi2LP25QrlZV/kWFdOm2FtywMsylHn/8yv/G3/WYuPHCOH/lbf4OaKoPHdEe3EWvgFQ1zaaexprK6RtpZqSSNTpW4D0b1ZuiulWphWt3lPgCqCJ4CIJIUM2N0A7d7McHbmRalEue0ilEKXDzTsVgseenmIYuxpxzM6YcJs+3EeGPB4Y3KnROhDCHhsS04uZq4cW3JaMblMVEH42R/wXS6w5iMzc3z9P0beK1Uj3tdm/9PGcO3S7pMLQWjNgP9KGaXNtJX5+DKgu37CztnLvH6J6+R3KhjDxqyPLNM1kJOG7gLo58w3kq89LM3GQfY2OhI5kg/odqCvu+hhpxPCHN0VQ1/Z69oShjhX5TMg212JdWMDzDRaUj+rFIWAylv0lPxekLSHtOC2yFoT5dzY6obeANy6iiUYO6rx0RCEYo4ruGjQgmJBupUFSCTJDzIag1ZIdlZquEqDC5MizObKLnGQ4lW2rSCv1WNblDblFJvDzIoeB0wWZB0hpWCMgWZ45ZI2oWvmJbW8TGizKBGYZxWMhh3xFOw0RbG+bTPHJ5UFoVfi/ko0YHjMWHVm6SqPeWgukYc0ChI3T1yKTFYQDSkbEgYx6fQCQWoJnLKyu9MtKPWAdVNrGSEgo3yH4IF1uvXcK3xE2v8tMZPa/y0xk9r/LTGT2v8tF7r9RauN/3gz5K3dlghGySLgOEytISvzTwzQJ40w+g4hJHo8ZhA18jlSP4teeakVAhWz6Xx1d6YqQDGZs3cuf0+kuPhvUow11mpVoKJRUAz5sGmiwth9BvJpYXNYEcJ5thIDaw0NsSD1Q2A643+i3ZvRFf8OIkerLUzuyJqlBqGp3pKk47NezU8e2JCUTM7lSYw0CVCJQt0Xcd0R9A8kujodCQNle5kSm/CwUGHFQ3TZSb0+TG+9PynKEcX2J0Z2k3IvdANhwwzgXMP81D/IE+LMv/ky6h0EdhVSQJJIuhrF4w1VEgR/CGAVZaEdjO8c4RM1o7x+ISrb3yFcnCbiygPbWe2d89ycGPCzc9+mfd91zdzdmvO0UFi4+x5Xju+wmbeZLAFdw9uklMXiUBAUjDJ5iOdppA7NJNV0SgIzAdEuvZVROpSbYBL2/flIRdKIriHHwpeQt4kgtcFYYO76mVQnIwBKa06H8JkXNUxqZE02m8gMQkRa+3iXska+3NV4Kw8NMwrqiuGOLX9dA80m0XHgFenWnQCxJ+NK2KqwXRij1pl1SLfqPmvAZ/BcOG1natg6dylJcUU5wNpPyvUWllJtXBYLhfUMuIlzOhLXYL2lJRYbs6Yz5c8+ujbeOp//Qf48//n/yMnxUh0MIYvk5nHscHjNfCYEOgKGUZCypHaORtrSG1EEsUdF4k83qaGSZ8ZW6ypboxDxXBU7jGDhoAFeHUk5GdiraW/UmzEUW7dmfOKOfNhpFaQoefGV25zcadnsQc7G5tkHdjcmDE9k2EjcevmPjZxcuopc6UOzt3jW2y7s9FtsjweOZkX+tzF/WwbIOcOXxXeIuS+p1hMLwsz+ETqQl53/cptth7qMMtsmXNxNkMr3K3OsSTITq2Jsc4R7dGquBonN+bU5KRJgKdaCzlttfsbcovQdBDMaZPV1VJIXZyhYiW6LXAKS0QsOopyeLT0YtRaGVFUN6jDgi4nXPS06IeI4bXJVcaxhEk/0OW4B2OJCaLa9pnmgF8ht4ozVovRaSLlDsNo6JrOlUEGcm6SqqGgeRIdCjWRtARrXZfBRpuCtO4WxiiWvEO8gI+x19MEJ6N9xuqAr4zwHZJ0LTdE10x0RpU4cRJSxnggIs0bx3GLyXqr4joY55A1agOnRg4vs/bQQ5ucxjUKviZkpHHXDZy2VpuGQavV6F4gulIkOUMZSR7gfahC8QDU1U4DxXq9xWuNn9b4aY2f1vhpjZ/W+GmNn9b4ab3W661cb76XtYJoMAHGMpixBszCvyUO86khsEXSElnxoCvtva2GDzU8upJ+lFW3bvPzoHmDKM4Akkl5Zffbntpr+NCYG5UmB0hE4OLeX0I6Te4r2YuKYLJqBxbwTKnhbRAjwJsfio/BjGpCU0z4is9z77WyZkqJZOke3jxCGFVD3DcRC/bOVoxDk66oBQvnU1SjCHB3csqcOdMx7cNnoeDo9IALj1+hmxziEi3sKj248vJzL7C9u8EkO/umPP32Hbw/4TPPvcI7pj2zMnJycQYbA6lzKEJRyARLhEYLu+Ck5gtUWSB0JElQPSZndVtceNsu8tyXKYx06T4meZvzD57hyYce5+x9D3Lryh22LzzB4m1HHBzd5PZhxY9h94EpR68fs33hEiawnFekClIFsmMppqB1Xb4nWzJH1HEPcOq2AmsZxaD5X5gRRQMK0oUcSZa0WYCN6clx74VgtlrCNQHzikskWyXkIqIpvksHqysJSGqARIF6ykibBQhVzV9zjZHUT8fPrwoUnFrGxgTXBiabRMUcGmscLfMxLy+Oi7AaTb/y3hFpnku0hGcWZtyASMZHRTQTXSO1nUePaYlZSUlaZ0fBqXS9ACVOgURxWctIYkqdbpMOD/i2P/Q9/K0f+zHeeP0mm7vn2T855ODkGEsZFW8eLdHp4dVPJ4q5OqUWknanUpRTwHkK+iCpoHStiyMY6fPnzrMsA0dHc4pbM7lv4BxpoLHGmdB2vhvLWD2+l/mwIGnPyWJBLwlOFox3CmcevY9bN4/ZemjCQztb7Dxo2CM9+9eNnY2O8xennL20zdJG9m7PObeTObl7iwmVG69dZ7EsDGU1aUxOmekw/hYGXwaw9JXnlkC3ROrImHpMja98/BoXL2zwBy8qj01GZlR+bk/4pyfKYakcHi3IPcAQ+3xwqozgDsvwxjGDrjecZfiIaRiqJxVKKXSTPgocQIaRJDE5VBBQoZfKBx48yzsvbVFspCD0Feow0ktmv/Z8/ErhyJTsjnSZnBLLYSSl8F9KKb5z99ahJOBipE4QDxZ2pTIxiUKlVqPTmBBXJV5DPAB+blJETWHErTJtIFUQbxMejVOpCIyIJLx1PZFaoVg1ft4szO0FRk8slyfMNrrozilRJFNX8q3WISIxXY5mLB/fc3sPd6wZe2vKbT83eZuE1Ko2T7aYUkfIViRimdfWXUV0aijaHpKsDOjj4U10xRTcmweURAdX+HoR3k7aMWIUcdAc3Tvr9fWx1vhpjZ/W+GmNn9b4aY2f1vjp1zV+evbZZ7eB+6E9qVyv9fqfvwx445lnnjl8Mz/85h/8ST6dMhct7xYJ3XskxySpREexgSSTMFSlYjnYYq2OUUhdTN6B5hnTGDmkBStGBEMtmAGjQIrXikS9MvcEKKdMWxIPGYEYNc49AG4FyaH9x2qAFgmvEYUGOCLRd18zUSiAS/jrBIhaARDutQh7JVEZxzEMQkWIxJJQzY1Bi2CnX8MKYhG0hEkAXRbxmcl4nuE64lLxPsgKwxFLLO8c8toX/hlve/s5pvdt4suTYEGzstg/ZLNXam/k6YQL3ZRp2uBtH/mtTL/4MbZeeJEvHBiff/VV3r7YgG7eWFwndxm0MYvFKAnyZELnI6bKODrqlTRJbJ3bYePMWQYxppaYbc3Yme2wteE897lP88Cx8cqLL/OBJ9/J4rWrpPvfy+LKG9T5CXZxl/HuAVde+yXOXz7P8cGSnKBKeDt0KdrSxTKlOF0viBRMmpcQhAm6tHtZmyeICrlNpYNE1mgbJ+UAc2VsAKe51khCxUPyQWlsVGnGsRk8dphLwQmD6dgDHU4YaXsrRAKQjiDxnddagi1sLebu0syYnbpqd28+Nm7R5YFM8RqQOWRfsf/i1QeSBBuGgKdm1N5+zr2ZsHvBSw2GNAFIa+dvXh25AykomSSZyhheIlpJqaOIo+Ik76ijxlRJCXCAOHW6RZ0LDz71IT597Q4/+9MfY/PMGVKpSDFOqsUkNxE0N+8gvHV/QJdi5iApx/dXKpoU7TNeI0FLl3Bzeo3vn3ZKtV2bUVna2LpPDM0NCCQNtpRW9EjzC6pNOkGA/pAvVSYahZkmp6uJaT+lz0ccHS25eXWPpx67BKXw2mducPbt99NfAFssWdwsvPTZOzzwyDl0tmC+P+fm1cOQ3zWpkngz2/aQgJg7fdeHnYqtKnMi1rljZQR1TlzZe+UOH/mmGU+cOSHpkqtfnjEeCuNixLwwjkKxYH6tWOt2AWqTxAmUEj5P7hVyYz1bUVWGwlhCElZrdGEkiU4Pwykp87+6dMx7Hr2F2STiaJmhzFjUwqFs8+krU44YgYzVkYpTzFksRnKfcQkAX+qI4fRdblJEYsLdWEldPEgYxxKG/K07JDVTcrfwMoOYahc9Q+E3lPOyec+cw6VQUDorVFE0dVRzlMLYJdRHUgn/LfcOSyN57KkUfLrFFz5zm9ePN3jiAzs88tSHmHzxl2G+F/fTO4qOIbFCoVaqdmTi4YnoSgYZO8yt4hRwRTVRbES8BwkAbbWAZ8LzLIVUSyqSJKzyRaljxIdVV4xa67xJieo1ik3J1Dq0opiIG6t/9srogsskumGobzq9r9ev8VrjpzV+WuOnNX5a46c1flrjp1+X+OnZZ59V4E+nlP6QxAeRX9U3WK9fz8vdfXz22Wd/BPgLzzzzjP37fvhNP/grtKQEeGt5NiQMWBtSrL4MCw9fxhN9SSF1sAY0pPm6uEXrdGPcgskDRMIQmBp/WWNAVj4gNVgJs1V7e2PxaGx0jddTkWgJFovJWB5ymaSzaNd3QxKUMoYvSlwCtJb+MDptehjpIuVJ8x3AcQ0PFFEHD98AVQ0G3HPzqAkZABLv7R4B9NSno4GelSxEiGl/JgXVSq2F5UkCq+Rum9EKi+L8/P9nyrh3nvf+ljnR9VzZ2Uj8Z//JE3z2k69TD5dMT6acbM6YbU147ze/m+t7z+PPOTrLYUDrEtP0PPxDaql02mE1AHzuMubeAGAiJcXHSikliJfBYtqTKIY1plH5yktvMNt+O+985l1Mbt0hjzPSZIb2MJFNXI2NqXLnxjEikHKwapokTIfFg4mWFMm0yY9Eve2JaPEHa5ZD1gBpeKrEVgrmM4lglkPikuJ7swZewx9lJWnIIXeQipC+Rgbip/vOjdNpUm5OktaBQfOa8Uot4TukCjHFKrfrac3rscGppe11cgOmQh05ZTfNiMlYTYYl7YhG0dQ6Hyi4BgiKTpBKtbHdG6UR+QBoVswbm5s73JzRwjg6zIQF88SqRcS8GT/LBHcN82IpzDen2NHA7tPP8OLf/vvU7MzHgayJfjYhjUuwAGpeIh4kUcg55FoWxd+k70NiMglTaRmNlBPmFRMndQES+qwxIRGjy5NI4jVkSEkz1YL9zymRNLyiNKXGJraJaiKn8SAmUIaXVO6UWkL2sDHNQBSgWxs9m33mcKxMdcbFb3iYzctbzDbndEW5e2vg6HDJL3/8Cq49588uODqaYxhdDvZ2HNr0vPad5S5YTG0dPklSxC8xtEsRK8RQgakqkzQy7cLMvpOenCYkKjmtpFTW5CERQgRO/30lZcqaSF2TpYzlNLa6CH0/QQQm00l0x9RK10Xx0PvAg7tneOT8jDlGTw8q7N0tXPnYCcuJUpYnIQkcDMurvWekLgXArJWsikns93GMiYuqUT6Ye5gltd1dzdpUQgtQLvGAQIi4OphRVemt8uDZjjOXdznY6ukX0C2PkTq0BwLR3ZJwXIV+CAlIyRvUNIG0yZIR3VCyZO7un/CFnUfZevIJfvLn/zW//Tcc8cB3/0FmL7/E8itfYByOERaoTLA6R9IWujxB5hrnxnwFYSOuNzbaLR7sqEypVlpM0dijHjIhb11S4gE8RWMvmmSsGWzThiugsZcRorukdV+odDH5kIIqlOZFVVGKEx0+/wG83nr92q41flrjpzV+WuOnNX5a46c1fvp1i5/+dNd1P3D58uVhc3PzRET8f/pX1mu9/qeXu8vx8fHGtWvXfmAcR4D/67/v59/0zs4pGGbzSMKqympCVngCRGIFx8Wp7efEHfV8yq64hyeHtKQSIawxwVibmmUBWDGKBWNYDUAbm+jBEChtWpw2UL1i6ZQ+a7Bybph78wyJluNgG41mNcNqihRmbRJZDcxKojZmO5KE4RqJwxs7Z1bR1NPgE5UmVRC/1z5tgd1XQDE8aiwYRElUUxIZ1QlIplPFbRH3xwulgCVjXkY2z57nwgM7pLxgUU7QFKDt/GZPcYNrB3A4Z/nEZXzZcbQ/ZzkUNmsmjSOymfG9ilUgSYDG1fXQAqhFZ0EZo7VcEaqEzwYe9zinCSJK30/o+g4YGcuS3G3wzAe/gZvPPcdCtgClDpW6UEopLI8PQTrGMsS909gjvhKJSIpR6zmx8jwPSUJdbfAAds2PJpRQrW2bSOJWa3idRFoPcNi6FSLRx56TFJKGkBCt2hxkhTKDLfMVc2vtGmnSpdZt4UKS1iyB42JRxFlF264wd0oN82UhY7XJaxjjUze5kaF4Y+NN6inglZV0pcmYVtO/VCzMtNMpaYW1CYirSVmlxPVoWhFMwSTHOQiPqNVkSCHAn4oyqkBKlLKg73quL0549P3fxq3rr7N45VVI0Itik575nX2o4Ttj4sFEa0xkc4u2etGEAnUYwrhamqSt+aOknBCPgmM1mc4Qpl2PW0UlE3k8rlWTtq/KqWNpxWWY+7o5eQWY3WNqJZBzF/St3Gvv3zyTOT4+pNbKdDLh1sEbLK5PeOIdW3QPZEabYzVz9mLHuz8svPDpW/QZJCkHe3M0C6nt1VJGuhyMeXFvoCMmpOFOakbpYeYcEpxVISviKJVJbt0sKTOUAOQrMOftNa2GB5cmDRNqlYivvpL6KFZq3IOuo9aC5hyASlfeMK186rrYEylh4hz3HbetZxClijLpN7k1wnyYs784ZpljWp3k2mJ9nC3ziN2alLEO0Ip3JfZiFPF6undFA0gXMwwnpzgtEfMCuIoKue0TREmbI+XcBje7XXRmbFxbcsGOIyf4SExGBfWMO5TUcefCRebdLuJO1SnGCZubZ/n4V/b4r3/qi4zdS4wL4TN/+TP8lj8w45kPficPnH+S6y9+CvNg7iMGVurxMZdffoXdyRSoYBbnFSjk6FxoQNysfR6La2rJ7/QhiTSAHfnLoES3iNU4d9YKSTdDUhh626oVy1dxsb2YtyLahZGOsPFvEqT1+rpYa/y0xk9r/LTGT2v8tMZPa/z06w8/PfvsszsppT90+fLl4dKlS7d/1V54vdarrc3NzTlw/urVq3/o2Wef/eF/n+z3zT/SNkddWc0Gk8aMGQXaVLc4YA4ezJ1KSPPFwkNhJfeICUlKKfU06K6Cn2ibiGXBZEFj64zGenibPFYp1EiIogFkXZCkeAmAGxp/yLlHLQPGWOd4jgBJCgAsBuGRkyg1Equ36XlyiggCBNGYlGhL9mCcrHl+JCXrpLVmjw3UNIbSIxmFFMFbwqYZbudgNmxljAxZ+2g5br5AIpCTsHf3iLt3T3hoksizzLB/l+HkhP2FILnSS6YsB27cPmRz4wzD3oLkE7z0MBjzo0Vcd00MFLJKAAm3ALGNvFQ0RsbXYNtKraRuiudmElycYlFgZO1BlW46oduAZZlTUmY4n5mYY6Wnpkh4hcyj734S7eH45ITOQd1JFgk3yOVgj5v7SAvD0QJO23vucV3isSMDIAlSjfAbt9YtkHDNpybhMXo+0WyScQmGKRJtQuyer1J4Iq86GgS3MYBe69gQCf8YlygA3KITQ1Ik6FojKdXQdgGZWmPcvSFoygHaXXDNjb0C2uTD8IAKwJakC3PuUxAXshRFQk5FxonPsDK/DmY/qjOzADiiQqKnFrCxfX4do5OjGqZKtRHJlaWPcS7SBmnrLPc99UE++yN/mZqWqIcPx2iVYoW+6zEbESTOdTP1xUKqZRp+QJojRgzjEL/jxthMm0sJpnrFAnaSWQyFSTs3neZmHh7TJWsDgakBAauV1LX4JATgRVvR2boJcHCLqZDFmU175vMFpQhffe0q+Ei6DuwNTO5zenaoHHE8JnZ2t0h5oA6C+0DfK8XDuD1JyCrcPCYsdql1UQhuhZxzY+0jljrNuN6BGj5HitNnAUmYFwYLoOpqpBSfw3Bqk0/VWuhSau9ZQWNKJ+akrKfFWsqCefgguQdwjPvYYhGOuJNzZeOx+9h62/2oKcUGXv/Sa9x6o9LPhHqk2DiEgX328IlZAU2VVjSEKX+r0xGJayq1sDJ6XrHVKQtljPNXWnhNSMRuDwbWKSjhXUOXqSmRTHGdshwUsQIyQTyKVTGldqAVTKaUboazAOnJnTHtCuliz+yBRxn9OUp1Uup47gv73PexV5iVn2Py3ktxVoYZvRlLH/DUU/MOe8slZ/o+8h+GuuMS/kNeYx/XWhEpYNGN4AyYRXxX6YnZByXyZMOWjkEWTBTUwAruY5Np0h6GxHd2auavtCq8ScNMGHzS/rWZ0K/X18da4yfW+GmNn9b4aY2f1vhpjZ9+HeKnyyLSbW5unvxqvuh6rdfXrtZJukF4SP4qPPgrxCFpxsVKJAHz8R4bdurxEeO0zSsrOYG3JGu0RF2tMTcEw4i3ZBecbtLwTxjHETQmvRlDGzUelxQKfmvmtzSGM2jJaBfugo10YbRoUwdpSS+AuLiQpCUDVYo1E2kHUUeoLdFAhFVt4Dy3uLDyvojrpyUkO2UMWrs8OcyI7R5viChoAHE3RxhxLAIWiX6WcTpcB7wKvVYeujyB40N8MWE42adefQ3ZHzHv2MnCkB25dIbXD0c2D0fydAazbV7dnjBszvjwBz6M/fw/R3CULph5SdCm5Lk5pMRyHOlyRwxSC3Z+WZydLjfA0Mc9SRlRoesTT73vG9mdJm7/0udZzDZ5be+AD7xjk637HqLb3CDtnmHj0kNcePvbGOohi5M5GzpBVUi1eb60pAsFdwUy6jVkCtIBBEhssoq2o8KMmphEltJKetESZS2s5CyIEBPsEs6IW3jTBFPcTMw95EPBYCvuMFohCeScMMJE2iX8Zqo5XmPKlJCxEgbN4W8Rk+ACn0Ric4mOj+oxMsy8tmugdTn4KeMM1sx+5ZRB99ZNYQ2sx3lprJa1+5JWB1da90UrFFfSHsKnR5JRJFoqJCVqErBKrQu07xB67pjw6Lf8Vr765c8g118heaUOhbFXcuqZnNni4PZB3COCtR5L+Db1OSQ3Syvx3VRlNpnSaWYcB7JHx0CtBfHoOjAPJlTEsFKxrpA3pxSJe660hK+RsKs7XUqtCEuUUpoRspMkgIXK6jRGzKGBzT5NuLs8Ac0UA5GOcjBw/Yt3ePzBR1lk6MYpow28/oW7LA4yfRdFsrViuO9WBQ+oBPNu3uKehbxKW1w6pSyBrBrSFV9GdFFBGTFXUoaice3WOinGcYnm3BornI3ZjDKOTeIlp5KVVXeQaNwn9xXDHfvWPED9ahJldG4o0g1sP3CevP0Y8/05H//xX6DevItXATXmKdH3mUJ4LGXpqCWmtZXSpIya6XNirIV7RO29mB1SskJyxarQ545aLeKiCJozpYYEChGqGzkpVpVNn0BVTJaYGxMP4/jRneQTkkt4ew1RyHqvjBLeSJo6Xn/5iE88f8gnv/qvePnGgqHMMO9IiyMOx8Qv/dJzlL3Xee5np7zj/p6nntilpE0yhU4qdZEY6xSkYOQGGAvIPX+iUzN8KkhGxFj9q7dCPDzRgqkPn6WISdHh4e3BRuzfYgZaw/PMQ8qm2gpmIPyy2gMeM0YyniSGQ8j6wd/XzVrjJ9b4aY2f1vhpjZ/W+GmNn34d4ieNr28t712vX7vV9ldjWP/H15t+8CeaYTU5yAPMqYA0VkqEkDgQfgMh2Y8DaUQQFQ3/iZW8AoLhOI3pSATySmPZAlyGBCae2Ie+P5jBnCZQHa3xs6SEYaAj7pAI9saTQzKqEEPnnAgyHmy4iRPEc20SnBoMlzdPBSpGTHdaMU5IB026k0WbJ4iBj4AgZuHPk1rbvVljH7yxrTThQ7BIq5wGoBLJyUbFa8ZlwD2hAlubPQcnC4Y6o5pCmtBvzdioMe3Pc2JcHDOdPE6XJiTJ+MaMr+TC5sYGz3z7t/KpZ3+K8WROShNSC6QqCauFThOYRpu9GzCy6jRYLJbMjw7p+xl4a9Fv7de1OotaWJYTxmu3mX7DfUynu2Tt2LnvHOfPXWJkwaX7HmaoI51UUoFMGNMGiIrvL2vIiXJeJS8naewXacwzEvtKkwbQkiiMRJRqEr4XmgPgWEymin2oeK1hXCwTVEO+YM1E2R1ilH1LIE1Ck7TDbaAUQ1MXnkRu8TqaG5PoiIW3jTcpVzWnVm/7SnDJ0JjukJUoK5+ihsPa58uneSflYKXNK6kZIdM+S6Wx4ad/C6Yej3slaDDvkuKeUDAfo2PC4ntDU8goxFoXh4EpijIIdPc/yrn7HuWl//7vsd0LNt6TEnQilOUyCrcGpot7mIVjlFaIJEkM45Lf+bv+Ux564AH+wd/9u0w3Num7jlILdXHCI+cvcm5zg7pccLgYkJyZD4XJ1iaHw5JVzhQBKxXN0UmhOe6/WHQHpJVZtRikHEWKOZyCp3beCHPwWpysiVJGck6Idrz8wgFDvs27fvODyKzj4O6CX/7Z1+kkpm96WhU41jp5VnFSokvHA6T4isn2kNGkVVcPK48tb3HEmG509Cm8ftwLy+K4z6KAk+jgSTmx8ukahwFVpes6nOgewKNDoEtdkwW2klsT6hreT01KFT5fAbiqO5NJR0qGlwGdOO//Pd/MOM4ZK/S548vP77P8h7+M50LyiPOTyZTlMJI1RWFCTJkLP7Emr0FOiwUzp5tMosPIAswlyUgrOOIHtTHAUdipanuwECE2Z2kysZjXmD26EMIjLSRRpNI6qJqR+2B88pdv8eVj5+zZXc5uO56FzjNeN6mSWS4r+1cW7OHcvn7CmWnPY/d3FO3j/SoUAhCah/zKqyFWms9SFPkxYS7jPmKmIUXDECkhZWuRP/xrWiEtitWVjDEKZtXwiGomW+3PV50G7QGI+CmDjTujtWzlflosrNdbv9b4aY2f1vhpjZ/W+GmNn9b4aY2f1mu93sr1ph/8VVq7v1aCL4zn8km1yT2cLA4y4up4S2xIaklNCJPOxkh5THZzj8DfojjaGF1pJ9OTIJIwDe+UFeu0Yp9NvLGvirpQRHAlAoFVqjc5jIChmNcIZiSU8D8I5k/DvFikeWKsXhvcw3tAtPksSL4HuBurknIzCmmm2xAeJwEk/u37cCp3sZgMFcx/M7FuzKkPwu03hHF5P5TbdH0CKWxlYWOWEYTigm1uo/ub3D0ZQaFYIg+F2Yag0jHNE8ac6N3pURZH+/SkU5armgfwFlA1NLIuvfSIKsUrbiNVnCojXufYcTC7YdwN1aHPE6adMCyMi9/6DLcWRxSJRJpEyZqogzPbmWLeIbmnmyhewqvDu/40MJtA2F4PLVHFva1W6HJq3Q3a5Br3AIB7JAlJwVyJdNGiL05zosYJVi2mAXqMqVcPtrQZSau0ke/umAYACdDZhf+HeXQprGhhU1SdUse2c4VaRkRqsFTSxdujGCtz7WC7gnWKBISv2i5W4DwUUqpE1iQRPks0n57Vn4NZsNaqcRpCqvU1ThWrVn5pe02aZ4+D0IGMkfSlg1pJOcx1l5LZfs/TvPbZT7F1eIhvTPHOyFKj6CvO8mQRwNEF0UzySu7CKNui9YOUlGlf+MN/5I/wpRdexMzo+h5RwRwmG1O6DHlUehLHxeiyUruO+fwE95CcLYcDupxDyFQaADAwKn2f8LEioq2obib6VqKAa0WBJo2OlgQuRq0QTQ4ZtFI8jNPfeOEuJ0eJp37rOa6/vMfdGwtm3RTkng8MrQvFvclD6hDdNpoYx5CohOdKFCBY605o1+IUcvOH0WJkd7KBubAohqQebwBJNUyOh2EgaUhhUG0dM0ZuIM/ad6sa3UOZALq1hpwFCa+a2HqxX0stZIwkiSpLuonSb2SWi4x7YjpNvLZLe58MNgagNhiH6PpIXUS3oYztrEUe8LbJk6bTIlcltUuJhxWleotfRs4Zq+01NUfMVSdPIGeoVdDlCMuKZgEZAvHZAN6BbCO1UnxBTLnbxlX5ru96lO/OLcZKTNDDAoSbCNSKIZSqVDqkxcPkcZ7KWOmWitUBI4cMURVxpfiAeyZaRTpgRvV5xCEaiCckaKupp3jrpFCioBQjaY97mKzbqT9bdD9ESnTMU5MbtfBT4n66KkUTdQzfKl89CVmvt3yt8dMaP63x0xo/rfHTGj+t8dMaP63Xer2V600/+LOv8VZZTRFyd0YPAJS8gTZKeAskqBat29FOXtuhDeAWwdIQVzRlWtc+ZRzIKYQw5uEH4jYGuNRgN20FBjXe22lP7iXYAo/O+1OAW73G1CpJwSZpMJjFFM2J5DRzY2+AuLFiGCKRIBKtHbxJIEz99J8hPl/SRIEIaCtgFK+GSUgfVvhEJZGlg1WLNhJGry44mcXRhDFNGIY75AyLOuJJeP3mAW/ffohMxu0A2UmMt4Wd3S2QQlcd7wY+vH0T6ZVlfZK6XFBcsTRBJh2ewCRTvVC9kkXISZp/SAA2pVBrAG5NPW5KokIx7Hika6wJCfIko2rs7++zM7tMf+kCR1+6xcHtGzz/wifY3niQM/clpAiL27eZbuxCF/IE9xSMlITXkEow0JIVJ4qOYk6X+2ZY7ngNaUqWSHAxBEwiyTXvCMdQtZhEJh5m0jhOofgqEawKFWv+R7SOAiFaI6ITw5tvTUiUvKHJlkDMyTlR6iIYQjeQHO8BCD1oMPHuMa5+Ja9wX3kgKVhqeyGz8mgSBHykyhj70YXWCkJKMeUrtqC06Y3RQSHNA8rd41yFKQZGsJSqmVpDqpCaPMuoiKUAscUae1bh/INMLz/ErZ/7UdJGGByXUoKfd42G+RTdDtq6NsJLB7rcNe8gpRQn5Ql5o0OykPuOlDt2NjqOFo4aHO2PpH5kNlF8WTipA8cYNYHnzHJYMun71pkg5JyRWsNTCm8xgvAI0XtdDafEnTYTZAUvlUnX06dMqUskK6Q2HVKg+gaSjFe+fI2XXn2drY0ZXWqsfttlufm8mAi1ghHA3YGhlABq3IsFMQkQxJ1OhZy7JvFIaFKmYvTSsdQ5nU4ppRVgNQq1laF1Um2SnIqVSkrp1AtLCDC02rtm3q6rdeKsAOsqPrX90qWerqtonrJcjBELVZh0mdGMSTdjKAXDmKSeYQzz9Vrj/W0ZHTopJXLO4UkTjx9imqU2369a2rXIaTz1dj4TUShbDf+vvp9g48pDTMjawB9tGqWDeIp4LgHebDTIYUhuEuy+tO6gLPG75obLEIWNxhCEiPAdWaOgCfPsLkzibUQ8Y6WQLCH0UQv7Mj6jRY9TYmx7LqbjWU3xjEIc0TDwjwceI6IpwDMVqEBGpY/zKwHy61ijqBZOZSyRPhWqRbcJ8bxEJZJWoZJTolBaPl6vr4e1xk9r/LTGT2v8tMZPa/y0xk9r/LRe6/VWrjf94E+T415DEuI12AaFXHIED0+IGFVHXGLcemoGw+Yr1q15FaxatyOKB0HXDJK7boLXEQiPmrCI8TCdboyMNhChKWMWLICJt4DY2vQb66eBK0OaIm0iHRqeDarheRDIN6Qo7iFtUFordGuXboHSLABoBJyQUSfNVLNmEJuoHoFvxUi4BViQRu86tPbkFEbAlGBRUJxE13VoVbZmYH5A9XNUW1KWmW7jDLfvHoA/DD6CTUASV1474M6RcXljhi+XPPLYfRzcdjIDujOhbm+S+hlSM3VxTNIOKOTOm/+PYR4sYzA0kWiUwFqVipozLgq2I1ScWkcO7tzikz/z05zd3qQmSF3ltY9+jOONHh2MsgCZFbQsqbnn7v4t7utnUCplHJnkTfDweelztNmLB6NE22MxkrBVNkDWjNVIrElTk5+UxniX4MmS4z6ABFO96jxwQJI3UCmtWyGFwbQKXuspw4YHayQSgN78awoXV1wrVaLlvjYWG58QJrSKUTAKeI3E5RpJUIM5Xu0fVQl5FtoAc+vGICQ67jHxyi2Fl0eTRph7mza2SsgBcJQGWldG27oy+g5GXJqnExIdIzkpTsgHaGy7khhLRh54hOX+LfToOh0dSxsgS5uo1SYFSnxvmr/GcF6sdSu0s08Ab6sjZaz0OZE7oVTYmM4Qn1HzkuNJpj97nt//n/8JDub7/Pc/9iMM+3fp+il6nFAPg20zY6wVtzaZMCm1FLJqyJdwircY5CuTaKPaiGmbQqnCYpwj2hhRcbL0OErRAvQUThgOK+PBgEkDxSLk5FHsiFDqsskopPnnRCwxd0op5C61623AuUn9zGJfVqtUg24SYHDICamVQae4DfFnFhKHmESmjHW1r5ukL8UUwGIB5FfFj7s3eYQirVNm1Wnj/jXg26xN1FOWJyMpQzdJUCHJhFpgOTfcjUol5eiaGdq0RV35BdUS/55CxrZiyldF52Q2ZXEyJ6U4S8thaEbZ0cWUc25dIcYwFrJoMOwI0xiNihKfv68xGME94xp+NSoJY4jzQG7TTIeQw2mHk6JI81X3UBSfsprOiaKJeNjRIjIeD2RqXVLrgDBrzysGXB08oZJRUpP3OZUTkFYgSKWUZTwEoDHasppsGbEkNnHkHDdHv6Z7ZXWO7w00WIBk1KMjIb6RipJZWoSQkGfpm03v6/VrvNb4aY2f1vhpjZ/W+GmNn9b4aY2f1uutWx/+8Iff9alPfWrrQx/60NEnP/nJF97q63kr1pvf2T7gNFbKBXHFimDW/AIQrJnzaqAEVuPotR1go0RLvhii0S4PhtmIUxCJiU6uDtjp7wfAjZZnISal4eCDoxWaKwGl1nbI7xn7mjWGR1KA1lV7rxWwglgJ0EPFqA0EBKgJnFRBmtW0a/g8uJBSpllUUC0SSkwbg+KGCcFAR/5GqkMNtsRkpLBg9Dku8bmDKVs5nVQsZTYe+wDpzOWYvJRm1NTD7nnqUBCpLJaHUAaGRQGfMowF7XuYOSWNPPDAZe4cnlBPjCSZ2WzCzpmz5FlPYYlqmPiG31CKdmpfgi/a39v9aX4SinL2vovI5gTzSm8O48B8ccTdu/ukk4oMJ5Rr19nVCbub25w9e5G7ewvcFiQ5puxdp6Ash+PwtohO9DZJriA4SVIL2gHUTtlXayBQrLXaO9Xs1NMIQJq/THg0jG0fOG6K0CE+QT2F50sNVjmMuUN2EFPdEt7ALN7em8aAWhwb80qpBpbxKsEMV2/3qka3RPufaGqMczNMjtF7rRCswWS2Qib2XTB4UYQ1Bn3lTbFKhq2Aiil4wXJpCo+eFbHOqiBMiss9OZg74c3TpCQB+NtkRE0BzoBKj1x6hPnzn489YUuSJpY1Oh0UAbsH8GtxxBPuldkko1pJp5ct5E4ZxgOW87uIJvrZfVi3g/Zn6TZmLEgcVWVOx8Z9F2E64+atuyyOFlitjGUZ33k1XJqRvAdo9hoyC3FB4vA1xjiAxwpcJY2f2ZpucqHPLI9OGE8KyUBqopRMsUIdDa+VlGMaoHQ9SYONzSm6cMyNYoWcOrwqNgI1QdWYgukBRqqVAKd1NQGRpkryULYJIIk+G6ijY0hnlghJe0apDcNEFRCTIDVAOtEho439XUlQaKB5ZfRt7g30tD0jYdLvboxlAIycDSUmOVp1yugsF5VhOVLGwsmxt+Ij4tpYCpPpJM6n1dNYK+39Ic5uzpmQxVUWiwV51ckATeIX9zLlFfiNKabWhgKs5H59onWOVIpbFDGm4Blh1dEhWF1gPuDSUS21s5BjgiCGS6KUFbAb2gOAEZex3TrHGbG6jL1GoopgUiCPWPus7soqobgYtUleTMB0wGTEtcYDDOLhjtNjVfAanVQx5qFrZ3aI+IW3DqpVro1rquannzGKbj8tZNxDOlaJrhIVbWd8vb4u1ho/rfHTGj+t8dMaP63x0xo/rfHT/4LWhz/84XeJyDMPPvjgU2/1tazXr85688M9JFhftxKALXUkFEnaglQwuO7EFKOV7CDo2SYpaeyKhOTFYgxUsEeU5kfQAnmTE6gHo2zVkBxmnkliGpTUaNmNbv9gq1PKmEeigGiDdgvmWh0anQy6kpJYY7etscbBRoeBbQRVzHAPMBXt1d6YkGac2hgFF8FsPJU9hEdIBFtZsQdeQY1q7bNXgdqSrClhIix0PoG8wZIayUQrPm5xdudhtmZv0DFnZ6tiUplsTHjw4i6Hl8+yWO4zLcZrX97j6EzP4+94guFaR2cFOzlmmJ+EXOXoMAydXdGuD8BkwfAG89+mBPrKVFfo+0w9OWHsM4MEq99POiYbM7amW3TbmzCZolUYy8DJ4S2OXy5cv3aHrUmhDAeUvRtIWUAfDLl4sGCCBohuzBXWpCfe2DVCSrRKiisPI20JOKQnFSd8HdxaJ4QTzKCH34UTsipxDTa7SUa07c0ojlZ5N9r7vXUquMf3Wt1jglk0XJwmJmugGppEROM1VMILaYUprAa7HHuJ9vnj2gM4R4s6ZpjHNUeibx/IrQHVuBbRYCuV6JLwlQTgFJSyUvCcMmOn97mxioghyUG7+N4pLDcvgQn+8pfIBWpfcUsBEMVIrYuj1hqAxSvFCtOceeqp97AxnfILv/gJTCS8R3zKf/V//6+ZHxyyKM7TT/420uwiI8Ltq6/y4PlP8e63PczV63f4mX/yjyheeerpb2BxuM8bN28gfUzmKoslXRdGy6qKKrFHRZr0oxn7AmMdWyNAyNJUlGGEqvDBj3wjkie89NoBb1y7RZnPqVJI3VnG5ZKhDFAKQiWlnsVyQZdz+MA06VxSZagxGS53KVhyVarH99HnTKVEh4hLTK9rptDmzfBenKEaE/XmldLhgzPSUSRTbIh90bppaN8trasipeiGUQWRTCnhURMscQPtDdyu2gdqLZDSqazFcLre6dTRyZT5ySHDsGSRnJQETZnFIpFyD2lVVMXnqLXgsgKVwVab2am3irb7tIr3IpC6rgHoFh9XjKxFZ1H4HcV9bG0mTLrVzzTg7Qn3JWarziCPA+klOip0NTmUAJ8WDyHcO0RynB1TJDWzbp+iSSi1Nr8np1THJTqc5ssFO14wGzDLre9JcC/BgteY0CcaOk2hBzLVj1v+nLR8OInYYwF4w6uqdZJIafexdVm07ziylYAkqgXcTacMdhxwRxjI5NRjNrIWqnz9rDV+WuOnNX5a46c1flrjpzV+WuOn9Vqvt3K96Qd/Xpu3A0bXKZQah1MyztB0+Ln9ewZZyVoszFdtxFGS9g2k0IJdasCstdxabYE45AgR5GkgwE4DkdVmTIwHO5wCGNeVN4iEPCSmf1U8aTztF22sXuNCWvIWDdY4sGsFC38D1w5Vx0di0pYt22dbBS2aIXD8TyUmrGGCajoFRoFwhNVUIqHEe6xayE0CaKnjZUSlkOeVnsxIsFNVK5PtnrddnDLbyGz5GSazHaZbe8xlydauQ7eFdyPz61/l8csP4Isly3II5QSOT+htjHHwRdEUnxECmKWkYU6cmwmzO1WtGUGP7D54kW6j4/jqTbb7KeBMup7lOKC7E8Za2LtzwG4pjLZksbfP/Y+/k4O921x/9XVuX3+V3Uv3cePjv8ido9eR0oOBpkyxkT6HSa+5k2pcV859ADVPiBTwYKtLqaQu/IPMyz1JhNP+T0meY1pgVrCVJ4wEw3VqFmtIm1rm1La9gq+1rwXSEqxYGWM/qzom4XVB7bg36SyY7do8icwdaeMQNU1OryM1c3BrDLeTwDLS2PpqQ+wN0cZOjQEuiQIJUcyCoay1AOWU3Yp9F35Hq/txOuVbQk4grctDmueNaZNfachNso4sLz1BuvIS/fwOE+1ZUik2MLAy8XW63NjXdu9TzlQTXvnKa9x3YYen3v0g83HOUCrLY7j+lddYHM6ZTTbppj0b0wOOhszW2W1efnGXN25eoxSnjnOMQk4jUhb0OsHrPsUqklIrkCupC5kY1dqpCpPw5EoWJWuHJGH0lsYddnd32dqd8fRv+g5uv/FVzj7ydv7G3/4p3vHgZR6+L3Hh8g5XXr3FZ770CnYijEUYhmO6FKbBQkzkrHXEilOr0Hcd4kZSoQwDoE0GYrgUUppER4BX1KHTjoFCamBUyWRbkKRj6QNHAouyQOuUJE7KHVYrqylvIYdJVOq/xXBGFAzZRepCNmelsBJnWQ3vl2a7j1kNXy6X8GdxME1ISmSBkoXqRxQqJ/NF+I55al94jXvfdv4KXIk7SJvAZ63rwmLaJBodR57i55M0IKrKUMbTrqQuhXcVIghGdaNPMa0uXg+kKtKF6XqkBqHYECBWlbHJHL1CZWySMEGkormZetPhreB0L8Rgv+iEEFIUyF5RT0hRkvXgBUVJ4lQP9j66QpZ4Y6arlcgL7sRUOpr/V0HVovuGNmGwMfJ4FKIqCqRWeLez2x6MAKQ0iQdIPsb0S1GkTWY1QhJkXjBZS1W+XtYaP63x0xo/rfHTGj+t8dMaP63x039Mq9bKX/gLf+HSj/zIj1x89dVXJ5PJxL71W7/14C/9pb905cknnxxWP3fz5s30/d///Y/+zM/8zJnd3d3yJ//kn7z2j/7RPzr378pu38zrPfjgg09dvXq1/2N/7I9dOz4+Tj/xEz9xTlX9d//u333nr//1v/5a13Wn7/l93/d9j370ox89s7u7W/7Un/pT196Sm/R1tt70g7+YiAV4GIFCRZMyWptkBoAHoBSNQNB8G8K3oiVIayFUwIs1Y+EWYDRATC0BPrN0jb4eGnHs5G5CLSOoNUkMIBEYaYHRxhpeBS64SwSgFkxPW/mrI8REJPNIei6GYM2PJoBx8WgPDl+MkBUES5ROpQYrtlrwYPXLGMBAW5t08xqQ5rfgJuBd81qhsZce7BEF04qXW9jhL5KXt8B3SaaUxSFHV3+WxVRxfxv71465eDmTUeZjTA7MFdKxsCEx2n4jb7CROs4vjshj5Ytf/iK+WJJb8keJwEmwLZ10qGgkAISUOhIJTpYczE945PIErDJYYQKMx0tm9GTNMBGYn+CLI2oHGxfPsNy7iw7GOFX6rSnTaWa2eYHjoz2GhdHvJAyn72awugfmSBcFQZJwYIhvK5JNNU4LGrOCaBQSFSFJa9/XAONC19K44ZQoKFJHaZ4ymnJ4rbQ97a0TwdsmDfDagFLodVj5PZMayNYAB8jKhJx4PxeSdpS4tYgZKh0xlr42vxOaYXSKyXWq8eK+8szwdu3BXAkS4LYxmC4xrTFJx8rvKZJuA9ISHk6OxIQ9aUx9KwRVPehbAiRYcrwusZRh9xz9y8+SLeFS6RzGaixdyTmKiWIW8jJzaoEuK6ITHn7wQU4OD/nIh87yxHuf4MqrNzk+2WeWNjk62OSNG1N2psLbHtjn+S/D2x67zJ/4fR/heH7EnQVcuXaLvWu3WI4jb1wxXvzSIWMpjMPAY488yqOPPcGLL3yJN65doYRTMNJNoqBWp9PMZLNnZ2ObMg5c3J5xfmfGbt9z8eJlruzd5PlP/RLYkoMj46GzifMPb3Px0Utsbfak286l+zZ413vuZxgNt2MO7xxy9vwOxydHLJbOMM5Zzo+wZUG0MA4Fs5FOFak1fFGSsTlT3DsYnaEZRPeaGKTQ1XgYMDU4s7nBsSX+7vMjNy8+zIuzkTouwLpWdK/YZUiasGok0fBJOiWwVwWLt7YLaTKJiI+dGFJjj7oquRrWuoK6PpPoGMuAjYZpQo8OcB0ZdIrpDGugSESRVtwGO918cjymULpXRFMbLrBiqoVaCl3XUdpUz1rraacF7o3dzli1tp9DikVVchcSD3Eow4LqQ5vAl6ilnp5D7zJSjaohIxMgpRqFHhn3Sh0rmqL4NjfCbshOWfTVpFJxicJSM6kqGQMfIqI0jxhwMMVl1V0SucZYNiAf+VBVqMWi86WByiimwVuhnAiPq5XTjXh7yKPxEIhmuB1PTIRTbOoKo1EzVMKH7bRFZr2+DtYaP63x0xo/rfHTGj+t8dMaP63x03886/u+7/se+dEf/dGLAG9/+9sXt27dyj/5kz959pd+6Ze2PvOZzzz/4IMPFoDv/d7vfeynfuqndgGm06n9uT/35x76n/N6AH/zb/7N+zY3N20ymdiNGze6v/N3/s6l973vffMf+qEfuvU/9J5/9s/+2f/B9/z1tt58x58KmQ4zbck92uNTMlLuGJYjqmF0nFLCS2qMWhdGmw3YaXJWpraSK+5hMErT74cMoZB85V8DmqIp2N2aWTUg3vipOOJCAosjC/EzSQX3aGV3D6+V8K2NKO+ymhbm0UKemtykSR1EHHyJBIqiliEChUApI0J4MJiuckoESZqRd8gL4j4kjUlNLo0hlWDQgzEsoJBEESo1Z0SW6FZBO0F7GNWp44hwhf35fezfuM31n3uRJ99Z6TQHOz8sQDNMhRu3j9m+4VzoEt3sDA8X43aZ8wuffI73HWoAli4AvVkh90JKHj49JqiFn4NIpmJ0ZCYbZ9BuCn2b4GaV0QpLjKuvXeeIGd/8zDu5thi4sHOew5sD43zOoErdv4kNI9cX1+nG6+ztXYOsZMkknDIK/cShGJIbXPPSEnYz5fWQCXhjDKN4chBvbduNwa5DMIPatWQZo9u9RpuEpRVQDeP06DoIwBceRQqusbM8QJ1ZAF8nfIocDzDgq+QT50JUo3sDATmtpQKEmuPJQUoY0zb/pTASDsmTYuCKSs/KrwggdfH6VsKw2iqxJ91C0tNa/D35qZktvgKttbXBt6JJFWlMc5g0J7TS2F1FxyW2vUueJvTuDUAoVsAyilAExjonTXdIuaciPPG2x/k9v/P38pM/+c/oped97zzPpz+3z0NPbvPdv/Eh/s3Hr/LS7QWPPVL5x/9o4OrhDjvLkb5fcH77gDO6yTe8Y5fjYcbR6Nx+/cu84+n3cvnt7+MTn/g4L7/0E3zv7/9PeezxR3nyyW/kXe99hr/45/8CngvdnUPGF57njjs3N4zjWnnt1df5vd/7O/id3/2H+MoXnmd/7waPPXqegzt3eeXVLzF7wJhd2mBn4z4mc+fbLu6y9cgDTLbOM3vwMufyizz/+X/KuDyGPOH8zg6T3RmPv+NddHmbcxd22N3ZjLOdYNolbt894e7ePi9+8Qp0zvntjhs3b3L92uucPbPN3q19NmTg4OgaBsx8wmySMFW2KUymPVfuLnnwzBnO5QmfHh0hU11BRlgUOhUKBUvBxGNGHYWkUYtoMkQLSSaUxcCk6xhdqB5se0WZWkeWOVYzWCJlxaQwJbM0wzwMyDfLlNkrnwNd0l8+pr9rqPYkje6IsVQ6DZBlDZzmnJuZvDT/JMVlJf8If51aCpqUaoU+N5BKAF4RDU8zaT/rhieBsXk71fBQggKpUDFaCsDNyXnKIAW1EXJCSJhDHWPyZOBjC/Pm6uAFpOCm4UvlNUpkAdcozvAmA1mW6CRxwZDoYmmFYR1LmGwbp50vATbbdFWNwsGb51ltIBQL9jzuWMKtx6q3OrKdY7ln9i4SRULUxhG/QooUD1gWXsLwS1YTOtfr62Gt8dMaP63x0xo/rfHTGj+t8dMaP/3Hsr74xS/2f//v//2LAH/5L//ll//4H//jt/f39/Vd73rX+65fv979l//lf3nph3/4h68+99xzk9UDuD/6R//o9b/21/7alU9/+tPTD33oQ+/5/+X1Vj9/3333jZ/97Gefn81m9thjjz118+bN7qMf/ejOD/3QD9362vf8gR/4gWt/9a/+1dc/+9nPTp555pn3/v/r/ny9rjf/4I8FhUjKqjFdJwyZDTGn6/pIhGaUcYm6hcMqDQw5kaADmqEebJmZI9phCOLhmeCtidjc8JTAYxqR0MCB08azt/Z7wsTYCfApzROkWIw+N2mvaIZYMOpBIkfEUw0PGxuH8F/QjEmPakbreI9xTh3VKurKaqqRNgDvK1PRFvjC4DSRcoCp6hXJMSHLDRLNMLYxFtBAhAQzKwK1DLgUqi1x75lNZvT5LtrHyPZhfoalVOgSNhg5nSdNJpTtc9y59BH2tx5m/KWPsvzqCzy1MeWGD6RFJW+eZXlyDZaFXhMbk4T4gNdKzhnFyLkLL5KuD2PjbuSxJ9/NxkPnmZzciOCfex59+7t559NPsZzDf/OPn+PFvSVfeXXJwy++hhwO/MgPfy8Hd68wm3YMS6FKYmOaeOWFT/BPfvrnUU/UcWSaHLOBmkBc6aRHxai1kHJ8zcLqft0zoF55H1ULw27xBFIb6xQsdErBUtEY27EWtBlEgwY4KBXXiknzuyDYMW9yD3cghWcSbZ83jRSGItJkMSu2UAvariFa1sOM3bwS0pvYU+YBcoNQvOfJs/LnUEm4WyQzQHPCaoWUG6Nm7VwY1t7/lOsWb9MVV8k0pBNIO7ft3oWhsOA5IZpIVJbbZ/GT2+jimDrpEY0CzIujBXp6vDiVQibz2P3n+YO/57sZ9g9YjHv8kT+W+ac/eoNz6QxjgSIb7O6c8Cs/V1i88R62Hv4NdFPIE6G40m1kPv35V5lsbrG1c473vft9nL/8AY51E9ENkCXf/C3v5d3vejvT6f2IGrsXzvJH/vd/mJv/9Gfoj40vzo/45Lt7bt055nj/kNSNXL405bFHv4W8uckbr9/lb//dH+bk+DXsYMEDN+GEGzz2Hb+V8bxDccaFYK/NWb56h8X+LV546RqLmjjfJx6+fJmfeemLDJKgFM5uXyZtJm7dvc12nvBtv/m38tijj/HgAx/g2q2bTPLIyJQhz/iu3/IRfvpnX2CYX6dbnENS5aGzF5kfHbF/uM/i5ISPHx3zC69soHT0e8bdYU7WDlRYjs4HvuG9PPbg/dRSODw45s6d15nbAq/bYEuWVqljSAbniwVbG1OO5wvEnZoSF7NyfussjDB4x7yMuE7oB2HJwNl+A/otJlI5qkZ/AOOQGd2Rl69ydO0I68824NfRddFtkVOYdtdmFi6iYDHpMkvkgJUnD+3vXqOLKRqNUpO8xNnDna7vWCwHUpeisM7KtAeXGg8YakF9bGc14nm16AbAgxAevFLd8eCZI2dZ647y0t6vC3+pYoRDueKUMIK2Lro7JCZ4lhITSA1tXQEjSaNYFZxqq66axiY33xw3xySYZ9EaRYgVRJqZdXVcBE2TeF2an1CiSZAiP7nFA5FqkHIXn3slwcuG6QbDGL5EmhK1rDrJ1uutXmv8tMZPa/y0xk9r/LTGT2v8tMZP/7Gsj33sY5srH9Qf/MEffOwHf/AHH/va//6pT31qE+Azn/nMdPVn3/M933MH4P3vf//iXe961/z555/f+A99vdX6bb/tt+2dP3++Ajz88MPLmzdvdjdv3sz/7nv+gT/wB+4CPP3008t/9z1/Pa7/gOEejTHW1i5tFU0JtQ6rcYBSyoTPi4HXmATXOmzJwQb7ypy1JVdUGuFg0NhScQiTXkE0Y7YIFkFTa8NfIZkOd4/pRCI4MVVIVkbGTX6wMu9MKRjaYCjDAyDAcQ0GoXZk7089DfCBmFzUwAegOUbQq0VwxiRYC/HGUOZgNyX8XtwEUEQqXgtiKQy3LRwdUpJwmbDY7GH2HR4jWRUv8T65G1GPqW1enb5P3PfMefpNYXLSceVwwQtfvMo3PfguOsnsMDLfKWzrBt32DvW1q6QN5czOBfxoD01dTDHzQrURoTaz5QbWJCNNipQUjIr2PTtnL6DdJLweUk8/mzHpOhbHC0rtGVS5uDmhsw1ydmw5B1MWQ6UT0Gq4Tum2ZlgyXEdURlaTpyRFezsuuMlp4ZFUQy70NVPpzJyEoLnD64BgrZOBJvlQVga6tpKguJ++TvhnxCh5PAcz5ZVyumn1lAmLJonwDXCa5IOWpJukRZoUymorstxOAaJZmKgLHoWVB0OlqzMCAR4Jr5hiY3wecuu6aNIUM0QzLlHcqCu1FHLKjWFv7Li0a25+NY6Ht4jEf6stlYsKuRhLdaxXtMvUXKmzbeTONSSHFCV8P+LFvd3HiSTO755lljZ46l3vZGNnytMf+SAcfYn5/ArvffgMFx/pKWWkKxt8+5P/BR99/XmuXr7O9sPbLG/fZlwMLJYbSJ5x5fqC7bMT+p2RC/c9SJFEtQNsfoJXZT44N27d5aGHL9H1mTIU6uKEm8MJ8wtT3rg9575HH+eNq59ie+cML37lS/zjf/7Xeeb934nIGT7xqV/g6O4bnFzb44HtS9y5s8/ojr36IuNo7PSbyCzTpU3u7u9TukL1DmHg//Adj3Nw2POJO3CDJf/b/93/hn/zC7/EQ489xKVuk93X/xW/4Y/8JtKZd7C1tc2P/4N/wkf/2T/m1atvoP2Ev/VXfpFHHr0fBuO5z36BM+eUv/jf/hUm04s8/4Uvcmtvjx//b3+UZRW6rvLYxQe48dxtxjowjCf0mvjeP/xd/Ge/63eSmfHaq2/wyitf4c6t1zm5dcDB8jYn89vM68BJeYTb44McvvYyL33pY5SiDKXwex5+G3/4PU+zXMBzX36VF/avcGALfFPZk0K+mvkHf+XTyAQ8CZumfOd730s3HZl7ZbHxHLq3IOeMWwAkN6eUitc4o+owlpUUqnWB1Eo/mVDNKDX2qhMTJVPKbZ+2BwDuiMBisaDrJ02emMALfQ6/n1oMLxWxAZMMxXBL7YGFIwYumWLN66V5zhQzlJDDhEwsgHTs5/bgJEkw4k57MFJbN5VRl5HXKk3qI0ZxRzwmwUnrZKHlSjGIsjKm8EUHkLepjyH9VIRqI6TwwIIaZ1eUMNv3FnO6lkcETa1ri4gpSQTzwkCmao94+MMl/Q9w8livX9O1xk9r/LTGT2v8tMZPa/y0xk9r/PQf43ryySfnfd/b1/7Zww8/PPyP/fyvxuvt7u7W1T+n1CZExxj39fr3rDe9s602DwKhSTuIdvvWPpu6RK1Da611hBo+BK7hDdzY4aBnG9PXQMQqWIUNqZMEwncmjHtllWRpI7jRAIBJWUlVtE2ZMxtb2740M+0AISn1K41LsBIrFtIBumAEvGC+bOa/OVqJGQOoe2khpPk5NE+Q+EygBDXothpz3jxqLPagN3TiZk2iEADbXak4KXWnHQA09qX4EnJuBqQx5tx1yjQ7Vg9g8w5DXaIVlqZcuT6wGIRpX0mpkq3jwv3v5ORggPlnyFsDk51duDpSV2bhqbTvrJlxe/DwLgk0k1aFiDhZM5t5m+lkG20M7ebWBo9cvh95QPgz586weXaLcX6Zze0Zh9fvMl8eUKj0FuyL5cRGpyyWC0YKKVv4R0hF0wbhvyLB6BJMTmogsSFSHFqreFx3+FCkJvsg9k1jDXTlVXPa4dCmsClIykhdjasXam2aIzwY8OijiO8PbYmpJWMXUivi4q1WfRbxHu4rY9pGGRNsXHgkCTQwau3aVWtj5dv5cmumwQG+Y2JhJK1aw7NGBDAjtSJMAlV+zYqiKe6n4x5mu1ZGpNd2fYnaKZQBJJFTMI9j7tD9uxSNKX4x3cwhhYG4ZBht5PEn3sbNW/s88fa302nPy1/9Kt/01Bkm8gaPPnofO+dnHKUTsl5m98xDmP0KmxvCh556iF/+2G2mfYd0EzT1TGYKSRnF6auSJnD+zAXuHr+CJkHFKQOM7iGHGJ1p6qGfMt7eZ+aJEya4KdubEybTKc999QpffOXvsX/7NluzHfavzjm6C9dvvE4yWBg8/5P/ClQ53jvG+8z9F89zeHBEbx2PnTvDYjGwrSN7J0bHFEE4e/Ysy8XAu979JE/MzvLw8BPsTKdcnx+xu7VDjlGaeB05sznj8Ycf46FzEw7rks0z7+bC2V0WJxWjcLw359UXX+eB7XO8+MZVLp7bJfuUoUBMJwOkY9ILezfusr0N0+1NvvHbfwe3fvzn+fIn/jv+xgvPs3e8QDcrv/37/hM+/OHfzb/4kX9Cnf8i585ucFwrZ7ZmqGaSJ7bU+Zbf+DD9ucTyyHn+i1e4fWvJ8uox3nVcV+Vwpnz5K0d88fOfYZCCi9LlTUSi0DUiJ1h7GLCaUIhIk5Td6/aoNc5cThmr8buiejq5TprMZdWFElZNcf5qMSZ9phOwGg9M6mhkbcJEizxUraJaySSqC8VzdFlQWyfRKvYGUF2ZR3s7J17D38dXptSEF1CxKBitGJ20BxMkXMJUXJhGRJKIAi6NWW7dJy4doj1mBZcSYUuCrU8aNvHuxliGeF8hZJS+YsO1dbe0z6oaHQK1nn42xam5YywEZ54ytRTW6+tjrfHTGj+t8dMaP63x0xo/rfHTGj/9L3G5OycnJ//WQ7WPfOQjJ6sJ6N/zPd9z68/8mT9zA6Kj+6d+6qe2zp49WwHe//73z1e/8w//4T88+x3f8R0nn/70p6cvvPDC7Gtf75u+6ZuO38zrvZn19NNPL/7d9/yVX/mVyb/7nr8e15t+8KeyYsEcCfsYanW63FNsxBrjGYChjYOXSLwxIbwEDvTVhDFFNXw4cmtPNq+NmaMFoQAu1p7styhF4/1ay3QA01obwGrMZ3ggRJALqBygYjVpDGieMhLdyC4ofYMdlfAjqS3ABDiIKUuVhFAZ0JWHgAV8BhDpWG1c9xWQCdZDROIeqFHrAOot/BtOtB6blwDCljm8uURrJocNNFmMcTBGJiwl4yqUMjKYMTu7ybd8+3vJEwdZkr0ySc7OhUuwfIjFE4+Tth/hiTMPcvzqZyknd5hokw5VJ+WE5j58JFQRc+pogd9FISX6jRmVgeJDM392huUIo9NvKmdmA7sz4aBWdpMjZ5zrV6+gIozjks3phJP5nMPtA964dpVkDi6M1Zmo4EXxlJpJd3gesdpz3AOgIh1uYWQtjYlGw89CFcDbdLbYI46E1w3/X/b+PNi27CrvBX9jzrnW2nuf9vb35s1UZiozpZSUkhAI05jGDwt4Nka4jANjU4+m7AqMwVERULgIkGXghe0igjAYwg9MBZiyFYh4NM8FBmMQlrERAgm1KKVMKZubze2b0+9mrTnHqD/G3CdF1QOnXhgkmT0VGbr33HP23mfvNef85vrG9xu+QVDdJXTpZHO86WBACITQVKervCAKq4ilOvvUjc9J1qHazgahikp/QkA8WmVgFqozboRYsFLAGggVQL28jqxBNFQHWmpnQMimxBhqzKpUeG9ybkUxgtXJGtQrKpad6axym6RupuqOufjRxN2z2Do8u5mACs18TraIDEroqqhWQbPQWIPFhtS1SFuYrE+49twtPvbYM/ylL/1yurU/IMaOYg153rK+PYEgzI8UGdZ46K5t/kAG2iawUIjNlL1rNzlxtsXmJwnd2Hn4OTPv7zArhcWicPLkNpYFJWAxkIuw3XSc7TOXWuHmbMbkbMvRVuDqcIM4a0k5oiVzFA9o7xsx2pwgN3d4ycWXcO32nMvPPs+rH3yQtVeeYTHrefaZj9GFddbX7/DPv+v1vO/Da9xdZrz/mQ9xVIReZ/zYv/hx+qGwvjGGnSmp2SS2HeuMMYPRWmTj7EnuGhf+whc+xOLOlMObdzh5NnHfg2d48MEvIMqYYVDe+R/fxcc++iEunj7BdBjQ2HB9f5eYzCtjbIQFpRmNsJRQ6UEcHn/91g329pXTsxFh1rPoZ9x98iyvu3iC/6gLrt64icjAUV7Q3HMf4/vupr8+p7mSOL+VOXN3i5UR159eEJoFhxtA6JGtc1x44OVc3p3xwed2acYD50+fYiyFRRkwSXXd9murbdvqxHrcwyMW5tGn4Ne7ZaONydk0bcugvtYtD5lDKc6sUa0iVim50LWJxXxBKx1YxzAYpg6hz2Ug1m6OIl7NpGoMUrBUr+0KpT6OP1Y+zBKQHULCtB5M1fecJkWQAaXFD7tCyQPNuKlzseU4FiYJsQzBavWJ1tihr50mC4SRr1nRnW6Nvi4Uzy1WyLcRou9Py2otr3bJmCohRUJMLCOhdZFDJBAtMh+M2DQEi/RFvPJnNT4lxko/rfTTSj+t9NNKP63000o/rfTTp+O4evVqu7a29pkf/7Xv+77ve+5rv/Zrb731rW89/eY3v/mef/kv/+W5yWRSrl692h4eHsZ//s//+aXP+ZzPmb3yla/sv+zLvmz313/917f/xb/4F+d/9Vd/dfvatWtt0zRWSjm+mfjKV76yfzGP92Je7yOPPLJ4wxvesPu2t73tDz1njEvO5Z/d8eKjvng3MgGiJBczQdwxVi8HFnOTtyxr7wOgAaMCoqWW7ddOREs3EKsTnYLxca6FxMqwcWEgSHWpXbpatZxDdTZdPCy7JYEs26ET3XEXqeZhdRsBzcHF7ZI6zbIznTvYJkZMwd0O02NPUpbAYfR4AbMly4YqDqrgEsFxpSK+aKmzUHzRViQoQ+mJNG5OFu8yFeO2b1I5I21HViOXOXu3Iq983SY78zuUWSFZYmNjg9OvfimLvSPu7E9p0m3a6U2YXyRMF6ynxM7RHk9eeZ6zeZ8UE4RIipEYfRKoKgOFoNEFeHShYmIMA1hRMsrhdIoFh8W2rZAaIwajW+9oJiNG8wWxE+I0EgWKRbJJdWUG2vURtpijpRDFO7dRF3IPxViFsSqhCrdly3qo1QHAklMTxV1fC7FeUwNYcZCsBGc6xNZjUCIu8rRgFuu1DaqZIN7uXotfp8srfxmtMqMyZThmYVCF6LJMXeoHLkERrREWKjdpGbMSAXG3KSYDy+SSOZ40Fh1OrQHIxy6YHLv3eHWDeQdFVS+IF3NXV0URcjXfnYl0zLwodhwLCOIVFTEIlhrSeELRgo3WSb2hfe/dwGJCalevvmSK+IFiLQW22gnD1kkGbZiacu3mR7h9+EU8/bszPvvimNGpgSRzJK8jmrn40pewdcad51ISly4Vpvun2Jps8Jmf8SpMGm4eDURG9L0hzUCfG68gyVOakJE+o0Eo0SgKXRCUyKhJlL5wND/g4PoeXWy5+8G7OZpNmfY7hJQQS8hkxolzLWcurnP64gW+6PM/m529PV712tfz++/8Hb7kgS/g/e9/gqNrHXZwmZ3FNi8dNYSQWEhDkMzG6DQ3hxs0KZDsAE2BkibMjjKbm5lFnrI1GvPaRz6H/f2b/LnXvpx3PbXHiZPb3Dg4IG6c5syZCUc6YXTyFN36mL1hxv3diC8l8Acx8+EhsbE24uR2oY3KqI1sbW0jFsgaISYW8xmvWUtcPPcSrk5vcmPvDvJ7v82TCyXeepRuTShdx1o7YjOtU4qg0wGRnjZF+qmiRUnnz1EubqPPP8dXntvg9/uOjxWYHyyY6z5CImMszAHVYoOzxVSPqziAF2Jm5nUlfnPBoyFN01BUaWLyaGPlLwVxkeXrnlWXOteOa36jIhJpYkuk8+tbvNtkJHrcscbJfI57ZUURY7CBNngVkYvpQAgCocYF682OWrSCWO20Z5BLqRB8rzrJOVNUKcXnmq9HFVovHon0hFvdl3zT82iYLXw+Hh9Qs0c3PajolS2hQ214wVlnQCTV6EqPWkPO2TsSqh8KDIeEW32kXgvQICGBrRzrT5Wx0k8r/bTSTyv9tNJPK/200k8r/fTf0/g3/+bfPPPwww/P3vKWt5x+5plnRm3bxrvuuqv/oi/6ov0v//IvP1h+31ve8pZL3/AN33Dv29/+9q2jo6P4pje96fmf+ZmfOf3oo49ORqORfqKP92LG8jn/03/6T9uHh4fxH/yDf3DlV3/1V7ff/e53r/+3fA8+3caLD7EbdRIbpaiXKIsDgUkgii9QWjt+ScRqu3SIiBRqSp+QIlZyXWQihmfqJRoRN9lUoQAhNngLLvXyZgSr0OlgFf4p5t2PtHJsMLIZsUKtU4hYdQkx9U5KxZxNItUBV+/A5g5DgioWzKUpgeq863Ixw910hJqqqDEJ73iUNbuDbiA0EAzVhbsYgRqbqY63Ze89lpW+uLi6civzvmen3OojbYgcDcbR0QEfeWzMy14x5ennbvDcjUP2Dx7FovGR93+A/b3M/fecZW27sLO7z+zwo/zubMr01vOEDzzO/miD544OONl3BOuJmB9G4hIo4cJ8KAskTmhzARJ9KCxmhQ/93rvYfO4015+7hsXAYsjcvHWd5649Q5uMO3s3sMVHmR8ecebCOabTOaO2RUNDEyPTZDQxcvvaVW5dv0MbJ8SglGAeewo9KlAE5x1J45ui1q5qSN0TCiFWoDKgDAQMpMFyrNfh3OHQJpgU/zxwppEGF+fUagHE3axCdZsxpFrZelyB4R9yqDETMy8Rj6HBMGLw9ITHr8Kxq+RQXvWKC/zaXFZZqGot6YcosVYrqMd16qFMUqgl7gUhQBEsBFQCGlIVpwWKi9esCvR1Kw6E5TUWa2l8jB5VMcByFdUJiqFNgw4LRifO0e/s+sHCIhLw7mDi17qUQJHIEAqjE5ucWR8xnu7Rvvs3ec2pDVrZ5HB2kfkiMYlHNCPjsD8ibZzg2jM3uLK74OHPitxZCL0aXZdZb41unBiKkEtGk7C/f8hGu+EVK1LQvjDfnbF+phDVuwOiA3eysj+aMLWBuDUhLiJpb4IFYTtc4LWf8XI+/Nx7ubF3maYZs3d9Rr8jlPMd3XpHWk8cXh24eXuHECIPPPAgzz1/jeFWS9sIwyDMFka2EYuSsZBYO7XOfL5PmzqQSLJEUKuHAWV6cARjmLLgDx6/xCvuP81w7iL2kgdZ3FyQU+Dn/tf/jfseeIgkR0RdcO7MSbbDwBtfc5FL73+ch15+nr/7t7+Wo53H0XQ3D9z3EpIEikViDGhRtoMxPr9F++V3s74z49Z7P8pfCMa9ly/x7GKX/s+9mm/+u9/G5tpJJu/+EH0DcdyQVGlGLakVbN5z8mUvJZ14BbdOXGJt93m2n73C+bzPR/pCShPy0RzZDMSxw98Rjxr2g/NccimVG+UH+VAP8lbjfDEIWju3LQ9/Aamd4jwKUkqhifG4GkXN11JMGI0CqcUPeArWe5wtWkNuCpIFLLnopYC0qKbaACH7v4lQ1KdWCEuGVP27JAy/sWAGQ4FA49+noBkkWz2UBkpWgiqh8S5+Zh5dobK0ql3tc7ZukNLaMaCbeu6NBsrIq2OkxjCDV78k1GlrsUXy4jhpWXQpSPV4jocYmRffpD2WN4AeG6mr8ckeK/200k8r/bTSTyv9tNJPK/200k+fRuNd73rX4/+173nzm998481vfvONP+579vb2ws///M8/PZlMDODRRx/tvv/7v/8egFe/+tXT5ffFGP+rj3f58uU/eDGv89y5c+XXfu3Xnvr4r33v937v9f/a7/Pf+3jxFX8x1jvg5p11ql8boqDBoyJaJxCF49JhVXMXTa1GAAArx3wMrE6/6Hf/S5kRpCXQIKQqWnwx8aZtS6CvUCwTo5fqljKAuegI0bvmQUBCi6HuOqrgvJkeEXegLAwUXRAkIEHJOSNJalRmOfEdXmwVxLCUsmbCEsTtwr5zAW3194+RIfdEcQfaO/pRxbZWVyeiGhiy0oYWEWHR91zbzzxzEJA2QRiYLQYWOuI9j/W859Fb/K+/soPmgSA/yGIxJVuLaOaD62sEK+jQM0ji7TGykCM6Jozajoxw/3bDPR3krNAkPylQvNuZFlIMYD1zM6J5B6bFYuD9T36Iow8HLCUmo5MMswW/+47f4T//1q+RLDoUdZ4ZpMeaTaQokg2LkGQgNS1NE+lCIkZhsnEOoiJpDgwEBSwSY/OCIxwCIQZiBGNArZCCczsUZ8pYCGhwpozVw4IZDhaOzhlSFDGFKEhpgVJB3GBBUQvOsUihxkoMK7hjRHGA7HKjrXEXz6x41YJJ8I6I9To1kl8/opj2WHTOkVjxDdL3c5axlRgb74yHISgSDFQpYmgUdxXrcxSWG5RP3ygVFGwFCYaE1l+XLp/Er7UUGqx4jGfJ8/ER/ICXJmQ1OHGW/vZNRnVTjClQJENMWFIWyQglkLTh9tVrXLl2jf/h/rPIH/xHtpoJ83LEvL9OG++h6MBiOmVjcoqdOze5cu15Ns8+SBlgNJ6xvjWwuH1ASOd9nuWWaPso0DSJFBJlmHvnyy5BEzBamlFDwwLLPVmEvhOGeWYtRlLTQEqcPH+G177+M+lzZHtri1u7z9GQ6MYd1htrG9tcv7ZD13aMmojO5wQSzz/9BLu3d2ilJ+mEjXUhz3uGLtAMLdIKWA+pp1lv6CRjsUPbBnowDeztTAltJg5KzgPjM2e5xw7ZWDsktAtG0473/ecPotpw2M8poWCW2UyBo90ZH3xij4tf8gAvf81n8/i77vDaL349h4dzrl+6w2i7IVjLYp65J4y4NSsMo8gDf/GL+Lyv+b8g734/o6cvY/0Bk/ObvOSB+9hMLbPHxvS3MzoAUQlhQdERITQ8+AVfBucfYfr6KbN/+b/Q2HVay9z74Hn+xr1fTBPW+ehHn2JndxcJwnJ6NikylAELgWwVPD2Uyh7zqo2mSR4zS6Ee3LwyJAS/loVlTCMdV4WE6DcKojQUNVChTb6uqxnM5oh559EcBFHz/4KgFDQUJPoB1IpXepgZJgENvoKrLOdQrOu571GxdssDd97LMnpi8bg7YwwRI5DLUMWmVMGN316R2glT/AZGUZDSEGKLWq7MnDkWIoVIWyKFOZ0phQ6NDaVGQE1rN7wBljc7QvTnwZLvncEc1K1+0BTx/XE1PjXGSj+t9NNKP63000o/rfTTSj+t9NOfxfEzP/MzJ37oh37owqte9aqpiPCe97xnfbFYyKlTp/J3fud3/rE3DVfjv+148c09VGu8owoucV5IHly8St3ARQIpRLwtdxWMeBSgSbXrioB3bfN23B54cVcvJkGzorkQYwCpwGijugUOBjYTUvAoircih6aJfjffzDt3mZcta85Iqu3AzY6dt36YHkNvES8dJrovnqK3Ll86FmbZS6CXC2sYEFpME8uS7IKLM81WXRChDS2mHsJRkyocxBdBfLETIk0IDH1hUEFLIMqILTMWOTNvR5TS0jSQg1cMYILmSA6Z0G4jZYrYiFnf08ZIakesB49EnGi2mM+yL8bmgnwoTXXr1SM2IgRpqsvvgiUzUHROoSG1gfUopKZjLsJsMUfaEUGhiQ0SoB8y7aRF+kiU6BvHqCFqIbYjYlS0CCZCjxHigkYganYhlTr/fPuMteBw7+KbYslIMI/zkBwYSyFGYdn5b9mRDvBSdqkbknj3LFXnZDj0ObrChBpZMa+eKE4MQg2sBqqklhlYdb+O3ailtvbN1PyZKxvH/7zsPgiVmYOL0CAeb3HWRHIIcegIwcileE/GoMgyGiPLuaN+OEJBC1q7W5kZskRSqKsKcwIRUWpJfuXlOPy3xstqfEtUiN0a/UJh/YSLOPPjaSkeGwhay+LLQKcB65Q4Fra31hl1J5iXTOoCE0s0cZM+zwjlFtImJuubPPvUDea3Aq965CUMpTAseuaLOU17khRhEIgpYSKktqGjoR8Gpoe7RIP5Yk5nLaIzZvsH5GlhoXDveJ3TW9u8+2jKu9/5e4xHI/J8n3534H3v/RCnzp8iznu+5FV/gY2Nc3zksad49qlnOLW1QVMCm5un2L+9oOvGzDhkbfskaxubHN0KNOMNYp8ZmzIUQ61DBuHm5dvOyNkD5ju0o4LR0DbRgcIW+fCHr/DAGx4gYNzeucJ9f65jfXzA0OwTP3qRNFonjBI2KInEzmzgkS5Bbrg92+Vl7SbN6CQnzrTcvFGYT2dsd9s07RamA5K8e9tCevoSmKzdQ5kr470BO5yjGpmsj1hbXyeYUCKMU8DiALT0Kmyod1EcjTfp1k5wOJ3T1sPiKPR80WvWOfHaz2O2O+aHf/An6JKgwehzT5TWBWmUOv2iz4vlwT9FDOhLrvuAV2k0TYPl4pVPKVZX1zA1cnHOVM4ZahSkaxpgQdBCP/R+U8KUQPR7BqZ+o6NyswgBNSGbUXImWMNxJ8bkr7XkQpCEdxGFIn5gxNTXLgkgiWx+iBSJxNDQhMGjmHXem9XDs2ZCaOoaK9W1tmModgzJqz3qXPStVKG0JDGGoiSVGmVZIFoIQZE8x8KEQRp/n4s77VZvnKgt10kll4BZIjN4bC/ai93eV+NPeKz000o/rfTTSj+t9NNKP63000o//Vkcr33ta2f33HPP4gMf+MDabDYLp0+fzl/xFV+x84//8T++ct999w2f7Nf3Z2l8Aow/3/i9g5AX+TtPIHh0ZOm0qTNYTKNvvAR3AYTq9PmmD1RQKMelvUYk50IQIzXuohbLFWZdS+4xfxykxk08BBCiODsjBahQYYcZ+2KwjAtISBgJEWeshCCg4oue6TEPB3BBZGDmTmmMseZRAoIDQ8UShA7igImRdeauRMYFKAEdCrFrvXTbBtdLFWgcbPDFEQePRqDvM4WGUaMMZYRIR5dm3Nk9Yn93l/H6OpsnN2nGE46m1xkWu2gf2dpoGHUtlmdspQnrKdGFSGrXeN/uNUjQpsZd/ZAJIbhLHR0kbqqkNlVnJ2ONUIrAYMz6yPbaKW73U2ZaiA2UMtAfzTmc7tE0EAMsBqFpGk5sGmcm68R+nzUzxu3AWtcwWTvJB27s8eitI05sjZAcCBqQ5MDkqIEYG4IZWDnmQFR/xo84NhAEj0FZpRdZRLN5DCi4mPV4VI2PiBAkoVJFaa06OIYNKVWgVitOal24LLvFpeNrT4JvCMuCe+/U6Nf0ssMiNoDEWqHhBxZDqXTaeo1Vto6F6nJ5d7kYXbBj5t3pzBkeVmHUzn4agEygcY293GCtiuwqB0Drte3unRAq9BbfdHH3a0BIKaI5OAR5ugBzmC4GrbQMGhHtSXT0ZoxDwfan5JwxnePFAiO03+Nk2qVJ5xilNeZRmc+Fk1snsVFg92CX0/MjYldoGmGYR0Zdw61bsDkpDGSyKrkYRdzFD+YCSzph9thjdL/xb5k88wFy+D9zU+fcyYfsL6acuHudkgsxCOONCSfWNji4cYev+bpv4u4LD/LOd76dM1u3mG93MAq064nR2Ag20B/NSEPLpB0zzAbWxwkdnaAMR8SQmRaPRaUy8PnpLO+LPkcmsaXp/OA36fzzGI+FBy6eJVJIsaHsTYlPZIbtWzRrDbm0zCQTxWCYM25HzEtivFk4Wiw4ItJ1Y05snGD8ms/hyffus7FljFJg1ATmi0KTjRuzGYsuYdnd0+7MFuHkJuFygw4etRAJkJXm0GivHXB4NKcbdZy5/6XEtY7Da7eQ2BHHDdEaNAhTM0LqSKcmdOPT7NyZU+LInXWNBOmIMfgBVvzGhqpiwW9eZDWa6HOiaKEJDVbjX6UUlgD/krPfsrA6D8VvFghCET+oDWVg1EVGDRCMrFqZTQk0EywgpmiNiGEBlcqsEufJDKX4WbU4iyqYeORFPT4ZI5VtpmTNDr8OAatRy5wdlA29V4MY9WAZPJazDFIGn8elKCEkj8sVfxyTggV3tQlQNk8T7noEvXqVcHAL04HeZyiiDaUIliJtaKE0aGW5HUfhauVKSAHRwGBSuTUe7QwvlKSsxid5rPTTSj+t9NNKP63000o/rfTTSj/9WRxf9VVfdfBVX/VVj32yX8dqfEI3/kDVS41jini3LkGiVnfP0FLqxPWSeof1upBdbvZqS+HnP+ORFXcDrYpXRLz0tjiLxvMdS4Cyx0JcTbhz54BTwNy5tuUKqIYFahchF9myfC4Tdwq1VI5NhVNXYb3sIOROZGXjQI2XCFkFs+ycBRqwhNEDhTz0pDiqcZrqMJZSYzdWhYU74mri0QLEXUtRYiNoTNz/4Gk+/MxNsmUsNJy5+wE+/wvPU3TO5eevsXHiLEM5w4nNdV7z8peze+Myzz97jTSacPXmHU696rXk+ZyDnad49WSTLxmvcfnaE8wXMzQ2mBWaVDk/RC/RlgCx1G5PzkKJbeJOTgyMWVtrOJgeQHV7Nk6tcfGBl9KUBh13vPyBB3jonjHr6yc4e/cZ3vf+D3Pn0rNsnr7Awe6TbJ1r+BxreH37Uq488zg8+j5CCV7GLkK2QhMThFIPKBVuXrsDCrVbIS+IRDXFCsc8i1IUgpLLQIhjjzLVmIhIwLRHaLAgLmyLkcTdJatMiSXPaFmNIJIIJI/jaCYE36QMz1otQeRm6te4GEt4NlDB6FIFsoOqValdE91FtmXthlktrc9VrAdUls63R4q8LD4RLTqrqW6GqoVlQEWCczxEgrt75Hr4cyaUmYvXVDtlWUqEpgF6dNFTSk+IQkqJKC0DQIj0lfM00YaNtU32D28zWp9gOTAfZuSNU2y/8iGaeEBuIiUO6CAUnXP6rhEbWz0HOzcJDcQ2E2IkhYZFL+g4uJhXRXCGymJwcRKDH06aox3ax9/F1s1dGglkTQwxYU3EkpJ7j1uNxx0pBoacWV/bYDFfMJsXdDEjzq7Q2Fl2DjJDfweJxtqpdexKw+78kP35grvG/jpaFRIN9z3yWTz5gQ/SDANrOdOOjLN3rxOeysRmjUGFxWzKZGObPs+4657TDHi8oZ2PmXxgStvdot2G3RPn6ZpIHlqm2dBklMWUSbPBnXnmaFEYrUdiN6Lh5dz9qpuU+XXy4KLEAC1KKdCvb7B+7iJxVNAYkBsHyIEyPjvhzKlNr76xhIRIPrlGmmZ03dB7X0UbTzIc/g5tLIQBZCjkgynhYEE807GYHTEberLO0KwECiqRXA+WTdtQhgGJ0W9eSPAOoQQ/G0pl0YjUeEogLZsGVPG6hFHHJnlHzOWcXlZYhOQHSStkDb4m9BmN5k5z9JsXYv4clIBa8r0kuKurxzFBpWQlit9IUFVCdKd5yIUQvFkBweebH+68Ysa0EOJQ96/k6LTaTXR56PQJXo4PwEsB6zdQ4vF+EiRSLp7l1t13kc6eRMrC1xsF6aErii18/chasGu7dLduo3Lg61yt9DIKWnpEW5er4u9rDDBk/US0wGr8CY6Vflrpp5V+WumnlX5a6aeVflrpp9VYjU/meNE3/ozibBiEnI3QOpRXbVHLe7383Z21GsGoXzsu77fqGpq7d0GW3rDPc4nePagUh14bLpadweFl/YHkkRlxFyIE83J+A0xIOEPABbQrWam8AyOQ84BFIUhtJ24eCciDQvS25g6q1loSDATfTF1FVPdURqBzsB4huqtOhODl11oUJNZYjLsHLmRqO/TaLU9CRGPAihHa2mZajSKZ0ye3WN+bcXunYLScPXeBr/wfv4IhTPm93/ltTBL33P1STp0+x6sfuZfnLz3JlSc+xHhtzIefusn4gVexf+0ZXnKhZevgkD9/8RX81sfgmd/7IGyNaom3W5Ix+CHAIeGCxJHHJcSlYxl3vOSlr0SDcvT0k1y9tUs7STz8yGv5q3/zr/OffvtdjNIpPvczX8Kp9YHx+hab66d48FWfzXw2o21annjyN2k3fpn53v185md8Lf/lN3+J9z32LlQiwdSdpwh9WdAEIYZQu/d5VUQMetzJSjBMBkrJxNj6ew8OwxWvWAhNquXcFaosikkhIrULXMAkkhqwPODys0Y6LPj1E2pURQ0tBrKMGHmVBFJdZJabrLM31MSFcfHXisS6kTvfyTshOmsJC6gOWO1Y5YdCL99X8yoM52l4DEaKg6KldpxzwDZ+ALEKSKZ61uabuKof2JZCHNNajg9a99nUTujWOqbP7DNooZu0SK1oGFTJKmSDTGYwhW6D5kTArh1QYk+LcufaIX1JfOj6S7l49ikm8yvouCNOWp6/9DxrJzvGm6eYDYn5/GXY+h3GkxM04zllCAiNO9+q3LmzRyvGMJR64ASSUEhI09GLMiisSST1xqWh0LRjdG6kUUufB/YPd3jm+SfYP7rFdE947skn2D6zwa+9/Q4v/ZwRJy5OYFDu3Dpguj8nHx5wZv1BRl3LWHrKkBhszrW8x9WdMYt8wCkzNPSENEGmkX7vFro9RqWliRnTzHRuMBJ+89+9jQcePM/FC2t0l4/cxR2NOZruMSymNJZoZcTlnV1sBicf3KAcZfoyHEOQJYyQ2DDMjb2dA7Y3tshDgrBgcbCD3T3mJa95PZSeNWnIbWCqAyfv3eTkyx5gMhqR55kDHVjfWGMabhHKQJpNsUlHk8fkQdg5vINRKET6NKJIgDzh6rMfYX8vMZspIYwpvZKiM2VyKYS6NjdNw2D+99Q0y6M+gxY0VzC1aq1w8O50pThXpmlqt0bzaz6Xgdg2qBqLvufE+oSYootQNToV7xaaGjKl3hhQJCaMQJHkIjdwzMuphjmmRolGSMkrioqhFkmxRlrURe7y0CiIdzO02imu3uQoakRpPBoWAqp9LRYRUtPUSFpERCkmOCA7YpKRGCm0hNKykATNFoFC1AjjMb15xU2IA3l0isOjD3PP7ecrA8szZKFG1opm0EivhSy9w/3F983V+NQYK/200k8r/bTSTyv9tNJPK/200k+rsRqfzBH+699SRxSyZO/4E3yyl7wgAlESWEOMXe3yU7A6mXJetuUGKUbIDgUmjjBrSCVWhkugZHNxG5xBQqj8GHyyinppfy4Fs4EgkSgtkRbTgGlALVY3VQhW3R1TJAyo9O6sZN/8g3kUphiE5A5h0Z5iBVEhFCGydLgzZqWK3UjIhVAiYh5/UMnVAYzOJQg1CmENEptjJyGQ3P2XwcHMsTo/sQFVUqrcB4vM9nqYGpGC2pzDg32ee/4Ki9kud917mq1za5Q8EPf2eO4//AZ6eYeH7rkftYFnH3uKpMrFC4mbN25x6Zk78LmvJV+YoOqlzZZxwWeJXPxQEUwIJRARSo1QmAmhF+J84OTWtm9aYoTQcO36ba7fvgZWkBRpGyXHTEF457//BXavX2N/usv7P/h7PPrOX2N3/5DZwjjcn7Jz+zZt7fKFGFly/Zyt8r4DEiKi2dlCJaLagLWYJIokiGOUxkvBMYwMNhBFMXP3KwavK3DIdE+2ekiygjCgJdciiAAFj4kErRsUfu0KEAqwjGUFd6zqv0kVliJCKbXr25AJqlC8OkNq9z3Fquvcg/WYLtydFne7JPprETpi6PxQaANorkwOF6sqtfxeFCsZsiHFuR3BrG7I7qiZFd/UQ8K78DVA8mITgRASsV0jbnaU/QUmSikuwkQc/t0FB/0GE0QjadTQjtY5ffc9xCAMdsAittwzm/HlH3gX69cvEcbrWA+57zmaHtDPW5rxmDTuCKMTHA7rmERihK41BjJRlCgj9rLRzw+Q+YBGI2tm7eQ6A6lWkBRyXlCicFMH5l0gzzOPvO71/JU3fBmTdo3D/Rmz24osGo5mh/T9Lvs3j7CcCaWQ9xac2DjLiXOn2dm9BSFyNJ2xuzOjCQ1DjfoUg7Vx5xyhOCZmodSunNlmLEpHMCXPetSUxdEegQJFKHnB/nyXjZcc0N5/yNaFAzZPneKLv+yNhI1tblx5lvsfeoBT5+/i95/e4z8/c4NAdBh5jR0U7REJbG6exNYiMRmNBV6dtrgrBcpQmB4detQCIeTMR568wZ2re+Qh088XiBhlvocVRdqAdQ2IkG0OowltNyYtFki/QCQwi4UwUrquI9IA0+oCA0UIxRNTIgkksBh6nG5l5NKjqHOfY6h7hs+FQCCGRC5L3hIUdYfagrvOKSUCHj0LMdE1Skih7iWRUjI5+I0O0Z4SgNhgUSAUcjR3tXIglwqltkjO7jZbPZ8WJz9jITrsnhcOoyaBQIuWQBmEJiywMEJTSwkumm0ZBdPgB2hrQd0BVwFLkSIgUVk2dbAQyAKl3aSYh1MG3H3vo4PglUyP0FuL9AuYuXNOiA7Yj34YN89bEujpZYREr+6BhpVh/Sk0VvpppZ9W+omVflrpp5V+YqWfVvppNVbjkzY+geYeVFCzw2ydDZO8nD0YIShFXUyioXZ084y8KR4REKsbciTU3toa/a56MEO0EAMUM2Jo0EFJ1ZkTcTFhos6jMVzMVLGbQkOpzBukGsLVAaG641bdFKog8Q52gBgqUjktHmdRVbfyYnBCinm3MpYPKcfVyLVw/A9HA9xAzyAFtcHLnEOgqIO4CeLCQ70bUkG9RLt4BztomM7MBby6I7O9PeHCS85CNyNfe5ZGTvG5f/6z6boNLt++ThiUG3vX2T8a+Kwzm4Q843DniKxGmBo2zNGrR8SIl7RrJKvSNRGWAONjd7h4pzQxyN7x7eDOHRbDnPnBDFJDRlmfrHFw44DZvrC1OUK08NSTT3D/PRuM244bz17imSu3OHlxk76c5sn3bZPLmNe/bpPYtWj9rII57NndIsFJDRFUUIUUIwSvhkDcsQX3mJdw20qJAOKxW2NmtQLBu0/FWlruH5g7xCJS3d2ISEZiAamRE3XmhBr1U/ZP3H9GXKBSY1GAmZJi9I5QFfzs14zWa66yY8TL5wV/LudlSL02PW5TZwYU3PGmMjjUqyz88RWj+J7mL60eNvx6orrrMSRydcBTSlhedor0cn6zHmsDzWid4fqON13LGe2SdzCzBhFFNKLWAQNRjPn8gKy7RI1oND7jz38e+URL++qChUOGfou+FA6nR2TGzOdHBJsjktBgwL2YZlLqyYt9RHoIifn8wKMpRHLMLKwhS+SoNIQk5DwnYZgNpDZxmAPD1Bh3HR953we5/pErbJ09x4nz57DGO0QupoeUviU0mc//jJdw58YtDg8C2yfP89xTt7jr4kXi6DaHwxTUWG9HzHVGASb9iFHqKPOedrLBbim07QZr4w2mRNhsKKUnpUDJBZEBzZGN7Ya1ky2ydZL9tEVLJozOcPbsPXz95/xFfvmX3s65c+fZWF/n6tVr3Ljnbj704ScwGtrxBAUKPWFo8A6WC0RHYJkhF55c7CPNhHYxZzjcIRWjv3kLnR5xeHDEib4nJiGEgTgrmCYQaMYj0vYJpKxTYuvruZoLyzJwdei5NvSck5arV69ytDfypgHLqo6wXNdrXIv6Z3P4u5k6wLp4/EpIFJwJVjQT63VXTEkhuuAVjwYiNXoFJHXpHi0To1HIuBFtINnnSWrJxRlfqnW9lZ4SjKJQxKH4ISQIyatggvjNBBVirSaqp1a8617jnBrx/4qCasRB9rkCyBNEUMuoLIi0/hqWwHcJaM4EUYYCkYSExuM5ATRE1CIxJN8bytwbLghViEcKQPDumtJEv0Fgy//PYH6zQUXIEn1vrs0hSl51pftUGSv9tNJPK/3kz7jSTyv9tNJPK/200k+rsRqfnPGiK/5Czc87NyB7Wa0FXwxqDEXEnaTlqqOavfFZASyQVdGgWBhQnVFsjobigrcMBM1o6avjHREaojS+WdfHDE4fru5HduGgIOaluSGASXlBOOC8A4phxYHWuQyoZFQc9lnMGEp2Xg3ORlEMSQkxI6gQLBHMmSARcZ6JgVW2iQsbQyxhGtHiEFat9dHBdQcW7IUFukZBPDKwBH9X0RaUYjNSKgiZNjXcvnPA7737MZ58ao+b+/sc7BlXLj/L3p19XvPKl3Nw5w6PP3MI4wlnW+We83ezfe9ZigV6XICunTyNMngUIjYO6w6GSUF1oOhQ2SuBMihRIykm2nHLxrlNzj98gfMvPc0wZNSEa7du8Z/f+V52pwcQFsyHzK2bO4gGXvGF/wOTs1tsD8oDL30dD3/GF/PsRxNXnirEpiM0sQpQrzbwE4ILTzN/Dx0Q7tBY1QUSBxeWoWBSvDSc2p3JjyKYRUoRj2AgLOku3kUqsuzEBvhBA2AJL6/XF7I8gPg3huA/h1S32IYqbpeslxrNig0mQggQU41MheDgW/yzX16XPp+0/g6KH/XEy9sBZ8l4fIilkK+v0SxRrKm/T4vQsORphLrp1+ALSw5IUiFkJRSPs4SQMAk+Pck0qSW0E45279CR6DXV338gSgXwCuQApMAwLBjygIVEEyaYjRESj882+Q8nP4/F2nmsLIj9mFNrG+hizmKYwzwTBsOK0aPkVCjicbYUmxqlCcQU0Dgja0GiMZ/3lKMpwzBHNBI1QA+xMTY3IxsdHBzs07WB0rWEzXUm61tkjNQJ2ye2OH3xHH2ZMt3J7O0uYAxZjti7eYs712/QTBrO330Po7VE03lFQOwaFocHfODxR4kJIj2dKoxbFpbYv3OATBo/+DWCDInFrLA4mNKllqO9BVfyGZ67+2/wgbv+Brc2/zIlTDBR5tMBZE7TBSZdQXJg/6inpMxo5Ic2KYppj1IInUD2OTJkYzG9zf13b5IQOvx0FcZjZpsTggTajS3EOgc6d2ParRNYLpjOKM88Cs98gDLsEkNxwLMGeonceuReukdez63dlvtf+mom4wuY9MTUe+VN9HUhxkgQP3xHCWj2Q3ZAaGKdM3isIwgEcXi91sieC7aCmZGHjNSDawoRMb/qTZVOFEFQFRaLAr1HSFSsriHGUGaUklGMHDxSpfi+VRvnYXWtMAO14pEUEa9GotTDHjX2pSg9FgZyWdSKo3qThUKxAUVQaZDUuouug99AEY+ReQc9IYZ4XFWTUkJiIjRjkMh8tuDOrZ3KsvFGAXgaxQ/gCsEWUAYHgNNXB3zZSMAoBLJESvEDqZoyrITrp8xY6aeVflrpp5V+WumnlX5a6aeVflqN1fhkjhd940+Ld1QLYSAEd8GQggCmgZwDaIOVQAB0KIiqR02E6jRGv5tf3V5fMNzljQQsuPgLAZQFEpVsmSKGSUK1peSI9u5kh4i7daIoA32eUnQO0kNwVzhE53QsOyk5ERdIXhpcLCFh5AtwhX4u/3NUSYDgYFczZ46YGoFYoyvUyEwhmtuv3hwvkkKqwt13e48YCJRI0gbJAWoFAOYLNFUAtaGhjZGh70l1A9AgHA09d24vGHLDzv4+036PXEu857Mj1iZAiYy7hqM8xe7c5t6XPMAX/9U3UIDF/i4jCdigaCkUU9RqNUDQ6gZH1BISWozIUDIH8yPGm2Oee/Z5rl+6wSQKyTKjtuU1r3qIiydOMFss6NoNXvOKz2TUrhMmY9ZPnCSd3kRsRp4eImOla/wzznnA1WrAigvYKA0O+w4vCFccLu4gcgcrawmIdb5dL0XocteRQLGISKKob05mPcMw9+dTD67EWEAWFVYNFmr2xCKWG9AKUcccjC3g3Qydj6FWO9YFcS6R1edWF9C5vACnNswZHfVcJ4JzjTQhpfJwlh3zSq2w8EvPd93K3cGWMRp/VD9AWUUnufNWNENw1pDW11fU50moEHA1F9HCUrxHGE3ocybv3iTFwlG77uK6KKb+WfXMKdIzaGGyMWG8PgIaMkcYI0oHJ/dvc/7dv4ce7rG1JehoSuQEs/3A6bMvZTTaxKxntNahORBC64fVMkJzIoUJJScQJTZTSu+xM533ZOl9LoYJPaChAYmkRWHNErevHNL3QkFZzPY52Lnh3cMkcfd993Phvnu5cO9LeOb6gpJaxmvbfPTxaxzOpjz+0cdIpeHW87c4vHPEZNxhQ6ETQdWYiVJKoSMwsZbRWsPaWuTkRoSQCKFDY8N8MWNtq2HtzDrT3QXnTpxke9IyTJ+nHN2GtiCho2Rjb3eXg4Mpo1FHP1fWt9fRIdPInHHTYSgpjrFoxCZBcH5UsUzSBXF3j2E8YvvCXWy89GUsTIhtJGDkjUjXtOgAI000B1OGm1egL8wPbrF/6QMcXf0DKDs0oxFtEJgvWBvP+fo/1zHuH2fRbnHfg69mrnNUIA/Rr4ccyKUwm87qIdznX0qRFCKRykgR8SqYKsZidEHqDJVQ43kRCf6ziEPeXaBBby5E29YPZWIjwhBpKqzaBG8UUOHQRRSkwaytUasBSkQHJfcLsOLuvAVCNrRX8pDdhZd6I0GlRlm8cqRkyIOLULEEfYdmMB0Ikn12l+AHSGkQCYgMGFNMpv66JQAZsQUmmSKB3gKBBMUQBcG72Yklrl7b5XB/4Q65doSiNMlZXGqQS3FZHgSiQ68zQggNGr2jH2nFqPlUGSv9tNJPK/200k8r/bTSTyv9tNJPq7Ean8zx4iv+pHZfI2I24NMkohmEQKwwaKnt4YI4SNedY3fMokSCRlAXRtAQpPXJJr5QBFLdgDMmPQMKEr3bUABxM9EtBwISAxq8hNlLsiFU989jIb5xU2MmYqUKb48wxBAcYK3+us3c5RMJvrnXyIpoRkqPlB7Kwhc4UnVVzMuHqzhYOqTgjkOShqAJzbh7EZMvgJr853BItscOnOkz5IHcZ0JI9EOpbjaM1hpSXJCs5d7z29x/9mWc3T6BiaI5Md2dklV5/51DDoqxvx9Y2z7FqbObaFHaYe58BZQoVrvkQbFC1gGjIKUQjQqHViR6OfWVZ55n/+Yes8MBUoKm5Wjac7C3z0c/+GHMOpLBqbOnGW22hL7n1NYZHvnzn0eXevo7u6xNTtNMNrw0vZT63pkfYGgQiw5fNY7L4LWyhrBC0QXqcB1MvQLB903zwwq1QqAegqQ6rR5XknrQGFDL/pwSvdw89KhlF6bLhyp+bS9Fq3vAxcVzydUZtvqfl+l7FQP1sUHEf8ZTU1bBFbUkXjgGvovEZYjFnyuYH8hCxsJQ3fl6CDTzDVnnCNkPOwaQMXqojAutISoLOHNDC0HweIxmRP3996+NkMkGw+yQdHCLUVggbcPhvKVY6057ci5OMOqhx8iDImQmGy0yVu4+d44nnrjEB3/7UYL2NKZoPsCiMOiC9bUJbTdConJ6Y48zk1222jltnDMZRRze3ZKzebxmkbFcq1GSMqEjpA4rgbZJLPo5IXhsLnUNjSSsGRGlYXE0Z29vhuZM0wiz2Yz3vONxrjx1lRIG+jxHgvHB938YsQU7d26wfaLj9IVtYozEDgZ6UpPJ0RArRAqkwhWmbDQdw8KwxR6SJtw5mDFb9PSl5/TZbfJsSsqZs+fWiHvPs//o73L1t3+D4eaHaBuv0Lhxc5+Dw0Qmsn16i3kZmPcZtcR4fc3rFJrIUMHoTZsoqsRQsKNd1nKhDy2pVdYmm8S+x4bCwgZ06yTb21ukLrKwzJBn2Hok65TxZI2maZGcEW2R2FFCJJRMmkSOhh3aQdi+sE5MmcXM/FAOxDBCCLWDWzq+JpfDgKFkhpJdrIYa80PoF70D8MXFXEypziD7ww72snpEBDUltvVwSCDRkEIPoj5/lxEuwgtVJMXQ7OsI6hUazpzytcYjHg3BYp17scYwj+tG6pqUCIywHAnme4WVBtERYolSBrAepJDpsVAwHbCifgAmelVUdnh2UPDsWMRS4/uSwXQ2J6thITJoYZ57smQ0qDNuQiEPpValtLUaJ9d9KKBBWGhl4FAqC2sFqflUGSv9tNJPK/200k8r/bTSTyv9tNJPq7Ean8zxohl/WIMEh/iKuBuoasTQYpZB/K7/stNWIODdeLLv5IQqVtS/L7l7W8rgk10yoTQEEjnPiK3W9uXJHTUn7jLU7kZYwHCwtdTMf1UHLBk6ihwLjmID0QAxAsm5KEAUI5eChEjRTAgukj0BIeTgLnIUIwTzzd9AVSpOxDkvaCYF5/CYiIuGGhFAIRQhNYmBgayZJK3HRQxiFF/owBdvx7EgrbN+xPM35EWmn/aoZLbPdJw9tc3W2bvIfc/s6ctoHmDaMzTCB263nJA1bqlxtylpkpC1hK47kJioSBGsFCRxLIxFIDMgarT19y5SWFtbp73rpSwYuLq/x3ze1kqAzHOXbtKd2qZpA1oGSkiEkCnaUXrlzs3LbMXApLScuucsLWuUxUA/WxAEUnR2j5m3sjfxzzOGJd/CQdhm/nq9vtz5NQTnXmgZHHZTKyGo7vEyquF1FA5tVWZVCHoExlWyv8ei/vdoQIgUdRdc1aHU2JJrE/1xJYAZJfu1I3Wj9MeucRZVgiVEWkKpzjvqkPYQqoNduRZ+FVRWhyH476TFxZnnnahxjloKry90TVTrkVD82g+1C1bOxCD1d/WKC5YyWfz5szWsjTa4sXMbyiGTMqIddVwPa+j8gI01AXN4OFlBB0o2rj5/m64zRt1pQkiUIZAnifndLe1aJqcOkzVMlRRH/Mdf/jUu/K2/DpzmwniKdAtK3mAsI2yy4Gg2UMThxrk0zGda3/+IxoI2M/rtczT/03ew9l9+m5S9o9l894itrdM0127S79/gcG+Xc5vnODzYZdHP/f1R5dKHP8q4f55nnn6eW/t7rI+f4XBvwemXbnFnt+PyM9c5c+481i8YtUIeIlLcYZUCJpFxapnNZqQm0ueevDiCbp392ZRTGx3TWebKs1MO9nt2S6bQYGEdZI7OFzQ0LtCDYDFz4vwmR7M5W2cm2KBkVaIq4/EEywOlnVAsM2mEvszJuaeJDbHAw6da9jrFQiYNDSUXwu4O7dCjo3PENGF6NMP6QiyJsAtZI23XkAiE1EKTWMRIk41+mNGWgfnigKPDI0IPR7dnlNmcKLkeBAu52HHkZMiZ0Ph1ZEWPI1lNjH6o0hozAe8USU2lmXnkEFAt9WAZyGbo4JU6TYweX0nCoAULDbt3bnPKjCVUP8baQdS8e6Gqg9yldnx0MekQ56Wo9d6Sla+jSvFphrm2hYBzy8yrFXLO9aZH70uLRQgtJn2du95R0wys2HGsjbD8zRsoycWsejWVhUA2RVJgtDZhMKMJDv3e3j7B+tqkCuhEF8cEGaFkkN5fffGudBIGNCRKWFZaefOA/d29F68EVuNPdqz000o/rfTTSj+t9NNKP63000o/rcZqfBLHi77xF2XGUFksSRJWHTHfIHN15XyhkOgiIZt3z6FkAhkVB9i62+1CyaIQBLQsxfCAxMBQEkEgWsFkilkhWKSJTY0tuNMZQvAFJnVY7h3YiQNAVeeEJcMgRI+dICzUCKLO3SjqDrYUJHiHOVF3SIVA0OjOidoLAkMUWQoSMaIoGgwLvgA7CLmWJrulDW1CyXhLc4e3ejynkFU9thCCdxbLxaMum9v0t+8gMUL2TkyljzSjyNUbu4xD4cS5k+zt7BHDmPWzW+zsX2dBIJtQ5gUK3Nk54MrjMzafv8T4IzfIERoTCpku+KFANJDSGipKDEaiRaK4KLfCoi/sHs7YOLtBaQvD4oBGTvHKV72Mh1/9cp6/PkM1cTTMWLs1MDq1TrFDdDRmmMIwgSIzYhkxhJ79YYf9nT1SScytJwWtFQmGiGHVUfYS8IhYda/wyohcZqSYUHPwbYjqcF3wQ1Rw4eY7iTtHQqqHgAS6PBAU/4zMHV3wdvYW1F1jvFJDRFy8Ljk12UVjDIkiSkh18xRFkm+GQRJavPReNLozJ0KMI3fhVTGGCnx2Ngcm5GIESTV24tGUGD0mFc35Nc7G8EObLaWAGiFENDYI3pXOO/qBmh+0VJ3tgU8FIDtrKhm5mTC/vUNTekK3RsshW13DrUMl5ZbJeIOBWxAKlIbFIpN7mM8OObz9JGGYE7p1rj3zHNcvPYOUz4K2QxeZYQDygmvXLrMQY9aPeOq2czzOrQmlOfTfRWeENGGRE5MU6I967xoYIhSYHxqjU1sM97+SjdszBs0ssvKbO3do50fMi7Gexuwf3OFl2w9y4sx9WAtbG9vsHc3pdUHYL/Sa2JKW6WxB0yrDFLok/NZvvYtTZ89gOrDWZpgV2qZj0c/pbUxh4EST0NDRbKxzam0TTmyRuoZ7zp2lDYW9q5fZPjum2xCeuCq0o8Ji625ub57i6OQR8ex9CC1DMRb9lDYJ9IXR1hppasz7BV3sEC1o8PUomfp1IBNEBobZjP2DQ27sFU6tnaa1NeYiNOUOkmdMRw0yOs9oPGY8GbN/Z07qtomnN9GPPQMasN5AC2ncEEuLBaXJmWke8fjVRHd6i7XNlm6tYTqboUPj8wLnOaH1kN8EVHNd5iJ9LuRsFD9FIlLB/6V4t7YqbMUgmBBjxBKAR9iCGW3yZgNCQSyQbgu777gO84GxDpx5SaaoH5wldCDu5MMA2jGaCelolzmbDEQikdAalhSJA4P2mDRITJShJzQOzy4WSTFAyP4emfm6vcg0VtBwiLANLKdQ8hscJSO0ROrh1bxKRRn8Oaw63gF3pVNDkRaxgLUTNtpISO6eWwhsbQZSagnakS0Q8wC0EGtXV/H5X2IkNC30EDQhDFjOlPYFwPdqfPLHSj+t9NNKP63000o/rfTTSj9tAyv99AmNj32s5fr1P/p+zblzmYce6v8UX9HxuHjx4qu/+Zu/+fqb3/zmG5+M5wd4/PHH24cffvjV73jHOz78+Z//+bMX8zNf/dVffd/e3l5829ve9uT/0ef9d//u32185Vd+5ctu3rz5/tOnT5f/o4/zpz1e9I2/5SQ4BvsahJBQyZU/4AsZuJtcMFR8YQyyLEUuLiAtssSJRPO4QajbsbNvnNlhqqgYKtkFMB5PcAEiKIMvKiIVcApJWo+BmDnaQyqgNGgtpw5E8XJkXW76tnzsBTG44y3Souqvz0uxQaJQEGJILiJCrPBp8U5kpbhY0epWSPAOerlg9C5CqKXF1f2kUMutBdVCbdZOXhjD3tz5JZiDbxNYF5hT6CzRpsTlj36YJk6Qk2uU6czFSRmQZFjIDEVJ0nDi9ITwnttszI1WAkN1ZrMWXAq5G09wToOKohWaHTIMszk3r9/i1q2b5KNMUBdvH3zfczz3vHH6/Gletu3u3uGlD7E2Ok1JBR0ZQxkQmdCGgC0KXbdGCh2lmFcYuKlP1p6mblgeffIYRwy+MYQYvEqgVjKogUjAtMfQFzohBj8wmRYvOpdQ4dVa32OqqMQPPmUAiV7erTXCgnNbzLwCgxolMQZECkR3fosfoWp8xCdGSPU5KwXX8dfuokusr8G87H/pUofQ1EiOEZMLazMlmHflMiv19eTjWICYOK+leuBLFk0YvAIjhlBdO6sOucd1jsUrPm9NEpRC07ZMr18hojQB0MJW03O01rBzGBiJUIKwMEUNoiQ2tjbJi5bmzF0cWWTIA6/5zC028xqxHZBoNLrO2to6+7MZRKHVwCv7m5yYXaOXhrYdEcomEgMmI56+dI0+tLzsZQ9x8wCKdQwDCA1nzp3l1rOHxP3bzG9fwy7cyzxn9oeeUOa02x0SjQt3382sz0zKlM2Nk7TthLzXc9DPeeiuRD80XNWESSSEwdeF2DKaJDor9ItMajMx96CJeQm0EWYWaSRxoxxyoRuhZYENR+TYISKk2NJn2N/dI1tkZ/+I0bhjPOo5F2Fm0DRjLHglhvXKwe4eT3zkI3zl1/9VPvK+xwkasLbQW+81Ctb7WgSEkMkayanh0Hpu3XeG7ROnPBJxtIsd9Oj2aQYC2q2xuXGaUh1Y4xA5EqIqaW2ETVp0oZRgNHj1BENgyD1pe8rRjULTrjHvC0MuxDZgqvhlaseVJQ5m97iISvBrr1bBeIUThBgo5rZwlEqYsBqBlCVU3iMlqXb3DCaIQs+Ch9cjX3ZuxmzIDG0imQOlQxCGsvA11ARdFEJYY2SF8ceuc+nyLtk6FsGQUcNgRpTEqB1D9HU1pRESOmJsISip7Ykpk1JC1TvAza7PWQ9CCRPfszCsKDEJqBErON70BSC0VR7WCx1N/b0WE9oKoFfraWiJdGhuCa3vUyVHJDRApsxmhMUhJnNU5/7ehA6JggQoOlDwLqFqA5L8ptC4a1/s9r4af8JjpZ9W+mmln1b6aaWfVvpppZ9W+ukTGh/7WMsjjzxC3//RtyLb1vjQhz70ybj59+53v/sjGxsbq1z0p9F40Tf+ShUGSx6IL1SBJVeDupGh4bjM3vEv5uX4H8cwcNVqaPF22lL5BWZGSAk1dyle+Im2dn6rDkbw7lhGLeeX4B3lKqQ0qDNoYkiYGIgSzCiA2AuCs6jWrmFe5k9xweDdybzEWCwiVV2U7CXGTueJNQrh5dlelRzdNRGHgmqx2ulO3RWlBgRqJz/VUsHAUt10F0O5KDkX+sMjYmj8pZXA/MjY3+/ZOrFO7DPDoAx7+6TJCDEh2wIlkVJAh0zfL7BiNCL0swGThrkI9Ipp8sOA9CyVuTuiBTUjRaFU5xQVmrbh1NlTFCs8c+cy0kAJPeubDWubHRY6DqZTdueRsfpGZaEQu452MoaQ6K0gsaUbbwD+GfghIuCZFXXWUIhYFfeCv54YHQYuljFVd5tFvKPeMtYh4iKyXo/1Tx6Rqm6yaqk/S3XdzJ0kqRaaQAW++HUofhBzi61CZi1XtIThXQxdBMYQKOpQdrNQhWx97Cq48aOPi9rq5pmaR6fikqFR/FUHQUv0jdKWHbNeYChJ/b2oLrriUOtgRikKxYHnzsIxqq72/wSfT8GjB0GEtpvQ789oRDxqVDISW06OAzel4+r0iN0hcTBXSjKmw4ybt29ShsLRnV12JmMe+8CjnH7VecLoLGF9i+3JJjc3Oiac5XWf+1r+/dt/Axlv8PD8Ni87+Rh9VxgOt8H+HMiAivD8c9e5vXeLlz14gUiDDQJ5IC/m2Cgw/8jHaH75Zzl89KOER74fixENmUk75sFX3s/1vRvEZkJqR3SjjieefJZ5PkI0EwYlpYbDowMWowCMOHV2DSMzZIfNn7/rFM2oYSIj+ujdD2f9gqKBIEaflR0deMX4BPPDwnjRk0YnyeoH6KP5glEXOTgamCRhPOk4d+aIPN7h3DBlM82JZY02BmbTQ44OjpiVKYrSzw0tAlFJXcugESl+yC0EAkpSIfXK2fvv4+7/+/+D0rYMzOhOrDHsHNFub6F9Zrw+YWtziyigexk7MvJ8ThkWlLiAJoEWlC2KGimAZCO1AxtdS5MKOR8xGW8cR/488oQfOsVqZMpITaIMmZzV5ypaWTRLrVIjV1ZrR2pEqpSCiTmAPwR0KPVaNjQE/2yBzgQLmTlCmxvEMsWcW4NZ5VUVGukoUpjLwJmNSHcBig306gfyIfv+k21KCIbGAjL15gplhFlApx5H0xApxdnwXRJOrLekxYC2PokE/MbFcg3TUuOOyyVVERGGAqPY0NuMLDViGROzvCCnlhC9yktiAxRS2/mNClWCjAg7hg17SLsg9ObRxxh9D9WCBUWloxcqjH4Zu/tUsqz/bI+Vflrpp5V+WumnlX5a6aeVflrpp09oXL+e/tibfgB9L1y/nj4ZN/7uuuuuVfvjT7Px4hl/EtCSq9CrDqAqoqE6egFJDSoFdQKnc0HMt1qtkxhdlvjWjnaix1wAsaXzpxVyHapYbaECsc1KXSi0uuQefUnROx+ZGQM9EgKWIog7oEWqaBRQvJNXlIQQvTObZpLg4i0mj+GIQgzeJQxvkT5o9u5JGinZEGkIyd0TU489SHC+jlmFdQvugop4l7VlGbNkxNJyCfRNAEEpxCaRRpkymxNCSwpCNOPGleeJXCCOG6QbQYA46mhjw2R9DZ67hZXC9mhCGkfSaMTAgKQxEqGNTe3AZ9UurW41EKNvzL4QWnWy66FikVnc3qGZdMRSUG1QWqQZE9cSaWIs+gPyYo3xxhqI0S8O2dYzSK/0eUoXGyQLpQSktqNfHghS13gXKTNCNIr1oA0pdZgMqClBmuoAR7CmOsJgTSKGJSDcryMUKlTk2B3GrO4x6pGO3BO8Zd1x5AWkHjIqR0YyIXlMRGqlgxEpZag/K9Xvx53y+twFd9NDdLi1H+b0eLOT6tr5nxMievyYVieEmgPd1bwrYRRhKEN13IVsS2h58dhWFbNaHURCwNSFv8+1WIszvIxd1TwuJR5V0Rb6+QFtSGAd2gBqTHrhXHPELQI7u0IXEyW1HBxMefS9jzIE5Rv+b48x6iDaJdJ/WGcyTvzq/+dptk+tM9gGa6P3c+bcaTY2t3n7r/8aO3rAhTawFYx4oWE8vcn62jqSEjf27vD0k4fsHxywuX4GkY4iCyw2jGKk3VqjlBukuGAx74kp0Co0Irzn99/D9sUz7O1OmUxmfOT2Y/RDT2oCeciMUsszN6bctobXfeYreezDz7K21rDWJKYzY3++4Pfe836m/RTRE5h1bKbIbHKKCxfO8szHPsZRbFikQmcte1d2GS8WxDSm7xfIqMajEBY2sL59mo21DRglYpjRbR7RtiMSLUeLgRgCKfjnJ2WOlgN6WdAFZZJG7grHQhJlMt7maD5FpWCdw5TL5jajLESLHu0rgbg7Y31tjVed32YyzoRQsCzYhW3/vD8SarSvRXMmhDExdsQIw+KQQOTBE8ZjzxbW1y9wuHPI7Rs3MS3eYBMIyatxQnBWk+ZCjA2lFNSnlMOrg5BzrvMqIAZNSF6NVIoLMHEGTBS/zos6pDqYEmRBkMCkFSw3PvcWg7u14tVO1JsnIpE+GmI9wVokB7a28H3ChNAZxTLRBj+bpgAx+WEWBZsSQ60ekgAk8gJogj8mkaGLhOxdH1VAsxKbxg/ORf1mh1Pr/UBtQkiBfjhCYvE4iRqltKzf6ti78wSWb0JIDHkT6wI26cijlnZ8EmlGLK7eYXM4rFDsSAgZYwCEFGBQ6IuQaYmxoS8Ay3VkNT4lxko/rfTTSj+x0k8r/bTSTyv9tNJPnx5jZ2cnfMM3fMO9v/Ebv7G9vr5evu3bvu3ar/zKr5x45JFHpj/1Uz/1HPzhqO9XfuVX3q+q8iu/8itPLR9jsVjI+fPnX/M//8//8/Pf9m3fdruUwpve9Kbz//pf/+szt2/fbu699975d33Xd139pm/6ph14IT77b//tv/3o93zP99z95JNPjh5++OHZT//0Tz/92te+dvFiXnfOmb/1t/7Wve94xzs2b9++3Zw/f77/23/7b9/4h//wH/7/xZG/4zu+48JP/dRPnR2GIbzxjW+8/VM/9VPPjUYjA7+x/se91k/X8aJv/KmFKkQNFRePihJpABcLWrx030HVvvVLdUItBESqG2xQirrbgJc8q3knO8UIESgupiRGxAaEUt1yQVV8s1d1VxrFyoCJVEBwteXUgwShusSmLh6QKjQqNFu0EMQgZswyRTpUq9+ZKvdjqEZfFErJLtqXMQGrjrTYsSPorzUSJbj7WmHC3tXMeQ4O2BYXj0p1Ij0mQjJSG4gpUBYD6EDXjtjeULbXA/uHB/SLQyyuIVE5ONphsRjIMdN1DZ9z8RRtmXNpmCPrY5rRGo+ePMvl4Qi99Tym1dst7voKHHNL6rviBwGJWIhYEEbjETkFFqKeSgrCMBT292e0zRbSBDbPjGl0GwS6MGaRZw78HqbEEGjXEmnU0XQRzeobqirepS04L8fEuy5JwUTIZjS11NuCEkKqgrs42JsEWq8hQo1TGXxcJYQ7x86U0WVsKAhZy3GZ/bIbHuqbbJCC2YB3ewPVSIzBo1WSvGW9hOqtG6WWqTuDqL6XIsdVE+5yCSE6HB2rXQExZxfV162qFcAOuR7UzKAUv25MEo5/t2MXGwpanLGDRI+PuW2PJ8ls+Yfq8NWDnHp5vSUnottS/IoSSs9CIrHzw912zJweGWHUEkOiwZhqZj4sSBLpFwnFaPMeO0dKTA1P7Uxp9A4BQ98/x1Lg6SvXeBuBlgkpKI3Nmfxv70Lalm7UsrfoabsJ/+rH/t+YFeb7PYmGS09d59d/6W1MH7vGjWtHPH1U6J5+BguJ2HRYhCaskXvo54fs3gpY0zKZdLRhhMkRp15ymp2n77C5vcH5kxvEi2cwFgwITdNwz/YZdp++xXBwBHGb3joCidMvey0P9ffw/g99iCeHOfs50J1o6SYtB6VwYjKBIMS2wXLhuWdvsIiJ3Ss3GaOs//ZlWpTD9YH4Wfv0ohwc9cynByzyQBLh2o2bHBzu1OukY9xuOZg5F3IqWAh0ccSMOcmcszWZHtGHiC6MFCZYb6geIN0WYxqSrBFGE5phjhwtKF4DwrgzGgpFArEd0S/mqDRIryyy0sZ1Tk8apAPJ4lUkZn69N4mce1qg5EwSP5wR1CtV6qFUJBJjopTi671QI1y1widGj3qp1gOaOYw6BCQJ8/kCLCA5sk0DxZCcCVLI6lUsWhQTj595bA1CFrQsiFFYKDR1cSt9AQrFBOpNCytC0UBMrc83BUk1gpP9UERM5OLxttC7Q7zsuop6hUkpmTY0HtfJ+YVqqyDYcEAQP4CbJZoB7Lnn2Xpml5OSKVojl2HkewuBHJ3PZTFicWCzCWRNCM1x51erN0RCbZBQVLwTHw0xNc4XW41PibHSTyv9tNJPK/200k8r/bTSTyv99OkyvuVbvuWe97znPes/+7M/+8Rdd901fM/3fM/FD3/4w5NHHnlk+r/3/V/3dV9355u+6Zteure3F7a2thTgF3/xFzfn83n4uq/7uh2A7/7u7z7/cz/3c6d+5Ed+5JlXvOIV87e97W0bf/fv/t37z549O3zFV3zF4fKx3vzmN1/8gR/4gefOnz+fv/mbv/neb/qmb7r/ve9972Mv5nWXUuTixYvDW9/61ifPnj2b3/72t69/+7d/+70XLlwY/s7f+TvHN+3e+c53bo5GI/uN3/iNx5944onu7/29v3ffd37nd5Yf/dEfvfyJvNZPt/Gib/wJsd7VdzFoUkAcTh0qOBajCjV5wZ2W2o0oeMexumMSYvLFbCk0ayyg9jSqfJnaRajW2LsJ58LBBWmLWCSIUSggRsFLh5MESvYXFUS8A7gGr+qPS6ZHqkwZd9BNA4QRRuvuomjFyHiUogYJXNBIdrdVl6XWAqbVxQaRRIqJUpbhCUPEF29TZxcEa1xkYGChiiowFqh597sotYtRFfbrax0WMotcyIMS44gy7xlvbUIUdN5z6kLk/HnhuWEgiREw9sqM907OcDve4t4U3MVSF1IC7vBLoKA0ITpQNXlHpDBk1IzFsCBKS7TWP8aYiSK0acJIIJkxCpHpc1dJo/O0o4DhbJmE0g89e9M9Tp89i5mSe6WzhhQTZgNijR9EdCAsIdU4C8kECt7tTWJDLoEUG0x7kiQQb/duwQ8X/pZHj2LkTAhCUa8gCOIOk2IQXOxaqCwkIojUtEpA8I3RPz9hWZluaN38EiIZahVEqCwbqSX8aHGA7lK8Bi+Hd13rG3wI4qDz6lZbCGCxHrIGKt4atVy74IHlGrGJhoXlIcMdc1lGeNQPSUu33oKA+maNJQdrZyMFo6RADI3D2fHkUA4NiYSqkoqvAmk+0CrMQyFIw2zo2Z0vCCEwKoEFgXFjzM1oowPCRzZQSia2DSUr0aweAA8oImgMHM0OCYtEeyTk0DCfHXHn9mVSCDQSCDHx7t9/H+96z+/TlTWGdoEovPNf/iREJU8HUtMyxEK6s4+Vwmy+j+Q1VAd+821vY3E0sOhv88DLX8KHPnCDW3sHnLj/LKNuzNMfu0qzFjj/8AXCvOe56zdZv/su5rZJ7lueuLbDRy9fp20b/tJf/6s887HrRFp3O9fPMYQR461NPEGQOXnqFE8/d5WZOPtHDqfMb11lcnIbfW3BmDEs5ly5/Bx5vmBjbZsnPnKJO9d2eMnJE+z1t7E00OcZDZEUBWmUrhkx3zlglgea93yU+OgTPP3gfZx+zSOcuHg3Ix2I3Yh5UW7u3CBMNxiGs36o6VrI2TtripKLMUiDpdZ5T0R0mDLvhHFY0K4bZj1N1zk4OdR4njmDaRiyC9cYycVcsEUhhPCHDmHLHUSAtFy/61lSTQkpeMWTeYfQEAN93xOS0JKYaqERyJaJmr37mgk5+yzy6x9n8Yg5Uz41DKK02bDo1Sd+eHPmlCxP6cVoiN4UIEaKZaxkF94xopYgL0W2+tofQKlstRAgZ1CjhOTivqi/jhAq0D6RCcSSoMAgCyRGBnqyDBAVlUKMSmgdoB/rjRBRr5jptcXCwplpuMAO4lVaLCtsvBzGqwjwipbV+NQYK/200k8r/bTSTyv9tNJPK/200k+fDmNnZyf8wi/8wqmf+ImfePqrvuqrDgDe+ta3Xrr77rtf80f9zFd/9Vfvfcu3fIu+5S1v2f7Wb/3WOwA/8zM/c/Iv/sW/uHfixAmdzWbyIz/yIxd++Zd/+aNveMMbjgBe+cpX3n7HO96x/uM//uNnPv5m2vd///dfXv79O7/zO6997dd+7YPT6VQmk4n97z/7C6PrOvuhH/qhK8u/P/zww3fe+c53rv/8z//8iY+/8dc0jb31rW+9tLGxoa9//evnzz777JXv+77vu/uHf/iHL/d9/6Jf66fbePEVf3WiqGVyLoTUEJvWOxsVB/mCCzqllvAbdXM3dCgu3AhYNoiJGLwzU0oNQQbUerDijkZ1mFUzKUS0bt7usxWsgJFR8e5xqg4WNfGf9aXKFx8THBoaEmLFxYQVX+zURVlI7nyaKaY9UoGiirNKggSKuMB287PBzBdbCUIeepBCktYjKlVAxCVAOziTBquv1zxKwJLdU8URFkixBQl04xH5+h0kdagYPQ3XDuD8SOnWjC5l9NZt+omydmrdXaStjpNra4wPbqLDQIgNk8mYGIRmcZX+zh0HmFoEi6QUXPCbkkxoYwNF3VXPkBsjhwPGJ1/CPXc/RD87YHylsBjWILbMdxfo0S0urk1YyzMGLcTzW8wWh6TRSUwiKko6dxo5eYEHz0VOnTqDLRaUxYIQBoeYZyHQE1MkRD/YBJx5ZNE3v2CB3A/EzoiSwbzCwPfG5YbpXbxQQ1JyJzpEJEa/bj4uIgNUjpGX9AoRxbsMYkt3DazICxGtUjdiEz/ERHw+BKnsIyNX1pJZZtCeGJc8Gf93weNM3qJL0ewbudUqAbQerrR4dz2JaJ1PZopRagwlINYgFlGbV2B2Rix7hz6FGFvv4miFqIKad7NCtF7XgkpHsITEhiRjchjcCcQPdGLi8zUPGEqThEXJZKDPSkOkDIUShWCFQf3gKBbIC3e9XejMyQHaEpDgzChy7WaZFam8JCOQGuegNKnh7MkN9vemHMxniBS6tCBZQ0RYDPt+qIuC9ANFCykFLCvzDGKHaIZ//F1vwgSaLvJh9UqHvd99lH7oWV9bZz6dE0JgunPAxmSD0CU+8KEdGBfO6Ihrjz/F7rTjzNltfv8PPszR5St85dd+DmuxZ+0kyOQU/aIQu8Dh4Q0+/4tfx/q7NjjcvY1ow3x0m378LCceukhR0CDMZz0vf/VruPzkwFwL5c6M9aZFknG4B6P2JGsbJxnmc6RWS4i0dO06zdomOdzCbl1l8vqH2Tx9jm60ydXbl+jf8QHufNZrONi9zU5/jbUPfpBx2GK2yMShRxaFeVmQFh3tosfuWUNShUYXIx8uuHJHOcwdN59+ju2XnuXwYFbXXo+eOGwZBmBQpUmRwQqmXmafUjp2pw2p7nKhmB8+Y/Aqnkh0TlRwxldfeooVJOLVTgFCSrRBQSLZAmhPxHlQFjxe2MTW50fpKdYQQoNZJkuPmFGsEGgheMdSx1oJIbVk8zkTzeW1SHQ3e/CKEkOgeIwPWRYmNR6tLIqRkRAouWfZSOC4kkTBSC7kY1urSVoCLYlCrl1RgyQgoxhNGvm20LiQFo3E0td9JWOlIaQOlUKIDahXIZQAsTQM4nuoskKvfKqMlX5a6aeVflrpp5V+WumnlX5a6adPh/HYY491OWf5gi/4gqPl106dOlXuv//++R/1M03T8Ff+yl/Z+dmf/dlT3/qt33pnf38/vO1tb9v+yZ/8yacAHn300W4+n4c3vvGNL/v4nxuGQV7xilf8oSrCz/7szz7uznv33Xf3AJcvX24eepEcw3/6T//pmbe85S2nr1y50i4WizAMgzz88MN/qOPvww8/PP34xiRf+IVfeDidTsOTTz7Z7u/vhxf7Wj/dxifA+MsozlZpgovBkguaM7FCNSV4JzRBPEsfk2/UwQVeMHcDSRXqDMTqWPsC5+60T+LWN84IRXukigLx1YWYarzApaXfra93+XPpfREWd4n9uQoqvjiKBo9PVBHpTmSujxfc5TQhGx4nEEAKMQVycUi2WXEDUhrMhBgbrAp2zEWBs3uyuyVLTkjl6oiIO5LqXxMNGMUdboUkkZCNRiL9kMnVIZr2A1kDyQRZQC+BjbMnUCskhfn+AKcW9KoMMuL01lm2Zc5jb38fp++6m+ttB80GViHffa+0baBJEYL/fsuNpTEjSmChRmo6ztx/N3E08HtPvAvpFxiBv/zXv4QHX3kPN594jOmtG8TDI4YypUzmnDq1Ttsk2tAw6U7SbG/zsle+1jttpcxiWCDmENsYEsdVCbHGV4qBGskiEkrdXFONeHjkwkGw2a8Zc/it4l4zFvzzD6W6N0vxWR+/RjgMPPJi1AXfDxNCxMTht34RudrVWmkRREDzC1BqeaF0HXVHLIUWM2UYCk3TAP48zksypDpoIJiE4+ew+l6YeVWILA+CBqhBUIj1mmLpTAfAodhLeLapA5dj8OoJPa4qMRAXCLrsTBcDoU1YKEgsRNNa7i6IeZWImpDz4B0CYyQ1Df2Q6/UsLjulzhMtpMogKTpQSiCSUMtYXhBSg2VDg2LJkCLEUmjahlgCOsxomkwZ1pjNdxkWgzuVIcDRDAzaxgWLJK9GUVNSSmAupoRACs42amJypk0TyUNhMff41J1bu8esounRZXpc/P7gz14iypzYJSbNBhr2SKnhqd//fZqu43/54R9nPYw4YXe4V36eey68gs2Tp3ny6ad47vLjXL16m61T3tms2TpFN5kxawZGdg2T+5BgXHn+oyDeme1oPmA6sN4IHYHJaJNh0VMWvXOKSuPrZ7NO151C2jXm3YTzn/X5jLZOQBt49+0dfvHgDq+4/RSzOzeweJbDpx5jeO1nkDRRELIdcPquMeOLpzi8NYUUOLV1kunQs3HPeZ6/9QjTw2ewoWVv9yaPPf4BZvN9rzoIjV/fCCmOPF6GMOQMyZ11cAaN1eqjFL3qJtQoYd/3la0ktfObR/1KyTStXx8En3NFFUEYNy25n2EWvY6k8rVC8HjKkEut+HBAvWpBUVIFvqfQktWQWrVSihIluJMvPtdLGZCoYNE7i1KqDR59RRGfa2JGiAnvWAl1g/DrP1TYfK2uMRPMMkbEspFSxGxgYO6NB5ZxSYRlJ8pBh7oHedUW9d+EFpOmVu4YKoKRIQg9a2QqXyvgnKzhE9ICq/EnOVb6aaWfVvoJWOmnlX5a6aeVflrpp/9ex9d//dff/kt/6S+9/PLly+mXfumXNkejkX71V3/1PsD+/n4E+Lmf+7mP3XvvvX/oHR6NRn8oW9227XFl37LJzQsVsH/8+Imf+IkT3/d933fP937v9z73hV/4hYdbW1v6T/7JPzn/3ve+d+3F/h6fyGv9dBsv/sYf+djpMzPQQDABrS5hrGXHGn2ymfrksoKQfN9XPLMvlUZtYFYYlm52jUuYRRR3EjFf8Hxt8AXyBe86+qIQ7NiB/Lh/RJH6nFo36qEubA4NttKz7LqGVXgqrlOC4IgToruZUcjaVwejEMVDHqpDZdW4aMiaORZgcMwREMyFt0kVK4bqQLDgvwcCIRFwFz33PU1viDmvQUpAVJm0LW002tDSdBM2734JWSOj9S3GkzVGXcPRnnDziUz3eQ2nwpTxyYvc8+dHDPMZ9+x28NwRFtbRUojRKlfCjjeQYP68RaAvhZA6rl2+yWO/9p9IKTHfXX5OY979u+/j5o0d7lpPrG9sIHHEqMCiF+h7SlpHceeqTS03Lj0BqeX+B+/2jcICpnWRbhMDA4gRA1j0zwURv25YHmqWwtNql6ziFQAm/rmJHGs757P6gYYY62aAx6vwA0TJhYIzhwLOwlFqmbdEwDdeB6N7XEpwIaklI7G2oseFZgy+yWGxsnYgxuIwbaooleWm5uJ1udlzfN15xYWLGhy2bcvKECGTK6/HKzBEIYQWLGIMfrDCN0VTnwsSA5LNqxUwVAZnSimEOEaDg3RNBKGgpTJ1QiBr8Y1eq3suL0C/Reoa8HHxhBD8AFhMUUBiYhh6RkEoIRIUtAx+HWWjJTjjJ43IWshasK7x7olBKCG5wxj8evWOj84rKpqP1wlVox8GzIyslfujPVKUUdu5W7lYkFVpY0LM4xMhqIurGGmS0KQ11kZzFhVMP53uENrEYjajTUKZJW7euubiKIzhPf8vUhoRU0JFWZQF49SQYsP3/KMf4/SJbUZdYjx+nnb8OOuTTWKKXH7yY8Q2ImTCZMxYxv4Jt2MOZgNtjOwxgCmxWUckMbI50kTm2dCLZ2hbxYqQcuTcy87xZV/7f2J+/Q7PfeQZbt+VOfmKBwhDdKB0b5AiFteY3tpFRAijjhQgWWHtiz6P/fYCP/0D38f9Dwdefc64eecyRqZpGoa+urGVy6KqNZJXj3vqYjMGqWB0/3rEO3Xm7Iec+HFd1YL415cVJ36zwC/6YBBNGae6BmStMacCMdRoYKz7UhUHx9B2oWg99NX/mWh1rOsB0SqPCwOpbJ2yjAwqMUqtKnKWmtROfA6eNpacM8T3Fa9eqb9rZV0ZWiu4ElY8VmOhYNTGDhp8jVm65UJ9HyCaVLZa4853CIgtCBZoYkOxHqMw6BiI6JKdYw7RX41PlbHSTyv9tNJPK/200k8r/cRKP63006f8ePjhhxcpJXvHO94xWVbZ3b59O166dGn0uZ/7uX9kzPVLv/RLj86fPz/89E//9Mlf//Vf3/zLf/kv73RdZwCve93rZm3b2qVLl9o/yajsO97xjvXXve51h9/1Xd91c/m1S5cudf+/3/fYY49NDg8PZX193QB++7d/e20ymegDDzzQnzlzJv9pvNZPxnjxjL8gSFnemY/HgiPExruIkUHEmTUqmBUXFPWGe3DWrufq1X22EIR8fGffha1vfg6+dofA7/YHkgvjsFwv3HleRmIEw4ILsBTr16nAYgu++eMAZF1uulJLkQ2oC5IQCOouOOK8kBACZcjExgGqEiJanNrj0RNfgL0LmdSFUSlkFyMs3VVBS+2cJgLiXB2XKL7BqwiZgkqE2KCidSMY0ZjSijJpYLboGfrC1gP3kfenjNsRi2FKSJGDaebgIHF2/STtaI0YjNHaOrdu7VIOZkQiWhIS/f0d8sCojVWUVX9flRQEWcaGQkumQDAKC2fY2MDl69fZP5rQ3zvmzHjBqz9ji/Xt17GeI93WFsYc7fdIcYs82+HU2ZfRdWOGksnFIa5RmuVbRJDoDmzARUETyZKJooTKdmlCdcCCC1QjeuWD4A6tOBtJAoi4s5TL4OXwYRkL8c+MvKyacIGqDH6dBCDUz9VqqgjqdeMXoVmdF3WjAHxT1UIoASUQY+cuhYGgxBSr2+YHGbXKY6KyivDLxVlLICS/DoXqbvm/x3rdWCmg6vNxQX1fAkAFvifvsqiGlYUDdkOieAaHgBFjoBAxC4SmQTUiWRBtWHbPE+0JBCQkCNFjNAY5u0gMwYVCCP4ZIUJWdwwFq3GEjjyfEZoIGsjB6CKMRhsMs8y4HbkYCT3jJiJloJUNbICgESz7PMmFlDoXJuYMD6j6ogqUWL/maCClaztMlawFYiQXZRmAMzOC+gFItJAQQlqwdzRjNhwR0gA20AwNaKCEwih2fo1hmM69Q5nNCUOht0gTWzQIC50z3+nZuXOLaEIMYwZ1RgkWGXLPaN5QzEg7u+xFgTaCJv6f/+gfce7cPZRB2bo44TMfejWj7Q3WRltsnr+XyXPPs/XcLZ79yONsn97j7IV7uP3kVT70gcfZn+/RpgX33z2iG0NYGLOnrzMJznfq4gJpRxxNZ2g7AotEi0yPeqY7c67d2ePeEpA4IzIhlwKE6gq7iAtRMAqLfoHXQAgpLNcV78QYU6IUsHpQROyFGxHLo9USbo2Qi0cIqWyvYApaaKUwZPU5WqNpvo/AsrlBjNFvrgSPOYHD6JdzE5QY/LWjhlhxaLQpah43QeMLNzbg4yDyzsCKcXno1ONDJJVrVe+0+I2K+vupemxNs1dPaRXlpo2vAywrYHxPCOLgfdNcXeuliPfGDUgmW19veHT+rkejkIgqZAQrtVIlHBumq/FJHiv9tNJPK/200k8r/bTSTyv9tNJPn9A4dy7Ttkbfyx/5PW1rnDv33zSbfOLECf3qr/7q229605vuOXXqVLlw4cLwpje96a4lg/KPG3/tr/212//qX/2rM5cuXep+5Vd+5aMf/5jf/M3ffO1Nb3rTPaoqX/IlX3K4s7MTf+u3fmt9c3Oz/P2///dv/7d47Q899NDiF3/xF0/9wi/8wuZDDz20+Mmf/MlTf/AHfzC5ePHiH4oJD8Mgf/Nv/s37vvd7v/fqE0880f3AD/zAxW/8xm+8EWP8U3utn4zxom/8uaj0iIpaFWIEUlKKLuoddjl2YNVzHF5WXAZUfIoncWGZc6liL74wUX0bIYZIqdEVUEwbTGqJcqmQYJNjB903n2XcwxcHj4Dgm74aLjMLgeL8DgpRDMm9u50x1i5DvohF/M7/oFadFBcrwSKiy4XKaFJypgLO05EoLOMzvtC7g18yuFiHYtW9Xv4eYelQGCYeAYDAleu3SWtr2NEuJkamZ7a7w0FK6EbHYSeMCeznKTLqGLL//FQzt0rP2nzO0fQGKQm//7v/hfFixPNP3+DhpkGTEhViijWm4WI7pOCOdYruegrkAqVACA0n7z5Ju3udo6NCpnf+Tcrcde99fNmXvRpKy5t//D9z7uI5tvMTfPv/dcTUPsy1f9HT/N6TXN6E+Lmfy2d969ew6GeECraNUuiajqBCKEJTXXQxddEqgWVnQSulboDekVDMBWwM4EDn6JUKdXMJ0rgTbZlcBkRd1NaTEVA7aRWt8OtEsQrGpvJpgGLFXawaKVmWo+uyoxwulAPuHmvWWpUBDspeunQVeB0dPv7CYa66W4CoEGNLMaEYfj2KA94tWo1ZCRIqgFsjQWN1wxWJjb8X5k6YoRACmhUdBgjBOz5GKEPlSoVI23SUMEGkcyaQCiaFUPlNQykshgFpfeEPIRAjx86ci3v/U86ZUgIhGI0IYoHP+Jwv4Ov/p7/N7/zMT3P6xB2mYeBt77nJl/2PJzkTCx94T+R1r+s4mQ555v0NV7Yv8DtPPYWKMaRCPQd758rocqnPfnhMMbp4UcWKHzpSiDSp8XhEDBDkOI5VcJBwitFfe+0AKDry9coKFiLBCiINua/zQwOD9cwtk8Q7q7Ua6UUhJHJekNoZMvfTTrIxlowgGUkDoxBhMSBxREoJ0557JpGTsWVWZkxVud1OuHn5JpeeuUErif33zfn3s99yQWxKFzssGONmjLz9t2hi4ux993C0e8Te4SEvufcBSmz5nY/cZD0or3zpqzg93iSXHt0wjsanaEcnyPsfoRk1lNCjFNZlIErm1Z/xOibbe2jTYLlhPq+Q9CoSSynOWBl6YkpYyX4o0xojVMGCXw9t21GyEaOQNVdos1d2lJyxmOpqCdQ1PjXBY4XFGDUNXXRB6ALX411WY4gS3BnOWYnJ559XICXv7CZ+yIUaFRCrB9ria3YKFVwNEhqv3FEDUhXn6hE20+OIihaPxgTS8o5M3Sil3sBY8nn8toSFUg+rEHB+j3gpi1d9LSMuWhACxOTAavAbPFqqsIY2tMfiG8sQAvNift3HCg4vA/PZi0KhrMafwljpp5V+WumnlX5a6aeVflrpp5V++oTGQw/1fOhDH+L69T/6fs25c5kXyb77RMaP/diPPfcN3/AN937N13zNg+vr6+Xbvu3brl25cqX9r0Vdv/Ebv/HOj/7oj1646667+i/90i/9Q9VyP/zDP3zlzJkz+Z/9s392/tu//du7jY2N8qpXvWr63d/93Vf/W73u7/iO77j5/ve/f/KN3/iNLxUR3vjGN975+q//+pu/+Zu/ufXx3/d5n/d5+w8++ODiDW94w8v7vg9vfOMb7/zgD/7gcVOQP43X+skYLz7qW5WBmdU74Z6HH8A3QffnfGIGd5s1u3sWxDeLkBKGkXVArRCroCjF6sZYqpbQ6kAGytLyrpEF7/wFoKi4U2a4mHZsiR3zNNw9C2jtqGXSUURABny1abyMPkRfNMQXGkkJI5DNGQDORcBdFFfJEII7A1AXs+xogMpmkPr8gIsSi3VjtOOy/iCpuhZLBon68yhYCYzXT0CnRDukl0gzGdO2LRmjIXCiW3eBlgIHO3vELqGlMO8T06To7BYb5ZBb/YzL73mcb3j567geG/YyUBd5Z5t4Z78geKelCFkyIUCShBYlaqQtwuL2/5e9Pw+2LTvKe9Ff5hhzrrWb09U5VadK1UqqRhKlpiSQuLIIML6yMb1MXPADWxhhHBiMCMk4AkTAswlzL46wnx7CHRgwBu4zxmDADxwCBKKRkAyorVKpVI1UUvXd6Xaz1ppzjMz3R465zhFXglIYriS/NYhDae+9mtmMkePL+eX35T7lcEHfz0F6tmY9L3rRNRw/1nF0a4u7P3qO99/7BKu7VlzXHfCdf/tybO8M2fco8wtktui3dloZeZiHiyZEKlYL2uUA6RKgTiTjJs1fSIMZ1ZCRTCbmJGDahIAoHQ/PG/PJEHy6zrmxbqUxUVDr2DYtCMZJCX+bCSZJg5Pa5luAzJBohCG0T+yTBZisNqLZMR9BQUm4pzCUlpCNRFVHY52lfTeRzCmpVWNIMNrurWQ9GLpgSxtAp1WQTPIaBKvNa0cqSMWpZMvBrObGL7rjxanqaJeRpGiXGVxx7REZ4nydCZJSPHxERkp4wEwkejPRpklE3EJCkFJIvSqKJ9DdnmNXHEGHc5zYXmKrkeddkzi1O2IHwaqLF6okdo8p0lU6EUodoVY8ZVLOlFaxIBLyGswawxgsdGqJqIow1oJJAKdaSgAiiYREVcLnyCGlzFhGch/Su2IDrkb1HpXw0plrYlVWpC6T6Mg4nUuLgUoRJ6uQJTOMhibBOGSs0InipYAlJAvjuIcMBdPEN5ww/h/PyFwozgXLfM8DI0/aFkM5YKVOJz3dDlRJbLOFqoEJi2SoJBZunP/QhxEfSSJ88IN/RBmdd9+lbOmMy/P7OJm2yWnOqi654hcOOHFkhgxn2Xnid3nW+weG4sjtd/HeBz/MoQ2wOsFuf5rDobK1tcPehXORvGmr2vGAZSLaQGR0FS0ro+86Ou3iwYEbXYrqgpwz0KpNSiWlFGx4Y4hFCJ8aqxEffPI3M7zFf8ep3taRVGoZL5o017ZXWdzvSXZmHiA01lasbxeojGFQ32SPOnWB9Jg/0/oKiVyKqhHJSIpqmyk+uBFrWqFOchbxeJBhhmhHtZgnHpsCFSd5dF6lnVdSaeq4+NkFRquIzKP6QghWfZKtGTgdQ5rhCFULSXrGZeWjH370aW/vm/EXPDb4aYOfNvhpg582+GmDnzb4aYOfPtVx003DX8SDvT9rnDhxwv7rf/2vH5l+vnDhgv7zf/7Pn/FN3/RNT06/e+ihh27/k+978YtfvHT3d32iz1RVvu/7vu/x7/u+73v8E/39y7/8y/f+5Htf/vKXLz7Z5wHccsstw6V/39ra8l/4hV+4/xO89KHpf/ziL/7i+u+XdgD+Hz3Wz4bxtB/8qfbY5ItBxitIDtY40UdNr0F0bfNWHSytm08KuYgJ3jqgiaZWYjwE8ybB0uI0JtcRqWgySFBbVx7EKW7o1OlrqjiVRLVguFV6kAGXIUxGNTchyNgMpXMcqzhTW3KZ+HJXVLsoW2/+H/H5GffGTmpADE3SjKoFdw35DGMACnfMVggBZrRdavcBHJQu/DEQah0wCxNfrIvAYwPO1PKcxpYrxy8/TRn3WJx5nMcefRhVJ9Fz73vfykf++L2U7mrUM/3ODNs9zoF1lHOPsDVTrukTMp9z7vyClI5QS2XWJ7CR6IYkjaEpdGg0ykuGWmG21XHN59zIYId88IEPsnJBUs9ySFx4cokdFRYXLnDjdSf4P173BSwWTimZdOIZzG78PLZP7/PEc97PqWtuplfHH32AGR2uRqmFbh6mt9qqIcSclJoRdU6IGFBxd2pjxcKEpq5L3wNwAiJN0pTaPTUm42YhYbZqgEza1GmMtBUQi4oEJxheN7Awv455o8SWMzHZijTWKqrVLQB4805RFZToIIdLY7cVWnXF2rOIaEkfayCRU3SkutjhSqg+GemCq65Za0XWgA2ZqksUl4q3TnWKxnJXQ2j+UebRoS7Ftak4qU9UMdARSxV1pdYSf8vKUAtenS732BiMcM0S3QhVKDUAq2pUbdRawTNVjOrQJ8GXe1zxTKceT1xhwunLlX4+w9KSl7/8GHkn8eDeUYbrnCc+VtB8FPcziORYpR4+NeIe/iI+Xfwm32mreS0TE2nSEOhSMzFviYxhIVsQKKOtZQGlGKaCeFQElFJJqowWUoowVG/+VdVICaqCm5FnM1bjGO9XGAZDOmEwp9eQ8YlnVCpZlFVdoNYxuGI20Jniy7h3+/sLoAKZ2jowznLfvLJCBjETqAJdUvBMTk5NivaJWcpQCxeqcGD7DIt9qjh3f+AsWQVjRD7wMFZ/l1ES6om5CpnCox9R7njvBxGdcX6xoEim+ApM6XPXJEoJcyOKgGpL5IOJzqKRUEL4TcWtoFYDn3yMEmJOTnltWl1LpZ9lpIYx+xwjacFM8VqpqSA6x3yMOd8ecpg7XjS6Q1IxIjn1MiJd7BUT2BSJZDQOO+QtLhEfwkIt/GouJqnxHe4hJ0TTGkRjMe8T1pKh+P5YiwWY4VWbXKvtO1lbdU3zyDEjpYRIJK9UWsKpCB2ahGKOYvGzxEMg0R7RDgdKgqx5nbSvVv//3ZXuM2ls8NMGP23w0wY/bfDTBj9t8NMGP322jLe//e1bd9xxx9YrXvGKg7Nnz6Z//I//8VUAf/Nv/s1zn+ZD24z/gfEpdPVtOn6kMXUKlTBY1lljaDMqQmXEvXXaaaxxeHzYtLtHibtGyfPFjm1N+6+xqVczXEpjEMJLJKQyEMzi2Jix9l3xKQQqrUAJqUgDvC3UB+B1jR0+NYPQxk6KS5QpW+uMZBMzGWxhMJaVagVz6BorDYokaWbE7fV4i5QCkpqJcnCnKhrA1Eu0Ec/tOIdg+rutORwT9s4PJHqkGgeLJYfjPseyMpwvLAfH+44DL5y48pnMtx+hP3UDhxfuZ/zYBc4cLhgH57hnDt15PFee8EJxwofHQSw23UxcWIUG8hPOnCwd6ufZOZK4+YU3krZ73nb7H3OwP7DVd3zJ3/grZH+cE93I/pkH6PQ4V+0Yq3rI7pWX8ciHn2D/EHZ2t2D3FN3xYywpXGDGwYUVuSjdVpS1S+tQlaU2BjKFpCMo6ZgbjXESa5BNDKvjWhLUJhLVxzYPwstCZfq7XAJiJ7ATjGtKubG+QhiWRxIlOeG1YGNGUwAzlzDAtVpaFUUXnjfN+wjXMKNtfhpTIX4w0gG0tMlIwh+ptKIMwYtTaglgjlEN1JVmZhP+Pc56LVqN8wy5jIMYWTPmhCcLcV+d5TrZquOIo3T9jCqgmhEUzSkkHRKMGx6sWwADa9KNFVToch/VIzLSddqSyWAloytdrP1Y1w7DwGxrG5HKqSsuY35sl1yjjF/EkFXG5ktSd4yvePX/k999xx089v6fQupZkoRUKLqiObVOgN5ImtdyoaxKbVKKLmXUwzMoikwSYkYpFZqpeVIaax3+K4FMjK4ZjkchQXjtuBmSBbV00asFaextbRUWicPlgn6WSWLUEjGvlxmLxT5//WteQV0l/uBt7+dgCTUbLok+J0YdcDEOB7CaMBlwjIQy2kDX9+AwllUD24K6UxkZWjfEJB2dQC2CppjvCcJMX5WcE7OU8E6igkKUXAs37SaefSRxfjWyPyjL0rM3GIunDlnKQRh8eyJlJddMrWPzjLnoDaMSyLSU0sCjE1PIIcdWM46RzMXrKilpxHszUut0aK3DoybFLbGdM1lWVC9AQjRTSxiTm41xy6pdvIdTvBVBMVS7eIDQ1qZ7DaN2l1Yp5a3iJHyD8NZRT0LiCLGuTKytlbJunFDc13IxmoQFiLXq8dAivHsSYFEhlITqHlUpTW4i2uEqmAhJhJQU86hEUcmUGu9DFHWNz7WQ8HmtESs1Pq9SMIuKo834DBkb/LTBTxv8tMFPG/y0wU8b/LTBT59F401vetPp173udfOu6/xzPudzDn7rt37rQ1ddddXmqehn8Xj6Hn9lpJE5OBVtEpKkqUkEmu9DCwDCZEbaFr2H/XJyJUkEh2AoIKcOahh5ihJl4cQegmks8FYTHwxAYE7FG7Pd3A0kfEbQEWXazHMwyhJmwu5K8CAN4ragFayBkyQovyQSfgtE0AsgVULSgqHqNFQCNL+c2q5R7PfBVDokaYwmCZE+mOkmfzEJ5szFQubQEbKe2rM8WFKXI1ghi7CTerriHDu+xVOPPRIE9+GCrjonrn0ez3vZyENnYX/xUS7sK/lgybzvOKyHjMPIXb7HWVmwk3uwQhLIkkgOWRNCMEmdarCcuUI2LDur/ZE7b7+b7ctm4UmUwzB83m1xxWXXoGfPkVXJndDNO8ZVopsrMtslj3uk3YweP4HINrO+MnQRyHuMLhlanE4SKRup0zCEzoncAdq6TFkACZWEV4u8IwfrNUlF4na0rnFhMwypi+RkmlStA5m4tDlbqB5OLrSOa9M9jZLzAJSpi25zZrXJUy7drMcA1SlTyti6FiasxvtVm0RJDVGjFIPax3fZiKb2napIF9ILqyVYrJhMCIJpfL82rjq6T3nzMApDWwUq4ZukAJIif9LotadJSNK3CoyQJ4l58waZoV2HaFxba129wucpztU0DN5nqWd3Z4tcBqyuyFnxfoZjaLcV3kCqSE7kfotxWJLzFhf2LyBHTrCSXc4t9jiy3SOHC4ZDqLNjFDvCC7cDPNS8xHINjyrNeA0g3YpbcNEwUk9KqYWxEslJ8/yg3R+rlUowxDk1UCUTaIXawBYeHdTEhWh26esEJkXKG8beqog5Ur0lv1EZoSp0OWG1gDX/m+SsxiU33HwVz33Zs9jZOcGzb72et/63d3HPvR/Gq7DlW4gvm1G44hqm4TrFFpxShku6t0kzTq+sRol55ZUqPdUKWZXVqsR9lEj6zR0fIqHezrMA78WRbsVzLzvJ37sW0sowClX2GFaVUpWHxjn/9gHhodpR3aiijFbo+/Bhcq0NxEfsi45zsdwiLwswq00+FOsrZC0qBHhFSKLt/CK5supYhZw7utThusAlUceQ1blNcTTWgDhUGyNR1Q5cGE1Ql7b+ZH3fw+Il5oZLPOyYWO/pQQcAGnvM1E01zPsTZg6e6Zq/jhF7h3qKuenha6Pa4RYPR0RjRU73opqSVIK59qj4ig6n0qRYXVRyeZujRDJrps2vxlEzRpzFYDAXSIK4sxoGrGyw2WfK2OCnDX7a4KcNftrgpw1+2uCnDX76bBl/6S/9pcUHPvCBD366j2Mz/nzHp/DgL6F5MjF28PDSEBKSEtWGaP0tkwY/uM8gkiNYROkyAXQlQKo0RtEbYHAfqQZRHpyDzTOPJ/NeuSgpkdby3NabtxBsMR7lvQEycwMtzXi48ZWxBzdjbG+F+u64WIAYjc0o2G1fH8/UgQtbMSF5t+YX4M1a2ANkadKQzzhM/jtxjo2h9Agy+RI2dbQaAW55yIH1GDMyS2jGxqWs2N+H7WO77B7dZtg7R7mwYN8qy8UhQ8l0l13G5c+7ETsyI3WJnhndbJuDruNcitL2YE3retOIzTCSkjBvKOQ0UhZG53BqdZ6n/ui3OTiyix0eYBxhcfAUb/1vv8rlV5zg2ddexpBXnLOPsHd4hmSC9IqsVox7h6xK4cMfvYsnHn2A5YVK9fNcWIxsdR0pVTpTJFdIRs4ZITefotqYo0hcMAf1BvRiQ5+uqcjkWxHzYvIXivLvNiSSqNxK5J1IaGgG3bi1+Rj3amo4J/RAlOSL1tbwqYZxequWUM0xpxswnj7DvK7vf3Q+C9abtvmITAxsH5snU+euVochwfqJG1qDZcenmRznH4g+2D40JE5AM8FVxslAWxVPIS9wUSQpqYZRto0jmruQXGhkX96S1USwisWM4gnNGZ1lvvnvvIbrb3gWd3/wrtiANSQB2gmSlGEo7O+t8O4IapXRjT98/8d43gteyeVX3cy7fuuXePFf+TLKKtOnSFqX+/uUknjRc29i+VdfyS/9n/8n2TUceGKS4t6YUhrJ7KwZZ2nsbBkLRshUUktuKu061JDLWQ0Gu8vhxZRTRiRTq4cnSpMQ2LoLYlyTatGlLKcuzjcFax0Md8innNyOo6KMvORFN3Bs5zhpvsOzbj3BM559Oe/53bt425v/EHzBsCqgmdEdupaUuAAFbzIJ1QCFJYIkgy84euoqjm/vkg3o56SkuA6kTlEXpBpb3Ra4YAlmKZPTDK2CbGX6WebcZcf4D8eU7mCPo8Mhp8YF27sFPdpz2M0oDz0MxSMptJF52qZSqFbBocvh/TTWipVKP+up1h4KJMWtNmNpyF2mWqXvW8dGhForKkpOOeQ/Okm1nN6hs57R2poQWqUIuEncH29MsTZzZ4/j0rY0JkmiRycAfNoXaIbQGpUKUX1iU7RZz7X1j+5QS8wd80gQxUP65SEf0yaBm6poVBsglpijpVrI3loCqHQtGW8Jt4bssbYHIzJ5v+UMVrA6xtyXGkA8KeNUqdMYequRlGzGZ8bY4KcNftrgpw1+2uCnDX7a4KcNftqMzfh0jk/B4y+HNh+DZuJsFv4OKhDOswqisSlAA4WVtUDEJ9BZm42uxOs9gjK0zVRCShBV4+F9QeMF4mM1Pr/KJazxxDxncF1vaO5RKiySEIvXR8mzNQYhwHNIDIjzIhhBF4Xq6w5DQnT9wqMjGlKxGix40gQSoE+aV4pbmHbHhhNMVwCYSZojIUNIyrgK7w8XoauJI/WAp85UDsjIluIV6uqQR+//KLMbrmcxJFarkd0TR1gU5ciJY+ixA977tnexm4/wsTs/xjW7JxjnCaciRfjwQ09yeFC4IfXM56AS17ZPGdUA5LmLcnirzjgaRod2cM2xgatswflxwVbtWGVlYUs+du97uOeuFXd085AtJcdK5vSpo/Sp58yZs9BVDhZ7dN023VamLpcslsLxWcfuUWW+XaEkUt+TpZAUUjOiRjy8YDxkKNrmYHQkDINYbUa1tdYAHhAbrGcmeiq8SwKYqham7oVCaq3nGxvdgE34UQSojA2vxP3UqCxwGVGfMUlQUoqlNHU88+ZFMxmVS5NqxUaeooOixFyzllThYINFtXzLrtbm5TTwGnAInwC6gxHAWF1wq0juW/LYpCuNLesQxmrtcxog8qjaUAlg3PUzXLvwOaGZxddCHUY0RQe2nEB8JHdzbn7uTTzjmhu5sG+IFVJyRoPluMditY/KjFl/lINFZbnqsK6w/8TA3I9ydGsLme1SqqPZ6LZ6rFZMFV8csnt0h8tOnWK0BaPEZu9SmUzfxds9b34pAfKlmWOH0bskjeTMYSgjLkJOua17oiql6xoQzihKMSMRrKLhFAt/mtz1If1plQ4qYbw/lEqXWvIZswGIuBHxasbxk0e44bnXRgXHbI4izI90/K//2+fzea+4jSP/5Vfhwoeo1ViVzKIaxUcQI6U5wzA2fxOh6zoYK+M44jrnB/9f/4K9PWFr3uMrp59BysKqLLBS8VIpQ6W6MHillIFhKJTlIVoPsNFYDXCYKqU3nlThPgrGSO4TslCemO1T6yGOU5KR1DhcLHGcrAFaw48orkBthus5h2H+NL9VwjhdRRlWA13XU4ZKzgEEvVZqDUlkyB6duUJ2YUVHEo+KHm/dHFsMj73C0JbMmI24ja3DJ6B9VF8QyUh0hgw/GlmXGa0fa8TDhQqpCwP2qH7wmDSeEUvrBFQkOpIWGVvsyJRS23ON8EETlQDHMlXFZJJHlYirRFVNBtNgvt09TKrx1gGvYzpRmWKgeHRrpDIkj72mJfxOZrQNcP1MGRv8tMFPG/y0wU8b/LTBTxv8tMFPm7EZn87x9Cv+tAbIJAyBQ1MSILM265mkSq0jmkClD6jQAKG4IrV14kLQPPmP0J6803T5BqJh/tqe9rsE0FzDXQ8ZiNE19qGg2ajhRRosodma8QMHCf1+0kShhJBFFK9CUqXgJATRSnLHGRFvbKRHKX94cDTgruFHIEwGuQGIRbo1wLXGRsbrA1TAFGAkvlHDuLhWJ0P4PozC866eccuy4/0HHb93GIDo3OIJhuUBQ13gNbH/1B7/bPkxHnzgQWZLeOr8ozz81CMImXGofOzBuxjLilEcG1bMzj/GTDr+12dus9O3Tk3qdJ0g+BrkmRm5z8GaDOHaot0MqcqsJI7pyMIKSzN2Z1scSRrMUc4RxLdWnN87C3Vgx2fIkDgxPxLeH0MipTnd8cxxOWB3tydR6PpgojQnILw5QowU5uXRxn3yC2pdsETithIdAJOEV4Y1xmhqQx9zqm1QJig9ZuHEk1Nz5fGxVR6Emfrkl+QoouH30Phxgr/dahUPU3ISPihYJarLG4jxNmHbe5MksBSdGLWSMljNARI0k0kUN0odUIWpO50LUabOxY3WfGwbYbDzhreNO7ycgum/6MFTKcFYEw49NAARihfHDXKeg86AGrZNtZIQOglgYW5UC6AhZGbdNplMbkC6jivcVwzLC2Ajfe5ZrlY88sBDdLNtct6iHix58tyjpLPbPO85N5KGkVIHLCXGccmFxQF5eZ5ixuJQ6HwLcaVapYqRJaRVXqKrX60FTYpO7GJb99q6zpUhDOG7Wc9QCqtxjA5x7faMxUgKXqOz4bzrocUQlbb+HcYGqMTCFFxaWOlzT7Ux1hAhpTIzouAmo1649tqrOXn5ZezM+jUI6jlC8cQgZyirs5RmPrQawwvFSgVJTSrFGrCXUpjPt+JcM1xzzQ1UPcn+YkBWC3aOb7GdOz583z2MDGiCbitxuBrYIuQ1+zsjXR0Yh0OWywXd4FR30tYItgQErKNnznmWVDpSEVayQnthtCWaQz40VSaklIL5J3ybzIxiI7l1I3UL0Jlzh5nRdcFY910HXnGr9F2GnKg1KlciGR3Ax5i7Yi1J7OJBgFn4A6UEKoym5Gnu5yZDcYlOqJYRT2RVSMEyuxitZAXz1nXSBaeCQthth08NrerDPBJ0wTAfgulOoKkLxYmHvCZYbfv4hyLuKB1uLUa5IVIxVoSptBLd8RyrAqlv1RCRCItL63ZZY36TWNbKQJTWaOsiOpYxjm0zPiPGBj9t8NMGP23w0wY/bfDTBj9t8NNmbManczztB38mK5gWnAsmINo6zDX/l7I2mjaqLYHGvAmYNTNOchh5TgxiK7EVCc8CNECENl8XsxL+CxKbSMhH2qbisSFbw9F4DXPPxjvTSvi9BSQxCaaSxoKKgWtrbV6DcaYGG1o1GAZsbTAc5dAjeAThMAfNAUy9YRRh/d3SYK03iYM15tL8IiPvjSPJquGRk7pIBBhI84HZAG49BSV3HeY7DIsDRmB8csXv/Nf7EMITJaHsJiclo9vp6aTQz3q2pTA/vo2os0XiaA5ZRScJ0fCJAEPSRd+OYPuhax4gW9JhqsxmlVdeU1nYSMVwG+mJaoWsUMpIp6Be6ZLiLMkkOjqSVFIacYFOD3EfSJ3j5GC31m4PXPRukKhqEIkgrZrCzwdHU26SAGuGthrzC0E1/BlEK1YKQnhWRMVCJFJJomLAEdT7ddLjruHbItLYqMm/YgRPsZHUYJVUner1ImhJLQHQi/MGJzYhFURzVCloXHPzGq8HjBLJGo05k8azt0oMR3ANJjkAlYIGw6cqNCsTRKB6sO54m9MSEhba3EMUSWGmTEsSqo0k7dDZHNGhScQiZaTJsKyBaJ3N6Ps5s36Lc48/zEwOuf6mZ3Fu/ykeevi9pK6idQvRFUd2lFuecxmWjA649hmnUfY4kQp1a865c+conlkcDHgZqKslT41nwM/w0AN3U3JlrAPVojOeOwH8RdFJxmbT4nNylxjGETOYpGUiwag64f2CQW2yuwnAIuHLo5eA1mIhiQk2U6ilZcfN/2YyyY55GN9n3ip2KiBK7oxbXvAM0mw7mHctiGVMYObb3Pn7H+alT+0zbmc6EcZ2RDGfC6WOYY7dkvrc/J3MjFQLOzsZyXMODwfm/UglM1SjWqLLPd4Mk+dJcamM6mxXRaSj06Ok2S79YIxWqHXFYpUZPTyYUu6RIToWIkbVGobJnlkNy5AvjU6XuhbKW2e/9dppUsMGOotHNYoTMqpiFsAP6Gc9pcT35txhpWBuzLu2rqozWDxYEAspFA28WdtsRDLVKy7BeHtrEjAZPrsBSag2IDmM3QVZ++rEIo7/Fz44UR2iGv81AUnhyzZV04CuZZA0qaR57EexN3okxQpTKmkS31ulBJvfWPGcZkxdKuNAEt7iAxhNEYmJIqaYJLAZg0dVmTvRJGGI67gZnxljg582+GmDnzb4aYOfNvhpg582+GkzNuPTOZ72g79qhqoh3rUOX2ASAUcgNsxWog+OeEEk46axSL1imhqoiADnHlp/B3LKmBecytShCxRN8XmON8owrct+A6zkADQWsNidS1i42t5pYIqLUG1ERRq7NSLS0xx/G7McAUO0Jzb4tvmlFjwmYGqFJHOERLGxlWJ3QJTKC0qXwqR28lUIewTHLQISXtrvvV1lRWoAHS09QuK6WeKv7GbO2jLYU98hWUgskhizPqGM5Oxkh87m9Lmjz4nslR2NDSp1PhEidBoyHTFHmToGts2SCHx4kzDkRPaMjQ5SqWocz5mTmXavIzMZLTqeqQpCTyDCAtIFqUqgtaTBQwd7HObF7tFZDC9h/iqylgcxGXurQI17Tooy7mBIjdSOl1YpIQ7VlyTtoiweRaUHIKxcE7SEwgnfIzyREm2T8cZA1zhWor17bMoWjJY3tlc+XkYCSm0dspDJj0haZ7cAfpPEYSwDKWdKKdA6myEDIplMxrRenPsCUiVMosUbG9bWXQjB4rxEGwMH3gxmtFUiiAtZEuaCOSTNRNWEoZowG1Dp8a75rShkEZZtE8+SqO7kxoRLNbqu49577uKa66/g5JWn2BlnzHfOcO6CcnBQ6fo5B088xZ4lPnpeGM7vw2rGZbvwpX/lZrTb4vxwyFNPnMMO9xmzsrO1C8OKYuBjaZ254p70acZYCiQJsNK6kK19ihzKMDLWkb6fUS1iFx5yCWvz3EVDAhAZL+NooCGt65snUtaMCOSuo45DgBxp3ffaPMk55katRtDe4dcCTjHHpXLq1DbXP/MaUt7GvWDudApSlcODFe9/9wf4X9LY4kjmsCVTxQrVRtCp8gW6LkdljzlJFU/B9t757rdx8sqr6MYVDz/46zzj2a/EdIbaMma6+tqHqdeE1UQlI9lhWCB9YptMKQm6ji03zj35GDvHd7BhRpaOpcY6S0gkEetrHxU3fb7oFWPRnjMqRqpFlZEq3eS9Y4ZRSTlY+FojJqUuU0tpaWDM31kKY+YweE7h0yIQ/lPNu6fJWrra9oCcqKWiKY7X6+QjE5HWJOyxI9ZJ3E+IpKMlO7GyUntY4y1+R86SkmKMGAKSUU/rZHe9XmlJrzfJmmuYzUvCvQJKFm8RNFGbAbaRGxut60R0SqwMI0sOOZmlAOlFcMntBfGQpKwGbINbP2PGBj9t8NMGP23w0wY/bfDTBj9t8NNmbManczx9j780QyS6e4VvhlNrAUmxYbuvpRjB7upaVy9IeJfYKgJYY46FeEofkSZKlV1am3lxjBJV/uINJATTtDbI7gL80rxe8I7WgDx4aakBpkSwEptUaoC4jvE33MCji51p6P6D5SgBkslxbkxsdkQS8w5cyalbMzRJlLomII1iBZeJtYiAp5Iveq6kyZchSrshN5ZIICdGGznWLXnhfEahBuNmmYEopy7VCSeOrWBvUkVKlPFPZe0IoBky4UODoQlEDKGi6JpRio0o7mGlyQEai4saSZXkIR+qFqxSLbH5ZJ+BNz8GSXgG6MFG1A0hurGF3AfMOlyb34mCMEJpiYwIUxcnVUJyIpCaZ4NLzBMlTLWpQnSg81bZoOEdREWkaxtrzJOcZ7gnXMFkDNmBs2aCQ7LjUQ5uYVSetAOJ6xcb9bQJNjNiFbwINOmRUUJK1YzTJ0BvbiF5qQXzkEipKF0X3i+1LLFLwHswcDGbvY4x31qiR1tB4gmanCVWGmvZlxNgFcmxjlSxtvm3OoqpICDY6GHAiU1RyhhgqVSSK1Uk5kWTe1l1+r6nn3VcedVpjh4/ylBW5Jw5fuS5qIwkHsc8MYwPce6j8M6Hj6GPfpjP2TnHS7/2y/AhMdZDUk3MdYtVXjIejGit2MooW46xpNNYf6kTVsPQkp0ACanJGUQEGws5B3uYU0cZSvjXSGprOJhod0iNyawecpe+7xhrIbfqiOoWn5s7xnGMqpJJOtdADhIVGqpK8Wk+CsM4xrxIyjgWxHfI3Q7eFYo7vcyByryf855338nD9z+IPCsSXxdh6YJrplgw8+5OTk6aJB/EmjQzsgj96Jx59INcfrqn5B2GxUPIsE/yhBBAGRcyOVjXNFJ8GWHXM2meY06OinZzZtYzHhyy2htZHS2shmleQk4zymjMZj1jDRCmzcHdEcyFcViSutyki/WiXMyFlDJjCXAbXffag4EcUiSXi5VMrgKWmKdIMa3JqdwFtZgT8Ywi+tLpGlCn8LnpAsxF4hJbU9KochGleb8ECz24rbvKeTOZFuJfC6JtP0gNHFYMJfeRBJdaUHqmBgdhLh/+a0ist6iYmeJShlbZ4NWRTsMA3lthibUHCG2PVOJ3mnLsPUUpxdEORvfmvzM9gzFWxRjrBrl+powNftrgpw1+2uCnDX7a4KcNftrgp83YjE/n0Kf9ypqhMWZWQ4gf/HNIVUQcrKKuYAmhb6XzDfCZozJ5ygwNZLRN16JkGGlsM8HuiRBAkmBwJvkEROCOoBefP/mQuDjIGMDMFZ1qexlxRqrVCOTNh0RaOXNtbEZ0f4pAG99dIIVRa/XSSpDzumTfpIIGm1YtzEmTgqp9HAgP5rADgsWvZphruwYdiT5MXlOAeqSQpIDAUsC7LUxmVM102pPEmfWJ2UyZbyl972ypsNsltjPMtDJPMO+FnXmiV2Mm0CF0nsgoOQm5k3V5fsgkwgOmywltYE2kkHuY9TBLhSwjfaokGenygHKIaqHLTpecvmtymZnQz3q6rqPvOrocm5lqImel7xKiFdeRNFPSdkeadaSuI3WQc6XLEt3pVNuW3cy9JWRMkSxJVFHERAUqGugcM6WW1nVPhVIcryEncJ+mp16yybSuitAqI6Zy94tj3aVQJVhASQGQyYhnkvbgOTasrGuQ681Pxby0ZC8SnVoNKwUlo8xirVljwD0+H7mUASfO2yPhiU5lwWIi2jpWtXOEYFm1b+x0auX1jQ+Udp4CUmokW6n5qHh0znKpFAbGOrKqEkbpQ23eI3Dt9deys7sdwETm7O4c4/hu5cTuHnN5nCc//H4Wh2d48YuPcdvzTvGqW5xn7z1AzUuqO4f7T7G/OMNqNSI1s7ccORwKh3uHHJxfUEQYxkypmanL1zos1TD39hqzYyyVYawN4MQmbu0Ha6bERkjsSrs+OXesxpGxOKX6+jvcPUyWm6xu+nkcx1ZNIcFMNinB1B0wpbSufEid8tCjZ/nX/++f5w9/9/1ogaw1qhSS8oe/czvUkFbEfIZljXiBh/cTFhUJ1kBsmmQYNWRXfe6Y9z2zNCONA9iAaHi4aI4ugcUL1QdqGRmXlVqEMjh1dOqYGMdEAUaC4a+rgV6FWldr1tTMsAJd1yOSOTw4jGvfqozQAI2TWfiUXETS16o0xgFJ0Q1xXWUQ3Q2AqJJxmcytY/1taVRjlErsKz5jNIWU49ysNJGbMSZnVMeSUoCCUBCkmVaXOlLKGBUGaDTaa8moYYR1TMzxqBgo0cxAYx25hYl7xMuEV1r1QCa1hxghjWqMt3aR+HJRCuMtaYyA1SESD3hUNeKtVkQLIi2JbZVBsZfF67MKKYWkb/SMSUtUBVLqWJba/HU24zNibPDTBj9t8BOwwU8b/LTBTxv8tMFPn8q45x76t72N7U/275576D/dx/jnMa6++urn/8AP/MAV088i8pKf+ZmfOf5/93G8/vWvf8ZznvOc532yv//qr/7qERF5yZNPPpk+2Wv+5HjpS196y2te85pr/0eO601vetPJI0eOvOh/5DPgU6j4k+qgwQog4e8SjG/zpXEhGNfGm8m0qcaGXmvBpyfw0yaMItIjSfEysRWAEL4fIuFJYhWvFxehNNZZqrXH+I1XaGXCYSzdSoJrCm+RFigkN7bLw8sgGNDGkLTSYJwIEoATBp/WAIJ48zoRQ9UxawagTlwbL9ERSWoD2gmVABTuApOxrTRzalIY39oYrAaVlJRkHaMLkpUdCWPh3CteK06JUvDmvREd2zzKlT0AfUq69p5RQh6R0sRCFzSBS/huqDb5RECZdj1CmpFbeXt00itIbkbRSRuvHRcsEceRU8YsACfavCXUGgsbZygenQtTlkggNCGpSVJMJ/ELjQO72IFKfC17EQJwpRRl8qKpVRNEi3bV1PyTmn+EhPFw3ENDmqRKtYvjcUiSg8kyD3ApspbtTJIWdwmp0SSXcm+bTl5XU8TrmneJNqkE3q6NQwqZhDNJTwx1R3XWlqRhNuAMuPYBNlN40IS8IiQBmgQzCRN0je5rEMcUXiwxtxpxvvZTAtDQ+tB+IInhpVBmTupncAiSZpGo+gDZEBeM6AyXuw5Rpesyw7BkazdjXknS4zjbfaF2F7j8qhkPrvZ59qktXvDy65EvvpbyWwP333Eft37pcVYH59nJe3zkfe/k3js/yolrTkFXODwzcuGwcP7+j6KM9AoqYVBfGgM5Ae9YZ0bqQvYz5Yoi2nyzws8KCamKAibSwGNuyzdYzNR1LUn2ZlofgG3dCU+k+a1MFQjapEbBINda6VN0Q0zqFBO0y5x7Yo9f/unf5EPvvZv/7RteyfXPOs1jjz7Fne+/l2N9H2b9vmQsytKDaS2lgFe6PAePbnzNCQWdknJxLDuejE62obvALAEpsfIFXpYsDlYs6gGdRkXJOJR4kJDaBBUFFCoIwdweLM4jqbKzM2e5v6QMI1YrKSfcJmPvkPeJyLr6J6Z3osszShlJKdhjNGKzpNbgAKF6k61VX4NbMwvgjyPuUI0d6SlFIpHyFMyxNNmJTGvOMFqFS61oUkoxckph2DzlGRKvKW7x0MADSNI6OJbmsaPTQxSJ/cIm5tqdpLFPBZxMEcstpJvTXhBzIz4flenLA9BqxL2QyOSIpV6aj00iuntqiw8xj9em/JaoaoiNgJC1o6ZtrEaVUvXwwzF3ah2f7va+GX/BY4OfNvhpg582+GmDnzb4aYOfNvjpUxn33EN/663cOgyNm/kEo+/xO+7gjptu4n+qjiQf/ehH33f55ZfXp/Pa17/+9c/4b//tvx2/66677vyLPq7P9vH0pb40+13lIuNnwTSE+W9el8ebV0Qq0oK5W5TrxtLvGpizMND11vPHG5CThKo1rwDApIHi1EBFaZ9J0/vLGix7jTLhKVBoKy9OGp4ARviOCLHxJM+oNK8bJqDZzlYjmDWqogG3HO/1YBaCuYzjm44npC6V6mOcCxpgS7z57jguwUw5EsbYSYOVlUoda5RiN5Zl9MJcw9OhdhlpxsRZWqmydnF9NJxXyI2RNCcriGSkmaRqMjR5wEwVkmZqMSYWeN3JTyJY9r2GSbRPXdcsGCmEYpWcwo9HNdg0lObF4qTUwBuCa0JTnI95q3ZIAURoxtZm2rpFETSyJ1Irgw9WzKAI4UkUUhG32hhrC/AmrUqgGTnTAH1IhVrMlIKJ4BbSFZMcALS2VvLeWMhpQyK6sElbBWUkrh2NVUsEiPTGmHvbzJucp9rkM0MkNB4ryVMw8TbGnGTynIG4VtIMqk3in4fXDjqZSVvcW4nNNje/EKu1VR3EJhuuQ4Zq+F7U5rMizbDIrOKqSF1RxhXdsSvIXbDb1spDVDM0Zpg4eqoZ/axvLFsKBrWA9nOkM1arQ9SFYWHUg8J8u/KxD3yEK1/4LH5z71ouv+W5PGexj6pw2cmT2KHzsUeeoDxzzi0vuIyT6Tjv+SNn/MiTHD7+MWCg1oyn8GkJyUl0rjQzwgIpAFVugH0oDQBYVAd4A/TWWMWkLTn1SNQCMLUko4vqGrG4l6pCdcGtNkkXAXrc6FPHaIWxlgCytTDremop9H1HsTCPz9m54z0P8rH7f5pv/KYv46EHDzi7f44TR3dgFIr0ZHVWFnGsumHtv0Te15KiZqwtytznPLG8wJnuGn71ric4uO8B9pen0fe9ncfO7pOzs3++slheYIax1XdoOeClt91I3gLreoSeWd+TktDnxDisOHbiCFmPcPzECQ7PniWJBENsFomAJubzjoNVauboIelLKeHFw1eeFmNqVAlNccWah1dKiWqOWHSPxCKxjocACgJZhSOpAx+iPL1EtzjRqB6IqpJJttFHUquC1ZCYRZIZMaZaJJNxvFz0lLFI1qfEwBvb7KZo63Y3xQ/VkEGqpAZe47i1JT4RPBKRFMeDnNpW4ZT8uDmaY31aBIaIWw7JU7tWcf6RFExztzb5XkensDLDFQZ3TGJOqCZqic6F/dPe3TfjL3ps8NMGP23w0wY/bfDTBj9t8NMGP30q47HHyH/aQz+AYUAee4z8mfDgb7lcynw+9z/7lX/2uO6668qfx+dsxsePpy31rW4Uq63jTyw4a4xz0lkELvFgDAgZhqFUMTxVyME/OhnIVG/l93gDJgEUJ38RzGMjN7Bp02nl+2E2HMxSgEpFJaPSkbxDLEq8q03l6eAWMgK1xsxYBK1SDDzhVaEoYhmxjI/R9UcsoZ5RDxNrs2bg7I07MsW9QyTjTW5jE1AUCWDglTquMCsIFfGKt2CtWXA1nAITMEwZzUqXMxnFU/wum5FUUK2kZPTZmXVO11WSLOmT00khUUlSyc0DInchgdGsoI5owX1FrWME+iSIGpIqmqJrV0oBWie5ClJQbXIizXSpAwkfItFM1wk5ARSSGmHe7USRdmOIfUR8JFEbsIr7nDzRkRGL10CYVbtnrEq7biFtEg15k1UFD9AUxymtHD54d3cPP6DGHnsNxg8PaRESLLRRcK1IivLwamMAGZd1giSNQ8c1urZpMNuiRlJIEh0Lvd1r96lLXoAgPECoW7DiwdM5xQL4imorZwejMNpAaQbtScKPQxrgjc+lbYqxFyRVWnMvVHKAAYkNePJPcrfmyaGxYTbAH4ye4uOSB+78INUq2vWxyRNVC1TFx4QVZzUOjKshNtCUA5xjFHO6WU/xgVKEWXeC+c6MIydn9L6kLs6yZ2cZzHiQq3l4eRrNKYhSU0pKaJd4/OGH2dlWLjy5ZOvoCZ5x/RE67RlqZrCKmTMMwcSZRUySFOz7MAxr1rjUEp5KmsKXJGmLE4mUmomyx1p2oqpguVqxHFagwljGqG6YGGqfZADRlVBa7BKJahlNOaRmoqSUmxwuqjukgpA5HCspC3vnKv/mX/wqb/7l30e7jkQl1/BhQZRl9eiqN1XjWEU1jLbNHVKKZHeeOXqs486Pdtz00q/k2BWfyy++bcH775nxoQcOOBiFWjLzfoeTR09w4sgxTuzscPXJ47C/jx4W+qXR712gPPYQ9733dt75m29htXeB5XLgrnvv5x3vfDdve/s7GMfSWN0ASCLOcrVsc7o1HWiJqahipUaFQ62ktXQDcI/E4pL/0xT3qMuRhAeozS1uK51DLR5VHs2kfKw1ZGIaaZxLplanuIdsI3WgGUNwjQcnTlSmSFvHZlAsHpjo1EjBU1SemIOkeLiiiTCNJkCsJFxyxL5mCh2AvLY9x0MiV0MON63FcAVrgrtacQVPsadqCv8pDJL2iM5AcsTB9n4kmHkI7yIhEsqFDXh7+GEWD3mqlYj3m/EZMTb4aYOfNvhpg582+GmDnzb4aYOfPlvGS1/60lte/epXX/fqV7/6uiNHjrzoxIkTL/zO7/zOZ9jEshDy3H/0j/7RVa961atu2N3dve0bvuEbrgf49V//9d2XvOQlt8zn8xdfeeWVL/g7f+fvXHvhwoX1RX3ooYfyF3/xF984n89ffPXVVz//3/ybf3PZn/z+Pyn1ve+++7qv+IqveOaxY8detLW1ddutt9763N/+7d/eedOb3nTyjW9841Uf+tCHtkTkJSLykje96U0nAZ588sn0dV/3ddefOHHihbu7u7d9/ud//s3veMc7ti79nje84Q1Xnjx58oU7Ozu3fe3Xfu31y+XyT33Q+ifHo48+mr7iK77imVdcccULtra2brv55puf96M/+qP/l/Mppcifdi0Xi4X8vb/3966ZPucFL3jBc371V3/1yKdyLE9nPO1n2q7Bzrg5fe6wQgBMBPUekWAQVARpP1vzGTCa5ECksZEe5rxdMHFRfB3go1Lbhp2w0SJItxLgKElOGNoYKGvyAEPdWnkzKDmYACY2o5BzSCj0EuBg7rhGcEIy2srxcRApzcBUoFpjMJtPijbJRCsjRjvcRqwZwYaxcviUTPKbrBNrKSQ6gsW06Do1lUsTUdgb+McDuIT0J4K5A+4lQn6TmKBhGkvzhAgTZQ8wKk6UuUe1rBC+BmaGEt4Y7oakYF3U23tFia5yTT4T+3R8X+vwl7I3Fs/WIC0136FgAZVqjqaMaGlmzgkkkfwiEy5RchDdCzUSjeYdHEBLAixMx6qa1klEMKgCYm1OEMxYY8vG0kAOTvK2IbXNxKbkwYTgpKNDn7i0agQQjQQoWtsbYcbe/GxcqCagUUIuKQdAF8MowXRLJHdWJ5DUEh4vgDUQQCipxGNmaitZ9+jO5aoNqBaM2vx6NNjTFIbT1kA81UiisR7dQqKiSi0VSVHF4TolVA5NYpNr5d7//t/RW25Dd3dYDYWui85hXhUvCXNlVIWUGRhR7UL2kYzVqnLnH7yDz3vFF7PyBWW4QFJlVQbcBnw0RCrZOmZ9ZufoHCtGFTh7Zp9hf6DLgnaJK595BftLY/lwZf/8PmUcwkxa4h4ljXMX4n5Wt5YIBlM/lmCOxZ1SI4mE6Z7HmvZYvGQNI2JrXik1Fh3Ui6wwTquIiPt50X8lzNtHAyYTeouYM5YAbKs6EBb3lZwTVkY0dWinLOsSsRSJdu4Zxn1yhd2Tp7nu2HWcWDpFnc6Ey44f4eSpXU4dO0W/tcvBcIGD8xcYy5IT3chLrkg8eN/Aa7/hRRwr5zi4516sVDpf4GZkBe0Stlywf2GP7bMJeVyY7/Rsb5/g/OCceeAcd9/1Aa64/mpWQ+JDd9/HbDbnwpNnEVdq7qEuSJooVhgtXFBUYm2OrerDaWvCLdb4VCxC+NTQVoKtEyyjSiWtfVaEVRmbtEqYZ9oaV0aE1NrDTUmiryufwj9N+g5rkr3JB6c2adp03yNvS2iX24MGwSzFgwsZIBnk3CpO4r2SleIlHkgEukWka4Cd9QOUCcjSJH+iFl5YotjE6rviHo0dRAV3DXN8JRIxFahtLzFFtMUuHHwAVTrJZHeKJKqmlo9nxgpWjZw+Qyjrzdjgpw1+2uCnDX7a4KcNftrgpw1++qwav/iLv3jy677u655829ve9sE/+IM/2Hn9619//XXXXTf8w3/4D5+cXvNv/+2/Pf3617/+kX/6T//pIwAf+MAHZq961atu+u7v/u6Hfuqnfur+Rx99NH/nd37nda95zWuu+4Vf+IX7Ab7+67/+hscee6z/tV/7tQ/1fe/f+Z3fed2ZM2c+6UU/f/68ftEXfdEtp0+fHn/+53/+3quvvnp85zvfuW1mvOY1rzlzxx13bL31rW899lu/9VsfArjssssqwFd+5Vc+az6f+6/8yq/cc+LEifojP/Ijl3/pl37pzXfdddcdp0+frj/+4z9+4l/8i3/xjB/6oR/62Bd/8Rfv/cRP/MTJn/zJnzx9zTXXrJ7uNVosFnrbbbcdfs/3fM+jx48fr7/0S790/Nu//dufefPNNy//8l/+y4dP91p+0zd903V333331k//9E9/+Nprrx3/03/6T8e/5mu+5qY//uM//sDzn//8p308f9Z4+g/+mIxuE+NY26I01LvwA9ZgkE0LeCGhjakLHw7X2tiX6DCn2gKPldj8HBIzkCaKab4bSIU1mJxY73j6r9JkBe2/Xiaj6Oiep9q3Y2iBh1ZyLBKva09aDScsFsIPpZpB8iYhCOZEmy/BFIRtAggIVocGyhQosbnVtslK+A9YDTkCFpINnfwcJDpaoQooaJMoBO6jFkckGLcwzK4NRLM23ZXplFKw5rEBGOLN4JUcniReLkpOBIQwv44bLKjkALUQUh0U1Nbl2LiHv0uK4zWvIYkRDU8hmseEThKidiyNoQ+QFQA5vC0c9Sjn9lrx5KiEp4/7lKzEJuBma/Nvd22bo+MoSAeMkSR4k6q4UmwI0KKKWmrXNlFrePiIWGMeL16Gi/Ik2qYTiUK0r4/N2LwiJuDBsHnbpI0SE1kN17GVtGuwcDIZoQ8NWIdMZ5JHhWF1ahuyIz51Uou1Z8TcDrlPJIlZlVoKklJLULxJe9oGLqznfdKWKnmkkaKR/IkrKRlaMs99+UvYufwKzmrCag3mz2NOalbcMqo9XecMw5LcZzrNHByumM0TDAesVvs8cu4xTuw8xcmtHrNCUfCsPPPmz2EcC9bNmR8/Cl6Z5Y68NYPVPgtGtvtM3VvRd8cQERbLocWQADtTpy5awoQItZbG1oXUKrdOde6NzfdYy5MHiiYJQKLRIa2a0UxsUIRajHEslGFAu6gkCP+P2pyrAihZbUnZujIg4szE4JiEr5G1pCbjDDqAjSRz1B1JkLRixdCUWaHsHLmcF1/9OZStHa568UvIDzzCmcfu4Jlf+WV8wQtexIcvwK//7ns49+BHOLt8jCfHShLoZ5Wv+9q/xGNvexd3vOPt7J1fsZwtsKO77C3BhiVSliyHwvIgM+xd4MRN1/IV3/y3SLMtyv/nzTxw/z2knTleCidOnEDNOMxRddFrh9UVzkhK8SAhwFEA+azBWI9loOvnTLYuZkbfz8LUe+0NlYNxbjEsaWJVhqgS0LYG1OnEoiudVKyZcav2IEKx2I9UMuEjE/4zNJNv0RkqmVLinofvUPhOVXdMQnY3VTW1zJxiFr+vtcWiVWPlidaYHrEhZHEedfOeMGkebu2zxBwVpxKyRdAWb2Lf0MZQh1dNavurhrSwGV4jcZ2tppDnEVUPVhLVIdFRtGtsfFSRMBTGMl6sEtiMT/vY4KcNftrgpw1+2uCnmC0b/LTBTxv89NkxrrzyyuHHf/zHH1BVXvjCF65uv/32rX/9r//16Usf/H3+53/+3j/5J//ksennr/u6r7v+q7/6q898//d//+MAz3/+81dvfOMbH/jSL/3SWw4PDz9677339r/3e7937Hd+53c++IVf+IWHAD/xEz9x/4tf/OLP+WTH8e/+3b+77OzZs90f//Eff/D06dMV4NZbb10/DNvd3bWUkl8qD/71X//13dtvv33n8ccff9/W1pYD/NiP/diDb37zm4//zM/8zInv+q7vevJf/at/dfprv/Zrn3zd6173JMCb3vSmh3/3d3/36Gq1etoln8985jPHH/iBH1if//Oe97zH3/KWtxz9j//xP1526YO/P+1a3nPPPf0v/MIvnLr33nvff8MNN4wAP/ADP/DYW97ylmM/+qM/eupf/st/+dDTPZ4/azztB39RRh1P2lmDHm9sa/CGDZcx8a8CeG2GyLSubckxUtuIJkAaLcKj61srYFYQMYpXsOhGRdu8phHylcZUX6LpFyvgGawG06dd8zIJo+LqtvYFoB3nJAMIZjhRKAE8tIZUBhrzJcGMiq0BdRgyKNA19jYAklkAFBGwlEkpQ20+LRqMq0ttXqVhWKxJyeQoxZYwekXCZyNkQI24a/+NDm1CGEUrKk4iwNWEaKM8Pzq04TRPiAY823dHMtE+zyuNGg9mJ2kw2mqwbhkf5tdNxBG+Kg1gCNNGTpQ1SHR1AlubBru0ToKk8HeZNn/3xmRfBJNx66I8PiUBC58OZPJzaN6fnhGJhEDVgyVWYZo14Y0BQheyJ4/ExrDGCJX4XG3JUat6CNlM82jx8BxiYt9UwvMkFbARD5os5q0Ggz4x794YeqshQWhXLo5J4kpGKX5IElSj65U0psusyYpa4qcqawAXXhsFSV343lZpZtWT71CPWzPuzm3Z1zhn055BjPNPPIY9/EC8rxJrRqAywrTZV7Cx0M1SJJwi7Jw4SUrOK/76V3Nm9TiPfuQuLrvxMoZugOWSXDODJo5uH+PBgxUy26K3xK4Ih1pY7p1ndXDA6nDJsTTDkrc4U+n6DslCtULOMX/D0kebD5IzGW47NA8Vb/MvJDxh1B1MorYYEey2XlxMBMOdcqbv+1ibDpcaU6uGp0odAsioCFaGkCGYk7votriOT2RWyxWqK6qM5KpUBVwYbMRUwENqU62nmFFFOLNYcuGBR9k3YOsKbv7QXQyP3sPySyHNdimrgZuvuopbT29z4fAGrj/9DJTCaAlhiVdj+0W3cnZc8rxnXs353/8j6ol9htM38cAbNCwtAAEAAElEQVTewOrsGXLfg51ET+/QSWWoS/aKMiZYroTz5x/n/Nkz3JSXfH7u+M/dguUYfkZZe0qTc+GEYbUHSFefgOFISl38XpQyWlQNuWG1tOqheKhgtTLWi9e51hKErY0hbHRhsIgJqiks8StEJ8gpEDrmI1IiuUmSEbxJmXIkl7XgClVqS85TJNyqzbdGcC9trjhKVPLUBkRrcXLXGjC0xBvaHHQB6WNOKYgbLoVKeOXUCtp81uKQBa+FkOXM1sn5tI+Ze4QIMzR10BJ5NJJBJyqTlMzoun54YURzhNhLL0oINuPTOzb4aYOfNvhpg582+GmDnzb4aYOfPpvGi1/84oNLO4G//OUvP/ixH/ux05MSYHrNpe/5wAc+sH333Xdv/fIv//Jl0++8xeC77rprduedd85TSv6KV7xi/VDstttuWx45cuSTNvJ473vfu/3c5z73cHro93TGu9/97q3Dw8N08uTJF136+9Vqpffdd98M4L777pt/8zd/8xOX/v1zP/dzD97+9rc/bYltKYXv+Z7vuepXfuVXTjz22GP9OI4yDINsbW193CT6067lu971rq1aK8973vNuvfQ9wzDIiRMn/ly9Dp9+xZ97M8m8uMDUBZcM6oy+DBaHEuXwEmDIm6beK7jEBhJqlWjnHRty6/i1ZvEcN3C16BwnmSThtxJSg+CsXQimVRUhOhmFOW/ITGrrZBfsRUgO4n2TtCKAiCJMJsfVaztuh7YhRXl663jkAX60eSWEsSmQWqcmDyYw/C1aG3tx0ERpLJV5bLwB7Ev4p3hG3OOfVBIWxtVCBNQ4k8bUAu7kBn5Um2QCC+9imo+O0hjKsV0LCeZEJg+N3Bh+wxRo56TtHghRFWAtQQivhvBIERuDaWkVBjZ9pzSAZu2+5LinMOI4mvpmBA1TRz2J00FqKyF3BY3KBqakBBBJ1NAFxKaIN6A6BkttiqaM+QrRKKGHBli1TQQHpzYGKVgkrzWuDTUqFRiDKdcOL42jbAAUn3r3TVtbaWwzbQMFVw9PI5xJUhXXM47JIDYySaSgxOM4BJgSHR8Rb6Xvkomy+ChjCOmSUIYhKi08ALSqUimRrDTQ7IQ0qUKTlnjr8GhRFSKCuHHALqrHePxj9zBcuMCJ+S7ZRrKA1egwWcwo44BKmJNr7qgu/NZ/+lVuvvlZ3Hzb81nuH/DEE/cwPPvFnDn3OEfTFkMdkONHGeuAlkQRWK5W/NqP/DRf9B3fiGfl/FiZ9TscP3IMb3NS1Sl1wGgm0z7FiehE6ITfyWRgHglUYhyb0TiTR0gEZgDVvGa2fSoLoSWIxH0qJdjuaoZafPZYohIl50xKHTknuhyJcGpJac4Js4pZ5fDwEDOhS2F0v7VzBBYrbFySpENyCrWSJvYH58HzC2apcnzW0+/MOH5sh91jHWkHOLbF1uIoR3ZmbPfgHbzs1iu58fKb+P33PsJqvsWyznF6tjzhi8KVV57m1C03c9lYeQ5/xGUveybdK7+eX/udD/Ced/8e19YCH91ja8dguwOZka1w6shx3vZff4vjx7ZY1MyVxzOnLDo65ml+1jH80ltXz3XDgJYERFc3pdZKSpPDkzQmP6SOZSzNeynuoRNyqqSTJwyYVzqE3kt7+BCeUYiirSIqYk1BtLbkM1FJkIUyzXEHsZC9VAxvJuKilVoF9UTSGdbuv7bKFFriiytOJqUZZq3LqNNidaxFkZCLrYGsRuIUgSG8i/DpAYS1AKJAPMjQdbyuiCdEc3jhmKNuKM3I2qXFBSG6k8LKfb1mXGtLUKNr5WZ8ZowNftrgpw1+YoOfNvhpg582+GmDn/4nGzs7Ox/3gOvw8FC//uu//onv+q7vevxPvvbGG28c7rzzzvmn+h1/8iHa0xn7+/vp1KlT4yT/vXScPHnyaT9A/LPG93//91/54z/+41f84A/+4AO33Xbb4siRI/Yd3/Ed1w7D8LQn0d7enqaUeMc73nFnSunj/nb06NE/t2OFT+HBHwhmI+ZOJxlxxUenSm2Ft006YsrU9c0nRs9phrlh+jx1c7MaoDU68kSHNoQIeh6di0S7dRe82LQaySSOSjyVd2utuhEgUTxKt53apDGpAWwwgjFRmp+Ly5p5mQCiUdumPp36xKaGv463Emz3MQLMBL4oQJRte6MqvYFeN2lsbQDMtYeOKEgELhpgHusygLLPgv1oXgfTfQgWqF0PC+ZcRZq8JKoLwpciTz7MhDxBmnlpBD5pAF7EmjG0IymjbRMRgn3CjVIr5ql9l5OI4GpYA24B1qPTk61ZpCqQ1MF66lgwGcgp2NPJP8fccFdyYwFdtF17CU+W1tEvlAkZLOQEooZ5AKmp26BZ3MvYI2u7TxVs8qRJSCoBalrpuGpIRiSFqS6t/H2a86JxzZAUzBgW4DcFw0wUtmM2xrXVPph9C38JLtngah1RDW8Ud8fGsq4eCOsNacA4/r85SJtTaOtwSLDxeDPMRUASVQyVCax1ARQmI/lLZGNMDG6Tr1CX7Dzr80nPeTmP3vVBdm58PvtPPMDW8nFKsTVQ9pZgJhesGPOUmWnHffd9mMXiAi982Ysp+0uoF0i9s1x4GFAvjS2PiohaoY7G3nLJ5ceOsBwOWS3OM9+dcerYaeZbAtQ4TqlUK5Qa13UCptFZL65PNceb347I2kY8XtuqU5yo9jBzxnEIs3ZVSqnre2Nu6/WeUma5GhHVNRAO4CucOnUSEWGxOGRSvVkDOcO4Ymz/onNlh9XCzTfezMu/4K/y27/0Xzh39iGsVmp1KopKYaaZK4/1aB15arEPfUK39tjeOY65smUdMyls95ldVWpRUs5UG7kwDqSx49xqheF0UikW66WvyqpUujIwWIc+ccB1D30EnnU5N9z9ENde2KMeuZbV3kDeOQrbu+TtHezcE1x28gqe+3kv5cT738siOeXM5BXmjF6ggFml1AFxaR39pjnWuji6xzqVKVFXnIrXSEqT5vUDiJALReJZxpZ4Np+heU6YxPoUb/I0D3mJ5ojZddqXUo77WGmxmMY6j/HgwQBSA5EtFxWheMT41ClWWpc9Yg2lFN0XHQuvLPv4Sq2p62fMn4nNu7iO3cOXBkkUG2nLiSlJFYkkOEmHpr5J8GgSydTAb3tgI4SnERUTAyqDSFwfgKSt8kraOWzGZ8bY4KcNftrgpw1+2uCnDX7a4KcNfvrsGe95z3t2Lv35He94x87111+/mqr9PtG49dZbD+++++6tS6W4l47nP//5i1qrvO1tb9uepL7ve9/7Znt7e+kTvR7gBS94weLnfu7nTj322GPpE1X99X1vlzbKAPjcz/3cw3/2z/5Z13Wd33LLLZ+w4/Gzn/3s5X//7/995x/8g3/w1PS7d73rXTuf6LWfbLzzne/cfeUrX3nu277t285ANJ/5yEc+Mr/xxhsXl77uT7uWL3vZyw5rrTzyyCPdl3zJl+x/Kt//qQ79s18SIzblClTGcWjmtro2aVZ6vAheBSuVOhaGYcSMKBdupfi1DMEoYog1Rs8S5plgHZ0w/XVqEbyG/CKkJIa5UcUwCabErQbj2Hw5zBzRLroNaYKkVIzRxjUAFSE8T2qJ77MwAS1N9uKApmDJp7/LBEablIIJeCZpMh4HX66BoLtRrTaWoQdSMDMexzt5GYikNXCy5ssjSUhJAtg1kDSxQ+HLEd4IisQ1rEZy4u8EUtWk6x08QihAQlOOFuspeGax2rxsGlC1ACVJQ5riHgG/SyEXStqh9KhnrMTl0JTBo/V7KVGGHk3YS2OB4m8p9fS6HeDQanh0WCWpo1IDJBIQxWskO04kQIY3CUmAc1XHGAOsSwoDWBkJm+mEWwIJaYj7JB/SKFKQkeoDZqsA1xZm33XMCDMCsJZgrVwh0pwosxfHU3RadI3rbT6EqXG7z1bHuAbOOklTNCQqxO+sXvTtieOLzn2TN4+SkRostmtjzprhdLUAhLnvIGW0m0HKAbw95ETi4R2kEgA5aYYmyckp1tlkpJ5Sx+rB9/PI23+HTgsXPnYf6Yk9rDilEvd1jLL4uCQSvjvNRPf0NVcyJsNEqTJSREku7I5HGFcjaesymGVYVTwJh8sVz7rper7idd/GkeNXsD3b5vDgkCFVjhw9jspWAA5VxqGGt4lJA+MhcUip+TRVI6UugEHAECbZk1lcz5QCpE7+Nd4AlYqQk4Ynilljm51SW0fAnKg1fucIKQdgNDPGceTgYMFiuWS5GliuVpw/v8fh4ZKpM5iIYmL0s11yf5zFKszrNSnk1LpOOrv9LLxfkpPnHY9fGBn25+yfN3a359SyZFmMeZ5FLMgpfKAs4WmHRw57DlbOLAF1Dgo632KeE1vDyLxzzj/2JOzvcevJ03zhS7+Iy32X0gl2zSmOXX0lC6tcOH+I2Ygm4cjxy/n8v/RKdneuIzPDPSE54whd7umC16Xv+2DqW3w098b+B+hPKWRVEP4wneYWliKpKA7FHe2i+9pQR7TrmLr+gZNT+HjVWillpJqF/0+GatHnLaWO6IRqDF6pnVBSRAO32ObWjQPoIl7V8O4K+WJU3QzDCtH2QMWFpB1O+JZpEowRk+iOt5alKKAVZAk6oFrDpN4capxDqavmsRXnHgl+T9I5UYUCtDlrNWKyEnMlinjC5witYVwvLSkXZSBjaxhNPGQgM5aNVOUzZWzw0wY/bfDTBj9t8NMGP23w0wY/fSrj9GlK3+N/2mv6Hj99mj9XOeg0Hnnkkf7v/t2/e8373ve+2Y/+6I9e9u///b+/4lu/9Vsf+9Pe873f+72Pvuc979l59atffd0f/MEfbN1+++2zn/3Znz3+6le/+jqAF77whasv+IIvuPD3//7fv/63f/u3d37/939/+zWvec0N8/n8k170b/mWbzlz8uTJ8mVf9mU3/sZv/MbOnXfe2f/UT/3U8be85S07ADfccMPw4IMPzv7gD/5g65FHHsmLxUK+6qu+6sILX/jC/a/6qq+68b/8l/9y9EMf+lD/m7/5mzvf8R3fcfXv/d7vbQN827d922P/+T//51M//MM/fPL973//7HWve90z7r333q1PdhyfaDzrWc9a/v7v//7R3/zN39x597vfPf+Gb/iG65966qn/y5PRP+1avuAFL1h95Vd+5Zlv/uZvfuZ/+A//4fhdd93Vv/Wtb93+nu/5nit/7ud+7tincjx/1njaj7RrDTFClPArxaKrWbBqJdhBWgkuNKPghvOq4SG4D6DXNnRbMxux+mvrDlRrABj3SkKoUhE1pLEFYgEYPM1joy+1BQ5Zs3maUgMe4TcSneoMvDag3TVfnAjU5gJ0VIvW6LU6LkbYgISnQcTRMDUOs+qeYqCp4gygUX6uBNuWNMX1cmuMWZxvkjAlNQCLgA5xrhHsNJj+yZ9AhOpDBC0M0ZBXqMwb8zlEoKzB+oRJqUJtch4Ng2Sr0irzx7ielHhdY5tlct5uN9HFG+NriGTMheLR7chHaearillpjKyT00SdhKwpWfN0Ead4pU7MkySsWNiLSA51ilmwk03qE7lBsLIisu7ypql1EfOLFQo0hsubtCikSzTGOe6D440N6htT5BQfsDja2ByQAH4SJe4u0bXNKVQt7frFJhHJTCHJxbmhToBeCTnTRIOG3MJxUmOeQsJkWAB1CR48NtZYD+bB3juGTsa3rRokvrIGc0WNqotS4rppY8fNweOcpEZlgGhs0A5rpnwgkpSnFue58MA5js+h1xFKjyfHWYF2VKmM4gy+wi38XCrGcnnAiZPHQQ1SIjOHPGPwfTIzMEjdDJ/P8MNgVOe+4Ny5Sp+FCwcjdDO2cM6cO8vh/mWYH+OeD32QM4+dJ2mP+XnMUxjzWl0D0diow3RdRbEqLRGs66RhWNWodJikFESliFsN9lvDYLqUwmy7A5W1d4l4dCRUj3PQlBkXi3X8ck8hodBKzsIwVLq+D/YzOauV0nVbPPXEY5AHctqi1IFRIFWYidK7YLJEfE7KMWcunN1nWOxy2bOVuVdWdWTWR/ezTp0uOwVnrM6xXaPzVhFEZdw7pLvyCCszZq1zXN7aJV17ivzcW3nwj97N9pkLbI0j3m1zuLfHcs948tHHOLt3QC8d/c6MO9/7Ae5/5GHGWW2+MCtm9BRRujSLWGvWYkh0mcspRSfPtgcgRs6pVbwYbt4Y3JBfRUoQCfMkeKs1KgygGThTYYz3CdFdlBRzt6o3YAxijqTW/XSsJJ0h0kMN1tdSQT0euGjucQ8zeSuOpFbJ0R4iIE3WWDU6oyahVgP1ljQ1zmxi0InqnFD8xYMW0cm4Xlp1S0QayDEfcYwh5qn0GBnRHmUMaVCb6xEHU4BTN6IbKe3hiDDonC4ltMwRDOrIWCJmbMZnxtjgJzb4aYOfNvhpg582+GmDnzb46VMYN93EcMcd3PHYY5/8ec3p05SbbuITVrT9j46/8Tf+xlOLxUJf8YpXPFdV+eZv/ubHL23s8YnGy172ssWb3/zmD73hDW+4+pWvfOVz3J1rr7129apXverM9Jqf/dmf/cg3fuM33vDX//pfv+XkyZPj937v9z70v//v//vVn+wz5/O5/8Zv/Mbdr33ta6/5mq/5mptKKfLsZz97+SM/8iMfBfjGb/zGs7/8y798/Eu+5Etu2dvbSz/8wz98/2tf+9qn3vKWt9zzute97upv/dZvveHs2bP51KlT40tf+tL9ZzzjGSPAt3zLt5y97777Zv/4H//ja97whjfol3zJl5z923/7bz/+1re+9Wk/bPvBH/zBR+6///7ZV3/1V988n8/tb/2tv/XEK1/5ynMXLlz4uArGP+ta/vzP//z93/3d333VG97whmsff/zx7sSJE+VFL3rRwate9arzT/dYns542g/+xBWxJtlg8j5xJoHIUKKkX7M0wBcbfq0NjDb9v5dgDzUF+AomIEdXMmsAV8MIN+WO0Rz15k9AeEfE8UyeElHOG+AmNipcwRPTE/xaK12SkC+IxCbfSoWrjXgDbrUEu1XHAADmMBlPezNQViIYF1siEqwGa+AiQG6wpgE+VbCCWY6PagBPpKDuYBIyCnzNMLM23Q0PBvNICERSBD+ra5Dp1GBmJRhEl/AwiLc0/5jQxQQYI8qbBWtyFUFITQnjmBdy6uJc3FEPY+RKCT+OyeTVJUA10jrPBRJ3EyS3awekGmDTzFHt4hyA6iVAdytVD9w3mTmH0Sw4lOjsB4pIDrZKHatjA4wB9pTJA2O6RwLSujpNUE0iGXKreFJcjUzCrVIkBavsravdWk7UqhEawBTCswcI/4ioM8eqk1vXMyGHf5NNoD8+J1jnMuGnuL8WJelVJzlLSzZoTJgQ7yth3luLIzlF1QTeusXRGN7Uuh9qm0PxO1VZyzvMKpq8ScgCQHc11uz82FF2r7yabv8s3Uc/ig0D5Ei0Si0MtTBQcDWKVfo+Y9V44qknuerKU9iwYmf3CrwcxcdlmJeb4qWgOWRBq7KglMTWLDHPc4rvsTxYkdMOw7DgROo4eGKPxepyTl91BfvHtnn4DCTtEDVqHUk5s5atqVNKiSTUmn9SuzdAMxYvazYwLvs6uw7QUdc9N1uybeHrU0sDvOHPc2S2FWDZYRhqSAlKrI3t7X4d67qcKaUwlsLu7hFWy8Id77ud5UFlLAVV6F0oeaRaz74X7t1XZKWs8hw/phy7bIvVPFNYocMevjrHzvIsJorVfbrUUwuICaePz0hAl1untrEwm894qiSOjUsoS2SeWe0nzg6H7O4qW31BZ4n+xJVUybgMbClcfqynY4tjRxI7O8f4nK/6Ev74j24n33svqVNG6cCclYZMMEy+mydSA6raZFjaTN5L8/cxg5yD/Q0/lngg0nVdSFVkimkR+2qtJLWIOTJJXSKu13EAdSRH7HQRcqd4m6uqk2n0iCQLjyaP7o6elLh4tbHTze8opxZRQ56lOu0TbT4JLdaNiPQRd1SpdUCTk2Q+9WtAdNorI4Hsc8j6AnhOFVaVLJFYutPklSCpA1cqcQ2lyT6n/3OarFDjfM1TgG9CTlW9+V19hgDXzdjgpw1+2uCnDX7a4KcNftrgpw1++tTHTTcx/EU92PuzRtd1/pM/+ZMPAB/7RH9/6KGHbv9Ev//CL/zCw7e//e33fLLPve6668pb3/rWey/93bd/+7efufRnd3/XpT/ffPPNw5vf/OYPf6LP29ra8k/0txMnTthP/dRPPQA88MmO5Yd+6Ice/aEf+qFH/8SvP2kX3S//8i/fu/TYTp8+Xd/ylrfc98leD/CHf/iHl/oMfsJrOZvN/I1vfOPDb3zjGx/+RH9/7Wtf+9RrX/vapz7R3z6V8bSlvtTYZMtYqGPBaVKMYmGsbBlKwkZFaqIORq3BaARzSHjWiKApGIxqE3fmlDI2fGDQDJvHVUXpsSq4K6UGv1EtgosTcoYqGZNE9dhsAgSm8K7x1CQntZWiNxbawwpbNAOx+fd9dDnSRAvAQviStA5k5g1YKUgDYQ54xmpHrdGVyL0x6u7UGgBs8ihBGxOMk6R5FKiQu56c4/3hjQEpOarBUugEniRkLAGsK4UVNRcsybojGi3INdQG619XnBG0BHhpXjzezsubB0L1keIhM/KaUOlJDaROsoqU4zoZleKGuzQDbMVrmKkmcYqEtChyAMeHShpD0lQbA17bVKzVo+jBDbcVSMG1YiqMxaijRUt6ayyjdlH9ILFx1QYoRSW2H7P4JwFMAsA3eVWNaoZqRoMzeAMo1T3O3YM502b8iilWNaQ6Fsba1rpNKZH4xIeliyXoiWByJ3drjTbyhmCSYotMGSVHNYRqVFDYGOfgFfeCtO6FSUAJCZH5GKCM5l2hSsqpAXQPlszb9UrBnLFONYNlc3eqCAcX9lnsr3jlV34t117/3EiCqOBju97Ccgh2P1oUJlQd8YHcN0a3KjYMiB+gzKh0jAKix+m3tum7nsGU+WzGrOtQieoSWw3MkrK1NefKq0/z1JPnWI1OSj2jGUNdUu2wzeEIWaWWqa6CpLr2nZnOKQzuG1idmOpLwGspZb1GSymRGHsN/yCJ5DVpWr9HRNmab8WcKdPccmp1um6GSGIYBvq+p5SxGQM7OWUWhwts2Of47lFmqjGXfURNGG3Jia3EqeuO84znz3jmrbvkPqqBxCoHe4dsuTAeHbji1DZLr5iE6fViOXJ+sWBXUkvwwi+ldJnFyuiy0w2FnITjJ49w34fP8Y7bD1g9/BSH+/sczHvGmeF7+xwuD/jYx+5hOwGdcPyyK3noiUOuvf4qHnhonzrrMAkGfwboEA8RHC5J0OKcVXwdrwRQCZlb5BIa3ikia9A7rVMhqigECWNoUXb6OVlTY67BKFQbSblHtUM15FNWjeJO9Ujw8TDHdqmMLKmyoNiSSqV6QdQjtnjsZVEpZU2uSJPHtSRVpAHRFic8x2cTsV21w+sMLFNLrK2pwsZatZI3GZroxWs1gevwD4PiA84qAHUGzaBdsPDxXVEhFo0UhKRKIbE0SCRaURilCF5g1n/K/smb8Rc1Nvhpg582+GmDn2CDnzb4aYOfNvhpMzbj0zaedsVfGR21WISi4eciqoymDLXS5WAy6lhDyuBl7Y9hQHUjaaJaY7tLAEiRcDOxJAxMJcpGGIgGGCnFo8SYiXmSYJIsDErNa7Aa7uvgWUt0x7MmOygWrK8G/sQcxBLQY40HKY01V8mNiahI6nEbQcbmxRKyFjcwaSy8C3gwntWX6GSvIBIeCBJMZgDW5jsyMa0pznEslSQ5jFs1gr43Vj1JlHNPMgyzGiymBhtLKgGgTYnNIqjOMDQGNK4RYoStSJOXuCBJw6+jSTACn09G4NEtSpvsAy94LVh2kILV5vsDmMxogo/wvJnkK61yQBpzHEbUBU1d3ItmaI1bsLxJQBMmKWQl7oH7lHhNCpbbDEq1YNu7GvMrxxwYbACDnJTJ6Dj8lBQ3welIToCYLjpgqce8cQ0QPJWc49HRLzw1QFKOtvSpI5h/p9aQ3kQ5e0ihRMJ0XRPNDwYEIVlu1yQqQNw8PE1UQMIsGY8qAoiW80IwbcU8vGgk7o6qMFqYcgdj27ptEXIZTR3SmOmYIFFxUOoY72/G6Ghh9/g2t33+i1kMCyoVTSOeCqpG8WCmc5P8YGEQvbO7i1uh1sJsextPHYtyyFCW7Bw5Tt9nzj36MF4yV159I6dOXIZ97ICd7Z4uO6ONCB2URDlYcP/D93PZjXvc9tKbeP/titnIOK5a9YusEw+3OMdSAlCKwDiW9ZzXyDYimbAG6uWiv9HUlW6KFf0sR2WIaUsEWCegCHRdh4gwn89wc2qNVKvrIpkLX6aIBWbGbNY3c+Uer5WbnnsdZe+QvQ5OnTzGB++/l3EYqQlUjM+75Shf81efDWVgf8/48FtneDVWYyVbGK/Pd7bZ3jpGP/b01ehNuODK7mWnGCVRpbC7lcPXROY8si9sXz0i4wLLPerbPO8lJ3i2b/ORO/a4+vt3yU8Zw9Ge0u0wPHWeW/6XF3D4ods5e+4R5sy5YAtm3TGSVexghW8JSQtVBaNrCbvjhBxlGMeYXzZEt0CXWLgKoGhuJRhrAObhGVSbXKv9VzXM51NO9FJI7Zqrg3YpAH8xUhK8FHAjdx3hQe9tnhLJYvM3SzjWRTIvXhkVqE0q2eK1tmqm8EEC08aLWUWaSb40CR4SUrlaIac+9rASCZ57mGXTGG+zirTKKtWEWewLjkBqMhqJmIoKLgk8zMBrjQqApNr8yaLLpCO4SevA15NbY4OcZiwWA8NiRdr6pD7Jm/F/89jgpw1+2uCnDX7a4KcNftrgpw1+2ozN+HSOp+/x50ZqoMndwmsEaBoRzEao0a3MiwWr26QIgRgTEH4OAWQUPHw5rFRUElaD+ZwcOASPjauV3SMz6hgADEbqBADwZi5bIqCEUQiiGbMxjGs1Nr2pPN89uk9BMAthHRKmo9WbsbA0SYSGnsCl4msWY2IgusaCRyG1CeCGSCJrCsDswRHGOcR18xZoaBsv7gF+NJHUKTVAp6ABBBvhGax3bobKoDkCnFFDKoGHVKMxLYg2PxqY2qEjBEOqjdCWj7/XwQpGO3SkJSkISuvKZtFBLbqoOcVGkoTHjXt0G0wEIEyasBKeLZagpiYn8YpVQzS1c1McKE13oS0xEdf1hXMVVAm5BhoeK2at+VyT00jMrTAvb4i3HX+YVjuQqBhIWoMf8wA3IW0IgJ2gyVIm5jN8j+J7wxfHNYf/Dw0cNUmTaGNjjQDNzTcnjIvjvvokTcHRBrhqY9pTSutNNKocoOAkkUYRBjOmokAzOGdiCYWUE+4aPjU02QowsYhCfHawhAm6nmNHT3Jw4ZCtnW2WEOvFSvseKCaYx/8Wd2azHYZBeORjj7H1l0/g8w5PI66Z3MHO1lGe+vCD2LCCnaOsxpFxHFBTuhRVJbN5pd/uePCRh7De2dndYfvocYbFyNHtGbs7M1T76GToFXMh5w73lhS3KhQQcsqM65+JJMftYgUJcY31kiQ3qkrqGsTiRKVNAxrTkuu6RN91LBYLSgnz8VoLXdfhHgCsFGU+nyMapskJYbVYcuuLn899t9/PhcfPUJcL+m7GYRlIKWOuzE8fpTt5HeNiYKgrCvuoJVw7ShVSSVhNnB2Fo+J4V5CuI2mi74S9xcgBhZ3e8OrMzjzF7OFH6K/YYrbcw8qKpQv2xAGrnZH50fNsn+zZ3zFWi46dnTnj8imuvvomPnL3vRSM2e6cI4dbHByMPPjIx8h9RsQojCTLjKW0sB4m4e7ezPcvXmPxKWGIrnAh+QuTb7eQdrmF35ROTzFa/BFxqhmdRAWBasLGEuDWUpNaVURpST3rZCW8nQBxxtqS/Ja4RXwMRly1Aw/PmYj1RpLo5jbleikFSPU2P0qNRChpbsy4r9e0anyvT/41VqK4o0UfN2/eR7ktxliJsW4rKaX2yEExU5BEUsFqxYSWkAkUizWJYpoocQNix3TYPbbFi170HPqdDWP9mTI2+GmDnzb4aYOfNvhpg582+GmDnz5bxp+Qp27G/yTj6Xv8iVBqvYQ19DB59gADpfm6pJSoYzCAk0yFHNikjLU9rZ9YtfDYMCug4UFgNUyoRRO1gnaZWsY1myCNyY4vbwu2MbhRHh5+IVEGHH4gtRZIET6C2WVdHh0mqa3DHdGJTCaw1oCKm0Q5MjTWOVhCkYRIXruXTIaqk+mKt85r5tbkDYQvjQToswnYe3Qtm0q/kzQDYokuUIgEWxJO2UFC68TeNWCkBbygRLB18/AvIAxhhWDUaUEUr7gKwzg2ZrexQihIdAhENQxZ3UkejLO4ggS7L6IgFZGE2UCSHiGuSZgrB5g0LKoXLABnmKs6YwONU7ISgAgYw1zcgvajmBNd+YRUwufBPAxuU0pQUxikU5EsYEKY2Ka4JpICKCJTLQSm4OpQQ5JQEWSMjm3mYR1UJZRTiTBkjyqCKIePDU1ivrZzcwzNPbUWtIZ/EtM8aWx5ypFUuYfHiQhoksjFCPLMxBtgEtQDlEZDuwZ2PUx6J8N4EWUcJxZW2/E0aUo7Bm0guZaCN4mU1UrODcy7UPYW9EcWaILagS5C6uUSPjelNlmPFvCRlObcf/8TfPTDjzLb2YUMe2ceRjhPEo3ucjVR3blQB+TCOUoZ8eIkO4lYdDhbWWHn5FHOLs6FcXuZobokqzKsCrUUsgpDA62llGCTuchGi7SKDgJMRdfJMc5dY85N7B8t9kwxhwZozaKKxCMjmbAOiLG1tUVKiWFYUUohJSWlxGw2o5/N2Nqac+LkZeSUWQ1Lai2U1cjKjKKZBx/bZ29V8BrzJ4d2j+XikAfnN3Lvyb+GuzLs7rM/+3W2JcN8Rt6aMSexfewaZH4UlgPHyh4zjvPk4Qopyumj2zx61mLuD8YxgVtvuwFOHuXCfYfUWca7xNZuRtjmvBwiWulGAz9B12WeOr+PH45sWUVmR0lHTpApHB7uMa5WbO92iC+Z5zmrxYhQqHWFaNfWhrdkC0oZAoy2xEuU1gigSdYqdO21OfVYqoxloMsd7lBKbXlZRzKhkww+kpNQtZIwirfE3x2T8HDRlGFs+00EydgzpMnTipE7haQwtrje5TYXmh+Mt38qiE5rWFpcbOU/hDG21YEu9yFXSzOMIWLf9ERAwoemy42dJpIlVceZgHw0dZD1d4esUtXJOm8SHm9yl4qbRgfSFjeLGQWPcyIkoEdPbnPk5Jzcz57u9r4Zf8Fjg582+GmDnzb4aYOfNvhpg582+GkzNuPTOZ5+xZ9FB63c9RiJOlqYxXqwhCqxuZYyhp+JB1CoUsHDTNmGePKfkmNeUY+uOuKClyEkAdIjnkJK0dqQRxmz42WEfhbGzCaQG7NsweTVUoEokRZRwq0m/F2yCyYFl4n9VmqpDcwKSgdM5eaVlBSRSuCT1hkodYA3JiZYr4ShEh3xqhnSTSxZsGsqKahaFbSPw4bWeamGsaqk+Oc+BoAo1qQZEeiMkOeoBghPKdhKEcg5gKt5bCCi4bkQfKsibqQUPI03ic2avbRKn8Pk1nFyA2IuhFxBo2NemLxamPW6k5ijJgQST5glkjdfCK9YWmESnQDju3oSmepjAFlzlJ4kHT4a4mBSsMlkQYWVjSHWqNqAeytfTw3IqzCWkUzGXZvpbQR2lczUqC20VQG0NREeHgKe4vVJHSQ2WUlO9SHmiAX7pd7Y3uy4LNeg0HCoxFz01lkLRazQJaGaoOaoJEoNE+sk8ffq0Z1RmZimiucOl9aN3SfvoxJ+TgXwjGgOaQsOXgOMEpcsi4KU+Dx16mQgrmG0XQnmHo+N0MbSNuJEYSCVgcPDM7C4gqRdlManCqsZRkFnMavG5NTBUBJpu+OKK3a47MrLyFYZzu+xe+RyqnV0KCaFA2CVCpmRkZibO9npO0e2O8a6wBYD3iu+b+ROEEae3Duk9+OMpmCVImGoPqxW5C7jhDmvTjKw6qScGMZVJFwW8rlaSutWRySiRkiIVJqxt61N6RVhlhMJo9aBYVytGdi9vX3G4WHMKjs72+we2WY2m5FSYnm4ApfwUBpX1FIwD3Z/vrPN8Ng59p/8MPsH5zi6u0XfK4eLxMlTR3nlF/w1rrj6WTyxzBTv2Tt/wGIF27qicBQ7rKgpOztzrtie0y1Hnr0tdJrw2YzDsuIX77rAM44Izzsyh3qAmFNd6LoVcrBCu466laCfc+HsHlLOYrKipiuZzS/DVTl2bJfHu4SNANvsXTjP1rErWB7skbslqTPGRcIpdLMtfFnp8zyS2dCitBhQQXuQYG+rVfqccXdm0hoEqFJspNRC182RClkytURzgoqRNebBlnYYTq0ZyxkpI4NWMmBVI8HGkS6Bhc+UmLXKKEiSgUpVRTsFNcqwIuceNW9Mt6FEMuSpwzNAWUsWJ+Pt6mEML80bPqcu4nJSVCsmCa8eHlvqaA5gXSRYa2hJlhrFCup9RI2UUDrqKHhyNMd+Ek0JLOKSVXKaY+ZU8Vijktu+0FOxkCNqoqwskt3yJ0qRNuPTNjb4iQ1+2uCnDX7a4KcNftrgpw1+2ozN+DSOp/3g79CDMR3sYpt3r45rRhsIVM2x2ZsiGCkLNHZa3EJKUR0xD2CblDK2cuPGrqkqZYwNt5ZgU0tjHS0lqCPqAahqaaXQZmF2XSuiFqdVHW9MVXSRc1rDO1QnSgNsLOErYB5ynJQQEzIpJDQpZDBBbI3ItPET0owor27gLj4xzIVL866R1LgKLjHjDuZ5smUWgqWYmFsjALlolMw7U9l8JANCIiWh1CVW4/olTdFpyRvINtYssFcLmghdl+ezLssPIOsqwXxIMNMu4aVTS218fLDJkoRiYyhAsDAnb3IdCC+ahrmZOoN5MQpl7f8iBHgwYDInd4sNUCVkUQKIpvUGFAay8XrzSB50fT6VsZZggsSoblRTJEXiUcwjCSohjREpMR9FoLZuhwru4cEiHvPBU8hkPDVT2Rq+TNq8WiYZg1sN1hnWVRpCdEMkwdSu3qxACsPcKLoI35x4UVwNEY/PD+1MSFWkyYTa9VSNBCFMo9NU4Q/Wrs/Ugc5rvGWS+xhNElZIGkx6GQ3xQtUKqzE25YNDZLFERcKkvHWDNG9rLCmW4M73vpe0LCwPDrhwfp+nzp1H+hnMZ6TtPhhEUR5nwbNlyW4+GfNk2OfYfMbWbJsLT5xnHEbO7p3HU89s6wjixpmzcPqYIeYMZk2A09EFTglpiTefIb9oSN11XSTYuQPC6DtAbmpVBSFL0dQMhN1JXaJYQXC8MeAppeiKlhIqUemwv79H33fs7ByNmHh4yGq1Yhgqy8WAJiVprLljx45x8tRxDg8P+f/+2q8wLAfUhcUwcGR3mxfd9hy+6MtfxbXPejbZlLv/8B08+NB5rChUZTafo/M5s17Jq0O6/iiatjj3xCPsXraDpEwZlyyGBc+5YofFQSJno4wrHj48y/nVFiee2Ga7Kmm7Z/fYac6c26PUkWMn5wzlAqVch27NWBXjYHnIMB5iYvT9klOnj3P2qYG77/8o6hV1ia5pLcw5NNlfGH3n3FOskjSuXakhaUw5rf17nGCVk0QC1mVtcTASh+ztwYYHk1tqpcszUjMWE7vY6c6iNAEkOjG6g48V8UrqEqKts2ZoEEnazNaB1AWwLg5JG1sskRiGNLA0maVecp5CzhlbV94ImgVKa5LQ5GOaQkbilnHLZI3qB1k/AFAwRUxB01rqM5nUi+b2IKg1TWixTjQqPxSBJpXzpCyrU6LeBjRF3G7ftYGtnzljg5/Y4KcNftrgpw1+2uAnNvhpg582YzM+feNpP/i786AHsTBkbqxn1tapSCTKi30kS/PXwMhZo006wkwSnTuzpMwSdKp0InSqJCpel5gIMnZkdwZRivSIdvSrEtr+1JOkUjxKgNVylM5760aUNADGmvGLEuNgSC+W7Qcjbo2FHUgeJethbhzSA9UAn+LRLtwmlhxDHSRHObJXPr7zkKUmO5gkBkYiWE4I4BwSBcVJIOGpIQ19WAMnQrDeIpeEnwbY3cYGAGM7xxT3jKq18+ISeUQNxspDSkHzxnEP2+n434GJvCUnRg2A7rpuGY/GZ0bO4etjFnIAsPik9c4mLXCaNVnHBO6tgXCvF4G7CO4WIFLDnNbaeUeleDPqdmtgTy6eHwGwzUPOYx7eRpID0NZWdu4mzRsi5B3eJCbi4IkGbsBrwM7ARSMmYXo8MWNWgkX2NieSBtNtNrYy9QDs4XejpJzxQgDz5sMR16l1JCThFh3e3GsAT6sIqUkuxpb4eJNO6BqIMeVKTBIsaVM8gHF0tzOwYMsjKwm5mRkXvUQssyoDq7NPsd311AtnkTLEd4i1uWiRtLbrtt3Pefc73sn73vmH4PBj//rfcuTUUXIq+LBEF2/m+mee5uFHP8ZqB4Yypz96DD9yltnWUXIv+LAkMTIcLDjW73JhdTZY5JTIsxlDMaKBvZLdEK9UhJTDFHryljGPuTfWQt9nqLWZoFvD6+HbFJUoglkhpS6qZlr3uL7LzGc9OWdEtUmhwlh+SopBGdeSvI5Zr3S5Jx+bsxqiymV73gOFnMOHxN148sknwwfI4Mz5gZtvvoHn3/pS5myzXDgpVf7yl/0N7vvj3+W973+ACz1NKqdILQgjlx85ykzg9vvv4Xq9ivmJ46jOObHl3HRqhzv3DtjRxDAWyjXb9M+5gtpdxuEu7ErCPTGfbzHTxM78BsrifeRui77rOPfUwMOPLjk8OKTqwGx+hLra5qnHHuHC+XOoV/BEkmYr3ZJL8zAsF7N13CoWPi9OzGUspEOR8MQaBSOpYkgwt6l5r1QnS0JSolrBvTApS5yLLDSENEVUCaucDNbqMkSJfFFw19gTZLIlb8y6Wqwjl1a6U0FDFhjrJR4maMqt8UHznmkPVkDw5lEUnfUi+TZXsBYvNCGS2mtjLwoZWVQSqcTawoPzTylFdYkJU3fKdRc7iNhh3t7fJGoqjCRcg5k3CTmNflxs2IzPhLHBTxv8tMFPG/y0wU8b/LTBTxv8tBmb8ekcT/vB31MjIELXz8l9YhyjE1qmJyfFu4xTsRRARLznsHjzhihgla5L+ADURA9sZ2EmxtGs7OQt5slY+pJOtrGaEHXOnz/g3oOR/YWRZeRl1/bhM+2zACMiuGdSyoxliabmU6Gx6eAEUPUIriJAirCakpOSkMRxC+bazKlUVm50szDMju56RDBorCZF1hthUgUNM1rzHKDOISiegiYo44iVSp+jLNlc0dQkDzTAZCAprmOpleS+Bq+RDETwFJ267cHUEQ9PBFc9C7+NCUBqjqoAkbU/RzCXeR3bXLx17wp2HZvAzQgeG4nhjfGTxqQ7STpUuvi9j+H5guNjsDaqwYCXS3xqzBwvNTY2aZ4Na6DY9hGZ/I2kyTGkdcpLIUHxRkZ5Y4wlN8mBICmqJML7Qds9ypFcSNtwBMSbZxFCpmtzI+5/ayYVv0vx3+icl9omWHAqmvpIQDyqOEQA13UiI54YVgU0ozmqOqjhvyMTkMdQiU5b1SFJYmyv8RqSIUnhRYTE+U1eKuE1FL4/kUxGSUaYlZdY3hbz1dp3uZdWdVDBPEADilSnnHsYcs/ikYdaJ8AwehdvJuMaXj/VgKFyfnnAMAzs7Oxw5pFDjjyxTS0DXQ8fuvtRaAnP9tY2v3/767jqmpuRnSuQ2THueNYXctOzn8l2ztQ+c7ja43M+7xaOHt9hSCOrg/OcuuJyyBdYjYc4fatAcMo4YEZ0NBMHdbxWkua1f02AzphHs9xjpXLVNc9gXK04XOw3yVwmaVRJpJToNDGfzVmNRimlSeeiEmPyt6nVGEdjNuvWxyAi7O7M6WczHn/8EQ4PLoDXkCs1oAMlfLDceOKpPd717g9x4aDwjMPzLJcdV139DG56xV9j+4qP8Z8//POUJSHlKpVRKrvbOyyKccPzX0SfVmDBItda6XJhuSyI9WyfPMr2TceYzXcZvcKW0h27gl6UBxbnOXXZtTyxuI4j/Vcw729gOBS6DEdPwcN3nWHlxtaJIxzZPs5ll53nzvc/Qu4Uc8W0hsROYHRb+/4E6GoPAwivq9zFvZho0+leSApQa9XCN0wixo3F6Jq3S62V2ozTMx4PTNRIkduuvWc8Ms4WGyIoWJLWYVLo+i4SyuRgStJMrZXSZJJRyZGisoJY19oAZ2rVFqpgEkl8SokyVroug8j688IvjFB+WZPOSG2JS27+UFHKI+prSZq4x0MSNOJtGUmSI5n1AOsyxTmPuSRkhv8fe38ef2t213Wi7+93refZw2848zl1ak5VJVWZgUBEIoMKQZQ5KEqLtDi1Ctp67Sv0bbHVbgcugui1bWwVCQrSogTk0igKIgkKCSEDGSqVGlN16tSZf9Pe+3nW8O0/vmv/TuDaofr2vVDGvV6vvKDOb9j79+znWeuz1mcqiUm771YanblHfeOqvnE+fs3NeEmMNX4a7G5W+QI5uyotSPRMOattTYET8xfY6g65ttjlYLjIue0PQC3sDw8w5hmUQAdMA3SS2Q4wjcZEK3dvfYh56Li0fy9VhJPxo3zksPDE9YcJIrzmQtfwU2ytkb6GzKaFO7c+hAbjiZsPc3brBqfntzhY7fD84R3t0Mnv1xC83CGoIWROTW9xYX5pg582+GmDnzb4aYOfNvhpg582YzNewuNFH/z1sylIcItBMGLX+8FbVky12Tw6qvpkGsToppFSvSocU0LwRT2ESB4Lh6YclsitVWamcGqizOOMmCvLg5EXVvDY/gFHYpze3cGGkeWYmYaeKB7Kqc2+QTKKBc/TwIGTFM+oCcGzYmSttRaHLGuAUfAFmmPwIZSaUfEa8Uo8ngSk5c5U1pOut+GprSXxRsAZHWu2hXKceVOpbTKqhle5C6iI23hMvNI8Kqo9Qj1u1srZCOLQrlYPRw1BG1Pq4FOstSlpa0uieqaM9u19Npa5KQ7QhnkbcwqCmDX2d32oarhWGmdSCFRLiEYqzsK5ZcT/HbztyaABMV+oGucE2lrbzO0bdmzf8f7CtQLBmgWpFohdbMy8OZi0pkxQD6mmhYfTWEmR2gLBA0gLJ2+LvNLyYVrjWK3+PrWq265U/DMv7dpXv2dqFpCIRt+gZStEa+yyChpjyz+xY4bOAfBa7l4h4C1y1hYUW1tAMmvLjYkvsEjbqODNiahL/9cWpHVGkl8uZ2dp91JZh8I7VvUNlf8gDsMAcfl8LglqJEpHvfYUpBXlaN//dhEkqKMFU1Y5o1G9QU88Z2k5ZlZ5H6js6QFVAp0Epn1P9FuKsWRMjBtXr4B6I91f/Om3cvLEXWzN54SJkcsSnruD9779We685zQne+WX3v1+9o4KfdwmDfvHmy8LlRgCobHCGoJ/Dk11oRqO5y23Pym5FpZHC7eENRWF5UppagipleT8HxpnrZWubWRUW4MldF2k6zqEZmVRZw6H1dDmObd3haCtqa60D6J9VlSiFHb6zLh8HpUTXNtfcPVjz7N34jzXyhaLccI8J4pAN4zY4YIhBp5ZDly6vGQqCz7r9HmOVvvO/I6CjZleM1UDW88sGJ+/RHfxHCc/chMuVOqrhK0QSXnkPYsHmZZP497VwJl4xLBQbly6gWCkMbJ9bod+EomTjmuXb6ExUEyhtT4GdbOeWW0bH1cs+Zyxths2S+NxKHjEMbyRcvJrqoKV9lyqz7G5uNVMFYIqE2nlBcE33dnNkO261mOrXi0FxLOvDLAWXi1BQLPPNQTA55Jakj/rLXPKLYz+/uR4s9FUIo2BrqUpk6iYSFMede1O80k1aCsEAFcLqTf1+YGDYHE9D7may/89+H1N24w2FZirr8yvnTSQLvhGtghVjKwTKupxYdJI8Ow2lg1sfemMfjYl1Tk/9b5v5rHLn/8Jv/cLXveX+NR7f5jHb/5Wfuw9/y3f/KVvBFN+9Bf+Es/dfN0n/Nnv/G1fwIX+Bf7ue/44e+MWn3P37+FW3eKffeiH/Rt+6T/+c/fuPMFf/7z/goLyp3/yH/LVj3w3X/rQ/8o7nvtsvv1d/8MneMXK73zVW/nDn/btTGzc4KcNftrgpw1+2uCnDX5ig582YzNemuPFl3u0Gm7TQCURRBzQaGIspcm73UJQ2mRljmooJRNDaItuJI2NMZVm85hMOMojYzHqMnPrYMULewOHyfMBtre2mOzOWNwc6EKPWWBghVhxAIk/2McLV1CkeoaOM6EGCtpk0uvMGatC0AnVMpmRaB5Q60rGtsrXFkDaRYxMLcVb49QBkhcytWY1CVgdGtgRvIFtzeQ4Q12sya2DQK2eLWON+dGOEAKpuh0COtY16EiG4Cx5xbyFzdp0LPh7Ndw6E5x9RRwYV2kWhmoOOrgNerzq3N8rzdYh4kxgoTo4X9s3iHgLXQOhDZCaiF/v9jrW8moIgVoADBVr90SAoM72CQ28FVDBmpWjmFtY4vr3FV9VxErD0I01Nt8gKC7F1xbe7IGuipV6zCSLtXY5HPQ7mNbjJi1ajo8h7TU83dpYs9sRdJ0zI21RCP7319sZKW5DaVLztlFYN9CFIK4qsIBa16BMaQoDt+5UK968Vv39qXRtCXVYL82ug7pKwA+rA7SQbVOw4nYpJVCKUSV5zk5dq2D94Nt3T4ZQsZLRo1vo8ha1ju3wPHjOU/VrO5ZmpdGCddFBm/hrdKFz0A6shiXDMFAVVFpQbi1MVGE+px8NrcZefpb+uiLRccmlZ29Bl+n6nt3tbQ6WGcYVZ7d6tiZzb0JUZRjCMavnwcW5Afe2ucQZ0lL90N+sojEwDANmxYO3jWNQ2feBnAtdWD8X7dloKoZxHDluE/MHiWq5Bbe7NYwG2FJqeVrFKGnVrDDqnx1G3/XMt7ZYrA7Y++hzzHdPcXS18LP/9qd56FPfAPkUIQopZ7ppZBo7ZNJzcXfOqZ0Z185N6NMhYjDmSD8Xz4HRwqRTjMJ90znzOGc1ExYM6NYczpzgwrn7uHJrSbEZp7Zge1kgjxSbs729wwt18CcrT3j6mavUumSxSp4Zs1aPmG9uS05un8A3S9oUNbUpp818c6Ctya3UgljwWJlmMzGDLnREdXuQleLATANBoZZMH9Tv0z6A4sA2W9soFwqeJGNSmyUOaGRQLbiNzOrxpqfWtnlsdg9nehWIbmuUTNWWdVYMja5qcb5oTRglQDAJDUmCUD0arXojX+jmbo/E7Z2iHmotIbhC5zjIW91i0tQzItrydBy4l1IxU8Rie749o0yK52gNGSx6E6U26413BqyvxWa8FEYpxrWD+3ns8ufz+a/9i9xx6lEAD5Jv8xrqBwVbk+cZrfKyO36K3/e5H2Kojp9+x6f+RXKe+71Iy3qrmRgVK4mIcS1d5albR9y5+xfYTYEXVpX5HL7mN34Nq4MDPuvcHDWlyohUb5YVAkF7fvrZ38bBuM0XvuyHSKXnxx77Soba8+UP/SPAN0b+pv3sxYDdfsEXv/yfEnSADX7a4KcNftrgpw1+2uCnDX7ajM14yY4XffCn2lGKMeZMN4k0RIJqJZdKUJftS4VAdQBRpJ2wRyQoZcxQM7HrSckXFf+6MBIoGhgJHIXMUVmxl4xQoe+Nq9cGzlqPi5cNGc2VhwpIZbQlMfZQO7xZzry+vBYHK8WtCiEqRZ29Cxqd7SQ482C1Aep1toCDkGr+dyEZ00oSn7Qcewq1hsZsGRr6BiYcRJTqQDcQndnGaQUr3qTnoHTdPFegZs9SaX9nHQfPW6HimEmJEsjSJsVSG4AVOqms7c2oS5+1AciWUkypBY1dQ/FNwUlCDCITJ15EMUmNtIlogFITahCKYVpdcm3Frw3RJ38LRA1kW1GxBjwdbEmtSO0QEW9pq0ZVpazBIbUBZLe/qBpSK4qRmsQ/GJ4Z1Ow8rRbONwjVN0H+kZbGDEakNeNZSawjjjUGSmv+s1pB1NugcIBrVM+QFYfr6xBeasuZQFwyT6AWAe39cpbBw8xtzcBLY+k53hC5Pd0wy429Vk/OkIBojwnk2oB1A0S2DrMVxaT4AllcHeA2FfOv4RsRQT2zSWJj9ls48/pKtzwR38gEiD1CBqrnRVXDYnVWzdoCbbi8vyRi36zzxS0sIkY38TB5s0roOkq2FoBtzqBXJYtSjxasSvXA4dUKEGIICEYMzpTHLrJ3eEjUQJRA100ckFMIImz1E0QjxYzVMFDpqNlzZByQZlLbTDjed5VIoqDqaoWSWwA7lXEszKY9UQMd6jkvQwLWjKE25QPEqL4REmtZRAoKnXrDmFXPdDIpVCm4CqQxl9Vnl8X+EXkeGYcDLn30Y1jXsbh0wOUr+7z2VZ9OKEKcTRiGRC8JKQPbF3boKwxVGA8H9pcDpSTEhPcfTXi2BjQGdLliFChbM/o0ckgizqdImBDMwVzWQBBDTAjLxHAw8vZ/9zPMynWObOS+nY6Dw1toKuwf3uDkvELLaqkIVjNWMkEDpTg/G2JrzIwO5kWbvUuh60LbBGRE3Ari19UVGdWDvlz5QVNUmG+GXKUTKGPG6IjWWG2tlNxUHIRGOim94CBOPMA9mCBl4sy5+UFCKcnnrJCpJaMltua3jE7Wm2+/VzDx3DHt0M4wlr420IFF3+QKoNFzcSQBmVp8PSDQ8qDcaic1QDZiCGRTonQ+L5gRuw5p+Woqnm0VmvrCwa2Hb2sVSqeErOQSQUcQX39LMW/Pk3YQsBkviaHasT6zOrvzGGd3P+z/LoWUCiFO230LULFkzOM+0919UMdPJ+dPQXW3RV7jp5qJk8BYMr0GVqNytIpIeJqSjcUIfV/o03u5d1J48OQcMYO0pIbihKwo++MJDq9+Bn0cuH/yBDRVklnhrF49/m9VqM2CmsqcxbDNM3sPsju5RdSjDX7a4KcNftrgpw1+2uCnDX76z2Tcddddr7106VL/p/7Un3r+27/92y/9er+fzfjVx4s++Bvyqj3ACmbkVIhdAOn9Aa2eGWMtk0XoyNnQPlIpDHk89vKXkjAcwHRRSdkhxdGYWI6JpRjLAFeWR2zHCbuWuH5rxYXTE8KYSUDRyEQ7D40VBzClVmezQyCKUlJCg7SQ3rbI4BkpqoLKOmS5tnyaShHBJyaXCyueBVgt+b9KpBalSG6SZgPaYqZCyZkgDkKtrJvwOnIZEVWkOqvprVfOvpjcltebZUwqVkcgYdEXX20MeLZMoYJEQo0ECUQLlFTJfe+8R8nOllpAtSOaX+PYeehzLq3pzFzfHDU6hZ+LWxlCdjZU3apRRVhjHb82EasjqgW1SE0emBqq22NQJeKhx96cpu33DYgkQhVMlNp8Mn4Z20aj+r1RcqQWz68hum3AsrPtYgLqgFQJVAst72FtrVHyODbmrL2++nWMGhw4H19vkIqDXwktR6R4MLMGZ4o1gyWwiLlM1cGmFbcxOQ3GunGPJq+39p7WAFSMZodRSs6+OOJK2fXmo91Ijb+qLWRZ2iJfKCW1g2raAbcviNpe27Ga7zBtbU9Zh9qaQ1dt76kiiHrWCtq5jcjNPM7FC0AhxEiM0gKXGyDQSJFMriN9PyHnkbwOtDZxGwlu5VERCLeBdQgOXIIGUipuV6pGUldilLokyD67W1ucOXmaa7duuqIjCpNJj4hQc6LrIpO+BzG6rY5SHKCWWkhjOrZmDeMAQE4ZVaGU5Dk/AlYqoQuMw0jsO6TvPYw9NMUwbtnK7e+oNZPSClW8+a6FAZf1BtIqXQyMZSRquA188TDiccxcvnqdcci8/MFHmMx3uHDfGU6cPMXu7ozh1g0H9FEw7Qm1oFKp8xkrhKMMP/R97+QfXPoFPvCBp/iyP/jFfNqXfzm9KJ0Kt3LgsWsrdhbXueO+80wTlDFQJRCBTEHFOKFKGRNyapdnn73Ev/vpf8+r79+h35qz1U+Y7p5ncfg8Mg7o1oyUEpahj379bb0RV0XUKHl0trs4YO37CYWEtc0y6uqaUjy8Obbw5VITIUTGvKSPXbOeVWKMpJQJMkHFN4a51DYHgpR0vEH0e8OtYnSQ64jQ+/1n+EGHOfCz6koDb7X0aAq3mfnmtKREqK54KeJzvwvFCyUligyE0INlL2YwaUrz6u2feG6Z2xE9VzZE9fWpZD8I0K4x4M7aa1A/HCiupPfMt+xzEnr8HKpPsxgVbZabogGJ2qxV/nOoKwJ+WbHBZvy6jiGvmgqJlyR+spqoJTPRI/ow+KFaKUgAjS2sv9lza2v2HEx5bnkXf+bf/M/8vS/6Xbz8zPs2+IkNftrgpw1+2uCnDX7a4KfN2IyX5njRB3+jVLo+su4fc2sv1NomjdR8+Vqp4gtljD3ucnA7g0Zxpsg4ZjTrOk9DlZQSuXgRVe0CI5UaYLTMMGR2QodJoRCcAU4uT9cgHlJbWwBxLi7Nd0LQGZFmrqjFAZJUBwIaPEy6vQkcYTTprwqUfCxTtmNLirZq9gpSm0xbSbXQB2cQvSHPM1OMjMaJXy8qQdYSZGckijVmxNyq4KAk0xKHMZRSfbIP1VuVsjnjlhvDKhqQYs50SnLGyCBTKQQsNjl3p66QRjFRCs4WYf55CEKVrgF4QJ3tdoC05jytsfTezqbqFpQkxWXjBsUDFoBCEW3ZKx1WkqsAaiKog34PXvaJfW0BUZzdreqXoWJYabaUUtCoIC1PMvpdWalglZoK0Vzu7fde9ftDFNcMCFays+7V1apUt8iouP2iItQGhBQHa8roKNeaStSEIM5OigQIQnFaGjjGq6wr5f0W83teFaT6xsBMMW3M+frnzd1M4AG5ZhlRWAeo+6LkeTZGa9Mi+70QPN+C6q8rtf2cucrBXwMH4eJscTFtf5c3PvpNb2hslo6WmaMhUjWTWyaO4d9XrbhlojHFpWRn99f3VDVfcFWPwVxKbgEJwTN03DrQArPN7VDZMsthxTgWNCh7R0sHk+oAvAtC7Dwc2XNPfBNpOCDoukg/8SDfnB0M5JT92Ui5WTwiOSePCFClZgfTGBQrdLEnhJZf1ObB6aynNAuXtXmwVN9olFpQaaHgdQ0omn1LYJVGrt26QXjqMca04PDogJMnD5hvT1ns+TwZQvXDgAopFKYzZcQYUyWFJSVf4mD1HP1uzyoBCUQKy2FJ99B9pFP3cPXgFvdKRk5MkU5I2ViNMLHEzWHKyeSNmZee2GciI2EW2b3jNHfffS+Xrqy4+vw1cl0RwxTpO3JKpDJS1S0xgttXvGFuTd3W9tw06x7FCZmW+2LNNnI7XL5ZiUQ9aLvrqOKAL0a3EC2HiHXiwdZqlFSQIkjbvIr4vN7Fzg9DJlN/BB2ruv0Ot9GsH0TPl2l5NfW2XUyjKzSy1WPwiTR1CW1+suzPQ1MIiVq7Hi3k2gwkeyi2FKx2IJ5zY8f1dusQa/9vz75VxKytS/7c+ObcZzcaUO9aW16pQtLgQLXq7c1W2/9W2wDXl8oYpULnn8dLET/5cu9KO2+HbY/z+hloaz92nKSE1crp2S3+9hf8F9y3+0TbHG7w0wY/bfDTBj9t8NMGP23w02ZsxktxvPiMP/UcCbdnlNaGNKFmlzGbOdupnXpZhmV66bBa23Fas/pKO03HD+lqckasVLytq3o2ymJYUau3uC3HEQ2Bs11gCJWajUl2WW7sBUxbNb1iBKoUCmucXUk5E2IACjFGanYLhFF9wYqBY/LZcEa0BU/75OFh0bUmzDIhNE5PfGIppYEF8cBeWzOCqQFmNbw1uAUimzWgKp6MzNrS0gBOrdQ25wRREL8+xQwxb1WrAYwBJyVbeHNOHreg6hJ9wzMyyjrg1V/H2XgHYIa3zkl12GNWIbuNxhuUUpP3OzAqQaF2qFSsSeVFJyTzTJ0UehKZUDOxKTEDvlho6ci5gno2SDFrDGklZy99CTT2T2oDfg7qqW2RK85uVito19rqrLGex5J3txH4ymVgzdIinq9BNmfAW/PVujEPOP7MkWZLseo/izkr7e6DtlD5Z1rz2JhLD8gWgXXjnufWVGeUxBmomkdU1huodYZHa6vTBnAacyfqEvpi2e0Q0pg51uG47X3j94YHXDtQqzU7OG52lpwzKm4h8Vu9bUSrZ2VojO1e8ABntyM1e0+z+pfqbG4IXcvdiZ6nEjtyTgh63HRnfmsfg1l/BmkguzW2SW25JoqqOrh02p9SHYijPq9oyzE5HiIsx4QNI4JntZj5XxWDv48uBre/RM8GCTHQiasGap/Xv4a5bjEJHjTcdcru1jao0E9m9H3vGxpVSh05ONpncbQgxInfA3FCxdje3kElsEiFWjN914NVcnFLRIiR6WTC7tYWs37KbDKhLJXhVubq4jkEY1wJX/11X8Onfspr+LGfvcLi597LcqE8eUU4ByyHwFAX7G5ts3tqm/nWjL3UQtJFycPANBiLVJnVFR2GBm9eLGJMnj/k7KOJ3U8/w6Q/xGTKp8sLfPPrTvKBSebTfscXc/rkXfz8L76D5a0bdBMaS+/zQFCoJIpln0vbptYtWGB4iVNK6fi+VJXjzzXG2ObM0hQqriIJxu1Ng90G+0PJHOWeUEdi1+aFRk2vVQIIdLG1bFalJN/Yam05RsUgFCTSDgLMQ++D58KWNGDTjirmKh11lltDpSDQDgkEEAmkWhAd6dVza2tOmBaKQezWCvPalCzNSmceJ+HB/QGhI5AbyG3vq3rLfEu68qDr4s9JsRawLZ5RFhCyKsMafLe5zfvq/edjeNHL+2b8/3mUZn0EP2hKJb+k8FMtxjqzqbYSjN/ydZ/Hp3/pGzl99xlUlf/lj/0dnnnvU8ebeleMDNxz4mn63htsN/hpg582+GmDnzb4aYOfNvjpk2PUWvnWb/3Wc9/zPd9z7sknn5yGEOyBBx5Yfdd3fddTn/VZn7X8ld//F/7CXzj//d///Weff/75/ujoSHd2dspnfMZnHH7bt33bs6973euG9ff9wA/8wIm/8lf+ysXHH398mnOWc+fOpde+9rWLf/gP/+HT586dK7/a10sp/OW//JfPv/Wtbz33zDPPTCaTSX3Tm960/x3f8R3PPvLII+OLfZ1fq+v4Uhov+s6OoaPWSpJ1/oq1Bb3Vd0fPSBhLolQjilFIbdJKxAZOQwik5ICniLOgKSUygbFWksGQKwfDSBJY5hGtxoV55NTWFuNwQDRlLBUNnS/42tgAUbIYah6IO9biGRoWIOOsqDlTLMesmIMEM29ws1wRCW5zWGegCNTiC7GoUimUXFuTkbqUGYNa0BBI1TNBYvCA4mr4pISzCKXUJun3cGVnKkOzgzioRVxyPaoS8cPWqhWNbgFZy68Vz9KpUiFMSWRUQYuhlik14yt/cNbXhBAitTi4qkHd9hE6UlFMJ4xRWJXMkDJHqbC3PzAuEqe3T7Gzc5IqhSyZGgPFOnIVbFIbMx2hVGaSOFkyp/IeszBCHsmxuo3FIpYTEj1npFRDY08uvkBQaYx/w6yNORaE1FqozAoRzwcZ84rQAItfyzWjrFQyNRsSvMFORQgSG6AUty3hgG9t56DlXqxt7YbvA7Qx32sW1hodrG0TAKCmSK0eQs16p9dsGghW0rFVpNT2mjRjilVKciuHAqlUpBbWvpGc13k869wcz9OotYVaN/Bn1sBsbQBeHZzG6CHBpd0Hhl9HXzgTBcgCDEuidpjQ7p9AkEApDkKDKTX7xiCsA8Vz8lyNj/u7j5sNmxXr2EqEbxCcOQ8NENbGtsWmGqhtwTbf6FHJOYM5wF8DG9WusfiF3DaBAoxpcHBa24JfjRgjXdfjLV9K1ynTSU/JvqFekelDpAKz6dT3D2KkYekbjBBYLI+I0cHCuFwyDImgfu+O44BR2JrPmc5mLb+kgBohKH3XEVSZ9h2TbovZdJetaU9HZdb1RO0YNXH+3ru548GXc/fHtnn+P/wiy1w4vOMOdk04OjjiRAkMi8zVZ68Qc0ULqBjRIOWBJFNurRKn0oIJmXh6mxI6KsZqyExZcsepjicfvcLwfOJs+Qhf9js+m4tPfYyjbsJMheeeusrNG0+h1gOKhv44d8Ub0gJj8qBvFc8/qg0UWpsHNbTQ/RZc3XiY442Tt9E1Fhc/fPDvc4Y2RPG8I/O0pzGNvvmRQqnNwqGBvusoefQNdqhUMiVlYuhAY2OZK1Kl3SsOBlN2tUnolOyzIzlVuuDzQ5XCOmgew7OiiKi41S+VTLBAF4LPBTFT2vc5z9w5i22goQMJHpiuwRVcOEgNGtDoS3E1B8e6tg+2J4rgtjmzpvASKCKM0qEIRXxjXZp9rZaKNsvaZvz6jxi6tuGC+lLET02RVNqRhqoXcnzoHR/iNZ/3Gk5dPO14qda2sXTVyUHa5W++68/y9Z/yN7m4dWmDnzb4aYOfNvhpg582+GmDnz5Jxu///b//nre+9a3nAU6ePJnPnj2bH3300dnjjz8++Y8d/P3Mz/zMzjPPPDO5ePHieOHCBXviiSdmP/ETP3HyzW9+89YTTzzx/vl8bpcuXYpf+7Vf+2BKSS5evDju7OyU559/vv+xH/uxUzdu3Hg2pSSf6Ovnzp0rX/d1X3fvP/7H//gcwEMPPbS6du1a/PEf//FT73rXu7bf8573fPCuu+7Kv9rrbA7+fpXRVa8AN62YePOQWCvebqRiLhk1o9MmpS2lLa6VVBOh78nJZdwuHR/pWhaBAxYhDxnL5g+8FhZjRtV4aDbz/JeqlABVjRCdFYi1MZNaMBVq9HwBM6Ok7ECtgRYrBi3E06wpAIu3ckUNrNuSrE0EvlAWck4gAZVAKeIgxrGqs/KqvkhVsFLxUGRfMP1aKTW7jac5M5zRE8+vqNaYRVNyLWRL7XAyYKEjdBNqreQ0NJtFj1nvi7NUiKFZHsQLT6yjdlvkTsl1zmgwEFhWZdSOo5xZDJllrhwsRw6WA0fDwDIdscgDwzCyXK0YykgtHb0FXnnPlNfNO1AlTKeEfkqVDg0TCAEJGaKg2pN0wuUgPL844vTiee7be4zAnLBaYpKwKlCrY3Q1z2wxJUtGqhHE2f0iBbUC1dleRCGAKYwNBLpNBw8QV6GakgXE3H7gpFCrcy+GNEuFtsxHKYZUo4pnCjmBlLHiliSvnFfAczhcDOBsmUBrJ9MGBqVl3rS8Hw3HzHA1txmV6sHPopHaQqXXeSjAbfsWrvSoDdBhvpiJGUq7/8yzVpTOLUVWUPW+QCQ6G98AOm3DVBoj6L/fyDUTpBL7nn62RVoeMUEoJaMaqBlKhpwrqnL8vPQhsqrZM2f81/miWX2BLaU22wnUqu3fmyoCB3PaclxEoO9vW0pqdlAbpPN7hWa/QRuhv75Czq6r+K2xZsPdWqLHVoZimVQqy+HIs2VYf3YQomIiRO04uXMCEaOMI0jL2KqVTgNWK/PplBgCZoVp1zOfTpAqFBP62ZQyLnyjZZWcfOPr5UOZQYQuRJhNka5j0o10UtmOW2wF6LrCdUtYrSwPV+wtE9UEnW3R9ecYCuwtlN1zOzx7NXFit+enPnyLz37Y2JkqGoVsxnwamYUps8WMvKXoiV2k7yAbHCa66YQaYOfknFkfCdM7KPtPkiZbvHBQyKt9TEa2JkK0EZO+Na0FVIrnCOVE3/ekNKLHIfGACEEjsQukdmAh65sfV9DYGnnh95J2kVrDsT2DtpmqpUB2z0lOo88HpkQC2UZimKDqOVghKrVZSII28Osv0Z4B3+TUYog1K2JoTK/e3jjGEG5nE+V4rJqRxq4rkSIBUbfqiAZ/hpvlRPAAb3fmCFUq0cxVT8f3cAP4tKY/EYrRAH7wZdn8eUHdxuUbP20uNp+3CpDMlRgWhPUGOIRICL4Z3IyXxuiqOvmIHzQIvKTwk1tq3ZZlwa2hP/H3/iUC3Pfa+/zgD7mtlmobpDHP+NdPfQlvefl3c+eMDX7a4KcNftrgpw1+2uCnDX76JBiPPvpo/73f+73nAb7gC77g1o/8yI88MZ1O7dKlS3G5XMp/7Gf+2l/7a8+95jWveWIymRjA2972tp2v+IqveMULL7zQ/cRP/MT2l33Zlx08/vjjfUpJtra26kc+8pFf2t7etlorP/MzPzO/ePFifu973zv9RF//8Ic/3H/f933fOYC/9bf+1lPf8A3fcH1vb08ffvjh17zwwgvdt37rt57/zu/8zku/2uv82l3Jl9Z48Vbfktuk44tP15gA8ZRPavU69zw4K2mU2wGZJZBTBvPGK1XFpFKDkKjkttCNQ4ZcEDooRq5QNHByqtx/apskhaoesRpptgPM28May1VrJkigEppcvxKoDkzaNBQkoGvA0BqUrDpj4TplZ7qiBooZqaY1iey8hvtJPJVAHVSYtrYyK8eTZhEhY3Q68XBrcWeKids6xnK7KSlnZ+9pk6A15jXVKTeOjBw6wqQjzDqkm9F1M0rxYOMklWVJZIExD4yrxGpROVwZh2Nif3GDw8XIMmVyyaQyUmpyFkeUSTdlNpvT9R3znR3O75wjBmMy69na3WYy32I66dmdbzPvT7ilohMIStUAGokWAW3ZOIKGiNXM5acfpx8OMAJpdHBaBKRmYvsbHfRZyxVqzFFtGSe4ZWRtvTFzbolWLC0aKOLKTRXx0NkWSm0kr65HUCZUEyrOwnoGTgt/1UqRQrDY7gkP946xMZ4tLNIktsXRAZxgLlUvfj+Jmn++BDCPiJZmvdGmgCiWqNU3RoJL79V6XyzV8z5yGZpqYt1k1oaA4eHkvukR1rtJI2AWoKjfn7iiBGgMvrb/Xmch+TPDOjujJuL8FEwjsjz03xtAs2JFkV4oNbS8EX8vQYW+i3R9RzeJLBYL33gKEJVp3xPFCKFHCcy3t5lsz9g5dYrt7W3ms57ZfE4XOlIpaK9E6QmmzGaBF55+lg+97wOuGEEIdIQYGdOACA6qyzpLxNl3CbXllUx8oxvWmUD+XIcQ/d+jUkomFajmFqNsFdtxJv7g6LDZMQIxREZP7yF2ke1uy4kFGQjiiuIuTKjjQN8Zse+AQNZ1qLuRst9XAfGWyljoYibqlEmITIPSaeXkzi733HUHp09vce60sYqZQub0NLCDEmcjy2tLIrvobEaPcm6ncnRjgqowjsqWKv2kxxgpr/hU4rlXM9SAWCGPwmTmz2qdTNg+f5ax38LKSL99hlmILFY3ue8Vp+nH1/D0Rz7oioEGwHMeIRiikEqCBt5KdmWAiod/i1ojWaTlbgl97I8VFr7xEGIXETHPhmlAq1hm0vWQCmqVsSRCDVQKqq5Ykc6VBdRCFwI1ufJEYqAWV1ikMdP14modKYgWPyAR33h6i57bQTzI3iiWWnA2YOF2OHwQRDt8y7neACum6+etNHufrxE5QxcCITgbT3veRP0+MlZUhKgzkOiglPZMW/WNr3i7nqt1ajtQaXadEjHpW0N9155rEHM2PoSArvd2m/HrPhw/tf8wo9PwksJPJq6O8IbI0o47fDO3PkVx7FfRZo9yDLW+ySpG3uCnDX7a4KcNftrgpw1+2uCnT4Lxjne8Y2tNEvyZP/NnLk+nUwO48847/w8PzR5//PH+D//hP3zfo48+Ol8sFnqbZIBnn322A3jDG96wvPvuu4dnn312cuHChU+57777Vo888sjyLW95y83P/dzPXfxqX//BH/zB4/f1jd/4jfd/4zd+4/0f/x7e+c53br2Y1/n/7dX6T2e86IO/ZAYle4CmKMMwEENEozd5hSDkkhBVcmlBr6i312nveRY14iHEhSpGNg9vRjybJkRlEjpsb4mGyNSM3ZL5TWfuolcgVaRCiUKR4IGsGhw8lULwGYmMMw8uGG7NZyFgwS0FxSo1g0hxgL3mINdMhrSwzyKECkhwawCuFNQYKIPbAsJoFKnUOlA7bwnSvidZJRqgQpJCMSHVCYcpkKTHpAWrotSiZKkUMYo64E3u68HihNwrKwLdmQvMLtzBRx5/lOcf+xhHN5cMy5HlamAcR7z5yu1DKsJk3tPNYOfUec6c32K2M+XkyW3msxm78110HpluzZhO5gR1UCCNPQrSIWbkUhyIClALYrUxIT4ha22Wj16gCCoZKdnVDDUjwXMXSxHUPATZGaHg7VLq7zWnEWJtfI/HOwg+oSerDkhbGLgzXbiFuwra7BgEZ2wyLUfFFKuFWmoDkg7U6pjdJlO8HdBwC5GgRNml1OcRnTCmghKo6jkduraVtNya0t6/VQHLoIZJQMMEs0BuzWnaAK8DxUgIoWUq1WY1qpgFSvKFqbYWOhGhlog36LlC1Rr/rO15i0HJpaDqmzZRJdd8/Hoqnd/brdXaqmcBOXPs959W34R1p86wuLaPrRboVmwbtNbaJcVNPbkiUehmHYwJVc9/CUGZTmasrGIpcfbseV7xwCvZOrHNl371l3PnmYs88+xz0M34yBOPem5KN6VoIIYJq1I4Wo6cnkYeefBeXvdpn8pP/eiP8773fsijo2pGTEjJ15s1My0aKCX7hqYaWieIVJbLhd/P5oDEGXrPwImxc9uLuGpiHRgPbtWZNFtXNWMYE0WrZ/ZQsUXisF8xkR6RjHYdoYO5+f646yYgHqC+3fXkUihWmU3mCJVgAaX3YPcKsyJs93Cyj1BG4pmTzE7MUYOLp7e4dGTUU3Nef2HGKQpyd+Gr/+gXMthv4Z1P3OCNLz/FZFe4aVOmnTDkQ86dvoPDCn0dCecvwu4pOuBwERmXc7bOKcvVwGy+Q5cNGyqpVFIFyze5ubeLlsiYZhDn5Dz4vFoSZgmszeGtJS6l0rJnfB7VGMgle8ZKdfbZBLK1g4G2FYvNnkFTiqSSW2yDfzSKKxNydbbY1CeGsRj9JB7bDqVUsIxqpeQBI7TG094/x+p2oZoL3fpZollRUGqpRFm3Uo4UAbW2adTgCoayVrMYsSlGqDRQaU46FSNIREMkaNfyxtzaI83SVasBldj5hnKdzWQNTKsEVAwjoyG2gwzf9IgoJoUuBnLNZOsoWilSnREXJUggS9uYNlXKZvz6j2QGssfdZ95B3y1fcvipVL8fqW5HXN86vk1ro23+K/571sok8Hu3toOwDX7a4KcNftrgpw1+2uCnDX76z2t88IMf7H/v7/29D61Vdq961asWpRT58Ic/PAMopQjAfD63X/zFX/zQd33Xd535+Z//+a3HHnts+ra3ve3MD/3QD50ZhuGJr//6r7/5ib7+8a/5yCOPLPu+/2XyzHvuuWd8sa/za3VtXkrjRR/8Gdy2xwYldr0HBZthJVNKwbKD1BgdqIo12GhClA6Kn+bTcgI8I9oDnalG0Egeva5cBU5vzfmcO6bcvzNlychsNFah+CQh0UFL+/laC5gHenp8S2gtcHaclVFKbaymW1U0eOiwYARRDNe7u2XE3FpCxbKiGqnVM1FqMaJ5CHeKPUUqw2FhkTt09yRjMaoELAk1QpLAEAMwIXe9s1hSQFxaXQoQnD33zJJARbFOKerhrVMCcXubosrezX32DxbMd05w8sI2890dplsz5id6tne22T1xitl0i246Q2JgQkSkpx5nirjUvDYwUItBFawqdcRtI2TAA2/XEmnEJ/ts1SfVZpMICKT23GlFYySbUdQ/44r6tSugFQejaUXoppTWgBa0Qk2YlZY9VMCEIG3VEyi04Ojqk7JvjNbB0kauI0G8IdDEw7YDt/NaaEx20A6qIO4doSQPZzapLPI1AhUrK1Q6ShkJTJCyVkcoEgJZi4ejW7ythHANh7e4mR0HN4M3HObin7e2LBxny5ukPtoxex/CFKvFM50kU3ClhwluV8ccSFmgjs7lGuKWk/Z3+P8Vcm62kr6nArVkZC1hN2fvtCgLK+ycuZOj67foxMA6Uh79/1fPyVmmFTF2qDZA1zJiQoh0oaPIyKyfE2Xk7nsf5OFPeT1PPXGZMyfPcde9L2O6c46D5cgvfegjnDo7o58YW90Wizpiy8yZ01vE0LFcZvZv7bNcrNAqaMsGwYyuU7+O7ZB/vfl0Brsx+CJ0fe95OrHzjVFOdF1wq01TzXSxp2qhNktaUEXxtryUxpZnUjENoEoXOrJ5HoyGQEKIFtHVwL4ceF7KKM26FjisK7rYu31NjaLGGApSBrpxYFgdcHN2i61uym43Y3tnmzsvRix3HCW/v6ZB6bd3mPXbFClMZMrWiY6wzJw/Ezi9vUNXK2dOe9bJy+66m3N33MF9sePGcIE0+v2CGpnK9IHI7rk5J04FTHtWNxdcuf4sU80s+x1WOdJN4MSJHT56+RLjaIToTLSzpxNKHYmqwO3Nd0qJ2AV/vkLbTGC3G+vUN/+ljA7uGquaxtTUQ/58GeJNnSkx0YCEyFgTnW+xKLUSNZCKd5NqY4wl+P0uFFcpqTJadttY8FwlarOV1IJJdWY6VyREf4+1EkLH2uNipr5O4PcHjXHOJC+li55ZVcQPSKTljJVUiKFDzdsSccGLT2MibX3xjf/aIqNNwdI0Oh4rFuVYZVKrIMHXu5QzsevIpVn5Qoe1DLXiifVoUJ+jN+MlMQzYmjzNm1//hx0/hZcWfspp3cSpfhAj7X76eE1faxbFbmeNreWAYX3fbvDTBj9t8NMGP23w0wY/bfDTf/LjTW9609E6W/Q7vuM7LnzO53zOk9Pp1C5fvhyOjo70wQcfTB///T//8z8/TykJwNve9raPfP7nf/7R3/27f/fUH/kjf+SBj/++Gzdu6Hve857pN3/zN19ZxyZ89md/9svf/va37/70T//09pd/+ZfvfaKv/9k/+2dfWL+vr/mar7n25/7cn7sCPp/9q3/1r7ZPnTpVXszrbA7+fpVRktfBR3XWK+V8zLxVKYQgbRHryKVg1pq41Bt3kQYecBaMlucRu75Va0PNHu55lAtWA9uTORcngYEBTW7rqDWhZgRtDykeYox4XodWL/moBUJQMF94crMoi3pOh5g0Zjd4Vko1agChHRAazjI01qBaPGa4gipJAn1OZFbEOONnnhl4tj/JQ3c/Qk8mVJChQlwRpFLijFxwaXYwahQsdsSw5RL8SY/1gkSlWqDrJ2iMFIlo12Ot+rwAn/7mNxMsMO1mvqAEIXbebGYWgYBW3KpREkPOqHpcclJn/4K4XN3MbQCizRBh4GG0vlBhRnb6wyfUAlECpToAMHO2uFomGASJlOzV6mrRW9EyWKVJ1v2Q1nOfnWmhGqUmz/1RO27OM0uAgxLwSR8zAoHaNkFBOzydKDvrWJzxVtFmFXCrRzFnio6l8+Ybmpx8saQaWSpVXHKPOoAPBHJbyKTczkepbaEtNjo0lkotwtpQjgg55ZZd5BOSN8hFarPdaAtlVnX2uLrnyvN5Wt5FsfW86itf+bhnKKCUVAmdh0JLcJBQPdLHF1sCrBUd4jmmtYViC/77LEBXItM7X8bBrWt4A6E3IlZLpDISTcnqr+2ZNILmcBzUvL4XcjW6yRZndk5x94WLvOfdTyDaE1Q5eWKL/f2rvPyei0znc0xHhMyJXLmxOiSkzMlTF9k+eYKT2ydZHa0QEQc4Vr0xT4WaRn8PTiOjWqlVCTFQ6kjNRgwzl/wfs4LBN9fm90aqziRDheTz05hBam7zViCXRAjOvqrGFjzsG6NsA1H994xpINQCnef/nNjaha6jn82ZTLcJGumjUoclkhM2FmpOlJQIJbGQxPV6SL16ixcG4Qe+70d44JGHuXwpc/3gCvvTJb8xJWI3oZaRrX5OtgrdjEmvdB0UlFITIfo9X4uRJ1PfEGpAaiVbZn7fjDDtOVolJqGySMbP3pozn56nu+cip7d3uHz9iDd//hvZO3oS4UdRcV+YhpYtVj20uVa3qhgFFd8UafC5tws9lh1kDiX7prGRMMdrSiktKBxyGVtGi1Ir9NIRxBUzpWusdG0Ar1P02F7C7ZIAKtpPW66rksaBTjvUIhY8xF9Scs2HVBJugwtmWCprl0jLzfLsLw/Oj+1rhus2wMTQWiD4ZkfF2z1VfY1Q9SAtUZ/T10obXRNTVp2Z17U6pcW6txgK1JpKytr3C1Y9dN+KApVcg1tlSqPOW/6TtMCmsrGqvGSGH45Eat2icIS9BPGT0e4zArXCQ294gHP3nmX71DYAj7zplZy95zTv+hfv9PdQFcH9y1Y9Z2+Dn2CDnzb4CTb4aYOfNvhpg5/+0x4PP/zw+LVf+7VX3vrWt57/8R//8VMXL17cOXfuXHr66aenf+/v/b0nHnzwwVsf//2vf/3rV35wXfiKr/iKl1+8eHG8evVq9yt/76VLl7ov+IIveGR3d7dcuHBhTCnJU089NQV43etet/zVvv6qV71q/N2/+3df+/7v//6z3/It33LPd33Xd12Yz+fl+eef7w8PD8N3fud3PvUbfsNv+FV/z6/BJXxJjhd98Kfq4ZppdMCq2rXCDG25MC7vrdXZOA0ePl3x6vqcXXqruLReohJqJOdMyZWcoNTAmI0hC1WFPhSkGlJ6avFDvEBErFCjAxQzc8m0n99Rjxt+hVwrQaBUl/T7s+2B2kIHRGqG1jP3ce1nwBqCVEAqYhmtAbGKZKPIkiqBHJSYMoclsJeVozAlaSKlwIVHHuY1n/VqUhpYLldceu4ytIU0EBAiMUTquukseN5gKS2NsFR6C86+aoVq9ERi2HZnRohUMoiRaqXk4GyFVMQKAdAaCa2RqtREMMFarkYubl8I7ToC/vPmjGstmWKGhA4N0a1InS/8AmgDhdUqxJ5QoCQH/mYJrS2w1toiRfHMl1pRoKSMBy4X34jgLGzBkNAa1yz7wlKNruuwXBlLJcQeTL01Tbx1juCZQO0nHSxX8ywjX0+cdaKCGbELjMOKrpt6U6AU6OaUesPZp6xoyJB6rMox6wR+WwRVrBRothKQtoA40VSrtYD29dcNkSZrX2+6BGffIp5NZK4eqDU1Brx3AKoGUho766+Vim8Wx8b6i67zbEIDk2DmbG+FFgrOmjpzK4qABaUmwbbPsvjou+iDeDh6Y8G9JEcYzRhyQoNAjJTqweGejxMRjYTo5MCFixe454GHee7Z/5VQCqH3JrvTp86zPHedxXKf5agwHjAZrlCeeJYrBwE+dcLhfmK5f8hHH3vUQbYZW5Mp41hQUfpuSi7Z7SaA52FVf31moKntN42uC6SU2/W2RgZA3wVGSwQRdNozm29xcneHWI2jZcteEQ/KdsVwYUyFXifOeEtm6JRHzp3jDW/8LLjjFLP5LjFuIX1PTB7ob4sldW8fbt1iuHKZcuuARd3nZjrkKHqbWAG6M2fIsznPXb3ED731rSzmkakpKS+wZ42f+0N/ht2dk1y+dcSrX/8gknuev7Lil15zJ4+8+gEuXjzLHWdOsH+05OzZgqqQRmHaT7Gc3LpnmVlvbPdK6hUZlLPnZ/z2P/67oYx0kwlSIi/cWHHmzIxrB49iJsRuglIQXMXjbK6xXuBVpW0CIKVEHydN6WLtWgWsKUdCCMdZNCKuvB6Tbz1lDW5N0RCgJKJGz/0S3GYiRjZhogotcH79bHn2TedWRDNi7F2JY+rAV803dEGwbEQUS20jHTzzKvQTYgykPHpO9FohgmDFrSSIq7Hcq2ZIsOPnz9q+slbftHpTHM5EazwGrqBIaPMB/vMGrrgSPVZWrNXqQSNSxTluVbCBYh1I54qi0JRDLRnLbS+3Nwmb8es7VJUbh4/ww+/6Ab7807+a8ycefUnhJ4O2XvimB4HP+NLP4I1f8hnHf8Pnfe1vBuCdP/Jz7cDPCzEAqimlyAY/bfDTBj9t8BMb/LTBTxv89Mkxvvu7v/tjr3zlK1ff8z3fc+7JJ5+cPvvss/qKV7xi+eCDDw6/8ns/9VM/dfU3/sbfeOqv/tW/eue1a9e6U6dO5W/91m/92Fd8xVe84uO/78KFC/ktb3nL9Xe/+91bzz333KTWyste9rLVV3/1V1//U3/qT127fv16+ERfB/je7/3epx955JHlP/pH/+js008/Pe37Ptx5553j53zO5+x/4Rd+4cGLeZ1fmyv40hsv3uprQqq+cJgKpkIuFS2F0K3Zo8A4uiR8HEeMSjjO53DWrlilWLMQiFAz1FKd8Wog5NZiQZSO6SQyZqXERO4CRiEYVFGijXQSmrw/QDVMnaGrre0seCQNZsXZbXM5e23TqOBhxqaeW4OIS5tFneHM1bNZgltcSi0tTyXTSaQEo3r9GSlUjiqMOiGJYXFOlpOcPPMgi+UBGvdR2WsZiY3V1OAHleJ2CTVB1Ccmq4apT7xYIVZtkMzDcrECdU0F+3sO1SCsi0sqyRKViloGIkZsQbIDMRZXHFg9vl4mEFFiEKx45geiHCyW3pSXR8ZxYHm0ZFyOrJYrxpRYDQMHtw4Zlyti2Ob3/Je/h1sHL1AtU6VQxD93qiEF1Dq3TVSX9c+XSyZ5RRXf/DhblBrI9MY4VUNkRS3mtiFWqEbEKmhFgvrnw21m26G4ts+0YuK2Jg2+GKkK0yqUvCRIR1Ujy74fFttIxwTqIaYZCE0KDzFEB6RmSDNDVafJ20auIuI5MM4MuzIgiGAMiDpTqiE2iO0ZPC5KdyAGhVp8wUMchPki5ptDIbdF0i0s1TJBcPUq0t5DY83ElzRTv1fMcAWEGhrAqpIl0j95icl7P8DWwcIX7AoVDxTvY+DuReV1VejGTC2ZZSlEKWgdUC2U1D5nUS5cfobtRz/MH/mNr+Pkk08giwPiWNh7/Ame//D7mU4nHC4G0uKI/txp7j55kbPDFYZ3vIPz993DpedvMHvfe3j1uGAZoGZnTDUGdBLZ3tphMtmiix1d17G7M6PvI4eHR1y7fo1bUfloGbl1Y49S6rFiwEFTJQTh1efv5/X3P4xubzOkgToOfOjpx1moA6UYejKjX3c1sgSSJoJVivWErHzV9AJ/gLvZqzs8f2nF5eee5/rVSyxuXGFcHPgeup+TQ2DSBRJGrJFOJxgTrqdDdn7DI5y6734+9FO/QCiV2o2srl9iSUBM6eOE97/vHZhl+q3Akx/9WaQUNE545zv8mZ7PppzcPUkJkQcefDWvfv0jrB57kjtefpHX6Wdx4vQuzz53k2VKfMor7+TENCLTOZWBSZiyvTsjU4jWsTXv2F/C/nNX6Cc+r1erzlo7AialgTi9HcLuNiFp+7ZCLpmu60jZ596umzalktG3jKRcSlNsCDF6nk0I0bOnyhpst4MJkeOWUyV456P6pCUCam71qrkQrEPM2XVqxtSoGggiRH9IKBowjaiubTLF5xA868mCEaL/TbZmjfFnuEoghgA6YuJ5a1Q/3ABXWBBANVNJBFG0NSGaxWZTqZ6DU6CurSViGC24u4bjRkdF0NbMaO3v1CiMpiTMgbh4Bpcz6kJQIcZNRs1LZZgJ0+5jfN6r/m9sz597yeEnq+vsKD1WG37/f/9P+IG/+E9c+dM2QSrWihU4VgiC38Mb/PTrg5+UTCE5fspuj8suf/GDLHfukUv2FlDtGVO+jZ/E7b5jLqi1PLfayjVMkSqIf7DkXFoDaMWKf++wGojSU1RIdkQQL4boieRxD9OWyYgf6HV0WPa1eK3+Ka0FWptiUaXzAweJCD5PevuvlxOotJKbdkxZkt+PKl4+ApBKRRnbQYP/jaqRWoJjI3GXkEnL2TRXJRlCygVvAm6HkQVMJ8f4qUpFtHphTxZqv02NM1aXnqcXadcHDCWgBCLFOkL0g4haXdXpKi0wzPcw1RiAsSzIufDFX/lFxL5nHEZyyjz90cd437vfxXw+5ebBivFwn7vvPM/Oyz+T0089x63HP8pdD7+cD7/ncZ578glUKtNZT0GYzieELhAC7O6eZDbdpe8nTPqeUye3mE47bt3a5/ILz2NWOVgcbPDTBj9t8NN/5kNV+aZv+qar3/RN33T1P/b155577v0f/9/f8A3fcP0bvuEbrn/8v5nZL3z8f587d6784A/+4FP/R6/5q30d/BD8W77lW658y7d8y5X/K7/nP8fx4k3sjdFMxR8NbVLaKP5QKYFUMkEjRXD5fDU/oW9V5LWuA3OFkgvVnMG06qfrXQzsHy44WCy488RZNFSWeeAEEak+eY0YsQimSq6GtgMcJFJr9sm3C4CD11z8PfprKKCNTayI5mPWO1tyu4dlB5ANFFRRP3xSGnj1sN6KkBkJKKJKkdGBZGMJC5UhJXLKiHk4dQ1CpwG1dVtVoJEtRAm++LeAbdo18ZojP2CqtVJCAz941iLVD5uU4Ac7amioCJ0Devygs5SK5cS4WjXAWchjZhwzq5UHXK+GJeNqwTgsGYYlaeXWoeVyIOXG+pkwDglVP2DVLrZWwUAZBworTp+7m/2bl9dxIZRaGYsyKUDRtoHxP3W+HPicf/dRYt3oqn/dx4/8Ag99gi9/+v+Z3/WDz8IP/nPeDPC/3P7nlwO/5f+b9/Z/cqTJhL//V/4Gz+5s84FffD8f+Dc/ysV7TjCfb3Hq1GluXtlncu2A1504y8pmvP/5x9jniDSskOptk0jl1M4JprOe+e42u92U2akOjXNWy55p6Dj/srtJX/5mVj/x78nv/TC2t8fW0YjFESaBUSIDRrXKalkZQoDJhHJqRj5xkpMnd4gXz3KwSNwx9twQ4XJOHK4WoD0BOBwWbZMhcEuJ2jMJgToMbM13QTI5Za5dXyEVfuGF53jPz/0buhDZes+cH/7Xb2f7wkW0FEqfec/rX8/9Z+5mOpnwipdf5K47z5OrEqozn8UqR0fG1WvXMA0e60AhiIEVSh3RqG0+8Ge85kwMHSYOBlNJ3iwZXHdRSiJoBONYBRCjH4qjYCWDmc+/umaBK1YaYFMwvKSptoMJD7L3MHcr3vZHXqe2umophACW0JbhklqrW2iFCJ67td5EwjHja5VSXJUi4GqQFmAeGiHhkLISzG0zfqDva8f6GF+1Q6Mf7KgGZ+bDunESt+poxGOrWsaU+tdVW44WfgCv4mtp4zUoKKodnmmjfoDR2H4zb5LdjJfIMGPS7XPX6f8NET+Qe6nhJ2vFZ8cKEJeMNeXU2mYmx4H/trb6gSub1Db46dcYPwnm+WtADceJ1f75VHPbK5VKglYKYtoOx+p6HjUkV0pTOZaSwcQPTs1zBal+4CcIlosfWJSKVaFWJZOpIkiMVBKiXrI3lh0Ye2rtGGrxOdxgkUFrh+mUJEYWa++/0mGEApjQx8Ck7+mDevmACcEKliqTSeeqQHN8nyusijAUJReg+CZfrNBNYT7NnNoGlYSGSsRbp9dKo1Sq5+FpRCQ7eVr9fqlACNIUsfjahFGroBXC7gnypEf2bhJCT0qJmtuhBkLNytEiYdUYc6WLE6b9hNB1rC3jSCXGwGpVKNoxinH92hWkCmWELs5437s/wL//yZ/haLmHxEIcpyxf/XJe+bqeN127wtkTwsnP/+38xL/9eX78R36UMAu88sFP4fzFO9iaTREztvsJMvHcwn6yTYwz0J6+F0I/pc5OIrEnJWNvXG7w0wY/bfDTZmzGJ9F48Yo/19sirqlvRKkrmmpyNlDVbQZWPUOmmnmQZvCA2E5dNj7m3BiAQq2FvutJqVJUuHZ4RCmJrZnnKowxOCBYZxSYS+wrisRAyRU1I5o39YhUqmljF51V6yRS6uCKwCofB2w9j0TWz30D1rkW+tA3CjEw5tFrxRsQpwErpcOsMNIY75xd9mx6HAabGoMTNTjAatfJqs/4tdYWgGrHTHkpubHOQqdKjC5fjCFgFugClJwQEZIKKVWOjhxwLo6OWK0WDMuRw4NDjo4OOFwsGFYjw2IFuVJKIZVClnU2ChiBEAJBMiJG13dUxJkWVegnSDUiQjeZOrDEwWeHeWZNJ+wtKisrYCN+yOpC71IdNGUEqZWqClbQxYpYjSfu2vV/a5sLXVPVNFZKb4NgaUxOjYGr57ZIfQGJ/j9ub1wUD3WlNYCNuZKrYkxau5lvYije1JZR/6x6z7xJGVZDT60ewtvhi7hQGCN0olhUFlbJKM5fFyZWqalSqzdvDXlg2gWiQq7Q4c1nXegoJVNyhlipxRcjiRNQQcQwjZQMwSqUFbGvIIVIYDbt6EJhdypMOwcHUbvG9jcFq+F2mrbJwUCiNlWh4Rr9SnfXA8irP5P9H/snzPtAKckDhgWoSoiRf/pLL/CRVUIx+ukEUwVVb7lDGYbkm5IMv+m3/mZe92mfyaPvfS+f//mfy/bpE1QJ/NSP/iue+uC7MQYeeNk5nnjsEmfvuMjr3/AaHvy5d3PqoW0mX/j1/NhPvZMf+oHvI5WRUxcuUsbCW77qK3jFKx/kJ/63t3PHIw8gYcaYe1a1INJx8fyM63sd4cnH+Mq/+WfhqCeefYD7H4A75zO2T56i046xZi683NC9I6Z3bCPLyt1nI+//pQ+hYcp2v+Jrv/ILueeBl2Fpxs39gWSF1WIghp6tWHjTqW3C7pwTTy/JH3qM+eXr2OGCMWaupsxytsVwomc1nzPMZqRo7Nx9L0uUp555kjf8ljdy/u6HiGFCSoXeEpeeOeRDH3yeLgSiBm+orOb5KsVVNrWOFB1JOaAG43iIC1WCFy4BoevotSfHjvHWEXv7N+CZD7XcKOWpn38PhY5+PmNrd4d773sFu7vnmc22uPfBu3ng4j0crQau719mooFSE4JScvK5SHAGOXs2TQjRv+5uIEw9mN0ZaBycNrJFPZgFMyMl3wALvlHrQ0cVB6QpF6ZqBCZgzsBaWa8bvraIGaoOBLXiwLcasYuUdiASWjuq51m11k4BLwegNVn6IYcfqoA36TV0WK1loDVlUh3pRMkVB9goDf8SzFtXLeDKW1PPArMOKAgRb5eLPq+tRVbioNykoxJdZYO4YkRApO0O2nwr5tc3q9sdMVc7UaFm80ZYbSqDzXhJDCvGMp/h8atfzAPnf4z55OZLCj+tg9X9WViTcLU1HSrVPGy++SQAL3rb6a/zzb/hT3D37tMb/PTrgJ8sj36ImyFW5cZwjhvDBYI2FU7z17Z+BcZSuGP3Grv9HnvLU1w9OsfLzrwXasfHjh5iyJNPiJ8uzp8gaMeze+eoFrk4e5aa4LnVK38FfkoNP02oNRJk5N7pc4w5cWl5P5Ppdc5M9jmSbZ5dXviP4KfS8FNH4DJ3bF+n2pzLi3u4a/Y0uzFwkM+zP2z9CvwkSJwe46czW1eItuBo/ySLoeeeU48hUriyeJC+n31C/PSKs48B8PStO5j0mQuzK6xSz8cWD+DlLdzGT/0DyC8G9l+4g7NbA3fMnyBXeHz/YS7MXuDU1opFucBqPI3rSR0/lXobP40pofo8qtco+TRPPLbL9mSX0HU8/nTgYKFcvnInop/G1tZt/LS3uMgy3U84ej/bL59x6Xn44EeMYbmCDNcv38eVZwpv+aov+f/AT4vck8jceU/i/ru2+YVf2GYlI5PZITEsiRPZ4KcNftrgp83YjE+i8eLLPcRb09SaYs48DLeM0MdIyQmNStd3WHElXei80jsbHmbdmC0RD5QutRC7COZmhSsHR1y+MXDm5Hm25hPKYp9Dg1An1CJIcWtJDALVQaGYIe0Qct3aUqszDEEFy5WieU2Puuz4+HvXYb3Vm4s0tKyW6IwhiqZCL54PUKsfHFYraBQqAdXMwiJHIz5RiNsFPBPDW4RMI0H8cFIIFEuUWgmTzvMIRLGcHZBXAY2kMTMOC4bVijQOHB0dsFwsOTxcsFgccbi/z7BcsVgsKEMhD4lUEimNfi1CR4jRm6KC0k/69m6E0LtMu+8CtOBwDR2CZ/AcBy1YpZ95i17F2/4EX7AwP9Tyxccbk8YyHrdRValkKhYMBFIZ0XEkmy9UYkbKI9vtM8sSOZj1mPr9gFZMxrbJ8IneQ5PbYW0xognXtifkPhAtuHMnRha5sCxQB2XMyjBCroGjoZK1x2RF6qYUTzyiC0I/m0AZUTrUOqwUrCaKJiwv2Z7P6UpgwDNZUjCOUiKFQJlscbTIWJPDn5hGiizp+hl1kbEhE7KQbOTErG/XSBjqklyhWKauBqJ422O0gG+wCrO5UrpIrUK3fQKTxMG44PmbB8zzaU7bjDtEmfYrTp2ecHpn4rZbnPWrtUnXq/iCjPhzufb/hEguhXNv/CyuDYqc3eKGANJRhuKHe3ij2Adj5CMTpVOQGOkmE2igtVQYCW5Lq8Ij99zBcxfO8cKdd3D4yoeJZy4gCAePPsrjzz7K7mSbc6d79u4+Q7znbm7ddTeLk08xv7BLeP3r2H/0OZ6MMzixy7k3voHnPvJR5m/6TLZe+wZ++Pvewaff+yZOnbrISdkncMQzt4znpufYL9e4qI8DcF9cMJ8t0IfPsf0pD0Hf02ug2By6Sujn/Jsfewev+dT7+Y1f8EX89H/9p/2ZiXNe8YrX8plv/GyObh3xYz/+L7n/o5d55IWnOPPt38bpB16F/YO/wvbln2P53Jz8gY/x2HTG6r/9aj7l017NU09c51/8y/fy3AvXCVEow8B4dJP7u7N8+KMf5rlnrvLKRWJWZ4zJN7or7Tj9JW8mXH0a9i+7PSp7mDulNKtGdeCFkGuC6iHQ1SCnxNgye2QlLFUIwXOKutjT9x21jsymMyb9DkHnpKMjbi2vce25xxDcMlKyMo87VFW2w4jZklKK50eJkAxXqOCH5VYr64Y10bYJtkqnkTy6tQ9rM6G6pUXwnJoYAqUWUh6czQ5rbVHb7AfPpJJpYEwjUX2OVYTSbt+SKuRKF6Pb9aSQc0FDRJq9pXlevJHT7HgNCFGwpgoy8IgBn12IGvxnQnBro1YIrbtUi1tV8Aa9j2ezRfDmSBVUoodWl3xcNOWZYC2Lp7UoevBEQMQZaGvkxbq1DNZ5XQ6UiVBDIAVXDZhBsIBVD852lv2XB4Fvxq/vKKIcjnfw7if+Gy6e+AWm3Y2XFH4ai8vLxjJDkrb72MjJSKJA98s2WirKUHu6MPC6s29n2u25CmODn35N8VOMwe15Gnh+eY4/9jM/9avei3/0tf8tv+XuH+SnL30Z//P7/iL//ItfTbTAd/7cX+TRvdd/wp/9hoe/jJ3+Y/yzj/1xhrLN73rov6aWLf76+/7BJ/y5C9Mn+KaHv5Y8Dvztj/6/+Lzz38WnnPiHfGD5Rn70mf/nJ/zZN+y8lc8/+9d5enk//+Ty9/Bf3felpMnTvO3yV/H+/bd8wp/9fQ/9CR448Qv8zKXfxXtufAl/5tO/jINx5G+/59tYlIuf8Gd/4mt+I7UWvvXnv4X7d5/kT7/hL3Fp/x7+q5/4+5/gp97MG+74Of7yb/2TLNOcP/Gv/jHf9Bv/H7zp7p/kyb0v5dLNb/mEr3n69P/Iyd3v5srzL+e7v+sz+RN/8icxqfyPf/40P/v2KfB72/+An7n9c9/3Q/Dwl/w8F9M+f/VvnOAdP/smLkSj39rmZ9/1twF49/vW3/3LfR0nTo/88W97P3tP7/Cd/91FXvNpT/IHf//AYx+e8LJHDnhog582+GmDnzZjMz5pxos++BvrCBiWK51OPJ9M8WyZFnBSciUGBz45GWU0tO9AfNKjgVZVBzZBlSEnUs4slyN7+wtWOXH/zoy+U24uEwddoKbkaiWJVGnNamJ0ooTgDypmiOEtVMXDSVFnz7PhNgVZ21MACrUabf45lvyW6nk6Jua5Hlaa4qmnNpWURsXIPsFq4XDVsbdUUlealLjlGpTMWkZsasROUXW79BOPP8FyVVksj0jLFYd7++ScWa5WLJdLhuWKkjK5ZAd+yVnsGJzViFGx4KUkXeyI/ZRJf4JS/fuCug3CSoFJO/SslShKFzvG6pkM1TxcVqNQsltDVFvug1a6vmNIjSlyzTait4NpJfikb0azzPhRnbRg1lwLlMyQM24C8VBqEc8mStk/j1IrSZQsgK6tQd745MI/tzWp4VlvYpCMvSXsryo5K8MYOVplFsuRrp+QFwPFaG1lidEK2vdMQiUnIYeeMUZSyagNiAi9FnpGZ8NCIMzm6DhhYRVZHBEVZDZlb1hyXYyEMK2ZeadEg0AgpsrBjQNkKzPb2mKqPZpHJqmS2+ZryAM1uBpie2cLWakvuCIcHhwym7odoYwjqTNSNlaLTCiZmXSc6GZ8+PKTjCcvMJc5Ngj7ewNXTihnTsGpU4ZYRqSnFCHnSpQI0vJwpDXLEago9fSdpJ9/O70axSpazA/0clN/KG7RGhZkPNA8l7aAS8smaQAmp0wePVi4VggxUlSo48jX/IHfx2/7ojfzrn/7r3j8XT/I2fMPshqEvSsLQgz0K8WqEudTrAZWRYg3M//Tl/9hzj/0Wq6MiXh0lfv1Gq++5yynJ8ozzx9yaus8Yfsu3n7FeMUr7gfgtZ/2Wp5+4HWMRVkdJYoMTNbhyJY5OjjibL8kLK6iege/+Ut/Jz/yfd9GH0fqauDo2h5H2WAcOfXQBc7dt8PO+RNkE8bVyLxbUZc9fSr87KPv4a6v+6189t2vYrG8yvVbH+FjT1zj/vt32L92lVxHnvjw49x3xwmuXjKOFiMmkaKefSUF8tYOeX6CcuuS2xcUaPlOqh05N5Wmeei5rYOfzXORur6nJs/5AnUrhESsVBZHS6wxwaJLn/tUUYn0YQqi6EzoJDDUgXEcmMee0cyzI1uzYddF6rJ91uIb9VxuZ9eIk8KU7OHMpVRCa56r5qASc9bajV3Z59PqmTWsAZu4siXESpZCp644N3OtahD1vwG3eZXqFpQY3L5VS/VNevD8Vgm0VkwHlhLclpOL0Yeu5W+2tUEUE0+r9oqC2gCzq4aq1QYMAVpGT/D508Or/TBirZzxgPiOthB6Bo4VQpiAKUG1FRTgvrrWQL8Gs9KyunzONJBCscBKDAvVbYq45UbUA79v5wltxkthjHUkF28YLblC1ZcUfupsZDvuscwnyXWKiLnqvpo/L+rrvpm1gz9/FoMW/vlH/yBf9orv5+z82gY//Rrjp9p+LqfCjeU5AP7Aw/89LzvxAUySr9TF5+pqCTW4sHWFUpTXn/pJvuUzPsjz+46fvuSeP8/nnp2wGhIxduRVbnObZ+AlK1CepqSBN53+VpJOWdTMUG7ylld8DdJUqZ0z7P73dB2aKr2s2F8siAp/6KE/RrZneUGM6fbP8WWP/D6mRQgmBIwosH/rFjKbMJnNOGVX6cS43z7MH7z3qzkRn2OVBj7z1N/hlfO3Mp/PkNFLbiQoqzExmXT0GjjbPUeqidec/Kc8uPuvWe4PzKTjS+/5ozx+a487dk5zl0yZ40Uc050JJ3Zgd3etCu3505/+l4m2wkrkjvll/qff+nVeJCJuWy8Yp37zV3Ljl36R7upjxHCEFaOPA9/xm7+WC1tXMIO7T/wL9sO/88yyrkNDIHZdyxiEccyEcImcCnfe+SH+3F/6SQ5vjoQY+aa/cIvDW4XTZ3bYv3qdD77r3/PsB/8NzO5mZMp9d9zJfTev0a+m/Dd/8pBXv/I/8LbvDizSlM941f+b15x7mNnL7mQp8FP/+qd58NWv5PSZU0xD5mh5xHPvvAudnOWRNx5y57nTfPD9L+Pbv63n779tn7tebhv8tMFPG/y0GZvxSTJevNVXGyhr5RhBxIOCQyC3h8TMWA4DXRA/shGFXECFNCb6rvffhXkuTQyIVEKE6XzCbirMbq1Iy4G9lBhTYWdn0uq1xS0p1aipNklxditjUIJ6boBV8fDhWqjmQKw0IBqkuU/ET/9Rpz2UNbPeWn3XbV3Rm828hjz7FCVuhbEKGoxUEjdXyqooNXjIduiCZw2s29cMtOUHCsrewS1+9IffBuaBsJMuoibk4lkiXey8OXnSu2w5BubBgei6XVnVwbg3AwZfq/DNgIhn9VQEYvDDUFxSrogHn5qgFghdaKGo0qwqbqMJUZHg9H4MHcHUgR/t4K193iKQcgJTokbEksvqTb0mvllzqsEyZUYTlAil+ALXchRMoJZMJbQbzjXpxVy6LrFg6o3MqSppIdgCPiyBW1UotWCMLBdHqCphNbDCszu2JjMizqSlw5Eome35Lr0qWQKDVfIqs7s9p5bCSmGoheVqST90hJTppTILsNVNqN2UJ2/e4ppUWK647/RJzk8Cskytva+ydfIkowirUulQpv2UTgPDsGiZRgWdTqldoITA9MQMGUeW+wdQm3R+NqGUzOroCCVSY3C7/WrFKe05M93h0WuXSLtnuHd+kkDk2q2B64eB87dmnDnbM58LltwKXW1Eg1JLJXSdN+2VSt05g8UZ6YWnXTJfDSme8yHtPsqpsEq5PQuFIEIqGctKiNqyNowQhCEVtrdm3HHhHO883HPrhSgWPA8oTE8y3TrD0XKJxQU7p06Rs6G2ZDy7y1YHKQ8c1hXddJczJ7foiqFWGWrP1rTjM197N3fee5ZOOs6eu4u9Q+HqorJ7aoeTZQeAMU149AXjif0bhKJMY+DeM+KWL2YwP8Hdv+UrWawWPJkj8uBvIvH32dKbyKhMC1xejUxPneXOL30zZ+99ObK9y9HzB4QMadphr3wZ9VWfy/yf/ihnTp8mlcqjT1zm3R98EjvY5/nnF3Rdx4WLd7E6POTw6Crb046t2QwV76a0aFgqSDFWqRJiR+wipoXSAs5puVoqnp9SayWoKyxzcQtIyRkzL7hpFDNVMjUEJArgzW8ljYipN7TVkVEGSipwGOi6yL5l0EiZTum2tyE5SUIIPke1bBrzybzlK1Vi1wLbG2ByjmW96azH80ktDsy6tbq3QVhB27zSMmCsgCUKkV4d7IK0Vja/HrWxy6VZSsaS/F5s1pJsia6xytkqobWQhuiqV20KoyKGJw34WiMAwUPsgyoS1K9927xXIKoXXSEVDYZVzys7BpvqczLSY9J5CZGob8jVSSqsqaSsQrydcbMGnWvX5Rokr8upjEIS35xYW9eKGVVc6S6ixz+7Gb/+w7S0g691RMpLCz/NtPBZF36YahO6qK1QxPGTK9qEEHwN1WOMVHlh+TL+h5/9O3zevT/Oyf7KBj/9GuOnnLNnRcaOnP1g+Z7Z+7h79oE2Nwekr2ifvTANYygTnr7Vcetoj6Hsc/1GaPjpQ6wafhILlNDwUzcjqn/2h0fGSjIn5h9D+xlZOqByQn/pGD+ZKkMpLMdEsA41N/IeNvx0evoxfunKZcdPdon7Ti+4u+s/Dj8VTp+vjCIUFbYK9DplSxPT4T2IKCspnN+5xvb8CrHrmMae0vBTjpVJP2G+M8dKZnE0ssXALF7xZXG14qHJ09Sdm3zs8BfZ3T3DqflJ5kUYx0raC4Q6Yy/Omc+FC/3HXA2bKyEM3Lv9YcdPIn5gsXOG869YcukDbyee3ndLZfEszodOPkYlkFLF7DJ9eBpR6KdzKkbsekLsEYmEsCIEY1gUzp6B3/CZPf/in92iC4EHHzAsJ06eNg5uTalHlf2n34vtHLBz6i7uPBGY7+8znp1x/8sKZ89e5bCukP4MJ6eVB84ccPbhxHWN/NIvXOKzP+s1nDzdE2RGKXOWg3AwVm49pFw82XO072qnp68bTzyxwU8b/LTBT5uxGZ8s40Uf/NXSSrlFICcPlRaj1J4u+kRTzSdGqRXq6NbZwnE4Z7WWuVCdOc5jJo3OyopCp0onwh3nTtGVwr5ldps8utbiDIY4J6qhQ9SDQaFi64BRg7F645oZKMHVfwjZEqWO9F2HtEO+lBIxQs3peLIQoFhBUQ8oFSGNo08oQTwAWRSzQIgdywoWkoPUCnEtERawlndg1VkWzMhlBMv0vTeWxaAE9UXMQ4QjMUTMUqsUbxN2CHQxIGKUXDzkVG6/R2vtfyJCh7r1RAQkkNuC1gVvfavF2dGgFRE/aAoSPccB/5y60CFCA/wcT4beSubXp+KthEEiKRc8Mq/9zlqwUhmzMRQBPMMo54JWTzoZis+upWSSBQpQq3D/H/gG7vyq38Psvpchqrzz93wZN9/5HziqcPUoYQPs1Mpef8AwnbKqhX46oVjH0XIBxSX1USOrcaCvnvGxvbVNF7eoqxFbFaZbcyaTjqNxwA5XlDwSp84Wh2KcihN0a8ZwcEiWynM58+QLT3P+zGk+ZX4CHRK6OsL29hEJyO6EvXHBleUh0/k2IUSu7u3xwInTTIbCjm1RLWGC24b7wNXFPoujFWe3d9AgaOipfcfN5ZLppGNrvs1Clf00MlFlZzZlRuA+O8GN5cCTw5LLVM53W5yMM0qA5c2rXCnbnNuOXNgyQu9ZSFI9OylWpxbTsOTE6z6T1ZUXYHGTHAVNQtJAqoWIi+mzufXIGbfqz0oDUMPhgrJW/1XIyQhxyvUb+2xvnaSLE99cdRNf8KeRVS7kssXh4RFnzgu752fwkUqoJykCUSf00wnD0ZJ0c0knc5IE6pCJFE5Mp2iKHIwDp05O2B+VxZ4SbM52v3M8u93o59zx6h0u9sYLt+BahqMjZxI9GAmMHYIGbo1XiZIIJmg2uukO/+wf/VMu7e3xuW/5KvoTJzCDPmXirKBpgFe8nMOHX88DX1S5+46XYWLkZUJWC1Qyl569wokzO8ymmYun5zz37HPc2r9BNzWKFkL1QGZTf6bHWonzLXZiQOqSWoTVaiTlAauueq3VEJM2JwdC6Dx83oQggSD+bCHevlcpdJ1n4aRSiNEtJl0U+i4y6ZWaR0ZLnn1TvKlxUQqn5zOyulVCxIFVrc6IC84g+6EvYJWSM9KJz8XF3KKBs805eyZN7CJpTJS1K86NcAiVlKpnmiEEiXSxUtStf7Uavbb2OonHh9i0Q4IYopMEGjAgl0Q/CUh05VGM0TfXKFYLJZlv2rXlfbYm7hDE/x4NLZPMUbo0JQuNGXZs7NYhyUBwYOrfp1jxfDQ6QbQd2ktsIfHZrX9Cs7B4eDVSbs/3FnFHfsvqpDrbjR+ueBR/OLbQlOqMu6ztjxvk+pIZtbSyDJzgGsbFSw4/TbsBbGiKNM+ViuLGKu0E01+BnxReFt/N9/yO30TNtW1CN/gJfu3wE1Q6FYbVkmROoo61kJLPmYKryfKyQOi4WYynbqw4HDJqxqwTtOs2+OmTFD8tFktKzWz1kemWMsuFPq44eyIymwaGnNndichSWRwI02nPqW3lxr4/gnvdlIdeffcGP23w0wY/bcZmfJKMF6/4q0quCRWjtHwB9/Rncmmn7EF94rZCVJchi/gDjCkHR0uXI1tFqqHFJ9oT8x0sFA6GPShC120xHl4hloGdOEeyEb2WyENPxXNvQoUqtdkMjVKzv69mTaE6WPKnvrbmodCsCy3s1dz+q1GwWjATahFCjJ7N0qS/0imIy6RdjqWYKZYjizFTGBmGVWsScxanltysMeYZCtUZQlXQCKWOxMnUp2xVTITY8tyS+GsEdTVjrUoXe6oVsGYRwAh4SCpW6ULExFn1UsyZdyq9BiIBk0IWD5SlcztNaeA+Rp/4qnmgMm3i9ip2a7XxzsSn5MHY2rW8x1JJOVOoaIBko9exF3yRwCimpPXmpwrL7Kqx0g7+KsoqG4sKyyFzlo7H/+W/5L7f/sXs3nsvTywCVw468jggGuhCYZETV8fEmBXyQGcVSwNdnCASmVRxsF4K2/NIKZmuj4xHia5J68fFEdSe0EVyBzvbJxgPFsxj4MyJE4w3b9EvnVFfbM8ZF0tOyoQH5qdYXr/J1s42YbbDkAWLPfu50O9s8/Lz59haVnLJfGR6xF5Z8Iqzp6iHA5MYmc06nr91C03GTo2c2jlJKQnpIrUaOY3Md7bpJhN6nXB9OGIUoUbhztoxWwwc1cwd23MeXxzQdTv0W1PUlGwgWyc5CoG0N1D2jJOnemLnn08RpbNIUGNcCbP7X87Vd72ftBqI/ZRcKqUIlepgKThjPZTijxTOFoYYAcWi27pKGZEukG2g1MLNg5vsbk94/394B+fuvJvT58+wu/sKv1eWS2aTQJ3OIAvUQtQ5dbn0/1ZhsjMDCru7c/LukiCFxZCQ2TZxtoWGka4DpKfvC32vxM6YbXUASFXI0TOcqhAlMu8KcTJycmqIdqQRaonsTjO7p4742TxjPguE7Z4yU164dpOnLr9AHpaMBn2I5HQLHW8RwhY2QLhxg53TU7amUzKwd+OQ4WiP2A30XaUsr/Hc09e5+qRnO2Yi8/kuXrgW6W1OpVBqIuRKtUgXIsSeXJRpmNKNCzDjaJGouSIaKaWg4m1uMQRyqcRuglZDgiCxJ3aB2E3Jyeji1G0uqTCdGJOJM8GWjJyFVVJWZUVUdXvIFFJVYhcR8UwxK54ZWUql73s/dJBALQVRB6yeY1XREF3dZJUYfL5EmmqobdY9pL8ex4dFa9k6Q6Kb9giRILcZW1GHzFYKxZ0yznU3W4wEJZdCCOIHA2KkXOjbJt9tJs6cd10P5vOhl+BUD4VvtktvxuPYeij430HL2nEU64ogtwVNjn83GKIGWpp4OaB4WLVUX1Nc+eMh9KLaVFiuAkM8g8I3iG6zQfCcHQ1kM8asbp6sioZ1No2D3ONruxkviWHV70+AbMmx0QY/bfDT/0X8JGZk8U35UfL769n9zOEqsciZZc0cFAXpmHcdablAQkeJxtFiQV87usE2+OmTFD/lPGXaddTZiEplyAXpJ4R+imhuUUeRGP2QKwTo57E1rAIlbPDTBj9t8NNmbMYn0XjRB3+5+AMoIZA9WMSbgPA8gC5ELwIwz0XJpqQx4W08CQNi16GdEGJHHzoiwSdoYJUGcoEwiZw5f47nblzmRAhM4gRjgFqR4g+qBMFqpqjnIBwr9cQXVPMZwFvyrNIHdUakOuasxaBKy1XpKLXJlDWgos7OZ2edg7qQmiZjLqUixaBlHIzLysEgmEwcRFef4hQPxzaJCAmoFAElElBKrUyDAz+NDqY1eCtdUKGaEOMU8Z5X3yTUVm+u5iy4ucqx1kToPNsBk/Y+R29kagDbMxPc0qGtncnt0dGvB26B7rvoAFmgmLNTpRRC1/nCIkKcThlzasxl59kxaljssHIAVFcl1IpYwMrIWEY0FWr1EnlqIQkkR0LsrYyPjZXrNjDkwlN/+VuJIvzeT38ju/feyyIP7I8LzyVSb7mVGPx3qKFW6EMkiLI/DqgWtmZbzPqefhgpqwWrNLIaCmHaM9ma0QdYrVasamKxSkjp6MbIOCTGcaBPI7NqLBdLlilxLt7JI1snOK89q/0FYzHiWDgx7cnTnpurgVvDkkdO3MW2KVoTq1J51Yk7SMPIjaMVJ/opoevZPzpktMosBGa5cnIyRebbDEMmBWGxOIBSGULkY4d7HERlAmgpdJMtuiyE5cCOCCElwiIT1ZjPe/IwsOwT6WjFyRAYBPb3jemOECaea5RLJgI62WaVKvtPPcqESKo9oy2JtZJrptYRMyXnnkVKZLxJcSK+odEgoIp06s752FNZ0ffbFFOeefIZnvi5f8/szA6/82t+L/c89AjWLF5jTvTTOUuZcHgUIApyYocSInUwcq4UlBoH+guHMCkMq5EqibA64Cgd0m2fxYqRRmEvLX0j2nIJTYxFErbEW9suxsx98wWL7cIp7ViNtzAtDMUIFrh6/RqFRNcZ88nM2xOtcPLkCbrpFIoHLNuQWA04uJhOWV3f497XPchsawvJlb1sPPTyu7h1fYlVz4gZx5FlTXRdx7mTJ9nZPQV1oLbnUi0DbgdMaWRYLfF8GkhjpuQlOVcQV6wI5swzDdVpYNpPoVZOnN7h0z719Xzow89xc/86KSVKEkLfI11mEmdgA0OGV7zuU7h8+QWuP/ckGiOTLrA132FYHiEyIUSaMsEZ8hB6YNHscNnD5Wul6zpSWtF1Hbkkuq53Fr3Z3o7bN0V/mRJlbXkrFSaxo1Jus+3mGTtSarOzeehzTpmo6m3uoUU9C8fzJNUzYGjZSUqPZEUCmBTMsgM7wKTZS6xC8AOQWlquGet1xBliFc+Pkdg1IK1o8OwZiW3uxdcLaYH9Jm5pRPxvoXqbp8beDwZEqNqUBeb5Z5475L/H72RvB60ItaYWQdST44RAoIpvwkv14G7PJwNr6qPN+PUfa/wEUKqQ7ZMDPz2z/2r+0r//B/z53/T1vOzkYxv89GuMnzDl1rJyVCuP3vT38f5bS87O8zFW2h8WJIxZ7phKoFOlaEFnPWPyg9UNfvokxU9ZqZNM3B0gVvKY+ZqvfQ2/+6t3OHHSD/l//F9W9p4WlmX057+sc9BhlYW8wU8b/LTBT5uxGZ8040Uf/KVSqNm9/NYsHVXd4x/MLQxpTOQ6Es2oRQlB6TphMovEKMymU0oxbzWqBam5TVLRQ4wxJp0QOsPSwOnZBDPP6lPT4wY3EQUJWJvYW2cPIkq2whTPO5HgrEAxSLUSqZiqsykN4IUWNF3Xa524ZLlRK0D2vMDsDXqWs+e4WMVQRmBRzOFl8NyDYoVAIBfDLDizbZ4bUDBi3xNjh6jSx4h2PcUqxdxK7QGoevu9aGxBtA7krCYQmjzZ6CdTsEwt+MQtRpz0zl6IOgOVi0uYg7ZyjPa3t7Zjt8RUYjdFgzf/rYZCCBFEG0NTW7udIAnGMZEbSxSp5JT9+yq+GLesHDN/n4vFgMQOa2GsOkx4/OYSgBvJuKYjq+Dvqabk8u42VLxhqguCFQ+yrWaUINQInUyJEukEcjRSreyNhxyOgbP9FpnASiBOOlIHN8cjegTx5heWiyWzEz2Hh4fE7Sk2LKlkxpSYnD5JXg7kVOlDoU8FC0q3tcXu1oywWrA122an69mdBsKYyNXTCrXviBX63RO8/fqTMBzwmpPnmUbl/IkLLK7fYLUYmGwpXNuD+YTpbIeqRprOuLpccSOPTGrgZA2cDVPSrUO6nQnbOmOxUmJ3QBa3Li1Xia0KNhp9DWz3E2bTCf3hyHjkgHE2gRUjsspMLtzJlScfJe9fbeG/h1B7z+qJQkqGWWEshUSlmPqzhitUQnBmrGpgHBKxBxVla3eb6aSj9MJbvuEP8dhjT1BCjyUjZKUmbw67fv0q56enmXRgqVKL0olyRKF2kU4r04miTKiqHB0cMabMY+/9aa6vAp/1xV8FjH5vm5f4dNE3ndl9VUw1EgUmmphJ4Z7TEz74ocv8jW//Hupwhb5TRHpeuHkDDQOpM+Zd4MatQ77ov3wL7/vZ9xJEwDKiPZ3CrdXA5UvCfV/4MsrkNFp7D34XGCzzGW98iHf/7Hs52F+xqMbRsGRnNmcYl9x39j52ZjtQJoyW0C6DVpYHK1JaMI5LDg72WhlA2zzWFRo6V8hW6PuAaUVqcGVBqVgqjGXkvs94Nf/3P//f8dTjR4z5OlcuP8X7fvEDvOddH+bmrT1KFQiVr/jdX8i1W6d453ufoLee6WTGclhxtDhkd3fKqVPnuHXjiD52zn6aP4/r7K2as7ehh87Z8xAaKIXVsPTMqxhaAH7Ln6mVEN0CUrJvDEAQ7Y6bQK2aM8xtDq60lstaXU2kLbTZTRsIwVlvEXJeq5aCZ+SIeHueOUhFxbPTEJ+XkRb47JtpjR4eHdTZZJ8fPcfStPgBhrmaSCSA+VphGS8/8BMLUKjSwsRLxyRMPVPThpZn40uvZ9/ElnnmrDZ4e6mqUou/vqnhATmRWoRCT6rir4nbLM08P65a8QODugGuL5WRSiE3RVYpSsmfHPjJZMb11UVS6SktF2uDn37t8NOH9pY8ubdkur3F5dGxVDFhufTvDX0rMjEjpcwkKiUXhjJSVCAEqm7w0yctfgrSogScWBhWAzEGPvS+Szz8mnOcPuOuCvHb2O9d9ffoY4OfNvhpg582YzM+mcaLz/jL5gyEDk2qHFBbt8IJZoVOhUk3ceYzBLpJR+iEatknh6IEczmuN6IlvGW3okEwCcznc2oeYRzZ2Z75c18MU5fjOtuWbgcpm9syVNUlyxIZi9tQRA2rmRgnVJpMmuIy+xbCXLNXvUtjTqqBrjMJRKhJUO0JauRUCDJxmFwzpQQOhsLeCBY70liPmQ6DxjB5O95YfJKyak2m3LnEWBuI7HqSVWKM1FII4m2oVWDMEEIHVjBaQHUM1CrNKnI7swcxDzAVawGtzmxPpr1fx0pji/zwLGhs5QyBlBKHywWzacc09FgD0r5RcNZvHbgagrhs2xykFoMuFOqxhFyp1Q9kCIFclUnXU03JFQzjqWHJzdURACOFUrztTqOSU/XNTFNJ9KrM+h5JlV6UqURCHpiUis568jhwkDJRoBNlt59QJsIqe/PuYa1MT5/mcHGILAtbu7tMZ3NiFVKG3cmcMcKqC8wmkdMyZ1sCqxpYjIm+77GU6KYwz5V5UE6dPM1+XiHzOV3XodePIFVEM7HryTkxTjuev3mTm/mQROCQgYowoyMfDpyen6BKx4nJhIQxmXU8tVpS+o5skUVa8Mips2yvMqenE2wcSfV/Z+/Pg63LzrNO8PeuYQ9nuNM3fzkqlZJSkyXLyHjABoHBlBGmCwxFg8GFOzA2Be62HRV0VFTgotvVbhvj7j+6wzKutinTDOEqMDRdMqYdGDAyYCNbyJKcmZaUqZy++U5n2MOa+o9335uqiK7oxKCB5L4hpVLfd+85++xzzruetZ73eZ6eHDrcmJiJo7aWe90Jfcns+RlfvriEi0IH7GfHIluiWN0ARUPIiUJETI25coX1s88iY0/wFdJHbDHEmMkSdIOHYTNEUhEN6RCZZBFqElzXMygjgwmEEBlHTVZ++aVnuP38XZ5687sJvcVUDaswsAk9fRg4XZ/wu/7T9zNvd3nwyVtgO0pbQc6kbU8TC2kGbTPD9g2lWEyKzOYVDz9xk6vRUMeKbDx9hhgyY+7VewYFWE2baV0hODVldikjpWV9vCL2J9jKEmymciPeDVTjSJN3cFJRhsBs6wlujm3myjAmQ1ivyTETTUU+GfDpAfHhq6ScCKZmfVT49Q//Mq3PHI6B+w9OWMxr4tiTSXzJb3kvTBvEunhiLnhTUcKWks8Y60EJiaIm7sZbcgoqfxChWEvG4l3DYqelahy7e/tcv/kwb3nb27m/Eu6fZN7znnfzlV/52/jDf9iSY8/Tv/ZxfvFf/Gt2rsx592/5Rv7Lv/B/5PGbO9z61Cndags2UrUzrt94EmsqTg9fmrxUDFXlJm8VlSKORf1Ucg4KDCezesRQ1wqacsoqq0sK+OzECsdwtvnWMlMvOTssoBRyCuRsUW3fJMGYpB5m8kpKRaZNt5o2YxWMlszk1aITFlbUCN97UalLZupdnKdwgh4OFHTqSVPfHbkUMrqBzzkjSQ8tcB6mDbp6zEzTQFbXDkFBcsl60HE2iaT9VDTBzwiTLhArFXnya3PTWiFGTa41Ua8gVs3Kh1ITRQ8hJGdk8hPDgHEGzHT4cVFfFKX4aZpELlE3eq8D/FSSBlZMM3oX+OnzjJ9+ZXtKXc8YS0+aDpZrb5FUGGPAOs3DrJ3DeIfpI22xzG3NathSvFDX7QV+ep3ip6EC7ypM8Hp4nhN//f/5Ef7I+7+Mx5+8pM2pGEKBFAsxj5DVWgCgbi7w0wV+usBPX0x1584d+zM/8zPL5XKZv/Ebv/HUe/+FvqSL+g+sXvPBH8Uwm3uWywahEENh6BO1M3inBsu+cpwl53A+ZguSBW8s5KIn8cXB5CcTQpxGmkU9TDDE7Za5b2isI5eATBKOlAtW49fIYrDFYox6IFCgRB2bt2oigHKsiZADOYExGcyrMkCRs16pQDWnPLEbyoAbsWQSmmJspzFkbSIqtxDGlNiEhBhHTgMhBKpSA9pYz8eupw4tpkxpcpybUUOh5IR1RkH51AxzCpRJfmytchmFRElMRqTK3BijXjbYNKU/GUhxSkgSSGdg2YIz0yKTlYlCG2rK6s/gvadIUY8ZpytLiXrNMr2v3llM1s0EBlLMkI2OSCc9TAVQLVNWc+kik4wHYhZMqPjk6SHt9LMFndaSAmbyooi5nH+KTM6kfsAheOuZWUtbNcyN5f4wYipPRyFuV1xqZ8ykYdwM5JhZzGv2d/cJUpjXS+7GE0IIhAaOh4GTMLIymWFIjGFgx1nmiz0OmgW3hyPW45ZL+1dpvCC1hezpT1d0TcUL3YqH5/tUmzV1hOXeFU62K8BSnLA5XeObmtivybnw5M4V9mYziJF+E/EpsxyhsmBszTjCp8LInbzFjWsIkbekfeYZYj9SHCQjzJxlDIkqF/bFEnzFjZ1dhvUWN/RckYrD9RZ/SQMySh+odvYJXSRXFQVDH3rs4cjw0jGOClLCp4pCJEyTIiWBKUIXEvFs+qCUKXFMzXFzEh2Nx5AzVFXF7dsv0617CD1SCns3rnNpZ4EXQ+UsMQ64uWfR3mC7idw/zTwTH+HqyYInfEWfIpuwZWaWmLHClCVky7bb4jFcevyr8b4h5IKxsFdn9utxIvUm0GQNBy3MLJANM/F4K0QyV68d8L6v+BJcHrCN4BrLRz7xKX7+2WdxbcLNa0bTE73HJsfMOMRClMiw7TGpwKyQDvYYjjpiiHR3V4zjitN7tzDWcvvewOFxz858hrfwyGOP89CbH+fRNz4FpSaFgWIDWRLG1jrhEYsa5ZPV80fOQJ12sze/5Y186bu/jHa+R7PYw89bdhaXWexfpt1f4JuaRbNDsRWPvXWHe0PHM792giVwbbflyuNv4pvf9qWsYuZTLx3y3vc+xW77JH/r5b/F7o7BSqFIzfpkRRgifkpoFCySItah/l6iaejaD7NO/+SMMY6cVXBCASMWkoKwwiR7O5MWTj5ROSWyxAk0ZoRCCgPtfIkRTVtzZTKULsqIW5m8yJweXpSiE0Wa1m40JYDpWo2QgMp7kDJJZBzWV8Q4ksk4o9y3xIkFlzO2d/KJEYum5unDWzHnSaCcTUydTUkUM0kGJzZaDJRRgwtsS8ao7IUMOYOVSVJYVJpjoKDJfdZMzLZMnjd5MggvliD6jMboQcTZmjatatO/X9QXRRXD3u4h73nyL3Pz+hov7esGP8H0DbjAT593/LQKCeP1oNNV2lddSdROGFNmTInGCDYmhqGnLoamaphbz858h+M40l3gp9ctfqrqXSRZpDRQDMM44hAWV96Mq9rpcwYzV5j7qDDDWvLUJ3bqC/x0gZ8u8NMXS/3ET/zE/rd+67c+cfb/b9y4Mf7sz/7ss+985zuHL+R1XdR/WPWaD/7qyjJraowUqspT8ogxGvIBCVdV5JxwTkd8Q1S9PEmZZWcNcYwgGe8MqUBM+kVFNIls0/fYZs766JDaCJDUB7oACE4ESUkbOXZicJVt0Olho+PATj1YMsogGKs/m9OU+Kb4WpkD7VPnDMcZ62KMaHqcpPNFUDGgymsynpy0QYcUEV/pczHFlmd0sTlvYEBWA1dNahKMdWBEvWtE2Q2xRi9pelHWCraYyZdCJR+YorKZUqZI+oL3+nsh6+86X0HJk3+QR0Q9bnIpOipe9F5QNCreiMU3NdbqqPOYMzi9P75Ww2QdmQasUf+FM9MiMaSsMfXq8TMdpk5zADkLWRxDLpQUMbZhlTyvbANvPPsIFnUzGrI28ye/5rdz8OSTzC5fBuDJ3/t7WT7+OB/98b+Gmbw4rBFlkr1jiJndqqYik4aBtTi2qxVN3eCHns1qxfzKJWbNXENqqpbtmHlp23N77IiVQ2zkyZ093tguuLQNnNw7YiMqOzloFpTNQJ8y4gxdGFmK8Mj8gGaELkcOdpbUdc1h7MibgdnOEvbn7HY9B23Ldt1zf9hy354yl5rDyhFToZ63GCnsVDNOSWwSXK0qLjvHy1nf/+PVhuXOkq6PNFmoogeBzgZmtiZ2HXMsB65mZh2+8uzGlnEMDN0We7CLryqqTUdYj9hFTUUhPPsyRs2h1FTagikjMRmVUueCFWE9RIaUyaKfwVI0KayUqNMbOZLCyHbsycbwqU9+kscffYIbb3wDvTXcfPgRdhrPat0xxkg/DDz+pie49th1XnzuNrPWs30IzCNzRiN66BsiT775KR566E3EVaQyhtMu4nBkPMF6vLdqAj8Gxk6ovcFOm1NJjicPoDeOMcGTVzyzLIQYuPHwdb729/1u7rxym5JUPvYbdwIiM1yZY4xnHCNia8iR3PfYMTM6sKuOerZLnIO/usfmlWOqlEhGOD5ec+/4LmHoScGxv3+Asz27Owc88sSbMYuKvUuXWG96nDPYasEQEieHp9x66bYaFJdEjCN2mghQuYTQzhZ8z3f/l7zvd7yPPsBmO3J82vHgsKMfYYiRzYOObXmAsQ7vrSb5LXdo2yUhZV68e8JyJ5Fiz82rV/iO/+2fZDg5YRhnfOSX/wl3XvoM4jJ+t6WYxGZ1hHcqjxBx5JzA2MkXVTfNRoRxHCeD6IR1CsCtsQrEJWKdgZzPPW209wopp+lAQD9TJWtQgDPaozQBT5DisCKTOXOBlDHOaZ8UNMVT4Z6SCEZ7pjFWAbQ5m0RSGYozhpwSrgBZEwGt1WEHjCWJ4JjSN62llKiHLucyRaAkTaUzohJArybdlDIZRRsFq9UU3mCsMtWT3MsUhxiVpahx9uQ7VNLEcDvKxMgbLDlHzGQ6HcWQ5YyZ13uQQjqXchprp+57UV8MVVeW2XzNtUv/PVXl6TteJ/hJ1++SDSL+Aj99nvET4gki1Ams+zRv3/t6Yv51shOcqMSwqiqcgTFExhAxzkEq+MpS1zVbIxf46XWKn97w5JtpDy+Te11zu1HTpAuTHH/6Z4mRNIK3eni1aOEb/tPC2x+HPXeBny7w0wV++kLX0dGR+TN/5s+84bP/7NatW9W3f/u3P/qhD33oN75Q1/VvU33fS9M05f//T17U57Je88Gfr4QQBupqRgyZFBNSkso4rCWliJ2SgWIC5wzOWkwWLBbJRm0AcqAQdfRYlI0tqUDWhbD2FpNGbJm09kYZD289pIjJ6AgvBfHKFBQlZXHG6xf5nDgQioFuDJO0oqKUTAgRC+c+BmcyX2MNyBT5nSdZiHg0plzlONpkynn0d4yRmIXKt2wRUgoTDS6kBCkqE2um8eMxhsnoW0FkyAlfuWkDgP7vGaNTUAa5KGNijJCyYL0y7jEmrBS8GG2sRhOcUs7aOLMy0ClOnVtUVqQMt4UM1nicVbaxIBijC5IYyzhGECZJi1XzU7FgLJGRYgVjHCEFKu8mdYCQEyibaaYpBWEICVdUwlNS5mjYMOZEsRUAIUU2xpKKo7Wed33zN/OuP/7Hzz9/X/bn/hwAz/wPf4cxJogDde1ZxZG7qcdjebxdsl8VViXzmQe3efjgGjuuYp6hamrGHLnfrTC7lwkCq6Fj9JE3HezRZthBOJAK6Qe6MeAXC3a7Qkpbxr6nmc9Yb1e6UNU10RqW4sktbHPNzabhdHPC5uiUeb2EVUddPF23xiNcWSywvUG8o8twfNxxaBJJLFW94BYDr4xrFqbld1V7VGWgayviSY+/dEXlRdue3iS2OZNioTQORNORhztHPLF/ibHrOep65os9xhLIB0tshG7dUTzUYmiiULsF2Tq2rmK7vg8Uhkp085cjKTN5omRO+4FUYMyZUjIppUlGodMMIQ0KYMmUmLj1zDPc/8SzLHd2qI0QsjDmQrIGg4cxcv/FV7jz/H2c62lK4UvvHLJIPSVBToVYMrgKW9X0OeJNpus6mrbFGYOUqNK3kmnamqrtSGPWlDwgGjAejkJkvQXZr1QuAMRtz97lOTeuvxOxFm/hmWeeoZLCclYxqz3b08xw0rHz8ecI//mf5vB/91+w+/5vxK2OuHPnJeL8DVwxNauXb+HedIOH3nBATJlbt06YucylKy2nDzacngSuXN/hlZNbfMPX/RFu3Rrohy3z2vGhX/gFXnnxNm014oyCHmetStZKxBinDKgIbTvn8cfeSFPNaWeeS/vw2E3tkykVVqcdh6dbjjZb7q3WnD5Y060Lq3zEc5/5DDEJb3jj48zajvV6y82HE8bPuHJpxnd85x/jr/34Ln/nb3+Aq5eX7F/d5+RwxbCZwKp4zrQdKamflherm/mcVQ5izzxsygRU5fwQIMUR4FzuGGPEOqdACzWEds6oPXdI+Gnj75yDUtRXjIw4BZPW6OSNMXI+sSRG/bisESRH8sTuOusn1lonj3IR4iTvKPZMNiIYC5pS96rfi7VgXZnSPtFJI2vVcHpKNlUrSZXgGeNRu2zRQwpjdN0wKk3EQjEqxaE4THFnJPTkeSNQVC6TC1gRVBEkGBxmSvbLxWoY1fT8VtyrzHUx5wz2RX1xlK+ETVdzevQ+blz6l5C61wV+Ogs+VDmbu8BPn2/8VNWkFNnEwGB6GvNhaufICZWIi3BKwCWwbUO709CPkW23YVHvcBoG7pZ4gZ9et/jJY6xVWaloSIavqkneOU09oMMcthrJUSel9vcz3/V/MFTX4eUL/HSBny7w0xe8/sbf+Bv7IQQB+Lmf+7mn/+E//Ic7P/RDP3TzF3/xF3eef/55//jjj4fPxfOmlPje7/3eaz/5kz955fbt29WlS5fCn/yTf/LeD/zAD9z+ju/4jod+5md+Zv/OnTv+0qVL8Q/9oT/04Ad/8Adv1XVdAL77u7/75gc/+MG9b/u2b7v7V/7KX7lx69atKuf84c/FdV7Ua6/XfPBnjEaA95sOazymONraUZyQRYGesRU5gXdem00KlKIShxQT2IJzliAZJRKU2fbGUARCEK7WDbn0iBGKVDribJyOzhOpKzctlomUlO0wkwlqLGCLsl3GKkOh4LNgxZwbPIuxExM0eRgU9UJJRVOUjOItkIlhTZ6SFFAW0jQh6Ag5U4zDm8Q2dCRJjGQcBSOWsQRlmmVa4MVgjMdbj3cOsDjX4MSrvEeEyQQGZxX455ypKktKE0/u9S2LKDNEzhOjpYtAEYOIdkJl0IVoAFPwTpsoqKntmR/DmawmJaiqRjcVxpLLBmen9y9lmqqhcU4ZqtKfsyzGQI46vVDXsylUoSiYtkaDYZKC6RILCeFO19HUFc2oGwAnhrl4tgKJwv/47d/O3/+z367sf1Fg7ZzVx3BCaxsKQrSekgYqaxlzYEyJ3dmcKyFgS2aG1STE7KhsxfN5zcsPXqJ1jhJHnLO8y1/CpoR3MK42xJTJixk7ZkZdecaxxrYNXU5Eq58dL54B8Bl2pGImgblUnBbLbDFn2S6YGce97QnRWdKqw0Xh8qU9tmNg4SrMHtw9OeSYwr+JI88dH3OpnvMNuzdoQ0fjZsSSMftXOB46NjbBrOU0QESYz5d0wwnGCCtboG2YNwvsGBjKyIlLFNuQ1h1+7pA4kIuQnSWuO+r9XfIQqTPQ7LGOK2y/JViIoj5HA1scji5nSixEk5BikCJIyOCEkCI5KXgxRX00bAWVrdjZ3wXvSH3CJk/qe8agsrDjwxMKPQ/uzzm+N7C464jPJ1yGfrXGZuH5p5/FvecrqHevUsTRdxE/n1NEsJOnVBHDSZcZR2G1LmyNMtkpZeYZCIZ7HaQcwETy6EnZEWNisAlCJhbLpit0oZClInWJ1I9Eu6B97DLV13w15aErSE5U6ZT9meclPKefvM2N3/pu2scf5s79wIPjE4w3+LBmSAM3H73Bw9UjDEPhS7/sKyiy4JWXP8Xq+D4Hl/Z40xOXecc7HqbZ2eXpjz3Nsx//VVIWigjOeQWNlGkaOZJy5v5xx53VlqsHLU0lVM7gjWHvYIeDg6VKalJm7AKr9ZaT1cBDBzs895nP8Ku/+GEOVxukzjSm4uqlHd7zlb+NF5oFDz/1Rh77kvfSxFO248hmW9QTxlhCTLrpzImcI0zm/DnpRsFNZtIG0aRC3SVT7Jlswk6410ApeGORYsjESZaB9sMSsM5hjQ7MaNKaw9qg8hDJeBGcbRDR50slQC56QGILMUZElLU2zqPwctpEW8Do/aXkiSnPFMlEyROrrBITKJoaJwWRrFI9C5RIigXvJ8bZTAmhGU3nxOBsPcn7sh7QmIn9Fp3mkUnmh5jp4OFs3dFQIzsx7Wruo4hZD4YKzggdQspQRA8i4rR5gElyY+Rs1OuivgjKGGHbP8Q//dgP8Xu/5Js4mB+/PvATulm1ruh3+QI/fV7xU8kZb4UKj8uP8Er3bdjZj1DzCrWFyghpjASxVB5KGsmVYdbskHyl8tMxXuCn1yl+euHZT/H2awnfzihiCSHzrvc8xJvebGkaxUkPPWTwdeH5u0I3FPpBMKPlU89k3rEE5AI/XeCnC/z0ha5nn322Bqjrurzvfe/blFL4oR/6oZsATz/9dP25Ovj7c3/uzz30N//m37zyfd/3fS/+zt/5O9cvvfSS//jHP94ALJfL/GM/9mPPPfroo+HDH/5w+53f+Z2PL5fL9H3f9313zn7/hRdeqP/e3/t7+z/1Uz/1Sedeu7vcRX3u6rVP/HmrCToIVhQU5RJJKGspxmCNw0s5j98WgRyDNg4jpBwp1pLQU3ZyQUQB2WYYCTHSWk1gA208MQWMQCxZ2RHQKZ+oDIlKOgRNqTNEJlBs9HE14chRoo4cn7MOIsq8FW1WKZ2lwan5qrV6cIAYTU6yKi1JEVKCnC25ZGVtcqeNxYqaPRunY8KizUoblfoolCmoSKUpoqleQMFijUozSskUqzHpVgRvHeSAd2oYHXPCOUfKyiSXLFjn9V7kTMoFZ726JxRUmoMCSWPNxAZnxGoCU20rpAjeaxLS2Ri5Fzex2upDVHKiGF0InKvJaThPmSpJgWsp5ZytSSmTMnrfMgx9wFlPH0ZWMZDPZUcQJRNLnhwfhMpYpBSVHqDSJvUxT2QRhpQZEZZXrrKbWkwI9H1PKEKdPHuzXR4cHYNPXN1dkp0hF0OIwkws7965zlF3wv3SMaZI169hGNlv5hSgqmuWo6EPW1LR192PPTFHTlfHNMUS+8CinXF9vqDJGdPCDVlwNcwxs4Zt19O2NcexY/f6NbYxcLo6ZreZYfqOh2YNTbPDvNnFukKbE2+aH3ClcawoxDDglnt060A2mURkvemp6oam8aQcyc5QV55AIiIcbzdgAq2xRGvJ1iNzYRdh0/eYxpNCwM5q1l1HDuCwNLZC8oK+mrPqTxDXk61lKOo/E3MipajeTyVPY/+FHCKFQsppCmMpxBTph4CpPNuuZ7vtidnSJz+N12fSmHBmRr3XMjyIlL4iLmpwNSUZurHDIsQuIns7+CcfgtqQYqSua4pYuiGrX4izZMmELFzes+wtJgmLFKKBoQjWq6wmZEuygVISY5d5cP8Bs6bFGOHo/jFGCn7uMO0MQqHxLaEEePgd+CvXkDBQhUPubCL/8tMv88gnf5TdP/N+vuzdb6HvDlmNhdX6hIOdhqeefIKHH3sj947XdGx5y7u+lM0a2v3LXH74EV785D3ScMrLz94ibm5zePdZXAXDmJSJRTfaKWuKZuUqjHP0xbJJmeOh0G8cOUYaZ6hdoTKJtjZUzjCrG65db7hyrfDmNz7Ebyvv5Ms++RK/9okXuPfglBhO2Zwm/tWHPky1WOCWc/avv4Vf/Af/A0hkd+Zo3YyU+1clJmaShbialIZzltqes6Vl8tB6td86Z6elJk/SuHJuCF0mz5mcEkVp6nMj55JGireATIEGFm88ghpBUwwpWWWkJaGrQ6UwVYz2f5TJ1iEgXUPUf6ace8Gol8uUUlcgZe3X6iuWUcdn9LNvzqIHzg5B3NQzmXhqBY5nKj49BNDJKSOa7hmjpvohhSJJ7YcEMAkkTa9lStYrMk0Q6SGBylKEOKYJtFpimV6LJg8gRs7v8UV9cZT3lqt7n+I/+8r3UrvhHGv8h46fMhqklJLBSXWBnz7P+Ml6S8qRwQhDbjkd38el+q8zrz0mZ2qr05CxFJ0MTZFoDNsSsDax3NtlGKsL/PQ6xU+pj0hbY6/sgxNySvyer38jX/VVr2793vF2xeA/9y8Dy5lhOYfnXobv/SbHX/u5SHnyAj9d4Ce4wE9f2Hrw4IEDmM1myRjD/v5+Ovu7e/fufU5O1I6OjsyP//iPX/v+7//+F/78n//zDwDe/va3D1//9V+/BvjBH/zBW2c/+5a3vGV8+umnb//dv/t3Dz774C+EIH/7b//t527evBk/F9d4Uf/29don/hAEqJx/FaAUqwf4qeCdP/dSMZJ1kZNp1Bj9UlmZxmvFUEJEiiXlkTEn7q/WYIR5XTEcRwSNrEc02AFR+884GRw7USNcbSRCChHjHepNU0gx4M00Jp3LJKmIymqI0QO/SZqhr0UIWWPT1VDZIKZCRBhDmIxjNVUoYxiTGrLGoMbMla8YykhBm4wpOiJbUuLM7Frvw8QonMFVq2a/au5aSKXQNDXOC84Zhm1HsgoKU4zKRBT0daCNqYj+wzplg2R6Dcaoj4dMzEU8S+AT3Wxg9eeTqHzEGE8Yk6aNUdRnwqocupAxzr66EFhPSgPKjCuwzSlRihpk26mpixHytIQYOZMrCMkauliIZ721MF2L4M+fczJBLhlbsr7GqiaRKM6QEA5Xa0rTsL/YYRkCpRsYcqJp59B13B06GGukrrmbetYx8hXLSzzRC329y6Ys6LZbPEKpG2xVE0Q4PF3zzsUORTLG11hxpAT3V8dsSsfV5RVSCBQ7sHUBPzpyMVg7JzfQdz0ue26VDc/Hkash8OLpA5K3vHd2jd2Fp1+d4MmUbsXewXW2ZkPuArm1hE3EVA25RLpuRWgbRutxe3t0aaCzhdrWNBTWOTGXiuIM0jjIBd+0GDx3tj1X9hawWtP4imEI5HlFampCF6b3TNhpa3LKbEzB1rucdJExdFRRsM6xzR0Yi0kOZwwhJDAR66ckrZSRXAgxItay7Xr6PjBrl/RdTyqezlQY11DMiiF0iFScnJyyHTKVKRQieacmmIRJQhcGFk7Y299jqAztNF8ym7dgHP3YIxKZmZZFIzSmqORMtWKEZBmzkCO4nGmNxQTBOmHsA9aNXL2+Q+UsYoWqhSI9lVgq7zm+f8xLt17h0u6S9sqCQIFRTcy7ZkY2AZGMubJHLoYbV5ccrR/w9b/z7TgGnnv5RZ7/1V/j2tUD3vned/Kv/skzvHLrLveOj3jH2x/m6Kjj/q3n6E+MQqy4oRT1xTrzKgFlMotAPa+pnMERWTSFS0vDp1+JnGw6lZBMm3snBuMyrbe0laX1hf3GsZhVPPn4wzzx6A2IGWQkF8Om6+i6gTEajldv4j//hrdS1Uv+x5/+Vf7xP/ppWi/an0okjYEYEyFEmlY30iGqLMQ7TwjxnJkuOYOUKWRZptOK6fWQyaIg1UzJaykGbCmkomyrESHkTCi66fC5kMXircUaN3mBxek+gataclb2XBuHbpKwZvLhUkBozDRFLFkPE5ikNqJm/rmoXDHkhDVKdOljFTXct0n9vcxkTV30Ws9SUrUtKzttJ4a+FP05sk6oinFnisYJuBry1JshU0rAGDult04gtGjIgDOekCD6s/4v6ttUJnmM83q9X1yE9X/UZaZ1uGpG3fi9TvATnGl9IYQL/PT5xk81kyi4QGue4cm9r6KuanLmPFyCHHFZ8VM1mzGWSHGWaB0nqxXF+wv89DrFT7UTmrYlOp0nM8Bf/dGP8cIrD9P3OlFb+YpQCpWcfRngyiXhL/9E5voTwssX+OkCP13gpy94Xbp0KQJst1ubc+bo6OgsQYUrV658Tg7VPvKRjzTjOMo3fMM3nP7/+vsf+7Ef2/+RH/mRay+88EK93W5NSknm83n67J+5efPmeHHo98VV/1anxMY4Sp4SzCSDMa9axKaiMdglTyxpNXkbmM9iYgskZUBL1nhvcRWpRO6vO5q6ofUGqgYT1OvFFAXNKWesm77E1pCNgk5nzPSlzpA13UzlJtqApChbrsbJMoG9s9N/oAgxRezkNadeNOpjcCZvtuJBjJrViiWVApLIZWK9c6akDFmNZHMpkAJIPDdiLRRl1SlKsJtXI9PVRFVfrMdMo+ZpYk5bZSKMmUaq1bfGYLDOkqZ7RIGSA87p9GIRvQ71tRWsmZrZ1CitdWrEmh1GHFkSYwg4XzOMEbFgvI5LF15NlEr9oKPmzmNEiDmpoSx6P61XgE2K0+SBTg6MUaUjKUMS9SBZl8TAmTTH0aKbDJuympAXHf12CJWZGH5gM3nzJGuV2R9G5lXNHKs+Pday3W6ZectYzfjw5ojVCkxV8cTygL2cOLr/Iou6Yd83XN/d47Db0qfCKJmu65m3Ldk5ZrMlcQykkknOkK2huJp+VlP3heSFu1Xi6mLBsN5guo5NDJjlDqV2dMeJkgqVMbxr9xrZCEdHJzywjv3lnBhH7h3d14mN7Qpfe7rYIDPPmkTY9lzZ3wMjnJw84HYaWUmkci1tLmALAcNo4VIoLNYjwzAgc0NeVAwEqm4g2UxImcEA20g/RHxbYxc1ZOEUxyc7GLJh1rTMm0vYzQm51s9e6wKSDym2EPGYUgj9gAzjBE4iMasJccqJ/YNdLl26yrga6DcdYi2lCfRdYhwjoUS63LOsrzGTY9YhkA+uURYHSHLcP1wBmTvPfYrnP/5R3vrkmygFjo6P8E6n+VLK+FonYeIIY4SSLUxMnaRApUFkmoRWiqacDYVPPv0pnvySJyh4hpApAdbrTEgGv7TYSzXs7uIG2LG7pK2h3nUQO+z6mJIiBWHIkYX3GO84XXU8fPkmX/e+r+bH//ufwDSWtBnw7S5Nu8+d2y9xsjpk1hj29uccH57whkeeZP72muWlHf7Vz/8L7t3L5z4uKaVz+YFzFd5XeFeRs6P1Flccxg/6GUiJcdSemcaRtqmw85ZN1xPwSE4ga+paaMWy8DBrWmbzwmzWslyAdfCEAWPegC2FX/jXDybvLFFZoFjETBtTb4nTNJK19nyjaa0hpoizahx9Zp9QSkYmoOr85K2KAmIRi/cK+kxRr6wcMq7xhAxh8oUpTlnoyemfUiDnpI/jDSEGTEnkSYZnjOimyhVkArsygdYz5lfM2cFFQcjkyV/HWmWwxarBtJQpEdUKxRSKKSSjl2Ims34pauZvraBRRYWSVKoiqERSJlCdrcOQEBN1c2z8qww1KgUrcnZ/5IwX0QMPKYwYitF7bMWRg64vYDVowdgvOsb6P/Za90/wS5/8r/iqJ//P7M6ff13gpyd2f52f+k/efIGfvkD4KedCaywLXxHHRE56z4YQidPI4hxDay0Oi7OO7TgyMhnhX+Cn1zV+uveZ5zi6cpvqjW8DYLPZMA2S6SGPRw+bI8SE+qiJUNWFt749sLfneeXBBX66wE8X+OkLXW9605sGgGEY5Od//ufnP/uzP7tz9ndPPfXU5yTVdz6f/y8ef/7cz/3c/Du+4zue+J7v+Z6Xf9/v+32n+/v76Sd/8icPPvCBD1z77J9r2zZ/Lq7ton7z9ZoP/sSAQRPmZAJQCZmi5dU/wFhDiElTN1PGWE9B/RL09wrWCLFE8gRwE4kQlY3cnbVYEiZnTTkTIGXylOImIhPHrMyusZqORM5Qkr4amU7xybjJHy7nonYAoOlDTlk9Ta07m2U8YwuUUQA1UpWiCXclgR47acKdGlQnEhnrHV1Ug1hV2ShgE8nq54AemIJVc+5SEGfIQU2nrQBGJT7KTunjmCKaUpdQttBoA89pYttFzVxjzlRWQV3KefI3NRODMr06AZlktW7aAJSsKVBF1G8hTCl7GTCl4N0EzKeJSA1DUeZk7IdpdF2IcfIoIutCYpgkNAWKygvEW0iOnJR1aa2jDoYStSesCtQUqlKUnRYhlkwFNAI2J5wRiJHW6WK6sZ6ZrVjWll2EuhSy1ZTDxltq3yApcq+u2ay3PNLu8JZqiR06rK8YTGZWGXwq+AyrbQc50+4sSCXxz49f5FJVc6XdwYRCP/Q08wX3Vw+ohi1LZhjnOT49od4rXJl74pCZi6frgwJ6gZu+4Yb3NAix8rgi3FutWeeMC4WrO1fwtaPrt5ASKUTmswUydGxD5FQSV0S4MW+4F4SqWnI6bln5hLMORsueb9jH86Z2l2M3EhrH1gizkhj6Lc578jCCs6Q4kELBLhrClR0O1x3RZfJsB7PpqZyhzY7Z/i6SC87AzC2o7C63xzXPHt1nlQa6aVzfG6/ANRVc0amOruu5fec2e80OZN249B2ELGzXAykXhjDwwb//01x+5G1c8x76Uwq6sVkdbygZmsWcuGjIswYpwjgGqlqBhBShrWtKzgRj6RmpfDmXumEMY4E+qZl9Fsi+cO+F+wwP7mLkDdP3Xr+xYwh4b5lXe7Tzq8T0GZ5889sZP/brxL0ZbVUTw0jcnpLGns1geDme8vTf/Hv8Zzce4WQ1o+83PP0bL2LNjFnjyO2WdubwNvPwG/d4YnGdxnnmzQ7rgy0Uy8Ejj/CZZ17hpRdfQlAz+jyZ9U/ddzrkrLDeUCZPrzwpKGoL5On7LYZIQUzEGmEsBmstMel961Mk0LBOBek67Kka8HsDTSV4MSznkcf2Gk5OArWttNeaMxnaNAVUJm8s5BxoZzIygcKYE844TVObmHSZxBwpZYy4qZ+eTcaoJ1dJ4/nES+U85ux5RHuhgkIoRlPirHikmGnyZ9Cfm0BpykmneEgYU0/TSNqexRowOnVVSprkLpO4pejhB9NkT5HJ299qAp0UB1kwYs9lJCq5mWZNiwGZAKs981RTMKkpcwpkSw6gljgKYEvGiJ8obIfBTGmgaCiA6NqAWDrzakKpFSGjhyZm+gzwxYVZ/6MvMRDLkpePvopUFogxF/jpAj/9e8FPPZmZWPrwdp45+X/xtr0/wLz6GMMYqZzTCc2U8M6TUmTetDp1KJYWaNvqAj+9TvFTPZ+Ta0vxDooeiDuv3zEpr/qJRmMYiSprL4WjY/ix/6vnT/zvoa8u8NMFfrrAT1/o+uZv/uaj7/me73kshCBf93Vf99TZn3/lV37l6efK3+8d73hH3zRN/uAHP7jz1FNP3f/sv/uFX/iFxY0bN4Yf+IEfuH32Zy+88EL1ubiOi/r3W/8WHn+acoYGAOnJey6MUrCVpxT1sTDGMmX1kFJSpjVPngsFTXyTiLWGMaq0IYwjpsC13T0cBaKCqWigKoZQsvoKogwEBYwVTLFMepXJJ4eJ0UA3/SlSW08JCWcMTKapJUGZgLCaVOv0kDFmGlNWWYamsBkFaBMbOoasLEYManBqhT4M0OjnPX2WSa+yIPqcakxtQdQnxnlLjDCR+uoLI5xLOtSsWpuQrTQC3VhPTAFnNcmv5IT1FSF25GLOX5f1njFE9bku2uxkeswQozIpRROTDEbZPJSFF2MnmYmmj50l1o2jAlimeHRBmZpS1DsC0jTmrSxbOR+vnha3XDSlLwtFDI237A6Wxum08j92hpedpUUbfTLQxcSymbHvHXPnCGOk8g3tfIYrwunRil3TcLBsKduO7WaDWMvOfM7cOvCGJvQUA/WYCafH3OpG9psZlTXE9Ypd60jZILWj2dljc7oh53FKzQvc3NtHmhkvv/wKwSlzuDANl+qWZjti8sjO3gEvnZyyrjyL1lOXQmo9L45rhhi51s7ptx228uBb8uqYvQL13DOuIuvthgUtlXPM5jWHpye8qVny5LVHeen4mI89eInd3V0eanfZpo7OOo5cYjNG+spwnHTDsD9r8Abq1kEfKTmwKBE7n/HKtsM3jsW8oRoGTRITYTtkVgVePFqxaHfZ8S3GZGrv8ag/zdj3HLR7fPn+DbbrU37/9bfwwvEDfvn4Fs/HjjtdB2LxviYOI9Z7Tk/XFMDvGj7+8V9j9/LDpHyN3Z1L1H6g327ZWVzH2kyhp0iP+8xvQPgajoNRQ/IC128+wuzGTWRnzkBhtdmyu2OUCSx58rFSz6oQJ1ZwkqucROGlI02ha8jURhnPT37015l1p5hs9PtsMjEX+m2PlEy98LRXrjHbvcGdO/dpwgZ/fIzsz3HdiJ05buxUPLI3ssiGv/WrH+X3r4/ZW7Tc7R1SaXKibArJNMwvX2E1LujHXV76yDO8+KnnuH3rJYbhFciBr/ldv529y09SVcJARYqFcVQZjnOeGNUQej6fUfmakME5wU7fRSPqGyQFkETlC8bVhBhVdmYTHvDGUULE+ZFtF5i3c5yxhBhIuWIIiRhHQi7c2JnRjYWB9ZTgqd/5nNSDKJeAMBngGwXHIQQFnc5Okz/6/RdR8/8U8/TzEyAsmrRWDFgMIQSkFIzzWCIlZawVzNlaglWwag3GgqSItZBjIcYMxuIqSDFjixrsGwvTXltlhKWQM5gspBIRUYNtMSAlqY+tcZSk0w3qNQbiDGI16c1kgzNuSlo1ao0jZZLoqLdMppCNm5joACJk9LBAjOBESKVSkFsmU+kzvzVePUyZVqqzoxV9jJIZRT3TikmUGKffUT+gUrKuK/aLEL3+R1rem/MJgtcTfnp59Qb+bx/9b/kvvuS/4uGdFy7w0+cZPyVfUUqii6NKgssSk4Gcp/fS4Lxn5lvCEKm9Zzmf44qwPTxhPl9c4KfXMX66dP0hqp1dtqUh9oXVKmGNZ7MqdJ36SeYEm5DZbIRxMPSdsN0a/v7fFL7sj2QOnrrATxf46QI/faFrf38//+iP/uhz3/qt3/rE2Z/duHFj/NEf/dEXPlfPOZvNyp/9s3/29l/6S3/p4aqqyvve97717du33Uc/+tH2zW9+c3/r1q3qr/7Vv7r/1V/91duf/umf3v3Zn/3Z/c/VtVzUv7967R5/xeBsmUybNXkqSaYQMMZjsBjriCliyDinjIux6r9QyBMTrElHOWZSGTDGsR4KJRn2D1pCv1bjUQOQlbVGyGIJUTBSYU0B0rkJc8qFnBMuZoQIziLG44wnp0jlHSHp6LCxQiaoPKNYRtQIVUF1UcaXAkmbTJI0JcsmBX1Gk/dI2jRyZhphdipRLQFbEhmw2RKLAv6QFIwbMXhpyLHDlAok4bxHBGJM+MoiQO1rSBEzedvhjDL/xkMxZNGDyjIxuaAMlmQoIVLBxB7pqLU1hVgCzk7m11kw1oOBmHTBsM4pG09GsqZLpaheCd6etU6ZxCdCDmVizyEXwzCMlDyoCbkRyEJC2amEJi9lIORE4y2tqLwG4LQU7ojgSSxchUMICJsUscYQDIjzpLpmTIXWWnZ2Z+w6y+ruAwVYRTCVbi6aISCLipmdcc1A2kn8mwd3eaXb8PZ4wLVli60XrJ1ntd1yY7HLngVmFS+OG2xV87bZVWa5MIxrZjsz8qxmGAZ2imFPPFVjMduOq9Uue/MlL42nrLY9V2zLR8cHfKLb8ub9PXZNxe3jHkoD6wfM6gppPWW1RUKCtmFntiANgTIEwmzGp+7f53KzpG4srfOE7Djd9txa3WcnzrliLAfOc1ISp0klJikmtnWBZDDzGa4p5NPMJiVsY0hFODzdcHfYcHnvKiYUZilxerwGEh87fI4n612uzhdIa6FymFQhXgjbQGg8ozmgDJEnbuzyppuPczIe8+E7n+Ejq1PubtaIzYwpkIqnNYbRRD7yq7+CsR/D10suXb+Gl8ywGVjsLclkTraRS5uRuFdwi0Ie1txfdxSBYdxS+yUhWTKZYehYtJcQgXYOkhKlGLwzmKybNDPJD4ax8PIJuBZascwt3O3ArNd0wwkvvXSPflBT4yHBg/svkvuBeXtAKYKzc3YemmPXd4g5gsB4uqIVx/71JR/6pfscVyOLnR1293bAefxRZMAwX84Yju5y823v4IN/55/x/NP/J+LpHbp0gq93cWWL9zNmvqY/vM/dsmAz9BSTKRJxXihZDaGRhDMVs2aGt4ZNLviiG3QrAkVlfMUAJeFdpZtGY8jJQEwYJ2xCj28aKInl0mEmVrsgdH3HovGQhT705JgYug1QA0ntrLKaTotkvK3IOWBsIeegBv6SUScxp9y0lMkWQhiD+r2Abu5LiZOxdUJEJ5eKhZgKbYkIkWw90RZCSTTOYopOqRTnMNPmmKzvfaKQGIlScJVHIpSofdnbihIGbKVMv1DIJZ0dKSgsLAXBTYA6I7ZgjaPkoKA9aYKpNRaMJWFU5mICXpQgFlvp9RWwttLzk5IpRnuwc1ZNpnNWuaO1WFudTwlZKZQcEXEUo9IaYpoYc5nuvaa09qbRfloqnMkafoQmRPraYWLBcEG+frHUGX4Cta+wVl4X+Ak78PDyk3g7XuCnLwB+WuURrKcLZ8mekI3gxNKYggkjCQiITs04RxgDzjouL5sL/PQ6x08hnrC3a9h2hnWXWa8dy9mMoyOIWej7TMqGMQubY2Hdw3BQmC8zYLm7hjZf4KcL/HSBn74Y6k/9qT919P73v/8jH/zgB5eLxSJ/4zd+46n3/nP6nD/4gz94yzlXvv/7v//md33Xd/krV66Eb/mWb7n3Xd/1Xfd/4Rd+4e5f+At/4dFxHM373ve+k+/+7u9+5S//5b9883N6QRf171yvXeor6jETcjxPyLFTglxJ2pxyGTEmT2k/cq73V+NR9YjJOTMOCVssrmpIBTbbHqyj3V2y2Z6AqcH0ykZjFSiiDGrlHAX1xPBWk7q8czjxpDxiXXXOEsc0xX+LxTgmRlXlMmeR6tYwec1M3ceIyk1Eo8jP/GEQoXhl8NTvxio7W1Sy4rwndVsmUxhtgOghqdIhyqznnCkmTwbPVuUXUe+fsyrnkZQpJuLcRLUYgII1eu0mqb9NSpro5KydvBqUyc8ZpolrjDFUTggpYKxVyVFQMJ5jwlqrfjWlKBAuZ8yLPoYUO7EqmqqH6PuQoo5mW6bFLGVKjJSQKPHMjnpKHYxBGadSiCKMJLCW+bzGrjtA+Za5rYgxMoZI7SuqqsYJGG8YcmDuWwiabBiB5XyJWXX4LjBYaJqaxlfIGBkzyGGgN4V62XKl3uGNKfHs0SFHZcRuYa9uaCRTcmTddTSDozKOcTty3wwMxjIXx8zMqKyl6UfYbKhDIJ2ucNUMcRUPbt9m/8Z1rsyXHHdrQi2MXSQW4ZOHW+64kTYnnnSZxjgWiyWkyGk/ElJgMdvDpQR7LeNppPQ9kYqP334ZaQ0NlsFkSkz4WYv3DSZn+tWWsXKYbJgZ4bgtbFzhrs2MBXayo543HKVMrmp2fc26C4ht6bLhsjEc3F9zJY/0zZzbYcUqBlYxEzcjJ0crkoWd1mO8oco1DyLc33S0teWa91TVnC975CneEQLPr495eX3I3c2KrXFEiRw0Lcv9y9i6onGe/viQo82Wu7fv8dLRltofsNipqLeZjx2N3NxawqqnblsKEUkVyUasKYSQiTFSVRUxC+Iq8jQFE7NjGxLFGrLudhmCpS+FhQgVkE1hWA/sWsh7OxzeO2S1HXHWs+0j3bpHTGHR7JCN5dbJKZ/4tWd43/WahMHUc8z6mFKtCIeRV8Y18zfe4Ou+/uvY29uhrne5dydiYuKhRx/Gv/mNHB5teeaX/h6mbCnO0rpGvZqMJ1PRpZGRyNve8DAPXn6FlzZ3tackdIM/sY+uFqqmwnpHXidS49kOCfGGqqkxMWPCCFnwAg4hi6G3ov3PWuamIsSgBvfJMWwH2sZiS+TSTgsIwzBM8sPI2G1xTH2QTIhB5RLAmdeXMIUNZAWgefKjAcg5TqyxUKJK1Lzz575dMSYme2eqylNKofIWUqSuHJUxlDRinMWK9nhTLJL0vTTOTnLHAkY9YtQXRgGtEUcpBrAYW+lawmSGbziXl4gRCoVi5MzbXAGoLjvac4tM8saMcZkioj48AFNQwFnKqU5tTd5kJSFFDyPIBSRjrLL4khOkpCFTmMl7TdeFM68zcU5THFM5nwyiCCGrREYmoCxkXStQqZi1CrAv6oujzvATQDEaSPF6wE9X2hf5tnf+15QiROQCP32e8VPXj4w5YhAqo3A+xIT1coGfLvATjsLv+N23+LJ3P8EQEp957sO8910P8fu/6T0UI7hSCClymhy/9OsDx6Pn/e82vPwZ4Qe/H8bpw3yBny7w0wV++uKoK1eupG/5lm85/nw9n7WWH/iBH7j92ZLes/rABz7w0gc+8IGXPvvP/uJf/It3z/79h3/4h1/54R/+4Vc+H9d5Ua+9XvvBH0xf8MmBpajvi/cNkvQAzVjDmEbFecUgchYHLmTS5GWiQLDynrFExjGyHUbmO7ssDvbYvPwi3ZCYS9ZnLYYzgYwIOmJP0eSdSRaRoibgIVCSAZQdFqM+BCEHpkFlRNRHxxqVVVgcKWtzpuj1grIzMUakCFIy2apBa06iY9UxkkQlH857NbIWZYnVPEImMK8N+8xu4syrwFpHHDXZzjmPsfrLxliV5JRMiAU/mbwy3fccI876ifHX10PWke6z9DmZJCI5lympymD9FJYuymKf+UMw3VMxKh2q3JToJOrqo0yJym+cU88EBazabGMKlBAYu4EUo3r5iJnudQY0WTCnTE6ZWIQ+DSCetvZUnXqSZmtwztNaRyWGoevIrsa1DWMpiAM7n1OGRJcTA4k0m+OSobEWGwOVq8jDQEmJYITsPZAZ+4GmqnjL/IDdZPnUyQmHMdNIxW5lkYMFh4fHeBy7yz0O2gWDL7w4bohiqGPPzdmSa87jRKi8Z7vtmNsZ3lVU+zMerNa4usHULX3IvGl+CeM6Pt2fMK88j7X72L5D6obNOFC2PUmEJML2+BSpa6jhoJlzsu1h0XDvZMtcKpg1PDg+5lo7ZymOo9izUEcgbA5cF8Pa1fzy6ph89YB/c3qHup3xW90VPrnteSUNbPuR/WZJFQ1Xrxww7zak00Mq09JGi48D73IzPr3d8lEJnPY9KUQe2t3HNTvY1cjm7oa9a3sslzW+MhgKdmvZX+7R7lsuNUu++sojNGNiO4wM/SmnaST+xqfZXDuAKzewTYvP6rfSj1u2COOD29D1fHQYePZXnybciZw8+ATZGpbLHfwrK/p7p5S9HWJINK1uCmMyiEkglowQbKIbIU1WJKEUAoEQLNYLsRi6fs1muyKEyMYe4Xb2mNUe68BaNQ12NrHd9DTllEefeBS7OabcPULeZcibl8Ef0/cdY1XxO9/3tfyBP/bHsKZFRBhTVmmeA6kq7t66xbYf2Vl4coEUDSkPeO9xbsR4w6NvfZQ3v+29/POf/yhGCtYYsq3Ozd2ts6SUqGcNvnI4DJsxcrrqWfUwjkk3ws4wW7Y4L0gJDKFgo/Zpl/VQNBVBrKfve9rWE0vCGUvMYI0yqZW15CzEccQ56EaVFDpv6YaEsxYzdVQwjGOHMQZjFTCVUqb2oT1bRLCTP1bOmZQybvLpPDPuTzljjdWJm1QoKeFcprIOKxZjKkoxSAFD0T5k9XetmaR9yWDUjPazjKKtbsLF6Gt0CjaLRm3qdBLK7oszE9gsKrGU85wYck5Yo4EAYsE4IaVA5etpjbLqD4MAGSMq1Tv3pDnzzmHyuRF9DCOCFKt5i+VsoVU/mlwM1ihLniffSgXIhmJrDXkQFCiHSMlgrMM6j+js1kV9kZTA+ToOrx/8lNKc25uHuTJ7mUr6C/z0ecZPdUys+gHjKuwE5xd1o7LBC/x0gZ+WOywPT2jjKc3+DtZsuHQ5s7cPsRi8SaRsIQj1fkKOYbHjaesEGCKREMwFfrrATxf46aIu6nVS/xbhHkabi9X0HDMlA5mJKUgpUxBKcaQoGJPB6sl9SolcIr6qAUfOkEpmnAxthxw5mLcY6+nGyLYbOFhOZrRjmJgJNZgVa88BWqLgCpCUQfDGIkUX9GQyggI3I+W80Z4ZhaasQGrMBWv8lOyrvgWlgBULWb0CclYbgpzPmm9hnBhhxFLXlgATC5MnI1dlvnMuxJwxU5SWMhoG6ypSSsScpoWp4DSulJwzlfWUlIkJnAjZCN7V5BLJANaSggJWrCHmpDHt9szYtvzPRpyVvDBTQpSC5MpXCuKdmlqbaYzaGKNR7ChTjYCtPGMYIRacsZQEIQbCMKhctyjILjmTk47Gl5xJRWVHiUJOSb1xxDLEjMEwq3Scuk+JB92Wh9oZlQijCF2KrDcb6roll8y47Viaim2KVL7ilW5DQyFUBpznkUuXWXaBPAysrRrOOimEoScW2JnPeapt2UjmV+7fYqyEZigs/Iw4qxm3kVlM7DvHbjPj2GReODoiNZlN6Lg7BnJI7DYNj9czhq6jrpxOPywbPrk65A17D3E8dBA8VwzcK6e8e7ZDHkdS8tSzBbYPhG5F62tlvbqAbRqeO73HGy5dYelbtvdPyVbYrjp8FubVjLadcTBEXtjeY0calm3Dfl0x9AOHp8c8F1d8qDvEzZfcX235IHfx0RDwjAK3ciSnxOrOK3xp0zAvMKxOaWY7zGzkSxLM9vem136EjZnKN9hNx2y2x/HJPYYXNjTLJY9ah8wbXhkjO33BpR4QDLqwX6ka6tmSlOD45RXblw6R6hX6xvD8LGOHnuVQs9jfoYhQjSPDoqZKI4fdffrQsVfN+Zbv/NNcP2lZP/MKq8ctq9MV3tvpeygkCjHDsC2MQfjMs1tO35C4CgxhQEpFiRHbKKh57lOv8KHf+DiFkXd+7QHv/i1fgpRI6AeqtiXmilw70rbn4OojlDsZ+bGfwL/nGv5rv4ztyy/TOkOfNqxSoqp3sKYGox4rqRiSGKCmci3b43vUTqVfIUHdGOazfU5Pj3EJYMHOpSu0C4sQyCESw0hKaZJNKDDx3tPOWpWqGYurLG09p6p7ttuB+/ePefDglL4f8VVFdbDH3u4eV5YLrATEJMZYsN7p5Ik7k2g4coF+vaVuPEMCUyBEGPoe0O+7SD6fWNLpE92Y6wRmQ4yBFDPOqTn8ue5MCjGOyg4bZYK9V08z9b1RMFeyejESwRpPZQutgDMKhsVZNe2XiHC2DqFywhSQLFgRTZ2PEUOBUkg5kiO0bUueTKuFAiVPHjXTdI6Znn/yQjMGiim6CbeaXic2ky0IXjfZohJO76rp9ZwxyOk8/Q44B6Qik19OVm/KYgxJzsylizLaxlCyHmhMAk/1NmNisAuEWOijIUs6P5goSRlr53Q6QZikLhf1RVEy+QeDbi6qquL1gJ9eXD3Bf/NLP833fvkf5I37v36Bnz7P+GnZNJzEzCpFYuwB8NMm+QI/XeCn3wx+OnqLJt8CUPwFfrrATxf46aIu6nVUr/mTfaaBJxcEZYMKiTPbzCKANUicWFsUuIUQMYKysqKgKobExGUTU2LICZshrQM5Obyz1OIoZE0qMhFT0OQlUMlDGPFuYgJQJqNonNo03pvUtBVlBXLJyixMwCkklbikpOxuKUJMarRcckKDliwhFShCTFMyU4YwjuDdJBGe2A/Rx0jawXS02CizX4p66HDGoosCuM8KnTq/hpKV9UhZcKbSBlbAYEhRU/LyNJVsvCOlNHk9CCKOGBIFmaYY0ZnsmBDjyFm9c0R0PFvNxHVDokasE1Of8uSlUM79edKoBt2IkGIix6gj4WhaHZQpkU4PhD87USujKXziHWlMyu4YUUA/bYYaY0glMubITj2jcg7jLNlobFNb1cyMp8Xw8PUbHB8dYYcRl4VZ3XAnbPjEg/s8OtthZgyn/RbfCrPlDNPWChKMoy8d1/f2eZs33Ln3gLvFcBx6YmVxWSB2LF3L8csvsjw44GFfEY0lWcdxP3ArrkjdSHPtMXYx+FDwi4q7feBFKXShY94PhMqwOT3lTYtLLMXR07MaR4ZjYTZk3Hak3fU0TU0nBWPhsf3LdOueUFfUewsYBmUNxTD2I89tNoyVZ1G1WFsRCvSrLZIyVYbfs3eNd+5cxhXHT/Vb3li3PHZ5l5PjLaHAwe4eFQGzPkY2a2wWZnu7rE835Agr5+lXI7YveCPYaEj9hmdWhas7wrXWULaRK3gqY0hHW/arls3RAx5qG1LXU+/vstr0hKZhiBGHo+y1uLolZIvYGtt1XN29xubkCHtyyrjZ0A9bDmczZLshr0a8WIY8sDoOHJcGM2755NMvMOaCr+aMY6KLgdq1jFmwXmVhs1nDajMBrFhhpJCKQ4jkWHjqHW/h8ce/U71AqpbDBxusFE7Xa45PtziBvb1rpBA5vH/ES/dGnnjsOvKOpwgF6nGgVIZVbyi5phJh6Ar1oiLGjhR1QsY5SyiR1eqYMW0gtLz9vU/xh//4n+Hg2uP8nZ/6u/zL/+lvszCWq5euIswYskzf9zMvVQVWZjJQbqsGZz2rbouhoZjMegR8zdWHb3Dt0YdIoaffbtiuM8dHHUedV4Y09DQ2smwa6qrCOhA7gauUaBpl1NfbDnu5YoyZEFV2IaWQJ4m1srEysaPKsup3XY2qKXqwkXOcTKgN58mYqEeYGkSr8b9ysGfG+SOVaUiivmLLyuNSwFmVymANRUS9uM58tpiUfBPITEV715nORMSqmf+ZbLKolCbnhDFl6s9oAmgRbGEy2J/kI26SsUxJ9o7p+hNUXj1pcp5S58Scg2AxTBIfNbtGQJxMnmMqQwKj7LN5FeHqtBea5Gc4l6KAAmMNdSiMRWWHzpyx2OqBY52hTJNU5bUv7xf1Oa5U1L0JdPoh5/y6wE/5TNt1gZ++MPgJ2K0bYt8zlgSodNnJBX66wE+/Ofx0fFpIEzlwgZ8u8NMFfrqoi3p91Wuf+PNex4hjmQBf0BP1EtVzwFoFZKbolx9LER3Jdc4Qx6A+BkZTe0S04YwxMKTM6uiEzzz7HF0f8EZobAUo01EIephfJk+AoomeknVEOBdRPb5RbxRXHBTDGHWKzxgw1lPyBG4nIBVLwJqKmBOgC0aZ2BhtzoViJqZ5ArCFglhPKmlivc9YXktdN+eN8Ix5jjEC/nw8WkeelYU6Y94pepAqpWgDFU1QFqft3jqn4HfyAtIx7KRj2tZScsFhKflszFpIJZ0veN748981IkS0ucdUdFFIaUqQm/p9EU1lokxj4WAmMK6euHlq7pHMmc+EKBszedNAIaeioFaEIJksiSgQciGUQjGvHvztVQ07ktRb4yyCnUJrDK1YaixzLE2MXB0Tl2zNTjtnON2wMBW7y5Z/fXyX3zCnvGG5z5WDXbrtlm7VYZuGlKwa2rqKuql5rL7Mvptx+8Eht7db2uBZuAqTI2G7xbctMUZqY1lkS/YNY99zfT6nixVPH91hd7bA9ltq1xOLIxrHSycP+K3XHsGHCFctrdTEblBJisvMbCE5aHYa8AX6DkkjaYyYdkawhZPNKe18xrwSQguHJ3fY3T1gLPCg7+gSFA8HviankTJEbCk8Vs14q1twf+x5arbLNTdDusCusRRj2GzW7OZCexqIvmVvZ0E1RA6doVkuaYzhZs5sxo7jnGnFsJMr9qqe4+6Uj4eOr2h3GI4POfaFR/dvcNp1bHNHWmWceGTb0cTEcLQljh3Lq3uMybLuDURL3DPM5y2HYyD4GfvOs1vvcLK9x62jU57/pX+MzPbIq4H1sOavf+D/zn/9+//X3HzkXTz1xhs89NgjrPvI0emGVAqxqtiMYLxnuyoMfeQoaWBMLLohCBmcTN4pRvDNLuvU44uwWEyfZ1qsERyBygrjEJm7lmU94F55CemeoN8GltWAZOFoY6h3HL/0S58m5w/yJ/7EHyTHRBgGyFF7yjiwPb2PWM9DT9zgW/70d3Ht5pcQTeDLf8vv5V/9ow9idxx+55pK/uKAMUJOgUQgJTDiGEOiqWrqqsaIJQrs+Yoh9oz9yLYfGZN6hlmxONvS7nqWlz1IwUgixoqh07S109Uxm64jF4sTy3JW0dQO5z115WkqQwgjJUVKClP4kUyeLspYV7ZCjG5igfNpF/XhQiUaRphgFYimuuWcVeJkNNXUGD3cQATndTKpoCmojQVbwNvJhHti2EuxZKNML9OBQAEiRf+9TKmbGCgWwZNjoap1SkjT315l1EWA/GrCH5JUEpN0g2+sIkRjNOBARNNX83Q4Ic5O16DP75yhGJXoybQWnNlkgIJRwWCSQdNRoVhlqY0R9cWZJqt0jdVDA/UPS8SUlHqbgLH2WAMWcgk44/Xn5QK4frGUeI+x+n5Yo1Mjrwf8JNOmKwPpAj993vGTzYWleEzTcjJNaeVygZ8u8NNvHj/dPRTmlX6WjIHABX66wE8X+OmiLur1Uq/9kz1GrHFYMRN7LBin/jF2+t6oObQnF4OkgiiFTIhqnGydfhFNLhhr2XQd23EkjpFq19K2BUmWcrIlkTBJyDkgUTQ9SQIxR/2Cu4pUIJaAMQ4vFhuntLyUsLWnJO0cJSdi6fFVrQxABiOenCAwYpyjYDE48hjPTbQpyqbEnCb/gUyOkZwTsWSKcThbE9MpMWaGFEAyRTzYQoqa3FZgYnAMuSS8qahdjZQOyQai4IyObBtvwMo58yKmmvwHExhhGAJtVev7oG0Pg5rDFokYK8Ss14Fz2uBKmpqzpugZayBbHZHOhZiUPTIYSOoX4Z3DlKRAf/JQSxLPFxohn3tuh5wV5GdNqzPG40xR3w+xSLLEZIjZYEClQjGSk0zG4+BLonaGzThgxFC1M0oIVDha8ezahhIHqiLsJUMaAvMwsCwVhERVw+WdOR87OqHvI1+7vI50K5xxVM7RDwG8Yey7M0EFVV1xdW8X03m2YSAby2q7od3dhdrz4GSNrT1uFIgDeYg8Op9D5elb4d7pmkEK7Wg4aAwPLxvy0Ybh3hEGQz8OfDqfsLeYs5zP2Gw6hu2AdAOQaYLFOd0EhmIJ645lU/Ng3PDi0QOu1zM8cH/saXJiub9P33UEB7aZEY9W7HtPqCpO13c4jB1bydS24rFYcRxGnHM0rcelzF42pGEk+paSR1KMRG+IofDK6pRZPaeOI6ExVOuR/d3LHCwWXIpbnjs6pKr3uZFnxDIwFuEwJF6MK9599RpyEqhSputHupLYFcc4r9iuN9zJmfnVq4QSuPfCbS4vl4zDBhMKj+0csFM75jcuEbMhDCOboaPfmXPaBW5tN/zTf/4z/MqzH2P2jnfxiY98jK/76qfwtSOOkRxHQrCstpFxCKw6oW/UnSNLwpZClwTnDSQYYsZlwZmaWDImZ3Ku6IZT+j4ypkBTNwzrkYEts6Km66apKTFSpwxJ6NcWayo+/dwdHnr4FawparSfRlIK6smSLEfHd6ksfOXXvo/dG29gNQ7UtmGx2KfgaduKmYx85tlfoT+9R4gRpYFBxFFVLb7ybIctTdUgRrBF9SRFDLXN4AyV0eCllAMDnm6biSSycVgBS6FynmpesfQLbkrCSKHrB9I4EseB23fWXL55wNXdlldunRJTxHnLdtNBUfPkEKEUD9OG9sw/y1irILJkTdd09WRCXSbwbMk5UtWVyiqSTkElCsY7MmDiiLU6/TQLhcppUqYxRn3OjDBQqIwiWkOZZBoGbyxpOkRxVoGtiCELZCl4q+sTItOBioM0KrNsLOItMSZMUT+dXDRNPGcFnxbBFIcTh0jS90gixjmQPElDVA6JcZpFYAUxFdZm0nStInbSq0CZVt+MTu5Y9LmU4XeYYtCoQeDstYqhlwKVqGxmmoZKKSPiqe0cKTXFWPwFbv3iqTFyafY8f/Sr/yj781ua+vo6wE8xK8mSnU4KXuCnzy9+0snESFWEyoKRU7o00i4u8NMFfvrN4afOBnzUdceUwnCBny7w0wV+uqiLet3Ua/5onx/6GTuN+epYMgYFH7mcs7QYqIwjJ036MQUQ5TJl8ggYgyaVpZyxGA72d/HeEQSMm2QVZfJgMYYxJbxzOsWDkLOOFYNFikDO5ybYxUCKA1KUhXbGYK0nxIAxGSuGEBIpR6yDkhNMjEgugBGMtYwhIVOzU3NQIeSCcxUlBmJUNsEwgbaokfXFKDODLaSirK1z4GylCXBpGqM3FuM10SiXgq+cmsWK16abNNHNWoOzem3OO1KOOK/+FYqv85RopLHmRbTRC5MsRSaWRqEpMWVK0jF04yy+qsglT2a4TIbYUwqh6HsXx1GdWrNgiyFHpsYecGIIedR0qqLR87lCuespdanEjOSCoKy6r6ppFP5V+ZMzHlM79ccpurCmODKWQhDYcZ66OIZUqJsZxrT0D45puhHZGtodj6kLT8yXOJOp53OsqwhjpIoj/fEpzoAxDaUyNN7TLCou717izoP7rEMgNDAOPTkOHI4b2npBNWYYO2rjGVcDrRNuLHZ465XrjENiudjhwfaENI7gLIyBZb1kZ3eHp49f4uOHL3AwtLRSQX/CpWqBSZniHLQ1rWm5f3wfbyskZW6alv3ZDkfrE3YO9qgXI0fbtaY4Os8mBY5uHfJG13JFKp49vcWtsWd/6LgbtlTiud427JTMxhqePz3mre1lLonw6e6YvJwTN0LXBbyxFGsJ44DzhrwdabNlttjFmUxcH2PGQF8ii2aJxIrWRHZaR58jkYrNJmFM5u44sCFy3c75xPaEMquwydM2NdXJirn1zKWmbDsecZ52Z8murSjJcmcV2TKQwohrGnxesrM/I5ysiMaS7x9y7x/9Qx7vHvBPf/pn+OV//jRm2fDmd7+ZqzfewGE84PaqcHLc4Xe0Zx2ddByvAyTPyYPErTpSBpUhYDpSclCEZHrGOFBCQqyhqmZsQ8dqm3jwqRf5ij/wfnjPu2i7kZhPofTMvCUlIWxvs1y8h0QkRIG8hJywJnF4GtiOPTPf8ta3vJvGzBm3Kx6sbvPMR3+Nkk44ur3k//Lf/AjbzYC3kZILOQvONeweXKOd7bC3fwCMXL1+nSwgpcLknqUPtDuBYYiMQQjJELAkUT+vMRa6mIgRhljY5gCrROULiwa8FWrfMt9Z4lzhylUBGXAONv3IGHqy87qBLkxGyio/iTlgnDLVKZ1toFWS4f00xVJ0Ix1C0N5RDCmCoOb9Rgwh9Hivso3K1TplEwPNNKUj5szweZL9TVM+JUMWoRiDiNd1QWpExmniRyeMZNI4BtTfRShIMRgDGaMTN6IyRjclnpaijLoYwTidrpLJC8YYizEeay2GjDHqj6aTUR6xXq9RJgRuDDmpqTWTDMnYaRoKUbPskpW1nno0k+xFl1QF0kWsMuIGkhhCyaSJZRdR0J2Znneqc4+ci/qCl+KnQLv7gko65fWBn84EqaXkKYiDC/z0ecRPBX2PUors1L/Ob7nxZkwupNJc4KcL/PSbwk9VWvDkE5n/5LvWmL2KuLnATxf46QI/XdRFvV7qNR/8lZRJViUQahQN3hhiihMYPUvOKQiZJOlVwJczbhplVrGHIYRh8tWDHCJV5Vlte1YnK260M2U2c6FIJhbV+WeMmrZqJ5k8XCbDluk7H8nEybzYiCBZpQ8hJE1+yxPbUybTT9G/zzEipWCNmrWmDMWaaZxaDUNjymAdoQgpGTUOdZaSIiRlMVKKWDvFlpNRc25ljHIuk3GzUw8YmFgd9aZIKVGMEGLAOYeIwRmDKUW9FXIAoya7BZWqnC0ZYkBbl7IiOSe9785OXhdTApSdfHqM3ssci3pVnBuiMs1XTx43CClFqsqRgt6jXCYAmhJM1yWS9H0do0paRIhFpUMpR424Hy1Dipq2mgKFydOHifFCZTlpDIzjwNI6duoGQsSlTNNYirFY66lPBlbxGDz4tqVfzBjCmnddvckNW2NCod4mDu/dR4zgraW2Vr1VCrjZDJsipXJ4cTxxcIOS4SRt2PQr+tCTSmA9bNnzcxwOM33Utt2IZ8uum9EYSwoBsuHO7QfUTcusWfCp0wfE4Lhcz3l4tqAQGSMc9gOVb6iIzJqWwRgOVysWbsbO7g4SE2YoNLZC5ktyGujjyPPdlmXtMVh85ZnXBvotv3z8Iq+UjtZVHMXAg5iYGUgjDM7QxcjuzpK32R1ePL6DdyBhIMWepmnozahm60NPd3jEzmzGOmcGKWz6gReHFZfaBc92G3LOXK0v83i7w34esFY4Npb7p/fpmoq1sYTBYpLhnnOcxMi11mC3hxyI46HlVU6GyGZcU+0u2ayOSaXhztEpYYzsX9mlXbTMsRw/OKK2hrby9K5icDV2OeOh6/sM44bTT/4K9w4f8C/+p0T0S7buIYZqD28WPH1S87uBTZcZimXbZ+KssFmNVBVIbTHMmImjpIzNhnvbI2IYaG1N7kYyAVvPmIuDj3+C+mvfg4wRk3skwap3bDcb/uAf/Tp+z29/rzKmqag0rQiLxYKjo/vEfoOrPB/96Mf4yEc+w91XbnN4fMTJ0TEpbklpl7FUNIuKuLlLTIlxDCyqBu9rYirEmKiqOZf397EGYt6yCTOOjw2Nd+wtDZcPLF6EMBZCDGzGxCYkZtEyRkdIli4khjExDAlnDFUr1DJiYqHrMzh9jJwhj4kyDipZc5PPVcmUrPI/UFCYU9TN+ORTIwiIUVmLTN5clKn3q7+WGIgh4l01gUF1mhGBMUScETyTQbRMUhFgUoKQik50Gm/IFkrOeHEqj7FOWeM8rVNnUkVnMLYgKTMZ6VDEQIqYYrBqKjMdCMTJnPosyXOSOWWVkRQsYt209jBJDqdkeF5dWzSNzirw50wGgzYRI2BFZS5JfW8EQWnvyTtIzDStxLlHjhQYkyeJwYrX+2IN1lqsOIx1JM6MrM+OZS7qC10lZY7HG3z4U/8b3vPE/4Od2e3XCX7SdTvFRJhUIRf46fOPn6zTpPsL/HSBn/5d8dOvLN5OU72T61/ikUXL0fYCP13gpwv8dFEX9Xqp13zwZ4xQRFPerLNIzsQcUYpW/QucdZNkJRFTOI//ts6QU1CtfXGMQ0LwYGC9PaF2FWEMQGLoI3bmIAQoEGNGvNHDuSQKAp2FlElo4hyioHAoyhIbX5GSshMpJ+rKQVLAfOaZXIo2E0mTjASrxs9KdBBLUuY3A0Ej2HMKlKLeYTkD1hBSojKi7F1OSM5YUSPvXCKGrBYuxirgzHpoqo1cgX1VaQKfwZBywTsLWaWKToPqMCL4yiq7GyIi0yj2WT8VyIZp86CLCEA+A61GJnNrbbY5JSiocSucN0qsPkZJCes0acs7P20Y0GSoaTEqRdMGU45q0CpqQo6xiHHqGyR6n5heW7GGGAPGGcYxngNXZbIhp6wx8ylTFUMr6oNxad5y0MzYriNiYD5vcP1AGnvECnHZst8lbBcJQ4f3DdvVMTmNdN1A0871+lPB1qJeIinTYLDjgBMhWcPN2S591YAtzOo598eefgwcd2sWxuEXC4rAUeiothvq7DGlR+YzmtlS34eU2ISemat5ZOcSaeyIJXNnsyIOkZdYcalp6WNg1Q0cp8CXXLnJyd07dDFgQ8bOMjPnOUE/h6f9yLhacXPvgEVluFoVroeRvgRu7ixZrXvW24GTlKFukDwwGOFOGOlPE0/PenzdcuA95XjD1b0bZCk8c/wym35LcYadnYWyttuBnkxYLHj+dMu/Hk84cDMeq5ZYW3BDYLU94crePot5w9G6I6QMVY11hQe14HvPvrf02w3XvWNBRTnZ8OLxHXb39xBjOF2f4q3lICecN9Rjpr93ir9cMe+gv7fFXdtjbzknBgXSlW1YJnA5Q205cA11Sjxz/5/x9PFdulTxDz9h+fPAr/3d/47PfPQ3SAdPMnuL59Hfep0Rx/HhKWM/0o8rQhhAPHdv3WK7uU9bGw4PXyGPhf/3z/wy73Fz6t94hjB0yGxNGXuk7zjqHaYVvvJrfgePPPJW7hxuKTbj3SGrw5d5+tde4pPPPkvoTjHO8fEPP431u3RBN2wlZvWjahwyc4zdiPMteVxjnWUYe4TEyeFd9ndm1LMDslhSstRuxtVduLmT6OKAp2FuFswai5lnyrTxjjmwGQP3Vx1HnWDTjFm2DGNive7ZrebUUphVhcrAaTSsk7KpoQto+ED+n60BOcdp4nv6Q9H+mc+AFwB+8popUNQ7x0iFIIQwKgtshYKmZWrQgWGIEe8dEkYq40glYK32PCcCWaeenDVMZmOEGPG2kMoAoptymfzErBHMtPkmTn3RKAtcSlZpiDhyUO8ZY0QlH0b7tSDnUpzzDAO0FwPnDDYT2BenCaDWWv07sRSjAN8Yo022oL5i08FAKRnJU+yDFM4CAPSx3RR+ULBmAr04YmkoU/KpTNdzNl2k/l5G/3v+flzU8lBusAABAABJREFUF7o0HbbicPUGstSIlNcFfsp5mpDIBskX+OnzjZ9iKYwx4auG9fgknzz673jy4NtYmKcv8NMFfvpN4ae/9akF/+BvvZN7p3+I6287wdx86AI/XeAnLvDTRV3U66Ne88GfMqtG5SIpUjlHSpES88Q2KnuhRLWesls3gcKi47QpRqxkbFVRYmaz3nCy3VJ7P/mnJErKxBChnJ3yQ0pZZRuSKSkRKXirko0kGWtUxmHR//VJyClSnAVj2I4DlTGQ1J9AwatGl2tjqtT8GkOOSVkOIBsBFHyFmAFHjIEsgCjjPMbI9cvXkGJZheNpFDrjrSUpQtRul7Wxa4KdxoYXlJkGwVun/HYuhFEbuCYiRbKYyf6hkElYq95AguC9Z0yJMSac02Y78SeAyogMEIZ47kPjrCMWZW5SSlPTMxO4V98Y56wuMsYyjiqXiUW9hrLk8wVH76ROI6j5dp5GwvV+GmNIIiofohApuuEoGscuRj8jYwxkp0x8zJnWVThbQTHMXIXrI20FY11xb7viUjWjrRqqecPGG3K35up2IDWCbxvWpyvsODJ3njGOrMcOW1U45whhS50dfszkvmenXSBdZL6Yse0GJCeWe0sW12c8kTLPr4+5c3LEuNmw6XrqyhNz5rDbste0DN2G2gXmdUtfImEYuLy3y2Z1wuFLL+FnnpNhzfF2pHn4Ov/q9ouMXeSdu5e5bluWpuXOyTG1t1xeLAl9zxA7+pg42QY6Y9mbN1zdndOawjwLfszUO3s4elyKCIVtGri/XmGHwtwIvbEkcaScuJ023BBhzzmay5dZp8yzx7fpraepapq24d52jcUyu3mZa9lwRQzjpSvcyZHH/B672fJW37AUWJXIunHEPDBKxW0cHzu6z+CF1BXcMPAV88t87fwq48kJd4YNn64Mi3ZOcQY7Ji43M9xoWKdM5QxDN/Ivj27xDufYnRXGGua+JnQ9/fEJth+1Ya0GrAin/ZpLO/tcqoWwc0AB7iWP294GYPPy/4dX7vw8vr7Mz/yzq3z4H1zmjY/c5NK1x5gdzHBepWJGEv3qAd32iPnScXxvxRAzH/vVf8Lb3v1O0ltuwrxmSIWd2Q3IlzkZnqVtFjS14bnbW37kJ/4FmwfHPP30L3Dn5Y+T4hpTemyOxOgQXzNaIQWP5EwyPQOFRZfwQyIMI0MYyWfeTyLkqIls3fqE648+wd7uPikUIon14LHZUZsZvsokOWVIjsrOoHhEoPaO2s0gD4iBAU8sllAKly61pD6yCQlMYHfmmYnhwabDiWE7BDZBvZR0IkiBVpoiMY2oP2dKAEW9t7xTWVo56/mOIgrk1MRapv/kSTSnIC6lNEEsDRrw0++HoubUKoVRTx4zJX8aCyUpqANw3iBkSrbkaaMeCTirkhfrPEYSRZKC0FwQHFIsznpKTthae5yfQGspZVofMtY6nK8QDIimeYqoUbazXkMXACROxtsoEBXBOiHFOPXDSYJjDcYKFjmfQsolT8+pXVVvlugEWAoUwJmaIVpypWujQUhZe7H39SRx0ftlz5j+i/qCV86ZvfnzfNPXfBsxRZ3Meh3gp5LOZGSOUtwFfvp84ycEbzxDGDFyyk7986RyBM5d4KcL/PSbwk8n6Zjbt+9xeP93k0//ALPF7Qv8dIGfLvDTRV3U66Ree6qvseSUKSVSSiaUpP3MCFkKZUo6U1Z4anIp412lp+4xQdHGlJ2m141pZEwjV65c58rBDt3RMcnbaZTXEKMm8BgniIWUgk4elqRyA1GliRhlWXJRIiOXgJvS2rKAMV6ZCDJmYgtAGV9tDkYNtUXZ2xwjGPWdy1Y9IwRHLllNoyWTDIwpkqQih0xdN3gxOGewzpCKgxw0ua5kSs4UztgSTUZOKarJdYyYylIQjFPj1zN5jDgLTH4FOjh9LlFJKWHtxHZbp9NyRlnlQiYmXWCKWKwxmKyNLoQw3RdNn7JisU7Z+pzUpyNETecrKZ8DU1BpUpoAa0kFKWr2nZLe03z2JpTJE2JiXFJWH4ac1bciTdKYOD2WsZaUdbQ85EIcAwfNnCEX9bAQi8uGuhhG27D2nn4cqHH4qsX0I8472iHrn/sKZKTkwtxVGA/FCf1mhThHHCJ9jLTJsucbvBUu+xl94xl3G65aT50CzZh4b3OJ+wcDL26PWQ8DXQxs+g7GiITAbF4zpoH+dORev6Wqa13EY2QdBpKv2aTEPSkMh/c4zeqT0fgZDIltv6VuF7oBjJq4aCkkSbycthxKwFtDzonDk/u0Nx4m58zdw/uEocfOKox3VM7z3PaYerehcTW3uxXrLFyaL1i2LS8/eMCnGXjT8govro+wTcViG9mp55CFWTY4V5OicNKvWdQtu9EziOXe+oRZs+CgXtD1W369KjwznvBwNef5HPh02OK94eGq4U07+1wNicunAy/ce5lhzMzt5CnVeurFjBrdeL4YenpgWc9p2pb3NBUvrk+5WzKP1w2YiAyFsM4QCzes48G4wjVLHprv048jQ3GYIlzxu1ze3+Gx5jK8/AIPP/wO7jXCuFqx7e7ywq8/x0ufKDR1xXJ/n90rN9i7cY2r12+y3YyEOBCTcP3xK7z43CFdCFx6/+9m/v7/FVI15F/6CKw3DOs1KxkQsTR1w0nXsQnw/Mv3Od1saeaevf1HOT2+zdH9Fb6tcFXDzO6wShuyscjGQhpxzYxkErFs8K4gYRqZEWHTB+p6RhJLsoG6nRPzQN0uGFKijInjYSCGjJTCosk0dU9bCXVb451QW09KIymqz4mzhsaDrwxrJ4TRMcRMzI5lIzRLQ+UMYzSYkqlyoVP92rk8DlFpmzEWO0kESZCTUMRgp6kl66aNa0pT/5rM2KfNsk43qb8WRX1rcslY4yBBsSp/LMZM/mYqXYk546dDCicVEotO5JQAJSuTa+QcbBvjiAgYixPtT0UM2WrfdxMzHUvCVZYSC0b8ZC5tNHxBil6jGIyRSYZiEDQZlaIsuoLFoqb8RtSvrGj/laITUMbbyXNaPXZA/XbAYMRNzL9MqZ56bVKKSixNZJREcVnlLhhyVplPKVkni5yf1rHw74INLurfY71e8VNltzy1/yG8GSi4C/z0+cZPMU9yPofNr/Dw7vfSx8RqNBf46QI//abwU7n+Fg7HyProj7OJiXHVXOCnC/x0gZ++CCqlxMc//vH6wx/+8GwYBvmmb/qmk8uXL6cvxLU888wz1VNPPfXOD33oQ5/4qq/6qu43+zhf/uVf/pZ3vOMd2x//8R9/8d/n9V3U/3K9do+/KaFNJs8WNZtOVM5rulkSYkrTl12w4skhKOuiFAzZTqakpdCnkZNhIGK4cuUS81lLf3jCbDYHEcYQ8SKI8QjKTGcz+cqUCUjVTj1QUsRilO2wHmEkpThduTZTJ4Y8GZvmSS7iJmlHUUGJNt1iKFOMem8Fj8VYQ0kFSAqCc0Kk4LAY2+D6jJ95TLtAakF8TUkZh3oJqMeBJU++CGKMjkyrEw9ihT4POKmRVLCSGVPE1l7NYCctyZmvTSGRc9RGnyOKspWhCDFOrIcmABarjd6KNsiQFFyKV4NpynRfUiTEQkb9JQrw/2Xvz4Oty9KzTuy3pr33me58vzmzMmtSValKUpUkECAEJVCIVmND47AbAyEZHDJhgUwIIppQhAOFsIRCcjiiDSaajsZqN01D+w+QFbSYpMZ0q6GlEhprrszK/DLzm4c7nGkPa3j9x7vvl9U4EEUhsqpTd1VlZH73u/eeffY5Z61nrfd9fg+p4A2adJciPvixMq2bhCIGK1a7A4pubpwX8tBjZl47KovFZq32O+sow6DVuFzIRqs+AJKL8hWKEC2QE8u4YbrYJQ6Zbe5oQ0PTzCjbga70uCrg5nOeDi1hPiMkIfrIuo64zUCdCm4+oY+CTxE2PU1w5CQEEyje4gtc3dtjFhqmVJzVnnslcWaFF0NFd39Js79LdjU39q5RlcyybNl0PVuBoe0ZYk+MPdu0JteFbIWz9RmSEslZttses5jTDwMn2y2NM3zV8U3mYhhcYlh4Pn72mN+2ewPJicFlwDGQeWoSbY7k3LPdJHbrKct2xUHShMNKRt6HGPCez/Zn0AX2/TF78yn3l6c8XrdawfIF4yo+2Z1gJLPbzGi6wl6omDUTZFYYJPPSEClDYlvDwXzBvOvI04ZZ7anIfC71/FS/pjPCJ8+WfNPOVb75qsWvBsI2k9Ytx8bz+ZOHhONd3u8dxMyv9GsmxVDagXpiiKsl8yFy9fgKVhwmgnM19+yGK9evUrmafrnlHbOK5SSzouL+nUfkiWW6P8etE42vEV+zjgO9i+ynDZxuALh18znKtWPw0MaezfKcdrXh5NETnp4+5e6jR5RPJCaTKZWryF1iGQb+0T/+BbZdT5bE4WKX2d4BMRfsaoWsz3nytONOZ3E7nnpS0Z1lhlzwE8t73vMi9+5v2cYlQ2yJMTHb32U2O6bbWrrVCcYPlJJ47vn30nUD9++9RtU4Qq2VU7Eei5Bjj2tmFLHYbKirihgLfaqovaWXhLgJOPBeq61dEjbbLflJS0LwIVFogJochMXU4gMst8IQA1agqgzJKLvroLI4V2i7Fpv6Zxt/YwwpdtqVBGCNikLvkFLIWQhB5xg9xBg3t2jXjMGqzpICRkWviCBiRqZVxqL8MQEihZgUvuw8BO8UBTDO6cVYrK+gaCU3pQLWgikUiWonkUwujsrplRjryCVpJdkWxEXIyr0aoWiUwsjMGWvGRiiS8FYh1dY5cAU8yrKpHVCQrB1EzowWF/+mncWIrodi9N6U0epiMXo7xoKTufDDIGC1w57R7gJer1uENlgcDpPt+FxU8HurvyeVjDGe4C5j6b5ShojhyfJ9/N2f/6/4Q7/tj3K899m3hX46qm7zJ9//f6QAsfhL/fRW6yfr9VA0J0QWrOP7Kf6TWFld6qdL/fQl6af1446Dm7e4un8VE+RSP13qJy7105d/xBi5devW1zx69ChcfO3hw4dv/MAP/MCjL+d1/duOv/f3/t7LVVXJl/s6fjONf4Nwjx7nrPIGnButDspZSVH/ba2niFojygik1jN1hbZaa0gpayU2FTabDknCsGm5267Zrjb4lNiZzylkBZUGT0qFZDMypi0ZRCf4pO3JfqwskIV+6KmCw1p5xjEgF4zX70klj7aMTMlZmSp5ABLWNpRidcLHYmIZgddRBaMrFGuwlcPHGoBkPLOpQbznxnxOjI4SG2xQdkApY8szeax0eDAe5wPGFKwpYLT0bp2FDNZpqpxkvVZtUXYqSo2mQpWi0NZUBCTjrCPFAe/CyJhRC1G+qJQ7FYsCuFDRDVt9LcVQDOQUteWZi66DjEcnRMbUpAs4NaWQYsaKkHMhp0E7GXDAQCkDuWjnQk6ikPGxwu6dY8h5xNYYUtGqinUGMYUiBo8hG8sqDUz7jspWxGlFP62Y1TWxa5nWgYWvOO+2PDGRmZtgfc350yXbbsuVyS5+Zw+pwA89zXrg+tERExhfg4rY9qTnDlgfTtkYizvaJT5Zc77ekqeBbdtSzxLF9TxOmcpabrmAsxVuMsUgVAeOoW+ZbjuqYUo6e0w/DDzd9syaho5EVzI7Yc61SeBas+Dh9pSTs8cMudYOgKrijX7L6eYh73ATXmwWnA1b7nYdVYJ3717l4el9/biWQrfdIpNdigRMHJ4Jgjo4cpf5/z65zdxXvCh7XF0c8LnlU/6H5X2uVBN2kvB8NWOvCZT1klAHJrmQVme4esrWwJnpuXp0zGvrc6YkvAu4NvO0nvA31yvuxJbftnPAo5QQGXiXc6zuLvF9ptndRYZC9InDyZz+ZE23WPBau6QNlsl0Rt4OxL7Hpsju0SGpCbSPVuSjBWVS84Gr7ya5ioyQn55w2keGVpC50M8sQ9xiT08wscLtzegqyydu32N/1rBbKljrwd/69A5p7nG+ZjGbsnd8k7RXuHL1BTZxwNKzXp7w6P59lmdnxNyyPN/wd3/qJwi+wlrHT/ztv4d0C979ng9QlgPH54V7MfNSnzh5sOQ//ss/yVd/ze9EouHp4xM+e/fnEXOCE6HkqPyk4Yw7b/wS200hxwFnMnWttosQDDN0TrVeN5s2Z7LNIIVShGAN3hlNcsyZmDvmdsKqDZQysH7QUeeBnUWgNHNcs4OdGSa2IqcNQ1vYdD05bXj6tKJUgRA8k6ahDmodW/dgvad2loBaHpzxRElj8iaAGS0oCqwXO3alGLVrqH0DYu4IY6pcyVDXDTnKaKIbGTqiSZnOBbU5SsEbo9wzaxjMwJANDoc4TxbBmXFelEKSTJ86KmfUpjJeU1UHSimkYcA75bbmrGuSEYuxFYWkPT/GghUKavXSxEpRq4oFTALcm/YSC94bjPX6vL0jS8I4p+EBVldEZ0dLjlVOjR0PKLRjaRTwoMl5Rg9BLr6o16WGQ4VjjwJ6tE3mktmOFj9j1JZD0jnaWoOUhLbnQIwXhzeX48s9JPe61gOV98ocehvoJ+tqhiHg3Qrvqkv99Bbrp34YAIP1hk3/Ip87+fu8ePB7cP5XL/XTpX760vTTNvHwLPHzr34fv/ub/xMOD55e6qdL/XSpn77Mo+s6+4WHfgAxRvOv+v7/uYyrV6/+uh2LXdeZpmkuDwZ/A8cXffDnfBm980JOKoCsHf3w1qr1ABVYZAV/alcgWsm2WtEWhGJhwNBnwfqKSWioQubs9BxTMiKaaOeqwJB0UsmCWjmyJgSFyiN8Ad9ghDCLEYasvBqkYNE0oCwgMel1O/DWqgDLKhyLFZI4dr/ht+L2pjjrOWgakrdUzRTjG3xTEao5N24eMt/doVhHqT3WeHzV0FQN/+V//jf5zCc/xwvvez+MlQUR8DZTStQKhTitVpCAjBStRCMRi3bB2XGCu6AM5KSVolwKpoxJRuOUKKL8Ggtqexk5BR7GVCmdWDGojaYoc8EYnYxLVn7ExaYg50RJBXH2TXuONSpmrX2TozAKcmcLhUQhE2VgyJpQZ8c261IK1qg9JUvRlCsR+hiRsQaVKcSxEjUMEYxjmwob07E/C2yHgV5aHLXO8UawwZKHxF4zZ3Wy4rzuqZynWuzQB4erpth2ixPD7s4eu82Mfr0m9h1yNOfk+g7nPnDerpTBtFozc46ZM/RPV+xL4P3TXVabDiHxy+cr7jjPB+Z7zNfnbGNPqCbkgznL0nP96g2Ojg7ZrDtOTk94tDphiJFY4OTxU4xY6rbjYFLRp8J01xGHxGm7xBThpdPH3GsmfHw4x6RE7CNfPd/neoG92QGrNHBWEoMVPt+dw7bnsGqwwVFK4ur8gLtDy+ux5Z+cvs7X7xYWseGgnlK6Dct+IDQ1X9cc4+PAG/lEGRyzCe15pmoqfvrkDptp4Jee3sZL4LdPD1g+ekzlF7x8esaSxO+a7vNb7JSfCz1PdhyP2hXHN67RnZ7SLKY8vv060kzwOw2yTnxyfcoQArsHh5yvzmkQrkpNVwz5ZE2sI6f9BpMbRGruPbzLjfe+C/+w5ea1Y6a3H9BttrQx8PrpCV1q6ReF0Oyxl+He8pTkC3URFpMJ89UZAM3Lr2BPl6xrh9vdJeztU2xNn9TaFWYNV649x4vv+gCvv/wKv/RL/z0FR4pLkji8bfgf/8f/np/7uX/GfLZH03jCJtHMAmdJOSWf+uQ/5+D4CquzhpzOcGFJij0A0+kOV46usNks6TdnNFUDXgVhoWO5WtM0E+rQqIhKmZQTknuGGNnZOaZY5VDt7FylrioKFu8DRgQfNKmsrgbcpoe+MA0eOW9Jj3qS3SHuOKra0ezvksQhLpL6gdi3lLhhjcf5RvlWJVILTBrHetuRpKNEAYkY60bboRmtIHYUS4EUtQINhmHoCI3TjbP1OOcoSZCiCZV27AZ6xk+xoiTtoonx3isTpo0tsapoYGSCee1aEsGUjDGFYi3JGIIzIOCCp6TR6YjVLgijHFFjCjnFsVvdY6wZeTcdzhsukuW0qUn7gowTndtdBZTx94BjFKRGU+VKVg6Ps06TT408E7P2mfLUOVMfRzcAFr2PF2mgoiVy4E3YtDWM1krtbxpEiGNVXEYxa0sak0uLBgdkp7bMkZ96Ob78Q/WTrnUlaYfD20E/vb56L//3T/wk/6ev+V9yc/bapX56y/WTpmEWYTxehZgizpRL/XSpn74k/VStlpzcP2O1eR75zG3Wuy9d6qdL/XSpn77MY7FYlB//8R9/JefMd3/3d7/zrXrcnDM/8AM/cPVv/I2/cfzgwYPq8PAwfud3fufjP/En/sQJwEsvvVR/3/d933O/9mu/Nnv++ef7v/pX/+prv/f3/t4NwIMHD9x3f/d3P//zP//zi9Vq5Z577rn+z/25P/fgT/7JP3ly8fv/ZavvzZs3P/RH/sgfefLyyy/XP/3TP73/7d/+7ad/5+/8ndtv1fP9zTC++HCPrJ3AxQi5JGUNlAIuk4uA8zjnx7QldEKyEHPSduasHz0jwpAz533Puh8IfqITDglrDJUPSB5Bxxd1EmNwY9VgNPcrc8aXscUYZSCI/qGIWh+cBeMcKWkVoggYN6ajkcdqi04eGQFb8+Lv+UNsmwpJFl9PCF5FqQs1VQgEV/H8cwcc7Vq6PtGbjEGF5sQ7qnnk8eNXuPnud1A3cywColYfyzhBmowPXhkwRQGtiAKqEY0zL2M8nvV2nMQMBYEipDhgGNONSqaIUPnx95lxttPwOZ3FR76M/t43E6SEsVqO/kgeuw1MyXrnR4B1KZqghUC+4CAgpBwhJ0oZ4eHj9V1MwGaEsIJWb4xT/lAphW4YsC6AaMefEaNwbJMVBQF454gU+pLZn8zoTaZzhWbSYH0gGUvJKlhCFbAxU/qBZApFPKs+Mi0FFxNhPqcvhm1xbCcGv6jZ5gQJJr5iUlX4B6ccTRakrmdRPO/xE7Yy4IfEPA7sTCuGPIJuy5b5rSOGNtJuV5imom6mmAF2Ksfi6pzDq1e5vz2lPV/z6PSEp92GeTXhil8wDzXLk1MmteOwaZC0ZaeZsT/dYX2+xFtYTCbcmkwJKeKqQEwDeeg4c/B6u2YvNNTNjO12zdN2wxVfUzDUxbJOA68P59wcOq5Xh7jgODWZs80Zn5Iav92SnWEQw75vqBtL122IWfjqao4NUx60Wz6/XXLt6JD+fMu3HBxQbbZcjYVUDbwnOGbF0c8WrAO01rO3WjMdIs10AW3EW0dbNTjv2fZbRCJYS0dBgqcderZTz2pqeenJHXbMLQZjmD4442ozxS43pNOnnPvI3bNz6qZhp9lhS8E5g68r2kdn/JZml2/y+5ynhBsrdfuNYRvX7HbQn57T2ztsrGWJ0DqYHBywf/0WQ2qJ7RKTNWExZRUA4twYJDaw3PZseo83DnNmwAZsX6hc4J//9H/Do01L7jbQL/EM5DzQlS1SapowwVcTfO0ZYqJkKANgLCkLlQcpyuIqOVOsbiTnOzt0babZ2WF6MFWOVA7jXFbIGPYbz5UXd+ieRDYnG+pJIeYKstDMC/P9CcunW54+XfF0dsy0njEJM5p9qHymMoksmbYrrDcDuU9c2alZrzfEEglOLSAiyp0RAKuHFheJacYYvA/kMmhyXVZPiTM615aSRtuHMljEZBi7YqwRssgIlHaIFLyxVM6ipyNGO2is0blsXBVKUcthKUKMiWDf3CCrThxtM5LJCG5kwCg4W+dG792YNqfzoTVjZdgqSF/EoHts7Qw3Rg9LjAGDAqglaxLnRSKfsebNOc/oBt0YwXp0oUIPXpx1GPzIuWE8BBif4mgDMvpL4MI6CDrPiiOToBi8ccSSkZEN5mwgo+untf+T4vDl+DKOksfXFrUSWcPbQj/tVnf5o+/9M+w2d8mX+umt1085jYnJBfL4Bhtf00v9dKmfvhT99HCIHNe6duykLUfn55f66VI/camfvvzjj//xP366XC7td3/3d79lj/mn//Sfvvm3/tbfOv6hH/qhN771W791fefOnfDJT36yufj7H/zBH7z5l/7SX7rzgQ98oPvzf/7P3/yu7/qud96+ffvjIQTatrUf/vCHt9///d//YG9vL//ET/zE3p/6U3/qxfe+973dRz/60e2/6jH/2l/7a1f/7J/9s/d/6Id+6P5b8yx/c40v+uDP2krbaK3CRxEFooJo+py1z5LXihRAKxBiNdBcwbuZNETKkEE8koRJ8GzWa3K/IvaRejZViO2oUbWiqaDq4DzBelIcECOknDBSiBacuLH12aP1cIOgUGQRQxwr6pLHll6BsZSAFAOuRoxgs0PQVug6e4zzSI7YUCuTZ+owlWWshVP6iDGJX/vUbT7wvhd0MYqZYSj4PFZ7RWHEbqycCJmqDuT8JtQZqy3VzuoUlYvgXAUYYu7VZpMzIPjgFPqMYKzaahChYCgi2iptzWgP0kVuGAbtJqCMd8bq5J8S3pqxwqRWIq1uq0VGSmHsvCaXQkyRkpPG0YtgsRTjnj2uNwFnNL2pSNYqdomkHEklkcZJtqoqhrHqDlByIfgGSsKPK5OznpbM/fWSo2oGJdNut8z8BFsFonWYbFj0GQmeTbshNgHvLJt2Q5MTBksljjRkTts1tq7Yu3pIwXNcDEsL/XbD8OCcECx+iEg3UF3dpXSF4emSrh+w+zXvXMwhQqZnmBvs3UcsJjOOqhn7L77A8Ogxw9015XiflIXpbMZiOqd6cUruIvfv3WPYLHm0ecrj01Mm1YJhk6iqwG5VMXMecmZ3UjMpwqFvSHFQy0O29HFgkIwYz+HhFWh7hixkXxNmjk1KNKFiEQLL1DOUSA6BVXdOcBVNXTG4wOfiiq/1E/puRRa43Wzw88DD9ZoPzY645moqk6gx/NLJGW9sz3h+f5931jPW65Zu6MhDS324w2GCs/mUbhmZT+aY03MWewt29vYpyxVHzYS2qXi4OWcg42YLIol7jx4zIdDszJi/eJ16teW1tee1k1NIPfvTBTuLmntvPOUVs2bPTWlDJi23NLLPngExLbNjz/uaOV8lhuenE37+/itcq8ZpLUWqScDIwLwOiFPRUAS6YeDk3huc3X3AG0F4nBJDjqQyYE1FioPaHapALkImEeJAb9SGHoLyjU6edqxO7iE+QA7UPlIyVGFClIHYd5hSwE5pYwe2IqdM7ONYpbUKlpeECKSUiN3A/vWbhLrB5MSVd7xIPV1gjSGO0GcXLJshszzpWHhHPh1wm0zrN0RJVLuBG+89onZgvPD45cKVWeFdVzInHTxJ0PVQ+kCRmuKFZmfCbJqQLMRuAIRiPKYMAPTDMMKjRysGTi0rouKulLHzRZxucsfNrHWWnCMlZcRBFQI55VHsZhW01hNTP/LNDJWAl4K1yoWJMeG8wxlHMWrhSblosqAZ5/Jxc+/RlDdNZjNYK7wZSCAoM0wUxG/Ban+TWgm9zp0Wp1YXW7STyHgkF3B+fO7jWmNHeDRGAdTjGuO9QqaNsRj/pkXHjt9vrXvGG7OMczkjhBqPMSpqQS0pmr5nESNkAhdP2QFtiXrgUQQpCbEeQyGXrzw49W/WofpJOwics28b/TTxKz64/491k28ml/rpy6CfJI1BMLo7xhlwXOqnS/30pemn3VngjaWu+cEKU9td6qdL/cSlfvrNN05PT+2P//iPX/2RH/mR17/3e7/3KcBXf/VX99/+7d++/uxnP1sBfO/3fu/DP/yH//A5wA/90A/d+4Zv+Iav/sQnPtF8+MMf7l588cX4F//iX3x48fs+8IEPPPqZn/mZnb/9t//2wa938PdN3/RNqx/8wR98+K/6+8vxbze+eMafldG3nylZCNYjyegJPh7JBskqXkpwFJWr5DTgnaXvOjCGPkaMeNbbDaUYrh0d8eK7X+CVT38c5zwlZag0HW5Iav1ORfDeayy55LEFt2jFwGg8eUGwJSuo2lmFiF7YWAxYU7BSMGKIUSfEYP2YGCcUEfCRk3uPCC9cxSQHLijMVIwCnYsmAGFhoJAlkQVSv+XTn/gc77x1leBqhliQrC3I7dBr9Rat7IhoBUaAOFpExOg9vBjWOShqGZFxI2ByxruLiry2VFsxFwFW5FjIJYN3xK4j2IBDhWiWrPfO60RZRGBMUoqpYJzRAzfvxsSokSYxQrxVo6oA99aSxeoiUbLaT7LyFKxVkLYkYUTbkEVFrrWWC/aqwRB73Qy4CxCss9qK7qwuKALRCAbHJgt3lkuuXbmB94E2C7vNBPoB6zxUlcJs9+acbjuyhenuDnHTIjjqMGf7+Ayxwt6NfVbesok98wjFJELl1M4zm+l96gdWd5/wBg6xlu3VQ1bLNZONpa8cD5884Vo94bnZEX7WYGrPg1dfwQ4dJbWY+2AO55AMlRjykGnPtzx3/Bzdc4YbJjGcrolnZzxdPeW07VgNhWwSm27LrK5YLBa07Rbqmm27xXlHrNQ2tTo7JcYeaxxFPNvU453FpZZihXlTcbLp2PQD22pKnyOl65HWIeJ40MA7qznNdJ9+tWJJ4RcfP6F4z3+4O+Px2Sk3DneYD5FvrucEZ3B95HOP3tD0vyzsz+bEvuf+MDDExPnUslouWe9OODo8oH7UY6Lwyuoxs8M9TFVRnW/xTYU/7Xjh+AbbR6d48awer6nXLV9/fIMnR1N2bu0z2a7pXr1Loedrn38XX/sEPp09T452SNZx9vQRJg7sP5jwjpTZX8z5xc198iQQ4simcp4hFZzxmC5Re+0IcdYxsRW7O57HXtkq7flTTnPGu2ZMvwwYsrJNjSUPHdHWVJJGGH9FsRC9IZIhg3cdhoAYh7WRYGvdtJoMJPYWuwwxU82nrFcw9AOz+YJmMqNvW4xkqlDR+YrcqrCb3Tpi2GQ+86ufxf2h76DPwmAKtWhV927b8ngTcb0ws5blo56JsRxPAptlZC2FJ48zQ4G9qWF/B3YXwos4bDbkImyLcNoJ52eW9tyQ6sSmHRARLANZwFmjZxMlqviTrGwa70kxUvJAcE7njSzaNFM0Oc3ZoBVeq6IxZ53X+yECgndq3fM+kIeOqq6ZhooJEeeUx5KKznmlZEy5EH+GnCPJGHAOay0ONC0Tg2RDTloJN96NSXVZrSmiCZ56wVplNtZoN9bIBFI5WfDOYwz4YHFVwboKRNNCvfejxSboRt7a8f4Ixjjt1EHAKABbjB3vqx2F6cWcqOtDsYyVbDfaAR1iNFEVHNFYBlvhsGTryLgxFGKsvhsVx2KEy/GVM8QKZnQOFdH32NtBPy2HfX7lyR/gQ8f/DfPJ5lI/veX6Sedcayw5yvj+0s6XS/10qZ++FP00c4HKa7dTzIUULvXTpX661E+/Gcev/MqvNMMwmO/4ju9Y/qu+5yMf+cizA7znn38+Ajx48MCDHsR///d///Wf/Mmf3H/48GEVYzTDMJjJZFJ+vcf9yEc+svmNeg6X4/9/fNEHf8Zr9bfygVIyKWVtDU4O3IUoU2tIKZGUE845vPWYonzAIhdgZOHpakXMmeADTQiUnKhDIHhHLm8mGllvMblQMpAVDm2MIUe1wBQpGCN4a3QiKoY+JSrjsWh1oTC2PCfGluaMQUHVRUSjxbNX6GmOuKLslU1KTHyDE69JZsHSbbb06xm7oSIVhylaAbduTMWrK3LpaYeOkOqR0SMYM1bM9W5irB+Tk6xqcDNWcCQjQ8JZByOE1VrBOshJhVrOYApqNbHQ514hrxdMhDJasnMhDQnj3bMUKO89Xd/xrPNbtPJjRIhdr1V1MdqDLbrQpJH1o6+J/s8ZR0wRyZmclBmRLtrHswM0qU7XBn0eKac3AebOE1N8dkeKCFkKyRguivjOGGxKBF+xJvHy+pTnJrvM/YSqFGzJdJNAsdCnRFdXDMFyniO98yRjWEnhBWNpLEwOjlg0c1xVURmYW8vWWOgjzWKXbVMxyMDReYNYSxTDkBO989S7U+67juWqY2cx5UZ1BCcrYrfifL2mc4VMZJIdNgjTXvAOsjEMbzxlNgmkbYdtLf3cYmZzJtWcvatX4eyEeHrOtttQGV0AJQ50/QZjC4MrbHtNCOu9xTjD435NV4QHZU2oK67PdnC9dhbMTKAePJ0RHnYtMxOYh5qYBrx3tEPmn3ePuDqdUzvHzBYOJzM+t17yd89ucwVo1pbGBro8UMeA35+RNxuGxmDx+NmEEByTEFilLettR+wy2XrOhiVP25YrPhAO99lWFf1OxWRnTv3gjNQXPInmxnWeVIYlhRIMcjRhdb5htgw8vXuXG75ic/qEJZYB4cx0LLuITxlix2Rac3b/Lod7R5yt15zIwDum+1QnGnJ1WhIPcsE6wzx4pgZmLqjFjkyKkTxs6Zwl20L22mljrRmtEGXswFEREsZdYsqCt4Ukhtxv8L7WSmEpeNQ+4d2ElAvBeSzQbrZsR2ueyZlp4wi2xjvHpGqwRa1fw6Cf8a7d8PD+G9yaT3ntM59ifugIlSXUjmkVAMe8ht29AzZ+S7tueZqzWt5y4fTxwGuP7zGZTAhWN/ImC7moWNKpMuMCLIB5bbk5N9xfZ3KxtINRrZWUhaJ2QYezF3Y7p/ciJbVujB0ybhR5484aayz9EPFeE+FCuOCKjR08duTXpAFvFbwfjFBLwTiPxZFzGYWwPJuFrPMYk5XLkoumb46/146Q/VBVWOu/gNmltemLudMiiBn/sdoZ5d1YaS6C83r4YJzeC2xG+4Icxjjl7ZSRy1ayJo6q2sRYD6KVeDHafaOlbhXDFwucvfj6qDpVwKqoLej7z4ycM6SQkiGKMnhKEYrXbunyLIhBLaJGBOQrC079m3kYL6pDAAxvG/100h3xD+98Py8s/gVz/9KlfnrL9ZMllUJBns0BBUiX+ulSP32J+qm0Ld0YlvC0RIzES/10qZ8u9dNvwjGbzf61J6AhhGffY0b0Rc7ZAPyFv/AXrv31v/7Xr/zwD//wGx/+8IfbxWJRvvd7v/e5YRjMv+Zxf92Dwcvxbze+6IO/LCBiyVkrCL5ypJJ0MhlZJmLQ5DQE56ymz41MkiKFIpacCudbbXefN5Zu/ZhXP73Bqm8DE2oVd6Ooklx0IipjhLmFJBEbDKl8QchIEWJRa4L1lpwzORe10TiteksRnTucVsSzXFh9oTiDMZ6UMy6BJYEVcsl4AjiIJdL4wIXY6uPIsgBSjuSiwOQSO2LqKGWHHONoIwFl0ig/wFiLtQ5bzMg1gJwTxgrWB61yiJBz1GplzCr6EkjKlKJznfMjK8IYijGUGLHO0bZbgq9x3pFFyCkiRllDJSpsWqyghf2i0Ifx45vTQE6FUAWyiMabl1FyG7WvpByx6CGdGTkVqUQyeq+NTSAFSeNrb8D5QMwqUJPRr118+rWzYExsMoYBweXM1HuSTawl8vk2Mgi8e2fCrAjZWc6tI2Lw1RQnlorMTkosTCHaipPthnUduLmoMdMJ64nnXXFCLBGpLM8tC6t1x/zA8ajtOA2Rm+97ge3TE7XYnGaaOnDS9txenfPO6TEfaHYIJWEkIv2As+AXFfNmjmwHuq7n/LyFFSzblllwLGQBJWOPrmKawFAZNu1ApCJYy+HhPubJE3j6mDonzldn1ECQqIIoOM42LX02LCYTDg082KzpXWZIPa+ePObKzg4ydEgRpr5m2fbsTGt2Jw0Ta+iKI6aBWTNjMZvyaLtmHXuu2xlH0z32nKePws5sl4f9lvfuHuGMoS6Ovt1ia8u16ZzX791HDNw6OGa/3/DStmdSz7m6a6iboDYHZzRJ0Fe82p1ztdulMo62RPxOzbkzpM2KxJwhDZRtojE1B3semdWE+Zy73ZZXRXjl0T12qwmHE8+kH3jXdIbJhePS8PL2Pq+GMw539vjaxS3Ktn1WrT7vO54WTQU7kZaZr5i7QGMti2lNbTNXjWdjCg/bgh03DUUMUjLeBWKMunEcK5E56+JWiqaqGesY0oD3ljSmPhrjSKkodDkJycPxtX1uXLnK2dkjnjzZsj1NYAJhGjFZ5Ulxiclkik+OlCLtZsmrH/9VRCzf+K6vo55UHO2oABxMYuYdh/MppxvPyXbCsu/o+pbUJVZR2CTIJeJtYVICV0fBoyEDgohTextZi8kkLIGcEttVixNHEf1ce1eRYlYLoQhgsM+sgZoSWihQEsY6iqitzhqvVriSKJJIRbTLV0DGrhzrLBQ9+LA+0FSe6SiADaPgdX7kdhVNwwScE7IRgjPKpJGCMV4TSRGKKVhbyJIJ1pNzjzHgTBivMcHIjzFebS5WHFbkGevGjryYEXg2dtiMUH+jHVpGG3h0Ph+ZOs4prNtYUPKX02ACk54BugtGq9iF8X6qTdKMmwKdb1XU6p8KWbTzp4yLsphESWq5kVJUCJdCTvlZh9Dl+PKPC/0E+p72VfW20E/y7J1pkEv9pK/1W6ifrAhWLriAFx0wl/rpUj996fqpDRUx6fv1fIgYGS7106V+utRPXwHjt/7W3/rej33sY4uLP//wD//wrR/5kR+59bM/+7Of+u2//be3v9GP98EPfrBrmqb8/b//93fe9773Pfk3/fmf+7mfm3/bt33b2fd8z/ecgAaFvPrqq8273/3u3/BrvRxf/PjiU30JxNHy4IzGhhdTsEHjv5Vl4p7ZGmKvgkuFrSbDGeMZUs/Z+TnXDhc8d22f/dpBL/iD6/TdFp/BpUJqe0oWPE4FJ1oBSZLVe1/AFYc47RbDKNvAW8sQe5yzOG9IJEosOPF4XxFLxhozprgZnHGI0XZzK2rrEMZWbEQ5LylhK01DyqIwUOsrbCgYG4gxMeREzJmqtkjfUbZrghyR4kCWrNaTcTE11hCCx6KLgkljRcPpdaU4wrX9xem5dghUQR9LRtUq1tAPA8Y7um7ASCFYSx4itQ+agmeMsiGUgo01FikKDRcK1rkxlY4RmmoVMu00Mr6MGwhAxe3IshGBmNQKdNECbp1aPpzXSneRfkxdUltMyfrB10VNdXIeqzfFoCLfe6zz2Jye2VtiyRAcfUm81p1TsGwkc3xwSALadssk1EyyZadb8QKWo+WKsuv5pYnhc33hHfN9pnsL/CqB2bA9PcdWjsp4bix2aGYzXk/nzFaGddkQJhMmrz5hnqE8OuNwavmayYz3NBPyxDHcf8IiQPOOa5y++jpXZgs2mxVnT56Q51P6lJG+pQVim3DNhPCOm0hyiFjKtIE6YLYdTfDks1Oaag9uzLlRC8tXP8cwJAajjKRJCCxdx2bomNY1VYabu7uIdaQCm2Hgwdm5pm1ZSzCePm8oRtgLntpAY+B8vUG2G0xd4RuPC4VN17PnWq6J4fmdY56f7bHerjjfdPiY2DnY46X7b7ApAx/kFmKFbbE8XJ+xL4mhi/zz1V2em015YWfGbrFMreP85Akm1OzuLXA+sFquaaSQyfRPzhlmNa9ay9HBEe6d+8jeLoezGXL7AabaYajnbB48pB8GzmNhWMNwcp9S73BtOud4b05eB5aVJTSeD7sZGLgzpsLNJzMOK0+fIphA1ydWQ6sbp9Upoa7YaRraKjBgSEOiso5U8ig8VKTlCzaUt5SS8MFzkbaoH2jBOC0gaFeIw4huNowBZy3f8u/9B3zoI1/H7/jgh3j44DO8/Kmf5VOf/iSf/OTnefqoZdNmMoXJZMrMzOiHnlyizoHe8/JnnvCz/92v8du+6SM0Tc1kUrNbC3uTzI09S8pTtt2U8xbaBKshkQadk2LOxBh4Emvyo4FZZdmdOWqbsXkUWWYgYwjOIkmIsWNgSwgOBr0fmaSFamspxahFkYyQSJKwzmBMwbtAzqrISkk0VT3yt4Le+5y4EGrWXXQGaOeTFOWXFVELS0Y3Dalkcip4q9crKZNHm14RQ8kailAMI6sMUh7AFWrrQKLyv6SMCapqs7FONw26RhlMKbp2WIVVa/qcxRaLdwErVivxXtc0nHm231ZsgaC6POOdR0h402hn0ljpFyNY6zWxFLWVGNW2MD4HfV+pZZBSEARrDckHclGR7bynYJTzYwVMUZuVGQ9IzFegcv1NOhwBYwqz+iHW5reNfpLxzZ/GrrRL/fRW6ydBvKWUQk7aoWKcw4q51E+X+ulL0k+/PCwx7ACw20yYunCpny7106V++goYL7/88uRf/lophXv37gXgN/wwbTqdyvd8z/c8+MEf/MFbVVXJRz/60fWDBw/8r/3ar01+PfvvxXjnO9/Z/dRP/dT+T//0T88ODw/zj/3Yj119+vSpf/e73/0bfamX499gfPFW3xIxUnC2UuZMHzUxLRecZWSlaHVaT93BFKFy+mkcUmEYMv12YNrMuHnjkL1JIEjCTqEghKqhpIJJgq8rcjuQh4gQtepZwBiLs5We4jttty5KR8VZFZVlnHzy2L5rrYNiiClTciJ4r/yUIs/YhRkQYzXhKGVNIrIjjHRsC/ahImUhZUjlIrFNu9VyFCQL06ahdB1501KGSBpGPozTCVUoSC5a4c0JCmq5SYKTsZVZypj6pPfTGJ2sYxwYNbq2e1uFgqdcyGUEm+aCt4Y0DDhvyWkYE5nts9cGinaSO628iehjlCIqhEErSpQReKot09bYZ1BwLS+NFl2LPo9iKdmMGxkPxlL0kvS/0UXPG6s8nSIjy2jk9dRBJ3H0+YXgccbSWIcpmVCgqh1LE7Htkmo7YTFdIHVF7Le4yrAwgcWQqWdTtuc9+9awkpa4e4UwMeACp6stNBXFG3ZnOywmu7gA9XYDJlJNK4bXH2jKnBPcUDjeP+Bwt2Z73nNfLM21Y3bbgaUxLN77IptPv4HkpBDpkxXTULPY3aOPmZUtuFvHuN0p68enmKcZfwZud8bQdTSTKQdXjrh97xGrDXzNRz5CM2147Zd+ldPNGopw2FQYb/Di2KSBVeyZhgnSdjRNQwgVm9Uapg197IlOLTybfstd4zhqGioM13d2aYfEG4/vEZ2hDhUZz8RZnBNOTu7Rlpa6hyu7e5yePWW7fEw1mzJPE9o+sU09OxPH2eqcK0f7fEN2ZBP4hdVjPv74lA81R3z9dI4Lht29GbNSMTxekZwwSMEkCPM56cYuTx6fUc+Fslpjt5HwzpvI/pT5SYfvOr7p8CZXguFKM6H0iY93ZyzmU65WE4bS4YwQQ2Cz7rlb1myHJdW4Xk9zYZoSUwPBWMx0wpD1A5skscmFzWqNme9o0qODbHWDnrOCfa27sKErd9L68TMs5pl4NRaKFKxTi4GIipdcwHut9s4XBxy++BHSzj7vmk14zzuu8wf/kOVzn/sEr7++5f/1X/wj3rh7m7xtAcN8OgejvzuXREXHX/nL/xl/87/+EO9493t4z7uf44VbR1y9vsvR/pSDnSl7E8v+THldQzGk1LAdMn22pAy7M7V8tJ1luVIhlBMYW3De4MSTcqIWQVLC5RpjEsZqNTqlASGreWKsADPO+yr0LDknFU/OajU/JvrYc9HbK3LR3XshqpxaX0YLnBUhOEuxys8SiVSjr06nt0KiUI3WSJzV+ywj6J4CXu2Jzlm1uz2ze+hcZ43BeqdWwaLXYgBvrbLMxqtVSfumpcaOFpALO4v3aic0BYzTx7Zm7Ioa7TvGOCWSSdFOCC3Dj1wyDRWw1uphCShLxzgFfSuUZ/y7gmBoi1bpixR0RrWkEnFh7F4XGa1Yyum5HF8Zw5TI4fwzfOfv+f145+j7/LbQT+OZFxnIXOqnt1o/ZclkKQy54PySRf2TeHNGTJf66VI/fWn6KRmox3mryZl9f6mfLvXTpX76Shg/8RM/8dInPvGJ5gu/NplM5Pf//t+/+nf1mD/2Yz9233svP/IjP3Lj+77v+8Lx8XH8ru/6rsdfzM/+8A//8P3bt2/Xf/AP/sH3Nk1T/tgf+2OPv+3bvu1suVy6f1fXezn+9eOLPvhD8phElqFYnLE6eaX8jF+CsSSUHeOtWiIoWaPTs5ASpJi5fnDIPHi8OOXI2ETKLVWosaOorKYetxBS3xHjlna9oQwFMhgZK7sm60GRUxFoRyuIM4aYx8q0QFNdVGX1zymrLcNbN1YHBIxFcia2vcJWjUASrC1qBS5CihnnPTlftA9rlcpaRph0ZjaZwDDQL9d0m27ktxhEMsb48RoMwXkwalvJMeND0HZt0IU1Zay1gGXox3ZuVZNo4ptWeG3w6jIRq2wZDBfU1Zzz2Oqs3AyRogBqCqXEcfHRtvNc8tiCjgJXh4GS5NnvukhMSnLBkhGKgRgjxhisaHXO+0AhI1IhRa9fYeJ6oGfGtDuAXAaFugJjDzkZaGMkO0Oy0MfIbDbVjYNVAZIpnOaWsD3l+arCScAlYV5pJ8BmMzAjUDcLFrln6iJrJsxzJrVbqpjJzhE3a0xxnEfLfhyY1WAXDayXyDAwHB+QV0vC1T3uzTUJKuzPWZRAYyzbYYndJhbHOwyVoV8qoLf20EwabNcRDvaY78/wfSQ8OYfNmtIX9qZzHj08JU5rHvcbbp0ELI7eFO6tE9OwTzPb5SA03H3ykLurc4oRUikMOZGL0OdCIrPtNtTzKXiYBQe25rRvKZKJCA+lZ7sdOPYNjamoi+HW7iFrEjElXJ9oz8+YNYEubXFDTW4zS28pztDlzOFsQT0I2xTJxZNLImZYduCdMGmXfPPOEb949pg31o9YhMi37Bwzne+xeeMpNnYwD+RpQJqKdLbFp4o9P2MxnbEtECcNbj5nuxzo2y3+5Iwdl/nGwxt0Q8ej1RN2XWCeErs+EfvM/gvPUXrLbphyv9swnU6o+krfUyXjMNgCFYWSMhPv1ZZQLIdNTWwsrp7yynKrFcSS1RJh7FiRNiMYPxPTgEEhyGNZEsaKasn62RRTKDlSN4EiGZMcXWmpveHWzgwvKlqSBGb+Fjtz+ODXBOrJLxOqOyzPIyVnbAc+OEIddBNuEv32AY9ePeXx67/Ar/3CHrP9K+xdfZ4rx9e5dvUaN68d8sLNfW5c2eH4uGbeWHZqteSlYvAj02q3ArGZVAoxe6RYYvbkVJgFYWgjXUzg1CaiQm5MWLsQnEYw46G9FNHPuEDlayRlrNgRgm/Io82QYrRDRhjvsc7l3o2dTUaUpyNqd3PGkXNPFAjOjXa+jC3CIFAZhxej994rx8VY3Zw7azSkAIPJFsvI5vEW49/cwFujaaaGMlp4LiZ0gRESrfNwBiLGVip8DUhOeKcbdDvaTpwbIfxGbT7W2mfMNU3fG22ROlOPmxzdBGF1TXmWOIA8483IOEcOOGX3iGaLYgrJZLypFc5tPbnoIclXoG79zTve1voJ/btL/QS8tfophEr9x1mo6te5Xv9xtjFd6qdL/fQl6yd6Yb/5HN954/1Udo2/1E+X+ulSP31FjG/5lm/Zfsu3fMu/Mg3338VwzvGjP/qjD370R3/0wb/8dyLyi1/456Ojo/yFX7t69Wr+mZ/5mc//er//Yx/72Ge/8M937979+L/tNV+OX3980Qd/xVrEWBVtWcVcGjLeOaQUgg8I4KoKGScAc2F3ADZdx7YrzHdm7O1MqLxgpSDFYItlUs3U6lE1eoKfEuIyVVXjk2e2s0vqIv1qSxp6+q7HGAUcO2PUl0/R6m/JYzKSGSc/jR8nqzXD2hGsWgoGrfyakpE+kvoNKfaIBWwiFIipxyVPNnaEQ4/R3wDjhBhTIqdMZR2BQuzWGIryeUqkEBWQLWjbshji0Gu1mExOOlkZyzMmT84X0G8VoSKFENxYUdauAMmJnJQF4VxFSZltGrDOkPOAH8W7cx5jDUOM5DRQef8FYl4QMdoCLrrwGrKmBIoybLIUjHUK0R0UckwpOMmUXIhZX/OmVvtDERhBDvocxkq8vocKLhtstuQReG6sGSv5ug0qxmhynK3Y9v2z95gCrh2VszxNLf7sMc9P95lOa8p2wBRopfAkdlRRuNrUfLCZcH+aqPvMIlpmuzPOzjpKMmyGDtdMsaMAd9OA61rmwVAePiVMZ0Tj6Z+csAgT/NMVpUS6gzmPrWcwwnuGBiuFOjiWq1bTA41jmE3BBHbvdDgpTG/OORHHyhc4nBBXwuOuZbkemF97ntAXdmpP6gce377LfL7LZBjoU+LB+gStG4oygUoh50JfBCHTnp2xaBrsMGC956iacIrRjYaznHUDQxbWfWKvOK5MjthsW7LJNEaovaMRoaRMMwxUO1PO04auizR+wu3zNVPvMduO2XxOXm6gcjzathQv7JsG12W+Y/8qKwoPhp5f7VtOXnvCVRv4wHzOohjaMpBN4YGDl15/hW98x3uoc6KazzFf9S5yl8mDYXZlH/fgCQMdVqZsly1mE/n63WuUYU32jnrvmDe2S2oLZdgQY8fSGRZjtbmra4ba4foeB1hnEWeIueCNRXrRamjbq0awliEPaq1C+STOuWfQ5TwkQqWbz1IK3ntERCuPmBHMrIDhlBPFWrKLmFLTDYlhGJjtLXB9VDi9zwptNjWlOFIfKSUTY08cBp0vUBFSWUNVT6knnqZeMHSndE/v8vDzv8LtaUMz32O2e5Nmep3d/atcu3KTdzy/ywffc53jaxU7O4FZFfCjdYYMnoC3kF2mqg1ZCrZY1ithu8nkPjMJFUNZY50+19E7oZXrEXivbGbtFBIpiFhFKIh2U1srSFEhVkrGBRWnZRRYJY/MnJKxYnBiGIqoADaWYoVh/G+LHTthymiZ0Xt4oadzznivnT+gjDPnUCy19Yjk8RBGNyUGvT5MGdctvWaDURuLNUDBWhXWxqiVxI5tWirk9fW3VsU1ojaR0WAJVDxLmbNZK9ijpUZX4fGwwWjHj/5etQHpdWml2+AYpCYVXb+c9TpnCoAb7UMqhuULDggux5d/FGt5unov/+Bjf4V//xv+DAfTl94W+uli/RYppL691E9vtX5yIyvZWkpyJLkKcp9i0qV+utRPX5J+Ok8DTynILGPFI5f66VI/Xeqny3E53jbjiw/3wI0+e/2zChG1bXhvweoEVGLSycnKyDpx9DFigiO1icPFFO8Bo8LWlIJ3jVZbvSazOWcx3iI5YgHvG4KrMJOC7O6QU8vQb9iseuxGSH3CjZNZSgZnoAqNFh+MVeE5NpbmLMQ4YL3Gd4sI3gi2CMEFJLYMwxasw9BhbDVyPxy1V2hsyoliJto6LdpSnHMk5UwdKibeEYcWUkZy1ElUtIJwUbVVlotBjFZPUux04QNiEtxYgckj/8c7nRxTLFAK1kFMg1YpsEhODGnk5cH4Wmm1RC0pCs4tBZyttWKEVvwFrX7knKGMbfcIKbcjV0cXoZi2uqEwmdIrvHpWeSbTGc18xv7BHrPZLlcOGtp2idgyzukGnCeh4hUL3nn2p1NmWy1e1KYQxDGkQmMDmUwWbRMXEYL1xFRYl4HGKV+iDp5pEo4LxNMVw6TBiifUNctuw9wk5qbmStjjaUo8MZbj2ZyuW7FOLTerikemMGxamqnHtYmyWSO1J+xO4HTN1sJqs+Fgb8by6Sm+jYTFlJ29A7on5+z6munnHhLclM20ZreZIY2n326YOs/+2UAzmRKc5fFrD+jfc8jpozXx5IxkBZsGZka4P7R0Q2bvYEG3OWGVWg5mC/ohMw9TFq7lrF1pRT4OJGeIsR/3TYZ5NUFSopeCHSKNcUyxbMk4gd7BMqs4LxTMsGUbe4ozROc4LQOTMGW2t4fD0Yjl8bDmpX7JUTjCGc/T5ROO53Pe21jwaoPJGY7DgnfsXOX100cMQ4Q0gHX83KN7lHnNmUSupZpDVxNmC5bthlSEe7lXsWIUOJ/u3KM+vs5yuaRpO2bX58xbz2EfaFzDw0nF3u4Oq6ctA45Xc8fjGDmoLY1JJFs4KR2t0c3ok67n3AQOGofJBWLCFqHBECwUOrK3GAdROlwIOKkoUkYotf2Cfw/4oIBkTa0rpBjHTbCMc4tazILXqmwogrMVUSKx7RFrsKZQhYRRKY0PasGQnHHoAbh1Cti/qJiXUtikgS5FzDZgzDlN3VDXNaGpSCmwPX/M+tHr4CYYN+Pz0x1+dW+XfzK9wXTvkKOrV7h5/TmuX5/z/PVd9g8adueOydQzrR0lC7VxmGJIEfrY4mqjz38Ul2lIo0XD65wh47wiWTcFjMBu73Dek3KkpIIfEzhzSVqVHYuxDu08MqNYtM5jU8YYtRdKyQg6hzmnSZ4lJ1IpKrhLxpgMY9KlMQbvA9YZkIQxluA9oNfobADjx0o6MDKw1LEiKritGeHRAGlUnip6rdWUO2MsxnrtOkLUwmQsIgbEjawe84ydZm2Flp4zGH1+mFE4e56xZEQE4zyIA9GqOLjxe1WMJuOxZgwvwOn9Re2U1o3PzVrEmjef5+X4so+Mow5Lvuq5n6Spzt42+imO3RilZHzlLvXTW6yf+qLA/2065zx+iFdO/zue2/so3v3ypX661E9fkn56ahKvped4+f738w0H/2een9++1E+X+ulSP12Oy/E2Gf8GVl+FiabYYxqr6UPGPWujzbZQjJBjVnjx+NHKGYaYWa3XzJsF0xDwRjTlbkyZy6j4vYCROqPizIxVAOc8xnmd4ETT7iYzT7XbsT/ssH6ypN8MrLueYgo5o1WBIogF6z2pRBCrAtgo9NWMiW45ZRSDXZHjwDD0ePHEssGRAMG6gGkrXG0oolUvBYAmnAEriVgguIqZ87SxJbUDOfbkVLDGMpQeRdAmcIK1mhZng8GILuAFFHIbC5puFFTc5oixYawgC0hSDkYsY1tzwZkLKwsqMK0+/5wNlVNohjMjx0G0a1OKtpIPccAIxF4TjayJOKeA7FDXzKaend0dJs2c6XTGbDanaRqaZsJkMsFYbVzPxbB6cpccE3W4sOY4zvpC8oEQLLO6ZrY75fjmO/iasID/8m/x7/9v/kOq26/z8Mk9br9+lzQkBI2u752m7Zng8d7jClAKkyTsY2hKTz30vLQ+Z7a3y/FsQjNpcEPhCYWzPLArnvWm5+nEc9N4ShaqJoAZsCGTMoh3ZG8YcmRmKh4c72GyYE7PWCzmJDejn3esfWHebnjOW6IDaxK0RavdvmGy6jhiwnwQZH/GatFwN0fuH+xi2sjx7iHtaoVvLPOuo11uMfNddkNF0w2cnT6iLXDWa8t/HSbs7OxyEte0JRKNqPWrFGzlWARPyIWE4K3DFVTcG5iamlSExgecN5hYkMZxklpc5bHAaT/Q5UTbDdzYP+LRcsm2W5NMoW6mJMlUBXaqhu22Y2lbdmYLnm5bdivPtCS22zMmYkgFvHiOBH7n7gEfOLzBervlF7YPaYfCJO1ysLtgNm/4+rriFx/eZ2/Ycv3oiMoGfLfhysTTrCOLqF0Gj9otb5w/YK+piV0L2RC3A3tYvu7wmPPNBhssYoXsLbPpAXweZlePeZISw9BiS6Sygh27N3KOGCUYA0JCGVZWlPzhvR9F2ZgM6d7cRKUUdYNtLVLMMyaNCiS15Dnj6I3gEGyxdN05kjvAYE1AUIsZNpD6QtdHCh7DyKYSrVYqm0W7b3IesDZiTUXbbtluV3hf4ZwnhEAINVVoCWGLpCWr5RsU+QzTpuHubI/PHu5Qz69wuHud+dFVbl0/5PB4jxsHc46OZlw7mLI397Qpk9oeJwNWBmVhMVpCUFug3kMVqtYyhhNczKcD3hlA7Y1qk8tgRQVmsaOgHVlVVo1sKWqFOFMYktqLjDXj5t0iF/wY77HRUFzB1o6UI84yClHd8IPVtcIAQcHXmAxZjSIWO86PBnEON7JkLjSrd/p6WoMy0YyjiCdQqV1ytDlax1jVtjjvNFkua8qmcQqiFxGwSa0w49pojIK77chbE6u8Gp3AdRNwYREU0TamLEI0Bo8hOgErJN4EV+umYAwXMCM8+3J8ZQwxzJszPvzCf0LdWHJ8u+gn/cCUYiiX+ukt10/Ht97Fzfe8n+2T1/jYP/0Ee6/9H1ievcxZf6mfLvXTl6afdvavcv3oiLvbhJ3UDNle6qdL/XSpny7H5XibjC/64K8ODXGIOG+BopXOIoQQiCVBzPigke0pJ6RorHsp0HeRkjK7RzNtGzZu7Hg2GKc/UyRjk8VXyjowxuoh/1ipFVNwwVMyVHYGKVPVNTlE9uuGoe1xJ0tW6y0xGoaccWK0dTprlcAIyiywlUKRc9aEOBcoyTLIQN93VF1PMcpmsOTxWi00DhsLqc/PnmMWZfTkMpDLgDhhNzjOuy1Du1W+6JDAGErOCpAWoQoBimAkw1hJVOizxVqt5CjEeaAUBWoPscf5iux0AtcLMzirMendsNX0qKTJWYhBisFJQXJPHqs9XdfiKJRBiEMEY6gbz2IxYX44Z3d3l/l8ymzeMN/dI0ynYA3WaZt7yYI3yrYoqVCKGS0uWn0zxlFVHl97qhDIAl3JnK43hKqm6YCzDW/cXiJRJ9d8Wrh5611Mr+/Te0uz7rnzxn1W3YbFdMLEBax1FGOpjcXFjJGB+WKXOhWmVcNV43m02fJ6u+baZAc7mXDabzndLjk8uo6rHaebNQfTOZULbGc1B62lo1AmFRNfM6TEdG0IWYiSmDQ14eYesUrsH+5zu0688ugBw+6CaRPI957wVc8/h2+XtC/fJQ5wY2eHk+dmVO99NyvrefT0KR/7/Of5/JOHYOHKZMpiGHixPqZvO0LMXCkF3wROz06xOzs8ubfhXr/m+cWE7AtNMyOfWfqhpwoVyWVqEzRNKwlgcSEolynrgpzFMKRIRsYkNUdvBUMmpQEjll0/oZ5NOY0t93LH7fMnbNteE7m8451Hx+QhUYpQWU+70/BzZ6fs50w0mQ/kgETBO3DWMWkHDo+OWJ8vmWR4oQj7s32uUfPxfkknguszcRK4cXjMNhdqY5jERFlucdVD9tpCWXuea2AxMbx6cs7z9ZxsDTEmpjs7FKeJXF3XYy10Q8v5esnr6xM60XTD+XSHumuRvkXEjqB3rU5anhWaAUMxukkWjNq/sjKb1L6l35VyxDntNPHBUJJ2gYgIOanVxRhDXVkwyj/pW2Vv9V1LShGxUHICE3V+MwqOjimTi4ydJPp5AlFblwu6mbROrS25qI3GGkoZkJxIuaNt13hfgxi8q7n5/DX+wP/q9/HKpx/w4O7nefLSHaJ8ijvVjGrnmM8eXmW2f8Dh/nUOj69zuHuFK8eO06XjvH1MLAMGQz0mWQqiKZOq0kf7hQonFxxx0Aq+dQqHthYkC87pZiHlPPLFxrs+Cj9rNeEuXqRjGqGNHRaDJWjy24U1RBwkg5Z6E0ihkMkC1ggOjxGrXT3iFRrtLWKjbjiMHSHUI1oAiyl6iKFAbbWkYPT1tEbte8EGvPMUyXjrUKbNaE0yulLov824Xun7yY73SlumFJANI+fLekRTC8C8ySczF0JULBQ0cc6O3VaMiXSqmPXxx+ej99MpbwztCrocXxmjDg2bbcWD02/g5tGvYM3wttBPTXjIN9/8Yab+EUO51E9vtX5a2FeY7/wLfse3fjMvvnidvedP+Myn95itJ5f66VI/fUn6af3AsXvlCr/3I3eIj54iKy7106V+utRPl+NyvE3GF/3OTr1WSBNFJ5IyclZK1qoACm+maPXXGocRQ85CiYZZM6f2ASOZMloqNOlMwAjBB7ytlElQIm5M59EPsMF5qy3QzmIv2ABWiGWLCxD8hH0/p262rDZLtqsNOWYubBaWMXWt7/VnvRmtvnkMJoqUIpS0xeZBhWbKDIAYZY5YawnWkGIkxhpTCikplw6nMNZkYFFXuK7Q9y1dG5+1QOtT1QnTGkOOiZIySSEypKzJd2RDiZloCtYrl6EkwYqmzYnTSkrw2ppcUqTLkSLC0Hc4K6w3G2KXCL5BSsJSdNGtLFf2dplNJ8x2A7v7e+ztH1E3E0IVNGzDOCwWUzQJSYzHGMg5UdIY+14S1grB6USbrKFqKu0SENHoei9EEykycHS4S3CF0/Wa1aZlt6khGDZpA8BJ2PAP/uk/4/TpCdcODnnPu9/JbrXg9Tt3sCVhgO0wYK2jqS2z2YzYR55050xdxbTZY8d41lEwexMetRHpIydDR4/Hnm+ZNzOGpnDeR5rKsV5tOZoveHG+4FHseZwT1VY5Q4fNlHWV2QAnXct5ARaJ89NzKl/x2dt3cKHGl8hpXfONm4H9lDDTgNlvkL1DHnjDvc98BnvnnA89d4TkwssP7nB7c86Lh8ecbnvubFe87+rz5OWKaZ/ZM5khRl6spzTzCSH1PFptWPYrkoBzAQoE0aTDISYk1PQIJSdcLtTGsu0TeP0sTScK9459T+UtUgac0QPvGAc2Q8e6RNoirKywN5lytZ7iinD7/j3EOd595Qa57emWG6bWUwM5dlzZPyB4z/mDp4R6AkPk4ekTps2EEi3/4uFT7KShEeG6eGyvFd+T5Zqz6Ya9Sc01N6NpIytWzE4ih+uBN2rHnaHAo3Nm1rJbw2qbuMdAmzpyFfChxsTMulvSdxva7Zq5STRDB8CDz32afrHDwmsl0DhLSgk/qlZToPKBThQGT+URozDbi8S5PIrVMgKWLyDNOZcRPK+Cx1mL92rJ0DHaL3wAIwxdR993WKsA4xQVJAyGfoj0aY2xyr2BTBE/WlVG8WTVcgYq9KxVIa18nJFlpZ9ErbanyP7+lP/9d/1Jlqs3ePTgJd549TZ3H5zzmc/e5/GTFSf3X+b+q5GXypxmZtjb3+Vg/wq7R1foz16nDpaCI6ZI8B7nDAyGksf7N1ZEpRTEWkIIIBZjUZE+inAzdgNoWqiD0VZSSiaj3RfWGHxQAYbzCIUiQpczU2+pRA80RDKJgjEr5ZJlSx0C1iqwOY/dTrXzlFzUBiQFM1bIjXfkkQXmZMyxK/GZdUjG1w5xGALGeLW4oAmbla9wFuVZMfpcrP4+MQmDilEzvsfE6nyobwt7sWUaxahaTC6Eqxlh3hcJdBir7NOS0CADTxo3bMYqeiOlNL4H9T2e85jGZy+sTpfjK2GkPrHavpN/8Iv/D/7Xv+uPcDD75NtCPzX+IV975T/DZEPKl/rprdZPy7Lkvb/ta3hUL/kHf+/jvHH/D/Cua/d4z/vml/rpUj99SfqpdB3r23f4XOq5Nt2wGy7106V+utRPl+NyvF3GF33w54yAA0RIFylEI3i45IygMd2aTqSJaTELfRRSNuzt7GDNKFYxz6o7iEJJXaiQUkaPPbjgtXJQilbbrNVqga+QJJjgcNZinIytygbJnvl+TTWr8N6yOV+R+oi3Qaup48RZRAX2xZyRcsYUhzOevhuoNhts8CCQpEfMWBGwMOTCZr0ixSlWklpcxlCKmIRiPRPv8Skx9C0pZWLMOKMAV32+BueCVsOKUIzgLDhjySlrIh7gvKeUjGStZjlrEUmIEWLJdDkRU0aKw4ijtgZjMmHiWOw2TG/Mmc7mzHZmLBZz6qpmMpsRqhpvPb5qxkQ7Tc2LuSNlQSQpBPaCkSGZqqrGWHY7LpL+GWuilIJktQgpt0LbrUssJPEMXeH8yTlI4crhEebA4pxjZzLhm194Ef6L/4qXfuWT1LZwsNuQtite+fhnODw+4rCe8Oj8KdtQg3O4ECjG0HYdlMKjCDK0BHGEeof95HF2wmddQYJhWi/IZ0vOHzygnu8g85pugOPFgsZohaorhdQPSCy0ObMbPG3sCM2MB7njLCcOmx2251tmBvZS5ndUc6bS8LH+Pvcevs5m5xrPzyZMFzNW771FdbZl+9IbpNcesTg45OnTE2jPeG5/wYOnPev1ls8ng+ztctp4ZLPCFMNXHR2CEa4FZeMMJGgm5NxhjWFbEuIdkgRvDRvJ5KEDEXaqmql3VCIk7ylAM5mRBfohMfGeiVW+TE6ZhXPEnEjOM8FRp8KmJGy/ZeYDR82MMpnz2nbFG2dnPD/f5VaoEQN9u+VGqJllYb1dUxuLdYbZwZxVyjyWxKO0JYSa6abnuK6YOMf57oS29Lhkca7i9qZDbu0y784xh3PSB97H53/xU/iTgZPzNVMp9BRyMay9cC8nTiWyPT9hlqDKBcqg0HJTmBg4UJ8Be8GyNhGK8lBySiq+Rr6Wsfo+zAjGOZzVaqPCknWjdgGHv0iIzLlwARX2vtKukfHzmlKirgKlJFwI2sWBJUtms1pycvIEzLtB5JkIdi4wdANDr4l3IvJMsKogtfrY4+EAaKU45wLiuEDkhxBIKT+zjwyp44V33mS7XhF8TV0/x0d+x7v4pmrGg/tnBDtwfr7hzqu3eeWV29x94w6PHj3i7ufvsFzdwvstKWdsUNEnMhBTpzY4uUhyA0Yhb43aWRCh5IJ3gUxRgDKaFnqxGXDWa9eAtRjJmJHHJSWDdfQFOuvwCJUtRCtgM1aE2lpsSeAN3jusKaQS0ZfVYCplBPmRB2TQjbZ1Km5LKXBhUbHaCWW4eH3Vfmi9G6vsYG3B2ISxyt4xXuc2a5XrZcSiSXLjAY4VKEmtKtaPqalB740xoxWJ8XUMmlMgeRSvFl1kzXgvNdxAxudRgGSCroVZvz2VyDP97PSQR4yuy8ZdbKIux5d7OKMQd1DunHmb6Keh7PLK+e/kudk/Z+q2l/rpLdZPX/tN38TOjWP+4f/770K5zln7H9Gu/9tL/XSpn75k/dQEz0n8EP/tyT/i26tvZ9d9/FI/XeqnS/10OS7H22R80Qd/wjB+4DRJTmGdhiIFZ93o7dcqRCkFDMRc6GPCj8BWyQWsI5VMMCj0tJRn6WdSCnXwuMpj3Ahp1WkBZwwmq9WkmEIIKmSdNzjx5OgojZ7YWydM9gUTKlbn56QuQRasMwySCM6ScsKHijymnBkqsDUJS4k9uUSsWHJKNNaQBnDeUqyl7zoF00qPjNUlY5XFU08byAU/JPLQ0a1XUEaSgFH7jpWRHzAyCXJKWBFNcrOWNLZQp6GnH1osancRyfjaEpwwmU5pFrVyY6YLZtNdppMJzbShbjy+qcF5fGiwxiubwUAWKCLELAxdr2lRohNvzlHhuMbpayNWOR4WfD3RWkrKI5BbE6g0HU8wRpPrRCCVNNaplO9hDAwZVqstedXS2Iq9yYTf97/749x49ASAsm157rkjwmSGqysKhUevPqBtO4r1bIdIcMqoGYaexgcKwpAzrTE8lYFbwbJXz3lihBxqzmOPlczRdMaw2RKlh2XE1wtiEibes96uyFNHqWt8nZHTlg7o+wF7fMS229LayGl/zm72TJLhZms4nBa8GfhwtaDYjtf6De/c2WfYO6DLFaWcET93j70Xb2CfnNINW7bLlmYaOKwqnrYb2nlD42puL8+4Yj197ca0LUN1tMPzcQJdx5PU0S6XTItlYz2dgV4KXYoMRrAINVBJIRijizW6sJacaPuIcRW1C8Q0kNClMeWiFqCSiRTqpmERIzZGSuroWuHI1wwTAWtZb9YMFo6riqFsmUkNKfKO3UOqSeFRt2Yjykk6jx2nw4oPz+ZUJeGzzgf3t2cs9hdMs/C0X9J6xzJ3mL2Aix3Lx084mwS+/o99lM/9i89w55OfRqTDGrUZba/s0d69Rxg6um5DLhCcRSzEnKitw4yWB2cKtgxacdTGGBUOGeyz1K/xM4HgnGEYBq1WGk2ku6gCXggbY6x2CZdC8J6U4th5Y7HG0vcd3ntSySqcjAfJDH0/bugutu66WbQmEYdW2TOucFHwNkbtZzBWei8ey1i8CyTROcWMloq+73HuTWtEmwau3rzKYmdBSjU3b+yyszfBeU/TXMFVmc1mwnMvvJ/f/q0t5/cf0G/u8trr9/ipf/IpTlAwtMQxia0knBEKjJv/kbFVDIgjJfOM8SJZRmC1G5laCWsYIdN+/Fm9L8ao9W0ktzCUwutnZzz1lt264srOjKN6ikkF4kBXOpwHW8x4qOEQK6CNAfgRap3IuBBQkDSI08f3o10xp0wJGoJgDEgRrLeaVliK8m6+wFMjNmNceZY6hxmtIFYPOGQ8lAGjwQKmjJ1cb1bCRZQnZqx2YwlqaVLhaTAmUMbNvxnB2QXtDLIYUoJerMKsyzNTDG60qjCuqTK+B57ZZC7Hl30IA0U0bVw7GN4e+ulsfYufef2v8Yfe9QepZ5+/1E9vsX6aTGf8f378PyevNlw72uHjt+HFD76b/b1L/XSpn740/UQquFFD2RJx4zVd6qdL/XSpny7H5fif//iiD/6G2OJdhXFWK5NltFxYS8oR6522T8eEMcpcEBTAGazBSAGjxBcXAlkSOSWC18qts8oTsM48qwbo/0XtKeOE4KwlGwFT8CEoJDob+gHO24Ekyl0xOKLzhL1d2sdPsalQOU/sBjAB6z15rBylIuSSiNHQ5I56OEMszEZ4dYmeyDiJObWYpNjjTSLRYcwM57Tl2hhHUwVmJtGt15gcyalniJrSV4QxNlyr0XFc0GIpz8CsOgF55vMZ+7t77O4s2F3sMpnVzBdTmsmcuq4xwWKDwkuNrcjJjJOgMmwKUIZMGdOiJKkAGYakoF0jymUYW8AdHmscxRhM7ahwz1qxvXekIY/VkLF1Qd5kahQRUi7ki/bwlNSyMvSEpqKXzHncYo1h52DO//bP/EdMDw/4R3/1/8l3AH1M3H7pDaosDKlwZi3btmMSwlghB7GOru2ofEXtHFPrqEONJHBNQzKFdnlKridMbUUdptREQm0JQ6Rse4yviHSskmFvPqXxU3IJVI1jOqw4nweGHvzuDq4d2CuFflLRk5ibwE4MTNYb6jWY1FNiorq+y6/GE154z7t4oyuEAKbx1O+/CSnC9SP8/Xs0dcXceKRsOAIO/ZSzTiv9i/mELkVKH3lXtced2tIPHTMsMUf2Fwum7Rlst2oXGgVQlkRtDVPvkDzQCQTjyAWtBDqDbWpSKuScWeUIWNKQwAt1mFBXjjIkghEOmjkrs2GZB7p+IPiKbNXmkV1gwDCZzplWFXQDs+ken3r4gGpWM8lwONknlw2Blg8uDplsI6VPFAayt3xkMmPPTfm8PeOr5nPmPnOyOWMThT5HNifn+PmcX/2Fz/Jk3bMMAmmNm85pTWC5WlJ5g8SWWjIuWGLu8WIJXpMpGd+ftkDAITETc6EOAYohJuVdIYIthWKcskxEWT4lMbJhNJXOGPNmgWCsDjpvSGkA9LMhRQVe8IELbk0BvFWmyLZdU4UKyUK73SrHRoSShb4dsOKRoilnVV3TbpVl4qwDV8br8M/EiLEybkatJmp6/bsYI3VtqYG4bqkqgxhLPWl45ZWW1169Q72AD3/dTY72C3Z/n1ffmFHCwGSW+MZvfAef+PzASy/f0fQ8EQSP5KyV6Erlki2aiul8wJig1ylZN01GGSylFIxzeGMpOVKFoN0xRqV7cJreLSKaYlAKycLT7Wa0hTimqy0T67ixd8D+pGLmZ8y9MJWImEQ2SUWdGLxx2Ixuth24cMGdURi0taNFRoTKeSgaphCaoNYt67VKnBMmeAwV3ldYp8DyIo6CxfkERsiScBKwrtKN/Mip0aq4002LDSAGYy+Upm5ypBiwyme7SAU16GHNM0a1AeutVsBFuzbGyAaCc+N6ktW65CxYR5E3mTeX9eqvnDHEFhk1RMG8bfTT0fQz/NH3vQ9D4rx3l/rpLdZPf+v/9n+l29ynT47Thw8BuP3Ln+Gl+pOX+ulSP31J+slarynhgMde6qdL/XSpny7H5XgbjS/64M/6QEoOawPWaAS3YHFoEhAYhZM6S58HkhFyUaDmZBIwQZ6xbEpJo49ek7LEGoaUqYJOKhatmnrjkNHeYWtHBpA8Vmrs2JZbM+RInwoDBetrXG0IxYL1PDl5RHOwi5xuyJsB4wIDQMmaUGUDqYAEz0mfmfZLprJL7gsV5xTnEQRbRYwI1gu5O8HGQ4pJCB5rEzYUypDBFozXBL2uiwxxQ4oJgsMVgxFLyQPgmEwn1H7GdLFgMZvTTAP1rKLZaagnDZOmoQoTvLNq8xGDszVyISiTIQ4tYJEScWKIRqtcmrpsGWKkb3swjm7bEZMyLPYO95lPJ1qpq4yGc0XLP/3HP8fB8TEf+S0fQIg68Rp3IduhFIovCBlLwjpDzChYd8gqgEWgCKkJVE1FLMLVg11yWnPt5ot823/wRzk9f8RP/Kd/mRfbcwAm8zl7jSfGnm7bQhdJg7AuicoYKmPJKWpFvxTavmMSappqCrbwcLkhNjAHDoLH5cS6244JhxV2yDjv8FIQep6cr1iul0y85/hgh7nUnBdYWoevHI2zLKaOm21F72sep5Z6cEyDoZlNMF1hYMPOdEqWlnvbgX/45IzVdsP/YuedtKvInXaDHwaeW/ccpMyZrQilZ+YcU2v5kPGc1sKyj4T1kuuTfa6KYRkHzu6d4YKBpuFMYBmjvg+8oSLgRCHBKRUclmmoR6FgsFgqq/H16yFjsFTGkGRg5iyVqwjNhBIjq9RissN6z7BtOS1bmt05rnhSLJyL0KaMDGvMfMEmtrR9y3MHR+yEmvu55VPxlGrp2fUNZ+tC72G/L1zbqThfnhCmc4oIdVEWzNN2Qxd7jMucbLfUh4eIdHRxjciMxg48/cyvcBZ7rA90rWF98ojgHLUpyHat9i0MphhNDZOiMPwcLxwdWp0u+tmpmkqrejlTNRWpFIK3hCL0vpCk4I0hR8ZOi1FQoXOWD56cxmLls+rkaMnSKQophcpXWAwUg4xg+yKZvl9Cn+iXPf3qlFs3b1GFCdPdI1K6DbkjW4cxNVk6XBhtbDkrCyo4LVKMBwLW2meWEWu1KmoMIzy70vAA8fjKkFKAHPmP/9N/ysmTz/DqK5/mu/7Ud/L7vvV30q0esZVCFSaEeodSBYaY9DMvCtKWEbSdgDIm8llbYUdUgiXD2KlkDGRjsN5hioyC3mKdpxTBGk+wypu5CFdCIDuDq2vi0IMUJDqiEWUnETnt7pEl441hr5lxOG043vNcnXquVI6FeKydEqzF+oR1w3gIbChW5/eSkxpBxJDGynQwFSYL+EIh4oyhqmqs8VjnEWvJ6EYxWLCSMcZjHAqfLpoomk0EU2nqnglgw4UUHRM7VTRjLUWMnk3bPH6/1/eTZXy/GFwBoeh6UawK5ehIIjjjGEwhFEMuFhcMYh0Fp7Tv8QOQLt6+l+PLPqwP5O3YSWD8OHu8PfSTMRskTC7105dBP+XUE6Z7BGNIdh8eQZnXgLnUT5f66UvST5Ub7ZOAFOW6XeqnS/10qZ8ux+V4e4wvPrbGGLzTFDKKTgjO6I9rSIZoa3LJmGKQmKCMSWx2TDUyWoUouWjbuFG+QRUqBZ4W5UYoGJlnMd/GaKy3GeWT8crZSFYoMWkyU8qYbUcyAz5HihHqukEI9NkymXlid6KWFXPRhqy8wmgtHUKpLKvVioO2w1SWdTrDUSN9IgydBpvUQt+uiTET6qwciqKTWC4DHoeZ1FTWEoeO1HekknCii7aUTCERqprf8dGP0tSB0GikvBGD8360+SQFTxfLkLMyF7AIESc9g2QMDcUkvDGU7IgiJDpqUyOuxrqMaRPF6M8vdmdYLIu9XVIaEGcYhkJlKlIfqa1B8obp9Bo5a/cBthAqS0ItKtkJtmQqW2FMRTEdOXdgNN693fZMq5qu7ei7FeePH3Dnsy/zjluHXHnuOY7e/03c/vhnef1f/CwSEswDAM4HwnTGxC6Y7iT22pZhGDg9O6frIzEXFd3OEnNmEFgNLbNQEaxnkIGdsCCIw4kQEEzf4epAKpFJZUEKjQ9sYk8xmU1cQrGcv36OHB7ThZp14yBn7CZhnKWuZ8yGgRfYJ8c1TT0h5lP6eU1sE5WB61mtU/eePCZa4fGTMz64SpjlmgdxSagmyNAhZcBPPJICWwY+d/qIG3vHHDnPed9za91zrVg+v+M5NYVZaHgQOx6YQtmZ0PYOX2qGviflDMUR6hpSYYiF2tcEb+mHFiPaxl85Qzsk6qahZCE4q50lJZN90aqeDWQDyVpiyvgUGTYdxgtWLE0zYZsSd7fntLnwiJbh3HLsa8gO6wM2eF5fn3EqA8cy5fkw40nX8tgJeXtOZR3PT/YYgFXacl56GlvR7CyY3Drm6ekD4hKG2DM9vsJk5rl//zW25ydUxmONxRlL363I5+eEAKSMdw1mtIAIaMVwTPUVZLQcQCqAUVaUMeCtBYlY58lFu02CMXhvyOnCkqLVb5E8dtSAMWM5kZFzg6YyBu+fzZNlBLR77/DOkqMhDmoFS6mDoglpVTXBWSEOGUS7cZyzSB7NLM6B80CkjMluzilra4jdm1YKRt4Xyv4qWTf3KQ8YY3E2ggSc3fK+90/45MffYN0+5fX7Z6yffIqrBwdM5jP2Dg+IQ41EFaCJBsoW64pa84zB+QpQy5q3QedkC1qOLaOQtmoDsmhggWG0hBRliYk8Y/2IoF0vDkQ0eGDqPCKGmAeKMYgJZFEDlrfQdVvupMjD1vFpC/OmYqdu2J95jhdTblUzbtVzDhrBVwUnPTFtKRSiqbC2VitQGAWki1g7YJ3BEEgjTDqEQmGtr72tkQw4j/UVxun7K9se69xoYbnYRBgwgiCIMYjTNdPIeNiChpxaY8YdDypaR7uJ8tP82El04bGyJOPAKfvI2PH9jlFOmqBzsNjROqgbsMvxFTKMwbnROpQKZHlb6KeT9h187MEP8dW3/i/Y6vVL/fRW66fdiso15AK+mQBweHRE444v9dOlfvqS9FOWolZ6AKsdb5f66VI/XeqnL/9IKfHP/tk/m372s5+tr127lj760Y9uFovFZQrJ5fg3Gl88489oRcbi9BReGBk1CSn6IQXRdCfAYcnGkFKmqiuMtQTjkFRGCKxQMiQRrMk459Wm4h3GW8QIXRxwGCqvEdtFCtY5rZhUCqx+cr5kx1meuz7hrC2cn0ZsaQhVYrFbM5sfcuf2GbEtRFH4qDde24cRireUUDE4T5cSr925y/lqw7vf9yJ7xwsVZVJIIVG2mZAGctzXRSEmitMmY++g5EjKhdJUzH2glI6hH0gx4ZNWcXPqEFvwvuLo6jViUnaiWF3wUkyjDQFC0NQiUwLWCpJbUtoizlD5KQHoykDJjt4IrvKUbSG5jHeOUFWwF9ipKvpth7OO2EWGdiANEWMHnPM8uHeXvd0dYqj55t/9uykUVqtTrDX4SlvKpaoI1jIVw6xqGOKW4iwpG7ydcr5+xOrpA17+7Ctce+FDrFdLhsen9LFlMpuRXMPO/IDlp3+V7dMn7F+9gtSWvdMTABY7M3YXU0oqOD9HJnM2mxXz6ZRYEps+cvv+A7II2xipbcW0rmlzIveJaTXhbHmOwZF8S5jNoLI0TU3uevrKUlWO7umW/YNdZnbgdHnGvKmZOM/d1RnzZodHyxXXqgV+yNw1Qr+3wA2Gr0ZgUmGSIR9fZX3/AdGCW254z7UrfOf+MdnC//D0PgkPix3mi8C73BF8/h5P2jWDt6zWa5zz5CqwTZZhG5kXYTprGM6WTKZTDpiSwooNLQ/6lrNuxZA6TpbndLlnagPeFgiB081GW9Z9YDAenzLBOSb1lL4fFGlrM6E25BzoS6Qqlj5GXNOQUyS2G2LJhLphKJlh1dPUDbYYTTzsW7IpGGepAG8D56kjUJh3Bk/B5MyuC0ycZ2495zby2bNHuPkMN2TqLLR1Ym/vgJPzRyRTuH9+xuTrPkisajabnjaola2tKnYWN5kv1zA8YtO2FGuZ7lYsdo5pV1tsGShOSFIwMWPcKPr+Jw36hiygpo+CFK2Q5qyVz/FokCwqtqw1OKsYAxVVGRG1zpVSKFnnPOcUFp1SHhPs7Jhap2K5iOC9R4C+b3FWSBFiiWATxqjlQVCY/Ga7JpcEROrKw+BA/Ju2BxNw1jIM8UIzj9VhoyD5kaeiYPgysliFlNbKjDEqRNfrzN07p3Rd4sV338CbAVZrFs9fw05vIPWE9nzg/FRtiM5HxAreWcgG7zxiFLZvQCHTMpCS2nic9frclHhPEU2C8yEgtpByJpcMRW2HdkxOs85iPcQ4sHCGG4sZoRisNGSEYhxPti0rDNtSiGJocqSkSLCObRSGbebxWcttJ/wylrquWRzOuH64x4v7N3h+Yth1PRUtvl9jyxaRTC6BjMOGCcYYvIEKi7eWaA1VqfGmprjARPQ1Nd6pPUkGMAXjhYLDiiNnRruO0eKxVZaOGJQdY/0ItC4gFsPIqzEKPwfdWImxmOLG4rN2nSRf0xdltFnnyblQsmAr7WKy1qs9BkGIz0IOLseXf1zoJ9CgobeLfurLLg82v4t32r+Cs29c6qe3WD+lHKldRXaQaQBY/P/Y+/Ng7dLzrBf73c+whnfa0zf2PEhqWZYsW0LGNsaDADuhYjsBQnIAo0AdKhVjmxAfSCjAxHU4ZUTVKVwuoE6lCg72CSQkf5DjGAqwmWxsDLZlSVZravXc/fU37ekd11rPcOePZ+3PgiSHtkADffat6urW/r6937X3ftezrue57vt3TeccTK5e6qdL/fQF6ictB6MUfl/gUj9d6qdL/fTlrl/91V9tfufv/J3PnJ2dPTi3OTg4iH/37/7dz/2u3/W7Nl/Oa7us/7TqTR/8ZS2cBm9LpHZhxeQC05XiPseUy0hLLK3OIQSss3hrMTljnSUNxeW11pSRDikdOcXxLt1fKZZkICQXlkxOYEtrPljE+MKZMZY8ONzUcHhdsIOwHjJpcFT7E6p5w7U9z717S1arSLAUWOoFrNZYQoSIsnOR5dCTgtLdPWG93fC2Jx/l4SceZVcpdthRayYapd/cp9+dITSghmx7rC1AX8QSrKE2Qgxbtv2WMPS4voj4IWxRVWJ0qClJdU4soiWdTsauAE1KHIby0NGSChj7LbNJRVOPG4L5DQ7NnOHnfoX9W0teOYBfOtvwxPvfz1QTcVfcjpBHulAuI0c6ZAJ5dGIyR9cPsU7KmA2JGsPcTBDjGEIgD0IUzy4pQT1f81t/C4u9HVU/ujA24tWS+sBqeYdnP/YL/JN/8AusjrdMDw44vHGVyitSDcwPamx7RKUVrvZUu258IwomlQdy7CNiHAdXbnLn7hv0YYO3hsp5dn3AVxXWe7ohsDLKtKqxOZKJWFezqBsqq+Acd1OESQWhY7oJLCYtR26Gm0Bab2malqN2j1un97nmPPcTVFViOm24GzteWAVmzZRr3cDTW0c9r0jbHhZz+tWG/cUhZ2o58J7dcs1V5/iF1z7Hp25eReOW9+UJO2s4XkxYhYEqT7De4+qatRqmxvHuakLqI3v7LUkUOT3jBddTBcO8ablhMq/dPaPKipemiApjiSly1DaElEg5UxshJSUYx6ovXW94h3MwxA6bDN4Y8BW4imgNm03Hlbbhqq/JfUCqlizg25quD+zQMWktlZGQxrHqeuIQWcXAy8OKK1WL9zU3D44I6xV2Ytks11xtptxbbaic46HpHs5aVpst19o5FuW5Jw/J+xPOP/cs73z0kF3cQ2bXeOobv5UdmT6t6PdbzrcbhhyYTTxXjh7h1E+499Ffw9SGpIo1Ra5eQI4vSstbvhwFWikdISObRFWxYkAsMQ0FCExJrgMwpiS9XYCpVQsrK+dMyooxMnbSjJtwHfPhJGGcJcQB5w2mKklzIQ+szs/JUcs1+4qMQk6lM8QmnDF0u8I3USkbdUXxI9D5wgnXcSxEtTjrKY1CWRNG5AFnR7RBMWQpcOSeHmm1sF+8R7sN1giH19/OKir//OfuIt0p59v7SE7YAEkCKVlSHMZuGy2jHGYEV1uLM3XZLuTinFsrpCRYsXhvSRrJMeNsTdKM+FGcAZgCtJZUxgYP9qY8Pq/QEEhDT7cbkD5yoyrPiiEr667nPCWitaxDIEomSSKnnqwNziph6NndzRzf3fK8P6Zxltms4ZGbV7k6O+Cgihy2mQNRpnkANwYNGEtQAQ24ISCuLaBrI+wwNMZjCDAmnOJLV4EVXzY8zpWT5hF8rgjqzYP3nMQysiKmdCZdjKeUo5+MEcZuCwG1CBlrCvcoaEW2HiNCSGOYgWaM9VhbRgoZmUVZBeer36QcuKwvVmWVB5vpTBlZeivopy4Vo6UPiaiX+ulLrZ9OT48hJXxKyNj3EYdEnlzqp0v99AXqJ2HECjw4J7vUT1zqp0v99OWtj3/84+3nH/oBnJ6euj/wB/7A07dv3/54CdO5rMv699ebH/VNBu8cmpUYA6a1pR03l4Unp+IGl6wkSMayC7vC2Upl0ZekY3qOluSyJDhbFvbRZilMBgpbxboiliVnrFTYqiq8AzPyG0IkrzPZOipXMZEBbE/fBWa6oA+WxVyoJ4ZB4TyMzIIYMFp61vuYiTKwlczptqdyvrTyryKf+PXnuH+25ql3vI2Doz1STtiYaCYV3fYc0YypairjmLUN1gxIrugkgzfk3UDfd8TYk5IdU/0imuwDgKslklOHRqXkixUgdkly0tI2jSlw7zSQdcXXvm+Fd4Zbdw5457u/h/7dT3H3//Lf8r6PvYE5OuLl1SkdLY6MbTxgRrHkS8u7qfBWkGSKcw306+Kuo7AbAkEhhESOhiE4xO9z47Gn+Lbv+Gba+QK1W6Ip308OlmQStsoc7e3xDY88wuO/5Rv5pZ/5GT71L36J/gySZIbT8wInd56dqei7Dnt6BsB6s+UkJiDjjEOxVE0DCM5YYix8CTN2d4eUIUamjaeLoRxIi6XTRMiR1PeYqqaTjPTKtG4oGU+O+/2WiVgqW9NFw0uh40Y14W0HC1Zd4PkceF0y96YT7qx23I0b3oNnx0Ac1rgkmCjMDhdogmMnxL6ni4lDU/Oua3t87PZdurTjdsrsD8pi3lKtduxPZ0yM5+7ynPrmo6SYqdXSO4Ovauq2YrYNeNdydxeIcaDSyOlmCUawUcFaokaswNR5yod8SdsSyzZlsuTCOSnH9LTeY0kM1iDiOOs6zrZbrk6mXHEVbQIVRxcTScCkRNZI7Swug6FiUs/IYrm+mNNpJIdIN3TcWZ5zIkuCRmy3QxrLYdMw5Mx2vWJWGfaNZ1dVvL5cMTvvmD91hNuds375LlcXQp0Dguf0/j1uvfIy4mfszhO7VSZFsBlCDNwfTqgXC8xkQh7WBIoYvUiQdM48OPoLOZcUNSnJaHKRqiZFpAqAsUUEAKiQM6BFZBRX2BBjGkcQuMgNeSBUc1aMLULXuSJsc4aq8qDFnTa14ff9vv8573nmGXJIhBiJUWkbQxqU5fkGjCBSgYnEMHJQiCQtUOikGWOEEAZyGjedCJniqudUxnWyJlwujqWxkZwDYjPdVum6TXE+s9IYJXY77GKf+czy3Mfu83/92/89unuBzcmtskbHAesajE1gLXZMrMyfx5dRFFWwxj4Q9mIy3rtRyJeNt9Hi1JqLDYVmvLfEWMJYnHGYHDlsK544nOCMYnMgyDia1kdyF6CPpK6izQZJEVFYhchZTpxlw1nMBPUMo3h0FcTUs4nCst9we3mKd45pM6FtGprGcTSdcHP/gOszz5EPXPVb9qxSk3FSnN8snkzG6ECSCcYKaiEaKWl1psMywRhPToacBxBF6rLZIyTMkEq6nhHUFpg3KEWnjsyjcQAlUUZNrCkJgJoNg6nJFP4ZuTxHjTHk8flpKfw3VMfkwM/vfr2sL2slw6zd8MzDfw8nx2iBJf0nr5/OhwGA882WPq0u9dOXWD+FvidKwhvHcr0DoB86NtvtpX661E9foH4qzygoximX+ulSP13qpy97ffCDH1x/7/d+770/+Af/4Mnv+B2/Y/2n//Sffuiv/JW/cvP+/fv++eefr97xjncMX4zXTSnxF/7CX7j+kz/5k1dv375dHR0dhT/8h//wvd/+23/75ru+67vece/evY9euXIlAfziL/5i+9t+229716c//elff+aZZ4Yf//EfP/qzf/bPPvrX//pff+nP/bk/98jt27erD3zgA6u/9bf+1ktve9vbwhfjei/r319v+uDPYksaljUlCSpGjC2pOM46NJUbLmtJItpue7oQaFyFNQUEqpIKH0ZKy3exKkDGBU9jiXhXxlS1lKkrT4Exl9N4Y21J4BGly4mtZPrsufbQO3iju0t89SU2pke2kWkOLPYik4XhtOs43pQ0tpQS3pUHXVJQa9mljBFHTBGRjOIIQ2T76uus1lve/tTjPPG2J0nGsFnvSHEg5x6jnmGXePKJp5g1B2yHewQDflLjTjNhVxg1miHELTEFclA0B2KOxFRa6C9Sr1QpiWKmMFWSKEYs5AQpcXIy8LlPOt7xroEnbvwrXvlsTWh/Gw//yT/FJ//KX+bGnR1v5FO8gG1qatdiqwaj0O12aIjcPz+n7wZ6KbihnCAMiZwi/W7FrutYb9YMXYfRwgeqp1fod5HlN30j7SRDBJJluVmzOofN9pz1+YrhdEVYn7Jd3WJ5v8MaQ4iByMCuT5BrKs1IFdkOHSmUtWq3W5OcIYohaqT1Bm8y3ihJSoJgChEQUs4kNTRVNTIfMjuNdDmWFLzQE6ZzcI6J9dTGs6gatmFDXzs+1Z/zdfUV7MGc1MN223OzajhD+Jg33GPCkIUUA09OatZxQDRTi7DbbnlZDca2zHrlVUl0fc2BH8iaaJPl6uIqkzsnPEPL/sIyS5bjYcedXHFzsmA4X3OlnXEymdEsI5uYWSe42jqGznDSet7del51gc8MJ6zeeINVGuhyps2OesSvKEBWKmNGN9biULyxdOPIghFL5Wsa71mnFUlLOtYQB2qBuTeIieUZ6sp7e7rYK9BrMTTOYrIync6wGRbG8vDRIbeXJyTniHUF0zn3uxWvr46ZNTWTvqMeDM1szo3JnN6BdY5ltyMK7F/Z50w2pGSZTFsWhzXOOmr1WEm88m9+AfGe7XrDRgMhBmoFfI2kHX03UF1dEF7bYsaUcaOF1zEM43gOkHMipojzFuFi5GR084wryZoqI2Or/EyNcaQYyCPKtIywjF0kpII7sKY4xLkIVzGFCZLyBTS6/FtCcXJ94/mGD3wz73v3O0t6+DDH1zVZI2GA9XJAs6Nup+xcGYnJeSCFiFAevH0YgEyMAwZhRPhjjCfEwlMypkCkjbUMQ8LXFk0GJ57VaSB1hrrpoTbMJjOOb99m78YcmzMvvXCKdSdovSGnDdZ5MgGRUMZPUhl/S+OGP8ZQ3OhxrSqJeVLCBgQMReFfiH5rPBlFM/iqXHNK4GwNKG7cpG83W26/saFpGmaVZzp3TKcOu+eBBmMc211PbUo3QcrKrA/c3GzRTYfrHCkZdimzEeU0K504VjGwzol1P9AHx27X01QOV1lOThwvvWqx1mOd4crhghvziscPFjzy5A0eXQgHm7s4u0PTQN7tyjhSNcE2e4h6MIHsYtkoth4RS8plHEwsqChqFJJBEpAKlFpFxsewFLbMeF+LGMSWjVTKgnEtatuSmKgZI74wfDRjrSCjwHXOlo0XBjGXDvBXSlksU/8G3/ae/4oMhMhbQj+tY9HuXYhYe6mfvtT6yeZINpFNTFTuNd755F/EuNdLoMGlfrrUT1+AfnJesLLlwP0yoqvxuXSpny7106V++nLW448/Hn7yJ3/yFSiTcZ/4xCdaKPfYlStX4hfrdb//+7//4b/zd/7O1b/4F//iqx/84AfXr732mn/22WebN/v5XdeZD3/4wzf/xt/4Gy/Wda1//I//8cd+/+///U9/5CMf+fQX65ov63+43jzjz9gipkzGjgDW4oQaQs7FwQZMNnS7gaHrUDF47wv3QSxJLKJlIRNAsuIdmFS+prPl69qqJAerRHLOeN+ArcgqGCDlAWtNATZbJWwHHnr8mzg9/Rix+xwSPetlgOAIuwYwLLuOaDxISSeLOSPWPWht9wIxDGQ1EJTslGQSU7HcPj5hdbZiebLi6Xe+g91sQ5aIWMGZzGp9hmIIJpHUMpiIthGnmdQv0TDQhUxWw3YTSdsBIRNypssBZ0FzxHrLkBLywN2xZMkk7YqTr1D7Ob/ysQ3PfnLC9SvC4dHr3D7+aV648jb4hm9nd3wX3R5z7+4b5CiEdSSlzObuCmsy73EzhvNzPmkznQ7EGBh2O0gZTZGcU2EriLLYP8J4R91MsS6zvvMs//Bv/re0syOWZyfk7X2WJ7cgRYJ2OG/R2NF6wZpEzAFRQ6QIdMkGZ5QuRyT0aI7k0VRxrsG5FpsGVC2KKUJVSzKrRZg6D0MkyNimTS6gb+MwOaEog/f03jHkRBUik6gc7U3YrrblAS+WyWSG8cJRZ3k9b2kqQ0R4Pg/0tFAbJCauW+WbTM2tneXQWKYG8umOtRde6Hse2q0wMWPnC2wyTJPinPLo6TFHV2Zc3e7oTcNr6zW3lvfYb+bcW28Z+i3t1eu0WFR7VuJ4rcpctw3Pb5f8vGTeEaY4L/Rdx/3NZhR2CeNhIJFGc6sLA7VxJMmEGKiMp1bLxNWItfS5PA+2fc+QiqgI2nMwn6OhR1KkGyyhG2is53B6WEZZ+m2BxveB2WRO7Rt2mw07O3D77Iy+C1w7uoKECCHwyHROnyIn52vWwXB/u8N1Pd47zFa5n84w/Y6vv3KdrMqdZsa233F855RH4j5HRxUqA/P9hkeqLa+88jpGp9hUwM9WHGIt1iWcGJrD66wG2Ny7V7LfTC6bHbHF1QfEZpxTNJT0xEp8SUqT8vAX8ZChHwBnRqfPoNli7dhBk9MDlkoJtStuYIrFLXyQUKfFhU0546xHE1hfWCcuWqq2LYK3aqhqXz4vw8H1A/ZvPkrl5lSTioUm+rVls4xk7Ai0Dlw09QgO6wxabgCcGNR6Klc4L50O9CHyznc/zff8Z3+Y1XZgOjXcPdkwpEgbLC5H5vt7vHb+ER565msYgvDi61s2yw2bbUAw2NSXNdg7Us4MGklSxnsEMP5iLKKk1GnK5CSoFVIOeKOQLWgRcWIN5A5XFZfbiilJlrkwf6IGXI747BmSwSx3nKYNp3csbVvTeks78biJYbK/X7opNGOdwfiKISW8EWQnhM2OeYiYPpG3gbzpIUVIFjWeNT0rJ5zHzMnOsBbD0DicieQk3D4+4eTM8onX7jP73BmLyR5XjiZc2V/w+CPXeeTxh9lvlenqPu3Jfcxmh5l4sFXZQMWIGsGJJ3cBzTIGIoC6MtqSssFIcZ41gagWho140IzajImJ5Dy2U+L+jBX7MAxkoLJC6MP4HjSIA0smpVCCDqR0EVzWV0apsSRtOdveZG96CyMdbwX9xDha6yyoXOqnL7V+SiJoNnhX46uep6qfovSu+Ev9dKmfvjD9ZGCaPsm3Xfmd1K5GA5f66VI/Xeqnr6D6oR/6oYd+5md+Zh/gD/2hP3T38PDwixLwcXp6av7m3/yb13/0R3/0lR/4gR84Bvjqr/7q/ju/8zvXP/3TPz1/M18jxig//uM//soHP/jBDcBP/MRPvPS+973vq//ZP/tnk2//9m/ffjGu+7L+h+tNH/yZrKQYES9Yb8bWaiGnSIqRyntiCoQQiCHgnGN/OiVuu8JVkHKK7myBkqqRwinIgJGx9VtLe72mcfa+3HyaMmLLAZ11gvGGKIpi8S3krbA8X9OtepwBZxMxCVk7IjXLdeJ0uSaqpa0ramexrvg+OUYuwoCMd4Qhobm0xpc24ADGsovw3IuvcrwaeJ+ds//IPearrnAtQi6R8+lVYh85fOxtvP7qRwgKfRzYbjeoq1CNnJ8vSbuM90oiENUT1QBK3HaIEfyYKF7XJanKOYe1DVVdEfoObEO3HXjuFSW9cJ/Ftavc119jeWvLzSdvshwCv/6Rj6PiWOw3HF11vHK84m03bvLLp69y+84xd7ozolGcrWjqhsbXLBYzIBXGhULTNGUEQsAZxdiO3fqToPvkvifFLZNJKJsRBdVItkAKxD4wpFASCJ2UBf0CoiuKNRdg1gv7VdEYiCmSDcQ+ovOWEAaMlOQlg0U1gCpDCuAb4phAly5S+2LCjewSvMH5iqmv2XURO6voY2LfTkm9MHdC3g7IkDmd12z7HTcnU64bwBoqTdzZbnnEtbyjrYjrDVYGHhsiJ82UA61puh0fO32Fg+l16vkMExJnyfFSntBKxfx8Rd31vLfe5+HZjE9t1+TZHGMSb3Q9NYHq2oxJ9tzpA/fbxBVf0fma5b3bbE5uM0FxwKDKqu+pqimSEolUuiTTgG0qdn3pHhm4EFtKSAkTE7X1TKuGJMq2H6ALzHyNiQGXBfUV0pRXyn2g9TU5ZVzV0qWECREU+pwxIVC7in7TMZ9MmE3mVEmpqopr88Tt9ZrdobLerji+d0wW2LPCk3t7zF3LnSaxA24tVzSNZ/a2t3PSB46f/yyHB1OO9g955IkJL99esdl2hCzEHCEmZJep24pJUzM92Gd9clxS3vQC7WvHYTkQPDlS7nWBIUZq78k5ItaSUgRTMWgiaiILhJhKJ3BKY9LbuFA6RwgB7wtHS3OBLcs4e3Hxd60xhTGiBZBtjeC9x/kCDRYAuUgnU7IY+mwwzYz5lSO0brF1R3QNYXWPEHrEGHIII5NGyTkV3okYuhyLu2zKaING5bGnr/C//bP/Z5rFMzgZ+V+p43t++3VsnrPfPgO7AUkn1M2MN45hdXqbprbE4AkKxpYNQNKS4llcdEVMHgEzZZynqnxx+w0PEtScqdExqdO5wlJSIgp450soPAYjuYxZSBmBMcaixhBSHjfpHoOy3e3oOmG1KWu/P9vQVIa2rqgqR91YmqamrmrypGJ61UCKJZ0vZYZtz67LrNZbtrsd2/U5tt/xkPM8dZCo3I7QR+4lx+2grE3Fxlm8wGC3nPQd61XD8y7z8edPmC5eoj7Y58aVQx6f3+ChOczrzJEEJj7jtENSD4wMowRRpGy+kpJdwoqMf1Y2AIgiKYONqPcQPGoi6hLUGRaHhN0eyC24GAcdmUGkhESI3mG9g2RwUhHSV9aoyv+Yy2Tl3tmj/L9++e/we3/793K095m3hH560OrDpX76sugnBCuGnDL9bsKtk+/gysHPU+vZpX661E9fkH5iHD1V5VI/XeqnS/30FVZ/5s/8mRs/9mM/dhPgfe973/qv/bW/9toX67U++tGPNsMwyO/+3b97+YV+DWutfuu3fuuD8JGv+7qv6+bzefrEJz7RXh78fXnqTR/8eXOh8aQkOw0BIwY3uqoxlX9CCFTe0/iK5bbHOz/21CvWjvHjyugO+TJ2QuFKZM0YChvDmHFxz+XzckolGp7yQNBxYSUnQuw5vvs8y7NjGus4HxJDyHg34fVXhTv3lYhjuetICGIdjXMYyeMxgWJVkPEQMOREGpRJXRf4tEISJUpmuVpy67XXcJ9qePSxG6SUiiuDojbiVHCTCXeWa9RZ+m5D3G3JlSHlgW69ZugCvmJsYQ54X2GtYTqZYJyl8g7Nme1uVw7ANrA93zLsOrq+J2hiSDs0WfrBkF58juuP3eD41de5c/tVEkvu3T3F4FkvPa++2NEnwzB/mFdv3WUbOyazCVXj8L5m1s6wxj5I5hJjMMbhjMMbS86B3AeyWMJmSzg7IaVQdh0a6IcNlfXlAZfLKIlzFb6q6br+wcNajJQUvpzIlIX7wqboU6SXiDFCjJFJW+MrhxhBLjYRKWLNyMOgvIdEIaYIzhJCYm5qclJcWwMZX1ec5MgaobOOjTPsbMNx2nLXJ6qgXKlrWud4vnKYNHBdKg6rlq0E1sBUDGIcu+0OiUIbAm3dY8wUb5Vut+ZuNEzEwsGUe6fH1DTseWgnFTfchBwjcRV5v21omwkvD0s+NqxwucZsKg6N5QNB+FxuOBfHyeoOZ9szWoG29uTQkTRhELbDQDUmO7bWQ+jRmGmrhi4MGGuoTUUYBipfM7EVJiqSM9QVta3xSWiso1lUBbgsYwJuyHiUqnL0fUBESHFgO+zQmNCUCfQcTRas+g0hJfo20RjH3FVskxJEqJzj2uFV2smUF0/vc7rd0m4zzgqhmdJ3mdrXZOeZPfwwMxZ87lf/Na2f8cbqHl/3Td/AeXiRW2cvoNniXcVsPmG7PudseY6T/TIuIhDjULpaFLCGNCZjio5unikpckJxqr215X1FGaPqc/m5irWYlMlSxn7ymMKpqoQQHojTwuUyJA14V5FJ5JxwzpV1SgpAXwFrHb6q8b5CkFFwUngyQM7Crs9gK3wzpzWWVCeybehTwA09w+6MnAvPpFB3tIzb+QqvQkWNSsVms+SZdz3M/+7/9CNceewDmJhpFg0mO1599rO8/6E57/nmD/LMzx2Ql6csFlOOJi0f/cwKkTViA9ZmdBTjMZauHDGujHHYwu9CZExfK+M/KZUxP2AcR3RkzSVUQGRMxTMjSweguN5WDFx0MKkgJGJM7IiknAhWqcSBeNqqJoQdhEDeRuiEXsAbx8TPcFVDs5jhpj2TpqFuWkxjSJqom5q5CFfygphhvUtsh8xu2HBnc063XuJDx2PZ8nXTmlzX3N0FXouR19cb1q5iIoFJtqhdszpbs1ufsb7zOi/5ikkzZVJP2fcVe3st16/v88ih56hW5tZh4jEmRlIaMNbBKCjF2HGflcroCgY1HnJCKoEhYKKCQiLSdWuSltTSrJkYy2bAWFcOAZIpoRGmjLnYcSt3WV/+8gYOpi/zPb/1j3CweHVk0L0F9NPY8WdF0LGr51I/fen0kzWWOCItluEqn3z5h3l/8weYTdaX+ulSP31h+kmVk+7d/IuTf8LvuvK7uF49e6mfLvXTpX76Cqgf/uEfvv6X/tJfehjgPe95z+Znf/Znn5vNZvrv+7wvtKbT6f/fr23Htl79PPMvhPCVeVp6Wf9WvemDv0EjWMiaSH05cU8hIFUDGRKZPCb11E3NbjewOlty/ehq4c3ERCTgbIHvO1ecHxREFOuKKE05jm51ievRnEkml9Qdckkvsr6EjKQeL45h2HD71idK0k9Shi6yGwaGELg7JO6dL2lmltUg7EJkd3LKbNIymzR4Y7ACEiIWpXalxdggGM1oKClLSCbmnpCkQGNDIJPA68jfKa5acsJglFf6bXFpT4/5zIsvM51MQAfuH9/DOUdjKyrb4K0v7IwI928dszw95fTkhNVyTbcdmM2nOGvY7raIQAyZpImkgawGyZmskddfeI62bdjvejbLO+XnmwdSV3gbJg588tc/i8aBes8xmx5Re4e1xQm2xuN9aYPfdQMWg+SIplTi1NHCp0DJeUCMJSYhacT5CkXII+8jA0EThIykTB7BwEOKxZkxUgDBAnbszrI5ETcrNCh9VDQ2xMPFyC9KZKMYL7CLhbtiDFPnqBOkocNVjmQtfUr0mumk8DHWuy20hsl0inrD0K0R16Mq3OmFr93b423WEWctd23EpczaJNo4kHKkSUJXGzqr+MM9hk1H1ycOdsLOd9jZlOG+8Klhxda3XHtkxo2v/Vrmz9/j6PwETZ5PbU84351zxbR07YwXz0/4xLAiW89LOZH7NdlaejLG1PS7wCvrY15b3yPHjtpbnIE979mb1NzdbOk1MWtbKmPYWsFlxVlDoIxaiDjq2uFEqOsKZ5XKGQIZTZmqsuV9a2GdMhKhchViwDcVVizTdoJNCW/mrLcb7q/uMxXHvJmwmLRsTs9xQyJK4NgmzmKgaSfs7R9ijLDNA94aHqtrdLllWC/Z1AYXeu7duc/h1zyDnTn+5f/zn7J35Yhv+F/8r3jkkSfoV0tuP/cJ+tSRckAkY2yFmp7AgDihSz2NK5teZzwxRawpm8wHHX/WjDyVVPhBVVWS66whhoAXh6k9iYxRKZvEzAMw9ee71jlnmqYZR1bKRvri40UvO1JUvHMYY4obLoaYM1VT0zQFiVFcXRAyKoVH021Lh0/lG5BEnxPON3g/wRiHUNLeco6FAUZ+IBR7I5AHKh/4jt/3W/nPf+BHUH2c9TogezU2eX7uF2/z9/7G3+NbvvWQZz95i1/5xX/JV73vYR577zs5XdXcPg70eUPIHcqAr4rALOI8opTNrBhbuoasQzUXALMKlasfdCUZKWOIZTSjXHcK5XdUNXVhw5riIhkzCvkyuDjywyJDGso97zJqlBAju90OYwVHIPZCh+KdoTaZpEtq39GtVxATVeMxjWNyMMc1DdP5jMobbG2opjVXpAL1o2iOdCFzskucn2743MmSyeqcm87wjLNoW/PGDl5ebngtWLqkVFWDOEGTMqRECIHQD6wl8ep95TMv19TNnOl0wf7hHjfn17g5c1xfQMUS5zqcEWwMhTErhZmECJoHVASTQTGQIZqMnK/pYyrjLjGx2+1YrlaogUprolBGdQSsEbrthtdefOU/SBxc1n+8GjTi68jV+qNljO0top/yyO8q1KxL/fSl1k8GJcSATYkJv8y3PPN2+qhsVpf66VI/fWH6SVVp/S3ev/9fMLW3LvXTpX661E9fAfVTP/VT8//yv/wvH7n4/7/+678+PTw8/LrZbJY+/vGPP/vkk0/+Rw/LePe73901TZP/wT/4B4t3vvOd9z//z65fvx4BXnnlFX/16tUE8Cu/8iuTf/drpJTk537u5x6M9X7sYx+rV6uVffe73737j329l/Xm6s0z/qyQUi5z71oWbyNCH2KxXnOi9jVRIn0/MIQBQRAtoE3vq5JiJAWuEYfS9v0bixilZZkCPw1Doq4rVJVELqljWbFisaoUfLTFidBpZnO25Xi7YrWM9L2S1WIMpYXbFUCv6K6kRimsup4+BqZtQ+1cYYCIIaGYyhYQa0j0w1ASoEZORVJl2+1IoSuOgSl8jIsHXgoK2bDaJbrNDmM2/MOf/n/Teo9ILM6Mq3CVZdLMC9hbMq6piaGMeGRVyAkjkeOzc7CGEEo3nLWOHBJqElYcNguVE4xXbl69ybf+3u/kI//iH/LCZ14qHAkEL1AZg/eO0Fmsb2jrCjWuPGjFlJGbnNltysMo54SSCfk3Ht7OufIwVy0PbikdVTllBhSLlN+nUVIKBaJrM85ZUgyFwwAlrr7vif1Avy6dvsPpKckJaizVZM6kqccOAqEfOgxKjLE4Pgq19ViFyoA4j8cQKmHbR1aayNsVs3rK4C0uDrRVg1flUVfxTcPAQuf807gk1BW9r7iXI4cpM/U1r6BsQ89ydc7h3hHJKq9vtzzVVpxuAuvzNX5/n7yo2YVEYxu6EAhNZlMNTJ5+O5+o9/nl5z/LIm45C7C+co3m276ZT/3Cz7POO9aVYx22LI3w8bufpMlCa4WJr9n1PZHE3FdgPDvJWC2MHk2ZqXfkYSANAysyqzQwcxXVoLR1izW+MJ9cGQFLImCFsOnZq1taMWiMmKph1yt7ybM3XwCw6tf0MdBpohFPLY5KHKY1TB6ZkZcbWiuQM03lWUxnqK/Zhg5tazaVsAo9OkSa2jNxE/Yry65ecN7OgJ4nDhb4DcSb72KYtwz51+jiGS//2gv09xPN/AY5RbptT+0nZE3jImRQ4zicL7AyAo1TgjwyO2IA50YhVJLjYs44U8Y6dGwv1ZTHjZ0Ahl2IgCnsmRQfCNc8wqahdEwMw4COiV/FpbWki+S6UMaDNEMcuTaFaVM4Ir6qKAMaoOP/oCQ/rtddubdNEW9Wynon5LKJl5HjXxZJjPHjdTjalPjmb/9Gvuc/+1/y5Lu+lfv3PDFvEFPT+oG7nz3F//Tf5offf856nVlvzrnxdQ137jzPnRdadsNH2OUpm9WWqnIM64imUMZ5DBhK4E7W0aWWTGmgFCrfoCliFUIuAgwZR1nG34EihXWUM9jSCVBc+/G/AcSUkR7NNE5oLUgcyuhZgtpVxe2VMvojOVJX1Tgxk1At6XY2ZpxJpG2C3rLd9CCws4ZqMcHPHLPFhKZdULULTFshrmFaOfYWSr5+CNkz9IlV2HFntaPdrbm5WvOOw0DKa+5tM3eHgW3KbKLjPGWyr9j2PVYdddMQNBL0nE3acmdzjxddi6tqDictc1GmpuPaxHIwz8wnjul8QtVU+KTYC3GqEcGjIeHqmv7wCXYvnXB2eo/T4/vcu3uH0+UxDz16E1c9hDML+pjYna9446XXuXv7LjF/UbAvl/UFlFphubnCsy//Yd7zxH/HYnLvLaGf2uZTPHXz26irVxCqS/30JdZPEhOx69GUSDle6qdL/fQfrJ+8cXhzzBOTv/3g0PpSP13qp0v99OWtV1991f//+vh6vba3b992X4yDv8lkot/3fd93+0d+5EceqapKv/3bv319+/Zt9/GPf7z9vu/7vuMbN24Mf/7P//mHPvzhD7/+7LPPNn/1r/7V6//u13DO6Z/4E3/isR/7sR971XuvP/ADP/DYe9/73s3lmO+Xr970wV/OJeFKk+JcRUihOMQYckwYioBJSclZx3RNMFUFzpIkjayTIqZSiHjnyDlhRckpY2wBmcYYsdaQUgFJIxBzxhqPGlADWIi7Hc55kmZOTgd2yRFyJpsBtPABhpDou57KO2QUzSpCVOh3A31MTOqaeVNTO49ShFpxqyhubIaYElVdlWvRQNZMTlrGJCQjatBUHOQoyv5ixuHbHuPKjQVnt8/YrjtWy3NCb1hvI2nXsdsONK7GVg62azQn3Pja5WErWF/GNWztab0nhwytw9iR70LpEgCLuEzTzLDO0DSWSd3iqgrrBIkJtGLRCgFBUsQ4P4rxsl6ogjOFR6E5F+iHFaxzpJjG57wr40aiYAWDIlkQk0vnZI5YZ0ghkYeIpIx2EQ0RUqLrOrJmvAFSIvZ9eW1JREoy03xa07QNIKClsV1EMNY9eN+EpPQpMm8b9qoG6yz3uy09mZ1kKuvIBubWg/PEfocPmeuTGVfw2O2Gx1LmUxPP684ySYF9NaxSz0QrfMrs1TUmB1JWllnZpsi16YTz5gxXNwSB8xiJMfD41QVhBzIon/z5v8/zb2w5ODria37P9/Cz/91PkDVx9/X7uP0ZexOhv79E1glnHI0K25jZDoH7w46JepLtyUMRUc4YGizRWHKKVFgOmwkxZ7ZpYOYrLCVp2+VUxluTUDUtfcocrzY4Y3lovmAhNXtZiGFHSNCYGtc0OFcjTjhoK4YhsurLKNKVxQGahfP1isWkpV1c5f7xG9xdnnO0t8+msZyGLadpYFhtaZ2HvoyDtbGirRNehWQytJ77aug7aI6usP6Vj3Jrtebhb34v+/PHefiJp3nuVz/K5jMf5x1vn5PigAhM25YQEiEokiumzR5Dv6Hv1iUZTqHXjBHBUe4fAFFGXky5pzXrgw1oGXuDpBCNFEiwlGS5C2FVEubG7kG5GMsoIwLel1Q0EqCZyvvRxR0T6lLCjY5sVVXUVVXe5+N9ZinBjjkb+iGhzpCNELKO4+8KJIwtqXdGhJQvPl9JGbyxxJT5vf/r3893fed3s9lEFmbD2crw6v01Ke8xf+l53mc+x2vao75lZh1HbcO7vvY9/MJnbvPZWz9P++jj3H39FrvYo7F04BhniDFSNxNyFlTsOKoSMeZC2BucsRgRzJilbMRgbFkjNJc1NOfx+mMqiXSfN/ZjrSUjMK5jzkClZnTkSxdRZQBryyiRKpXzZWlSysafIobJilhbnknI6J4XAHY4X5O2nuEkYGVFOznBTx3VdEY9a4hTTzNZYCqH+poDmWGPEiJK6BLrNFCnwLVu4MZ2CcsO1w8MKbBOynkfOLeJmAaCejbRsekcg7GEKuJsx267I2alco628lTHhrZSZk1kNivC9oqFI3oO2h22VnLtsFg2xvPS85/j2ddeoN9s2PUrurjl5NiwfzDl1vN3Ob1/zNnZMbY2LI4W7B3s/yblwGV9sSpn6MMVPvHyH+SZh/8xMd17i+inYyb1Gu8u9dOXQz+hGdVyWLCKT/L82V/ja5/+EZr2lEv9dKmfviD9FBMpHXIrfBcPt/8Qp/cu9dOlfrrUT1/m+t7v/d6zqqpe+HfHaefzef76r//6L1r33F/+y3/5Deec/uiP/uhDf/JP/kl/9erV8KEPfeheXdf6Ez/xEy98//d//+Mf+MAHvvrd73735od/+Idv/dE/+kef+vzPb5om/9AP/dDtD33oQ0/evXu3ev/737/6iZ/4iZe/WNd7Wf/+etMHfylnnClJaRotpIj1mWS1OJtBcLaCnBiGjh7ACd4pSCRnLaI1a1m4fRGzaCZjkZCprSVmxZrCQlADMQMawDrECgmDFYsoJISqUkLqWPUO5wyaAt5YJBs0JDQFRBpEAzFS2ChW0ZSpXVNEyW5gu+tp64r5fIpJijPFORcxSG3Iw0DuFXElVS3FjGpEJZJUC2gUwdSKxaBGmVRznnr0vUzfMyFJz2Zzwt07r3HntXvcf2NJdz6QUkcMoDkwmbTF3a8cMSVc5fCmonEOzQnrDbHJCI5KHSkG6rbGWYtTx9PveCebsxNW54HGtxg/dj8NuaQ/GSFjsSJELT+b8n2UB0jMEec9aewMcGMaWJ87Yk74kEvwRoyINaRYRoqSKi4ktI/E0KMSiX0HORNjxuTifCnFbcIUKG1KAS7GMsWQSRi1zCfT8hBKAjHjrGGIAS+G1ghKxvvC0IlZCc6yy7C1jpyVdRyojeUIYdJHnE8kI8zE0KoizRTLwLXQ8yuSOB4c75y2VIOSpoZJl3nUepI0ODFMJy27yvHPV2/wZIA82Sd2gRtDQhEGAmw7lr3l9NaSrW3Z9vfxuymf++RttlRIXHLn7ssYSXTrgfPTcybzeeEQ5YQkJY7R8tkrQ4ROFKfQWEfU8hCf1Q2kiBihyZk9Y6nrhi4nViGScZhB8JXBYckq3Nw7JHUdh1VLvYtst1um7YRZ29Ir0NTsNBG2A85YDqsKFzqyyczFsgmBh/aPSvfAduDa4hr3s+G4XyNeeO1sw41rR1zNysxUyKQ42sMQSLuB7Dw7Ern27HzFoplirbK3zGys5WM/+w85uvkkZgndvfts1ydsVjVxUBbzGb6pWC7PyoFw03B2dozkAW+UTjLe2bJRlcwQU0mYA7IVgkSsJlpbY+I4TlePnRdZ6E3ZkDmTGWJApYjVGOP4vpQHrBqwDwTtxcjKhaOdNI0it9xnqhkonR9kg60KeDnFLZ98Y8cjhzMOWiUmpYsDBsuQIokyPhQ0l/EQKUBqJMHoiFtXYcbXyhauXrmCtbC3qNjbq0g5856QccuIvPgsp+fn9F3AXK3pJcJSmC12PHX9kE+80HHv1VM+9+wv8d6v/zpeuHPOXmXZ9h3GGvohginC0HiPwZJywBozdgNYQirjN0bAWF86w+34AQocvIykMLJqlGzK58QYsL4qneRxKNyrDM5WY0hBT9JUfq7RIlbKzwEhkkGgciU8IaeMHTcQhfxS0k6R0qWkQyobUZPZrjf43hDPz0hVg61qYnuKmU6wswV+OiPXgqs8s715GXFKFrvvSZJRTXTbJWa7ZrrdMesGnt4MyGpDHzZUXmiM49xljrsZH2sX9GaKn07YxY7YdbSpZhMS5zEyLM/QIeOiMs2GQ5e5erTg6tvezkNX5pw9d4uXPvUZjlf3sJUhEHGmYXlnxy8+/28IaaCetOwdHbE4apgu5szm/19TF5f1Zar0ed0DmgxEeUvopxAf4e72v2Bd/SWm7Z1L/fQl1k/eOERK2F7MLevhAzTVIS6fXOqnS/30Bemntq7Y6qP86vK/Zl59FG/euNRPl/rpUj99mWuxWOQ/9sf+2OmX+nWttXz4wx++/eEPf/j2v/tn3/Ed37H57Gc/+8nP/9gf+SN/5Ff/3b/3oQ996OxDH/rQ2RfxMi/rN1FvftQ3F2aWUlwbMY6U+rIglXWCmBJJhaQGJJfFVYuL7V1dHCNnSieOlTI6MQSsM2UcJI9JdRQ3tCx0WuCoxpJSpq4LhNYIGAKV80yaBqMRwZD7nkoy1ipRE85mjCiiCcYWa6FE0vdxKG39xoJRtt1AVmU6acEZrC2daGko7IpEWWhPl2ecrM6ZHi+IKbHbrBGFnCJhiByf3mdWtRzfus2/uv9PmO01PHLlJtduPsxXPfZbeN/XtiQ70IUNm7Md/XnH+nxF7Aa2qzVD1xXuQRgoACDBmAnJJIwEbBLEGmyqqcXgXMX1Rx/jySef5MXPfZbd2RpjHcMuFBbCGF9vrBBCIuWEcQVdapyUTgAFb0owQmUMmUgfeyrxGFEsCSSTohKSsN0VWHKIA+vViiYnrrdTQuhAEk7BjMK/EIAyUTNBE1kVj0XFELUIhJBSSVQC0IStfGF4KCAOa8v4zkE7KawcX4TAcggMSdmFAak8lXVMK4fPSkwgkxqjhgPxzHJmmg2r0x1TX3PNTXmMNS+5nhxgMpmzGTaEXU9sJ3RR0TDgnKFOAauWM2doMJjjDdetMPWZzxrD0lm2Tji+fUKYWjyW0zde5SPnP4W3kdpb3rjzBkZLkIlZ7DHEzPpsjYZMJiG2bBB3Y3COASRrSXwDdIhoZVm0MwAsQmUstfd0ITBtQeqqpIEZWG3WiDH4nGm9QxwkD/V8At7Te4G6RrMhxciinbKHodussd6Cc5ycneJMxaDK4d4BYhOdhWtHV7l7ZvjcaskpmcdDZj8lQr8hpUhTNzjjGERJlDGcnUaqlGG9ZWjLBmnXw7SZsTp+jVc/t+Xxr3qGG/5hdsv7DFHZdCvq1BCycr5aIdlSVw7rGzarFfe6nrbyOJTWWmqkdJEA/ZhcKCL0OVE7j8OQ1Yx5iIYhCduYyNZR+j4UNebfEqfOWXLW3+DTjEL2YnTLOUfOucCytXTsqFLe81mo2gm+8iCRvq/47CfPufFNprjlKdD1O5QBkYTgyanHuZph7FjQXMDFohlnLaqZYRio64qqapjP9xAp6xoYjEDdWPL9M8z9W/SbLea3fj17T30dt3/uF9DtfdL5hof2r7OfX+Mf/fy/xgwnTL2HmDCziAkGssU5Q8hlgRdGJ1kV1YSYMXXNFo5XSvHzRn2KaPWuGruYwujkx/KzKN47znuMLcmjVkoKp0FLQIGU9RpVzPh9kcvzoWQXlKCpYehpqxoQuhSpECQlrIKM64RocddVSyKmdSWMIHpQyXgJpD7A9pz69AypJ5i2Jk1a5OAKrpmSfY2pGhrrUJNI8zlqbHkupMguGZZpQ7/asru1IqzOmWxXXPNCo4nT3RoRmNcTZOpJVVM6nWoPqxVGEr6yDBJ5JcELZ4r8q09hK8dmteN+7LAOYuwR50gpMwyRIQ7sHU04unqdqzdvUs9b8G4cj7qsr4TSzAMEQcpvHf0k1Gh+F2oml/rpy6CfgpZDQMmCsXZ8s5VDzkv9dKmfvhD9FJIS0nhYNwazXOqnS/10qZ8u67LeGvWmD/4MY/x1znjfEmPAYMkxklMhEvRDQK3B+IY8bNBchilKWbLqg3QxEUsMGWsc1hSnURGsMaiU19F8MaoioILFoVGxtSvpZlocaOcqKl8Wsmnr0aHDW0O2hqgJYYM1ljwCPIm5dJhbQ4oDqMFZV1rFU+ZsucJZw2Ta0tae2nhyVoJGLEK3Oue1T36Gs1feACnUCXMhlgWGFPBWqGYNJKVfbfn06ad46aXXmE73qScti6MD9q9eYbp3hcX1hoceqbC+YiQ2g8n03Rnb9ZL+bEu/7Bh2O/qwxajB2YZsKxZXrrDYW+CM4TOffpY3nnu+cF9yxipkEbIWeG7MWtxta0GUTMYYS8hp3JiU37EBjGScdZAtcbsm9xs0l5GAV4/POO8CKqWNPoWeq01LygGjhclBVpIyOnpK0gLWNc4SYkJNgdzm8eBPoTjgpjh3laaSDqgJMQ7RMn7SVg3rXc+2C2QrOOtIaqgnU1IIWIQ4ZPYODlmvOoxkrgHXtplJZWgqzyYEurhjYS1f10yZ64o3UuBO3HGtnrKLhvspQ9dzcHRAVXkWWXhSM7fWSyZSXLh+UiG6JRl4LkV8NWPy2MOc3nuZ7ZDBGGY2Yk1FP7pnKYYCQh43Kdvdhk56xFiGmEiaaXyFxzCramqBmThEi4tJSkgC19SIGKyvEOupK0VjGMcoDLWt8IuaddcRhp6MJfexgG+9JxtDktIpEkiYuqIxFW4bCMNAb5ShjwXgbDLr7YZdt8X5iqABIxV7V28yWXpOTk9wXnAx0W3XmKoipsDQ7QhDZLbYpyNTVxUP7x+S+ki3HFjlgVBVGLMgbe7TmAXaLzh+5S6T65Ys44YnBlKKTCZzJCr9bkc7ndKL4TxkVrnHe4ONgT3rWZcmUhRDygX8myWjYpAsJRVsNDGyCogtQ19JH6xxDxgq49iKasT7mhDKWNeFgFXVB+MsF6LVOUfTlFRqY2A6n+FdhQK+yjx0M4IOQEUYEn1XOF8hJHIszmuOCaNCjlpad9Q+2NRrTnjvcc5jXc1icfB5K3WBPYsa0mYNyxVUNe3Bw0wm13HZgjpyGtAYuf3Sy5ydPE9b7fPz/+Snmc7mJK7ibCLnApd2ZmTriJJSHLEPDjHFSTYCqpmq8oSYCvNKhBgVEYcxCqKIlJEVKPxFEVPG2lIun6NFTOasOAs5R5yUBDYkj2a2IMaSYsR7Sw5phJIXZ9/iyKo4VxLfyBlnLNbYcfNu0ZFt5JygOZFCj+SI8XYMIggMYYXkFW4j7M7vg69x0xl2viBM5lSzfbKtcH5CJSU12jewkANkmsnXApuhp9t2nO0CR0NPNXSc9gPb5Ybz5RnztiRUOrcPTUsYAqfLNZVzNFZpDTBrGGIsG/y0JY3PRBUejBPtXZ1z9eYR+wdXmB/MqaZ72JG/c1lfGWUoiZgAxtnCwnsL6KccP8mk+fZxE3+pn77U+qkkU45r6nhYc6GbLvXTpX76QvTTVAzZlK1hCaS51E+X+ulSP13WZb1V6s0f/JmSlikWsgTEQAhlMZFRHIktqVCxT6QBrFRY4wmhw5qEADEW4KoTg1IAq4UVkYg5gLFYa4vLKhZldIm0uM6qnhQTxhlMVmRsH6+9oZpNyKmwPRIGcUJUC1qUtTWCAw729jjbbjjv+rKgaUmgUlWGGMvroXTnKxpfcTCfMp14Jr7CYKlsTdN6XFV0qx2dgawZL5FutUVyKoBXNVhfU1ezkqJUJ7r1fTan97j9/POI92RxeFvhq5qmbvDeMT86ZHblKtO9J7j+zAJXGbIF8RVZS8v6erUmrlbcf+lFbj33WZbrUyQpGKitw1ghCoX3E1OJMM8lDQoBtDhCGgI5J1IMaIz0KSJDYj6f8cR7n+HWpz/L6RunhKqMEvV9R8gUdo6CcQ41kDTibfl4jKXVXmPGWsg5YWx5CFmUPqQi0KRsbJwYjHFkDCFkpMpUVsr4rxiMQlO1BcCqmU4zkoXFrGWWhH3ncVXLyXbLNkW2fUSdpU+Z4Arvo7IOtx1wbUNjDBGIIWBscW5fiOD6xKbfMUiklcB0W3OcKo5XG6rNFu9GHsp6ybq9TjKepSZ2zvH2b/mt3H7jNQyGSTXBNBWPvO9t7O5s2Ny5h2FLlAghEXYDvq45uHGNel1zfHxKEh1de6W2MCFRZ8FLpnaO2rfUOExVE5xFrWUXE8l4ptM94tDTb9dlI6AFjtw2LWKKCz04g/GebhjwrsI5x2azY7fbMtnbo9NIWK3ZpZ5YWaSyxE1H7QuLaLU6Kwf/lcfND+lDpmpm3DxyDH2HW8yprCcMgW3fM4TIYj7l6s1r7O6fUGdh2g0EbyFmtg6m1kIW1kPHyfkJ3/kt38Cnnv0I5ycvI2Rq70tCZRLIifV2w8H+PiFGQkwMCqTMLiesGLoceGMYADgJiVVtUBHmGHJKDIAXg8sGnCWjRFXy6GQWdzU9gFCLlNGsnDMhhMJUGYHt1roH64ZzDmOK8PHeo1ruAc0JTVoA32qxNvPed17D24wQy30ZIuLKxh4CKokQytiQKCC2bPz4DbSHd46YhcbXLGbzURAWp1ykMJ3C6oy8XULl4bnXOH/xHn64BxIQX/Psi3f5tVfvUvsK3xoaKzgHKYO1FTkPaHaY0rxAGEpiqLUF+SCiD77/AuguBxGq5T43Y7dKygPWFdaUauH3XIC2L6De5LKx06QwjgpVlXnwsza2APSNGLIo3hYxas2DiRgQIRuDSYo3FjRgvEHtCBSwUjqmrCLlghBXGDtl3EnJSUimbLgNmSxK0g6JPWm9pR/OkWVDlPGAZnEVmR1i2xlqD6CCwUSqXDO1Fa3z3LgyIVcNQ8h0w44QIq++cZ/Xj++y7dasbr+OW1zFNPvY/RazvIv0G46zo9k1eOPYr2pecZYcPTkVdpFKop46HnrsGjceezttO2M2nyK2IRu9FK5fQWUMD4D0WeKlfrrUT/+R9FO5jotEUIAYS8fWpX661E9fiH6yXcTRAbBF6MRc6qdL/XSpny7rN10/+IM/ePyDP/iDx1/u67isf7ve9MGfFPWBsYacIzFmnPUkSSURyDliPxBCArS0yWYhpkRdOYw1xTXOA9ZaQog4W5xgY0a71As6rkKqgmYpzrjT8rrRjG6GBcnEPmKkwiBUzqMSYHSLcxywapjXBnJXiAY5kNUybRuG0JGlwhhP1/VkTeRRhAMMIeCcJ2a4e3rOzWqPq4s5/W7AOoepBN9Y4jDQrXel3X9IxSE3hombwIXbJYIY6ENHSD1GKrJxBYSdO0Rhs43FgU+ZjJI+kzC2wVczjDFMGk/bzMjZIb6MnXTrNd16TdQB8cURClYx4/fRh4A4i8Y0isMyTjT0HYjismG32RBCQHPAjjBYAdQpMkScO+Jrf9/v5VP/7Gd59eOfQigt6X1I1KPDnrWMlMScihMeQnmAUVrUM+V6VRUrBsXQp0xPIOdxM5SFlMYZJLFY57FuBNRKRnMmDIGogDfYDJUY2pRZBOUoC7VxbENiI5kQIjdmCxpXM/GexcTThy3iJ5wf3+WpG4+hEV7ziXq6YDEMHJvEC7rlsWnD2xXubs55+fSUJx9+iHx1H8/AQ03LrVt38B5OU6LxNXNb864rV5j2Gx57xyG3/UB/OtDOD7B5wvTKhN12iWaDDA3GlrGYajJhfz7jsx/9GH2KZFVaM6btqTATxxxPZS1myEytRxYz7qSe890KSRkvjrbKHK/WbEd20JW9fSo3IfYDxsP+bMJ5Ek7Clqv1BE09TgQdCqRZKstutWIymzFdTJDzWO6tukKz0uQE0watLDkOHEwX3DeGe8OOatLwtvk+p899hlvdwMH166TtDtqGSeVJKK+en1O7ln3vGTY7XO0woedKW+EGRaKla6e8fnyHzz33Chr2QJSUI03bcnxySts2LJcrZos5icz5aknfd2VzKBSxo4nkHOvRQb6dBj63OmfuHPtNxZGv2RfHQB4dVOhSAk3EIROtoGIeQKl/w40umwDVC6GWHvydIljN6F7nByMt1nisFiaX94UXpJowokyqCiOZHGMZlxh22EpRDWU8i3IfqWYEQ0gJcY4chrLRBlJUnDc0dcWkaR509RTxmlHJpHuR+yee1Z5HdscoBqOK5C3GzPi1z7zM7dgTpedo74DJ9BqbTU8KBjEZX1tEHFnL9+ycAKYI06yICsZAyoqR0jWdUiq8q5jJmghxhOdregD/BoEM1pUDijgeFgjgRDGaSxoCozNri8h13lGNvC4ZBa41Bk1lk2yMGa9RSMYg1o5gby2MLV+VNNPKUlUOTZHKWMQI2Vqss0gGowYfwTlDtuW6xVgYGWsubhHfkoYNen9FvP0ZnK8ZZnuYZh8/PSDNFrhqincHRAVJERsjTjOmtXztVz3N+/MzbHYDr5/cIQwblt2OZOfM50d8/XmizwP3woZXho7zboodlJQzmYizjr39Ix594jGeettTZD/BmrKZKGl/yldYKN3/qKtA0y+6NcqI51tBP6X8Wzg5+xdM2m9E5KOX+ulLrJ8sMl5bCS8obzZzqZ8u9dMXrJ+SKGaMyHh1u2ab1pf66VI/Xeqny7qst0i96YO/EMsNkaOODo6QtKwvKWaGOBShZARXezTvCH1AKfyElJQcUwFI65heZAyY4lYiBVasI/+mIAyUyvsCFlVBrCVkxauUBUQt3teYLDR2imkjZzESukzfB1Lo8G3DxLfkFKh8jcZM1/dIzuzVDa6qOU2JLsayno6HBm5cIKMW7s694w1hN9BOG6J0dOvMetujkQLKjuUBatSSBBKFjePUoBpJsUezYq0HdmVhAURMYf7k0l4tVpAMdVOXB5RsUVE2XeZ8+QZGDNbZsoZSxm0ANCWiGNAS9tbnQIwDsR/IMZRW86yEYUAocFUzsmNq58k5Yo0tCXAWsgp5CHz25/8Nv+2J/w2PfeDb6I6PuXvnFHUCIZNSoHIVxjpiH4gWrBOM9RRubEYdJc0OHdmQghWDcY4hRtII9x1yLsLOKCoZ5x1QHsYppNK5YAuzhajMm5rWOKqQWVQte8bRqrAyjm1WrBEiEe0HQKh7pUEwHpZS8ev31vRtjWjmWmU5xHMqkX6TybOa1ipxY9gzhoOsnFQQpzWNbWiaBlYB020JyWAbx+Sxa6zv32U4y9RmgdlXjh5+iP2rD7E+u8d8cYBRQ+0DMWZW244QErdffQVXe9rplPVyheaMd57G1OxPDthzNTiLURDrOK8Nr92+x5XZnFklzIzDJEUrR2wblkPH8vQUN1UmbUOfenZxi9SWebtHTJHoIe82THY9AkwXNdp3TNuGylt0tWTPNtjKk0Ki7zsGK1S1pxsifqK04ti3nsV8j0Xd0M0WSN/Btidudqh3bLJStS22sjjrCVbwqaKuPJrKsJvr1+jQ0e06oiR+4Z/8PW5c2ePw0QNCzNAnmnpaulIaRz2Zszo/xVcVLhYeitji6GrOSAwjqwVCzqxE2MbI/W3itgsciOfIWa60Da317DTQmQKXN1oS2WKOD6DTxtjxcLrws6yVsqlWHd/TaRxRySMGoSqubA6QE4JgveE34NKW0odRkt5SzuSU8LXDO08M5d5MqYysKAkxlPVDM5pldFOVHHpmk4a68qCM13kxFiKEzYYh9mx6g9EaDVs0DFRZqDrl2ddus+4HFgdT/uSf+vM8/8KSn/qpn6KphEE35GQQcnGElZHNo2guP4MsFmMFa4o7HVNZA3MOVLUlxpHVcwHSzhlrHYIhpUgMETOuB95aJEVSDCCKN37k0xRNbjFIhjAMOFscZRHIsQhlMaYwylLEmhp1ZTwJCRgSpmpKkqcta0zSXESvgmAwOoYZUNYrlSK+nRgkKTp2DIjAkBNVyAW0bTymcmSJ2NV9WB4zWIuIRasFZrYP80OCUaSZ46sZAehT+TnZ1vDQ9asgV8iio6M94/n5At9vkF3H05K5e7pjfnSF9ekpGM/h1UMefvRRZosF223G1D2+qsomQQYkFwbZZX1lVIg68tqKVsjjKOd/6vopasMJo193qZ++5PrJe1++z1A4iuVvXuqnS/30H6CfLtYUYDt2j13qp0v9dKmfLuuy3hr15sM9FFRtudFNkTwxRWIII5Q64xpH3U7o+p7tqiekgT4Haq2xKY9a1BRjRcpiIGqKSy0jzUbjmFxUXA1NkFxGTWlzrpwHMb/hpOQIQ6AJLcEP9Nst27WU9LlcYaQpLc7qYXwYpFREdyWmQEyNobYeKint7yGM328ZzzFi2Ox6jAjVzIPxdLtAcoIoSC7jIBcd0zqmJaWsYFOBNGdTkthy+TNjpDB+cmLSNIR+YMRmU1Ul6j6P4pdUkuOqqiKmwnQJIaEoMQ50fYeiBAy5D6Blgc+U1D9SLpHxYkhDoLIWbw2qY1KzQkqZgJC8J8eIF8PW9KxPnucf/d//H3z3/+FP8cZTv8TQTMl3T2mdQ51nSBmbDE+/+6uYmx33Xn8dkyGRsAhZayAQVSErtZEHYy47heWY/oUpPB1yQlVwpiRVGeNAC+hcRRhSxBmHC5mmMqP7JyRJZGupraGJiS7uCNGyyoG9lGnme2SX0ZCom4r7IWNN4hHjqbcRlcxXt47n/IY7u8CJa2lsw2JuaWqociIHxVphvr/H3Yln72TJMhrC0Yztrecxds7OZM7Oz7DzGdPpnDjdsVv37DYdu9WWJAV2Td9jVZlWDhY1s51js6vYhUTjPbPpgm5I1AZ2CsfdgPPCyW7JFnjCeW4YA5sdEoV6UpOAiW3YTBTfOvrNmiAZ5lOWXY9RpUZoZzXttMV1Ge9qnIHq2ozT3ZpGG/Znc1htMYMieKRtiMYgqjRqGLYD04MJw26HnFhOpj07URaVg2HHlaYmHs7ZiBCiFvZKTkVYZeXk7JwYe2wPMe+Y1J4wOMKQOdmuuZIdjT3CGWFvb04IwvnpKQeHh+SU6HY7Dg72uHdyjLEONbZs/LxFM+g46guGlAsEPQFnIbEicD9a3tDEwjd0msiRwjTRMuaVAw+g0xd3tDGKMWWMSC423aOQAcX78Z7N5V7VcU3IOTObLMo4lypZCjrFaOGtFDc4U4mntoYU0oOukCwlRdIYSxJbUiVT6fSRsRumntYoBjLlvnOACpIF7ToGsyXaaUnGU1+g0bamD47VsC1MKXvAZz4VefH1HSHUJNdhKEmI1oJmGTfc+mCjEHMuXQIpY8cxRufKqJkZmT5GEulCS4uUDhQVcipsLDFF8DtrISVMVmrn8Dlw8etwYvHWYrJipQDFzbh+iso4qugoIK4y0mKdoEQExTmPoOVj49geuYy/WWvAmjH9j/I1ALGUj2Mx1oFR0rjRF2zZTKsBVZxkJGR8VRF9BHXYLKARHU5Jp0vy8WvgPOqnaDVHminSTjB2CvWEejIjIpicmU1qUujR+T69GlISdkNErp/x9U/vyANs+o6Yle124OTeKSJLEhnXWibzhoODK8wnbUnku6yviLrQTwAiFWL8W0I/xZQA8Mbh6+pSP32J9dM6BCa1Lx2BcvHzu9RPl/rpC9dPKQTMiBZNaojZXuqnS/10qZ8u67LeIvXmGX9SnIa+7xmGgKtKElPMCest3jdklCFENrueXT8waRrUGEJSlERT++JeqKIpk7lICapwI8TY2cJfMUYKDJXicsYwOlGl2RiywfuKQQc6B3HvKrPHKvwnnkckgCrGeTJCjIG6mo5t3sVZQgqPQlNJS7LG4I3QVJatKruQ8FVFSqVt3HtXWsbVkmNJUCrMnUg1plOFlKjrhhx1ZLbkEbydizC3pnwPWh5uOYcHyVYpZ7xzIEW8xhTJAt3QIRRx3PcDMWWiBsjKbrejqiqG0bnLWtgURaSW5L+UM84XZklWMLUHIOZM1VZcvXaVnDOr5Tm7zY5h2+GdQ6riSiXX8tobn+T4I5/iA9/9x3jt088y+Dn/+p//K8RmHrp5nW/5n3431x9/gpPnfpXbr93BZouGAXWKxgFvDXWzQK2w3ZwTkiOjWO8ewH4HVWJhvBb3K2SQSEqQU0I1crzeEBUOpzU2g0kZJDEYoVPL6uyM4AtbwtYN2yxUWKxtOIuZ0PXMfU1dDwxieVQ8b59OeD32vLHe8RCOr6r3eC6v2AXLTedZ+wgdZJcwjWe1XCJi2MbENTX0ZiBVBrWJnDfUznN4aFiGc9548UWW95cMcUO/OSNstzSLPbCGqnLEkHHTCVOZcNhMyfoS905POO878qFj3tQghj4pp/3Anqt4YnEN2/bspURjDMuuo6lb2pzpTs5opjNs6zGqDBJRZ9hstiz7HrGwX1foWcfBfI+YlTiUTterzYw2A0nYtBUtnnYIZRTEO5qcywiKUXxWrMKirtklJe4GagyGROp7FvsT0vGaJsLGO4K3eBXS0LEaBs66LYnMYtoynR9yb1hy7/yczik3o+XRw31yJ8QgvHF8jBVPRjlZnhG7gdo11OKYVw1X51POtiuCsaNISmW0ISYgI7awZQxj0pwxnKuy7jpOh4B4RzWZMISAse7B6JQZN8oxxdFptQ/S6Aq/RsYxu5K8ePF3YHSUx66SPgWatkU1YzNECnMQIGpPN2S2ncHvOwZKCpyRRN00bC6uIQ5l0z++nuaEsZYQAtN2jrOlo0Ot8Pf/8W3W50t+z3e/g2GrDK6MnVkdyuigQGyEPqbSZWsN+488yS9+9Jc5vncH57aoJsBgsWhQxFyEBWRQU7qSRrbXhaCNMTyAemMsMSWMYRxfGe9rSneOjptY5aJTKeFyLEB8U9I9Da7Aq215L8fUkW0u3S5SxuCEjFg7jmYkjAVfgRJBBOdcSbqTAsJPuayP3tagkQt3/wLSb6wvTCBrUGNQHEkFZw0GASOIjK+cFTFlffXeMsQeMWUkUYygmh78nrMzGM2Ybo3tt+hqNDm8J9ua3k8wswNCM0OrKepbsrryXiYSnVLP5zxRXyVmLZ0ctoz8dX1gGALb7Yb7p3dZnS353Ov38dZwsD//D5QHl/Ufq4w4Fu1tvvmr/o/Y/AIxpreEfoqjcWeNoTHmUj99ifXTLgQkRNyon6Css5f66VI/fcH6ydkHUxNitIzXX+qnS/10qZ8u67LeEvWmD/76XV8W6AsuQC7ub7Fsy6jGtuvAOIaux0s5319vNvjpHGwJbbBGS+uzKYtYiYUv8GkDpFgWuLICZMQJiqCaMRTRKwoi5UFVV7aAm90etm4YQoElxxTRrOx2PV0fqD3UVcXQDxjnkBQZQhyFXsEPWM1463F1g7OBLpZW6pSLO2xNVRwWY4tz5DwqY9u6gPNlETemjKp4b5EH1JeMq4rjFUIuYy1WyZpIMdH1Pf0wEMf/zrk41sNFCpYWF78YQON1u+IqiSnuSWWLY5RyGjkvtjysNRX4M6aM4MRMyBntIZmag5sHTG4c0tQVuc8MyzM2J2u65QpT1RxWhl//uZ/hvb/3O6jUcOXpA379I7/Mk297P49+1dfykX/9cR5+5Zzlay/C4LFz5fDwJntHD/HQ42/nyhNPs3/lafyVln/xf/tv+PV/+nPlIewMMo4UZHElLEzKmU1MqTA+KE79kGCQ4vL1YeDKdMG+9bhcHrEDDjuZE7sVTdMQxNAZxWOJ1rGqLDZZghja9ojH+oGnDcShYz8K76wreqN8Lu9w4njZDdy0EzQI52JpIoRth8wWrFNHNQhmMWWdM4MXuu3AIAlvAgftPo+8/XFefPENuuEW7bRs2MTUaG0JYYCcC9snQO0rmr093vXOp/jUc5k7t0447Xc8upgx8y1tFlJdY63hyBpaqXFdKO9bX6EibMhQO6IGuuWA1pG2ckhM1HWN6xNt05SOieyIpkGnwur8nEXdsIuRbC0xJo67HVfbKV81ucrm/JQhBeqpY8iBylZ4X7PreybtlO2k4tZ2xY26pjvb4YwjkhjWK5rZgpQS/XLFylhaa5jMJ+Ta06uy0cT69A73Qseje3Pee/0Gk+qIvXCN11+/hRvGFEsKtyXsOmrrmTUOnweeuLbHw1cmnKxPOV2fc3y24WwjSAcQUDW/wUKxZfxNcyojDiKsc0L6SNVUeG8pXrKMIOqhiA/KeIWRIlKMMXjviTGOkGYpjBZjSSk+SLJTKaJQjSCVJ2pxMbMrnK0KwWEL13LM+IyaIFnIhjREGMVRHi1wY0Ao3C8xlphgcTAvvK4kqDj+zS89j5hz+vAUx/d3BCtk73C2ZejXmAhusGy7yFkKtG2D1zl9tyHnDjs6szmnsqZUFSknUoqYcfOdci7erbuAR/OA7VXWH0VG0LxebCHGn5O1F11PjNyqjBUglr8ppozpeYQ8BhlYb3BVhZGykjpXoOHOlI4h48rvRYk4b0FKp4sqGFs9uA5fFTGcjcFJVRzzsaMoSUkotCPrJpd5J0SEqLmMVELhQhlfROrYeRVGB96KBy2dQHk8gBYx+FxeQ8WSiBSiv2DyyBOKHXl5rxyUVA29b2B+hNt7mEiFQxErKEWEqx3fw2SmraNtHIt5zaOPXicmYbPdslyuuX98+zcpBy7ri1VFP93jkcN/XNaHLG8J/VTWL7DmUj99ufRTFzOtq/D+07zzxtfQVg0xTS/106V++oL0UxcUzffw/r9C9DbmUj9d6qdL/XRZl/WWqTd98GdHx6csmLEIOT8myqWEqDCrK2JWsjfUfo4CoR/YyJZJXYNVnDOkDFVVUuKMFaJGNBWAcSWOnOU3Fj6ljK2MDBnVPDpK5XoCA9FkTo9PsXeniDiSRIytyKLkFMh5dJekRBglwFjLkAacdTS2jGeEXBxQg2FW11hj6EPEiCVRHiJRE1EzlXUlHWgE0yKCcYYUIxjFaBHgOWZSVIY0kHc7ck6EGEgpwsjjGYZQeA1SmAmlo78sxklzSZHTiLMl0t5QoM3l56N4VzrnLh4edkw2y1ri383ompckJoutHbaqiGp47OlnmDYNr7z0EgeHj7L/9A2qpqZfrjh+8ZPcff5zdOuB2sL9F9/A1FMWk6/mA9/y9eTVjOWLn2bqAo+/4wbH88ThN76Pdt5ycPMGi/2HmV25RtXuYbuGs/UttstufMgUV8eNLBAd29nLQ9CQU4Hfjt8mCFhnyqYGIAamVUMlUDczdruEr2umTui6DXEYEG+wTU1PYBk7brQ16zCw21a0lcN5Q8wZqTwHKXI/ZpJNSCzvs2wtTeU53XU8NG3pth1BLEOVuBKEiswgme0W1muFazMOHnmSsxdfYP3ca9jacmU+J/UBFU+nHevNhtR1VJOWrJndtmMjPVfsAXXKHMzn3JFzVt2OUPdoNFyfH9A2U877NfH+CZNmis8QrSNUFjNpUbXUTsBB20zZmkS/2lBbh3OGqq5RNZyHgSQGrWu8Ea6yx6GvCF2HsQX0u+dqxBk2JNpZA6ahBnaxp/UtOy3soa3LLLs1m/U5u5TotyvaqsZEj/oL186wmM9Y9jtC6Nl2StcPJBX8dE7b3OCJq8rT0vDw9IiTbGhUeHtzhVvLU07TQK4qvKvw3pVkR2fwUja93jjagyvcPDxiuBFZ7wJHt+/A869iHVx4r2AxUt5n1paujiEmUk7EULpWLrgnbTuhaWqg3Kt9N5Bzxoxu9IU4NaMBYq2Mn29HHlcaXVlH5SfcfmPFJz675MpiypUjpXVKGg2HNCgxKpV1pJxJYikzehnNhdlS0thkvA3KyJaIQYF2sVeS40QQI3z3/+wpVsv7mEnNP3/5daa3eq6YA/brxF6luKzMJxWb00DKQuUrpFbQSBj6stk2FiuF2wOFySLGgpSfl2pZt3NOZe2njKdcxMMZ4xjGcWs3bk4LfHr8HmR0fsfREEWwYjEaEUBzRrFUri6yN4cH4ylljUxYcRhKWiq5HARYJ8SgOHvxSgUgbp2HnEo3kCmJoxmDNaYI43GERsd/UgJxIIXyj+YiqIUSmJAphy+awPkSdiXGosmRcsIYRYwrY+dC+Rp6IYQNTjMkJZHKwiaK2ISQYNMT8oosHppDbOUwmiBDjmUcqPKWlBM5lYAtFSlcNFUEx97ePvPFEdcfvvFmH++X9UUui6GPV3jx3u/msSt/n8YevyX008U97xnB85f66Uuqn7w1DHkc67MRK7ex9rFL/XSpn75g/XR8fs7t8zNOVj/KEEvy96V+utRPl/rpsi7rrVFv+uDPja3RSMS48bBGFMHgjBDCgDUOkcy8rco4iVhC15NiZKdK8p6aBu8dRh2QKcv0mMJEcXhiDPhcP3iQ4igty2LLwlIM4pJ45D1N1bK98yq7gyOyGKKxDEPCihAVUo4MQ0dKgS4MhBiRXADMwOgcUFhgUiLRLRmnoM4RNY+vFx+kH6VUWtM1Z0IsyUW7YaDfrgHIqfBoYshkhCENiCmCGS3uzEXrO4AzDrHl6yqUBKVyUcQc8cYyhJ66rsi5gGKbpn7gbPvaP2gV99aRUqYaU8WMsQ9a6lPK1HVV0rSi55XPvUw9m7CY72GsQzJMFgdMrj/Ew+96N5vNK7zykV/hkYffz+uf/hQ3vuarOX7tlP/J7/9efvm///vsXX2SoxuP0Vy9wWNvfzeT6RSToY8Gk69w+tqa4fRZlm+8zK1nf4V7n/40GFda7kNfRgOgtCpkATseLOv4UJPyT3HQMn2ILKYzUk4MQ18c6V2HUctyuQEbkZhZVA7BMbEVw26gmh3iXc2q2zKnAI+PQ0DCQOWVLioLO+MbyLxRB+x24GwTODhoqUxNN/WcN4a9Zsa6P4GUqG7OcOsNfRzI8xlH+zc4PHqa2598EQkd1/Yept/27FY96/WGnUaIMDnc4+ajj3Dr1VeQ6OjXPWmItM0U1ftEb4jO4Q728V1iEhPzrbLXJQYxHPmaxgARHp4/xGtm4BNn51y/eoNpW9PtBmwyVJMZw3bNsN4gKuRA2SiQWK3OeXz/kIk47N0zfFvj9xZkUxG6Hm0MHxsGqgpSirzLz+HshLO85cw3HHc93W5LEOH+as02dMShw+zOUYk01hHX5ySEIQQWVUOLYW4c14/mbI1g9/ZZaWbua24kIWj5vOPlGrMLXLeG1zanxNQwb/dZDx3784rJbAZ9P6Yv+tIdaoSJq1jswSOS4flXed+7niYm5e79E45PlyQtkH3DKIItJDOOHUhxqstGVMm5jKcd7C8oq42wWa3Z9R3hgksJIxi5jG3knB5ArZ2rsM4jJJI1/NJz98hpw8QpU+OYNJYnbjbcut+z6bfEuIdxSkyBpJmcA0XAji5vLDDklCOayvgJCvvzPYwKSTvEeN733kdI6QZeEt/1v/8uXvhHhuHeFrfecNCdsrAGu1ny3P0VbeUwdYv3QsoDMa7wkzli8ojrKY66qpaNe05lLZFRuI+cK73gbokla2YYBoQy2pOTYmzZYOdc0iuVPLq9MoYUWDTGcSRv/LORm2WNFFaVREQzzpXngDOCkLFSfn+qF4EH9XjaUUYfleLsGiskySOA34ybekNO8uBzxZROqNIYVYSlZsEZgxNbxGdZuYkJnLeje2/KeKJc8ItcccM1IVIA31kHNJd1OIzBfKXKBj0FWNcN68URbu8GzWSPoA6skK3B2YocAjENhW2WLr5ISXutq4oYR3i5tQwx46R+s4/3y/oil7OW49UBH33pP+f63i8xrY/fMvrpoi7105dePzkph5ukwJCe4M76LzCd/Te0k/X4O7nUT5f66Tenn27uT3k8PsWLd99B1l/i5PTVS/10qZ8u9dNXQJ2cnJhf/MVfnL7++uv++vXr4YMf/OBmsVjkf/9nXtZl/Ua9ecafkRE+qmNKUhzFUGmlbuv2N6LGbeEYaM74ypMTYISu64lJsYOlbTy1twgWqwZvHUYNiCC2xNhfCK6kY+uz2JJYZww4Q07gosdnR9zcIawruiHSp4xx5aDSVo669Qy5L+BS7xhSwmVwdUUcepxYEkKIGRMzTsp4TKCwXLKUhREgh1REby5Loqpy597d8VBUgISIHRcQNz4MBWOkjCbkkuCkuTg21rkHXW4pZ1JO5Rpjj3MWO4pdZ9y4uBqchZQhasJYwbji7Drr8cZiEWxliaqYpojXuqrK72qE7jpvEQtqAv2wYbVMzGdzxAl15ahnCxbTPd759mf44O/+A+yWr/OL//Rfsnn9FlEj0+Yb+D0/8HZef/15urPIr/38v2S1CYRgWK7v0+/OsbbmaFGxe/F5dievkUwiU2FFGMhUrsYMOwBmey2iJeUQU9rxLw4AxVpyKM7WkJRNSMycYx0jYoSrsxoybHeKiGfReCprEXW4baTJht16zXqW2d9b4LOj3+1o1LFpa/aH8lDb3bvPYn9O5wb2milT63CS2Cx35DRQz+ZM7Iy9NPBGXFKtxx1UXbO3P2F193VuycDeY1foznc8dPUKr772MuI91XRCWJ+x98hjRCN0Q2R5ek7TtjT7c1Y6MKkOceb/w96fR+2a3XXd4Oe3p+u67uGZznOGqlNVp+aqVCpVSQgJSQCBiCIGlgyKQksLuLRdNNCKNqgs18K3xaE7K6LoAttXXNH3FWWQpunmlRlJiEBiQpJKaq46dU6d8Znv6bquPfUf+3pO8jp1CGSwfPY/55z7PM89X3t/9/7+fp9vhcqJM80m42ZKvXONlD0KwXUr7Mji+w4176hHI5LRbFcT7js9xQOmDayNxsS2Jy/mVEnRNGNSjCxXC2qlME1TYMo+kERhTm/RIhyEAkuOVcXe/k2udCtwlh54erXi9XXDxeUBC1UEw+HuTWahZW9+RCWlArhRmlnqiSkz1TVOa6abp9hwI6b1GO17uuzZXJvQiWEvCU/vLXiyMficaFtPjIZXTRv6oGlWFYc+06vEfNUzqigcKyMlkCdnTPnKkLOQkqLUn8D2aMSrN9d59L4LzBZL9o9mXL2xx+7hitliSVCUa5TCUhESVhcxYowlxsx8viouoXOsb66zoTZBhNVqRbtq8b0nxsKaEik/l9JQUWMcKXZMN6eswgwnmZg1e23HszeW/NaHDvno7zxHjFfpl9B2NWQIPtGH47kCJKfSnjKINJDiYKbM5vYGkNDKcezKy7ABvfDQXdzz4J8jAnG5ZHk4J3vwasbV91yj/Tv/D3S1om/BasEpi85gVGG5Fme/wJiNGgIBUr61Qe59jxGF0gWyDwwsHzC68L20yXjfYowF0YTg0UbfErLa6lKdAlRKU9uMzWDQaOWG1pEAOWONKwIugdiEwqBFUBRxe6v9JZWqBJRGjAajSTkApd0n5VzA+SmBMsRYKj2UkvJdMK7oXkp26PHmWUQQpUlSUguzFnIcKhmktCOC3DpwUGLLGnHs/ksmiyaJImHIBNps6cfbhOmU0fZZ1vSEmDWIUClFyOBjqYzOpXaBlMC5GmUscdhkxTA8hkr4mICMlk96eT8Zn+ahlHBm/Vm+6S1fjOhXjn5ql+W6T7lUVJzop8+sfup9oLbCeG3CwZEjpilZzIl+OtFPn7J+iknhu3v5Dx/4B3zNl/4FXvvg9ol+OtFPnOinz+548cUX7T333PPYJ942Ho/jj//4jz/7R/7IH5l/tp7Xyfjvb3zS3+zC9hN87JFUSpC1mBIGpBTWuAIkHfrpybGkFw2QzkQurQHRs1gtCH0NoxFGTGk/UAZiAVmbSpNVpk++JNUNgisjaDuk0WWFcxUpQraWPs2YHewTY5k4QvSk1JckMQXOapwrF733JeJdfHGquhBJSheBFBMR8L5DnEEpXR57KNEmS3m+RsEAug6pAHELSmIAX0shayCZNKS/kSHHwq8wRpeF4Tg+SwrzRw/JTtaaW3Bpq21JdHMVMZZSaJRGFfzCrdYUqx0GwWiNZIXTFmUNMYE1piymQ6qT1ho1MqA1tqqwDqJrycqjY8TvHWBP3capO+9AtzA9/QD3XniRZ594CTN2/Ny/+tf8oW/6I7zvFz/Aix97kucvPjuUfKsipskoo+m7KZtntqkmcP3my5hYKkVDKAlUypZDmlnbMh+qBTZTwg1uT4HiFnfJp0Qksep6ZjGzNV5HW0vve2rrGNWGth9ERO8RYzA5MhmNiSnShcCZ8QQ/70Fq1Limzh2jSc3iaEarOq4dJi6bDj1RXNgYk1cr1q2lErBBmOmOy3FBXm94UgcuzedsvOr1rL/qAS7+yi8xbrZoVx1iMpHAZGPK4WpO1VTMVnPWzp7m8gefQG9sUFVjjLNs3nYbsyvXSqJaTEiIPL5+hofThN0EK5Wo6oqoNDSOtvN4B0EnfNchPrHVjOhzZumX5OQxPlIj6NGEVbdCh8BUaVYRPIm0XLFoMzKakpoNLh3tsLu/j5LMlqs4pywXRlN2c+TibM6VbsnFOKftA7V1GN8hKWKU5sypbUZVzfbGOmv1iEldcYed4I46fNfjpiNcghhhpiL+cMWaVJyva3xIpFHDKgde7IU2ALnlQ3sLKhQHq56VyQTT8eKVl6llG06fRsTic8Zqi1PHiWllA9hU5cIwoqlNBUrTbGxx2/YZHrr7PmbzFXuzI17e3WF2tGJ3f473EWd1YcFwDFLOuLoerkPousKl0aakBm6snyLGQAw9y8UK3/fl+k8Jow0pZ9xoTDVaJ/QRZTxtTmgtbG83jC5sceXmZZ7/WM9yf8FCIkoyybcQPCH0pa3ND61tStDD9Q2lhWJtfZM8uOxKjtvbPClblBQHMxuDHW+wMV4jkBE5xyN7Wzz+wD1c2nkBhaFrAzFklHUIGaMrtK3pfSgJlkEggi72bkE9SGGw5KGtLudIDuV2YkRyJicGsRVLe4qUSh6tPt6KSEoQE85orEnolAZHOiNS/k5W5fEy6KFlSAYnvTBlyp2llLDGlhRTMlYU0SeMPhaqEdDDIUNJtkOgpNuVfkgZDmRESutSVoGYM1rKAUcWQGViDFixt9qGhomclKQk6ClFzOUQRKvCBos+0ypLV62hNtbRa6fQ9TraOGRIV5QEnrKWHm+IIKOdK68xZ3yIaBQYizKKhCA5l4OW4VAl5Pi7FgQn49MzXrn6KaDlZUIOaHOinz7T+kmLogsdB8sFPj/J9trXYN1dxDw60U8n+ulT0k+QcfVl/sxXfBOj8QKt7Il+OtFPJ/rpszyOjo7Uf3rbYrHQ3/It33LvtWvXPvTZeE6/2xFC4esesypPxmdnfPIVfyYhGazSiC4R4hIUJIWYMsFgdYn6VgwCr0wCWaWS8qMj2UdsNnRtR+wC3apnbX2KKItRxRUgZ3Iq7kLOZaJWqsCWY/QoXaCkYhSxbckqQ98h7apEcKfh93VJcBo5y95qQWUVKSaypbSNZBBd8Ng+eAq5MBMzJDL4gFYGo/QAXC3Q7JgySTLaCjGn4vwmyqKnyoKFZEQVj6FQTctEpikTPRSYdc6lFcBYSxo4CCmnAjZNEWd0iU0fyqqVMrjaknxCqQ5jLClplCmuttHlotLalpQlpTDKYgdHztWO8caEZjpiurbG1qnTuNGEZjJhNJriqpoUPNdeep6DZz6C395i1SvW9ITp1jm69CR0kdXyeZ75wG/z67/4k/g8opmOCam0lKQUyDkR+oAsItlbRs4Ss2UVVkOpdmbvqGerL/Dt/fmKA+sw6NIeFGPZCFBgtCHpW4ufKsqbLNCtVhgdUFWmqSt819K3gUZbbO3wMdAahZaKeRJWPnPUdmyvWQyJMFtht8ZYW7F+5jTPXblawMUoPpQit+0nTtuMqQXbr9ivhRt0jFypp18fb3L15SssV3PO33OB6vz9rF54ioSnnx3SLRcsDnYZWY2tDPsvvAjWUp3ZJD49557HHmbt9od5YvdX0K7BWEclwuvsmPXdA7LVLIwjSsL3Lat2SS8RnRRn19YJMRO7nrzw1KMRHRB9IHQdk2aMxEi3WpJ0JiSh04p4XFFiMnMVeengGu3RAaeaio2c2SLhuhUsIzPfo9tDJkpYasNt6xtsVWPOjWqqytJhmbWBydqIZuKIfWBqR2Rt6FYHdAczqs0pq7ZF12Nc48hZs9951sKK1yihchW7uWczRTqXabNnN1guzxYchUCUhLRLzp7Z4vTpreIQa1Vc5ZSQnJGcUNqW69WUac26mrqelLlnWGwsUG83nL3tLA/IA+QE+/NDLl65xLVrN9jb2Yfk0GKwTS5tG6IQlXHiEDQkoW87sgkobRiN13B2QtM0tN2K2eyItvPkqKjqEUbGqDahxyuUOGKs6L1HzAhpPSZ4dnZfJIhDSSJ2LSGu6P0MUWWuTSmSJRXRJ4amrtG2Ynu8hpIMook5oJMgGJIKXLvsyauWs/dtERXoGDAqE3LksUfW+Vt/+7u4+uKzvPziDS4/e40nXzDc6DIzPydrQ0geQxFJORZOGRT4fcp5cLCL6CutH2X+ImVi9IgulTtaW1Iu1SclGVRAjhM6y+9IEpzRpNyjcy78L1NYM5KP+TZCHlA4KUa0AmscSSlEjgU9GFdCBLQU3oy1rohAXSaUcv5Q+DVWl80zlE2PqCEAIOXigBtVKgBkYNyQSUnKuqcEL4EkGiMOYkY0aEkEGJx8kCAsxNNWDebU3diNO2iqEaaq8CFgtQYUkhV9KNy08j0upogYwKihlSdDLKmEGSmtjTkTYgGJq1zaRWP637dhnozP7lAmcTC/h1/+8N/lyx77bk6vv/SK0E9V9RR3bD1GF/yQPnyinz6T+imlRB9DqYoRh2aNpN2JfjrRT5+yflIqYyTj3BJt6hP9dKKfTvTT58B47LHHup/92Z996tFHH+0uXLjgv/Vbv/XOH/3RHz1z/fp1O5/PZTKZ5P//9/K7G2984xsfevjhh1cA//bf/tstY0z+5m/+5pvvfOc7ryilWK1W8l3f9V3nf/qnf3prNpvpBx54YPUDP/ADL7/97W+fAfyDf/APTv31v/7X7/zhH/7hF/7G3/gbd1y8eLF+4oknPvzMM89Uf/Wv/tU7nn322doYkx944IH2x37sx55/8MEHe4C/+3f/7ukf+qEfOnvt2jV3/vz5/q/8lb9y5du//dv3jp+XiHzeO97xjos/93M/t/7ud7977cyZM/4HfuAHLn3TN33T4e/3e/BKHJ/0wZ81xbXOcFwXDlISg6zWxZ3NGTEyMFgsiqJlQ/AkSWBtaZGoLYvZipwUq97jD+f4nGmcpq6qMiFpQwwJVxkiELLHKAvJIMoSJJElIQaqSU1rIcYeYk/fLlHWEnuP05lRVbPoWhpTnIiYE3E44Y8+lBQoSrpbSSxOOGNYLpclru4THIkYiwvgQ0sWVZztoV3nGEyLMDgN5fGKmzNwH9QAOE2R3mes1VSVK7HnyhBToK4dMXiUqYqLNjg8Slu01kRaqCyuGqFEl6j06BlP1xA01lpc5VjfHNOMKsbjTSabG4zWN6knU5pmQuVqkBEpB6yJeJ9ZLBM+ZSoHW9tTrr9wk+s3d6hHW9x26hT3rb+a3ZsvcvPqNV776J18+IP/HlFjnEmDy2WgqlCSsUowokgxEILn+u4Be0cLet8NG4NS6bAM5f3sY6IjU4KdBO0cYgyiFH0Y4N3D8pUk4VOgz4GsNPWoIYZEigG0UFvHmq4xorgRPPv9kq4xqJiQ5YLzG1McAas82lhcCNzMgSkGN4Kq9yyP9hnrM1yeVExjwibFczrS+lCSvaxmLJqDWcCMFOduv43Dl57j6uXr3PvqzyMsV9RrDdcOl4TYY9em3Pbgm8mVZu/iZe64/7XsX9rhcG/JlUu/gdWO0EeST2zXDRd0xZ7fK2X7piabSFNP2aprdhZ77PnItcUMHSKudkhILGYBaRpWXc/h/h6VNvSLBQe+Z7/riNbQdwGVErZ2zNOCXu1hjHBbPWIjJUYZbIhUxqLGNXfnDc7GNXI95ZKF2ydj0uIIn3tGW1M2cdylKtrDGctZi5827MTM3mzBmbrBb0+YLZccHS6om8iphaZSipUKrIIHY9k7OKBJwqlKYwhMjOO9izmXq0w9qul1Ylw13H3uPKcag0oBay3WWogJyXHokLOlBYyh6mM0xjSjAqS2hSNjjEVbB2IQbUHBxpkt7n/4QXIS5rOW5194kosXL7G/tyIkjTGFYzLsTlGptDMUxpViuehRynA0X+Iqx/k77waxxaWeWKTWRF0SMIUCoFdZEB9plzMiPd1qRsoJcsCHwqfx/ZIQOiQHRuMJzhjE6QI41gaVMxtnzhGzoHLESgYJxAwKx2994Dq//Ru/yhtedztf8VVvQdUNkYQWizeZc/ffzbn7L/BYhhwjL14+4m/+zXcRbj5B7DoSPSPXQF/EXJTjTXjZTBc+TUSUIvlAVhbRhjy0bCitQDIhFo7L8XwYU8T3/eCuC5IKx0aJIDGX9iM7QLqJkDVKa5RW5T4ZNvZQDi10mb/LBl+Ki200ylgkUaqh0sCM0eX5K2XL4YdStxJRj13sY9daD62BZa1Tg3CVQfQKpFhg3lkI3hdRnTWRIkTpA14r4vptyOnz2FPnqNwYFUrFTs5F1CMDd80orB0XVzpGlDHELMQUkMhQGQDa2sJuQ2NFEXKmrhTBB8Iwn4qSW5zUk/HZH9ZAFsfB8j6SVMCJfjrRT793/ZRCJoYEOpPTo7Ttu5m338Rk8+KJfjrRT5+yfpq1t/OrH/hGvvRNP8nG9OaJfjrRTyf66XNg/OE//Ifnr3rVq179/PPP18eM2/vvv3/16Tj0Ox4/+ZM/eeobvuEbdt797nd/7Dd+4zfGf+kv/aULd911V//d3/3dO9/yLd9y19NPP928613vev7OO+/0//pf/+uNr/u6r3vgfe973xOvec1rOoC2bdU73vGO2374h3/4xTNnzoTTp0+HN7zhDY984zd+486P/diPPd91nbznPe8ZH4drvetd79r4vu/7vjv/p//pf7r0lV/5lUc/9VM/tfFd3/Vd99x1113+q77qq2bHz+vv/b2/d/v3f//3X37nO995+R3veMeZP/fn/ty9f/AP/sEPnT179nOrVPNzcPyuwj1izqTBOVBDSbi2ZUIhK6wIYWCy5JhLu0ICqx1ZCT4nkhZ8Hxk1hTXQek/bL9k97NgYT8vFLA3OFZe6BBeVMuIcE6JcAccWeAt9yoi1KOdQKWNF0JKIIZJSSSFy2lIpy8hm3LFbN5QlK21IvnBQll13i3fQ9R0cu8+DKxBjgVOjwekSZ26TLY5LPi6V11irh/m9lEenNCysemgTMQZQKGMxypBSoOj9hDYVOWdqqzAKjDWghCSarAxGV4yZUjcGbaFZa6jGDc3amM3N23C2xtoa0OSkWN/a5uy57fJ6GNLgoiIEg5JEkkAfSwuPkkCVLTY4RvUpZtuwDEdIP+Xiy/vMbu6wSo/xui/+A+wefJD9xYt0/gLXL11h1QeUKXHvWgs5Rpbtis53dF1L360QZVhbH6GNpvee2eFREZuAxpB9SzIVqLJg+NAzrDwopQokNpfWnzb2tDkQVAGW55TwRDwJ362onKIxhlFd08dIjj1TN8JUNS2JeYTcRZrG0oriSDS324pGjdH9IZWFtWR4yrU8W2muVZEroxHTNrChLDFnVquWmCzL1ZLLT32M0PVQWV564rfp8oIQbkekoxbN2I45ePEZ+hToZomP7f0aKUduvHSZx7/0K3jmg++G2qJVZmoqlsuWw84zTy2Xl0vM2pip0khoSQO7Z9EtuLB1hpQC837FERHpoHKG9bU1ru7v0hFY5sgsBoKOOGuYmKY4qcqgjOF1ky3O6Jq+7QiS6QRsNWIVW1YpcRAd10NgoRX3Jc2+ckRVobxF1kew7DEpkkNHOggYHJP1NVLXk3ZmHJI56HvOaYsJmbxYUI0MaTqiz45xO6daa7A+sWojB5JQBurOM5OenCPKrbGcLThTrdNUZeMsidLykDNZU3giGY6BUpJLuqUxFuWKiNLKoLRDOVfcRdOgXUMGtDJsbjZcuOfV9H7BbLHDC8+/wAvPX2NvdzYwaTqcLcDjEDOJCqNNaacgQ+w52r2J1g7XjFFdxf6zV7F+k/Hp21nbGmEtoMCrsgETI/hViwmBSBEt2iiapibXltra0qo1tKxkIn1MTNc3aGwsrV8IKg1MlFTg+ks/h/U5C/ZKFUzKKBVLWp4U5lNKGS2apDS9H+HDOqItmYjSnkB5/7Pk4VpkSOYrc2PMcZi3HDkrUiobdVIkpzBUmTC41QbJ5e/HFT0pDkl0JJSkUomQTXG/B3e69LvoUk00VMMY7UpFkygyuYD9JeG0K/ybnFE5Y5y71cKktEZ0YfzkRHHWSRhbRHUeHGkpWphMIGeFiC4bjjRU0OjjVD2N78p9iknoaMnZ4pUjTKbIxhmqU7dTVVuooVIprhIYg+jBRGN4TCD4UAT78HxjzKWV0LhSaUWpCIrBD22TCaUNSpcEPKU0VWUIMQwJq5+6MDgZv7/juOoOQIlBDe11/73rp5gf4+bRv2Fj7Y/T+w+c6KfPsH6KwaOtRZKUahc40U8n+un3pJ8kZxbLmqdeeCNvfd2/w9rZiX460U8n+ulzYIQQ5Nlnn60/8bbJZPJpDfc4d+5c/0//6T+9pJTi8ccf7z784Q83//gf/+OzX/3VX330Ez/xE9vPPvvsh+6++24P8Df/5t+8/ou/+IvrP/IjP7L9Qz/0Qy8fP+d/9I/+0cU3v/nNK4Dr16/r+Xyuv/qrv/rg1a9+dQfw+te/vj1+vL//9//+ua//+q/f/d7v/d6bAI899tj13/qt3xq/4x3vOPuJB3/f8A3fsPPn//yf3wP4wR/8wZf/+T//52d+/dd/ffz1X//1R5/O9+OVMD75Vl9USfcRgxZTnNMYSErIWpW2WaWRXNjRWcfCEsiFWZCSIDGB0jiTcK4n5YgLwigblouetm1JMeP7QMpQ1RVahFq50n4yJA1BLlHctyK/FaI1sevROVFXjmWXiDGTlOCsodKWNngqa/BSpoyUyyQWybRdTwgRNUwYISSMNWglWGuK+6SK01zYCaV8XQa2TErHcfTlvpXiltAXEbQZ4u5T2QQwlEUrlbHGYnRxmo/j7ZVVJJUZVQ3GGEbjMbaqmU7XadY2aKaW0doUrKHtIouZ53CnZ3/3Ggd7u+zt7NCtAm/8vC/k9rd/MX7lyUqhrUXljIRIVgGtLZIV1gnTtbUiGLs5KQW2zm7xO7/xAfauv5srN65x48Z1Do4ir3/r2/m2v/InefVbHZ39VZbzQ/zOkhgDIQTmfTtULRSOhJHyXj/yqkdAIonIxvo5ZJoZP/1h+O3nykJjHTkJkhMpRgr8O5BiiV8XUThdJngvwjJ4FqJYqJ5GivMUcoHBHnUrstY0bsT6aIwVTdV5eut5OSrWO8/5ThEmI270K0RB1USm9RTWag59ZFF5rkvmpRzRynFKKTrXM0uWrvU0OdHrhDgIYYltKo4O5sR6je17LzDa3kKuXmft/DaHiwU6KFarBbZZZ7k8IJmaRb/ig//+F9mc1LhUvh9tjDyz3ONwdUCwQucsbWXo2456cYRWGjMkoHXLlsoY+phQo4Y2FEFVT9dxlWNaq4EVBdI4KtFMdEX0gHHElDk3qkiHS+aHR6StMX7pEZ+J5zZZ3LxOUML+smWvz/xWVMSu49z2BnWf2FxG3Is3kdTShTl9FnyGU/EsVgtoOFgsIHekpAgyRvmAXWZataIfZc5Ma66tViRlWSXPkQ7s9y1hMSPpFg1UVmNNjVWFzC7DtZQlIkpIEhFdRFNxNSGHWNKirSmMLF023MpYrHWIVbhmirY11liQPECULVVTsb6xzR3nX8Ub3rDg8GjBjavPcPnSJa68fJOdmwsq7Ug5YIwaGF6lTUYdi+nO03UHXHz6N7n2woexzTqbFx7k1O0Pc+a221Hn1+i8J6xacggo19A0NcZqum6J7ztC6Gn70nqEFqxodIZkFKvZio989Dp33J3YmML6KKNVLCJehEfuXUcOtji/fgptFIGEFjUI/MQzTx8gwJ13bFGPIfYdfexLCqcyBdKclkOnnWCtLc4sFHA8BrJGlEA2RdxRqmvEZISEksKQ8T6QfGnrF61KS2HOxOBLEqgEjCrVN5LVUF0wQKezFDN5+HwzGhGDSKkyQgRlTBGbqTyeluJo+64vMGxRGKNJg0hMJLQCVB6+G/bjc7XSQIFZkzWCQcSAlATVYECiojKWnEJ5L5LQT7bQp29HbdzOaLyFdRXKaCQmYkxlfQgJyYqYizoOMQwtNgmjLSmU5D9kSGQ9duIREH1LzZfqp+N2ldJGc+wAx5TIZMzATz0Zn/2hbtVbgVEOa+tXhn6SXRr3Lnp/tbD6TvTTZ1Q/vXztWT7yvucIURBjIXCin0700+9NP+UyH5WLPH7CGnmin07004l++myOuq7zz/zMzzz9wgsvuJ/+6Z/e/JVf+ZX1D37wg+MPfehD1WOPPdZ9Oh7z9a9//eJ4LQZ4y1vesvgn/+SfnH3/+9/fxBh55JFHHv3En+/7XjY3N29Fd1tr85ve9KbV8b/Pnj0bv+7rvm73a7/2ax9861vfevSlX/qlR9/8zd+8f+HCBQ/w3HPP1d/yLd9y8xPv881vfvP8R37kR85+4m2PP/74rftcW1tLk8kkXrt27XPvQ/scHJ/0wZ9kwagSyV1IDwpTFRfIKI0WIaNwyhQXQlRxeIckH2stKgtd77FWo3VJ6KmiIqQIISBoet+z6ALdfs/adI3peILtEmIN2RQnw2gZFq2EMoJyFlOZ4pxZxURVtLFDZyFkz9hWZXJILeREjLFwBdCsQg9J0XUeZUxxdBNUVUVMkUzGD0DK4nJEFEIXSiITZIzRHxezWtAKtJJBmBq0tYDHWVsW1YHPoK2gVGEoODfBVg2uskw3KqZTx3QyZmvrDNO1bdxoQkSB1mhlONjZ5+d/5lfZvXmT2eKQvvfoXFLFurDEGEXl1mn7BW2KuKopCU9GoY0DpUnKEKVhvuiZH8w5unGZvSsXme9c59FHXsVDbzrHL//iT3L50jVEVWhX4UYNH/6P/44XnnwLH/q1X+f97/ltVqsVkYT3AWMNQiDlTMoF0uq7FqJnZGuuXHsZM9K8eOl9GLF842sfh99+jq0zG6jdlrWxIUdfDgFzBEmDkySE4InDwhRTYtb3TCvHQd9Sj9ewkkgtYDTaWEKKpJzIvaceV3R9RzAKP1uiNsesact85alJ1KOKVQsfJvCSc3hTXMCJqXGhp46BP7DIJKX5ZQs7feaBZkTVB6zKzPoIVmgmNdMtA4d7hB3IGA53dlk7NcJ0GT3Z5sq1G6xvr9EdLahyInYrVhY2JxO8CDdSx/9r/1keWj/F49v3sDF17NVTtg/mmCuXkaQ5te3oBPoIqqrZHI+gMqSqZi9mZkpztFKcmo4hBqrRhMVqga0ch6ueOmpsY1lTmsXOHsEI5u4ztPtHNFbTjYTF/hGHu3MYGbaaMQfzGc/FPR6ZTFkPkcPZjGp/n92Da0RgMZ9xVBemx+xa5FTTkPcP0AbOTidMtcEfLagax3TSsFQasicd9bwsiTultChI6DhcHdLFjnra0DQjjGiMZMzQrqBU4U1pUWSJZFU21UlljvEcIoLSApIwxlHA6RZjK5R2ODtG6YqqarCmMEFiFqraogb+ijGG6fQUp0577r33HqytWa1mPP/Ckzzx4Q/z4gsvc3R4iLFuEBxSgP3GknThWSk8fQQ/86yeOOLFD34YXY/YOH8HSvXcdedpVt0awTqWhysOj3aQ2BL6JTH6UsEhxV32OaJdjVEWsZZZbPjAc0JOPZsjzelN4fbTivU685pHz/CqB/9YqbBxGrwmmwwS6Xzi/R+5xMXnL3LbdsW3fttXEvo4tJRUiLRYsYRsCWGFoPBdGJzqVJz1FDEiGGMIPZSXn2/xpZQqLSYxBUTrwgzLJU0vlfMHsoIQO6JEctaQYwFBm4H/lUri27GrW+Y/jVUGhvY/Y+0AngGli7svUvhgZvj5RCKEQE5lA6NVgeiXmaW41WpoxUmppKAW/mseQhektGEqgegg9fR0xHqC2ryT5vQ96K0trNT4CK4x5BxLG97A4dHKoEelcl6nBFFwWhNjJKPQWmOcKu58FpIEJJf1J6aINqVyyw8iGG1IKaKdJfhQBLxSxb1PkRD730epcDJ+L0OyoAfxrEuExCtCP/l8iar6ARar1Yl++izopy/88rfxJV/+h/lf/+cf5/qlIudzCijJJ/rpRD99SvopJ5CBkyyKE/10op9O9NPnwLh27Zr+qZ/6qfU//sf/+OEf/aN/dLZardSv/MqvrAMcHh5+xtMyZrOZ0lrz3ve+96P/aVjH2trarXbbqqrSJx4cAvzET/zEi+95z3uu/+zP/uz6T/3UT239nb/zd87/zM/8zNNve9vbFp/s41tr/7P25uPD25Px3x6ffKuvteXQHFWAo1aTtAJV+AZCaU9gYA5o0SgliBYipWxWaY0TQSSRtSMTSEahfUBPp/QhkCUyXyxAxhweHbFatZzOp1jfWCeEIU0uFthyFPC+RVWjAu/UCdGadjEjJUWWXCae0FJZhbUOI6qIykHk6QxRlZ7+EAYHVxhKwkubRLm9OCTWuHIIqhVKlckVwBpNVkJdNRgthVOjNFoblNZYC5WpcNZRjwy6VtTjMetrp5iubTBeGzFZm1I1I+rRtAhMMeRYUo7aZcti1ZJINFWPxMBLF58hxUQzqbjt/DZr6xM2Tm2wdeYUW2dOs3nqTsbjM0RTE3ygW/YsDpcc7F1lf+eA7miP61cucXB0wHJ5BLSEEDBmwuUXX8Y0X8jdd53j0tWrjNamjK0DVbGa3eRw5zmWccbs6IDoLDkU55DBpUILPmQ631E7zZlzd3PhVfdz58P3cPrcaQ73b/Lz/+9f4Nf+t1/n+4D/w//pOzj8uX9FvzMvLRSiSCGUBMCsUCqjVXGhjCll8jlDUppl8KxiKN/D4zL6mAkEggZb1/icCVVF6wPNaETyCtvXNHZFu+xI3vJkv2BH9fSrnl5BZWru0JpzWvPyfJ+8gtOm5tVa+PWU6XuPaRdsPHKBOy/cw4u/+Zucuu9u9l96gYfe/Da0BOS5i4xvf5Tx9m289L5fYHt7gqRIlS2rKJh6RDNVdG1Pn8tmSPrI+uYGX3D+Ec40Ezg84EDV1LdNWSzndAP7wrmKecp4yXSpR/YXTDYyW7pibzFnt1uys2rRxpAOOkZOM6430EaRfYcmM9FC33VYr9HzntG8JQZPGBtao6mna0jnOVU3jNYMJntuqy3pYJ9xbel298HV0HfYpmJLa1RStCqzv5xxyikaazFLRaUzSlm0FoyFuvfFfRs5zirD5Kjld3avciOsaKuEtoZsR0jSBHo2xxVGl6SwNOBEtNFEEUQlRAlGO8SWqnHlHKaqQCuMMbiqKSyoymJthbUaZQxWuwHo7jC6cKq0NuRcWrtEKWozwYsiK6GyIx5/w3le+4YvZmf3EjcuXeZDH/wdrl27znyxIobSYqz4OKOKrCBbgsqopkNLy+HFHYxSjJpMXY/wUpFHPUjFfP+I2mn6PhJTBG2QWL7vaQArT8djVJPpZAEqstMqrlwyfOjFzKvsnIfv07jT6yg7tHMBKebi5kdF8B3jyRHK1mSEPmZ86DE5gIrEmIAxWncInhI2V9pSfN8VsagMKQybcUr7hTaWFGMB1VNaYpTSpKxA0q3FOeciCHOKhNyRcSV8ACHEEvyZKZwqpdSQNFcYMSkLRpf/Syhk2DT4VNoRcyrpqCUZLoMumxxSQkupgMlKDeiZ4vaKMgzecJlrBndYYcgpknJf5peqIqzdhd6+m/XtC2jbEELEiiaqjJZM7kuKqnE1MUS0kgLgj6XKXIsDnYgxlBakVL7vEgVtirGmVEnGU6JROZXnnEEpQ4yJhGew3ws/Z2jRAVBSfv9kfG4MY+2tqgglgnuF6CdJU7r4BSD/nhCOTvTTZ1g//cz/+rP8gT/0VXz39/8d/ue/92/5wAdBy4l+OtFPn7p+ykmhqzJXaefQxpzopxP9dKKfPsvjXe9619b3fM/33PXt3/7t/7vb19bW4ud93uet/iu/9nseH/jAB8af+O/3vve94wsXLnRvetObljFGrl69ar/iK75i/ru937e+9a2rt771rau//bf/9rXXvva1D/+Lf/Evtt72trct7rvvvvY3fuM3Jt/xHd+x+wmPOXnggQc+ba/xf7TxSR/8adEkKaJE2zJxFm6oRjREEpITIgWqqQZ+XkwF1SmqMFqcKY52RJGVJkSP0gqbFbrtOW6sTzmTU2S+mEEugnGy5hDRpGTIPiFWU2lLlOJmJ0m4ytLUjoXPCBGwGAkEFCobamVY9B2iLEkCY2U5CD0FWVPKfnNOaK2GEvRSZhyi4KzFD1BQlSISFUpViNKMqwZVaUbGYZ1GV5Z6NGJtfZ3pdML6ZMJ4ssl4fYtqoqlHGqdGWFuTlKDEkCMoynuZfEmgijmU6mQCtdZlItSZ6brja//425lubDA6tU2zsUFFBWJYriKH+zOuXjzgcOe3OdjZ5WBvj8XsiOg7un5BFk/ve1LK1E3NaFJh7JSsDBpNH49493uf4I1vfT09K55/4hrt3hLRmgcefoTzd53hl378Cl3ySLRILlDZY3Cr934o4c48+oYv4p4H7ufuRx/ig7/4/4GbjrNn7uILv/xLufH//d9gAU++/zm+4qv+LP/uf/kRDIV1pK2CbNBZBhh4WSujj0NJuaLtWmKKXF+AVQYjME1gRDFqGvAZ5RyzZYc3hh5hRyf2/IhD8TzQLljTDTYr9vuOU2s1ZjWn95FmbEnLBdlqHrPrmP09OuV59bjhZmvJVnDaYP2E6dlHOHvPDLW+zvQczHd2WM0XLDKk9oiDp2/SVA2qGTHdPs+ZBx7i8N//KnZrg1d94Zfw0tNPkRaH5BgZVY63btzJQ2qdZY4sbMO9XWT+1E1ETVi3PWjF3BjCakkbA9kqFl3P/PoOG+vbPDwZc3ZrzN7ugo/ObrBIBZgbZh13jWq2piOOjlYsWfCwLptHZgtiDkQl+C5wcdGxdeYUIh3zuWe+OOLBjQ0WL1+jXWWmtaPuekxdMYsdI2sxWbM5nnKoI0tWWFezPh5hfGEjRatxAjIPrCaO55Pnkiw55xs+NLvJpVAqLKpmk9Vin/n+jHVXo1RGKoeK41sJXVooLJShisNYhxKDscsyZ2mNcyOylsJBcqakkFmDcQ6tHM4VpokxBZyvdKlqRmxhmohCG0NdV9RihzaUEkufpOL09sOc3rqP+x7+fObLI25ev8ILzzzLS888x/7+Ia1P6HqClzQAmE3hlaSAuOLCLlcQV0uy6nCm4szGWbYm65ATR0f7zOYHLFc9ERncz4hxlul0SsYQQ0dOUjgvqlSJtL/9Pl74+YvIqx9k/Y47sJMRUlfMZ5FVZbj/4S0ev3+Di89NGW2uIcCq7/GxQyVFnw1O+8JJQQ1OfGkNSSFjxKJNEWGlRKBsXAugN0NOmMGhzsqUTeUg4rVOhfsVMiEFtGgq48oxgdGoFEAMVldDi4pBu6okUSqFsg4dE6hMNsPcKSV50FIOJoiJREYZIYWAET0wpjUM7nem/C4xYYwm48tzVwU8LkmRIkTJ5EqhT99Gfdu9uMltiFvH1uOhda4FMjErUsxIyqSUQUHwEU0u76Mo9OAm5+yLC68EYy2rozmVgHOG0HelFUerwp/JEGJGazOsjSWVT+WMM3ZIpkulokrkFmP7ZHzuDC2agV2NdaWp65WgnxwPsbv4aSr3RkQ+cKKfPsP66dd++Vf5j7/6s0y2tnnzF/+xcvAHJ/rpRD99yvoJIxgzBKTZGuuaE/10op9O9NNnedx9993/WSvv1tZW+Jf/8l8+NxqN/rPqt9+vcfXqVfdn/+yfveM7vuM7bv6H//Afxj/6oz965vu///svPfbYY91Xf/VX733bt33bPT/wAz9w6U1vetPy6tWr5ud//ufXHn/88dWf/JN/8vC/dH9PPvmk+4f/8B+e/pqv+ZqDu+66y3/kIx+pL168WP2pP/WndgH+4l/8i9e+9Vu/9d7Xvva1y6/8yq88+smf/MmNn//5n9/86Z/+6ac/Xa/xf7TxSR/8Qcao4hYVkVLchhjLhCFaoUxJ57EayLokRMVQDgoJSFYoZcgqDyXmZQFKKZNTpnaOqqpxriPEzHLVAZllu+DiSy9z2/nTnKmmqDoVJgUassEqQ7XVgNc06w1NCJhFWyalLGibUcGjiKyPGw58XxKgROhSLHHrw2VT2IWFPTNoMY5ngRgjikwIHqUpk29KZAGtDa++/1WcunCGze0NNrY2GU3XsFWNqVwR+SkXwSsJUsaoEm/vQyTkSE6ZGCGGEqGCCF4EZSuoNNOJKy6EOLwo7nvj3eztHHC4e8Bzv/Mkl65eZbZ/wNHBAb5b0PklohNON6U82xicqxlVa2gNvl/R9x22dljrCg9CCu9ETOLSc0+Rlrv8gT/69XzjX3iAg9lFMmNu27qbn/upf8OLF58nqxqVIyKZtl0SY6RtS8WVKIUog+82eehNb2d9Itz/6EU+9kvvpZZNQrakUFAAT77vvbzqLV/G9OxtdDs30bUC66DS5BCxSrACyWhWyxZtLD1CnwNaCcvQYkQVISmFlWS7SHaOK6sFqapwdUOKELLi0AQ6nRitIudHDSNjmDrHTnuE+I5ptoxnK6wzaGORdsUyBOrpFJMja8s5cWNS+BvXnuXqLx9RTSsWH7vK7W/4PPYuPknqjtjcPMXlK9dBNNsX7uPcmTPM3/8Eq/19Rj3BwnEAANbCSURBVGuOzXvOc/DSPhu3nWfx4V2qELlnssFDoy1OOc1SJd69yLxt3LOMSxpqtkcNR8uW+dEBI5UwwdNL5nq3YF0cKiTM0Qy/M2fLVrxleorFMrKwmRv9kucOD1mEMVfmHUZrHju1wWpvD4uQKsM1nbkce/b6zPhwxW2TETZGbjMVZjnjaLlg6SrGElh3DqcquuUBh7mjbiaM1yoWR4cgmT2T2cgaQyRUhlZrbuhAMx2xhsX0msvzfXbne7R+htOFx3S1azlYLDCVISuNGI2e9cR4hLpto/A5nCb6HqsMeYAHi1HYoU3FWIsMYgelSSgqV2GNwxmHMm4AqheourXV4I46kDJXKa0JMRQgvtXklFBaqOpSup5SJCTNSE9Yn25x/uw9PPrIG1h2h1x9+RIvvXiRJ5/4GNeuH9B1CeUS2g2okaFtIkoCrelioOs7UpAivtBM1k6ztn0bxMzRbJ+D/R1y9KW6RzsEi/cRpS3kjIqB7DNPXL5OfPq9rJ76HZp6HWM1lShGhyvW3vI6HnzVn+Sx1z3AQ49cQHQgpI7OB6yOBCkuss+B0GdC9Ghd+kpyKq0dMUaMMQOYujB5ihMtZDxaF3GF0qVNwwzcxSGxzlU1yURMtkjw1OIxRGKOaJsxSqicJSlBVIXYBkSVdj8NuEDKAWUsKcrQipiHNhVFGlrcRJuBTzu0BwqgCoA6mTK/GjRp4I2BFJHpe5JR5LOnqG5/kFO334dp1sgITgrBhhTxbSbjMNZB9uX9URQ3HQgpEilVNqREiP4WyDykoQ1SKaab6zhny7qz6ohpaOmhdExE70mptKGIaLQxiBJiLvejxaFMLq51KmsbnzYpeDJ+96NoHij6SV4h+imm8v0ccMkn+ukzrZ+8x6w7/uOv/jxv+sq3lq9aDGgdTvTTiX761PSTNYg+bvXVJdX1RD+d6KcT/fRZHX/iT/yJoy/+4i/+4Lvf/e7x/v6+vnDhQv9FX/RFy6ZpPq3P9Gu/9mt3V6uV+sIv/MJXKaX4tm/7thvf/d3fvQPwb/7Nv3nxe7/3e2/7a3/tr91548YNu7m5GV772tcuvuZrvua/eOgHMB6P09NPP11/4zd+430HBwfm9OnT/s/8mT9z8y//5b98E+BP/+k/fXDlypVLP/RDP3T2+77v++48f/58/4M/+IMvvP3tb5/91+7zZPzuxid98JdyHtLnYGjkBxEqbQh5YLjkeKtkWEn5WaVUEUQKZBC+SukBaJAQW6LEY4hI0qSUGesGH9PgwCQkG6KOPH/xIrE/zz33NahxRcwZ6xxKBaSqEDOmqkZU445mtiJ3RSxqyaTcE1NL5XRhGyTBVpbUh08QqeX6Kc9TCLFMsoIMgrGkHyGRJKq0FaSElVJS/Pjnv5mHv+DVhNCSfYAo9L5nebgk5dLik0WVdsQsxR0kFHdElfdMVxYzrkgCMQs6avquYzE7Yj7b5cbVA2bX9jjcu8ruzUssl4eE0JMyZKNxrmLUjLG1YW26VUS1EfroS3KRAZIM8GcBbYgotGhCSJBDgcCmmjbu85vvf4knPvoCr378Szh39+3EdJkXPvKveO7lj5FDIPqA0sJq1RcRPzj8zjkEaJqaF5//AKv9P8Qzv3mNt33913L3fQ/RzXb50K88zZ3TCQDOrrjy7Aucved1fPTGL3AqJUwoIOokGa01XecJKpVS/VQ2DY1VTIzFWEsWOAyepGu8CIlIXenCKoqpCOKYedxb7jg6ZOdUxY5xrOYKaTxTgbuqhrmrWawiZuRgtWLRGkzMTLVjb9lyGAMqJ+o+4cKYzTTj+f0XSYsaOz1N9IrlwXUm2w0SO/z8gHpzm8Prlzl7+93kSc3V517EbW5x47mLGC6yfvYsq/aQxvd8+fa9KKuZ+xXSLXnNxjrs7mM6j6jAqtW8dLjPnks0SnBa6NqO0aSmvXlErRtelp6lD0xVx6nphHtw2Jx5f058JAVeWh4SsjAVy/Xeo5WhNpZLLvNEWjH3me264dzaGD0/wqbE2vqU/YN9cjWBqmbiDNYHNiZTVE7odkGMmf12jhvXGC/MneaiX7EhlqrWdGT2oscvO0YdvLw8QCTzBeMRRyPNtWyIRD5w8QqdeM5MJmyf2mY6nXB7dEyz4cblQ0Z3nwMjRBEUqgCOYwJ9i2YCWn2cj2UNYixGO4ypqeoR2hWHW2kLaFIqAkhJEb6iDXVdIwI+liQwHwI6U/gmolDiMEbIxg9pjCC5ZjyqefjR23nN67+It33FgqtXLvLSxRd48omnuHLlOn3XIgghlDkl5YyztggucuHjKIi+pW0ToivW1raYTqYYJaw8rK+fpus8sV0gxpGkiHys46CuafsjTp9doxo7YliRek+9kZhffB8f/tVHuPf1D1NPDcqMURkWs0DqA0ki1oTSDtS1aIkoERJlg65E0NoQY0ZpueWYGm1vpaOlGLDW0odAU1Xk1JNSIg4HASFEciqVQVkskzXHvXc5Uo54UaBqYhvRyRBTwovgjGHgTRB1jaFUpmQpsHJMHgR8cXOPW5oKO81hREhp4FwZiw6ZrISkC4dGW03vHHbzDGtn72Lt3D0049OIdkS/QnJElAFlMClAZemMID5hQkdyZYOVSjEXkgElQ4tngeaLGlqGciJRKlFRMojU8qdyrojivicNEHpR5fgkpzzcsUCiuPJovI9ARiRjjKH3/lbbysn47I+U87Br4viDfEXop64vrykf60JO9NNnUj/dt7nOUdvRs+DmpSsArBLIiX460U+/B/2kjk0KVVr8T/TTiX460U+f/XHu3Ln4mU6ttdbmf/bP/tkl4KX/9P+qqsrvfOc7r7zzne+88l/63e/8zu/c/c7v/M7dT7ztzjvvDL/wC7/w3H/rMb/ne77n5vd8z/fc/K/9f875/f/pbbPZ7IP/rfs8GR8fn3yrr7OEFHBGE7q+gKpFUCliRUgxl0tImYEFUH5PpJSRhxgKeFPpkuAmZQJCEkJCWyH6crgYY8QaYWwa1FIIfc/m+hhy5LmLV6jGE+686xTKOaISsu8Z12u0smBt/Q4Oc0ZdOwRRhSETQDAoo5iMHVqXkuoYyoRsRNPnwLEzLUO/P5SJOoYSgV54NT0iE2JOBCnC3CCEkNiZL5nvLErp8sBn0NaSpbBqMhktoIxF6QplNToJPkCOQrtYsZovODy8yt7eIfs7Mw52r9Mt95kd7LJqW/qUyTmgjcU6h52OcTLBOkem8CcUQs4Jn3tCSkhQGKsJOUGMBdaaElDSThFDZICIm4qUAjlCTJEknmw7nnv+t3n62QXGasaNo28j/aqlDy21HcGQdCXy8TYBpRR9u2Tjri1G08zP/qsfxKuG133+Q+xdVLz+7X+BrftfD9/3V/iyb/omrk3OE9U5nv7IbxFSR5WK+6wNLBcrotaEXFwlrUrp+dyXBdKkkpYVyajk6XyPHU1Y94lKK3pjiIsVNkTGVcV2bbFt4mgy4j20OJPYEsXIWprlEq3BScanDFa4FlYoI6yWM3IH9cYYUxUBvXUw5+a0ZrftmM8v0x/uoLOirgxpuaR2Y3K/QPKUZz/4HnzrEZdZHByiY2K0uUF7uEe7WrGG43Wjczy1N+dlWu7TmjvPbRKWDlZwdbWiGjkORsJzR3s8sL6FVYJYg7SezVOnaDXUMaNcQ+pXpK7n5nzJ+qkpp6qGM13iC5ptrrYLXootv7VcomzEEiAY1pop4+zZEqHuI13IzGvLTtfiR2MysEil1UCiYrboCFWFSCS3HSZlxmJQKtErS2cUe6pCLRfY2qKd5cWjfZarlo3a8KrxGtvR4INjrBWrdoZIYn26yebmHYzqdVh2rGtNpQxnqim7syXJNIzqGpTghjZ9bQzkoQpFKE63tWhjsK7GGIezFcpUaOOoqwalLaI0MSaMrTCmKhyQlG/5HLWryCpjaoc1ZuC3FPaLzhElpdUiWzBOQ1aEmOjbhLYTLtz7OPfe/zhf8OYDrl6/zPMvPMuLTz/Fwc1Drl+7iShFTn6YGxSBQGRgLmEIRBbLdpirMrZq6FY9T//OR+jnma3bzlONt6gqReg7XpqvUH2Cw5tsOsGOHG7S4E2mFeH/9gM/yuNv+Hweffge7rj3bnQNTz3xIqGf0acOlYtQz6mwdnLMkAt4O+XCXFGqzDNImeezCOXyLHyXmDLO1uRhTtVS5kmlC1hciSKl0iYyboR6bDDTU4y2bmd06gLYNYTM0d4e850bpPmCuFgQe09tFOhckvZ0XVp4cgJ1PP9RGGKxAM/JFk9EjEapworJEZAI1qK2z1OfPc/mbfcwnp5B6wpyLhvntkVwpSuHWF5vzmgfyT6SFKhGyD4TQocog1iNz7FUd/lQHPycSLmsOaJMcc1THtLlEn2Mw/cuEOPwXKU46cqUFqkYc/lcckLpclsBdJfvvfeevu/JHB/GnIzPhaGdZcs8w1/62q9C4uGgff77108y9C+X44IT/fSZ1k+v//Id6IVr6QbXPrrFmbP72LEjJH2in07006ekn3KOJCkTkGh1op9O9NOJfjoZJ+MVND7pg79MGgRdoqorYiiOZ0wlgc5oXURnGqK3Aa10SXpKEW0tUaSUNQ+8ArIMk1gkDYuGUglCAXsqY7BuQrdcUCnH2prlhcv7PPXsJUZG2LzzHChH6ANGGdCW9bMPcjjNXH7yGbRqyCQ0BWSac2Rcj4fEOF1Qqp8QApNzxnuPPY7xzrk4u8PkoFVxlpIqE47Rmj55+hjIBGZ7c6zSxRkzdSmP1hZja4wZEZKwinDY9izmS/Z395nv7HC0t8vhwQ6z3V36doWPgZXvSpmypJL8pB3V2oRKCcWKL2XuxZLRpN4Thuj3AmyFFAujQ+vyOeUUEV1cDxEpsNdYWC9GNF3fUlc15EzfH2FVJAdPjp4UO/yq5aHXPMqrvuS1/C//+Idp5yuauoboB1h0LuJBDxwIgVo3rG/cgRODD7t85Df+HY+98XZ+6ZfeRfwlxYOLJW8HXnrvC1w6tySnlrFxaISsNMYIfd8iKHwIJD2Aq3PGk/EitKslI+uQnGiqij4GRq4pnButmWjHbFXS40Yk8rJlOaoJ+3NcM+alRrMhwloXOMiRrarmgs/MvWcuhtVsDtozz4Ypmi6smPQNs3NTduOSJo24wziU6znKgdVyl421Nc6tbeJObzDfv0ibOrr5HklZVOXQOTJ1jiDgamF+sOD5Sy/zplN3YLTC1Y4rsUWvEs+/tGQ9Qu0jS5NZ5p6oBIfQ+44wMEQ26hExZDaMK2IbYXuygY6wzIbDkNjIii+uNrkjZda7AnO/ScbUhnoZcJUhdz2VBuU9s3aFq2p0XdGtlngS0ozIPqA90BiiMgSdyGhMqsu1TmayilSu4Wal8AlmOfHywQ67OuPEUE1G3DeekgM43eBMg1/NCTFyejxltHUaWkX0PbVAF5dIToy0Y4Wi25qUxTlEohbUkHx2XFkjWpGklO5X2lCZqlyLtkZpi1aWnFWpsDAO0RalzZAEXJggogrQWFBIThhXk3LGaMvQUIb3BbYdwwqnK7SuEBFCDEVsZEjZI0pRjafcdc/DnL/rft70hi9jdrTPU09/kIvPfYwrFy+xs9eSEaxzGGMHqLTCSPmsUiyP2ncr2rZndfhhrnz0w4w3Ntg6czd33PMwzakLXL+2x429Q6qjG4yu7zA5dYrbzp6mHo258fIeL+xc58p79/mFD51iY3qW0C3x7QJRM1LyaDRKWZRVrOLRINoykItokiL0tVYDgLqIUzkO71KFaRN8AB+xKiK5tPslKK8tpbKxiJGRbjDVlMnWebZuu8D01J3Y0SmquiFgyGLolwsOb1xmtnOd+bUrLA52kXaJzYaSLFc4aaUiSZEpwg8RhMK0IQZSH0m6wty+TXPHnZy54wGaehvrGsSUZLAUE8SSNJpULBVLuaTCZYloY8lo6romJk/oVqXCaBCT5FwCsWIih7ImZinzUUrgQ0SSQpuy+VGqAPd771Gi0cqWAwSGCqrBsjYCMQqCvrVeleCEktBXVRUhBHwowOuT8bkxMgmtMkbNMc6+YvRTPAYXcqKfPhv6SauayWSdjZFDnPDVf/AXuXTpKpr6RD+d6KdPST9lgTNndvnz/8d/yNb2Hilxop9O9NOJfjoZJ+MVMn4X4R4l9RZRpFBcT6VNOVlXMrQBl5aCEHr0EPktqpSS9ykgYsi5H0SwLa0eAlksWisERYwBchjcjFxi150jpsJlmIwrDg93uHZ1xGR7CzdukBhYG0/oGoudbHPmtPDB/lewCTqfkQghKYiKWhvWmhGHy5Z4S7PKrT+1Li5KjAFjirMrFAc7Uxg2eRBlJXUpM+9XuCTIMqDtGn1esYqJNiSOZkccHc3Y2zng2qVrHO7uMjvcZbk4wrc96CJ6rXUYY4pDYTKNUyg1ImVVWoDwxLBEJQ1iCs8mHzMfImIUOgtISV0iCwnFaLzJ6XNTXnrh+VKlGSMiYJ0bYtaBEEhkfN+ynJeD3WY0pvcr+tBzcHQDvdpFwpg7738Q02pWBy3GjPE5oXKPUnURzbcAtBqlNFEi1il6rYnecLD3MmGuuPD4bXz419+P7wrjb+fGM1zud9AhoFNL3VTE4OnbFaauWfUtooS+7wo0VoSsMqI0Gk3uepwxZO+p6tLu0HWZ3XYBuuKsGXPaONr+EEPm2u51aqPZOOrQekI0GTWpsF1mETrUbIExhgmZsTJM1JgP2455bbjNKW5MKy53iSsR7vOWcVAkl9gcOy6c22Q0saANuZlw96N3cPXqVdpVJKBRydGaiBGL6hbMX7jCzuUrvGntNh6tNpmQ2DCZ7ZBpxHAQdjk3XueUr1hm4UoP2rRsjUaMxw23N2sQMsE6do/mTKyj6hUv6YARA7lnvRFkuWIjW9a8IoU5U9/z2HgD10Z8gKenGlaJ2HmqxtGmHnGGVeqol4GHJlP6HDjoPYfjipwElhEfAiH3TLxhtVjSxpY0HVEZhU8JfzBnaS2HeA5FM6onrInm7qhh6WkXc57KCw7aBbPcspcit2+cZqQsGIO0C2xV05LRoUXPV6zNDa0T4u3r9JJISpVkSIoDCIULorRgrMa5kjxntS2utK1QSg+tLFVJozQFBGycQZRFa1faMpQa2DQFXE/KxZ0dYNB2gDRXbkKIgRBatLIwzBuCLmIkKyT2GK3IpqJZq2hGDWfvuID7I1/H3s1rPP/8R3n2Y0/xzEefYjGfE4OQcYhR5bVpiL5Hi8YYQ6BDUBweXGfvYJ+nP/qb1PWEjek6dz36Ktr2gLNbpznYPeRjH/goTeVQObKaXaXT56jSkrC4znJ1wMZkTFVXaEoaX4odSE9MhixFnsYYB5C+YCQXfg8ysL2GdglVNvwihfGTYsL7hDVDlbjWhDRssslo49DjCdv3v4qz97+BcX0GYxuyM5i6okaQnMjjEeunztCHSIw9R3tXWexdY/+li7Q3d5DVEknl4EOhSntNLuLYx0BWBrt5ltH5u9i66wG2ts/jqAghEyWVlDoRou+K4+0cpITVQoogKqFNQmtHpFQ8xb4vCXFiwWQkl7qnhCC5tEpFK6hckgohE30o3wmlBvh3AiWFiyQaQVHUr0bIKF1adEII5fukCj+piGgZfrbM68c/o5SirtzvQRqcjN/PoUW4eXCOX/7Q/4U//NofZHv92itCP8VPdE5P9NNnXD9VpiG0V1gpRTL6RD+d6Kffu37SmrpO3Ld+hSwaY+sT/XSin0700/+A47d+67ee+mw/h5Px+z8+6YM/pQy2gkRZcEETc0S0RnQp67baEINn5OpygQ0VgijBKkPMAZ0Nypa0OkSTIxhdsfI9kmLhcmHAF4fDWIOtLMvVisasMa06jpZL5n5JXrXkUUIk00WPaTZY7uwwfvQMmgalFKOmJhHQPYzMmKa2nFlvOJgvCQIpJmJIhfEyPOeU0sCpUYjk4fUPgjalkjiUISuw2kJSLH3guZcv4d7zfg5uXuNo9ybz+ZKd3R26fk4OLSF4xDjq0YTReEJvwdmamEqbsdaWmDw+9FhR+L4rIGs0CQ1Sgc4Ya1ASqZsCsa2qEcuFZzFPiNGElIi5SNrlasbujTntak4KmXEzIWVP23WEGIje05gxKXrqyqJyJnWeLEK3bMkp0XcgfWRzu+L2B+7h6ssXiWRslXAxo82YlFJxXVJZ4MJQ0TCqDNXIISEzajRGL9i5eokHX/0YT/zSLyC6Gr5hERt6cuywRhAGdgcGYvl3yJmoCqwaBZIUTjRZApVxVBZ8Ciy7lvHIUjeOA+9JyXPGr7DKk2MgrY2oIhhXUU8cr+o7VgMTI5HQMbFImXHIaK0YV46tlbCualaqg9EEv4RxHRivr7Mz71h0iXYeWSYhS0cvhsMXrzObP8P2+dNkL+ikcc0IsZbl7gGLvmNv5wZ7N69xjxvzrevnuG9yJ5nIzd7zeWwwXbM4Dni+m3PeTbknrDCq53pvuGO0xamqZn++KG1LOVEbg+8jvq7YzppKWbwE9OGCOgsbIzekLGrU+hojD6ENJJWQ2BOUY2pLWb6M1pmliPGRTWUZhUSKnkZprjvh2WXifFOx0fX4ZJhoR+0TzmnMpCbmyPVuxfOhw9cWVTWYrmc5n7MKJYHynIfaZ1QN03FDMiPaGiZuxEawtDkQljN03+MFfFVRhRadIhIDohWZiBbKJljJrYM/hWCVoq4rlHYYN8JUdUnBdBpRhpQF7SzWVeSccdYNLRdSWsu0QQHJgDFlc52zFK6UHoDLMTAAuYhRcK4iDYIkqcK5KiD/HlThXwnFGTVKSLEn9ZGtU6dZ3/piXvf6L2Ax2+eFZ5/h4gsXefJjT3E0m7NcBiJCZWuUcMuAiblAmbWOZAXEGUeHRxyQqEY1OyGjJiPW77wb23tC6uDKZQ5vPItzI0zVkFLkzMY9hYuTYmHwqNIaITqhhKEVSFAKYoj4FIdXJkg6drNj4cFKEZslag6gbDSNrshY+tADkY31hvO3neYNX/olvPoNb0JMRVLFjU0x4ftQqojMkBKI4LQmK0t19h62T9/L+fveQLs8YrWasZrvc3TzBnm1QIInZw9aMJMJm2fvYLJ5G7ZaLyyb6Mmq8IaOk/e00mCLm55yJOWIiEJrwftICtCrVDbnxtJnD6qkDEImyHC4kQfimQwCOkZSKq6/dqaY2ikNHZ8ycGoSKYfy+6nwf8phTkRpNdQLlPf7+D5JxU0PUcrvKD18vwIp+N+1IDgZn55R9JPCuSXWKZS2rwj95MMnhHtwop8+0/pJ1VvIoMeXB3fzno/8IF/4mm+naS6e6KcT/fSp6SdtODhY5zfe/2V8yRf+B9Zuzyf66UQ/neink3EyXiHjk0/11QpRRaT5DK4qCU3HF04GjClw0QRDChTlBD+Xi6xydbn4U8ZYoetWkKVwSLQj61jaPMRBLEm7Ioq2LwKq61e3Is/7EElS0piUNcQu4saaw8VFZs/e4N6H7yIMpcuL5ZwYeqZLBypznnUu3Tig6yFLJkuZEuRWnXWpFioCtrAv1CcuODEN0eAf59wolXjiY/+RK1eeI/QrYgoY15RU0RxwtWFka5QuJfEQ0UaRyIPLUJgOIhlrXCmxVkKKuvASBEYTxcZWBQSqypBzoO8iKSj6LuNTIq6GxL1U4sn7xRHzw5JqpJWm1x0hZUQ0RguuaYgUlzvnkg5YjWq6vr3l2odU2lAUwsUnn+WFF5+lcg2VdahKEX3E5644NylQOYMxhqYZU1UNVTPBVJbKVDTWsdqdc+/9d6G1wamhLTN5rEp0IRKiwPAeK6WPa/0hF7YEgxtVHC8wWaiNptYamzMpeJahp9KGaVWRkidpw2rZEn1k1Nesba2VioQcsDFz0C7ZM3B6YjERgoLGe2pGrNmaybjmrj7x0qrAgzelJ/Qrjsjs+ZZFhLlRVEGIrecoR8x0k8nmJm1oS5k7kRR6DEItlp3lnJ2DfZJE7pzWxF4Tc2ChIw0KXOLIt9ypLJdMx/XgOWtH3K9rtl1F5zvazhODYrwxZd4vSQquVoqV95jJGisfSF1Gj2tszkxHEw67noPlDJWEMA+0fUczcmzpmljVjJQlEQgpomLEKI12FTvtiqVWLHTNvC1u7CmtmdoJV492aCrF2c2aWhTLPnLQrrgZ5iydpk2B1Ao9QlgbYXJDZ0foHKmiwktiL3pmZHJTc0osIyCsWvqNCSoKOQXaDKPNCXQtyXu8yuhcFnIfAtbYomChgODdGGumNM0UV4+wdYVoDaIwxpXUMqXRYvEh4nOkaRxZafrOExOYypFSJgYhpYhzVck5U7k42a4kSxY3V5MieB/RhkH0KPreE1Msz2+o7GHY3CtUEYtJ0BlSNGysn+fxz7uNhx5b8pYvP+KFly5z9cXnuPTsU1x+4SXaTtB2hHN6SH/LJSRAySCui3vaz3puznYRA9YIlRKqZsKFVz/C4cE+R7uHtF1H70slUcppYCRqJGeSj8RQ2veEEjgQQ8BojRFDTJ5SrJTxAciFvaIMZdOvTBFvziEIq1WLGM+Fh27nVY88wEMPPci99zzMuFqnQ5FCmbONKsD8LFCQV5oYymZAhvUixYBSEVcpnN1gfW2DcPZO8t2J0PnSWqiEkBJOF45OTIWTA7lstOPxwUUGBSF4gg8458rhhEQYWvCMsaVVkUzMiejzkORZDhDi8cFGBKSsieThoKPMcoiUzwb5+Hcj5VzEvtKlVXMAbquhoktSAVErCuNNRAj+2Jkuh9xayy0uk9YaLTIAq0/G58TQiq2NHf7YF/0tVAap3CtEPx13SxynOpZxop8+M/qp0oocAyoHJvUOD57/f2L0DcKJfjrRT3yq+knRhQlPPfcgb33Lk1gTTvTTiX460U8n42S8QsYnz/jzfYnLjmC1IfcRp1Qp2Y0JZx1d3w1NsyUlKIXiWIjo0hahwPe+AExTAVlb59DWIcbSp1CSpXIuLcU5klKELDhtSoy4GtxipCxCSdDGlvLkSqhsoJvtsr49ImpFDIF6q6JdLZh2icViznpYsblWc3BjVUqwB7ZLzjI4rmUiC6Gk7R272Op4kjKKlCJa7ADDhZgCrlaQE+PphBA8xpZ4cSUa5Ya0ohhQeXBHhFLmHyOj0WRwxUNxMkQVlg6aFAWli3BbDHDWtoPQQ9f2t1gEx+67c7bEyfshiU4NH7MqLplzVVm0gT56rHPUVc1ytqTtPT4vS7uQtXS9x9UVTVWTvOdnf+rHqWrHdG1C161YLZbkGNFGUzvHaDxlbTLCGIsShbUjVBQMiamtGRsF8yVO14UrlMpzDqHH54Do8lxDjCVOfkigM6KplaPPPRFuQXF9Dmjn6LLHhchIG5Iq7s7aZEQThKrvGU+npPkc1xSQ7WK+5PTmFjdiS9s4ktH4mLk669hQiiZlqEdgKnZi5uBwwbnxiNRH2hSYGsU13zOqKi4p4YZAVhXT6TpqBKuDXZxeR2EY2QrRitFWhXKe0AVm+7sc3bzC/vKAOyfrvO7UA+zaMZ5AWnmaVcfqzCartsP1M+zC88GJYWuSuefSEUEZrq8OCeMRYVSxDD115YiSWQjMK4ddLYntktFYc7tobJu4vlgQM9Qb67TBsy8dstaQrTCuG0JM+NUSlQMxRbbF0k8Ni9CxrzJzI6yq4hSPgbFW7KcevTZimYW9Wcfhas5uCixzh1dwql6jqkfgJhyZzEbWRGU5dBVXuhWRJTH21GsjKhTri0AVWkbAqKr5mF+wu2wx1pCsZjJfUVcQNit8jFitSktEzkPoUDnAr+oRVTPGugZbVZiqMFecK0BqpU1haMWyMTPGQEpUzhWBgJSK4BhAMn0fS9Ja70vyV9tjnSniylhEFbEQQmkbiKGAjLuuw9rSjqeHdogQwtCWrDDGoodNcsqqzJMxIALONmxt1qyPTvO6V7+eGDxXL7/A07/zOzzzoWd5/uY1EiVdTVcOyRGVwjALJ5QuQQAiCt8B2rLoerKt2Dh1B7effxAU7O/tMhqN8X0qAklKG47WBSpdNo6lbbq8vZnYR1JWkMvhhZKM0pmsFCF3aMkFyuwVPmTq9ZpHHn2IL3vbH+TRRx7H6SnRK3KMxOjxKRFiwllbwgyG533cBqO1GaqFhK7zlM3/cM6bhZwKnyhmQQ2teM4azGDqxJgwWhVBPoCgjTUEH9CmtFXmFEuLXSypcd7HArdWipQHsHbKZc1h+IxjIsZ4q+0xDImtmTwkdJa5MKc8HIboYY07/rxLW0tM/lYrpFIyrEll/USV6qkUcmlPVHIMBirrz/B3UYqUIfhI5uNG1sn47I7se7RumC02WR/NofevCP0EO2jzz1CyD5zop8+8fgooBO89rr7JfXf8OAXbJif66UQ/fcr66Y7zh3zf//VHcdUY66Yn+ulEP53op5NxMl4h45Nv9W1USTizJXI7eo/KCsmCM5YUCqdBGUXIAWJgqFEuk4FRZKMYTSZD0lsqC4USgkRy6iAVzs1xj79WmtAHcsr4djWU4paJVCmNspZaaaIETGXQokuSVB/B2AEUa2nDjFBZAp4w69EK1qYOuXaIdYaQBZ8La+CYs3KclgQyuNUZ33u6riOTQSIpS0nYU4aUAkrBeK3GjRpc01BVNePRiP39ffZ3dlAMkxDDJDqwXEw2hNAP7kMp844hDRyCDOJL6t3NFgh4H8lZihueQoklTxmjIKPpVh1IEb/GOrRSg+NSnGSrzQA11UM7S0f0hb2B0rR9T1VplNHYyg4JTgMHQQVyDPiUqYxifXPKqKoxtpSSH7vIJYWqQGOlW1IZg7YCMaBVWZSPhQGAaMMqFBC3DJNw+SwUnW9x1nDh3BluHB6wczgDFGkA9xaYuS7tFgwLdYb50Zy6HuN9xKFYG6/Rzha4Kayc44luycIH1quGRgsrk2ntlJ7AubbH+cyiO2QqY9oMgR5nDUerwP6qZzpteGRas3uzVGOIGM6cPc1LN66wPxPq2LO1UZE8LGYdq6sHLINn2XYY7bjw8OvYaPeZXXyePd9ynxPuMQ5F5Eoy7Oyv0NJTV7CRNC/M99ltFVMMwSbCtGEREwsrhOw5pSqqesyoauizkNIK3WTOdZlHc81TaslhiLgE2hryskd3LV4S3lYc+BX+cIVDaFSm2lijPZjTOEObE9ujCRdsxQ0JXFvNOeMaGu+ZHx2wbJcchJZtMUysQ0ZrjAErQFURRzVq0XE/hjO7B7Qkrp3b4nJUdL6nyrDdK1LXUWlwKcCkxufEtFeMR1MCmTZF4rihoyMANgtiishsRiMYxCiAdRWjyZimGeGqBl05lNa4usaYCq3L9RFjpqlHtKsOUULIiZyKq9iMmgLgVwYrAe87rK2IMVJVNX3fkULC2vpW9Yq1BojkpFBKE6Iv1SDH8HvjEDRaK2LyqJjLpadkcDg91pjCVI2CygZlBN8nRAwX7nmUu+59NV/4R/e5ef0lnnnyWZ578jmuvLzDarUiU0DIVplyeCBF2CJCREo7Vlb0baRdHqGtQZuGiMM0ltx3SPYIhT8kwq3rOsYIqaSvaePISRBxhe1T9BVKKXwsQQXOjrnvwXt49PMe4LWvfQNnz95NiobFfEXWpZUi9j1GG7wPGGcJIZJCImqhqQvs2QztIyIQYl86ftBDS1AeijwTORUHNx8Lw5iARJI0pMGBs1WB28dIF8qmO5GJIZIZqnO0JvmAMgptDFEiMtyvQob2kIQyZqhoEvIQuhBTulVZZW1hyOTBtdamwKnJRXCWyU6RcyKjUFqh1LAGpkzOGjGGNFRHpdwRUxoA6kIu1jdaSsUTlGkcUUNV1cn4XBiqUVy5eRf/7Of+MX/+q76LM2tPviL0U+VeRsv/mbbriTGf6KfPtH4KEaSEoBy1Yw6OPp/Ta+/DVosT/XSinz4l/WSto6oaXNXQnOinE/10op9Oxsl4RY1P+pstUlzAGANZyum8xpCiQoxC2SLigkooa7FWlWsyKVIsE0+kTAzp+JS/mA9oPUBcBbSUCU+EgVMQISdyLMKx7zzEMgkZW5KItCi0s0QfQMDUjtCWn0uS0JQFNKqENRVKDM5pUJmU8tB6MoBDPyFVrSw2x241WDsAQVMeRNoQC640KWXatiPqhrWt26kqSzufszxY4JctKpXJTltHykKMgUQixHgrCe94ccsplck75mEiDMOiccz9KW2MKWesK209FoWWTIhS+D+quOikAjLt+xbIjMZjIGOMgAKXFV3oSllzHirtYmC+6miXB4ybGkFYn0yxRpOSZzwaIdZQKYUzlpyKsBWKo6+KgkakCIo426O2DZPNDVYHS3Jt6LzHh1QmXsCHnq5vyboc2tSmHgR5AqNJKlNXmjvOblE1jsP9BcsuEJQQSHhgHhLZJkbG4UShTUXShlHOzNoeyZHkDH3yeK3Z6TvO2CmmD9TWUTvHfkgsU8RWFkJiljtO6THX2xW21TTJEvsFUQXqSU3uhfUusTV2rLTi8jPPseo7xtMG2zSMt0/Tty1OGxb+OioGzp/dLmGCJEZuzNXs+LX9Hc7mbc6NFfvtiveNYDIWtg57dKqpKsU9XeBGEJ6yYFZzmlojdYVSDqcVobIcrfrCb0pCp1ru8YGHUsOVtOJSblHzFrc+JWtDHyN6XDZlysAqJVa2LNSrbsW4D6TachR7cBVhsaDPJTUu+pbDeEgWw2ZTc/7sGc51LSMStbXsK8t+1zG1DSkLdqenEsW9PnPgV8Su59HVNk234HB2SL8+ZrFaoFeBelTg0fsp0XYdp1XNSCz7ywULgZlK6HpIl/OBVBvEWDAObRzWNQA0ozVSPcXYCpRB6QrrKqxr0MogirK4SyYLuMZijaHrfXERywSGtYY+elxlBwh/MRyPW9gEIYT+FhS4uKz243OnKomYOSuiL+mQbVtcbGOLQ1nmGIUSUNqQh2s7pnSLn1U1GY0ihK44u2rKhTtew113PMgb33zA/sEhl158gZcvPs+V5y9x/doOWQzZOLQ25BQJOZSWhpjRosvV13uSCEvfkikbe6MFYx3GVETfF5c9FcZODBGtHdY4UgpILvcVQqDvM85F7rz3Ag888hCPv+513HnHfbhmDXymm3mQgMqJmMD7Dq01PkfQpaWxFOeUap0QVUFl54QPPdpoRAuhD7fe61spoqRS8YSUFiNtIZd0PBVLwIJkSkWBEowospah0sCX23TZMCilyMaQb7WaCNoY2rZFH28CUirBARmM1sOHDQxuc4yxCOiygJYNBYDk0opnLcoUiH9OESuGHEvFQ84l1VVrM6wXpaLBGIOkIsBLhdPxvFvmE0QRg7/1+yfjc2MUjMiw1sUeT3hF6KcYK4K/C6WeB1Yn+ukzrJ+UK22QSuBweYoPPv23eOMjf5oz9cUT/XSinz4l/eSqMddv3s3//Ye+lr/5N36NBx9sT/TTiX460U8n42S8QsYnffDXznuauiogTp1QtrSaVNmirC2TawKMlEhvXWK4tSppSjGnwRkQihmUiDnc4kTkvlzYAFkyXehKlDeZruvoVi191xO8J3g/JO4EglZUoun6DoxBSYCcMbamnXdElchthzIBTUvwq4JgQGNcxar3hJhvlV8750gpEUJAGz0IMCkOa7FZyWRKV0iJGT/m2ygtpP6Qq5eWJV0ol4ABbTQKRYoBfFkklCosARHNahnofT+Ut4dbpeVKDDkXxyPlIsq1sRgzQtuazvdMJiN817JaLIkUtoSPgeRbkEQWD9gCaLWWru9RSGmJ0UK3XJJ8JAn4lLAopqMRunJsT87gk0e0ZmO6To4Bncvk3+WIy0LwCVtZ1LBwaTRaFEoXgZ1ypl/sYl3Nubvu5MmdZ7BbmxwtFqSch/cPSJmmMmhtSakwgkoSYEYZQx8CjXZo8Zzd3mB7bY2r13bYWy3IA8RWrGWREjolnBbmIZBNx9raFouU8V1Pg8KZzKpvOa0N97uGffGs9o+wo5rtseHiSvBk1keWeKNDHx0SK8XKB0KGvmtJU0eOmZvtYmg/agkxUZFpK8N4tEFdOVSMaAtJFNMz6+xcntPHHqcMq/mCZd+RTeaJwxv89PrDtPU6k/URX9wv4eYOe8bguxazt8ddruacG/Gs7UhqxFFYENqIrYSZQMgebGntGVvD7b3h7llglmZclshYMrapGNWOWRcIzjElo5xj5gNx1aHW10i+OHAHyxlJDxvS+ZKshIVEnDbcaQ2n77uTsRlhjlYkPF4L6nBGta653RsOTGTd1Ygx+NUc6VeY7VP44Ogrw1HqaRZLfIhkrTgEptMRIfZc7Tu6aKjFEXtPUgklmdHIsmM1USumSqNrjbEOsRXVaIKrR4z78pWqqgmhmVLVYzIa4xyQCT5iaocShfcJbQ198MX1TJBiJJcuE7ItnBClhSx6AAYztMuVaz+FiLL6VrVLjBB82RyKymgD1taEENGVpfeRkW6IMdD3bWmBG1LGECliRCihQwOkuDKOmEIB/BtD6gWyp+8iIolajzmzMWX7tXfwxs9/C7P5IS8++xwf/eDv8MKLL3A4OyRmjXE1RhwDQQWgJN6liOQi6GKIJJ/RVPR9aR9R+eMVLtYVVotkj8YRozDrFmyeGvHIo/fxhrd+AXff/xpGo1NEHyEl2qOWnBnaL2IRqKIwWLJP+NijrC5taimjrKFPidAV0erM8eFGWT9KW0qpogkxl5Y8XYRgaRMs/JcYCqsnSvmOHQviNBx+ZFL5uyrsmJTSrXACEUGGlqVjfpmx5TukrMGJgpjwbVfmBA2ucgNbRoYDEG4975ylVGulhB7c5q7vSxqpGqq7FIhxEIWQ4i2HPsWAHpg6WnGLTRO8Z8CnldcAVFVd/i+GT3Z5Pxmf5tHOy7oLgM6o6pWhn+arB2m79+Lcm4D/eKKfPsP6KRyz0ZRQ24FXNVQmnuinE/30KemnZo2V36RtHdaNacbNiX460U8n+ulknIxXyPikD/7MqEGcxWghJg85ImoIxkg9KRcmW4yCiqqwDDIkQrnIRMiUpDJjLBhLaDtyLGXVSUV0FvoQSMcQ4pQIfYfvlyQiioyrGkwV0Fmjs8GiiRIxlUFJgiysug4AZYXsA11OdEdLYvSksEQFULks8JIz1g5l4UkY8DEYW5gAIZby6yIkoS9E69J2ko+lfCKTKLdqNIacFL0POFcWmASIsWxsbdC2ntl8UbgljePwYBfJeSh1Nyix9D5Q1RpSYUaINvR+VdwsMl27wHcdR/2cEDwxgNIaYzLOKpRqiMljbSkntwa8n9O1g8gTXV4XmdFojDEaYw1V5XCqcBzUkLaktZBDHCCpxWnRPoE2KBI5ClE8pjaQFaJKy5FWCokwmx3x/JPXuO/xR3nyt59gbW2Lq888TW0MUE5pxuMJjatp44ocLb7vUA6yEuqqBt1B9uSsIIJWwt3nz3BqueRotmTZB/zgNPmcWBHpY4esMjOWjHTFVmVY+kRWGqct97g1xArTw4CMGryrWCwiSiV2lNDMPc2opnWW3K24MbtM3dREY/Bi0KEnrFaMq4aJF1KO7OcVt73q1Zw6fydb99xFsJAWHdIFLj//IcJ8we133cls/ybXb1xH2zFt69nv97l5dJm8PMvt2rCO5mWlWR0ecWN5yF6/5B5jUbllq+3pxw19cBxZ8FNHCEIfI9spc0+1zjLCva7j9ibw5KxHrzdMrcGuerSp6Qm0CjbdOp1fsJuFaqKIfaJf9JgQ2Goc1o3Yd5Y6GqgU6yljfaA+swXbm9RP3SDFSNetECskEeazlthU6Okp2pBIizleB8aVYo6nJbJQiabv8EpQtcGuVmxWI+zSo6NnmkG3e5hmRByNmJPZGY8JjUNcxknE64CRCi2KalRRj2um0w2msVyV1XSDsHYaZ2tG49GwUVZFcOZcxJkxGKtR2pFzQhuLM6WSRAZGSAgJoiar4oSiCsTZWoMSQyLeAtkXAHFGmdJ+ItGQkiC5VJjE7IfEt9KioFRVKlAydG1X+Dg5gcpYLeWaAnKOWK2JaRBfqqRVVlYPm2ro+x6jHSlBPTU89gV38eBr3sRyfoPr117kySc+xovPXeJgf87/j70/j7osS8t60d9s19rN138RX0RkRmRkW1l9QVbRH/QoNrRXpPSCKCgem3JoHQZ3IEe46JCjDFBxCNzLHQgiInouB9ELpVwVrjQlXSUF1VLZVGZWRTYRmZHRfM3ee601u/vHO/eOhKOSZFVllXn2HCNGRUV+327WXnvOZ87nfX5vnyAXhTWyqVYAOkkHT2PJqdRNs/Sd00rLhrRCrzGW3A/YNnD+4mk++/d9CW/+rM9jY/MUw6Dp5x1pFlBFIWmZKopTIqfKACsDTeNF0FknkHqjUVq6umkKujLJstJkbelDFm6Olc6mxiy7BBbiELBGYljGibhGyZygs64VRlJpkHOq0R+1un7Wu5V4VeoW5FucZqkkssaQUiSFSM4FZy2MRthWg4osO7GGmChFQOXOCdsnZ+lwp23BpETIGW08OUHKcq1Bugw6a/Hak0LAaoN3ck0UUqUVc8JohW+dgNMLdCrTFI32FnrZxK7Hp8aw4xEqSmWFMl4Otl4B+smoRxi1/yM5PyqbybV+eln1U7aZsbOM/JQ8a+Rmy3mtn9b66SXrp+nmHsdxGwA32cFPylo/rfXTWj99Co1r166ZH//xH9/y3pev+qqvujkajcrv/luf/HF8fKzf+ta33vlLv/RLm7PZTF+9evU9TdOU3/lvb3zjG1/zl/7SX3r2b/7Nv/ncS3kepdQDP/IjP/LYn/kzf+bmww8/7O+///7X/9Iv/dJvfc7nfM7ixfz+93zP9+x9y7d8y/nj4+P3vJTn/1QfL/rgr21qlzYMuhgRb8WARtqSa01S0qtBa8ixyEk/SngzxhCj8AQSQwWfypdxOXNnCiVGTBHnNuZEcQYbGkjQNBrjPe0syOSRMipElDNYJcBXY4w4KymRQoAEJUHOijBALoaUIAyxclsMMWWcM2hVKOjaHa52La6RlZwzQyi0vkXEt1k5EcMQAJmUh2HAe4UxGqV7uh6sbetCueDZZ3txAJOUTM+VTGbLqE4p4k4rVcgpVlZBQmXQWInqFCl5jmmgIOX2zgkkWx4jMwyRFCNDF0hR3HSjCkpnNiYNbdNIV13rMdqx7GhccpJOW0qgs84IsDWnglFWXHbAGmmprk2d3EsFrpYIlRORuoDOmRgSH/jlX+WL/9KX8qs//fNsntrkoQc/xLid4ocKdCUwDx0pwfzkBOc9UztGZSBGUhowSrhFannzWkszGrF3ap8hJPqup6REvxiIfcbTsDnaxBaNUxbtRhirSSniU0HlQj4eiBst+voRk0XhCd/RZ82RhpA1k+QZYuFM9oRGc2wyvbfErmOsW7aUZ2M6IrvAhhuzuzWlvesu3H2fzrMfeobNg216Cif9CX68z+s++9U89Ru/iu7mpDwwRAPeYo4tOt2gCzOOhwnPDDAabeG3BprcsesNMURS1ozHLSdDzyEd2Yxxg2JKZCNmtrJhpHqOj06YO0dpN2ibMakEsrIMI89oNCbOO0Kcs+gTJ0MgaNiZttwxL4RJRifDxfE2N7oerKPEQr9IPJsGdkYjtoJm9isPcT1F5hOpUmj9BmU04nCx4FKrMLMFQ4xM24ZN5djUlpuLGUZZploxbVuUUZikCSEwUhY90viQiYfH+I0xsThiVoSmge1t4sYGfnYd1Am6WJICPWppN/fYOnWGjc19pskD4Noxo8kYZz1osEqiB9LtUK0g5ilJhUjO8h0WU2O5eTOUXEglUiQFgTZm1cVx2a0spVQZoSKOjFmyrtKqO5jSq6mOGGtMps4vWpvKNgGiJifFEAMuQdu61eOCcG6A+vhiXCitcF7mvpJhI0s3TNs4NkfnObV/nle99nOZnxxz9akneei33sczT13muas3ODxekErBu9oVrSS0gqaxdJ0ihYi1jm7e471Be9g7u8Wnv/mzeP0b3sjpg7OMx1t0Q+bwsEehsAK2qSwWifTkIt9158VoEec4VecY0OIQ5yLdOaVDniHnjHGGHItU2iiN0yK6Yw5AqRVMRcDTFIZhqOI2U0QpY5HrlIvMb9rdcqJRy9ihph01srnXagXDhiL3BFQnWqqOur7HGie8NVVqcwNN0zhSAqyWA55SMMajlCLEAMrVbnuarG5ptlIKpv5v6Hs5ADDI2qblsMgYQ0mqsmiEJaZjoKkOeh4iKia0vxWXWo9P7mgbS/0Co4sW7tQrQD851xHTr2JRpGjW+ull1k/BJwyKwEAX5cD2ZL7AuW6tn9b66aXpp+k2V4+2AGhGLe24rPXTWj+t9dOnyMg584Vf+IV3P/jggxsAbdt++E/9qT91+Il4rs/4jM941ete97r5D/3QDz358Xi87/u+79t78MEHpz/3cz/3oYODg7i7u5v+/t//+6d+5789+OCDH9rY2Mgfj+e8++67h49+9KPvPXv27Me1hPMrvuIrLh4eHpqf/dmffezj+bgvx3jxXX1X/JRShZYmJVA5iPPr5TDQKgUhA0kAuEUYDTFEmXxKwjhTIadAyYTUY7wVN7jm83PMtVTXYJWjGHAusjgR0Sod6yCGjAaKE3B1LjJJ5RQhijubhwTFUJBy4YJ0iIvLDnhFuC5L1sxSASplUEqYAdZqQJOKTGAxRqyV0mHvHbP5vC5Sc4HM0lBQFTQqLcqNbeiHBdpoNjYm5JwJIVOKcC7a1qFUwTnN0fERwxDqAlkZhLVDU4wRUNJ9jgSqMJ/P6PsOawTY6rzFW433Duc81hjaxuONfAaNq+XR1QVJVaymrGi8J8Vcu+JJBzJnNQpTIasKa6TZS8pJSs8zpFiw1tCFAW+93BemxbvIpQ++h+H6V/CH/sSX0XjD888dMU89s2M5gA8pU3ImDYlFP0N7S4xS5g4FYzTe2FVJuUziWoSENUyaFjbGUApDX0gBSgdtASvbEVLuURjIiclok5sOutmC7TKhtRbn4AHb8tgQ6Bc9Q2NxVlNax0YHZmyYpxNUzLjqrB3PD9na2qZRjjJ26IuOwdzk0jt/mqNZ4enfep40zyTTsv+q1xHR+LGhHW2wc7zFjUVPUQVNRhtH7zQ32ymn1BG7857FibCWJhaOJi2XjOeZIXKtKHo/Ya/13Bc111FslQbXJ1IunJ5uY1Th8T5wnBJJwyz2DClQdGFeelrtCI1CGYszmsZ6dk1PFxP0ijRx5PkJo9aRvMKMWyINV3IidicYm+jCgoExGI/yjq0caVvLlrNE65gYi+kC+xTGg+JSztjGs9eMsFmzP56yKIlFHJgpjSoJk4LMHaphKJrUePy0ZefwhGvjhkEVtGswLjHZ3uH0hXvZPbiNdrRFO97AXJ8B4JsGvEdbg0LXTaVHa81iscBohzESEYlB7jMRj4UUBgHHWxFIwjaJde5bxteEO5VzWnFNlkKoFFmgjdE4V8VS/b2Ucp1PxT1dske0tYDGWoixOtso5vMFWguLJcaINVaiMlk2sMsjAm3M6nusiqpssIaiI8QOj6HZ3mRz+/Wcve919P2CG88/xROPvI+nHnucZ556lpuHC5RqMcZRUKQ8YJJmdnzIaLvh0z/r03jjm97MvXe/RiLU2UC2HN1I5BRlg2w1Si8ZPqY6vhXyrxBHX0lHN2uqWw2AompblBYRKteqztVKo7QFpQnVrbbOi6utCoKql8cwSpFrV1FrLZn6OEGqC/Tq85NKgoLEKiWIKOK6ZKojLh1Kc+UFGWeJQaoWpItcJqaBpqmbf6XQSn5X1hRVP+clK1fXpgYSXTGmxhFzJqVQozGavgrunFNtMBBQylTgtkZbWdMyCpzDlUJQ0m2vZNCT0UtXBuvxcR1L/QRL3p99ReinnM4Rhv8ZY/8RVl9Z66eXWT8tDgcaN0Y3t3hY/bAgkdf6aa2fXpJ+srbBtxMAvHNYn9b6aa2f1vrpU2R893d/9/7y0A8ghKD+Wz//iR5y3dMLWJH/9fHYY481d999d/eWt7yl+2/927lz5z5uh3TWWi5cuLDObb9gvOiDv5Q1Wkunm0IhEqSTUNejK3smxYQuCqcMMUeZ6LWBHIg5UpI8nc6yEU85ijuqNXmI5D7Kl15bEgmDRUdFjJmuHxhCIseArmyCUoTJYrWlpCwcF6PIKZBjRHrbVVc1gvMGbcV96oaAmFMixBSaRMF7t3IYcrnV5VcMGHGi+77DW3kvKcW6QImD5d2oTnDixPjWk6OUXMcUpLxda/quQ7r2aVLMjEZjJpMxIXaE2AMFrUFQBOKQpBTpu54UM85YYgri5BqDdy2TjSltO6ogbYO1wtZQBVRRWG0w2lCKLMQUKcnOMWHVsouUIcSAs666SlmAubqQ0kBOVPFHdbbFmEo6YXSDVg3WgtHgGkX2BldachP5mX/+b/iq/+V/4v0P/iyPPf4Ux/M56vgIgPki0xlFHDKNN1italk2KGOIsS501tSz2iKl2s6hq6BVOtO0I7RpMXZEXywlDNhnr6MOF8zSgk0/Zry3RRoig3dob+nDwOjUJmkITLRinAtNnyhHC+bGohcLutYRiqKLEdM27HaGK0PkqhpQrWe8tYXdbTg5uUlr5/Q3rlKGMW/+U2+lv3GNh37m53nuof+E3dnn1Kbl8PoRi8NEnwZyFzG+5eLmJr0fcakEXucUKgVoDGO/RXDwgf6ISyFzvLdDKBpF4pQpbCjNbJ4opoFNjbp5hC5zjrs5cwxpPOFZo/C+weBQ8zlbky1uy5q0mHFMwA6RYiaMtCHajGoVzw9z5qVD95r5lufcbafhI0/z2DwwS5aDtqEbF0rMJGcoRuOVZkNptsZTjiI86QYuDJGNZsw15rjxhDPKkXMABb0qZN/Sn5zQRI1pFHNdcHsj9GQDpSwlBIIBRWJ6+SbzSYvfnbL3mtu5+1WvY2/nPJgRoYBSFmNrxZ9WRCOH+t452nZE3w34xjAajej7gb7vqngwtKOWGCMxCQMrBqn6oNZIKK1QRsSJbGrF0YwxYK1eudalFJxraBq3AtsrZSrAWlxtrWXuAEUI0sGzoMkl4qxGmxpLyBLNiALFwhhDSgGtzGre0UWRg8QpYo1h4OrrjRlNpnWGISkUFlsKGz7RaMvmHfdwx4WLqC8o9IsFjz32MO/9jXfz1EeeJvYDhML5u0/zGZ//+bz5sz+frekZhj4xpEDoirj79AJSthpj5fWlJMKNOm8qCs4ZQkyEEMXVtrIxVFrTD8LoMtrKNQ0yV4p7Xbt1GiP/vRRiKRQtbq9CWFglS6dPOThQtXtnIWuR97p+ZlrJz2gj/LQc80qUynwvMnq5QZFNgyeXTIqJoRdBrpXCLFk4KdEP0qFUUQQ+XzIpF3KSz1vYNazEvFKmdp7LdW01EgussH9jNSWlGuWxdF0vLCGtiTmgrMX7Bl2vU4kRtLCSslVMd1bacD0+ySPluukCiWLp8orQTynvE+Lb0ep/I5XLa/30Muunrjtic9KxszlhqGxb7/RaP63100vWT6XI2gxy/6/101o/rfXTp8Z44okn3Dd8wzfc8XI811d8xVdcfPDBB6cPPvjg9J/+0396GuChhx56/6OPPtp86Zd+6X0/9mM/9ujf/tt/+7ZHHnlk9G/+zb959M477xze/va33/6e97xnulgs9F133dX9nb/zd576Y3/sjx2DVA8++OCDU5Ao7lve8pYTgN/5b+9617sevu22217/wqjv888/b97+9rff/h/+w3/YPjk5MRcuXOi/7du+7amv+qqv+l0rHf9LUd9/8S/+xdY3f/M3n79y5Yp/05vedPKn//Sfvvb2t7/94tWrV9+zv7+flr/7Ez/xE5vf+I3feP7KlSv+gQceOPnRH/3Rj9xxxx3hG77hG87963/9r/eWrxvgHe94xyNf8iVfcvzx/Aw+UeP31K86xkzKEectoEglSccwa8Bo+cIVmMfaLjyLM5FzkXbqKciXKhRSlg5LIkYkYqGMTMaxiKuQh4RTmjhEckqE0EvcuGRxkJW4xkpl4pDQRmCdIfQIESeSlXB0tM7M+jmoQtM2eN9gra8TfW0FryDEgDGaGMUtXpY2L8utQd6L0tVVUgK1WXalC6FnujFGjKuG0EemG5bTp3d5z3s+wHRjlxgzOanq5stzd4s53WIOKtUISiHXrmz9UEuWtRGXRBm8bWi9ZtRu0PoGYxwmS4m5cQKbRRW00sRU8LZBoTBKo2wRfgvivlljICu8NQxhIJdCl5aiVBFilB7nRTodpRAhZ6y29ToqiinSJc85clSkpAkJ+sMZ104SCcujH/157nrPF3Ln/a/iTQ/cx69/6Crn734j/Nz/xvHkzRztHLCVn+HGk7/GuBUIcNGy/VBorHXyWpXCtvJ3qzXWNyijsd5hGo9rp7SjTYxv0JtTNBr90cvcePRx4jxhs8JUx0fngkkZhoCaLwhtI4721JPVgB0SIQXmIXJ8Y8HG1i6briUmoRP2zZhnz57l7LnTeJ+59vAR/Uc+womOGDvw1LveS5ydUOIc2xcuP3WJ61ueGzdmFJcw2bC/MeJOvcVBM+UoGo6OCle9Y5oTyiqOOsUHdOJSO+LAT7kTx+M60ilYRMN/1oXUaEaLI7ayY8spiZBNJxwpzU2tOTZTJosZ+zkSc6brTrjpJyQNZTymxMiH5odsmhH9YsbJvEP5wsbOJsk6jG+4/MEPA3BBGfo289xJjy6gIzQqwihy5EccZs1xUgwpM+0Ldw2awzLnapu4XY9RN+cMY8180lKKYjGf0zYt+uwms9KTOkMiU04SpevohgVzq1C2MDl3Gxc+737Ovfr17J+9B6c9yig0mkZpwhBxropWK/OUUZYcC9ZaxuOxdAvLBe8teE2MmaIKXd/JfFKUAKyr+FUVQh1zFnB1rVoxKGrGQkSXUVU0iWiR2AIrGH9BBGwpqYoUqegRo0xEjNOGGEQcWaPRumCMquJN/FTn66bSUHk7kGOS3gBGE0tGR/ndrCKhGEr2UBIx9Whj8abF6wr/j4jo95rXfdpn8cZP/yxuXH+O6zefwZjChTteQ+vGDPPA4niGthqroPi8cqFzlq6WRYHGUFIiF6k6kU6eAjwvOVWkQsE1MiflVBASThEml1Jk5HsuX3fFsltnBmKulQNZ5oYCOFNNqfrfJEIk0SQBRbvKANMoYwhxIOdSo3eKthmJM50CqsaGNLJ2oRSF6p4DxhlAy8ZB34JmU1wFiieMt78tftgPAWeNxOvaplZL3UoyLLk2zlmUKcTUY70jRaS6noL1HoXEkYZhINVrQkqkkDAKvNUQE7Ekpr75vSzv6/EJHstGVrLVemXopxxkXlJKNqBr/fTy6qfb73g1Tx9FbvYN0d8GQBcyuqz101o/vTT9VFg2OwTRT26tn9b6aa2fPskj58zXfu3XviyHfgD/+B//4ycff/zx9v77719853d+59MglXiPPvpoA/Ct3/qtt3/Hd3zHU/fdd1+/v78fH3/8cf9H/+gfPfyO7/iOp9u2LT/4gz+495Vf+ZX3vv/97//AvffeO7zjHe/48Nd//dff/tBDD41+8id/8sNN0xSA/9K/vXCklPiCL/iCe2ezmfnBH/zBJ171qld1733ve0fGmP/Dz76Y8dBDD/k/+2f/7N1f93Vf99xf+St/5eqv/dqvjb/1W7/1/O/8ua7r9Hd913cd/PAP//ATWmu+9mu/9s6/9tf+2u0/9VM/9cTf+lt/68rDDz/cHh8fmx/90R99AuD06dPp//hsn5rjxVf8pbAq604hEVIil4Qi460lh0SJGVVdgFQ7++SisE7cVa00wxCwzpGzksktFUqR+EnRIlZSiKQhihOWM7EyGZxzKAptG2kbj7WQckBHVcuMZfqzxhBiTyGRyAIpJVVujGIIgZAiQwwSJaksAmPNKj5itDhfilI5AQKBjUmELeVWhyWrpaW4cC7g1OktConHPnyFFDQpOYxBIsVRnJGUxemOfRYHpy50KUcRz3rZat3QeouzDmsNbdvSWI9WCqtV9bmU/H95kuqsuRrL0WgTUGSsduQiXcaUsvJ6Q5ZdA4rQB3FStJKuSTXGAhptZEHXKeMbJ6XeWpg+bjTmZLEgJsPNYxj6TNcvCDHQjBwndkwKLZtnLjI9tcmvvHvBZ3313+Z1x49w5V+/G4Br48/n8tbr6K+/g5PjX2R7lPENWG8pEVQC5WSxso1wGZyzOCWRFes9o60N/GSMbae04w3ceIO23SZEDa8+Tbz9NmaPXmL04WcgwS5jdEx4o8kGzGRClxXGKvLE4FGUcIxXmlZ7FFFEhYLRpOXq7Aabpw9omjFldkI+spwxW1ydf5TRdsvV7oRn3/2rdN1MxJ+BWZ4zvzFQlGZ36xT37p/j3F3nmM978pNHHA09Nxbws/3AH86WIR3z4LYiT3fZGgIH107I6YgzJnNlPOYJNyF5TR4pYsm02fOciSxiEM7GyNNsetJRxg4B5UDP5li/x/v7BR+dHbHXjxlZeLZb8Cg9F7GM2xGntrbYnG7z4aNrDIcdzij0yYyzfkR0hisjQ86aPmfixoi80XJDtQQ1YpoXbJPYz5qpKlxLkdInZnnBrF8QplMokHJmYTXFa1I/ZzhZsFgsOFQaM4bpjmF8152cf/XrOX3XvWycuY1pu0nWUEISJkms4GjkXnZVcEo8wpFDFiFc4q2olxIHNVfujMRSbBVhBmetRM9TXG0udYUVK61RSsSNNZZUxY1WrJxrEbQiaqx1LLuOVW1GGBK+8ZQi0TxxpSOKgrFLTpWW94BFqYRShaJk7tBGCzfKVKGcgFxZKFoA3MoYnF52Rkukkir4PxIVWK0JKWKNwWtDTgZKpKTE6d1T7G3vYYwl9oE+9BIbdB6lClkl4iCsnxgDCl1jHwmUISuZH5e8FWcdWiEuc5Gjj5SywPNrVYCmRoBQUKTKKJWM81YOb4sId20M1ki0sSTZkOQsByNWZYnTqeXmIVVuT6xzmbwebWQOYcX9qVEj9KrqYBmHC7FuOozGGQMlEQYR5ClT76mAscuDHSsxnyRCOQNaWYw2DENc3XdKLYMx1JilqnNxwfpbTF1KIQyykZHnTFLJU++PnAtFQzIS18klUqxmMvG/Fy2wHp/AkVKg8R23nXoYo+aE8MrQTyjRujlHmbfW+ull1U+//J+v874PtaiNPXA7ABzNBuKw1k9r/fTS9JN/QZdUpawcjKz101o/rfXTJ3V8//d//+473/nOLYC//tf/+tN/7+/9vds+kc+3t7eXnHNlNBrl/1JU9lu/9Vuf+fIv//Kj5f8/ODhYfPZnf/aqecZ3f/d3P/PTP/3TOz/+4z++9c3f/M1XDw4O0mg0ys658sLH+y/92wvHT/7kT26+//3vn/zmb/7mB97whjf0AK95zWuGl/q+vud7vufUnXfe2X3/93//UwBvfOMb+w984AOj7/3e7z37wp+LMaof+IEfuPTa1762B/gLf+EvPPcP/sE/OAewtbWV27bNfd+r/x5jxC/64E8XzTBErFOEIaCQyIN1hriI4tSkKJGCUgBdS7iF22aMI6tMiZlhWKCMRhVN7GWyLkBShZwDmiJA1GJw2hNMkokrZ2Lo0MVgzYiSlbTmpuCsIZMoJgv4eUhAJsVBTvyLQgXFMAhY1mqFbbQsfloiESCT4DAMpKRw3ouItHUSyQI5zn0EZ1AaQo51IZPJJ+XAs88eknOi7waMNhwdBebzQEyGw8NjCqWWMSdiiOIyayOcBQ2bkxHOOkatp3GGYhDOT5KF0iqDBXwVwzFKe3SHtGhPJTNkueYULSXPJQsUFUTAxkKfg3REUuCM3ApDiOjGYkqhsQalCt62oDROgR8ZYkkEqzDac3KYuXoSOVwIcbtkhd+coE/vYNKItPcmRpvnOLxsecv/8GpuhjHv+E9X+PfvHPiiP/AWft8fauHH4Nxpy3tPoFtoio4MJeNTlK6FJgvg2yhxp0vCFbBIVKUZjXDTKePdPdrxNqPxJqPJNtgGrTVNO2beZUanbmO4/bUcf9ol/C+/F547xm2OMbOOLkY2rWMxaAbd0IbIooCdjhj3Ed8PKKd52sDN2cD+jgMVadHYK88Q2zHFezYbx5tO38b7Q18X88xT8QiVFKEE7mymjMa7jHWm3HkP0WyTe8M0FMzBKWyKmOev8dylp/hpq7Gtxxz1bNx8nnaRuGEL4w1PozPWZHZCz72dYkslhmh5VhWeDwPN5oTh6IhNLPnaCaeUxdrI8eEN5t3AQbtFiT23jads58zYjDjimPFogu9hPHJsnj3LU5efRScYOc1weBNNRjnFzmhMDoY+Jo4yHCpDGU1pk2UUO04phU+JuDhk1uzQeZjYlkMUamuLIXS4w0SfJSKlFwt6E+lOj3F338Htr30Np24/z8Ft59k9OKDxU0qWihFFwegMGhaLHq0jGkcuAo6mursyMyhcIwu4MgLB1qqQU2YRE855vG9E4FjhblknsRLZnIkQXYoe76sYUIpSBaKxFRytK0uFKl6VzGuxlyiHsxbnHF23QDsDRWO1oR8GQCqpJSZmaG1bGTYRZcHhGIIIxFJVT0oZrTzGaCYTQxiGGrkQcQ3UKE3EuwaNwldUQ8mZ8gJOiwCyNaVIVLpkifpBrNfjlnjTqop4HSGD0/LaSAVrPJGEN7bOj0GaCPgGFKSchLGzvIYlScSlUkq0NaSU8c4Tc8QqB6owRJlLBeJdKDFgNcRYyDGStKUUTVS6in9VBa4AsEG62BVqI4VSIAmv1nh5PTFEEaxV0IaUcUY28TkXjDJy/xip0EpBnHdx0RVapQquLhJjKbLBsVqc+1QKpvGkLJuP5T0JStYXratYVYRY0GrZNCDjG+lwV1QBQ70PpB+q0hqtHJpENtJj0LaezeaTin5ZjxcMXTQbo4/ytV/81wlDIIdXhn5K0k8CVTlLa/308uqnL/2TmvueeJb/+IvXeezhwObBf0bnZxlKWeuntX56afpJy7w0mUizjLV+WuuntX765I9v/dZvvX359+/5nu9ZHVL9+T//5+/q+/6Jv/gX/+KNl/P1fO7nfu7shf//8PBQf+M3fuO5n/3Zn926evWqSympvu/1pUuXPqbSyd/4jd8YHRwcDMtDv491PProo+0b3/jG+Qv/7TM/8zNn3/u93/vbfq5t27w89AM4d+5cuH79+u8pJfupOl70m4gZUoFh6FBZvtA5ZfqgoIhbowFKoihNQYCawospJCOQ55yDcEZinTiyxCUKEWWl1XmICVAElRnygqJL5T9AytANPUVnaYueC6VODKEItFopgzaudhYyhJAZeoF+FsSxprakL0mYNdoYKSbPBa0F/hpDqCKzTuoItyAXsEVRUsZZR86pxnQyKRVu3jiu3AmJeaSUUINM4JQs3BilsFYxGU3QWtwybw2N95SUcNZiFPX9CFBbWpJnrFFYjXStUwpBxiSCMkAipgBa2qaXIhWauRRxoYEwSPWAygXnqtglyuswjsY7LJaiICpLiD0pDcxmhaI7TuYLtBqxt3+WWZ5yZBaMzp1jctcF9i7ew5kLd9GbCR9834ijZxxTozh/V+Itn38bVx57nvPnHZv7Iz56Y8Z/ePecLwP++BffztHDikvvGrhBRplMRjNExdRE+pRoS4tJGm8NI6twzjEaTRhvbeE3N2k29hht7mGaCX6yQY6KtpFYkrGFpBSxSWxN72Xxxbfx/G+8h90Pfpg+FxbGomJhxzQc9if4Umh3d7ly44gNO+HJU5nLw4y2M9icyWT2zYRhkAXSl4W0gL/uuWqnzPcPOBsju8c3uT+NSGiSNfRe0WRHLomrzyy4NOo4rR0Hxz1FK1yKuOvXaYrFdInULWi9R40dqgWvPf3xCUMpnBsrLmrFOdsSteKJ2TH7iwWnNwx5EXguZJ4ertMveg62dugzHCYI3vBcOOKudpM7x9sM8xlPhzkXXcPl7oS0f8Ad5y/w3g89TsmZLdcymS8Yuw1s41A6k7sFyjmGkcdPN9BGYZXBGDjfJ8YmcWQG3MYmT2tPmifm3cDgLLOTji00jTPks9ukUyOmt5/h7B13s33bHYw3NthupihrCVkqMnKs3RmVEkaLFoBv07SVAyMiUADSMmdpo9FKr7qQgbiLuRSs1pRYGPogVTRGUZKwZQqlVsBACEHEYIamaYgxrYSNRE1KBQcLn8Y6J9xQIxvZJX8k5UQIhSVMXmupXlHVKX8hS6dUkLJSGmMc1qj6uiClUh9X5qQQe3Kxt4RQFaIxJbTR8j6KVAotHWXrBDJvrHRoL4rKrCq3RKyxOOOk0shovDEMQZhiRcsmv2mkMiDnTEziSq/A21pDluiaUpGYIo218juYleMfQpQNQo2CmPoeQoxQoeHGKChyUBIjKCwx98Ln0fIcItYtKZa6YZA1Q2mFNm61kbC1U51RBq0dKUvEQymwzpJSXt1PxmpSjPWxFV3oVyyyGBPWWXGUEUaOcJeEMSNwauHtaGWwRpFKhiSPrV3l0yhdYdm1i+EKcq5rZdNyvTCoIh0+ldJYY+lTJBVFHAqaiDUZVWSN9K1ECNfjU2O8kvUTLHXRWj+93PrpA/8OXv/a0/zFP7PDv33HE1xSP8mNR55GmTNr/bTWTy9RPyledX/kne96TirsSlnrp7V+WuunT/Lous684O+rMH5KST388MPty/16fmfX3be97W23v/Od79z8u3/37z51//339+PxOL/1rW+9exiGj+lCjkajlxTp/ViHtfa3Pe8yMv9KGC/64C9EyCWjjLQKj2mQE/YkX+SswCiIQ0RZiaYYXSMgWhOHLNGJUhiGgDOGEhNGSYl2JEAUuKrWBoVBGU8pCiLcnM24PltwspjTas2onVRug2z0c44SRcYQwoBGkWIhZ+nZZKxlmM8pdTIzSqNzIRthTei66BXqJKJV/TlWk3HMmZhMdVqEPyD8AyvMCmsrI0OYOkprKY+3AjIdtY2UhXsn5copY62T8muUlHOjhNWTEkUDRRZoozS6SGwkx0BxcqCxZOtIw5VCycI0oHZC0qZGUlKocFdTy51zjdyI2xZzpm1lIejCQFSBGC3ZaebdQDcPBKPIHbhmxObOBeL5+5netsftZ1sunL3IeHLA6Z2WmyeFp68XwkLzljdscvF2Q4PCNoVfft9VnjnRPD0P9LM591yTRj6/+IuBL3nr7TwcG3716j7Nzg7DyYJcHCeLBRPnGJkWrQLNaIybjHCTFr+5xXjvDJOtPTa2TtP4KTkprGkYkK6FRimsEpaRsxqUxfsxz3/WW3j+jjP43/oQw0ef4zRb0CSih+tDYAPL5fGYJxWERtNriLOBU95hhsj5jR0WOXL15gkHncJSCGbMFa05fm5OMzaEkFCLQCqaMMzRO1OGPGPkR9hrM07pBZsoWARUTDQlM5k0zH1G5cKmNoyGwNG846QPjMc7+K0pbrHgDJZRTFzv58wKKA/TnHG2IeTMjT5RdMa6hpOuR6dIVIU+FTaNQanM9dkN5kNmyB1jP+Z9pfDobMbs8UvsOEuIHToMeBK28UwnG3QlcyVlPqwtfTtBOYc3Gjebs2E1c6M4PEnoXtGpwJyOY5cZdsdM9/fYO32GrXMHHNyxz3T7gHa6i27GtRKjkFVhGBSELELLaDIZpY2IRkwVsUtxp+smray6iAEYpSvMXIRnChHtLNpYKBKFWnYEUyWT00BICduMRODmRNu28vtIty+lSmWbSKQhUyBWLg6aFFIVXgFTDFqDtQZVl8hYhZCwtSTGl3Mh5ohrWnJlp5SS5TuvpdokRoEUQ1kdbBqjcd7Ja01J5pL63lWWiEOMMg81TUsIoR4mxPpeZI4ASWwohCOy7LgXY8YYD1VUNt6v/nvOwupJSXhibdvKBgEt4OyUqtCuEUElnB9rxJEuGXKS92isuLLO+eres3LVVYV4y+cRiCnR+AZlJBpYDd/a905c+FygZInSmepOa6ugdg80Wtefy2htQEk8j0KN9hRiihLSc6ZGljLe+yqAFU3b1CtWIyOqAK6uhcKfUaVUkSvRmVvxqVvrh3ye4ohbq1fCWHhk0kU1lQI5QRZWV85Z3of1Mn9nKDHK4UOWudw3BruSievxyR4hwpXrd/Evf+b/wVf/kb/Mwc5jrwj9hNEQBbieM2v99DLrp3mG9zwy5813TfhDbz7Pr1y6hyeevUCzM1nrp7V+eon6KUtTDKVRRq3101o/rfXTp8D4l//yX374kUceaQAuXbrkl9HUr/7qr7769V//9Vc/Ec/pnMvLe/x3G7/+678+/cqv/MprX/M1X3MTpALw6aef/pjz0m9605vmzz77rH/f+97XfDyq/u69997uZ3/2Z7de+G/vete7Jr/Xx/Hel5zzp9bp8IscL57xFwX+TErSYS6X2iEIOU1XMAwBlQtxGORLpyCnRFbi3jrniEE4MEUlyPIlTyqhnAYSzntSEvNvcdJz4+YJV24ecjR0LHJm7D33nTlg1DqgYKy4Ds43lAolzaEn9AO61Ik5C+Q6KwVDxCiJOCxBrqUU8gscn+WQSSdUhoQVLgQSBXHGCrQ6Z5q2YTRqxWki0dT3oLVmNJ5gjKqHENI9z9dFSxkNtZ29ApxGnDHnWXQLEd1G3AuydDWKOZBTIemCMtKhLWdpWa6R1wvQNC2luteqZLQWF0dpYWRoq4kVfq2TwitHP8s88dRTRA2T3V38hbvY+4zPYDq7yezxS9yYg/Ij8tY2bu8MG6d2uPvuuzl7aszuZELqDDplYo6YDU87hd/6YOADv7ngc183QYUbvPPXruCnu/itMSmr+rnDIx/p+OC/+FW+9uu+mGG4wY2jjvnimPm1m6QjmHhF4xS+8YxGlmYyZu/UeSZbp5jubuPGm0ymO6A8MUNRMPHC8ShoYhLRbxuLMRlVEnujDYZ77ieeO096/3uYvfdRrs0N72lbjv2UKQq1McEUsLHj9gEW3kEzZhaP8ItjfDui9Q2bFE5OBm5uFWwL29cO8YNCnRzjTEtCkeJASJlpGXDPnhCMZhQX7LkJDkPsO1RJ5MUxk5jIzrC7PeXuzX0uDTN+q9xE5Ux/MidazZUQ2HeKxsFs0bE4DuAs4XBGJONcy36xZKNJQ89207A3npCsJc06TIQhZZ4bFsy3WpSf0GbDNCnGJRBLYlY67HgTNwjEfJYjJ0PmqoHQONLIEWJEnySyVcxPjkklUbQiTBX+YI+te85z5o472d2/nZ3T+7TNBJU0442WPCR0jhSViSGjtScYhbMi0ogZZwzaOoJoH3LOFdysqlOYsdYKe4YKSr71JcZa6aIYkyKmuALka2skFVwKxlgsijBEFosZzkmnulLB1Kq6xNYtocNaxE0BUyHAwzCImwwYKz+Xk2zqlZINNVpXpkpaOZIgLeeFOePQWsRLyfLacs6r9yQurarVMSLel5Urq46Npbq2uTCdjum7jpwTKQeol6ZoiaEIB8vJazfLeMstsHYpwm9ZbhJkoyAxGxAhqLUhJeH0FMoKumytRRdVO+nF6t7KxrttHFGr6shqUoKY5VBhyfYxRqOVHHgsAd02K1Ia5HCjVi3EIJ9HQcqmllGYkhOlVOFfMo0fEbsFOSdhX9X3WlhWNYiLTFl+fuJsl1IoKoMCq/QSM14Ffm1YoBU5q+p2SxdRlFo1N3DWSVQnhd92bQVqLZ+JKqp215N/yIA2lkIWUpEzxL42FUiFVKuzioKildxnRYHSjEcO92IX9/X4hI8UE5vj5/iCN38XY/8MYehfEfppWM4nRf6y1k8vr34yXqO7xHsfnnH1vU/x4M/8Jf7En7iBbR5d66e1fnpp+iklLn2k5Rv+5w2+6x8dct/9aq2f1vpprZ8+yePLvuzLjoFjgAcffLBdHvx90Rd90eH58+c/IZy5CxcuDL/xG78xffjhh/3m5mY+ffr0f/V5Ll682P/bf/tvd778y7/8plKKb/mWb7mtyGn7xzS++Iu/+OTNb37z8Vvf+ta7v/M7v/OpV7/61d373ve+VmvNW9/61qPf/RF++3j7299+9Qd+4AcO3va2t932tre97fl3vetd4x/7sR/bh9+uX363cccdd/S/8Au/sPne9763OX36dNrd3U3/peYkn4rj99TcIwVhvthGRGOOiRBy7SZXoCScM/SdCFdjNNZoQhJGQ9cFKJaiPMqbOtlALpEudJycRE4WHYeznuNFz6IX92LIMpmZWJiMGibjDUw7ImvNECPWSFlvThFywhpFzEXKdlMmpiAlzCnhtKUrC6yCrfGY3PUs5gukJb2Im1JKdUyWoFe9WqyMEaZGRlXmQmQ6HtF6Jx3jioCs0bfYD8ZoATtrKTEWyK04xSVVFycOpCiT52wxw2oLGpKWpVMjnIaipcQ8xoSq3ZxyQVg0OiBV9IWMwFIVYNBgFM2oJUcpDw8FtEmMpg12NGa6tcl0b4O723v5pZ97F8eXbnL63lPsb55jHiP95ikcAxu7O2xujZnsjnFbY5QfcXNuOLk5cNLNuTkfiMVyfbZLPrRcPZxRBk1zynB4MnDq1IjTt22RzJg+KG5rZHrtUuQjH/5VHnr35/CGP/xF/O//r/8nVk2F81ISSjm8b2gmDVsHB2zun2O0cYrt/dMY7zG2JWdFihHnGow2FJXRXoPStKaVMn+jsTrji6U0hX7RkTbHDJ/5BaS7XsWVX/415lcW9N5SApzOijM24FLmc1PDQ6nj4Q3HxX4LHxZsGjiZaB62sOm3CYue0/OB27UhhUTxGzx9do9nb9xk00R0jsSUMa3h3CKQ5z2TxuCMZ5Eiz3fHTDY35DMeN9xM8GuHN/hImJOdwseO435Bq2CYjulnie2tLeZGkU3GOlDKokIPRE5tTuhiQKnC5njK0A3ERSQ4Q9CFMhmTBsONojmJmanznN9osV1g7goLCpetJaoG52DWzZk1LfM0cBAXuGvHGG3p2jH99hj3ql3O3HWB/fvuZHNnn/HGaQyWEjx5ANtobA4Uq+lmg7huNW6ldBaDoegaRVmCmWUT6BSraAiIc0ouVVCpKur0avKWaEbGaU/fLdDO4Y0lxYhvDKm64c46YhJYvPEW6zxD6CBD24yqK5uqe5qJMeOdVH+IGybd6LQWh9kYwxCDfD+1VMvkkrDei6gsCms8WQs/RhuNVU7EGWUlXIcoVdWSsvmdPBlbozIiMo2xWOsIFeQvYl4OFJx35LR0OpexZ4lUhNTX13zLTV06qtZK97uVsFXiCMcgjjdKhJVzrgpYEXFwC/YcowhPrQ0hJjFaKsNHW4OxugpjqeCpyhtX1xRjGlKKxJABqfDxvpH6HEn+1WuiCCHhnCLXmE5BESsTRylL30esa9BIrEjp5Xutc2YBkC57lIyuDQpCjFD0iv+jjVQeWOvr2pjrPaBXf3LlCIUY0Ui3U1kLbnWxk+554oSXIodDEvjMZCWO/nIjlJNUcxlnUaWAlktFUeLUa0VJlogma8W0sVg+xSzr/xOPlAK2PM+9p/8N1go77pWgn0K2LC34tX56+fXT1FsuXzvm+Bpcufoz/E9vz7zhc9/I/+eHfnGtn9b66SXpp5Iz43Hi8/6HwHiS0Gv9tNZPa/30KTUeeOCB7p//83/+2DAM6oUNNj7e42/8jb9x5Wu+5mvufNOb3vTaruv0Qw899P7/2s9+7/d+75Nf+7Vfe/EP/sE/eP/29nZ8+9vffuXk5OTjchF/6qd+6rG/+lf/6vmv+7qvu3OxWJgLFy503/Zt3/b0S3ms+++/f/jhH/7hx775m7/5/A/90A8dvOlNbzr5hm/4hsvf9E3fdGE0GuXf/RFkvP3tb3/+ne9858bnfM7nvGY+n+t3vOMdj3zJl3zJ8Ut5TS/3UC82s/y2L/t9ReXqotTOc6SIylC0q+W0WSZSwDlNiAPeGewS3pobYpR24idDx7wPzBY9i77ncHZMKYaiDMo4nPM0zjFpPKOxofEK6xRtM2F/b4fTe1tseoOzWjqTAVpDjAMxDgzzwNBJ+/VQBmLIhD4QkuLG8U0uXzviw5ePmJfC7GROHyOlgNKmOgoiQI3WlXWj0Bqcs+zt7dJYjyyeYJRCKwHVUh2YXERsS7t2hcqqQl2pFYZSXG1sdV6o7lMu6AqPRkHUSbrPZQHfam8rC0hKubX0chJHvUZOjJNuUcSAyhntHMUajHfkWn4+3tpic2+T0XREzIWjG0ec3DwmhsCTl57hqacvsXXwGt70pV9Fpzue/MBDTKYt+3sHZOOYGQvOszXdIXQzuqeeI928xuLkmLbZp5z749z2mjNMRgnvGj7ztac5ufosP/HvP0qzfZZQxjx3teO+mx/gHe/4Cr70i/85Tx3+Kvfefob/6//tq/l/f9f/necef4awmOPcwIXdPfZ3t9g6OM3p8/exdeo82o8wVuOMlfdsHDkBSqOdlHE7V69v1shsn9HGUXSmwTIPHUkrYtH0Cvobz/H8Ex/kyqOPc3RpzrbVXPSZvXniotacdIF/ZxKbfeJ1fkR0npuN5okwY9+MUPPAxfkhB2pM1AXlxzzqHR85vsHp+QlmpAmlYHPE9ANbqrAxiLt19eY1FjrDtEUbT4mwUPBY6bkSAiPn2VOOvY0tfOq4b7JJGBJX+hmpC5iU2BmNGU3HdGHgeNZx4jR9PzAZjzBhQIdEUsL1WPiWlB1mBF0qXA4dGcNmO2LWL7heMsE6WmXZt5ZxN8PEnjIaoTcmjPamlJ0J22fPMT19nun5c2yf2mI63sPSgFGUonFKFvaYBjTSsYwcIUFSCY3BOC+sFCTeUOSDRCmFsxIXENaIzC0x9lCkxB8lYqOUjNUG//7f5N63/iEe/Vc/w+w1r68bQ7FqrXekFOqmNpGB0ah9gUsrEQ+UiIthiFWM3IolrJxNlavAW4rYKA56FTIo+Q4rbs2xWstrEbBw/m1iNwYB3evaZTxVnolSIs5zjZfFmIBCKTLnLbutL1ktyxjP8j0ZIyyZlBKL+UIiIEqhjbBsbHXXl9GLJaNl1Z1tWR1QRfqyK5/SFapf57SlaF262ynlGnmpDZRSxhqJXgunR0R4TFmiJVDjM5W9haqHGwVtqsDMshnPlamznDNBLobRZRXvWwpNAGVMjc3IPG4KLIHjSrMSsDkrlCqr31shIIowh2IMmOUtoqRCYMlFsmbJMSskkM6mQEqD8NFSrtclrR4vpVQ3aQLaLkWtDj1iTKtNRMnqVkQqy2cla6psjrQt9F2iVwU3anjja05xetSgjf7vMorwShtv+7LfV7pukycufx4Xz/0yrb/5itBPJ2mTw8PPIvMzwM21fnqZ9VMwRez74Zitx394rZ/W+ulj1k+pHvzkLB291/pprZ/W+uljG+9+97vvt9b++3vvvfdkPB53H4/HXI+P3/imb/qmM//sn/2z01euXHnfJ/u1fCxjPp+3jz766DTG+EcfeOCBh/5rP/fim3vEXqCb2hO7IJNXqZP3IJOodQ7jLDEnYb9kxyJoupOe49mM+WIglESfI0PoSLHQNC1aGXZ39xiPRzTOM208rTdMR2PGkzHtSFwb0zisHwvwtGRCNxD6gcnIYa0m5kwIA7GXeEkuUToRZalUjDkz5OUEp8hpQBXLyMuiOYRAyoGSpUx+6X5pJe3LpZ27dJMLKaBRGGWk25BTqFLLiWPE2iUzsC4wRcqXi5L/j5LJKpWAQxNrx6lUwGhp115Q4ookcTtsa4Srkw0omRgzhaIUaYgUY5kNC7qbHfunthntbDMxjmIsfuSxjaMZTdjc3md37zRqDCUHPvzBR3j0A4+xmAVCDty8eR07npBODnnqQx9g6957GE0aZmGOvX6Dth0xv/Y8aj4jZ0XfzRn6I2BAK8dNdZ2zd2r2pruc3DjhIzcS/fPX+fzPNVx+toebN9k+m7nrfsd9vYV3wGs/LTH7UEFvW6Bwav+AZz/yNDFD41vaacvWmTMc3Hk/+2fvlLiDgq5fYKtgVcbSth5ljDhWEbRRUlpeN09aW0zJEh1RBedHlD7ijMOWzHj7LP71u+zcfidXf/1XWHzwaWJv2J2MCF3PWBnO9x1Xjk4IE8WHFz2hbRi3LddSxJZIGQLKBEZ9JJ6Cna1NlGlQrhBVoSx6DmeBGxPN6Ubz+lmBLjI6tYMm8VQ/54bOjJzltPXc6abQz4hO0zhP182YRlClZ54j835Baz0xZlIslBhBCfTYENHGcvP5Y3bGY9zmiP7okHFSDFiOFIz7yKQUTjnDsXUk5ykl4/sZm63Cu4IdR0Z7p9g8e5bNc3exceoM4709/HSTdjRBFY3BCkA9ZSCBMpAyxch3ROOIFZTuvKMZe7QppJxIMTOEiPcONGQMzkkMJgMoWbALhZTBWI9S0mH8Fjclo71HL+EcSjGZTCg5schZurolkSvGagG2F2o3t+oGyk5cYmLLWAa3SsBzTvU7XPDOiUgDtJHvYyqFYirrRSuGoUdXnorETcqqi7heiWSpSYEi8bckAkgbh1IFXU3UJbB4yTEUYSZvNVXHfcm+yTVkgzIrASobXIO2FUitRIRSN966urUhDsgzysZcXPkqmBUYBKat0CvmztKlFf4L8rtIDEOrIhuRArzgc41RHGhrJHahtSKmIK+8aInO1DhgqpGXUgop5xoRkeiOMdSIXkYpuxKPSyEcU2IJCY8xoZWRjoK5YK3C1riIUtLxMKW8usYrvomqH5XWdWMgG2H5fGqlRMmUJNDqnBKKjLOWpJwwe4xhPu9fUHmQcTX6lNIt17wkhNWmdL1+hqKrcE6xRmIkrmRMFb9FKpdMALc3ZuzsC7ZL6/HJHjH23DjZ4Rc+8E1sjv8cp7avvyL0kyk32Zr8O+ZhYAhlrZ9eZv3UnrFMdx3h+Rtcem6HX3/Pl/IHLpu1flrrp5esn9CKo5uJD3/Y8fo3Orxf66e1flrrp/V45Yzv+I7vOPXZn/3Zs1OnTsWf+7mfm37f933fmT/35/7cc5/s1/Vyjd9D1Levp+Zq9WupukGlxn7nQ2DooRsSR7MZXScsgZwzqmSaxjNpx2x5j9WwOZ0yaT3eZ7zVNG6M0aZ2OwKMxniHtXIYVKo55cjoklHOkWKiHzqKsoBiSIk+RimnVgVZQBNKZ4xO5CGgdaFpDb7R9F2ilETjHAoIMVGq27WEOCtqabKz4pJksF5LZ6NaM7zsHpSK8DaUyjTeyWIr9gbSLSmTark2qjCEQBiUdKPTmZwjVjdYY7FAGgJRGax2lJhoLQxFoWLEtpbxdMp4MuH0uTPs3LbFtfkR/+qf/X85O9rFjFuyGrF/+iz3vuY+fOto24bxeAOjPRl47JEP8fgjTzCbH6KwKB0wPlP6yHjfMlEzyuWPsjEsUFev0G51lBuJ8vxzQOQkZ9x4wsZY3LP5yQlmtM1jH/0Ij1wuaD+nmRYWveEPb72WP/h/CdyMz3DPhYbxeMyFxyrfo0TmV+ekZsAoR+yUAGRtQmXF9u5Zzt35KnbOnseNJqAdhSgOJMJqCENPipl2MiGl2qbdOCn+ri5czgJPd5UfYYB2PCLlTAoSQ2qtpz97H80fOUV549Nc+0+/xJOXnuX2ySZbjeLOrpCPT9hTmcZbZotj9vKYyybwodjD3oju+kA0huYwYebXaY3i+sijtWdMwYaeXzt8npu25fbRFtfDISM1ZmEVMWvmSjEatSgvnbG00RzOBw7TwIH3XAyW5+KCG2HBmZ1dSoocLgaSs8yGiPKOiMLg2Ng0DMMxuTXEoTC2E+JkzFAK5eSYrtVkpclJE/MCbQOTXcWZ07ezc8fdjG67nd3zt7G9vY8pDb7dkM2f0itRonTtHgYY71aOMKrQDwOliKOqjSbHgb6P9H3HZDqu/KdMa5ZRC4VGEUIUgLBZxjLK6nsp8RTpJLYUTcv/zZXxYawllIL3LUpbymxGjBnnXHWDb8UyjLHkKNUmGokJCDB46eaWGoUxVQDF+pzisFrl6uMYQgpSiaJ07UyWcU6vBKDWAp8uWTavpsaTTY18UGMKEtGBZXxu2TFtPG7p+34l3oDfdn2stZQK608hYYxlGEQwFcA4v3KzxS23K/d4iAPOe4zWdIuCs7Y2DNDkmFFGVze9bqaXvK36Z+nYN40nJxGdbTOSDpcxyiahHgrklImpurJiUGOMFjAzwuRaQrdvxWcs1lqGYVg955KTAwjEm4K3bnU/eGOI1b1u2xHDEBmGTEoBExXtsoNbkY0uWlWBLtdXoipSwbAU96VIfHMpQnOOqw0PtaJgiEG63lUQ+LL7HErWDHmMXJsbSExHGyUcsVIq3DpLBNIY6ayqTRWrAylnYpTrFIpwd1IfSCrirCGXtHoP6/HJHSn1EqUFlpUhrwT9NJ/tcjz/Cpr2X6F4Zq2fXmb91NiGx68NXCmR42cNTzz0RmZHV9b6aa2fPib9dOmS5Wu+aoef+LczPu3T1vpprZ/W+mk9Xjnj0Ucfbf/hP/yHZw8PD+3Zs2eHv/yX//Kz3/7t3375k/26Xq7xog/+cm3modGkDP0wkEqgPxpIQTHETNYwENCNZTpt2d2cMGocI+cZNx5NofENzlm0tQJeNgVtBpzXoBzWOFLMFAWuHYEy5NCjFThpe4fJEsvIGnEmi6Ybalc67chGIhy571el27mIs9I2nkyP0aXOTwlnNDErRk2DNZlZt5DJs4JLtVo63NKK3iiNVdLqPdUybOlWFcVMVhD6AVmkDNSJLeSEtZqMuDPaKkbO18hJlpJ9BMQ6xJ6ULVoVJqMWnQem21vs7O0zmU7Z2ttlsrvF/rkDNnY2mfiWsZny4Wce5memv8AzH30a/bzh1a97AGWnPPfsEacOdkhlIKYZYw/KNtx1z/28e/dX6ecLmnaKn0yYz464/txlQpiT5teYjj03bj7HsLjBLBwTc8Y6uSZj3YCSLk4pSDe483edJecPMStP0e5s4CZjWr/Nw5cjX/jmN/DI40+TsqI/jhwfngCwODrm2s1nedOnfzqXLz3Fw+95mEwgxo4Lr32A137eH+DMwVmMH5HyMjbgSbZ2/dOaMCRKVnRdL5BfEouTBU07ovG+xo0sznlShNAngdAiHQVxAzaOKQ68Dnj26e46Rdk7IPzWh7j5K+8nzxe0NNzfbqNbzWYqJArtyHNH8lxaQOw0xyozlEw7NrSpR/WKj5w8xzRocDByivu14bhkfv7kBmOvuN0ZYglEClt2RFSaSzienh9zY+hxNOxujHmDargwbnh0cROjHd5JpUPWiZnLlF7+RAYUiXii8KNNeg03u47tyQZqMUhFR9sQmwwbI9ozO2zfcTtbFy8yPnWaUwdncXYDZyYCvU2y6SNlUh9Q1pLIGGsopXY8rDELAOs91uoVmDilhNUa71tQim6xYLHo8L5ZiZBlN7icZSE3RoR7KAGtNI1vVvGOVEVNCAFfN7gpJZyrcOJS6PuevutEKJYlCFm6nCnAWk1fK1yMdUhHuMSobUVELgWL1vV93upSWYqS51/GPBTiRFsLSlXYtEWptBK1ywiG1QLGlsdaOs7VGS8Fa1hFVsIgFTByzysWi65u5kUMpSRiVWItVOe4dsjMhaFfoBDQvdaGEGK9Tq7+/oBS4L2n8Q1d39OHHq3USkCXlGmahlwKqbbYk9cnsT6JX5T6GeoVK0drTTcMwofSSjpjVv7MskubVPjUw4ksPyOEGfm7CD5TYx8Sl1n+EdaMXglbpdUqPrMUtDHG1UaWolFonDOMRy2xSEVESKXebxLhySkTizjdyigo4nCjhJsU8zK+qOq9Y+thBKAUIQ7CCNLiJOdcK5Aat9qAkOSeSSWSc+0qWINNJUusBywpJlJC3kPOGKfwjaEUS06wmHeraFYyhYOdCVaB+RRm1PyfbeRc7z+A8srRTzmf4njxv9D4/8youbbWTy+zflrkBcPCMbt+k5vH1wB4/vJza/201k8vWT9Zq6iFeoRh4Ph4vtZPa/201k/r8YoZ/+Sf/JMngSc/2a/jkzVe9MHf8bEixR7yQEyZrDOm0Vjf4BrN9rihbTRaJ9qRxzqDVmDrItPahjBEmZSMktJuJ63ltZaObllpwOCNOBY2eaz2ZKsoOVDJgivXKsZUIx2arKBEMEommGHRo3NBYyFHrBpRCChjUSVQipQa5yLlwAqJ+iqtaRvPEKKATbXBWCP/TckERlEYDCUWKNVdqiX3DOJ0qCJuVEihcid0RVYomZBUQRVFylKKnFIiAKl4SqcoAU7tbLN/+zYX77zI7k7LeH+f6dY+k6ah9SN8Iw6/BlQpZGMxpYES0dbTLwYuf/QZbjx/zB333MHm3gTbTpgvek5m4n6c3HyezfEEdnfpu0yYRcIiU3CEcMKNK5cJi4HRZIra3kblTO4Dugj8O6bCaNLQmpa+6znp5py76wKLk56TwbK5Db02KI55+PEnuXPzTkaTEe/9rYdwpmHy/EcBuFBO+ONf/QU88Lm/n9/4//1nzt15jt2DV3Ew3eRVr/80Jtu7JKVEZGpxA6Xk38rnoS1+asipsFgMeOfROWKw5Jjo8oB2Btc2aA2RIHwbB0UljMkYDdEmcog4XRhve8xiwE1Pc/zAKdIdFzn89V9GfeBJxs6TcyH6TNtpZvMZ0Tec0dBqxdhpNm1mY1igi+E9MZF0YjI12KJhvuA1gyE0no+WgbHfZFCF3A2UkafXnqe7nuNYOEmJba05M56wpQ3TWOh0IA4drrXcGE4YFh2MPCkmhpAIurDIA5tbm6R5j2osJyFyMySGmzfYOt3Sn91h+77XsnvnWfbOnqPd2KNtNhi3G6RYsM7I5jIXVBFhop2jFIlcKV0gFUzleyy7sC0ZITEEoEZmDJXDElBId7J2NKLrhyo2xYUEETvi3kmMgnzre5NLJoVUO7vd4rB2Xb+KIyxFU4yBHAUsbZ2hHbkal1hyZswKoizzikQQSi4sFguMkViF1hVIn5fw4ELbNoQQ6Pu+slhkx1qyJgyDxCqqI2ytq7GCZSxBHM2lcJOuklQxXGr8QSDFJRe0UjhnCUEqhm51pBPBtny/Iv6WzBSNwrDo5igK3lvZUOiyum5yvRRLlsswBKxzjJqWrnRQMilHmsaTUq5i12NeIFSXTndKIhIlumPEaa+RHuesHByQobyQZ8MLxHyR6JAVoSoaUeIwktiQ+0HVTnbWmgq1ViuxqJTCVhc/xSixj+Xhg5EKlZRi7WAYGKKsR7kUWTeQyJSyUoUlr3K5AVFoJ9cwxYI2AudWNXJIkZ9V9f143cgmKaYag1F1Y5VXon0JHpdNlcSQYqpdqIuIcqmyR6DixmG0fBekm6E8cTtqUVp+PxnF7lYrbveLXdzX4xM+jo8Vh0fyPb1x44QYTl4R+snaD3L7/h2UohgqY2utn14+/eS9Ztx77i2HnPuiz+RHvgcuf/jhtX5a66eXrJ+kiUXVJikTQ1jrp7V+Wuun9ViPV8h40Qd/WEXbOJrGYY2WL4uFVknpcDtuQSeyihirpZqulkEba1F4VMqYolAlk3KP8Zas7CpyYlLCK/lyYwwhJzS1O9KQxD2qi0jM0iocpJtPqMLSoHBALNJVLqbM0GcpPRcwA6kotPGkrOiGVBkTsngNQ8+SEOOcdEoK8QUdrJW4TDktJ5xMSAGrrbxfZVAo8hLIqrVAeuuEJB2aLEUplLKkbuC4i4RciGGOsS2d3sRs3sXdd7+a3/95e2zubzIejQGLbgy2SNTHmIKxwrpQleExbeH0wZiTY8fYT+j7I5rG05TC8TPP8eTRMTduHDN04uDHxTGeAZcCXimiysz7Bf1iznx+wub2FlpFZs8/i1YK344Z+ZaYIzn2lJQ5vPE8Q+whKEKBlBUxHnN4fMjJbJexucHpnQ32F4/xzKMdr3vT/dzz+Znu8nPs6AkA/+Pnvonje9/AtUcv8Zrbz3L/+dO4ccOoGWN8i7bCC0lFMaSI0x5VwJhm1R3ROo9zukYMZPNjYkZniReFIRIzhLFDayufQ85Smo7BlAZjFMdDIPaFUY44Z1GmkIeOdPYi6QsOsPf+Ft2/+0+YKzP83hZstBzlnkXW7I7GfHhxk/umGxwE4aI8FHtuNIo7kiefzCh2Qnf1BDWCxigOBk3sE/7UNoe2sBh6+qal6wMhJc6bMbuuYEJHXgxcHU/ZSAY9aukaRZ8CWWusNaTQkyaeYb7AkDjqjzhaHDHePaA9czvn7rnAmfPnOX3+IuOdM7jRBKsNQ0p4BS4jglM7UtS0zoOO0slt7IlFgL3OKUiRjKpOae3QplQVZqnymlJ1lMVpts6TYmToRXQ4a8k5CdujLuZpBeV9oUgTxy4HVm71Mm6xjEsYo1d/lyGCzPsRhczQJ7Q2GK0ougLdjakd1yTuEUJYiTHjLGgByJfESmgunfWl0+q9RFdWgOosEY2lkFzGROSxZc6S56hCuQpIreW1iCBUxEE22M6JqLc1fjEMXY3Z3Ho9yyiEsFoAElovOTribEiXOkUpS/i1VEeKeJXfiiGtBLdSCm8cJYsIss6JoKtslBDySrzqym5xriGlQkkSuwCJdZgaufHeE2OqkGezEsC2Vp2klDDW4SpPJid5bjHyb1UP5Fp9sKwEuDXkfeVSRCBa/YKfU2gl3fFEYFbuT0wC/q/PEUIEXaTqRSF2M4qSlTS3qt1Ul6Btue+Rao36fiWyk2Rd04Yl3NxUBz4l2aAIMNusNhq2ClnnDeRC0QpdpLIrxkSoa8/yPYvYjZSssMpQWs20NnpcRkrX41NgWIVvZT7YPTXm9jMHa/201k8fs35SrkW3Eybbr+bRDzT8CHDXwT4XPvOPrPXTWj+9JP0UQkDp5dq91k9r/bTWTx+HIW+tlLUoW49P2Kj3V0Hut//qeNEHf7ffdo7R2KJVoORE6xrJ9FuN1sLesN6ScofWtaObFRitRqOQ7H0CCWWUESobvPX0i4C2inTLECYbKVVfxBl2AFLCVMc450wqEbS0VFdKCcdDFUpKlBSw2hDJFFXw2jD0CYWhi5F+6IgprKIoISXCIA7mstPQik+jspRsZylHzgC1i5AxtWQZQGcKhZyVTGxa1UVdEYdIzIVFSAwx1/LpzDBAKJpQFH7jFGXzAmZyF3Z8Cuc8fVZQBomFuBanWrQaMErKqtNszjwck9IJw+yI2c05V65f5w99wWfyK7/0W1y7esL21j6LxQmPvP8DOLHlKEv4qkoYJXdJVBIPCkUzxA6nhe1w/sIFVOM5vPI8OUQW3Yz++IgwDFASuSRxNdE02jFyjomG1+7tcP+e5uD0Hmd2bmO60eKcwqqGcu0yenSWvbsustG1AOSZ5uipj+BHsHNwgb7rKWhiygixG1SRxcI1Y6wWUG1GKh9Szgz9gLGWppH4TMniVFmnMErTopjNe06Oe9pRS9OA85YhBDRW7r/csdkqUjLkonAodFFMp1NmMTLYlvC6t7CYHnDt5/4jOx9+krFpSNZwY9ER2ykPas1HM3wWjmOtOGoVDyjL8UcPeSadsLXVsLE5QU8989kJftSgRiPmXSS4DYJqmJ/MOWc1TZlzz+4+N+cn9CGxfeqAwxy40Q8MOVGSZd4PjBVMjWJoPM3ODuPNO2j2ttl57d3snr+D0dnbmE7OMG00ZcikQdgxqQsooxkpQ+MMyQYoERsLWsv3QhsLRYSsrjeMVYrELS4JK4csYWw1mnPAKIN3jhQCpQrMGJfOq2wRZVEXdzOGVB9TFnDpqiaxEkrGGg1IhMJoiYsprbD1SXPO+CoOrbU0rZPvrrISdyilOryDiF7nRDxoQ6LI918s8pWIXb6GrutWIk2cWLeKalhrBECckvCzlGLoe5z31bUWEZ8qk0X4MNQ/AqEX4edqRY4GXdCIA+0atxLKxizh2fw20VdKfsHBpzBtXONYdnlTStE0nr7rV78Ta7c+eZwK3y6mbhqqG5zB+5a+H6SKAImFNE1bNyUe5yxd17Hs/JYVAn82FnKR65sTIcTVtVvdA1oA0qp2a1tyfbz35FSIcagaTGKHwgqS13GrckGtNjjOeYYQGJaVA0XuzJxzjUYaYo0XWSUiMKki7LAk95i1DorEE7VaXm+BqpecKUWR8rK7aIGSMfX74LwnRFkXDHZ1wLGsMli+dq2p34cKGddKqgRiWq1zpVZ/GG3JutT3K4ciGs2iDxSlyVoRuojf22RqNORMQGGW8dL1+KSO2287x+HiAH4TdvemnN7beEXop5BexdHsn9H4r8b5R9b66WXWTwpF6gvD8ZzZs5eBs+yeO8PumXatn9b66SXpJ1lfZd7y3oIqa/201k9r/fSxjSullDCbzcaTyWTx8XrQ9ViPF47ZbDYupQTgv8krfNEHf9OJoR3VcmelcUbKaY2yFGUwTqMMOOXRyy81VrqBAYUsoMxcaitxJe6X0mDqiX51oqFglSEEcYKpbofSwpcA6byVq9tQkHLuXCI5DugMKQ+EnKQ0uyQRkqVQiFhnSHOJlmglnZkM1S2R1YAhhSrIZJHURt67WpZpU4g5kYo49CuXImSyKcQhEVKiaIjziHWOLg70XY8yLcXtUNwp7M4FzOg8xZ/FNJbNTcPuxHNyY0E/FCLyHunnxO4aOVwndMfkcMz85Jijo8Dx4cBTl5+j1y3n3/BmunjMM09eZmdrn/nxjNAlnB/h/AijCn3piDnTLRY449DWEwoUqwllIGrISnH24ABdNEdXbzC/doOT0KMyKGPJBawzjJqGja0Nzpzb59yZs9x2/iLnLtxF4xoaN5KNTdIkNKnXGC8l/YvDK3THGnVZGunE7gbjzbOEEAldxGgHSmMrD0PVcnSNfD5LFoimYBHI9HiiiSkRBnE/rdJS9eAagcA6w3TTEgbp7hRiBCW8oCEEmqkhBUdMWtgTWaogSorEPuO1wltLpiGfuxP/hV/M7Bf+E/MPPMy2mTKZaD4061kEx0wl5jqT+o793T1IJzS7G5w7UUzblugzR32HLZaF1TxBpseRlGVhChs2c6ZVsAgcL+Ys+gFVoCw6olPc1IYwcYx2W/zBGUY7u+yeOc/GudvZ3j+N3tzE+ynejxmbBl0gxo4wGPn+aRH1jWvoYg/aMFR2i9UerAhCrQoFWShjTDg8prJgyCIYlZEQmVW1G5eRTZ/W0u1s6UqGIGJRIY5vihGlRVAunT1sbc5RhNGRqkOplUJrh67VfEllUIq+73FenGaqa53KkqGydLIFJLzkyCgNRhuEKaLRBZQxwnQpAtzX1f221tD3/Uo0LgWglpIcVJHNM0WiFilV/pQCpw1GrFpKUVWQDVCKONzGUIy4pjlTOS4VsF0dWYUCVcS9VlBKIqYk171GQSQuJ+wW6YBXaiyir+6yOKtKaxaLXh6TCpIuGWedOMNZNtU5Z2KSw4cUEloVVDKr926MiGGJfcgh6zAMq+oBY4XxkpMIxhBjjWbIpqXkgnUi6OBWl8CSCylkQkj1PrnFfFkCrYXFIhGkladVo01KGUDc55IVzkoE0hoDRTbnsWIdNMj3QCkyUmFArbIqaGLM8n0rmbwKREqXUqM0saT60uTRVhGplIiLRYWci+svnezqAUu61fUOpPOhbPKkwkpphc6GMBSpqKlVqwUR9eUF340YA95pFn3CaE1Uga2tEU7uBIYM7Ytd4NfjEzqmE8NQ5LviW4trXxn6STEi59egtTSEWOunl1c/GW0IqaPxhnYyBiAOaa2f1vrpJesnOUNx9b5RGFPW+mmtn9b66WMYDzzwwNG73/3uH7ly5crbgL3JZDJXSq3TxOvxcRmlFDWbzcZXrlzxKaV/8sADDxz/t37+RR/8ta2Xk3tNBSwLlyFnJWBfU9uARygZmURyIZNkIamQUIpwRbQTCO0iDLX7UG19nqWlt0nS7SpZWfwKy1b0AzlGFLWkPSZSCiRVyEZRquUdYiQrhUpq5YwVJTBZrQK5aHKRyVsWIqlIjilitBwWxBzQ2krEJRVxqqvLYLRMqjEUYsgMKTIE6UyUTCF3mSFmhiHjjMFYhdETho27aPc/jdbuoscbJDMiBUXJFq9grBXHNw7pjmf0KXH90gy/MCzMMaafM3Q9zz9/yNXDE5662vPM1YGQFcfHM+657/V8zqs/ncsfeR8lJ8ICssrMuxNaZZkNgUwkqID2HtW06HZEnwp9yMQAwxBJoZBOFrgzp2n3tnnqqcucLOaEPOC8Y3dvk/3T+5y/cJ677riTU3un2NjexroGa1pKNiglQr9E2ZioXCg5kLMlM0h1JYpSOrnBcqKEgqqdurRSoEUkKxSultkPfQ8lUTK0E8+SS0ItRW+aMbOyIASBw2qjpbtZrowLBW5UMNERh4hWFm1gPu8JNyKj8UTK6LUSN79k2pFbAYlRGm0yE19oTt/G6K1/ksPXf4DZL/4aO5dv8hnjMSVf57we4YaBSKLLiqO2YauZ0ehtWAwUXwh5YO40z7ctl42nz45IwarM7kizODqmhIHQBxY5YKeesucJ0zHtwSnO33UH5++8yMb2KdqNHdrRFgqL17qW3YtLFkMnsQzdoDQ0VtxFgecqWtOy7BJWSqGEgFmKpiyQ4FyFTyoRlQphEKCxtre6sanqKOYkQtBaizWVoVKobqZAlMm3eDKKGrtQmpSEk6KK8GhWHBptSDHLRsU5jDXElCSeYgxoVSHIkaYup+IK2xpfGRCntUYJsvB2rBWG0RAGrBMhnmJ1MZNAg5cOdQiB0Wi0En4li/tZKKvuac5JB7W+mxNDIGfpnJcLGK3w3hFDwGgRxjFFtIaUWLm0Wmu6vq9wYsgUESa1OoRUN//LexIRrqUobIFcbkU1lnHnFR+lCPdGZYnLuNrN3FpXGS6pVhQII8U5cWhzFoGbUiHmglIWY/LqOsscapBqAnGdIYoD7WQDkEvBKc3QhyoICyVlifRlEYbWuJULT3XkUypkMqlWEmltyBGMqgKtCvkcJUKzNKeosarVZsk6Uo7oghyuYKCKS62UfF+qgCw51+tiyFShWdenXPKqi55scAGKHORUh1zWsyLCuCy7KcpjaCPfJ6MkriRzmKkxriAVIFq6vmYFWpdV17rQxxpJSjgvbr3wdwq6dWxObKUowUkPm/7FrvDr8YkcbevRs2UlckOu8b7/3vXTcv5RWiqZ1vrp5ddPKgVIjTATYTWfrfXTWj+9FP3knKd+rVHa4L1b66e1flrrp499fHsIgWeeeeZrlFJjah3meqzHx2GUUkpIKf0T4Nt/tx9+0Qd/xph6Zm/FTdEG5+tElhQ6qloersVNpHaTyhltzap01xtDyoqSFGSDLuLCSNtuiEOP1ZqiCyVFcbxyda/SgDGZnBJD6DBlRE4BWzvylFRuOT+mgRTlvxVDH7pa8qvxxqNVT9O2qLBAlQKrrkVl5WSoyiIwxhCGgGs8Rsv7TCXUST4RgWvXj6oT2Ep5epb4xnSqYHwBtl+FmpzjzOg2mtazdyoRkuHhD93AaIuxc9Iscu1aoOiBaTtw+3ZPd/gcl25mrt045LnnrvHM80ccB01IEHJfJ1nQKJ58+iP8wv/+k6hwwqe96dVcufIcRzcV0WhmDIxHnvF0yu7OFtduHnJ085hrNxd0ncBRR6OWrjtBm8hd956nCwM3n3qG3XHL1sY+d9xzkYsX72XvzGlOnT6FUobYB0a2wegGgyOHeh2VAHVRyxJyhbTaEidPl0LOAyoLU0MV2ahQIMSAsx4KOC+i12gB+ypl0EqYIMfHM9rWY5xwN/qYQCWapqEQUUbhtXCGUGZVGl6IEgmImuPjGeOJZzz2hCETujmNb6RcvIJ7syo1HiAbG0Vm1HhSCITSMn7j/8DJva9h8Ys/w+Z7PsjF2YSTklFWo247y3P7p2hvXGOHmwy5o0uBWdTMplscF8tCe/Zdwg8LkjLMZgFrEyfbAbu1xdbOaU6fOmB68Tzj06fZ3z1g1G4ymmzQtlOWnRcVtXW9dpUhMqy+u0orOVxFM8RAjIGmcZQQsU1DrBECiTO0Alw2BoWpMYsqNnIkJoED57q4L0VSLpmtnU1Shq7riDFKtYc2KKtpKlA4xrByMMMQUGrJLokYa4kx4huPzorGGGFWoUgxEcmgtbiyRlOyWsVbrNGEGFaw5pIhx8KQhGFkrCzpS75MTomYl93yRCgPQ6wxihfEG9Qt+HasMOuchAeTS6kCRq+4Ls5ZphsbErXrOrq+l5ILa2m8r9ezMnp8s3qObjEQazzGLDk5xlahFvFWDge8X7JdXsCIMZXpUirzBIVzjjDIPJVS5BYUWuNqd02UWkVFShTX23sv91QRsaRQ0ik0h9V7LDkRszB/Vh3hlFo9R87La2JX3J1SSyVsBTtbo1CWlbst3fVELFoncO+YBDxvZW8i60im8mYUQxQnPyPRpVirI6jdEhXIPVMEMh2TiGkli5QcuiCwdKW0rC9BDlvkMy70Q0/TOLx3aGsqJD0SYqDUww+ppKmOspZNmnpBxYJAz4VvtrwPtRUGUsxD5alJh83WG2Io9H2QtcEo4UYV2RSAIYVcI0iatm3phx68Z9To5ckRN48V5zZe7Aq/Hp/IYYxhY3LE73/LTzAZH6GUe0XoJxbLKJRa66dPgn7KOTNqXT10koMEWdvKWj+t9dNL0k/DMBCinEmUVBj6tX5a66e1fvpYxwMPPJCBv/Pud7/7u4Gz1Fr89ViPj8PIwOXfrdJvOV70wV8piiwWIqXIiXkpUpprtRMXMRaUvuVOa2fQqhBjqbG7TAiDiNosbmHJGaNrN6aiMcqSS8IpTVGakrKIUQMpDeQyVKaFIuWA1oUhLmQxdY1MtEZDUuhiiUOikHDa0geZtEpIWAWNs4wax5AShUglZgiDQAnIlCLt6a214npXhyFlyEWhtKFfzAVMGjI5HFFCKwuO87jRNuy/Gr39Ou65Z4QzgVIC3c3E4ZU5myqS8gmj3DFuDun7p0jH1zCLTDeZ8O6PzHny2ecJZGIOpJKwCAMCbTDOMRp5NicTRs6wNT1h5+w+s24bvdtwumje+ysfYTRu0DrSpxnPPnGdo6OenLXEDHLCNw3t2GHsiLNn9/iMT38NG6f2OOkzY2vZP72L1SOcGVGSwUbpfORNgyKj62dXjCyCWilClLJ/ayxoQ0kJSkIVJZsT4zC2sioAisJaTeOldD4ji4dGRIMyhnYkxdfetPJZFXHYSiUhxVxorGM0auiGhLEaawveN8Tq9KksjqfRwjDSGoZeXC9NJlenMuUscF8jmzHbGEw2FCCmjGo0TQZdArbdZvqHv5zju+9j8+ffydGVm1zuHYP13JwHjtwWT7SHbBZL6wPd7JhhMISRRZXMwTwzHWeGXU954LXorU1G5/bYO7iDjbPn8O2YvckOKSTIidgNAnYutZObNeJIpyQl/7UM3tqlqaQkQlLE/WxaTw4Bq2SDKQLI1PlD3P9lF6+cWbFAjJHqgRgDTrsaW5HvKKpGIbRegYeNcrWqlioIZaEXV082GSBpgxwTTjus9XSDRDqMNljr6Lte3sMLuo4JLFggwjlnqBGNJZcjxUzX9xhjcc5KvKxCkY3RFaJ/CzBsjcV74U79dpaMERjwUjjVOJupYjVVV1sEWyaEQs7CktHaYI1bufN9P1QxI+9lycEJ1cWWl16rMKgRhup4opdQYl1jEqZu+G+xZgRPk8lJxPaqm19OVTCJoxuGQFRJwM3LCEoVy8vHsdXt1UZjrGxApeqjEEu9/vWzhFsd5ozRK1G1jMiUUt3dJBEfOSOoZQVFYZ0Az1Pd6IRheU0zpUgsSjuL0cvooKqbY2EMaaXFEXdtBXTLZiCEKJEiq1EUTNHoIpUYVAG+rIpYdvmz1pB1ASUuc6NbtFZSIR4yOcp/09osM3RAJhbZ3FHqpr0I8ycja4nS1LhjjcIVJFLjvaxxEZnfi8aogrdOOGmpUKLwi3TrEQa8RDNTSoRhIIaI3Zww9RZyJivFjcMM514I7l6PT9YoRTEZH/EHPvOnKGRiVK8I/dQ6kZDyVVjrp5dbP0kFTaGgOHe253/99ke56y6pnFnrp7V+ein6qRTYmGa+4A/3+KYnBL3WT2v9tNZPH6dRD2de1AHNeqzHJ2K8+K6+UlBOjEm6NCEup1FglK7xEYS/EERIFK0ogliQDjskcgygtJQaO4F/hhjRRlGKOJolV/5LSlilKEnay5vaRlyUjIYchE9jFMSCEAoKMfZohEsgrcczMfR4awnDQEkJlTPeaCaNxSWF1YohRmIslKTJQFx2G1ICN86VqRBTYggB46wATRXCu9HQOE/oxX2N+ZgcR5Shx3Qd8XrD1cPEbH7CxCY8A3ceLNg/FTk4XWjtiJ//j1d4bnYZZQ3PPDvh5mHHIpyQk3xUttG0k5adU1O2d7dRxWCLYlh09Meap5+Z8cil57lx/ZDSZey0ZTY/4fjwJrooCtIZL9VW7KPxiO2dbQ7OHHDb7Wc5dWqHra09tje2GVLPnnY4ZVCmwWiPygWsRBa88xiUME20Qqki7epTQRlLKiInJcNUcMauFtEhBtq2lQmeypuxckDjrJEFXmuM0XSLDhUVzogzZ41UQBijIcsCq7QDXVClusy5oIu420PfYYyrbrfwRbQGjGXEGKc9fRb2kQhdSymW+XxORmLH2hqUFnfSWgchYqsQ6haR1k3JuTB91etxZ06R3v1+Dn/zt/jw1Z7eNYS8gNSyn+EciWlrsSOP35+ydfs+4zMHnL7nAs3WPuONU7TjURWejmQ1OSSYRxpniVZhp4Ycs1Qr1OiHsdKFrGQYwrASaKmK2VIQ533ZCatQRXoVfAjPxHsvvBYllQJDCKSka/ygxjy0rguudI0MQeINuRR0ERcYoKBqDEJEylLolCIblqU7LagqXf8YJmZCTNINr+87hhAFVlwSISS8c9L1Ky8FRoXH140QiPPprCFTCLGnaVqg8nVQlAGsFcGlFSikWyblVpe3XMAoJfdsGLDGycasxoFC6H8bANlUltUSjAyq3k+3YMRyHZfxBVMde6mKyVWsa0XtypYr74cKt84rQbqs8FBOYknGCOy/LKMqy8hDFeEKKnB/+dllmVNTFW/V/V4+7rJb2jLeozDVMc0rns4ShL3cUJRavbCMiKQUKKVItY+pn0WI1SmndnmTDZKpDm5GDgWkG16mIFGTZSWnrBUiPIcwYLSVNUZpun7AKGH1lFKwzksntyrwDbULoDESS4nCUkJTKwAUaIOmoL2WuE4VkEUpVDVpZa1Tle0jhxtFKbSVypolRLqUgs63rs1yAwPy3CkljJO5yTlNqcyzWDcvGrlXVI7EnCrHxgr7q9jKUQOHop16Wi2snyEr5vMlxGc9PvlD0Q8jPvLMPdxx2+N4d/KK0E+tlzWhdXI4tdZPL69+MtYSkmjxqdN81mf3OOvo+7LWT2v99JL0UwiJixc1/+h757XgY62f1vpprZ/WYz1eKeNFH/x1sx7XiFs49AvatiXGJC5hFHcikSEltLbiHOdMLnUB0zVrr4S5oKwmqYhuNCQjXAWitP/WVDjrckGobe4jlKTr3yPeQE5QYqG1LXEIaKWwJFKOeD+WEnpk0pLudRKLyaXQNg1ZG/oQsSbQJEMIhmGI0rVIycKrS3V/lpOtKiinSSSKWpZ/i3mhjEK7TIoDThlsARsWpDjw5BPXOLuZuPu2jnOnLaOJxrdTHImN6ZQPvue9dM9dx2QFCnZO7zDLVxmONNtbO+wf7NBMHb51GCzDrOeZp59lPg8MUdrIlyero+ahsZ58/biWfIvr7lvPqVOnOXd2n9tu3+Hg7Cmm423G4x2sbsQZ1gbnDLo05EFKym07RiVL0gFtNaoUlC4431Y+hyxqOSe8H1GUxlcnLqUijBq5Q4R/YgUanmQlxGqFKsInGnKkacRhVEYzoiWngioQ+4BpFY1zq4U9A6pEhGSkxSEyjhgXUCRuEYZEKiIMWt8wDBGskXtKZzLCVrHKgtZYZ9hoHP0w1DL+gG8s3rfSRSpnvLM4rRgZ6GLH2LYkDHb7DFufv8/OHedpHv0gs2szrtyM6Ouee/YLm6fOcurOO9i5eBdue4/pxjZajyiLhLOWQEJrR2s9SRVcXdQXOjGQpVOesuAUKQVxHUshZHG8NLfcQ6U0WhUSdROG3McxRFnIfSORi6VrZ4QFsxSzWmtSrEJMLcVrrk4dK4d4uVhbK0yYnBOLRb8qzVel0A093ss9VlJGOYnT9L10HTNGvnveSyWCURpjHaY6xjlnbI2TUQT0a4xFG82wFH2mustIdQkUiZEDi9kMtMRiKLcc35QCWquVqCy5rCopjJGOh7puwEsVeNIRz6CckzktC0xZ4PripsYo1RRaSWRDxHomDNLdLS0FcP1jvaufjWzqlBoINZpjjGy4co3Hyecim/vlRsQaXaHXcv9aROyqynox1pJCQClb3VkRVr66vhIlkcsLYuqWXNBKmgcMMVSnVaEwK/df1+hQyTITiuusWMKscyoM/SB8nrjk6shEb6wcMBQlgs8Yua+MrfGZIuBqq610FlXLZgfyEFpZ2ayWTEFYLUXJdSogkGhTBXbO4vVrYQZpReWf1e9FhayXouSxlCYkqW4qUMX9sspFOsUVCuhMhcpAdeljjdotI1kvrDxQ+hYbTWstoruISM+5EEpd70pcHZzYxstGMw7VmTcMQ1p9l7VzTCcGrxTKWGYniZObC2AN+ftUGN2s5/mjO/kX/+6b+PNf/k3cefviFaGfxrXiaNQ4rG3W+ull1k8lIxWBRXH1Wc2/+lcH/MmvfJazZw2PPeZJxZFjS0lldbDjvUMbadhxzz2BDFz6iKIdFc6eTcw7zUcvjem6GhsvYwHsFznIaZyjaQMX7ioMPXzoMcPBqcB0mjm67rlx2NSGLSOGyqcrJeOcwbqGvb3I9k6mmzuefspx3z2RUDqef3rC8dwQynns6bOcesOruXbpcRaHC64dz1Bdz733X2Lv7FnYfC2j0xe56/UjphvbPPKhDY76jL1huHojobSlMY6kCjolGu85f29gIPPEw5a9XcWp03B4GHnqKVl7itJ1VQLwKAXaGDY34cyZSNfDE48bLlzINE3k6nOWmzc80jAHQK8aWCwP+i7cUWjbwuXLkcObite+TqqbPvxhS04apWX964dc13AjjRty4uJdHYXMk08ajC6cPtMBDY8+Iof50tE01AN10MZTcmFzS3HxTtFPDz3UcHDGsrEVuHat8Oxlj0QzLTGCMR5lpLLLaDg4o9k/pbj6fOT5Zy333FOwbq2f1vpprZ/WYz1eKeNFH/yp2l0q54h2ihikdFwrL63HFRgrUNmSCihxpWIIOOdRFIauQ2mNtqY6ikt3WyINwj1YliZnrBYmwxB6vJXJsuRMHBJKFcKir06JrfEIK4uMvGAosUpKKtdCo52l9BWYrGTyaZyilIS3ht4IH2KIGaWNTOZJ3J+iFTEHQFqkS4ckWUQmkzFhiCKk80DrRxQKBwe7nLtTsXXqBlt+zOYOODdhflzo5oG8iGzctsPJ4oiHHvkQo6lj/2CTi3ffzd7+JmfvOsuN569zePkYFSNXLx3TLeaEXjHEhLKFmAZxoqt7ol2iLZ5TZ7c4e36La8/M2N/f5uxt+2xt77K7d8C4mWJUyxLurLLBKFcXobwq6dZVLJYowtNYi9Ne4knIZB5LJvcZY+QwrhBlYdAGiT0IM0NrYVOIk+RYwloBNp66VB1V+R3rTWXcaGIolFSkc5nRWGel/L1e+5wLMSas1ZUzpGm8pS1JBBLUuISmH4ZVHFQq1uUQSSPRjBADvmnIKWKMpUEc6xgkJuRcg1OysdAUUOL0NroQAriiyUbAudOs2b/jPtTZjll3k2ICW3unaf0mBkeZRfTJdXR8nlg7JyoK46Io2pIB5z2qJKzRtEXV7otZxIERVsoKYlyZIgJ1/v+39+4x16Xnedfvfk5r7/f9znMee8Z24vHZiZuQpoUUKKqEShW1SiAtipEsTqUlVGpAJVCCSlWCqASCCCoV/kCJWpU24o+2KiClVUnSOjKNlJBUxPb4mHE88py/+b733Xut58Qf17P2O47EZIpiZ/KxLsuy55vvfffea6/1PNf93Pd1XSoSnXn97yDutSpta5VCLMtMHMlY65fhnOGanifvHXJsEelqg3DSdb1c0BRC7I1lXogpYD4wBUfqcDwuOO+ZQuQMvf6aTGZm7IekpZw8VGyYFVetG6aO69k4YDTrzLMmUvbOMy9KpUvj9wFMX3h2XbRobaS1OY8fhvhlyXTAhwUfAmYqVs28iiyq1innSDENU/02iGEmhEQpmZozIThwkknJXHs8T+b0vIxD2doWQJIp79U9duGMi4uLkYqmw1U3utnLspDz1XWyYeCvwkKHn25K+KUMg2tHx+RRM0il0s/8+K41dTGZPH/0+XR9jsej0kFN6Y5rkprkMx7zOkQIUXKVPvxfPJpYkDpjmGF3Fe8ddI/gSCmy5Cw/oiHTWCVLuRQc7vTdtKpJGnNGsKCEuV6lLHGSFpVSTq/lncP8MK3HE3Zef9a1xzTr0OXNxCDm5twgto1aVJDESZMetWm9ylXpgt6HcXhup2fKfFNgAZ3cNG0lD1wdyjivIsVw9Aq4kazolcTIqdDxdOuU2sZzqvdXiwINrMoU3LynFZHlabfjOM8sZdZrmce7SA/GWZK0smHcv+wcXj8CN9/qFr/hGwgzx8M3v8Sf+qP/Ntev36NkFbi/8/mT9p7ojP2UNv70TeZPZRw6ea8QlZ/72Vt8/F/7Gs4bP/Jn3sOLL8Q3vS8/9Y++SG2dv/DnH+ZbvjXzZ3/0ZZ77NcfH/9XH3/Tnvvv3HPjxv/Qi8+z5xMef4Mf+i5f4A//ikf/tb+z57/7bh970Z3/4P3idj3+i8vOfjPyZf/82P/epF7h20/iLf/GcT31yesPffAL43V/3s9/3N5/jwx+9xo/9yHU+/1n4yb9+F5crH/++N3/Nxx5v/MzPX+LM8Sf/rR3f968s/KkfzvzKL0/88X/9/E1/9vt/YOHH/suZz38BfuCPXOev/M+v853f6fmrP7njJ/6nN8/9/K9//II/+C9F/u5Pn/OXfnzHP/yFF3Fm/OkfuskXPv/G8mv/G34y8sufBe+P/Gc/mrh50/Hf/2XPV77S+f7v/Y1/9+vxbR/L/ORfe4UpTXz/H77Fn/sL9/ljP+j4Bz8b+U//ozf/2X/n373gT/x7B37+5yb+7I/c4H//uy/yxJN9408bf9r404YNDwjs5BPwm+A/+cS/3EMMYJXu1p6BEV2UAbX3OBfpteGb0SiE6MhLETm0Si0ZvMNCFLlsmthaR53b6PiWZSa6sVi3hvWGdSPGifl4pNdCCJ06z1S1NICIddPUV1eHurYCOEpTN08yk8zr91/nlXtHXr2sHEqlDe+JeVk0DmxwOGQOcwYcrjZya2RkjH39/Ixr08RSCiFF5iVzOM504Oat69y/f5fDRSGGM+7cvs53ffd38MGPfojX7xXu3VMnxUdHipE4eYJfON5/nS987jnm+cjx/j2sOeac+eB3fohaZz7105/kXm44qjr8tbLb7wkpcHl5n14z12/uuX3nNg8/8hAPP/owdx6+wyOP3qGUzLX9GSkkHJ4Y99ADoK5ISFFjzz0QfKRZxUePN8laJPNwYwLPj06MyGgHUpxwwetgxgVF2cd4MiYGGU7HlPBOZEe/xghf/Sr/9Ce+D388/Fbe1xv+f4663/Ppv/Vz9KfePdLj1DlMSRKXi4tLdbljUPJab4QxRSpZh9akNR1vSoHu2qkLeTgch0Sh01oh+EBneN7YmLhxSqJbpyFzXv1x5NvUUAezlitJ3DIvxKguY++joO99dI8bawq5JksMa2tqn5062adOcVNSHqzvc01m1H/LmHIRCWx0hrTChlfNmK5cfWBqrTqINjtJLlYTeU0dtOEVI2K7HuS3psR0RZZWwGu6wkyeM62cvjdnDhhyDlPnGBrTJJK8Hph0KpiCpnBZHd/q8A56lxetmUnG1Bqlaa278mICrEF3SqlzhnXIpWI+UFrD+avvjw61yEurW5H8CnXGQR322jUJbL3jzai56Oe6Dp51Lt2ReKrSm4qKORdakZdWt05vBr2OhgNqLljDR0+vhdbKmCqRxM/Mc9EbH37/HZ64YVQX+dXPFT759z/ND/3xj9k34XHb8JvgQeVPL7z+fn7xM/8LH3nvHyaEX9r40zeZP9WqwA5DU3Uvv+h57LFOiIEvfvGM1uUDOcaW9PedpHzQ+MAHZsx5Pv+ssd8bjz2WmRfj157baf8aBTtNk0C1QVky167BU09nYpz4zGcCjz6+cPNm58UX4O7dM93frTHPmWlKmtqpFec9jz0Otx+q3L/n+cpzjve9XwdAX/qicZwjvcszsjY1HDHHOKvhmfcYKTV+/SudWhzvfUb7zi/9opa5da/FIOeKH6m0znc++CHDDD7zGePWbXjo4cbFPXjuy/JCK7WMva6cGsUAN291nn6XcXG/8PlnHe95d+P8vPPC1zwvv6zDjtXLTgfZdvK/e+dTjfPrlVdfibzwovHBD3Xohc/8KhwOmij0TmERpZYxxaeDsw9/xDBrfOmLxjRFnnq6khfjs5/mNPE0lJ6syaqlVM7O4ZlnOj54fuWXHY8+unB+LXNxb+L55wOl5pPgspTCGmNqBo89CrfvZO5dGK+/Bk895Tb+tPGnjT9t2PAA4Z9s4q8UKhkLJ6Uf3SrdHA5PnmccwwOExnI4iqT5RC5ZkdlO4+lpNT51GhWubTyQ1eg5gxm59lNCVK1VHYCmxayUik+RPhbUdSGtdJn2AmYiZ951cq1UJOm0MXduhqalzAjO47ojt0KuWd41vVMbVDRpRBOZDi7A8JuwMfJsjO5tOfCup5/g5RfvcnF/JrcjOE2G5XLk/HxH9EYrC3df/hovvnrB66+9wouvvshLd1/jcrkvWUnzPHTtHKuV57/667x2cZdjD0QXcG3BEUjTxM07Z7znWx/hsUdu8dDjj3Dt+jWund3A9eF94SOWkLdC9TgfserxMWhxJ2gzNY9V1QDOAuBG90wLoybGOilOb/CgEBnrLlLphJAIIeLbagJsp01iNfTVSHsnuJ3Sqt75NL/wV/4W4bW7uqfGpP/qg5KmSVNfw5+hATkXQgzE4asShi9DG+a5tZZhuos6OMN4uLXVOH2YjQ/z5Y466DEEcpGBuTc/TJtX8qnJQO/kldQZU4QYIbrTyHvvDBKjzbzrRcfDok0pBJGhdRLPhgxiWbKmOcaIvrid3hvomoeRclVKpdTGlNIwOB739Pi51uSd5J2jjvfZ2jDxHZ4kkmZ4GmM6ZJAidRTBB8k08hsS67z3eCe/zyXnkdJneG+DZE+DFBVJkboO1b3zp85eGRKLFJOKIfT9hrDKRCq9gguOEETc8pLxwQ9io0LIhlGxJgQ783EeJLQz37xBeceTWM+0bkzO40c6JkDa7eg2j85wZr/f63O4MYXiVwII1kV6lkMmhMiUAlNMeG9jujLinOQyZsNov66Sr8g8z8M8WutWr+CTTLHb2uFeF+QQWI2LbUx3rsbR5t3JT2a3S+SamReZW9OG+fcgtWUUPaB77CqRTgWipn7cIN/lRITDyTDbk3yg9Su/oRDj6b5Z127ng8IGagbUJV5T7ELQutJaOXnIdCQbak0yx9r0GdfvGbPTVKnzgWPWdfNFCYatqajFo/vL1GHurcnPKWcqUEYiYxweZB2tJyUXai7ENJFLBSppN1HH/RR36WRA3psNr59REMhCjVLkseYGSW6tUkrDR3lGLXPGm7GbdhidfFjGBPEoDL32nlLLadIYp8J+WSSNK0Xyo0qn1eX0velwIOrYyOs6Wm+89ut3+dytiUfOb1MzfPW5+7z05c8BH3urW/yGbyDMHC+9eoe/9ws/yO//7p/gzs2vAb/z+dOta8/yz37H78HskmXZbfzpm8yfUhrhaN0wCzzxuNbQvDSeflqWPDZ8ylbPtSVnYlTKZu+GN3jvexutaN8jZT7w/jb4U6OWQvRR/MkHctYBmXOJUhbe+8xMnBIxJJ54R+axJ44E5yk5D/ni5RV/8p4QtX6dnWc+8EEjJo8zz3vfB60XYtD7ar1qP3mjv12V8f+73iMJpvOSiv5T34WCvEIYia3I/4xMTJouwgI+eD70YUY6buX27R3n54skkuawXul9HArYWIObUlanCT7yUU0U5dK483Dj0ccDjUYc3nQ2VBIAIWqSdlkaN29lbt22cb9EPvIRY14WcjmiRF0j+MA07XFuksS76b2886mM943WHNMu8IEPF0opTGkSfzKo49CyNU2VLXPHN+MjH3X0Hpnnxp2H4eFHGxAUEuQctXBSjhwPB1KaaN04Oyucn+vQZeNPG3/a+NOGDQ8O3vLBXykZcxCSpzT5lLTRmmt5SCRax7ykCmby3pJHTRmdBJ3wx+CoedHhhHeEKOJDZXS/EstxxpmjZHUOwJjnGe9HshWetnqXuYD5iFmnlpnuHMtSCOZH41EHMLVVuslktNThi7GaTvdOignXdEDhfNFmVBoldsrccMVozYa0tAN6HTCiD1w73xGSvBfOdhM3r13n0UcfZrm84Nn/69McLjMex8X9u7z62svcvfc69y4zh3wAl9VpAaW7dXjs3bc4v3PJO/2jfPaX9pzHyCMPPcT+puf2zeu846knuHHrGmf7c6KbkD13x6FgA4fMw0NI9G4Enwhhwjv/BjPtiYZImQs60TVTl5/SSVM8dcxWeeia9mQ+ElICP1IIDS4vj0o9S57D8UhIMliOUV5yzozd+Z7gJxij9eUdT1He8S5KqUxpbT8qBezQOjE4WFOlgXleJPd06vpPaWz2Y8OrrcrA1jnKsuBMviR9+IgsJZNSGodQhWbDX27ITnMuxJBEtFGaW+t1FE8iI2sXz8w4lqKDRK/iSRzBScYwOqEdo7SGN2gGy7IM8jzS24ZniZk7+dkti8hZHtfce8/laiw9Ola5IylAG/4d6wFpk/Fzow9CqGkLjFMxsXZSa5WXSggy+ZVpuKO0SoiBZJ68LOSlUNfuspdBuSFPkjK6id47Ykw63BxGyL1XliETWP33ljkzo85+75xePyX97HLM+ODIXUWQc455kCLnVolTH2RbZCfGwOW8SCrRO9EbISRy1kGwWKiur+vtRObykpmPM8s8k6Y93rnT4e1q/t1NJty1FO4vCwaklNif7dSdNmO3m3QYWiSlWz2V1oNYedGIoJ2M753WVj8KeNDfXQniNE2UUih1ptVGGh1jaJztJ9IwBi+lyO/FjHlelBRYO7UaMV11y3uv7HY7gjeWuZJzplPZn+1EigCPGiINTQ0E0zaRS3kDCYbWdL/VkdTpB9nvvY9DBsiju7pKrrU6NR0EMKZJcORSmSZ5FLkhwy9tfS7akI44zGlCwFyQ76dzKsqp5KURnNckcVi9YcpYs0TyYlBoQqtKZOxuEHODXAveOiGuRfmYXOh+vNci6UwTWWUUF6uUpVcVusFNyNNnoXcRYjeKf+cctS6Yd/jkx7Xr+GBjjTN8COxCIJeqvc/JEzPEyGGeyYdMLQpliNHjYuTXnn2e//Uf/mN++oPv5fwi8uyzn+bWja+81e19wzcYpWQuj3s+/eV/ht/77T+F3eKB4E/egfX741Br40+/HfzJBx0wllJJkz5D1GkluS3EIUvEBa2UrXE4HJjnWam7gz/ZaJSa9MTIZqVq7fJKlTZ0iOsceG8q3Mepy+o1V+vwZfMe81/Pn7pGs06+aKvHVgg6mKH34Qso/uRthDus/Cno9cuigy7xoDdYwJg78R3xpyEb1Icbz4AfMkRHzgvTFPV9muxjGE3OWrSvxhGE0WqlmaYWVwmqErA7h3kWfxoHSD5oj5imyG63O/En65J2mjdCcsQkr8XeOvNcKOXixJ+cybrmyuNMDXE/fJiXJX8df2qtk1Jit4vMx3zaO1cvuZUTaA8fh8Fde0urjbPzc5bBn7wF/MafNv608acNGx44vOWDPy1YVUaYHrzT2Gwf3YhasxLIaqM5JGcZRf+8LIRhYgvQvRZsNzbjUrIMW81ozWmsOUwoBamq++A4dZpXdXLrkgM454cswOHiROnyDVgNY9euT/CB4zKPUIBEiOp0GV3j/U0pejElrGrzcjnjqvxpLi9nLufMYZ5xfq8ux9AgnJ9fwznj7PyM5AOHesn16+c8+djjvPDSa3zhc/83l8eZw+UlrRVtGGPKvFkF5Jdz69aO23fOuHnjNu975j1cP5s4n4x/7l/4GPv9nkceehi396QQMAv6/HjomRiu5A7RB3p3dBy16/sqtatb0uWj4L0nuEDtoM6+R2PkxhT9aQMFd5qIY4xb19Y1+WU6PI1+IsVEsMKyzLTq2O/2dLuKQ9c02DD+LUec98SQtMF3aMzYIME+aKS/Lgu1D5+9JWPOMU2TOotVXeo83oMBMfrRpdZYf+8GwXOc85guaDB8clZisEq9QYlz3gecedbAi5U42urvUQvm5GWkZ8OPe7CRkshLXz2KnRsBJv5EPvX39bOrRATWJKt+em8iKTpYuyI+7vT/1+fSnOEYpMHAfKfVPjrO+lwxBqUJDmmCDh3X32EniQPAUjIU8C6Qy4IZpBi4dm1HqZlaNXAfXBjkOdNKwyUVXIfDYZBfLzIMOKcErjWtzcb3t04iOBeuSGLvxORP1wGMknUNnZO8qVZJ0lqTtMIPE+I4Rd4opajjoHSaEjlXWu2DDOXRMVYYSoqRy8MB5xbaKCZiTJQiXxgXlLq4FhdKBzP9ztENDThCmAhBUxWGXSXCjfck0qr1idNEpx9TCiJxrTWmYZq/pv4FAmuq2eFw1HtfU8+cx3tNjEp2omtiZuSywOjq5pyJMQxiLRKYpoj3KhIteKwb1jRlWmsdxtyShomUgtnVwbE61JxIK2hCSfKYdvr8rcmTcvXvKYMEm1NX2JxnWfSdaBpG6WvdNNkRvNHHe2kNjEajjbWvaZLHV2outEEAg1OCpQG56HeDiGYfRQMmicmaTNg6MDr0DCleG+uPdxHvVolIP5l5z/Pwu+Uq+XFZNGmignss9GbyK+36PkrrhLint0JtWRI/l8Aapei9tlbxMZCbvDt3u0TwnWUuLKVyecwcX3mdZz//FV5++TVe+cpz3H3tHt3d5fd9z7f8pvv6hm8O3JB9wSgOHxD+dO/+O/j0l/5DvuXp/5xdem7jTxt/2vjTxp82/rTxJzb+tGHD2xNv+eBPaTqcfEeW46yONY3oJ43kLlnjzLXhfFfXwDRRJOcBdQDqnEdXIYxOQqMvBfMeF4zcwZwMQlsumDV533jJFEWcjVrBuUjtnSUvxBA0PowWddcguDA2/35K0LJB1DrQrJ98H6ZdonU3FmtHdxp1X/KBXitTjLSpkUvhuMwE5/EG027HjRtneO+YdteJDs52FXOei+OBz335i7z88l3AUfIi2WmXxuXsLHHj1nUeefwxHnvkCd752B2uX1d0vXcTOOiu8L73PQN4uiuYJVyPyOi14P1IcrUdZkiK2j0hDLNpr0XXRUkq9E3I8LQZ+DDhTYa55lVV2JCmOKef8SFSq3wooA9S5cfoveHDjjwvBG/EIDITbQLXVQCMTl3thg15rnPyR6m5sNvtwBqtyDfCujpf3jw1F1wYfhlB3jRTikqdC2MTHZLYbpKIOvPMc5FBb3Tq7gRNrmkMPLIs6uLFaaepQpNJdq3yxwh+DQuRl0iaHPN8JSc9zvIl9E5FQhjTe7VceUjEGIkpkZeKYaS0bvBJRQ99dJWnEzGhd0pdO4x9SH6uXlvyLU7dwXViL6U0yJGSs8QjJC2uuRBjICZ1TVeJhncqSrxnkDVJK5SspWKyA0uTTLkUyV66VXY7yZZ2ac+hHSXpWInKkEOsxM87w8dEbaNL2iVaWD1SwuhMytxZBLaU1bh8FDHDfL21Qq9NBQXgo8yMO+oir9K1nAvBR5Y8M88ihb11jocj3vOGQqAzHw+c7aaRRmdj8jNjo+Bog5DknDFTep+eM5G3Vgsla1IkhDCk5SJEKU3kMaEj3y2FmQQfND3yRum186fCSv9V4RKigTWwxrXre5Y500anfy06NGWhn3VRsoyUtP5OUxoSJDtNlEIfE5rxVGCZmZL2nCOPKQb3hqRkcKfut+6uNkhyGxJumdhjbdyfbRA8TSutv0Xdf5lRr5391vpVcMFKXm1IH61LttHkHeQcpFEA9S6puHmg6AAgDA+rNq5jLcPbZxBX5+QUIwl8Gx31zhvT9Dqw+qS1ca85Z0j6z+hsK7XaOyX+XUniIyVr6iJMgd6NXMbkDyNM5xTCoykKmqQ/rc2n75OhMNrtJqX0NaXX7c4iNsPxWIlp4j0fewr/VcfFSxdUm7n2+Dt44nd9vTH+ht8+yHNp/EPngeFP3VWcv8BZ2/gTG3/a+NPGnzb+tPGnjT9t2PD2xT+R1Lf3inMiOx0RpJYrzsWRmmP0nml1wbsdx+MsA1VTtxREsOhK7+k0eq24Dr4blEIujR53IqhdkgKajGtXQ1o/0k9rMbrv1N5xwagUTEoCjSxndYZT3Gnct8EuRhHivoicxNXDQIusw+EManccl4Xj5ZHLwwG6Me322F4R5c5DdIH9NHHt/Jz9WeL82p7d3tFrZb+/TjcjnAWKK6OzVtmdT1y7ecajj97hnU88zpOPPsz1Gzt8ciKqtWsBMw9eZMcRMCKGp+LBGt4tdAxnkeB2BBdopkUUZGxq1kZ3MAwzVfnN0OSxkEKCKjNdguGDncbTx+6phburIywyFOm1AB66EXwkpR2G/IByFpn0IWE+EpM/RdDXMYbufMTckGiOhXtZZpxT9yt6hx8j6TE4+ec4FUGtFqYp0lpnv0vaeOhDEjA6uaPASinhipN/RfS44IlEQkgnA96cK7leqts8TeSljs+vDl4bHnYyODam3U7y2FZJUyTPR1rrHI9HEZYQmULAeSMXdWhrbcSQiCEyLwd1zIZ5MTTMSY4Bnt5ERGLQRMGyFFodnobxjJwzx+PhJIttQ9YbY1KnN8aTUXApSr5SgTPG7WsjeEmMvVNScqlH9vs9IBJ19dqSZDA6tJJA9JOnSB5kOGddozwmDZLXe6GqWSCJjXwIU0owiL8KSk19tKovrZZKtT4IoAyOl2XGzGvKxRlUOxHDabdTNxIj56xnuTXmedb35q48YHrrLMcFDI71SAheMiOnItoZFBkZDdKvx2CeD0P6MBFiGt/BcRQRATcIpg9hkDElVqpzqe/TexFaOA3+4Acp6rUT/Gr67Gm9nq5tCJFSm9YBJ1+bvBSwQK/GNIopkWTJwmqtpBTZ7SZWWYnuw0prIsLeu0HCUKJn7ypSRvFUi4oYN0icfGv0ftfCbe2YdxPxlgMnowDUdMFKdNeCCvoogO1E0CUVkVdLqYUw/Ms0ORLAJDPE5H3TO/QqiZvrHcOTS5U8KkpipMmMQophFJ0BQwWGUvREYM2gtzqKxMZ4Gb1Xk0n7miLYex2kVevZUgrBy/toXWN6W6VqIr3HY6EtkjylGAnRE5wk7qG14c3WiMER047aK7WYfLmWdd9wHOeZEDXx482oNZMmj3M7jsfMt330Gb7td307F4cjX734Kmm348bu9lvd3jd8g7FO5QEquuuDwZ9uXP8a3/mR/3jwJzb+tPGnjT9t/GnjTxt/2vjThg1vU7zlg7/g5OvSehudak9d2slgnw7BUAdibIC2Jg2w+ghAnuVhYnGC6uil0F2jO0YkuqeWOsbWwbvOcZnxI2pbcpiA657YA0vLBA+1V2J0Y5Hr8sSpYCHSXKBRwVVaM+pScaViJTPtz2hAc9CqYbVrlDskLo5HXrt3INfKfr+j9kZKnp0FlpKJ5rhxds6162ecXd8ToiftjSmc4XqArmS+97/7aV67eZdH79zk4Yevc+vR6+xvnOH7RCRqjJw+DJ49voH1husyI+5ooQXw3Z+MXp15GSG3jhLeo1KiTF08pTNpdF/kJQKBOI0NrQ+/CGfgDBcivhvmPBbUIaQPX43SCcPrJbdO7dp0pujJecEY/nEW5A8UPdMuaDFHXiLOqwChqVdUTR3ryXesdVpZN05DzUpHq6Cuqw15zhhVt4aFpteWXmb44GhSoLZKLlnj3XHSZpjrSR6UFfekrnHr9FxltOwcbjfpdwyDWOc93ambqnSxMmQ7xtn5TZZlhj5TiqQCfvgDOR8ITt59pcqzboqJZZj/qguLyHfvOKdN0ZwmNhRC4mijey9DZk8IO0keSoUuaZcPOrjOeZFkyxy9lxNpO3mLmAJNHIBzhEmvs8z5RPprrdBtSAvsinT0LjJsAcydvFGmFCilDQmLCLk5bfbLcWa/3xGCfI3mWdentUZKYYSNMIqPTq0MiUkmpci0m3B+4nC54J0npiiC5kVqW9P0Qm2VGBLOeeZ5IaVpeNiILM2z/JHMFZQQFlTkrfI5M0oHN0j7akzdaTgfVVj0LslPg+7ikM200yAPxgiXqfhRnHjvRnEmOZ/3cfyZCHJZRqJah6V0rFdcUCNCHU5JNVr18ghyY6oBmUqXQdhK6YMsQus6KJiCX+PgToXLbif/o5wzzitkBusqXpsIWUoTuczjEGAUsKN4G27t0KXoMHPMQ2a4mxLdwzyuFd1O5BZT6I1S3ETY6Ka12sYUwlotDA+pjjwqx8Iiz0wvc/W167xKnoLX85rSWLdaI7rIMg/vyuEZ5MaUAcjser0B8qnbrA647ntowzvJOY95zVypiz18k1auPmQv5hweTeHknDWJgCcEkzdND5LJYJgL+K49tWajtkVTGr3LW2wK1NZYch3ynE6Ijk6Aqq58rQcV/A3qfI+dwTO3n8RZ4NKd7swNv80Ibs1wHabqvT8Q/ClONzgsd4i7V6AvG3/a+NPGnzb+tPGnjT9t/GnDhrcp3nqqr/ZUSUlyQea2SrNacsF7kYpc2kgpkrberGHd0ZvMSp1Fuo2Vj0qnjo5eoJWmgIQibwYLjmrgYqBUSR5qlTdKqRVvGnVuFW1ozQCjF6UVuR5YClDb8O7wWDDS9TN2OcNSqc4ofhDu4MAC0Qcu5sKLr7yq1FKD4BV1DuC8J/TG+dmOm7fOmc4S5+c7dVCDEVwiusQ0eXKe+eD7vpUWGlMM7GIAb1j3uBZHApwRRie+o0XevOHQaKV8Drw68374SJgmAczUbfPmtHCaG+lRYOYZ+xKMzSEEPzqlNkbDo2LUuwEec55OJ4aIklqHcXSWCXcHpt1+pHGB0uQkZckla4MKiVwqqavzb8OkuRYFMqjro4Qq7x15mPOadmx10UbynNJpG6ZJ8hOpcCEMgj2xbj61VJlJM2QFfcGbkZeZPGQKq8GtOuDgTEQ5eI3Oy+B8obZOnHQNWtNoPYxNeEhXwDjMKk5iioTkh9TCWE2J127lye/HGB0u5CMTArUWog+UUuh9JeY2vHocu91KVMvorK1dtT78b+z0uuumayaJy2idSXqQs0I3RtHRYUh9nJIlTRIZ5yBNnlodKUXJvnzUhup1H5TaiSHRWuXyMONtJPDSTgVmGVKNlWCuhEvpYhXnJB8qo0ufpkDwbtxXntaMw6WSC6cpodTHEeoxpCgxRvm9mORoy7KwegvpXpEkxlgNshtKWVR3UZILFQYimoE4upwKEcnj/VyZMq9d3RADralbvxqmr3IhpQ4P/6xSh4eLFpBSqu5Y68RJMp6QJpZSqIs8nnLJMORmSl0ba27ttKZnQ2nK+v78ICk+RE0CDX8Y+SjZ190/KcVTMeLNq5FjNhKah4lz9CpwnAICdE+CH0bnZVg+mNlVkvJSJXnpWt9XyZYb76HRlQaAJq17rXg/rjt+FEOVOiYS1to6hkipWcWUBUpf6FTNYnSnYp1OL50WMs4StcvHyBkixWtBNaYvOpUYTc9b1TO6Xp/1PimlUcoynuGGR8FB68SH7usKfZht9zAmT4YcZhS9uKwCvqs7XqtRSqD0q6InBk/NY0LJ6XnxTlMEycbUT20sh+Ez5jQ5piTtRF8KKUrm1EDX6q1v7xu+wbB1H0bP/3qP/U7nTy8d3svf+0c/wfd81w9y68azG3/a+NPGnzb+tPGnjT9t/GnDhrcp3vKdvRyP+BhZ5kxIu+HL0ZWCZUowymOB0IOrhNCyFByN3tfTfh0cphDorRKGR4Q6NyKH2tQ8tWbMKq2U4TmyyAsgdULyHC/u4mLUmHeBec6Ya/RWaTRiCpj3+GlSOp5BmiKpFnqvzF97iXxs+N0ZyU3k1jA/ZM1UXHDMR0cK2sRDSNRaNMLfC+7aOekscXY2kaLD0ZlCIjoZHAdvpHiGDw4LE657rBk+OkrLWNAi7pBZqmQHjWrQm3xVgr8y6VWfF8w5QkzyRCkN76NmAoKn5EpZOs5FSq2ks0npSysBpnM4XmLeEX3S5zSHH2P73suce/V0OOZMmnY0EymKMZ68heQDIu+Svna9Vv+OGOmdkahVOTs7A+/J84J36lyXWphLYRqeGKVqE1BHW5+hDmJg5vE+wCD2HU4Gri54gnOYy+R5prYx2k8k50VE0Sr78x21Fs7Or1/5gmAyui6FGEXqQor0PjyMxj1eMJbjrN3bIISgaQGa/I9MBuAxTnQkAVlfQ51EER8VbYMsdKhzvjJSl3GFiFevozPWmY/LST7U1yGQDiEGQhDBLUXmzSGspMsIUc9bLeoGh9Hxd2b4SdKIWiuNgjd5M8mbwzEfJS1p1VFboVbU/UtxFD7qoHsfiSEOMq/uYCllyCWUCBeGkfrxeGRNJzZzHA+ZmvQ5S8mnrm4Io5PfHLUW1vS4EBzz8Q1rzHrPjO1/NU+mw3w4kktmv5sIKegerm2YSauj3geBD0EkNpdGHB4pmiao436OhLB61CzUVim1DzKkZ8fcVSJbzvLq8iFRs5IMS21DCjLuWedprdJaJex3NOuSwJn8SELxKiZH17dWff7eO85DLrP+fZYhuorLhvPt1GnurXJ5PAIwTRPxN8hsVpP0XAvgaM4T/ZAeOfk1rXKhXhq5ZJl0OyM6eTmdzKVtNXLup98pwt1HIdPBrRMpnlq6pkho4/nm1OHHHNU6uRRi2MkfiEA+Zj3rYaKWGUYYkzclWgZzHC8L5jLeQ6kzu91uyE9kOF+rJqiC99SWJSmK8vFZjcfNRNQlL5IMDfo4KGjkfAAc5rz2wSa5VxhFdWtdn8spGCG4PYfDkZjGdmuwVDguKhIlPZkJPpDzQpwS3YlUu1Fgm0lGsxyWYQLfKR2Cj5JgToah9SjXyrwU9rd2/99YwYbfcizHI4ypPWcJ79IDwZ/KrPUlWoLuN/608aeNP238aeNPG3/a+NOGDW9TvPWJvxEb7/2eWjq9Z7Ai08wl401/1q0y5wXvzyi1EpzShHJe1C0riufO80JvVafxedFm3xuhZwzHMh9Ht6lSRkcjWqTkhbnMHHvDhhfLMRdC2LHbn4F1eoRukHYiXObBuc6yFHqFtizsdgm3i7z2lVd44skb4BzRG0vJzLlxuJzxZnQWuiXmPFMp1FbovXF9OmM/7dnv9kxT5Hw3kWIgmDpT5mSKGuKklnFfJBVxbpiW+pHmV2DIFlb5AE4bj/Maa661SYrS3ejIeqgjeSlM+l5iwoXINAURWfNj7Bl1dscYtvPGlBK1dUptRHPajIBunVoXyEacznAuQM3M88LZ2RljaBxsjW4P+BSZ0o7WK6UmGbQOM1pzhh+baDnOeB9ILolotYIF4/xsR6vyrWi9E50nxkTrGstPKeFHN3dZ1PlpvcmM20eZ4ZZG7pkQ3CiIOt5Hjm0mRPk++Bgw59jF/YnwhjDBIBq1qLVvZrSsrr+8JvQ9uiwCZVwRlMPxcnTjREL0O8E5EcSUJqZpOnl0HA4HZAas7/vy4iAvlhjH/alR9WmaRvEmiVfrXalsZmtzXs/LKfGMU1d8lRbU4Q/jzOHi2gnU73TOMx9mkdsgw+r1PmnNTpMI3QpzHl4vGDin693VDU9TGMVLG+bLa8LcVXJe6+rkrv8sCYQj+Dj8VzKsBHD4hACEOJLM4PS+SxkGxoPoyy9GHd4Y4mkqoHcloFmRUqM3x+GQMWQkX0phTQBcDbCddyQ3jK3RRIw5TSq09X62fiLetZbT9Z+XReTMjcLeOUot5MNo89bxel3kjPGdxRQpGeZjJkyTfHp6g2HO3YYRcYiG86bnIQZaq5SiInJZ5mHAXIlTUhpa9Ngg99Mkyc5xnglhGJubTL5rVce/lqbfb8Y8L4QoaU4c901r8oNZC+44usnJB10n02fv6H5b5uVUQLVVGwaSJQ5PKhnj25BbSGbohok61pW+Vj2tO5a54AexrUunjgmHVjq9zbpm4xnAZVqzsWHBMvx8aJW1LgbJbJzX8xVTwDcZP+ecVSSWq/Q5TOS81oq5zmrkPh8LjjCeqQTDu6k1FeydTiuN1uXdVEplmiaWWrQGmWd/tqPVBetIyjadk2vl4nAghoiZ7mcv13HiJM+c0uog4iPFrzYwrWPmIKSCi5tU5e0CU/AoALVqeuhB4E/3nrsPQHSeszht/GnjTxt/2vjTxp82/rTxpw0b3qZ4ywd/tatz5by6YRppb8zzSHzrndpmzHUahnNFf1Y71semZFBahgbB7yhj7HplRM6payozY3XWNNqrxKHiAOfwUwKnZDoLjug90SVSVHfDRVhyoRcR1l4LZZDcsmjDAbh+4wYXx+e5PFxw8/Y5rXtaN2KKpJjUYe5avJ1b05a0SN+6dYvHH3uc62fnxDiiz0e31nl/kgeIZyjhrPWG643gjVYOxN0ebc02Nh+RPHVR9Ttqk1mPuUAyT/SJ2rUtOYt0NBLdzONt7UJpkVwJVAxKAyutKjEQdY1i0nvVGHsbC3DAucg8Z0Lo6oiMzmZKSSQ5BOK0V1fZe6Xe9UCcEpcXneXyOAiWp9vw2RhyF+9FMIJztFLpVjSPjo2ULqP1qo00mLo0WQbG5kW2ReAa1jNh7ZyZ6fd13Uy1acPvzuFR1622Tjt12bSpymtG1711dckmL/mQOmtlTAkgyVVVhxrTpnBKgWsNZ5IR1TK6vcPLybkrg97V6Hc3Cp7W9L56b0zTDlCH8dTtHl1FGXsbpSyjK3glaQHGeH0fBs0iJr10iq1JaEoHU7KVroE5z5IzrfshdejEFMh5VrLfmqwVojbi1jnMlxjGbp9IacisgqfXQIVTF3yaJqb9hM+qeA0VUrlqE49pSBGqO00GyBB5pFh6Rsc7n4hrXjIlZ0L3LL1wnJUQZ70x1+UkRVq/TzdkUK11hks2NpLOwJTSN8ifOpXrRt+xrskQnNFqH93xTAyB3uvpOa+1UbKujZLqPD4EqJXaGGuA7jt5Cel5ozVyLjjUkZ4PDRcDHj8SNwtuSNcaurfyUnC7K6Pr1hr7/bk8f3onLyqeThMLq6dTVXfYj/u+tsYuJmodEqfR8a2liFB2varvOmjAjN4KtQ8T6mhYM6ZJ3i9r+qX8ojpTTDS6Cm+v611ypjbdB9YYr5l1ba3R0URKQFMIralIbKXinAy0e5eUo1fITXuOQ4UMDnLLmLPhKaTv3Kgi8abisiOZWwfmUmSgjqYRHH3IbgapHabYk59O92GvV9MSafLQNCWUZwU3mBvvsWuyxpmBFfnohEQtVQbiHTqN4zITx8GB9sNCiJFdkjytd907a0e9A8F7nBm1yO+n4zguXT5y1mgdjrNR7i1vmQhs+MaidsfZ2Zf5gd//p0nxPl979XEeufUl5hmef+lbNInXFvGnZoSQtIdWTak9dvuLdIOvvfYkKVxw+/Z9LueJ5+++A/3FdU8YyZBd917ydznfPUezwAv3382t689z7Vrm/nyHw/wQNMlgQwvEpkMwC5BL5da1l7l2fo/79/e8dv8OTzz6RcpSeOGVJziWxLE+zasXCYAQOtGz8aeNP238aeNPG3/a+NPGnzZseJviLR/8HXIlTUZ3R8rwlUluR2uGN0WX+9CHTMSTy0FktlRoAYfHgsO8J5eZMi+YhbFpy0vAqroCvUm+wehi2YQWw+Fl41PERU81CMmNRcfjULeyWyP4QJnLMHdt8sGwxnw80vs4/TdPN8frlwdu37mOS4HmIZ1Fwi4QzwLXXniVu/fvaYzcGfv9xI2bN3jX009x4/yc5D1TijiTd4ZFG+lt8ikwHNY7oTpK7VhUJyqkHXmQVnEGESVg/VMAfIpaWM2TXFJCW/dDDpLkR2AiubiocXAzfIzkWSbIDvnEuCpi3bsKC/OO3X4/uledWpBhatgRRqfczMnUl9ULwnN5MbM7v0azRoyO2hvW9H53uzNabjpgLRW8o3fD/CBYXTKUPGcswNKrZEymz+l8HOP4Ig0pJpa5jVF0I2eZ9UbvWPIRmcmKrJvT+HgIkv5AVPcmDglD68zzTHA73HgvZYyrm3lClyyh1UYZCWey85F8JPqAD2l4MnnoXibQqBgB+WE450gx0pHp7UqIVimFOquFmFQgzMcMlkkxkZeGJY8zjfk31E2cJo2n19oJXmRwlTCJ7I20rq4CZDXRVnqc5B+rHAqU2kU3+TbVPOQ1IhC12CDUy9gIHXmZT4Wlc4njIZPzMu7fwHAGOh2qt1GI7vYqDKuGJ9jtduPZMFIKdNuxHI+ST/hIydqkKQFDTQXvVylBwnXHxeE+abfT5AbDczTomqmjrSaFiEtTwUkfkos+/ElHl9U6IYmYOxueIr0PYi//lcvjQmudOAqA9bsUeVTjwnt1wCkNF/TvelVKpAsTZanEFKnIs0vGysiE3oa5uCvQlIindEGovVGLCr6cK3mRH5jzKuqKFZJ1ydiCoy71JL+R4TKnKQeQh01eFu4fjrqfve7fWgqlLNDBNT/kK50pRVpTkdOqsSyXlNLYxT25jASBDio84yCiEL2RaxtSLdjtJ5ZF5NrHCF3pjzoQ0BoxbLRptZIX3dsq+NH3WNXhLn14mdVC6xBjorSiNENMiW80/ae54QOmlL3aG7VnFfVB9xijU52izLOdC7qDh6ym0YkpURaZsefc8eHKB8p3h1linist84YpiKsDGed3lMUxziOUkmnycJMcC10T77Faab2OLrSmUyQFMuZcyWUe5vNteExV0s7U7Sdw7/59WvPkWN/q9r7hGwzxpwNP7H+Rn/mlP8GXn//dfOIP/pu0ZvzU3/+vWMr5/+vPpnDBD33v92PB8Xf+zz/HU498it/37f8DL7z2fn7q//hv3vR1n3nyZ/hDv/fPM+cn+as/+z/yx/75H+XOw7/CP/7sH+FnfvGPvunPfu/3/GW+4/0/za8++1387X/wJ/nRf+MPMR+P/O1P/jDPv/yh099z7pL99Dph2vjTxp82/rTxp40/bfxp408bNrxdYavh6oYNGzZs2LBhw4YNGzZs2LBhw4YNGx4cuN/uN7Bhw4YNGzZs2LBhw4YNGzZs2LBhw4bfemwHfxs2bNiwYcOGDRs2bNiwYcOGDRs2PIDYDv42bNiwYcOGDRs2bNiwYcOGDRs2bHgAsR38bdiwYcOGDRs2bNiwYcOGDRs2bNjwAGI7+NuwYcOGDRs2bNiwYcOGDRs2bNiw4QHEdvC3YcOGDRs2bNiwYcOGDRs2bNiwYcMDiO3gb8OGDRs2bNiwYcOGDRs2bNiwYcOGBxDbwd+GDRs2bNiwYcOGDRs2bNiwYcOGDQ8gtoO/DRs2bNiwYcOGDRs2bNiwYcOGDRseQPw/Q1g0kixmUjkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "issue_to_visualize = issue_idx[1]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "9b5c87fa", + "metadata": {}, + "source": [ + "Notice the armchair to the left of the TV is missing an annotation." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "94f82b0d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:01.559303Z", + "iopub.status.busy": "2024-05-24T23:50:01.558960Z", + "iopub.status.idle": "2024-05-24T23:50:01.925194Z", + "shell.execute_reply": "2024-05-24T23:50:01.924578Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000154004.jpg | idx 62 | label quality score: 0.38300759625496356 | is issue: True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAFdCAYAAACTsKMnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92ZIkSZamiX2HFxHRxRZfY8vIrKyqnB6axvQMACJc4G5eAi8AAuEB8Bh4KtwBRGgMoXvQ3VWdlRkZER6+2aabLLwdXLCYublHZFYU0F2ZVCR/VaSbqaqJqrLw8jP/5/xHVJUFCxYsWLBgwYIFCxYsWLBgwYIFCxb8y4L5c3+ABQsWLFiwYMGCBQsWLFiwYMGCBQsW/JfHcvC3YMGCBQsWLFiwYMGCBQsWLFiwYMG/QCwHfwsWLFiwYMGCBQsWLFiwYMGCBQsW/AvEcvC3YMGCBQsWLFiwYMGCBQsWLFiwYMG/QCwHfwsWLFiwYMGCBQsWLFiwYMGCBQsW/AvEcvC3YMGCBQsWLFiwYMGCBQsWLFiwYMG/QCwHfwsWLFiwYMGCBQsWLFiwYMGCBQsW/AvEcvC3YMGCBQsWLFiwYMGCBQsWLFiwYMG/QCwHfwsWLFiwYMGCBQsWLFiwYMGCBQsW/AuE+7kv/D/+X/6v+o+9RkQe/fbh5ao//acfv/6jZz75tyAiH13n0799/Luq/uS1lcJ2syXFxDQFVBTvLQKIqWegKWUEZdV6Vp1HEHLOH11TREg5IwjGWMz82VQVRDHGIAilKKWUh/c383sggph63ZRLfY3MX1dBVVCFooqWer2CYozSOktOkTevfsvt9RtiTIQQKClyfrnFNODNGV9+/RvW2xc4lCL1M4vw8DmF+h5iZH6ufrdSFEWIRYkxcty/J/QnVptzfLempECaBo77G97+8C3GgrWwPdvQdWviNHI6nZhiYPs84E3h7feWkhKf/6rh8tmG776PtMZwef6UdbvldJxwTQfiMESMG7m4eEoumZiPrLonNHbN/nSFuIZnT79k1T7l8ukXtJ2jPxzwTctme4aImZvY1DteCsbI3C94aAOQ+Z4y3yMLZFJRRAtp3PHDt//Ab3/3O379m/+Rr3/1G16/+Y6b6xvev/2eP/zuP5CmjEjGOcdqs2F7ds56vaLpPAJsNuesVmfs9geGkFhvNvzyl3/F0+cvceL4/ru/Y9WuuL7Z8f/6f/7f2WzPuH73A7kEzl96nj/5it/8zf8GYxw3N+9J0wkh8+VXv+CLr37NanMBYlGt3y1ME99+93u+/+4bnFg2G89qfUbbnrPZbrl48oKr99/zP//b/xu76ztkHfnf/pv/iecvvuI///bfImT+1b/639NtLwCDqKL341jkcRf9aHw9Hmm1L+mjn39qnD56/n6E64d54tN/76/xx+aRT1/3oS8X9rsdf/93/x++/eY/oaWQc+HJ0yf8d//6f40Yxze//4+8+e4b+r4HEXLJtY+QwRguXxjOLzzoGh037PZ7+qEnhglyoQBOhZQiftXSrBpMo4gPdOuJlctkLahvcNJBsnh3wS8+/+/ZrD5jGAZSOXB2fsnLz/4a57u5TT+ezx7mjkft+MfmuU/b5afars4D9+318OhH137clo/ft5SCsQJqKFpQAaP1MxcAqR1S5x9FDKp1LIYQmKaRaZoopeCcJ+fAbnfFzdUrdjevuNq/p4hy1l3wm9/87/jNb/4HbGspSTnuj9zd/sBqteXy2UuadoXM8+6HSTSDKiL24buKfNI/dO5/RjCf9slH/a2UUttChYI+elwpquSi1KaSh7n+cds9vkd/rP9+uB8fv+bDXPVTMPNn1p98zf1j/6f/w//0xzvIgn82LPxp4U8Lf1r408KfFv608KeFPy1Y8OfEzz74U/1AwP7YZHk/SB/I0Z+YVP/Uc49J7+Nr/+Of8eNJ4tP3MCIYY+ZFQDFi5kls/rzGYKxDc2YKCWOgce5HpLl+/nky1kKdsuXhuqXoB+r9qD3uJ0ExUifCUrBGMGJm8iqogObaBlbqihBzooggxlBUCOPA8bAnxYkUAnFKNM4zpR5vLaHP3F2/ZbV9iopD6wXr5xTzaEL8MOkJYIxgrJm/k+K6Fm+eU84uSQVihlwsRQzDMFQCHyJYwzT0jH3/0C71OYNrBduC8Y7nzy3TKSI50m4+w9iGcRzRYnn25Bm7/jXTdItJPe+vbwkxksqJ7eoLLs+/5DRck7gh5Vc48wuc68ip4+bqNUXh6bMXnF8+ISWlaVpELMYYUs44a1AtdbHWuon50G/m/oKHkkGUdrXh8y++5Nvvfsf33/xHnj1/SSyJH978nuH2DkqhEHDi5oUNSi6cTkfudomuW3M6DozDN7im5dlnX/Lll1/x/MVnWNtgxZMK/OG733Fx9pJV13I43NbPU5SUlLu7K968/o7z8wum8cDxcIcW5enzzyhYcgHm71EUMsJ6c8HTpy+4u37Pfn/idNzRrS5Q/YLN+RMSMPUTfb9ne94iEnn79ndc7b/nVy9+g/UNWRWpX+gDq3nUT1Tq2z4mAuaTvv4pEfjpjaVSHg2rTwnrn/r5U9xf3xjzEXFomoZnz14Q4okcEikFTv0t/+k//r95/vILumaF8w3KnjAGcpZ53IFKIo4dulkjnENSuqYjpYmSIKVCUSEZEG/RUhhPE4yKbQSkob0IeLGMWZiI6JjZh/do/j2dv2YM73A+I+a/5dnzr7F+Vdue+zYS7knK4/b+dE563HZ/an7+8PPj+frHr6uP1011fT8zE2gBgVwKZEWsIKrkXECVgjxmwnM3yKgKYZq4u7vm6uo9p/6IqHB2dkHXelKKGCmsVp4zOvZ9T8qJlCamMOJoGYeR6+t3HA83eNfWMVfmvqpKEUXU8uEEINV5WcwjUviofRQMhsLHJPOexqoWtNxv3j5sfu+vlRXuzyXq3PLx/bj//b4NPz14+XidlIdrP75XIp8S0/s+cT9/FRb85WPhTwt/WvjTwp8W/rTwp4U/LfxpwYI/J372wd9j/DE14x6fKkd/6kT9HyWwogjmR9f4o6r0T0zmjz9HmCZyLvMkXAlm5R1KTgm0TnJFCykVrOQfvY8+umYpVbUyUidIY0wlwo8W7nu16TF5fVhoZsJqrZ2JcJ0Ecy4YUzgdd6RUOLt4So6ZrELKytBHpjHhnGAMFM2oekoWKMphf8eLMOFXDvKHyfPxZ7HWPqgsRQuawTmHF4OdlSjnO2iEKUVsLgQpTOPEOJ0oJZFzQtQwHBMqYJ2h6zwpQ0mGs6cByExDVfZvbwvWNHhnKCXgnGLp2R0H+rBnGpUSOzCCSIsKHIZ3nOIdmhsad0bxnsiRb3//HzDiiOnEMIz8/nd/z2q9AWP567/5DV999dfkpIh1hBQxMwkwUMm81KgCnQlg1khOkaKFMPWUpDTNGb//5rd89voPfPblr9l0a97t/kDOBTH60B9iyoQ4Acr27ILV6ozT8Q5MIeYIRbg8f47RlhwnQh55/vRLXn33Hbvbf6BrO65v3qE5Y33dCsUUeff2O3IYmOLEfn/HZn2OazYolpTqop1zQowhx8Q0jpydP+H84pLvvvl73r79FpF3+Kbjafya3f5AfzyCn7CNZUw77vbXbC82vHj5Vxjp0CKIRnRW9j4s2rMyqB/IrMx9vL5MPngHCAgfFuafGqs/Glc/McZ/6vGf+tvHf/N43K/Wa77+1a958uw5t3fvubu+wlrLsb/m6v33dE1H3cDlOt2IJWvGClhjGQ+wJ3N2Bl13hgYD/QnBYmRWKMVQyaVAzqRQyNFirCevC+IG9gcljmvyJDhXMLxivXkDjNhmg3UguUH0npTWaxsjs9r6Ydz+qbb5qU32fZvUh+//Tj567oGtffir2i4IogWRukHPWRExZKUqxRkgM/Z7jscjzresunOwFpnnQ1VFS+Z4OnJze8Pbdz9wOh1JIbJabXjx7AUXlxdst0/J8YCZDEaElBK3t7dcX1/TrTfsd7e8/eFbcjqyXZ8zjQOKwRmHonXTr2nmzXL//zVihw+HCdzPzqIYVcyjjcDj9vu43e7bslLFe/L66Wv/1Ibi03vy49f89Lr4p5Trf2wNXPCXh4U/Lfxp4U8Lf1r408KfFv608KcFC/658U86+PupSfFP4ee89qcI6EeDVwV+eo366DP9qfd6eE7qlGUMc4qFfVh0PxDKgihYa3gcHf74PWoqCnOYs6nkR5WshVRyVcX5cbj3A4H++BvATJxFBDcT3xQLp+HEmx9eMY09X34ZOL94Ro4F1RrifQyJ9XrN+fk5+/2hqtEIuVT1NJcArOeJ78N3/Ml7wD0BS3hjUcDMYlnRQuMszkKaAvvbG8I4ApXo6kz+xIExDjGK5kzolW2jPD1vuboOTKNhTJZ2tWYY9nifWa88iNKfAiFYjBF8uyWVCecsWR1ZB8RMkNdI2hBGIaWJ2/BNvVfGE0IghIgYi7GOdefYrLZsNpcYmnr/BNBCvidi1M+tJRGmgd3hmsNujzOWcTzSdQ3nT85Yve94++YPXFw84+nTC15tHOMIogZsDVePKcCobLeXPHnyGYfjAd+teXn5OcdDz831Nd/89u948dkLpvHI3f6Wr7/+7/j8s1/w7//d/wNvPN57xpDo1jX9p0SI48TV+3fkklEU51pSKpxOPd5HNGv9/HHi3bu3vHv7hqLwr//7f8Ov/uo3xOnEq1ffMgwnpmHkeHfD8bRn81zZrB3H6YB45asXf8X27Pk85mpqVhG5zzr4ZNApoh/68od+DmXuxzVFQUAKRj+dCz4QBX145KeUuft3kEfC+R/fsH5Kku8JmWsaLi6f0XUdViw5ZcawYxhOhHGqkRriEYGcM9RAEawIORQOdyfCmNlsAiqCFouVDuNcTW2xSlVPwXmH8YZjPxFvC1aEZusJg6X0KyDg1hnfRbzvUHWMg+P2+sS2fc2FPqddrXCumZXfH4/X+03ow3d83Go/MR/Wnx9v/j+QtFIKpWSMEcYxAErj/UP6nLWWKUZyCjhb5yZjG5pmVaM+1JBT4u7umm+/+S3Wez57+UtWmzPabkvbrQGpaXdASIkYC856TGsYhhNv3kZiiqw6zxQM06SUJOSYuL16R9f+gfMnL+j7A4fjLc7U8TaOJxBDcZ4UAyklEMU1K7xvK2lGEZkjhT7pNrWvzMRWPhDMQl0DalvfE9XHBPQfX3N+Cj8d+SSf/PxTa+yPIxQ+XVMeYyGuf5lY+NPCnxb+tPCnhT8t/GnhTwt/WrDgz4V/0sHfH1OOPp0k/9Tg/FNE9Y+932MC+Kmi8Dg0/dPX/tRn7dqWUkr1mJlJayVe9+kqVQFuG4uz5oOSMS+kRcvDdzBVSkJEyaXMi8CHxeEepXwI+X78Te8/vzEfJkLVuoj4xnMaDc4IfTjx9vU3TGNPs9qQNSGmqlkxRtbrFW3bEIloEXJSmrZB55SZStDLA3mtvi01dcMYM/stzO2blTCnqliBUhJ9P4Iq09Rz9e41p/0ewWCtQ7XMJWKUTCXtNX5bKEG4ujVsV4VVt+I0GFad0vkDSMG6hlKEnOf/Ym1n8RlrHK3zDENkODiabaLzDlHH1A8krW3ZdSviFEEV7yzWOowxvHn1LX0/8Jv/5n/g2fMvEKnRAoLMaSqlpkkUmIYTb958w9u3v6OEQtesiGkilohzLZdPzlAOfPftv0eaxOVLTzgZwjCHlzOTNlWcaxjGiVN/wjcdbfeUtrsghiP98IZ3b94TQ+bm7gbVlu32DO8cQz9incNah2sCzgspWsI0MU0TgqnfNWR+ePWGm90Rg0JRrIEQet6++Z7T8YAipBz48otfsVmfsV1v2N/d8fbdtxz2dyiCGsg5cOjveHJxyUX7bCaqsXqq4CtpfRQJ/zD29OPHPsX9GBCpZEGl1NGgdVw8HsP5fizNCumjKz/8+zid4jEB+VPzRiml9nvqrs2I0jUrnj15zvFww363QUUoOYEK3ndMU+J+hBocRTNoIJeG40kZ+gHXtmw2a1ZnK6awA1ECQkpCGCMINOLxQ40o2e89nbXkZHDFcHbe4beWdXeGM085HgPDcKQ//IH97sDz51/x8rOvePb8S5p2PX/XH8+pf4w4lVJmT63ykcr9+DbdK6ApJUKYyDnWTdPUk1Nispa+73HecfnkKTnD9dV7QjjijNC2G548e8lqtYX5Pap31sDt7RtSHHn52Vc8cV+xkg1lVuGbpuNse874ZOR4rKl2pWT64UB8E+iaFeOwo08T1jmcMYTpxM31W1QsxoD3ntbVZet4OjJOESNw3N9yOBxwref5iy+5uHyJ926OKpF5+2MetcGH3x58xD49WNDZJ0yrco/+dH//U/fj8fs9/vfn4+PX//g69/f28Rp7PzYWAvuXhIU/Lfxp4U8Lf1r408KfFv704z638KcFC/558P9Tqu+9Z8J9uPP9oNGH/6mDpy5cnww8M6sw+migzebTqOHjgVrm/z4QyMfE1DKrsI8USAAjBS0WRMFkRH1d+EqZl8dKzMhKzBlVMAZyLlgxOGdpnEVzIJSMFYuzfiYo1a8BjeTkMaZSNmNAi8dIAoQ8t4/F4o2iInWOnxeRmCKCoWTFGodznhDjTHAtXWPZrNboy6/Znq2J0y1Xb3+H2DVd5xnH00yoLafjCQFcq2gSrHeIrd40pc5i88IvlRg5RSnkmWAYM6vmMwMrJaMlM/Y9tzdXXL9/zzgOGJQQRrIpNFoXgmqaLSgGL5CLUqaClALq2N9lxqnwt1+taVImFwdSNWMjtqqEpXDsIxSHUSHkE96voSSGw5HDvrAqHWYjFHpSLiSbcauCa1fk0ZCw+MajOVG0EGMgvn/Di5efcX75DDEtMr/vfS9AFaMGzZmxP9L3A85YhvGAOIhl4ub6mlW3wlrl1eHvaS8CxRhM4ynDiMHTuBZjqtE5GG5vb/CN4+LinLPzcxrvGQfL+6s7Xt+9paRIzoVXP/w7tuuXpFQ4Hg9VKTYRaxuMCkUTMRSMWKwzxAIpF4ax59QfyXFCJSMUVDM5BxonUApXr79hOO7pWgWN7N6/pw8j+5sdGKGkQj8MhPSWJ5sX3N7eYY8F8BhRxBo2qzPadVcjIcSjah7GT1UD5/4Ms4J9b7IuD3PDfVTA/HBt95JrRMQcEpJzrqT5npAKD+YfRqoHysP8Ub/eIyL2gSSrQt8H7m6vGcYj6/UZL15+hncO6xwYpVmtOD+/rCbHKTEOPeNwYpqq4qmqWLGI0zodZU+JhVImEjWFZEDIxXOxEX79+ZqI8s3bxF1piFPGWPBWiCglTaQeBI/dJPy2wdOSw4aSlPGw5zQMFB05HQ+8vfmOd+8/569/9a/5xa9+Q9OdfTSfllIQc+8DZepcVupmrDa5ZZqqr0vXdogUSjb4pgPJ1FQ8oeRIGAf2hzv6/sT67AxvDf3hhmHsubt7z7Pnn3F2/pzWW9DMm9ff4ldK1zQIAf/F34JUY+6claZbc7z9lv27Hd16y/Pnv0aNIKWS6K5b8fLl55yfnXFzd83ubs/d7TvC1HPc3XBHpkwTjRXsBUib0OCI4UQpE9a0tL7Be2EYeg7HAykXrHPE0HO8fQ+qNMax3T6haXztTKKf0L/7/iiUuc+qSk0b5GPl+L5QwJy080ByP40YeHyo8nhj9umhzYd+/McJ7KfXfjgoMeaTv/14XDyOHPnwLRf85WHhTwt/WvjTwp9Y+NPCnxb+9LAuLPxpwYJ/Dvzsg7+ieU7PMI/Cyj94sdzj4fc69h+d9M8+DlpJ673Kd09YBUXl3uj5AwlWNZ8MykdK8AOZLfVa8xsrhlplbA6pLwW0eqXEyZEK5FwXzPotpFZ/Q/EaaUwBKWTJGKsImSlMOOsoQMbgjEE1kFLGGIuaTE49uSjWtogRNGeSZEBw1lZz6Vk1teLntik1xFrhgyyX0QKtb9DNGdnBLozkqIynHTH4OaReyKWmrmgpbM/WjCGguVByJsZEKYp15sHDNIaR27tboNCtN2w2Zw9h2aqZ42HH7u6Ww74uaKL1G+cUEWfpWkfKCmqwIlhTGEvEpEwyyspFGicMBggZa1Z8ft7gszBSuLsOFBqQhmYV6DaRkCBMlvWqoEzk4InpRHYNsYBqZDqBY2DVOcKUcduB1WqFcxlpuvr6UihprgImgljh1fffcThOPHn2GcZ5Npst62YNlNmIG1Qcl8+/oDvbcri+YXfznsNpR5EAJjEMIzlaTtORlh3OrEhxVTu4KaQSMKmh61o0B6ZhD3rGNJy4u3nHqtswTSfGfiIMSgyhKotxRzgVwpgoYSBrHQM5GkpSwpDRDNYL3ju8s6Q0ogPz/Z3IKSCYh7B871tUIi2BGPZMU6RIIqtHbgNjfwKTEOPIWek6yxR63t69Zhi/p9BgmMiaOT+75PLyJe3qDGsbfNPgW0fjHMY6EIOKmb1s6obOIA+eP6ofKtTVDdHDj3X8PqrYyNz9lUpA71NdPtWw9fHumA9KbC4wjgOvvvuWf/jt3/Hu7WtWXceXX/2Sy6fPefrkCZdPntB2a548/YyhHwjhRH9QpmkgpfJAxEvJIBbr6/eraUIFVJimiXEa4Rb6lcXommcvG55egl/19KPS7xzYBozW72/BdYZtVwntlCwMATcr64WIChSTyXHg6vobhIJtWj774q/x3gGmRqAYUz220LmNq4fXPakFSCFw2u3QdcJYRdXhbIu4Sq5KjuwPd9zd3XA83HHa3+GuPNvtGYf9W+7698QwcX52jmgi5+rnVZiY4oDS8P2b/4zzl5xdnHF3+54fXv0Hbm9viCkzjj3D6UitDpcRqakfRTPrrlaRu9wGNu2Ky+2Wd63nh+kbDrc7ShiRdoUra3zrwdYVISfwzmCtZZxOTOPE6XSkPw1Y37BZrSi5sD/sODvc8SIFfOmwBgz28TnJh0glVcDUzf2sad+vJ49Tex7+/QkF+EcHM48U5f9SKSN/PJXzx4/9sb9Z8OfFwp8W/rTwp4U/Lfxp4U8Lf/r4Wj/1+8KfFiz4r4efffBX9WGgPGhE80ryyQC5H0Ay/89HC02elRdTf75/eTUJQGVesajXrarXvJD9VEi8Miufj94eKCSsgZIj43ggx4GceyyWddtg7YZARknUkuVVbZNyoGkMzqzR4nCuqxWX4oBQSHGqKjCJMQm5JEoJUCxKxjmLOAdasMaBKKUIuA6V8mCCOtP5SsiRanT8mLTPC5p3hpCVZBxiV4hpKDoQguKdI+XMOGYMStc1jMfI6TigamimgDG2+udMBWMy+8Mt796+wTnH2dkTOtfUFIEqt/P+/Q+8+vZ39KcDxjka77Gm3htrG5qmIYWApAmVqsIbW9hsHSsX+PyJ8MVFg5PI2zvh77+v/heUlldvA3dpj2kuMNlgnGWzEjbrjHaF0juePtvw9dcX/P53r3n3vsck0FyjGUrJ5Jg55Yz4zOWFsD3rWPuO02Dx3hNTJeopJzJgMdy8v+L66ord7pbzJ59z7Ac2rsVawTcNIpZSMmIavFuT9Y44py5ljWAjxgbSpCgJJOEcOG/IviVrBsmUHMkx0KdALhFZ1TSim5tr1qsRZ6FpzlhlQYNhCidyUKY4zH4gBSkKCmmsi6emWiUQqnLrrJBzZEoBBawx9flSEFswrtCsE2J7DBNliqRkmaInxESJlpQCblPveUyRVdvhxHAcj8RJCGnA+wnbTkxpz9XNAfQcxGOsZdWt2HQtq9WK1XpNs9rgfDuTAZnHpN5PAI+mBXkYoFp3svOwu7+/8xZS5KO/VNWPVuhPaMKjucVwPBx5+/Z7cpq4ODsj58h33/2O3//+H2ic4fziCU+fv+Tps2eM40BJCWsEayyx5Gow71xtS1vb/H5ra73FaPV/QhMWR4iG76+OnER48azl+UVGzzOH9cQPUSjJoW4CmfCuqalZ2mFLRy6RUEYQy3qzeohO8NaA6dkff+D25oqLi8/JbUOaiXPjW6x4jNRDgCxzyhWVzFogjAN3N+8Y+xbbQOO3NE2HxjJvcup92h/27G+vGY43pBC4Mo4x3rHPb1k1W/r+yOlwQ6Fwt3vL/vCaMR8521xgxfHuze8w5guG/oa7/XcchwMxRgyZaRoIMdIUkJzoT0dUMpM09KcTYdzhnKNxStcI63WhPQaGSRAjNE3GOkWMx2aHqjCOPUYL3nfsbq443N0SwoQiTMeWGCPDOLK+vuLl7hZrDY134Lt6uPDJ+nFfq/M+mue+T91vjh4flvxUqtD9c49///T5j3rrP0G9/jmk96df8sGracFfDhb+tPCnhT8t/GnhTyz8aeFPC39asODPiH9Cqu98ql/dfKnLT5309dEgv5eiazqHeZgU7sN/68C6D6ueF56Hn+28sJWH5BP46YH9kVfNLI/f/2sK1ZhZJw67dwzHW7q2wZqGkmsouRWDloSWAKrEdEC5punWONZYdVAKJSs5Z/r+jmHY41whxgHFo2pBFSsN1kLrtjjX0DYdKdWKbYihlKpI10wcrSTF2rkdKjEvcwqLGEGoFZkyBecdqis258+5eHqk/+FAyZnCh+pVCoQQSWMkp4L1dk5J8VhrSHHi++9ecXf7jqdPzrk4v2QcR67ef896vaXrVvT9iVff/o7j7TVt19I0fvbASYitSpEVU42dRWjEYrtAs400LvK/+rpjHJTfvhk5BSUNQjx5bGc4hpGUhE3X0qcIXsB5cImiFuuF9WVVCl++eIZ1wmH8HdMpgIJzDSGFmtJQhGcvCk3b0h8TZlVA6qZKoKp7RqBURd8iFA3EqUeyolmZdGQ69MQYEOr9naaBoe8J04lpPCFGcd4TS6DYQjEBdQMqBdsqq/OAEcdwqBsoZxUkE4vi7ArrWtp2TdO0WNdQ+b+S4o4YFXA4L0xTqOlKc2oRquRcfUZEBCuOByVt9hzSlEglUcTQeFu9VEqmUKMULCNjKEh2bDaJCw83ry37YD4Ql1xw1rBdb1i1HZMtJDfSuoLIAWUiJEvrWkpuSbl6J6WYmPojbWNpmpa2W7FarVmtt/imxViPcbYq1A9jcx7mck9pa4TIfQrBvXJ4358fk4GPx/mjueCeOMwcWbMSY2CcRrr1hqdfPQcj3Fy/4/r9O6bhyPs3B96+/pam7fDOkGKgpECKqba1MVgrNGuPWENJNfLDicW5po6JIsQ8og5yyTx5avnlC0+WyN2+MPSKsUqzAWMKxkEWB6Fln8HInk4CIg24TOs9TbfFukyOLSnvyFpTY4bTkbu7a6yzpGnCOk+33nB2foE6T6n77br5Fmp0jmZKnri5+Z4ihWZl2XRPKamQSkFwrNdnrDcbzs+ecHf1jv5wIE5HYioEelJ3pPUt+92e16++QU3k6vZ7Dqe3DGNPnhLdekU/XXM8bigl4/0W43cQUt1+G6WoAI7D4YZ3b7/BWEPXbnh/9YYST1ycnxHSiX76ntXZLV80yrtXhpiqOb+OGatgco+fdkCh8x3r9TlxO7K/vSXFgHVCKoUpBcYxcHfzntff/4E0jTSNYXv2jO35U4y1H69oD9FOP+5vj8nfnyKRj1NXPvVK+8dU65/73M+51j/l2gv+HFj408KfFv608KeFPy38aeFP91j404IF//z42Qd/w/EKyGhJoBlrBWstGfNQ7eyenBoj1RpALMZ1GNuhefYLMPcL2COT2jk23eisXM8eOPfE9bE6YOZ0jwez55koV/m3enVoGLi9fUXbCOQjJR4J2mLsxNX17xHXYW2D5sg0HcEkjv0dqzODbZ9iuMTkwuH0mlwUwXM4vWOY3iGmULTQNg5nL7BmjeAoaeLqbk9Rx5PLZxhrScmw2Twnhh5rPNY4ChOlTHi3xloHJIpmYspYZ2l8h5tNn2vp95rmUryj3KfglEjSNLcB1QdiVrBA8G3H+flTnG/oT0e+/e63HPY7zlZn3F0f+fb3vyfmCWMsT548x/uGoR8Y+9OcvqGUnNFia5bPTOBruo1iHXRuAxbOtoFff3XG8eaG/+V3lhDOIQdCKSRNPImeeFojduLiInCmLft9z998adj3wvXRYL3iXeKu3/Pv/9M/8MVnL9luG6wUdjlWpa0Yphho1y3NCo63iqph7UwlHCIUhBAjMWdk3lCJqT40U38iTUeMKDfHOw77HWN/JKWA5lwjEYqSciWzVgzdyuHWLVOCMQzga4TDkycbfv2LC775uyvSaFD1GFfQUglou2pwzj54XsQwsut7dnd3pLirKq0B1TKbCVcPD2trP783Dq9sTxFx5FyYpglQckogEPJEGOsYEGNoOotvPSlasiRyMYRj4fNnlqcv4fCHCVX7EBGxalu0wN3uhn6Y8J3BtieGvmcaW0pakdoG5z2KeUQya5RFP/T0fc8tVxjraduu/rde03UrfNPgGo8Rh8HWNK9SPY3sPWk18z74UWTKp4v2p/hJNU4L6/WWr37xa0SE7dkFTduyObtAC7x7M4FmvAjTcKBPkVyYNxRzmo21OCMYAU1KDgVB6doGv2q5uDxn5TuO/Z67fkdjC5dnNQ3i1dvA7cFQpgZvGrIZaVziYu1R7bjpLTEKjUvkdqTrPK7pcOIxuUNKYLO6QF3HcQyEMBLCwA+vfssQBqbpFmMMm805n3/xKy7OP6dpznGtw1mZ28WgGhEZmfId7+/e4xvDWfuC6VjTj1JSnOv46uu/ZrvZsOpWvA2BOI11fhHB0dH5M6z1HE8Hpnjg2F9RdKJxFmsLYhK7/Q8Y6Wj8GmefI3KHUKv6pRi4fv+aEDLX77/n9Q+/Zbs54+nzz+a0F2V3e8NUbrnbv2O9tXz58jne9bx6lZgGRTSiISNxoh8GfNNwtr4ALG27YXv+hHHomeIJZxqgYBDG/sDV2+8paWC9afDWszm7RLVGf3wwT/+YmP5jZO+nnv9jf3s/Tu43nT99nfv3f/xs+ei5ewX6w/U+vtafMste8JeDhT8t/GnhTwt/WvjTwp8W/vTjxxb+tGDBPx9+/sFff8SKoiWQc8CiWFvDf+up/YdS8NY6qjG1xTYdzq9AbDUjxlDEobNnjaJQahlxxYJxKJ651NlHigLMRrYzaX3sYSEloWkghZ403HHavaaflTHnHTkHcorcXv2ASiWjIoKagWIjx2HCrjYUNez7TBpaDvsbwljDyQuFVAzYMlc6ShR/gHIiTg06GyLnoIzjnnblEWlJaWAMey7Pn9O1l+wP7zkNOy42nxGDMowHVJWUCk3TslptWG821YjUVL+PUiJhOJDjoZreZh6qbjlnySWTSiEVxTpH267Znl9wOh64unqHNY5fff1L3r99xdXVa0Qc280ZF0+fknKh7wdKzoh1WFuJIGIfUlhEFGMrQSpZ0Sj0uufzF4Uvnnlur3b8/TdrYmgQIqmAMQ3PnnhOu4EvLzIhKUOwGJeZxHF1VP6bz7Z8fQ5//8OJN73ipWV/lREOFATjofHCMCv/WgqrNZjccLoF6yJDd8SzpRTFe18NhmMipQhYxFeD8JICV29/xxSVw+FQqwGKJcVAzhExs7pdYo3AwNLnSGcNxShFHZYGK8pwGnm63dCtBNMarEC3guGk5Kj05UAIkYNxVEPbRAhjJUZax0VJiZimmkqkoKVuXJwxVFZb01SsrV5LpWRKqaoxAs7aqiDnSphFLJoFyQYpHcZZrExMo3J9Xfj8c0e3HZkmwVmqIu+E/tRz6hOtV2wXiVlR7WjdZ+A2gFDmoH7VSqhzAagpBQrEWAjjgJwmjDnQOEPjPV3T0LUtzjeodcRSCCnhjGHTtmxWLX61wjUt1QT4/48QeyOsz875ut0gUrAWRBzrdkPXtHTditu7G2IYUWOwUyCVgp3nrTxH4pSSKcGCGLz3+MbiOotphWwjpTV4tehdTRM57OHdXWR/5yEZnFG0RHIURuPYJcE0Vb3edGBMwlAwkhDx5JzQnKBYnIs0doXQoWXk1N8x3PzAftgz6oCRTNc6bg8/8OLJX3G2fsHq7AXPnr5gtV6hFKaxJ5UecZHDdIPLFo2ORteIUUIemKbAFE48f/4lzBunISQEA1LwzQpT1hjjSUWJI6QYsdbiG6HrwPpMKFfs9obWv2ScCikoJNAs7G6u6Q//M8Y1DIdDTXvZbpjGzJOXn7PZrtjdvGN3N1F0S4od42BwTaFZ1TQuzZYSFWJEbICsHOItSOHlZ1/x8uVLhtOB27uqokupaYdT6Dkcb2m80K0usK48+Pp8IIH3GxZ9iA4xxjz0v7oJ+GOEkx89ft93Py2i8KdSXD5+6mMy+wEfk1+Rn09KF/L6l4OFPy38aeFPC39a+NPCnxb+xI8eX/jTggX/fPjZB3/OGIwoBUtOSi6ZPFdxKqVWqbK2embkWW0zxpJzJIf+YTxa23wgRdRUFiOzubQKxncY14FpUSzGuKo8zukIJQfGYU9jQbrPqhdHEdQ4xmlk9+4bNE1MQySnTDUhFjCCUVurfFmBEmpKTJPJPpEQHJH16sRxN7E/GWIspKgUk2h8NfMV9TgjhAKpRKyFNKdAoIoS6U89w5RoOsMYrkkxkssB4zxjOOGNZb8Xjnc9QxhIuRBjwc0h/m3b0jjPZr1i1a0QU0mxk2qgnbVAURrv5++oFK3+E+v1mrZ1XF+9ZhwDXdOxPX/K7u4t49Sz3p6zPXvCZy+/oGtb3r1/x3Aa6r1xbvZLURCpVdaMUjRjrCWkQBoTcSy8/Eq4eArvrk+8+8ERskFKIedISoaLJ8L2vMUUWG8MjMqrwyVtsRQT+P56xJiBL1bK33zhyG8Lb99kTGe5ySNZDFoyjbXzZF0XGU2WfucpKdJ4gykWTMF7xzBNDNNEiAERg1MDpVYDNFY4no4MY8Q4sKbB2ramBJWCmU3QaxvEWlWvKGFI0Na2pTicyezueqaTZewzrin8j//6BXfHwN//p7Gq36kQxomSawqSdbUPe2drdAH5IQqgVLl2Jm6lElkKYixN08CcSpPzvZJlHzxGdJZ7c6mV6RCLFkfbrihaGIYJjZY+ZsIzx+XTNadDxFiLsRnVSvQ3XcY3whQhjC2NeYrJK5LmWhNSTY0AKIrOmykVQ0mZpImczawCJrIachGmGOn7AZn/L1LbomjBGmHlPdtNy+X5BRdPntGtz1Br5w2toCVhHtLb4MHX5hOCAB9IhrWC6xz30S7WQONbuu4r1usNV1fX3Ny+Zxz2jMc9p9OJMPVQEl4dBkEkYS1426KmQFvAK2hiTCfCYaw+96VWKTseoO8LOYKzglhDihEnFs0ZaGi7NWvbIS4whTvIDs0QQibHCXLCqae1LdLVaIApDOz71wwhMJWxKv42EGLi5viW07Rj5c84675E8r/hi69+hRjhdDyyP9yikqDEWnnTBHbTXb0/uX7n03DH4XCHFqnzU1QKGSOKjw1pghgyKfeMw4HEhIipVUWl4FzGGYfmPf1omQ6GHDMlKWRliIFTuaIQa9aYcQzjQHz3A4fDjs1mXaOfSsOm22DEcLgbGEbqJlUymiyaqrl/9QZTEpFjP6HvR6QIUzwhaiiZ2jdMIWcIYWCYdoxTxxgCTRwhJXLOpBhB6/xpbH2tKrRNVw9drMM6XynjI1X7fp27//1TPARfzUUYFH04ZPmpv/mUuH7qe/Pj6z8yc9fqaXYf12V0voaYh8Oej16/4M+KhT8t/GnhTwt/WvjTwp8W/rTwpwUL/pz42Qd/MU7zIlkHvZV50cwJ+HACX3KpCy+CWgWBrLF6SaiSJVaVW5SS64LtvcOI1rDx0INt8N05vtnOxFaqylcKRgrj6Y4+jjz9/IKxv8VZR7d5ijWWFAJhjKhCTImcCt7XlAsjWk2Fc51EjBFMVFIpqFHOt0LbQG8y4ymRci3lrlOhaYSmc5Q4G+kGiALaJcSkmmKTLb5rQQ1KpGgkDpkwGuK0wziDuIJ0HdYkVmdrfHTEqZZzd9bWSkt3twwi7K6hW63w3j9MnIhgEAr60NbGWEQL3lnWXcdwOHF3dcdqsyGOJ66v39E64eLsjPX2kmcvf4G1nu+/+z23tzekFB7uYZ00DaVASnPltpgJcSJMgZJh1Qlff71lv9/x/q1nzKW2fc6UVHC2o1215CxoNuwPgYsLsEOmJEcphmbdMOWG/+Vqx8Y1/OpZYdMW/vBDJt4WxqlgjNCtHEI1+laF435kdAlBa0RAUIJO9P3IaZhmIlhQrcbD3nYP/unGOKwrtO0TVquWlALDWIk5KKjD5FwXZ+tqdTstOKAWYbNYPEkLw+gpWfnql56vftmx/7uIcYaUAiIdmga89Yi1+HaFUsP3pxDrcvNAwOYNGbOqNitnjXV1IwOz31FV1XKupJd5cavpTjVFR2JES8F6T9e05NwR40DOcLebWG+Fdq0UTTXlgETTFizC6QQpGaw4SsrEcU+iUDB4v8I3XSUuWsllplZETCWhxZKLmRd6JVOjJ+pHrEYqWikwgiEX6Esil0SOE8fTnrPzp5w/eYbvuvo6Y2dCOt870dnH6WM/kYoaxm+oxvQYg2Jnsguusbx48Rnr9Rld13J7/ZZdzoz9iGhhCiNWLNYYvFesWbM9f444z2naYbXgbYtpHIIlpAnvM60zxBwoOWGNwTk3R8g05ClQPbxaOrvF2JY8b8DHCEUjzlON1EMiCjSsOWvP6ELH3X5gCDsSFuPBljo+SzKMsTCWgZNEdu4OirDebthsL7m52XP1bsehH0HBGo/3HkwmjHty6tESKXng7nYip4ZpGqmVLRNFBJEMBmJJxBgJaUCNI+eOHCcaZ2itx4pwHCKH0x2ONSllNNYoIZUJKw6rBu8Mxlh821K0cH31A2/fJKyxdF37sFFPGkilEmLxhRTKnN5UcNSNtJrMOPWMw4hmJU8Zaz3OW0IMaKqbzOrdVUnvMIyI21MKxBjY7++YxhHnhK5xxDBRULbrLev1lvX2ktXmHOf8R2TzT/nE3M+bOhPW6uAmc9rZB6X8/vf7ofEpWf14Q/Ypgf2QwimYR3UhhJr8c09lPx0fC/7cWPjTwp8W/rTwp4U/Lfxp4U8/xsKfFiz458PPPvgL40DR6kVjBLKUupiIqdWbVJlLNs0LMiiVBNyTRAVSnqrbhUgtAa/3J+y1CpspNZRbk0etI6tjDCPWejAw9ntyHNnd3CDNd6TxhKCcpRFnHdZZlAkRX81yJVFyVTJUcjVMfZhAKhkRPGjPxcWWNME0TvRHgzMWcXPYuss4EiFbQnGgVRUtURAbsXVlIWeDagNqKLmmtbSd1jYqCbIyDQdoMsat0ezpVg0pRaYxICK0TYO1hpAy0zQxDCOqSts2NcViVk3irOqJKkYszgthGikpYSRDGemHCYrSbVaEsadpN3hneff+HTe3V8QcMCIf+wzNm5BpipQSySnU6nDG4J1new53u2sOO0jjBW0bmCZm1X4ORiiG8ZgYx8zbNPLis45NNzAkg8kOlxzHKk9xGhP/6YfM5xfCr78s/P7byCkpUQt9P2GtzGka5oHAdauWpmmZpsjhOJBSoSC1kp6rXg5FlTRXsxMDYg2b9YrLJ08wprDf97StxdDVFCjNiFi8NZjWkF19DDMhMs5V/gxiDCllnBWMUf7tv/sD7984nLS41pJSRoyja1qMbbDNBussOUXGYSSEiRTHh4UNwMzV8bTUz11ThiwpVTJ6T1bvVTNj7cNCKPPjpWRyKeSUkc7ifIOxE2I9wziRCzTe0vk1plFEoT9mUmgwssHbtladzAWVhKVGDUxjoO/vMMbSNi1t12BMQ85K0oiWD6bTxlqM8TUlTWU2X1fsfeoZ96H9EKUQY6LoQN+/4ubmHduzS1brDe36jKbtZmJuEKlEoC72dU66V+RkdqhO8+Oi9blMTW8ahwOH3Y794Yab6zeMwx4jyrpzxFBTlqy1WFujALbnz3j59a85u3hOv79hd/sW367p2jXGWYahZ+/e0zgYhxNDFLbrNRRlmgKbszME4W53y3r9lPPzF4gYDsNUP6CFkIVShtmIWpGi7PYHulU7K/6BIiPWODItFEsOFs1QsKCWRCR5+O7VP7A5e8qvfvXf0g873l+9ZzfuyUUoBXKKaMqVtGrACBgf0bKnxI5SZI4YKljbsFpd0nZnpAwxZWKK5GJIwbFaCy+fPeOrL59w9f4tb98PDMNE0xViCmgA0QYxAWxC1aGuVs5LIVByhpQosaYKhXGY57yWpvWILbhGcMaCM9iuGqkLQoqZpJGUIqZYDAZrPEULTdNgvWEaM2LrHLrdntE0HX0/cjz9QErV1+t0OjCMR1IYMVqIccR64fxsy/nZM7786q/ZbDaINHM/+7FR9U+p0HJfUfWTdBNTdxC1YqPUDRZav1Mtqfp4A3b/93UOU71/XO4DNuoGUuoBSn1PRdXOER4fq+QL/jKw8KeFPy38aeFPC39a+NPCnxb+tGDBnxM/++BP50H1OHgckapEI+SSqUHmjwbM7DvxIdUkU/T+LL8unCUX0sNKBM4aRBI5DrPatELTyG53Q8qR0+EOzYkcI/ubd0jO5DSS40jTrJnGHusKxinDlJFSWHWelAIxFPLstyFSCaAAORdsKzSNcDxaFEPbKpZMs5pYrYRnT2B/LNxmRVICp4Cj5AZSxrWB9UYZQiAlR42GVnyTaNeQY0McFSMKosR0QnMkxxVOql9O1EieJ6kUUv1JLNZ9mLSqN02duHLJlUypVi8QJ4Q84DcejQXroc1VIYypeq+M/YG3r77l6uaGHGskgfKByAMzUcqEMFFSpNrlVFLinCVMynhckWf1PpyEklOtNEYl6H0/koMQYyQWw2mATeuYJoMUTw4JxVJMAyVAsfznNyMXq8TlM4e6zG6v5FKVoHuCdk/WUGEYJoZhIMSCdVXhdc7gbK0uluf+VdcHi3OOpvEoPf0pMA0jRqDxhqQwaanesKqIyXQrqWSmKKkXnPXEVIjFgRraVhinzM0NDL1FQ0Qw2EbpVtWjxZgV1m2w1hHmynelpKqsz4uStVUt1VJQI/V+23syqnMamP1Aco3BWJmr133waxKpaSH3Ve3ariOkgalMOGvRVLCqdGLAGnIxxNTU97CKM5V8q011U4miYSKmsaqRIqRpYBpqtUOlVv4TU8dsnQocznZY1yHSYMRQ1MwK27zQzhvbe4+pMleom6aRHK/oDweMu2azPWN78YTV5qxGrGhV5H40E6lQze0NMs85OU8Mpx23t++5evea29srprgn5CNd5/jsxRdcbD9DTQZRnBVWLVjt+OKv/obPv/wV1lu22zVguL5+BWSenn1G062wznO29ux2N5jVhrPNhjhOnPqJz7/4Gt943vzwChFhfX6J9yvSzUBKb/Bd4DQCxmAwTCFUb5d44OqmgBkpuVbJE2NJkyVPjhIEo4p1BuMdxlUT9pROvHr1W7puS04j0xgIfcF4RymJmAbIQsp17jNa6LzStRmrmbEXYhEQB1gEW7192g37nBgloyWCZtZri/fVtHsMBk0bXIlMwwnwqAiiCbCoAfGRQqlpHDlRkuK9wZiGKUykVDcfIU54XytplpDIJECwrqFtGkopjHEixPq4cdQxoYY8pdp3cp7VYME3nvVqDSocdjtOp55cCk3jaZqO7WpFXyLD6cgUT5iSMXZAjHI6PWF7fknr6kFBnYc/rG2fRk08npfqY+YR4ax9VQGZleo6Tt0josvD6/7U74rOKSq1QENKYz1U0Op31LS1AqYz1atn8aj5y8HCnxb+tPCnhT8t/GnhTwt/WvjTggV/Tvx8jz/nKCWT4oSieGNBlWLqBEsu99Ymj0746wn6/SBSFYyx82SglftpndSMMVAMYm316UhTVRFzxIghTD27u9u5Kl5VgPvDAU0JSMQYaJojIjV1o1sLrhOGgxDHVNMm5spaUAmgsxZxBiK0XQ1tPx0TfW/BZrwrnJ/Drz9z3PUDN3tlPJ1Rhglja5g6OFSEMNWJGlOgFJx1GGkosTDNXh+4utiXDDU5IZGmgRB6XNvVCmUpoqn6QyC1ite9CXVt19qs9yRGBMQUcJlShKIJ2zTYtqGMNez73jeoqNCfThz3B2LMYD8YIYs1UJRcCiXV8PtcMt65GoKvWn0bxNZw+RGmsRBTJKaIQCUpRWidUFINNc+aSGr44W3g6fM1vhVirKqKK54iiamYGlWQLceDoVn3tBthnVbsJ0ULNX1kVm2MMcQYGceJogpzuoexVPI6q49WhSlPOFuJVtHEGCKHuCOlhJiIcwkRJRuF3tf0ppwx2bJizdkLwXo4DqmqfzlTkq/dulWmyZCTx6BIK6RkSGVg1Z7jW4OzDV23IYRMf3tkGg/EGOf7Vsm4m9s4lQwl47yv97SullhrH6nShRjjHJpeF0kj9fn7hXMYBnJOrFdrrDO4XO8xOdQ0p6Co9VWptA40MvXKmO9AE2DIad4giFC0VKWRGqmiKGXegAl+VuDmBV0zIR9xTFjr0QwpZYxxiBisc1jbVlVbIWVbyZidyW1RcoqkMDL0B+5ub1ifXbLebGnajrb1eN8g1lWfnsL8OaoHTppGhn7HbveW63eveP/uNcfDEQFcazDeUrKlFM/67IzLdE6WAWMm1m1k4y949uJrNuunvLv+A0Pfs95ecnP3A9/98FvujrdsN0/wtmV7/hnNeou/u6uftySevviKL77+a1KM7G53vH//BtN5Xr74BY3f0jUNTzaJfii8HlpEHQkYy0Qyt5S+Bzun/zF7LCWHzpt6g6Fbrzl/8hTrlawjMR6BgZvrH2hch9UGRlMPCyw10igZcvHVA0iryXlrMm1XaFshpabO0ZLop/dwE7nYvkBzBEa8n1i1QtNk3r17zbt37xjSGsoFOqV6ICEFtQW7dlizIeaIyohmgyk1guchysIYrK3m3Jg6nHIuNAilCNMYKQrrrUEag5ZEmgIlVxN/01RfKktdT8IYyElRrWlzIMQxEqc9u/3ENI2IEYQtF+cXeLshTgN3YSTmCWsSY8z40NL3B07HHUUtrmmwrsVY90BY74nq4w3j498fo1a7LBTND5v7puswxmOMnV+jf5RkfpS6gtb0FK0bwP60492b7xj6I9vtBZdPn/PkyQtc0/Fj8+sFf04s/GnhTwt/WvjTwp8W/rTwp4U/LVjw58TPPvjrVmtiGBESUjIiVWmyIngroDJPTPX19wNZFSh1YJZSqhI3myzjDFbNo0GvYOrgLKUgOqE5ouIpuYbs51QQCkWkhiybgoghhEROCWccuSghRbZPEy9/KZzuCrfvLSXKQ6oDRpliwJpqXtx6kKSEKTGOUDL4LvLiaUfUyJv3E9afkXMmhsC6u0DKSEippsHgGI4e700lyKaAFWIwEDyuyRgXEVFiEqQIxs7cRCzTFGk66M4VikcOkEJBbMHautDkrNUgW6jRALlgfOby+QZpCqSOaTKkPtcQ/yzVVyMrqCGmjOYaLp6LorEq0RhDKx2UjKYIWlVx52aV1Lj5dVINhnOi0xVFe4omxM0WxCoIFuctJUPTNJWEp8z+ZNk8SazWDh0zKRlw1UzVWEsJBVVPKpE0dliXaNrEZmuZJqWUD5X4qmdLVWp901C0kj8jllzKrA9ZpC00xtFYR0yRKY2oFEQmGqt4m2l9JbtlJQwdHA+GGC05K9MxsWsi24uMtXVxrt8RKMLYF7IWpHhaVxfY1jakycKcLpFiYConDocDx/0V5IKzteJZ3Qx+CIO31tJ0jvXW1/B8hbbtKDkRQiDGSErpYUyKEZyztc+pgFqsdTgnVaEuBYfFS1vbMCvdVlk1jps+4Y2jOR9IITGcEinO4fEo1lQiXO5TKUSqp5ORqlTfp6SYjNhASgZNDueUYgtjmbBiMSrEmMkBjBGst3jfVv+P3GHtJUY8Oc392kIMU30vMUz9kf64x1iLbzzdas352SXrswtc0+F9S43wCOzurrl69wfu9q+Zwh6DwXjF+wYrjqZ1qM21/0zKIEcOpwPHaY+3AZXAqnlBHAfex/d8/923DId3/PpX/4rLi5fc3Nzw5tVrVs01X3z2BcIv2F58xjBE3rx+Q6HwV19+xdnFU66vr5hSJsTI7uY9l9stIoV+Mqxay+efrej6L9jtC2n3muMwoA1o6RETQQQjq1oIIDmkKMYWnG1Znz3jF1//LRfnz7jb3/D69d9zOt1w9f4VjV0xDjtKKpTRoMWSokLOGGfBW8R4YsqEOLLZJPzGomNGc6YYJRHYD1eM8cjKGxofsSZixDKOmX5IhATNak1TElkymg3SKKtV4tkFNF3i+nbgeAqYOSKnRhZIdTAzgm9aYgHnPG3bYSiEUBXYGmkiWCv4thL4tthqjJ7r5iur0rQOrCGQEJnnLIE0Bm5vd5QMU4xYMdjWI1IN9J2RupZpRubUKa3/wzSMXL17h7g7rOvYnF1ycfGE1Wr1sIm/Pzj4FB+IbKFoIcVIf9ozDQf6457j8cjlk+c8f/kV7Wpb/cUeEd5PK9x9/HiN3hExOCs4Kxzurnn9wzesN2tOh69w1vPk2WdzXMfCXP9SsPCnhT8t/GnhTwt/WvjTwp8W/rRgwZ8TP/vgL8VATqFKRPK4mlb146iKE4+qZzE/D8wpFjBXb5Na3aqU9OG0n/oazQUt90qdwRjFObi4PCfExOmwq4M4V9W6qMLsX5JyRovgfaZkz3BsWK2VJy8z4iLHu4bhIBiRmWBCCCM4Yds1PHvylDfv39fPY2C7bli1La/e74h5U5UeLEkL++GAtXUht7OamPtENgXjBN8BYpAipFxTIEwjuNYg4imx+pGoKrYzmFTQuV2tVbpNi3pFZ2VQS1Ws4lRDv6014AQMeO+IZSCXiBbFu4Y4ZWJIqExVtXYeK44simqeQwvKbNqdcD6RU1Xvq+rbghFyUWRWVmrKB6gmxrGmMHjfPFQoQ8Ca+YbP6TOx1GpszjqsRKxECko4ZZKplcOwgjUO0wRSSpXsxxZjAt1mQmzLNJiHUPQY00yiKkG0xtTUJ+Y0GxGstXRnVfWTIqSTUmIm66yQlVo9bUzUNAejeCk43wCuevygDEcQqbEOOVli8pRiMM4yTXVjpkkhRESFpqtpD1ZcNV9PE1kL0+mIR8G7qnrPynP1SDLEnBFrsN5iXKYolKSs2pYQhHDqa//WGsFgrEEM+EZoG4+qoWQzL4R1rKUUSPNGx9GQnaHbTpxfWO5eTUyDUqaBVWfpVhCi5bCrhLwURYxSDaVnI/Si2KYaoZdJME4xrmCbE6VYclqTyRQthBSRDI1pQRyapZrAa4EyojlgJFPyhiIWMFgzp03Z6l/VtR4/R8pUUpFJw4ldjOzvbvHdis12i3UNx8OBt29fsbv7nqAHcJmL9QWrdos3iTBFrBfG6UROmTiO3BwHbu6uGdJEcLXyo5fIyzTORLnhEAK72x9Ynb3g+fOvad2WNN0xDTteffd71pefM/Yn9vs7nr34jLZZEVNk6E/knOm6FpFSja/X52C2/HD1hlgKF2tL164Q59BUIDnSKiA2IxiMa2a1WaqxurGowOm05/b2hvXqCSkZjvuB3e0eyhHjLDFOdRykSl9Mqkq3FMEWV0M7NFKy4LyhWRu4zRgLvm3mNCml5BFZwdnGEpPldIoMo5LVzZEOStKRqJmUC9sWVk2kpNkXioJwb2YOSsGZunGxrkHF4pqaUrXenpGmicPdW0pOtJ3FuY7GNSiZXCLW22roPRQ0Kqe+Z7QTqjWSBJU5hYoa1VEKuRSs9di2bhQ1RXa377DWMvb7uYqkUhQyUDoYp4GhT0wpk7GcXT7li5R4+fJznPM10gQe5lDVUitfSo36KfeRPyVjpM5tx8Md715/w9XVW1abM0rJfP7V39B260oxVQlh4rC/I8YJ6xrWqw1N04EIOSdCjFDAOot3dj7IyEzjiTgd0SJcPv2c7dkTXNPOUT4L/hKw8KeFPy38aeFPC39a+NPCnxb+tGDBnxM/v7hHPGGhpqeUajb9OO0DqneCyOOTfKnh5w++MFJD3qOg3tYUFWvQnGrGBILRWRVVJWmu5bWz0HaXfPb5l9w1ntub93XCoCBFa6qFSiWKNiM4UIsmGE+16ph1hovnhRItcXJ4r4g4JBmSG1g1HoApjzTdOW6VWG0t+1PmsAeskidDiaaSmCIUCm3jscYTpghITbfBQoHQR3I05JJQY/HiUZeAjLE19SKlXM1iVcgDlOxJQI4BCg8bhFpprZIQ33Q4B9MUIFvurkashXZlaVuLdZakdfHwxlViaO0cGm5qmoZWpb+qIBmVjOsELQZVS5mrdMl9KpHMofMIqpFx6hExeO/q8mRrxIF3llIqibPWYUxVWeIU0DhXCtQqTaqO5OQp0YDJeGsR25ClkLW69VhxWCM4V03MP2yM7k2dwc0ePoYaqp5TJpqCnQzWR4yzSGNgKGhOWPX1742gMofJByUmrSq/1EUshAARgjWYtq3E4mRqiToKvgNrHF5aiKaG1w8FNRljE2Gq4fMGS9ZYXbtlVu1KbX/74IHhQBNSpLafWKZpwMzV1e6NmI0xNE317TAOnK9tH6MyjbGaXs9eMN5b2rbFGjtXs1NOx8yqDYhTQjLEoWGwA5uV5+lT5eml49W3cOqhlEStsKgYUxdKVUfTGcKUyDlAqukpmYi6lsRASqneF6neQJgG6yvJv49sKMBUAm3pcVQzayM89BcjSs7poUpfnWcUsQXJiRIjYRo4Hm6ZQiCEhHXC5y++4BhXHMcDnpbGtci6IZUTGWUaEjkmdhyZxolhHBFfldCCRRqPcy2bsy1afsF02nN1+55nanjy4is2mzPu3gvokR9efcP0zTc1DapEzs+egBrubt6xu3tHSgFjDL5pWW0u6FYXbG9e0w+v+eHdieHsFdvNVzjbgKmbP6MOIxFDg/MNagrqaj+p3kzKcLzlm9/27G/eo2IZ+wNW3OyDUtOCiit05wnfFgiFMSgxeByexhqiOBSPMbBqBe8CCUvTgWsSmjOdt1ycWdadsNsrpzERQ0cRgzNCKgHRiBhDuxHatprlX+8KU+wRWoQWK3VjXub5vmlXdJtzjF9jjGWz3nB2/oQwDPyggf4Qcc7Q+JpyQSmgSpxi7T9SD0hSDpRiZ6N0gISTmqKTYq1c6VwlrMZZSi7EMNYCBq0jp/v5pFabjFPicDxhaLHU7xlL4XgQ+osLYnxKKVW1npe3h/XufoyWkhnGiWmaCHHEiaFtOpxrCXEgpT2H447Xr89BLE23JcZI0czQj7z6/nfsD9c0vuPJ5TPWm/OammWEECI5F5z3tE3HYXfDDz/8wOFwwlkhpjc03/xHjDE8efkF6/XZz13eF/xXxsKfFv608KeFPy38aeFPC39a+NOCBX9O/OyDv6oIViNa4GEStbN3CvAQzg4fqmdVcmRrRbbqqkEd8VWhgmqTgqm2qNVzhDpZSU2lqKTLsV6dITkTxiPDcESLrdXwhFl1nH10VLES63vHFcdbxzQGunVmcwnH28QUDSIRcWCt4j3c7XqmUfGN8vRyzcWm4XCaGIMDqYThoGEme6UaITc1PFpNAQOuqUQqByUMkHJERemcp0yVsIvNYAw5K048eSjEoFDqRFi0LtpN08xEppBnn5Z21WLNXLGMqiKmsXqsxDAhNtOs3ENYdSnVjNYaaFtHUcMU+lqNyxiyJgRPTtCuAs52jKf6fctsDG1NJR2lVN0ppfignN6HVZvZMFukkFJmszqrId0IMQe0KDe3Ge8sCISYscYiRquylAvaQ9M6jCaS1s1OoVZzssaAc5QSH/rkfb8rOdZ7Xx+tlei0ML23iI+szyzGgzQFCe1Mdh3OePKUidPsI5FLTZeaNwnWGWJMpOhw3lXCj84bLmGzqf01j8pq5WjblnGMjNORcAq1QLwR1Ch4rd6/sd7nku8jMkxNC5KGKURKrh4bzcpQQjVsts5ijMXaGgmgWs2gvGtofL0HIU+UnCm5Ko/V18aSSyV8qgUtif5o2PuqMKop5Mmh7RoZAisXefnSkL4IvH1nmXqHGI+SED5UgHNtg6ohhUKaSr0vMiDmhCFiZKT1ntY6qpGMxXQejCHlhEoCV8gmksotjVis2dQ0p3lKqmSyprepVkVxHAdCGPBNw6rb4Kwlp0wYesR4ttsLzlaeeDeRbGLl1xQ1FCJZlRJrCsQ4jsQ41hQOZ7EuYBrF+raKuTrRemG16mjaLe/ffM9p/zv+an3JxflTSnzGOAh5947hdCKFxObJBZvtCucNb9+95+3r3zONkRhGnjx7SdttWG3WNO0Way+IceLq+powFRp7wdn6GfvTG4REaxPiHNttQ+M8R2vIo6FoYBwHNENMPW9e/wNO2jrnGupcZgTUEUvBmch2PdFslCkadreGFCK+oaYElYbDKeAFWm/AWJrG4JsMRdlsYLURpj4xDBEttU8ZKQgJxWCdsG1hvbGIQOgdYmokUikOQ0ZqKT2caWi7Fc+ev+TZZ1/ju3OsaehWK9brDeNwoj/eEvo7jEY0BY5jxrSwOm8q8W093RPL6RjY39WIG+cLjYUwVZ8iby2lFEKohvzVf8uQQiKFhHGeNnfEKRJindMaK2ALIQ0c+x3eJbxvOVuvubi84GzV4V1dsyxVfa+FF+p6pgohJY67G67fv+PYH8g5471nuzknDJkY57QTGXn99u/54fsfCKMSUsDa+5TFvm4IFd5897uH9JvGdwDkMpcvEMs0ToThBGSkcUym5/tXf8/NzXuev/wFv/zl3wL/089d4hf8V8TCnxb+tPCnhT8t/GnhTwt/WvjTggV/Tvz8iL8QMPdpASKzKiUP/jMPJpr6SF0SZsIzh/NK9TKB+vi9j6eroxZxBidSF3YMxpo5nSIzhSMhjEzTESumZsygOGPAQE7M/h2KUsmfaxynY2QaMpiMEYdroN0oxilhqqRX5tSC3S4zTY6zpnp8TMFw7EcKUJKnaRTvhRId7crjPCAFYwvNfeU4KWASJVdfBWcLtnN4W8lnmKBZ1Q1AKZnGCFkTWqp5dIoBMeCMrUbVQNs2GOdo176G8Y8ZLQakVpvzrgXJlJLxriFNkUlj/QyaqieEt1hr6JqWUjKn40gpirPzrgGt11RbCT+P72uNSBDRuQpSwTn3gbgCRRSLIGJBDd1qRRgLuSilZHKG3S7ReOX8vBL/fgCRglKjDGJQcqzGtdgawaAZjHHEkh+UojSb3MJsvJur+ltmcl9VJKHxjn4o7KaM7yDlTElKsYZ2s8JZz6k/kqZEYu6fWpXa++vXFKzaDp33lJKIUhBra+pQgjBlNPVYMxs+z5EARmrlxZwzxoB1DvEG7QMl13aJYQK14FwdA8bSdR2rLaQpMGr1sPC+qv91QQ5M00TTNKw3GxrvSVnJJdeNgNZoDKj+QEbANx6SxfpMLCNDDyXN/XcyROPYmUR8P9BYePkyc3e74XgIUKrvkrMG3xiMKfjWVsIfQMXjNomi4/y9LaKzabZRxBc01zQhcQWIFKmbhdN0JGmm9Wd42yGypfMdBgu2EoI8K5ZFlXEayLlUbxoBI0rbNTjbkMPIfjww9gMxBKLpatpMDFhTqzNW0l+jbmCOdnCh9jk1jOGW0/CG9dBgzZbN5pLV6pKbq+/49h/+ji+//CVt07E9e8bpNNCPI05qtbiSMr5psdYzTRM5JgoR5wUxDmMbnjz5jKE/si9X7Po7bg/XXJwLz15c0HaGXXzFuvF0m4b1Gladp8Q1t31PLuB8i3MGEUehEMeBlCO1QKBBWoPtJgqGafCs1xOrc+H88px2Zbl+kxlHxa8czhqmAUZNFFs9gUDn9LXqZTNOwukYiMnM/ixCzkIJQrbQNsrZxrJaeY7HXKshCmzPLlFZE1MmxgG1Dd5UpbUqvfXelTzNZvyQQo8KhAw5RNBESgIpg23oVi1N69ierWi6QC6FoR8xLuKdwzdNTeeQGqFkxdbIIK9YHxBbwNY1o2k8KVXDeS2KtnWjqrYgFkQyUiLeCJfbDU8vL2mbFhVL1pqEY6Qe1mhRUOj7E1fv3/Luhz/Q9yfEOUQN1/aKFAN3d7ekmGmMociB/jgw9XURNKZ60JR53tVcybERQYMQmOrmc/a+qUr7bPQtdZw7A2Iyh/01p+OR/e174P/8TyYFC/7LY+FPC39a+NPCnxb+tPCnhT8t/GnBgj8nfvbBXy612lv1A0gPlYVK1lmNrioZOnuJoNhciY0qD2kWMg/2VKaqdD6Y3lZF4b66lohU/wAtqCY0DOSUGY8D0xhrVR8U55V2JeRcGAclJSFHnSuwRVQzzhmMGOJUDbQ3T3Qe+IamS2AyIUR2fSWEjasE4equZ78vpMkgohx3NdzfOqlqZ6oV+rgv8y5gu2rYXaxBJJEVVk1Ds65h/kOfqlKGYvGkWJjGqiAK96S/mm9767De4RqDuIj1ymrdMGhhdzPUEGfJ2NawXrfkDClFplFIU8RIZtV5QlGOd3v2hxPbszWN97StnzcUdfNRDKRgqq/KnFpkbfWmsc6yahsO+wOozmayDU3TzpuYzGqzJozjTLaFXCCVOa1E62KYkqkpRQXWG0MMgEBOad7kKIJWkibVPDvnTOstQSKqBmttFUFVZ8VXQM28USoYMchM8GKs1fLipIQhVzNvgdIooY0EiZyGgZQTOKExruatzBAR2ralWSXW68xwUGTV4Uom50SOLTlAiplq52IpxeJsU/1mbN3g5f5EKglpwK8qCdWcqvFwTpQSscXgjJkrVXlKilibZrLuZlPuTIyBOG8SpxBIucz3qfobmXlzWFV1h5UaNWJ9g7OKcSNZhRRqClljDSVGcmkZimEYJowIm3XB+YzzkJPM6V+VjDsfMKuaGhOPhTQYpPEUEhRDUYsGg+nAugQ6ItIRtWDIWFPQkikpE60FGQhpoLErnBg6t6rq/KwGWmOJJXMv9ZccKSkhzmKdq34yzKlMmikpcTwciP0IxtWxJZ4YRtLsXVKZk2J8wjWzV5QojR85Dt/T7jvWK8tms6btthjTsL+5RlPk+csvWK3WFJR21dEYQ0yR/f6WGDOb7QWtXzGEI+uNwTeRcezpVluev/yKnAtxjNzFA1qEXN5AY9heriiHNZvG8OLiDDENoQSG6cCUE22zZd1d0q7WrLoNKReurl9z2t0iOc/jAJp1wq+V08ETswFrSGowreLWE9NkkOGMrukQ6+nDAXFCKwVjczWAtoYpGsZJyaEhaaZoJUo5CSEAkkkIQx+YxkwMBe+El09WnG0/I8sTjmPkeveG3d2B4zgxTCM3d3uurnesVmfknGh9XUtSSuzubuhPw+zD5BBbiHFif1PgUnAOwjiiJdM2BWGuFKkFcQ5vZa50V72bmrYq3V1XTfBTAikNThzjwFzwIJEiWFvn8DqXC633aIoc9zsuLif8KqEpYE3td0pVyAVAC4aCN+CMYpiwVEP4u90N+92OcbjBAGfiaTeFpjOkIOT0oVqfqlRPJiO14qIRrDdzVbuMRoD7CpR5Pjip0QIlQSy1MIFxkf3u7c8mAgv+62LhTwt/WvjTwp8W/rTwp4U/LfxpwYI/J372wd99Vbl7jxAReTDLrQrh/LipKp1BEKPkeF+p7v51tdJOybPiaGr4/T1xzTk9qKEiMnvX1OdLzogKzjqMhZwGcoFprObHXQuyqhPZMEZyAjCEmLDS4h2ItYRxNm21Sk4Z6xz7fWB/l5FG0BzpT8rV1YBVR7WvyeSwIhMwNjCFiAi0XUcImRTr7504xlzJmBqqKawpNW1BS63gZ4T+mLBZyTmgpX7++3ZVVRpnaFpLKomQFTSSNGNMQ9N6UpxQFZqmpWkbmnVDnKqBqWtkXpwt7dYjoZCzYxwDtzd31SzaOVxTDatFBEMNLRcB5+7vWVXhG2cfTIK9dYg1eN/MnxdWq676i4gwxkTXrbHWEfNQ47pFa5W0WQ0LIWEaMMZXXyJTIxCgEFNNUbJaHytF8S6x6hxxqs+LmHnirv3xfkMl1L7nZjPtUz+Cug9RE0Wp3uiZfteTSiQkRdTgsmKsghhyrqqztQIoKU58+WzLsQm8uwaDo2kM05jQZLAm1QptVCNa52v/tAZcsqQUiUMmhIzK7GvjPVa0jiEKlAhSN2PhVNXPrtW5kqKZowNq9bfq/VMX7RoFUlNRqo/QrFwaS00Z09p3p0jJkfXZWNsjGOy6boQORwEtxFGxrqMI3A4JYyKqDapgbaFpG5wvpJwQ6kpfpPZrcoMYSKkaW2OFNBvRpzTVtvEe1WoCnVIhhlrhLnfz/NAWog+kZsDbFZARsZW0j4GSQlWp53Q5ayoxrwkDSpFSN8zG4ATiNFFMYhomkkLJmRTGuhkWg/XV3FvEYGxN17Ak9qc3GD2jnHU07YbVusU2DWEaCVOPaCJOA9NwYtXWVITT6cBxd8dxf1fvhTGoKGIHrN0TxjuGYcP27ILVZovraoqJweJkoJR3PH/ylC/P10yTYIF+ymSfWa8mvBUMEyWfKNGRXIdvHGfbLSVG4tiTc63aGUe4uDBQSvUDyjAOI8PksDZz+bxAShjTEXOGkmmNYbOyGG85jZkYCykVcrTkaCilmqFbD9vOklKgHwL9AKnkOleooXGF1HRM00gf74jFzT5TjjGOaAHrq2rdrDyaIU0D46lnmibGUw+qtO2KbrOpm41dJE2JYR/ovAFf09m6xmLFEkJimDK51JMRY2rFtqZVtmcOqJX56hqWmfojGibGmQCXUmoFUG9pu45Vu8LbNQVDLJnr23f0IbI5u6RgaJuGiycvuHzygm61quuZKG3bsD3fcDy0DFNiHHeUmAljIvT1oMFZRy6uehe1BnGlVgc190UaZr8vAGuxjaFtLWLr2ApjJo6GkmoaoQDONmhJFK0G3VoygsyphQv+ErDwp4U/Lfxp4U8Lf1r408KfFv60YMGfEz/74K8kHsL5jehsSF0XTutqesN96onIvcmsPJTvziXPKQ9CKYacEt57mqYhpVArqKVCnALZJKw1pJQRoDtfkWJmOEUstVJdyoGsDlNqBatJ6980jcG3TU1XyUKYEposmEjOnjwmQhSatcU3hpwaUo7VnHhY4WUiTok8KsMY6ZqJ7dbTH1wNPw81dYbZ/FfQqtIWxftabS6n6l1SFXxPSQYdMiVGMJmmg9a3hFhVc+drSL9rBOcsJVVT5lKfxvmEWKWxmRIPqFvRtg3DqFU1pionIU6UYunOMsYpObVkX8utXzxd40+W424k54KQa2qHBJpmhbEOlYwRi6pUkplr9bv+NHA8HEGlKrFSidQ0jTRNw7NnT3nz+g1KjQjwK0fRTIaZZDpyVqyVWaUVvCmIFFIsFEqdcKlKfs65Tslz2gel0K4aNBVCjHRdWz1LhgnVhMjcLw2klFE8oJQkKKESNa0KrZgJQ0NKuabqGF9DzXP1qGEODze2EvVcEt5YrE48Pfe8fZ8w2WFyxK8LzTohNqE4Sp4QLKW0FDZMQ2YaJkqpXk5iLAZbCZcxFKOUqaZCNc7U9AwV4lhA4eLMMvbKOMaargE456tPTU41NasUrLeUOUrAPPjZ2HmjqKRcSNOAbWC1LZwOAniExMWTjhANx3hEJEH2iAiIEgPEMM6h+6C6pqgnjxa1GbKfU24iYy9YB1kLYsz8/sCcQpRjpJUa+RFTIU71+gZbv4cUSBPEO/KUWG/OMcbUTaqxnPpKFFOKWOeYM97mKpbKEAfGNGG0zj1GDblk2saTbKQ/9fUel8x9apY4Iaug0eB9JMXEfpfBjZThHVbPOLswdKuWzfkGTQnjCsfDHd7NBuGm9tvt+Tm5CMfjrm5U0ohKQMwI7Lm+/o67XQTn2O+u2d++JmnGNaDSsWoCv3hZOHcrvn/bcneMvL/pKT7R2IanZ4rzcHV9zc3VgaIdq+2Kxs0VNsVjYiaeAtOdcBsLNDUlR/aBMUTGYc2qFTabgLQ7xj4RY6GRwhrHSg3GeCaNjDFSZqN656EUi1JovGO1djTNmuNpYr8bCCliHRgKISjf3dxR7m4ZpoIYT9N01Rdm09D6FU27YX12weXFU3KO3Fy9IaVEChHRUu3YSwbNlJKw1pNMJk6J/W4kl5H1qsGazFQiIYCWWlygVjSt/c97g/cCCsddZkwjOWfCKaGTmdNCaiREyUoaC8Ur7rxltT6jZCXGgaE/cTj1tHfXlKLklGhXZ/zil3/L51//FV3XAUqcJmIMnMYjUzoR0o5SJmIoaGkw8yY6pUSYanED6wzZFrTcFwsoCDpH5uhcfKFuSpumVhFMzhIGKNlS4zoU61yN1qB62GBq0YAFfxlY+NPCnxb+tPCnhT8t/GnhTwt/WrDgz4mff/BXqkeEMwJWHlJKcs7EEPDef4jz5d6bJs+qs9T0jVJJic4TksYym8Eq0xSwtpoBS035r2H4xtCsWsIUSCHh1ytyVox6nK3qWdH5D0phnBJTEigG76BrPGPJ5CwkkzE6V76LkGwmpzJ7SBTIgjNKNoWSqJWXsmO3gxxKrVqmGaX6usRUkKlWCiqlULA0jaNbOXKBGDKnU09K1bzZNQbfWbIpuFWuHhy5+hhoAdMophNaVkzHREwjYgt+k7h8anmyWaH9VA2TLwpJPVihXSu4ifYskIApKF2jtJsTho6owsVTWJ8rYRJycKQScWoRW1OJss6E0ZiqoKogOivqWhUp7xswwt/+7a8Zh5HvX71CFW6vr+v3Nw7nPJ2zhBwrcU9QjKdIAGr6SywZM2n1GRKLNaX66KijaKpq+ew9JCqkCKdSw8mNdWzPPdMkxElJeXiIiKjcTomhpk6V2by7KvJlfv+mkvLq8FqVThIqBvCoVlUJqQsBOWMRYgLfFP7msw23+1OtCNc6ppRpfE2fKSbQNYKSuD4GpqmlPw2AYJ3B2RZrBHG2etlgaTuhlNn8WWFC8bHQbIUQJlQSyoopKt4JzrWIZkIZqzrrLRiDqNZKgM7RuGZOeZHZC6Z6Aq23Bt+AlhZsoiRLuyo8f7IijIGi1aMopwhz6odSKKluKVI61ip31pIQGl9wtjCGTKGmIRknoFoVQDwlWchQxsyQJry3xGgosUCsZrumzfjOk3Jmd9wzTD3bOOJnEp5TZhwi0xgRFKMQXVurBdq6sUlxII4D+FKLBlphmCIqNU3NG0Oc09NUFSO1umSdPyyiE+oyYhs6hCFc8e7G4dszGtfgZiJusUzjCVnD2flzUgqEaQ/GoU453L3G0FA0gRkxOhHGwtX1b+kPbxFT02ksltY1wEjKGcRxt4/cGU+Sl0gDzt7ST3uSP1bjejuh0rDebikors04n8FHdIyEXP2ywqTEfcE2NeVkj0fVkGMhGsPp0NSNSTmgRXGmptiRC2lMeAvrtkGNx7bV0yVOgRgLzt1TJcfTizU5KqdjoEFwPmOtxzhDypmVtMRQ6I8TyIAxSpEViQnrDf9f9v4s1posy+/DfmvtvSPinHPv/aacauqq6mbPJEWqKVAi1WybgylQsGUIAgQZtmAYAvwiCPCDABse3gwZMCCDL36QBQgGBNh6sQ0YsmWblilDJi3RbDXJ6oFdza7qqqzMrPymO50TEXtaflhxb1YbEJ186M4ScDaQyOne+90TEXvv/461/r+/2HP2uz3340RII7Gx2fzcinT79prWCrV2X95FaL2znIQ1r2hQeh9YyokQOiFANwHzpNAhJUSUecksS2bJCyKbNaQZGh86X5xtRTOWu5VrbuhPAnH7/mncMc8rBlxePQU6rXfevv2EZT2BCKUUDvsduymRwo7l1FlyISZjf2HktdK7V5FbaaxrwpoD0/3Fg9Bt2y+DelpmM1oxMh1Z/ZmW4AEIuxFKNnodMavgTScYSowCodHzjybEnscXOc766ayfzvrprJ/O+umsn8766ayfzuM8vsjxj5Tqq0EfgZwgm01AXbR087Zxc8gm6m/d22ZnAYcMu1rplOL8jru74j/djGHw6mFrm8AFunRKrsynhRgjKamDfoNiq7F0Y7UC4i3ZYop06NaoFTQ2ZExIc0BurwZbmlW0RK8de2AXxJXLpzBMe/KaEYnU7uJ5nEbK2lEVWvNKmQS3xYALssPhwP4Qub25Y129GusiTAhhYNh55b7NiWFqhLHSW6BlZ3vUdYMst5X7u4WH5KNSoefK1dcjH3wwUU8zRRu9Tsxzo6oS9S2qFZOAtQnaxNoWDvvA4RBpbSUNkasXK8f7lZKF1jKdQLROUkXMxdpmKPLNrTjwexhctMY08Eu/9Kf4+OOP+cHHHyEizKtbCGpdCdIZxkBeK8MQMHXQeK3+FLmg6hjqDApRUKGLt1jT/WtU3U7TWmNdZ7/3IXrFf4SUBuZjxrZH+EeTEf0ZtMd6jZinyHnCU6RZpdX+2GGhKgQ10qj0nrzCXisX08LVRcRUaGaU3BgHBWvOu2iNNRvHuRF1O6wM8OJFQ6pR5op1/5yI0A3ERtieC5MKpmgYsJYJJsx94VIukHzkaEdMAyIJqxOlFZqewFzohPgAgH8AUjtgGVUeUhRTEOrdCY1KiEpeI71AStG7B2rg+Tsjr14HWvNKv4pRu2G1P3amILLNc2fiuOSHkBIhV+82CLodxoxejWAGodNqw/wxIowjXZVcT9DdChQ0EEParBGNTveKXw9uXyudfKo+vwXWdSXnzGVemPaJ0jK1Fpqt9H4kdsFCpPXG6TQ7v6M/8K7s8TCNdufUiDxyPoK47amURs1H7u9uubx8RtDR16RmpMHnwcXlE+7ubri/WYE7hiGztBkYsb4iskCvrAt0S+z2I8+eXFG7bof1E2u9ZggAypvrldafcnn5DsMeJBVoJ6JecqrGfHuEqp7+F0d6LfRegQpSQc0r+WZIF19PdkL1BhvvgmmVKs6iQge3ClnhlAs2gGgnJgVptO7zJWjfHGfN50xxi1UYjSEKM4L1BatCHAb2hwFEuLv1rpFenSETx0auzhrL+US3Ez/xtZ/lK1/6Bs9ffJk3Lz/m7vqHrKdbltNKKY1mOENqm82yOi8p9BGJbpmx5smPqh2ViDXotbOeGrUYp9NKXhz071BskLRVf0NCqznXqnVqLly/ecNpmXlydcVu3GMIec2sSyZo4nD5hBDEuWbXP2BZZkrNjGniS1/6AEERm+hlT2mNNK7srpRSCpYrVg1rCbVILg6qNzMsGDEpQ4qIQe4O97cWMOlYNdCATJHdpTFdGHUNtAJLrvSixARpqEg3LI+fd3s/jz/gcdZPZ/101k9n/XTWT2f9dNZPZ/10HufxRY7P/eJPA16tNaF3eRQKbDLHq7ZuNVBVaOZMgwfx2oVSMyJCjMqQBlbL5DVzPJ6YpomgDsB9SLB7TB4rjVYrcUiUZlj1dDybOikotgR6hy7NNyMr3vbfJyiL7+NmdDHaJpBaFbQFrBZy8/b1aaoMk5CX7pXd6gILDc5LqZXaKkEjusGHp2HYqtVwOOw5LUeW7IBmTULUuF2zznrK3v4NTJOx5IqJEFKgro1IpK+wzotX1II+2gRqjfyD7xy5uVb++Dd2vLjIXL9tYJG8dpYFWh9R7RAK61FpXRhCgz6wrh2zwtoWZIwMw0iQjkoiEpCufk3FqzetV2+lFiEQGYYtDj6oC/T9Dj9wQO8Qo5LnmWf7gXEcuD3NzqVJ0QXDxuNRdUtDiIFhcP5K68G7GB5EhcCDyFX152caR08KrDOlGNYrtZZHXgm4aHXg9u+3UqnII2gbcH4PD+lxnRgGxkHZjYHTIsS08JUvz4wCrXtKHU15ed+5vX3rk2FtxNEPW7UrCyvShX4U7vZpSxlsjNMFw/iELobRvTItLowbiiRhbMZM5EUS/vk48Vf+0i/zv//4N/g//8bfY5rGjX0jD0YevAI+oE595yH1UUW2Vvi+wXsTuyHx1jqtGeupUbJSCyBOdlnmxpfe74yjcn8vQNuqiQ5Yr61Ra/WDDEYpfs0lOPfHr74fcsLGDerVUAsoEQWaNP8SUYYwEiyw2kI3Z/a0AnNf6A2SRqIkamn0Xrz7oOICX73CbbVze3PN8f6Ww+UeHcT/eyponKktYHZARN1Gtgl7X0+2iqt5x4TKVh0kIATEHDBuXclr5s2bT0kxEUMixsC6LKBKaUZp3sXTzbsOQlvIdIKOqDRoq1vwRLi8esqk77DbDbTuB4zbGGinxmG/shv23J06Sz5yl7/P5eUz0jjwzv4dDled5ah82q65La/JyxFh3cDshtFcfDM4nFwKQRxYJCogHeu6WZAU6z5PttMTmYR2Q+hoh12EGDpzXpjvlKiCWCHQicEoraAMmFVSNMYkRBnovbHcLwyDMh127PZgFiklshZnz6gYrRVaEV5+8oqeA1/7+h8BjdzeXJNPC0qg9Y5toHXRrRprRqtCEYhTRIluVbNI76unMlok6oTVkfsb5zOtK6xrQ0OHLaiA4FYRVcNCB/VkwbZZuzSXxzUkRuHqcqSUlXV5QxoT0/6CslZqzRwu9+z279Jr4/bulr6FN4zDjrzO5CUSoh/oewn0tiVVBt9HEHOLDUbQiIjReqFTEPF1y5rfrtCFnmE9deIoBAFJjcEq0AlJCMmgNOJgnMePxzjrp7N+Ouuns34666ezfjrrp7N+Oo/z+CLH53/xJx67LSpbxdrHQwXos0keH9kYvW8VlG2jaFuCVs7OpwkaMcsMw+jpXVv118w250lnHB2CrKrO71i7r2LRSw8qgRQ8Aa3SQTdQ9W6F1pmPbjMIEVQCxG2RMGNdsjNhuoE0DleRw2HP8mallk6IjV4iVoXTMnu1Yn9JyZVcMtM4bsLBiMPAmr0l+nDYOa+jNU7HwrpUehW0elVF1FiPivUJCwbJt1O6UEuld2MYhGnvaUStKbUacdzzZj5xLJUnh8iypbbVY6aGSBgy0hN1BcuFYRhZ7jp38oZmJ1TBrBFSJERvo04pkiRS7tW5OlFIuwGLznSxApbVN3SMNAT6ZmEQ9U3ILNCaV8mmcXAuhqTH5D8z2e4hpEGJgyCqTLvEunpl120yAmxVsuAHGGcYBTZ3EJhyd10wK5h1Sm1+kNiSDB+fn40RJNhWsXRBW710jj+Y/hl6TVTt3B2PXB4qL5521tn49KYz7SuXB+EuG/dzYzcIS1nYTRfsBjg2I3ej9ESUDlK5vh3AAmEUxmFgf7igm1FbpZWM1Iaog8eH0thh/LIm/ukIP83Ck+VTfvLdbxLqb9DWPa0oUDZYdqJ38woxDuElGMuy+kav6raZbtAbKt0h2MA6e3UYlN69+lZLA62kUbBbw3CrkEa3XcHIfPLn7OEw2Yrbdww2qPg2xzfQtmwH21LyI4hbkgPp725voHV0u0fdzC1I3QWF9a1Lovi6kmSgbq34vs7gB6EOpVVubu6JKaABZOykMIAEWn44xPhh+yEVE0DEUBUkBJSOqJBC2g44Sm8DNKHXzu31GwTzxMfmIlg1Umvn5vqGnGdoBkRKH6lVmFJFMax10AFwS19j4fb+xq0VMtCssB87VxcTy2qcls7a7mnrTK2VZ0+ebYeqGyaEu9G4mxMQKLmgxSHkQSK1CtLFUx+l4VPPnxLEEDG/P7IdfcQ7R1QaQRrTFBmSW+pUO80K3YTcoZaOUhnVbW21eX5mqm4tC4MfJlSdP3Vzu7BkQcJITMkB0UfvKgjBq+fOWKm8evkRrZ2IaeDm9Q27cUdMg7ODtvsVQ6Rt4hv82a59xWqh1rwlMUas+ucU6eTsFW8BSi1eFW7eTeEurr79zmCyvWwRwURJKXC4OLA/XHB5dck0DgzDgAKneUU08fT5Ozx75uv1bn9JHHeUPHNz/Ya3r19iJ4UOVpsfpIZMGiOt+l6XMGRsTON22FygLEZdC3U1Oh2xiBAo2bu8hlHR2CAYpUGZBaUwpMzzvTJXyF0wGbDYSIcznPrHZZz101k/nfXTWT+d9dNZP53101k/ncd5fJHj87/4Q7D/H3Hw8PfHlKgtSe5BJKg64NerQg46fhC4ORdScsERI5TSKTl/9gc+VsSFUgsqzhBorRKiYdqICWQMhB1M1nkRClcHY4iRy2fCMBifvuz83neFOXs1PCUHD7eSseZsjFI7ohVCp/dICpVMZRqFlg3dGDLWOikFrq6uePv22isNAibettytk9dOXiu6tY3n7NVCbNtwDaQHr4aLC2ZG/91qb/Te3IYjRidQm9CLg6JbAJ32/ODtyjffjwiNUr3KFHYC655cqguHDqgDWJtVWgPVyn4f2O+FFy8O1Krc3DlvwVS3Q0ajtoIEQ4JDldUi1gVTECp/82/8DRclQZ3xE5z1EQQOu5HSGiIR3URQb56SpCEgqsQhYSVRqz3aDvxwoxtYOW6WFk966ltylGyHpweLlADYFke/WSjADzkPnRKinlJVa92q4V5V9UfMxSs4dPjZ88JhgPtb481tpKjQlkpIiSaRUhvvPw+MA0RRLnY7PrpZeH3n7JAmhZiENnucvISAxAqyQgO1zpSUlhpzaTxbA/9ESPxS6HxNYKjOCJK7Oz74iZ+gtytKH9waE/3A2LrRujN2gkAIkSBCCW3j7ATfyKNuqWdevTZwO03bEtzMIfOnU+H+vhNjQEPDutG7UnKBFIjBN3J4qPT731sVpHuKlqJ082QvHteF5vyqWolRGMaJMY0OkV5Xv5cPU/1HDsS9dz9cmDOwRGXr+Hg41OJwdVFEFWtG7c2rmqvRSiQlkLJV8jeB750y8fHnxCTEoTGO/qyE4FVqs0o3oWbDqtBk5ebtKyDQW2UYIrvdDhHl7u6enGd6qcTBD7itGQye4tfMqD1QZ6XWmZP9EE2BpvckqYyp8Ww/MobIQuM0Z3I/EUJkne94NVfSINydbnnv0Hl6Eaht4u3tSpHs1dVaCMOwsb76wwmYLn6o0bCt3SJbap+LVgFiMKbRmAbYTW4PzNV8SkhENaItIDKTQiAGXPipd92U7lyhjs+xFNTtVgvczhUJMAwRFWGXJlqMSDyCBsrJE+JKbtzdXTPuB08JTEoISoyJtVavyJv5emn+AkVVqKybXQs8w0/dFqaKmKcf5i3l1DugdAPegwP/I7al+Jl2RNmseIE4RYZ9RGLFdMGCkcaBw/SU3c6fzyElhnHPejphvdBLQFpnCG7HPN7fU5YTQRSxRmkBjUYYPPXS4zE7w975bSX5IXA5Zh6tnvLQpdKZdsrVk4EQK61mtxg1yIsSpHPYj2CdZtDVU+zi9FmXznl8seOsn8766ayfzvrp4e9n/XTWT2f9dNZP53EeX8T43C/+MK8YCeIbmDjb43HzeWyZt8fKVimV/X7HixcvePnpp1gz5KGKgn99jJFlWbY2aqFvTJsHxki3SiAxDOPjBiapI6lgqbEf4clemFKg1sC8Vt7mE3evhau9EofAi3eFea0cbwK5dDQIKTmnRsRbkTUllnXhzZuFgNJa2T6vL+hJBpoYNzfXj6yTdZ23z+ot/bk4M8Khy5vVRkGkoxow/K/ejTSa83EqlF43QbVdTfPrUilepe2diDGERJ4zH71MPL3MpLRS1xFNEBbBeiYEr9hXrRALLRT6WhgSPH9nJGnksLvkg+fPeXuXeft2xjQQx+T3T7KjO5pSrXnqmQimHUJHUb797d8mhMC0G6ixUXOjtcpuGri82PHJq7f07hXPYRi5uDhsXQz+3IRxxcqemiu7sdA2kQOgwSt8qoIKHA4HemuUUokxME2DHxJ6J6aItEAp+ZGfItvGFuN2KApKjEpr1T0/9sArceuEbkmGL94JfPl54qNPr3mTIz0GYoPTccQkcRg6ZhPfvy383FciFyo0abz3FN4cG6+X1S0WS/CN0NwiUOod3EPSERFlVmEfhF++nPhzY+ODpWy/TyOEPcki7VTZT57ml62i1uk9bMK10TG3HGzz7iEFriJ06wQCqsrhsOedFxdcHzPLzXG7xoaZl/+7GdYjx/uFUhKP9h2H6VBzIcbgYGagNaG1ipjbuJBO1ICK0rdkLyyAsNlyQFunNVjrgk44x0qUujF11JpbSpphVrd5Yn6oA2ou2z1zppCnX4YNSO/WHzGB7sKltIalStwq9V3io83GYfqbnS7CdDAuDxO9dO8KMWVdfS623hFz0G/OC90C05hIafD70BpmSgyBWpX1tAKdFBI2droauQzUNVGKX48gJ3ZXF2gyxtiYVOhrox+coVRqoLbonRvayPlIro25LeRjYXcBl1eJ03GiqtAp6HbPo7rtqS6CMmLaN24L3lsgLghbz6QYGGLnMBm7QQmm1Ay3p8jpVBl3wm7fUTGiNnI21lwcmB2VlKDROeVCrY2aA4MGVEBDQzVSVi9NJ1EIDatC0ITYSDchBuihUVbIQZDU2e8noFFKISTFiqfT+booj2tCTOL/H2dFJfVnt1VFCARNpAQhVHJeAaNZcw4X6rweHbDutq4KWG9ogDQk0hTQ2GmWOS4LpQlrvmYeb5iGC+oqXB/vWdfM6eaaUlY6yhAHRIW74z3Hu2t67wwxoUNFdaTbAqER1GhLx3bORIoRdEqsx0xrhb5x1pDt/qkiopReWNdMnitBjSF5Z1irxnryz5FLdoh9EFL8/Nv7efwBj7N+Ouuns34666ezfjrrp7N+Ouun8ziPL3D8I7z4M9/QtsrSg5WgS8NaQGi0anTrdBoYDHFkDMp+EHqtHpTtOAvfGFSxrarSmzMo6FA7LnBNfVPvAUL0Knj06kvrMIjzV65vulc+a6C0AbEJ6/BhzdTsEerjFH2DT8686b0z7ANYY9DKqMJclePdyjgENCg5C1svM6YAHbXIzc3NVj3dAL0bQ6G2iqm7aIL675mrJ1CFACEm32S1I8FYy1ZRMx65LB5HLtjaISgyBsbd6MyJAEMLWKt8/5NCaxHEK4y9FIaQGKcdMQpSBZOCYUxT4d0XewSlscfSjt/9/sLpJKAjEhoSnHGgxdvPW4mEMCKSaVIQjfStpdtlQKXHiIrBCq0rTy5HYlJubmfWOiBzJobANE2Mw8g0jcQQSfGKtHNhab0/HooAF1Pb0eZB/O93g4uuh6/ZRG7vnVIK87IyzzPrulKKi9qcCzG4TSbnRm1eRRURmgmR5hW96FyfKRVuZ+F4UkI7YNLQwRhaIGhgGPas65H5fuCTtyujFLotvLiCn/vSU777+sirU6N1A0mIdaR7xbysJyQJKQz8NIn/iik/W1ZyL5TuoGdVJTRnOIW39wy7gSf7Hcv9CRNxO1DHhSEdEa9ad4TcXSZ62prQMaQ2TseZ4z45e2QTrI4lcUYPVsEiSwvkArU2sI5JAXPLSynbgUL9d/QuFG+06N3TDDv90Q4C3qEiOGuomz1aS+Z19fsKhMeGFBcksonmh7UGM5rZ40FDpAPBWTAheuUR2w582/eoH17qKlisxIuECoTaCQUKDR18vhIXUhwYJ+VUK3lVv3coIcL+0ihzg9AZhsjhkNjFwN1953haETUOh8S4u2A5Gvk6U4sRpFNLJFuhlR0lN18/pDHsEmNaeP6sY01YFuPUFq70CWaZunqnypBGLnbvUI+FUmdKb1yvM7er8eIpTGPj+rp5CmHyzhXVyhADvYKaYMU7N8ycY9W3c5uQUO3sxsqUAqXA9bJgJn4AaYn5LoE1xotKGAKDBUrr3MydKUaepsLTfeSYV+7vO4tESg/+WXFrUNgprSk9ZIYpsN4JfQEt03aQb0BwwZ4zaR6Ig/8O90sm50zUjmqi0QkhErekyq53SBDokaQDUUZEnDcUghBjQsqDbdLtTZhSmx+mxAK9+fPatdBKJzB490soyAJSFYtCHxJFhTtWXvFDVF8yhgEIiCY/MFYlzyeuj5/63EDZTpUs60JsgWG3AmF7bmWbEw2VSG9Cnhubh2jzfz0c/QwVZ+ysi++xtW4gdTVUvavntXi6neJrqsrwuE6ex4/BOOsnzvrprJ/O+umsn8766ayfzvrpPM7jixuf+8Vfp2/JXvZYqTYTYldKN4a9YbKwnCa0KrnN9N6ZS2Que9794AN+8OEn1FbAGvI4wYQh7bF+Dxi9mU98un9dCxA7MbrFQBI0CqIV68LtfSVniLojMpKKuKjqQuyGAnUutNX/TPaR/UGwVSgGk3rqTx2Fr15d8OHrW3YpcTkc+P7be1JS4r4iVFIYXXhrhb6jVWE+FWpxiDGAmNs7xmlAkxJyIaBYq7TmYN80KCEF8uJpboh85szZcL9mOHdCKjEowkgpnRBGeof5ZHTcXtK7p7S9eOcJ775zxRgjv/nJ92hrIVrh3Q8GrA5cvxkYLybabaWtAWoCbUjceC1NsCL0rkjq2GBUMcQqQxCkPqTseXJXXWA5FQd9S2VIe169OjkINnrr/PG4cH9/JKXEbpz877sdu/1EGgZijMQttQ0Btc/A0g/cmZQSBo//3Q8N/bGSddHc4tNaZ55n7u/vmeeZkrNXQreG74duiqABsUqMiTgau4O3jd/eNlqNzncx/7Pj4Jthq0pvzri5ve1Mw0rrnaUXno+Fn/3yM+TNkU/fzCQSa3MuzIXBXai8Fyp/IUT+CavsaqOKb6AigpiDyeMmPOvxxF6Nrz6/5PW8Ys0tBkHwaq61R6H3UKX37opN823WqNO88vr1DffHBePB2tNBHmxJQq1Gb1vlq2VvKlB1Do65/ecx8Q7o3QXpA0/oRyHyP8qu8n/Xx+81+yzB0W+b/5wQvLr+8Dn8/2/8mm6bWPbvcbC38Rm8XgDnyiDN14zurJZWG6FCHANdIYdA0pX3niomwiyRMQZ6UdZVyVv3ShoSYagElHFqCIWry8Q7T/akZHz40cKH35+BBXZQc6bkdbOheVU9r53T2sGUGP3z+4G+IsE5MLl0cq2kANe3hdPS3bIT3X4RY6brQyU/Ij2RS6HkRhoEzG10aCeKMo2ZwwUIwv2dz6c4Rk+F7BuYWzoajODZARzXylpgyUKMxuWuMvXI6a6S105Mwm6v2D4xWuK2z+TSWYugS8MkMY6e0ndaV7pBrWyMqi31UQqigd1uh+52WG+UfEJjxgahSKGWyrpWlqWz38UN9m0M47CBwztpCExDRKWSWySXrUsB2Srz3j1gGDkXTqfMssw8AMmDGtY7cRjZHw701sll3uxx6mtEEMIQQaH2BjlgvW2csEKz6pY4iVxcXvHs6aWvTWYcjyfM3BJn5vaYhyTEXpQcK4QBbYZKgTFBCn74zI0688jMka2zBvAEPcPXOzoahRTMAfnmRrHWlWUpDFGwALVkT6HkbFX5cRln/XTWT2f9dNZPZ/101k9n/XTWT+dxHl/k+Nwv/kIMxOiCQYP4m/PWyHjMeaTy/D24vVu5vVdGjBiELPe8PcLXvvIz3J+OvH37Fkyh+aTq5gvbtNtvrJFMyx3rEZEGUoGRB2uLdpDgINHlBI2AhOSLRiuehheVEBO07tU78QWoWCctsDZBNWK1sj90mgnP9yOXw4gE+ODpgXUurGtkNzRoitngkFEMJGCWWZdC78a42zHuAvOcWWeHBzca4+AbR1BoSySXhWFKxNHFQEqRmjv2IzYVb8f/rCuAYOR1oYr/85AS1gdS2jOvHdNCb4XL/Qu+8c2v8qd+6edp68L69wtvPv6YYCB9x9vrQmnGKAo9sJXgsbZVqnDeSNPia2KA0r0lPZDoJlD9GjczWq6spyOlGs060zCSs/Hpp69ZcyXYwpgiMTqHxsxZIuVUmOeZcOfQ4nEcmaaJYXAAbNw4R/AZUNpZJfooZFtr1NZ+hEkjjOMOEWG/3/PkyRXrunI8nliWhWVZWNeFnLOLMU3ogx0mZi6u3Gp0PwulDvTuldwQYDooLQvrmqnFxdbpFNHQ6QKDRn54KvD2xDcuBso6MK8DO1notrCK8hfTjr9iO54050qsBBKyCVEXOKEJSbxGFUpht2a+8vyS33lzx7pmSq2P18OhwhHDq3QxBpZ1dWG/geFFFAlhe7b8YKQqDuOWrXBGoLZOPgVaqZvQeOgi8CS/lDYLk23Aa/N0vRAUkc/E6MO9+VF21cPBwu/n48lsE70PAlgf2Vb+PZuw5TNmjaoSJPrmrf4z/fcBrCPJxasGQ6p5R0sLtAwhmJ8qm/BkF/nas8gwJT5djzQT7k+FZW60Fl0AW6SXSGkVDY0hRsAoa2E5ClBJU6UXpds1UXG2ymC02vwQRqOUe0TCxhDyiS3a0dAprTNnI1cwIp++7Mwnoay4KKGylrfMS2JdCyYdI3l1sy7EmElxcHD8UrHdQIydD54K69j43VLIbUBj946bavS6caJoBHFOUW1uoRuHSFRjN0TUAr26/S4vmXHoxAmiRKYpkqUS4ogGOB5X1pKJSYnaaF1o/hD5HBJfp7t10hA57J+CKHe3b1nXe8Y4EHJhsRNYQTA6DQ1GSurdSWoQQELHwoKERlKhLonehdo7Jm7BSinQeuN0mrm9PWLWPQQh+Mmn987+cMl773+FeZ754Uer38/klX1NgTRGVI0giX16SkoD83ximU9u0bLKfJqp1eftMEwcj0cXrt22das9HhZijFxdjMTDSsmdOnfGQ4AgWOiIudWkZqOWjSdl8tgh4mtc9xcxYWAYIyFViObpk9U7dFqOLFlAo3cp7QMxfZbYeR5f7Djrp7N+Ouuns34666ezfjrrp7N+Oo/z+CLH5w/3MME2K4ri6UcKG5Ki0YmcjoVqR9LexZCIA0q7KD989SGNgg6VskRnhwwzxIpo99ZkOuOVt5uvS6St/letjXl2oK10JQyRVhu9CuM4bNyE5GDdKkQ1rEVyMXouSAjUamgL7IJyqgUloiEQw8rziz3ffOd9fvDqLS8uBr7/+o4f/nBmqANz8k3X2RheOV/WCn3YNhMhL5lpF5nGCe3QtSOh060ixtYWraQ40rsvOK1uLd0x0c025sVnm3uzjhpc7hINpWSl20LNlTgG8hLpdnRuTFfm4z3Xb088e/IO/8H/8//Kl59c0eeZ++tGXhVhYpwGrAREAqqeOuUUHm+hlmDEYHTJ5NqIKAMFaxPLOiAVrGVqg1oMlY6SvCplnfv5liUv1FZBDR33BCfdPoogoldfeuusdWE5zdypM3/GcWScJqbJRexDNRN+f7X6R1lIzqTRH/l3b1GPMXI4XFBrpeTM3f0db9++dR7SlpSnQTnsI2Yzp1MnL3tyBjEXLKrCYTdwtzaWkinVgbG9B5acsWDoGrk6jHzyeqW1wrPdyHJXkT4gDPxLu4lfKZVSjVojkY5oQKx75LwKiQGhE6X5Iaw14u2R5xcH9rsEUin3lVb9oBRCgOAHDcEe09RQr/T54apvVTM/YD5UjR8q2yIugHsz7t6yVe4S6JayqM722e12lFKZZ6/+afBK8QML6JEnJfAgh118PgjXz+7TY8dAeIBdu/o0dTGbi/OdVB2M3FpFQ6Q3F9sSvEKJ+RrxkIhXW8VQ56SE5umU5h0TVhpjioQQubraQSg0MVSMJRunudKablX6zrpmt8yJd5OstXF75z+71ZXjvZCGxMrK/VGxu860bxwudozDRJLIugCWkC3prHm5nRiFmIzTsXN/m0BGejHyEsgrtDqTmoApJiuFTBdlHCawkdpXep8RFcYp0Juh48Duyri8Gnh2AYfnicPU+c3vFbqmreLaP+sKiIFs0JuvZQEjdGOIgV1MJFk34PfI8U5ZT4aESkrCfhKojVYEGQMxBU6zW1LGFFAppLjZFZuzuNYlu8AMt5RaSWGiVe/CCUOgilJLphcX2d0aon4wsmaQKhI7mpqzXMxoWVAZNvC8osEh7cMw0q1ydzuDdV9PxuQHJWt023R8L/69fnJiv9/RrdOoeEtSw6zQtdII5FodBq8DQkAks8wzb9orDzpofXveO61VB+ET6F0gKsNF5p0XnToLd0GY0sgYhWqN3Dtz7RxzpebqB7Hf18Ekj/wt685tk2CM0RiSUUphXQqtX9Fyo4sRVMEUDeeK9Y/LOOuns34666ezfjrrp7N+Ouuns346j/P4IsfnfvH39OmemLzy+9DmvswLtTeaGGvrzHcJjYlxKJgVb4/vgiRDpNFlwcI14z6ymwKEmWaCBoGQWWZ13o0kNHorrjWF/tACr7TS0RDRkNCxsr9IhCAMY6DWSs4FrYYROKQdZkK34m3M3QXoPgK5Ma+V95+O7PdXVBSLjePbwttTQFqiKfTCBgh9qLkprQZCcPFl2/9oGaie/JbGANH/e7BEq+rVrBh5cnXBze2Np8eZw1Y/2+Q/a/d3IGlya8sBSm3ktdH6iYkJCYLoSNAMEdaSee/9d3h7uubN7Wtu395zP0Op4lXhHfQWaLl5+7f5pop54p3gLfymilkgSidJZxwE+sKpVo5HIQW3erRgDPsJ636IiCnRxSAEh1uLV5xG9kAgxYhIRFRAIZht9pO6MWWcS3F/PBJjYNwq2OM4MU4TIQbClvSmqpRSaK0RQ9isPubpdyKIqifSYaQYiGHyFD1Vr/hv1diLi4n9oXKaj5xOgZydw6QhuX2nd463hZr985i50Is7PPVNAksWLi6FYRI+valc7IV33g3MR/iLOfEXcuc+C0YGlE6gbZXpZJFuRuiFtKVZ+e1Xwt0RWuPu9pa1VmrNW8KWPALIRdWFnzVSVKL4c4IFmj2AugMpRR7T47rbuBQjRuVil8ilUasL/pD69vNHevUNszW3AW0Tf3tsPqtGm5mzQYIfMs0Mww8G9sDb2HAZDxB72axJDrEvxCGShriB3d0elNQouflcjw67F1GCCnlxW4p1PwilISBRCHGrEFvh+YXy/ouRi93I9Vv//ut7T3K8yXDcqsaId0NgFWc+NeLQiDHQyo51UY4KvSVu7090cxB2L5GSK8vcmSbj8jCSkrKsZRNUAY2+/nSTLaVNub+FZUnEEFEeSu+erNebsR6NkAJp5+LcHF5CswLycAjdk2JHBuNwMTMFePm28WnPdPPnPOfGNAaiyGadcYbOmJQpCRdTZD8lai4ONR4aV2Mkpcabm0pvieXU6SoMyUgDpEFopXFaMmKR3pVmYYMh+4EdhXUWWoNi3YHL4x3S/TAcCGhIfriSigSlW6AHo0nBgkHf2DIbqUVYaFWpVSirPh6ePMEu+EuUbr5GbBaoISWGIeFGPGMMQoxQ8z21GjEJEHnxzrscDhfc3d9zv9xAu6PWEzdrJuiE9UTYKsGlOo+pNWNdMyF4ddpB753eqyc/ihICjJOg2qmrz4E4gITm65sNLMeF5Vho1RB5SHh96PDww+XDHGutelcXEY3KMBoxBBqwbvOqS0MN1lIIsf8jSIHz+IMcZ/101k9n/XTWT/6MnvXTWT+d9dNZP53HeXwx43O/+Lu+PW0x8LLZKbwi1BVMOp3Zha1UGoL1QGud3TTQSifbwrzc0Gvn4lAZp5nlFBzeWyvWlei9+845qIGg6hHq6gtUa50QhHGMNAyNE60HSvcFb0yNywsImphPXjlrc0UjHmMugaAD5X5lLfDs+ZG/+E99lf/7r574/kcv8WyjHUmBqbIfArUW7u/ARNBYyDUjErYWfbfuiAilVIgBQ2jaCaIEa9C6c3ZoHPaX/JFv/iR/9+99i6VlYgpbBfah/f6zirXItijZwuGykMuO2gKUguoeeqS3TJRItcZu2hEm4T/7u79GLZVvfPOr/ODDI598eoKe0FgcwNoMSqfhUGsVoDVUA70GmgVKKaQgnKph+5Hp4o5nzxWrA7mA9M6wU2xcUFV2cWXaVfa7AyGO/PCjk38ejBRGwi5tFVO3dziXpXs7tvl/tx7o5paI2jrl/ojKyVOnxpFxGJimgXEcH6GzIQQMkM3foBtPBfOqzY9ez1ortVSiKr3D4bBDg3G8vycXKDk4f0INkcE3AZT7N55WpSl6JbNBCB2NnaQDxTpmhSEO3N4VSim8w8R//Z1n/PJtYXnd6FYwMYJFeoDQGwFoooht7fgdokY/7MQE90eg8/bNDQ31wx26MSxw64MIGgMxRcya443MKNUPF6pxa3v3CvlDhqSKgnaGpLz37jOOy5G3b1ckBIadC428pV+tSwZsqyRvPJmtAvogXFUdxh6DA9tr3dLCUtjYOEZvsongz7oNwtaN8PA5wNCgqHhlV1NHQiDnhg6VFBSjM4x+38vJaKYuAg4BSV4ZFjEOI3zza4F3nwTubzulws3JsFZZK9wWcMaOi8beXJTH6GuOiNBrZrmdoAnH5hXueXZRZJ3tGQaVxDxX9pOgY/TOlqE7R1w80U/MLSiiAREjjYEk0Q+SOGNJCLQmLDMQKxqN2o0lr/5MD0YcIkN8yuXlBeuy0OSWeS6cjittDZQiNAuYNaI1wqBE7QwDoIE0wH6nTEFI2pBe6b1RSuP2tqAXE1EStIL05MDyIbkg6xlVo3VFm5BkCwpoPmcvLyZMjaUWalbWbtQKKRmQqdoIKnSLaFDSKGhciVLpuVPkhKkhI6gmytKBTsStgbUqbR3JWbGygMAwJlRGTynsbhkKQUkpEuO2h/QOJEQcEO/dVkJMI2bGbnfB++99lYvLmVevPqauSu33zOvMfLpD2NFldGtmztTS6J3HKjKPXTTg3Tn+LKXB2F/AfjIakULAonF/bBxvKyKN2+PMOm97hBia1OerfJbu+tj1oS6Yl9WIBdLYGUZP2ltypawV0C2R0xAtn3d7P48/4HHWT2f9dNZPnPXTWT+d9dNZP53103mcxxc4PveLv5wLD8lT3vLuG6EkT6ETVUyFTqJ2pa8eDZ+zMgyNml97dU6Nm2PF7gZAkFAxU2IyHDArjPvG0BfKaSJOmw0BBwWnMbC7HFiWhumOLoUgxhAq1OIWmSSseWFdFMQ2Hm9AVIkT9DtjuGj8lT/zHt/79C3ffXXPcrfn2T5x2A3cLwWbYTHh+dPOe+/Axx8L97MSouCYDKV3QSx7epuCxa2asQSkQg+VWr3qkIiIFT78/scIQgpK2nnSXj0ZRtsgvG5ACEHQja8Ro/H0SUX6yM1doRaj1m2Rj3gVPxm3t6+4PV3z/oun/Kk//meR/Ft8+nu/Q4uCpj3WbRMOQsftAZ4OKKyLQ1NDarTSseIgkyID63Jgd7jh4jLx+o1g0SA6gHWcTnzw1cRXvnIAGxBmrl9tVcmQ6Ml/jgJKQMWtFNbj1gpg0BqIkjax21rFNNCtUVqjzs6aefumfga33k3sD/utWuqblAb/fswQ88r1g3hd1xUN3to+DpFhODCXG9bS6WXAqrOEQkjsdtOWNtWoOPR4WQu5dVIQDlNCRuF0qkgL3NdACIUQlHmO7EvgTx8L5XpltUoQT7FqWt1eYoKpi2wVIyI8pK4FvLJZlnueXT2lmaca5taJyrZ5VU55ZjckpjQx7QaKHDETsB2lLptIrNQKpVaKGVG2xDo6g0YCxry4YI0JSm6cbjrLmim5orZZhNQ3Yg2yWdUAhTQJLXfILrhzybSuoH4EzKsLD9kOKyEoQR1AjzXGNFCtorGxuzCWqvRstBxAGkkDY+rUZpQipLFTupEXI3TxlMuNjRNUfPkIndKVIBC08tGnxnc+KdzPA8qAFX8+huSMHel+IEYrSCUNCZNKL53pYqDtZtpxRxel9Iw37HgluW+HL1RJ0Su2qm7TCMktXFEjqt4tM42grdLziHhwJ62Z2wrU+TdRXBTnRYlD2KrdECRwsT+yG54idsWgE00b98uJUirWIpSwcZSUIXUO4wWhNvbJK9M6VmKsiCmlrCw9or1TambpkWCNeemEtNJaRIdCINKBWhPaOiudRiMFo4eG2UAzyHWhmAOl1Tw9VKMhvSA4LydNhdJOzHIgtYi1TAlK00CnU1ugh0qMjXQQt831jnaBZe+ssAJWG9YTIkbNjdzcVpRtRpZEr0bSgNVG6Z91A+Vs1KUiKLXZ1oVhfPThh1y/fUtIQpTGqJEnwxNkuuJTTry8OdF6Qwyo3nrhh+a2HeRAYiSJ+TxvzfdIlN6UeTXKZk1UC6xLc+uXgBX/OqNgQJLoXUwPTKcHSyie8BiHwLQTxsGfwXUppCjEqcMxIqGhoRLCSPzcu/t5/EGPs34666ezfjrrp7N+Ouuns34666fzOI8vcnzuR/tH4ckPKVGYQd84DLXRen3cjNvqcNJhaKShEKOwLAFrI906uXiakZhvip5kJIg2YnSIrrUj4z5QSqKubiGIA+R8RIDdcMcQjDEJ0Ci1UZqwXHfmk23gZfFUn2oQlaqN1YQX78A7lxP/wd/4kGWeEDrX88Kf+KnA9W3nLhT0VHnZAt/8Kvzczw187+PC61dCSF6BM2loTJh0JA2kvUFo9EVY7guJRG8uVuIhkKlIP7K7Soz1gm5Ka5kqy8aLCZg0wgBpjHQ6uY68fiPs9gth14nznjXfYQYpDIyTUWavnq6L22Fqa9QmzM1oQUjqIqZ1r+h18evdc6U2Z6WkOLC7bMTxnvGi0hrQIoh/zWkeGJ4vhFHo4hybade5vIhElOXGOIyd998Z+PRp5fbGq1phCA6X3dbhzYnj1V+2TUUFsYBZRxx65PwXAipujbJuvkHmSq1HT7q7vnErz1bRHseBlBJDSoQYHyu0ZsZ+vweglMyYBlpbH1OpWvFKawzKtNtxdXXF5eUlOReur28QOjtxLk3OM4f9QBiEZa4YQs4V6F4hi8qnd4Vv5c4v5hULA7RGMEOSV8XFjF4rD7ydrurPPEYViEPElsrzdw+MGqn2cK1wbgdC65kmUIJANWRXwMQ36ubijO1c4H89HDgBuj+zIXKcZwQhz4V5yZRScNaMuklgu09eRRP/OUAMPs9RxaJtlbsHQHWn94c142HdUHp3iLBuqXilNUQD4yikoZOrIcEFYlshr8rhsrC/NO7v8Q6LGmkrUJ1+ZMF/Rl0c4GvJ0LRyeREppnz6trIWI0bDWsM00FpBWmU/wuFCWIpxqpEgyvNDJ06J420lr43nzxNyaayzcVrs8Z55tR5qc6tCjEoIETNYc6Wr2xcqLojHMSKiNHOGyTpHxhQQW2nVYeDblWYIkd4bdS2oQEoBlY4gzKeFZfmEVhK9F3IxWguIKdZ8nsToLKHaO2NUDoMgUVi6smZneLUWse7g49ZcQQWEWiE3iBIYD5FoO6o1rm9mTrWzu4gMe2MYYF2NsnZaVdKQqLUSeqNrcpD+bjvstMW9fkTKCuu90LZnRkLDWsSq0KwhKnQJWGikodOr0OZAnUdks/QEi2jsmCnWodiCIJgFROrjXvUZzH1bf0QovrD5miIG3SjribnN7HYDaRx4czxxd3/PYT/w9PLAB1cDazG6DtydMjVnrBvWlVoaqkKMSkwPL3Y87bHWznwqlKyUCr0VlAq2JX/SCSp+f82cL5OcB1eyc8tC8ARTlUDobo+bDo1hd6JXkBpR8z3wGARUMCv0JrTyYPE8jy96nPXTWT+d9dNZP53101k/nfXTWT+dx3l8keMf4Z22/MiiDb01T6iz4JVTVYImWi3UnD0tazRCNMbJN8353tkoHiNvmAV68Z9tzSGoqpXWFelGiIpqR1pHY6CWjpbANBrToaPFqEVYTpU1e4t/r501G0PcU3FuCd2otdJyIwiU2kkoH/7wmutbB1r33llnKHnlSx+M3Pze6J+lNr77/cCzp8K77zTUBl5dF68tbjgBUaXWShIhDAXVjuZOs0acBGlCbp2LpxUZb1mPgRQi2g0hMg2Rde10hN1hR9oFeqvkXJHQWHMgryP7CximxpIjIW6ih04cI3FSXr6+5sX7e37iK19jN1wQLJGCkKJ3B9CN1tsG9m4bs0IJw0AMSusLVme6uY1liJkhCUNSTredYJGQ1NOzpsJuFyl55fYmcJxXojbU1Is6TcEa1rxd2kx8b37wObHxTuwzEKtopLfuskkEEWdP9M0SMIwDGxrFuTalArDkzL0owwalHkePnB+GSNz4LIfDgRijJ9N147TeYL04A8kihvNYYoxbSt5IjAPrsqIhsBu9VX2tlQ/eC4je8uZmdgFgzpep1QXNPZ3/h574SkzEVjELFIxQDHpzwWWGWSMgZIPCwC658NGU0Fy43A1MQbmtLkQfrqEGISC0Upjp9GRIKD6PNj5Hbc6uaVURcyuJJxF2F42lAEYuhpXGsqzU3t1eYltS3Fbxz9ntKp8JASFEJaqwejQcyAY53w4jP2oT8vv/ABg3bLOotF5dsEtALJLn6tBzi7TunSa9DkyXR/Q00IpCdjZND50wNIapcBj2rCdlKUaclCkZUzDWtXO3dmqNXOwDEoT7Y6M3RXsgt8azBM+fRO7W5qDqohwuBD3Ap68Ct68Hnj9NHC47d0e/Lg/XoW+fs+M2uHEcPf2ylge5DgaalFaVZfE1LaaB/TQgPZH7ikObBNWGNbfzSIdmDRNP2VOE413kRKCWQq0LDlz25yKos7xk63wRMUorGANRAKnc3yz0oKSx04r/TJPEcmpYaIxJaFWowO5CiKGz3lXyWijrQpCEqvH0Uklq3N5152YVqATyYpCUZglJjRg7aRgIUgjJT1CtR1iENoJZJNCx0AhBvHsEmIJs1rLCEIRhapQqWFV/KVJxlplupzJzaPnDoQl4BNbDZo2js2HbnSvWveMqpcB+SoxJqbXw8uUdN/cLp7Xz9m3m/rLwzvMDz5+NDLvE27vOD18a81K2jiUYRiWO/s+lbHmPwedCfhD33edPEIfJ1+4w6xQ8PXIYRmTwDoheQJt33IhCwxM4D4eEUDBVak1IN8ZBGVJhKYaqQQqEkMEqrZ5T6X58xlk/nfXTWT+d9dNZP53101k/nfXTeZzHFzf+ETr+NqEhD6LTW2drLg6GBcpaMLrzMSaDIWNirLlAS/QK4NyJ+NDWvfEzS4HYB5oYrXZ2eyEEw6xieLu3ClheyFWY3xqVyCAPMfKeFmeSCDJ6YpMAKOUhKSgM6GKEofLsQni9Gr0GICLNUJSPXxpf/erMoAdOVlETlhZ4ee0b1eEisyyBUgPSI6UsXmW1TpsbEIhB2R0ieW2MQ6QWYz6uPE2BOFZu3hhVDOmNMoMQkBgRM9IwQFdaOxLCQu/TdpuUfIQYC2bekq4JCErcQZGGtUbJkfvbI28+fcPTwwW/9I/9IleHKzREHuqH9lA1NcG6UepC7ZVXr7/Lm5uKqjMfDofAxcXoG9izG+5ujOcx8en1W+IQPFmvC62tXLYL0vQerax8/SsH+vsDGgWR+ChkTGR7bsCsIQjYBlXtbft/4pV1Pkt64vF39g/w0MbtjIhOrStLziw5I8vK6Xji7v6ONCSmaWIc0hZLH7i4uGRZZtq8ElRoBcy6V/iqPyd+SHMgTeudYbPGgBBLIcSVp08uuHx5R6/PWdfM3f2brSKrxND5Pkf+5sUlv3IjG3y4Qy++fXqRntBhP43ElCinBdSQ6M+ClsLFIFwOieu6+DXARYpfv07ufqirZsji8y5aJ47bsaAbuRZq90ptiMIYR3rvXmltXt3ONSMhMI6RaefXKudC7eYHhy1F0B4SsxB67ZgErAvdDJENJv8QFfcj4yERjY21sRUPQYRaldNRKBmoE2IZk+Ii22CdG8QJWqSX7pXZmNGYmfaFZ08SqcPLU6e2yj4F3ns+8fyQeHk9s8xGXpUaOxfPMrkZ6zJQmtKr8ul1ppbC0ycju3Hk9ljIizFNgTgIN69BmrI7PHzOz6qAD5DtZpUQB6YxkXNHNVBqRcTh64G0sWcCNTdSSIxxoFRhrYYmIYziNpWi1KV6dwJgKkgM1NoxGz1pTA0JgloiYdRWHIxsoOJg5Ejw6n9V7mYHS9OU1gSJ0avFZlSEdY0Oah4yy8ZzSTFRzTjeVtZ19Qpt6AwBhtiopbEuETG3n/ViHG+NtTjkP+2cGRVj4OJCGZJxLBVdISRwUT8gvdFbQSSiEqE3WjWQ7ZBj5l0J4+rPtSjt5LYcw+0j3dzMYeLw9s/YLg97l9F/5L6JObh+Pw4c9iOqwu1p5tXra9bs6XVxS3R7czdzu2RenA588O4VuzCyG4y8ZgfAK4QxoEOnzZ8lJf6+anlvdPEUR9+rfH3rpuTmQOkpJYYx0FumKxAfjj5Cqx1rlR6ENAm5gtiBFAoihXG4YkhHNFYIkTTAEIN3hpzHj8U466ezfjrrp7N+Ouuns34666ezfjqP8/gix+d+8debV08e3vyLgvIAFm6UtdIMxl1CB0NiccB0bOQlgkWmQ2Q+eqVUtRJSZwhKDFCyx5gbgtVAq9VtDhZ836+N0CPSEt06tTRiKHQaea5YE4ZhpBRPNbp8sqO1CjFS5uKLhVRYFS6F955UPn1dyZZQAQmRPlbuFmE3KkNcmAevmk0Bqp349DrytCpf+6rx/Y+MfN9RiVjtYJUyC3mNxAAh+AZSC87q6MbND43L9x4qwJleo7ega3HYdM+8fbUSY+LqWUck+ELazFkWwasYYarU1dkRokIalHVZQTJ5FX73t75N+2Tmm1/9SabpwDQEXzCFzyDRmxDxCPiBZYZnF88p0xVjmIiDsL94SrEZHRs23PD3/v5v8uqmunuhGd0iIFQ6+/3EL77/R7jcJYiCWILcqeZMB3n8s43WHTgu6myOh+pS6y6+6S7uWtuqgvgmrjF8FrG+Vb1b63z88i2/+bu/y3FecHnnwmy9XTne3TsIN0VSSozDSLWZ1lYXWt0Iwa0Yw7DfKrVC3Q47Zi7eWvPqWIyRU7ln3yuHQ8L6gWm6ZF6PrOuCmZASDBr4m7HwdH/gL9VG7QWzHc0qS/WuAemdi8s9w+XE3SeNWgrhYsCSImvlKcaL/Z7v3B2JD1Tq7cDogGcFE+rakBUqnT4UQoroANKEkhuofyZx+AUikCaltopUmPYKEhwuT2e4jKQeefXJNb00rNnWVbClzUVlXQq2AZ7BK4aPWA0DkeDAZdm+zx7sHX7fwvZ5TIzajFozUYwhgqZxs0BkaglwVBrdYdApYsE7Jp4+EZ5c7lnuEq0vCArVbW61G3fXgfnOeSm54ZaVoKTkhyiApU589Lby9rbx5EqIk3OR1rtEYyLu/JRR1olSTlsyoItx6Y8qhWlIBPUquIYApXoFcbP69NaxEmgSkFHQtNLVGHeCaSMGtz60CESh5wbilhPRhg5GEBim7p9vVers1zxsldqIC1Pr/rw+u1IGEWr3ufbV9yZ++OqGu6MSx4jSnXuSOil6kmcIgZT2jONEoDFcNEpXNHuSnEpDupJXqCXSWyOoYRIpOZCLIbGjooSDs2fW1SHOXZRxB3XfWO8Nu4ZVGq25wEqDEMIItdJYSIO6xYnuTCxtEBrDsFKOIz0neg3OSxNg6yL6/ZD/zT7SfQ6oOdNltxsZUwAzbo8zP3x5zVwdMB2AvsWRigq9Gp9+esvd7crl5SWt1816t0HMW4dqlGzU6mv14++wdeQYHdVICNHB7o9dQ32zKiljjJACizTMsovw7t9fSmXBAxBEhLJAj4pKorSRmBpxOIIa4+DWFn8BcB4/DuOsn8766ayfzvrprJ/O+umsn8766TzO44scn/vFX2sZ1IhJNyGQvGK5ANYJ8vCGXJHYERP6PFAkM10EunYeYtUFh8mqqFe+1BinhGih5I7FAQ0FcKBnTLCcMvlmoa2dZT1R6korjd1uIqWJi8uJoKCDMg6Bd59cQBC+970f0kplGJ190mPhxW4iUbm+c09/qMJSKplOSJ1p2BGHGTlGTN3uojZgUrm/h1evq29+QK+Kaqaj0BVrjZ49glwCKAnrHQzmU2aYO9QEzZBWGa8gTQOnW6EvDbHgG3hqzKdALxHDN8GOsZaIJmEMRsmdthpDGnl2WRl2ERVn+cx14ePXP2DU4ClJxpbKpzTreIP9VjwRceiuFFSV0julQJnfghrUzPH6mmFS6tujpxB2Z40MKdEMNGfyzTW3b9yyYRhDTI+cGHAYtvpOjm5CKmjYxCL0B4kqYOYAWTMeK92PaWw/IuJOuXL75ppWGxoSfYM5d2tbcpqzMPKayWtm1oW4m0HcQqIoKUY0Tjx9+oRnz58xTg6nvrm5wTAOhx1DGr29XBpdlLf3d7SeMavEtGNIB2pt9F59E08FLPN/mRTrl/x5DlzmhWYJs85x6QRV0hjRnbJ7ccBe3xFGh+qqwdTgyeGAyaePlWKv5MODShSRTTYKDU8HW5bi9i4JlGKkOBJicuFaO40KsSMj0DtpgN7bBvfuzPXe78t26FNxkPNDmlwalE7Cqh8STKPb1hQeWSvmhwH/HSEE9aqnyWZSUp8XYoTgCV5JskOKu2/w9OSdDBghVJBODydCrFwclP0u0Iqy5IbEwDhEWlZefpq5e71yfSP0psTBuUz395GAkAao0rCiiHWaKaemrG8LuzHw5KmwZphnT5xLI0Tx+a5BvdJvbjkA6CIMaaTVzvE408yteyJsSX1bhbIbYxoA765Z28yQRi4PwjtPhJvrhZdHv0+mG68kNjT4AbpVqFXR6Hai2hd6FYYxElT9ADhXWu+ECPvLzjuTkNdAMbjad/rzxPF1plt0RlY34tiYonc5BBnpXVnWThsy01OhaSLMnTR14q6yZDiViGoEOhoV6wImRBEk7Oi90M15Y7VFau3IKKRYmK6MvijtVJCkhC6UVtyOMnSaddBADX79JCgaG3Hwg02MlTQ22jJSjhNtic44089YPw/joVtGaKTg4nAcIobx5uaevFZq90Og0rZ1xXyfaj4fEEGCkFvl1ds3vl4FX8eCCG1t1Nwp2e+RP/RbcqPgNkwnoRMS7KZIbYGYO9agLJ1SCkuuhOhJldKF3oy+QcxFIx0PExhGZ6SVHLZ7OBODEQa3+AV10VoeDlbn8YWPeb6glOd+f4MnB7bWqKsfyK0bw/gSuKP2S9a3z5mG71Ek0+yb1D4AkfXknQ9xqL4umDOpnj7/HiHN3Lz5Er2PTIffwbpx/eZn6RbJ91DujZY7OS/Ulr0zcAeXFz/g4nLiePwphuEVl7t7rqb3uZvf45NP3rCujZCEdQWhc5UGXn4y89Gb16BvsWXHm9uvkPbfIaSFZf46x9PI8W5LWjQjhTvi7qOzfjrrp7N+Ouuns3466yfgrJ/O4zy+iPG5X/wNSdGohFGZdokQInkpTGlylotVCBWRTgu+SINgNtD6iiRouRKHETOhlkithoq/EAyxoWKUnEhDYRgC66yM+8Zy13n7cma9m1lOmW6VkBIX+0uW+cR+mNingbubG0yUrAHpbvs43twwTjsGCZyWmbU1LobGRy93nJYT3YTSBlo/eTW+Rz65rQyaaX1Et7QgtG08lcCbt3B5Fbl6Am9eLyhp01EG4glriFEzICtigWrG8/ciT593Xv/Aq/jj5PHidupI31gdIRFGB0LnNRBipjV4b+k8bTP0YTskVHoeaMfMGO958sSh3L2f/PexG3KKW4Uv+MInQukVUa9oqICJL8wR33TA3NYiQpNMCl5tacfXPA0rcsyMCB8PF4RJuHoyMp8MiSMfnj7l5s3C/dsZeiOliKm34A/7keNpJphg1ogx+T+LbYJMvR5qLvZ7q3QN9HFCa4eAWyR6/xHEjdDMWFqndsjL7JYWjGEciWlCtLnFAqXVwjAIaTCyQWuCigv6qycjf/6/9Kf4xZ//BVIaQQPf+tZv8Hvf+x5/5p/80wxDcFltcDq94qOPfosUR6b9e+x3T/n440/4u9/6O3zvB98nCrzz7JInL/a8e/nT/DA85e8Mxj9ZF9Kv/jpXKLVCbB0GofdC2gntMLlnyyo1JUIpPL8YoaunDzYjbQIV9LH663LfgObsnhlY/bNhAVC0uzhdciaXFa1KnKILYsFT05KDlI1GZSIEt79Yd5uXiBDVhUocjbJW+qrQq0vq5gldrTlIWYNDyGOKxKCsa6MWjyg0M/qWGBZTRMLKMHUOu8R613h9Y1hLINlZwiEgqSJU9nvj+eUOkchp7eTmcHNwm9PpTllRllxpvfnvmCJdoWllHMBKpLVODIpKpxahS+Jm7hiVw8FIdE5LZj8E9qMwTsq6AA9dGFuFNIoyjgO1uSWtN2eNyEZkd1j31hWRBkQ6p2WmSaT1hh4L7zzbsz8E5NQR8esuZGLqtJZotdKL0vJm72qN3mEY/SCBwbK4zSOGgEVl3CkaAnevVhbr5K4MCfZj4H7t2BChC9YiVQVV2A2BOa+8vSt06aTkiXLxkIihIsE4lU7ukTBERndHUFulrYbulKBAF8pcsSGiIdKlEkpjmCCOXoHP94o0h7IH8bUwzw3UCKPP7XxsYEocE2mCEA0sIxIIE2jKzLc77LjbDsWNJhHpzmPqWlBgTMphSsQUmE8Lb2+P3M0rUxpIMWwzyrtB2Oa5Wd8O0Z8dUsyMXAqWYdyea1WhFp9fD1//cDwDtkOMEKIzzIbhwNAmIpmsQtOCVKHOlRaEdXH2j5ofREUDEjpjmpiSMQyFoJ4AWZpg2QhJCDo4kywEmjT0R14anMcXO371P/3f/f/9mp/5Y/9zvvLuv8+HP/izfPvX/vv8mb/w5zEb+PVf/R9y+/aP/kO/95f/2f8a+8OJ3/q1f43e9vzZv/yvcby94G/+3/7df+j3Denb/Mlf+BfZp4H/19/8N/nal/9tvv7lf4+PP/4Gf/vv/o//c7/vrwM/+VP/G37qp/+XvL39Gf6zv/1v8o/90r/Mfv8h/6f/8F/iN3/jn/19X6868yd+6b/FOL35QvQTMhC0Yl2xZoy7QmwjtawomaurwGnt1LmgCD9Ybnh1OrEfEjFGVJPvlY/6KRIV2qafAkLyDZcQHuDwK0OEbo03d68JsWDa0eDdPmf9dNZPZ/101k9n/XTWT+dxHn+Y43O/+Hvy9ClrXSnmnX8EI4wBGSN9KdCEkAJt7UQbkCFQusOgQ4xbGpeDOK179ckwNChmSl46dI+xD7F5Rdo8+en+bebueqbmmd4MCdC78fb2ml2M7PY7fu+732cpBVB2Q+T161eM48i6LtQ1c2vG6+t7cqn84HvK3esv8ed++af5e7/1mpdlfqz4zCf4wUcr+13wSrFsbfrmFYoHQPfplDlc7Lm4GDjeV1QDMQRK7Vw+2REi3N80evcq5i55ezI9Ml1W4pgxAus8sZbKkIQggigMOzAihmJ94PnNHf/O3/pP2f2YVCCWoPx3/sv/OHl8ys2bwjIrN/maWu+YQuLpxUSUSGueNPXkYiQOgcPO09bWpZNphKg0ayhKr84UEqk067TQWIkcLZEG3+DloQX8oXrNdj9wsbTMM71XVJWQ/LlwgQe9QRDY7yIiK3kxrA4EbXzjG+9zXCq/+Rvf5ub6nmGYCDHxw08/5fr6ht/+7d9ht0+kYUAsYqyoXrlQa4FSOldPn3P19Bny8Ud0hV16yte/9JN8/es/z5PLdzGDb4XAB+OBd3/t13m2N/JtgUXoaybOHZLAKPAkoV3hNPOli4utamWbVvfNWcSnrpnxsEf6hsmjlULVYcrTFAkhsa4LuXinR++dXhqd7hvqOLBGSDtn+ZSlU7Inhol06B1TaB0sG3E04jA4OyZnLxRacFFnm2Go45YFVUIUtIh3gOhnFfDebGvVT0goDGNjPxl3S+JYO9qEYkpEGPaJEODZU2E/KkvvTFOiHeGuNCSCBKEVt4aEQehVqE1h9QrwuFPG1NDaORq06l+rDOjWNXG8TQQ98fRZYjgabGIlRE8Q682FK+rrU9ysYLVWvz5m/syZV1AfeEdDioQgLGulo4QIMSqtJf7BPzhtAkpR2+w/5laQ3vr2zLvAtuZV/nFIxNEc0tyFILARnRCEvDbWZIQoUDq5NoZB2A9CKQEIVPNUuVP1Z2dIzmcpBq0Kva6ElIgxsS7QFhimRLPinBsVJPnnoAlRIgQ3NIagmMFyzBiQxu05FgiD21iWJaPBCMEPUbW6rS8MYUv6M+ezGCwr6Mm4uAjk7BXqaTIOz2YWNdZjQGoCKW4BtEBvgWFSnk7Oynr15oa76yNLd0i62lbV7n7NHlE2Zph8ZnV5ZM7I1oGxcYhCNvZ773BRg1arH5Q1EEL06rZ5VVyDs4WIIFpJqkhMyFCpc6XLBnffbDelZd97WiUgLMfidizz9gJ3tihDUqRUQoiMU2RKQpeKnXXrj9X4hT/+V9k/+S2mKaIxeKoggZxXam/sLz/BTHj//f83T//8v0KcXD/94p/6N6htpFcFImYVn0k+x3zcshwnvvmz/xZxqNRWINzyK//V/wZvP258+tFKK6snliqoBvr2suJBP73/4l+g11e8fHmN2f+Bn//m3yWXzDA4s+7m7kQuEXTkK+8+55/600/4/scfoOH7/LE//t9jHE7c3VzwwZf+t3z5g3+fD3+YCGosy5f43W//Dyj1GZO8/UPXT2UtDMNmI8uNEIBBGVKn5cDFzmHwt2+U3pWylq0jb+HZ1SUXg3myJp+9jFD8QGoiSLDNXtudIyWBjvJ2PrJLA4dpYumJGjzVN4bIeh9o43TWT2f9dNZPZ/101k9n/XQe5/GHNj73i7+5rMSUSAalNmrPxDSQS0aCT2S6UE6VOEavpEzdFxDxTbRawxqI2ra0KrJxbrCAmdBaJnWFHgimrPfGzas78pzpOHzUqiduhaAYkbc3NxTbjMTm7+jGMdFqZoiB+/tbukHphWKNYInvfPcH/MJPvcd/91/8Zf4X/+5foxGYcyXFyDAlUqxEEXaTknP3pDU2oYBRinK6Lwxj4OIisMwuBlR98e3NtspWI8ZIUOF0J4TJiGMnqXc0xlFJk6fpCd6aLqPH13caZTWuSmHXO//GT/8sH0+TbwKbcC0l8uKZ0mrl+h6/B/UzcXr17Cm2T1xcXFByYz7d8uTJBbXCm9f3rMtKorJPkWFMvklNiWE38b2PPuW0FC52id1BWe3I15db/tW//ju8x8L3snK3fNZS3drCN77xjD/6U9/keHfLXO7pQ+Xdp0/oRbAsfOXZ+1gNDE92XL33jPvra77/u98jSkRFSLvIl7/+k+RW+I2//13+k9/+AVRnF3V5wFJv7dsP4nUTqsOQAN8shnFgSBFENztHoNVICkoukydDFePJkyeIKNevbzneLfzudz7i+uaGqydPCSEwn0586+/9Js+ePwFRbm6OxGB88KXn3F7fcXt7IqWB/eUFt/dvyW1FxPiNb3/I73znLT3+OsOYmEIkpYllueMfz52/cvWMr18t2HIHIWGHCbkQZIpU7cja4P7EB7sDvVVUd2D9kZmDyKP4sx8R8p+Nzm43oSFQW6bU7M/kw3UziBopJdNWnzdMAevmSYpaWJNXx6M4fN1ao0sCM7cnRd/UJXj3aN0q0Aa+wW83yRpka4+Jlrql0vm/CzkXuE+IdQJw9cTYXxROJ8HU7SQinvp1tZtQXYlx4p0pIgYvc+H6rpF2EVVY7jqtGcM+EMyouTHuBkQagcrTiz05dPJSKdlg45cEMSQpFSPnyJNg/MQHI6f7HXezH0BTCrSq1Gp0y9DDNr+NeV034QUEt3J5Bd9T13a70dMBcyclRbQRN3vPWpSyCqYPMPa6HSwh7TqjDpTcmZvbbmIyYnI+S6uOVnD7l9uH8lyYj53d1cB0obQ10qzTrbEfI0Em3h4by9qo2ecHYlgT0rjZckxAoK6GpkIKkeW+07sSpoHSOrUVxAJpHOilUNZKYEAnZZiE1hpt4/MIAipocC7VsIuUk3dItN6Qba72btTiByWJEAeYxpXWB3JJHE/FwfzFAfchVMJuZghKvd9BDVwdRnbjwCevZ+7vZ+rqB8yb04J1t54IFSMgRK8qb3NLtmPig/B7EK8ish26NtaSGLl2ZCmk6ImSns7qlsBxnIgxYC1jawFr1DzAXki7Ss6KCuwSLFKYc+FiGJmCMBPpRJZ5oZaGdN9X7mrjeAchGeM+sL9IboeyETEjt8JyLJjyON/O48djPHnxe1w++R6E5p0uaaCUxq41mgG9s9x04njH0xfX28unzuXu+6BQS8Oac5X8mPnAd+v+cqMrafgeu4OvaREljd/m1XqN9IyG7LZPOt08WTSlkbc3e4oZcfgNh/9rZD/OtPp32A3CaVl8LoTIOv9zwAt+70PYT1/mF372L/Pt734bQ7m++zlUlHzVSNo53QeGwSjr7vEafBH6yRYoq4ePqDVag7wq01gQS4yjknN1S2HfbLzuMmMaI7ILPL96Tl4r93dvefHiCaUYn35yy3yaGShcjIlpGohpIO1HxsOO6+/e8fLtLfli4eJSyd07cxSYxkLP+7N+Ouuns34666ezfjrrp/M4jz+08blf/FU8vUkRQvf2cymCVGf29eaEkTE6gLdVoSEMCTRU79SzRO+R1srGNFBfxKIRkyBkVPFW56qUI9y8zdy8mWntAYv9UL3Bk5i6JySZwcZapvdGzivSjVIq+8MeC4HrT19jYiiNJp1f/9bv8Ct/9Kf42vvv8tH1rSfDSUaHjiJggcNFR09wvO8gYatahK1S3+lWGMcdIQp1eztY1u7t5ObJSqoBiV5Z6HqiVGO+SbQKIRUQJQYhTtX5FCIseUVS4nDIPNkizr+8LDyrlQdc8zAovQnjbNTW+QrDtlFsi6wI+6s9f+PLPwlf/xLrvHB/c88PTkf+wbc/5NX1a3YRPriYeP9q5Mne09csJtLlBZ+K8r1XN4yx8eRCWSXQ1Vfz3T4g2jaxHrEq7KbKxb4ido1xT9wrJ4xXx1v2o7IblIv9V4jsmH7iA+YJ5lV5ayvTIOx3ey7ffw7vXbC+ecPl86cgHwP+WbDmG4rLVr9H4FbloIQYUHlIPQvYdjBS8aqh9ICpYrZjiBHVE9PuwCef3HJ3d88HX/oSpTQEZUwjMQZojbIWdrsD8zxTcqNIp9VA74FajBiEgGLNn5sgSssj93NmbvcMISEdKn5vfrcaf/v1W/6Fyx0/v4voOHJ5Mbn9YuzIXJG+0nPl+ZNLRAznzDpUWU0fr8HDhvowvIoYwCDnQkre3ZFroZa6PTm+Gac0oKqsvdFyJd9650UfhDgqh2fCeqrU3FDTLRHNBWTPbBagwDAmRKF17yjxLl7//QRntHTzrgFh41vVh2qug5VLFo6WqNmT6PZPjN0EdydBrLpVBTc01WZYF0YJHO8yS66YRmo25zEhoEYzrzKLBDSCBIfF39w0UojEyeeeRRfjHSOkgEhFoiEd9nFkvDxwn99SSmFMkFKk1uL3wwxVcYtNXWndnwHZChuqnkA4jYlxcD5RCMa0SyiDA9ABS8JaCr0FHtIY1SLaA4dd4rATbt6u1KGBBboFFybVLT+ydXIAmPkzMueVUxZSVHIzTouDpKMal3thKYGXrx1SbyagnZgiENwQ1Tc7UYNaM9PkYrD1jhU8OA6v9naMHjstd8hKmASaoWqMU6BsQk/MrXbNmnN4ohBkoFqhdftMICKwfQ7VgtAY0oqYsBwFHTsxCK0keonEoRLSQrpqlNtLgg5c7EfGY+Z+gTWvWzqkEVX8vm9/SdCNOfPwOoWt82M7FG7z5eEvM6/UxwcGkwbQgEpFxJlXMQZS8ns5lwe2baAXJQqMsTLnxrxmglSgEYbCz/70N3lx8ZRvfetDvvfRW1/DQqT1Cur3gx79HsfOcsrUpbKugSTCMDTSNDClia75827v5/GHMHJdqLX+F1Y/vTlWOk+JcgKZef1qJnxzx3svjOvjPamDSGPaNxJGiolpN5CXdwCfAfwh6qe1fkCzp4QpcP8mQvVyc8c43nemKZDSS+7vr7m7u+C0/AT7/W8hAvP8E0jf09r7LHNkuHhK6ZlsJ77z4cyH3/uUOX+X/VC5ij9JOFzwzv4NoyZ++PIrzMc9eX3C2/t77ufOxUko0ompI3LP++9/SD41jsfnHPbXZ/101k9n/XTWT2f9dNZP53Eef+Djc7/4C4PS1gY9sJwyCyuqAevqiUpxE6/d0Oipc7VEigVfpKqCDNTS6R1C2Dr/rLlNAecttFbAhFYgz403P7yj5I0V0Ppjac55Kw4gXnOhlMo0jvRWGVNiTImL/Z7Xr14TQmBpjffeecr1m4Vx6PzEl97lp999h7/+H3+LN00I0wFSo+XG9bUwXK10q4g6ONe6bZyUhvAA3VVv5+8Z8LSgXsXByEERPPa9Vk/HGyPQAyoDihHUBdeydnLpDHtnEmjx/5eXgEgAnQHYt8J1GpijL62DBoadUkW4O66k5Kq/9QYELsT4qaeXfPjlL3H1E084jB/wH/21X+XXfvXXWfNKswoS2QqYQMda9g7ARfjpywO9GT84XnO9dnajPIokM/Fqj3kr9gfvVw5PJnZT5O66c3us1J1wzcr99S0xXvPHvvFV38WtMaaJY2ycSiWMI/snTzxhb7/HQuTuNEMDlejBMM2rm2BenWM7vOBciW7Guq6wVVCHceLZ86dcXPgzkdKO29sb9oeJ4+09IsLNzYdoioQ6EuPAbhxY1xtiUMbBr8uUIkcFle1+qVsQeqv+Z9EZx4hYp5dOjEoaAi0U+snbyjuRKEYrKxAJYnyYC//TN51Dg0FfMqnypeGCD/YDLxT+7LOnfP2worvm1c1NWOlGnvj9yVs83hevpHkyWV4qvT2kfQWCKPOy+jXrnWXNbjEIRlTQEmi3yqkqug+MqXJ4NtDWSr4zpHsF06364hwQaf70iKLRD7LWP7MTdTNy9Y27d0jJW/hLWXE7hldZsUpvSs5CqV79lknQ2ehhcKuKrpTWeDolBml8+vLIq5fCaXU+ZSkLZQEsomGglYp1Z+XU3lyQAvenitiMBiHoSDfQAELaugE2MLT6fIxR2A0TKUQ2n8EmFN2KkYbI08PE3Fc0iotJL9cTNBCDcjgcGIaR29tb1iX7GhAjKsFTBntALdClbbYIP5RbC4glpilwTI0YM71DXbwSLipewu7mliK8YC5mpCki495hz7FyXDP7SZHQqO0WIaK9ULrgWAN/aRBwzAFS6VWcj9MFy51hdNh+LRmfAm6TEbzbRHuD2qmLH9zTXklJNv6rkGJw4StGGNSr4SGwG5KLvHml9+4HiNCB4t0wROjZ5+AG+FYJ/jJDOqLKMCa/Z7lwe7ql1YlSnNVSMRgUaeZpmcCgA1MIpMFtLN2gi3OyHgS04C9Ift8BUfwqi0AIiWEYNvB+ZEgjKaXH6raZeZd57Gg0xqS8/97Is8uJ8e7Eq+vC6a5RSiYMDsL/E3/85yk18Xs/uEZw6xABDwWo3jkCijXBqkDY1sNujEEYVNmFgd1++rzb+3n8YQzr0PgvrH5698UT8g8SQ7zjvRcTH1we+M53/gF/9X/13+Rnfu59drvEmzdH/sO//vf5t/+t/wDRTIyNcX/Dz/zM/4hx+sEfqn76zm/+c3z3t//b/9Bb8if+5F/lvRd/jd/7/j/Nb//2v85f/mf+Eto7v/Wb/zq3t7/Af/K3/vO/9xs/+Svsw2v+/of/KipXfO1X/ifkLPyv/4//s3/on3n15Dv8M//8v8yyPOc//o/+HX7lz/0rfO2rPzzrp7N+Ouuns34666ezfjqP8/gDHZ8/1Tc3aB7NLQQkQKNjHaAR04AEsOZx9YpiFU+/EmFd1KGkwZkkomB0YoCYAqpQitFaQEellMLrVzccj7O3EdN84Xjog7dGiIHDxQV3t/fEcSAkJcbEu++8w+nunnXNPH32jB/88BOOOTOMiSEIf/on/wjvvLggH0/89iefEA9PGKaRFFxk5AzdFkIw5iPeum1xiyA3HF7gm4SQHB5N9QqLGrU1AvGx6iGA5cZSKwRIwTf2tazkFRRPHMoiyNDp6oundLh/E1iOyW+CCGsQ1uAg3q4BixA1sWjHoi/AuXra2kAnhsh0UJ48e8En33vN/+dv/TqteaW9d6i1M+fOfS4MY+QQdzy/2HO1m0hp4CsfvM/f+eQlL+drLi4qu3ICwKoiUjlcKM+fRIah8ep1ZlyMp+9NxFB48vxdnux2fKjf5cMPP+H1myPz1Q0TTyhrhn0iqHDYjST169FbJdeVECO6XeOGJz/Tt4rRVrnlQaS1SlBlmibASMPIkEa+9pUv8Sf/xC/Su7MdTsvMtB+4v7njNM+8evmGIQX20571dM84DgxD5PLqQBwCdc28+94Llryy308cDjuWOVPqwjBE0rMnHE+nraQV6M2fz3feecY6F162e5wKXTBNdA1QGxo9RetJa2SpLJLItfOKmV+bM8SVf+/1W/7o/RV/5d29V+G7XwN/Vys/UlFzgQQ8bpS9u1B0Vg302qk18+RwgZpwV080M0rOlAwhBJ+DDOScsWIMBfKFEcdIGo2eG+XEZhty2LeiRJVHbtSwG+m2UpZCVLcmOKvGD6aKME0DITo4+IGXJERQZ550FbQryxLZXWbiKLTa2O8bF3vhnScX7MbOzXXm49eeeKbdbW60Eeud/y97fx6tW3aW96G/dzar+Zrdn6ZOU32pGvVCDRIyICEbC3DANgZjOifXvnbskOuQeDixx8i1Ew/HXBv7Os517OTawYQYCBgwIIEsJBBIQkKipFJTfX/6fXb/NauZ3f1jrn1KGAdX7rjI1GXPMWqcqnNOffv71rfWnM+c7/v8HlODrTwhBJzLXQL5oFwwylDZEVr1dG3CxwzxLguFEpsFd4wUtgYJLPqGWjylUVTlCChxsacoDNILQSXqusZqQYnHFApSIIjK1yBFqrKmKAq8DxzOFqSkWHaBIuVEQecCzpPZQZIFkTEFIorgA3vbS4IzGTngFTEMNoSkc0JejGjJiXkkSFEotMZoz6Lp0AP7JO9OFMoKhzOHSGB9HXb3LEE8hbGMxgXaGBrfo0wiOAWiMTahNHQuWydyZ0SelmKXCMajpwIjTeoiMSl8LxAjxRhMmUByR0ToY04sNIo+dnQuoOIQHmUVOoHohNI59AkUIfQEPyQzKgf9BOcFbUHnhgOC8/iUsuC1EEVhNKgYOKMNK2bE9bBkbgJFys+l0oraDgcMIRARYop477+kyJFeSs+UPPfnTUI+rGnbDmMEq7Ptsm1bnPckyV0eCY+uInZUMJqArVs6F+iXs3y/WYfQgyq5sXeTh7/weZ57/gDnAoWJWKUISfBRI1FIOMyQ6Am5Q0skYoylqAwhJA6OFrTu5a7uJ+PLMoIQ3StXPxkrGBW4+/Qp1lfBdx3XDg547ItX+IUPPAai+M4/9RV8x7e/hWtXt/nH/+Q3cR1o3TMdP4LRy9xp9WXQT32zTvQVr3nTf0U9OgCv8M4d7+oBjdWazVPbKCVsbf46W+/4PkATEzz44N+jUCO+7qvfxl50nL5tg93rB/zcT32IGHt8aFFqF+8jd577h4zrVfabmo1RzV/4D/4mo6LAGEtva57dO+Cgm1PVgRB6lOrp5qsEb7jvVT/DuXOR6Yo60U8n+ulEP53opxP9dKKfTsbJ+F0dL//gzyVKa7OICBFrLSoJziViFGIfCSkQU0QlTd8K1kBZR1zvKKoytwMrN0yklhAMoiIiOTksicIFUG1icdgzn7W5pZgMBxWOxUquFmcYtCekQGlKYgxU1tDMF/jgOZodMapHjEZj+phZDuvTCYqe7Rs77C3mLJolo3qMJUHInY0+tTgvGC24XhhPNCKDTeZWe9wwqZEX5JgykwJJGSychCQht2ernF6UkhAD2TKQ8oKQhkpkMVYoq0A8vi1IQ0Kc78B3xyJZcsV3aIT/zn/2TznzwKuw9YjF7h5P/fKH+fAP/iAq9reETUwREc9y1vGB938kVwpTbvkWIn30tMGzdJGqD/TBUxYF62tTismYuphwemODEJaYwyvsvXAZgHO7LUrNGZWKdC3QLQ3KBS6ePuSuoqZpe9Yajy0nXEgbPNUWnLpxwNRfY2TnVK0nrdeEazco9/ZIkigmYzh3lr5rCeTDSWLIVzoF0gDeOTZmpONrnoSYhHo8JcWEtZYUAqW1PPTgfYyqgrb3iCS0MRAiz73wDJ/42CexSmELoSgyo0Nrk/89gvOO0aSmqi1GZe7NaGTp+4QxmsJWmU0xYEliksEyZXOLv/NEiWCLXN2OOS4+xkAg0mnJXQ0JghZKEtpkeHMQy81FT1SRujJ0PldJRSIpKUTSl1SqXxKvAEplbpBWmhQiDkcIgfmywSqDIhEHeLUipyj6mIixh5jyPSyK4LPYICTCccfAMRAnCVabbIPoO3zoMWWBNQZMtpMplYVGJC++IkJpDUlAK0HKLBiyAjIDKDohKrNdSFCPBeMjG6sKVQhFJRzNhes7BhcMWkf60NH1QFLElAguYsrMf0oq5g2Pyhuh6IWmiSgCKRU4J2gDKYC2uXop0VKPeqzuOZpHtIok5XKokI/4EDOEWgYxXljaCMvOUdj8pCZlkJAtLVVVYIxmNltkq4rR+b6NQhTy55eQE7aHOc5YTVll7mmKgabps70vaqIfNiySrUk5JEmjJBGJKAXTsWZSW24cJrQk1qfCqMz3ji0s2gZChNUVIQTYOQJblFRVRUoRuhzKZKo89xojKCvgsr1Di8b13a2f7zqPVAZbFEQZuDTD8+B9oKgEUUNXkwhKpwxQlvw5YhiYNCqhDKAgxKHCrB2QhWPCE1L+O67P18RaM4ROuVzdTTHfr1phtTCdTrl/8zxni5rPXnuR55cH6GjxRrClZlzmQwbnPYiijxGlCkQrnOsxCbRRGGtRJFIEbYrhsCWnvWujMXZYHiRhRZEQQvSURUVhwrC51oxGY4xvUNEzn0WS6hHrqHVFwnFl+wZXrh+REhRl/gyuzxa8IDlFU1BIAqs1hdEEL1gjFIWhd5G2T8wWL80JJ+Pf/9BGI0ZesfrJ+0hRWATP0WHDvGvp+p6//bfex9b5M6ysjHj3u+/l7rs3CSF3v4QgwJSrV/4UZy/8JEW5/WXRT8vZBV589k/yuq/4FaryScSCVPn1Y0oIitIYUuiZzy1F2VBVT+fvSSkmK1eojHDh/O2MpGV9veVXP/g+rL0MqcPGSEiRPkKtb3B9/23sHm4yrQs2xiOmoxpdWKwumQqUa5qQlly5cRVC4ur8dVTjGW/7yh9HxwW71wvmvaBWDavjEUYUm6dvo9i6k0KvsjjczvNkB6pQhN6TYomiwChL59yghdKJfjrRTyf66UQ/neinE/10Mk7Gv3W87IM/CeRFOEUkJULIlNQUXWYYxIQyORo9R9EblM1WD600ochWAqVA64EZMoBIibnl2PWeFMD1cLS/xLs0VKtzk/4x2+6WcIzgnMOHkKsK+XcZj8bMljPW19aw2rBzcEhlc+u60YqjoNjZ2adNHpUSSWkSJocVW0F6hbYVxgacg77LFfJcATT58ymVxfQw8eZZVzL4VJEPCodU4szNANExtxejEAmMRjWiPD5FKFq0sdQ1RB9YLjK81tYGvnQCEoVIhppef/xxHv/ALxBC4i3f/V18xXd8B7vPPctv/Isfz8nLMRFiZDoe89lHHuX5559HkxeJ4zZskRwl7yMENG1ISGVZO7XBxrl7qKdTFo98kdf/tf8HuutuvY3/2288+v/lLfcr/4d/4grLB//uX8PfexchqmGBA7zKbAvJbqnfas3INoNsFTK3OgqSSuwfzHj22eepyoJl0yIC1hZE77l67TLGGqy1nD2zxXg0xhjDaFQDmr51eNczGtXcfvsFjCmAxJkzpwghUJYlxlhuO3sGHyPKWGLaBKCuK7TSxLhG6xzeh9zZkXKCHimhRXGr0ixZEOZFKRGTIRHpvKcwilFtWR4OVSqjCPGldMF8DV5iZwy/k6+REkQpQgiZw6gUkZh5Lxl6k4VGzABoFYfnyApx4ITEEHDLlPkvksU9w8/JPxN8jNl+kNzAAxq6Csjt/bfufyVDFdbf0r+2tEOVnWxbi7mTJXpN3yVWp8LayhijHQvvuXHQs5grOl+QInSdx/eZ/cJx5TYaggNURGvJlVwcRRnpG01IJYIiBIhJITHifELrhEoJvGIxz/Du3hm6XohiUFpom462yxsBpbNw1STmnadZeKzRudsCw2LuKEtLWRaE4GnaDpGhqyAEeh+GgkK2vCQGmw8gJIoqoFQguEAfwHdkELzP+4uIv/XdZ+Cz3LLzHVfgnQuDeIeqUDg3HCRYxf5hYDxSrG8qFn1O1SxNweH8iGbhqUYW0RnsTYTo8ybDlgljFaINfdPne9dF+pknlvl7RQ2bxJSr7t6B0kIMQiTk6rWozDOKOcFOFzpvlFRAaUMMeriXMxA7KsGWlkJptDjmMYcuFQYqFShtiS4cvRc6L3jlKWzNbRdv543v+kbOrY7oPv0Jmkc+hXT551vlWF+bMHaBpIUQE8suYEdrTNY2WC5nzG5cJ8RclZYEQWmssZRVvvZlWWNrgxmSSZVkXpnrA23vGdeGalKwd7BgttPh1kqmq7C6WrA77zG6ROpEXVaUZeDoaImLDq2FQL6nTWnBe0gQviSlUiWIMWGMUFb6ln2yaf2wEToZvxfGdPVRJDWvaP3UR40XoYlCs1jiUsg9SaL4mZ/+M6yvjwD4+fd9gZ9//+dROlsPvau4efNr2Tz9Qcpq78ujn+b53jflcYjcMJRGUkILhBioqxFdH7M1D4GBgYjKG28XAitrEz7/O+gn5xRdv0IxchjTMp4oTm/VjNfWsGXF8uAQJiOSGbFcXskplU1kdnSaR7/wLm6/8OsgczQKi2WtXkPFJXUxZjQZsbGxyflTd1D6AxQFKSZcyrZLVRggoVKktCWx69B1daKfTvTTiX460U+c6KcT/XQyTsa/OV72wV/yCecdiTi0xA+pPSL5QFAi2hjE5Oqtdwnls4/eGHJreyyzAEk5YUeUQWGJIdL3DhGNCoqb125ysDdDlMZqQ9+3wEsL9K2hFF3f30q2672jKiwrq6vsHe6xsbZO17SkGKiNQdkCITFfzKknFj9v8KagGq0SAiiVBYaKmujbbMdpNfOZz5NuBKIaqob8G5wQ+RIx9ZKoOl6oWtdTFAW21Ng65mj3mKgnDmsUPhW0C1AqMp0WtC2Y0qONI/KlrzuIdxE++AM/wOkLtxGU5VXveQ+n7rlnqOKmW5X9FCMaxUc+9BGiz4wUUXnhlOG6CYLve0gjlq1nb9mTJuvc9aa3QlXQb++iu47n/+pf4okvfJqv/9mP8kNf+RBf9DVGGYxNhJAhtrefvo1X338/dlQy2VpD12Oe3z9kdvMKa75jVNQYpdGn10ibUw73DvDbe6zt7vCO//lHCXu7uHAeCT1Eh/NLvJQgoFNOJEy3Pt6x8NP5qqShBX74s8s3dvjNzz2K0ULTtJSjEi2ao719dnZucDRbsLExwhYFW6e2IMHqau4G2N6+Se9qqrJiZWUVRHDOsbK6mp+HlNBas7m1me0dKi/AwefKlAyLV9N0XLl2nZs3d3AeUrpVbwfyopNb4WX4DACRKIqmi/Q+sjYu2TvKIOUw7NvUbxGqL92Dt66NzuK2LC1dl99X1IIfQLwShk1bkgxQ1pqkhZQ8plLYEkDTu0jKp8LZKjNYFJRSmdXjMiw6xkQIHsgi5KX0rixYU8j3bUqJru8JtxKz/K2/q1QGVUOusgYfwAvlRDNbevYPDUkrfBCUDqQUAIegUTpXRJUSlLK5qqscogNiEil5coKZIGWgLDRtm1PIw/A5lLaIjjTzDp8EiYmiLhh7zbJpmS873HAtRedNRGkMhTE0i47lvEPrXL1UWlA6srqyQl2V7O0fDp9Z5eps9vihUq7op0S29+kIMU/LQkBJhv4bk6vVA8Ir9/wev4bKnJZbSWoizBtPJNI1AV0lXANaF7S+42jRUpgS7xKzhWM0hrUVhR6SPpsu0Lb5exarSSHhXWYRaStoq1AmYCuND2SbSdDEPtI7j1IgVog2w/bFqGzDiXmDpo0Qo86VXzEkE1A6v/98LyQgkAQiQmkKfAAXAmqwP0lKaBsJkggxoVW20hRK0/SC6zQkhw+GrldsnN7i7MXTXNy7yqOPPUIfwtB1lQgxJw6uTmpSAueOsiAdr2LKisXeAa5tMztn6A5IRSRqkGjyxq1tqExFVGHYiCWa1tH3geSz/e5wb8lsvmQxb7ntgkEpwRrL+dPnWFn17Cx6JEVc15PwJKVo+x4RjVYMvLPcaVAUYIwa7EK5Y0UpjXPCYg7zQ4+Y8HKX95Pxuzze8Mb/BMjBFa9U/VSqmv05dG1HUWli2xOUwZY13/+f/yynt0Z89/e+hT/89Q/x8Y8/xs/+/OPEKIjs8qav+I9AzXMC6JdBP8lwWGIrn0NSVO5kiQzuCVGQIuNJTbs7R7QdNoMpz1+S18/gPSX1v0M/QQwBozwx9TgKqtUz3PHAnVAYuv0RN168SrGxztok66SDqmWxe5bHH/0uxqNnmU5nxF5wviCO19k8c46186cpioptazmzeYEtt4lW5dAJ44BAUjA2BVJqKC3zfskk1Cf66UQ/neinE/10op9O9NPJOBm/bbz8g7+QW+gTmZGQOI4P1xijEUWegOMQZa4VmpLQJ0IX0Aqiz8k8SbKvPqVccUkxEVx+EPdv7rJ78xAQjFIZAsxvF4lKKUKMaK2oq4rgPYU1mKJgZ2+HJNC2LW3TUFdVZq4Q2djYoMZR1QVufcyVxhLRuN6RDBDAGoUCQorkOrjBGHBd5uKpYQG/dW2G9/bSezxOV8oVlwSUxQgfeiT2VLVBlNAcePpWo+qOstZIUtjC4EIgoknJUNSKajK8ruQELKUFUrYOffeP/wT12hoAX3zf+3jqF99PXVWIhnoQUUf7h+zd3GU8nuD6gJGE0kKIAWs0iYioRNu1pGTYPzji8pUrPNAesbl+J/XZ8/nnP/UsK1d2Abhw2EH0aJGhOhtxSajcFRbNgtOnNpjurFOdOc3eV30Vsxun6Q+OSCKk4Fi9/Sxy+yni/j565wCeewGAMhUkDxfObHD58AZuOSNKM6SnCSF4tLZYW6N0gUSQ4fBSBvGolCKkxJn1Ca++904m4xEuOMqqYLlsuXxlzHQ6wtrr2TrUeyBX+kSEvnfs7+8jYug6jwvxVodC7lLI4jPbN/KvCoEYsxXFBwbKMdYWOf1N1GC1OraVpOH5Scdfbb5vcr0WJIuURRcZ1TanJ2vJNhXSv1W0Ht97kKHQ1iqMNWitWcwXRO/QRU1pDCp2t6C7RntUafGDZUAKhdaabpHoFp7oeWlDkH1DudtkWPSPf36+59WtZyGLkPz/6CKnyiF5blAxJ9xF7wnHc0tSt6wwIQSsLTBDt0bbJZZLsKWmqAzVKCdwaWWZzx3zpsP3AbAk0VlU9wk13N+FtYQwiCEFLkVE1C2RHVMiBhkA0Ynek7tzYg+qwvnAcuGyRV5e6ripqpKqLjmcLenaARZdCqrWlGVBVWX49WKZu2W1FnzI6ZIimeMjMQ7dOJkXpDSDZQu0VkhMecMS8yY4f/cpA/6PuzoIxJRtWyRYNiF3GWAYVQot4FLKHcsiKElUpWLeOWTpGFf5vhBCTh7VltAnVModBtFHlOQuknxQIaRABsWrfG8f87gkKEQf3ycJYyJK5zs7kbt2fKNwy5zgqIwiEfE+EXy+z02hEYHgE6FXqPxIDJ3XkS4JMRmsEhQBHzyNj0QVwGrUyBFcRIXA0cEVrr/wImsrY+YHc0LbkZLHx4gGXDjm0+Ruk8mo5LBtmO/vZPE+bPBCjNkaUhh0KYyswjeRrukpa8NkpcAFODiY0XYeUkSpBFTMjhrapaMuKuaHPc91jmoa8NFz4fyYu86u4K/cYGd3j34ZsQr0SLB2hBJLt4y0rSdEwViLNnkuSSlhjMEWJShNFEgmH3CoIUThZPz7H///oJ9SsESZMDGOuh4RxiV7vSah+I3feAGtIaTE3/0738w3fMPr+Zmff2z4iXk98TF+2fTT8SvZUlFXkW6WEzK1GlI/B0trURTDYVjC6CJrBZetcAahsJbDvYN/h37K85zzPZ1zLBYN3/MX3sAd92xhraJtN3j0M1Pe/3PP5nnBR0QqtBoOJ7EUydAqxdVly6cvvcgDr7qLdW1YnVRcPHsK080ZHRyhJQe4TJJCbIEfj5CNtcHypzh0YE/004l+OtFPJ/rpRD+d6KeTcTL+LePlW331wI1AkVIgxIioiNEKUVmIKR1BhZcmmJBIYQAOkJlyyWfxVxSWPvQYY2j6DqKwu7fH7s29bPeQDOQlpVvV4FwJOK6YZ46G1Zm5EVKGmDZtg+86bGFZNg1Ga6ajCWujEWsjg+8ir7lji3e/++sI1Yi//g9/BI/kSkwBMSomY8X66ipXdw4QsliMySOSBXtMwrHNAHlpkdZa31pUBuWC0gpTClo0/Qx8KzRzhZiIttAvFTpWuXLlDL33TDcailEi9FmAlHUWBynBENh7S2T96//6rxKKmrd973/Ig1//9bzw0V/lyQ99GADvs01iZ3sPkYSSnJoGL1W6Ygr4mCvIIiWkxGwxY+/qFa4/9Sirq1vQdhRAv73LUZsX2IUq6asSQkRJhtt2PnHoA/PlAvoxdjlHrjnC4T6LxYLQ92wWJSEEloczzhytYjqYt4Gyy6/7yd/8PM8+d4mHXvUqaimJ0RMlZdhtcIPNJhGDRmlDEgNiSCncuk8iQhDhyvY+H/rIJ5mMa8raYIxidrRkMVtw/vwZTm2dYm/vAGNywlVI8dY91veByWSESK4wQrZVxfhSOtVxZ8DxV55STgoj5eS8EBLex6EKne0Ioo4FZr4/bgnONAjiW3uf/F52Zx3TyQrB36AqDF3KCXJyrAK/9DW+9MHWOeDFuR5tFFE8SnIKolGaaEGSwodIWdYoHdiYWFIU2i7RLYVuEYiObLEZOhtkEN7Hz2P6kuczv5cBnMxLdpaYQrZbieR0OCWZQ6IhoYYD9WFTO5Tto2h8l3CVxgVDxKJ1orIm8028p17VrKyOWT8De/szDvcXzI96QvIYWxC9wbeJFIXkwRSCj54UNW3nkeDRyQ7dN5LFGaBVvp9IgemkZG11ytFRQ0pf8rlj5t0oQHROWgspV6DFGLS1jEcFZVmzbFvarsNak7+3PuYO2ZTT1LRRGTmQ8mGA0bnDx7WCl1yNTWpg0wSfcwlV3sgqAW3yvZCCECQhKRKCog8JW4JVOodB+p5KF5nlUkRGRFqXBbskGI8NyyYSoqcoLNFnYLhRJsOeYyQFSKKIMfN6VNCgc9UdlTduDJ9NK8EWEVEeGXhdSiB2mtBpfCeUJluiXIDgswVID+EGGCEGj0sRPcDOJR0n23nC0P2RO6IEUqDxEaxD1YoYDSA0ixmf/LV/zY3tF9i7fhmJPSIBQQgRlm2Tn1mt8d5hjaZUATffxcdE8N2t5y2icDFRiuL+205R25Lnbu4QjXDx4mkWy7zB6do5VVlQFJDEs+wjhS25cH6dxXLO9ZuHLPcSFIr9g57ZzLE4XHBtd46EmtXJJHc4JMH1x/4Ujy0V1uSuqfwcGqytEBVIUuBDzNcyxXwNT8bvifHRX/tl3vCmP89k+vQrVj/Vdo3lc4rzW6u88Q33Em3JtcU13vsfvI5HHrmC0sJ3fPubAHjxhb3hkyec2+BTn/qfeeDBv0w9fvbLop9slTVTJFFPAt3MkIIi+AyzRymUkswdS9nKqVXusFLDYVLf97Rdx/bO7u+sn5InpjicPiXaruG5J67z9ONHrG6d5TWvq3nLO2/jyScOed8vrbEyNhwdCcFvADA/upMkQtsnGr8L+nlMnLDz4iZvf+cS13ieecZydOU2UrdCCA77xZrVUxtUpqIebKXPXrvO5YMvYspD7jj/BprDU7f009HRBbreZAeIKRmNelbWmhP9xIl+OtFP+V440U8n+ulEP52M3w/j5Xf8Da2ykLvOdGGIREqbRWlCI0oTAU2i7yIKi1Yqp8gGlROJksuTvyS00SyWC2ZHM9qmZT5f5GSqlNOLRHKSbkhZrMJvrVyrmIjOgzasTKeklPAxMl8uqWJJoRRRIEiiaVtOr24yLg1VWXDq3Ba3vfpt3PW+X+KLL9ykLjR6nPBLTVVXGUZsBa/I4ilFMl8vkFK2jXzp0Fq/VLlBoXJAFHYk1GOh6zpQghLFYtEz3TCMVg2zm4F+7vHdUP2tAUqgJ6EIXuP98LNStmPECCIaW1jc1Us8/9xlEoo//nf/Dg994zfx7K/8CkmgKEoSid2dvSxklAZyohQpLyKCQrTFmJIELBdzpvU67bLl+pNPceb8XaQXnmAC+LbFjEoAOgFnDUFS7l5Qhpa8IBtRtAKxKnHes3Vqg0OBq7PnGAVFEYWjGztMAxAjdUw8d2mbrwA+/YWneWY64mO/8Qib61usnlkjdC2lKbFKU1Q11pb0IX8vWutcpZZ85Y8h5hpolktefPGQqrBMJjWbW6sc7s/ZP1jivENrmxOd9EoGYSdBaz3cZwFrDUiusuX7UQarSfxtldnjf0IIx6oSyJagFHLS2HGKl4jkKreSW/d1JOR3nXIFPknCKKFaPcXbHng9H3342VwBk8woytXjl4TrLfEqWc5qlTk03ntUYZluTukWfe6fMGDGFqMUuvG560SEsxtnOL21zvXtPZ57cYeZW2YLhVKoQSRk/lQGBb9UwT/+XL/115QGCziQYqAoMqslEVEGQvJgQCdFcIN9Y/h/Iw6NYdEF3M6S4DTGWkQpiIG+D+xeD8wPeiYbNaXVrKyUaBHmC5c/d9QYQDz4ViNYdJm7WyVpsAXGayASExRasbE+wegCMR0SLKdWN7nnrrtoe8fNvf38EBIhKVIcrEUx4Xs3bA4HGxEZaKyU0DZ9BlqHPjNslBpsNnnzqI3KXbyoXAUOEEIipFyp1qIyuygmYnhpLlQotA4YnTdPMQmSMsA5ogamSWZVIVBaTWlGuNiCailNYFxamh6Uyd0F3juEvCmLgA8RlbI9I0ruqcDn+yCEkAMHyCByyJOeKoWkQeuIMQlRCZQihIS1QlBqSO2M+BDwDJsdyc9SDImuDxiVeV9KsqWOmPAeUALeZB5PEnynQQYLofX52VQRVWW2Fcpz5ebneX7ni1QSGZcFU2sxknCxoFRF7ggQRWlAY4g+cLRY0HSO4HLXlPcRCR6PxlrFqKy4eHaNRVzQBWE6qkmxYzzWlOWE9ZVVjErc2D/E+SVFXXHu4gbtsuLGzhFdk1CdsH15wfXVGokFvtcUCqrK0jSR/f0FbdtTForpSkUEQvA5SbFUVKWiLDSicyeBEkErixKL+pKuqpPx73fc+8APUlTXSRJfsfpptS6pqhJjYbq+wvqFe7j+8Db33bfFe77uPrRRbG/P+ZEf+SQ/9i8+mcPRsqMW12+RKHIa8ZdFPw2dW17hXA5gIGpiyuuxEkM1GXHHHRfY3T1k0eQQDKvzWhc1GGOJKbJzc/d31k/KolSW0n3XUReGH/offoX777+De16vuXBuk7X1VR598jY+9fADv+3e+PjD/+mtf3/ooX/Ima1P8PlH7uZnfv6b+PAv/jSnT5/ln/3wO3jm2c1/5322efq/49TWz/Pzv/hadrb/DO/+hg8SesdnPv2XODp81Zdc75b3vPevMl1bnOinE/10op9O9NOJfjrRTyfj98l4+Qd/MQ4MCUF0oqgNkURZgO+F4CH5XMkJGpLLMFwkt+vG4Ik+p1+FGPDkCXe+nDGejJnP5jjn8sKo8kQokA/cjn++yJBYlf89p8AJKeYK3bJtWbYtKuUEL2UUla0YjcekpmMxm+FC4s4zdzE5dR67epq3fuWbeOLKByisQVQPymNE2N0/RPAoKfJhWzh2GeRq9a2K4fDrcaUzfMl1CslhrWE0VUTRlJOERvBBUY4zo8VYg1GKvi8Q5VFJsThMJJ2xt32fCGn4mlQGMSutufsd7+T1f+Sb6C+/wPTmHm/69u8A4MYTT9D2OYdcfKDvHcYYcppdJOeEZc4DKRGSp+th3weMmVJZixFIOrA43GPn+Scob17Nr5cSoyoLuzCkEf7Rf/yPOHX/q7B1zWJ3jyc+9CEe/qF/RhBYupYVbYDI7Rcu0DYN+ulnmB7MmSRPvVgSSRwdNVz+9GcB+Ka77+eO9/wBIPDcs1e4/PCnGIcWrYsszK2lLEtmpmTbZN5NYWBtdcy4HkN0ZMgvvHhtdwBJW4pdhTQ9c9EcHs5pXYu1Bb1rqSaB6aRgXK5RFgWz1JIQyrqgrGz+zlO61RlwXG20VuekMBUxVmfrirVDC3m2Yx3N5rRtkzkt5C4LpYQYX6r4Ai8J4WPeBNly3vaB22+/E2N0rnCibqWhHY9/k48UQ8T7wKiuCMnjvWM0GiHTkm7RokSjrCaExGhcEVxgvnA8/dx19vYXaKU4tbFCWRh2dg/oO5+B1oM9pdCasiho2pastLOQOb6vZHhG0uDKEVGDmDZoK3g6tFZEHxEiutBYp+mWPvtIVASxtzZVpqwojKJxDW0XM+zYByRqRHsODo5Y3SgQCVidWF2xHO0nOudzRdkNVfWUsFbfsl1EcUQdMFJgjaUuLGfObjCedLgrN0lBcTSbcXBwgDGRwgjOH39fGZivdJ5rvM8sTUi4EChjoiwyNPtwNkNrixIymHtIjtPmpenXaE1RGvo24kIkxJ6QAjnVT2eIP9lilq+uRotGa9B66AiWzB9KWHpPftIHO0MOBbAUSiGqYOEaCJ6qrHAhC6OUhGbZDZ0ZPqcnxkTeCgbS8PkGMyKRDEeWFCBFtAhJFEknysqibUdKPSkIREPoQQ+c1FxAynNQgowmqCpIQtP2KC1YY4YOiLzxEYQUNSkofCeENmGSARwuQVQ1hY4kFUgkrFb0KRFSmzdsWvAScGpJrcjv149pg83rEgktkdJYTFVgvUf6HpFswQkpEQDpIzMVeXFvn+lajRaLysp3eB4Cfd9weJQ3NNd3D1kuPK12PPfsNbSRHEigPTEYFosFi+WEM5sbVNNVmnnDtRsz9vYX9D3U5RhbBpQWvMvFlbI21CNLXVmECDoR44yq0qzEiGsDA9rtZPweGGfO/vwrXj8t53PmyyUxlVQr6+jRKiGO+NZv+6eUpUVVnr6DzXGF9y1CPkw73j7lHI8vk36KeT11HnyylGNDvwjolBBtsi2SfFDlh7CORGTZ9LjBgqoQFvPlv1M/BdfRdB1lGantsAqoyF/+gT/MZKUC4AufuMz1Jz7NN7xbKLThiefmzJtzXLryB3jLG3+QaX2Tg6XHVjtEWePiXc/wX/6Vn2K5rDg6Er73u27yX/83m3zT136SOzb3SSkwb27jh3/hTbzzDY9ybf8ZOjRbm2/iwfvfS9cJly99kktPfT2iAptbn2dj44mc2iljnn7qa3D9hOj3KC1sbaywMpmSQp/1U4CnXriRw94EWPRo27FY9Cf66UQ/neinE/10op9Oxsl4hY6XffAHeqha5bTZkBwkS+8j3jnE61wFRTNgZYCI6+NLMeQpDi3puQycYk7i6dqO+Xxxqw1cJLfZiwhIXsRLazBG07ie4DIcNnifOxEJLJuGru9JKTIe1eAco2qFkS2Yzeec39xgc5S72l796lcx2dyE5FhfW8P3CzqdJ0RrAu2iYxkcylh0kRcJXK7ekHJyUjxOR+PYVpNIMkzGwyKutSb0iflBoO0CYDJc1CtiB7YOFCuK0CpUCLli1AZCKBHbU00EtEPbQZSozLVAweLwgFP33Mv6174LlGK2vc0n/uk/5eP/+J+w7HsMgo0RFRN903FsjSANld2UD/IeuvMOVGl4cXuf2bxBjUbsHiy45647OHfxTsbTTfTmqeHnQ9fmL7d1PfO25cqjj/LIz70PJfCW7/ku3vKdf4rmxnWu/9qH8b3DrIxwbcNRHzizaPiq/+7vYvr+t91dXz38+mc//Avw4V/4P3UTv9zRas1feNcfxBUFyz6n+Blj2Jvf4PTp2yFqXrxyje0beyhtWFkdY40hIvjgsMaAaHqf4bhKQJlcuRUlA2A65LVLEr1LtF0/WGDy95diFrXHFo/jkVnN+XVSUpkfI4n5fEZdllRlBkVrwJEFw7FI/FILl9EGrQxd19L2LUVVYLSiW/aYSmPKbJlRSegXHeOxoR5XtE3AakuKsH84o3c9W1sbTMdjDvyCJBmALCJUhaWwlqZts4QRyXOD5LQ0rbIw0UZlO0pKRJfFYk5o64gSUEahxA+vYdGNIQ3VRkmCtZqyKDm9dQpQXL58jbabk4ZKJwTwimYG3nVMJgXaKlZWIuWGcHNH40IWVaSAdwZ6QeuA0nkTIknjWnKKXe84OFyyuTFiq11hNu9ZzI944dJlnOsYV5bDhQPJqZBJCbYoMmw5JZS1JAI+gCRFYQta7+m9w1qLIXNiYsoMF6XyZse7iJLM6CIpfOzpgyclwWqL0RGO0zmjHkDRcQBgK5QE6qqkNCXeO0LULJeBJhQoiRRiqEvBB03rMw9HRSEksEZYnZRYY+hdYL7sM68nZXGqVC7L5+p8GkDmkGVxvqe1FpIaNitRcsndRNanlq3pBvtHC7b3GpLX+FDkYkrInBhJ2d4XU8S7AVQOSBBim18zpIhKuWqdVASbDwBiyqBmpRJGZasPQSM+ry+ekLstUPgBQB20pW+z8BSlkOggOoIkkIhIRIumMCZXfwtAZdqLVhGxAVQkiee53Ss4ZgjQoQnbij6Aixm638eepW/xABpCcLzw4g2AzFdTBmVK6hWNwuHimIceeJDUOT6w8zBNd8S4skzrAtEBFyF0S5RW1ONhExgS3nX5ACIFRsBo5Imbkf39/xPL+8n4XR3Xr34TZ059HFvMX7H6acWsMN2vOXdui2oygeQZj8YE3+GUIkXB6IjrPH30iDYok7tfbo0vk37yTS5QauMxRe7mkF6jopB0vGWH3tneoe/ynOi9IsXAUd9iURSiMCHRNy2/k37yao2HF5a2nWNVYr7sOHN6i5/4nz7D6QunedM7z/DQW87x5nec5pc+9AX6kBC9AMnuCR8vc2P/TubLipTuwXVrbK+vsLYyZXZ0FiVw5Up+lmOyLNqKGCJdyPphOt5HrTTYaszWmRUevGeTyWTM0aLkEx8XnnzySbR1oB0pWvp2BYDZ4RlG9Q6h3+WJmz3NQnjgnuvowlK4B1gb3cZzV26ytxuw+oCbu5dQRKL3J/rpRD+d6KcT/XSin07GyXgFjpd9Z9tSMr8XQZuS3ndI0CRtcy+4MNhgw60KVQiR5APH1aukBFKuOLmmBwJHh0ccHR4NHL340oIumc+itUIRuHj+HFVd8tjjj1NqlRfLwoACazWT8YhxWTCZTolth1jFuBoxmy8otKLKLgBec8857nn1fQMYd8HGqTUmq5aYwPUCRrPwPidLSUJVgi0EgiIe5qhvSV9amXtJhOT/HmwqKaCVpl1ElgvJNgjlQRwxWpYLRWUTQXtUranE0i8CioRKQrdMmAJMGREGQDfkFmxjuPHYF/npP/dnOXt6g8effAEfI6vTMXed3aRAKJOidD2nrGF2cEBhTK5WS7Z1aKOpVtZ44voNSqMZT6ZEl7iwtYn0LY8+8yKboyldUXJ6qHx0PjJ0bXPP6U02pqtc/5Efopqs4ooRh1eucOqee+jalr7pqdc3GZcTluWYNB7h5jNM3/PCW99C0Iq6rggxcO1gRpy3vO3pJ3jyzW9nevedrK9NMft7mJ/4SR7ePIX2PUd1jS4s497x+uvX+dVz5zksS3rnhpb8yGRkUVpzfmudMJ7w4dGU57YPuLBc8pc/+xkm3YLr1kISUgxEDaNVDWXii488gUTN2toKd995N294w0NDR0AWm0YrZIDsEiFGQZuU2YNR5Q2Q7yDmDcRTz1xm+8YBShK+j0hSX9LVcLwbyhXQY/g1ADJoLeDwaEZd19RVlSuwkuHUIR0Djn/rcxpjXqyrqiCEMFhl8mv64DFGo0yCmP//tj22sXtWV0vuuvMiTz11iSvXWl588TpaF4SQBanRWeiXhcUHn5PmkiBRDRafmEULQ3KdVSgreBdIbUKpSFkaukaTCIgJFDoRoyOfBStE/MCp0cSQYcWHB0eEmFgulzgX0EaDBJTKAiAlYdkleh/Q2tD7xMpqga0hdoLgyAY6jWsiqrasTldoXYNzEVMIKoDrHTe399lcX+Xtb38twRs+99nHODzYxwc3WEdS3kyLoLRhVFi0scSs4gbMk8KoAqML+sUSUsjVZSWAxsdcPU0kwsAmSknRNg7nXYbLo2+l24kRlMnXNXmDSYYUPUp7tCSU0lkM20RdCkYUMSacT5SFZlxYKq3Yd4l511PYRKEsykcKpZHSEkWYzzuaPiFKowWiz1VyVDV8LwEVNXVRQXC0KQOdgwJjyYyyGAkRvBeMnvLgHXcSuhm//Miz7B0JKgo+eEIfwSui5Kq1EYXvAlpHCmOIPhGdIyRPlCw+U8zPhfaSWS2Fyc+msmiduWXR9EOBZEhtlAyzNsHgupAPUHo1dC1ERDm0tdhK5w2TzpuCLvZ5Tas0ySuSH2wzRURbR0zQJs9zu0eZmSaanaObhJjv3dJaxAsuRdTEMZpA9Jn55J0gKbPb6lKzvmboY8Olw8S9Zc36yiZlWVHairquEAN2VFIXBbbW9G5GMV6iVAlRUxjBe0GnKlf3k0NpsMUJo+b3ynjmyf+ctfWnKUeLV7R+OrO5wqlzZ4ZOwY7JyohqpIkph4+gFV0IuZMHECNIkRcpUw4BB18G/aTSTV712n/EeHIDwRG9IaFBB0xh8H1ibXXCbadP8dTTV+hDYG19nQcvbDFKinEyGBW57dQmn/zsI7+jftL0GJ2h/xvTKeJ7rtzY4RMfe4qtc0e0LvDHv/tVXHjwHdz8iavcfVtPeX7E1ZurXLoMb7l4gSeuXqBpXsBLk7lyRLbWVzh3usaFDucUG2tL1sYN47qla0Erx7e++9M4uUKrPNVYMyoBHYlS8df/7yPgrcM/v3186pN/kVe/+p+yvvE+rl17J888/X2c2fg2iiLy8V//Xp6/fPHW39W65au+5i8yGd0c1ucT/XSin07004l+OtFPJ+NkvNLGyz74K8YK7x1aBYraoH1HCt3QjaYRCggG592QhgukhCgztPm/xHRRIvgY6ZoGayxVUdF13WBFyWlEubM4V6tTgt3dXZzP/IGqqunafhASglHC5uoqpzc3mR8e0YgGnWicJylDrRJ92zMal7z27js5f/FulK5QUVjRJZMaFi4SupwI5SURvcq5PiLUoyygQ/CEg5gnsUEw3Eqku2ViyQo5pXALY6OOLS4hdzOLyiBq3+Q/NGW2tiwOI0aHASqqcX1CtCX6XL0WAV2ogZMTqOuKsshW5JQSVaGo6oLDvQNmXlGFjmXv2IuRwurMRBEwokgKCoBk2NjcYmVlwuXty+wtDviah+5lvDLhiWce4xd/7cN85WjMawEXPVWVb5lAboEvreFdP/RDlKurADzyr36GT/3vP8bW2gpKawKJyXSCI3HzxjYA3hqO1leJaxt0fc/ndvewzvE24OG9m8xjx8pKxWs3TvEgsH/2DONr13h6bR021jnVLHn99etcn064Zi1t1yEI1gibqzWTuiRujSmiId15O5eSQu1bAGJIaJ0IUQgukVzk5s19rl3d52Bbce9dd3HPvffx1W9/G1r1XL+xTe8TWimK8QjfeWaLBdPJFKMMe9t7KK0Zj8Yc7s9JKVKWJWVdkWKkqkqKwtAsO+YLRZ8Cx5ilDFjXiChieik6PqW8OUIJh0czlBJGVcnh0SIbBo5tUjAwc9KtqjVI5rMohbUGa2zuKFEKRKGTkHxOI9RlQds4Ysq2gNnRgnbZUpQGpaGPEd8tUdqA5PS00ubNYt/1WcgoBrFKFrFJEVLI1gBUFhEqi8sYPaIiSkUUAZQjeIPvLa4VomSTTkoKyXGDaKOZLxdZtMaA1Wr47DaDwlMcxJvFuQ5CZL6vSUNZP7oEIVs6jDYoa6lszcroDEU3Y3exh0YxHY+JVeagRCWsb55ibWWV3Z19Fs0coSfqiK3zc35sJSoKcuKaitiRDGBrRbA9fexIEqhXDBFHMEISgeCRAR+gjEBSJNVndo6PFAUYpTAmV2sjETFt/ty9R1QNPkOhEU9EaKOnmTdsrpTUpUabHO+oCoOtHUVRUnrNIgTKQqgqS98louTccqUNTi9RtUNUwhQBJQGRRIw5UU9UrgiXoim0Js0DffCITYh1aNthdSIlg/OWq7tHfOSzz3B6XTBmSP8OiehDZscgxOTJHCgN6Bw4UJQkC8EFTLC0vidJyveU5LlOmYQuFXjJ/hfxxBDQxx1EJJIeuo1EITFQlRGJZOh3axhcYSQtoAPKOtDZmmJQmVuTBFVoooMY8gZBx8xHEyMkrXApYEhEBZ6hwu+zfdMHlfEMNqKLQAgBk/RgNdQoOhon3FyA05Znrz7FmdVNUhHYPLVFYQ3OLWn6Ho0nqhapGvqUiH2PxAZjEqZQQAmpICmLV0t0/ds7q0/Gv7+hyogZ969Y/bQ6Bbu5ztrGKURZJAq1slQFtD4RXd7cBRIpKBLZTmxNXquKOqH48uinojzi3J3/Emsj0RmCB1EJW+ZU5BQ9q9Mpo9EoJ5imxKRWTKcjbly+xk2nsSry/MEBu/v7v6N+Wt/cJMQRiw4W7YJv++a38I73PMDDv/E0i2bBm9+5DsAjj0BVKdp+SUjFrc8eRAGOsuiR1BBiwAXDaHyRchRYsQVVteQ7v/mXGfmAS4kQhOgSle25fPUKR7FjZbzPX/+v/gj333+aqrZ8+7clPv+Flv/2b/4S16/exJia5fJBmmaDvb3bOX/+V+m6msuX/xDBV1y8+C958dI3Mi4LXn//M7zuVde4edRy9UbDC5e+HtetEMsbGC0n+ulEP53opxP9dKKfTsbJeAWOl33w5xFEC8r2BDwRTUo6p+Ucp87ltTFXdGMcfntI8lK5/R7JFRibioz+CJHZbEGIMQuqY7CrEgqrc1CESxwczW5VipqmBckgYJ0yo2Z5NOMARd/3zNuGwpYgMKkKjFX4vuO+O+/n/ne8DbN+hmQKoq04mDW4EPB9Tu3NYRGKro+4/rjKEClrC9FijaKLfeYlHCsQcsUxA4hD/rxk60vKNZ2hwm1RusAYjaiEa8HWmrJQLJdZbCQSIUBZaUzdE9F4f1yWTEPASq4gxhA5OpplaKoxBHE8dekKh0cNKWk2iJlXUOeKTq6cQWkVkUTbHDCtRzTNEbPlEV3nOEie57b3+faveRdfePYyL+7s8tDt4/wzY8TqfID2ws19tudzzm2u8pN/6S9Rra/zlX/6T/Pab/wmnv3Ir7D3uYfpljOeufQ8p3a/Gm8qmu19AJwLNEQkRnoRUlmhbF4c5/2C7Znn+mGivXSFB4EwAHCbJKA03cBz6bWiUYKzJkPNjeCNImihmo4IR46j5RJdFC9VdmNucVfHVUdRzA4CXRNQacQLz11ivj8n9T2nt8Z87JO/wfXtPWL0vObV99P1kSeffJ6LFy9SVRUvvHADawtWVkbMZnNiEoxObKxPubG9x2zWMh5XORH7lhUrL65KFFrb/OwMm5sY88YlDZybpu3xXcO4Km9VzXOymyavvC/dg1m8Kkg53S0EKIr8Obu2pahqtLYInkpbApFuGWhbx3g8orA1hwczJuOaybimcxWlUsxdQ+c9Omp0YQmQ34NVaC0v3ZcJtOT0sEg+XFVJIyiUCdjS5kNrIhBRCL2PBFciEjBlhj5LSoNVJYtkEUEZRW0NSQIxRoyWPLf4hO8yM6iwFohobUliUNpTVzZbSYKn7wPGWILv2N69hqBzypjvicsjyqKgsCXPX7lEF1pWpxOuXt7naNGRbI8qI1pn0S1kGLItFFo36GKGLfL79l6z8C3+cI7oxGj92OaRmVAppcx1UZkD07mA82TryDhBHBLdSkHHSN8BQwJdMAnpW/AFMWmCJIJ4IOG9Y+coEJJHjzwqeNqUWMREgVDVimlKWBMZFQajLDPfMesWdMs5Xewxk0QIBrEtRdVhlEJQLBeCT4myMig5QhnNuIxI40holAGjyUI+RaxaEr1i1jqOrkUkGUQnYhKSaEwFmkhAAWaYe0EZlxPWgh0sPApTaCL5ukiyiGTOV+yzsBfl0MZhtcI5RYpZ5ErKSX0ASYVcVS8CVgdsbUlBZ0uOCtkGR0RCrlxDRIICsWgNdhRQKeCcwxhFXZaE5GlcRxJLDIHgHFrrDKHPXsBckfcpdxiYbC9LKgEerR14YRkSLgkmaL74+Gd4uhzRxMjqqbNIMCyXmTlzdLiPmJ6yjrQdxNDkxL+oMNFiigalDD5CMgusPalY/54aWlCFe8Xqp7tvP8ueukgnqyw6jfKG3f1A2xe43pCizuy1CNHlj+b7gt4dh5MZrC2+LPpJ6VX2d17L+pnPovSMISIh/5kRQkp4H9je3qHvA8pavLT8+ucf48bOETFY1guNMjkp+HfST20742h2RCKwUIkXr+7znfee4fVvvR2lYHdnwU/9+HP8jb9xF3/onQXXDmfsHkLbKF73wAd4bPdxru2PMCLUtkBpxd//f34Lr7rvNEWpaJaBJ754yP/ym5+jLQu8D3QusrsnPPzUvdx26ilG+gp+vsujX3iRn/9XnybGxH/4Z76a9/7hUzz91Bb/+H/6AsQxSt1DXe/y4IMfoyj2ca5DBUcyR1i7zaioGRUF998xoo1Lls8dYcpp/pJiJAUhqhP9dKKfTvTTiX460U8n42S8EsfLN7H7iLaKqjR0oUXrKiekkdPmjtvrIafiFKVGmwz4rUYVrvcc7h3iXea7RAfz+YLgPF3X5cVJZ+BpSjnNy/cDmyFlkGtMKU+kKv9diXkyX52uYJTm6OiIdphIEIfGgR6hvOVtb3iQb/6u72J87jzalPiUmO/sc+nydZadIXYKbQwhGEITcFFwDpRouqWia6CwhhgzgyQNVcIsQsgWACV0XQ7WSMNibowmoW5BYjlOTFIZdBo8dG1mBybCrcSqNICkiUIMQ0UwCrYLiAYLGNcTXEfhPRIj1kX6xlOHhFaR+06tYAIwP0IpwShNqXXmTOSWAiqdmDUzGp+ZE66eEMoxl557ij/95/5jVn/sf+MPnD4Hv/DrgFCVmUuzORkz15b9uWP56Ydze3oIfPs/+Ae88Y/9MX7zqUe58vzz3GsVp2rNk489y2PXr/HNwOW9PZ7reyhmKC384f/xn3D6vvugrvmO3V1e/OhHuPIv/lfU9W145gWa5SGrilv2oATw4Q/zJ970JsxoxGJ3lyc/9Et85O//ANF7ghcWi4aw8MxGC0Sl3EYPRAa+jxWq2lJUhuViSakqpuOK/aMjZvMln/ns57n/vjvoOqHvciXtcL8HMaRQcv36DG2XLNqesGi4ubdLURSMRiOatmexdDRdjzEFtihp2h5tSrTPIst7h1LZ4qGVwpiKEAJNsxxsXwoUzJuWxWJOWdq8odOC0YZbLoIhDS/GSBwsNTF/tcQYaZZZfGgxdMsWiTCdFFRFifc9Cw065hTEycqIiGNUjalsRdvvc+78GXYWDYddh41ZgCYRjPSUJlcik4RsLYgZukzSeJ+5O8pkyJNJGYjtYqT3KbfrU6AQdJRhDhFyzT1htcn3Wkw0ywbnA8Zme5rSudpdFJG6KBBnSEGGxL4IShATECV0bU7AFDHYQO6eiT2BJUhAbKIYAXj6lEBX9AvFzmM38J0iOo0pFKpwiPZYFTmG1sc+z00hBBIOWyqSz6nbISbaJlIYzaiuqOyY2hQkMv8q6YgqGvp4xLLzdH2i64frpyRbcAS0CeRYmzwHGJOgjqTQ43rB9woRg6iI0Ynew+7cM1lRaCtEF1i4DsQzshZVZzGlKkUhQrvfcuRbksrcHB0DPiiCUySrByA7FKUlNAnXOXTlCQqi0kSJxJC7cdA5iU9IWA/JBNTUE32gcw5bKEoKXK+JwaN0GISeIsaAMYIpsiUneIdYRd9bSisZJO3yoQIiWKNRA6srKUEbQVSi10Xu2BjmZuezWM5dULmSLIA2KfOTIpjsGqHrSkJfIjoiRYvRgRAtySUKVbBSW1IR0SphrCBimaVEFxJtigTJdiejNcbkrgut8+snkbxBQrBWkXCkKERRuBhxLVRG6LoD0IdoHUmxwagpTa/wIbOBQko4d7z2gNYKweBDDx6ULpCoiCl3jJ+M3ztDi7yi9dO3fOe38r6PrXF4ZGn2E6HtuHSlZ7lcJ3mFKE1qFdFlC17w5OTblFkh0WnikvkpkAABAABJREFUcN7yu62fmsUmj/z6X+dtX/cfU08OMErnLrmQ0DYHS0Qis/k8W6rFE8XRdC2SNKNC8eYHLyJied/2i7+jftpfznGuQ2tPEM0Tzxzwt//L93PbPQ/wqV//KBfvuRdlXoP3UJUlt62dwaQlewTuvvOHOWp6tNL4FCk1rI5rLr9wwK998HE2K8s3fMdbefPbT/HPz/1RPvlrP0ldb7PoNPOjKYfL21lPwljnTs+/+wMf4FW3n+Ge289wuNfC3dA2R2gl2SKJoLXDmG2EFlKHlogpFFonNBEtPcEf0juDD0uESb6BJXdPqRP9dKKfTvTTiX460U8n42S8IsfLPviLzuOdwqkS58LQBu+I+LxQpYFJE8GUiY2NdepRxWRtzGQ6YX/vAJ0UXduzf7DPeDymXS7Zn80x2hCiBxni64Vc85Ics61ChhNYo6lsgVJC0zVYZTl/7jZ812dOgySIGmKPDwZbjFFW8+bbt/jm934tK7fdTSo19J7Q9jz5mc/ykz/7r8BMUDESYgZF26AR5dEmDQl4hhQDwWegKpIZJLeuzQBPEBTJm1z5UCA64mPAaINRBh8dxoIYhbIx8ztCTxTBh5jtxD5CFJLXSNS5DBSz1XepNJWPSB9IHlZTpJnPmLgOkjDtxxgfWLrAqc0VLp6esuOEo/2bqLrI1iEhp/YCyVYsOw8pMRbF+qQEFbj84pM8pY+4cOos3/qHvpbFRz8OwNp0iq8KAOpac887voqLX/t1XPrMZxAUb/qOb89/drDLay6eZnR2k7Kds7+zzSeefgxn8uFb0zkObI/zEWvg5tNPcvlnfoavvH4d91f+Cg/+iT/JKb/gs3//fwCgD8PKcmzPAPjsZ/n0L32IQ6N56/d8D2/+zu/i6NLzPPVTP4oLws29fUyT6CarRODihdMAKBVJSQ0wYE1VQT9X3La1wd13nucTn/rcwPcQnn72Eq1LVNMNjNIczBOIp5iu4INAstQjTSKSosLabLW2xcC0qTx1VTMZFxSLnmq8RvSerm+IvqeuLME75vM5ISa01hijCTEvTNoYyrpEKWFtdQUY2C+AChmIHH0gqTh0T2R207EXRmuNdx6iZOtLSrje07ZwdmsLpUd0LhGip3eOvf05hPyez51bxV1aUFUW3YN4h2hFlD53jhTDZsEEokSSj6hkEHKKcykJUkDpHlIkjgzaRBIGYxeklOiWmtSVaBaAJiRNkoASqEcFKkHTdPg+Yo0heUjiKAqLUYbaKEbWoMQyb7tsKRIIIeGaLKS7PuJjl9lMyYJKiM1we5FESAETArYM2R5DRMQQCfg4om/Bph6VAso4bAEMc56xlrqsMDYMG3eHJE9pI8ZYSBbvhL6P6AiWAlvU2NQjoQfvSChKldBFpLSJvtf0vdC3ES1gq8y88gFiyJV7VObTKKsRq3CdI8aUhZ8p6HtYtAq8xarMCY0miysXekJyLLpDpBBaFYm4TPDRORFUEFyfCD1IMbDCTMdoZPAdpJhwnWQrYMyVX+9zAqAzoI3kZ9vmhLhgFCrlxM2ihjL2LOaOFDVSNFmAenDeEJ1Cm4iYwHhVMwkdRsHGaJWJmSKxwOiSlXFJUQoqWYJT+OhwscOngKQMRnchcvNwxv6iYdkKnRNiVCgi2mQOWVEoiiIQiOANLYaUOlJQ+X5MgkGhvcH4iowIj/TtEtEJowua2OI1pJB5QSFGUh9AJG8aS59tSE7j+5zOZ4xFK3ApQiiIvWEuAWMaTIxoFYmqZ9kfsOjGdE2dk/lUro6bIq9Px+uPJEUMASUdMTliFIIvXu7yfjK+DCO0Cde+cvXT2bvv5E/eGfDzI7rW8fhnPs+vf/r/zfnba2gi0SiwGusFpzzB53uznd3BpRe/kxjcl00/Vfp5vuY9fxRdOmIw2RrnEkpDIuSQhfGI/ZvXMti9j2hW0doTSdx+xxle//qL3Lg2y9eqNP/H+ikmLMJKWWDEsbdzjeuqYWNllbe99iEOdrZJW1lql3XJeLVkdNhxsCx5YfsORtXziAg2JS6sTXnDg/fy6Q88z/q0ZjmNHOw1rG1VrG48T9QzDpuOubO4tM3Zcx+kGh8RXSKFSHDwz//ln2U8zQXan/u5Z/nxn3wUkZekvvcVL7zwXm677UP88A+/lwfuP0M9KtjfW/DRjzzBD/2Tj7C9s0ufSno3JBgD02k12E7NiX460U8n+ulEP53op5NxMl6B42Uf/KlkQAV88Egq6BvBqALXZm4a5OStmCB2kZ3tHYwtUdf3sNbStQ0xeLzvkSSEEPKiml5qtj+uuqFzS761huATqiioU6LtWuahydVhyd1ni9mM/dmMSVWzvrnK+VNb1HXFtRvb+GWDSiP8fEFpLRiNBIdvHZ//xMf4X3/yfch4imkhmIjROVkPmzDRoE1+T847EMkTGYK1uZp9DBPWojOXV+XkrkzilgEamys+ZalI3mLHQ5wdGiMOW+k8SVFQrEbGkzGLA0dz5PCdQwdPGlADnzx1iqvrNbGIGK/4yte/FbfYZ+fGLkdzx4UL61zZ22P3sOMNr76b5vSETz72DEulsSEXy5FIVBGbFEEnCqUJcThQs5bawNhWXD/oefiRX2Nar9NduspbgSPnKEL+zJvTVbYXc07f9yrue/e7UVqz2N7mhf/9R1l5+KOcOrXJyCuaay9wc/+IYlRy8Wxm3UzHFUYLxapGovCrf+/vczZ5vnL3kPl3fRdr993H9d0ZzfCzUvSoodsvHIN/vv/7ee5Nb6a5bYujP/getu65h1LnhWbZtjRUVCGgdYGJgXEx3OpaUEWurIHmzEpJ2wa0VWyujVFiQBmO5gtu7Pe3LCWQq15qSN9CLIKgVcqskJQDQ0g9SpW5JR/o+p7e+8GWoimMZTQaUxrF6a0VZot9Ll+5zGLeEnykKgp8CIMQUENKHZzd2sBWQsLn9EExt7hIJHLlbtjwZSyHIAQUQvARUTmFDaUwpiTEyGg0YjJacNBEVFQZLq/hcLbgvrsvcveF87x44ypdI8SmxhlBVAZx566SQUhrhaj836RhkVa5mpZCFoJaRzBzlGgm0w4l4LqC2b6mn2tSyFaFAIixFEWJKIUPgUSeV1RSWK3ZWFlFyxB6ExORxLINHM67oVwPOeEvkfe8MgDzM/cmdRGlyalkhcEZT3A5aTDhKcqEij0mBpTJ32vwhoBQVAGtIbYBJVmgloVnXHo6hKY3WBFC8CjlKUyJpLwJV0qhkmBsQdcn2qWhE0gmf/ZJYXAFLBZ5bvFR6FxED3adRO5mVUoIw+crC1AE+lZncHO9oC4FSRYfFUkCnXekFImqwEuHSzFbP4IDhMIqQoz4EDFaUVYBaz0xZdvKcXCO0QFbGfouQdIQI8YKGEcMEUGjYgaK54quhqhwTSQEyayWLjOQtBZan/CdUBY625Mkb9ydD6SkkQRFkbAmUZaaU+M1RmYNTKQ0BcYaCmux1qBQ9L2jc4HjRFAR4a7TnrbraNoZl3YOubK35Gje0ze5owGTkKARVYALmUGWSmKn8T4Sk8YWGXPRupyGqFTEA87llqaoNVYFgs7dC8cdJOF4Teg0oh1KJ6oSui7hYoaSS9LDAUlO/CMK6JTnIYko01BUgneJrhUkWFKqgG7AF0RiVNjCYySREGIyOejhpYfhZPxeGMIrXj+NpSd6xzOf/Rg//b73Ua4Jqm3zfKQ1SEIKMFFINr+nwnyRr373N+TPF+2XTT+lcAi9DIbOlLsfbSCEhEFYH02ZbDpKlzicObaqFdrSsagiW5ur3Dxq+fTTzxAR4u+gn5IYlBGSUVgDpbYcLD3Pv/AEVTFmp2lJV38D+CO4EOli4PTqOtdu1Pzmb/4t3vgVf5kYPCtlwcW1KRc3Vkl1wf/lr7yZapR1y6995FmeeezjvOVVGzx91dPu9+ixIQVD8ApJjpQCRin+xx/4JcRO+YPf8kbe+947+fAv38kvf/gpBJ07KRFirIhR8dST2/zi+z+HAN/zp7+KP/Ztb+HF52/y0Q88RtIdSibU1SH/yZ/7W8y7q1zfyYcbJ/rpRD+d6KcT/XSin07GyXjljZef6lvkNKukEjoZmmWgD4oQAzG9ZNvg+ETfeXzIkx8pM2dSzNHwWml8cDTLBYmY07NiwCUPYjCSU32UZNaN63Jqa/AepQ3BZYvMTj9Hk1uWaZaUi5L1iWP/5oKjowUbK2PGElhdq5luniLjNEq89Zx/6CFe87arPPGzH8aagkQiepcvSVLkOs0xfwcCARnCPiQCSg22koEeIwxWCriVVhfzvzsXUKKpJoKucjN+11jaLmJCQEoNpWc8MZxZn7ArM5BI3yV8AKPy19SbxHJa4/oWU9folZoHzm8RL5zmN565hJrWNLMxTQXeCs8fwhde3ENQ+boPVUtR2fJBUtg6QueQWKGDYlxpxiNFSo5Lez1VOedNt98OkKs1KV8PqxXXH32cf/Ynvo3Qe1LyrI9HXNioedMD93Nq/TztjRvMW8eNZg9rWnYOZgB00lNOLFIFiEK/THzz+z8EGxtcAF744C/w8I//FLbJEcKS9GC/SMjQFQHwrR/811Qb+TDxiz/3r3jsZ36CUWUJPlHVNcwaOj+nnlZUdoD8qUCx0uJ94uzZM7zzK17D7ocfJoWO5dEcIwZdZN5DPEoQCrRyIJn7GCRzhER51MAp8vk4GCdQVQW9a3HRI2TIcEzcgkNbFakLgysqIOD6DgmKqtCoStF1PSYZ2i4/U6GHxaJlZXWMMSAxL6LIsNGT3L6vVbZpiCIzNiR7qpRSEBM5LVJjtSJ6x2KxYNm0LDtP6h0aoVk22aIVep57UTh/22kWzZxuuUQniC6CzRhhH4WYNFEpVAyI6oEsfEReYufEGAghopVFaYcxCWUELZGy9NjikCM9ZXFYQlIUylKXJcZaRAK2UIQwWLxM4uzWOvfcdSfLxZybOzdw0ZNEMjPmmN+oVU5yKxKKDInPYiILAIIhZBdc5jtLQklEaxmEv1AZS8ab5GqwcwGiRpqEt4K1UGoIMdB6h7ZQSE4Gj55bG55In9koCpTpMWoF73ucT3QdtGGErhRFtQSEUaGoS8HOFUdNh3eCMjlVXcQSU8gWBcmfNUbBWE2MieBzop9WJs/VscU76EMk0IJboq1hmJIz8yYlfMwVzyEgLr++URAirg8YhNIaCgs+RLqk6DqLSpaoQFuPtj0aRYgQvMlwbJ0FbgwDn0xF3MBStUbhfcT1QhAy3wfwvSKEghRzh02KLSK5S9hVjqgDEqCPiUWzBBLGGEZ1jTWWmBLeOZTKVfSYEkVZsDbZYm31FHecanjm+jbPXN1hOQ8E0XQmog2EmO8RJOQNV8jdAgowRlFYIaWY72djiFqxbDu8AFaji3hrk4VSpBAg5W6G6PN8Kzo/F8HXOBJGZ3YNIWFtHDpONM5BTLmqbaueKnlSrOjmxcB0SkSdLVGuhxgMSi8olOT7WDIn7WT83hm2GA5NTvTT77p+WizO8oXP/gXuuf8fsjrdJqY+d0OVBaFvSaZkbOG+2y8St1b4jWcuUVqFJIvWPSZ0XL1meOLZ7X+nfnLR5Wvt6yFJVOOc4tqBxprE1rmLXN/OnOSuszTzAp1KbHHI297yn2HSZY78XRRjy1HbsFi0bG1u8gv/2+Mk7Xjzu+/gHe+8k5/+mUMe++LnWaiGamI4Olzl6ce+kQcf/DFKvUNKiaLSfPyjT7LsDPvNjL/5t7+Rb/nm1/GhDz9JTkdJaNVw572/ivgZP/h3Psh4pFldKfn6r38Nd9y5mQPt6hFL5/GppSwLzmzO6LcdSXuKqTvRTyf66UQ/neinE/10Mk7GK3C8fMZfdEgUQl8SvcogTslVWSHdqt4CpBRh6NDSkqsH0Wfvfkx5sl/O53jvBnZAbuutypoUEwoIPuCCB8mVg1xtyu35KeYqnpUML9XGsLY24uzWKeaLnvnhAWdWJpydVjx47gxv/6qvoNo6nROGJFBWU2676wwPXXiWfzZ7P6urZpj0j7l62RISB1FqRNAIffS5opYi2mT77VCrR5TKvIA+DNcgCw8lGUTddY5qRaMki/5Ed6tqVhSCaE8SzY2bh4gSqolmMi2ZLSPGZ0aOMZoYW06t5Y6B3vU0jQEMnhGYDA/W0fJi1/DU5z7H/sHRUMlIBKVxyVCGhqjAECl0w2hdEWNP6iCkCaYQ1scbvO6hNzIZT2gf/SIAVWlYxnwY98T1G1zpFKQWkdxpN2tbdpaaZ557gWQFJUv2u45r+wtubs9orh8B0LWBONV0bUJFcI3jw3/+z/MNwM5f+6tcfNcfZOsXP8jB+94/3FA9BmFjXHGTvMkB+OXv+4u4c2d583d/Lw++9xu5/Gsf5tpHP8y50xucHo147NpNAj3j0nLj8DoA6xuR3VFHagXCEbs7+5xdUzTdghevPk1UHu8X6KqlqATxwrjSxCAYDYggSjBa5dSppKmUzhWyFFHaoG0GzeZNW64rD48EfVTQO9AK6VvGtWFdSgTD6toKTdOzfzij6z3zxRLomC9nbG2tsjY1eKdxTbbfjFctPkV6F7PFK2ZhS6xyZT3liqQohaLI8POUSKJoXcigZRWpKk2SROwTTRdIKXBl70UuHz1FVVVM1zVqaMRQVjEuLU0fOFj0NC4AkULnp0FpBgZPhpYYY1A6IcOmI8aEFpXT9VSiHhW4lYZmqUi+xBZCVVp88PR9k0WCVogVVAXTtTH33ncXy8WCZTdje/cm2ih04dE2ER2IjeiyQ1Vt5tlAtnFog+vA94YYDd5lka1FYSTzciR6ktfYoscWka4FaxWTaWSiVljue24uOqgc02lgttwlLDtSgLISGEHTeoJXJKdQkggJol5SywGl0UTnCb6HEBFv8cuAlYJ6XFPbgj409Lah6cH1Cd8rTNFibIlzkDcIFhL4oVuoKiEOIt87MAjaJpyLLBYwGhegHDJUur0LiIcYBdcDcZi/1BAmIAD5oCINHRFCwpiINULfBfq2REQoAGU8SWe2jtJqEKwx80oJQweDRquCEBwJT1lorMm8LKsMfVR0ThN9pvJonSvGIUZaF2hdR2U8VgzaaHwILNsGcBzNFpRlSaEtSmtUBpsxOzzEHx5RVhW1sdTW8MCFM6xNal64scvO3pLO5QS83NWQO1lEC6ITqsgVa62hNIrK1rSuo/UOpYTSlgTf4UNCQk5UDDHzklIM2cYmHtGGJPl6oAwxGbpGkUo1dJ4IIi3aKLxTdEtBokXpiCl7tIJy5FFyhOsKYrAZIq5zR0ffW9JMiOMlVRXzc3eiW39PDUkQ299/+qlvLvLY4/8F97zq7zAaXf6y6CddTNjbfTP3l+vY0Q6dj1js74p+KjaE2XKPvtmgdasoo7HFmM31c5RFwdFhQwqZkzdbGpw37Bzssljc5LbTnyOEEYgw6zp2lpqnn3uBaIWdw8CVmw3XFgv+4ve9k3e9+438/C8+wmTkiaakzzhE+s5jbeKr3nkv3/BHXsdjn79KiAV//E++BYAnnrhGjaaY1BwdZdSJUSVRLyB5fvb938f6ej6Y/PAHvsBnP/ECZ7ZW+cQTz5IYE8KY/+XHvoU3vfUfc/r0Hk76E/10op9O9NOJfjrRTyfjZLwCx8s++OsWBhFPIgM2E7lCK+q4Up3HsYCVgZUhCMkHurbHu44QPCH4oaKTH9jCGHyMxN5lmHMCHyNJFEqlIbFLkciVAmIO8h6VBSujgpXJKsoU4Bve/oYHWbWGZnaTu85vcv/dr+K2h+7HE5HmkL4sqbQm+RkPvfmNnFmZMHc+VwpEIUlQNttLostJbqtFhbUFu82SPoUhvn5C07Y479CiECDFmCHUQ6U6p4TFoUIjLI8EGkGpEqU9pvBEPN4XGOrMRUCztbbC4qhhMtZMpi3TRRbJhSTKlEVC0Jk3cq3ZwbeB4AJTrREbmNy+wXU8ixCojKLrwSqPlkhtAlFbRAd00oSoUEmhykBRR0wKJITNyYhrz3+BfrKCXL8EQNN53DAb7h/NSOUISQYlPUhuz949bKimkWlxlek0MfaW6lTi+lMz1sJQxfSR9rBlDsQhVOTqJz4Bly7xhVNbfO3/6x/x2j/6R9l+5NPwxBO85cE7aL74DCUdr7/tLHF3H4Cbn/sYNx+fkILnm//ef88bvvXbqZ57hAvnLzApxzzyhceZhxa7tNw8WALZPqFjSdQB3/U8deVpmr6lD5Gla4l6BJT0rVCOWrSeYxjRLBQ+RrTOLeVaFWASKuWqalVlpkhMDqU1k7pgVNUYY4kxsVg2Oc3YaUoJbG6ssbK6zuqk4vTqfZCEvYNdjo6OOLs6ZnPzDLPZjBeuXGZnd5+77z3P7beNMIWmWUaIidHYMutmHC2WRHJlUNAE39N1gg8JHwIxpMziANIgGpPWTCc108oSUkMX9ulCQ7HMDKZRlUjJQAqsjSeUOndxeAFlYE2V3LY5ZrFsmS17Wp8IeJLOfAxrdW7XD36oBCeIBhcT8TiRTwkaT1VbykoRO81oVFCvQjNz9M4TUVgrRJUPnK9sX+Xhz3+W9bV1klKE6JCUMFWg9EKY21zpTI4UFImcnKfEUdhAYRKhjCidCDFAtKQARHWryh+9IWpPYSP1SNMsHETDuDKsbK6RTM+i3cb3gYVfoqWktqsUpsMoj4+OKPk7iiGRXBaZTX+YLR2hIkXBKItYRUiGIk6oqJjYilaWzOMVRkUB9Hg3hA55ISWT+SoqWx1CzAmHohIGRR8VISWCA1sEylLRzIV2GbGVYE22AaY0JFyKQUnC+QxTjgHiAIA2A3y8d4m2V4SYKCwUpUJpWIRE3yt8b1EpZGuUghQ7ROkMHCciHvrWkmKiHDp2JFlSUhTWY5XkwwgHyVlSKIkSEN2jJRJSovOO1rV422dxqhJ1VeQOA62GSnLA+57QJ2KC8XjM2uoqTdsQ+0CTPMsQKKzm9MaEjemInf05e7MZbedIQ8dVIrOLHDk1UEsGQ3sSRgl1ZbBJ0fYRqwHnyNo/obXBOfL3Qk45da4Yujpy35OgMdaTyWDDOhFy2rmQ00tFFD4qiEIINdbG/H3Wjpg62mVJ29YoKShqn58vAe+hafPmwtqX1uWT8e933HHnj5DcLv3y96N+imyuXqGy2cb45dBPR3uZcbe1KUysYb4oyHbq/9/rJ6t6Lt75MximVGnEtKq599R5VPT04ynXZwtWmjs5tXknr3vNw+z732T+5FW02uLxp7+fO87/6PC5A7uHPe941+183R+/m2t7u9zvat78xosAPPIIMGyyu0VLN8snf23rKHVk/6Dh3vtO8673PIDRmkuXDR96/3Uuf2aXU2uWvu05Mxmxvyz57MN/hvtf80+YFjf5L/7TH+XCxU2+509/FV/znofYu9Jx6UVH99gT9NHh+8h8UdAsA9N1RXQn+ulEP53opxP9dKKfTsbJeCWOl33w53wGIosAKiJK5UrGb7GpvGTTUAiSyJHyJEajmrZJme2hhMJYKmPZubGNEZ1jxUVhtKLrHKI0WhTWajCR4AJKF8Q0MPdiYmVzg82VVSQK505NubA15rUP3c6VR59m89QW9913L1vnb8eMV8ArRAWsQAqCGMv6+fO88d67+aXPfpF6lCfw4BNWZ+5G34GxQjKJPrSZvzH0cosIWimiSK7GqPx7DgGVhX2+RjG7QjBMVw0u9aSUF0SlLctW0/eJUZlLmj4kercg4Li2u2BUV8QyV93u2DrD6tktttsjFrphMhozDhZdOExpWMQOfWZCfXrE5mnFW7/xIY6eucbBx1u2XzjCm0QRI0lljoFLDqNKknXoKiES8K2ncwpbV+hyg6eu73LGD6VlEpPh4K8MkVGfRXmUXKWUqIjSIqOWmwcd7tByl7qHr33gbXzuC3MWchMgs4lchxLNfV/zbl7zTd/A0Sd/HQ4O+Yrv/34Adp5+kqoe4KrecdvmGvNTm+zMj3jNO78K/qM/z33PPs75ouT13/anAGhfeIo7z51l/cx5lBmxOh4Tekff5dQnAN9ZYg9tAKsce7MlfadZLhQiIAaqIluKNR5joK6FyZpldthQWmFclxR6zLhaRYImhMh0qqhLg1IF05UxdZWr2EppZrM52zs7FEXF4cLTzGfce8cpNtY3SMFTlwXjyZS1zQnOdTSNh6S4eOEUplTM5y3nTt/B29/49lyhipquW9D5QxbdjEU7x4VsUyhHlhADi0VP07QoKkg1SjTOLxEd6WNH8I7ViaLWCu8Dqveo6NBlbnGvbUnroW09ffBo0YyKgtoYog4UxrBaTNGrBfPOcXX/gJ35Tr6njBl4VeElS03I6VwiCR8yiyomkFJR2MT52xJpWdN1Gtc32AJsLfSODGxPEYLQO8+Lly5z/doNUkxYU6FUR1l50lCYcF4BKotSAiF5jBKilyyWdQ55KWxCK0dhFb6DxSKRoibhkWTQKJTW6LLEiMImgyjF+niNUWHofD8k8WmmxVms9kjaZynX8JKy+LJgRQ02GvCpAzRK12hlKJQACqOE1Bs6FRBVYqQmBUdhLETB+5KujSgtOUWNY8tHQe/c0C2hh66czLzJgHOhGhm8dxAhekBptOSOCiWCNSkzegTU0FUUgyfphCk0SSWIkYTQ+0RVBspRIriOOM8QbiX555GGv9fmz6WNYLQmFQrnEjQapXMl31hQEqmrkpGdsDTCQUwsm4SLudtHq+G6hZwUGvE5yACDUoq6KkCO0xo1znmarsf1nr5bMBrVlBaWeDSGFGCxaEDBtBxxZmOFzbUxzid88BidNzopgULhvaPte5quZ9k2uBDyPUFAp8yJmVYljff0SudERAHnY7Y8JpOvZ4QUCqITJGqUEZRKKJ1IBKKOJDQ+gNVQ2DSk4ili0ASfMlhfBGM09cShNHRdRQwaox3aBERrQlDEeEKo+b00Llz854hACPy+0091uc3rHvp7zLoe92XST5HhUKz3jFY8q9Zypj7FWMvvin4q6wYjHt3mIITV9YguJ3zx+g5BNzQ8z1/5S0s21id84DNXqExDcCOu3vhGbjv9gbxpTppeWvbiHltnxrzmNRfRSrOYO37khx/nb/yNB7j99oTrWvBZo+R7JltCv/DIi/xnf/bHmC0b+ng7n/rcd/F933uNiep4+2tfxbMvHHL9ZsfYjvL/F3N/zmcevsT15/Y4vz7i//qXv563/IF72f/XMzamU67uOpQ55M1v/W8Zj3pcUxBjd6KfTvTTiX460U8n+ulknIxX4HjZB39Bt6hUIkQM2XIRJRJj/G3iFfICdcyqEIGYPLa0QyU3c2qszZWcGAKkLBZDDDlRqM/AYJOEejQiuEDvPCkpJpOCjbVVSteR6Hn9vef5Y9/yR1gmxeVnn8e5OdXKKaQcoeoaoxTESBSw3uFsz4u/+TCf+Mxn+dQTT1CWGq1hZbViMQ9DNSe/d1toWptIIbBSjBA0Td/RLJd5wjSKorCIQNd1w+Go3GqxV8oSgsdLwNSR5HPiVAjgQqQoBpaASRQGtMpsHB8UUSzztqWVfPC30x6Q1Gm27AptTJRlwfUXdonSQVTsTaf4MnLPG2FlXXHu7J2svfMe/HuX9L9wxDOP7rLbzjhcdCSB1vfsHx3QhxZtS+pRAXWHbw+4tH0NxlvUVrFeZqGYxiPK2AGwYhuchtjnFDKiRqkAZUPaBtf1JLPGYlOxtXqBb3zX1/JjH/sCwLCwGrTStEf7nL7/VTz0B98DWlMfHfDcT/woH/vv/wF/YH0KwKcef5G3Fprb3/pqTpkSs1zAa1/Lm//4H0O0YXFzm0s/9S/gYx9g7fRF6tUzJB94yxvexMOh5Zl2gQxgQBOFUTlhRTl0adASMamj0BXOA7ZjdVQwshVhAFWXVjEZTbljvaI0MKpKaruGT5rLN24ynqxw4dwaWhKCwViLVrkqWxQF+7sLjg4a7rz7NjbXag6PDqjLisoqVFWjbUmMUJc143HF6oqmbx2iIqsrI/b2Z0xGNbefvROtNc57YgqEFCkKTUo9e4c3WDR7tN0Mqy329IiUAlYVFHpEYQtmXU9phKqq2Dk8YLac5ZRjKvp+jWXXgiSMgnbeEoPCnK4JQNvOMVqoRiNi8EgSRAwi/x/2/jzasuy+6wQ/ezrn3Pm+Kd57MeY8S6khrcGWhDyB8YTLDIZ24QXG1VRXFU3BAqobFr2gqKZMgVlMiy4KY6AZbRAGY2TZli0sS7JlDSmlUjlnRkbGHG+845n20H/sc+97IRk56JJTwnp7rcyIeO8OZ9hn78/e39/v+5NkJmWt1aUoJxyU88brJHpKoQSSpmiOKJA64FyCdYZQe5JEkkrJ6ork1Ok1ijLhtVv77I1uolOFQ1FXILxGiljJUSKwlYuLzEQidYIEBj1Hp2sZTzyTqcMHi1a+UbCBJk1Oa4E2EhU0tozpEImK3lUuWCQxakb4WHVaSElLdemmp7B46hBQIUXoHsW8agy6O0gnaOsE17IQ9plXMY1AJxXCaoKXeFPjbYFWCi0MwWuUCjENCoOto4+qUX1EcFR5CdIhRYz+8Q68U6BkXAyoaOBvfYUQoLXG+1gtVBK9TqTypFpBSPC1xxIIQRC8RCYhGuf7aGbssYSgQDRgtVjsKwhIvFU4J9AykGU1tpZ4L6MZtZQxNa95xp2LEQugoteLCktvHKk8UruY4kPGdn+IGWZM+iWjacXeJCe3nhqzHI+FlCADtc3Ji6gOe+9RMpq4Z4khSZooBamwzlKWU5QUZDoggsUJz7SakhcVdT2jnbWxzlFXYbE2opVkJEn0SVJZQj90Ka3ncDqNnjQugPRk2lGUBVJ7Egv7ZR4jEkIgONuYlCm0EHjRwtcJdu5ihUgVcEKgM41I5khjkUJhbaxQqrXDJAqsiOk+IeCcwePxTmCMJWuVEBxl3sHbFsEFVDaLaY9BY91R5dST9pVte6M30u+9iNHTrzl+mknDfHaKte4+WrnXh5+agmXzqiITlmAL/FxwYbD5uvPTQPUYF5Z2y9BOKqyckqxPmRfF8l7LIKMXWb/gU0++wn//Z/4OW3qdu1r3c+aBB/nYp+dYC8LHFHGhdEwJBAieVGq21we86xveysVnX+Djz+UAfOwTn8fZ53nL/We5++77ePXagMNJfN+733me3/VffT3PfvYyZ9Z7fMt3vRGA0UiSZG3e+w3v5j/+8me5caCwVULVrul4QXrCTyf8dMJPJ/x0wk8n7aT9F9n+M6r6miZBReBCNLuVjfIMoVHMYmqGUrrxwohFGbyNBrGoGAoOAhs8Li/RlSNISSk9OIe04FVUrrUUJErSyzJIA7PpjF63zUq3xWwSPW76osupQZ/uygrzV69wePUKg5VV1gYD2lkbo2PYr1AAngLJzUtX+dP/y9/k+kFJv6fpp5Jzm5uExPNSfRPpNXYqCNpFwFYVnpS8rBDSIYIiNRoRPEUIuBDQQSK1QVRlNH9uFCMpBdJoqH00TU1jaXNXRtfTgCdIqGYwWFGYlmdvXOKNwSApS5BN+s+onnHx2mVWTAsnFYfjHdK+JaPDZeEYaUX3nKW3YRgmQzotw5ocwCnJ9Acu89uePsXVj9zkhdcug8jo9zt85qWXWLn/QbzpcPnFG/QS0MMOe4XAHoxptROqJkX30j33M5ld4QHgYxdaXFrvIVz06PHW4YWnO+yhTcJG1uJ0dZ43PPIQpxLFGx57iJ9tLUAVgrVYLbjyuc/xo9/9Pdzja77/4qu8+K3vZNLr0tFw6cYBjwOF9dyYTrn+med56E0PE156Ad7yFj7ytjeRnT2FTBKGw3XWN7YwvT7CSESes3nqNN/z5sf4+U9+nGGrCx/6BOc3t2id3iDRGiUkPghGszleKELIKeoZQgUG3T6ahBA8WRbVRSE9LpQECU6X+Fow7Lcaj0NDu91ugDKGpDsXKGclDsPGqTO0W30G3RbDYa/x65CxwqKUTdoB4CRSCpQBbVL6gwHXrx0QhCDptOIeK9GAOFUCrQRGdei0BtjaAz5WQZZyGTEhpMBaS996tNEYbVgdnsG5qCi3sgznLXk+JzEJUhnKypLPxphE452nKObk5YzalnTbAzrtNuPZIVevXyEvpyQG1lf6FHsz5lUJSmE9aHRMTTHRh0p4QaKJC0mvEJRYpzjIKza1Y6XTZvWuAdcP2+xNRgglcdaxuzdnXmf4ylKKpvKdACEMyimCSFBOMOxkrGeevF8xmuXkdUFpC3yoyIzBWoWuFCoRtBOohMbaWEVO64AKUSUXXqJCBxUcJoF2okA42kkXJWC/GiNd9FnxgA0eoTxGdNjoPkgqr3Lt8LUY0UJAK413NaEy9LIW0kvKyoFUGBmjZaz0qKARzDGqxkgFQVJVkGSS/tAipEUhwGt8EBS2bEz/dYywSWq8BJtnKOUxWiO8IVAADltFv5m0laCVwNuY/iZVjBiSQlFSxcpoqonKUTXBavCOOk8IVhJaNUa36LYE+awAFEZrEiFARs8koQwhaIoK6jpBiJokJQoEQuBtAAl7+YxkmnFm0GOt36aXWjb6gXlZUtRVM7cUtHQCwmODIp9NQBiQGuEDYJE60Gu3kQIqV2FDTe1rMqERSGZlEX1aVaByNbNqwoGVBAF5WYCI3j5d2aFDhqkMSmgQsZq7VIJWAkiJ0QlaapRYQUuJlJKdyT55OaN0JZOiILeOeVlhcThnY3SDSfCVABt9Y1EBrxRK1AjhUCIQtAAUvlaIoIjVEAAZvdFCqKmrWKkvSTyuNFhnoHKE0EO05ihd4q36/58MTtqXtT331I/w+Fv+W0zvxa85firm23zsl/933vmO/57B8PnXhZ+CbGxFHEjncUKxX044vFa97vzUSVKmB/fxJ//cn+UPff//gq0noCvUStyc0xtTRJgQ0jFJx4IwuIkkt4riTInwlq3NDQBCiNGaoTHeh2ien2pJ10gOXr1IL5F0m2SJPC+p8Hz8uVe4slfj/DYBA4CpFY8/vM03f9ODKCWZTWo++8kDPveZCmkDZ85c4InHNR/6yJif+9l/yR/9wb/Mhe2rSM0JP53w0wk/nfDTCT+dtJP2X2C78+IekTeXiizxn0DAu8Z3QMQwcAiEJv0AF9NBJbHqkZQKKwQhL5iNJtQiUFuHFNGHRiiBci5GmocYquusJU1S1oc9Vgd9RrOCurIkqWJ92OPhhx6gO+wz63foZik61VEVaSrhSaUiHSlJXXlefOESwiiGXY2QYIyiVp7aRfcdkwZCJcB50q6j1U4o54Iih1BrgvO0M+gkGatZwq3xCKsUiUkopSXRmoRAWdU459FCQgBFhnSB4CVVZdHdQCDBlQ5fB67ntvHjUOAqTBL9TpSMA5BWAmk8N2YTCIqruzd4z8MP87lpwU5V4VXJmYclJhjWN3pspH2Ub9EXQzLR5/Atr3Fu/QHCRxXzazM2uqvks5KNt97NY49/E//kx/4h6VzRX1lHIhiNxlzduYVrUkqqBG6MRgDMtWCibTQjFhKRBspKc+p8m729OYOOZG+u2JuNmeUTVu+6hwvnO/CxCOs2WIJM6LUHuGJEk5nDwcGMqZOEoLg+2gNi36lc4OVrtxibjJXJjLuBeVHiqortdpt2S2OMjhNNCMve+dAD93PlcI+Dg+gLuH5qA7N1htpa8rIkOIuuo39G8C2SToqQDhlAypokU0BNWZWkiUZK0SzOJIk2DAdtXJBURUld61gRTBjSRJEYAwjSNIlmsQRMYpBSopRuHqpYMc0Fh3cLU2cQIroCZ0k0AK7KEu88zrpohK4VSWowOiqELaXR2sS8n2bBBFDVFtmkUeX5lBACxhiUEE01SB9TArSg3W4jlUKbDCEM3ju8q3HOMpuNCMEyL6Y45xiurLGxeYa11TNMpmOm00N2xzu0M8W0KJjXNfujMXlRUTmLVIIk1cgmelYbT/CBqtIUVUmnk1Brj/c5wVdsD9dZ6w9wvmJtOGA2Lbm1P8EjCUIwmeVMZhOE9EhjY0pKHZC+x7DTJWSWs6uOaT7n6uE+dTWhpTRpkiK9AuVRSqETTx6qWElMAHh0rQguxeUGjyVrR8NsKQXOOwSxuh8iILWhrANVnlN6SWoEq9mQ1cEFZsWYsdtFa432Hi9aZKLF2ZWHGLTajMYH7E2L6GNka4rCYo1DS4MkI9GOVuJQtYtVKb3A6AQRYhqM1KDqCF4qKFxdI4MhEYqyMgilEMLTyhRadWJ6kHIE7UgTgQgCGyTe+hiBQIhVAzND7Ry+jip2IjRWCyrvCAlYPNKDdhVrvXVElpDbGisqwMZoZRvNyIWKXjlBlgjpSBIIwcYFO4IQBKX33JrtIGTNeusUWvTpdDKylmWaFzgfQFhaicSo2Me9hMoB3jfgqPHesjfdi75IWlIKS+0tRmuUCORVyWReYD1IZXDeN1Ds8SGgtUIrSVVMORBTjFGkKiU0VVMDgVQm9HQXLxVWaEIT1WKUZtjp0E1TQpD4EL2C8mpOURbklWU6reI9zgLWB2oPXguCUiRGk6VQW0lRF3hc3PRBIIRCCoEKAWnjfBZk9IxSSmKMI1A3puAe6QMKRZAn4PrV0t769t9Hkoy+JvnJq7jR5DzU5evDT3VT+UIqiVaK9dVVbt64BeL156dUalZ7Od/2zb9AyfNNVJDD+yp2DuGQyhMC9AYp02mJlIay9MymE8qqIG2vAVDXFm88LlhCEyCaKAUaxvOc3V2FEAIfYjGR3HsSKZmWjheu3EBxSFHGDI7PfuYmf+GPv4+t4ZDBxjqDlRWS4QoqzWJ/JHD69BargyjYdrtdts6cQQtO+OmEn153fprMTzOfb9NZvYd2mtHSN/D6xgk/nfDTCT+dtJP2n9HuPOKv8XYTQiClRIrGVyHOvYgQKxIJuUhXCcjGtFk0hp8QCEpADXZ3DEWNUAq8i4OHEBhUTFExmiAC2nky7+nqlLwqOZhOSQh00wypLO3UkHbbZK0Wg0GfVtYYXbsaFWKotLWWJGmjdYd/+vf/AT/1S78ay4XraO46LSzzm3s4QJkEJRU6kUgLQsdKXWkmGaxmFDNHVRQoLVBG0s8yJrMx01DHSlR4WonBKMW+dQQhsLVFIqjmCiEcvpSAIJGCqvT43CGCxKPJaxcrP6UJQXk6XYupFwOQJmtrgg9QaPKW50OH+8zqgK8Dg4c0iWrRkgNS1UX6DI2mFgWdsEqfNfIzuzz8u1YobhTMr454eNOhzq+xcXbAD/7QD/DxD3+cB8/cw8bKkBcvXuLffeBDzKqoTN842GWcxw204OOwKhV4HwjBoxV4V1DnjgLIXMBITV1FX44L97biaTQV2rRKSNo98mKOs7H4xtx5Pnf1BuPac7rpW9Z5lBRsr65wOJ+h85giMyste7tj2loz2FpjPpqQDdfwi/4aAqnRnD9zmp2PxBTl2XzGbDonKIkPMdx90O9HTyViRbk006Q6QQmFNiKWnveghEQqQSDCpdEpiUmx1tFKM5SS2MZ7JYSoUgJkqYmfUdUUxZwkyRrjZoe1NqZoObCuhuAwWtLtdOh2DSoZYpQieM/GqVPYyuK9RSqFSSK4eu+j30vztMVJNnpZZCpdPo/aRP+aRSqJ1I1vp49qrIt+ytGkXSqUNAQMWSLJsi6CqMZXdRGrUirF2uoa66vrhOAp8ynj0T7jyQy0oqgtN3Z2ee3WdV7bu8qsGGHxKCVIdKzU5xFoZByIvKOdpDivCEKSpm2CT/BWMBwM6PUHJCogdcr1m/tcvGypXBXBXtZYLPvjPQQWSTSjPj1c5/HVc9TjQ2b1nCtuTq/VJyjJOJ9SMydJJB6DdQ6hQny3hOCialjmNUbmCD1vvKhSWq0U41wTFVBSlY66rnEukJUF/U7KSraJLh3nuyvULnB1XDOuO7w2Trmv3ebc2ZT+eMb+ZIz3GubEhbuKHb/fUaRJm6oKzF1OaQtcHWJqBhJbObQCIRVGabqdBGstzgZCR+FqiRYa5RSddoqQNZWtcNIjsdGvJ1HULlYnTLRBKUFRB1wVF/9CeUzqSLSAwlL7GiU0BoP2ioSEXnuIRNLKDFlmmFUlh5M582IeK+HJECuQSoc2AYSLizphyPOo5Lbagkz5mMaTDMlSgxDR88mGuBjTOFppQpokVHXFNC+x1jcpKgaPA+ERwmN9yeHsgNlsn5wCrWNEiK2hsgGpPD7E/4wSmMQgRCBJDLWLPmJZmjFIu6gQgRaiD45oBLDaVjib4wOU1sV8HglaZGifkKqUVjrADFeaKC5JbR3OO+q6Yp7nWA91XZEmgcEwpbSWvdGIollY783mFK7Gq4DFx4qBElIjCaImVYLhqkLbDjv5nLmLYowSYVmR8aR95VurtQ98bfJTWUXhsDtIyBL9uvCTtHGzsdV2JKmm393iFgekbfW689O4sMh0xr0PvI9rhy8ipIjp2UsXqbgoFj6hKizlDOZ1RigTattiPPHkDQPWtcHaDOcMSka+8KFFURpE1mEv11ze3WN3Fud9a1MskWVODU9x9aanqmOhh2lZc3V3TEtrBlurzEYT0uEanhALC3iLkYpeJ1b8lQQmkzGJ1Cf8dMJPXzZ+qirPfJpS27gREyT02j0y7sbajLPZkP1pn//PP/irt42paVLzl/4ffxehr5zw0wk/nfDTSTtpd9jueOPvuPm0EGKpVi9/1/jUKKkhgJABGURM6xSxok8iJTpIwniKO5yCApwlCQJE3IEneFbabc5unMLmJQfzOXtFQVAj+u1WVI68pwyCTCf0s4zh2imSrEu326dtMmbTMaKscWWJ8j6GfAuBSDLe+qbH+fAnnoQ0oSjKWPrbVngHla1JXKxOW1WBTEezapxGGEeSWghgUo1Ekoeaux+6h9/7lt/DJ595hg/+x4/QbgkUFcJLjPZYqcBHyLe1JetKtAqsDdZYWcu4dmPCuC4p8pLOAGRimBwWoDyydiRBU5aH8SYEi6IkVRl5W3DQrekCXnkSYzj3UAtXZpihQquAwxOoUKGF0AmJ7ZDpDqXIGd7Vo313lzqkZHLIgX+Z1dOnefTxN/P0p36Nj39qwu7BGFf7OCgD0/GIOjSheQFcZVFJ4/EXBPiS3ZuefOK5ejPHZyMChjRJsfOKBx5+EPgP0YPBaKw0CG1QrYxyEs/x5d0Dpkohgqb5WqTRdHSLN957gY9cvRLhilgdeFZVHBQlZ61FCEU1n5GkJqZohICvKjbX1lgfrgDQb7eZZopO1iFLUrQyICU2eBIVvWW8d0ipGhUsgpZu4DWEWHnQORfVaZVEM3MJwTvG8wlladGDXlTEQ8B5j3aefDbHpIaqrqhry3yeI6UkECjzgk6nRa/b5vT2JkqCSQyDlTbdToeqqukPO1hdE3yc7AMC5wNCqCYNn8Y0vUkVgxipQYTEEKJhtmiqQXrvcNYitAJkNI4uS3xVkWUmTn7CU1cVWip8EAhhyFSCo6QopzhvabU6GN1FmYysN2RYFFRlRZZmPPqgoipr5odjbh5c58rBZa7tX2M8H1Pairp2OK/RwjMvx2yunWZtuI1WgtraqOCHON4kqaGVKsqq4sxmn1YquHrjJoejES53YEuUqMldjVJQECvVvWG1y+l0gO1v8POz16iBdm9IQDMpHEZKKiuxZYWUinYqqLEQNIE0pvFMK0I2J0uisbMxKUpqXAh0MokMmoPplMl8gsMixArba+e5W23zRKvPWpXwrN/lx1++xZ53DFo1p1fanN3u0e60mExGJMpR2hohKhyWREk6mcRbweE8ZZKPCaJG65hWEpMgAjiJtYFWu4UkKrPdFtC2CJdRzQW5LEnbcXGjvMP7mrTdotXrkGaSyXSOCCpWi6s9wgmSFFJdo5Sn38l4YPMMxSSL0TZJimtMx4PypIlhY2WN1d4qUgoqaynrGt/s8gdXN8orOBcNzKXUlLWPEUvSkxoZ1WSZYXRGXVdkWQ0yIUlShHdoGUhMXMhVdU1tHVrFdK+4SeFIjEZpOL22xcH0gL3RPlM7RShNtx2oak9R5NS2RARDojW9TooPMeUyTQwr7T73rF9ga/0MkiRGNSsVq6JSQ4gG1LaOVR+Dh1kxaarlpdHvxkVRRGlNmrbwzlOVcaFltCLgqKqS8XjGfFbhgiPVOVILwNPLOoBgbzziMB9R4ynqmrzMSYyknfYYtDO2V7cRZcbl8Yi9+TimvYSass7vdHo/ab/J7bnP/7+4696/T7t982uOn3wdz9aYmqxtXxd+si5ySgiKvBhx5drLhFCjsK87PxU1QIsnn7yXztYzkB4iAvg6Ao6UFYkZURVd9ndTqjxQ1ik9rdnod5nO2xxOY19Jsi55UZFmikRNSbMRJBmTeZd5qal9jXBtXB0j/irXItHrrA5b3Hv6HFdvaaSMkYa385NDCN/w0zAWVWmKFLRbGQD9TpeVXpfC1Sf8dMJPXxZ+yivNCy++kfE4Ja8qqrrGGEO306KbvhUtPKnJGO/1Abj7zKdJhhXtpM2TT76Rdusca2v1CT+d8NMJP520k3aH7c5TfTna9AuNTO19TCcRUoAIJEYjgiC4EEu9ElBaYgkIBypI/LSk2htRi0BhSwieICUGCKrx5yBQzyfUleVh1+Kh7jqfl5YqkyQ6kFcBLaIx63qnR7/TRyQZptNh0OlgJ1NsXlBOpoR1iyegpebis8/wmU99jKRbo4OksxrTKnRhKGxJmkgyJZBGkBqFFhaDQBqFEeCJvjxSKuaznG/6pm/lh/7QHyZLDbRSfuGXP4oRbYSEoipjiHXwSBH9UIQIKAGr6x1SlXDz+pzR4YwmM4eWCXQ6mnqS4GqPMIr5WFEVUb3O2hrnIGQ1Yj2QpqcRlcXXktajcyYHgU5fYVoZztaotA2hRU+coxtWEVJRhAktXSEdhCBouy5BVrRFn8OwyyMPPQE+5wP/5meY50X0YWhCnquiIjRqWqKiuimEwtkChEQLSTkVOOvxLuVgXLCze4DwDhks22cfAsCkEuMDWqb0pObs+XuY3roVP7d26CAIWLIm0HEgE/CeS5euEIqCtKkynFhLhsfUNfnNPfRKn7CfRBAr6hgJ4SqM1mxtnwFgZWUVffZ8VEsri3MBHwR4idAipnUgqW1FkBUEKKuoFLVbHYQk+icJhVISpKfMK+qqJEsygoth89ZZBFDXNUVZ0um0KcoiemZkGXleYIwmy1J6vR69ToYxCiEkvV4fKRTeh2gWrSRVXSFEG+/DMg0LIZvUFIEU8XlbAuuxZzaax0cTeXyMqhBSRlVfS3yTJiOEppVJ6rqiyMcYLfHOxegEqbAuprXE598jlcZ5KIqarJ0iVRLVOtOl3QVCwHtHywiS1oDu+inO1w8wmYyYTcfUtiav5tTeAh5fOwadIb1eisREkKgtzkFZ5JTFnPnMsr93k/2DHeazGZPJlPl8TrCW4BxBeergCSIaME/3drl16SJ91WJtsI5c77G9eQrZW2F1uEJerGKdp3JQFpaiLBDG4d0UgULKFbyX2HqKdTOUjBXVjBYELSlKixIJKgPvWpR1TVlZxqOCtU6bbr8LWQuD4t6kTbssqf2cjdaAQbuFNJ6t9gobK92Y2pVXeG+ZzafsT/ZwdY6Rjn7aR6FwoQQKpPT00xZ18ORzT1k53ExBMJjQQoaaTlsiSfGJQUoXK67pgNAl1lu8s1DVdLUm6/coc0Uxh66RmLYgTTypsWAUg0RzfuUs3c3tGC2RtdFCUHtLaUuquiRRKalOCF6gk5QWMV1xkRKllCYxGucsVVVRlhWCuBgsKgEYkkSB9FR1jhIxtaisYzRloqIfkNCKlkrp9XtUlcVWFdpokjSlqCZY5+KiVPbZPHUW6wNlPsNohfOBqqqYTMaUVYFKNJUrqMs8jmU+ULucNMnodDZJ0tWYVqZozLclMsTNjTQFH2KKnpSSU3IT50qcq5nNcoKXaB1V/DRN8QFm8znzfE633ydJUqzN6Q/nzPKaw3HOrb2bIDTdlmZruMGwu0oIkNcV0aCqZp4XuCAwRmNUSruVUls4tWYpiylGhrgwMCd16b5a2u7Oezh3179EiFtfc/yU6pgtspi3Xg9+ktkVvuG3/xBa3qKcJ3hd0ukaXGlff35Sgtlsg1/8pT/DN/6OjzPY3ENqsRQwBXNO3/VvwRqC1JRlTVqs03YZb7n/Qb7zd30bYy+oRMHq2U/yaz/3eRyK3soF3vs7XmF9Y5VP/sLPU0wnIKAKjln+IDd2fz+nTv0q2/0brGykdEJCv/MErk65uf/1iBCQOkaVzg4n6FVJyHNEvxfTNl0NTdVVgJWVDU5tONDqhJ9O+OnLwk/zXFEVPTpZQZZWjPOcWIajJmu1GbQSBsYiihilutG5jOhBJs8DkCSSra0TfjrhpxN+Omkn7U7bf9bG36L6HETlw2iFSqK/xWJgKuclMSmgSVkRcaI1SsO0pri5j5/OEdJzKmlT2Iq9UNMSispXrHYH3Le2zgOixdOjSxTTMX3T4odOn+GjZsSn6hxjDV46EikZ9Dq0h32SxFB6T5JoEm2QLkSPBCkJUmCN5j9+5D/y8ZdeQMsEIT29zFOGgLUKIxTBKpTwdFsKayE4g0YCNa72WKca01VLK03JZIKQhjrA1umzrK2tsXtjH+sdQgt6WRtcNHnttFs4IeLANZlzWOWM544kFaRpQMiE1AgMnkR7ppUglBKp1SIwAG/rqK72a3TWJQhJJUvqtqXWjp0bjt7Q4DB4FGPv2BBb9OU2iWhjfUVLBEo/RwlFojqERCFJ6dgMqyy5m6CSDu20y3QaKEVFZmI3MUJT+gbiZby21lqinYpvohNy6hpS7yhrz3h+yGw8ZrAlmVdj2kCy0aWTp7RTQ7V7ldm4xWorKtRd5xjKaNzdbYqadNMWMy+Y5hU9G2j5CAGZd7SFYFsqxHgSVbHCEYJAao1tmehd4mA2i+nBo9mcYlwipKJyFoSglbUQ3lHbGlsHsjQFZNzY9BIhaPp4QARP1mmRzwsqW2OCIVEGLywS6LQNQUgUUVmTIiBlNMNOBwOEDJgkodfpoJRkdXWFTjtWpgtN1bQgJEEpUKCI0Dmbz1jzfXzwOFcjEDEqZJHu01yrGJgbKz8un1kfkELgG0AMIfosIhVCiiayRGHriljTK1BXBcHFKpLRgypO1l401cGIUSpJksTjrgpQKv5OKKTSTd8VEKK3jq0qpFB0232kjNXGNlVG7Vwz+YdogFxXHE7GzOcTdnd32Nvd53B/F1tMY3pAXcR0ndCkysmYFoeKEB6rUBJVeu8ZB8+oqrhazjEHikcEvOH0eTASrbaRUjfquI2V1CgI1kVfEKMRKEJQVFVBnldEihGUtcW6gEQSvGVelsjLiqu3DqiqGe3WadY3V6h1i8O+Y3fnFod+hAgtVlcT+oMeUjeeRB2JSVOcrbG2JC9rbuwMORztMp7s4LF0dA/reoRQI0IV+6LUDHpdispSlBVVFZBGkBhDR6ckRtEapHRaGSIEpvMDaoqYMhiIxs7CYb2jRFAJEc9JBTKj6KQt0kzSbgU0HaSIqSLGpEih6aQJRmuCb0zZQ6PUWteM/U0khLN459FaAzF6Jy9K5nlO5WxcRNaKKgRc8FTWo7C0WylFUVJUE4w2GAXILu2eQRmFJgDRcF1pTeo7aB0aU+6At5AkGbqXIQQURYERKUPTwTmL0QkmkdRVgffRD8aFktpWpEkL6zw21AgPSqiYDiZkrA7n/TL6I1iLVQJvHUVZMZsWEfCDpaorssotzb4TY3AumoIrYUjTDkkq6PcGbG2sxvQZo8mSJD4nQH8RwYzDOoe1PnrAeY33BULJmHLVaxNkFFXSdJE2etK+KlpTvAO+tvhJNimttgJnXx9+qnxNK7tMCDGC0iTg6gqkft35qZ0oBq0YsSS9RAmLV6KZR+P+k9JzlACnLWUV73dwbZy/hmGPNzx0hh/+y5/gfR+9zOhKytVrhtUzA8b7z5NXK2xcOMX+pZtUtYuKrLzB1ta/YH11zPm1LkHP2T8co6XFyYQs2cGiaOs+3XSFyQyQFcKV2MQiNLiyoCgVoWG+ySxnbzylpbMTfjrhpy8LP3U6CS+83KHbAqHg5p5lfzxDCEu/22FjLSFVCaKKfdCKCZmGLIn/7nTaDLrlCT+d8NMJP520k3aH7Y43/rT0OO+RymCS+EAoFXA+NIazSawyJgWKJA6GBAQSk0YlUd7YRU1mTRUux7pXKN3D2zEzLVjtDFnJJKdFxre/8THe6hP+j889zWf3dzAIvu++B2nL6/zC6AZtITEaOt0uptsmCMH8cIdqNKYVKtK0S6fdj+kwVRHNSEWKURrnHVIrShHD4L2wKCVQErLERLHT12hjaCcdyjonBDAykKVgjCDTGdeuvcSTT36M/uqQVy+9Sq8VEKcCzkGSJLTbhuAtdV0hZYGQik5XUtWWvkroltEjL8sSZBAI57HOsrqm6NQWJSFVgbv1EIALKxvMNhUv2py+6eBFziy/RXelxe6NwPpAYGRF8AWIPnlxwFy1KLMDtOghpEaRoplTMkOSYEgRwWGVphNWqcjpDYfsV4eoFvRbjg0RIw51YpD1Qr0XJEqQFwVpO2lciCxSaHTw0Wg5wO4oZ7q3g8cxujVlBbj5pjfwlNhCp11GeztYHI9VJd/+4jN8eH2V5xJDt9/j/nnB9924wWtf/w6enE+YHl7He8fZ8YTvvHKDT5waoh65l9aj95FowbQ/QKcD1P33U2cSOxujjEF4x2Qew7aHrT77WizFXu8dqYqRFbVXhBABRDgop3PW1tbpZAlCBpyzcbJTgazfwrlYJl4bzepwBSlk9CgBqqpCKdkApiAxSZPmEtWtRQXHupxSa5DESIgY4SDA2XgsUiJkIJ/Pcdbhm/DzqIgHpIqTtnMWZ2sgeuNIbQAZFTpbLu+Xa4zkZVB4F0PurS8J3lOWJd46jImV6JSIKRF1XeOdQxkTQTE0QNIArBAChMLjEL5GSqjqGul1E7LvsLZsFgLRzF4LifOe+eyQyaRmb2+HyeyAojpkd2ef8UGOrXPqckZwttloFmgZkDRm9/K2hLnou0NMr5ESghANvSbMhUAjcLXgM889w91no/o6npV0Oj1anRTnFARFmg6xNqYgJGnamO4vKsRVlFVFZetoZqx1jExxjjwvcEFSlDW+run1uqytDlGmTe0tNzb3mCmNmo6YzGcxiaNyBKmwtiIA3U6X4DPaLc9wMGSeb3J4cMCN3RvsHZTkhcP6Cu8KgvOkKqPfH6KUpiprahfBJvhAK9X0e11aaYIxGls7tNI4b8laLdqdNmnjzRLTpxxlfQRFSmnSJKHVStEyRoYoZRBaYn30ebFliaxtXDgQmv4qEM3MsrCIUEIimwWGbBY3iZBIo0myFsHHdC9rbQQzF6MdtFb0TJu2i15LWsU0IYvAlnX0eAoB6xyuKJbzlXMeRIwYEc42z9YioqOZp6QBKbAeUAmygXlFC6VjeltRWxYxIKIpMhArIjaL9uP/DyFGSkhNZzBYerS5UOMUeBGQItBqZWgto9+RSjBkIJpP6cQq6chFBfS48RPiapOAwBDHjuAdAY/3uqkuSPx7CDjryOflnU7vJ+11aQ6lxNccPx0SS8xqYei209eFnzhY5fNP/wHe+uYf5+xGQdIGheRAjF53fuqoFsV8wU2S4AVKSAaD13jT138/rf7lGFn2JfhpPAt88IMJTz1fcOb0XXiTMprczU/95F/ivd/6V7j7LoXLT3PrxlVCqFldG7N56kchaM49+C5eu/gCwk5JkhEOz33n/hVCCIq6jw0r5DXYeQtfaTIFQTv83CITTa8bhValFevdFWpbnPDTCT99WfhpPW/x5NMDBp0EpQp8EPyFv/Qt3HPPKlnLkM8sLz4/4p//410AKqlQ5YxKxqwfXzus5YSfTvjphJ9O2km7w3bHG3+pblE7Ef0IenN0oihyjagApVCqxntHJ0upc4d3YKwn04rSgbhVwHhOpS3SarTT7Mk5IEiV4uG0xWba57mrN3hh9Ao/c2PC95w/yx+8/z5+4vlX+Hh+QN99nt/92CP0Vg2/eOM1xNCwutqn21mF6Yjxcy9S7Y3RiUL4WAU3f/4S+fwVVu4fs7UzwQdDaQWmdlS1wc4sygcq65uFfEoIljQJpFmCxCN8nLB0anDBIxxUsmL34Ab/8sf/MTUOWxckSpBpgwXqwjGtapQWhGCiApQptBIYmUSlMQSUDmhNk3ah0CiUd7R7hlaSYgTY2U0ACu/ZcTUCg9SW+fgWoLBYfClpt1Q0txaeloiK5Lz0vBB+lUfSAanqUfmcWhjqsE8IniT0AUcIDhk0koQzpx7g67717fz8v/tpEp0wajwGK2+P0lOaCoSJMZRlGYFfqugRkQrCXCCE52Bec2t3h3OTKSkxqm+4eYbxzphiPEYkkiRNCfM4+NdpG99tY1ZXkGIEwMjN2bE5VkgwkrxJPSmVYZ5bruclvb7hwrCPQ+JEjWt1sfNAEjxFPmd9OACg2zPojQGLmUIISZIkUfENNa0smk3XtWVfObopDIZtTKIRUjbqLU1KCzjrmipYGgQoFX1gqipZTtoheJLEoJTCWrt8pqy1FEURw+aTqlnQLVJLAlqZxpfFEJxrvq+MBvECvHNUdUUlaLwvfAQTpQiFwCRprGDlLLNiToHEGI3zUc5VSi6Pg8ZLJ/iAbeA6L4qoMAbwIRBs4/tD3Dg1SjVmzQuFXOC8oqpK6qpeGm8rqQhBEPDM5hPGoxGj0ZidnV2u7V5jNhkROGT/xhhXSlJt0CJFa4lBE5RASE901fbRglss1PlYATNGOUT1UITQXPumswaPdQbvBUoZZFAcTvdZu3BfjAj1MQKn2+3FcSuRCCGxtaXhdISQiOBwtqSqoveQDS6mtGUGiaauouKvlSCvA66qyJRB6rggWjm9wsOP3MU8n6JUoLYlStBAMszzmqKKfT4WCnFRSfcKbbokqUbIQFXnSJnSb3fiArmVobVpIhHivbK2huDJspTUJCgpKYoCZS1KpHS6fdrtDKN145cSNyEi/IRlelPsv4ElnInFcyNwLl5f52zz3sXrj+aN5hFoFjwAIvY70fg9SRWvt4zRHcYvPiM+B0f8FlOPRPOMaRUXeq2WQAuJanxqFq/1BPyxCKt4Xr4xcj+KXF+85+g8jyLbQwiNxxPHnuUY/bEo0rD4eVw4haVxdeyk8Y/Ex+dw4e0miFEkNb6BYBGrYIp4XQgBEQ2x4nE3HT6EgAjx/TJ2SmJYi2rM9mPqjPcBbxwmbXHSvnqalm2kMl97/NTMM0FJXAyQ+U3np47tMZ/ey6C3Qi1exZUOqVvsiOJ156eyzhntrQJxmgo+IJQgy6Zsn/0Yla+AL81Pe087/sAPfjt/5I/+LJuPbXLx6rPU84I3vOHfsDoY0dKKTqtLalokJqHXOsVodIH77pkxm+4wnx4gw5zzWx+krhTOWtpZyvqgyxMPXaDXM5w9c54VFL0zZ/GDDnZ/j9ZgjV95SvA3/sE9tDPNYJgiRcoJP53w05eDn6SImzgmNQgf+enVi/t86BdfYmN1yO/49vt4y9s2ePUVx4/8Xdg4NcQYR6JL/vj/9RNsbMyoTvjphJ9O+OmknbQ7bne88VfaiqQlQQcckuADQVvStMbbNlJ5UgPBV1SlwAZNYsDHGmFoV7IvHdhY4t1ogfEaj+f0+jr9UcE3pinf+8ib+YnnnuXpKzdJ84pvuecC/9Uj9/Lvnn+JX9mF4StX+M777uFMkvCr5S4b66sok3Dj+Zf5qfd/mHB9zL3dNm+/90H61XU4mJKVDvX8Lr+z22fj7Bv4RxefYtdZTA2lF6SJiil3QlI2XgAmkdG4t1HKrAdXhkalBK2TJgqyJGsbjIpgEqRDiJieYp2jKgMiCBKjsSqgZUx3EDL61dgq4CoorMN7G5UlV2OUpFSBoqpQswg7t4pD9rykk3QpJjtRzTAKgaTTTkhaDiFyLl+dcv/wcTIx43J+jTGBVvg4D3TeG5OIhMcFy9RfZSDvJqqOFklKIgTOVfz2J/4Aty5e5uVnn6Pb7gEx/LyZmwjeIYhGzUJKbO3RSuA9iOCQxqIsjIqC8dzhfUXbtAEwOmG1l/LUK8+gTYJQgu7+LH6us7iyYu/WDqfrqOod7F7HShnTnJ1dKjHz8ZyrV3f5qGlz+sI5eus9hrM5YcNg2isUoyllYamxnN5aB6DXb9Fe7TcTUzyXxeQjRYoUgiyNE1O304qTjYzpKoJAkuhm0o5qdaxSFyvDCRlTtqx1R4pWA8feB6ytGo+jqPTGibfdAEr064gm2IvJ1uFDjZKSPC8QAYo8hwZQF68DKMscW9cYk2CSqI5XVdFAZfSNKmxJXUdjb2trnLNx8g1RZZRSRNPjvCCiiiQvKrx3sUpdo4L7EBU72ZjSe7+gEoFWGiGgripsXeGcIy8KppMJB6Nb3Lhxlb3dPfLZjPl8Bi6Kc9unE0InpUCihATnm0qX0XZbBNB6cU2j8kfwhGVS3MIwvzmUxc+FRwQF1iCkxPmarGVQyQDnBUnaRhuDMRolTfxcIbC2xjuLB8rKUVmPt47aOQ5HU6bTGUII+v0+3X6btjEEIei026yvDNg7OGTvcMSLr10joFAiUJQF953dJmslDPrtpRnyPLdMp3OCczhiWkddWUIIy8qFla0RIqHb7ZGm/ajKE32SsiwlSRKkbBY9i3QlHyMkmgtByyQk7W70OZISj6B2AdukzocGvvC+Qf5GGV3wf1hAfPxdNHA/gjch1PIGHAHd4hljuShb0izxvVJBoyMf+7z4nxQN2DXeYIvnZ7FAXLxeEn2amnoIx1K3jnxpF+dyG8B6zxf6OsVzDbeB7LFfHDsncfvvF3YHcQ0X74MQsR+7Bv4FiEVZcy8bWA2NMu2XC2JEs4ilUaoXxyPCcj0mlvclEMRRqpoQEilZjkEn7auj6dRiWvZrjp+SpODUqU/j/ZzZ7PXhp1Rf4tu/888wryrmYwlUVO05e63Z685P7e6A6c3IUHFsiNYQ5XyDl57/A2zf80/QYudL8tPb7hrx0Z/8Fd7/6Ruk5jyrvZQrrzzF5tpzTA4Eo1uSqslq8M5y5bU2n/jcX2PQ/tPU+QvYchYnWpezu3+WTz7/o7zzgR9CVK/y2U7g9IVzbKuE/mzOIAG13WPCIaku6PQk99414fyZPsMVgZbqhJ9O+OnLwk9CevKyolNZjIE0TfmJf/55EJbT2zPe+nXbrG20mM5i314b9FhdTblxa8g7nniRrDNlPD3hpxN+OuGnk3bS7rTdeapvR6LSWH7do3E2oBQo4ylmAZMoEDVKOtJWis5BYfAmQ+yN0c5zIe1xdT5jWpfUOuWMT7g/ybD7FeeyDq+ORty9us6ffM97eN/nn+HXXrlE/nTFdz98P8nD9/JPn32JD169hpGBN951jjPn1uiuDPGdFp/++Kc4dWmfd9/9RnpnV1mxAbM7R7TaOFcivSPkc57or6AuPM7ff/WzjGwFocY6idIqmkoXdRQNRFTlEDUehQ8BiSAxLfI8pyRQeYfRAmujipb7qhlsNJ6oHEmlcNYhhGY2LchSQbudRPUB0MoQQlTXSldjQ/TMU15QWktZB6yNA6TTgdLOaWtNqB2mvUItLFU+5+xdfVZWU1qpJpWKT3zu1/jmx76TV8PLKGl4NTzJA+IbCbbCG4cgZSx244DnQ1RBhI6myMJxo3qeb/7G7+aUXGF48Sbw/mj62+z8+bBQWwJGxI0/J+J18A6ULlF+QF1V1BaQDnRTpKRluHf1Ap/8lSepVU3tSubTuJkXvI2biSGgmhHaFjm0WlQextOcNRt/7oWmLAK3blZsriraV/dIpwXmXWdRw9OstFaZ799CKkvSeIIkOqGSCh8cLNIsEEeDvIipJUJIMpMgRax2tTB3Xsy7y0lLRJ8XQfyddaFRtXyEg0WIJBJCVAZjteLQVLkDKU10kqyq6LGiVDPJBgKetNWmqmqcDVSlRUiPFR7v4mQcU18k3kuKoqYo4oIrNFDpXQTNICJgChFTZay1x44vpm9LraOZcHBLEBEyppdIaTAmjb5PTf+tasvhaMx0liMEdLsdBr0Ok9GI3d1b3LxxnYP9PaaTA8piGmEqRPDUeGoVK+Pu7OdxvFAumt5XBusdznuU1ijhQQV0GmK/Y6FgSxZkK4KP9+82aJJI4cnMHEmCw7Oxdor+cAsf4nV2Pqb4WN9Am4DgffSLcY7RZMbNnT32R1NAEISMFS2tpdeb0elktBNDv92h025z74VznN7cxAfP3ihnPi+w3jLLZ2iZckqvE3ygKGuQYNKEzHnqqsToOCQvKnyGENXryWyKs45WZuh2WygZKw0KERc7MfogNF1YNOOXPPp3pCiU1OiFukq8bjSwt4RVsYCixefFlAvfXHKEiIblfAHUHfv+4+3213hCWCySaCIe5FLdvV0FPsa4HEGolHL5uiMwbVI8gsCHI2g9/v0R6MQyVSye4uI58UvgPXr9UfTI8f9uP7uj5gL4IHAeahuiqbZ1uODjs970LSGaIgeIeP4SlAAlZbOAko0JeoPvIqCacSk0Y48UccyBBmaRx8anOJ+I/9SBnrSvSJOpQ6d8zfFTt3+Vr/+GPx+LF8jXn5+MEBhpsCb/ivCTwDC+FVPfQhNRAo6qXuHKK9/H1rn345NbX5KfWu2ahx4W/OIz0O4k3Hv+Ar/yyy8xmr6DbveXMWoeU2VF3GTrtC7yTW/7AbpmTD2fQfBLfhJih7tP/yhJOrojfnrw0R1+/l9/BKUEngyCP+GnE376svCTUo7d/fN4W7PSV6RJwubGGn/xh99NtxctAn71o5f5mQ88z9pqF8Qe1nX4qfc/ypmtMd/73Qcn/HTCTyf8dNJO2n9Gu/PiHlI3w5JHSo/3EmqJlwaTAMJhyxQvAko4dKYIY8Hei69S7uxjVMJ3rZ3hzzz0CEmAi7dG/Mxrr5LUc37PXXfz8ct73DtcwRUTevOMH3rbG7k76/GTzzzPv//M83zn4w/wpx9/K3/rqc/yb69d4Xs3V3n0//nnSULguX/5E6TP3eSb//ZfYfVTn0NdvoEIDtopznmEid50IgCzfR4frPEt63fzvqsvEIIiryH1ApMElJRNqfTQpAaoCCNeUluLTBVaaQpb0U40Qni0VFhX4wAhPARLVVuEFBgtm1QXT6eTxtD44DFakyTRGy8vS9paoWygqEoyY8iShNTVDFqSbpwjMDgSIXH1DG36CFejvKS7ArPRTQ6SlOTMkDN33cWtz+3zS5/5VR557B4uT55GrlUUbtxUCZyQkDGp9/E6hl5LFsqgxPgumVhlPDxg4+wG9tUdAIbtLjcm1xYdguA9RksqG/0InYvKegia0pUYaoTTjOcTsA6VRvj1ds65s/fRamdM8xIhDFI0J7kMiQ9RuQRwgbp2TEvLKC9wTaovaQuCwB3cYvhaymaiEes92FxFopmUmlwY3NJPBQSaIAxSGmg8Y7wPBCExKirZ3jmCcITgkUoilY4G1z5OQD4IQOGcj5NkEPgQq/Q5twiJDARfH5s8bbOoiRNpVH0XFbKjaa1zEu8tgqgg+hBQUiCloaottffM8pIIvQtFrfksFipdYxyNW5rnRrXMERrPmdBAO0iC8wgdycWGAJVtnvOjiVMJiVJ6GdYfJ9M4ebayFE+fvCy4eWOHZz//DLPJAZPRDmU5xbmaxEiMVGipUGphKK1wDkyIhkDCObwTBC8IXuKFxHqPC1FRl4LovVKDEQsLj6juxfM/klUX9zr6ekgElraO6Tmrm6d4/PG30ls/hVQa3UCMDTGiNaYhRJNtZRTKBNaSNu1OnzNVGUHEB+qm0pr3DuviNQpSkRhNS0pWVwcRioPHoEAKal9Tz2uQAm1UA6cR4tJBl0A3GokrRfBR9lwsMjZOrUWfoGhYsgS4oyemeXqEiF5hRIx0CxV18aolsDULttCkmAiBF5FYhWwWAyEgFQjv8YDSEoJoUtWi6fQiPaP56KPrzhf/fQG2R0DWVFf8grZIyVhC9BcA6AI0F9dgqVzHLYfmmI5U6sV1gdtB9AuPb+lF9AXHcjwy5CiaZBHxEhbZJRRecTCeMpqWlKXEBhnTo4RsELM5D6LvDASUalYJwSOEQ0sfTaxVhHhJQIk4L0kZfdSkiNEbRseIBaVEE8UhCcfHhnBCrl9NLUpZ4WuOn6paUJUdpCyRWXhd+GkyepB/86/+Gr/7e/9H+tuv0FNdrjH5ivDT3tUJ65tDgGjg7z1KKvqDZ/m23/31VNbi3Zfmp9deM/y1f/Qw9953BmennDu7CeJunnnxh3n80e8nbb8YI2VU7GlaFQzbl1Eyo679bfzUSsdcuOunovPi9M74SSuBCx4pDF74E3464acvCz+Nx4o0SdFaEERAG0kiJD/xT1+g0zV8w287zde94yy/67vmbJ96iUQNKErD93zHs7z9iesoqU/46QvnmRN+OuGnk3bSvkS7440/icXVoQlZjxOMd4IgNErF0FvvNL7ySKlwY8v80g02HJxbPYMMltdmu7x8C775gft56MIp3nbPKX76qecJleB7HzvHU9f22T20OLfPGW34zne+iY31Ph986lne/9TzvPeeLf7YvQ/xT15+iQ9eu4r98Kd54zc+Qe/pi4yKhFNveSfJlQP8M5fQK32CFCg8Qbi4WaQUwdWoas47N9b4dN7nZlmSVzlCeNIkNBOJiebUCgigvUDpqNoY45FIdJLQyTJCcFSuwhPdjqUQOCdwVqGWPh4KJS06EXgRzWAVnixRKClpZZrKBSoXvU0Sk+ADFFYiXGhgDipfIFE4q9CpwlGSmQ5ve/N97E0OMFnObDLm1u4ltrfP8XOf+CjvftMfYz99jby+xg39JCvyXoxL8GhG5SG+ZZHCROVvESIuoe06XCw/T97JkXUEqW47JUzjBp130YBaSYkiTmJOCXylogImPB6L0Ak7u4cUBxMGTV+aTQ/JhOfUqXUOX76EaTZBgGh2LnUEERl/VtU1Vipq58jaHfxo3lwPT9rpsrky4I3f+ttYe+87KH/2lwif+Rzh4QcppjOmxRSDwvk4iJfWUtmAkhwL5Y8TuPNgGx8Wt5ADXSBQs6iutpj8AFwIBB8Nrp33TTqKa1T9CDZKxsnFNxPJUkUSNGqzwjkXJzIRoSTPi8bQWkdAk4LSxuiwuoFlKVRUmxsYVkLihWhC7xeqW+yzQTYKljQIjo5BIECrpcmzbAyIF+CnUEi1SBNYKIWNilqVTEaH7O3tcP3Gda5cucLBwT5lMUU4R6IlHS0RJkVEmbMx4A70pnP0HPJSMas9eE23E0h1ja9qlDDgNPjomyMEKE0TVREwiUNrxwKElkopDVSJo3MMRPuaPNG07l/n4Tc+wYW7H6FIBLpRrBFiCT2EmHIUAnHBEgJaBYZZgqQfQZKFD4xdwppt7ksIvulXEteAl3YxZc9IjWyn+OUiUSCXxxlTP44D1RelQmCaBUq0H4gI6hGBJo3jCLoCX+y/svwcQeO1FJ/3he9SIDR9J25YRvUzVuWMCq9cBAcsxwAhjt73he34OSzv0oLTvuB3i9+7ZdXT+Jrj53AEyM2CbWl8bm9Ts49SZ44r2keAegSii58dO8ZfB7qP7gPNPVq8NzRXLX6ekYJExTHd4ZsFo8SKI6hvzqxZlC5S1iRSmPisCYGQiiCIz7OUBCFxoklh8c21cyCrxQISVGNJEULsH84FbH3kh3XSvvLN24Crv/b4aTS+m/e//0f4nd/2J+h2Lr0u/FRFRECoaJRvvaUIOVK5152fbFXTy2L0UhCOIOLzGcKd89ONyzX/5Mc3+N/+/AXGo9fot1dYWR3GcxSRZTwB62JF0qLc5JOX/hve/OC/QPEqtrZLfqryPjevv5PttSfZbIXfkJ9efH7A7/uhJ/hnf//XeOi+CQh5wk985fjJBkduJbNcMa48wiUM+oHMBHxt0UKAFyihYwSeDQQj8EKCFShlCcuovyiyN9tY0YIghKN5UwRE0MgA26dXvuz8NBppNlZX6HVL0qypmuwD16/leHJkovi939fjLW87xQsvHiJ8htCa09s121uaTjvaB53w0wk/nfDTSTtpd9buPNVXCJyT0chVROXaB3BWE0SIZcJF9OaobxxSXj7A2opCSZAp7+itsnlqm0sHO7x8/SZvbN9Nd9jn9zz2CPv7B2gdeMddZ3Blzaio2b16i3I85/HNIfd+09t45fIuL796BVXP6SSGz127Qvk//1XuvfvvcvZd38pr//uPUY7HmOkUsdoDIfESVKOOySAgCJxWCOvZyhLOdztMKEg7huA8xni0NuAkdS2QiaRlUqQUVHVNaWOFIq0ULSUwJoa3Fz5E02ofsM3gYYzG2boZrGN4vQvRt8Z7R6YVtvZ4GZVDCRhp6A26aKFJ0wRlDLZwbMlbALQ7Lap8l1a6gmpU8v6wzSP3nONnP36Je7Y30W3J2bXT7F++wbWrz3PjYJftzfNMqyE36iskusOmPM/MV0yKghAPPA7BwqKCJKBITYutdIvq1JCd9VcBWFvtc+kgdhkPOC+x3h1VUAsCnKL2AY3CqwLj2ozGM/Zu7uBGY84AQgUypUnaLSSS4AReLjZviJOglNgmHN77gA2Sbpoxqipy20QHeuitDXnrN7yVe9/xZtTWFv6tb2T+kSfJXrlIePQRaNfU3uJsnFxq56LfB9HcecHqwXsW+BNF5IUiuFB/WM5zcRIPLBWwRj07Mq5ufDMW6SLLGVviiWCrgo6pPUEiQ4QdhMSLCEzWVjgTq2alqebg4ICymGOSJKqOIRCCXCrgQgSU0ktNzC2rsET4iD8NCI77fUTDXJrU6kUFveYkEdIsI9KQgqqq2N27xc2bN7l2+TWuXr3MdHxIXeXgo8djR0uklgjp8V5gpI7Kv4xA3J1O+Z/e/3lS98Wg85vZaqP41G//drp3P0owGt1w6hE8xUWAEBFMQhBL5U8I8C7g8IiYELFUSkWz2NBaL1MkYp9pAAWQPqZRuOBAHfmhLPrVr5fasYSlpc4plv3sCJ6bzc9l/xLHjJcDwYXb4C3ea+J5Nqp0CDQeTA0YLaDUH6VzLRFtoYLGC9RUnovPgPOuOe+4yckiikA07xML4F30t6PLfoSKsS2vhxAI5BFXyrg4WazxbmseEAHn7bHPO/JdQsRUrMXxNn9buMWwUPUXanmDxs2lFSwU/uaMWaa6iDh+EwKJkaz0MrqdjGnuOBjnTOYV3guciOlCi2iCuAABJzwIhTICoxOMMSgVP3Zxr2lSxgLNokWIWEVVyOWCN5pfHwFyCGE5fp60r3z7+vf8Cdrt63grvub4qd0a8zu/7a+zub1Lkr4+/OSGmwBsr57l7BZ0TJuDvT329m697vz08vbTpLND3vv1/5F2b4TwHhcEo/2H+cSH/zFPvOv76fWf+5L8NNo7AOD01nnm/hKZ0pgsVuoMDrwKSB/9EEPw1HbAq9e+g0fv/RkSeTs/Hcw3eenlv8RK67+hd9fub8hPK0PBf/dHXmJ1WFAuNgk44afXg5/KcpPpfKXhJ4UNFusEB1PBrWnASUWndUAlRpxZ32Y0M2y0L+KCYzQ7R2VTfPBoLZHSQ5D0u/usD6/Eaqc00W8ipr7GqKfo3R3ijcUoxbmz9/DI429m7fS9X1Z+0kajpEDr6Gl61709HnlsyJXXZggBb/m66M29e6vEKA0StI7+dCbRKP3rbICd8NPiLyf8dMJPJ+2kfVG7440/76IhtQCkUNR1hRASXQMiEGpPMAY1Kpi+egNPnNBRhnlVcTCf81g349z6FpdnI6rplHS1j7pni612QlkXyLIiSdtkbZDeUWiodkfoRPHG7VO8cfs01w52ee3pFygryRNaI59+hvDed3J6Y43SC3rDDTBXwMZUkVCDULKZAMLSX0MLT2YV++MaqWuQCmYBEWqU8kilKCeOVprTyjTOO8qqxgcwCiqlEVTkdUEQqlENQChPagypEnipSdO0SQWxoASJTKLBsXdolZAkXbKkA41q0en00FKRpYokMxTTimEDHv12l2p2lW5bx+HbCta3+qwNhnT7GQfTGQ+ubGAkbK3cTz3+KT7+ys/yfaf+EG0x54X8V1jvbTAPPWZOUU0nhA2BCwopHBLwQRNkhaaPUnBu800kFy7G718ZMuivAa9ihcShCCJEQPMRwoKMin1wgSIUKCEpg8WHgktPfZYzRB+X6azm1s4+IVikahOOZFS0VlFtaX7U7nTotbvsTA7JpOaeM9vw8nMUZc7pjVXe/uBjDFY2YT7F7B0Q3vRm6ofP0u4kHFx+Ae89aTiaKZ21sWR7nI1j/w4BfDQe987fppZ9sdHukQompWxm/6ggaq1uN8aVMX0lhppHlTmmBUVPGRcCSWKQQsdpVECWCBRtUHE+7qRtJodjppMxWbuNd9G4eFFi+UihbYAlHB1nWMDC8t9Him700InHqmSEXhdC9MxQMT21KnIm4xHXrl3j4sVXuHHtKuPxId47tAKjJJkCaaJxcPABLRUej9YBH6JBtgya4HMGVU3qPP/+1AYToi+HVgYEdDKFDg6cb0AE8BGEtJKUqeTpU6uIJKBV9ILUQoFYIIZvTKsloAkIjFGcLeA7fu4zbHQ2mCVZfP69wuFvu36EQBARfr8QjBa4sQA410DBkcfRce+SCExxKRD7hgzNokwcXf+FWfIXqr2Lz1x+a5Ou0tDMYnc8QvoyZSlC7gIqY5++3aB5+XcWaR3xXRFYQ7MIaPq8FMggGxha0NBx/x95lBITYnSDb6I2hFdLL5X4giMD6EBcJN12rs2194tIiyCW/dmLaFIeT2ixygx4uTgucXQuYfHrY8+6ByFiNAxCxC2CcLvCfruqfuRDc8zunOUiNRy/3oCICwARaMYTgQyeTqpRww6SwKTw4EXzuMrmuQ344PA2pmDVVlJWNVrHdHFjNEpptBYoGStIxoWmXI47C4PuLxyfaBYht6cJnbSvZBsMX4gLYf+1yE81Z89+hLKqmc9eH35KzRYAp7dOc+GMop/1eKF6mheul687P3mXcP3ln+eH/tAOv/wZwaW9OLdan1Lk23jS6Cn2pfiJWFRipb3GaOSZzmr2D8ZAE1klRJwnm40Rd0xY6/X66Nrdxk8vvQxFmbN1B/zUGzr+4O+/SGg2SpwNJ/z0OvBTUa/yf/y7n/oNx5Z77/07JOYX+Mxz7+bTn/1v+YHf/h0ED7/4mT/L7vjhL3q9Vjk/+O2/h2H3BlpohGg2OoVD6IDwEoHBI8iyjG53yPn7HmX9/EO4Jqruy8VPzkWOWMih+dyyfqrF/Q8OEFIwndT86kdv8rEP30Q2rCeFbKKAFVJ6TvjphJ9O+OmknbQ7b3e88SeixUMcML0kUQneelSQeKHwtkJcusn06iEdbcikQghH5T3eWXJdMrYFpwfrFMKyMxpxdqWHxCNMgkkzfFbiipLw2L2Uvqb9/EV8p4f2AedragrODbr83ocf4p99/jmMMqzc2MOvruO9oLp5C9E1MTxdSoRtNhHUItxZI40AG7WnQS24OZqSecEZAiu+iv4JaqFLWZSAVqabkH2FkRpFgRUCrWQzgASyNKWdJAgRDUa10jjnsc6TphmpzhBC44PDCI0LDm8F1AKVW6RS1HWJ2pthTFQkitIyVIpsMgFABoG3NUYnEDy1r7n3/m1aeoW0BcO2YXZo2Fxvkw48q1tbfPrTH+Shey5wbuUeRn6CkSmH7ha3Dic4m+BEQhJiuDteg/QEWyBUylpyHuU8dT1rOoGk3+oDzWaF81Gp0gKhNFIptBGgBb4CW3qEnXH1luVXP/0033rXeQDuXd/m33/+WXZ39pFGYX2JbCBMa41Winw2g8YvQimJCI7t4YBZ7Sj24/XYHAz5pve+l/VH78e//BLi5YuYhx6keuA+0m6bssrZ3TmkshWrhyMAyjzH2egdI2nMpIkgElWkIwltWb2qUQqXz8JSzaa5FiFWJGyARigVDZhVnPi1VmitIYAUmv29Q167fpPUKLqDPusrQ7q9WGVOEnAORpM5k8mYNE3Y3Nig1Y6m6J1uJ24oCRHDMY7NTXH+Pw5CR+Dxhce/OO4Iu6oxsIaAo5gXHBzsc/3GVa5ducSt69eYTibgYjXJrtGNwa9H4GKKhCCqejrgrUOpCE5S9xDaIKTGJF2qw8sAzKXiepLgsyRCDwKhJYmEjEDSJMRGNTGQBkdGzW43w3Y1JvWI0Kj/gqhQewhCIpTCGMP21hnOXngA8cJV+LnPUDmFR8eBLLgIORxbuCwWIMIvoeXoWorbIe7oai7/EMf/3gDmF3qFHE97WNyf279nYTItmntJA9hH33sbPPnFMR2DqeZvCx+V+B1H1eUWx3Nc/V5AJY3B/MK75nYoOga24vbvjddHImWIC64G5iJAqUZtD0ugWkZ8LNXf5g3LO7K8SMs/I27HiSh4sTzjL0pDCUfwf5SeE/t6QMRLTFOZsgF/10Q0efxiPcht64kQ4iZ0CLgQfWusdU0EUnyDczESIL4m9iHnQSgdzaVDHMMjOy82fcNy3HDOUVU1c2JEhFaNMq2iP5DRhlQnsYpikjbPa0AIFSs2Lvtgcy++SNY/aV+p9uznfojzd/0bsmz3tyQ/pa0MlQiUcNGbyTlCqAlVoKhPcfGV38YDD36UYW+GImCFRGtDT7VRStFpt+hmKUJI0iTBaNMs6DytrEVmOgip8d6RJCYWVmie2cUCrqosSghSI471/biw3dk9QH2F+Kmqxnjb4cXXtukkp5HqCtZWMWSFZuvgN+Cnzz37EgAtH3h06wIf+vSzHB5EprG+ivwkBMYYtFLYpvqs0nFsEFW15KfD2/jp7b8hP+0dwlNPneYdb7/JSt+itDnhJ37z+amq2vQ7N3j3Ez/G+vAayrSZz6Zc27O8fPXt1HUHYxS+7nH1yrfjRYu7L/xbnrr0PSR4ttc+y6mVZ4jpt8Q04Trj2cvfTWnXkXIHFxwqgBIhzqlCIZRCH+Onw9wzrjSlU0j55eUn72K05qKfXL864x/9vef+k/zUTHLLDdllNOYJP53w0wk/nbSTdkftziP+fHxwgw9URRnVLhcfUDUNlBev43cnCK0pqxIvBX1h6EqNsLGqlXCBqirYGg65ubcPtUOOJgQJVQgooVFZoDaGrLeGv3gV5QNOWqRKaAlFVcHp9S5v2Vjj81dv8k17u6jJhHpzwHbZVBrzgeA82CYVofGhQAYcIvoBBEFmIR+P+MaH7ufP/vN/TVLXv3lX+v9EcyZWw/WlR4bGKcJ50r7g3nNnyeQA7wvOnrmPl155jQdnj6OHB6yvDri2dxOn5/zUi3+LzbVHcEOHtdd5dvw0F9buQYsKkDhhEV7HmUYGQnAYsYIUUFZTALrthPX+CgCZ0bSMit48UuBohBgfDW1lKglCUBWW1LR45tXrrNy8xV3A2rDHM7/2M9Q2x5h2hJ9mlnDOUtc1SWIINnosKClppQmpMUgTmLwUN49EO+PKZ57ljWe2kYd7QMJhq0u1P2boaoRSHE5n7O3sUN6IBUpGoxlXX3oFraM/SL/Xi9DgHWmnFyci6xZB6qhj1a8WLYQvNqxdVIcTQkTD4+Z12e4+6XgalSUEV65f55Of+Aw7eyMknq21Ae7saQYPP0AryxDACy9f4pNPPUcxn3FmtY988H7a7Tbh9Cb6sUeo67hx2Qh0y2NawpBUMfWFo4lRCLE0xD4iJ4EQGhc8ZTFnMtrjtSuXuHntMgf7u4zHY/AWJTwtLdCpQeIguGWaCAik8M0iDIKzKKkQHqTUZN2zWNUhhJLB9jnu6t8FP/NxBA5nBCQJ7VaCFIbd6YQaEf2kFr46i0OtPGkAY2qkFhFeQvT4CSLeD6Wgm6WsrG1w+q4HWTv7AEl7wP6VZuPaC6gdXvhoenwskj+EI2SKS5ovhtSF5nqURtIA4G2Lh2NQKFneh6Pfy+P/OvZnPN/jamsI4ouPIYTb/0Q2UYRHfWDpuLNYgBEXOKFR5MMCYsOxrhDEUhmWoSHORtH3x/hHykCMqAwocQTcR89Hky4jxBGA0lTJY/HdcnnRjp9d/N0R0B0pwTHtYpE2JIiLlHhAtz+bLJ6DBqyDb+6ab749RHNxHwTeg/UB68H5aDAfkEuj+aXGHmhU9tCkAsXKd97Ffy/SgyLACmjGASWa6nJKNBEAzbUIfnlvj48jxxVx7z3OLW6iR8ooNBklUVovF/iqWRQrbW5TtaPXzfG+dtK+km135y2cPvMBgvmtx09v/ro30xsOee7Fl7n79AClFLX3pMqjTJvR+H5+/F/8Ed7xtikXztwkMwYlFWmWkSQJrrYEHyv05nWszNlut3HeURQFmUnJq5rZNKfViumtWZrgfCDPS+q6pNPuUJY5vU6bTrdFbUugqdgpJLt7B7ivED8VxYjRwVn+4g9/P3/qf7hMpj6NV4FaR2Ez0bqxiuA/yU8Xr+8CoFLJ5vqQZ178ONadg3jHkKHx+LMWEQLGRLSXiJhafYyfLr90GN93h/z02ackf/F/ezd/4399Hw/cM2EyPnxd+GlnN+XgsB19EI/x06984qUlPz1woeYtj65z4f63sT9a5dEHxzz1/PP82w9cZzqynFnt89CDmlZ7SLvbYnVlSFmVrAxrtrbyr2p+Wh9c5f/+A39qyU9r2yt0h2f51//qAyj5GGnngHYGvcwghWF/doBI4+ZoIj2JGR1FLXpHECkzsd30mTvnp8nFy5R5BU4CX15+qrzHeb8MklhSxLHIvNuakLd9V/NDTvjphJ9O+OmknbQ7a3de1TfEcHYXIlj4OubiSa1wr1zH7k2RSmKDQyKw3uJdTSI1HZfgtWdW1fjSkfYkmTIczKes9VoI30TtyEAwCWIyJUzGhLZA5ALpFU4GkJokCShpeGRznSdf3WF2a5fBfMbq4w8iRyOCUeCiUi1qB4luBuYIRjLNCEIjhaCfpDx07wXu6aQkdc0/edsT+Afv4cLpbaqywolY+UeKWCmqqh1FXpKlLUKoUdpQ4Um6LTrdNvM859bOAZ1Ol3arRVUVCBFYW1lh/3DGxcuXabdarA37SAJZq8XB4SHtdodWq8XNGzfxPnD69Ckm0wmTScV9tuTr/u6PASC9JkvisRdVxfmH+5xdO4P2LaRQtM2Au+8+w2ev/TLfOfgBsuSnEEoyrW9xuHOT8+tvoR82+emb/wypOyg1ZVxeZ5icRhH9aaxzBJFQ2xotEwRg6zgAVrWL9wFAQVA0E3H0dVgYpUoFSB/9WGyFrQounL+XfoipKcNWl60tw6VrHm8DRi7cImhU4zh5LexStNEYo5AJ9GtDq9uNP88Lqmdf5rWdA872W7Te8haqxMSy8LXF39qlHE8YFzmbTYWUnb1DbkkVfU/EAasr/SbdVDKoXIwubDadAqBNglYa7wPeN5PnolS8iEC6mHyVUg1AxfDxbHePh//g/4AsyuVjdA/wnt/gUbsP+PZf5+cuTbj4vn+IXx9G9WuBSccVadHwiFz882hSl0ouVUalJLYqGR0e8MqlV7h2+RIHu7eYz0fgajSBVCiEjN4zUemLivoxK2caImoWiDVag7OxcmPlLVkvwbR77L/4NNfHV3nXE78DiJvEWdqh2814+K5t3vQ//zXU1mlUlpHv73PpQ7/AJ/7mD+OqEpAoLVBeohKNVRGaBAKCgwCtVov1U5ucu+9RBqfO0+6uonRCWdYRlAAvY2VC0VRq88euTbyMETY9R+k+y98tdV2W0L8EzWMK8OI1AmI0QAhN2m/zGxH9WxbpBIt6kGEJNUdfHJbf08BjWCwVIjQHwtECZZnuvNiMPPZZoTmnRp2NfkzLEzt2hsdUbXH0c4lYyN6AbJTcGJHRfFnz0iN4FUdXYXk+t6XgNF43YnFO4ei6eh99nYKPvohV5RjPK/KyboJkYrQEQiKEXKa7CGJ6y1FaDEs12ft4VEd3UcaxC01AxcWKiAb9EcZDcz+O+wAtLyZHBvAghG+uR1gej3cRcF3z1niIi3QXlv8t79evIy4vU3GCJniBbQBeubjAl4hYwa4ZdHWzgRAX0PK2qJqT9pVt73r3/y1uEjj5W46fzm6t0W212FeaXneNh++9m3JeUEtFahSXXos+XRvDTTpZ3KQLvkYbQ11XtFsZ/UGPyWzG7rUD+r0BCEltS4xRbJwacnN3wiuXr9DrdthcW8FbR7vTYTye0u32aHc67O8fsJMXdLptlr7sUlAWJaPZFCnMV4Sf6kpyauU6f/3//Q+pwjVenjZjS/N4LkbtL8VPZwarANy8dIVH7xuwtWV45sXFSNbwUxwSl/wUm8ckJkbfN/w0uI2fLv+G/DQtMwDyvOTajV3yonhd+Omn3n8vf+8fPvjrPE2/e/k3/e5/wbe8Y8JPv/8Mf+tHn+AjP/NzfPjDz/CzP/snmE4f/ZLP5M/+5C+yvVn8F8VP3/b7/zve9LYneOGVQKel2Ow7Hr5rne1Tm/zaZz/D3mREcIZUilg9vKmaLBbnpQ74we/4/WwMXkOrO+cn027hVJwPv5z8ZJ3H+VjU79geDnGDML524ZsYAIKPm0w+xKrFPpzw0+IjTvjptnbCTyftpP367Y43/uIDF5U5LRW+MdUUk4JyMkdnGXgHVR0fUicwWmGEooNB+MDEWsZ1TTovGZzbohaBymkYtFBFDcUcyor0xi5eRQPkWoPyCiOj6hwUWGG4cO4UF166zFMvvsa7XrtCcvf9mIs38I/dEzcpQ4BGUZBSElzjdVBbhIkD3/bKED95lYOdAwC+67FH+NTLF9n28dgPplO0FLTShLquqWoLDZRrZSjrmqrbYv+b3oXY3GA6n+O3CmbCcPlgxFxqVvod8kEX1tdoba8zyXNKrUm0otvpstNu0W51mBUz1L0XEEFyKUsoul3sOoxno+U9WO1vkhXPRqVIeB5+9BwZPbQ09LM+ZV7xwPYbKetf4deu/Tznho/z6uEzTOxNbu06lEy5dPgCt4prfNd9/zUffvmXuOv8N9MKuyS+jRQeQYUICVYekoQ1SuZUIW5c7Y0mXNuNkXPOSaww8fqy8PiAIByEgDZgMkVIZoSx4qnrL/HO82cBKGY5d589wyefPkA4FycC0RQN8Q4hRFPlrTF7FgJnLYlMCUmC6LQA2ColqqyoigJ7eoPkcMqKUfi2ovXCS7isxfrakLm3pOMYtaiVoN1KSZKkSRGSzOdzIFaDSxPTmCs36o9sVKfGz8W5eHxpmpImCdaK6FciBVmaoWTcLEZIkskUWZRc/XP/I9XpbZ577nl++hc/hneB7a1VTq8O2eh3+G3f8G5CELx65QrDlS4//XO/yPPXDthcW+M9j93HW9/2BLuffYq7/urfIR1NyNeHEUIbz83lrCcizIjF8+qj34xs0h9cU4l5PDnk2pVXufzay9y8foX5ZALBY7Qk1REulkq9j9C48NGTCyVPECfMhcpGU81NBFDRJFhi2d+5xmBziNc96mLMa898kncC953Z4NyZLQ7qikwJiksvcf0DP8l4MuWhP/CDPPr7v5/ZlZd54X3/XwSBxHmS2qOFw6HRzcTc6vc4ffYCp87cS3/1DK32EC8EiAi9zjucj6vAJUB6EXeVj0HEQhkPgmNAcgR/oVEqb5NY46tuV5mPQU5YmDQfU1UFC7+ZAEEuoSeu2sRyU/DoexsMFMeP49hBNIAaFpXjwpHpdAiN70vzPr+A0MYAfmG+7VysquiCw7n4b+sXn+GPzrkBLe8a2JQL4+hjBtoLRfboIix/G+8BzfO0SD1pvqd5vSc0xxCaMSCqyXUdsD5GwcQFsmqAUB6t0jgyf77tkFl4MArCwlOmMb1eAN5SJfeehXLO8Xvf3IxAWKrXogF4lo+fwFsbPckWxvYEnPt1qBT44kXKr9dEE2VwtOCwzmNlfC4loJVCKk9dR8sIJUUzfp2A61dL+63MT7eu7fCt3/Pd/M73fDP/9F//W3rtAadW17l06xZaS/rdDgAyeLqdjKqekyQZk3yOFIGOjHOx1pq1lVWkMNy8uc+8LFjpdzg8mJBquOf8aaZ5TlGVJI2PnXOeurJcHV9DpwYTJIejCVW9srzuWmq2t7doVZDtq9edn4pQUBQ7mPYuFy9dIqCxLuAa5glIEPpL8tOLuzHLwfmS+dhy99kzSNOEXAVPEBrhLd5ZlEmW46AP4f80P/U6ix1Kh9EC8Trw03iSMBxY/t7f/BVWhnFO/fznn+Enf+7DeBvY2twmn7wbJVf4zPPvQAvF937b53nfT57hmWffy8rgKc5vvsrdm2ucOXeGUZ4zK3LOn+vzlrfcZNB3bKxXMZ3vq5Sfdvbv40f+5Y/xR//Qj9Bv+OmFT36Ir3/oUZ65e42tQUVVH5IpQZ2P+F//1vdx9q510lbC4f6MX/3wc/zo334/rvbHmNoybO+SaY+U5o74yfqabqcf+cl9eflpkXK6SPe9/df+GBodbYo5K3A+bmjFNdkJP53w0wk/nbSTdqftjjf+ZCIRLpCY6KXha48wAuYFSVOxqfYW1YTpJ1LR8Yqh0LSlpKUk2gZmVcWgqsivXadCk951hnavjdu7iRSCWnqkEXgLTigSWyO0RnhwGiQa6QPBwHsev48PfepzjD71JK3/+veRf/IZOoO3EaQCHyvwUluEUHEQchacxiUSGRxJgJBX3HP/PQCEyZyistwqpnTaLbLBgAqoEo23NQqBR2CLGVYIUpfQtpbDqiafF5SFJzGavChQRtA1LbJ2RuUsaSIZDvrUNg50rXYHkyQYnTCazZjmM7Y31gnBcXNvDxckztZMZuPlPaimlpXhOpX3pAPD/ecuYG1JogdsrA/Zzw+5L7R50+Y7+MhzP0tn9UHaBwmkJadOrzLZnXNl+0nuWjnHQXET4zJ6RjEJu/TkObyo0MIjvSVQRhgRml4v+voN+332x1EtJkjwEmSA2mElUTUSkk7fs7IS49HquWemx0z2HM+9Jnk7EILgzOpZjHoeJwXe2+UkIUVASQhyMTFAXlnmokWlDMIFeiYq0CMsjoqynXHlzQ/Tf+wNtBKBu3UI0wK/fYqt1btJWy3aTdTd+XPbdM+djmHkRuN8YG93H5WkdNKUOliqvEBqidQaPFRVTW0rsszEhUZtqeqSQidkaULtavLcopWi28nIlcKGgLlxg/uB+sVXKF99jfzZ53loNMMoycruPg+0UgZpQvjEZ9i5cZNOoumu9vmu9Q38S9d5cjtlNc04PNjjns1T8fooRdp44gUlCf4ohH8BFkCjrAukkNi6Yjw+ZOfadS5fucSNG1eYjvewVVx4tZSOZtQEaCoqs5ic5aJERSxOISCmpkiNd4LSBggKqT2pDNHbSUiEdEgnKWdjXv78iwgUwmxy/cZ+7MveI7M226dOUeUzPvrDf45KKWR3hXPf+G0M774XGTxaxUlbBocQjkQ5km6f3sop1jfPsb59nt7KBsq0Y8RM078UBu8ryqqkavyObGWpSkuQsvELWYBJrEjoA00kTryMxz0+FubVS0o5DjVRVOfINaW5lESYbYqiHSmqsIwGXEBbXHAcAatvwHJpaBxc89m3FxYRQrMEX+LrvY/gV1lLXdu4QF4CGQ1cNscYGqN2H/DW41xU4RfffVTlbgHVi1Qblse7WLRIYqRGUGpxts3Fi/3JN/1UiLDI5G42ro9NNKIB3SAAvYyMWFyGxTkuImSO3i6WyvWixdeFo98tjkkcAXnwFuvhuNoeX7+4j0fG2mIB5c33x16zuBjRmF0KjcfHVEnBseMLR70jrk3wgVg1b9md4rfIo/ULt20si6PjdI3fbiBWKgcXq00KGj+nuPg8aV8d7YMffB/vfMf/xMrKxd9y/PToOx/g1OYa0xyqgzFXLj7P6kqf7daAmVjWUKDTbtHvdhiNS3yoGfQ6KCHB2y87P01zQ78/Yj47gGbjqxjVrHRff34aDlcYzdb4wId+O489PkVwGRHc0ZjjiGPQl+CnUeNRbLQhhMCZ1bO0089xevOfoswuUWCKhdaUjJ5tEMfIWVkzr/WSn9QxfpreAT+dv1oAsLq+yv33acqi/E3np2dfWuWv/I1H+et/+Sd44O6Koiy4eetnSNNrtHqKtU4J6TdyaqNN20yYTK9zfkux1l/hG952D6MPfoxWskO/O0aLfe45u8LB2NHt9Xjj/TN6Q0cQ+qubn5r+ceXly6wPIz9deu0mV3crCv9NDT91qfMZz7/yIi88s8XP/Ycn8U7wu7//HXzX730b1y7f5D/8m19D4PHBUtY9PvBrf4Hv+50/zkMPpXfET2VZ0u8JbFkT3JeXn7xzBOfJiyYKbXEbgEDjbXcs+lIgKMqGO5zD1vaEn0746YSfTtpJ+89od7zxl2rodgzDfoc0SdEq4+BgzKVXdgjOE6RvdvsFKkAbSa/WrCrFoC0YmpSWA+k9VVFhRc04d/S9I9zcIzEKrRVCS7yMk7F3FU5KhPdNtE5UKbwOeKHZXl3lrrVVLv/SZ3j0D/9fGKWCLATUxhrh4rWozrg4oFgkOlioK2i3QWhEq+Yb7rmfto6Dwac//STP1oELrZTNAO3TPdpZl73pBHSsES5QBNnBugDWUYym7ByOWVlZoSgLbFkipKTTTjkYTzgYO6TUdBPNrBhzbWcf72ruu3CW+XzK1Z0blE4yLSqsk7gqx3pBZT3dlkSKo1u0ubZFT4/YrWesbHXY7p7Fhhnee1ZXT3Fj7ybeKlIz4K7+E1yZPEtnJcUkGfvXLeXqDvs7U7wJ7LJDYjSlHFOHiuDHOC2Q3qBFFouqCoEOkkT0ABi0B6z3e83RxJHV40FopIiTbZLAhfMdHn50hV6nw6wcM993XHp1n5d/6SIA0lve/NCjtOSHuVEGtMiwIUZl1V4wrUDJFnnzs1tFh2tW0q0LzvQSgo3Re4WSON3i8mxOenOfzScytrstpMng/rsJ4xnV9ZynX3qJ9es3eRNwa3fEdHUd4QNlXZNlGaNZwfzgkE6rhXeeRBuUBJNk1LbCOoeznqKc0ck6OB+YzyuyVNDpthAqMJ858toiZUWZFyStFtksB0DNcm5qweWipmynYDRmOED0elStFmFlgELw8aefp3Nrj3e/+SHuGWR8YPcWv/ocfMfGKZJmQq5xBBkBc6GJoeKEHIEmwqpUkqKYs7Nzg0uvvsKlV19hcrBHVc5RIqBVQBuFEgvvjKPEjeGsoF3WzczpGkXQg48l76WHw1qyN7IcVg4fNIkUrLcsW6sShWSeKPa6CakKpPkOhVuh8IFbRVxE7JYlB9du8Pa73oYvDFeuv8B3/uuPkQ5jStOrH/j3XPzp98WxRSiStE87VfS23og4tUV/9RRJf4XCpFR5QJcFUkR/IJaqpmCWW6oqTvzjec7eaLqc8KWIKUdxsldYFyjLCmeJyjsLOBQoJaMnSPOflgLZGB6zTMForuFCcW7gRzb+KLEq5qLyWnPvwmK9EV+zYBTvPGVVM53nTOclzqkmetHh/cJcRyCQSOHjgk/JZdVN5wN1balrfwxA/VKphiV7L4//yJvnuL8Mx463UfGPwWFoFkvR07HxafJNBPAS3MTyvYvPX/S2RQrHIjpANCnQNJEDy0NsviumTDVpOjTKc7Owktzuw3RbNT74gmNYRFrEBfZRBb8m6lgulP9oWi8asFxU1IsLOJYQz+IomgWGlLFqszh2Txd9ghCjE7yPJtsiNFXwZFSnCSEu+hbXTwiEloRwvBhMQDQLBakj4HtnCd7G/oyIVWFP2ldFc7ZNr2O4cHrwW46fusZQXb/Jj/zoP+eFi9d4Nw69lbPxcIdWd5VnXp4DMLcV89qidEplPdYK9kaHCOnY3Ey/rPxk0pf5k3/8f+bC1iaVF2xtrJAlhmvXt193fkrFkKv7JR/68Bt4+xPbBNxtmyBeKKRQX5KfXnjuVRB/mBu7CunexZvvf5Rh+8MUW38DhKT2sSCGclAFsCJ6IR5UPfJ5n3w2+nX5aXQH/PTy5RhtuL8z4epgD50kv+n8tHmq5Mf+1t+m33MQ1nnp0mtcvrlPu60ZtFJOD1fYO9AkuqbbhWqjw0c/+wzdy/Ded72Zs9spr1y9xWu7OWtrD9BLHGVS4/BcuZnx9374Hv7UH3uJs6dnX5KfnnthzOc/f8D1a1eYT0bUVYESA5TsI4jRlIP2DdrqkLwcMJ5tsbX6PIjA3uRuamuO8ZM8xk+KvZGlVM8ThCPUZ1lvBR6+6wrSB64fPMjO9C4AEg7wzlP4QDmaU47hZp5jrx3wzXc9iisMl68/zz/4Oz9Du9Oj3cp4z7c8zLm7N2J0mRek7T6ZWmHut7D5Fp3tN5GcEnfET2XpKSrL/mRGXddfVn4KeNrdkvE0YV6aJYMe5w/xBX8C9LolyNi3TvjphJ9O+OmknbQ7b3e88feeJ97MsN+m1+/jq4qs0+GTP/8pXh7//9j773DJsrO+F/+stXasfPI5ndNMT0/UBI2EMtIIiSQTDDZgsLGxH2MDxtfGBhtzubYx1zb4d23MvU7X2CQTDUJYAYSE0kgzkiZPT+d4cqq881rr98eq0z2Dr8RgJIT09Hqefrq7TlWdqr2r9v7s932/32/iDiHaoCZdskgK4lLQlh7zcchi5NOuBK1oIplVJWNytktNcyBoaYuoB5gwQBYCPfEJkVbgASIKMMqZToNEanckUIHgzrtP8ZEPfYKlx88gDh8mvXSJ+kOvQFy4iFARRlfoKsd6dcxkaJ/SYJQiiHyaIiDYcVN12/0+aRQyHo64mvR58Mf+BdGhI9wWBBSDPjtPPsHp//qzVEZjqpy6kARYRknC4PoKVWWQQtJqNhDajfX3+32E9IhnpxmMx1TWEoUx2kiKMmdhbpal+UXOnLvC2m6X2c4UvqhQVcrJI0cQF67c2AdGW7JSImoe+47N0AjamMp59jSCDvtmSpKqR8Act828gcvdZ5jdV6NIBbWWoarGbOz22XfoKMPxiCj26dnreDomkcuU2UUKYTgafiXC+lApkJZGzRVjdodD0txNzkkBSkyMcY0FneMri9RgtI/vSxqtgLn4APW7GrzhyyN6S6fh/cucvnCG+175Cu4/eYx3f+QFShkynuzTQekzkA3qjSXKybSjDeYJ5ZiQHaTWmNxNcGUenE13GIaW4yPL9ctbxMc6tDJNtDQHYcjUYMi4n7F58SrfADxx5jJru31GWY61EiUES3PT7J+dpjsas9hsoKKA4TgnMCVllRP6ASrwKEtFFEZImdHdTEnzjEAppmealGWfcVpQVBHjJCPdGnBq0v00RnN9e0hXCwLP5xv/688ye/tJ/DimGg6ozjwPH/wAylzjwvoGBze2uPfkUaZXNumNR+yfmWdBuCLo7uYmOwHUlI/Fojzfjad7ijB0sD8cp6wsX+P8+TOsrlyjyBKkMM7kO1Bu6kxXk5MlN83bLXTGBX/nfzxPoP94J71cSf7x2+9m1Q+RKnBnd09SjJ3Xoqk0W90em5ubHFmcJfQDPvYPvodgepE7vuU7OfTIV7L6kQ9w7SMfIIqa1GsdVCWQM3eSRDXSBEjGYIaTSQeBEgLl7cmSHMBkWUY0cp/Z1c0+m15j0r3FyRwmJ3cxAV5j9rrA7ueTEDH3lGikmBybpPNich3HSVFPCJRUE48QbkLOHozhZBquILhHM/oGRAGusWAnKXfWUhSaNDekmcZaJykpq70J2T2PGuPI6sWgN4EXxJ5hsZjA50uhc28aRwhumKvLPXPNvV7rixPUeBH83WQrhHDQvOfRchMab0ombsoxXvQapPu/4CZk7r0Objy3eBFo7vV1mRRYudHJtUJMfEFvdqlfksB4431PPEQn8rO937m39qQre1trDyqN2ZsMEQ4+ES4xU+5BuLq5L63FTBL+9s6PjrknkiZxcyrH8qIQG6Pd+5pcgN7wnFHSSY0mCZDWuCTMIAjxwwBPSHSl0ZU7NkrBLXD9U7YefsVd3H3XsS85for6Y371Xe/j6YuXqWzF7vYuw/4Gx5cW8OIWlev1UKQV2+s9SiUwRUK93sRgSMYJ2eeJn/KiwtiSmU6N3d0hWfonz0/t5gK4fDbSPEcKg5WucAK4YaMy+0P56erb1/jEO8/zqedqvOH1b+auY6e4cMUQxdcw3hhlQ7SxqFqDcMbn7vt/EtMB6+8nzLMb/OTbDY4t/jdsrcdzL4Of0pE7pnz69AVWB2so9Oefn4oBi62YQwtL9JKM0y+cpz+qiALFQqtBWPeJdBtRdTFlzszsNPFtHj/0vW/hzuNL/I0ffpDtnREffP8Zzj06ZqbTZre/wbDfZ3Vtje7uYbbW16kH6Wfkp08/ucaP//S//kO/1297+J9w74l3cn75Tbzv8X/E3/uWh0AY3vPxH2F1597P+tg7bnuEWm2bi1f/Ji/oOtb7fk4tNvjZ9/3CjfsMywUachM8SVY537Sq0mx1u2xsbnBkcY7QD6kyy7//5e+l1akB8KH3Pcf733OGuLFAvTNPYTs0/Brf/o4PIGo5l9Z5WfzU7WdUcszOsMLcmH773PHTsTt66Ep+Vn7aW3v85HkVg0wzSG/x0y1+usVPt9at9UdZL7vwd+rO44z6GRubOwgByaU1nv74p5C6ohIWqy1SuDSqCMmU8ZmNFB1f0pAeUWQw0vkyDFUJGHbLklAISgQdU9EsLcL3EZ6F0EcbS1WVEEjQEikkytsb47VgJTPtGnfedZj3/OS/4av+5Y+QnD9P/b43ITpNdC9xQC1CrLIYYV16rMkQKDY2NjGNknYtAKAWxuybmWZUFHTaMdnVKwyefZLeOOPgW9/G/re8lf61qzz/rnciBTTCkHo9Yqbd4WIvYbefMjVdQ3o+nhQ0m20qFGvrmwilmGp3wA6xWK6tXOeBu04xGAxZX1snCiSesGzublMLBV/+2lfRDEPWXjhzYx9Ya8CHqKlYPBChdeEkJlhkaagH8+S2R9O7Byk8pupziOZ+krzP1JRHdyeh1ZwlT1I8X9Py6/SLddpqjoIm19Nz5NrnWCiQVqFFjqdqRLHbPsNBj+7QHRg9IfBMhrKWoiwJI4EVBqs9xr2KfjfFDz0CT2JLi5WK48dPAB8gmVtmbeMix+dnCGqCqrzp7SERhEGMkG66DSAbXEbWJdar8OIpopqTqqgAXnX/CapcUiRbFL0txl2fen9AdWA/MvSZXZrigbvvxEgDv/ZOHjp1hJW5RbaGQ5LE+TZu7G4TxRH7ZzrMTjXIq5KBLtgZD6kFIQvTDYbpiNWNXYytmJmuYYxhc2ubWrjEgQMLHDowz8bWLmVpyaVgs9tjIXGd9dE4odcbgnFTs5tnz9B9/FGatTpzj7yN+Mtez87yCq1ymTuXTnLhE09y/K67eXhujg88d45zVy9y2z4n9RV5QXd9m7QW0x8MUVJNkg41yXjI+sYa21tb9Hq72KrEV5LYl1jtAMdo5/eihKAzzqll5QQ2HPvM9TMCbXhuf4tycjLf+xm4a5RxKRkkJeBAcW8kfmThuXqDRXK+69oG9vldqrrBkxCILs2oQaOY+O1VzjtqdXOHxZkmQlq2n3kcRIhB8oZ/+hMc/dpvZuXpC3i1JhpBZTJK5WGlhzUGaSfmw0ZSTrqF1jrPFyEExmjyLGOqcCfwNK1Icn2ziykcbADYypmOK+U5HxPhoG9PUuBIR6ARDly0nEhx9nqhe11QA+ZmV9zR4p4c4WYf2N1XY6ze+wUTCLMvuq+cwJDzPDHW7QcHVtq994mqSOB8SQR7YClATKYXhLpRaBQviiC2exfyk66xnLxvMXnsjU624AaE2pvYyB5tOca7CYpu8+59dsRL/r7RvZ38kXu/+yX9fP7AYyavfQK0xhh30THZ9jd/597j5E3QfVEH21ozkWTt/VzceJt7Fws3ja6ZvHcHhEIqfE9QVYWDeDO5n/LwPEUQ+MRReCMtriwL8jQhSUYTDyt5Q/pksXiBh0Dc8Am6kfYsHJwqz8f3faSSlJWmmlywOClRRVUZTK6RuUaOM6Q07kLJ2olJtboFrn/KVq3WYmNz7UuOn2aaszxzeYX59hztdsRumrDUalHo0iUOT75NRZVjKdjtDVFC0GjWWJjtMBwGXF/d/pzy05H9b+P7/t4jfPd3/QIzc1eYjiN3rP0C8FO9HhJ4kwm8YYH0nAxydupJvuFbT1BkJaH32flpc2uK97/rG3n7n/0dti88zdrGYWryFBcv/RC3n/w2hHfGmdUDYRDjByn+7NOUhcWOBtTN4AY/zc4M6XR+BisVrzz+h/PTHcedFc6Dr7iN2w+3GY/Lzzs/nbno8R8+9PX83b/xKZS6ytrqFhjBTD0iyQtua3XY2CwYkhF4ksvb27QOHGF75POf/t+Pc/dtt3Hy7hp//tse5heTT7F71Vl+CFERy6v8w++/Rn8w5PLlz8xPm1vufT/y8I8z137hxrTRXgiLO2dbWo1NLJITBz7MQuc7bpQ7vvLVP0qpY4wJMZWTlGoB64OAazsjhBXUGpIoXuS2o79Akpfs9Os8llXcdcd3sjt4gLXV7+XKdkQh+0Q1iy88qjJAFhZpFKubuyzOtJykWBr++Q//Go1Ok2/61lfzukfu5PFPd3nyqR46jCjKkApFVkQEUYUn7MvipyzXjDODV5XAi8/pnyN+Ehbhu3NwaQuo9C1+usVPt/jp1rq1Pk/rZRf+yjTFViVTzYh6q8m7f+fjjLp9FAJrnD5eWEFsJC0UjcAnUoKmksxKD6MLgrk2o60uZelGeAdZgSwqipokq0oMHpHnEVmJn5RYBQmGqFD4yoOao1YtheuaWgHGcNvxY6w/9gRPvPPdPPSW15OsrVN/zesw7/ptEAGgnSFqNTlYGoMWkqeubXB52ueefQsAtBsN+nFMt9tjU+ec/5mfJlg6wpXekNY999HYf4BxWjIcF4S+pF9qyjTjhUvLeHPzzC1MM9WKSJOEShukUgyGI5CSa8s7XBfbRHGIxDA71SKIQ/RgzO4oYWF+muNxRG+U4EuBrCy9osfUVOfGPqjVYqqqoN5pEHhgpaBmZ0nZYT66g+vlp/H9iNLmTKuDtOsHEMEWK+vLmCwmCn2M1AhTImVAGARYYdFIRmaNj119H2879n1ICZ72MWQYQkLPFf7mpzr0x73JB8cgbUVVCoo8pdWqUZUKjWXQLbhwpofyfSKpkL7C9wOySQHm+P37OSM/xsVsl6l2QLZjaHh7pwoDeUll+1TZEABZdtG6hvICIuV8UwCsNigV8Ma33MvZK5skoxFRGKIM2Mc/jT1yCLW+iekOUNL97rn5Ntcl6Cpj/2yHuekZ1rcaGGPY2tllqz/k7uOHmGkZSm1Ji4phNmZpYY6qgtXNTaynaNRDGo0FRmnG2vo2jZpHu1kniupsb3fZ6Q8Z72wCkGYFYVzDVxWzBw4y/h+/wdz+fXQOHiTb2SLef4Bi3Gcxt8xNHeZ0fJ2dnV1e83VfzacvXETnKXkydts9iikrw7A3RFea8ahHOhqQjvsMB7vk6RgrDJ6UeIECizNlF847yiXqSdqjjB/4H88TfobJvrtXBv+ft/9h6+t2dm/8+59dWQaWX/LzfK8rWUHUCCgqTe3kPdz/Nd/MxlNP4kdNDn31O9x9N7epTy+AlIRWE1qNwkPgYakchAnrup7G3uh6WmtcJ3fSUhXyJtUYY17UnXTQKKRCTYzInVWlnMgh3JKOBnHpwHuyC25cCEz6o3sM66QcEwC0N6QK0slFjOt0mkmGnCMnPTF8vgmtjmUNLmUNMNq9LyYNgL3XaStumkG/yItFeuwZLwvhsPDm+77ZkbaTzeSe70Z/1v2Z3G6tg1bnQ7N3u3hRJ/rm419s6C0m93tJn1rc6CdPIPulr2hv7T2P2Xs1L+pau666nOzPm4/Z+9ne7/+DnXLf9wHn8WNvJDHf/H1KqRu+M3vwKydpb74fugtEYSmyjCRNwQqiKCKuRczMTDPdaeL7HvU4xvc9sjRlc2ODnZ0dZwBe6YmBtKTWqBOGAVXl5ERSKdSkKiOV56ZPpJOflboiSRIGgwHaVlgNRVUyHqfoSYebPU8jY25Mb1S64tb607Os/tLkp6PH6qRZzvGDB8mkYfniZdIqYef2HfztJpeuuAbYRneMtkOGWUot8ljb7rO+PaDXH9Bstj6n/NSpZ7z1y09z6FCEH05TGUWzUaeSf/L8FPkRS/NTAMRBDU/FpNWI6o/ATzs7R/jln7uft33NZe5+3YDzpz9G2hjxZV/2FCK9TqUko6x0xYe8JMklm+tvZ2HuXbSDTbS0N/hp14asdQ8yXV9+efw0dPvvyNI8+/drzlxc/7zzUygtZ8/fxguXf5eF6QG1VofQjjl8993cN12j0z7EYDTL2tYOVzZ2SEY9FuszPPsxzcXTA/TwOoeOu0RgU1UUWUmSpQStgKKAa+s5njSkyWfmp9B354/5zjnmp847nBCTSU13Up5MBjk2iIMB8fRgckIVzLWuUZqQ56+8nSzrIIShQtBPAig1CIuvGyxFUwxsTm+wQ7eXUhYVSo2QcgOAsijpJ2OEhWa9QT+vI7UlCh0/YQVB0KaIYq4vS5JrKbMLK5y4c4lHvvIOnjn3HGHgg1Ksrzb4sX/8Hfyt/+1XOXxg62XzkzUa8G7xk3vkjb9v8dPN33eLn26tW+uLY73swl+sAmodj2Zjlqtnlrl+7iJKCKwGYa0zjBZQN4JpJVmKQuaVD0LTWJzFTzLWdroMsoJcavZFNXZ0j5GWDIYJ/UgipU+jMky/5k7KsiS4sIanBEXgw7H9qOVNd/CsBEiL9kpULiAwPPzgPfzeBz/M5WP7ORbfjn/idsKZRez6BjLw0aMcYSVWaqQ2SAMPTs/wgctPcBXBA8DUVJ1kfoqVfpcsrfAbLe77sX/BAzWXSnf5gx/g3LvfRacVEfoRyc4OepSQ5RVi2GXfQhurPXq9LtNTU8S+x8HFacIgIE0SWs0GjXYLiSRLUuqe5ND8NI1AEkYhotUk8CVaV6xubWOEZTZJb+wDazVGWlTsEwdNrBWEqsGoXKXpHUFVTxKYGgVjpBcRBRFleZxx/+PEQZ0giPG9mLzUNJsBQdgg011if5pPn/sEeSE42XgNWkuk8AEXxa6km7BLsxzM5CNjjQs1MAABQitcX6yAMqC/pVm9MkYai1E+QVQxPZng85THo888w8VBQD2uU4QlUbF3kNUUVASyhs3dew8wmAoIK7Isx3eNRypj2E0SAj/m7V/xJp597FPYx8fYUQnzi+RXHsMvSuKpkP7YyT3rqsHJQ0vUlCDTmvXuBrcdO8zO5jphPebMxRUeG424/+6TBCJhkI0odZO19R0W5joILKMko1UPKaoS3w9ZWd1mdqZJVVbEUYWuKqZbdRqxS8/zA5+6H+OPE6z0ieYPcuJH/xmy5iQZVz/4AX7vv/4CcaPBfacWaQYeyysr3HPoAK+8+yRztYBazU0MWED5PsuXr1GkCaNBl3Q8cIVYDN7Ep2SvjGqtm9SwVjpfEOvyWKK0JNSGjx+do/QUYJBY6lnJ/dd7rLQi0shDq8kzWUdllRX0S8XZuE4QBhycbXHi0CLJMOe5587xTi9gKk/5ybV1fvDAQVabIcIoSltxW1Hyf1y55vaysSgl0MaSD4YsHL2duVe9Ael5lP0e/Uc/RnjpHLfddpCN9U1m4xb7o0WuzXa4nhZYIamsRcgABEhlsJMTtZQeKNDameWHQTD5/jhk2oNXJ1dQDlL2WpfKJTLf7FpOfEEMiEnxeC/5zN3oDPPtXldbTIASN/1309TahdUIJSddU/f4SpcIu9d9nQTdsAeDlspotNb4ynMpgwKMlQ6+jAEZsvd0DvP4A0C4B2jyZleUPThXN0FX7Ekx9kBzD2D3jj17nd+9x+95ysiXdMH3PqPub/GSx1h782cgboAt2BveLIgXmUzbiSeMEHjKvVat9WT728l21Df2q5SKFy/3+uwN6VC73SSKAnRZMRiNSdP8xmP2zNw9KWg06rRaTazR5HmOUh5RGNNo1pmZ7uArwc5Oj8E4mYCtotVq0qwHRGFIrVZzfmvTU8zMzjIajkjSjN5wRLc/wBhNFEVEYejAtNIEQUgUBjgPIY01lnEydseYIKTV9CnLinzQQ3qSKI4pyooq12irsdq9h8oYTOkuyPYucG6tPx2r3Qw5cWTpS46fzi3tQxjBHbfvp28NV65eYjzIiWbmWLzjTmqP/R5veuM7CdUGRZGwONekHjXZ2N5iOHY6YMnnlp/y6jqPPHINKSQ612wlPeIw/ILwkydrNNqOITGKRjxFmvQZ9I7w+Cd+kjvv+X7mplc+Kz/tO36NDz7xzwn8JmkW8OizL3A5DViYG9HdKglMSVgP6SYlBRVaT7Gz/lbmau8kDJyf4h4/7XQP8aHH/m/e9PBff1n8tDTT5Kse+TRGb9L02pw87H3e+andcCFyRVpQbzaZnlugrzcwKqJ57B5OzBzmE88pPN/n3PIqu70h9V7OfacW+Yl/8xU0mo6XHv39Czz94cscPX4M5blj/ermEv/k//pW/vKf+2Ea0bnPyk/gJozMH+CnydkNOwkXEGiEcGUWMSn8SSHQJiDNmwSqQPkJwkhAEnqWehRwcDrmziMRg8xnrXuVNB2D9NC0UGLS7BUCiSHLE6JmjZSMqjSomuOnUlvuf+093PvAIqvXc1QU8eWPHAJgNJK06j7T09N0OvtYX9+avCdJhXxZ/BRHEQI5kcXe4qe9/9/ip1v8dGvdWl+M62UX/hYW5jCypLc55uf+7S+S5RUKwFikAas1noJISJYaMYEU1D3BTNwkPLEfsb6NXd/gfDpiLozZV6txfTTEl4pGTdAaFYBlSdfIP/4s00GAVQrf9xCZxg5TDAKlLWbvxGwUVmm0Cgg6LV5150k+/NP/jfDvfT8Hj51Evu7LsNtriAdfgXjmDPQT5O0HqTa7iJ0BJ/alfEWj4slPPsHXAzpJ2d7uUWs2iaSiP+oy/NWfZSR9pt7wFg6/4Y30n32a7U89Rr0eMRtMEzRi9H13EM5PE4Xu5Hh03zyVhrKqGCdj8jwhCGO0EaytbFJaQ5qnzHfa+D5UaC5eWKXVmcIzhqwsqUKP3qBHJy9v7ANfeQjpUZ/y8GWIVAKDJJR1JJpILeKRUpGCkMRhg9Wdj1NpTbPTpCgE2JyZuXkWOvsYJpssdI5x+urjfPLSY3z9q/8CkahhRI6UAVbnSKNAOoOaM9eugXD/9pTEEwJESSAkg25Jqy0IpU9RWvJxwdXzXZIsYbrTxOYllZ10mawgTRWeqbBRST2IUNZNmNWkhLLEqjGicreVWLRN0HTYLSoaex07qahFoJTGeIITDz1IsNOnuNhl967b8XfWacY+y88/T31yxhzkQxrNQ+zfN8/F5XXWNnYJRMDSwjQtW7DYuZ0nL1zn8WfPcN8dx8mKnKQ3Ii1LhllKJwy459gBVne7rG13ydICgYcXOPnp+sYu2pQIXzEfum2VFyWDpKLIUg4rQzOOuPCLv0ijPUX74Yc49IY38uDb38qn3/1+Hv3UYxQ7uxyvQZonfN07voZPv/93GeVj5gDPCrbXN9hcu0aeDJFYfCUR1kxSp3EnMSxKTSQBFmcgbQOwe3jjTtiFUuw2QiofhLB0hu72JPIY1AIqBQ5BFHf8/G9QO3U3Mq5x9+4OFz7wfnZ/+RexBw6wcu4SO0qwNd1g2HXber3T4nKryWA8QqkQkWY3DzzSQxcVRVbQu3CO7Kf+L9KqpNVsoyIfJTzCQBIHgrxIefbiBZJOi/HsPrywRi0IEQLqvk8Qh3SmOhRlyWg0JvBDAt8jScf0e10WJilu8/PzqP0HKMsCz/cxFqrKpbYJ6RFFIYHvU+oSbcyNbqhwbIXyXMdWa0tRaidtsI5zjdbOaNpKlJIuVU4L1KRzbHGyGikltVqNdrtFvV5zASGIiR9N6VLkqgohnfRELV/HbG1QGfA8j1oU4fk+1hiS8ZgiS9hLliurCjVhPmMqdDVJVNuDzMnIgjNJvhE1vNc7fpE3CziJjHlJp9g9XLguv7gJpS/2nrEv+r+QkqzRZDg9c2ND3nQ7nGzUydq7mBBCEgQBvq+oKk1lKpRQxFFEGLhES60Nnu+jlKIoC9Ikcb49TLaZdKl41hr8wKfRqNNo1JnqtGg1Giil2N7eYXNrB4Tzqakm21wqRa1WZ3ZmimY9cKmCQmEMJGmCp6DVrBHXIkajjMowMbL3kVaT5wV2IhfZ255CemgL2kKFoCot2hRkeYm1OF8j5fyHpLBIJZCepCZiZOYuwMASRzFZXtIfDCiKYiJh8tG6msxGGCcX9dx7slpza/3pWZ2pNulo9CXHT+//9KeYnYrItza5Mipoz8zS9Dw2dle5T2V8+9fcQf9Nm6xvtSh0E09Ypjp1lmZjZ84uPBr16HPKT0Nb47nn2zxwd5eDB1sM0yEhPiL4k+cnTwWsbfUAGOUV03P76A2vE3gF7dYZQlW8PH6qC4JKoif8lPfnOP3s93Bk/udR9iJeJGjmklFZEkUvcO+pr8AXloIAa9Mb/NSsXeatr/1rxNEatWj2D+Wn4vnn+bZvXiZqeHTTknar/nnnp3F2EIB6ENLrr7KxvkW60+U+TzPTavJkL2O7DPFbsxz1CxpKsNwd8+inHuP7//bz3Ha4w1/6K6/j1W84zrlPLbO9mTI3M00vEfS7TpWws7WCmup+Rn7aOz0ZC+YP8JMULsXXGI03UbbKSbFF7hVk9ipeWDwvw/cydOkE2SqwCJXTqnVotX1Wu2t4dkArrugnhrKqEcbu8iw3TupYSUGlLa3YeUXrYkSRWbK8QPkLnLhjH69+fYyUgtGw4vFPdHn8E7vkRcqTTz/JwtwuVeEmT+v1Gq1262Xxk68ESvmOCeCLip/yPGecjCm1xfd9GvU6QRBgtGY0GJIlwwk/GYqyfAk/VaX+7PwEN6YXLaA8xQ3Z8B+Jn26eI8yE5eClqch7G/IWP93ip1vr1vrjrpdd+KtFAj+a4nd+6fdIh2NnApuXWONObb5U+NqS2QprLKfaTaq8IMtKamcuUxaa5UqznhRMBQGlsfQTjVKGvA4jq4lLQxQJ8p0edqbDlFTosiC0mmq5QjQaqFJDBHgRZt80otCoJKP6lnfQ/t0P8drekA/9239HXou571WnYH2ByhqYmUZlJWI4xt53ErSHrXt82ZMh99ci+OjHQUm63R5ZqGg0G2SZ5eKjHyeImgRBQP3PfQcn3voI09vXKasKGfsoP2AtdObAzUaMFJLxeIzWrkvYbkYuDEQbsrzECxXjYUIj9KnHPvNTbfqjjPN2A+MyxhkmCSKvmKrHzPk394FQJZWCes2jMq7TVYqMUOxjaK7QlvvpV+cJJnu1Hc2xNryI8AReVGN2ehpdaGbb81irif2YlY3rPPr0p5lfmuXe9tsxFK7TZHwQCisMYvIx6aclc203/RcGdZApCAsBFFlBf6hoNiOk7z4TyVhDKcirEkSJsG7CTVeGqpLoqsBWFiWByWRZPRIoM6JI+giqyf1LMAHmRmdmcvIzmnpQwwtiPCHx65L+hU22laJ3fZlmWBBOH+Da2iq1Ndfp3Njqkl5eZd/iHEuzLXRV0RuMCALJvoUZlBTcvn+RM1fW+fCnTjPdiLjj+AFGmzucv7rJbLtBEAbECk4dWmRnkLC+00dZQxwr2rUOUgrKSlNLXKGrP0wZGUG77jE7N8WBuTZPXbzKTrjDlDHc8ecOc+Stb0ddOEcUBGytecjBiOHmFp0D+7j9xO0MT5+dfGMlc+02z6UJyhN4SDztRA5uss9BmKn2OqyuAy2ERUh3cTjBL/eZEobKs1S+RKCo1GSbS4GWEuO8cDFWMDrzHJvv/A10Zpj/3u/h/m/9dn734iXe/zvvYbzbQ2lX0PMn0lpdljeECsKIlxBOFGjiSJBkKcPtHabikFGhSYcV3Q1LWJsmqiuacUxnZh/T8Syy1+XosZPUjx4ljkLQmrTfY3uwSxhKWq02tSgkCGKM0bRaDaZaLaYnnewjR4+xcOddaK1pNBqYSpNkCZW1aOM6676SGGExRqKERAg3+m+toNAahZtyTcucqizxPQ9v4iOSphlFUSGlIIycDMEYg+/5+H7gjJCFoCicT2ajVqPeqLlurJQkaUqauQ6pECCuX+eh/+1v4GU3C6ZfbKsMAn72H/2fDKZm/ycpyV5H3N3GpPsb0Gq3aLfq5FlGURR4QUCjViMKQ8LAx/O9G51iYyz94YA0zZBK4SmB1oaydBcCVlharSbtVo12s0k9Dgl9RaPu02rW2IPd3nBAkjoYTNOUXreHpzrEYYA1mrIqGSYjtnYz2s0mQRi5IqexCN/DGkWuK9I0Q/ddEdbzJM1mHWOgPxpirKFRjxgZ47rPhUYgqNdqTiqFxFqD5wUoKanXWtiWpihcemGrbZmemWUwHLLb7TJKEtKscBc8VTW5CNMOko1G+Z9pr9xaX4jVbLR4/AO//iXHTydP3UY/G3Hm2irL1y9jApiZmWI4NDz1/Hkqu4+L10/y6ofW8IMxtSAmLwsQFoNifW2b4HPMT2sbc/yXn/tO7v/xXwO7QSdqkVcDKu8Lw0/pJJAs8D32zR1gt/8CRXOVh175d8m0osjKz8pPF88v8IPf/ff4z//t11k6vEZVSdJxi8uXv44DM+9CBYIQkDVJOnb8FKERQlGVBQp1g5+kLGnWL4HhZfHT+SvbnL8+zdc9Uuf66jZbO/3POz/leRMA4SkuXd9me3fAYtPn8JEl7jo8z/PPjOlZn7gxzWCwRrNe4+G5OaIgYG1nm7NPbfD4h5b52m+5nde97S5+8d88xurGiNpCm07spi+VEvie+oz81Gpc4x1v+H46jRUkL+Una8ApId2koBSuwIG2CGXQCJRVCAsKObmfRkofJSX/+Wf/IidunyeOffq9lA+8v8kn/+lllFCTlFyXyg0ghEYYV5oofEmMoh4avEBQTfipG4f8xI+tEQY+3cQS1aYJX8RP7amDDMeadscF9d3/wAPceUf2svgp8D1qzRZ7wRNfLPxUlBVZVpAWM/S3JFmaMBz2SJMtlvbv4/Che/HDCqM1+w8Y6vWMft9jZzvi0OEeW1vbnD8Hnlcyv1CgpGtGFOWeOskVuoIwwJskFedFxWiUOtmodVOfewEYWuuJXPdm+IYQNyW1ZuKbJ1+UiLxXzHP2c7f46RY/3Vq31h9/vezCn/Qinnr8OR794GPOE6IyYEFQ4VsfgaWlAhZtyEqecq/pcGqxxcXVEZWGqU6D558fs5aM+IqFBT653WNHp9RNRLbZR/kVrVxSy6EVhmRJRd4MOHTvbXB9GeNJVFWQ98aoQwvIb/uz2KeeRz/5BCov4NlL8KYvZ251l7dEHr/07/8j7cUf4MjiDH6u0Z7AdLcQv/9R1BtfB8cPoS4mhIcPY559BoDrO12qOEJX4N92J7d909cj166CrNF60yMAVBsbWOFOWEJ5pGlKMh4yt3+BIAxQGMKgiTGWJEmRSlBVlkbcwE6MZo0xZFlCu1lzJ7Uw4HWvuJPl9S0qDK86eoq8KqgHPs1rKzf2wdndZeRxj6AmycsSv+oQ+BohmxQmoS3nGZvreCZCWYPSITv9LarxmI21ZeaOzXP8wG1Y6eETkeuM9/z+b1OJklOLr2TaO0ZFjjQ+eyap1pgbjSVtSmY6k45h2EKYBCEUSoL1FaOhJqprPN89Lgw9ojhga3PE/gPzN052aZozHlV4eIwTZ3kbTI6yArjt6BIbW7swch5/ThEwcfx4UfFIKY8wiBBSYazBLyqCmZgiErTqFi8fsXLtCt3+kHKYuKcy8MK5K2RZwf75KU4c2Mf6do8L11Z44fIKd95+jKlGg3tOHGJqa8AnnzlLMk645+RxYqUwVU5VptSaNaJAUQsiFmYajNKSZDRG+AJhoR7ViAL3nrKiBC9gpt5k/uFXEX7Zazl89hJZUGfxwVcAcPH501xc3mK6ERBpSej7fOhDn2SzGnHPoUM80HZF0yovOXniOGur17i4fMGBKhotLZU1+Ai0ATuJqremxJcSU0lQ2Y0O6l5BTgonfxCAlBqhLLzznZx48gnkwiIlht0zz3Ltd36LK//sR6A2gwwaTH/Ln4djx0nzkjMrazSNZFpAriumlDusOOBzviwyCIknklu3IyxSVKDh0vUt5jtTBErS3enRTT2OzCwSBTFeELAQxoi4JKgFTB05RDQ/Q+B5KC9i01cMNi9y6fxF0tJ1CxvNNtrAOM2pxzXE9jYAG5vXyGYaSCGoyjbK88mzAuH5BGEM1pBlY6qiIgxrhM06ygvwAp8oihwgFAW+F6AtZGl6w5hYKdfVlFJSVjlCuk5kmqQIIQjD8Ebnt6oMu70+WZHj5R6lUgS+j1I+tRiUcklyMh3jZRkb7/gGiiBkfW2V5WtXKMocz/NZ2rePI4eP4PvBzQ6yAKVcOlrqh6y+4kEKpYjikDgM0dp1xMuymnTvNZ7nuvW+71GWmuFwRD6Ba3DdeNcFt1RVhVLeRGJRUlUTedCkrltVrsutraWzep23/cy/o54mpPM3ZSQ3jaNvwq1SEj/wqcUR01MdZqY7KCnJ84JKW/zQvcda6BMGHlIKKqNJ85IojojikGajQT30YTIBkBUlo9GILMsZD/voMsN22oh6TBD4NFsNirygNAbP9/C1xvcDwJBmKd2Bx0gK8jynqErKyslkTH9EEBSISaqd0W4yoKgq8ry4IQlSSjJMMqIgQAiPMHQp8EqqiTeNxupJd3uy/6RUqIkJd6U1nicJwhBpLEVeoDyIoohWq0UQRmRZTp6XpEVFnuWUZYm2Fm323H1urT8Nq1GvOP/8+S9JfgqHTzIaVrz/+XNkVY5E8cyF6xQ6Zf9CnQsrs/zDf/Ewv/YfH+XocYmVI0LfSQw3t3ZIxkM6nebnlJ+eP+cKR816DSqL8VKe3LyIbH0B+AmPWt1JV2c6U7TqlmY0xe7OgMHgGEHtGp5vPis/1WPF5nobbXzG44zxqEJNpvYFltALkNIicfx06coUTz//E9x14m9Sjy+6CagJP43TeU5f+nbuOvFLL4ufLl6N+Zmf+x7uP/WbzMz0/kT4KQ4m9jJVxfZwhMByoDPHwr55gtAw42uMp8DzWUtKRt1NvuJ1t/PWtx7n0pkO0oMHXusC0S5f2KTZjIi2U0ypOXB0PwDexLvtM/GTF+QcWHgUX/r/Ez+5IqHGV45fJa6ganyBtR6esECJoOYarUKijaIwCi0t69cHfOj959no9fmuv/p6vvlbX8m5c+v8/M89Sih9hPCo1y5Tiy8RheeQyqMWKqJ2DT2UoA1SVFhdcen6FgudKfz/T37yWQhjED5T0xFF4ph0vtXk0NLMy+KnVqOB6sUI6REG4RcNP6m8YDyq85e/7bY/9Pj8A39/m7/0nSPe/T+a/PMfn+HspRVa7Sn+wQ8e4Pr1iH/6zy6zf79CyAolK8qyxCIoC82RwyXtdsTWZoyfGRYXtxiPc65caVBvlUxPjyf8ZCjLEqV8tHYFqbIsATthZcdje/yk9V4Q3UvDN27x0y1+urVurT/OetmFv0uXrvHv/8V/JhmNXfS1Lt0JT1uMZ4gLifYNC7UAAzy6vskrFk9xYl9AMk5JQsn1UZ9aXGOlrHjX7jqBcRHbqcnpqIjCQCWdyxtjw9izdM9dpzEaEy54qKX9xLd3ML0e+plniF/3avR4jKgKxCefwN5+G+beO5nORryhX/KRn30vrR/8a3SybeTxI4h770V/4pPYD/0u6r678Z45zfSBB/jkeo/bgaLQ1No+RhhkljBz/Hbab3oLQinynR12P/pORh97P56K0abCWEMY+xw5eoja9BR5kZAVFXFcI8/HxHGNLMvc6HxUw2jY2NgEAVOdDkWlKWzJyuoqO5tdLq6uoD2Y79QJBUS+pBlHN/ZBYjcRVUkxqjG1cJCcHQS3I2gyLW+jW54m9hYRpoYVkvX0DLkdoWRAd6vHR9c+xHTnaWbnFzh68Agb6zm9pM+xk/Pcs/gwCjOJSnfvDV1z0fSTCa6yGFPkbvqo05jDS3YoLRg0hRZIP4SJRwoaBIprV/t05msUlcZMJq8uX7lOloCooEggkhrfc0BSVZqlmZhITWNX14CJdHBSeHAijEnRCkGz2SSqxSjPo9jpMkgSOtPztI4cQJRznD53CSsDxpkrZBxYmOZ8arh4fZNrqxvccfQQC3NTWCm4cGWZK1evow4ssH+uzVRjhkCeQFclsy3J/k6DwdBHWh+dGrT0KLREygrPEzRqMUVZcH1ji+3BmIeNe52lrvADn9lGiChLxMwCS28/iZWScjjizG//Ni/80s/jKUmG5dzyKn6/y3t7A0Yq5vpqn85Si4OAKXN6u9vsn5oiH82xsbMG0iIwBEIhjMVIgRUhDb/GbLvGencTrWD/1BJpNqbf76OUnGxD548irQJTIZDw7LPsfOyDpI2Y+Te9jaVXvYHR1hZXPvIx3viJjxFMu67xM+98J0/98i8RINyYPJa659Osu8/LXD2kaATUVMh2WtJs1m58lrPKQKUIA0kQBjx39jIPPXgXQRgRaQVVzsbyDnlVcu8dp7hy+RJy2Of0R97DkZN30JmZp96YYu3yGZp5l5PzMzx3+Tpb4yH5OMXTUFqNGSn6m67wt3blLF2dYI2DrrgREahgIqMNnUeJkqRlibWCRrMNSpFlBfVaHYQgy3PqtSb1RstNCViNLxVGazqdaRqNBvV6narQdMc9jHUSXdcBtpNOeovF+RnG4zFi0jU21hBHMZKIvXRgNflOyGadXnOay6Mh55VA+RGBH7CSjLHNNkv79k88ViTeBHpUkSGyDO/eeyjDGBv4EIUI3ASCrZypdZVl5FWFiCJUHDkIGyXUPd8l4RlDVZXO60U4g20p3fvJJqBkrSEInE9PmqZIIQiDgPiF5+FnYH5ummBxdlKclDfkQXtyFTPRyzTrMa12gzgMiXwnN1FxQH+Ysrm5BdawOD9Do9Zxk6raYM1EpmE0pioImzWiKMRYS1jkBIEiSTL6gzGjUU5V9UnTkiAMSJOScZqijaHSbuJAiMwl/wkHl1ZKXP6NwvMkRVGQ5TlFWWKtpSxK1xm3Fm0NVaXd61YKKQSDwRDPChrNJn7gtltVVlSVRgWKMAiQUlFVBiicNEcqanENITRlOdlGQJJm5HnOcDhinCRUlQNfYS2NOKYexVRaY8zER+ml1kG31hdw/eZ/+S/8q3/wU1+S/PTEtW1+7YknGHQzFmZjsjKjNtWiVa/jeTUe+bKUmX/yj1k4GeMH+/Bth7IqKKuSRrtBs92hWat/TvnJt85ftxlH7N+/QBxbPrD8fkTV/ZPnJyF4+FUzvP7N/4BmXeF7HWY7+zh9NuZ33vdOXv/WryQKn/2s/FROZGfWGk6fOU+WAHtKNKsJ/YCyyijLiqWZmPFgmrJadEWsP8BPedni6upXcfLwe14WP83M7vKOP/PD1GrzHD+wwHZ39Hnnp+cvuzeXlpoky4iU4chMnbDWwJqARhhitSZSPq12E5l26Y8y9h9q84qH9qOUYHNjwH/69x/hV37mce49PE/k1UiqktGgD8BC00nDPxM/Ue7n/PWv5diBXyKOd1/CT16gXEq2NRgMygqsLpHSQ0oPZSuMddNQFRajFVXqk0+0Fj/w936ZZrtOvab46q+6hxMn5rHWEioPPw5QpcexuU3uPfQX2U3HbKeaTqfDw3ffzdPPrTCuNMGL+OnZs5c+Az8V3HvHnVy8fIFhYlle6wB3s7J+jaXN6GXxU9kPGBcFylN40vui4Sd8WL7aeFnH58GgYnW9YDh2J83tzRJrAsrCoywUf//vnviMj/2133yWmRnFT//UIsOh4F/8q5QwmOGbvv4Oosjw8790hqWl4o/MT266sJyEaZhb/HSLn26tW+tzsl524e/97/ogxShHWQ9tK5R1Ix5VGBBUFaH06OAzHQjqwufx4Ygnr67yhgdPUd8c8PTGKiMUMi/5zc0VRkVJGx8LREJQlhVrRpCZAXOBYqlZZ2F3SCczhItTRN/5TZjjJ8jTIV7UQPz2+ymuLWO/9q2ID38CPxujP/ox5Ne8ner8C9xxQLOyfIZzH/0kr3jzK/E+8AGII+SXvwYb+Ogkoeo08JCUtVkAwkgxO9PC1xXrp5/lvX/1L/LQ/Xcxt+8wW9fPcnrtGZphm3uPPcjQGIQxBNIjCnyKIkMiiGo10ixjd7fL3Nwsc3MzeJ5HNenw1Gqhm5KRhqIo8JHMT08T1locOn6Y0BP4oYcvfII4Jrm2fWMfvObIAzzZ/WUe+7VneKz/JK968DkeevA6D979VuanT6BlSlZtE6smuR1y3X6E+QMHCcUUIjdUlWVnt8f19S3OXtwmNZaZmTr377uffeFRevosoZnGUyFKTqaIuGloe/TQPJ26A+pxVhHWmwz721jtuvBRXBL44UTSWVKWEAUeRWZI05S9CfmNjQyDwBaaqtCIyMebdHm0qbj7rtvJMs0nnz4NuFKfts6vzBhzI2a9rEqEdN1AX0k2trc59+wLvOLVHYq8RKc5vUEfz5eUE7+RrZ0+9ekOaSYIwojVjXXmpiLuObbAPQc7VFay3R9MOnowN1PDWsk4zSCukVrD+oaTFQ2GKV4QcPfhReZmp8mjkrAIORA2CHa3qe84szurDZ4StDtNxOpVkp/5f3h6c0Tqtam3Guikz/zUFJiCZtxg1OrR3+1TIrBCc3Z7m9/b2uWNgBWSVrPJpi15xZ2nOH2m4vLWiktdtJJMWLT2OL5wBEPFq++5k91kxPse+yT3nXqAfftm+N0Pvht95oLbINaC0CAcsEoq+OEfZnx0nv5Uh8Zuj9rcIqWWTDUbdH/o72DrTeR3fhd3f/VXc/p97+aFd7+XYCIfDpQkmnTKFmenmD+yH2tKNkrB9M7NpGAjFWmaY3TI4lSTNB3w3JPPcf8D9xEENfJ0SNVdYTRKWA4tcWw5f+Ea5y68QIIiS88Reh7XLj7LrF/wZQ/exwMnj/DCtWv0xwVCuSTLWhyiJvtBYYkDidUWX3hIa5GmJOkOSQrnURJFIb6nENbSG/XwIzcll27mxLWY3f6A5VIT+BFSKrQ1E7dvSxxGBEGIlB6+75MVFUWpqdVr1OI6xrhOba1WJ4hirDF4nnejczu/sIQWln6/jxAerZ0tbgOG/SFrRcX1rQ0Kz0FuIS2+MmynKR0BCIlUHuXEus8TAr+sEELi+QFlWdErxghh8Xx32K8q54tSlhqlKkxoCDyfOA737P+orMHznPfWntSkLHOqyrjvna/wlKJWi0BAntcwZYXv+4STQu/sdJva0hyh5xMEAZXWZLnrdo/HY4ZJRpaXZHlGVDhfmCRNqYoCqTyyUjMYjtC6JPAVcRziK8E4zdBGEIWRm2LMS3Z2+/iBP/HscZONZWWcv5kfUhrLKMsxScpolFAUJX4QEPg+QRhQlk72IYQgTTM3SSAlyvNcMVYpd5+yJI5jvJoHE2PvQDgZmJwUXy0WTymkJynLkkG3PzkPuBRCBIRhQOiHE/mN89VRUlEWBiGcn5LWBqk88sJdKFTG4vkRng9Y1+mO4wApFFmek+blpJN+y5z6T8v6UuanorHETm/E1GzMsUPz9EYj1rdHqNKwtLDIwdvuocoH/P4H38dsY4G3PfQORpWb8giDAIn6nPPToNcBIKkqkCWBbPH2O97Az33qX31B+OnU7Yf48je+kwOdwwzThEFSEkwkp2h3/Phs/KRw4WRlVbK8nGAQVOXNMAJPKAyKSqfcfdfthNEC7/7gZPobg7bif5mf4pqh0d7g7NWEqZagHqnPOz+t9/ZC5ARVWdH0FfOLs4RUZKMBV3eGFPk+KhGycOAw9SphdzPhJ/7pxzl/fZWr19aRlEgEBkuWV8zWplg4foj6JFTt9mNHKcfnPyM/re4s8tT5t/E1b1zn7PX/8RJ+uraxCkq677GqQAR40p8EKrhjd1J6LHd9uklILdIcnok5tDhHN0147tIa737/9zE15T4D7/rNp/mNX/2Us0kRAlNZovgVvPvRv8df/sofQzSXGQmPWr3OwQMHeewpRa+oqAmYWZgmTQY8+dxZHnr4QTxVI0tSsvEmveGIq2sRwVTAxYtnGPcOA/DJx59id7P7svipqgxeBUp8cfGTQHLp4hywyJvf/GmWr19iMDQ3zuPKUxw4cIzFxUWSseZXf6VOkZf82W/a5Bd+3k02PvzqhOvXQ/7+Dy1z8GCOmCgqwMlBK22wtmJnR/JXvmsXUJRljAV+5EfX+Mc/usRo5LvpzD8iP2ldUmntpMCCW/x0i59urVvrc7JeduHv8Q8+7qZ6rE+lSzyrAIlnIdYKzxjSKqUyde6bn2NcwEfWt7g/O0prdobHn38OlCGxJTuVoqEkQgu01QjrugMjoUkyWKsk14qcKd/jaFlwR7POidwQDHbhP/wy6vWvwfvGt1N+6jSyP0Defhjx1NPIrS7mdQ8hv+Ir0L/5fu6aavK7H/kUJ17/StpveRPh9i42CJGveRW6sqjIxyZjDsdOFuJJyc4op18USCTTtRqiqMi21kl2u9BvMZKC4AREMmSUD5yvinSdWKHc1JSSUG9EJMmIWi3A82rosmI8GGONZaozhR/4rC6v4vk+CzOzHGx2yIoEsERhyFR7mtF4RFblN/bBYnM/4fAOQnWalQtjPnT90zz6ntMcvuc9fOdf+Vt82V1vJSrrKNmiV5zj0vAZrPaxok+rMc1sa4bOwhxXLq+TrneZ7YScOnA7d86/hsC0GcoNAqnRtkSZEKuMM6+dhGkcO7xE1XcnvUa9TS1M8cZdirQkCDycukERhKAFaJlSlTVGgwpdWaxxQSXjLMdIiRKRKyhoC5PIiamZDqdOnqTMcy60Jz4vWFdWMoa9tC6AKPTJ0hHGWoTRbK4sU+SFgz3PmdMlWU4YejQbbnLy2XNXOT/VZabZ4M7jh2lEApBs90bsbO9QGEtcb1AWBa1mg6rK8ANFXGsgheT44X0sLrYZjQu2tgds7vZZ7fbYt2+eUPi8sHKVnTTj7hOHmLWua22sRUlBVuRUxpAkKSs7PfyGAN/JgkeyRnd1nSgcYasMIQ2VAbTEqoKtsZMq7/ZHHG3PUGmfKlPcdeoh1kYF/fGYsrIMSkvsxxyYmeHS+lWW19Z59asfZrs3QEmYard56KGHeX51w21bKZEIKjSmMjdS0Q59x3fj7d8PjQZrTz7B7lNPMNMMia5dIKwsz/73X2b+f/8xHvzGb+bcu98HQuNJQSgFTd9t66tbu6RRzFQtYN/Bw9y5sB9+673uw9xuoZIEleak3V0WZmbod3fYOHOeo4cWqLKEUFVsmILd82c5cdtJZg8dYaGzyKGDJxAiJEkGPPf8p1hfXsNUFQ/dfZJ7Dh5kebfHhZU1Qs9HvqhtV1WWbm9IUVS0O0069boDhWlJudNjnOZkeUXgR8ShzzgZMc636XRaNCKf2PeY7rQYJvkkzdqipLwpZzaabDTAUz6lUAyHQ9IsZRj4xHGMEPIGGAVhSBxHKKlQSqG15sLpT7splkl3/fBuly8D+t1VhnkE5Zh6HJKXmm//mf/K4qlT+HFMORzSfeZpVt71LifhNhaZ58Rpyu7WKkLPIJWHEAJPeUhPOWmGJxEiQEcBQkBVue6ypyS60ggpCALf+W0Zg3LmQwwnkqAgUM4cuaooioIw9InCgGICXGIiF66KgixJKJWiZmL8IKAWR1QTs2krJIHvYDHPCsZV4tLVjHFdcoSDOhTdwZBSV0ShA3+l3EXCnl69QkPhtqGx7ud7ky6e77nCpycBRRSGlGVFUeRoXU1kRDe76WmWYY3F83ykdK9BeRImBuQCgad86nUfg0VO/Hc85eH5LkXQ9z3iOKAsCgbhEK2djCRJMgqtkUJipcIKRVkZEBJtwaQ5xhjy3E3xSOW5QlFVoY3rigvhTNCtsSRpCkKQF4XrZFtuTEbfWl/49VO/+KPc1fkemurqlxw/3d7oMFsPsL7P1vaY3cEQheRAp4PIcp772AY/+JNfzRtfuYqY3iZ6GJphnc2tTVqdFsqDUn9u+Wl2ygUK2SqnLDN6JRyaOkbofSH4SZP25zj9zHcw9+BT7A7P0G7OEEUpAEabP5SfAt99l/MiYTDOMNIgxSSt3ji5qjGaucVZTp08iTFu0klXFhH+8fgpSWd5+lPvwHvovXzi6bMkRf5556fDi/cDUBYFWlu8QDJKE4pK0+8POLOywTg5xDitmOnUGcn4Bj9VVYpUmqrEqRGkppsl9BNLbTGlUW+5bZN/dn4qygv8m7/1v/PqVz/MBz5+8iX81P/4hxC4QMBKaypbUhUaTxqCMGaUB1xcLxlnBk9I6qHHVDtm36FFjsc1dsc5f/v7foWZTsxf/Cuv5Su/5m4+/IHn+ej7z+J5AUkuuLBiGKUNlnfqvOr4AouHjxCFhu3dklqjwXCYoDPJaq9gaf4wve0Nzp1Z5cSx/Yh8xExcIxsbLpxf5tRdd7PUOcR64hr3h48cZ35p9WXzk1KSsjRk6RcPP9VqMcPdk8ApmtGTeEIz1S7QZgxC4Hs+oRzQiA4RejFKe9RDSX0GrBYUOiRL28AU588pel0fJQXKc8WsvWCPi+daL1KFCoSYwhhDmriiv6c8PM/7I/NTUeSYSeHPGHOLn27x0611a31O1ssu/PkE5GZEQUUoQrAFGJDaIG1I2/dpRR5ZAUWR8bqlFpcHCZfXNlFRwqf7DgZ70ieUGq+yaCxKSCyCSgl8KzAe1L2Asl2ndu+dqKjO9rkztB99nIN/9S9T3XEM9d9+hWrUI/7mP0N27jL1YydIX/cagv4AuzXCvupugjvvYGkwYPpf/hxblzYID0zjH1zECyRmZ4B88lnMsUXE9T7tI87zI00KdtUQ7YcE0tBuNDh36SobO31e/cC93D2zwJUryyi/hspKPA3ZMMFWmjRNWN/cYjQYcsfJO+g0O2R5TlUYtobbbG9vMzs/T60RYyhRXsjBQwcoK0MhNFQDpCeJ6y3yJGVUjTCeJQ7jG/tgmE7MSMdzBCrBagOZ5eInL/PDz/wNvvqbv4Kv/rpv47bZV7IprlGkY/KsxOYxajbEaI9r11YYZhlLBxY4tnSUIzNHMGbEjrlIbntINC1x+IZBLkjspIAV+IJeNgLg+NJBtoVibecq1pd4SHrrEXnX58DxHCUt2kRuhNwW5GmF1fFkO5eIWg2jJVLoSVqVK/wdPrLfFQKN5sD+JXjiWRQgrEvvstbcOCDPTk9zYP9+hPQokoSVa1fxvIgykkghGOaGa1td4jji8H7nTeiFAUHUxKA4e3kVYyvarQZCV07m0oyZajXYtzCN5wfoLEMIS1z36XW3WVveZXFxH/MHOtx2eJ7hqODy9TW0qZBByOagh7IKSueBtrcCKRC6Ik8LdrKMre0t/CRDIPBnAirPZ2V9l6lWk46s8HwNnk9pLEpLzCQRuRh1eercaX7t409hrCZQHmlRklXOuFtYwVAN+MSZsxxZmsfmOWmyy11HDzAcjykLw8LSMcIHXwe//kmOHDvOzOIUYwmqP0RdugLAyq/9CsnsHAe/8itZuPc+glpM7aEHUS88j4fkvj/35wFInn+efWVOYC3TUnAkGdOcGJnXN3psDnL6tmL9qbOcOL7/5md5psNGp4M2OetRm+rgAbxD+3myu0u3srRmWjx7eZ2B57E23Gazqjjx4MOs/97vMjsYcuzgcXR3m8NbW2ysrZNs73KuN2Z470kOHjnE7N2nuLKyTBhI6qH7vMxPN8jbDUZZRm/Qp+Yb4tDH92F+rkN3MGY8SsmzXaKgydHjB7i6ssHWThfb6TDbCJhq1JyHCAqBJa9Kkqyk1AYZQC1yMOb5CqkadGSb/sCZCfu+T7vVxvc9Qs+nFgYw8Wj0QkXQqjEYp+z2MpSQyEnB3ROuOGsRDoakYPvsC6x8+PdoNeoce8c3svSmLydZucrmhz8IWESSQJKzde0FdK9NvdEkjCKkFzBWPkVZIaRPHNWp1RouuRDt/B+l64Lupe5ZIcGCkW4O0BiDttbJUqRAV07alqQCayad8KoiGrljRZplDAZDyrJwvlfCpd4JISiNfhEcKsrSUhlNVuQIKagqTZmXaOMKkQD94QghnSl46Pn4gTP/Vp6HepGZtlQKKQoQLoNIiBLlKbTnCiV5XlAUmqIsJscWgdEGg514DglnIF0WeL6HJ0FpgcBdpBfjjKIcUpSVS+yzUGntkh0nsC6EQEkfyaSwOjl2jZMUbSqXCGhcQbaaeN1oY9yFhBAY7Y6PUign7DHOJ8fuhfoJJwlkkkzopgqcBPTW+tOzZqNHkfQoSL/k+Gnm5DGmZZ0zG12EB6EXUJOGhZlpHv3k03z8mYs8ce4dfN93vops8Pv4URt/lBNUgt7GDlMLM59zfkq0a5RFYQwyIBQ+vdHoC8RPFaNBkw9+8H5uP/wEJ08cZLbRYG3SfLOexPM+Oz+VuWOw4XDAeFQ4Xz59U40hcBMuJ08em/DT5BgoJB6fjZ+m/lB+0nqR50+/lje/7gmCKKWSweednw4d3uE///9+mScvryCWLXWlkGVOMky4Nhpx7fo1ut1j1BsdGo0OlRewur5Lp9WgFmq8oKKyAbrUSCMwUlAUFVU25sLyNvB6fuOTn+ZjFy7/L/HTG95Yp1YLocwoRkOGeUpZZGytXeHC5XUub5QkJUy1I/JUMdesMT/VJghi4lqLe44d4L0feYK0NGA1P/lvv413fP2DfOz3zpLmOaNcor0zLCz+FM+uf4irHxjydW8p+YY3Pwha0m7k6LyDMSXjUcSoERHVD3J5e0SS7FCrKa6sD0hKTXc4QOtV9u0/xJlzzzI/f5yaXzIa95HW0B2NeOFSBVpw8uj4f+KnyqtoxhFCBQzH2RcPPxlNM3Jqj0ZtiKWBFDm+XyCFYX42YGHOI5RdlB4hhIeyyuW76gpTRIz7BjiIyXeJVIpQHkg18d/z8LyAuBZNCkUufEQIQZ5Lej1n1VIWBWVR/JH5Kc8yjDGEvj+ZkrvFT7f46da6tf7462UX/qoqw5c+QmuwBaIUTAvFfBjjGU2oJEoIMBW1QFFXgvk6DAaa51YuMC7dAcGGBg8n9VMarACLJhAKP1DYWKF9BUXJzsoaB+67m8Zb38T25et0HnucxjvejvVCzPs+QHnsKLW7T1KdPov3NY8glIe4dh35wiWqZhO/v8lR2ePZ9/4uJ/7RX6VIU+TYw1y+gHzXu5DHjiJkTGvOjf6XlHilwZMaYQzPPX+WUVbSrtfwi5LIC7FZgUlTVKmZ8kPSqI7XnmaU9JibmaFWb1JmKWiL9aEoEwbjMUXpjG3zdOwMSJVPLQ4YjxJMVbFwYIksL8jzCl0Zxr0x0oLHzXHjQTkkz0qUEHgmdt56RiCkIWKa0ae6rM98iOZD8IJ6L3NykWBqjl7ax2jJ5ngLQsmxqcOcXDpKHDRB52yaS8SiSygbbNnLhKpFLObQaOyeLAmwVrO2tjZ5NRmdqRkCFdAICpLtFqrw0dIw3GzhRRVevIsSEHk1ikGCDd12zksLVqAnJ2eEmNgjw+LsNFmZUpaGE8f2ud8rPaS0dJpONsLk9bQiyfR0h2ZnivHGMrvDMQf3z+DZEKUEUlkWpyKE9Jkau+nBw/Mt9p88iJIWiXXmukoxTCrG3ZzjJxfBFOzsbgCGdr2FRVPmKQvtGQxgbIEgBm2ROmNxuk7NNyhVcGy+xpGlRVrTHZLVK4A7oeWVISs027tbXB4ItJaY0ZCev4m2mpXLl6nyHGObNBodiv4QP/QYaYmHRrjrGMZZTugF9AdjROChdAEYPKFQUqAV+MLn8vY29Zri9sXbKQVkZcXV1TX2Hz1MGNbpNF3XO4pr+AuLLGho/ux7kRM99uHnXwBegNEY/vpfZ6bWgP2H4I1vBs8jWFmBH/9x7vuRH+G+ai/lDL5mZf3Gv//P5esvPYjsJRMD3/bBj/2hx5xXvfg/jz0HwJcBvOd9N27+My+6S/bxT/Ivx4/w3OXLvOrhV3LfyWOk4xGy6+AvUpqazDl6eH4SZGEYJUOEMeyf6aDn2xgBWVqSZgkLCzXawTyrNY9Wq067E9OOG8y0avRHA8IgpkKSJiVZlSOsIQwjdgcp270BvpK06jWOH1okz6e5urxOb9Bn375FGlGENQajK6SAvCjIi4xmLaa1f57xOCXsufcVBh6+H2CFQRuNJySP/fS/5uDhgzSPH8D0d2H/gclUh8XaCs+6KeSizNH5mCIduOQzoRDSyZ+k9OgLSRD6WGGdPE06Hxo/iEF4LoPAOjmY9D3yvERX7rGZpxAItADpTWDYSow2zqeqcJ+Ljd0uW3EHKyYJIMJFy2hryEsnq5BI55UkJMJatAUrndG70RZrLHv648pohLFo4VLhPAmeHyKkh9WVm4ARex1551EqXNPadZyloCxL58NlxY3urphAuQEn/XLuN1jhjMZButQ3nAzEWIuu3KSNA86JRyY3pSoONPf8uezNP5PX5sB2Im9xLY5JgNHN+yK4YXgNbhuKyW1iIgMCA9ZOJNnVxBT8ZmHg1vrCrhPNf+wmq7X8kuOn6X0PMHfoKJ/avk5UNYg8QW4r3vnRx9ju54TegwDEUUyva9HCojzJ/tl5dpKcVmeKNEs+p/yUDp0XcYGhGif0TMJAJl8wfrr3vpz/9B/+LY/+/hm21meZPXGQZqsNQM2XmMFn56dy7N5PliakhQHrYfYc/4Wb5vF9n0NL82RlSl65JmsYgpE+vjT/y/yUDB23zU+FHDowRSuu/QnwU5PZ9jYfeXYbYQSjsmKYllxZvsoTWwJdSYpkzKBXosKClcuXKPMca5s0G1MUSUKlQVuQuOhsYy15WRGHknp8iaxK6Q8TPhM/jfOj/LMP/Sj//v94D7P1wUv4abYzjRAV4VQbf/9+l1JaVnzqiRafOJOQ64Sldo16rcawH9CpGWpxiNUV8wcDXvUVr+HwnR22ekO++S840jl/do1xoelmOWkZ0GBEFJ6lEULse7zvg49R9yMW5zvce+osodfgzuP7ePrSRYxRjIbbrFRr9LTHI/e+gvb0Bk+cv8R0YLCmwVsf+UssLj3HRz7yr3niqTsZJSnZaJdDxw6ys9XlyUtX2Rr16PwBfkrLHCss/eEY/UXETwZLFLjJV8+LscIpWnwJ9XqNZq3Oj/yTt7H/0BR+oBgNC556cp3//ivPYy0Y64InAHTZo0y77CXyWiYFIiHRmXJhPsKDyQRjWcVk4ylgge2NFean0z8yP2V5SZqlVLrClNzip1v8dGvdWp+T9fILf9qgLEQW7qy1iQLDme6QVGfMNWocDH3u78xwut/nepLzwMEF9OVrPDfY5blBn0L6JHLkzFytz40ZFqc9cJ2OoiSarREeOEC1PWZ3ZY2zWYb68jew/7672Tl9GtGpM/ftX0d5fJEKSdioU3R3CU4/j1zZQVy6iNjtoQ4cQl88z4HNXd61fYXe7jdTiwN8T6JWtlGEyOvbWM8gz7vJlMKPqQmDVxQIBSBYbNU5tG+WZlUw2uhRLwpkklATHiIMSBttkqBNmYxp1D08FSBsgfQsAg+pDZ12k0ZcpxbHZHnqDni6JKkMSkkifPJxglIKoTVpMqYsKqxVzN1U+vLkxRfIa5YwirEiodS4g7GS6HFBUI+YjY5TrF/jqfHv0NvVBGadqN4ijhsI5REJnxPHTzLf2o/RoLQHnusIayqEjRCihrUVxoASe/mvUOYZR/ctAlALajR9RUNMsTVM0XmAlE46WhWSPA2w/TmE6rLmF6RdweLsgHuAubDDmvTpl2AmZ5RJoj31OCTyJaEQTM+5EAlhDJ4USAyl4UYpdHZqipnZWYQSLK+sstUbcupUE+UHE/8Rw8GFDkIJ5Lr7qB/bN0U6X3cnrqqk3ZlmnKRU7ZilmSbTU3V2N3skw4QjRw6SZym6qlyylDUYXZIkCUZntBoNyiKjHCckVUpcazA7NYeSHsNeD1lN3LeFgLwiHed4pWFnY4siLZC6Ii9LYiORgz5hVSGyhObCNHJuhoMzbfLMR3d3qCaVv/FowGzDp1kLqADlewShR7vTot8dYaR0BtVaM8oLrm+sEk4HxH5MPy9RaFTo4YXRjZdmK81wbYt2WbH2ygdZ2neA5PnnqIKQ2tIS3u/9HtmVS5h/8xOus2jBLMyTlQXb+2apT08R33E769eX+blRQrY14F+urvCD+/dzrVbDV5Y4jjmYpPzDs85b8NG/8HVcDgNsUKMoLfVAM9WMePKFq1xd63F8X4uHbjtBbzigUBWDXo+5fUc5cvg2fu233oW1Jb4fMxiNme/MsjQc8O2//xGOtWvsTje5fO0SVCmVkFSr67wCWFldYxQoplp1hv0E4Su0hjLPabVjqJyEYHZ6hnCmhpEK0W7Qjn3iRoMgjvBRlFWFUgIfgVAeu3aXuaCFFj798ZilmTadWkyS5UhPTsIx4Ojhg+x2e+xub5PWarRaMfXYRwpJGIVUhfOskQpmZwLi3R0A8qLCRC5p0OgKrQzjLOet/+G/Ek9StodPfIL8uccIfIUuJcq3KC+nEQoyT5LmliwtURQgnVF24PkEnsc4HxHHIUZkNyDMZD5VZSkr7brFe5Dl+Ujl4/kBQnkY6VMZh2tFWVJJ9zp1CbrvPB3TJGU4HmInXi5YkNIDJJWxEzic9HJ1hdCuGVtZjVFOrmL3zJbt3ldqkseoDaXRkJQuhEg6CYe1Aq1LrJl4g76ogbvncyWVupGKJ6WzMHDA77q/YBBCoqRCToqmclJoqSbPu+fbY3HJfHsnMyEkQjhTaWH2YJQbv+/F/7/5PAYHvXvv8aXguXdfR63OHsEat+32EjsF4kWPv9W1/tOydrL7aKmz1Em+9PjpfT2i3oi618RTIEyF9CRpBXcfP8D87Ene9RHY7XadP1YU0YqdKfuwl5GKgBL/c8pPo6E739sckqzkmReeZccfkasvDD9ZK8jThDuPHGJmpkMzalCb0Lce19Hys/NTXrkp+mRk2BfPspPndKs9faHjJ0/FNOsxkS+pBe54Nj/dod936Zb/q/yUJBOv1kbMXUfmwPJ556ezZyv+3c+/idr8VRBbjLOKrdRwUgWcXb7I9qYg2T3Crmoj/Zh0oKmqkHEmkPEcs7MK3R3RTyw6GWOERqDIs5Q7jg955LXf6fhJBJ+ZnzLLzqDNxmaPheO8hJ8iGQPO880WOasb2zz6qad46ulLzE21uPfQAkZLinGN7TBAyRRdpljbJssqZhcbfOtfey1CwLCf8cSHV3n24xsEvqAaG6S1jNM7uLb8fxPd9pdpN88gPJ8PPv4sb7z/JK+6Y4H17V22R9vMdiytKGO2M89HP93l7JVtTi8/w5ffew/3HPLIVUl3e4ds+9N87etfwcrFp0j614nCOqkpUaXH4swCWdLlwP5ZPKVewk8bu9uMxyOsMcRh9EXDT3lRcMap6UnLAIsLc3D8lLGy1eOF0ys89fgycS3i4dcf5k1vPsLWWsJHP3Idz0p8bzL0wGR6jQqE5e/84Os4eLhNGHoMBznPPr3Bb/33s1RZ5dilLKkyN/E33r3O9vLWH5mfisJQaI22mqoyt/iJW/x0a91an4v1sgt/QkiklqQ65+qox3ccOMobFxb5rXOXQHus5RVT6S6v3zfH1Z0Bha4wKuDx7S7jQJOrglI4mDO4KrtUuC6B5kYHoNgaEMY7qNlpwtYBxsYl9ZS+RNx1D1WtRvfZ08y/+jXYekTR7RMGMd5vvAcv1/Cq+9Ez08jrWxhbMXNwgVd0xyw/d4a7X3M/WhSo9TWEEthAU6oQNTFJ/uTMIa6FFt8avMjydQ/cj241GS+26NY7/M7HnmDmyCL3fMs3o/2IS1d3SYIppmf3IcuSjc0VxmlFVgyo1+vYwtBU7kK9LAsC32Nnd5d6rU4gnURHWgFWsxuF+EFAGMeUZc5Wd5vQDzBb17l7sg829RgpFChDqUuMVQgh0caijSUtCmeSamLMZg2VF6RZxWh1B10NaU1N4dUMV6JzBLcpGo0GnmwhRICoBJ4VNL1p6moJXZUo5SEpXiQNmaWSbltleUqV17B5kyrxURRIqdGmQkkJ2lJVgtuX7qJMDKc/sUU+XOargHvnXklVy3n3E08gpI8nBYE7RzI91WFYpIjKMBW6G61xklZp9MSk2t03DD0arSbokqefeY7eIEMoSdxqgzaYdOA8KYKIZmeS7qU8Cm0wSOJGi0GSo7UlzwuSZERX5ASej+9Jrly+ihCW6U6DRrNOkuVkWUl/VHLl+jWSrGS1u8NDp+5gnMDKuWU2N7ZpTLeJfMG+9R73AmOliK1htL7BWp5zT73OtSRj4EUESYK3vsx+YEdBrSyZ8gOm7rqH1x9eYPOJF8h0RL1yfj5ZUhL4AUJJxsOEMIhpzTT4ste/lk989DE2N3YxRlNUJV2hGU3XWV3d5L7bb2MqCqGwSBnQK0MAjIzZ3h1y6YWLHAD0eASHDhFhodFwxthbm4w2V0ixtAJFzQ+xizNgBY1aRCMOMfv3MVWL2FxeZbPnphOuNWLO1Jr4nibwAnzv5uHmjtc9zMyx/Tx++iw1P0RWOWNR0qlLTC/BiIhzjZiDpxY5ONdhfW0L69UYz7a568++hdHODkjJbFWANXSfuwrA6u6QI/ce5/Yj+1HxNOtbaywszgEwNztNFUeMsxxPBWAs9XpM7gUMBwVKCupxDeWHbHd32O2PAUW7FuL5EVm2Sy2s0RuPWF5dQVpFf5xSmYp7b7+NhfkppmfqaAt+EDIajknTHCk9RsMEqQRLcwcZJQVXrm2yvrzO7MwUc7PTTpqCxQuEgw8tCJUrzkoMo8EQIcAIgTUOmn//R36IfYf3c+IbvoXGfa9k5oVn8Z99hu3dPnlSoHKNsh6R59NqtEiTEWmaoXHwZHSJsJZa4CMQZKW+YWpcVTng0tVC3/U+y7KgyMckWY4GmrU6vnSSnQrrLiq1g7LKQtBfBiDvrUAnJo5CPG/SlRUKKySlMVgt0No1lyoLTOSLWIOoFFYa50+lDWrShS0FSCEwFoSVTmZjrLvQnnSiJdJ14LVBCO1kJDj5GxODbjG5vzGT2411HWGsMxOnAqnRiBvQLJUCuXdBbycJcHtdZneRL/bAcq8wM4FTOelOW7gJ1ca4BLw9OBeuAOB7Hp7y3TFe73XGzQ1Jyt5jnen5RJ4zMca+YUB0a/2pWE91/zsPt/8MUjz5pcdPucbbSRCyQ1UOEFbjq4pveviVhO0W/dxNl79w7hr33WaIohj8iPOXd0hFg9nZaWR9+Dnlp8qs8MgbniZJzpH2eqhQsVwOvzD8ZHyeec7ne//2j/Bjf/fXadZ3GKdjdOGm8nTWQNXkZ+WnF846Ftp+rsHr7n8zl4IrXHj8LPfd8Tdp11eIQsuJQ4sszM9QFClV6c7B+5cW6HU1gQr+l/lJeY49/ECBF1Bk2eedn/q9BZ4/9zpO1u0k+VVw5soVPGF5w+IsMtlhd0qgS4/BekLMNIky2DLGszPMzu8n8rZ4/to6xguRWoOsUPSp19TL4idVuKrR1tYujTujl/DTbqEIgg41z3L9wmne9cEPc+lanyNTNV51aD9HDi3QLVK210qubjWRsuDC1RWOSI9ouc47f/YCo1FGb3Od2flZvLDBoaX9hNF5tCnwPDAsAJBX8xTVczRrMc3Y49TSHA/ccwfdquDx02fx/RBV5Xg64+4jHfZ1AjwRsdHtcvBgh/m5DutrHaznce6M4Vff+Sv8wHf9aw4dWHMFZWu4tjliZ1hwZbPH6+4+/BJ+OnZoP+PxiDQvSNP8i4afIi/mlfeM+KHv/X9Z234WwV1oIaiMwEfSrof89194koMH5pmZbnLq3iXmFuoILGmSo6sAObHYqdcimrXAed8hWVke8qnHlpHAW95+G2/48iOsr4740AevYIwlTXPKiRImUBAp+0fmpzzPnc8fEj+o3+KnW/x0a91an5P1sgt/RucUEnwr6Vqfn7lwme8+eQff8/D9fPLiCtNxzJTvozS0ohrPrvU4N+iR2IKedV2QvSABSovRzudATb5oYmKyKaxPcmWZYDBE7t/HKKhz9vQZdj7+aYq7T7L/H34/JDm7//HnaExHBCtduHSJ6sQx7Ld8JdX0rJOm5hnqE5/CfvJJvuonf4jy+HE85SOLCr26BRZEblBRhdbgAyIWdBZmOHWgSZJqPrC2SdQds5hYKrvBs9dX+Ya3PIRZOsJP/7uf4+ylFV712jfz0PwcQesQ09ESH/6td5NkKW98/b089fRHiYsdN15dFVhTIj3F4uwMs3WFF4VkUmAFrK/vUgtDWrW6M3IdjVFB+ZJjT2k1npZ4gUQp0LlFKHfQkkawutllfWuD1sxt7Nf7uJBfo+k3SZQljH2KMkPqkMvnV9jZ7jK3b5bF2Tlm20eZjZaoaZ8peSfSGnKT4okYkFjhhqin2g2McAf/qGY4emSRF87MsL5xHWkVSnhU1pnKWgsSzYNHl+jmJVc3t2k1XPHt6PF9JFLxPnMa5QnqUcSC78C2KgvqUYguKjdWDhghEVLRajQY9ZMb3ad2y8l3L58+wzOnz6JURJIWyEk3LS3GVGlOd7dP1Xdyz82VZXQnptlsEoc+oScZjkbs9HbpjjLiaInGVMRcLWY4yolClxi1PSq5eH2dp56/yNW1Xba3uwRRREWOZz0CCZuDIb4KWF3Z4OTB/Qwy5/H32MwM2/UaUlQII9g/0+KRN76SbRvw7PKY5599HOEJjtx5nNlmjZ25aW479QBLty3xPa98mF/+1d+iWHcS68EwRxjDIC0wskbcmGI0LhAi4MFXPsSv/+KvozxFpTWpsGwPE4S15AdSfKVIsjFhb8AHPvIo9wAXl3c4h8Yfu9FSsbMDP/VTFAeXqJoxpTVUZUUvK+iPc4yBsOVjPEXgBajpGSidzOKFC5c5vd1lftIljXyf6XqMH0oCJYgnPkUAz/3mb1O//3bunZpnsD2kFkqkJ1gyIX7HI8s0y5urVIMerSMVVX8IKoHVNQ6UBq0rBmnBOEnJipJsxaVfy6sbbH7ieV7heTQ7OR1tkMMhAHecPM7td59it9sjTQt85aMlbG/tYCvwIp8g8ohCRdxqE5Wl61AqgdUpWEF/dwNrKw4tTpGOS8JI0YhqDMcDtl/Y4LZDh2m2W0RxRKdRJ81zqrJkbraO7ytMaVDbuxzZ38Q7NEW9XsfzQzwVMM4yBsmIPC0YjzL6684DaqPbZ0NbUimQSuAhadYiiovn6G9cZ6PW4Nh3/23ie19J9vxzLM5PsVMVFOMRV7Z38a3lcC1geqpOVvPZ3h2AtUxPtdwEg1LkpaYYjG4Ak9ElYRgQRd5ELuXkGo26QskxoyRhY6dPoCSdVhPpSbQuyMYFeVXihSFMjhVTzZDdqs+gmxMEAZ70Jp1VQa1WQ/ke1rPkWU5W5FghKSrnOZSlglI7Q2ZtLCBRng8YEE5ugwyQykP6gipzaX7S8x38CuXSqq3B30sRFAKhlPOVETe71FZYhDfxhbECT0UIYRwUA7CXimnRRmOsg13XWRYgzOR9yUnCnHDybO0KqlYbN3myd86bHNyFmLwQYya/w2KtprQWrQ2e8rjhDWSqG89nJvd3zyVvgOyN5+UWuP5pWqXIUZIvOX6qdMCgZgitYTZu3+Cnj166RhTV0cZNJb9wbZXXPNTB1KZfyk+tBz7n/NQJe3z3n/91RBTRiJpQ7VJsV18QfjIiQGvY2m7SaTWZmynY6e2wf9/M5JNhXgY/neZb/8xb+PZv/PPEsUdwweN98jSLM5+k02hwYG6KU/umKPOcdicmmCS3KyX/+Py07c6teZGyfOkKjWbjT4CfPL77L/0rPvD8GghLaQym0Dz+wmUOHujzDa+4kztPXeP5K+d5/tnHkZ7mlXe2mG3WmJl7jpO33Uf7wBSoWX7jne/h0umzFNpwcG6G6yvfwLve/9vcd8/f4tD07mfkp7J0/NbtDsgT+xJ++vX3fAS/uUSrGXP9zLP0tkfEchYl7mIrmUHszmJMyc44ZXk7YnccsN716acbdBodymiGbrfJvnkBoc/VFcsTz25xcbVOpWcwpk4o3ZRnUTzMeFTD97oIEXH++jGeevKTPHB/jTy9l7XVkqmmoTeus7Pr40lDUWievzYkOh9x++EZavEKKMXGhuUbvuITHD8M47zDteUIobpsDrcZjEsGoz7N2hp3nDpKeyai1jlMmWYE4QIIheeHXzT81B0M2dixPPXCAZLxGnl5ksAX+ErQrEV06jUiL+Dv/9O3Um+6RvjpJ7e4dG5Esx6wuVNh1DZvfuMnmJ0uqNdDgkAxHKf8+i89y8xMk3os6XUzFpYa6MpNwSrlpkYDT7N/cYcocum0f1R+EsIy1Q6RQtEb3OKnW/x0a91an5v1sgt/nnUpcp4JKL2csVL8hzOn+b4H7uW1dx/nysUrkBdE83PkBfzK5RcYGEviuy+Yp3yU0XgTU01hhfMhsBZfuaSfUhqwBZ5QVL0+RWXwDxwha9fJrKD36Ke5+v/8HEe/8W2wcgX7+2uUM03U619H8A1vx051UGubyCzDLsyQf90jcOo4amEfgQrdAXHcxzt+GBvWqNpN1AvPMl5bJwL8KiGMZklyweZYc3V9F8suT1+5Tk1VvOLQEkZYKmt45oVLXFlZJzcf5vzFC7ziwVfyintPcN+9pzh35jzXr1xhc2ubuulCackqizElAkE1rDhx3wmOHT7C2mjI8tYGo1HKVGeKuFGn3+8T15okWUHrpn0aGkPlh9iyQPgScok11vmxCMH6bpetnXVOcif74mM8s3WGet1DyoAg9pk7OEtVVc5fz0jW1rvs7PTww8u86vgjPLDwFYTE5LqLESVG+CjqlHaIDwy7u7Q9B6vT7Vm2Ecy2p7HVFYS0SCud94uUaGEptaSbpuTWUhiPuOYmmDw/YqHTJAzdCL0uNTOdOgDZaMyBdpvxcMRw4KSCUgrKqnIJVXYvmQ6mp6fww5Dry9fZ7A9o+A12uwN0VeLLmNWdPmeurLK9vcsb6uHkMTNcTTLiuMbG+jpJmmCtwAtDykHC2voWhw/fgzaa1fVddrtdsJLBMOHq+g7rO0PWt4fE9SadTpOlls+bXn0PvhSkWYmIQjY2domjCL3tXn8iFavCQ6GoCUtvc8jFTzzNtO+TSsn0gSViT3Dv0UWkV+Ps6g4bp1/gle0ab37kjSzMH+G/XfkB4FnGeUbNU0xNd9A6RtiKXq/PuRcu8M1/7ht532++izSr8H0n1dwapPhK0BslWFORmQIN9Pq7AKwsXyGZanBipgNAOLlgsFZTZAXRX/oumvv2MxOEVMMhw6efIvu99xJYgRFu8sSWFRcvXuHM5RWo1/Em3TNjLFEomZtq4UtJY+Ak9ZWSvOG9j8J7H325h5+Xvf7OU8/BU8/BL7/3JbfrMKAnBeO1FfLSkGUl3V4P5flMt9sYP8PohJ3dgu4O1JptZtodarFPkuT4UjLd6XB1ueBDjz9NVGvw8F13cHSqwXCQ8Nz5S/THCdJabju6hPRK/LCGh8X3Fb4fIqTF+pZwaY6ZTpOyzAhDZ6ycF5rQ85iuTZMXKSt6SCXdxIEwJa1mk1rgUw9Djr/u9Rx405vpnT5NFATs+6qvBaBYWcYaQy2MqC3OMjaGuXadflmQj1P8OCJQinYjJkkzrKkQCgdqxlKPYjzPc8m+sSCOQpQnnGF0VTl5cBAzO+3TadUZphn94Ziq0jQ9j06riW5pMDAY5cjKfQ5m6jHegXl6w5QkLRwGSkFRlvR6XXrDEaEfcGhhntlGB2M0SZZTlJoy0FSVY7pSa7IiIysqIi9wSd22Ii0zpBeiqwqLdCCaQ2UM2kBlobIeCOUS3ywo35+kiEo8L8QLQteQFuAJb+JZM9ECTnxqpFAEnu86zdriGt9qIqVxzyuQzkdRuM+/sYL/P3v/HW9ZdtZ3wt+11k4nh5tT5dhVnaNarW4JCQQSItpgQIBhBmbs18Zh7Jmxx7xjDx7jecdgGBvmY8AkY2NjE00QklBsqXOqqq4c7q2b08lph7XW+8c+91ZVqyW1kGhEu57Pp7vq1j1nn332Pmev735+z/N7XNfFGosRSQqww3YVhl41qYn2sFLBWrRNq7fSBEAKq1KqGzA8bHVJ1WmG7TQ35lcrJW8o17fjqyYcrXCs/5bjp9ZGg+VeAz8J8YPK5/DTVjtd9+dGcm8aP0mnwqXFHLPTXS4vXeKl/nUST/+58FNkGiSJBUo4wiHj5pgYcdnaTDi6/yyKDkLqL8pP+XyWkZEScWKZGKliGeHK4reT3fuHTBZy6FjTbbXYv3eSe+9o8ZFf+XE++czFz+GnjL/Eex/5R9x94sQb4qezl5sA7JmbYaTYZ2tr+03hp/VahzhKq5ha2qKQZK3l6uI2v7j9NFXXJZKSg7MBGUfwwP7xXX46ffFZHhy5n695zxMcOjjDP//n/4xXz12knyjmRgfccfw/MD5uEZjPy0/9tGiSdhjS6Khb+Gm7tkF7ZZ1Os04lgLmpe/i/fv4nv+g1QPJfOb5/jYXWIX7td/bwM//4Ocygzy/8x4Ns1O563ecsLX8bS8vftvvz7xc3GC3eRW7yk/zIP//OL+kapFTI2x/8PZ559QIXrtzPn3z6r+M6A/7yB/4GxUyfA5NZju6r4LoOysRI5dNNNBtbqxQKRaI4+gvDT4Nul8WFPXz4o3+Td7ytR7WYo1pwGSmBkAJpFFiHf/+zzzMymuOR9+zn2F2jXLvUxnccHCek3dUkcTrA0cQCR0qyvkcYR/yv//tj5PJpNewLzyzz3GeXyfg+xhg8TzE+EvMT/+Q/E3gDksR8yfzUancJgizVQoaJYvY2P93mp9txO74i8YYTf1NujhmVYbPdoNdzyGVcutbwyy+f4+89/BAP3nuCemObU9e2+FRtnbaACEskJEoolB1+yU2SftGcdFy3MRo9NCd1hCK1sDYYIYh6PezaNSYnH6D02F3olSUan3iKlVfPM241ca5E5uufwPnWb0EGGaKl6zi//8ckgP/+r0dOT2PuuQeRhDBoQ6RxjYT3PE7Sj5EjFbh0kXDnK69gvVZjfbNOYg2ekhgp8LUg42aQEprrW2y8epYgGzA2OY3WmrOvvsix4wcxUZ/FM8+RNBpcme+gIwuOpZjLMp31wMasbDQZ9PpI5VCZmEKUKrQHIY1un62tGoVslsDzIJD4OYdKM9g9ByEGi4NxLUZKpHSwVqMciSMknsqytrnBoNdgdvQBJnrn2e5topMaKtaMZqvkA59+r0840OjEElSyKE/iZ11snCBcCyik1CS2h8QjtqnXWLvZoxkN2AsgPZqdNq1uE60EygDSIIWPtQorIoyQdKOEnO9jk4jpubTlUmAoF4p4LvQHIJRkpJC+zyBQxFGfJInxPH/4ztPFQ5vhxCgnLTMvlUpIx0FlfBIp6VpNo9EiDgcEskLgSYoZh5ZKDYcBBoMODZGQyfjpfpSKjIyP89zzL9EbNMlVJgjDCN/PMj05S725RRiGBMbD8Vz6g5hcvohUAoTk6PGTWGtIjKDbi2hs1Anj1BR40Onu7r0WkiSJ0ErgOwG9dpfNpEd5dJyS5+A5mmtbffq6hXQC/EIGayLqW5vMzh7gne95Av7oI8RxhOvkmRuf5urCMv1eHaFhYf46uXyOg4cPcvrl8wgHlOPQjQ1rtRqNXj+F2dYARhNc0uORxBFJIul00iTTjs1Gs9OnZvuMXLxE9ORnEMDo408w8sCDtNaWoddGAmGvzfrSBq8MNKE25D2XrBgqfFbgYJnNulQKWTJDn6L/+u3vRk2OITU0wgG+65LxfFY369TbPaqVLBnHIYxjyoUcI6U8vTAiTgyr61skCMpZl5FyGc+Daj6Ls7jJyZ/7LZ793q+ncPcdlEoF3MAjjg3GwsWtGpv1BquXrrC+1SROoFrKYJIB+2an2TszS7aQIxdE1NsDtjY22W7UOXniKEcPH6Dbi4niNuWxEgcOHeDytRXOXb3O3rlxRseqPHLfPfS6HTIZhUBiQ02Qc9HS0my16HcTwLK53URKxcTkOMXSOCbWmCTGExrXMWQKGQKvQKXo0qulVap7x6sUJkcR+SwSyDiGkYOHmH7kMYSSxPUa63/w29R///fIF9KKF2ktpXyG43unmG936UcDLJrAk0hjyGcyuI7AVaCNSP2oVEIYhWAtnu8ihMHzgtQAWcVEOiEZgnjgOmSyOQrZHJ12Fy0SNBKFQEpBNuujVXpdjZKETC5DrpAlimIGYUwYxRibBQtaG7r9EM9VVMsFYpvgxwFRnOAIidUakyT4QcAgillaXSWOJXPT4xTyAfVWlyQxRIOQWGt830dIidZJerWxEGlDog2QTs4L4xijo9QQ2xnguBm0VYSJwSQmnWSsUm8ahCLRNv2uINGkirUGBBFyqL5rbNreJ9MpcdromybTpdXLdmggrYekO+zMQQtSzzZz4zq309ZiTKp67ygextpUlZcivYGRIp3uKob+OzY13df6RoXt7fjzj+NBCRXqtxw/9bHpwqHs6/JTTu5UZrx5/LS4Osn/+uMf5Od+7N+TU2vYWNP3DerPgZ8iu4bWZQCury6zf78ikytSKl7hez7wYZ4+s4Q14gvyU6c1wR+d/zF+4LvWGa8uUC4UsZRZXPtmjsw+xUTZITsyisg4u/wUBAGZTIbX8lMmE3Fo8iJ75972hvjJTXGLKDL0ey0ardafOT9dnZ/gH//kP+TeR/4OXuZV7JfJT9/8l76Ziz/5U0RhyOSo4t2PPsvVhVU6zS/AT8N2xu1mi0ZP3MJPHhHNjTqhHpBTFRaup5/xH/n2X8exL9MPE65sbbPVdqk3v5bASTA6wvPqXF8rcuTIFn/vByNq9ZAzFxbIZ0+hPFBYtHExJiCbucK1xR/liXt+jZmxJkFulUQYirkiM1OaTKbJ3/rB/xMls2Q8j49+9jDbjSyB7+BIgTYG33PJZRS+10EbS6MZkiSKhfn3UgpKfM3bnuZjTz3CO+56kLnJ6wyiPvv3zBE4HkhFHIXkMhkWF1ZYWdlkdWv7Lww/Tazm8Jjk138H3nVvlfm1SUrZPoGvsUiSMAZtuHxujatSorXlO374Xo7fXeXy+RqVQloR+JmXxshlz+D7PVwnTS4Frsev/cJLlEo+b/+afdzzwBSnXlrlxeeWUw8+5QIWz3XxfP5U/NTqd+jHPQaxolwp3OYnbvPT7bgdX4l4w4m/tajJtBfwrXsPUgu7XG80kW6Jy90Ov/bKC/xPb3uYPD5nOl0uhiGhiMF1cJAInZDOHRPDjH7qWyUdgbAKa9IvnEkswpXpVCAkQgp0b8DSiy9RyXqUJsr0tEY3WvQyPq7Twzz7KuG164gEgnofdB+lI/QjDyL27wUTY4RAqADr9AGNyo5gM3146QX0Zp3RzHCqr45wsCQibTuUSUJiwHcctIxYqTcpVkb5lT/8OO12H3fQwnZhYmSKS+fP8ci9R9ncus7C9RqlfJZOc5W10OHQ7CTHpsoc2zOF9Av8zic/ybXr84yNV6jO7md8pEyj1WR5a5s4iZibrCIDSdiLcbbru+cgh6XvaNRAIaxESEMSpT4OuYJPueDR6Qyo15pMHpjmia95lMgxrK2ustZbATciCmF9u0+24JEZyTEzNcW+/BGm3D24cgSDQZgBGgNSYIgxpBfATrtNNpv6jtS3t9lz9C7OX14nNJfwrQskOKQLdIJCosFoQg2eY5mdHQcgig3asbiOS0eH6cQ1nYLTYKB56ZkXmaFHUdQAAQAASURBVK1WuHvoy2e0IcGwVO+itcUZ+lR4xTwmMggMUmiINVutHmE3JCsUI2NjFPIu9588ij13DYCwl3Do2D6EMkipMFrQ2Kpz6OAB9g4iSqUSOjGsbC2ScVz27p3ExAmnzs7z3OnLXF+tM1IuM1IdYXNri8uXF1G9EtNTeVxX4gpLdbLKzEiO+WsrAFTyJcaLJeIkQSd9Eh2n5rZI4jikG1oGkSSxg7Qqy3PwgtTjpNds0y6tc8eRYwB0Y0nHGhLH0qi1EZ5A4rFU2+Ls1dPc+4538MLVFYRSZEouhw4e4NqpM6xvrnB43x6217YYH6tSGR5ba6E/GDDw00vBjiFuI9YYYOu3fweVy+D5Acm+feA42E6PqFkj3G6wuVVHdweMlrNs5HPsmZniuA7h3GXunqnyimvx4h57RiYYy6fJXTVapbNnmkK1jKk12e51UVIweeIg5TAkiSMqxTzNbp/rm3XmkWxHXQSWyTsOEYc95GgFp1oCYVjp9SkN0lZleXg/W5OjdAKfIOvT7XaJwgh/3zT5Tp9Mt4cVTYQD2YzPWGmUbOCwsbUGUlDMl+h2umn7l1T85u9+iD1ze7jrzpOcPHGYckUyPjnHY48MaNZrxFGCchS5aoHpfbOIlMTotBoM1tYZHRujWi7R6/XRiaZSMPTabWrLi9Qch+roKEoqur0evuvR7/QRRUmQzZG46fHKFXKYUp56OKA7CNFXL3Lpx/4XsDDo9el2+wigVMgSOBbpyBS+wpis41DJuRQDhZPJ4OSLxGGCjhKMkSQ2TNtfPBcV+MhBSBxrcBR4HolwcAIHhwAviYeqbqrlSgFe4JPhhtGyMTr16AlcRsfTRL90PQZW4ggH4TkEboCTJCkgC8GMTVu5KqMjaGlJotS82poYqyCTz6etMo6DF8fMSklkLLliiSDwqSqPKIqxRQvD1hFrLUYnCAGO6yKFwHEcHCdt+0h0sjuxDwFYMZwyZ0gSnfqaCotSCqUUSaLpDQb0opAocYiimDBO0DqtQFZK4Weyu1PojJVEiSFONEKpoWeNAOumky2NwaLROsGiQUgSnfrPpH5FAmSa4MEKoihCJxGK1H9HSJVOERSpZ5cRFiHSfdXJ0N37ponwt+OrIIx9S/LTVK7AkWyOT9Ub+Mr7HH5yVPo53Gx3aGv1pvDTyDj86k/9Lnvnuozm7+RefYB/+ezvsfXnwk8JW83rwD5QAc+9fJrjB/cwM72HTL7JQF8hQPGF+Ml3Qw4daGKiDQaRRjqW0fJ1Hr/vG6jkihh9hKzns92L+cQzLyKiw/zcb3wP3/ONv4jRT9/CT9aOceH6X6WRVCm+AX4KvAl+6hehXm/g64hDe//s+SkfpJ0lvu8zWhpBGv1l8dODd9/H/Sfu5Pr5a6y0Hc7P30dzcwkv+/n5yfopIw3wPoefxkaKXLlax2hottp4Xsofx+a2eeryC2w222iRUMplCOP9KFPGOAJtPNa2XUbWW/TCBi+eXqPZDinnDHmTMnHWlRSy2xQzDa4twvGJp3j3wxpvfIRGP0aHK/iBT6Faxss16fVWGIRZjh04ihB1HDkgl/HphRHNdg+DoNvv42A5fDCPjiNK+Ryua3ZXiDiJyGY9crkM3e4Areu38FOpkMUK8ReKnwI/g5Qpm4yNFrm2lNDptnEdD9dxOX7fNHc+MM3508sIIXj8fQcA2FjpkCSGuB/hiACjXfKuRyGvkX42nUSbaK4vhBjbQUiH7/z+kzzy2F7OnNoi0RZiRa1d5rv/+vfyL//PD3Fwf+1L5qe5mWm0NkghiG7zE7f56Xbcjq9MvOHEXyFxuTKo049DvnV6jMf2H6anQxr9iI+ubfLS+ha1dosX4xr77pvFnaxy/lNnyEaKvjDDkeLgKAcBCJNO0JEizbpbC9qkRp9SyLS/3oC0gqTX58qnnqalXI77OboIStJDuhZ97TKZtTzm6ByJ6SGJiU+cxDl+CNnuoqXBlT6mVUOcP0/08kVUNsCTguTKFVzPQw+92IRv8DMh0+Uy9Z5hbGSCPROzXL52lSubPRp1w+VnruDls1SDLH7ggfCoVqsEjoOR0OuESE9w//E5Hrj3W/il//KbbG1v0hwvESI5cf8DHFteZXXpCrXtLUoT41RKORxHYHXCyvoGjquYGqlQyRYQmcLuOZA6IW9jYmNxUERJhKsUiY5RZClksygBW9sbjIyVWLu4TLsUUSgWOFQ+juNJQqkpVNs4wjJTnqboVSipIo7NkIguRjhYFRPTR8USLbsg0uNzZX4b6zR5B6CNZnpmL7NTq/ixRTiWCDc120ZgjcVVgmw+S7uR4Ds52t30Qhr1evRabZAuSdJmpJTBG1bxSZEwXh0lmy8QNdKKOd9JBxqEYYRQgsSk23Ecl06vS4TGC3J0OzH1fo9WY4tRM0ES9jDSUuu1KIXD8V6OoN5sYK0hCAIc3+fa/DWmxsYJHMXKSptyZQRXefjFDJ6ATmxZWNtmZWMbKxSNVgPlCDr9Ac+eOcvTL/fIZHIc2jfLu992B3cfn8XEhu1M6lsYBAGZbIAXhgwQ+K4lGxQwxuJ7Hp6nUMqhWPTJF3JIBEmvR6tmqW1vkivlmMylEKoyPp1OG+k46HyAcBUylgyiLqfPLfAtX/f1jI19hGa3RRi3eenKGaQZcGm5xf1HAhb6dTbqbe48sn94vAVOrOkPjazN0Nem6Xs0JVgteNdnn8arphOW1373d7n46jnmR8oUijlG9s9wuFLG3n8cOi3enwkY2dyGD8N0NUM/n+Hhk8eZmJ3EXlkE4MCBfdRmxoiNxhRz5LIeueGin3EVmWKVfpLgZ3OMjzvU6g2OHNyPoySZwCcKB+RzGaSfQSkHR+UJSduRVrY7tAotisU8Y14eJzdCq7mC7HdwlWDP5Bj5fJFGp8fESImZiXFGq2UiHYFNp7FZscpg0OOuk/dx7Oh+Tp05Q21riW5nknyhhOd7KEeSzWXptDr0el2UozDakMn46QRqYanX69Tq26lvnuvi+R4Vv0S5UqQ/CNnaWOfKhYuMj43S7XRwXIexyQm6jRYGCHKp+buxkM3lUIU8tVoNMARBCk+1boswiilkA8J4QKfXpuS6eNag44RWt4dxIsygCSZPv98lWxzBr5RxfSdNqtt0aEgh0RiTmlAnSQplKWABVqCUM/RFSZP0BosVAj+TtumnALjjUSVw3bRi1/MzRNIZCq4CKRWel6q6Qggq1cqwikkiAM/zUI5LLpe7ce2TEinSYSOe78NQBRZAEGRwPR+tNVI6GJO2mCiZ2W3X2FGOd352HQcx9BW92UDauKlRtQCkSltK1HB6XdkW0xuaod2AHXrI7LSNOGoIzcNzFg+PX2xSc+14OOVbIFPgNDsT8Cxm5+9DHx5jLHGSKtepb41Cm2yqmGuzeyy1BW0NcaxJTIxFgqfSm+Lk1ql2t+PPNxa7LT68svzW46dexHSmgOgbfOdz+en8pSUi96/RTlb4/Wf6bxo/vfOBPrHJs7yxwVJ7DZXE5G3ypvOTVRHX5q8Bj3Pq4kWEusDhfTNst+7g7/+z7+Ptd3+QTPnqF+SnSqHD137d7zLo5gm9AtboW/jJdx1W11bIjFUYr5YJBz4H9tQZG80RvIaf+oM8py4+Sqt9nW5264vyU6G6zM/8k99ndmKbJJFvCj+dOpPyTskPyGazCBN/Wfw0PrmHr/vA+/ilxV/k8jXBhz7817j7gVOo3LXPy0+dVg+Arok+h58euecOwkHC86euEceWereRPrbT4d0n9/J7z5ynqxMSO2B25A/I5Co4wqc16NNPYLmdYa5c4BseKvLwnScIey2WVtbwHInjKXwiPns+bSO9+8QRjp00dK1lTLkopRgM+rfwkzFVTl2AXKAp5j0ik1DwJF4Q0Ol2GR0pIqXEcx2S2CHwXYyRSJWu0SE+i9s9tDa4jvOW4KdMMU+tmxYq9KJJyhUXE/cRIiYIHPr9AeMzBU7e/xBKSZr1Hp/8g/M8//FVpOuSJJLA7/K173iVUm4DBmkF5PG793DXA1OsLKX3J/c9lBY0bG/FVKpVdJLQ6QmKBct3fetpRqp9BF86P4lh+yrAsLOV2/x0m59ux+34cuMNJ/7GnCx78xlKCk5vNKAsOD4zwmghYLZY5tmNZa6GHd7xQ9/EifuOkytl+PfbHV598QpKOGilkYBJ0ox8elEDa82NslsBRkBiDcKqIQSl0+t6SUQiFC1paeqEotUUdYJHluTQXrx8EbHdA1zcbhv7b/8TIvCRxQzJwCJWVxDra3jCgJVYIVGeIskG6LECLlDN+Lz9vV/Hwf2H+fgzZxnfu4c9ExPc//CD/NOf/iVaUUIgFb6MyQQ5/KzDo4/cRbvZ4/SrF/jd//TrbDYa5PyA+euLvOOhu/jB7/pmfuGXfoNTi6tURsvciaVSyfPsKy0OdbpEnR6FSpX903uZmRxjdbPGhfNXGX/oLmphSH1+gdnhOegmA4gEnhUkjktfxEhr0CKdTORJScb3caQh7vbQgxhbstQ7bRrrCwQZF5kRKO1SyAT0nB7FahEhFNpaenodKQXaWISU5EQFgUKQJiAO75ljeSutQDx7/ioX/vBPOH/lOtZRu+XU1VwGlIuIY/ZMjXN0bi8fWTtNLEOuL6aJn9WtJrm9MzheushXch6Z4VjfykiV8tx+Li0s4qxtcgSoVkswEKA0UngkJlVXSTT9QQgq4MjeGV547hwmjogGPYTKs75cIyhAfbvJxvwCR4HYJKw2a+wfnyCX9emGA/ZMT2GsxMtnkWFMp9kkjPtsbEZgJefn1/nYs6+SaDGcuJWwtrY+NFtXCBwG/R5PbVyhvl7j6GyVJBEsracef5g49bQQFt93UI5CSIGjFMVCDs+VKNdlqlok8DziQYdeGBGGCS889xLbjW0eL1TIAsZG9LptCkKAGZCEGmkVGVdw9pWX+eC3fBOPv+1+Xnj+eZSTZ2R6nKjdYf6Vy1xe3WQkm+fi/ALvKJcB8KoF3EaXnEnNJHvdPiPAWMan3U/Nmc/8rb+FPzXB3F//G4x/8INc/+QnWf7UJ6j4PhnPJbQJpekRxlseOgkJ2jtAoJmbHmN0chw/yGGD9HPUimIypQqi08XzoViu4HvpVEZtDNpYsiqFEqMTSoU8vu+Tz+VIhqa8fuCTGEu706cbwoiXQs7U7Bz5PXM4jkrBREom9+xDCIPRCWEYMzabwfeC4TlIj31AgO+5eK7L+MQY8aBHEkXMTY4zPfZOLOAogUAP/UXAWEGpUqZQSpPzwhjiOKQXDnB9n8mZWZI4YfH6derbNUbHxxgZGSVXKODnipRLZVr1Gq1GnWw2wFgI+xHSmNSjpdEAQEcD2s0G2ZERxsfH6IcDbBIjpWG8UkRg8H0PrTXtdptOu0ve8XAGEetra8hKDonPSivk0tIy9WiBfLnEQ8f2cXB2nMBJbzaFDVJM2p14ptFap0mFxAzPjU6V1SGMJUnasGFuUq0ZbsPzh4k/z8N1vZt+b4ewmIJrxnGGgGuHmJuqyggxNI8egmW6AaQQu/u4EzvKchryc2yZlVK7j7/ZFNoO4Xlnn4UQKLUDsjces/NcSdqiJofti2q4gu6ALGLneeA6AildcsZih6bTadYmPd5S2F1z7J33drOhtN7pmLc7E/LsTtde+u9i51yl8BrFGq1BD9X3RN9WrL+a4ni+xNFM8Jbjp7jicaSbYTwMeO87n/i8/FRvR28aP5n9j/Arv3kH73zkIyAXeaU3TyvuobR50/nJI4c7SP1tc15AN5Y8/9KrFEdCvu39T9Oqr6fX1i/ATwNr+eyzfZYn1rn3rjmmR8t0Bkf57Cs/xtHpf0bOlxjHYWxynKyX5dLCIt/3bb9BRsHExAjr651dfgoyF/lHP/QPOHHgg2xvf3F+iltN8rlz9MIcCKi1O3/m/NTcZYgIYUKsFl8WPz36iM9MOY+xAwaDNKGHiUjC1uflpzrpUJo9e+dYWr14Cz/df99dPPHAnWy3Oly8sIQdTkx57toSP7g/z9sOzfCHr8ynnpwiJjZ1InKEcY9Yh2w0BDlnhIlygjSr7J8tkpEuOgmxLnSaIdam61l5pIof9NFYVuoNpOdRfQ0/hVGBXKFEPu/jejGelHz//3A3E1N5XE/RbYdceHWLP/69i8SxxnVdOn1FsnON8HKMTc4SBB7W2rcEPyVJQreVJuVW1ztIWaU6NooQHWwSs7pY51/9Hx++hZ967QFYSSaXZ5BkaLWyIBxKWZd6P2StVqOtLG979yzvPDaDVJJuO+bZz6zxwlNbZDPBMJGlMGOKb/vGFQqFDDrxv2R+kkKm/nfDIRQ3fn+bn27z0+24HX/6eMOJv/U4ptbr8PjkGN96/ARbGyuszW+y7/goRgm2oojNQczb7txPdayCVAnf+N3v59LVf4OoD9CJwViReg6QGnBam5pqItOvawqyFleqYZVJWpGUxBbHGnpS0x6EhOWAgY7pJgJpXVS9gb2+hjw8ixiEyKU1tFgHJ73QKFyMMKkKoSV4XjqmUirijIJHDgMwmyuwd3aajz1ziun9J3nbo4+iwxZbq+vkHZe1QZvyaJWJ8RlGSgVKFZ/FtQWuXrhEa7NNfSstHe72B1ztdnjymWd573u+hm9677v49d/6fc4tXOexxYts1du8fG2FaiHP3OQ+MtUqhWqZzY0+2awPWFa2tpgYGaGYL+6eAykV3U4bT4M2QQoVQy8Daw2+Uvi+iy8lAkt/o0c4JnjwwbfTm6izWlvEyfh4wsdiqffqeIFgvHQvBTGFgwGbIGUOR2eIVEhED3ohBcBKh0wmvYGfmZmh5krOXdnESI/Ak+wpZrjv8AE+fuoyrpKcOLiPsYkx6v02xw7OsmfYontl6Tor3RrtdpdqoUBWGDw/3W5v0CPsNjhx7BCOTRWeowen+ey562SdIDV0GF7bW/UaycxBxN5HOJmZ5PS5dTr9kK1aDYSLyud47tQrRHHMfcOKOaEVS2s9sk6LB+amaS2vs1XrIm3EoN8hsQ5rjTbWGjLWUKpUGODSC026YBiNNSYtCUeQCPCExrEJwresbK/z6uVVNrcarM1vpF8yEyKStJ0Vz0VrkyrUpSzjI0VGKkVK+QKjBZ8kigl7Pkvr21xdWGAQx0jTZ6tSZRQ4NFVBxQnVrEfOFcxOTrLd6IJNyNkOy6srnDx6hEsvfwbH8ZhwJEff9nZ+9cI8p68tct+RA4hYc/3qMncA4u33c26rxtkz1/n2tS2uKckcYA7N0B7EXFjexj1/Dn3+Ake9HN/8M/8P1e/5HuInP02t08dPYmYDiWM0KEkca9pDv0CtJVE/5NTZ8zx490nyO0pn2EdYcDyPxvIi2WyGTCbAWvCCTJoQdgIKuQzGaALPxVhBs9lkEIZUqlU8P0Bpzfz2Iu1Wh2wvndyrpGByYhTHUcRJQhxG6DghyOXwPJc4jhEWlBAo391tXdhpafCCAO24OK4LcUy/PwChSZIEqxOiQZdOp4vn+7hBgOdlcD0Pa4bXl6FvSJLEWAxBJsvhI8eYv3adV069QqPZ4v777+PkHcewrktlcpJCtUK/06XTaiFsjDEhtdo2G+cucjdglSKXyZFojedlqGR8kjjCJJq+M2Cj3mS1tkkpnyWby3BtfgnTM4w6LvPXV/EHo7S05PRKDaMCHM+jXetyYWGT6fFRSq5LokHI9D3sspNSWGdH9Uz/MdHpdLi0HcTQ70dEUYjjuCAEsY5T/xWbmuan1y1wHLmrYlubwu4uSLIDiNwCknBDaWa4NsgdY+bXGC+LHQK86efXbuuWKXDc+lo7QL0TN0Px7vMBkQrKuxApdg+YRQ3b5C0Ga4a7Y23qPyMkqJQ6LenzzO7riN21T4jhdodrn4Chf9oN9dkOVW5rzY0JeAYKGRch1Q2wvd2q8lUV51t1juZ5y/GTeM9d7ClaDj67/Lr8dPrlFhfO/m0yxZ+jPBO/Kfx0YT7k1377Lp546Ax1zrOctFJ+ajbfdH5K2gmdzXR9ymQ8xifG2L/vAEZECPWHKD/Ed4IvyE8jlYf4ld/4p/zID/wzzly5yKmzIe1OQBhP4FlBkAmoJWkrYxRHHNx/lGuLLiMTde45sY8/3Hxpl5+MgI3tOrXNDRKv+kX5abOW4cKlb+Kb3vMygdd8U/jp5bNpotTqEEenwxG+HH7aX8iBgjv3jqOGlUMZR3DH3Ofnp+rkNX7in/wtjh67k1/9ZecWfrp09iqZSp5HTx4GY3jpVEQ2uML17VU+dirka07M0ej3+fiZa2TdIoNIQdSHJKSgIEKwXGsh0RyerVKp5nb5qdMMObuwitZHALh0dZ57jhQp+BnyWNr9LqJYuoWfEqPpddp4rsZzQQnJ1nqf86e30Nrw8DtmeeixOZaXGpx6YRPHdXFjSX+Qslq/1yYKu+SzPiOjI28Jfjpz6ToLK2nLeKs9TrfvkstKJsYU9Tp0u4pqYYuNepNzCwlZP0fgV1he2SCO+zi+x2atyJnL9/G1j3+EyF3FSJfNCw3++7/xB0xXipw4OEPGV2mV23C9FmmXKXGs+PTTM7zniXVKxfQz96Xwk00BYZjDu81Pt/npdtyOr0y84cTfo6UiGMtKI+ZTF8/z6PF9+I7L6vUG1zp9TrW6FI7kiQYtkm5AvdElW8ly3xP38vTvfgbPcxl0B0jppswoFcLuZPL1bumxEqmZKMYg7HBSj3SQWPquIClk2U4i8jqhICTZnItcaWL3TJL4WdyVOtoXacmyTW9mLQMUEoQlcWQ61U2CdHMM6k0QPTLAXlXgj599itUt+PRLv8l//ZOP8K53fz0Hp2foxgMOzY1SHitSzfoETouV6w22a3WigUG5HhaD1glRGOFIzcdfuUouKPGOxx7gfe96iHNnLnLl6kWi4iRSBZxbWGbP2BkenS5RmZgmiiLiOOG+k/egsoJ+HJPL3BjuMQj7JBmJDiO8bBbVVcQ6xGqV+rRFIYHvYQGdJLSaPa6/uMrExDgH9x+kVB0hTCKksrjCRVtN2O3gSEVsa8TWpc8m1hgCm6Nr2oS6QW/xVcaAwDdMB2nLZ9hrEjZzSB2DThgfrfLAoSnmxqv0BiFTY2WO7JkhyOcoZ8sUszk6tXUA7ti3h3oEcXSFjiPw/YDKsAJtabXB+dpLFAtjHA+7HAEGYWqsXMhnSLRCdVPFtr65yVjewy5uEyUxpZEMrc1tFq5d521Rjel9+3nmhWfRRnB+cY3HgavLa5x82938yQvn+aOnz+AqRX+gOTCd4/DMNOeXNljZqlPJ5inkMsy/cJ617Rb9MMQaiTMcY6+1RgiLEg6xEUhXoi0MYpdf+I2PoRzBsUG6cCQ69eTzpYO0Ol1ctMGRMFLMM1YqEgQ+ge+xuLXF9voqV68vc21xmdFSGU9NsLWZ+gXOjVVACO48NguixT1H9nBtdYtAORzaM0bSXKZYKXN0popyfUqBQm9f54kHD6AI6LuSyugIPunAlvGJUb7h4TtpVk+ng26Gi96ZtQb3fO93cs/97+DVzzwNWB7+vu8FYO3ieaQSKJuCTKwt1eoUra118vkMK+eWAdBOwIOPPsGZ+Xn+8BNP8p7qBLPAdL7MdhTjZgL2HD6MNZrAUSjAaEu71aUXx+QyPp6fTgvT2uJnskTa0G63abWbYAzFrMehfccY30grUSsjZUyQqq5Zz8dksgghU+/OJGKzXuP68ga9QcixQ3uYnZsDa6lt16jV6ijPZWpilJzvopTAODKddiYFYRKnpvrWouO0Bcxag7AW5TgYrYf3NhbPTW+OtQ5RyuHgkQPM7p1hfv46S9evM3/ZYe7AXqLE4jguhWqVfLGCiQe02zXGhYc7vgqA56g0eeYHwzY/8FD04xjfaEqOQ2QFUaPN6ESWY7NzLFxeotlusdWoE2QrJJkyoW4SJyGi3eHxtz/K/Q/dS8aNkXEHJROEsLsgxdDnZUdZtjZtUVHDm+IUPi3ZwMFzBJ7nIZVKgYrUYNnPp1WYmUxA7Ls3EhH6BqTC6/+ZQqoAdlToG7HTcrKDpLuQeUvW8qbH3QSqO/++8+fO+7v58TtAm27uNYB8M1yLYZsJaYUPwg41d4m0aYJGogA93K7ZraQ02iCkRDBsyxRp9RYGxI4svbtrqUk1DHUPOXyEkUM4tWjppKbVJp1UKcTOdm7HV0PcmfkI9xfUW5KfkoUVsncf4+iLL74uP3n6MPVWmSOHJ5jb03lT+OnScsopbiZg1MvSWW+k1TaSN52f1i836Q/S69j0WJX77zzJ/PwizWaZy5e+iUrpv7JnTnxBfuolabX8kb0zHNwHpy8uk8RpR4Hr+oyNjrK0WuPK9S22tjZoduAnfv7v8b//7X8J8a38tFbfy8/+xr/grmMf4d3v++L81OqM8gefuIvJ6U8zUrzOyQMzf+b81OsfBSDWllhrtMOXxU+rK9c4tGcvB2fG6LTSa/rbTs7yjY/P/Kn4yc14KFexd3yMqa8d4e7D63z0ye+m1u7z7DVJq9vn2x46hlFZPntxFa0TXGkQgUSjUUriWMsgjhjECaWRaTqtAfl8hvXLS1zZbDNZifjgN56mPO3xh594kkfvvY99U5O0w5Dua/gp6mfI53NkvAEm7BImmo/90TXyeR/pWo7fGTE6ngMh6A8G9Ad9Bj2F76Tfk2NHD3HkaAshhlNU3wL8tL9vWd1IRzP/4n95EIAPftsV5uZqnLowzh98bIZ//Dc+QiGX5TMvvItGu/K6124hEoQniLVA6xjRH3Ds6BH2H9yHpxKkDkHoHThgJxHaaHn8q58/wtFf/TSFfIMvlZ+MTv/UiSbRyW1+us1Pt+N2fEXiDSf+PNflaN7n0N4ia+0B568tMVEoUQ81H9br7P+mO3n4PQ/QiWMWl9aJtMbvdth7aIazE2VqG00c102VO5F6DggrEdbuqtUM/9y5/uwM2DYmwVhDOIAVXccRLuVshgnHMjA98iqHrG1jBh2s52NRqYIk0r5/aQSG1CTBsQKsxroWlKR29ipiwqMCTDxwF688+xkqYweZGJ1haXOF//cnf5qZ2Qlcx6UyWkApwVZjBV8K+t1eClWOi0UjbarGxNEA6zjEg5AnXzlLpVLg0cceI++6+JkiY5VJ7rjvHi6+8AwvX13g6B1HqIzvoVAZY31jFSkTOvUevX5MVG/sngNpEqR1GFiDJUTigBQo46BtQrPTpZDJoIUk6vXZajVp1do89bGXiL4mZs+efRRUmdRHQuPik8mWCE0LbQSuzIMWRHQxwqWXrLHRWqH+yjUeBmqNPjNj6SCUl68ssdIIafYTHM/hwESZk0cOMr9cY5DAWClPtVRAOS4GQ7mUZc5L/TaeO3uFU9JLJzAllm6nh/LT1o7ltQ3Kdx/lUy+exy+kr7W8WUcJSzjoUSyM7ZaJ93tdRBIx/8oLvHzpHEkcIZC0Gm3CTo9CcYxcJsvi6jZbq6mCfG5hk4cfVfzl976Nj376BS4tN9E2YXl9QDhYoRtDdyBISGhEXa5vduj3wrT1QUpc10eIdOqTUmnZvNYGjcTVqcFsK9IERhAOB07cub9KdmSEdqvNwCha7X46lSuSJGGLVm1A20ZsG02j0WRqtMiJow9yeX6CjPLxPKhtbQFweXWN8vgUDx28i15/BmLI+Vk63R4rjQFBZ42l6/PksiWyuQyFQpZ84FEdPUkSh2SyWbq9iGw3rUCIFQSez9TBmfQzNlwgTb3FlRfP8sC3fS9f99g7kI5Db22NV372X3P1J3+C2UQjrSHnCPy6wptfJqhvM+i2CTabADR7XYKMx9e973388r9Z4ZmXT3EXEDiSpF4naSmSIMD3HZIootFpMz4+Qb6cI4xSVV+5HoVhi7Dn+eRzWRKtabcaKAlBuYAUBnco6ClS1U84DlGYIJRESItB4Lg+xXKVcjfEHwwQCMJwQC4IKBXytNtd5peW6bRb7NszR7lYxHGy2IyLxGKFxA8C8oUig343Pe/a0G12KJbLuJ6HMIokSeg0eyAExXIZx/VItMELMpy44w7275llY3WV1aUlsrksuXwO4flpC0Q2RzlXID/oU9ybJv4S30V1e8gwRnkOyknBPIgTdKeH6vXJxQme4yA7bXK+z7G5KhtJkdrMGG2pafa3yQcBBslWd4N2q0N3ENIchJRlQskOMMbgOB5KObvwmA572fnzhmqc/pC2HTqOgzF22BZsEUP11hmqrJkgwOZTyMcOBxGYtL0u9WUxWGMwrwHX14sdZZebwHU3htC8Y04NX0idfv3Yfd1h/vPGi+78cyonG3bglTTBIiRiqBALRAqUQwVaIFIVmrRaWUqZTrUzNk2gD4/tDtya4c1DqkiLGwlZa7FWpPsg09fEpudHphsYAqt4zRu4HX/e8QOT/yjlp/zetxw/hQHs+9b3M/vOt/Ef/tOvvy4/Pf52xcRUFaXkm8NP7XS9r9cbNEqbeI4hHERIa950frr42XWUG/IL/9ePcGBmkgtXajx/7gq17aO8cu5/5O0PPc+BicEX5KfCcDBWs93i48+dYWW7gzBpN0i/P8AJPISX5eqlS+yZHueTL84DML/Swsabt/CTEA7t3gjtdv8N8VM2uMw3vP+HObvUIesIjhzc82fOTzpOr6WeK3nk+DjtyH5Z/LTe2GZxfYOLK6vkxV4AZifHIN74vPzU6MzxU7/8l/nR/8+HuOtk5RZ+MmFMrVPHyZcJHJ/7Tuwnspo/+thz6MRydqNB7+kL5PxyyieOTT03lcAVDkYIlE6wOET9EOF4aOmw3ajTM5Ju36ArC/zoX3+R6v7H+OV/c56PfOazvO/dTzBSKtLcrN3KT3FMr9ejXHLxXJ9Yp+v0D/zNe8hk09u8s69scvHVJoV8nn6/h+s5jFQVf+l9rzI5GpLx0io/9RbhJ89xd1vG/78/8gmuLY0zNRnS77vceUeTuek2vdChEyqeeOhJlPQIfJfAD4jjmO1GTKvjoZRGOdsE0sMiaIct+r0BYRTTIyEnNVkbp4MlZDqV9mZ8SavK0nPwpfCTUhLPcbEeuxVqt/npNj/djtvx5cYbTvzVw5hKsYSwltlyjuJklb6NuHJlmwN3HeCxb3+C6akRXjp3icZWhzvuOkHc7zM5Msa1u67x2Y88hxCCdEC4IDYGhETtfsfErk+GlGKY+d/5v8HKtHKqryPWZULB85gIQzJdh1goHKFwc1lA4xiBlamKYC1IFFpaZGLQ1qKMRRhFbBPUfSfJZFJVaObeRxi7PM+Fq2uYgSGMW4Ag0gkj1RLdTp/9c6OQ9Zhf3iLqpfAohEi9GKzBJBopwBqLsbDV6vLk869SyOe5++0PUl/colQa491vf5CLLz/D1dUGp86eZe7IcTL5Co7r4GUkCwt1Llxf4li/uXsOjAdCK1xXorMhnlREiUVIjTGSTpxgoghHCPqDDs1el67tIq6vc/lciampMdpJn5yq4Kk8ggTlBAhj0ESEpkGPPsYqRp0c59ZfIFMLaG+nCaxBb0A/Sv++b2aSpTBGGQgcKBXyVIplPvPKFaQw5IIsrpdhMIjoJyH9fo/tTnqcJ8dGOVHI88eLaziJpdUfoOTOVFmHiVKWXCbDmWtL6evGOvWlQKV+Lza90MthNcOh/VOcvvgKcSr4MIg1RDF+McudJw5jrIZhMqofa379T57m/sOz3LFvgiAIWKn1ECZEOIJBP0IhmCz4dOOIuw7NcNfeCUKdcHlpA9/3qbV6bLU6jI8Wybk+vuemRrY6IfB9GqGh3uxSnE+r9CabLWYmq2Smq7iZHPXtJiubW+ioyYEkT9ROiAYDZqZHEOMjuBLa88s8HviEUcL8pTXytQYAh+dm6Bd8rFQIZXDzOWaKRTa2t7m6tMi+mb1Yrcnmc0yNjRLrPhk/YKve4eL8NY4fOcrpcxfZ107PRbPT5fnnT3F3nHAPEDsOEfBtG1vwW7+b/jeMInD38L/PiRf/D0Zv+nEgJZdbfQZ//HHuvbuO53osDT3rGhsbvLS4gEeGw0dnKcxOkynk8KWm3WwgXXC8gFa7htv3MNbgez4jI1XCMG31qZYL6CRByFRlVI20CjSTyxK6Lkoqol6PTquL4zr4nk+uUGB0pMzoSJVEa4QAHYfEcYjrKvbvm+PAgX1oo9PqGeUgpMQTGexwyIUcViwoLyDsd/EcReBKeu0mhXIVpVwy+QJSObRbLdrtFp7n4QU+cZKQAH6uwMz+LN12k82NVZqNOvlCgUqlmho+o3D9LKWxSQB6jz6Af+IQiZIYnSCVBKFwHBcT9rGdDtHWNsubWziOy+hIFUECjsO9pQqJtbx8+TpXLl2iPDrD8cMHaLWb9GptIi9hox9SMh32lzxsYiDj46oALcBqjZHADkRhsWYIbVLtXq+FsDtNGKnxPPYmkLM4Eszwe5v6xezA5PDatguzZhdcjUnV3ZvVbbgBrrwu3N6qUu88/rWtKzu/3mmR2d3u7mZsKg8Pt7lLrmnvCBi7o3PDEL4Zwuzub3aA9iZ43nl/Q5JNWzZJ/XwU6bQ5ZWVabTXc0g2FXGCHu7Jrtg27LSs7j735/d2Or45Y6FW4Py/fkvxUPDlFLC0HHv86xj7yqa8KfqrX0mq41a1VXtWL9KyH8CPE4M3np8bagG4CvU6P7qBPOOhx7MAentxOz5cnvzg/mUG6Xm91ehzYO0Wl0OXcuXS4QHcQopTLaKGIEC4TpSwZP20tvL7ZZCSbfNn8JIXLJWnYrrffFH66dHWc06ch40qyvouUxzg6q5mekczPd3jxrEZHMSKZoXETP42O+1gJta1NHrjjII225ZNPRUyOb+I4EbNj93J1PhU5hbS4+eDz8lMuX+LA3DbFnEO3M7iFnwrFEontERnJ1avLmOROfvzn/wX3nfwfKeXOExlYqIdg13CVTQeXOU6aNBfgA0YoMAJjIrAJUSL47Y+/wvZggI7g6tKA/+eXr/Ped3bwXI8zm9ucOX+WEzNzvHTp6i385FfKZAOXQb+HlAlKufT7Xf7LvztNLu/yyBN7OXbnKNcuNbl4tkYum6HbBSFd/soPXWF0FPwgg2fBaPOW4KeRmT2MLKef9TvviMjmOtSbDptbgLDk8xAlozhOyMRoh26ni5Qxnge+Z8hnIZvRdPouja7DleU1svkyo9UZmq2Y5naMVprNOCFjY0YChZQG5SmiSLGTODKCdNr3l8hPO8kqKSTyNj/d5qfbcTu+QvGGE3+4ko9u16kowYPlCo3BAGUFDxybxH30JKubPS43Y4rZEUaPjzMIB/iOR84XHL/zAM984oX0y2ZFWqbLzpcZrDa7CkTqNcCuB4EVAgcJQ4UjtJqWhNpgwLpQFDouYbWEN13BtiKkF2AcuSNtpCqy1qhkqJgMv9BaW5QbMPYtj8HlawBks3ne/a53cvpn/x3Cc3D8HAWVUN9q4Tp5lFAsrdYplwp0ul0quQxKugz6YVqePayQiYRPGIVkA42rE66tbfKhT36Wb/V8MuNV/sNvf4SS2+HYkTlePb/Mc69c4+ThU+x/8CEmx2bA9jh8cJJ9MyPkF1d3T4GOFaYgMImLn09IlEDELqBJjEVoQ2gs+UxAq1nDFvLYfoShy8aVJSbe9kO08wtcbp5jNDvFhLeH2PTohhsIGeCpDK5R+G6Rtf5VLq+co7JwBBGlF/DFWourm3UeB+KBRg8sie7j+FkCN53aubJVQ0iLxeD6ipXNbeIoxHMdriymibCjeyc5eedhPvmZZ4i0YKM/IEnSabLKsWQD+OZ33kX0kg+feS5VShl6iLgKO/xsaMDN5LjjyCGWlma4dmmby+0BPasJ4xDf9agUx3jX43maSQrOj9wxy9ij95PNOCysrjM1UmK0WCAcaIwOecc9+zAiRomErOOz2ejieIqNrRonDs8xWSkxNTvNMy+eZmFpnWqlhCMt+/dNMFIqkMtkiOOQVq1NcmiK6KmnefdvfvRL/mLeHA/snH/fY/LYAa4nCQ4esxP78TKgY0O5mGe0UCAKE4wv2Kw1eeHVBldX19k7O87cSJHNZo/y2jqj1QLXzs0DMDs5AhMTLH3o0wCEjsuv7JmDoZ9ImvBJj78SlmGxZQoXCAJrOV7OMv3938n51Q3+84efJLIJPemyFSdc+uwpPv7kSyhfcXecgs78xjZPrqxjEk2jU+PhJEYf3U+2MInx+xhhGR+tApYkSej3+vS6faIoSVsCTFoNmCqlqSn6oNff2TGUcpAybckpVctEUZy2CQzhSymJsSY1MbfgOP7wuwuWBMdxdwFEDROLVoj0+jVUax03wGhNv9cll80SRjFht0U2XyCTCfA8l0KxQH/Qpxf2sVLgee5wf+PUU6RUJpfP0mo0aDYarG9sUC6X8TNZwkFCdmi2XJ2bI5yeSSdf64Q4HgyBCDyKlKqjZCamGOv36HW71La36fUNOS9Ds1ZjbKTEux6+m6mxET710iVGK1Wur1znQx/9MNnAozw2zsTMNLJn2JuNSNoJOpfgu0NgtyZVWWODEaCkxL6mVSStwh3+ixS3KNs7lR1SDOENO4TdnXZiEELdUMJfE6miPWx/MeZzAPBm8PxCvPb5lOobMPu5ILzbzrLb1jL8XshbQVcIUgPpm+HYkh6/m8D1RluNwFE7qRmxa6e9c1Mgh5+/ncQN3GhRSZ8lhnCa7pP5HEXe7lZ83Y4///jp9Q8R2g9yInPxLcdPJghw/BxBvvS6/LS0MMWHP/QrPP6O/xnXWXxT+GnPbLqjJw4fYn3Dsq0E7b4C177p/NQPJesro/z7X//rvPMdP83k6DpTlVHM0FfDcdUX5ad8kK4Fq2vrfPvX7qWcC/i9P/4EALUwIo4jpEhw3JSfnnjgML//YRgrupgIpP3T89P0zCw/+i+e4O/8dz+Hf/AyJ/bv+TPnp8szgk9/psmJY5Zr213+9c9/F4cO/gk//C0fZ3H7IX7qF3/gC37fvv6xl/iuD/wq11dH+fGf+0f85I/+Gg/f0+Qnf/4RfuMP7ifjJxzZX6Uy6n9eftpuvcShwx/i4trn8tPLF64zkstwz2OHqVarfOLTS9x/8j+S9RsY62BJkzUM1yhXKsDgDH1vrU6wQhDGEVGUIIFeGDK/VSe0Ma4WtPqz/Maf/Cgvnf5OqpVLlIIcGZHnwvIaT567dgs/2ekA1y/gZiTKjykW8oBlezNidbmLtfDtHzzJHXePcvFcLZ2i6iqSxOGVs1XuOrZKuRyTyefeMvzk+T7FagWAQjnLdz3YJOqb1O5kyE8g0bEmDkOiQZ9+r0e9VqM/iMjmiwzCPqcv3k+xuIfAL3FteQvFCI1WgxdevIbrKDL5PPlikY5vqbggrQUvoZBL72mE1mnD6pfITzdQIU2u3ean2/x0O27HVyLecOLv+c4GOeuyx8/Sa1pm/Qx7T84QvO9u8sf2c6xQJuzFbG1tM9ADQh2zurnF1PQICZBYJ1U1RFqlYw3EWqOGhtWQjjcX7Ez+GWboGWoFIp0vK6xlYDTLdkCegCCKqApFUTlYQoxNn2+NxQjBztpr7E4FikghzwAHptlaus6YGk6cTEIOP3Cc0eNFOssJ/V5CkM8zVtpHq7HN9vYK7aZHs+4zmi+xZ3qMpc1tUBZFOo00CDKIKKIbx6y3QsbKAcJEXN1o8Eef+iwf+JrH+IYHj7CyfJGZw3cwWsjxsecu8omnnqE6Nkp17hDnXnqatU4dgcPWi+c5uXOytkOSosIYSzca4GWyqIEh0WnJcxj26fV6WOXhZ13ufmSK5y7U0FGFdq/FK9c/ytc/+LcY8aZwbA5lDevxRTqmCVpijWXKO0CAz2fOfZi849O9DqXhhTNwM5SyKYAePjjJJ165hpAOGeGRcyVxEtPp95FSgUlwFcwvLtOLLb1+xOP3HIXf+gj5YpHVZhflBdiwj0kE/U6q0Eeh5SPPL4JyuKcXAWl7BFYilCQxmvwQniJtEJ5DrGFxrctyrYVwBd1+h2TQRSUhp89d4czVK7w7l37U7zm6j2bOodXpcX2zQafZQbke17f7NLs9mmHCnQdm2RoMwLbohZprK9usrzXZNzdFPlfgxdPnWa83SISDQbNvdgIVJbSaHa5dW6CcLRErg84Jnvqnf5Oo1mVpcwvfD2h3uiyuN2l3B3i+hzWact5n30SV7mDASKHAxHiRkXKRlfVNLi+skC8UicIYOVIg3NwCrdBotIgZ9GMWri0hHMXy+galQonpsXEuXL1AaNPKNwFMVSdYLtWIkohjhw5iTl8FoNPpcvxtkyTjqdeLMZaO49JTLtbqFEhs6qfjDls3jU4hECEIjGUycBndO01NwflMBi0trgZjQDkuUjggNN0k/RyVy2Uq2102Bi0uLG4wki1yd6WM3F9mYnQSa8QuZHoKgkyRUiVhp/U0sem1w3MdXM9FxGIXeqJwcKPFzYJUDpmsSxInJHFIEkfoRKOUR+Bn6HbabGyupsCPot3uMzk1ytTU1C4g7QCBlHJXu5RS4fo5QGGFIfA9ut0Om6tNcvkCfpBFKEU2k9lVXHWiETL1eTFGk8QJQiiKlVGyhSLhYMCg1wXbw/N9kmF1rXQ93CCfgoqrcZVDr9PCVQKRyaJ8QTZXwEsignCAl8+xvrJCFHWJ4wFxmKFXa7J/cpzZ941Rb8VUgyl+5+NP0eqGfO27v4FDB4+xsrHCyysrHCpDybHEBmIBepAMW1K83eluVt4EW/YGsN2AuZtVYwuYG0Blh+DFUIEVIpXFd6734gaEimGLEGr4O7uj/KZtMWb42unL3lC6b+zHcBocN/4t5dBbFe2dfd55zg1R3H4O8L6eGi6EuAW8hRCpkbW1r4HNG88Vcrjfu6bdN9pfdm4Ybw5rbQrDw2rKnfeRLpXyluN/25/mqyseKHyQ1fg0WWXecvw0cuxOZC6HiPuvy0+T2X2cPQcbm+sosfym8NPqetoa+9SLF/DdLLa3gGsN/ZJ80/nJwVDOW8ZHV5mqZrnn6EHGx0s8+dwaAL5wvyg/ZcIEgK97+32UqobaxhbKSbnVakG3WSMMDWE/5aeNWvo7R0HiSJA3+Mn9EvnpI0/FbNU/wN6paQ7tdYiT6M+cn4KC4cf+1k9ycK5AK8zz33/3z1Ctajb7MVfXP8Jjb39+l58qeZ+9r+Gng3MegyigF13g7/zQj9NsLfHcK5Z7jy5xaPojvPOJo5RLjS/IT504S72xl+mJ5HP4aXWzxXgxR6PV4vjhfWxsbLG09hts1doIK1BIjE7bmYXVKCXwnJTFdKyxYlixBHQHA0wck9iEWBusTAkmCOZ5x91/hXywAkLQTiynFpZ5x33HqPj5W/hpvzuBcCTFUpFsxjC3P8/RO8qsLnURUnLnfSnfbW2GIBXaGBAOjXaGH/zbj/E7//bD5DObhEoSZNNBeH/R+SkO+0Rx+l4cP0uuaMgVNTbmJn4qIISDsAFJkiEJs4w2nSE/bSPFgPc88gpKFJB+QCIsjfY5FusD/uDTz9HuRTz8yHt48NFHWNtcRTfX2F+CYj7D/NIYP/uLhwjDAYNe/0/BTzurR3oVv81Pt/npdtyOr0S84cRfT1oSE3PR9Oj2QiYPTdC9a4J84NFpdtBW4PtZZqYn6XZaNPsDbFGhTUwu7+AHkkE8QKh0sRsm/9OSX6OHQ+JS0NTGsHMRETuVInJYnlsM8JG0B302opCcENTm1ynGGnekiBUGI4YKuN4plzYYk6RKDBKjNSrr0FxZY+3UMpNf8870TUqHscIYj97/CLWxCJSlXBmnsdWiVstx5NhBXOVidcieySoTxQLCy7CwsEin18XxPEZHRpF+Nx0l34+ptzUjWUGSDDh3fQn9Jx/nG9/9LvbeeYznX3wWkJTyHp8+d5256Vf4mtERqmNjPH/pVZZX6lz+9Av80PAc6MUcetDHP+jQdTxMtolTz6OFRRtJpA2JtbhehjhyGB8Z5/DRGmutq/gZj0vtp/EX4H17/idycj/WSoq8yurgM3RNhy7bGBKWtq+yVD/PPTNPUO/6ZNLxd9RbbYIg9cxYWd6g14vQxJTyAWMjZbSxJAYcIQiUIgkjLl5bIBf4xPGA8ZEpAEzYI+NW8KSkJ1I4cHR6oa2UMyQjOT707EU8Uth9/N7DXD1zHpMkuIGLM1SWXD9AKMl2s8lLZ68jlCDAYOKEznaDwkid5eVlXj1/lW6rk1YqanC9gK3WNkmYEMeWUrnIVGKoBD7zaw0uLayjreDBk/s5OF5krlqhd2RAL9ZcvDqP40gOzkzR7w9Y39rmysISUWzpJjGesjxyYoyZsSqddodXLl9nvl5ncmKExx+8i/nVdRbOL6BbPULXZ7M9YD6KONuN8RyffCw4oAT5sENxfIzC6ChCSXQ3pDRaRHbbbK418AKPcnWK7a1NDIrRSoW52RmiMEQbqEyMEEeQkQJsTDfq8vijDxN2m/R7Xfbvm00/8lJRb3QZGymk3zeHtMVTCqQVSAyOkxoSyyF4aAthEuO7XrroIjEmYRD10+9vYtEGkBaNxs34jGRLlEl9BRMNb3vkEc6sblHf3OKV1Qbl+WWOFqvY2GBcD6VSldPz3LTVaKiYJ1qngCAlyLRtxPFcvFzqA+g4DlJJlOOmg0eiBNd1Uq+UKKTX6w29hjTGpgr06NgU168vcfb8BRrtHlG8h9HRUVzX3fVdUSpVVNOkp8AKi0Di+unkYWMiPM8nHPTZ3lglm82SzRVASBzPxfdSfz0zbEDQJsaaofG+kCg3IO8H+EGWfqdFOOijTNqupZMIYTVIB6xCeRmCHIT9LjKMUJ6HlA6um8FxfPxMjvJIlUGvR7veQoc9+mGXTrNGLlcgIyz7ypbvf/dJLs6v0astcerl52j0Izq9DtZkedtEBV94OMZj4HZJ4piw18GYtHIkyGaQ6obKbHcBcsdYWt4KaTepqTuT5W5uq7DiBnDtmDXfrEbvbCkF2fQmYqc5xt60VrCzXbuzTzteOGa3lePGf+zue9pqsrOvO76GO/u9s/2dR9jd17v1fXwevXxHzb/5veyo6+ImFXxn2+Lmd8xrficQ1mCRGG4F7pv3RYqbbxxux5935IJP0jOCi8Z9y/HTxJE7kcoFIV+Xn86fSb1677r7Tqanxt8UflrfSoWtD336Be69w5AMRkmafXR2+03np7zTp59b48H7foIEH0ccZv7qMoPh8K981mNsJP8F+SlJUhGomM+h+6tkXBd3x4/XGNzEsrCyxthoDmnhsy+nScWZ8XHu2n8nv/fHn/xT89OV+VSA/fhzF5mbLeG/Sfw0Wupw5vJ15lc2mR4rD/nJEIYLjOXXkUN+iqOIta7Ccxxasc+oKrKyJSh6eU7sn0CoBt2uS3W0SDfXZnNtjb17DpLNfmF+ai7M8e/+8//K3/vhf0r30K38dMexg+QzqQ9lvdGlkJ+i3p5Aq49idTokwxESicb3HCTDqcRYYmvphgOyQQZhBFKo1+UnKftkgwt4GZ+RbBUQnF1Y4eG7jn8OPzmFVUxvQNQTKCnotkOqowEHDpeQUtDpxDz/1DpPf3olXU+UgkQyMhLxO7/6FCePaTwnj5AK5y3CT47ngUnvIbB6CBp/On6KoxqdXkguV2C8YClmLNPfsD/lp8EVrl1ll5+ymSwHJnLUGsOOB8dBW/Ml89PNnHSbn27z0+24HV+peMOJP6UlVira2lIaLbM6JgjrbezqOiYcEHb7BKUihXwJ1/GYqGYYK4+yWV+n17iG1BrfdQk1CKuHSgM4znASndZpiTOQFuemFzsl01YThExv6AMX3R1gpKQ7U2JxvcXIoMdop0OumCXQYP1U1RVIdBKhMKB1ulDseAK4Lt2XLjH2zY8gdybnStDtFp6J2dIbtNe6JJcuUMhmKOSzCDSlbIap0RFyuTy9fkx5do5H3vku/vOv/yp7y3ke3L+XVqdN+/AUzUHMVrtDvdmk1evR6/c5e2UVHX+C7/mOb+bkPfez8aknefCeEzz78nl++1PPc21ti3ypwLHD+8m5ebYKp3fPQRw3EO0CbCaI4gAn76J8A31wHEEv0jSaEb1+ByE9Xv7MMzz0/vfz9uy38unF36HfaXHq1Rdot36Ubz/5f1NRs+TtXkbEBj31AlkKCOtyuvFZ3Iymdr3F/NVNOrU0YdPqDegN0vL1UEqEMQgjyQQeI6Mj1Jo9+mGEIyWen+XlVy9xZa3Nw3fu5Y79JVQyvMAC2bzLWKVIu93B9RU2kyYUDx2YY3rvGMePHWHl42n7qeMJvExAs94hP1omP0xEOo6H4wQUsz7f8d57cd0cH/7wU1hcDKC1Qflw74kDHGy14VPPcO7qPEEhRxhH3HviAFuNDleuLHHi4Czzyyto6XKtuU0/TvjsGc3TWGaqRb7rA0+wZ2oEg6He6OC6LkJELF5fo9HsIr0sW60e3U6HxdU1oqTHRHWUr33n43z0yWfZ2trisy+9Qrc7YG6qSmbvOJ1eQma9Sa1VZ9/MPjIqpq9hZavNynqDnOvy8J1zlLIB7fUaM3OjnLjjfq5dWaTbatNs9LHWoE2Coxxc10HYdCrb204exlMK4SgGcYSILdu1dWxoaXXqjOsU5lutNv2FZUaTFJD2To+wvNVFJQMEoIRAiWHLhjEkJkElCRkJOorIShelJMrzQAiymQAjLdYIdGJIYkPYFxTKGe49WoXPPMPy5jbv+OZvIjp3mYVunzuqVSZGKxQKZZxinu1uhyRJ2xKiKMTz0tYRz3NxXS9Vf3UKcnLok8KOR6R0iJMEhEQYCAc96ts9HCnQcYgfeCwvr/LK6fNstmJ6/T7HjuzjG9/7Lk7eeZxWp4c3bFXZSV7d6p0CSsld5VRJlUK08FC+oFASZDM5rDXE0QCpFDqJiAZ9XD+D4wagBEopBlFEGHaRyiHIBLiei+sHKKXo9zs3FFadEPW6OK6Lcn2MlEjXxxMKE/cRdnhtUy5COiAUjnLIBWWcXAUT96mtLSJ7HfqdFpVyBT3oUQwM9x2aRGNZb8+ztVrDFT5X9Ahz4xMcmPHxpEtgneFNQES/38doC8PKhJsVfbgBWa8FOrFzjbek8CVuUqwZAukwm7FrDbNbH5BeNVKeE8MEtMHanel27EKsFGlLx45ibu2tkAxpJYOxN4B1p108VbpvbYHZqTK98f6GSZebYXm3rupWALW8Ru2+6a+7rT7D47GzBStEWrF6g3PT48UNEduKG746N7/2zZEK+LdV66+WWGj/Xeay/5FIb771+CmfTX2pPg8/Rf1jAEhCSlnnTeGnfdN3A1Au5DCmTdLaIApDhPbfdH7qC8FGw9LrzlIubvKMvcT+/ZMwFHZ8z/2i/OTJ1O81V6pgWSWbd6kU06npjqeweY9HH3uAhc0ajo3wgr08/3w6YMsN5JfFT8cOzPKxT4OwES++eoG58fH/JvhpIj/JvwLuOLKfYnbjFn4KMlk2NnpYbel1+qxs7OFDn/hh/u4P9Tl94Q8ROkQBjhS4AhylEEIQJwnChhQDhzhOcAIPz3Vfl5/anXEuXP2rHJz5JfaVNXffsYdnLy9wbWWNb/7AB27hp1K1jL+eIcgItO2xtNjil372FEKK3ddWjkJKB0ftJGoEnis4fHBAJquwIgBj3zr8pBMO7W/z8d/8OLNTfZKBelP5CTetui3k85QrXzo/GWN2j6G19jY/vUX46YUXXigAU6QOSrfjdnwlwgCr999/f/uNPPiNe/wpiUliKvkMm1XJysoale6AZrvF9ESFyZEKI9Uq/UIb38/gBz6en6OaL/COR+4n3mrzJ3/yFKubMYlJq3aElCRm6FcjxLCXfzhSe+jBYIbqh2MUsTEMVrfxXQ/ru2wvrNLTkA8sh9o5RsKQZFhe7BiFcRRqZxR6bNAoiGNiZXGQFN/7IO43vBdz5jwAQiqWltc4d2mN+a0rrJ7ZJOtLpsZK1NeCdDLVaIVjo0c4Mlbis6fm+fAzz9F44BG+53u/H7t4mbDTwCqBFRqd9InCkNi43H/gCKiIT5+9wpmFBX7h3/1HvuPbv56/8k3v56kXXqK51eLS9TWePLNAL9YcurrEWLXAWHUcuABAIT+KH0hsLaKY0/SMwS9GyL6PTmIiK1jd3qBRbzA9PcHGSsh/+Z1/x7e876/wLff+D1wJP0ommGRt8xpX2n/MXcW/hGdKTAWPU7BH0XGTPh0yzkeplirsnzzI9ugSpaGYc8f+SfZNjcLHn2Z7q4W1BoHG6gTluHT7tVSNs4a1Wo1zi4tIqxHAwEpanXTSXhglnL5wEWUEvvIpFYPdBWxjZZ09dx8n8Dw2RLpwFnMZ9s9O8dz2eXxXUcj6AEgnTTplPXj0oTvpdfo8+3QGoT28QpbEhKA15UzAXZNpq0OpkOfJs+cZHa1weXGZerNHuVhicbNJO4JeN0YRMFUUuJ6i0YlY3W7z4U88zYN3HWBieobA9wj7EZu1Fm6QZSLIMTk5iYkH9Pt9FldrXF9dJ9KKfqzZO5Znz3iePdPTFMp5TBwTJhorFNuNFhevLhH3I6Ry6ddblAKXuZMHGB/Jc8fRgzjSRwqHbBCQCzJUijmSWKctG0lIMZ8j0Zqr8yu02l1KpQwFP8NSM+Sla9dI4oj7jh5CKUu5VGVmZpZMODT4Xlij0+ix8OKrvB1obraYDjUCi7IWqXZax4YqH4JK1iWfzbG23SS2Cb7O4iyukbu2xlStRawTIIXMqD8gsgnbm1ssFtPzNj05y+ryIqeff4VjSnHy2D6c0SLKVxSKVfpaE4V9lOcQxzFxHCOwhP0+rufjeV7a4isExqYfTrMr3gniOCaKYnw/IJPLIZWkVW8QBD6ZXJbDx47Q6idsn7mK7ve5Nr/A+fMXOHbsGIVCBUya3E6S5BblFRgqoOzCDRgwAqkcHD+LdH2EEyGFQai0LSUahMRRSL/XJdEtvCDA83wcRyClRxhGRIM00ep4AqEUfiaHcNPjZUgnc4aDGMIQ1/NwXB+pHIx1iJIIayIc5eB4GaRysMJBCENW5bAmQxDkyRcmaNQ2iYiQvqIg8jQbPaRKOD5T5sBIlpVai65rCXIVOh3YXDhDLpejMlIlyOcIMsENzxhtd71Rbm61eC0o7oZIW0yM1sPnpJPr4DXPMTs0KxBC7baMpMdfAzdU5FQwv8FPWqe/v/k5rzWrvpm2LGnrzU4ixRo7BFmD/nzG2K8bnysP76r0n+fRxlpuovQhw+605FhuZlMzBHs5PG7W3PB5e23svB+sed3f3443P+YHf4cx98PMlOtvPX5yPCQKKcXr8lPGKwOwfn2JMXf7TeGnuck63/LePkIZumEXLV3KpSo93X/T+SmDArOff/v7/5z/+x/8a2LzHGsrdSCthLRGf1F+kn7MQ3cvkM8b+oOYV5cXmChd5f1vf4iDc2Ws2M+1+QVWNhvcd/cJpkaHE38HIdVC7svip4KfctjjD5zAqlM8998KP63UAPjEM6fIuOoWfjLCobNwnXq7yyDs8EefXAd+mMvzNcBFKYNrEjxX4QyHN2gdI4TgxL4p5iYnePrVK3Rjg3IVQjpEoaUXaaIkwaLohhWWNr+JUvHf89lL59hMetx530PsqxY+h5+6wQjikiAIciQ2QccR0hUkWg/XREscRSgn9UZWjoOUgkbL4Ud//Ah//29eYW4mBGGJ4+gtwU9JFOEryaFDXWySEA7sm8pPW2nRLZvLaxyatX8qfrqFN27z0y2P/ovGTy+88IIE/qFS6vuEEC6v/9Zux+3404S11sYvvPDCrwL/7P777/+CH943nPgTWKQrSQqCbbq4iaLfqNHu99nqdNioNZgYrVMsFCiX8uTzBXwvk5Zp+x7f8IEnuPehO7hybZmXXznLqVfOs73Zxuq0Zc9VTgquxqKlRQiTGsIbSyIEhghr0gt9YgxebEiUpJcIFsOIa50uh6IIIUA5PkbFJHcfRLx0HtuUmMRgdYI0qTGqERa3kEcGWRQ7HjmCxcUFNla2+Evf8X5+bvNnKGeKKD9GhBJUlkhGnF9bg0yO5UbIxNQ+Li8tMbtynYeOH+TqM0/iSg8bD/CCEsWRAjY7wOZ9giRgbv8dbG8vc3Ftjd/4/Y/wA3/5OygVchw6fIDmQLOwuUU2CJhfbbFW73AsSm6cBFcilU8SWeR2ntxknTAQ4PjpAA4h6IYDmo0t9kxOc/zoEZbzS3z0xd/jzPILPHb3eziUf5jp2SXq/YtcCn+fo8FfQVpLTkwj/VlyIuG9e/83NvoXaLnneOBxH+eTwxXMJkRx2nLy8J1HeOmlMzS7DkhBp9OlWMoxNzXO6ctLXF5aQyuBcLK0ehFSupjhAA8E7J2c5fnsRXxPcnSkjJ9JW007kaYzCPmjJ1+meTUdbNLpxYSxQapUhRytpFBrAa0j2u0mzWYLTYxwLMJqsqUK0nM4cWgfxXKOynCi7Imj+/F9RalYILHQqPdY29pmaavOZC7LXLVK30SUMx77piboRSGxhiiKGPRCOts1GjphEA8Y9GMK+RwIxavnz+FIxczsDHsOzmLQtDpdXj63hufAQ/fdw/TsNCaJaOsErRNwYaJSQO6d5sr1VZqNDsf2TlMaKVHMZJBSEQhJmEQc3DeL53n0wz6ddougIOn1epw9d5n1WpsDe8e5/8QRmo0mYWzpRV3Smj4f5Tpsd3qMVwtoG9LrWxI/IPFc3vNfPnLL9/yd1xbf6CWBu3b+srQGz77K+4D3fZHnxJ6LPzVC2NzE26hz5JE7cAoulpCkU4dikaDVotttkR0fwfEkyguQQhHFMUmSEEcRxphUwVYybe8dVv4JoXBdf9gOkqqRnuszNjExnE6YVr687eH7efDeO+n2BiRJgiMMSdTBkxoh/d32FDF0+5BSDRXqtI0iZZJ0EiUmwYq0Bc9Yi+P5Q8AxWCXxcx7Kz5BEIdYmWGMJBwOSOB5WMToYK9BGQxShHIUSEjVUjJXj4XgBSRwN2+5ijFE4roerfJRQJFGIiWK6nR5SOeSKVaSj0v0TCjfIUZx0KY1VGYQ9uq0eSbcF0qHf76J1Qq4YsNeVDAYxTnuBduxy9fwVhOeyf3aa6b1zZKtlHEdhTJyCs0mrj0Ck7d1DaBRW3qT0Dg2XZVp5ILQYtvekNyRSqBu69M1tH7vtJsO2kaEifFOOdxeU01fZmZB3s5p8I25uU9mBWYHYNRyHFFx3FHBjh6BtDFgx/Hmocg9f05ibQfbmv99ob/l8sLtzfG4BbMuu/1MqXIthW4sYqtg3jLnlTQCfqt43TcazYG8Lyl9VIZ23Jj85sUETo/Ffl5+S3nDdD5w3jZ9Wt1cJgt/Dt5JCMEJv6IElozefn1pXLPM2nXkfxSGHD+yhUixw9mzajozgi/LTvQfa/MQ//A0OzB3i+sLn8lOQq1DbaNMMEzqDkM++8gLjY3so5WOaHfll8VOlvBeA8alp9s7ETFXz/03wU0x5+L0N2O40b+EnK31y2QLl8ggvX5pndTv1qN6sdyllEpQVSEeihEZKD21ijNHsmxjl7gPTrDdjEqsx2pAkliTW5LIl3GyWjOvR6cTk/FSsdhQoBF0tyZdLlEr+5/JTHGGiPsQKL+7RDvtkiwWkI5COixCSJEnXXJ0kw64Jl15P8lu/P8MPf/8ye2bT7+lbhZ+k57Ow5PHjP32Yf/AjF5gca3H6bAHpKJTjoRwXq7NYq9FxjNEJ2Jg7jjTJFaucv1KgUoqYGI8ZxEXmtysIs5coGtDvDtD9LmHYJwz7rCiHsVHN3glJs2W5/FIHT3X42kc+wcbaaZYu575kfgJ2j4MQ8jY/vSb+AvLTP3Rd969NTk5GuVyuJ15vGsrtuB1/irDWim63m11bW/trcRwD/NMv9Pg3nPiTUiB8EFkXNwHjGKSWdAZ99Lam0emy1ugwVsozks9Qyufx/Qye5xFkMvi+h+/7nDx+mHvuuoPeXx5w7sIlTp26yKmXz7O50UBHlsDL4CifRCfE0QCrNVJ4SGkJkDhK4qKwiQGbYICtKOJUP+DubkhGCAQGEWqcZy6gwwHaJNgkwc5NIwYxemMLVwr45Ms4+QJ2OPjBWMvq8hbLS0vobZdHH3uYU1cuk8nkmChOoESOqBnz/IUNXr60Scu06dsGXtnwX0/X8Arfw8cuvkTOd9E6wcnnaUrFSqvD+bbBtsAfmWDgt+kWV2gWXH736d8mqvs8ce+D3H3HEc4sv8jL9TNsLXbZWtK0N+KbTm56M22FobPhUh5xcfIuLT/BJg6JlFjhECUQ6pCgJ6htNJk7uQ8VwHa8wlFcDjjfisl3WI+fJ9Qb5OQoSVKjbq4RqL1U3b2MuMe5HBmy++sk59MU0p379lMerwDQ7bQwUuA7DjPVIspK6q1tAk+CNXQjjfJ98kJTKmc4e+4cZS/1Yctn81T27mHvngk2VhrsmRrHyaa/mxqdZHV9m1arw6N3HYNPP8Vyvc5EtcIFV9EMQyqVFIgK2Qyx1YT9PnGvR2QTPCcgiQ0uLo6jGB8fwQq9u5BiDCMTUyn0DvqMjmQ4uP84mXyB1ZVVzl1eYNQJGPRCTl2YZ3y8zL7ZcVwpcYSiEw5QbpoIQSpa7Q612jbKQj7I4ElJMZcnmZyg2WrTqbWYqIzRqm+x6QcU8llsIsgon3YvZLPdZnFtG61jMjmXle0NBiZGTk5w8colDs7O0my1KWQ8rFBEBpTWlIuSXKHK4X1T7N87CcZS327iCkHOcZia2Iu1MDlS5OVXr1BrdOl0QkqFAkf2zlLYW+DVf/2/0Vhe41PPnie6cI0fu7rAPz9yiNWcjyPT6WOpzbREW0M56/LAscN0w4iXr6zS67cRKA5NlvnGr38XkQxY3O4SFApcunCZjY0a25sb1DdqDLRmz9FZDp28k6oSrJ9bZNR3KY3msELgxop4EBFHfVpRyLNPfopHHn8UrSCMNH6QJ5fP4boe2hiSJCKMDK7rYhxv1w/PDn1n5I0vDcZYpJJI5Q0Npg1RHGOFJJPLkcKTwOjUuFqoZNiiclO7hZSpnxY7QLSj0EoY+mcZkyr6RqQtLBaBSQwoB+X4SOlgkwiLIQgEcRQSRRGu4yCUSlubwwFJV+P7Pvmdt6ANCInn+7sgZYwmSWIcx0MIgReotN1OdGk1mxhhKRaroNSwYyEFRC00np/HHc1BpULYadFqbKOjAWE/pN3uUyrksZ0a7XYPqSJWVjaQJiFfSm/28pUSrudiNajh5GFrU8NqrXXaBiJuTIiTcqitCjmsRFKpX5jVNxYYy25b0M72xM4v7A2YHBIstzLp68Pj65tK77yGYMeL5tYHpdsQDNvc5XCogh2q6mbYhGIN2qbvV+sdo+hbzbF3Wpt2duNmr54bMLsDnzfg2xqZ7oEFKy0GvbvvwqjhwTKY3f1lt+R19zgBCMXt+OqJtyw/PXoPOC7GmtflJ5x0ba/umSDOdN4Uflq84HHm2a9ltPBxxir99CZbgxDmTeenejigo0sAHNy/j3LpKu1GjSC3xYmD/5rDM/EX5aczr57n4NwxpHOdcrFIoVggk7uLT7743Xz9Xb+Fm89xeP8cgVNkdX0bV13lx/7Ob9Lp1bm6qZioFnf56eE7mvy97/8gD931gTfET5utlI/DcIA1mpGJ8f8m+Kk7SJO1Zd/5HH4aybnEQZHVeoMrCytYkX7GSSKUSHAUOMNkV6ITtDGMFrPcf+wQzcGA56+u0Y/S4RRbzRaxCTl28jA/NDpBplzh9MuneeHlVPjLCA9HKUbGSrjhgF6jz/qVpc/hJ51otI4Jk4QrF85z+NgRjIQ4MbhugB/4KOVgrEHrhDAyaJ1WnRqjh+tvWk38VuCnIAjAGq4vZshkLJ7v8/4PvusLXqMnx/v8yX/8Txhh+Y7/7hE++B3r/P2/ucCzL+f5zh+88ws+9wPvepm/8V2/Sa25j+/7n7+Vn/oHv8B3v/+jrKw3WLg+8SXzE1akXtfItPjsNj/9heWnF154oaiU+r7JyclofHx8+yu24dtxO4aRy+X6wMjKysr3vfDCCz/9hdp+33Diz3oW13WRjsQoUNpiRIi1Dv2BpR9FNPoRa/UWpVxAtZAn66eeEZ6TVlgV83kcRyKFYnRkhHvvvpfHH38nEYb560u89PRpTp0+y/r6NkGmwv6jB/ByPt1ah3pjQKNVo9fp0m718GJDMVK4pBfM690Oy60G+6MEXZAYV+H2YkTgorfaJP0eUb1BZAYE0YCgb8hkHOJPvYh89A4A+rU1Ll6+yEh1jIunluiEebzVEfziCM0Vzcb2Rfr9Pr24g1QC15fcfbxKLWxjGms89eHfoRP6rG7Mky/6+KqBm3OpjodstvqYMUscbfBXH3sveyrvYXRmklc2X+K3Tn8S+0LMgekpRgp5vmnv11J5e5aF1UW2PnwWXnwJACE11oQILVBeQuNanpF9MZmSoN2LkYmHsgLPsbgoqhNTePFF6kvblG2FpfWrnC79Z+4li6VJ4AS4VIhsj67YoM5FZHKN9WQR2x8QBQmF8SmcIL0Abrc7ZAop4IyWy7hqHeGGTFXK2ETj+D5+4CKQw8mDgkQoZmdnGC/txTtzEYDV9TWqrT0ESpMNXKYPHsI2ewB0e036XcmJA+MEC5sAuFIzO1UgHwQIKfGHF3/PEygj2NxaZeHqBSYnx4iTmFgLSCL0AMJ+hwtX5znUjZgE6rUG9ZzPxNgI4SCmE7eZn7/GsaMnyQQ+e/dOorsx/WDAucUVoiRibqxCoVyiG8Usbm2i45jRsRECJZA6Yn15lUcffQSJpdlss7q6QT6foVAMmJybRGtLNl+l2+/SS7pknADHVayvbXJtvcZLpy9jMLz77sOshRFb6xssLl7j4vU2C0urfO+3vY/1tQ02ttYJ/Cxe1ufa4nnKpVGsSLAiTzaTep68tHCdT3z2DKP5Md720EEyOZ8PP/MKFxYbFPN5ZqenmDp7nbmxArnApdcL+WwvYjqfpplW8hnmiwEO4AqwykvH81rD/nuOUC+V+c2nz9HCo1wqEmtDP6N4bGyEwvQc7eUGK4mgPDJKsrjCcx//ONvVEjMH93Hi699FxXNYeP4svYUG04eLxGbAxlILIRxKkxNkwh4q7PHU85eIrM83ft276HkJy4vXWdcJlbFx/CBDJpfHD3wSbej3ezhRmpwW7Bjz3gAEKYdglfaY7EJp+p0SqdWSFCC9FEiGlak3t14YrZFC3bLdXRDZ5Y4dNTHGKoVSTpqoH/7OIrDSYQctlGPxRZqstNqiHBffF0BMFEXDtos0ATvQSWqqL9TwPRmMjtEyBbCUCxXZQpF+lFBv1BFSkM0XUY6HtWnLtnB8tDVYbRDSIV/N4mYL9Lot/H4Hq1r0+10cBVlfcWjPNJOjVa6srrKwcI19c3uJBgPypQq5QsCuak9aCSSFTFs8AClTCJUIXKVS36ibzsHO8rNzjsCmPmWvabGQQt4EgjdaYHaV6Zth7eY166bH3LK9Xe+hnXajFEw/f4hbz3d6+4Ijhjd37lBxNzufg7S1RA/brIw1Nz4Dr9n/G609wz0ZPg7MUCm/Aeypeq131XywCJvuj9k1tbn583m71ferKZTjvDX56dgBxPQEndXF1+Un9AgA8y8v4Kizbwo/rY/P8Qe//s2853sb9DovsLbeQCiJjd58fnKvO9SbKYOH/ZDJwxU6jqSYe4VDB/4TR2cf+KL81Mg8yHf/3e/h//e//Awnjy6yb26WnBcyUlxg9uAMVnokiabd2UYQcXzfBLpn0QONn7NM3sRPgRRkM5LAl2+Iny5fqQNpcmZzfYs4Sf6b4KeZmccBePrMRVYbz3wefhpwfXEDpQ4C6Zon5XC6tk12+UkCdx3cC0Lw4VfmaXVCyp4i1obNXodeo0NhuoJwXTabXQ7v20tzbXj99hSH7zrGN3zd5+enTr9AHB2l1faQkebspQbdcJm7TxzFCsPGeg1jNLlCAeV4qYiofXYWrDiK0EmcJv3eIvzkui775uDX/t+XyeX7DELNH/6HJ7HWoJy0wlcN/QitTSe++p7BzeSoN+r84k8/ycy0h5Tw4D1tPvpbL4Ig5adhgs1BEkV9Bv0ueb9OzitjxTq/8GM/x56pGhn3T89PaTJWIq1AKHmbn/5i89OkEMLN5XK9r+RGb8ftuDmGlaRZUg/JLz/xd+KuI1y5Mo/rOCAMmp0yXMAmoEEbTSdOF9BGp0/g+8OqIUGm1iIT+LjKIRt4NLptWr0m+XyBcnWcg/sOcOLe+3EzPs1mk0G9RRIlGCxR2IcI+srS6/f41Mef4TOfepFmu4Xsh5SMRwfNlXafh+44RhAo7Mtn6WWyDFaXCZs9IqFR84sIkyDGR5CVLEkUoZsd7KuXcYD5P/ooxetrPFGt0rv8AntyiiMyxvavs7RSY9r3mJ2pMDO1lzAc0OqEFPBYa1rcUDE7JiiMTuKMjhH2umRUFgeX4lSWJXcLRYw2DqPrHSZMBrm9zMl+8P9n77/jbcnO+kz8WavSzunkHG4OnaNaEQWCZBCWTTAwiGDjBPPBZoxnPDYj7DGM+dlmZMYMYH4GE2RschJCqZVTd6v79u0b+uaT486h8lrzR+19zrm3hdQY0S3U59Wnde6pXbVqVe06VU+t73q/L+POQ8wen6btBnjbO3irW8Q3h5gxbdKtA19CDIZhEokYRYwZGzTXbfKVgJ5h4sUBjW4PtEkcezihycMPPMxHn/wQk9YocWCwVt1i2rzMYu4trEefo2teoyCPE0chbtxlxnqMtd4Vntv+CFMzs4RuQP3mDR4ApiZGyaQTf5iO52JKi4xjkndS7Ho9KlMVyqsbCC2IFBgESOFw7fJFnGNz5IPkRrqytUG4U8fKFJC2TWFkjM7qcwA8fP8JGjMjXL+yjNtzAYiUTSFfwLYMxssFzL7njO1kieOII8eOUi7nadTrtL0Q31e4YUBnY5eNzTWEabO5vQYkzxZhpcC0yRZzFO0KGBlWV5dBwVClSEdGxEJx1/FZStkslaEyQRBwa3kFz/U5efRIkhbk9vB6PcJI8Nzl68zPTaClJl/MYZgSQyiOzk7ihZp6o8329i7N7i5f86pHsKRDs1Hn6WefZ7fjY6F5/JlrHJ0eBjPizMICo0MuT126isRkfn6BcqVCMZ9BGDbXr11j+dYKxdFxPntxlZWtDm4YsdvYplr1WN7Z4Olbm5iGRIURw7kCwtSsrq5w9WaMaRicPTrH0clhRieGSfX6zyMFKKMPXHFiNK01o/kcx2enOX91iRsr62Qtk3zRxtAmvqtpb9fJZorcvHAJI1um0WjgVtscz1QozhZxFmfI9UKCdoBsdVBuQKfa5QPV82y0uiyOD/Hm8RFsBOm5Oe575AFuXrlIs3YPw0enyZfO4nV7hH5Ao9nk4oULTExPsbB4FMuSmFaiUcdKEYVhv4qcceAmlfxQexP4kwd8PDBM3tNHB1XTwJQSLRIF8ot5nmh9O4gopYijxMdFSBPDFLe1L/oAnABxSBxHSGFgaJDSRIgI3/fxPK/fxwjTEGhhIRAEQYTn+aTTqT2AiaPEmyVWgmJ5mHQmQxQGeK6HaSkcx0ngR8ok/Ubse7PYmTx2JouKfFK5Fu1GjdrOFu1WE9uwEDpmbmqCer1Fs7FLQZeoeT5CVMhkEyNuDeh+Go8UZmIN0U8BGXgxqr4KPUil2M+y2J8BYMg+yPfhkH764t750vtpInvn/CCzyv3v++A6/R3d9kwTt62qGLjXvFBZvj39RWDsmVonJtl9IV3KvXUN3S+sYBjEg2IM6oC/kYb4AIgnV+DApLoPnEL2XyD7AKsVCJWo5gP1XZLMDDgAxXsK+ReA+cN4+UKa4quSn9TnzmN+/Qif/eRnqbU9jsxN06jdYChvkh5Os9tu4Nhb5DMB952cZmFuHNftUW96lEoOy2t1HNNkcXKUx0rDmNyF126TzeWwMjbloTw3NjcwCIhjk0q6SHloEu1JFuUxvvN0kWPFIzQ7Hr3mLu12j4lCg/f/+ns4dyXkM09ZxLGNQYShXnp+unKpidCnAMikU3R7O7S6XeKoxG71YYjFl+SnucmYH/nbvwnc4tpqjXQqy/hkyBse+g+cPP09NBsttIp40+vupdfr8v4PRvzjf/OD/J1v/RccP1Eje4CftjrT/Off/SFe/7p1xo6+CH4ypgDY2dmhlH3l8NMnL54DoNaMvyQ/NXpJcbovJz+11ksAPLawwJGT+ovy0/TQBIXco4RBGWmNMzR+mtX1LUaHFdmhIqlckSgI8NwI1/epN7bIFwuU+r7LCT+pxHdOqa8KfhJCkEo5FPJBMpAuLO492yUIfJSOSadTyH7GRBRFDJ7dUib8VKm0kYaF79kU8g73no1gUA1X3TF4SQoVVei2TDL5GpazSbvVIgr/x/kpFoJkOqQ+5Ke/+vwkk8M/TO89jL+86F9f/RvHnx0veuDPWZhjrpjjVrVKWkrScY+o6/an0YLWEqVJKsAFEX4YEvhBciOWBs22myg4hsQ0JbuNFtVGm6FCnrGui9ftkW13KU9OUB4apWtYuJ02htDUdj0wQiZHxqjMTXHyyDGU0nz6whLu6ira9ykog+fdDu0rNzFSFtHROdznr6FdTaaYJR1oIiNCK0U2lUOkLTQac6cBG7vodJr7fu6Xue8veOL/rLj/L7CtLyWO6sshRtyfQi8xtIkOAryWiWVoYg0tt4sbKtJWluZuk8rwNF/7+m9i3b9CyhREjZBz0R+zO3aDs8VvJR2XMIRFSRwHU5E3FohjQcvc5mvE3yU2OswcSW6kpXKOdrsLwNLKGkEQUXBsul5IzxDM5DPkciksSxMg0ApyNrz5tQ9QKhcx+5fbWGkIoUK2dxqEUWJmbDnJrMKtzV2GzxznzL1FGq2kGEg6ZTFSGSVXKpC1HbphMhPKNByiyKdbr5J2UkT5MkJD6HfpdDqkcyZHjx0lWx5FpfPAf2dufpbtSpY4Dui4XRrrNeIowHEsGt0eV89d4eTxWU4cP4HXi+h2qkgJ6WKe08eO06t32NjeotFtcOrIAta4wykrzbXr1zjfrOKFmnJ5hJFynnrL48b6OuvVBr1uDwPBzm6Pau3jnDq+yHptl61qnUBZhLbkoZkRjk6XuLy8xcpOjU47Jg4drly7xslj08QqRjgOhtJMjY2hApd8pUR2yaXm9nCDHApNqZjHdARCxXQbawgRYdhpVBygohhTSAwEN1Y3Wd7cYX52nGKhmFxsmiQVhBhhmMRRRCFlc3phmmwmjbDSWIZBHIe4ysYRmo4X0uw2GI9douo2Nz7zFE5ssOWGjBdzLJo2xlqd9YtXuNJsYkYSwwj4/LUd3DjEMU3GKmUy6SI6lYNMije++VE+0N4gjj3iOEakMqQKDqrTZiSbRZsmrWaDlZvXKeRydLe3GSepoqcNSawUQhp9XxP2YFTrA6AhAA6kWug+RCmJUjGaGGnsQya3wcE+zEhpkAjAyT03gc9koiSDWXuGmQy8iaQ/Sf8khukQxxBGEWHkIU0by7YpGAa2vdPvG4RBiGOnkNLANJNUOATQT8MxpUEYxtBXwFN2BmWnk5cPrYnjKEnziUMgMYVWmiQFXkpiDaaTIV9xyBfLjIxPUq/V6HbaNHe30b0Q0zRI5Rwcx2Bnd4teZ4dsPo9l2Xh+QDqXw0lnQEsMQ5CLE39SLTTCBEPtAyp92B+YQg8uPt1/idj3ZGFvADFR5ZOqbQfhVQv24VXdwVWD725AqVr3gXm/AuqdQHtwf7f/TFJcBsSdXBdJEQW0Ru2l3uxXjRNC7KV86T7YovdfdjTJDALVN8JWSqO0hdaSQEUokpQYLQQ61kgh97os+heZ1opQ7fdLKdVn/i+mwh/GSx0TJ4/S1fWvPn66cAX14H3Ud25x36kJ0IrR6VmOHp+n0fFZWrrJ//L9/51G5xRTw0WEkyLo+jx76SYf+sx5RkaGmZ0cQZiw3myQNtKMVoawDQfLTlFr9pBBmmNzczTabS5cv8nzN1aZm5wg5xiU06PUWi08V1EaLrH23BLPXNtgaavJ9ZsbZNImpgE6fnn4aehsj1vrcwD4QUC92eTq9RtU6xU++fl38fZHfprx/M6X5Kf77vP5wIeazAyPIVTI2nqX7do0ra7GSpk8/ckLiPgE84tzvP4NBu/yf4+hUYkh7Nv4KdQ+I+V1chnrRfHTPQ+P8jf/2nuQ0iKTPUZ9Z/sVwU9mM0n1FSLGsI0XyU/iy8ZPV3fnAZgyLWbXtr4EP3n8jbeskx63MNMpvv6NAR/5o0/y6ocDKotzCCcNGtxOBykFO7u7tFvPs1OdAo5T394mPGKQTmfQQnxV8NOgAIZSiij6q8dPdsoGkXioC+OQnw756TAO48sTL3rg7yPPXMBBkDFTBIZken6RqNehXqsReIn3x2ASbwRINLJfIWhQUScmRsQGYSDZDBTNtk/GqVHeqnHiqMcRS2DsSKIwwEmnyWYztKo7uM0mWhqkvZDQF2RKJeamy3TNNM+GHdq1GsqNualD1m5eo3RkHrMbwdoO6UyRVMbCCz3iOMS2DUxDolXiWaEyKQIvIPyZn+RqbZ2lWyuUh0cYLaXQ0majtkschszPTSO1xuv0cJwUMpWi57kEfoRG0G00SWfSVApZNnereComlcnQqjUp5wp0ei0EMQvTc9i2zeb2Li3XJdYhrabHxm6HcjnL3PQoK2sbfOb8LYIQlI4Y8T3+1bMXk7NqWIhIYQBKBKAkvgsqihCWBdrAEgbaUrhVnyf/6A955/d9N2cKC7RlQNqwqcgpbD1LpKs4xiIKiTBSDBl3E8eKmfQjNNUyJeM4l59/P42rtzgNdLohqXSSEvrqVz3M0pVltlY2eeLaMtro0W7t8NSFW1gpC7eXGAFHSrGxukY2LfDqSbGOnWoLdqp4XZ/xSo6skyLV9+0TwiFtpikXTTITCXjNDRfo+C6xFux0QpxqUm0tjGPSQVIJzlOCTz3xHJZpcnx2gmajwcTUAm4nxLENor5dQ6fb5veeepYLN9axnQzDWYcT8yNUylk6zQbzs5M4hsmNa1epd0JOLEwTBwGVQomnn7/O8uYWM9NTHJuegxjyuQzZdIrx0Qor6ztcubnJp5+9RC9W9NoxO7U2GkEpnWVyxMIj4Nmba1y6tUGrF2FZKYopk9Fchrbv0mxZmDKmWM6hrRb3D82wsrlLvpilXt9FoamU8ti5DEMjE7z3Q5/kT59YxsPGoICTLmLmJsA2kYbBUH4Rz92k09nBICKdDeh1GqRMG4mJ14258vwq6TiZXaZ1AkRaJINnhjA5OzvB6cUplNh/4IYKej7YaU0vilmp1jkS9Hjza++leWSaC5dXuXzhOmtuh4tXr/KWSpmCNmgFMXUdMiRhoVCkHffY7XiJwiljbCHwO22efeJp4kATdAIsYRMrjWNbiHyWXq/L1PQURxYXuHzhIs1Gi0o/9SL0XYSKsU0zSUPpK4UMjJH3fDskKu6nohqJMpiwqUYLjWmaCVj1IcAwTATspR/sQ6tk4FUzUKsHirQh9R4cxXEAyL6KDkIk22hpYjkSy4EwDJP7pAbTdjD7xT2EEFy7cpWdnV0efOghypUhDDuZYaCUIopjDMPElvtKaqQ00kiEH0MmcC2FgZCSIAyI/AjTNMEwEhBCoOLERBrTxjIsRjN5BJped5ba5hY3btzkuUtXOHP6JNNzk2xt7rK+toqKY3zXQyvF5OQkN5fXSGUd7rezTEDf8FntAesghBSYffV68OJAH+bQgjsQ9PaXhb7aqwc2M3eov8kG7O/vIIT2NTGt1P4+hNhDWSF0f3ZkMiAzSPsQYgCvg0heZsSgXbG/fKDCD76jA7uhz+SgJYjkIZywtURrkSjbCGzbIFTgRRGeH9ENItxYJ75HSiQpgXuzLfrf3Z4Kr+/k8cN4mePqZpXRkvnVx09bVbj0eY7MzRB71xgZn2RqOIM2Uuw0m4yODpEp5MjlsritDill4eQKnDpzlMXFWbSQtHarZHM5Rit5ltc36akYO+dQ395lpFghtntsbKxzcvE4J2YXWF7boN7p0uj2qC9vs7TRZGQ0z/Ej0zQ8lw9/KuCJz/8EZ8/+HzjmDdJCEmC8LPx0/dkVnruyBbwDJ51jfHScowsLdLyPM13+VnY6gt3nul+Un1wvw2//8SyZlIUl6wR+yOraCL/3kf+LH/hbH+C++33GJyaRMk3aTHNsweR7v22XTnOSjU2T7gF+MsRzvOnRZxkd+QFkoF4UPykTWq0eUezze3/6qVcEPzlymKGRyxRGpoh07YvyUxz3C6Z8GfnpM7vJQMgfLC/zLaL6JfnJTgeMFmP8uM7S5c/iyA4p2owUBbEV4tgWftGm1+syPDxMyp7k9/9wN7k5KUWrVsOoDGGnMl8V/GRIgQTCMOD5y3/1+OnUmdMUK6OADX3/u0N+4pCfDuMw/oLxogf+vv1tr6e53eZmbYe2G7DaDpgZG6KSz0HgkjMFzWqDZqNNqBIFROmYOPJRGFhSoUhMSYXWBFgE2qIdSmpuh0goVOhz7IjGFIo4zmHZKexMCSfboVWvU99ZQRIyfvpuTj/4KL//Ez+BadoUcJB45JQg52Rx8jm2nzpHu97CTKeRdoY4bCOUIDTAdCwi20KaMdoxMVsR9VsNPhx3aJgZ7KDLRBwxkh6mePQII+MVrm5sYGibqu8nHhbtEEUyuFdrNFltdxDVJsWRPIaOmayMMjVaQY2XeHpjm4XjC/iRy61iBidls+TaTB+b5ujCNLu1KkNNn1zGIfQDdCbH2rpLx/fxYw9dSwBACjClSaBj0F2EcIh1iKEtpAQj0kRRRMd1sUwL05FsXGry7p/6j0ycHGXxrjmmFsexygVSao0IF8ORlDiJRBIhiUTAiHGEt1XejQo7TKTHGT+SqNWb20vMzywCcP3WKlvVOrFWrO3u8n1/601cvbXOblslN1+hiXVMGMWYQrB0aw2x3eJuYPWJi9RubDNSTHHPsWnUufPonQRASttr7Hz8k6TTNt1nrzMBPPeBz9K5eJPKZgMMm8VcUgE4iEOMUHPuwk2urW5ybWmLvJ0mb1qsb2wzPTtEo96gvbZG69yzTAAZ2+Z1r3mEtvcJbq5UqUxXGB0uMTo+ypHpOdrtOjdurhAamo16k5QleNVD96GkojRUJkYzWq6wtL7Olau3mJ+b5ezpoygEhWKZiTGX2ckKO9stME06QYdrt7Yo5XKcmquQvWSQcUwkcO7GLj3fo9H1CMKI2uouHw0ihkoG3zV3hLlylq7n8dFLK9xca3BmfpiCU0MKGycDuVKZRx69HzNX4dLNDZY267huDb8jiKWNtPOMjs0xnDvO0Ogx3MBD+V0yvRY93ycMXCQd/F6LMB5Uj7aItUDqZMp8oVLg5OI0pVIRTJNSPoeQgjjU+F5AaFhI0+LG8ib3nDjO0PgYhbtKjJw8wvw9x3nq8iVubOzyRxvLBCogLdJMTpbIZ/NUd6vMj42yOG2RcmKUsgh0Uok2ZUG5kGZjc4XZ3iJmKUvoBViGQdZ2aHc6rK+tkS+XsR0bczcZDPY6bXrb6zSaLYqlCulMjlw+j8RE6z1i6FcBTtTgOE5SAUS/CMXBtAQpk2pxURRgSGuvshpAFEUJxCYr99eXiL5vi94jpz4p9VNpiBMwGrSl+9DrOMYeGAmxD27O8gaLQ0U615d56sIVJiYnmZ9fIJfJJJU7YS8NxEBj9vsSq34VPSChMIEU4GhNHCYpMhowDJko6kgSy2OBFAlgKx2Tl5KsihkrjXJtp4n39AXi8RGOlSvoXBnP7aENh+2tLdzzl5jVYLqSjGomDxlpoqSBQvdnlCbVDLVOKv/tG1wniq04qPj2QS4BS/aVZwYgy57irPopHbetJvpJL4Pl7LNs4qM1mIkAmpj9HQuEHMyY34fAg2k1SXuCQUbNYEbDFwLuwd5v96jZW8ogFUqgERIMCYYUpIQkLwx0ziaONHEEXhDhBjFepPFjRagUQWShlCa5lGV/X4fk+pUUD50+gWf1vjr56YlrfDbeptH1WWtfYavmMJIbppLNsxud5Q1/403863/82xTy60n1Sk3CT6k+P23VEEF8Gz/lUllU3uHa2k0WxsbxI5fN5g6Ob7O+u830+CjzCyfYrVU5foCfhrMlDGHS7c4Ta4sg0ti2TvhJvPT8VDiTpl7rP1OIqbfqLC1vsFOvYZouGzX3S/LTuWd7/MyvvJmvf9Nvc2n9MvlUDkOdAcB3u3idLjnhkXECljeWcf0yv/67M4yPfIit3fMUClnaLZeOobnvyGnS0STNXkQ696X56cLnevwf/+6N/OSPfoJHHzReQfx0i0dev0nKqaDFY1+Un0yxzdzEf8W2Ol82fgorio+ch3Le/Evjp2whSeM2bYN6tYptGrRbja8OftKJpYJp2UxNz7K8usafvv/9zM3Pc/LkKQr5PLq/32jQDxTS6PNTrDCMQcZc8rsQAtMwiWKF7/sJP5lGMgiIQZyYOCQDpEIQ65h0rsjEYpby2Djnz51ns1ojnUsxf3SRWTWP2+2gooi1lRXqjRrFfBorZWBJjYFGGiZaqkN+OuSnw/gyxMMPP3ziiSeeyD300EOdz33uc8+/3P15OeJFD/w9fPYowg/YarVpNjvkHBgbG6VR3SWVzeDYaVQYcWN5lVtLW/i+T71RQ8YaP4jBa9ELQZoGisQcVSsfaSRmxm4vYG1zh4xtE3kuViaDlc2SymYojpYpDZWIpcDruWzduMrs4gwP3vcgH/zAp8j7AXnpMOlYDNkpoo5HvdZAILEtOykjjsKwBaadQlsSGfiITBYznyPyPBxistk8vShmtGRzZGoapUx2W202L24yPjVBq+USqYhry002qg2GKxne/sZHODU/Sq3hsrG1RaVSIIrAtAzaoaLnasaHx7Bsk2JxAi1CtBYMVXIErseN6+u0ey1Qgq7roqKYE0dnGb14i+byNlYqj235yZcgjb43QYzWJpoYoQUqirFMk1BH2MLGiALqa+v4PQ22iTJg9dYOu9tNprdqzLzhAWYKr6NLDaU8FCEIE20IPLVKQBdD24Sex8eeXuHeXmLW227HpDKJUqYjwXatzdTwEFmtqNYaZFKaudE0V9Z6BJHGUDGOJah3XT59/nnyHY83Wyb/+JlLf+Z1tvDT73nBsu/75NMvWKZSDqnJSURhhK4fUsia3HdyhkohS+hGZHJQ3Vnn4qUrVIaHMMyk39s7VfLjw/yNt7yKpY0tAreFISTFQg7HkMS4ZLNZ7IzF6x97FfXaLlevXWG4UqG+WWViYpjRsRHSGYeNzV2y+Qy9TofNrQ06PrR6XQws1nbrbNSaSMMia6WIAp+LS1XGhktMT44io4jJsTKtTo/1RpdLt3Yp5G28IDFYXqq6+L7H9fUttmtdytmYB0rDFIcq7GztsNvqooH5qTFe+8BJjsyM8ty1FbwAVKyotdtsV2uY4VVKuTEKuSEiI4VpzyBtm0iZBHGKRjui0wvIXP8IPP98YnatY7Qw0cpgopilUinhWBZaGCweO8LDj7q8/0MfwDYUMpAMWzYb1RorGxuUCml05JDJ5Dl5bJaJsSL1eounLi/xxOWrdF2PfCbLiZlxlmOPKAi478gCyomQxIg4RGkYGR7DVpJWdRev1aLlNUjbNnYmgxQGUsL46AitVhvPdXFkcitbX1tj6PgcUkKjXmX51i0mp2aYmplFGCb7tWaTarNSGmiVKM1qMCuNfXU0gcsB4EZJGkMfUBPYS1TMQQW7ZPt4H2LFftrDQJmFBKSU3le+E/VS7O1Xa42ulNDpFIUf/UkKwPyXukm/BDH5RT5b/ALLlGPTtWJsLZLCJMRoBIY5SCPqw2P/NAxSig56xPTr1O3BfEKf/c/74Cn6uUdSiqR64J0qMeytAwO4FEi5r6QPUloGaUnJsmhv29t9a/rtHdx2AL0D9frAfg/OZNjbdi8Gsyj2200MuweYnXj2SFNgG5KUY1HEItYQxTGx0kQqJghjghDcQNMLYoLoToQ+jJcr/ukPfpzX3T+GzwOvOH7a2XmWb3zzGOlM8yXjp0p5GQDTyZKyMwjpog2jf194afnpyEiKjdoWZ45dZnhYcOrYET7xiYtcW87z3KUf49G73/0l+ekTzyTvJyOlh1mcO8Gnz9+gUy8BsF6NsC6e49LNiMvLJo/dr3nm2To/92vfydvfcpH5CYv6TkDXn+DUwhE60b382P/9GPc89AwTRzNfkp8iscjM5Da7tVXW1hzy2ewrgp+2dhvQW6OQaVMqVL4oP7V3n2Oi9DNIouTZ/WXgpzc8YvP//rM/YG50gctL0V8KP91aSe5PUpqk02lu3bjJwuLCVwU/7W0LDI2O8rZv/Cbq9Tqddps4DAkDD8Nybp+11vc+To5P9v0J+899kgIgQkpMJwWGQRwFqCggVBGGlcIwjH76bUx/Tlm/KIokmy/y0KseJXB7+J6L53kYhoGdSqOVYmbxCL7nEnguKBBK0KhtkcoWyBSGDvnpkJ9elhgMlE1OTgZra2vnX+7+HMZfPF70wN/GrRtcvH6DnUbAq+8/xrVbm/zJp87TbgW8/c2PUMlGKBEzNTfF6OgQ2bRJs92j4/Xwez28TpfPfPhZutUuMuXgpB2EJdAoQh3S6LYJ4wDbNHBMm1TPJxP6LF27iGmmSOfyTB89SqlQYmd9g7IKmZqcZByTcUcworPMFFKUMim2r63iuT7ZfBaZdoijCLTCTKdJpdMIy0R5AcKwwTSQmQxGN6LeWOXyyjqF++7iruPHiNIGvufT2KjT9RRuu8lQMU80pcikLe4+Nknkd8mXxkgVCly4do2rK+uMDw9TbXuYpiQKFS3XReqI0WKFVz14hEq2SMFK8ez1GzQ6m4QqYKRUpChzjA8XuLS8xupWHYQk9n2USgbeIjW4mSW3MqUSA30daxzDgjgmn84wMzONnbbpVCOaV2xSOUF2LiA7YmFnNZf9DzOu5hizX52kI0i7/6AB0zhBqFs0apfJp+a479RRpteTfV5d3WWn8xTfDzTrO+go4PSxMR655zEuXLlGvdnh9NF5tF6lUs6SzWbIZC2K+Tx/5zv+Jo6haHzf3yIdh+xsbvPhxz/F6FiZY4vT7HzyHK/97x/iE9/6ZsqP3k2r1cFZ3eX+X/wdLv3dd1AfnyCVH2a0XMJ0cqhiDjeTJly7wbHFKZ49v8Xc+BiGZeFnHbrtOk9sbbK2XWNWGxx3sgB4vYD21jZDlTKPPnSaUMPKlSWqm+us7jTpBS73nzrFlaWbNDZvMjV5hKXVdRrVNuNjQ0xMDVMslSmViwwXC2xtbfNHjz/N8zeWKObzlMs50pk8XRUSENOuech8itGhPK6y+fTVDdxnb1EpFliYGMELJA0XRoamsVKKzZ0tmm2XT33+UnKdhhHSNGjHig9/7hK3ZiboeCGrm1XiKCKTuc5wKcfk+Bhz03MoFIEOWdQm7XaX3VqDVrtGfXsLFUtGh3PMLyxSHp8jWxzGsLI4mWHcj0r4xO+BkEihQYf0pOTKxi7RZ59hYniEYmmEzNg43/Xd7+TGxirXLlykoSGOIvy8wwefvMjWTos4jth0A27sNNlttZESIi0oZnLMjYwwWcjxwL1nOH3XSS6fO4+Ty2KnDKLARyrF5574POs3l5gZH0ekMhjZDCY+66urTMzOJ6bRkY9SAeViDieTh0ZSnOTE2bP0cvkEkItZbGnSaNQYGR/GlDbSSNK5EkWvrw4PKtnpfoW1O7xJ4GAls2SbKIr2qt9JmYD0AFwTyN2HV8MYAEuiWieqZt8TZ0/51Ih+VbfBftXkGLX3/jKi1kjWOQhOfWVU6X3jZkgqGg/SZwbqqT6wzqAfhmHsp2CQeNgIaSbqsdZ7Vi8Djx+lB+kUSRpisn9FrOI9FdpzXTzXxTT6KTmxwktb7IRtcsvXGBodx0llMAyTWKkXgHyi3h8UpfdV3TvV12S52FegRTKbMR6kj/Qb6QvJ++etr3DvtzZoQeypxreVl2N/29uAdbC1FHsTEpLifIOdDRRo0IM0nUE6yYE27/SROZgCtR8GiRoeo0W8d9ymkMnfAiBigbIG5taCMI4J4pjD+MqIB0+8jyeffeXy0z1nnmVltUY2/9Lw01YtqYoWBwGxHWBZGaKg20/fe2n5aTQf8y3fDFjv4pOfz1POnaG2s0boW9xau5t/+79+LVp/+ovy0/d+2xn+6EMhv/rb3/uCa+tT5xfIpz/M1u6r+Xe//J18+L/+LMJKXoZ//wP/8LZ1f7f/M52KyRo1amubX5qfJgz+0fc08XyfXqdAt9N9RfDT5Ssl/sMv/GPe8Y0/gvYuflF+unb5FO/5pQJp8/NYZvuvDD/dfdLgN37+c9x9l00hu8jc4iKB531V8BPsDwIlA0eCcrlMqVTa56f+8sHzXUp5Oz/tbav2BxNVwk/SMBDSQWD1i4P0ZznCoLzE3uBcYleoEcIgncmRSWdRxERxMktOqZi420GHIZliCUOaEMdo32Vj5Sa5fP2Qnw756TAO48sSL3rgL5exef3999OLeqSlZuq+swwP1wi9JoRtSkOzeB2PsXKJtt1ht9qmkM0zXsrjhRAqzeXPrLJz/iIIRdsU6JTEKqTJFHOgJR23ix8ExEKSy1hMqFEKxTL1apXdao3tjW1mZ6ZJZfL8zm/8Ph95+gILocHDuTLrPZeHh8epNXZo12pk82lSdlJOwu8G2KaFnU4TSzAVSNdHSwNhGsSZNE4kecfdr+I1b4zJOWk6fkTP7RL3XKysjemE9G7WKRlTtJseYdih5/o0alV2qrvcfeoMD999N9V2k4yTRkmbrG3gBz5Lm1tEOiRn2Wzttuh0XaSQzI0PMacsWt02GVOSyqa5tbrDr/3Rk0SmIAo6+L4mCJOBPxHHxHFApJKbU6w1KNH30xCUrBQPnZqhUnIwUhmsdIFKfiwpkHDdZPWqy8ZHd7i52OT5s/8nX/PAN5A2y5QmylQy86QoEtNEd1zEyipMF+l0Gjz33HNMAg9ZmqCTFPd4uFKiMjZEynOxrq/zgFlgU7ep79YomjGpWDGXy5J20rQ3thmyLFKZFLGS1HsuJhEP33uKTCqFG/YolpL03ZHXvprxr3uMwPdofOSTAKhjs/SGysROnucNh5yluXb5PB955gL3HZ1kcaLEwtFFXnX3fXzm8+f4zMVLCDJcv7WJclIEWnKmnAJgrbpNFZ+VtU3ePPpaysOjiNkWV569Qqde43OXNjgzP8fC2CS/99HP0gsv40jFqWNTDFUKrJ9rEAWXCMIuxWKFWrtLtbnFIw8dRUSwulnl2StVGt2ArCEQMmalGXFlY5v77zrCN77uQXo9n91Ol91qg0DHVMp50imbrNQcnS1jGiksYWJlclTyBSxToQRILdEqSJTEe00QiZ+JH4X4vk8YxRgqJq0stIBUTlNKm1xZCrl6Y51au4txUzB2fZOp0aeZnx6mmK+QL5UZDrcAkEqjcbALw0xOT7GxucOHL2/R6d5A+orxyVFmJp6gtttASotYSWq9gJYfcqve4fGraxhSEitJqCCfSlHIpTEsG1MI8jnJ0GgOL/KYPXKGbrfDH7zvw3z9gw+hel1iFXDfQw8gDYEZxqRFllgIxscmGS5W6HW63Lpxg0jHZLNZQGBIk7FWUrk88nw2NjZotVvEccDU9BQY1p6yKPp5BQMQOQh9e8ADCdzsgdU+tOx70uwry7APIQNwVCo+ULmMBF6RgOynT/QHz/ZSI9iDnYOAFE+MwsTo3rIkrUP0ffP0XioGJP45URQl6Sim2QdmiKMwqb5Hn6v6sG30oWegzgL9SnJ9iCRJHZF750QOOrnPdSJJERFC4GiFGcd02l22NlfZ3lxncfgICyOjrK3dZGX5OuXKKMVSBSGtvoLMXgrLnnLMAU35NqV4H+zUwCtmYNZMArd7uNev1rbnLbh3gu98siUvFANYHhiCD7a7EywPXjfJmUu8bBKHG0XfVjtRzfsvDfvbKQ6mIh28fg5eQ7eB8W0Kt4HWMfskHu99pkyNUDKBdQ2OaZDqz3I+jJc/PvHkI3zNwxPY6eorjp98sjxxpYIVX6dUGnpJ+MnTxwDweh6+5ZPPpAjjiBj1kvPTzYsX8TzJZPEkQng0dkJOnH4NZ1bT/OnH4erqEMfm3oDUa+zuuqTMIVSc4/hsltlxwcpqmyDM8fhvfYBqM83yTUHPVTx/zeQX/tvreOSeK4xODlPafYr3/Eyee+49ipJJtdYf/J8+xehQnV7PwzTT5EsRY+WI9fUV/v1/WeJND/ocnSqSKjxMceQezl+6wlNXbyIwWd1ooqwSRyfL3LM4zfz0dW5sroIXvCL46diUyw98x69hpbpculb7ovxU25jik0/8O15993djFq9/WfjJDYbxOt/L/Ox7yWTbf0n8tMvi6DIyGCKQKSSCjc2vHn4axGB5wkQymemmNYaxv04cxwRB8AJ+iqLEFiVpJzk2pfb5SZPMmBy0Mdi3JilCIvee4Qk/qT1+MvozBFViuWA5ZPOl2/lp7ggLi6cO+emQn75iI45jfuInfmL0V37lV0aWl5cdx3HUq1/96tZP//RPr548eTIYrLezs2N8z/d8z9yHP/zhYqlUin74h39487d/+7crd6bdvpj2pqam7lpfX7f/3t/7e5vdbtf4gz/4g4qUUr/97W+v/cIv/MKKZVl7+3znO9859/jjjxdLpVL0j/7RP9p8WU7SV1i86IG/OI5Zqe8wuzDJSDZNz+swXRIYzjC9yKBa7VLOZXnu6lVurGyzsVmlPFrmniMT5DIlnv7kBS5duEYmnSKMY8I4JHYVnW6T2laTfKVAZaxEW3e5dOsWpVyOzZ06+UyaXKHA9MgQgedx5cYtLi+tc+HaLcLNNkWZwUZQSNmErocXQi6bJVQRtiFQQYhWCjOfxbBMhClQYYQIFYZtE1sGwpCQsog3e3x2Y5PWTot2EHFqugyRIlNIcW15i+16l/SNJo6psQ2Lp59fY73eopSx6PmCyZEhbixvMj8+ws2tKmEnoOZ3OHt0htlihUvXl8lkC1y9uU273aZSylDIppCOJMyWKBiSIA4hjvnm15xmZnKY//w7n2Qq6Hs4xDF+GNPz/T2lKibxgAijiImJCvecPI2TKmOYAhVHlItFJqfnSRuSbC7FcK7A8NgQLbfHzjMNajtPcuLUMarWOaam7qUyfgRECS/r0q6uMDkxxu70ArFt8br/9sG962Hq//rPTN1xjSz8OS++mTt+Vymb1GiWTrWOlgpTJscdPb+MPdqmmMvxzLUVLi1vYyAohwHNZovrKYtc1iKOLWZ2qtzlxTx1+Ron0g4nJgocSxlYK4kH3NOXN7HPpBgesum26mQLRVq1Bp3Ao+sFnJ0b59LVG7zh1Y/x9jc/QrO6Q8vTXFtaZ2l1g5STI3DbzE2WOXl0kly2wH0nFgh9F60F952YJ8Jid2ebUEHX1zx16TorYcS1pV2ymRyPnDnCPdlp2q0OvSDE8yMkgq1Gi5tLVRpBhzDyIFZobRJGPhiSXCZHIe0gZfJADgOXIIiJYkUYhYQ6RMcRadsinbaJIo8oDFCRYH5ynPm+f0k+X6BSzjE+WmCiXCHlZJG1pIKssmwm5o4wPnOKfGEYN36eje01ROwTq5jllSWWbi0jDYFhGZjSQKZTZGwHmbKwbQepBVHsIxwoDZcZHxsnbrv0NrbYqdUZymdRXkCnsc38kSOE+sO875Of4O1vfpDRwCNbKfPqr3k1S+cv0q7WsS0LFWmMbI5SNk2+Uef8uecgjsnl85QredylNWaB9dUVbmzD1tY2jz32CLtbm4xMTpFysgjDQiGRhtEHuYNqpdj7faAhJ2pkH0xVf+CsD6NxHGPbSfGNg/C6DzZJ9c2BKqv6VbkHvioicT5+gbJ8JyAP4vY0CZ2AtZRwALAMIzGnDoKAKIpwHAfTNLEsC601nuchEFiWiVCJcfcA4r9QJTYhZTLDWA8Mo+M92NRoRF/c30s5QWCaFsVKmUw6w9jYFELEOLk0i8fvotdt4fZ6dDodMtk8Rr9fexkf+gVUuQeog/M2WCX5G6B/Tge4qpKXjaR3ydfZPy6hDla/uzNeCJAHz/nB7/bOdQbgm6xv9I9HI/ovFEIlLwCDmQlK3X6OX3C8/fv6bb27DWYPKtn7ht4AWtA36x5cU4rD+MqId/+Xb2K4/G5e99riK46ftpqL/PN/+5186zd9hOvrF18Sfvqau2b53CegUsywODXM9HiFzz2xi6/0S85Putdiq1rgR//ZD/LPfvDjlIcv8ov/bZb/8MuvB+B/+zdv/oLXzGMP/f9542s/yzPn7uKPPvQ2nvnT93B2oclP/t+v5RNPTAPg2AHzE21OHjvB6WMRQbiL28iSS6VIOyH/z68+dlubf+3Nv0mu8l9YXXkNn/j0v2eo9J1s7Nb4rT/5Z1y5dRfw1hf047PArwP/4Lv/Z7rBMscmyq8YfsL+DH7wpfkpnarxTW/627jBxpeNn7rBPBeefgczpzYopa7/pfBTqKf4+NNv4E2v/ixCrTA3M83a2tohPx3y0yE/HfLTi4p3vvOds7/+678+AnD06FFvd3fXfN/73ld+8sknc88888zFqampCOC7vuu75t///veXAFKplPrxH//x6b9IewC/+Iu/OJbNZpXjOGp7e9v65V/+5dGzZ8+6P/IjP7L7hfb5rne96wvu85UWL3rgb2qkhJ2K2N7Ywh4q0g4DckOjlLI5ltfW6HpdysUsBiaGk8PIdomFTStQuH6dc595FktbhLFPTH8ysBZIYRIqTX2nTdgLGJ8fQQpBNejQkF0cSxJGa9SOTlFysjx7ZYn1dpdOz8PyAoaLBYQ0uNWtYsYR9xaGydmKtGmgpKAb+FiWjZlJEYcxljDRcUwcBUg/QGdspBbIXkjREowOpRhbzLC91eDK9RUeuucIZ44cYafhIqXknsVZpiaG+YPHn+T8tR3ioMMb3vYAwwUD3/d45N67sHTA8HCapy/cQnVDgp7P8802T11Z4u5Ti7TcDpgxgYL13Q7ZjOTpC8ssjJapVLKMVmyevLxCvdvj8rUbGF5ynUfaQ5IliBI1TBoSQ8i+SiIwDUEmkwLTxJAGuVQRQ9SZqpQ4OjtJOudgW2nKU6MU84mXTtC9jwtPP8FKo8rxo2+GKCk7XywME7i7kBfIh+5l+Zf/JWvPXyW/UeeeX/hdbvzwdyJOzKO0w/buBrlUCq19hktDWNkCrXaNZ8/foB3EtHsR7a7LGx89TTplc3NplZSUFMs5uo0OW+0uYSixx/K0r93ieORTKufJlArEtsU9/+l39q7Du7/YRfpf/phF4DbU/dT+P33DoCk0xVhx8fIKcdfnrW/LIg2LizeqbOx0yBSyTKRSLK1dZWhsgrQxxIjXYzx7nLbbo97qIIcypDMZWq0WKvKRQKlUpN2L+OTnn6brK2ZnJml3mtx77CgGIT3XpdYMaGyu0xl1uHalzUefusRQuUgYx5xdmObeEyepbm0TRRHaEng6TABUpYliDdrHdQPCMCJWEbZj49g2WcMgkyqQydiJf0U+y3ChSCZjEmuN0hGhl8z6ihGYpsSQAqUg0gaxEAzlkqrKw6PTqIXT2E4Rv9eiXl0mnUnjd5pkhvOUCmXarRaxijCzKQwpEKYg1gqtY0LdJUSDDtF+QBT7OAWLQkajtjq0ezFXVtYZK+fJF/MUxyc4Mj3N5557Gj8MiUKNDEOCbpt2s8nY3DRmKY8m8YgzUmmGJ2c45kWIKKZQKlBv1RkeGQHAMjSz0xN4nscTn3+KoaEKbhAxOzdPrlACkmqJWiZePpovrDorpffSTQYqJmh0//MwDAnDENu2XwA1wAsgNIk+vCRT6ZJ2SeAwSV1Re4ox7KepfKGfQrDnz3Jwf4ZhkE6n0XGEikIiFFKaWJYNSLrdNnHk49hpDMNEC7mv/rJfQU1KiXEgbeJgv/bOkwAlklmBA08YrQAZY6dtLNtJXq51jBCQyRVwUlkilSSUDFR0OYDMO+B131Pm4LnYh/e9F4BBgoYGRKLCJz47gO5XmxN9VfkOFfpOYE5g74WA+oUg8851bmtz8JIi5V5aTHIM++lOB6vVvbCNF/5+57LBrAKtB6nZyecGBkIlsH4YXxnx9O/+e3baEdsb9VccP5WKCWsPlTK87u4jLwk/XbyVzGC/tbLK1s41xio5TO0iZeal56eFeWanOvzSv/0pck6M7xd56+svMz0R86M/+Ub+6d/7XU4tdkH7DB3gp5XlGyjT5Pixa3xr7p+xVR3B823e9sZf5W2vTVMs5zCiLW5urPD8kqRcslFRyPH5CUrlPH/4n/87V290qVQqZG2LVDqLZfncWFqgeabNGx/4Kc4emaLVdfmev/7bZFKPc2O9xvmbm7i+SbkguXdxCMdx2G1t4Lk3iAOf4BXCT16Q5wMfO86bXneRXKr5RflpemSIo6eep9aYZnrhxJeFn6T9FA+8/W3IIzMQ/eXw02Z9jj/5+IO87S2bHJvNELhtZqfHD/npkJ8O+emQn75kXL582X7Pe94zAvAzP/Mzt37wB3+w2mw25YkTJ85ubW1ZP/VTPzX67ne/e/3ChQvOYADuB37gB7Z+/ud/fvXpp59OPfTQQ6f/R9obrD82NhaeO3fuYjqdVvPz83ft7OxYjz/+eOFHfuRHdg/u8+///b+/+bM/+7Nr586dcx544IEzL9X5+UqNFz3w95/+6EkCPyBva77/W78O2esyNlLiA5+4xFOff5rXvfpeKqU8wgBpCEbyaQyRwu3U0YaDtA1krFCYqDB52EuRzCS0pCTWgm7b59aNLSZmRsjlY5SEpp8oMZ/6/EXQAmmYqEAhGh4n7RzHUzmu9DqYSuLHBu/dXGE6ZXNPZZSKEDgiIp3Jgm2gXR+VTSHDCGKFIk5umjFoQ+Aon8b2NtPT4xybzFEcPsryVpNnn/8QmVSG+ekRNpt1Li1dZ7ic41V3T5OSMffMz3B5aZlzl6/yhgc77NS65AtlRoaHqeSzaB3jWBnefP9dPHf9FiMj49RbLVbWV7j/1HGmRoocmZtBEVGujPK/P/QQH//YJ9lpNrEMA0geGjuNLmFmiCCMEl0tjnEMkzhWmKZBxpKkbJBGYqZba9VY2dwml0tx7OgiWpiIlIMdm/RaDezSFIEneObcc7z9W96B4Zi47TrpXIVYa8IoMbv16lU+vrzJxPws3bbPPcDTXsjx+UlsM42fj3HDGIws17sau9NidHKcUiHLmYkxDG2y26zjOAo/MHCFJJI2G1GDT1xrUq95SFNQXdrGkTbvfMcQlq1Q+TIfetffYaE8ArFHp90hDDSZTIZcLosbB1y4eI2x4TKFtMV60+UPP/wkwrCRSAopi6MzFTAMWs0efi7DVi9kWMHiwhgrW1t88qlz3H1sFtf32Kj36NYblCxJ1jlC2PYwTYe2dnn62iW6XoyUNqWCydbONp1mndn5SeYXjxNHHpkw5K7FGZApBJqeZWI5Jl/zqrsoZB1+5yPPsF7v8lsfeYqWJ0HaHC1WaPRCPvT0MpdW1/nax+7jrlOn8DpdNjY22WlUGRudxfcjlIjI5QqYhkXX8+j6AX4Yo3TyEEvbDqZUBJ7LZq1GvAu2qbFMg3Q2Qy6dxhImKuiiEWzXm+w26tjpLKLRBCCTz9MWijjugBUirZiudhmeHMeqSCrlPOFKgOsHBAQoFSK6IZGhkEqiheh7J1k4mTzZVJqw3WOj5hJXe6SwyKQ03a5Lt9tizJnl+OIsT51/hoyZxsxk0KaJGZsMjY2RzuWI0diWgxaSMBSUR8bJFQv4vQ7bG1tsblXpLK9xEvBDnygMyOUyBHFMKpVFK021uolpC7SwMGIHhETpKAEtBn4tSSXcgfFxUmFO7GnYe8uEQIYh3W6XWClsy2Sgeg8A46ACfHsKQt83RQhUrFE6MSOXhkRImbiRHDC6HoB0sonoK7WapFDbALLVbap3UunNRIqkKmQCr4lXTqFQoNfr4oUBjhAkXtvitj4ehDtBAqOGNJN99N1rwjBEiOQ4hTQQwkD1y3VqJYmVQoikn8mJkEm9O8PEMpMZA0ppdJz4BKoB3ekDfel7B3FbusoLz+1eOpCQJMQGBkkKy8BySMFtgH7we71TId6budD/2u+E6dvV6iQGVZWTz+lvfzsAD15UBvtLKgbuH9fB/+4Mrfo6vFZJr4VM4Jzk+CT91GytiHSY9EMcgutXSryS+enSlc8B72BypMRm8+ZLwk+/9hvL/CH0swYkN5bWyWUlQ5XMy8JPT1y8zsRYmVa9xXs/cp6xyhCzk2UAFqe2mRleBQOa3VuIjmB+cpjhQoapiYU9fko5ijAIWZhoY0mfdnSLT5y7uc9PTfc2fqrkO0yMLLFw1EbEPZr1Jr6nOX30GMVigW7k8bknlpiZGOXUUZtbtS3++ImPYGUcUmmDctamUOyAYZD2OxSyJW5sNbBeIfx0Y9nh537lNUxPXuD0Kb4oP+lwko99/B9w5p4/Qf8V4qfMxhY/+65/RRhErG+nyNoGQotDfjrkp0N+OuSnLxmf+tSnsoPz/UM/9EPzP/RDPzR/8PMnnngiC/DMM8+kBsu+4zu+owZw3333eSdOnHAvXryY+fO2N4iv/dqvbQwNDcUAMzMz/s7OjrWzs2Peuc9v+7ZvqwPcc889/p37fCXGix74azdbtALwMzYf/fxFpoeyZDMpThwZIgyOks9lubW6zsVr6zgW7LTbdGshE1MZdm6u06lHiTlMECOF6N9IQPZLZwsEphSE3ZD1a2tkSxlylRxWxu6X5nYII0Xke8TSREeaVxWT6c6RMBh2Mqz4LUxtkbdy+H7Iqu9RcANOTFQwIoUINdoApRL1i0BBGCXze4XEshzunTmGWXQoFouctjUog089/Ryf+vxlZiYnODk7Qvqu49iWQ6vW4ObSJg3XI5PPcmJuCt932GzvYtkphop5rPIoju1wfWmFAMXcwjS5dJpsRlDIwMTYKHOzk7R6HvVqDQKPre1NzpxaoJBxOH9lm+pnkyq4XgQbW1XifmUniSaKQlwjIm1BIVfETueQwiIOe0RRjGFYLK/vsrG5zt1nThJqg47fJZ8vIXwPO5vioUceZHbhbuJ0CsfKEasQ0xTIfInm9gbr21UuXl9iemKMbD75uyvmLKrbVZSUREoyO7eAZcBWrUGn02J3e4PJ6Rny5QoScMOIK88/R2V4jDPHZui4XRxniPFKnmq1QzlX4cr6FtKKCLyIWq1BRAOvPMqG12JqZJjy3DR+t0MkJW0tiGKHlUqB3NEFMvkM189dZWV4hBhJKSXwsxmscoZUKs2OtBAypCIzNIMOs1aZ8vwM21sb1IaGeesbHsP78BNk05LFhVF6XsCxk0cJ4xjLzfL61wwjlCQOfdY31kjPFdnerfH8tVtUhodoN9tEYYgUirRjkMmk0UNFojjm+q1NtnZqnF0cIZcbxvddyqUc01MTZNMpctksXhBwY2mDa0tbuOE1LFNgGDakxrm23qDlenRcF9e7hWPbpFM2Ko6wTYnWMb4fECFpd126bkDPi2m2PIIgSB540qDgmGTzaRxbYpsmW1s1NrfqTE+PEBrwJkArge/2iFC4PZ+Z0VnC0Kfp1nF0lrXlbbrtVsJ20sCUAstJkxYGURyjtSaONCpU+G6XnVqHVsbGEhrDCzEtg47rsVHtcrTZxHM9Tp46wvQnKvSUQkURZmRhZlKMHlmgtVtl59YSadvByWbJFEqks3kMM0OumEUaaaq1OsFSIgLZ6SKZqXmKwyFOKkWxVCTWIVHYI/QDDEPgui4ahTQs3J6HUgrHcUhl80gntadsohLDaK01WmiE7hs1q5hUKkUqlUpmF+h9E+UBTN6GDFr3wUPdBmGGKZF9BTOOIoSQ/Up5iYF0YmqcqNj7htO3V65TsToATXKQmYHSAoSJYUhiFaOjEKVitDRIpbKgNFEYEIfBvqG17EMiSZ903IdPxD6w93+apkkURUSRQqlor0rfIL0nAUq9B3JKxSD66S8MDL0FWqrEB+cA6MVxjIpVkt6h+/s1jD31ehCD87g3I0D0Dcc1CJGo1NIUaC0x0MRx8lK118oAMPfaSv5L+rH/knAQJm+Hyv00GcmdUHswpSTxrkFpNHFyHMnbywues8lMgP4560Oq7nuSoZMZEwMDdaUhVgPPoAP90oBQt71wHcbLG//9d3+Mu+/9aaZGd15x/OT26slJ0CYnZ6dfEn46spDUHz82O8b5m+fIZFN0w4DgZeanQinPnIasCbVaIraFSjA5d/Qvh5+0w9Pnzyf8VMyj6RBFHrVdnyiOcD0fw3JwnAy17XUcO73HT9msjef7pFJp4ihGKY9K7pXDT0tLiZ/1n3zyIp++eOuL8pNhFHny3EMsHvs4vlv7svBTozrBUx/4WU7d9z9TzG/9pfLT1tYWPS+mUhmhWCge8tMhPx3y0yE//bni5MmTrm3bt+VHz8zMBH/W+l+O9kql0t5U2sT/HPSdlWwO4wXxogf+/qe//joKuRztZptCMUcUx1y5vsbq5jYXlna498wJ5ieHMbWi0+1RymdIzVjsVqt87rl18BQy1H3lQic3FzSGlCD6BbeFxjIMlNJ0ay69tk+ulCc3nEE6EbEpCSKbrJNmVvosZCt8orHL9U4TM5LkLItTqTSjjqQexrhRRFqGCAGxF6C0wpIGwtBIyyBWCuIIw3BQEgzDomxl6Fo+G5sb3Li1wf33HOXIzAiTkxM8d+k6hYxBrdEg0hG5fJpcwaK6uYWdzZIvZukELtOjRSr5LEprhislmvUa5XwWt+tiWAa5bI6p4WE2azvUWi2K1Ryx7s9Scn2GR8YJ/F0MM8WbXnWS3/jkM0Dft8KQSBUn50tDJMHUkDJNsmmby1eWOLEwSzZjEbldtEqqSW3VOnheRBR7mFYOU0rsVAorO8Tc4imCbgdiDyM1RCpTRkUurruN7zao1rbIZR2evXQNeekmrwEabkB9fZ1yqcT0cJl2u4Mf+uSLebKZFFrF5JwU1c0tUmkHkbZZWJin4ws+9+zzLC5McfX6DdZ2d6m1NaFawwug2mxxbNaj1fRYnB/lofvOEHYy3FpeodXq0WwnBua2YdILYpa3u1xefopOz2dzexc7ZTMxWmRypEQYaUqlZKAylUoqhzW7HXJOmnIlRz5nkmnauJ0exVKG+89MkcuV0HFMrdGi022Ry+dxdwPW1jcoFHOgTDLZcbTpc+aukwSBSxRGpByL7UaLVC5LoEP8tgYpaHc6pNI5jhw9ysbONgaS7HgZw5CMjoySSqUBgel4nDx1jMnpKTzPI4oiAl+RSWuKhQxOygEhMKQkcF2CIAAhKOYy2LaN7dgIkUBKr9el1eqw2/K5cnON7Z0q+WyacilHrGK63TbFXIZixiGfcej22jxzaRWAZs9lt1El8nyEbVFK5Tg5fQrXb9PzmqxG6ximlSisSqJ9hR94xBp0LIiDiDCIoF/bLIoDWlphGBJtGAxnJIZlslLdZWenzGR1l/LkDA/ed5Zuu00cxMTtJpvXVpk5doLhiQnsXJaw0yF0PQKzm/wNmyZKQzqb48FHHkObDvDrjI5P0LBNxsfK2LaDH8RYSLKZLEJpIhWitKbd7ZG2M9iWQXW3Tn03oOe6pLJZpmYWyBfLREITafoV62Ig8ZwRQu5BgWmaCTgAKo77HiMSIcUeiDKAzAPKchL7MDhYHseKRP0eAJlxGzQdVMClTHxmBr4mUuyroYgBHyVquDYMUGrAakjTwJIOql/4I1YxkqQabzLroL+uAoTeS1UZgOtAOT4Im3Ec99Vy4zbAEwKElHtQmbS9r5AbffAcKMpSSpTUe+beQgiQYs8L52DqzEH/loOpIHcCJsg+oPcZT9NX0/upLP31Bt/tYPuD7X8hiE1SW8Qdx3s7d2gt2c+oGajM+2k3XyjVZQC2msEECp1cRwPY1fvXko4VQaCJoohQKcI47tfVOwTXr5TYrZ3ku//am5gavvmK46fp8RIAzU6beqv3kvBT9niVJ3/vl3j6osUzP+Ml1U2lgRYvLz+t79Tp+j3uP32E1Z3EVzeXcg756SuQn554rsTjj4MjjzOUHiKfz9DupGnXu4xUFJa00dpke+saN1d9AC5dXaTZExg0CfUQIhpjuDxHRnTZ3UjR9a7h6TZROIKObBxzg3bo0+stoDWY4hYqDgjDcYJwljAYo7rSo2FMog1JKZWi4qXwgxSOlaIeaAoj84xNvolue4k4iHn28wLUde59aAYzM8PWygRRzyUKApysRSqdFOXRGpbX5vjffvz1/NYvfIap8QZbuxbS3jnkp0N+OvD0OuSnw0jOda/Xu+3LeeSRR3qD6/k7vuM7dv/Fv/gX25Bco+9///tz5XI5BrjvvvvcwTa/+Zu/WX7961/fe/rpp1PPP/98+mB7jz76aPfFtPdi4p577vHu3Oezzz7r3LnPV2K86IG/jc0dNtQ2gdZMxgFn56YQKuTKRg2/F/AnH/k0DbfLeCHPkbkZ1te3mRkv4fZ6xMonEl1C4v1R/f7dQ6CTGy7sAa2JRAqDOILmVpNWs0lpqIidyRA2XGJvl0dLs3yms8X5ZptOEFIwHeZSFlO5DK0o4FbXZS5TYGpiFKE0gR8ilELaFiqOwZAYRuJFoUSEiFOYpoXj+exYHlMjQyzdXGNrdYOpuUnmRkYZKxVIOQaGk+ZDH3sCKXzuvuss3U6PD3/soxxZXCBjZ/FVhGnmWN/YoFxqMzI+zfSCw+rGCrZlkEtlqddbZBwH27TxwzbdniKfTzM+NU030ERRmsvLN3n4wbN8fm4EdncxDRNElDyUYoEiJghjHNNnsjLJSDFFfXOF9159jruOH2W34+MGAUEU8fT5a4yUClQKKeYW57l67QpOfpi7HpmgNDqC64f42ztotYmZypMbncUujkJ1h/G5RUYnfNJOCuFk4PcfhzgmJstzl1YJZnzGJ4oEgcAKI1L5PE9fuELHc/FDzWP3naAwVMQIQq49v4SnNI5j8ZrXP8gv/eofcunGDq4OiF1NMWfxmtPz/MoHn+TTH7jJH3/iIikZEQiLcr6I2+vi+hoV+rixwDRjTMPCDTwyjmR+qsyRmSnQYNgZylmLdDpFqTREtbpDrC2mx0vkcmn8KKLthnSaW2hrnIfPniadcag1dnEsB+33uLq2ThDEPH/5Gpv1Dq969FEeuvcMF849gyqEGMIhRtLqtTh/dZVYKe5/8DR+r0U6m8XzfTodD4WkUa1TzmdI20XKQ0PEWtH13ORPQQm8IEDHGgOFITWpjAkyMRM2jORvpFmv4nsulmli2CbdXsD6eoOUbTE0PIRpWoRBiEFE3oq45+gY5okxpsZGKQ4VyeZyNGp1tjc3yebypNI5LEPSe/I5ePo8tuGxtrJM2nQYGR4nUDFh2GG3us52Y5c4VogoxnU9wiBEx3ECc1ISxUFivisTiNJohAGmSAbppDBodjy8OMIyHW6u1ZmY3CA/Mcvpux9g6fznaTd7DC1OUenV6dS2sK2kopyWUCyVMVMmWoeJH4mGnuthSIFpJFUMC9kUTiULhsBzfQIvwHEcYiExLAMdaaRSjFRGCBWksnlS+TJup0u1WmNza4tu8xwz8/NURiewLJtYCbQ2E+kQvZceMvAISRyRxR60qSR3CEhuc6IPooZhJGpsP7Xidg+cffhKttN7SvUXSs3QOu6r1xIh+i+xUd/zZaBAH+AWIZNUmASyDiwzTaTsV+BTMWiNIUGa5t6+Bn0d/D6A10EYhrF3TmC/H3uK8h5Qiz5/7Vd9Sw5sH9aESNaRRj9VRe0rrweBcW9/g+rGUrzgXO5BoU5U3duAUkC/dhDJKro/U2H/8/7jaL9fd8T+suTnvueM6H/94sDv/WU6GaQRe8fzQrjUJDMcEPvm5rf3SQAJDMt+6pBpRSitiKOYIFQEkSaMohe0fRgvXywtrRFG2684fkqnRgF4+O6TnDnZeEn4SesUq+tXePThM9xz4lNcurlFynGI1MvLT+1ORK1Zp91uoEjeP1bXd5mZ6hzy01cYP02U2jh2wIc/+g9f9N/4+XPfzPlzX757hhA9TCtkael9AKwc+Oz3P7b/7yOzp/mZf/B/0m72+JYf/Ov8vW97gpHRq3z62Tl+6H//os7YAOy2s1xdqvB9P3yWZz/wXhwzOOSnQ3465KfD2IuNjQ07m83ef3DZj//4j698+7d/++5//a//dfjHfuzHZn7+539+LJPJxBsbG3an0zHe/e5333rkkUfc06dPB1/7tV/beP/731/6j//xP46/973vLW1ubtqWZek4jvcujtOnTwcvpr0X09+zZ8/6b37zmxsf/OAHb9vn4D7ySo4XPfCnVUij0abd6tGp7rCzvcXqWgPbMjk+P8bi/Cj5jI2JyXAlx/REgYyVZmp0iOefuMnqTgOJjVJRfzrzfttJ7j6YQiYmt0Ik5rk6JmXbECqaG20co0deGExkMlz162y32tQDhZBQsuBM2qGjNJ+pNSk7NguFDNl8sn3Y62H0SzxrIdBmcuhaqySX3wLLSTNS66Knh9GOwZve8ihxCHYuh2FI6tWrnH/+JkePn6S+u8PkyFHqtW0UBn/trV9PqZwl1iaOMGi0upRHR2hVt2kuL9GpNjly5AiB67NVrXPh2nWurKwxVhnh1Oww83OzdN0WTz35SfLFCiaKMPSx0ine8Q1vgKcuEUYQmwbEAXGosGwz8QWKYhamJrixukUunWWtWmX5My2Wai5CJjfuZifk8rVlXvXASc49/Qyu53KkWCCKFKnCNFlLJsp+t0nstaluXMXJFkEJJoZGsEwwLLA6HQAa3YCLV65QTGcIhKTVCLm6scP5G8t0uppW1+WB00e4e3GEc889x/z0An/80SeptQJ6UY9ry9uMVTK4MXiRRkmBZWuOzRaZnCzyt7/xNbzv00/w5PNbdF2FsmK+4S13o7Xidz75HPl0nmPTI1RrbYJQkc85zM+MMTk6jGM5BEFIIedwYn4K0FTrVbzeEK4f4LkuW80O7W6PMNKk0iVurK6zs73Lgw/ehxdo2p0WhmFxa2mVW+u7FMp5vuHhe4m7Ha499wyV4SItt0e72cEPfJQKWZibAiVpV9vEaGq1JsNDQ0Qy8SHJTo9SyKVIZ2wsGYNOKtJFsSJ0eygEnu8RhjF2Kk2oIiI/GVyzLJN0xkFaJikzS9pJYZsmsYoo5AuoOCKVSiEF2IaBUS4jpECpEKXBSWewLIHv+RRbHuVAE27X8IMt4jhieGcXgO+/e5Y3pzPUah1q7S7N1i6rmxuoRhWnFxAFCh0lD2kpYqQBSksEBipSyUvhbRCRpHsIUyDCEFuaeC2PjBchiGgqhdvxmJiapdNss/2hPyW9cgxUD0MqqueuUigOYZoKRHIRmqaB0mCbJlIIoiii89TTlIEP/tJv4k6PcfroHMVMCttyCDXEponlpEil0wS+S7vdoliuoKVJxrJJlQoUjh5lcnaeVmOH2u42uzvbjE9MkCuUkKadGAAL2a9MpxPgEwKdZKD00woUUt6eVjEAGsE+5N3pX3JQiT6YijKAxYNge3D7QeWxZF1ua3ew/t5+Bv+v6fd5oKrrvftxoronlS6F3N/XQIW+U2EVYt9s+QtVtlNKobTqw/TeVPwkdUP0fWL2JFqxdxwD2JOmsafw3qncCz1QwjVK76vbA7Ae9Esr3U//uB2A7zzXe5TKQMfWA1a87VzenpKydyZeoNTv76u/fjKFIDn2O9q58xoAiPXt7exxvlIH2k66bNkGpmVg2YpUqPCDENc9VKy/kqLVbiFX1l9x/PT8ylhy/M1d3v/4p18SftraKvPuX30n/+ZdF/mB7/xm/tef+iWCELR4eflJo0k5s/zSb7yfRvOT/N1vX2Nk3KTVMA/56SuMnyanBH/4K39AreFgpVJEocmnnhjj9LEO0xMd6k1YWbeYmayxslrmf/vJ1/FD3/d5xsevE3g11nZgY9fGDZ6h2qhSbwyD2kaogCAYQmDgpNZQWhL4R9GxwpA3EUZMHE8AknT6Ara9zcLRdyBijSNNXBWSs1Ocnhrh9PwEp84cZ2pxGn8zz9XLT/Of/lWFp54r8p7fWaDnuXzvt1xJsvH7s7ZEP5VWSkm1ZvM7fzzOb/6OQya9wfd+y/v54MeXeez+RSq5DLaTohuESNPHTmfIZHP4kWa3WmVoeJQoDEmlMzipFIVy5ZCfDvmp/10d8tMrJX71V3916eTJk+6v/dqvDS8tLaVs2zYmJyeD173uda2v+7qvaw/W+7Vf+7Vb73znO+cef/zxYrfbNf75P//nq+95z3uGL1y4kEmlUurP296LicE+P/KRj5Q6nY7xoz/6o+vvfe97S0888UTuy3kO/qrFix7426m5PHjmNGOjJa5cu4rnR8zPDRNHMR9/+gatTo+Hz0wxvThF4Ed0e12UGdPqekRKJdWPhELJGBXT935Ibgqqn6oyGNUfjNgbCITWaCmwtYWUgtiAnopY7oW4CpTUWAaczRZw7DSPb22wHUbcWyxRyTroWOH5PQLXJ90HVyElSsUY0tgzTzWkSeS5OJEglx4nynjUdqoUigViN6De3MW2DY4emaOSMXntw3dhpjMMD+fZ2WlgSfB8jyAETym6bhcjhou3rlNMpRkp5Wm3t9mq7TI5PctjD5zmda+6j5WlZYZHyqRLFoXSNJ95+gre6jKvvvsIjiP52Ec/RW4p0fnGijbbTpYgtOi5AbGKqRRKqDDkxvJNHj46RcsNMUyT51brGJaBoSSmAUiD66sbvPbVD7A4O0WsVTKN3vfRbhfXq0F6hHShgrAshjJDRAjau7usrK3TaHc4e/oIVpA8nCbKQxx51VlmxodYXd9kq9ak1fFRocX4UJpves1ZHji7QCaTp9uZw0Rz9ugcpmXS7LTQloPfanNycZyFmSnSpiZjWUxODJPKlZlMecyPV7ix1sGVHY7MjTA5Nsr0cJaT83MYtsPo2CiBUnRcnygIiSOF73lEcUgU9Lh2bZVudZuh4SEKhQyh5xMHPo5pMFLOUihkaDeTtKqwaOApuLG0QaflUm02MGwDy7C49+xJlpaT1KWsbWEJTcf32dhtEcYR46MlFhYWCCPN0vIa1WqDqZERjh6dwbFt4tgHFIVSHq/lEevEf0NHASIKIY6wJWihaHdb1HZrTEzMUsjkiHJmYlosReLbIQxs28axTAxiiDX5TBqlNZadwrAtYhSGaWNJiLweoReQtWyEIZGbVUb/5j9Eev4X/Duf+dc/x8z/8O3kzxnPX73t14f/Ak2V+z+/6Q8/9kXXG8TwHb/rdIrGH/8i9vQEQ2PjlIaG8DptOq0mcW2XdCaDkcpgGBZIeZux8EGQPJiSkcDXQHE+AJYiSX9JkKavrvbTI/QdptR/Fmzd7oFC/7PbofFOMLpNdb1t4MBAoxODaJko13EU9ldJ0kT2K+slMUgjMQzjhQpxv59SSJBiz1h5AJZ7Sn8fPJEDKEseCIPkEa1vT7a4sw+3ach6MAixn86yt50xUO9fqPwffCkYNPoCsBy8FLB/bF8oXnCO99bdV8K/EPjf+e+9mQEI9gvLDfpxe9/jWBEriNV+/xDgOBam9aIf74fxEsTxhUVe+8j0K4+f/BAAy5LMzrw0/LQwPkI2E/HUk0+RY5lXnz3KtZU1/Ei+rPzkYFGt1ZkbHefVDwwf8tNXOD8ddXqEXoNsrsBzV8u8+xdO877f+BR3negCGi8I6XYaqP4ow4N33eTsqRYK6HW6pMwQK3M3LbfL5cs3uXIjoNsL8aMVbqxusbbVRgI55yIqiomFAKHR+rn+DKVkYCxrP4dhO1RyeVzXpRt4KKNE2p4mTYtjcxUa2ZNcfu5znHl4mE+fNxHhLtmUz2TBxcrY2HYaIUykkTwXlIaV9eQPuFwpkE5pjs4/wXMXb3Lt5g2OzY7xxq95jKFykd3tXTqra+RyOabmp6mMDCNQGAZEQQ/TMNBxjG0Zh/x0yE97x3DIT3/143Of+9zzX2qdH/uxH9v+sR/7se0vtk6z2ZS/9Vu/dTOTyWiACxcuOP/yX/7LGYC77rqrN1jPMIwv2d7a2tr5F9PPsbGx+H3ve9+Ng8ve9a53bX2p4/lqjxd9ZS9MVbhw7RqGdQyJpljMUsplWdnaYayS47UPnkAqTbOmcdIWpeExskYG6bTAMPvVcgIESeUgbYh+9aU9HQWhBxWFEj8CtEBqiZIKSye1baUSdNwIAahIIUTMo+VphjIZfnXtOjVfM21Z3DU0jLAMvKZHoCK0ijH9gLDnJmmIWqPCmEgKnEwGZSRKsOVrUsYEv/XhP6aS73Lv3WdRcQShSypVRAuPjGOhHUkuXybrOOzIDhcuXKFcLNBsNYiFxeTEKK3dbaSG0aFRxkeGGZ+dZiEMyaRSRGFApELSWRPbyuKYGrfb4tPnrvDMzQa///gzGKZmuFDgVUZyw52dGKGTzlFrtdhtdgiCmHqtzujYGA3PJYotriwtc6Vax5A2mhCpBSMjI3S7PQJDcnN1g4WpcZbXVqgMjzCpA4TtYBlZos4u1V6NYmUcRwiUIShUhkhvrbG5U6PXcaGbDLhbKYVSIV4YkMtXyDkm+UyGrtuj2WrRdjtU2z22dpr88UefoFTMsrbb4C0Pn2IoW2F6foa0tLFSFlbGYn1llafP36RQSlPppPG04t6772G0OIwXu4wNlRkeKmMWCpScHlKadBo7BEoQK8m1WytEUczE2DCGAGJFuZDDtiRChRD7pC2Tnc1V1uo9AiUxheauE7M4aYfd3ZAr11axLQshbZ66dA2kycn5MbKWwdTkMB//zDnGx4eYGClx+eYKmXSWxYVpbi0t0Wkr0mmbyYkRTh5dRAmFkCatZhu361IqFWm1Q7S0koIbUUy73SZW0O10mazkUDqkmEvjWCN4fodGt0mr49HreZSLOcZHhpAShgqj9LwOhUqFlJ1PfFIQxMIAYeEgULGP1gIjncNIaeI4QEUxdrWK9Hx673gLpFNAYrYcrm9T/ugTPL0wgapUmJ+bxDCg1eqglSafz5MZH8F97QN4KiLyAlw34OmL1/n4586zWW8TRRGmMNAotB4AgYFpSNK2xDRsYgFCGigvJp+XnCgXGC0XeOCRB6nMHmH18pPkp06SzRT40J/8JkJE3H3qJOm8idsNMR2boZERhGETxBppOVimjXFjmfw//le0/+0/pTM6ws7WLruNLQrFHAtzi5iGQ+B3abdrxLGiMjSGlUojDBN55QbZH/lJRL2OnhxCKA1Kki8Nky0ME0UBcRSg44ggjvsvD84+gHHQZ0YdqBTXV6qFTLTPfrZGYlKcbKfZn7GTtHOwCt5BwBlAy+0QNFBnD0LrIO4EqYPK8gCApDT692SNNAS6/+Ih1ACQNGEY7QHnIA1m0O6eGn8gRWTQlwGYS0P2X2bYA1RxQN1O2u23NzCm7qu7e6LsAQgXQmAMUsnvUI914t51m/o78PodpI8Mtjl4Hg6mziQvHmJv1oHo55gcPO93hhD977kPube9I2jR/1zctv0XmgGQqPlJeg+aA5XlXgjLWkMUa6Ioxg0UYRSjtCZSGqXE7Z04jJc9bqyscOp46hXHT/lci3e85TyjwyaFbO4l4aeK8wyG+Yt85vMFpkfKFFMWx+cm6XjqZeWnnupy6dJNnJzJxlaa/+e/PMr3/M3Pc2Ri/ZCfvsL5aWG+yqf+5H2MjoSYTjL7KpeySTsmtpn8HX7wIx9jZ9vjrV/3GirFHDdurqCaTebmZrjnb7yNKI7pddsEPY9u1+cTTzzHH37oM6zsNIlIPDQ1CqVikjRUA9MwyDkSy3Tw4xAj5ZBTBt1I0ah3WLm5zOKRa4wdO8vY9nXcdodc8QQ3Lj1LyulRKZhYGHitKoZlUSyXEYZJGIOdSl4BnTT4YY4PfuJ7+OHvfwAZ32BzZ4VaY5uxsRFm5hfx3BaNxjYbq7cYHZvGyGbRhoUkIqlWG6NVfMhPh/x0yE+H8YJ4z3veU/7pn/7piTNnzvSEEDz11FM53/fF0NBQ9E/+yT/5ooOGh/HljRc98FcspOh0TCxTceLoDFEoCFHcdeoEI6U8l25tcH21zcNnp7h/9gy5XBYvUHRUD6FiDCA0IQ77I+sDA9EDNwcB0K+6ZMrkD1cCSkiUoTEUWEIgSG4QQkpStkUjDPiFa8v4UjJhpzk5PIxhJBW6lBaJ34GA0HOJNnZIZTIgwEw5pFI5tGkhRQxehHf6DMaRI5SuTvPZT7+X48dP4Tab2JaJ220yPjbJVrXK5uYm83Mpml1B7PVIORa5YpaJ6TGW1ncIY0GuMsrDIxVGhydQSrG7s4PruezubJPL5HHdgGzGYmX1MoGR4frSOqfOnKLROc/K5hZaCBrtgHSceA1s19o81d3AACr5ImnTxjBNOq0GMpfmlz72WQxD4gUeuUyiVkvToN5qEfkh+VSJWzeWeTbvUEjnuf78LRZP34OpFBgZnEoeJ+rRaW8QW2nsbJmtdpPp4TKz4xN0vYBYJw+cnWqbYGWVMPSR0iQKAjq9iKnRMt/4llfRbrfIZ7IUxnO81ZQ8f2WNuuszUiwQKcnjH3uSyvgwlUKeM4tzpLNFlGnx+x96iqnhIo/cc5wojiiPlBkZPYaKQ1zfI67HqCAkDGMsy6Dn9mi1O8wN50HEOJkUvhdhEFDIpgl1TMvtJAq9NiGVJZXVtLZauL2Qj7UuMTFRwZYm9993nN3tKtlMilc9+FbW16sYhsV2dZNetcaD95whl0sTqYjhUUnPDbh09Tr3nTmJiCO6PRfQpNI2jm3RbHXJpHM4ThatIzy3S6wMarUm3V6PWEU0O21cN0CK6STVREqcTJFSKfn3EdtCawjDAKECHFNCFCFVTLdVpzgxCTJRDQ0jMVw3LRt0rv+31PcXMUykkER9Zbodx4SFHDKfJZNycMoF+OgTDD90L5dbDZpel6NHj1C+q4Lve7R3qkRRRG+oTHpyjIwUmGje9tY3Mfn0E/wv//LX8UIPLSKQAlMZWFZiCJ6RNtNjRR47e4rsaJm17SaPP3ueViRxzZgJS6I7db7u5CLpimCr1mR2ssCZb/9Wrl18luZoCj06Rsq0CfwW67FkdHKSar2OYZqUSiOk+8/oYG4Kjh9h3IApUxDHMV4YkUpnsawUhTCi265T8zuUymPYqfQekBiGgYqTSo9CaGIUVqqANFPEytrzQ4nCkDAMMc2+UTP7CnICqcngJlolaS1RUpVMStlPfdiHrn3w2q+CJhjAE0CSkoFIUskOKqxKRcTxvro9aOtO1fQg4B6EpT1gkv2+9LdVwgAD0BppgIN5wH+lr6jumWgnUHr7/uifi6T/Gvom1wkUK62RB/p5EDLlgVSePRW7/3wYnP9EXb/9GPfTZA7AYSJ7o3WSHrmnwDOASbGXMnOwL0mlN9X/Hg68PEAC4LzQBydJXTLQWiCF0V9bs2dGeSAOpryAvu0lp0+riXIuNVKLvll40o7WMf0Pk/ScPqpDArmhioiUQGlB4B961HwlRdoxXpH8lBIr/IsfXMP1eowOvTT8tLxRI4yHqbea3NptUsrapA2D61tbLys/tdttlre3yXYzuO4uF6/m2K42MWgf8tNXOD8VHIlpdGg3WzRrMQJBOp2hUMwyNpHkELzpDa+jvv1HPP7Bj/DYY49y33330ul02N7aRq9uYKdSZHNZsqks2YrmnceOcvepqYSflD7AT/YL+On1d/CTFUm2W10MU/DcuXNMHTnB0MQkN5evI/wJjp88RXv3BlHY47u+/02MThaS77zjc+tagw/8wUX8ziCNVuN6Jr/1B5P87e+4wX1n5zh+ep44jgnDCNPWZEoj2Nky3XadVqdByXKwUxZaJv59iQtReMhPh/x0yE+H8YK455573JmZGf/cuXNZ13Xl8PBw9La3va3+r//1v16fn58PX+7+vZLiRQ/8DY+McerUGXzXx/e6+LpHq+UjCXHsHM1Wh5GCwdHZo3RabRrVOqaVIu72yDoOQtkYKkhm+/RvPreNxQ9G+vv/jvXghp3IFrJf5UmLvr6kNZGOaUcRO/42BWEzls8wk0lRMlNcatcoZG2yloNlCdLSwLTTJIXoYuy0g5lxUNLAQBJ7IeHx07Rf/SB2RnJ0Ns9c6SF63Q6GbfZvcAauilGRZqRSJgq6qNimUKzgZAO2q3UcO0231+HilWVOzs1RKhg8f/0GtmOh4wi308P1XDZ2a6xubGOnClxd3qLeDLjv7kXe+poHePvXPsLP/Nyv8tSlW/ih6leqgqarGK6M4rpdtJD03B7ZTBYdx8Sxplws0el0yKQyhEFILAWGZRH3XGJiNlsNdi+26HgR951ZYG1jnbt3dpgsFTBNSeCFpKw0hfIwvlsn7HZZXt5CeXVMAaVSiWI2Sfd59YN3sT0xSqfjUWvU8AKfQiHHfWeOMjc6hFvIUqtu43frTA6XmS5nuLc9i+VkOHfxEj4CQh+/FXPzVszExDCjlQLtqTEyaRNsi5FChUKpjOcHxLFA6GRgJohCXM/FxsELA1zXJSoUcQOP3dYmYLC7W6NUyFMeyjE5OoYUFh//3LN88FOX2GjUkcICJF3XZWSkhIniax44zrf89beyu71DFEYsLkxQrTXpdLJUSpXkoWtYrG1UccMA27Io5MqEQcxwuYBWIdvrS/SaO2jToVyuoDCwnTSoFL6vqbYa+FFMKpNDSE0qm0MIk5HhCtlMGtO20ErRaDTY2N6k2e6igInxMUYqBQIhEGaKfKGEIKYXamwTHNskDD1s08I0JaZh4QchYRigwjAxTrYtnEJibWAYBt3+QJcXxqS9iAwwND3FfcOncN0uKo7o6JhUoUDJSqNqNRqdFuu3XCqlAoVCHr/X4jNPnEcSkbVNvEDgmDaWlERCIwFhGvS8gDjucmr6JK997LXMjg/zhx//PKHbYLvd4dbNVbbX1rFzFcx4l3a3SqGY44GHH6Je3WB1+QalTAHDypAtpHB7LSrFIp4f4LotjHY1OS7LxrAh6Pl47cTI3TYter6HrcAwbLK5Cul0Hk2SkmEOlEgMYmkQRy4KhQGIoItppdE6JoyS1AzLsvqwkdy9BLenaAxCIPaU2YFXy+3QcjsYvSBtor+e7qcpDNI4knYFMOjHfhrInekiB9s+uEwM4EsL4igx3Ubwgv3f2ZeD/VfxwTv4C9Xyg6kpe/9LpNu9VJQ7t7ltmWBvdpFWCdDfeYwvJvZTTrhN+B28MNy+rsQweAGYJgydzBgQ8oVV6A4q50rHB87z7eftC/U9UesPegDtS/UCnXii0y/kgGBQcy55qVFJgR0VQQQiNhBRstw48LJxGC9/PPLwA4yObL3i+CnUDisrJYZKmy8ZP73rJz/DH334F5iZ+Uby5lWarsQVvOz8lM87fPe3vRW369Fsuzx633+j1qhRax3y01c6P61s5vlX//ZefvSHnqOU2aDX6RJ6LbpuwOZmMgNwbmGer3n9N9Nu1YmigFojSROeWziG57vsVLfZ3N35S+anJbygy3DBYPjoEbrtBss3tnj2szcRwuTRNx3lrgcnqO+6bPxuA4DY7SBVHgDDhMB/8fwkDCt5OgmTWKpDfvoz4pCfDvnplRxvf/vb229/+9svv9z9OIw/x8Df8vVlwp6HH0f0gpBmo8rCxCxR4FMeK/KW1z/CpatLvO8jn+WBu+fI5zJo1aDZ8ZNZYoYCFWMgEQgi9O1/3CTqmpTG3k2a/jqGkajU6KRkuYoVsVLEWmCYBmnHII2g4Fhk0MQ6JmU7pA2LrGnh2CYF28GyTKRtYzoOhmUihIFhWSg/Rt19lOXFU5SlQ9bJUtuucfToNFk7w9KNJTbrDWItaHY98oUizY6kvrtLp9vlyPwcs2NDOCMmVlpy/91nKeVX2NytMjI2zuq1VcqFAseOzFOTBrlsgSGlOD47T2VsDOV5uG5ArlDgyfPPcWR6jL//Hd/Mjc0dfvu9H8R95joAWnkEXqKKdP0AwzBxAx8Vx+gOZFIpspk0uWyO3XoNPwgI4ghDK7SWWIbBzPQkgR+ztLbF8tI6SzdWmH7oNFEQAAZKR8Sxj+OU8N02sY4hFjhZk91mm9rqDkeAZy9eped1ibSg7QYMV8osLi5gAFtbO1iOgx8qLNui1Q1pt+tsb+0yXC6zOFXhxPwkQ/k0QRDT8WKabR8/9Hj4rkXK+Ry9TgcduDR3A5547gJDlWEWxyoYIsbOFJiYGCcOI4JIMzYcolBsr9RpNlyUVgxV8mTsHLlUFimzSGB0pMzDZ+cw7JOUcg5aCNaqLlY6y3DeZna0SKNWwzQlYQhoRbGUZ6g0wm5th1avRb3ZZm2rTqFS4PiRBWbHx1BxhBCSYrZCLlYINIHn0g0MEAYtr0cQeSAUdipNNlvEskyclIlt20RRsg1CEEcxlmUxPDKCYZpY9RbVnV0211YQ4TDlcinxorFscrkcgiRV149CDGES+iHStIm06Ktgie+J67rYUYTwE2+/bDaPPTZKZFtEUYTRaMGHP0z6kYdJOw6618G/9CyNP/1tvF4P6fmkpcHczAJhNksYR6AV3U6H5y6tYSAwTIlGkjUthEhSPhzTZqiYYapUZHy0Qhj5dOtVzh6Z4pnLz7N+s4GvfVbrDS5+/kke/tpvIDYsXLdNGPpJ30yLkdExPNfjYx//FG984+uI4oharUGxUCQOFd1Wi2Ggsb2OOTNCHCtsQxJHmiBQGFqg4gDTIqnwZwh0rHE9D9tLqr5rQJo2hukQRx6+7xOEEZl0okZahkGkkmpQhjSBBFaUVuw7VKu9FI0ELkV/fdk3fo730lMSs+ZBaoO4DRpFPxVjMLNHCoNBugeI20D0z4K42zxh9H56RL8DiZjxBYDzIPgKIfaq5w3aHHy27wPzQi+ZOxVuTfISk9zD+23LfZg7eOx7+4ekmhyCPwunv1CqzOD3g8ez95lO/ND2FeKDsJ4Mjuz7CvW3H2x64Nzc+fPOOPh50ta+p9FgX/skfbt6f7BPkkS5Flrsi9laILQE06B/ColQRFolz04pUHG/yuthfMXEzuYWOWfjFcdPf/oBl+/6J9/Bu//Fz3E8XH1J+OlvfsMb+KMPw7G5CtfX2xihSymTIX6Z+am17tPrusSBS9oxD/nprxA/Vbez/OH7RvnhH8gyeWKKOFYEQUAQBJwyY375Zz7F5ISL5aQpVQzCnksYBXSbDYSQ5HIFFuaOEEXqL52fotDH70UQ+UjD4ON/ehVpwsbmNifvm2RoNIfb66L72US+51Kv9YBZQi8gjuMXzU9SRJimgWGah/x0yE+H/HQYh/EVHi964K8yVkEYYCGxTThx/AiOtMiYZbbbXbptl+FCGjmdqEBWysZtBFxf28U1JEiJMm2I9ssoS5HckISmf2MTe9Oypewr1UJg7FVeSqbjYghMy0RqSEtJwTCYsbJMpbNMpjOMpVIUHYO0Y+GYNk7KxDBMhOUgDQPhGAjHAsOga0qMtzzKxsQcjrZpdHb4j//v/4+165f5+q97EEcoCCVCZpmZmSKOOrhBm9XVZa7d2ubEsUWKjk2v67HT7qF3NM3aTQKtmJ0ZwjRzPHbv/SgZkspkyeXLbG1vEYUBhUyW+v/H3n/HWZad9b3wd62dT66cQ4fqrg7TkzVBoywhlBHCIFkEyQZj0uV9wXwuBgkD/mAbm9fmImxjMEJEyZJGEkoojBiNJufU0zlWV44nnx3Xev/Y51RV94ygfS9oZq7q+UxNV52zw9r77LP2d6/fen7P6hJYBnHQwtIuhw/sxXRckqDJlID/+Es/w9mvfxN+66PErYCa0hhSIKSJMiWCNGUnwmC9VqOrWMQPIzzHS315pEQIG9OQaKVZXVyip+AhVZZr9k/RKldotjS2Z5EkITJOEIaDthIMS1AqFnGLDo5joVarPHXsFG8E5pc26J0e48j0FIbhgApZXSuztr6B41j0ZjwcN8/cyhJ+fYWBksvePePk3AwXLs3jiZATp5co9HThWBauk+MV119Ls1lHaUGhb5DqxgYyiRjt7iWfLyLNHGfPn6JUrGMbCcsrawgpMZEIO8tIfx8Zu4pjeagkJFEx8yshjz33LNdfM8LU3r1MjI+zvLjGk8ePMT45xtsP7yfvumgzTXtJUwIETtZAKZNWvcF6vUy5WmejUqVWb7F/7zjXHjmEYZtEcZyaraNRcUgSRpiGwM64VMp1llc2CKMYLdIUlmJWYbnpZxGFCZYhyOfSWXhSSuI4JgxDhADPs5nMDTM9tYtC1ksBNYoQhiCJWlTWWxS7eshk0/WDIMB2BIlShInCMCwcx8HKSFrNZlqFt31DTlSIRmFaBqYB2gCeeorW4nl0VxHnpjvwXvFq/KU5ag/dTVCpUKvUaF2apW/vJNlSASEsmqQpOomIMQ0HRxqY0kBJhUwkfhyyVg2Z6MkxMDBCvqcX17JZaW1w+3UTrE7288C3HqPqxzx+9BmG94wxunc/rcYijWoVpQNcK4NlF+gfnETaORp+wODQBOvrKyAUrmlvVpysra2iZmcxLJNERcSJxnIyGKaH7WUQnsBwLEzbJAYMnRDHIQCrS0tYo/1ksnk8xyWMfbRSJFqhlMQyNY5lECeKOAmRQiKkgRSp4pgkCXGSnuMUSbbgR0qZ9j1SpqXktUarTtpB2te9IGYImabrXQmqIk1t2a5yXwlR24H1MqhrK66XQagQm1y1fXtKqcuMnnV7QEG3gTJdfiuNRgNK6cvAVrWr+CVtxV4g0hSeRG9WgN7eZinkJuK9ECxub1/nGP8+gGXb9tJZUe2/2cLuFGZV+3OTnRGVF4RKwzCeB+fb9rJt3x2FPfVs2lps+zF1QLqd+rPt7839bYrYAqkFUigMBVgGtmXi2C5N36cVBrSCBB1B8gIG5jvx4sSdf/AHDPWESPndx0+m4/Af//Wfc9ONJRyL7wg/ZRc8AH7+R3+QQI/y+S/ey9PHL9HSLy4/3X3Pw6xXAgb7S2Szt/B//vbPc+cffpFDexd3+Oklzk+WnTJGnET4QQPDtLFdC8cCS7Z4/R3LCGGAtglaASJR6cxRlVCtVJkJZ+juHWBwoO8flZ+GJw9hex6KMlrHGIaDYXr89Ideh5dJj+HUs8s8+9gciC4ADMPEcdL7TWV5iVr3xlXzUxj6bKzV0LrtBb3DT5vb2+GnHX7aiZ14qcVVD/x9/Z7HePMbbqWn2I3XjKiubRCqFvc8fIq6H7GxUuG266/lHf/kdkQiiKpN7j0/y43TuygvKRZPLuBEgkgYJIZCJCmosr0z0ttG+mmP5WuNSMAVRnpTFKmybQLC1mQNh4LhMuJ4DDkOva5DxpRkbQsh0um/fhJjYwAJpm1haIk2XZLpKcw3vIqo2EO24SNtzX/9nT/mvrvvpX+wi0/deR/DI90M9BTozlr09mUZGxsmbhZZyCzhWXBp/iJKN2nUfKTlcN8Tx6nUq7zjNddx7VQ3KglZqjVQSrAn20ulvMra6iqW41Aq5CkVCszOrqEk+LNLaBKW1mqcvniRoa5u3vSa2xjqKQHwz37wTQysrvLksbNU6gFxLBHtFJ5EqdSwV2vCKEBFMY7nYqKJEgtEgDAs4kQwMjLA/j3j7JkYIVsssLxyiV17D2AmFjoJQEckykFKcM0YE5swajE50kvXHdfDZ7+J65i0AsFzR89S8CwGhocIWj4jg/34ScTy0iJJJHnwydMsLle4dt8wY80mR6YPUfdDZldXefzoReJEcHj/BAf270XYPnFioJH41TpNP6TpB0TK4PzpC5yeX6cR+PzoW2/FMzSOUMxdmsXyipy/dIyxXZOcPXOeibExckWP+XLM06dOE6uA66/dTXW1wuzsDErAK66/hpWVFaqVCjpRxEmMHwc4TjZ9EIgjqtWI1dU1oiTAtCx6+wa54YZRtFY06lWUSkHGlAbCstBCEOmYfKGE55iMDHZz6MAkG+UayysbRFFCxjPw3AxxFKVFNYKARqJISG/urpPOrPB9P/VPNBNazSphK0sun8e2XEwJiVL4QQupQsJmFcvNYlomAokUApkkxElMoiBOEkwnAzLBcNIHIjQkYYhOJTEcacAv/ALxL/0LookRjD3TmL0DmJaBl83hakmrFbAWVKlWyyRovGIXq2WfRivCsDxQaSGPRGiENLB1gkIjbZtnz19k9LHH6R3p4+DBI3i2x8jgMK984xSHb5zmk//zM8ysNPjK1/6Wd5k2me4Bin0ZFmdnOHv0WSb3TFIowdT+vQhtEMcxuWIX6yvLDPQOpuZXwKnT57CzBnt37cZxHJpRgyRYp7oWY1gePX0DGIU8UrlYjo3hGig77QYtUzJz4RwNP6a3t5+BwQFM2wKRJglEcZIq8Ub6YB2FKdhatpcCbBtKfd9PU6vbfitSpqBGG6pMw9iELa1VGwA7wLUFNJtKqwDDlKhky6NFQGpAzPNV6xdSgK8EvE67Ou8n29NKxNZ2t29jc1+qA9LJJsQJIUmZS2+m7ii95cNjGNtTMS7v8y9TvHW7578COLcr5tuPb7si/0Iq8pWKfef3bwf7WnccX1KPoHQ5ufn5bF/vMlVbv8DnRnvmQeeY2rOyXljlTpfZAlhjc9lv1/bNcys1toSsbRIlDo0gpOnH+EHyAvvZiRcjnj76TQbfcCul/HcrP80ixDQDQ98ZfrrnEQF8H1JIJgZ6+bkfezfnLi3ywJNHX1R+evfbXsWp0zPMLW3QLnbM/MUZdg+zw08vcX6StgukdiIoiJoNtFIIaVAu5/njj4/ww++5QE93lShoEoUB2WIRKW2y+SLLS0s0/QrVqvWPyk+ve3UerQfxckWils/SpRn6Bvr4yqdPUii5XHPzEHsP9XHgunHCh8/y+//mXmq1hPnF9PgWFy5x7ZR91fxkiAS7q5j6V+7w0w4/pXva4aed2ImXaFz1wN+NN17DPQ88Sy5vc8fNB9m9a5Q4iHnq6CIZr8krb9iHa9qcfvocrukyuzBLkkhipahk+ygeupm186eIKoskvo9Q6TR6AWknJSVCa6QhEVLSsXEVgCUNHGniYWDJtNGOITGFpGBYlByHXseg4JjYpolp2ASxRukEbShMPybMSqzJAZKeXpzpaeTBKeyJYWLDQAUJmZzgI7//33no/oewM3lGBrq4fmoYQytGB3pxLPAMTWV1hVqtjlIRr7/1AMV8FzPzSyQ5l+npKa45soeg0iTrmFRrPgbpVHrDiPnyPfdx/PwiIz1F3vjKa/HDgNX1ChcW51grNzAMg3KlwfxqhfVak+pgi1dGEQvz8xwGhEy448aDuLbNY0+fwo8FQRQSxiFIk3ZPS65QJAp9ChmXkcEBVBQRtgKKeZPpvUMEjQZSaIIgQFdqtOIWwwOjOF4OYaapQtJw0IbAEuBITa6/j8pqddNvsNwIeOr+YyyvrjC5d5TBrgWyrs2u4W5qtTqTYyMstzZ462uvp8sr4vUWMKVFWN5g1/gwp2ck3/emcXJ5DyebQccWGxsb9PX1INHIjEMrUayv18g7DrsndzM2MoJhaKTpsdEE6ebJD4xj2h6jTpFYx5T6BllvRpxbWuPopQb9JZt3vuoVDHb10Kot0T/UxeJqmeXlVVpNnzVjg3wuiyElOhIkMqIVRFRqDaRl4+WzDBSHyWUz6UwBUhCUlg1K0YoiHDNVkMIgJo41rWZApVzHtppYlkWjkfrllUp58lkHgUSIDEopLNvGMO3NKedJe0aHa9nESUQ+5yGA8kaZjfU1gijGMcCUGtu2MIUijppomaReFpaLnSmgYglaYxip90ysVOpf0RbZpDDSYzYMkjR3AIDcr/0OMpd6vbSeeYT46UeRQmOYArdYxBgYgmweM45I/Dr3PfgY6+UqynQwrfTh0DA0GdPiuqlJhvt6eOrMGQKlmd69jz/+wue47+mzvPWOaxkY6MGvVNm/e5L3//i7+chH/oJzMyt84657+d7XvRLdm2PXvkMsrDf4k//1Ja7fv5upfbuY2r8P0zJx3Dy9fRYrK/PoxSWGAdezWVwvU2udYO+uCTzHQiTpNSyET7O6gBQ+tUSwvl4liAK65pfpAhzXZWx8gmq9gd+KWF/boKunhOM6SGm2zZHVpiG0ZVjEOiSKQgzTQkqJYRg4jpN+FloRRQGdtJQkUZhmmp50JbwolRpZp92huOz1zmtCik3I7UBoqhTr58HYdoDqpJukcbmZ8nY1evu629uRZuFsVaLTbTPrTtuU6nimtKOtuqK3ChAIQarY0zZLVyr1nbkCUGnPXrqy/Z3ftyvF306p3g6yVx7P84BVcNnf6bpb/kPpm530oi3j7Cvb/UIg3NnGlcum20gAue29DphvKf7Pg27S1J3OLIJNWBYabSRoLTCkSc4w8NyEIAzZiZdG3PXQv6EZfIzxsZPfdfzkWLv467tuYXL0OSred4afzl4aAcCPYy5euEBvqQcp4xedn+JYEUnNaq3FidPnAbjn6HnWg40dfnqJ85NSnXulgWnaaVEApYiVZq3s8Jd3jvG2Ny4wPqJRYYjpGDimjdIK25ZMjA6nHGbY/6j8JO95EBUcIM5p+oZGKdcD7nnwSS5cnGdoqI840bz53VMcun6Ic8c3qFY3KG9EKDUAwHqlxpPHVq6an2zPpqe3j1w2v8NPO/y0w087sRMv8bjqgb/Rvi4eaFVBZOnv7WV9pYK0fA6Mlfjol09x8uIyrzg0TF8my579ezlw5Aj/7U8+x2NPnyTbc5js+BD5sRF0K6BeXqe6skDcrBI36oT1BiJRmCYkOiEKA4hibGngWTY44BgmGWFgybQUuWMYlISk4DiUPI+MFFiWRZIk1MIWkhhUhBAWemSM/g/8E/I3X4vlWEgvgzAN4jgiiRLisMkffOT3ufNLXyLvZfGbFVbLDvsmDtGsNmkELf7yCw/yr37y+wl8n8WlBW689gimY9MKI4p+gIoSludXMQ2Lnp48SytL1FoRQSQYGhlGRRG5fI4333o9B6d34eUdLs3M06y3uG7/PmaX1xns6ma1ssz4wBhPHj+D69pEYZPenmEAYm2QyWSYHBnmiaNn8UwD29CsVSOioIVpCOqVBL/ZJJt18boL9A/20ZXLIYMakhg/jJjcM8lY/wC1RovZpUUOHzqcPjwkIWGisKVNFFcx3RKRNlm4dIG+ZhfNapXVmUWuBXpKHvt7e7n52gls08APY8qtiGboMzrQy+PPnaTW9JFa0Tc0ymilhGVCGMaMjfTQSBTl2VkO7NqNVk3OXbiAUFDKeSgJlUqFVqSYGhkiokWzVseWimwmh2sZnJtbYc/uIa7bdwBbQiIF9XKdmdlLNFtNSvYE44MLHOkq0dWqU33oYYQBfYaFXa7hZbMYlkdtaYNgpUzkx6zXWkRJTHdvN71uBstyQINZbiGExkBj2BZCJ0jTQmqTMAnwHItsJkOr2aRWbyBXq4R+xGqlzFq1Tsv3KWZd+kcH0GhMxyWT8YgCn7X1NUzbprfUQ4LANsw0bUHHSBVjZTIIrTHWN2isruC3fGQ+R7ZUIpPxCJer2I6T0kXQYm5ugUozYnR0GM/L8PSzxxkZHSSbK5ApFjFn5tIvfqWKXlohsSxMw8JY2QCg8p9+g+ytNyOvvQ330I3Ep46hzj5DFARYQM51wYTFlTLPPX2KO7/0TXwhkDpEY6FkaowbRWmFvGI2Q5xopkZHue72m3mvnRC1WuzZvYtzc2f46p/dy3UHD7Fv9yDvfvur+MSd3+Sp0xcxbcGr77iZfLGb13/v9xImgs987hscPTPPDedn6OouobRJIeviOaDD1LtwsLeXqODhBxFPPXOM1XINhaSvK8/U5AiDg1kyrkusJVJpHn7kOMunL3AdEPlNllaWWFhaJ5vJkEsgDAPyxSz5Yg+2ZaNJq80JNBgGpuGSJCFC6PZPJ79BAqnvDejUT6rVYmVpCSE03d3dOF6WJFEpkLahVCXPV2SvjCuhzjB4QUhLU0TUpnLeeT+F1W0Ktm6rqYZgk7u0RrVnEEkh0Ci2WC8FLtM009QUfXmbt9ogt/2t0W2vGyllWmlNqC34ugJAO2q20ioVj3WakmdIA2kam++lKS9qs6Je2lY2t5V6ujz//HTa1RHNr1S10zSg9vLpf2gi0mKB6X42PxsNtE2rtyvtnSqDz1eo02tlezpKB3ANA6TYUvwvX4vN89eJTR8iabYL4GmkSAeADOOqb+878Y8cKslSaTWp11vfdfx07ILBp796Cz/w9gv0+YvfEX767Ndb3H0vxLHP6OAuZpdWibVJKeu+qPx05sIScyt1BnuytFolAPaP9tOVa74k+enA/t0UszarK3NIA3K5Al1+Qq6QxzTSwca1jXWCZsTiRoMwiRgY6sfJFXEcD7TGMkyiKEZrjeHaGFKTy2WQ2iaIW2Rdm0I+R71ep1yuYhg2KhTMLa6xtJFW8O0ueEx7DvVKgO1myOezBK2A2ZlZLMdhsHeQBIE0rZSfVIxSMe2bGIHvMz8/T7PZoqtUpLenB8O0aYQJjuulA3utBuePPcd6LWTPnl1kczkeeehxdu8ep1DsQqk0W0Ig8RybUEREocJxMlxzoMWjf/M3VKo13Owewjjh9LFj7N23D8uWtCo17GyBnOchVPKPyk/Pnr1EK77AdbleVOzyPe+4jR/64M3c/Y1nybg219yUViA+fWKBYycafPGbt/H6mx9JK4EDxVwWqZavmp+qtQq33XYLtoDVSm2Hn9Kd7PDTDj/txE68JOOqr+ysa3JgcoxzZy/xzNFjjA+MIpTNoRv38dvXTKHikGolIldwqa1WsQoBP/J9d3BmdoWzqzkypqBarqJMTXasj74946hYESUJUgg812NguJ/+7m6kiqmurLA8O0t1dQ2j3iQoV1FhgElCxg8pKMg5DnnLJmvaaUGCjIPIZ3B7e4h7e8gMjyP6+8hfN0W2lCWJEhIp8aRAq4Q4jnn22aP80f/4Hzz1+GPYhRytsIlhmFycrfDs8XnGBgsUcw7vedsbCYKErqE+Dha6qdXKdDsWi/NzzMwvkc/nKWYzTO4Zo16tMTgygZ5fotuyaayvUQ1DYr/JejPi/kc20ErT9Bvsnuylu7ePrrFRHr3/Ac7MrXHszDyn5hbYOzHMrrHBzXLjByZ3E+wax8k6FB+0WV5rYVkmuYyDlhKlNLbtUa83qMch55s11lbXOHLDdazMXGJqfJBc1iAJBY1WTLnaZPrgQWzPQ1o2wpCY0sQQLiYWKgnoKuapr9nUyk2WGzGOm3qE9HV3US96tBoxJ+fnEMLh8P5xRsfGGRvsY3j3HsrlMg88cZx7HnqGjWoTqUAaitfedoS9I8OcXm/y5QefJQpaFLI2rufRt7FGb1c/Tzx1gvVWg1pV8vqb97FnzyBdjg2GQBqQJF3MnVtmYWae2dV1jp08z82H9+H7AREwMdzipmKBfT/1m0j/5a/cDAIHr2K53hdY74XC/uLd2C/wevG3fpf5f/kDdAchme/7EaI9B4hOPI3rFWisXeL++x7jMw8f58SZOYIwQqsYQ2ikYRJJhYlGWgJhw/m1FZZWyqzWG1y/zyRR8OrbXgNSoU1J78QQpf5RLpw6w5PPniSJQ6Z2DfLsqSUePT6DSgT7F8uMTO3i9a+9DduGBx94nEsLKywsrlD36xzevxsZJ0xlMwB095TQQ900Wz5dQUSpWMOQBmOjQ5TLZeqtiHySEPk1MtkMb3jDa1k1HgK+ThxGlDJZjK6EY+dmePrEg/hxiztuvoYbDh0kU8jjZopoDHSiUiKSelNFjaIYw5Cb5symaW0qqnEc47ouo6NjVCtlmo0GCoHrelueLkIiTbmZjrE9ng+FW393QG+7J0wnlFLEcfrQZRrmZVXydDsVI/Xa2Qat6Q5SbVy002dSckv32UnmuDK95Qr1d/vvL/TadgV5uwp9+TEZbXhMX4/iND8uTY8RW1DeVsCTtk8OHaVcpmq5ELJNsO19dA6nk0XC5fDagVrZ7ldFe5MdpVlvO/dsbqsDop0ffdkxXn4OOqq+7iy6LWFn28lmC4SvfIjp7H9TvW5/BLptaPMCzzw78SLFx/7TV3joKYtzZxvfdfyU81LMDENFYeA7w09PnknvB0moiLRiaLCb/kIPwlQvKj8ZGZuxsS5sabJaTlMrz8wsUmuuveT46dqpSdyMx+J6jqW1QcIgYGVlDaX66OvvZ3VljaPHW+yd7Ofawx4TuwOaQZGV1SIH+tZJkoQLs0X80CZSKm2/JTCBEI1jWqjYIYqf5tEnn+T4GUnTTxDiNLl8Hkdczy3XH2B67zhomF0wqbUaOKaBIW1sx2Fqt4nQCU8dzzHUHzE0EFOpm8wt9KClxLZMBFCrOayuuJiWheEXEZUa+aKiUk6Ymbc4sK9JzvNYb47wt/ee5JOffxgtDBYWy5jOIkEQkXGvAW5ibbnK0888S63RTaa0j4P7KoDFpcUuqvUax06tsm9XkYnJMR64/x5uuu3VZEr9LM1f4ujpS3zx7if+Ufnp8eeaXFou451qEPgVsnm48daDHLnhzQgBG2sN/vp/PcKf/8+7yWUnKXgrZDImhpNmegwM9DE81LhqfpqZuUTg+0R+uMNPWzvc4acdftqJnXhJxlUP/LWaguH+EtOTY1ieQStp0Z0rsjy7ijAzLCzNMbu0yqE9k0gk62sreNludJTQaAQ4Zp6R7iwrtXRkPYnSyk6WKUiSgEplhVpliYu2TaGrRHepm8nrbySbzaLQNJtN6vU6WsV4WlCwHAp5m6zjkvUyFLpKOMU8MpvB9Mx02rjjIKTE0p0qPQJLChqNBqdOneQrX/kKn/7kp4kTTbFUTCuHadBaIaTL0bOz5HOTZBwHx7bAsJBBCykdLC9PPQpxshl6Ct1kczmUkbC4sEqlXKPUVUKYEj+JqAcRpuMyt7hBK2hQrtU5uLef4WI3OaeHlcU5nGKBob4BkgQsw+Dw9G7yuQIJGttKbzZHz13g2fk5JgcH6cl1UakqWmETzzFpBQrHdSjk8/T2dBHHAc1GnUatwcmjp2g2qpSrLQwV8v1v60ZKzcLCMqPjQ+TzBVSiSVAI00qrNkkDHSk2ymsMDQ4S+hUWluY4fnqOtwK1Sh1ZzGI7mt5ikViG3HTNGLnuYaRl4SYJA32St73udl5363VUqlXCOCFs+VgiwTIke8f6mRjtpbJeoby+jtaahfklzs3MsViu8+abD9HwffqGiuQKRZLIR4gQrWw21laJlUW1XGdhscnhfQcYHu4hCSPCSLBSrqDnZ5n2Q776ttdwCkkx5zIxWOLc+QUqQYzrCWYXy+wbG2BksEiibfwgYniwHwwD5VjtVFhFxjaJg5iZxRX6ugpMTozy5NFTfPWbD3Hu4jyxMpBSYBoSKUAJiWEILEOye2yYm47s45rpSQxhEAQBiysrHD89Q093iSMHpvAyHgiNSmJMKfH9AGnZ5As5LMtCCEESp6kO0pA0mw3iMEQlEbZtpSkvlo1pOxjSpNFssLy0yurKBvVahbX1MjNzy/SUN/i5J8+w8IqDNPp76B4eAinwxvfhjexF3n8/Pa++FfP2NwBg1dYJ/BatKObJo2f4yIMnqZoZPCdLX1Gg44BaM6Da8gmSEDIZLNPC0wZhE+qyyUhPlpHeLqqVNaRhke0qIexUod2/fz97dk3QbAbMXTxLptDFYjlgfmWNx88vcWJug8GnT7J71xjT+/bw3ne+k42VWYKwiWPZCBSCBHejmfZTQYiXy5ErduG3ArJuBssErWP6e0toHSG0QpoWge+jCOkqlQCIwyaV1XlM1+P2V1zHkSPXUms08DwD0/VQUZxeg9LEMFI/Gq0NBAZSSAzLJWlXrdM6IooUUpqbgKWUQqHI5fNolUFpTZLEbTgCjWrDh4C2OT9abwLi5ekUz1dCrwSZ1IdGtit9bi7FdrDSpFXahN6OSC+klItNwOrsa+vftlH1C6jsV8LgtwPyTkpVR2VPl6UNnVuQuz09Zjs0S8OAK5T7zr6U0kCytT9x+b475+3Kdm6fNbAJ8Ai2PRdsW15tO25NWkVVbCriL3ROxTZo1u2Hg07aj94EWfltP+/Lzt+254v2p8X2yns78eLGyqrNQG/XdyU/JXH7qpQmMqh+R/jJcaf4zJfSyoy2Y7C6XOPCpRXmVtdeVH56/LlZersLdHkuUpcAKOVyFEvyJcdPa7WzVCpFfu7X/83fe33/xHs/watve5qv3dPPn3/m+7jr4/8FhOC3/q+3c/zU0N+57uDAr6FZplL5IyDPUP8Ps7IOl2b+O1//1rdfr6frEr/ys/+e2248wk/8q7fwUz/2NO9/9zPc99BufvE3X/d37vOD7zvFL/3UIzzznMMP/9wb+fonv8bBAyEf/8Jr+ctPv//vXPezX6rxA2+u8fEvXMe3HjnIVz/xVS7O9fHuD96Ebpcw9dyYb33hbq6/4WaSWpVq4PMXn/1b7nrgOBr7H5WfLiyf5dRCzMWVFmu1dc7MLPDQfScYHhrANCWN2jpRHDK9axegGHvjEwijhK9i/sMvfoapPSHFwtBV81Nvby9JEhIFdVrN5g4/scNPO/y0Ezvx0o2rHvg7P3eOvOuyUWnyxAOnGBooYQoDU2jOzK9z3dQYE/0DmEITSJN7vvUc/X0FertdSp5PJSoihEPWbKHiCI1ECxstLUwrh7TTku2Oa9HT38X46BDFYg6JxteK3oF+sq6LNASea2MaBoZI10GyOf1ZmhZCSGzLQiIwOxWODDCFxWOPPsqdd36aRx95hFq1Rq3eoFgsEUcxcaxSqI4DMDXa6kZaDolhcOHCLOWyjXtwL4W8TcaUuJaDZ5hYMsNzJ8/gZRw8K0KJGK0jchkPvxUzPFhABRo9FDIy0I9XyNGol0nqTUKt0FFCslFBGwaDIwOEtSZ7piZYX6wg0PhBmsbYU8rQ77j4/gbZrIltm0TaIQqbGMIAndCsV5jev598IUutVue5oye4eGmWomdT04Ksa7B3coJdB/Zx8thpHrj/Wxw8eJgbb30VUkKj0cAzLSxpEwiBZ1sI08H1DLQxh+ukKnUxb2P19LBebXCmvIrjmJw6dZ6u3iqtRhklPEzLppTPE4YBjbrP488dp6fgcc30JI1Wk2q5jjQ0tq3J5E2CUNBqJRyZmiAKfE5cnGHPyCBHn5vl/nufQhqCd7zl1dTrFXq7+nEzeTbqy7S0ZHxwiL7uIs+ePEm1GbK2ssr55+Z4G6AuLbI34yHLEC0u0+dH9EkTq6HYJR2SiyvEs4usVwMyroU9tkZZxRybHuWaG4+gFFjdPWRsh/ylORIX7lmq8J++cBfrjRAjk0vPPxpEOh1fmEZaCRGLZ5fW+cJdDzD83AXe++abmT4wwcnmBuK6fawrxcZkCad7kEq9zonTZwhaPhKBlFCSAaZpcviaa5CmTVODYVvYlo2hFSqMiOKIUCV4GYdYCGzLxDUMhiLFoIYoivH9BmGzwdrdD8OTZ5CDg3hTkwQ5i4yTwY+beNdcA+9+N67joBoVavf8DcF9X6ZSq3Hfvc/SXK5i9HaDmYD0KTp5hvpL5HM2db/FzOIaF+dXydklTKkxhMIKFIXBPCI2yWQyNIMWzUYF2/LIuh5xojEsi1LJo9R1I34YsGffYY4/9wxPn5jh/MVFnjy9zsxalQvnL7B/7yRDg32UqzV0zmJofJhcRrJyPn1CME2bbFcPvh9gGDYDw6PUG3Vq6yvt67uJ32qhtELFCabtAOkN3nZswjhARBLiBgXHJOd4rG3UMbDwshmCJELokI7xfRwqpJG00wI0UnRSQlIldTtsbcKr1iSxIlFxWl1TmggEcZxsgo4WWxC63Y8EXli1vjJNpaPkdkDoMmUVgZBymyLN89bfDm6b0NreQkdPTdlap+kb7ZSQF0qt2b69F4LtK5e9vAreFgxu39aV6RqdbXXOeeecdQC3A8Sd5TrnKG2vBNRloNpZV6mYjj/PlRB95f6VStVsKVN1XOs2wNIR0NvV/zRoIUDqy9qz1b7t5yOl27/v3Mn2dSOE3FTsX+iz2IkXJ1713g/w3/7N/4Dx1e86flLt7+rs3DyNw953hJ8KvX0c3rdIxo1ptlosr6wwPjZAFIUvKj95XhYCRc+QQzMsAlCtNSjmk5ccP52Zr7NengLgLa/9I0aGLmJYJo2GD4aNayq0sojCgHx2kb+5Z56MM8tv/+s1zp05TuD7fPinMjRaFsVCEdOyWVhaxrRheb3Jn37ib6i2Imy7hikdbOM/gEhnJNpGi4nJdyEw08Edoejr7ePNtx1ictcgp86cxzQ1pqEJkyp/8X99FcdZ5ZmjzyHVMT780w8jJeRyGUzDYM/UFNIwiTUYlslgv6bY3ctN1ys+/2d/y1B/DbTFz//Ecf7Z+y4gDUm9IfjGt3qpVNNqwSurBl+5ew/zSyW++dgb6O72eMvrz3PnF6a4MKvRWvD9b1vCdSL+6jOjXDzb5Obr4OLCKn/4iXs4MVPGsGxi/nH5qXfoBvyP5tioXqJSXmZjsc5arcXqygpDA32USgXClo92DbLFfhpNj2Z5FsupcfvrFhkdLfzv8ZNM2Ukagkp1Y4efdvhph592YidewnHVA3+Rn7AeNjBck9VKg96ePCMDvfSM9PP1Rz/H/UdP8rZbj7C0vsKNhw7yptffANLkmcceZe78ImfXPI5cfztWtheVSJSOQAg0AkM4CGEgTUlffw+uY1CttUAYeJ6H57h0dRVxbAvLglwmnYEnTLPdUWlsy8AwUkNeklTpTcKAOA5RQrKyuMof/o8/4G++8hWSJElnUUlJFMe0/DpCJFimTRyDQGEKyVPPXSRsxbzhlbsp5B32TozjmjlOnTvD/Nw8PcUCWdemWa3TnxMUCi4Ig0SauI5Jxsmy2FxCCUX3SInCwDguFo1WhcS3CJKYL375a4z19rO2USGRJoaOUFqwth7gWhEjE/3MnJ3lVmB1dZ6e/fsx7Dz9gy1OXFjBFJJEphXRTCNVzp556gn27dtHEKWpBKZtIgyNNAT5QonlpSX2Te/nyKHDjI/18NBDj3Lx4iX2T+3CTEyUDqjXFnALA+lUcb/GNx9+gq89coKBhbX0wrEdzs9fxG9G3H7DGFO7JphdWCZoBXSVelmtNKnV1tFRk3q9SYRgsL+fi7OXmKgF5D1Ny3Vo+XUcIsbGBrn/6RkeOTHLPU+c5E2vOsJzZxc4M3uCIBIUMjZNv8XMapnpvWOszy/T8Mu4ZoZbrtnP3Poa9zzyJLZhYdsWha4SfbvaxuCtkBU0h67dT093jkqtBVqR9TySKEQaBkrDSNOnFYWY0qBYLTPe18u9jx7j6VPnGRsaZGK0m+HBHi5dbPL7//OzNJRGSgulFYZI0utZSkzLImcaIMzUB0lqMCyWVpf4//3xF3nX91zHe9/5BlzhIKXG8Vy0ijBNg1tuuYV6w2f+0kWa9RpSwOryEseeFUxN78fL56nWaizXG/h+iOM49PX1k8lmQMeoKCGRgjiJiZVGShBS43oWmUwfI9ddk35+UlPoKhB7DkmisJaX4IYbAGj83PspZwxiJVhcrvDNx08R1wOKQmPEGkcIkiRitdki1Jq+RLK7t4sbdl3L6Qtz3Hf0NIFTIGuCNhQDXomh8b1Uqgnd/UUqzRpr84sQaNy8Sy7rUcjlELaLYXmMjloMDX8Pt7yyRWV5kYWFZR544jgrG1WcmVmePX6Beuizd6ifnkKJvv2HkaPnASh2d6Ftk5xjUa6UWd1YprtniHzvEKHfQi/NUms0cGwLpUKK2Tx2JvXu0dqmqzhAvVqhUWvS9Ot4mRxRK2Bp/iwTU/uxTAuEiVYJQiegE1qNJkKANGxsx0WrdLDVsg2UijFkmiISRVEKS1Ji2jZCGcRRQBBGWJaNaVjbADIFGSHlNuVWPA9arzRn7qi9cRwhRGqWbZpmqoamkmg6Po1oq6T6stSO9NcXhswro+NJrQXp1q5YXL8APH27dIvO71dGCm6Xr78F5M/f5nYlOwU+2f7RSNkx5k7QOk3h2Xp/C0y3b7OTspKakqepKFIaly2z9YBy2ZGl/0+SrRQUIaBTwa/9MHClEXXnGGD7DAK9ufrl8wq27WfbuRNtDx29A64vqag0fBpx47uOn/aMp4YTY0ODuGbyHeGnQ7sDfvNn7mNkpJ/HHj2LkhHzC016cj0vKj/VGwETY8MccIeZX1kA4Mj0IG9+9chLjp9uKHbx0NOp0GuKJ3jH6wfZNdrL/GoFVEJ3oUgcNDHMPInupVoep9pqUiiuUdlwcbpLHD9/3+X8NNTDpcUmf/a/PktTa2y3PVMLgWXPoGVaNTdnGuCeTvlJKzBMmsEJPvWVe1N+eleHn0ZwPJex3nXKzZDdey7nJ9cus762hgwXt/ip3qRRb3DmdMpPhw7047lZ0DHDfQ2s0RiNYnXDIJst0lWMcd2QKLLYv+csPSUXFTfp7s0Sa41KFH1hep76+2rEqU5P6Ps8/MgJPvqF+1mrpD52MtIYgn9UfhoZ9tg7NUbGG4FojfJGlVMX5qg2Wphr61yaW8GPIwa6Cnj1Qf7gU7fwL95vsLpS5eNffg0/+cOnGey/en6ShkutFaK13OEndvhp+zZ3+On//TEyMnLNT/7kTy792q/92vKL1YaTJ0/a09PT19x///3Hbr/99tbVrPOe97xnslKpGHfdddfZ/7v7/eIXv5h/xzvesW9lZeWp3t7el00Z6Kse+Ds9s8RNh3eDjLnu0DB7Bscp9WZ57tQlxodKHNg3wa6RQa49vIeMadBqNHBdh1fefDPPXfwijz/5IOvry+zevZdCsR/XzWKYHlLaCGJMkWAKQRJUCZWBwMX3RQqUwqVek4S2SS6bQXsZEAYqSahurLOxvk6lXKbRbNBoNqlWq6ytbbC+ts7a6iqObTM7c5GLszNks1k2NjY2FZ18Po9tWwhhEoQ+YGI7qS+INDO0wpiC7TK/WubYyeM0w4S+UhHHdMnmSvT1dBF311P/k7UKWdOm2vRJYkiyMa5rc3ZmjqefPc++iQEWVxroqMnc2goYDpO9Pcyt1QhihVQ+iZZcWJjn6IUV+nuyvKJRp9D+lPqLQ1Q9h2PHz7OwWsG0JJEfgTBAKlAa13Mp5vIsLS7TaDWRpkkWjZCaQi5Lo1bnc1+7h56hQQ5OH2RpeZnpQ4cYHB5BYWDaHkZiYlgSEUfkCwWadYuZhQ0Gu4pcWyrCw89CEiMsh0bYohpaxNjs3XeAY0efoej2ITGIMi6VRpW5tRYnzy8SJBJFwBvyGWzhk7FahEHAA0/NsFA9w8J6lSCKSZB85htPUK/HJCZkzHRgzjQlf/4XX+Hdb78FSxk8euwMi2sVlFZMjAywf7Qf2zYZGBnCUAop0hPX15VlzbI5tbzBhJMhShRgEsYmTtZOp4wj0W4WGYYEzRbCyCAzvRw6PMTErl089dwZ1htQaFp84st301IKQ8VA+sAVa40pBaYQZAwDz7MwJJhGPq1UF4QkGnTe4AvfeIp6M+RH3vUqcp6N57gYMku363HhwkU812P/vn3MLMzjOC679h/ksUceRp08yeFDh9DNBqVcltzIEOgOuCgUBobjYJgSpRWOaaJ1gjAkWgdEUUSo077JcTK0whArm0fKBMPYcvwTBmhh8c2Hn2ZmpU7gJ2S0BhWjZQzaRiCJw5hIhigvS4KB4xm8921vYN/+fXzhb+8h0ZrpXaOM7u2jFZbpzhdoioRCdw8FnadSqZMEPn4zwLIdbASmZdOKE0xh4OYL2BmHwfExrr3xJh5++Anu+tbDSA13HJqiu9fD7M8SRoLBoUkAtOFi2XmUiuntHaLeaBD4LTKmhZvJMrr3GlrNGn5tA79ZZW2jRqmV3idsx0JlXCzHJklikJqNcpUoEmiRUN9Yx7BdojgFQylN/DBK07FNgziJicIWQpo4ro3WqUoaBj6mZWOaJkopkiTZ7H9sJ4NSCWEYIKRAItu+KiJVazWpATNbVLRdrb0SMLeAS5EkEUolW3Am5WWQ1/Fr2ZaBctk2Nhe7YvuXQfLWplIIvgJWXwheO6+/ELR+u1SWy46N56eWCNGp1yfQSqew2PG3IXkeZHYU6e3ncDPtRnSMoo3L2tuZcdBJo9muiKfbNdpw2ZkX0D4ete34VILapo5vcaixbTuy/ZZiq0Iem+17oc8EkR532n5Ai+ch7k68uJHLuORs47uOn7JWem85d/E89ebF7zg/YcF1B6+lVWmgZfSi8tPgdC+lnAVxhGHY5LNr+Eq8JPmp4QfUaqkoli3keOTZs0TapuXXAZsoicgUXQyVzvoxSj24TgY/jlFWNzKb49DhrpcvP9kuUhjkc5DJJCRxRFd3FVM4xCEo2SLrpF6SuVrqfV2t2TSbac/7J3fOE8pv0ajHBME4Ulex7Xl07NHy9xGFkrBpoQMPiwLCKHLk4Kux80s88OS3cK0l9k2ME3rXsbTR4sB4gZl1k43yLiCiXmui5kOkNMjkM1iWhWFa2LaP0hDpDI0gw/juJuO7d/PY48scO7WAACb6ezAsizW/BECx2Ieimzv/Zoj3vXuNYWPjqvkp4yVYloswDRKDHX7a4acdfvouikcfffR4Pp/fyYt+GcVVD/wZtsG52WWGe3vYPzqGlXHw44jXvPJa5terfP4bT/FE8RKjQ3lG+rL0d+cZHR6h0tjg7OwaWmkunDrLxXOn8HJ5stk8juth2w6WaWHbNvl8Ece1QacdjGWbxHFMHKXqdhwnCDS9vT10dXdRq5Q5f/4cq6urtFqt9k1BEUYhWivQmnqjgVaKvv4+DMOk0WhsTmOO44RsNkuSJERRTJxoHCf1cxAGIBRxEpPEmnwmy+hwiULeo1H2mV2u0KrXOLm6zsToMBu1FrPzq7zm9ldw719/BS00tmvwnu99G+dml1hcXqaQNbnn6TN4hqC/VOCZkwvccWiISqOOIQXvefNNSLNEHLfwFbQaLUqGxGmmM9dcz8AquoyP9tPV38380gqNcohpC2Kd3kjCKAQ0npchjGLSKV+KZhJDpBnsKyIMxVe/dg/l9XV6+7ooZHM4lk0URViOQZiAEBGW7eBHMRvVMrffsJcwium6tJFeD5bN2GAfPV1FwhgSlTDQX0Qe2UdlrYpWMflSgUurFY6dnaPph4wOD1AsDLK0WMZ1JBdmN/ADjZXrZawoKHaXqNYDbClYr1QZ7CsRy4gju0fIZbPksg4H9h5Ahg20CPie191CHAnOz1+ivLLBxOQAtuWipI1BhGGnDxw9xQJHJsZoGRotJEd+6d+RGZlEOg5RtcLG049x9hMfI4liTMBMBK4pkZaBZWcYymbI5a5neX2Dex56hrmFJYS2kAIgNcVNfUBSCFDta0uaLhgCyzago7wZBrYh+eq3nmL3rnF+5PteT7PVQhgC25GMj43y5ONP8oVv3Meps3P4ScSrb3sFr7z9ZpZnLnLy1Gkmdo8zc/40UwcOkusq4tfqqDhEmjZSmmgMkOmPQCKUBm1gm3Kzcpu0LQzDQicRQhqX3eTk0gblQKHnK/S0fNAaV8Xk4pipZouW6aczTXxBLrIpETFgJPRbBpY1z1vGRzCHh3j6+AlyccBob5GR7izJqefQEjJdfRhS4MYQ+nUsyyFZqWDZFoaQ6DgmDkMSlWCaLtpMq1He0VPiyOtuJmn6eK7DpflZGrOLVIZmsKotsoDluPgRtFoBYRji2HaqDktJo7KBRuDl8uR6BsmUelBhi+TSOgBR4CPQBK0GjuuRK5TIl3pp+TG1WoX52TmEYZDL5fD99EHk2PFTTE6Oc+DQAVzPRWmBRqaeKcKAWKIShUpyQj7ZAAEAAElEQVTSGaFGu5Jbh0GESIHIcdwtg2ittpRMaWAaJolK2mkh+gpVdgtU2hsEoGN+vAWUCUKnFeZgE3+u6OV1qmxvU8VTKNpaVF/xXgp927agNVrLbUpzB/La15bsKMnqsnU68bzUmbZ6395SCqdSPK9iG50KcttlZ7alnei2vK62lOErwXQ7GHb2eWVqzFZ1v067O9CboBQYhrzs3Ait07QVtc16WiXpY0hbgRaiPetFCOio54j2LIPLP6fL04m2DjX9fftx/92zDXbiOx9zSxuMDYjvOn5SSXotDg72ctMR6zvCT0fPDvDzH/4gN3z4fzA5Pk99fYN8IYNrGy8qPxnSw5SSZtjilmtDrpn+LcLYIFFjLzl+SoDevj4A7rjlBkaHzqOFQc4t4YeCVpRQX0kHZfzQRymwhUYaFqZjYtgGEuvly0+GCdIEqRBCUqvZvPk9e5meNrBsQasZc+FMlYfuXSafS7AtxV/dOb75ff/6vf9fbr750wgSzp3/12Scc+wa/w2CaJDnTn/87+wr9o9/DwX7fayu1vitP/15fv/Xv8leLnDnFyf4j7//ir9z3f/z/ziNJOTY01nu/OIk//ZXjpPx4N4nbuHU2QIAD2xb3jRiEhUwNAjf+vwD5DyfSv3q+alZqxK0mpjSwDLkDj/t8BM7/PQPHKdP2ywtffvxmoGBmKmpF6WK5fDwcPxi7Hcn/u/HVQ/8nZvdYK1xET+Mecu1u3jD627h3vsf5fMr9zO3XkHomNn1JVYrFZq1PMXMboJWwN88dJyNhkQmIbGVTtGt12tUqxWg02Fcrlp01BxoA4AEIeTml9M0TSzLAtRm4QPHcbYZm3Y8uxzsKCIMQ8IwQsqtmZhxHG+W6/Z9nyRJcGwHyzI2OymhNWvVkP91z1HefP0oqwuSs+eWaQQBcxtV3vm6V+BsrHHvo0+SqJhduyYp18u843tfg0Jx9swpHnzsEY4cOcxQKcenv34fAQa3HdjNV+47TrXZ5O6nz/GWWw8zMdLPI0+dY225yj99//dw/LkFnjp5jsX5Obi4wB3Ax7/yOKtPn6arWOT6PUNMjvWzvHYGCwsTiHQ6Pd0PQ4RhYDsOYRiBUBRMmzBoEcU2u/q6GRkeQMUxWcfEtR0s26LZrGFg4XgZVGSQJBLL9tBJhG3kiHVMvTkLwNpGlWN+hBIuPd1dOLZDpRKRxFliERFRx40Cbj64h327x5AIkrCFm/GIg4RGYjA0ugsrUSihCXXCxnqDUzNnefMd17O2XiEIA3QSkSQWA+N7MSyDjGUQhh5aJmg/JIjh+uI+asNVFAkKzfr6Gt1dvVhONr2eHA/DMsjlMkQJRPNzzD/6EAJN3xvfyuDr3ky0skj1obsxLRej5WNbgrjYTVzwCBOfgpnDy9p84jN/S5wYmNJAaJF6iQCd0vICiUITJQmWqdBaEkdRek8iTSfKFjPYnsvHP/sNhvtKvO6265BoQhxsS3DrHa/k4OH9bKyts14LOXNmhifve5zh4V4KPUUGB0YYGhqmsr6BUCZurkh9bZVWdQUnk8FxPRw3ixSSJEnhBy1RIkKpbXc6DS3fx5QG2jVxTAMRJ3gf/zLXANe8QD/wQ6urV9Vf/NP2DwDffOqq1rma6Nr2+5WW4dp1iLPpw4JXKGGGKXAqv0VOJRSLxVQdjmNIErQG086Q7eoBwLBcAm2ghCBBY0oD3w8o5AtkPBulFLVaDd9v4TkeUawYGx7Asy3iIMAwTEzLRpOmzJmmhRQSyzRRKjWiDsMoLdCyCUAa3fEmUTqtGickIklQSYISelPFlBK0TGFuu+cKpNefRCCNtjG1EOnDy+VnKF1HbEGZSKmpw1Bo0mcsLS5XZK9UoTuQl3bZYktl3VzuhdNPttiyDdb6ctV4K0QbyC/bXAqs6gqleztUi+1tUJsrCrZvZws4N1++4hg7yvPmZ7RNXZek33sQGGY60KG1TlPSNG1I3lLH6aQFbdsX7YeQtKBPum6qWJvtD6KdOtM+vCvbsf3BJW3TNlV827I78dKJh09e4JlLx7/r+Olrj6eZNOXVBk8+ffE7wk/uuSW+9zX/k28++mVm7r6EIw36ij3kPV5UfqpUN4iCgFaYsLhRf0nzk+G5KC+t9GpbJt19fQSRwIgjbOkjBZh2ljhOyLg2ridx3DxSKaShkNpGC/Wy5SdD2O2xIAnCohWZPPKIZObMMsViwpEbezl8fS9ry02OH13n13/5JGurFo88GXPvQ9Ps3f3rCBWDitkz8WuYIsQQ4LnzXDP9XqSGjG3TVcow0Ztjz9Ag45MTFAcHaJRnaTa/h1qzxu/s+Y+8+uZdFLPdvOrIUwz960fo6e2hb6ALvxUDEtOySW+pgqEBk28+2EWlt8L7v/8Etaqi2RS88TXrvOb2cmeSI6BQicJ1QhwroJBVmLTAkP9b/NTVl8FvNYn9kCiOdvhph592+OkfMk6ftjl8+DBh+O0nIdq25ujRo//Qg38bGxvyx37sxya+/vWvl3K5XPKzP/uzi1/60pe6Dh8+3PzoRz96CS5P9X3HO96xSyklvvSlL53rbCMIAjE4OHjk3/7bfzv7sz/7s2tJkvChD31o8M/+7M/61tbWrImJCf+Xf/mXFz74wQ9uwFb67Oc+97lTv/qrvzp69uxZd3p6uvWxj33s/LXXXhtcTbvjOOaf/tN/OnH//fcX1tbWrMHBwfCf//N/vvzhD3/4eenIv/iLvzj00Y9+tD+KIvnOd75z7aMf/egl13U1wN/X1pdrXH1V38RguG+QI7sHKGQchMzQFCbPnJyjf6ib2w5NMDXZz4X5VbLZLmJZ4KHj88yvVOjv7WbmYgYdxW1zVrX5BUwhsVN6PP07hdLU5DP1WDCI42RTle6YigqR+j4opdrrsLnNJElIkgSlFJlMBttOFVkAy7JoNpvYtt2+mQRkMpnNqeTpNOwEKQW+n9BXLOKHkmMz82AkzC/VGerOcd/jp3CFRbGY47oDk1gR1KOQaj1gcW2dUrYPRAPVCsh4FrffdACtLb750Ak26jG7JgaY3j3A9IERpsbHGBwdZObSLKeeO8fM0gozS4u86Y5byA2fhadO8obbD/CojjFNG7eQpcvLYRsGCIGKYyzLwbRspIqJoqhtditRVgbPkShMLFdS7M4hDU1XVx7TsGi0WuQNgWkaJCohDiNsI0EIm0qljsaj0GuSw8Sr+wAcPnINAwODrJdrrFYqPHV2Ds9ZYO/QAKVshroBrmtTrlRRwiJMQpI4ItYmjZZP4PucXVplfX2N6alJkpbmgSeOcu7SHNcMF+ju72HX6ATLy+toy+LJJx/FUIqVjTU0Gbycw40H99Dd3U+gNb25IgkGpmHgdUUYmDi59Lup0SzOz+OUMowND7H0uU+SWAZmNkPhuptwB4YxhUBqSdiso+s+jWqNBx55GKMrT3dPjv7eceZnV5i5NIcpJSZJWoFMGJs3J2FIaCtJlumkD2CGQSaXRQpB4PsU8nlG+noIo4DVSjcPPvEMh/aO09c7gFQKoRWJSsjmiuSyRcYQHJ7excbGGrHQ9Pb2ETUbSNum2NNLEIQIKch3d+GFOcKWT1Bv0KrWsRwXabtYrodhWEhpIs30e4IwkHGCK01UEqEMk/o/eTv5j/81Xx4ZZQlQSdy+LypcrbA1fKtUpGmY6PZN3bNNBrpy7BkosWd0iJGxcbzuXrRUWLbA9NLKgaeOHUejGRsbQwGV2gau42JbXvogapoYhiAI0vtWJpvB8zzCIMR2HVQbogzDSVV4IYiTCIEGnaReIF0F5PgIIoqI/AYCTXcpjwKSKCSIIizbJuu5KKWJg5AwDgmSFDRy3T0YPQNkinnCIEC30xIq5XVsy8JyXDKZDIZhEEUxrWaDeq1KFPgEQYuunh4KxRKZbJYL5y/gZrMMj4xhmDZKa0zLhjgCNEmSbOv/UuiL4xgdx5immRaGkdsAVW8t30mj0KQ3po4cnLSN7oUQyDaFdtI60i/CFrDClp9L53cp5eZDgd62XAfMOtvaSlW5XL1OYan9ACdgqyradshKZxV10mfSqmube2RLKd5cdZtK2/42662KdZ3vd0qserOttD1gtmNrZ5NXoPTWrrctcaUy3zlH6X1LXrYlaUiU0kjVeQhoQ7FSmwr0ZUguttojhCARCpJUVVfbjntrxoDYJsJvfyC4vHLeldt/yYDrTgDQ19XDG19x43cdP+2davLPf+CPmFl/jmW/9h3hp3Jjha6eWd502034/giGhFKpi9MXZ19Ufuob7EcLsC2Hp5/N8Au/+b38/I//6UuSnzQJeScd/Dh//ixFZ5XD0/tYrkhEe6aUXy9jWw6u4yCVSbO8ThjENKOQmZlLZFz7ZctPzSBPHHWRJACC4aEImifZSCSNmsnufTFdPYAhULGimI2ZnZtjaW2WW27+RYRaTr8PJOTcC5uFCQwRUsicRGtN1rEY7Cqyd6iXw3sMdu0tkRvIoGQO2309VtZmY7XC0489zpkLij179zI6YbO2cY6Ml2WgN4Nl2tiWiWlKWq2Uz9/2hhKmmcMPAlzPJVEapTSm6YC0QAiiOPUdRMUolXDxYpZXvfuN/Pl/fZi9k+tXzU+x0ri5IkbBIAzCHX5ih592+OkfMJaWzL9z0A8gDAVLS+Y/9MDfT/3UT409/vjjuU984hNnhoeHo1/91V8dOXbsWObw4cPNF1r+/e9///oHP/jB3ZVKRRaLRQXwmc98puD7vnz/+9+/AfArv/Irg5/61Kd6fu/3fu/igQMH/Lvuuiv/L//lv9zV398fve1tb6t3tvVrv/ZrI7/92799aXBwMP7Jn/zJiQ9+8IO7nnjiiRNX0+4kScTIyEj08Y9//Gx/f3989913537hF35hYmhoKPrxH//xzUG7Bx98sOC6rv76179+8syZM85P//RPT/7SL/1S8pGPfGTuf6etL7e46oG/d7/pFZQyORJDoXWL2aV1Du7Zx+jICI60KOU9aq2IxaZNSwUYvqKrp8QP7h1lZb3MI08+gzAUhoJkW0eXqi7pF7MjwCRJguO42La76Qtgmiae1zHhV0i55ZMQhuHmeum0bye9CWi9ac5qGKlfQRiGm++Zprm5rpSCMPQ399VRxKVMsAyT6b27KPZv4BouSbDBhcUa33zoGP0llzfeNgUamiQEccyFuQUyrssDTx/DsGDPaA8X5+a4eGmFA3snaMQRtq3YPdjN6w/vYnhkmCCJ6O/Ks7KW5/P3P46QIfvGByi5gonh1Bx7cnCQsSN70DFIUzLQ18M9jxwFFMJqezSIrWnVqp1CESRwaHqCE6cXCUJJV1cXq8tlDNtD2nmSJCYJAqSEuNXCNi3iSCNsmFuY4ez5WQLfJ5/LMbpW5SDQaIVkix62ZzA03IttGiRxiGlKwiSm3miwulZGqASlYsZGhqnVytg2zF5a4tzcPCdnW5w6N883HzuNY5ioxEST4dzMOlolrFUDBvr68P0WrlS4pmb3dQdZrSd8+e6HyXkO0yoiVgZexmSjHpHxbFzXwFAe67OzTAEnTp8nnuhHupLjpy8Qxoo3/9nnMPNp2sPSvXfx9Kf+jLG+In293aw2G9iWwNGCk+dmOX9JsG8qoFJvUGu2sDIeaBMh05ul6Nxk0isZQxpIIZBCYhoSxzSwLZOuQpauQoHJvhLFnIUyXGxPkM04RDJBmjaGa6GCCC+bobayzuLqMqZSFLuK2LaHLRyUiBGRRLgelmsQNZuEsUAYFk4mh+F61GplyiupuJHJZDFME7Smy2/7nuazmFGCiGISrRGJZn55jTxQSzRNU6ZpTu1jCjCoGQbHs1mCtmEyQC5jQ0+J/pF+oj0TJPv2EXf1kkQtZM4gsi08N0/Pngk++8nPsfLAQ4wODTLU28v0xC6cgW5Cpag0m+RcB8e1CYKIslLEuRy2bdPSGtO2UsW40SCTy2NYTvrAplJlV7T/lXGM56Z9R+D7BH6wCXoq0WnlSWK0kBi2hWOZyLYHVSvwSXSCH2hMw8ZxLWzHwW+mVexiBZadbjtOYrLZHI7rUK3W0EqzurxMpVymp6eHjGtjmRIVhQgpSRJNFIVYpglaofXlRtOdh3RI+ym1TcmFLdUySZItHxORGiUnSdzuw9IH9nT9FCI78yjSGT+qrQJvSzMhBTLVfsgXyJSNtADZVpLbXjRXesM8X2XWmz+XM1OHDLcU17TvT65QX/9u6Oqo41t/68vWAQmqs56+TD3uAOCWPN+pGtdedDvUd/YtLq/Ot71t22F26wEghXsp5Rbs64SOX4zunIp2qG37MUwDpdJknO3K87YDpwP2lz8ovDCcXqnA78SLH6+7+Vom9yx/1/FTPhPyjjeXWaj24hqj3xF+8kOXevWHkPEih3aVMD2XrO1xzfSLy0+5bI6uUjeupxkayfDut57m5uv6GB4ovuT4aX51mUszXQA06nX8eo17HnyCVpQwNTEMWtPfU+S5E2eo+SHX7B9j1/goZy4uU7IES1pw9mXMT6urK9SrfbhmykdojZvx+JF/eS2elz46nTlR5fTxBpblcvzURb75yGlavkMxCTFQGEIjO/esza5abw5wSEPiGAaebeE6DqbngmGgoxABhFFCcWCI3ddex2c/+Tm+cf8TW/y0r0imJ0eiFLU2P2VzHkEQoZIqtqfIZW2Ubm7yU7NRJpNN+UkLkaZNtvnp0qxiYcnFMFyyufxV85NSCbFS+IGPFHKHn3b4ifYfO/z0Mo6NjQ1555139vzhH/7h+Xe96101gI9//OMXRkdHj3y7dd7znvdUfuqnfkr9xV/8RelnfuZn1gH+6q/+qvsNb3hDpaurS7VaLfF7v/d7Q1/4whdOvfGNb2wAHDx4cO3+++/P/cEf/EHf9sG03/zN35zr/P1Lv/RLi+9973v3NptNkclk/t4RWcdx9H/5L/9lvvP39PT0+oMPPpj79Kc/3bV94M+yLP3xj3/8Qj6fVzfddJM/MzMz/xu/8Rujv/u7vzsXhuFVt/XlFlc98Oe36qz5FTzPw9QKQwq8nEd3oY/YX6cW+LRaEYcGXM4v1mi1mly/f5L1ss8DDz1FHAYoqbfUhW2x/fvVAUrDkKi2EiXlVvpI2sGnpd+TJNlUmZVSm+p1ZzkpJXEcE4YhxWIRKeVmWopt28h2pSjTNDY7o840ciEEUZyghaJeqzGzOs8zz17iun272LN7mJFRweFdg6jEx280+Ow3HqQ7V2JssIjSBtKwuPmaPSyvbrBWb2GbLpNjwzi2zS3XjuHZDqdOzHH24hr10GdoeAylYibGuhntLRLT5NLiKqcuLDG2usoNwLGTJzAzgvnlCs8cv8C733orkyO9nJpbwjEz6CRqK/omwjCIEsAwQEU0yi3iRFNvRDz86BmqtVVWVldxPIuCl2Xv1BTXXH+Qnq6+9DMyBKaIGevtoeDY2JhEYUS3m6Z69hY96lKgdUIQ1KjFMf56jbVqg1AbqDCi2aiQLeQ5vH8PpmnR3dOP55pkvRx5z2Kgt8WhXUMcPXWOuYUVhGkxOlBkancP2BaPPHuCZuMYb75xN4f3TLC4sEwSJIx3e0wP91GvVDh6ssqusRGGhye487OfZv/UJGPj/TQrLcrnL/Bq0vGrIE6orDVYr9bZNdzLxT/4j3SNjpB/9Vvou/11xH/9Be67928Z7u9ltOBRtA327xuA5SwXF9eortd44rkzKGFiCEGiW0jD2rwbGVJiGgamlFimkabBGIKMY+PaklLeo5QvMNbfy0hfFxMT/XieQbVcpba6zHBXiVrV5y8//RUGCbjj9XewvF5nz/Qu/ChCxzGGLdHCx7KzKAWB38B2XZxMgbDeJI6axLaBVppcLkvO8wj8gGbTJ2y1aNTLxItL9AG1mw6j9+9GC03WzfLIsyf4xv3H+PfAPV1FztguQkdINpGDSAgC0VYGFQgpsAxJ1jbIuy6u56ZQD6A0SaIxMTGVYGJ8lJ/4P36Cv/zYnXzzgYcwDZfr5i7ygff+AN2Dg5QrFerlMsQxrcDHsC0ajRpaZ/FyuVQpN0yE1jSqVXKFErbjkWiBFAaJDgiCJiCIknYKmxRkMh5JHBO1Z8v4foDjuOSLBRSgk7jtmwICRatZ4+Sxc7SadfL5LJlclr37plBakUQRhkxVSZkYKEszmM3SP6RI2l5anQfhTMbD9TyEUKBTFTqJIQx9bNOijf3oJE0diZVCQNrXGRKt5VbqXVtN3t5RdlLyhJRpBTJSWLEsK4XWRKXApBW6I91uA7+tFBM2ZwBplfotbRKW3tquaK+zHaq2jJSfXy1vO6BuAa24rK/fDlZXwtqVCuyVaRjbtrJNHRfpw2Sn+egtWNSXq9BXksP29ort67fXSb19xKbVVEfhl0JeNgNrazDm8rZvnlK99XrHa2fzmIRoP2S88PlMfdcECIkWmsvPwuZhX3Yed+KlE5XKCkG9/F3HT8vLkj/69BSFzBd45bXd3xF+mlnu5wt3/QRh/C8pZI+yd3yMPUMFBgb6XlR+yhSz2I6NMCRR5PPT73+UIGyyVn7p8dPJmUWeeK4bAD+IOXlpg7mVdW6YnsATmrFdw3huhoeePcZ9T5zlmeOX2L97nP2TA4wOlzg4PYTjmC9bfhoYKuB5GbRuEIYhF2YMPvbJa4k5zb59DtffOsjufXkunsnz9W8c555HjhP5EEfdHDvxu0xNfoisezFNbdze+UtekvwUtdml5QckSfy/xU9K6zY/NXb4aYefdvjp/wVx4sQJJ45jcccddzQ6r/X09CS7du3yv906lmXx9re/feMTn/hEz8/8zM+sV6tVedddd5X++I//+BzAc8895/i+L9/5znfu275eFEXiwIEDl80ivPnmmzer846OjoYAc3Nz1tRVzmr89//+3/f9xV/8Re/8/LwdBIGMokhMT09fVvF3enq6ub0wyate9ap6s9mUZ8+etavVqrzatr7c4qoH/pZmVxgaypG3bJbXmvQOdKOikJY2iFoSpMbAZ2hohIVKHcs1WNtocWFxlUefmyHWChHbgEaprc/tSoWi04mmqRYxtu0ghNxMUekAaudhvaPghGG4ua0kSdIOXCls28b3feI4bu8v9XpwHGezs+koPZ0OI/XIMXEsSaIS1oOIS+dW+MHvvZmljSoXZ1cY6cuRy+UQkcu5uQbFYh9TY90MDvYyNtDPenmDpt/ARLOytMzw+BjZZkgU+LzpyH6MYi/XTPTguF2cvjhDsWsQz7HJZAvcfP00jbDJj//wFOurFeSzZ+G+p4nQWFKysLYGjs1d9z6DZXpIaWBIiDGItaBab1KtN2j5QRvmE07PpGkk5WaNbG4v/+oXf5q1tRXOnzrJ9Pgk+a4SImoRBCGW6YJSJIbHvQ8/yue+8gB9fSV+8F1vpsdMHyCeOfocod9k1+QYjmlw8rkzPHFijtV6gt9sMDbSzUBfCbPVYml+kVZXnkarRTGTI4kS3EKRyYLHbb39/NC7X8v6+grVtRXqjTrDg0Ocm1mh4OXpL2qOLZQZxaXs+zz97Hm+5/Yj3HbDFPmih2HnCIOAeq3Cq155E4WcR3d3kXXWSTJp+lJP1mYlCAlMj+HeAi0/YO7xh1l6zqV7eYPpn/8VDr3z3TRPPM7FlXUWLwXcumeInlIXr5zcxWHlMzE8wiMfOoMQYApIpIMpJVql5eYNITHNFFwNCa5tk3UdClmHXMahK+cx0J2jmLHQQMayqa1VCbWC0OfUs8/xB3/2BS4ubLBnYIDl9c9z/fRuZlTEnhuuR7ouYRDiGKBFjLAFIo6Jwgg74+IVi/gNiKMGOowJY00QJliuh53xsAXkiznM9bTfa0Y+ftggV8jx5KVZ/tvn7qbYSr8jPgaBLdHa3LyJg2qDVNT+DqXwJQXkXYfuUo58qYTjZEjiGGmbmK6NCgMCBagQI4af/tl/wdvf9Ro+++ef5IZrD+HZoHRCV28vQmvilk+iNUkSECUxwvOorq9TKJZIlMKQJo5lEQctdJJgWg6+n6brOJkiQegTxQlRFEKSECcJ+XwBKQ2iOMLQIq1eWa9jWZJMLoeR5vJgGDael2N8cox6vUp3dzfNZpNWEJDNFYgTBUY6G8GwLMIoQpomtmEQtJpYjo2n2qkscZzOqIlDEBrLBtdzKFdDavU6pkxn0uj2A7lt2+3+R4GWm31Tmu5kEqtkm+SZQozWGp1sqb4dQBJCgpHCZjoNqA2jMoWljvoNbIKSYUi0TD1/tNoGeaQpMJ2BAInYTAHURtuUnQ74bcHWdmjV7evncpVVbPa9eju8taNz/Feqrs9XtEUbqDuqsuy83EF0EB0gfwGY67RzmzqtO6p3G3i32nA5lG4q1e3CANJ4vorfOa5UMWebkq3b55M2vIJGsd2vbbtSvj09SGu92cbtFQo3P7CdeMnFQO88hmySt5LvOn5arOa5/94384e/tUGxeOY7wk/O6SIA/+w9r2fP8DSPHD1OSOoB9mLy00RvgUqzwfFjx5G6m0rzRq6ZnmXm9LMvOX7qyq/zisOCvPv7GNYMjQD2j/dTrTeYW15lpemj/JDllSqGYTA8OcDT52d5+uR53vPWW5gaGWKwb/Bly0/1qgEITNvE8QS5fJYgMjl/pkVUXyEKfd7xQwcZ3W3zjd94klojRocCSULWvYBlhBipFRuCdipiu0rsS5GfLDcHQJwkNJuNq+YnaaS+aqbp4HnGDj/t8BOdVXf46bsvfvRHf3TtLW95y/65uTnz85//fMF1XfWe97ynClCtVg2AT33qU6cnJiai7eu5rntZZWDbtjcvhO0zRK8m/vAP/7DrN37jN8Z+/dd//dKrXvWqerFYVP/u3/27wSeeeCJ7tcfxv9PWl1tc9cDfrokSdz10jN19RR49McePvfs2MpaNJQMePXWWWhhwx5EDxLJFT3+Bxx45Rq1aAAEWUeq/YSSEUZIqLNs6pu1fUq31Nsjcen+7Mi2l3LwAOut1lGZg8/2OAt0BYdt22iko6fXUWSZJVFsJF5vbSJIYrSSm5bK2UWXwyDjSguXVWUyzRNzwWG1cQimb6V09ZPJZzpw5T8GFr524xN79u3BNj3ypG8PLIRKDen2DxZU6Jy6t0d+zQDFrUrASEgV33/84Ti5LyUq9eoaG+oh8yOZLNOz05jCzUObCvaeI4yq3X7ePEzPzRCqmlMsxv7JGvRXRbKYDH4lO2tPOBdKwKbkOwsqSszXnz5zm9/7rx8jnHFxpEDUiBgf6Gax1k+1KMPIVegs55ucvceTgIfqHR/jGNx7moQefRNuS3cD0nj2oQ3toNGv0lopIAy6urdKdzfEj730NQRxxfmYRiUW+kCMJY5p+QhJVEAmMjg7R09+FNGwSFK0gQgiHYt7lzNmLfOnR89SbqSocBT6GcR7LMlkpt5jdeICil+OaXQMMjfbg5Up0ZUxaoaK6vMH45C6qtRaNRjoon816dHsu61FM8cgrGHr1m1h4+kmE7TLwzvcA0Jq7yOFdIzQGQ86emOHUuUWOfuNRKsKgvFLmfd93G4bduZGmHht0ZlMI0EK3b+YSo13dzHMsSsU8xayLY0gsCUhBEvnYseK+B55i1+Fx8rbmf33qa7TKPo7lMl+r00oSVmqnuO2gwkoU/Qf2YOZLRAkYtoUKQ0wjTZdRUYw2TUzPRcUhkQREjO83qddqKJU+yJmOTb597eeyGdyuEvVyjT/91N+ytNCglNTS75ROQMdIsW3qvtYgNLGOkdoB2XZW0RrTFOSzHpmuUrp8EoNrkhhGqnarGJRGSWhuLDA2uJ/3feC9rFycJUZhqgCJTam3j0algvAlUVMThAFxFLYrTUapV6Hrpmq01iRxgGEKLFviBwGJn2AYEikNTNNNr/0oIojj9DXLRgiwbZPlpSVazRitwW3f7eMoJooVPb1dFIpZtFKUuoZRpA/UXjZHq9FACoEghTatNFqC42VIoiiFOmibbcu24TYkcQxak89lCayQVr1JFCsMKUmUJonj9DOyDHSSqpKdSnOqbXCdqBQsaaeMqG1pGVtpDaCF2lSZUzU7haYUSKHjf9KJLVWZtJqeZBOMBQJDpH1lEiebvipSyk3fxQ5IbRYRkB1lulOx7nK1eQvs0llH22PrPqDay8nLQFCIjuFz57Vt729Tiy8H3rYPjth+r9ZtiFTp5a00UsgXBL/tXj5b5+tKSG1/HlpvbiP9jFT7nLcr6rX9iLRKvajaCL+lkrfTgrZXBuz8m/6aHsv2B4ZNNb8zG0y0/9kRrV8y8Qf/9iPc9dAxZPTdx0+JfpqP/Oq/YnpqnKePfWf4Ke/1AuBl8ySuwXrdZ229xrEz1ReVn9Z2D2KbLjccPsTpi4P88L96O1/66BeQxrMvOX6qVmtkvYS3v+4cF+dMVso+1VbCwnqDU5fWKBa7Cf06As3+yRFed8M0N+yd4J5HT/LVe5/l0a4LBEHysuWnwG/SatQxRROpYM++Hv70TyFj9NHX3c01Nw0A8Mij56mUA4QOSHAxZZXx8T/GtmovK34KWqkoLIWB42Svmp+KpS6ElPgtn0Tt8NMOP10eO/z08ozp6enANE19//33Zzqz7NbW1owLFy64t95667dNc33Tm97UGBwcjD72sY91f+1rXyu89a1v3XAcRwNcf/31Ldu29YULF+x/zFTZ+++/P3f99dfXf/mXf3ml89qFCxecK5c7ceJEpl6vi1wupwHuu+++bCaTUXv27An7+vri70RbX4y46oG/Lz5wjPW1Dd70iv0stWJ68gUefOI4101PcuTQbvyaT86UiBC6Mjm+73vvYHZuHmEI6kEzra4UawwNistBdXM68CY0JptqDUAUhe2UlRRI4zi67P1OB9Lxeeis34HZjvrtOA6OY5MkCUEQ0JlW3DFKTZK0s0zVozR9JUoiHDPLmZlzDI30c3BiH9VWwHq9RqFnhEefOUY9Uux1LNyszdx6jZ5iEVsFXDi3yHqtzq6hbordJc7OBJxeXOPoqUWKhTy5jIWQmlrDZ30joKcrw+3XjPHK66cYntrNsaMnGOkb4MmnznEYWFkv07d7hEJmgAefOc11e0fpsk1WynVW1n0SrVBKgDCwDAvPc7BtGy0Fedsh0oo4aNLyWzz21Flcw8SxYKZ/mZv2+/TaHitrMxxbmOWWQ/uYXV3CdV2umZ7Ejm9kfnGR6oU5AJYWFli2NFMj3cwtrJP3Mnzw+1+LqvuM9vewWq5ww75JltZb9PX2sLy+TNazsAyD+aUV+nUfjz32HNWgxcr6CiurIT15m1ffei2FoTEO7ol4/OgFFldXcLMFBgoO9UbCwakBFufXiJKAaqPFw199EKkSfujtr+YVNx6kWm/yxOOP0Wq06B9Mwcw2TUYHivQ7Dq3EZ2Dffna/5vVI0yTcWOfcp/+Clc//JY1qnVIxz7X7hglX1vD7c8SZAuFAgbHeHK1aDUsIlJBpBTHaxrMGGHLz9oNpWLiujWNbeCL1R3Ld1GDZjGIKrsnS7AUePnGWySMHKPVnGRod5tLaaeJYolEsrddZK9fJeRb5rIuTccmNW+S7C2idzqiIkwihBbGKcaQJysRwsgRBGaU0nuvSVA2USqg3fAzfRJTTwb2VtVVmT9g8/NhJzsysgIjpVPwVQtEx2BXodp299k1ZC6QwUSJBaAkqTSmzbQcrmwMEEQmFXBexKREG6ChCWxpHpCbzteoKhXwfxqSDTnyEEgTNOk4mT6ZQwLRNQi+HE4eYUiKimDhWhLUGSEE2m0lvyloThjGmJcnlCySJYmN9FRUn7WImqceMYTmk/B0jUEhDMDQyhEoECEFyKfVCdFwX7XrEQQPTTKtdSsNECpkavUuJ42ZRcUQSR+1ztVV9LJEKyzBQSZKq9oaJabtIFGhNksqS2JaNWTAIQh+lEjzHxvcjKuUyxa4SWqcAaVk2SRyjk/SzMUyrncaStAdldTudb3t1Or3JdGl6C1vpJulKCLaMljv9Z+phsw0qt6vFWm8eY6qU6s0HGiFACtlWW1PfGTQptG9TercPVKT99Quru1fGla+l+0/JTLdpT8gU0tJFxfPWT9ViARjttuvN5XTnoUynswCEks/f5wsA8Xb1vQPSW0r3lldNx/C7s6zSydb6bLWDrVWhfU1dBqWb98j2omrLi2zzXrqZEsRlsw524sWPHX76zvLTWjwKgN9scO99xzhzcZVWs87BqfEXlZ82qnUuzl6gmLE4ezG9h6ysVim+BPlpZHyMsydrPHP6Tbzxlsc5sK/JmQsL5LwclUaTfXtGyXgZ1udnyGZcnnz8KIP9PbzzVYdY21il3oiQwnnZ8pPruunAE5og8NlYa3Lra+HA9DCGCdWyz2c/9TS//Tt3gUjQCiSKBEnL34WUJ7GM4GXDT5lcdvM7U6/Vr5qf4iTB0OBlMkRxssNP7QPb4aetbezw08svurq61Hve8561D33oQ2M9PT3J0NBQ9KEPfWhYXnZtvnB8//d//9qf/Mmf9F24cMH50pe+dGr7Nn/yJ39y8UMf+tCYUkq8/vWvr29sbBj33HNPrlAoJD/3cz+39g/R9qmpqeAzn/lMz5133lmYmpoK/viP/7jn2WefzYyMjFyWJhxFkXjf+943+eu//usLZ86ccX77t3975AMf+MCyYRjfsba+GHHVA3/1SpmDY/08fuwst05PcGmlgpVxCUTEruEJfL+JNgWuZ9NHhudOHOPaA/u5dOEoQwN9NC6ugKvRIZBs61BeILZPUY7jePNLDFveM53ltnconUp0HZW61Wph26lxv1IJYRhuVqbr+Nmk6S+pQp4Ca8fUud3RGhDUGoz0TPKxT91FNTIJ4hqOhP/Pj7+Lf/I917Gw3EBEggMTU8ytl9kz3odlW5yfWeLi7AKD3XkuXZphdW2dm/fv4rbpKRbWFtg1NMITp2e46C+y+4a9HBgZ4HW3X0NPby/Hnn2WL931HB/4XsE1+0YAeO2th3m05TPc3U+lEvHJe07RV7JZWG+ihYVW/ua5sm2bfL5INptBS0nedRGGQblVxklMDGlgmjaeJRnsKTHc141nmdiGpFYL+cJ9D/LWN76O+x56gi/f9RjFgstN106zz0vhwO3q4umjM1i2zcc+/bfsHe7igz/2DsIWKBUwOtpLK7DxiquUyzXCpqavt4+FpRXGh/uQQtHX10XOd5ga7aNQypJxu8iXepidu4hpCn7orbfSCho8+PAperszGMOC977z7ayHdRYuzLGwvEx/aR/jI/0I4NRzp+gfGmbfvmmCqEXp4hIA2Wye2MmjTUFRh2z84X+gLAxUFGI5Lp5p0ttbwnJMPMuhr9RF2Q+4uLTA2KEecjkX7eVYa/iEGEglMFEI0gGyEIVUJoYl8QwDUybYUtCTy1BNYlzpInVMT88QB8cKuMVdBK0EaX6L//ZHnyabcWg2W4SxRsgYFYcIbaE0zCxuYJon6evJk2/UiT0Tw84iTQchDKSpieKYRrPWru7m4mZLBH4TP6piWA7NIEw9iyJFo5lWQ19aXeMrR2d58swaQilUHIHuqIfpDVAKkJvK4NZNV6sEwzRApTAURgmRTisVtvwImcmipYUlJIlUCNdI08sME0MYSJVWJjNtF4MswhSgYmKVKqTCtDAMN8UMleDZGnRaLdEP6lQrIZbtYVo2tu2idETgN/EyOXp6+2m1Wvi+TxSExEmEFnqzMqVlOiRtE2BptdM02hUtldbYjoNlmcRJamCfaDANA8cyCcIQEBimjZBmCjoiTf0wpSQWEaurq1iWgW1YSA2OY6OFSP2MVEKcpMqllBLbdQlaDZrNOpZh0l0qIE0Xw5T4gU8YBmn/JDRB0EIEBq6bQUoDpaI2XMo0/URrUBqttlJCVNu35bJIiXFT0d4SlF8YdLb30UII9CYhpibsehukpf1s6p2jlaZTkW2zj257yGxXpbe378rBjPQ41BX3iQ7sdVJgBKLt25Lyo2ov1QFsfcV6W4DbUYHTBwANKFTnAY3LIfWFzsl2Bb7T3o4C30lN2e4ksx0w0/PWhnjBJnJKY8s/54UGdzp/d9T5zn4gHaTn27R5J17c+NOP/xU/9q5/813JT+tLffzZE7/Nkyf+NTiz3xF++sxfpwJlVFvn1mt3EasW4yMHOXPq4ovKT9eNDDA9vojT08epbywA8Oefv5ubD6y+5PjJtR0kJf7DL7+BV96wSo81wytvvhHVTuVOWi2cXA7nyDSzcxdYWluj4GTZvWsXwjF49v6Hmdqz/2XLTzE+0jBJNFhScv5MjRtugB/5/nvo61nj+JllLizV0EmSpoxqBQKiqIunTvwpNx58H072ePtb+dLnJ9NMi915+TzCbF01P0mdkMQJaLXDTy/QF2//fYefdvjp5RT//b//90s/9mM/NvGDP/iDe3O5XPKzP/uzi/Pz8/bfl+r6gQ98YP0jH/nI0PDwcPimN73pstlyv/u7vzvf19cX/+f//J8Hf+EXfsHJ5/PJoUOHmr/yK7+y8A/V7l/8xV9ceeqppzIf+MAHdgsheOc737n+oz/6oyvf+MY3ituXu+2226p79+4N3vjGN+4Pw1C+853vXP+d3/mdzaIg34m2vhhx1QN/P/S6W2kkPvmMw10PHWetHDM5mOXE6Vmu3V9mz3g/TiZDo+JjyCrnz59Dt0LuPzpLLpPFEmv4cYKpJRHbRu2vANhNL4T2qHJHmd4Or9uXvXK9zjod1brZbLaBNiYIfLROYTg1pTa3TUNuD3a0O+M0BIYwMW2Lcxsh3b3d3DbRT7PVYK0e8PV7n8URCbdet5fDh/bi5QsUijlajTp+tc70vkkGB3potRrc88gx9u/fzf69eygVs6yvj2FYBqLQyzWHyxQcDyk0K4uL3P3Q41TW6/TmFauBDytpQQ3bFDx24hIPHF2gJ2diJQ3WNgKiKEDhX9bRdX5XSmOYkjjRWIYCoTCN1FTVMQ36unOM9veS81Kvm1qjRV/BZWB4kLMnj9Gdt2j0l9g9UuLM7ByFWHMAKJmS66ZLuKYia0nOLdT5dx/5JM1qi0N7h7jlhmnGxkbI2zmqG2s0ghZLJ44ihIEjsjRVk97uMcxSnkgr1surrAcV5p46ykDR5eTp85w6fZE3v/pmrr/lEPc88BRvffWNnLw4j5Caw9cfoXhxlpXVMqZlozTYGYsoChFIbCeHtNv9jeNglbrBSn1VbEsSRQkak5CYIIzJFwfw8n2YhqRWrZPLD/Ced7+emkhoNkOWVuv4jRBbgtSpT0uMxlQaA400TJROyBlZehx4w/QkI8U8Z+t1lqstiqMDTO+eQhTyPHH/41woV7k0v0gum6HuJyAThARXSlAOSSxAJARa0KgFGBhkTAMzCSmvl4nimFyugO25IFJvnDAKUVphWjYZ18POFomjCLNWJQ4CBAlyuQxA3iuw0awgDI1qhhg6wdj8Num0qp4EnShEW43TbZWzk34hpMS1DJSAWKVpUZoYz8umvk9Kp14pAmwz9Ywy2oXDTEtimTZBFBMqgWl6aKWJogCtY6TSCNNAmjYIgVIxruci6orlxSVcNySKY7q6ujEtA9MwaTUbaCSW7WDbDnEQ0Gg2SOKEZr1ObDsYpo1lO5iWmXruxPFmJTOlIQoCLNsGYZIkEVJAFMVoLTCkTD1c0s4LgdGGthQubdtmcGiAoOWDhjgKUyXey5LWh5Ntk+PU98WUJq6bxTQs/FaLwK+AKqO0IpvPI00brVJ11zYttIYkjkhEms6mt1Vck1KiRWp0rbVui7qX969JkmyZLLdfkx3l9Eq+68AsW2rp5oBCZ125ZaCt9Bbwaa1RSZL2n8YWWGutUVECojPbaBu8dcylxVaf/u0EVyHaHi9CttunEDqddaQ7qnQHBTdV8e0ba/eTqgN6nTSQdptkZ3nR3pbYVOi3K8jbB1g60al+qttwLxBtb6etoglplULVEco3Z7p0mrZ9i9uV8c39smVU3pmhINptTk3W2WrzTrwk4offdjfXH3YZHdjzXcdPGBkW10a5rdDLK693vyP8dPRkWpSiHIZY84uUqxWmJgdedH7SSczNN+6lsu6zfzIPgGe+VPnJ4/qbDR77xueJYocw3AVC4LkmgR+hcGjpkGYzoGdwN/m+CWzTYKUR0D98iPe9b5pGrfKy5afuGLxcCdeROFZAJpcBIJvPknECGuE8QoIKYqROi0uobV8xKduzul4m/BT4aaqvadoUCsWr5ycBCJkWTNnhpx1+2uGnf9gYGIixbU0YfvsG2bZmYCD+h951V1eX+vznP3++83e1WpW/8zu/M/zBD35wtfPa3Nzcs1eud8MNN/ha68dfaJtSSj784Q8vf/jDH15+offf/va3165c9/bbb299u+0B7N+/P9z+vud5+tOf/vSFF1h0rvPLnXfeufn+9grA/0/b+nKIqx74G981ykZjg4VLZfYN91DtUfT1ZHAdD41ibnmdwW5FuVFnfM8uHDvH8Yur9PT3cjhSPHP6EqbWxEJdBljbO8XO9OmO4bRlWZe9fmVH0fGr6RhaA5vl2DvKQavVanewGkhQShNF0eb2OsDbMYdNt5n2CypJEAgagc8dN+yn6ILfChgZPkgmm2NlrUzTDxAq4OzZeaYmXe56+DFatZDJwW5qtTmenV2gN5vhhsNTdPd0IbVi9sJF8iWHk+dWIRJYFjz03FO0QsFNNx4iYzocuH6USrPBxnqZYc8FoLdU4Ed/4A2srmwg44Azc6uECh5/rsnGRkLS9i8QbQVjE+QBwzRRcYDQ6UwuQ0qKOY/R3i5GB/rp7urCyeYp2nn0+ipRs8pGvUbRsZkaLNCTzWCakC2ng2lrzZDT9Sprx+d5y9tfy8biOg88/hS333KEoNXgk5+/l6ndw7z99a8kU8jz7IU58lLzhtfeAFjc++ADfOOhc0yO9jI+3MPqepWV9TqPnrjIjbuHuO2a3Tx09DxKNXnltVNMjQ1y8tQC55cuMdqVJ4wFhw7fyPrSLBcvnacrXwC3yNLsOfZOjpBYHh2j16AZEAUtNIpavUk2Z2NaGRpBgiFTb41mHGKaUGmE1Fc3iFY2ePBvHuBCvU690aC/K0cjAKE1hhCYUpAIE6E0UiviJKHbloggJOPA9XtHOXfqODdMjPPVchmI6B0ocXGlxlfvvxdtSA5MjDMwlOXW645QbkY8+PAzXLx0CS0lfqJJhECJhJxt0vQb1JtN8gYUc1nOnT/JpfOn8DJdLK2uc82RI/T096K1Igya2I6HYZiYloPtZkjiNL3BqqQznV3Xpd6KUfUWOg4RonOzp5MI0Pa40JfdiDtQpJXGc0168hksAfVmkyROoS6JGiTSR5gOjsxjGhbKiNPvZqLQIibWKRA4Tmo+n3pCKRzbIYwMtPZJ4gQDjRCpyXYSaUw7Sy5XQEUBOmwR+Q0ULoRp0RFhGKnqiMB2XSzHJWi1CIKAMAiQcUwcR9iOi2Xb/P/Z++8oy66zzh/+7H3CzZVzV3VV59ytboVWtCzZwrKcA5jxYBjSmDAYbLPeF8wMAyzwMKwBvxiYIdgGTDDgLGwjW5JlWcFSK7XUOVfO6dbNJ+z9/rHPuXWrJUN7fv4poNprKdS95957zj7n7P05+/s838eybWJUUKEiVAoRhPVxQSkFShkhVOg1wBBDljFrFsZcOwiQloNtuSTcBHFlTbTGsgy8I4yPURCGhIFCaEEylSF0Aqq1Cosz00xPT9LS3EJzSzupZIbQNsbQcRUzFQo0KlKvzfhooGg1ZSre/7UKsK6PnXXgJVLRWYXY+rjMKkBq1vqKxYsD9UWF6HPx32YM1jjSiTBSRw8hylThEwJpRVXtVJQqIg3gx78Y93X8t+n++AjNNURdfY8VcLFmP3UUidHIcbouYIvouherf4v4etf1Y49ZPgb0y5X8xjTLtQsHa82sQ62R2iKG5cvV6MbvvHx+1PWdXv1tHf+7vtYSVSHUNHgYrbeXuv2XH7/EUsllaqz8quMnzzdzzusPb2Wga/hF4af9OzYBsJKvMNST4tCOIXo7Wl9yfsqloVAoM1PwGZ0zxRJvuuVqWhKplx0/hYGgsFKmVq1guRZSaxYX8rS1p3ASLRRLPrZUWLYk71dIOILZpTxTc0vML6ywUqwwPT//CuanBI6bIJtrJpUMyBcNh7e1duJaBapeiK56aBXU5yNoqEgaL/q9Qvgp9M3x6dCk4l4pP4VhaLgnWgRb56d1flrnp+9j27bN4/jx48zMfPf1mu7ugCusdvu9tEceeSR1/Pjx1M0331xaWlqyfuM3fqMX4Id/+IeXv9+/td5evHbFC39L+WXmF/O0tKQ4fPMP8M3vPMX5s5ewrQQ/9b434aNYmM7jSIvPf+MIZ8+OkrRsNm3dSFlV8XUNBzsaGp9/QzXe7HV1o+GmjwdDIYz3TNxixQRY408Te9N4nkc6nY6U6rCuVMf+NY2DsG3bq6XZNTiOSXnxdMhjT1/k0I4OmrJppmcWWJo/Te9ADy3ZHJeGJ0nmWplfHkMqxfTiPBCwuKKw0YxMLmO7Dgv5EjUvYHp6jne++TYGOtpJpB0K1SobKhtYml/ia19/hNsO7yGdTZEvLDO0ZTt28TkAzp65ROtrDnHjXTczPZWnveUUM0uLXBhv4tL4Ipa9OsivKlomHUciCbwIXC3LKCXSVCprbmsh2dwCqRRK1xidX2G5YNPZ18VARxNhsMLJk6P8wO23M/OtRwGolEts3LqJN+/YTU97G07apquvBSeokEu2saGjnXK1xNL8IqcvXeKqzYNkWpv50r88zKWxBZ49OYznunSeG2fHUB/TU/N097ayqauVp86OMpUvcXjrBrqzaabPX6Kzf5CbbtxEYdHHcVMkHMnSzEUunT3HwuIC3bu3Uq3O0ZS1SaeTlD1FqWhEibmFRVTSxsplee70GYKqZsumXjZtG6JUDjly9BiVmsfVe7fS09VFa7siTDmEV+9gt7CoVsqEYcA37n+UhCuwpYXQCiWEUQltyFk23WmHfKHGto4e5i+N0dbeR3tHK/3ZWfrTOaYujPLZL38Dbdn0DWziP/6nNzE9cp5W2+fsE+fo791AoVSiXCmTyUpWVkrUyiWSmW68WhmvWkU0N+E4GZLJZoRI0tTcxtTMNE8deYg9e3aSSqaZn52nvbuHrp4NYNkkLBtcqAWr18fo3BKz88tIZSbq1WB5kBGtNE6oCk2oBUQQKZAIHdLZkqa3I0elUqVUqJBqSiMcTamwjA5gZOEs2A7NLc34nk9newdOIolCGJU41AgLpCUJVUCowLJdZMKmFlVVtIQxp0eDF2oyLa2E1QpBqCiXq6RlDIIKy7FxLIEWFqEyY4GTskgk0/g1l0q5hhSS0AsIwwDbcUnFCqxtIaVF6AeEAmzHjBOhH6CiNBql9SpwqHDNQ7PGwnHThCqkWCkbEA5DmppTKKVRocJ2E1RrVQjMA4BlS0LfmE77oSKRztHeJRm5dIGnnnmOUAl6ejbQ1tFKR3srmWwKx0kSKAMrKgwgApUgqoTX+DDf+LDfCFV1MMKAnWp43aiz0TGyiklG4QUtY+WUurArhEDUx+joIhLfzQ9nNX1FK10HZwPkZswyHjfUF++jPYjmB4UUqwUIhLBWCVvEV6spyCeEGefieeW7NsFl28Tqua6/J2LVuMFQOwb1+P/j/g8Ck+oUz0nRwaOUNpEQDdFWL6R8X76vjQp4fV9XabV+XcaG5ubjl1WsW28vWfvSvb0M9s3Q3f7q4yc/SnFcWi6xscd6UfgpmTY+3n0DG8mmyyQswbNHT7Ft2+BLyk/nLl7g4SeP0d3VR8+AsXC54aqruObaHS87flrOz/HNx+GPPvEe/j8//Vl2bC3zlQe+hVdQ3HDdTq6/+TALyx5/d/d9LBcqvPvOm9i5bQsd3W1UaxUKhSrVUu0Vy09uahChfByhSFirCx+u4zC9UGClUDZrWeaug2gei7fTjYsWrwB+2rV5hpEnPme8jr8HfnIcx3hhRmPOOj+t89M6P32f27Zt3v8bC3tX0j7+8Y93f/CDH0w6jqP37NlTuv/++8/09vZ+36ML19uL16544e+Jk6N8+4kzvOeuq/HKVdqzGZba23nX667DA/7wL+7m0WfP0p1N0pROsXf7RjrbcyzOLpO2XBJBAl/U0MJGiLABsOQaUG1MN2l87fKQa8uyogpz4Hle/bVEIoFlWQRBsAZw/ahilOuaiSpWqRpTW2LPGsdxUMpDawvbshC24PiZaTpzNts223hVD5VJMjy5xPZNSaYXC2xt7WRpQTG0eSvVmoW0ajh4zJWqnJ+e5/jwFEJoykWPHZt6eOrYOW69dhuVmsWmrnZakxlGmiYp+Rb3P3WBZCrL0eOXaO+a5W3dpkJdTUjcXBMXzwzT1dPFvoN76JpY4tFjowgb4pLvYCaGUIUUSyUczydwfAa7mhjOLyK1JEQghaApnSXlJMlmmwiUT8pNcO3BPTiiRlNKEuoE2pLs2JVkJQyYXVkB4JnTI2hlkbFsRLmNinaYnZjm0SfPMTabx3Uddg51cv9TZ2jO5BifX+ANN13PgV1bOD+1wLvecA1Hz4+zqb+Vmw5t4/hzEyxUVrjl2r3cFHiMTuc5NzLBg0+fJpkI6ZxeZOfObWRySY488m1a2prp2DBET187G3paGRm5QHdXDz1tHZRWlrGEpjMyK850NJFsSnH67EUqU8t4oeL43BIjJy+xY9sQ123qYXRinvPPnGSxdYq+znY6tw4wuHmAUhjS2tzM6OQ05VoFJ5kDNFYIoNGWxLEUOUciRYhwFG6omK4UcRRsTA3S2dzEiYuXOHb/w0g7TTqXRauA2lKJXfuvQ7qS7FyNr3/h2xSLZVKuQ3dbjq5sK6OXpliq1Egnjc+NsgTatujo7QNgZWWJA1ftpbSyzNTYFAnbpruzlfmJYY4/8yQbhzbhJhKUq2V6+gdJFJcAOHJ0mMCroXUNR4o1kEoDSAiIQu1XdUJTkU9jCbC0orujndb2buObYoOdaqJJJpgZHeXC6ROslPJs7B9EopkZdmlta0dYNulsE01t7Tgyg9Y2liUQlqDm11C+xJYO0jGKcqlaQQtwLAuEg5VyaHHT+F6ZwKsQ1Dwsy8arVVFhSDqTw7ItlBaoUOB7NfM9lQK6rHDdBNJOoJXGjnyrRDweYeDI93ws24pgRFDzYlP8KKRFYCq11RVLQag0UtpksibN2vN9ZmeXcF2HVCZN4HlmfPKqBGGIkJZ5iLYltuuggpBcNseBg1fT2tnHkaee5d5HH6c95XL94UNsHNxAOhPiOClTkVCtApMVqdeNXl2NUCWjUJxYo9WXqauNarY5z+a4UZo4q0OjjRcO8fUQAWm8CBBdP1JKLNcy108Y1qutacwCg23bq4qsNqnlokFhF7H6HCvGdbjT9dfj6qZah0a7lgJ0g29LVHEursy3qhA3zmz1A6v/bd6PjlDEfmgGoiWrc1WcFrK2v1Yrowph0lTia0oojYgq4+mG34s/29hE/S5c3aaBU9ccg4lSstCxh1T03ssIW1/17bf/5N3ccO09/Of35F59/BRdxjNzBbyt3ovCTzfu6+WWqz/HpdEjXLtnC6fOj1IR1kvOT+OLS7Tlmnj46bMENbM4uTAzwrnT+ZcdP/U159gx0Mb0bC9d3d08dfTLnL84R8ELOfv5ab7+0HO88Y6beftdN/Cdp8/x5fse4fjZMQ7u3MKenUN0toaUS+VXLD+dHz7B/MxbKK+AlGVK3gCuG7C0VOCZEwt4NSvioKTxhgOUTtIwmZjFpX/n/KSVwrKtVUsB1vnJnOd1flrnp1d2u+mmmyonTpw49W9vud5eSe2KF/5aW5t48+uuolAqkc0k2LV9kMGBThKW5O77H6Ilm+a/f/AHaXVc5mZnSTuSybkSW3b08OQzFwhtkL5A4cMaHwK9BmLh+TdxvF1cha5RAYlB1PdXK9XFIBqnn5TLZQBSqRSO46xRE+LfjZXwxn2R0igh2ofujTm6O5pYKcPI1DyZhIsgZDLfSqVmoYMqW3f089d3f4vJqSqtLYKbr93LppoilTrHuYuzvObQIKlMCy1NNn25FJWKz/ziJFNTIYvzK5y4NENZ2bQ3N/HNp8+Rz1dIZwVOwniL3HbzIb49Ms7Txy/yptffgJXKUvGr9LR3kkmMU63WCFEIyyJQmmrNA6FRaDKuzZbeJi5cCrGlA2GIEho/8LASDk4uTbiygpKSY8+e4cC+Pv7+K8+ysFgimXZoyyYJOEn//DIAY9PzHJ3MYz/6BD/3Q28kk0qweeMmAsumY3gSFdjMLMzR29pMGCp62rI8+tRRJmYKnB6epVCoUFypcGS+wMXJPLmkw75NfVjC+J3cdcdhAi14/PHjFPLzDG4epOr7pAKJm23iKw+e4MDeMj/09jvIL+bJtfXhaZtiscLU9Cw136P07CXeC5zsaiV7aAf5rRvY1dfBH37qy3g1Qa1aJRib4aAruP6N15G0XZ66MM2xVJqr9m9hg5VABzW8wKcWaFwpSVoWqBBtgYvGsiRJJ0kuYRNKQS4huVCo8I63vJHywjyPPPE0xy7NM7FcxLUTZB1JsyvY3NdOa2cvx598jB179/K219/Oob17eejh73D82DlmphYJg5AQRbVWIvQ1QofghwgkViIJQtCRzRB6Pq0d3XT2DVJaWSGTTmKls6SSSUKvQr5Q4DtHnqK39zycHuHHgMnJBdyUJBQSrcJo4S/yjiKGAYnQAUorAjQiVLRmU4QIalIThEZBTiTTdG3YYOBPGh8Vabt0btrCDV2dLM9OU1heQNUqeJ5idmoaLQKKpRpuOoeTbiWQGSw3QzqTpb2jjY6WBAnbQhGg/CqWUviGHiiXSziOg+04uOkm3FSOMAjwazWCWpnACwh1Ecer4SZcLOmYe9xxyeWaKJWLBIGPg4U2OwyY6pdhGOBYNggLFSvYEXjJuncJCG1UQgQRdK1N81BaIS2LlG2RTCRN9Iwf4jgCpSODa8s8hJvUuRDHcZG2eRgPNQwNbWTTpkFWVgosLy5hWQLHTSDQBEEVkEgrAkAEEokVAbRuAKw1TYi6Oi1tqw6OZsxdm9YSj7uIWM1uqJSmGyKPNAhlQEvE47c2faUxFfZ0wwLF5f9AlCDVoJqb7101e7YssQpksdqrjeIthCk+ILQwvjXx90SEF4YhSBGN8/F8snbuWTWxhrXzUQMtxiApBZZlA+beUQ0KdpxmGX9WKYWWxj9HWg2lcvSqmfXl58nso8Cgp1i9J+uqfCPAx6BtQN/8f3TuXmAeXW8vXXvNtdsplM6/+vgpig1oa8mwUi69KPz0zIWn2Tj0CK6VI5E6QDbp8o67XsNjjx19SfkJFDv7Lc6NTjI+ZgqnjIzO0ZxafNnx0/BsgfHxHuAdLC8ssW2oh1tu3sf//D+fw6vaTEzP8ad/ezfXbuvj5lsOsmdgP8fPTnLs/EVSOclA9wa0tl6x/CTECmdHVlhYSjA6PkUuV+J1h5/l/IUE09MaVFMU7aWiKCpznduWscMx6x/hK4afzpx1+PBvHOB//OqjbN9y5fykJYSEBIGZF9f5aZ2fVn9nnZ/W23p7ubUrXvi7ac9WrIzD1Ow0oxdHQFsE2uPC+RFyCZdrtuWYGC0wpkOmZue4MDJFU8oh6UoqpRqWUHiORISr0UWxKn15vj+sDiqNpaMb1RcwodmxwtxoChoPBmA8aoIgwHEcHMfB87z64Hj5P/FvxP8vMEpKVUm6u7JsGeynVKpx7cFN5FdCzpw9R5Nrc83BXew/sAtbVfixt97OA48+SbXm8dzxUfZs6eWmqwZZyS8xObXMoQNdtGRtWrs6kMqjtaON5aUy19y4lW17aiRlwPjsEo+dHGZLdxM7BvrQykQkJR2XybklmrPNtDQ1s7C4jEZQqWj6WprJV4tU/YBQCRzLIefa9HS20b9pI0kUbU0OLsa7LQ4392omnceSknQuR7lUw07YPPzIceYXVhAJUMJloH8jlyYmKVWML81rrtpGSlvMr+QpllaoVQUziwVaW7JctaWX7p4usklYWq7S0ZRhZmGBYlWRSaVoziSpKs2b3naYcyMzZJq6mJmZBGqUiyXyxRLDo2MMdPVw63V7mBwbw3JdlhbzDC+V+duvPUqgLa7RAXPjYyzlV5Ayw2fuPcKO/jbecdftnD5zjmTbIgDHp+bY7A2ybccAXR3tvP8/vRXPTXHftx7nqZMTPDK8RCV5jJsP7+K6m7djY2M5LqdPn8FyBV3dfTz8yBMkEwlcS4IOsG0TzWBbkc+RJZFolLQZXy7x6Heew0okue/YGFIJEkKChKyryVkuWzYNcezMOY4/8xypdIJte3YjqlUyQrOtv5trd22h6gX8y31PsrBcYrlUoTMGTKRRd20HcEEawHNTkkQqSxAqMokcza09zEyN4pHn+huvY3Z0Al8E0T0UEkiJjFMdxKpFbj2CBB+lIEQjtGago4kDuzfz1NlJ5laKYBlfEyEFTiqN5SSQdhKJJPQraCFI57JkspvRwSD5lSXy8wuUlxaYXljmseeGmVlxsRJZ2rv76OnpZmr8GZYXZvB1jZ7udjYN9XDb9YfoymSwNCjL4FAYhni1Wv2+lkJi2w6JVJLQD/A8j0oloFr1ERKksLEsB9dNkkpl8H2v4QE4wolQEXoeygrNd0oL6sAVs5hGSIGUlvGkUSGB8pFa1SNkYlUzVEaRFogoCiYCQ2FUf8e2IoN8hzBc9c2Kx8VazVRgTiYT9PT2YbxTAlQYIi0LkAS+Z/YJMI+oOpaFEfXxskGxbjjH9XE3grwY+kIVovXq4kA8Ljb+3ThmG1CPOygyNa9vGPVuBPgIEe2PiYJAseZ7G68/rSNza7GakhhHML1QqodWxlg67r/GOcMPAkICbMuOgD3ycNGR0o1aozw3tlV4jsyr63OTWSixor6Jz+9qwYPV6CEhQMrVIguNc049bUfH+w6I2FtnbRpL/S69rP8b+yL++19NzVlvL3q7Zv82Wlu8Vx0/+cr8bn9vNz0tLw4/PfjMNH5pB1t7y6jQY2jzNtIJ+yXnp0JhhbkVh7fefICnTgoK5a8j5SyLS8svO37qFi7jk+ZcrhRWuH5fJ10d7Xz4P961hp+ePjsL8gluPryL11wzaPhJ8e+Cn96SGGd5uUSgFHPjx5haXODI+Sq93RUUNYRfAy2ihT+F0JpydRMjU+9HaVNp95XCT00tCXbvqNLSkgURXjk/aY0OTNGJMFTr/LTOT2v2Z52f1tt6e3m1K174G5meoLslQ1M2S2G5SEtTCk8kCCemefubb6NCwBfve5o//8Q9uK6La8Fdt+yiqamD0xcvEEofK7CIihW9YLt8sGlssa9BrCw3bhf70ljWWqPWxn+SyWS0GFDBdd36trZtrxlE1g7IoEMBlk/Ccugd6OG5kxd48ulTbN+0k+7ePrras6yUVvi7f/oqvhewd0c3nS3NZJNJjp67xPR8HscVXL9nM99+doJnzw8jKwX2be9nsaDINrXS2Zbh3LkpAinRvk9LaxNLC0XOLRaYKZaxbM0AkC8UKXuajf0dPPb0MY6eG2W2qAjKNRJWQIudJpRGsc6mEuzctIHX3XQNV7/mNsYvnOXc6EmwBSIUuEIiQvCDkJVCgVqtRjKRQGnNzVdfxcTUGO19eeYW5pidW8Gxynzgx+5g7uuPwH1PcNO1u9m9oZu/+uwDfPpLD5FraSaVSNKaSTBfKJFMDPOL//ndrOTHWCpW2D64iYeeOYaHy/XX7OZbjx3jsaNnuPP1t1AplOjIDTI6PoOdyXDbHbeTP3uapaVZkqlWlvJFKiqkJZtD10pIIalUygRI/vKfvkZXTx+7tmzi20+coT2xlzPHnmLTzr2kKpGS5HuMXBrllkMHmF6ZI5MM2NjRzIZ33cGBoWM8cnqcmeUSf//5J/iRH34jp88d5cbrDnFo9wDPnBnjD//3XzEzs0zCTYEOcRwLqTSuY9KYbGkhrZD2jENzUwvTSyX++f4HEG4S287iCIW2LZoyFulUhq6+Vv7hi/fx1MQ4CStBPoCfG+pn48AAfQOdnD99gSeOH6dUqoCGWiBYKpao1aqARoQBeAVqXhEn3UxTSzc1H0Llg1C4WAYWwpCBrbsJA+OxsmXrEsOVAHgAyxIQVEEJhDBAHDel4sg/hRY2Wgs2dWe4dc92nEQCpEaHGu0KpGWRTKYQrk2gQ3zlo6WDtEwFt7BaRQLaEjS3tmO7CZ4+cY4v33ME3+qms6sNJyG5dP4Ejzx0D37o0d3dyetfcxMdnd3kl5aZnirStbsD31/BEm5kaC1QUbqZuf9NGoa0bFPUJJEgCIw5chj41DwDhoHnI0Ro/KekMWpvhAApjbeN5+m6Kh77jIS+qWYZBCFSGnixLAukUYGDIDCKMDFgSKOqsjoehWEIWqBC43EjhPHnse0UfpRy3PjQHo1+USqd2V5ICx1VJrPdRD01xYqUTqWUSQ8J4u2jNBJl/l9KuVphUKym6gmMWbQlYw+ZSE2OFgJW1d21Cw2N4Kiif8xacmyUHX2P1nXwMuO1AAlhuHrtxfuklCIIzL0Gq747cWGBeHGiMdUxNuOOx/QwDOsLFVbkG+MrH0ubBYn4aUSHJiXHklZdhY853ACnJAwCQqWxou82kQwBqhEsBVjSapjLopQmbQzKG1Xyy2GzbretV3+feFG6YW7Sqx963sND4/eZ+3kdXF9OrZJfYrD/1chPRmzq7GmnHFx8UfhpeLjEP/7zB6nxEQKOkU6m2L5z6CXnp4unzuOkkuzauZWbr63QnP4U//Lg2ZclP20PFGHZXCNTE9P0dOx51fHT9r3ZOj+dOLGH3/zwNfQP/SrJ5DxedQkpjUdyXNRGa4XAVMcVaBDyFcNPAxtq/MFvn4lSlnNXzk/RuKKVRqzz0zo/sc5P6229vZzbFS/8pZuauTi5xIWRM+zftYN0Gtpbm7G3b+bi+RGcbBNv/oFbeO70eSr5gKHuFiq1Gq1JuOngPr72zWfwLbACTcDqCn3jf2FttaR/TcmGVRUlXvGPfWZif4Z4gHNdFykl5XL5snLhrPn85X44QgqEZSE9hVeqsjQ/w7atGxkbcQl0jefOXGC6pZXeniaq1QqtOZfSUoF/efgsBe3RlElSLk2ipQQrRNdcJkcqzJRWeHa8QK0S4hOglfEyEDpEavACjeskSSY1akRjbesEYHl+mfe97QeYmRzmL+5+jPOjedIJaMolWCo4YPlolPGgEIpatcjK4hzLU+MsL8wxOj5NEpua0Ail8Go+VS+ajGs1fGFCwi9cGCEkYM/GZnbdvpdSzfg7jAwv0tHaDkCpGuIHIQe29bN1sBdBBWE7pByXxYVlnKTLPV/7BolMloV8mYmJIjMLNY6ODlMoLLNn20a6mhJoYYHyeebEWaqhZqi/lW9/7Wtcf921HD3yNNqbJONYuMk0x89doL2tnf/2sz/IiZNn2X/wKlram9CVGuVinjcc3sTOTa24bpqjzzzDnpqkE9i5tZtvzeXxwgqVQpnh4XHmlirc++gx3vzag7y2bS/3fPMZZuZW+Jsv3UfFq3Hk5BIb2lq48w3XsG3Hds5deNgkAwiNRmE7DmiBJQQOkqZshvaWLOVSBc/3IZEjlBpbVBAyRTbp0JQUvPbaPezev53jo1/FsiR2QnDu4jzffuQJrtl3gGRrjp37D9DS0U1xpcixEyMUimUWVvKUyyVMtV2FttK42RRBUCO/OI3jpkA6RgUUGukksBIOvl/FSacIlSKZ2UBXz6boRgsRyjZXi6pF90J0r0X3QKDBsQQ7ejrZt6mHdNLBVyC1RNrmwS+RSNDS0mI8a6TGsTTKC+pqo5LGzHt6cpr7H3iE+x87xnzRoq1rC93NWfL5BS5eGMWvFunp6aa7s52r9u1hqKeDHXt3k0w4JG1QOsBx0pEnjK5HvcSQYsL0jeqoiStymXB+101h2xHsakUQeCi9Wh1OWGYYFLaNgggyIhj0gzq8JhIJpGWhVBiZKJuUFIHAsW00ogFMiNTj1XGmEbJE5FsShiFSK5P6oImqtF1uJA2WJZGW+X4/CCBUxqNLCIS0jWG6ML9jabC16SMDscp8BpM2Iixr1RPGlNszkKxX1VMpYrVbIYUBOtPPDdClQYtVmK0P42J1LG8cvy8fz43SbVR2o5bHC9Ci7hfUOO43fkeo1Br4blTUfd9fMzfEDw3x2I/Wa5DOnG+zIFJXhOWqR5rQBkjj+USI2Pdm7Xxkzmu8vyb9RQjzEBNfj40V+xofBIwJd4z5ehX34+slVqJjeNWXews1RK7GJ2e9vazaxFyZsW8efdXxkwijqLHlRa666sXhJ9vKctP1b6VcCrCtnbR3ZliYmn/J+Snb1YNXWGGlHFAsQVvuat75AxtJOCsvO37aMrCRluZBAGaXiq96fuoZSHLLDYuMTBUQYfA8flIqLp5ToTX3CIgSUr5y+KlcgeFRl439FRJuvPDxb/OTjnzXhCRauFrnp3V+Wuen9bbeXq7tihf+psYmGB6b4+L0IqVAcfPNB7ErPtm2dgir3H3fk1y4OMayCpiZKrGpK02xHDI9MUvzQDeB9gmFA8IoI/9aGO2a8uoNEBvfwI0w+kKfi6vLxaHeiUSCYrGI1kaFagTfF4Lk+H2lNMgAQklVGa+zamGZPdsGGZ2ZIyElGzqa6MwluOXgLpYWF0naFj/ynttYXvGpVvIUVyrkiz6lSpnutgwT84tsT23kyePDlEUJgU3advCFT0iKIKiidYgSNXTg8kvvuwP37HC0X4r5fIGx+TIL88tUqwW29Pbi4yDtIjqI1MGoGpfGwrISWAkX5Smm5wrYjotXrhgfG62peB7lchnt+/hCI6RNKgH5UoFaKc3k1Cy5tmZCP2Roax+jZ88BsLQ4j+5vw7LgqoM7mJ9ZwAs8mpNJmnMZjp27iEazuaOJrKOYzucZWVliQy7LxvZOphcX2LZxN6pYJJlM85bbbqDklRkfm6M4M4eq1djSv5mRqTHaW3M4ls25cYcv3HuEOw9vx3FsCsVlrr96Lw8++Cj5lRrbe9o4uGcb0koxMzvHxPQiW4CtG4dY6KkwM7uM6zZhJdL4XsD5yRXy+ZDb3voaTl8c58LkIvliDddNUShXOFEsMvb3BcqFEr4fIJWHbRuQUFojlEk5sARUqz5js8sQghAOBCGuAO1KpB3i2BY37t/Dnn1buTiywrmpeRN5oQST+TIzC1Va29qQliZFSO/gIKNj4yjtEfiafLFKqVCKUgLAdhMo2yKTawehqFUKBNUKaIGbTuP5ZWq1EMe28TxTDU1YMD4zyw5AKA+lHSwVAZaIJ1dz3WutSSQSbOvqYKi3neamDJbl4vthZFas0CEmtTYM8EolMk05EC5aGgXQTdgsLy3xL/d/m7vvfZSZBY+W9l4GB7pwLJvpiWHGJy7QlE1x0003UCyVWZqfwa9VmJi4xJYdQ9RCiZt0sBOOWdCr36ZRFS6MWqz1ajqAea9RwSNS5gWWNCbYxqdFrhmLtFKRx4tTh2E0hEFQN7u3LMs80Arjc+X7PtVKBduSJFNpk0IiorSPSBQ1X6PxAt/o2JZsAJE4ZSKM/l+tBSHR8DAvBErL+kO5AUMRjWXGQ6a+vYwiIKVAYpkHjcDAUuB7CASWY9fHPRWluMTpJHXgjq4JUf8dGZmVK0yU5WqKRuRQQ1wZbVWFNaAZna76mGvOjYiiLtcqt0IYz53GeaIR/hUaadnmWrzMHLqx/y6fZ+K+bPQ7uzxVpHFeQAuCyANSSskqXppr0Oz3agqlrh93BMfCQLnx91mF+ThiKu4fGvfTkDHi8tdXL33TzQ0w3xixG/fFvzbHrrcXv41NTFFVM686fkq553n/f3wfWzbuoVqwXhR+wiqRsHw+/GPvxPd9U6m1qeUl56djx89QLNRwklOMTG/iw//rZ/j7P/osnbkzLzt+ujQyzPiM8UzbOtT3quen/oGAd7zpbv7wk2MIpVE6eB4/CQFJd4T9W34aO+GwravrFcNPZy/keMO7r+MbnzvCvt0r9fv53+InE8Fn0nxNxNY6P63z0zo/rbf19nJtV7zwt3nTEMqyOXzr9Xz7gSN84YsPYqmQN9y4jZtvu4XbX3ctg4NtBKUyhYri2bMjdOZSvPV1+zl5dgy0wFYWgfCjgc20y2+uONy4MaS3MT0lDhNuvGkvH4ziz8WAWyqVjJLTkJ4Sf9flA2P8evQKAnBdizPji5wdW+b21xzmxNEjbNmyDceVjMzMIpweJianyaSyaDtg6uwE/d0d9OzYzvLkBK2VgE0b+2hJp5kvLdDe1cOt+4Y5emmM88PzvP767Wwc2ELZ9ykXlhmdKZBOJSkW84wtzFM+P8wh4PRcgRt72igXV9i1bSO39zXzumsPslSu8Md/8vfMVB2MAY0iVIpABSih0H5Ixdc8c/IcjrbQNshAo1AUymWKKwVKKys0tTehtWSgq5Pp4yO0bOykrb2dps4+lubnmZ2a4uyFCV4LrBQ8VL7Iju27yLQleerpU5wYGeWqrRtocgRz80ssF3xaUg5aw1BnG1J59HZ3k8q4DGQEXQN9pGyYm53j1MhZVFXR2dpGKreVpcIyPT1tLM54nLw4xsJSkcnFPMs1zfximW2bejh/fpjRkVluuO46FuZneeTJM3zrybMkUwmeeHqM/uU8rwH+5bFjPEmKuQq8/rptHNixC99y+XE7i9ZVknaS5lSKlJ0ksKDilbG0TaYpR6Xis1JYwbUFzekcWoV4no9SCstx8IXClYJa4OEkEtiOxFYBgVQQBAhcmh2bW/dvYvNgL0FR8cix0+R9c50FYUA6lcJNJpmcnuTUyDRnzl1kabnCu972ZnK5LIsLC9RqPtWygdgwVIRSIC2NXy1gWy6ZZBMFtYLj2gReQCqZJKhVjXmuUoRK41ouU9PzAHjamDIrFXkWodd4i6RSKXrbUrS1ZMlmkiRdF8uyUaFCChO6byWSKKWYnZ2lx06SyibQ1Mglsywv5PnSlx/ic1+5l5nZPJ0dA/T2byWTTaOCKqPjI4xOXKStpYXdWzfR3ZRh7OI5bNtibn6OrRu6AYkOQgIfZNICoRHKYEEYKcvSciLgkagwxPdrWFIiompyWiv8wKvf/5awsaQNYUi5WKRYLLDRNuMGSqFCHy0kOlxVGGWURhyPM0JQH28cx0bqkJWVPCrwkbZRt5PpTF0hj31QYuA01TCN4h2DYhA0wJEkUldDlIqU09CkwViWGwGqgWoRQWZj5E29+pwUCCzzfpTKIhC4uMRVK4nSU0CgMeMGiAi2IqKk0bB6dZylAWbr424EurFXTjxGS2T9fGilCVRQ/87V76NeXCAGYaWJogNW5wcESG0ZA3BbrHm/USVvXOiIIyhsexWM4/0UEnP91L1lXnhuiPc19qyJFeTGOUcpba4/2fj6al89X7WPQLj+sjAPPDHM61XPooiTV/s33q/6WWIt6K6D68uq9fR2cMPNd73q+CmRgOHZCS5M9r1o/FQs9fA3n7uVJ0/fQ6V8mru/foJ3/9BreNuuHS8pPz174hLaC2nJpmnJjfO3/+tu9u8NeezR2ZcdP2EJKn4TAI+dniPdWnlV85NXTfLgowmkaqWq8i/AT9GiipYknVY2tPOK4qd47UMFgZmXrpCf+np7qXlVhDIVjNf5aZ2f1vlpva23l2+74oW/x44eY9eOrdTyBXYNdfCeN93M3NQIiUyK/PQ8aa/ANbu3kcwkKeeLHD6wE1QV3ARjUyvmBtM+SmpEuHozXq4UN77W+F78d6NqEatIcThyY6pJPMAEkdoUvw9mcIsHyPg7Y6U7ft9MOhoCcKUmXwwZnVjguaePsu+qwxSrJTYP9LKSX8a2mrjqqk5KhTyVUo1kdoXhmXlqUnDq0ghhoUhfzmKxkqO5Ncf8xASpbBNb+zrYNtBOb66HpPRp39BBYcliqK+f0JGcOjvKxs4Mo8lhAC6dOYf1yLMMT4yzeWMvm4Z6OXnqLLv3bmffwd1M3fsY0k4QaokOFCI2f5VgWzXeePM+8iWPBx96Dsc2A3+xElCuepQrRbJhM0Iolqp5nGQKNwgZGxulOV+gp6eTzu6t9L22Av/wDU6cHyWdTfHo4hipjOBfHnyWg1s3sK2/l6ePPoMUkvamJL42k7stBemETdX3WJop0dbcykOPP8PegT7SuQwb2jeQzGaYnZshmUpw6rlzHPE1qbRDS1snG3s7SF2YZPeWTbi6Rr6o2DI0xNNnL/G7n7ybro4OWtJpvv3cJFNzeWxHkjKWH7S0tHHHnu00pQXPnR1naanIgX072LptiKefe47f/Z9/xuMnxvG1QGqJ4+RAOlTKAZXlRdqSki1dzWzsaqLFdXjywjgXp0sIrbGQoIxiaGtJNpUi8FcQIYSOhS0FW/va6WlrJoHF/UdPcffjzxF6Cl/VSFgpQmHzxfue4B+/9gilUgWlNbZWHH3uNAnLIiRAK02lWiEMyvjKRyooVcpkRQrP1gR+BWkJ0DZuIkGpuELCSRr/E8fC82ssVwosRFWZ0QEikGg0SpjJL57zE45tjOUtl3TSoaW5iXQqTRAqJD5VEZrICCSB8rl4aZL2zk5EoJmfX+Srj3+Vz37lSc6NzdDW3MLWTQdws81o2ybwSgyPnGVucYYNXb20teRwXZuRsVFsYdGaSyFDj57eDeSXF2hPpbESaahUwHEQ0opmaIFSYDsGupTWSGFRqxjjcEcJarUaruti2079QVbrAKUUCwuLfP0b9zJy6RK/9qa30QbGiFoIROgThCHSdtAIAmUA07JjNVQiLRdQKK1JZnIk0zlqlQoienD0KwUsx8V2kwRhgOeZSB3HcXBtG6XNA4jvB0bBjlNUghBCCIMofQXjIRR7rIShj2XFai8m1QsRVcWjDrAC6ubUIKI+sAnDwHSftLCI+lLrSAQ1Z1VrY1C9GsmzOk4qHSLUKj7FDw3Rz0S2PAodPwTohnE8ku/rKTuYSAMVmPRsoxKDsFZTUrRSxly8Ic0HTCpN/LuXpyw2junxuB+GAUqtgnEdPiPQRiqktCJlOUShkFirKnsUZRX7AcUPJbIBuoUQmOFAY0UqtmCtUr1mrlOmS+IFdyHNQ0yj4r7mv1FkSfzQ0vBlGJt4XQdacx5D1tvLp7W2NlPLT7/q+El5/Tx25P/Lro1foiP74vDTsYvtPH3sAB/88ZMkGOcNdxzk1NFj9CRTLyk//Ye2Lp547hhHjp9jS18nE4sXmfvWy5OfmrMZMgkT8Xf9VdvZ3D/5quanZ85o/ugTv8S11xwjIecRgV7DT6aWgCYI9nDf0X/g3a95P+kNC68cfoq4wo+iuK6Un375Qx8im83gBb5ZCFrnp3V+Wuen9fZ/0TZs2LDv/e9//8yv//qvzwIIIa7+9Kc/feF973vf8ou5Hx/60If6vva1r7WcPn365Au9/5WvfCX3lre8Zfvc3NzRjo6OK7pQrrvuuh179+4tf+pTnxr7v92vj3/84+2/9mu/NlAoFI7+334HfA8LfzdftRvfBysNMxMeS6Ui6bZ2stl2SuUCFoJyuYjlpihUNeMzM2zu38CF8UlmVspIZaGEBaz2UeMA86+12HemETbjQbVRPWgMU46V7Ea/gkZQrQ+M0faNhqb1MGoUCE0tCNjY08wdN+9DhR7lapnmbI4brruBSyPnWS6sMDdfplb1aMplkJQ5cfY0gz1N/Od338XszAyXRkaZm5whYbn4tQqbBgYZHZ4m15olnSgwPlKkr1Ijkc3wv//unxmdXSDnwKahAarPXeSdwF233cJsXyf721s5tG8L993/MJmmJlq7e2hK2WgcLKFRwidAEoQhfrWMCKCztZ0DO7awnC/y0IPP1ieXcrlM1fcjbV5iYdOabUJ2N1HzK1T8gIsj4xy0DrCto5uVWgGA2w7vZWqgh950luVLw9x50x4yjiaTydHZu5HRpXMI4dLW3EYyAdlkipJlszBXwJKC3u52lpYXmM+X2dLVRUZAtVLBlTbllQqbt27nmVMnGR5ZwpN5HGDvtg186/hZxscX6WhJcIsaoqOlmdYWj8eODZOwBb5nHpAggRtdP3s29+NsHyKUgjMXx/nWM8f40sPnaGvJUisVWCj7JB0bx01gSQeNRa1ao1IokLRgQ2sT2ze0s627mZZUmrGlIhcXy0b5VBBKjWMJbFvTnHFQXpZ5r4gMwQ4kkwuzDMxkGNq1jye+8iRlT5GyHWzLQmobPI+yXwOtcWwLhEQqZULk/RpSgqcUnh9CqEFr/EpIOVS0dtroQBNqKC8tQQDZ5mYy6RTasvH9yMRX2ARBmUKpEl33Jt0mmvoRGOACcBybRNLBtmwm5vKMzK2gELQ3NzPQ3WmqfyHpaMmSSycpLOSpVsrMzef5g0/9A8fPX0C6CTb3b6StuQvHTSMdQbG4xOjIRSpeid6uLrqbM3h+lWJpBakUnc1pujqaaGvroFKrcu7EOO37rsJustFSoYhC8uteOjZhGHmQRMpvS0tLPf3AReDVakgpcaI0k/ihtqOjnTe/6S6KK3nU3JLpk9AHHWLbCWw78oJBgQ6NAbWyjCJp2WitVs3xlTknTiKB0Bopwfc9qpUSKvBIpppIJFPUPI9qtWqUZ2Eq0knHIQj8SH236gbW9cgcMxAhAMuxQWtCZcyng9BU0rOkhe04xnOmweMr9nCJx0MpBFLEoKXjQThSQ42/Sj1SKPpsGIZRFb5GVZU1Y6eIwG5VlZXGuyZegGj4d+ybs5qusrbSqIpSqEQDoGlW/ZMuj2iKP3t5RbnYl6aeDhJd8zoMzfWrG/chUtZZPX6lFKrhkOVlc5VSKromVP1cxVAeK9Grc9NlkVmxHM3qdwkh0KFumHuiY2kA2ReaL4UQcebKmocE84zw/CIP6+2laf/hzU/S3+bT0Zx41fGTF5ZJp6q85tpttLbNvyj89Ny5NuAuHnryNMvLJ7j50DZe+/Y3U5L6JeWnWmWZm67exe6hAc5NJXny8Ru54+qvcudNwcuOnxLArqE5Pvt/fp++zjQ4Q69qfqoXUagv4qzlJ+PnJmjOzfKag/+N1twcE3OFVww/xfdtMpnCsv0r5yfls7KyhOu6CEuu89M6P63z0/e5nTuHOzPz3ddrursJtm3DezH36cVoIyMjz3Z2dl7Rwtq/tVi33lbblRf3aE1TyBdYzq/Qt6ELqcDRFh3NaRapESiBKx1qxSUsXWNL/wbm5xaYnZ+jOZPBsRVFLESogMbKPf96a7xZL1e4LzcvjV8DM2jUarXngWxj2ovv+yZ8PVIdgsCET7uui9YaP9BIy0H7IY5IkK+U6WxtI2k5jI+Mkkolybbk+P0//yKnRqaRQpBIQcbNUQsDblpYwltZZGGpSq69n207WikuzVLyNAkHfMvhc/c+zfahfnpaBH55hc2bt3Dtob2M3vMQ+3cMcucdt/DPFyYA6OrIMXRwLwnX4fTZ8wx2t1H0PR795qN0ZZMkEw5h6KGBQCmjgGgFoU++XGB+fopUKktTawuF4gqOtAmUIlDRJKMVoe+DlLR1dlD1awwkWymulDh59FlasgmCilk46t+5l0S7ROg0Vlcz5WKNleUFlNKkUyluv/kwywsrPHb8OFv7uqn6y9z7+Am6Wpv5wTsPs3/XEKHXxeTkJJYIaG5pQno12nu7mJqe4uuPHOGho5co1DwsO0NrSrJS8tnZ28Pw6Aqzs1VyySSplMXrDw+xUi5y5Og5Eo5DNu1SKeWZj0yHv3TvEbxLM7zuht3cdM1Wrr56D3/xma/wnWcu4RLgWhaumySdbcP3ffLLy9TKFaTySaVcMukEuVSCzpZmegYH6J5Yxr00R8px8MMqWoJjZ8jamtsPbqe6lGeiqJgtVzh78QJzK2kuza0wMD3DpfkyjpskYVvUQp9QgQo8CCPTa2mBAHOb2EgNoQ6phgotLVQAlpSUPJ+Pfuzv+I//4TXccGgf1UKFdDpBsVRjfnEWUHR09JJJtxBojbJ8qgsVytXIiFor7AiSNEZli+/GIFDML60w7ucpVGooYaOx0HqCTNJ4vAgp6WrN0NPRRtpOUC6VaepJMrW4QGtzL+2dLWSTOSwrh3A0C4vzXBg9gwX093STSdj4XolUImlgPdC0ZF2yKYd0Ns0TTx7h4NYhSkuLOAmHdGsWKSwCZUDckpJQKaQUBvrkqnIY3++JRALHdqJ0EQ2sAo5lWTS3NNPa2kSqYkJDLdvC14qaV4rASZJyk1FajMKrecas3orhhvrYU4cXDUKDlA7ZbAtSQBj6aBWSTCWxHAutNL5Xo+bV6gBlWVZd0Y3ByYxT5rxoZYBVCIFlW1i2jaUUoR9EABVisVqZczWtpkFtDteqpkgRs+XqtjG8xSqqUqjQpP58t7F5FRqjtB7isTiGVZNjIaVASnsNHDYuKKyO7XH6iar3R2O0kpSSIAzq43/8uToA6saKftE3NqrBEqj/vlozZxh/S/OgEqv+8Vfp6F9hqNBCYNfBMIZQ43MUF0dYrZIa9Q8mugJBwzGtLdRgriFtIk+FMBdTw5x3eRRXHWTrkFvfcDWSYL295O3XPvTEq5afLDnJjdf8Htnmm0hmXhx+eu7cFACvv+UaHnziFCOTk7z5B66npbf/JeWnaqmEbUm2HDrM+DcX+MKXr+Kn3jXJlv7elx0/Tdk+C08XcI+eZkNn66uen7xa1dwjwqRPXs5PgImoY5lM8m7Oz+hXFD9dviBypfzkSAs/8ACz0LXOT+v8tM5P37927hzu3r3s9bzLl45Xm+uijx/n+Mth8a9arYpkMvlvw8kVtI0bNwbfj+9Zb2vbFS/89XUNkU8ugE4yvzhPueozMDCIh8fszAJtbZ1kmtIcP/4cizPLWOkc9zz0JIf2bsfXCg8Ly6+ihR2FKK8Nw4XG1fbV92KFqRFSYwU7htDGgSrevlQq4fv+8wYypaJqTsTgy5rvbPwdSwosGzwd0JZzOX9hkr9+6kH6OlrYu72LzRt6mT6zzFvecBM/29dNSzbJd46f45N/dw+2I5hfzPPf/+izjC/VuPPwIMdPLVCTgre/7hoObNvEjYebUJakp6WV7Rs76OxuYX5unr3bm0jmbuHEk0fxK3neeONeuPs+Tp0fp5Q6wkMPPkbVr3Jo2xYcSyOExe4t/fR0ZhmdXACRREZGw7gOXrVAU1OGnv5DjIxNIYXCtR0jxglBzfMoV0oEQZUw1BQLVTZu7GFpeoyuXIbegV5qnmZmaYXm6HSdOXYC69o94E/hSoFwszS1deMHAd3SYfOmzTz59BN0d3UhrBTTk6PcdXgXb7jzNrxakcmpJbJJi94NfeCHFPJ5zo+Nka/UePSJS1ycXkD5mpSGlrQklcnQ1p5BW/CbP/82RkfH6GhuIp3LcerCCLdfu4233HojT544zebeDHs3DVE88hQ89ixercL0+Ch//cVJdj7VSXdvG++59Soyts2ZiQXyC2VSmRxaC5YXl6lVyggdRiq0pOZ7FCo1KqHGSaUY2thL4sljCGEebFzbIiEttg9toL+/h+HSMns3ttHW1cLJXVv5wsNnuHu4ysNL36GGIOk6+F4NhMQLA1Tgo0KNY1mEQYAWAhmN8WGo0BL8IMS2XZOCpQW5piypnMtv/N4/8t8+pLnh6qsIS0uk00kCr4LvhUyOjpDNLeK4LjU/YGpimppvxlGNIghDk5ohIjiK7oVCxWdBaZQwvh5aBYRBjQDBSjWgJZ1GWoKEpUk5Dm0D/SRaMrRk02zq7cMXzUjHxkaDqjIxMcvY1AhOUjA02I+twFIhqXSSlJswsCQskhmXRCbFzMIS2vNocmySCSfiuSg1QAqUEvUqa6tpaqtV3NaY2UthUjKARgNfDTgRWIRRX0vLMdeB8vG9wIwhXkAqlUIIiW2Z8SL0fQM0tojUVJP6Zm44Tc3z0Frhuklsy8JybTyvCn4N100ghMSyTeqJjqJq4uOwbEHKSaG0xg8iLyQh62OYEMKkOAhVh3Mtoip25oZeMxbWfVf0qvqq47E1XKvaxtJnPP7VlW8rrqSm6lGhdcgVq4sKWhsvpHoKi4y2iZXZOtSvHk8Mr6Yq56ra3Gge3djiY2r0I7t8/qir/dFvWJZl9qsOyNGxBppYMQ+DEDBQHBtMa42JQBCy3meximx+e3X/GlX4xtSZxuOs+xU1wPbl/9Va171m4v+P/W7iazruo/p5WLO4I6L+fz7krreXro1PXkV/zwjo2VcdP1VDgWv1cvrMDH/97IvDT298fQ8PPARBrch77zzMpQszPHXsIs7o5EvKT44U+LUazzx2hGJlMwDlQh4lednx08T0OCeGW/nYJ17PNTv/F+PT972q+Wl+Nk5vDCN+Umv4CcALFIVSM3NLd9LW+hWSrv+K4SfjWQfx/H2l/BQA0k4AGjdprfPTOj+t89P3sc3MYP9ri34AnoeYmcH+fi/8XXfddTt27txZAfjiF7/YZtu2/tEf/dG5j33sY5NxH27YsGHfe9/73vnz588n7r333tY3vOENS5///OeHv/71r2c/8pGPbDhx4kSmpaUluPPOO5c+/vGPTzQ1NSmAiYkJ+33ve9/Qo48+2tTe3u7/1//6Xycu/31xWarvhQsXnF/6pV/q//a3v93seZ7YsmVL9eMf//jo8ePHkx/72Md6488A/OEf/uHwBz7wgYX5+Xnr53/+5/u/8Y1vtPi+L/fu3Vv62Mc+NnbDDTdU4t/5yEc+0vNnf/Zn3dVqVb7pTW9a7Ojo+J4WHKenp62f/umf3vj444/nCoWCNTAwUPvwhz88/f73v3+xcbsgCMSP/uiPbvxufVmpVMQv/uIvbvjSl77UVigUrG3btlU++tGPTrz5zW8ufC/782+1K174Wy4uI6VF/0A3zS1NrKysMDp2iaovyCSyBDWPx4+MUQwSrHgJbK/Cjm27KZZK/PCbbuK+B59heHYJIZQJt/8e2uWDU+M/cVnveIDQWkch7I3l3FdVjxh0tTYAG9/g8YATQzKAFJaZeJwMF+YXuM7ZxE2HdjG4qYvB3l6KhSWmZpe44bYb6ehsxq3kuf3wAcL8IrWaR6ajlcrFPH0dDgUPNm/uZjy/wsz8NI9XKxw7N8JN1+5hsCtDW3Mzyyt5Wpo6CIOQTV1JZrs28Ll7j1B94gQHgD/73H2c+bJDNung5rJUytNcd9Vmtmzq5u/uP0rVC7Bsm9APjV9JGKIChYXAr1TJBz5L8wscvmobD3z7WWQUui/j8vSYcvWL5QL3fvYIMzMl3vqGq+kf6KMllaE5k2bs2UsAzC/Ncf/ffY72bI5rD+1kx74edKBRuCi/Qjk/y5bBflw3ge95bNuxEekHzM7PMzc1zdTiIu2ZJvoHesk1ZSlWPZY9C0skuP21+3ltkGBpaYmZhUW2b+zh7Ngc1+7cxMTiIhcnFwntJJ+5/ynGJ/KU/AA/DLnt6p28/QduQOqQEM2W/n4A0g4EQYWBjj46smlOnJ2jJd3E3oFu9gxu4N5nx5mdL1ApruBVK6ACpDSqbrXmM7sikHKZWiAJrSQIie3aWLYFITi2oqNZcM2eLSyOTZG1krSlUzhCcMP2Prb3dPI33zrBw6dGSCYtJIogelDy/Ro6NF4eMqIL41dnzp8x+dVYaJKpJHYqBZaNa1lsbM3xnHD4y7+5n5npFfYNdtPamiWbzKJSISuFIvNzC6AVxeIKR0+co1L16veUEDFMaBRhg3om0NKFUBm127gl4yBBKxxhodDUaj5oyDbl6BwaBF+STrdQ9i2EsAlqFcamx5hYnKAlk2WgqxOpFaHyaGtpJQhMipTUIQnHwbIdtLDIpFOQdLDCAOlYZHI5U+3PMvBhWRau6xIEQaTwxUDbGPrfYIa8KuNFirxJmUBI4mpuABqJUgLbzmC7gmQ6R6VSQqkAdIjnBSRc15wbrUzahY79EaOoQyFwEwmzHzqkFipEKLCkiwY834vMri1s21lVWZVGSBn5z0RG2rZljjEMkQ0pHRpFXBkt1IrAXzW21mFoUlIs410T44JZLIh6QT4fbtEmHcOA2eq4a+An3l6gdayC6siHxoCqGS9jwIvEdyM4m36P+l8L1hpxW9EjmjKQG6vtmrVKdmO0Urxo0Qh9jep5o1pdB0hzFBG0atBg26vqvol44LI5w5xXETZEThGBqF4F9kb4b5yr4oWQumItGh4aXmBOW30h6ivijnx++25z4uXfvd5eHu3OH7mBr/xVngN7xKuOnxB7+MyX/4Itg3/ATYfEi8JPfW0tANz3+AmWlh9keKKAp6rIIHxJ+en4M8+RSIYsV+b5l69fBN7G/Fyeplzby46f9mzZwhPHR0m6JVRYYqAl96rmpzOnDTsFvo9taezL+CkyKKPmdzM286tk009hW0uvGH4SDamTjRFV/xY/NQoN6/y0zk/r/PTvq33+859vf8973jP/8MMPn3r00UczH/rQhwY3btzoffjDH56Pt/nTP/3T7g996ENTv/3bvz0FcOLEicQ73vGObb/yK78y8Vd/9VfD09PT9i/+4i9u/Imf+ImNn/vc54YB3vve9w7NzMy4X/3qV8+4rqt/8Rd/cePi4uJ3XZPK5/Pyta997Y7u7m7/n/7pn85v2LDBf+yxx9JKKX7iJ35i8fjx46kHHnig+f777z8D0NbWFgK89a1v3ZxMJvWXv/zlc62treEf/dEfdd51113bT58+fby7uzv8xCc+0fr7v//7fb/7u787evvttxc++clPtn/qU5/q7u/vr11pH1UqFXnw4MHyr/7qr063tLSEX/ziF1t+/ud/ftP27durt912W/lK+/LHf/zHN549ezb16U9/+uLAwID/j//4jy3vete7tj355JMn9u3bd8X782+1K174c10HoRS1WpVMMk3CdlleWoSwirJDTg7Psrg4h+OkWMrn6Wpvpzld5eSlMo88cwZtWTiqhsJCNSxeN67Cv9ANFw88MYjCquIRf76xtHf8WiKaPC5Xs2N1y0xYZmS17diUdHUwikFWotBhEl0NSGcTtGQybOppA6HIZlrZuX8Tf/7JL9DRkmD/lg20ZFMMbewgYzm0bmhjy4Z+lpYWaXJdFst59jobaM2mefipc7TkMmTtAB2GLBZKoGFydgzpQqlco7MlSdZtpeOa7fDoUa7dsw2hfKoeLBaKzCwtcd8jx3j4mTMcH56nNxOpYaJWnxiFH+JjU61USNmS3u42EkmL+x821cWkhFQiiSVsHDtFxdd886FTPHTyFHs293H6/AyhcLnzXddSXc4TRoanWwYGGHjja3n0mTP8zd0P8lOOpLurneWiT0tHG/MrK3zz4acJqx69A71kbZtk0sFKJMi2tmMvl0FYTM8tMjw+DQiyLVm2bNxEtbDAVx98mkzColgucfTMLKMLc5ybmqdQVBQrNXylqdUqtOZS9Hc3096c4zUH+lieHObY2THOTCywYX6ZXwOu3redgZ4WOptzFEoFXrt5A6NjMzx2bJyNA4PMzS9TKZUpFVbQgQc6REgbLQR+oFnxfORyBU0e69RpNvX1cPOuXVxamGO5VMIJQwa7uynlV0hKSWtvN6lcFtdxwU7StyHLL7zzOjruS/G5h57BsS1jPBx42EKjYvUNEEKScF207yO0cXRypSRh2Qg0wraMsXAiSVdTO6G3xEJR8HdffIBtvVkO7e5nQ3cnTbksyWQKgUUoJO1dXezwJBfvP25+SxnoibIIzCQd34cqJFCRb5HWKB2H4Hukkw4CgSU0nh/gByHpXJZkUzMLk9N4SiGEQ76ywNjkCMvLK7S1trKhowVbgV+tMNDbjiUFc5UalivJJFxsJLValTarA78aElTLoAK0LUFItAoJfVNxV0TKbazgqtB4tghhwHNVUYwncxWpnHYdxAx7mqpssVxvHoQDAq1wbBvbskmls6CMouomQlQYUKtUqVarJJJJEglzz4Va178vEtgxnk8ghEYIRRAohLAAhRCrFdB0BGwChYpUd8cVSGnS6Bzbxo8qISIMIMbAFY9rq4qnwrC8AWHkWrgjTn1pGD9FDLgx9Gjq0Z+N42EjYMXRAAZO4+sm/s54/8L69lLKuhouG9JpDBQ3QKg058d45Jhzd7ny2jjeX+5N0zifNM4HROdHN/RF4zhPdA+EoULrELTGtiRg0qPQDb9h2Vjx4kYDJDcuoqw+OMUm0SJajI5V5dWmo/MW7xt1zBfPO/b6Zy6bM19IBV9vL592/2e/wWBvCd+rver4SYYGM5Mpl8GBjheFn/JzhpGHOnO87uABphYqjMwVmJ6dfUn5KdABp0+O8aY7bsF2evj03fDVB59i37b+lx0/KaUZnZnjIz+zhNJ9r3p+GtxormOtNFro5/GTxhSE0dEcHhJv8wrhJ2I/Nx0t+F05P2mlkJZc56d1flrnp39nraenx/vEJz4xJqXkwIEDtWPHjqX+9//+392NC3/XX3994Td/8zdn4r/f8573DL797W9fjIt07Nu3r/axj31s7K677tpRLpdHzp8/7377299u/ta3vnXq1ltvLQN88pOfHD506NCe77Yff/EXf9G2tLTkPPnkk6e6u7tDgL1799YXw7LZrLIsSzemB3/961/PHjt2LDM7O/tsKpXSAH/+538+fs8997T8zd/8Tesv//Ivz//Jn/xJ9w/90A/Nf/CDH5wH+PjHPz754IMPNtVqtSvO9d60aZP/W7/1W/Xj37179+x9993X9JnPfKatceHvX+vLc+fOuZ/73Oc6zp8//9zQ0JAP8Fu/9Vsz9913X/Of/dmfdfzxH//x8yIi/2/bFS/8zUzPMz23yOxikedOnWdLXyebN3UgvRRO4NHf24KuFpgrrJAvFSmWanzn+EUO79/E1Pwy6VSWmvJxLAexJi//cliNQoQbVIDn+Q3EarUK6x4zxuNLm/RFpbBsC4HGFhYBGkuArSVCm8qdShiPDhUolCVIOBJhCcJAoZQgrBVZkUlakhZNLSk2dXbz6JOn8YtlXnf9XvbtGSKdaWL/3v1Mjc7w6FPneeq5SzQ329x27U68WpXacpULJ46ibIdMVx8bO5ro6OxjbinP1o0dXHtoO7VqQCaZYXp+hpn5FVKOS2syiV8LaEo5KN8jstThLbddzesH25jIB9zzradpbmlibGKGYjHg6h29zM3moSbRwgzsjmWTTDmUywWa25rIZGD2/BL9AxtpaclRXKkihI10JE4qhXQsZFBiY38TTaPNVCqK88PTOLbgs3/zj1x38Cp27d1tzoEKOXn2ArWy5v3v/1GWL5xivrCE9GwKS0US2TQJS9G+sQtpCbJdbaTTHTz48AOcPj3OwmKBzt4O0IrmlEtXW46OcoYLw+NYNZs9m3vIZVO4dpKvfvtZ+tqbsW2bsaDIxvYEN+7fwelLY6xUSuzc2EOxuEJ3V46F2RIPHj3DzLJPpVAC4OsPP015+zZ8EVLMl/iRH7ydW265npnS4xwfKUNxhaDkIbUmaVuAROs4FUIjQo1CUar4nJwocGamSBAqwsAnYUmSqSRjs3kq5SqduTT9KmRDJkvCSSAdiUw2k3U1//nt17O1K8mn7nmEkfkVXBROQhBKC4IQabskHAelA4LAJxWG6ADclCThgptwkE7KKGiWTWdHlqof4vpVLJ3k0nyVrSVoWi5TqZQIAg+ERcJJ0tLegyBA1Cd848eBhtDccMRFrJSIFgKj+1EFARpNIBShEmgpcJSFLyS+CpEqwJEJFhcX0EHAYiXPxeFhSrUyfW2t9Ha2ogON5/v0tObYu6mfxfwiibTL9GyJhOtCUKEt187whYsUylW6bYmnJNqvGVldSmw3YVI4PI8wDBBSGNNp24YgNAq4NtF+Uhi1T2NASUgDv9SV11U1tl5UTQikZaO1IAgUKvSMab0UWNhYlouSAbadxEnWqFaqeLUA13WwJPVFccNjZowyDwYCC1k3xxaiwXA/ijZUGghUBDaaUFVxHMdAmgbHtfE8n7DBm2VNpI4ytGlJK1JGDbwTGpBExgoo9dSHulrdkFoSN6Mja3QQmnQUpRFE3xNDmaD+wA8grJh/I8+e0HhJChH5CGkReb4IhCXirJc6oK4Cp0TK6CFLx8ca1iFVIpCWOebL1d7LobX+d1R5MQb02NQ83iZOWzQPGXHVPLO5JVfTZpRSoDyktBD186nrmnx8HcX/Ne9bq0qyfv52mDNgzlsDiDbu/+Uw2vgb9XSfyyB+vb18WkvmImcuvDr5yU2a6/G5k8OMXjz+ovCTEx2zY0scR3Bo7w5ua8mCX3xJ+enq665hQ/spRBhycWQcgHe9680U8g+/7PgJpRHa5q+/dJbBwRTKGn6V81MGAD8QyLjITiM/KbOYExdtNS5rrxx+SqUCbr1xnkzKR6jwyvnJhLqaMUeIdX5inZ/W+enfTzt06FCpkSFuvPHG0p//+Z93B0FQ9/s9dOhQqfEzJ06cSJ89ezb1pS99qS1+Le7j06dPJ06ePJm0LEvffPPN9UWxgwcPVnO53Hct5HH06NH0rl27yvGi35W0p59+OlUul6329varGl+v1WrywoULCYALFy4kf/Inf3Ku8f1rrrmm9Mgjj+Su9HeCIOBXf/VXe7/85S+3zszMuL7vC8/zRCqVWpNr/6/15VNPPZUKw5Ddu3fvbfyM53mitbX1++p1eMULf9lskvnTC2RzTbz9B65FYJOfWeTpS2fpaMtwcOcunHQnKzMFWpvbyJd8Xnv9XgbaO8lXy3R1Zjl51saE4kM06kU3vAHYuBx6DLONK/+xJ0Hj6yhTRSsMQxzHRilTZStUikAFWFKaQS5SiUKpkbbCQhozYKkItcZWAShw0yma2rJ0t7eza7CT/i3bGD1/ipZsiq7+VqbH5tg0sAtf1Vhc9uhJQzU/z0BLhut293BpYpGqp/jCN59lYaVCyk5w8zWbySWTKC2YXlhEAzUv4OzJM3S2ZknnUlQrZY6fOQU1xeGrD1DVZTramlhcLDF41SakMKfp2bOnmVropVJcYXlxgWJp2aQG1CqMT8xjxaHfoTQ+FkAimUYIsF3J5PQEoefhONDZ1kQhXyEMjZKWSCRBCGzH4sZ9m1iYK/DE+TGac4LF5RmeeOYUh3dvp7mtCzAh966b5N6v/wsDGzLs3rePCyefY6aYp+Z7bO7Zzu5rruGZ7zzF3p1bac4laHEEP/jWN7Dwujynz89y9uw5Tp0apVQNOD4yx0BrM2UVElQC2i4med3Ne9i/q4cb9g3S1uRQCgK8UFAoFOhosXjrnQd5+omz5JKCjuY2bF9xfnKa2UUPWA3v97Xg7PA8jhOQTmS4976n6d8wxkJBESxPo4tVXNsoVEphUhNUlNKERoXgBTBbLVAsF0m4Dp3NTTSlkyRdm3TCJZd2yeYSuAkb3w+YnZmhVq7S0t6M66Zw0xlqnuC2q3dx1cZuvnP8LA+eHOHSfIGKH6KSEqUktnTQ2iK0LWq6BCIkl0yRcV3S6QwKkLaF1pJEImVAK6hRDSp4uJy8OExzZjN33HEzn/nk3Tx9cpimlhRbhzYztLEDIeOJXePrAKklFqsQEL1lHuq0IkCZ4lbKRHXYtoUtFAiBJSJlUYJfKjA1Oc347Azjs1OoMGRDVwddzc1oFeApj4CQAmkeOjlMpVwlk8mSrwbo5RIbelrJVz0qtYDF+WXau5qpVcrUSiVU6COkg1YK23aQCUEQBMZMWOgo8kJg23ElMKO0+1EKh6VM9EYjqIgodaPRt2Z14o9V4ZAgCOoAYlkWtmN8hGzbormlCeUHBEqhMIulaGX8oaQwynEEzyoIIEqFE8JCSgcp40gchbSMmbBJmzDg6fsBQRCY6IYojUkIsSYNL554FTG8hPXqcrFKrLVCaGmUaLRZ4BWR+bKIFXu9alYdbScAYVkmhYoo0kGtglT8+caZrTFCKP57zbitjKK+us0q+MaKsYFH0bB4sToH1EE9WvQQ8VwQtfhza9OVDII2qtm2vepx0/h6/N2N39MYDWXXDafNbwthHkyM2t8YNbXaB3WfoPqb5mBVY1/KVaW60cON+JX632uBNv785W09XeXl1f7Hn9zODQf/iY2DiVcdPxULW3nmaejrbOaWa69+Ufippdks0mzfvoWtG2wmx6Z5ZPgsQc15Sfmpfes2Tp04hpus4mgXgKX5aW5+3cuRnxxKxS08c+ozrFTeS3Pz8Vc1P2lxAIAg9HEdbRbt1vCTJFRhHMCFLTSI8BXDT9u3+HzmL57B8JO+Yn6SUprFoChNdJ2f1vlpnZ9eXS2TyaxZ4CqXy/K9733v3C//8i/PXr7t1q1bvZMnTya/19+4fBHtSlqxWLQ6Ojr8OP23sbW3t1/xAuK/1X7913+95xOf+ETX7/zO74wdPHiwksvl1C/8wi8MeJ53xavIhUJBWpbFd77znZONvAbQ1NT0fdtX+F6q+iZz7N21HS2hJZdlbi7PibEpxudm2NK/l0CHdLTZvGfvTQhtUa75fPwz32BsbBE3ZZFyLVKOjReqVWCNKxhpHanUEN3Vz1uRh1VgtW0TKqyUQqsQY1ZrKlVZlpmkyuUiQegTWgqwjcmoClFoLFxsYdGeTDG0sYcdW4bYuWWIDZs3079lO00tneTSCaqVMp/9mzmOnryA1pIg0FwcnWX/js2cHpnCySQoFlaoSpdt27dSDse4ODqJZTns6m+iqmo88OQw+VKZ5mSSWrVEZ2sTb3z9Nbzz3XeQzxcJah5IyeaeQXxdYXppmcW5JQYGu3n46Wexz4+RODvKNuChJ4c55U4RKE2oIQg9pFhA2i6hr2hK2yRkPM2A4yZIZzIkUxlCUaC9q49Ll45wdet+hgZ6uXBxBnRIsVBieXmZ9vZ2QNDe1c2+/Zs5emGYllyOciC58carUKFHiDH2XikusHP/1fzyz7wbKwgpLS8Q4HD60gQ3HNjOydNnueWGQ7g3HOCpx56ia6mbcyNzTM8t4/llfuCOG/nQz76bu+/5Dn/66a+SSqYZnp4jkXC5eucGenrasSyHhblFlFL4WCzMLoLWlIOAsdoCwxNL9Pe04iQEynYpaYt7HjqOr2pYWATKVGtVwiaZkOY6cC3a2lIsFDTjowsE1RBb+kjhAAqEqofOKyAMjJ9MsVoDBY6dxLZtFBjVWpuJNlQBWhmfFcdNkkg4CCkoF0sorWnSHZBw8GyHbDbDTbuH2NSZYXKuyGzBY7roc35uhal8nlDVSAiN8j2UsGhKOGTdBI7torRCC6OiuWkXFYItUmhqCCWZmK/wxfufJNE5QP/O7dx/5BS+Cllafpbl5V78wPRJ/KioJeioWlk0j5rshgjodBgibIemTCfJdBoZFBBBFY3AtS0cx8FOJgkrJU6dvcjI9BSogN72VtqacujQJ1QhSlmslAPOj59H+T5SWCgtkS5IrUknknS1ttCSSVCrVfDCLEGtRm2lgFct4do5wpoBOTeRWONRE/hGvVbaHINl2dhSIoRFGAaEoUIpb40HVQwrKu4MGtMcDMTHY5BSBkSUMjAppVFea7UqQim0lEhpYVsuOgzxlYcK/HrkjSZSrpUxPg61NpEiUkQ+NWE9zdqyIxW0Ybwz+xDBHZHPTmR27Pu+gTkhV8fQBmaJQUzrMEq9E/VUFU2sTEcwpDQqUuWkWE0FitNdtFgLoaj6oE3sKdNoOL3ap/FYvrrQGvdN1PMIIZGywUcnOhdhGNQ/+zwVV8YG0qsHrdXqYseqYvx875bY52bteW/sr9Vt17wmBFbkc2YiEhqOlctB1BxnzL31CC0dg3/sg6PM0CMiRV8Yv6W4UuQq2Mca+tp0nHWF+uXfPvfV7bz9zl1s2jj/quOne88uABC+iPzU0eXwMz/4K5y8WODI8XnOnZ+m6IX4Nf+l5ScVsPeWOzj78NcY6r8KgFapXpb85OPFcW24rsCSr25+6mwTdLbfB2KpviC1lp90tDBl+ixeQHql8JMfQKFokcuC61w5P62d69f5aZ2f1vnp31N75plnMo1/f+c738kMDg7W4kXzF2p79+4tnz17NtWYitvY9u3bVwnDUDz88MPpONX32WefTRQKBeuFtgfYv39/5R/+4R86ZmZmrBeK+nNdV11ezOaaa64p/8//+T8dx3H0jh07XrDwyZYtW6qPP/545r/8l/+yEL/21FNPZV5o2+/WHnvssewdd9yx/HM/93OLYO6PS5cuJbdu3Vpp3O5f68vDhw+XwzBkamrKufPOO4vfy+9/r+2KF/4mpkcplhQpN8WKt0xXc5ZDOwZpyaaphoL8ygJDQxtQ0qI5k+TUsSkG2lIgXM4MzxBqSTqTwivUsGQ0SCoTnWOUD1gdcWN/CfOXUXjkGp8EISWOnUQIgeO6xOXoLWkjHOMv0ZRwEZbEcR1c2yHnZMhlMrS3pdm6sYur92xnz9bttHZ2Yzc1Y+eyWIkUUiawbJv8ygKbu1sJ/W5OjU7S39XJG265jnTOpqOtnVK5gqcUX7znEW46sI0br9nHjQd38cDD32Hzxl5qXo2RydNYCRc7lyaVTrDs1Th6epjBodvoSnXhlfMcOXaap46N4Fgh5XKNcqnCj733DYzNezzy4BGuiQZ7v6aoOOBaAqkhIVOgQlQYgoCa5+Hatpk80IRKE4QaaSdQYZGLw6M0tbWzPF+kWq0aA1sh0VrgeyZsV+OQzLr09TZzw8GdPHdqmL07BuhtTVDIL1C1NDlgy96DTIQ2mWwTX/nK/bzlTTcxuHUDxy7M8w/3n6QtIxjoaMN2XbMgI0K29jbx4JMXUNLnL//269i1kFtvuBYrFBQW5jgxsYCohgxt6iGVtJFeSDKZQTPHQN8Am7f288C3jpAUEscVbOzopqOrmZRj8+zJEzx5YpzTk8s0pbIQKhTmnvP8GjKskGztJOtITp1bwk756OoSEKKlwNe+yViIVSipkVpjudHEo0FaIvIMMQqkJ0GKEEdA2kkSKI0fmunGtmzcVAIn4RCGARPDF3HcLE46ATokxKIt1US622GgvUJQrXLtxhwzpS7GF0o8duI8BWHjupKuXJrWbMZUUwxNyL5GY6VdtCsIBWjbwtIQhgFbhzbwwP3fZqqiaekdwAp9fL/GYsGnWjHjcBAY7xkhYiCRxtAcEJZAWi7CSuK6mnS6iXSmA6UVKqyh8UAKLClJptI46Qx+pcy5kQkC5dPb1kJnewuh5xFqjZQ2S8srLOSLoDQJyyLUIdoSEJoH2HK1yuTCHKWSS2vaoRaEVCtlqsUifrkYpVIJlNDUatXoAdVaM/EDdVUzCEOEtHAjtdf3fTzPw/O86LP2GpCFVUWVSBVuhJ94bFE6JAwVlmUiBqqVCsr3CbQPCFwngesm8UMfv1ZFaIWUkb8QGhUG6DBAWgq0NIAsLay6Eh2uAToQETi/gHpqO6Bj1ZtIsTbjqh8ECMC2bRzXqfdLDJixCqrqkG6UVyElKtqXIEpRklY89q6tuBbDddw0q/DXqBrHoGV+N4bAWC1+PjjG5yLezzUPGko9D9rEmgIta/uoMZUlPo9xPwph1eedF/K6aWyNvmir+ypAiTrsr/lNYpUciGC+8Vpq/J3G13UYRYisrkZf1h+CRvX9csheby/fViiUqRXDVx0/bRsw+6Gl5A23HH6R+KkX4Rzns18fpSmTwhE2WiuqvLT8VM7nac22sufwzXzrXsMnjx89zVUHel52/BSENXzfPF/JsEa6qelVzU9KjDO08Zeo+go/UJFXXgM/SUGoQ0TEUZaVxk21vGL46fjpHHe++zru+dwR9u8uXDE/GUaJ5t1ocWedn9b5qbGt89Mrt01NTbk/9VM/1f8Lv/ALc4899ljmL//yL7t+8zd/c+xf+8yv/dqvTb/2ta/d+aM/+qMbf+ZnfmYul8upZ599NvWNb3yj6dOf/vTogQMHarfccsvKz/7szw7+8R//8ajjOPqXfumXBpLJ5HeN6vvpn/7pxd///d/vfdOb3rT1ox/96Hh/f79/5MiRdH9/v//617++NDQ05I2PjyceffTR1KZNm/yWlpbwbW9728qBAweKb3vb27Z+9KMfHd+zZ091dHTUufvuu1t+8Ad/cOk1r3lN+ed+7udmfuEXfmHTNddcU7rtttuKf/mXf9l+/vz51PdS3GPz5s3Vr371q6333ntvpr29Pfy93/u97oWFBXvr1q1X3Jf79++vvfWtb138yZ/8yU0f/ehHxw4fPlyempqyv/GNbzQdOHCg8sM//MP5K92ff6td8cLf57/yKHe+6XVYGYennjzBSrnKru2byKZTbN6yCRmW8UsVZlby/OZnvolt+fz3n3snTscAFoo/+LO/52kslKWxdByGTHR/xsrHqj/N5a1+c8aUKwQIy/jKKJNmoCPbay+oMdjaQntXO7Y022ohkI4kl02zobOVwd4OWjIpfCnwLJBCo7wAJxFNqsKltDzHI888QUtzF/sO7SFdKvIHf/c5btjaR2dnlmSmk5bmBB/6zz9MtVzm2995gtmlFUItsGZWuPXm67jh6l2Mj07ha4UrFRfG5pmYXOALn7+bocGNSK9KT28HN1+9m4XFWdq7u2jLZOlqSvNz730ju584xvh9TwHgS0hZxosHLQmUMuk4WpFOuWRsl7BUIq6Y5fsmuiuTaWJhaZ75uWWcpM2zZyYIIxUpVCG+50NkViydJAiftFDs39zD7i19jI3NsGmwF0smCWeXAKguLjO463qOHn2U3qE2CgtFnnv8OR55ZpTKcolLqsqlkVlef/NuEok0Fy5MMbKwTDlYISFstOvyibvv55eaUrzlHbczd+oci/c+yvxCkSNPXaBcDTi0byOe7TG0uRc/LJMMs9xw+Dr+z6f+gVpo8943d5AQinKxQL4s+PzXHiPrJtGBj5Vw6GppAmD/5i3cdftVfOGBZwktF6c5Q2V5Dh1oCD2U46K1REawIlGgFbZYrZwlIapwG0Q3joWlJGGgKZUVtlQkbROVUap6pL0ESR2SdLJga5J+yPlTJ7k4s8hCuUI1FJRrikBDxnXoamllQ1uCwSaHbRs2c/zsBZbLPkk7SW9zluamDGiFVyiQbWtHY5G0k2SFwFI1yjUf5TjoqodfLXHn4W3MrwQ8cnSM+ZKHElCeWaFNxwqjQClhwEoYb5Y4NVrYDk6qmXSuHelaCGOxbFIWZBRpoo1C57oOru0yuzDBYrHMhs5Wulta8H0PISQhmtHpOZbLJSxl/Dpq2jK+MTpEAhKJFjZoyzwkKI3vhXiBh1+r4ZeL0NRKKKzoYUsTBB5haAycjUq6Cj5hQwRMEIYIYQDOdhxUqAgCH8/3ieXRlG+EICGMx4uKyqnFsFFPW9BBXckOQpMW5yZSoFyCwKdarVHwDDAnEi62mzApCaEiVLGXCYTKR/k1pHSwLafuoWNgb1VhjY2sjT9LpGhHIeBxqo5t20aF1lHSn1ZILCzHJQwD/JqH5/skk0blvxzkDPSadBwZK6kR2MdjbQzGSkUpMggkoh7RsAZeo++Mz0UMokp993SL1ciAGO4URig31d+I1HW0xhKrENv4m3XFP/rN2AMo/t7GfYkh1EQ86Of1SSNYNgJ1PXrKdDRKm2tLWjFsq7ribgKxInU+huIIsOuQKyIFG2j0uKkr29ExGxCO31RRpJd4wf1ubOtA+zJryRRWs/eq4yc/uAaArqbki8ZPyuuiWPpt3n37P3D8zBHGF6rgCFLipeWnIL/A6MQIyWyW668Z4Dc+8I+0Ntdelvy0IdNGKdvJqfPwtjtu4OmzX3tV81Nxqky51oNSM6bo3+X8JCSWLaiFJism09xJS0f5FcNPG/vK/MX/7zgbN1S+J36yIy89U9VWrvPTOj+t89P3sXV3E7gu2vN4/sQeNddFd3fzffWBi9s73/nOhUqlIm+++eZdUkp+8id/craxsMcLtcOHD1fuueeeMx/5yEc23HHHHTu11gwMDNTe8Y53LMbb/O3f/u2lH/uxHxt64xvfuKO9vd3/tV/7tYmPfvSjG77bdyaTSf2Nb3zj7Ac+8IH+d73rXduCIBBbtmyp/tEf/dEIwI/92I8tfelLX2q58847dxQKBesP//APhz/wgQ8s3Hfffec++MEPbviZn/mZoaWlJbujo8O/7rrrin19fT7AT//0Ty9duHAh8Ru/8Rv9H/nIR+Sdd9659L73vW/2gQceaL7SPvqd3/mdqeHh4cTb3/727clkUv3Ij/zI3B133LG8srKyJoLx3+rLf/qnfxr+lV/5ld6PfOQjA7Ozs05ra2tw1VVXld7xjnd83xb94HtY+LvzHW9kcnSae+59lELZY1OXy8b2NNqrUi1OU/KSfPX+o5y4OEzVK9GUzPCxv/4cb3vtTYQJh5tvPcQT3znOSrGAEnbkVdAQ2qsh0kzWmKcSwWhdUUAitEIrsJGmGpUlSKaT1Grmum+1oCvtkLLA0yEmEl8SqrhCuoXAwcLGtS2TFigtY36rjJG1tBzu/sq/MDdf5eDuNvZfs4v7vv4thjrb0NjUKpq9B7YwNz3OmVOn6epu5w23X8c99z3B8XOXKOfL2MmnuWrzEM1t7VhCEuoK/RWPY6cucHa0xOTCEioUjN1/lO4Wl2v3bia/tEBLQuD7LqUw4LU37KGWkPDIk2wb6EK2tDC/VKJW8amGZTLJJFaoqYUB5XKFBERGsgLPq1GtVU1fI7jh8HWcvXCOT3zm6+zaNoRt24QqIFQBtVqFSrlCtrkVpEBpia8lrhWSyTRzfniW1992M8uj0/QAxy/OseNAmZ1btpCULsdPn+G587MUywEBkHATLPuSr377NNgSzwe0RRAo7rptH1fv3o5QPgN97Qhf071pO294g+LuLz+IlmDJJNsGB7j26j1UK2VmxscJax7STXL13i2cujTJt79zhkTK4filWbraWzl4YDtj03mk7dDTkiK3tALA627cxTFvhbe//gDHLy5w8vwsQbVqnn3sJEIprLripBBorOjBSgiNiHgtITTR7I6OzYhDSQCUqh5LVglLKBxL4toSN2HhWCncdBph27R3tFCqmTSNgh+QcjxKVcXE4jKPnRsnENCaSrCxq53lko8lLTKuS0smRS6XolatUSsUEZHi1teU4Wd/8PWkXM2zF6Y5emqEHVsHyC8u8tzpOeyEz3vv2s/Rswt89ZFnyCYz+A3HaVISApTlRMcb3XfCormjG41j1OwgJPBLVL0VpFclJQWgSFhgWSYFbGlpnkxTjmZVQ4c+wrKoVHymFpcoFMo4xvMbITQIhdAmxUBYILWKTKONobTQNn4QUqlVKVcq1EoltB8SWGCpyENG2oRKgdJIKxb2Gv1bDFw3eiUIIbBsU9VOhgGhHxKEAb5nFv6q1QpBtWwAT0psy7gtq9CkhZh0EBWlE8QGxgJpJ3BtF2m7BEENz/Oo1aoRxKx6pFhWHIUjzcNlqFAEKGXUZWmb9BqU2U6pyGMn8rWJYSyuXAdxCktjZU/qCrTrJkgkEgbglK4zT6xam2hHE5auQjNOKmWq8xlTb6N227ap5hcEQcO4jLEZk4Io96X+XqOq3dhW1VmxBg7j92KwjF+XAqSOKtBFfRn/RuNnY98cBGseNuwopSTel8b0FDAPM0qp+nHFLa5697zUmHj/MR5EIk6LsWTdRNyAbfzwEfeHqPdJ2OilKYSB8hhU411r6Ms1izjxtsbk53n919ie99n19pK3+YU8f/SnX3zV8dOWISPA1bzKi8ZPhZLkoaf6eddde3nNdVkuLQQ8/uQJvFC/pPw0NT3NY0dP0NQ6wPVXN/Mz/7HK8KX+lyU/IQSD6V7ufRB8v/Sq5yflH+TEyU8wNPR2MsmTZhhu4CdLCkI0OoqestwEQjqvGH5qbQl50x3T0eLUlfNTrVo1aa/RHL7OT+v8tM5P37+2bRve8eMcn5n57us13d0E27bxgqms/0+b4zj6U5/61Bgw+kLvT0xMHHuh12+99dbyI488cu67fe/GjRuDBx544Hzjaz//8z+/2Pi31vqpxr+3b9/u3XPPPRdf6PtSqZR+ofdaW1vVX/3VX40B3zVK8Xd/93enf/d3f3f6spe/axXdN7/5zYXGfevu7g7vu+++C99te4AjR440+gy+YF8mEgn9sY99bPJjH/vY5Au9/4EPfGDhAx/4wMILvfe9tCte+Ju8OMLoxCJb+ts5NTqNshM4ImBqeYlDV21nbLZMPr9AWzJBzbWj0t825VKFf/7GYwz0d6Ckg7Yg5WvSzS4yFIR+QChcfFWJwqxV/WZHAkJgY+G6LulUgmzKJZtIknRd0glNW1M7Bw/fwParDvCn/+sPuDgyTn8qR3vCQUqoaIuKH2DcGAQJaWHbpuqnJYxooAFL2FjCpD9KJ0m5uMTK7Bj93e2cHxnHV9DekmH/9i10923g5KkLjF26QHMmTaFcpTg6zvzMHG993W4qXpkvPXic0zMz7Ohupq9/K9PjE+QyGToGtrPvkKZ3YJ6s6yC0zUBfkQ3dXaTdJCIlsASkMzmEH5JMZRC2GYD+07teyylX8+QTJ5mfK5PuaCOXbiEBHL80jOukGRuZouJJpPKo1ipUfR8tBNoPcHM2h67dx96zo/j5CiZ40CLEQiijBErXRtsBiZTLyLTHQjHPmYvDHNozwOCFEbKRIfWphQS1mRTtYpkqkn/8+lEC6ZBLJdm1awszS2WCoMbwbJ5Q2aQdcKTA9x0sO8Hhg1dRrC4zfO48I5NLXHv1QbZs28nObRM8e+I0RVnj6ZMjOAnJQGcbvf0bKBaLlItlers3MDjUjyvTTE7O0tqW47nTc5ybLmGFIdRqDFdLhItm4a+3r5OOzT0EtYCnzyyiK2XzoGRJbAE6UEhp8lGkAFsYddYSEWihkTK6giJVUwoQKHS00BQIm5WyQkQqllIhYeiDlmSCGqVKhaVqzYzMlsBWEoRD0oHmtMNgRxPnZ5YZXSwyMj+MKy3SjiTnOtgJl9aWVpbyRVKpBEgIAo/mznbe9s478fxlbijV+OY3vsUNr72VSrFE0rH5uy/fy0OPHuV1t1zH0+cuEfgWHa1pIOJvggjILJAOVWVsBQrFAkuL87iJFMXCEkGthu8F1FSBllSKdFMOWxujZltYSKWYmp1Fa89EewBL+SpzyyvUghApjBm8tIBQoKVFaIU4xMbDsZpHpGAbWCxVaxQrFWqlAkGtjLTSaFdgua5JcIsffkVoPD4aJvMwDA0gK1FXKxsVPMsyqSq2tnGSxmc2mUhQcxx0GCCUhbajimQyhpBIgQx1BK/mu2JF1HZcLNvGcRP1dIjAD/B9nzAIqVaq9dQPS1o4lmXSmqQxxybUqKAGto207KhKZoBWAVI4kceMebAw+yLrcBQDY+Nx1n1ttDDAKiJPw7qPi/EkcpwE2taoMCQITCqUH3gElYo5rghgHceJUgJNREyjINoIeXF/xOrz6n7EACgxhxyZm2ttKt/pVRXWACIm9STydZHSePyo0FxTjdtG6751NVvHqSLSRGPYwkYrHYG/qoNpXNU0VCGhMg8Tl/vXxOc4bjJOjbHMvpi0HQOeddPt+JqOPmPOl0nvMgq7qdino2OrR0Vclo60tplYgThiBDRaROlVcbW7BiZeby+vNjU1/6rkp5n5MbYNjdDVbnHdvv0vCj/t3enzxT/7LNlshqU5wZtv2cdrr97GhUsXX1J+EqkmhhdS+F4K73QzTzy4gVuvXX5Z8lPFC8jZ5vnk2v272TE4/armp0plnoMHPkClPIrUoC/jp3JYoeT5hP4FBgf/BK2GmZsafsXw0/xiki98tYd3vmmattbqFfMTUZRavOCzzk/r/LTOT9/ftm0b3v9bC3vr7dXXrnjh748/+UW0k+W2qzbw1hv3IqUilc6xaUuOyZk8vQO9fPhD/4mHv/k1ejq7uTA+TaUQ8IUHTzA6O8+Z8RmkY7NlQzcD7R20JC28ahk/jIanICAINSGCMNBIoXEdl3QqSSaRJOFY5NIJmjMpOjva6OvrZcuOA3Rv3w65JgLfp821mVABSVuQtG2QGhVKAqlRetWUVQiN61rYjo20bYS0634tljBqXGl+nDtuP8xKrUZCWrQ1O0yMlynk50gmfCor08yPL5Nv6+LEhXEq5Qpz+Rrug6eYnl/iB67dzW2H97Bt+0aKKyts3r6VqZELdA1u4NaWw/h+yFf/5R4eP3WJ/Zs72DnYQWhV6R3azcr0PMWVeRzbZXZyml0bNwHgV0rs2H0t3Z29HDt5ClENefbiCOMzixzes4/Z2RGCjhyV0WkCLVgoe8zMzqNqBYqlgEyrQ212kZ96++v45jePcO70BDYBloRaqPADENjoUPBXXzjKiSWLbf2D7D/YTXPvDv76W6MMLcyzH5gcm+PMA8fZvGmIvrYurr61wKmj36FcqbKwVECiqSlFe3MTgQoolELKfpVExubpp0/z8coKMyseS/NFEpZma1eWtsHtXHPDHu5/6BgDmzoZ6nboTmgmpifo8HqYm5vlkaeOsXfnVra392Cns7jZBIzNo+w8tq5QCWp4tRApHAY6TKRBLu2SlzbPjIwwemnCVAhDY0kLgSYUOqq8pbEjgBKY60SKaKLC+E6IKKhc6GibyOvDDwIz8akQ3/cpVmtUgwAvVDj2AkpDfqXIUqGMF4YEYTSZA6HWuCJke18b2UyCkZkFqlWfbMIllZAEoY9tWywuLZFOJwgDhSMEywvLrMxOM3hwJ0m9wnXX7keXlsi4Frbr8oOvP8j/+Ztv8vQzJ/nRN1/L//m7b9LX2QWcoKYtfGHhiAQWimq1SM2LFElfMT19DiuRwq95OEKAtnGSDo7tREqwwrUcHMdCBx7DkwuR8plgen6BfKmMQiJEDfMEYCMsm0ArHCmwfAFWaK43Qf1cQGRwrBU1L6BUqeDVqugwIAx8qgsrCCnI5LJI2yJQCq3jhBeJNNKzqVKpiWAlIAg0Uhr1ehXwICIMwCwc2raNDgSe7yP0qmq5xgdQa/NgXldgDZzF32vSZ0xKmWPbxksnqvqnlKmYGf8dK9W2ZRmAdkPjD6MC88AubWOwjY/nKaMyWxZaWGtgB1YBGlYV4LXV2UzaRKzMg/F6FCLygZEmykJrjaMcgsD41AR+QLFUxLZsMpkMruti2Za53htSJGTkW0QEj2gQ0kIIXY/ENM1AnAFL8/DSqLCa9JE4PcSKzlVI3QPHsqL0nNXfjn8v3gZBHQrRoLRR+WN/olX135xjGferbVKLYnW4UfGOWxDouoqv9CoEO46zqq5H44bWqzBN/SFDmfNvigZGzPl8Y+7G4zNwLtBCIlD1a7ae6hkTq9aNf623l1F78Mgp3nxT+VXJT//hTZ9mYnyOQt550flp2+4D+J6PV15hx9Y9Lyk/WVaR2aUEYmaS4fPt/PPn3kvv5hpX3/rmlx0/bR9o4013vI57HwIpLY6NTLzq+enq/ZKRsTTDk1WQ4Rp+8rSCwMZSs2j5UeYWX1n8NDlt85u/t50brpmnu8v6HvhJ4Diy/tvr/LTOT+v8tN7W28u3XfHC3+BAL4O9zcwulfjWk+dpTUuaUmkuTOcphQEZ12WpWqG8UqWrbYHO9mYmxucpKwFWhv6uFP/hjkOUQsU9D5xG1vIkpYMkJNSgpIWQGqEEtiWxhEXStmhKJOnubGFoQ59ZZBocoLm3l0x7B6HtYtU0quwhRUBAgG1LEraDYxlVWqHwlSQINYE2YcSObeO6Lq7rIi3LGFpbAoRjVvp1gJ+fRmpFVyaFm7CYn8/T0trO6MQkTV0DbDuwl//xJ59DqQVKpTIJV+CLkL5sjnf8wEF2bewh5dqUKzWyzVks12Zoxz48pTh//HFGl8ps372TOd9F1qZAVAjKIfgV2rpamBqZo1T0efg7TyK7+rkeyLW2M7eyiPSLXH/VLspVH9maRT57gdZ2m86O7XzrsZNgJ9BhjXIt/P+z99/hkVznnTZ8n1OpM9DIYTAYDCYnTuIwJ5FUooKpYFmygu21159fy7vra7279ru72uygdVjba+8rJ1myLMmysqxAUWIeDskhJ+eAQc5Ao3N1hXPeP6obwIxki/6+75JIE8/FIYCurlx16q7zO8/vYXRyjnw+R7Hkc+noKbZu7McqztLc0gSmge+7FF2PmaUc/W6RoFbl4sQcQwWTQ7fsozQ/R00ZdPRvoRjYxP2oc6jol7l87QrFQomhlgQdzZtp71ngyvljXJ1awJISL5SkklY9XaBMoCUZw2H/tl5m8j7zs/NUqopN27tRMQNFSEcizXvedjOJZILtGzdz+LnjPH1qlGvjLzI1N4MRQqkCGzetJ2YadCRtRsYWcWsltC9QvsSxTVoycXb1t8Pjz6OFyWwxz8Vr89TcAF1POzClqP+u6+c98iqqa2/1n43/r/pca8TyX3XDX20QBoow9PC8kJIXUnI9ilWPuOOglcZ1Pcp+SKijB6MhovQIwwDDsdChoilm0NuSJl+qYNsWqYSDQLCYyyHQlItlSrlFkplWpBaMnj2Fu7RA187dtHZvpLI0DYZJUzKNbTk8/NBtfPwzj/CGd72R3TvHKJ68AEDMNrFMExFo8hUXQyvisQwwgeGYIA2MAJxYhpgtcRwHx4nhaIEMXQzLIG5Z2LaNqnlM5stUqj65pTyFWglhgsRCKYkQcQzhoxRYpiKbcPCqUFYFJAYShW2aoH0sU6I0eKFP1fOpVD28Wo0w9DGtNKaw8fwq87PTWJaJads4toNhWZESjibwFAKJaduR8bMUUH81EWLFnySCzJU0jzCMgECYAqmjQh+rTaobZtbL/idas5xFcUOsqKkS07QIAh8VRut0DLuuqrKstKoGuOl6CoXvRy9FEf1hish/sFKtYlkWhmXWleAVoL7x52rVVdQrgCqt8MMQArDMyHuoAWYN1bsxj2WZWJYJcUiE8Tp8KkIVQKiX04CWVXOlov1gZRnUj8PyaIDrtjNELCvPcnlfVlchXfFhiV4EloFOsJzqsbyu1fvf8MQRERwbhrxOqV6dUrP6/AlhRKk60U5F2wCgw+W/0eD7/oo6rSFUChV6K0p9qBCS+kvMiprcSMWUSi1X0dZC1z18IqCP9qX+snyd9Bztd308Qn26rJOvqF8rrMHrKzQObO1kdunMGj/9EPjpiScNfu4j/4yfe9uv8JB3ij37DtDcZpObW/iR8lOpUqE33sy5K6fQwbO86/1DjOVfmfx0aM8gQkSvCIuVEmNTr21+GthQ5Klnb2b3lm8yGyviK3EdP6Wb2rDimsUFSTl/iAxHSMW8Vw8/hZGnpe+5uOXSy+anMIzaIK1V1KGzxk9r/LTGT/8k4ob01LX4JxIvu+OvkF/Eb0pyy45BTly+RMHVXJqcZaHgc2hbL73ZDE+dLZNIOuzbMcBAVxMX0xYtzc2km5rwizM0mSaf//aTnBjKs6OzmeakCVUTgY+QPkJJDBHpGVIompIptg6sY8fWAdp6umjubCOeacV0koQuaDNEGZJACESoScXimNLAkAaNTBdD6+jRKFRkbFqXMAwpsSwL04rgNfJxiR5yQeBTK+WxnBiViocfBpRqFk8fPkkqKbnz1iZcrfjF976Ftp52KvkCiws50ukkxWqeDT1dnDk9RFNrnN50P6VihcAr0NrTTVLa9PT18qd/+2e8861v4tatvfS1b+bZly5wcNc2JJLxmXkqFU25FhDaSaYmpoCo6ly2u5OFYZcgCJmZm2RjW4odb7iZfK1MUzzNlaFJro3MYMnIPDVX8ZnLFdiyoZ/WMmzYso7iYp5j54YJQjDj7fRu3U1JWHzjhTH6+iV2MstP/fzPsr53Ay8+9wxBbpqNG/vJzeXIF8oAdLZ0ofs2UKqUCGshbujTt2UXo+deRJs20jLYO9BBKhmnv7ODjpYsxy5dQ4c+HZ0pNm1I4sd2cfz0WTraO5genaWlYz15t0JLKo5jGxw5c4Xf+OQzZHsP0LXzAeT8EDNXHuHC8Chf+Nph3v3meyjlqiwW8/R1Zdi5oZe+vmaeO3YF19dRFTRgdmqcr4/Pc2VokUAECFTd/0JFD6SGrFV/sDQehppG+oSop6awrKo2IlLFNKi6ga+QuGGI62tcNwKvZDKJQKA0uF6IFmCbkpghseuV7mxpYaBxpCbjgCMtLEMTtx1cN2AxV0CjorSNcg6vlCPQIeWqy9TIVfK5HF07dpBqzRD6Ndyah7IEu7du5D1vewCRn2FdbwvjJ6OH7cEdfZy4MoXwPayYCSokCCLwyyZjtMWTxC0bXyYiwbmeVuEpv+7VI0nFLAxT4rouows55ueX8PwQ07CRdR+aQAsQHkorbC35mZ98M7fcdgtXrs3ye7/7sfrxlSQdEwOBocPlNqBU8ylUXGpujdCrYSpNuqUFLUL8mksY+AgNpjDwgxC3Vq6bUNtooQj8qCqhlAambWGaNg3/kNUGxpZeQZeGX8mKv8lK6kDD7LgBYkIIfN/H94Nlc+sVdXhVpbP68hSCwPeiFx2j3vSKyBQcokqGnh9gWpJQCqq1MolUKgJDL6p2mEomCMIwMjzWgKir1MsKPNep1I1Yve1SmmgdRqp8Q6UnMoRuqN6N/VNaE646JsDyvq02fV6tjq8GVCFX4PX7eb40DJ1F/c2xse4bQbx+sJZhcTmdpA5qDahchslV0die65fVuH9XbmdRN33W9RdTsapTOEoLilR3VR+pAiyn7DQgc/X1gxaEQXRfNYD2xmggqkKtAldZV7L18otW41pZbqtY8T6i8Rq9/KLCchu2Fq+cCNyQ2w+99vjpzJV2fvo//BofeOuvMLh+4YfCT6WKQ8V1CMwEI0OjpJ003Rt7fuT8NDExw9ziPH2d67Ed+xXNT9OLeSx7kt1bJ3j+xAmWlsZe0/yUTK3n/JWf4v0PF+juCvjWc+eu4ydf+dihIGlt4dLMH9G7+0PEMmOvGn6qlMuNk4Lm5fMTrHQcrfHTGj+t8dNarMUrO152x58hYhy7Msqx4RkCHbB7Uy+//hu/zFf/5ktkbcXmrX1858Q1yvkKL569xMEt9/KT738Hn/nad4irGg+988187tNf59pUGceWJOImBhbC8pGhRPkWqq4wIwRaSrTU2I4ZDWNXGjwVVQ4jRIgQYVkYOtJHaq5Hxa1CXUURujG8N/K9FVpAfYiwISWOZUUgWx81LQBkpBxVCkvEknHOXZginbLBcmjKJjh7bRQ7YfEO1yPblcbK57GRtHX2kk0lMCyBmNFcuTiBMCTN2Syupxm+eoXde3YyNXKNjt5tZNet561vvhddKXHk5ClOpjNcGFpkZrHGpg1tFEpLSDtJczrN2x68g5nvHgZgfm6R3LkxbOkRFpbobG2jkPMoWz5/9lePc2jfJgzbQQsTbUbKUaXmMb9YoK0nRqx9G3NhEtHcw00PbqPnYImvf/sYt7zxQdLpGJ/+ymNcvDDJh95xK4MD3Zw/e4Gnn3yBDZ0Z/uzjf8mm9f3cfscB+DSYZpyezj4sR+ErQXNTmu7WFC8+ksELfQwBHS0ZWrNxtvW3Mzm9RGezgxBxurta6W1Lc+3aAg/cvJOJeZclV1JcXKK5ox0RBDz6zRf41BOXyeXzTOW+TpBqZu/+t9Pad5Cpi1/n9MVjSOnjeQbjcwWmCzkeOrSHkeFFTl2aR5oBcinq+Pudv/wOY61t2DKJGfqNZh/Z8HeQum5wKxq6Dw3laNmXpg67DbiNdCyNwKirjRpDaIJQIaSJDkNqYVQVrVj1ME0ruq5DjWmZKGVgOja2ZeCHijCsIAwzMrwWmuZMHKk8pNDUvADP84nHLTKOjZ9fpJqfx1IGlyfnSTkxOitVlFchnumga3s/jikh3kzVzbFzRz8tHS3cIRNcvjoCz8L9t+7mjC2YzoVs62umrTVOcOIaXLlCKpEkYTjE4wG+BMdMozBQfiXa56rEMCHmxHGsGAu5HNfGZ6PadUYEs0q6qNDB0A5KVqmGBk0Ji7c8+Aayba1s2rSFZ594lBeOXiSZSCECj0TCRtRT17TW1HxFyfVwXReUjwp8tAIMCyduoerVy0KlcJTCSSTqYBGFROA4kaeH5/tUKmWElFiWjWGYywC6Og0F6mkpy5AhgYYxtUapKH3D8zxM06x7vETNaBD4aETdy2WlepomUlD9IIigSMrlqnINmDENE18EmLaNlgLHNlnKL7G4sEBHRzuWlYzWH4YINKY0CHXdc6UBy40XL6LrMQKcle1YDU6GYYAmMqUOw/oxEGiiapZKKSzLikZWrDL4XoZxcb3SHaXMrKiujeOpw0hllVKu3F0NJXkVyK6G3tXbuexXs2paw+x5Zf469Ok6iK6CtgbcrobW1eAs68ct+vv6eb43oiqBptWoLKcRZnRsVKgi75xV11IDwhErSrdepboL0UjVEcjVqnN9utKRd49owKloJMqtjJJYPq/L27saYtfg9ZUSh/b8a4bnXmT8u8Frjp9a2kx+5We/zvFzxykElR8KP43PbQPgnltvwlSH6errZHpylpqf+5Hy0xvfdA8vHHmBxZyPyRYe/dIdvPtDz9Dbq19x/HT1muYJ/xLZ7Ce5OhJ/zfPT3muRxZbtmLzrwVtYKixdx09XRxaYXyxDaopE/H5S6RKBkXzV8FMqkwLAsCxM237Z/NQYAbh6ZN8aP63x0/fGGj+txVq8EuJld/w9+NC9fPuR53BrHpXAZWJkij/9o49z0+Yezo7O8u1PfZf+zgyj0z4tyTSXrs3wiW89x8TkEnfcvpsSDs+dmaJUKvL+t97Pu995Gx/7w79lZr6KrxXaUkg/iCr91G9UFYaEQQ2/ViP0A7QSaC2jqllWo4EQCMPA833KbgVLCkKt6sPSV5QSTQj1yk6+W6NaqeJWq8R9H9P3sU1QoY8pbYoLs4RSsWv3Hmq1GpXyEtIyuHv/Zi6N5Pm13/0kJnDL3kFet6+PUrqbcmmRyxfH6OrMcmV0lqGxWX68M0UYS7Bx0wbyhTKGltSCPBY2tx86yOULF6gNwbnTkwhhcPjkZb777FnedtcWXn//duZml0jE4jQ3RwUZtFflbz/3N2Q7m1mYLLBr1yZ2bu3Bryru2LcDz1tifDwq/SMNiStSbN59kOxN96L7N5FONmHaBs2pGBstyRe//B18bXJ5eBq3MM/w6bO85e1vYnDzALML83z2q48wOjPDmQsnecPDDzO4cSNiLCpcc/tte7mQSrCut5tK2UVIwcDGbpq6WpibGifQBqfOD3Fo9ybypSJOJk5xdo7Qq9CUTjA8Osups9cYmcvT1mRx16Hd3JTYgar5ZHs7OLYE1xZc4kYGvBoXj3wOU2s27LiNnkM/Sax8P/mxw8zMnkcaIbds24RIOnz9O8dZ191ESzxOixM9VLZuWYfp2IxMFCK1SeiospMSy2qXEFGayrJKLQSmFJhS1kc61FOpRAQDGvDDyEdFozF0iCk1SkVyq1F/4IRa4HsKzwsiZVII/NAnCAxsCZYhCEIfNwgJw3KkgoYBQaWGbQhAUQEMGRD6Jh1tHdSWFqlYNrO+5OSFEVq7Olmq2nS6PgNVxaQfcFJ7VJRDT187oTvD4eMX+NpjJzhYf2h/7EtPMp/Jko7ZzC7kGZlcYmsY3VNvvn83TR6cePEssWSII8skkikG1vUxPjnD3HiBwFfYjk0inuDC5UuEKiSWShO3Je99+wNcuXKNF89cRklNpWSQtAS337YF04FatUw8meVDH/oAZ8/8Z7QKMA0bFShs08APQ6xA4qNx/ZBSpYLn1rDCCIosyyIIVeQDI8AQIYoQIUxQjYqCAhUG+EGAlNRTbRzCUBGGChUGoCN/F1mHsUbqQiMNYSU9xVqGJwMTGYZ135tgOeUl6kBcXTlOXdf+SMPAdhxUGHmtyDqI+b5P6EfXRqgUoQ4xTRPHcUiks0hp4VZ8QqdKEATEYjFALnu+LO+rIDKdZgX8o/ZxxZunsU3RNjaUblH3FtKYhoFpWoSE9eV7CCEwDWulU1REx7wB3Q2AWzHFXoHkhood5WToFbjSdahdNXogOr7X+86sDrnsZaNQSlyv5EbdEwgBywbi9XVqItW3sc4bYZnGc6KRnrJ8/CIFe7nS9fIm1UcXrKp4J0Sjkt3KcW6kygRhuDySQevImNw0V9J2GusUImqz9aqqdQ1fteXUnVAgpVF/nl1/jK7/SzQI/nuO41r8aOJ9H0zw7Uds3BqvSX56z1vO0Jru+KHx055NXQDEbIfmZJrC/Biqpvnbzz/yI+UnGQa8851vZWx8lheOlJmdbqa3vYfO1vIrjp+KfkhcSuKZJLVC6TXPT5/8Uhl4P48+doxvPnuBuLCu4ycnEae1OcWbHriJc1dmOPHiWeKxVxE/GRYA0rSx7NjL5ifDMpc7txpMs8ZPa/y0xk9rsRavzHjZHX+f+dwTSCugWqpgG+DGEpy5MkHoB7i+IpVpJl9TpNMZdm/r49SlMc5cneW9b76Z7q5+PveJL/Hjb9pLX4tFT0cTV67N4gYCy4hM+H2llpVCrRVSGYQKqjWFG9ZQaEJ05CkjJFpHarM2NEpoXLdKqVxFGxKlw0ba/nLKSl3IwTJMLCmxLZNEIkk8kcBx4hiOUa8YJBgfHsE38mzqbGOusMSJs9d4+twoxVKZyakc6ZRD2nY4d3GUjW0Wm7e2MTU+BbbB0lKB6cUCk/NlpsZnCSs1uvrW41bzKN+FWTBCSUtPJ3NLRdJ2jNffuZ6h0XmE1U5baxa7NMfVa9foam5lcuIKohQNwR8am+K9b7+HQBkEWrG4UCBmJvGCCvfetZ3xiTnOD81TqHpkMim27r2dzk2baW1rY8O6NhLCpBZEulG+kGdoao5kWvLsk9+mWC4Sb2ri4M37GRkd4U///BOMjE0RNy0SqQzve8fbePLxJxk/eYb7AMPUbN++GdM0iMVtEsk4UvnUCnmE1mztX0dHs8UtB3eSm11iw/pWBjas59kjz/OFbz7PTKmA7ZuomMHITJGxLz2DX/bYsXMAw7GxtUlT+2Ycw8eqJijlp7l0/JuIWIqedVtRsXbMTW8lHt9IvzlMk7PEQE8rt+5Yz+XJabJtWXozUQXiJkfRkslwZSyHoUV9mHn9AYiiYTItiPxiBGBKA1NKpIjMhk0JGCEgUNrADxQhPgGCmhvwwG272DzQw9DIOKcuDJHLFVFKYzsOliFBGAhDoUMIlUD6AZWqwvcjuPKDKJVASo3QIYaU1IRFYIWYoSZUPl7NQrsTxBYdxMQcz12ZYL7m483NUSwlmC7E8GrQG3g0N2cYnsnxjWeOsmNTL1euzrOwVGWins5ra4kQikqljDQMss1prIVomH1uocRbH34dt998kOePn2JsbJalQoGuzs10tDcxlIrTmk1ixiyQkvniEge2ddHZ3k2huIBVy1POlelob+GW/dvZvWs3rZ1ZujNZMpkMtZpLpVxm0+aNvP6Bu/nmt57CMG00CmmYBEGUqqKUphYEVFyPWqlKPAjwah6q7v0haCiOkcuv0pFHihQmoYogyzIFWmlqrottO1imGaXRyAhmQhUuw45SYXTuDRMhVyqERV4n9Qp1RBXtDMMES62ku9TVxEYlMilWzPCXQwiiimJRNTLDNDENk9CMVHDle4gQAi8g8EOElKRSkRm0DgOEYeIHIYYJql49zrLMaL1K11XKOgDW90sIA1QETKJu+h35GkZwZEgZtXvoKLViOb1GEAYK04rMsRvbr8NoRJHRUIyFrEPiiootRISMKozul2UQW2XwDJHKG1UfXUkvaWzbjfCqdUOtNpcB+cZYUaIlwojmUfUKestJHvXtQwpEA5SXt3VVZ0e9jdC68UxiefrquH7fGn480WiryKha172ERH09qv6iLFDhSgdLlB7T6HyOruPG8mV9qIzSUfqh0HUVnmhUkub7bFtjCNZavCLif/7uAF29xwm92dccPz1zdI7PP76e5qYC8wsjPxR+GpuYBGBubhwrKHD+/DhGIvEj56ep2SW2bN1ET3cnAwPrAcg0J+ntS77i+KlNBJwdaueLn/4YP/3O/xtfPfma5qd8MQtA3odWRyLk9fyEAtu2OHc2xreP/Dd+7v1PMD799KuGn1aeuJJQyZfNT6FSBIFaZoI1flrjpzV+Wou1eOXGy0/1pUZQi4bRW7FEpKQ2Zyh7mnyxjGFJFnJVQg1fffo80jBJOQ5DE3n235zlzz51jvGZJX7unfdQQfL5rx7GN6My7FIopAwjtU8KCKOb0vcDKjUfz/PrN7mOclDqJtOmYRASYgiJW63g+wqJcZ0qoXXjBo/uZccycRoKlZTLCqU2DLQycAOPv3vsSc6Nz3Pv7h5ed+8Btu0ZZOtgP1ZC8rXvnKTJkWzqb0UKTSwBi4Vxxhdq3LSzn3RMcfjEecYnpvnU18r8h194O52dHUjX5dkr49zXP0BubgZvXLOxu4ddGzdyfnKOcljidYf2k0qmKJR8Tpw5z/DUGLah2C3SALRks/Rt2MLE1DTHj59k/7b1WKk4frXGyIVRcoHGtiweuHMrJy4tEgpJtq2Lc2deAl1m554DBDWPSrXCI48dYfzqOLOz15ibnsKJxSku5Qn9GmfPnOXa5RGImSgVYjsWjmNSCzxML0p3yOeLJFRITEraWzM4sRjl2Une9/734IWa4tjJKB3lyjAnr03xltYYl4cnGF8oMbe0QCVUmDj4VY/mVAzDcDh86gKuqnDyzDAeJpZnY2Z307duK3Ojl5gfP8bVF7+OkD5tPdtwhEW6az9+8gBu7mv84cceAROqvkch57E7iLb1zPlZxjvBEAFIECq6jnVdKYr0LgCNRGJIgS2NZe8N0zBRIsSSEoWkXtQOXymU8ulua+Ytt++kahi0ZmMU0dzRkiWXK/LCiy9RLQuUMFHCwzYdLNPGUyFoRUGXsQ07enaHChUaCGGgtCAMA7TrIWseVTsyg87Hk0yPzLC4WKQUKmLSIKwpFqpFcqUKXsWl6FboqhTYub6Pvbvuw2nNoILvMFeJ0Ws4AHR1ZfCbmlgolNm+oZd1LQbpkeheb29JcfHkabbt3cn+bYO8dOwc0lQkHZN0c5zQa2VjRxN7br6ToFDhwM7NZNIxLgxd5b6bbqKjKcXM/AwXXxjjy48UmJ0p8vA778ZOdXP23Dk2bdiAtG3CasCb3/pGjh0/zVKuGplXGwaYEOgQUxvUAp+KW6PmVkFrfC+qphdLxtFaEKo6gJkmMgjwVYBh+Ji2g/I0fqhAGthOPZ0kVDiOg+d5hGG4XKUMotTgCEIVRr0daaipSik8z6urmI2KcBIhwayrqUIIDIxIEVeRot5ITViGEymQwkTXlXTTNDFNhfR9dL1aWyOdRYioOp7SGsuIvAuFHbVXygipuS7lchmrbhLeKE7SAGzdSK/RIULoVeAWUX7UTDaq6UXzhGG4rGY3UmMQ0XZKKQm0QtWhOKrMVr95VvO5FJGHDteD+3LqTiNNg4ayrJbTsyOz6pX0mlVLXTUCYMV35sZlL6vkRFAd+f/UfYaiHI7o5YHoeSJkNOpJrlpf44WlsT2NY9PYn9WAuFo1v3F7DWPF02dZndYrMKsawC9XUlCi/TOgoWjXlXchTYz6ddioahfNoCMAr/vrND5rbMNavDJibu4hss2PYNqvPX7KdHRz9NhP86e/meHi0Ld/KPz0lUcim49L12boaG2mqU2RTLb+yPnJc2tMjE8ScxyUjjqSss1JWprlK46fEgkbv5Zn9+ZfZyZ34TXPT1emIyF5XUeK9rYWCPR1/OTWAs6PzpNOtfLcsfV8+KftVxU/mfXnhUFAzJEvm5+kYSBlCCoaobXGT2v8tMZPa7EWr9x42R1/mApbOJhWHD8IWCiUWSiUQJpUqy5hGJBw4sRiMXw/IKiEBGiujk1xbXiRWCLNkdOjFKsuhbJL0omxrr2NStUjqDRu0KDeKw9ojRf4uLUabrVG4HloHTWqEV7I5XLo6Gjot2UIgiC6XZVSqOWh0Y0bORrqLOvpB0pFypVlxhDCxJUBo9PjnB2dYGGpzLOnA2wzZP++nbQP9HDp/FUObmrDjifo6unGq1ZwqxXakh3cecc6Ll4cplzy2LJ5kDvuuIOF4hJPPX+ZidwSz5wa44UXz5LKtLBrVx+WZ+KGLo88fZwzF6YY7E1w+sI4Txw+zr/46bdydWSWuVyRselFdt65FYD09BLzTx+jlM+RGVlgfq5M104Xa2wKO55iZHySzLVZnCabrTrO3b2bWRcGuGGCa5/7Mq3jMzixBJ/+m68wO1cg5XpU5sfpSCWpzi/iliuUn3gMffoMO/wKW7du5eKpk5RKJea/+SjmsZMM1qLOtIRtUC0UcEsGNT+gVqtRrJSw7Q04SYP5eIXLQ3OYhQkGW7PgSQZ7EvS0rue2XVs4df4ybdkMfV2tmKbH2ESZi6OTtLR1sW+vSWemlc8+eYagfYC5+XNMDj+JJIaxNMa1Y4+hQ5OO1vX4cR9lJMmH22jpPEGoA8x8haoKWFiM4N+VoJQHWtQ9jqIQ0fj169p7QeRLE5kYa6QEpQMMQxNoM3qB0opqqPBDhWk5fPCNd5Bp7aZQmOTM8CTHzo2T2Gfwkz/7Vt79Mz/JkcceY2J0FOlJZpcKzM3NYcWbcLWmWVjMT8/ghkSpBkIjLIOYAb0tGbZtGCAmDMy4xbq+DXzqq9/lzOgM2VgCRwKmJkCjDYUONeMLZRZLPu0tGbYXQ3ZtCMlk0vz42x/CdZ9g9PmTABTyHldLC9w82EVnokxTqpXunhYAvvLIEcbas2SOXGG+XKOzNcNPv+tO9u25GZVOEgQ+3/rcX/DFz3+aB978ZrTjcOi2vXSsGyBXzLFu907e27+RbMcJhoeGmVkY5fc/+nH23rSN7x45wu/891+lp7+PwHPp6u3mobc+wCf/4vMImSQINKZt4VZdlBUQBAbFSo1SuUhn6BPUqnh+iVJxkXSmGSeWAAR+oDAMC0daeEGFSiFPIt6E5TgE2kfVTYPRCtd1sW078qdhBT4M08Sxnajy16pUjyCoG1ybDbVULwNE4+WmoQA34Iq6Crz8NyuKYiN9RIioKhwSLNtCSEFgBsvQ1Eh5QGkCItNurXXkjWPZpGwH17UpFYtUKlVsy4zSVgwDadn1l3KJNCSBH9S9aEQ9XcK8zgS6sU4pJUoqNArDXFE8G6kdqyu7rTanbkDWMhQjkcb1qSc3qr3LcFg/dtEPtQyvq42mV0PvdetcBYvRZ40qgnLVOZTIOqCuKMyr4e761J7Gshp/r65M2Nju1edy9TFaHbp+HKhjaZTqZtTBUyGMVYbedcW8sUUiypVZOa6o5XeD1duyGogj9RuQ9beStUyVV0wcvPkhpLBRKvOa46dk0+sAKBfcHxo/jU8tAvDU8TFuO9TJtoFNjM+VGZmYZXphgWpZc/HKHIda2igvLRBLNnFpfJjcYoVQKJxsljvvegv9WzupLnTywpGnSTa1Ek+k+Z3//RdMTC6iyjXGp0ZIN2colYuUiyXGx8YYG53AiDnsPbSPE0cOky/kuXJ5lKmJObItnfR0tpNyTJZmokyOiYk5kIuvOH4qzFaRFrT2fg3LtAj81zY/DY8N8wxQKIUYskauWLyOn3q6W7g4NsVXHjkC/Es++7dPoK2zrxp+0kbk8RdqTeEfwU/LFX4NiWGYa/y0xk9r/LQWa/EKjpfd8ZdMZfBr0dBYEUp830MoQahrxG2JZaXRGGgd0tOWpb2zld7OZs4PjfKd7xymXFig7JY5cbZGZ0cbjqWYz81gR+IBgpCG4a8WkZ7gK0XV8wnqw7KXDaeXhxJHvf1Ka5qyTbS3tzIxMR89jOoNk2o8hBoNRBAsg6xhmJiWhTai4eyOlGSBn3zwZkpVjzOXLpFNOhQ8QdYwKHsuL1yaoj3t8PWnTuL7If0dGfrW5zg3PMu14RkWyzV2rk+zoZjngTc9gBkKHn/qaVosQcpO8Fef/ia7tvTRs76Zq8NzxGIJ7rltB7ncDF/59vPE0wnGpyd5+N6byLYluHRpBHc6j28a7PvzL37fc7O5/vPuGyc8+p3lXw8B/E70+6/+Qyf63/xfvLHx+7Hvrnz+L3+W++u/erbNpYUc5VPHaU4kaEomMGsFkoUlvEKe8clpzpU9BrcepC2bQ5gBE1PjTM7n6G1tpqvN4vbd6yFm09vZg0TQlinQ1JLkO4+fYePgNn7vb46Rq2oylRN0bzsIfsjStXP4tQVKuTGunX2axK0P0RrvZmFqnPVdvfz0v/wPfOwP/isTS0tIKRB29GC0hQmBiak9aChlennwenQdCRFdX7peCWrVVEMKwjCqbBhoTS1QBCiktHjzLdvZMdhDkIzTanWyVL5IJdAcOTNK9suPc8+9d7H35v10taVo7+4mmUpQWpgi3drF4aOXOHb8AudHZii7NSxD0N2SYedAN61Jh4RlsnVwkEwmSSaTpKVngFjfIL/10T9gIZ9D2BamFjgolCEIlQYjpFxzKU5VKVdKBMB25SNSLcwuzOO5NQAObu8g0LBvZxdCgZSKZF1hu33/Vl5QAaOzPpvXd7BzYw8iFBQrSxh4xKxm7rvrjTx15BmefeIJbrnnNibHJ2huaWVg41aKhSV8Hx64/2ba3/NGAjSnLl7i//zxl8gkmqmVStTKAfFYitD3ufvOm3n0W08wO1NEepomxyYamq9Q2qTkhZTKJYJajVRLK0qE+KFLPrdALF6lqamJ0KuxVCiSzTRjWQ6eluSXFpDSQEpBOpWKqrkJiR8EBFUXo25ybDcAqT78vwGWjZ+GEYFOGHoRjIhGdTSjDjbqOtBZDVUN4FtWaZdTWEQ9NW5FwTUtK6qQqaOUhsD36wpyiFCREXcD6ISI2r1YPEE8Fsf3PbxaDd/3cT0fv+Ii6oBnWRaO7SCNyAMRpQlqHoGIINYwzevAMAJ0hVLfC96maRLUTbaVUivQvwyZGq3qo4BugNYbwQ6uN7uOTMHry9CRETj1EUWsft1cZYAdLVexGj6lXAHXldECje+xfJ7+/u0Sy8ttgOaKMfbKef5+QL4yImDlmlreR9l4fkmQ9TTKhn+QsaLALxtt60YbpAnCIAJvKa47J4111GeMWjOt64dxTbF+pcRrmZ9yfnQdVv3aD42f7ju4nY9/EX7i9XtQlVEeO3ycXLXEnXu2MzU2zr5dvQxsGmBiaJRqNaBGiZ1b+tHlkKNnRxm85S4GBtsJ3CrCcsiVKnz5s1+ETC9DI/ME5Tz53CyWZZBbnMerVgkDTalYZmJyhjvvuIO3/9ibsHyXsckZro6M07+hj4rrUyjmyS/OMDXaDOwlXJzFdEZecfyUTJj4XidzU28g1n4Ek+nXND8t5ovRviqX+/b3cmVy/jp+SpsWrz+0h5ST4pkTUA1h9+Crh58ckeM//WuHvg4f8Y/gp9XFK9b4aY2f1vhpLdbilR0vu+OvlFvElCaG7UQVtmQseuD5Gj/0QQQ0Z2xMw2SpVMK0BQe39vCmD76ew0cucnEijTAMmrTmpt3reOLIBQYH1lMrlzh3YgwhXVhunKN1BqGmXK3h1oKoEdXX99ALoQjCEMs0KZcLxBMxoias/qDRehlcBQIauf/1BkiaBrJRLUzXgARS+tx32z5cS5HLL/DU6QXcc4v4ZZfOzib2bNnE4IZ2EqevspDLk8mkqQWSge4muluamZvLs7U/TsVXfP6zj3DLvs2846EHePTx57j/vltYXJojrPlsHljH/k2beencEAu5BdxAUK4K2ttsTlwc54G9cU6dXeDqWJ6edc186hfeyd4NPfhLZS6OjjC4aSOb+zqpuQGFfI6pmXkePXqZQtknkAa33Pcubj+0D7dcIl+q8MxT3+XM8ZOksl3kS/OEtQpCGEgtUWFALJmku2c9Le2tjIyMYFiSnrZ2kskUi/MLSEKMoEZcGCR7OunqTbNxy0ZaurtJNjehygVy4xNMnD1FohJj0pA0x2D8VI6pcJYDg13cdugQz77wPBvXd9GUXY+QBqVSiXJg8q2nL/PU8TEKS0W+depZ/CCgY8N+Nu6+k0vHHyHTuwUZayV37lv4ysWdvMzQ+efJ3v5jZFJpTp45ysRkJzm3mfWpGh940wAdIgf/5RqhaRHoKj4Bjhb11KWGke/yszJKV9GRP0rDfwMhCBWERMP4a0rja9Cux4Ft/dx/815qoSTVFGP0whhz+SoGAq8m+M7hMzx/YRhbS9ozFu9+//sQvkuuZPGpv3ucRx57FkmALU1SKQfHsGjPpFmXSdKZTTNfqPHC6UtsXNfOoTtvQzkp9u7fyI+/+2E+/olPEBL5g6jAxY7FcaSJ0iGRo5NiJl/muSvjSNNgc4fgga0bqAgDzl9GBx7b13eg/IBaVZFI2vj1B+y16QJnAk2tUGVLXwubB3tpyqaZHL5KtrUDMxtw8vQZbtq5m7PnTvGtv3uaH3//u7hw4gxLeZ+B/k5cIXju8HO0dXRz960Hue3ALYQf0vzhH/0187kaqcQEl6am6O3rJ92U4o0P3sP//tinsOw2NALDNAhCHyE0FT+gUHapliuksKlUC5iWIOHYmFIggoC4YZIr5ZkpLjC/mKfmazKZJmKOTeAHTGtFMpUilWnCisVxnDie7+GHIcKPfA8bRstaraRORBAmMAyBlDa+7+H7PkJEhsQN3xRoqKArMLNi2NxQviPVOJou0atSXqLvrABwo9qdCiM49H2fmlujYdJsWSaWbSPqV7JVB1Mr1FESRhjgeTWKxSK5XA7XdTFNi1QiQTwWw3EcpIxMrsMgXIb3BnBG7bCoG6rLZS+eBjRHYKiW92s5dQeBUtSPl4huobrHy3XwXgf81eCoG6QWvUE2+heWIa0ByFEnhqh31EY3bfSd6NgopZEypJFm0jivhrEqnQPje4A1ellZecZEk6+H9xUQvh5ab/y8kXbUUI21VlHlOtV4edHLlQ4bx65hhA1EPms6MtCXWtZHCujla6Vxva7AtGCFyxsQvCZZv1Liycc/w65t/4JM8/hrjp8m8mcAOH11lgdu/eHw0/rsAHHH5dpkkdYuAzMW4/V37qc2X4jSRGMp0vEY/QMbSGfmGBmf4nNfOkqu4OFLk47uPmK2RaVYpVAsMja1wAvPHCbTvp7F/BRBtYQUBlIbhIFPKpOhf2Azx46/yGJuikJ5lkpujEymiZaYwbnnHsP0XZLCINbRwpYtA/Rv7+UPgEO37WT3xs5XHD9ZGyS//SmLk4/9O7LpDxGPjb+m+emW/j6+DMRsgQ5ctvc2X8dPXqiohCHXpgsA5AolErbxquGnZnuch183wdToP5KfggBNlM4qYI2f1vhpjZ9eQ9Hb27t7cnLS/uVf/uWp3/3d3538UW/PWvzgeNkdf/NLBaTQmHYcw0ljiJCmhMDzQ0zHwrRsUnGHTDJOzQ+wtOLRbz3L8NgY67s72JCNIQg4tG8THa0dDPS14RgmbmBw7fI1KiUTgRfd0IjlB4fnBbiejw4jb4ToBg5Bh6AERiQJYKAI/FqUphKueAwoFfX4R/9JPD9EKTAtB2lYCMNACokpDAKlmZse4/SZo3ztiWGGc2VaYiqqeCcUm9e1MNjXydHnTmI1tbB1bzfubIGx6THsRJKUEXLv3g1s6F/H0Mw0u7Y5HD11ibLvsqG3m+fPj9DbO0hLTHHm/CyXhq9SrmiSMcGm3nY++LY9jE3P09KUYXihxFMvXOXy2Cw7p3poa4kxOzfHmw7uphRWeaE4RyVo56bbD3Lqke/yp8+fRQSSWDpF1Wnn0kvHaL7jDnpu2ko5t8hn/uyPERkbU7mQaMFqbif0q9hmDK1degc2km/r5ruHH4NahaVynk3WAdrjKYJyjrQIac1mSfa0k+7qJG7B3PQkSwsLVN0auYU8l68OMzO1wFK1RNvmrSxU8xBv4uHbt5KKmZjVIm2tWY6cvEA6MUlZwWceuczEbBXhONjSoebXENUC8WwvARrbTLFlzwOcff4r9O64HbX+JqauniTT2kFh6DxHhWTnvvvp3nATZ5/5Klv2vAVr4gQvvnScdL7AGwDLr6GdFIauVy/TgGDZt0jWxWshBFpEoyC0iK5BrTUKE6k8/AB8JfF9l4G2NO963a1YdowgIcA0eOqlKxy7OI5jC0ICUvE4t27eQLLZobN9HbmxMZ4eyfPlbx1leqFAxfdpTcWIWSYWJo4dQ5kmhSDEqbkIU2DZJslEBiORIdHSBtLh1nvu4IknH0eFinvvvIWZ2XEunjlPseiiQ0HMgiAQYFjkS0WeO3cNdIgVS7C9KQ6AdCxasiliRpyKW6CE5NLwFLcAV0bGCZub2NDZyrmRcSY/O8pPvPFehodH2bVvF9989HGScYdt2we55y3vYPKv/4bTR4+w7/4HOf7IEzw3OcbN+/fxxnvu46++8Fl6WxJsGNzO7XfcQs+GVr7zjWcYnbLZtWkjI6PXSDlJbt67g/XdrSzmPCqWQToZp7jkYQhFNQhYKrrkFnO06JAw9CkUcsRiJlKa1KoVTNOhvasX0AR6krPnzpFJxCmU8tiWpK2tlXJlkYJXxDBt4sk06ZauyKS48aLsewSBHwFYXZH1Q29llEwdnGzbWoZQrTVSBBjSjKqKsRp8Vo2GqKu9pmkuQ2AYBmi9AmQRgKz2dhFI08KxbOyYxq1Wcd0q0g8IlcIPQpy64XaoAgwjSg8JggAhbSzLJJVKEYYhxWKJyYlJRsfGCcMQx7FJJ1MkkwlisRi2bROLxZZh27Qi1ToMQ6SQy5DeSEXR9bwIy7Ii5dqP7q2GmbtGE64CKyElqBVFvxHLx7YOfZGhcwTQgkaqRuOYRC8HWtffMlV0v0YALJe/EwE19WO5euwJyz9vBM5GeszK91a8cFZ/f7lC3PdR369PxYnSIhGRyhxtwsp0Wd/e1fu/etSAIKpAZ0qxPIoiDNUyWK/26FlOnVmG2jWl+pUWnt/JQr5MTedec/y0kIs8ipOmZLCv/YfCT3bqCj/1jndz5tosOoz46fBzx3nTwd0kDJPzp09i1HxuOrSfF146zZ9++YmIn2JJQquFR7/8Bbat76Gnvw/TqnL48FMIU1FYmsLEJp65kZ/6aWlr5bmnHlnmJ10+QHtXF8HYFdIipCWbpbOnnY62JHELpqfnADj7/FGmzw294vhp4SVFi94OgFYGhpavaX4SQvELb/kU9x7oImdO0JKJX8dPwxeHcaXB5ZFISOxpSXNu5OSrhp+sxAaefr6NTf2nmZ86/rL5KahX+vW92vKzeI2f1vhpjZ/WYi1emfGyO/7e9sChqLFVJo5h0dUS584DA8wVfL7x2HMMTZQYmZwlmUjSnnaYn1tisLePznSWJ4+cIQgUtmVy7Pw0B7b3sn37RtKORSqTpqs9S6E0C4a5XK69PhCZoF4qHcAQUbn0SLXQWFLhhwJDasJaDRWGkWKiIdAaA+q6ZH0IMxAEIa7nI4XAicexrBhagO97kBScP3OZwDf4uXcd4Hc/exgVSD74+ju4NDHC0QvjPHHyIqWS4vadrWzr2s/g63bza//5eZQhaU+ZHDt3jXTqOJt7Wti6czNve9Pr+MvPfIP0HovJqWtcGBoh74bEtcGW7X3MnB/DDQXx+Rq5MmzoaieecXCUQWtzgs62Xvbv7ieouBw+doWvPi1ZyBcIQsHk4ik+/rVnGVjfybqufmaXargiTr7kQejx2//rt7n/3jeSyabo7e4lk2xhZGISL6jiu1W8mofrz6MJaOlYh9nikawWSFo2Qppow6CpvYPy3DCBW2WqXGF+eIahBRcuTWI3taKcOMJx8HyN0bKBZNcObEOSEDWEdOi5YzOziQS5yhT37muhd9NGrl4dZ3p6nFNnFhibLxOTATI0CGRAKt4KqU5imSxLxWl8AuJNaQZ23sul41+jtWsXptSke7fRZae5ev4JRkyLbHs/7Rs2MzF1luauXdy1byPbJk/DM6e4+ab1nDs9RcoUBEKvatYFovF3faiEkJKGUayuy9eBrqGURAUhfqDpzCT4iTfcRrVUplgp07llA57r0tPdCirErUnSpk256rJj1yBTEzNcvDzGyStlZhZdXLsF3/ahaCFFHFOYGA440sIRFjUvxHUhk3Bob2mhs6cbqTSeWyQeS9Pa3sZNO7ayuDjHgZv6yW64nWquyJEnjjA9s8iFC5eolAJK1RqOYVKpeLx4aZp1Hc2si1kA3LX7Vg4TcGbkPIEXsKe1n3hHOwAHdw7yrgcOsGXzNo6fPQZakK9VmK+UWcgtYEqHwFPkFsukmmv8s3/+YaYnLtJs2dz/rrcxfPoc48MjJJoTvP6e27l0eZSm1lbisTh9PYPcepfmv/z33+fq1ml+5n0PkZ/N47tV7rz1IF/95mE83yedaKVSrBAI8MKAXLHM3Nw8690KmUwaJ2URBjX8ao2Z6Vlct0KxXEZiEnMcetuyZGIC37BIN2dpyqRJJR0s20QKg3K1RqW4RDLdjGVFx0TK6CVWIJZ9SQzDwPejdDlQmIYZtUFCLnNIGARo7UMYQZrZSP2ILrHl62nFOBlMM/KnUWrFDHm1ymgYke9NA2DBIJFIE4vHCcMQpUL8wCOoBAjAsiIoNi0D2zIjwFFRuo8QgubmZlpbWgiVwqt5lEolqpUKSoWRIXe9aE8insCog6Wqr1uFAYa0iSrGRfeKVqo+tCiCPsMUUapEA9aJgK2haAOIukeMFo0Uke8FwGV1epUyu1oNbvwevTTU5zGtyJdl+TaOtiXad1n34lGrVGhYPZogOicrKSjfb3tWpq0s48YXk9Xbtzq950bleCWlRq7Aev27jReE5VS6VWlOZr1kZuO4haFBZBQeLUPUiV+scesrMu44uIPWlvRrjp8euvUgR0/A2Wuz/Mc/emSNn+r8tFSLRi8dGcnR3FZ7xfFTtz3P/Ph6Hn0cPNfDcXiN85PLwW2Psr57kDsGH+SFy5ev46dMbw9Pnb3MwZ27OH4Wfu59b8b37VcNP50438y/+a2H+MP/eILtAy+fn2zbJlSawPei5/4aPwFr/LR6e1amrfHTWqzFjzpedsff4nyRsueTStps3NxPb0sKlKanxeDdb7+fv/3qU4zNKCzD4Obt67l1/308/8JpcrkZtvW3MD6T59SVRXKlAsfOXeLBWxd550OHeOyZU4RSoxvDn1HIuiqigFBRH8KrQEqklssPAx3WKy2hUdpGGVGJehQoLerDhVcUAENrVKCo+XXTV8tCWDZSmoTUCELNyQvXqPgVLo1NEteahUqBP/+7b7Ohp5103KRUhc6WJJ4rOXVhGCuW4r3vuoeXTl6grzXNsZMTNGfS3H7LQUzbIDcxyR17NuG6Ljfv3sNXnjrD2+/ay8ZNg5wfGmJ2ZolKJWQmP88bt22lORknwOXK1TmOXx7jdfs3o3SCUrmGdpo5cnqUhVIFLRXKV7i1KqevTWNiQLwdr1ZAhVVisRTVosvffeVvQSj8WoHR2gW0oTBDgaXDyKND+0hpY6AxLIuEaVBTLlqHEHqkUg6L8Vaspm50sgmdTOLbDoYQ5F2PSq6I1ItkMi1YtgN+ANUK+aBKpaIpl/Ns3ryTSb+dw6dnGGgJyBUqPPLiAicujGMbErCphT5WTVCr5Yg3t4GZwArmQHkEpMm09hCLtzB57mmMWIxyqcjOe97C/OwlhBVHJpNURi7jJOJUF4bJzWRpb28DQKsAbUgCApTUGCoaZi9Qq6xjWa4E1kAFqNeuUoowEFS1QTZj8u5791JeXODcQo1MWxrZ2czG1hbammK84fYdnBueYWZqnlpZ49dqLBY8nj6VJ1CCeKYJc6mEadhox8a0wLAllgGmbWGaEQRIGxKpJB2dnXSu66JazlMqLtK7OYEZc+huy5CUBvncAkeOn+Yn/tnPszlXYbu/xB137Cc3N8eLJy5z+twVXNelUjXJlaosBZHHHyLk5v0HOXH2FDOLZUrlyzRPzPE6IJOIUXUrPPr445iWg20J2tu7uGl3nOPnrjI5lScWt3DiF0lkYmhT0LfhJqpeGVELWLdpI3HL5uqpcwjhY9RcXnz6MB1d3ZSqVXYfOshH/v3/h0/8yRc4/eJR7rzlZgqh5K47D/L88VPMzJcJlSaZipPLF8FyWKpUmc0tsDQ9R8dAPzjNmJaPYQf0Z9twaz652WmqpXlitonSFn4Y0NTchO04aA2FQhnHcTCtyKtFVZeooEmrevqINKPzQgQyK5BpRubmgY/neXg1n1BppCGxbRvTkJGfjgqRUlOrBRiGgWFamEaU/hIEAdSvL8NYAQ4pRd2npF5RuK7ShuEKxEbWLQZKr2yP1pFZdhiGqDAkDDVB6GEERrRuWYcg1VhegNYRKElDkGlKk06nIuPqICAMAgI/pObVkGLFLFsaAqEFYeBHqX2GiTQEStaNqutAGFVWi6qMRgqqXFaeGybYOlQEYYBQAlkHNPRK5b9GLI8EkGI5rXA1UK6u+BcEAYH2EQ2vId2opBf57zTAOVrGyvNsNWQup3roFZhcPb3x/QhIjWVIbVwfq+N7QbdhdK2v+yw6J+ENKjfXGWELIcEQURXNxrwNWBdgWQZaR504y0o+fN/tWosffcwtlIjFiq85fvrK00eAf0UyZuCGPxx+euYFm//z+d/gF97zJyhtvCL5yaos8I4P/N8oVUZ52VccPx24pYvCQiK6eA1JQPia5qepRZsr0zfTml6kb1PIzQeu56eS6zG3VKSnJQbA8y++yMb17quGn5LpGb7+J79Oc0YjRPxl81O8qYVQGwhpYdbboDV+WuOnNX76pxFKKT760Y+2f+ITn2i/du1azDAMvXHjRvdjH/vY8O2331698fv/5b/8l47PfOYzbVNTU3a5XJbpdDq8+eabS7/92789vmfPnlrje3/zN3/T9Bu/8RvdV69ejQVBINrb2/3du3dX/vIv/3Kkvb09/EHTwzDk13/91zs++clPto+OjjqO46g77rij8Hu/93vj27Zt817uen5Yx/GVFC+74++um3dSKBcYm5jkoYfvIDc1SyaRQbua8fmrPHj7FrbuGkQYDuWZOTZu2Ugia/DYt0+wf892uqZm6elq4fL4BF2tbZw+Nsyvj3yVRDLNnTf1w9DsysqkiExBiLwSTBn5NRiWiTTNqCWPpiK0D2aSsalpyvkShlAoNKFW6DCAhu+DNJAiMvANA3/l5jYBCdoyEVpx992HyBcKpJJx7rhV8OxLF3jhxBmKVUVPa4w33b2TbLKJSq3G8ydOceSTX+HuW3YjNBTyNQpelQ/edy9jkxNMzy9y3+23cOzSZQZ6+lBumTffPICqFpmfHWcxV2JpqcZMsYgSPlcmCzx0xwCXrkxyfrzIdM7lU4+eoPqN4zgCnJgDWuFpjeNb+EohjRgWkloQYNbKqFoF0LhLVcKwgjBCpAoIlYFtijrY1yuZuT6+sAjCCjMTk8QyWeyuQYqL82hVZT63yNzkGH4szmKhTIo48XQa27QoFZcYHrrAxMgwMTOOlXTItLWwft1m2jIttGaaaMlqTAXPPPFNtu7az988fpzhKyMEBJRKRSxhESli9aHxwoNawNz0COnKAum27czNjNLdtZvFxQk2HnqI8ROPMXXhaRItBc69+DXKizN0D+6jODdOrjBJV3Yv1cljfOFL1xgJff4PcPLsNHHLQiggEGhRh4KoDB2aqBz9isoEUkQjH/xQ4wUSlEZon4WlCkOT87zu5u20rBdMLk4yPzlGWK6xYcMA7tIir3/wHp5/7hjFQoEXz+U5fi5P2Q9ItLYgcYgnDWIVF8NvAulh2RLHNEk4CssQxKwYmWSMbFOKpnQKVauwMDJKqHzaOvoQZHEsk303beFbzxzh2Pnz3H7vnWzde4Djj3yabZv3sGnXDobmq7x7xyaOnT7L8aNDxMoWS0E0us2rVklamvvve4DPf+EzKJEkFA4AvR1pJjxNKCBhJLhpyzpeOjvEpr4O0vEUs9UFBpvSVCoVrhw/Qc+WJcJiGZFI0dLcxvjEOMnWDL3bN5GfmqOppYenXzzGlbFTXLg6Rlgss35jL7/8L36ScxcuML80S8zJ0pm1ObBrM488dozFYpGO5gy5XIFaAHk3YGp+kenRIdo6sthWM7ZjE2qHSqVALJ2hP52CcD2lpUWqXpXQ9XD9ECG9umF2QLlcoq2jA7dWw/dcEtLGr0bVFQlchPbRRLBhmCZBqBCGAK0wLJuEZS+rkL4foJXG8zwM06inohhAuKyo+p6HaRpYlhXBSr2SmwDCuvlyQ/W1bbuuRq9UPWtAXBj6aMLo2tSNURUGhmlgGI30iahSXqR+s+xZ0vCxaSyrAV1KKUQYLcm2bCxboHVArVKl5lYwTRmp84YdtZdSIHQIQmKYVr1dud5jppGK0oA7gayrrGGU6lNP/2h49WjFdSq/WJX+Ek2/Xu1dbQ698hKgUEGAus5DJ2rnoubue6vXNfxsllXv+jm9XmlmeT9WH7fVwLt6ud8PdBvfaWz36hST1bF6vus/W/FAgoZhd0O1jmA7Og4r27C62uBavHJiz9ZeUOOvOX76zjNR6mNz0ubNr7v9h8JP4wvzJJLP8o3nX+JrL0yv8dP/F/z03W85FKrbgffjiAiXXsv8VPEzPHL8w+wd+Ai795bItmRv4CeDN97Rx8JClNoeCrBfRfy0MZ2C0PtH85NXLpDMtFCtVBCWvcZPa/y0xk//hOKnf/qn+z75yU92ADQ3NwdtbW3BxYsX41evXnW+X8ff008/nR4dHXW6u7u9zs5OPTQ0FH/00UebX//61yeHhoZOJxIJPTk5aX7gAx8Y9H1fdHd3e+l0OpyamrK/8Y1vZBcXF8d93xf/0PT29vbwQx/60Pq//uu/bgfYtGmTOz8/b37rW9/Kvvjii6kTJ06c6+3tDX7QetY6/n5A3HfHTkxMxiYnePyrR0iYPoP9PcxMzdDd30s6kcYOJd09nVRTrXhuhYHBW+ntm+KLX3mc9Zs62bt5O/fcto/Ojl6+s+k0z528zOz4Ak+/NE7MNqEWLqehUNcNQxU9BCzLwXESmJYd5fyjCEIPSxgIv8b6njb27NjA4SOXUIK6gqQQeqV8udIR0AY6qvIDISoIQVpIM4YlTXbt3cyTj3yHTTt6aG7u4Oa7DvL8s8eZHLrEm15/O0NDs0zl5ujobuODW9/Cd588xWIhz0BfJ82JDNs39zFybZ7R2TLfeu4qf/voeQpuQH/7Ja7MlUg5cVrTJl5VMdjbQUd7nIG+JGXX4dRYEfX8eZ48eoXNAx384o/fT2dLMy+dPc+CW2NkbJ50LEm2JYUhTdZ1NHHh8jBXppbIlww8r4QfVPDdMpbhYAowQonWBmjwAp+0tKgITUdHG5t7UlQDzW37t+D5Aecn5zA29NDdk6YpI6BmcH7oPBeuTRNvTuNXA7py/dxz39tZN7Cd5rYWcvNzhBUPPAO1VKWSKTEbeiyWLNKpFAvz85x56TmOPvckrquwE00IaRMz4/VKSyECH8+LFHNXCe65eYCp6UVGRp6nWByiMHWRWEcf1dI87dtuI5ZIM33tBZo6N9G5826kESNQNQY23UXXpu2UnQpTV8Zwc9EQ+ZqKGnelNWJVRSsao8hFZPq6+uER+CGe0nihxtORyi3R1EIYW8jT3NyGdgNu3rGJoWsXmJye5drUNOt7OpkYHeLM1UlCN0nBXSDvlbGlhWU2I1AIUYuMh20L8IlbNgnTJJM0SSRNso7JukwriYSJ75ep5Fz8fA5f+filRRKpOFu39JPIruO53/8zfA1//Zef5l/82n+lf9tBFnNj9G3cQFdfNxmjykf+27/lY3/wcR791nNM1fexMD+LzC2wb/ce2pMmJ849jxVGYszghh623LSdydExFsp5AiPg7nv28+RTT/PA6w5x6NAB/vRTX8TCxw/SZDoCivYCi1cvUepfRyzRQhgExNMW6dQGxmem2XNgExeHF5k8fo2vPHmCTROT3LJtAx1NzbSu24mfn2BqbJj92/p44uhZql5IOQwJLYmrfPAl43mfsbl5NpRKmNLESzhgmcScGLVKhcCW2FaSdFcTKbdMLfDx3DJKKRJ2Eik11WqVUEjSLa1Mjo3h5/OwlAPAqxRwF6YQlo1h2gRBVPXN81ykITANG4Wuw5LGti1EvaqY67oIaaC0wLIcbDuCTt/3cF2XcrmMYQgMadSNp20c28b3/XrKR93keZV6u6J0Nv41UhsiY+PoawJdhzBEBMRSRt5cdfSLQK5+sWsdLiuzDagKggB0AFIgJSRTyegF2fPwA4WFH6nlvkYa0XpCpdDoehU9sQyiq7c/8hVbSTsUQmBKA21EPjRKawIVGW+HYYhpmsupGo378EYYXA31yykcq3x/Gur06mMYdVis+OUoFYH0aghWy4Csv2f9jVgNyjemp6yG09XzNAy9V6vI3w9SV9JeVv7+fvNAA8xXoHr1/Ku3eQ1eX1lx/637aE5brzl+2rLlEu1f+Cr/5hfvoFwY+aHx03/+8Dl87z2cH7pGvuYxNbNEwo6TaUoghUFnS4rJ6cvMFi+QKzgUi+vQ6iKhP4vQfaDWI+v3WKjBFQFJaVIFWrLN7Ogvoo0ldm/dz+xCE0V9FmNDD/HkFmJODHzJlVOTDE8u4KQTBO4irZ0OBw4eZNMO0GKQlw7vp6vjf2BZs684fqr4gvlCBVjjpwY/vefOfVjWenJTEEslruOn/JLPXQf3Ua2GPL77i1jKpuyLVw0/XZ5K818/eojf/MgVBrrmXzY/Oa5LYXGBeCJGVek1flrjp+vW34g1fnr1xcWLF+2/+qu/6gB48MEHl7761a8OxWIxPTk5aVarVfH95vmt3/qtiV27dg05jqMBvvzlL6cffvjhLTMzM9ajjz6aevvb3168evWq7fu+SCaT6tKlS2dSqZRWSvH0008nuru7g5MnT8b+oekXLlywP/3pT7cD/OEf/uHwhz/84YV8Pi+3bt26a2ZmxvroRz/a8fu///uTP2g9P7wj+cqKl93xZ0iBVyvR09NDf3cHC7NT1KREGRK34oJwaI/FGL42hmM5xJNxClMX2HdgF9l0C8+dPM2R42e485YdTM+XsJ0MMVuRbbW5aX03588N4euV8xA1tivDbiPlpF6uXIVoFaKVgSd9bKOJ6fkCU/OL2PEYYRDU/RWgUVkMooYyRFMLAly3FnkmaI1WAaZlEVomx4+fYakGp0fmuSmZ4NmvH+WZ58+wtbsVr2awceMGWnI2jx8+z7Onhym4VbqaU0xMF3jzAzexd+8Onnj6BGcvDZFImJQ8QUs8wWLNpyXZTCpm84Y7NrFt43pa0w4T03NcHJ5m1771mJak4kvWt2epVPMEgcd8ocyBPbvoX9+OY1iUygXK+TK+DkklE/zYnbv4wnef54tPniUeSxIGPpXAwPPLmEakCEsNLc1Jtm4axJQS07Dp607ytjfcRb7iM7guxYkTV7g6vkQud4Vt69tpywgG+9fztvt38JlHLvD488+RkgZefpEXX3yCvk07aGvpZP9tD3L48W9QzC+RaEljJSQGmngyxZWhM4xeuEjgFvE9hbYzmETw0JyJI2QMHVSR2qY9m+DatRnaUjYP7usj236I6Xmfb78wwrmxBbSdIhZvISznUXaM5nU7iSfixJs6cd0K/Zt3kYjFCGs+G3pa6YltxTp7EYC4Az61unqmkfXy9VLpaHTE8oNEgZD4vqLm+QQaQi3wtUJiYBDgKwMvNEAp8kt5JtwlNm4ZoLVzI6PD18hmY1y8tkQ8sY6Zqk9VLKHqQ86rxXnKVZf5xUVc30WGPpZj0hSLYZmQMA1aYim6WzLE4hoRKJRbRrc3EW/NYperuMUi8Y6Azo4uLg5fZfuWQdo6min7IX/xJ3/AnXfezeLwDIpT3L1vFwuzk0wPj3HHrbs4+vw53Jmok2tubp7mIKC6tEhLZw93tb+Rmv0C8DUQMDO3yNhCGTsWJwxMlpZcnjl2idaeTew9cIiHH36IY88+hdaaufl5Lg8Ps6GnC3tuiZPTw7S2ZGltTmAacUqFJZbmF9hxYDczxUXmR6Y4enKKi9eWSCcEb1KKjQO9uDUfU4b85FvuYHxigWtTC5RcH8eUWBj4WuF6NaqFIroasORVUQmHxdlpgkKeBx64k3LNhXgCy3GQwiTh2ARBNHpFEJJ0EvX2TJKMxzAMG9OMgCMWj+Nks5RKBXTgUi1WqVVLKBUyPz9HT2cXsXQKhYVWAsOyCVSAEJJEPB7Bhq57oyAwLQvLjtRXz/Ognlbiux6BH2I5dfW7Xi1TCIXUFqZlEgQBSkXtYSP1owFAUXWyqHlrgFEjwlAtQ83qtIoIyHQEjvUUE6VVlIYVhoQ6QIcKw5AEUkYpKWYMYURVDyMDajdarjSQwkCYZn1bVlVpY8UXJ0pHqVdOrINuZD69UvVuxZMlWk5D0W1UzLtR9V2GwBsAbyXlZMXzZ+XY1b8sJQq1rPKuhmIhWFavfxDw3VhNrxGrl/f3KdQ3KuLfu4zoxTpa/srnN5pk37je1T9v9L5Zi1dG+EH1NctP9xxsJZt+HZ1tPzx+Gplo47c+9rP/4Dl5011XeNNt/43PfHuOq1c+R1/fzxIG36RQeDel8r/9e+cbHoc33fNd7rvrBEePHeR3//wefvGnfoxc7grPPffHjE9v+b7zjV6D48/B+37hj2hvy9LaGSeQPguvQH6amJxiQ8d6hi5DgIdCvOb5qVhyuTQxy/beKboHBq7jp/z8NGYsTow8zcEQw+P5VxU/dax7C08+28rS0llEv/Wy+UlIgZAWiWQSw7TW+GmNn/7BNneNn149cfjw4WTjuPzKr/zKdCwW0wA9PT1/b6fZ1atX7X/+z/95/8WLFxOVSkWuPkfj4+MWwIEDB6rr1q2rjY+PO52dnXv7+/vdbdu2Vd/5znfm7rnnnsoPmv75z39+ebt+6Zd+acMv/dIvbVi9DUePHk2+nPX8//dovXriZXf8BdUKoQ5RtsXpixfBDTl6/ipzJZ9UcoY3P3AHsaY0pdkFqrUqulYkk20hFY8j1iu0WkTqJE+/eInx2TwvXhqlM5Pm0P4tBIag6vuIurIAgFjxClBK170K6h4Evg9hEPk2WDG0lJSqVYYncxiIuv+DtaIqEA0RD5UiCDVV18XzfMIgKllumDYIC584p08McXVyiqWnLzB+aID5hUX6WpPs2LoeUwa4XkBMxtizqYuXLlzjzbu2EWiPJ567wsWr02zqaWXTYCdt7a/jT798GEcGKBUihE0lDOjuSHPnwe14SwsEmHR3ZPj8t15CV312bO9CBAGnzoxQrlToGujn2aMvEJOCdzx4kH07t7BUKBMSRiqdF1LKSO594DaOXxrn0I5+Sq7HuUsT5N0qYxOLxBIp2jtTBLWQlmyGXNHjDbf0UcuXyC/MkGzbyMWL4xjS5uHX30JhMUdceCzk8vihS2esmbc/sJ0nnnwEGc+QsfPcsl5TXjzK6GSGpo71vPuNd3Hl0jmqZNmw5SZK09dYmBhh6tIFwsCnozmDJzQYkrfcuhHLcsjlClwYmsZTEssR7NmU4O59t3D83CV2bB2kqyOD3ZRi1842fvsP/xZLjFIqTjM7YxBYzWSa1+Npg7Rv0t2+HmWkmZ+8TDwRo2XbVvZuNzgxMgxAOhlDlGsI7SLRaAy0DqOC8ToyglX1SlYKRS3QuF5I2HgQaYWHgZASP9TELQtDa2KJOBWq2IHGSSTo2bCZbzxxhOePLaCExAurVP0QqTSxZIZAVbBMTaVSRFgxmls70YUpUg4IyyBtSpoSDo4t0QrOXRthY0c7phcn27MOAoVpO7iVMjJUHDl6niuz82ALWlpbmZic4NTzR9i7dTN2Kobvl8nnUBvDvgABAABJREFUF3EXpsk4zRiSCN6BiYU8bfMLNNsJzHSKuNnE1FKBQeDitUmeuThOpVpgU+860pbFiaHzXJsq8+WvfIf83BTPXhgloR2qQZlMu2K+FGAvFEm2tvHFbzzBYE8vd92+ne51fazvbKO8UOBLn/kq/X1NPPSeNyFMqFRdzl4e4/SZi7x48ipbW5sZnR6jpzvLnXs3oCQ8+vxZksk0sdY4WSdKOTt6/hJXphZZrLoUayFNiQQJXeTue/YyMzlNUFMMbN2FYcQJdYAIQ2zbRprxCAgDH9uJqgC7roe0ZwAwTAOPyKB5YXER0xJMTU0yNjrG3NwcyTtuw4k7hKFiamqa5qZm2rs78f0a+aUyyWQy8gm0GubUiiDQGIbEsuxIqVUabSt8z8OtVBBCYNt2BIxBgBIK3498uUzTWpVm0QCuOmTV0/jq7iooFWIYBrKe5vG9KRORQXMkfAuEBlPIujpvoYIAz3UJgshnx0QQBCGVahUhVJQuaBpIw4iUYaXwKxWEYWDZDqZhgohMpQ3TRGm1DNFRe16v/EZUrU2Harna3PdLrbgx5QXArz8jTNOKlkHdv0ytzHMjxF63TKXQiuVKdpGC3wBJuQyvN6rQy6kvq7btRhi9MW2lEQ3QvhE4G+dlZVm6vv6VnxHAwjKlr5rv+nlXtmN1fD/IXYsfXagwwBevPX5qT7VR9e+jWhUoUf6h8VNLr83N+z+ELeF1t+xg62A/xXIVhcK2bKTWdK0zaO+8jRcvfIn79v9n4nHB0MgWZvJPMjr2LHY8QbYlQeiF9HVmKZR97tzdiVeqsndrgmSyi409z/N7v3aG3bsjfrpv9+eZnvdIZ9N0trYxX4Xf+T+fJu4kacpY7Nm+mVTtMrPDCV7/xmHaY1u4cil4xfHT3z3yHbrbO6PrScvXPD+Vqv08c/4jHNjyn7g2vcjgDfx0ef4cS8Uyp89V+ZPP3cmhmz7JgW3Oq4af3tAVZe1NXL3E7s1tL5ufgtCjpaUVPwxQeo2f1vhpjZ9eq3Hu3Dn7/e9//6bGKLsdO3ZUwjAUFy5ciAOEYSgAEomEPn78+PmPfexjrS+88ELy8uXLsS9/+cutX/rSl1prtdrQz/zMz+T+oemr17lt27aqbdvX9dL29fV5L3c9P6xj80qKl93x92efe4Q7D9xEOl3l5LkR4iJECIdSscLERA5ReobuD7we23aIxTJYtoMrQ5qlpH1dF+dOn+MPP/t1lDAJlUFncwYzhEeePI5jwEBHGwIfXa8kBPUGAh35SfiRMmQaBp5XRXkulrQxbAddLbNtfQfbt3QzNV7CXSoRNQQrPgRaK0I/BC2wTZt0Jo1hmmBItCGBkJgNt966j76JNrrbEuzeNcCZU1co5vPEqDA+NkImmcT1A+LJGPfuHaDmh/gixofefTeOVHz2Sy9x++3bmJxdYCm/RM2VeNonHouMW3cPbqOltZ2S9jENh4AQpMf4Qo5BejgzssRCweMd9x8knc3w4w/eztziAkPD47xw8jyZhEF3ezcx26KrK0ul4tLa1Mx/+6V3MjZeIJVx+Kn3vh2By5VLo3huhc5MGuJphkfnKSmfu27eRa5Y5dLFIZ499RwbB5rIxlMsTkwzuGMLKcemr1YkDGF8coFExuFf/MxbOHF8mJm5BZ5/6Rxbe1pIK49nv3mYnZt7eN1NWzEtk96uBcwuzemzZd57yz08fvwyT58eoyvVRL6miImAA9t6+dSXLrL/pl6eOXKJkmvz7NEpPvS+jaSbdlAtLjFWzjNTKGI7Sf73v/9xHnvxLP19GzC0z4UL15ipzLLn0EFeuBRy8uoldjQXWdcl6GqqYQbT5JfKfODdr4OvPY1fDZAaQhE9UEU9FSoCVUCH6Pq1EmoIlCAkSm2RaLSUoAykEiAUk4sLhMojnUzS2rOev/7UZynhsFSNc23WJ520qJZdQmHgSAO3UqQcBCRsg6X8PGGo6N84SDpuMpMfJ5O2CTXETEg7AbValSdeOEt3VxuyKUZuYoZsRz/JTT2IShU0LOZmeMNtO3jXe1/H0SOnuDq9wN037aQSVKmGPlqFWMkm4h3rmbxwjI0H9mBIaCQOTOdKdIyNk25rx/JiGKLG6NQCNwO1asCDd+xnajbPxckpTjx6nPNDo/ie5vJEgflvn6A9G+fc2CRJx+H01UWSsRhoj42XR/i5974JITWTI2NYNRjJz/HYc5d47/372LxlAxgOTiJJMpNl900HOXf2FMKKI5RL3q/yyDOn2L6+i3hTmg++982cuTTEhbMjzBQ9rk4toU2T0IrjWBaeFzBfLBEoyX//2Jf4V+95iJq5SOjnqZZLTF67AIZB78BmYsk0QaiwTZvxiSmkk6S9vRU70wxA4LmUF2dx0ll6enoolcu0tXexectW5ucWaW1Kog2DL37py0hfoUKf17/5QdKZZrRfo5R3UVqgEFimQSKZxrBiqFAR6iitQ5qR+mhJgYWDDkPCMCAIQrRWGDIyR/d9FaVdGOYqqNLRi3sYRlAojchLp25QopRCGgaIFYP1G5VbXfdtEaJu0C7AsiyMWAwnHo9Mqms1lAqIWRaJeDNuoPB9j2rNxdLR9y07Wnet5lHMFxDSqPvzgDSNyPPGciKg43oQNAyJNjRhEKLrnj0gaFSOEzLazgagNSCtAbihUjSK1i1jmwAho1SgRhqMqIP0jWkc0cgC6imPDRiUNNLVVoPqjekxLxcOVyvM1yn6q/5ebUQdrWtlnmi94SpQNb4HWL8fKN+Y3rMWr5wYm1iiLVt8zfHTiTNp/s3vfpDe9v+Hm3cVfqj89P6HOuv8NEaxNLLMT6mmVJ2fKqSSrfz6v3x7nZ920LXu9T+AnzYt89Ojj0X8tGUwxeJEjsEdW9i5zcZf5qdLdHU5/Ntf6F/mp7HxK3V+qvDcY69cfvqV/+thjh/PsWfzJ4lb86jXOD9pHWOpfBOebzM6t8jUDfx0aWSG6eklEvZmPG8rOwb2MFc5/arhp7EvPA68nWRc/KP4KaZ9PN8j8Kq45fIaP63x0xo//ROJO+64o9w4Zr/3e7/Xeffdd1+LxWJ6enraKJfLcnBw0F/9/RdeeCHh+74A+PKXv3zpgQceKP/Jn/xJ9ud//uc3rv7e4uKiPHHiROzXfu3XZhudzHfdddfmZ555JvPkk0+mfuzHfiz/D03/d//u3800tut973vf/H/8j/9xFqLr5tvf/nYqm82GL2c9ax1/PyCOnJriiZOjNKVirOtoxzYFtmFy38GthFacl46f4eroFLVKjXTSoi3bTM0NmDMMjl4Y5tj5K6TbM3iuouR6VCvRMP09m3rY0JFhKV9jemZ2uYdeqxApDHSo8WsuvluNhlhbFlI7UPPwtYi8pWNJJsdGWNeWRiqbq4VKveFupKKAEiG+Ao0kYZoEYRAZmta8qMGy4whhYMUShLUS2ZY+At+ms7MDZTvMjE/SoSWnL04wPJ2jt6sNRyguDM8QcyRJFJl0nO6+DKHrcmjvFjZuGuB3/vhraDvOg4c2MjEyyqZ1TYTVGmU3oFTzuTq5wFsfvJNkMkk8k+JfvvFtTI9f48uf/xpWPE3ohxw4sA9T2uQKC6TjcdAec5MTpCxJ9/o+Ah2wOOvSlJY8eewiU4+e4pZdrZSqAbfetBstbSzDp6+vg4WFOYauXsaxktx8cCf3v/5usGzOvnScZ184QVd7itS6dThNzcSdFJ6yUF6BPYP9vPHOQ0xOz/LYsycJQ0EsFmfr1k7mc3kuT07h2JLBgXXY8QytXet54tgZ+tuzPGfM4LoejmUQS8RAmjz8ptuwrBpetcbYeIkaBU6+eIn5+RJ9P9YMQjAzX2B9T4JYupM9NzlMjYyxbdsAS7NL5EpjdDLJe+8c5C03hQQFTe+6AUJVRZoWo9dG8GvRaGStFQoVFfeo+3QIIdBCoIlMqNEaLUBpiUTgWIJQC4JQE6gQpXy0MHAMwfHReR576Qr33LwNywrJ4/B3jw2xZdtWuts7WFiapxoo8HyqgYfh2OggoKI0c9NzmJaN67qUZiexLIEtHRJWSGdThnLF5fHjl2lvSbJv8wa8ahXbcQhNiTCShMKlVi7wN199jBqaA3s3kXQSDLRnOXTzXmYmxygrRa1qkJsZw4hnENoiNCEQAiNyfadc85hbKLA5VASlAspMcvehu+GPP8eZC5fZs72L3v4evn74OKOjs+zZ1MPeTT18+rET5EtlSpUStnAIlUL5PmEQ4DgOx05d4fb9O7nzzttpam5heOgaCcNgfXuK/s3rkbbD5NgwdixJc7aGNhRdnR2MX7vGwMZ+dv3kO3jg7tv4H3/wSfY0x3nH/Yf4+Q++iz/+y2/wmS99g5wBMWGhZZVkMkkykSYMwLEsLo65/Kc//xrvet1+7mg3iDmC0VqV6dkZ+jdvJxaP47ougVIk00m8WkAhl8cpe7QAMp4h0dqNVy5SqYAQBoViCcOK0da1DsuSGFLyY29/B2MjQ5SWclSXCthmDMM0cBwH1/WplCss5nMYpqS1s5NkOothOggdqaZCEHnbCAiFxDDMyHRYKcJQIwyBE4sqAwokQaAIlR8BWRCdP8Mw6ibrK5XMdB1qgesU1NXqaCONRkpjuYMgSu0I6tslo/QkFaB8HxUE2NIklU5jNDdTC3x8zwcEdjKNE1f4flStz/d9ap5HUAmwTAvLsrEsa7na4oqXTD3txDCh7lej67456EiNR0a+NwqNjBzkI18eIwLcyFJGR8ek4SsjJfVDglHf7zoK1i3Ar0/j0GE0TdVHBBjmCuytBtXvB4urwfDGtJVGCs7q9Jvoc4hGHsjvo3ILovEH18OngPrLRlRpT0tRp/XrFW3N9yrYa/HKiftuv5XPftfnm8+/9vhpuyzyB7/27+lpURw+NrfGT68SfvKqAV2tHns2f5z53BIE8Frmp7DR5gtFwXW/h5/edv9b+bXf/J9knFF++5cXaO7t4U8+Pf2q4aeR6cjjeWS2xt3Kedn8hJTYjkU82UIillnjpzV+WuOnfyKxdetW7wMf+MDsJz/5yY5vfetb2e7u7nR7e7s/MjIS+7M/+7OhwcHBpdXfv+mmm1yjPqr14Ycf3tzd3e3Nzc1ZNy53cnLSevDBB7dlMpmws7PT831fDA8PxwD27NlT/UHTd+zY4f3ET/zE/Gc+85m2j3zkI30f+9jHOhOJRDg1NWWXSiXj93//94dvueWWH7icH8IhfEXGy+74w5DgwkK+yvziFEkrIN2SYaFYpCXdxP7t6xhc18mV0WkG9+zADl3i6VaOPnuYsJYjETMxULTF4/T3NnPl6gLvf/st7N+zmZmxYY69NMzERFhXUiJFhbpi7Yca3/cg9EErDMNE2DGUCNBC4Fdd0skEB2+/jemJKWZGp9FB1BRoLdAiGqIsUBgyMrPVoaacL5FoquBIuawsdfb1cfiJb1J4psjD73wj54emeP74abQKMc0Ylm3Q2Z5GBh4ji0U6ulsozLtcnc3RW/Nobs1Q8UNmZvPs2LmZD3/wQebmcuzd0sOnJ6e4NLHAyELI4vwMyViMyXwZC3jn2x6gpTXO4sIMjpNi/8FbePKZYxx+5gipphTt2SR9PU2Mji4wN7PAwMY+UtkmxqfGUdogZjkU3QAzlcabXMSvpenp6sNJOCgcAlXFNDSZVAzf9ygs5qjUinT39IK2ef7UJfbetAUlFRNjo1iJDKfOHmb7YD/tHU2ceOksC/ka6USMe27bT8oyKbsFzl4aZ9v6Ptqa4/zdMyf48y98m+2b+snXPDpbOzh0cBt9mzZz+twwLS1N3HlwMx1dHUwMzeA4ijfd08nZs1eZnZ7lzkO7+M5z5/jqN55j4/oMA70dbNu0nm989wXuuW8/dtiB59VwWlNcPZzDlkPcd1sMJSB0HLp7e5mfn8GyFds2b0eeuRRdumiEkgTCx9Rq2ZNmtaYTjY6IxqqL+hTduH6UUfce8QhwsC2Lv33yJXZu20h1vMoLJ6fZvHMHmXSGsdkFmjsHybQHeMV5pibHCWoBMgaFQgVpJPFVidLcMIFboqfJxrEF61uj0QdfP3qZbDbOzVsHCSyB9CSJ1iyOZUNQI/QVY2PjHLk4SswyGB6bIleFUnmJ/S+cJpvNcvudBxkeHaGnrY2uniT7d25Hl0t0NDehxucBKFdcRqfnuF0KPKUxC2WSsah9ft3tB5jzJYVrE7z7dXsITJOMLdjR38+V2VmOn53n1gMbMAWcvjCGj8L3FQnb4MC2ncSdkHI1j51wGOjfSMy2qdR8zl8cRoQG41OT7Nw1iGMt4LoViqUq69atp1IK8FlCmnF2bx7k1n17mB0Z58hzR3nX2+6nK+Xx9IlrvHjyKvG4TaWUx6+5pFvbQAhiQpPPh/zlN07z3OmLfPDdD9DSN4AX1mhOpwixMeMOKI2dTBC6HqVylUqlnuIyNoVuTpOwLbRQSNNAGCb5fIFyuUImkyGZTODEkwxs3kohl8OvuQgpSKdT+IGiKZsmmc4ibRu3UqKwmKOQL2JYCZSOXpYSMZumpgzSsKIrTQhMs16RTqq6p42PlBEA2bYkVDYisnHH931UGEbeOt9HYV0NMDcaHDfU7Qa8rf58pVqcxpAGwqqryCoaNWQYEXxKx0aFkR+PlFE1PcdxQETFBLyaV/ekiWCqVnMjY3rbxrYdTNNa3rZoszUKVTfcboCZwDDNSO2uq+zUf9d1YK1/Ej0nVCOPB1QY+eEYhoEhZX1UyvWpIctG0ggkxnXHa7Xi+/3SVW5ME7kRYhvzNX6u/n5jn7/feVv5uSo1RuhlJV9rjSEa5t0NP5/6UaiD8A9StNfiRxRr/MTY3Bo/vZr4KfQ9FE1Mzx0E9TzCWHxN81M2nQLAFAbFYuV7+CnV0cIH3nUPhu9RLRRfdfxk13t9vnb4CrP58ZfNT6VSmfJsGVMKEvHYGj+t8dMaP/0Tio9//ONj27dvdz/xiU+0X7t2LTY+Pi63bNlSHRwcrN343X379rn/63/9r+Hf/M3f7Jmfn7ey2Wzw0Y9+dOzhhx++zvS2s7MzeOc737lw7Nix5MTEhKOUYmBgwH3Pe96z8Mu//MvzCwsLxj80HeCv/uqvRrZt21b91Kc+1TYyMhKzbdvo6enx7r777sIb3vCG4stZzw/nCL7y4mV3/K3rSuHVkoSeYsvmdgb6+7h0bpSR+Rw3H+ji3gfvoqktyfTwBN/9+nfYOtDLtn2tTI5O0JxIoEtzvO/1t3PyyjhDw7O0NxtcvnSJXX3tuIHNQqGCwFwZUo0iDKP0lLJbI58v4JbKOLUaQkoQJoY2sUILTY25qVGmS4v0dTSzrqeN0eFZhGmglQCCSJlUIZYjMU0bHYJf9XArVYyYg5WShMojkcwwsHE9ZhCivBp333WA7f3d1GoB33j6OM+8dIl1nQlqAeTyRX76x27jfHmRrrYk2ZTD8MwSHVmT4lLIH//RX/OOhw7S3DrAS0MTTBcFteE5PDHN2OgipYpPwXW5ecdGDGlDTWM7BnY6w7ZdG9i6fR2XL00xOTrNrHRxTIszlyfo7OoiqFV54aVzvHBqGEKFk7aZmlpkXV87v/jP342Xm8YG4o5DrlilpWMdS/40SghUoYyZDKhUPMYuXWWpVOLJp47yc++4l9ZsExcuj5C7PMGGgX6aMmmuXJ7g2NkxmrqKVAsud96ykVhPD23NXVRPXKFYcZlekKxb18mVwxfZuWWQeFzihTXi6RTNWnDfLXsoVwpYiSSGEWPD9j6mrg3Rls3wYw/dxfTiLLm5eW7fv46vPFHg+IVZZucKdPd28cJLL/Dg/bsgbjM9MUdXtpm9W9cxn8tx8tQZ4pksB2/bh+tVaepop7gwQ3Vxhrnxq3QBIUGUiqIVaImOpCoUdWWrfo1HjT31ofWRYXCoNGEY4EkDC1CqghU6TOTK/Nr/87cs+Q4t6zZiGQ5DI9OYmRZ2HdjN1NAlUnFJIELcSpFsKkWlVkLYAjdfJGaZtK3rRxpVBtf3UFkq8JlnTiCsBPtaMmSSaYSwMOMO8Y4OhG2ACklKyUtnLlH1QwzTZmyxTOgHmNLmhTNXcQyTsYk5PvhTb+CpZ17krR0Pks62ooo50kmHfB3KpZCMz81CKDCTJrWFJZQbjdru7u4gTJpcHZ5g92AnXX1bCAqLfPXx57CNJPu3peluaac9k+T+W/aSziYolgKuXR1h88Z+WrtT6LJLW2sTXlIwPjyB5VgcPXuGlJFlx5ZuurvbefI7T2E4Gfr7upCGIjB8vv533+SNb3qIt//EGxEB2Jt7Mc6eglyOB+7cz0M/8U5+8V//OhfOT5BKGPihR2FugVRbO5ZlESiIa8XQtOR//PG3edcDO9na3YeRSFIKBFYoMIRNrVZEC0kylcZoaQEgUJpKqUJJK2LxGE1NzSSSCfxQs5jPMzk5SSweI5lO05LNkmltJwwCvGqJxXyReDyJV6kSS6To7lmPH/r4vs/S0hLVcpVSsUBzJoVU4LlV0mmLsJEuhV5WbE3TQgUhQRgQhj6hIZDSQsp6GogRQZeUEt+PqnY2TKpv9HtZDUQ3+rasVkwb7a5hmBEooRFSorVACIVpGIShj1dziRRSDdJA1lXvMFSR940Q2A3TbVYAS6mAMAgJgwAQmGbdlBoAgZAR9IqGco2ujzgiKrOHQoWRui2QKNH4fSW0WnkpRUdKr1quQqlXXlhXp4/U01kahtarleRGOknj2Db+rT52DdC9EXZXQ+1KqotAyusV8NXwunrbGvPpRs5RfU9Xp7c05mscX7REisjHbWWOtXglxOmzf8bNe/8nSXv0NcdPaWcrv/MXt7Jr659w4vzhNX56lfDT1ZlJjrwY5ztH/ye37X4vqfj8a5qfknE72lFhIuX38lMiVWZzbz8nLyZ42798J//9F/4rb3uz8arhp9Aw6+fxH8dP8WQKe2mJ3OIixTV+WuOnNX76JxVSSn71V3917ld/9Vfnvt/0iYmJ06v//vCHP7zw4Q9/eGH1Z1rrl1b/3d7eHn7+858f/vvW+YOmQzRq9yMf+cjsRz7ykdn/X5bzWoyX3fH3W7/yIa4OjbCUL9LUnuX4yUus72+mp6eZK1OLWE8/zo79BxlZKvPUS+eYztf40lNH6Um38bq9m5kpVVmYX2RTd5KpSYPh+RpdnsH/+N9fIO8JtqzrrANDBA5BGNZveE2lWsMtVymXCsSrLk4iQajB0AplahZnZnj+xEWWgjyW3ML6/m4mxucwpESaAl8FhEFkZlpxa8wv5ZmdWyTb1h0ZliLQ0gBC2tt6uGnnTnJTo5x68Sj9Axsg0URTNs29d++mp6cD1y/S29eLGVRZ19OBkJBNZ6i4HpkY9LT34gWaPbv7aUrajM1P8/G/+TpVNyAIA3SgUBhYBiSSSSzH4snDR9i5ZTPxuMG1kaNs7O8mkW5m085NbNq6EaTg2IlTNLXk6O1K8tm/O8ILQ1NYhkXohYTaJBmD17/+ThLxBNnmLdjSpJKfxgorjF88BzGL0DO4dG2EbFc3S4UyC7Oz3HJokH/1odeTjMWJJ3oYHLCZa87RlI4TqBrZJoe2jmYGN/cycW2aK0MzlBdcWjYMcP/9tzA6vsizx8+zqb+LeAymJ0ZJJJK8dHGcpXyBN966Cd+0GB+apVYLyXfM0dzWQfv6QfBdxkaGQVhkEikI4D1vvocnnz5KuVJl6MJVNnWm+PbXDnP60mVu3dXPnkMH2T3Qw6eHpjl5foIN3W341QK7991MtquZuGWRGlhPcCEa8WdKifKiVF9PKQwhECJ6cATLD5zGsP1IPwuXoRVUGD1EPBUiJPhao4Xi0rxLU0srrhcytzRDtrmXO+84SCxYpLgwybreQcphwMxijlTCoK21jdaWDnJzDmPTU8SsOX7yvh2Ens9fPf48KIfORJx4Jo2MGdimgWkniNtxpCEIA59apch3j59HKINypYbWCikF0jRxgO6+NpyYwV999puUC2UevG2J9o4snh0j256lUK9gazkGlZrBzPQYnX19+K6HUvUHoRT0bR4ECXMLc2Tbu5iZma2nZk3Skk6xJ7uO5myadHMrjmPjmD7mhna62tIooOTWGDp5lpnJHJfHRsjEDDrTWe6/+2ZcT7E4NUctkBjCxTQ0fgjtLc10tXQyPTrK5l37MCyJtNLsPHQ3pYUpFiZmCQrn+K//7hf49f/5x5y9OopFgkAH5GfHybR2k2pqQdVqBLiYySR/8dVjHNrTy0909dFqJ9BOHB8PaRuEfmSgLOsP+t7eXirr+qh5Hr7vUXZrhAiSqTTbt2cpF4r4vo8W4Pk+SpuYpkWyuRXP85CGiQ4DivklDMPAiScQhkFndzcSQeD7FPKLJOIOSincWplYPInU4KtIGRZao8PIM8U07EjL1SG+H7DCnbo+skdjWRa2bUdV44LgurSIaOTPCkyFYfg9APu9auoKcAopIAzrbbHGNEyEbaLCgDAM8X0fKWQdxiRCR4rxaqiLMkgEhmHh2A5hGETpTUpFvjyAFAaGNJBCXKfQGoaB0nX4FhKkjHBWCAwUURVJEHrVfoRqef9uBMgb4TL6RS0b02td9/mpA2oDYhtQ2zh+q8Hx71Odb1SsV/9+HTivihWAvd7TRkqLKMVFLxt6RyNsrodT3w+AAEMay9X+1uKVEQ/eafOOBw4Qs7tec/yU9wf57nNb+Il37GHXdrHGT68Sfir6ZXaun+THH3gHi7kRRPja5qd0NgOAYWjsmEmlJq/jpzAEXfZRde+zdb0dzC1ceNXwk7AjGy4dKgLv/2Xvv6Mky/L6XvSz97HhIzLS27JZvrva++7pme7xhmEGgQABAiTMBUnAfdK76+o9FhK6iAGZt/R0YbCCC8MwgnGM62nvbXlvs9L7DG+O2/v9cSKyqocR6nWleTO9On9r1cqsiBMRJ05k7PPZ57u/399b5yetNZlMhnwuTxD4W/y0xU9b/LRVW/U9XG/5wt/swiKNdp1UIsmF01dYXSyTStq85wPvxkqYnDl+mt/9vc9zaaGMKyVPvnyObMqhVoCJ2QWG830YqkFga7bvLFJte6zXWuzdv5MEESvrDRSgu4Ne165CPOBatoVlmKDiAcu0THTooQzBsXOnSfVnuHN0LysbJYbGR7CPniHyOoOfMBFGCMoAKfFCj7bfQqmu9SUO/zRjYYR8oY/yyhzpXJFq1WP6/AluuvlWVlbLnDhznt5imtFckf7hXq5emefYmUVWquepNXz8IKL61Dkcx6S/4LK83mawL8uPf+Re5lbKPPvGVRaW19BEKGGSNw0MQzOQN2lUVqjWAhZnNmg3Ggz257l6uk07imi2IZMvsH1ogIX5GienVrAsg0a1gWUYJNIW99y8nYm8RWn+GnNLGwTaQKsmQ30ZHnv6KPO1gHZbMb9SplZ/iXTa5oN3TKJ8iZAO623N3LkLWJZmeaNOulRm17ZR+gtDfPhdDjOLVYrZFJeXylyYn2dsscR9d05y0y0HcBIGB246SM1v8MrL59i1bwTf8ynks1xdLKH9iEo7Yr1RZlBl+cvP/g3p4gCHdo6wd+8OKtVl1hc80sks23fuxTJCGk2ffCZFq1Hj2Tcuc/9t+6i1y5w68jqO6TCYN8hYfcyuVqm83uDqTJV9+4YZGRunb7CfwYntACgjTrYTOs50iBe7CzbbWSmB6MhfupNZ0QXXUMU/dRQRmRKURYsIUxikEg62aVCrbZAbHGHXxATexgqVdp3Bvn527R7j2T9/A8tK0/YDEqbD8sI80wtz7N9zECE0py7Ps7S6hiSBnTBJuiY96RQYFl7kk7CzaN+DKIltRjzxxlHWaw1saYCy6c32MDGSpe5HnDh9hZXFDaa8ADuZImNFHDk1xexaBd8P2L5jO7PiFQDuf+gu/vj5E1y4cpne0e2srC4x2DcKgGun8awEYQiFTJ6UcLBMFykF9UabZDLD9p07GevNcW3qKgVrkEyhQH6ol/lrCywtzHF1scHn/uYpRgd6eO8D+9moeBw7dYVszuDQ/kOcPDPF9smdDGUzREHI6uIiUzMrCCkY2z6OX1nBcDK4ScBwSRcHcVN55qYus3HlLL/0s3+fX/2t/8Ls3BpOwkBIg8raIiqCfL6IZQvazQqOZXP0zAozM1/jAw/s4sGHbsPNDNAsbwAGWukYmIjVQNO2MCwLdBLTMgnDkDCKiJQimU7HE13BJszEtpIIw7CQQmI6Jgk3Eee4KIVWIc2gjWW5WLZLOl9EqwhDhTEURQrTtjGlSbvVJgxilVtIie/7JNNpTMNACY1S4SZYCSFilRjVyZuJ7SZSxvaSKLoOPt+qpHYV2O5t3wph3W2uByJLpGF0ujgC0ozfqw7j3LBQARFaCOgERJumiTC6qmvngoSIEFJiCIFS8djseR61Rp0wDON8HNtCGgZBEMNxMuHgui6OYyPQqCgEHRJpibrBsmJ036fRsTh2qC5WxQXoGMZjILyuFseQTYfV4/36djaPG20qwA2Q/7eh+Mbj+KYVA0J2dlf/N+GWzv2bv32Lsi2M67lCMbx2RzMD0zAQnb/NKIo2bUlb9d2vf/YPv0ipvIEt33n8dLkjwG2UaszObfHT24Wfxib3kcrl+Oorp9EVhYre2fw0MjIMwNjoEB94306+8OffeBM/9e3bizfXwLVjjoqitxc/1cqx8800bSzHfMv81O2oG0bhFj9t8dMWP23VVn2P11u+8LcwvURvMYGdMUn39lG+OsOa7/HXX3ueRBBw/92TvP+Bm+k5t8jOIYcr11b44HvvZmZ2iXapxI59e8hlUly8uMh9N49wz/5JltYq9PX24TWrfOPpo0gjDmIFQAi0BonAsk0cx8UwzLizk4Ag8DCFjWi3uXDmMhcXyrx0dIqH7j7Ag3fexuULU5w6chHHEQQRCENgaBPHtsn35EgmLZRqE4VtlPLQWiC0gTAUmCkC7ULCYX55GSORYG11nZTp8oH3PMDyyjKnr8zyzRfe4ML8MuVSHSkthFaYdgLTaOFHCap1n0uzRzEtm2I+zc5tWf7VP/8Rjh49wQuvHCcIXYaH+nj4rl1sG9rOwGCWC+cX2Lbb4drUJVY3liime7h4bRVfBBhRxP492xnfMcz779/LyOgIjbrH1auLFIuad99+kGarydjoMNdm5vnU7/8V99xyEz/y/ltZWanTCDWX5pdwLBdpmvSk8qzXa/yfn32eQEfIKGByrMjubT3sHh5geqHEC8+/wXvfeytvvH6JXLGHhhegI8mRMzM0J3LctG+c5sYySQHrC3N88sOPsH/ndi5dvAhei0g5jA334roWj71wgeWVGh+4b4APPnIns2s1Tp4/xxMvvMbCWp18xuG+23YTWTlM02RxaYbVSpptA71s3znKXCniwI4JxsfGWV5e4j2jO5ieusbJSy+yZjjMlQJqbZ/7DEl9tcS1KzM8ChjaRqhyHASs1ObJYzMLQgi0vp7HoYmXvUdKE0aaQPtoFL4nwZQ4toPp5jEsExU1yRZG2DM0QMHVTE1do1gssrGxTNOr4tptqhVFj9vLhcvHqNfK5If2MLb/Zh68fZJ/++u/xkBCkkolibSimLHpTScwlcAPNdo0UYQEfoCrFa+dushwOkdDC9YrZb7vzoPsHsuRTGTJOzbPHj9HOmXj1dss6SZ/8KXn6M+a7B7tI2lGyI4affDwLvaVNzh68grv+dCHaNY9omLcDCX0PF59+Q0Wltf5wHvvZ3Z1nXwxxdkrK9TaEemm4sWXj/PQ3TdTHBjDsMEybUzDZdvu/ZhSker1efGlNNVKk7W1CocPTPL8a+e5fG2D7WM+J6dXqLZrXLVd9u/ZyfY9kxw9cYJ6LV7ZUswXsQyN4QjQEkNrlGkwecsdnH7uG9Cu8Q9/9CP82Z/8V64tVvGCiFzGwWsusRbWGRzeQTJVIAwDXBNafsRfPnmRE9fK/Nj3P8rYaD+1cg1pxbkrAEIK6vUamUwWKePbHMfdBIwwjBCGJAxi6JQdkDCNGBzCUOFHAUEYYJkujuMiRAwRURgR+R5xeJbAsBKgVZyxFSpMU2HZVqw0SoHfblIurbCyPMeOHTsJQoE0ulYUUEp/C4wBWhOGiiDwEOK6ahmGIVprTNPEkGYHhq7bMpSKA6bDMMR13c0Qad0hOtO04rFYdqEtVprNzgX1TcU7iogCRdCxuRiGiWGaN4Acm69rGLENJplI4bpJtFa0g5B6rUmjWmN9o8z84grVdoAhJPlshtHhPoYHiuSzSVKO07GShQShTxiq2OZiGh1LSgdeO9/0693vOseOTnB0dB1AVaQQnWN2Pdvn+vN8q8Wk+/v1531zJ7ru73SOkeok4gh5/fauCt6t65D6bfJuOhla8fN2OxXeMDHQN05q3vy8W/XdrVde0RyYdEgV3nn8JJ34QkjCcLb46W3ETxXfQ4k9PPfav2K451/jOAvvaH6qlLcBUKu0ufO+uzh/8syb+CmMAtK5AmE5jr46P7vCg+/e9rbhp0xqmoP7PoznldCMvGV+6naeVUpt8dMWP23x01Zt1fd4veULf/MrK5y5FlFrt1lYKXHk7ByZVILe7Crjgz386ZefR0SSf/DRu6nXm9xz6z4a9TqG0ri5NKdPXGFoOInQko1yi3KpzeS2ASqlEtmBDEIrDCViZSZS0BlQFJqs42AJGykNdBASKYGVtNCGQYTmo9/3EBeWFhCVBo4t8fwWo+O9nDt+DaUUhrAxjYAIRcK2yLg2lmMTKZ9Wo4xTz+D0tEBkCYVgvqL54y88xe7xARxbsLDSYvtok1arwaHd4zxw+26+UqohXMn+iWGG7u4jCHxCrblwZYG1VU07BMcMUcrG89uUK5JrMwFXLk/zIz/6A9x/6wEee/EEx85N84Uvv8jHHmrgNwbpz2TQhkP+0GE8r8HZU5fZu3cbxZxBvQnPHD2PQnD3gV3s2reDCItUoUh1aY4Tx45y9PQ89UAzuWcHP/jhh1lbK3HqwjXqYchGqU5/NsNa1cM0JJVGA8cdYt+uJGcuLXLTwQl+4D23cfH8RTLpHPccLvLkMxt89dlTvPz6Vd7/4E3092TZddNuao11JoYHSSQzPP7cCd597wEcO0VldYnbb93H3fccpln3WVycJZFMknNy3H7nbUydv8hqucreQweYfeIFkq5krC/Hu+67lauXp6lWahw/e5JHH7wLhUk6nefMhcvML27wyqlpXjlh8on31Nm2azumltx0817+XiD4m5fPEbZDTkytsu4p6q2IPbUqjwK2I1BlhTANQmkiw+C6QiS6QRddDVujELFKreLQXBVqfC1QAtAejtNPKpUhnwXPM9k5kKfH8ghaVUq1DVL5JIXiILVmFSldbMfDStn0Dkxw+OCdGIUR2pHFtUVFoWeQvOmhdEBC2BTSSTIJl1arjuEmSDpJQhWRCDxOzS7zoYfvwjMUc1NLrFca1Kob+K0c7dYGf//jd/PAXftZW1ukkM2RymT56rNH2TaS4sBgHx6Co2cW4y++NHjfI3fzR5/+LJeef5VU0qS1UQbg8qUpmOjj0ftu5bFnj/JXj71Kwk5QrWzguC6NZpMnXz7FRqnGP/qp7yfj9GFaPoHSoCNGJw+SK63Qk8+xUlnmyLkrXLm2QjsIeOP8KueufZWEKVhN2qyVFhnsLXDi81/jox/7AMVsho31DSItsG0bqYlXd2iFiSYMYPvN9zN39Rzve/Qe3v/A/Zy/fIknnnuNp557lfVygIiazM6eZ2BgglSygBQgHIgUnL24wq/8xh/yo9/3fh66fz+uIs68AhKJBFEqFwcaqzjHqOV7WJYTBx2bJoaUCCS+53UAL8L3NaYlMGwbAwvDsFBRSLtZQ0gDy3Fw0y5aKUJfIJRCqSAGHhGDlNf246mUlAhpYrlJ+geGCHyPMAgxpYGOFI7l4oUhdHKUBJLIj9Adi4iQRpzBpTtWDsA0DZTSsUUEvZmT0gU0IeLMmDD0aTabuK67aTeRUsZ2aCFBG3TDoEEQEYE00DqKYTrSCHScP9PJpvHaLQSdUGvDeNMkQWvdeb9xFk3KtcmmkkgpCIIRDuzZwcZ6ibnVDc5emeONMxcJfEU+m2Wov8DYcC/bRor0FtLYphkHaisRW0/i9U8IwEAQCgMk8Sol0VGwO9E1URhiSNn53OPJRDw+dIOq36zuw5sV681ctRsUaHhz3ozowjRRZ8IR1405Qd9O5f7W59E33B7fJzEMQCpUBEpHSBEHe7PFrd8z9U9/8//Bz//w/04me/Idx09nL8bZaJdnptk9rrf46W3CT64Jt+6d4NrCA/Sl0riOeEfz05mZMQAC1cI2/jY/NVbWMSMR8xNw1817eezZF95m/HQR3zOZna29ZX5SOsKQJknDwhDmFj9t8dMWP23VVn0P11u+8Ldtci9/+BeP025Xuf3gBHNLZYZ7suzd3s/UUo0jx6+C1swtLrB7tJdCsYAONZO7igwX+jF6FFfmqywvV9i/a5i+QpJcTwbXzWAlNL4fdboHqc5AqACJYUhc1wUBXquN3W5DysCyLLSRoF1fxquvcf/kMIGyqWysMTtzhdnZBSwXCAUSBVGchaCIB3DbiXMdquUK2b5BwjDCTGikCpjcPs69Nx/kysw8M2sbzC6UaQZtgjAgm8szMNjgwdt38MEHdxOFNmWvhWWaCDdNrVFhYb7GuUuz7N5VYHW1xVefOsYdB8dYXa1wdWaVP/qDv6IdNHFMyU9+/BGGhnMM9fYxPzfF3Pw1/uwrr7DvwCS92SyvXl6mfHaeBw9s44P3H2bbeB+GTJDPm9QqdRrtEMMyiSyLExfnueX2/Xh+nWsXp9k1lKPW8nj65Dz5fIb33buHfXv3Ml2q8tWvv0bShr2DSYb6hvngfbvRJHCSCZyURaO5ht9Icma2xuxqmWrT5xuvnuOm7YMMNdu8977bSKeSJLNpPvKJD2I1qmDbZO0kfruNwMRAM9w7gBd4eF6Lttdi174D6DCiVitz16038Ud/fplWFDBQKlPMpfFVwHA+xdriMn29PZiOxZ7do9TbDX72hx5A2gVeff11FpY3SCZdbr3lMKE2iKRFW0cUCjkM7bC6scBNyXjCYZgGESYWICMP3cn3EB2lWnU6WglAaYNQayIt8SOfIIrwdIASDpaVim0au7YhUbQbbXoLOXKpFIHfxrBsetMpGpU6YWRQrpao1coIZRB5Pn29/WgnQdQuUyuXObk8jSUNTMMm8D2SriDjWgSBT9v36U2nQLXAhzbw9KtHSafT/Mjfe5j9Y31YqSy1SgOv3UBaBmnX4eDeHlreBM3SMqGh+eT7bkX7AkXIzpFhStuuwksnsFTItj07OHTTJEu1MsMjI6zOzDIKvHZ2ivPT8wShwbOvnaHpRVSadSwpcQVEMqQ3m8RQisvnLrJtu8/g+E68xga2BiFdMoPDHLhtP8fPzbBmSZbXS7S9ENsyaEYKz4CNC/NMDPbw+adOUSlv0JPS7N+9m6Htu8hkU9SqJVK5IrZrgjYI/DoyWiWd6mX3zXeifA9puezeuYPdk9v45Mffz3MvHuX5l45w5vw15qav0t8/xB0Tk2QcCZGikYRGFHDlmdfpKzU5/NBNmB2O0BpMRxKH/MYZLUEY0m40sG2LUEcYUmJZNomk2wlkjjMRFaojjYIhTUxpgGUTRiHtdpsgCLBtOx4n0EQ6VrJvEEaJVJzFIjqWKWE62NJGGhLRUSRB4jVbGEY8BoZh3JDFNGJl2Pe9TV6JVzKK60omshO2rDZVUSljO4OUklQqBYg4O0brzU51WmuEEYOXAIQRA55hWbFKGwmiKMSyHVQUxcp5FNtSbMumm6Siu6tFupDdUYd1x3ESK60hQaAQUpJMJUikXCYmhrjr5kmq9TYLq2UWVkpcm1/m5eMXePY1jWNb9BbSDPf3MDaUp68nTy6VIOnY8URUgxUptFIIYaE73e+i0I93zZSxzQYdi92dVSux1UW+CVz/tq2ko0arN2fjfKv151vtQvBm+8u3f279t14j/qyurwDY3KaT82Pc8Bo3diTcqu9+nZtaxbWvveP46dzV+O9wernM9IrY4qe3CT9NjvZRq8Yd7yMMJO9sfnr/u7P86vr/ytrqPHYUsG33xJv4aWH6EhPje3ntbHzh7+LUEscuv3346Z67P86v/h999BX/E9Ozr71lfhJpAxsbtcVPbPETW/y0VVv1PV5v+cLf5ESCn/rRR6iu1zlx7hzvum0XlmNx054BDh9IILUi35tl22CeWkPTW0gigpCeXJZSM2Jlo0bQ9iikInTQwGsLLl6ZwfM1rXZA2xcoCSpUm19sHSlc1yWbSmGZJtqPMxEMx0ZLAyFNVDtgbvoa5aU5FksaLSJuOriXbO8sjr2OHzXiL7WQ8fMrRbPVptFqIwSYboLQbyMjn0hItGHjFnq4slzj8WPnyFgJVOSxsFpn52Ca/rTFmQtzjAwUGJjYzpXzC1TKq9gJmyuz5/jiV17iQx+4k3v29zLQO0gpV+PYmSxnL86zXG5y/Moc24d6edc9u7CVxKSJDIpI00Encnzz1eeZW29y+ZkjBH6EYSUwDIEmwHFD6qstlmorJNK7yKcSuGmLqXMXqXk1+vqG2T6c5KXX51hZqTA+Osi77zrERx50ef3YGV49dZlMMsVNhw6Qfr/CCxpMTIxTW5un3mgxMJhHaZPRHTtplsr82h8/xupqk6Rlo9H4OuLFU1f4YC7DzY8eYm1xgd6BQZK5LDKdQQYtSuUS+WIBy0mA9PA8H9eQKNuiHbYI2iFKaiorNXqKeT76fR/G1h6vv3KK81emufWWfWw/sJ/52VlW1tbZuWMv860Vdu+cYGJiG6lkitGxYdrtNs8+f4R//1/+htVyg1YztpP0pIp87GP38cSzr9E+PwPA8tIqhpUkiMJ40FdvVn0ghgKlI5SWhErhhyGRjgi1xnRTFIs7cW2HYl8Po2O7sQ3N/OI0lUqDCIiEgV+v0faatEJJn+1ihCFSaSIBNa8NpstGZYXB0XEiw6FR2UASYlgCFQoyjsSSgnK1hmFaJGyLMPCxXInhZPnEh+6nVm+jsLHsJKW1RSZ27qVZbTM3N0XVD8gVeij0JknaBjURUVlYZGRygrBaRmmDgXx8MTQIQyprK0yMjdBcr2HbFpaTBmCtXme2EvG5Lz1FmEiRTKdRYUgQtBGWg/Q1G6Um2cQa5y9dZefuXXjtKtPT13AjyY49hwiV4APvf5RnnzrKzMIyiUwGw4ji4GgdEkQmpmVwbWmdpheRNw327NoNRsTZIy9w37vfR6R8muUNrIFRdNTCACItCZpVSCRRKKQEy3SpVtbpSSb5+Psf5JGH7+X4yQv82ee+yKWrV9iQip+652GKvb0EkaLVbpC2HSLDRRybIvA3AJBCYzgJLKXxoxCQJFMZtBsilEYHbcIwpFarI4SgUCjG4cymFWe6EGuSiljtNqREYpIwrXhSFIS0tMKQYFoWpmkRRZ3QYzq5NzrqZM3EeSPSlKhIowkR0iAIQ9xEMoZA3e1MF9BuxxM0x7HROu4SF/o+kVJYto1l2SBF53GxbUUIOsp8R7pFd4KZ4852N9odut3Q4u9KF7A6dkLDBCGQQqA6sIs0UCoO1e5aYrogZ2wC63Wrh+o8r5QCKQ0iFaGiMLYlaonGIJtLk8+nOLBzkHa0n0ajxfp6ldnFNeZX1zlx4SKvHlfYpkFfT46RoQLbRnsZHuihN5fBMCz8jiVHR3EcfWweMa6DI92wa4g2x4i/rSB3u//dqFx/q9p8478bgbS7zbd2CfzW1/j2t3chtvscnc+BN4OwUCC2Mmq+p+pjH7yL/kzxHchPBQBStkl/Wm7x09uEn1aWy1ybjxsmGqZNoOQ7mp+kFBzc3sQ9dBA/CKhXym/iJyHTPH7qEmv1OgCPP/s66X71tuGnhMzTbu3if/nHP0m1evgt85O/LYsczGDZCdjipy1+2uKnrdqq7+l6yxf+fu8PH8N0U9x/zz4G+nsZKPRzaO8OwnadKwtzfPQ9t1BreUzNlXn+5BSVaoVDY73805/7KI1Km8GiyfjoDk5enufoqYuooMndt22np5Dk7PnZOPego/hsDmZhiGNIkgmbMPTwvbgLV6yYgGlGENboHxunUSlzaG+Oa9eu8MJLr3Pq7BxZ18JrmBiGJlQCQ0pCFeFHEeV6A3REqtXCa7YIfR+DENFZyn1oci9feeoZklmbgeFeDu8Y5sHbJhGEZDCZGM4hAujJOyAyPPn0Me6/dw9D4/188euv8KH7D+N7mlLN4/zMOr4XIBxBXzLJ1FqZzJEpfuITd7JUqlPINfCqawz0FcBNU64GmGkLy7UwiEC7nLu8zjcTF7FIUglavHrmOcotj421Kq4lePT+w9x9cJiNpTK7Rnt57uVTVJotdk8MoxIm4wMFCukEc7MLjO0YZf+eHYRRi2QiTcKUtMo10raJFk2CqseffOFVyjUQkaAReQRRSLAe8okHD3LvTWO0q2ts2z5OMzKRzQqBSlCvrWNncwRByNT5Ywxt20YUtsG1qFerZJIJ1kt10okkhm1y+eI0hUKODSHYf3gXuf4CMmozOzOPY8Ha6irNRpudk7uI2nWa62UiEWJ6LZK0+f73HqbcqnJtsUQ2myVlWyxvVBBeiTv376BZrQJw4PBNvPjaEVK2RRhJDHTccUt1O1t1TjxCo4RAKQOlI7xQIM0UvX27EGjchEQaknaryVq9hh+F2G6Ccr1FoSdNwrCxKyVy/QPUmk2k0tjSoB6pONfEj8imkrzn4Ue4ODXDyaMv0KhGHbeMwDA0XhCxVq4xUCximham0pjCQRuaZLpAMmczP7PMxO4JBtNJlmZn4pDyVpPhoWGq6xt4zSaVtRm27b2bqpgminxeeeNV7rr9LnZMjgMQepr6cpmkodjwPCKvheHGw8HK0hqqp4hvKITfJm0naEUh2pAYCCIdYRsh7777PnoLadbm58jYSUYGxwmDJpEOiEJNPlfgN377X/Jv/u1/4PSZy2STaTw/INJgWyEq9LESNiOZFAOFBJZh01soYNl5rly6QDbXA3ZAaWWRfK6HSrlMptiDsF2EH0G7hM5KzFQPGa1p+U2IFEnD5N67DnPv/bfyxmtv8IW//ga/8OU/4xN7DvOe2+6gp9BDGHpIFWE1LcIwBgi/VsLf2EBZAtNJxvgpBIZpo1REwsoSRRG2nWB1ZYVatYKUAstySSYTccdJIdDE8BZ1wFJHXTtIp6ObigjbPlLGFg6ro/xGUYiOwjh0WSlAoLrAZxjQCeuPs21iBTiKFKYZh2i3202Ujh/n2i6B77O+uoofBuRzeQo9BQzTRHZez/P82IJjWJu5Jt1OoDeqrV1oMk2DrgKu1JvtGl3YjVcZGUgZW2m6knw3JyfohG+bphkr6jq2JmqtO9DfeT4h0IZJFGkECkNoVKQJkSANDEIyKZt8doCd2wdBCzw/ZKVaZmZ2lZm5FeaWypy/PA8qolBMs3N8mF1jAwwWs9iWiRKdgG+liLrvRcQ2NYhtQze+/xvrW+GzG1TeBfQbt/lv1bfLtPnW5+9WvI2MP342hyxiN5IG0VGoO7lF3cds1fdOHT9yjk9+xH3H8VOxLw/n4KE7D9BTnNvip7cJP00lZkgUDsIXoOXXyST8dzQ/DY08yn/+0q/wiz/xTVoNeP0Vl2plmJXlCo2ggJ3P89fffJJr1+IL3eXmECn/Mmk7wUplO8JYxaBJ208SeP1MDN+BJZM8/6zHyIhDIA8QhW02Ttr09PmMjRX4l7/2q/zvv/p5FhafpZC2KFd78YMclgm6oTAdi7Tjks66XJkZI5/NkissceXSBdrhCLVmikkR89OrR8BOZTCsFCLSKK+KSFkYbpGomcQL2nzlM6/G5xD7rfNT1JREvke7WUdLd4uftvgJ2OKnrdqq79V6yxf+Xji7RsOb5fNPv8FEf56eQj/feP51bt27jatLZRY3SvQkHVbKTVQQ0J+z2WgG/OGfPcEP/9CHGBrZRyZvcv/oIHfcfwu19TJShXz1m69w7Ow0kS0RngYMkHHr9qRjMTrQhxCayA9QRBgmoCKU1gRhxLmTx2k0N9g9uYvVtRJXZ2s8/co5sK04OFZKfBE3NQg6y6frzTaZdALbNvB8Hz9sE3ht3ChCGEkkJtvGhtDtNsWJQTKGZPfOQTIJh7X1FnsOT5KxBKvzc5y7eI2D+3cz0uuStUx+9mPv4Y++9BQPPngHPb0JHnviBK7jMDaUo1ZX7B7vZ2W9QSqT4chVH9e1OFAcYGq5jLPR5pd+7pM8ct8tfOOlo5w+M0Wj6SPNgKuLS8ysraMEmNJlMO8y1pPlvR+/n7yjGRkaxpKannwBYbv8/M8OMn3uCkdOnKESCZJSctct+2m0GszMznP09BSVSp2RwSJZN4kfNDj7wjTTCyUuX1ui4ksM4dHWFomEyf2T+5DJkLHtoziJAnaxn6mFFUrrTXaO9ZHsMUklkjjSQYgAQ/hUlhdI5bJUqw0sK8na6jyNSoPZSp2l5XXabTBcQbnqcWX6Ku976AEOHT7I2aPH0akklpEEoTl15DSJnhzjgz0E9SaNWomvPX+U81fXaDQEuVSSRqNJ1NIMFJP80Z89S6nm83Am/vO++5Yd/NGJIwShgdXJO4kHd4GW8QksCBWBFgQBtP2go1ob7N19C3YyQ6u+TKVSQQlNvbZOKp3Hsh1MbRBhEQYCR1jYTop2rU7CNmkSkc8mCapNUkmHdthm/+QIu4dTDBd2UV04zckrbaRtdTp7Scp1n6SpSSUcJAJpSiKlaHo1DNUmWRghiFpsLJUo9Baw3ASukOzbPUnVa5Pr6SPEp6dnmIWZC7QqAS9cPsorx9d44pUvkZtb5v8DXP7Gs4gDk9RKK2wze3DmSrRnrgHwgzft5gsXZ1HVCG0IMq6DtFyavo9othGWJKgGPPfH3+D+u/Zx560HWL72AoOjwyQ0eME0ZsLFNNNk/Qq/+v5HecotcPT1IwjLBSkwVcRwbw/7d49y4MAOEqkUXj1i5so50j0ZEoZBOLVMbmiYxbk5GsU+LK0ImMLpHUDIBCJq4zUvYmT6cOwEtJugFH7QRusIlMFD6T4e+rEf5eylc7z86hv89eOfY/dQH3ft2YWwE6h0hkQzVuiNVBpJRLPl42gF0kQIA21YaDRS2kgpsW2HkZFRoihAK4UXtGm2QrQG07IxDBvDtBGdTnJaxJ0Oww7YdAOhY3iMg8BN08SxHWzDxPd9lAoJI4VlWTGlCBO02sywMWWsKBsyDpK2EwInmdx8zkgpEskkI6Oj+L4XB1D7PhB34bPNuMNnzGjdLnadDnTdzqAq7gwHEinZbBzQtbdct3vpTWDrwlgMXgJpWqAVdgdsuywVRRG+73eer5sXJRBd9bgDj2bXyqJVp3FcTG5SJFBSxRlSKkQKiWMbbOvrZ0d/P+K2fTTbbRptn2q9xdp6nbnFNZ6c3cB2DPJZm2IuxUAxTy6bxnEd0ApDGBimIIwi4jntfxsov9WK0j0G37rNt4PQG49f93h0j+O3brP5WvHR4s1mFt0ZyyRC6E6GkOr8/Naz+FZ9N+uFk9d46dTr7zh+Ctvx33TKsWg3gy1+epvw066JInruMgCGDUH0zuan1ace4/SlPTzz0muszuf52X/zH77Nt/xHNn87d+UXyOW+QT6lOHr8d9mx7Q/JJ/6C1fpDHD/5r3nm5f/2WPHzPznDb//aCtOXHT7/N/+Rf/4L/46LZz7Hwsr/wvTch77tYz7z1fjnf/qNr/PoPYv83qd38sUnD/O13/vPaA0/8csfY2k19XeOURtXnsXzm+jAQ3smD9zzAA/cfT+vn3yDbz7+DKePfIObJoZ59PAhhJvCz7k4gzmEbaBVSFRvbvHTFj9t8dNWbdX3cL3lC38/8uHDlDZqrJSr5HJFrswusVRq8PzJc1SaELZq3PfwPXxyskgYCq5OLzA5uYPV9XWefPJF9h84wLbhPBura2zbNk7SSXLy8lVqISTsFI3GRrw0WIPW8QCaTiVIWCamKbAtEzPhoKSGMEKYEBhw+sI0O0cyBBoW19eYXlojsmw2anUm+grgh53l2CYIiUbQDgLqzRam1LS8NlGokAiEVggJEQEHbt7Lz//jv8/K0iLNZpXF2VUalTqXphYY2zWOmcmyUauxc9d2ao0Kyk4wu15FhzV27x7HcSzOXV7jm6+cwQsC6lUBdoJmvYYX+hy/tsapa7OYtuC5V69gWgoLzXsfup0Hbxpm9+THuTy/we//wV8yvbCC5bokDJNH7r2ZB+85RL4nR7GYZ312nkhrHNNC2w6Wa1CZmWdy1yiL1xbZP9zPF79xBMsRLD/1Gqslj0RyjoXFCiu1Bgk7wfbhHHt2b+Px167Q8g1sO0vSbDHUO8561SOKmlxYWOLuQ8O0W3WuzWp23XEnq/NraC3jz8SQWIl+lO/TblUZ2jZJfW0F0zA48cZRzl6+xnsfvJmRsRGSqTqmC08+fZzhgRzLKzUuz9XIvPoKrq7huCaObaCE5PzlBdbqDXrL68zOL1JtKY6dvEy53qJSbSJsC1emwI5wRI7lRouw4WMashPiC089/RoJJ4fnt1ASQCGEQaSh6YU0AoWvINIKrQ2UVoQqIpXNY7gpAq0xrCSW6dFoeNjSJJ2IUKFPqerTl86hMGiFEaVGE6EjkoGNF7axLZvhXBZTCta9Gg/e/wC1co1EKksu7aAjnwATKSBUinrDoziYJZ92icIALW2wHdx8Cm99gytnTjK+Y5R6qYq50SJf7KVVb7K2usJff/FrfPyjH2B09yQbi4vYUchLJy9SbQX0D/bx2PPHGYsELSl54K+egr966tt+19/7V0/y3rc6MLx+4u+82wVyxDj8I3/nlnENfJvbsn/H9ukbfnf+ju3u7Pz7b5VyHVSuF5nOktIhOoqIwoAw8jHMEI0gEgGWZXeAQyJMEykEruMiAb8dr3zBCDsWFjOGGdOI806iGFZjAIvtDlIYhFG4CbCWYYGUSASmiAEkiiKIQrp5KVIaGKaBYZhoBYahkdqIQ6SlJmW5dJVt0LjJBFLI2IoVKUIvQJsKw5BYRifHphMmHYNqFyaNjp0ltrLEq4pim4SURkeZjiG30WigVGwt7FpRoGvZuG7dkLHX4joQClC6q/Z2AsANI+4Oqbr2MTpuGoGMnxQlfYSIuxXGEwHdCY8PCFWc6ykti6xjk82lGRnq4eYD2+LOgb5PqVphvVRnanYNz5vHcUwK2TTZdIqeQo5UKhnvW2eCoTvLqbpWkSiKNich3PB5dt9zt24MAAeuZ/58i0r9rf//dvCrie3oXVztHj8hBEqIvwWqeotcv6fqkdt3YdqNdxw/lSslfvFHfp1SbZ2TF6a2+Oltwk+tIGBxaQ0Ax0rHFzrewfx07NJxdk/8b5y+WOL8lMnf/8g/w2+HvOuOw4yNbWd5fZFC1sV2LZ576XVeO3sFRNwV+86bfwYlljAk7N12Fpt/wM17R5jcOcTOiSHWl9cZ2TGOm+rH82v0FSFSCfbuqPH53/8yO3dPcGbiTn4yv4LPVymtr9Iob5BKugxP7ELjowOFMl1G8ssMjY7zkz+2xMc/+BjaNGnUa/zVH7yBCm38sI3pJjHNJKgWYRBgJgtorWi2G2RSWfx2iJI+jcoqtpvmjkO3cfO+myiV1gnbDYyMC22fduRBWIcogWG5yLS5xU9s8dMWP23VVn3v1lu+8HffrbuoLq5xbq3Cn3/pKEpHRKGmsqHI5Bxu2TPM0TMXEe1hDt++G6lg754dTD02SyYpmL96gfMn2wwPFMhkLQrFbfzuH36JQGtGcnkEDlo3UTJCRxLLNHEcEz9sQ+Si7TioWkQChEQaAgvF9p27OHr2HE8de5w7D+3j9r1j/L0f/BDrc/Mce/UE89NtDGURoUBqhNIEgaLhKTIJQRCEqChEqYAo0hgdv7+VzPCxR+9EmhZBfZX1Up2nX73IzJrHH332SR6+8yChhLTSvPbGJWbW6qydXCRtRPzwe27lyBun+ZPHTxL5EYYhaISKoF2hUTUJtY9hWIS6jSEyLC0vIBIpXMfgS08e4b479iDDBuWVeepBRKghZ6cxTShm0ywuLGEoyelLMzz9wgl+8JE76R3up1VvoAyT5UDwm7/xGVSg2T7Sw5XZMru2FzhzdYFSwyfhmrz79oNcXlhlNFvg0J5ePvPNo7T9gHQqgTQtLDOBCuPga9PM49oRY/1jGFbEhWsLBJ/9Ag994H6Gmz7pniKNjSVsJ4tlGpDNoiOLZLGH1sYGe/dt58iZc5w4fhnbtUi5Gfbs3M3ZU7MUUybGdpMTF64w1j+MaafoGeyhulKjt7/I0pE5ppYrvHZinvJGG1IRhjZiRc7VCG0gkTimTb3VRBsaTEnoB5QqsSJ28uJVwkyOSAqEjm+rBxE1X9FhgtgeIFSc/SBtCr0jZDI9VMvLtCPoyxcwbQdDKEwErUadfLGHXDZFq1XDa5pEQYtybQM34SKFRoQaaWhMq4kKW5hRxEBvkbXlZbYPFSmXa5iESAVSQtvXWFZI2pAISxOGPpHvUtXrjE6MEFXbJN06mUwRiYXyA9bX18n3DpLD5t479qJUneXZOdaW11hamKPS9Ljl4DYeevheBopJlhZX+Z07dyHXawz1FNi9fZD1ep3engz9G3VGfvOPWPrX/4wvXbxIrRawUa6BkOQTglQySTqbYN/OUdptQbuxyqHJ7diZNOXVEpEKyRT6SGRyaC0IoxDbttFSEGrJxtwigpBCby9hq4VhRdQ3SiAt0rkUtmFQKlW4evUaPb29DAz00fZbtH3N6Og4pmOAtmg36yDAtN24m1q7iekmiTBRYYRhWh0gigg8jygKkdIiCEMMQ+JYdhyErzRaRSgiVC6DGC4Sen68ItGwMB2TeIGMwpCSIAwIAo8oiqEq4SbijBxDEimNadkoBY5t4XlNVKDQWmx2tNNaYUoDpeNubFHnwrRlWghiOFGboNdRh0Xcta3bdc73fQytUDrENE207iqlsaospOgEREuEMLFsGUMgcWc5aYBhGLTbLaJ2gOs4WLaFYVoI0yRSBlrTAckYYJWKrSYQ57doFRGEIT4aIeKQbNd1gU7SzWb2jECpCNO0UErHj/EDtFYY0kB2IDB+kCAKIyDAtqwYCi2LSBubFhpEDNhaK3SkANXJiuko2kKiFR0rjcAwYqDt2jeEJO4eaNokU/2MjQzGSn4Q0vZ8ytUG66Uq0wtrWLZJTz5DXz6eRJqWJNSCIFLoKEQQd7PThhFPNEScf4UWSGl3soAiIhVBR5HXSmN0uvgpFCrSqChCGp1VAhDbNRGbE4IbAVbriEjHE5h4dUGsVGsFwtAdh4pAabl5PLbqe6du3TlAlBx9B/PT0hY/vY34aXW9RqMVX1CJdLTFTx1+EslRmjWPbQMBh/aNs1y5SrG3xJ4dWarNMsXxUY5dnOG2mxQra4MgDHaMlcime8n1THDrgR20mpJmdYG7D5s4+YC1BY8wOku+r0y60INSglqlSSbj8OC7kgQ6gz50K4KA/kFN0HAx7H4qK6tgXCLfk8UxTVZXZzhz5jzt1gKjY8OkrDotz2BkbIJtbgBa0qo30KKB7SZjfmrVsZIhIRaRn0YIEydpESkLv93C85qEYbzCLJ1M4RaKMT8lFJYKUToCpZCEeF64xU9b/LTFT1u1Vd/D9ZYv/OV7d3NlapqF1TV6e9LMLC5hOg4D6RT7tg+ybVsvGyWfHTdP8CdfeJFWw6NUr/Lg3bdw+XJsuTi0ZwzXtTly/AJTG2eYWy8xUuzBFAZKtQk7ryUFpBMuxXyWTCqJZcW2E2FIDNOMuxkZEi0k6ZRBIWcj7TxfeuEIg31FFipH2DM2BMpEKIXQsVqjiYNPldI02m2aXhwOqzUoZLxUWivQCsu0Cep1ms0WgQ4xk/2srB9BmyanZ6s8d/oJVNhAKAftKCylee8d27hybZH/+uxRhgb7GM6luDBfxjEFESGGiIi0wJImBham7RAikFYaEURIW1BpeDzz4ik+8oG72DvU4uc/+V5+/4tP0mx4eK02n33iFQzTAa2pVEvIRJb1LzzJL2Q+grBsXn38KM+9cZ6NUg1p2FyaWyebsIhSLu9/9A4uXp4jaCvm5pdBwM7dGZ46cZG51VWSjkW9FWFbirYOqdkOpmnhiJCakvzNi2f5wIN7+OSHHqKpQqKGh5PNEDQ8zGSWxdmzXLo4y+GbbiaZ70EjcDNJTMvmB99zL2u1ZcpzJUpmBTud4WPfdz8XL89gLDf5l//rT2HWy6y32/zOH3+JdqgxXROtJAe39dF7xySf+ZuX0FrRqitsFWAZPQjLJ2xXibSFkD4aJ86hkyYtL874k5g4ysTXDUIlaAeCehAQIFBRRy2SAq0NTDtJ/9B4rJyZktXlZTQGQz05LNfF8xoEQZv+4hCWlNiJEE8oNuqa0voGZmQSKaibDVwkTsqg3fJp6Ai8iOOvv8rYtjHKGyuUFmdwTIHfbmFYEKqIhG2RSrkQKVK5FKHUGFaCqOWRTNtsrPp8+YufZ9fkHjIWZHNFRKRI51Pccuv9XDjxOl9+4Rly+SJffuMsP/7o3dy6bycLl6a4e88or4VQrtb4kZ/9BNV6m2qlzsTAKF/8r3/NzrrHJwDn0C7e/757ePzrj5M3LF4/PUXFchkqSLZN7uLzJy/Q3z/IXfffRzjQh1NIUYxCFmaWoFjEHhgiiDTCa7OwtooQkmwmR25yDI2Prx1MIhpexPrSDIV8HjeX4fgbr5IZyjNfcpEDSaKMSSI1SjqbYVVJSuUa+d4EA3tGqDR8km6CZuDhBW1sJ0UilcXv5LTYbhIpLSxhEnktwqiFCkMiDELDxrIsLMuMbws8tPIROsCx4w5lsTor0VoAJpHSWHYyHkdEgO8F+EFAab3MuXMnue+++zCdBG7CJYoiTCe5CR5hGOC34+5xwu6sS1RxJ7m4S1y0mRHTVS2v59Z0lNEO3Liu+yaY6dpeNrug0ek2Z3TzZeJoGyk6FpA4hQvbdlGmjZSCMNI0axUc1yaRTG0qqmEYYlkmQmgMw44tNDreR90J1NZa0W61oJPB01Wxu48XQNQJ+jYNA2PTBqMIwgDVUeK7ym83w0YA0oiV+Tfn+CiEFHGH0c7x6ea3CARSxgq7ihSyE/Id15sNHkrF+6AVmNIkk7bpKfRg7DRp+x6tep1yqcTluXlqTR/bNOnP5+krZHATJoY0sR2DKAyIlI7PIyikEBimIuxwpGUYoASSePIRKkUkBIaMj2vYseWEOtr8PIV4M7TeaFdRqmtx6d4er55AXQ8Mj4/l9aycrfreqJLXot545/HT3KrDn335vWSSV7f46W3ET41WE69dA8DWBmh/i586/PTTP/OxTX66eecuvvhf/5pcNsOByUnmF/v59J/+Lj/zyU9x8PYVXj89RYSDawXsH+rl8Wdej/np1v0IpwfLTTEykWBhZglbmiTc1CY/LS8tb/LT4NgAGh+lDZxcmqYX0aBEIZMlnezwUyZLo1EjaJZYW1AkUjl6sxk2llc6/JRnoK+HSsPHNELqzUbMT5EgkcoShm38oLnJT4lEjrbXQkUtDBl30W37QcxPjk0UytgWLELUFj9t8dMWP33Ha3l52fj617+eyWQy6qMf/WjVsqzv9i5t1dus3vKFv4VVCxGG3LJ7ggfuuI315RqGqRga6OWVV0+wttFkMJfGiAJUENHTG4PL5QtXSWSTXJ6rsFS9RMOzmF/fYHq2zLvu3IkR2axv1OOr7tD54htkkg7ZlEs6YZNKpUgkEli2g5AGKo7yRUqDcr2F1vDwfYdIOQmeOX6NY1eXeeqNcxSkRV5aRFGANCRGBEprIq3xgoBqy8MLQpQWnbTP7rCu8YWk5QuuLqwjpKYvF/JD772VxfUya62AxYUS04vrrG+0GSi61FsV6p6m0ra5tlrl/GwVqQWmIQilgWPGS7t9z0NL8MI2oQLTTePaJoYh6cklyabzHD0zT2ge48iJc7RbASODfcyvVGg1UwjDx1cRlmFT7Bkh1LBaavPvf+8beMqnXK9j2w7JVJJ2pLHtkFoYcfHCMtcur4EFSguGChl2DmW4eHmZY2fmkcKi3Y5wwio9/RlUGJHNpKh7ClNKlPIJZcTzr1xgz0SRHbsnABulBTIhCWptFEmavsf6xhrSdUi6KbxQsVFbJzc6wuq5CiKTIuHYtLyAuSvL5LJFJgZG6Bke4OSJY7hC8P3vewhpSTBNokCBUFQ21tnWX+DSzBqWJbEsm1bQwBBx9y9DRuSyfWwbTGHZNl4QMLGehTNXsNMJQuETakkYGNSDCF91JioiPilEGmw3y9j4DuoND60EgRfGHbeiCMOUlDfqRH6TVMam3qyQp4AXNklmk6RtybJfo6dQZCCfZnllFZEwUUgSiRQbGyUSSYOe/iKPP/4Yrz79LL2OxjQiAg1EEikUuYSFaSqczol8sdTk9PxlZr/6EpM7R+lNpzh1YYVLVzc4fHgn9w2PMDU9Q9/QECnXoX/XHtSRy7x2eoHtvXlmZxa449ZDTE/NoKVk+0Seq1M1Tr1xnO179zGQdXj+iW+SsENOXbjKJ4C5c+coTkyQyBc4c/YyvrLZt2uc81evMfPiafxAMzV9mWNnLvGu+w7xwUfvJWrWyfWlqdfLZFUPXqOJZRi4tqTV9olCn1KlQdCu4Xs+iWSKnoEhxnfsIQg8QtsiNzBEbX2dyV07WVldJlvo5fSZs6RzCXbu3s307BRmcg9qtoFCEKZdioOj2F4S0zAxhCAUcQZLFPoIywCpME0DLZIkbIEfBrT9gK71QgpBJ9mD0PcQSIQZd3GLQ4o1kfKBeDWDiDQmAtNOgBAU+no47NyCMAzCMETp2AZlGGYMjIBhmERRiB/4BIFPHEV+PUBYdpRVwzRjFVTHIc7dQGshBMjrHd26UBPnwVzPh7mek6JvgBq4EdoEsXIaK+nW5j44LkRRQKvVxDDMTRtGEATEHfIElmURCUEQBB1LSwcAtY7tKcRqeRAE2LbdycDRHTU2zoW6HnRtYpqSMDQ6nfnUm4DcMOJcHx2GKKU2bSBdSL1uqYm/J93HRp2MnEhFaPSmqn9jHkxXFRbCQJrd2xSB7xH6HlJAMpkgmc4wPAp+26NUqbGyXuL4hVV8PyThWhTzGXp7MmQzSRzbREYWgdJ4YWx5jON0JKZUBCpCSCMGfCXiSRERhtlR3DdtJdctPt0JyY3d664DK5v7LUT8mYrusehkDf33wrG36v9/defhFZJmg93b33n8NLtY5MVX+/itf34biWRhi5/eJvxkCoPppTp25h9jc5lWa4uf/i5+evXYWb7y1DF+9u9b/PDHe+kdNLg6u7TFT1v8tMVPW/z0P6X++I//uPCTP/mTO7r/Hxoa8h977LGLhw4d8r6b+/VWq91uC9d1v/cO7Dus3vKFv1ANcHFOsbF6ku//4N0M7syxsVFiZChF0hEMF4pIw+DalWVu27+Dqt/mzNVlZlbh8G6LBx84zIULi+QzkkkvxTEr4pHbdtFqab7yzGlUJw8gUgrT0CQdi3TCIZ1MkEwlcVNJjE4nId3JalDA+Og2JgYL1L0KH3jkQca3j/PnX36GcqOBci10GIKIv8zQXRUdD7j1Zpt6M86oQcddlLSQcaciJ8lffOlJnjt5FdOyySYtCrksa+sl6u0GjrRo+QF+GFKtO2xUG/j1WZTpYwiJkBYRcQis6yawLRcpIqQVB9z6QYDWmv6+DK2yh+tqPvLIIQ7tmmCjHOL7LYK9E7SbEdV6xJWZ47Q9D2VrLGlgoAj8EJ8WloJKo4Jl22QzaXQUIDREoUd1rYyyJG3DxHFt0imXMBScm5rl9KVYLbOkIAg07TAgEjDQl6dZqVFM26QysLZWxWt5kFAsNjWvnZjl8P13UJ9fR4Qh6e078Zw0x09eYef4OOM7dtL225SqVUI/otnwWVha4PS1NQxZp5hLsWfvTqLGGkMjw3hei3azzvDgMOePneUvnnmGX/jYwwhgbPc+BicmWV26xtjoMFNX13j59FVsS1LIuEhpcOLSDAnLZteOHu7et4NtEwPkigXMS1PwpSf5xZ/5e7zmNfjDP/4a880WAToGDMAQsRrpOC5j47uJiJf757J5atUqjmVR91pcuno1joX1G6QyRfKZJMVcCi8yyWYz1KbXidoRQ4MFdKuOaUQY0sCXkMsNEi4vY7gJenr7yeZyeF4DO+XiRQplgEDimiYpxyJhGpi2SdNvY2VMPvSRe3nm+Ys8+dQr3HvzGJPjQzRDn1a9SSiTfP5Lf4FtJ9i5aycf+77389M/81Mcff45ihmTq1fmWFi4xs237mf66gxS+Nxx8x7cRJrawixLXhvHFuwobmdvJOHZ4/zl3zzLA8P93H3XrWSNkKMXZrl9osD2vMBMuuTzRWobJepeGx+L3/pPf8lET5r3vfsuFJp2q0Wz3cLQmmwqg++XcFMubjLL2kJEFLXxGx5eY53MwBiO6xIpGN25n3phBRl5vPDS62xs1Jmc3IbAoFkpMz5cpFor0T80wvFjpxA23JJM49gJ2vU6TjqNaZhxCLQQqKiTY2KYtNoVAhVhu0ky6Qye76GVph34N1gMTLy2T9RuIKWF4yaxLBvTsmLgDEKENOPJbxRbRYSKyGRzCNOIM0S0xPf8WJkFwijCsixMy0IaMViEQYiKOnkwnWgRpRSO42wqul1w6YY9s2lJuQ6hMZTFY1mXUa4ruJ2Hbd7feR7EZhh0DJMAEtOyYnCOIsJQIUS0CcNhqDZzZ6RhYSKJIo3XbuH7Pp7ndawpMYRJwyDhurhuvLKy+2qaGLw2lWchOoqyxDTj9xd2QLWrxMd5MPFxMLuZPyLukNcNwI5Vf7V5342QGr/368pvFwS7xzeMYnX8et5OR/UFVBQQRiGWJRkayNPflwOtabY81st1rs6vcvLiPEQBAz05JraPMtZXIONYRBpaQUAUtgmFg8CESCNk9+JI/NkjZHzu6XwUXeDs7uebc4PkJsDfmHXTncDE2W7dz17zt0Jrtuq7Vp/6f03x0nNLvPTy1DuSn24+/EW++uoWP72d+Ekbmpon8IXBqZPFLX767/DT4PAgX/rKET775c/woz9UZteeSc6+Udripy1+2uKnLX76H65SqSR/5md+ZvuNty0uLto/+7M/O/7iiy9e+k69bhRF/Oqv/urAn/7pn/YtLS3ZxWIx+LEf+7HV3/zN31z6uZ/7uZGvf/3rheXlZatYLIaf+MQn1j/1qU8tOo6jAX75l395+Gtf+1r+H//jf7zy7/7dvxtaXFy0lVJHvlP7ulVvrd7yhb9L66ts6Cx+ajsvnVgjKVeZ2NmH7wmc/gFefuMMhmEw0J+n3Ggwu9xgKJthcs8gl67NsG/PAH1mibRRoJBJ03/PHoaLgzz5/ClsA/wwRIj4i6sijWlIXNvEcRySySSWZaKliO0qRtyW3RaCREJw6eJliv3jnD52hp5tGd59216eeO4oftNHdZZsRyLu+kVH79ZK44URLT+M8xc6ORRax6q2lialigfSQauQcjlkvdTEMgS2dMCRJNwUqlaj1mhh2SY6JWn7Dn5Qw7AiHDcLhoVjukSRIkBhCA+hs7jSQug2fSmLTN7hhz92D309BZq1JlFpDkMF3DyUYvvuSazeHh75wC288vxRko7D0lKZl06cx6OFVBASkXBSeCrECMKOMhLx8bv3Mjg2wpOvHKNQzHPt2hJzCzWkrRDSREpFwkmxXi6DCnClJJHJceLMAs0owp1vgBGScNIYpkWrUgMt+dwTx6kJl488cjtBM+DUq9/AdQSJYj86I3jllddJ9o9y8eQRnvnGK2zbM0atqVhYq5DJpBgtmgSqzvs+9GEsGWFWA9zBCRLVVZZWZkkamrVmjcdePMUde2YpDp/lwQ8/yqTjYBtwaWUGfM3f+4EHSA0M81u//vuMDudZXV1no57ntpFbqFXKuI3YHtCbyPHwg/fwpcfe4OrqVYSOQ3INw8Q0HbKpDPVGm2wqTbsdke3NUamtUasu0GrUkYZDKpVABQGlSotWs8VgX4FcKkEi3cvV+WXWKhXuuutOComQ5fIqt9+8l/6xcd64uMzK9CUSjk15fYPXT56mXmuQsAx0BEKbaAFCh2Rsk4RjknAcMG2cQoEdI8MYWvPuB27DaDVQYZNWq0FSSJ599g16Brdx+9338ZnPP8HZi9MkgxahbdCbz9EzOsprp6YIFmrs2J3GSWWJfB8/iqhu1EgYmqOnr5DOZNg7mcOuDgFw+OB23nj+WbL5LI5r0dOTY3p5gRPnV8j35EkYK9x++34ShsXEyBj7D07y7/79H1D3Q376H3yUZr1OyrKZn59jzp8n39/LxsoSaEl6IEcjaKPDkGy+J+40qQWW6RIKAzNdwLY0H/jkD3DqxBHyA724RgbXtVlZW+H86YtMDAxz4LbDlJcXKC8sMLhtJ0HkY0YBQaixTCfO/hAQRU20kiSSaTyvRbVWxnWSGIaJ0hG2ZcdwFoHQmmTKQcgkURDheR7rqytIwySTTWPYWSoba7TrVTKZNE4ygZvKEYYRWnUmQ1rjWBZRJ5sl1HHwdBcyDcPAdhzCIEQaHUglhpIuoHStU1YHFrt2lS7ImmY8bHcVTdOMgat7v5RiU8kUQnbu73TI03qzA9p1FRjCQGF0LCHx64k434VYFQ3DcFMtB3ATCRzXibvLeR61apVyuUyz2SJUCtd2cByLXD5LJpPBdmLbWwxknTwexSaYdfenC2zfCmm+346VcMvezLARHfuHZRqYptGBuW6YM3TIcBPU3xw0HW9nyjhsXEXx5kJ2OvXpqKMoOwgtCUONFBEaRSphkHAy7JroQynN4nqVC1PzPPPSKzQ9TSGbZ9+2QcaGeklkEiTNOKcmiEKkivcp4IZOdt3zUge2uwp1V6nvAv1mTpC4vtphM7i6A+hvVua7E5Ot+m7XybkSa1GOcIuftvjpbcJPMoKNcp4//fzt/PTPTNA7vMVPfxc/hUE//9sv7OCbL13gL/6iwY/++MYWP23x0xY/bfHT/5T68z//80IQBALgiSeeOP+Nb3wj+9u//dvDL730UvbatWvWtm3bgu/E6/7CL/zCyGc+85m+X//1X59997vfXZ+bm7POnDnjAmQyGfX7v//7U+Pj48GRI0cS/+Sf/JNtmUwm+vVf//Xl7uNnZmacL37xi4XPfe5zl7vfva367tZb/hRefPLPGBxI89KRKV4QSfoGB7il1mZmaYH8jv3svm2YajOBYdW5a2eTH9szSqNewhEmB0Z7iCJJomcYNynw0aRFGsuV5HsSRJcjMA3wI4SMwzZVFKGUxnJcDMt8UxcerRVCaSJDUtrYYHV+lYyT4o8//yVu2beT9z90B8N9j/LZv/omSgp0yKYypDtWFK0lKlK0PY92O24AoLRCapBERAQYKqJZ20DK2EcjDYkUNmjJcCJHtrfI2MBO/JaLMGtorbENk4QhWa16nLk6R7VSwrIcpNKYocA0XYoZeOShW6msbbB3fIDh0V4SlkWqMECk59m5dzePP/YUlha0q1V6hoeZ3LGHw//gg5SW5pCpDPdd2c/rLx7jylKTlY0N2n6IjgIiHZ/g8FpcmZtj94TLT3/sAaZmVnn09t1cna9xdWaeTDpDMWXyrvsP85VnTzE1N8v6esD00iKGZZFN2RSSLg0vQgtQIgBpY6EwbZu/+foLfPWJlxjKJhnus3n59DxaabLpLO1AY4qAm/bu5r3f9ygqaPD6sctMLa4yGmn2T2xnbM9+PvWpP6Ht+GwslCj297N9sMD+iRw/8YkPMdMIsZMFTs14XHrlDb5+dIGcA45lUVn2uf/WAU4/9xr3PvpufvEffoTAb7FRaSBRRGGIqTTNRj3+mwmrLM1f5fKFBQxloQmQhkUqlaG3fxA7keLatWlOn3qDfC5LKp2hVFqnWa9iWxZR5BM2yji2g2UbBE0f0zBQKIIwYmF5hVw2zT/4+x9lcfo85dEeevuKaDdLePQCIiwzMjTG1WaVI28co7Y4g2FENIWFFYKQIamcSz5hYQiFZTrYdoZTU3NsMxP0jeSRbY9779jL+cvT1JsuPZkE7cDn/BvPcOcth/gHH72Hq1evsWNyB0++8Dpf/urz/G+/9gt87IPv4cSps5w9eZq5lQoHDuzm2NFjTEzuw0wl6BvoJ4oC3jgxwwPZFAB33XKQfTsmuHTuHCcuz3L0/CKVZoQSisifZbQ3yZ23H6CvJ0cun6FvqJf/+Fv/hnPnjrG+skKurwgmDA71MzMzz+c+8zmGenu57eAOkrkDTIwNUSuXkQpsM0kUeijdxnBcMlYRrRRjk4P0j4zTqlZoVddIOS5OIk0uncK0DJxcBql6uXZliqY2sR2LZDqL0iGICNu2UIi4sQcBoR9h2wks0yEM2kRhEykMhDQIwyi2Y8h4QhtGIKQkmXZwkgnK5QqXr1xjcXmVcxeuslFpkk6nKeZTbB/v59CBA6QzWUKlEEgM10VoTRDGq1K6MLhpp+ioyuYNOTToOKRaoZGbGSWx7cWUEtV5jBQxxHTV2+sdz66DUAyYUQfUNELcYHnQsVHG82NnQLxtbK1QOiIKuuq2+SaLBFwPne6qvVqDlAZuIkEimWBwaJAojOIAZxVnfXVeMH6fYYjZscFocb0zW1dB7h6jbr7NjQq94zjd5OvN++Kufh17hoo7iyroTAhieNX6uup/Y6e87v9156wgpOi6FTurl0BgxLkzBh34l0hhECkQhLRbIUjJYCHP+EAvD952kFKpxPT8CpdmVzhyYRq0IpNxGBvoY3Sgj0IuTTLpYKGJtOpMdq4f3y6I3mhLAm74XK+r0DcCLJ33cn2lgvqeA9d3cv2Tf/p+fuKHXuPixePvOH5qtXdx7twfcuDgP6Ind22Ln94m/FSpVpmdgmdeLPDIo29s8dN/h59uv2UvZsJhx8R7+OV/+0kOHfht6t7lLX7a4idgi5+2+Ol/rC5evOgAOI6jH3744YbWmt/+7d8eBjh//rzznbjwVyqV5B/90R8N/MZv/MbML/7iL64DHDhwwHvf+95XB/jUpz612N12z549/vnz55c+//nP99x44S8IAvHZz352anh4OPzbr7BV3416yxf+Pv7QNu5/973Y0Rf468fPMB9UWJ41aAYeTibH4PAEmUSe3nSKXbcKHNPAyeYI2m3Gd++kVKqwUWqysLrO4MgEUxcuUVsvky2kUZ0W2xERAgMlFAEaKU0cS8YtzLsDVBSrQooQoS0KmTRg40cG3/+B9zI9O8fnvv4SruswMdpPaXkFhIUWPlpHSCQRGkSsmLT8gDAIiMJYTZA6INJghooH7zzAtm19tBVII6TV9BnrLbJaKdMOTVJpl7tunaRW2sA2e6itV9i2cwjHNME0KJd3MjW9SjU0aDeanLqwgqLB3tEMvVmbwzsmSZgpIldh9xR57sUXmBgeIpHIUuztY2J4gJ7eQRrtEtWNBaIwjxdqkr7ipm1DjKck1UaLZrXB1188w1NHpjG0h+MY5HIutusSRUm0itizZ5SXj5zl3MIGN23bziPvuo1EOoGjQz75/juxnIdZLpeZm59nY63OwsI8N+0YYqUh+OxXnmZ8sMhgf46zF9dZqzUIgyYHRgd53717GEimaQcuyxt1XFuQyLmcPz/NK2fOc+bSFG7KJeVY7B3vJ5dKUMy7HD60i8e+8jgXLqxg2Qal9SqFhIU2B5ivtHj55DQzGx7VchnTdDh5YToO8DYhl3QZ3yiwf7iXtZmrjO/cSbNtIYUiX+ilXqlSWV8gT6wAljZWef7ieVrtNpG0kMKmt7efXL6A4TqsrK2TzfWgkg6tdh3d8NBRRE+2F0+1GCxk2TM+inTznLlwgdLyAp7XxrUl1UYVMFBeSK1RBdtheHiIbG8/f/PVp1hbmkdLh6HhAeamLnPx7EnMZoliwkBEgBGfMFO2Tca1yKSTpAt55tfKOEmT+flZgqBJTzHH3PIyQ0M9DA7cRBgp9h66lUppmdJqGVmrUSz20WhW2bV7Ak8J/EqdZKGXu+67C79WI3n1Clo1ueuuuyiXSmScJHfcchPra2s8+/IJFmpV9gCGm0URsR5ETK8GJNOZzkm2hS+ajA724bdqZLITmK6NNB2cjMktt99Jc20D5Ro011dBw76DB/G0pDS/iGNpqjNzXG3WKBZSMaC7OQxp0A5q2E4CFWlEs4mnNI7lYBWGSWZTiGaLsNWkv5DBMEAoRTJboK+/wjeffo5de/awffskQViKc1KUxjJMkBJFrOAGQRNTGlimhWGZtOpVlOdj2g7SsDCkgTAlftAmCkJCXyMNg2Kxn3zPIJN729x95+20Ww28doOEbWObFqZpYEtwXZcgjFAdaIwDiMUmkKkoQhKr0WhNGMQ2OtM0EcQrZaQGFXXUYSQIOpkxBkpFsdUj1LFa27FbAZvAEttF9KbaLEQXYuKsGKXjgOo4nyYOee4+WGkVh29r1VG35eZzdm0P1zNh6NhDxCYcKmK7imvGQN4FVnR8HIXeJDRMo/u6xnV7ijA2LSdvtqrE32Ozo95C3J0uCCOEVEjRTf2JlVuFhk7uWDewubuiID4mXcW8C3fxhEDQzSoTcd6L1qBjKEZ03k9Mw8SHRiCFJtIR9XaEFJJ8vkBPIc/hA7totH02Sg0Wl1eZXljlzKUFDNNgqJhhfKjIyECRbCaN6VgEYUAURmglER3YF4aBIM7dEaID8SK6wYESW3XiCYDeVOsRcYj15h/FVn3X65//9J/zM//oDv7kT6fecfx0ZWGMM2fS3HNoD3ceGNnip7cJP7l2goHcJT7///0DHn/lxBY//Xf46drUNZK5Hgx3JwCVMGJui5+2+GmLn7b46X9Cra+vmwDJZDKSUlIoFKLufaurq9+RpXTHjx93fd8XH/zgB6vf7v7f//3fL/zO7/zOwMzMjNNsNmUURSKVSkU3bjM8POxvXfT73qq3/MfSLm8wc/UK/+QXPsliaYXHX7xIGPgc3redu+4Y5KbdAwwMjnLp9EkGs8NUSmXMpEW1VOXa7BxXlut85gsvkk46fP97DCaGRxgd6WFmfgUtIqRhxlCpVKd9t+gMGnF7eEPG4adC6c08GaEV1arHyM4JMoUBPnDnKMq0OHLiPM1GhdFiD3/1Z1+iVRcQCbQQRJ2l4Yi4m0+kFGHogVaEQYRlx3CrQp9dO8dI5pKk+vpYW7xG2IpoeA2qlTaXFxc4tGOcT//ul3jkXQcY7+slkc+SSvcQeE1EFJE1DR66+yBHz0zzX146QqtcI2Vp2v0uG7PTtFZtlJ3g2ZdPAwmGB7MI7eJYNfpGJ1hZWieXDXAzBfyNKsuVBYr9/fjNKiaQcU2W51aQUvADD21jemmZqbkQaVhUqi3K6Tb5dJoz52YZHs6xa9chJveE7Bkpsjx7DWkZbN++l2Ixgx/UMdoV9g73YAzkMW+aZGphiVqwzv/7n/4weybG0F6J5bUyn/3KizRbId//yAGaYYMnXjpJu9XAlSZ9KcG779nLeE+Wp4/NgAhoVGr0DvXyyz/0EMl8D6fOTPG7/+dneOjmHfzQ+x8gEoqWklhBk4kdewgaNd790K2Ulcnv/Ke/5JXjVzGSFpYZrzgo1Vt8+bmrPOVeo9iT4t23r/LhD99Lj1NAey2yloPKpHjt9GvsAn7zDx7j2ZYg0GCaiv7CYGxj8NuoQGMqSTLjYpgpxp0BDCFxbIds7xBL09M4tsIL2ggZ0F/sgyhienGFO3v2UF7dwDE1yYSJoSIqq4skx7axtl7lzPkrlEttEgmYmrqAr3ySlkRLHduiVIQywZYSBxNLGNhOFksIfu+rT2OnEtyxf4Spy1P09A+xd+82Thw5jjxkMDgxiJPIE2VcUtkMQgsUivW1MiOJAkP5PIncIM889wy7RgfZsW0bg2Nj6DCitLpKaX2OYiFDza/QP1Cgt5hh/uoCAOcvTXFp2md5zUe1Wtx6007OXLrK1ZkAEQratTr9Q6NkcilUEKClBDOJISKUEeFXW2RyBYJmk/p6mf5igt6eXejIY2Fukb/+6usc2NHLu+4xMFyNEdlMX72Amx/ATqdR7RJBWzGwbRSpfLRIIYVJcXyUhVdnuTx1jX1796OUoKfYSzqd4qtfeYyB/gL7Dt1Bq1VDSEmz7ePYEmFa8djS9omEQskQU5ok0llarSZ+4BO121iWQzKZwpCaSIUEfrwyIQoDFCZWysG1e+nJ9uJ7FVrtOqaVQEcBgd/EQmGbFtK08fyQ8IZsESk7E3AdBwlDHMSPFJuKajdYWojYiqci9eY8nI7Fw+pkyUAnbyuKl+R01czY4tFVsDvd4US3U1k3y0Vs2vI21fBNYLxuUelCsJSiYxEkHpuJb4uhyeDGbBVNx+7X6ZQmOp3W4LqCGnZCuA3DwDLNN9lslI7BPN7H63YMIeNAea11J7Q7BuMw9EHrTtaMCRqUijrjfBzUjGBT3e4ea4g72G2q8N1311W2u281RsnOa8STDiD+PDr7KeOXIlKKQMUZP44lGehNM9Sf5fabdtHyfFY3qswsrnHiwgzPvX6GdMJl++gguyZG6evLYViSMIIgiCAIMbosjUYrgUSi5Q1AKgShihBa3WBb6XQp5HsLXN/JdduOZ6mu73tH8lOmfw8A20f6kXZ1i5/eJvz0jedOsF5p88KxJ1lYbW3x03+Hn67OrzP1+hkmJgYAWFmsotpb/LTFT1v8tMVP/+NVLBZDgGazaSilKJVK3ZbL9PX1fUcurKVSqf9m0OETTzyR+rmf+7kdv/IrvzL/oQ99qFooFKI//dM/7fnd3/3dgRu3SyQS31tLJ7fqrV/46xkZol5t067V+fFPPMpwfy+ZVJKPPHo7w+NjrFw5h3AtUvtHCQOFF9WpTDcZ3D7JlcUSb7x+lUIxzz23TnDm8hQbrSoiaVL3JBYpIt2kI9sgEZ2r9wrLtLAtB8Ps5CnQsapoIAzJpDKYCUWt0UArRcIwyCZczhw/w6HJHezdt51Xnz+HcGXcZUrIzSyJ7mAZLxcP2Qz41HGew9ziApFUVK5Ns1ZeodmI8EKfHeM9/MMfuA8rafPiaxe5eGmByclxdgyNMjgyTOh5tL0aUW2DeqPGfXfupTeX5vf/6hvUN3zOX1hlddVj1/Ye2gSMju+gmLFJJSz8ZoXJQ/uxkzn6+4ep10u0lkv09vVTzKewnQTV1RIRHlpbFIsDePUSl+ZLtJsNIh2yvtFm20iRD7zrMDNrJR579RLbdvbw8L05UlKyXK4RJVNkMwna1FHVGolEimJvL+1Gi3rLo7F+hZ58DsfKYbarNBobSENSb5XZOZKlt6dIX/8ov/4fPstSuw2BIFQBKyXF2cWnOTgxgUOIkBZ3Hx5mOGvx2qklbt4dcu7KNXrTWTCTrJWbDAzkySddXnnpCourTfYf2E19uUGgWvzyP/0BfufTf8XMfJnVao2a56OUgZLgKUmpVOc/f+Y5Li/U+fC7buP8mfM8dXqaesUjMbPADwMb1TbSlURaUMwPgZOEsIFQmqpfJxAmbuThmg7VShMdafrHJvD8GqXWBlntsl5pUexxcUxNuj9HqaHxA5+edBK/WWJscjvXZuZ54smX+IkfP8A3Hv8ScwszCGHj+wbtRh0pLYRfw5Sdk15nWbwpDIQtCFEkLYera3X2HtzN/bfsZsfO7bx85hJPPPkcd9++m7179jC/uMbi/AInT0/x/g/eR9j2MZM5BoaHcNw0hhAE0iaRclHS4r985utMbN/NrTfvZHioj2S6SKpf8ewb52hrkyic49jZi9xlxMPBZ77yPOujwyxvVAgCn7OLG4gwxEpKhkd7uee+uzFNi1rLJ5tIooQBgSKUEYmeQSqXL7C2uoZIp3BUC6UEAz052h7k9w/TVxzCdG0s02BmaoZsqkh/Xx/lSgUz4ZDtG0QAfrlFIDSpAYv1mVncVJqb77iPduCzvl4iChVLqyuMj41z+x13IA1JrVbBcmxAkEhbhJ6P9jycRBIsHXcY1BrPbxEpieu64ELoh4RBRLNWx7QUpmGizYj19VVUqPHaAZbjYrsJsoUeLDdBOpUiCnxUJIiCEB2FMbDpuLMmSnSCnjvZI0YnR0Up0DE8aW7IGumovLJj1zMMEJ2JduDF1hIpDUKlMMxOF7hvsWLEYcVRx6ahOzBqdEZOOgqwj9YdpVxssgNRFF63tABCXO+A11WotWYzPLqrKt9oKenC043701Wdu78bRvy+pSGItIqtiV3YEhIRqU212DBjm47S4vpxlBKlok5nOxPDMOKuf75HFAQYXTDv2niuXwcBrmfvGIZxQ8C32jw+m4HgXLe1xJOBuOue1gLTMjrnizgA+/pxkJsh2TG0Q6BDJOBYJhODvUxODIMQVJs+CyvrzM0v8dqps2gVUcik6S3myRcypFNJhGlidIFdQKhjxVp0xg4pBLY0CHS8GgF09+0iv7e49R1dT536ftyeC/T1vvP4qb4Qu4FW1zYQlLb46W3CT9NrZUqlYeamn2Vi/IdQ5vktfvo7+GlkoI+VWsiLX3kO+BleOjeNY69s8dMWP23x0xY//Q/X7t27PQDP88TTTz+deuyxx7Ld+/bu3fsd6ep78ODBtuu66mtf+1p27969azfe9/zzz6eHhoa83/zN31zq3jYzM2N/J/Zjq/7n1lu+8Hfq3FVuPriLM8ePcODAAf7Zz36cVrWNlJp2pUIimcJrN0kkMjRUiaXZGmeuzvHqXz5Hue0RKUHCTvD0yxfxvIgLSy2iyGY4k0YTEcZEuunX31xWrTXSNKF7/b0DtwCe8plbmSdUIYuzUxy4eR+tdsgth/ez98Aktmuy56YDvPz8GUxhoYWHUHFOg94cdBQ6ioiCcLMjFELieU2avmatWuPi1UUWVld574OHuPTGMdaWTFKu5KZDO0kSIHVErdqk95Y+Qq3QAtxEipWVFcqlMjNXp5nYPs7/82c/ybFX3+D0/Bp37ttJf7FAvq8fNKyvL1JtaJbXNjh9+RphaFJvtvFaTa7NrfADH3s3yWSKZnUV2zSRCRcpHdqNFl/85st88/XLrJTquI7D+Egv77v/MH/+1SM8cNse3vuum7GTaRZn1kjsmCBshUR+hFcLabVjqBDSwk3madVa9OQTTE01mFqpApqL0ytkslP0JhIcnBzn9kMHqbearK2ts2f3KDuVIm3bTK9vUGoJVldqvH52BtMOSUiLRs1jeLKAnbB56uhpTl9b5l03JXEdn2tLVcZGerh68QJff+Ui/T0pBgbyGLbDyvIGuUIP/+JX/iGVtTKVVsi1hRWmrsyyUSqRSVoc3reLywtLLMyVefLYBRaWNrg6t4EtBUPJxObfUqQltrRRStIONQagIx/XMUlKiWtBOmXRVA7tdpPZqVmyxQIi0lSrFaQlqVUqOKZLEAQYbprZks+2XhcfGyM5zMWLF/nYxz/Myy+/wsuvHscPItyUTTJbwJUBKaPF+rKPZRgxpHSWw1umiSUkhXSSvqEsp8seJ89c5gMP3kImW+C+w/vxlhaZWVijVClhBLDSaDI8PsDJ0xfYtXuSy1cv4+AzMLaN5Y0Ss3NX2LV/kg+/5z4O7N7Bk6+d5g//6xM4JvT19dIOFNdmllFaYggoBwG9fhOAQAnajYAfed+dnJtepNFW2AZYlkO7WSeZtNlYX6UV+iS2p5CBRuo2wklhKpuhvYeozi/w3LNPknQTTC2X2bN7G3vGB8gkeymXSswtLbFtZIR8T5Yg8qmHEukYmERMXbjMxLYx6u0Kly5e4eYHHiCdzONmE7TqNXwvxE6mCIOA4dHtzF29RL20xuDYDpr1Ek6YwXJMVCjRKu50KYIAw7AJtR93bVQaQ0dUNtaQhkEqlcFxbMJIo1SEkgI7kSbfI9hYXWN2ZopXzlxFRTA00M/NN+9laLBAb7GIZWUxjQito3j1S+QhtEAaNrZlYhgWWsWZJLpr2+gonTEIqTgjp9OhTEXXbSEdrRQlYpU6UiECQbAZbg1xHovuKMpdBfY6MHfreh6MQqmoA6pyEzCvwy0dlTpWzaXRBdMOGN0Ao13Qu25h+dsC4Y1hy92fsYXnujLe3b+uHScGTAUqVomjKEBKsxPiHW4CNaKby2PiugYqCjtd6q6vFjCl6Fit4tUAhhHD641h4N2cnG99D93bu7cp3e0E1z0WshN+HQNybA2KJy/d92rSOTbSwFMarx13LnVMya7RAXaNDeL7AbVWi2q9QbPpUdposLZSxpAS0zRxXZd02iWRsLBtG6MTxh0pRaRCZGcFQldQ1xr0DQr9Vn1369N/8X4O75/GfQfy0+sXfQBS+RQzczNb/PQ24adiJoVq5ZhRaSJt4Ehni5/+Dn4qV6eRQhCoeNz94D0HqfvNLX7a4qctftrip//h+tEf/dHSr/zKr0wEQSAeeeSRvd3b77nnnup3qrFHMpnUP//zP7/0a7/2a6O2beuHH364vrS0ZJ48eTIxOTnZXlxctH/v936vcN999zW/8IUv5B577LHCd2I/tup/br3lC38Hdo5hSyhvrFBrbMPOuPihTyqdY2lpgddeP0utUsMj5MjJq1RbgkIhzf59O1hYW2dmvkKl0qYVtLG0ZN+OAcprFZKhjyUVYRh/62RngOx2KOq265ZCXM8U6KgBYbPJyaPnGRnNc2D3ds6dOE06nUEuptE0OTe/walzU0gHRGewg46S01nKqyNF4IeoICSMfCxchBQ0anX+/K+/hieS+EGFn/y+e7jz0Dbc2jLnZ9d55rljXJ2b4+nXL/PgrQc4dNutqDAiUi1QKu6eZCexzSRDA2lc2+Ha+Uvs2jnGqavzvPD6ZT76/vtZXFqitF5nZb1CIwqZ3D6GVy/jWAlwYM/kHoZ7s0RBRLlSJZmQfPmbL1CqNFlr1pmfqXL+6jW8MGRssMhdN+8CO0EubfKjH72Xdivg8sI6py+dJGGYZBIhuVSBxZUVJkZGuHRpHn/bdgwhyWVcUpkMiXSaTO8KK1fn2VircnDbGMm0wdWlEpVGleMvXeT+B27BK22QdUL27ttNubzOrp0D1Lw27WbIwrrH8fNTrJXrLCxVOD+bpB21eeyFq+ybKBIFIVevrCAs8Gsljl2Y5fzVObx2H/OzK8ysLlNpxZ26du4YptDTy3B/hu2jfbzr8B4q1QqaCNVusneiQCKbpeWZuIMF/uIvvsYX/uY5lOh0cVJg6oiq59H25zBlkoG+IoblE/oRKmrTqsDCSp2E0SIMImq+x+J6ldHeBEIIUjLkJ37oNl56Y5Zj58ugEixXKrjZAsuil+r5BQYzChvBU88/ju/XcdIFegf6yTsuullBewGW0FhCbmaSGIbEtgySrqSYyhKaLvc9sAftCBJCEPg1nvzKN1FCU+zLkOzJ86/+5X8kV+xncLCXY5emSacu4DiSjVvqrD9zlNmZddbWl/jRH/wgt996C3smdzA+3s+9tx/gC198jldOXkRaDpYtwW/RDBWW7RCqWL08NDnK+lgfqZTFL/3c92MmMmzMLvN/fe5rXFxaZGNlngN77yFlO5jahCjCJ8Js1VFmCtVqkswmufe97+Xxrz7JEy+e5umXTvEjH76XbWMDtAPFyvIaGdPARlDsG8ZHgiGwTBthGvzFX32RH/ihjzM2NsLa5fNs338zpmkjc1CtLuIFPksL81hulgM3H2Z1cZbFhasUe4exTQthuLTaHq7rxIpipDANkIaFsG1alQpCRTiWRa3ZIAhCHCeJnUjFlgYRq4ROMsvIRIZCYYAokWV2dpWV5XVeevkI2ycGGejvZXBgkGQ6SSKVRJouUoAKw3hc0QG2TdyRTYnNUOluLoshJWGoUFGswCrRXZVzPX+k250MYpU5CuPJtooUGnGDQvpmeLxRbe6q1107SXc/rqvJcnMbYFNxjVcKxZCmVAx6hmGglH7T69zY7a2rZt+4L92w5W/dvxu30xqkjBVkjQIhiFQ3X8e4Yd8kXf1ZRRFhEGwq17LzL/B9fM8jCAIsK84l2jyHQNy5k+tB4TeCa1zd8GzoAn33fcT7G3X2i014vT5h0MS2IIFhxFMPHWkkBlLE+WoQEukYPpUOQWpyaZdcKkWoFHGGmiLwA4IgoFQuMz27TNsPMAyDfDZHIddDNp3GcWykCAiVJozCOINICiL1pqiVrfoulyWh/g7kp/WNQQBu3TVMIze8xU9vG34CYcV/u4ZWtLb46e/kp0BZZLNJDvWNcvo0uK7JP/qpLX7a4qctfurWFj/9369CoaA+/elPT/3kT/7kju5tQ0ND/qc//emZ7+TrfupTn1o0TVP/xm/8xvAv/dIvWX19fcGP//iPr/7SL/3S2vPPP7/yL/7Fvxj3fV8+/PDDlV/+5V9e+K3f+q3h7+T+bNX/eL3lC387du7C82okrR2YUjI9s4EjDPx2myeffIHhkT6W16pYThZPuwS6yerqIr1Jl7t2DvHIwRGmFyoEThLXEuwYKCBpsWtyD5f/8CuIEITQdC70x4oeAtNyOkuyI8IwIIxCDK2wLJvK2jRDowNs39PH4rV57GQqvs+uIcKQ2QtTPPfsUSaLOUI/itd+a9Ux/d+Yg6ORWsSZITrCMC1KKxvMrVVI9cAPvfcBHrn7EMvLS2TyOWpX1ukZ7KXtOQz25Th1borpU2+w78Ahaq0GrUqTZC6BCj0uXL7E2Egfwgo5cfYae8ZGuGPfXiqhRsmAnlwRN1vkqWOPce78DN/Ur3PPPYe5+84D7B8ZIN+TI6pU+Mo3nuHd9x/g1rse5N33C1585RhfeeIokW2QTvegI0VbWJy9vETaNji47w6GrIjF5jqGVyZohGg7YGZ2kUMHUwRRxOXpaVqtiCgyGR/uRyWTRKZFtdnirjtv47b9u9BaUffr1MtN+nJ5tIT+oUGuXF1ix/Yh3vXgEFEYUmv49PRl8GZb7N09wnseGuQD0+N8+quvkc0lWF/36MmGvPvWbdTqFdo6oLFRY9toP//X157jffffjbaSvHb0HMenrpEUKSobNaYzq2wbGYpPOn5IiE9AhJt2UWGAkU4jdURlZY1Mb5KULnJw2zCfbWt0EA/c6YJD1rQ42DeIKQOKw3kuXGuzvNzkXXfu5sOP3oYWNs+8dIqvPnecluexe2SIm/YOcfzMNdbLLXb3pXnwwG4OHtjBb//OYwgzx9D4OKsb69x1+808+/jX6E3u5+tPv0zYDklnioyNjZOwPFRrhdBr0pvPsb62hGXZCETHshKftE0hsLMJMkODWJkRHnnPKO3mGqGMWKnVmJ5Z5+4H7qOYhn/9f/wzXnjjPM8/d5J2EGLWW6yv+VzrW+Z977qT87klto/ewUh/nqefeIKZ6WU+/Oj9HD9ygo9/4Fa+7+Fbee7sFIvzC0SWy9joEK4K6ZtfhpOn2T8+xCkL1kotvv6V51nx27RKHicuzrNtvJfxvjSt6jKNsM3C0jUGR0dIZXpoVivUN44RYlCtNMj19fGR/x97/xkmSXqeZ6J3+PS2sryvrq5q72d6erzDAAPMwBIEPcEVhBXNkpSnxCUv6oDiyiwlnT1aQRQFSiAJGngzBhg/02N62ntT3me59CZ87I/IrKoektjRESkAQr0XGlNZGfnFF1FVmXfE8z3P+9HHaetO8Z//4GmefvEtDo72kIlFOXhgN7PzK0Q8G6eQZWp2gdE9o6SDEbr7hhg1FL74R1/hw088TigW4NwbrzK8ex8r60uoDqTSrSgCLExPcvHaFfbsHKCnu4taXcexNSqWhRbwu7wFNRXHtHBl2V/ybwmE4kls08LQ60TjGpZl4XoOll5DEEXfViTL2K6DoigE4xHe+8j92KbO+uoKN27dZHZxlZVCifVCgd7uTl+9llVC4QiyEsJxLQTHwrZtHNvBcV1ESUKSfND0u6oJiFKzO53dMBo01dsGPCFiWrbfIdH259OEQNMyEYSmvcJXUGVZAsQtqq2A4zQzYHw7xVY7xqbVZGsXNAHPcxqKNhuA6+fDNOFxM9dm6/N+Jo6wefOhUU0Ib8Ii3K4ON22DntewkSi+a2CrzWVrt7qt+3Abq47YyM0RCYTCCJ6D67nYluVv5/nh3LIsbPDoxsqlBtQ3ZotvRfE2HjcE8g2Y9ee0kWyDILAB9/5niwCChyyCI/id/zxA9AQEQcZt2EtEQfGPzXFBtBElARzfqqPKKqoaIBKL09sLjmVTKVcpFIvML86j6waiKBGPxQhHI8TiMQKahId327nfru99xWJR+tt/+Pjp4bsOc/o8GLXKNj/9APFTwLORXP8XKhIJsat/aJufvgs/ObZDW0uSbLYDgEJZ3+anbX7a5qfG421++u+vT37yk/kPfOADF55++uloJBJxn3zyyZKiKH+j+5QkiX/xL/5Fdqult1mf/exn5z/72c/Ob/3eb/zGb6w0v/7d3/3dxd/93d9d/Bud4Hb9N9e7vvFnGGU8T2Y6W8aaq9HX30XZqvLs106xnCtyZO9ORnq6mJjOIh2CS7cWUKQMPT0tROIBigWd/qEMiVCMpcUVgpEgZV3j7KWbKIpATZcRBBvbcxE9CdfzsF3/TUcUBSzTRJBkHNPGdUASRdbmF6npJUyrjX2HjnDmzDnWFlYYGOlhx+gwn+jp5sRde3n15Te4eWkWwZX9P+jGmxBs6bLk2jSzbwQPLKPMIyf2cmTvACfuPUEpt8LN6VVm1mp84D0n6GhJMrOY42Md9xLPZLAtm6JRppIr4Tlw+eIM+bU1EvEouYKBYdbo3jHM9HqR0f4kKSWIq1eJt3eRDgf45Z//SS6fOssrZ66i12oc3rOLSkXnwpnr/NFzJ/nkEw8j1bLo1QKxmMLD9+wnlQpj2S6RliRj12YYGxunrLu4gsQzz5wjnYpxdWyOjkyEHb0amqYx1NVFQg3Qsm+QN89cR5ahpyNCJh3CdU28ukC9rjNXWGdhaRlNCRANSZw7e5F0S5rXz95g744BRvYMEtACfP2108zNlDH1GoO9rezZ3YMQSbK2VuDcxDLHdg7Q1RMlEg2zvLDA/sFuFpdyzGQXGRjZzVKuxsRUiZm+dQZaQnQ8ehc9Pe1ENJlUKsHFK7doaW3HdGzEQBDHCxAOB7DMGpJoU7NqWI5FuVRDiYQQSstU6nn27cjwZFsLXL7Ovr5WEq2dFKsVhlozfOIj93FrNs+Nm+Ps2z3Ewf39SKEIR47vopqfYefQcc5dvMl7HjjCz/8vTzA2NoXn6Kzm8yiaxD/4+Q/x/MkrlDyRITWBvjbFSF8agRy3xm4iq2H6etpQXBO3XMDWa0iCiFWv4+F3mHIFkAUPPP/DNCiLBCNJnIpOcXGMaLKVUDSFqZf58Y+9nz/9k6/wzFPP8Pijj5GIaNy/r49Dw91cnFgmHYnyladeQddNqvkaomui1wxKpTIBTSMYC1NyTPr6h3j+1YuM9rby8Q89SH21wNJqiSs3JwkGNXTDt2Q9+/oFLkoyCFCt6XieTTAUJijBA4eGsFyLl18+z835ZRRJ5mMfej+dbQ6hVJpI6wC3rt/gjdfPU67bBFSZn/upJ/jpj9zL+PQME0slvn1qjHg4gqzaeG+PkwgGKFWrXJ1c4+d/thXTNVmeuEgkGOT06fPc87576O3rxTJ0MqkUsu3650+T6elp4/xzJxGx2TG0g2pdx/UkBMFBlFQ81/FVXVmiUsgRCIdRAmFM00YQZdRQGL1eBQ8c28YRHN8KJwjIquarmY3uXxVbR5YCpDLdHIkl6V5ewjAsQuEwoVAITVJwXQe9VkUOqI0MFAW3oRgL+J3R/K5yfsAywmaHNF/5lHAdx7eseN4GoCmK4s9JkX2bRENNVTUNz3PxX+JhGbof+KyqKA2Ln0dTuW7up2k18Ro2i6Z6vBnU3CzHsf1LfEH0O8k1xnMdGwSx8T66qa77yrK7AaiiIG5A1NaMmb9M7d4KpJ7nYdkOkrhp+RBFEVVVN7a/7ZgAURIbPzofOpu2F0EUUVUN23EQXB+uTdP03/uFZni1D+j+6igacwNB9C2StuNnwzQ/L2ATxGnc7Ni8GBAasO8i4OGI0sYFSfODxz+eRidAV/Bzejy/K6EnCrhs7hvPAdvG8VwEUSKRipBIRcDzLUu1ep1izaBULrK6towoiI1sN4WRO9/tJ/x2/U2X50k/lPwUbTnC//F/w/RiASm4zU8/KPx0z+HdTCy0c/4KHBgdIhC8ss1P34WfVstV3rw0xs2xPACvnrnOyXMXt/lpm5+2+Wmbn/7aKpPJOD/zMz9T+F7PY7t+cOtd3/h76/wYL781Rs02CGhB2i7fYmwhy/pahbsOD/DmqUu87/E7UAMamWSc/bslcvkyhfwaN26UyVcqHBnto+1AjHAiyvzcMnq1SDyaIKhq5D0Dz3XxPD+Y1XFcTMfGti3/TU4UcG0HHNeHTDwmJm8xMTnHWr7K0M5BQpk2Mu0dmHqV0koeW5RQZZdj+/Zw88KMnwmCg98fyW8LLwoepmXhur4tVETENSx6ehP83U//CJbr4JbzFNbXuDm9zq7hLuKhCM++cYnpyTn+t1/+WVqSSVwXHLfG2uQs+WoNy6gjawHGF1ZJhMOEDZO64XDH3iE6O1upui4TN8c4c3mMammZ7vYYq9lV3r4yy/GRJAvT1zBdqJaLfPIDD9DZEWX+1gr5tRxtbR0UiiskozKu7WE7JvsP9HDvXcNMXJ1m3TCZnJtn30gPlWqNSqXGdKlOaxSS97UytG+YS2fOs5pdINHSy8zUEolIklBIIZ9b5+LVW+RLNtNLizzx8D2k0xnuu/8u5mZXiESivHr6Kjdnp3n/g/fyyLFR3tZmuDW7zo3pFSamZ9i1Y5DO9jB7d3XR09nFtUsXOXLwGOWhEV5+6SQDva0UJlaYWi7T3RbjF3/ycYpWldXlEnfeuxvPNDErVWYWFjDqNvV6kZnZJSLxCNFwjIFdOxDFEKJhogkihl6lqhu42UUSyVbWsnkODWU4+9Y4TwCJWIgr+QKTi0XuPzxCrWJw6uwlPNsB3WRpZp5YSxuC53Fs1wDJRAh7VzeZjgQBTWHvrmFs16BWKCK6Iqpgc2JnmhxRZhfWOHdrjLlcjnpNICoHCCY1JMfErFbxnAqOC6GQQrmm43m+KigDomfheAqCKKKpIUKpNDcmZvjmq28xtHuIRDLO0sI6o8MtHLvzGE+/8BaXz51hYLibm5PzXB5f4pf/1o8RbEszsquTL37tJf7rN57DQ2V0qJ1oWKGnPUVnuoWYphJMeYSP7cHzdF566hWSrWFePTvH1clFbNdgZ67CLwDFSolqIExA1mhJqASUMFVLwDEcnj55hZrhsV7QwfO4/0gPO0e6GLs2hrS0zNDIHuRIkhsziyzmqsQ0iVx2lcHuDvYf2s3JV04RDAWZnl0lu1pBlHVWc6vIaBSKkzz74ivcc/wYdzz6IFOnL/Glb7xEdnWRH/3ZH6GadxAdA0+RkQSRzq5uqkadtUKFoCojCjaTkzPcmnyNPXv2cuDAKJqqIkgytmMSiYQwLQtRktEUDc+sY7sCsqwieQKOKGDYFnh+JzfbdkAQsCQLUZSQFAnPNUEBJRCkb3CY9bV1SvkcNdeDUAhVVdFkPwDfMmxcUUJSFR8+VdWHTs/vBGeaFrIk+UHTDeuEJPk2Js91/RD9LSDnOM6GQtzsOCY1Mls2dFbPw3NcXNtBkmU8z1fJRUXcgNWm0uuHWLs0hU3HcTeU9CaENb/2c208P1S9sZqoGc3iNh4LDahtju84/uqgpvVG2ALpsAmBzZDrrUq3KPqg3ITTZu7MVhV863+bY/ud9PwcHrxN+4zTWKUkSjKSIGxYhRoSMjQyy3zVn80LCsdDkiU/ILoJxQ3A9yHXt1J6joMgCkATbLeMaTtbwreF286F1xhTlAV/1ZTnNT6dNi0+XmO0Zvc/14VmzpCHRzgcIBoL4Wbi2LaD7XjopkOtbr7bj/ft+h9Q/+VLrxKMXP2h46fLl0qEgwaz2TwPnWjb5qcfEH56+e2rCPg5yZVSmcXl9W1++i785OkuiGCaNdLpLyMKxW1+2uanbX7a5qft2q7vq3rXN/5eOTfFcrmOYdeor5a5drNCf08nsmJx175O+lvb0NfqOJbF29dmmJhax5VAkjw01yKdCnFrbplXTl/lkfuOcP+dOxm/McnCapF8tYYkgOWBhwPIOI7fBt21bTz8N0fTNTcUCMe0mJ5eZNdQJ44kgW2hWBqdXWmmJgrML87S3dHBN595i/nVOlIogKmbG6qLgIgoSWiBgN+ZiGYejovneIQDQco1D1O3McsFFhbneOjuPUzOZPmn//YLFCouu/tbWV9dpS2VQHDBNgWSXcNUxi/S3dFOPN1BzapTyOWJKgpFC7703DnaIwIP3XuATDpDb5tDvSwSSUVZWS/w6MF+hvtjhDSoreaYW16iUK7S19XK7j37WF2ex+vuYuDAMWbnJgk4AlcuX+HW2Dx1R+LokUEmTl5icrpMoTzGzek5LNMCUWa9UOOf/Os/4J/88k/TGU9Qs0UWbk4j7uzk7OVbtHUl6Wzr49iR/TzznVeJBhWWZmdJRDQiLWF6+nv5SGeaZ1++wPTkFIVcllvzOb7x2gyqaOF4NqLqIk1PkQz1Y9VaqNbLFOsKVy5PoIoRxqYW2THYy4/95AcQPYXF6TFisSD9wV6k/RIXL96iWC7gmBrDOzrYsytOuVqlWsnT3poilYwieyKqFsUSCkg2BFQBWfQIB1rIri3y5vlpJhZK7LX8vNNXLywwnQyB5LCeL1OXJcq5OkHNRhE9CqtZDN1Ar5e5+8H7mBu/wr4drWDUEawgoheiVC3j2B6eKlMr15i8MU2+WmTvvt08+vc/xn/6ry/w2ts3CWhBTKuGVTJQPBvLtZEQCUgCOaMEng2CjCjIyHIY24OIKpFpSeMFw3zz7GWKjsvbb19nZqVMKKCgeDvpPN7KT//sBykuFtBUidZ4kv7WAidfeYl1Q0JE4cQdh7hjtBs5GOKrX3ud8YqO5Vpk4mFkulhZL4LosXfnPpTAHG+cOk9Y9bhrdz/daY3QrUW4Nc7h3YMMdMRZXKkz0BNncnKV9fksnutSrkgoikoqqaI6Irals7Y6xfTMAsX8OvnCCj279vATP/kEX/zSSxw6NMR8qUYwECTd1UI4GOJTP/koWjjNr/7Df02lbiJJKrIoIogCL718nnNvn+OXf+UXuf99j9F78CCVhXnsXI14WwbJdqjqdWrlGvV6ldZ0gicfvY+p8QmMSpWRwW4y6TiXr05S16vs27uHRBxcScWR/VUxpl5H0zw8UUISBCQxgIWAruvgCsiy1FCZgYY9wrL8Y1A1AU9q5JwIAqlMms7ODkzToFqpYJl1BFdCFGRCAQ3D0LHrJoZpIcsqgWAABAlRURAbAGeYFn5osgQNW4YgbUKObfuw3awmzG1mzoi+M6JhwxNlP/zctAz/nc5zAL+DnaL4Hft8G8umDQPwj7upNDfUYz8fR8HzXGTFhz/TNPy5NfJeoKGuNrJyHKfZta6ZK+YDJfhZM81OcFsBzg+Y3uyQtzXzxrfHbL4GNmF1q+VlI3vMA9fxGoHfLpZtYzSsKk3wb2baCKKIKMkbcAwCrrCZY4YAjrsln0f0g8V9Jb7R+a2pXDseQiNw/ra0my3H0RD3N5RrH24dPK/Zze72YOutwCtsrBCAZsi214Bzt5HxpkgSsgSaJpOIBd7tx/t2/Q+oXM1A8yo/dPw00D7JH/2LX6W1vW+bn36A+CkYkMmX1wFYyJWIRqxtfvou/FTK1Sm7BoKiEpS/wOKKy0DPyDY/bfPTNj9t89N2bdf3Tb3rG3/nbk0RlBUkQUYRDX7iw/dwaKSTV0+Nkwqo5IplinqRr704TiYdZ+eODJl0jPZEkL62NB4eVcfkWy9cZm6pxLMnL/Oeew7Q1WuzmnuDNdP13/wanxiW7eJ5AorUDHN1kGURy3EISiKL8/OkUhquIDM9m0XR1jiyZzer+Srt3f3IGvzRF7/Dc2+PEdVUhlpjuIaJ64HbWDjsuA6qqhAMBlFU1V96DQiiR7GwTiVXQK/XKaznscQg//mPnyZbqlOzIKCKjM0s8+arl8mvrBJXZdKtKebnlljJlojFLSKZKC2JOBPXrnOrovPmxZsIQpT3P3IXHW0JDAPW8zm+8uxZ7rn7GKFEP5k2mXVD5E+eusj03BKXptbYv6Ob3p40qUQKW9IorKyhSirtqW5c1+Lex97DzmNLTI4tsDQ+zaE9w+zoLfDwvUfIFqtMTGdZWVrm2swiEiJL00skd3bxyZ/+EGfOT3Hu3FUqpkV2LctKW4l77znI8f3DxOIJFvMlzp65QjyicfcDx3E9mfsOD6PadZ49eYOVih++G1Q1dMNBRKFcE1hYN8h0mJBd4+ULY+yrrnH84EE+/Xd+hBtnzlNZDdDS3svOPftYnJ9gfnqWpewq524tcm26SHtSYO9IGsmRsF2XXTtHWVpeZH5+kR1DBRRNxXEcVrNZIppKONnCSxevcuHSHMs5g1BIxiv6YKCoAq5tIjoq+fVlErLAPUcHCEoGomcwdmuWnDHLrqF2Jl95jfaeVlLxMFPXrtP5niepFpb4wue/SiAkc++du1kv1FGTcebmFmnL5djhWnz6x++mr0PlzPkxllbqmJ5LMOTQFYsSicQRJZmrE3M+JLkQVBX/w0fwSEeCxFIpJNMmEVJw3TC6qxOJmIRUmWvji9yxbyeCmeTwiaPcujlOOFzlrvse5SvfeJZLF8fp6G6hVi5RqFQwXJfH3n83guMRkG0y6QSeJVOpG8iyTNUoE4lGOLxnBE22eemty2SSnchJPxPk1uQcbW0Z1nMLXJucw3MEDu7p5/D+IRTb4NqtKS5MLPHA0Z2Yps7cjVn++KvPEQiESF6dYfXPXuCn3v8Aq8U66XiaPUf3c+PUJSQqvPdjn2B16goJzeMnP/oA/+4/fINQPIjlOAREhwfuOcjo3gNMT0/R0dlKX287Uk83RqHA+lyWaq1MayaDqqnYRp1ibo10IkB8zw7W1nM4kkcy08IHP7KDm9dmKOeL2JZFMp3GMHRURfGVUMtE0EKILti2DQKEw0Fcx8ZFQg0E0XVf8RMEDw8P07RBMDEtG0mW0YIagiNQd1xs20RRJSQpgFGrY7kmet23mEiygii6WKaBadT8C2RRRtM01EAQVZb99yTB55nNnBgfqGTRD4jeqngCGxk0TeDbGrIsCODZNqKibGS8CIKAbZp4HiiKgidKGxYZHxSFRue3TUiUZclX7hEaareHqmr+6yRf+fU81wdl296Yi9MAx2Y1O7e90wrzToDdCqZbu9k157/VptLcrvlPFEU85/ZufK4gISsisqL4GWe27Xf9a5xr13Fw8VAUGUVREQVp4zmgsYrKAxqKv+uB4yvrsrRpNdpqYWmyabPzYCNqe0Px9lcjbBDoBvj6XQJv/9zdenxNhXvznPo5Qa7r+FnqnoDn+vvzgdhlu75/qlQpE/O8bX7a5qcfCH7yGwP4nzGuY4MpcWtM4cj+CPccHQDLY2wqzex8lpJZYKC7hcKbU7S09xBTg1y8tsz9j+4jE5vi83/wTQq1AZ58JIFuFqgIXZy6oVK2A+y3Q9x18P14dj/Xbs6xlsth6S6tyUX6W2xEuZtyrZ188StIYoBCbYCAnEA2RVw8jHCUbG0U90YCvTaKYZoElRtEIiae08dbF0Xu2FfFracQog9ybWaO2nqMRMdxnnv1DcZuzdHSmqB3vIpuWMQSl3ns/XczM91OWzrPzgGZYj7MpVt+s4aqqVExB4hFE7QkbM5cHicRzCBq67jVec5eXKO/9UHypRe2+Yltftrmp21+2q7t+n6qd33j76cev5/WhEKmp4t6qcpQpgVJsjm6fwBLcjAtl3i4hcfuTaMqAmv5Erbh0tXdyepannBQIhaNcv+RXUSDAlfHFlhbXqGvv5u77zzM1751Emgua3YxbQvLdhAlGUEQURUFSZYbCoPE1Pg4fcPdRKNRnn3jOuGQxOhghdMnZ7k1Mc/hA72cvjaDJMrk9RJLeZGUoiA00wK8xhuiJ6CofhCt2PiA8DyXWrWOB8TjceazJS5dnaUuagz2tRILyrx9fRpdlPjSC6f45bb76BjsopjL093VTkSRuTY2wcraMnt2jtDW203Kk1BklYP7B9nZ103dqFAqrTO7sMpMvsKbn/8Gjg1l3UZydUQ1giIKxKIquVyV18/e5NCuAfq6O6nVaszOTKAGNSKxOAE0IgS449heVlrjrGTXaUsrVIoVwpLC8FA7u4f6iacmiMh1RoZ2sFqqEY0n2DXUxUh/C3qtytzsIqOD7djVOldvTXPg4F5kRYRQgGxundzCMp4qE40lGd3Rz1y+yEgmzvWZMplEFNs0CCois9kS58cXqFs17j+8i+5EgKQW48bNq2QXs1y7MU2iJUXMMlnNV0inO6gUamSXy+TXivS3Bjm4qwujXscxTGq6TUD2CCseES1GoZBHcGBmbpre/j7KloPkmRwb7eWeEyd48Y2zfOXpkzh2413edBEUCUl2CYRizM+vcffDDyABr3z723zt1auIssrViSVCaoj3drQxMbeIUa1jVdZRgxqHDo7wZ998g4HhIe48up8zb7yFiEBUUcmtrLKwssSjJw5yfNcAN8amePXNC8SDKvee2Ec8HiKSSGDWalybmMW2DVzPJByIIckyiUSScCyGblf41E+8nzwK3/jTb2CrMmvreXq6OphbXICAxOJqAb1WY2FiFv3mFD/xYx/gve8tszo7z959I1y6PMbKapHiyhItqRYymVbi6RamblxBQEb0HG7emGC9XCERDtHW08VDRw+xlM+jyc2uvj3kVZlH796LbsHrZ8YoFQrsHelisGeAtvZruNolJMHGcRSeevU6kViM+WwR3fUIBwI8c+oalUqVp599hXhYpiuTxHahmJ3ixtgkHW2tHD50CDn8jN9ZzAVZ1PBElf0H97IwM0exsExEyOAJIcRAgHh7Gwk7Q7VSQjdtLFQ0TSMQlljT1zF0g+tXb2E7oCoqXV0ZFhbqaJLK7tFBFhfnsRDp27GLaCJBQBAIakEEJEDCExwswwRFQ1FVQrKM47jYtoXkqjiCjeW5mxaKRm6J5bgoqoznOtAIoLZtm2q1Tl03QRAIBAJIkogkgiC4mHWdcrHg5+RoGqqmEQyFUBQNURQ31NNNKNrMNoHNnJem9cNpdLWTFRHHdhEkD8fbVDyb6qckyXiub89rrv7xw7I3u8PZdqMbtuB3hZOkJpQ1LR7exvaSLDdgy0NshFM3x2nO3Z9D01rir0Tyxxc39vNX5dY0n9/6dbPeqVY3bSSu522GVHu+iiw0wF9R1I3xHMe3enimieH4AeICIEnyxo0MSZQ2Mn6a+wIfPh3XbXRR5bZ5NkGzeWHh/+CaQeP49p0toC6IQkPdFzZ+zu881sbL2LTUbJ4TSRLxmnlXrj8/UZBuG2u7vvf18UePcPT44R86fnr9nMqv/5sPcMfh32Kwr7jNTz8g/CQjobKKJFUJKFkk2eVLz/9jVotz/Id/k+Ts+SQ/96v3fNff+SfOzvH7/2aRgcFDfPKf/BrR1Of49E/38vf/9yR//u2/946tH7nt0ZP3/l98+LElXnz7BP/ujz7AP/ipq1ybmOXkxX9OsXpoY7sXAL7TfPQjAPzKT3wSLwAvnPxFQlqaucV/R9UL8eTfvhPYGtz10dv22dOe5dc//ZsUV5b4zX/763zqE29x7I4ZPv8dkf/j937hux7rw8e/za/+xHeYX7mD//L1f8Rv/0qFUCi3zU/b/NT4Ddnmp21+2q7t+t7Xu77xV64WyEQjXD13Fatuwug6rqXQk0jy6qXz5MsSVydmefjEKOFwgF3DPcS0MLgWLYM9mHWbmelxZCXA2MQSK2s1AvtCRMMRRnsVwiGBesFXWlwPDMumruvYnuMrPDTuyAOe7TBx6xbHjg/QOzTMb/7v3Zj1IoIr0tWV5/DIAPnCIrphUsqVcQMqRdEiHhNwm5YU11ctTNP034jx7/6DiCBBJBajoJdYq1To39kFkTDt18e4Or3MzHKZTCrBtYkVWiMKdx07iC2LzN68gVHW6d7Rw3wxz7UrEyxkT3F4zzB79gxjrESxazZf/tqLzK+uEwpL7B/o5EP37eb/9+W3/GwJUcSzwa1XCYRUYuEQlmmxtFblzT96jg+95xgn7tjN+koBy3SRFIn+wUFsz6Y8U8KxIREJkcsVyeaySKKC5YgMjOzlyQ/2cvXCJSZn56hWTEZHhunp6qBQzmMZHoIS40vPn2egp4uhob1oAY3+3SO0tXWynF1gsValJ9zCmUvXsWs6kWCEizcXsW2HpVoZS9dxbJuCXicaizOXLfLahQmW11ZYWKmQTKpk1yfJlSxuTDzDT/34Q5w8eZpHHrmLSEDi0J5+DhwcpKsljV4ts7S2QiwWpaevB8sqoygKb5y9zPBQP4oqEUxluHDxOg+952HCARW9WkZQbe7d308gqPDGZ78CgCN7IHgEJIdSaYVnXysQiQewbJG9D7+PfWOrnL46RrAuslpe4a23LvEjH3mchfEb3Lh+g52jXVyfWuD67Ao/qqioksqNhSIvvX2LoYFBhg91Eina1Ot1Em1JjifTJBNhyhWdtrZeIiE/GPfE4SE++P5jTM6tMb9U5MalayQDYVozGeRAgJrjUptdpGfXQYYGu4hHCizEwiwt5qlW4MK1PEsrWR65ezdDg6384ddf4fjBXey68266O/uwakU0USYTj9HdmWZ2Lcvls9c5fudeMslW7EgVJaSwvpSnVinQ29ODEgxQqawR1kSWCj6wLK/XuFKcQXfh8N4edMOiJ5OkLZlECQbYvXcnu3ePcvHiJb72/NssruR4/L0nyOUdXnnhZWqui+1CQJVYztc4c/YG8QcOEXE8rHKZZ148j4fAxz/+Xn77t/8BolHhT7/4FLfG5kjGAohAQFUxixWqQplwXECQgsiui6soqAmFuKxSrtaxjQrt8RRdPTuo1Uv0De7AcT0qRYOrl86RXVggFFAYGuwmkUqysLTI8uxNnEoKORBFklRau7pRZAnblVDUALV6DbNeQ9UCKEoAUdUQBQklpmIYOoqiYpomtuuC6yAJMo7tQ40ka4QjCpLkq6SaYTA7t8D8wgKaFiCgqkSjYQKBIKoaxDBNcrk81VoV0zBRVZWOzk7S6TSKquLhYRgGzc5dTdhrZs00A6WbSrHr+nql63gosort2IiC2LBQOLhOI/vGdRtd8fzVHJ7HRhi2qqob0Grblt8tz/OtLLIsbyjgze2bthdBkBDFTcW9CaibNpAtlhxorCbZBOZmvTODpgnyTQuNLMvYW9TxJuRKkm/RETfGb/qNmgh3u7VFEERUNYAiqziOvQGhLh6WZfmWFNHPzJFEERffhuN5NOwtzeYJvq2nmbGzVb3e7AS4ud9miZKI525C8VZVf+vxN0F+87zgh5g3LmKEhlLvn4NG2LbnW2y26/ujHrnnD4lHslw9t/ZDx08ju1u4964VDo9kWMzltvnpB4Sf/uAPnyUUdDl27BOoYp6AJPLBB/8ZimoxPbYL2dP42p95fOvLT3F1YpZEMEnVqbCzp41HHrqH1bkpWlpEXDPM0votdg19lP07j6BKwwwOPsOx/X/Mh95zgqPH9rE6nyUS0whFg2AJzMxMEQoWaWvr5aOPlTi2/6u4us9Pr5/9JrOLX2Z6bIpEOMreoR56+rqxBQ+cGm0DIyzOhSnk2gkIf0ohX+X8jSrelTM8evSnuPPAIF0dCZ565Sw/8oGH6dt7gGq+gF2vsDQ7ucFP/+xX/i+E+hJ2sZdHjouM9P5H5IBMYa3EXDZL/8AOEokoi1PjeKLIbC7Ls2emUNUJHr//Y7x5bWWbn7b5aZuftvlpu7br+6re9Y2/gUyCWCyGFqqxsrDO/GyJmzOL7B7ppiWVIpOUcQSdG5PrtMbDyIJEV0uSjvY4iY4YiXgrqXSIulmnvzPK3PwslVKR3/3sl9i1owdPCeJ5ur9UG7Bsm5puUK8b/puK1FyCLVDM55mdWyDdFsUxPaaXcrx96TrtoTDH7xziyIEB7PAoxx+8mzfPXOHmpWlcx2V1IUtNt/xlxEKzLbvnqwn4HZU8SWR2ZpqnvvQlhjrbWcuVOHJ0P7u72ziwo4vh8Tlu3Frg9OVxomGVT33sXpBdqNQJiUHKlDDrdUZ7+lieL7CYL3F+fJE/+uYZ1uolHjm+mzuPHsIWREJina8/f5Zr8+s4noooiqQ0kX0jgwwN9nJ09zCqarO8VqBYs3jwxGFqxRVWF1bJVSuEIxFGe3awvLhAJB6jmCswONKPIiRo7+3k1JkbeI5BvVLDvHmDxIxAT/8ow6M7OX/mAs+88AYByWVkRzdCQGRqZZXr46tkkjI7dw1z9eo0p9+4xshIhuHdu2nt3gNmma6+fiq1GqX1Nd7/mMG//DdfoFLzLwDqtktADaC4NqvLBYy6ya6BdpZWy5y6tkIwIKKKErN5h0uXxjg00olkWCRTbSzOnWZ4xyFUNU4wHEIJJYglE7iCiFeVcaQa+YLL86+f5ac+8V66u3awMtCN7NrEW3uQ1iVK5RrXz1/nkbv20Pvk3XD9FgN1Aw0BxQDzwgKJgII2MMbK4jpTX/0OP3fPUdLza0wuLtMZlsksVbj2x99ieChCrNKCVzM4IogYbSGMM5cR8dhRrDFXN1h74SRj68v0dnagz1pImQ4sr85uImg9XawvzoEgoyoyoaksbYKMWChzoCPNe9PHWVlYok11iC7lkBSX5UKBZ77+u5gWtCbiRA2P+VIZu1ikWjO5pzPJEUUgXLa4Jxxk/hsvslsI0aIFKBRX6MznKNd05HqJQUmjR5ORxmZJiA6yJCKVQjirRbzLUxSX1jnw6IOsrFRZWVrCveF3XV9aK7KkiPS0tfHCSxdBclhbF/jc57/FHceHUUyF8WwVyyzz+KN3kF3K45VqHBps4/6DP8Gpy3N85/mTaMEgQU3k2sw6exazpJNxJibnWVzNY+sOLz73Kk88coJUpoVf/JmPMz07xsTkPK+99AaHDu9hoVygWw3gqhqKayGoKiICVqFMDdDkIOFUgnpdx/NqKIqEYLvYQFtbjMEPPsHSwhxBVcRzDOLxVlpbW1nP5ZAEiZW5SUqlGp7rEkzECQZCeIgEAxqOZVGv1ai7VULhGJoWxDB05EY4shbQcF0H1wXbMnAcGUmScV0bUQRZUf0sfMFhdGQHjiPgOGCZFpZtUzd0qoUcCNCSTtHd3YlpGBSKRUqlArZtEonGCEfCqAEFXGEDGLdaODahx+9o5zW6eDq2DZ4fntzcRlEUXM/PlXFsH7pwAOcdGTO2tRGW7bkusiTiIfid3ASpkc0ibqjMsqL4Cm4D6qBpsfD/68NuU612sCzLh0FJ8kHb83BdtnTFa3boE7dAb8Ne43lYtg+Zze/fZhPxvA2IE4RGlswWy0YTAJtKuuO4CKKIrKgb51eR/PPoX5QIOI6N5fjnUpIkREnZUKxdz8N2XGBTvXY9P99mY1UBt6vuzXn6CnkDTgX/nLIhWje67rm+TUoQBH+VVeNYXNfeOBZZkDe7/4le4/fS3bjI2a7vfX3iPW8QT8Yw7PgPIT8F+Lf/5AZK4CCXx9Pb/PQDwk/Rn30fJ09f4+bsKoqrIQiwlr9MS0jFqfWQnRtnbe1N/v7feYD//EfjXJu+SGtUoSVlszr/FPv3JkiF2jGrNqMDbdxzaIpCfhq32kZvm00iMU45V8GqZDl2qI+abtLe2YfhVdi3p41gZjfZ6XHCgsveTpPTLzvEIzEO7ljm3uMZHGMP81PT9PQZJIJVZM1hbm2Nt05+C8OEZEua/k6dCWuO1ZJDqWJwdE+Gx+7rJpqwWCuWMFaf5dBAG9LuEGu5Mi3hEoWyhOHqHD8cxNQTGK5LJmPR2W4hqxFmFvIsLJ5GrE3wwPs/zGtinvmZGZaX18jXHFzHQDfq9ES3+Wmbn7b5aZuftmu7vr9K2PrH9N3q8YdPeIlIhGQwQDIl8XM/8l7ypSr/6Y9fYHZ1hXsP9NGajjE+vUwiHuXEkSHa0glK+SLp9g4CsQiSJVIDZBzmZxb44lMnOXXhFsFQiEhIIyCrvnLquAiix0BHK/cc3EPv0ACqKiIrUYLpBFOTM/zeH32JH/+R+xjYMcTZ81fQK0WeeN+D/nJe08GSbELBAFq6HadcYblQ4NkvfZu3Tl1FVjQcFxBUejtauPfoPvYePUpyaC9yQGXsyhk+/7n/yMFdvSiSR3//IJLq0dE9SCgYxhE9xscnmV/I0ZuR6OzopZzLMzMzQXdfP7lchcXFZfYe3MFLb9ziT596Hd0GTXToaknxa//4Uwz1d7E4NsZ6vsLzJ09hiyrruTqua3L04DC1cp0n3nMnHgGqepGF+TmySyvsHhmlUtVZXMvhNUK6+3taiQZDzE9P0zs4SGtbGtt1ya4UqJcr1C0Y6MkQCocQlAABTUCUZdbKVTRRJjdzk1S6heXlJZaW8qTjCTK97SzNrlKpl0nGo6hBhbAcJN7ejhaOIooyul5DweGVV08xNbOIrKm0dnfxrW89z+zsmh/AK3lIiFiOhKTCfQeHmVnOI8sSP/beY3R2JShXDMKaytTkFOFwhL1Hj1FcyVIqFQiF4iQ7Wrl86hyd+/ZRWlvjzBtv4Vlw7z1HCcciuIJENBFlOVtEEAy6enqxq2VCdZ3oe38JUTf+Jv+G/qcqU5b42f2jLKoSH33sGJFYnItXx5mcXsSxQZYc7LrDsm4RFj1EUUaRVLSgSG9PC0f3jXL46F2s5Ff59vNnuHX9Crbr8v77DnL80E7+45+9xOxagYAgEwqIvPeBAwSVILVqnfsfvps/+dpzLM0s8uEP3ktray/peAA1lkALxnDrRZAULKNOcX0VwzAIhSNEYnFcfIXUz1OBSqVMJBIhoPmwU8jnURWFq1ev0dreiiwI1MolstkcqUyKrt5urGqdcCqOKARBBs9WkATdt25IGgj+8SJIIIiIkujDBr76Wdd1NE1DFPzQYMFzcRyLarmKZRo4nocgyCiBAJIsI4kilmX5mSWug6aphMIRBKBer2MYJqIkISsqiqKgKAqO07SfwNbcGh+6pI3HkiRhWaZ/0d8IiaZhMXEathUEP99mq0IqSdJGzovj2ogI2LbTgNrG8w0LjAfYjoMs+9mQoijhOi4Im1aT2xViYVNlbUJe47E/hya0sqG6CoibXeD8F+K+A1hvU65dYWPuzfPTrK1ZL1u/v9VSsjUvp7k9uLfNW0TYCNP2PA+3AaeeRyNnxle6heZHqyjhh057G+4RgU0leuNxcw54G0C7Van2Ib8BuVsuXpqB2835+6DuH8Ouuz70jtSb7fpe1KF9/9Qb6r5OW9z+oeOn1rYRJhfT3Ht3hEw6sM1PPyD8FExGqVWr/PkXn8dzTIoFnWypSn69wGh/kg89+TClUhXJk6gbNb5z8jKzqzViUZmoGmJksAfTKeNaIpl4gHAkim1ZDPa00TrQx+sXbvHSs69hOzDc38rxo7tw6yapnk462tuoVcsoYhjdqpBp68HCwqiUqOfW8TwbJZZhafIW4UgYQVBxXJdyeY033xrn+sw8pZqBawvEgho1w8B0DHZ1ZujvSxNLxenq6MCzawz2j6AmQmjRGFM3J6isr5CIRikW1hncuZua7SILLrIosrKQJRoLU6tb1Ms5ArEQhgFnz5wnFk9wcWyFczfnsD1nm5+2+Wmbn7b5CYCzZ8+OyrL87PDwcCUUCul/HWNu13a9s2q1WmBsbCxi2/Z7jxw5cuOv2u5dr/jzbI+e1iDHDg7QFm/lq98+TdU0Wa+YyIqKACzM5+jtyLB7Zxv93b3Uy8tEohEULYQWCOO4Jp5VJRiN0z3Qy49+9DG6e1qp1w3y6yVWluvYQh1XtBEFBdcVaMYzSIoCkoDkCZy7eJVdO7qo1Uu4lsFdB3cxMXEDQQ4gSQLl2iJ6SWMtt8b8uXmu3xinVl4nKqt+O/VmzkBDUREQkCUFSRZxPY96VScSCtDb2UosFGR2bpqu3i6cWgUjIFJcrqB5HkcO7EUJmNw6d5NXL96iUq5wsOwxvVoku7jOlekC33zxLJbjEgjLyIrCymqBr339GR588E6GMm3cml5mcaWOqNhUanUqdfjmd84TDgeYX1xmZDDNgw/cz+joLtrSrUxl1zh7YYKZ2UXmFxZIRBJ86PETDHamcZw6E2PjeJZNZ28HhcIqmiTR0Zkht7JGy+ggguRRreqYdp22dBJR0kjt2sHa4jKLiyUSLQEUyUP0BFpbWxjt2ImHSG55mfW1NTxJQquUQBQRBJWVcon8Spa7Do0QiAYIROPs6P9Znnv+VSYmZ5ldyIEncfxgJ/fcfQedrSnmp1cRVYVcqYRJmWK+TGsiTCiSprWrlXJ2DS0egfUs1YpDsBKlpaODuetvsaPvMB/86EeYmJtmPVfg2vQCd955CNmW0MsV9Ooqme4M4XgrtUAV8dnfQ8+uY5fWsBGxdIuqbWIZDjg20WSIcDiOJIMrK3zla69zY2we3XTQAjK6UUEFju7r5aF7jmAZLqVSHllV0bRIYxm/xfWxZfr6WyhkV9mxow+zblE2y6wu69x51wFcUaZWrGDqNWLpJHPT4+zYNUo+m8OxdCLRJKapI4dk6uUyFy7P8OLJi4SDih88i0rVrNOXidLRFsK1IJ2K0dvdTVt3C6KSIBzPcO7tVwkKDi2taebmsyQzHUSjMQQFglKAciHHWj5Lb2cPrgeVShHHtBlfWEF2PVYwSRYdoobAvh1DDAwNcGT/XlYLVS6dPYelG4jhAN94/jz1cpVAEBRssnkDVQvy7Fu3UAWZJz72JCM7d3Lr1nX+/Evf4vKNKcYml5jLltAkBUG0qJsqz7x0jWQqzkh/kJXsMh/+yAf5T//h8/zBF57lRz/6CB1th0BwESQJXA/HtdDCMQK2jZVbwzHqmLqCEgwhKTKW46BpGutzs8iqgiBJqKqKGgiD59LZ2UWxWOCtt95GlmN096TRNAfPckl3dmPadQrZWaKpFGogiWF7CIrih9qbFpLkIYpeo0uci2H5738IIoGA3wWsqRSaloXrQjgWx7VtSqUy6/kcpbkSkuh3x6zrNrpusb6+jiAKjO7so6urg2QiSUALYNm2/57lOjiOD1KK4r/WcezbwAZcYNPCIIrSRnc4x/FVTDzfmtJcAeQ0cmUURdmwhLiOu6F8K5qGKDrYDTuKrtexbIuAqiErKpIoYVoWtuMQCAT9GOYGgTWBamu49DvzZ7Z2v2vCq68kmw21XPEhsJGTIyCgKPJtNpjm+JIk4Xib2ThNBdyH+uYqpb84hw11e0tOTvP7/s9zS+j3ln1uvN6fGH4XPOkvjOE1cn580bmhRG9R9m9TtYXGj5HNc9jMsmmeG99R+U5YbdqD/J/TVhV/u773deHKb7N/x6/y4L3eDx0/vfhGnV/5Vz/OM3/wFLG76tv89APCT/V6lUg4zcc/8WGs3BI2EkbNpGzpmHWHStEklUkSjaWRZY+dRw/xn37/Gc5dGqdmVLg2l6dWLxIAHjw+zEeO7MHUHXK5Verj4wxnkgz82ON4nsHZS/PYCKytrdHanmb+xjgFvcDifJVHHrubSqVEOVdEr5VJtbUyfvMy+zq6iCUyOGadWCKBrleJtQzwvkSS2Fsxvvz068TCKtW6jShoGKZHzTSp6RXK0xXsWo2dQ0NImoXnKKhSiuXFk4RFh0BQZmHRYGklTyKZxJVFFDlEOBpjYXmW4YEduKkYxcI6CBaxlhZkx2OwK0jVacfe5qdtftrmp8bPc5uftmu7vp/qXd/4i8U01io1LlyfZeLmKSZWiqiyjBKUiQgOpUKFTDpMMimRDGtMTs8Q0WRExUaslglHE6hBjagi4hggSQrtyRDvf+AEE1NzrK6s8UbuOobu4jTe+UTBV3UUVUEJhhFEkeWlFW6OT/PB9x0lEVFYnVtCjgjk8gbPP/0800tZBFEglUoyP79MUdfZ1dfJ+GoVvbYKsoRn+3/Ypuvg2A6O7d/hd10bUZKZmZzErJURsFDDLaQyHSQTUbAN7FKZTCzCpckblNfXWDddTp2eoKM/waHhXkRFoD6Z5eZ8DmtxiQfv30spl6NSrrGcr5BqiTAxscTa2lPct3eI+XKdtbJOqVrGxkKWFAKigKUblErw1vkbXL2+yOzSOvlajVLNxjFtAoqEKGqsVwqcv3KFA7seIdUygF23sfQyJ08u8Oal6/R0djBctUjH49SMGhdu3OTzn/8GmpbmQ0/eB2YdW1F4+bVLrOerfPTRI8zMLTFXOM/hXR0oZ1XS7WnuOnEn8XSG6vq6H3wqeQQUibHJApFkEtNyyU4uYzsrhCIR3vvA3aQ+8l6KhTK5Ug7PAk30KBWqKAEYGG5HsHr41rdfoLc9g246eKJ/bGpbGklSQAsjKB61tTyt3R0sLWW5fmOC2ZU5XEfCFVxsJOamV3np5Cn6+zKMdGTQSxaBhIEkBikF6ui9rVy+nKW/q5u55Rzd6U56BgdYnMuS12vcyK/g6DAxOcb1mkFsfy/tqQSlcg677tLdFmXgwE4WBYmr2Xnyeo2QaxEydAb6esguzXHkRx5FDQeoTozz5sw0O4d34imdnJt/g8MHRrArOmcvnmVw5yDpvk4yO7uQwhrzZpUrVyZ5+PAOWtKd6OUqyZYUD7/H5MDHFxibnWQlW+OVt6+SiXXw+swa3kKdwzu6CA20cK5qMOiZdA93oHb1094RYvbSRcqOwQuLWXoQGUkoxOMxpGiE1P4RlOlrXCoanL42xXvuPs7S0gK2IjG8dw/21CSPOhalssXY9DQDo/1oioBYz/Oxj7+H7HKOWFDmyY9+mP/6ha/zrW+8RDUgIQsKtaqFaFX41snLJNvSHDtwkBN33U3XwAi//o//P+TqJcKi5GfxuA4h0UQ3PQr5AsmDvaxMzxEJBXniQ49y4fTb7OzrRlHC1PQqklZHCsYQ9Ap6JY8iOCQSKfAkdKsOhoEkyAiOy/L8ErZusb6cQ1bKxBJxAgG/O1ssnaKlows5mOQz//r/pnMqzj/+9Eeori1Szy8Ra+ugtXcIvVzENauINoiqguSBoGqYlo0j+AqzKimoqoqLD4aiJFEul/0smkAAWVE3IMcVRJLpNKlMC+VSibWVVcqVKqLkoQWgb6CD3Po6E7fGWF3O0t/fR3t7O1ogiOW6SJIAnovrbckwAT8oGzYAVBBcmgHGWxdz+/kxIq7r3KYWu66LKIjYlg/IgiAgiAJSA8AM0/BDmhVfFZYVmYAXwLEsXMdBkmUCmoYgiZimhes6G2ruX6YON2F247w0FNem+ut5AuADueuBYerIkozkyQjiVpXZuy37xXVdXMdt2IU2AdEfH5pZOH9ZVzv4y3JgNrvg+dk2W8KiPe8vjuGB41kbFy2Ct2UMz2sA5e3H7zXl562B1Bv/t5mxs1XZlmUJURJx3E1A3wqt/kWKe1uGz3Z97+vDjz2OqDpcuB7+oeOneFLzT4JtYpeq2/z0A8RP5dw6uguXb05u4ackg7uHWZzLUi/XmJ69hmPDxOQ82eksowMp0g1+KtYj9LZFOX5gJ+vZNa6OzZPXq4SCCiFB2uCnh+++CzUcQLBNzp87x87hnYTDMaamr+CpD+BUdK6MXWGwZ5BQSGNgeCeqa7G2vsyVK9d5+LH7aOnw+Sm2Y5SPDw7y0L37b+Onvq52bs2sMb1a4fCOLoKawo2bU5hmhe49YUKyzfDBg8xeusji7CJvvHWJns41Roa7iSdj1KJxUh1d6EaR61Pzm/yUXyAiy+w+uIexqUnau7b5aZuftvlpm5/+566bN2+qo6Oj+15//fVrJ06cqP//O84dd9wxsnfv3trnPve5ub/O+W3XX13v+safpoJdt+iKBgnt7Ua8KZNMhSkVquwf7kC3S+za0cXb56f54jfP4dgGv/7LP0oilQBPolrKo4YieKKAqIDouSAIxKJh9u0fpVgqcHNsjmLJQsaXqUXBRVFEVDWIpAWIhmO88OIzGFaVRFTDc6soskIm1UZrSweWLbL63EvsHR1Cd6ssL66jKSpT2QLlUpnOlgTLpolr2eC6eIjIooQsyTj4Aa6e5yALDu2tKRBcqtUimZYM0fZOTFPHrhQ5deo0v/fVNzHqFe49MkpQdTgy0k9UEYmnWzCqdQba4yTSUTxHwrC62Lmzi0AwhmdZWI7D1GKeejHP+x45xIljdWq6S7FSY22twOrqGtMzC8wvrVBywLCqeLaFLCuENah7Nh4WrucgSTJXbyzwlW+dZnSom1uzS4xNzlAzPGq6zcRUjpOnrvPEg3uJhBUODIzwqU/+BH/whWf5zGe/RFAKIKoikueRSgT5D3/2bVaLOq2xCGPjM1QLNgP9LSTaM8TicRyjSizdQt3QsU0To1Zj/4FRsvPriJJAIhYkHA5SLORYXp5nbGKFUDTMod39fPvFs0SCHvfcfZBkNEUknuTjn/gIRmmZpcUcsiihCRLjVy6SauuhWnNpb0lQtGpU5hf55itXWM3VSCWCvP+BQ9i2zdUbE/yfv/clcvUyv37swyznSvzxN/+Qjzx+gp37DjIxvcC581dIpDN0pk0y0RBqJEixuI5j61i2iBaMEdc0QprMQG8bkgDBYJBQsIfB3h3MZ9cIx0Mk4kkWswXa21NcGZ9ipqAzu1rDcQx6uhcpWxY9PYPsHN3HzavnGega4X3vOYFTK7KyWkLyBMYmp1nLFajoBm5NZ3i4hyefeJzFmRuItoIalqmsLFIqV+nsHWA0qNKdKpMKi0jAx548wdeeehvHM0l1d5O/PINhilx9+yJrpTe458RhRvceYH15gfseCXD90jUWl9d8uMpXaO8ZYL6gkVurcGjHTlq72mnpbGPsymUKhRWu3ZxiYiHPhz/4EFfPnKO0kiMYCXDz1jiCJnHoyB3o1SqKK/DL/9tP89B9R/jGt17k8qUxKvUCUTnMek1mYXmNY55BtbhGR1uGhx97L3/+xS/iqAACgivj4OIJJoZl89ZbN7A8m76pLA8/eIyPvO9hHNekVMkTVFWsUh453o4YCOKVDfRynbJeR9YCYDtYOjiewMrqGq4nIioaaiiMiIuhV8ANoAXCyIqE7bq0dbfxgSfey5Xzl1ktOgTDCcKaypuvnubSxARDfT0c2jVER0cbom3hqEHMuo4WCCMoKqbtYtq+HUJVVDRNwXVdEvE4tuNg236gs6qqSJKE7VhYpgWOSzgSIZaIYxgm5VKJ3HqOfD5PPBoh1t5BJBZGaYRA27ZFQNN8MMNXTG3b9mFPFEHwO67JsrRhY2mqm5sqcROO/ABnUdQ2xjBNEw/Pn5sAmrb5nNSw4niAbftQ1AxF9sOZ/bk4DYCVZT/sWlZUbNvZyHzZCoNbQ6Y3rB6uuxHs7P+TkGW/g1zTZtNU3Jsh0CDeBo8bEOk2wrebdhd8i4ckcRtAN1/ThL/m4yZMN+eyaQnZPH+C6AdEvxOC/QsGB8/zlXVB9IG2efqb2/qrpPy/A/9/t8Nzs/z9S405bn5flKRGFo1325jN7oWiKGzYlrbr+6Mi4RquAV3Rlh86fkomRgAQo3Ecu7DNT9v8tM1P2/y0zU/b/LTNT/+N5TgOV69e1c6ePRsyDEP42Mc+VmxpaXH+31/5/Vvf/OY3x1VVfXeZc9v111Lv3urrSiTjAdaKdSzJ5ej+PlpTCoocZHZ+DVEK0tMzSKVsk2yJEU/GScYTRGIJLNPBsm3/D1ySAJd6roJeqSBFXGzL4ea164SiYTwhDzi4nohpgmF6eBJIUhjDMjl98QrRcBhJ8hBciWAyiu1YxFItROIpntTuxSgXicU6Cagh/u3vf43l1SLBRISVXI50JEpAUnD89yEkyVdCBElGQMR1HBLxEJGRYQaGBjB0HVkWMEslgokYY3OL/N6fPc9KwSYclTBMk0P7dtPV0YUo+R2TOnp7CJUrOK7A5M0p7rzjAO0dXeSW56hZAlo4wP333sHUzRtcvniZE3feQSCk4hgm2SWFxIP7KFVtvvbUK7z46jmCmobrSHiOiW472JaLJIIsged4GJ7HyXM3eOX8NUQ1QCoaIhCAqmGxWq5xYFc3Dz50B7IcBVvn2OE9hESbP33uba5OrCE4NkalyroDkVCQw20JFDlO3a0TUC3KlscXv/JtZEWmPxOnpztLprUDyxVRNIV4JEZOKRIMyKiiRKlQIJaMkEy1g2VQlRTiYZmD+wYoFcsIhkUoKGMbOvFoFDcWJhxvo5Cdo6JXSCXiTI6Nc+b6NEEtRCIZJqSEQQ4QSwpk83leOX2TG5MrlGoFIopCwJV5+oVzzC3mCYUCvHnpGnnD4tjhQySjKun2QTRZpFyqUKqUQLAIxRWUgEfUTrK8skA0pDI/t0J/Vzuvn71JOKaSiqRIJDNoAZn17DJ79+9AkjyWVgssZJewnSr9XW1cvD5JojWOMjdPODRE765D/MmffZXjJ+5g+dYS33jqRSqlGpIr4uD6mcCWw5EDPdxzdJT+gVF03URGoVLIEgqE8ESVwuo64WiITGsGEZlINEpHeyuBoE2tUOLo3XuYGhunZrsszS/wnWdzvO/x+wnFIuzOdFCtGf7vdEc38+O30Byb4T07mbl2A9ssUyqu097ZzdF77ubGxfPMrOQJKjLzU7Pc+8C9iKpGOBLjkfc/juQYrM6OMzG9yEBfD+WlBfZ0pNj7D/9XJifneenl13nttTO4tSL1qo5pu8iKh2DpPPaeE7z8/DNks2UUFQIRP3DZE0QsBxbWiriqgrGwTu/lK0QOHSPVmkANCNRrdUKKglUrIoSCqIEw1VyBciGHA7i6S7FSQQ2FqNRNDNsmEolRrtbp7uwgmYhjWjq1WhEQiITjlEs15ueWmF8qcWliie7WBD3d7ey+8xA1LUw1u0i9XsFz2hibHqOjPY1tC0h4xCJtyKoAiBiGgWmayLK8YfXwgVLwLR+Og4OHKEoEQzKW4Qd/i46AgEQiniQeS9LT7VCrVUHww6CFDcuGs6GaKqKM28iVsW27kTvjByT76u3taqjnuVu614kICFusEh6yLKNp/mocX+m93ZoBfme6TWV4M2PG9UCWZQTX2ehUp9d1LMsiFPZAEJBlPzC7KcFuDYbehNStyjBbnm/mzjiNMcQN1bgJ6E1w3LCRCAKu5zOQ521aUHzIBc9rQL3nd4Tbut/mts1jaZ6jJlA35+Z3MG3Cpk+km8r1JkBvqM6N1QOSKPlZOy547ub2jaTvjX28035iu/4KBKGhanuuh2s3c3S27I+tkHp7/s92fe/r+ZP/ikdP/B5rxfUfOn5azvu/j5qmks1Xt/lpm5+2+Wmbn9jmp21+2uand1+WZdHd3b1/ZWVFaX5veXl57jd/8zdXvpfz+u+ttra273rjUtd1IRAIbN8Y/Gusd33jbyVX5e4jw7SlI1hVj46uGEE5RjQWItOeRfZUookww6OdHJIHicTiXHj7TXbdcQJZ0fyl4qaBY0J+dYWIqqIGg8ysrHPy1DjnL82giQ6IEq5Tx0PB8jxM18IDwuEQV65cZSVf4mB3J5FohOySgaDXGOjei6fI2LUisVQrejiJLFrs27OTv//pD/GfPv8dbk4vIUTD6IZFUFPxXBtRlFAUX1HyA0El8BwG+7tw7Tg1wyaghllbXyMg1zEsg4rtIcsB7j3RCbbDUHcrYaGCrIogKwh4dPW20WG3IYoWu0Z7cU2DmfFbJDMxFsducOz4UfK5daZm5njplYsc3LOPeCbMar7CjYuT3NOSIUKFT/7Uk1y5PsHKag1PtgEBx5AQRAdPAMvyUFUdV1BxBAfRdlBEl3LBoO5aZDJx9qRCrK1UWF+vsWN4gEp1HdOogGfyyY8+wpk3TxOJxnjuzA3KZYuhwW6qVRNJE9nT0YfsOdiuwUhHmj//9mXyhSquYHP68jQvn77BBx45wpHD+9h7ZA+ltRyFtVVWslUy0RgtrUmiwQBLs1mujWWZW5qhPZ2hVLV45tnX6enuZveeAay6QzAZwbDbcFfWWF1e5tbkLNdn1llYmUJTReqmjedYKLJAUIuSDebp65TpaTvE66ev47oVrk3OoogBThzqYKizE6tQ4OR3XmK1WmNx9RXe/7576OrsJNPRTr2QR1E1BCyqepHW1iThUAghGCLoWhw9PMjE2CIra6to9Sq1YgFJCtDeO4hr19m7e5jXLt6itKJzx+4+prMVViYWWQ0WqTkm+44cZsfoLv7Fv/pDkpk4tmnheCKyLOF5BoIno8oi566voHgy+4/cjWauopfr1AyThakpWktVsjOT3Hn8HrTuENVSjlAkjSbbLGfXePX1y/zjX/kZWlIJLMcB26MtncRzBDwbSpUFulqTLK9XuHLmEu0drXz+y1/n2s1lkqk4x/aOIJgStVKFSCxOe/8Iv/53BzGDCV5+5nneeO1NDt95mL6RPQTsGooUo5xbxLg6Qb2+jlF1GC+tcmv8FEM7O/j4R97DIw/fw1snT9GViZJfW6GlvQOrVqAl3cEv/PwnGb95kzdPX2V6bhpbTuCYNggSIVkiFJRpjQaoo5AvrSCpkBRb0CIxasUyqlgjHAxguyaOp1MplLh2axpZCxKNBGlVNGKhMJbjogUCaJrG5ctXaO9sZ/fITgKqhl6rUi/nSUYj/K2f+1HOnr3EM8++xtWQxI++7wEy7Une9+hxBEcmvzpH1XIx6ha24SAJLnq1gKjKzC2t0ts3hKaqBFQNx7GxLRtEgZquIzfCp5GbCquvBmtaAEEEyzTx1UXP79KmikSUEP5CHgFJ8PzOctDo4qYgij6wOBsZND5I+R3SPBCcxnua7IdEixKSCK7j4lg2fri2vzKnqRb7neGaAceb8OPzUMPy4voqqevam1DrediOvZFBI4oimqahKgoeYBgGtm2jqiqBQHADViVJ8oH3L7OIePjqesNuIwgCkqz4YdSNqflwvpntstWq4ufR2BvQ7Z+jxtee390NrxH87Pmh0s1ttqrPWzNp/jJLi+P6Heg2zlZjLk1v0DuDpf1cGxev0f1UYBPY36m6C54Pu/6wEj7ZCr4S3sgY8rdhyxib0Lx5DJs2nu363tfSyjG6Or7D3n3xHzp+KpZqAFTyebz0Nj9t89M2P23z0zY/bfMTzUlt89O7KF3Xxa03/QAsy/obn6TjOPzmb/5m2+c///lMNptV0+m09dM//dOrP/dzP5cDGBsb0371V3+159KlS+He3l7j3//7fz/zyCOPVAGy2az0qU99qvfUqVPRcrks9fT0GH/v7/297Kc//elcc/x3Wn27urr2/fiP//ja+Pi49txzzyUfe+yx/Je//OXpv+nj/GGqd33jr68jTSYVoC3dyd6H+6kUioiKSigQo2tHF2atSjVXJpFq4e3XThGKROjpH8ColjFVk7AWYmFmEkXTKJeLRHoGuHD5Ot9++QLnJtYIaFF6W4Mg2khOEAcXRNf345sGSCIXLt/EFgSGBvpZLxTpGxokv7rESnaGcKaX02+f4fCuAUKpJHXCrK4tsF42+Ns//QTTs1M89+YNjJoNoq8E4QjEojGkQBBZBFwLw7ZYnp/FsMqcvXidcCjMVHaVlBZg9+5+YqkYnR1J9vbFmJxaZrS/D0GxuXDqLQ4dPYYYjqBYBuV6EcULsb4+jiKHaU/HkQWJge4MuBZPf+kZ2ruSPPGB4zz99Es8+NiD9HR1cOf9d1CpGcRirWiOySPHD/D7f/IyakTAcXyQF1wRRfRwZAt/7b8FrowrqiC5CLJIyPb4yL17Mc06p+qT5NeLuH11lICCZ0h0trYzNjnJ9NwK0YxHJBBidn6R186MkYqq3Hd4iMM7Wtm3ZxTPcZlfXubv/612rl6b580L1zhzc4FdQ530pZL+B6AcQg1WkCWF9bqOkF1heb1EKCRi2haeJNLZ0o6syiwtz7NUtLh2a4JnX3oNG5WA4nBgoJdMewuJtgxDe/cSbi3iWXVkWSEYDZGIxnj9jQssF8oMd2fY1d9G744u+rpivHH+FnPLJUKqjIdIIBhkz74R/uTZ15mbzfPQsSH+8x98FUkOcfzILo7csZe4IKCqIkI8gl6rUKnUSEeCmLpEKlQnua+PuuUS1oKIUYta1cCzHapWjaAs8YHjx7g8dovx7CqG4cONHXJZXJijNRbmgbtHwH0f3/rW21iCjSNJeI6NLIawMLE9GdmE82OLTIxdpad/GNuuY2OxZ88+KtU8dz/8EEtjk8jxIJahU61keeieIzz13KvEo3GMQoG23j4q66ukwxmuTN1i5UydI4f3EoulESsFqlqNKcPmy3/6IlXDYPfIEHuGuskkIwRjGsvz89BtEgylCURaCVMn2RLk5qVl5i6fJxUK0DowjKi5xFItHL//BNmFLBNzV/nOa1eQ5BCvnz7H/ffs49Add/Ghj/8oXj3P8vwU165cYc+uEQRlnUN79jCQTnDi8F5m52bRdYdCscSFa/Ms5XPYjs1qvswOoQNT13Esg+XsEtFkjGgsjSh5OLaO7UgEQ1Eqeo2J+QKhhMsd3R2oAYmhwS6CwQCW7aAEQwwNdFMuVymXy8iiQCwax/U8KtUyOEUevf8Ih44d5OLbp5FUEdfxqKxV0cIh0m395HPr9AwNYel1TM8hpqpMXb/M+MQUk9dvcn18hvvvuZv+wX6iiQSmYaCI4DoWhmUjuyqirCF64BgGtighqgFUQcI2DCRRwLBNRMG/iHYdAdcD03H8nKYG3Dq2hWkbaIEA0LR8gChIaGrAD4/2CQnHthsqdiMnhs2wZtdzcF0Hz/OBzu8C5yFJAq7bCLSWJH8cx96wfPjbbYZIN/NPvAYAOpa1kb8CHgFNRQhoWJZFrVJBURRUTW3w5GaGjiT5H0GSJOI4TfVY/AuWEVy3YSX0Nqwusuy/dut2PsD5n1mO42A15iXL8oZdBFxEGsfo3g6vW49xw1ayBZI3nocGsLLlfPgXEf752syl2XpxAL7qfBtUup6/agoB19vsUofobaj0gqDg4TWCwxvh2M5m5z9Rkvz9bNhdtgXS77dKxrQfSn5643IU+HGmJqY4HKts89M2P23z0zY/bfMT2/y0zU/vvqLRqPu5z31u0nEcPvWpTw3+j9rvL/7iL3Z94QtfyHzmM5+Ze+ihhyrz8/PK1atXA83nf+u3fqvrn//zfz6/e/du/R/9o3/U9TM/8zOD09PTlxVFoV6vi4cOHar92q/9WjaRSDhf/epXE7/wC78wsHPnTv3BBx+s/VX7/OxnP9v2d//u3136zGc+s/Q/5ih/uOpd3/j7Xz56N13t3QTiIRxbRg3EWV7PUdJsCksr1CplOtpaaOnfQUE/Tb2e5+idd7K8soBsWKiewOp6gVAojOW6jI2NE5QgFY9x79Ekh/YNkonE+Oo3Xme1pOMJfs6A7ErIWgi9XmV6YQktGESRwBUUXM9AUzWWl2s8/5XPc++JPZTLOV566xwr2TKnb8yykCugCXDfwVGS0TBXl1ZQEjKCJ6NIAaIBl7AqICoyguNhGhaVSp6do0NMz2cRHbBcgVxZ59q1eTyhyOL0Aqdqawz3dVOpr2EXy3z722+DVUeLxjh48ACrY7dYnF+BoIxeMTh4535SLR2MTc0Qjan09bfzzItv8A//4acwyjXcegUxKKKGgiixMF/885cQFYFoROITH7yTfLFENBIklyty7uYc2WwJV1MbAbUimhrENkx00yKmqliegmEbaJrGgaEuIiEBSzRQkFjJLfHUi6d4+/Ic08sreFfm6G5Jc/cd/ahiiIP7hllfW+PW+ASK4NI/Mkx7JoXtOLR1lZl9oYIqyaysrhKKBQknY6zOT3P93AX6+4foSCeIR+LMLWRZyVnUKlUURUMLxKgZFlNLVXraWokFJF44eYVSxcDyHE6fGycYV+lr7WS4rw1Tr9PWEuPI/l1Ynk3ZgoplsJarML9S5rk3rvC/fvxuutpS/PLf+jFy5RK6CS+88BZV0yIUi/GBe+/g2vQcz79ykYMHR3BMge+8cZ4bE7M8+d57GRjdgabZhKJRRFGmXF5FDsloto1rmlh2nXyxSDgeQtRdSqV1KrU6sYhGKOaxf3c/5WIFx4FwNEwmGSEZCxGNhSgsrnPi4G5Gd3Zy9fokz337DDVJRDcsVFlFcF1qbh27avGd51/mgYdULKNASzJNObdKMBqnVqwiR+O4lkNrRw/r66tUvDqZdBI8j7X8OhdvjnNg324mpsYoFSzmVrLs2zvChVtjLKzmOX99kan5Ep7k0JVJc+f+ITqTIQIqSGj079mNY+iU8wsEgiqCFGbv8DBxSUDzPK5duUIoGifWn8SzLGRVoWtoiBszWYyqRSzlsG+knyN7Rrlx6SJL2Rfp724j05GhrbcPS1KhlEdJeETa22B1hZ1Dw9T0GqvZBTTRQQ0M4yJQrdZIp+IoisbSWpFS2SK0kiMUWSKVaScc0LAdsPQqnqixd89OurvbGBzoxtANCsUqgihjWza6WUHTAuTWVrg1NkZfXy9STzfhaJRIIoZrhchls8RSSR564B7qlSq1WgnR8XD1GlW9hijJJBKtFIsFDL1CoaKDpDK8cwTdcLBMk7dPvcnY+E3uvf8+ouEI6+urrK6t0tfXhxKJ4boCtiAgKzKC7SIJAqKi+EDieQSCISyzjl4pA5JvmxNEXNtBkEQcT0BRVXxUFLBsp2GFcXwrBB5SE+K2qLBNu0oTFhEEREEGQfJf67m+Giw27BSChCj4XzuujSB4bHZ/27Ss+OPenrmiKMpt6rMn+NClyAqaGvBzaCzbl1Y3YEzcAGd/zsJG7oqfpbMZKL01aFlV1dtsKs3n3C3Q6KvOAoLgbIwjCAKCJOE4Nji3h3RvWj54x/m7PYgafIvO1sf+cfvH6zXsPV4DbptK8m0d7xqWGsETbxujOceNrBzbh3V/lcHtKrcoighSQ3l3XCzLQnD87bY70n1/1t4do+wc1X/o+Ml2/b+zyakVjNrFbX7a5qdtftrmp21+2uanxrnZ5qd3W5/85CfzpVJJ/NSnPvU/ZH/5fF783Oc+1/Y7v/M7s7/0S7+0DrBnzx7jscceq9y8eVMF+KVf+qXlT3ziE0WAz3zmM4tHjx7dc+XKlcChQ4f0gYEB65/9s3+23Bxv9+7dK88//3zsT/7kT1Lf7cbf8ePHy7/1W7+1/Fc9v13/ffXuu/pmYkRak1QqRYqLK4DLjYkZlpZWOXxwmFAySqKrHTUcYmTPCNfOnadaqyEJsLCUQ3dW8QQFUVbo7uphfnyalrY2Pv6REarlFRRZIxRWiIaCrBX1hooiIcoyQS1MuVIhVywQVAWWsvO8ceotPvD4/ays5LkwkeXm2DK27bG0vEY4EuDOvT184O59nLw6ha7nePDoDk5PZinpOqIlUnEcQppLQAuiBSMgy7iyQFBxacskKJfWSAckWlIR+kZaOXt5Cb2cp7e9l2tjq8yv2gjSKo88ehd2NcroYDtRUaG8ukalWiDVkWF+Ncubp8dQFQiGguw9rBJQQNOiDA9FmZkaY2lykr6Bdlp7+zjzxhUCosetqVm+/OLbyIJDrV7hnoO7eeS+gyRSaU6ffJU7PvEIpy+McXl6EduSMCyLfLmC6hkonkp7S5Ljox3sHxkml8vTkkyxXtBZeP4U/cOd2JbEqQvT9HYmiSQVllcqtCRDKKLKgaF20irc+d4H8CyH9WIRs26AZxOOtbJ3zx4++NAil28usLC4zq3rN3jkPQ/huQ6iB9V6kcXZeSqRFQRF5avPXKRYKBGPKrgo6IaNDQx9KM3du0aJJsP8ly88j2N6lDAxTYlLuSlsW+forj7mpxdJp0IsZ2s899YN5pdXMTGwdYH333eYg0cOI1pVRL1GJh2hVHX58BMP8Z3nnuXMrSXqFZ25pWVsT+St81NEggGqNZO3r4xzY3yKOw7v4uMfeRi7VsewLDq7e1G0AIGgSjlXxLChWCqxuLLE7pEhbo1NUa2Z9Ha209nRTrKlFRBwLAPX0nFtB8cTQBQxjTqmaRAIydx3bD8jPe3o5SqvXZrk1Plp1ktFwqpIT3uCrvYOXn/5VT70o+8nLHrMrue4ee4KLe1p9hw+RG5hCdG1CQVCnL54g6m5FYb7elnKV1ADGt94/m2quomkSlyZWOLa//nHGI6FYQh4rkBADRBUZHrbouzf0YbgQVWv4jolzLxBrLUDQ69hlgpoKYVUVzfhVBjBkNHiaQzTxCuuo8YS2KZKtVzjwYfuIpRO8F8+91VOn73G0cOjRKMKaiCDY9SZnRyncP4yd93/AP3DA6zMzuGJMo5rIqoqyVgbrqCiBCLUymVwbSTXRRJMAlqEcqnOtYlZVvMlOlsTjPZXaMukUMNB9LpOPJ4mlhTB1ikV8mTaO8ivr+F6HoqmYlkW4NDd3UkhnwPHoVQsEomG8YBILI4sBzCMEq6pEw6nCCfi1HNrVGt1FFkmv5JFkyVSmTYsM06pkMcTJOqVCt2ZFKFQiJHBXsLRMHa1wKWbV5FlFS0QwHMdapUipgXRVBK9biILIpauEwgH8QQRSZKRtQC2ZWJbNSzHBE9AFGVAQFJlBElCUDYzWhRFwXM9PFHEaSi5juOro80MF1ES8dwm2Il4DQXYcf3MG1WUkEQRQVEwbV/hlETJV3VdtxFK7YK4Caj+PvzAZNt2abKk4/g2CkmUNoDTsizfciGKOI6F1FBUTdP0lVVcXM/eAN6mEiw2xmjmxDS72zWPrQl17yzBPzlIggyNnBpREBuqr3AbGDYDnx13U/Ftjtuc/zv3sdWq0vzXVOi3Pufn5GyCsIdvRVIaFypb1XWPRsc7bn+9bzPZhPfm61zPRZC2dvBrXIwojXykxqqCd4L2dn1/VCgVQ7cKP3T8pMt9fP4r4Eg23V3b/LTNT9v8tM1P2/y0zU/b/PT9XhcuXAiYpik8/vjjpb9qm8OHD2/cwOvt7bUAstmsDH7zml/7tV/r+PrXv55cXl5WLcsSTNMUgsHgdw1QPHz4cPWv6xi26y/Wu2/uUdb59tmnSKY7iIYhGopzx8FdLCeDRFIZopEQer7KzPVT5JZXGN45QH5tjsvXZqi6Hm+/OcGu0SF2jXSxM5lgORQikYliuyKa1EIgqoArk2yJMjG7hKTIWLZNsVbCsassrlSoOh7dqQxH9o+wWq7y1LfPEowEWVtcpqUlzKsXJqnUyzx59z6+8sJFZhfypJJR9oz28aUXT5GOBDg03MriQo3ieh4tHiYSj2MLoEoanqRyfWaZV1+8TCgWRXLKLJRMro0t4ro6h3d2s2e0D02SuTU5w+59w5g1h6Aa4v0feITlhUWqrsOts5foH+nn7gfv4caETk93iANH9/PGa+fo6EhTrJaYmZyhqzVDpSbSv6efL/7xF5BEhYc/8ACFG7NEQiLdrd3EEyq7+3zYnLw5zh3HDtPfP8CDx4+ysJrFNQzKVZOF1Rz/3y+8SiQgUy3UEFWFSFSknDMQtCgTkzO8eW6c+8p3cvTQMB994ijdiSQrK+tYAYXvvHiFeFSko7cLWXIRPItK1VdGPQQswKxXiKQ7eOiuOxnZs05uOcf5V04yffUKsqzROdCKIEU4dGQfly5O8MdffZNCpYYsy1QLFRRRxTEdotEgk5PzzE0vEYglePzhu/nzb72BrILg6Xiezc3xRRaya+iuxunxZVoTQfJmDRuF3pYkombTlg6TDIsE4zuo5LJMjU3zuT97mg986BGe+MSTPPPV1zkzvkrBsFFcAb1mUipWSCY0dg/vJiw4fOyJu2lPJ6kH08xNTaJgoUgaSrwVWYnQ2R9kfXGWmZlp8qUSq6UyPf1taEGF1ZUicwtrqMEAwYBKJhVHkBQUSUMUZNSQQmF9lXJ2nVrQIhJL0NbaSnt7GyOdLcznVsALcf7iTcRYggd29mKvL1OVY6Q7B7CUKNPXr1KovUVnSytaJEqxplPOFxkZ2cFQb4qCpWAXSiwbIS6duUo2ZxEMRpE9F1mOokgWnmMRCQvcubub/Tu7sc0agiRj2xDSVArlPOZUiVRvP54SQfREwCaitVKTq4zNLZBfXuHB++/FkTU0VaWey6LaNe7Zu5MD//yXuHFzGlWJkmiNYZgWNcNCUVW82XnGb01w/uItzl6+xkhvBwNdGVpbk5ixKJn2NvoGeqhVymQXFhFX13Edm1whj2GLBENhxHKVSsWgWqmQlwVaFIGopmIKNkW9Sq1Sp1iosraap6u7G0ULg+CiSBKWY6OpGrv37KaYy1MuFJgzdbr6urFsAy0SRQ3I1Col6vUaiqMSzXQjldYwahXaOjoxjDqVtXkCsRQdnZ1UK3Hy6zks28JwPFQtghZPU8jlCEfj5HI5PAQK+QLpTJr13Cqz01N4rstdDz/EUnYRx64SiMQxTR/qlGAExwVsh/XVNQzdQPA8wpEQouCRRyYej6OqKlggKzKyoiA07BC+YroZTu06NFRlP6BaEkQERGQJHFzq9YoProKEogVAlHA83/4A+DkskojrNw+9TT0GkCUZ2zGRGoH8TVByPR/UZLmhIjsOoiD6eTaCuBGsLckSqupfXIiCiOs5zWSWBpzLDVB2aUTiNI7RD5DeGioNjfkJArh+8DSAKADe7R3ntgZjN4/HcRwkyZ9P83tbx91qK9kKhs3xNkG2CZ0CLoDnblhPbrOqNKG2qTxvAeet6vrW2tiv4+IJIDRf1xhHEv0A7q0Q/f2sXP8w1puvvYZRsn/o+OmNc6sM9+6it8Xb5qdtftrmp21+2uanbX7a5qcfgAqHw/+vd0AVRdnYpnn+HMcRAH7jN36j/fd///dbf/u3f3vu0KFD9Wg06v7SL/1Sj2ma3zWbMBwOf391VvmfrN71jb/Tl24iSiqpaBBZUzl5+ia1us7Ccg5RusKHH95PNBwknYzQklQpFA20kEIyXiEpyXCHx3MnJ6iaJXbvGWTP0buYu3WFWs1mJVeiXFilr6MNUXIwPJcAIo5tY+gWliiwsLiEZwpMZBf4o68t8pEPHCOfM/Fci+OHesiEgtyaWebzT73FM29dQ1YlLFklGglwz+EhdN3hwvU5Lp6aQRU1ZAVkUUHyZCIBDUGT8CQIIhKJhjl55gLHDg7x3Cs3yedqtCVVDo0orC4u0prWqNcSZNJxpLCMJgcIZ9KIoSg7EwkuvP4Wk3M5up0Ad9/RQzgRo1Qu0tqeYrVcYfLkNY4fP8h//fNvsX+XTM9ykvc/cIJAS4qx6Xlu3pihK91CR1uM44cG2b9riLVCnsqyRyisYmFjewI1T8a2TOp1g6P7hvj0RyrcGJ/nyvg8NyfmOLinD0EJ8odffIFIIsVq2ea5U+cplZc4sHOIzr5e+nYOo+s5BjIJwpE06ZY4CAK1YhHbczF0CU2S8EwbUZEw6mtoiRDDsRTKqEquVOfZ1y/TFgtilErsOzhKsLWV1y9ep1DTUcQACC6uI2C5AoGgSEATyeXruMDa+CLHDu9i765ObowvUXYdMEHEIl81CAV0Vm2BbK5ISFF58uGDjA528JWn3+DW+AzF/A6CLV3EewbpsT327hmgupqjJ9HG3/7kE7zn0QXefvsi3a1pqq5JOhSmf6gXvVzCs0WkUAjLsjH1EpGQQHZxmZ6BGJZTIxKNYOgWydZ2tEiQsBpGCyhcvTFNdDBBz9AArmVTr+hMTc8yMTZNKhmmLR3HMA1008ExTfq7eqjWysRbA+i2h6wKnLjnBI5RplCs0JkJsLy0RvuxQ2TnZ8mEZSpujQNHj9Da1snY1CSeGGRiPockKbT3DFGo6lxesihl57n3rkN88t5+HnzkQZ7+5ivcGJ/CsgwOjHQw2NmCbehIskBnexrRBUUNc/bCae699z5cz8au1LCAUKmEHNdAVvEcC08U0JQgO3YO89TVG8xM32KHKqO296BXayixGMVKFcET2b9nGFGLg+tSzpcYO3OReqWCILrMrCzw9vkJNFFksCOBp3rotknQ9KisruLFYgiKQltXJ+nWFoq5AhOTs5SqNVpTUQa640SCIVItKQKq7EexWBaS5KEoCrLiogRkatUq589dIhqP0d/XQ6Y1jYSEZdogSrS0taHIMqVSHtt2kD1wzBqu4xGMpTANA880KJfzaMEoSiCMpVcAB9s0MOoVRHxIiCViKIpCIpVkcX4WBYdMMk5nWwbbG8J1PSzTRNcNenq6mJ+eYWZmhjOn32Z09y4EQ6dWrRAIxXBdB9cRCIYiBFwPTdUolcusraxSr+vk1tcwHI9oNEokHEZRFEzLIhqLEY6EkWWZYCBwm8rreZvg6roeruAhCgJ4ErIoIYUULFPHsgxM20BRVARBQmp015NkGadpv/BcJEnEdb1GLoyA49h+CPYW1bepmkuSvAllooftOL4qK/rarKIo2LaNI9iIouBn6jTyVkTZRZZkXHzwdL1N6JMkPxPGh0XXz3aBDYAThE1o9WgEXrubGTZN9Xsj42WLtaZpd3lnMPVGcDZ/ESZhq8os4Ll+ALgHCCKAiOiCLPmd+QRBQBDZ6AyI5weHexvWnSYUbzLPZnD4JuA2aJVGKBENYn3HGH+5sr9d37uybIlUVPmh5Ke9O/8pmfRuVheNbX7a5qdtftrmp21+2uanbX76Pq+9e/fqgUDAffrpp2Ojo6Nr/62vf+uttyKPPvpo4ed//udz4K9unZqaCuzYsaP+1z/b7Xq39e5X/NkODz54gLmpOdRQmlytyvJynkQkzp137mDnrv1YeoVaPY8LtLXF0S2bYDDMerFAvmrT0ZVCQOP6+DSLb03jVLIMZEKIgkp/bysBXGTRQRRUQMCwDao1G8sQWVhdQVBVLL1MNJ3i9OlbvHFpgo8/epxiLs+KKtPR3sLPfvg+Tp6ZpFSvEI6EmJtZ5tU3rzDY087iWo5iRSeiCgQ1Bc+1kWRQwxEEKYDqeYRUl1BYwpQkXj4zztpagY7WDImExB88dY6elgA7O1t5/L13UVjPkV+vMzo8gOkIzM1kqd2cIh5Pcu3sZa7cXGJ0oBXVcCnnynz7jessrZY4vn+AcECipy3D2nqOhKLx0unLvHb+Fqs5A8MFVQ3R2S3Q1dUHKFCtoioB1FAQQfa4cuEK129Nc/edB2ntyCAEQ5zYO0xXMszCSplrY8t89o9fpmZb3JxdJrpeQZE09vVm6OnsIJVOAQKurBCKZtCkMGIwgBJOsrY4AZ6EU9VZXF5EU2QCwRCBaAa9XiPguYiRIM++8jbPPHeO1YpOIujx5P37Ma0qiufxt//OT3Dx3HUmpuZZzRXZNdzDyVNXCSsi6ZY4mhpmaS1HZ0uMO/eP8PCjd/HaC2e4fGuWyfk1DAQSwTB37u0jkQizXqqwsLjCnbsGSYQ8PvTwIRTXIRRLomoBbNNDiwQ5fvQgE9dvYnl16vkcmUSMj33wvVimgWGbWIZFKVcmu7xORzpB2BVYmZ+nmC/S2d2HK7pMT01hmiaqohCPx4mGwwQCQZaW1/nSl19lYEcPAVmgLZXARqAcq5KvlnBcm7XsMt1tCURHQ5UtWrvSFIpl6rU6xWWFTMcQomrgOBaeIhKOhzm0d4Sa7lJ3dN58+yInThxmeXGV5188x2x2HaNaxTCgVDMpmRU+fP9hTEHmi3/+IjE1jG7qHCzkUMJJ2lqi3LxRw9QNLMsgGlQIRII4okcsGiMRjyHgsW/XAVRFQw6EWFi/RSIZRRIFitlF1EAAWVFRZRtbUxlob+XjH/8wdb2A41QpLMxg6A6aCrKqI2thSvk8tplD1VRefv0sf/i1lxClkG8bEETiEY2+jhSZtnYEw6JGhVyhhGW4BMMymdZOotEoomARDEYYGBqky6ziOSJaQEYQPFzbxrEMQuEYVdOiUq8jyArRkH9xpIXiBMIajuNQKqzjOTVi8SSRZArbcZGDAWItaRzJzxIx63XC8ZTPAa6FqAiIUgyrWqDuOKjBKIISwZMdVElFED0q5RKyKGHZNpYkoWgaXX39eKbJ8tIioUiYltY2DMP0YcsSETyPjp4O2vu6mZiY5uKZ8xzYv5dwWCNXyBGNxTn99hkOHTyE1AhSzrS2kky1YOp14okkhVIRo66zsrxMrV4HQSAYDKGoKqlkgnQ6hRbQCIVCuB74kdS+BcVXUhu8g4OAr+5KagBJ0fA8F9vQqVbXsUwLy3YIhiOEYwlULYAg+NaRZtjyZkbNZlgzbMKXb/XwwWqrairARrB0M8Tatja7gzbzXBzbxhEaYLZFWfbhVW5Yb/wcHLHxvO26iKLQyLnxM2KgkVezMc6mUtycZ9NW07SpvNN28s4smmZtVZ+3ft9xNy1DTfsMiI2fgbAxH0EAV/Dn3BzHbVhNmvCNd7tCvlVpx6PRSdU3u2y1xmwF8e36/qmjh4ex9As/dPzU1tKBEkjzn795ib5WeZuftvlpm5+2+Wmbn7b5aZuf/hvrzjvv3Pn2229Hm49/+7d/u/t3fud3ul977bVrJ06c+Gu/mRYKhbyf//mfz/7Wb/1Wt6qq3oMPPljJZrPypUuXgt/N/tuswcFB/amnnko+99xz4XQ67fzLf/kv29bX1+UdO3b8dU91u/4b6l3f+GtvTXL14g2iqRhhXB45Mozu2pQLBkZ+kdXFKAFZQ41GqZYL6JbJyWvjfOvZN+lKJXng+AiRcIyX37jK029dw/p/2PvvKEny8zwXfMKb9FmZ5X11tfdmerwfmIGlBUlAoLQSteJKvBKXOpL2XvHy7EoUJe3dKwq6F1qJEkWCFgQIAoQdAIPBeNveVHWX6fIuKyt9eLN/ZFV1D+5KgrQ02IP6zqmTWZkRv/hFVJ2MJ+ON9/0CuG+8k/7HjyOFDp3ZHizXwwnEtpIUh5SbMeuVJq1Ki7VSBaQYIYhZWFjnK3dWUGKZ//DFV6k0Ggz2DtLXsUbdalGrWvzExx7jiVOHeP21NxnqLuIj8uSDB9hqhjz/6g2uTqwhyAJmQmu3S5ck/CgEXef5V65y5cYiphpheSEpU8ePJJSkyZtT67x2a4M/eXWC0ycO02x4CPKbmHKCfBqePneA1NAwo0NddHb3UMgXKFc2yRR1PqgJfOXlCZAEEoUU733fA4QNm9ubW/zBt98mDnQMQ0eMWrznwQM88dQ5WtUaN67e5oXLd3h7Yo0fe3CEuhvT32lgaBpf+tYl+nt0PvrhZ5ltLPOvf+dlNi2fmIDa/CZRFGKqBsVMio89c47Yr6PFPqWtGpeuXqN/sJuB7l6ynQN4Xou12hKb65s4TZuhoX4ScZJmrYWhSVQ3Fshku3AjBz+0+OrXX2C11iStGDx6/1GOHR0nkchSaTrkCxqPPfEAm0uf4+jRPoaOHeB9zz7JlZde4dLkCt999SpNVWR/PkfDshgyRvmZT/4YtXKF69ev8vblO0zcKVGq1PjA02dR1ZCL70wTEJLq7OL+gWEcu876Rg0pVSaX6qDZatI3NERXIY0QSii6iVutIssSgmwi2Q6SJOMI0NWVRZAVSrZF5DmsrqyR7+6iurnJ3NwaXZ1ZAt+l0HkKRA9RTRD7MQcPDTG+f4TOQoEbV66jplL09/dw5vRx6i2L6toyYa3GSqlMWtfZshL4gsTM8iancknWl+/Q2d+JnslQ3miQTOaQdA010T5JfeDZJ5FFnWbTYu3tG0zfWsFFQlYiJHQ8JyQIYt7z9P0M9eeYvLXIesnhNz7/LUobdVw3oCNtsH+olzMHhsl16ARuTFpW8ByHtUYdMaGQTXfi+hF+o8ZAV5HppVVeevM5TCUml5PoLg6hiSpq1kSWVMQ4wNATIKlYrRqutYkjBpipLIIiEiGjJyQkSeT8+SN0dndx6do0tYZFOqmzf6yf3u4iUhxAEKAqCnLLohW7mLqOLAY0ayVsy6G3t5+h4R5ajSaO7dJsNgEJSZEwkhnCMCASBSIEhDDC90NSiQQbm2XqDZtkNk/NjhF0AdFyMA0bPZFGEmV8WSCbzUPUzlvxHAdFM4ljGYUIP3QwjASOY+O1KoiyjGZoRJGG57pIqoDdarYhK4qJo5hAEjAMg/7hMaYmb1EuVejqLpBMpojDNkDIsoqqaZw4dpTQD2hulWnYLToHBilvbNLd08XsrcsM9A8S+gGr62U6uzqQZZmUodLbvZ8gBsfzqJY3qdfrxLFIEHrYzS3ClIZPiE2AKKkomo4UiwSBTyyIhFGMKopEMUhK2y7CttIrijJGMo1mJrBsi3qtyvr6BtHaBplUBiNh0pHPo2gGfhAQ0Q68DsNw28YivTtAeltRFbg310bctbzYto2qKgjbr8dR1E5rEe/JkuFuB7cwaiveESGxFBEK4jak3oVHYXvZKA7aneEAURLuybtpI969eTjQDrPWdX17WwFR2B5LFITtUG+RIAjvAUcQopBYEHdFY1GSEASROAwREQi3FWdR3O7cF7U7CALvysD5XguMiNgOzo7vgvEOXMdxRBhFO+zdfv8eoI22PUXiNtzem5OzVz8YNXN7jtMnpR86foqjE7x15Xc4f/5v8ObUK3v8tMdPe/y0x097/LTHT3v89N9Y09PTxve+FkURKysrCvDnchfdv/yX/3JVluX4137t13p/8Rd/USkWi/7P/uzPlr6fdX/1V391dW5uTvvoRz+6X9f16BOf+ETpmWeeqdbr9R/MK6s/JCV8v//cv/drfzMOCNnX38vs0ipWGJBVDbJJrd0JR1JoBDA3t0B32mBurcE3X59gfLiI68ONmXkQVR4/f4Brk0vUQ5tEpHBitAMrlpmcWiWSBGQkskoaP/LxiTkxPMCjj5/js8+9RhgqzC/P4Lk2UWjTcgTkhIlCiKGp6LrI/cf20alGHD51jN7uLG6rxfzcKt98Y5KRkT6CQGBzfYulxSanDg7w7DPP0HdoHKPYgyJKNC2H3/qPn+LS1auUanViP6KzM8/Cwip+rCLJCnWrSU/vMHdmpzh0oJ/7Th7krVdvcvbcQf7uP/pbrE3MUlqbJ2hskM4XkeIIKRaIRIE//fYb1Gshhi7jyTHVLYtvv3aLQIhQNY0wjlHEGEMVCfyIpmejBCJ6PoEhm4gSSIJMWlMZHOzgPQ8cwrUCxvf3EqoSX/3aa7x2cZqW5yHFMpohgSRzqKfAx957hJXVCmMH92GqMlO3ZhgaP4Qs+cwvrKEmdFpVD1WVqVe2GBkbY2FpgUNHjoEQokg+qqBQs+tML6/zxS9d4vC+LjarFT78+FnWSiUGuzu5emOWVKFAVzZJspBi3/79xB5cvvQ2xWIBI5Vk6uZtvvDCdUY6Uzz+0H2MHBhAkGRkUaReLTM/tcRapYasKIixzNzSOvffdxApjMl15MgV08zfnMRIGPQPH0JKCPh1B9fyiRQXCZ3It1BUg1gQiI0UWysreHGIEkHo2bx1ZZLp6TWeevw4o+P7SHd08dLLr+DVGnQWU3Rk0+Q6O4i8kFiU6CjmCRDxQ4W1xWViETRZodVsoertwGRF8TAMnWy6wOztm0iqzMuv3SSRUHnsgVP4xKRTnUiazPWL7zAy1E2zXkPVDeYXF7h0/Q73nT7GyP4xOooFLl+4wue//Aqr1SZEIWIQE0QgKwaqqTE81MPq4gaLpQqaBiNdRe47M8qZw/uQ0AgiD0EB33KRNQ1RkHBbFr7v0KhVGRge4vLkLBcuzxJEEdlcio2tGsdGuzm8f5hi/wArK6s0623IToyyIRgAAQAASURBVOgavX3dCELI/OwdwsBhcLAPTdbxgoCNUo1GwyeUQVMFZEQQJExTwzANDMNAlGUiQcR1HaQoJox8As8lCHwM0yDfkUfWDJr1JnEc47ouiqrhuh7Bdv5JGLY7wmWyWSpbVSzLwg0jvFBkZXUTq9FgZKBILpMgm8tipEwSiTSGkcS2LALfhjjGMJOoukEktIOeZVkmCiOII1zHIg4jGvUGiqojChGuYyMI7YyWKI4JgwiiCEGWkTUNI5WgWqngWhah5yAgkEim0DUDQQRRjNsQaSbZWFzE0HXUtIkYxKiJNI3SCm7LZrm0QqPawnFCIiVCIWJ0/DBGMouiqCiqhKqpRJFAvVJFMw0EMUKLBEQJUHQQZCRRxY9DECJCf1vhFSNEQdpVV8MwRN4OPIZ217fA93Fsm3q9jm1ZiKKImUiQTKbQdI04DtluWLetXm+HW4s7VpK7au4uOAoxiiwT+kHb2hIF7IQxc89p6N6Oc7vhzHG4reDehb53qeGCQBC1wXFn3SiOCcJgOxhbJo7ZtfO0leCQMIy2xwN5O7R6Jwh618Yitq0m7Y557fckUUTYtqDcPZm214lpW2ba9pX2Md+1jgjcVa+j+F3ri6KI53kA77LV7OzfvXWv6n7vMlHcBtid437ogR/9L2ap7NVfTP2Lv/crcT6/zuGR4g8dP2Vz/dyc7MZI3ETTvD1+2uOnPX7a46c9ftrjJ35Y+OnChQsHZVn+xvj4eNM0Tee/d5yXXnrJvH79un7va4ZhxD/90z9d1XX9B+9K5V79hZZlWfrU1FQyCIL3nTlzZvI/t9z3fcdftbyJqBgszC8yfnCU1eUN1lZXuLMQs9ZyqdYaLCzV0RWRx+4b4/BoBzfmNGRFoOW0SOgmZiJkeXmRQwM5VjckCh0pJpdWMbU8g31ZOnJJllcCLMsGwSeOJQxNYX2tQtN2keOI4wf3sb6xxNjQfm5MryHEEYlsimbd5/4j3Zw9OMKN2XluTc2hi6PEnkUrDKm2Ip5/9QaHDgxRa/iEokA6mSWVMVE0GSGGGJGkrvDJn/oIhweTyJGEaurIisfiwjq+pHFpYp6X3rwJdpkz430MdqT5uR99io88eZI3L8zye7/9OTam5zh1eIjR8QEkUWZ9dYM/fu4NOopFThw6iJ5K84v/j0/TarrkcgaZnMnoSBeXr8zgBwEtP8LXNQ6MD+C7DSburCE6BseO9bO/z+TG1CaW7yGJIs+/fpPHzh4hV+hiq7zJUw+dpZjL8uLrN1kvbxE4IrLgIqtduEICO6piJpLYjS3sUCQMHNK5FJNzq1yeWkewHX7qow9T7MyS6ejgcCGDJsusLm7Q29fL9YkpItvh2MNn0Z2QYyePYAcRm6ub9BR7kNMpTj90ntD16ShmMHQDZANNlRkbP8DK0gJOo8m+4S5+4acL2HZINptltVpHcXyWSg2W1lewqw2m76xQqVqEYUjTcVBih5/6+EexrZDQ9kh3tG0qbuwTVVz0TIbI3cSrNZEyAqqWANVkfWGaQlcEhORyeSQhJvASnD1/ggMHhvAbFZaXVpmdmuPc0QMsLS4SuDZdvQOIqoLvlak3t1hzW8hmjlyxSO9AN2EsENhNbMvCTJp0d3ehaAqimiBwK4wfP4Jda/H0kylEBKrVLcxsN9VyiabjMHpoPx3FNMuvrbGxtI4YiyytVzAn5kCSUSWF/aP9fPInHub6zUW+++oNbEVBiiKi0GOr4VK+UEGWJHRNIRYEAs/FUGSSCZ16q0VHRw/EEWE6ZGN9k0Zzi9AL2VjfoCNjMDV7i2IiyWMPHCaZkJma3qSnmMKu12hVG6QyW/R3FAkLOQJJQUbGcX1CISLbOUCruYUTguW6TE7NMzW/RuD5ZNImmZxBMmGiiypeoBMhtOFQVUhlM4iShhgCsYYjShiigCy3ARLXIwp9bNtCkhUMXWuHG5smtm0jALKhty0ZUYjvOghAZyZNd26YOIrRdAXHtQiDCN9yseMGcRSj6AqKlsFu1bAdiyAK0XQTWVbw/RBZkYkj2vYJKaLieQSuTxwHQDunxQtCEAQ0TUeQ24ql57k0qz7pZAo1X8T3PFzHodmo4YcNDF1HU2QURSX2A7p6enB9FylW8cUAQptszyArC1PkzQz1SpNEQmCwdxjPi1hbmKdl32Cgtw/f80kkEkimiaKbmMkisqIT2BWCUMCzLQxdIxYjVFUnikRC38EPAjStbU8RAARhO3dmR/kVtjvdSRjJJGYyiec4eJ6P7VjUGzWSYaJ9F4gotpVadnJxIojawdZtiAJJEhFFZTdEOaL9I8QxkqQQxSGCKLa74G13zrs3oDmO43auS7ST6xIhSwphGBIEO+ArvAvsdmBXhN3g7DB8d+D0DpS2Q7Sltvq7vQ1JEpG2AXkHNttZOG2+3jleoihCFN8D8DtqO9tqcvv5XZuNdDc7BxBEcXebotg+jooqQ3zX1nJvBtCO2n2vjWY3Hyhqw7SICELbiiXsaao/MJWUrxHYBgvzzg8xP53b46c9ftrjpz1+2uOnPX7a46f/jnr00UetRx991PqvL7lXe/Wfr+/7wl/vQC++LzF/Z5LT95+kurLJ/EqN59+awTAM/FjBcV2G+5Noksc7N+YJbJ39B/OULZ2k0cF9J4YwTJ2+3jSakeQ7L95kteLSjGQ6DJ0nzh/k8sQC33m9gaarhEFI2swyv1LCD8ETQnwgk0yysFxls+Iw1JPlcH+B04cO0N2ZIBYETmsKXQN5Wg0PO3Q4cmAMzUxw+fo8bssCUUTWJLK5NIoqghCCGBBJAoIncGe6xMp6nbGhPrK5JJ7T5NjRExgpg2OH9nFu/xBKIkV9c5nBri7mF1Z56fW3uXRjgfWyxfnjA6iaxNLsIqqokO4uMjbay5dfuMDs9Bz/wy/8KOeO9NKR7OHgoR7mZlb4qz/9HuaX6iyU1lhe2cBQZB4+c5bpW7dZ3lgjn+8gbQroCYXzJw4hKwIvvHqVW3fqTM8vkc8naW1ZeGKAHHn8j3/3p/njL7/IzOIClapLpeXx+a++gayoXJp9kcZmmUKHwaHBXr775hTfen0Cx9XJ6B6qEhEjc+3SZfqH+xDlto3nlddeQdczVJo1Bit1Bg8d5tqVW3QPdGMaKs0oYOrmVY4cPo6WSZJOZ5CEiNjzCbWYRDZD0c4SuhZ2KFGtlenoGeb25HVml0rksgm+8PVLVFouke+TTCpEsYcQimRzHfR1dRALAaLoECsJjIRBqjjE8vQNJicWGB3oYOToUTzbo1GqY+ZiFEHGNHUqq8tUXRdVV3GImJi4w8GD46Q7NabW1nnpze9y//2nWFxYoLa+yZGTp3AaLfID3YRhEtkLaVQaZBWDKA7xGw1sp4miJSkWe5B1FSllgtgOTiaW8C0P23GIAo9ypULCNLkzcYtcd4b9xw4S1EPUSOHI8cNM/ckX2Sr7fPQ9D9PV0cnM3CRx0I8Xhezff46xgyfwBZGvfOMikqYiyyJaDLJh4Ik+ouhjOwGrZZ+bk3NEvkT/YI6t6h1kSeTijWkWFpYppPNoRsyBoR7K1RbrdYe02lbMi5kiN2/d5tmn7udWtcGXXnibH3v/fRCX22De28vKwhLJfAFkgeGRUQShG2KBesPhUDLH6AEXt1ml0bQhFhEIMdMGppEkmUgAIWEQ0NiqYJg6omYQx2CI7S5ksRATRm1FWtdNDNPEcz3WVlZpNFvksllM06RcLlGv1zl+7BjpdJIwiBCiGK9pEQR1ypUqhe4eInwKHQl0I4WstPNiQsdFFEUUPYkkgO+7NGoVZFXDTCRx7VYbeIixHYt8MUccxjiOjWM7xEKMLIl4roMbekSSjCLLpFNJfD8k9FwsP0CSZSRNoys9iGs7OI5FuVpHlkTyHTkEUUUTFOI4QNNMQr+dOtIzdJjbpVcYHexFM1XkQCCRT2Dm0miKSuA7eHYDz7H45//6sxwZ6+bBc+fwJYMjB8cQVBPTlAmjAM/1CW0HRZaRZYUwiLdVUQFREEG82+VNluVdIBKlNkiFYYQgq5iaTjKTJggCAs9vByyHEZL8fwxFlqS2dSUMAuJIRJbap5lddVqSIAZFVQiCe1RXUUCItzNngoAoitB0dVeZ3Qm/jqJw14JyL+AhCgjbUPruTBdhO//lHmvLdmbNLhwLAqIsIUYRcRyxHTHdtt/EbD8XEGK2s3q2x0TcVaTbtp93d5XbmfPOo3BPo7gdlb9tQ7kL4XHUnusOrH5v2PSuir8N1oK4PU+h3blvp7PgXle6H5z6k1f/Pj/y5DdZWn39h46fVlZjXrz8QX72J2b3+GmPn/b4aY+f9vhpj5/2+Gmv9uovqb7vC3+yapJPi4jxMF/+8ms0LIuHHjrNqRMH+OyXX0IxJEZ6+mjZEms1geF947z3mX5Mw2R6ZZO335rAMA2mVyp8480VNreWadZCAiEkjF1WNhu8eWODzoRGHIHvBhTzCTp7dOZu1ZADcLyIwYMmf+VvPMob79zEc2PUVAIJH4EmgpRAlKC/pxc/8kmnMiytNfifP/U76AmRlJlg33A/Yb2FLqsUcyniUCXyZaJIRI4kvCjAVC1O7e/ECkKiIEAUZdbWNihdmCeTz3H0YD+eZHCzWmbLChCaFqeOH2X/0D7MlEYioeN5AaqktDNnTI2P/ehHeezkCcpWkwtvzKAreRIZk4lba3Tm87z65iU6c3mOj/dTq9ZISTK6EaOmTY72jVNMZ8ilE0wvrpBMaGxVGwwWOnj42AipTJq+wR7CERcjkeX2zDw3bkzx4x95ioXNCvbGKrYg8Xt/+jqtlsW+nhTvOXeQRCbBt964xBdfuEEgCiSUiKYT87nn3uEj73mUVCbD4p1ZglhnZrXF7bllHGeWmuXgOgoPPXSc8RNH+cpnv06mkKS/q5ukWSAW26pjaWUZzdTIFnvxmhYQ8Px3LrK4MM+P/cjTdHb1Ua9VOHBsnDffmebFdyaw4gg3chAFr31CCAXiOKJcWWerXEKyWwiBgJZOEUURqqrRO3YAM9dLef42zXoT2UjgbawReQ6pgkBheIiZK5P0Dw3jbDW4cXuB+TtT9HeY2FaAk0pz+PBxEppAPp1haW0NpTfP5IVrfO75V7l2c473PXyGh88fRJdlTENj4sYN0p15sH3SGZvKkkV+8CBIMD1xkz/8wtexmhHFFPzEsw/QmUty+84mpx8/R6PcZHN5C7de4uXXq5Qthx/5+F/hwptvE6PR0ddDJp/G8QIqNQvHnifZkePDH/wgxw4M8bVvvs712yVUVUJWfNK6iYRIslNBUSSWNm0uXP0uHZ05Is8m8AOKxTwr5QanDoxQK2+yulrmraszfOQnHuG1l65y7miKl16b4OjYILoeY3Sk2CfLXLmxgCKKiKrEExmTfFcXK0uriCrU63UGBvqI3IBEMktKhayuI3YN4gUxURRjtyy8loUoxgSeQ6VSpVAoEsQi5YqFKNkosoxpmmyVK4iShGHoBJ5HEARsbpYolzdRZYUg8LFtm1wuRzKZoljswvd9ADq7O/CjkDCKqVbrCFaL8uY6cRiysbrJVtOm2vRIpnIUO1IMD/fS092NaWgg+CDAnekpxkZH0RJJwtAnCNo2h2ar2QYtSUI3DRBFPMdCURVC30X2Q7Y2NyDqJBZFFM1AEtufYYpq4Dg2sqqQ1DJkc3kajRq3ZuZJqCqFXBYjYSLGEqEqIfoOUiJF/5HTlKcuYTVD5ldXOTg6RKVcIpPNYiQyrFU30DWJDz31AIZq8N3X3kE1DLLeJhNzSzz81HtQ9CSKaSLHCgIijuOiazpBGLQDm9vSJoHvtwEpCom3rR5BELThfdt6EYQhhDGyJKEZRjtkmnagchxFBGGIJEht4A0DFFlGRMBqtYhkGUVRdruviQj4gd8eW2h3ZpMkEUkUd8lOlNqh0WEQEsV3O7O14a09R1mWd+FVEAQi2lD+vd3noihCkpV3WTq+V/EFgXBbehYlCUkQiML2cWjvY1tZlyWprULHcRtghRiR7S55grgLnm2lXUCUpN0smTiOiaOdwx5tzy1EluVdEL9r0wFJkNjx8OxA6L2dB3f2RRLv7q8oCMTbXwT2wPUHp5bW+0gnknRlf/j4qVzN8+nfO8dA5qucOtrY46c9ftrjpz1+2uOnPX7a46e92qu/hPq+L/xZLQc1Drk1v8J3L6zQ153gqXSO+0+f4DtvTNHyQTRyOFaLtXWPqwvXeO67N4gVlc1KGTeIeeHCNH4cIEkygggKApEQEsegRB5hpOCKMj39KXrTOU6O93N0/BBvT6wSCjGW16IjN8D07QW++8YEsqJzYLSHkf5OmrUmq+E6q+slcgmZUw+cZ2ZmjT/42uuEqsz+oT6GexIIxCwvhHQV82QKWUItIhYEZEEkiAOq1RKXXn6Z8X39dPd2YmYz3Lo5Rf/IEBBye3YR1wvxBAFZFRFCHzl0MMwEldDi0oVZXMdntL9Id1eO+esl7jt1GEuX6N0/TK5Vp6+3i7Mn9mOkDebm1hBdi5bnoooSk5NLXJla59RoJxeuT4Jk0qqU6TySRk/KpBUVTVZQIo8zp4eoVxoQeNi2C3GIJgmM9PYhIfC1r38XPwx45MwY3WNDXL06w+zCKoaps1lvsllt8frtEpKqcHCkm319BTI5jcnJDerVForoU+zuY3JqhUppnbG+HHYAc4sVBCVmbX4Gv7OXBx4/xcuvXuGdKy+hqCbpG3c4c+oQuYSBsFVFS2RxbZsw8Lj/gZMkTQmvUeb6xB2G+7pIDHbyoY8+yepvfwlnvYrvgxhJxLFEJLRbvEdhRLlRJ44DXMunVb9KlCjizUyR7iwSWBXSxV5UzWBpaZmpdYuZ6dv0dprcf/YoqqpSr9R49eW3iESR+0+PU96q8/bVKUYGu3nqiUdYWlrmlYu32D82yDuvvMW//09fJUIBIeRPv/MiPXmTYnceJZEk1Z0nlTCxHRtVyLC0fJswjGjYHs89/wb9nQXcrM1QsYM7C6scPrKfuYUFXvnXE6RTSe7MV+jvT6MJIh1JmVuvvoQZGYwcGaZaXkVUTVqtJooq0Wy2mF9YIJHJUshl+ZkffQ/lmsXiwiqW69GbT5DpzCNLGnargiQolLYqVCstktkkpa0md2YWIHR54Z1bPHqih96eIqIC3lqZEwf7uHh9kduLZc4cVIgCn4M9BSbsBTZbHptOiBv42N+4SE9fnqH+HAgqFy/c5PKFG4zvG+H21BwnTx2BKECWNfK5HNN3phgY6EdTNGotC1kSUFSJzc0NLNshimJ8H8LQo6Mji2nquLZDvVrFDUJcx0OWJIrFXogDFElAlGVUTSOKwffb8KPpBlEUoYgCuiaTNJMMDQ7RrNdZX1/n9swcb1yZYm3LQZQkTFXi1NFRzhwZYXRslGQ6iSgpjIyMEkUxlu20QUqS8QIXQzfwXZfA94kB3UwiJ2Ui38MOYwQ5Jp3L4Hs+giAii0o7mwSByLdBFKnWayBIiLKMaSTYN3YQy26xvLaMsSVR6OxElCTUTJrQD0mnE6jjx2htlTHSaVyrSS7XQaVSIRakdpCyF/PQ2aO4ocBAT5rNSoNKGHF7bYvuiRt0dnXR8HzSuQLJZBZRkbFcGxEBVWl3/gyjdsB0GLa/AAiCiChI7WDpIEAQRVRJbGefbOeptMXYdtYOgoAgSkRhSNT2ZSCIAmEcEyGQSmcIAn97PB9FadtMpB3Y3Aa8MAiJxfbzaBtKNUkiCkLCMGgr5FFMGISIirQLcGEY7kKcLEltaIvuwt6OJSWMQkRR+h4AbO97u7uetKsOR1FALLQ79wmShCy0VeU4jgmjiChqjy0rdy0+xCKCKMI9GTHtnwhpG2jvZs4ICIjbxz3YDfa+15Kyo6jvZPfsjLdT96rX9753r1L/gxhO/cNa//f/y/+LrBnyzs0fPn5662ITgFyxi7nV+T1+2uOnPX7a46c9ftrjJ2CPn/Zqr/6i6/u+8Pf0e59ifW2ZmZLLqYMyqiFy5fotXrlymw1bZP9AjgP9BR4/YRBqOhvlKq+9Nc+luRU8N0SRRdSEiBYnQBSJvYgg9IgR8V0XKRZJJHL0F5I8+8Ah9g2MUCh2kOzuI/ryc9RqdQzdwNAVmo7NQ/ed5kvffRtxcZNqpcKj5w6R6+5j/+F9eG6LfGc/12dWqVcbxGFIs+XS3zNCKxSpt7Y4ebKDQiFDJteHaiSJxTa8rizMc/3qLKePH0FMGqyvrDEwNES+uxtZ0Zhb3GD61jK9I10sr22xteWx3pjAtyM2ttaQgphAkrh0WUTVFBKGSiGtcTR5DEm1abViMoVOElmQgpDjp7pZXy3RmJpjfq3MS5dusbZepqiJiEseWjrJE+eOYMoxqpFAFmIip8FWaYVs1sDQRWzHAVWjWVpgY6OOrqtkTJUf+eCjWLaNKguI9SZ/42NPMnl7nSs3boKg8u0Lt6m7HrKqM9ZbQFUlbs9uks3keOPiBOmMCTPrDHR1cP78GPu6e6jbNlNzyzx83ylKq2u0mnUEUeNDP/oM1XKDL/7pd6iWt7gzc4eNhE53V57VhVU0WcTIddI70kM6n2Nh8jrZTJJqfQvP7kfwW7z/8TO0LJuqXeeVF66xslVBNlV0ZERBZ2W9ycVrt7h8fYlrs8tIwEfec5pDVi8rJZtSxebU0WG+9vyrvPLmBEIU0dWR5L6Th+jq7mF9dRnLavHIEw8xN3OLl9+YwYolFpcnEGIRXYbNisXBtMzCTInKZo2eoR5CX6FutRAliUJ3Ecd2SHbk8Vs+cRhzZ2mOW7dmGB8fJWVqPHX+IAgBL752lbOHT/PixavMfvNVLt1cIAgFVK2M3fAYH8ow3p/C1CRWSlWyCfjin77A2Fg3WUUgX+zAMBLUaTC0rx8RmUuXrnNgfD+jA3184auvMD+/zIfee571qsWDZ8exGwqVap3xffuwAg9ZFni4kGdpdYObVxa4eHOCasshZfmM9fRy484iZ4/vY2Fxi5SusNWymLi9SVchR+/gEJFe4sVvXkJVBDpPFKhUKsiRjRPItJoOqZyOpohUKi2m76ww2t9BIgn5QpZuu0gY+QzvP8b68jKyoeJZDrVKDd/zcHwLzxPQRR+vUcVMdNJZyKEaJrbjsbK2jhCGRIKKrijtL2yaiqrIJJJJRBH8wCeKQhRVQxTl3ZN1FITkOzpIpbMMjR9g5OAxXnvzEmurJRK6Ti5hoosiEOAFLrqiQiwRBG0lMgoCREUhjsEPo3aAtWUDbcuKrKiomokgq3ieg4CLIopEYVvdDLZBKQpiZFnB1FS8IMIPXJp1D1XRMMwk4weO4jpNWs06ru0QS5BI5gj9AEkzMTMe9sYasq4ShgGSpiFIMgNDgziNCsgyEFLs7CSVTHF9cpLjY/309XcRtFr8/h98g+GRHj7w1EMomV4ct4kkqCSTOXRDbeetCBDHAXHc7nQWRuF2IEuMEAVEKHetEaFPJEqIokwkttXidte2dnhzG5igrXPHBFHY/rwHJEUgJMbzfQLfQ9MUfM8jjEA3U221O46JwhA/jnatLaqq4fkeoiSiqMp2SPS7w5l35iewbU8R7mbGtK0zMURtC0rMdnh11Faqd8YIQ393/nF81y4CbNtc4nb4NhDFIeJOADdtFG1n0ogIYrydXRO31xO2s2iEqH2MRKGNroKIsK2k7wD49z4nbqv3sM3ECLsq/b1gvqPg350v23abvfpBqB9mfurqGQegd2iQzaUre/y0x097/LTHT3v8tMdPe/y0V3v1l1Dfd1ff3/lf/2F89MQ+PAfeeOcqi6slevIZSuUqLdsBUSGpCjz7xHFSioaqGSTyKRZWV3nnnWleuTJP2fFx3SYEEPoRYeTiBT6BIJNPFujNJ/nZDz7KwYPjpIqdqOkuZqdu8S/++afIFpKcPtrLxOQKQ10J7DDggVMH2ao00WWBR558kEBQEUIH/ABRS7K8ucWv/svPsLRZQ5TgxFgvDUsiDjx+/OmHOH3mHGZPN6phIigSASrXL7/Bp/7x/41HTuynZ2SIwLU4fOoA2a4+lEQCSRR49aXXuXxxEtU0WFxeojtX4ImnHsSyKly5OsOV24s8ev8ZjowPIQkuYSwjBhFWGJFOJensKiDoGi3PJbJ8Jq7fYnppkcdOH6NnpJdmy6Na2qAjmeKVV19FVSTe//4naYUxpiQxPzuDqYvcuL1EIlGksytHobMbJwpYmlvErZdRkwamlsUPA55/7SIHx7qxApmBng5uzCwhhiCFNt2d3bx99RZzyzWIYgaGi+iqSiatk1AkPGBmdoXxnjyPP3WWIAgII4VWvY4kSSRMjaYdMDgyTKYjj1er8iv/7NcRBZOkKuECXcUsAyO9DOTTLKxWeOSRh7BaZYIoQhFl1peW6B8ZwPFDUkkTWTSp+TavvvIaN6/PslFpIgoOVitGiKGrp4so8PE8n4ODOQ6MDfPVt25haCIffeQoDQteujjN3NoGgx0ZPvTUYe575BEmbkzx9qUrPHD6OFcm5nj76hJLmyWalosgiOzr6+LI/h7e+4HHkVybpVqL577+GtXSJtdnV3j6zCE++fEPkCoUuHLpMhsrZc6eOUYou0xfmyWIYs6ePs7U7QkkRefy7WlK86tcubNFEPmIqGi6DoS4sYAmCxTSWSI5pL5VRUomGOsvUitVOXb4AGlTpbe7l87ODK4f09Hfid+ymLmzQKXawkwayLrJ1cvX8EOB165MIcsyR4YKnDs6xrn7zqNoICsK3/ryVzly/4N86cvfxrebuHbIwdFuDh3tp1mLSKcSVOtlNqsuXYUUt6aWSRkq+8f62LIlpLjB0X3jBNgEkck/+/XfZ3K1RjalcXC4n3xGpK+rk0cePI2iKMiyhqKriIKEophUaps0qlsUevrY2KiwubpOHHvkMhlEEUShneSriCJGMoViJlETOWLHoWVX8e0WUiziR9EuWBim3s5XieP2XTD3ZJJIkoTv+231UxGJhXZcQRSJrK6uIQkxceCSTiZRFQ1ZUxEUuZ0zEkvUqlvouoZqJnFsG9910XStPZ4o7eaSSLKEqshYdgvXcRAR8Ny20u64NoIgomt6u/tZHCFKEoIooWo6USyB1FY+NVXB9wKajRqJVIpUOkMURsiShO+53Hz7JQxNIZ/L4/gBc/PLjI6OYjsWM1MzHDxymHQ6xfrSIjMzU6xV6uzrKiAXi7z62jU+/uHHCCSZlhti2+3wadWQULUEup5CUdXtv5tEFLXV4DiMEAUI4ghJlInCkDAKANBUjYi7AdJxLOyqyMA9jzvBzG0ojmnbKXzXRSCmXqvgWE1SqRSyrBGLErKiI4gS4vZcRHFn3Xu6s0Xx7vbuBbh7M3YQBOLtUOqd3Jwoioi42/Euitr/O1EUtO+AiGNEUd5dHnjXuvcGYYdhuLvte7vD3WsTufe9782aEYjZidSO4ghZ3ukMKLQ71yEQhEEbVGnbXkShPe8gCHbPzYqivGt8QRAQxLbFb9+5j+x19f0BKEEg/r1/+wXGBso/dPxE6lF+4hd/lm9/7gVOHa3v8dMeP+3x0x4/7fETe/z0w8JPf1Zdffdqr/5L9f129f2+L/z9o7/1k/FIf4E7y1tsNVrU6w7jfV0srNfIJmNSCZ2+rgRSrKLpAqmURndnPwlJJJXVuH5rgS99+xq3liv4oUcQuDgugEhPRy9nT+zjxx67j76hPipeTM2y+fYLL/Hd575L12AHsgReFFKrNMgYOmP9naQTMrIU8swT9zNy/ASxF0AkQ+gRaTJvv32Nf/Mfv0iHKjGzXqNYTDOY72Zffy+P3X8/xfEhUrk8gqIhyBKEAjcnrvCr/+iXySZVElpMb3c3rhvx2FMPUujMEkc+miywvl4jnUtSrTfp7ulCC1xeemeaZquFrMpslsosr5QwEgayIJBKqBw7fJCBsT468nlqmxUcv4UsJ1AEkWxOI2FI2K6LImmUWh4zM0ukVJVCRwbP8ShtblCxHArJBJZlM720RndHBz1dBXq6MvQfOsX0pbfIdncSxzr/y6c+zbEDQ8wtVljerLCy0aSnkODUgVEGB/MU0jmOnTvIzFyJz3/pBcb6MkS+SEzIs0+cYn29TFdXD2o2j93wUE24euEKU3dWUQyZVCLN/afHSCTSaKkikhyjJk3efOVNvvL1b6PJGqVSAz2ZoFKr81MfehTbbeH6AsO9OTRJQU2lEUWJnr5uIsfDsptcnVrlq99+nTMHRzl5aBgUEdNIsLa2wYUrN7k9v4jbihjsT1JzJXQlRhZ1UobCfUeGWSpXefq9D7O8Vue5r7zIT37kUbKFDNeuzfHdt24yObdMLpOm2XKxHIvIidodyMSQzg6Vjz56H73D3dyeXeGRx86jKDL/5t/+LvcdHmFsZJDBQ8eZv3WZjt5erJrLyvIihWKBSqmEKQmEkkwmlUBLJLk2MUG1ZiEj8pUX3qLedIijACdWEYIIpIh600fRFbKGQlcmzcJmDTOhkTIVegsaj547Sc40SSVNSk7AtZuLuI6FF4k0bYGxgsT48TH+xf/+DU4c6KIjLXH/4XHS3UWIIVnIsTxXQQjLdI4eY2nyMpvlGrXNVbLJApIhoakq+VyRut1kfGyI2cUlXnr5MmMDRQxNIamnGD+4j0iWyOdyzCys8LmvvUzsRrhRxPpmnSceOMbxA8N0dXagKzKibmAkEqwvL9E3uo+NzTr/70//e8pbFYJYYXNji1/46Qfp6ulBUVUSZhbLbUEUkS/2EqoKqWQKWUlje00Cq0oURu0vT2EbCAzDIAgCRGk7vySOEQSJIIjQDR3bcRBjof2+IKBpBpqRIBJiHMsiaDYgDtFTCVTTRBIVohDiOMRyLDTdQIglypubSKpKOp2iVqnS7oYXIAgQhSGKqmLbFqqioGs6ftDOG/E8B3VblQx8H13XkeS2pSIKYxRFwwt8FM1AVc12qHPkI0pCG6BkDU0zaFWWaVRKqAKUNktMTE5x+sw56uVNFF1DVTVWlpcpdHcSRyE3by3QmVXIZDpAkGm1avT29aJoBkEUE0Uituui6WbbmiLLIMqoioSqaSiqRhzFCESEcUQc72SggCi2gTData7sgFIbYGGnm9rdUOa2/eJu1kq8DXSh5wEhntvCthxcx8VxPTRNI5PNI6kqkighbYeFR3Eb9kThLjD62xk7bfU8eJeaDezmvuyGbxPjB8EuuMbb3fN25i1st3PbscD4vr8bCP29IdE729qOqNl9/14leWes3WW/x3YCO79vz1toQ+vOvr47S+fu/uyo9KIobncIFHZBWBDbf4e9C38/GCUIxP/jz/8aYXzlh46f5lZG+Pdf+3X+8FOf49Do6h4/7fHTHj/t8dMeP+3x0w8NP+1d+Nurv4j6fi/8fd9W3/2DeWRdJ5UQ6Ej38MrmBE7Q4uBQkoiY6aUq16bXabg23dkER/o76MkXkHSNZKaD0e4aJ/flmFjexPIcCBRMI0lKT3LyQC/37+9nanGZr770BroWM9TdQU6oc3B/N6oiMdCb4ZH7z3NxcobG+gLnTo3y8us3OHD0AKaq4jdt/FYDQddxrIBqrcyXv/I8xVTMP/zrP8rs4iqj46PcurlAJtVHupjF1DSIZERAEjRiKSR0XAg9bDtEE0WqNYcgCFhYWGR+cZlatX1b+vXpBQ4MFlko13ng7Ek6MxrVZhl8icceOsjScoZcSmZurcnc0hrVRpMbU0uMDA/wwJlDnDl9GoQQz7aQZRE3irl2YZZbc0usrVZYK5XZ3GzysY8+yn2PnGRtfoPK1jovv3GFof5OhnuKmJIGSoQo+MRxhONUGTlxGLtRJ2Wk+JH3P8GlG7c5Oj6EFUacOjTMYw8c4vqlOW5Or2PKawyPD9Db281jZwZZXi7x9mQZRVfZ+vIFPvz++9EzOeLAJ1XQuPDOJH/wzWvgebj4/Nj7HiDd2Yfo+jRK85ipNJulCtVGwHsff4RcNs3lG1PMTC3gJjS+9fJVBns6sLwQURI5PDrIyuwSR84exjSyvHn9dT7/5VfZ2vKoV8vM3Fnm5u15fv6T7yWRzVPs6uDQkVGuz9zh9z/zTY6fOEK2s8h/+s0vYbsOQhBx6sggH3zvwyiqyUBHwH2nR4mEiFu3ZkmZGh987DiuBwur63R1ZmnYAtPzZdJigImCH/pcn7nNSqlMteVw8Y1LPPDQ/Tz71IMoYsDs/AKpXAFF1bHqTSI/QJRDDF3HSSbRpBAz1UGztoUgOIz19SH1t0/UkipydXIO1xKoNOosrpaRFZl8RwYpFjl1MMf500eYXFzjd/74O6TNDE4rSSYxzaHhXspNg3euzjMxu0KxI4/rBWxU6iTp54gI9x8u8ODRUTa2tlhfWsG2HSq1CoXuHmotm3OnDxM6FqfPPcy16xfQIhtFlPEIcVoO6QGdZDJBY6uK1XRwA5/jB8a5dG2Kll/Fvj7F4L4BLlyZwjSS/MgzZ0il85SrLS5NLGI5Dq4b8errF+nu7eLEicOYsszi/CKXJmd5/a0bXJm4gywrKJJEHMPNuQ2KuRxvXJulv7/I/pFR7Min6Xr4LYtaaYvOzi7Q2oHsSUNB0zQ8LwAEPM9r2y3iiMD3CDwfEFBUHd93ieOIWJDuCRmOCLetJ6aeQjB1PKeBZdkIogK6Spu9YhRRJPZ9ZFWio9hBTBsO8oUOfM+jUi5BFLW701lWO6NEkggCH0mUSSQTiFKG0A9wHaf97R8IwwjCEFEQ8ew6ERAJ4EURgqKiKipWq4XrNjCTCTzXRjIzdCTSeHaLLjPNVrWBZ9Uob64w2D9EvVIin88iRzHlSo1Tx46RyRtUVks0rS2ee/5Nzpw5Si6VZGR0BM9t4jQaxL6DYZgYahqkkFqlTCKTBQFczydhmiiy1rafxO38ljAK23cJ7NhDRJEdZIrZBilB3L6z4K6KG4YRgrANdIBEDJIKxKgJDUG2EaQmsdDEaTVwnRaSaqIqKrppoqoaqqq8C0gFQUBR7r628/q9da+tYzf8eTs0GnYAdCd7526Xup1w8h2AvVcV3umSdy+cisJdON2BzB2gFoS2or+jct+7niCIiKKwfacAhHGMINx9rx0cHu1+CdjZ9o4SL0kSiO/OpGl/kfh+z+579RdRmq4iiT98/NSy299zJiZmWJuf3uOnPX7a46c9ftrjpz1+2uOnvdqrv4T6vi/8XZxYQpRkcmkTJ7R4/MQ45VqVxUqZ2dubVL0A25VIqQE9I91sVFxCVSaIYHJyGlEQ2GxE9BYyBH4XR8f7KW3VmFnYYHG1yqdvPIftBvR1J/nkjz/K+fsP0dys834p5OaVm8RhQEdB5yPPPskXPveHLM6XOH/8MCubm1QrKXzfZ2OjBGJMw/W5cnWaG7emGejMEUoyimmwPLvAw08+SrNsg9hWK41EGru6iW03MFUBy1qlf7CLo+NjmKrIjYlZKrUmf/rcazS9EDNhEMUBrTBis+4Shx4DA1vM3GmhGzqrG0s0qv30dnWRVGWSyQ2efOQUv/G7X6Vux1y4Mcvs3BzZvEi1HrGwUmFycp6NWh3bCghF+PFnH+Fnjr6X+dlZkgo0SptkC1nG5UM8VLPZ3CgRhwEP3LefO3NzaEKMpKnoqonntbBaHkZa4YHHHqW7t5vl2Tne/8BRHKfFxkqJitvgwpUFWr6DKhn8lb/+UfYfOMTXv3GZ2fU6GdOgulFjfKSLrscyiCG0qhb7Bvr5xEcf4k++/iKqn0KSkgixTHWzzPLqJuXmPH/07bd5+oEjnHj4AT7/1W9w7uwJHnvwQX7nc1/i9p1lHnrgMMePHGFjaYNq3cE0NKxqHS9RJZ9Ic+zAGKvldcaGz3H1ygRDI728fX2ZhbVLdGeTHOor8PqFK+QyCRRaxC2Zn/vpJ1ivePzOHzzPq5fnyPf1kFNMVF3l5LHDLC7M0V3MMr1Y4vmXJ9moNvACnxsTdxgf7+XcoUGqWzUqWzZb1YgLdpmOjMXD5/YjxSGvvPwaV29M8JFn308x384Z+dOvvsDxfWMkUxr9IyOIRoIuM8HS7G3SnQZJuUBldR0znUBQdRYmp0nIEn/jr36MmeuXGRwaZHnLYX5mhqmFLd6+MU3QTLBa2uLDH3iCTlVkaq3GykaZqhVxe6WK62zwEx98nPLaEpmODF/6zjscHe3h3MlutkpVjoz0I5kCNCQKXd2sVxt4ikbLcjhxYj96pkh1Y5XK1iqHj55k3TRxmm34XimvM7M4w6EjJ7AqFlvrdRpNh9//xqvMLrcoFtOsrt8haV5CDiM+8pEnGewaw8Wmt6uP46cPEYsqQctGVEXevHyLz3/tdSw/ZGVjEwIPU9HI6DquZyMIMoIq8t2Ld2i5IZuVJqqiIvo3OXLqJOXVVQJR4bkXr6BLMUcODeB7AeMHxhDimDAWUBQVSZRxHBdFuWtXiKIIz7WIti0ZoqwiSe2POttqIQBOq4WsKCgJHU1PkxQNPNdBVn0k1SQOIyRJJg4CXLtFLAlIokIQRiBKCIJIobMbz7Fx7Ra21SL0A3zfA2JMU8F1HFRNJY5jDMNA13XCOMa2WhDF+L4LQojrOji2hZnMIAshIREJUycIXOrVTVRNQbENPElElhRUPUPf4Dit6iaJZAo3DkhnMlS3KqS6u8lFaaKwhtfySSSTSEmFR584Sb3ss7K6QjqVYH1jlUQijSwKlFtVDE3Cd0IMRcCQYkQCFAl8zyGSZBRZhTBEEiGWZEQRhF3wEnYhNdoGrCiKkGUZRZF2Xxe3j1sUt7Nk2Ia5tj4bo+smsqKSyuZxHJvK1hbNap1qWEOSJHRdJ5FIoOs6qqajaRqiKBBu38WwA4TfC4Y7jzsg2lbe2/k3IgJhFCHL4jbUhtvWlLs5MDtjf28Q9I4dShSF3XF3wHUHdu+F7O/tlnev5WXn9R1lP47b8B3TzgyK4xhBas9355jvVBzH7bsytoO5wygg5i5w79UPRt2cWubAiPBDx0/1pgXAcy9epLtzbo+f9vhpj5/2+GmPn/b4aY+f9mqv/hLq+7b6fuB974kTcsTf+dgDLK6VWFwqkU4YKLLBVquGrBhs1VocHOmlI2ewuLTK6OAwlWaDer2OFgsMjYzgOE3iKMbMGEShyPLqFpdvl7l+6w4njw0xkFYYGell5OAo+UIHeqxSa9Uor69TWlmgd2iY57/9IqXNBsODXRiaQS6TJptP8s71WUJfIt+ZImpUmVlr2yQKagSGQbHQT7E7w9VL1xB9kWxnB7emF5ibmyUIYwYGupleq9HbmWQkX6Czy8RzfTYrLSZnyhhpg1TSIPIjVkoVVN0gCH3yCQ3LauF5Hqoi8fM/+SiBJDNzewrZMHn84Qe5cHGSf/6//SlGXiUOJQQhxvNiHC9AkmlbJUKfQBDY153nofsO0tvbz5Gj+6nVquiZNKHTpLJaYnl5naShsFlz6R/sYGOzwfxSmUI2hyKL3JqcY3R/Hz29eVzXJ51MYxoJAr/G7akNerqT3L6zynffus6PP/kQnd0dSCkDQ5F48aXrvHV5EsttIQkyB0f7yWYNrGaLQ8dGMDSFLz8/y+JaBTOp8v4njuA7Ap/76kuoZoInTw1QTCWRZIUL125y3+nDPP74GW7dXuQ3fuMLRGLMX/+pJzlx5ihBIOJaNVqVBpImUOwZYvbWDEYmy9ixA8xO3eEPP/sNLk6s4jkWB8e6SCoS508PIyLSneugYVn09HXSO9THr//vn2FyqkRW0zh/fpiejiIXbq+wsuXRalrYtk2l0eLMkRGeeugoqqjhe3UOjA3jRSGLq6t89iuvM7tYIWPqpFIpjo13cf7UOIHt4vgtNFXl8ANP8iu/8s9JqjE9xSJvXp7m/U8/RK6QxWvY9ORNesf3EQsKQW2NUrVMT98IuqbTci2am2sEfkCxu4v1UouvfO0Fnn70FLXmFjICopbjc197BcNMcXCwh6ZbZ3GpzIn9nTz7/ifZXC9hmAoeKl/8k29x5vg4RjLBzJ05hnu7WFqrgCgwu1TivsNDJAyDViDgRyFHj45S26piaCaFgUHsrQ0CL6DaqDM1OcPo+Cgri8tMzG8yU6rjN1xakcBGyyYhqTx2doz3PX4/jVqJoaEhVMNAkkGOROymjZEwiVWdWBGZmlrgzvQschxz+fo0q1tV1lY22yHEogCRTxQLuL5IUo44efwA508O099RJFFIsb60yW98/luU6i6jvSYnD+zj2fc8jGXbhCE0mjaZbBZV1xDimCD0kGWJVqvVzleJIwQhRpCVthotCsREhH6Aomht5VozQJDRdA1VU5AlCUHUkHWZKI6wazXEKMSyG6iaiaTqyIqOpKj4ftAOQQ584tDDd1yazQbZbBrP9zAMnepWBc8LMBMJEslku5vedr5IFMYEgUcche1Q67ideSOrKrqZRNUMPD/AslqIUYQIIAj4CKiqiiwKtFoN8H1MU8NqNqmsrxMT4oYRXfkO/NjBc0W2yhsUOrtwXI/pqUkO7D/EzZszRJHPiVMHqWxV0TUTRZHxfJ/+oWEESW4ruZIMYYTrOu356SayaiCI0i7E3WvNiIJwF/J21OMoipBkGUmWdq0fbRU7RhTb9owwjIniCFVV22qrIODZFpbV/rEdG8/1CKOQ0HNJJBLk83mS6RRsw+KOaiwKwo4Evftlpm1xCrczc6Rd9fougIq7arAsy0S7FpK7+7KTBxNFbWtJHEftrnuCgKJod60474L6+F3A235953dhG/TbmTuKoiBJ7Y51O/O7dzxxO3x7N4xbeHdINdvjtu8gEBg796E9q+8PQAkC8dMP/y1++W8Wf+j46fJkkV//vX/Ox579e4wNre7x0x4/7fHTHj/t8dMeP/3Q8NOe1Xev/iLqzzzj73f+xd+NBQEyCYFrU2scPTxOQpMRQoFUzkRWZDLpNI7vkk3l2arXie0WX3v+LcrNFq5vY9kC4/0dbNWrXLixTl9vHtPQQNCJoxbveeAott1kZGAAj5jxo0cwJQG71aReb8Ora7lta0oYYGYzTFybpK9YYHF9kTemN7lybYWDAwXOnh7m9UvzhFFI3fJIJ5N4gUAmqaNrQvsWfcFjrKcLTYqR1SRLyyVGxvooZmT6Cjk+94032Ky0aHkxlWaLKIoJ3AgvjlAUCZBwvYDzh/qZXVpkebPFSCHNJz98hs6ubgLPoaOrE9MwaDSqzK7UUYWQlfUGYeTTVcjw4uu3uLVY4sjBXsY6syyv11gptzi6v4+B3m5EXaZUarK8tMHJ4wOMj4xyZ2oS3VC4NDFPabPCnaUq5WoTSY7a6kYkI0kqqh6RlE0ODHUQqSlkVeLs8f0cGumnWi1xbWKBwb4eFAPWNpoM9naR1mQ2HJ/KVhVNTzI1u8Rr70zQbFiEqobvx4CMJMc0rBqRH5FKZhnpTTI+XCQhC6RNFTtUyaYlwpaHnkmx7+g4k9eu8+9+6+s8dHqY9z7zBIEb4YsxQuDR19PLzWvXuDgxzf6RfTz53oeRTZ1GaYv18hbl9RK1RpPLV2ZJJjQOj/ShmAo9XZ309hSJggBBFmmGMa+9eIGr1yYJJZW1zSY9/V2IoYeuSXheyC/+/Z9Dii2CeoPNlRJmOk3L9dBECXSN/+3ffRbXD/AilcC2+MCTZ9g/1IuoxCR1HT1XZLNc4cbEVRbmN3nprdskswmEMMYPRYb7sxwcGqDleAixw6OPnaWrb4Dy2iprCyscGh8icmP07hy+6/PWaxep1C0efvgMK3fmWatZWK066USSWr3CgfFROjrSaJpK3jSIJQWj2I3dcrh18RIzs7Pcmt/g8HgXqUSW+cVNLt9ZptX0OTbey9JqmeWKRVdO5SOPnaSYy7JW9zBMhcWlLUZHe7k9vcTwUBcvv36Nh06OU3c9rk6v0ZXPUW453J5fRYlkDo1l2T/Yx+TELGfvO8RYbyfprg5ajoAQ+MiShKoniKWQRDKFrCbx7SZx5OG6Ps9969tcublKrdViY71M0/XRNQ1JivBdkVwqxWPnx3nPU2dYW6vw5W+9BWGDH3vqLJ/7yhv89b/5k/QN7WN6coJGuYSRK7KyvEx3ZweJZBoEmUazgaaqWLZNrWGxulGj0bQZHR7kyKFhkgmdIAgIAo/I3867kWVEUcbQdGRdA1lGN0xC1ycKHOrVEpIkEYYxQRCTzLS754UxyKKA73moqoLvOhAGxIQ4tk3o+ziuRzKVQtN1wjAAQcRIpPGDgFq9iiQIhJ4PEUiKhCCJSLJCjIAoKZhGAtvz2pYVUUCU5LYtRhAQo21bQuDjWBYzM7dwrCa9Xd1ossrqxirdnb1EBKimjqYl8H2XWnULWVQora2jqTKVagMvFnBdh77uIp3FDhRVQzUSRDEokoTrOMiKDJKIJOsIkoykqASRgKpI263Q2sjk+/4uXEXb6qu03Z1up3ZsLlEcE4VtaN9ZQKAdSN0WtsXtLnPb8BlEeE4L13V3oTEIAwodBTTdaEPiNvTF3M3HaXeWY1dRb7/fhsc4ihC382F2QrcFcQd+hXtg9a5Cv5O5Iwg7+ysiy/K7IHXn8d7X4zjaBvr4HgiNd60oO4HeO9vaCULfCa2OY4iisN2xbnc5cXuqO9tovzd65oN7F/5+AEoQiP/J//D/5MT+5R86fio3UtyeP0ex47uIUWWPn/b4aY+f9vhpj5/2+OmHhp/+rC78BUHAq6++at66dUvr7u4OnnjiiVYqlYr+62vu1Q9D/Zln/B3Yl8WyPJbXGkhGgr6BPnTdwLKqFPJpNEVDU0wyQkQUhwwOFHnllRXeublM3XOoNJogyixsVGg0bSJFZWal3dksiFz6CwnqzSaGqlKptnjjwg1iMcn5s0dxbZtMJkfoR2y664SiSLG7F8fy6B/sJpcv4msyYy0ZRVTZKtX5+os3aMYKggvIImHLw/E9VmtlpECktydDQoR3tub54CPjaJrJS69P85H3nW3f/t3c5Mc+9AzfeP41vvPmBAgykighSAKaIBJHEEcuahQyNpjGcbNsNXxqoccrV2bJp1Z4zxP3o6kqv/dHX6He8ugqFokljcs3pzGMJJK8wtzSJkvlTZ4tHGJyZo6xfUN89EefJaELzC9t0Cg3OH/2EM6hAcrrG9TqNoFk4Acih8ZGGB0bR9Svoi9V6EibyIaMJghMTEyzUfVpiA4r5TpRBJYfMDs7wwcfPkZnZ4HzZw8AAddur1CvOLy0VGJxrUyl0SKXNqlbNg4JGj7YogGeD4KA07LxQgtFlTD0Dnq7E5w60I0qy7hewFa9ieUJeJ7OSG8n5XKZ21fv8NhHPsS1iU1eeuMikwtfQg41GpFP2pR538NH+M3Pv0g6obO6WubYmXGGR/Yzv7WFLicgrJFMJRgf7EFU4HPPvUXTsfnkRx+hv78bRZaoNFqsLS5z35ERzj14lusXL1PeWKNpR7xzY518NknOTPLZP/oyGXQeeuAwQwePtDN9srCxtEwUhjz98EkMLUm5WsNymuimipFIomkKrdYWm9PTKKk0Tz3zJGIAsfB5vv7yVT702AlmFhuEkYupWFy8Mkc2k2J6ZoXVqoPsOLx9aYKhoX40FTRJQhJd6q3Grlo6fGg/g67D9NIGluvz/mfeR2X6OtlsB77rIuU6wXfYuHOHXE83uc5B4pUKpWaZUt1n/9Ehfve5a9RsC1NWeOfWMmEsoUoqdiDw2tU7JFIpNmsec+sb1LYckqbBvj6TJ+4/xEJXiudeuMD+g0MkJZGHTw4zv9lgvVShN6Ew0qmhYjM6ksZvVFiYtdiauI0oKWhxRK63k+6OTkrlMtVmg5br4DZiDh0YoKezk/P3neXR93QgpVQ2ljd57gtf583LM9Rsj4KiY4ctvvzqFaYWV/i5n/4Qv/j3f5ZbEzdQgpgf+8n30pFJICsShiJScZuMjdxHZzGP36iimiqvX7jBW1fuYAUKpc0NirkkyYRJy3axHBfbqjEyPEDfwAC6loAowHctAt8jCn1aVoBdK5NL53CbTSRVRVFkDDNDs7GFbdvUKnVC38dIJokFESOZRtJ0AgRkIwm+RxQGCIKHJEXtz7TNEoIs09XdA4hEQYAkCiQSSapbFYSonfkSxwJxCHEcbHdL83CIkVUdLZW5C1xxRCyAEEVty4WmY4gSR0+exvUcRETKGxs0LIeEZVGvNyh0duP6Npom09HRhdVqMDI6wvraOsND/cQirJaqaGaCKApoNiz0KCSKBQzNpFRap1AoYJpJPLuBrutEsY8gaMRiRBSBJKvEooAo79gkYqRYAiEm9AOCKGyHYe9AYhiB0FatZemuio3Ads+2tn0kDO7mswiyiJRMoZsmAhCEfhuCgTAK2sqtCEIsEoXhLkRDGyC/N+NGQCCIIoIwRJakdufAXUV4O3SaGEkSd3NfBOGuxUQQRBRFfZdCH8c7Cn7793ZeEu/KrxFFCYh3xxHFHca8q6aLokgYx8RRjCSKsA2oQtx+lO6Z6w6wi9uK98629+oHo4Kol7o1j2QksINjpPOQMFbRtA5W1zqoNHUQYlZLIYrayeXLt/nWGyYtX8ZyW2hGiTurFhvlHrRkHWelThB0Y7sandksV/M5NKWTzYrJtYkZzs1ZHD28j470IpmMyPqGxuyyw6GxEsXuXm7cSmJFJutOjkY8iCauM9hfY3WrxR98xcWOh0kpUwiKSL3UiRc4rNbmEDwVM3ESQ4SZWYFHTg2gqineuVbhwPgJ3DDBwurGLj9d/k5MNvkdZJrEe/y0x097/LTHT3v8tMdPe/z031QXLlzQn3766QPVanX3uk0ulws++9nPTj/zzDOtv8y57dX/f9X3feHv7atLnD1xlMMH+xknQggjwiggbeSoVl10OaDlbBAFEfVKFck0+ONvvcn6Vh03jghCMBGoNwIUVSMMFWIC3LAd/hrGJoaZZd9AN04UcejwOIYY0rIsZMMkCjzMhE5PT5GtrQqNRgM/cCBQWVpcR0vrnD99lBOWz3cuXqM+vUFaUIjMAMGNqQcWtuUjCiLDxSwI0NeVwwljiEWGelL0d+f5wle+w9MPnaRncIBstsAHPvQEL1++gecLhGqE4MfIkk6kQOjL+EGTW7MrnNxXIGcIDHV38Pb1JTZXt7jvaJV/+ekvcGepjGqaiPECrSBGlEUcZ4VYFMmYEik9yYtv30YzdQ64Ar/zu59DSefpypvEnouSktl/+DBBDJsry2S6ctQ3aoz2d2I7dVJnj7LQu0Y2n+LlV67T35/l/X/nY3zlhXeIg3YHpq6OHFEkMdibRUsbXLm1iHtplnogcGVqlfXNGsQRseCQkkVmnIhQUlB0GVNWUASVjz51lOHhfi5dn2KrEYEg0J1XEHwH0XcxNAVBjrAjmaZVw/V9ltdK7B8fYWNjjduvX+Xn/s4nEAm5cHUSopBY9EGX6UrIdBWSnDk6wpn9I9y6eJOgEVLsy1LaqCMRU620yGd1KpUadatJsZAnaWrYLQvT1FEFMEVIZnUSaY3EmSNo+kmuX5khVkQKHXmuT85y6/oUxWyW0teWGezr56GHHiCTNmjWGmgqPPzw/XzluZfoymk88ujjTNycItZSmJkkSiZLXzLL1JUL2Ft1XC/iQx98hv7BPrpMmYglDo33M9jbQSWE/QMjVMpNhrqLdHZm+Nznvswbr77NR37sR1AVidXbN5hdXODBg2O88Kdf4eFnHqZ/YIQvfOmbJE2d6NAAA0cPszY/STHfSxj6TF2fZmbpFopa4Lf/5Lt0d2Z47OxRquUN7FqVoV6DpbKC02oQRjG+55JJm0Sxyu2lKq69Tqzo5JISzz5zlHduLWI7Fv/2d79Kf0+RSDf51luTVOtNDu0rsn9kkO/4AcubW+wb7eDgWD8Tc7MkRYnlcomaFbCvv4Nb8yXydRerv8mrb93g+s1luno7OH9ijJnZGaZnp+jOFbk1/xrTS1v8+Acf5O/97U+wsbrGd168xjdevYprW8iCxuRCmV/517/PA6fGed8TDxN6DTZLJVaXNxHXNjETCTKFThzXprSxymAxhxeE9A4O0nrzOvlMjg8/9Qz7x/owzDROEKIpMlHgYdku1UoZTRZQjCRmqhNTEgmcJoHVolatY2stEGK0QMYJYmzXJ59PAyK25RJFAasLi5Q3y/QNDmGksyQzuW2VM0ZRdcycghAFNMobpJMJoijCbdnoCR3fb0AsI4oqhXyRltXEsW1iP0SSRMIIwihujycKyFG4DUVCO6tElImBWI63LTggKkobeBUFUVTpHhxiYHi4nWklaayubRJHEcmkTj6fI4oFYlGgd2QMq9VAFqEYCTTrFXzRoNjZhRcLiIgIIhSKRexmk0qljO24EMHQ2BBIEYqcQBQVQiKESNi1UEiShOu6CLGAJMkIokS0DVhBEIAktLNroB0sLrYV4mh7f3dAb8ci0s5qaS8TxDGiJCILO/ks7XDsXfUW0BSVKIpwbBfP8xBFcTfMug3P4jboCfi+v62eb8PvDqTGbeU6jsNtJXgnB0fcnWs7oyYiisK2TSZqS9rvyvGhvd/sQnu4bY2SiIkJtsOzZVlGVVWAXYtN1N45iO5aVYjvqtw7MH4vDN8b2L1Xf7mlKi6f/v0P89xvVRkn4kN/7Vl+9Nnb/L2/6vDt1zr4O7/8/v8vaz0B/J8B6Mh/noPD/5RSuYtrE3/EsUM/h5a8zNziT7C2/gkAvvXyu9f+D19sP/7H/1XgQ0/P881XjvDr/+k0z/+HX6PRaPD3/8VPcmep87847/c//QHUsMVLl/8eQtzg4L5/SFdymD/57r/fXeYb92z366+3H08cWuNLn3mJD3zoCf7xp36OA6O/St/gl/b4aY+f9vhpj5/2+GmPn/b46b+xrl69atx70Q+gUqnIP/MzPzO2trZ29c8rkzAMQ37lV36l6zOf+UxxbW1N7ejo8D/5yU+WHnnkkdaHPvSh/aVS6XKhUAgBXnvtNeOhhx46PDk5ee3AgQPepz71qY7/6X/6nwY+/elPz/3jf/yP+9fW1tRz5841fuu3fmtu3759/p/LhPfqv1rft9X3c//ql2JTl+jv6SUMWwgoOK5DpVbFth1kUaGnv490Icv03BpvX5jjxp15HM+l0YgopAR+9scexg0UFlY32/kUYUSt4eCFEAQ+x/d3MdzXhZHKUuhIo0oiqqkhSwa21cBrNfGsJmEYEQsyi/PzXJqtcG1qEdf26CqkyWdN5lcs4timbrlsNX1EMSLyAhJJjb58jkRSZnSgAG5MIWcgaVDMd7G8vs7ZM6dQRAnN1BHigCgMuHDlKjemy5TWyhw+OMLS+jrNVogf+UzOrZM3BT70wAFSKYlqyeHrFyf54KNHuDa/yfMv3yKd1Yg8kQiZCAGZCEQBQdSIo5B0xiRwHcIIcmkDy4oQJA1F8hjb10fsBDxwcpjB/gJNV6GzmGVra5P+7m4EwabZcIiIWVxe43e/+Cp5I+If/F//GhffucHI4ABOBLYb09fbSSqlYOa6COw6n/2jF7ixuEJWNwikECWWmJybY3WtQWc+jSZKfPCZo6QyBUrLZQ6N5THSaba2KmxWLAZHhqhWKtRrdSRFRBVE0sk0S6USF67dwfJEmn4AroeZTdOhhDzz/mcwkin+7af/I7WmxVBvB4aRxJTBFyQef/Q4kmWR7UiRyRUpdnXh1Ncpra4RSyrD+w9x4cI7bK2XSOsZjA6T2HXZd+AwRAGiADNTk/T096OpCptrZaqbmwydOga+R2i7LKyuEPkSK+UWvd0pfC8g1zXMysoC3fkkdTvi9/74O0iqhCiLNJoeGUPkQ4+f5fGnn0QwdcJWi1a1zsztCVbWl3ng/kdYXpin4jpsrdfZPzbE6vI6g6PdZBJJnGaL1XqVzdUKTmuLE/edZWhslNLiNK+/coEz5+7j2s3rpBJJjp45wfU3LzO2r4d0sUg63YPrtLj85lssbWySSiQ4OL6PT//eF3n6iQfpK+YIm3XcyKJVa/HqpRXm1irUmxapZBI7dPDtAFGIQRaJohhDlfCsJkcPD9GyYkJizh4cwiPmrSuzeF5AvdHifQ8f4tGzR7h06QbPX5smZ5qMDQxy7uQQ60tr1F0P2wkRCFjbaHDq8AilZpOV9RpXbs1zcnyQqblVdFXn8XPjvHFjkXK1ylbV4sSRg3z0Pafp6RtCS8iUak1eevFN7ixsMTmzgpnQyCRETo0P0JnJ0tGVIF/Mk9CTJHM5/ECgtL5Ko1alr6+v/cULkTgW0DWDer3F8soyhWIBSVWQRIF0KgWiTBgJOK5FFAYoShsSVFVDkttQE3gOtt1EEGPiMCLyQ3TTRDd0XNfHdT1q1TrXr15DEARCRAwzycjIMN3dXWiGgahqCKJA4FoIgYfbauDaLVKZNEHc7lRoWTbJVBrDTNFyHGzbIwyCdp6LKKBrKmHgt39XFERJbjORKG9nsYgIktS2q4QRsrRtqwgjAt8hCF0EQFEVHMenvFGmUa0jyW2oUTWVRCqFLCtEkUA2k6bVqGI3tpBFEcM08X0Px21nwkjbuTiaquHYHiE+oGBZNl4AAyMDqHpym9vEXQtQGLXn1M7ACdrqchhsw17MXSkYBIR21zjasNcG0TaJ3psrc2+3N4A4Yjv4eltlju9aQYT4bnB2EATEcYwsy+8aZzcsOt5Wf8O7qjGiwG7gdQyKIuNvh1bfW3EU873ekJ157ObM3JPf0w7tFt9lbYlp24/undfO8u/OuWnbgnbmtHtcxLvPR07vWX1/EOrf/s//JI6iBA+fFQnDFtPzPRhaFUlcolyBUrmHQlcniWySxZUyNydWmFlZw/M9WlZEV6bOz39inIZl8M51hWJuGUWyWVw1qbXSBEHA+FAHvZ15NDNFNpNAkUQUXWV0IERTtlhZDFlegf1D68SCzKtvOFyds5leXMd3fPLZBJmUzmrJIcal5XgETCBJAa16L2ZCYrzPRjd0DP0EeDHZtIaoQC7TQalc5tChg8iiSDYnMTawRRQGfO4rW5Srs7Rqc3v8tMdPe/y0x097/LTHTz9U/PRnYfWdn59XfvmXf7nn4x//+NZTTz3V/Af/4B/0/qt/9a96AG7dunVt//793p/FXL+3fv7nf77v93//94v/9J/+08Unn3yyubS0pNy4cUPfv3+/+/1c+PulX/qloQMHDti//uu/vqBpWvy3//bfHpRlmYsXL/5nrah79d9Xf+ZW39BvEGgGoRiiSgotx0YUY3wBag2XhlWh5droyzqSoPL+B/dRzML1uSoUIs6f6KO3qwtd1RkfKGAmNWSjgKYFiDEIsUooQhS6OJZLOp1GEAMkBHyvgRiDrqUgjJAUAVlTeOnNOi+8cxvbdlGjmLVKCU1LEIcyFcshxsfUDBKmzunjY4higIbM1YVlVE0ncGPenlokDEPOjlfoLCTYLG8yOjyIKGqUV5bIdRZ5+Pz93HfC487MDJImYYoOnYU8mVyGr3/nCslEgKEr5LIpXMcjn8ry7XfWWFmrkenMI7kRoeC1uwUJAmHkI0hJVE3mocPDPHjfIWrVFp4Ak3eWmZ1r4LsN4khm31AX64vzfOe1SbSsCr7G0+cPcezUQVQjgZHUSfsugW0jeQ5/9SMPcW1yji/96Yu8MzFHFF/EDyCXSVHImQwM9NLX18mjD53i7NlB+vtVsnqWNy/d5MPve4A4+REmrl9HFFrYGy1OHT1EprPAxfgSW1WLOzfnOHpgCB2XrOaT6kqz4ITkujPgeawtbyCrIpphstZo0Gi5hKFPK9iipqj89u9/lb6BDh5/4CQvvX2RI6MFXr20Tqm6iaSoLC5t8Nc+9AgD/YPEssDq6iKdyRQbpQaC4DM0PIwiwNL6Ju958gi1rXUW1jeQJI0w8Bg5PI5sZqiulhk4fJBMMSL0WyxMztLTk+f21BJvXLrNsfFuLl9dZLlUJCKi/MYEIiqyLjM1u0yr5eAHIYos4zgOjiZy6coNzpw/jewpZNIZJClPrrObrfoWc7duUW5t4dkyhw70oagKM+vLZLIyayurHDxyjPW5FVKGxCPveZag0UTXDYxUB6fPnKTmWBSLBZZXa3z6P36B958/i5nqxAsVVpYWyBd7CWJQ1BRIIjWrxYMnjzDanSWXL+Dnc7z15pvcd/8DdI1u8frrN3D9CN9pcmNhjaWWR0JV8T2Pnq4UIx1Z/DDk6tQKYRCTSmps1YrMLCzSV8hgNWw+8NhJyutLvHnhOqIU8+wjJ1hZrdPyHdJpBbmvj3h9nXQioNhVRNbWuDkziyglyOgSDxzdRyyEjA/38dKVWeovTbJcq/Oe+8aJRZFXLy9QcxzOHFxgfrnGEw+d4NS+AfZ1dXHq6DBW0yabSdPbnSTT2UUxlaLR3MIwEmiKRuC3iLwmA91dGKZGrd6kVqkxMDKEoEokdYXhlIkYgyRCFAXUG3UMw8A0EyhyksB3253NAp9GrYyqafiRiGEmSOeK+LZFHPo0vCqe56KoCkbCxEylyeQLqEaSi5evsry8jCRWsSybO7N3SCQS9PT1tAP2E0kU00AxU8hWAyGOcetNBDFEN1TC0MWyQNcTJFNpgjDCarbwPY9arY6pafi+hRQoRDHIiookq+3nggCBQCQIKJKMILbBGyFClWWUSMO1mwSuh0RMd1cnxWKBKIqoVKrEcYxjOZgJkZiYequBmUhiplMEnoNjtZBVDSUW8AOfpm0ReAHXLl/mwQcfJiTGdSOiwCNwGzjVEoHawgsivCBAUnWSqSyJVIYYgcDzEGWJKNwGNtpK8I4thLit0EdxdI8VpN1hbUcBb4dCt/NOoG0/gbbCL20DvcB2ZA4RO0HXoiS3IV+SdjNs/MDfVaZFUWyHfm8HVyPctbS0wbB9x0AUhoTbFpcda4osy4RhuAuYOzC6M29g24YT7gZhS1J7v4Ig2IXm3TDr7bsVovgeeObdVped2sbX9uvCXTD+fkW9vfrzr1xyESNpEIqDqJLC0MAihDFrVfD9GpK8ihynEGydkbzK/R/N885Nr81P4bv56ciYh5k89l/gJ4dsTtvmJxvf8wh86O+RKWRqSEoKWVMIhWvcXpzY5aeVskW5+X/kp2RC56HjxjY/Zbi6sMyQeYNAiJlYqmzzUzfDPQk682zzk055ZY1cZ5FP/ng/ntPJnZniHj/t8dMeP+3x0x4/7fHTHj/9N9bQ0JD/mc98ZgHax/T69esGtOdbKBSCP49tVioV8Td/8ze7fu3Xfm3hF37hF8oAR44ccd/73vc2v/KVr6S+nzGCIBA+9alPLTz55JMtgN/+7d+eO3369JEXXnjBfOKJJ6w/j3nv1X+5vu8Lf6ZZJBIjJqcX6O8o0AxtmnWbjo4sem+SIHRBjLEdCV8EKwgZ6iqQSqbIdiTJpFLYHmyUN9hYXePcmSNEYpMgaH8Ah3GTtGYiKAqpjIDjtAijCNtyCOKQlhWQSiTJZLJUyyXmJ6bxIiimVPafGGBjtYrZkePEkRFCt8XycpmmFZBK6yzPb3Lf0T7euL7IrUWblUrE4uo06YRJytA4eaCPweEiOVUmpRt4UUDgNOnuHyEIXSyrjm3V2XdgmGbdw++tU+zuJJNO88kfeZBq02J1cQar0eLIiUO8PbnJrckNPN9HRMKJFMKg/cGaNDW6OoqomkY2ZZDMJqhVqpx/4CSyqDDclefrwRVOHjrMpZuzvPnODE89MMz4uM7U7DonTvRy+dpbiEKVE2fvQxAyhIFPs14l2dPD8d4hak2b3/jSG8hKhBSrBEHAltVkccPkrSsL/J9+9AxXX2zw7VduUezLktmvcvxgN7dv3uDxj47SnT8PcUClUsVMGUi+R8IwiIyAreslNjdTpJMKiqyyvrKAbTU51DlKviONmkzx9e9eZmGpguV5JBQFyZBJJzIIIpiqybnDw5w/PobdtPjmq1cpWwG6bpBQJTqyKXr709RaVe7cmkVTDWxTZWi0F7ve5M7t2/zmH36Dw4O9uM1Njp0+SxReIJkw8GOZZnmD0ZFRquUNWtUqasIgUegiqlVxnQYrK6u8dG2RyzNLWKGMOLtGiISZTuE7IaHoI0UiuAFC7GK7MV2FLB/7iQ+ztXSTyvICHd1duLpOJCr09PWTSxtsrK3QOzJAo7yJpMDQ8CDP+AK50SJ3bk7xzmtv8+bkMj/xvvtp1ixS6Tyf+Xe/w/4DQwSSwj/713/E3/n4BxgaGaCnvxc9oTI1O91WvpcWEcSAQkeOkX6dRhDhBT5nHjpBbWWVeq1G9+gQwyOjbK2u0jM2wF/5m6d57o//mJTex5mTR/k3v/2H2H6ELojk9CTrjTqEEr3deYY7k0wt1Xjr8gwnDhcZ6kkTRAVWllbJ9PViCBFyKKPIEs88dYAbF28SOhq/9fmvc9/JcU4eHmLLcjl14gDfetlHjl3S+RT7x4a4eGOWizfuIIoSxUIH+8d7aVkxiiKSzxiETojreZh6zG/83jd48MFxVhYq3H/fIc6ePI4sSVieQ3PLYWW5jBAEHNifxrJ8pDhCUjQuXbjIydPHyeU6UY0sLdsigY4hm+jJBI16pa3gBhHEEqWNLVJpn2xHFlWQcK0Wvh+gygori2uks2l0ScQNfRRDQ9dThDFEoYdj221FUpSIgP6BbgaH+imX29AahUG781oYoMgyrUaNVquFkUii6zqymkCWRLKaQRAGeK5DHIUEQYRfr6GZPolkCimTbkNRFCMI4FgNVldXSWezSJKMazuIooQX+CiaSiyIuLZDHMeYCbOdxSJIgIxhZonDAM+xCKOIcBusil2dCEIb0jzf3wa+turtBQGKmSSf6SDyXDzPIvB8JEXHd1p4gUAswM0bM9yeXuD8+WN09fQQhRFLCwskk0k0XWdx9haFQidhRyeKJKMnknieRxTG7Tu3RRFN04kkaRdWo+hu57idIGhgW+ENEcU2zArCjoor7gZdb7MbO53ZhHvhUwBJkhG3u+kJAsRhRBgGeK7bBsg43gVbSZZ3M212bTKCgLcdbi3s2F12oHJbNRZFEUEUkcS7dpcd240sy7tKte3YqKqyzcfx7nLirgXm3aHeO3MC3gWloiQixNtqfhQTRO1uiTtAv1d/+bXHT3v8tMdPe/y0x097/LTHT3v89P9r/dIv/VLvt771rSzAJz7xiY18Pv/nEkh4+fJl3fM84dlnn63/944hSVL82GOP7WYQnjp1ykmlUuH169eNvQt/fzn1ff9nx4qMtH3yLFdtVqpVNkt1emoxFaeF3XLx/ZC+rgJmQuJmtYamJggcD9P2qYUtHKdMOpule7CfucV19EQN0zCRRRE/8CkHAbYvUClXyaaTGGaKVMIgDCXCSGB9o4YXhIDJrTsVrFDgvpP7eeLB/SiiyqVrE3i1LQ7uG6IzazI7U2JiaZmGF3N5tsSh0UHGBpqsVAocOTBMT0pneLCXudkpOvsHSKoGoiLSatVQJIlqvUzge6TNBGqhiygQUbWIjkIXxa4emo0tWq1NegYPMjA0TK26iayYPHzfETZrDmP7+9GiGMMwmF/bIp3Uca2A+ZLFYFeKXEKjUmmyHFr8zh8/z1hPAcPI0NuRoCefodnbTTbT4rNfeYf3PHSCDz9zmq7OPKIQsDC1yNb6Jg89/TSZdAJdiKhv1VlrWnzz9ZtookTkSQS4KEL7MyEMIiRZY7PZQhJjPvrhR/EVHy1WSJgma+tlNldK5IsFYi+ic2iI0LFZmpzg+PHDNK0tpMClvLpOITXIzeu3MAydfErl9tXrCJJIOp3iw0+c4f0PHcS2PS7eXuL5l29Rqq4T+gFjPXluXI/YLG1x/yNnOHT6AFev3+ZbX7/E+YdHyeoq1WodNRBwLZsDhw8R+Q56Ik260MH6wgI/+8HHESURUTG4efkChc4OAtfHqzfQU51ImkgQeMSCAI7M9NQi1VrAi29eZrlWw41F6q0QSY9RtQQxEY1GDVlSib2AMLIJQ5EgBiHyERAww02ywwMMjh3AatbwHBdN8lE1ifUNm0Iui5rO4EcezY11GvUG6c4cVy9P84Uvv8JauYVpiFy6eJO+zhTnHn6AR595HF2Br33zDd7/2An2jffS29vN5loZ3/doWhGbpQaHD+5jfnGVaqXJWqlM6Lqce/whwnoTrdiJbTlU1lbpyKexGz6h4xFYNoePHuB/+fXf4+f+9sf5u3/jp/jGCxexWm3V0Y8CdFXGazlcn/Xw3RCPmO9eWObvfnyErnyG51avcOG7F/n4TzzC9M0FjnTtw6o1GRzpw/YcTpweZXa5RCSLEAWMi6McHuzCD10KhQ6SRoJm3SOUBMIQ5pfX8MnQaAYsLW+SMFU2vC0WSmv8k1/8K8wtf5NvvXgNTZJ4Z3KOo/tu8sRjx2lutMh2mDQ9h+p6iaZl05FLMDI0QqE4QEexF0kWcEMPVQzQEilQ2gHLAj66LlDZqkEsYJhJJDmNKILTbCGpGkoyixT41CubJHQRXBfHbpFMpQgci61mi2y+gEyEZbcgCIhCD0EWcVoNZE0hnVZIJ1VajTq2ZaPIEqIio2ezbRtGHELo4gcBkSIjKxKCoKNJBqHvEPg2kgjq/4e9Pw2WLL/vusHPOf+z577ffa+9qquqa+m91d2yJEuWjRcMGDDCfoIZHtuM3wwzYQyeIYgwKJ4gMA57gnhmnuAB7AcbISxso6UttZZutXqr7trXe+vuW97ct7OfMy/yVkk2PDPC2I9MOH+vqvJmnZs3q7Lyk+d3vp+vojLoHz4uTSc8BC5dN5icnELTNVRVw/OG7XbdTpfDhSyqqgAxURTiOh5CEiDL6Icte6gaBB5EIY7r4vX6yIcyZstMDpvhhEKsKOgqxIFLGA6QdAtNMVB1h8jziK0UL7z8Cs36HqlMmma7SbffY2F+hsZBg2QiAXFE4DmU8zmkKGRnfYXACxifHMdDRhIaxBFWIsXA84YNd0IgSxBLh/6XOHrcYidJHG65h9vZMAiQJJAlmcD3UDVt6H/hkfhZIo5CXNdDlmQUVRs2dhIjZMEjH8qwcU9F03XiMCSKI3zfHwL0d/plDt0yj+AzCEKIAiRZHm6XDyM2cRwfenZikOShRDz6ww11j7bOmqY9bt57tHcWQjn8OYa3R+EQ5jVNQxbK4RZfHrqLhgcdiru/Y6sty0MZuO+NFCp/VmbETyN+GvHTiJ9G/DTipxE/jfjpv2V+4Rd+YexXfuVXxgGefPLJ3q//+q9v/Wl9r0Qi8b972aMQIoY/fBLV9/2RWua/g/muT/z91hdexwAsQ6E1iGgPHALfQ5If0rMd/DBCCmKSSYsoDMgaGtPTBfLZFHfub+CEYOgyL1w+TTaZRLUSEMgQghtENOotkokU6zvb7O628AddXnz2FLnMHMgecauLGoU8vLdD0tL4wY8+RxhExGqEJBRC30PXE3SdLg03IJUuUO2ucnRxkYHtUT1osRG3+OhLp/nhsSJ6YYJebR3PHhB4DgktRlZDPLtLOlsmCh3q+zUUIdNu9ej1m6TSaUzLIF8u4TgOppYksFz6jV2EYbG52yKImxw/eYb/cXySbr9HEMTEocPidJbFmRl2a22+df0hr7+3Qr9nk7IkkokEPS8gHDgUSzaepKBJIboi0e02eem5Czz7/Dny+RxO4JEvViiXKgzsPr1eG8MykK0cfrvP//u3v8TdzQaEElLgY5o63UhGsRRkYKxkcOd+jclnjxB4NiIS1DsH7PsBhUKOD957j0Qmx+kTR0koQ3FqEHs0a010Q2VqbhbT0llf3WOrWsXzoJA1Wd/v8ezTp3DckAc3biEJjVI+y5nTCxCHtNs21VoXVIV37qzxrKmjRwFnz13g7JkjKK7DeLHI21duMp7Ncn5+hnbNpF3fx9QTWBMp6tsbBBHkJ8bx+j2CUOD7PtWDfbIpk/zYOFomSey6RIGPoghUVWJ2Mk1uzGKnXifRTFOv9mnZXbpdn4Hi4XsDMpZBoz0ASUJBQhHg+jGqBgMvQFFlJot5Ou19dDNFv17FM01MK8n03BzuwCH2XTLJDKXyBKgaX/3G+/zL3/w8fS/AVBWOH5vmI9/3DPu7OziNJlPzs0QCfvSTL+LYHSTZotXsMhj0iDQNVI3l1Q0CWSaUVDw54uCgz4kTU3TqVVK6imHlSBdVJCGwW03GZ4/QbxygCI/Z2Tn+wkcu0F1Z5fyLT2IZCkHHZaVe45tvXSeV0Nh3XOq9HpEvUJShM6RZb7G8us/Lz53h6HyDV7/8LksLU6g6vPvBfcamxrC7XfKGiTlfQQoVvvT2bdarfV566gz9XofaQYvQ9zl3YolC3qTW9Hj93Xtcv7eDFMVEIUxnDYSUIGkK6nt7PHlqks99tUmrY6OpEu/f3uDq/YdkDZO/8oOXiCKJkyfmCIIQXdFot9u0mi0yuRzZfAZVS2J3mpgpgR/56JpOiIQWSpimS7fTI45DNEVBkmN0wyD0Q9xeFzOZJFMokcmP0WpUCew+LbvHQaPG3NxRfLtLmEpgJPKEvoc9aCEQw+1vECPkYQOZrhtouobjOgy6bQKnj2pYaLr+eMMZExOEh9thRSChIBRzGIEYvpUSeQ5BFCMJhViWUE0LWQ0IA49et4OqqiiqiqZCTIAiq0PQiSQII2RVHXprohjXdYjDobtFVTUUZeh/EbJyuD32qfeqSMhouoZhmsNjKwqSLKEoGlIMASCbGjIgqToZSaM0oTC3uEjjoEq/N8BxBvS6bRLJBEIoaLrB/n6VIPAYHx8jjEPqtTpO30ESMUlDJ5cv0OrZZHMFwjgmkc6AohEFw4Y1WYZIkgjD6FD6HKPKj+TNIXEU4wxsVCGQ1MP2dcCPIoQs4XseURgOnzNJIgoDguhRfGQIibIsEcXDljc5jokPxdWPGgCBPxQR0XWdIPAfQ8+wFe8wRhLFxBJ4vvt48/4ojiJ/x5Y7PoTWR5vw4eMZRlSGMZhhE14YRo835nEUgxTxqHDuEeyHh9vtR8eXJBlZ/dORPY/mv35G/DTipxE/jfhpxE8jfhrx04if/rjzS7/0S5V/8k/+ySTAmTNn+l/+8pcfJJPJP7VM8unTpx3DMKLPf/7z6ePHj9e+82uVSiUA2NjYUEulUgjw3nvvWX/0GGEYSt/4xjcex3qvXbumd7tdcfr0aftP63GP5v/3fNcn/vb3mnhRTOR7xLJASCF+bCApMbHnU8qmSSQNfD/iyVNTJE2NudkZXnj+aVZXV9laW8XUBEtL00iSTr1eJ5HMgSR48HANM5Gh1ayjRQNeevYE6/c2KGVzuEGdfLJELpVAGDLyhkkyodMPBqwsb9GoNdjZaxFoMnv7dabyRaYnIgxd5ZlnLnDn3kP2Wz3evr2KLkmookf2w0/jH+wzPTeL7OwzPp6hVu3R6G5Q3etw9FSE1x/QatSplPOYZoKsMY6qachCo9vroYqYVrdDKp3Atl2+9PVrfOvqBoqicP5EgxcvLjJRnsCJbaRQoAofYSWZnTGZruS49MQiX3v7BjtVh3RKY3o8x5mFcfAHSLpOtdPizk6bpSOn+f6XztPt2nR7bYrlCnPKNPsHNUrJJI39OrpIoqfSpHNlXnn+EpPL6/iBw+TYJJVSmc1qlYP2gMkknDw5xZe+cQXLMpFUQbM73Da16g61VhfdynLn+n3G0haqMsXm1iYJRcNMGChmAsXVyB2roOgJDFMCSUfLWIxPy2xs1HmwdYCeKnDq2Di9XpusZlDOpHjmwgkyOZNCcZJWq0tCV2nW9+jsPKA4s8hPfurHaTxcZnw8gdfzUCQFVQgM00LVNFAhnS9w5+Z9ilOzHFR3uXZtkx/+kQ9RGRtHknV29jZw210wD0HdCei2epiJHFK/zam5FB998STJZI7V/Tor9zb4/LeucmRsko89d5o7y/vc267y1vsrmAkTIQWoQkWEEnu7WwwGXSruFJMVCUMzcVyX0A/RwoBY0ui1O+QLaerdkGvX3uYzv/dV3CgmZckszUxx+sgCmqaRTyeoNw8oLczg9wb0bIekmcUOQnRVMJ6bxXMjSoUSPc/l6pvv0e60yGRTzC4skKwUEXKEmsujYoAcoykqbWeX2t4a+fQ4smWyevMGU2MlTC2BFChkiiWuXHuDj/zYx3j2qXPU9loQhRzUuvzua2/RsiNizWd2aYHu+w/YrbbZ2XfZ3Ovy4z+0wOdffZ9Or8sgDglDePLoPO1ajWNHpul/7X2+9t5NxnM645USyWKKqckZ3nz7bQ7293ny/HFWdxr01jeRkPCd4aX9P/6Rc7x5Z5vPvHqNvtvG9gJCBEJIeJFPq+cSRTFrK1t85KWnqdUbpPMV8oUUteoBjh8St9v4fRsn8ImJabcHKNpwc1cYm0KSFax0liAceliiOEIAMhEoEqAQ+za6mSSQYsamZgiCkNpBDdN18N0Bjf0OvVWHXL5AbnycZCpL6Dg4QZ/Aj1EME1mWUQ6dRoZmYhaHTXTtRpvWQQOhCIRuoVsGZiI5FCQLMdy6RqBq2hDEQgk5gigI0JQh9NjhEI6RVaykhu04+I6LYVq4jovj2KiaQuAHxFGEJlnIioqQZYRQCaUQx3EPgUxgGBZB4B0KoocL7TAM8TyPbreNJElYVhIrlSDs97Esi4SVwDv8/99I6qiGTuC6uH0XM2EhNAXF0BmbnKLX72KlUty+dYdOp8vc3AyNeoNG12G8mMPMZdje3sR1Bti+hyYL1g/26PsRE2PjyLJgbGaBIB5ubSPfQZYUFCEhI+GH3qGLBzRNw3WGvuQwCIgIh+JpWSBkga4ZBOGwLc51hzApCxCKCrGE67lEUYQQw7fDx8LqQw+OJA+hNQj8YSOdUPH94feXH8VIkA5jL+HjjTTw2FcjSdLjhrlHfy4IAhRFeQy/jwBXliU0TceP/UN4Ff9F58x3iqsfHf9RPOWRv2c0fzZmxE8jfhrx04ifRvw04qcRP4346Y8zv/u7v5v6R//oH009+v2NGzcS+Xz+fDKZDK9fv35rfn7+T/wSRcuy4p/5mZ/Z+4f/8B9OaZoWv/zyy729vT3l+vXr5s/8zM/Ux8bGvH/wD/7BxKc//entW7duGb/2a79W+aPHUBQl/vmf//mZX/mVX9lUVTX+O3/n78ycPXu2P4r5fu/mu271/dDFJ+Kl+QopQ+f+ehvL8Lh0don7yzWW5iq8+OxxjESC2tYekRfidNs8/4kPE8kSN99+h4nxcRTTpN/rY5o6Wxu7XL+/DrrJ8fl58NosLM1haBK9Vg+nP0AyNHLFSba3N1nf73Lr6jIfeekUhWKRdrPFOx8s88SJScJI8O++8C2cQGVuMsX0RBlBzNs31tjY7yKFHo4k4YcRBQ3OLo2zNDuGkcuzvLIFro2heNzf7pPPmdhexIeenOPE6VP83u99FSVpkU2aXDp5CisREUgJNN3gYL+OkODa3WWmpqbp210azT5HZ4rcurdOJm1gahILswtYqZB6J2bt3irNVovnn7nAxtYeummSz5mE/tApMOi2CLwYTZeYPXmOtCU4aDYYtDqIeHi5tLAM4lAicHw836U/GDA+M0skZCyhELoeO3t7lMtpRBSTKVf40hf+gEy6SFKLCYOIfr+Dbiap1vdxA3C8iPXNGigS7cPOIVNT6PccXnjqDM9dPEmnfUBISK3uUi4X2d3eZWO3z52NfR5s7dLrBZxYrPBzP/WjEAT0HJd6dQ8hIJUqgIhx3YB2q4OlG5SKBVTNwUxkyY2N4VR3MNMpBr0ugd2n3WyiGwmEpmIkTFJWjru37/LmezeYqKRIJTVMI0ur02dqosDKvQccdF2efeY8nUaPD+7f4/ITZ5lamEIm5mBzjc6gT6VcIXJstqotNjZrINkIdGLZ5fTpoxwc2PzW732dThjRqTtYCZVc0uKVCydZ2akyPzPGt+6soUk69UaNbtdFkhXyFZMoktjaPMD1Q2RhoAufhakJFudLHB8vMn5knrnpKR7cuc7E3DTtvRb1+gG5bJFmr4Osapw4cxqFCM3MEAQ2waDJw+U9fuuzr3Li+DQLE2NcePppsmMl6gd7BP0+Wi5D1OtjSDGxadHt9QAIfB+v10GRJVQzSbPdw+l3OHr6NM1qlUDEWEaK1furfPOtt1EUnefPL4BQeef6Q7aqHU4cm8Ku90BE/PZXb5NO6LxyeZEXLj7B5voKb7y3zLWHDbzA5+LxOcBDM3W+79IRQl8mU0jwmS98wPJOHTsMkSOBJsFHnj/K9s4+b9/eIyRChDpCB8frE8cSmmKQkAV2GPHCpaP8pU9cxB3YJPNjKDLcuHaT2WOnqe/vsjAzyfLaGulMivWNfTa3dpmbrnDy9GlKU5PEfkAcgSBEqAphMIyHqIaB03eRwohMvoQrgeR5xEJgJrL0ej363R6x04PYxZUEukiSLpaIJY9erY49sEmkkiiqcgifw5Yw23URioSi6Hi+j207RIGPqgp0I0EUxSiKjqpryEIQReFQSBy4BJ6PIlSEkImJQFaRJAkhyziOg5AFfjCMUcnytxveJBhGMmKJMBg26RHLaKaJoqj4vo/jOLiDHqalI0sC23bxg5AgDJAOPTAAYTi0egskZEVgWha6YaIb+hCaZEEUBMhxTLtxgKYpqKrAHjh4rvvY2dIfOKiqYH1zFTyXr3/rBulsmq2tKhOVHOmUQaWQ5uKTZ/H8iHarw9bmBolkivnFo1jpFFoiRc/xiJDRdXO4xY4OgS0MiA/BdNjK9u2mOM/zhnAngWWYj+XQ/X4fK5FAOYRUWRGP5dLx4eY6DEMCzzuMhRw2y0WPNsrD1r1hw93h5lhIj6MkcfSft8jJsvz4tj/aUved8wh2H0HtI7/Nd3790W2yLBOGIeJQqP2d95NlmcVLPziKXvwZmBE/jfhpxE8jfhrx04ifRvz054+f/iRafX/91389/3M/93Pz/6Wvvfnmm7efeeaZP5Ur6MIw5O/9vb839hu/8RularWqlkol/1Of+tTBP/7H/3jv1VdfTfzcz/3c7MbGhnH69On+z/7sz1Z/+qd/euE7W31/8Rd/cfrXfu3X1v7+3//7U9VqVbtw4UL3X/2rf7V+5MiRP5UW4j/P8yfe6vvCk8d48uIxTA3OVdvcX95ia69LMq1y9sg4hqIzNT3J1FiJ3a1tTHOeWBbEoU8mnUFGotdokEolqTY6vHnlLgftAYmExocunSRrJtF0gxiZMOqy1+iQy1j0RRMRx6ysrLKwWOIrr19HUlUcp8/cWIl7D9aYnZrhY88cpeMEdNyAg/0Dan2XtucSShEJXaOcMmg0W3Qdn29cX+W1d2/RtT1CIUjJMp94+Qz7rTbv3t9mppLj3MIYK/fXmZ6u8PtfeZ/FhTFE4GIYSXYaPQY9l+JYil53gCprRJ7H0tw0zliL1eUqe7U6zz31DHIkSGUSVMpl3vrgy/yHz79JEAbk8mnur+zwytNnEFFALMUQ+uTyWXrtNrbT4YPXv8ypyxdIGAboCp29XWTTIkDQ2q9RLOfx3AFWwqS6sYUQEBfKRASMTeRQVZ2EaVGr7mJoKoV0AiSfOHZR9DzrG9t0+n0iYXH1zhbrew1QZGQESUun3uwiKzpbn/sqzVaf5Qf3+ORHnqLbc3jz+gp7e3UWZseII5dT02UKuSSL8xN4gYemWiQ0hXTmBF7g8/DhBvVmg/WNXYIgYKyU5GDnIcmERiJbYHl1k+mJMr4UDP0VSkQyO5T7JgyDwIO2V+W1KzeRQpnjR5ZQLYNoELBVbfC1N68z8CJ8P2R3Z4f3b25RLOV559oygWxy6twxclqRShQQ+23e/eYbrO72OHVyAcGwnbrXd7D9kGTC5C998gWOnVjgy69+E1lXuHZ3n+12j3sbVa7c2abnB3TtAYosIUkqcWSz02wiSQJN1SD2sb0BQpdptwfESBhpHadZoy6HVColMskUVa/GXsNmeeshU2MZnrl4GTOVpF3dwHW6GIk8mfw8Z58ep7gwz/tvvoET9JE0Fd91yWbSbOxv4wYexXwRN3BRZQ05lLAyeWQthGIeEcrU2k1kEdNrtxGRROz2SKbyqKrC6SdOsHh0gvpmlUa7jeP4HFsY58TRKbo9F5FzUCPB0YkMqWSClbVtTs2NYyVynHtikem5KR6u77NZr3FuYZwzxyZpNGyy2SSvvX6D2YkCG9s1aoMAS41IZlJcubPK1r6LrOrEno/QQsJYRhI6sg+yDIHiEccyaTMmdHs4oURzbRnHDkjlc/RaDTqtFt1iisnxMp7r0Hdt1vZbdAYO41PjVKYqxJHP6tomuVSCQQSKUEhZCv7AR4ojAj+g06njBBG6YtJxPAYHPXarVap7LR48XEOLYybHCkxW0szYbcpjkxjpDN3+AFXViKJgCB1CQVJUDEXDd136vQ5C1lGEjmlZtFtN5LiHohr4voMkJHRFGW5QkRG6giwCZCSCwBtuZQmxBza6YQERQRQjK4LAD3CdAIiHG1ChIqEMnS5xRK87QFYUbNdD0w0URWAYOsQhvu+h6QrJVJowCvE9n8B3D7e/EooqE8cSQpKGAB34EAoGPQdJltCsNLIkEUQhyWyeMPSIpAhFN1A0neDQ9WJKMp7nUC4UsBI5jFyJnYMqkqkyVSxz5sgE9+89YL/WYGfjIVYqzdnLF6jtV7n/4C75QpGp2WmatQPSmQxxaIKZh3gYU5RlQRBFRMQEvncIhNJw86sOIy1BFOK67mPHTDKZfAyMURwTuENAHW6TpaGDBpAV9RAGh810shi2G0ZhhCRFSIdXHURRSCR9G0D/UBwF8H3/D22vH0VSZOnbv38EtY9+/SjeIklDIH606f6joPtoW/2dzXXAY7n1aL73M+KnET+N+GnETyN+GvHTiJ9G/PTHmZ/8yZ9saZr28I969FKpVHT58uU/tdisEIJPf/rTe5/+9Kf3/ujXPvrRj/bv379/+ztv+6mf+qkrf/R+n/rUp1qf+tSnWn9aj3E0/3XzXZ/4K2YTlHIJJiYmOTXv8OSJOfwQJBHQqnapbm4zNjOOJCQCPyA3lcMQEt12j1Q2jVB1sqkUbr9P9aBJqzdgeqpAWoVmbZv8wqmh9yWVJJPPsLFV5YM7y5w56lMqznL51BFUOeDmvVUKmoGsK+x1mhydHSMKBxRzBlNmijACWY743BvLaNg8e3qR+fkxnjg+S6/dp95tQRBw8+Y6W/UakR+zeVDn7Ztb6KrOx5+dIp0ymJybppjNk8umqJTLbO3W8UKPdCrNnGXhDHrsNbr0+i6XT0+xMDtOImugSkkq03OcOFEh9n1kKaTbqZMwLYxgwMdePMv15U08dwjBwrAIFQtN1VCkiFiSMLM6qpOm3V6n0+ghlwT9gcNAkkioAtvzkKwkTqgSmRmsdJq+d8DA7tHaWEMRFjduLnPs9BJIIV95/SZ3Vh7w0WfOc/ncHHfv7fHMi0/T7vsYZopsqUi76/HE6SPIUUTG1Oj3PeqdNmYmTyGbYWt9m4fbLX7/tffI5VLsd10Oqm2eODLBM6dnMHWV+bkZlh/cI2w18I0ORiKNmSmh43D6iSVUWcHp95GBXqtNx20jBQFOt8+dBw/Z36ly8thRzFwSOYzwbJ9UpsLK2n2qW+sszs7y7KVFGjstHqyscfzIFL/z5bdY2W7w4ctnqHW6NBotJicq3Lq/xUG9yfrmAY7vkUumqMwtIWshrXqfbKHC6WKebqPN0swEyVyRf/97X+Pm1Toffvk8hqwi+zAzV+Jf/ObXOOgMePveOlEU40cSCUXH1AROP2Dgt8mZKWR0YiXAc22iKCSMQE+lcYnZ2quTS+jMTFe4+eZNDuotXnzyLIVKhlIhwUvfdxZLV0gXLNwggIGPljOQ3QGiMoldazE3NUnlhz+O3WyRLmWJXQjoMzY9T2NnHVlSsHI63UabXq9LFIc4bkgsQ8qUyeZzaHEEmQ4HB/vIQkfWTFq1PdLFCla+ROiEYJo4XkS/axNEEY3GCieemGFrucGzlxbZ3Kty7sR5FhYX+YNvvUW/2cTzZObLOR5uV9mpeqRzA9bX9vjIi0cZm5nl6q37SJaBcEO80GW/10NqCiQ5RIqGjg0hhtGK0A1RFRk5lvGdiLMnJ/iRH/gI33j9Ld6/8ZDnLp9CjkPGpiYxDEGpME+n1WXgOWimhe/7eL5No+1Sr9eo7e0jooh+r40hBP/h1dchlvihDz+NlUiQzFgkMwl6/S4H+3WqtSaGleTenU16fsTa7h66ofKhZ89wcmmOWFORYgnP6ZDO5lg6dox2q4WIJQLfR4piNEVDEjJmQiNhJPDDCMcNiSLodlo4qoZpBeiGwaA3FEb7YYiVSCGEjKbpgEQsCyQi4jBA1U3Cw+hC4HkMun3MZApZFXiuRxyFOF6A5w0jFXEc4/neoYhZQpJlTMtCUVV0TUPTrWHMQgJZCHQddEND1Q3CICSOIhzH+Y5WuJDA94ZxiCjGtz1kSUJRFbwwIAyGXpXhbTJEPrbtogiBqqusrhwwXoqZK5c5duQE9qCP094HYXL01AXC0CGdq7C8ssb+QZfZ2QmmZioMujZur0PkODixTDfskcg4WIkkeiqFH4CsDFvtZHEojibG84YLRVmSEYoYNrYF/jCqJMSh0Hko9JbFIcQeRk3iKEZ+JLCOIoQYuoWGzmmBhIzruhBHeJ6HLARCGr6dhqF/eHWBgMNjPdo+y+LbwmpZlomjaOguZ+jLEWLoPQr84HHsRDqs2oviiCiI/lAUBr7TSyM93rr/lwB3NN+7GfHTiJ9G/DTipxE/jfhpxE8jfvrjTDqdjv7W3/pbze/14xjNf//zXZ/4u7e8znPPzFHMJKitN0CKSKUTCE/CnE7RbLYIug6YBpOzM8hxRKfXo9Ptgx+gp5KECIxUhvFJm3zS4MhEifFyES92cTwbQ5W5c+c6X/r6A6Qo5KmzUzTrPra7Tipl0Kw7lIt5Pv78KbYbPbYf1klqaeYXF4giD3vgIAyJ3a19pktFLh6doZBS6PZbGHJAdqbItG2wWW3x7OUlrt6zKOY0ltcmubm6ztxYmqXxMidPzNHpetidLTSlzKmzJzh1XsZpO+gqpItFtreqVPdqrC+vkMkm8OmTKc8QDnooTh9fM7i/vk7CMpEkeLjxPuvdkB9+5VnOn24TSw6lcpvI69Bs1lFMFWSFRq1OqZInk8yycOoYRtJClk0MM0N/0KdbbQ2r7hMJHNfF6TncXl1lc3uP7ZrDjdVN2k5M7IZEX3oPWQNF0tGFzE6tTaPug2zwv/3mFzkyV2bxyBQ37+3S82KCZpcXL59GElCtNagUU8wsTpNK6/hPjPP8i+foN5ukU2k6gc/ynTXOn17kwcMt6tU6M4vjWJkEcRxw984WXS/g5MI6ISpHT54gjDV81UdRoZgcpyTGCXwJyfeZWGrTbnRwBm2yY2VMTTDQWrhOyPEz5ynlMmAPMBXBrc19bu5Weev9Zb56e4diQuN3XrsJwuOnfvz7WVo8wcZBh9/+7Jc5d/IIzQH8i9/8HWbHSyxOZMhNVnD7A4oTJSRhgZ5AUiVm58dI6RV0zaIt2ziqxPjYAj/9o4KJpeP81r/7D6iqjqLL7Gx0Wa3Weemjx0klTP7t73yFGBk1FkQAsYSlqyQ1FcfvsvzQYWWzhT14H12H08emUBMqnhIzOz1Fa7eKdvQ4t9+7w5FTx8nOHGXQqyFJLk4YEoYBb37h83R7PebmJrG7faxsiXQhj5w0SE6M8/43v8GZp5/F0BP4SpPGwSY3b67RbNscmZvg4vMvEFsZ0uMhSGAHMYVUEq9vs3F/nfHZOdyBz9hkBdNM8t6V6zy8vUK1PWB6p8uRY4sMWj2yiSS60CmWx/jkD3ySt772dabLRV69cpswlHm4t8PeoMtiJUu92WR3s8vD9SpCU9EkhSAKiIOYOHLwfRlZlfHkiCiA0B0MgSNhIAchE7k8Tz0xwdbGKkKGRE6n1agjhMJnPvsFPv7Kc6TSBtv7deLA5tyFc6jxCheOL+B6NlIYo2sarf19iCNq9QY37jygWChBZBN4Eo6tYvs+lpZmZfl9UkmT0O5y+dIS2axFwkzjS6BGEtVmlYQqDx0zkT6Ex7yBYhoQ+PjOUARtGAmiOALJ4O7aPl9//X3u3rnDj/7Aszx14SxeBI1G7bF/pNOsYZgmTi9AFgJVtxCKjqJo+L4LskbEMI6hyBEyEVKsISRQdBXCAF3VicKITuji2D6u5xFFIUL+th/F6Zsoqo6m60MBtaGjKAqa+gisFBRNR5IChCyhCoWQIcQGQYzteAR+H0VRsRIgqxp+EKGqGoahY9sDHMcjCCIkSUM3ZIQkCEKXC888zd7WKtsHOxRjEJZJanoRu1kj7LVRVYWp2QWmZhe4d+8Bb1+5w9x4iXwuz8HeXQrFNLYzIAhD7EEVVTfxQ8gVKxTLEyAL3DDGMIzHvpYg8AmjEKfvoqoKhmEQeB7dXu9we62iKAqyUIZb+Tge9sNJMVE09MlEcUDoxaiKQjRchg/b7RQFJAgCHzfwiX0fQ9OHgBmFj7fjQh6+zQ5F2hJCEd8hp44Poy1DETcSyIeNdXEcDWFcHgK0JMmEQfg4mvJ44364rX4ssP7ficCM5ns3I34a8dOIn0b8NOKnET+N+GnET6MZzfdyvmvH3//6//hr8bPPXQCRwB0MyORzxLGPUBTs3gApDlE0i1gabkCiEFRDEPsR/WYXM5tENkzq+3uoEmyv7uKHPXp+gla7xodfvoAsNP71b3+F92/vcP5khclKjozikbQSdL2Q+w9rnD4+yezEGDfurpJMaDz51FOPRZyx00DT0/QHfd579xpjY1k0WVA7qOEEAZeffgYp9Hn7/at884MNNnd7yGpM3w2Q4gDLMillEnzsxVMkEzp5Qydh6STTGfRsCYgZDDzWqy3Cfp+zZ09w9/ZNuu0+oSTIZZPIqkTSyCDHwyp01/UJo4DOYMB0pUwqk2B3d5/KxCSuHSN0D022cO0uYeDSbXdx7B6GbjI2MU4qn0UzM2imCn7M/s4q3WYXoWp44YDV9X22qy61bhdd0XDiiNt3tjk6P8GLz56mXMzTqDe5euM2jUaby8dnWd5t0Hc8Ts5UqLaa/PYXr6FldYKmxzPnZklnEzx5fJ6xSgFhWqSTJkYyjRRHOP0ulqEhlGFrm5Uu0Nvf4ff/4Bu8e3MLy9IxDRnHjZieKFJKqkhC4/u+/wXu3FxhYWEWoanEIcgiRugGklDp1utIQkWWZPSkQRjH4AUEQYgf+kyOlWlU97l9+wFf+Nq7LG91sCMZSwmIJEHox1w4OcZf+bGPEscRSUMl8Hz6rsvVWxt4A5fFiQzFUgpVM2l2eqRzWXY2d5isTJDKp9naPiBteUxML+JFClLo0m4PSKUt9GSGjc01nF4fRTa5/mCNb71zm7/1Vz/O4ukFfvWf/xv2Wl3uL+8wN11ib79Gb+CTSVpDL4kQOELDkEFIEifmK3zio0+DoqLIKp7bQApM8oUElYkKYSghEyFLMtWtVVRZQclkufX+TYJek+mj02yuH6DpFkunFsnnxthfu4OVyZDNjeGFLjeuvMd71x8SCYMzi0WefPI8ieIYYRgR9FqEUYhuJuj3eqyubrCwtEA6kyLyQVJBFgqhHPLOl18naRns7tc5cvQImYLFO29cZXamyMCXOH3+NKHncO/uBu/fXqNZb5LLJol9l4NuTKmkk7ISrG1Vub/VIPBC2oMuqmohEzBZzDM3U2S8kGWsUiBXqaAKkH2fUjmNrmqsLi+zvrJNIpXg5sMNDhodPvHSJZIJE8ex2anWUSSDxYVJ3nz7KheefALX83EGPRqtNjMzs4xXSuzu7nHn/ga1Ro2/8NHLXLmxQtJIcOzUHKXsJF17jze+eQMhBDPTE1TKFVRdQdZNDNXEMA38wMO2bYZxCBkrnSWZynNQ3aFdq7GyssWD9U0sU8f1Ar713lXCAMbHS+QsmRcuPMETly8QhhGdbgdZVhGqQuyHaIZK6Hu4rksilUE9jH0M4wgxYXgIM1KMIH7cyBlHAXEQMOj3EYpCjCCWJHqDLm5/gOe4RHE8hKg4QlFVYh5FKgS6aQ3/LSoq6XQGoRz6VKKhFyuOh5voOIrwfQ/P9wi9Q99PFKHqGpqqoWkaqqbjez6u5wAxcQTBobNF01SiIMBzHBQhoSgC33WRpRDPHUAkoQqNKPJoNvap7h7QtQd02zblYpKdgw4b201e+tB5Svk8/qCLZuikciVQFRKJHJIkQBYEcUwQBliGReRFuMJDoKMKCcezkWIZPwgh8HEiiWGJm4ylqviSNIR3IGIIlkQRUTyMwMiyjCTLxEiEUYQiBGHgDyMpQYB0KEEf3k+gqMofiq5I8nBzHR06baIoQpa+3SIXxzG+76MoyuPttCwPt+ayNGyqG27SxR/aUIdh+IdiK0ee+gsjx9+fgRnx04ifRvw04qcRP434acRPf/746U/C8Tea0fz/mz9xx9+zzz9F5LoEcYdisUAQukghDHpd3vzW65w9e5JcwcRMpAjjAMKIOPKQhULTDwk6XTJBjNzt0Q8d7mzscfX+Jrs1h8m8SVJRUSzBytoBihzx1q1t0g9rnJzP8PJTY3gHPZ67uITd69CqHbA4V+Lu8i5r9x8wNztNIGugplnbOqDRtbH0MjPTFdL5MuL+fVZXd1BViViWqTc7IMHCQoEolJClkHw6wd3bG8hSyG9/7k0++ZELnHnmDPVWlxt3NqgPHnLj/g7dgUshl0SXfeQQPri3SqNlc2ShzP7BAVOFNAdRh7GJEoEXk0hZNDtN0pksppUhiGBmfo5UtogUh/T6A4QEuiYTxT6KqkBUpF47YGevRUnWSElJEDKmlqI0MYGqVdnZa7C9bXP3TpV0LkM5myOXTtMPYHOjhdAEa1s7rG9u4Xgy6YzJWD7FbqtFMZfiqbkJNF1mMb3E7PwRBr097jyssVPrc6ySpVDO0O22SQQhImPQrNVQNQNFCBQzgWN3kQno1LbQkkk+/PJFCqUs+3sDNnYOOLk0xtGZMqouk8mmuXXt9mGMyCWt6/h+SOg7GIqGpMXY8QBVTaBoBo5tEwYCGVB1dbhp83xCReFffubLtJ2QIARFjSgUiriOR7PdptVx+Y+/8yUuPnWGM2eXyCtpwkCiXMjTbTep1xok8yUUPUUcNTDMBCcvjGEdXuZ+9vwYth+RSqfxY4ntO+9gGlkk1cRzAsqlEsuNLr/7xre4vVKnnJMJYx/FC/jJH/kIr129Tacb8H/9P/8l7q6u8Ju//Rr9vkcohtei61FIIAniKODW6h72f3oHScBEJc3Fkwu8+rUPeObpeTLZHEKSMFMJWs0DMtkisQqpdIanXzhHfbeOogt2dnvcvb9MsZzlxtUHvPjcJdSkiWc7EMVMT87wxjsPqDervPjkEZAVBvYAVRm2l/lRhBfa5As5ojsP2Fpe5tSlc8Qixm11aLU7jE2Nc/6F5+nWquhJlVpth52axPXVHWp9l6QaMFZMkS+PcerMCdpuzNc2Nug7fW492KPTjynmBNlUFsMymKmkUVWTB9sHeI5HHGtEYcj5Y7NUcgkK5TJWJkOuWCIYuESRTKjHlCoHvPn2DfSBx4tPP0ntYJ/xSoWEJvjN/3gFRchcOneGh5vrvHtvnVQhR+RFXHpinnShRBx4SFLEWKlAJp3iG2+8y9Xrq9hBxGQpiRJq2EGXyJHRDZ3aQY2F6QKdZp1YlclZWeJkSBD6aJqKqipEEfhhgOO6JJIhURRzf3WNazduk0wkuHtnnafOzPHTP/YKG+u7PNjeZnPfZa9W5USniTCTZEwTTxYQxXhyRBjGeH6ILBR6vQ5mFCB7zqGoWkVVFDw/BkkmlCTkMEQogsCPkDWNhBA49gD8oZRZISKZyyDJAttxCaKITqdLKIPEcJNNBHa/i++7qJqOFPnopoVm6AghI0mCKIzwfR9JlpEVDVPXkaIIoSiH/pUYe2Dj2A6GaUIUwSG4DVsAYxRl+JpGHkZHxKFjR1Y0ZCFBOPyg5voxrhdjZsuM6Rly9gA5DkgmkhjWOtfv7vHulescmZsgmcjQ71eZGHeoNvokkhodGw5qDcq5BJahYWXKVIoZIllGKClcx6E0UURCoOkgC4mE6zBwfLwgpusMkIiQkFBETCyGW/0oDoiQIDp0xhxGgB7FXBRVQVWHry3Pc1FQDlsQYzzXJ2YImkIIpDgGSUIWClEYIh/6bYbwOXQdKapAenzbUDgeExMcwumjeMojR813SquB/6zFbjTfuxnx04ifRvw04qcRP434acRPI34azWi+l/Ndn/irzB7FsZtIvsSgXafbq5PJT9Kza0xOzJHJFpAkD0IbggAhSQRxgOc6ZFICWfg0G+vceLjHa+8+4OFBj9ALMXXBZq3JazfWSSQ1bm9WUSKHyekx0qbO7kGLb75zm4WxAqWCRbXrMHWsjCTrlCtp3rl2h1gKUGWVmysHXLu/yl6zw198+UmyuSRaQmF2YZKkKbG2ukPCUpgqzeCFBoMgpN8LWVqcYKZocfHsKe5u7rH2cJv9VpevvXubYqHAxn6D3ZrLZMWikMjS6jqARru7z/ruDmqscvVak2YQYSiCkwuz7OwfcPrkSeLIp5hMo1ka+zvrpLIp3L5EJlfA6fUJXYdIDmjttUnqBuNTY+w12kiKhpUw6Q9sQqnJlQ9W2d5psbVVY2N7m61qkzAKkVWVSJJR5QhQUFSIQ9jY3iAIJGQFdFOwMFbg9MI4i4vjJPUElYkyTrtFWrMon0pjmMfREzc4+NJ1Bs0Bb39wE1VInJmbZGfDIZPO88033mDx6FFCp4AcBnhOj+rOBmPzp8iXJ3n66QxOu4NruwxCm2wmz/L9DZKmRuQEnLt8mpXlDdpaA91IkshatDtdfMdDlwXC8QjdGLvXxevUcCNBy/cYLxdY7XV588pNPEnBjTxURcZUdfZ3G7j+AF03ubexSaep89zZeTQvwAsgDDy8QKIyMUUuU6Tb7xDKDpIuMNMJElYCVeiE0nALqEkyXgyaauBKMXevXqFUGWfu2BKm0Dm6OM/adpXV7SbzY2XGi2X2a21qnQPod/jBl49SyJh84qPfz8z0DF/83ddY3quzX+vQtV10zSJdTCChM1vOsVOvk7TgjXc/wMokyKctth7cpViqYPt9wr5PYGrMTi1BGOOLJFJFwvXhpRcqXH7hSaKBT7vVY+XeXWZPnqJZb1Aqj7PbPOD7Xr6MrgiEHLC5vc3isaP0ui169QMUQ6dYGScMA2aOL4Hv4vUHqKkUSsIgo2o4g5DkWIlsOkfKSnCzcZ2tjV0+uHaLW5rFK88/SXn2GP39OlLe49mnj3P6xDxXb97l0kWXN6/cxu/b2G7MQaPOytYA2wnRDQsRxcQCBrrK6voax+aeJUZGiBjfGxDpGpEXErshidwUhVSS/XaLyXKe+3fu4JQK/P61OyQsjbNH5rGdAffX61w+McvOxg7vPdynlE+ztDRNHGTQVJVY7SOpFs12n/dvr1Mqmpw4OktvUKNad8hnyjx18Qy37q0Q+AqDfg9h+HQbPfLlIpZl0gM0XR+6WyQZ22tQjwPS6QwvPHORiycX6bU6dHptpDDANHTGMwq218X1Gqyv7lBd3GV8fh7P69N3A0w9hWUkiGUQioofuKiHXpkoDOk7AwQSpmkebogNJEkQhyGuP4yKBIdtcrEkCKWAIBi6ajzfRREKhqpiJpPkCgV6vd7QsRLFqKqKb7uYuoXtDIZXFWkqipBRNQ0rmyOZyqArOnEEYRghIRPiER3CplBk1KSKFMdExCi6hmMP2NneIZlMUiyWCOOYIAgRskysKCiqghBDKXcQhljK8EOqkdTQXB/PGZDT00gVFcftk9RSZCdmOf7ERRrNLr1Bl73NTRzfp913ySQTRL5PrV5leX0dQyyytrLJ/uAWx+YKvHjyCJ9//SpvXl/lhz/xIS49eQo3iLl9f4c46HP0xEkmxyq4kUvo+bhORH/gIJSIQBOoqkAOY1TDQJbloZtGlnBthyiO0HV9+MFeeeSqGUZKgigcflgMAlx7gBuEJJIJuv0BmWwWRZHxPR9JGsKmEGIYh4njQ/ANQRr+WpblIfAebr8dx0GWZTRNewyxI2D9szcjfhrx04ifRvw04qcRP434acRPoxnN93K+66jv/T/4f8VjUxXCIMIZBDTqDVJpnVBW6TYaWJZOEMq0O00sw0RRDdr1PVIZi/4g5Pe+9C7fur1BsztA01VUJSJ0PIyEgaQICtkM3Xafzb0DCqkEi/Nl/K7LC0/OsLLV4OTiOMtre6QyCWbGs6hoWOkM//733uDYsUnkWOHOVhvLUrhwepYf/NjTRIGO4/WJXJt//ZkvcGO5xtJ0mQunp4lkhRu3VmnbHleuPcSTwEolUWIXw0jj+ZDQJRbLaRZmcqSTOvl8klv395iYmGRhIsfnv/EBhqlzcq4EQqdec9lp1DmyWKS+U6VcKiCJiKNHj6CrEs3dKplcGtvukUjnSKUKhJGDY/dpdWzuPtjA8eGDWyt4YcyRuQmmKiUWZ4ts7e7zr//9V6j1IqIwwlANfMlFkmQsxSKIfWRJJQwHw8vUkYmCGFUFLwpRI4VczuL/9jc/TqWSQTVM/GBAe6dBtX1ApCc4tniEerOLamRIWAI/hEatS2DXyWUzfPnrb5FOpzh7fBZJEUSRhNtuMnfiJM39KsI0iEOf7e09VDNJOp3A0E3c/oBmqwW6xNrqLk89eZq33r3C3OwUC4tL9Ds91lYekMnn6do+hgHL6ztcvVXjwcNdKpUMtuuyW+2SMnRCSUJSIyIvQiZGkmISuopLSOTFmELwiQ8d5ZWXn8PIZNBUgRAW3V4bybHRMhl6rS6tWovJI4uky2P09uusP7zDeClPbnIeSZKREilWrr2HfVAjFBGVyiTLD1b53a+9T8IwCUOXY/Npjs5Msb3fZ246TzqTww0k7q9uMlPOMlHJEymC2v6AB5t7NDo9dneqLEwliRAsr+9QLmT54M4+r1w+xksvPsn+3hZzk/NsVPd5/Y33OL60wIXnnqJZPeDI6ZMM3C5hq8/2xj2mzj6N0+iSqxTwHZ+9tXtEUYgjW7z11a9x6dxpYkWl021hGGlkVcE0TZKqSqfXI5Yk8rksqVyOOHDZXF1lr9qgNF5mdnGWfrVDpMgksgW8gY/jd1EVlZiYf/fZL3Lj5h3++o//KB/+oVdobKxiWEna/T6K7yEJjSj2aPd65MpFetU6XhCzc9Dl1u2HaEmDwLZ5uLbNR1+6wJkTJ1A0FU2LifwAXzVQDQnhSMiJFNu3r5NLyezuVqnX+yBk1rb3CcMQiRBJMgg1mYxQcKKQt69vYemCozMFPvnJD2NaJq7rM+h1WdlY41f/9WscnRnjr/7Ih9BUQbveIZGASrHMIBJsLK/SbPR4WNslKTSeuXSO8liZWq1OKpVGqBqu46GpBoqhY6RMhGKgayrd7gGmmsBIWOxsPEBIFtvra9x6uEa36zFRtvjwKy/T6XVYvfuAbKlEeWwS1bKQhUIcgyLUYVTL81EUCd/3sEyDXreL73skE0lU3UAWKkjD2IUqBHEc4fkBcgyu1yeOA8IowHNdogAsKzX80KsoyELg2DbRI0MyoAiZmKGYWhGCKAjQNAOhG6i6iWroSJKMHEv4vo8sywRBgFCk4etRVonioSPGP9ycDyMV3/amhGH0eAuuqOrw+6oCxxmmIAzdQhaCGIkodoYCcy/ADzVULUATMkEEcuzRatZp1Tv0OnWmJqdRlAjPsbGdiJUHK8zNTdDqDOh1eiiWjDMIWN+us7W7S9LUCYg5MlWk22lRnpynOYCl6QrFrIFlmQQiQSqdJ4oCVNPCcxx6vR6maaKqQ6G6EMPYShAGw/a6w+hIHMeEcYTnDiGXaBhPMU2TWJIIggBVVRkusIfPZxRHSBKPm+geNdw9iqBE4bcdNN/po4njePha+A6wHUV9/2zMiJ9G/DTipxE/jfhpxE8jfvrzx0+jqO9o/o+YP/Go7zfeusrC0hx+EHP3/jat+iYz5TxvXNtk76BBqVKg2Xbx/Qhdg2fPn+L8E9Psbnb47OffYW19B0VIJA1t2OwTxiAbOI6Ergq8jk0cRkxPjLE0XiBjqWw4VW493GeykqPZHhwKWw32qh0y6SRNO+RjL5/md75ym92uTRhESIRk1Ajx8edBClEEfPPqNe6v1tmtNUmaEpZ5lEwqwxM/MoekCN54533eeGeNUsGg1bbp+zGRK7HRaKLrEqIqM+Fk2W7soWkaJ2cnubO1QyJhcOncPGvrDbzAZtAd8GMfu0i13sLuRGTzRbq9Llu7He4/3GBpcpzSTA4rW6DW6PCZL32ey6fnOHvqGF/4ynU+99p72I6DLkxQVNb3W2RMg+mCyad+4hP84s//dXZrLd54+xpSpJHOJbh2Z4WDpodlGSyOZzl+9AyBG7J/cECt6dBo9nECj1iSMJIaUlJCSyWJwxDJD1FMGX8/ZGdjjavX7tPqhkyMVbAsk77vsfxgh3IhwfxsmoSmooqAXuAznkmRMC32hMJOtcny8gq1ls2LT52lnE/jeBGdVou9sEU6kSVXqZDPV5icnEORA1760As0q/u4gY+RzXDyiSfYPajjNAe0Dhps7DvcWttGUuDm2g66kNE0hSDyh5fpexECQSTFjGfTvHBpjigKubfRpt/tcfX+LpJyjcuXTzI9OYnv+VhGmljVCe2A4vg4VjJFOBgQDrrolsLMkSM0Vx+gJZNouRK6F7F49ChbsuDu7TtEg4jdvR10WWZ/b4uxYpparYPv7vDBrRV+JPccjUHI+maVnd0q3f4YhfEiE6VJov5DLp6Zptftsl3UWNmq0+628GOFu2tNXrq8xOXzR9jb28NKpHn/7kPuPFhnZd/mYHCfqfkxdE3D9xzUUMcNmty+85C7mw5+b4uXnnmKzOQChalJbr93g3fe+xY/9MOvoEoK+9U6xfEJhCRIZTJkc1mWb9/h/vJ9Ljx5DjNlEckRg06bZCrBE4uLdOsNXNtDT6fZ2XxIOp8liAcI4aPpFmZS4y//xY8ReB3eu32Nl3/gJWRTp1XbQ09X2NlYP/RrhGzsNOg2esSOg6TEFDIpjkymSBcsMtYUP/DKs4SxT7PZQMgSY+MlMHWsWMMf9JEjAX6f8uIsvfUdDhodVAVCQjw/4MbDKguVLOeP5Hn1vdvYnk8yafJDHz3LwtETXHnvCj3bQ9FMoljGMixEoJOzdHIpg7ShYSUzTE/PsPVwjT/42re4eP4spWKaL331GtMLOZbmZ7CdAf1ej2TCQiLG7ffpdHukc3na+/sUwwm0NKimjGnlEHGM6wyozJ3Gqe2wcGyebDbL5t4Whq6hCJmr1++zu7bOoufguQPGJ2aQVQ0zkcT3QhRFHf79xDKmmUAWMoYfI9HHGdiEQUCMhCwEkiyjGhb9fh+kGAEMBj1SmSyGbqC7Ae1Gk36/j2YYxOFww51IJomjgHa9QRRF9DyPTCaLIqsoQgVVOfTUhESBj9fzUYRCpAgURSWKQVEUnMM2xigcDGFM19E0YyjpjuOhnDmOH29WVVVFVVXCw0174PmoigrEwytNvAhJ6OiKjiQAU0YNwYkEbhAixzGhUEjnK2TSBRxvgkGvDWjIuk7CiDh5/iyNeovy5AT1xm1MTIykRulklomxNJpq0O3WmCiWOdA0rt5Zw+54HKkk0GSZYOCSnSoRCCBS8F0PVddIiTTSMG1CGAbEkYSiasNIS/RtKJckCaEq6JqG53lIQCKRIAyHzXlRGOIeirRlIYZSauJD70zw2DkTx8NGPVXVgG+3zz3acEvS8HOHJEvIhy12cRT9MfFhNH/SM+KnET+N+GnETyN+GvHTiJ9G/DSa0Xwv57s+8ffmB6u8dWudfDLJ1l6NUqnA2994QL3TRYoF7Z0WQlZJJXUSSZ1r99e5vbLD2vYejU4HQ1EIDy/vDbwIVZNQhIlQBcmkxtnjE4zlshQLJr4bYxoqH3r2GPu1Ps3aAZqmEMYRlh5iGhmqjS6NZpuF2UmKWZMLTxxDUlRWHi5z5tQJeraN7wzbrzY3eqSzSZ4s5zmzMEm/0yefSxLHPpHj86GnnubCE6fY3trh/avrVO0uhqYzO2VxemGSdCqJHMcoqsbUbJHQ9fmPX3wdJJ2MarFRq3P8yBSVjMmrr7/Pg9U9tvebqLrKTCnDX/+xl7h1L+Bb77zLyTMzaJrO5//jV3hvdY9nlsZ58633+Z3XrnDm6DSLc+N87otvkRtL06i1OLA9Lp1bwDANivksR4+c4OTRReQwYHt3j6Pz4yyv73Pl+l10IfEDH7mMiGAwGCAJjU6nhdf36doDZD9ivjKLZBm4vR6SomPbLYQUk81mqNlNGr2QO2/fJA6H1e69gc3OjkwxvUQpl2K/1mLv4QoJIfNwrc5bV29zcnGc3f0+M5NliELaXsCVm+vY/YBY1qiM9YkCl6S2zOXL5xGqRuiFzB49xvLDNe7fu4qp63S7fZqtFgtH5nl5dg5T9sinLYJI5lvXttiqHtAa+JgmqIqKIkMvDKgPbN549wEfeeEUx6Z9BrbG+VNzvHttmbt3kqR0jSAOkI0UkWujqgaK5wyFsaoGQQiyjCo0ykeeIPa6CElGiSFQVCYWFlEVhXp9G2Xd4fueWsCTj7G6uU/WUlCjkMlKgZv3tnnn2l2evXSSpy8s8nv/6QOOHxmnWWvT77aYnZsj8Dxur+xz9f4WrhfQcSOKGY2EPMC3Per1Oo39A95+sMl7N/foDSICrwl+wPe/dJFe02a72WJlo86r37yNJd/j4y8eo2H7KJ0GipVl6fQpWu02tb1dkpkc8wtT+IFLOj+BauiExBw7dYbxmWk0IWHoCghBoMYIoVHIptGJ8R0bLWWRLRYJ3YCIgLSVxzATREJibKrAE+ee5N0rN/n9z32OD730IvmpOSJZ0LHhvfff4+SRCXbXD9jZ2eHE0Wm6tR4JYop5C7czoNppkbUdtusHnDj2BI5tU2sPqEyNDx0fwscbOPQPukRRSCP0MBJZMhmdcOCyufWQpK5x+cmjrFerJFMJnjxyhLmZPDktjWklOHfqCTRhYjshbuBgahqaqfKJl06hRTFEPoNOg0jyKZazqEae3VqL2dkSs1M5FqamqOTSNNodWp026XQaVZaoHhzQbDUZOB7pjMXOzhrlaApVgJXMgKThBX3i0EHSLYK+x/ixGQgH7GxV2d/dRNVUxmdnCNwBg47N9Z13KZTLHD99GkmS6Hfa9OIYTTPJ5AtD+b8AVddAlYevcylGkYdtiJoqsCwDSQwb4qxEeigz9lxMTUHOp4kARVVxHAcJ8D2HdDqDZaVwHZtGrUq30yLwfaI4RtX1obBaFY9l1ZIEYWATRT5C0ZEVDSXSARBRhO8HOLZDGESoqoosywh5GNcYKlRiYunbUmVZlh57WoLQJwiHrXhy7OI4IZLsoWkWsSSh4xLKQ0CUQoaQpmhD35WQ8W0HiQjb8RCKQi6XISbg1LlLhHaPd69dZ3Vzl488dZyxSoFrNwY02j3KhSJitUamoOC7Nns1jX/1uT/gb//VH2JxcYl+pGMaCkEco+s6RDGSkAg9H9/ziGMX5GG8SDsE1UfQSTxstQsDnyiKCMMQz3OGDx5p+Hz4AYqiPN48q6qKpilATBB4AMN4zKHE+tFW2vM8JJlvi6wfPb+PLkEYzfd8Rvw04qcRP434acRPI34a8dOIn0Yzmu/lfNcn/s7Mpej4MY22T6lQYnlrj2zGYmq8iB94hCHIqqCYSXByJsv09Dh9J+Krb7zLwMkDEoO+jaHJzM+MszA7hnxYxS2imIRlsrK2hRAFtg7WyGfSHF06QSHVpVdJc3d5jbOnltje3qVarXF8pkg9o7FWa/DKxSP4gc8zz58DLuJH0GkH2E6PwA148fnzvKzKNLt9TE2QMAzyhTI+IZoa0dqrUtvcp+9GOEKhYCX5sU+co7Hv8GBjjTvrG5yYm2FizODW7TXcwObcmSVUSSNphTxzrEQsd/niW6tcvVklMgKIQ0xJZ2+/TTb1OsfnJvn62oDO/j5BwuLSxRNMTeVYabT57OevI+kGR+bG+dG/+HGcTo+LF4/wG5/5BrYv8fzTZ9CsBF/4whf5yEc/imGa6LpOzg+4enuF2G7y937uR6jutTGFPmxHGvRJplVM3aRSquBHEa1Gnf1mh976CvlkDtU0yE1Mo5tJevaAzWbA5t4aQRghJDAIUIgRSZMzS2O8f3uLe5sNdvddpDe38B2PH/6+U7z23h329/v8aFHhoJnk9Xeu8u6dPQJFkFUUCvtpArdPMmmxt1/lxUunmD13nu7mPjML8xw7cYytm2vceHgHy0rwwbtXyGeynJifodtp0e4O+Nt/+SWsVJorV94nUkzazTqL0+P87hs32d5tkB7Lsbd3wMVTxwgDl7dvbTJZnqSQV3iwvMn01Biy30ZIMd1eD7fXIjs2gWwkGHSbCF1HVjU0VUdOThOFA4LAIZJlOs0WA2fA3NwSE9OTXHvnHbKqYKFSQJJ8hCpx2kzx779yhb4XU9vrsL3fpxdFvPqV91lcmOZjH3kOr9tHUjQMK8mg10VPJLk8k+PCqVmmx4rUWjtcvbXG4lSFkzPTVPf7CN3EsXNMTBRoNtvcXd1g76ALscmHLj6B69To9Rxe/dJXeebpcxw7eRohw6ULpwhimY3l+6QMjWx5klpth9L4DDEynueQyxUIUVGEQ+SDlkojRUAUYGbK+HEDy0piD1wce0C7VUfOCfq9AXYQU+04HJuZ5akLF7l7+w5vfP1tTi5NU5pc5Mzls2RzFnHgoqsquqmTS6Wo9kLe+sZVfvZ/+CFu3VhhbmwczwvZX99gtjJJEAa4dhtBhKLKBIMuiUSSRnUbu+8SyKCZJrKSQKQTzBwfZ2+7zfp2kxurB+w3uly6kKZcmMLzHAQxyAFeGJA1LR4+XMHQ08wcn6NcLmEIwcb+OqpQGE9k6QY9Th2tkM2W2N7ZZXY2y8LsLLbd4eCgjmkkIQ7Y2W/SrPXQDIU4dpkYW6RarTLodUilEnRbdYxECiORwLFdUpk0EgGDWptiucJXv/EBKztVnrp0GhELJBnur2zz+jt3ObXUZWJsnMz0BN2dLR7cekAynaY0M8bU9ALJZJrQD/CDLkkhYfe6xMiomkRo2zhBhJmwSCaSeKEBUUgUeHhRjFAUhCzjOi66oiERIhIpHNtGaBpmKs1UOkWj0aBZqyEkCP2ATquJEApWwkLVDXwpRpYFURDhewMct0kykSCOwUMCIQ8jTTHYroeiKihCgCwNIyuHAuVHQmWkw3iHJKNqOkJRhwDn+UCA70cEoY2QxTDyIUXf4XIZbmYjQDMSCM0cArZugu8RC4GsaoSehy/pZHMpCp0aE1NT3L2/TD6nk81miSKBIXucPXcRIXmYmsQPv3SJ3/7dr3Js7h6Xzx1Fz6fJlo8SRuGwoS6CWCgopkzkhxDHhH5A5AfIYujgieJhA10YeCDJuJ7H8AdW8P0A3VARh16bOAgQ6vBnfwS4MGyItCwdYvB9j5gYPxjGgFRNeXwlgCwJwih4HFcZzZ+NGfHTiJ9G/DTipxE/jfhpxE8jfhrNaL6X8107/v7mj7wc316rMVFMcenMIjv7Dc4dm0ZWBJoiyKRTZDJ5XNel3zwglU0yPjXNYOBiWBbJlIUEeIMBoePQ7zUxDBWhCGQkwsBne79BGLg4js/7H6ySKeVY36lSSFlkM0mOLI2RjGVW97ZRNJ20leKL37zJ5HiaF8+ewswZrK/voxoGM9PTNBtN1jd26XYH5HJplhbmMUyZZNqk0/O4u7xLrW2zubHFyaVxslYSw1TY2djn7NmjdAYtmvUWr7+1SSKr8aHLJzAMi3v3HnLhwikMHdrNPSQp4rVvLvN7b65A5CMLmZRhMVWyWNtv88TiBOdPTtHsBZw+Pk6z6+N22xSyafZaff7X33+ftBbz3PkZGp0IL3D5v/yffoJ79++SthLUtnZ59uXnee+DD9jb6XLpqScI44BKeYx7tx6yvrrBiy9fIAZ81xlKZ+UQZxDSa7ZwQ413bj0gqUjU6j0O+gPOH59hspTm2InjGKbGW29f47OvfouB60AUISQJXU9A1OX84hxW1uLrb96iH8gsLkwxmU/ghg4DO+In/sILvPaNqziOja5AZxDw/r0qsgx+6KNpChIRsqyR0iLOH53iR378Bwj7PpEiMLIWe/dXSBayWEaavVqdZCJB0rKQo4ibt+6QTBsksknGs0Wcgc3N+3c4f+4cLdfn/gd3mJgZR4Q++3t7KJpOr2cjTJXQD0klTYrZBFIMbdulVu+ws9+gnM1RKWaYXJonYVkYegIUD9UqEAUSujH0c3SbdZp7O3iBRDqTxhu0qDc7fPOdGwwcj2fOLXHrwQ437m1w8eIJUpZOt+9hKSpnz81RyBRYXtmh1a5x7PQJpudmeO/d9xADHySPZrvPwAnQDdjZG7C1X6NSKSKbFt//7EkcL8ZzBpiKznvv32V2rszM9DiNVo2tjRrlch5VqLRbTdJpA9VIUJmcJDc+Q3NvHU3VCIlwBw7FsRlkIQi8AWEEZjJLJBRixyXyO9iOTQxouglqkqDfprqzjh/JlLIlVna22NlvsrtbZWwsjTcAP5Y5Nl/hoN1BU2TOnTmFlS6gJpLEXpfb77yF60XISkSz2WFqbJxsJkV6rMzKrdtoug6yjNvvk0iY6JqKlkqxefsBRiZFIV/ATJk4jsOX/uAKa/u7nFicYeegSdsVvPvuXSRt6E+ZH9P5O5/6JFbCIoglnIHL7uYBA69LuZhF1nWWH2yzvt1mu1alXCyw9XCZxdkKf+GTLyKbKXbv3SQIBF7kk86m0FQD2+7hBRHFfJ5Op8/nv/IWp4/PMz1ZIpFIImSZfq9PLp/HSiWHm1XDRNWSIGIMw0SKY3Z3VklaaWqNOv/z//K/MV4oU84aLMzPYYcRsZmEXo3xTIbS7Dyrq2t8cOsB5XySqco42WKW8tg0ImEgZB38mDhyGfT7yDJEscfAdtE0lSiWSaVzQEwcxYBEEEUkTQPbC6i3DtCEIGmZBMjIUQyyjKKoqJqGazs0Gg08x8HzvOExJIkYCVXTUFUF07RQVGXodJIkoigk8ANUTRt6V2RBGEeomgpICElGkhh6WBj+mTAKkeVvi5UlSUaSZSRAyOKw9S7E91xC30dRBP7hFUSyLJB45HBhaOaXhlvjOAohDAjDgDCKCBybyA/wXI/l5XuokU8mm2Kvuo8kBLKsUc5mcDyb2fk5qtvbFMaK3FnZpVWv88SpeaZmlug5PsgCz4uRFTH06SgqsaIQRUNHDFGIH/gISQYhDiEyJowiJCCKhjGVMAxR5KGbR9XU4XOJhCKGIBtFEWH0KJYCyuGxHoFtTHx4FQGHHwhkkDhsE5RYujRy/P1ZmBE/jfhpxE8jfhrx04ifRvz054+fRo6/0fwfMX/ijr+9hkPa0klZGoMgZmGmzEQlTxBGRL5HOTcEmXI5TV+Hnf0qiDoAnj+s197Y2CAMYyBGiiMgplwpkUolCKIB+WKeZqODEvscPznLkaPH6NseK6tbRHadfDrF/l6HviPx9Jkz+H4PL/LY2G7iPBmxu7rNB3cecnJxAaZ6DJwOt5fXOGgOyGU0VNXn9PETuC58871bvPraFUrFAhOVJFu7bb6yfI9MXuXIzCTtXhNVGdButEjk4OrKBmePTXBivESjWeegXmVqaoZCcRFv0KXWuYOpacxM5DmxNI4hC7oDiY3GLVb32hAHfPzDl5AiiX6/TeTDoNsgYyRRpRhJGHzj6hb1ls9UVsfr9zl39hRef4ClgOf1uHD2PK/uv8FXvvIuR49N4boBjX6HhRPHsJ2IbqeH59nksyWMhKDZ3mT+5Bl++Z//BikrYmJxhofVLm3bR1UlKtMTVKZLOL7P9Fiev/LRi9x+uIIiVFbWa4Sxxvz0FDOFAv/mtQ9w3ZgXLh2hnNIpl7LUWz2++e4yH1y7R1JXePuDFSYqFeqdPq4/wNCN4QZKFhTSKRwvJKFLtDs2D+/eJZlMI2SFTPkY99b2OaYmMCSfSj6HlkrQ7/ZwHZfjT5xClmQe3rlDRrMwc3k0K8na3QdMzU1z4ugUmmGiJ5N4UUy31aOS1ZETacKuzV67yrtX7nNscZbpuUmCvTaZXJl6u0E2pTOo1aEQ4g4GpAsFgk6TvtNnZzBgevYEsqphZdJs3rpNp2mQSKrMzS8SygJn0OHI/CL5uRm+eXOVDz5Y5h/93/86QaQg6waeM0C1UjT791CEwqDW5KHtETgO2VQOxdKYPl3m7tvvMAgDLl06Q+reOsQeQeDSbjYxNIuEoeM4fSrjebwQqvU2zYM2lXKaRDaBmcrQd210XUVIMr7jEYYRyWIFKXIJbQ+jmCaSJMIwQtEtJCRCWRAHPrESEMcSCsM3X6IAt71PujBB3nXptuqoqSRj+SxSEDE/V2JrfZdrK3vcXLnP4myBv/3Tf4XPfvY1sqbFwlGFQBMktRLCTOP095gplyhPzOL3OjTqdSQ9QSZfwLZtSmNlWrUapq7hDHpInkthfpLV+ytopkYyk2Zze5lTp49y7uwck3NzdOoH6EaKXNriyvX77LcaZBNztFtdgljC7tp85a13qO51OHVsiqwhwO4wP6VTLs1xThrHtUMymk9al/ndz32BZ195hfLUDO3WgOb2GnGkoKsOhm7ieQNCPyBhmQSxhGKoxPFQutxsNjB0A4BOp0MylSIOQ2RcwkCm1+2gKAr5wjieY5PNJjlzYpGHKzU2dvdo9kPOnJzl0sXTRJ7Dw9v3efutKyQSFqVygYw6bDtzuh3sRJ2oL7CyJYyEhZAtEiIksD3cQGAoKrqi0ey08FSVKIoJwwhZVlBUja4bIBGTy5aJXBvbDvHsAZqh4vo+YTRsWDNNi1K5guf69Pt9er0etm2jKgqO7eH7Hr4fouk6yWQSIQTiEaTFMUIeenNCPyAMAiRJJpYiZElCFjKKIojCeBiX8X2A4RaaQ/9UDH4wlD0LWUZVFOLAJwwDZEUZRllkiTAICQ99LNKw2m3odAljhFARQkOSIhRNJ3A9rKzC6UyKjeUH2LaDphhs1PY5OTdPp2PzzoOHGPkxyuPTxLFHTMjszBgilNlcX2dvdw8jmUKWFeIoJJtOkUimsAoTqLqGG0ZExKiagYiHsBqHIVE09MxomooiQSDLj6Mpumng+z6B42IaBmEUoSgCSZLR1GHEByAOv+2dGT5XgADPdx9DfBSFeGEwaqf7MzQjfhrx04ifRvw04qcRP434acRPf9xpNBrym2++mdje3lYrlYr/yiuv9NPp9EhGOJr/qvmuT/x99PkTfHB7m3PHxzh98gj1amdYHa9AKlPmxvIqipHgVKZA15NI58ukclki38fzbHzfIZfN4rge+/tVdE3DMk3azQ4P7twb/oeoChQByWSKOA5wHJc4chgfS9PvK/RtCZGKCWshnt2i1u7Q6kKz1+F/+l/+gIzQOH+mTK5QxHEEhewUT5wCJ/Jwun3SyQKpTJbOIOTI9DTqyz6ameH2yh739qrstZucLVR47qklDCnB+1dv0fQlLj1xhF5fZW2zSs93mZk7Qr5Qpj9wWF3bQhEKjUFAQMRHnj7DjftrKHLI/OQ448UE+02bB9sBJ3f2uXTiFM3OgH/72rsgq/SaLU6dmGOztk91z8aOYp5+/knShQyOE6KlM5TTRRRJxom7PP+Dz/KN33+dxkENQ1I42Nmm39gjmiwzMTOHLJv4vk+t0eWNr7/Hh56P+NCZOTY7DvfWG1x/sMPf/alXOLo0R7vr8pv/5vd56fnLzC/OocoRRuzRdxwq2SS3Hx7Q6Ya8VV/FQyWdyTCeTbMwpVOqTBDfuk86LfHV16/zoctL5NIZ9vbaTE4maQxcAj9G1RTGKinmKmkcx0NVBKWcxdVr9ykVCpw6NsuVb77DO9ceYiYtwhiK+RS6KpAlgecFGAOf2BDkxivs1HZZSFicO/ck1Z01nIFPdxCwNFnG9QbMLszQD2L82jbdZoea6/DZV+9RKWSY6NRYWely9PgxpspF+p5HKAvCwYDW/i7V3T2MVJJspsD04gK6EtDZ38INIpKZcWR1nXQmiyR71Kp7HF9YwLF9vvbuDT7/5ffY2uuw7lb52jvf4tnz59HMEslsGVmOKBTzmAHouuDu3Xtksxm26w2UukR+EOFGPgMn5t985vO8dOkYTz/zHPV6h263RatZx7RM6s0OsvA5dfI0MTpdT+Zff+5rnDg2wwtPn2BiuoSmJGnVDtg+2AVNR1NNWs0q4+OzyIqCJCsoyvANT5UFfhSjRDGBpBPGEhE2UTRsL5PigPrOA7JjM7Sae+yt3kW3LI4cncH1I7oNj9nxPpKyxFe+8Q4vXLqF59RZXdlg6fg4kT2UFy89cZ7Qdthff0C+PIFvqbTbUNvZxEomUYVCr90lXygRBT6ddpfWVov7aw944cmLhGkVI19ir/ou5586wqBepVets7VdZ3JC5X/4Sx/jB166yNbOPtV6k1/9l/+BvZZLwjSZyBk8dXoWz23T6RmcPH2Gfr+G7fQ4d+wEg06f2UqaYqHM2naDVrtBNlVhcm6aidlx7t95SOB36Q1C0ukklpmi3WuQzVjEUYQzcHBdG993SSXTdDsdDNMc+l2ikChyUbUkju3g+z6WlcBIJJBii5/4Kz/BXq3OB1dvsrexxmQ5x/q9++QqJRZPnaQf3MG1e4jIww91em6XYq5Ada+KKuv4fQfbTHJvZZtUxmB8YpJUroQS2niOA7FM6HsoioLruUSxi7B7+J5LcWaOyPdRkwmUOCBWBI5zKPD2PWC4RfV9H90yyWhZsrkcvV6PIAhwbYfeoE8Qhni9HmEYYhgGiqIcwrQ89LC4HpqqDgENaXh/30MKhttpWRIoqoqiqIeRx4gwCJHlCFXVUBVBEIZEgKzpaLKCfOg681wfwxRoukYQDEXOxI9E3RKaphHFEUEQIkkgSQrCUECOUeQEx5+8SBwE9BtVtAfr2P4AXfcppQzef+9dLpw+zvjEBOfPnyN2HHzf5tr1WxQyOQK7h5XO8+a1azxx5hSmqYDTYtALEZpJIpkhQMKPYiRJHcK3AEXRCXwX6TCu8whEZSSkmOFz6w6jKI8E3jD0zwghQI4fS6mDIEASwziKpumHwD6877AB4k+UFUbz3zAjfhrx04ifRvw04qcRP434acRPf5xZW1tT5+fnn/jO2xKJRPiZz3xm+eMf/3jve/W4/mtm6KiUvn3SdTTfk/muo76/9v/82TibsdA0DdNMEksR2XQaS1VxveELyPc9agf7ZJIWds/GsV2y+QzNVp3xiTEkWbC9vYPruIyNjbO3s0Uxn8VxHDzXJfBsDFVDqCr1zoD3b62wtdchl0/wwoVjGFKEYSX47FdvkVBjPvHCaXqBzEG9zuvX15ifLqIGoBDxP/7tn+DBg3Va7R6lYop8MkmIz+7BAZubLZrNDsmkhu24dLohV+5ts1XvcvFEiYlkimdeOMV/+tINHmzvEPsK2UqGxkGd/sCjUkjhOTaFQhpQ6fS7tHoeqi5QY0ExbzBdSPL9z53g37x6g9vL+yRTFqYiMVVJ0O0FPDzo4oUxxAJTAtv3iKWQKISf/MHn+dRf/hihF/L1b34T14lIqSaZSo57axuUs0mWTiwS2CG+G1GtbjI1O4elKeD1+eD9a8ydPsG7N1b54IP7pNN5ev0qR6anGCskmS7nMMcm+ef/8++x2rA5PmHx83/zY5iqjNfrUdvfRZYkXn13jbeurRKoMoVMkQunp/jwM2dJJlQiZ0Cr0eD28kOu3NilVNTQZI13lxscnc2ztdunMbCZKGXIGDJLk0VkRQZJYmK8hD2wGSsUyBcMrnywwrX7u0yOp1Ekie979hKJYo5cOk/XdWntVSlMZJGVBN5ggDvoEMU6pUqGer1GMp1GjmM2V9eYmpsFSUZXBH27z9q9B7Q6Paanx9AkmZ3tfVKZPG7oUJmcJJPNEQcesR+xublGvdYhjiPOXjpPGAgMTWFr6wHpTAU9nabTbFI/aCCrCge7Vb525R7vrawjfIgROF7AbC7J3/qJD2ElkiwcPUqz3Wdzc42Tx45imDr1WpXmQYN2z2Z2ZpJ33r1BpZRGkVVagw7dbp+skeTEuSVU2WD5wQrFmRl+87Ov0e8OKBSK1Fo2q5tbGKaKJitYqkQ6rZNQVH7iR57Fdm0SqoUbh5SLY8jI5MYL9Ls97P4ASZZIZ7MkEikiGSIJ4kjC7beR45gg9EjmJll/cJOEqpAdm2d//RZC0shOTyOQ2Fpept3poqoWd9Y2mRkvkkiaqJJGEHnIsUyumEFJpklkC2jI+IFN7HQQiRJ2u05tf587t+9w4cKFobg+COgP+kOHjyIYG68gTA1TMbl+8zbzU9OE2OzutGg7Hc6euYCimbh+RD6TQtEkWr0Bb75znc9//it8/KPfRz4RUSzkEKGLkAzyuRT3Hj7k6MnT3LjyDuXxPKXKFE63h5bOELshju9TKI4RxiHtToNOu0vktXEGMbVGje1qm8XZGTrdBoqiUi6VMHQFe9Ajlc6QzuRQDZUwAk3TsAcuqqIRE5DJFlA1E8dzMEyBKnTsfo/drR10VSOWI+LYIwpk1tfWKVUq9FotmgdVVCtBrVWnPfBQhcbth7ucXFzk0hPzFMs5ZCNDOpsiCmPcwYBeu4nveZjWELQVIbO1uUO3b+PGMbpQOHr8BIlsBklSDlvQQnzPHzplpGF8RZbFUJisKPieh+vYHDqXh3Lkw6Y5AFQFTdXQNQ2AKBhGLYZAObzL46hFPIyjPIKBMAqJIwijCN8LkOXhNleSJIJgGMkQskDI8lDYHEMYhoTxsL2NeOjOkWWBLA7F10Ih8sPD48dEkY8sJJBkYkCVFMIYAq9Pq1lFDQNq21vs1/eZnJihWaszPj2B7/usPVwjnUry5gfXOLa0RD6bInD7ZIo5pienaddbdJodhGqSm5jEyOYQYujqiSWI4pgojB75ox+7er5zHnl7fN9H1VSEGH6I0DQNieHzLCvi8f2GUu9hHCkmRpbkQ/CFY0//6J8xfP3zOSN+GvHTiJ9G/DTipxE/jfjpzx8//UlEfa9fv66fPXv29B+9vVKp+Ht7e9f/2x/lfz6XL18+dvz4cRvgd37nd/KKosR/42/8jYN/9s/+2Y4sy9i2Lf38z//85Oc+97l8t9sVR44csX/5l395+5Of/GQX4Fd/9VcLv/iLvzj9L/7Fv1j9pV/6pan19XXj1q1bNx48eKD/wi/8wtTy8rKhKEp85MgR57d+67ceHj161AP49Kc/Xfq1X/u1yt7enjY5Oen93b/7d3d+9md/tvHocUmSdOGf/tN/uv6FL3wh88Ybb6TL5bL/y7/8y5t/7a/9tfafxvPw38v8iUd9b67sMD9ZxDQtytmIxYVJLMsEYtJpDd92cWOXg0GLttNmfGyMjuyjqzFjpTy+YyMhM5bLY7suqVQCbXYa1+5jJEz0RBJZisgkk2TTSXqDFulMljsP1ljZrfPNDx5gGiYTRYty3qTX97lyZ5NsRqNYKHOkUmailCWZtMglE9y9c49Wp8P2ZpPlFQ+EyoO1fbb29pmfGuOpc4tMltJoAqbnZkh+8Vt84+1bLExNEwV93rnxkI29Fq4XEeuCvWqdgRuBpNEPXOxAwj3okM0l8WOFc8dKZNIpvvTmdQa9PsWMwd31KtfubhFHEdWqjWYIEpbM0vgYF06Mc3u1zq21A1xAVXVsd4AiZNq9Jn03QhYyr379Btstl4Qp47ohnt3hYy8/hZVJkU6kyGQz1Bo6Dx+scuGZiyhahVlHwuvWcVstWj2P/eYWcxNpspZOOiGzurvN1q11tustdKGxstvl//NvX+e5s/M8deEoVjJBr9fmxv03iBUdVTVJJGQWCwm2d6oYiQSlVJL8+BRnNJNBaLG+toFIKRRSJrVGn7FSinGRZqaYIgoDmu0GoWQgxwF4faanp9jb3adQOYUfKpw8WqHX94nxiXyXjQcP2BY6ccJkPJXBHbhkikUO6m1CN8QyYtpdB2QDSRh4A5vi2AwDO0DEPlG6hJEyGZsNyfW6tFoNdg8a1Ns2i0JDtSxWHjxEkWIWl5aQFYVMoYCmK7x39QGDb73Dh156nn6nS+w5BEEHZ2/AxsYq1Y5LfmKW//DVK2ztdzFlHS+yQZbQtZjdZo/f/uLbNGp9nrs4Q8pK8tSzT2IZgrUH96hMTLPWW0f2QibGipw8M4vXs6kfHHD67FkSQuG3/uNXWKt1aNku1f0Orf57tG0POQxZ3zsglhR0VQbfxY09HEfioNnk7LFx2o0GC0uL9JsdcsUSUuwyaA9IusnhFSSD4Yax126jqCo37q+zU2tj9wMWJpIszU7Ttz2WjsD2bo1Grcb0ZI0TJ05S399lbXmVrVof1euxdOoIv/Fvv8jZpQlOHV9i4A64eeMese+xsDCLYRrgdIkcFTfUUE0VX03hD/royQwlRUezUgRBSDKZYuAMKE+M0W7V2FhZZ21nj4SWZHxujMnpceq1OkfPnyY1AW63Dm5IzzmgWWvQ2JQwK2OkU2k+/tLTzE8WCe0BdqeBpScwDJMQldhQOXX+CTzXY21nl3OXn6K2vYEsSdQ3OszMTtFz+nzzjTe4+NQZ8rkUhiqoVwMGcg8v9MnlEgw6bSJJoW971OpNcmmTOA5o/X/Z+88g2bb7uhP87ePPSZ9ZleXt9f55b+EJEiBBgn6ooROpDgVHI1E9ZEicnqDUIyk0w5YokWpRjhyI0xQNIBKGAAEQD8+7e5+53ta95V16d/ze8yHrPYLd6gkIDYiQWP+I+lBZlXkyqzLy/M5ee63VbAIaTpxFMwy2NnexbJvJqSkc10FoAqErTHNYMTfwfYIoIFsssbuxBoCuSZJU4LoucRgwe+ggGCadVoN+P2Kn1uPWWhPTMbn7niM063WmZudIZIyKFYZjI2WK4RvourbXEuejZILQBYVCnhs3bnD61El0ESODHrrlEPkBUoHnZUFoSDXMQNGEhm4ZCMC0bDSh0e/3iOPk3WwZpRS6ruOYFmmaEgwGwwwze5hPI1OJkrwLuJZhgoAkThGaIEmHlkZdNzANC8OwSNN47xjD+2kINE0i1TAvRzd0hK5jKIZqd5q8q5ZLJQmToWJvWiZKDO0dQpOovdyXIZAHoFkI06Y8OkMqYaZYZSJJWF9ZQfccNE3h2Ba2ZRIrxfz8IkJodLoDip6DK2zWVzbIZFxMW2DbChG28LfaCMPFdD1a3T6ZfIFSZYRUqj9rrZPqa4Kkh0LcOwr1sNHuHVgfwupgMMDLZt4NpJZKDnNrxFCxFroGai/0e3++LWafn/b5aZ+f9vlpn5/2+Wmfn/b56RuZ06dPh5/97GevnTx5Mpybm4t/8id/cuY3f/M3q9vb22av1xPZbPZb4k3+5Cc/WfnBH/zB2gsvvHDlpZdeyvytv/W35mZnZ6Of//mfr/3ET/zE7PXr191PfOITSzMzM/Hv/u7vFr/v+77v0NmzZy+dOnUqBAiCQPuVX/mViX/5L//lnWq1moyOjib33Xff8R/5kR+p/Yf/8B+WwjAUL774Yuad9/UnPvGJ4i/90i/N/P2///dXP/zhD3c+9alPFf/G3/gbC7Ozs/FHPvKR7jvP6x//4388+cu//Mtr/+Sf/JO1X/mVX6n+zM/8zOL73ve+82NjY+m34u/w39J83Qt/V28us7KxRTGf5/TRWUqVIq++coHRouL4sUMIlWG3XmdqdpKVW6sMwggzWyBU0B/00TUXPwyZm51kcWqcjGuzfOc2+mgVUoluagS9Dpg2Zj5L1jC4+3SZ0YrH9hfOcf7qOrhdtls5LNOm1e+zvNUj1RJEuszsRIlTpQOUKlkarT7NzS16vYhbd1a5vVUjiIdZBqVyllazR9BrUp6rMBjA669fQcfnF/7ax5koFLly9SqlSp52rUWzn2Fh3KZSKbDaiDFiEyvrs77ewRImMxNlJmfKzIzmKBSKDPotgsBgdjTPpZs17j41Qz5jMQgkMg7wDIMzxyZIU8Xi+ChhJLm+0SCQfVIJ5ZzNB55+nPxIFUHEPXcd5eIfvUq3l9LzGzxw+i4OLsyRcTIIBEGvRyHn4boGX/ny8zzx3qdZOH4MIWPKE4tMjV/g+soKL79xk4uXNnj0voMcPjJFlNSZn63S6EYkseTqSp2rd7apd0IWx13agy4H5iaZnZmk1w8wTY3SyAg9X9LtBji2iexDXxp87Ls/TG1ni05/QBIrBgOfcqWI69kE3QjdMlEMT6jbjV1UFHPg5FF2N5bptdrMTo6SLTu8/sp5UpkQqoBC1mV5bZPtGzXWvRwjlSJjMyFfefkcj993htrGOi+dv8bo6CgP3XucJNXRDZMkUQh0skmAI2yELpg4cARteYl+nLKy3sB2TXRLY2elTzFv8tUXz+NmLVrdLig4f3mbmxvn+fKrNxDKoFwu8tR9itLYGF+5uMPVm7u0eufw/S6aBMPQ0A0DfxCiGTq2qXFptYsMY0ZHihyYmSRo7xJmsly6co219W0eevQ+LM/GUg6a5rG5tYTSbfx2i/LkNK12wLNvXMQtWFipRiLBcC00AbadQcoQJTUCUrQkIU1MpsYrPHnPMcZGJ0hVipXJUtteRwN2ay1K04skSUCcQBgPsHQXYVk4xJQzeW5sLnHd7/DGpVUWJ8qcu3qdz37+TQwzw8Royo9+f59HHn6M+tVlfv8Pfp8gUEzOvs3jp46wU1un36nhZlwu3LzBdKmApc2iqRCnMEIcJehGQtgPMFyPVAeSYYtXsVIiCWJkIrE9k1jG1DbblKvz7OxuYRVcEC6FsSIa2/i9Ht1BQKk0gvIUeuQgNBfTgGa7QTdN8Ls98rkChfEJbl7zWV2/zV133UOSxqASDM3EzOqcOHGMRm2HXC7H1tYmuga24xEN1llevs3BhRHiaAjVlbEKhWKRg0eO0wt6vPTs8+w0B5hGQj57AD9IkElCe9CjM0hpd7ZwMoKDB8dw7Sy17TpjMxNkMgVUEiLQIJWYQiOSOprokcll0IXO+uoqlmWRz2XQdEEaBGQyRVrtDidOHOb+TJGN7V021tcxlGRpaYnZ+VmqY1WCoIedDjCLZaxOF90RJEpgaybNbhPb0FFKMjZaZuAPGLMn6Hbb2HaIm83SqDf3gqezKARKhzSWqCQFTWAaJpquU/FcgjCk2WiSSvVuwHQUBNi2iRA6CoXf62GYJprQMS0LhCBNElCKJEkxLJMkTTFMY6jCpilCDQOnhT5UvdN0mNEipSIOYkzTHCq1UoGUIBW6AEwDEO8qwbaukcqUfr+H4zh7MMifqciAUgJdKEwhSOKhCq6ZDpapsXj0FEJI0jigXa9hZnLkXINizsUwDG7cuk09iRlEKY1Gk+mpKnOz4zRrdZI4wbFdtDSg79dpbjVpCkFrZAQMl2K+gJcdRbig4gRhOqRhBJpEIkilwtCG6rShDz8DbNNCNy3COCT2B2TcPMpIMTQDYUAq02ETnpT/STV8f/5iZp+f9vlpn5/2+Wmfn/b5aZ+f9vnpG50PfvCDvWPHjp1YWlpy3lmYPHjwoP+tWvQDGB8fj/7Nv/k3q5qmcebMmfDChQvuv/gX/2Lsox/9aOcP/uAPRm7evHl+fn4+Bvh7f+/vbX/5y18u/MZv/MbIr/3ar60DJEkifv3Xf3354Ycf9gG2t7f1Xq+nf/SjH22dOHEiBLjnnnve3QX5T//pPx3/+Mc/Xv/FX/zFXYDTp09vv/baa5lf+ZVfGfvahb8f/MEfrP3sz/5sA+BXf/VX13/rt36r+vzzz2c+/vGPd75Vf4v/VubrXvgzDZv+IMYftKjt1lje2CSJEpqtBO35q5QzLk8/dITqSJm5xXk8z6QfQLsXUiyWyGYy9HsBpUKeTNYjDiNs0yIII7xsjuJ4haifIeyFbC6vU6wUuLS0yR98+jW22g0ylSJCSlqDmDD0EakgUzC558gBirbOQ6dPkBst8+UvvogfCR679yClIw7f/aGn+eX/5/+Mmc+CkliGQz4LUZzS8gM02+TG8jqDfsju1iaaSKnOTNBu9zl76RZjlRGSkSort+tsNtp8x5MnuHytgWMLbq/vEIV9Hn9gkbcvrvDG1RdoNH0WD05zYXWHVKXYqU0UBzx95hDn76yzODfC2QurvHR5BUlMkIJMDGSqk3EsyqUcEyNF/F4TL1/g1JFZovBL+AiSSNDY2mBj9Tbj5TPopk6uWKJkjHDz6hVs10JFIc2tPqZjU5oY465chvuTBzh84DVePPcWy7tbrG7scN+9p2ns7OCVXFq9gNS2sNwCL7x9g3p/kfvPHOBv/HeP04siokFM4vdJdYuqadPp+RQrRYhj0D0G3Q6mVyCjeWysbzI7fwAlJUka4+R0hvGzJroOCwsFZBSjY3H06D2EsU81HuZYFLwSd25c4vVXryMNxfhIiUq2TKAUn/zcC1TKl/jAE/fTbNX51U/8MZu7PncfnUOkBpl8lomJEQSKbMaj3xngVDNkS9MIdKaP301hZIJiZpz5I9PU1jbJ2Bu8+MY13lxqITBIo5iBUowVDI4eGsc2HY7MTtLutPnEZ56n1ojoJSFSszgwkudDTz1CrxcjZMxotcTVG8t0wohXL6xz92KFR0/OEgQpKk7Jj1epbazz9Pue4tr5t7FMi34vZat2m4nJCiI8yEuvnmNxagRI+N7vfYLjR+d4/tx11tc7ZHMGqYzQpU2cBFi2hW0YtJohTz18H4Ooy8APUXrCrZV1bq9tcnCmysHFBV594xLNRpdM+W0WJmZZWVlmbnGRKBzgN3a476EH6UctMl7Ai6/c4OqdbTJWzLWVXXxD5655j44f8fu/8zzj5TEOnTjM/+t/+nn+7i/8Kp5u8tj7H+f1s2+wfGOFk6dmsdAZLY6SL1XQLQ9DVwS+T4KJZdiE/QGGZeEVy8iBD36f2NRJLIEeGrTbLeZPnCSNImYOzpCmGkkUYBkG2ZFRTNskIwJ6nQGGYTAY9JFCJ5UGpdIk/TCg0WmRcV22g4RCZYrm8m3WNhtYtiCJfTwvJUhSqhPzbG1tkZ0bIVNKiZOQbr/Ftet3yGayZG2bX/+9T3P4xGG+57veT3NzB5n6lAolfuAHfpj13Q63b1zH722iEovU1NjqJLzx2gUmRjLcc2wO1ykzMlpi485NLrx8i/seeQQrW0YzFEoGpEGK69qEEeh6iKkbzC8usL21Ta3RoFodAUOj3thmYXGGV155iccff4rDmSmOHphlc2uL6ZlxAr+LTIrYlkEsBRnpwuQ0Lz3zDEcPHiQ/MUqkEtJoQND3cS2T5Vs3yWVt8sUivU6frONhmQax38dzTLrdLiidbKGI0nWiJAIJpmERJzG241AdH6fdbAEQRSF+t0dLpmgaFAoFTMtCpgqlSXx/r/XQNEmSZNiQGMfD4Op0aDVRMGx00/V3w6aNPTuL0hVCDIF3+PMhrAkFURSjqRRd1zAse/i5IzQM08K2nWHoOkN7DQiEGH5j2g5pmiBTCWgolWIYAk3TUUCSSHTToTo5w9TMPP4gpN3cRcYBp04X6ffadNotIqEwvQyNdkCpMkmzWcdwHWq1OvlslmKlTCIS2rU6u60e46MelsiRGCZry1s4nsGZe49hmGVMU6DbJhKNNI7RGNpsfBljGxJXN8iWRkhkgiYBMbS4CEDsfeIOf7A/3w6zz0/7/LTPT/v8tM9P+/y0z0/7/PSNTpIk4ubNm87X3pbNZr+lT/See+7p/9mOSnjkkUf6/+pf/auxc+fOuWmacvz48T9nP46iSJRKpeSd703TVA8++KD/zvdjY2Pp933f99W/93u/9/Cjjz7aefrppzt/5a/8lebc3FwMcOvWLecnfuIndr/2MR9++OHeb/zGb4x97W1nzpx59zHz+bzMZrPp1taW+U174f8Nz9e98OcPOmi6gdJAKYv1zQ5BFDAINExbIpROfyCJYx3DcoilQtOh291hYuIgpmliW0MF0Q9CLNOiNDbB5sYmjVqDKPBRxJx9/QobmztMzo2xuTXggftmcc2DPPfmMnnDZG5+GPa8tNzi9HyVn/3xj9Co75C2mxw7uUjOjHnz4g0MB1LToj7oc/z4HI7tsFPvsr3bwx7JE8oMX3npFt3AZxANODAzz7Ur60xMVClXx8hlfN7zwF1sN9vc2WkzM1blxKhHGsbEMuLgSJVH7j7M737mFX751z5NZyAJZYqFYK15HSmHzUnVQoFQhdRfucByLeDsjRqtQYhER6UKtJSUBM9xEIbOne0a15Zu8ejjTxBJWDh5ig88foxP/+k5unEMaLius7fV2sBwbJRMmZicZP5ghm67SSaTQ6WSeBBQsD184fP0h97L408/zsbtDbZ2djBtm+pIEdvLEgY9RkZLCCz63T7TEyP4fsBWs0MaCwQpumOjoxEiyZbyxDJEaAaaYxAgsE0TWwncjMOg3yWKQgxdo95qkfUyjFaqJDLAFBp2xsW0LLq+TyabIUwUaCblySm8YpHC2AovvXiWS61VZhamGPRTHnnwfmqtGp97/hymmSOfzVHKZtD1lFfefBvHyTC/MMaZk6e4fWeLen2DY8eOMH/gIFomQxJFZAplDt3loFku+UHA44/cxdjoGIcPbJHP5XA9j3qzwalDU6goZn17m6npKp45w7EDo1y82eDSrQ22Wn16YcJbl9aYny7ywfc9zOj0PA8/Uqe+s4ulPctY0SMWNoYtmZwdJ0wSTMegW9uimisOczXCHkKk7C6tMLO4wHdMjaBFCtAoZ3J8xwee5vjRQ+w2d2j5CROTVexQZxDWyHg5wjTk9s0NJiolBnFMtx+zuVHn0JEFSt0+3UCwvL2FcAwuL29x5Ogsr25dYjCIefXTz3Pl1m1sU+fv/MJfpZov88h9D5Dz8jT+43NcuLFNqxPioTBRfPDho7x5YY03LlxlfGICzTL56z/+ESzLoN/ucOjwUS4//wKdnmSsZHH58jUyWZcT95+h1+9jWxap7XL1jStksialsTKWIRi0myQBBCplECQM2m3C/oCMa9MPQ+6sbeIHknzewtYMhJJopkGhnMfI2Pi9iCQRRPEAy3Fp95oIzcI1c/S6TVJloKRken6Rbj9EjzWCQYLj+yQokqRHvjACdpaF4zMolRL5XQ4uznDh0nXWd7bp90PmJqu8+fJbDAZt5qbG8QoBiWeTd1xOnjqC356k0++wstHC9hI+9Pgoh2er5FwLV5dE/YDSxDT5kSLddouSVwDLIU4HaEIOL/TiBF3XiWWK67qMjFcphAVsy6bdbDMzNkohm+U9T7+XcmWU1ds32N2toQmNhbnZPcU3BSURCoKwibAd7n/4UaTvY6BRGp8m8vsYThcjU2CQwNZOE92yMXWDVqfJ7uY2StNwbBsSSafRAKkwXGeYo2VIZCLQdQ21Z7XI5nJ77XIulmnS7/WI4xA/CAjCCBC4toNuGghDJ4mHirWMImAIplIpLMdGMGyhQ0GSxEOrTZQOrSqahqENlXC5JzkrIUADy7DRFMRRROAPkEoiEHiOi2ZapHt2GiH0d3N1dF0nSdJhUDSgaRrWXv5LkiZ7KvzQAhIlklQJUlMjO1oljWNMXaecpmhCcbC9TRL57G5vEQUGtqnj93u4jsfa1iZplHLk8CJaknJgfpqEhLgf8ezr53n7Vp1Bf0DOCchlCrRD6Mc65VKFickJXM/GcyxSKUgQJDJGRDGaBlIJRDq0u6SpQhMCgRwq+fvzbTH7/LTPT/v8tM9P+/y0z0/7/LTPT9/oOI6jPv3pT1+/ffu29Yd/+IelZ555pvDWW29lzp8/b58+fTr8L/lcut2upus6L7/88uX/dVlHPp9/125r27b82oVDgD/4gz+48+KLL25/9rOfLXzqU58q/6N/9I+mPv3pT19/73vf2/96j2+a5v9ml+O3mz3723W+7oU/dBMMnVSl6OiEQUoQpugmiERRb/h88aUrPP/GdSZGymQyDnNz4yzOT2O7JoZmoUyDfr/PysY2O40OSPC7HWSaEEUBMpW0ugOKI2W0VIGMWF72GSQJta5PM+yx1W4SRinjZY8nHpglZ2eQuQJvnjvP3MkOl66u87kvvk6+XCSNE3w/pjUYEMaQJgrdiFjdqSGEIJUp6AZSSG5tXcGOQ8YmKky0OoyUx3jyiaPcvLFFt9Pn/nuPks27LC+tUSnmmFmoIjWLIwcPkMYSM5fF0lOCTp9umnLl9g6mbtAPFSiTlSBCahqbrQEqDbF0E0PXSJXOwniOyVKeK7e3KWeyZHSBadikQYglBX/tp3+UkWyOy8sbpP0A2/HQHAfTshAS4jBGtyz6vT4IgUIRRCFuNkPX7xMOBriZLJqVY+HYCcYmJml064xOT2MZOmkwADQSmZLJGKArmt0eM7kqEljZ3OLAwgLFoku73SOMQQkNfzAgV8gTxBGmYYES5LIehVyBQj5HKhO2N3aQholMAoqVHDs7u8RpguW4uJ5NfzBAJYqeSrBzeTyvyIHjBZRh0+r0aLd9pstZJsaLnDIlynSwNBeZBnTCiIzQCGWEpjsoKclnMsyMVbh1K+XLX3qGyutv89iTDzI5O4/UDQzDQhcG+bFxVFxiJhBUxwtkCh7EGmEww5+8dJ5nX3kDRxccPbhInHYZKY5w9tIdNtoBQsaQxly9s0Wr3WZqdppTXpnPf+4ZFuYm+akf+z6aYcTnPvMZHj11Ci+bxUMnysRIGdALmwRhjzAIqE7PcOPiecJgQKVQxDBcoiAg9Qfsrt3mC195k82tBuOlIvefPsxIpUoiJ0m6Ef1Bj1Iux+qddXrdkHvvP0inXiUOY+6s1bm4tM5IVuOxh06iIbl1/RYX11r0eopau0YSCgz6xN0e2mgFx8kyVsrxV3/oA9xcW6fR7HPz1gbXVnboBRpbjS7HTi1gWQrhpBw6fpD6xg4bS7eZOHSYtWaNG5/5KrFKWF6tUxhZ4+R9J3BcF00JevU2n/3jL/DYI6eZGC8wGHTwI8Xzz77M2zfXqDcj7j01AwKa/YALN9ZZWqtTzBt8x3sexO/GvPr2dbrtBk8+cpoH7juB57r0dbBSm7WNOu3dDZ56/CES3WZz06Lf9zFsg0QKdMskjmOEYSI0DR1FqgRKKprNFqmSFIsFnGwRx80wPT1GsVrl4fsOIlstlnd6bLZ2WbqzzvTkBEcOTGLoFus7bRIFlZEShxanOXZokX7ko2vgjZRwdY1C1uXi7VUuvH2NE/NTjE5NIwwLnRxR1ESlKYIY0zAhTUjfCR7WDZIkITc6ghaHJAK8Qgl0jXy+SKPeYGVlhcpIhdHRETQBURwTBAGOa8MgxcuVCIlIgi52oYpm2ijdJiM0CiMT+P0OSiUIoaNpGpl8Acd12Nxcx/FcSqMloijEjASDYIBhmihvmL9jaCa6AE0bgp9pGiA8bNum1+2QpkPrhO/7xFE8DJc2DRzbwbIsdE0QRxF+ELwbyIwQ2JYNQmBaw7ybJB3m2Bja0OYihD6E3WEMM1Kmw4tBYaKZDoZlItMYFcdD+4lUaLqBYZrv8ty74c6aRhQnaAJ0w9jLfNFRSiNN46GyLRRCDLNvDIYSsRI6iQTLcUmTFKs8h6uBW55HRSH+oE27U0NEA/Kew6W1dQbJHeamRjEMQb8Z4XebnDo4xZkTi7x5+c7wPJlIXC1lo7bDuTfexnFcqpU8lUqBamWChZkpsG0kJkkaIDQdpSWgNISmEfghSkakafxNB4b9+QZnn5/2+Wmfn/b5aZ+f9vlpn5/Y56f//Nna2tI/9alPFb7/+7+//Z3f+Z1d3/e1Z555pgDQbre/ZTW5b775ZuZrv3/55Zczc3Nz4YMPPjhI05TNzU3zQx/60H92q/Cjjz7qP/roo/4//If/cOuuu+46+u///b8vv/e97+0fOHAgeOmll7I/93M/V/+aY2YPHTrk//97vP35+ufrXvizLY9ECdBSgjjEZAgvhqYTpwlogo12gN4SLK8PMG2N7JVVDs5OMD5SoFzOcWN5m+vLOwRBzPx4iWMHRsh7Oo2BZH27RyVrc/89R7h8c5v/8OVLBEpiiQymkaAiH8fx0Aydw1MF3n/fMU6fXByGm0Y+GxsN7lxf48yDZ1jbbfKll87jD4YKLwZYejrMSdlrBYriLqbhYmgKHZ1YBkRC57Mvvk45m+dHv/spDh49Rr8T0W80CRotxkfGOX66woGjd9Pc2iRT8BgdzeHoFkbGotkJ+cqzb0MSYjoectAjEgLd03GkiZCCo7NF5kbGOHt1mUYQQAS5TJEzx0f50BNH2N6t4/d8ursbbG1vUKiMo1s23/2RJ3l/q8/569eZmZmmPFJm0OuzfmeZ6tgYpukiE40g9NnY3CBXyFNLE6JBSMbzGNQbpCrBsG2SNMazbZq1OrdX1zl45ASaAIsQL5tDMyzmpjUa7S6vvnaNbrfGifuOcvbV17GMHM1uRDcYcOPmMk89fA+FQpZG5JPNZZmamcC2LJbvLDPo9ahUPKqjY9iujtQ0up0Omm4xMz3K1as3SVKf2fkphLLZWl0hm/GwHY/qeJmRcpmNlQ3yxQw7WzXOnb/NQ4/ezXg5xjJcsppGHIOl29huDil8UmLaQcTxu09z4OgRgk4IMqLZ3CbjZGkPYtChUCpiGCaF0XHCQR0ZCF45+zqWZdCqrXNwtkKz1+elC1dJkwTb3qHb9zEB09ARaYwvYyJlcOniLX73j57DMlLuPjFJo7HD2NQk/5ef/TFeffbL3LkT43k55ufmuXF1hWKhzFtv3eDwkWO0my1sy8EyMnR7Po1mjYxlU6qOIPMxJ4/O8dB9i8yOj+FZGikCIQz6rW1sz2WAzoEjR1mQEs+RFGazRIM+3/3++xk7V+D1y7f4/c+dYzSXwc24FMoxa+trSKGRSomZEazeukwp59BqtckW88zffZLjnR3iWHL1zh3+xb/+FMWyYLeWcOfqEs+6LtXxMpu7uzSbEi1uM3N4ip/+2Z/iX//rP+CPPvMyM5MFnn/rCpWKwfFDx8lW8izdvMGwPQvSRGKaOgYRz71xg14YcOb4Iq+fv8XSVo2c62HaNkdnxvnwE4c5dmye/+lf/j5Xl9YxiPnKsz2effZl/Ein3YtYnB1HczQyhs99D55geeM6x46dodnq0O34BGGIriuU1DBslygK0DUNz3VwLItSqUgun8UwDJIkxSqPseBlKJSKPPWeMVKZ0Hz2GXSthBCwsbHB5u4uaQpr2z2mpvLkt7P0Qp3bq9tUyh73H5/HIWYn1njlzZvcuH6V73jybsYmisRJhB6FKAWG5TAIEqJwgGVmEAI63R6ZTGYvwFgh/JgwitCzNq5pE0UhuuUyO7dIpzfAcVySJMW1bVQQoGkaoZ9gmwKZpJhuliRJSX0fL5eF1CCJJalQ2I6NbWVRaIT+ANPzUAIy2RxxkuAn0dDGMRgMoRrotBq4rks3ivG8DAiB62WGqrCugQ6l0nBnRr83wPM8NARxmtDudmjU6liWTTabxfFcDMtC0wRxGJHEMVEQIoSG7Q4v0C3LHOblqGFjnUyCPcV5+D42DAPTMEjieBiorQmEMDFcF6mGuTdpmpAqia6bmObw/6yUHAZAC0jSlFQOSwE0MbSyGIYBKJIkQSm512wHiGHLHmmKTOPh70uJphSuZxOaBvlsgXx1FhkHhIMWplcgCbsEvT5NQ6dcLrLdrrGz02OiGPPgyaPs1HbIeAb9rqRe2+H4QpUoSWi0dxEi5eL5CyxOjXH6zCnGZuaRtkkUK2wsJIBK0TSNJNFJk2+oPG5/vgWzz0/7/LTPT/v8tM9P+/y0z0/s89M3MJ/4xCfKv/ALvzD71//6X/9zt+fz+fTee+/9li2KbW5uWj/90z89/XM/93O7r7zySuY3f/M3q7/8y7+8evr06fCjH/1o46d+6qcW/sE/+AerDz744GBzc9P44he/mD9z5oz/Qz/0Q//Jht2rV69a//yf//PRj33sY63Z2dn44sWLzvLysv3DP/zDdYC/+Tf/5tZP/uRPLt51112DD3/4w51PfvKTxS9+8YulP/zDP7z+rXqNf9nm6174+66njvH8y1eodQKCoI+RKyE0QZwohDDRUGh7LTnCEihh0O7HnL1wi3w2i2UK2r2AWApyns1Wq0f9zR7lnIuTtfAHfeodn7M3XmNjt4Zh2lRyLiNFk2ZXks9WqI5kcWTMvXctcOqeBQzLodtt4boWj33wATRNkbR3+dGPPck9dx3i9soW596+TrcXUmvUCSOBSiFNA2RqEKkIXXOxLBOdYeBnd2CwWd/l7MVrZD0HU6YcP3WEcs5l6dpVhKFTyHmMzc/QrXVJBjHPXr3F25fusNvz6fgC4phc3mVmcpSF6SrT4yPIdEA/gZmRLIcXDzA39TYvnrvBqaPTyLCHo0n6jQ5jZZfRkSKNxhrtep1MfgKh+6xttOk3d3n6iYcJY0ncbdKrNwj8hAvnd6mOTdAZdHFMHSETDAW1zV0a9RaVgoftZXj7wjV2Wy2WVjaoVMbY3m3R7/cold/i8MFp7jk8T7GQp97o0x40uL3R4otfPUchb/Br//Tfo9llkniFg+MFTpw6wue+8Dw5x+L4wXkmxstYGQ9TSbZXV+jUdkEqciMjnH3zCpm8xcp6g5MHpijmbfxoQCHrYBs2Y+UCf/rMK8ThMMxVt3Qcx8UwLVItpR+EaIZgbqbEbLWEaSS0uiE3b68zO13hzu01Go0Bk5MT6FqK49g0dxrEsc/E5BjCzrCy1iAYrKKlKZ7jkTlpY9t5jGwBM29R32xy5Phhzr16lofvO0y/O+DSzU1MoRPHGjdWd0mUHJ7AhYlm2iRRyk4jZHXjIlPVPEenRxBhQqL1Cfo9KsUZMm6ZsD9AsxyiJMHKFbi+usnM5ByW6xD0u7jlKsKzaSxvsrFWQynJZDJL6AeMVV0WDxzFsR3CaIBQEl3XkBq8/vZ1dNPgxOnTZLMOmkxJRIKpDwOnT52cZXV3l87AB9tgYrzKSHWU3eVt1gYhjmdCkrCz0+b3P/l5NmoNHjxzmMODhEOnThLu7nDmxHH++7+uUa0U+b//g/8PF25v8urlNfK5Ir1ggGMavOeeOaJWl3q4xr33HeW181fwuz733n2AUyfvxrJMwl7AybtP8LnPP0cShENrgCYpZDx+5GNP0mnUuLPdZbsZoacpaZxQ8QzGiwpdJFw6f5M7y6ukfoKwYG2nixIGaRqTJCmvvl0j69k8eGqWZ77yGt36DjP5Ir3EoO+HyCjG8wzCIKQfDugNumSyWUrFPAgIggDDNMgYBgiNucVDqDigVV9DSoFAcfzkKd56+wKmaWNqgmff3mC70yMMQ+qdmDDapOMHREpS2LDZ2e3huLdY3WwQRJInHzzK+PQMplclinVE1CMVMZpuotsOaVsnFjFpnGAI8HtdwjjB9VxiGWN4NlI3aLVbKKIhbKZw+OhxsrksyZ5q22w2cVwHM+sRRyF67GObBbAdkihga/kWYxNTRJqGQqHr2rs7hhIkhVKRfq/PoNvHMS1s3UIKSafVwfPcYQ5KKlFxDElMbXsDy3ZQMsGyHXSho5RAMrRN2JYNmhjaP/yUXD5Pxs0QhxFBENBqtchlMziui23bWI5NEidEUUTg+wS+j77X0qYbBpZtoZsOURwNm/AMfdj0JwSGoSGlGsIlGnEybKezDAOlhgCapiFKGXstegZCaIBCqaGULaUkVeleE94wzFoIDU1AEqVous5Qnx826AnEXgaPIpYpUoi9Y4doOuimh1UyGcuPIsOQ1ds3iZQkjBOmKyOUMlksy6HV6zM6UsFxdfJ5m63dIkkiqeQ8poseo2NVbudN/CBmbXWNzdouQjOoFnIMoojq+CijoxOARm1Qp5QrftOBYX++sdnnp31+2uenfX7a56d9ftrnp31++kZmfn7+f2PlLZfLyW//9m/f8jzvW1bu8b3f+7113/e1xx577JimafzUT/3Uzs///M/XAH7v937vzi/+4i9O/J2/83dmdnZ2zFKplNx11139j33sY//JRT+ATCYjr1+/7vzIj/zIgVarZYyOjsY//uM/vvu3//bf3gX4sR/7sdbGxsbqr/3ar4390i/90szU1FT0q7/6q7e/67u+q/u/95j78583Qqmv7/3yxmf+qVpd2+bNize4utSgnQzbzEAnUikaGroSw9wVSyBjn6DvY1oOhgFpkgx/X4Cds1G4TI0VGM155DNDVcF1Na4s11le3cU1dA7PjNIPI5rdLgW3wL2nx0lCSd7T+ehHP7CnPissR2PQ6dLc3kJ3hm1KQnOoNzrs1rYZHavy4muX+PKz5zAtHds06A9S/Agmx7PMTFcwTRtdSR44dYjrS+t0eiGPPnQPiUqwPIdqMc/qrVs4jkmn2eLNG2tcv71Dux+w0faR0iLjmGTKWQ6W8iwcmIY44PihKcbGqnz5q6+zvrXDockR8kWHB+47ze0bd5g9OMFIcYzLly7xh597ngNTBU6dPk62mEfXdTwny7U7yxhpSqfT4Kn3fQila9y+fJ5Os8vKbp9X37xKIVOgXMlw18m5oeq31mDg96gWc5w6tsjbV5a5eH0Nw8kihCJOEqQCSxc4joXl2ni2gW069DoDojSl0+6ATLC9LK6nMTMxR9aL+N733M/WVg2l61y9ucqxgzMUXJPNWpdOv8vRmSrbfcEbV26xtu0zCAZM5F1kHDI+VuLo4gQPP3o/GDoiDrFdj/X1LX7/9/6Yld3BXnNUgu2Y9MMIx/PQdVCxxkjJY2ZinMpImcWZKhgJreaAmys1zr59FaVZuK6NUAmj+SzVapFuP+b67W1KZY+yZ/GRDz3GzNwMUil0K4sQCVHYJU0TdlZ2CPw+16/ewsu4jE6OEPgxN+9scf7qErbjUGt0aTY7ZLMmItE5cnSCuw+NsTgzh1v08JtdhGEgbJfd7RbLa+tESUgxP8LOdpOFA6MYQuNLz75FuZhnbLTCUw/dxVZtEzfrcunNyzzw6EN4ns6Fc+eZPzDP+NwRRCoJUh9QrN9cIoxTvEIJx3VwbAtD6AhDB6WIpCRJFGEwwA98rl69SjWXI2MJpBD8/p+8QCWfJ+j38bIe63Wfjc06OimP3TXP9//A9+Dmqwg9hhRkHLO6usTKnWUuXdvkuVdvohydJ+87SK/X58EzBzl99ACZ6jjtJOXFLz5PXvOZmJ3h4IGDDLo9itMVnv/cM4xPTuB5HqOH5olaPZTh4Ic+vWaPl964zae+9Bx+P+HkoSrf9cgJyqNF1hsh//b3vkwYhdi2gZKKNFHIJEGiQCocB44eWiBj2NxzfBbbMfnsV8+zvF3nyOwk7338LhbmJ7GcDBfOX0dzXabGy2Q8B5SBpuvohsIxbVqtDtvNOuNjVSqFAkQBSRzS7rZRcUS91uH//e8+Sz9VKCEwhIZKInTdQDdsEMP8Ft3QcdwshYLHPWcWeOK+k0yPj2E6WYb1ZyBTRRz5e+ppgt8b0K7V0ZTEMARBFGDoAsPy0IWJZmkI00RTBlqakAqNTM5j0OoRpR02N+q4nsf41AyuZ+N6GbxcgSj2UbGk3txFExpj1Vk6QQ+UJPJTFAqlUqSKQSra9SZKplTHqgwGPt1uh0Ihj7GXMZPKYRaOJgRhGGLaNplcDsfJMAgjwjhGQyATidA1gjAApYYwKSUqlQhN0O/3MXQDTdPQdR3TtvYUbI0kjocWlD0A1XUd13EQ+tBWoxt/XrsaGlc0pGRPuY2Qe4q2UCA0gVKSNJVDxZm99jvBMCxb04ePokCpoY1FqmHYsxD6XoC1TipjhAYg3w271jUxtLTwjq1lmJHDMEIHKYdwrGsGUqVomk6ntkMad4gGfVQa0W61sF2XanWM7e0dWo0GGhrZvIMCdps93ry0zlozxLHhzGKVI7MjXF3eph8qisU8laJD0O9jmgb/p1/4199+1XR/CWefn/b5aZ+f9vlpn5/2+Wmfn/7y8dO5c+eOGobxhUOHDvU8z/uGtxJubW3pL7zwQqbZbOpzc3PR448/PnBd91u26PfAAw8cOXny5ODf/bt/t/qtOsb+fPNmMBg4N27cyCZJ8qF777336v/e733dO/6Wr9xi5sAsEx94hM3ffZbOZg+FBDlULZSSJDIB1F42TIhMwTA1+v0YJQVp6mMZJgQO02N5pis5kjjEwKfZS1hebrHV7GLoGmESEEYhpqnTaXXotfuMFODK0gp3H5xhbWWFaqVMeWqCXqfD88+8RD6fpzw+webOBlmvRCol5dIYmrB48rH7eN9Tj2LaNprq88UvvcizZ6+ztl5jfauHacR83/seIBjUmTswwe0725QLefwgYvHIMdIkYtAbQsPYzCJzR+9mfXeXz//Jqyhrh4fuPsL0SB6/FzE+keW1N5fJuzbNRoucm+GDD55idXuV8sQIUXtAfnQEb3uTrY02hdIYcRzhZjS2OjHP/84zHJot88h9p/ndz36GD77/Hh45c5KtjY1hjoXlMTY2zeqdV9nYrdMKQlphnVvbm9y4vcmt9RqSFE0z2G0mXLj1MlEih7kcMhjmYSgNz3OxLZskSRn0I3qDAFMLiJOERMZIzcc0LJJ4QDiw8eyIhZEcr5y9xMGFabp9n63tbX7g+97HJ//wT+l0enQixR8/d42eVOhS4RqCTM7jhz/+JLqI+be/9VlsPeaBe05hFXJgWWimwcyBeRYPznBx9SVUYmLoJo1uHw2IegNSKUnQ2diC60vLlPIZnrz/LjRLEEcCJSULi/NcvnGHZrtDksSsbtTgio7lmLT7XVa3dXQluL2+zt/8mR+hWnaJAp9cZRrPtGk3a4xNjKEZJm4hz87mBo5lo2PyxBP38ciDx9lZ36TRHBD1fUqjHkrC1OQkb7x5kSMHPF569SJry3WurK3R7esMoghdt4iiCE1IdASli1mSJKLfisgXOsjr67xy+SanZqp88Km7OXnqOEIJDMNjpDoxbP+TfVKzACokDVOUZpDNWoyPj9Eb9NANAVIy6PbJ5HPYmg5JyCCIyDo5nnz6fSR+l+bmLuPzkxy9cIu3b24wOVJgfqyIQLBda9NvK164uIzl/gkf+a4PMTpWxZchGc9mZn4Wz7KZKBVYWBzns196g43tOrdu1xgr5jl6ZAbVbVIuTPNd3/dB4nqTzTt3iDSNVNe4du4G2WyW/FgZFUJ9s4aSkomZSexBD0sqPvb9jzM2WeDXfuPTRIOA51+9wPRIjoc/8DDFEZfGliAJU4SuofayXNBAM8AwS1y7tUul7NJ8PaLZbNOPAlKhc32tTvtPXmZutsrBuTlEmJC1LEwDgkGXmekDGJbJIOjid1pYpk7sKz79h3/KzNQIjzx8kmIujzA00iRi8vRxql95nesXVzF1kDrDUGVdRzN1hG6AErhOhjj1OTBT5ORMGSMJGAQ9sqZAM52hihuH6KY5VEdTiVXO4npZ0jhgd3sDw9QJw5Qk3bOv+JKs5qEMQRQHmK5DnPpEYYf1rRU6A8Vmrcvq2g7jIxUwNGI1bHGbHp9gbGqMfq9PLBVCMwibNbxylTRNCIIIEh2hQ3HUQFMShUY2l8N2bMIgIAxCbNshHQzQLRvHc0DXieOYfrdHp9kiWy7hZRz8vo/SFKmSGJZFOPBRShGFIUkyLP4yTBNNH752BURhRJwkWLaNJjSyWY8kSZBSMhgMCKMYTXsnrDomn8+TpunQcqJpCCEwzSGUCsEQfNMUXdMQQyJlmGqtQAiiKELXxZ5yDSDQdQMpE4RQ6EIMH5v0XVgd/uYwSF4pObQBiaH6r+vDnw5B3EApSJIIoQl0YaLkXo0cCZlSCaggpKSxs04Gwc7mJmGQMjo+Tj9MiPyQwUCR9TyqRZOZyT5L20vs1lNKrotrw3S1RLPW5K2ry/TjlGOTRQ4vTn39xLA/39LZ56d9ftrnp31+2uenfX7a56d9fvpGZ3x8PP34xz/e+Yt+HvvzX/d83Tv+/se/9X9Wi3NjnDx+lKXrq9yurfPHX3mLQS8kikN0DYRMUCgSKUliAUJi2zppIjEsnShMcL08GS/Lgakc+azFbn2ApuusbrcI/BjNNFBpghIpKglAt0hDidIlIo4QpkMxkyNSMRMVl2MLRxktajTqTabnphkpFbHcDGkaoKTAD2NW19Y4sHiIBx65m0jGJM1dvvz5r3Dg2DHOn79Gq9ej5Qfs1ppUy2Xuv/sktpaScS10x8IxTarTUwT9kPbuLgmS0alZMoUK60urnL9ygenqJPVOk+fPLrEwP0G/12Z2LM9IsUgUBVTHxlg8OEXt1h3sjEW2OsrZZ17gdjPmu9//NFYW/r+/9Un+5I0VhAQ34zJStPjI46c4dfgQVi4DugZxRKo0EDph7HPtwmUuXllmtRWy2ugRBRFxmuJZFlGUEKgIWxv+D3Shg0pA09ANB83USaMEU9876wpBFAWkaUwaSnTDRhEhE0llskTJLZEOAu49Pcfp49Og62hBQE8Z/Kvf+SJSg5JbZGpmlLeuraBpAboyuffEIj/9I0+SJilnz16h22xz/70LlKaPUswUScwIITSef+ZVfvO3PwOaRpwopEwxdA3QUUJi6RbSMCi4JsVSjqzj8j0ffYROO+C1sxd4+8Id2r2YVAhSEiwdpGaQJJIkirEsE3SFDA3uPzXBX/3p70UGEfnRUaSwae/WyGY8TM9Ftw1UGDFodVhfWeHZF9/mwQfPMDWR48KFm6AEhj0Mg72zusvqVodmo8Gd7R4KjVzOIQoFpg1+r4eSCbqmSBDYlksQ+limjSId5l1gMF0tc+pQlZyhMzU3Rr4ywrHjxwn6PoYNuplBpimabrCzuUUc9LENg2y+QD8I6LRbWJoiHPQRpoOTK2CaNjKI8Ns9ChNjKFNgWBorly7z23/4ZbIG7DR9nji1wFcvrVNvBQghyVgwNV7m/tNzzM7OcuzuB5BxFykcWptblGeqfPXzf8qr5+8QhQOeuPsMqexx+PhR5g8fJ5UKZIDQLIJBHz/o0W40uXX1Jne2mszPzjNacimXK2QqZdxCEfpd+t0u5ZEyv/6vfoeby8ugFE/ffZiZ6VE+8YXzrO90SZIYKSGJEnRDQzM1lIzJ2VniMEZpMabjkc+WUFISporOoItKUyzDZXG6zFMPHiTjZCkUcwgBURIzOj7O+PgE/iAkGLQZHRnBcjK8+OKrXL5wge/+6HsoTswQd7p8+tOf4XefuUIYgVIRuqZjGgZCM5AINCVxbZNy0ePuY3MsVPOMjRYolirUGk1mFuYxHQ/LtklThe1mkKlAxT6xTFCaQtd00jCiXW8Sdhr0eh2ErlEo5LEsE2EbBK0OQtNxXI9ON2Vn6w5Xbu3w2vllZidzPPXISZbXdqg1QxxLMDszjtAFMzMLzC7M4bkOfq+P1MHxCqAgjCKSJEEIAUqi4oA4TjBNE5D0Oh0c1yENo73P+xShabiOS71WI5NxsWyHRAkMw0ahgdCI43ioVO+dc8IgQKYJSZqSpEP4A4FhGEgpcRwb27aQUuK67lB11nTiJCHdy815p1luqDprWLYDKBDDBjpNM9A0A5mmRHE4DGyWapg1kw7zXDRNe9dKI8TQ6qIbJqg9GEa9exwpFUKod9vDhrCroZRAqXTvvZm++5w0TR/m6OzBs9gL0h4q2e+04oUYmoamGYRJglCC+s4Wri1Jox6ebdPrDJCpQiho9n3euHQF0zQRaUy5mEdTOp2wz8LkGNdubRIqODhb4fv/xj/f3/H3bTD7/LTPT/v8tM9P+/y0z0/7/PSXj5++WTv+/kvP/o6//7rmm77jz9DASrps3TrHiSOnuffMHJ2dBl959SKxSoljSRrHQ1VAM7AMDSXivQBQA38QDbduy5TRkgFJzOG5KaaqIdeXthGaJJuxiFVImmoM/B5poqGMGEPTGR8p4ZkGbT+CNGGqMsp212fp5UugKabH8khb0Ol2qI5UmJgYQQnB2laLMHHRTIN+Z4CbdQj2qsZfe+V1jh6Z5dixR/ATePH1t0jDiEp2aHcxrTKmrSNMQdALGJmYoDI1yTN//GVWl3cYnxgllLC+1ePmnSsUCxYf/+C9rO82eebqderbLT7y/iphEDE5MYoRS547e56llTrHFiY4cHCMkWCXzY07HL77FPOLc+SvNkg0GC+6fM/7H+LkoQmCQYTSwdAkGysbbLeamJbNsVN38+Cjj6PMDNc+/zyRn6AAXSkCPyCVcghLyXBbtAQQGhpDhVfGoAkNSYKUKVLqw7rzVJEogWekZAs55qYnmK+OcPbKTZ780N2cmV/gzZde5N5H7+Xa9gaf/JPLtPyQajHLocUyJ4+M0et3uL7c5JG7p5goKdrbDUzbwSKmUs5i6C7NnTvo5TmylQqaBfm8i6mbmJbO6FSOMIbd3QYxikqxxEN3H+I/fuENtCRlY6dFLu/S/q1P88Rj9/Ld3/Vejh+9xdZuh7NvXaHZ9okGPkIXhAmUCxkqo2WW7mwQpQFXl9b5X/6XL+NYgsXFacaqk+iaopAvD9v9ejoZx+XZ515hcnIUqRncWNqgWD5KdWKMWr3B6naHesOn0R2Q8wxOHpnkxDGXkZEcRmpQb3UZm63wytlrXLmyjuFIonaHVj/CsiwQEboQCM1CMwxWN4eNi4emChw6eohiNkujVaNcngQh6Nc3sOw8uFAZrbC+0mdnc53azi6ZfAHPtofhtNkSYRzTb7cxTJNCscjWbo+dmx0u3V7HFYL7zszzsz/xo+zsrnP92h3cjMtstUuoKYwgAULiVPDia1ewNYPFY0287Dh+2MGwdK68cZl7Tx3jsacf58q5s0hlcONOnWK+gHBcBrVdTA1iOQyVF7pJNlvC8QqEb11ha3OTOLRp1tvMp5JsLovllbC9PFES8rM/+UNcvXaVW5dvcuHWLUZHCtx/bIqtxjUiJUhlAvqehUAKUAY9v4tAw9AtQNHsNLAsh53dGkK3KOczTE+OceL4IuVyAV2BTFIc1yaTddCR1Hd3qU6M49iC2u4upXLKvfecYGFujDRMaG1uUpyYY2Ug6PQjCpk8sTSQShGlKaQxpqExUi5yeK7MI/ccp+h6bG2sUq83sLwMxWKJ2E8w9BQMia7paOgIUyclwpAQRyEoDcNwqIxNIaZnadfWaG/egThGmhmSzoA7K6scPX6cWq1Bf+ATxgGtIKAW9PF6Dq+dX2Fzt0aEga1r7HRC2j2f2Ykd3pNGzM3PYlg2uiZIogFC6Li2S2KkJGlCmiYIw8bQhlksSqVk8sWh6pqxQEoIQ5IoxO/30XRBMAiIwwTL8Wg0a7Q7PXTdIIpjev0ehWKRbC6H5zrotoWuDwsO0lQSJQkylaRJShLHoIaWksFggGaY6LqO4ziYpouSQziNoog0SfeAMkRoCtPSh+CNQioJYmiDMQydNIn3bCNqz54yVJj1vQt4KSUkybBpb0/Y1nWNOB622OmaQDf0Pwu2Ru5B8DsAPTxnKqX21Gy5p67vKeJqTx0XgiRN0XSTFEWqGIK2UFSnJlCpIgxC0iTEzJjDzCI/wDUNHjxxlO1Wg0w2h60Z1PtdLBQJiiMH5xnEIdvbdfbn22P2+Wmfn/b5aZ+f9vlpn5/2+Wmfn/5rmddee+3aX/Rz2J9v/nzdC3/f/4EHGPRa1NY2MKI63tRRfuB7nubogVnevLxEyw9xXZuJkSIGEjfjsrpZZ229RbfXZXQkw9TYGCP5PKWKxY0ry9x7/ACDrk+v1uTG7ZieCkjSmCjWiKVGwbb5zqcOc2srYHxkjHIAVHuvAADrAUlEQVTRojo+zsrWDm9cXCUJU3QrJWOaHJyYQMNkfaeFUDA+Pk693WVmfpwzpTFcx8a2HSwni5EZ5Z5HnuDi+UsU88OA14xjcv+RecYnZ2i0d2k0GzQba8RxzPEjh7ELBXTNRAU+9z1wkptX7/Dci29SC2MKbgbTEuRzDr1uymtv3mJyvIIWRvT6PiPVHJ1Wja5u0QgUV3d6fNcHFjl2apHRSo1ufQMbjUc++CSNWoeN1oAg6FC2JX6/S65axUgUd27d5s3r69Q6XR5/4CSGliI0nUceu5fyRIl//W8+y9JOB6FJZJKiC+fd3AkdOVRGjSHA6iiEGn54pzJCCokmDGQcYWoJuqkztTDDQydneeLJe3DcAjNfLXLw8EEKxSxPfeBRfuf3vsjrN7aJYx3PVCiRcP7KDbq1YQ39oUmXH/rIU+zubHL5yk00PWVqfBovX+L27SW6PcX4RIvK5Ay2KZiamuah+44xW81iOy5//OIVQpHD1gUL06M8dM8Cn/3CK7QHCmEY+H0fMVImX6qQphpplPLAmRM8+ci9rKzcQdMMUqVz4+Y1ZqcmmJiY5vrN23zh2bcQIqXRaDI2MUqlPErot8gVR1jbXGWkXKHfa1IpZRmbGkW3NYI4oNttsrO1CbGkWixyfXmL5Xqd7dUGJ49Xkcrl0GSVB564h/NvXCCX15iaHKHyWJZHTiwyPlni+p11Ll+9zdUbm/T9AMfLIAWkfoRmJtQ6XaQm8L/yJh//6KM4uRzN9Q3MfAbLK2DaHmmqMLSE6ZlZbrSb+P0BW5vb5IpFMhmPQrGIjBW9Ro+B77Nh7bK2vUk3SHjm5WtYymBtdYvxiSqNVoP77zqFbUrmZ2Z4+c1LHDs8y25zwNLtG7RrigtXrmFlNKanjjI5NYZlpiSdFuFIAREETFXHaAwinv7g4+THphjs7OBmc2gqRPRTTNtAM20GWzsUK3nuufc4QRghwgG7tTaSFKFZJKREkU+vsYntVZiemybvDfNYev2Yla027XqPFNAsHduwMHWdNEkQGKTvhAwnEiWHGUy9fhN0DaVpdPtdlm7foJITjDjjDIKQXC6P5zpUqyOkSQ+Uhut56KQ4rgEiIYpSkiQl62XoR12UTPhrP/XjrK78A5a3u9imha4pxkcnKXg2kyM57jp1gIw1zKnJVQr0gg6p30fFCe1BC5VCnMaYgYHtOCgkuuUhNAeRhlhComSKFBKh68hUMFqdxzBy+J1tGvU1iuVRpmYW2Vxd5fc++zz33XMCUxOcWBin1Rmwsdvl4tVVogQiJBrDC1sLg42NXVqdOh9++jFm5mbJZCw03SYIB5g5Hcsw0TWdRIc4emdDi0YSpgAopSGEjmZqoBtYnksaBiRJgukYxFFEr9MEBJVihmajgWfbVMoTCM0gm8uRJDFCQJyEOI6NYZjohkmapiSJxPd9kigatswpRRKFCNsmDHxMy9wDQ/VucLWUQ4BUqUQkMLSSpFiWPWyzS1MMQ0c3LAwB0tCJoxhgL7Q6fRcuFSDlUFV+B2bTRL2rWpMIpJLvBmKDtgfDw/OltmeZARBCkKbDXJ53FPJ31OwoiojjBKEJzOG2L1KpUEJDFwLHdRHCI0oKeGVFGHSIBwNIIiQpod9DGRqOYeLlChQdh51mi+ZgQCnn/R8GhP355sw+P+3z0z4/7fPTPj/t8xPs89M+P+3P/vzFzddt9d298PsqHHTYWlmn4/tUKmPcurlOs9NianyMrKsj4wHNToduZBDHinYvYLvZQ2hDhfrJh05yYG4KK5NFKcGgtUOnOeD6zavc3umyU2/RaQfUO21CafLAXfO85645vnpuidsbA7pRwPzECEpZrO3UUEpgWSaVkkfkJ2Rdi6NzLpmMywuvXMd0snhmyHd/x8MUcyUy2QLZagXD8BBIDMugV28RxwlShmjE5MsjdJsdov6A7Y0tdrca9BOfQ8ePEEWSV89eoNboE8gu2VwOTQkWShnuvu8EQWoQ+DETBybwEFy5skSzM8DVU6qVHH4vYmVtlRfevsb7H7qfR9/zEH4QYGsamqWTBIK+3yVOQnY2duj4AWkgUUJw485twlRjqlxESkWiQS5bIJfR8bJZTp48yeryLX77j17g4pUlutFwq7mWKoRu4pk6GXt4kuwOBoBGFAeATSpjlCZJQ8mJQ1P8+I99lE6zTac9oNlq0OlEfPg7nkToCiPRyZSyCFuxtbKGmynwx1/4Cn/8pfM4rsb3vOcBJqZH+JMvP8sTdx3hnvuO8eK5y5y/dIMH7znOyVMnwLBp1+oYic7a1grV0SJRHLK60+O5Vy8zXXR48rH7efXSHRqtHtsbq5w8PM9TT57i1z7xDIMgphtGTBVdvuc7n+LU8RNomkYYJSgJMo3IZVykoREMeghN5+03L3Pw4CG6nR10TWfu0CH8OERIQbfVw3JsPMclUgmem0HIFCtjkc141Nc2OHfuTXI5B4mJYzmsbjb43HPnQUkMJagUY2zL5v5ji7zvo++j3fA59/oFPM9ANwxGq1UKpTxXzr7FaCWDlSvwG7/zGW4stRkr5RgfzbJSbxHHBocOTLK+sYqmu5gazFbyjI5led97nsZxHcoj4/iDHoapsbO9SW1jg7Dnc2tlg9WdOju1AbHU2Wq0cByTtN/lzOFDrO3ucmVzl0E/4djCOA+emeX4kePYns3s2BRhmnDu3GtMlIuEoc/oaIHVzSabW7scmKqSipTFhQOsbm6xsFAlW5hm0NoFdExDYXhZnFKZr3zmizRrO3z4ox/CdjOE/R52scigUWPgd7h1aYkTDz2CSCISKXAKuaElKUyp1zdZu3qdu97zNCIx6TR2MC2Dm7du8tXnX2FuZoal1V2Wd7rcvLO1ZwUYgoVMh21ummEgUcRRRBLt5fm4LqeOzvKe996PrSlsNFKl8DyXUqmE7/vDzC0UlmWSzxfI5vKESUS/2yf0I4SpkzENLMfBcB3W1uq8feE67U6XSsFjYryCEoAwyToZXNvCsAWSCFPoqFQhSGk36jSbbSzbZWJqHMu2MV0XoVuYlodjW8OmuNBHpgkIMAyLVIAwPfQE2pu32d28iZvJs1Lr8NnPPc9dR8dIlcWbN3dotPsM+iEIDcMQKJWgCROh61iGzfz8JFNjWUYyNqVygan5BaYnJkhlSJJGGIaFY+dIpECqlDiOEYBK5bs2Fg2NBIluDmHONnSiICBOI9IoIglDms0mpqWRhCF+rz+8uMoXKZTKRGmKaRhoYhgiraTC87JESYLpOMNcmjgZ2pKShJRhfk2aphj6UJFWgOd5SIa7FzTdJHw3/0ZimuYQGIWOYQ4V7yiK3oVHQ9eQ6VCdl1ISBj5JIjH3Hj9VCsPQ9wB2aDsZnjIV2p69RakhoL4DvULwbsOdEMO2vHesLQBKiaFSbmgYug4piOESA0IXpHGCrhukQqHEcFeFPrx0QEowpESzTeI0Ieh1aNd3SAYtSsUcO60uSZSQsR2CwOeDP/OP9q2+3wazz0/7/LTPT/v8tM9P+/y0z0/wl42f/mu1+u7Pf13zTbf6Bt0BL7x6jRfOXua+4+OMjU1x6q5jLN+4wfhEGZTgzo0Gg0Bye3Wb9VqDnWbITr1NHIfYpkZtZ4cf+tjDZByX8dk5cuUCumkQX4EjC9N8/KPvY+AL6vUdun6MZqTUm10WZiYpFALubDepdQNMKTkwlaeYz7KxUUMkPqHf5fEzh1BJwtVbNbY6faqWzdxIlpzj0W/V0JBUxsaJ4wFCs4niFGGbmJaNlxkj7LXoDUKEYRJEAQk+oRXyzKvXePaN60yP5QgiySAymRsrYes2B+ar6FrI7vYmmrIRxQKvvHyFc2ffRjcsTh+Z5sCxRTqDiD89e4leq4GmS9qDPu2dLcI4wB6dYHdtg1hCsVDELZUoVidp1rtcfPNtWq02UWSQphEbO5s4tsvN9Q6b9fPoms1oIcudO5v0woQHzsxx16ExPvunF+nFEbahcLwssxPjHJgZ4eD8JGGc4Dh5VtbXWF3fYXV1g0q1wki5wkw1i6lSLM2gkHMYrR5nvFpmaqqCH4fEfoSSMTLROXHqburrtzm6OMNn9XNkXIupSZsDc6O07znMzY0uV/7oBTa3ugwCRdhL+eqXX6RQLPD4048y6DTJDzyqY2O0a03W1pY4cWyekwcneOGlC1gFlwfvO8yFCzr5nMvla5u0fYlrZDG0LmFs8cZrl1kYLWF6LoMEEJKRyjiZQp5uq0kchZia4MCBaVwHdjcDNMfg0tlzrK5vsTA7ibJc5hdnAYkmJbptoGPj2RniJKJVazBeKTI+VUVKwbm3r/D5Z96g0R9AKtCFYn58jN16B9vUIdHZ3t7l6tIKc5Mj9IKQ516/RrPmc+ZolrHJE0xMT/Hf/eQP89abVxgZybO5XSO5ssL1tSbPv34JVxPoeg/Py6EjmJupEvXaaFFIXCyimQZRHDIxNU3UC9jprrJda7O01mO72WMQhQhd0Ot2qZYLXF5eJvATdCkZLxdwLYOdnTrvfzpPJpdDyJhufZfv/MiHeO75V7h2a5WFWMfzciweqlBvdbA1yY2VTbqtNqPFMqWKjjLA8bLopk27PcB0Umbmp0AqdrdqrK1fJlvKMjMtcUybfHGE2bkIgxjNLRD0utx4+zKuazHoNlk4cJjsyDjbtzZp9mtYps301BQTk9N84L2PIsMuhUIO/eYOt1e3hlYHTZBIiYp00jgkjBNSAZrS0EydI4uT3HdykVNHD1IqF0GlWE6WJAlBKRzXIZMbNr5JLWXQ6RH0u2hCozg2hsLGMnqksRpaOIKItDvAUCnH5qsksoofBISDCNPQGR0rMjJRHWY+BTFRZCJQSBViGDZuoYRuOqyuraPvmLi2je045IoFVBIhExth2pimhRAGKk0Jo4QkCbGNAClsihNzZMsldlfvoCcxT9xziNs7dc7f3KTV7iCwUJpAiZREgo5AiBSlJH4Qcv16l7x1hIPT05y/dpVW18fWoVAq4jpZUqmI4z3wNe3hhaEf7AUvayg5tIDoAlQcI5Ukkga65aILF2WnkEmx3SyDQQ8jq+E6HQaDAe1mnTiOKZUrGLqO3APYdrtNkkiyufzwNtNAMmxz0zRBfzAYtsEJjSgMUAqymQxRGGKYJkLXEEhs20TXNaSUWJY1VItT9edU42FGTUKUJqRxjKZrmIaBmckShhG+7xOGwRAsHXto0yFGvZNto2vYtvOuKi1Tie8PsBwHGLbf6e+q1kObilLsHV9gmAZIhUolcRJjmMMQaxKFJoY2mOEdFIZuoJQ2lNF1SWIYCDVs+suVKuQKI4RxhApalLQMjZ018sUceaPwjfLD/nyTZ5+f9vlpn5/2+Wmfn/b5aZ+f9vlpf/bnL3K+7oW/2uY6rUaDEwcrFG0bS9co5zNE4xM4jsHa8hq9pMu5GztcX6oRpT6DUCNJYnRdIIXG8kaTl169RMG1+VC5ShQMCKMEr1yk2QnZ2W3jRyFZx2F6bgLDMTGlyY0b13n+rVdZrwfcfaTCA0fnsXRJJpPlkxt18rbBqfsXUFHKK5dW2G34JKki9X1cLYdC0hr4rO0usdNsceLUcXRLYWouSRLRqu2S5ItYjke37WObFm6uwojt4RW6fIdWJiEhTRLSKKBY8khiwXg1x+hIlRdfu8Dlm6tcX96iH/UYdANiqSF0xYVrd6g+f5V+FHBsyuPwTJ5aU1EpOaxvrJDNFkBCq9EgVx4dbsd2DHKFHF6mQBoPUDJhd7fJ+tomk5PjLN25g9cYAAZ+nHB7fZPdRpvEEJxYHGdhdoT5qXGqYy7j5Tx+6nDjzjo7zQ6WIZiemGRsYoTjJw7hZR063S7dRockjrEsbahu6SalUgVd18hkPBJ0hG6jG3tqn2MSByFJIjl8+CAjeRffD/i9z7/CXPkGqW1z/dYOSRrjORpHZyqsbde4vtkkjtZ449o695w5QEZYrKy36LZrlIqjjE1WuLba4sXLW+iew9kbPcqejbChapk88eBpnn3xPJqmE2sptzfrXLy+xOUb6xTyNieOTJJ1bZych+UYOLFLOPBp1hosNRvkiqPkMiVUtk+ukCOMU+IkIu75bPa2WZg7SBJIvEoeTdMw7Sy663LupVdZ7PtYpsMXnrtArZfQ70RolsZE0eSxR+7lj7/4FYo5l9WtXX77D76AP4g5c3iSla06r751lVTpBL7O3OQYL795jfX1FicOTBDKPBvr2zxxep6nHjnG1St32GjE3FxeZ6Kgceb4BLo24PVzZzmyeIDq7AyDThPLyRL5Eb0g5sW3b3LxzgY79QQpY0gUYRjiGoJIxphKQzd1imYGE0kQCta2e1x+4wpHD88TGQaGabJ6c5lDi4uQSK7cuM3E2AgaBoMw5s3bKxj2EBRSw6MWKVxLI2ulhFHE//xvf4e56UlcT6c6Msnq6hZbrV30Wh3PEHjZDOtbdWampql3Ooiky52bS4zPjVMul6mOjOIHEc3aDoahESchvVaTjOUwiCNKI6P0OhnS5jp3H1sgn7FZ22rS6XRpd32Wd3ZxnDwqCVBxTMYtUqjkeOrxuzi1MIkSOo1ajVQGTM8uImWM5zmkMkXFCt2yUKkcNlemBoNeD+Ha5PNVVC5LY3cb17CJVIxAw7ZMPM9ESxJurfd56/IVTh6ZxTIKeJaJ6WZIcwIZR3Q7bZSlI/fa1rLZHKXRUUglvW6b+u4WvU6D8alZVCIxLIlUCsOyUZqBSEETNlKmKBkS+EPVtXLoKPbIOF/+4vM888pNUsPBNhySKEZDIMQwqDmMY1zHgVQilCBNDV49fwNpWBQ8D0MDUx82GyZJimU772bASLnXAGdoKJmi6ZDKdJjFstfYptJkqPcnYBgmSoBmGtjCw3JdpJTYmRy5JCIY9BECOu0WBVFEaEM91nFdLNsdQqimEafxsBVO19E1DT3nsb0zoN3uDtXkJMUfDDBME8tx0A0d27awLBvT0NF1+91AaDSFrmmAePc1gcIydFrdDhLI5XIkSYpumXjG0E6TJglBENDptKnt7nL06FGE0EgTiTLVHiCnBJFPv9fDtEwMwySVKalSoEDT37GmDLNplFLomgBN7NlnDJQcBmCzp8IjxPC2vdDtd9RxQwyPl6bDXQOJplBKDJV0t0DOyuDliqCSvfa7/fl2mH1+2uenfX7a56d9ftrnp31+2uen/dmfv8j5uhf+HNfgySfuRoUBpm6Tz+bpdQOyhQz97i4pgrMXa5y7voaJRpQo0jhBSUWUxhgpNPyAl69tU8xV2Pi9ZxgpZ7mzVidUKVGUcu3ONjLxefrB0xxenAPTRJgaDz54F1vbPb7w3FnOzBUZ9Nps+32OzUyhiZDF2TwHJvKcvdDh1mYXE5NMxmJubpR+kHLjzi6dRouFxSluLy1x5PAhXDdDq16j3dhFKEUaDtio7TA+PoGUCtNyoasw0oST95zCMhSb2zv80Ree59IXN3Bdj8XJMu2wz9tXt0BqKD1GSyOktBEyJAoCmnFMolLed98B5qcKWIZNrdlmpFxia22D7Y0WufwYnV5AquqI0iiJAfmsIpQh2eIY1UqFjLeK47h0ux1OnTjOgcOKV9+4SixTCrkMo6OjhIOISsmjVMpQr0m6QczSxS0aHR9Di7G9Ko7rkdFA+k00kcXQC2RzBjnPxR+0caws3W4bTe+TL3h7TU/uMD/DNBh0dom7Pn69h1EqkCsUyeuS9z98nC8+e5F6o0/cSggMnVSm6Bj0/JQgTXjtyjpaJMAyqXW3uHVnE1PP8PD9B4mVxtmL1zhYr3Jz1Wd0ukw2k2Or1kMGbUoZi/rOBmeOH2D6o/fxmS+cx9ATbFPjytIapWKGomliY3D+lbMcOt5iZvEY/biJ3+2QSJ9eL+VzX3mByqhFEktmZycxNcljD56g1WzTaDTY3Fzj6MwcGfMQYdGjd2uDsalx3vvh9/Pal75MaJpkbcHPfM9dvPL2Oktrm/zExx5laekm9VaLc1eXuPPcm1xZqnF6fpyMKdhuDjN7Ei1gZRd+85PPoYRJsZzn3LUl7jxzdrjVXngEskF9o8V//wt/hfrONu1ek/OvXWV29AAIaPX7tNs9PMdGKYmVy3NtbZMvvXxt2FqYxPhpClGE0ATCyRJEgAxQmKSawLV1LD2h1+/TGihU4pOaOeqtXaxYYefKHD19iAOHF7n49kWKBY9CqcTG7hbLGzWmxkZ57tU3MYSGgeAj3/Eki7NjPP7Y/Xz+Cy/Qj0Oy7hJTE6MUy2XuO3aAdsvHdktkszl63T69wKdSyvPwU0/QrjeI+yGWZ1IeG+HmksdXn3uV8ckShxfm6HV3GZ9bRCmd7HiBsdEKbrbAww/fS5QqpOwj4pivvvIWv/LrnyIyTAoZh6wt6bd3+I9/9EVeH8nx/ve+B90IqVbLxIkijVPCMKbgeShNI5E+Mk7QNQ2pW9iuRnd7h36jS2F0jEKxgkohUk0cW0MoAxGGpDJmerTMatHl5q1bDAYRqXQYGatg2g5CQCaXRaYJYRBg2kMbhqENM2yqmQmq42PUa3U21jcwdMHoaIVGPaZQHsVyPZIwxHFdUrShJWNPDVVxhOvl+PiP/AAnH3yQX/vn/46NjR2yGQ/BMJgeAaZmIONhppUUoGTA3PQoEyMuB2bHyDgWvh+QyeXRDYM4iRGahq4baNqwVc22TaJIkkQJiYyxLYdEgu3Yw6a4NBlmXqUphmkQBAGaJjD38lhMewiwpu2hVApSkqYSXQxDnh3Hfvd46BqkoIRi0GtjGwaWZTNRHWVsZIyd5i6DfkAYJkRpjB/EyDRBItF1Hdd1cV0Xx3EwDANNgKELlIRU7tltNI1GpwMMoVVow9BzlaqhVSRNsV0H07HJFvJMTE8RhRE6vGuBieMYIQSemyHrZkAbNlVqSkPXNJI4If1zNhX1ZyHV75yE91r4hn+7Ye7NO41679xHKfXu7V97n3dDsYUatoRqGkroKKWwTfP/GB3szzdt9vlpn5/2+Wmfn/b5aZ+f9vlpn5/2Z3/+Iufrzvg7/8m/p7zyGFos0XMegggVK4RmMOi02dne5k+ee5M3lmqkqWS8kuXEoVkKuRJBGrF6Z4uR8SptPySJI4QK2dpo4rjesHksjshmshgi4Tvec5SH77qbTLaClVfopke71ebamxdYW17h5StbFDI67W7EeqPP/HgBz8nQ6PjMzuVZrXW5cHmDxZlJnrzvMKMjBYrFAuVimSSVVColcrks165cxXFMSqUsly7f5E++cg7LcTm0OMHESB7XdrBci3KpgGbovPrKeRw3x8ruNkGosIXg4u1NhGUh0pStWpusbWDZDsWcwfzcKFu7fUwh+dj7HsX1LLKVMmmcUq1U2Fi/zeadJXbqfVrtNpVKmWyhxO2NLe47fZL5uTmUrpMEPp3mDrs7derNDp4pOHD0CMsbO1y+ukG7PWBmrsLsVJnXX19GmCkjIy6e5ZLN5VnfaUEUMz0xQrmcJZfNUSyXqFTySAmpBE0l9Ps9vGJ5GLIgEwzdIgoCDMtCmDa6aSHDLu1mg/VbK0wfnMNzPDq1DV56+Q2u3Fzn/e+9i3SgeO3KLV547dZQ5bdsZCKx9GFrkkiHiQxZRwNdR2KBBjLRMTSFpjsYhkA3YnbbIe+5a4JTsxPols361iYPP3wfK6sbfPXFK6w12kxOlMg5WUzb5Mj8FJMTBfLZHNWRAtev3yAOI/ww4KtvrnBxaRNTJcSpQKmYRw9PUapk+fTzb0BssLgwzoHpKoNewL1P3s3V16/w/vc/wsKpMyydf4Pnv/Ic9XqbfMYiMW2mJqscnhvnS8++zqWlFs1eSBCHFD2bqVGH8WqZPz27gmXaxEmMicR0Xaoll6mpMc5fXUUlgl4occ2EIAk5eWCR/8f/7Ufpd3xqOzXK1TFazW22NrdZXFzAHZ2ksb6MrplUJyaHF42vnuVzXzrL7e0mrXab0XIeLZaYjkGn18EUBrGSaDrkMiXSFBwr4f/6Vz+MlkpuXF+lUCyTz2eJwgjbtckVKkOVt7XN4qGDnH/jCheuXOP4kTm2N5pstDpcvbnC/cdmOTg3yol77ub69RtcuLjCK69dIEwVUigWpsp8+L2PoiT0/YD56SmKlTKN+i7CsBmrjuBkPZrbm3hZjyCA6zevsXRziYfvPY3fjZg8ME2r2SNRIXoq2Km3cG2TfLnI1HQVXTcwchVef+EFPvMnr/PWzRUytkkSRdi2je/30BLJ448c45H77yeJQ04cPUYQJ9gOGIaLaWl0Wh2y2SxBFCOTAB2FY3hIHUw3i7AcNDRSoRBSYVsGtUaNfm2bq9c3eP6184yOllmYHuXw4UUmp2fwclmiPWVSKEjiCKVSgoE/zCoRAkPXMU2DwA/otDu47jBjxLQsdNMgjFIM08TL5EBomOawec8UCqGZJEmKYxv0owHPPPcqX3zmLNs7DdI0HSq17wCP0ChkbB686yhPPXIP2YzNwA8wbAvHc4mTBC+bJZvPo8QwhDqVYJoWcRyjlESood0iESZ+t4OlgUxiDMsmURrpnh1DaNoeaAnEULxF04eqPUqRJDFJHIFKMXQwbRvH8VDomLZFqoa2EhXHhIMuMk0BDdvNgCaQSiNK5RBeg4Ao9Ictb3tgqAmxB+8JjmMNg6RNC9t1EAiCMByq61JhmiapHDbiKRRCDJViUGi6TpIM2/FkmpKm8RAsGarI7+TQoIYKs5QS3TDe/Ztrmka6l1nztRAKQ+uKYQwBdQimQ2uOlPLdXJt3Mm6GzXZiD1iToZKv66SpQiYKzRB7z0Uh9OHugsP3f89+xt+3wezz0z4/7fPTPj/t89M+P+3z018+ftrP+Nuf/xLzTc/4E7pB5LeJGi2qpeNoehZJgKYbRJZLmKTcdeYwmDnKeY8jB8bIZ02ajRbFSoXjMxViFKbucejgLJrj0e61yTou16/cIk0HFLMO2zs7lEeKJEJHmRoJGjJOyRVLnLr7DLZn0ezHXL69zY3NNjKNOX9zQDbnMj9fQUNHlzpPPXSGo/NzHJgboTA6SrvbZrveZG5hDs22CVPJgaOHCSMf2zI4c+9dTMwe4uaNm4yPjZDNZBBoRGGf7Z0aGdfj1IljVKoV7k8krudhGYK3r63SaHYxLcWbV1YRQiITxdHFKWQaMVJIODA3gW7qWJkiruuRKRkkicbswjF0oROqDY6fOcXWVpONrR02NmKuuRuMjFVQGCRRQKEyxtj0PEmq6LRbpDJhYnIKz8vT73eJw2GD04GFKqZlYGga1dEyjXYboUL8VKfe7FKpZDFsCzfj0e10kZqJl83TrNVp7WySC0LGZ+YRmstgMAAEcRSioUjiiLjfJ1Ep0zPTZIsldCXYWN0kjiSnjs5y8tQpNlY2WP3yOdA17j55mIu3duilw8YqpRukRAgxDDCXKUgRQZpw5uAcoUxoNkOWtneZqGT56BP3cGAyw6XLS5w4c4SNTszvff5tiiM5tn1JkJjcXOkRJS0sXWNpfZcn7j3GvXdXEE6WRqvP3MIk/VqfXvPaMGsiFWRtm3uOjnP1zg4bF+4Q46BbsLXVo9boIdMQ00qYHJ8i57jE/T5TBw7zUK/H6p3rnLu4QqNXZyTj8dVnz3HyyAK9cIV4eZupcgnLdXBdwcWlNgYg1VBZUiom9vtsxDF31hskUqJbNkJKpBQ4lgco2q0enlfi8oXnGJtqkaYh8wsHGJ2a4Jmvvkja6XDvg/ei6wbIhHvvPcOJk4e5vnybz33mJZY2e7TSPnovIQ5SIlMfbvtHI44lpbyBoXRqtTbHjhzjS8++xUiQUCjmqHfbaG1JFHbJ5suUsjn8Vp3DB2eYWZwgHPTJmRaGpUj9MgcWpykXioStDnMTY8zMLDAyWuBPn32TMFHce3KBwwuTrK2tUB2t8vZb55CGg+MUiZIBja0c5dExJqYmaTR3KeRKuLaLbpj4UZ9mp81onMfJGJx/a5VLl5aQtkm93mZ8tMRHPvgI2YyD50uOHT7AoL3F/Scn+dLLl1laiYniAZopiBS89sYSb166TbVcpNONmZookitlKRc9gkGMZjsMQh/bdDFcmzfevsTW5i7ve8+j+K0mXt7DtLI4bo5ExaSaQaEwhpvxSK6tcvTgNEubu7x+xSdIh41yxbBCtlgA9Q5D7IUZ6zqaBFBESUoYxRimjpcvIBEUvBydVp3drS3y+QIyEMT9HoZhIhUoBLppkynksGybTj/Acxy+8wPv4e4zZ7hw8QpLS7cZ9PqYho7nOoxVKyzOTWLqEjejk6gEDEGUhMhejON5JHHAoDeEVcO00DD3cmAsNCBN4iHgGSleJkM0GCClotduoRnGECwZBjQr9WewZgiBJhVqL0raNC00TafVqhMFA3L5PIZhIzRBEsfohokmDJQuENowlyWJYwK/N1R3FdhuBs8bWoYGA4M0Toe2DSlJkwQA27aRMiFJhl8yHdqFBMMLBmEMYRM1tJII2APu4fNWSHRNoKTE0HWG1wHDMOwkSd/9j75jMRH6UK1+JxMnTVM0Qx/+z/dCsZMoRg3v8eeUb8uy95ru/uzUnKYJmqZ/DcDyNT8XGIZOJCNQoJBEYYxpGpjm1316359v8ezz0z4/7fPTPj/t89M+P+3z0z4//WWdbrerffzjH1948cUX8/1+X9vd3X3Ltm31v77tzJkzx3/2Z392+3/4H/6HnW/kOEKIez/xiU/c+rEf+7HWtWvXrKNHj5568cUXLz/yyCP+13P/f/bP/lnl7/7dvzvT7Xbf+kaO/+0+X/c7e2ykTHOQkB+x0aVkbbVGzx9Q63V49eWrLEwWODo3xmMnSwRhRNaQrN3ZQNMh49oEfsKrb7yBmx1ht7nFgYVDVMfHKZXKPPBYkTSOqK2tUHCzaLZFLl9E0wSWoSOljZaGiBQOn7qfTii4vuNz390j9DsdlteajJQy9JsRRsnk+z7wJKmm8FybfD5LmqSsrzRIE5/Z+WmK5RKdTos4CIZtWFL7/7H358GSZXd9L/pZa+0x58wzz3VOzWNXd1dXT5JaEwKhAWSEDWaQja8dxmH3I4iHCfAjHObZvuApHvCCFxgsYwMyumKSGklIiG61Wj1Wd3V1V3XNp6rOPOece95rvz/yVFtw8XVbEqBrn29EddTZJ8/OnVmnMz+5vuv3/ZLPFZjZVyRfMPF7HXrtOvlCnvHpYUxjhlRDt7mD197Ctops74RsbG+zvNEmVyzQ9UPytsH42Aimglq1wsjIIIaWWCplZ2OVJOhSX/fITU3gFhSpH5CmmvGpUYSwSDM4enCCo0dnCMOAP/rsUzx49h7Gx8fJF/tOlWWbSCnY2NzGsnKcvmeGxs42F1+9gmvlqU2b2Pkq41Pj5HI5Ai9i+M5NllfrOI6J6eSQ0qHV8XFshUFG3GtRKBQoFQ9w9cKrxL5HsTZMo9miWChgGAauEH1nTEN3u0kul4OOj04jcvki73nXo+zUt2jVe2htk2jJu88eZHZ6nIX1Fu1QE7EbuJqCVBG9VGEkCVGScv+Jad79niM8+cw1PvC2KW5tTPCuRw9RKRZYa7V45o1FXri5g5/EaA1xlO1mH4UorTGESZyZrO+0+C+ff47VxWX+/o/9MPc9eC9hp4WoaM4cn2DnXBM/g+OzJTpNj+XNFgrIG4KIlCT28GIT15FkMs9AyaIyMYofBkgzY+6+B1GGw1azyZ1Xmpx74w5nTkxz484tbq3VefsDc7SabV69vk3X90kiULYiSgIkEqFFv8Ur1ViGA1GE0tDo+ORtRa1ocWCqgiMEvu6S2jY7mxvcWdsiny/x1PMvsn9mgslDDzJ/7SonhsaJwgCZSsq1CR4YGGZ8aIyP/8dPgjmMkhFZkPL6/CqpUJw+OEs1J0h0jBAKpQTN1SWOHJxk/uoNrr3aAtvk1s0lpqemmF98jqHRYd759oeoDClGy6NEQcwOUKyUmZucwDLBzLuUh4fI0GxvNzg+N8NLL1xCGiYmJpEXMTUxiRaSyYlBXnptmY3NeRIEg4+douV1+T/+v/+BI/sneNfD9zE0VGJw6CxplDA0OEaj3cI2TI4dnOHEkTlu3LrFZn2Q9dUdvvL0C8zsm2B8YAdhS/Yfu4/Wyh0cAnqJR9FwCKKUs8f3c+LUYT792Sd5bX6dlv9lBosVRmo1Hnn4FIiE2vAYo0M1llfXOHBoiufOXWd99Q7333uU6X378TpNsCPSqI3pFkm13X/8ls3xE0fZWF9n9tAhCqaiVLBRtkESeHR3kt1WNIlpOxjKoFjYbV7bHZ3o9XrEcYrWGWmWEWaaXKFELldAJzGdVhOdxqzX6ximTaPZARS1gQqlSpHB4RHCWJKGIYO1Im97+H7e/c5H0akmiQKE7I9CeL0ukJLEKTpNyeVcMp2wsLhCtVpldGwUkWUEno9hpliuwDQMkihE7ja7CSHebBU0cjnS1MS1TWLPp9PYoVSpIJSJkIKMvnOdRBEYqm/kKonY3WxeLlVQ1QqdTodez8O0HIxU0draIl8sU8gXsHJFAq+NEoosTXfDq03SOCD2NaZjY5kGZi5HHMfEUYRh2CRxf3zGdYtvOu5ap8RRRIYkURLDNJFKgshI4rsfMLPdZrl+jowQ/SY5Y7fx0DCMPoybxpvOsk5TtE77LnKmQQik0c/fuTuukqZpfxeB6Adks/u9u89pf9xHvAnOjmMjhHoTbuG/jimlqSaO+1k1Ssl+cZ6QKEeRIYji5JuACHv6ZmiPn/b4aY+f9vhpj5+ae/y0x097/PQNamdnR33qU58qW5aVff/3f3/Tdd23Nrr5P6izZ88ePnHihPfxj3986Ztxvl/+5V8eOHfuXOGpp566MjIyktRqtfRf/+t/PfRnj507d+5KsVj8poQs7t+/P1pYWHhtbGzsm/oP+j3f8z37Wq2W+tKXvjT/zTzvX4be8sLfl168xguv3mRwYACnaNNutajkLESmOTI3xNnTswRBQFAfQOg2XhDgFEpEcUC+WMHKC+65936WVnd45ZWrVAxB2lqncOpe7FIBYRuUR0eoLywgpAYFidakXkwU9rh46QZXriySKhirlRipFim6BczBQfzeFvmqpBMkZHaRut+m2w6wJYyNjrLVbmM4isceeAghDZIkZqA6gN9p02o2afod7FwOMk3OsinZDh1hsL62QhZkDI8Pky+XKZQmWFtZ5rNPPM1KK+TA9BiVSp5r126wsdXkvlNHCJMEGQccmjlAoVgiDn0Mx6Xru/iej9QBCzc7vPj6LW7MLyJ1jCEy9s+OsLrRYXaihudlPPzwaR575F5UFnHn6gWm5/ZTqlVo1RsszC8xNjXL6HiNMAnYbjSx8wYDEzVa9W2i1gZqbhqhTKw8VKolMt9nbHwCnwyRaUyp0bEmEgInlyeTBqnWDE0foJSzCfweXqdLEsX90GrHZmx8HNO28NtdEJAvDWEXSpSOHCXUEUO2xfLSCn/8pRc4eWiQyZFxnnr+NfzIQxmaNBXoJEEIidYSoSWZmWI7BqNDVX7nsxch9uHQOD/8g++jU2/h2Dl+91c/T8vXlGWCTEHHKbaRUnBLDNSG6XUbtJsNRKaIyVBa8pWLCxz5oxd49LEHWL56g9W1FRqdTRzpcv/JIq1mSK5c5R9+/1E+8cSLtHshllCklkDGCR0vY35pk/HBEl/49OeZnp7k4KHDtJM1BmfHOdE7w/Z2TDP0+Or5O9xa7VLMwxvXtljc3KITpcRRimEKLCQCiYWFNjOUlZFlkiwVCKGJdUQ+L6nkinhxRMfvYLsum8vLdHbqyKLLex69j24UsnpnCxlmvHFthYNz09y++Bq5XIWN5ga25eBj8uUvv0KpWuSxU4c5/dADSAP+8Hd+B6cyicgSxiZr3Lm5TGOziZEJrswvEiYGDz/2GIYIUaZLJ0kwbYvjpw/xwrkrXPv132NucpATJ2Y5dPIk5ZEKIrY5cKLMjYuvsnnrOsQ9Jmf3MzE+Tau7xZGTM9y8tkycBTz90vMcnDuE57UpuDn+t499hDjy+E+feIJOq8XaVpuBSoXtnTovXbqGa1pcm1/l+LF9nDh+mtLgEGmU0q5vYxctjhw6xNlqmaU7y5gyRaMIWk0yP2B4Yho5Psvj/+hj/MZvP8XLb1znHacO8UPf/Rg5x+QdD5/k//2//0eu3lhmqdKmttlgudlhpGDxgXcpPv3SK7S6AVurq1y/eYPvfdc9dDeW6FRcasNTJDEgBGmYoGwggyTyOHD0JKMzE8TNHVrNFpnIUCJDoAk6bQQQJiHSMNGZgSZFSoN2x8exzb4bqhR510KmKcqQpBlgmGSZJFceQAjN8voW9c1VpmcOILOIZrPF5WvzpFKxf26aiaFB8uUyuVK5D26iv+PIkCBIKeTyWKbE73RpBR28AIrlMiOj/bDlMIhRu5kwYRQhlMC0bJQSJGmEkP2GtDDVWGb/PUBkGZnpYA1WyUddvG4XZQuQqp9DoxSmY5PujoJkaUqcpKjduJYsE7iuSxQl9LwWruvgug69TgslJVIZICw8r4VSijjREPv9sRcgiRJMyybbHRNxXZd0FzR9z8freVi2hWFYSAlRFAGCKAqJ47CfYyMVlm31x4fU1zbJZWTZ12TJCN78sKFUH8Sl7O9C6APo3QDpFEMZCCnfBN27jXg6ScmyrH8du2MrGRlpkmBZNsqQxFFMFAp0pjFN80+dQ0qFUtmugy1Jkv74CmiEBBAYpvomYcKevlHt8dMeP+3x0x4/7fHTHj/t8dMeP30j0lrz/ve/f/+5c+eKAI7j3Pybf/Nvtv4qryfdXUj+72l+ft7ev39/8MADDwT/V8fGx8e/aYt0hmEwPT39rbuK+1egt7zw9/Ibi1xf3+HK4iajJYujBwaZqJUo50wKBYd2q8vWdhMMk51WQBjElAo2g0MDJEgGhocoVypMjA6zMV4lXyrhVkpksp8vYNkFMh2SCIf6VhNpFlGmTRRHZGh6fkJ1eJA7i8tc7wW0Ol3aqcO4U+TMfbNMzdTYafRobjexUpiZGGF9a5tESo4ePsT4xBimqUAIfD9AR32AcvN5kiRka2mBjc0NDh09gVvI45TKjJiSTGQIqdnc3MDr9tjYbNDDYbvdwr+5ykbTpx1FlFyL51+7ScGCD73v7cSZ4M7KGi8++xLFUpmdRoe2F3BkX4Urtzb4/JMXeO/Dp5BScWBsgKnJAc5fXuf89RVElnH86DSHjx+g1WiTC3Nsr632w2wzwebaMu12i4IryA8MMzQySNzqojJNuVyDLKXTrHN1+TJCZTimhTIVYZpg5dz+C14Qk+kMy3EIw/7IkVKKkfFxdBIjTJuZUokgCElTTaFQIAp8kjiiOFSj3e6S6pgwzLBME6EVvUBz5dot5vZPYtsFFpY3SDBpNSN8LVFSIDJBmMboTJC3LCw3h5AZX37pOraUTI+WuX5zmenpW5BpklgwPV3h5Ok5DA1W0eL69Q2kpSm6Reamx5iZGqQbBMRRTNDzeOON60jDolYx2FhaIFcuMSQV9V7GgWmDibExivkms/vGue++U7iFIp/69NOs7jTJtIVhOET4pFlIvdPl/Fcv88F3PYLl5oiDNpWRKYamxnnHY/czOT3Byso6n/z009xZbXHlzhqJVOgsQ2aSNM7QIkUKQUKK1BkyMxFZRpJ6/TduaWIbBkIm6DSivt1ifXWJzzz5EluNNsdUjq2mj7YsHnvPWX7zN/+YVqo59/odhiouDxyb5LWbK0SpZKfu4YU+/4+//R52FpdZnb9OsTbE0PAE1VqZ2zfvcOnVOqeOHmDVcZC5CgMTOVptn51Gp9/WZSomJg9jiphDhw9x8sxZvviFr7K6uER1ZZOZfW2K+RGMQh6dJCwtbzB/c5PC0ChXXrnI7NHDVCfm+MB3mnTu3+HatVvcurXB1FjE/tlZ6vVtVhZuI4XgQ9/2KKblsLG1zdCDAyRJTBwmdNsd9k3V2Fpd5jpw+N5TCENQGxnD8zyKZZcwDBgcGQER43V9tFAsL64w1PNorK1yz4Nn+MHveRuZ9rhnbggtJUur24ztP8IHP/RtbPzWEyRCYmCwsd2gkBvl1//wq9xe3uTodI3X37jBw8cmmds3RKU2xNOffZJHv/3dVMdnERp02iMLTAzTRZiSJAxxbRedK+P6KULGeH5IlsUokaF1//dTKYMXzl9jaKhAzsnx5LOXOHl4iChK2W522b9visFajbGxYYS08Pw2AgvLVDz1ykUiL+CeQ5OILIJMYBdyVNJBTGWyvLjK6so2w0MVjp04Sq1cRitJmGSQKaQUSEuRiAyrVKFi9V3zJI5w3T6FJ2lMz+vhujkM0yQJIkgzhFII1c/ZMUwTR9gowyBJNVIZSA1JGIKyMNxCP4sniTANE53GpCm7LXYCJQ2k0R/w0CSkWYbWGa7rIGXcd3YDjZIGURgRRz3CMMA0FYapEEqQxglBGJJGITrr9cPYpYHturtjNibZbp5OJvrjL3Ec9cOkc24fLFHESUIchACkRoLpOn2g1Cmm7exm1ojdzJp+c9xdYEzTu6akBOSbbrPWYCgLQf9xsTuyc7dlTwhBtgv00HehtdZokZBlKb4X0Ot5FAoFcvn8rtue7YaEO6Rp2s8LEgAZUmZvnqMfWC3Q6V+ICbynr0N7/LTHT3v8tMdPe/y0x097/LTHT9+IfuEXfmHw7qIfQBzHfyE5zt/zPd+z79y5c4Vz584V/uN//I/DAFevXr1448YN+0Mf+tChT37ykzf+2T/7ZxPXr193f//3f//G7Oxs9Pjjj09euHCh4Pu+nJubC/75P//ny9/93d/dgf7uwXPnzhWgP4r7wAMPdAH+7LGXXnrp2sTExMmvHfXd3t5Wjz/++OQXvvCFSrfbVdPT0+HP/uzPLn//93//f3fB888b9f2t3/qt8k//9E9Pra+vW6dPn+7+4A/+4M7jjz++b2tr68Lg4GB692d/93d/t/QTP/ETU+vr69b999/f/c3f/M07MzMz8Y//+I+P/97v/d7A3esGeOKJJ65/8IMf7Hwz/w3+ovTWh9jDkLTTwjQMSq5LGodIKej5Ie1OQBgnrK5vURkepxdoioU8Q+MjGFIQRWk/Y8DMyBVLzOYL2KZFJjSdbkBGAlkPz+/S7gU4+SrScMhERi6fR5g2991rk4QJZ8+cRguIeiH5gkuaJaR+iGmajJTq3BFQb7VxSwWmpsc4dvQohUKJREMax/3KcsumvrODm89h2jZxAr0gwjALKMNAoun22lSqVWzHIotS2qstllZXmF/cROWLHN4/RRSG2EWHre0upYKFaZpInfA7n/8qhrLIIo9iTmDW24wN5pG2ZvHWJnHY5V2PHOH4gSEqeRvHMsnncnTiAD/LSCLNyxeu41iKidkZlGPSbjb7FeSZxnYtCnYOqfq5Co4ySfF4+rk7LG+3UHGGlTPwo4iBvMnUUJV904OEnkO+UEKlMf7udvEkjul02v1rFwaGkLiuRRB6GIaikHeIk4T6zha9rsfI8AhKmjh2jiiKyNIEYZkkaYY0Dab2zeA6OYTUnLj3AA9th3ziD59ifnmd0I+JM5OxwTwHpocoFEuIRDEzPYDt5NlZX+H0sSn+6LlL/MnzVynlbcanBrj32BzVapk0TvDTJoRFvDhhc6PHzsYOU8MFanmH4sQwhrSIez0GqjUqRRuvXef2whajM5MoW3Ly8CxJ2uXhB08jNcQZPHTmfrxuj1/5xNNkhiYiZXx4gOFSCWXkeN+7H2JkZBAiH9vOs72ywdTMKBNzs6SpwczMQX7s749z8fJ1Xr+8wheffoVAa/JODgCtU4RIkDJFyhw6MYiT/htt343TCK2p5ms4TpFKaYRnX76O72WcOX6YoVIFbZi8eH6eG4tr3FxcJV8qkbNDljZ2WN7apNNNmB0fYmqkgGWUqBgGzy81Wa+/wrve9SClUgXLccjMPAtrN9BZyszUON16FwxF3sn44tNXsF1N14/JMsHZE+OEieby/G1euXqbDz90nG/74HsIg5AkMUjDGMsyGBqZYHu7w9pGEx17zChNlsYMVAYYro2TGxnCcU3yeYNSqYhtKlaXlkmikOr4BKlUTM7tZ2CgSrfVRuoMe0Lga58ozahvtvG3m5h5C2fQxZEuygQVGySeptvuEEUehnQYHh4g7xqsRpqXnj3P2OQAo+UcA5UKYaeNTFKe/KMnqHc1H3jsGHcWt1le3GS7GfN6ENILPEQmuXhnmyCM+NB7jpFzczzz4nmWG13kcy/y7nc55KsDJEYOIw1JtSBNI0xbIREU8yWIYrIs7Iegx5rMgCTK0Dple6NBZiQsL25zaHaEStkk9FMy08SQioXlLc5fu02hUGB9q0ur4YFlkWUpYRhw38FZIl9TLdtsbTb47PMXaXkehyaGOHNslunJCSq1Qfywy9pKi4HhMZD9oOdUGCRpAvSDjoVpYxkWOonRaQxkyEy/2YgWRRE516Xb62KaZt+5Ns3+KIZhoDNQhkkcJySZBiWRSkDSz1vROiUTgkwLlMhI04Q4SpA2kPXb3xD9QGvTMdFJjFSSXM5BSEnPDwl8j0I+T6GQ2x3rMDCyrJ9joxRxFLG1tYXn+2SpwA/uxngIDENiKIVt9T+8K6WwbJtu16ZYLGI5FoZtIlS/QS6KY+I0RUgwpcTvebiuSxwnxFFEEIbk8nmU6n8IEEq9GRbdz5HZhdZdd/uuG33X3e672f3sG4RAmQZK9h8DgOO4uxk5UClXQPTHW/qAK3bb8vRuqHXfUb87SvO1f0xjr5HuW0p7/LTHT3v8tMdPe/y0x097/LTHT1+nbt++bf74j//4zF/Gff37f//vl27duuUcOXLE//mf//kV6O/Eu3Hjhg3wMz/zM5M/93M/t3zo0KFwcHAwuXXrlvUd3/EdrZ/7uZ9bcRwn+7Vf+7WB7/u+7zt48eLFSwcPHoyeeOKJmz/2Yz82efXqVffTn/70Tdu2M4A/79jXKk1T3vve9x7s9Xrq137t124fPnw4eO2111yl1Ne1Mnv16lXrb/2tv7X/R37kRzb/wT/4B1svvvhi7md+5mem/uztgiCQ//bf/tuRX//1X78tpeRjH/vY7D/6R/9o8jOf+cztf/pP/+n6tWvXnE6no37zN3/zNsDw8HD6f763b0295YW/d73jNO94x/2US1WKBRcv8CiWi7SbbdZWNhgcdjly+jSFfJlSpYTf81lcXMB2LQaHhrBth83VNUxTkS+U+o5Epul6KUpkeF2PTqfL1tYms/tnabTrCAFurkC+ZJBE/RaofEnR6nWxZczmRpcw7WEIg82NNYpOHrKIyfEBThw/jFSKwPMQgBb9bdWdZgvTdBgYGiAOI0SSki9WGJ2QhM0mrUaTrDZIKgxa9TpOvkar3SUzFPv27Wd4eJg4gZWNNbo9C6dnEXe6FB2TG3c2CcmwyDg6M8LUgTGa7SYHJyY4dXyGF1+5zouvXuE7Hj0IOkPk8uQtg1yhgkgjZgarEGUMjRiYMuDm/DydXoux0UlyKodhWDTbDSamDqCIUcUxrlx+nVeeu8KC36O+6lHvdRmu5PHrPjmjzKDpsLO9xdpag9XGy+RyDgenypx5+GEsq0icRJRyLlEQsLq6whvNJnGSYtku9585TRQEBEFAp9NjbXWdxnYDx7IoFosszd+iUCkTeT7Ktsi0Znb/AdIU4jjG8zzyAwV+6CPvwet6vHDhMkEsuPfYLK5t0WrtIBLJvffsR9o5/MOTDI8PEiSCP/r8OSaPTTKSt3Bth6Lr0k48Yl/gt/thw6Rt0tRkc2Md1xAsXPOYO3yEU6eOcuvmVcq144Rry9y+tUqxpFm+vciJb3+My1fWadU9ut1tRuZm8MOIQwfGeN/bDnPr1gLlgUHmFzeZrwdcW9rgxP4xThw5yL4DU8xfvYZjaAqOYm2zztbqMsLM88UnzzE2McgPfOzD3Hv/YZ569nWef+k1Ei0xTQNtGiRC4YgYmaWYUqKksdtAJTBcRQi0w5BnXr9BlEoqroNUBgNnq0zPTjGzbwIviHjpxdd44fU3WFttYypJsxWis5hbq21ura4zUXZoBUdoRZpmu4nj2Eh8dpZW6GxvcfX6HbzQo1ywMXRAzspRHp9gYsjlkQeP4HseT758HT9R/Off+kNeuXyHsQGTd777AdZWt/jyk0/xwQ+/n6ijcN2Mo8dOcuL+R2i1tlm+cZW4vg2lCplbRZguQ9MFxiZn0LvtYlG9yfCkYHVxkdWtLaanZvG6Po7lYlo5dJai8hY7F5aZu+c+esE8q6vLhAn0XrnKzL5BSsOjjI/vZ7V+hdrwCGarzoXnr3C7s0ohL1lcq7O8tshHSo/wXd/5Tq7fXOITT3yVYj7Hex67n1Yr5NrtRT783jPUchafffo1bqzuYIkak1MDBN0ez5+/iStMLt3c4lOfO49lKa7c3GD/zH5Onh0l1YpMupiGiYwVadBjbWOd0sAohVqJbrNFvmSSxj5Br8vOxgYYBg2vzdzEALfmN+kGHuW8TdOPMIKQUGvmF1bY3gmJWMGUAsu2MdOIfePD7J+YYv/UKM12hyt3mkyWh3jHfdN88ZlrnL+4TM5UqEwDCTMzc9QbdVo7a1QGRwijENux0VlGFEb9bBbTRAmFNsx+A6VhoLMEZIJpmkRRRJymfcAEkiRGkJFJ2XfhM1D04RDDIAp9Qt9/05U1DQONREqDNO630Tm2IEnDvmstQaBQRh8ATdNCqRREP4fFURmpJUgijyS1UJZDrAWZTrAsC6kkluPg5AukaUaWBrTbHYIgpN1qotOkf50pxFGKZVlkaUIYeAR+j1whj+O6WJaNIRSZuZtPQ4bvhyjDII76MGu7DpZjI6UijhN00odVBAjEXUZF7AJ6H1L1m+1xbzrZhrHr3vedbJ0BQiFFhhSCKIow1C74yv9q5vazcASmaeyeSwN9B1xrvZtrQ78t700nfU/fCtrjpz1+2uOnPX7a46c9ftrjpz1++nqkteZjH/vYX8qiH8DAwEBqmmbmuq7+80Zlf+Znfmb1Ix/5SPvu1yMjI/7DDz/8ZnnGL/zCL6x+7nOfq37qU58q//RP//TWyMhI6rquNk0z+9rz/XnHvlaf/vSnSxcvXsy/+uqrl06dOhUCHDt2LPp6H9cv/uIvDs3Ozga/8iu/sgxwzz33hJcuXXJ/6Zd+aexrb5ckifjVX/3VxePHj4cAf/fv/t3Nf/Nv/s04QLlc1o7j6DAMxf8dx4jf8sLfyVMnUZZFpFPSOKKsiyghcV2bqZkpktjHUKCERbpbty6FIO/Y/YDpJKFSqZABrU6PQj6PFJIwDAmTiDAMsUyDUqXK9k4L2zbI5XPkXIFtZjSjgMCPaNxZJIw0C/UOz567xoHRHKYjGSgWGdrvgraIfB/XNkApbFOSpAGajDBL8LtNYsMibKX0dlqYyiBAEKUamYbEqcRv9zBsi0qxCJbEHi6xvbmGEgqZc2g22+wbrbGz0yHxfB68Z5JSsUTBURhCMTpRZqRaQWYZq0JTyplEvR6B3+WRe/YTRQmWlSNvKJqtJnGcIEXGzFAO2zGoODZGucjVpXWswgBHBkZodzq8duUWW1t1Th6ZwQ8TFq5e4Tc++SVsM897HphCnLR4+sVrYNqEGyFn7xlAyYSVtS2+cmkFzxeoOOa585IvPneF/XOzDFSLPHDfCWqlApNT0xQqVdbXt8jnC6wurxFFAUNDg0xOTlCtVUl0SqfVJtYJhqVwbBORarqNJoEfkKZJP29DOnTaAZnZxOv0MB2X+04ewlKSVGgKuRylksnrl29wdWWLsmtRyLt02zG1YomPfPjhvjMT9IhUyPzSCn6vR7lcoFar4oce9546xNDgIJoMlaUUqyU6nTbddpN2fRuEYGr/EYIvvkS32ePwvmkslVArFLlx9XUO7p/st0hlMflCje/9yPtZXVnFtQyePn+Vl169RtjzuHjlFm8/eYC5o6cYGptE+12khLxj89pqgz945is0vZDCrWWqhQLv+o53cOTUPbz7Hffz+utXWVzZptv1kELj2A6ubeJFKTv1JqWcQ5pJvFix3e1SK5Yo2XDP/Sfx2m2mhmuYGDQbbfKOje4EPPrQGR5951luXl3k2Wdf4c7GJj0/xFY+h2dmGR9zWVtc5ZHjE1x84w6rmzs889wF7jk8w9mzJ9i/f5I3Ll5F6pS1dshzr77OsYNHqA7muXjlJqV8CZEarC6tcf6NeYaGS3zP+8+glCD123R2Gsxfucr9Dz7Kdn2bqLlNzVFUB8cgAzP10EmCGfbzN6xU4nc7oFMyFLWhYXpOniHAkIpqbYAgTLEsmyiK+qMFhsHgoYN43jYzc/uolEqs3rjKtWsrPPHFp3jk/nv49vcJhien6DQbhAnkR8rk2uusrzX5zvc9TGf7MBdv3GZ8UrL/wDT5Uo4vfPkSz79yie/+9seQRKxtbaMqFT7yvjM02z3+6Muvgo5496NHee9j9zExlGez3mR0uMrqdhu/2WCnvkMSJcQqQacZWoToNCBNEra3tuh6EZNj0xhKkYqMwI8x7DwTM3Nsri8xVC7R8VLaYcbWnR3WWwGeF7K1VSfWCgxQSjBaHaBWyjG3b5ySa1JwLZRIKQ1VKNeqNJseqmBzYvo4w0NTPPn0SzTaO1y+lZAKwcy+fWgd06hvY5kmpYFhOu0GplQQx4BDohUpCiVNDMftw49WYBoEcYxhWGR6d/RBp5hKkaQZOo4QcQxCYts5hFAIJTGURCOIwxCt036TnTJQVn8kw7Is4iTGlCDEbg6M7rfNGcogyTQpggxBHKc4Tg6vUUeQkTNNsiQk1ZpEZ5CZKGWQSYGUBoYJMlPYjotSiiDw8Hs9Qt8njmJ0mqEMRZL0W9vQKWGvRxyE2LaNMkxy+d1GvV3bONGaKIlBQBiF/RETnew61v3HFPgBpmmi03S3aU6gdvNk7gLrfwXNuyMrdzNtjN2xkwwh+t8zDIMo7mcB2ab1JpBq3d910G/L07u5OOLN7991q9O0P66is289eP1fVXv8tMdPe/y0x097/LTHT3v8tMdPX49+5Vd+pfbMM8+UAf7xP/7HK//qX/2rib/K63n00Ud7X/t1q9WSP/ETPzH+pS99qby1tWWmaSrCMJSLi4v2N3I/58+fd0dGRqK7i37fqG7cuOHcc8893tcee/DBB3u/9Eu/9Kdu5ziOvrvoBzA+Ph7X6/X/Kaqe3/KD6CQpOZFg2SaZkhj0V+rtzEGnCew2+cRZRJL2tydPTU3Sa7fotroYlkMqwDBM3FyOJEmwHQejaJMmKc12m1tLa2xtNRmuVZkaqzEyUEWmEc3NFi+9fp31nW0GCi6WWeSNK0ucPjLM1HCJeisgiSUbjZBXXp3n4Xvn+qMTUu82vwsUijRO+sGqZORtC1HIUd+p8+yLL7PR9nj/Y2fo9TzCzhbCLlDJz6BDxcLSEiLRbGw1uXR9lSRNKVTyCELy+TJIh2qlxre9Z4Lbl2+iU8nBQ4fJtGZiYhTHFCxfv04WeEQioZIfpFTJ0e02MZXNzrZPKjPGpicoZg6vnr/J2uI6w9UcnTjm9vIy3V7KH37xOdxCkRtLm8yNDjI5Ncz9p0+x3Whw6U6L2mCBXpyn1fMJI8nI4DjTs8OML6zT6Bq8fOkWQRIRU+D2cov1+mWmJ4YpFgscO7QPy7TIl8pMWhalYh4loN1pkcs7WI4JKoeTLzCzb45up0WahAR+SKahaFv9LeCdJpnSxFmAmZMkmQmWyU6nSeTHnDh0hJ7f5sbtVRqdHgurHRa2rvPd73sI07IJAp9cdYSiqUijCClTtBasXniVwPPIshTLsCGzEalAxBKlNLZbAiUh00gyjpy8lzgI0TrmztIyR+fGqNZydJttpFQ88p534iroru9QGBmgUh7F73aYOHQAv9Pj/e8d4cyBQ2y1GzR6LUpDLoZrUyiUCW2bIBMksUY6ikyBZeQIoojnLlyj6BqYpQpnH3qA/RND+D2PJNGEOsPIUgr5EvNLazz/wktMTYwRpZpMCBqNOvl8nhMH97Nv3wxbC9fwUs1Xn3uZj/3I92DlTMKcycLSGoqIg/tHOHDoA3Q7KdevXAHtcXjfJNWBQZprS+gs5b7TB9lYWUOmPpabZ3hijHavw5ETR3jupYv88fmb2I7g0s01dl5pYyQZVqmAkJKpWokf/O6HGKzmOfXAPWSZwLZNjh6bJufm6bR3qG9uUijl0XGZdstDas3mTptyxaVolDCVAGWQK+WJfI/E69Jra7a31kBrlu7cpnh/of9KZGiCjo9rmqwvNUnTmLjnUeq0cStV8gMDPPyIQa5U4MVXr3J1ZZEf+r7vYmxolNtXr2M7Bu9656P9NjQ7R5cmUkcsLc6TDu9DasH9985ScC2WFhY5efo4X/nS80wc3c+FZ19GZAkrW1tMjw0RdzucfccZVuYXKDo23/ehx3jxwjUazQ6ua7G9epOJw/cTdTZp1DuYVo68W+LQsdN0ux1Cv0mxVkUlBjtewuee+iq3N1p4Xoe4l+LFKV6UYCpFnGQYlolbKmPGIETE8SOTHB6uUSu75ByXnWaH26srnJibwzUyzKLLF55+mbPH9iMHi9xzz2FOnDhC1/MJPY9z515ifn6emX1TeJ0ukd9FpxWKxSJ+u0Ov1SZXzJCOjSYl0xHSNBFCkgmBoQzMXfhKkv7rplKQ6BSRaeIkxTAlSii63S6O4yJThWGZWI4LkYQsI46jfgtdFu62vYGSu/CbalKRkKUpoEnSmCTNEKIPl1IZBAnkywOgU0SWYpuKMPCxLANEhk5jhOy33vVZU6DpZ2E5bgHHyaPTlCSO6fW6eL1e/1xC9IOn0xTLMEmimCiOSdNkN5jbwrZtzKzfEJgkCVnaD37OtAbZh8wkTenzqybdzYRJ05QoDPsB5kmK4zpYtt1/Hr4GNLXWbzrNUvXd7X6utEAZFqZp7I7A9N17w+iDcv/aNfoul2Z3/5MhkAgpkAgU8hujgz1907THT3v8tMdPe/y0x097/LTHT3v89PXoZ37mZybv/v0Xf/EX39yd9nf+zt+ZC8Pw9t/7e3+v8Zd5PX+2dfdHf/RHJ5955pnSv/gX/2L5yJEjYS6X0x/96Ef3R1H0DWUQ/kU1Fv/3ZBjGn7rf/u/Nt2bu4/+o3vLCnwgiDMPAcV2wFCLub82VgO+38AMNmcRxHJIwIEtT6u0mQmbYtkuqJLZpo1ON7bjoJCIMA3K5IoV8gStXL1Mr5hgZGkKnKZ0g4sXXb7K02mR9u83i5iq2zHjg0Cz3HK/xo3/zURaX1vjEFy5hWQ5ppImv9/DbTSZWTbQQZJjk8wV0ktBubnPr6lWGxsewbYelazeZPjjHRGmafSsbpLdX0Z0mF1+fp+NHbLUT7j0xh0by6rXbmFae5fUOPZ1gmRJ3w8HOJMViwL6pQYIwoODmGZqeIm8qkkRj5GyGqpNIKchXh3n9xifZ9tsMDg9z+c4GVxZajA3VWNnYZmh4GNUKWF1fY35hhUwpBkpFWq2IVsfj3vvvJ9Yxvp9w/sJNVrfbTE0Nc3T/CCmT3Fla5snnLtFqJQSEjM+McWl+k4mZSWZOneLH3/EO7ly/xmvnr/PEH3+VytAwhUKNUk4xNjLE5NgIjm2x3WwQywTXNclSKBcrOI6L5/t0Ox02V7fxg5CDhw9g5wsoaRKHCUHoYZmKUrHK9k6bJA4pFXM4WULTjxCBxwMnj/DC+Us0/Zjl9QZhGpA3XI5NjjNYLZJz87RaDYSpkRqESInCGCdnce/Z++nUd+h5PeZvLDA0PERGTL3bpFIrYeXyyCwj7LVRtkmpOkAc+2yvbPLedzyA6xhcvnabUt5hZGiYkZFh1m/fIQkCqqMFet2tfuuTH1JybBpei5mT00xFMwjbxHGrhEGGVgYKB6/RBCmYmt7Pu+7X3Fra5NbaJl4Y8fLFmxw8dIheq0nBMVEqR6PZZnx0iIuXl7h69TXGJwa4//RxLryxwms3lnnw2DjVfI7l7TrzKSyvLtPq+jSbARkxzaVlxmZmMU3FseOHWb52hRe++izHDhyi3ezxrredZqcREHZaVCZmqK8vUa5VMVo9kiTm3hNzVFxJGISsra5hCM3kWI2O50PiUKdHSkosJaHnoXTGdhaxf+IEg7UaWRBjFgpEYcTIyAjTc1MkaUQpX6TVWCPyPa7cXCWIQ27f2eDDH34MK1/gyc89yTsefIDLl6+TJSFzs3MkOkYKEzdvURseQsoMkcSkQlIqF3ByLisv3iI3UGR4fJjG6hbzl68TCsXayjrf9YH38MDROW7OL9Pc2GJibIwzDz9AEvts3FzGHRlgbeU2X/j8l3nHu95NFvcwBSyu1UmjgLHxI5gDFW5cvcmB/XOUcia3VhYYKlYYGyxw5vQhDBXi6xCnVOT5r5zj0UcewfNabIWTnHrkUcLtJcJ2CywHWwT9VrA4RdgFirUSUW8TP4pQ5MiXyowPjxAEAjlQZGOzg5vEjBiCozMjWBikov9crtUbdFo+pw/vg8RnuJZjbSfgqVeuMVwtkzNSuu0WrdUORw4MMzxSIqcUQa9LvlxlOFdBmkMYjkHqh0RJimMr0jQjDHycnKQ2PEyz3qC+s4O0DIr5IkkUoyUkaYZpuxi2DRnYjoNpuWRZuuuC7kKUrVCivwhguwZRnJCRYuq+ZyuVgZJgKwOdprvhyjGOY/fdbTSGaRBG/pvjHIYySJIIrWPSJEGnfXiNhAShMAyLCImRsxCxR6o1WZpiKAvD7MNwEAQoy6Ifeg2GaYCS2JaFWyoReB5h4JNGIb1ejygKSEKPNNEEQcjo6CgqSekFHdpZh0KxiGVZmJZNFIZvBkyTpehU94OyhSSOY6Q0dh9LHxgznfV3SkUhhmmQZRrDMJFS9MdqdiHirpsthHhzZEeS9XcyybsZNPLN5rskiXfd/r47LZWArP913x3XuyHg/3NAyv8M2uOnPX7a46c9ftrjpz1+2uOnPX76ehQEgfqav7+5Kpmmqbh27ZrzF3GfpmnqNH1r0XUvv/xy4fu+7/t2fviHf7gJ/R2AKysr1jd6DadPn/Y2Njas119/3f5m7Po7ePBg8KUvfan8tcdeeuml/P/oeSzLyrTWfyHFKn/RessLf3bOIggDos2QXKmEaZrEQYgX+KytLNNtNhkcqNJsNtl/6CCZysiyiFK+jN5duW+0d1BKsr3TYGNtA8uySHVGvd1DZHDq2DQz0+OsbzS4fvM2E0NVPv1HL9KNM8bKJqdOTpE3XBqtHVq9Hv/lj98gQzBbVVSGJGlShMEKk8ODrN+eZ6vRYnx0gvEDc7QbGzTW1xkdGWB9cRslU9IwIbMSzpw5xr33zHJtfpGLdxr4GiI/4PYXX0BnGdowUJnANCwswEj6YBqlGW2vzU5jB1SOicEc4yvb7Juo0W51yRcdsvFphsdGyBU1h0+e5Kknn+OTn3mBzVbar5ZfXifUGVfvrBJ6AdFu45NrmWw1GoxUHLrtgNvX53GVYnS8QsGx8MOAW0vbDA6WmZsd5b6Thyjki/yn33+SqcFh5sbHGSnaSCGxopjFG4vMHjrMsVNHef+3v4fnzp3nc8+8wciQy/FjBygUyvhxTHVomFqWksYxmSGRtkmcxERBl3LeoZ5putstNteXmJjeh1QWZhHc0iBxEpClCsvJk8YeQdCDRLK+volyDC5eXyROFKaVcO/hMQ7OzqLThHK5hI41fhbQ6/qYRozWGZZt02g0MTqKoeFBysPjDJiCSnmUlteiXB7ANgxs1yGMA0xloRyLKPB47fwVjLxFfWODIyeOUyqXkc4NlpZXUMUqnU4P5RQoT0yzur5N6odII8+dW9c5cvQAhUIVUojIiOotslxAsxMg0ohSrUCj5ZEvFxkZtThrS4RKeOTsYSaHK9R3WigpuXrxIpOT+zCrJQbHbOLtJhcvXGZ5s45+5SqPPXKSfTMu1cocb8wvsrnRwrQEq5tdwjCi0/NI4pCPftsZYr+JZUtE5hJ0W0wePErH67Bd32F5eZ0bKwusrPb4ng88iJUkWMUqq0sL6ERgWhZbW+sMDo7SadSZnZ7myS+/xhdevUmGoJtoCjImDCWDFYt22ydKDGplh06vS5xqZiyLF+Zv8+SfvMi3v+0sv/Rrn+T+Y4cZGaqRpQkXb97hS09foDKQ5/ZGj8Zvf5HhigOBZuX2EtVSlZytMLiJsCSm6TA0fABhOYSxQhgWpbxLHHh47YCTb7uPVr2BjnxG908jLMnTz7xEpxPRbXeYnJ3h8L0n8YOUzdUlcrUB1pfXGT92hI3FBXo7Gzz24H249CjWKtTbIaW8y757jmFbOVaXbiBETGWwSGvHJ+oJZk9Ncez4IbxmhzACFaf0OnV63R6/9cnPUBsaoFYtk/ZaFAemibIUK3PJ5RzavR6BF2BpDZbCyQ9CmhClCYVqmfe//+206zu0mi02t3bQKWxuNvqhzJaBaeYgg1reYXakQl5mUCnz+1+5yMXLS1iGROmYjVaZKXOGgaIkb8W4OZdIaxwJOgrAdUkTTa2UZ6PbIotyFMqDhGFA1GtjALGZZ/LwMVYXb9Ctb+PrFE2/rRMhsO2AVGeYlgW5PMK2MQ0bMoEhFUjQpOgMwjDqBycLgRR9FumHsUPct6pRQqDTFMM0iOMYrUMMo//WI4WBacp+C5wSfWdcAFkKZCRRiNYJlmOTRgapMpBKYagcypK4IiOJAjJSbNsAYXJ3QiNJEuJU99vqhCBJ++cxTAPDqCJ3thFtgaUMmq0WA6UyBdchiHwMA3QYE3RbyGIeISTKUChlEoUJ6W4rXRzEyN1r7u+m6Y/OCER/XGsXREkSlJSgNdIwUUpgWRZa693npD9ewq6rffea7/7pP54UpfqB1HHUfw7vPo8602jdb6a7Ox7TH2vZ07eC9vhpj5/2+GmPn/b4aY+f9vhpj5++Hn3iE5+4ef36dRtgcXHRuptJ9wM/8ANbP/ZjP7b1F3Gf09PT0fnz5wvXrl2zSqWSHh4e/m/m2e3bty/8wz/8w+pHPvKRphCCf/JP/slElmXf8MLYBz7wge6ZM2c6H/3oR/f//M///PLRo0eD119/3ZFS8tGPfrT93z/Dn9bjjz++9au/+qsjP/qjPzrxoz/6o9svvfRS7pOf/OQg8ObvylvRzMxM+PTTT5dee+01e3h4OK3VaumfV07yrai3vPCXxRGtnQbtVptyrYpj2yzcuU0uX0SgyTkmYdDDUJCEAaayGR0aAAGZcLh2fZGtxjYDg1VW17aoN7q0ux6VconRkUH8Tos0Tdjc2qZeb1OpVWj5PYycwgwS2pHm+u0tzAz2jRc5dXiWd5+epOd5nD46TZIqXr92AyeXx87luPj6Gwhl4JhQLpukvZChgSKLCytMTowSxT6feeJLbLeaKMPh0P4pnnzhKvObXSwp0GmIQvfDU1PIhCBOEpQyCAyJlWT4oQ+ZgVnII+2AODKIk5hGp9t3GdQgm5urpEKzsbpFo1nnbe+4nwuXbjEjfPxGxNZOj+2dFmQmWRyjDIOSY3FkXw1DGZTLOfKlAqVyDteW9DwfJTOkMrHdMnFicf3aMtVSkRsLa4yMjjBWKXPt0kW8yUFmxmskeYfFa1d5/fxLDI4Oc989Z3jfex5laLBC4Hs0GnXcYh6n6KCjhMDXWE6RNA5xHItOOyGXr9Bqdbhza5WDhyfIC4utzS3KQ8OkXopyJK5TJk0SbMsi8BWu6/Liy6/x0sUFUiUYHSwwmHfZNzXE6NgwWRaT6oRut0OiI4qlIpKMbrvTbwuMYxr1BjP7phFC4loW9Z2NfgW8kOw0m9QqRUI/wVE2cZywttFjc2OThYXbmE6R7a06a1s72G6e5fUuppkRX7tFpx0yPDxE2xMsr94miRJ0rCkXDdZWNqhVY/ygwe997hzTEyMMjZX47d97kZOHBxkeGEZnAjNnY2i4cO0Wa5t1/t73T2NZgl4vplQusLS4hhfHjHv7GJmegJLBX/vud+JHGTduXMdvtymYLu/5wIN8IEn44pNf5eLF21QHcizc2cIUJm5OcuP2KmeOzpLEEUHkUV9bZerYWfYdOsqNixcZGRni+QtXySkYKDr4SY/9h4/zO+fOE0cpqRA8cN8xLl1fIO9aTO+bQFYssA1KTp6/9s4TbLQ73Flt87f/+tu4cm2B5bVt1jciNtZb5Esh8wsbPHv+Oh0vxAsjrlxb5tadbR46Pce3P3qMP/rqRebXNlEbffftfLNOOWdRqQxzLJ/jntEK+bxJu5uytrDC2Ufvp7uzgluoEAiDXD5Pq93DzOfIOQatnQ7+9jpWPoeOY54/9xKFvIHXa1NvrJEfKOI1dygYeYaHBtGGQXW4imlIDhw6wvZOCWHk2Vm7zZ2VRSQOMtXoKEGaAoXB8PAIvXYDq+jwfT/8N+i118nbLsMTE1x88SVWFrbYf+AAYbfHb//hMyzdXmdsp8uBq9cYn5ymOD6CkBmRYWAok0wlJNon9UGYmlSCZRcQQtFr14niiHy+QC0RNJp1RsaG2d7eolYrY9s2rVaL+qrPZjtB2fDaa3dY2WhQyCuQFmEkaDV7zI5p8nmbWNu06juMT0wilSROUywy0jgijQJ0FHLt6mUOnjhBZXSExuYOgR+RyW2cYpXp2SNs2kvUN9ZAZ3hepw+fug+lSRyg0wjhKRwnh84Ebq6ANE2SLMPQmpzr9l8XpSJJUlL6zuvdFrY4TsiUwnZzaHazVNKUDEGS9h3cVKdYjtOHX0Oh0xRpmqRpimUbZFoRBxEQYah+lk4KZBqEUhiW0wc3JEqlaKGR/bhosqyfN5PqtB/anCRonZGSkssXkYaFqQzy1QrolCSJUFIQRhGWbSCFoN1oUCpX0MjdfBqwHZckSTFME8/3IAO5C5lSKDL64Hi3Uc40+wsAWSaIwhAhJHezbCzL2gXrFL3rrma7eTR9J/u/NtMlST8vyHZcskz3ITaOEVLAbhbOXaf6rTq1e/qL1x4/7fHTHj/t8dMeP+3x0x4/7fHT16MPf/jDHaADcO7cOefuwt93fud3tqampv5CCiZ+6qd+av2Hf/iHZ0+fPn08CAJ59erVi/+t2/7SL/3S0sc+9rF973nPe45UKpXk8ccfX+92u+q/dfv/EX3mM5+Z/4f/8B9O/ciP/Mis7/tqeno6+Nmf/dmVr+dcR44ciX791399/qd/+qenPv7xj4+cPn26++M//uNrP/mTPzntuu5bDnZ8/PHHt5955pniI488cszzPPnEE09c/+AHP9j5eq7pL1tveeEvjgOEyshkRqO5g5ISz+vtNumA41r4QX8VfXt7g8GBMaSSOK6NZeQYGhliaHKEoeEqB+a6tBo+y8sruLaJ7UrUSBHXLbO4uE5IQqPepd70GaiOIJpt4khTzBdI45CNVo8XXp0HoThxdIz1rRaXbq4iMs2hYp6cCWMHpykWKrx24SIvvvg6H/rgu5goz3L5jcu0Gjv88Vcv8uQr81iOJG/leeGNVSqFPFPDVRbvrIOIaRLgSBtLJqAUQhjkZIqDiQZ8P6FUdEi1RiewUW/Q7vqoBYljKkyVksSCTEk6LZ93P3yUQ/smGX3n/Zx//TrVmTz1dsBXXrmJECkz03Nst2LGBiqcPjyOWypQKeSoVQZoNtv4XkgahoxNTLC1vcP9951GKUkcBygpGR8u8CdfOc8Lr79BJ9K4tonSCaODNs+92OaJp1/HtXIE7S5nzh5jrJrjZr3Bq+evcOXGCqmW5FTC1MQwnW6PZquDFoqtepu1rSY3by0xXlVU8/dwedPDyZvc45ylUswRqwyv20OpFD/okXcrmPkS++bGObxcZ/72HYbKMDc1RBJpmvU6g4MjlIpVWq02+aJFGmsMZSBERuD7WJbNvtl9RFF/d28Yh8Rpxs7mFmmquXhjkUaQ0m70UFrSijq0vB4jlTJvO3MYlWpq5RLN9hab2z5b2wEnjo9x5tQRLrx2iRfOv8apQ3McPjJFEKa4rk13u45j2fS8Nl6vQ6YMLl1fZTbs4VgZz72+TJQtouN+85SbK+HmbPLS4Pbtda5GHpu9gHefPsrMWIUnnj7PvSc7PP38S7imxff+zQ9RTRUjIwM0djYhFRRqJSzf46Pf814Oz76Oqww2T9X5L3/wLEEs+1k7GXjtLtK2MKRJt7FKZlqcevgxsjDAtR18f4f8wBBaZH0Hz81z+fLrJEIQa8HS0g5TIxWuzrd5bWEFEUqqhTz1XsDC8gZeL+KVV25ye2WT8cEypaKPZWTIVPDHz1/CMmzeduYwXhywsOkxPJzwJy9cZmNth0bPR2cZMjOQOsK2TNJM0Wo3uHYzIdXwwMFh5g4cYHJ2mKjrkS/YBF5EL6pTLszxxrXrCB2x/8BRUkKsco1cdYTtlQVOzs5y8+Ztjuyboejm6dbbbG5tYWBTm6gxf3uRC5c3uOfwJNXaIPlKiYIh6HU9xsdnMWyD+vo6odfBNi0sx8VxCxRcB1FyMXCQuohlWtjlAjudAGNjjSPH5ygO1zixf4DJiSE+/9RlXn7pNU50Wxxyish8ip0vYWDQqm/hFhyMFJI0wetGyLKNlVPkihUc26W5s4mTsxi2hpDSQCnNyMgQgRdQ396h0wk4P3+bXhhhZQlu3kRLxcxggUqxgGU7LK6uce+p49QUfQdU9kcV+sHEMToFr9cjIWV2/z469To5J8/AyDhbm+sk3Q6xzrBdzfDYOGHgsbWy2h/1Cn22NjcYGR5BGSbNXhdlW6RR35nWaYyTK5ArlfE7XdI07o8KZn3AEvQhsR/eLN8Mcc6QaJ2CAGmY/TyZJCWK4v68oxQIQEqDLOvnsRhaE4f9QGjTNAh8j52tLWzLoTw4iFSSSGts1wWpkFqjhMIw5G5DXD8oWkpFnGjiqJ9nI4UiSfuLEG7OBDIyTDKtMbTVD94WiiiOsQyF61hINEJk/fwXKRCk2LYJSiENRRjFqN2RkzRN+/eT9RvoNP08GoHAVIoojpDy7vPQHyFC8GaLnaEMpGH03ceMfh6Q0Ydh2zbROiWOE5QS6CzDNG0QGWma9h/XbmbPrv29p28B7fHTHj/t8dMeP+3x0x4/7fHTHj99o7r//vuD3/iN35iPokh8bbPuN1unTp0KL1y4cPVrjx0+fDjKsuyVP3vbw4cPRy+88ML1rz32Uz/1U39qJ+LHP/7xpT/7c3/esZWVlT+1wDgyMpJ+6lOfuvNWr/trr+/Pu94f+IEfaP3AD/xA6+7XP/mTPzk6MjIS53K5DODxxx/fefzxx3e+9md+6Id+qPlDP/RDb55nfHw8efbZZ2+81Wv6VtJbXvhLwoB2s07Q8ymVKmRZhuu6+KGHm8vT8xJ6nQDXdcnncgRxDCl0uh5KdggDHxEpNpZ9bMclX3A5fHSOZmOHJEkAxcriIjoOOHr0AM16k+WNFr0kxrSh0Wyw3dzElArDsKkWbGoDFa7eWePt9+3nzLE5ri+s0g16uMUSwlEUylWqQ0O0vBAEuJUSI3OzrC5vUCzkeejUIeaXt8kSOLGvyl/7rjNcu77M+uERDs2OceXGbb564QatdshQweL4kVlu3N4hSGOCdhfbMjCkJiMlCX28IKRNj2I5TzPVbO80QGvyrktmunz2Sy+ztrpFICUvXlqgaFsoofFjwWBZIXXC5sYGO40e5WKRA8JicbvJhc5VLMvi7WfvY+H6G4wPVxkbG6DltSjkCjiui0hTmJzkwYcEC+sN2GxQydmsry4zOTZMJhJKpsNO0OYTf/BlXn71DQJhsLjSIUoyMqGJw4iia5DLmQQpdHph/0VYpxhSYdoWebvIf/m9ZwlCk4eOjzFSvs2KY/PM0+fpdX0OHZ7i7EP3YlVMEp0yt/8QM9MHaO6s0dxps7a2Sc/vMDc7TRonZGmM73fJ0hK+56OUZGBwmE63i7r7Yu3YIMASkq21Jl968TI3Vxt0uiFRGGJaBtKQJGnCdC3PwYlBdpotXr2ySMUqMjZa5IH79nNWC7Z3WgwOV/nev/7dvHbpOuee/hKnT81imyamW8KRKRcu3+bi5WucmJnm5tI6O6029d4gTsGluxkSiRRLmuRtF4Em9EJSQ/PZ5y6RxJIwi0m8Lt/13kd528PHMbOM85fXuXh5gXIBHnjoEUpDEwxNHUAmHgiNW6oiBOzbt5/5N97gwXtPsrHV5PyleQYGXIoFl47XxLUHWFpbZiRKaPkdzr73Q4SxxYPvfBgR9mj1erj5AlkU8NhjD7FvahApHf7l/+8zWAXFwlaTrU5EOW8SphFJlPH5568R+QlD5RxPv3qHnW6XtUbAUKnIyze26TRb5CyHhc0G+kLCOx6YpZyzaLc0mfT58pVblIwShhRAimVaZFkI2OTsMgcPVljf3GL0286C7kKSQyiBUjneuPIG+8aHSYNtXCX53c8/T+WF11GWy4OnDpAvrTMxPcWhe88wND3Dxp3bPPfyVa7dWeaBe2Z54L4HWVhYYWV1h6YX8tmvnifsBjxybB+TU2McOXmCLElIooDRuTm21tbptHsIw2C7vcnGaovL15Y4c2o/U+PDLKwvMRxPcvbhRwh7TaJUMzx9kA9+9zBfffIrSMuih+IP/uRV3i9r7D80Q29hjRvz1zh94hhap9hOAS0FtlSE3RbdbpNiuYZhmuTKJazYxMgUjXqdsZEh0jQBNMMDFd7/zkEWN58kCDShNsgBJ/YN8OjZQ3SbEZWKy8R4jTAJKOSrdNs7mKZJksa4jovf87AsB0OYzMzM0Q09BstlkjgCoFou06xrvFYXUk0YWIxNzxDFIVsra0hpUK7UiOKEoNXBtCwsw6LV6mBZBqLXI45CfK9LIV8gTTVBkKCU2c9vUQqRCUCTaI0y+rktdxvhsix705XtQ63YDcDWb4KeMvoNb1JIDMPsj2folEzASM4l8H1MpYGMenOHxUsrnDp1Tz9HRvdHQKTMUKaJkII0TZESLEuhM02axsisPxaTJRlpqhGq7yALZSEwsAwHS6ckUYDOYtqdDso2cR23704rhWX3ITbnuuRyOZIwIo5jEp2Sfk0DnTQUcZJg7GbZkEG71aZQyJHRb6HTaQb04V/rFAmkWiNV39FO0hSR9T8s3wV5rVOgD6/sttkZxm6gNZBl31qjKv8ra4+f9vhpj5/2+GmPn/b4aY+f9vjpG5WUkh/8wR9s/lVfx/9d9XM/93NDDz/8cG9oaCh56qmnCr/8y788+rf/9t/e/Ku+rr8svfVq4igk8j1MZZClmk6nizQUSys91jeucPzoPg7un+4HcmYx25sbxFFC6MdMzkyTRAkGMaQJzW6XgeEhLNtiZGIEkSm67R6e12Px2jq3N5+l2w5549YWm52QNIyJ0xhlGjjS4vhckfEhh89/9RzDxQryXoh1ykNn7mdl9TZDAzV2tjdZXVnm0KlDDA3VUFaZpcUtXjt/neNH9zH28BDPv36VEE2p5PLIyYMUVJE0DHjXI/dQqRY5euAAk1OTPPGlSxyaGeIdZyY5MDJKdSLHZ790gcXNfpZDHCdIMmoDLh0/YWa4zCMPHOCFl6/z4sWbRAhE2KOpFM9cW8XzYixTUe/46Kxf+X57FZbX7zBYKzE+PEDX63DtVodiIU/gdRkYqZB3JYdPHCYKOxhmjoLpYguHNBG0O23cXImZ6VG+6zseIo5Ctre2cA2HO7dvMTU8zI/9yH6+fP4Nnjm/wvmbO0jTwDAlWva3SEsFXugRBilpJsBwcC2TWqWK1jFJEuMHIZnWFCsWG17IucvXqZWLSBlRq5kIYqIwRGu960YJTFNRGx2jUKnhFgusLC2zvbVOpVIm0yED1SIZCUIJvCCg0/UwTANLWUgl6Xk9cm6ORjvgd774ApfurGCbLqbSmDkT2zTIyYwodVHCYqfdpVeHQiGPFAktL+D6/CYjtQJjYyM06k3arS4njhxABz69MKXg5gh8j6GRUeybG4wNj3Lu2iJhKDk0OQrSpOtHWI6DjBRxGtIlRsUCmcQY+RIyChAiRSQmYaBY3V4nbEUcvfcoVxe3CeMRKtUBOu1tCoUcIiugBaCM/gePTFGq1Tjzjofptjp8+P3fxqlD+3n22XOIGG7M3yBX3CDxQrJBAyPNaNc3cIs1lJ1DmyZWpMmilMzN41aqzB2YpdON+K73HONzL9yiESQMlAoMVV38tQZe1yOfszCMjERokjTE1An1VptmO8SyDY7sG2BybIRW7w2uLm2z04mItKYTx1hCIi0DL/GRMiaJJVoqTKsIAiLt47VspopFcjlF2Orh1duMzOxj9c4tpiaGGZmYwCoWGJ+Ee08d5SsX5tleW2Z8oMio3yDnmmykgtrQMIcfepTS+BKF8mUmJgcITYvJ6RnK1RLF4gpPPLVFzjRZ9TpceH6LpfVNagM57jtzP42NJraZA6mIQg/HKpLPaw4fmqJUcPB8n1deW2T1i69y/4kDDAzWmL+1ThSFFIslhmfn+IF7T/HqhRscPnqIXrOBsg6wtbVAwTGxcw5Bt4OVL5B4HaQwCKMEadm0GztIIZBKIZVFr9slXyzSbDTIdEoYRcQ6wwAmxyvkLZdCqczBAwMcmB2nViiQRglp1EFKRaEwgGGZVJ1hup5PsVRA7QKNEBJsg26vh9SQiZheGFIpVxAYjI6N0+11kFIjpEESx0zOzFJw8iyvrBCFIVKZOHmDKIoJ/RgpBZ7XIZfLEcdNlDLottsUS2WUae4CKERRjFImZOD5HlprLMvGyRXI0j6sZkqRpikZvAm8piFI4pg008RBiGmYiAzYDaZOspRMmViGwrT7WUY61QwODjIwMIBOUwKvi2HlCH2fTIDt2JimQpP1g6NJIMlI4ghDKbIo3c19MUFrhFT04VWhZP+YaTtI09r9fzsjTpL+e1wYAgKVpiQywjQdsizDtm2II7I44W5Yzt2RkUyAFJIkSSiVSsRpTJqmuyHUglazSblcxg8CTMtGKQOpDBJAKhPTNOlb8dluYLVAKdkHb9HP5NFa929HH2b39C2iPX7a46c9ftrjpz1+2uOnPX7a46c9/ZXqxo0bzr/7d/9urNVqGWNjY9Hf//t/f+Nf/st/ufZXfV1/WXrLC39+FOAW8qyub2H0fHQm8LsRW41NKpUy25vbjA8OEkcxbqHI1k6DnNMPDX7h/AXq7S5TQxXmZsZxC0XCTg8jk1g5B2lbVAZMCnmbVy4t8uULdyBO6frerpstKboFhKHItE9mwDOvLLBvZJSHzx6i0w6ZPbQfw3Go+VUUklSDoSStepvF28sUcgam0tSqObpxxJNffo1Xr9/h5MFpDo0NceTwARZv3SLo+kgpybSBKrscP3EcrR3qjQ06vYCjR6ZQFnz7gyeZ32ghkCyvbTA9PoTINJ9/9iLVvIkjBH4Q0u5FGH4Hx7JwcoI0DFBAGmUIBcVcGctStHoeI4M1Pvj2Exw5ME4QS3yvy5ED+8jnHJqtFt1ul3azST5foFxxUVZGHPfwugn17W1SvUHmd5iamqVcdGg1dnDzZc6fe5mFOxvUamUGy0XsfAU/63D60Ai2qbh1ZwvTtqlWLWYmJri9tM3qTouC63BgYpBHz5xAKU2n3WWolufm7TWGRqu8emWJIIHRkXEOHpxDENHrBhjCxPd7ZAgcZfffFIRAKYPhsTEGBofYWV9ie3OTcrHfaJXLF2l2uyRRArvV8qv1FWzb6te5W4oo6HD2xBzIhERbBIGPH8UMl13GB1x8bVLfrmMairyCIBQUcgYlxyX0e2hRIAl9ssQljDvsbGxwz9n7aDV36LVadMM2brvCmbOnOBYeZnuryVdfeJWtzTpLDY9mN0SToqQmzGwymRGGCQWrgKEEcawgFdRqecbGq+SLA3itBp/8w2eQhuDtp49hOjbrWz6m2WZkXGHYNjqJibVGiYw4CEhMA226SFMyNTPOB4e/nVzBQS8t4DV7TByYYrvdIG50CDtN8qURhDJITRtlB6R+izDaxs5V8HspBdPAzpfxej6mkpgqo9ORGFYBOy9pdzqkSYpwM2xl8c6zR7BNk6XNNodnhrjv+AEOHTnE2952jM9+/hXOX17ioXsmqLc7kKb4KQReh7X1ACEhFBIVxmRozh4eYXV9m22ZEe5ss7PVZGWnRRBljI5WKA8OkUpB2O2hpOa973mENAx4UXugMpbWNogxGSwVuL2xSrk6RhTvcOzoLNXKILhOf7RicopcvshXL9zijRurXF1cZaBYYHlpk7mxCgOlCrNzM7SbDYaGJomMIcJWg4Nzo/jeEHYeLLvE6UQxvLpM0PP4zB8/R7VWo+JKOl5ErZjjvvtPMFQsU3Zcnro4T35wgMMHDiGlptPqMjA6golJJ/BIY4mdczCUJvBCLDOH1/PQoh9u3PNC/CDBtEzsXBlpJaAs3vbAQ5hmRi5vk8uVcVXfuZQlk1TXUAqyOMO0DJQ0yJCkOiEMfJQpEUgSz0cZikQIbCHQYUgUh5AF+F4PlS+jDJPQa2Mrg0QLqsODFGtVGjs7tFttwjAkzcAwTOI4AWHQ7QUoJTENjZNJvK6PMCLctA9Md0ct9O7vs2lIoijAti10KhFasb1Tp1Sp4rgmSIGS/eY6TYZpGGRAJvohzFJIklQDEkOZ/QBmBMpykWlCkqYoKRESSFNIQ7TOUKZDGqckiUYpAVIilLVbMqBJk4QkjpGGge93sc0+QKcZGJaNsN1+s6kQSMvFVhaZjkniEJ2lWJZJHEfEUQhSkdkaIU2UUtiOgxAROkn6DrWU/XGZOEbt5tikOkUZJqbl9HcsZJpqrdZ/HuKIRMe4xRJaR+gM4jhEZA7sjv8o1R9rybIMw1AIId4ck9Fa9wOx9/Qtoz1+2uOnPX7a46c9ftrjpz1+2uOnPf3V6j/8h/+wBPyfRoz/V9FbXvjr9Xr9ViKtaHZaxFrgBR5HZiZpBS3iOOHm7ZscnTuCtASWYWDbNsK0SBseljIItWaj3sTphRTzBXSW4QcelmOSJAmXri7y2s0FUi1JtEYrSao1o8Uyma36Lo9lUMkZHBwb44ETc6yvr7C0scPU5BTV0QyrWCLY2qHZbTE+PMH2wgq90OMzX3yeLDW4udJkuedR3/Y4c2SE8aECoYDt7Qbr2x3cYgWdapaWNsgVS5SHipy5fz8iPUBKQpJGpL2M0YlJhidHOTi3H9+PsXOCpZV1qrUKt+YX+cRnX0QZJo/cv58DM1OMDwwiHc3VhR2ef2WeKNHkCw4nD84yXIDR8TGGKzYDecFAtcbAyBBRGmNkCalwyLkB9bU6cRSRG3BIspS4FWAXLKKwyezsPtZXlzCqE9SGBol7HSxlkKuUeecHvouHOx3qmxucv7CEaQiOz41wcGqA85fWUEaOKE1peREjtSHi1KEXSKq1MrOzg7zw6g1m941RzuV59sItpkZHKVcnqFY8trcbLK3e5FTxADm3THdnEz/wqdlDCClJSbCkwY1rN9m5eYX9952hUBskV6pS0YLQ8/DDiEtfPUdtsEi90aJaGmBytIBFjPAjysNVep0225vbnD15iJNHZ9hY3aYb+zQ9jW3C2GCN1y5cojxWQSpB0gmQGeScAoYhcG2LomPSarSIvYDaYIU46NHaWSdNEgxhkkYZQdChWKkRphETE9N8+ANlfuuTf0ywssNYtcBGo0eoBaaCgnIYnSvT6vmE7S7f+fYj7NS7LG62OTw9xnC5SqVQoxF45HMuw8ODPP/qFQxl4IWaVMDk5Fg/l8NSpJ06F19+kZGRCcrVCro2SKE6gml5YNkcOnqU11+/wrXLCxw4OIu7f6i/HT32CYWEOCZfqaBNwVazjuc18WMfy3B59sJltAGhFxJ5mpGSCVlCEGWMj1UZLxeYmhiENOPhe48ihI80i9y8Po/l5Hj90jWKg0P89b/+nTi/+weMDRe579TbcV2X8y9f4PRD9/Ovf/GTrG11ODJdpVjJc/b0UWoFyaf+4HlWtjb54tMvMFIbYnRimOU7dxDxEPlyBSMTCFWi01nBiDQPv+0+UJKg0yY1beKkg58YxEjMUh439IjSAETC0q3XuHR+gQ9+9LuYPrCfH/lr38YLL13g+sIWSdhmcLDC5VtLvPjSKzTqGzi2i+kWKQ+UEY5Fzs2xvr7AcG2UldUVDh/cx/Ejh/ijz/0Jg4NFmtst5o6PUjJtnnv9GtcXNpE6Ybvb4/UrS7zw8nk++r63cfa+U1QGy7z68qvcf999lAdG2VhcpVRMyLKUUtHFT6C5U2egUsE0bQJCbMtmu90klx9h6c4tbDeHbefwexGmzLi9tkW3GyFVwuy+Saq1MggT23GIkxAtFG6+RJxESCVJowhNF9M0dhvvLKJUU6oNIFQfCoWZEXlNsBwsyyFJ+u4nysAwBbXBQYaGh2k1uv1srCjCFQIlFWEYIslIkgRhGrS9HlJKojDCtgzybo7UMLEsG61BSsFgJUeSxGxtbGBbDsVCAXRMFMSkOiOXKyGQu04rmKZFFMekuzkyZH2Q1WiUVP3GNi3RGrTO0IlGqf74QxxHIARht4GQCsdxMCwbrSUISaYFSBOU7DftpQmWkSHEbqZLmhJ6CV6n//qppcLO5RBKogwXIS1SnZCmCWkSIzJNGsa7O7VE32mXAsdxkKYikxlJmvZB1TSQGaB1//nTmkymGIZBJhRCWv0R0GIRrVMiz0NmGUoK4jQk9EN0mhCHcX/0yXbRCHQKmgRDKZSU6FSjpEDrPcf6W0V7/LTHT3v8tMdPe/y0x097/LTHT3va01+l3vLC3+DQMO12m9qgIFe2WFjYQuiUy9cWWNjsYFqSyZEqo0MtMl9hWXlQJq5tMDszTKvVotf2Cb0UnXponZJkCeVShdTL8Ho+2zt1MqmIkwCyFEspSlaFfZMVMEyUGOPgqM3R6SrjkxPoFFY3WuSLKQu3b+DY+xkYHqYlNJ2dLulQyK16k889fY3tToIWmizSCKk5ND7AsX0DrLfb3FlcY//4Pk7e/wD1rTVuL27Ti2NOVIvcvrHCYKVGqagQ0ujnOhBQrJVwLYuQBMMGIQ32zR6kVi5x5tQx6q0GiZbcubNApxdy/uoC6ztNdtoBUSowDBuhBcsra9z3jtN8x3vOEkchSqboAFLTwDJs0jggTWOEAaVqhfLAANtba0hhURuqkbNL5KerpJ5PybKwy2U0CcJWSF/j7zRwaorESHnqlZc5N79CHMakkcHV21u0/Zg4CWmHEpoRv/XZ56gMFJFJyj1HZ0n9DF9kZGnEr//heXaaHSx1jdFahSwNGR8ZwOsMkqEIkhSnOEZrc5tcJU+tUsTUFiKXp1Kw6ZULBPV1Co6N9nqkkQ9SYuZtHnr4DEG7yezoIF4cgMhYr7cgDZmam2Rtq83i0jLhSBdh5KiNlRjQVfYrGJmYRGeafQemqZTLtFtNtje22Npp4Htd4sBnoDJIIe+yFfhgK8IkIvMgVQYZik5nB0P28zE2NxpEcUKh4KCkzfd973fwvp1tvFaD6ys7zN/ZYb2xzdxYif/te9/NWr3Db//OU8xNDjM7McitP3qVa0ub2PkyOg2pVmpI06EdhkxNT1CrVpmenCAIOv1mxkoFx3XpdDsMjIwhlODO7TuMZRkUy1i2Ta/bZHzuEGEU83u/+zmuLS7zyJkj2LYgGR7HALLMJEsNnrtyg+c/82U+8uG3YZgOgZnytnvuo73zEpNzFap5k7P3Heb8G0vYlsnRgwepVPN89smv8s77jlKq5bAoY+UdMp2wvrZEu91meWmRyalR3v7ACcLQp1jM0e6GHD44zezcAf5f/+hv8AdffIFjs8McnB7EKVYIwoj3vuMoX/hygpPP8+TLV/mugSLHTx5k6do86wvrHH7gPhZWVjj30kWmJ0aZPXqUd37b23n6qadorXe4tOmz5W3w0e98G9XBGpt3OgRhiJsPqeSGuedsjbXlBUhCZg9OMbV/irDX4b/89qcJwoy5kSEWm3D5qUs8cmofXpDw0GPvQjkG29t1egl8/Fd/j3q9zkDe4SN/4wMM75umubXKO951FKNa4dVXbzA1McjlxW0eODVD43LIB7/9QWq2jeeFPPfV50jMArNjQ2yuL2CYeYrVApFOqRUqRKGPiLoMVgpkmcbrdojjiEqpRGWwQrPhU87nWWt4rG0tcWdpnSDKaHV6RGnM247O4CpJ2G4wMDiEVR1AZ5JIx8QCbNvqt6BFKUEY7I5ERGQIDMPcza6xMS2LRqOBThNkMUPYGanWREmMYfRBNgw1tm1QGaxSrJXp9kJCP6Beb2C7DqbqByencYxjOziugxf4JFrT9X1k7CGlpFSqALLvypsWA0PD+D2PXq+Lk3MwhKLX6SKzfsCzMkxA9HNZTItESgyldkOlBaay0Fkf+gxlYuYstE5J44gkjYmzDLnrepuWRRiGxHGEZZkIoXZHRgRC9APwsywjE4qUlDTVRFGIqfqteDrNCBHEQYAfBNiOi23b/fEaITAsm1gIDCnJMk0YRkBGEAYAhEGIkBLbtrAME2FIojhCpxohBWq3dS+MIqI4xjANDKM/8tMHTkmhVCYMArJMk7OsfvB3FOL3dvC9Hg4a6GfwkElwHCzXIZNpfywq3XOtv1W0x097/LTHT3v8tMdPe/y0x097/LSnPf1V6i0v/A2NT5ArDdJs7mAFHWYyl82NTaJok/cePUiWZdxZ8nj91hpD5SKFQoIRmkyMjaNkiTgWVCojJElCFIWkmSSTikxJhFKUKwWOHZ7j8u0WRuZQGzCwTYGR2gwM2BybHmZxtQNpg5nZWQzTpN1uMDNZQ8gar752kfiCx6GjR3BMRaosfv8Lr3BxYZsdXzA7XubkkXHWVnYYHx8kZ2UMje9DbNU5cE+FsbES3eYWaRRQq9ocGTlEd2eFA/sn2VhZpB0pyrUBLl+7Rc6FocFDOJaDMhQy0xhujUsXzlNvtbh8u8Ha+jrrzZhWt8vRqQoL622avQTTlihlkMZdekGAEeeYGC3jdbsY+TzSLkDSQkiJYToIw4I4JEtiMkuRcxS9+R6u5eP3QBgGtqwShj7ObqW6wMS0JYnloMgwhU/Lj/jKs/OsrG+Tz+fxopBaqcDIkEs3tEmaMTE2loSur7lnrsrs2CRdL+TUmRMYIuXifJNT94yRJjG9+k2GysPsnxxidvYoTqWEznwKdkCpUsAxXOzSHJHwiDs+dr5KZWqagYFplFPAtVtIp8jynZt0Oh4GDmbO4fzFKxja5NZanTt35jlzqMa8aTB5+ACz732YV1+/Ss4wGR2dJIoSNlaXWFtZp+sFDI/WQGsKboHyXI6pmWmiMGJjdQ3bMrlzZxEnX2VkfAyvtYFONVkUs7S2QrvjcfDgKHdu38QwbAYGq8RxhyTRBFHG4kqdNImJQsn2dpter03Tinn2xUtomXH80DgF2yWIexyaGUOZBZpeQhRBnEmGKzlGBisYykUaBkopUBkdL0Aoj4phEWvB6NQsaRxh2Q4508CyFO1OAwtBt9lgZG6Gex84xeXXr9Fu+zS2mgxOh8RIVN7ii198mqe+9DzvfGCa1c11Dh44CkTMTpcZHc7h5hz2H5zAyVU5ctAgjXokcZvteshzr7zBvoEKDw1XkJZJmiVUyiU6rW1OnjiMbbp4XodMSkaGapRqNa5eeo5jJ4+QZBmlSo6JgSJC2QztP8LWnZu4hk21WuTe45NMjFW5Nr+NSmFzc5vxQwfQWnHt8jwf/8+/R7PX5fiRNsfuPYNjGjzy2NtZmV/nN3/3s+RLFYQBP/f/+S1skfLOB46Qd/OkmebAiVmidpukGxDojM12i6npKd73be/iDz7zFCtbLXa8kJwpeOn1Zc6ejPHrK1SHxljcXuP/+J0nGR0ocnBmiIvXlvnn//Y/0Wl2OHl4iuGaTSmMec9jD9Bpt+k98TyX37iDHyWcPDzFkalBjEzy+pXbPPnyFfIFk8KWQ95JKQ2UyOVLrK2sMjA8SH1jhVibTO6bIvQDEp2QJhFCSqKgwebmJr/39CV6XoCUClOCKcBRks2OT3L1JiO1POX1DWb27SOXz2EYJiWzQhiEZKaJtO3dRrSUNArJ0oxSuYBOUxqNBo5tYQpNo9PCMBRpJojjBMNU+F6XJIopFCsIJYl1Pwi5Wi2Rlorki3mCICAKo35YMwIQxEmK4+QQAhzbJolCkjTG9wJ0lmGYJogcUmQUy2WsMCLVfae2WCgAmkxnhH6IMiyU1gilkEKidYIyJGT90GadZmRag+rntOgsA2VimRbICKn7eVsiA8O0yLQmiiKESLAspz/SkWVoLfojiUKQyb7TL4RBnGSkuzk2mgABgKAXePiGIklSTDuH1hopJY7rYpgGbi5PkiQo3b8uKQSZTgm8EAgxLROpFDrL+uNFAqQAYzc8Owoj0Fl/54AAy7bRCEzHfTNsOokTMmkxMDjSd8zTmDgKsUyDMBEYiWR7tY5hWZSq1f4d7OlbQnv8tMdPe/y0x097/LTHT3v89L8kP2kgy7JsD8r29Bem3d+vftPN/4Xe8sKfk8th2EW8MMD3Y3q9Bl4UcPzQIWwzolSuIuItdvwmDS8mkh5ZR7K1M8/42ACGbREm/WaiWrGK5eZxbBdEhkbTDSKUMvnAu48h0FhKkEQBhhB4vS4jgwU++cSXODI3QCoEn/z9L+CQsr7VxTQkE9MVhsaG0ChCrXnh4m3ml3v4qU+WpcjMorXTJkwDZkYcxkeHmTvzIcgynvn8f2agXsS1HeaXFzBHjjF6/BFufPkT5AqK589fo9Nt8H1/7Tvp+A2SwObCuYucfegMW3fqYFjEhSJ/8soi5159lW6YYUhJzjT58KMHmZwe5zeeeA4XRa/dQeseMkmxDZsD+0bodjqQRlj5KWwsQruBrQReq4GpBCaC1HQx/RbNVovJAwfQQZco02RRgpFFGG6FxITM99FJguWUsfMJWeJz/Y3rrG/6FG0LKQRkMRsrPVYWNykNjWC7eXSmyHSHRsun6OTYrtskGk6dOk3P38HOD/MT/+T/SeLV2VrrsN0+wfKVlzj9wAOo8gxec42R0XtZvPkCBZmRHztOJ+6SeglucYqV+dsUiiMMHjhLu7GKdMqUcgnm6gKVooNraeZvrWBqgzBt8+xLr/HDH3mQI/uGMKSFcnM88cVzLCxs8l3f/hAiTBFpgsjA8326nS5p5GGkgsHhISId4AUejmVTG6yh05h9+2cQwqD9/2/vz4Iky/L7TOw75+6+e+x7REZG7llZWZW179V7Y+0GCAIkMcBwSJNAUdSMSMpMDyOZxmxmXjRmMkkjkiJIAxeAIECs7L0bXd1d1bVlVe77FhEZ++Ievrvf9Rw93OieeRr1kE1rGHC/p3iI9HD3yHD//Pzv//dr1MhZFt1AM0h8rj1c5tatLb4gzuP3u1SGSvS7BjvbO+RLEzT7TaRW5PN5vLyNJWeZGj2P4xpsbjfpDCJyxSIXb29hmBGf/OSr+H6HjY06Simmp8fxTJOwG9GJO9huDoSkWCqhNcSRplFvE4QDXNcll68ghELHCUGU0N2vM4gCxqfGELrMC8+/zPTYOEprVrc3mO22qUxOc/3ybb71zXd489nTDFUdSoU8nV6bXqdFvlDls28+x/c/uAGJZGRqghhB4guGSh75fIm//+tf5M7N2+zUDpicmUFojTQ0c3ML5It5ojAhJzR+EFAeG2XQ7jIyWsVxSmipaLQCvIKH4xj0212anZjdQZvpqTlUAB9ev8NarcHK5j5OLsdvv3WfZDCgE/VQHdBCsb/fQoVdHq5sMrN4jAsvP80g6HLl8i22NzbZWF3jV774MqaMEIZg6dQZLB0QapPESPA7XYTfo7W/zfjoEP/5L3+S3d06f/SV97j+aBMVN8k585D4tDt7uBZ0gzabOz4PtqDTVMQK8lWPg4Mme80Kdx/uc/HyLU6fOMXPv/Yk33z/Mtcfd7jx8W2qzhmCMOLE2aPUE8H22h4jBQ9nKofEwAhj8AwilWDlS7Q298kVCvS6A9qdNm4uQSQKy4BiIc/saIF7D1tI0wWhSbRGY7DbaNLpGew12ni2yV5zQLmQo1ossHT8GNIyMYoWlm0jhUQCJdvFskyiOCFMYqTt0hn00SrByZXwQ0WYBOmUNFEgIMEn8DvkCgVMYRJHikQHABQ8G8+1SJSiWi0x8KN0hVEIkjD9er2xzvjEJLZjUygVCcMB/qBP46CLY3tpY55toJUmidRhzgqYIp2CaxUTJhGWZWMYJnESoxKF4+UwhERKjdASlE5Dp4UAkQZjm4aJ5Xg/zHxRSXIouzGmKeh2W9i2kwY6xzG248IPNMwQ2I5LHEW4uTwqifH9HlvrW+hDoWx12jieh+PmcF0XwzBIEoVp2ziOjeW6mIBUCp0kRJFCy1SQB2GAJM2RsQ8zZNIp/eHjFhIhBKZp0mm3UXGCaVsYloUh08m4EBKpNZEfYNgmUv9glUfhuQaG1uQtg/6gz0BCZWT4P8weMn7sZP6U+VPmT5k/Zf6U+VPmT38p/WlHax31er1cPp8f/DhvOCPjB/R6vZzWOgL+F4tKhP4Rm2u2r/yethyLZu2AZq1DrVGj1mrSaUWUHcnUxChBbLLRrNHpBPR6AeEgZG5ujKmpERq1Lq7rMTOXhpLGviLwYxAGluewubGGjns8ceYUnd19hG3h5AvsPt7ElAmVsXH+x9/8Hd544QwoeOfyIz738jN8+YNLHJsZ5dj8DAvTY7RbdUojVa49aPPH33yfnf0WCE2kQpLYwHQNLsxP8MlXzvHki59mecfnj/79v6egD/j8q+cYHh1H5eYolPK0928xXKhy7/4aD9d3OHd8CsMc0G8kvPPRVZpB2pCUz+V55fVP8GjjPt/4xtuEysYterRqdcaLBZr9gL4f4jgWR48uoWKfG9euU87nOb4wTMG2eOHCMY498QIjZRdfd/nog2vkbYcXXn+D/qANYR/XK5FgYhsJ9a0NbMsk1oLqzBxKFghaq5hRglEYJQmaWLki65sH/Na/+WNeO3+M48fnuHblKt/4YJWx6aNoqXl48wa9KCaKYXHhCLnyMO3aGqub+7z8xBx/81d+mmK5QGLmMETE49vXuX9vhTd++e+xeuV7TJ97nu3r38VzXWJhM3HmebauvcPU0nM09m7g+yHVsUVU1KHfk0weOUF79xKuY+E5OWy7SN9vM+jW+O43vsuZo4vcX9/h5t0tvvDTLzBcKLDXOOD7N1f4/nt3+Lu/8cvMTY7R6Q3wPAdUiNaCKEpo1A/oNFvMHJljYnaCnFck7A/odVoEQR8hBfl8kXqrRa/RIwpiBn6ffNnl1vUHtBtdhsbyDI+UqBQLSF2gF4dMTo8xNjRKr9fi4e1rzC0sMPBhfXuT80+cxbI8rt1/xO52jaUjC7R6HcaGS3TaNcrFMqbhMfAHlCp5drd2EYZJuVQhigOGh0cI/Ih8sURMSDFfQAqJliBUQqd5gAGEvs/A7xGGCV5pAuW32N87YK/f59jsCH4k+Uf/+quU8y7njg9RGR7l9s09tg92CQcxX3jzDJ/6/Ju0/Zg7129x8+4jBv0I25E4jsO54wuMj1ew3Ar9bpd8tYxtGPQ6PUwTkGCYHioJqW+tMXlkiVazSfOgwbGTZ8iVXdYfrtLvD4jaPh/eWeHtj+9QdjW/9DOvoVXEw5U9DvqC3YN9Hj7eBJ3DsiWDJCKvNaYjGC/afOa186g44LmnL2COjKB9n367gzRBBYqhmTFa9Tb9xi5zJ56iX9/kw4+uMzY1xtLSPJ2DGkGsEFbaWOhYDutb21y5cpeTS1NMzJ9muGqkH2b3dvjyux+hgoTL15bpKIHoJyydGGWoIJkZm+Ctjx5Q7weUBGjHRUpFpejx/PFF/GjA5TsP+Wu/+DlOvfQ6t965yMh4gSQIiAY+5dEJCkN5ipUh1h+s0BkMOHp0kV63Q6vewM7n0EoQBj1qtTZh0Gev1eP67VXuPdoiEQYJisXxPNOTMzRbXYzDNYycbTE+msfLuZQKRcbHxliYm8fxXEzHJkEjDYlEAIpg4JPEim6nQ7mYJ9HpmopSEf1Oh3yhjBQKx7XSVTppYxgWkgjf97Ec54cTVYREY6RTWKUZ9AfEYUQcxWCIwyBsjY4VjmODBsO0MM200dF1vDTwWifESYJlWmitDiUOPNcjSRLiJJ1mO7k8AFprpAat0n8nLRMQaKUwpCQhFUVDyHSyrRVK6/TvX2gE6YqKIeVhYH7aRBfHCX4QEgQBQkhKpXLaUicOJ/qmTZzEtNttpE7S+3F4G1KmazDCNrFMEykNtNZw+HiSOEFrld4fRLoikyQYln34/CcIOAydTldlpJTEKjlc0TEQCEzLQloWWimSWCEMAUlMHIZoHQOg0NimSTAYUNvd59Vf/ofZhPnPAZk/Zf6U+VPmT5k/Zf6U+dNfTn+6dOnSf21Z1t+ZmJgI8/l8X6TBiBkZ/9ForUWv18vt7OzYURT94wsXLvy3/0vf/yNf8bezvkGnM2BrY4Ny0cNw4N69LQzV4xN/5XPs7nbJ5wzimiLoDxir2BhVG6W6BGGJR4/3qTd3OLY/zkS1zPTkGL1Oi8npGYbHhijkTJr1feIoxi0VsbwcnufQyhl4uTJOzuHl5y7wvQ8up0GhjsMg6nHh+Axjo1W+d3mFvVaH43OTvPX9R7x99S67zS6mZaG0OAwa1YQqYK3W4p2LNxhfusAf/OnXOHnmaf7gd/85y+sHnD1/jqHhBicWZmit38M8e47jz77C+PQaTrFIsVLGr68zuXgEVV5i0Nxhdfk2poCd7SaOU+Wzn/oUH378Ho3tHdZqLaIwZHR4mF/4xb/Khxffo1Aa4dd+/W/z9a/9PgGK/iDkt/74PU6vJJxaHGFl5Rovvf5XyTkJW5t7DM8t4ToKU5ioKECbeUrjoOI2ufJxDMvAMgSmfZZB7T4y6WIOn+B773xA62CfX/7lX2Z64Si99Wu8+ObPcPIFiQh2MS2HRy++wD/7p/+UF19+CTvnsbu6weuf/lnObNzlzs2bbG/vUp0cQrVqrB8EDBKTp19/DdvS9HpdOu00+2IQKep7mxRmetxY2aZQXGZkvErroI8OfYbmTiD2VpGuSaFyBMvK02guU3EUplsgj8XSiXNgJJw+scTc3AyTR5fYX9skEsO8+eoE504ep+A6vPvBZeZnJyg4Y0SRQiUhQ2OjKARBEKb5R5HCHioghIVh2YThAK0VxVKZMEpQQYTfaSDwiTs+Lz91nAc7B1y8fB/p5NFxn5mpCjPj4xSrVSwpKFTG8NsLDI2O8vDuHWanRpG2oFbfZ2ttm/mFCYoFm5xdwnU8huaOIQ2J1jEjdoUgTBgaLmOZNlEQ0G/WMVSaI6K0z4PlTcZGykgJB31wXJPFuTkKlQJBp8Hdjx9Tb3TQep0wUWwe9Ll9f53hUir37V5AsxvxaKtBwj3ylseTJ8Y5dWKG+dFhoihmaHKKl4aqnD//JO9/8DF//PUPWTw6heM6mLkqD+/dwS2UsCwLp1qkOlTGH3QxLBPTzoG2iavD9Nsdcp5NX0f02gcYzjhBr4frOXQb24yMVjBkTM4pcO3mLfxIMD1ZpKxtaoZmamIEEYes7fYo5g1+8c2n+PjWY5SKuPdghRcvnGbg+wwpIAqRwyOE/QHX79/h5jcu8okXzzJ3ZJHEiGm0WgxXK2yu7zJ75AjKKmCpPpEfEIYBvUETnWhmx8dYXq7T92/yKAzY7w1YmB7ntQtP4rmS0aEqb71/lYFtkHM8nj83z51HmzQ7XUzLxS5VCQY+x2ZKBH6fpeMTFMtFcvkCm5u7jC7fZ2lpGm0Jos6AGyuPyQ9V+eD796mWPAr5PL4asLL8GNQAQ0vcvEez1WRvbx9h5tjZ3GdsYoy/8tOv0W42UBj4Qcz42BBRGNFutfDjGC0kne6AZqtDs91nMIjx/YgwjBkaHk5/D/0uJ46fQKMRwiSXKxAMeuRzDkiRrmtYNpb0MK18Oh2FdH1GgSES4iTGEFaayRLH2LYNIl1R0XGUCpxh4HoeynHSDBahCUM7nUonCsNIQ62TRKF1QhxHBKRNbVpIICKOQ/r9PrZj4+UKBEGMEBLTMNFCE4dhmmdlWQilSZCYjgWCdDXlUBBDFeO6Hok6lL84bW3zZBHQxHFAFPqHshmjD9dttNaYEhIJENPvHmA7HlpIDMsiivqYlk2pkCeMw8NpdYI4nGabppG26hkGaJCW+cO1GKkFhiEBiJKYMIrQHGbmaJ021RkGSh+KNoAU2JZDHMUEUZyGkScJsT8gjhPy+UL6GLTEsAyENkiUIo5DgjjGsG2GJ8b+gyQi48dP5k+ZP2X+lPlT5k+ZP2X+9JfWn/77KIrY2tr6NSFEjv/pesmMjP9YtNY6SpLknwP//f+/b/6RD/7+6b/+Kpu7Nc4sTfKpZ5Zo1vpcvXWPas7j333tu7TaHWYmp7m/vIlnudQOYLPRxe+bGO4m+/U6nXabTrvNr37hDcqFHH67iSkj9KDB1PgYU9Mz9LsdVBJh5nJIw2LhTI5GbR/TcHnqmdMIU9Hpa6oVF7/vc2xhivWdFkEU892LD/je5WXarYC5qQr1foiME6TpEqsYgwQRGmw3B2zsbPPkq/vcuHmfhaMnqAyP8PDxGi99+md494N3mJhZ5J1rd/nozibl0neZHSlTKnq8+lN/g1sP77C0cIxytcyDR99neshhbGacmfUpnnr6Wf75P/sttjbWEUYChk2n1eVzn/8Mt65f5d333kMkcOYf/gOeeuYZ3nn7bQqFPLVeyHyYcP9xh6Q9YHSswu6DywjTx+9usnDyZWq7d/nOW98jN3mUF09O0m03ufvdK5w5PkkSGhRmTvL40SOsQYfx83Nce+frjA5XubixzBf+s7/HnWs3mbrwOncvfcyY12Jqcoqnnn6D/8Pf+kWGZo7yp9+9Sq+1C3s3KRHz2nNnmF2coF5vcuvaXd65dAfDNPm7//v/Ehm1WTg5R0SEnTTZ2GwyPlalmvdYWpgjNjTdZgedJNhFi6jbp3Owx+j8ErITg+gyuvAMwd4dkiidHB85eRzPMWg1W0yWh3DyHvlCBcfNI4gxDIO7t+4yUiwxVqkiJHT7XZr7B+w22tT2GyzNTWCJhGKhgGmaJDLA81wcz0MISRxHGAI8V1I3LK7fWcdXMeFglZWdOnvbBximwSvPnca2Ja7tpW+UCdj5HF65wv0btzh19jSrK2vcuvGQoXKep8+fZnu3zubjNWanckxMT4HhYZmSXrdL96CJ4ZhoIixpE6qYUqVAsVTEtR3+0e98hY2tPl7Bw48D2j2NIS2qpRzHj4zxmdef48kXnmdvp86X/ux9rj7YpN0OEUnEQbeGSMDzcsRBTNE1eOnpJVwd8vxzpzhy7DTN2j69Zh0nVyCKFciEl156mqnZGboHW0iZkC8UGR2a4MNLHzL2+svk8i69TgfbsxHKxjAMIj/ELhcxEwO3YNNt1xBCUtvd4aDeQuZtlpZOMBGETFcM9g9a/M6XPkBg4AejlNwCn3t2kW99+JBeV1GtFJgYdui1Orx2YY7H69tUCmWGR6tYMqHbrnP99kN26gF3H++ysrZOwfOolFze+eguzz53kqTfZWZugsrEFI/u3KfbPmBkcpyy4yKxODjYptY3aNXblEY9Cp7F1dXHLK/vc+bIEb733mXmZscwHY/ZuXHOnVxibnwIqTVPPTPMvR2f1a0em/UuKhmQrEZ4QnL97i4/9fl5JicPeLi8zerDR3T7AUuLR/j69z6iWJBMHjQYtJrs7m6xudPm1IlFas17nFmcYW52Hts0yOU8JqYmadUbzC1Oc7C7TXFuAosy9+4/YH5+jnzZQfmSsZF5tnc2yJfKjAyPM1CSXv2A3Z1dGgOfvUaH7iAg59m4lmR19QHVaoVCvoTAwPE8DNMgiUL6nQ6Biinlh0m0QlqaWEkUJmhBHCXEUYCXt7FNG9dy8IMgXX+JAmzLQekYHUVp2520sR0HoVMhU1qT9uCBND1UHKemIwQg0UISJzGOk8M0DKRholWa4RIEQVoSJ8UP12+EmTbtqcMMGCnFDzNwtFJoqTBilbbZSQO0wpISFceEcYLt2Ni2h5RWuiIZa4hBSH0olhJHWOhEkyQxsT8AKYh90BoSw0AKE9M007UTIZCmkT52QMQxSZxgmOnEWgiBVBrDTgXbNE1EbGBa1uEHbJXeMBxKq8YQEiHTr5Mknbb/IIDatizQJgJBHEUofRh0La3DZznBsgU6UYBGGP8rtCHjPymZP2X+lPlT5k+ZP2X+lPnTX05/unDhggL+20uXLv0/gUlA/nh/QsZfYhSwfeHChc6P8s0/8sHf0ZkSTx2bYrjoMTo2SjuqYbkOy/sD7n33Po7lsrMvOLk0xsLMBFLDBRP29/r80dsf0PcFAz+mGw7Iuzb9fpuhsRI6GNDRGitfxLQ88rkCvU4TE4kUBvWDFsGgj1s0KNoWr738HLnKGPWNTS7ffkgsDCZGSkhjnQc7XVyp+cVPnQIV4zomnpvj0oNlmt2YJAaNRgqHAQ6DWKCkz4OHj3nq/EvEQczYyASbK6tgKJbXG4yPefzK3/xVXDvi8cNtuqHg/t1VVtb2eP2TQ0xOD1EoV8lPT/HXF4/yaHmZV49V8Bdc3rqyjKEl2pIcOzpPvjLG+RcukCQxM6PDrN3vYgsLx3BJVAJSMTxiYSY2ZVPw4coq1UKB9792hSee1/yLf/lbdNodfupzP0d7c5WvvvUhn/jZX8Hfy7H64AEnOkXefecGtf0d3uiN8c7FGzzz9Fnur6zy5i82GRstYiqHysx5bDdBTBQxkphSYZhbH73Hr7z5HM4vfBKpFN3NW+TyJe7desTWxi5vvv4UtudRD4f4g3/9L3niWIEotpl+coz/1299i/1Wj3Nn5vivLvwUqnvAxdUa77/9FmNFi1Pnn+TFl15lbiSH3n1A0g8RREjXxi6NkDS2cXN5csMTaNMkXx4lSRKS0EdLiSJGJzFRrDh6/DgTk6MkUUwY+Dy4d58wSojimPPnzzA2MoJK+kiVoFWI0P5hlb2DaZpYhkIpwf/4m3/I6kaTg24Px3VJYrCF5I2XT/Lp1y9QrQxhuRbCkihxeKm8UjT2NqgOFfizb7+FMDzarT65xVlu37nN5m6L4bzNmVOvI1RCfW+DbntAMWdQLBfo9WKKxSHqu7uIRJAvGDiOx872Ns88dZzzT1rkXZOR0hD3Hj3m5soagyCh2e/zf/9//w7TI1VW9nboD0KkdpitGBybG8fL5Rn4AVGvzvNPH8fK5Zkbn6I0VAR/wKDdpThUpLG1TRyH2E4OyzYwDZMTJ0vsrVmYtsmgtcfU7DCvuy9iCAspLFwvhz/w0VEPUyss14JQkuiE7Y0DLl3bZGZK8/HlazzzxBJnTi0S9xS5UpHx8gHlUo6Xzh3h/Tvb3F1pcPqoZr+bp9Xqs9fpMFYokpOSRqdNuSKZGh/D74e8c3mVZBCQkPDxtU2skkMYxfR6EIddvv3OJQZhRK2+w0jepmg9gzYF80sn2N5+TNRtYU9NU8jn0Zbk9/75n3B0YZaJ6iTSgKfPP8vifI1vfP8Gy7Ueb9/cobbXwLQMqrkSAg1ScufeDmtrNZr9AVJLlI7Z8Adprswti1BFuK7HjeVdOjE8sTROu7XHqdkqT5w+ze27NxkddzFaJn/2wX3ubdQJBx2WpqYwzBhDB4SdFrNLi0Shj4UkPznO8uoKpukwMTGRrkx0NFHi49gu80tn+NqXvsnnPzuMZZgcPT7PieMLfHT1Jm+/f5FjCwsMWoq5yVE8FWELQd6x2N3ZpN/sURgZolQsoUs5ytqh7TcJgjR43TRcpGERhwo0OI6H1gI/iNI8GCRaSxw3B/rwKhqVyqIgQZAGXnv5AoN+D60SBBpLapRloTRYlpOucgiBDkEaViqbhoUS6rA9DoRMJ8lxFGFakPgRhmniWg5BFBKGIYY0DldKJFpoXOdwxSWO01wXIIkjbNshCIJUHgFDyHSynSQkh2svWgss202zcAS0my2EBrSm2WpRrVSoN+vkC0WEkGhh4Hg5LMtEKY0hLLQ4TNZNkjTbRmsQoFU62QewLCv9EBilE/8kSbAwD2U1lX5hCJRKkDKdqBtSpiHbWmNIAyklCJF+DSRaY5gmUqa/D5UotAr/V3hDxn9KMn/K/Cnzp8yfMn/K/Cnzp7/c/nR4OPMjHdBkZPyn4Ec++HvtqZNUJobY3mtz5cEeD9d3mZyYx8516PRCVAKjwyVeeGKBUt7BLVUolEqs39/EtJ9ja6/F9m4DoQOa3RaLM9O0Bj6txgHl0WmuXLrC4vw8a2uPmZyeYSK/SBwFRFGXt79/k4nJERanR9nYrbG6/i6GgLGRAjMzM/yrP/wOH9/aZqji8eSRMWzLotMNOb0wwt3HLaq5ISwrYGungWm6lHIOnlsCI70UeuXuVV5/7X/HwrF53n77W5iWwLNMRodzfOJTn6CU7LJ35wHvf/8eIzNL3FhpcOZYDtcUuFaeIPTxEs3G1a8z6LT4tb/9v+XaR1+jWs1TKHjs1RocHc/z23/4pzy8+RGmafD5N5/BjCNyBRsdx1QdhYhCDppNtm4/5MWOz9c+XmZnZQWnPMTQYotOW2PZDrE0efv6CuTGyOdt/q//5/8abdr8g7//f6IbhKytbJIrOLQii+uP1vjMhWNUh8r04oBSPuJ73/pD7ly9iJvLcezYMW7fe8z09AjXr16m3u1z8skXeebMEne+93UmJseYmxum3+sye+JZbvzJv6EsfB6v+uzubrFw9g2mpqYxzG2Ukafe6NBp13n6mde5cMTm5p0HDAYJ3a2HjD19Fh1bxMEuYdtnxCqQ+D1iaRKoEEcnKCxIIrTqg4Y4TjAdmU6fY42wbYpjk/idNtbA4Mlzp7l79yGOECwdmUFjEccGmDGJf/jGkwjiqIeOfVQSMzpS5s3XLvDV712mvZKQBD6lYp7PvfYkY1WLTqPFwpEZtBCIKKazW2e985Co1yfwO/gS5sbHWDh+Ar/X5fHqGjqKqFYK5B2DYnGEwPf53d//EsNVBy3gF371Vwmbm7z1lW+zsDTPkZlZciWH9y9dY3N1h0++8RyVkQoKxfrqNsP5mDfOzeBYJtNTU1weMylVipzaczm+uMD+fp1qNYff79MPYlqdPkvnz9Nv9xnLFRgbHsIbqRD0+kT9DlKnYbW5fAFkmnESxAppWUwcOY4/6NJvNVDA6PgIvX6f/mCAl89hRhFRFKHiPl5phvX7a/zuH3yd+n4LUyZMrG0wOznC9MIkhrAI9ADbjFlb3+Rr717li59+mZXdOvV6nzeeO8YffOMy7YFmdKhAzrERBhQKFUzTY25qlI+uPebbV+/Q6fvEAuJ+Qr5rEoQ+fphQKTmYloHjWDTaXeZnFrlz/yEz02MI9RAnlyMpFDHikCRxGR6bY3R8nLsPVrl6Z5Vus0NiuESAJCEIYnphgKkVhhB849IyfLRKGAXEYYKQMVEYYBomUhhIBZZlsLZb49rdVcrFAp044sbyOtub40RK88VPP0+jVWOvFdLc7FDMuTx1fp4jk9N8/8NbhIMerWaTvFtkeXWNL7/9IdfvbHHm2BzDlSLDRZexEZfR4TITc9N0GgMqTh4hLK7fuIEmwslJXCy6/RY51+WZJ8+AjhBJQhQElCseQbeNGhpCIMlXCjy+f4u93TWmF5YYn54ljCNGC9McHDTo9Qb4/QFDwzZ+EKK0IBoozDDEMs20xU5phGmQRGnuiiElKkkwpIFWiiDsomKNCkws00DaFnGcEKu0ZEopBaSNbgIwhUQnikSBbTvEcUwUhXheLpXZH7TIHea2oOLDNRYLtEZKkKS5NunaCwghDrNuBEKnmTQkGksaiPTzCGHgpxIrBaZpo1TadqdUglbpJLg0NEKSxAR+n5yXY9AfoJOEbquJadkIQ6IPV2MQ8lAaNRp92Hyn0kk8BkKIVLQNI22vMwxMw0IePn/JYVuraaRvyXESp1f7OE76wSCOfxiSDaTPhZSAIPmf5fSmk3KZTsht98egCBk/DjJ/yvwp86fMnzJ/yvwp86fMnzIyfpL8yAd/9W7AjYurXHm4xcrOAYkCI0loDQZo0unDg82Qb30/YGRkmJnRKjMLk8Q64OVnzx2Ge2oePnjE5PgMd++vUTvYY3Zygt//ylvklMH8kTmSWKEjHxV2EIZLEhvMzIxRHi5g2Q4bW7vE0YDnXjnHeGWch6uP0InBz775BBNDOVYfb3H/4T6jQzb1gy4HBy0WxmwSp0yz1We44vLs8RlKFZOF4SoLwxMcm/OYLip0boo/Wr7J808epVIwOL84Q9zbR1bOcvLFRYpzz2DnBL/0V3+RCadDPu8itYkZgh74uJUq3foW/X6TuZMv0Wp+neX9Hvc3Btz/17/Lr/3q36D58jlMw2bfF3z13/0eUbeFa7v0kwCFot/1ub58wOrOAUmoyRdzGHkHYUiEpeiFikavg7YM9vZ3cPMl/jd/9+9j5SyQipdefoPrl6+x+XiDv/V3foNxJ6GQd1hb3uPK/S0Wgvf59V/9G6y8/hJCSIZGhrn93/13TJ94knJxCHN9mVx5gj/++nusrdzBK2wyP1HlMz/9C8wVK3zmk5/DdRxyuRLX3/8aW6sX+Y1/8A/otWrYboGP/uyPOXV8nMWjM5hnTkLhKjeXH3Pr2mVmFqYxJ54g71axyz4Ik8Tv0Ot3KORzmEKQJCFIRRgZJGqANF2kyhNHB2hhIbTGNHLkSiax43K0WKRQGeLulSs0DhoMj46BclBBQCjB9Vy0NnAtizgYMOjW6IWC1196mjPHF/mDL32Py7fu8rd/5XMcPzrD17/+baZmFlFRRLvRodPcR8UxrpfDLRXQxFQrZWzHoN2s4TouluUitCQOfUZnpjCMhP2dA548ucCRxVlWV9fRB3uMVQucfuIk7398h0qpRBA57GzuUi5KhOphk2O/3uTm9Zt88lMvIeIAnRjoRFN1bUaGi5yem2UQdbBEmf3aPrEYMDY2kWZXBH2ixCc5bBgLu12EkyNvO/Rq23hDVbRWKJ1memgEpjTod1tIAU45j2vZaAWGncN2bUKVSoldyqO1ZK/W4F/8269y/d4GSRwxVnYwLcHLF05SKFU42K8zMlJCK4PK+BhxHHHt/iNa3Zg49An7XWqNkNPHJ5ibGkdaHhMVF4OQE6ePYpkOH9/dZuBrbMckjgTKihCOgSlMPNsiCGJsYSKloN7o8+G1h8RJyJlmnzOnF3n9zFl292t86StvMTY+xjNPn+cLn3mJVr3FQXuPne0OzUGP7VpArd7j7PlJHq7v8nj7AGGaoBP8MCKMExAKqcEwLJIkSi/O15pYa1QEbj7P0HABml3ydo6byzUa3QjPu0rOzPG40WVzt8Gwa1Muu/za51+i022wsrlLKwioVEf51of3eLi2Q6wcvn91GWkqXjo9yfRkFa0T2rV9wjhgZHSBrh9x+sQci7NjJN0epdEysXAwDEESBFRcm3K5xO7+PvlKER15OHmHwO8TSI+3P7zBsblpbDePZRiUJsZJYp/BoE+z0aDdPsC2ZqlUqgSRRloOSeinsheGWLZDGIRYtpGubySHKx+GThvlIp9k4NOLYwqlIgkCL19CSInQCo0ijmOEliSJxjAEURyjtUDpBGkIbOGkUqYkClJBFOmENvAHCAG5vEUUJagEQpVOuKVlcujHOIfCp8II0zTRpNNgrRNMKw2BFoeiqxKVTtGBOI7QOgEh8KMYKSWOm0clmjgKsB2bTqtNu9XCshySSOEPAjSQL5RSGTaMVPKThESpw9tNb8s0zVTatT7MpjrMp4ljlAZpppNroRJMM317tiyLIAiQQiAQqcQKQEtsy06l3pCHQdspaR5Qlh3954XMnzJ/yvwp86fMn8j8KfOnzJ8yMn6C/MgHf//8339Ed5DQSwJAYMQmYRyCEAgBGsX+XpdL7Qjb3WdiyOHcwTzHpkaI1QiuZWCIHs89cwKvaLOxU2dzc49mO2Z7p8sXPnWczu4ek2Pj1A7aPNq4AihmJ4d4/Y3nMQxNPAh4XpzE72tkpHnrOx8grIg3LiyRcwStIKHWLFMqS5qNOo9rTaSwqbU1y7tr9DsaWyR8dO0xwxOS2xt/yNFJl1fOzuGGWziywT/89Z/CtQxcf5lq0Yb+Hv2N+wwci369xe/+znd49vzTnH/1CR7ceY/p8XHy1VH6zWXiuE+uUODxrct4xTz7jZhmM2an1uTIWIlJecDi+QV2Nh5z752LHBk2udsV1FtdHMfk4a1bJEphFor8y3/1m4goppTLUW/1ee977+DYDkIa3Lj0MX4QEIaKf/SP/j8cWzzC2soytWaLuel5lJHw+//2d5idmWdhfobb91f4e3//v+JPvnMXg5v87V/pcuaJp4hEjOpuc3RqnK99+U+Zml3CzZW4dvWr1Fo1ChZ0gib12gH31v4ZJ2aHOH50nM9/5nVyVpdXPv0m3foB733lD4gdk4VhG91tsbD0Ar3dW+RzIyT+Nje/+xWwFKceXaewUwOhyFeqqG6eQRhiCoN6vUmn1cPJOyTBgHJpCNsuEsU+sWrg9wfkCyZGEiOiLnEiEIaFkBYToxM0pmZptbpURsYQjiRKElzHQhkuCIMk7CMsTa5Yor67hemXGJ+a4u/8rS+yfOc2lYlJHj3YYGpqhmJO8vDGTZTWjM5PMjY+Q7/RIPC7FGMHFQV0lYFpmigiEAkasE2X23dWOXH8BIVCgbn5KQqOYGlhiZ29Bt+7eI35ySqTUyOMjo5w79YDXnzuNI5pImNF0I/pNtoM5/NUvTLCsdjZ3WZt7QHjM1M4UjI8M87j1RZKanJenu2dDksLFZyjHs39NnnPYWyuinTSy/ctqZHCQDgetldERTFJEhP5EdI06Tb7LF+/RHVkirHpeexSGVRAu9vELljEHZ8oUBiupFipcP/GPSaHh9gurPH0mVMctLtsre2wX/M5j6YdxZheDtXqMT07w7lTCwwGMbVGA892+dJ7yygrTxjZvHVpmRfPHeX8G89z9+5dLl68x+lTZ5gdqvD0yQrX7jUoGIJiuch+O0RhI0VIHCv8JAEpEQr6Aw1I3rv5mE5vwORQiRMnjjO3tMT33nqPmYkhjh4/y+L8IvXaGskJ6Pstau2IDz68zlBJUsh7JEoThCESi0hFQALKIk5iLCEO80lkumKgTJAgRcjo8BB79T4Nf0DPH2AlBtfu1VBJxOj4KPVWQKPnY9fa/A//5I+5s9Mk6PjkXZuJ6TE2ai063S55TxFHBq7jYJgGtiXIeS6e6xF3IpSGUqHIwJFI2SFUMcqQONJEmoLNnV06rSamKWk3u6ytX+GVl1/A77QJI8XAcKhWRtjYO+CJ80/SaOyDhsrEOJPjI7hElPOCfmsfBh0sN4dXqmBaBokKUIlCSht/4GMZubQFLlEYRiqGpm1j2SY6V0ivcIgiTEMiVIgBICQJGtsy0uBqFYMWSJ1OrIVKp7lagxQaKUQqc9LAsS2SOKJQqaDj+LAlMZ32qkQhDYmKFaZpI2Qq1YZhoE0NKkGQNtClk+k0JkepNJo68AO0TgVZHmbVaK0wTAulFBqB7eWwXQ8BFItDRFHE3u4uYRiTqBCkwA9iPM/DPvz9SZlOqlWicB2XMArTqX4QEEsDw7bT3B4hMAxBrpBLI2uU+uFkOzkM3jaMdD1FIoi0TpvsBERRiNAQa4VOVDrBlwZSCLSRZUf/eSHzp8yfMn/K/Cnzp8yfMn/K/Ckj4yfJj3zwd9CNSbSCWKCBbtzFkALLNFExmMR4JY9WP0F2fdp+xF7jPnM/U8aK23RrDUpD4+RLQ2hD8OSz55mdHWF1aw9pWVy+uckf1e6iZTqVtqwcJxameP6cYr95A6E0f/rND1maz/PGC8+QCIuiqxC2xZ2Vx4R+jLBcHq3vUCzYPLk0wXptmcdbdaIEfD9EScFms0POyKGdYbpbG5ydmcR0i8wvHqFYdNmv5dlb2SHWCceOziAFfHjlMrdurpFIybXlLYbyee4t36O51+azrz/BqXMF3LyLE2vurtxnfafD2n6LWgv8aMDc1AjPnJ0Dy6Kzu8nEUJm/9lc+y6AT83D5ER/dXOGjGyt0gx5ojSkF7d0mWicoLZEmdBs+tmlSLHoMeXlGxvJs7nVY3+lw9eYNXMsl7zns7GySRBH/l//m/8bV77/LpZvXeOlTn+LmjWu0/C6jlRLXb24yVsgRRZrKWJWnTs8gjJjt/R0uXv+IQq6I4zrEoUKGCaHuo1XMjeYug16LnBREWrFfq/Noo8btu2v8+hdf5vJjnyPzU6wvbxKHCRNHJU7S4adef56rN+/SbwaMjMLXvvwW7XaHL/zSz+K4JfqRIlYhlnDZfPAYUyXc7d7lxp1NlI6Zmy1z9tgx1IhPoVTGH8Q4bpEo0AhMhGVRmZnl4+++y8LiAo6To1dr0OrWqI5LDNdLG7iERaJj8uU8g16Ibu1THB2hWB1jZ2WFnKVxSh6u5VKLEmbmxkkiEAoK5TKhPyBfLDMY9HEMC9v16HV72KagMlJgv9Yjljl2drcYrVa5fe8+uVyV2ckSdx48olwqcXZhjpsPHmA6JvNHZ1GJTzQIMF3BIAgJdYxbNOgFbfJOkVKhxOb6BlOTUwyPVgk6Xeq7BxxZWGIr2GBsZJhG7QDTNhkeTxvt8l4Vv9OlODmF43j4/Qa50jDCcFBJwqDZTKdiQTqxm5idI4pimo198Du0W22SQUDt5iOGchaWa3Hlzjq1ZpezR2f4+U+f55d/5iUc18GPIu7efECchGjTYGR0DBVqlGdz98p12l3FB7fXSYKE2LBYO4gxdMSVe22EbfG9i9cQ9BjJD/Otd65x7/EeP/fpF1h84RSr/81v8+z5BVAxt1ebNNt9+iH0tSJMFK6ZYNs5TFMwCBTT1TyTIxVWHq/h2CavvvwcZ5YWWF15SN9vIkxNeXiYwSCkMlHlT/7JH3Lz8QH1q1v4vS7CECQqQegIS8r0A48OUQKUMHAskySOEMKANMUGIWyu3H2EHwikKdHaJJCaVi/CFJrl9Q1UkoYgdwV89/YWGp3KJib3ljeJtcL1LBLDRGuNoQUbO31WVvaoVoYoHTlCGMZ0W01CP8J1bQpuEWyBMNP70mu2MRFMzs6QKMXxkye4ef0a9b0dtFaEvo9TKvLmqxdwcjk67Tb5YolWu8a1G7eIo5gLF54kly9gGQa7m+tUh4cQlsaxiyidypcpwTQF3W4Tx8mnQmXaKJ0Qq3QtJDkUSAODJIrwByGGZWLbNkqKdGpsCoROp9eGSCfF/cDHcV3CMESrVOi0VmDZafizlIRBiIpjTMcBnQqaNARhFGNZBlEYpqsqhonEQBqpLAtxGAIdA+jD6a5OP3C6NlJCouLDTJpU+GzbOcyuAYQEVBqOHSu8Qp4Zb54g8Ol0uzQbTaIkIep0EJ0OjuNQKBZT6TTTFRbXcYmCAM/1iKKIJIrS1koFcZLeLynSqTaGxDIcUCqV58P8GmmZh3Ktf7jCIwBhGERRiErS1j8hBK6brar8eSHzp8yfMn/K/Cnzp8yfMn/K/Ckj4yfJj3zwF6sIKUwSEiZHK1RzFWzbZW2rxsDvMzE6TKQU3V4DxzYRhok2FO1+G0NOY3k5Ou0DvGKRXGmYfMGkcvwkw+OTnFxc4M/eepf9XszDx008y0N4NvVuyPtX7vPk0XGOL44xM1FBRz61nU0OegN8DG7f3KTW6hOqAAOHerOPPOhRP/B5tFknRqZ7/RKEVljCwvFsBt0Bg0HE80/PMjszgtYJ+1t1HNfhyImjNJoH1BodHq1tsbFV5+c/9QKYcOL+JrfXtljbOmCo4LJXb3LBMzFMi16nwztXttlqxnSCiKWpMi8fnSPveeg4YWN7j8X5eRCKg70DNCZnnjjDkWNHOHNymbcv3uLGvW0SFYGARKh0fUNplIrSENKuhalipkSOnNRIqfGsPKY2SZA4ToST9/jD3/0dPvXm6zxz4Rx5L+bK5Y957tRROv6AQsHAH/TJ5wo8uL/KrYdrLEwUeeXJRbRI2K4H9P0eAxVjSQdJANgEseLWo13uLO/RbfdxPBvLsHCcEpdvb9Js7zM7XSHwQyI/ot8MGZ9ZYmRG4FVs/H6ANBTaKzNcrqLRDAZ9Bt0WYxPT2MUSvW4fkQz44L1rPN7aY3u3w/HtYSaqeYRIaBy02Nk7QAtFu92l1YrYa/ZoNvd4+tgRbMcikiZ7tQOmpsZIwlQ0dBwRiwRDCxLlMjJWpNVsErT6DAZtkjhkdnqC5fVNBr0uXt7CME1EqNnbWGF4egbb87AsE+nlCTo9oiQmVyxgSUE3Cbm/vM/1+3sM5UxwNvng8iqvXjjK5FiOibFRRstD9MOQocoQjmEwEIdrIHlJEA5oHWyBSjh78hiG0ASDPo7lMDU1QRJEaGngD3wc1yaMA7ycRb5UptcJCfs+vXaThWMnsEwTt1BCa4mSNsi01Q8pDtu2AvxBFz+IaLV7tAYBOzstljdrrG/VEUrRbXfwHINnTo0Q4vDxnce0DloMWc9SyhlcvPY+n3r1AsVCiTOnFun1m+zt7eIHiiNHllAqYHevwVajj/A8nNEiSZgQ65gkkli2i2dbFPM2H97c5qnFiH/4G1/gzr0HGI5FgTxnT04Thz5Lc2Mcmxvnwdo21x5us4+kF0QYIg0EToiIE40pNZarWVnfRmm4/2iboeExPrxd48qDOp9+4Szt7oD1+gH9IOC9e7v0e37a7mUYxDLB0iAsGyFBY6GiGKEkiQ45NTdLeSjHykYdEQyo9yK0NtBa4BgxkYowsVGGRoqYINGEUYJAEqExUGAIiGIMUxJGXVSiMQ07vfLHcjCUpu/7XF3psbQwzctugZ2tDdych2OZ5EfG6DfqNPbXyQ+PooOQysgYiYp47/2PGJ4c4fyp0+xubXH8xBH8QUir3cV1XGSi8AoFbMtCOw7bm485euI0jYMmjplDiQTDczFNl/HpWTAtGs0Orhnh5nMIIWk1m2itMaUkCSOktEhUg1zJw7Q8TMNAmKTNooYF0iCO05USkWiiRKGUxpSglcA8DKrOmXaaCRRHGIYAHacBy1oRJjFxHCJNG8/1SISJKVNhDsP0CirLAkNqhJTpumMSgxBpILSU6SGAUpiWRXKYERPHIZp0whsnMWiVBl1rMAxJ4PdApiHuhmWQxOkUXIn0MSSA43p4Xp5qdZj92gGbGxvU6jXy+QJBEIEQFPMlRkaHcByLQi6XTp6lTIO1BSSH+zVaAzohTnQqyofNdp6Xiq5GE0YhKk7SIGrEYai3kYaAC4FlWf+zHJsf+e094z8xmT9l/pT5U+ZPmT9l/pT5U+ZPGRk/SX7k/9nS0KAlU0MlfvaNU5xbWqTXG7BTa+MnIdeu3WFzv0XBM0m0STlnMT1SouB4RNJkqDoKfgvDtDEsC2kY+IMujmtjqDI//ek3eX53iz/8xmVub9WZqNjMDheZnnI5MjnMxFCVZ56IkBKuXl/m7WtrtHoDlBBEiSCIFEo3f5ixsVvvobRGCEWiNQrAEIjEIFbQ7QcINMOlHIXhEbYe73BQ22VyboGxyRGiRpPdnV32uzH5nIuiz/jYNOXNPpG/Rt6x0UnCIISPL14nDDXXHy3THEhKFY/5XImJ4QrV0jD79QMMU/Lc0WM4rkHQbdHrdQnCCMu1cXI5nnv2aY4uHOOtt9/lg+u3OWgl2NIiCgMwTbSwMKSkkMsTJBF31/aRaM4sjKF0xOPtLr1Q4Foe1YpLvbbNb//2v6JarfL08RGmRoZp2C5nFyd45tw8WA79VoPt3T3yrsHcxDhTI2V+/eff5N985X1u3PORBiAiTCOXZh5gE4chUawQpiARaTaC0oq7azX8fsS95V2Ozy+xtv8YL2fgzc3hmjZzSydIgoAPPrpM3+/zxiuvosKA3qBPu9UgV6pQLXgIFdDa3+fEwiRnF+Y46PYZKTn4HZ9ersvVqw8RlkIaOYJ4wN5eh14U8clXn+HpM0v0m22u3rvC+v3H/Mp/8Ut8+J13mZmfYXRqFiVjgk6XMIgwPBch0svGR4crOJbBIIhYX1ujXCiwODfFzv4eSSKp7x2A4VEdKtNv10kSkMKg3x0wOTuCmc9z7+EyvUAxOlairwL2N5q8+vJJZgouQSeiYEka9T0mZ+foD/oM+n3yhSJ+4JMvFuCgRc6NUNpCCYPaQY2J8RmEipmemsDv9CFKMCwL1zLx+310EiOlRaFYZL+7Q7lSwbZt4iQEy8VEI+I+Oo5I4gG2U0olKvGJ44hLl+9x8eY9Bj1NL+wzO17gudPTvH9zk8ZgQKAFb12NSKKE2NQk0mJ9s06+XOb963exTM2LzzzBxOQMa48bFIsFkiBic/Uhk5MTfPZnPs0rQcIffekdvvnu7XQSaLjYZgBS4YcB08MuvdgjV/AYm5rFq1QRUnD/xlVef/4c9+7e4cj8LDnX4fixaS6crvHux3do9gLiJKbdl7R7PlrFlMsOtfU6lWqRy7fWebTdJAwUA6nIO2Uu39/g4KBDoGJUnKASjRQKlAbDJFESoWMghtAkVgHSTHBdm5xd4tjMJGdOTHHmeJ+nTi9xb22dmzce8s13r2OYDlFsYYgETBMDRaINTBGhVICQFqayCGIf17QQhiBUAq1D8pZECBOERJGQxApPWOgoABKENkjiiH7oI32FabkYrk0Y9Nnf3afgGdieyc7WPlvb+8wOF1hZWebEmSdoNTpsbq3x8qsv4uYK9P2IWCmKw2Ueb23QbfmMT85hOYA08XsxzYM6UjjcunuPMI556tQiUaKw7ADDENiWRbPRpB8GlPIVev0esq4xZB7TNBCWQc71cGwH23XREgxE+lpmGDiui9CaTn+QrgGZFoY0MSwXy1DEcYREEychiVIYUqCTmDCOfiikylKYjgdGuj6kVYJSCYaUaBEhxWEmTqLRKl3tsIx0hUUJQRQFKJU24YX+D7420D9ogTNkmssTRRhG+vybQhInEWgJQiKQxIlCCoXtuExPTzMxPkav1+PgoMH9h49YW1tHCUFpM0+lVGB6coKx0VGE1iRx8sOf53oetm2nP1scZs2INMx7MBhgWRZSSKTtEsuYMAyRMl0TDQL/MHNHEMQxlmWn+Tw/COzJ+ImT+VPmT5k/Zf6U+VPmT5k/Zf6UkfGT5Ec++HMO67wLjsX26iaDRheBz9NPnaVaGWKi6NIfxHzj3StEkWJ4OE+31cXLp5ceg0l5eAy3WAAjRkcRljTw+10cS+KODxPFfertXfxewui4xXRJM130qLdaHHQ7RL0Y2zLZrA1YO+ghkxhpCGINQpgINFEUEf/g8l0BcawOQz4FCI1hGgTxAFBIw+bja49ZmJtHq4jJqUk82yT2u2w8WKPV6jE/PcpwdZSZ6UkODvb4ygfvst1Q5D2biufxu1+/xPGZCR7X6nQGPgtT0wx7mpPTU+TKw2Ap7HyFcrlIrV6nkLOQUmB4RQqeotUakBy0sUxJoTzMq6+8yFNPnkaoAUqY3Hu8TRxrHiyvU62WGC7bjBbybNUPeOH8EyzOjDGIIi7dvsPNG+sszs9w7PgCvYHPpWv3uH77Ad/5aAvX22UQxazv2RxfHKNQMjA8j2efOke312VkfJzWwQETYxV+8VPnOH2szp++dYsk9om1T+Qb2DLBkBaGZQDqsHddEEUKw4LRcgEnV+Brb7/PkFeA+ZCdlS3ev3SDvWbE7t4BtWaf556Y4tH9h7zw7JPs3lllZXWdyZl5Qr+HYcFus4/nehhJyLnT8zxY2SFUmvlSlafOnyWXlzx8uEkQGSzMjtLuBJxYmKQ98Llz+QaNVoNXXnuR+n6dnGMTDrr0Bk2KjsfD1XUe3bvLZ774c3j5HL3agH7fx/UKyJxguDRELp9nd2+PfrdLvlhibLhE72CXUjmXTt+imJGJSTqPG3TbB+RKRYbHRhh8vMzZ+TKT40NMlBOKBZMgCFAkDI9NMZrPYQoDz3UZ9AfkcpJCoYSXy7O5skalOobjmvS6PUTigiHo+yHVkXG2+o/RBgRBRKU6RK8/IJfL0e761Bs7zM9O4fc7OLaDijU+EdWqk1bdS0mz08ctafwkpFoa4ve+9XW++f5NTNNCqpCyZ3BmfpyDQULODJgcSdd5Pv/KEm9fWsVXkEjNuzcfs7J7wOxQhQ9vrlLyXNrNPqZlYkQCIw6pjI0iPRNhSKquxatPH0HpDn/2wSMcYRAnAh0mYEgerDWRVsxHnX0unJxnfOEovV6Pk0+eIW73CafGmDs6T9Dv0u+EuIZkfqJIe2VA0E8wlEZpiWnnebhe58SRCeqdgF4woD9QJGqAUBZRMuBA2diOhactWp0IbWhCYiwTdKSYqnoUvRz5nMn0kMe717foDQSVchlMgSppikWT6ckpXEPzxOwk5xem8PsR37l8H4VDQoyMf7BOE6NUus4CEIgQbdoYtoGILVQSIg0rzcFRAXlTMUg0cZxg2ZJbK4+5tbLMyaNH8JsD7JzLoLfF+NQ8cTLCoFfn2Jnz+H6bQqnKb/wff4N/+//9x/ybP3mXs8cmKReHKJ0qEwtNu+MThDEDP0LHEZVqlRMnzxKomPruAY21HgftFiIROI5LNwhoBwmmFdDp9xh2q9imQbFUSPN0innK5hDdTg+NotPs0W7VwIRcLo9jOUgJhWIRJ+eQ97w0mNkyUVGIUgleziZJbPxBiD8YoHSCYRh4npuuqUgQ0gIpUSp97Ucn+IMAkQOlEkzLJtYCIdMAa4WBMAUC0tDmNAI6bXGDHwopmIRhejVTGmRtEkUhYRikKypRghAGtmmlmS8IVBKlr90yfQ1XShOGIXEcEsXhD1vmcrkchUKBmdkZ2p0uzVqdnOcSRyFRFBL0upimSRgFKKVoNJocWTyKlA4KiRYCnSSYpnEYip4QBKm8xnGMUgrPc0mSVNZzuRwDv3+4zqMZ+F2CIMCx7B+nK2T8R5D5U+ZPmT9l/pT5U+ZPmT9l/pSR8ZPkRz74Gys49A1BrdHl2xsHWI7Edg0erbf56TfPMzxUohxGvP7sSRxHEkaab33nY+4/3KRaGaK5v01UiziyeBLt5qnvbPLg3l16vS6vvv4ad2/c57vfeYd6rcV0KUc/SohMg4FO8DsRW7U6eS/HTr3Bo50GhglxqNDKROsIpUOksBFSg9ZEKkZK44cn+ek0wCDs98AU5LwS1aG0Rvxgr87Q5Ci58ggGEffv3OPR+gZOucLTZ06RG6rg9wZ86RtX2d1P8LXGFAGNMA3FXW+1QVrkLcnjzW3WNwT7u32GxwocmcszVZ1kf2sNz4ipLM7TOGgxNDKO0oIPLl5ia2ub8bEyx5c6BL2Y/X2fUtVle7fB440aPT8mCQKS/oBWNKAgEs4fm8BDcfXKbU5fOMdzTzyB5WvKQ3lyZsLskUnOnDrCxs7zfPDuVTa3trm/ucfmfpd/9ZWPODc3zvPPHCdOQkaGh0jiBNvLEamE06dPcuzYAI3iK29dI/RFGkRrCxCgFaAlhpCEQZqzUCq7PHV0gis313CLFp98apzl1V2iJGC33uTdOzUmxhw+9fIiO3t1rt95zPTMKAvH5xifGaPkFYkGA2zDxY8Stms1HiwvUx0rsbfd55nzi4AiFopL1zcYn6jwxJEzfHzxQ/xeSBQq/CRAolk6Ok+lYmEaDk+9+DztbhOvUEAOBvSae8zOTpMvFgEYmB2QAZGGguvR6Q1otrpMT0/QaXao7e7TDxMqwyNEUUBpaBiVaDY21iiW8zieSRzE1Pc6nD8xiW2mWTheDrrthELJwHIkuUIJaZm4tsOQlMRRiONaxKFPT8UU83kw0jDeJIoplIvYpomfxLR7A8YnpojDCNO06fYGFIoFOq0WleoID1c3yefrlAo56rUD8pUSo1PTaCSGaREOQtxCgZAAGWmSOGK/3kQaDoYK6EcRwyWbm6s7fHR3n1/+9FmiEN6+dJ9eEiFkzNNL0/R7EQd+n5mxEWQc0I4dLt5cZ2uvyV/7pZ9DRX16601kz6cb1hmamKPVPGC46pIzLYQSBEmfJIqwrPTyei0kedumNfBZX98n8CHvOczMTLPT6jG3tITpOsg4JjEjOu0OExOjPNhust2MKJqan331FDt7XcaGq1x+8JhWt0POcRmuGISRw97BgE+8sUS73ufU0UkECQ829yjmCrzz8W3qzQjHszBNBz9WTJgF8oUiwtphPF9iv1ajXCpTW96neuEMrimJIp+er/AHLf7WL32GsYkKv/fVS0xNFHnj3Fl2m21qvQ779Tar6w3OHZvl3PExmo0eR48u8GB5jeX1bSIhaLVjBnGRHglx7KOUpJsMWN2X/NbvfZNfePMFbi2v87k3nmF6YoxWs43j2kzOzNNrNQmTgHxlBMMp8/KnPs3mH3+DocoIYdxj4/EGUxMjVCoVgl6In0S4jku9toPtlUg0eLZN3+wzVMkz8HsQR6xtNohUyIUTs8wvzFPf3yMOffKegxAwNDREs1YnnytgGJLxkSGarR790MexXJIkPTCQBoRBgATiOGRsfBwtEgwDwsDHMGzK5SJBMMD3A5RWhPEArRSWaafSKA3CSKORSCmwHUiiAJKEKPSJ4hDH89L2OEAIjWnZKJF+fxRHCATotGVQa4Vp2BhGunKiVJKGPAuB1powDDAN87C5ESytUjFWAiklSZKu6Gid4DgWUZQ29kVRhGFITNPA99MpcrmYJ593SOKYTqeHpV0KeY84DjF8A1ua5HMeKvKJA4HteoBGWsbhz0ql1XVdkiRGEx9mI4FlmSSJQAhBziugVILSCUppCjkDpbOJ9Z8XMn/K/Cnzp8yfMn/K/Cnzp8yfMjJ+kvzIB3+zQ0WEVOx3fHYPmuRdm4NGn5XNGl99632KhTKjwx6njx2lkHNpdvto1+UrH97n8soupnI5sjDKJ3oBfhiz/Gid1c0DSALOnH6CL33pW7z98S2KBYduz2e/2cWzYaR6nAO/z/p+SBj1uLNap6tiUCAtl/iwJS+JQZox0nQhVpiG9cMmH0Ra1R3GCaZlUSoZ/PJnn+aZs0dpHLTIVYrU93cJYkEY9skVy3zq82/gejmsWOEYcPnmIz68t4y0BTO5PP0gfZEoj1TY3G0hSQj6XSxLkiiD2BRUCnlOzC/SP2gyVHSZHBui123T7zaRAurdPisbG8xMjnPqyCSJ36PT7vDg0UPOPnEKxwyYGrJ5vNejWPIYKefZ228wOjZEzrH5029/k6fPniWKItxcgeFqiWLRI+wfcLAfMHXkJCfPnmZ+YZqdjR2+8/ZFHjxc4/76Bv1uE8dJmJqepN2PcA2BV/QQhsfAjykUh/ncGy9TdGyu3F3n0fo+R+ZnkGi63QG7uw2UggSJ1pp4oFjbPcDMOYyPVqi3O0yPliFxsGyH/+xnn2e4JOl0+1y7t83osEesJLHS5Is5Oo197t5dJlfIc+70UbZ36vh+m5MnZxl5qYprJLT317n7YJ+Hazt02sPsra8y6A5Q0uD23fvE0YBjR5YYnp7ElglmvoC0LAgVKoxJSBgdH2Zi9gjSMBDSwM7lKTs2WgvuXL9OdXycoaERcsUq2tgiSQKu311nak7y9IWnGcQxpumy/fENCuUyN+/eYnLEY/boLJV2juZ+/XCCpdL2tL7PkdkzOKadtntJieN5SAn9fg/LslBxhOE67O/usHT0GB2zg5OzGQSCr7x1kZmZac6eXMTMWXimS7PZIhYmGAb5XI5isUgUJiglCKKIwmGb1u7aKv5gQNJuoA2QbpnW7jZzJ47x+c+9hP7Gd7h2twZS0ur49Othejl+lHBscZKvfnifP/v+I4SQNHs+C1MT7N5cZWv3gCCOqdcDxqt5qnmDg/oucRJRLBVp9TqUhyfpN1pYCJxKlfnpUcr5dTqhj+XYNLsdcq5BwbN55el5dvca2IZgf3eL+ZdfYGdtlV7XZ+74MZAGQaBp9Lrc3W5R7wT0uwo3ZxN0Bjx5cpGXXsxhaJul49OEfhfLdLAKI/TaXdab+3R2G7z58gla3QHfef8WP/+pZzl27gk82+TLf3YTaQl6nR7SFKyJhFuPV1HSwvFcLMPk5147QcG12dqvMVapUMwVcEcNtpb32d3f4uTMML/w5lPEIuKJ0/PYy6tM6hxPfPHn+Be//fv82k89Q7PZZDBUZmyowET1GG88cxzLLfDWe9dY2WzR6vscOz7K6maD5fU6gySgHhv87lfeI0RgWyavPHuSI0eOUiqNEquAQa+LYUtEHKPNmNnFJf7zXxvh0Y1LXP3oMomv2d2uc/rJs4yPj9AOuxSGhugrA4VJPufQ6rYJlcKUJjoWaKmpVi3GR8Y5c3wRaUi8XI6g12H18SpTs7Pk8nkajRrtdgsv5+FHilKpQD6yKVaGSASpuIq0xc9xXYJgAJDmqACu7RAlmigK0VrhOBZCSgzDpN/rkSQxSZQgDBOEgdI6zXGRFoblpCHYUqDjmDCMQAToRGE7Nt3BAMM0cbwc0jCRpB+4Nenqoj6UTCEVUpppCDYgZXp/lVYInQZAJ0lyeAAiMU2J7/dRSuE4TrpCYoi0jU8JlEpIkgSAOI6JowhpGpimRaVSTW8zSTBMA2ULTNNAmgZRENDvdggDH8fNYdoOwjIRAhw3/Tm2bRHFBkmSpK+5h9PrdJKdABrTtCkVncPpe/jjtYWM/2Ayf8r8KfOnzJ8yf8r8KfOnzJ8yMn6S/MgHf1PjVaQZ4rmC6WGHfN5jb/eAek9xZbmGoRtMjbgUvQJx0Gd4ZJiXnlpkvxax3/B58alJwqDPpWt3EIBtW4zNjJL0u2w8fkSUJFjSwJQOth3Tbnf56HbMVqPFXhta3TRIFOlh6hideMT4iMOMCdexkJZMQ0YRh+spEEURluOkNedJgDJsLAr0uwF/+uX32G7UGRkepVQpMjHUZGlxltGJESqFPEgTHId40KXZ6YObY6bs8eLT80xUhnm8VaNe2+eVc9NMVMsE/oBra3UGPcXf+OLrHJ+dZvnRMu12wMzsFP2Bj+eYFIsF7HwOLw75xItPMjYxSpRoLHOGsbmIhWNH6HZ65G3BcF5T32+ztlZjU9Y4sTjNRLXE1772HsdOHuOZC+fwfcjlHRbOPEGn0yQ4CCnmCkS9AdJo49oFFubn+YWfcVlb2WRleY0bqzt898oy1tVHTAwXOXdykYVCCWm62I5Dv9+lUCzwuc9/ium5W1y9fh/HNjm6MMHw8BDra9u4bpFr12+Ry+Xoh3DzYR3Higj8OntegV4oKXoGF84scvb0MVr9Hg/u3OXR2g672zV+5Wefp5h32NtrsrNSY2i4RK48QpTA2uNNLjx5mvFikZEj0+go5Ktf/vd8fHWdQIXs1JvYlmJsdAp0QrP7iFLeYnh0jJH8UfqdPrLbJur5FPIuBoLEsBiZmse0bZI4RqsEDi8v7zVatJstXnjlRaIwoNlqEQnBmfNP4pSHWX7wiJ31TYxcjhu3LnLl2l2Wt1v4ScB/+Td/mpyRR3oJhRmXZrNJMVdiaHKc+tYWwxMTmJZFz+9jIvAHAetra5w6eZKBH6CUxjBjCqUy2vAYG5ti56DGb/72nxBFilK5TLvTYn5ihvZOnU6zztj0FEkU4gd9JkZH2d/doRYdcOzUKcqVKoYQfONLX8a2HZ5/8hSDIOTWxcu8/OobCGFQci1eeeoUrd4tHq3sgOuiYo02e1y69ZiPbjyk2e6TNxKcnEMYJlSrLgvTI9y4t0rNVxybKPHFTz2HY8asLq9Sa7Z47eUXkTqh02jh5iOEKSnlKpw/c4Jvff82U7YJmARdl1AlzI6UqeYdonKZ4lCJ8fFhLFMQCk3BM9jb3GBqfoG7N2+z2exy0FHcfbSPhcGTx4q88TOfYGpmBj/sYkmbmWFFvR5y0A1JVJ3p0QoPN0MmKkWmZqcYNaDdbXD9zh0K5RI//8nnebi6y83lPUwZQ2LRaDR4+uQCD9b3WFlbo2Tb3H60zvR4kaon2fYjLu2v8O6Nm5jK4POvPUO73ePlJyf5d1+/zL9e+R63V7c4PjXGi0+e4K//zHO0uk2SJCHvGVy8/Yj3P77J3/yFV5l0TSbGckjR56Bj89nnl9DS4jd//3vc3thHCBctDSyp+fDeNh0/5rVeyHBtH9vyGJ+axTJj+v0espdglXKMLS4Q9Lpsv/cei0enWVnf5TvffZ/xoTxnn3oaMDGFoNvvcOvuPRItwDCwHYtiaZgzZ47RHzQIugphJnRbbYROw4/HRsfQsWZ3ew8pbfZ21+kGAQ9W9ykWChybH2VOmOSKRaRjYBoS17bAkLhuBYQgimKE1gjAkGA6Jv4gRut0+qqVolwoEccRWihMy6Y/CFAqQWuFSmKSWGIaNkoLIgU6UQTRAJGE9HoCLSRxHFMslTBNE8dx0lBowwZpoFT6928YqWxatolAkiQ/mPJq4ihEK41hCeIk+p8k3HZIVPxDQXU9B60VlpWGjPu+j5SSMAiwLAuUJtExSmukZRIlCmmb2GYey0ybDi0nRxAM0DrNbpJxSKFQQhw2v0ZRhOPYmGZ6Pw3DxPd9hBCHazjx4Wpmgu06SMsh7+Z+XJ6Q8R9J5k+ZP2X+lPlT5k+ZP2X+lPlTRsZPkh89489TjAzNUM4HtBo1ZuZHODozzvLqHvvNHu12HyU8NmtNqiWH6dlJnhmt0m4JWr0WR0eHWd9r0Q1j+t2QaklgOwbFUhnLtTl+YpGZqQmGijkSFdHr+ly+fo/bt3fBMNGmi2FZYAyQ2iCxEyxM9MDEyznk8h5hqIjikCSJKeQ8TEOglMIPY2KlkdoBERKFAX/8nZv0D5utzOUBQyWHT75xit2dfVp72xw/c5rNrRqFfIGbD1f41kf3MJTD2l4X/537lEoGaxtthqouXzgyjeeUaIcKS8e0egEXL16h3WqTdwxeePkZtFa063vcf7DOQctHSpORoSrHjx8hXygjTfAKJQZ+wPDEJN1ugOU6tPY3cEeGeLi6y8bjx5Q9yb/98rsoLFzH5u0PLjE5XGFz0yUc9PEKHsXyEHaujBKaKBrQDxVG0gXPozI6zKLWPNxpEEYJYyMFzp1colLxCLotpIqQpSKm5RGEPaSCsdIIxxYVt++vUsyPMT5U5PTROQDOn5zEsjw2azXm5zY46IR8fOkugzCBxxHH50eZmB5GOSaOL0HYnFiawEp8vvO9j6m1AgwiPvPG84yOjxMEEe3WDlv1Bg82t/nCp18mFwTUN3c4c+o083NHiRLFo5VNOv6AXn/AyFCFat5mbGQY2wC/dYAODQxiDKUQnsnBzh5uvsD41AK9bp1+t08+X8B1HQxDcPvjKwwPlei0DvBKJazIZHJqBjOXZ25uBMeIeLSyQqvdo1rJ8/Ir5zGvLON3Wzi2S75UojtoEgtBrlClPFZBeJLTTz7BXqOBGcbYno2ONFEQIbQgTgReocz29i7VUhGJTaL7rG41+X/84z+h021RLRT4t1/+JgsfDfHZV5/jtU+8TKPTZn+nxvzCNAf7eziug1aK7e0DOv5VPjs+Tq1R48TJ03zlm+9w4vhxjp57EsOwyFfySKnI54vkCyUMFdOPIsKOoOdHJEnIrcctEimxhU+kXfKGyXbN5/0PV/lrv/QqMzPD/P7XPyKIA3Zqu+x12pxZWqLsFXHdIuv1OmG3TjmJqZQrHOzuEMSan3r9PJeu3cewoDpV4crtFXpxxIPlLnOzeWrNAdt7D3n5hefJVSbYXd1k9fEthspl5uZnEd4+SRzw1JlnuHNvkwunJ5mYzBELjZIul27c5YOPb7C600Ig+OSLC+zXC9y6vs65k0Ps79fodX2OHTtN82CXbmfA5FjCqWOTXLn7GGFJwrCP0tDo9pHSxiCHn8S8fWWVF88s8OaF83z5u5e5trrH440OS7MV8jmDseFhao0OCxNllFdh0OshtM/Nu/fodAVnT85w+sxZ6lvb7O5cYbQ6zEGry9WrdymNDDM+Msq3P7xEp1nn7/8XP88XP/c0t//J14liSSQjtJR0Gh3uaUWv22e0mufVF84wXMqRq5RA2+w1HjBTWCLpCeZPHWVsdoTNh9uo5T0mxkbwHIPlB/fY2Njhp37u84zJAv6gTRBZXLvzkI+v3adSrUCScHxpCW8IIn+AZRs4tkkcx/QHAdJICMMEyzQZqVZpb26x1xpw4+EmliMxDZO5BYdCIY9OErAkhpGKpMYg5+aJVYSOYwwUURhimKmA9fs+SZwQS0kQBMRK47ouQkgs00DFSbrC5fcJAp8gjNKGN9sGrQmTBNdzDw9HXOLIR2Bw0G3jejkMy8aQaV6ZQIE2DvPMJEpppEyb7ITWaMPCNDWJUkih0ToBAVEUghQIdPr+MvDxPO/wnVJgmhZaKwSA1iRaEflB2ow30NiWgw4jsCwiNEJItCHJlb00mFsrwmDAQeMAz/MwDj9cR5FAo9BKY1kO+UIepVT6QUCShmWrmCAIkIfPX8afDzJ/yvwp86fMnzJ/yvwp86fMnzIyfpL8yAd/t+/vMDkecntlj7xjHU6ULIaqOU4emWR5Y4fTx6c5NlmkVCowGAjev3qH7YMWQ0WHhcVJhsdG2dzexi8ohoZGGAw6NBsdHj3awM2VsQo24yMlqqUiw2PDPPnUCb705e9z5cEahVKZqfFhtDQJ+128vMlQuYoOB1SHRhG2ZH+7SUxCPucwMVJB6JBivsjefovt+gG9QULPH5DE6dSwM+jT6QZoAhrdiI+uP+Ltzh3mpsp8ePcxl2+uY9sO/SBiEMbEiSKJQjYGGlmToGOC/QG/+affRwhJEEaEUYJt2zze3uGdD2/w5qvPsr7XoNce0OsNuHhrDds2+PW/+gkmx4axLIFx+Fvod1qAwI8Ejm1jmCZDYzNURqdYWOpzsLvL7s42O50ExzC5dP0Rz194gvpBjw8vf8BQdYhet0exXGbx6DztVo+hSo7JiREWTxzFNSw+unmbS1cfsNXt8+zJaZ48OYuKIgqupNfrYdkWRD7ddpvK6AhR2GOztsfXvnOJIA5xTA1qlvGhp+j4HUxLUCxXmXMdFudn2djc4+hkhSiOKJeqTI9X0UrTbrQJex3K5Txf/ORzCK346jtXuLda49lTC6xu7RMpyBVKmF4Fx3bZrzfB0Dy8eYd6vcOF559i2DQwNYyMjtFot1hdWaNaHQEUwsrj+yF7a+vkvBIYglI+D8pA6rThKdIhzUadQqFKlASIWBEnmqGRKgc7q6AVhUKengA7MdCJCdogiDVh4NM42GdhYZa5xQUcy2JvZxfPtYmjHloJvvvdi9i2wyc/+Tx5aeLnFK39fcrDI6xsNTg4qFF00uZEO1/CzVss5B06tRoPlze49WiDWAiUjsjnbWJDYyJp9QI2NteRgwOu3LhFu9biF3/hp/DyRWw3T6Wa40//+NuYeYfQ7xAHPcYnR/HjiCTsgo4YGxsj8X3cqSku31rj9//omzza7ZHE4EcRfhiRJBJhaEwdkWiTmAiFRRyFdAJJwcvx0tNnyXkmV+9ssL7Vxx1yeeviXfIIGn7AWxfvMT+eI58rcvLoAsePT6P6AUMVh9Ehgzdefg6VRJi2y5++dZUzJ2a5u1Ln2oPrnD4yzMT4EGfOnmNle516s8nt2/d49qUX6IUDpkfPIWyTJ04exfNciOH69Xt87d0r3F3e4effOE/ec3m812Jjp8tGfZdGq89HV1ucWJzn4xt3mJua5PjSJOVyBT8IObM0h+d8TByFCMOAOGJju0U/ChEiwZAmnmmwtDBObqjK/Y1d9nYOMGyTVr3OW+/f5HOvPcvtlW2mJ8ZZmBzn5SemuXn/ITvbLW6v7vDME0dYe3gHoeHY0hS90OfB8h4f39nmr//cPK2Wz2deOsrE8BBeuUjY85keK9PoK6I4IEBgCGj0AtrtNq89/wTfePsaTx90ePOl55DOgLGxOQxpE/gdtMphyyLDMxHllTyO5/Lddy4iDI9Xnj1Bp9NidHiMielpbKE4ujDBM0+f5MOPb/DNb7/L+sY6T5xZYmZ2AcOyiKOIfCWV5gRINAz8PqEfkSSak8emKeVdgm6fOPSp7+9SLKUfDKWUoAWmZSGEi5QaAC0NSBQIiWWaSCnI5QwSpdFxhG1b6YTbD5ASkjii2+lQ8PJoYWBYgoJlgtYEUYQfxZiGJI4CLNtGqRiVJAgBOc8m8HugFbFO10ksy8K2bLQGwzzMhFExpgk60ZiWidIJ5uH0WQhBHEUIE4QCpCSKQkzDxB8EqfRKMxVfAbab/p0TBemkOlBolTDotzENAx0bGJaFQCAMgyCKsFwXQ0gcJNKy0Yk6DDjXJHEqqLZjoaVM82h0guW4mJZNGMc4Ro5o0CeOI4wfrytk/EeQ+VPmT5k/Zf6U+VPmT5k/Zf6UkfGT5Ec++Lu6XOfy/R0CbSJ0wrX7G5hmguN6DKL01H91s0mvH9L2d9navUSz2QLL5tTcCN1ul1OnTxBGIZE22NtrYpqK+YUZbB3wJ9/8kMnxUY7MjyONBMuwObm0hPnzLslXP0QbFp1WDX8QcnR6lKWjU0yMjiBVwsZunXbQZ6jsUSjmKObymAbYZo6piQmmRkeZazUplYr0gg4DX9PvhzzerbN/4BMEIbYtWZwvs7qyx/pmi9qdTXxpIPsxiT7MLggDRBLhGBJhGiRJGkqK7SBEmp9gOSZaCCJpUu8nfOk71wljRaQ1joiwLJtPvfwkY2UPFfi0ugMMwyCKE+Theo1pmBhmkr7gSYFCIO0cIzMLlIbGmJo9SrvdxvZyVEo5Wo0D5rsxnW6PTitkZ7PJB9c2mZoe4qc+8zylYhGVKAzL5LlXXiSXLxEM+ogkJOi1sSyXVqNFFCts26cVD9CJpm0L9rb3+fCju2mGSezz4bVlkqjP4uwRvILFoBfS69TodzroJMLRgqdOH2Ew6BIGMb12h1I5j23ZREKyubmF43jMTE7wM5//JOZbH2I7OVY36iRJxMyUgWVJPvmpV9ja3kJKk1YnoFQdQZg5tAGNRpOJ2QUK/R65fIV8Loc0BUkY0W7VMAyDII6I+gGuZeFpRZwkJIMB7YMDtNY4tk2UKFr1OtK1GBkfI19wsHOlNF8mitl6vIpKEoaGS1QqVZJIMTo6mr6BBSGe63DmzClGRodYWVlla3uD8+dP0Wi22N7Y5tiJozQO6qzv7PFnF2/x8a0tGq0eFc9haWGcD66scub0IuWix9sf3OLh6jYjw3n+5hdfZ3Eoz8XbyzxYqzFSLWPKmImxMo/XNvjmdy5SdvNcu3qDqclxjp06RZJYLB6ZZmFxmu2NLT746DZ7B21OnjrC2MQ0g9YAqQS+P8D0u3ztWx9yby1AmxIScZjFoUiSBCkFoBFCYEqDOIxQhsK2LCzLpNUKOLs0yfU7G3x4Z4046iFNj+mJItHtRzSbPco5k+X1VZI4olC0uXx1mdnpCi+89BoIRd/38YOQRrNLtZyjIWKElEyMlrh3/xGLx06wePQofq+N7w+IwrTRy5IGpXyBbrONZVp859vv8XinzfZ2hyfPLPLi0yfww4jf/Hff5oOrWxieiYFgvdHm+x9cYmS4yMz0ENVKGWna5Fyb1Ys3GAx8CnmPKFJYXp5EaQxhYhhQ9GyOHJ1jtJKjXt9DCMnM5CihhKmKx9Ejs5iOw8Xrq/gf3uOvf+FNlmaHGSqWWJg5wl67z8baBk+df4Jbt+5w8vRx7j7e5uHlZRZnprh9b52N/T5Hxm0Wz59CBQOWjswwM7WB3m2hYslBa4BhCcI4wDEl1+4sMwg0j9f3aB60OXFqiSfOnaFROwCd4FQ0Jg6lUok3P/sZtCm4v7rDlct3ePe9LrFKkAlpG6NO6PZ8JkfyfP7Vs2zXA773wTX26w0unGuwsHScXK5AoVTBsvMEYZ9I9Yn6fTAsiqUyo4UCCxPjWChc16BYLuE4Nt1OB9dxMA4b6Uw7XeUIk5C8VyRWMVop4igCNNK0cBybWAi0ijEMA0sadLtdhCHJezn2d3cwbRslFa7rYkk7neKaFsRpgHMQpbcrpUQKQSwFjucdSqDElJokiuj5fhpA7XhYto2QAikNNBKhBUJJkiRO83akJAwjkiRBCJmu75CGWyslUYrUaCOBEArTNBDCwjANwigijEO8nEvQ9kmiGNM20SomiROkIUkSiEIX03SwTAshDQzbRgoD0MRhgNAJUQRaiDRj5zBQWxgGtpSoJDl8HBJhyP8EypDxH0LmT5k/Zf6U+VPmT5k/Zf6U+VNGxk8SobX+Sd+HjIyMjIyMjIyMjIyMjIyMjIyMjB8z2ZF2RkZGRkZGRkZGRkZGRkZGRkbGX0Cyg7+MjIyMjIyMjIyMjIyMjIyMjIy/gGQHfxkZGRkZGRkZGRkZGRkZGRkZGX8ByQ7+MjIyMjIyMjIyMjIyMjIyMjIy/gKSHfxlZGRkZGRkZGRkZGRkZGRkZGT8BSQ7+MvIyMjIyMjIyMjIyMjIyMjIyPgLSHbwl5GRkZGRkZGRkZGRkZGRkZGR8ReQ7OAvIyMjIyMjIyMjIyMjIyMjIyPjLyDZwV9GRkZGRkZGRkZGRkZGRkZGRsZfQP5/Ce565rd5pt8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "issue_to_visualize = issue_idx[9]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "05610be0", + "metadata": {}, + "source": [ + "Similarly, the woman in a red jacket in the foreground is missing an annotation." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1ea18c5d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:01.928150Z", + "iopub.status.busy": "2024-05-24T23:50:01.927774Z", + "iopub.status.idle": "2024-05-24T23:50:02.369963Z", + "shell.execute_reply": "2024-05-24T23:50:02.369345Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000448410.jpg | idx 31 | label quality score: 0.0008575101690203273 | is issue: True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAFkCAYAAACwxfVCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z7Dl6X3Y+X2f9E8n3nw7d09PxACDCYhEIkBSoALFpCxLZXlta9dlVblcZdc6latcerG1qrJd8pa92vVKXltWXkokJQoMIggwYJCBwWAwPTM9ncPNJ/7DE/3ijPY1tEV6Rdb5VPW72923+55z/s/ziyKlxNra2tra2tra2tra2tra2tra2tofLfK/729gbW1tbW1tbW1tbW1tbW1tbW1t7fffOvC3tra2tra2tra2tra2tra2trb2R9A68Le2tra2tra2tra2tra2tra2tvZH0Drwt7a2tra2tra2tra2tra2tra29kfQOvC3tra2tra2tra2tra2tra2trb2R9A68Le2tra2tra2tra2tra2tra2tvZH0Drwt7a2tra2tra2tra2tra2tra29kfQOvC3tra2tra2tra2tra2tra2trb2R5D+Yb/w5Y99IhURGikIoaUnNVElIomPPf0cm9sVW4MClGBWezAKbzsOD6Y8bALL6ZIiQBMiPgQ0jj/9mQ8zF4a33n6Tgcz53p1HTBcNPrbkJJIXOBK51gSjGY0Nz129zngj5/Hpgof3FizrJQu3JMzmSC0JwZOKElm32EyhpIEuoAqDlAojBLhAMjmiqrCLOaGbI2WgzPq4mIjekYQiBodLERUlwmiCbVBSoqTCBU9ICqE1wVtyoyFIRA7Kgw+BhKca9ZBSkRcFxydTiBAJaOfROqNNiVwEgoikTuFFJFOSkBKZlgSlMDYScw1SEawnCEGpJM9d22J3s8d80qGzxMQJHp86tjb65AaMkBwvG0LXsrU5JgiN0JHLpeS4iTQukrwhJEvbLKm7bvX3Lpb8r/5nf45Pfvpj6HrK7Tvv8i9+7VX+1TfewKYcqXv4xjLII7KqOC8yfuTFc4joGGYFZ53jl77+NqeNoz8cc9q26OjJ8pIqKxBGEbOMvjYYmehCIssUMkqKUpNCYMsEupAIMjEQGV10iOCwIbJVGrrk+dzHXub2w9u8dfuArg0ULjDqD8hyQZVnKL1NmReEGFnYCabICLqkC4l+2SPf2YJU0E1Ouf3gAZcu70NynB7dJgVY1BJZKPI84+i0JgnJcrmkyCzGC4bDXWSWcXp2Qolm5/wW+Jql0PR7m+jYoZJDptXr/7W332Hn/BU2Nof4FLmyf5XBxpjaLlgcPybOW6aTQ3bOPcdP/sTz3Lr5Jv1yn7Lq4/ySfgGn8zlV2eNf/dqXWS4tH3n2Cn/8R5/kdDLl3/zGt/mFbx/y6Rev88GnLnA2OcbFiht3jnnY1Mw7j5YJZxMEicwK2lCjFWRoiuTItcf6HJU66nbGx156mT//P/oPefONN/n7f/8/58aNCfPW4gxkOqNf9FhMp1QbAxyQJYEKgqQ9eZ4TZw1dWLJ34Qp5LyN0c+7en9AvJSoWTKdzvOqwGAoBg0IwWzq8rqjbJcYoTBRsjwcMNjIW8zOWFpSVBC8JxiK0pBzsIFMkdA0pK9hWkg9/+P089fRVxoMKISM6MwihyfOS4D2FVhid0XUNQkMIiegFUbQQMoSOXDp3npOTBeOdSxRZ5OTgXdyioxWR6BtOT07Z2tzm8eGS2jl+5s/9HD5qjEiE5BFqzD/5r/8z0ulNQr5H6Q/5+Of/Mt/70j/lmY99jtd+9yuM9zfobV/i8M2v86HP/Wm+9+0vsrv9BJ1t2b/8AkUvoygV2WCTxzffItRThueu46annJ7cpj6bMF1MSUEwnbQ8+fx13nnnHd56fMzTT/4I569cYntzgClH3Hz7bf7ZP///YopdfKqQxqFEhJCTCPj03udTciQUmYwkeiQRiZ1lS0/46T/1Ezxx8TxhY49Xf/VX+N6XfpP/6D/5v3J2/03K/BxHN17l7/z9X+HlH/045+KCix/7GM984DPMzx7wt/7X/xvOWnCxZnTpIrK3yb179zm/OSJTkUezjqqoELbhzEXet7fBR1/5CP+H/+Q/pdzcRcZIY2FYGDYNjPJI6Sw/9vN/iawq+Dt/9++xzMe0kxm9QZ9dA6XrELIj2pyXPvIi3715h0+8uMcgy3jrrQf85J/5U/T6fSKJ2C3xUtEfjFDaYLsJR4dH9HpjhA50raCoCkZlydHREVEmBuMNhOjTLE8wRrO1tY3RJW3b4r0DJcm0wVtL1y1p2iUpQSCRE1i4yHy2QOeJr7z6Nr/wxdd4+soO58c5mVaoXBJTxHcBpQW5Kai7js5bMm1QETpnCUmhVaBf9qi7ObOF42//V78s/gDPD2tra2tra2tra2trfwj80IE/KQARKIXCOk3KNFomNJ6hAVRE6QyLwJsEnUc5yHWGSQ1GSdquhiTJck2MliLPGW0OsdNz7BrJo8mCNiSMSyjvEJWB0GFEpGsbNoY7XDh/gZ29AUX/jMn0AR2BrPbUmaUoCnwIICWxUkTrcCkgUwAv8NFhhKJTieQSYeYQ3iICqKSZ2pYyKYKGaD0oyJMghIQDcpUTdCLZQJTgfSTXEiEkSSQSHiUzkgJ8oKj6eBuQSpAXEoNAJAhKEWUgxggh4JNjY2eTZmHpvIUYQCo8EpkkSUkikiBAGUOGguSIJFIMGO0oi4xljCgtQIOPESckLkAbHEMS+EAMEZUrWgdOKkoT0Mlg8opRkMxmsFw6mqRRJLxJOF8TREeSPXARFwKil+M1mNLQLi3bwyFL16KTYaMskDIQXINR2yg0UUSMTMRQo/QQ5QM+08TkEC5QFgUCz4by6CwHAiY4xkYRbY0RElUJ8qzEBei8YzY9w2QFmcrp9RW5yAnJs3A1Z2dLLuwZJs0ZC6vp9QQpGvrlmM2qYLaYEuslunSktGDvwgY37h+wV5ZIDz7lbO5sM53PyQYD8umMjcGAe5NTFJq26+iadyn6A57YHPNoVmNjZGOwR1efkClBWQxoXctoc8T2eUmtJLvb59C9AVoYHh094t7dd5nPJ4SupsgrLleCvptSVhV4z8nhfbYv7/Do0QFVXjIYDHh4fMbWuM+gJ6BzSDIKUdEJyJUhxcR8NoNUcOHSeR7MlyzfntGhsTZhdCIhCPUMKSQJgdINUkMICiMDeabYH19icXDIYjrn0d13GfWGJH2KUBIZIkoEIi1lIWk6S98UZJUmSwIfPLZeULceayS9acP9+w/pfINKBk/GIk6JKiJVgbABKTxZNqBrPTmBwhiigKAS07amObWIOKDILE9cHrGoI0eLBjCYFFAi0WnFi9e2eOHFZzm/u43q9TC6QAowSpNlBUoILAmlQKZImRmSiEgjSCHhUkaMGaF1TE8nZJnhze9+kac/+En6w8vEsubR61/Gi4LkIQhDZzuiS4hUgGD150SJFmA9bJ5/lvsHJ+zsXMCMM3Yu7lH0xwhjKHoV3SKRF4aiGjEa7TDauc50+ZgYauaTYzBPI1zL0eO71PMZ1/eeIuuPuLb3ErYF3x2ihxdYPLjLdPaQED3vu3gNY99m9sYtvvDGO9xfRs7vXCAv90lakONwQtKGiCIQQkARyLKKJDI665idzpH2iGFmee7SJtNjy/H9R4iQ2FIlWX8Lk+egJGWukWVC9rYJWhOjBG1IIYIE5z2g8FlLrCGTFVkGA5nYv3iejc1Nuht3yCuDXAr0rMFkksxo+jrDZDmha8krKHNBJQxDIciAoSlomoQPCdc1RA1JL1C2R04kBYMVgen8MZ//1PsYb2XMHy44PFvw1u37fPCDz1C3DWVuyPMcqQ0hBExeMd7eQymD8y1lLyfPc3SW0x+NsKFjPpvi/QSRIqQC27UYk2Nyg08OJUErgUsepSX9fp8YEz5EZHCUOqJlTkye6ckp47IkdB1aleRG47zFWUdZlBRlDlHTNoFcScpCEb3DBlDRoVVBS+CsDjTO/UGcGdbW1tbW1tbW1tbW/pD5oQN/exf2ODs8IXYNQiSSTHgb0YXAKZjXDZOzJaaoiDLRCUHqHDZFEAJBJHiPF5LMaZzSfO/WTS64C3zlmzf4xBObXK4qFsuGQ7vAEpAxQnTMUoUqcsrRkLNmwfJRzWRWIzQoo8iVoc1ylMrpDSvyXBOFwlrP3C1xkwm0kZgburZBFBm9qFjEVQBPaUMTPS54DJBcQiS1CiDagPceCoN3AesiOoBnFdzIY0Qps6oSjAnnA0SBEpKm6YgpoLUmiQXeW7Qy+OCRWlPXDUIofBLMlpbgA0loogisogcQrcXFSIoaUWbkRjOo+oz6JToTiJTRLwUxKkrVolIihoCRhtoLgk2IKGjbQFZorPUIABtRRiCNIiLxEQozoF96ZH8CJiCKitCdEYInJo31is4H7GKK0RnZsEe/lPgUaJqWeb3EmopBXlDmJU1okSpC7DBO0RQZPbskqQZLSS8ZCqNQJjHMNaG1xCAIUuNDS3QOUeVMfIeSim2hWLQ1WhgKm+GixChF5yMpl5xNpxitiBKsULTH9+kXJV/5zi2E6dFXguuXL/HUM9fpn7+KJzE5uk3dQURzYXeT/dE2Z5OMd269gwqa4/v3GUxHzOeeenKEUJ5ls2Rn8wInswknM0ePJdl4EweIIme3uEzEorKcfpWxnNSIlBj0hhxNTljcvsXJ6YR61mGVJMjIXmYoe5qTes75niepHGEyTh+d0Nuo+NIXv8rnf+yTaFnTk4bPfubTTOZL7nztO3gA2RKlBzxGSR4/PqCqNpnMp1gRqBuP0wGNQjWRqi9JQqCMQbiOS7tj+v2Cg8czNgclRW6oNnocvXUfKTNcW1Nkml6e40VDIQSDvCLmhmI4RGpNaBqWKdI1LfPZGUSDzAR153nUHuOiQ5oCcJxMFzhtGckSqTOijCwSqCZiUqR1NSar0EmQRMDGgPcKLSzL2vLWgwVl1UcVJcpbVIy4puNPfP6jPHX9KgKDUD0kq2CeVAoRVlE4HwNaQUqJrluiVEJIcD6sKnq1QAiBk55m2aGl4vr1p5k/vo31kWsfeIln4ie5f+8H3D84IF/WdLbjzu2HvP391/BhQZkVCJER7JIb33+LR6en9PuGu282DC+8yOs/mHL+xfNcf/5DDDZHZLLgrFfjlWK5sKAh72Uok1M3DdvG4H2HtTVaKWYnS+p2wXPv20EFR1WeQ4iE3CxZNgYfIh/96CcZDSLNzPPGowWPkmPWKEzP0FpLsBaPQpIotMIrjdGCpes4fngP3U741HPneenFF7i0XTLeGfD/+i9/jTA/RV/c5uH9N7n34F164xHL6ZRcb1ANN3FPGHIRycjJy0hVlIggSD7RxoBGQlTYes7nP3GNZgd+cP8233nje0xTwf7Fc2gSUUu8j7QpcGlnm7nOOK6XiNyggkELj0HhYo0gMLML2trhy4w2wKYXxLZBGZAqYnLF5Sef4fyTF6ibGSFOVxV6m7sYqeiWDVFKRF4TTaDoVYSQSCikMigSJAkyEpKg6veR1tC1CUJN8I6gNUVRIIREqtWz0wdLVRYURUGImhA8bWdRSlPmQwotmEznnJ4dMK/nFHnk4oUtyiLHWkvnA/1Bb/VMqRu8S0hpKMuSup7S1Et6/W1GVYb1npntqPKK/fHG7+thYW1tbW1tbW1tbW3tD6cfOvB3Ze8KexvnqEzCaAXSMVQ5PouoIMmkJPY8pTGImGg9aJOwKdIrPM2oot4bE2witI46JH7w7oTv3nqIyAyHMTLSmr2sQGxsMNjYJPlA8g1ZnjEYbFD0KuZTixeeAPSrAu8dWUioIiPWluVszjQFJBqpNVU/J79wnvmyYdnU+OjJlEYmiJlEObBtQycCuVa01kFMZJmhTQFpI1meIWMkSYGKAlnkhOUSnRSxdaAVrrNkOqPtHBGBiQJjFATwnSe0zapdS3oyaZBKYKNAiIQQmm5hUVqglaZxEWIkGU2RaZZ1jSAhbWK03WNnr4+UkhA6lNLI5JFCIYMixRZvAyjDvOsILlDPG6QwDIXECFAy4duarBoTkiJGB1ETRQGlA9ujOTtBYDHBYwpNlWty5Wnm713ciSzPZgwHOW30qEJjnGDazNAqElJiXgdErNEmo2kaRiFjZ3ODbNBHmpzNXkGZRVIKdE0DWU5wgWXXElyN0jm1j4wKg5SSiMAHUCLhuo7d7V3mfkp/OOL45ARpIEmBiIaizCnJ6WXw4z/6I1y7/iw3fvAGtx895ku/90WuXbvK7rnrbJ2/woXxLopAW8+5c/8R7SJxfu8SZ6czVDFiOZtRlhUhJVyjqDJDPT2gXw7IQsvtyTG7Ep67+lFiDLTzE1xsmC0bbDcnhcR00RF9wJgS5xwiJjoJJq9olkuGG2P2+orjU81cOmJTg4L+pT0enzXs7F7hweGC0f4IowPHJwfMlkvadknjLGDJnUHqguGgz85oh8WiodcfMBo5jDigj4dM4bpIU7fMrWOrNEgFs2Wi8QuSESxtjU+arpFYl+jqBdMm4KPncx+5jq42aK0l8xYvNWo4ZFxW/Ot/80UOH7TYZAkOlFYkBboJROWJKaA8GCOJWYkAvJYoHyA4XBBMXEve04yKHj4m0BKZCXzXIaOiGoyx0pNEorUtGo8WLftbFR9/5cNcvfAkSyUoZYaUDkmFkIJAAiI+JlKK5MpgUCRpcb5FCkmMAi1yUhSIGCiyii50NDZiJ4doXdEbbnPz1S9z/cM/xpXhGFv/DtPTB9im4a1bb/G3/m//d5QoCN4jjaJt55wtEoNRRd1CJjJuv/Z7fPPLv821p57nV7/wBZ75wCvs745YLGo+96xm5+JVNvb3+NbvvsbOTknV20NJS7toaeanjDYu8M3f+y1u3XiNa//xf0wWEzEucTahtCYrK3oa8izn3qND/uE//Acs9Yh+WZDJRNfWGJlwIqFlIiZFJ2uSh8e3HzAWNX/2let89COfZXenwNYO30VCirRhxtazT4PwbG9cx6T7vHXzEcuTE27eesjOUzWjrU02xwX754bsbGzTG20gMo1CYXRg7hNOJspeSYHm3IUdrj15mbPDE1797m1uHx3SInFKkDCc2CXN7Iz+fo9pOSCIRB4cT/YFF3SOCBX7VYWfHyJCR0iK1AY2tof8ZF/RE4H7aH7kf/wXCAjmy1O0T4TUoXPJ1auXGfYkxhQE2zFdHvLG699l79xF+uMhRVkggic5iNKjMPgUkQlICmMKiJ4oBDvbO3ifkAq0MVjrWdZT2tYSfaTf7+FCwieB1gav3Ko93TaYznF9u+LyufPkRY6Ugs5JQiqIUZKSIMsNUbakFHGhJSsKTFGhRKLIQEqFpSSTEuHtH8ypYW1tbW1tbW1tbW3tD5UfOvDXWCBTeJnokiC2kDJPJSU+JFSmCTHSOo9KAp8kNjlEjORaIXRBIUoSinbRsTw64+K5TU7bktO65e2DKeNeRdKa5DStByUKqnGfwgiEhK6rkVphhEK4AFrTKwpClmOcw5eesnPY4HDW03pPu2xp64j3nlJobFninGUJCKUJ8w6dNCoGciGYiwTW4bQlj5F+L0MZw9l0TkgSIQVdbEgxYSQoIQghrCpDZCJFjzKGQMIgiN6jlEYg0VrTRU8IkawoSLZFigjGkFzARo+QiSgimVZ45wlaUvX6IAQbG0Mu7O2AVjQeQrC44JBC4FOLExKhICQQWoFzJOERJLSEUmtyEVlOJ/gU0ElyenSKNFBUJSK1KJmRledojheE6TEhrC7fedRsVD062zFrljjfMcoKspiYh8Td4yVSaWZNy2Q2p4swyCu6oEkxcvnyFk9cvAJGY2KDsFA7y7JpyclYNAFpDHUQJKEYIVHegQMpVhWUqwGJkSZFlnQk49kZ71DlB4x0BdIhZU6mYD5fons5OR3vPDrE9DbYurDPKx/6AMOe5lvffp2HN77Pw3t3eOqVV+hvjLEBgnNktLTB09RL9rf61E3BdDol61fglkg8Mi/ZKCQy5pTFmHHRY3pwn9YtCYsapRX4QF5I8iznbNKilKAYGuanAXQPmUVS6iiU5PFiwtVz+wz6Aw6DQuhVpdqNb34NrcbkhUQVkVwV2JHE2ojWiUWoybISH/rkeYHJJjRtQ1dJbLfg8cPHtAuH0ZHWaZy1KAGZ0BTCkgu3es3FjmAFSSSkKfA+4WZLahGYzk45Ojnh4cMFJ7lF6Yal69ACEAlhjtC6oJMDGjclZQq0xCVLbDMMEqcSKUqSDLSrJnWSTwjhiUiUMvRzhRY5Itf4mFbVsglk0mR5iUgCmSK5C8To2akMW6MNhoOMy+c3ybOCiZ1hdJ+gWmLQJG+pZIYkYbQhJHAx4p1HaUXZH9JajZAKnSRGaqRIOBQxOXqih83AOo9IkuBPGZzf4+Dmt3j08B5Pf+RzyOj49m//Jn/s46/wG69+i3cfHmOFJqmIeC8BMHIFeemofcfZ2RF7uwNmh7dIIjI7vs/k4C3evXdIriK/8mu/zt/4X/4NrOvAGB6e3qcN++xducTwwnVGw0tcigU/8pkXeHDj61iX6O+d59tf+Qo/8sHn6VKL0Irjhwd09THPP/s+Xvve60Q3ppMdIjNonUFKpKTw0bI8nDNIR/zUR6/xk596hYGxWOdXn48iIIRC6SF5nlP1N7hy9Rm6GLhyeY8HrxnyTDDeKlgsDrnz9g2SqpjOp4w2L6HzHl5KvFHIFEhSIlOkUH3+y19+ldPDhxRlD5ECShcsu8QSR/SB7ed7SEBIReo6Qkz4xlOWkRd3x1zWGhixuzemPemRi5ylA6U1eUjsDDVbEl6/M+cf/Wd/j53z+5xWhswlnr6wTVI5ZJogEjIzCAmxzhhvbiJkQkrJ9OyY6C1FtYHF07aRfunJjCaGsKpOFmlV2S4VIUbqpiGPEe8c8/kMo80qAdK1q8/rEHCdZ546jDScTSdILRhub1F7OJtPiV5ijMI6j4uBFCMkhS4UMXps40hIUlLo95JSdeexUqyqFIX/gzk1rK2tra2tra2tra39ofJDB/5QghgFPmiCEURhOG4TmW3IEnTLDikNIkRScAiliDpiXCAFhVeSpgs00RN9ZDpbkscaaXoYb6hdou661eVbSU4PJ3RCMBxV9MqMymhIiSggCYERAqEMzsXVoP2UsDKhjCQzBUo7Mq9RUdF0Ftt1RBFIClQQRC2QNiC1Ye4c/bzPws5BCqpByaAo+MQHnqE/KDiZt3zxm99HWkGQARNbpNZoubqYLdqWJAEJOil850jG4J0lpVWFUUoC4QJaSXpVRe0cSopVi1mSyCSAgEir4e34gDYKnyBTGdvbO4xKQ7uckw/6dF5Qyn/bFqzxtDirkcGSxRJtDLum5LRzeBnQymNySYyejdE299pTgvOYvkYlqJBEkSGEwE7vEYIh4fG+xniHUg1tPWNyOCXlBVoJdIyMhn3M9g7fPTjDO0eWFyxbhy5zds8Zksnpp5a83yckxcWtPh984SXuv32L7/7gHZoAjxY1i8mEUhuS0ahgEMqxPSrIjcTZQGcdHZ7YSbQCbQWKnKb25Hp1EdaZplvWDEY5x13LuCrRpuBoesbha7fY6EuOD46Qecl8YvmRn/g8ZVbyy7/xr9i7+CSjasB0MuXx8Rl7A41JkdIU5EXEe4sisLG3R2gX7G1v4No584mjpw0LP6E9foztEtpGbGkITmKnSy5u7SOExhDwXUOhIsZo5nVA6gJERKHofI21IPBMzk4Yj7a4em6fJ55+iV/97a/D2Sm/+Zu/y2j/KifzOY/vHyHqGb/wS79F2yZu3DpGZBLbBcoqZzFJXLl0ifbOQ4Kr6RUDSJI2BXwSDNWIRnhya+hUQ7AZ0mQcdkuSs2iTM4iSzZ09qlzjQ8fHBiUmLrFGUpoMKTxBSH7x5l2K3jZVqWmTwrcdCoksDVFFfIiUZDgR8DFiYiJGSeehX0BUkiAVWmpEiIQEvUFB1a8IKNrO47qOLkR6VUbVG6K1YBI1BkE5GiJ0tgq2Nwt86mMUCOnxPmG0xNmIkBqFRElNEpHGJYQekISC6EgyEJJEKgNCIxL0tKEqHFJlaB0ospypu8cTT70PGTrevPE6KofRxoDPf+4T3HjnNr/7zRvU9RIdPCrTyEqR5RmN71gsO5IosF1k1nWci562btje22bZ1Cxay/xoQi4zclPxK7/5T9nob/LJT/8ov/TPvsDn/8TP8qGPvojRBcv986TWcu/dd/G+5WCxZG9vi0wZZot7PPn8h7ny1CU+uCu4/fiAWw8n3DmLpOEeyiTm8xmzg0M+8fxlPv+Jlzi/u4nvLE0LSeUYZYlA1NBZyHtjTo6OuPb8J+jrgMgKNgY9+uMd3OKMrLeNiAWPDh+wd7ZPaxfkec7G3PLmm98heYMSgqgcMl8tbzr1mt5CggBrLKmLCA3WBtpuQX1whPNgYkRL+d68WcXJAoSswTqad2/y9r3byF6OShl5hM4m7jjNDDjICmzXcUVqvnP/jJ1+H7ygtYL7Dw64vDtA5RqlFLkZszGWeGHxwVHXU5bzKZVNWOHRssZ1kl7eB6UxmWF7vMvp0WNmyxlSGkxWImXCu4bMKEaDPtPJFK00tW3pnCd0CXKPzIZEIUhRMF20pMyQ5T2SSRgV36tEt0QSIQJConSJiJpEBKVWbetBIpQmubQasRDWez3W1tbW1tbW1tbW1v4dAn8Bh/KCLnlysQoWRaNxqaRZdjjp0EJzdHDKYvqI8ztbdCZDe42UiiQFPkITHDhHJituz87IfYvSFT4GYhJ0yqGSxLYWIWCRHPOpYLPXJy8NSUCQcjU8383JEVgjCD6SkiQFEDHhkqALEWUDXYqoIiM5S1tbTJdIfUMKDqskkohzHVmURCHxKfH+Kxe4uL/J6fEZ+6MtBkXBaTsnhLAK8ClJSjB3lpgiKUQ6tapIK5SmJa4Ci8Vqk/C8bclNjhIKnxICyFWJEBEj4mr+mdSIIBlnBU60JMBLzc7OmEFpODw8YmdnQFQJFTxSeGyj6aSlMppSeDwaKSVbhSboEfOTCVuDIfsXn6SNAZImzxSmKLDRYzKFzHoIF+imc/Y3Ij/18z/Lpz/7aeT+JpXtOH/ho/zch/4SL/z0Hb74G7/O17/6Hd545x2q4QYzwM0inVIIJMuZoA4e0UScC3SLOf3REBsSKcw5PfHcv/2Ig2VN6wMpaXyKCF0gk8BExSzVzGYzbFMzGpZY4cmCwuuEC4GNwSauscTa0YglMXlCphGN48HZgp6UhChRxmNyTZCaZXSIsxYnBpw7t0NRlnztO29w/eI+f/7n/wz/+J/9E252CSU6Dh9MsRtjrp6/SFefcP7iVfa39uhEg3CO5qDheHrK8qxBFQIRPG2XUNIw6GcUKSDLnK5JHJ15hDaI1BCDxDVgXYAYiUBwASWgdZ5lG/DJQ2NZPH5EtbXJ4dE9inOXeTCvGXVLllOLWUjKXsbcNdha8a03j4nec9xZoimwumM5a/EN5KWmKATb/Qoh4MRaVICsKBhKiUPSCY1tamwmSXUipNW27kwk8uBRQiCTZqvX44NXxoh6wRlD+u0UIRNl1ue/+J077D7RJ7Fq804IfPL0paf2oL0nRYcQCiK44BGZXs1MSwqJxnvopKPINFWVo6WitZ6mXhA6z6CX0zcKqRSxsyipGPU0xrekzjMcb3FycshgOCTLEk5FpFYkIdGqWAX7FBiTI1HElCAGXNeijYEEDkPQgl7wiCQwWclg3EOaHBEsJ2dTSAv2954m39jl7bfeInRzPvxjf5a7777Ju699g/c/+zxXLuxw7fozDIaKKAWyy/l7f+f/TXAF9XIJCKLz5BIKpTkMnu2yR5c8KWbIrkaZDJVLwtLjYk096Th8fMhZSnz1i1/m/q2b5MMBqYssF3NUZnhw+yGb2wNE0ly6fo2NQUF7fMrGuGJQneMjLz7BN954yBd/9wadNJwenvLy+5/gL/7ch8na5aoKWUaU0CAUQiQ8ki46fulf/Gvy4T7z0wPe/MqvcuHFjxD1gGq8Q7l5gbzfJ7Yt7dYWm+MNhluX2ehnyFKxtXWBMnydZdcRi5KoFLePzqg6TyEhhBqf3ls0EjzRaYSKlEWPvBwxHvTYywwHTYf0HUOVs1l4LuqCyXCDanebcOMNvE9AwEfHUJRsak2RLCUtjTIMLz3D5NaXeGKjxIiASJY7t95iqK9SlgPyqqSzEzoajMqJ1pGpCpup1YzacEYkQ3YlJ/Uxb757D3SBVgrnPUauklVPP3GNrcGIg8MDDo/PmE+XHJ6eMj+e4dqOZdtycjKh6Bk2dvaYzRfgDUePzlBGYcqMs+mU4+MZNqyq113Q+BgRxuB9QKqITBJJACGwXoCEJDwpOPrl8A/m1LC2tra2tra2tra29ofKDx34EyHgk8QpiWtrSAIpFdF3NMuOuavRIdLLS2xV0nSOrol4B0FEEpHCFKttojaQYkchFN4Hkl8gZUDoHKMHLO0ShEMiicmQgNPlElOvqv2UVEgp8T5gpaQTERlBpoSSksa1aCFouhYVNbazqF5OFAlVrIKHjojSEv1eeywioYQixUTbOY4XS0KQSFFw7uJlit7rxNkc7xK50CRWGySbtqYyORhNVAIjJLWz5EnjBOgkaGIgKUUIEQSQwDqH0BpixAhBTIkuRRKB5Gq8CAzykkv7Fwla8OhsRt4bcno052KRo2SO9I6Yt2i9mmuXmRybWm4dHPHug3t4aSiEpBCBO69+DSEl8/mSV/70xxBCgjQUQiBDwvqGn/rxj/Gzf+6vkA96zB7f4uCtW+RVhZGQasuVHF589hmCynnn8RFH8yW1gpP7U3p9gwiOBo1ta1KIpAijUZ/NrRHRKzJToHPB8fEJnV1QlSV+aeG9AfpL3cFiBiKwu7PBhc0NKpMz8w7tLWWliGhkDFgKghH4BCGAQjLrIrWzeBeYtjX2QPHCEz2OZksGpcT0I7PJO2Q57OyeR6ZzvPVgynMv9PjJn/qzfP/73+bo+JgYIvcfnWIDXDtXcnx6Rn8wYLmccHx0gG4b6pC4N+8QEt6/t43sGrI8J9eaZe1QYUY9tRxNp2QKRFy1puuU6JC0EUTSRLmaqVe6hFEbpCAICmSWkbQEBHe+95s0E8/GeExy8PBgSfBHRGWQAWxo6aJg6SU9IVFOcnq6YGfL0DnHwemCxnd4kdPPK5AdSiXmweFDQsoWlRzBR1QyGCMos4ydIqfKC3zySAzlQPDdozvY3hbH85Zs3vJKvwAlSCmntRGtclxTQ0yYCNiAS3FV5UXEe0eZV/gISiqqsiCuGhYptabsV8gQqWOkns6I0jMue1y+uE/eV0DDuOpRliWQuHHzMd7WPHHxArPpnLt37/OBFz5ACp6yKFERtBCICGRy9d73DikTCIkQCW0UKTm0UqTgGfd22NjcIcYaFRJSwslZzRtf/TXyjQ2euPgUqQTnW65dvcr58+c4uP8292++ze7+Nk3jCWGMnZ4wPvdBdq9fYTZv8EViZiPPlDm1aMh7hieuXqQwCtct2Tx/AWwHJpCVmto5khZ00wlpax+BZzGtSSc1H/j0x3nq+ffRl5G792/jZUEKidHmkEK2KKXpj66QgsMUPXRW4bxFS8mPfvApXnzqEl/6yjd4yy75E59+mcwtAANCkKKH5EEkkgiopBBty0svvY9/9AtfZutsn0UXOD07Ytokol4wPztmuHkBXbQsT0/Rqc+1K+fZ2R5RmhIpGy5cfwajOzwlmYCBSrz4o5/myqNj/vUXv4QnsDEcMl0siK5FtYbWC1xyDH1kRyry2GGrkhtLy723piRAtY6/8cdybjpDZjI2ewW6Kri3aPjPbx0TfCIVOc4HPpzlfOD5Z/hLf/ZP8dVf/qcUI8MHX36FXHpOT4+pjyO9Xp/FbMLu9ohqs8ILj57XtIsJqZFkypBSouqVqJhYTlsab5EiQUqcPDzg3uvvUOYZp7MJ9w9rdA5SaLousDvqgbDEqOnmLZNHcxABJSSbhaazNaSMHpCNR2iZKLTAuoSXoCKI1UpqQhDIXJFsSwqrBFuuxWqeqMx/3w8Ma2tra2tra2tra2t/+PzQgb/T2XRVtZUEwnq66FFJEkWkiAEhFdErnM7eC94tVsPmogAiNnZIKQitA5+IoUUIQGoUnmAd1nq0XEXGhChQQuCER0eNF7BoO3RmSMkRtKDoIjZCMAoRAkEG8kzThYjtPJ13SBFQKeJsDcnTMxW1DMgAUYIm4ggUOiOGsKp00gVv3brHc888Syc0X37165ycnIAPKCnwYVXhFxNkJifEVUBRKolwnqpX4VtHEwI9MhCJXCmij3gSTXTYFMiTwjsHSmGUJkpwIaxap0Wg39PofsF8NkdKjQsRIUAXkgqJsTm58BTO41QAIZFK0CznqODA9LEGbLC0XUOlczwR6yPLtiGZgNEZSkRyFD/y8RfoFZLYzkltg+8WKJNQhSTpjvnJlHd+8BqP7x7zkY98kLPDYzKVkFGxt7NDP1ccLVoWZ1Omszlt03Bhd5PBsCKFsNo+i8ZkCnvS4JwhJYmQUJpEDBqygsbVzGvBfT/FqMTSCy6MhkgLTkChBD5KpNBop2i7lpP5HEJGkVccNzPatqPKh+TKIFJkkEtUlGxv7vDw7k2KbMTm9pB8lHH3zi2effEFjs4eQrHNm+88piwqmsmCrfft00yPmMwPeDhtaactuQEtDH1T0MVI2yamHZQSej5SL2s675FSE1RG23l0ZiAIvI4UxqCTwJlE0IJK5gxGq02rLoDrAnVtyYaRJHKa+QLnBCFaWl9jRUGZrwLJ86bDFgqFoggNG1tDJsuGfKyYWsGrv/Vtbj+aolyJyh2dY/WebN6rwLMtshzQqwaEtHodbG6W5MYgdI+jw3vcv/8I6xtef+eY7y8C/XOJrY09Tk5rdoLk+X6JjHB6egJBY4IgSkkC6rbDZAVSgMwkWW4gSXKdIY1czUnLFUEKSlNifMI7j4gd/f4G5BGlBPfbDlyiSoKzxRLbnpKaGVcujHnlfR9gdnbGrXcPeO7550hYvA90baLUQ9qQKLRBxEBMES000TvINZL03rw7yLUhLzMGoy3IBmA1qkj4xqGMRFcXefr9H6IoNG3o6KZLZqePOX70EN8ueevGGzzx3LO88qGPY5uak8N7PLrzLovTA7LdLZSQyGrEladeQChPnldMZre59NQFysPHCJVx8co1dt64SUSyubFHspHpbMKFZEihpdqsePLqBf7xL/xLZifH/A//J/8Bv/Kb/w3nL17jg889wdvv3OCV9z9P6zt+5Qu/zsvPXmB3dxPnG6JwCNnDO0evr/iJn/gIsnuV/a0RKtYkHVjVaiZWHaQKHxM2Jk5Oaq5eu8q4jMR6yhvf+B6yLxn1z7FZ7vDWt36LS8++wu6V6/Q2dyl7GZvnrjIY5WzkFc5k+KhoWg+VoW4WjIoCYzzPXx2zeOVJ3nn3Lj50HHXNqvWViBSwWfZomhmnuUBbT5QOBExFQOUZQ+UoqpKYwEZLsh5sTfBgdUBKRyagpxW9SvLzf/wzFNowq2t2t3bY390l+ZbOdkS5gGTRUvP48UOGwwGD0YBSZ1Tjbe6cnjHc3SYIBQKeft/zPHx4wulsQb83wPklk8cPUEDnLP2sz/su9WhlomsiWmX0ZMKlHCkzokirGZdJoqWkiy2VAZESZSH+7TRMUgjkhSKkVYJLCogpEaJCKokvWLX2SkHCI5X6/T8trP139vLHPpGKCLUUiNCSSYNQgVFvyAtPXmNjbBj3K2atxaNJyTE9mXF71jGbt+RdoAmBECJaeH72cx/n2Efu37pJ6BI37h8xXS6RwmECuFUHOFFklEPFtQvnuHZpn7Plgrt358xmC+bdAj+fI5UgBE/KC0TT4QqDChJCIutlJC/IBHgf0MMNnHf46SlkgUJmRKEJriMJTQxulehJCpSA4BCAFBIbAklmQEQpEFEglEQLCD4So6caliQp6VU9jk+npJBIBLTzoDN8jOQq4CPgNUF4BAJtBEIohE/I3BCEIPmIF1AIwdNXNjm3M2Ax6dB54qiG04Vnb3OIVhGi5PFswiA3FHmflEm28wQxcdwmpJfElGjaBW3b4WLALJb8b/8Xf5mPf/QlaCZ873tv8A9+5bf5yo1HZGUPH3K6esaV3RGthR9//0VK7RmXBVEofvEbb3PraM54Y4OTtkNHT15UVCYnZRqZZfSNJsZIFAItFblRGC2oCJjkaYSg/95c0Zgc3gc2i4wOx49+5EXeufsut+6f4lpPH0m/KslzQa57VP09iI42dCQREGVBExSlycm3xqhsiJtNuXX3LvvndxDJcXZ8G1LGrI70Rz1aa5ktA94H2m5O30RMytjYu8bZ2WP8suXitYsI37BI0Otvk0WLTBZFYno65Xs3b/HMcx+gtjW7u3vsbZ5DForJ6WPs2QLaU1pf8cf/xKexywc0tWZra4/OLennMFkuKPKSf/zPf5Vh1edHX3mCl5/b59279/lHv/I9bjye8x/8zGcQWB7ceoDcfYKvfed7nAUwEryPBCdRWU7rW5RK5ChKLEaDdQqVGlLo+Kt/7a9z9frT/OIv/lO++MXf4e79hpCtfj4bgzH1fEFWFUSj0BF0FCTtKbOC7mxGUpH9K1eRwnF6NmF51jIYZdTTSBsWWCEgCjar1XiTlpxlU2MyhUmCnY0BvaFhMZ/Qeom2EhsFQdbockRZDUhdgxOCgda87+oFXv7oC2yN+phMorRCSE2el8SwGpNjVIa1DSgIHlKKBO8QKmM0qkgOTLFBfzSkrU+YP75Llwwh1cync8qi4GzqaXzgp37+pwnRoGQiRsfxqedf/td/i0sXd7h9+5DPfPLjnCxb9Pw2vrjI4e1v8+THPs/tb32Jj3z2T3Lz7e9Q5WNCCOxffoGskvQGFbIccf97XyevKsr+HvXJHabTx9SnS6b2lG4m2NgcQ2X43a99g4uXX+Hi1SfY2hpiyhF3br3LP/+lf4wp9gkUCG1RCGJUQMQlgcQi0upjS5HhpSR1Hb004/OffD+vfPijxP4GX/vNX+e1L/4Gf/1v/i3mR/dQvse3fuuX+P6jOWUv42NPn+PqZ36OUlh++4tf4hf/4X9Dyg2qZ9i4/DQ3br7Lpe0tSpN4NG0p8oLUNcys55UnLnL+3GX+z//F/5NyuImMERsVFwaaPEU2TWBc9vmr//v/E/+Xv/l/5N1GUE+mFEXJfqGpXIOQDuFzPvSpj/I7X/8mP/0T76c9W/LgtObP/OWfw4dE8A3eO/KqR14OiWHJwcEDinyEMpGug7woGFYVx0dHJJUYjLcIwdA1Z/R6fTY3t4hB0NmOEAPGZBAjXbuk7Zaroh4BOgVqH1jMl0gd+Tdf/j6/9pUbPH99j+2epixyovTEAN47qrIkBFi2DUIKCqlpbYOPBiU9g16Ppl0wXXT87f/qX67nmayt/Tv6oQN/i9kCIfVqyHuS6KJaLe7IS2RwZCrHeI/UAl0OOJs1GA8GTdO2KARN05ATkcmho8RlkuhbAgppCjSezlm0Log6IbQEHxAkkg9kWUaWAKGw1pLMapg6ncdZhxIJax3xveChynNSSvhgUV4jRERYjxIQnSeoSFWU+GCRJJyISCUJLoAp+Je/9TtonWG9RSVJiqvAnUxgtMZKgVYG1zUYBAWCTkvke0GPTBuk0Ti3as8SMhA6S6ZX8wp9CKjcrNo7tUZE0KYgALSBEAJNt8DbhlIaVAamqJDCUBWSoAwxSWSQVDHitEZJxd7+Hj0tmU1ahBTMY4JWIEg8s79DoQXni5xZptA6YyjgJ37mj3FuZ5ukNKIcsfnkDltpdegWJLp6Qm/f8T947uPcuXWHf/KFf0AmLjE9eYCQGUhBfzQgCkO9qMmkIWaJTEo2hhWaDmNWB/zDwwM6KWiShdQxKATVULKoBZNZTlmVqNTS1Q1tlMwcyMYzHpW0ItLPDe2kJQSPbwNdVzOra06Pz9ga9xhvDpi0MFsuEd2Avkr4pkFkUJbbFGXAL04oNraQWWC5EBRaM1kumZx0qKqPrCX9XstyPifXEj+zoHNiXxNiQyFAO4+LYG2LKBTBCAIBoTNC0CQtCBG0NKuLjgcRDMvg6OU5qXGoLmGkItMwXSwgarquw3WeTBsWznPcZiysw8VAE1lVZYkCRKCvJEkkkoaoNYdnDctlR70QOOO4N4lIkehCQ+YSQQYqDJX0vPj0NUZZxfduvkE2qjhbtGQyo/WJO6cnzCZ3OHq05JmP3GXeWu4dTugbw+ObLQ92BYvjIx6rx5y7d8wkZFQ20UWPMKAjoBRCa6JPJCmh0AgpUWi0Xm1qNjJHKInFY5cttmkxRUZZVKvfryQSsDEw0JLcRJanRwyKjJ/41Mtcf+YKw/GImzfeoX1wQIgCId9r+Q+r6iiMJACxsWgtcTiSUIgOkIradQRvWRK4cv4Cj+7epkkJE1rOpjNOzhY8Pjjiq19+lWde/waXrj2BVpJHjx7hFwvevXuf0vR5+okLNNM5D955i2AtRdWn/8Qug2hZNkuGO5e5+d0fEIhs9HsoofjYKy+Ta8OnPvpRtJDMOsu4VxFjwrYtcrFgNp9QljmxnXF9p8/G/gZv33mXMA80k5Z3XvsuRb/iBz+Au4/e4pPv/yDExGvf/RpFeJ68eJFuekZeFkQhkdpghAG7oDIRSQTZg+RJOARqFf5LCak0Z9NTvv7693keyeWdjIuXNzk58tyeLDk9vc8kFdw9POXi/TNeeuWEvZ19pGkZb+6wsbuLii0pQVSr2aCBOU4Y+lWPN775Her5BG0Uz2xskPV7vHB5h6gKumj50Asf4MKFizzzoQ+yeW6XPQeZVlQ6wylPFySZd+xc2OfHPvdZru3tYkpNTI7N8Q5N3eK7mmq8xWhvmytPPsUo99y6+S5eaFxrqacTtFL0q/EqiNY1lJsjTieBGANnRyeAJNMZvWKM0flqs7i3bG0PsN2Sx4/u8qXX36QoC5T1JNehJPSzjNYGZC6oO0chc2xRcng6p+sseWlWm90RtM7jiUilkXK10CpEjzYFMSqWTY0SUGQSJRNlXtAtWxrr6ASURYn3AcSqmjWl3+/jwtp/V1KsWrBLoXFOIwuNlDBUkL83K1OoAq8TwUVoA0ZoMhnIgC50pCQwmQbhMVqwN+yTzrZQwXE0b2iCR9hAlmsEES0iTesw0nBu/xyXL19i1CyYLh5QO0eGx3eWsihXI0yUxKPx1uJlxKRE03bkQeC1wAmBm08JaTXSJHOKhXTkJKISBO8RCvIoCC5hlaRSOR0OGdJ/u1ndZArJ6nyjhCRKiRBgsmK1TOzfJlWFICUIShFlRIRAioEkoVdVeJtonEUgiWgE4r9NViQtEUaToRHRvTfWIZIZR55nmC4glSApsCESxWpedJclNAHRrc6fbZfwKAod0EmhRhXDvmAxg8XS0abVe9WphPMLgkwIVeFswKtILApCUeBcTT/L6Q17CA/jfoUxieAatNxGo4kiogiE0KDSEBFXHS04S6EkuQj0laJnFMoYlvOazdxAcIBE55APC1yAziWW8ylZVpLrnOGwQqcMJzrm8wUZHRczw72DM7KyYmtzTPAZF/f3mS5nxM6i1Qxrz9g5v8GtwzN2c43wgKkYjSu8SOSDnH53TBTgJpaQSrydMb39Gk/u7zFHsuxatkfb2HZKrgRlMaALLRtbG2zunyeWJdu7eyRp8DZw4+YNwmLOfDlBS8NuT3KhZyi0wAs4enSfcqC4f/8BvaLHaDTm/sER1y7uEYKALqKUQaeCKCBTOU2zJFjP5u45zN4QGxOd13RJoEVEKEFs5qvuAC/JTIdSQNRk0rMxGiFbx8HNm1x56jm66RnaZLzXhoSJiRBbikLQRkflFEV/dV/pvKVZTFlajy4MJwcTTs4e4xEMZcZiHuicRZkMEQDXkuuSRUgI5ykyQxQQSJzVNXOnUPQZ9CLnzlWcLDwLmyNFQZEsi+C5vj/mIy89w5UrFykGPUzWR0nQUlPkBQLwRJQEmQKF0SATQq+SAD7PiZ2inTZkeUa9eMzp2UN2ti6wc/kFbr35FY5Oj1C6R1YaOlcTvUCkkkQkOegiBN/i9RA1vkSbDtGbY/ZGljQPnC1L8mGP5FbjibJ8wHC0S9W7QO0npNQyn8zJes+R2hmPH95hsHOJoR6zd+VJttKTtKcHmM0hvlEc3/o2905PefL8VUbVBHfnq3zhNx7w+tGC8zsXyavzoBMqeToh8SFCFIjkUNKgzWrk1GQyxc8P2Mo9z17ZoJ0FDu8dcm/nHuW+QxUjTJ6DVhSFJqSEqLaIyuK71WgfUiIZ8DYSTSIITx4HVLliKAL9QY+LV6/Q3LiLLhVqCXpeIyWUmWFYlKgsw/uOMhNopdgQGVW0bJcVyUm8A98uCQnIaoTtUQAxGDoczfKIn/tTP8KgrzicRG7efYcHR8cMBiWCSNEr0VlBShGkYmNrj4giJU+pFVlWrOZ8j4bY0HF2ekSKApEiRiucs2RZhYqK6DxaCRIJRKLX6xFjxPqACmFVZKJKrGuZn04ZVyW+azGjEVIkbNdBkoxHfVIUq8Rz0pRFhkgWFQ3BdmhV0ETPaRNoffjv7Xm+tvaH2Q8d+EveU/VLVFEiWM1lk8EzyDRGG2LSEAwkh1aSXGwwPT3F4ZFlRmwcWIeUkcysDlM+Jcpck4Jm6R1SOFKUGBFJItI5h0ThRSKKhMNhnUdlihgdIipSiJjEalmH0iTnV1tEtVxlSqMnLzPCsoNcsQyeqCRVv6SzLbbtkEnSeocoDFkbkL0SR8K2Hus7hBQsXUNe5igpkY0DqfGuoawKhCrRIdEsGmSR09mOTOvVhl1nKZKkcw5gdcBIcfW92dVFUAlDkxKlNkQhqaNDJ0jBslUV9IymKAoSEe0iMiisFXgrMTrSGU+pJWhBEh6lYLS3gfPHLJZLNooeuxcF1jp++uMvAHP6WaIwOY1KXNzqM7KW7776OieLX6Xf71H2Nnl87za7W2MoS2698ya7gwHZ5h5vvH3Ev/nCNygGA7K8h0BRZprgG2RcXTxjWm1Nni+XvLjVR+ghofHM3JJcVZgEu8NIsJLThSfYhkGpqYYFi6Ulxk1ctiD3C7ZTzuHRI858jUYhNwyZUCynSzCrWWjD4Yjj6QQRHBtFn7esZTzapBOOZWgglQQV2C9GnGULmnpJZqANiXuPF8RkePLJD5DZb7GcSw6PgJBzOm/YH4yhgHxWE5Kj3y9IS4f1CZ2XhEzTtg3RJVKmyE3GsqnpG8OgMvRzTWYEp92cJvap25b59JRJ41FaYJRmkGcUeUaboCyr1SxLJfGpYOkdSgWclauKOhnQWtKpBtUT9HwCI5mZQB0jMSra5Ryk4dxogyI1TJQjTxUdLTILbGUD/uTP/Cz17JDv3n6bkzZyeGZppjMO56d0QYOMmCBou47DaUuts1VroQy0B4doFTm0nvlkgSxLUvQkpcDHVZtoplG5ZhgMPgYsCZUURZ4hjF5dNvMc71vCYrEKlI8G6CJDpo7gPc4bCpW4sFvSzGq60wkff/k6Lz9znSpTlKWgq2eM+hVts2AyOWMwGGDbjq29Hs6vqnsbtzqsJKEIgDYJ4Vt8ElgfEEKgEHzrtdd5dDrj/qMjTg/v8ejulPNX9zlpahrj+e4bd/nKd96myg0q10QSvbygWcx49fsLFr5hlH+Z8WADYQy7A83OzhNcvrjHX/kLf5G/+hdrJoePuPfgLkoodKYICJRRlFlGJjWf/MQrICIn0wOevHCFz3zqR7l0+Rxlv2Bj3EeXhrhY0OttcHB4TNXvs9UfsDx6SN00OBPpguPidp9eb4hzjugduRmjhEEJiTA5WggyUxKiI4aI1GHVkp40SkpCCiAyllNH1h9z69a7bG/tUSTD3h5sjHc4O2s58pYfvHOPST3jtW99k4u7Vxht7fD2N7/MlWffT78a4lWibi02anSRUMuOjeEGf+1/9zeJaYFSGqRZ/UqJBEgPQq7aW5//+I+hECQRAEFKgRgTMUaEhKyquPT0S3zkx38aISGJuBpnEAMhRURSJGEh5TC9T+ZukBPpfMPvvfoVnn7yaWSmkSonJInJEucuXiEER0qwXE7BeUYbfVyqOTk6pSgqvLcUueKzn/40d45+g2W9pIvgYuDS7hbjKmNWJ46nE/KNIS899zTtbMpB17AQ4KVkXGUsmppOw/Z4B6MlhyenOJ9IQpILtUrAGEEnDXW7ZH/UJ0hJqDRJRookyHKF1gIbVgmsKNbJ8H9fXLxygeODE+gaRC4R2iMSyFJTh8DZ4RmP/BRTFXgiXQQRI0EktJJ0xNViF6/xSvL6nTv0hiO+8923+ei1HS6WJVM9Zx6gw5NSwEWF1zmDzS2aGHjr3n3qtsPF1Rkqt5ouK5DSUA1G5LkmoIgxcdackc4WyAjk4KKl0DkySebRo3OD9ZEuBURk9XVRkZRczcKMASk11nlsCqQkV4+F4MgzAzFCTHgfCDKSJYnrHNFGJKvXbde1aGXem6ssaZsWKTWrphGHEJKEIQDSr4I3znYkrRDCkJuMjWGPYb+iKAUiZfRKiFFR6hbh3erzIxkWNiAcdLUnyyJSaiARbURrgdQKIRUuOAo1oKo8wp2Bdoi8ICwcKSViNLQuIUTEzadEIRCbI2SKdMETzhYgCrIyp8ormrh6zqbYop2myzNy3xBDQ5IDNkRO1svIFORC4F2D0zneJ5qmYVCWLL2nC55dNIumQUtD5XJ8MigpaV3EZ5Fm0SJlQOqS08UUNT/iweSYd99YUpqMnV7O088+xbknn0X2h8xP7tF4RYiSi7ub7Ay3ODzOuHnrJkGUNGcTTL/E1pFRGQmiRYkM09/gbFLz8GhGb7yBykuCVuxuXsKFBmE0ZV5x+viEFCIIyb07t5lMzjg9meG8pDWSisiV3Ypl5+j06t9l8pIugW06vvxb3+QnPvsjGF2zWQ15/sef4d69h3SHj1dzvVVDEO8l+r3n7GRKf3uL5fQUG1evFa0lyULVE0QhUdqgQseV/Q2KMuf0eM6g6DMc91nMpkQPKQpsW7PRKxgOcqSJ9FRBKnKMzsjzjHY658w7Fk3DcjZFURDzyHJpWdaWkATKZDSupe0CRkZGWUEnHK0WHC4sWoF1DVnWe++1HvApkpIhCMfBzNEFQ5YXmEIiuyXCKz54/Tyf/fGPI1Fo0wMkIiVElKsFiZ0nJY9S4r3RRguUSggJ3gUyo9EywxmBbzpSY8mzjK1Bj0d3fsBTL32Ma899lMGjm7z1zg3EQtM2DW+/fYcrX/0dgl9QVn3w8OjBPb717Tf56utvkfs5m7/9GlJLymLASy8/hS4Ml65ew/hjKEuaxtIbgVESVIa1Cq0UjQtYu8QIzbs3bhLCFS5e6NPbHGJEgc8WNKMe7tFjLj/5LM++7yonh3Nunv0OlZ3RWIOuEk1nSbYloMkkKCURFAQS07MjFgf3ePnKmE995v089eQuo57mn/+LV9FdjVaW0+N73Lv/LsVwyPLsjDz2GWxusHHlCYq7B/TygmrQR0pDFjzWr9IdJips1/H+CwP+2LUXeP3dx3zvK1/kxOXsXDgHwKrIWmGF5/x4gxMfqSOUaHRUZKkDPDJ0dKFhsVzgPLQxMXQSYxsyIxAqMt4a88RzzzPcyugWC3y0bGxscGH/Am0zYTJZ4m1LSnNGoy2kFoQkV+cwFIG4WnQHlP0+wmY0TcL7muBXY3FWd1KB0oq6cWSZxhhDmUoikbbtkEJRlAMKrZjOZpxOTmi7BaO+4MqlPXIladoWdEa/WiUu28YSk2A47GFdw3wxQ5kRF3Y3CN4xtZZB0eP8ePP//w/ytbU/An7owN9kPkHGwE6/j8oKkhCEZBEp0YmISIlochSgEPR7Y7Q0HJ2crlpEkIT32pO8SzTSobzExYhKHUIZknNILClTECQmSmx0q4UBIaD0qmqImNBSE5IhOEeJxGWC1ntkiqvNnikgQ0CksKoyEQHbepRezfHqQsRovbpQJVaZ5xhXc7D8qpJv7lpKNFEkjJBIIbApgoQYIrnUmMgqiOcCUWvmwdPXGp8CQkhCDDgpkWHVsqWUXFVxaIWMhrazRKmQmaILnhgDpVEMtkbsn9tgMMzJfY8YBE4kDk+O2NrQKBlpoiVPEeEdQfVQQpAlTYySmDIiBa1dkulIb2+Ljazgt35wi6uDnB88nvLE0xuM+j2iUiymJ0RdENrAvZPbLJdvvdeC4/FtgwgLlkVGc3BAuzhGlhodEgMToYBeptjfHDItI0eTKV2vwjZLHBJpwAdBCIpqsImIAhc6pPVkVc5Wobl3d0kIkVGp2b+4xaKGw8mCLDeczRqG/T7zesmyazlKFZtVpHE1G+MeWlcsm+nqwkvg0t4mb9w9YrsU3Ll3xv5wi8myY7ZskW7Jpd0xd2+/Q5MiRo9QVc307ISnrl7h9W9+lXGumUjBwdmMvh6ThuCjp68EeDAuUkdPz+S0RCyJlDTOerQJuM6+F9AJ7G9v080bbISZDXR2grOJJlhcm0hVZL9fMh6PiBLyKFk2HfPphEviGtYnYhMIDlofyEwCFdDRsd3v8/Izz3LznW9zNLd0jWVQFagskbIMyJnVS6wIkPVYRA8+ca4a8uIr7+fho7u89p03+P6dU+okmBwvQEWqYU4ZNI2zBMB5RSSSq8RQarz3+KLCLmZkJkNi8CmRS4NWErwn6NWGUR8DkVUrbzSSQucoaUgpUmWKxs4wJEbjHiLLQa2yvxWJzVHJ/v4IleB7797FTqd87MXrfOCZi1QbIwqZI3KJQZEmM4bjino5J1jLqD9ERmhnC8qygF5JUuBdhyQRvSFJQ2s7js+m3HvwkMNHjzg5OmRSB/yiJqsyzp/fpesWNKc15/bPMextYO2Cza2cxcwxW5yhhMD2c2ofoU2Uwx1aFwhNy3IiePPuNyi/Y8h7v8P733eNl973AqPhkNlkiowSoQUyrSoVXVuT6o4aRV5W7J+/ws/9lf8IQUeZZeztbVAWI56+fIHhYIzTntuPDnhqDjiLCgXReYSU0Hik6dE2NclFUvIk7whKAZYoI046jIpEIoRITBElDMGvKmtOTs44m9fkg5bZ8ZSoRgx1sap6Cx29KxXPD6+x3dcsF466UZzWh5zNBY/nX+bcOze5fv4Cm7sV9965S1aUOKuQKnJ48IgffPf30CIQXCAiUFLiQ0cKgWAtPvpVu2vdEKV+r7ol0NgW21lchM1ej+HmObwpCKEm2kSMCSkS0VmCj7iYiNGDh0vPXsXFDu8Fqih4+smnaJaH1KeWJHKMNnhvGY17DKo+49EmvSLj6OSA1ie2t8+xf/k6Cs3k8CERz52Hp6RwxtbGmKN5jS77DDa3KHSi6EvOX96lax3T+ZL79x5z9+AELxRFmTPtanyXMEbSnp4SkqC1kUGRURnIxGosxdb2COci+WZFWRk2x1tIETg8PqOX5YzHQ5ytqcqCwqwq0df+/XBu4wLb4z36mUAogcYxzCuC8qQgGWpFEo6SVSCQAIJIVQXscEATN0gBbN0xt4kb706Zx7uUZcmBdZTGsFNVjLbH9Hojom3QKtDvDSirPs7DbO7widUFy3kKocirEl9b6vmS2cwjkiIIGI57cK5kVre4pibG1TiEoBMESWo62ujJjMB6DyGQZb1VINAG8kIjvMelQMZq3rEIAZkgWU/btRipSDHg5SqYkmmNDJGUEs10ASQ6EciERmqFSwIR42ohWHDoTCOTIAaP94G8V4CWOOdRSjIe5+zvDYhS4VyDlAUSgdCC1RaciHURHxIL68AG6ralX1ZEvUogN7Mz1O4ezkNKDpIgGkPKJakcUx8dg28wgCkMw8KQS7DNqqKwXXY0dU2IkTYFLm+OeHg6ZT4TxJho20AKDcrkBG/ZLQw7G2OUycmKgl4uyFQihdV2epsVOJ/olguUMSxCpKcUg0JAkkQ80UfqzrK7s0XuMsoHM+bzOSaXqGTgvfP5KDNc2t/jcz/2CstmyaNHhxycPCa8s8Q6zdVnPsD+tasYJVjOZ7xz8zYySi7uX+LwcEYYDPD1gt6gZL60FGZAsAtUkuwOEkvb0p4c8MRTz+IjzKcHeF+TWkvwS7yPnE0bJAKVFeASwuQEmShURnSWzZ5GJMNpCFjbEJwlFJK37h2ytX2Bu48n7F7ZRfvAwfEjFvMzhGuJwSEF5LGkqBybm9tINAvv2BxdIjM3GdYtiBwrA/XSsXAt2+UIMslkFhDLKUJA6x1xPqfuLPPlksV8yvHCsb814Omnr9IFjfEds7amt7nNuD/gS6++yuytCVEkQnwvKR9B+0AqFLEN5AqEVuQpI8oWGxPJBSTQWEfZNwwHG4Sw2oGm8gxvHSpK+hub2LTaOi+bBWUm2BoZnrqyy0vve3GVvCpzNA5FiZCCBCQp6FiNPMmkJhMZGEcILQSBEBpBsepYigJRVngXmFmL9h3nrz/PrW99lQtPvcBo/wnOz1pms8eI2HB48oj/9G//P1Cqj/MdymjmyznSVGwXJdFHZieHzI9vk+QGB4/u8u3Xb/Ln/nzkm1/7Ln/+0gs0HnrbW9z6xvc5d37AYLCPFpHQrMYDBCS//sv/jD/+Jz/P0LzAoB+Ydg6NRVZDKhHIlOJ0Evh7/5+/z1EnyasxuY50bUcuE1aK1dgpAT4tqE+OyULDJ57c4nN/5vOcv7BNsi3LOhGCZNmcsvPipyiGI4psk1F5yDdufo3l2YQ7j4/p748JNAwHBefPjxifv0LeLyAqVPIkGbBkDMqMxdwzyxqeuHaBi3sbfO8HD3jn0QH2vaSC0DkHiwnYmtyUmGqE8h1D1fDZ7QG+69g/v8cweUbBctdHpA8M9YCf3DBsy8ibTvL8T/84UcBsOkF1HusbykHF5tYGzVIyGGzStme88/bbHDw84PylS2RFDv/2vJ4CMq1GKygBMQi0NqSgKPKcjY0t6mVHUfUQQrFYLGjbhhQFvapcdfEEkFLRYQl1jW8a8hB5/tImIRsRYoT3ks+dDQQvSVFgCokLlsauluBVg01iiAhWCz+l0GRm9V5YW1v7d/dDB/4613E88xSDPhtjhTaGTBm0jyyjRQhBqQRC5Ug8KQiyqmTgepwcHqGDQxmNbQNRG5L3ED1JrbJRCI9IcfWQi5LkIwBJJESQ5ABS4rqA8BF8JOWrbIOPcdXm4SLGGFIMGJcQSuKjJEWJDQmBJAhFgUILENYTtSSGhA8RERNBK/pC0aWELgqUDShtcERCgkxKkgFrPSIFpPer7bsxIYXEhIiTqxL6UmoMkcY5jEx4pREpkDoBRuCVRMmSQq/KmH0KCODc+W32L+6Sm1ULjtQSgcJ1lrPpgkFPY2QfFyRSRozMSEIxb1qMgFaspulFAUIItocVo0GPJAwy3+TcpuTG8ZRvfPcNMhN5anub586NSDox2tnE5KCNZ9nOaLopVa4Y5NtoU2CtY3c0RsfVPAYhLNvbu2xsb9IfVXR5ZLS5TRtOEVoSY+DugwWD/gCRoCd76Exw9nhOqTtypdEBZDII4XFRUy+XDHsDpNjnYHaM7GW45Yy8KsmLVUXodNYync/YOb+F1BmzJuGWNWqUoXJNrjNGZcUUT5UMXeZZPJIcHZ9ybm8EuWHaJXqFpDIbPLr7mCeffZZyMCA2OUJplCpxwbOsPU4akhbMJ5G+AS8iIQbauGrNi8FBWB0UnA3Ubcek6VCxQ1mJT55ZWNJ5VgfcKNgd9hgPYXt3jBXQ1gnbtdilo17UlFoxqHIOhUdKj4gJtVp5Q7JzPvvpH+PzP/ZJfusLBb/221/DUyNEhhKJRVtjTCLH0FpHcA02ZiwXZ3zuo69Q7V3kxAUetx3Xr+1z5/ZDlrlBG0MuBTGBMavKqpDliLykr0sa24EQxOjJlMFLATGQydWFES3QusS2HVUURBQ+erQqiGI1K0nmoIyiWSwJxFV2WBu61KA7wXiU88S5IQOTM8gEX3/7EWeP53z85as89+QlkjAgcvKqT6Chl2ec6lVAsuscve0e1XCT1vrVez6ClmJV4eEDUQXaznHr3mPeevsdTmYLQtshTWJzUHBhJ2PUv4o2JcZImrbj/GakUTm3Htxnu1dCWyBiop/3USlCr8dOsvhBQdIlSabVjDopyOjT2sCktfz2b3+Db37rB1y6dJ4n98+tlvIUg1Xgy6/+37OshwsdW5vXefPNW/yTf/iPmDRz/vr/9D/kA898gBjgL/y1/zlaC+p2zk//zE/x/Csv85Uv/DKiyIiyQAhDQBOE5Oz0mF1dvTf/DaIS5EnSOQjWkAlDoEZKQ4oQYktAImUgqQXVpuX+rZZl8Iy2ND52BOdQWUGWFyzSgM3Lz/Dy1i5h9oibd25zNFfMk2Z+NuP1zrM5HVM/ekSV5TQI+ts9zg7v84t/9++SpF1VuKZEJguitwgigUSKrH5mMq1meEWIKdCmVUVfTBIRImG1LQakJ9j3qhsIRDwuRIKsUKmhtZGXXnySD738PoKUDLd2uXz5MrMTOJ1PeXh4wM72E1hrmJ+dMp/MV5XquSAlzfjck1y49iQ2OJZzz86VLQa5ZN7+Hi8/8zQn8xkPDw6wZoNxf5NL+z2ScETTY7kM5EKxnDdk8j5DY7DOUvVygpH0stVnuF0skAHKXDA2huBbQooUoqBXaETwbBpF4RfkRYYZFtSLlmZ6gjKSdtqx9Kvn1tq/H9ooSVpQx0SIguQSNrTkMoLQ4CM+OTwBJ1ctriJaUpBIpTBS4pVAecX86DFXd0ecdDkni4YbpzP6WUlE47pA65fkZU4vr2gj2OUMoQTSGPAJ0ORao/oanMVnGUWvxIaAd47GOWzjsK4D56hMTiMdbd0gsxLlAzEKTFKoEPFaEp3DhpaeFuzsjYhS8vjwjJAEQq6WuxmlUDGuKnpTAgSkhEFiY8SwSjQqpQBBEgKfIkYK0JokQapEkoIYoLFLiqwiiogUCmcdWZFjjGK8NeLc5ggtcxY+odOq6lxLhY2OqPV7ow0kUguyFGmSR+DIjEIrUCSSDICka1u60FIUBR6LkTlVsUt9siQuZ3gPRIUOgY2q4ihJlu0CjESkQK4z3j2YMVm2tNZz93HDSeMZ9gd0IUOkwOVLW1w+fwU05KEhNJ5F45m4QGgDXVy1SzuZMZSGSgRS1xCUQgpDkhHfeZwwdFiSjmxWWxTqNtKUeOFIHoal5tHpnGpLc+90wavfeYPBuMeTF87xqY+9j1v3D3h08wE3vv01Lrgluxcu4sKqCkvS8vj0hBQsuxtjTmLGfDFHZTmunTLsDyhyzU5Z8XgeyfKKw7vv0sUWGofJNJ1dVVWWuoBoUaXA5Aq3sGRZiXcN3rcIBI2PbJQF/z/2/ivW1jU7z8SeL/5pppV3DifHyqxiMYpBFCVSEmlRUruDBVhtyzBgGDBswxfuC8MWYPjO9o0NG2p0u7ttybLVssUokiIpslhVZJ2qOjnsc/bZeeU145++5It/q29soElahCDgDGDfbGBjrj3XnP83vjHe93mbYGmkGJioyxWZynnm1j6jvRG+Dzhr2awaTuctZXQIpYl6irQB2cNytcSFFtf2bFYbjAjM0aQ2oFVEoxmZoQcVwQ0hcp4BVSI061U/qMWATVtzcbFkKSSPT9ck5NOBBKTTJUFavBgDpwSlEMkRQk9KOVJHOhGx2tClHmM0vnWIAE3skFphlCAvC5JSuCEOEasUSllslRNDxHUNKTpGheHKzhRtNHuTnKtXrrPsmwEN4ju81oTgME6i9eBqIClcAu882miyckznLFIOg/RcS0IUdAps9OgsR7YlIiaWZw+w25blxT0e3L3DF//CL6Fk4g9+7Z/yk1/9PH/45vv88TuP6XSO1h0Sheh7pgfbrPtTTucnjKxECU/brTHa8+DD7/PJJx/y/W9/i1/5lV/hv5mNiD4gdM433/h9nnn+c+xe2UdNLzHa3ucX//Zf5cXXX+T9P/pDnn31y/zq//v/xZXpmJvPXkUWGcuLM5rzJ/zED/8g3/zGN5jXc5qoMOMRUg/M9RQkm9Wa/uKQH/vCAT/ytR/m8jhDyUC3WmPVsIiTpsDqkqooufzC11gvL9i/NGNvtyQzgcmWYbVe8OTTR5zOF1RbmtNVoKg79KxCqIgAhIiYpPnW+494553vMxpvDXdgJfFB0uLom5bPv/wCmdREH4blpFKYtmdrlPPKXsVmHdm6so9QmsJOYLNA6ZwUI9YYKus5PVrzG//Zf0m5v8W9ELg9m7CdG0w5HRw5WhOjA5WxvXuJtq5RRtE2axYXx4wme3iZYNMzKXNya4kxEFI/ABAF+BDoXIROk6KnrjcYoxmPpvSuR4ZBte06T113WJWx2NSDvbysiDKxuFgjksIYSQgDjkgmBUqijaFvW1IE5JAVULcJHxOOiLAS/3RG8Fl9Vp/Vn67+5Km+PhFl5P69e3jnmWxtk+UF1lq0jwQPdb3mYrmi61fQRtZtjRCRXBsyPVxqYohIldBREOOg4utdoA+BEkWQkZQcyQd6rcllRggOYmSkC5ZdTQ9IKfBtB1oShEBLg+t7lFKDrTbEIdmzyEkktLUI1xNCixDDsDCFRMTQ+KEZFa5DFoZV50laDmm2SuC8GxhhIaCMGTZmBDIpab0fWBEIrASDQSkzcPHantIM/3cXIj6ACIKyKJC5xgZPJOD6Huc6RCYhWfqkMaPBgqNFgReR+WqJwBOFpwsJozQ6RrQOkCI+9ANzRLbQQxACHyMudeRWk8uET5IosiEtVgbKaspItFzdNtSbluXZioMXRtTC8ODsjDw5rt/cZWt7i8IUdCnRNCu2Z4Y8K6lFxNqK3WKb1apmuVjQ+aHJn1QZVTnYOd/95AGrTUc1GnH12jWeuX6V7YNrnD7+kHfe/ZRrsykhOpTdJq8qlJI8PDwdLr6TjPOTnizP2a9K5t0a7wPrXqOkYascU8mBD1EUOQbDpo4cNx0jBV94YY/f/N5DpDdAgrSkKHdYztfMsg02OrqN5OQkIfySHMnpquNg/yrarDA4Vq4GU6K1wY46VG6InaePAhEtXSuoCoWWOeerxMVijQeCzml7R4wJ5zzJD+nDO5UisxkHB1vsFIaenOOLc/rGI4THZAKyAfyfXISwRqWSEBJOaaSOSJOzWS5Ij+6gTh8hXc+4Kmj6NS6VtK1nYzu66Il9S5s66GCUS0a2YnVyQpGVzKqSdVbRblr6Zk0lLDppGt9SxBEuenSzoYye2Ca8lsimJ88NXYxED1ElMmswyiLkMBAd5RblQeoRmZX0MSDaNfmkImk4XRwxLmbEKHAuMhvBTqG4ee06u1slNrb0SfOH7z7k7tk5P/TqFa4cjMhzTS88MTre+O4b5KXlxpXrtG3HV774Jf7oj/+YlCKdr9F6hNKCvm+Qa0fSGVFY7t17wB9/5w2WizUHOztcGRdM9/YodmcDu6TvWK0b3HpN8D02M9ii5PT+Mf28YffmC0QjMHnDTmUxUqBiHGzQ2pJch2SwECeVSCliXGSiM7QPLBZn3P/kAY/vP+aLr7/Ac5emPF6csT+eQRw4Rl3nsEpz/9GH+OOP8Ct4dPdTXn3leVLYMNsak6SmLA3/wd/97yFszu/98q/Q9Bt8bNF+Q8zA5HD60V32blWop7YnhcETSCoSfY+zFtt0SKkIUkLfY7Sh8S1PDu/ywScnNE7w6LQh+GOuvvgCrl3j3YamVuxeO+DRw0f83tsfcPOZF/iBn/kyd7//Wyw2LeuzhuOQOHq05P6DI54crTAGtsYl83XNyTLg8GRhQEF4UxB8T3oagqQcA3c1eBADv8vHQJUZuqZDJEAOAUESQZQOkRRWDpwzIROZLandCpk2eG+hlSxOV6zbnscffcA3fr/g1ddfwAUoTYUGfBIobTFZzuHRMW1qCEnw+g/+POtmzZvf/RY+9JTFlNdf+RxVMvz83/o5lmfnXP/md/hnv/897t67z5e/+BcRfsVmveLux99jvWq4dOkaP/VDX+T2jWv0IXF8eMh83TAbV/QBXnz2BmWmmZ+dkJc5yXmcDxyenQOK29dvIOkwNqEyjdKGvg2YrCCzBbF32MxQd/WfQ8vwWf1ZKokAXg4MJSMIIuO0C1gawNGHgBEZ3WaN0Alhh/NdOEFSmq4PrGMgRk8ShsfnZwRyVKfooqHd9GglkCmx7JboXFONLNOqxEr9tGNpkYDSgeASdfKQoCOiREIqhU6RCtAYok+0scd1PdGHIbG9c2gPawljWdDGDcEFRqOSS5MxP/O1L6IzyadHc44v3sR4QRQOGXpSMmijif/K+ZECWih804PVeO+GPozBCSwF5EpT5SWLriFXBuQAu5cASWNlhpGWIAJRCaJQ7O8cUI0LmvUSnYvhuSwSgR4fDT45+gZ0DGQobJkxRvLodI42GpkprNXYQpFXFevekUxAa8NYaFw0ROHw6ycU068QjUR0karI2bm0TfjwhPrsApVnKBeo8ozx1WssXcvFeliwtNIi8owrVwSOjLHvIS/xPvLSrX2+/kNf4V/+1u/wwd1HLPrEYt0TNjXTUUHrHL1voJRc2h/Thx7XddTRg1dYBaoRyGBZLmuMFayXAWMUq9WK2ahCpIiVFhctD47XFKsN3drx7oNT+k3NKy+9wC/+4A/xn/zn/4BH958wG814cHLCg8cnfPn5q7RSkhnN9Rtjzk9hZzpGxQNU6rBGcnJ4gtUVdVji1y0pSGgd60xBtMzXNXvbBVJIrA942ZBnAZkkmy4ik0Em8LFjuW4AzfEn7/Pq517nQ/EhN555ln/8a99EvXdBpQxbV59j0ax5/PCYwq/46JN7HB175hKyvCClSEqwM52xc2kPXM3YSEymWLSeWsC2nuDokGFC06wR0SK05DwNmAeCx1rY3rtEDD0vT0Z8bT/jZN2SmYwsObA5/+c3PiJNr5FXmujA9YOlVGaCEDU4h06KLgVc75HB46XGkCiMpk4JJwQ2RpIQVJOCclzSBag3HcFHirxgNh4hjWIeI9Ybbk5H5JMRWZKkzZqQlUiryPNI55+6qkJCyISSCm0tSSTqbnAGBCQxdTQxoKXFRkWQFpMk0z2LD54yv4SQidgu2Nv7MfrVCb//7d/hYH+H+QK+/tUvcev6FX73G28QeofCEa1hq9hjeRSoVy2yFIxMydliTV6U1JuaajbG+YbGOdrzJePckucF3/jem1wsei5dvsQv/9/+Kf/d/9FtXnz5ZZLa4bkv/wR0gb39bVJWkO1dITufs+jP+NxP/210nPPKvuTh4/t8/PCE731yRJvtklTi+OSUbQ1/7+/8GM9fmgGCEByBDGUD3nckpThf1NjpHofHR8xP52xdOUAXW0zziuml5zDnj9Cd52JnTvi44f7DR8y2PmJcjnn/u/d4/833MJT0CmIuUTKQTIF3oJKitwLXOpRWaGOZz4/plwVSaHJr6RDkRhC85N7Jms2m4fDeI0T1TZZ+g8pLsiSwLvLQKXoPxzYjBc/1rW3e/eQJejeDBIeH59z58A6zSUFe5EhhKfMZIQWc62m7mvV6QUgaJwNaFcRekOsSlwTKWra2Dzg+esThyRFKWUYxYtTA/dvd3qLe1PS9o+97mrajrjtUlpiMtqjbjuRhuWxJVpNn44HZ6jvwg/DGhR7vBKLXwwJXJCKeJBJtnwGBposIUfP0FPisPqvP6k9Zf+LBn5F2SH5TcHhyxGKzoRrPSJuOdbem6xwiJtq+wxYSEzVt35FZTR+HZNneeWxmcd6h1TAga9oWlSQqCZzvBql/G4eGMHlSTHgSQsNmtRoueTEikxhsG2nYAiYf0EIOKbneD6EZ7WB76FyPQEDwCHjKL5AoLfGuwwiJiAmkIrnBJqb7iMkzvAIvQPmENXZIMMqGdDWLou8dVluSkkCkcNAmR+97CiGxRiKkwKgcXIemousbuj6SSzVwe4jYXCOshpBQomN5vqDthgM4Cs3hg8eMqyEprHeCrh8ug2ZkkW6AnIo4pPrG4JiOM/z2BB+WnHUN8+OIRDFfrXh55yWKLKPvPY7I4bLlNRPRXcvp2UOWdcfB1CCTpO96Tk8uQBwRg6QLgAq4EEhBsK4bdnYCKUVi0mQEgk7k08kACXYdk2rE+WKDD4JH959w9uScq5f2UVEwGu2wWqzJqkizWdCZCooxMq+omxXtGvomkaeO3Cqum4LTNbSm4WS+oGnnJBWRztO6jq+9/DJWCF6/to1sA2Whh4SyKKFvmJpdbt28wZvff5+Xb+zxwu1niDFyfHrIxckDdnZ3+e63W8ZbgUJ6ond0PVjlWa9rxqWgKDTqzJErS6ETdQy4HmpXc56GNGkhwMQSFUGIYXi0PRqxMwVrDTGBk4njdUfse/quQUlFZBiG/9G7d3nxC5/HGjlwjWLEuoQCmtaRXM8nHz9G/MyPsvfSTXbnHacPTlmtzmg6SYoJXMdGyiHZ2INTNZeLGZQVy/Up55sVZa4YTyr+zlde5AXpECmgygpFQOmcjw8PmXvHm86hzMABiVbSEwiZRiAxhWWcFzjnia1DlzlaKaLvMSYijCf2nit7FXpUcProlB998RkmmcSWhjwfkVvJOI+MqgkuRXqf8emjC47PNjx/sMXzN/aoJiXeK6pJRd+0bE1ygjC8+ebb5Cbx8ovPcfPmVe49PmXkt9Am0veOZr3EiF2O2w1vvnWH48dHVJXg+ds32B6PMMaSHFwsFvjg0dairaEclaQwNGUJmJSJ8XiXR4/vcnh8ynO3r3MwvkoIDVFags2IAPmgtDJOgkwoBEol6n6wqW7tzNjdntCtlrzzzntEn9jb2UJITYiO4Htk0pR5xU/97M9z69ozvP+9t/gLP/kXnqoIFUoMAUYhBUIE7yKrjaMcV/jekemM/+A//LtkJuN3Hz4gREe3CYysoE+eXBSk0BMNxOgJQiKTwipDqwUi9SA0n56f0ESDLQRGb7i6ewsnA8FCPirJ5QhPzouvfY3xa4nHhw9RW9tcunwLd/c9Jpc02/S4XlMy4ejefWQxY1k3XNubsVMmhMzJS4uRBp1lqAwkUOUGZQsgYawmNxojoMgyEg6pBkSDipBnBTqz6OgHS4p4aqFWgypcC0hKUQfF8emS9966x7hUTPWIIjnufXKfrYMraGUZTWZUMlDUGVVVMj+ec3ge0UpA0JwdHZKiQorEpj7noq35+P4jnp9to7Xhleee48npCS+/9mW+8PrnBgyGW/OF115jsVpxcnaKNZJxWdD3kdefu8pse4eUEvVT7ljrHKbUGCEYjSp8iFwL15FSkOmcpm7wKaJtxvnFnDzL6ZKn9zUxBUzvabr+X1ef8Fn9/1kpBUQQtCJi++EzmYTEd4ZNUxNkD53j8OghI5MoJ1t0TgxsSg1KKJoYoHPg4Sh6TLtE6oyIQ2iLFxCcI7qOJA3n5x3tqqUqM5SSJCVJSdD3PVZKvIIQIiIN50UKEU+gDR7V9sPPmhc09RrfBZJRBJWIWpB1gs7XGARKGprecWV3CyEjxw9PuXn9NlXxAReLFT54jLUYoWm9owsekwSDfiqhtUbGiEqAligNje8xymIQuBiG550wCJXQydOFgAhD8JMSgmACVo8Y7cyoKsPFxTm5FuQxoRMD0L9TdKpjrCyVcTzCYPsWqRNNGoI1JqM9mj6xXrUc6IyyKln2EouBrMT1LTmer7z+HD/4o3+P559/DrTEbAeeuf7j/N0fNfyVf/8x//w3f4Nf/vXf4d69RzRacnr3CdEnlOyJQVMHB11HDImQIrsHl/A+IWn49MFj2l/7XQ7Xc3xMiKeWOLQlJHBdDbnnfB2YjArWMWJ8BJ1wqafIpvjNir5tcXFDQoDRnM0XHK8arkwq1r3HiQ5pYOGG9Np7h0dcufUq2/t73H1wyuNH/yX/7r/77/Mrv/ar3H30CTJ1GD/n7Y97rh7sYhrP9tZzbE136ahZ3nuI7xuO5x1eBGZVJHbQ64yqNOQVKKuoV47jRhJDgLjGhYyuibg+0vpIDAIvPNJH1rUhrxTOd7TLBcPFf8G9h+9AFjEpZ7nxnNx7QpYp2hBxLsOsYS0Tiy6xrR217+jnPZMbY6QRTEc5YuVoQiAjMs5yMiIqSbxwuK4nWEFqhuWdEppcDOnUAsHIVFy+nJNPIkFvUdctIxEY55bV/AJZ7g2hZL4HMQyVxhiWwWNjwMU1EoNMaWAOawlCEqJExKeMWmuwpcX3nouLBclFxsYy3S6wSmCtxOSSyhqWq5rD+2teffZFzi9OiClw9dp0UEgqg1AChEWZjKRAKo0QeghjSB7fN0glkWIQB+g8w4Thc5fnGdl4wvnRIfcev0ueZ1zdu0I+26FftNy69Tw3XvoK9z56jwfvfZdLB1f5d35hi89/8atM94dgkTtv3+E/+p//fabT8eDM2dlibzJiQ8PGdUyspXctnReo2IMyCJNIyxojDN1muHuumo4//v3vDoE8zYYuWTbLc0bTHdr5OVEJrt18iTyt8RdzvPfsjic896NXeOGZBb//rQ+48+SE/KLll/7Oz/LC1Qmp9wg5JDzzr8LzVEmKjjfffocnJ2sOjOX9N36bK6tX2bQOMxtRzPYpZ/tM5g9ZLRt2984YbVmu3XqB8e4+03HBW9Nv8uG9IbhluWnZlTnPXLnC+x9/ipCa6CQER2hApcBoukulCq4VOfPoOfWOwgei37AWE1bJsHP5JpP9XRqfMCEQjAAlaVrHk9TT9S2uGmF3n2Hx3ifcuLLN6ugEmzmaZk2mE6tVg9SSurtAaUWR5VhjqOswLMubY6Jo6bqc09UJ33/vE3wyhOhRUpNbxc5szPX9A4zRvPnBhwilsRoOTxfIPoCInF8skFIw2d6ibloICt90ICQq1xyfzVmtO2LyhChovRwS+YQmpB4tNYIEKRKSJCQwJhF9T5mP/80d6J/VZ/Vvcf2JB38+eGRi8OWHQL1cE1xEtO7plN4hhcIkyGWG1Io+DH+HEPTB42NEJkBoWj9EyUcSkoSIaYDrxkSQDik1OiV8SiTvkUYSzMDbUAhEphBNTwrgQ0RJBSIQwpAgJ5wAKdn4DhETkoE3kICQ4lNewfBwsgJ6N9g/ZIQo49CEPbWZdcGhkIQ02HlzbbEiEXuPFIoYAQnSKMa5ZlrYIcacgQsotWa98bShZRMcSgzA6CAGqzNB4nxAiIhC0HcJKSvyQmJtou0jQlqqckzTnZB6T3IOpRR106O8oypLIgkhBH1MrO59SuslKgSmNicf70LsEcExlgItFNIk1l3Px4/hx7HceP42dA3WrhhNdylkT5VpdD4l4njjzQ9ZbUBlGXtFxqM+sKw9bXtBspYUNSIMduUuJpJPKD0mhcDuTDHsbgSrzYZ7j+6R24IqM6xNRckC5Xtq31L6grru2LSO2LSUmSJ6mM/X7G6NQDisUgQfQBWoaoSwmkxJHi5OyOeCw7M1Hs3LaYZIGq8g04KPH5/w8J/8Bp3v+Y3f+iO+u/sWI5uIzvHpRwUfPDpkVOaoMMfGFY6BmagJZFaSqQx0x3hsOF/7wbYUxZAYnQKu8wTXYguNTDUH0xFFVgKJ3UkBsmO+crjW0WmNNgWVTUNoi5QEDykJLjaJ3/q9NxBK0nmB84FagiHRrzv++l/9OX7+r/910m5JOW/5G//ej3Gxbvif/E//xziRmFYVQsF8s2FRd3jAioSYCbwICGnZnB9z0QWenC3pTs+oU4tMirxcgxQs14F12/KHH/wzTnRFNdqiPjvB2JxcqcHGgsQlT71eE1NAi4gUOaUaTMn7WyVlYZjXEGXiwaNDXrq8zcvPHJCpwGQ8Ybla0m4aOmkgbUgkzmvPx4+WVCJxdVayaBtaOrrQwUZx9OiEybhi1QRS8Mz2p+RWc+Pade7ef0Lwgyo4BYG1mg8/fchbHz0khY7Ll3fY3d/GpiFNb75ekdmMYpRjtcSowVZKkiRv6HuP1Jarl28w9y0Pn7zPqCiY7l/iybxmnEVyHRC2RwPJQZIJqUEgCL5HSUFhBX2fiBGC1hTb+xzkFQ8fP6RvarJJiUgJ1zte+eKPcOm550lZwfNf+TrPfOlLiJBQoSdERVQCfI9kUDx737Pc1IynY4iapCSmKGjXaz45fsTNgx2EisOSJELykRQdKXm0GCzdnhVa7ZBVY1YXD7k3f8TDkzXBbVOoxPjSlLP2hEd3zrmyfYlrkwmyBHf+CZu6R1x5lhvXnmNSZiy8IjfDBbcyAp1VeFHydlXiJGiV+Dv/zk9xddsNSiAVIEaCECgh8cGCFsgU4Kl6WZAgBIjDMNWLAVBuwvCdqQmIlNP3gcW6oVklpNTUm5qFg/PVmtglutYhIhzNPYv6hCu3r9MdHmPLCVU1qFASgul0Hy0FJl8z29phsTzj8MldTFHRhQ3ESJZVZIz4o+98yqXrNygLxWh/n2dvXefyzph6uWI8zuhjxAuF9577n9zl5q2bnPoNfe/QUdB0PUIpkhKEEPFuYIUKLdksF4Ton6afalSpWcznLJcLUopcLC7Y29t9OqAezr2Leo1z3Z9Hz/BZ/RnK+x6PJApJu2kHtEhIONfQ9Y7G91QqZzyd4TcL6k1P10WiFPjkyLRFSkXsI67fYEUkJYn0NSE6ZAJtSzw9KXhIFqM1XYy4VU2MASklQikIkS4JnBIoQIiE1oq6bcAHur5DJU1IkZgNLgxT5bgQSUIiUwTCwClm6J1Sgo8ePuZzL7/EzkGJNAVRQCINr+kSLR0pJAgRlEZZjfCJ/mm4R5s8Gj0MIZEEF0CC0J6m61DGEL3HiiEYDqNYdjVJJPLCsLezja5yTlZrhMpZbmqupsjKFKg+olSHkRGfBnWjl4I79z4dUnnRzDLLxb37uNTiOsV1fRMmBQSPMhoRe4TQ/NzP/jh/+S/9NaRyPPrwO6xOT5huzdAy4Vc9h8cnfPePvk1eTAjiCYcnZ2g1QkuJlU9VlE0zDHw7z+7OlNwKQp9QOmNrZ0JhM/IVeFvR9jW+75FCsAod0ndInzM5uEzKE5nWSOeZTS2IjNRvyLcqdF4g2g1t5wkh0gVFjJ6zzYqzZU3dH9CJC9raY0cF2npOH79P9dznyKbXiL7jwaNDfuSn/iI7773JnY/vsVy2nF5suCgLpuWYJ4/vkeWG4+MTuuUCKxWLLnIaIloYbIq4zjErc+bLNTG1pB5OlwtyI4dEZiHQQtKKQWmqhKcTDlJHrsbDYDlFUBl98EhpOL/3PptzyKopoe+Z+554viYog+0DzkLfRWxSzArLYtFS2iG5+g++/TanZzW9loR2h7reJi4TgcBT1C2VOWWyNacoNJkduJg2QutXiJRQWeSbHzzgzvaMWCo2y5YfyAyzkUWrjLP1CiNzcD0xJUyErulJYuBLJhGRWkIahvtFZtGZQQhBJQzVaERynnm7QXcBrGc8rpgWE1Sm0WKDzSLGWo7Pz2nXLVeub/Pk0T0W6wW3bt+kb2vyokJHjxCKFALJDirCGDwhBpLSKMBYQyIMC7LQM5neoJyOEL4nuZ4QHJtlw2hywM7BAbaYkKxltluQZS9x580/4N233uNrP/hl+jby+MkD3v3Ot7j5zAvc/MKXwUp0lVFtbbOVjylGY47XS4oyJ4hAXuTMiorptKQcl6ASKEm9WJKMpa1XeBfZy0d0119m+2CE7FsumkAVPaqwjExkdTHHMyjm9HhMvhyz6BbEkHh2b4srf+2rfPzpE77zjTu8dvsasZ9jTE6I7il+ACAhBbg68flXX+Ttd3+H77+/4MHjMw7ufcrO7AZFlXH37W9ycOs1ip1rSHNEZjJuXd9hf2eLwmraJCgmW8gYkR5y3fP8C7f44avXOfpP/jMWTcPV7W0eny2wxhN7Mww86SmFQBcFZefxueWNdcubD1u69Yq/tmz5UrmFUxlbkwI7HtHULf+87ohOIPWIPFiidPziz/4MX3ztWX75//EPeeHll3jx9c9zdvSQe598wmS6i+sSzeKU7NaIbJSzfWkX37WIVGF0QRSarXLM9YVnXSf65HFuQ71a8OCTMx59+MmgVFzWtEIgIwQUs0yhRM+4qCBA2gSKKNEKzFjjQ8TjubE/w++AlRFNog+KJCIqSoxV9GkI7ZSxxbmIEAqphnu5FPbf1HH+WX1W/1bXn3jwF4nkxj61lQZ0SmgCHW5gJqiB0aSAmOTAWxIC7weLgWcIt0hh2BikkJBKYOWQxCsR9IBKiSDApDgwKDJJNAIhEt55fNthjaX3ntDXGGMRDNtqpRVKSLrQg/dIqRBCIAQoqwkxUBiL7xzOD4EhAYkIiSzPBvWMT7gkUSJB1wzKJefReU7vHCqB8cOBSRI0wg/bVmsggC6ygWejM6q8YL1umM/XzDcbrNH00WFSIqxXJKOQmWacW7TJkZlhXGVMqpytWUmICqUahHLs7lZsb08op5ZMyQHGb3IIPfHpRkQqhUiCosy4vaX44Kyji4pe9oNkOoHUOVp4QuzxSSKRSJsTUomNhiA6XNKs1huCaunqwJOTT9nb28K7BiMN42qCGWn8omVmhgvJpgGRPFJLknegQEhP1/f4JJA6I4UhJGJabRFkQ79c0/tEKgpCnzAu4tlw3nlckkgp6KhploH9qqKm4b1H53TeEH1ksW7Y1A1909Klllu3Zjw5W3J9r+KTs569qaBvHT4ofBTUKjLOLI2DTeN5dHaMzWacxY6CxMn5Gd5YLlbzgRE4VvSdYraVCKuWEBN9Umjl6UPgZO4RVlAh2NqyVJOcR4+XVIXl1vVttkcTmq7jottAVtHLnI2c0KdDlJZo4SnSkDCmyQkxIZIDGfFJ8MHdx0wzkEnQ+46uFezvSqY72/yVv/GL7OzN0Drn2S/8ICIkVq3jlS98hTe+8zY+Cbp1Q7NpSD4Rk0IUki6Xw2ZxNqOfLzg5W/Dk/kPcfM2pawg6w1iHwdOhycttLvoNSRtee/55vtWekkyGVgbDoLrNokJpi9aJSaVIWY6WAommS7CpW7zKOD8+ZmwLVs7xu2/fpTQ5VXHG7YMRNy7tEF2ip0cLxTsPl5yfn/GTX3yeyzsVs/GUMtfksxEPHx8jpeLJkzlNDPzYD3+F5ckhMUq6dk1uhq37dLJFFxrmdc/33/kEm2fcuHqFUVnQ9C2bxYZqUrC/NRnUvgypd8MgbODhGWuQyrCuO0RuGUXB68/dpEfz8Z2POTs557nrV3j29iWM8KikSSLREfFCoEIikwqZhrAJyhzvEtIFok5QjRkVGWvXcff+I2ZFxvbWPjdeeAmdq0GpTEDLBEmTvCPFjhQ8MgSSLLBZwXp+Rh8cRWboXEvbegyKTZJ0Fw1eZAgvSFJjkoSYCAhEGF5BJBChwLctgZYgPScXp5wcarzZEC86lNCcl2doW9E56PqOG9sC7e8j9SnHzTHp0ouo8jLGaKItKbzDmkSmIq5vh9TQ1CMJNOsTUlHiXI9XPUIbUpSIGNCpJWiBZ0j1K7UdFgcx4UOgjp6m6ej7xOm6ZbnxNLVj3krWTUsfoY2CgCQACEXCs50VpADHjz9GpIJ1UHx07x6FVDSd48btG/RtpBxlaBMpswxT5Gxnlsm04uP3v8NLr/4Qz1y9waLecOv2K/zzX/91DtcN1VYBq46zzQk2Vyid6Nw5ebdL03matqVeL+jaDUJaQkrU9ZzCZKxWLVFIijyjc468yAZbe9ezWTQ0TY3JMqQUrM5Pmc/naK2JIlBOcrJqRIod0Xu0NESV88IzL/65NA2f1Z++jk9O6X2EIfAcpwSZ0GgtMMZgyynCA1ISdU/tenJhCDHhnMNriV+vkD4hGQaCiUCKkeTB0zzt5hS2mCLNgDqJcRiaK6UgJlxy6KfYkaAkrncEETBW4aIYkC48VSrHhPeOUsinC65EnwI207QioYxA+IjKDSokLlYt37lzj6buODw8ZLNeQYykmIhS4mPE2Ax8QGg58H3FwHrrNx14UEbjo6coSqIP+BCIUiCtRqSEFpIgEoW2dDFihAISfR+JRtBFT2UsdduhDDgtGNvhPTZSULhA0gL3VLllkBihUEHRk1hHj3KDAsaJSFx3OJmjVWQmFZWRvHR9grEOTMn1F3+Q8JyHTKNUwPc1s7Xn58w2H93/hOdffY7VgwfcPz2ii5Zr+xM6Lzg6OsVcLFiLNfuzMft7W4jQE0Tk/HhJm3WcnDdsnCARGY0lpRAcXzAEJKnAfH7G5iIwbyOXRjOSi2zimllVUi97nOtJraBzHU/OFoiUU1Zjat/QtD1WWbIOdguFiglhB4bz/Y8+4KWXv4S0mkcPHvHCKy/yjhRM957lg7un5DoQ1w3F9TG+XnB20XC8iMPnNUSmxtAkT+gDtVYEPSwHhYgsa4HSGpGNaPuIMhobBGjIrcWLof+vdEFV5LjkqDvBauOYL2pUhKQyFq2l6cEVHZvY0pEzG1U0m47Gd3RCo62iay3nm5x7DyM7W2O+8XsPuL8EG3YRcsNHH/5l3nvvF/+/vq9Gd/ztX/gfMs6XTCcVLiXmTcv9797hB356zZ17F3QbBw8O2boGjfccnZ/AF6Z03tLNV9TCohPDcl9JfIpYZZFSom2OkAqRFFoPoWjSKHojSFLR1Q3ROUaFQpdbYAXC9xy3DuUaRuSIRUdqznn+oOBrP/c1JpnijbfucPnmDaSWhNSzaQLKaqLKSYIhPMcHtNSARJrIILxVEBVFUbK9v03Kcs5PLtDCIZTi9HjBex/eRxnFq0Zx2D5gVXesLg755KM77O9eYrVa8Nu//w1+7q/9N9i5coDvexZHhxy/9wan5xd0GNATvvLVl1mvavLlBbnOqNuaxXzB1uVrjMuCpum4fuMG7aJmuVkyyipi/Zhnn7vKvF3wv/z7/xt+4Wd/hu3ZlP/0v/i/8t/5b/+H3H/4Lj/7Yz9IAP7RP/qHvPrCLb769a8S58dAIIgBGWJU4plbu3z89gfkWiMpCDxV1KZhsQaDOvqTRw/Y2tliVjj2D3IWxy2ffvwRH8b7HEz2GX/4AQ7FjdsvYKxGZYZXvv5XMRKUCBQ6p2u74bnpwIzHNPWS9vGH/OQXnuHu3UccXVxgw4YOQ4wtpcnY04YP63P6kDMOEiMdZqroCAil2Z4W6CRRBhId/fEF03yMkR5MT5FVbG3PuPnMVT73+Re5+957zJuam+MpJiVm4y2euX2bTT28t1Ylzk4PmfYTpNRUpuLw3HHp6iWiVPjYc/OZa3z44V2OD8+ZbV+mHBvq9hCVJZTU7FQFySRcF9g4Sa5z+g6EHAZ1fRhuOc5LVjFhhEZJiMEDiTaK4UyK4SlG0CFjj2sDCUmvICVQMhDT8G+E+Czc47P6rP4s9Sce/FWZRfqElhLvhqQf59sBousTEAcw7VMsu9YGayypc6QQIQWsEoS+Q1kQSdD5YYBilMa7HmUlKQzsg+AjKQR8U6OSwglPlFAaSxCJlDzjoqQLfuA5RWjbDq0ExhpgaDQJaYDFCIFUiq5z4CIy0wgp0EqwXVTUXUt0CYtECDmAkl2HS4mRyQkJhLWoBFppNpsWLYFco1JCKE3oew7nNQLBpBQUxYzV+oJN58hzg0IzG2m2d7a5vD1lvLvFZFZRWUHbBbwoMBpEinRdJASPpmBr7Ll9KSOmMIRDpJ7lasXGCUJS5NqSUkBGBQJKJXjh+T0ed09YrTMiBpMiLnZIbXEqIXODaD1KFkQVmZ8/5Eyc0XqPUYaubUlElCnAzjjaSLLJjEIoJlZCUWLUhlGVc3y8YlM3XDqY0buI1E9tAhKiUKQIXduiVEbve1rXEpXEGMuma5jkI65MnuPw+DHnqzMm1hBdz7r3GCeRLtA00IkM+gEGW5Y9eVmQV4OidKfMqUrJ/qjg1rUxH9xbcWlnwn5h2R2XuPWcyztjzpcN7SYwmuTMdsYslmvy0qDyjFWdOD9rkTZjOq5wMYByTErJznbF4aqjLDJKO2PRPGRcRNre0fRwmDyXTORgf0yBB+HQmeTovOF0vaGaCIKxCN9R5TlNHSEJMiHoEMPAT2lkkMQIVZbRC83CeUhi+L6huP/kiK+88iL7u1sIGUhxSA0TSvI7v/Utrl+6zrvm/cG6GQc1lFca0SeykLDnaz76+BOsVjT1GltYvnT9gP/WTz2LaTdAASYboNYaHt895P/4/Q0fisSdx6cIVaCfwn0zpXFEUIJeCUSE+UWDNomyzBE+sO4c06qiWZ/jXI+WJWe1pgqRXMHeNGc6KQjR0btE0PDobM27d54wKjJ0JlAmMtqaIIoMqy1W5ZA85xdzvvz1L7FeneK84/D4CKMUozzj6GJO3zWcz1d8961PGFc5z9zcR0lF8B7tPLODbSCSXAApsJkZLh4+gFQIKehiwMcARhL6nkxL9KiiqwMniyWd8yShoJqxqVcD5zPTw0A9ehSRaC3eBxIBI0ELj5OR6Byp9axQlPmI/qLmcb3hmZc+jzYGwQCWTzEMgyuliUoNIPwoCc4h8xwkBBeom448y9BGU4wLpOrZ1HMMCjvZIfUb+hDIM40WmoTC2DEqRfrUYIVBRs+m6zhpVjx8csbWjubeQ4dHIlPibCnY3RFk1YI6zvijj49RMuPWpYyr6iHzdz9ldXfCJHlSBGUy2uRR1iLFhugdpEiKhtnODrassBaEX6LQBAZ1rLKaT588xveCTddyujrhYlXjo2C+XLMOJdJFvO/ZRId5+mwWypBlOc71BJGQUkEIQziC1oyv7DAdj7jz8AFliORZ5JUXXqIoLO/f+YT337+DlJLbzz/Lwe4WzUYwmk3IdMaGSCZ6jh9+l1u3XqSwin/x67/KP/i//Of86A98jYODq5z7Q/A1e1sHYDUues7mj1menRCaGl+3ZEJTFBkmeFSV04fAaJSh8zHaC/a2K6SWrOsNrV8jsoQUgrqtkUZT5pYXX3yJS5dvEKVkNNkiyTFCSnySLNtA13WcHj388+gZPqs/Q/neUeQlSI0Uw7NV+UhZloSYUNIgfQNa4eyUOD/FpMEOKaOk2WwopUBbR+oNrQSVHDEZMIIkIq5PSJlIOjK49BRCBNACnEdKgUoeLyMyt9ANiI5MDCmjUgmiFGAM0Q1DyhQS0URC9GitCQ7EU8ZwDIkkEiowKJmyjG9//x20NoOaSRsknigTOkAyFpcCWWnBB5SPxBgJyZGUwOaWZCSqF4OiTwrwafjupoRzgWqU03uHi4GqKHApETpH8J7oGpS0ZNYwqsohaZd8OKciBARRRawcljtSw7XbV9FSsjld0+LIt3ZoVzW39yZ85blrHM7XbLnIhdBkeP7qX/9ZRqM97n78EfloirEl6/kZZW7xQnDx5D5VlfPa669w7+F93n/3eyhhWdZQFBJlFFlKSKOIfcCanL7r2ZnkaGWQUtN7T9tBPqkwztOua1SuscrhZIFzJZpECj2+2VAWJYdnJ2xCBVoNy+AmEjqP6xtCHJ7fF+fnbI0LDq5Oee+wp+s3QGRd15SmwJZbjHdm+LOHVGpw3qw2At8HTDHGP7zPaCRxsaTIEqtNQy4ytIpkRQQVKFJi3dSIZPEpoYQnofEugBwYDsYMy+HpdErC41xk3Q3nq5CRet0ShEQVBiWhcQHnIjEJpFG0AY5bSeM93iucNxih6b0gGclUZNiYcOTcuf/DdH5KLvQwDJcWkSCGFt+PePLk89y+/S8o1IoXbt/EKsVHnxzy3Q9/mlU95sKecefkAad1w/p8zc50lwePP2UdYBk6gguc3X2CSJ57fctHf/BN1t6SKzGk0ZuE8gOzU9kM0Q3OhygVSiikNkirIT29L7mG0DWEBLqwg9Mp9ngnyYFxJSlEht9csF1JXn31Bj/w+ouY0YhJVXL33gnziyW2HJFiQmpJFwQaMaBYXMRaTRt6hNLIZlC5bdwaKRN9t2S9PufR6Zzles3i8Akn8xXSWN589x1S33PpjZtoqWmaDaTAalUT2w959tZVygi/9k/+EUZlFJMRV67to+WYg51L/M2/9kvIcMF8uYTkubS3gxCCPb2LvJnYrFe8+Nwtyqrg6PgRe1cKitwi1eBOuDbLyArDbDalmuxAs+H5Z3epNDx5eIgWFi0Co1yxWayRakS93gwqfmkQGAozRvoV4ywjIhDJIkRPSgkpBrWZkAIXeu49eszj03O2JyXXL01YThqOlxln5y2L9pR/9iv32f3+Ozx76zZbZUWmakK9pNjeJYSeWFYkZZG6RuicXBuuXnuBdnPOzef3efnVr1JOp0gRQWpChBvPP0/wkVuvvootKxBgpR5+NyLR1z17Vy+xtXOZ/9Xf/1+jtCQIT1kMgSh935BVY8rZGJ2PSGef0rYNZVZxePiI+5/epyhLwGJ0hRKJUkpidDgX6Ns1Mq65fOkSQkO9XiCVRKnIzRsHBJ/49W98izzLSL1DisDl3SkSyWLtcNGxu7fDZDrhvTv3OZ0v0VowKQwuODZ9T56VaKNYbjYgBTFFqnJC23Z03j9lu0YmVYkXkaauadzTZVAC5wNJyqcDwM/qs/qs/rT1p1D8DWo+QkSREFmG0RoXBIju6QRfkEJEE4nJDxN6JRFSkoQaGlwl0FqycR6pFFYbnI9IY58uXQIyBkKKSCHRSSAFkNkh0axzSCXJvAAtyaUhpIRLaRhWOIfS4GLEpzjwaCLIkHBSozUoE2hbj9UKKRxb0wn1madJkZKEFok+JLwSZEohlCTLDT70iAgkUDYDGcmkRGVpSKzNS2xlyTPDOCvZurJDObK0XYvNFKXNOdieELMc5z2bvkdsGlargftGltise1IIxKf2l85DSBKhe5IPOAxGW/JyhIqGtOqQwQ/BI5kkpkSse6qyZGda8PjJAu8SnogLHVIMm3MbNRpP43t2J1OigD54cjtiMi4AQb3cEERGZ0YEY/EhRyZPJCMPiuDhwnkyb9mfjriyW7FsEsuupq09vRCMsgIlHBCZb05xTpOEJkiBChKdaZYXx1ze3WW8N2HdnOO7llJlgxLIRTIROdjV9DEn5D3eKXySnJ0tIRlym5NbSax7Vjqi0y6ZchSlodcdsVkznRWcrxq8C1hj0NoTwmDjHpsck2uqtGGyVXBytsbIIbXK9z12b49Vt+L8fEWYJNRkBEpz69qU83WDFIKr2zmSwHmXc/diTZyv+VKC/dIQwpRkKzoSenNKqDQSgRSWHoi+J0RHVIkB+GLpukFFgM7p1cD5MwrW5w1f/6GvD6oJMaSFaWnoPHzyyT2uXjkgyzO6GMFKlB5UJV0KBKX51NfsNZ6v/9gXOT875+hizvfvnvK//d07xD7gOodzPZkSeBILp7kfInVcE7snTKqCddcTlcL7SCAghSBIQS402lakGHFtR982bF2+RL1c4uvAeHuC1IZRrnnhcsasysmMZbEKzM9bXO9ASz49WVBvVlzavcZ6HdnIjk1WU87gwi+4OD9BSostc/Yu7fHxu9+j1CUP7t/jmWdvEpPDGMPp6TGPnpyjlObq1W1MEgOkXibycoJPA2VKJj1catMAuUcOVl2EJElF61pWyw2zyRSfPEYKplry8tV9ci0xZcX9xyfUqxXP37qC9hEtBEEpkhS4MGxFEwqvE1YKVC+QQdF3ieQ68AqXZSTf8sZ3v0/IZrzy8itYO6iPOx8QCrRUmHyCjAmXOgSelCJ1U7Nat5i8RMmEj0OaeOt7LhZzCjuh2trj4uQIqxQpC3Qh0rQOhIKkh2Cl2NB0S967/yF3D9fklWXvuiD0GauLDSJplquGzEj8yRHzc5iMJNBzWkS2S8W+7RCjESNaQkiomOEdrFcbhBYIbdBpgPn33ZLUK1LokaIlJMeDs5rOF/zmv/w2Z7ViMpsitcGHIUhGRIEwEakESEUp9LCsYUhXb33Ax+G9imFQoEtbkOWKtotszh8ynlhsF3jm6nNcu3XAerXiC1/8Ah+89RZ9U3P3g/c4vDdiOt1ltLvh6sEuysCoGoHwXJwesWxqPvjgbQ62tnjp1gHtck3rGqbTPUK9QRiFlBWriyN8DHRKcOY8djxFichy0xBSoulq1qs5kQtC7aiqAoQffiehJwpBMZ5wcOU6W9tXmM22SEmwWDY0m457h4c8evAdnhw+oulbTk5OOJ+f43zDj/zFX/jX3DJ8Vn+W6usNhTYUW2OEskNoUhYxJmIZ1HRJF6jkKc0EEQNn5xdgLCIotAeCAxVxcuDyKTkwjwJAiEjlnipXhudcJJFipMcPiiIlB6cFmr5xFEKRzKB0IyRkUgQhkD7iQ0tuLX3rqD0IKSB0FDYbUrflwFNWVkPboqsclBoYUUHhg6cNQx/iO4eSkqZ3ZLlBK0XoHTEJmhQQKZIrTUoJ13dooYnOE2NAyIFJqpRCuEi/bhFSos2wcG1dhwiBsjDszkqKakx6+izrVjW9AyEjzge07tmkFqWrITgtCZIHPS7ZuDlt6JmOMraf2UULw73Dc9789JQvfOEFbs92yWWHnJ9zZ75hPn9EGxukyAhtx97BPut6Tbs+ZXv3CgHDe+++zen5grEOWF1hZcLgB4Bp8ChraPuexge2t0qaPtAtW+RIYUKJCA5ER7Y15mTR0DSOaSWpihF1rTnazMlNAA+itJwtFxAgjCxbhWXTbVDlkPhrbITMMpaJ/e0xVp3Ruo6NG5bwnoiMPTtVxYcfrwgiEUVO7zraruW1lz/H/MHHXJ1qnng4vtiwu7M1hC7JxIyexg0BGsFrqkySco0LnmbdoccWpRJGCQotuXppF+HCMDDwHXUviLVnGTb0MWEQHFSWyahCJIE0Ced6Ykz4ZHGdguRxTtA3W6z6y2Ra0jerIdRORZZssVrdQFmgOEcVASMTNjmQcLFUzJfPcOPat7l9peFLn7/O2VnLG++tAbhz95TH1QOMlXRhQL4obanrjpaAUArdDRLeEIblPykj6oE9KbSELoJROC2BxLTIaUWkT4FxXhDTEJSqM82m22BipMosMbdIa8hiIPYelRsulQahA/fvHfLCtRl/4UdeZXdrH6MzghlCr2wG88UKCBwfHnH1+k3apiEPEVMUBJXofUBpRQyR3vsh/V1rjk/POD065uHDJzw4XHB+dkRwPVf2L3PeNTS14/aVK9z/+IRrt6ZIJVks15SlpcPzwaNHzD9cczCpnjoVDOPCMppUXL10hVvP3OTVl7/A8uyM995+AyOH9yilSJ5ZsuS5erCDcy0u9exducT/7D/6+4xnM84fX+L40ccDAmB5Qm4lR8sNZ6c9TRfo1hu61BODw4qAsRlRRLq2ZjIuEDGRhKNXimgVQSZSaoixZ4AqSlJUIMH5yKefXqC0pgsLYko4J8mLiss4DrYz1o3jO/Upsl3z/ptvI4TClIb+l//vvPzSFxmXsG4ajp8c40WBjD0pBr70F36G/YMJKg2IFoQakCsxkZqOIAMuRXamM1yMKOmIKdLVLdJ3jKuS7XGFLUuuvPIqKUZC8kgJ9AGSxkVHjB39uiMrxgjn0AyYridHT1AygsmYTnapN0v29neBniwr8b5jtTwj9mkYoo5zlLCsFxdoEdjamXL18jZN51ipgDaaXgRC14AQKAKbesWHizmfnJyyDgqjFedtQ9v3ICQzMnQQLBoBIqG05OL4AiE8QUqSC1S5JClDVeZsqLFKUZUWMfhUGFXlEPr5WX1Wn9Wfuv7Eg7+kh2aOp1LcpCVCKCbacCE2wNBsSWlI2iC0QsqARIAEnWUQAiIKOh8G0HSIZFpjtMK7OIR7hISpCoQPaKkGnp1MJOcRWhIkyJQgMYR+iIRIEeUjQkmikigliTBYHBVkcpARJ62G7XHsQSeUMsSUOFmunvKzBluKFAKtJF1KFEKDGJhY8qmNL8mAAdpNx3RUsn91m53plFpoZBR41xF7z0ef3idG6JZLYgJB4E4S+CKj7QKV0GSFRtqM/a2Crf0rVFWJUnpgTHSO6AabTOoThmwAcIeAEgkVB4C7TR15ng9pmAnavibESGUsoW756b/yEzhZ8u57n/DxJx9QfeEySUmCFLS148pLB8hgCV0kxJowzhCyoJo83UATqd05wkuiCGycZzqdIrgHveJicYFyY2SYIFWkshlBGI5WLau6YauqCAmyTNKvHUJ4hMyQSkKSKBe5f/c+l/f3mOYT1n1DX18gQiSapxrv6JlaCErx7oePUcWY6wf7NG2HkYFKSkoJnVMgLAufGK83eFex7ASpMCzPF+yUIx6fHT/d/AXyQpNXGcF7qqJg6RraRpFCy9WrGZu54vHhBbmQ7G7vgvAkWialxarEldwSo2dvq+TwZAG0nB2eYjLDe7Fmfy9DaU2SARVzrEz43qGSAjxOJKIQhDR8dlwaVBSNj1QFaKHp0FgRSHYYWO7uX8bHgEYhVEB62DQttrBU1YhSK5q1oyoSUSlIAiMj42pCL1sOT+ZMdi+zf+UZpmdnHK4Dv/VbjxFthAB9SmivwUS0yHCpx+Q5otQ00Q0DmBRRKSL0oIAlCRSCYA2ubbBdz+72jEIJjuZnXL+6w+X9MSIKxrZE6MDxokamFQGL1JJmsWS0tcWTixalFK1LHJ2tmdqCPLcIbYgxYccTTh8vuHzzNr2Duu0pZ2OOz1egH7K3NSKfab771gOOTjfcvHWTTCma5NAyQwvo6FAYpJKIKIaAiyDItAQ5XJCFBiEkVVVSZhlagqt7CIIiy7h2aRdN4qPHhzw8XlK3nkvbI8zUoKKHZNASEh4vFEKCigmEQsoEUlMZi20txIS2Ei8tbbvmm7/1Kzz+6F1e+eIPsDp/wo0Xf4Aii9hcIoQhEpBOgBqGXb4bLpJFqVFGEFOi7Vv8RYtKIL0jdQVh2bEsLNV0iog1Smm8aJDSkoThfHPG2/fe4fB8w2IteHKYuLQjibJjvurIC02WCxb1kigqXrh5lbrtiLJjseypN5ZH8w37k45rW5b9LU2WF3TBE+NTdnYE4Tt87xC5IIoMRI5IHisFGZE3v/8B169c45LRvPPhp1xsAlvTKcVsGwyk1CGcRKSElwMPKCJJQRNjQiqL90OgUaTD9Ru63rNZBjLnKYRk5fzTIbFgezZhtLXFrWs/Q7uas25qHj94zG/+zjdYBMEzt6/x4nO3efbWFYq8JKVAURiqYkyV5Uxmlk2z4PDJEzaN48UXnyNGR+zXHM+POb73gNl2ydnpioO9Ay6Wc86Xc7rlkvViji0qQlJs7e/x7Oe+xHjrMspu472jW61YrxYsV2ve+OPvcXh4xNnxMWer1dAQC8+jbhikSKHIhEZhUVn259M1fFZ/6jprlsTkGc2mZEIMNsbQoQI4MSATlNZkEnzQTGY7SJNx9ORouLgJgY8gwnDRUn2gkwkjAkEKZO+IGpKQ6Pg0rCwNf0qphtChPqJcwukh/ZYIWEnseoySCBkHxlfvKLKM2A/LL6PVsKhiOIeVUniGpWwMgahA+h6ZLDLPkF1AaMXMVEQhBtSLBxkFKj7ts4R8OsQR5NLQhp48zzBtwKeIQZCMGV6zD0MSsB76hWQUqe/ZkCik5MrtA/YP9ilLRZSK6CwxBk6WZxxsAWSso6eMkixpYhL4tsEGkEohtUXbglEQXNq/jC4KpIR8IthZ1Hz3g0cYc5/tcsSNSUk+qchnO8T5GafnK5CecHhEJgJZXrBerem6QAie2Hk6l5hezphVY25fv4RXlj5qWi+IbYPzjtPFijIbU4y2CJkm+Y6uqRlrhTUQvebRhcdmQzDDtStTJhvLydkJ876jF4oiK+k6h4sZy3rNZrXmYLxNXm1z+sn7LOdrprd2yUrL87sVlYbTo4ZLVyYcn20o+zkHzxkeTgUXTcNkPKUsMp7cO+K1H/gcwUwp7SltHUlR0NY9QUW0stSpx+qMSkfq6HBhwKnkWpKcp3NuwPVEOGsaMlXhukAfPKeb5cAOd4bgAyMt2Z7l7F+e0foIfuh5lxcLkstwbkS7MbjectxP+Ge//n/6r/3+PfPsb7JbvYOUjq53iCQQogJgf7fipS/fZLE644O7n2Lzkhef/9+T2SO0NZhMohtYqMQmBlQ2xSQ12EKLiEeCF3g1DHO0ELjEwNTMMprgKdUwtGjbFqwlLwqST+hMY7RgvTqnyjLyKsNriZUaqwTTieT53cvcvrrF3cMVv/6Nt3j9+hY//pXXhiWgzQZGZ4QyHxRiWmse3XvIwe4+Mmp8nwjCDUmqTxNfu/UGKTMaJ7n74CPe+/AO5+fn9N0GrQSF0jx3ZY/ZzjZCerYWGlvcQlcVVZFxsFPQ1IGxhBgTVBN8aDkYF0xml0nKQYx0XUOzbvijt97mj956m9/9Fzmfe/2LGF2SUkZWVCQ0CEnvakxQ+C6ytX8JIUreeOs7VKXix3/iJ3nxtc+xWXX8D/7ef5+br73Cb/zar5KZjP2ruzg/hJcELJqcrNhls9kQg0IISQzD4LtIeghJSoJMGno5/JwCSUgBkqPuNsiqZ/tqxsd3HzMq94gmIgWUVYawkhdf/xpXbt2mOb9gfbHh4bqnTYaPPrrHk4cnXL11g9uX98htS2FHZFqzaVb8w//d/4LxpKDvOxICIw3O9xA9gYQPDuESHg/BoFKg8R1JgvMJoywSgbYTunBB6CK4IZUk0NL1LSHmSBJ12/Kzv/TzzExk2bZ87uAWX3z9BU5PHnPv8SGH6wuMNtz/9Jwqy7m0d4UsV2ykIWYFz7z0OjIzRC9o50eMxhm/8hu/ycwmdNIsasWlS7f4kS8+T5lLYmZRKcf1HX6z5Owf/zJV0mitsKUFN3DWG98y36zJM83l2YidylBkBXmRUWQGpYYes8wKtnemrBZLVuuOcjz0XbnJSD7g3WeKv8/qs/qz1J9c8ZcSnkCMjtJYfO9wVlBYhQ8SfAeZBSKyHpKstJT0yaGfwk3b4NEp4eKw4bZSUPc9SukB6o4cgLMhoZIkPeXwRTlYZZQwKDkMihKDQs0TqJICM9iMgzD0bUcyduBMhZ6ORPKQFRovDUkkSt3icWgkm7ZGukAeofEJFR1qbAc1YYhoZYZkWBEw2tA7wfYk5/ZLz7Kzs81xbHj4wUPmywbXdrS+Jc8s0hj6ukcrNQy9QotLgO/RaNbtBau5QJUTzh4/RLx9hygTl65d4urVS2RFztgW9LGDmGiDAGURwhIkuKQgmcFCKxSd7ym0YGly3nnsaP2IoA1v3Hk42DD7FYtNwAdJ2/ccH53y+rM3mI3H5EXJ5f2ckATL1ZzdvYIyK5jPlwgpsHh6Fzi4/Sx5OWJvrkh/9BZbSvKTP/kjPD4/Aamxahjktt0ZB1s5h/OOs+WSssio8gw5TtRtPWz1ZIl3EasUy9UFeWZwocO1nnrTMM00QXTUMXG8yNieFVgiLzz7DPeOLli1G6w0aDMErDQq43wT0DRI57Ay4ZqG7d0McsXoyowXb+5y517Bk+UZSQt2RzsY16KywcJuO9gaG1xoiLXionNczGFiYYonzw396oImCLyIFGj2d0Z0oceWiu74jLJQPDyq6UIkZImJyZBxQwwDazHIhO8DViqMMDQhEJJHkyO0pA+ejU/kKaF9jzGWplmATiDgnbe/z0//xI8gghos6X3CLzfsb41QeYEnomzCyEgxymh8Yjuf4GIgBvj+2+/h+g5cQ704pd8scU1NrnKEVuRi4DFaqwhJDRtCLWn6jkpatB6+e9F58qzE2owuBZTN8esNRvTkI7h8MOPNtz9gmo/IizGfHq6YFTm1gdi3SCWYVBYpEt6DymYQNfOzDZcvH1BNc6wKlOOcvct79DKwenTOp/cfMV+t2N3boV+d0W0cZkuy7iIf3T3iB157jlFR8qY8xPUdu5MC51uMFmjLkJAcDU93EkQBSir0U6tHhKdBEh4hQIqEUAOuIC8LVo0nSTlwTYMnRIUNEWsVMUHtDRZPoRNIiREC+ZQfaGIkCk2vDQ6P6D2VtfR9R71ZkhUWkCjpuHf3+3z04ZuMVMe1Z7+I1wXvfXiPww/eIlc5128fEGPg8rMvD1b/wqBpyKjQKSO6xMXyY1rfs2kuqJ98wnot+X9+7yE/8YOvsTNSZFaik8KlhvXqnO/dfYtHZxdsusFeV04Swgh8I2nryOUDQ1Vq7txfcPMFyfO3FUenjrOlx6VEFzxSCB6fXfDkWDApLc9dn3B5uyD1DqOGoXE5zpge7JKSx8gcFTqskXhhuD0ZcelgzEWr+O3f/h6v3LpBp3Me3LnH+vEjZJkzLsYkIwgKYhKkoJDKIoiDvTBGgtJDum+Q9B6CGNTkV/a3Gfkxf3D8PrPtCbmZos1gtVJREKptdqfbXLl6nd2dKWfLhiQy7tz5kO99/1tcPrjKbLzNjVtXWNdLqlHB1cs3EDHj0u4O3/j93+ePv/0Of+mnf4xNWnH48COuXrmFkj2Xn7/B5YPLLNyGZ26/RjHbIZqCfLyDUCUXx6d8/N6bnL31h3z44cecPr5Hv1yzch2tUGTKoE0GuUWYAhdhLYaEx0giJYHzHiEFUog/j57hs/ozlHCRZai5f/9Trl29hhUluc2RekCayDQomi5Cg980+BBpXAOhxcoh06bxCYxAO4CB2xddIKZIITUbEjokXAwIOSBLjEtIJQclbO+G8LTQIo2mFSCjhN4hi4KuHxavqKdLUyERRkGMROQwjHOehKAVCd97RAxgNRY5DDuEQOjhc1d7R+g847xkRYOU0CWH8ILGOSyKHDGonpQdejRpicERUqT3Eh0DmSkxmULFSEppSKhnwBuocsxsbwczKlA6Q8pIEwOx73F9S90KxlmJSQIlWpIQ+PR02KoUITi8D6xcx0g4piaSctDJoguQOjKvWyyeLXpUCtR1w/7lCSJUnGw8wm3Y3sqYTibkZoRLnrZpeWnpeffeOSZTbBUVRVlxfLGiCREvJKMyxxhBCom3PzwGTinynOs3r7OztYVoes42pyyOTplMdknSk892CDFyfHKC0paiLFlpib6IZIUnLwe76HIzsB2LvELjcMFSWEMQ4Lzice14ZbbNM7c6HtWemCROSs7mx7SdoO5rsuacnoxHDz/lqz/8BQoVcTZjZ3+PxcUGJ8D1EVVpnMiIwWMJtD4RY8JFhZaOIpO4YGjrmk3X00mB6xdIr+lDRx88AkkpPLPphKv7I6aFZSMsi/WK0AeC89TZmH/ya1f54+8aHjy8ycYLQr8LwPXr36A0R3zutZfZyjT37j3ik5MNp/ObWFszqT6m6/shMComOt/SNoNiqLAZ9XqDtTmTnX12u47U/1NO+jOsy+gjOBfQXuDXC5TNyKXmQji6tifXGUIJpFR0waHtwEDGgEia3IF2EaEz8mrAMbi2xZYzgu6YLzcoZVn3AaGhkA07I83l3YrLM4OShu998IA//uQRz+/PePGlK5QjS9SKgOH4+IjZVkXlevKyZBIS81VNNZvSpcGREZNGxUCsa4TKWLUd777/DnfvPhiUuzrj8nTKaPc6s9yipKBtPcF7iILJdMqm97z5ve+xu7XN9s4+vVhRbW+jiWgJIhYkqXG9B6HxMTGuMkRMbKPoWkezWvI7f/hNDrZ3eebKPs/uztg4h/RDqIowGa3fUJRT/uD3fptf/S/+Y1pyrl69zusvP0c5Kvihn/tFUnT80t/8W/zUX/k5VucXtK4hWk3qO2q3wSnP0b2PmBKQKiLk8GwKeHxIuF6QpEAGTzAZ0fUQBUlJel9zdHyXx+c15+eBdnLGtdk1Ugy0oSfTYx7NG+4vBTvj69y8WXFzc8b9h49YtbBoJfcfPOLB/Qfc+fiEddtxfXfGuq25c++MfogMJPmeJCui60Ak2uCRAVJKg3AFgQsRoYYFC0kQYxpUtikijcT7QKYspAAMC882tai4pmkSjz+6i7yyi0NxtrjgfL5AZyVI2J5MKasp9WrFcr3kydETYmoJSvPyl76Knuzy6ccfsF63bE0mTNQWz+xv88Lf/Ou89f47dN98l/ffeZ9XnrmMSgq/nvPk8IwH9w8ZlyMmo4L9vT0SiqZeMa87JmVG4QwvXb2GViBFRCtB37WsN0vma0luLPuzCY1bcBo3SG1QMrCczxmNx2xW6wFLQfr/cdJ+Vp/VZ/VfV39yxV+CKBXCMKS7hSH9ttcRrRKQcK4jSYPQckiNCgnHMOBQIaARiDTYSjIhSSHgSAThwT5t7AhE1yPFALYXUhCCHxKXXCSJwdabQsSTyLRBSMlKJ5jXaGsRIeJEP4DiU6AVgcqWZFLQCElMFufWRAUWCQq6NFz+hUooo4YG1iWkGEJCkKC1ZWe74urlPawpOVpu+Oi7H3CyXMF6g60MMUhsloMSWAZLSusDbeNQUhC0RHaRWjmESoy1ZRM2lNbgYyJ1nkcPjnny5IykJLtlxdbBLtPxhGI0RgpJ7xqSSoMyS0JMntYHSqnJ9QDAP2xL1o3Dqoh7miZW6BE39vc5Ojtlqyj4wrNX+eIPfIliNqVoz9m4Bu8sXdvz+MGn7O4esFgtIBl8F1HWMj+/IGsd680JUQjWXc9bnz4YbLn9Go9AmoLlfE0fJTeuXGJxfk4PjKc5TDUr32J8/K9Aril4tIB1vUZJyJWms5rWtxzsTlmsl7hmzTJ27O5U2FyyM8kZG4MWUNoZ592n1Bc917YztGl59soO01mBN5I+tlQxYSeWtu0ZTwTT3cuILOP45ITC5hxUmo3r8QhaOnKjmWaWJxuDkxeoakTnPX7Z40XAC8PW1KIp2PRDQzPdrqidoRUNMtdc3h0z0xAxuBgwoUNlJTHWJAleSJIf0qaDkdQpoRMYoUgysdpsiJkdBuARgndkRcm//L3f46/8pb/Mo08/5eqt6+SjLVy3oqtbzs7OefGZK0gjqZTlZN3w7kcfcXa8QI5GTy9oAtdF7EiyuzWjbYe+IZohNMa7RKSn9gMvqe8SNjpyNSgqBDDWmj5L2K0pVgSmBRRGE0djxqMdjFZ8erSh8YIXr4/RheAg20EbT5IRspygJa0aWIApDXwqGTuUStjCIEUaFE3TCXVIZNISvMTonMl4uIAu6p4kc1AeKXrKMqftWnCOnZnFxxlts0FbgwwRvKdMkk6CSpHkE0Gpp8nikqDToG6RA6IAEiFFhBBEUUCK2DJjvWoxWQZScPVgiytbE3JrUNMtjk9O6F3H8zcu0yNQSWKALkqCVIgUiXEISJJS0qtEkJa8G8KQpALlNUYbTJ4R2yXf/eNvMd3b5x//k3/M/P5HvLK3z97f+HmUaHjzrZ5/+av/HBEiQo3wOKqJReDZvfQyu1u/jws1904CJ6HktNP8H375TT5/kPFs6QYrLHB48oA+Jo7mhvOzAao+KTTL1rM1LshLy9rB/KRh70pJ6+d8dKRYLZdkYsT1q5c5WzpOTjZsb89wfcOiSXz77UN2JpZlG0gRkBKlNKt5zcZ3aGqabkVihE8N3idcsyQbzTBbFd+9c4T3mhdvXEIrwflyw9HFEY2HIh8zqSqQPYGOGDSJIU05KYeTDQV6eM0oUCpntr2Le/KQcT6kKEoSQ9QJKC1RQrGpazYxMdu/xK2XdrC65IuvvcRHdz/i/OSC+/fu8e033uTJheNgd8oHn9xlJ8+xleTFF1+h7t7EmI7Lz36OF7/y4ygZsdkEU8zwwLZSdE7w+MFDTo4e0rYfMj8/4Y1vf4uPPnyfpBPajpiOKtRkhsVh4hBIoBC0qUEHhwzgZQBnMFrhkh/UMwh8iP/aG4bP6s9WWmhSjKxXK+49fMDW9i42K0htx7KpcX0/YBZSByGQXCKKyKQoBqtZ55BGk7xHKU1K0HduUO1JCCEg7MDOG5KdExJFpyLGeRQKJQQwyG6jC6BAPg25CM4RYyBJSE1PNhrRRIcRQOiGlHOl6L1HSP1foVgkAUKiDkM6eG4HDmmMEZMkRhqatiUZgYwRow2+92TaEhWUSdErSRd78IFpXoIQOCHQPpJRElLERyhVxsoNXDppxODEkI6+q+nnHQSDyXMuzhb09QJCoO5zKhQ+OWxu0T6SkifXhigTwkeKMmdU5UTX8GC5RGw2eK8wYoopKjLZUemSvFBEHJuLNSvrWTSOtmkoNbgmctLOKbINQltc7Nm4FS4NdmytB8fLYu0HvmEM7GxN8L6n7TY4Dyfzmot1z8n8Iy7tHXD9YMJyk1hvBFm6QBnBxfEF+5cO6Mmol6dopViteqwM7G9pmo1njWWpA8tNiwgtyS1IfWCUFbx6+yab5YaREUwyw2wKd08cyUdKm/jhr36OO3cf8fkbE7725S+wXvd0boUMDVvTy7z9xntMdi+hpwJFz6brMZ0npIbtaY5bJ2IIWDkkWKtkcD7w+GIzMEqVRKkR4KnpEEKzlU3ZmWpKK5B5js4N69qz6By9c0gRMZnn4emCHZ1hdE+RLWiTIqkcgNHoPko8JDUbXn/9JUb5OSfrhyzWE2LUnJw9x2j8Nr2u+U//wb/HCy/ukeeG42N487uv8su/8iarvsOKSAw5s/C3+IVnfputaoPK1DBsFpKTJqAAiScpOYTsqIRPg/JeZ5ZRVaKlwrctWEVh7fB9yAqC7EmdZ3+WIZRldXbOS1e2SCT2dvcoM8PBRLI9rcjLir6vOVnUfHy8ZHtc8tXXrrE9m0BSGG0QoePoyX1WqxmffPAx+3tbXD7Y44233mWxuGA02UHIxHJ+SuUKmE756MO7fPDuh6zWZ8wmYy5f3mNcVIikOesbLlYNCImQCqP+FR5JE+pz9kYZ25MRH37yMdbAay/eRiQ/MOpEjhCSgg4RwHuPVEM4nXARowyzKmPPz3DrFd9/923yUcHuzgylM0RwuNDiWo8m8fWvf4VwfsLjB6fcvHGDoBImBGTqSTFSFSXZaMr58ZIQFaRA6Db8yI//NDdeeJ37b32HgMDVPSMrSAkQikg7cFCfDkRNzOiICDwyas7XSx6fn9O2mr5vqLoJ27v7zJcnaOWRSVLOrvDylRdoTg95UDd87fNfx8XfZHR2xsEYLvrAppG8GXvqEHiyrOk2K1QIQ4BckWONREuPnAikSFS2RJkCIRPWagpjMFKSZRr5lD2okORFQW7s8L1QagiJkQmpBTbLhgW3MXhV4DvPxx99yqSUpOUp9+68z+VbzzMebTGuxhSjguh7isk+0sGjow0utVTFjLPDQ44ePyGkmtXqmMneFut1zdUr1/jCa69h+sgfvvUBX/vBr3F5OiJGx+L8kNOzE3yErnuF3a3poA7e1IwmWyglaXxAK+h9z/z8jNwaqqKi7R3eO4w2aKnoXYcpczofiC6SFEgtcW1Hpg1d2/2bOs4/q8/q3+r6Ew/+VJT03qEAoc3AzPODeiwBXe+RTg3qEJPQRIIUw0AhJlIIaCHpw6CCkUrSNh1SK2QCXCA8bWpFghAdT9vUYeoIiBAIRNrgyZUhdI7aD5bHmAkM4EVAhUA0gvgUAq20okse2bVEHVBhsABrEkbl9LEniUTvAkolpILQBlCa5AOxa7l8eYubt67R9ZF7D444vVgRe0ehFdo6vI70QpAbNcTQ9x2ZFcTgkFpS125o4n2kTRGbFagImz4SRaJuHViFEIMtR6SBsXe+6Ti9OMdow3Q2Y//yJaaTCdZIpIik0KNVREiDyCxi3aFcgCYgRGKtJLfKKWSa/w97fxqraZrf52HXvT7Lu579VJ1aurqr1+nu2TRDjobDIUVRpCjRJAQZTuQEiewIsANbcAB/yKfERgIEMgzEsWIDgS0HXrJYViRRiyVxkUQNOcMZ9mzdPb1Ud9dedfbznnd7tnvLh6dIIN8ox46ooG+gv3YD1W89z/38/7/fdV3f32H3cx3p/BE30xi7d4AcDGnqNaJLLF1DoTsy05s2L2er3vQnPMY+qxlfnnHx6AmD2FIUCqeGPD6Z8fNf/gKEBmVyPrh7jyeLY8aDLY7PTvstvZQEH5hfVogkCcHR+J4VNhyWVD7QeY9brJ+xRxybA0MbHJvDEVlhaOZzFnXGSDUc7FkOj5dkRYYUrh+cNn1VYFYrggxsjHJEEsxWNWuvKK1goiPLqmJsC9o6sFjV+BI495QDQxCKgRU8OK85Ob/g2rUJqyZnsZpT2IIQPFJ2DAeWrgk0YY6ZWtpWk6+gVIq9cUmhA2ObECmQhIcYkSnSeIcMghAS2Ig2BjpBTP0HWCcSQghc3bBqK+rcUmQWH/qBtBAWqTP+6n/zV1k9uUOWWRap5LJuuP/4hM+9vMvLV6+QjOS8lXx85wGdN/0GsVkRhaZtlpwdnTN+9RrTjREiBaYjTV7AIJ9Q2JwQG6q2H+aHPCPLNdElgs6oukRqA7kW7IxLbu6O+MzzW9y9d4eLBbQ+YTA8ePCUfDhgPBnRImllxFhFF3tTF0Ji+hAjXdsy2tzk+PQCHxMDOyTJXnBDTFjbX3SHhSVUNaL1kDqOj8+oqobGjWnJ0EmT2YwqdgQMXTS0PiAtuCQwziCNJLm2l2UAWj6rrBH6j1khEEgiomdoJYGSGqkVIkqi8wwNeF+jdcFwkCPLQBc17334ISeXK4Lv2N/doVQJbM9cVCIRk0CEftCUjEJFiYm94dzphPF9GjclDSLQioaBzfnw/W/Bh4nTRx/w0b1DVDD8EgrtPVf2JuxtWgaiwdoes3Bxecrz3jPUa77wuVsQIuna61RHFV4/RNkhHzw8YfN6YL5qefzkmB8dfszpyjBbN7gUWa8iIxO4up9xerbuOUZ42jaR5gF/CYt6RXSRzz435er2lOvXCj66c8iinhOTwUWDyj2ndUuIiqt72wzGOWOpOHpywePzC6SHZbsmpBxFSxDgu0ieN8QYuPnKKzx5fMn9szWzywsGmeXFgxtElXh8dMQn9w+RZsjGxg7TyQArHSk1JK9QBISQ/ZY9BaQZMNnY5NHDT9jIh7SrhvnlkmJQkhUZQpRo5aiqFSomNrZ2qIWgbldkeclLL71JuO154/Nv8tEnH/HdH9yhHG3w3rvv4bs1hYTd6QFCD8g3nieYDVZtYP/6cyQROTk+550fvsPTJ084fPqI+w/u49sGKaBLEWNyxvt7BBGRUdGpSIwemQIx9NgHGROCROMblM5xDhARlSBGSH2+FC3Vf383hU/P/1cn/Z7NVwTquqY7PMTYnLRu6KIjhR5foq2iKEua1BEJhBBxMeJCwOhnlTjvMVri4jM7Z3A4IcHHvg5L7O9QziG0AkWPaPARqxXCBZSQdCH0DYvk6ZzrDb2ZJWaWebVCJDBSEZDwTOShc4tvWwopexRJks94tQERQZKRYkcbPDoKiL2kQ0vFsNRUVY0UCi/AKEXnHZk2ZF4ickOQMDAFEUNTzel86mv9JqOKa6TSpNAhRL+cNVITOoU2A6ztsSxtHZEhw6qACIKmqolC4LqI6zxlXhC7ni2VgiMPa8ZlRruwbA82MVKxdg2bUhFRlJmhiS3vPOj47Ostt27dILqOMiz54qsvoFJDrg3TnX1Ozp5y9+4ZXdSkaNi0GedVzcXijI3NEaiS5CIiRToUKSqG5S7EwMA2JAG185ycPWB2mjEcWuxgyuHqlOlY4Nyc4PdoFhVLl+hmNaW1eLHi7GzJ81d3iBcXjHNJ0zUkmzPY3sKYJYKGfCA5m3UUyrCqO3JTEmTFSEYuFyv+6l/7e4Su4Xvf/4D5bM722HBycsr9j3+XR+crNrdy8BeIZkbtJD5oMlOTac20NLTKs3CCgUicNBVt19/9Wx/onAfp0Zlhmmn2xhOMSOxvFCTpqKpI3bbMXWSoc6yu6EKHkJoUoPKKx+/d5eqOR2hHEh1RNACEbs2bbxzwR7/2NaxJjLqGP/6nXuFX/lbH4WHH6enP8PLLT0E+4d33nvI3f+UHNN2If/XP/xS/8IsHXFxe8Hf/9o/wzlC7Kb/1g1/kz754h89MHyIHBSJ51quAW5zxf/nL/xHBjhDVHCVyFBFd5pAE6VnoYb5eoVJE6yGlVBA7NlWHzg2LKBiVAx48OeQnPvMcn3txn0xFupS4vFjgnMd5Q31e0yZ459Ect2r4zO1tOpk4r1YIa8B1fPTeXZ57/gZPj2b4rqMwlpdfvM2DJ0+4XCwYTXqBBsmzWtX81vc/4vGTJ2yOxty+/Tyj3BJi5Lyu+hZWYRmPCozRz7h3ibZqkVGyv7nDxs4u73/4MYvzJS995jM0KUN0HcYkgu4TxV1MaAXGKkgR7x2F1TQp9m2uQlOUO4wnU957/wN2Jxu8/PrLON/hupr9a69w9fbr5NMtfukvvEQMLSkGdHQEFDEJCF3PuI6By8Wa4MHIkiQkV27eYnO6xT8+PuLWqOc5IhIuRqyH4D1SJ2SCTjokkWK8R706pWrW3Dt7yqOTyHAYmF7dYmiHfPv977M1HXFtdIVBMcS3Z8yj4NrNN7itasrcU6ohrb2kS44rucTu7nB8fJU7d08IIvKzP/0mf/rn3kAEhzYG6T3RWpSQhJSRVEJJelO7EIjYW9tFfHZfJKASqC7SKol49n1du4QLAiElbdNStYGzxYpqfcn52ZooMi6WCWUriJpH9x+yc/WgN+5Kw87uHtIoFudnjKZb1PWS+eUZXeroYm8ltkqBy/nmd+7wywe3cDFy44UXwAhKGeEZv78YDNlKiXffeZuNzSnLatXfeWOiayuQoueHRkPnIlrnZMbQuY4QHIGINRkkwWpZ4WdzlssF5SBHG01MoK2liSuqpvpn+Ur/9Hx6/rk9f+DB39BaQuhA6B5eGz0qeAoBQRV46QgITK5wsUWrEoQhNv3wzRhLaNp+eCh7q1QUvTAkhoBFEZFIo3vrrpD44IlKIoXqL6AuEGNEpoTSGtF5tM0JUqJC/1LVSlG3DhMBJfFNixIKFzw5GqxAJoPQBePYcpAlNsoR768qZstItB4XEhpNomO8OeXF529ijOGDj+8xWy1pQouNUBgQElwjKAdTgo1YB/0uVOHaDqX6bY5UGpSkzHJyrRlkvRxECEVuBQmJLhSxjUQNmbDUlWc9n1N1La2LHB+fc3Z5iTUZV7Y22H3uOYrMYJIjJEhS0kZLKyKnlyc8ODxFicT9u++yfeU5HjiH29nh/OM5Hx+ds/mc5PaNjCLTeDo2hyUKsFkiUzl125GSAK1o6C2BKgq61Zx6dUHynnWzYGt7j/PVnOubY/7Un/4lfueH3+TtDz4hywwpy2h8wAVYLlcsLlfkRW8yjL7BIglrz+Xlihj7bbFKEZNZtjZyuiiYLQKqrbhYO9LxEZ9/7RoL1zG0EqclQToy5ZluDFjNa6wcMrRHrCvHctG/ZJxSPZfS9lvZqoW29dx6bo+6idS1Y3nZUdWG4NZs74xYnq9xy5qNTBOLkosaRpMRY+VZLDs+Ol5wfXfK0fwCXEExzti9pvnk3gnTQY4UHqckIQhk6NNETlpilHgZMEKgQ6JrPakTBOUJsa/C2yQQgxFCK3yKSKlBCowZ0LnEhx+9zxdv7VKt15w+egz5hN3pBje2x2xMJDIJ/sF33sFHw2RYsHV1wt7mEC0CIkReeG4fXIUTDc9vaT73C1/BGEVmMlQyoEHqko8f3GFnexeRPC9/5gv86PEJ/+n//W9wZVDy5su7fPFzLzMphzx9+IimFcggMFZyvFwSuo6t4R6tVERXI7UmNhIXNCEoYgwY1SJSQvpIXhgen697xlJMdNRom5gOC4JvCDh2dq6CvUNXtyAVTSPpYl/flyL0lxmre1aVW7G/MeSyqVHZACN69IDwgqE1JKFI9GKeBCQp8C6QVC8l6llxEi37j+oU/TMAtMJkBroOET2Ggk40tClSL9b4haNzK+arCjMaggt9Ck04zDP+jxD9IkMZgwhASHgl6QgMTEnVNEgRkEnSqMDEFFSrFV967U0G2QB/2YISaBy7A89Xf/InePvdD9jfKTGuokyRH/3wHf5vf+U/ZW/3Cn/uX/5jrBaK+4dPeXoyQ+QlyUc+eLLk4V//Bi+9FjmbW3wSPHdtwMf3agorWa06orEsu5bXXtolzzTvLeY8ulNRTDMOZA+B/ujBY4blhCv7luduTajqnOXS8+jwDB8TAksQkI8yfv5f+Ck2dYbQcDN4Lo4eY8qcQg8J7TlSCJRO3D88JbeWF3/sl3n3ziMeP37Kxx+/zfy84pvvP2RzYHj11i6vv3SNe49OuPPJE+7eu8v2RsmV3RG53QYdqLzA+D69KWNiMsx5ROB4teDGxm20EXTtEinHHJ08QKmSzc0Jl7MZuTIQJUkrNJ4qBZSBLBtxfe8Kt37uAK8ki27J8nxJW7XMzi5ZnF3w3/yXf4WP7x/z1a98nq//9J/i3Xd/h1/7h7+NU5FCWow25FlBKzUtPUMo0MOtdexTpi71nELxjNcWXSCKxCDXjEZjLlctzipscqQYUUriYiISaf2nG/E/LCckR6Gy/j3tPRDReUaLR4iISwElFDGKnvlKIvqAMBYf+xSnChGtNCmCTBIjFcn3jYQQItIkvPQYlwhJwrMhoEuJtmsxqeeXet8ghSDR80b1M8C+C4nUOYLkWRKWPqkXFEpIpDHUzbM0kPNYY3ruc0p9YwJBbBuUAN92yDzHB0eGwUj9LIEq6FJAJ0FHYGc0oBxmCCHJ84LQepZ1w2KxJKVEFxwWgVvUJCNBJopnab2szBhklmKgKcZjSC1JdgxGBitypEloEjYXYHJcWCJjREr6FBMKF1ri5THNojewN8IRpKJNAq0ECUeXIgmBUJYop4wH+/h2hZOGmBTjzJC849GD+2SZwSeHQTPIC6JsENqSSUHrBCk4En2qXMhIkoG6XfVpMZP1DNvMsLuTc3q5ZDmvEYMxFJusmg7vO84uz1nHvhrZpZp6OWealSTZ8c7DJ/2yq02s1x117aiqmqgD5cDw7XfvoXTid++ecfulbZraE6LhMtTkRc668VyuWh4cn+JDxceqY6gNl5eJi7pm3SpGhaUcGVKtGVhoFjXGlpyfrbFloFpHTmJFIQsGJrCzt8GjpzOGMXDj2j6jvMRqycp3YAqiKVhFz7o+QStBhkfT0UaBwhJiAiJCG84ulihaiBBSoOn6VHM5GPDVn/4pppMJSHiuGNF1Ods7l5yefchLr/2f0LplVdX8b//dv8NokFOOb/LH/xi8+mrPIM+U5nzdUa0+5pdf+3f4jQ8u+I2PLZnxiBRoU4YvSx7NHvLKK6+RxYrzTlI8453LBCFFUufYLAuGpUDkJbmSSKEps7JPmWWKJ4dPmQ5KVl3N73z0hGFRMrKJ6ztjrLa40JGXmtlZzeOnJ7xxc5sbextMRkNyK7Cl4cnTExaLFd/4re8x3tzkxpXNvoZfVwzygqPjU0QUdL4hac0P3rnL0fmSW9eusDkdkSSsLlfoXDMc5libw7OVp06CEEFLjRlomrY3QxspONiasDsZUzcVb33vIXvTMc/f3CWToJIiRehipFMSFSNWSsSzRWenNdFFopDEvGTjyj7O1Tw6Oe7NuNmQlz73ZYqNKSklkuwX4TJaUtMRk0NF2XP5zACdPFW97p9hIVA1bd+QkYr5+Qw/1BASUShMVKQU+39cQAqQQRKToFnPkNJxdPmUR48vuayhwuPOKwblDCkV82aA6xzXNteI+XuIYo9HzYKr+y8hs5wkJdoWSK8ojCLS0XSBkAIiBazwxKrqbduyQuhEWKZncidFUoqIwGjdL58FeNeRSL3p23vaLlJ1kctlQ9VJlpVnWbesu0SgN4K3SeFCx9TmxLaiXZ9xtuhYyRXZ3XtoaVFWs725Q4qCrCwwXmOLgnFUDIY5H9/5Li+99lV2N7dYNxU3br7Gt377G5yvPXW3QoSEx7G9vYlzKyBDigwvNC566mrF9s4eSVqWi1n//e4dCInNDHU7J7OGEFpWVUM1X/StOpvjqpqmrpnNZmirWNdrTLFHCpEYHDE6lvMFV3b3/hm9zT89n55/vs8fvOrrWzJjqJzHO4f1kfGgYGNnwPGTFjMwtMuKiYCDWwd8/PiEyWSDRRtp3RppwMd+2CGDx0sQSvVDNtVX3ITsQ/RJRGKIhBhpXYcQgtxmtMERnCPPMpTR2DKjUDlz4fsNdteRRUM+HCA6TyMCRiqE1gzyDJEUyvU1sHVQvDIc8WNTjUBw1ArmMuFCQmhD5zzXdzYodnf48N4jLk7OEEJilWJnMGWVWhz9h1guJMYKkpBgIlEmJqMJOgYGo4J8MmRoLYNhxqqrGZgCJQX5aAA+IVSHiwoXGqyytC6SKUkSmqrZpq075oua1XzNcr2kazoeP37C47NzPnt7l/3tAXXjCbSUOmAyg9SWa9tbXJw+QZlBbzzrJHcPH/H6jQmfXMx58sljQpCUoynPjwTt5oAkNdLVVNUlSikGg4JV1RBiICZHPhiwcWVKPQedHSGMZV2teOd+ww/ermjikLuPHxCCZN6syWJOBNZNRyOafiPvWrwQpORQOidKQZQK1zRkSpGMZGM6ZjhQVJ3g6HTN1GhGPvD5L72Kiy2Pj+eMTEOsHZqClYvMFnO+cLBJri6pkmYrU3z8+Jgy04yL3s7cCUUyhrZukCqjqdbkRcZs2bFuPQMLreg/NLRSVEi2h5baNyxOVxQqwLAkoUnWcN42hK7kcrUmuwAjJVGWGJHQorftJtWj0SEhfY/hDQqS663QnQloZ6hFQ3Tx2SZO0vkOKS0khcqeWa8BIviu5d0P70MTqGKgVC0Zgp18iIwdYy15rhwhlWd7e4ObL1xD+Q6TG9yqghRZrlpUPkCklslkl0hgMBpi7ZAmJrRUfGnvj2ClYXN7g+GVF/hP/qtf4Wtv3GR3ULJ7ZQjA06MTPjl8TBsM69QxtQWHh2dMtrbYmeS0TctAF2Spo6NBG4FVPU+lDT1/08REqQWxdexsDIipIbaOze0dpM1wSRHWgU/uvU3rPZ1P5EaTug6tDesqkCmFSYF6XeGiQPnAYFOxrhOx05CDTQ0Ky7rTWOURQqBVn4xyzwZ90A/9IqmXGUWBEr1JOghAZbhg6EgYDa67JCqLJXDz6gbPbTtUfkBRlqySpT67ZH9zSJSSIPpEsUn9Jc+1LVL0Nm6pJVLZXjKS5/jQkZxkPZ8ThpCiJ5OGN188YDic0jUteiSJjaNeLLh5ZcrtG8/Ruguu37jFg9kFyU6Z7GwTk+Xx/UMe35+TAgSxxqSCvFB85jlJViyYDiOdF5yeOJaXnulYkg8EeMl4OMAWgcfna46WS4RSWJM4O6uoO4lgwZuvK1ReIBrNqByzOU1I2bJaaELqAdY7W9soI/DW4mODVonr164QY2RYTDk5XaCNIZuO+PyLf4KzRx8y3Njl63/sRZbLFR++fYvvvfVb7K53efL4Kf/kux9zbWuT6zev8nM/fQOdNB988oCn5zNWVcdkEpkUw2dMs5Yr0z0GSiO7SNMJrCrxvkKIkroJaGP5W3/9b+IY8jM/+5NcVjWj6RRCwCOeYTYlIrSgJdGH/p2weZXbB1OqbsmjJ/d5sTvgk0f3ybXi4uEj/uv/8j8i6SEv3LxJNJbzixmZUcyXFS7KHicRG/JMM52WnK8vSdKgA4QoSOn3kqj9u2G3KFm1LS7W5EEStSLF3nkXEvgQyLT57/Wy8On5734Ka1EhYZTGew/RE0NHXy/wv79sICWEkZhocd4TfSCliNGS6NoeiYDEeY+PqU+LRN8beyOIIInO4WWHFqZnXcqAEQolBW1oKYzBhdCbciO0bdsLPIxGCUUIoWc/KIk2PXc3dj1aQUuFJzAZj/Fdh1AJvKB49n7zriEpxUBnhNAv8GSA6COdc0AiKMiVxKXEbF6xqBxGKHb2hyznKy4Wi34piqSwMJ1scLC1wWR/m/E4Z5gr6k4QpWWYC7x7xsIKOVE49iY7KClpfEDimS8WVB6ikBitidEj0IQYuLo95KWrlvmHc5arZ7Zk4Z+ltxTCClAS2Rl0mbg4P+LyCFbtGikUbd3wVCWkyghqQJk7imFJrhQrZWiUZKuUhAiH94/Y3d4giYjUFiMTSUVaDyIKmqZF6QznOlIIGJORWk/VrTjYu4ZoA+vLJ1zOlojCsuy6/j7RRuoQqbTFVRGUosw7dG6xec/T3hoZdqeaK7JksCf5+EnHlUJz0ZXkYsl4kJGk5Hy+RgjBcFoSogetiUpyuobZ2iAzzdjmPa87C2wUgWw4oPKRsphS1zVSXID3rNsllVSUw5q9vRHDENkYKrY2p3z49IzZesFgAi7kGGkoyoKu67CAJdLQsyKlEKQImepFDcs2YKJ4hsyQ/MN/CF/84p9hMDA0TeLxo8R3vuup1y3eB4qs/y1qKdBB0CXBP/nNf4vNzV7u8Ru/9oS/97ffpm0rtMm5tjHgf/2zn2OLE6QZI4yErMB3Fe/dO+Pj7yzoSDTCYnRLSGClIEqAnjfuYuK8atDeUZQZMgiezCqGhWW1OAE8Lk348KRhZBx7E8ferV1MJhA+oIxmtm549+4xRM/WTsloatnZ20UWOeOsZHHZUhUVh2cLPn/7gPryHBcGNHWNiJ7CGuazGfmw4J337nMxW/Hyc7uMhyXBJ9r1ivF4hFKpR2P4iLYZIYVnDRNDSBEExGeLUOUDu5tTlh6+/8E9ZucLBjaHYkTjG3RKqKxHEcgYkEITjSI6j5SJnIT3oX/2hYgTiqSH1BcVVdXwhTc/x3A8RCSPJCfGgJSKJBVeCHzokEkTnMMUluQ8TevQWqOUQueazEpcdFC3ZMMrIMGnRGYESmiiLMmzEcSWPh1tSG3DMnZcVmuaxuFrw9OTFaOi5PCkZW93AkXNpUvMHl2i0dzYn7ERZxyffMxiMEY1S3wyGKtwMpBlCnxLDA4dBVJn5PmEWApknKOSJIphzyW2isuqoqsTp8uO2apmvqppO8/ZssN1Gtd1rLsGbwzCRxAGbTUh9iZiKftGiVESrGXn5lWIgbd+8xCdKXIteenFl3n05DH37j3iwcMnbGxt8eLtWyQ3xw5zpsMJLY5q+ZTje2/x3PMvs6xrvvedb/Mf/5W/wi//wi+wu3eVxfkFl8sLyuGIOlSsG0W9XrM4PUV0DamqyfOMpDXj3ND5XoambIlFsT3dRlpNta5Yz+bI0ZRqvcY5jw8tgzzjc5/9LOVwjNSSfHSAMRaUxWHxMbGaX/wzeZd/ej49/7yfP/DgL6RIkRe0IZCqgM0sIcGjswsypbFOU2uLLSwb44KN6YDtvR1+NFv0NVGREMaguoYoI1ZakJoueXJj6JzrJXShh1WDACNR2mACOCIqt5AiLkV89AyVJMaWXEChDF3eWzibdUNe5mifsOMRXechQSLgXUDIFhc1j9rAqIoc1x0XMdAoDwKUC9jc0ijN0d0HxLolMxK0YjwakJc5OEmmFIOiAC1QeW8IHQ8KpBJIlRFdy2g8xhuJThHnG2SnMCpDZxJjB2ilUSqAkKzbNbQOrRXZwBJDohxl0LZsbk2oPLCsuFhXuHXL4eE5oXX9QCFGCpNxLvtaRfCBfDxFzM8Y7uyy9jm5cvgusj/ZYm88YzUx5MOMtlvjhGV6/UV87Vgc3SGzFmsVVmmkjzgR8N7hk0JnG2SFwJDRyr5+5pwg39jgb/76r+GeJRO8i4jUgeih88vW9/ZlnfBSUBhDGyPOe7roKQYlGgEqUbcr1t2AReWomhUDU/DZz1xlWc94+GSNE5Kjy0uS8DjXkKRltfYQDUFIZvOGQi14+dYW37170Q9boqDxHSfzJaKzjKcdJ+eJvS1JsIoxid2dnNl5og0S5zqsthyua27u7bB92rC9uYnKJIPQoaNDWYsTgXgpuDir2R5DKQs2S0sbW1yXyGRvMXT00H2C6y2meHyCqkv4rsMbwbxpUCLHp8RQ297Q2iacCVhTYmLLLVZ84fOv8PwX38Tdu8N33z3keF7Tlgmn1iQ5Ym63yMpTruWBfGQhtKAgCEWQCila1us5A2vZ2NoELSmzEkVOChIrQRuFzQvGgxF7127yW2/d486Hd/iln/8yKSnWyzWZKTg7O+NyuaJqSqIUtF5yMrvg9tUdykLiRUFSXQ+dVwaDJIpevtDLJwOthsp1aCMYDBQIg9SSZbXm6dMjtqIlVEuqekmhLLPY0tYtSmlcDMzXLeOBJiE4XqyYL9Zoq9E6sjlUrJdLhLW9RETp/jcpFQoBKT5L4EUiApkkSTxLhYj+Q7uLgqRiTx2IjhA8i9WC4FvGg4JC5Bgl2N7bRbtE0pKPD49ZLSpW80vK119iY2OEjxGlDEEkuqhRqSMpBc73z0SREKIjyN5AruigKFhWFZlMZLmniQJRr/j2d7/FG597g93djJQcz9+6jswzUsg5W6+5fPyIw8UMe19Dynnw8ANMnqFkhgsQVYcZZlzZF3w0q3AJ2ig4mgn2Dwp2B4ZZU3F8EVnMGyZlzvHZmnqRyCxolaMyx82bJS4kqsWaXGWkwlJ7z4eHZ9y9f84v/uRXyE2HSJANJ2T0CSKhJUNVUncNOst6S+fwKtlwgx89eMCD41/l6d2H/M9v/zgyc4zGA778ta9x/dZzPHz8gAf33+ds3vHgw/d56849XOzYtIaru9u8+sIBNJqqvmQVPPOLBcNhQQyOi8USiWYyyhgMC5QtaNYNF7Nzru7t82f/x/8j/tr/868zOz/mm7/zLtaM+PKPfYmNScF4tEEIEREFrmkwZYlXGtE1nC0+QWUli5MzvvGPvk25e8DBzWvYWKPMiO+88z7zxYJ1DEzKnNFojNElyhhmF0u8S9RtIPp1X0tXAZkUQQq0MAgCIikyq1mHjsuqIwpFEgKi6ClFz8RZin6A/en5w3EEzxpnMSKArOhZdtBLWKxUaAneBUgdMYleZKYkBEUiIEVCG0HVub5BIBVdSJhk+8FhiDjfIaREBokWCa9AWEtsHSElstizjJWUhJTwIiGkxncOk+e0IRB5hkKJvVE3yAybJ1rvkTGgpGd/a8zRxYJlF8kQ6BhxCbyUWCmfCc00XXSo0OMShDIIBaXueVsTpZG5wOSaUlt2dsdMpgXTeoS1kmE+4GBnAzkY4lxL6xxSK5Z1RNscYTMul2tQEoFDJ0vnEqhE8i0+aYzJKYYSHRVp2WNeUgjITJAEUDv2dncpHiyZrxIugBQNKSYQIywKlRRtbMiKDJtJ1u0Sq4eMhzlMp1SLimSGNGaMUwqhK7wQFCwwKaPxHuXAJMmNgwnrdcesaWmWLUFClvXtALxjvlzggyEiiUIglUWJinV9wcHBdS7bM6p6xXZhaRqPDxEVIzsbmiAgWPBOkoRkPluTkiazOaWRuLWjHbfsxAnjocQWhrC8YGDADDVHJx1ESVb0w+bLqmbLFNg8Z0zNeJJzOluRZznzeaAoIoPxHmdHD2mcJCRBSJb9K1N2omCxrNndLBhKxzzlPFm03D1a83n/lE1j6MwYqce0TY32NWgQQpOEwsUAoSHgkUGTosb51Ke1pMJLCUKR2Qs+/PADHj3UvPjCAa+9kfHyK4rFMufXHlzSdQ5ppjy69y9ycOvvI9UakyT/+v/yrzKZXuN/8a/8LF//6Ss8evAS3/rGJ4QUuXNZ8Gf+z/8av/S5f4+Beg+8wypBFQQnXtJIw6N795iOxmRAnRIxRHzqObGdgFxalOrNvW3taKs1470d1hcL6CRqXJJk4uo459WrQ4Z5jhRwet7i2g4fI+d1y5PDE/b3duhayXpW0+UOmwSHZ+csLs/xPrCxtYEygnrdccIpG9OybxmJSF2vWFYrTk6XXL++xcagwDuPVlAMpnjZ4hGopFHaEFNAy16bkESfdO2c4+LyEqMtRWFBwUAKbmyOubU5YjAec3pZs1rMee5gh9wntNBEmUgJfJJoleMISBEwStK1HbhA3az7ZUg2IrYdP7rzCeXeXV588UW0EijRo2OUkkhtMEwJoYHkSMKTvGN22TP+tJYgemusDo7TyzO0eZ18Z8JsdsHutETYRB09XfsMN5PAmYYUW56ePeLdh3dZOc/2NTDrAd3ckaTpxUgycHZ5ytGRZzQYsGoVW2PYGnryLGJyzQBPCBrvJXUXaNoWmVnoIqbICbElOPHMJNwRERzNa+rG8Ld/9R/RyiHFYICLEJFgJKAQJqGFBG1RSYGBECIpBXxMSKVIQRCjRGYFWSFpu8Ty4pTB2OIrx5e++Aabu2N2Dr7ED773Q9azCy58x7dPTrh25Rp6NORgT4Dqh+Uox+zskIvFnLd+9xtsDse8dGVKV9e0sWN75xrRNdhiQFdLmnWNl4lWGxhOKHPDxXxJTNC4uhcUqoJYecpBhnctMQraru7bTEXBcLTP1Ws3GA7HhGRoul4K+vjBOQ8efMy6WvL46ROePn1M06z4r/76N/6ZvdM/PZ+ef17PH3jwx7NqmFaKjoQDurY3e1qbaEVkkI+Y1Z7v3XmMMIr5Rx+gfCTJ/uFVtR5pJEr24ouQAsYInAgoJfAh0fkOIwTJJ5ISeC0wIeG9R5ueVWal6uPc2iBk7Bknraf1EFyN1ZbOdfjg+suEEkgRiT4gdSB0kKuMpY9873xNzPsNeKkLEIGysOjhmKPzc0wITCY5Bzdvcu3KFrHIENpSuwolEpkQ2Dxn5RwiyX646TqWizU6V0gtsVrjkwddUOa9HU9nhqRztAaRir6atWroasfOZklIiqyw+Biw2lAIQxYTsbQUnWW9qihHhoLA4cWM7cGQ9ToQoyDPCw6Pj1Da9HZSlRO7Nd0z5tNkCMIGRDalWaw4m11g64I4P8VXDTkdUji0MsTg8aEjy4fkWqKEo15fUM8vkDGQaY1SktYl2ugYjTeZXV7ShAbTeVLn6bp+6xl9Auf6NKPsf0NN5zA66wHkAULocNHTJI1vI6u2JZMZN6/t0oXID374CUKPEcoifMK7lvF4QG4t0kPbdLj1gKGRzNeSl26OcOKEiyYyKCOqcmzrAjno6zlPmkteKjPOzgKL2mOXHTIfs1yvCUpTHzcUWWQ5npHZltnZIW2TIBuSvCdLgs2tkqdnjtrDoguUOvLg6JRyNAE0IWmUjP3QLXgEILxDJaiCo6saMJaufsZ2UQGrZA9CJyJUYmgLfBt45coG//a//WeYbu9jzITux1/hi9Wab/7qR3zrt3+D/d2rnNsrzI9OuDqWrC8axlNPnhS+a0EmwrOKNI2hrSqcTwhl8M/+niUC2miEEKxFJPmKfVPwn/0//nO6NnK6qFm0HtWs0eYYkRS1UyQceV7w9PyS/SsbbG+UKK16w7cQRGGom347O9CKtn1Ws/UwGBUEp5kMB4xHQ/ARqyRWJarlgpQOSa6hWjq6xlHVa5yckI1yxPmcrvXockKZF7SNxySDNgmjC7Y2BxydPcFFRZEX4BU2dUQhiFL0DCv6SmWMEVILRiGj7OuWCgIB4TVaK5IISCPZ3JzQVA2D3NC2LQiJQiO0JhCoVnPmiyXrZc1isWY6zsHLPqmgIkJpjLYkQV/lkx0yKCQCZTW+81htMbnslwlRoUQiCUXrJS61fON3f8D5Ysnta1fY2JiACMgQSUFSDEq+/MoLJOdZ+BmLeUAXAWMlyucEAcNpxUU9p+s8xiSO5pdkqeDB/TX1JKeYCC7OK1Q0rKuK1Er2NwZY6/CsKcY5WsLxyZq4O6dez0lSEk3Gd999l2adeo7naIJKilWzphhnpBixOkMqy2hzQIyC+XrOYDLi6OKCRw8fcekS0ijufvAub37pC0StkXh2dveZDMdc3vkhJiU2X7/NlRl0SXLx5A4/un/OfHHJzsjy6o1tbm/uUusl6AbZ1FT1jNbXCJX45P5DxpOX8dGR6yEhRIaTgj/zL/5JpDa88OpL/Mf/wX/Ile2SX33/A3Z3XuSPfvVLTAYGkyt8dGQ2JzMFl20H3nPt+jZCKr797sdsblgOdg944+VdfuLLX8C5wNvvvEfVeD76+FE/WB/mDEdDRsMtHjw57tPgImNVNQjhQClc0v3APLRcLpveGCktUvSLMiGeCUwEfforhX548en5Q3GiVvjgETGilCAoQS4sxgRWbYeUmiADwhhQBqn6IVckoowlioCM4EIC3Zt2B9r0cjQf8K5DPJOJGaGJISCesSAJ/V2KmBC9lgAp+8SUcpFOit/nLusIkYTXiTIq1iFhygwZG1KMSNlbRp/OFuTSIHzVV8ylRktBlxKlNL0kxEe0sgQ6pAYZI23dsb8zZWt7QmZLnNLIFJEucDZb0AHN5ZKU4IQLntx/TGsNXdubi4dDi7IZu9tjRpt75Kb/3TsfiV0gJPksFWkhCDrvUSqiYqJxHTY0mDynCQ6ioOnWWKXRKTI2lq9+6bOcna353R++Q3AeY/uqadN03Dg4QIoM14A0FXGcA5ZiqPq/i3FN4zpEslRh3ScGZUDhWSxmpJWHrsMoGOSGgOKkavFVy7TsJS5GQ7dqe7GUzOl3VIrV+YILe8l2PuKk8ZzNl3R1i1QaERMSz6RUBKu58/ExZAPSvukTbxpKKcA5jNrEo1k2NU3taDpJGw3zyzXKJ5R0uDpiUsIWmuG0JIZInmcsXUvXaJaLhs2poloFHj49pVQj8iySG90Pv6JEa0eRaa5tlywuK+g8Z0czUPBREuztCKxRJB3RWiNcIPiETb1ApRUQokQkTYyRKBSNDyBETzAVCi0kKkv8+//ef87/7M//Tylyx81blsmkZ2o2vkUqhZGWrruGCBprNK6NfPc79xF6jpZjvvzlH+OPfu05Tk9znp7U3H284umdV/itU8mg6FFF9hkrM7qENQUqzwkm4dtE8IkgA1F4rLXYJNACos3omgaqmu3NDZQUzNZLbt7eYWeQk5JkZzBk4SsuzxqkloRoia7Ce0FjNC5EAoKjsxUDnSEUIDXSFuhyxNnRihdevMVyWRNF/3y4++iIgYHdvRH3Dld8cv+U0WDCdDig9i1aZYCgFR2CPrBAEj3KCdmzLxMQBUJJjLVsb20iSEjvaVtPbgtuXt1Dk3h0fs7du4+pG8/udIAZCGQ0CDRCRgIOJzTQ892JYLRFW4G0htQFtJX4YKirFd/41V/h6O6rvPLm51kvzti/+SpFDplWz55jjtAlEn3SLYZAPipQpscetM6Tz1tUSOgY0WJIXB6zLh3l2JJEb2COIiBVRhs8h2f3uPPoPufzyIOHiY1RYDTRzLoWHwxIz0r0vPcXrl3v09jScXzeMZtbnlw2XJkMOdhUTIaaJDSrusK5gEigYsKta7xbk5IlRYlKCiUCvmp49+0HXLtxkyrBB3cfkUTOaDzCmBKRPCK2pKgBh1f9MzpGA11v8vUhIpME4QixwVWBp6sZpmuxWtPESFlIisKiteCP/4mvszqb0XY1T5484Z0fvssnRxfcful5Xrh5jVs3r5IbS4qRIs8p8zGTwZxibGi6NQ/u3me6tcvOzoSuqggRPr5/D51amthL6xbrNbPljHa9YnlxjrYZPkqm29scvPgKxWgHY6e0TY1vOxrnqBYzvvWdd1nOZhydnLBYrpjoyOFqzdr5Ho31rAVVFJv/zN7nn55Pzz/P5w88+NMpEVvXg+eFIqSIIfUbUQFdFGREnIu0XUCZiGhdzymQGqJEaYFQCiM1je9A9tvuEHrmidISkQT9fjv8fo2hJSG07lOGXYfWPecGYwixRkTXc6SkJsmOLO/17EZbyryka1qCj8hkMB6i0RADeW5JTtD63ukUUyKPgnx7ymW34MZezgsvv8LG7g6yKOhWLVXbAIk8s+S2QOc5bduShT5dEWMGVjHdKihUxEuB14oy9DDnul5jpUAqQwigjKTrYRoMxxvEzBFoSFLQeE9sO4RMJNNzDbPBGLIcNRiTlzXtYkVcrbloA1ZLovcoF3B1TfRrBsOc7mLNYKPAEwhNQwgTdHD4WcUgrDFNQ3UJ7dkJzz1/QFNnrOZLjNWEEJBqTUqBzGakqBgYj90fMJ5YTutI6xwq5AgU69QQRWRra0KeZ9TzJakDV1eEBCoJ8AmNpA0OgSJ0HbQtTnQomUjJI6TFVQ5LZHe/5GR5yexhg1AjRAiUNpIPLToaMgPaNDx/MOZLn7nG+UXDdGuD5bqiHIheyuA7LpcR4QQHA8nlekVSmpc2Bzxe1NSXojdNdZGHDz4hN4bd/Q1WeULpxKbO+PN/4S+wWLV85/vv8zd+/ZsMxgNcPWPlIq2v2dza4s7hIT/z8gFG51y2AaMMCYURijp5ZIwEn4gxMheB1kOdBCp6yiJDGYvKTC8FSQGk7hMRStHqBa/fvsbe818DB8IaZNpCnb3F93/7m8TpLmfO8Pd/6x3+2K2c517/HN/97vfJ9naoSUihsQlG1iJlzmw959aNF1g0DrXuKPMc3zY41wsFnLbEZs1oOGFFwSfv3WF3ZxPnPDG2qKQ5u2gQUiKsJcszMjNE1zPefO4G3jkaAik42gDLdUvdRbIikYYlQXRkSrIIPXS5Wq4Q0RMiWJVQtuf1rZ3H1Q1WQ4chicjW5pS6jT0wPKl+YJw80va1EmUUw0GOygRaaSbDjMuZJ98IdLQoY3pxjxIoo4CEFAklElr1qVEPffUuRDQ9z5PUD25jjH3SeVD2FzsriD5i0Xgh6FzEREGpc4oNTRKJ2WLFdDQgpYBVJSH1CWX/LAnpg0MpgUXRuY5MGERKBBnJcotvXZ/uSpBkz4MrguDD9+8we3rI67dfQAEheUI7Z12tePHKBs+9dJ0HH53wpz+3yRc/f413PrngV946pYlrZKx5etnijeLkONKtBqxdhzYFZW65+2BGkRfogeDsQqGLkqNZzdQkhqJkXChikpwvPMvW45oVg+kmQRr+lT/1c/zt//Yf47sFRt6kGG2h2xVFWfLwySkf3/2Q09NLlquO5dLz5PwEqTVCGJQURDQDKzi6f4fnb99m5+qI5BNKV3REzNCwbT1RKS7vP+LK/gHl8ze4ckuzrjqOZhd8/94jXts3+HbJo9NTbl0b8IU3h3gix0cLfvqnnqOQilopiP0iIVWJiS3xUqKs4t/81/8CXVPx2c9/if/9X/o/kg0kX//aj/fpICkheNpuhRAZKkUW68CtrQmPLgP3Hyx48vhH3HnwmN2hZnd3i1ffeJlhlnP34SPOlhWnhyc8XSwphCS3JdubEy67NcNhgVSa88s5Ska81mhlyQk9AzOCMQW4jpaOkPoklSQiSSj1qdzjD8uJJLwIpOjIdUZwDm80RvYiG2U6Ym7QjcctPdpKggyE5NAhsfaOlCI+9gNdIwXrrkOpfhmqEKSYkFEin7FKoxa4zkEIKKuRIYGIeAFN9AzQCK2wCLwG37YkY7FJ9pwm75A6Q0uFkwWZByk8KfbYlsv1kkIaah8JyaFKQ2YNMUSUNDjfoURA6v6+eHN/k2tXrmAnJU+Oz3j46Jim9VT1Cms1yhi6xqGExBhBiC1LQEiDSorLtuLyRKMGJY8/+QSlLaZQ3LhxnenOlEJnKKX6j/IoCUJhVE4UAi8kKWiUynBC0jlPaRUXrebumehT8t2S9+8d0nVL1jFR1YmgJWezc65tbnCwu401OXvbA5IQrJaXbG9fwWrLet1gpceHGpVZtm+8SN0pst96l+SWvPH8NYLJIbUoO6BMmrY9Z3doOVk7LlZLijxjWGZIF6maGhdaGmEBENFzdnrE5miEcx1V1WKjx5SeRjqOZ4aoh1jguZvXeHAyp/Ztb5TPNCEI1l4zcYmdUKFixPuIEp6tzRwzb3nh+X2azvHeg8ckBRuDKdb5Z++2hO1gMtCQGnA5pytHVzs2BoLxRs6yWuHpJVrTTLKZ5/jkMSOFe3JBkUcePGlofcTpxMhaxHKFcBJkxBP7/47qJXdV7FD0Nt0kYd05ohQQ+vqn6xwuFpxf/DH+4l98kcmkRxu8847nH/x9z/FjQdfldL5fgEgR+frXX+Tnfv41fvDDJ0gkf+7PPQ/Ak8dLumaNa2pidEDfeDClRaWESBJjDa0KKCFoibS+rw4LJQiuw2hNYXPaGFBZTlg3aNEyGEuu7E35/g/fY2u6iRQZj05XbA6HPKznpNCS55rS5kTh8TFjNMh59PCY6XSTclSgdKIc5uwd7NEJz8X9Ux4fHnM+u+QNo1hcXtC1jlGR8+DxGbvTAZ/73Gc4X93l8PBHfO2rt5ApkqRAG2hTREeFEH0SOYpeBiVFjyNJCWQKEHpJoNH9b9BkmjYmOiFJGmLwdA6094x0b5KvfEYmAplQCC2wSfUcdt8jmVoMwfbyoUIakoZ11bMGhdQIKu689y3ee/c7bA4Uv/Avv0wwku+98w7zR/fZ377GZFdQeIlJEWU0WjtsMlgxJHlYLO6zqlc03Yrjj7/HaiH42+8e8jM/9hkyI7FWIGMiiIbDowd8/8GHXK4c6zZgMsiGhqbyNGsYjhVX9wvuPlyyf03y6m3L8VnF+cKTUp9Ic+vEcllx/4niynbJzSsDCqWIwfe8aRXZ2t9EDaeIkKF8jdGSIC23J0Ou7I04XiZ+8x+/zRdevc3FsuPkySHL5ZqsLCiLHC8SSEUI0MdHFJK2Z//KHg0lQs8BDKJDRc+LV3apTgVvnzxlujWhzDZRmSYzBrm5AwJ29q9w6+YNPrn/EJ1NePjwAe+88xZ7+wdMhxtcvbbHul4y3Rizs7lPSond6Yhf/9VfY/vqC3zlCy/y8OEHKCSbm1NkMlzbu0VDy+7edYbTHbzOKUbbCF1ycXLKo48/4PhH3+Pjjz5hcXpINV+y8L5PbyeNzAxJaySGZUwok5FrQ0L0jYskkOL/p6/wT8+n5/9vzh948OdSQmiBif3jJpBoQmBY9BUDmcDJimAUwglEUoQUSDLiCRSZpmkiKSYql4gSdIhYZfGkZy+ifnsjCtPzWJTAVh0qs6yqBlVKytEI13ZIIfoPZiFovKMLiSwrCMnQtY7MWJqupUu9lcg7j84kKTm0sQyCpHFdX2tUprfPRY+cZpQjySt7L7NzY5dgB0itWLXnCKnJRyVCGIRSJAFJATJhBjkxJSIKfK+3xypkkmghSaIFFylsjs0M2lhU7DfCuU0gDZ6OIBRSlkgpaCP9RSd5UBqJpvUtVirapqUoMtJqDTGQQkJYhZQRpSDpnkfoERwdH7GltghSEeY1sUuUPvBicc4L2xm/+rEkGjg5u6DcGLG8nFOta/JSP4MoS7q2xvtAEmBFRhsCrupILpEpS0PHwBZYmTPJMi7XC44enVAI0XPrBLQxobRBaUMVA20ErRUiBDCy/zNFIWIDoSNJjZeCs4s1UgjqxmGMQiB7gYNKmKLA2oxpOeHxWc2PHh6xXjlcKXHOQSu4MjQ8XDhyQA0lZ6HDh4BvPWWZkWmLKQP1uuGN61fY39xhmE0YjYeILHH7yh63r13j/skxb//gRzw5WSBUxqxyFEbjgmd7e8yi6si1ZtmuULJEUiOVIkSHj30azIUORcaya2lci7IWKQykhCPhjew/3oRG6oCUAk3PsWvI0F2C+ilhdhcx2ML6jnV3D6EkV67sMyoKbDtn9tG7NPUb3O2uk613+MU3Eo+PnnIRJEYZHnzyIW11yPG9iKxrzMCSmoiWBp1rdFZQToeUYYtXv/R1/q//9d+CFFjXgbffvsfm1QlFSvjoCA10iwpTaoQquXs8o7aauhOcLxZIBy42lHnJ5miCjoLlaolGsk4AlsuqZv/qhMnGBloZhMjxBBYd5FLgqsRaeDppiLkg14IYFFq2FEOBDJK2A4RCIfsqHJ5rB6/hhGdvueb87hkhDXvhTooIKRBC9MNtkVBSIJXCS/P7EPgkBDJGhAIh1oAk+mcLCi0IyZGEwZieWVW1NXIwwAM3r28jQr/V1lkGOuOy6/Bdx45qEaKvmhiTIaVCtIkooPYwrzp0DIwLTRehaVuyTCIjJOefAfnBIVDGcDY/53vvVyxly/M3bnL1xTfY3p9jM0nVOcrJAS/e3iPPMu49/g1U6/jCSwXD0Zx1W2F1xqpRRAEhOCKWlfNkWrK3VVCMJLPzlqPzioHKsSRu3ZLMloHHlxfcvLXByWpB6yW66XpOy2SLN998jk4H2tCS1jOaek61gP/kv/i7/M7790lOImgRWhGcQOoCkcCrGiMlV6/d4t/86V9iurdFJKGUg2iwssNkBRvbGe18SbE85PZLexTriFeWducKk/0RV3a32CoHfPLRHU4enxFOnvL+RyOsLhDaoAeaYjiA1vIMTIQQfV1GC0g4tjY2cG6AKUv+V3/xX+Pk8RPquqL1kdGoIHjH0dMntK5he7zNso3cP51xfWvAYlFx4RImS8xXNYezJ3x09zG7W/tsb5bc2Nvn+evXcCFx7+7HmCh58ugT1kJTmBF5IZhmhumwZBE9zbrrDXlRkuh/FzF5tOzN0z3BNiHoa1qfnj8cJ0aIqpe0hBDxMSKzPpFnjcDHjuRAyP655T100WMVaB8wvdsFIlgEKUQckSAFUkmU75nI0kPS/P79KNFLhOhSX+31EU/Cao2UkpVOcFmhjCHGgBMdwqVngxhBriUWyQoDocYnRyY0IXiC6K3oqD5BI6VEtBEh+8EMQqCN5uDKJns7WzRt5P7lkuO3P6FbV/jYkhdF3yxQAougUAoXI03TYZQgaoVsI5WK5Fr08hpfkWeGtvW0c8cH79/FfygYZhlbWxtMplM2pptIq3GhJcSAR9PP9j2tD5RKY1XkzAsergecNopCeepVjRNwfXMHHztU2/LmCzd46fnn2Lt1C13PqFxDDIam6Xjy6D6bm9sslksEFtd68nHHxek5TQJiYO1bHp3OEHmBr+Z0KaBsyWrVUDeRawf7rNYVXYLRtCAhWPgG00Vc7CUEKXm8E6zaGq0kJrOEZY22OUOh8fWa5UVgc6OgLA07k5xSGYwQlPkmT5efEFzkzVuCPOt44eomeqBxy0DoWjanOVEElPK89tI+mILZfIZzmiuDrGd7A63oGFvDwOQ9T9SsSNmI1cojkqdGsDXJMDYjoDk7u2B7f4AXhirViEyzvzVkrAUR07dJUurxF6EmSUEXBFpKpFZUwffJqARJlDR1P7Cx1uJ8xqq6yuX8Z/n5n4e9Pfg3/g347Gc133lL83f+zsH/x9/Bg90tcqt55ZVd/vjPvITWksNDx1/+y9/k0X3JxrRgUOQE1wHgBbSh5yp3vsEY3ZtUncdajUyaaCWlEHglsdMx1kjGNjLMDXFsGBRTMmt578E5Qluu7g4QRnIt3ySaDpkkIRZ0xtCkjBgbuhDYHlnqZsV0exOlwCrJYDKmjonsmcndaMtkPKZqO6qWXrqjHEaDyTTzi3My4Xn+xX1CUyHLvP9z9J4CRSuecRJ96hmxv/eckgkle6liEhCIPX5JZviYsIOCetX2ojNl2NuZsDsekFmDHI95cnhIbhTXr2zTRYGVAhX6pa1MiSgSIiQsgmgETimsKPDBIWXEBIPVhk5n1G3FD3/wFllR8Ff+i/8MPTvmF7/+s7z54y8QQuLX/t4/4pPHJxT5uJeP5B6tE6Ot59nb3iKlNR+dRo67EU+Wkv/wV37Al69ZnssFYHDugsdHD1j7jEdPPbO1J0nDfO3ZHPRc9qAMDw7XjLcyglhy5+gJq+WCoZmyf7DL2aVndlExnU6omhUPjmsePL7gyu64b7uJPujQdZHjkyWEiraZE1KJTzU+JFy9wgwniGHODz5+Sq5ynrt1lRAEp5czTs4PccmwMZqQZZoQOnzqUTXSQdIRLxoKqfrmSRQoXbKxtUV7csKotITYiyYjAa1yUiZYNzVN69HlkC98+UsU+ZgvfvZ17t7/iLPTGQ/u3eNbb/2Ao4uOG1d3eO/DO5RGMhxmvPLyS6yqBaOtKV984ZcpjcaYEltOidKCSnRecfTkiCd3H9A0nzA7P+Gtb/8Ojx/ex6tElo8YD0vSYEiWAi4mMmFwqUWIDukcSUViJ9HPmjQuBEA8k0V9ej49n55/2vMHHvxFn3o5hxJYoViG3n5bCMO67WHQSoBJmi4GvO/wKSGFYFKWdK0DqYkx4GOElHp+BJE2BGSm0VFQ5DlBRISSFIOMdVjifu/Fk8C5DpkEIkDXdOSjgiQ8k0HOOB9y7/iol0XQs1OQkNIzy10S2HLY27eiwzuHtDn1ek1hDDdv7LF3bYvJ1QOK0RBVaiI5qU3ImPWDRVn1sGFV4nEQPZm2vRQjSWRomAxHuCTwOhEbj0j0FQab0LIgE5qoBVFkSBIIBzFiJNhCE5Oicw0iJgplEFLSJcFqtiTKyHh7C6UUi/kSpTVJJ1IA7z1SCmLoPzJ853ru03LOembIbEBXlwR/hWkW6aqEa2Bn0yJUxq3rzyMHUzSa5vIBopUQBVoWWGUREXLZsjW1eCyD3LIIHVaDziwQqYOnma97wLAHryIyRUJI6EyTFznFKKeeLxEukkmBsRkr15HnJQToOodPgroFVRi0V+gU+sRi6v/fBmk5u5w/M+hlqFyiR5Hh0NI5x71Zw9W8T/sFBzJ5PIJpYTCmZElAZQXDEjbHU25nGp0ULoPdaUFmBeOR5auf/SqXMfL2937Ad976Li5I7p7NWTiPTIkUIzcPxgjveTBbYrzg3lNH9Ccc3NykXjdsjUaE0G+vk7XM146Z91jRX5xkDD0LBYFPEavBEbBJYJNAKUvTrticKIalhNm7iLYi5Tki5RQq8urtKd+8N+eN567xL/zEq2yvIjvXDBO+zPJizU76JyyU5CKMUSJCvWB3tEkIHa++9iJKRlzXIqV9xheJhIsTfLnBsvb85m9/g+neVdZtILae9vCSG1c2KIY50mvaDqbTgjoFFr5lsK7oWmhWa4xLFMMc4R3V/BKzMWDllsRO0qXIQGhefvEGjxc1p0eHbI8GNG2iDonZoiK0HblK2CwxGG6wMxyyrJYs60g0Fa+8cIMygU2a1bqiDTWFHdC4liy3DI1gJCWjTNG0jmxkSbGDZHqIe4xIo/pkiPd4JTEpICJI1Q/DpBCkZOhFmArvA5LeCuylRouI1goZBLELlFKRDTI8BseQy+qSw+N7zC9W7G7tsbd5G+kdCMH5bMl81RCrJbWLrKqKp7M1bV3z2ZefhxC4fv06WSFxTY024LoWrS1JFfjYklTOWR25eOsDzk4cX/qJn2Rzdwvp1kgpiUkTpOPy7g84P5lxPb9gb1OyqAJVB4vDDp0EbdB0VaKzkUjJ7lXFZGpIXlJMAjfzCUEkxkbTxMTjpzO8gPl5x48ezZnYh/zE119DrmtcilzbPUArSZmXvcSAQO0CT46OUcbQCIHWCqssg8wTkoegCNYiQ2IgE0qCpH+ORgyISFZOeeVzX+ftb/4q3/iNf8i2HbBeXVIK0ELx0o99hRBqnjw+48HZMVcxdEKj1ivadUCGhC0lTkiEtqgIWoCPfaoK/cy92fYA/pAiyjlu7O6yWRYcnxwT2o5Oai5XS3YOrlAqxWJdU4rEaH+fd9/5iKEeMCdQyJzBWDBEMluteXRyytOjxCDPKAeanY0NDq7sMshydq5uUXVwfHTO6eycTGuqZctKCq7v75ALOF9WxNiS2ZygM9zK4WLqBVOilwmE8GnV9w/L0VHQhNQnFbRB+kBoPdpmdCEQuogJiWBFjxIQv8c/TYQQUEnQxUQSfcKoqzuUVsiYENETY+jRHinRdQ1CCNIzE7RICXyk8h1Wa2LnaVygw5EyiRECLyPSh14QE0KfqrCGznUIGoSQKJ0ILmG1oU0JIRzOJ5RMKJWIXSCpHsMCLbdvXWH/yh5nF0u+9+4n1HWLDhGTKWrRIPOMABSZZd6sMRaE71PbbeuxKgcXaVLCZgUySVaVwxpJ4yNept4iqhS+6VhUDW1Vc+/eA7Y2Ntnc2WJne5uisEQRSb7DqAjKIqxBxArVRegcQQU6nVEMhkxGE167UqCaY5ZPjpncOGC4vdu3NdrAynUMjCM3Jd57FvMKF0GpgLEWX3eE5pBVHdgoJMtKcrKMvDrJ+fGvfZXjRw+Z1S2//o3vMJrscHZ+3pt+paJrOhbzDhkl3jva5BiXGWYypmods+WctG5wQC7CswEUjA9yVpcL5mtJVImDPcv5xZqstIjYMiosTVjjm5aZzSkHHbmMdE5ysqgZDQeUsqN1LaqUhDaxWNUYYzk68wwHGQHJIMv48GjBTunZGQ95eqlYrhYIkaFlhzaKGCzrVY0oJB7N/EJQKsmVyYhCe8YWSJ6YfM86S4nOSUToMULaJJRWhCQRSdIqEJ3lycOvcHLyPFbVGNtjXXycAPDBB3c4Por8H/53hj/xCy9wcHXO5uZd1tU2pc2YLXYZDAu++d0P+bt/9h18VePcLk8e/6vs7HybX/6Tr7K1NaYoc4SYA7A1Uly/ukuZZVTtiqYTVNWSYjSGGNB2yPGyQgaN9bAzLHju6gaff3Gfj+/+iIvLfrlNEDx6dMTVq9sURYFLklZHrNHUnUNhkUhkSjjnGeU5lYvMVw3XDoZI0Vu3o/dYrTBGMx5k0LSkpsW7FWfnJ4zzkjoUtMlgTYnQAgcoOWTROTYLTSMS1muCluBbktIkIVDPFqAIgZbimYyuF0UF+kWnNAqVBDEESp36YajsW08i93RB8c6P3ud4tmRY5uzubKGjw1mLTP1zojeSJ5xMSK0wAaQwtBpMJ/v2VZAIGWlEw0hr3nvnNxHRMz99zMMHR/zRP9Jio8RqyWdfv8nR6SExgMktq/USU1eUyyd84fPPYxSIa5+hflrh1ANQOT+4c8rV1w2Pjuc8OrnH208esg4bLF1NTIJq6Xj5hYIoI8tVzca25nLlicngLiOrZk3ycPD8Btd2N7l+zfLB+4+ouyUxZbQSRNby8HzNdGuLvcwyThC6wA/vHNK1keVqQZAZKjmC6OvimakQ0nLrtc9w+uScj0+XnB2fcG1ng8/efpnzxRn3Hh8yWzk2Nq+ysbFBnktSXOGC7hnAUdAJh04Rm5VMNjZ45B0bRcnFyYydwWZ//y1HKGkJccVqOWNnY5toC5auxirNc7de5cZzgc989nVe+vgO3/3BHaY7+3z3e9+D2FIkxWSyx+TqPt7sMa8Cxd4OajRgPl/y7tu/yycffcSTx494/OQhXdugpcQRsbqk2N2hF6tIatkrykWMOMDjkSRC1yLQpNjjKUzqg0PpGbvYyE8bDZ+eT89/l/MHHvz5pqHTguACUmsiEmsU8+UKrTKkisSoCCiCTGRaElxvzRyZnJPLC7SyVO0KpQRaGXyKeJEwWvd8GmvwKZGcJ5MZ3XyNtZZ2vSZThuQCMSVcDBQ2JxMS1/XJBtG0rM+X2LJAB0dhLDFGhAQXI8ZIsmeE7dh5Kjw2Sdq65tbz13nltdsMr+wSjSR1noCgaz3OLzBaUlpDGxusdz0PQ7nenmQKUvLQJIRMWGlYh15E0gOmW2SK4CWZTJhS9RUxIrJzKJ0hrML5CqskLkakVthU0KaOJAUxBWLsORhJCjrhiZlic2ObC9/RLRMiyP7f1TliF6ku15Ra4VPAp5ZqvaJUQ7TIMMDnbu/y0tUB//5f+zZ6/wX8akWcDpF2imwTMSa6NhBci7WGKKBr1mTTEdZagosgIsknAorZbI5LHl3kaATaaia6395nJUQPg90xvvOYwqAqkHVv6JpXNSnTVFpRZgOSDIjUYUmIFGi0QCFo1qHnFQlPtdKENtK6mp2dHUokk9GYqlmT5Zb0cMH+G3vMVjUrbbj13D5GZ2R5gdSWW7cUPmWUybP2AquBGJiqyO2Xb/PyrVuEpPmbf+8f89ZbbzHIYVjkPF3MqbuWPIsUAdogCFVid3/MbaGpZg2nzZy8LBmNNM3lisl4m7qLrI9nDOyQWfRYBHme00aPIfX2wCCxCKSriDmkTuGiwnt44/oVXnv+Ko/uP6WZP8GO95EkhPfYZs20kByfP+HJ4QZfeWGLvdEe2fUf58XrX+PpW9/h6TfeZTn4Kl5GvFIIlWiaOUFKxtu7xNjbsyMGLTVVW9P5wOs/9hN87/t3mJ+eEWKGSJEgE7WHj59eouyAzXHJurkgZQNOL47Y2RozyXOalNi8vsHOoCAvNF3w5KrAi5bdtAsdeCWJseHGwYjf/Qf3yUcFWVYiZINOgTIfkFrJzrBkb2eMVhohA2erEe7xjLoJVOdLVNlXwKRw2CKRyYTuHE274oXnP8fRk3vsx4aHDyu8UeTWkES/mBBS9cNk51EashT6JC/xWYVC9kkaZUAmEh6TCUJwfTVBKmJwICW6tNRti9CCqEqkMGgc1XLJxcmKwXDI7Vdf5snsklIExqMRZ8enuCC5sjUhzi647DpkGziYjjh7+oSGxP2jE774+c+Smx6JIPWYdVshWVMaQXDPFhsi8cGd97n7yTv8/C//S1x78RVM6kBKhCrZevnneP7jY+5+8jdYVhlGOfY2R1xcXjBbeGYzwfZki7Be8vLekMFQ8/0PH6Jsjsk6kiiYrzymENx5fM66MlzZm9Iu15hCc+f+Y37sK29g1IBgJCkVyK4hdhXRjBhu7dCcnCJR+KqhLHJicoQk6KLva/nPBAFKCibTTaTNCYCSsodX96JNtrd3+fLP/CJ/71tv851vv8fbDw/56pdf57UXNxkMC9YXj7l9RfHC7Vc5Pjpn9YU3GKrI4x9+g8fvz9idDFgfz1ibkmQjOs972VJKrC7OyYuSUvRGbqUMQghIgSQk+bBEFv2HkEVio2E42UYVHtuu+RM/8xV2drf5B//kOxyYEV96bY/ZxZq6hUmuaEKgqgJnnePkeMFHTy/ZtJp8knF1Z8Lu9g6Tl67zpekrKB+4c+chD08ueXjvHjFFRuMNDq5s8tkXX+Lo8UPeWT5mYzxiUbeEQD+QTuF/kEvDp+ef/gytJTQOlMFLQUyRMkVKrWl1TvQBtCTP+qSd1YbowNcV1lqE6+h814smVOhTOfQcPSlBCIVQChXApYAgERBYY4gu4EO/qNJKkVRCmxynBMJ3SKvIlKIR/XvJS0GoPUJplE6k6BBKo/MB0gduWLg2LHncBT68qIlG0YWATgYtHRtXtrl57YC6qvnO9z6iCY6UAlpFcilY+ojWA4phgWtrdAIjDKELaAlSS7I8Iy9yTG7BaAqTIXRk7xkXEW2QMhKcwFqJc5pmuWKxXpEax2yxZrZccvf+I/Y2JuzdvMEk02j07w8z2mRoWHL3wV1OZzMKmTh89Akbu9d4d10yUYG3vveA4mrk+kFie2PKQDqmQ0OKCmsTikTdeZKUePrhrNYS30CzmNPUK2LrsBaOTmfMqzmfee11Rlcm/MNvfJMkIMtKah+oXSQulqyWDVlW4GMkNBXDoeHs9Jxl1ZHwiAA2y8kKwXSQ8+iwpg5z5isHbc3nNg64qDtGmcQpSVSeXCW8lRA1A22ZycTFecPjE4/OMjoEulSEzlB1Ae8TV/c3SUIwmzUsZg1VrUih5vr+hPVFRWxWXBmWLF3Dwkmub01xlePx4SW5KBhMYTEPbO7k7O1POf7kiHGZo6THS0mIAhX6gZIjI8auZ1omwAVCG/p7Z+gIbYbrBmidkMYjZUDrjhefH/Daq3B8LCkyx5e/fI2NTXj/vROKck3wm0wna2YLOHwC83aIMhuMh5LJqOD12/8vcmu5cbBHdC3BSzbKfqDwc3/0M7z2wiVEgcwzqrplsZqzs7XNaDTiyu03+bf+N/8uhbG8dHWTn/zqG0yHQ04eH1G3fWXRWMXjk0uMlEyHIzoSKfTsQbdOBAzO94utGFpMgM1xwY+eXIAtUAhiaDBGsL0xIoQWnzpGo22c+hgnBUJYvM9YtJ5rRiLp7zEyswTfcG2j4LRuWbcdA5vhcIjgKY0F2TcHROqXClFA1wW0lr0lFjBaIkJ6Jj+DKBTKZlgpSN5jVI4TiTYFQt2im4CLK+rWY7VGdAklAvbZYKpNCR0lSqYe9xRBS0ltOgoK2q6DFJFJUQnPWOXUneenv/TjvCV+F2EtRiVUmPHmC1e5e/QG9dkD5PqIjcGE2dFT/vJf+g8YjDb4l/7s11h0kjsPHvH0eIYqC3CO73+y5u7yW2zv13TtFtOJQKSSD++s0VKTtGBRNRwcjDjYm/L9dx1H9yt0qTmQEVLg7Tv3GAzG7Gxrnn9+kxi2eXx4xulsSYyGECPoks98/hX+yCsvE3xHMorz40corRgUU7rq4Yc4nAABAABJREFUGCkE2goeny0ZFiXXPv+nee/9u9x79IA773yH88uOX//d97l9MOGLr72A0PDu+0c8vHtKQrCzYxnme5hS0iSJcYIQHflEMcw1TddyUnV87comLlRkydD6hod3HzDd3sVkCqMNeRIEZdEEWjxSgTUFB7v73Pr5A5wUrD53i3bRUq0rjg4PmR/e4y/9O7+KFJaf/4U/TZZLfvXXfp3z1RprNJnKyfMMITPa5BEi4YVE/d7vSQhw/f9rSMgk8NFjDextblA3gXnnyGWE4Huea4KY+hbJp+fT8+n5pz9/4MGfQSNIeClpLci630IHF4hZonORUihi6OHFKfQ1FtcGHh+dkOe631ClfvomYx+lFykRg+95Vt4hJHTeIYwmKNnbgLMC6T1Cgkq25xcJhYiRIPr6hwhAZjFdi0sBp6GuKzJh8UoTkoOYkNqiJUy1YfvaJq++/grkOcsucP+Tp8yWK7rlkoHWRBkp84wmOD63tcWLU8G7RxUfXJ6hZMnuaMyr25tg5iy7kgWBJ7NLhsWUIBK5AJ1bllVNlnoxSjHsiCESgicJMNailKauWrSWVPUalTSd7w1hRiiEiEhjMCanbpZMhiO0TIw3DO0sAwxCdsjk6FJEKoM1gmgMLrYkJxBtSzHe4+7hKadnSz5/U/P8S/vsXn+BOycLaD2zj94j5RnedeyOSoTprXLr1jMtR6zrnKZLnF5e0IkNVDGGiwuMVRRDS1y1BNf/LkRU+NAQnMMZRQiOtFCgDWFWEZtIZmBdLYlCoLrYVwcKRZaVtJWjFo5hsvjUcyCtSkgUTcpwrYfY0q49AoEuhoTLM0Q+ICssr72+xWh/g0vXcf3aECl7O5/SWZ+e6AS+W4HVpBgRUXF9Z5s3X36B4XiDDx885lvfeYuPPvwEoww2t5zVDTFBmUmOT2uiyVBa8PhiSWcsmco5XZ4jjAUS9x8sefnaAfcOH3O1nPI/+cqbfPP+I9rVmoEvwLdkgxEiRM7blqQNSmqUB9csGBU513cm3Li6xdWtKV3sOH3wlLp7DVuUxGhJMgK9gXi9WNC4S1IFZrsnZarVCSdPPmR+6PhotGKdB4wAayzzyzl7OwM+uXefGCNKJAY2xxpJF1pG4ysMxht8+63fxagBtXO4FEFpTPB4CdEHzudLaAL6Ssl69oByc4AqBmwNBUYEaiTNqsEFwUmsyZVn7SJjKQnGYCL41pKVBdMiUZgMnWWo4JiUGdYGRgMDTUU+3OLew4dIpXn5YMqVndss2yXJS1pf0XQTSilBWogLdvb3saMpO7sHHF8sMKIhpkQIrk+QmZ6NEqJApkSuIiIGfNR4JFkIiEwSpe6rvyRSlL2YWWoQ/aDQC014VrDMraVrA16AFI7QtQyNZqQtezsj3vned7msO5pVy+d/7A02JhPqFPGZZVyWuNazOZ6iRKTpAiY26CBYXZ5x5+iSF164Qa4vGeZDgoPoXF/v1IkO1RtD3Zr/9q/9Nb7wlZ/is3/kCwyHeQ+VVoZXXn2Fev4Sb5+e4lJNdbRgZDULnxiPYOeg5KVsmzGGvXKD980Fi7rh5LxhMNKcnjtWtqNrCqSKPDy8QIaMyUCzOS3JpKR1a/JmAKllMJ6SjCS4NYicpusTljIXIHouYkqOXJse3q4UMsa+vuIcyXuSKIlJIQj9okdAEJIYE7/4J/8UZx98iB1v8I3vvs/4uTf4wmSL+vwTLs6PMIsZug185uXPs1rXHCoLeIpywHSasW4vaKuI2NxFG4/LDP/ot7/DT/3kVxnkFiI92zGCjxCiJ4XIelGT64wit6AiXehIrmOQD8m3BK+/tOalW78EqeDarmJVtdx9+JDDh+c8vWwoTceUAc2opa5b1lXg4nLN2eUCdeeIIrfsbU/Y2hhiBxlf/uKrLBYrDk8vWaxrHjw65PL4nGGe8/yVPb7w8g1++913mVeSi8UKKf/g7q5Pz/+wJ4aW3FqWbYfwES1hNMyIhSI2qq83NWu+9kfe4Dff/pDxxhZS9kKFIMGlSCYkInp87BnBXQi9KCsJkpBo0eNVQkgkwv+bvT8L2jS97/Ow616f5V2//euv1+mZ7tkwMwAGxMrNEEVQlkqRY4qylT0uV5KTlE8Su3TmVJycZHHZqbJjxZaV0lYiJZMiRVESuAIgiMEyAAbAYGZ6eu/+9uXdnu3ecvC0dZKDkCwzlUrNf6qr+mC6qpfve977+d+/33XRhYDIcwKRrmvItEEZg1CSDE0QAWUEoeswUZAVBSlGAp7M5j1DL8961xGSKnmGKueV9ZKxCFyEgJaJxvWXld47Lm2skwYFP3j3A6rlAh9haGxvzo6eNgEE8lIR8OSDDEFie2sTQ2I4KMjWhgy0xuSKeb1iaEuM6Z9rKSSE7mh8gtSiRYnrWopywHI5IsTAat6wWLWs5gvmy5rz8wuOLxZ8/PY2V3YnrOqOJDvKTCC0YmNtg9i1RF9TDEdoYTirVmxtS/b21rl7egEIZnXk6lRxbXeLZCxNPcOFBp0phkXO+fmiN+smSTmesD3MmB7OOF15QgrMkuCf/t5bXJ7e7S9PhaVxLaLR/bm39TShIYZE41qieGaVNxonBV4I8ILcGExh2FzLsbmi8w6cZCoUL75+jdY7zk4aYhYJVYdKhrO2w7U1e9s58/aMjl7mMp+fs7mz3qfYE7RCsGo6rLXUtWM8yoka6qVjOlYsVpJ23hAEkFmGuWY1S3SrJXYrpxOCIs9YtgFVa+ZVIF3MkMGCKMhln8hufJ9cReg+RZ8CiEiHwIReuuWNJMVI7DzB9eACgUOIDlRCmUjdCG7dgk9/+gYxwmrR8EdfeZ/f+ZfvItUaKWTce7QLwNs/+Pn/t+9LpTx/7S/+k96A23pcKP4VO8zmlnLai+SaGNmcjrlirlDmGTdeepX/6u/9BldGI157+Tq56VtKj58ccffxPequN6+vlTlHxwu2t9cZF4IQJAOZoWKLE4FCK6JUBKlofcD5SJkpmvmKjUGGUo6u85STSZ8UjJJm1fDB/TvEJPrELRFJAGFYVp5CAt5zejwjNg5rFBOhWC0l0QpMalAYKg9WBuSzS7aUEjH1zQWSIMSeCSp8QCVFVBIEJBRRaGaLmmFhaboZSmcUInLz6ib6UkQPB/ggWFQOHVq2Nsb4FFAykaEQSdJ1/pn5V/YmcpUTfepr4lEgXKJeNNTGYWUk05pPv/kyO5dHnJ7P2R5tkoJEuQWvvXwb5yPT7W0WD+4RzQg7HGBNycP3H3KyP0dHSeg6BDnrkwm3rjVUNIxHHd5JjvYd0zXNqEhoLbCmJDdwOJ9z9MxYO8oyjo4rorCsCo/KcnRW9oEKk1MOB9i7T7B2gHdLRqMJl7YnRKNpY4MKju2tTVJM5PmQc3fRv5OOJ+yt7XLy9B7DtU0+84UtPrb8OD+4tMM7P3qbpwennJ2c8u3vP2Y8HXNpd5M3X7/F/GzF4eKYR/tnoGpG5aBn18vA1uYY5fu0dwiSgSlofctq2aLLkrZt+dt/8+/yic98jnTLsLm9izW2ZwVHT1IGFbu+6h48xmRsDnYotzIu6gXOLZlOc3SuONuf8/63f5/TOpFlJbc295gtzynyjNmsovF9ip3YkGWa8ajgeNlgdC9hChFkUojoUFKxVZbQeqq2wcSAEH3YKESeISsC1pj/b3x0fzQfzf/fzR/7zaATz/r0UoAL/Q1RSLQiIVPPInMkAgmpNLKtkcqQRP9h5zqB0BYrNbLtaKMjWUVKYJKg0Dkipd7wm+d0SRBEH383RiKsQgQwDqKEzoBoIcUAzyyGVkmk1rjeFE9IkqrrMLlgfX3K1njApd2t/o+gekjo/sNDDudz1KBABEHbeY4e70Pb9jIRrXu23OCIN28PkScNdx4ekCXD+uaQrcU6qpCMbeL4YsHDe3OaypGUxTmHHRuiT2Qyw3UdRVHStS1126Gs7VNDEpzrIdgpBlLrsEWOjKCUJkWHE5Jr156jDQ2NE3z89Vvc2NugrAM/eHIfIQ25tBgcba5IWpCUwCaNyCTFUOF8x2RzzNc+3OeDh5Fvv3fKxdGczluU7zDO0wpBLiKuWmFyg84MKvU8kfFYU3UdwltCW5MbTUCzSAGn+lpkCE0vNAmJtloQhGS+ShQDy6jMqGvPou56G6UPhACdERQu9nDs6FC5hlwivCH4/uZXeomIkVr3dqrLGyMm5RZH50uWP3ofmysu794k05okDON1z9IlsmAotCFqiVGyZ0w2LQOjsZlEisgLN65yZWuL3UvXOTh6zNd++8vce/CE4+NjBmVOMRwxX52ziEuEkpTWU04GlEYzKBSLTrE8O0Otj7m8kZMaOO46ZrHjrDnD5orJxHK3ukBYwcsvvMjB6Ywr6+u89+QerYtkouxvP5sVl7c3WNva5vrOhN2tNYyxpJAYjCZ8w36XD58e8amXXyS5IShPqg1Odrh5y5MHRzwZRMpLO0yFJYue0kYW2nLSWtYLSSEEMotMbtxkMh3hVmdILZHC4pqKxgUQilfeeJ0PPnjAd7/7HWrvwNVE1b+kCJEjJEjxLHgvQ7+ocrBtM6yWCGp0NqT1EalyRkKiYp8mzbUnpoTUOTatCLpfYBpbIqzoJTVSUncd2lq6JlCqDE9FrgW1lzxtE+OpJ3hHmyS5Nn09qpVkeW9TFhHc8gnD6SaFgGKouJivKNaHPRjfR6J0CJWRRKQNoPvVEkLpvi4XJF4IVIwkerC9Ur3UiJTw0hGTJosCn3q5hhQNPSrIEkNLWQ752BvPc+/BEcvFBYu6o15G3nvnDi88d4Nv/uhdbt+8Tik75KhECQFNYDSw5Jg+jbo+4exiwf6ju2ysD1jlzyRH0VFmEiMlSkRECEg1IMnE2299haMnd/jCv/5X2NraRaQlw/XrXLr9Jo/dOywWd6iUpshyppOW4RismnNra5vdwZgfv3dKs/AcXrR0IUNJRylhY1SgUuTCt4RgKGQgxY6lH9LQYx68b/sLnq7CG4tRGb6JNMsGMChhgNQn7awkVwLtPG3ncCqRIRE+QJScHT5Fu8jmlef6l48UODp4hG8de0PL63slW7dvcXF2TnVWITNLPtrl+MkTWleTG4NKjqIQaBUJInK+WjGcbBBTx9nhPlubmzjX8MH7d5FC9ImiGJHa9C+dsWci+Rhou7avVrmOOgRU3aCzFhLkxnJ6/pRVcBibsb6xznt3P+Di4oSbV69x+9pznM7POD5f8ejJEWdnsFKSMhdUwdC2NW0d6ELiw8dHPD06w6jEcHDEsBigteHS+hrKrLFWZDS+YSezPPzwPkNRsL6l2cwlCyn/Oz0sfDR/+olICpvRuI5YB3RmmdUtnQsUStG2AnSGA9anU3a2pjSPz55xxRRCG2JbkVQkkxakoqVnnbVtC0n21vbYm7CDlhTe9K0Ho8gp8a5j5VpKpYl4bIrkyuKK3mberRryQYFF9xxf16GEwIUVIYJHca4z3rqYU9eOttBUyhO1wHgoygGzEFg9foLoPEZJhuOC9Y01VKbpupZBnjEscpJV6MyitSHPJARJGzpymxEyg0y9FGqjzJBCoTOFsQOMVmglGKTIqlqQak+5sYFQkA+HpK7BjR2LKFF1x6yuaWYV+4enJB+pQt8aMcLSppbWBVxKBGWQJuH1gKoNKCIjNWRrMKAyinI8pgs1VeMZbLxK9ILV7ICchFaS5CK+9SSjiLHFRQ1yQHIZXoIHZASpDHePj1jOlyQMrvGkWNHX3nqhm3YRKXohjLGa08WiZ/1JGA1HdNHRtQ2r1rA4OOVisWKTIbdv71DVc+49WRGk4eL4DHRf947krGZzcjPm6fkRh8cdVycZr9++wt3zJYW0xBCY1zUXS8XuGhyee0SK1NEzLjTrI42OiaUHoRUndUcdBBvjCVoURJP1SWgHxnjy3HI+65idO3LRUMiCUZnhiLhFIJcJhKDDI1IgxIiRFkkvWWvq/rJ/2USquqWNPXLDKInEkUTk0eOGv/E3YHP0mO1thR0UhDpHi1dYrQR1N/hX34M7Ow8oxDnGaJS11E3BgydXeXx0iRdamC07ksrQtl8oWFsQnyF3SqvR1pAPRqyvTzhfJX7rt36PN17YQUpJVXecnx7RrCJ11VBXGrTioo6cLmZ87Poeedbz4nysiCKhbIGIPWvYoQBL0h1Vijgf2NwoQRqUNdRdx+HBAT4a3HJBu1ihksD7RH8dKQhScHyxYpgp6gDH+0cIH1FWsjE0uNkCmUpaD4WyCDzIHl8Sn0k8RJR9BVsmpJYY+YwX+mwRGFNAKAgxIGRk/3Cf8XDAQOQYrZlubqJ8oo6BO3fu0FQ1WgS21j5JEgIvM6SMRBRJghb9uU8nAUKA8ASlMEqg8ZDlrFzTL41SIEjDw/sfcvJY8tnR5yl3JgwKwdrmGuiMRXPBxeEhjWi5/3CfulU8OniMKksy4YlB04mGYsOQDSqeHLYkrTg9kaBatrcm6FhzMoODwznXtksOZ0vaWc+dRCnW10Zc3sqZrxzLi3OubW8Qc83BxYyv/+gD1pTk53/qBYx3RKmwViFdRAjFqBjSNA0i0zRCUIwuk4/W+Po77/DDO9+ATvPy5/8yxiaGk5LP/uzP8NIbn+LRwx/xvXe+z8XFkrsf3uPHRxd8+90PmJQj9vbGfPL2Jio2zDrPyf45+cDQthUHp2fkpmB9XZK0RitYVnOGfszHPv5JlM55970PePzU81//7b/DL3zp57l2dZvtjcvPzr6JLrRkgyEOia+WzOsnDIZbnOwf84ffus9LrzzHeHuNK3s7vP/jBzw+PubDsxO0lNi1NabjnL1BydHROV0nqJqAa5agFL5tMKYgpoBVikjPu69i+yxo0F8UpNB/hvqYIAm01Ag+qvp+NB/Nn2b+2Iu/JOO/Msel0LM5gpIoL5CVY1iWiCRYdQ2d9wy1pGk9hIRUEe/AWEMSnij65Z2WPVfCZBZZaHwMSCUgRJTMCC7S1R1ZrvEp4jqHCQkhIsoIogwUok82tV3bPyCUpuk6irxE2pyUWqzVtE3DoW9579FDupXDmByhFF1do60kG+TYqKhDwOQZXddRdwFhDaSOe63kb31QUyWN9uBFYL+uyW3HzsaUkzZgUk6ReearWR+r94JYR1xKNLEixMCyrslNhhYK7zwhdFitcD7inUcJgVYSISJ1CogYMUSE0jx69JidvS2+89W3+PG33ibPBJfWNykL0VcFlCSKSC6gDImUASiybEik5uLsDNl2PFwZ6jXD7u6Il27kvIChdhVLGbDDSc8Vahpq7xiajGQ0i65GaMNwOCQjkoccmR+TlxapI00jEDJSCsN6IXDWcdzCXES0lexsDZgMBI6cR7MZTRuAQHSiN3hGqNuuZ520gtIOcHHBZDJCaMHO1hq76wNGkxIZA+VoQOMVT+aBbLkAG8n1gCArhJCkqMmVwj/7L/MRFfrFss0UXRPZGI/51BuvsL0xJRUDvvGDH/BHX/4dlLLM20A5mFCUiqezU1wXyTE4GXntk7c5/b0fMBllJOV4etSwtzdhNFSY9W2ePj0mBYPIIucnLbeurTN3nq8f7xOPHJ++fIu2W6E3tpjduYPOtnGxowyBn/qJj/HSi7fQydEJTxARFQJBQ4o1H/+Zz/DlX/8tZHUOruRi5VnNj/nn3/yQosh44fZLHArH3e/nLL/xbV58NXF2sGSQ7+GbIetTg7Yls8U5um05PV/hl/TQdLcihQZrcybrU4brl/nVv/0fM19ViMxSygHRefCelogUCtV4KtFy88oOVbVAaoG1GTYmtidTZl3FNLPgDd4LhgqCiqANFYrUNcSuQwJNNaezAmcNRmq6rkMiWK1qRNnX0TKjEQpKLbh3uiQypI2SmcvASHLhENrQdQ3WjFDJ4dsFo8svc+XGKZ34MU/PntDKDfJn8HtF6FOfGiIKL1xfxReyPwwnT4qOEATaGCyyf0Yp1UtZAsTYUSORbQMxkhUFWgraEAhRs6wWNE3D2eyU1oNUltw0nJ8uOV8/5Wc/8wbd2bI//JoCna0wowzvNKlLOFoWFzNee/VlTo/2mZ8fodqIc44szzFqRDSqr9YI35vRRc8ffXR0zG/+rf+CL/6VX+LSrY9h1je5EFcYbJyDv8fJIvLg3iE2z0jdgPUskRcbXP3Ml/jR0a/hu4ab14ecnFZktmDeBfZPllibo1Kg857WZ4zLkudHW0jXIoWiDjXDfEzEEZ3AJcegmJBngrqp0CmRWU1e5gyzgkxHAgFxPocQiFJQjhTaJuqzp/zTf/SrZNs3+Su/9D9kMMgY5iV2Z0ylOvZ213j/yQN++oU9di7vQvCMN6/w4uemVLML7r3/PjEf050dUlctIUGmBrSuQ8jAZG2TzkX+4Ct/yOn5kqtXryBcS0ASRc8I62IEFQlAQnA+u8AWBT4Elk1NdeiYDMc8fPADfu2f/gaf/vSnuLS9zcW8YXfvGl/+/W/y9vc/5Lkre7xwfYeXb1zjpeevM68W3H/4lDt3nnK+SIQ8JwwTKSZOF3OWznO+DBzMEqldYMqAkpHtyTpiY8TPvvka7z9+wFIr9k/n5AvFtb0Rj+8f/NmcGj6aP/HILMe3vcXeSY9M0HUeHaEm9tXNpPjq2x9icsvZe++hnEKQkMngWocwCqM0KgpC8hgr6KJDa4WPkIjIlKBLxGcJHh8CSglC9BgpMdKQhCSISGksrotUXSC6hqIoqdv6mchIojOF972ESMiA8QqBYL+KCG2pQkspSmTyjKZDYpZxenbK+rBkfXPE9eeeYzwuaP5blEJyWCkxSvdyMB97GZNMtIsKIzV5ZiDLScnTiQx8pBAClWckZREq4qIh4JkvYZTnBCRGWCIgtWWSl5gkCWWH7TTNyDCYZORty8HZjK3xmOXKIdFYpbl75wMkifWN6bPLwSUtmqyI6Kyl8QPibMX52QlVrqlfesykzLGDjNgGsrKga1q0AZvnSBkR1NT1BUPrsFGQWUX0kiZ4CpOjVUfVVgyKAuE9ddWSF/0lcQweHTVKJboU8G1Ee0ito64bEh2dlxy3AwKOXGmuXlpn1rS8+6OHIHqcydhqYtsxHuXkBuwoo6pWlGKEEmcUwynKHzOvWuLYUjUNI28oN2SPO4gtg4Fmea44XzYEIem85qKpUAhYRvSkRQ0jWxNLaDvuPDqDZ1X2bSFpY6IclhzNV1xe0zw4OCMvJkiZEzAYkXDIHpeDIHYdjVHMO49LseffxQJ0hlD9OSWlnvXwK//gp3n5pQllCWen1/jqVwP/9/+8o+s00+3Egw+PyTuP6yW9rA0cwleYTCG1pG37MENEclGXzC8EtpRktq8Qdi6ybDpi6hBSoGzG/v4Z7vpNfvj4fZ48PeTmtSl3j89wi5ofvv8Amw8IEVSmGBjLwdkFr790nc3CkIxEJRAqY1UFmlVDmVkKLcF3pNCfhQmKgc0YDUoyFUBAYRTVYkXkCHxDVSfatqXtWlrZYUpDV61AW0Z2DQDhBeO8IGrBaDTmqao5qRzj0YAUBKYnOSOU7CWC9PgAkSL9J5wm+R7HEkTsUTSmIIkACvRoQJlZjJQ0XYsIPZJHKQ2uJbiGuq6RaOarOaXVZCo9E/n18hZB/4yCgEg5SoBSAu8MRkkmBWirwD+7iMPQJei6mt/48u/yk598nd3NTYo867mLAaLW/NSrL7FYrKjiGbIR3NyINNFwMhc4bSlGKw4uznEuIqSjdQ3dIuN7xwc8f3nMoloho6XtIiJodneGkJak2CCNpW0i+08r4uUly+oCmxXYTLE6n7O7vUMpBaPdm7TLM7AanWlU1bJcrIha4+vI0fkxeWY5vPeIBw8eI6QFGt556/d5/TOfw6pehjJdm7J8oskOnvLylUvk8TrJblCvjrj78JAf3z/Fu0OurhXc3NphtLXBsj1HVB1yvaEJK87mjsPDIybjEiVBJEHX1rz00g2uX99jtL5BNa85eXqP86NHfPf7/4i/+Jd+gRduXMJaTdc2lIMJ5hl/so4dly+tIeRd/vlbbzMdjLg181zdGHP1xlVOjo+pFh1395+waiOZTGRrU7Z2Njk+OWdUFCzbllXd4l1L6yOtt1gZcV3dW3Wk7tt8BAT9Z5xUAonsZZzpI7nHR/PR/Gnmj734s7Fnr/jkehZTot+6DwuECyQpqOoGJSRa9ZUzO9QY55B5L/wQnQeXyAc5Zeo/aMabE6pVhUsJm+VMp8NnN3+GLnnOT077X5cCemhIz9iCWa45eHhEUrKvf6jeIle1KxCghaCLz4phEqq6xqe+PpsVBUlqooRMFajYm6067xFSQuxfzJ3ryKJAJ/Ak7jlLaTU+WEx0zHzGvWC4UQxRoeHGVPL+vCYdB7azAXO5QpmMtKp7w3ECrTWRyKpZkbRCConqIsr0ByeBQFmDjgHhA9ooCB5FX6XZf/QI7wL1qkVaSTXvePX2HkOpaJoGlOiTP1kPvNZJciovWM9zrm2scevyOl/+4R3ePVxwtHqEDI5RIdkqImvTLYrMQxMoc/1s0beNNI66WtJ2CV9Etta22Sh2WPvxIzarhqIs+fDdR7ResFZK/tJnX2aYCWqtWJ7OcF0kCMd4ss7ivEO+eYUUIkIkVrMKpSWpGHK6aHq4buuxVjFaH7I+HKG1QlmBiomzyqGSIiTPsLQE1yEJKG8RssIDWiRUgio2mNgfZqJMtCSEUXjXcn3nMj/9+c9hrObieMm3/+B3+Oq330YSyVRAGY0qDMdnC5aLwLlboFWibjO+9r3HuPNIPrIcriKZcKx8zfKJoywzBpMJSje4mDg/WnJ/f8bZyjHQiVvP75LaGiUvePTkLpNiixA7dtctn3j1ZXZ3LZVfIKsWZRIyDlmQqJYLXDghlyVy/Bz/t7/1XYSKzFc1XucsTMH2KGO+mNN6wYNQsTiPfPvOWxxenLBaCPa2TpisjfCrfTY3NxDWE51EZxLvHEI6tIAQW26//DKnZzO+9gffIBtOSXhsZhCto44BoxIEyGLOqlsyHYx48PQRtoSkDQMrmY4KbBVoWsFK9Qy8niMSCB1koWe6vfz8rZ73EiJSShCRKPNechJqBqXh+at7dO2SdhUROkdJjUHTrDpWbX+RUM88RQk2h7wQxLbj8YMHxOvXWRstmKyPGZ6UZCpRtQ3CSJCJTPYVUgWQBMis54J2jiQlSURMDKAtMTris8ovfVOV5AUBjROgbIlrGhanC1xd09YrslzjAmg55Oa1yzSNx+aRsbF0KdJ0ntPjp2TZBu1qwWaZMy3WcUIT80DmHa1XhNRx//0f05GTomXNFkyGU5JMDAdlL1RqG0IEoyNZFKySw5I4T5Ff+5W/z8uvvsnn/vxfwjmHr2qOj1csTjKEKNne3uXq7h5Ta+gGV/gX3/oB2XCbm7df4HT2lPWpZVYLRCYZyZwYwFeC0ECSLcXaBKkavK/xKUOlDNe1z9iHBUoE2tWCtl7iXIPKCqIMWCEohEZlklAtCES0zaBzpCDwKAqhuXHrBQ6ffEizPGM4voIZDJ4hHxRXdnbIhhFOD7j0iSFJCJLVWCaowZA3xjswmNAuZliTsWprztqWe/fusrU1Zbq2zWyx4MnhMTKb0iFQmUbonj2TQsIqRdd1uFXN7PSMk9NTlmdzXn7xJRrRMpqUTDbWee/Ou2xNL3F2uuL44EdUbc3Pfv5T3L59g2/+6Ifcees+X/nWA56/OuLjr93i2uUdPv3Ga7z43HXuPnzKwck5x2fnzFeeS3YN5xOzqqZxgdAFzpdLhMx58viCvfGEP/jmt/ngeM6lnXWG0ymb2xsM8sgb1+yfyaHho/mTj4h9wr3rHEJIQgwYBVoLXJQE15F0L/GSDlKQBO8QgwwfIsb2vF6SpiGASFg0IUViSv0lRPAIAVILROf7uhxglMEUGkIkJVDG4EOF94mmC2ht8GisNvgYSSKRGUvbNGhhSGiUkCirkTohRUbjW6QXRJXIdYYsMpJwfOqNG2xe3mGwNukt54uO4B3SZGihscWAQIKmoTAanxSeyGBjHR0cQkk6o7EhoKKgjf1zWmqLQCNl3/AAw9b2NtFVaAlRS0LjCc4ThSDI/tdIoch1QV5ElifnCAfzLpBpQ4oOGQKhaSizjGZRsypXZAOJCKHnHDowsws2rKRLHaFJzE9Oef7jr1CvLIugEVITUiAmifNdbykOLWVmmU4L/KMAMSC8RAtJmxymsOwOc1rX9ZK5FGiqruc7CokIvbk5pn6R4trVM44sSKEQOkHwSDzZwLJ/ccps4RF6gPCeYS4ZF4ZMl4iJJNeBvSsbaCuozzPswBJiQ2ktuRFIn1iGRG4k1WqJ0hnXhwOOFoGLi0QILYNizNGdfXam66xvrzFba7g+KfmZz7zJZG2T73zvRxycvsvj4zOSibjjJR6ByRT7s8jtDEaXLvH4YkGmsl6ijqJLQAioqGi9w4XIKmiSkBQCymGObAec2xxfP5NMqMR7P17yK7+8Yja7xr//7wt+8a8a7t1L/MovR6y4wDUrsmKdRQW3XvgyP/1my/7pkjwL5MWUJ/sb3Ht8nS9+5of85Bd3eO+DD7h24ypv/eEf8ud+5m221jucE30ryRqkNeTeYwdrvP3N36LMJbP5ClMYEIG2SVTdCqUtREeWDekWLbtXtli5wLxaIrzEhwYpMjKTgZR4+sVeYxXN0lMtVmRakNscIyXCgMw1QXrq1mGNJmhBMVTs2YzZWddz+pTFBY+TUMpebJcNLEVRYG3G9taA9x5dkPIBXWr6JkmKxAhS9jZ4JfrmjpD9378XERFT3yRQCWL9TBzUBzeklpAk1mb4zoEXdBpcEkzygkleYLM+QanyAY6IIfXV4hjwCVKSBO+RukVJTQh9Cjq6jiAlIoIwkRQSkj4hmYIiE4Hvff/7bE6HbO1ukhmoFye4esHO1HDt2i6Hj5b84k/v8eobt/nDt77PP/zGjGHekvySRYzUUvHkgaapM5xRbOdD5rOWpobplqZqIwHL44sF4xwuT3PWhpblyqFKzSp4fFORZQM2hiP++p//1/jWO9/s0VIypxyvg+h4vH/MP/z1f8FyUbFYLGnaxEXdgLJoZRDCE5Lg2rU9vjTdJAqFlAoRA1ImOpHYfG6Tyzsb3H37O1y5KbgYGcqPPce1+jnOlxfMj0/xecmTh3f58MkRn7A7XN0d0DSJ2EpevHmD+XzOqm0BT+xAKUNpSly15Bd+7mc4OTpibXubs+pX+eCDd7l5cw+XBFlekLzj5PiUaCwjPaAKhuc3xjxaBQ6fzpgv3+POEKbFiO2tCc9dvsp4c8iqc5wenXK0arn7wX0yaWl9JBnJ5toaLgRmswuyPBKjJgmPTL2kUiiNjAqXGmKSJAQpBSSpf1f4aD6aj+ZPPH/8xZ/RxGf8pRgD4hlbL0mBVgqpFfl0hKCv/ylpEcIjrUaXI0QOJRqpDSYT2GcWqel4ymK5Iqq+CpNZw2yxousC46JkmvWHN6MERdkflKxWDDPLD63FNx6JYlV3BOeRKmd7e8Ry0bJarhBaobVEOIUICjpPygQxejKhEcbSdA1a0RtynUeEPoknNL2lzGiEVf2iwbUonYi6rwH/0UHLhTknxoQhI7MlCEnje2ZfYSwuj5RJ0rYtzgW01eQ2f6Ylhy56MpVRlr1huDQFyUWMMMQmIKzuk5ZW412H8AmjLW1syYoBnr4yKbVCeE8AvJDIFElCkHlFEJaTukY8OuHq2gTZRnyKoBQzAqnWPD13vHpliJBLNjd2ePmTn6U00LQtrm3RuaYohlihaX3LZz/7CWa/+y1OFo7BQNPMO5ZNw9///bdpa0dUDRtrWwyKEu9bFosHVFXH5nTMjUubTDfGFOvr5IUm5gPMBsiQcK7j2RsMKUW6LhFdQoqEQBKIWKkRyaMV+GgJMiGtwnYRFTw++v6FRwmi6IHbtB0DoXnu6i4vvf5x5quGh+/e53vf/SPOz2pQlqHuDzmL6FleNIikCBKqOjEZarJc0VVLzCBy73zFvHG8eKnEmgZTFty4vMPvv/0Bg9Gkv5VVgpNFx3BUsjMQvHJ7i1df/Szr+5dZXsywL6+Rh4ZhJsh0Qb1oECIRRKBdObpU44NisVgQQ0fyFww21vBbI+o2IO2U3CS6psEFT9SS1NSMsgy9PcRjWN+e8uD+AwhzRmZAGmk219ZItEShEIOctmrwjSO4xHRtlxsvfJx//Gu/iQuBXKW+qm8MUnYMTYYMnkb1/CGLYTwew0PB9nTKZKSJ0fHg+IzcSExmGfoeYGy1ofaSYANZG2maiJEJUUiUB08PeA8pkWTCklgrc0bjAdFpYhZ4cnpKUBAJNJ0DKShszaVxxnKViAFIgug1s9WcrbaFak6W5aik2V4fcL5c4PUIiSIgsbKvEMQUSEkhpECmvtYrhEBK06dvYv81mhIEEXqUAYnFqqOrK5z3+K6ltIpRlrO9tkuIS5wTZMYiZSCWlhj7Q0tdLzmfN8wvKtpwxmLVctXDmvUMygFO5qTOkQLgKrpqwUW3YrYK/Oj+PiMr2VzbYFQumAxzjIGoBNJDJ9QzBAN4J4hG8853/hAfHJVbcfDgj+hin2rM9JBbL/4UZTZkwz/lDLCZxqoRtz75OXbPLmgWR3zju9+jrhYEpVhVCRkV2+Oc4TBxUle0oq8fLmdLynyAqyrMYILUGkQvPvEotLQoDEZKpBL4oQYjcVVvdBQIgpJoYzAozmdnnJ4csrN1naIYUdcdf/iVr/HGJz9FTB3TUnH1kz/Byfe+gx4WiARJhv4SJyaSchAbnK8InScKzdmiocxHuNZhtGFtbczG5gZP9pdoIdFJ47sOqWVf8RaBoC22HJANh1weDTnNT7j38BF7N64ynoypvWM8GTEsAu3ynMGwRBmDEpqf+/kvMdm7zi//w3+CtyUfPJ1x/+AbrI8KXrt9g72dIc/fvMLzz12nqVoOT2fsn5xwcHrGsJTUy4YuRMpBjnOBrnaMM8mTg3POZo55fQwcM9l/zOWNdT75sav/3Z4WPpo/9TgADblQCGDpHTEIcglEhVaJIB2ZUsgk6ELP7WvrFYNi0i/9hKDuPFH0vL+UEj3hNqF9L10LUqKMxnhHIQ0XsxkpRExuaXyDjoK27dCZwcWAshqjMhbBUdUNeV7QdC0+eGIE3/W/LyOgJJJaT5MEWaZ7dnDniCPH7uU9bl17DjUdEvQIksPVJ5TDMY4aKfJe6KBBeoctM0LqGW4mRpIP6OEQmQQEgVQdLnXkeU5mDMIaQlIIPEY/S0GGGkwOxH5hmRmMlUil8b43hA4yQzOvab3DRI8ILamDKBLgkVIiMo0tc2Z1jTw/YtFafFCcrcPYKF4YLvjEc0N++47mIpWsVivuPX3Ecj6jWXWUA4MRFqSm7jqMEhgVUd7iFitUm7DSUxHJhyMGNqNaVhycHLFsagoB+P7Sqw2BPCuQRtN0AR/g2aEaYTVaG6LzqNiQACcVogXReoLvQPbs2aBUj8opDKJzTEYTHp2cMDoRvP/0FG96LM5EBTIJq7pmPMpw2uGrhOs8yUb2yil2N+Lqgmvbu7x4/TbaFBgt2N0c88oLtzg4OOQ3fvsPWM1aji+WnFQdZSHJS9hdH/H0ZIXsEk/OVljRkBeGRCCSiChk6GUrqyQ4XtZkNici0Frjo8BZAVE/s3lKCBYE/Ef/0YcoPaZrr/CLvyi5dQvu3be89S3Lpz9+jpCGi9kYANnUpMN3aORVvLjES5cy6rM+CqhsxuL0R2wPa8L5HT7x/BQp5yAgCkMQILQgzI64cuU6+WSD773zY3Q+5s7DUw5PF+xuT8gH0NSe1UVHMc5o3YRHZwtqrWg6wfnFAhETQgSyLGOc5czLiMfRNYFhOUIFwXgjo8sUVef6r/MqcDp3mBQosthLUPISGQJSSUSbgYkoElbleC+JXd+26hrHdLTDrU99jtVX/xn54zM6FzBlRkw930/KHnukJc/Sf5KQwPhejkiiX/qJPjhB0gTfMw1J8dl7Ieik6JoWmZVYK3jx+W1CtAij6ZJm/+yUi4uWFy5PyRBoCcZYlMmgbXAhMqsdB+czQttyY3eTqu4QIlFkva3edx1aS0LSRJnhhWf/6JTf+pe/z6e/8AVuff4XeO6Nn0KkDiE9MRiKvKCdPcV3K9Zp+MQbmsZ3OO+IlSQqTV40HJwGXGkYlRk7Y8mlywUX546nhzOub+QURnPlsuD+kznndWRzOuXd++fcev46Vb0k8x2ZGfHi7Ru0QlHND+naFWVm+MrXvsM/+/r30HaM0aBEJLlEEonkG7xtkSFx2d/gxq3XyDIBySGUQAjJeLJNkoYkFM1qxaXCMxWGRV0zfOUTnMQV9+/tY6NgXVvuLxoeHj7m8VOLsZbBpqHVEV3mZAikgCQhGgs2R/gOQWQ6nSJi5K//4r/Bo3t3uTg9paobhDB433GxOifUK9xgnadHp+zPZry6PeLrJ3NkaRkNNMcXLQ/PHvLe/VMmg5y9zXX2Lu3xymTMk/0H2Cj54P4DzueJ826BLjUbo94OPWs7CqEIQdGkQHQtVfJkUqNEv4xWMiOl8FHg76P5aP6U88de/NUmYaRmrEuKsmBjfQNZGpZNi3H9oSVlGumfGX1x2HzEaDBFZIouClyzoFqek4xlY2cHZS3CRYZr2/joCaFGKsnQ9rbE3AgGcoI3GkUi14ZV1WLzgoTgBV3yve//gNA6OikIEvQgYzoZMh1OmT18hPOBmCIhJHyKJAMmz8ii6m97UyCTEtd4Yq4RSZAiRKlwIpI7h0ejvCdIgVEZrV/S0LJXDhlvT3jcRWIwNK7iweEZUQukEzihqBcLjMwAidYWqSI2t3RdA9H3ixASMgRiAiEVoekIEryW4D0hJrQyzxZfHmEVxNCrcn2fhkwxYMjw0eOSIgmNEx4ZAatwbU2jct47q/jiy3uczR1VCEgRKE1f780yuLExwAdNURZMpiOqZUUbI+PplGxQIL0guf4FuFYZT47nSCFIIiCUIIX+8DscDEANsHnJ5s5lcp3haSlHGduDMUhFQ0KgOOkW+LM+AZBEh0YjFQgZCC6Q2YygerbkQMCKQFCqX0r5QNvNybIxrR9AqLGGf8WajAKUlsyOj/jYCy/wiU++QaYVT44u+Bdf/l1aV3M+m1Eoxc5kgOtqVlUgOolSCplL2pOOjaEm1wXD8YDjmefxYUKawFAZDs9mXN2a0rmK9WFDmQ2ZzWuC93RJMcpztgrNJ169gY2Cujrmpedf5OjwPl/9+jcZbW4z1ImxmSOVRUhHjIJV5fBdxbCY9Ck355CZRWUjFBltWyNTYjDOkXWfwl0fTuhMQVu3eCLzZcPmNGdq59wY5GysTVjf3EVKzby5wARNlIqoOrQpaGLFjVu3ODhb8Ou/9o8phgXNqv+XaoTHh0RwHV3bJ0OsjAyKAecXF5zOT2liy+HynAzD0GrQsDUwaGURWpMPNNJLhqWh6iCFmvcfPuaNW8+zEC2XMxDa9oubzrE2HfWMz5Som47aOySSXGuGpQIpQUGmDOtlQVAVrlnRVBmKQBcDx+cX7Fy9gtSCo5M5m4MNHh4/Iss82mSkpAhEoo9IlVBSImIgiUTQqjdBKomVAuc9q2pFlpXEBGezC85nFUbB+tqYrUmOVWsEpYlJIKSk6yQxtZhCE7xitaw5m1eczRcsZwtcEMzbBqklJ49PoFoSJmMe6UO6LMfGQAh5byRPghgFWiuMgNmsYf/pe1zZ3mB9klE3SyY7u+R2zGioUCYghcRkhuAdrlD8+AffoVWB+VlfYzXDBVenz6OiYDU/pzQSlxyCDhfARYcqBogwoe4cvlMEAtNJzsZ6yaPHM/bPPK9f3ePy1g6ZzIjhAm0LfHJIZQjOYVTJ1s4ep6slKXpEJkhEQrukOu1QSSCDp5CSLgRkYTEiQAg0ySDyDMeS6DtEKjk+Oebw8RFX1jQ6weTyK1SP7iHKgiQTSkiEj0SVEDKjQaLQKDSh9Yxszq3nb1BV58QAWmmuXLrEeNDx8os30VmJjB0+RmKISCNwncOnhNQa33asb28Tk+Cdt96msIYGgejgjRc2KYdb6GyIHucMykuU5YSf/sxP8Pu//pucB8iLgtZ13DvvOPjmB1zbtNzc3ufqlT12r+1y6/mr3Li6w2JR0bjIwfEJJ4cHPNk/o4sZbrJFnVtqZSmzjISgFQ2nFy3z+VOSh1/6szs7fDR/ggmNp02+r7dLTU1ApQQOgndEWrTMAUHje1lPlyJXt3dZLSo63V9QxtR/XccETYqElNBGo4xFa/A+kkmNzCTLqiEJ0XNOO/dMjiAQMZEwRKUpMk0hLCvvMaJPMQ/KkkhESI13MMoUyvSpcBcSIURc69mYDLj1yvPsXt1GlWM6JRgUCucbpAerh6QEhQAhJV5nPf9U9lUtJRWWgJaK4fqE82ZB27YIBFlIRCUwtkBGSZCgsCgs6ZkwKTOKIBQxAV2DQaDoU0qL+RwfPOXuDvnWBumiIZae0Mx7iZhQGJPRNUu6ztNS0foOzufkLuNSmRjSX9TcmJb86L05WTlgQ0Ruv/QxRnvXWSwvePTDt4nB0PqIVgatFKFt2dnJ2ZyOOFps8dV3D8mMxiIJdcPT5ZzQOjKlicqCiGgRiSGxvjGmtAVFmbHcXyK7yCQvWLh+oZnZAUG0QKKrE8mK3o8R+xRMFyGkhkEccHRygQ8tRTnG2MB4XfHStW3eezqjbgI6JI47jzaGaVEyHBnGozFhXRDkgGkhUCajLCxawCq0bA3XuLQ5Ymtjg+AH/N43v8+DH71LGyJ3D2ecO4eVINuImeZsDTSH5wusgJNZb669fXuT2cmK65e2WVQr8BElNRdNR9KGpA0I04s8pCa6iA4OVItUDUSD7zRJRt566w3W1vpLtF//tZavf63lYy8G/s2/tk1RXmaxlPzlvwyP7nyOJ9+Y8anLX+D9+zPEyfdZLm8B8N77lxgXDVJqrt04wfMc/+nf/Az/q//J73H5UoOP0LkGJSPXXvoJ/v6v/iaLakk5XAMlaZ3nbF4zmhQU+ZAyj5TWUnWOaHoDbHKRQR6YakM+HpJCZJjniCxRrQS+UBiTuLQ1ZFl1PHx6StxwOOepfOB80dKuKkZWMJ3mTAdTpmXG49MZT44vWN8uub41ZXdtQta1VNHRxJqRyGm6irGoWcsMl3YGPDpZUdjeqptSj1aSQiJkf6ZO0YNQBEUvQJOyt4ZHRUAgREKafhGXoiFIg8L3nM1c07aezOr+nVDkuGR47/0fcXFxzmSwTtJXCGgMiePjGQ+eHFBoSescp+fnHF+0pOg5Pz0H4Ppzz2NUb/NWUtA63y/CZcInQaczOi/5nX/+B9y6fcCnfuZn2FhfQyTXP+e07wUXbeBy+ZhlA1Jo5rXigzsZ3l3h4tRxUbVsMUQYSyU63vleQpYwnZ6BPmdiFU/OWvaPIoNhxvlJw/ceHbJW5nzpFz6N9IloJOvDPYZaMx5NqDPJcFpw79EDVJRE76miw6oCKxyCGik1Smpi5xiU+tlbuQOhCckgU2Tjygt8Un6J//r/8Z/x7tMK/f377F2dMC1Lbj1/i0+OM5bXzniwXPDwyQEbm5uYekEeK2JMaBNZLTylNdg89iKXEEjpGcLG95itJPozqwqB3UuXODw6wCqIrmU2m3P71ktkWcnJ+RmvDUua2vONb73HeFiwmVkKo7m5O2DZDVm5htl8xeHFHPG+p8xzru1uMByXvPTqSxhbcHh8QtV2+GXL08cHdCpnb3tIaDzDUrI12SYvCj64+4CkBD4mQgz9Z5D/aPP30Xw0f5r5Yy/+ti5doV4seH53m43dDUIMpDzHSA2h6/v4+QCpZA+fToJ5veLR0wNWJytOzi5I3qNj4PqlIRvrY0w+IGC5qJfYBKQp0TdIZRARCA2t1lihECESEpTjEpdWzBaBP/jG22gp0SH0vX/fUbsW78esb054zV7h+OScZDKWq0OMSmj6CqxIYMsC7xzB9zdnvqkQyiCi6sUFrSeKgA8tWbSkLPYPSq3BJY7PFmQiIYSgDgkhNLKOiCCpc0ERJfloSHKOZb2iCQETQGSGKAU2KUbWEAIE33ObjAKfPGD7qkZuOLhY0MWITx2ZtIgYaJSiFAWeRGEtbXB4t0LJhJId0QdkdCBNv7iRPcejWS25fOXj3L1oqZYNiv5l9uT8lPqFHZ67/TFirMmLklXnOQ+OGEA5Q7dwpNiRZxlLJ2mcpBPQ1Q2ztsWYjOefu8okV2zv7LK2tcaVvSssfeTk7JxudY5KHXXX4oNAJPAhQteSG4XSEREE2po+ieY7jBC4EBCpB5V779HG4p2jMBqnYSgH+CRxoiXPBTJKlOzr0iEs2Rhs8cU//yUu721Rec/3fvgO3/7O25xfBEJqGZeWYT5ksVpxNluhdIZUkcII8tIwKyVvfvJF3nrnIU/PzhDRI4uEUZHcJKpK8vSs5eO3d6lXirLouLS9ThMC9cLz2pUtXrh9jc9/7vNk0yHf/e63efs3f4WX3vw4G5MBj+4+4YDEld0Rm5NdisKgsozpsCRJD3iSyDB2HeU9Z9WKsiw5XjlSiGSiQOeOtZElKyxGa9KsYjl/wrjYoRznbA0la0PBoCy5cvkSddUyHg1JSiB8R2SDgKeqO157/VN853vvcv3GDd6YTOm6DmszpNF0ne8r6MqQ5TltU3Npd5uUArevbbO9s02e5SghKIsMpSK51SwXHW30DKZjjg4P+dE730Frhy4s2hlaNEIZqi5hXYuVgrLQZEqgpEQp07NuhGc6GVPVHa6pWJQZ66Wh85I7Bwu0aMgzi5SaLIOu9vz4B+9w89oeksTOpW1Ozk7YmQ5YuEQmEnmEhkhUAoslxf5mOyTVP4eUIleG2fE+5GOCHnAwq1nNLyhNzt7uiM3JFDpPSH0tQ6RIjJIYPZ7EMjie7s85PlpSrSp88IigiSTmXUXoEjcGW/zS/+hn+Zmf/iyjjW3++a/+Kt//wbucdg1GG4Lw5B462ZGSYXNa4orIxz/7Bf7yL/0S27tbnNz7If/Nb/4Lvvn+PqNcYWJClxItS4pCMsgzorWQLOXkKrhz1scGOw409YrUthwZhywsmpzar/BNQ1QVwSuadkDoapRRdDHw/sMVF8crJtOMrGxZplMqv0Y5XKdxjtyURJmQtuxf/ruKEDwxSlJoSUJCVM9g/pJIwkWFs4Gsc4zyAVYrnjy4w+/9/h9xbft5Pv8lSfIdKjd84wdvs1w3DG3BydEBNIksH0FShJSQqYEAF4d3+PCDfdrTA6LwpJQYDzVd8JRrOzRdg+scXVNxaW+dwWBC3VQsqppqNuPK3hXqtu6lK13LajajHK0xHA0YDwdcv7LFO9/7IQjLYDRiMjC09CkJ7zzbhSZ0S1Lq+Ik3bvH+41POqoSQji4IIpKD1YrDOy1v33/K9tqA61d3ef7SHtONNYZScvnyNiq+zNPjQ44OL/jh/aeM1rY4PFtBt2SSazKTczFbUAv4YP/0z+TQ8NH8ySc5jzC9hRMFVilS9NSrCl3m+DZhlcTHgNUSErg2sJgtSDGgE4SuR1BYrWlSHwVTzxDnQgY6F1BBkKKg04kkdd9AiB6JwUVPpiSZUDShx5f4EDluLjBaE4PHKI1rWvKsIAiJlp7OOZrG45uOEDw7mxu89PrL7F7dJWUZx/UKfXRGZjQLPEVmiTKxZjOcjHTzljouMcWYMh9iioirE40PCBWQUnPuHZkyFKVh1dY47ymExlqDD5EiU3jvyWyGVIZoDcF3/Z9ZWVJMKC0RwWO0RIwli8UFOnlaAuvrQ867iupCklIHyuB8RPqE6jze9tiQLkQGg4KV0xyf13z2uQk/+7nn+Dtffp97jyuSr3l6+Jj1BK5dUWa2X7ypnpWmY6CRsGpAVy3zNhECqCBxIXG+OkMoi1U5QQWKQuJDR2YFvvXYPKeLkcxHZAJj4WJxThCRqCyCRFbmhOgRWYMSAi8iQSd845AeMJquqZAp0DYd25t7KKGpVy2rtqPQkcs7V3FqgLeSrb0Bw2yIUhqtM/SawgWwgBOC1vVMt9cv73Hr5ZdR+YC3vvV9fuu3/hE+edYGOU0INL4jE4FnKhOWs4bF+oiP3b7Bj3/8iON2wXg8ZLlqmeQF827B0GZcy+FB3bCwHV70VfBR9HQpkUQklxaSRAnHdO1drIqMcsO13XX+i//4LZqm4N/+n77Cv/6XMh7dveA7X5uR2inf+NYpBxcjvvjFK/yFv7LJH+Uf44NHhluXB9z7cMa4OMOYjr/3a1/k7/1a/336f/oP/zdM10csVpGz+YzRMKE0VE3F7t51xHDAN77+TQZ2iGsDPjqk0pzMV8ydRqkKETsub+8wPz1kMiwZj0aMcijyktLmpNTReI1RiSA9w8EArQS1C4wnI06fLhiWhtFwACjGoeHm7gZaOCZDSyETSZTU3QrHgOd3RgQhMRpECKTkycyAUneo4CknQ8Ybe+xcv81hU3FwdIz3sW/B4BFWg9B0ISFSorC93TfIPmCgnpl8JeIZcy32QpDYp5ANz/5/Adr0z6OYBFINUHgILbJrMdGyvbPG0ekFR6fnXLuyi4qBa9sbYBTtfMbyfMl6IRgPDfViySJ0VD/uuLJ3ieEwp7AaYzWh69AItEjPnoASMsOP3/sup8eP+Mm/8Fe5fv0yIjRIMWB45U0+/sl7HJ0+YbY0jEaR1dmY/+ff/Zv/H5/dP/mF/4T13X/MoYD5osN50C5RLz1r6wOC7xBBEgFiRP632KlqjshzpCmwJiMSybRAJEkiIlJCWotCo1PE5Ym8GEKCJHoCoxICkGjRsrZ9lb/41//nvP2D/x1f+/ETtk7nfPELn2YwmVAvHxLiOZdKw2B3yOd+4pPMj/a5+43fJlOaYjKkuTjHZxJlc/JSkmnD++9/yGC6xs2dLUSMSCH6RbVS+CZgswwv+vfmcV7gXW9mzm1BtlXwpT/3ecbDnOOLmldu7lBmmg8+fMT+wTHGFFAoViGwmlfMq4b37h0iTGQ0LBjmQ6bjgpeev0LXtGzvrHNRNZwcHXOyaLB5RmlzpsayvbnO1jjn/uEB57OE0H3b8KP5aD6aP/n8sRd/z116ntPBEZNLG8hh0dsFbc4wz4ihoek8q5Xj+OSE/cMTFvOappqTFYbNrR1evr7H7uaAwaRkOF4jJIhCEVCsW9Pb6EIk+oyO2AOSg6XtoEsORKJLgugbQCCMZXdnm9PjQ+rQMtAD6g6UHXL33hGH84qtrXV2L+2gtGRve4pb9paj49mCwgr+g7/xv+X/+H/5z0mrc4ZZRmocbbfCZAGZEpVLIB0ETzku6JKk6xI6NySZkAJ2xgOu7Q1w3QqiZrEz5M7hBfdPlzgX8fMFuP5FU8je0tvVfZ1TGEHddEQUUSRkEGRZRkgREHRNh0uBIjck31vhjICWiFb9B0JCUreOkTU9F8EFUicwwdD6ljxXKCEQCLpKYkuNDi1SC4xSFFmGbx2TsuBzn/oUZnOb82XLqCyR3qNdooktx7NDRuUEKTzaWpQQXN1c48bGiNRkrN2YMpyUrG+ssbY2pusi8+WSH9x5F9e2qCTxTYtLHmEllv4lXwqJlgIhoPUOERNttUJpg0RAApInxkAXQSZNHgJGi/5QEiKdBCkj49gvCSM9l2swKrh98xPceuE2Y13y44cP+fY3vsXJ0WPq2JBkZG3Y31JdzBcslx1J9umGwkikUrikUFbxje/c47SOSBMwtiTZSJZprm2VnC8q9k9qPnhyzpNMMhiuUy9qFi4QpObyK8/z3Gu3OF7MSef73HzuJcpswHvf/zpd5bh9fZ1sMGF9MkUrjVAJYwd43/YvDbJPjwXX4Z0nIVFWElF9vaMYEKuOzZ0pKXqS7JMAvlpxfVvhujnDouBLf/V/wMbuHspkzyx69BVx2ZEwgMRqQ9c5Xv/Yx3jt459EiF4yEGNv2Y0+kFS/qPChvzlUgn7hnOhvj5UiJdn/ECBFQAqHQyCkpV4t2d5Y4zvf/CqrpkVqhyAio8I+s6+q8AyInPpaWwyeyWiE0UMW3YykOjKb0Swb9CBn5Tu6VGASjPKM5WqOd5rpKKMYG5q2JTOJne1tHt+/w+7ahPP7TwmFoZEOkQw2gdQKKVP/dUckREXrK4bjHexoi8OTc1b1ktIYblxaR1mDCBFXg9LPbNatp/OeZRVYtS3HFzMa56jrCt+5/sU4RJCJ4BIb2ZB8rChHglxV5Faxvnedf+t/8e/x3L/8dR7d/yHVKpKXGqEtTdcSPZSZZjqQWDviW1/9Tb7w87+IKiawWrCrLctuRo2Fi4DUibN5IlMRbQfkmaGwksFwwmJlGVvDojlniKTUlhCBdsEqNFRVQ7daghJcvTbk4LhisYLUdszOV6SYkekMkQuUAt/V2HxCtVriCEzLKfrZQTe6SNfUIBUiaiDRqEiRFCYBumf/5ICxEj2wCCOQwVDYAcdnByxXCzIkofNYrfnK177OmzsZl32HJ5JUjkQS/ZJ2NUMNN2mqjlde/QQ/evcPODmoIEmScFSrBqGhzDOK6SbrB0/51jffZjS5jGgWHB8fosWAcPkyi7YhhYDODJNJwXx2gsQzXdsiX9vmM8MNPrjzIx49OGDrxWukpJGmRNKxnJ1SRTg7P+UTH/8YN1+s+OV/+hVmUdLEjtwoQJGUoAqwf7LibHGf+/cP2Fgb89ylPS5d2sUOLJPpmDIfcO/8nPHGlPRUs47lhd11ZssVpBZdd1TpI8bf/6+M1RqIJKPxIhGdg5iIGoJ89nnvOoRWBO+JqWfZzVYdWvVoAWEMMgScbwmmvzgzSZIJjUmSJnqEFEQRSVIiSSQp0SIjBEFmh3SiT+z5GDFa4buOwhiSdzgp8DHSOEfXOLwSlLllXObc2t6gLDK2drbYu7zH3aMD3n+wT7PswexHj58guo48N0Sl8HXDf/+5PT69Efkv71zwvbMZpdD85N4Wb26OSQN4Z77ig5OKk/MKUw6JncOOLMFHcpsRvaMoS1KMzGZzTJ4jpKDzgRj6pVBygRASRoGKiqKwLJuKGzdvIxRYO2a0VrA+KqifJhovMKZAJ4ESmm5oiUGTpMQkAQRG0wyU5WjheHQ64/GTB2gdOTqboYVBz2Z0uqVrO0qZ9xB+mzOrGnY3d5hVSzrnmS9b1tc2+1ZHjASrkWFA6gLO10QXaasF3kUqIdFGIIuMECXnVUXE0XrHsonY3CDrjkSHyzOkkITY/xvLlIhOkEuDLxVdJ3F1ZC3XtHXLyfk5a5M18sIyCxs8/9o6SSeOOk9erDPJQv+1ZLP+7zV4ZEygEwWK7emYV1+8zdb2Fg8e7vO7f/BrPN5/jFKGcTHmwl9wXresjTWzylM7wXSk8Erx7gfHrG1U1G3LJVPQNY5ZlOw9v8ajJwdc3d7hjVeeY3XvAcGAc4HWR166eonvPNzHoxA6oKXEkNiaCl5+botyWCBi4r0PBH/r73+SqI75D/8POT/5r0155+0ZD979kIfvVxw3Wzx6dIXPfhbQGdRL6mZF2zhm3Zy/9kv/e2xSaCPQdsjVa3t4t8//+n/5j5iOenmW93018sYLL/HNt77Dg8ePkWhc7HBRgRZo2fN/rc6o5hXDW2PuPnjK2lpJFIpikEAOOGwdNkJMAdfGnrHXdRR5RmH7d4MkNWvDcS9ACIFBLMk0FIVhXPZ88eHGGg/uL/qzYJGztzYg4ZivPK0TVIuEEgNaN2cyXic0DcPpgJGC0TCjqR35uEdQBO+JUpKEQtHLq2TqOaMJgYkSpxRRSKCXeUkl0dogY0SIns2WC40nITT4rsU3DoUiuMCl7R3Wp4GzoxNOzk+5WHbEtubqlV0ePj1i6/Ie25Mhr7w2REiLr9r+nS92GGnpROS779zlE6/dINAwKi7TNg0h1CQZSCqhg6DIJiwWjt/6h3+HT//Uz/Dym29io0eqhun2Nfbn/zO+//4pqMDZ8QSAF25+hen6CUZb1uyI1DhOq5rTVU3nBfOlYlwZ1qcCbzVz7Tm8cGzkGUrURKORStJWNQNlECIiTIG0Er9q2J8vyPMClCUIKMwARCA3BtX5/vmvBJlLdHUPrO6ajswYknCAAmE4OvoQlkte2fQ0zRYi13z73Uf89zZ3aVbHnDx+l8n2OqWEiRGYrSmPtKANDVYNmG6ssX/0hLhasr4+IZH48N5DXv7EtOcqCwXBYZQmuNAnvNuO6nyOz3ISEd+1vZhFaaKUeBnZ3Z3w+S98hnY5Z7E45zNfeBU389x58ISHjw9Z+YgrLV3nuZg1zH3NfLVkvmx4cADv3nnE1nTA2nTAZDKhyK9wFWibivnFjDsXF5RWc/3qNtvTEU8vLnj/w0co+9H55qP5aP4088de/Olpye7WFcaTIVpYrDA01Yr3Hz6mCTVSWqp5S7Na9ZWFMuPSCy+zvbtDOZj2NVZ6a2tMeW/JjB6fOgy6X/SYiEgSE/oIujSJshD9YbVLhOBo20TqcoTu+NQbr3NeVTx9us/89ALvPF62DMZDMpvTtZ5cSKwRZFZgRznb5WXMuCWuzjh8+oBr13co7Q7Bhx7UH/slRO0i0QN4guv62zmh6XxfZT0/PaGe10TnKXSCRiNVotzIWYk1DupEd75EK0GVQg8ljX3sXypD9AEREy61KFNgs4wrextIY5FCY+ilRa1MRBn7KlpUGBVoQktMmkyrHnSqEy44lCrpksMHR2Y0qRjQ1g1GJJSOJAmug+g9QlmKUiJFvz5yVceqrjhfBp6ezBjsdEivaKqETxJjFavVEptJDo5W3H/whLPZgitbBbEF6VpcveToqeNo/xApdG//EhIhAkFAsgaDRiePFwKVJIRASPT1St9XlxAJFSNCZ/iYiKHtk50olFYE53GpwyqF1AV9PLO/MU9J0eqEbGp2NgcUvub0yVPePj3mh9/5Dou6pW0aMmPYHU9xoePkYkXVJiKSYZljMoVWkFygDRGhLCfzY9KwIIRIrgWbI8nYGtoARWbIXcXFSYO9ZEnJs2odrYu4qLh79wknZ0uaLqHyljX9NqPBGInh0qU1TJYzzEZIEWndEoJlsTok0/3CT8qeUaiVoI6Rumkp8gllJkndCpvlKF3gGoU1ljZ5iiyDlFBWsJZHXv7iL3Dt9sd6e1vqK1Eh9JwWFXO8CCB6yYXOIgJF3TlSSqQUiP7Zz3uAHlIofIgopRFGIVNCawNCIo0g8YxfQl9fl6lP7Uql8Jnh+VdeQZYZ3/nK7zI/OQVhIEVsiuho6ISnDAKTFXgZmc9nlKOSquqoVhWruiOzCmtzjPTkFlZ1/xIYnKOTA47Oz1jbnJJWGQdPj7l6fYPR2HBla0ptJYMnkqbp0AONDD1eIMj4LPEn++9VqSBGDp885fHREcNixKXtdayRKAX4RAodUWsulhUXpwucc3Sh43ze0cVESIG67pBJoHxEm8AwE5S5YDq9xNpgwO7WiI2dKVe2d5juvgChwyjJ53/2p+gWr9N1DiMd3liU1IgY+uVk07FygVV9Tnv6gL0XXuff/B//uzx8721OlysWyw63qFisFszamuOzOS4smc00p7GlWK0xLsD5GqM95aVLiPqUCkmLoPWJxfmc2XzGzRu7jFXJd59c0Mac3Dr2NgZkJnHzyoRYtVzZ2aWuK7qVR5uyZ9Qg8cGjhCI3Jb5x+BhQUqNkRMjeXI3M+kqwkSihiElSLzp87Cv/VRsZlgVlkbNyFZ3z+GeYAxkSoWkJviNqQxAJJRJZWZCURGWGYjxka3uPx/yQZQsy0xgjEELQdR5rEm+++Qb7B8e89db3uHJpyGJV8fzemPMn79JSk+wu48kWeTYhlhVWS5q2og2O89NzQpJ0TUtWGmJKtKklVJIYGqquQUQBMmc4yXnu5h73v/ZjxuMp0CGwpCTwqUUqhc1KZo3Dn89YLc55fPyI8WDCxuY2p03LalUzzC8oRKAcjPlzn3qTyld8+OF9Hjza58Pj+Z/BkeGj+dPMMrn+OipGhIt9JdQ7vA9YKbGmf4mpXEeRG0wbcK6H2RMUxuQE7aF2dMkjhIIU0dpgBwUpBYTMCBFC0jgfMEKjrCR0DuV7TEiyPTs1S/S2ctHLQUSm6eq2L+Cpfkk5Hg/Y3lgnzyDExOnFivuH58x+55vEECg3hwzzAZ2PZCLhU8C1EHNJF+Grjw7RvqDzkTwEhEhcs4Ed2zIYjngyOydX4Oumx1o0nrzS+Bj7xK7zaKV6eZtUeLEidBXaWDoXerGA9xilEEWGbz1qBj5GVs0HDEclDx8+4pWXbqL31hhkGacqkXBkKifhUQKMhJgSWTEgMxK/WrEIS6rouXfkeXKcUMrz6uUtlu0Knzp8nFDmGW3d4Lqea2rKgjoGskHOQFpi23KwWiKMQehnfELhSHRoKZG5pFt4ooW2jmysj5lMCi5OK+b1iuj651oK/SWbcRHyjraDvDBA1yfSo2c8HFKajHyQMxxYLl9aw5iSH9w/Rz0+RQ8y1ooxXQoIpVBKoWXoU1xaYURvlF24DhsUhVbsbGzw2os32dy+xMms4p/8k9/g0dOn1E5gZc54nHPhGmLj0UpSKrj93BYfPjnm+d0NPjyasZnl7G3kqN2Sk4MZF8uOULc8eHzA3u4EX0p+5fvf4tbec+yNdjDWsmjm3Dt8TNRDQLBpJM9dv0YmXmBjvaUcRl68tcZrb+7x6H7F6594l7/8b1wH4MGHC6pVh2s9v/jvfIG6yfm5n4Ov/O4BX/5nHzIcbyGFJSsyZgdbfPCVn+Hf+3d+na3L+z33TCdSoxlkjnqV8K5/t9nc3ULnE/7xP/6/ko8GVLMKmSRaBnTq2WsxeJb1kmJgUamDrmNtsMYoUxQqELWgyAtU7M3ErUikGAmpPyfGdoYuRvjzJa4L1DGiBLQxIDwYp1hUNROjOD47epbQgqcXjlFeM+s6kswodKRuG7I8Q8sCrQTBnTKY7DAcXmJn0/H9D48ZjLbRSGLoU5pS9hdPXUx9kk70vMj+zBfoksMo9WxBFBEEUkp9GlVIQgjgOkRy5ErilMSHgCeRDS3douZiPiNGhUvwwQdPkORsbkyYP90n5dCJHG0cNklIGh8CgTk7u1f4+KvXONt/hLA5J/oh3jdMJ+M+KWwNREeSAicFMsJXf++fc7j/hM9/8S8wWs9Qo5eZh8dsX0qE7g7LqgBgc/MRm2uHTI3hxedfZVl5vvn2HWQROD0fcHbyGlvTr1DlRxgl0cGhLLRtw1BBaQqqbkkXAjp2ZFLTVQukt9hsSK5LltUCjaaQoK1gOJpiRUSLRDVb0MQelZRnEKPjg+/+LtVFZO/VN7hx/RquXlHXK27cepE/95nX+N3v3OXVjz1PdwKIxNrWNWLwzM6Oaeoll/KMsDylaRpCkhAtWVGibUZKgrqu+O3f+X1OTxe8KQWxq/FqBBI63wtUvAIXPdPphDZGFnWFrSu0c5TFiEf7Bzzev8/G2hpnyyXra9v809/6MsPJGi9c3uWlF3f5+Ou3ODmd8WT/iKdHpz2fvzN0PtA2nphg3tQ8vlhy9/CcTByS5walYX06YW97m9tXt9EhcH//KQ+fzhgOcj71wjU+PP/ofPPRfDR/mvnjV33LgsrVPH5ywtlFxenxCe3ijCIJ9p7b5cZLt9F7htiuenOctLQ+cTqrOZmtUEZitcIqg7A1ViqUznqJQ3I9qL+VVNWSwXCItTk+dMjUEUNfo1DCUKgxMlPgPcJ0iLIkz68Trt2grVasqgu07h/GeV4Sga7rCF3LWXvO6cmKpu5ZMv/g7/4y29c3aOspSSjAE71AREtI9LwvrRgMckLsD0w2CdpzT3AOoWDR1FxcKKoVqDJhQsQ3DYbEPDTkGKRQNJVjUGToBJ3r6LwnzzNCypiUGS/cvkmVEt4HtNJoDTJKdJLI6AhW4lwkWcuAMa7zZNbQuZoUO5L0eBxjm5iVvUFwojTLaOlCJKbA1nQAaUjbNvhugXcK2hblHSMSytesjyy53mV9YFl0K+6/9y5nh0/xTUe9rBEJumZBllmWnWfpEi4KrIiUZU5mLIJAiAYfFI1vGdg+XShMwWK5IqQOYzM8/aFHS9mnEo2BfkVKDAHf9YY3REBZRaYMInlEqRGiRMZEGxuU7w3RwhgUia1S87FbN7l54yr1YMov/4Nf5f2HjxiVQ4gNO2sD8mzExWzJsnG42C9tR4XElDnReYQLuBSx1jAsLOPRgKM6Ui86LvwJRZaxdW1A03pyLbnx4ibHZyu2JiNW8w4XWjppaVZzTs7OmQePtCOevv+Ym1e3GBzd48buFsIasmLAvHUI3yJjTfIWR2DmHFpnrK+t4Z3Dtx4XJFJKJsMxkwEs3IzhcIQ9rbi6t4s1OT5UbExHHBc5H7u6xU/89J9jsHmtr2zIZ3H+SL9ZlpCSRYtEjILkWpSRRAeFEaAEMWm0KnGdQxtNEpHgA8H1i0Mpwbc1IQSMzUk4lOoTk89WfwjdS4FAMDIDbhW3yYRibTjm29/+GjGzSG3plMYmh5WWIJ+lCltHozV5WdAsazItuPAtSgRS6Njducz9h4fkIrCUiXmQVOdnvPHJF8mMpFmd896d91i129y89SLlqDfhbm6u8eh4STFQKA1RBAQelyJKgtYZQiS074H8N69eQyrwsSVFSUg9BLvrIk+e3GXV9iDmploghEJqQVo5gu/YGGRsrg154cZlruxd5blrN1gbGcq19WccK0HXBWxpiQTO7rzH7quvQ1FSDjaJF4ek1RItNUYYRBZxIaGMJo+abFggg2Jx8CF7119iNBkyOzkhqkQIgthWaAXnZ+c8uv8+B0cLHhxfcLZYcTivOZUZw7UBg8k6l62lSgoRJfXqjEVTcXzR8Wq+ycnsIQsfuDLVXL40QqrezOdizWQwYLG4ICaDtgJiQ5lNyMoNUmxZutWzRZ4gxg6rBFYphMh6y5/2DE3Pd4wxsDmxPL+ToUgsq76+WiSFwKCqGT//sz9HExKLvRJ9cIfRzhbVXTBKIkTsXxxci5s/JjlJMiWpDT37sa144cpNNjbWqX2k7eakUFHXir/wl36Bg4MFWkX+z//Jf8ndtTt84XO3kFGytrFPGK3R+pouGUIX8NU5W5vbOBc5OpqxMV3j/OyCshzRtDUmSJJK+HYF0hBjIFaOn37tdYZmzG9+9S3GoyFGG5pkSAG0VUBHomXZSY5OWuJhxeZWx9rMsRIJYS1nswt0aWld4B9++S12dkZ8/jOv8tKLL/DhvUd/BkeGj+ZPMzaBEpImOFIIdCJRZBblxTOUSaLtOiQJL3rRkBQgTS+iiKk/cygjMUGhpELaDC3Es0q5YDQeQYTxaMrT/X1wnnZVE0n9Mi/1NdblxQIdBd5HuhjQUlN3LcREZgscEGOLcx1P9vepQkN0YIUlak1KHhMC9bymOVnhEegyJ0iDbx3GJrRvOJAZv3HYC7J8DUkkvr9wfP75gmGuGWdDSlPTkjBJEVSf6hcu0YYGJP3llVY0XQ3WgJRYoehkQniBUgajoIuOkPrkWmktrqloZaSqKn7n0T7GStbLkpee3yWT0LgOYSWFELQChA8ECcvgGJJzfS3jYlHx8MxxZ14xzAxZM6ewjipGlO7bH3meMa9r1uwUqRyrqqLxHXvb22ztXKEpOlDvsLMxYHbSULc1w6zg59+4ybXNjLmHo9MLVvMWO1BMJ2sszju8DSwXDV3TsFr2ZuNF17OqV0FhheSFK2tsTCcMipzxtKA0um88ePpUvrD4roOUME6SREunIpkYECJEmfChN2h23mNLi8oE3aLlE5/4JLeev8Igm/DBvbv8s9/9bWaHJ2iV9wuKUcFqVbF/fIHKEqtVQG5OcSvPWixQRrO6cBQTy/FphTaJYmPCOkukhvrc0Y4S7+yfI01kvagoBhn3jx4yryK+NUiT2B4V/NznXkFlm9y5rxApkKJisfRs7Qx46dUtfl4KDp52/Ff/2Yf8zf/0h1S1w6XEvZNvkZnnePPNy/zsz+7we1+f8nt/tI/rlizOFMdLuPtwj/sHFUmvGIwFvgpIp4mhI8YGSaTpZnz6Cz/J29/7IffvHyDzksEIooMqBZz3IBO2gTY2bF27zNHpCSmPRKEZSsWNS1scX5zSOqjoQwVWQYgOoqLpWraHQ3IhcV2Dah0pgtA929snTxsclzbXkLFFJktnIxMROX68wHWGxufEYFhFj8wd5TCHmOjqFRcncwbXd7h88wVW9QlSRlaJnrUrEkb2adeeI96zsWNw2Gd1axV9f9EoBchewiYBJQQxKJwPNFKSW41IhmXnqecrFss5ShvmiyWZHTEejZCZ5XJqUcmQtKfMPFvXrtLVc8qiJM8EXhhC9JjO0cVAXV0QUkE22kLLlkmW0SVLURa4EGjowxVWSFTy+BTRJuO9H32f5cWMT/zUlxhtvEAXDFkmmS/nuK4XvxRFx9p6wdDmVLakdYHhWKBCRVWt88Gdn+bK1f+GSTrCqIRUitWygqh5/sqUndwiQ29r76LDat03ZVIg+TlCFFSrMxL9s8xqxUTmaAMuNUgpsDojNE0vNlMwMoq7B3f48P53ufzv/geYPOPqteeIIVHkYzYGGfHwEZ947hNAQmY5/y/2/uxX1yy/78M+a3yGd9jzPnufuU6dmqeeimSTag7NyRqbJkXJshIhgeFcxLmJkTiI4ZsEiP8CAzYCGUES25IsRRFlmaIoUiS7yZ7JLnZ1zcOpM++zx3e/wzOtKRdrN3PLyIom1AIKKBwcoFB7v++z1vNb3+/nc+mpF9i4/hTLgzPUaBeOj0lJ4KIntivuP7yLkIKdnX2+9Z1v8PH9J9iqRsj8vEgX710GTYgDw6pleb7g4f0HlLbi8tXLnJ+fM5lssLlh+MEbb9B7hUyG06MF7sbASy+9xH/7j36dtz7cocTwI689xdO3r/KFL7xM33Xcv/eYdz+6z/F8wVInYlSMRyWzVcdCDrRdwq06Wt8zmznOj+fsVgXvP3zM+s46azu7jEZTyjpSHH46+Pt0fbr+edafevD3g3feYTab0TjPyBZcWh9z9bnX2F2fUE4qBhQBi6jGRB/wsWcUE1VV4nFE7wBNmwSxdQz9DKMtUlmsNhglWXUtq1WDMoJAICaNCpoo8+1TTJCSIQhHUICzFELBKHJ4+IQ2DhijKMYVRpW0ARaDIwyJoY3MWonvO5L3DD5yEgZO33nA9nbC1gbnewySqBQ2gbMge0nTe6JSFErQDx2PHz9GxogLSxpfMKkKxkUiqYhOCjYSj1aCxapEoxgah04FzRAwGow1FCnbY4cUWZ9a0GBkxfZUEICzZcswrCAphIskstHW9RFJljr0fSKlyOaaxWhJ7zRCaaxNzOOcEGOWJBhJ6iLPPHOTejxiezLws9efpxgXyOS4tH+Foq6Z1CVv/OAtFouWzcpwdHLMwZNHqODoIxcetsRQaJYxYI1h3RpEkvR4UvK0fYfRgt65DOQ2mVVR2JLz5RJjTB7teTBSo5XCx0gfE0IolIQYPFIbZEgUSuUqa4IYEyIJJFm+oJLACEVQDgfY1LFTWn7suWfZv3mFtz94xDe/+3XuHZ+xbgs2Ksve5cu45YyHZ2ec9z0xSEprMYXEmmwTHWS2eNokkcrwyfExj0/PSRSIJLlxfYP5LHFwtEKVCWzB1Wgo05K2d0wnmqeuPoWpN7hzeEgSiXbZcHR+yNROeOvDJ2ysFzw8PWRiLbI8JSaJFiBEA0Hh+kQMHU9f3yVkASEx9JTjDaT0KJb03ZyyzvUc3JKNtYSPHVrXhGXkuZee4fM/8+cYb+0RortIiajMIsHlWliAFFcIVRI8CJG/b6lK2D4QVUIaSwoRL0AqjZQRGWPmedYViYCXHpkUKUVSjHifayxaWZIIJN+jhEaKnApUheLGs7eo16asTTb46OFDblx7C+U7rCqRQmBCQoWc8lI+slFVjK1g1PSs+o663OUHb73P0VbFECSmLKgQeNejpOLju3d49uoVfPIkpTl8fMTTzz7PYjhHmXWmk4r48IToxoQy33IjBFHkQ5BUkkQApVBK0MeA7POlxhAjp8tZ5qmtMgMpRUVMPUIo2pVnOi64/dw1XnrhJtcu73H18g2m0zVsUSNNhY897XKBjOBjQuicjHx8+JiDt99m64XXkLokJrClIaaa0K9IJtvNirqACCI4pDX5Gasvszq6w/re01hjODs+ZEgWPYaub1nb3+fS/k2OZ/d5pYNuNePjj+9z/8Fjjs56vvO973FnY5ObL28QVwtE32GUoBtahBzY363ZfVBTpEDT95yfe25vT3h+f4217QmFMZy3LSIVpB5G2zVSJuarhv/3P/wNbj/1HNNLY4RQaD1GxAEpFAGwsidGiTIW3/b8+Gef5Rf+wpcpRlmk0ocercdoa9m9egVpCoS0HBy/w/mBZ2fnMg+0JoqEIKJMhdGax3ffZDXrWN9/nsYvGYaOtcKidYkXCiHAqApNYjoe00fP1UtbGAb+0//df8g3vvo77G1e42//g3/C5tWr/JVf+jyLVUNwktFIsmrOKGaKre0JT9/8Im9+/feZzWa8987HvPzZVymmI1btkr5fMRqNEVrkar1UvP76c3zrje/hoyKqgAgSJSC4Dp8yG6z1ggeHPYOQrGzisJtTWsFIax4PDh0UUawoKLh/94j57StsjyY8f/vKv/gTw6frn2uVRhMEKGFYdZ5KG4xUpEJhhERZg04lKQRsWSCkQqWBiIZKkdqeaZqgC8HIWFJKbG1u8eToBArNzvoGUktOT2ek5Ll8ZYd+0VAZQ1EWCKNYLubsbW/w7p0H+CEyMgVd3xMGR4qJer3EDYkkACWwxrBqe0zQCAmr5BhrjRIlg3BEHEVlkS5gU6QNDmEu2GFGo4saT8JFRzSCorTcaxK/9cRxaasAXXBl3fKOPQIXKS3UozGz5YoSw9AP+JDQMu/zbnBobeicQxlDKTSD76kmY9zZ+QWiwGfeM4ll25B6h5Y6DyqMxiWPxJKEgBhJShJSwsaECz4nnlTGHVy6scGsucOTZcuj8xZbwpZVTE89ZktgXIewEz73hdfZXp9yvpjRdy26LLh06RLSC+Sy5fXPP8+i1zTdQ9L8CYve8bU330YGQRdb1uqazfV1fNtx78kpXZsbGjd2N9i+NKW+sc10fY22GKNcZAgR5weC0pkTFhKBlC8URK4YquSQMpIqTYyWFD1SZyO9ij0uJAprs8RFSZS2pBAYS/jSz32JS5eusGg6fu83f50P332f4w4skqKIrIKnXSaSkwSh8u9LG+4/XiL7BgO8+dEJk7FmbdpR2pr1YszHhycoU7BYRVZuoHt0ShCSG5sFL3/+WVbzjs0rz3H9+jPc+fgDduuSzfVNIh2nizkhebz3dKuO999v+T/9p7/BYml4480XEHKgdw+QIpGSJUm492CG4oj/4r+4ws/9nOAXfv4pvvbtI6IpcEYyhGz1lWnFzuYIUwpCW+MqCIMj9BCD5PkXXmbvxvP87V/7r4hJItyAkAahBipZMipCFgcmsEPg0tYW7334EVuTKdWkYEgD7z18yNgYpJRUMlAWBqkkXch4Ht85bty4yc52xR9/8Jhe/NBKr1FGk1zP5njMtSt79O2S1WnDkesJUVIUhgCIFBhXHUZZfNBoIzBBcTo7I/iBlze3qAqFLUZc2hwxb85xoxohJAqBkQliHtAHNDJFko94kVBS5J9t8JAEhZSkmBhCzJez0hL6gYOm4fz0GEViVJZsjkegPNNyk8JUJCoG79BySlKJ+bLj9HjJR8tDzs/OuXZjn2vbYwpTEnRBTAmXBCYEHj/+gLNWs+gjlT2lLjSXdnfZGlco72lcjzMiywZReBnx2vDJ8SGP/7u/yes/+zcIjaD3d/FBU6g5X/jcP+a5l55hyzZIPOduIEm49fIrnJ+dUVVz6tH/g7XND1A6Ml9Elmc9a3XN7lRxzy14NbS0vmcYBHUxwi2XlNNttLUQoPcJJUukdCipKIyC2hALiZu3RAFaKhBgTU30icMnBxSV5fmnXkErydHxKccHd7n19LOI5PjCy7dYnM2YbI8hQpQRmQRaGzZ21kEJfOjRUnPWdCjdsZgtKesCYzK+yAVBu+woL9pBAYdAZlSE0JRljbaGp559hrvvf8zp4Qmbl/eop1OCElSV5PjeMYv5EYlA257xxS/8CL/yy7/CP/6nv8/x0vHoq2+w/cfvcWt/k8++8gybmyN+9tqP0DQ9jw+O+OTBIWeLJaNK4V1F3/TMW83K1SgBowKeHB7xzr0j7OE5WmnW12vc7jafe/XWv7oN/dP16fo3eP2pB38hrLh5dZeN7XWmVYWsCmxREmWRrWQ+YpTF4TCFomCNkAIhemo1IgaBiBJPwAeHN4bBdaTQMW9XWGEu6oaRrmkzV0NHpHAINMFrIh0xWVJUpNQifGIRPN3gsXKEtjXz5Rnzk4a1sWHedjRdhwoClwLJWkw9YhXygFCQwDUI2bG5NuX0PLA8XyC1ysMfr9BCoFF0dEhT0CwGpAc/JISoELrOtTuZMMoihGCEopKSECNBK1AJKS84aUpTjGuGIIkxkcTAomnYQ+KGloNZS4oCJQIhOFJUBA/KKLquIaEx1jMtSryUhABCCILziJRwMUOeU5RIFXj25jV2NzeppzU7m2usb69Ra0mtKvrVEudb7jw+4vGjQ4oUIDnaMDC2hkJPaP2A0h4tLURB4zxJWTQSQSIJn19kvSCmHBFPAkgii6lkxMXIrGkAkUUjIhvFjE55sJJAJ4GWghADSmmk0miTiMHT9QNcwIVTjGjnMuPOJ7SxCKHRPrA3rbi9v8t4OuX7793jN772TebHc6oycuupS6xtbHBycsj9J+d0HWgjGVcVykikDhBFPkCLhNRZ7BB8/n+JWbJFUVSEPqKloBxLxoUgDC2HbkWpLc9duc14avjFX/p3GNs1Prr7Cd/9wTu8+8GHTKXi7GhG1JGTY8e5tjxODpcWiM4R0oA0md1TSsnl7TGDCxyfzCh0wdqkRCRBGDpE5iqjy5LBeawEowzOCcZG8LnXXuXmi68ynk4QIvzJjS7RkxIgFaTMU0uIbECVDj8MKFVnQ2i3QlYWIRKkSLdaUth8eF22LSlJTFWSSLRNm+vL2hI8dIOjsJYkIIUETuBSn4eWypK8QGrD9s4ek3ITbMl/8L/463z1t3+LB3c/Yn1jgyQ9RW2p64L97S22dzfxMXHVFhyetWhlqIqC8ahmGBq6IAgIiqDx2nP3tGFnw+dqj8o8zOBajPREBkZjw7QwNKuBUVGgfB7gFVKgjCGEzFMkOrxPGJ3tkrPVkidnK1ZNS3IOU1qC87TLVU4pbG/y2o+/wuuffYWdrSnT8QjBRR1IRFzokTFix2toqYl9Bz7kBKbwhPacO4cP+HzvSakFVfDRm99j7/JN0rBCFSXalEihEUaDNpAc2kikzRUuP5wx3biJTJZ2NctmcjWGNOC9ZLyxS9UEfFmysXWZF1885/Roxr2773PnScv33/hDdqoRm3t7yEKRwmMOHj2grksur68xWff0XrPUQzaVK82atnQRhpBYKzSucyghSSi0VZwtPd/6/n1GG5IoFE44lIro2JM/nglvJEpEnFB8552HyLV3+Lm//KPE5NFkjhDSkqwhxQERE4PLNXXfxywFkgYJkAJBCsIw8OTgLk815/g+4UJiMrEsz485PnxEWY4yfFtIREgYoRlwMPSMjOYnvvglJhtT/t2vDPz6r30VElS6ZrxW0A4dmxtX0UbgB0fXrOi7nmdefIZb168h7YjG93R9wMgaGTXOZ2t36BrwlhduXuUP371HUhW1TkSliCEihEQaydA1JBnxQ+TBhw9xBJIMlBFOw8CYiqqUbI0MVzdqZqc9Jhnsxqfw639dllfZbFsmhZpMsvW+UJjeYXxCVgVRgBUiM6KEpLQbVJMJyWQDZogdSgnWxhOkUWgv2N6/hI+e5HuiEJhCU2iDlQklNUiwShJ8wNy4glaKte1dfvDWewx9RjqgA/VozLM3tjk6WvDJyTFSymxPjBCkQglJbWpsEgSRMFbiB4mQEpnydzAgCEIhIzihSaHFmhLlBIpE8JG1zRHvt54PH82IQXG2amh9QvY5cRfDEiE0KimslHg8SpvMA465Kh0V1EpmE3sIdH2WBHUxQggk16N1gYtZ2qaReD+QgicB2lhQBh9bQlIgDX2SyAgRydAH3rj/hJvrI9ZtzTJ5oswM16WzLHzk5u4WKTbs7l7nhc98ltV8hplMmIzyyzJOEHyP3NlG1mt88uEdygQTIxic5bz3EAzKFrR2TFdsoJJk1c4x64Jb+1eoRhXSGpyEu+2KtGywwuETGCHQJrMfpZJIrSFKyjCw8h6hqox/8Y7eBexojEuCFPuMDLMan0CbgmHoUCny2Rde4Mb+LrIc85u/+wfcvXuHo+OHWF0xmRhsKlitBgafz3UYwWrRMqoM6+M11tYGjg4a5kuIRhOTQ8uCrhnYv664c6Q4W3iS9yRhUKbk9t6Yl26uYUXkpR/7MWbzhj/8zjdRdU0vEyfnhxS6xnWCYWhZigHJAqMtUSjapuSdD5/nudvvAorODbz4/A6vfuYK771ziveb/Cf/Sf4O3r8/Q1mNCjAZCZYqALCzu8/WZmQ1zNAjQVnUdKs5IVX0Q8/+tWe5c/cR3/zG15FSMPQRayVRCEQYGHxgCAFjFabQxASLZo42U87OjlglSWkNSz2wUWsIEjkKSDQ4T1FYpoXirXfe5tnrl0hKoFVmcEJOAK6PSiqbL1aFkKhJRXoiGJUj2u4B7WBIQrBVZ4nXct7TLnsQiiRzotOlRFWXzM9a1ssRB6fH2KLAlpaAyoO+CEIlxEXdN0pIIn/Phc688HbV4JJAaMOq6/M/q5bKSialYefyJbS1JKlIItKsViTpMBYGlxiC5GTeczabsVx1zJYd2gpOZx3OP6Z5YpG1ZjAl0nuSN4gU8GiC0ERaHj05oVCGe5884ua1XYRwTDfXKYqa2lYomxAAUiGJ9Bb+2T/+uxwc/jhhaBivKerJkv/q//p5rt3cwFrFatHzxveP+Qd//10G77D1lO29dR4e3qVZDvTtkqIoeOq5Tc6Ol5wNHdfW1tnf2WWkLdEFQHJhW6Lre8ajTYSOeBezdChDkGnac0yvSF1PbTQhJFJpkQzIBLoas3ryiNlySoyS5WLFt77xDa7feApCz83nPst506BsDVJc8LWznCUJkVmLCUIfCUNib32X61evsFgtUEJz9fI+Zyc91bikKmpIDsjYJaEyqsElkDbjDPZv3uDuR3do2o7bVcFiueCpy5e4ulFhyi1G6yPq0TrTnev81K0X+eCtt3nr4yPKesJZ0/G1tx/w1icnPHt1wvNPXWF3d5fnbz/Fc7dvcTo/5+GjQ1Yrx+n5CWenS2Yrh4uBymqWg6cyFc5JVt6xvH/M+eGc0Pf8yr/8rfzT9en6N379qQd/r7zyeVRZkEiZu5ISLklAE9OAMAolgJQPgjGRgbc+V2STTCQRkDFSKkEcjyj8GIVjkhzDqiUQ8c4ghGLZNPiQaxtJB0xRQpTQdbgU6YaBrvGk5EhDpBkyC2q+HOhaz/L8feqNK/h+icKgZYGPmZNVFwVttwIVee65ayAibnXGqj/HDQ1+mfDSYNEkJbJ63jkGrfPwYkiI0JN8om8HnFMYA6iSgQ5rJKPSEpLl1vVd7nz0GKMKWp83Pt8tKIpA7Aza1LhBcOfBfVyf6zdC9ISUMrzUe0QUlLrExYDQGmNKOh8IvmXNGqKQjMoSVIUQirUxTF6p2VifsL2+gTAFQ+c5PD3m6JNTZFQkGQlDjwjgpcRKgQ8DdVViRJWHJEpTFDbHvn1PIlFWFhtLgu/xYsBFoBdIEkWhSeSaqJWSpDxCSmKyhJBQylHYgkAWozT9gNaScWEuLGKS4AUqOrSUpKjpOk/T91gVsYVGSI0RimQKnMovTcF1fO7Z5/OhaVTx+2++x7d+6xsMwrE1nfDC689DF/nwg0ccnZ6RUBRGsDYpMUbgfCQEhUiASlglUGgaHxAyUhmYGkXXJbyTPMFhtGFNgxsSz+/vsn15nxdf+jxXr17mg++9gZs7mDZsb6/x6P4DHt47gEIRrEJLjQiB2DnAIUIixBZjR1gDnfdsTxUvPXed7fURw9DkmrlQxNghlEYV2aqbuiXH6YynbkyYjktUsrz4+R/n0s1b8ENYc8oSjuQyND6GQFmPAEEMDmUsQoK/GHwhRbbaaovRFSLlQ66pK4QCYqQsywycT1mEo9CkJEjI/BlOASk9KMNi2VAVJVqV+NDjY4dIEVoLhaasDc/cvsFkbURpfo7f+c2WR4dnrI0LtsaGorR03YCqany35M7773J2ckwMCqsLzo9PscYw+IQW+YZ9WhQEJ1k0S3Z3phiVODxccP/BMcKO8INASMnO9oQPHp8wcjuQNL1pkViky/An6TxKCoRyNBgOnhxxetbj0QjAjqcsZoeI6PnsZ17lJ7/0Z3j6qZtU1iCEyFIfIdBK51t5pYAs9+iWC4w1JK3zgCyB0JK9K5f5yq/++8S45PTomK3NPQ7u3yUIxdUb1zl5+BHre08jTKDQhqBGiBAheprZKSn03H3rI2btH/DjP/PL+LBEhoFK2/yM6j29l6gNxbI1MAxIpdBlzcalTZ5ddTx+eJ8PP7rLvXsHjLf2UXrE6XLBxtY2ss7Dsxhbnrk+5erGlPGViunaZeLiEfgBJcCHHhkTGijqgq3dLUZqnT94+y1c1GwUY1JaIRwoKxBK4VPKt89J8J33HzO+dMSXk0KKAVsUDMkTQiSJhBApD/qGFaYsMJUBkXBCYS4SCSoM7D/7WcrpJex0nenGLkhJqxxb44pCa2QKEAeUKAkAUiJ9REtLcB3KKlIw3LzxAl/5qzV+6CiKkqKwNF3HZG0DoWB+PqPpPJPJhEoZFiYhZKI5XTC4gB6NGVJE+4BRCluXxKh4+cWbXLm8w2//7vcYX9pkObTIIBGpRZsRRamwVnG+6lGqIDqVTXsSKgq6IdCkwGzV8+GDE966e8KtvS1uXdnlJ/7iv8jjwqfrn3cVWxvEtuP2zT1G6yOEVqQMzyMMPdKOkMZQGUtlCpKC03nD2WzO8WzB/HyOXy3Z25xy9fJVytGYEBXLrkWRkCnio6PKRS0UjkIbtFAIH1BC4VJL4xM/eO8ux+cNykeiJD83GJBih6tXtxE6cna+wAWIg0NUEi0UccjIkCAihcy0CNe3+ZJOGJCJ5B2+d4QQ0FETpEcpgQ/gk2d5fooJIxZDQGI4XzYkJ3CFpBCSsqyQQrJsVgx4VAJjKoYwUAuDLBKrIRKH7k+S2C5GCltQjQznZ3NilDjvUEqhlCcIQUk+Y1RW0/YNyhRIFYgiY1GkFAzOMaQIMpII7KxPCULw5sM5SnqsqDhfndN2NdeuXEGrgWI04WQ+Z960pN4hVA3tKp9fhOTxWcusi3RhYO4a5m3H5c091gzs7++zubPBzRs3oKiZnc8JwxyrIq4P9OmCARcC0XlKI9FSUSCQtsgsWu8QwMXdMylECmVx0aGVIFlFlcB76DVU1uKTQCcDsiV0Hdd393jpmae5ev0SR7MFX/u9f8rHd45ZtUu0tkzrGucdp+dLkrQIIrVV2HHBeqF47TM3eOPdA6S6SE0SmZBoe8fjY8nT1yZYoZjU6UJyIGjmAzfWa569vscv/sIvsIwdf/idr6FNxbMv3OS3/8nvoYstxoXj0uY2Qm4TQ6RQBWWZgESpLP10AoAxipgUCMmq8eztTbl+fY/zc0VRwN/+bx7y3/+/vo1vDdX6hKhbNsoagMv7+0ynJxRuI19aO89YrzGMS5Qtuf38C/ytv/P3qUrDpek6zgWqUYULieQDhEhZ1fihZ3NjjfW1Ke2NK2zv7lBVJUZqJiOL0VBoTdsGkpEUVcn9Ox+xmM/RpcD6MWDxQtClLOERcqDWMKlzxVorzbzvCUNHVZbZ+K0TslBoBKtO0PUrjIW+96xvFDg/8MmDJ1y+cpWN9bVseA2OujT0Pl90FknSpQEhVb6EJyM8pBQkCVpZ+nae2edFResS54cnpCFSjSQ3rmxRXKTng8jDwpgAJLKwdEPk7tGMk5Mlq9UiJ4tjYDG0zJuBdTPiiy+/wI9/8XPs7+/zm7/+P3Dv8ITmQrgWQsREQcIzKkqK7TGx8fz8L/4MP/nzv8D54w/58O4dfv13vks9HlERMZXEmIrSSsrS4o0mRo0uNhBxxqgc873vC77+B+9T2IEv/8JtfuqnrvHk8ZLf/e2PScFzdLLJO+/+RW7d/D12dxeYQnK2cDw5XjGaFGytKZq0xKdpvpBUEmvqLAlUBi2zcKgbPFJEIoEUBTQNLkoEAaTG6YAZYGxKgg+89/57vPvxfablZZQEEXsWMfHWmz+glgWzVUO3aNm5vk8+MmlUGkgx0Jw/4cMPHsD8GGEkisio1EzWpwxKEQUszuZcubLJ+vo2aEPvE2enJ2xOpgQBMgmSd7TLFfVoSjWqKI3h+PED/vhb32G0uctIB6qxobwIT5TjEUaC9CteuX2du3ceoqspgsyAXPnE+4cnPDhaMB1/zI2rO9y4cpmrOztsPPc0LiSEFMwOj3l4dMLH9w4ZTEXb9iTrmRiF0RWL+YJOCt766PBfxVb+6fp0/Ru//tSDv5Pjx6y8o/cJrSxCamRVUBnBuJogTK6slEUJUhF15Oz0CBEj0+kaPoCR+eYopJz00jKhggeVoLCEoBEaJBIjAk0/sGxaSAldugxhbwKr5Zx+cGBrUt/Qdz0hJoaYkxSygNlMEcQRVpfZEBU7+hRYn0y4fm2Pb337G8Q+cDxbsT0eMR2tcenSHrWwtM5jhCcwMIsKGRKTUc0gcq3u+OSc3uW0lCLyBAjdgAqJIhYMQtCLlkkheeX6Vdyi5f7JIRLNWEcmkzX6PrLsl4ihRVrD9RtP4ZYZoq3q/KtpBodKFu96SpFwMjC0A0pFpqOS3a1d1qsCbxRpEMzbOZUxlLbAmoLzWcfJyQOavqGyJbaqkFKiGRAevDIkmYcTSkmquiIRkSIxuI4YHURBTKCUyWbZqFm5OVIItK4RwjGfLdDaIgub/64xeDeQoiN2HQiL0jqbXeNAJHNECqNRWjO4/gIknDfLlBI+9MQ4EOipRhpjKoywSN8jlaAbIEVBYRTP7O1x68oOTmt+5/e+wZvvfEi0gtvXrvP66z/K3ScP+KNvfxcXQOnEqFIZoG4TIXoQCeETUhVoJRAiMXRdHmAH2C4UfSGygRYIzYAuLClUyCSJhWERPIuuQbgGoQb++I2v8eT4iF4IVvNTrm9WFDqSmLJKDiEia6YmEQil5dqGZVJMUWoAZdhZnyKVYdU7jLQomVMLNiW8C9hKoaTGicjZyX1+9OaLaFvw+S/+HFuXr+NjQguVZSlJIJwDa1BJI2QAFBGBthXp4jup7AgShIth1Wg8zgPDEJFSUV8clFNKaFOAyIIQhEAUIxqf6Js5fdsRUyAtGpwLLBZLdre3KYyl7ztGkzFCJHzocEuQEowU7E522Xhui83NLb7xu7/JnY8+4slshdUN13b3cd0KnWA6ucTG5oKhG7j3OGJMSWENvQ/00TOuDEaA9ol2OcCOoGkdRVEyO50xHmlct8A7wdqoQonIvB9YtyVmCFAKUvI56RcCg6gIDTw4OiClnmt7WxwcHlMbw/n8mB956QV+8d/5BW7dukWKiRQSyli00bmeHi+M3j8kHsrMTgwhooxGCoghEAaXU8HCYhL0zrM8OaVvF9z96D0++eQu5uf/IpevPU93+BC7tQ2mQhHQeoSXFr0Bofdcf+5VRgcfcXTvXbavPcf84G0GaaiSQZeSFCQyJrbNNjEGDs9PsNbQDxVWdKw/O2J/f487jw54+OgTKr2iNlsYkXDOcPTojF94/Rk2LxlOjgfuHZ+zbB5wY2+b7RRZnC5Y36xJOuG6nug9R4+PeO3Lr/Ktt96CFHB9h1YJpCLFHz6HcuXF/DCxIwuUULTnS9IwUE1rlAKVFBKNj4mhbXHOEYKj0JZCi/yZVQUEh9aWUV2RVOL87IjoPSdHgdsv7DCeTGnblv6ChUWKGFXg+g4XE7rQFEEgAe8i62trKC1yDUtr6sk62mhCyqKbYVgxnoxYzE9Rkw2Wqzmd8xhb0vucqCYl1iZTSJKQBsajCU/duMFH73/MvF1iUsAlweACIvbgQx5mpIT3Q07vpvzCWReWnkDT5bp3UVZ0wBuPH/Lm/U/4P/4LPzJ8uv551rPXnufk7ID1K/uYUYkpKmxVM1YSKQMuCtrecXhyzMcPDjg8OmW5PGNzd5uRtDzzzGU2dyZsbG+DUjn9EhV6lO2mOEeIjiAFIjiSH9H5RH8B7RfEfLmWQOgsLBoYKFXFqh1QtubNtz9m7/o+W7s77O9dwqVI33bMDo95Ml8Qh5af/PkvEeQav/M7v0VdFiQf6doVqoBCS6LzJOEIcWC0XtH6mBmAVZFlAD5ye3dK0j02wflyyuMTzXvHM4KXrJoui358ICnyd6ppESSciPmij/zyKkPCWEsMEKKnWTq0lngXISR0ypbiaPLzIiZJ13kmNqMr5BCQXiA8JOkoy4LYtvStQulIWeYqoy1KCunw3mOT4PXXvsD+Cy8za3rWbUnf9agY6eg5mp9mdIiIFGVFpQ23L+/x5IOP2N7cZufFq2zubHNlbxNtR8znC05WM5rDR6goGZoVLjmwiiJJkszVxVIpEIkuRHQCYsatiQikQJQRHyG4RIXHKo0SAu8dToORHgN4F5CqIDIwrkpe/7HXuHXlJt0Q+cZ3/pi3//h7NG5B6wbGI8X6eMRi2XM+a+kTFApGVZaVhCAwJbzzwQnnbUddFohySqDj5pUNhqHh3pMVD44XOBcx1QS5GmhcpF6r+bmv/CzPPn+dbu6obcVPffkv8Qe/+49573tvsLe5wdr6hHo0ZnO6SdMWjMdTkvIE8sVk8grnFQAxKhCWEAP37zf8l//l9+j6xKjY5z/7z57nl/7Cu3Shp0yB7bVtHp3NuHzzJvwArt5+hede7ogRpMmVTESBQGKUIrjEv/eX/wp/9d/76xffo5QvLlPG3kUpMzPx4s+1AplSbmVIRUoSEKQUUdIBnoF81n18/xP+3n/3X7Ns58QQSMojo0KYEpk82ssscgkDtawRwPbmBsH3NM7QdYEwBFwb0MZyHhzRGbbHClHDqmuZ+ClCO9p+wXq0XLm0y/HBAVc2Nvjo8RGxNAx4pNaoyMVZ/YJRh8hpRhMYrW1xerriyZMjfNezuz2hujRBpogWBUiPD+C8Zxgc7ZCYtw1HsxnLtqNdNWgpcgLP5wv3UlXc2l1jPLI8/8wOr73wFHvPf5aXXv8Sv/F3/u/cv/sey5WnrCckoeidw3eBy5f22FnfwKvIk8cf88rLr/PWd3+f0glSu2SOIDYJKfP7RqkSqF3abmAyVmg75fx8wt/4G2t85Stv8txNx2e+cIW9/QnBDzSuZ2g6VouaptlhY3cbPb2P9JFPDs+Ig2bDaORY4tKQcSHWMD8/h1KR4oiyqAihI6wiUhtScuAlvRagZE53K0WM+SJF6MR4a4QQkTQkui7w9jvv8TPOsTyfUxjNd7/7HXZmn/C5SzfouwbMCCEUInZ0yzP0eIPzo2OuX77Gm0fv4YYWaxTeLTibN9hCoAxcuXqb3/u9f8LWF29y8OhDVmcHnJ317H7xp1gMHYNrUFpTV5JmcYaUkY3tS1y9fouDB5/wg/fepYtwY3+TICxGSkJ7TicVBw9P2N/b4T/8n/9Ffu13vsXHbaKNDiMsMQqWIrKctZzN7/L+xw/Y3Vjj6v4et65epxqVbO7vcGl/Fy8lR71ANR755DG3Lq8zOEdVRM6WDd2g/tVs5p+uT9e/4etPPfjbv7RO7z3LpqVddQxDS9/NWIWec1nikdjSYOuKtdE6dT0hOIGMgjCAKSwxeYieGONFfRdkzDeVAY+XERUEIUU6Ep1I+BBxrYeuwyfBso3YweNiZNHOMSniQkD6hDSSFCNKBDQV5wePKKdjCBIdAklGVvOBa1evUxiw5YTzkxWhG1gEQVi02JBTT+qipmvIsorFyTm9sgQpiL2nKmoGAg7JJyceKS2da6mKiigUha7ZvT3h3vmKtUtXURtbiJjTQ3U1YtFnwYkOEVtatre3OXQzOucQCfwQECkR/YJxaamKkrK01HXNRAuKyhKlwrcO7zzN/BxhLcpqhugYOiBJjNaMqhqjDfiENiDwhKQZ8mkFqXVmAYZIEAnnPSlliYQQAiUUPiacCwgFQmY+1flySVlobCFBGEISSCGJMb9kaKWxqiQJhZQSN3iI2SInL3iBPni01GiVD7i9Gy4+cXnoVugaaSykmBkvKSCGhJOCWkXGocd6yRtvvcmdu+c8eHKMGQlee/l5rty4zptvv81HH93BYNAljEYSW+b0nOsGEOLCIK0JaAYXEWSLYBKBJCzL1HMeLIqelDxRZdZgN3g2xmPe//gRqTjm4FHHnet7nCwOkUHwyd1PsMmiUsGVy2s8c32HFAuEVXngGECIhLAGRUBEA3qEKkakEFi1AwhJlJIUPALwQgCKqQmE7ojV4pQiBi5dvsGP/+xXKCfr+BBIMv8UZQwMbkALgZDZYqaUzibklPJfihlMLMj1aSkTKSUiiehjHu7BheE3Ii9MqqBymlBIBjfgvCOEnFBwIdL2LSezU5bLhkdPHkDoODs55tVXf4SdnT2sKSilw7tA03XMQ4s2JZsbO/zET/8sm/vXePeN71KKjAeoqhKTEmrXsDnb5uTkiGpUMF8tubG+wXk3gANTVgTniLGnLEZUpsoV6W7FarFCCU1dVoz3t5k9PuDq+hofn64Y74wwIuaXihgJPjKkxOnZCbMnx+zvbPGZV1+mKkt++3e/wd72Nn/+z32Zz33mcxTKkPoBaQyyKpEyJ5eFSPkBJ8kvC0QkkiQVWuefaYg52ZGERCtzkWgVuPk525c2iMOCX/zlX0F6gS4Kxut7sLZNDCt++IsOCFCW0WiDWAtECqxt7LE4/oRuecbG9Rdxs2OiUCgfqIsC711mcSbBztomTdcyjw31ek3XnTMWjmfKp7i+tclH4484WyxYt2M+c3nMxvOb3H90jNSW6WTKnMT9g8c411NoRXfeUlUVQTicigxDxLlA8A7Xh8wMSgEVJajM7BJJkKLLTFKgrgzr05KkA8vgcAnqcpQrjEkQY0LKLJGRF7frJmqSzJgD4kBEQQJrC6QqmNYVIimkDownda4CWUscBmJKxBDxrs+JV+8IMicflPA5YadKDk9n3Htwn1u3nicBq9WKqpxQ6JLoVyQt6PslRTFifj5DRINViSgiIeb0Uzv0VIUFkZNBXdfzMz/5I5wvWn7n639IlJaoyiw6GgLaFEg9ILyjMtkKmbxEpohSHk0ipAy1H/p8c17L0f+kw8Gn61/cqjanXNut2NicoqXFCkPXrni8mOGJzGcd89MFq2ZFNwxc35ly+bPPsLW9j9YlKfVICXDxbCOnRyphkVbmz3DwBPKzS0nJiETvHNFBPyxQYUqKntdefIEne3s8PjiknS9xvSdIx7iasGp6YMHGqKSqNOO1knF5mar1HBwcMrIaOR3z8qvPoYHoIzEMSBFpXcgIFBkIzlEWkiHk4cy8WdLM56xWnspEKlvgXcfapZrJ+pjHLjE/WmJVpJOeYPIeRASkRgSQRAY/oIqauq7Y3JgidIEiH2SHlPA671cq6izxCC1BaAqlQQSEFvjokarApURwnrKqGfD0bYsREVlEXJ9ILgAGUwiMhFQCfoULPY+PlzyZzTF7I9Ig6VbgU0Joz3wYmNQVx4+e8PjolFq0fOb5XYoYQEb6xZJPmlWuUUdHIg9/g5BErTCiRBGIFxW+4D1JyoyDCIkuBbQMFLYkCEUMDpJHYLHWknzA0WVeqqhQKg8Q6RxJalrv2dCCl/auUYvAvUcPefP73+Oddz8kpkiKnu3RBCnh7HzFsvV4IRmXBaZQaJXvHdoASRUczM5RY0nnHeORZqw13nmktYxlx+zEI9SKnfUJi9bRDgGXEt/5ozd5+4O7aGORzNmZrGGlYVwWVGtTxuWEcTWhG1qSjCg1o1mVtNgsSpCGti0BGAZFYJQ5u0IQUx60WOMB0Fqgg8QnqGTgyvYOqswMVF1NqSbjfM6RCpUCLoVstMVnVmLM1U2IpBCIwUPKHGMpFc6FnJrXiiRzSo0UkUoBgkgWfwmpEEliL45e1WTMn/nFP8sP3vgWH7zxLjJuEGOiIqFDYsBRx1w/9iIyX5xT1SXRQ9v1OA/TSUWhBVZFFkIQeoXrB7A19x8v2dzZAlEwP23Z3gzUlWJ7WtDKxIODQN/1yErnSr6ShNypJxKRF+fE5fmcI3fGycmc7a0Jo+01jAERYm7/KEXb98xPV/RDRzP0nC6yxHDwAe/y0D8SKUvNdATj0Rpr9YS1kWV9Z40rmxWjjctIqTEa/tKv/jLN6SHBB6wFpywKQQw5CdyvGmaLhmV7RAgdX/6V/yVXrn2Vx6cnnLcev2jo+p6F6zmbL1k2C5arliHMGaKlLk75d//8f8Pf/K//fSbT/Dn65jcf8DtfvcvQORarFTFsAnA+W7BsWwrrubQ2wsjEzcsTUtPz1OVdTo4PQU3QpsD7CCnh+h5djoiDo+16lBDZliyzUEcKi/cOrfM7VkqG5bzPQsou0PaByfoIqSPzdoWPARcczbIh+kBwHUkXxAQyOozVIBTleMTG7iUuz25x8N4nzDvBdWPzcyB4+t5zae8Sn//cq/yDv/eP+OW//Oe496Rlc7rGyeMP6dKKqDYYr20zGW2S/CMUic41rGYtSzewtbHJwYP7qGIbUSbaIdA7j+nPWMwXbNZjkoabN/Z556Mn1OUIKQLIghTApx4lLEoWPD5d0XSfcHL0mLX1dXZ3drGjCZ88ecJ0uk30K0ba8nM/+jq9b/jgw08yH/Bk+f//jfvT9en6t3D9qQd/erKLFjDeBN/3BOdICaJf0DvJsp0T3Ir5uePhkzm6qAkiMd6YMgwdtYgY71EiEZXMAocEMUnA0gRPCgl3kXwJztH2Peerhm7p6J1nNBlhpOKsaRihkApWQ5sB94DygeA8KXiMAOckzXyJKiq8D0gjGBoP3lNYS9N0+XApNJXJDBejSlyCqsgW0yQA35KUQShDchBtto3qlOt+gzUAjJRliC3JGtzgUaVk2UUG70gIXMgDucFdHC6jQpuSWBYcHp7Rh2yLC33PYt6ytlZx6+krrG2ukwbovSf0Lclqeh/wqSMEh0sKM9lARyAOhBiQSlNajZERFzzeJyICKQ1SVrjek1KgNAZpNGlwoBU+ZuaeUXnYZrQihIBKCWUUPiScTxQjzaCyyEH/0GLlHVJbUgQjDVKA0gEfBpwPhOBRWqO0IUUu0mIq14PJ9haRAkJkOLe1IGVk8EtCCFlCqyxKQRFbxkmiK8P9s5ZHZ3Peu/uY65e2+NEf+QyTeo2vffX3OZsvKFSB1pFyWlEXFj90OekoNFIbVMwpOp86iKC1yuKLpOg7T9NliDIxV0nKwqJURZSaV198BhcETxbHnM+WPJidAYJHd+6zORnz3KWrVDWsbW6zNiqyYEPln6lzmfuUkITQkZJkIObb474nRp8toL1n1S1zdQlJ8OCi48WbU1w34vWf/wpf+MKPAuB7R1FkgPJ8OUMLkEbnF0MXLuZ9kXghsiBGlBREDwgFPuTPj4SAxIeL+/UkQIo/qfPGFOHiVpjoUCkgZMLFiI8BQcJowWRUIZWm6XuGtme8vs77H3/A4emM6zeuUWjJSBesj8c0PnA2XxDDAKbm1guvsrW5yZOPf8D58RHD4Hj86AnN4Om6JYvFkqJWOBeJAZzL4GmhBM4nWh+Y9z0iOAoDKx/wUqIKgTE1m9tbuPac6VmBOlnRe4dUHuMUxkMyhnkz5+TJE1566UVee/lVcOc0iwU//+Wf4bVXXkTZhBECW+aaqFIKJWWus0uBTDIP/UjEeAHP5sJdncKFKE8ilMmcJnkhFMFRTApEN6CqNVyAspzAZBe0By9IYgQEtNZEEioGhM8/+yQzYqFe22Y4f0zoasxkjeF8hq7WMaWib06RUuPVQEgwljm5loCyXse0BnGemYgvFy9y9+CQp27e4GPO+Ee/+V3GU4PXFc9vTvGzBtdqZssFbtGBjhSrCVdSgS0LZkdLtKhYzVf4lF+AZEpEoXPdLkGBJmiBjoIT19Ee5Qq3UgUkg75ISUQhiDiESEgRM0tVGGJUtDISVYUIuQqcSHz05tdZW7/E1mSfxdk5zg2UleFs9hihbhJ7QVlWWGsgJVJMRO8hBdKFSEDJhCcSYyI4h5aC8/kMYzV1aRCxZTE/J9EzOIdV4PuB1WKFVSU9kWXb4EO6wB4o9i7tIFTBZG0dqQzj6YidvV2+/94dmsMVQhtEiihtGfqG6B1joylExKdElDqnTHQ2a9cXL56Dd6SQ6GL6F3VO+HT9T1xb44ouSh4cnHF2tuLs+JhucUqtNDdfvMX+9X329jZIwSGERmDoQ+DJyRlSiywtkxphXTZhy5yMh56YDO3g8a6nHk2QShJidzF4AKUKpAEVJbH3KOsppgXrG+sMfaJbzlm15xRWMSpqiqLOfGbnGPqWR+cnrOY57f7Pfv8Nbl7foKi38EmgbEREDR5skeUPSvlsLE2RGoFH0T3q6Uh4YLZYMqiKlesYrwna1mFFIuBx5IGLbx1lYdFJ4IJn8JmFFoRhf3PKpat7dJBrllqhlSR5SSQgBPQekkpUcgM3RKxROJ+bH0Fme/vEJnTtMArKZDj3PcJBCImnrmwjUfR+RfKazveIfkB2DalbsjGpKGzJ+shwJpbcefwBy9kxw6rH9Y4UHH5ocCGy9LByARUjRamoilzT1VhSknRxoJYSpSSiqFitVsQ0oG2JI+JToJQaIWQ+gqSIJOJ8wMdc8S6twiqNICAKCWKCAlzsUT5fpAijsTKwNxnxytVddq9c593DE/6HX/v7aFvQ9x3rY83mZJumGZgvO1ovSMIwqSW2Kkjeg48EIoXRTKqC+RCYrQaGeYOSgqeubhKVRrmBy9fWECcN29OS1Cdc6BiUxa1a5ucNcxdx0eC7FcejBZdqwe72BvVoBMJyulyi0go8fPHVb7HsA0IYJpMJWmru3N3i137js1zdP8SWB8wWp0gc4/UNzmdLNkYv8uY70HUVVWUphOb5W0+BvcL7H+QGQ1lYijJfvqGAWGBEzJVM32f5lJPI8mIOLclChRhRRhGCI7g8NJQCou9BCEw1BuGRSiAv8EhIhRCCmAIg2LO7WC1Zq8fU9TrHJ48ROn8uegIGRZSKIURE8HSlw1jDarZApsDQDyj8xfAv0p80RKU4HTxVb9ncXGN7c5fTo3e5f/8ufVhy8+ZNNrd2OHMtW5vrPDnvKGudBWUy5LZGilk2JhQqBmTSCCOZXt8nyQFCInpJTBIf4PHhfeZNFpx0q0U+c4qMCpApsDWyXL60w9VL29x+5mX2NyomG1OqyQalNplrrgVmusH5Jx+w88zziKpieuV5VrMD6FsKU2ClwgtPiqDrEWY9sBv26BYzNrcv8aO/8Jc4evAxLuW92jUNUkSOj094992HnB6MaN2SZrmiwVPalv/8P/8tnrm2xZf/7HO8/vplvvudh/yzf/YOi9YhsACcNQO31hVX9ycURd5/jXVM6xGz+ZzOCZRtsrW33EDrmmGYExrQQjI4n1FHyoCwGAFRR0ZkHnGMkY2pZHckiNHTuI42QqJgmC+5vrvHzqU9ViePSW+16KpkZC1aSaTMQZqUNP78CWFIRFmQOn9xIRC5cu0qVVHQ+sTQr0jW8MxzL/IrxTbb27v83tf+gK9+9Aa/+pXP451jba2hnmzQ+Z4oC1yIrE5P2Nm+xPuHp3TnDaOqxnUOU8BysWCtntD7NnPEyS2ql2/cRHzJ8D/+/neoqxKrDZ00xAC6MCAGknCctYLHx3OsPWf/ikOagpXUyOUK53o2dqf81rd+wNbGiM994WVeaXre/+jev+xt/NP16fq3Yv2pB3+JlAUAgDQGlCIl8FExjgXlaJ0YB3aJ+GbBqu9ZLlq6gwec3/fY8ZhqfYzUhtLU7JgxQXjOXI8PLYPrEEMWAXT9wKJZ0jYdBEEfBcFFnswPmG6MkFozuI5u3uFERCaJcw6LxyiNk4mQ+gwwXi2pTJlTNE4yJIfWFZESOcxok8cnRdSaweUHLcGzokO4QJARgcgv5jERo0Bpg4tLSPIi0SNzjFspZCwIKIQuMWHAJIksQMgB4hpu6KiVzi/5StGFSLNsCO1ASBE5rCit4fLlbbZ2tzDKcnbWZc26lQgBeI8SAoTA2goV8uQzEdFJoobMkfM+Q6kHNL1LFDKC8/QxoQpBpQtUUvQhgARtNctll9N/MVHaEoGiKisqW3B2dkKKgaJSRO8oVYnWgSTyoRQpkJJ8O50yeLrtuTDoKQQ2V3aGbN2UKlcglBDZTCtBSYkQhoREiUSKAoGlKA0pBPAD25WhtjVS1syWcx4+PqTrAztbG/z0l36UYbXkN379N0AkSqsotGI6GedEjA8oY+j7HqVy8i4JmYUeUly8NCVikpwvVzw5muGCZ+9yRdvWnJ7OsRFK3fDc9Ztc2SgRyXD76jrf/fgJ9x4cM1+cI10gtBbfHLN/tWYWTpGHmsmooDQlnetZ+UTbNSzO5kxHFZe3NihHFhF6/DAgrCbEHpUCo9IiEEih6JJDCU15aZ+f+fN/lbXpBoQFtl6DFDg7O6JbLbFG0SqBjpo4+Fz1VoqYPEnkYTlA6wUCSQgeYsxcFx9BBGLIt5dCSEgiD1kieTgZHZDQSoKU+OBJ2qBlQsRAdIpSKJA9VWEotzdQIvOXtK4gBJY+MnMDhYFxUbK9tkE3tCyaBX4I1Gu7XH/lRzn46D0ePTlmYzrizjvv0rSCs9kCrGU2H6ifKvDuHEfJg5MVXdsxrixugNOzI7a3NoDMsdR6DSUVI1uQjKJYH2GenBH9cFH1ybWLk+WcBwdPeOXmbV55+XMoFVAobrzwLKO1TayyFPUIqUsCAiUlaEUQIn9PxUUfC/4kBftD740AhBIopUnhIumWUh5+q4QPBgPIukImhRJLlLJ0XUu3POO0E3z7a7/JT//8V3j/B1/jlc//LMW0xOos3RFpBFZjrEVWFaF1HB4dMh1PUcWAS5rZuWd+eo+t7R0qM8FJx4ae0g+Bvu+ZjA1lMWG1KlgVHbfKisXsmLNZy2svPks99Qxtx52HK5IecGHg5FQyHZVUtuTg+JTnUoFrlqSdkpPomZ0v6ELEp4gUmiTERTJSI7REOY8oDLtB8L/6j36Vp57aR4QVXTNDxQ6TAkoEhBAXhS/og0PpAu8iOjYXVS1FHq8aLt96CSWhWc24//gOSktOTlrO5y3nsxOkKgki5SS60Xm3E9lq6l3Iz4M4EKUnRcnOzg62LHh4cMDe3h5FUeD7jqoq6LvAeG2Dbn6ATIH9y9fonePsbIVWIyo70HdLNiZTNqbrlJMxgwfvBpQ0SFPy3LNPcXz2xzSuxflsmdZK5YqvyMNlFPgoKbWhiQNDaJjoEidzalsL8J+6Pf61We+++x4np6d0IVIZy/7uJnvPXuXS1jqyNPTJwmgtp4liIIYeGyxBBoIbIAmaBKHpcX2DMRYpLYUxaJU4m88hhdx6kAaRNESH1BfPdQocPdEKhmBQUTKeKA7bQwbtGdUlxWSElZY2wKLzxB76TrBoEqlrWYYeWs97Hz5gOnFMtqY432GSwItcXfMGpBNIAknlvXe2OOXk5BThe0J0xLTJZARTPYEUGY8NW+uJs4VFkWjnDpUKuiESdL5YLGIWHyEk6+uWoCTjoqLWkXkXWLiGofM5QZwiEZGb++RndtflYcbmWmat9U5nbq71NG2Ddw5jDH2MFELwpZ/5IvH4Ic+tr/FquUalB3Z29xhN15iOK9758APm84aHpeHh4WOODx8hY6QNORUfUmRIASkl1hrqQuNSxONwLrONe98wkE2ckcikqJgtGqyxxJS/wFYZhBS4mPcNrTQi+ZzykZnfVdUTUJIYMuvxh5cq+ofMXekJAiwDNyZTfvL1zxGs5Vt/9B7f/uM3SUli3cDTT13HyIGD4wVHqxUhCApdMC4F1mgEgiGp/Gy8EEt9//5JTp8GTV1INrc2OT7tMZWnqARXZc2zumfmPKayvLZ7HVNvcOfoCIdneXpK0ydkUByfJg6nmtGBoy5mpKKEAEYNxOCITtP3K67srlGUG7ggaZrcEDHGI2VPCA5TKlIERR7AAfTDiLpe49YLz2MmT9G0giTyxUhKkigcQuXzfYoNQhaEkJDS5HcAA7bLe1MSgtB7pDIordAqMfiBcpRROcEFRMwXezF6ooOUAlpZohwQKqGERiARyrKzt0s5qairKQ8PH3Fw9lXufPQ+hVqDlDAhoUOkrgvE4NgcjRkZibISfxjY3djg4YNH7O2u45OhHhcsVisG7zmerVguzrIAUEvu33nAU7eeZjEskKlgbW3EgyczYpgQTQQJiCzwSSm3qGKMaKHQ4kJSIRUhSU7aBSdnc5rlkC/SoyamjiQUzcKxPql47XPP8OwzV3nq2k0u71+jriuUXUOoRLNaZDYxkpAESsDx8SH3fvAm67dfRJoaIhSjCpcShIEgJKqwSGFJwaGMQPoOU4xYzQ4Ybe1y+eaznBx8Qttr7GZB16/Yf/oWG9sv8fa9EVW1R/QnvPu+42vf+GlOZ/+Ib07e5bz3/G//4y/x4z9+hd/77beIRLgwP2+UlpHO58fTJ57b21Oe256ysbNOSoEhRvSgqIxmPK6IEt7/8C7f+aN3+Mov/TwRMDrzSyWCKA1WNqSowRSkYcWf/ekv8MUv/wRJG3yKtENDURjq6YTRZAxG0x2P+ejt32Rjc4dV2xClyBfFukCPDE8evMPidMXk0m1avyS6nmlh0dUGUQSUKpExX0wqY3n29g2kC/wHf/2X+Qe/9mtcuXSTv/cPfxtfFPyNv/Y6y9VD3CAYjWAxP6YuCl548WlqIfj2V/8Zb72bBR4vf+YVBjewOD/DGIPQEdBIZfixL77Mt7//PZpe5bYUGVfgXQs+IoThaN5zcNRQThWrakDSsFEVPPI9zgkELW30nJw+4saVda5t7/LaCzf/ZW/jn65P178V6/+HwZ8khvxvGSaaD1YaQVAJaQJycKQ4oRgZ1KhjbXMD13uapqfterqzc0KCxpSItcgQBrooEE3AxY6h71l1jkXXI5QkRkCobApWHTJ6Dh48Zn1tHe06ogskEeiixJBTICiRUy8p0Q8DoR+IaWBQBSJGQvT42BMRlGPFdl2xd3mbU5cHWEP0GJkYEkgUKkVSEDTSUzqHpSAkIGm8iFipCF5hfig8EaCjIogeKSRtzIp0kUakmFlPKykgJCyJbujw/YDsAmaquXV5jyu7uzyaL3FDhxADSeZBYYoBoxJEiZKK3scs/ACkDkiRN9EoDH30SJVvepXzVBaMtviQU0VlaRjaNieFCgtJ0fpIUobgw0U6EAKRtjlnGCRCOLRIyKRADJgyEYJC6REhZb6iUJrBDbkykkBg0FpADJldoh1Ecuxd5RqLhMyJIyFkHiwJLfHRQVQkZXHeUQnH5e0Jl3c2uH9wzJ37j+ljQ+s6Cl3w/ItP8+jufT78+C5oQW01ZVmgdUl+FYi5NpskpqiIIRBTxCeRE50xkbfRyNlixdHhKYHMsPNzx9q4YPfGNs/d2OSnv/SL+HiKRXN4esjHH97l8OCY89ksD4yNxQnBkes5+iih5YooZI76AxJPaS3WJHY3N5hMKworGMKAERrnIzH0F7evF+DuBH3o0Uj2r9zkxc//OOPRGGMDkSnNvGHRz4lJ5YRSiIQkSUJRFYoYExFPiCkPRlICMrw5XghApMxcJC4MyjIrmkEkYkoXlLqENSIPJWIipESMEOIFe4dseC6soTAGqzUxGsIARVljGHJFNQa0kAgtGULPyWrOvOuobMH6ZI1J4TlezGgp2L35HKuTh8zndxlNBVKW1KMJuhR88skT5qtz6omlOffgyQO0OCBESTsIhgGiCGilMdLinMuHpWgpomRjNOLJbElRlqgQOOl6Hh3NiEnz+PEDrp0+ZH9nnat7+6xPN5Fllc3WMrOApFYXg+98oI+obDROgWyMEMiLP5NS5IN4DCSRU89CcMEVFAhVoAwIXVyk90DHHaLUfPRH3+Dk8SP2n3mZ733nq9y6dp13v/cH3Hj6JXbrXZKLID3RlEgvSQwk4PjwLn/nb/23fPEnf4EkNVevbnB4cEjwmo0NgxyXaJcojWFkNUM54EJP33XUSlGUntXqHKElL9SGkycnLGcPmA2BoANaStbXDOfLjrWxxMiC5CIP7j+gfvYK3arFhETjHIXRLAeHUuRUq8qfl94PlEoRfKCUiT/z2i2CtogIZVUyndaM6gkg8+VEyodIgkcKgR86hK8RSRIuOLFC9Iw2d5HRM5stUKYkReidY//yTYwqWLUdxXR0kf7O0heUIcqIiApFfpE2UhCQdENAKMvVq1extiRFlZOxJlCoNWS0rJaHJDyqmGClQ9uGyWREaTcpbIk1BmMsMUgEDuc6lBlTWs3Lz97g1pU9/u4/+vscnHg6D84PWGMJKSG1zalY6VCQ07Ymp76SigTnMVJR8Gni71+XFcKKW9f32N7ZZFQVqKpE25IkDTIFrL+Q28iIUSN8qPFxyJcJSWbjfIq44PDG4lxLCA2zNmKlyeiIFGhWDVLXGO3QIpBcjfcdiECKhhhbZAgsvacbPEbUTGzF+eKU+cmKSZ0bFUM3ICP0ROxoROs6ZOeRtiSlhhBWrE23aRo4PT5DaskgBHiNRqCFoqdH2ZLmrEP4RAy5ko+0+fwgRxmpEXvWiszd80qQVELKSIwOpQ3lqGaYyTwQlYGm7dhey8mik2WLVRKXPNEHBicx1tIPDT5IbOGwps5NipAvS71zkCJDSMQuEDxUVcnLT99kPJ1Qlpq9rTXM3jqmqFmueny/4Mn5kns/+BATPSo5mjAwsRajx3ShR+uAFgXOR7oISlbIBEIEUENmkvqIUYIoQCSBCBKhIi5GzlYNIFgtG4TWKOHQyFwnRaClQlxwGqW2aCmR0dN7h/caxQUndejQhSR60MZgkqJKiSvrI168eZ3VEPn6H73Bt/7w+9gkuLRluXzlKsF33Ll7wnyekEoyKQu0MUiT9yVPypcKWkEU+QJXKMIQUFZS6Jo0BJCe/Z1NmvkpZ8sBm+DW3i0mayV/4a/8BcbFGh/cucM333iTjz75BL+YsVh1BBV50hu0sjjX5CFa26FLiQugUexOLZe2JSenM4wqkOoSAJVd0XQG58YoXeAWChWn6AvkSXRT6tFPYsoJZ7PEyTHsbkfefXvJ9WsxnzORpJC5dkpIEAPRh3xWjJG+7zE2Y2uGoc1DWFMyDJ6maSnGE2KKNE3LpBojrcV7GAaXK9gigc9V/CG2KGURQSOEoK4mXL8xpahG/OqvbPCH3/wG3/nm11nbmBJkoKhH1KOSK5d22NpaJ4otNrcdZ7O3qDZr+rZhMq5ou4HegRElwTtOvOPOwYxJMUGLhJOaFAc0PQOCycQyMZqmGagnEu0VSUMhNWhF9LmVEHzG4hiVhUKHZy3ny4bQ99jCEHykXc6QBq7s7/H6a5/ls68+z9b6hLqqSFGTlCQKD/0cVa8xnm4Su2WuScfMFvftOZ88uc/nOkeiw0fJww/eYnt7DxE6qo0aIQxaGaIuEKkHXWNTQsg9oltSrt1ga/splueHeAxa1aQ0sBKGopowLjuslfzZP3eJv/Y3tmgXPwLpkF/8Cy8CcOfjU6IpsNIxa3Kd9NL6Bnt7FqEMy9WAlIFSGSbSsEyOlARGg0geicoJTwVvf3yG/t0/oh0kXmYWp0UhQpNFZFahRKRPit/97seIjbt84aefI5GwKKwyJF1B8hD63NyKIn8fAwhls5QwRYIU+GHgycFdbjz9Ct5JfIyMRoqjh5+wuyUxqqYoFSlmiUtPwsceGQI/99M/w3g65S/90pf5u//Pf0hKUOqaraml6Vt2dm6Civi2p5URqyyvf+E5RBL4GGi7FilKNAY/BKSW+K6ljY5Xbt/kD/7oA6SpqbUiKJ1Z2NogpKL3C4RKLE6XnJ8uccJTpkQbAyHkZ9FaJbiyVjKfDcyKlmL905vNT9en659n/akHf05IhB9QOZcMFwmtGFNm6klFkCWISAwRic0CDllgRxY5GqOKEr9sOT4/4TiuqNa2WZw7VvOeGN3/N5GFymGZi8Ge9554YQSWMXH68BGjtQqdDBKJkAkpcpXVucxBUT+EGwPq4lAdkkMq+ODuXXbXLWW5R7NqkQyMizX6wRNdTy/IvJSL9EefPDYqvNIoKVDRk2RAZRMCAoFHYIWkiAkpPBEgRJJKgGYYArVMBJ/rAv1qxsp3FNayXtVsXL5EOamYaDjv2wz9v0j5RZeoFPmlVBhQmbOmSEgj8v+7MqS+IylLEh7vBgwJrTWDshhy/dmLQIqRVe9zhUEpUghINyAkSKmp64qN8ZRyNEKEltXiCN+1BBlJ0vzJpiFloE+gek8vY/5vDhqlJEobUBLtNH0ciDFSmuLCmukwukCJlG2aVjIMeQjkQ06VWa0YEKASJgZM6Hjp9nWevv4M33vnj/j44SHnK08/LNiZTtjb2uD44D6zs4aYoKwUdVUgpeaHs6t40W61F5tO4CLpl+Kf2G6lFCxPG3w45+rOBISj7SyL5YKXr68hRMGaVkQZ6JcDx6cPqdY2aKLm+PEhtbTUkwmInOZURlFrgSgsTeeYKstkUrCztc5aJTEKClvhibQ+0jsQ3tM0q1zHxSOLGtkPpORph8Dnf+xLPPXyZ9lZ38YowaqdM1vOiUIihSGgEVJitKfUJcrk+ldMIfPNlCGliPMrYshMQyMESljQCmNzBThIg0bnSq9IeQCdEsSQ6/Qkgk8gwEdPkAJTlfSdQ0RN8CGnUlWB0JagZa4RC/DeZei1TCgtcEuP0pIhDPTLnrbT1GXN1vomVdfyZPkYMd6ksoqb423OT845PFxiTaKyltFkjFcrZjNHshVKQoVAIxgGj7UVgjlCGGIQlEYjo2BYzlgtGjanNadnc5QHh+dktmI18zz73HV+5qd/DNUtuLy9TlVNULpEKw1IpBRoY/DB56GfUiB1fj7+EEJOZq5djFNJF7IPyODvzAHKFeEUPVIpQvxhclZcsHYESUQO7j/iO9/4Oj+3vo7sHSLNefHl1zh9fIf1UuGjzqka1VLYEd53JCEYT7d56cXPs5od8Mkn93j3j0tuPHWVpmnpho616RrP3HoG7waETDmdKCXTrQ0Wx+fUMhBSwEhBoaAQNbOiJMpHHJ08xNT5d3560jOua66tCex0TMQzm6+I5zMKCef9MstIVCKJSEEe7EUhEMIS81eeAY1vO+zuJaTUSJFvy1UpSVJmatLFZYEPAVzP6vAh0ej8OY0ZKSFERkggVJbIFIZhcBhpGMLAaLLGqnmEknnonTc1kUUsERA6hyCUBFS2p/qB2dkp9WhMVVqEyvVaJRJCa3yTh/r+ggEVYq70932bOapeIEYabTQpRlw34PpIWSTaVcPgwBSRz9x+iv/x4dsMThAlBNejdEEvAkXKh2arRL7MYUCIiPKghQURsPbTg/G/LuuFlz6LsCZvQBf26pAUIkocHmMNgTzciCEghYXgEFIRBCAjMiVKJHFcEcMImRzT6BiahojGe0WMsFycI4VBqEhdjwgoZNfj40DTt/RtIsaeNESawTFEx2LZ03eOpjxB1duEfo6Wdb5QTQPT2uAbhafj8t466+sjYnvOMLTAkthAj8QITScFKSlMCCxMRwgdFhhirjf2XQ91IJgi8zhJjCtNxPDszV3ufnQfsPRBMAyRoOYURSJ2ClPUzOcDTXxM7D0uCqBDKJMxFkOgMlW+kBKALumlR3jPujWgFSM9IsoSISS7W5rxWsXO1gZ1WROF5vTkjA8f3CP6iFaSwfcX+wL5TBgdpixYExURSVQaazUhDXRuQGjJRBqk17jQ4WWgcwIRO8pCoZTCB4EUUJkAQhFFTphp5SmKkpgfijS9p7Q6i1NIeGEgOEwKyCDpnaDpeqBnVOVL30Ipoi5wyqF9RATHlz73eS7tTlkKxd/6h/+Uxx/fQ1aKF56/zcb+Jh+/94iDg2P6kLBasj6psVbiQiQElTG1KgtcZNC0wSM0rFtonWC1TDS1YBF69tdKFs2cq2tbXL++wwsv/yhPP32Tj7//JsujBcV6YjwuuHfnDoePTxlEgMKik0KESPID+IgUeaA4KkuG2FOqyOdevs721hbJtwQpWDYZs/PaKx8RxX0+vDdH4lkGz0+/dhktOn7rq5/ht792E74Gdz5eMZkk/vKvlqxNI/+H/32XsUPUWVYWPUpbhCSfl7SEHw5piwopC0QCZUuUEggiRhtGkxEihWyxF+YCXZPfR1IKIBwJRdOtGFUTlNK44HKiLCTSYNFKsX9lh9F6RV0qrHZ8/623KVBsTgxVaei7AVXXDMsZ9z76iPPZjBBg6Dyx7zAyEqLCiUQQgbV6zHyxYu2SpZoYjs7OuHfvCGSF67NobGd7wsfHM0bVNh7wosNSEQYQKmJCQkrwBB6dn3P26JwGgyahqzHNaoZRiT/zE1/gSz/xRa5fvYqRuQEkUspyISOzLVYaCAE/9EQp888ah0qAVGzv7fKVv/zXiGnFyZMjxqM1Ht69w2w244XPvMr5wX3KzV0KC8qMiFGhkqdZLVFx4P69ezx6/FU+/5NfoV6b0i5PKFWB0BWuixS6YDTSCC1oO8GXXoEXnn8WpZ/lfNbxD//+H/N/+5tfJ9gRUtrchgKiTfgYUXS88PQa+9Mx9eUR48klhvk9muBQsgDXooVCBcfu/h6X9zeZnS5pYqRSI2SVEF1AaYm8YDyTEj7CN995wM1XFnw+CZRI6MLQu+EiQJERSNG1GAFqUqAVeJHPQzFFdBjYe/pVqskOxdoG48kWgcigYGN9nC/x04CiJrcaJJIc4lFCo3VuW+1u3eBX/me/RBjaCwSKou0HphubDL6nWa0Ig2drYw0tVUZbzVc08yVFOcILcCFQSEldlyQ0t5++zNUru/zGb36berpBM7QXCByHtiVloRAI2uCodI0bIlIlDDlxOu8dszbw4HDBO/d/g6cubXFzb4uf+Ev/UrfxT9en69+K9ace/Jk45JcsLioHSESURJG5Kl2fZQ0InxOBIRCkoBs6gvO4PtE2nrZNrDrBwfFjdtYdYrxBNzQon8H32ohsKJQ+M6Ai4AdcCvjoGYYej0cMPVMrEVLkw4hz6ELTOodG0LUNXeiJGpquQydIWiJd4tG9R2xMFLMmsjqfMzLrTK5coRxp8I6maXB9YBg6tJZoW+C8B6FzQs1KxCAIZJOjQpCkIJIwIl0kfTRBlcTUUOAIRuJkQXdykk2NyXFl9xJb21voQhFEQrrEMHiivrC4aY2PAltdjA8c9EODqAxCSqS2KClIIsDgsl0suMz88gmrNF3XE5KgnNYE5zBCMWiBROB9oO86CqsppMw3ucbSuiXH8xV6VRLagWpcczJfoaqScVGiIwwi11BC10El0T4hhaJQ+qJOmq1mTfD4GNFWAwExDFiVX36HGHJCsPUowPselEYKT2gDRtaQGp65ucPLt59nd3ed3/ynX+Otj+/RRxiGgUlVURjDwdETusFjTU1VSmyZ0KpAGUXXhiw3wQMaHwZScKBApAQXVddZWNGdwLLvqUeGNi4ZCY/1PTf3pzz90ivcevpZLm2sc7aagRxzvmr59je/wxtvfcTzz97guStXMTZQTDfoz1aMbEVvBMv5innXsD3dY1Qb2n5A0BIELLsBIXxm9vSRoR8wNlvifCrRHoyVVL7gR372Szz9wotMJlu0bc/B8RkBkLLAyISSHWMNWudKhURgtCAQcF2DEIr7Dx9QVyO2N7ew2uaBRwyZned6vOsQPl7ctgXCEBl8j5SCwmiEslhtsFplecyopiiBFPmjb3+H5599gdpoglR4Et6HXCVOniRihjcbjXcJYoY/K50rw94DJJresezOmYxrptZw+8YVHj855Dx1zJsxd48/pBsWrPqBzfVNFotsVitsrmeSBtCWJCM+9jw5fUTUksG3GA0q9UTR8+qX/jzr773Ju+//gGpkmTVzxoVlsXRYNXDt6j5lXTAa5ZpVUY4R0iCEROkCKbKrVxtDkhI3DChzMUDKXbMLh4pAXBgaEeEiXakuGI/ioqp/kTSLEREDIiQIHpUSxIiPHc/e2mdafpFnXnqG//j//H+hEBFT1BmaLDKb0uauPr7pmB8/4uT4iCenT/j8j36Bs8PHrGaHrJolb3/vO3zyyQH3Hz/i6rXL/K//o/8N9z75mG52wqufeZmP7nxEDIJnXvsJhtWSkZak6QRVGNBLlEloa9hZ26JffYDWK+Sg6bqBYjth6hH7l7dYzJccHBwyH2DiFZ0q8CkhL5iCkniRCMhW82AS9ZCTP0JE/LBg2Z3ilcOYAoEgComIniQTSkqWRw85n8/YGm1nYQ4h34yTk8rJJypbsr25yT2pKEvB4sljfP8sZT3GFBVBSpLKySofHFobpDL4ocsvLFKgZEYXrG9kCPt8fk5ZFkgZUAGUzXY/pzTKVAxBIURkVNbE5Dk8esK1azfpXA9KknyibVZZdBQDB48OGAbHeKq5ff0mL92e8733H9APEa1Mfl4Fj0iJUiqsBidCrs+onCZB5GG9Up8O/v51WeenByzdQNt7pDCgNaooGFcGW9RYazFaU1qL0oKmmbGaz9lYX8/DZyGQMlfiSBFJQCVHkgljLIEc4pYIVFIsu4G+9wzdE1ShcB008wXODThVwNDR9z0xJoaYEyvKSk5OPJvynBQkQ7dECImLA8/fus1bq3eZnbecnbVoJBuTCZe3NxjtWnofUMKR8CwwqBCp64oAhDhwdtbifUIqQSsd933EzxOVVqRYsySyMS25vbtLGRPvPXhIITUjGxlvrDFfdCTXInzP2sYGezeu07c9AYEtFcveQdK43mGJJJGT7VZGJuMR25tTpqXBK8nQOFZDQ201hbEQFA8fneHjET54RmWNNBorPcINlMoSNOgEUgiq0TjvYyIRfUeMjuQBqdDaZjawT6SwQOsSpCWGBU3r2Kw3GGJAaZMt7sGRfI8QNqdf0kAMA1EkFIbCGpSSDEOfBUgEpFb40CFS5vvZUqBNiZEW4QeESHgHRMGkUFy/usXWxoh7h6f8zte/w8Mnh2xtT/nsj3yBSVnz9W99g9PjBfL/w96fxtqa3el92G+N77D3PvuMd7637lQjq4pkkexudrfIbk2JLBlQZBj5YEFCDEOJkcFwki8yHDgJEgEOEgRBAgMxAgNWEiexZcOaoqg1tLrV3exmDxRZTbLmqlt3vvdMe3qHNebD2lWdAEFCOUrSMWp9IVgED+qcs8/7/tfzf57fIxM7bWGWWgsxF1FKpIxQFVqWOdT7vjjUk+RyW/PJMCAVROcRMjEMif1Zy9p5nq3XiI8/4eL+nMDIe+/+Ez649wFRGkLfc2PPsNNMCblmkwK1FkxNRR8DuwdTDuoGI0vkdNpOqa1h4zJRKqQUXDo64V//l/8Dbhw+YSk89ZOewZ/h1ufcvnSL0dzBec1f/asDr7ycuXJFIlXm3/lf9KhaoGyFjAaEKU4/W/ATMYOqZpBLokEqQd2U1ETOGaNtWYimUnxmbE2IkFFgW7oQcd2KoR9IKRLyivWmIzjPwa6D7JFKsbu7SxaRcejJCEQOVNpy68rL7P6pPS5dusT3vvvbPHy2YNJ0vHCpxg9rrNTsH1xl53SN85nnJ0tq29CNI2OItEbTKsPgM27tSBcEXR9o65bz8zMmjSGOG3KU7E0bxPMT1j4yVYoqZrLJCOFJ0RGyJnrF88fP2aSeuzcu8WSxJGx6Brfkj3zty/ziL36b69dvFMQPsqAIlCalsrAQ23KzLARSWWQqy1ClFUprgguQHDlrZIKh7+nOz9gsnvHs0T3Cg4e88OLrtHtXiOMG6j2EUFhtyKLCWE12gUu3J8wPjzh/8C4X77xFdB3OCyphMBVoo1EaZu0OH9wTvPUW/Nf/0nscHS3JPpLiwM2bVzg5O+WsX1DrKVAapPtF4K0XL3PpWsvpaeCT52esN5KrFw4JaYHvArsXdxjDgEiGs9MlRgoOdufE0SNMII95G6eWJY4uZEl0qBofR6ypISaG1QYRA229ffbnUhITnMc7R4gRhaS2BpEiSmpSDmhtaJuGJBLLs6cIFOulYHf3EGMrnHPbAr6SkhAxElJEKklVW0TO5JDYmUxBCXzyNLphMttDKoXKFiE7Yg5oqxjHHmMs58tzpGkKzsA7nB/RO3M0hpQ9TT3hhWsHfPjex5wsewKeMcPoA1qMEDIJub0vDNQaCA5rLUqJ4rJUkspaooIfnTzj/aeP+B/+/+Bd/sX54vz/+/mJhT/nSiNtjKC1KZXjMRBR5JwIIRNywMdI8IGMxHWBfnClxXDd4YaRzdgTc0SKCU8fPuXiTctkUrE8XYGCNEQkkTgkQg6ImJHbNtysJUpmsioA3aA0bTVlDLG4q2JiXHeMKeP8SAwOq1ThBxpJ8BJJJBnonGe3VhxdPmB/f5fluiOaCp0VzWROO4PO9YQx0vkBIUDGiEyCFCQyRaKUhQsSIpLykkui8KsMkoGMES0p9GijWJyfsNtkLh8cYdodrLGfO/egRAAra8hKEkMmATkFyJqUE0kKvBDUSWydWqV0IuZSa66UQZsiOAhTtkbTWcvoIzoLkJYgJRGx5QYljJJoRBl2fCD6iEsSaRo2bkQrw+lqw6RpSCQW3UglSwtuGEayMUXYS+UCUkpPcmHn5XKZ1WhkBCETjZX4RIlaWktMoNFkP6JtAXLnVETFqVUc7B4wbywffvIJ//BXH/L09CExT/HeMW0zuMDZYk0mU1U1TWswGqQopS3OOciqxImlIMTtxTgnJBkZfWmgdZ7184GVH0gKZOe5fWmXN16+w63Xfobd/T2O9mbEzvPs5Bn94pj1sEZpz0//4s9x/YUX+fiDd1AiM9uZUZkWPYPW1hhjmKgaM0yRMjC4AaEsKml8iGWIlAaFx8eAVoaYR6RLtNKgTCR4z5d+5o/y0ld+Fm00T54/ZRwCWVVkHEJ6QlIoM0fVNWYb00hxxI2+ON2kQgnBg/vvopTBuxdZrjZshg05jnSbjtGPSBEIg2MzlMZXkqRWEq17BDVZaWKKkBJGF3ehtZad2ZzT03PmB/vsHx1ijcUkiUCgKw2dR6QAwpQGRFm24tIoyDOCj0jpySHR90UYWW/WGDFhamuO9i9RtzUP3BMu3XyF+w/O2J16zjcd/ZC4eqHldHlOyoXx04UOGxWtnOK8YL5TbSMrgd4NEDK23qPd0czahgu7jt957xlnpiIIQWNh8fAT9t+6S1tVVM0Mravy701p6Us5lebyWNyNUioKZY8t57JApss2tUR8s9IQQ3H/iPL8/IOQtNw2FeUiusoMJJSpMHLC9Tcuc+PLgpiKi0WhSKpE8pWUiJRI3gMRNLT7u9hpy+HlfRgHdmYNb771NbS2LFal5S4lwXy+R9NOePW11zCyfB9f+6lrvPf+uzy9//vkIBGmopntI4JkUgkaM0PrloU+JYlIPzzka3/kRS5fuM2Pf/hdXNBU9Ry/8VRWMriRk7Mlu7Pyd5RDphOB2mgMgqgFMhRfpM2JXEl0s4MbNavlGuNziVeJUlCjgJAhuAUqDuzsHtBeuEoigMhIYbe/H0cSmpgjm5MVjbRce+EiKox0m3OSEBB3kJjyXN3+XoQUGKWJocSltdCEHDG2RamAEAIpBaenz6msRkZJpHzGs7AgWoxVGKlwKhOCo22qwsRKCaFLM2MSpYTBh4Aymjgs8aGlaVp+4Y98mXvPlnx4tiCJkVaCTmwFXthtKoahozKaSa0YxAiAtRb9hfD3h+ZcvnKE28YFu3XPMI4Mw4LFeU9Ek0Smahsm9Q47+0clFpAMyUtMY4g5FIEpJsiGEEBlUfqYhNuKBokxRXoyQ4q4LhD9CFbRjRl8IA6OVR6xW1cGvriqckxFVEqG558+pN7ZQ7iIlqV0IwVPXUuqjYQkOVuukKYhpIyNa9DFqRuEwiKAQL/oGIzFpYjZNti7GOiGxALJGBwIj9ItksD0wgEfnC2wzZwbt6eIPGKUprIVF2Riqi3Dpmdnf4eMYrPakLWm2wwoNJ1bsNvWTCYts2aCbSxTLYsoJcs8OoyBYd1h2xZTlyhc8hEpJLXWZF3ekSlElBXEKBnHUniljSlObl0YoMMYECjUZ88kBM6XoiJERuuGznv8uGI6qahbVdiDyFJWlsvMpKUipuIe975AIbTSxV2cEyFmrCnR3kRmGEe0AlJCC4O2JdQf41iW7zHiI0x1ovU9YlT8vX/wK9x7vGaxWnL37mXe+vIbfPr8mN/77u/hOoe1mmmrsLUsaI7Rb13rBWMRRYkpS4qrOadEEhVPg8Alg06eUQk0EucEnfPU2nL/2ZJueMJm1XO6eQoeFmdLGBK1abj5whE3Lh6SlS1OWD8icnGAay2RSZTSjLpGodgMHSlLklDE4Jk0nq9/9fdL2ZUP+P4Zya/YbSxv/Myf4Hj9EgAvvRx56+sZESLBBe7cyai6gW3TbtHTi4gnUty+hxU5xG2bdkGdeO/hM35kToWJnMt9J6ZEzBkfAz54YoykUArPBjdwtjhns1nz9Pgxm+UpRje8ePc19g8PqZREAeMYWQwrkhgxyvKlN77G7OAi3/+t72DCEmRmMplgc0bpinuP5mz6NYGAraAeA2ufyDEjrCF0G6rGMmsnCJkZlz1D51B4ZrMZ0/0jTu7d41I74fG6oz3aJ+NJhd2CBzZh5MGnDzmYzPj2177CwbThd95+l3pvl5/+uW/w8t2XqEyNjAFpLMJUhdkrFYJUmMYCyAFJBmFQqvz8QgSSIAuJsAYbNRiBWW+4cPUC2a35Y//8n0W7gGotk4NrEPpteZEufG4ElWzJIlNPpsx29uiXz9icPmTn8gvUi2NillgNlbFonYnCIWUFwOnpBFFaXdjbfc7Ozgw/HqLCKd2mtELfvTjlp16/y/ufPEE/79nbm3MW4P6TJ/iwwW08Rkrm8z2yiYWTer4hJxj6AXLhnqqkwUSEymhR0lYlDRKYz2p2dxuc9PQ5M/rAznQPscVq5ZTRSiGUxKh6i5ORCLktIkORQkZrg9IVs6bF+0Q7kbTTBqEM2pbZQQhRCjrL2pkQHAXw5JECamt5dnbGJ/c+4sWXXseHgHQ9dTWjMoaudwX/E0uB2dhvmM4qjFH4XBJzLiZU8hRrnyT4yLf/yDc4X2z4P//DXyfpKTlnUorkWJiDggGjS7IkbBErWUa0oBRO5UQYC9Pequb/Oy/vL84X5z9n5ycW/pJsIY/45AmxbFeiGAhREkZPypnRl9ryGGMBlq8H3DjQby86fhhQsmxNM4KsJMef3ufqy1/i2ckC6Rw2aoQayE4QBaTsyUKRYibkhNWSHAI2gk8Dg5MEF4nOsVl0SCmw2jKGgN2CVIUUNKZiyBD9gBIVMSWODvcI/cDoPVl4epeQ0aCcB5mJKqGlLsy1tI3d5FiijiGRTAEdK5mQUm4bOgsjxApB0iV6FZVlp9ZcnV5gstOWjWxKJMrAKVJGie22kZHkRnw2W16YII4JIVKJrtkakTMqZbyEmBIia5KCCokVEtsaegrn0NZ1+T0NAaRi7cbiVgK0tcjgETnhfMZ81qYrJTJ4bE7IKBhDImaBqTVhLC+xWslS7iAkyQlkdmhdFbEiRZL3GKNpdXmx1NYWN0DfoXRdSgcUJdKiAW2QIqFQVNYwMTDfMcx3d7h/7ykf3HvM4+Njrl3eI0dHbROVrenGHpcpDIjWUlVlOB5dRiiHFAptABmIvjh5JA1aGqJIkCWDTxyfjJyuB06z42Jl0A1MduY8e9xx78mvcufF6/zMN34GLyQHN+5gn1Z8+nu/xWKTGD5+xtGlPV5+5RbDecd6SHT9EknFzl7Np9/7HWa7u5ydJ3b2JtSVwgWHjyUeqzXILLB1hdWGKDIhS/ASlSSegde/9i1e/No3kSHz/Pgpm6FHKIuWxYmmlKK2LUZk8AOjS6isCCKzcQE/jqxWC9arU4yt8X7k0/vvE5HoFIgigspUpkJmjcoalzeQq+JyVQklFRhN8g4rMlJmRC5x3951jOszrJJ8+PZv87GpqCYzdDtld/+AS4cH1EZTZYkXEjeMgCixWCBkj5CFXym1pK57hrEjjILH61OMbRhd5OJ8xsF8h2EcuXD1BbqTj5EqM4SRw51DzrvER58eY6uKy/s7kDIxg+scO0eHrMOCGAVDEBw/W0Bzn5lRtJNd9lNAbjIP16fMppZm1vJzb72BBZq6uHKkBKV1mWW28bIYisitTXEC5pQQQhZOaS5xmdJUXaIdxRkttiNXLkITpUBF5G3rrzAIVWFMoU5GATLJz4VCpYtDLkfww8jYdXTrFUO/QIptZH21hjRysH9A9iNOVMUF5FyJFOfIfDrBeUcOK55+8pQYPI5MzpK+HxkzvP7SK1S14vnxOd3mFGUkIVlIDq0bZrt76EpRrecgLnHx5jd4vlzz5N6HSCGZ7s5o1wfM6po09lhp2NutGdyIytXWFRkxQZFycd9iNWYbWdcVfO2nvsV3fu0f4YNH4iGDjMVJYGRmyJnphasc3Lpbymkoi/VEaZ4WQqFE+bt7dnbKe4+f8bWX7xDjgPcRX0+ojS7twqYp0fUQipNKKoTUKGOJviNG/wd8zCypqrYUK2wby3t3hpBy+/9LOCKIwskMPhDGkURiIwXOOdw4IoSg6xw5xILIqAMqDPh1V8pfsieLUFrNKUIvKWIE9EOP6zN83gKsqJT6wvH3h+iIZp9aCJpJYjZ122cEpDiwcQk3LOiHkcX5GavzBT6VxvoNnmq0TJRCC8halws2MCZBQDO6RIqREMoc5IaBVTew6hx+iEQJB/MZZ11PFTKVkizGNTKVFYV0nhQSOUesikSv6dcrjKlKI64SjJuBpm45TSf044CuAkZnrCxtuz6WWSM7T5CAj+TWILOGUNiFNoGJCmEFUUraaEs7rRGQWqxMGGFxIeKjIwTPMI5MzQgm0mWFrRvCpocoiEJgRWIzjCjp+dKdGxwe7ZEcOO9xQ8coQEWI0ZFVwTFM9g5RKRJcT0wBazVagZHQ+YBzqSBWhMZtsQyt3TqYQiCnjAsekUUR6AClZCnykJCyZnA9QkoqU96lIkFlJdH1aGW3xQ66oB8IZDzOxbIkMmVmzdvm2LIIFJBA5IhVxWWudELrjAsbwtapI2Vx6+1kz47WJNvw40cLHp4tOekXfP3Nu7zy2mv86Afv8P5H72OrBqsF1dTQ1BWkSHKRhEJYXZqBx0DIHSKX5mFU+XdZLVdl+Wcszmes0FijGHPmzZde48LBLs83S9796D5BC+p6yv1PPmG3lbz58m1mc027s8u0MqWwSBhccKQkcSGRUtxSMxIuJtI4kuJYZgYfWfcr1v2cf/Rr3+IXfubXaCcdNy+9xXT3Fm/89C/w9KzlR++UqGYOsDpdkoPD1CWxkJ1HqMJQzGL7ji58h5I0QpV2d0pDfMiiNPmK4tIvSFiFT2XBt6UbY7dOtiApkWgBWkumkwalLYPrmOtECpEfv/9DboW7THdaammYVTW7Tc35umc99KQEexev8c1f+BM8v/cjnt7/hOVixfGjJ6wGT9etOD1fgpaMzuL9Eu8TstK4CH1MuCHQrxfszFtyTPgUUFWFkhX7e3M2i4bJTkVer/DRIwhUWSIi9MCTR0+4ef0aP/2zP4eKHWlY8a2f/yavvvQKWTgqY6ialkgpOixYkjLXSK1KBD/F8qP9/L1ZxBspFEIqlEpkqcB6cgrYWsDoUZMpPibqw31SewB4+j7go6a2CqkkSmvk1v1fotqaZnYBne+T1kvUbJe0OKWa7KOrBqUDRmr2dsGaxP/hr934/Dn9P/q3PDYN/J9+9Q5WOX7+m9/n8uXf5Y0vZ/76L/+Ynd2abGpmc8Gw6ug3mjO7YVyOmEYyWznumAlKwNgLYlZ0vSebGgVkqQgpoMrKgKgEOkmc32CGgWldI7GoXBYoQknS1tGfRSamstzJoqZPjqlpSckisweR+fjHv8ls54gdO+fk2TMgMfqBp88fcuv2XUKMVHVdZqScyamYCpQIpSxIFkE2hozMkt2dOScnx8xmU+rGQujp1mu8C2QShozb9HjnCaPj+Nkz2M41MSRuXL9O1U5pZzsIqdDWcPX6ZS5cOOLekxVClZZrpSxjv8AgaI1GpIDUmpQEUguiiEyVwdQaFwLJJ/r0BcP4i/PF+c9yfmLhr1ssqSsQRtEPgdAnfA4IkdgsB1IOuJAZBsfQDwxDj5SJGD1ZaIyqiEqTVMaiGQnoyuLPTrn/4x+hd3cJ65FgSouilLnwi5Kmo3AIpABpDcJBdI4UIIyeGIpw1hhNGB1aC6q6Io4jSUmM1qy6jtl0zgu3XsSYOR998h5nqzVnZ2um3jLfb3DJoXOBpkY/krREZYFG48aEsBopFYZEtoaUM4qEkGXwFiQUCSUMLimIkdkk005qmqpCb2OPXkjwI1PbgKlIOpOdQ28HCJXhaLZD5xKrcUM9qwjOM44OYwVBFNFUmwn4QIiJiiIg5hxxXvDs9AyLosmF15aFRAiJkQqpBSpDioX3t0WJkbUs0Q4lGN2IrSwiCyqh0VmgUUybipQcMidqO6GaTDl5/IidvSldPxIGh62rAsjPCSEtQkpC8MToUNZQaUWKkHxAbu3kUhVItEglYiCM5cGTNT/8+AnGCFSrmezs48ZETBsaO6Hb9MQkaJuG2aTC6oAgbs1UBmsSKSm8XyO0KtwjEdEqQaZU1K867j8/Yeg8X3rpKt/5/o944dIRR5de4IMffsywScxs5Hu/8l0cllnriJuO6y9/hcn8iL/7j/4Oflhz5eCAG6/c5OGTMy52AjGxHO1P2Bw/5+adVzi4cMD3/8O/znT2BhdvXCZEgQsjoxvLJnkc6ceezaojpEhIjlq3eB+5+eJNbr38Jt15T9ef4lUpPxEUZ1alJTInTp89xlYVVy4cII3lx+/f43xxghKelAUhbIi+QCaFUKS0dQKGUnyiskRpyRhGHInKNCSX8T7Qj+vS/ls5KmMLPzMllCzxzCwkUYJLiUpE0rDCDytYWU6f3mN5cJULl69j64rF8pyh67l750XW/RIdQekWHwMhOzwSoRsMljiOjMMGHyIJyclxYn7UENLArReu8uHmjEr1TJqaurWEccTYmlEoDg8O2JycllhBGNmMIyiB1oqh99y7/yE7V6+wY+ZU1QmNb7lyeZcffPcB3tV862uvsn/lABeBqkEpuXU5g20bEhC8RyuJEiV6lCgOPSHk52w/iSouvpRL+x1sV+BFmClogEIETNtYzGclK4KEIKBTaU5244phtSSsV6QUkDKyOT/Hb7rSTmgtup0wn06YHk5AgrFNacw1TXEOOYeUCTeWbWxKkeAH8I4QIsfPnnK2PMFoyeNP7vOhlvzct/8UB0fQrc9ZbVZs3ArXT/F+RQ4RKy1mYlidPONX/s5fI+UekwK1gkfHz/jdH77DIBxVFPSLDUMfCbXF6ozY/gByjAStaYIkV+XSKbynliN3XnqVC1euEzcrsrQokYgqEKTCe4WSNSp5krZl+x0BGVBqWzpTePREkVCVIVNz4dYdgtRM93YxbU2SGaklXnpcHJiYpgiMSqGMJpHR1pL7DSH40tKYMk07JYaA9yMxeJTU219tKC2tArQ1KClo6rJ0SFkQQyb4spzIQgAR50e8kySXGdIGHSTCJ2wKxYktSizcar2NTmV678lRFsSDiGglseKziPkX5w/DESKjRBH10bpECFMmiJZaG6wx7OwILu5GxrRm042E3rF6+JA1gmVboeqaqppysZrj8JwGB6Ej+ZE4JobRsxkGurEvn60skBGGbuDB4pSdwyPcsMZtBsIWQh98oBIRawwjiSQDgUTuAnrHYDA4X5aGwrSMG49UmUltiVoRkiJGi0mBfhzJIYJISKHwWSC9J+ciQo/JUUQUhSSRcCRZlXKjLEqZVYpou3WIx4ad2pdLsrZIo+mCo9sMhN4zpA3Xpy2TvSmzwznSVpyddPicMZKSUHERpRRJqFIKkBJSBdAJHRQx5TILpczGhyLuAFUWDJ3HVrYUcmVZCjmURFlD6H1xvRGo6wYXIpVUNLZicX6CVhqty3NISo3SW+fatpU75VJolFMmOLEtPVHILIGIdxmlElbrUtghy8JHbsuhEgohIjkKBBpjFFIn0thzZTKhsoZVB08XC54enxJc5suvvszLt67zO7/xmzx5esyktqhKMa1qhElF5FKKEANGq+Jak+W9LoVBFKQ1nYs8P16wWnegIvP9hnMFKnnuXL3AdM/y9dfvcPL8CbN5i7t+iXc/fsbZ6SlaaJKzfHd4zN5BS12vkCja2mKVZdmvCEIw9gONFlw/2ufwYIbOGecd0ugiCMrMtGkY+4a/949/jj/2s79KpQz/+7/5r3Hv/u7/3d9e2yYkj+hXI8Jo+t4xURV1PcGgScStHhXLXLhFc6QtUkGI7Xt5G+1NOZWF9/ZvOOWCZUmxFOoJUZykQlSo2pJjQCTDVFmU6ZhESW2OSgFELkmdFBMrF1n0CyolmDUz9qZzxjCwWHYI03Bw53VsO+f0/BHVjuXTp/cZR8k4jpAlT06OubLf8HTZse4zT8+WGJXYMRXL1YamLs6rlDxazRFAUzUgFZOdCerJGTGELYs0MZL49MkzVMhcPriEVhKT4eILN9jdPwKgnhyilCUJUZyvSm0dflsEEQUJn1Pa/oxLtkFKQVGZJClGIJLTltUuNEZNkNMpMiuUcCjdsnjyAJkl33v7e5ydPuP61cu09YRXfurnS1JGJCSaLCxCS4y5Qb8454O3f5ebN1/BC4ePkidPeyaNp6ka/o3/7jPW61Jul1JG5AohLH/mTz7DxYBR+8TQkQh88+tvINUa70cenW7IwhHxrFaa+XyCQPLoyTNGB2bi6PcmnJ6fM9/dxaWwRTbk0rqNIqqMDpFcKV7QNX/xX/0XOLxYQdqQUodmoJYKQQRKKiREXxAhGKQbUDiyCCVjkjU3Xv06MgfOV+ecLp8jpWS1SoyDo+u6YiSJiSQTUsmSTqsqZJb4GEnRI0ggJbt7e5i64unxc+raAgIfPXVdo6UEnelWZzSTPS5PbrFYrpnsHFJbIA3UumZ3/4hqOmEIidENaKmp2ylfef1lhHifTx7ex+VidjC6PI8jglobfCysd5TiDE/cztRjClghkP8ff2t/cb44//k8P3m5RyPYLDclotIP1NWULiSSG+nX6+LIS7FcJrfiWU6p1LFLRfCxuK1kovMDIWX82BODZ+yeUcVArS0uD2jTkIwnxFiadUUsCYsk6cdh67BJ5DEXuCiRUEmGbqBG0Q8dVIVbJyvDrTt3ODo4QkjDk5PHfPDpx1RCEl2i6xNDclgTEI0gRs8YPSJHYke5rKcMSiLWI82kLpuXHDCl43crgBpUgpAzRg7MZnOmsz2syViR8FkSZeGEqJgQZgdIRRxNUNuKoe+JItIqzWK5IqWMNYYQAjEFKqvKdloKnB9RXpKChzAymR4SQiDESD+OzA4vUkdJHwfi6JF1gxRQaUHyrhRBbLe3IickkjEnZEpUMWOqCicV3o8oDTkJxlicmylnhuzLdm/smU0M3bDZbv0bpNb4GMmqCEzkSJKCiCkOu8GTksdog/OUCgYf0VKgrWXtR07chn6ICJEZvWKxGqltxLuIrSybYcANmUmjmE8tVS2JUeJ8RCmDIiNyKvECpYlZFAdOqkCCc4WLsjk+4dvf/jphXHD92lX+6Dd/jpfeepN3f3yP3/uN/xn/7b/8P+Du3Wv83f/4/8h/+h/+Ev/2//R/zKP7v8+zT9/HC0XImmx3qSYHyACvvXSbC5cO0dnSuRN2fcWbP/tt1utjXr5ygbPNyKLbEDee9dihYnF/RhIoqNoZu1WFNYKE5NqNl7h55xqu6+hch5QBoyZkobBArRLBJ6S0JNdz/8FHHOz8HJvlGZ/cf4+6shht8W7AiMK/FAqMVpAFQgmkzUQKsyf6QCMF0TlkM0caj1GeMFZEHHXVUhmF1RIfSvRMbEWskDI+BEYlybIwH9Pg0VLTbVaMQtCPjl//tV9hf2dOt9kwP9zn4u4+PiywCIyq6EUmOouQmaxFcQKMI5VWeDLG7uGdY73umB4eMdz7CB8bgha08wmrh49Zec29Z2ssBislQllOzpcc7NaQwViF8xIRJbquGcYO3w/MdiWzieQrr93ljS/dIiSH1ZY4RrB1aTI3ihQDGbC6xOQRn/3ndhzZiulFxaO42lIZqNj+cyHldiAWhSGHQOhSNBNTLg29ORLGNXns2KzOGTZLoshU0xlVPUM1U+bXXkSYGoEtX3cbQxJCkHOPiKWtOokKI1PhuKRMTQGPK6W3je0SITKX7gRiiLih46e+GejWx6xPn4KpsVqR+w07WtBcvEK307Fan7PcnHF6vkbUmjxmemepteTpYs1qNTLziddmDS+98RqqbnhyvObv/uZvMxElCpisQTiPEgIvIlmCCp6EJVcHHB3tsz5/wq1XvkF0HtMqsixMJJUSfQ4YbTHKFlHFRUJYo5sKaWqSgOwDla0wSbDXGMYc0XZKimWgbmoLuQzGQpaihCRS0fBycZ6IlOnXq+Luk6a0+SqDNsXJYWQpbCCXTbV3Cq3KM3CxWtA2EyaTCUIYQo5Yo9Ba44Onris++fADVsPAbryAQuPChm7omDVTzjYDIkSiFtRZFLdpLG7s4jePKEr0rNU1Pqd/ZoPCF+f/vROSLDxLWcS/ELdu/5yQyqNrcCNIXVNpsNUENw20ByUC3q9WdIsFXV4RDxwxR5LXhKVjSAO9H+nGQMzFORxjKRxTaYVOgUXX4x8/ZiJLm7jalpZVFCEgRpDby7kLER0cWU5JWhB9pE8dLkUOj+bMJpJrV/Z4sqYIeNHhhSDkUu4hhCsuRJVoY3HU5RAAWRIRobzbrLR4gABSBYQCH4pzKocWkUa0VDiriztr09N1a6TPtE3DletXuLs/Y0TyfDlg5ABCoIVFikxlRHH6JojBFzyFkKX1Pme0afC5/CwVAmsswg0IA0rW5G0pQXAOkRLCGmLOdM6TpSEFT6S8v2fThrFb4mJg2pbvzwWwNhFFROo5WQqG0W1joYGYEwiBUjVCZXL0JU6sStGQVQrydqmcSzGUEBBiQuiKLBIhRrKq8WFkrhKvvnSNg/1dvvf2Ozx8vsGlDh881y9dZGdi+M1f/y5L5zGtYVZXyLoubfN5KAVeWWNMXaLIUhIzxQmXAkpCP46crTasVyuaxsKouNDW3Ll8kesXprz+ymvMD3ZQvmO+d5d7n37KB+/f52TZ0WbDIBJaRnol2Rx3WF0ChoYlKUcO5y0mRy7szzk8mDKrFaN3RYzz4IYeHwZiBoNCVwN/+b/1V9jZDbz+1W/y7/9vzpBVKVrqNp4x9sx3IxeuBKIQiJBQ0pafH+BCKN+j1HxWxyVFEYEkGWQpmwOIYYvTKL+M4poSFOkwphLjloIUMzkXV1sqGU20BGUMtZqRaQhOIVQihAGxNTVYpXE+03vHmDMyw6ypubx/wOnmlKfrQL17CWUMbvEJt+/c4NFDR+8iLve8/9FjvvLyV/nkbKAfi4Ajk0eLzBgEKVdE1tSqQQlVSsaEQXhJpQw7k5blZsOkOqAPPY9P1mw2iXmtEcqR8oZLR4fszvdo7Awhyv1LSFlKzSiflfKzVIX3nnLBuWzjnllkpJAkPDkWzm9xt2ZE9GBKiRd1mU+jjMhoiKrmV//+X+fG3a/guxW/+xu/Rvuz32Dd7nJzc06TFEn0ZGmRKkHyxOQZ1iv+1n/wv+P1r7/F+dIS/Z9gsYh8+umau3ePCtdyGpHCkFLG+xkpBqZtwOeKYZRcuJi5/sIRY2/YnD/h00f38WJgp26plOB82bFbG5yTYCwPHj/k9qU9/Mf30ZUFAbUtArNMsQh3WRBDKbQTPiFN4uZBi96ZMOaKpm6ZTHxhSqNIKWzL34rBJDpHjBYhKnLWlKrCnqpuECkj1z3KTokxo4zm8PAyWmiGsfA5YbuEQhCkxCRREF65FMm5BINPrDYjB4eHWDtBZEWIG1Ieqdo5fVyTJWXWlw0pnqNMxrY7GH3ApG1QRpGyRoqBnD1KVCiZePGFS1w6mPIf/Y0HPDn3DN4hRZE307YVWYoBJSJFh5SMMVI5AT6ClJjtZ+6L88X54vzTnZ9Y+Dt7ekwcJdFHlstzVmpFnzXZB8LQF8eKKi1gn11mIwKbixiFqMi+x0kgClSKJAlBGoQqjZHKBbIRaBHKZTBJgg7kcSwNblt2TEppexHzGK3RSFJwqDAyKsVEWvb397ly+TJKG54vFrzz43dYu5GgS4OmcJE0OhCaMELvC30l54gPEfnZNjZ6XChRXjcGBAE7McV5EQN97/AyUelAXVe0raZtFNq21LomikilNFZrjCoiHv0KnwNRVSgRER58Kk143keOfXmAN7oi5sCw2DCbWowxJZqiSpOxVxZrDcJrOl8iPjrJIkRWhQEiKG6kSdXQ+7FEgkggNVJpnBtQGbQqQ1FdVaSUCFmgoqCSGhE9gVQGoBwwwpCMghyIY8ZHUNpgZInKjd6j9JarFx1KlktPCBkRS22nkgqfEzFCI6DREqk1Y7/mrBtYjWAQTBvDGLpyoU2ZqAwuRGK2zGaZ2aShqgrzLISE1nVpt5QQsySlQEKjRSmCyRl6F1idrFieHPPz3/gyX/v6G3TLc1RtUWLC937vN1htEhfbBkGPdae8+todPvjwPX7wvV/CNhdoq5offv/HbIaEbWtMndmfT6mqmsX5Oc55+n5A20jOA6vTDbaesms142bDpJojG0v2IygFZJwbCKE0qnbrngvXb3D9xZdJORLiiKg0JmlsyhiTMKZltRo4XjxmM3je+8Fv8+brXyFXlk8++jF17jFSYVWm2anRucH7BHFAhK4wiWIZzEY/Qiyw95ACm+SoU0vyEa0tlW1Q04GcFSl7fMErooRESYGQBgnUdU3KxcmZhcDHxDh4dF2hVWk6Narm+OSYZ6dn9P3A5QuHXL58hZvXbjGf18gwEkTECUlSkXpS4T1k53BpRGdDZRsebJ5yee8C1+7c5e3f+j5XL0453NsF+ZjF6Qk/WC8wreXV60e0VYPrI3lXbJmkHj8oYigRJu8cIScOZru8dO0yl2eG8+Mzrl68iKgMKQWEKHGvGErMoaom26djJAkF6OLIUOVzVpQ/gFAcbUIgREIIVZhcW44QYhv57NZE30MYGNdnEAJt25BVotk5ZDq9wa62SFWTjEBkjRCxWNlyachOShDRxSEiBDEppBCoHLelIsXpIxSQFGC2g1XaRj8SqNIwPDG7RSRoarJ3+GFgcAN6NuPBhx8w2+m5fOkKVu9SVxV1NbDpFqxWS1gO9GvHp91zvPf8c3/mF9nTmsXoqSvNr6+WTCqNjIoUC6Q+EaiTQCRQGqJ0ZOHQceTS1TvM9i7y4IN3OTv7lDe+8bOkLAmLU1J/jtCCLOviOkCiZGKMnjxmlLYoISEl1psNvRvYnbVoCdN2wtBtPud8bfkS5fmuJVIUnEJMEYkgxoA1dXF5xIRzjmEcqOoGo8UfuDY/a2Zm24QdixNkGEdkNxRQPB4lFdE7lC5Oo+l0AipjbXEoxeAZfGTwjgRoITBaEkImbtu3fUyo0gZUnD9S0RiFiv8sRoQvzj+LkyQI/wfFZwa5bX0ujaExatSW9ZS8wsfy3iJFstAIM6GuLeuzJzx/+BG7F67x7KxnsxpQOUEurm6VBVl4bCiN0iJmvIAKwfmzY8Kkoq1aQBROXA5kpXExo2JBESglSEEgx0yQHiEFDx4+I4WRF6/uc+/5EvXoEYcv3GE9KNI4MIYRmQxKs2VQQcyCtTVUORQunncYpfE+EZUgK0WVSlvsmCF5RZIOKzRjHGmlxo2OsB4Y+3OqSnN5f5/d+YxqNkXHxMJ7PInpxEIGgaKSYLTE+0SQkawEWWqstQWZkiXRDYw5kEIsbEOpGZ0DaWi1IGeHDOA6AVqThIQQsTEgZcZoQ7XTcLCzS9W09ItjVCVYrx1SacaYaFRdmuNzR7/pwUjcOGKExGpLZW1pKHeKPgxFRFKKEFUpt5MVOQWUzqW5M5S4ZMwSEzxBKoKAmRJcbqa88fJ12vqAf/Ab/5BHp2vWXUCmgesXD9Bq5IN33kPKBmNhMqkLkzkVHEKKhWtqlICQyELhiKic8Th88sQeFmcdul7z0o19cho5PhZU2nHrypQKS8LhQuDZwwesVz0Pni8Y1gte2tulaixVPWM9OLRQNI1mJNF3I4eTPfYPZsyaClMFVNaMPrEeAymXQhbvNqRteZ6pG+I4IpPnygXLN3/xT7N/7RY7dcOwWbLYrOmTpNJqu4CrsRYqrTB2Xrhq0QOZGBU5egSOFCNKCIyQCFGRDEidIGZiZZC5JCWiEKjtbEXOaJGIwW3L9hJRSwbnqZTBh8KWzpJtw68h2VJcZRU4Vxqcsyo4CBMLPsSnzJkbWaiO3Z0dblcTnoRHLPOMSt9CbFbopz9GC5hawd7eDspmKgJJNAxtQx08divu++C2JRCSnCRVpRA5Y7RAuszRXsvqk2OiC3TdyPmiZ6oq/vy//C8Rzk+5PDNM2glGT8osLTVZqDITpYK6EEqShSxCHrosGSkzRaIszjIJgf6DBagQCGXIyiFFEVpz2raiJbY8xR7RSz754fdRjeBnf+otvvzW65ydd3RPHyAmc1JKxNSjTY3rVrgQCTnw5//Sf5Oz5w9Zv/09pvy73HnzNueLDcvN3+ZrX/0Gr7z0EqfHz9jZmdAPPUhJZSdsxh4XA5INOh2yXk84rxpUNeXp4/sY9QwXFIuzntOdkSvzKXW7Q0yR5brn/skxtqlZjxtkTghdxHwRMlEnlNTkUFAwmYpi5a8ReSQjSThULT+/WxMjKQVizBx/8jZ5c0JWEpUCSQqk0FteNFhjsLUkDIHkPS5GTGUJaSi7Z6U/CxuXF5Qoiwy1ddgZAp3riWFg7MGoFqVKAWf7WVR4IxC1xW/dmnU7xbuezXpFZX25F4gJSnj6TcfoPPNdy9kzj0tg1Mjrt29x+jsf430g5EgOHl0bXOiZSUsyCZMUIgesLQWYtW5IOKz5AmXyxfni/Gc5P7Hwd3oyMIwjWcQCPN4MKKVQsfCL4vahXozJiem05vR4RZaekDNKlItpyILoJFpmjCwNijJkxsGxDAuanT1UrJBAGAecG3F9EafSZ/DkmFFKo0Uk+JHTbs0sZa5duszs0hFHB5c5e/6MDx8/xJ8PdKJEuFpjEVF+bieOKTMER3SB5eqMy1cvEmPAaIEfR6yVhFAuV0oITGVorWFSN0gbcUMmj5baatpWcrA3Yb9WSD1lMThSCGij6MeB9WnH3u4OJ6sNRkJbVUgEPvvSrIogyUyTaqZpUhhVUtBveoRIxeXXjwhl2XiPMBBTT0aihEQLSzCBFDJV1JgsIEaykvgUWCwW+Bw4aCq67e8xVbY0iQpVHtKkwnswFq0kMfQFOC8MLuctu0MTkkIEQZaGMQYQEuVigepvP1Q6FtZUSJ6kpvgcQTikzHgCPklaYzhsGqyMjDFytnKMvWPwgTgGqrqm61ZlYBGKrDSbfqQ1iraW7E1qhC6/HykytdEoYwh+C1ZOoKUlSU1OI8lFlkNmcfKIO7NLvP7aZa5dPMSFkWHdMZwf8+TJwOPjJ7z52nWerzt+69e/wxs3/jgTGTk82GGz2XDh0pR//Du/x/HZgKkMhIDrBR8+OEZxQqsrhBGF4TTZJY2R3b19uhA5uD5hOr+I36wRMRNMQ3AbnA9IU3h/2Qdu3L3L5duvINBsMqAqJkpjNUyaGcsx8ON3f8zpk8d4kzApcDituPv6V1huFvT9iksXL5GVInUDm+WS5CNDLMKUTB0hREI2ZLl1BiWBqmvGLiOSZRg9VrBl/wCxAZkAVdp3FWgDKRTwfJKFgVMSHRptKoTWxDyitcUIQR88H3/0KUZHji4csTOzdJs1v//D3+eDjz7kxtVrvPbiy0x2dgibc7I09KsBowXYCSo4ssg0WtMi6ZfnXDg62nJLgL6jUXDt0kWcW7F/MKe1mixiYU1WFUPXlaFTFpdUlwK3b9/g43sfcXL2nJhh3a/46MOP+dKbbwKCFALeO5Qs7KF20pbhFwlKI9Dbll62cV8QqXBscvIlaqZLwYTctvdGJP3ihLOHH9Ovz1htzpnZyHT/ApPdC1STPWwzJRXjAcq2WwUhAxmRElnmLZuoOAgRsgzcSZAUqKTIQoPsSUIgs/mDCOj26+StuyDlwpSSsnytBEilsXqKMAmlBswk0G1W3Lj9MuenjzhfnNK2E/b3D9nbg/Vmj9XynFP9hIXtODvbkBK8/8EHvPLCJX7/Bz/g1tU7PHnvfQ5sy8dPntDuzDna2SX1Dm3KJWtaGR48fMZO3XHhKBJdwE4m3H71NYbRkYJH6oblyXPc2JeW6OgIyaOQSCUwtioFQyGCVqSQSOOGLBKPnjtuOsdqeUyM27a4VOI0RmuCg5QiSuvS6ojASFnaCZXAyiLWT1tDTJByhBwZXSgNzNHjQiaMYdtgnViszmhnM4JI+OTJ0ZOTw+oKRUUIkqbeIwSBki0RX1qGE6VcQFqMLkBtiQFycXlLSxIZITSowqI1umA5vjh/OI7yfYlqUZhUOghkglGWMoAQCsQ8uFIm4FOmH0eci4Q+MPSB5bqjd9BvOjaLe+xcvcqwdKURUaRS/BBScVYUOxN5iyEZk0MawUigyo6qqosROSSMtSw3xX3eDz3eDxglWQ9rTNvgXXHVjqHn+Ylg7BaovQk5gK1bVNVSR08IkX7skamkG1Iu6I4UM5hCtQqA0KXdPOXiyk85o6VkFJJETY4OpRXno4P1GTsTw+7RPgd7+7STGjSEGCBkVK3QQm+fsRohc/k+x4h3I6o2jDGhBcicCYXPQFa6XJCtIvmAFnJbslPKAkwWhEoXJ/xYxCyjFcoojBRkqVh2G/pxICcwlPSE8xatKqwx+FSWu9EpqA0KmFTFkWN0aW9PwbOJvoD7jUBkR5UKdH8YevI2DipDQOYAJiOlLCxAZ6lF5PKB4a3X3wQh+ZVf+1WenGwYfcKoQFNVdIPj+ekabSq0gbZpULKw1WSCnFSJ2WVBSpmUHMiMJJTfXZYsu47l0uNyYIrGxxV7szlfeullDq4c8srdF0kCUoicb06ZHuyyHAOL03MOdhre/NIt9ucWO9llXHXUqiJUmu50wUYI5s0MZMY7T8qRzpeCjUwkb+cLbSXOe2LUiDGghefC3gXe+uP/HBevXCWFyMnxCavRkclYa4BIpSSTRqPMpES2fQdk3JZ39uGHP2AcHS+/9DrjGBi9J/mx/L2FgRzL7Ljxvrj5Ilu+LRgzAVMSJpW1NHVNVVc0dcM7P3qH119/g9l8Rs6Joe/wIRb0TXRkCXJbuCZIhFSKHpSpizs1R5zPJO9JLDicTbl59RpnZ+c8PHacp4pNFmzGnrq1+MeKvivxyN45dMi45BipiNlyulxQNZpIjzGR4JaE1POVb/2XePd7/4Dw4fvY1nDaLemGRE7QNJ6TR4+4eXWKqRtMNUFqs0072PJwywmtFClTUEtWIcrgU2LRBWn8Oc+PbaxWSl1EPUGBFUu9dVomiJ7sS4GEoBgHvvVf+KMko5nt7aKiQojExZtmy0oujticSjzbu8jm7DmnZ0+5ef0Gcl5z+4UrXL8WuH//Eeuzp3TdhuXZBGP32Sx/zI7ZZ95UfPTRh0z2L6B0zU5dY+uawe/Qiog2OygtmVYTuqUlTp5wcf8iSrQ4P3C0t8NsNqNfnXJ8tmKdW+p2B5c3JbEmA1YBQpNkKYxJMlOlRDIZrSTnm47Orwov0rZbITV9Hp8WY2Dx8PsYOQG5FVKzIgEie1IEqw1TO6GZtBwddGyePEVevoCtJghVkZUkEPApApnaWlws7GQSZTksLbt7B+QM3g903Yg1iuwSeZtUcKpFqRYiheGtG87Pz0qDcPSo6Egh4YMjy0gCNqsF49Cxuzvhxds3Ubbh3/vrv0FMBqVLOZEUZeadWkNyGbNdJsltX4CWhav6xfnifHH+6c9PLPwtzxe4EApk1Bchz+WBSkowgpgjfvSokGis5q03v8z3vvsuZ8cPUVrh5YiIJZ44ikwsPZSsUYQQ2EGSNfT9hhGHSp7lYoneqRCxNI3lmDBC4nK5kGXnUUnx8gt3eOnmLbRWfPLgIf/4O7+JShk9abC2InZdqT/PYIzFojgbO8LYY3xCC00tLGLj0Aq0FLRVTSUFUUtmdYWPHh8yUQS6oafFcHgwR6RIozW7R3s0TU0/rBi6yDiUltrBR2pTcbC/BwmsqagrAzmzHgYapRAmE6UrL8UoynCCQKrM3k6LEBNCiFtOnyCrCh8SggGJpbagZCQrQy8GgkropBAuIXTC1gatiyMl+57Gaoyp6F0odepNs410iDKQUiC5QxQQDUprlKK45yJkGUg54UdHCpmmbrcXGokSApkhbwWFaVuxdq6IIVriQmEFNnXDRHp2lKeXNY+fnLDszqnrBms008owjJ7eBWpjESkQxsi00VRK004ApUkkTBbkFKjbEtcokeSMVBSX0wheCoYx8/TRY16//SJ//s/+CX7pb/8tzgZYPd7w+JOPuXz1It97+wOenz0nZMfBjSv88q//Fm+8cZVZkHx67wnHm8iPf/QpDz59wtp3XD065Muvv8a0bQgik4VnB4PWmpu3v8r+jVt89Dv/kGePPuI//b/8Mv/2//rf59Yrr9GfPeU7//A/xo/nZFnTGoEnEWygUYJLl66hqilRa8Q4cLAzp2qnDL7nRz96hw8+/gAvBY2qiX3P6eOH/Pwv/nGsVjx58DE2e4Yu062XxGHAWE0iMJ1WBBQxzxA+o1NG5oiwFTkVF0pwq8LsHCKD0owZFAlioNEKrRXaSDIKqQx1U9xKPkRSTqXsJyQG36FkhSSj6xqUQAaY706pG0XvHVpbtEzU0waE4qN7H/Pw04+4eusV7t59hbnqMTsVS+cY+1OkbfHJUc0mZKUJKtGaxOHhPqenZ+zduMTefMLqbKSe7nPjqCG4gaQNwWWGzUC1a8kKXI6IBLbe48GDDwh9cSKsh0CShnW34v2PP+HVV+5CUgz9GqUF0+khMRlSDMVNhi2DGWE7yBWuX06O5B1KzchWE4iQLf3gOX36EWcP36dbPKWZ7nB05SaXbtyhPThAGFu26TmX5sZcBqYYc2mkS6W1WigB2ZTyCinJ2SOoSWPH6DdIu8e7v/0rmMmcW196ESkKVP5zOIr4bGAujKIsQOoiKH32P2QhSCGjpEaaAgTX2hKaCbt7c8ah5+T4mKfPT6jrhmY65eLhRY6uXKM7PeXR8TFnT55y+vwJv/Trb3PxwiG3XrzG3s0XWNnb/Pov/wP85hndeIo6nGIbU5hLUfK3fuMH/PG9t7j4ki4DX44IqWibyZYVlDF1RZaFF1qA4kXMJAtyKs9LCaQk8N6hyWhZ8cnjh/zZCxdpteF4dYbanSNEiZebyjD68fNFVil4Km3pzntSTtTGEmNEqy2jDEAatMokqRDJ48cBKQPjMOIHz6SqaG1F3488f/6c9WZB3dbMJnOUsZh2wnp9Dgm6scPUhhgiYy7u+Og8ThWnRtgMSFOTpSFKiQwBIYqjWpOpVWbI4Z/BiPDF+WdxXNQomfApEoVhjJ6YPWEsMb9+dLjo8K60g/ebQOw8XUq4caTfrAjBkwTU1ZSzk+cIo5nML3D89AlCaGT02OTBSYY8olMmSEpxmKDE4gM4kWnrFu8Dw+gJQ08aHDFFQvKlsEmUJkWcR2iJrgznZ2us0ty6cMTe/pQ+BZb9GpMtRkq0ttSVxvvIsNmgUMhURLfoIyFmogAjUomuCgky4QhMsiZpCdTkWNz+Io9cvHmRvemEuI3wSwQiBITSqAqUCITsibkIASKC9yNoRdQGFcHIijEPpeE7a7JMNMpQGQ05EvWWoWckOWYmouI0ldb35BxoSW0MRslSXOYSWXi0rLDZMsaBIASDH5kbxeBHnnYb9qYTxNATkkNkS/YetWX8jcnjXWnT1aJgCqSUaFUEEZ8lSpZImxDle5OAMqU8xGiYVfDayy8TfOTv//Kv8cP33ufS5T1Ssmhd4puudwwuUlU1k7airrbVQBnCVlwzqsxrKYaSzIkKpSQ6KwYS56sVJ086jocpOV1nnTdceOk2ly68TG4vgJ7zyaMGkqRV7zCMCx49GFm51/kzf/Yl7r33Lm654tnyCPf4CoMPzGcNy82AUtd5fnKKkg6pFUe7HfNpz9lyQvQ1F48EKTqiBmkMVdXSqJqsPD4ZvvGn/jQXL99l3W04PjshRYm1drvUS0hVlfijKYI1MaCsprINZMmz4+dsuiXn5yeMbw+MPhDjiFKlVVVJgUyBcTWyjpGQwGCY1YEoJet4SgqOHEsM2IdATIm6LuaFH3x/zezgAvP5IbvzI6pJgyYgQi5pC2VIRpACxFjKH3yMSCGQSuKHkRA8YzY8cx3TekpEc+fmi7z/4YdcuvEq9+6dYCpHnwIiJ25eO+KD+88Rg8YnhxaZpDQxJHbrHcaxLOOCrNE0bFZnVBVM64YL+xN+5bufEq3mcKdhajSXbWZ/MsVqQ2WqUm4mCtdZqMKeDC4glUKrwoIsL8StI2vL9fs8Yyo+A9CKIux99s9TLrqT1AhpQDflb1YqjNDsNEdldJERckakTBCA1OQYkCkSRo8fHa4fuHB4xN7uDJTBCrh6+2W0qbj9KkhlSElRVQrf97z42leoaktMmTcu3Sb05yyfP+b5yTPMZA8tJCq1NBWwvwP6GV6+AP4S3/yZP8HOwQG/8St/g7pqaO0EuZNpbcX5ciSqxMV5jYiOmCUug8mlxS3FTDYCKQVSW+RkH7/a4JYbRCzcaLIr6KKUEcnhxg1HN68yv/wSyioShXGfsiATSFIRY+T86QnReUIMLJenjN0p3gtSPSELiRQShSXkoSx/lSSnwlP1oyuGEFVitlIKVkuPzEUUVAjGFJCqQagaaxJKJIIHa4p7PYQiZEdScU4qwXqzIaaEj45NULSm5tLRIQjFKAJKRpRQKFG48DNVsVHFiWuVIWeHkNBU9gvh74vzxfnPeH5i4S8MCyaNoakNi9OwdTi4EveLorSBhRJl2Wx6hvUS1bT4LIhIQhywsQJdLmYazRgi2iioLNklojFE3+PyiBYabetyuZa69J6Fnhgi050phxf2OZjMaWZTFqs1P3r3HU7Oz1FKYZuaRmjGFPEhYDP40dO7ATGbItEIIcsGSpX2zZPTY548vIc0CqTE9yOVNASViuPGKGaTCft7M46O9pi2E4RQxLbChcRi2fP8fIkQFTL0zJqGIMCHgaHPeDWglabeDqPDOCKkJIpigVci03UjirIFEnWDkJaJVYxuZO36UsRBiRJI0Xzu3AkJfFih9YyZNvRuZMgRYzVGC2xWJBlIQSBEhZkUuLSWhr2m8GayEiQXMLmwGnMU9GMqTVRxoFYGqwxSBwIQE7R1TVMVh13ILSOOSEZlgVSaPgfSJuGSRyoKfyNLZloiw4phDNwbOh5sPDobmqrGqAK37nuHdw5jDcMYiihpDbYprjdjtjYoNMoKvAehKoJz5OQAgdRloxhjYjP0nDxf89LdV/gL/+q/zr0f/iYnasr3vv8Ol44O+OqLL3HrtVe5+WBg+U+OYZO5c33KtamlrufsVBV/7i/8K/zud3+Hae64+KWaB89WfOm1N7h0cQK5R8oKUsLWDXff+mPsHV1h9JHZtVeZvfgGf/mlb/PSl14licTswiVuv/QmP/r9X9+WwfSIEGiQTC9exre7zGyDzo79gyOCkPz4vQ/4+IMPGfslxkD2HULD2C959UtvcfnWyzxebnj8+D5TGVBVzcRkxGROQJTG1pBK3Dy5UrCSIRBwfkBiWI/jNmYBcnSYiUZGVzawIuPHwroR3mw3sYExGbYGKLQwKFsuF5AIKYMPCGVKzKsbcCGwI2sme7tsuhVJ1LgsUIxYq1Gq5sEn7/P8yT2u3bjNzSsXmfpA3UyQwtBmQ21btFFFcJOKqy9cxZ89oqpnXDiYE8I5z057lhtReIa+DCyLlWPvoEX5CAQ+vf8h6+4CQoGdtPSfPENqwWxnjo0d7/z4PW5ev8Zs0pCypzaHIMDFnsbslIid75C2JeSECCMiB8YoqacTxs0KW1VkFN1yw6dvf49nD3/EpJ1wdO0mN17+RabzQ3RVkWUZvHLOyJiKg08aIgaRIzKXYUjpGnLaJokziFTcebK4N548fEB3+pwbr36VZ0/uc/FaA2i0shCLGCSE2Dozy5cgl2ZpKURhSm2H9Zi2A2FI5e+JREoSlEVqQyVrrl6b0W1WrDdrum4gCsHsxh2O9AxjGg7nuzw53KGeTvBu4Hmcsuwc6/U9/pV/7b9DwnHv/X/C7/zqL7NcnIDyqGzQqqVuqoJxkAWyv6Xbby8PkFwo7ZcUkTRteUwpJqTUpBwY+g2u35C1BlND8rQGtDLYqsGYFc4V547SRTgoP9qMD4mYt9HE7bM5ec/xZkXbTpFNTUKwWC6oKoNRiiQCWRrqCpw0SJWoqoyQGW1qdJuZ7e/hXUAaRfaOcRiYtJZxAyqXlk3vA24YcDnh0zbq1yr64LBGI6TeOuBLZNjFQL0dmpFFbPni/OE4PkpyjsSc8T6TXCSIEe8Frh+IItP3ga7fEDy4sSe5gSGXZ2cmoiqBzoJx9FTThuXjJ+zbaeHDuoFKgouucLtUYe75mIhZoo3BWIl2nqThfHVMCiBjhOCQEqpmgu8iVgBaYZRBWEMrFNPaEKeKpKH3kbMHj7l48SoxFR7piCT2jiAzTbS0aPowIGrDZnQYRIm2CdAqkVOZEcR2vpNCI4XDClDWMN+p2Kv3SUIxxkD2HUbXRCRKmeKaqzVx7NDSoE3LOI7lmaYNo3cIbRFClCKerUswJZBaImMGAqoxnJ8vmDYt9axls1yzxCPiZ6VjkkYbQnBE70iixOgKtjXi/BqrFFJIYihFG20lSFmS4ohCM6lbBp+wsohDLjgQAikyMXoqrclkaq1xYWDpBppqgpYaQSLl8jsTCMLgmFaaWaWRQvDDdz5isVgSk0RP53R9QtBhjAQMPglMVTOrDNNKIGViiEXArKqGk9OGTTcjJ8rclwVWGrxI+CFwthpxbiSbXX7p7/67n3+e/+bf/3/8Of/v/5uaP/nzkf/tX1vzS//oX+S/99/4F7l65zbrVc3f+9Wf4u/+6i/8P/07+a/8l/8e3/zG7/GPf+tn+E/+5rf5X/2V/zmHu+dIK3FxIPnIcuPRleAX//k/x+7+Nc6eP2YxrslCoqsahEQrg966y/K4IQaJyJrVGDg/PSnIh/USNy7L4t+2+LBBSE2dBN77ghDKAp8VXhckRogKH9f4oQiVQhuqLQc2I9DGoBCEVHBB/dkx6+MnPFKKUQl29y5w58Zd5rM5tmb467AAAQAASURBVNacrxb4mJlOp+XdIiRRqm2jvMBOW3K3IQXP+WrNuTxj8IkD2zCdtixXljsv3eXpvQ+ZtCW90ypJ9I5+VNy+dZlp8pyNni5E9CWNlwIhBOeLM95++21e+dpXOZwe8Kg65cKFTCMec+/ZCTvygLe++U2ms4aEoZlOKbmrjNRl6ZsEpdRESvS2bTrliBRq2/Bb0gifiX2ZLX9YFsFKbNtlC/akMCyFkOXvVEqkyISc0UQSxTmWvEMQCINjWCw5P35KP2zIEqrGIoXER0feP4SUEMLifSCNA9FvWK02pCxwvoMQidtiveOzc8iS+48ecenKLf70n/1zHF0PnD5/jMPRu0AYIiEEJs0OldJ06w0/+L3vcPPubXLacH5+ztHhHuenAS8yWmXiMDBRkmUAhCxmmRxQUZCUwmQJdYPJAumWXLp6kX/hL/wl/v7f+E8Qtjj9RNLbxa4miTIj1wcXPi/5E7n4HlOMaKkISkOteLpc8mzh+ZmLlwgpYkzFth6ckGNJOWTIMSGFBl2amImKNHSFQ6h0SSHogoFCljb4mCKZDNkXcTo46m35jutHpIZFyvjoSaEsG4To8L0rz6tWIFJH9iMiCGTMxTyyRR8JMoLI4Ab6Tc9+Uz5fWsvyPvlMMP7ifHG+OP9U5ycW/mqVqOjARVLakgFyxLmIUhKJgNGXpk8tGPsNB/OWezliEtRag5CMacQYg3AZKwTJDYV/oCBLQRUbRglZJFSl0Tkx9EuyFuzOd7l75yUmkwnPT5/z+PSE5aP7xLEMaspWRO9Lk2Mul0QhIYlIbRSpqUBmKqEQvkTBLAkfeqwVCNlsob16y6AwSJlp0sBbb9zl8MIhqmlAWXzXE4loEkYJkoCmnhG8x1Y1IpeWJZkblMnI7MogohV+HKm0Li1xKeO3YGAjK8ZYog2283TK4bvyztTaFKgzssQyYkIojfcDwUlyzrSmXN6NtqXiXqoC3k4Blwt0vjIG54q4Z2QmZF9+9jEzpsS46SBHamsJbk3dTBBaI3MqJR+mRcUR5RNKKHqXGEMCvwEREFKydB6pTWEFRXBSoDM0JFprUSrh1oLeZ8aUyckzbWva+YRuvWJYrbDaoIyh9yVmra3CtAZtKpAOpTQ+BoyuSSqhqIhREmIuxQrJo3NNTJmTxQJM5Ft//E9y89YL2J1dnq0UL7/1C3zlj01pgqfemdDFyP3797l+9SKXd/cY+jX7k0haj1z/+T/KNTnn4aP7nH70I6QKLM6fcfLsAdcu3WXcut8CHRcuXGX/whVCjugqc/UrXyYLxY27iiDLZTx7x87OFUZ1QFg9RabiiBRRc3ThJhcuXieMHV5IVqcnvPPuuywXx4gcUXLEe0mWFhEV/flzqte/QVO3vPfuO+jkmE4nZF3YdC4HCBHXOUKSBOdJoQOpCaLCKIVUZUhLMRODRwuBFJGmKnEsnzO6blHSFNZIcGgVESLhvQdXtpM+D2htUVJi6wYrDW6x2pa8wNA7js9OMSmiXCQTaGzh3EWxHV5CT9Ps4El88vABOUkuX7vA8acfcunKC+xcuMS99QJtNHHZEUXFfN7w4ZPAx/fvM7eG2Y1DpDrn2ckKn+DWlSsIIelGj6l2GDYLgnc8efqQxdkpqlIMbsSPDqNB5sj+fIf3P33CvY8/5ZVXblNXNSEM6FjRtlNgIMaI1A2SQHQDIXqsUvTnJ0jVYHevsDx7xoO3f4unn/yIyXTCnTff5NK1l6knB2RZgUzF5UZCyIgoPrNt029EEknCkpwvvBwdEUlsYx758w27yJkUPX7oee+Hv8eFF17k93//x2x6x3S+h21a5nsz2mlhE+bt5kCIchEgZdJ2EPw8AixEaVHUqgzuCbTWhTmVMhJJjpJmsoOyDZPgWZ5s+OAH3+VLX/0WdcosuxN2d/fYaSoeHy/58NMTXnj5Jtev3ELmEZEjV69e5+Sl2/z2d55hachKM0SPG9eQPFlUiFi+0ZwiKZdWueAcwXnsbEKRMssWWKjSxisQKC8+F7aDH0kkJpMGcrnY27pGGwsibb/HWC43SiOVKGUdZBLFFSkoHNt+HAq7UtfsHRywWa159vQRu7uzgjjwkRQLFzcGR86lwAdVOI9KScbgaeuKSTulbhrkPgyrDdpY/OgLtiCD1oJsizNAbAtcYowkURyhuqqJKpXigFjao9MXg/EfmjP4nhxHfMq4EURSDMET3YjrHS44nC9RRz96Yh7IJBQGlQ0ulouaSMXZEVzAjR2fvv8j7HwfKTI9AiE1WiVsgEGWBF2UFF5xTuToSa5EU12MCFNcO2pMBDlS1RbfdcScuXTxCjv7exy0c9Z+zfLjR6TgODtfs8Zh647Q1IisihMueBKCdfYFYxICjRA0UiFFwoWMRaJFwgM5CESK4DypnTGpp8xazaQSIA1DDqgcySiMrqmkJBuNlwkbMuMwopSitXUpakgCVRfQfUZgxHYWMAJFcSKl4Ji388/LmRZ9T5YGFzKbxRKRCgpDWV2c1qnwYAUZJUuJkyeTQ6QyimzKJTvFgK51cRqHjNKCHCNkjdYVLQ6VoBt6UpKYqiIWMgNZmO0yyROzoG2niC0/VCtJFsWRLUgoIfEJlm5D7yTn646qMXT9UFIZMaNUEfCWyw3WaGaTirbRpOQIMZOzJOeKp88P+Cv/y3/r/+Vn9+d/6t+jqV/4v/nv/4Tnj9/n1kuvIMY1nz5+xgsvvsiklnzwziknpy8S/Ie8evevcnKyw4ePv8rDR5f4le98i5/7+nvs7a2wRHb3LxCi470fvsv80iWs1nT9hF/+tbdozcD/5N/4K9TVgrNzXz7XWlDXDbK2vPjaXaqq5eTZc1zaIOsGhEalws1TKaOE5v6jTzg6vMTh/j4fPXrEJw8+pTGiFDfFrojQwSNkce0rGRE4jMmYVFAeIXhizNjJBCkc0YPvymKzNpbKlNh2TgW9kAqaDhf9lsddZEGTFJvjEx7IinCz4vnxU+5/+D4vv/gKTaWY2AoXAkMMSGEIIuOCwZg9fOpJYSjzktZEJKZWrNelNfb5Y0uFop7OIHQorRm8YD2UlJHVI1HA07MzdmalYV5Jw+A6yBZMU0QjIbHTSDrzXLx4wM3bF0nGlKUaqhgTUkAJXQwDZJQqrlREkWrY/t2VpeTWlZXZ8oPLe6mghbYsZCEL81gkEqm8t4UEUlns9R3rbsFqeUp0Q1meaY2qa2StOLh+E6ErlKlRWmG1BkrJpJQS9BZRE7elkDluy88khMLvTd6zXi7phw1f7gfOzx7j1h12ssOVq7c5f/6EnWpE7l7g7PyE5XJFHyPKSnyUvPejd5G6olGKMDp++P23WT8/5uDgkOlsxtAl+udnZQ6IkawL2zgpRUq5mDlShmw/Z0f+sf/in+HKzdcQGJIcyUoRYwZhUKk8Y8uyMxDiiKw1UlmikERK/Hqnatjfq0hVBbKlmrRgBKjClHRupNrKAImM0ZqYUikcG3tiKgtUELSTGd47+n6DEAIlTJldRcEBWFujVTGUzOd7IAxZSMYwoCeGECLGCJ6sHzF4CaMny0xwHhEjE20ZQg+yCIBWlkK1mCUhRaxWhFSSDbVSn+VSvjhfnC/OP+X5iYW/Rnv6Pmyh+AZkwGWBXw000xYvMj4llJJEkVmte6aTyVZAECAsOYViT9OOMTlqW6OkYuU3SBzK1VTJoo2i0opxGInJ8/rLr3Dn5btsNj2//4Mf0g/FWSaqEl07qGasgWEYiD6hNgNh0qJzGZp6ItqBnFVYKQGJ1IrsBtx4znza0s73uP/gGVoYjCyiYEiRm9f2uXnzGlWryUKQk8PkiJ5pvINWl6Fz069JcWBUkjGCTpmYBFoVoLSRhX+Rc9kK1ra8ONWWNRORbMYB5RNSieKMTDCmjNESJQrXEKEJ3jOMG9wYaNoKQSm16DY9utIIKTEi0WhDPdlj8AND71DA0o14n6jIRJWKEIrG+YCyFZNpjcyBlB07uUXrUthREoADOZZNZoyfMWgyzbTBUwQDKQWyaomAEJFoInWWiByZNlNEEJycnVMbTTNtcYvE1f0GMpyerMhujVWGGEszcKXBSIFMkXlVokMJSfCSbIpbzSZBDLGImAJiEoQgGd2KcfR8+OFD/qW/+OfpTcOjhx/xyle+wcMnT7hy7RJvvnyXx/c+4Wx9xsNHD7m6N+fVO3t8/M4nhJBg1vDo+CFf8i1VI9idzfng9JjjVSKExOlihVIlxuNHj1uvaV8+xAuJkCV6pIQl5AxaoBHE5CEGpk3LpYsXOBmeE4WgVjXzgyvsX7zM4vkTlv0Iquadt3+LJBMqFqE3bbknxlj6PvDmG1/nlbsvcXq+YHH8hPlshwh454pInQPCR4QYUXim0ymT6S10PQGtqJUhCIkS5XdNzFSVRUtBSmWIGNyafljRdRtSkqRUiihCFBibMcoQY9kEe5cYXcD5WIDhxlJVBudHsIZr165ilSCjMVWFSJ8pV2IrrMAQe4QqrWXrfoUWl4hqxsMHT0ibzM7eFJnBaQjJ01aSITRkKzk5X/HJ6TlnQ0v2liw6zlanHO7skXzPZtMRZUIogVYNi5Xj5MEpBIHWDSGcU1uJbQRtLXny7ITXvvQa2mi6rqdtd4h+IAPGGFKOjP0GtY3ophipraRfP+LDH9xj9fQTiI5Xv/LTXLz1JqraAQJJlmhqylvAtUjkXNwkpBJxKUKOBBHpV0sGv+Dg0m1y7IuzR0pEoYYDEu9XHD9+wDhEfvs7v8Thhcu4KFA4rC2uS/hM9Ps8k1Oi+SKTcyrulVQuxsooVFbFjZCKY4XtUkUCIWWkKReRRmtilGzOH2Kt4Uc//g6Xdq9x9fZbPProI9Y0NPsKYz0f/PBtzlcbpl/+BhrP88f3IUa0tSRhP//6Qhm0LheLnGL59966/pQQOO9AKuzWlZO3wqBU2yVAFkwnO0hZcfrsI7IfQDY0s5qhX+PcnJwTttIIFcqlXBpSdGSliriaAkkUR4MgE2MswmyE9XKJtR6rZ4zDBiUCUshywQgj3aYDWyNLTwNSqcKRDJm2ahn8yO0bL2CkZuwcKYkteDuTfWDoB/w4klHFDRFhqgXTmWF0qVysfKSqMhOjqLabcysVuC9G4z8sZ9N1xI1n6DasN+foesImStI44sexLPVExrtUXLVCI9OAkZ4oMsGNqJyK6OSKiOeVxceA6gYqrUhao2XGixJJFCIjg4esiNmRRrddrASEUdsijkwIHlkbohvJUXDz2jWu3r1F9JFHT57y8YP7JCkxQrJej3gP0Uu6HupGE0JgjA6VMymUr+dixihN6nrYqZE6o6TFANENREr6QVrL/qTBWs2knhNlotaCJDTGNCiZCWNHHwJBKazI5JDIEYYQiH3PSehojKVqGsIYySlgjEDIzLypGceeiEEpiVIJTyDEgAD6HGnaCToLhmGN1aY4U3JEBFeYa7Yujr9tPM/HRGMtKcYtkkFjyShK6VPIEZkFqBpHpnYdIZYFnDAGhcZngdCmuDVTxIhMlNDHArBHlki0y4IcBDYL6sqSGXG+59GZI0RBWymGbmB0HpVjiQYqw+Chqiy705q2VkQCIYnCVUuW7739NR4+vQrA66/8Lrs7S8gQcwH1L9cbWmN56dW75PQGP3z3OgA//Y0n3Lz1nD35nG9/+2vgBb/3ux+B/j4vvv4ay7NA6j/ExWOi2uM/+qV/k298+R43rxjGr3/Cq68+oTJLdhFcvrNH361R/ZKNWDNtK6yp6Z0keMPlKxOqKuJTIgdQOZJE5is/9XMcHhyyGQd6KWhkwcvI7Gl0i5KW82HDs0ef8v73f5P6p79FPdvl8cOPwW1wtBgjmeimsLW1R4oIKDKRuHWJ5pCIMTL4ni4n6tQipUeblnrHoKUpDDtZ3o1SiPKu2jYE19mScmBbyYwbHTFmTNMgTYMbA6fPn/Cbp6csR8+Lt27y0u3bzGczSBFlwGeBCxFTCappxdB5cnCMwrErr5KQnHcdh1ev8+DhI37wo3u89ZWbzPf3efujewwf9zRtzdHMsjfbZbMKtFYhRGHyDV0q5gsCg+sQUvPCpQPm9YzXbl0sxX9VcYHFmNHWlBnPDyhZYSpNytuFkwAhJVLKrSgjSnlNSpBKW3dxuqrPBcEyU5RG3fL3FRmWpwzLJSZ7cuqpprugMnsXr6OqmmxbjBBbpnFZaiBlabeXGpDkXFAdMoftwi4jtSn8wGQhl3d70gmVM7nOmOkuhylvS7vu4IY1yW1Yh4gn8PTTB+wdHHJh75D5tGa5mbBYjmyGc05PTgrSI4788N4jbr/8GrcvXuHKxUvUBzuMQ+bf+Wt/m/NnkS4GhBGEHJmgCtsxK0LsESJjzISX3/w6jz/6iHvv/wChAzsHuygsyq/IeFTVYvQEckZlydAvEUFjbFWeASkyOE/0jkmt2ZnuMGlndOsFbbWHTKo4vrNCWL2t+CiMTygc/RQiUqrC2fcJ7Rx1XZUmYvKWKw0xgxQVMofyLguRcXRMZi0pB1pdlyVxlalsXXAqjUdLkKJh41aFO98qFBKVtsDpnEmiIISU0ZATUmakSDS2zKRfnC/OF+ef/vzkUd9Q4bsOhMdULavek0N5mMYEPiekLZd75SBHibCa4BJJapzLmFjcgM71ZCEZuhUieJqsCLE036a4QWrNvN3n8osvsnsw5/mzFb/667/DZtighaRqGsZhQIdMlgknIyqKElVTsrRSZkWSEq0VwlpGP9DGQicYKC7F+bzlaHcOIjNGVYSkVNq95vMdrt64yd68wfmIGC2qMmSZUUqRgiDGzDoNSCuRlChelQwpOTKSxiqECPgsGWNivjPn8rXrVFrz0b2PcCJz/PSc9dmKnUnFzl7LZGLwIRFSYX5UdYWSvrjpUi4FAzkynbTEumyaobhJhLGkmBGjJ1vJJnYs+x4TZRn8chFhmjoSYyAKQaU0zo0gNTpDCGNxjCSBVS0+OLSRSGlKjXqOjDKChSQEtW6JY0aqhM2mlLVYU5qdQ6RRNXOlMEaw7B3L8yW1LVDks8UCYxq6TU8/dFS1KPybWDiQjbbUIlFPK3IOiFyEZ1CY2pCR5OCIKIbB0bYNISbGIOj6yGK94OmzFX/xv/pf45UXr/Nrv/lPeOtrXy6b5SQ5XvYobXBacbYYuPdkwfEyc//5htPTJc2kxqiWGAeySGQTaOZ7BKN4/9PH7M7mPLh/Sp8MQQ1USGTbMr14AS0CIkKSiSAEMhZ4eHCZf/B3fpmqUXz161/m4pXrPH33bZKOJDPlxksv48YeHzyT+T7v/+htkl/iZF1KGwwYPaWVLSks0RVcv/MljGj48OF79HmkSpZKGyaV4nyInC963nj1DYw0uLE042lryLGw0XxUSJHJBP6v7P1nrK1Zet+J/VZ8ww4nn5tj5aqu6urEZjOOpKYoaSCNxmMbNmTY8mBgYOAPhg3rg2Fgxh8M2PBHz9iAbQ08EGRAGMmiqECKYhBFNpvNztVd+datm8PJZ8c3rOQPa59bTYo2mjSoEWZqocLFvifuvd93Pet5/v/f/9HBUxCZw+hI4HuM0auQh5pytEZdGIw0pOARBEKI3Lr9DqeTfS5evoEyCa3yJLL3jqoaYY2hKCtOTu7STKeMr5xHB0WbIKjsORZRZzSP8qSkkClCd0rqJVFplssJcW3IKT1y7ymVKZi1kTJFrKlo257YD1BKczyN+DTDREtUkigUIUUKadk7PGVze0REImTJfDlha2sNN12yWM5RGMBTmIqNccXxyQm9T8TFjKoYEnyHEBJbVcQQCf0SUw1IqsRKiQg9rS9pD59gXcvnv/QzFGvbqOE6UklEcHnimkRWcApISeSQnASRuLKx5yaAlDkhebwxpPIWgaOdL7HDGpTI1k7y1xBCcPXmc3zuyz9Psh6ta7IuTxBkg4qZz0PK8G0hstUmQZYWqyxDUVhIZ6EvAD/C4lkNc0JqVorPzIryUSEo2L38EuP5goPjPVI34/bHE3rXMliroVvHq56yKtl//JivHfwmF67scLz3lHpYs7Wzw+x0CtEhteRk/xjfO5T1CJkggECxAnhii2J14FDIwqB0VvmlkJM6SfnPRVGik6B3icVyQVj07Gzt4LuG5D3eeVIZUEpj7QDX91m1TX5+zxomy/kcF5arhmSJFIm+nbJsZtQDw3hjGxcDg3JE55doFXAx4Ff7Q7uYMS4thS2IAZaLE+pCIWJAGnCpxZQ5FGZUVZwYi5YFeEFICZ0kA6m5sFZzPJkx7SVdSFTeEZJeJYTnQ4X7tC7+t2btPTmii/ka7ZzELSfZVdB3IFIeuEgFctWKDzHzHWOPEhbhWxYykZzCyoASER0ieE+rO2QbMcMRIQlCGxAC2mZB7DNcXais5hZkB0SS0Loe1fSMbYEelFy4doO1zTFdirz9nXc4apeMRzV1WdMEctLwMkd49d5zNJ2xWWRFk/AJ53KSY4od0eW9LgaBEUVmzCaPayNeFGgjWRtJNsc1tdU0UqOioFAWKbJa0Jqek2kDvqewFoXM6q6YgfdlWdCLyGBksVLT+cR0fsLa0DIsato+sJhOEAZ8ysm4QlpiEPTOoYKgiBFBh1c6D6JDJKTMu4sysfCeMmmSBIKkspoqOESMCG1yoJRvSSkSfKIlZR5uAhEFVgk6F0mYjJdBEgI5rCIKBsbgY595ZiJihEOLQEePTxadIqVRDHSgA7pl4GSxYNG7rNhyCSEjwXUUpmDZebTzGFOyMdKYwuRAgJQolEFpw7SVzJYDlMzYh3M7B2ysHRJDYNk70qzl6rUhOxtDBhcespwlpGgBmE2OsOKERXvMcnKfyzsjblwqOe46Zoe3qYfrnDhH1y0Q6RwHRzfo+icEHvGZF+4R+8h8mRiuFwyrjvZ0jjINNy+dRyidFeULuP9kyH/6f/oP+I//p/+Qi7v7pCCQxvD8y59huLHJIiVcgoExKAwjW+GE4OnhEQ8e3KHpTwhLx+Wr17l240VuPXmAwrG9tY6RBu968I5lHxApIvoZPni6pBEIXMzNW6E0rpc51M41WF1iq4zM0CnQhg6JJQaJVAkZ8nAqCrG6nDXK6OyaqRXL+ZzCFogYWLaB/afHnL98kTWreXzvNh/fep/d3Uu8+tIr7G5tYo1AWsGiC4Q+YYs6q1UTGK3QSkLbMNzY4oXnX+Tbv/8dfuLVK9A2iNjhph6fYKsUIBwxBmw1wPVLSB1KFaAcQXg2NtY4PJ5ky2wJD+/e5sqli1zbOIeQgdh7ZKnpmjazKa3I9y2VFbrILHJIIq1CIlJW66eehCZp9YkqX+jMgZ7NmE/uMZscIJpTyqJAak09XKfa3CFpg7Y1ha1zwm8eiyCSzMPKqFEirRqwOoeXydyUysdbSVxhjUXKtU2SZEbgihmayTZppQ6UyJQoSk01GOPbls61yLJgN0mmR3sMBwOsqdjaqBgOOmZzy7isOT064HjSMjud8nQx4d95+RonixlHd/Z579Z93HSBI2BU5mQLDEJFTFCUKGbNnJHvMaLHCsvVV19n/OQBpJCbe23P9PEDkvA5oDK5/LwL0EU+ynvv0CqzgV07x4lICIblcsKyLRHKZrO2yEPcFBIhBQpj6WMeBlsEQURsUWYFsVZI6XDe0bUBJRMuZA5siBldoVJWGacUccnjyHx76CGBEiq7GAJsbe4yb+ZYMySpgBcKkiCEHABjTL62O/Kw18czt7hGq4A0hnLlsvt0fbo+XX/y9WM3/mbHRyQiISZE1WOkphU5fa3PeeOYlC1GKSWWbce6yBOVDB7P9l3feNquxeuQ7YA+x/e4BEOruXD9eS7s7DL3gUeHB/zw41t0i/z59XiA8I6ua3FdQNUSIxVtCiSfp2pIQVAS510udJKiSIoOQe8h6YT0YILE6x5rhzzZP6Qoa7ZHFZd2z1EOK3RdUVYVKoncJCGCzslwrmuQ0pPFxgbVSepqwNIHlpMFg4Gli5LQOYJwJGEojaILjiRKnhwe8uGte8yXC4wdMFwziDInchG6zD3EoK0geUdUkT5EjFIoKVEi0vuAkJkbJWVBFIroHBnWBUHkTS7ECCqgHUgrkLJFh5ATIEUucBASGXPmYB775gLMK49UmS0TvMfFlGXgUmNkzDbqJEhaYSVELITM3yhTbjZe29oGEbn/4ClLF5AqkaKi6Zd0PUxmE7puxrAuEVHRu0AnJFoqRrUF2RMl9FFDyA0cK0ROQMQjQsQJAzon+zmXODqZcnR8yHo95tH+lLXxmEXnuXrpPNu7O5Cgcy2nTxq6LtB0Le998AHf/+EttoYF+wcNJ1OPEB1hPSCWXbbaeI8tDE3nOIqJrllg5hP2nuxz7foF2mbKuBxSD0YIcoEhkkSJzMcjBI4PZ/zSP/1HnB6e8Df/o/+QF56/xuaFc7SLGTtXn6OshhATnSh4vPeEo6M9rCoppcWoCLImYpAFNIsFF7c2Ga1t8mhygp/u8/zFy0itkWLAweEea+s1GxuSb/zB77JWr7G1uc3a1hpVWaKLmmhrCqUQOtt9751MWfYt4LHBYUuFE5Kubem6YyIF9D0udEgtKYVAe8/GxUvMg+LJ4yk3XnqRUVUgomPWdhxPpvSdI44FoZmwmMw5Ko8wuqYalWhrCV2PEJGQPMI7EhYnDUYVdDEhZUVRrnF6PGOxMWRjc50yRAZ9j++nJAR1ITidNQyKnNpda8W4LpnMGhbLQG16vAC/XLKTNiFkK4FKno16SK8Ss1mLlTqzGrViPKjZu3fAnXu3efHmFZQC1y8xdrjiPjm0ykEcIq1s3EpjBmtsVyVbV26CLNDFgMTKHqtygSWkWPXWxGoAHlfvmfzY2X8TafV+UoiiIvrE4d4eW/oS1bDITbuVEK8oa85df47crdOk0OdiW6oMthdixfUTmauzitUTmbYPKwuvWFlzEiBjyH1CyHy9mJWBwQWi6wl9jzHZLhsSpCAoBgN2xC6uazl5+pTFbMaoqBjaEq80rRTsXjjPcjrl7ke3UEpw8fJFnn/uRb7/3W9DisTesVgcEVxA2ph/TpmLSxElSUlUiEQRCcoidVYOp9WhO7uFQt53nKcsh4QUEBI21sdoo1CrkBRjBhhhUUScdwglUFIRhEAomW17QOwD0Su0TRAtqrTYwtOmJbYs8mHEZ6smwLILODfBVgVCKJrlgtqW2LqgXDPcvXeXwo5YNjN817KYOwb1IIeqKE/nQ2YYpj4z0UQEUTCyiddeu8Dbt6a8lSRaGkgqpzxrQ0qJ1n8Kv/63ZU2mHX3fZDayZ6WsdRglCIr8nuuzKu/Gc1cRaG6//34OxKKDBEUQdInsrJCaVghSHylETxMagikwwtPPpzS+RxiJiRIrJd5lpaCyFhU6mpMp5dqQl195kd3tLQ6mU57sHfLxg/s4AaUqkUrRJxBNg1aWFALT1CP7Hu0CMiXWyirbWsnYkkJJQuzofE4/j1FiC40SEltqhpsDQtsxXBuwsbVGoRPJCZanDV1sEEaipYAkCb2k956qLHPgSd9TaE2hI15FnIRKDEhB0scOrQTrowFlWbBYdtnvrwtCiECPCJrSarTUUBX0oUfFXB8GF/Ey0MeANhWWRHSBWkhE7Fn0nsKW2a4vV/fQTLiiWzGRrSmy6i/KnB4sAB/wLge3aSmQSj3joYmUCDFRFJo2JPqQkTeehBAZa7KlI2tVyaRN7O0d4PoOaQ1VjBTWMJ3Pc6KsEPjOowh56DfMFk9IqBz3SVGqnBAegJQwOjf+tO5QsqHvHW4542e/+Fl8s6CLkWFtON5/Cikr/m7ducb1ax8yd56//j96nhdeOo82b3J6suSdt57yn/3nv8PhwT5KV6wNcupr1hAZDg/PcXH3gN0Lm2xs7zI9mTA53uP2wz2e+8JPMR6ucXLwgOl0n95JPr5/GXwNVlESuXbxMtsXr4Cu6PuGQTViPByhVOLRvUd8eP8Op9MphZC0IZBODrnx+S/iYs/J0wfU1YDYe6azY5J3EHtMWZGUJBQF0Rl0yMr7wtSkJPAJ4rIlicDCgzEqc+2cw0qJ1gapNFpHjNaoFX6jD9lSGpwn9g7hIwKbP95YlFHM5xO0kUznM0xlKUrLsCyYLif8/re/zu7amEvXXuDi1esMi4awjDTe43xLUQ6IMlJXFScouuaE9a01hgNFF3uslly8uE0fNc9dGGDxBOFBQuwSrnJEpei6gIyCZGtEkhQ6QvQ8PW75zI0Rd+7f59KNK7hQofDM54cUxQClq8z/Xam28kBuxQpP+ZyUQp9xcrIkmczIFbLCec/R/VucPr1DMz1mMBxRDddZu3KdYryOrtcQyiJTQgafadExhz6kld09DyPPbNSBXM1IopsgzJD9u3dwAXav7KJEkeunZ3fj/KfVWHOFmMlD07gacKZVY1HakspatLOUumQ8HNB1DdP5ghgjVTVga/siW+sdW1vbbB6f8OjJPidPH/GN9+4zPX7Kl998g8+8cpVrX/jz/M7Xv83x03uUQ4lRA4oqBxSWQvJrX/sBf27rK9S7KifgRsf65jYos8KuQFACI+RqJBzy8BaJwDxDt4Qo8a5HR08IgruHJ/ziaES3mK/wJ2vZQWAUiiz2EDpltR2roW50+OAY1DXeeypdUJUaKcCHnq71aFXh+zld2+a6yUGzOGVQFkgCk+N9lotTpJKMRxuYokIUJcumQ6BZdh3lILOMnQgIkQfIYYV/MihIBi8tiCZ3b5OAELEaovqz2as/XZ+u/6avH7vx1ypBGSWFLVh4j0gyKyJch5A6W96Cp5CKqBLHRxNyxEJCuA6FwPnMJVAk1suaUVnz4N4DRlvrfOnNL2Grmv3jfb717e8QTUHnAwNjCQasFoiYrVgAWjhU9LgAEom3CtE5XPCsOUMwCURP6DqChqQ1FQEvwaWUk2dd4tH+Aan1XL12nvEr19FS0LSepAtEjFgl0EVCaU9dFKQgkVITfIbFJiEQOis4kpcsF44oFWWKYAr6ZcegVnjhmU8POfne12kbx3g0YHNnc8VtyfwoY3ROyIoSpTU6CZrkEEJipAYlEFHQB4WPCSs0+owREVcsQAMCiYpylSwaiDqzfJIK+JinhSGmTLInIWTmlSA1CQkyIAEjcqw6iPycSYvRK3WNclkOHgME6JtIwyk6RegkL5wreOPFl3i6iNx99DHaKHznKKyhGJTsn845PD6kkDCqCozSLLuETAZrFbVRaC3oyZtTtjJmtphLEZXAeY+KMR9SMIQYOJlOODo54Y3XXufG5fO8c+cRMfS899Zdbt68SNctKaYzClvw4MFdOt/z+MljPrpzl/3DY86tX2G6mJJU5HjpGDcLSltlCC6GerwGzhCSYeE9AySP94557c2b9O2EuhqhRJEP6gkQgkjMjUMh+O63v8mD2x9SlJv83/4f/y/O7W7wiz/3Jjcv3mTz6nXqwYhu0eDjkr3Hj9FC5emc1WhStlNJQbs4paDi+md+Dj1eZy0KFsWYe7cf8OT+bbSSbF++zovPvUA5HnLx0g2ktoiU6NoW33ZoqQk4Gt+hkwYnuHr5Ira0uQfkPQiJc9mmsmwmtH3Pol0yXtviycEJ77z1A2wl2VguGA4q2rjko/d+iBWKwahmd+ccN6/eYPPCZVKKmMJy5cZVklGYcgTeQdKU1kB0BBKp90gZ6UJDEom9h4csnzumGg85WfScTA8o6yEbmxcwomF2lFtj6zsX+PijjxA6cdzATtETZIm2IrM1E4yGFfPZjL5zKOlRMiJlgbQVhdX0csKiczkxWiZ0kRgXJe997yNeefFFEAlFsWLvSYTRKFOtFB0pK/eIWcWnKjAGKTPrhJgnn8S0mkqzYtnAJ1XpJ/bbMzXeMwafkmgEUQbOX7uKUDkdXKwUg2J1v+VHEvXk6hrPHJ0zA85qVColQWaVAs4jtMrFbwp5uh4DSQiC77MTW8rcvPQhT2Kdz1YTpbPyJWXwt5AFSonM4TRLrlxUXPA9XcxKocqY1e+UMrPOCmbTCR/dvk2KmXeK0MTo6eaHxHZBqkuQRVYsSYdOudnQzE9R0ROcJ/WZnZcSKCkJuWOWbUUh0CqFMZpYFMxjxz/4p7/F1qDihRcvs7l9AR8MhbE0vs0YBFRWSoaIJMOsEfDwwSNOjk/40k/9PDEuEVGji4qgNKFtSX1EqjxcKbREU6KSQDjHeg22yDbyjz5+wvFJw/HJEZPTfZTSHB1NMZcqhI4UdYmpqjxZB5QIJDI4faDhxesjhBD8yvf3EEqhkyLJSEo9UpV0zv2JioFP15/damcHaKOorKVrA0F6epft+lJCWFlJQ98RuiVrmxdIQuGToE0tNpSg5AoHkAM2orYE1WBDQijDcnGEFBrhRWaPmjyUFSLhYoeyoCrYGm1z8+ZNQoKne3t87TvfygdfWWCUxSDoY8B0ka6bEZVgOBpDiPgY0VGAUvRNx7vf/2FGkyiJ7zxWyNyUSwKh80Dx4rl1drY3KXWNLAuSNWhtmcwb/MpSZoCqqlmGlq7PgmeRPJWx2KRoug6fEkpYkgqQBP28z4dULSiqEePCYAQcnBzTBo+RYWUfLCBlZAgRnJ9S6hqtJEvfM0uCQhtKo5GY3KAQBUGrHErmFWsZHEyUCTxYqXApEXvonEKknGJf6iorMmXEp6zGG9YGoxUxFTSrQYRCUmhDExzCBZybI6UgSAtRMVYgQkPXej46OGBvAYVWBOcZDwoiiuV8ghKZQ9f5hFJQVzWFERRFImmVGwY6W1eVMnRdQ4rZiirODs5JMF30ROf5mZ/9Kpsjy4cfvssHjw8wR1M2q3XKwQgA54YsZ3Dj2gb3P9pn73FkeXjMl3/heX7+qy/w+N4R/+9/0ANjArsArI8qVDzHP/r1r/C3/hcPufnmFl/9BcPGBhgjmc0cT/cU3/mOp6wrTk6XKJHbMiEF6iRQVY1c3wFZYqNjMKipx+s8OTjmnR++zezkAKMCuI5OJPplwxtv/BTDi9e5/+Qxk/0HyNEYTWYzUo/woQeRSCEhg0AmRRSJRGDezSFJFk0HIeBTAOfwsaBzgRg7vEiYlFBVZvLGkACFVAItJVIWBDwJT0oBHzskAm0sMkQKo9na3MaUBV3s8EEjpM0hNxbmrePdt3/Avbsf8sKLr7AzHlC0Hb0qCZ3DeEFZDYhaEEVibVixc/4iroNLV69yf/8tmkVgOpOc36rpux6ZFKfTJeO1VfquTBwd7lGP1vABkAbXOJK2bG1u8Ghvn9PjCZvbisoIgteU60PavsHaQQ7/cw3S1MSUMkojRYIqkdLTzhbY4RYBQ3fa8vD2H/D4o3cYr4/ZunCBq5//CuVwA2ltZl0SV2o8gRCGoAykrFj1KaORosjKfFJY6f8iJEvsIx+//UOuvfg5Pn7vB9hyxM6VcyipchrhitEJ5HoGsbIaqzzoTGe85FxzRZEyT1dKRLRIK6iLkqLvGI8d08kJ8+WS09mc8XDMuWuvsjXeZ3vrPIfnt7j78D6y94j1TZBDnO/5n/zP/mPG6yNuv/N13vrmN+i6OUF0yGRAlgipSNGjRK7FhNKI1XUsSMgk8CHjDNLq0BdczKfqFEjREboGFwPKVCgSRkWsrTEqMV/O8iAkrRiKKSJSIq2UzkobYkq4ECDB6ekpZVlRlvUqxPKE0XCAsQbnFUqXjEeStgtoKxgMi5wKHAJFOaCsC4RSGClYLhcMK4UPcypbIQtBSoHZfIGTElxEBU+sCnwfKZUlxMwIVCL3D6wAo2RGQPju38zm/en6dP03bP3YjT+ZYCEA3yMQKAkWiCIiVYbKq8IQ+h4lNcv5nL2jfXJXyGOsJYpE0zf0sWdd5xSrlz73OpdvXOOH332Lpw+fYKqCQhkkgoHWGY8hVGbk9Y4oCpRUmCIrM7zMUwgJGaSrJE4EUEVuEsaI1JFSeJQTxLbEuw5tYDgYsL29zvnLuwgB3rXopLBG4yA386LHE5icNjSyRWpBVa/RxBKLQFtL4zsOTg8AQx8TMkm2N0Y8OZ4idcXe3j5CFAzHQ1QZKMp6xcpSZMSLyIpCGRivJixBNKQIKUQSGmktvncZqKAcRmuk9LjQEIQgaY0FhFeoEPF0RC1J2mC0QASJ84IQJUYIjFGEFXskRbWCz+fmnpI9UhlkXB2itUbRZHaUUPQh0oaOFAwiZIWWNj1VhPW1Nb70/Dm2L77I7/7+17hz+yG7lzZZ+hnD8QaJxK2P79O0kqqMjAYFRgxYLDu8iBijGVuBMI6kBClAT6SSGQrehpBTv7rc4BwMaoSU9F3iaNJx++ERMcKtu0/54e179L1gsfC8d/sjLlzdZbHwTI5uo7Ti6OQUkubb336bu08mtK1jumhIPjJSQ06ne7j+PCenLX2zIIoaWw5ZYulkYtMaagPf+MZ3eP3N65nrKAJiFXEbVwllKalsMwiCzcGYn3jz89x+dIyvBjzd2+P9D+/y5S9/heFwi6WPHMym/Oav/jPOXbiQlbTa4lFEJXLSnBIcPTrg9c//FG3n+b1f/cc8uHOL0Widz37+c3zpZ3+GcrDFsmt4cvCE/bsf085Occ4jgici+XM//wtoY/DKs+Yt2hgiic3xTs5PSzGr27wnCUMMccVPjLjoOdzb4+67/4ondz7gdLZESoPQkdoWnLt0hY2tNRrpOGpOsR9/RFmVXLpyg3d/8CHL9oQrV19AmAjSEmNJDA0IUKKC0mR7pgQRPZNly/T0hFBYjEx0vuPg4Amb6xusbZynawPN6R6ba5r3+pZxWeOaGfcngacnLTubA7yf0PWS0p6j6XoODx8yquvMj0wSoiQFgRIRgyR0S0hjMIqNrYK33n/EfCkxVqCkpG1OsdUQpQcZeq0k3nVIRS5OMaAMkC2aEJFSrpp5nzTfntlnOePu/euPQ27CBUCfcXSqGrWytOaP55OiNp2971a2m7PACyGfOXCkFESRi8UoElKpzK6TMjcjZVopzCSYMv9sKQd+CJtWgTueuAL55xuJzPxP7+mdB5HtcMPxBtEHXMiDmRRjPmiXBYu2Aa0pTMnx0SFd3+NJzNol7bLDq54lEesjQkdQEtMboo7EKMAnpAPXNiAiKWaOXgx9VldKSfC5YbeY7vF00jAJIDvNqVtw5+MnCGX4yc99kZCgFwrnQx40VPKZMjKlREqgy4IPP3rIpcuXmDcTtsdjEOD6hEoAni44louGw8cfs1g4qs0RRTVCIuicpwsLdL3OrdtPuHn9IkK11FXFoFxnPpvj+jlWGhaLnsnxNO9XskTFSNQC7AqoLS1CRXqZUQs+SJxyDI0kuviJpOHT9V/7KlVkrYbIjGVM+ARGwrJvMEohnCf1DilgNjnh4sXLBAE+ZPuskJIuerRWGG+QwiNjT1Kr61UJCq/pRSIZsLoghj5bGnXJzs4mly5dwpaWxbzh7TsfMzk+zQNCa/O1X4KIOUgCIRAGamkJVU4JMdqsmJkDfN+A9dmGLDKKQKKIaKRKjJLj1ZeusnPuHMV4gBAa37QEme+fffAIadBKoWXAphzYk7xGG4WIDqU0xmh822GlwEqFFIre+9zIUwVL32NaWIYF7cSjREJqndMrV5D6GHJd07uWkHJIUWUlKuZgkCjzoCuEjpjACYkRBiEKuq5HKFAhOyxI0KeEWzbE6DM2ZLZkOBhijcFIj7IlUSSM75FkhV/jA9F1+OiQSjDtco0ltMAFQS8EWiRKElWhsCrQziPzrmfWO5z3bAzXEKMR3XxC6D1C5sZw8AFjDKq2KFuAzM9dCD4/DyZlZElUJARCRaRYDaGAyWzKcze3+N/97/8SV66toTVMJy/w9run/Po/e4AyG3z0oHj2Xh7aHGLwT/7Lr/GFX/hL7F6+Se/z3xutUHgW7QJbrj5B5gAZgLXtXYSMnE7g7v28L776iuXllwWTWeL9txS63MT5rJh2weNcYOvcBbYvPk9dVhBbohB853vf4+GDjxHBI4Wj9TmpvTCa2f4Dzt14DuHg9vtvszEoKcs8hMvoBU90jrYTBO8I/RyEwFPmsEJlkFLjQ48WEr3ijNUjTWg7glKYskKESPSRhCOJFh8lsZNkFG6Xg/akxhQVfYRF0xJWmIp7Dx9yuL/P5uZWtpgKj0zgk0cWmhgdVVXRenjr3R/y4o0X2dgYMzt5zJXrLzPa2iHuP6WUkDqI2rNxbpNHRydsDXu+8MIVHh83PDk+4daDjp2NdSpb0vYBbUcE19B3M97/4IdU1QBjFYu+IfoeKaCyJaUSvPXdH/LVv/RzxBAw1tJ1DUVZ56Rs3+WBsgi4viVGj4yRdnnC4NzziKFlMjvl8d332bv7LoVVvPi5N7h0/TVksU4SAoQniYhI3QrjsTqWJoeUiYghtQ40K/xGTkhPK5UeIgeOeBe49fZ32di5wMHRMSnsc+nmixTVkMGwoKhWg0NylSVEVvWnmAeEWVCWr/FIzAgDmTmE2miiFDkAxgpS0IzWFUXd40Pg9PCY/f3HbG1cRjZz6rV1Xh1W7G9s8OGDOVevX+XFK5fYGg8wpeW1N38Skufrv/3bWD1ESolPkGILMSCUBZfdCcF7hJD5Wli2RJMFH2f7uxAgtECgWExOOD08wJQlzjtidAyqEiEitiyxoc84LHKNI4gZDyLlisPIKj85kWJP08xJEqQ1KFuwsbnF9PSU6JbYQhFCVjjHCNE7nFuirUAahTSa2o5zErqUDOoh9XCISQLfObCa0Le43ue6Tit0INc2qz3Fh4CIOTAzqMzCj1HksyGfSv4+XZ+uP836sRt/kNBkeGoIDrmKcA/G0jmfeWsuw0TbsETGDLoFj7WKtm9wiGyNsxZfVPii4vHJlHc+/G1UgnI4zAVuyqBiIzSdSIikVzHuEVEoQoxZdSIkWmi6FBn7hBKRjfUxB01H6h1G2Txvc4EUBZSS0kpeuXKZ7fWSVFcU0iBEIHnHqCzRwdP5DFnvu1WqUB8odIEPnloOWLaJKBYgoVn2hBgZaQtoTsUM5eHwaEKpS6TSmK0xRTlECIHWkd5B3ztCcBiTECjapmU4XKNB4JGMTMnSL7GAj4HWtxRC5MpcGlLMqj2lTGY1JElcxat7mRBRrSC6gMs2UynESiqv0JIVe0NC0iihUUohVcwWSB9ZpkgQCeMjKkaMlCAllTVUuiQlSddM6JZLhsMBF0dbvPjCTQSef/Hbv8ve0weMt3aZdw6pR5yczDk6PgQS68OawXAASLrWoS2UymJLg7YJ4fKhRaiCQmoSEZFW9rsUQQS0FrjQY6Xl8PSYWw/3OTiZsDba5MnRgmnr6GLkrXe+x/TkgNoMmE7mzI5PqeohJ/MFfYDOJ3ofaGJg2S8JiwWbQ0XrA20/4+mR5x//o19lZ3PAyWzO4f4EHJiR4tz6mHnrKUSBl9C2S7pmQlGvI5NbJa8KiEvC5IgXtgN3rm7x4b0nLOeJ4Bw//dM/zXBjF5RmfnpCjJHdrTUKlfABEiumUJQ4IehdYKANH7/7HT60b1MJwe6V87zw+ueJSfHR/Xu0ix8ymUzoo0OngFIWjSEAL7/xGnpY4hoPSdERsxKUlbU0rVRjTuSmtOiIwaMwaCUwUuH7nuFwnc984Yt0s1P2D4/pl45mOeXB7dvcej+gCks9HrO7s86wrjmYHLC5oRm0Y07372HKkrKus5WBDiEEQRrwHmVqNAERJGtbO9TjkmnT0fYtSRQoaRAiWy02Nnfpjg4ZGEnUNUZKXru+jUq5gThZdsSocxhFcEQkvddEqYhCoYtsd1XK5NQ6ekIURBcgRupKMRolvvnN3+erv/AV+uAyuN5bijLbqUK/IOaoc5QxCGGJKaBSvgazBSYXVmKVaPfHNf3OFH5n60z1B+TQCH5EAZhyE/CP3qfz11vBtM/Ufc/+l1mCHvL1RIZzRwFSyTz1FTLDsIXM0PJPfprVNDw3G5IQOTJUrnCAK89xbk5mtUZUEud9LgSJmLj6XkWJDJqQBEhNqIZoW9EsZgilaT7+iHObm5Q2cve9b/LyKz+FsDVFVZNkzaJZ4vxxPiBqjSk0npUiTgtSTFmJFLOypW8cT+/dZr0ybI0svjBM2hNmS8W7t+7SAm45Q/qWGAOlKYkIrC0IQuL7FiEED+8/Al1x4cZ17ty6Q/HSC1hj8u/aJ6LL/KMoJeVwxKKfc3o85/D0CHxivFawvTWgnUypisDG5jpSlRgLLs4YjiylKREBFotZvjcqSUgBnTwSg0yGUgpsSggfKUtFVYHsV7LvKIgIYuh//O390/VnukrVMZsEeu8InSHKjO9IbcBXNtshU0RpzdJ7VIqU1tB0PUrarEjpPEIn2uCwJiszGtciRcJQoIKlXF1n89mCYV3w0uuvsbm1xeOHT9h/esR0PqMjIpVkqx7TIVi2bVbjC6DIA00nAsH1FKZEWE0RNM2KK9Y2Eyw968Mdjtyc0INVCrSmD4FLu2tcu3qBjc1Bxoj4HqkiqUjoKKhNSesd3rdEJVgISety8rwgq36MTIS+xyWHkoq6qgghoLVEygFdBNf0qCBAZftftuXnEBwpJAhLComuW9L3nqIwq7TLVQquyUn2RkQqW6JUyaRtiC7Rx0DTO4SLlDbhiNnNEhJJKMq6RhEAz1rKzMJMVIjE2CJ1dm+E1udUZSuQWqNdzHY6W+IRSBEJ2mOSQsTIoLbIKDk8OWFQlOiyxoTIpc0BLglmkwXSt2hZ0/UBocmvefSMdIlVgogiBEVQuSaOIUEUpOjykMKD95Fl1wCgVcmVl17i7r1THjySTE6mfPkn1/nZnzmPW0p+87f2aNsFsAlkjlhaIV7+xn90g3pgAPj9f/kBv/z3v8F0tiAKgXD5/pMCuQENRCFJMvGd73iKQqANXLsqWVsTK+YarK1tIcRjAKzRFPWYjQtXKJTk0aNHmHrE3Y++z+n0EJ00PjhCdAhhQVmW84bXP/NZRuN1Ht2/w8AkqmqUh05J4lH4riV1C6LrKXTBYPMcuhqBMZTaEIVECsUFH1YBFwZN3qta39L1C9pmQdd7UnSk2ONdNjUXRcZqROkzIqdPOB9IQmOMxSpN27Xs7u7i5yckAVJKjJJ5rxWaQEKLRBccKIPUQ44mp+ye22bpDfdu3yV0MKrqVTBQpHOBYVXw6CSwNQ589OCAQ6+ZN4YYG8x8QrlpCK6h7focQiMFWhcsl447H9zlwtY2CINKLUWhGY0Mjx4/wjnBuC7p+w6le6pqgOs79EqN5tplrh+EzgO/5FhMH3H7g/eZ7d8luZ7Xv/hzrF98AV1UCJn9B5Gs7BMiEFE5CDKm1dlF5xAeCdOjfWRtWBtvk0ROeZareinXHYnD/Qcs5w1vfffrHB4cYouCyeFjNna2oD6f34t/NBBCpJUTIg82Q8z3RrVKKI4xrgLUcj2RhMAn8czFURmNdy2H/QnziWQyOeXG1RdQsxOODo4pRrBhW/Yf3mfWzRl+dpMyRo72HpB8j9ASL8yqCZnhAUqdpSOvhjArbi8x0gef+cAp5LotZn4rKdc8G+vbWDPgcO8W+B5pBmjhcF1Hr3OwpNIJZMxnxhDykIeUFc0poODZ66BVie8Dy+UcayJGD2iWU6yKCGpicPjO0XQ9tqxIPp93TqenLOZLBvWAru+5dvky1lj6xufrVKTMcu09y+WS6B1JKbRQ6JjYqC2udwhZkHzARElpDNaD9BEjLG3/aX3z6fp0/WnWn0DxlwhC0omIshLlE55Ev5qWBJEQrSPEQF0aZBJ03uNCokkOL7I9QpSGlKB7esRciZziJhOlsblAEpIYslUFEYhliWoDaI1KCecdLjikjMSuRyKyHVVKhEwczaf0rqe0FUlCdJFRqRisjbh4bpvR5hpWw1ppKIqC1HtcUix9IAIdgqANIaxk1ilhMYTkSEGyDGB1olu0eLnaBBLYQuBDRyENSliQmkorlm0EWRFFQglwTuBdJMScPqmiypM1W9L2Obij0Iqmd/go0ErnAABWUyiVNy+tFEZJgsvPASHmZCaVN9O0mpqJ6PE+oCGD72Vm/+UWROZ5ISJCZo5hjIG+F7jYY2xBaQ1GS4ysGNQaowRN13J0sqBvZpTJ8ebz17EiUvqeo9vv8rRtebp/TFEamuBpnOfp3hzft2gZqauS9VGN84nO9cSUlY5GCZRIaBS9yKpLTWYHSZnDWnxwSJ1ZX578u53OZ9zdO+TO41N839M0B2xfukpRV8xPFV/40mfx0ytU1nD74WOO9yYMdnaZHB3y+P5DtrZ3iP4djBpQ2hF37jzi5s4FZotIieJwts/i936F565s8+D+EQezE3CalODx/gk/81NfIsmWECSt09x+/5s89/pPYeyI5FqO777H8d13qIXgW+++zS//6u9xFGqSkfz05z/HZ15/DV1aJienhOB4uvc0H1JSQqhELTKzzkdPjIIQA+XGOrWqiIMSLTN77P6HH+Cio/cJLQKlMEhRZMugFQjpiF3B1QsXic7nBO4kVg2TnMqspMz2Ke8ISEI6m5AqQtKIkKflmzsX+Opf/Ev0vqPrW2bLE9rZhOPDGY8fP+Lw6VOO9g9ojp9w7+QIqTVWV6yNxmxf3GJ39xzKato2w5+jyAEyCUFSlkC22fuMlCOElhg7+n7GeLhL6GekmFWssqowm2P6oxlVLVn2ntnslLoaMhgM6Eyg7QKyT8yXDpEEMVokhq5r8S4HxxSqIDlPFAqha5bTU/SgoLCWS5dGvPfe9/nCF7/A2qjAaLFSWTUIoO86bDlA6qy0EOqZpo9VhQsiK+2AVZ2Z/lBj71l37o+ulZpPrMI7EhGZ6SzPVHzpzCLz7GusbL1/rKLw7EXN6tkUUi68pEAafVZHr5g8mW+X3cMJwllQQMyHbLVqC4qz5qSAZFBar2zHkT41QEDLgiAloW0RQGFshpRbS4gBs0qAFkZjpCK6HikDt99/nyRqLt/4DJvlkN/62m/yq//kn+L7lu1a8MaO5PKmwLuswkkxc2+IiRQTSmua5gjXN2xsbhA6z9rWFnfuCU4nj+kivP/gkPNrJQ/f/iEXL52nPn+Zru9BGZzrkSlSVSUfvP8uW5vrvPf2W8xOlrz83A3a5NHK0C+XRNejqxpTFtTlGtX5mqQTl6OiX7Q0zQKc43DvCUYJ6qoGNNIU9P2coqpwriP2ns7NWLY9SJsPQ0kh6amqKrPCrGLRJZrUc7GsOQ6RLiawFSlJXnvuyo+7vX+6/oxXCiX98gRkQOiSvvMIl0Aqgo8ECVErkvfENpK0IYbMY3NJoF2PMYq+b0BKXDNHB4cJ+fq3VhHDDOE021vn+MKbb2BsyUcf3+PtW3cIzlPXNS5lXigpm+RUUsgkUFqtxgSCZAxKSBotMURs0PgEXiZGleX8bg2ipRqscTyfE7zDxY7ReMjN6zfY3qgRXtD3EmkNUiWsyozeEB2L6EjJoVwPosoHbyFQSqKlp0+CPiZGgwHnL13CSMWDJ/cJIrF3NKc5mbK2VrG2MUAojU+CrnEoU6KNgNQiZcoKd5cZgYXN9yzogUSSmuAgRYeyknnwxJCVvX2KaGGpjSbJDg9YbQiuxyMxWgORPiRIEqsG+OCwJoeHCB8JqSeoSCgSOmmMsLjUUVq9uieZfA8ODqMq1qTEWsG890xPJtRVZrq2TYOxNYvpFCciBR2IgiZGkIqhlJSVBhGwKhHdkpQEusyvofR9bk/6rCrue08fSpreM13mKvCLP/FF5pP7/ItfmfHZL2yyt99x7cacCxeHBMjoGxZcvfQh9x+9SNt2JLKy+u/+F9/llc99gVdeEfzEz73Ab/yLt7n7Kx9giqwcAnKTZ4W0kMSM2RGRv/pXK8oy708ffeT4e3/nm1y5eZnBxgZaHwLQth2Xbr7A+tYmJ0dPGa5v8ejBIyZHD1c1os0poXZEJQtcN2FtZ4MbL3ye2PTc3X+KFoLOJ4wAZSx7e8dcvXSVnc2d/Jomj7aWFMhc7pjzfVMMHE9PMMogF+T3RYooo9G6YDA8z1pZMbT5tfSuAQR379/iweOPuHz1JsiElVmx75JjMNrCSoEXimY+J8bIufO7NAtHEHEVKqIQXiJUDkw4CzkTpSApxWI5o9/Z4vHxHjZGjC3o3AQtaqQStI3EKMXBxHPULbFYkCoPg1Zq+/3DCRs7I+JSgqiYN0esr42Qqc9McCQoz9qoYu9wzpO9EzbWskvLaEHfLimqAQlB6JaYoiaZmlII8B3elhw/vI0NHZ/9wlcYbF9GVDXqLChHSESKqDyCzO9Z8qCRVY1zFmyGiGxsb+AIBNfio8tNJlb1Tco1jRCJX/z3/gfYjSE//5ctoLKiTzWoZJ6VPvxI3ZVWQ1khsrNMpxwfQhSr4ekn5BQpJCF1Wd3ocw2WkkApwfUXPsNkOuXkaI+T/UccLhbU44KyGSKspS5qjg6e8rVf+zVefOMlDh7ewxjN5vYOi+k825lRTA4npOey+0uIBEEgVw4ipRTCaGTKKu3M8s4qRCEVUqrslKkqREh0vWe+XFCWA6y1xH5JECYjXCSYYh2RZFZvA0rk5nuKiXa5oHXzrMo2mde9mB6RwoRxXVEYQR9hWNVM2qdIKXC+BxFxfYcViWo8RCvNcnrKoNDIFIgq4WKLSh4pNcOqRAmNFiUhKKQ2WO85t17QFz2zNuCSJDpHTDkxWyAJRNynjoZP16frT7V+7MafFRInJSYJFosp5XCICgnfOgbK0gmQbcCFgPAQpSTFiETSpYjQGiU1Wiga5+mjQJYWqwIlgt71IDVCCEoMPoFSBhk12oDHr9QuCa0SLgYKIjE6UoClFgy1pRMSo9fxeEaF5+WrW1y4uEtvFMkHXOfRFCyjwU1zwepkwljDdLlERINzAVtqYlqSRIGIDYW1RKMQyeH6hNaSKCRN47BKk6RBFxKNx3mPj4ngGmw5oo0J3wZEyolLusiqGquGiJABwstlk+3QCkLoiSGgbJEZgkEiQyKu7HhW5CCBFAMx5eaXSBJjybbSKIh4fIooaShqg0q5yeMSRB+yjF7nl19riUhmxSDR2FIj0oKujUynM/puTrvoEG6B6BIqOXQ0lGXPq595kTevbeO0pigqGkoGjx5y52BJJwpOJofsH0xQUlJbw8aoZlCNaNoZUlisNZSFpa5KxOqgHnqP0iWVVogQSULQe4cSeXOSCGTMiazH0xmP9k44nHmiqSllwfbGOsFrsAmFoK4KLj/3Rfb3TzmdT3lw/w7/47/yC7z13dcR2tC1jrGtWKrAcL3ki1/+PPVyn+01Qz0aMBgMKUuBjJGFVNRlhewSBstos+bF125kq7sdI/qWgwd7PL3zS3z9rdsc7O0hpnt84ZXLbG3u8rd/6XdQ5Q62VIg442/8jb/BaGOXvp+zbOccHBxyvH+A1SazGo3Gx54UBKCIWmF1hSAQCgVdy1IatAjIbMJnpEVW0q2g6ilJUifol3MunbuJljVeJFKMaCGxURFiWDXbZQ5jI9scnA8orUlnTBR6RMyhOt3AMkgG2xnq4TrtlmTz4pJrr79Oe3LK4uiYe48e8OTxfebHU2bLOUencz56+gBra65ev87Lz+1Sxo6ZljjXM0iOpRakYEhKowYVpVfELlHWY2yxpG0iN29eR6lI2yzpomfOAIodxoOH3H+4hzVjRrXi4OAQoYcUuqC2gE8UQ8WyWZDEiBB9Zh1JQZK5yeKiZtH1dLLDViXKJLbXx9x/OOXundt89s0bKF0ikib4SEoOYyu0VYSQ7bVSJRBnvKicWnaWn3GWopubeJ9MoMVZ8Maz9aNMvpWMjrj6V66aeoKzgI7VF1n9nz+2uZgEiBjpp0ueHjzk2s3n8X3Hrffe4bmXXqKy2fKtVvfvzNSTuVgMmS+mkHmQkdKqzZgfJ0Z8iitFYG5UpiAwssjqFxWRQlMaQ9csIXpKozAx5UQ3axFKESQIpWgmE9pFQ1EJntx/FzB849s/5D//v/5n7Kxv4UPkSVIc3XX8+3/xAqOlR+mCGM8si6vnOORwj+vXXqU+d5lv/bN/yr23v4EONRsDzd5EceniZ7hxc4fpZEGSic55BJ7p7JTCmPzO71uW8wkvXLnMN77xLq+98nl0WSFEYO5KHhzO2B0ZaJYgHUF72iCoTIXwPaTAcjFD65o+wZe+9BUG9YDeO3rv8DHRLHqstsQk8SQWbUcUkiD7ZwpVIQXGGKT0hM5RSMW1zSHRTWm8oesTrQlc2Rr++JXAp+vPdE2PD0ki4UNEVTlRsRMdWll8EmghkMnneslFgnck7UkNiNiDSvjO07UtTvlnwWhSa/roKazh0s1X2Fzf5MR1vPPxx5yeToldxA5LhrWhdR19F9GmxGpFKyKpdyurLrm+cB4tNEIprDD03mX2WXKY3hAiFKXldNbg/IJhabm2s814fYyqKwaDAQqBLgxJ5EA0EQN90yFl5kbhE5WUyNGIo8mCQkmcUBACQfQEoSm1wqeAMmOOTw95/4O7LJqGwg4YbVq8lMynjqpKJLINTQnAB/qUh6wShVIBHwNJJISISHUWhOYRqzClIFQOJSLXVSZJjA2o2OZBacpq7SREDkELfjUE0XkoJc9YyBLvAy4kko8YpSmEJwmBEypbumVBDBlkX5J/x0traxgtuf9oj2WX+bbBK5q0YNkkFsspKbaM65oUFJ2LeGXYqApKm0ha0AcNSZKIWClA+vw7+USSlqQgBEfbefYOj2mWSwoVeOONv8Ply3+Op/uGC7s7/Af/3RFlOQbg1ocd3/nuMU/29phM1lBmAEDbZqZq1IL77+1Tb3hShJ/7+ZI//1de5+/9w+8zkiXCzYCsWir02VFDrP7R/O7v9pSl5JVXFDdvaqJ+zL/6l/d49Y0vs765A8D61i6b5y5lu2y9xmSx5MGjOyihKZTFqIAQNUkYdGnom5YL60OK8Qb3njxiLB1rOxdQWtM2iT61XLu6xaMHH3P31m12t3YYrg0Zrw0p7JC0sU5hDFIpkhB8fHjCPHqid1QykgpD0zua6WlOVnWK5BZEBaWSWB8ZndtltPscB/tLrr/wAoPSgO84WbY0jaN3DmEVk70nNE3LkydPKcsBxagm+Xx9xOQRoUegcTInu7chImWNLUbMD2cMz11EFDDePs/pQaBPjkJbXN8SxIAoBUoItkc1s8WSpknMy2w17hcLtrbWc3AUERU925s13idEMCiRIAWGZcHWqOKt7/0B169uMbAl3i3Q1hCSx/c9SmWfhIghq9O0oRxvcn4w4DwKaWvkSkGfEe3hmXsBVlZVsvLu2bCUsxJmhSoxOe27OT1lcrDHxRdeyvXNqu8nkFy69tzqc2KuV1IWiCTsKtQsrdAdcVUz5ZLq7P6XyGglgJRy8E0iN63FCnMSvc+BZl2HshVSa2LSxADj8RoKaNqGZnJK7Gu2NzfotaFTLZvbOzTzGR/+8AcIEblx8yYvv/wq3/vWN/O9L/TMJgekQBZjIHPJFxJRgYgKkTwdEllUGXmUEjLmKHix4ocGF6iKmiASWgnG41FWdkpNQqPkgEIFUsgjf2ty0q9QKoehkYhdIDiFKYBYoEtLWXia+ZKiLIjJEV1PTA2gmc2naKMpCkPXzog+srm+QT0uefDwPoUd0nRLvGtZLjxVVRGRRO1pm3yfTSKRRIeUOaTtjavrLFq483RBEBqZbG4G2zyc7sKn4WWfrk/Xn2b9+FZfKVExIhBYpen6DgEYpUAJbEx0A4VqDV5Ilgm0cwiVMEVJ9BCSyim1wjE0UFrFIgp8BCHzzccmiQstvg9ILfFdm5OoRCCQMLpEJ0VYdnilGdiCHkHoAylKlEsMNwQ3d86ztTVkMBzR9ovVJFchbUVPQPYtMYJMCqsEqUsol+jiElWUaJm5bGEFwPV02F7goscLhet7RmXFaHMNtMrsl84hBDkJWFmCGtAlIOZi2hY58epMbdM5mTcnlVVZBIhNTxJZbSfJm1ggEoVEJDBaI2TC+YhJKp/38+mcICSJgE5ZoWOsRUtNJCCiJ4QOtIWVuqvpewhA37NsPZ1f4huPjJ755JiLG2tc3N5gY3fA+a2LjKqSalgjtKTSBS2KJnreufWYed8xPZ5zejQnGJgry+HpIbPGUaaStRI2NkZ4IWiTJwmFUFANSqzKaVKBQPICYwIYQVQ6b2xIYupziAAaGSU9nt4p7u8tOJrnzV3KHoPn4uU1NosSUxT8q/1HpL7iozsPKUvDoFrj41sfM1su+Xf/2l/l/sEB9+/fox4OWSvXuXf7LoSOV9YK6mqEUC0uOE6PGkQUTCYLrpwb8mh/n4OJoyiG1IMKv8yTXS8VShbc3X/CDz98d1WUbvCP3npC4x+ghlsYXbD35C5/62/9La7ffJ6+P+XpwSmdFxwd7qNlv4LuSoITBBRKCrRMaClxAlwUqD5PoEsVUFKhjUaWhtIUGDQ9Cec9RhpSrSg21tm6ehOkQqUAUiHIYTxJriadKaLRuRHcdxiZD0WCgFSREHVmSqpIJTLDDqMwIqF9wts1fKgZlZtsnrvJzvOv0C8mTA6ecLT3hMePHrD3aJ9533P88Da3/Qkvv/w6Q2Vo/Iw+OfAakRx9H8G7bH/rO+rRiK5bZMWtiwyHQ1zoSH3AasNJpxhtDFBPephHQj2mrsZ4I1Bkla1Wispo6AIpRawZ0qUlwUd0PaIXHrSEviUUGu8lulLYENkaj7j70Xu8+tJzBKuRKpBCh7YGqbJKOUVAlcSokFqCWiXpIlZWe1bWik+Uf5+swCeqv7PG3plS78xLK5/Z4c6+wI9+3FmDLz+WPgkPefYtAkkW3P/o+0wXE64//zIPH7zDwf59XnrlNWKIOZmdVeNuxfti1UyTq6+h1FkzUkDMamukQqwYWmcF+BmgGhIiRQI5OMjWNb7v8F2LkRYpE6nOjEBpV18jQtKGZhaxCGaH9/idf/57DMthfs8pELTEcp0PHu9z7somXtWUEWKSSEJ+zgQMR5sUl16kKDRf+oW/zuLkIbHv+OKF11m78BLXb1xEyIKbL32Rb339lwgu0C4njEZr1OfOQVCczKZ0HUyOZ4wqy4WNNQ6ayCTs8u77hxweam48X/PZSzPKFpAFRmpSFBgNdm2NYrjB1va5jIloG04mx8xnc6wWIAIIhVCC1DmG1pBkDkhITiI0DCW8eXHMzrpjPvPMfMB4wc6G4eLGNt+8M+HBactpGvJptMe/PatTkiIlCmtZepeDfhKkrkXbEu0jUSWMUPgQ+PjuA9quRwaH8IEQ854uY2R7UDOwJY8ePOLclYs899JLoBUP7t/l9re+S6wrwrJDG4MuIkJGQpSAQomASi6HewHRKtIqFG3dWbxNCHL9FSyIoKhwzEVE4yEEjk5mtMs5z189z6uv3KAwkqZ1RFVkh4QCswpEK21BCpmtFp3Ddx3CKLTSaFtTLiNBRooYkSZbcGsLSQZOp0ecfO/3aBYdG2tjtna38rBB5fuaTBCCRBhFITQhBlrAoDNOQYALGh9i/n46B6Fl9mdC6Vz/qZitfV1sSSr3LjwuOyAcJGVymJ0QoMIqQEiBzDZQIz0yyWfWRa0MUtmMGkhmZQX1hF6wjEtiapFec22s+ewbNzjtFXcefoxSIluRbYmpDU/3TlicThgUmqosCRF6bzAKBlZSFYog854hiKQoQRa4FFApY1BMEpnxjKFzPYeTCd4Zbly/RucOeLL/iMnJAf1yRlVd5td/5ZRFv+Czb1heenmHi5ckv/brBywWGzTLywAIJXn+Mxf5xX/3dR7db7jyguKllzNv68P39nFC0PV5KA15i1D6LOE3rJ4lwf5BDocLPvDv/LmSf/+vv8n/6n/5T7jz8Deo7RvAZS5eusZgbQMdYBka7t2/Cz6ClGhr0CT0KvBsMT1gXO5w/sUvoqqK9bKidZr3fnCLxckjytEWb37+S1y8fp0rl6/ik8QoTd91+K6nsBqvE13s0UITY+KF525gCwMkVAhEJF0X6doFTb9g0fQovUtQhm/9zu+D8qxPJ6yNB7Ruwa33fkihNKPxkJ2dc1y4fpnx5nmm82N2L13AHh8iqgFGaJyPlKZeNW17ks/7oYsticT+k0OaySnVaMTkIHB0ss+5nevs7l6kkA2z41kO8KPk7bsT7hy1DAz0wmEKiZcKF2F9VLBsFvStR4ncaJayRJcVUkATA51fcX+jY3N9yK2PTnj88JSXXr4AKTPYRYpoo5C6AmGfhZuJ1esrzABhLAj9rJ4QiDwQSOQm3ApZwurd8azp94eCzSDJfEaohgNscZkU4ifuibOaSZy1Ds9Uctnd9ImfYlUnSUkQCekd+ITQ8pkSMAeGQAo5uCwPUrNa+CzQLMWMZDhrWAqRUHqAFIG1DYNdzHj5+QLnPV3KTrccRpJtvGiYTyfcvX8fQc4kRmic72hm+6S+BZ0bz/kH75HJ4nxH7Jak4IldFnukmN1PkXQGb4YQ6LXOAWd1xcenh/zqb/4BVRH58pc/hw89SWcGqqPHrAQ3MXiESDncTcLTJ085Ojzii1/5WWJcEKNFlzVOQmwSOI9WAoXIA1ypkb1ASY8ZFQjdc3jsefJ0wunklMnJAVJJTk7mXLhUEaVjNBgQlSDJlM96UhBjixGWnXXF6+e3+O239tkjB5ugRA5OlAWd+yO27U/Xp+vT9WOtH7vxl4zAhAw2llJRoOhiRAtBjOHZDVqpPGUqtQCfD7pGSXxMyOhJKmEDmcMkMhA9rCxwOuVwjqSzOk9KiUURhcf5rCrRMnNAlJR4BZ0QKBcQsefcuXOM1wxr44phUdOnwDyA1kUOoEiKFLs85U0GFQM9CaEsRioKGbGxxKXAYDCi7xLdTNL0C4raEnWB0oIKga5G2CJzHlzv8a5HKo0SWS2DELQ+p4aVIqFTviGnJAgyT1+1NtlimyQhtCgERWnyzRtFjJ7gHFIqlMoNGADvPDZZorRI02f2X+py2q+I6JUipEuCyckcFxPJNfjY0nSKpmlp2wlx4YkhYXRkbAt21irK0YDheMzWqzf44puvQzfh9PgA1wlOJ44nx0/puxYZBG3b532x6zIYWwvGReLWXDLtF8x7R20MO+Oa4VDiA7g+N1xKLRiOKoyRSGK2EEYIReb1qJRQ0Wfrd4wUNkvZcTk043i6ZDJvAE89qCmNRvQTCiKfvXmdwiaGo4Jvfs8iiJTlgOcvX+QHH/wW79z9mP/kf/ufsrkx4va9e4w3NthY3+Li+XWOGeO6Dl1CnTwCwayJLFvBqVnSLh3r43WkPmS57JlMpywnbeZX9J5ES/SBZdNh7JimTyymM4g9KUhSEaCf8dVf/Cp//qtfJfiOaZMbfY8f3WW2nFAmhXQSimw9UgDRk3FGCYNgYBXGKpQqSEJiTcFoUDKoapSpGQzW0LZEWovSJSRFlCte5pl1czX5lKtGjUgiJwsmTxcdKflVyqpEnjWdUu6LZXuGJyHQWhBjni6KGDFGknzECRCFpbSblMMx565c54VXXuf08ICj/Rz80yw6QrIMNjZYv7jN5OiY+eEhCLUK1kn0PfR+xJatKGVB7xxtv2Toa/plh489mhYjE6rY5cbGHj//C8/z8cN9vv/BE7QcoDR0eFwCFIiyYDZv0GUJKh8mlUiIPqBxlEYgUkcKEKNHKdjZLvn4wYK9oym2VKhqsFIvGEJMGc4t6tXhxjxrvqXVPHsl8/tj76//+sMxF9H5hXnGseFHytg//Pk/2iQ8+7B//XuJGIhCcHw644df+wYvfuan+OX/6r8i9ZHRcJfB+pjheMylS5ey2kWuojtMLlxjyGyZ/Nbxz773J8EliRBywS6Fyr95SoSYCzuls4JGAsYqtCgyrkD63FxMAbRFjddYKI00GbIe2hlNt+QrX/gs9tvvcfdoQucD5bDgeLbElueIfUNw/SoxOT/vQgAxUhoNMRCCZ3NjzE//e3+T2dMPODo9Ye/+d/n9X36f8eWb7Oxe5+lx4Ou/9ct8/vOv8Ppr2wTnCSExm04wAY5mB/TA3skxN194k9ef/wKfe73hN3/ze3z3wzuI5ZxXL/RoKSB4XFQk0dMt55hywHRyQtu1WFvivGc4qOi7ZmV/LhHEzFtNkhQ8i67BRwlGsrVRgm95+DRwb3+fB/sNr53f5elR5GAyZ2NjjQfHpxzNE1fOX/jjN/NP17/xJRLMAencM0anBZIClxw5QAZIkRAC9z++Sxd7iuCxK1bvom3xONbNCGkMr3zxTcabG7z91tucHB5TjwYYa3HOUVuTmXxKE6LL6BJpsSYRfMDHDHVXQKkVJil6mfnBMUhiyge4Qjhi61Zq8pa19QHroxHnrrxGZW1mbCaJ1YqehDUFKTm66GhPWmrT58FwtY73ksIYgpKctDPCbEoIGlCcX69ZdpntenxyQMIwGA4xZaSshrmRQLay+QA+OtZGFVpoXOpReNyqvhJFCSES+0hSfVbaCfcsCC1jY0A4ldWINGAtaJvtskHhQt7zrJGg5IrPqvCuJ4kc1KRlhxQWERUJiZIKRYtOMWMkvMthIiEiQsLjGOhEXa3zxvUtrlx/ma9/6zt8fOsum+fGtGnBcLxJ0y754NZjvNcMBzCsS0Kf1ZdRBorSUppIkB1CGLoUqZVCiYQL2SoZO5BCUw9KEtAsA48PZ9x9ckhhL3Hn/lMWbcfJ4V/mg9sHjIYdfUi884MnzH3ire/f5//wf/zLvPbqiMPTJd5D19nVm1mxvz/l0rUdPveTY7TRLBeJ3/qNe/yf/y//ksHAIhcRn+7zn/yv/588fvwSwZfProULFzTXbygO9vMe99JLeTj19NECXZQQDU/39gHY2L6M0oq96QFf/1e/hdUaZXJgRkCiVmFUXiZO9w+48dOf5dG9+9z78PscHx3xwouv8OWf+0lG6xfwSXB8esC33nmbdn5K1/XIGPAx8bM/+xeoyoqgAibYHOaQEpvrO/hVmrskrOyFihjz+aTtO5bLBV/7rd/g0Z33mc+X+CCQRlAazfb5i6xvjhm4JU9OD6huf8BwMKSo1/nw9h3WqoK1jXPI1CFcBRFC6tCqIgqDSDnkTAbHonXM56dEBEZE+q7n6d4jLpzbYm3zMvPFx4jFCUWR6HpBbSLTWcd03rIzrkmFZ9HOGJQXaDrH0dEjxoMBRkoUEkJW4RkJIjpC36GMxVaeaiD4+O4eN56/RGUUrp+DqNDFCNBIJXB9j9IglM6oIakzC5IVJ++MSyzOwsb+aN3ySdPv2UqJGPMwUgFSG4SxqEQ+d0YQ6pOPP3NHpGcRHmfOCoir+vbZyFRGBJHgA1IpEFlBnQQIU+YaIq0wKjIHmikbiDGHMJFWtUwKeJeHJxCxVU1ZDvJj0RFCJDiH1ZrGdWAM1hRMTk5omjlBCk5nc5p5R3HQ0OEpXCBpgZImK/5WtZV04LuOGPJYT2m1Olfm5ziE3Lg8PXrM02nHwidkq3n89IDD4ymvvPgy184lpLK0viO0EQb5GhJJ56ZiTJiy5IOPHnLx4gVmiwnb62OEkAQX0Uj62OBc4PTokL0HDwi6oFobQtBIEQj9hE1znvsPD9jc2VkFmBVUxYjFfI53DVLBfBY4PZkiiSghiF5ABUnmFPKEIOqETBBDpMVTWzJrNfz/syN/uj5d/+1dP37jLyYaKTJYM4LTCRUFVhs6v+IqCZHx6i7fPAQ5JrxdNiShUAKEloQkM7Os71Bkhh1KIqKg6TqUyodNJQV9CKsiNCvdjJYkH4gBkkz42HHpwg5Xr1ykrEsEPUJoOgK1ljiZiK2DoNFWYlfWuD52SKMphSKGgHOeUW3Y3lxnNl+ipWZtsElhF4S2wKyt04RAnLVE0WF1gVASv1zgmib/7t4TC0svNdpkzoaRMQOWEbS9z5P0mKiqXETFmO0l2mT7ZPTgnIOUMMYwqEuc7wnR53QprdEShJUk6ZE+FyQ+ZrWNlAKfIu3C8/j4mOOjIwaqRDGn7RInh0s2R4LXrl7mhS9f4MqlS2zvrCGVwHvJ4dMJT/buMZ9M+c1/9i8ojGRUF+zunkcojY4lTbtg6ZcQcwqvWa/QoSbKwMlsyWRxTDQ160XN7vYYpXPzVCSNEYnhoGQ4qEkyQgrIlKG1WllQmakonKeNLidXnk3ygkHIxMnkhMOjhpOFwyaRgdYiMusWLELka9/7gEvntnjx6jpCKr71jX/OZz/zZf7gaMo//oe/hC4rZss5pQoYUyCS4eL2iDdfucw9M6PpYfn4DqrrwEkWTcB3DrM5oost+0dHuASyLjA2b+pBG6JvUdKQUqBdLhFogsrWz845ClUjUuDq1Uv8h3/zbxKjZ9n1zBYLDo6fcrL/hEJEEBJdaiK54YBMCN9j9ABdlAxrgZWCqAvKesxotIUdrFFU1QpMnTKXI2QrUxaYepRMIELmH4WQYcw+K/98iJ+4RZVCklAhEmMiiURMgiBEDpQROQU6ppCLslWvSUpNSCFbvQQILSAqlCgwOhFDSVHUFOsb7Fy9Stsv0Rg8npPDYzbqMTubO5xsX2W2d5/D40MkoJXEO09PZDhe42hywqydsRHWKKylbXMicCHnrG9Ybv9gwdOTA6RsqatEMInGe1SR34fRVRQq0cw7xoMhKlqUrHBC4axERcn2lqEWjqbPjCSJoioD2sIffOu7XLr4Vfq+Ra8aNURI0uKNRrl5xuipCilWBahY/Yv4kUbejxa5afU8/mHF3rMl+MTOe9bQQvxIwfz/G3hypgaUSrI43mPv0SOqUeDrv/732a5rtq9fpBpUbG9uUg1zylwSZAtGjMSz0BGtcyN6lfJ79qOddS5Fyu+XFBy+d5kPKEAVZgWhToSY72cpeWxpcvEaNVJp7Mp+roTAaE1RVVRlzclh5h9du7yF6AV3fuN3Ob855t7REWXwbJWCxbzJzFJysIiQMhf0CZxUCB9RSiNiz9a5c/jQ8Ojb/wofAw8PIsX+Iz4q3uGlV17nW3/wFv/gV3+fB3sNX/mJ55mfHNE6T5CJdNrg2si9kznx3ozHpx9x5cKYwVhhCXz/gye8dP4SsZ3iXGRYlvQe+l5SDS3L5QlKC0o7orAFVV1ycuLou56mbbOKQgqUW6kdBCihaX3iO3cXmHKNfjLjpG3Y2hzRtjOO4pjNcxv8/C98lcd/5x9wMp/CCt7/6fqvfyUSZlXHRHwetmhFnxIhZV5RSol51xJSxEqDTD2FMXRtixeSFD1KKTqZD9Z7j/do3r2FUorBeEwQsEw9NmVVFjHD210IGaCf8v07CjAq83crQOFZGw3YX3YYF5Ai7zneBUIEUSsurK1zdaOm3hzio6CqDKFtGFqLSZGOloii73tCCiSR3QnORyo9pGm7zO/zuXlihaCqB0wXS0SKTCaHaK2pbYXZGFEUNVprEJ6uizjnca6hqjQhglEJZS3zxlNqg5CBGBwGResaCqnQMuHRK2VMQiuLlrmpGUPMyiMBYNAiN/dil1EKSuT7nZGCgCeJANGgZFbSKBVJQeJ9pDv7fZ1Hp4TQoLRkaGqS0ERvmBztUdeGS+s7XLt8mao0/PbXvsn9B3eohxssXSIy5MmTA2azCUpJttdLbDki+ITHYy2UtsRWApMi3ju8VpTSEmUOTpFK4qLHiByO6kKHFIqHB3vcfnTAfNkyqB2zpWfRSWbLdfb33+Vnf/omf/4vrPPeu56iHvDKqzkM4e69SU58Ng07u+/z+NEXUTLx9jsP+d/8z/8uT44cN196mZgCk5Nj+iYgS8n2qKbpDZfPRx4/zXzifCFo+sazvqa5cjmrppZzz7d/5wl//+98g+B7pvOOKxfP8Xf/y0e89GrJdDHB+cDG2hCCy4nxMiMrZFR4BK1rGRQFH/zwm4iyZKAUV19+ns0rV3hyfMytew/olzNmXY8R2WqqyLzxG88/Rzmu8W0kRUErAjr8YUyGgMzlJhJpSD5zsSsl6RFsbu7wlZ//87SzY57u7zM/WdDMT9l/dJ97dyLKGKrRiM31IfVgwPbmHtev7+KmCxaHD7CFQVXbq3NUwItM9c5iApBeUI83KGtLM1/S9B1CGgaVQYrEeLzGYrbN5OSQui55erDk5rkRbmcdE2DS9iy8RGlFCI4YoQ+GIBUBgTSJlCRGC4gOISW+j3kgR2Rzs+Teg/eZzF4kDWrqsiJ4Q1nnoIbQLUhRkCQIW5BQpBRRKJDZ4htTQEjFnyjY7OzPK/+TkDKfBVJuvueSKT2rj9IfVwedsY//UKiZwKdcZ2TFnFg1d7Ptl3hWoOVyDSEQcpV+G3Itl89u+YM0ApkkLjhSAh88CYXqM6tPao1UA5KQJKHoixpbDGiWM6Q2+L7nwsYWhgV33/0ml6+9STFYJ1lBlIaT41NCd0pSEl1ohMrDD7EKMJOrclEk6LqW0/1HXNgc0XUNvpYcLk+QSXDn0R43n7uKn5/SJ4+RlhATtjBIBa4JSKl48vgJnRecu3aVu7fvYV+4SVkUhBQITqJIFJXGRc3a5nkmzYSTowUnJ3MGdcnGuiG1PSLM2dg+h5AlugCfFgzHJVZZvOtougUxSpTITM1SaVKUWGkptUK6nNReVzmEqRdiNYyHFD8N9/h0fbr+NOvHbvx1fZ6sJFRmWPlEEoLQu8wECAHnA9YYiB7ftDn9UiiSypNtrS3Be7wX9BkWhRceIbNUX/sMnk4+oGKgazswmhQCwYPRJqd3JY/Vkd1zF7lyfYfhqKL1geS7rIpT+Qbi+x4pEoU2tAL6pGhdT1WUJCnoo6MwemVna1j2gjtPHuPaRLe8z2gwoPcSE3oGomLRO0xK6CJDYFsXMFqwubVBFwXCt/QRfMw3d2MNIna0TYuWhloVOOVQNtttU4g5ujwlRJD0Ph/Os7VAEZE03q+i0qG0NSqBkpEuQjudg3csRMjJbW3g4HSSmzhdw7rVXFsfUwxqquEug1HN9vYuV65to0PB4emEB/ef8tb332W5nKOlopSGtZFhe1RQ7gzxXc90Oef2w/cprSV2oMsSOxrju0DbLHl89IRZI1h2DY3PyWr1oGJ3qEkq0feJ6CxWC9bGkrrINt+m67NFELA2g/4J4JMGIehXloFCgI6KJCR7Tw/Zm8/ZmzkQFqcyd5KkiRTZziwNJ03PrYdT+tYzHo+ZTA74pX/820xPMxxYa8XRrGHZOk6mT/jcq1f4zu/9S1597ioPD2fsH52wZQ2P5z3TZsbl7TG2LJknx/7JJE/03ZKtjXMMRwNmTYORHV1XIHUg+h7vHCjBYDggiYAVChEV//3/3v+Q8zs7IODB/lNcv+Dg/j2UkBihIUU8CaJEKkepJMPhJskohDZUgzH1cJvh+ha2EFS2yNNvElYpnMjcSBkBRE6LFBkWTlwlgaFyWIBKdN6RYcvZjhH7bDOOekAgTzdlynBhJRIhggsCpS1CZDZgDIEY+syVFJKVoTxbXFNCiABaIFWJiBarimyt7TzG92zslLRNh/aBjc1dqs0h5dM9Tp4+Zj6b4/oOlRJ9t8QaSzvv6LslMgUsij4Z9HAL2RyiqyG6HHJxa8Dk1KOGI06mC2LbUm8O6ZdQjgy+aGhpKE1EJA+9QXTgU6IuN6CL+CiJ6Myj1IndbcP7H33Mk8cnXLm0gbGC4CTaOppgiH5Od3zIYH1AZTUpWtBnfvwfaeWJTybcqwf4Q42+P/I3K2nhv/boH/38/2+JwGcrCYEdDPkLf+W/w3B9nRgbhLF54kvE9z1am8z8Sgl5lgb+I0X42YqrAJOzhmUCkAKJAamR0ubrwHskOTk8f6xC6YDzjr5zOYQjBbRWEAWlqNCFpXM9gSUxRdS5HSYTxfF0SV8V/PW/9nNsVwW/9tvfpF16qvEm026O93E1NFLZ+hMirFIthY4ICamwEAW/889/jb2P7zOwQy6d32T/4T6H0ztcu3SD5994mW//9u/z9d//AXc+/JCf+MlXKAaGdulRZcGkMyzFK3z8Yct8dgu3nBOko+yeslPMGZclJ4slCEdKibaf0XUNzg3xTkKMzPyU8fomXd/hfSSESOc8phjiXETEM0VuVnl7nS3qX/6Zn+Kf/sqv8oUvvcr5NcN77z7ghZcukYxEDwItmUemqvqPfT99uv7NL53ASUlLzEFbCXyKeZCSJC54ZO8xVrJelixbh/eCZe/wIg8Ry6IgxIg/mNDoKejEQAuUzWrBKLNqp/WOaLIgBQRS2azA7pZ44ZDO5YAJqUBFhBYczmd479DFgCQ1RQpsbQxZ36i5dH6XZCSlhLVhhYrgCEwbiUuJkCCoEhcSstCoZBBJE5MnEmhSQsbAYtEglc6YhkKxdEtIYLQlUWA1uDYSRYVPEJxDrexsCYk2GotmUJUsgqOZLyiEIsZI50RWAyWBlTEzRTP6Cimz8tG7FpV0VgkJsm1MnikJI3LV1jFKkZRCCYnPN7UcDCISQhoiEYKncwKfeqyt0SZ/vDUllc334pOTCcvlnH4644uv3mBnex2zaODkKXup59HeHtIaepGYTFv29uYoPEZKRoMhdWnp+kDnOwqrGVZ1HvrG3GroBWghIEaUUETAp4DQEiklAc+i65jOGm4/OeLh/hKVPM5PwWhKecyXvvDL/OJf/FmMkWxuGf7KX7uK1pInTyb8xq8/5p/980crhZOkLHp2tr/G2tqU42OBQTFrj1ke3sGHyPR4gRMB48EZD3KX//vffYUb145ZG0U+/8ZTjDY83Cu49/dmTB/fxc0OkQi+88EtPrh7QLAVRlq+8MXPcvmaJMYlfddwfHRECB5iRGhJvbIG9qknhOwAKnd2qFWFL3Xm2LY9Dz/6kM5nA3ihImNdEJWkrkpU6fELx7WLlxAh5qZYyo6HzKoFLXNIVAiOhMLHDIaTwuKDABzCFHzmjc/hY48LnrbPwXcnR3MePXrAwcOHHDx5wmx+yN7slJAEdykYrQ3ZvXKOi+d2iUJkwQSRKG22/IuM+Sm0JESBcJIYWmJqSb5hMKhJYUrwJY2TyOGAtD6mPj1idncPYmA2n7KzsUOnA40PlDFyOu1WYUAaLQx90xC9R0RHpUcEF3CiJKFpJqcMxmPWR3D/YI+PPnzAm597jRA9RZno/XKVzuooqkFm9PoelMrJvCk3U7PFdzWwTGdN1WezQ/44d8LZw1kheMY3Xqn6RFo9tmID/jGl0x9CoKysycml/GlSEl2gbZcMRsMVJ/Ds51p9r7QSr8S4sqDm117ITxSLAFIoUpJINIUpCb4jiIwrUHpA1zbgHIrEoCyx1tCFAqc0SmvQOlvO2wYpAm+/9QMab7h87TP0CP72f/G3ufXOBxRl5LVzQ16/so4PfR6+x7hKN86pvlJpmuURMQaqwYgbO5FqUPOD93omw457+zNaPeLxg4/olxNeeuk1Qgi0fZdnudExqituffAeO1tD3v7+t/EtvPrCDXrfIoVl2UwplcAWBcbUlFZSr2mitPStp53NadsZB3tP8b1jfbwGQiO0xXUOYwvafkF0jmU3Z9kHlC7wnUPGiNIBYy1SSxySU+e4NhoQneOoT4hqSEqSz75880+7HX+6Pl3/rV5/glTfPARJIgdT+OCJMk8eQww5hhtB57L8OiWBKWpUDITgsJWlbzvwPSn0uLKkFAOENDnRLsSVpJrM29Iy2+dIxNBhZQm+px6W7O5ssL29wWi0QUoLum4JyeBCQhmDShHn+mwbFiCiXxV7GqMi3reEaLCx4+qVC/Sy5Nat95kdz2n7ObUZsLmxiRCBtbog9Jq28+iV8in1CWEERglCUMxbRxASyMl0hTKEkIgh2yWLosrQ7s5jrM323lVAiUrZ7hxDpl8pbYl4RMqbmo+QlCUJaAP4vmM5m3J0cIRwgaoArTVWKzaGFa+8sMurFy5Sa02jBD4mOg/zaYMKLbNHe3z3/vv0bUQniVSSYZXYHG+iJDiXrY3dsqc5neOUoEsCRUXqYN60hGVLm05pm4CPMGmWtH0EW1IOagajiqou8DHh2xYQaCUZ1QOMdvgYSSlbLNSKZSYEhP8Pe/8ZbFmWnmdiz7J772Ovz7xpKyury1f7BtBoeNcwBOGC1NAJFMUZBkVRQZHizIQUCsXIxGgUMYwZhkKIoCZIzlCkhuQQQ4AARJCwjQbaodpUl/dV6fPa47ZbTj/WyazqBkCWfnBGP2pFmbw3zz3n3HP22ftb3/e+z5tyOEAS+VgQGFQWwOGC5Pb8mDvHK24f1YiqRKeAF5kPgfeMjcJpiWtb7kb42kuvEHvHP/hn/5qf/MFvY/vSHq8dHTG2BSlGjuYtAwWmgBdefYtuueIjjz/FYJjo6pa9c9vM3ZLvfPQSTeNQEXQUFMWYQtac3dvlysVLrJqGGDw+5mlfiJlVkQjZDoWi0AX18pRv/fjH+eBHPkQUkuPjI/qu5ujwDvgeIaH3PVpI8JGi0IxMiTQGXQ0oh1OGm3vYcoxAYEuNJkGSKGlQxhABi8KFSJQ+M0uio40RXye6dkU9XxB9IKVEURh87PFri6brHCLldFZZFogUGQ4GSFOQpMZaRVkOKKzMqiqhKbQlBkffd4j1FB3AJ09IkeCzCgwpiCmhpV5bCzxKBxIFGI0tK/qmow1zRDTs7u0zmYw5vHMH39WowmCKEl/3CATBZ2g7AVSynLgeKSxXzp3B1S2d75lUmu3tIZNCkHrJaGeT5567yaoTjMwYqSq0DvTRYZNGRkfEg4ocHzdEW9GvP8dJjJlUgu1xwVe/8mUeeOBH8CE/ZkyKr375GU6vP8PW9iaPfOyTDLI2Drg3vb5nQf1Gpd87lpT7t77/M394M/APsnDeXTh/Q5jHu6boQuS5uS40Vo+AJUJKYsjvm5Biba/ISj+8J8U8lBFC3C+M7xmORcjPNYOv14WyyBZg7zMjR0Ke5rqOLrT31YFCCJRQSCVJeFzo8DEQereu6QVKSqbVgFJKGpk3D1pVGF2xWh0zaxq+5RNPsjw5wpOIMcPyU4qk6DLnKyliSrhesOqWnNFjVDlkdu0mxy99iaqyXH3iKb7jJ36S53/rX/L3/97Pc/3I89STH+cLv/05JptjXAy8/OoJuxsWuVzhjUGFxLC+xcn8Bt4LZEyE09uU4g6X9weIrsMUkrpucLqgrnNSoHc1Tdti7IBCR7quYzQdMp5McX1Pf3xM1zaImPDr87dJEifW1zBVsLF9ho9c2cP0jluvnoKueOv1AxazBWEZ+OTHPsr+Bz7A933fD7zXy/v769/xsjJbyYooqNsaOx4i2hyKUGpNu/5cRefpJFmRnRJOCKJUOV2RSB97vABdFCAjRib64BBSo5JABonHoJPOeAaZcNEjhcRaRXA9Wgi0SLlJkQRKF3RJYvWUwsL+luXB82cxw5JeaVzdITsBg4KTpUM6j5MeYyxN0+FdVgvZQhNDQxIFKjVYo0ElYmzpQkTZnIIptEQok9W+yROCx4VECBFbVcQAbR9QwqOVRtpEJRUKCxHq4HIwlTK46IhtjzAFymhCiMgoiQJcSpRyfc6KuQHfBYdEo21W/ogAUTpCAmtLtMjjqn5tr5MhIE1OmjcikZKmDx0iZvVm72oObh8SvQPfo5NHB8+wKKiUZndgmO5v8eiFHWRZwmTA0peMZseUgxmHq4L50YzjwzmFlYyGFZNRgdYD6nqGMSXDQcl4UORGbYrEPjcvymKIIrtx2tCj1hgeyT0VUMntw4brd05ZOYmwFROrKKpNZjMyVzUmhqMpb9484G//F8/zlae/wo/91E/xwgsvsL17luWypTIlpCmvv/4hLl54hlJEJkODKS3GaHzwrFyiS1AZgzWWziV2z2xx7YZFKstkcsqPfO/zHF3z/OavvcVquUK5lsvnt6n7yItvn6DKDaJb8dGPfIIktvlf/BXJf/QfX2e6UXPr+lsIMndOSksrPDIJZFAkK5E6E117I4irmqg1lcrXvOGgohRFTsUV4r4SvT1acGb3ElU5JSmdjympsCmH6GXVVm48kzSJQEIghclhMdITk0MLQ6xgIAt831GVQ9rhWUabPfsPfYB+vqSezXn75tsc3bzB6dFdTk5POT69yWu3b7C1ucPlK2f5wNkdvBAsAxR+QZCSFDUhakRhKbzFd4lyuAG6wXnJlQcfzY1G19C1iVpuMKi2kfptjpeJ3fGU05NDhB5SSM3A5hTvslTU9RLklCgCQuXGcdKBqCxdHanbFhvy9VtXBbsbU15/9SU+8tEHQQwAS3CRpDzWligj8T6HpclcRJBkVtoJZB4Ax7UJ95sGiUJ849Dy/vff9d97zga5Vu+BeId+8g0/+0499A2DzwSzOzep3Yrzlx7i7q3rtM2KKw8/ipTrgIyUU3LTvRoqrIdvUn3j7DVFUsz1XOBdLOUQkSnXt0kGAhE7HOG7Bu9ajBCoILBC05gCMVYkLUEKmtmcZlVTVnDrjecoTMXP/f1/xutvvMZ0NGWxTHxldspAVDzwsABh86A+5NdUCrkO51A8/MSnGGyd4bf/yf+La89+jg05ZGtjzIOXHuXygx/j3NmLvPzM7+JSwrUrQoLBoEIBXdsxn8+4cPEyX3/mLT74wW8h6ILGwbW7sOwsD+9DVa9IIREqR1AjtAIpMqqiqDYJCD78yFMMqiFN2+JcSwietnFYo4lR4GOk8WGtCo1EWaBEYFRZjIHgeoSHSzsjRNegTiMLH6ldxFbvPaLg/fX+en+9s97zJyeGDr8mKEiZm3IurMG6KWYrYAgIaxEkVEgIqwhNTwqOrvaMihGrrsP1EWEj1vVYnai7hoG2WbVlNclIXBcQAXzTUpiCixf3sTawszPFaIOWJUl2pCDQKHACrw3KRAg9JpU0iSw1F5EoIiEF0DnhVkZFkyTX75zQtjkAYW/LYqQlRYXUGm3KvPk1hjZAqSLCJYzOKcMiNPQuB10MosMrS2JtQ5ASGT1KKlxMRCVRRYXSKXMSpKJe1biQKJQi4UhaE4NkWTfgJavlkrrr6JoOv1qg2pZBITl/bpMHr27x1FOPcG73LPO6Yx4Vy7u3OTg+4avPvAQ+YArNeGfKRjnCCI+WHp862mWLkhItDaPpAC96CmVJsaVrevrOM297uhDpQ0sMjpg0vZcgEn3wdL1DhojVkq1hwao09IVgd6MiefB1iwcqqykqgdYyN/GEoQ2J4HpsYXNSVsy8jiQj0beUhSLEmI+H4DjtO05mnrsHJ7x9uCCqkqGMeBEpZIkLHUFaahcwKhBJyKTZPXOZ2ZtvcWF3m3N7m/z209cYKY1Lmnk7I4X82ElKbh2cMioTZ7YrhmOBf/gBNoxna3MKIfKl15cMBypvdqJEGc8PfscnuHrxAk1cUeoyf5ykIyrNZHMDpW6ilSIKgYqCEBx/4S/+z5HSM68Dp6saguP4eEYTE7KrKasCZUsKqZgOJGWlseOzyOEZhDJolbBSYm3JwBQIpfBSIRK4ZkXnG2IKeJfwMVCsbZMeSNFjVaTanRCFQeqc4DqShi4l+pgnqtF7pEh0fQsxW3e73tM2HadHNbZQlFWBVAatC6QwaKMoBwMSgraPeN/hvMuWMykgZVuxCz2xXyGNYlhYlCnoZI8ImhAlYqARIWGFJ/oOXQ04c+kSrl5go0BVI/r6mL5vcUKilcoWheUKK1sa4Vn0ihffvs13PLyBKj1vvXWDWhQsmiX6uKWeN2wPR2ih6Zs5m1sWKRV1FFw7alGqQCRF8BJPR3AaGQtE5SmlZHta8txzX+WTn/o2zu5uE0jUreD3f/dXubo/Yn4UuPbmDTZ3r2SlIwBru8l6Qn2fG80fnUz2TWK9P1AYf7Oaj3fdf66JMx/n3fy9lASKgJeg0oAcHXOvvM6FI2rNllzbZNeD9XUBLNd/TPcZhPfYPSmGPIkXCm0VkYhMZKtdSkjnc5Kcd4SUWYF93+UUUSGRWpFUxDUtWmeAeABsURGQDFWBVgVDW3CgoBVHzH2NnQ45aXpW8wV3bt9ia2OCIK6VipK67pgtl7SxYTNpyp0xr3/980z2djh/5QreFzz/+S8xLAr2twp0XLK59RQeTZsiV6+cZ3dnm66dY8dbNNHTpxXz4xeJ856u77ky1JzbEkxHFaPNDdRwSDo4oUySmBxNu6KSBpJGqwF13dGknlXdcDQzLFd5Aj6djhEhYIQlqp5l3WSBgpFrlbzjS1/6Ikc3Tri7uMWi7TNwu0/86T/9Z/nkt38b2/uXqMaDP3gAvb/+R1tBJFSMSJmdAL7rCOShnRQZZ+AGGu0VTimii+iUsGWJd0CS+OCQIlAqSaEly5iIUmZFtrRYCYu2zWmjMTfee5HVb0kqEAorFb2IFMYihaJvWlzvqaTgwuUJlza3UaVBqII+tlkhLg0pBlZdQ6GyVU+qIm/wpERoT1LZ2puCW8eReSKgQ8LHfP6PITCpLKIoSWT8BRGMVFit8ErRJZApoKXGGpWVdhG8d7g1LVWqNf7DR1LXo0uNkiKfu9J6E5wUWmrQEdc6ojI5uMNIRIyE9WBDp5QD3owld9EkImT1S+gFuI7l3BGTInUNddPSuxa/cojQ45an/MAnP8758/tsbgzZHE/z6yoSi/mStnGcNg0vvPg2wTuWdU3f9LRRcpDgcF6zaj0jU7E5lgxHQ1yCNnQopTGFohoMyBRB6O4B9VVAKrNGLuREaLPmlIkg6ZNn0XRcO5yzCJrKVszcAZcubfPg1Ss8q3e5fbzDb3/2h3niybex5ZK9nfPM5ktefOllrLW8+vpr3Lx5HVuU2HU4x+07FzjY3aQsWrpesagld1Sk7xOkkqEVHM9qhNBcHXX87/7ab/Lbn3uM6OFgOSLKI+b1kpAUUVU8c+0IHyO2yky07a0Nnnrqw9y4JTg5DazqxKK5SQotWq4TV2NCovK1R2ckkEOSXI+MMKgsqsivjdIKU1issBl/YixGFRTFgGA0k9EWyZQIMrOPRHbhSFDroZYSkj6slWUyNwV1vrCRYj6uSpGHfEIXJBLSR7wq8VFRbQwYbZxhur9P+/iC5ckxs8M7HN2+w2svv8ayaTi5do3ZdJO9M+fQzYJVsyREkDhCn8PXhJC0rmcwHNPVS2Qp6J1DmgoXepTJ2BtVTigrydAHhhLkcErISTYE5zHlAKslkiyysKbEp5aYQOmKKCT4BpECzimICilhWlleeuM6R3dXXLywRfA9QmYlpCwk3vcIDDHlhGm5Pufc65YJIb+pefbuM+Q3tAHf4SMn4D6vT963/L57fYOzYX3/31wriegIqeDZL/8Ou+cuEy5e4aUXv8bezlkIGSOitV57VMS67MmW3pz5EXITU8l3not+1zOP60CzFPLAUaosuc6eVExRkYQidB0yBqSO2EIgsDkcMkZkhKQUzSKgERzefI2Dt19lVI0oB5bQN1R2wAu3jvmOFDIDMnKfGRtTViZuTDY5WGxy7VVNefZPMHveIJXk0Yc/yHRzh2eehqR2uHMw4u6tr6HkLt5pPvEJy+07A96+mXjtjYscLTY5OHmImzf2ud2fpZe7vP7GIS4u8GrFpUpwcGvCAw8GVDK8+faYYdGxtaMYjnayEtt3LA+WdG2HFAFrFNaWOW1ZJCprsqDIJVKUaOF4ZGvIY+cHLOcNURtcG7BasL8xZJUabry5oNdbPFyWvL/eX++v/9/Xe278Zcm7IEpJEzw2QvCeVgmiMLQ+EYNA146kgOSoT44pACkV3itqPC2SkARVAL++kGsviNEjjchJpj5znnb3d9jbG1NVAyZFAlPiosmSfxHwLpDQmRNXRKyG2LaopEgDhUyJ5BIugFSBoYYgLN43mWuhJRJHObTgweIRxYS2DTnlrW1xqUPKgkJoZCoQel0E4hGiwJYSTUEiT6+FLQkkkosgFCkkjBIoU+F8YN7U1M0KQ8KESDKalfOE1tH0M5anp4TOo0iMSsO01Oyf3+Thq09x/uI5ioEl1DV3jxd8/ZU7/NK//HIGhtvE3nST3d0pTz32IKWS1Kua2XLB8Z3bxBCwhaIaaM6emZK8pPWSw4NjZotFtho5QZIFTgZClEiRCGtJ+Xg0odQNk8KyubXNdDjl/LlNbFUgqzG/9JlnWNYO1zm884hkcbFlb2ebJMH5zBYKzkNMFKYAIISs3pJS0ncOKQwymbx5SJ7TtmaxjBzcPOHtO0esrGeiNIUfUkwEyUUGpWU8KXjltGasBKYELwOmcfR9y0ee/ACTzQmjgSSynTcd9TKze0qLFoa6bjm/cyaz+tqGq594nNh33H3tNbSCpvUo25PoqVc9KcHK9/i4wMRE13XZKCQdQkQGJoF0JGcQChb1Mf/rv/JX2dnboe87TlenBBW4ef0msVmhhacYFIyswo5gMJ4ymZ5BF8McriEVSkqqQYVRGqMNPnhO7twk+A4fHElpSlsymWxQlQalNWVRkmLKdvkYEToSk8S5HMIDPqv2UsCsG7CYzFcyvuUeZGwgJEIrfMhcjdC1aCHoupbV6hjf9zmIxhjKcoiRhs3BJE/h2442uWxF7AJeJ5zrWNRHICvKsiRKQ5QBHTVJBqQ2SBFoek+SJaoQoA2VFrimRhcFzrWILtIqgRqUxMMl0Rv0wPLm68eUHzzPIAZ829EdrCBKqCzVhsCqhLImp413Cp0i8/qE64dLnDRo6djfssxDJHpBqwO264i6Yjwds725y2c/8zn+xE/9OKoo+Y1f+hcMyxzKMJSGw2tvcvLIE+xMNtcKVnIbSwyAsK4W/6gqON86q+fud93e1eiT7xpwv0PBuWdRyenMuXxVeJILoDJE368VgEblTU5Crbk5a7uMKggi5GCJ2JDkACUkMSWS8NnmFBpUzIniSWZ1jYjkxh0JSWZoaZkxCpFskcEYlA/IEDIjRwoGQuC7lhg80UV6tyKknuB6FIrgsxpByIQtLNJoVFGyW1lmVYkoxsyPjoiuYbq9y2/983/C85cf54Of+AjeCJjN2X/gQawWLO4seenN19m78kFm119lsrHNdjkkyZLnXn2eK5tbfOenf5QHP/UDvPTG2/RRsTg4pg2G7969SC9WlA9cYnbzJvN+ge0Ft+dLnHO8sdA88sE9aGqu3Tjm6scDRhraSnF09wTS2iZWFvjUEDvo2pa4aBmMS4yWHC09QxexQqAHhroFF0MeCLlA8hGtDb/wK5/FB01VDdDjIXbV8jf+2n/E9//xH0QGz2ze8MVf+kXuvPkmf/qv/R/e6yX+/fXvcMlCoQK03qG0wAhDH2NWPQS3ht9DShmenrQghYhKESEVyfdIDdJHhM4MS5Mk/p7Vy3k6JUhSIJXAao0LERcj3gcKa7MiN4LUkiZFqpSYjiwPPnyVyUSj188BJQhKInuJdwJrEhCJWpNiVgqKYoiSCklgbCr64BkNp/hgOD1KNN0J5cTipMTqkJ+7MKjC0rQdXddidOY2h5CxEC7kAW0hQcXc1AjkIbMQme8skHkoSM+gHJLs4B3kjEh5uGXLdZhQIHU9la6IugA6CpFIBLqQ8sBMSrCW2ycrZsdLiJ6UWlb1iraVpLTEekmBoBwazownnD27zXBjTDmp2Ns5y8Z4zMmtt3nr9Wu82tygDZ7eNwy0RiawZUFKCd/UGVNjBG8dNByFzHPeHJbsbIwpikjX5/dLCcF4WGBLizWC6HyuJbUm6YiOCu87pLLElLJ1UyiUyzbsOycLThc1w0JjjEUrweIArNSknjyQSvd4aIGLZy9y4+CIg8Upv/QvfonN6ZimazHlgMnYsDFV3LwBYOn9BKNqZquSVbNBoQrqtmNYVEgpaTqFKQ3JH9D1Fu8CN46H/NNf/Bif/sHP4NyYLkBXrxCigChINmFkwfd83x9DiIrNTc/f+tvX6dvrXLt2GykkwmmEkWs1ViSmHhEFWkSGxlNOC1RhiUEgpWEymbI5HmKrMWU5oiiHoCR+HWQRo8sOm5ixFveU8yrmP8eUQwj74OmEy9fSGLKaK+d9oKRGikhcM7iFyBxbozI6w2pN8oE+BjCWwuwwHG5y5sx5+qs1T37043T1gma5pO4SQSl2H3qQXddx8NY1+rYlhA4nIsFB5xwbVcV4MKL1gVXbMKwquqbBJ49wK0xRoan40e96iMHI8ov/+kv0cZT3YVKw7HvGokAYzclszk6xjVISbSQCR/IrhoVhVMGq64ixRAvY2rDs7m7xhS89w9belKHVaFFSKINzHmUkoFH0wGA9hoywjob7o/wL73ZD5K/X2D6R3vVD96V9f/Bnv0nV981JaWl93gsx0PWSz/7SL1OOtvjFf/Tf8sEPfytHx3O2d3e5cOkiG1ubuZ7J05TsvIpxHe4DwQXuIVXUWsUtUsKtB6yQ59wxJXz0mWsvEykKtNEUxuC7LIaRQqGDR6SImWxQa4spK4wtaU4P6XvHz/70j/Nrv/P7vH1wgBOWpVzx2NktCulp61WuwUQO9JBKkkLgjbcsT33L9vq3nwJ/8w+9Jv31/9WTLG/9Mi++9SSf+eLP8PN/91f56b/wQ+u//fQf+jMAP/XTTzNvfp3fuPkoP/8v/jj/5Of+E0z0/F/+9h/nzeu7/Nz/8T/jygPHBB8pqyGFMUzHY+rVDOd6SIIUBUoprAPvPXXXIETmTbZa8dzrc+oEJ6eJpx44x2IpuXan5fyFfc7VJa+fLLmwuftHPsf31/vr/fVHr/fc+AspoVE0MSJjJAmJNBrnPIWRoKCPiT4FICCLgti3+HUaKSkSuxqtEkUhSCEgjUUIKMohMUaUCYysoNjd4uzehHG5ibYOFwSlgWowpo8CKWJWh0WJjJHed6y6GnxOfdLKIHxER+hjxAxKSJkt0/qeQioqm6G5hYQ+tEhtMcbStTmFqQ0BIyWFGJDycJhARIqItQqizdYdCSo5lJaEKLEx0cREqQ1J5bTjFDWt75kdHhO9p68bFm2DWBf8yTkunt3hyQvbjJ+4yO7GFkprupTwQXO6rLm9mPHK557GNR2xj1TVkLKyfPCxSwxsylzFeY2WHacHp/S9Q5sClKHaMLhe0q4ii8OepjvA9w6PoXORZLI828ZEaXNS82hQsDmdsrN9ifHYsrOzByKgpMBqSWw1ITQ4kXjz+m3uHs0oRhV16ymtYFQmlqcOEMQgIHTEFNGqRKrMfPMhkEj4BLHr0VbjY7YmuRRY1i0nhwsOlz3HzZwgEjoIhkZx5rxBD3eo5zMu70zY2xnw+o1TtjZ2KG3FalZjZIG0UFaG5WzOBy5t8vyrM0LIQTQER9eBxhOC4+L+FgcnN5Ed9DGzzTppMFFijKJperwLdCyJTiKiAlkSY59tirEnhB4fEtEnVEw00eOc4xMf+iAf++THIDhIAeU9q9NjVod30NExLAdMpmMG1ZBqaw/MIIOQtaJSBq0NoXd08xP60INWCGUQEqZbWwyqEcoU60aRJMRcoHgfSdHfty+IKBFSIWVas/5E5iwmhZABiSGmQIgepez9UIjgI8IH7k1ftSiQUmAKzeZgTHAOkQR9U7OaH3CymuHaHqkKRtMt7CAnUfbrlGEVO9zK0nVL2tMjYoyUoy1kWUBS4DuUNlhhCQE0CakqqtGYQTmgJ+GlYGQruqamaQLlqGI1P2VUVjz55OPogWJnMOKByw9y49oBL715i1XXI9HUIbGpJW3TEaKhF4bPfvVZ6ijpFjWRAltITJAkFKEPHLcL9qaKSkfOnh3x1s0bXJvNmL/xBtdfe5nHr5wBIVgmR6U67l57jY0nvwVcZtqBzklk6h1ezb9p5YL2nYbfH2YPfufrdy/5juJvPb0W62APfe8+1hPi9QOt7yEhYkSpzIxhPbknmQyPDpEgcphLTA6kua/2yxeJbIuJ8V4a9HpyLmWGUAtB17ck16NMgdAa1gEcSmswYEuTg0G8w3U9tA29d7i+z4ODmIghUuqKNJYYZTFCMp+dUNcLNnY2eOHZz/OF577G93zfD3Hl4jnKYoQZ9dy+0/Ps156FL7zCxtlEmmzQKMXi6IhKFbx48waPPPVR3r72Fj//j/8JVjj60YDFyQmf/Z3PcPncLm41Yzio2FCWsrDEYoN6eYxOhs++dsqHx5onvvODbO+cpVBjXnvtOU5PTxmOh8SksvoxC89p+8SoHCC0RiIhzelCjQoFtB68ZLlSNFKSVKASmu2hZfPcFJM69oaKF+9GfvZn/yI/+KM/RIpw5/YRv/IPf47nv/ZlOkr+9F97T5f399e/4+W6SKtAJwkpEjQIHzHa4lLCe5/B+FLS1y0hx3sSWkcfO6zJCYdBGPogSKlHo0jCI0xJaOO66Z6xIT7eC/WQGG3XiesJ5wNCwca05PL+Hts7WxghCbEDlT/nhpDDGFIi6RKlHBKZN7gyoaoCQk/vPMPSsrM3ZLVsaVYzBoOSwahmUmns5ph53SDbCMYjk6T3DtWtKLVCdB1BRjqhEEZjrcWqSOxbgpLEIPBtD0iKypJCXNdgMl8PY8L3fVZ+qSLbx4Kn6zsEeWNeaEk0Ap9qRB9wMpKSym4S5zhZrlgua5bHJ6QUmRQGYwW71ZStsxVPXP0oO9vbFKVGpsiqmeODpDluqWdHvHX367za9VglMVoynIwZyRFdU2Rbdgp0oScmT28swSVmrWfR1MhiyO5oyObWmIhkVXcooRgXgul4hDbZykzs16J5gcixW+ikaOOSJCNqzaFTWIJ33J0dcfegYekEBfkYW+jAKiZeuXGXRdpm1QScz8PXg5t38X3kt37nd+g7Q1FNAI2QBW0Ll8+NmVRHPP88PPrI03z40Z9nKk6xozFvn77MEw+c4ebxgnFV0fYt0STGE81Dl3+cP/9X/xJ/+qe/SFU4fvyHnsGFlr4f06dIQtO7zAHvu8CHP/FxrDnDqglIveD4aMb8+DrFmlWsKkUiElyLkYJSCqQpENYyHhhKM8QMx4zGE6rhFFlUFEojlcQL8DEjGZLI/FRlMqNPijyc0loTQyQqQYoShc0WeaERSERS+JBDo+JaWZpSvCc0JZEI3uW9jNS5hoxgEBidm8wSRacDSStkOUCPJgzcBuMo0Brms1NS5xmONhg/sc9yfsita28Q6yVK5wBBFwLWFqzckvlqxrAsKKymbRqK0hDjip2LZ/jlz3yFH/n+x9ncKGmFZdk5jI8omfCtoiglXb/AtUMKqZBY+qgI0mKUZndvQD2v6b3HVBZiYGPD8uIbb/LWmw/z8JV9IFv+FYKEhdLiTw8QZcCoEUKYd2WS3Rt0ruuZd9cwf6AjeO82fFMjTwDvbvblGumbG4DvRp2klEALmsMjqqriI9/1rRzffp0//xf/MuVkzMUHriCVXDtW1go6xLqGWbu3hFrXUOmdh31XU1KrrDj2fUuIOSXYGA1J5WMiBXzsSULk+9AFUsfMjO80ndJoY5DWYrRGi0A9P2W8adne3eTxJx/i6a9+ndeu3eHSR65wfDjDno3vPJW1q6NpJP/NfzsB4Kd+omN/t8MDN994iXpxkOv/NUfyxhsFQf9Frt16mU889Xf47O8tgE/z7/+Zf87LLzr6fkDjHXq0hym3iFgqC3dPJOH2R5H0/NSnv8Av/quPUijN5fMHvPzGBU4WZ7jQXwccMRhKO8aYPBT2PtC5lmqQlbGsG6ZyjWU5bhPPvNXzxJUdDk5OuXhuE5ZLBpNd9h8p+dgnvp2Df/ovGR+fspzdfS+X3vfX++v99U3rPTf+nPfZnkWWNHspECqRpKZ2PVZrLDLz/0RCGk0lbQaX6wxXVikHWmilMGWJLkuatmN7d8Lly/uEbsVouIMvNTbNka7D946dnbNsbg65dXBM6xwqRUot6APE4HFtJASB2izxPmROHPlkWEpB6pucJBwiwzIHKCiVp9tRWVJckDzU3oDv0FIjdQH0xNTnRoQQKBEzxyAJQmgAmxNOZZ649EIRVMShiV7g6sDJrbucHs7oaKmkZGoV+1tjzj1ymb39c2xUJQjJatlx9+iYG3dPeO6ltygw2GHBxrBkNBwylYLRsCQVWQnUAyrWDNxqnd4n8CqxWDWs6o7gI33X4GOkJ5JcT9+LHFSAJ0aBsYGt8ZCtzRGbkzF7G2MmWwPKwQQlJV1/Quglzvf4psnTa5sbpHI0pCjGCCUxZeSzX30ZkVoG1lBVBlsJuoUkJPC+I3q/nvCTbeExJxc7HzIcF2DdUO5cT905bt49oe4FLimcS3RdjykKotesWo9wc/ZGnqFcsVhFQlsTG9CV4bs+fJWitPx/5of0XYtrDZOhRhAYGs3QFDRxRd/2aKkwGjYKyep0gdUlMUE0JaWucP0pCUcfFC5JUu8xQjHQhrbzBOfwzpGS456lczysGI0HNMvIzmjEn/z3/gTTjQ2cixy7JV274vDtVxgmR7mzwc75B6lGmySXEFJgixJtS/q2Y3FygghZIVGNplTTPbTOn597wOF4j6WX8kZAiFyKxeizXUFla0yOV5OQ+nWoTbZvSyXxPq2TXMnW86gz3waxDk5Ta6uFR4gMdU9k9qdHohTIsmRUPchAgAqB0Cw5XRxxfHSD6BqqcoPJ1nnMsKJRNaeLQNeAp2O1mFO6mkE1QJthTvSOkapUbI9HrFpHlCVeREwKiDbSDwzlcEByc+qmZTAc4uueZeioVzAalgTfUE0sugS/7EBq+kVH3HZEYTieLRkqwZ2lIwiLMT0pKrrOgRrifEQZzcHdmu2Ns5BqBoVAK8FXvvT7LG69zdUrF4lErJB0KiBdw+03X+TCQx9iWGjyGDmRpMo2tW8qdO9/mb6Z98f6629s9L1T5Gb1wzuNRPENFlylc9BGbgvcv8naDiPv31/+OmMR7t+zzFaKKHoQCt83KFus7UwCFQJpDcqPeeeTrd0q2+nyXa89zTLDp402INWavyoz63FtCUopIJQlIdBSo3SBMQbVNhRFgfOeuu2IIeL7kKHbSjGaTpBKIoyhmZ3w4NWL3L51wC/91/+Aj377t3L+ZwasDo9wszt8/dlnuXR2n73Bo7im4XDluH3nBtsXrrJbjnjj1bf59c//d9w8XrFTlYxHht39Leanc8ba0pvEw1eu8OuffxoXjzg/3ubV04qV61i1HZtbF/j4p76VkapwQ0nvOw4PZ2t1emR+dELbOwZjy+HJnEWlid0SROBovuT4dMnFi5uUnaQqBNWwIJ2coGRkp7LsTQNKdVQdfOiRc/zwn/wxvvWHf5KoEkIpfuUf/n1ee+E5Bpu7+Paezfz99T/2ClGikPTCo5FoF8HkALK0Vo1AboKH0OKChyTQBGxpEAh83xO9wxmDtiUuJZI2hJiZyDLdOyFHYgwoFXGtz5vPIBCpZXu74ty5y+zuDUBn5h0+IYQGYubgkdODlQQZI60Dq1K28AVPpROj3TMcHtzmdOl46c3nkVEzHWlKq5CqwMZI6xb0IqKTQouEMIogJdVkRI+iVx0SjxUFMeRAiqz0T9gksVJjSg1CE/BrRmmCFEk+4yuUtYisKabuW5Q2JFNiVIFVmhh6FquGbtVA6onR0ywWnJ4u6Loll3e2eXRrk0uPPs7Fq5cJRYXve5aHLU03Y3Z6wOGNQxKRqpKUxqJEomk9TbtkKGGoJKIqcApqN0cE6GtHlxJNn3Cto+5rZnVk1QWiMghdsrWxwVAJvO/xQeF7qAaa0SChhMd76FxuKkoh0EbRu4APhhaBVxqJQonMuF3FwNHRgmsHNadRIpPEy4RJgRihUMW6znLcmV3j4M4+AAfHibqZEdmm90uKOOR0kQghEFLi8CixOD0CwMoVp8dvs3VhwLWTt3n0SsGFHZh3HXU3Z6ALrGkxSbO1ma8fn/jIK5w7M0NIePn1u3zx6zcIRVY+9V0NvecDVx/gb/zNH2dY1hyeHvPs85Ef++Fv4//6f36LD1ztwXtc3yG1pLKWwiiMVkhrGY03GW3sYIoxRVVgtcDqApTNrGIkMr1jHxUiIaxAqdzMcq7H9YHWt0gl6XxNzB8jYsj1nDQZBi2FpLJFZtiliBRQt7lOSUmAzOIA5312/oj8ufQ+H9dCRCQRoRUxglaGpA0ER3CRwWCbUATqvsOYnsH2Fg+ORpzcusGN69domhotJd53+f3sEl09R4iETZZZnOIRTKqK8tIeg4Hl4s4eyRgwmtXxCcVAc/P2CqczSgBjSMKRiMgQCa0DqVHSslwKBpuWtg8UasigiGyMG159+VUevLyPVZLoFdBx0kTmr79EIRJnLl0kxSpHS3NPxfeuAeP9cuYPKvj+zeueG+Iew+/efXwjy/ibMSgiSgYb23zye38AqQJJhMzwlCVSZKWcUGp9+ow57XfNNc5d3TWD9f4zTrnwzYVTHriL3IjOt025Bl9z1MGiZYFzjt51hJhxS4TsEil1hQwGRA7pk8KjrGJ2XPPIUw9T4PneT32Qveff5Nz5s8zbhq2QO85SiHxOTJJmBbNZrusefdTxwCXJ4Z27HL/8BcZj2NrZY1BZXn3xZWTY46GnPszzz34F58c8++wNADan17EMKMenVNHB5ohOAEGwcoHV6oANfcQDW5aL+5J502IVTEZzANra0XVdVqKHDkmBLjRSarSxdHWHCyrzEJXMKelR5ETkUnJ2e5urD11k53SbQjra+QodV7AMHF5/k6ODQ0RR8PC3/OC/5Vh5f72/3l9/2HrPjT/vMsvICI2wlqzkyrHzQ2MRMWS7oTFYY/Axy99tURDXCXLJ5yYLZN5Z6mFna5MHHziLseDtCGUlwzJQCIspRixmkcV8zmwxQ6wjzULw1KuOICxSRrxr8S7geoWkROr1XjNExqVFaThdtIxHQ0hZ3QcipwwhCF6jYo9KEXSBkp5ASx8tFkmU63TiKJAxEFOLwOJN3igTWuqThn6VmC9mOO9olg1FEDx69QI/8L1PcmZ3wt6ZHaKS3D5a8cbbBzzztVc5vH2X2HQMJ0POn9vh/N6Uxy/tsupaFosF9WLB6fKEQkqGA4u0BmkqCi9YnJxyo19ysmoQvsD5ZWbXKE2MkeBzk02niFKJ3emYnemYrd2Kc7tb7GydxUyGpCRpF3PmyzlN21HPbmCkohxYNqbblGODMpqyquhdLrKTE8TYI5RC20hVJJQWDMqKGBMpKmIS9DHmTY2UJCnvw7W9lATvEUkQRMIajVrbGU5WLSermoOTGjXayE2LvD/BEhEysVoENjccG9WQziVMZTA6cVK37J7f5KMPP8DhYo4SifGoxOiKC/t7PPfaXY7rCFLiSfRJIFMEHxiNSqyZEpIDHG29tq96WCXDjTvzzJIsCwZ6wHSgSK5dp34F7rE/Ukik5JhuDnnr5k1+9mf/HI89+QTBRw5Plrz1+gu8+MXf4tGnHmbnzFW2z12hiYnORQqtMOWQ5fEpizuvoAvJzv55tnevUNqKGBwurTc/ITdk1hKsjFcTkPD3J5JCCpJU+JDDSaTIjTwp5VrZldPNUgqkZJAqkYLKDShlcbEH0pqlHJApEslJwCkJtDa4ziGlytxPmTJvKGTrabADNrZKKuFQwOrW27z10u8RRMX29h67Z89QD4fMj+4y75fEZc9qNWNcjRmMpxgjScnRt4m27kCRmXDxXtMxZEtcVUDwnJ7cRSvB6TxQ74/YsLA4PuX4tKdrJMtVYDjwTLWhbQIheZrQI5uepnMIeqRQ+OiwMVBawY3TUwbjXcqyxKWIRTOpDNtjz93r1/jIEw9xfHKIsiVe5AIwoVidHHDw9huMP/BQVsIhM0j73gZ9PTH+IzM81uvdtfA7YR1rHuO9Bts6JVisLb/iXTF3SZIbj/kOssVX5EZfSvEd/h8pT45jyAYdaVid3sYqix2O8cs5r1+/wf7ly4ym0/XjZpse5GMrhQR6nSBNLsJDzJwuJSXS2HWDPzcCk8hqwJRAGg0poZUmeAd4hCmotKFvWoRwGF3Qe0/nHJ3vWTVL+uQpCsu23qIejpjfucPZM56tnU380Q1+6x/9A966fcr0A5dYxsSBkDwg4OjkBrev32VjY8iNm29jxCYf/6EfZXLxMr/wj3+R09WK1LQMpmMYDnGiZTIo+c7v+SQXpiXXbtzi6vYOL7zxKosANii6s/sMC4nvaowseeLxp7h47jJf+PzvsFidIkWgMJamdnzp+VssmjsYKymMIKQC5yN3ZpHF8RtII1n2HrxB4bFS0rQwHcATj2/w7T/4PZz5yKeROtuSmrvXOHz1WRoqYreiWf3bVaXvr/9hlvA9rRIYKZFIVqFHRY2K6w1oEgQfaUkEJEU5RIqEq1dEl1PWk+uJvsPphIkGrSxdCKiYFbhBCrQWJB9ILuBCw3Q0RStJVWkuXXyAra0NYhK4fkXoIypoXJLYMiFCTxIGdJnTYaNDJI9UGh86EBYRoCorNjZ2eP31N4kR9ve2KHWFMRqtwQhB0/X0SWFJhM6hhYLokC4wW9vZjTEgLUpmG3zy3RrzYPFC0LWeqsjNLW0Ny65Dh4gRmSeWlCAGuQ7aELg+Dz5d3yOcx7U1sVvRty3jomBnY4zSlukDD3DxzJTpziZbuuTO8SHXT2b85uefoT+tMSqyOy2YjMZsDQyiyKzhk3rGSRNywylqNscDEILG9axWS5aLGtEJfEh0yYFVOB9JQdIFaIMjFobx5oTRoCIJj08CESJaRQZTw7iokMrRhXtqaUNYuxxjCrjkyckdOcFYJomLPXWXuHlwzLWDBaczRzkokJLM/4x5sFdYSTUWxLhi4/zv0fVn4PpPMRn8Mhev1NxuXmPfGGLoODptGQiIBZTjKSk9APwxnn7mR3nsh36Ji3uHXNzdpAuSa7eWTIxmWSdkofjA5X2+7cNP0vYGAC0TXSv4+X/5CT7+sV+nrObIsqARDpMamrjgz/3sX2F3T9B1Hbao79uQU5R0bYsxFqvyMGRUSKSpqDbOUI63MKNJDmyRMCzLzKyVmhwukVm0MkLnulzn+I7OO7rOU6/mdM0qX5+UwlidmcgJeh+ILhCdQ0lBwKOlpCgHOBRCawZVyWA4QpIQ2iClhRTwMidRO5+bfSGGHNDnc6J2wEGSKKWR5KAYrwOdCNjKohtNS0D2CZkEZy5fZvPMGZYnR9iywAymtPMFTbdCFTt455CpB9HS+o5Rscmt/gYH145IsSZ2Ft9bVu2K6d55UlrRhoSVBS44JmOFCw3KSRIBpSElw3xZsxUHxDahih6jNGc2hrz2yoscf/xDSJkQpSEx5Fd/8b+ncLfZOnMWs3mGs0Nz7+y3HoevB5Z/WIjHH9Lvu4/t+4a/y3XONzb23lVArW+bbdfvNAhzQzZBkdV7eIESmpjW1t179ymyMjqKdN+6e++xsmk5NwNFYt3sjeuBusuc8hRR64Rd12bVtQRiinkImxKFNcQoM3c+OvquQ6rM+au0QVcjrDZoVWLlikFpOZ2fgnM88sgFPD3OR1ZtSwgOks+MU6EIKRFCft0LE6jGlval19mceGRZcPWJxxhNJDqtePq5t/mWre+kHOzzwkvfw/ZHFwDMTlpwBaZykGYM/SvcOqlpIlQ4zkTPbqnZqXawRc2Adl2OdvktkIK+r5GiwAWJlC2q0AipkTIiZUtoO5SQrLynqWuUEASTSKtAtANGw4LDN16jQzAebbLqEqtOMZ01/M3/+H/DQx/9BIUt/oir7fvr/fX++jet99z4a9o2O8hEBrIXwyE6JsoUCH2Wv3ehQ+tEEAVJwPDMNl1XI06XpOQxpWJoFZ7IZGOTq1cfZGM8om1bEoJCR0Jf0whNi4J+SYEg4ZAYihhxriNKzc7OOfrYkvqeVkqUsRipcTHRp4QNCZWyQiQVCjOwhBSwpiKQaFYrvJtjyhKZAi7kdL0gE0iILmBMVkeJCF3rca4Bkeg6z6Kds1wumQrFEM9goNnfmPDE+YcZbhVsTStUNaBfBg6OT/jdL79O27xE3TTE1HNmd8oDW1OevPhkBnv3LXW7pDk8YOYTPiQGZcFoMiAE6FvPrcWSRT2naxWNC0SRJz4pSYQW2CQIDiolGQwVu1tjdna3mU422J1MsCUkJRDBcnw6587hIf3Nt0EZilKzMR5z/uwZjM3wbmUMzkcQHpEq+jYSgK73uG5O3zQsW8+t42PKssSWo1w0BEgxYUNmXCQUiECXPEaW+N7RpUBhTQZtJ0BbVqsVzaLn9nzJUdPTdSBkzbAqMFZDk7ksvp8zHW2yu1EQfWQVJC9/4WWOly24yIPuDKFM+IWk7dtsB7QJqQRnNne4uzykbxqClMgYENpQaMVgXOFjILYduhAMlKKblrR3FyyOGj702BVOlkvevn2EUT3lQObk5iCJKcv7hVCgUrZFx45PfOiDfP+PfD9SJOb1itifYGLLxz/+SS4++hQRhYuOIgWikIR5Q3dwxGg0Zf9DH0NVI2QKSAIudLAOtAhBkpJeq73uFT25BZNiygqre/2llFWq+YtchAoh18pAwMjMYomClAIgCQFUaLFG5uk3WUUYnCe4gBRFpsn5tLav5aaPQREkuHWibxIB4UPmzQ2GjPevMDp/lcVqwd03nuXmjdfR1QQ1mTIab9G2C0JXM1se0rgVxXgXW4xYNT1aFUyImbuTciE93dqkW81zqrSvGE52aU6OMJXh9TdeZyC3Scqw6lvqzhMKjdBQpxbVWUpb0vWO5uCYQaFYrXq6VnDzeME5pbBSIFCkAEUZSO0pXlj0ULA5Edy9tkBMNilmx0jhCUoRWvCFQArJs1/4NS5cfhhts7JVrg159xtz4o+y7b7zvZTe/f13N//ePSHPDd0/mASc7WFCrovutX04/xPuP6IQ91qJ6T6bJ4XAyZ3rjDY2sMOSF174OgfHM6488gRCGDz9/eesxLrhEDwJnRPmyKprLTIPkJRIMvN8Ukz3LTXv/r1zAmcixgwzF6qAFCiGCtG1hN4xUDo3GYKmKA1+MGS1XLBcLOmDZ7I9wUpD05/g9ifcuLng1158jdnX3+SH/+xfZ7B7ibcOPs8gJi5fuUq5MeXozm1+/fOv8C+++gs89rHL/Oxf+qv83P/9b3GydDx785RtKynLkr2Ll9jZ3mPj2z7Ot+FwJ8d8941b/P6XX+TylT22zz+ACwOEn+E0FEnQLOf4vqeoxmxtDViuelbHDVZaovLEkChGY1yC5XzGS2/UdFHQ+UjsF/RekFQgWA9G88j2iIcun2F05duhKEn0yARHd+9w5+CQdrLBfLbi7GD0nq7t769/9ysRkEHgUsSnfJ5c9o6BEvQ+ZittBG0UaE1wHc536BjpOhgNxsxbh3MSbcELBzHh+xXWVESpMke4r/HBs7c1QKohl8/vMRhoTFVBjNR1h7SCKHQeUwnQhUWkBkFCakUTPWXMvCVwWf1iCqLLKraD2ZKD2fOMhwMKCdoK+j6uwwICne9IwuKJlAqUFUQhSCkHn5myYihk5sVKBZqcZB/BoHApoLRlMBzgfEvbrjC9ILWOXgtY23yX9Yx6Xudk4brB+w4r4cLeNmc3p+xcPMfezhBlC7CWZu5YzmsWMXD7YM61G3dw9YqBMUgiD2yNYFplHmHs6X1HN2tR2IwqiFDpElxP3fYcny7p++ww8b5eJ5oOCK6jKgpUgu3pgM3xmMnmkBuzyGvXbzGqClLf4Z0mpp6tjSFFla+zLgYkmUstiCij8vBRyfuNBgVoLehdwgvHvGk4Oey4dvOYO/UKU45zsInNHD+ZHCllq2dVCsIwMh4p2lE+937Xpx7mrZu/zaRwaCs4nh9jjEetLdXL+i6j6uz9Y/nBhx6gGAdE2zJvFpw4BwV0PtI6x87A8uGnHuTzT7v1wW+YLcb881/5OB//6LMonZsuSgmWq0P+2I//GI889ii9dxwuFoTgOTw8BMCnnoGFYqgwtmBrskk5HKDKKdgNEmCSoKoMVTFEpkTd1nS+xvcdIWSmZlFUObnZWApTYG3FqAzsbE/QxuCjQSpNTJ5SWvroCUkQU0BJTYqepm9RAsK6Pu/6DudaWteihITgcb1bv+YJaQxGV0hhEELhg8cHckK7kvimpWsjCk+hLVIrBqai95FgQUfQJkGf6FwAUzHa2kHHHFriYsB1gT44QnSZCxolhsgiJq7NZpwfjjh7cZPnXriJd5aZhzsvXEeHxM5ogFUW3zSIQYkUilkdef12wwP7A4wUDK1C+DzAL0qBFPm1Fjiefvpr/PiPfBqpC154/U2O77zCYw/sI1vPrbfeZvvMeSzkBGQ8iOwYSX94R++b1jt1Qe7HvVPnvNPzu6f+W3//ft0TESlmyabKQ+zo72XMaYiQTISU085FWjeIxXp4qbMLISWxDutQkPKAJbE2ZUiZh+GsHTPJ5PbmeoiqEKiUsD5ACITgiKSMMPHZ7SSExAeP8z06KaSU+BDQxuKA0dRgbIEpK1ShOZWRuUw0ncN3jhee+TouFDz5+KPM+5rUdtT9lN7l2mt1fEzfbLI4us14c4eN6ZTrr71EYQXWGB577ApFVSDUmKY9i7Bz/vf/4f+Dqqy5cfsqMdyiCYFmkUMD/87f+XM8+sgZqsqyOK155ss3+MyvvoJsEgiN87ke9BF0NaVZ1LTtKacnM4rTgt511E3P/u4W1ghKa1m0EUREijxcCkrwxvVX+We33+DW8TarMCYJ2B1v8z/7S/8BV68+gLNDPvd7t1ke3+Bn/syHd1Li8L1fid9f76/313tu/Flr8dER1swQRAbYlhKwFW3XU4wsG5MJJ6cN9Ak5sQipMREGlWH/8g770w1MVaELhRIa7xxCCLTNDBmlNU5KTEoIJFFGUieJShJkRBeKiGSxnGX5fdIgA13wrFy2OSopEDon5olkcJALz+hplz1eZghvYUuEACVK4przIQn0EfooqQ9uc3qyoGvmpA7GpWZrMma7qPjIpU22HngCrQ3tsuV4NaefzXnt9l04EmyPhmidzZGmMIxsYmolYVwyGO4wHo/wTUe7OKH3Pd7HbPsBuhBYdZ678wV9VxMRtD1ZHedzsERpFVVpmVYl25MR0+0Jk80NhsMJhcmAXSUSdeOIyTNbLBkGjS0taMt4a8rUaExVkkRCRpCFQUqNQhFjIoSWtm5pVj3Hh2/RtEf0vWDVJ3b2J4xGG0zP7PPMm9coSwvkiHvvA1EKTtuWbR8ghqwKEpKuazBRZPWPj0gJfQjUreP4dMXJbMXdkyXSjokiYrTAxR5JoogSW1hc1BRVRWUHmG7JpYsP8sCFK/zTf/FLzJ3Dp5T5jYXGKMPO5g6qDMQo2TnbEt6+gwietu0opCBGwWgwYmM6BNeTihKURqKZmjNcfuwD3D34LZ781sf56ovXufb6XS595CG0KZh3K7QwuTGGQCSRG7nB8y0f+Sgf/+QfQ+jIaj7n+OSUjemQ4WMfykdadFgt8E3P8e0DNs/tU06nVJOLmYGUIsEvEdKAUkiZGS+JtIb6Zj4N6yaJlAIhdW4skS3DWQWYEFpmO4L0xJQ4uHPKL//SLzIYaKbVAO8cITiCTyhpsKZEG8t0c8rG1gbVeERVlYzHmbEX0jr9Lga6pqX3PUGJrO4lK5DEuvaKSiFComu73EgXgsJWPPTkd9A1cw4O7jA/mXG8PKEcTBhONwi+pmkdUfV00TO0kkJ6KmMxhaFtG/qmzjy4GLHDkhGK+ZEjKosuKtr5KePJDqenp+uJaceG1mirKIzJnEPfEYVitQpIFMELkha88MZNxG7JxY0timLAuIisjjxuBCiL0FCNBFZInvvK8zz16HkOj+5iQ0AkRdtHBjrhZge89dZLXH3sIYgemRJR2LUy8x3L7zu18Lsbfv8GGSD3bn/vT/fS5uDd/MC0/t69rLoYAzHk8JQ/YKtJ95zGa6twSnzt9z/Hh7/1u9k8o/j9p3+f8XSbt669jQ+eoTWcvXAeZU0uua3K1t9cQROCz2gHs77MxLVlJq1B2D4SYj4epRLrZmhuYCqlCD43BqTQxARGFFlN3vXknBFJlwTKSsRIYGzBqBkxq+cIcYJaRo7bFeMzFT/yqY8wOv8xjs88SN+tWBZTivFDDCWcXd3k2st32HnyR7h85izCwKs3VwwqxXzZ4VYBNSwwSC5dPJ83fyHy9luvQpL8xJ/8ND/8k3+C4+M7/MZvfh79hYrv+varyH5BX1tOT6/T9y3KbLJqGqSSGCuwpST2kraN3Lx7SEgJIwTaKpplSxIRLQVKOmQckZzCWnCxRU/3GW2dR6SsGPNCs33pKmyf4caNu2wXFWr8vtX3/1+WEgqFoiORosPHnCKapGKoDaumIfhITB1CQOcdKgT8Wj28XK4IImCMQIZI1AlhNFUa40hY5XH1jOl4wJkLD3L27BmEFYi+prSaJCy2ynWbCwGZIOLoaNEx72iNKhFCYoEuZmVqYaGuMzOw0DCsLJWRmU0sLFY5EprOBVrXIWJm8AmdcgCFkyjRZ0VTkAgjsQmEliipsULRRZApYrQkJE+JJElB2zS43hM9NH2LDI5F7zi5e4iOgXGh2N0YcuWhc5w9u8nZi5dJpuTg5Ijjkxk3b9zhpdeuIxGMJptsbk2YjhQbyeNWNUF6QgEChylKlAioAro20rbQ9DV9V+ODog0SnzwuOfCRFCUuZcxMqRTTsWVjb8qlB64wKCTT8YiqrMAHOt8zazuev36NwXBK3WQW8KiQ9G1PUUxzPRAcCU/yEqOySi9ETyIQQiKmmEMHhCYmQRSwWNbcPV5ycDDneL4kyshIC7anlvHOLvOTBWc3B0w3Cn7zeM4D585w0INvOnrf3j8+n3jsIq9fPwY7IC5PiKEnWIWO4PqOzZ3p/duWmxPUZIPF6hpWTuj7GQFw3QKnRvR9om5bpBgArK2NuQkYXAvRUTcNLkbO7Gzwkz/1EygpiC5C7Dg8OaSZZ9tgpQ3DUjPZmFJMzzIcjnM9FBPWQFEOMNbgVktmy1P6vs0Kz/GQzdEGUk9AWZQ2+BiyyjQlonfEoFGFzPVSIjsHBPTB59caECFz+4RUKF2uP8sJpRPWWoQcE0I+b/vgMNYTvcf3jr5pWM2uU68WaFsx3b3AaLJNlyJ1u0QojbWS2DlWq4YkPRKJLYcoVRBEdtVYWxB6TxfAqgphBowGJXNp6EkEGcB1zLseVY4JyzkQOX/+AttnDdU48PijV+nrxCvXbrP0keQDUYAtLb5tUbKkrnu+8OxzzGvHqmkprGRrM2GNoF556rbGSktVWC5f2ufVV17l+Lu+g0oIfufXf4VL53bofUAXMDt4i+XySbY2trNTSkhI8r4I4A8fdt778zc3/d5dC8l33e4bh6R5YHlPERiIvkfGNbZJrusKIXJCMjIPx+/9tMwonOgDUSR0tHmIn/o8FA89+ECUGmnNGn2zVv4FIN1z2awH7Co7L6IUuLZDK43UmrIYkLzLA/YokFJQlIbgHK7NoWZd19L5HJQnjWGoVK6hhEGbGcuTIzoBoWv417/w3/HZpy/xfT/yY8jVis2Nc+xsaT78oRNO777EwVv7/OX/7fdz4fI2RaFZzFu++qW3+ZV/+iyXH32MOzdvsJzPALh1eMSb177KaLTLfPUghQVcwhqDkD0vvHCDf/XLX2dSan763/sE3/3pR6lXgc/+1oucHJ7g+vx5F1KjCoNqJbGH5CI+CpQoCKmn8z1KSmxStKtE4wwNBd5XKK9pFVxbbvKVZ/8eIQ7vHxm/+bl3X1EvrP/lJ4H/6g9ccN9f76/31x+53nPjL6WczLSWFKFRoA3SaKLMKg0CefqlFK3v8CcnlCPF5Q9c4PzFc8gSyqToUuaPpdCiRYkoLH23wEqNlCoHf0hJFAmhBKZSGFvhQkuUIBjiQ8T4lhQgEhEygKiQQCUlKXm6IDEhooUl9j5vpLRAp4QoFAlLrJcs2iWrXqKcp5A9196+S9d6tjYqHjizwUOPP8HZS/tsT4ekkHj9aMb1l6/x8m99geNFx2Q85dz2iP2zu1ze2yd6z/HiFNc2NKuWPvVsVoaiHJL0iNbDrdtH1Ms5neto2o4UFciIUJauy2q+3jti30IUVKZie2PEzvYOFy7ss7e1xebGJto4UrCs6hntvKFfHlGHRDGwjCdb7O/tYCfZoiOEzEoaeoIcIFNC2Qql8gXMecfh0V1WyxU3b16jOV0QQoCyZHv/EmeuPs7+5UuU4y3KwQCzTrX64vNfJSwykDyGtJ4+KqQpmB/P2NyuiM4S8cggiSZP/XpycqHrPbP5KUd1zyoKmi5RaEkPaAcSiU8RTaT2kY1RgZKZrTjZvwi2QvULhoWlC5FpNWY8mHK6WNClnhdfeYNXb9/m7PYWelRy+/ZtRBQMdYmQkWXq2NkcszWd4HzA9/lCn1REJUuKBl04utWKnWkJRC6c310HdfQEJ3Cip4ugkskXtaLg277z+xhvbtC1nrtHJ5iqRAhFTD5D1IWgni+w1vDg408gtMZHn5kzeVZKWZZkW30irW2dAolRAiFzcMLah5uLKyHXDZ53WR3ud5eymu/06IT/5u/9XV5+5WV+4mf+OFcfeoiu6ZAhELqek+MT2s7RdQtef+0O1XWDaxvms1NEgEAuxB9+6knOX3mIwWTMUI8yh8o7XNuxCB2YPMEU2hBjl8MfTEKERBEToW9IomD7zAV2z17C9Q1Ht69x4+0XuPSBJ4h9T704wmCIZoRRCmcrEAkhNXcO5+yeqdHW0qw6tAQjE4ezGikG3D113Lp7ysZE85HHHuLG4TGHJ0uEl9hRSdtHPIJAz6J1eCFptSG4jjdvztnUmvOXeqxVbE6HEM8iqgIVPUKBpmJvO/Di62/x6KPnKHS2CfVI8D19LBhNRrzx7Je5/MAVrA3ENRhciWwb4V7qLfdOrt/EuVmr++I3qPzku25/72ffXQi/s+7d4r4yVMp1mnPmNyUhUSk3rMW9tEQSvgusTo9w0fJrP/+PeeDRR/nq7z/N2TP7TIZjzj90ldJOkCpTH0WGCmZlDPeOR7E2+eRm3z1bs7zH4BGASsiY8rGhMvMvNx8lShVZqUiCoPPwRkZUqUjNApsUSRkwFq10Pg6UZCzBaEVTlqTlilV/TF+c0s++jiXRDh7kDV+ith+kX64YxTHqkYdIZofJeIhTis++8EVefuuYYqg4owVKWKKKnL14HtcuSV3i6PPPM5svuPrpT/GKm/Erv/zr1FLy9u9+jpdf+TKXr3yA7/7ER/GyYGN7yvWju+A1QzvOXDVyEzzIiDIVsu8oioLge3QAO6noe0+aR4zqEaHMilp/wuTsE2hjiFEhZU1EUlYDdrd3eOmV17l2fMje6NJ7vby/v/4drz44ZIw4AhpB0gqVBMu6RRuXQwiSpPMtZmwpGdLPT2gIaLNm5JGDd6SSGGNxfc90PKYalhSi5+z5BzFjiU2B6PI1dnfvHKPRgEXd0TZLtIxobUne03WQvEQNDDElQorEPiCQFDqnRC5rl1VVRmXupsybcedqFB2tGhL6Vd7zaoOW5E1tkogUkTLmQHGRMiM45bT2FHuS0TQpkBJoXdARCF2iWfUs2hNWJ8fYGIi+pSg1w8GABzdG7D/+IR6+cpmi0NR94PjujNdvH/D5r/0aqfMYa9jbGXN5o2J68VGCKpmdHtCc3uZk5hA+Ug0HDCcj+l7Rd57FsmHRdiybFX3XAyXaSLzrUMoSvF9b8hUboyF7W1PG4xHbOxOmW0OqcoQPPaFPNM0K1zk6lyi0ZjLaYGNvyBefPyD4BULCoBgymWiOj1p8TIgUSW7djLEViZgVMCkSYiKkhMwZenQhEGLkztEJ81nPrHWsQg59wCeEl5gBzJdLtiaBvWGidi0yRSwS3S+5eHYP7bd4GmhWNZvTBZMq0pMobUnwM1rvKGROXt7fLhmPFiyWY5pVR7cpCVGDCkgRmLt87en6JSYJfDL0Pl+vetdxbxhltWFUVXSdoPSOv/gX/jzj6QgXPEfzBc3pKfNrrzNSWwCcv3yJS49eRduKoBJgQAus0uB6Tm9ew/ctk+mYamOP6ZmLee9wTzm+lmgJJFJIos+pzkhxn2uslEQQ8METRQ7ZUELhfY8QGiEdCNBBrtN+My8ckbEuMmXtfEQhjSHgKMsR1WiD8fZZXHI0x8ec3rnB3RuvMZpsMNjYpCynIBKtWBGkpJvNcX7FfNUwHE8ZDgcQNd4HhCoYFYpSRZAaaYdIIxBNA15hBlMGnFLPZlSVpp9rBoWhbmu2XMXe/oT5osMeC+JRjzEjFnXHzpajdYGT+ZImCl65vSQpSwoSHyyJgiQ0IVgWizoPYAtBYRxCeL741a8SVnM2hgVWFxTW0IqA7eZce/kZpt/6Q8jYr9EiAinfS6wZfGNd8+4m4T3K3j3GX7xf5Nzn/YmE0hkhkN/+dR28Hmr+gSWyujYlka3aRJKIeZgfA5GI0gVJkc/d91iFaxeNlLm0Tinefw4qKSBlMYuQ9we0UiSilAihSTFizYjoepKNlFWg72r6rse6nj54mmWdOd4IRqMxRim0lsxmhlWccfmh83z9mRf5r772Mp/+yR9jODrHsITv/663efkrL7CaX+dT3/e9fPUrd5Ax8anvu8L3fPpRbt6a8ZnPvsyXn3uZ4PYAGFf7/N7vfppPffS3CH3D1lbFcSpQ0rFrK/7uz/0OxaBgbCQ/+INPwgMwGm6ys3GOmzdu3X9lfddzcvuYoswOrWKY6x1tNd475rNT2BwSlwIlJC4NuX30ndBNGFvNRGuWyx1CHPLhR77EI0/us3Nmj0Tk4PZdXn/uaYS2KNPyha/+zK++p8Pp/fX+en/dX++98SciWhi8XzcU+h6RemQXkVWZGzOqoNAlvciF2qVL59k5O2VsLCH5LHFeL6U1yhhEFIQUqAqzVppJpFbroUnm+YUkIHq0UhA1MbZ45+hDwph8ko/RMTAJEyIhtGg1yFZYERAqkuIK7w21yFOI5eGStLzJarVAAGX0IBJbe2Meeuoqjz38COWGYjHvuX37mC8+/Tq37xxD27M5Lth7YJ9PfuhxismAPjrmt25zcvsad10isGJoB9hBhZlY2l5ysOpYHtxmWS8Au7b7ZduASGrdAOjQBgpVsrM5YWNYcObcLlvbm4xHI6bDghg8vYOmrrl79xDvTqnMgMIqxmfGjCZnKe0o23+Fpost0jkICqc6TJREPaZr5vTdktnREXXTcLpoWK16xpOS0WTK2Yc+yoOPXGW8s02hC6ROJDMg1DUiZOWSDz2nteB0lejahqQKjNaQMpcm+YiqBH3M01DvAyMj6b0iKQFKMl90LGdL5suWWR9JNnPUhibh1kEUIUWCyPZRmSwyCKRU+GjQk22e/eozfP/3fggvNMNiyEnX8DtfepH/9y/+KkIrvvbymyxc5OK5sxwfzRkNNqmpST5btwup2BwNWK3aHAyTcgRK10us1izbjr4TiCg4s11wfnvC/sYQET3CDFE6ErqS6Gq8aqBRPPDER5hu7JKkYLZYYYuKqhqSQs+gsriuQwrB5s4uQRqWXY304n6CGEKSksCtQ1GM1bnwlwl5PwzhG8MZ8oQ05EJG3Gv2wH07RAKEZLIx4U/9mT+FtgZpDYSAtYa4hgWfRxDIj6O1RkqBEtA1DfPTBct+ye3XXuOVZ7/C07/3uxgiu2e2Ge2dYX//EtPNXabDAaZQLEVL8olOa46aBSVDEJKl6HJinoqEAG3vsOWIsw88ymhjj8XsLsOqohwMqWcrUge6mGZIuR7QCU90S5qmQTtHUY6ZnZxQqoKqkHgFSkPf1DRacuvWinndcNIm+kZzabiJpiZEh5KZh6mkxVhDatq82UKjBXjv6X2PiIHV7ITz+5u44FFSsb09oLoleeZrL/ORJ6+yOp1hSoFG47oOLyVxcYcbb7/JA1evEINAm1y+xnUyxj2I9L2iMaXcuI0pIEVWxtw3utx/I++99//WM/c77UGRp9ApBqTP6oakxNq6Ail5Usiqg+XxIZ/5V/+K82d2+fi3fitHp6f8p3/751CqoBwOwRhk6u9bW6SU95vNSaxNwynlR08SmRSIfB3JtXluXKcUSAqQOeAgxTUDkXy7hMoNbxFzGHLKFh1hB7Rti5GaEBylMsiYENUgN9WtzEFEwyEjYxCnJbPj65RHXyf4Aza3HmNZjKmk5U4zQtmG4aJj5hyr0xVaFJzbGCBi5pOFEHALz2iySe09p5/7fQa3Os5vneXp332Wf3UisZsjZB1YBcVzNx1ffu1rfPZLr/BTP/AYw2qA8IpkDMfzOYvO4b3ACA3KAREhIikIXJRYWyF9wCTy9Fx02HIAWqHNBhc+8BReRASelApi1/Ob//wXePpzv8df+LM/wQc2S6r3oBh9f/0Ps7zzONfmgZXWhD4ilEIWBVoLYpOTcytrSQmC92ipcAmkUMSYP5dSabRWED2DsuDhh88zHBcknzDlANKSkRX0KjN2kXDr6JDW96iUUK3Dx4YkIqEN9L1HVxoRdQ6IKSQqRsaFpnOOJCVFqRAyomSB0AKhS1wr0L7H+xqlNFokkkyZJ0cgCZ+vHQhkAKIjKEkQDq0Sfexxy57lqqXzPcvTFanpGRvFma0Rl3dHXHjySQZVQRSG2sGibmlOZxzemvPWW1/GGoFVCZ0ig6rk6v6UQVHkzXkM+LZh1nV0IZE6h1EJJwRBVtw6mdHcPabrAykKut7dV/goIZgUlsFQszGZsr97hvH2BpPxBEMiJU/AIQLEEGkXC3yT0GUO5TozOYtQEl1UWeVMIGEZDiSLtmdYDlAqc7568nss1ixdYyx97JFYnIDgY1ZrrwcmSoB3kZV3HBwvabwmmorULWn7QFkYEIqTY890EtgaFATnUIMBMnbcPT7hiccv8x0ffYr//tcWlMUB1gjGgwkXL+zy0lsnlLagReBS/v0gcfnsDf76f/Bf85/8rf8lUgpiUqiUcHhOusjJ3KFkQZ/g7OaUrl7i3Xh99Mf7/ZY7d7dp3WPcvXHCn/jxx/nIt3ycOweG51/1jIZvcevlr7FYXGRWfwAANdrBmyXSSIiCbnZC19bYwjKdbrB37gJFNSBKDTFkRb1fU2cT2fIp11y2tRiLdWOQFJFSI1BAQOmMarn3O6ekMyN5jVRxQhKCX4vHEjmnNBLwhLgerIeAEAK3Zp4LNArLxu5FJltnabqa+eqEen6KX14nCkM12WRrPKYpByxODqiXC5rFXXyjGJQbFIMRISTAMR5UnC6a7KJAYFEEF3E+UAwqurZnufQk4ZFC03hDWY3pZgv6JiCEpml6+r5mZAzO5QZX2zlmnWPlPFplBT7RI3yHEp6D4xnbG2O8MLigGFcV+7uKN59/gQfP71CNKwISFxLB5Nf57Ve/zsMf/A4qK9Y9srUm74+8Lt0bbL7rO3+gT/cuJEhKWbGQ7g3R8sBRrOsPlMqClHc5K/Lfy/v3c7+WWg9GI4LoI9Gt0NWE5FpOjg6xwyGjjY1sYVnXbOk+3Vhk7n185/cKKX9updLIqmLdWsz7PiVJ959HRJmSGD3RB7TNQUtKakzwGFXQ9j2dc7g2W/6rskKKPOhbHB/zxKMXuH3nlGd/+zcoT2ve+PoHcNYwb3t29g2/8PMv4toZiMAjT+6wf36D6WQPqY5QKbsrAHbGI9584ypJfJZCCR68ehX7ZktT12xWAz53+5jP/MpfZXMzq/BefeGUV752zHQy5smnPsYXf79bX+t6CBlB9dJbR1w/vIVRComjCwolJY9didQnB5gqq9Gjm1IZx9jWdB6Qmd/3fd9/lg88sceaI8EXb3yBzeltkhxwPCsBfkoI/tH7dt/31/vrva/33PjTUdH3PUmKfAqLkRJDKRUhSWTyyBTZ29rlwvkdSlswHJaE2ON8RyJh1idiJUW2nKWQ2RgohNDEkO2DQgScT4TeYbXBFgIle5KXtK0jCEcUgaqYYgQYI/IUJWZ4fpKJ3vUslh2p88zqY1aHhyQPstRcHA85v2k5d3WDVJ1hYIbILrIMa2aHF3z1+dfoRUtZVcgAD24PeGh/TEyg2pqmW3DrxgHh+r1NrMRYi5AdXVdwd9FTHxwQosT3Bu88Ufg8JSVQmERlJOONAaPBgP29bYZDzcbmhEE5xsoAPuKQ9MHTLua4Zd6sa2MYVQO2Nkdou4fSZVY9UoGKOB8xJISMeBdZLBc0i55VU7OaHSGSxYuO8eYe1eYuO5c2eXh3l8IUbO+cxRYGLw0q1dmi2XmObt9ge+cyhSpBOyIRqSIvP/11VrePGAyGeKGyjRCJ8xk427iwtmeLzOlLAYGhbldEPIcnc9ousGgjq85TFTlERSmNoKfta0pdrKX5CoPA947rNw9Y1CvuHC2Z3Tngtz7zHG3TIaXi689d44WXb9NHSRU0hycNvYXf/corpBAYDy0ezXwV2dk4w3I2oypLTg7vEpLMijojMnxXVzDczqlfVQUkPJGtjQnBt2jhCCFSGU1nhsS+Yef8Lg8/+TFA0zYNfeiZjoZUtiJ6WHUtUWikMtRtT0wOlISUAxCqqkRKgURgrURrixAZ2JsL2qwAy0UP5HgFcb8ICu8qQN5d8KQECI+QMJqMcjBLUaBithAJISBkK5hPca1Ik6SY6HyPkIaN7R1GcYv9vX1CTPgoWZ3OaBcL5icnvPTCCyjxIiH0JGPY3Njh/PlL7J7fpQsNb715iwuXLqKRCCfoZEAKi9I5gCS4gCmmTLYtKrY0zZKR9QyHFmUNwsucUGwiVWnonaB3S+g6BqMpi/qUoippFw2hmnJ7EdneGbC5WSHsDN903K4XLBYLlIgIHFjNKnm8g9InnEt44MadI7zfWqcbRpLvmI7GyKhJ3pBkJIaa/b0R124taXwkkVkwSANFTsasrOD2q19n/8JltM2WLVLKHBnesbGszbikGLP9VcqsgF43BL+xIH733Fxwr2H4zvu+vs9vYgGGBFJqvMtMqnI0JgjyMZNAKEOIgo0z5/jjf+Zn15u8wLm4tj4pSMkhUyCInKKkJKR10w/SO/u8tc08Jb8+9u79/TvPM0af7b99/jWkkCSRmWDIDNrOKcGG3CHUZN1Uhyo1sfc5DCREpNbYpKEUFMUApXtSU6M3IaqIVRc5PT7FnrzJozS8NXmEeXWOzZFCKo+sFhye3IG7DROViDtTmtkxOvYII/nwRz6OcCuWt05oXr2BMhYnBDdXHaUdcnSag4o8OTBhMCx5+0Tyq59/i5/57ocozCEuQFEa5k1DzjKJEBUuRGQERD7WEAklIoUGq0tIme0pYmL3/CUmZx8gkFBEiIkXn3uFf/zLv85ddZZf+9rLPPwnv59f/Ce/zN/8M+/1Cv/++ne5VvUKpKCIGp8itihI0WNTQkQBIrJsa4bjEVFI1KBAFoI0X5BiQFtFqaDuagoz4aGHrrCzvQkpEH326PftAm01cycQMiKd4/SkxRrLICY6H5lMNxEKfFvTipbRcEhlLD4KvEhon0M9Ou9IRmG1QmmN1pLeB9p5i7QOQaDrewpVEqVCK0/vGpSaoCggObrGE1L+7AQE81XP/O5dKu/oVzOsiJzZ3uHKmQn7j55h7+wZpoNNDo+PuXHzDq+8dsDpomHZzNjeGHB2Y5vpeMLecEDrG9pmQWwdfYio3jGcjkAkfB+p25p5O6dvYNUFfHJEAT4IRFKkrqbrI9pIpHDsTEec3d/n7HSTc3ubmJGmKgf4zrOoG9rVksPbC6SCyaBgY7qJGQusHaCLMlvZVECkihyPsOa4qp7lqmPRLPC+YTKe5g1/ipAkxfr6rYQhKk8XPUZaQt/Ty4RVhuA9UmuSEPR9z/y05Va95GThCClSTQ06TwWJoSf6BTKM2ByNIGruLlpe/PrzLH3i1euHfPsnH0dZw2TzTX74e/4nPHL1R+n7wP7OBq9cX9B2CzrAA9pItILhdMjqbm4QkCIqJnodOb21YtEk9rc2uLWYkdrAaKQhNggyY1QImIw7CtvzX/w/f5LszoP/6Z86wBaaf/QPE//5f36Wn/tb/4hL5y7x7//ffppXX62oqsjZnUSpLPXBAb7r2dg5x/b5yxTaYLRASEFEIEUiJEGKinSvLroXXBWzguu+Jn6toE8+gcwBX1JKjM6heEKmPHSLCvB5X5I8Onpyy0gSZbathgAJk1O0pSI5j1SS5CNGaLyAGHrq1BFCj4qJajhksHOGfjmjDZHbb7/OW698hcn2eYqdfQbbFfXRLZq+o3d3KPoZZriNNgNmsxVCaAbaoJSiSQFd5kDF2DX4YFBmQpA1SQpuHc44v5UwAg6OW2YzTyctEytBeFZ1i1aSxbJj1bZYDfNly9FMUruIkgYpNG3nKCqLEQ2h1ajCsjmSHJy2bF64wOLmW6jSEnRBdBALBV3Ly1/7Ih/8+Ce559m9V+nk/63VfN/QB/xGhV9W1r1zg3cGn+84HO4p57/RAZGnmVKu3S/37/peEzDdv690735Trs1C37Ka3WWzrDi4c5Pnvv4M3/49PwQRHDmRWIj16NVHSJFk7w1nxX0+IPecDTJlx8Y6+TcPX+O6qZz52inlJiFCIGTmTXZdSyEj1lq64CgGBud6msWCxXyBS4nR5gibBPqCJfSeZ776Ep95ZptrN/8k3/3pkna3Yta8xt/6L3+a8Thb1X/7N17k//Sf/SYbe+f4tk99H7/7G9cAmHVv8mPf9x9SFSMOq6fY3dvhwpkPIYPHL+a8dOMmf/0v/z32z2zxV/7GT/DgI1PefOGUN1+r2RxPubR/gz/2vb/K4481jKshJ8slx0cNB6cNRinO7OwgJdy9e8r89Dq1E4ToqWtDcAlpa4RxjEvDdApPvwzTs2cYTSMiOlanc7rFTVAds7ahdw8D/JfAZ+H9xt/76/31Xtd7bvz1MeG8Byvz5jEZYhTEQjAaWC6f2WJ3Z4oZ2awcAupmlqeUhc2g1Bj/v+z9ebDt6XrXh33e6Tetcc97n7HP6bn7Dn1nXU1XAgmQBJKNg0kxJAGFCpZxQlLlouIkJIUTx1UxRjYERCCVgK0UVIIJYMASSFdC470t3bHn6fSZz9nT2mv8De+UP961T3cLCV9wyfmDfqu6Tp+991l7/db0Pu/zfL+fL0EmiCkRvDQEH9fHXU/EooXBRE3UAqFztNEo7/B+RXCaiEdnGdJohGhQlExCQDWCZjFncfqQeRtYTOdkEoalZ3t3j2/75HMcbI3IeiVhPuPmyUOOHxxzsuoYDja4eGGXcdVDFz1kXrF8OOHstMXOZtjQMauTigSVgTV03rHoAqKLLNuGTicVpHOB2kWcVzgEoXVkoiHPCobDIdvjiq2Ngp29DTY2RmR5HykgdA1du8S6msVZQ1EU6CKnKAr6hSYrNJJk1ZXKIFUBrFICVdAEZREuslwsWM5OmRwesVzVzNsWpSQHly8zvnSJy89/jOHONVQP+vkAEWu00lgJOisRXSA4C24JSuFNxv37d/m7P/kP+Hf/l38SqyXGBaJ1KJ3xwic/yje/+mscHR+hyyyxAXEJQq0itotrCbzEB0GUKYlwVTusd0wmC4Quafx5bZASzrxN/253d5soJKvJiqwwaXNVkqLfoywHfO2r36Dfr7jz6/fIpKYTiq6JxEJTljmutszmNbEHtcvJiPSFxnYBY0qy3gizWBFomSxXaGlQwtB2AmMU/Uqxamf0ih6L+YKyjGyMBzRRcv/0jM5C0yxpV57TNuCPp/zpP/fDZOUA27ScnR6zsb1NoQS+TYBfH8BFgQ0OLSCXEbSk3+thMoPWJnGSkMlGEOWjYiWKkJh9rAuO9TTTrdV8wHrKmQqZZE1Jf0al8M4iERRFgfce6cGJlGpGXDPgYmoQBZmlgAUi0gjOTRoyGLwXGC0xUZLtasLeiE13gYO2xXcdbtUxm025f+8mr/zarzKvW5757Ce4c9QgM8lHn72GrR1nTY2zLh0m1pYaokSgiCYD38eanOPZku0QKUc7RKHIygo7mVBUOV1nWSwX1KuGXGX4suDwLGJlyevvPuRgILh38z6h2mK6tHQucOf4IcEF+lXF/s7m2nrcsnQOhMQJyaRuOT5dkedZShEWAi8EtV9go0CEQK4km8OS+0cth8cz9scmNUwlie+pAsYI5mf3efDgDo9dukwICf4dEQilUkMtpMfek/h3Ssq1lSSloAvxL+K1/dbKrt84XZcklqrMC5TqCDEg0et0OpUUdyKk4Y6MuAiSmO4P4OV6Uh1S4Ru8x4u4Vumtp+/u/H99KqtFmqZLaVKx69fNzRDxoSP6Fm8bRBQYmfg53se15Tcg1JpbqTTKZAilULGHUg5Retp2lZK1s5TWl8uC6D3OpCK80yCMIpc5eVnxcNKnm064vHqRWXWdW5uPsSo2yIsCvTvGhYB0hht3Z0TbsN0zjGTJxYOLhOB58MprxOMjLmzu8+pixqudZ2U0Flh6TQyCGHI6a9FZn2+8ccoLT00ItASvKMoyHdSFTQeNAHle4lqPJ/GPtJRrjqdHy8Rg1TJQCMvjz34OYTSSGqTkzktv8n/9j/8jjmaCKCwvfvUe/w/301yJ3/L2/uH6bV6ZMdhgQYKWAqEgDwIjwQlF6zzjjR5RSBbzjn6/gn6JrVt0jAy2Ki5tbVANR1SDijwrwKeQAalB4YkyJUXmaAiOiKCLCmc9mY6UhaZta5QRSd2cCzywaLv1YVaglUDnhjZClDLZITuHt5HGdyg0eIuRmpD118qpji5ILBmunrCYr+iaGtdGch0wUYP19HsZz338MkOlqIY9slzTzCx3F0uOloE3X3yDs+mMjeEQYS2744qdYcVgsE+eV8zOzpid3KNzHRpJphVZnmOtY7JquHl8PyV+dxIZJRKLDVlSMElFLiLjXNPfGjEeXaFX9dkc9dga5RR5TtNaGu/p2o6wammayLLu2B2W7G9dxgwqTJSQrRMqXcS5ANEinKOtA/P5IY6GydmKVbOiyCTeC+atA5Gsrs4ne7N1jkVdMxj1H6W+RpWGpsI50BItUwPDusDSBc5OzjicrFg4gScjyoCPDqUkBQpl0hBhOCwZlhXaNlx94gnyaoOf+/KXqGc1jrStSKnJVcVwPOBs5tneySnKB+i2TYpTIkJGekXBbP4YP/7X/kh6LWc5vX7G3s7TPH61pRVv8j2/67v5c3/xb7IzHLB/YZ9lU6NV4OLBEVkW2Nla8J/9H/8a07lh1Qk+8onv4fPfvUW9mvF937/g05895vnnfwitMv7iX35A10KVTxnmK5YTxXBzj/H2FopAFwLICFKltF2f+M1BihQmtk5aFerc+SDXLon3TKJCJru9kGmPqpeWX3/xy+SFpMxygg/E4AkelDJIaciyjKIqqHolWW4wWiGMonUSrTVaCiwe6x1BgQsJ6YFKe56MhiAiKgTq2hJjD5NrLj/9AhLBzTe+yd03vomUmmK8idIDOrvCrRpy2dCFnMpojIwMihxMGgbapiHPc7TWjDb62NNTdK9PXM3ofMS5jKqXE3VHCDWl8kSlCFrhQ4eKhtYJ6pUlU5qAYtZavvrGTTakIIuSfimgbWhiTTB9ir6i0IlR/eqr7/D89T3Opifo4Iles4qSnpHcev0rXHn6OUbjHorEmY4JIPyI33c+tPwg4eQ3r2nOg83OP69ifPSM8gG28brJJ9bIkeh9qruUSt7c9FMIBD5EpEhIESngrTdeoV6cML5wlXdu3eC1N17n8Y9+mmxRkOnIcDwmqvXtGknw79VzPjgUEaHOm/vx3H2czi7O49Y1XnoMYqrJhExKOaWQRiC1oNSKYC2u69BKrUNDFHqgMCan33TM5xkTMvRScNwuyPYET1w1PPX819h85gLWL1nIiv/0P/kl9jZzvv/3PMF3fuEpfvcfiPz8l0857SpG4xEATR2ZLWb08x4b4zFGaaRXCbeTZ/zA7/4CbR0IoeUf/Fff4E/+6c/zxEdH3Hh7wnK+pF6dUGQlUXikhqpnGA17iKWjbTzv3L5DADIh6XTGpF0hYkhsT1L6eQwSowL/+//89/B/uwbDoaFpI7dua770ix5f9Ficzcl8j97wFGAzRib/3XfoD9eH61+f9a2He5iI8oKgNRpBUWqu7G+xc2GTzfGILDg611LHiG9TIm6/10cEQUPq6mTKIDNFCB7p00FOKkAEJIEsr1IjRChq51i1HW0bMEEgVYVXHUoXNM7iOs9y7mhnD2hby/TsjKf3Kq7tb7E7HHFhc8RgaxNpLbeOjnhwb8qX33qH0xC4NB6xf2mbx164wqeHI8RiwY3jQ26/fYtmUdNTElVqVCUYDvpY71nOPQ9Pa5ZuxqJ1GBUR0uA6iwgRj8AFSyGhKjXjjQGDKmN7u8/W1pjtcUVZDZBZwFnDalHTzCcsJw1CeIpMMxgPKYcFyAyldXqcokYFTYyCLjpUJjA+smotq6ahnZ/SzTqOT27gVS8liVUVB09+hMcP9tm9fEBuhkg0QkyJ3ZJIRYgdwi0xSuOigDbw1/7SX+IP/dE/Qq/QqCwjhpZY11zYGPAnf+wPoTKBtGkXE1nAiYDWEWGSbTmIgIsQoscT6Q0qVqsWEAjd4VzGPCyZNR0nszYFh7QOowG5DqeIiTPmuiWXL1+mV1Y8uH8HJR2dC1SZwcfAU08/zZ1330Zh6LwBCjrrGQxLdBHIhKFrUnraajajV40JusXIHO8Ds5MpRQbSeJSIKVXKOpSCIMFkGYOqhACnq5qbx4fsPfUkmbIsDk/4W//wl2m8QwTPoMwQMaduO37k+34Hj116BmKgczUbGwOkVNTLOVFImrA+hKwnjlprBoMheV5wPsWMMRUgyf7pE5NGCCKeEFJjQJBUVgGIMRUvgWQNxQe0VuvmSlhbLATWefBxrdqC8+ag7DxehqTmFQofAy4qhHdkOku2U+/wvl335VJioYtgo8AESZSGvMzolwO862iyBUVZsH/pCnzmC0yPj7l99zb71/aYtgum0yl7m5uMxz3q2jJbzGi7DhcDXVjLv6IEYfBSUwwqVvWcun3A8vQEoQLCe9xqxc5arXo6OWG+qBlowXaeceZXHDcNdyeSJ54+4N40kvUiIcDJokYZw9wF9r1IiYqsVQBGg8hYOc+d45pnrw0JzrNctfio2dCS1dJS5kmN0CsNw4Hkwf2H7I4uJNi3BpNnKYHZLqmqIYevf4VLly8hfEpBF0gIEe/9I36jNO/xYM4L3EfP1fsafO8Vzb/5OrfghnMupOBREzd4j9AKpcv1gSQSCAQhEaQmpxABET1K6WRLXg9zUupu4uyIGFBraDZSErxLB6osKS0kmvPJO2ubCwLQMamkiQiKtQJGEUiHNkgWrRgD0a9B7F1D7BrcckrwlrB+bNq2QyqVkhddRGfJIh+jwOSJyyREjlCaoDTVaskFbWiUZbLsYPE6n+Aet7IXuOPT4KM1mtYHpAhUg5ymhe1Rn92LFd3yiP7ZkpUsiLS85i1NPsA6y8IpWr9BbDqECnSuoxcmtM2EV97UfObpbbwPmF5B2XkQJ7TtnKrICbJLh1CZI6LHaI/ziWUZpMR3DlNp8kxQbu8DAToPOucn/8bf5Gv3HiLKPs4l5e4v/dq7fPqP/Y5vdXv/cP02r7hWpQQ8Co0SGpGlVGo6h/OOSMCYDOlgNZ1DE9ga97i4v8dwf8jI5NiYbInertDkqExhXUMm0yCWc8eEhCgieamTfVGsEOSEIBDeEnzExmTJtRRkQlLp1DixMZIFRedYW6waiILCgKoKYudx7ZJpF1EuUirL3QfHLGYNhYGtQclTO0N2D3bZ3+gjdc7xfEk3XXB4OuNw6dDiiF4uqfKCoVJ0oePCMOdif5vONRSVgNDiguHkdIGzp7i2wQdL3dlkUYyBxkWc7ai9QPiW6BwERb/Xo9/rc7C3wd72JpubGwz6mlxXeFfjbVwnanrq5QpCgu9vVBVmQ5PlReJxmQwZk/IpCYQCBMFifkpdNxw9fMBqOqVuWrwyVIMR2zubXHj8SarNLTa2Ninzkm++8jI3fvqniIC1Pn2G6QyvDbPJnM2tCusSbkN6UlNKCBqfWHV1veJs2XCyaDlrLb5TYLKEPfDQBY8Kad+OugQ0UQrGOweEPOfidkkv04TMMOoN2RiMePjwIn/vZ/8PPP7036Zu3+C55x9nspzSOIcgqdVr4bky7vPYJc23f+YtfuqLn6AoMspKkcmCvb0RvexVnLPs9grKXp+iyHC25mD3Pv/n/+A/BwVNpxiPJoxHgc981+9i79IurW+4f/eQ/Qs9rl+TdE7jveOZ6yt85xBoquElTK+ksx1N2yCJZHme0BI+WcuJEa1AysQEl0ITEUihEFI90o+lUKn3KcxEMmu2jeW//vt/n3/8j/8x3/Fdn+OZJ5+kXdUI72hXLcvlCu8j1nfreq1HvVqmAWreQxclB1cucfmJJ6n6/VQLh4CzDtd2LLGpIdtaMArfOogejEIFD86D0Fy8/jQXHnuGxeyU+elDTo/vsbl/QPSBZj7FxJxMV5RK4LROu6rQPDw6ZjCsaAKEEKkqzYP7U7zLWLSSpRX0fMtGWWD3NpkvW0KArFdgbVw7Nzyz2hOFoo4BrTUvfv0O3/mRS1RRcrC9yahfsfJDIGGRtM7ZGgbeunmbpx7fR8q043sVCC7QaY2i4fDOLQb9J1AGQkyfR6kSSer/80AOeM+ZsH7C/lv4xuc10D/fJBRrdeF5AzGKdbOXxOGLQiS2MWvbrogED75raTvHV37lS2RZxS/+zM9wenTC13/1F9m5dJHhcEh/0MfoZEUVUqBUxnnzMdVOYn117xuGrgf0AQ9EgvVIff5aTU14s76ZSCS4VP6qLKlsg7VUWYELASs1Sht0VoMWiEzTFBo3L3FnSzaGmmp8h9hYlrLHoRlxeKyQD2rm8h7//tP7/OD3XeCVm4LTuuHtOw8AaFa7/L//0c/xh37f/47heIxzLbmUTN+9z9Xn9/j+P/gCL78+4f79B/yu35es+K++eo/JMlAIRd1t8Ctf/wgfe+4bfOzxDm/t2u6ewjVN2SM6S2Y0wVlMjGT9nDrkSEALlbj/aG7dmPKf/ZV9fuSHHd/13Ypnn9bMzyq+9Av7vPTG2/jWMR68F/zx4fpwfbi+9fWtSwJUkk2PNysu7+8x2BrSMwZFZLFYIUSCwgdhyIqcKH2aBodIlAKlIENStw6lBcJ3BCK5SU0tKQwKk6LKI6wCdFZQrxZIX1MvPc6tCLbDSMWg12O7rLiw32ew1aOK1xiOCqZdS902vHLjAfadd9gsR2TjIZuX97l0bRdTDVjOOxbHhxzf+zo3uwYjNCrXlEajxwVtkLi6Y7HoaLszfBDYDmxMG4kOCYwfjCArBbujHrujERvjks3tilFvTJ4PkDR0zmKtxHaOenGEEIkDU/UH9MaXKashRkcUCRhsfUOICukVAomPLWfLCV3tqVdL2mZF6zyrrkapHnv7W/Qfe5KDz3yenYs7lCqH6DD9MR5LqC2imxEROJXxja/d5eIly/7BDvgU9iBjR5SRpz7yBCGLCK3wbYPWZm3v8zjrkT6C6HDBpUl0CMisJEqNxK2LaZ8mNwiU0BS9nNPJklG/R9dZmtWK00XLKigWq5YY4jphUOI9hGAZDXps726htODk5AFa+HRfsi4d7pXila9/k7pr0JmkaWqMMBAsnQVMAb6lX0ombcd40Me7iJcRKSMbO33uPTwhI6CVoFdljAZ9cl1SaInQgbwvyXuayWzJqnE8c+0xvvL1l3nq4jaPX93h/qKhrfpYG8ikRGaws73B9/7AFxCuxQvFdDGjKjPa1YzgLRhNiB5jMnp5SVmVKK2JPtLVK9quJcszsjwpJ4WQRBxE8Z5yL6SUxwgpnCFGpEhpupEIal04hKQIPJ9y+xjWFkxBXIelxBhQgFKJ4+diKk6kUGTrkAXvEz8lookiQaxNBEEaYcoIQmggUNeOjoiKDlX16JV9hLM0riHf7nNt+1lkNHTWUnee45MJxhiyvGBnYxNrLbPlkmnT0K2TEyMdhQNrO3r9DVbzCfs7W6xsS9krUgpf5xE6Y3Nzg27ZMl/OqIZDhpt9ju4ecufejJGOHB8H6tAwb0qEkuRS4qTDdg0hz6l9TVg12EzSrixSB+4cr7h6oaXXq3jw4AzZt2TZgGZl0DJQZRIZPVvDjFu3FsxnDVUvJzjo9wwuwKKTVLmlPb3F4a132L/2bFJp4FOXGZBKIZUgCrVW353zcM4bbuKfa/T9xubfB9PvxBqmnUrQ88I5xpgUCAjEWgkR8ckW1a5S8wDSAUqa9HX8uimcClup5Pp3q0ega7G2CccY1sxSPuDaOTfViPV9iDFyzq5KakGX/kw/kBrYyKQ0NRlUvbSXxLVasGvwweGXC5bzM7TqsE2NsSVZ1sOgMFqjtKI/2GExn2AClEozkxmFyYizE2aTjGhXPH7nZXqji7wTtkAFltIx2rvM6ugNlMk5ONihX22xnCxojiZkgxHZwYj520c4BcEF3EoT4oLgA8a1KOaMh2MKkfHSWw948lKPXAVUMBRaE4Mjz5NCVCtJJOLcWqllHUrnCWIfOtAaq+C0gWxjk4hDqIJuVfPKN78KFoKvadsOrTRPPHWN+qkvfMvb+4frt3lJkBicDek92HU43aGcXLPDRFIWp52U3c0hB1d22Br0yI2iCS3BWWzwZMZgjEaENLAotEr1Q0xJlUIIjHB4Ca7zFJkhxiIlrPuWzjq0SoNXYqSXgXEuNZ1UiaeFEFBaEe2SIEqEEjRNpD46pT2bcFbXmG6Jbx2Xd3o8s7XJR7/js+xeHFIvHfcfnPLW/SNe/MoNtHWMtvoc7G3z9MV9YmWoZ2fMD09pVgvmvibXAtnrncuImdQdy7phvloAyYoMAeciBEHwDkeLUhW5ybg6KtjY2Gdvf5utzU22x0NyI/AxJcAv5jXTkxMytSQzgmKjz7A3osiHSGmSTVS06A5c9IBDqYrgBXW3pJ4+ZL6cc3x0xnS6xGSBqtdnsHuFj3zi2+ltbVFkBaZXpM9N16ICCCVpasvCStrG4lXag4VM8H8CiCJiQ1IAOix9bai9R2caj2S2WDE/WzBZ1rQiNX+FDCgj8Y1ExPSaCSISQkST2LxOGMRwm9e+/jW+8N0fT3zWEibLFT/5//1Zfu2lOxxcuMA3Xvsq167D6fGU2AlQBSprkNGhZGRzUNHvzfmB7/s1Xn79Elp7Oq8QKE4mM7oWCA3PXd9l1Rhy2SJMH0dEWE3TzQmyIzSSK08/z96Fx4gicjZdkpc9sqIgBE+ZK7q6Q5scPdjExoB1Dt8siQFUlq+dI4CIGK0S91iJtaLvfNCU1jn+JMbfsP9xPhgLqdYxhk9+6hN8/BMfZ7AxQiuJUZrg3Rq7ATYGlEzNWGMUvmuZTWbM5zOOju7z6ld+lRf/2c+jBBxc2GHz8hUuXrrGcLRFmZWA48wHRJAslWBlHbk0WAlWWDIRECG9vsvBJsPNXQanD5mdHdGvKkSvz3y2JBrIiiFtkGS6QImOerFitVyRZRVeZoQu0stz7HJFVigmRxPGWc5sumI5XTBpBbbRXOpVCJZpYCwjXRfIixKhNCLCogkIqQixxXuPMYrTBw956qkLNG0NomBrq+LOw1Nee+1tPvLkFerFApMJtBN0q4aiVNx96yWuPP4UUqSgNyHWfOP0RKyfi/SMndcGIXoE4jfhG/O+5/g9u+8/3/x7RBRMNbBSacjpLVGBR64DR4BgwQdklHztV36Rm2++xrd95/ewspYf/Df/AMPhJoPxBtlggMaloXqMSHXOHxZre3lcNxxFSjJGrB06POIgi6iAQFirNaN3Sfyytv4ntE5yXUgJeI/Uii6A8B06CpQxaJGCisU69KfMMky/D82SjhEv/9oWLzz/Fp/+3it8+tuf5qUbC0Lw/P4vpCCPN28umdeW4OKjmk+vudH1fMXufknnPf7mLczDGrPv6A0UP/B7r6PUExwdL/gv/suv8Nf/71/CtfCxZ3bJsj2sVTinmC2WtD5ivUBLg5f1ugkfICq66Cl0ifABLRRKCYTyKAVIzd/5ybv83Z97mo99zPPJT0lGI5idnfHm17/K5z/xLD2Rczq9yK++wk8JwR+Nkdf/VbblD9eH61/H9S03/rZHIy4+/RhbWwO0EkQtMVYSJAShCBFE8OC6ZNONIGUKD1BKoLxFhcSC0ZnCy4xCKbRI5qbWOiYnS7qmplnNmJxOUbLA2o4LmeITT1/hysVnUDqgRWQ6bzmdL+imK44ezBmWJVYp8v6IXA/YVh1RdMxPZzSH98BHTmxHpTNCaHECTHB4LZm10C1WWGJK0nUCLQzLrl4zGNIJdtjTHGwNONgaMdoYMhqPGA17adN0gq7xhNWC1XxBW1tMESnyitzkFGUGmUGQIwiJyxc9WkukMqm4cJaVhZOj+yxOzmgWE3wE0x+SDTfZ3NnhYGuX/miMNJ5cFwy2LiQulgwI6xBI7jw8Qk4bLmxtIoMnKIkUyT46nxwhL+6AUuBdmkAJhZKKL3z+88Q8pQsGnQJZpFYIJ8jXyWVKG7STgEMEBwh6vYpDH7BCYSK0UaRNPgpkZghNx4OjGV5E7KpmurCUGyNaD1pJgnVkKOrQEL1i++IBUkBbzyhyTdO1IAx4hfcOIRyrxZzPfeaT/JNf+AoCj9IOYRTSO7QGUxgWXUNwAj9QBEDJnCsXNhjtbPDg5ildu2IrH3BqZmT9knnjOfFLljbQdFMmx28RAR07ft+nPsLN0zMuX3sM09fYe2d0RU7sYNivEHT8rh/5A2xvjOlEpFumZuuii6h1E0bLSH8woCx6KGFw1rOcL/EuTRnzIk9NORfRWqz5Mekt6r0lhlTM+LWySkiIPqJMqmDcOYdNsA72EMT15DOERIGUKWIRpQQuBoISeOuIZNgAhQLCmjtC4jUSwQeH0CIp/bxAqgxiSFNnJXE+EENiXbpocS4FFWijCMKQC5PAyGtAvQ+O2jta75F2zny1pF8NGAxG9EcD5mdTposVXQzUTYdUkbPphOAC+bCiFD1C3RFjS5SRYCOhbbl4aY9331hwenRGmQ3wuuBovmL/yg6DLcvD0zPCUWC6IhXZZY/GC+rG09QeXWQIHF3TkRea02XDg5Oava0Bg0FGlxm0kAS/oGtKXBERHkajkqzXcP94yVObI1y9IARNZz2Z1ti6Y5jnvP3yN9m49CRFJqEDb5LVA5HaYok3s1bIxXjuWUlKBUhfT3qG9Lfzrhuw9sZ+YCV2zftVDuuDZxSQesFEubaFBwcqQ0kDKqW4i3PLMecNxPi+11jqPJ6nE8cYiAScjfjQkme9dP+kQ3n1qIEYz29gbfM5r9/lWj0Yw/l1J9XS+rLXjwcIJKoskD4yMDmD0QZ4h3MWV9dpyNIu6YKnNxzT1h1bu4+x5DZ6dYw2GUudIXUK0TidnhGWNXvzW5R6xteC5rCObB5c4/Tuy1wYDOi6jtdu3OHKYoEuMzauX+Z0dcw0VojYpyOCO0VFCG7Fxe1NGjvAKI2oSm7dnfDWrRN2Kkd/NaeqSrZHmvm0wykJpkjJ9M4RYkO/yole4l1LDB4fFU1tWXkQeogIAYTh9s23eDhZEHVOsBIhwfua42ngaw+/1QCYD9dv95JOYK1NjX0iIgQqNAZBlBLrWypTsHtxmwt7G+ztbCFUIHQd1qVBW4wCo9LBsIseLWTau4XGuwg6gojUnQMXyfMMbTwidnStw3lLkB3GDDBSkWeJVYaXRO0JyuNcy3JeI4LieDIhLmpW1tPLNKNKs7dVMLw2pL9xnVGQOK1wvmZWO9545w4vvjolywsKqbi+0ePZS09DCPjlnNnqjHffvkeMCWWQ5wVlKbBWMV8F7p3exzpH12V4l9SIPkiiaMmVIjeCflWy0e+xszWi15fs7R5QlTkFAS8UbUh859nZKSqGxMytehzsDsnKTXRWJQURGUFGovXI9WfLyjkWqxXzhaOpz2jnLat2SV5k5MMxZjDm6Sc/QtUbsLN7kbIq8DJHhRk4qJuOxeSIjeGVhEbQnhZL4y3f+JVfI5MGp9eWAh/x3qIiNN5RpDEQmcnTYR7Dcrmi85HD4xmdjRxPW4phSYiCTGq0EjS+pbHpdRAQaCSubbn/4BQbPA+OF9izhl958S3apkWZgr/zD34lscpCx8ULf4OWitduCm7cOkYA/XHF6eKQzeEWsa7pVxX37pzx7o0x/+sf+4sMh5Z6GYjZgH6VuGQxKynyPiqTaJnRuZYbt3b4D//8j/Jn//T/k8tX7tLv53z8M9+NkBlN02CDZ9TrUWYF1tasmgaZFQQky1VNlGrNUosURY4xaaCUZZLMmHUC67rB9wHucdpQzrltMaRq5nwJIQghDdOicCBhd3+XAORliVzz16RINk7rHYHE4ky1lCdq2NzdY2N3nyvXrxM+6/EYlmczlqcnnB4d86tvfRGtDSY3mH6P3e0L7B3ssz3u8da7d2iDZ7Q9QLUCT1LbIRWRwKpuMPkGm7t9op3TNitGuaeqDEJrVCeJSpKXEutVql+aQ1S2gcorhNbkRUbMS+7OFzxVFGxvD0DliLbmzu0py8UcLSPEZE1eBEd0gqKLCAl1Zzk5mzMYpUG+tw3DsiDXBfU8IDJD8HN2t0tu35/SPS7w3pFHnZLVKk1mJO30Ng/efZvHnnkmJeSGuG6Wrfen+F6TLga/5hsLpJSPGoLvuSDgPUvvucX3fcq+fxHbWCnsakkUkFU9PKlRHqMgSg1R8okvfC+f+sLvfDQMJYRUZxMRwhFlYm0rmRrHyYkTH92l9yqlmGor1oPN9WszsnZ3BJm47GuecRBrN0RIwgsRBERNIop3kEW0UIQ1RsX7QKYVrAOFmtYRVguGWzlCDHj97ed5+vF3cYe3eHr/Ot/1sQsoKTiaOv5f/+SIv/5fv4ubNRRBc+GCo6f/S8a9xPq7cvUCWoCdL7B3DlFS8eDtCX/mT/wkh7Fk6ZJqsYsmqTx1xldeO+Mzzw75nZ9/ke2NCTrLaFYrpEiPoSSlp8sYISSOsVIghacygirPyHSDNAYpNcOtfd54A7a3E5fwzTdafuInvsjtpcA9POF7PvtpvvFP5wCfAT6U/n24Plz/Eutbbvx97pOPIwuJbTqCk2uYesQJibQ2sTVkYGwKWh+IWUyHIJkKVC0lPjpCUCyXNV3rmZ4tcK5mcbbE1i29UrE7HPHEhV22H7/Cta0SVRRM5mdMHkz4xle+znLZkPUUu9tjnnjiSfTjJbXtOHrwgId377E8XeAljPqCUW/ASEWKQnF0NmfetkyWc9ouEINGComLTQL3W8WiabHWUxWGUU9xcXPA/mafywfb7O5ss7E3RpiMrjU0ywmz0xNO7kwRArJBn2o0YrR9hTwvUUrjCUSp6ZzFK0cm8jVnIqPrltiuZTlfcXp8l+nJjLYLZLmh2tzi0rPPJlVlb8j44AIxxDTh8+utIESkDugYCKFD+FTEC1PwxV/8Ml4K/vgf+cP4Oil2Qkyx8t/xhW/HKImwNim1okBITYyOpm1ROkMIjdIBIWSKmpeCLlh0sEQbiTIlnwkJk+mKozsP1htoQEtNJ8MjOD/NCm0D1nseTs4QWlOLlGscW0/MFZnSSCfQRcnl/QvULtC2C2TwdLGjbTtWqxrhLCEEDHDt0hVu3byDCFDmJVJC3XWUpUBpj4sGKFEsSIwxwyiHxw56zOqaYjxkftJydnJM4+Gnf/FVdFZAbBjlmt3hmEvjAQeXNihQDEeKQc/wxV9+ma2RQZQFhMCgp5lMDvnB3/sHeOGFT+Mbx8PlHNnMQWfgPUIKxuNNql6JEpGus8wWi8TyUYIQbGqkSY31AaENrXVrC2QqauNauhchWSXXzk+5tpWcT7W9DyiRbLIBkUJlSE2VZPN0qRjyiT+itGIxPSQaQzXcJgaHI4BILBQXkqLQkBp3Qggsds3RESmYhDSVNQqIDuCR5cG7AKTBgOS95g3rial3PiWmOqibKVpKqlKzPdxiOBhxPD1lrpY0qxXBdQQhcNayM9jA5Dn3j1cEv6BQhqVQzOZL9i9epnF3OXpwl52dAW++cp/joxoRAsdHESUDpRHMW4WfLTFjKGVAtC1BBfCBfq+HJ4US3X4w5eNP7IAIeDw+eCBAhNWyo1eIZIfZyHn77imu3WdcGdp6gaTC4nCxxaktuuaM++++xfXr1wnSIHxYN94kIvr3wat/swn3ujiOEcQ60OXRi4IP/OxvxsiJ60NQDIkxI5VORVkIBBdRRR+/fu0kVUpqwj3q0SHed1feS6V7BMyOGoFmcv8m87MjHvvoRwGFRKYU7/VrGZHu+XlDMcG3I49S+eS5mvG9x+IDqg0ihGSJVjKlx4n1oUlQkhdz2i4yFj3un5xweP8OT2YfY3DxSeQ0wz64RVEWGL2J0SWlkkzzJYvTmi1/xKeD4FZXsljc40e//2N87e0TXr31kNfuTviRjS0WS8Hu5z7D3jASb36F09qAqkHN0L7hwv4Bo2EfbZe88c6EtlkQV6c8PBTEgaeoxhyfLrm8t89Tl/v83Fdf5rROgQomBgqdkemStmtxWIxMATudD/SLnLLXT7ZoPA/v3gOj6cuSZVihfCCTOUpnmOz9ATAfrv9/LhvBegcZjxAeMUpErtisCnYv7zHeHoAWaCFpuhWudegiS0wsHwkyvSeJgiB1cgiKiMOB8BiypBgxGlUojFAIGmzbEX1EaoPO+gjpyIVmGjyyFTSLJcuzw8RGnszoF4ZctxzsXeTJJy4y6g+pCsVsfsrR6SmzkzmnJy0X9neoigxlJDs7G3RZzWAasN7ifc3ybMFiDoIM4SS1s9ig8LWjlpb2bIZ0gVXnsF5jCfjOk7NCa8WgX7E16rG5kbO7t8l4Y0iRD9EyEJ2laeZ4v2I5a7BFhs4K8iJnuFlhtCEGkFqhVAXU6cDpJEGmxuiqmTOfHDM/PWPR1Mzbjn6/ZHf/CuOr1xiPLmE2Bwz7A3Kj0BKckihtEBaC64i2JSgFRcEbr97gzZde5of/h3tEFNo5NIZhJfnYJz/GL33xZ5EqS1zP2KWmgPK4Tq4DnxIH2QtN6xyr2rJsLJPpEl0M6AJUJC5s6CLeBXq9ko3NDR4suxSelj4UkYWh6yKvffPrDIZ9XrvxJkVRUK+W+ACyl2FCn/sPPsZmeAN0h4mSQalpfUTrgqw/xrYORMebNyt+/K//Cf7Mv/Pnuco9ilKjq0DdNGQqY7VcoKVDmBGHq4bJdE7tLF/4/D/g5uRtbt65zf/4x/4o5WAD27RMz47Z2NwiF5HgkrLOhfWnfXBkSiJFICuq1PTLMqRUKCETW41zvttvwj1eq9D9ed0U39sPY0jfCzHVOCEGCJ6iKFI95sGJVKu4EBLDNiSropQ5IJAqoJVaq9MV1lqUDCiv0JsbDLYGbF+/QtO2uKahnS85OT3mtVe/yq/+zBEx11x+7iMcnjZ853d9mu2NAYu6Y1F3a7W7RYtAFCloSxYFSig629AsVuxISZYPidJgyhw/X1D0SuazOe30BCMUg6rPcrEgmIp3Hx5z6/aUbn7GwldMO09rI7ePjwjWMxr22BgOyENk0dZ0MblwWgQPTxZcujCEkNR4Xgi60NGGBToYjAhsDSseHHUcnc7ZHmikUEQp0FFgVCQblbz99V/l4IknybRcD/3kmsGYRCLRBzxd4hsLAUkHvx6Evn8fi7/F/39w/dZs4zwl6IawHmomh0uMHoRPTbW1GlGta6AgSbXFerAaYlizTSHVgRFhz23EAUR45LJQKtXNIXhiiPjgCL7D2xUEyFQGMfEg07WSsCQIpNYoZRAyQ2EQxhFUx2q1QhUaHGTrIb8PlkFP0g4MRVUB0B+NuHn3Pn/uz/w9nMyY9y9xUo2Tu6Qo02vfSbp7guniiEEv1e6b4w0WLczuP8CcTdnoj7hVr3jgoVMSG8AhU1+0M2gZsU7z9t0ZfVnRNN0j1ahSSUDgPWRZSbBLXPRIVOIqioQeUlKgCBgl6ReGarjF7//98Kf/F5bv+i7J9ccNV64WvPK65N3bZ/wz+03a5vK/5C784fpwfbjgX6LxZ73FzlWaFItk43REhArkyDR85P+yAAEAAElEQVTdUAprPa0UtB0UdWChHHa+YLlY4bolzgZ6RaAyJU9ub/H45ctIJdnb36aUGSfTE+bWcnh8xkuvvcusleRZzuZ2yRNP7TAej1jGBccP53z9qy+xrGuU9+RFpF/m9PfKxO1YNdw/OWXaeKxr04e1T8EJPjqCt/iYot/7RcnGZsZnt/fZHFZs7AzojYdoWaJ0oG0ci8bz9u37KG8p0WT9MTsHl8n7JWWVLLGhi3ip8GFJiCIpaGKH8JHlYsqydtTLCdNVxPsGKSQmH1Ps7HP5c9/FxnifnZ0xWhcgFd41uKYhswqhLLFtEKZAZ4oXv/wNvv7lF/l3/tSfRDQeqwUmSrxr+MP/1u9FFjm2maFI8HihBKzBs8E7dNBEJRBIQvSE0FHkFUHqlLTpU8OGIOiE4dbRkieGeylsgkhEgQgcH02YzxeUhaFG0DQBpQQeSWs7Vk3N2cqxahwqL1g2Pu2VNtKZpCRcrVZsbGyzM9hhVdfMFzO0AEVqUpRKUmSCxcqhBAgjuH8y52g6xWQG2zSYPEMKQxclBEXrHEol23lS+0l2+hVaRLwTqMIQfUeZQcgMofOEdsnnP36Jz3/sWYLw6LKia5a0bcv90zPmTctwd0g+MITTOdPaMTmx7I/GfOY7v8DZcp6SqAGnNUrBaDCkX/UR0rBqW5p6Qdt0SUkpU+BNlhUIUkGrpMJZm1ScRIhpupaG2olJkrR88F58atr83ytGU7NGCYFcWyVSuqpPvKewtj8ITYiCrrH0yoK1EJ/crG3DThNkxAeLFMli6dfNGCnUWi2mCTESgkv/OgSkNATvICaVotSGlmSrESKpXYw2qdmjPT5EvE/WUUfgbD5ntmgZDSp2BiO2ewMOJ8c8ODsito7oFccnJ4iwwpQjnAv4ZsGgzKFpmdULBuMe2UQw7yxdiHzjzUO+8+NPMB7MwWQcn3ja0OIVLLuWouyjyhNmLeQ+EGKNINLUgWM5w9pA9AqTa5yLnE4sL3xkzM13blFe3kBHzf445+7DmoeTBReePuD0wSF53+BtwMSMhZ1TVSPuvv5V9vd3yKoKJQsiDinSQTU1vc4VC/J8xP3eiu9rhrFWO/yWKzXk4nkjkZSaK5Rc6zk9QkawHc1sSjHeAm3WvzfdvpTr5t76Ft4rqBMTR6o0zU5qRUl08M7rX2Nn7xIIk+wo4pxjJB/d/UdF7vrPpAB4dGnvNT3PJ/ecX8f5C359G1IjYprcC6lQOURfUegK6QN1fUKVG46OH7C4/S77F55ka/9xTh6+Q+00Wa+H0hpRLYnmlNmxp2hWPFW2LC8XvHt4wrSF8aDgYd3x9bducX/R4n/9Je7fmhBLTdFZmjbii22kPePBw0PuHXsW9TFGRCgkypaYMmdeT3j11oTJqePwuOV7v/MTPPv0c3z5a9/EZpKBqggi0nQtmkjrIfgEH6+JPLb3GKPRAB81WkhEUCxmS2KvpIueXGVYAb0LW/jfApD+4frvf2UmIp0ArTFC0hvkPH7xgI39EcO8RPqWOnqaNiBx5FmGNCUdARc8mTSozOCjR3kJSqEVRJGsUjrPyKJACcm8bWmsw6JRIgOVhnSt89hlR11De/YAazsW8wVP7/e4vjNmbzRic/g0o/EmzWLK7ZMZk6Mj3njjXWSRcXV3g/HBRS4/PWboPPcnJ5w8vEczXVIAulBQQp5XWOE4m3lWtWXWTWmdX/NAkyJNSU3rLUZF+qVic1CwORoxHmZs72ywOSqp1kxk7zJWiyW2XjBfRLS0lEXBxuYWusyT8kuCCAIVNVJquugIBkzw1HXDqlnRzk/oFo7Ts9tEM0DnhqI/Zvcjn+KZCzts7h+gQ4mQDhHPiL4gYoixwYRkDxQB/tbf+C/4PT/4g4wHJcpkxNDglw3PXLvAU9d30DEFOUTpQSVuX9Y3IJKSyhPSfxGKqmC1bBLKQVus1XShZlJ3TM4aVsvVo4ZYCoJK6aC2nbGxe4GtzS3OJqdo6XDBk+uMECNPPvU0d268hRSG1iugwFnBcNij8Q4VNE13mbff+nFy88cZXHgHGTRKZUwenGDwKB0S/1hqnEvIib/w1/8Uf+bH/jIffXpGjJF7szmT+YLgPLnw/PyLr/K1mw9pm45eodjefpMHZ5LveOY5nnn6U8QY6HzDaDRACEG9WhJlajYarZEigpL0+wOqskp2yvcNxBKiLynLESk/OXGPJYKwRp4kc0GyBL+nSNdKJp7ueg9xJHaxlsn9IBCpfvEeL0iqd6HScxVASY8SCu89znfp3+osDWajoJUCHZIq0ZQZVdknuJamKOmPRlx78lmihwe3b3K8XDLY3+Lug/tsPXGdnXGf3Q3N5GxK2znq1mNDJKwDMQKaYHpkuWC+nOPnDcvTE6pels4IUbCzucd0PuPk5BQTPTtVziS0ZAZevnnEd310jwfTiHId3lcczVcokzFtHRshDertOngmKEMUkrvTlhdihggdTeuYzGpGTceq7TDB0TOaqtCMhpJ79x6w9fQBnQsYLciqEqJHREmWWe69/g2uPv9CcorI9DilxmpKppfZubJP/Ia65v0DwPVXfouy57xueG8YzgfYxjIzCAzRBxQxnWGFgmiQUUC0KGHWCdkOuVaSisBaKfw+rnF6uaQ6Pg+IdUhHei2mexxIA0qxDtxTBLQA4i4hhnXFHdExPBrKemsJXUuoV1jbpvPZuiZsO0tmclydkt51JglOkGWgtCQrC4xJ/MG8qtgcDugWkVXnGM3fZCh2uZ9t02CISJzOqZuKyeSHGI2nAOzsDpjdrCnmK6QwBBz3YsDpEustXcixPkN6hyc5LVSIvPlOydtv/gBPPv4WTw5P8CikPqNpF+R5BsoRnAeRI6THyJAQDlKl4dY6zDAvK7b2NJcudTy4F/jpf3iDP/zHnuL3/hvP8V/9o2+ClNy4fcrjVz7yr7wff7g+XP86r2+58bdqBGUWyJVZNxgswQvoPJOmSzwHqVm1DbbzNO2K3UzSG/W5stUnuzTgYG+DKhshcLTdkrr1HE/OWK06ZpM5hYg4kyGDQM5qRuMtChxds2B1NqWzxxzeITH2fCAXLarM6IKhto7J8YLInDYoiJ7WCjofMULhXIJT58Yzqvpc3tlmvD1mvDmkyhRGJUh28B2djUxnjhCW5EZQFIaN0ZBL5SWUkQQ6tOyDlIl75gMhOHwAO2+YLW6zmDa0jcWJGqVHRBfZu3KN8YVLXBzvMRoPyMsClYHWGZJ1wnFwRNsQpeLB4Rlf/Llf5N/+t38I4SXSZOvGCVy/dJlhkRN8C0qiQ+JOCBkRwRIbj9QafECZDHyaQgXvEUYRBUidJlASEMJQ24BUjkx4QiBNZZSmbiz/6Kd+hj/2P9pnvDlG+pAOHa7l6Seu8szzz/PqSy9C0UdJR90FQvQsljUnq4ZVJ5lMl2yNN1FZINRLUIJMCaSMFMM+/Y0+dduxWs5Rwa0l9GlTtdbhg6OQOUFFnBR0q5boBEG062Q3Bx6CyFPTlQbfeXT0kBdoESkrTd2B855uOaWfK7YHkg2T8c69CXvjim/71McJruNo0XJ874z56RFdDaumRaoB85XF2sjWeIPxjmA03OD7fve/QfAzFvMOFx1aGIaDksFgRJGXtF3HcnpMXa8QOkPqFDfnrSMzGVroVPTKZKlITQyBUpLOu3XfLymspFDrssgjlaRrO2KIaJOlgiQGAi6pHZTGu44YAkWe0XYWZTKUUFhnMZnhbHJGNR6jM0NTLxDR0q96iNiBhq5rMFqidI4NJJurdfiQUmDPQx+0UjjnUNoABklKqZWAtw6JQim1LtJTk8Y7h3MBqfR7Da8YkFrifeR4OmFhFGVRsLm9TVVVPLx/m9NFg5AOLTS2XpIVBQeXLjF5eI+sn+FCw2oxZZAZjoWkMDlXLu+ztVcxb8bMZg1SBYxKhwPnJJmx5EEg2wVB9ui8I5cQpKFxnvmiSco8PErmHJ8sKApDDCExlmJACcn2qODtt9/mqccvEPOCxaKhzCPRWIgZ9WpO1QscHT7kymOPE4NbH24CAvOBz9z3J919AIB93pU7t8q+XxG4nlY/Aku/X6THe4WzlPI9+5M25L1+UhMJUtNWJGvMB9f6NtdhHVKdK/ASd1KIiLMr6uObZFeeILQNQUAQFZnpSGnB6r3798gqs77lcG4jTl8jxvVvSkuc22rWj8EjO/v6ukUCBhKDSgHXwvD448+yms+Y1y2uPeOdV7/E9qXnuPr4Jzi6+xpni4al91TBI4c9etJwMpsyOz6l0gq5N+ZWG+kuP0Z5OGExv8Ggl/PPvvzrPPHcd3EldrSL25yqmrruc3R4ExU01cEeoamw7WkS/sqK0AVELKlbmM6XzNuWL37pFTY2RhQ5RCspssi87ciqDFM75jbZgkx0OCX5xLd9O4PR2tkSaz757Z/jC9/+Aj/95ddwUSPzyIzI1sYWF93hv2BH/3D997qkQGvBzsGYS3u75IOSoTZ4H5guV0gVcVEidQbSEQRgA0iBVJIcTdNZpJYI34EArTUxghGGGBXLxiJFZOnANpauOcPVLatlgyCxjHc2x2xUPS5c3aQ3ylBWkueSs7alcS1v3FqSHz5gXG6Q9wds9ntcuurpRE43W/Hw7Xc4dDUagdQGJQV5JWm8wDWe5byjs4mL3HYRm0Cx5DHgEOh+zvZ2xcHmBlujPlvbPYb9Pnk2QGLpXI3tFNEFZpNTlFTkZclwNERmW+RFH6McIih8tNjgiBhUEPjYMl+dslp0rOZLbLvChkgTLUoPuHBxl81Ll7m68z1s7WySIREyoqoB3jXENiCYERAcPui4f/cGH//0x1IzRyhktAThePqjTyFLiTAKb1u01IBHqEB0pLCk2KW9TKTGh1I5Sgqcq3HO41068iuhqfpjTk+XjAY92rajXi05nXesomTZ2LSnBghBpOAoE9nd36cc9JjOTvF2Ra4N0ehHDORXv/4SNlqUkbSr9NwH39G5pKSqdGQl02dprlWyewfPeLNPfjJHdy7xj0vD5mhAvSoB+O7P/RK7+0u8DJxNVyxmnvGwxy/83Ff4zmevcGl7gs1gqSp8W/Fg+kl2dr7G9/3Q91LoNAyfLaaUeUa7snjXQZ7sf1VZURUVeZEaF95aVosZSmuyIkNKTRAiqbPWaIoQ11bNKAlC4tdeSCHS9SDTey/4xECExFrz68ZQGrAKPBEffWKnKY0Q4NYcWiWS0jA1FJMiPkZNlBIXJEYkW6diLVWXgqZ22BhRBGTVoypJvGPfsXH1AmMEMSistxyfzSi0RhtDv1cx7vdYNQ0niwWNdTgvCdGS+YiPHVlvTDs94cLeDk1wXLl+ea1iyyjKis1x4OGdW2RaMdre4PTwhAcPVjw8mjObSxZuxbzOkFJSKEXQHu8tnTLUdkVsO2ye0TjLKZLDyZy9YcF80XI2WXB8XEAwhACDXCJJjOMb785ZzjfJy4wsQGEy6qal6zr644KjGy+xe+UJykEPdd5oXbPvpBZEqd5X80RiTCih+JuMN39rvvG6RlrXAv8itnHAInxHbJu13VekVF2VJfcF6d+IAHI9pTznGqdfQhqixqTghnhe0qTXGYIgYhpMrhv26WbW6lTCo2GnRCUOrBJgcqj6qb4Jgehden66lmZ6hsVhuxVtB3kxQEWFVorcZOxsjcmz9P7plQVVf0imNWK1pF4pxPKMq9Zx32wxEYplN0f3N4gU+DXrbzjYRDrJ4tRS6jFNWTI9WdCppCLuumRP9j69b00h6OUVJ0fnz02g6WpyY1AxkBmVhpQyJTo754gCOm8xpkLENPSOuaTzlqc+eZ0f/v0Dvv0LAoLk8qU9AF59+f56aKQYjIe48YX/Ljvyh+vD9a/t+pYbf9W4JDaKw7MJy3ZCu2gwQTKUil6VcWWQsTfUjMbbbG9tJWujjpx2juN7h9w+nPDKr7+CQFBUml5/yM7BRa5cu0jbwXxSMzm5z50Hx+hVx1BaZsYwqiRlCATrWETLrO4ITtHZDuclXll8ZhBesVwEovdE6VEx0Ks0O4OK63sjDvbG7G7vkfVyMIbQBRbzJfViifM1IcJ47wJZMWCzGpArDZkjSkXjSbw6pUGmScqqtbimpT6bMT0+pV4sOLr/AL05Yrg1Zrx1gatXH2O8N0aXJf7sPuODp7HSkMVIEtIXtE3HL774Cp/77EfRpkv2UAQyJPnzpQsX0DEd/qTShNARg2JrqBlkYwIaSbreKCHgUhEgBMqnAolgEug/gsxyZGaIzqbNjoALkRANf/Mn/gaf+Z2f4ROffB7p0iE8xDS5/cN/8IeoKrVutq2tfUIgpCWXIjHeXCR0jrqL+G7FyXTJ0cLipCIgWbQW27bkAnKS2nLc6zPe3mK6mhJaS3AOgifLk8UphEjUGqFVYilah40pQdhIiTSSPFPM511SAQWLx1DqHi62aBGwbcOVvREHe0MKItuDyKceH5CZDfo9xdlScvOwYTAe8itff5mT4wm2CfR6fYq+ZOdgi1GlyHWWkjZVoDAFvgs8/6lPMdjdZ3V6igw1RabYHO3RH2ZYFzmbzhMIOVhKk1RRCVyjiLlEZ1myvEYQOlnolUlTZSElWuTvhSgERwipWHbOkmU53nuIAinSfyAQMRXIIaTktRgizodkIYiJEZgVGavViigivX4P5wN5IRDR4HwGoaOTDmctOTLBkUM6JDSuIViPzjLKPKX+Rh9wMsP696bGCQztUSpZR1k7PTmfuQsFpNuNa0ixDwHvQ0qa844Oz9w6qlXHMC95/Mln6T24xb1b97A4MAqDpN8bcLcLGCMYFxnLokTpDlNWyCg4Pj5hcmaoyopeMYD+Gd2tJbGLbG4EnFcMRhXHzhLqSFGUhLqmbjtEkLxx+5C9zSLZTmJAiMByOaezDa3vKEwGGvrjkuq44ebtCU8+dZU7b7xKbnJUlg6EjXdI3XH07ltcuPQEWneEUKYEXJUYiGs00fsK2/i+v7+v0ZcAMo+A2B/8ufX78/3VcTx//NNKGgmFxyPLan1QFY/A2yGQeH+PWnPvU+IRAbdm4KSkPhEcwc346Oc/T5Rw7949hIO2czz5kcdJKc3rBt771Gjvb/TxgbubEpj/uetZW4PPFYiRiFTrKXt0SJMnJQGOqHKK/hgpVmhhGVQD7j98C3Flh7LawnUn9FTGbKUwcQVVRk+AriSzBycYBb/rc88Rt6/y9/7BT1PkOd8rFG8X2/zs3QkfuXaBTzxn+OabN1FxxqTtEIUgugVGN6jYImJg0XR07ZDOQ9M55qukSpitWmo/YVgqslwxbRuaVtDXMOz3uL+Y0dZLxllBlvd47vmPpdR31xIkZHmGbRqqfo+z1ZIuag7GJR/fFWxN3/5Wt/cP12/zurC7zaULW4wHJVFEpFGoNikAEYrgPNI7JJ4YA0oZpNFJvREatFcpNMkovJTkSqGw2Cg4q1csT5JCZDY7ZTltyMoK0zR86plLPP+Z5yirkuBWTM5q7p2eMZsseXgyZWdjxHZ/i73NPZZth8ln+NBx685tCp0a9UsFuVI4PMJbvPdMO0m3muGkxHoLQSCjZtnVrLX6GKXY38i5uj9mf3uDwcaQ0XBInimcj8zmLW5Vs5pM6XJLXhmqfkW/X5DnhmgyCBqiR+mciEdrgZAlnXd0TnI6OeP04TH1dELXrMgHI6qdfTYvX2Zvd5/BYBOVe1SM9Eb76WNLBcQaQfHa2zfY3j9gpyqIIoDSaBRKQy/XCCURURDxIBVSKF545llioZEoghaEmL6nQoDQ4CRp3/aBGB0xCLI8TwpyJ1BrJZcUARNTEm2hJPcfTnACukXNvA3k/R6WFCBgQiCXEdtOGe/vUfb6NIs5xkCUguAVImq8axGFxbULPv3JF/ipf/brSOGRWXp+tO9QucYpQePSZ7BTgkIUbG4Irl7cYHK85OzEs5n1OJULZFlydtgBsLH3Rb7yxjtMT6bozLBXRT566QLVtmSwt8XO0RGrqBnLnLPTa/x//u6f4q/8pZ/lyccfpyVgZ3MCkvmafayVJDeS/mBElpVEL2jrlq6tcS4xMSuTrx0BEGx4pA7yzj5Ch4Tg1om+EUJEG0kX/HrXSmm+IUIUct1yWSuyROJNSgIhSrwAbzuiynEhkqsIQaVhqojIIFP9KyJKKaKPWBSSiIwBtEr1j08BLi5anE2hbMooApo8KkSMeCmQWuGcZWUjwnWsupY8KyhMwYXdHerlkpPpjLnz1G2LFDCdnuG9IBuUjE1BfTZFmIgVmrqeU5Wag9093nj9bVCCkFUsW021MWJrFx5OJO5hy9kK2s7TkyUrJ1ksGrxXZFWG61q8LvAeXrt1yoWPPIbKHNWgSINm0dLVGt9XRA/DYUE+aLh7vOSpJwZEV2PtiuCT0rc5a9A53L99m2vPPodwES/Deth9PqZ836DzkZV23XTjPecCnA/+3q9o/2BrUKyRJe9NDdfD80ds40iUMvH2VOKsJ1a6XP/wukZnzTVeK07PucbnTctzkl9T1wgZyfI+HpfGmyFhUII4v710R9LdTsP98+t4L334vWtKJZ1AqBRSVihDnpfE6AnO4bsW31qW9QznPOVgxHw6Iy/306veZQg5IIgMbXJU3lCvlrCwbMgToiy42ViycsDlq/+EYXECwDt3b9GL+yxFid7e5l6zYNrmdCqjtg7b1uk8iWFQDOmcp0Nx3k6Yzs44vHOHze0NxkPFTiaZe4/IC2JTQHBEWvqDCttGfGgIIeIcOBzHE8topLh0SaI1HD6s+Ym/+gv8hb/wxXV92rLqgPpDhvGH68P1r7K+5cbfN178BttVwaXdMZ+6eoGLG0MuXbpAWXQpydVGbOs5ns+5czzlxZdus5guyVXHxnCTnetXeOqTn2Y+XaK04u69u3z5a6+wOJ1QSkuRdYyGY67nOSITLJrIzHsO706IEVxoCKTJtiMQg0G4FVFpYu3oF4qndnO2Niq2RgOu7I4psopi0MMHz2zlOKvPEHONiyt0UTLub7K3XZJXI1SvBOdwbQcIgkgcQHxEe49vV0xry+l8xsPJPYQzxKjpjzcY7mxw9ePP8exwg4NLV8jLEkKJwBI6R3QNR1Q0VlMVgujlWsliOV0u+dlf+BmeeO4Se3t9YlujREZUit1hxfanriFcxCmBoEnNOBlQZJSZXU+6LU4USGeRKkfmBS5GpPfYeonZVLjOoozh5Vdfw3eWFz72PMF6yBSy61DS8sN/8PsYb25C44lGEqNFCIV2gdJ3KbZeJKWOIsOGGikERVUiiDhrOZ4mhuKqbjictrhO45VlVi8xKscSwEdmXYP2kaAU0+mCenVGoVPwhM40Ssl0DUiCi/jgmYcV0UvyxqGKZPHD9Ki7jsbCoDIYI+kIFIWiixWT6QmjouDK1QPaToDwyKxHbjTLxvFw1nJ03GBUj9unLae24WBjj0tXelQq0tgVzgrOJg0D09HotEFlfc0z2/tcuf5CUooqzcZol9HGJjZKZvMz6lWdNvR1QIL3Ai0dREUIMlkMzwsWKR5xzQQJ4m67Gm89Shl8TMpSrTWZyTAmQyqNMqnZ40NMMnog+pgadQg6H/Der5PIXCp+kYggCSKjqAp8MITYIWWW7C8RpNC4oJC5JghP10Fwnrap8c7SNA15rLC+I7iUuhyDpyhylA0EJNaGhARwHqEUNoR0iBP+EfAXkhVDSb8u9iTRG1ACHQTBRVxIKavL1SmDrsfO7lW2hwfcuXeTo+kx3q0Tp5V5ZAHqG8OglzHs9ciKjOMlbG5d5K1X32YymXO3tph8SBEFzWqFExYpNDrmwIphnlFHxWI2JdOaF1+7z+c/coWtcYmSgv2DEfW8I3rD2cSyu18Ro6QsA6NhxtlkxTe+9BW2dhRWFBRhwMqdkJkBxlvmJze4f/MGFx+/ggh23QRNzaAPFL+8V3Sm4vb9KjyxttKE9xrxvwFq/QHrbOqMrfmQ7zUZ1VodIUhNP+cDx0dHbO/tI414pKZ7f9PvXIEo1rcJYNuOycMjRlvX0KLlKz/7s8xmc37w3/zjuJQ7un7OUwcyEFHnMO51sf2BRiXpZ86tWuKR2o9H75Vz9p9YcwODU6yTpZAiw/kGqQ3FcBMpBdNwyOPXLvLKr7/I3aNDnnz6iZR22d9G5Q2sVhglmM1aqq0tZpMpD+8ecrmVfP6gh5ic0volq27Bsj/kV146Yitf8MJTz/PyO+9wsnGLvYPHMDpwthDMZhmT0wVCBI5P5gTVUNeeySqwWnSQB7Klouv3GA8ENsvITGRzkFFExaptyI2hcZFrlw64cHmP6FeE4HA+cOPGTb7y0jdpxhfJQslyNuEL3/UsI7VguVx8q9v7h+u3eX3644/hJfjOEYJM6b6ZwAWB8Z5WdPSLDOllChAigpDpc9kLGluz7Dx2PqOtLatFTWYi3bIjV5GdzQ3Gwx7j6xfZymGjkMysZzGd8tJLL9OuAsF4NraGXNw7oLh2hbppOD1+yLuvv87qbIUwinFP0asqLgzSQOZwOufEBqx12C4ps33wBNERrSYEj+0cG6Me41HOE4PNFIC2s8loPCIbFjgv6WqoF2ecHR4jCeS9kqrfZ3RwldyUaKXTAElJbAg40ZGRYX1LCJH55D5t3bFaLjk7e0jTJkvxYDzi4PpTHDx2AVMUjDa3USolHisUnbcs2o5ZvWAoIERL9IogNSIv+OVf/TIf/8yn2X322aQeW8No93e22NkcoGyXEnhjCkiL0eKCR8YCQbJbg0gqeK3wNqC8I1CTxI4dgZK3X7uReLsiopVBhoCVCX0Q25rQOFyEh5MpPgqc0GgfiJ1H5ooMBcKwt3+AKXLm8znCOqzzuM6zWi2ItsN7S08ILu1f4tXX3sZIjVZpiOqDB5WalC4apErKICEkync8fXGbio5y1OdwuWQyOcZJyT/5pVdZrdLr+N23n+I7PnnG8x/doD+qGCBwbsa7L9/j6PCM4UbJovUo0TCbngHwsRc+h3UzTlY1sZ4jtEELQW4yxqNtstzgXcdytmDVtOk+rZEymTF0ziG0xjsPiHXg2LoNdL6vqfUwMZKuNSWjASQkhZBE1Nqdcx7ekZhs0QdEiMgY0VnGZHIfVVVU/S1CsCktWSTHhY0BLQQmJIaZJxCiW/OK18n0JKsroUv70lrJHlxEYNaMs/UeGsKav5zYn8562i4y8w1FIRlXfS7tHzBbzpjNF8xmM2zXJOVUZ+n1x8RqyaxuiPGMMjPM5gu0Muw/do033nyTzVGPm6Lh9bePeebiBpMTj9bQyyTTRrJYLsgyQU8HjtsWFx2FycnLHKUa7h/PmCwa9kdrocDaEVAUGacnCzY2SsoguLxZ8Nq7R3DtgCrT1KsFSg3pYpMGcbHP3bdf4tK1qyiTJxtp7JDCpDrmkb7/HHPCByeV6yGfOA8FeZ8F+Pzvv5Ht9362I2uun1AKgkd0az51lhGiWL/HU4M4sRYBzsMdk9Mh3cfUOg4IiBoRM+6++Qq9YZ/tx8pHYW1BwqMQNt67lhjed43rGkqo9w9UeVTXnItIiSngLRmKNUJqEAWZXiJLifE68Yzv3qTQB0CPLoxZzjqsr4ihJPoOLXqsXIvtWspoecxrThcLrl3KyIs+L34NXvzGN/m3rnyZ3YOaF/4nvx+vIsu/9Tr324wYFjSzQ/q5Z9zfZLhR8vVX3iTEgmKWAT/CcnlEY2fcurtEywHf9x3X+PIrb3HjqKbzlkKC1EVS+rkaFzXrfiw2RA4f1PzET1j+7J8t+Pf/V4d8+Zd/ksOT1doV4zEiw2iDVB8yjD9cH65/lfUtN/7+Tz/6A/Tykhg62tWcs7OWt996h65dUnce17ZI4VFZTln2uXhljzYa2tmEbtFy480bvPz1l2iXC6S3iADjssfGTknjNI4eh0vL4uGcLghsDIQgyVVO11qCKMmJZIVklEm2+4p+ecB4u8/2MGNYVeAi0RgCirbpWDlH6JYU0lGWffZ3LtLLDSiPziXBS2zweDrcoiPExFNatSuW8xX1oqFpFwgSD6Qa72JUzjMfeYHNx59nY7zBYNgH2643JI0H4moFsiOqtd1SGP7+f/PLvPApz2c+/QT4tIEIEbmwPeTP/m//PQSK2DXJPqkAkawJ0XrIUtC68xEtklnOywR3TpD7JKMmCLwI3Lx3ysM79/nsp54jCA9aYUJKyMqVossccs2cCGtrghMNu8MMoQUh0wgsRE8MGTJIjDIIH1PhGFLDgegJTnH7+CFd57GyY+U903mLtQHnIqJQlKpAGZmaOavUYLGtJe9XrJoWbRXeK4IU5FJhRALXi/X1+HUqsZICXWh6StO5SCBZfk2ZU5SOxrYUvQGF1ljv6VxKjdIq55vvPEwNopgeVxcjAYOzLf3eAFUoHIK6jry7OOabb95EKKh04uBpEXBeIqRFhshGr+Qz/9PPEAoQS8doY0jRH9PZhunkIY2TaAFZZlJ4jEzPkxUp9EaIiBIgY9Js6swk1YcUrJbLR8WAkmB0sps4HxEoQkjNGB/9I45NskhKovepHAruETA4EonerVV4STHmvECojCgkDo2PFhlSA1HKZE3IUvggLkhklAiVgciAht6oSuVPhKgVNoqkRFzO6Q1GTKczClMglcCvmY/BeZwNyJgsmz62qXEfPUqJZKMJIGUE71PqmwIRBM5bBJ75asZssWRrWPLYY9epjisOD+8TAvTynNXihLKomJ+dINyKXk8y3BxycnLE4ekhm5s9LlwesX2y4Ma7xyycw0dDNCC1xwhLFxy2duvHAqJQrFyHUAbvXbJcuQZpNMGDtwK8RaLIsWyNFO/cvcdzz1xh2Jf4AF5ElM/IjKftJHmpeO3Fn2fnyh8hL9Ta+rpuYqHWNtzUHH1PzZcK3UdWX2IK9kGsC8HzafV7DbLfOAln/bVIXKsFXeL+CfXIjtLULXfu3GU4GpMb85uFBSPW9iiFJIQAOG6/9Spf+pl/yA/9kR9D9oZoJTl6eJ+T4zvkqz42uASjH48gJuxAFOdNynWYSDxvUqYGeHLshLWdN10zkDALxPS5B2lyT7InBwJJ+CEwQieVMhHTG9ILjraZs727xbJZcu/ubR67dh0VJQ7IewqnckZmi+Vimew/RnLr7B4iA/3sPt+8ecjJwyVdeJuzuM2MPm88+FXM/IjZsmVbDahnR0y7QOOTkWx7UzMe9TCy4FCvmLUWTYcPHo+ibjvGPYO2LeN+SZVr7t28j0FT1x1lVtLVnhAioXVMz45w1jF78JCrWwNuCGiCJVcV4+EmZ6eneNy3ur1/uH6b17ztCFFQCEkmJF4KuhgpM1BeoGVS0nRKcLJokKvIys2xzYJ2USPpyGTG1ijj6u42T37qaUZ9zXzVIlB0y4ajs2O6ZsnRsmOhDE71ELJgaydDxoygW+r5ijtv3cB6lxoSKmIIDDYyvIdl2/Fg3lDbQPAWi0K0Aa8iOIdUkSwzbA/G7G+NuLQ9YHtUUfQLZJ5jO4m3Nc46jmcL5HJF32gylTPe2MZcvIjONUqyriMEqBobM0JU2GZGvWiZzU9xixofGrwYUA4K8l6f8eY+B5/4KIONi4wHA6oiwe8DPqnaA8jgCdESVInOJHduPOCXf/af8T/7sR9FtA6vJSpA7Gp+9A/9DwjGEHxS5iJVUnQnGToyBOIaVB+iJWLJdIGLAk+H8CRlEZKTZcvN127yqc98AghIoQlSgQvkWYmQksJIOvsesKCxnmVdM1laFrVFZQW2ScOcgCBogQyB2nXsH+wTleT09CipANefwiYKylwxbZJ6MGq4fzzjdLFESYHtumQXFgqLhpDQFIQ0KEQqMpWSNedLC1rjbUtWCEyV0dUdXagBePFrf5Tf/T0ZTz53m+Ws4+0bfWIzoewbFm6H+zcLmrojqALXPg7A2XLGZDVLCnOtyYxmY7xBkZc4D6dnM6xt8C6gjSa4QKYUymRIIchMRkiFDkoKQnCP1GHnybB+zccVJIWYEMm6KeWa77ZOeBYiNV6UkqxTz9JQ1lqk0il5OxrKvASfXDeZAoQiekE0EutajBaphpQR4QU+QpD6PK8qKT0JgEYKByR8ThAaj0i2Rx+QMmE3YvAgSKmtSISW1F3DqrH0ipxBYRju7HBaZNw5uke3sAiRcf/wDkp4jBlgbYeOlq0q53gyxceO8ajgwa1jhMh5cNbwbR/bpXf2GiZK6qXCmA4nBUvrKase6AVdI9HBId0CjWaF5Wy54MJonFpfQnJ0NOX55/e48doDhuMeWmi2+hlVseLe6YzhlU2UFQgNsosoaVj6FWJRc/vNV3nyYy8kTIyAKB0i6kd1znvNP/EbHADpPfNes29d77zvu+dTwfOAl/MvPWIbi8Q2VhK8a3GdJ9PZ+gy1HjSK9xqQH/x9506n939P0qwa3nn11/jkF35vauTqLCGbYlyrU3lUr6UhJZwjTtIdPB9sfnCY+YErWA920+s/vRekkQSRAoR0UEj5kEsXh3zus/fgL+/zPd895ds+l3N2fJPlwrIKHb5paG3DyckJzWSOb2tuPjjgx//av8e3f9t/TK86wavA7aPbPJgusV/6p3R1wWBLsjoNLBuPGxR0zV3uHU65Ox0S/QxTNGTlDpBQSu8eLZieRY5OH3L9Ss3W1h73j9/AG8Ugq+hCh3UdWgkWq+TsiEjqznL5sSe5+hj81b/a4Gr42pc0XUjMSy0VVkIx7P2WnMcP14frw/UvXt9y4+/2G7c4PDxh2dSgPJubW+yMKzYv7+KCYTZZcHQ6SZ15d0RrazpXM+oVGFQqomyLVoLWG7rgOFuscEQ6F7AuUFtP3XXkmSCLAukFRV/w+KWKve0NBsOSIpdsDMcEH1jNF3gU0VlmsxqTSUxm6PdKso0+Unii1IgMCrNB6Cxedsh8RFACS8dqtaA56zg6e8CyWdHWEiEcsqh4/ImPcvXSZTb3d8kLRZlrhLX4TCJNHxMEsWlQrsWZnH/687+MNPB9v+MLhCYkuLNIHJnf84XPMbx4GREgytSwi0oR64boGmQ2SLJ/L1BEvAUh1Nom0GF0lph7gCditcI1OUpBDAblG+I6KWsyOeHe3TuITz6dpOTepyIvRq5fvoDKM7ABJ9Z9PCWQocB2M2RcoHQPITJEsNhQgxbcWsDVLYN2HiFyAjUiH/C1r77MV37+l+jtbDNdtNx9cMzZxCFCQGqBaBocOcoEPC2ha4i6IMwsAYtSGtcuEQhsTzEaDLDCE+U6bTgEJIknV5gCGRKHpQ0RJyPGaHKVIY2jJoISGC1xa/tr3hmkEMxXHqFAe433Nlmhc0FR9ZGmYNV2adrnLFpJECpNxIVEijSNVypPgPW65vf98A/y/AufAimpdjcQQnN0ckLdzFESlEpJ1sT11O/c4hoTu08ZhSkytNRopRF4muCJQmDyjBS6EpBC0lmfkutk+lqMAiHiOlg2hYSEcx5ITKEeiHQfQki2FLm2TZ5z1KJM09MofOKSRAneI+NaPaVEUhH6VIQkO1NqwAhlCESs90ipkn0mBoTOgUBjU4OiaZdIAda1DPs9Cq3pdEbjoe4cgowsdOvmYnpsUtMxKVk7ICiZiui2gQBOSLzvuHs05Ww25/LBLlsbG4nhmWlWoqGtA71ehTg9IceyWWXcetAymXdcrgIPHiw5OlyxsoJF1Pg2ImzA5BVCTAhCUNuOPCsIeY4QiSU0OVuwMdogRIkUGlOUiceoCrQxWNdihaA/rMhPAw+OF+xsX2B2+hBnAmWRDggdEdEEFst73Hz9NZ584ZOImK5/3Y9LyYWCxKFBJd2bEElRcA6uVikBVwgFIqll4/uUcWmdF6hpnfNnzotJuT44RbF+ncZIr1fx7HPPkGcS75v0PhRJpffetD01ZAMKITxgKAZjjqbHvPHGKzz1/Cd44/Ub3D2p+YVf/SWE8PRGmzz9xFOMx0MQEaXXt/W+5ODzQjmpOdL33n8t503BD1wia/tNTA+eXLuEFDFN5NeZN947+uMBWa2RixWDYUXV61FlOTEKLCK9F0pNq0ukKcmLEpPnmDzj5OSYxjmKJx+j3D3jap1x56V7SB9Z+RrRLPG64PjkPhpNnkFPj6h1pIyWECwupL0OPC4EMp1jnU1NFXoYXdG5wMnpnIUX+KDookBgOZ0vWR4+4Mavv8KNV17iiY9/B4cvf5HHL27x9jsN1kakhrduv8P1zQGtb7/V7f3D9du8YifpZRJjNKhIjB2ihfnScjqbUq73fWstwnmG/cBjm5s885Hr9KuCje0xRdZnNl9y++4t3n3nLU6mS4q85PqFbfplweVr11kennB4eMqJXTCf3yTXnlGRk5uCXChU07HqFtRWsnRJGeV9i5SSJmZIl1AdkUgmUmr81nbF5jDj2u4lDi6OKIebKGFxnWO+XDBbzplPLMZ4srJkPN6kqAq0ytcq/w4XOrJYJX4aAedaQowsp5b59CHHD+9gWyBzDHcuYUTJtc9+G/29TYpqRKbPU+FrZCweWfuJac9uEfydv/2P+MhHnuDZ566RyQHINPB68vJlLvyBH8G5FKql3fn+F4iuS2qxmD5vz7H83nvco0CqQFTJfRC94nTekvUjfZM4V1Imfm3nLDdv3eKjn/gYZZaCDZTMkDiuXb/My18RuKAQ0dE5sK5mMW84XNTUwTBdNGxv9PGiIYseISFTEW00Wxf3EDFwtpihXbISCpXGQJ5IGy2F0DghcVLS1ZbYRaLsMFrjgiWgCCLHO4fHotehTdF3HOwMUgiDUcTmkO2h5vrFPqoo+OaNY65ezvja1y3WGf7uTz3HKv433L0x4m///f+A3/e7/zc8drXlxV//QX79a9//gdd9WQb6+RnLdoWRGVsbQ/qDMUJI5ssVq+Uc7x3SFGn4uVa8a52hlcSYDO9dapSFmPi/5xbeda2ipEYjICb2ZV0vAUlRFOvaMblRxDqIKjiLXjsRAoHMZAgCUsByOaU37hFExDZnGLWu+3SDC5poO4osA2XQ0qA7S5QpY93F9LqRMSV4K50jhMH5+IhtHL1HS5kYuyGs93aBdWkwK6VJtsdgkesh7WQ5Y9EJtNJsDEc8e/Up7tx9i6PJHEFERk1TT9nf3yPXhqM7t9jd6LG8O8EQcFGS54qtYZ/+MHL5yhXmswbHAj+zBBeRPtLToGwE1+B1P9V93iGLnMPDCY9t94kElNR0VlIUeWqoIVIzTUm2Rzk333mXJ64esAgr9LwlLwMyj3S1oBoW3L3xCo89/TGMjhDNuld3rvY/x5W8v9m2HgyeN+HWTbBH9Y7g0VB0rZcDIZJiL64H3+sAsvOmXgRU2UOapF4UhKQoVTKdPR41/M7tx+uhqzy/V3JdB0YIS0a95GRoJqeo3hZSKfLMAepRMy/GNJB81No8r3vWNc1vVCueI1DOK6LUSORR01sKj1cZcs0KPLhwhXq44N176Xaa6WvcurlP2Xuex668xNky8MorBcupxPsKJ1omzZSTSR+A555xfPKHfxzsBmdfCTy/s8Ubdw557ONf4Fo9xy5v4WLH4rDm5PA+w40DgtZ4D6pdEsMWADpkeFvSNnPmdc3rNx+yMe/QmaByAkmNdYGyV+HnK8LaleTajkF/yNUnriMFVKWHsuKTn/w47/6jnyY6idPQxsilqkT75b/0Pvzh+nB9uP5lUn37JY8dPEG+Vl/duXvEV1+7z9nkdax3lEYxKDU615QGekIyD5qHJyvmnQUZUNHQBoGNlhzAQxfBe8/QCHYGmmE1YG+zz97OkEFVMh5X1M5ha0nnA5PTIxaT21TDTTayHv1K0x+PIdN465FirYrAEUOFFNBXBXVdE4Rkemo5nrxEPT9jdjZHZBX9jZwL11/g8d0DLjxxjcxALmpk1kcGk6LXI2ghuHG24M7tGd/52ScRaILO8DEgpOHqhcsMNypi9AiV+GxWpRS+vc0cmXtkOM/IFHhn10ELHaZM1uJzzpmUmo6GRil6OhVDLgSESEXDW2/f4S/9R/8X/uJf/U8SHwxNkB7h4YXnr/ORZy4hgsNUPXzTrq2UAqM0znbp571HR5GagtmAqAa0wVJ2DWhFFwMKyb1Ty7/7P/8P+f7v+5386J/4g4zMgigMRydT/vx/+lfoGcH96Ypbdx9yerQkMxkuBqKX4FuEcAhREP5/7P13tG3ZWd4J/94Z1lo7nnxuDhVVUpVKVQqlUkQCCckSQcKSEGAwkrAxYGMbu4dt3DZfg0O72922u01oY5PBCAMyQUKghJIVqqSSVFWqHG4OJ5+dVpjh+2Ouc+4tCYzc3/hwj9H3HePWrXvO3muntdd85/M+gZrgPU2oGXQ6qRF1NVYroo9Ep/HRgc5S0pdOYEPmPEoFaudQ3jHRNV4p+nmBduBIfnZKJTmIVyoZbM9qnIMm1MSoUBgaAjoGjDaoIFTjCm8cxtrEPpPE/FERlEv5ezF6lAkY8YhzvPoVL+K13/hquoN5RCuqsmZrd5O6LtGiwXu0SY1HDAksSylmwnDYJcuS9KYJER9BeUkAhxgcARcj0TUUNk/gzt6X8BkSh/T3njQ4kvzZlE7sA+8bPClEI4aIJ4VPiFJt0xHwMfnaGAmJJdWCPyF5yieRggKlhBg1TfDJb0UbvA+o1rjYB9+CTwpPpK49uugRXENQEHVOqXI2L53H1xXD4RyLnV4y+m6SF6WEkFLAlCbUHgwYAak8TixlMyG4MRKyxFDFUU92ORSXGWQFl3c32Z5sEoPH6MjO9g7Lgy6TnS0WBgMemTliY7GZY/VYFxFNt2x44vwGpQr0+l0unbpADA6b5VcCe3xAGjCm4NHTG6wemGOhp5EQyW2Bw9E024SwRGw84gO9ImNxznP+whbuhmNY20usRWPodBZQzZRyZ4eFQwd5/P57OXjsGL3FIVnsJLmZNCivEntDQQw1WorETHAunY9Wt5+5asGy0DJP9iM7nnGm/NfqCvsvTZJFC51ukcDHkJLnpA362JegIAlMVhVEx4XHHuET7/8AyvU49eCnabYvE6odlub61LOK13/TG5ifnyczen+aLaJodeWpQd9ravfpffGq57/nZZjkXhJbhmu7EdhrmiVe/X2JLWAZEbFoleMc5IXFmB5Fp0cIIV2TnEPbAqMMZVOjY4XJDWIsYi1ZltPvdjh/7iw7OyM6cx1uPLTIUxfOc+HiGCWB+X6P49ffxMLikHNbadO1tl0hkDbfzuNEgcqwFubmkxQxoOnlBcNen6YpacoZLqQEPyNCVzQShZWVeYJMuO++j3L+1DpmYYmHnniSndhh2owI3tH4hvsfOc/y3c8lm+5+DZ/+tfrzqB03Y3dicM06Wio6IW3EjxSKO69f5chCj15Hk/cLbNbDlYGd2YjN9R2e2tjg/kdO05Q1/fkunW6P48ev56RxlLOGrbVNTp87w/r2lIUYsIUmZhkHhj3CtGJ3XLE528HHjKpKaougFc4YVNSESrAq0O145ucK5ue6HJif48jKgE6/z7A3oIyBysNkd8Lk/EU0nizXzC8d4MDBo3SLDkZpgm5wASoXEyPY1zhfU4WS9dEmzaRktjuFGJnOplBkHDh5jJtvej2rh46ysDyPGKHZPUfeP0wdBON8kk3qgvOXGj78oY/zlre9FmMcRudIELIgvPpVd7Ew18MEQUwgBkeMgqGhIyVKLYF37TqXhmFOSFLPdtMfrEWFSFQmJWsXBtVOIVzwBG/4yB98kOtvvY7n3XlrGrLFgPcNB+Zz3vTGV7YhVntceyCDTq4hBIII5axmPHN4V3N5a8T6KKklGh/ZnkzwdY3JFCaCRM+h5UNUdcVoso2OKQ25l+WIIfVYRMRavMyonEe5gBghyw02T6m45a4jyxTEBpRlkPWoWyeAQi1zw3UWP63YGZ3g9uOGvKjZGc9z7nKfyeggmeQ8/wW/zGc+806uP/p++spw6+2KH7vlp7jhUE5enOCG4/fwTa97FOMVqwePcsMdL6KfT1ldmZL3C4bDY2R5YDqrmM7KlAaKp2MSMSCEmLwtM4XOLSFGnESiTj2vaAh4lNYJMIukIa4vCb4hBE+eFxhjUZJ6CZG0nmit2v4pBaG54EGlYVrlUor2dDpDaUOn6CfP434vMfmcxvmK0ieGe6LuNShpoKmYTSuiCMP5eZqYErQLndOgqOrkjahEEyRglBDbPinhXB5a6Wbc80ZuAXfnIiF6fATfRGgcVblF12QcP/lsFubXOH/6HJN6hNIK6zOCVky8IjeB5cGQqhb6cyVGLJfWtxlNG6ajKToqdCHoiaJrFAtDz/ZYGC4O2V0XQtOwcGCVjYuXMQoubQWeXt+h19NJpWI8G2trNE3FzmTK4vyAqBX9hR6dDcflrYDF4v0OWSzQCKiKuhF6ncDTX36Im25/NiHWaNdLwThxz3lxr/ZgvHjFs+8ZHU3yW/ZX+QGKXDWc3BMHSAoy2xt6quTIiBfQ+op8uGkatMqvAuCueA5egev8vq+xVoboSly5w3Ne9DJqqfncvV/i4MHrOHD8CPnC3D5It48jCux3KFezGWPqU67chn0lT9I2pTuEkHoxRfK1NEbhvCJKg4+GvNfn1md7/t2/eZiX3DXHL/xawU///DKf/4RhWBj+0Y+/gMef7H/V+pTZiptPaG571nE+/Nkv0jWau33Fciz4zS+d4rYbjnPz9cdY2pjylDvN9pqn2xWCmVAMAq6paZo0aFwbzTDViNHIMW0iMzdlt6yZ7xf0ujlbLtDUMNcXVK9HubGL8wmAvu2223Eu58knAr/+6xlvfVvF06fWQM8Rjad2DUvDDseGHXx5FnjebcBjf+Kie62u1bX6E+trBv4ur+/ywBe/TLUzg6gwpmLQG3B8JWeiepR1pC5rNrYnzOpAHVoZIim1iUZT+YoYHfPGMNdRDOf6zA/6rM536PU0tk0+q4PHodidVoxHDSazSCb0MuGWm44QlEaRQWGwIVIL6LBLMJaqMcSoqMoZLsyoSs3GxkO4oNCdAR0L84eOcOi5L2Sxpzlw7HqKxQJND1/tEuqapoEvnz7LTTc/i0I8WjJEJdr29uYWj91zDy+76xhKd5Pvi7dAw803roDOwCdJpY9AnRpKgsI4IViDFkcwgm4EJ4IuBqB0m5Sa5J+Ip6pz/s+f+kX+6vd/J6uLHZT2ib3nLDccWeHH/+e/h9IW8QHfSoepVZJClDNibwCSNs8qdgixScmrtgPRYayGRqFwOAW//Hsf5elTp3nnu76LE6tdoq/Z9gU/81O/QEPJ77z/dzh37jTf81ffxQ3HVvnl3/htnrx4kZXFOTZ21tmdlBS5wtWOrGPwjULbQC4ZTsD5io7uojo5TVkl1o/VSGzZgSLUTcMwy1DaEhQo1SQTZEn+G0SFFoWRNGWfNRXiofE+sThrlxr1mKb9ISiqpiS3BaEJBO0Say8GrE3JbFonppNzNdEkCYbRCgkeT2rCtGS46Dk5P8/LXv4SsryLaM14PGFnd5faVVijMdqgVUGILiW9KUVuLXmeY0xGNG2imHdE5/Eh0KiAalMMokgCCa3Gyx4g2Ep5lUqJxS3QkSQtOn3eMZkF004WkdTweB9bIDkmyXGIaKVasNrs+91oLSiElJDXgiUxYESxlxS7d7FIA1chagUhpQtrkzY7MUSMMen52ixNup1ntDsjH8xDcMxmM7a3T3NodYlB3mXqQrJDdoGm8ZDl+NCgHBitiNSY3DAtDTZWSdLuZ1hrqKuG0xvbKKMJ0TArI3nPgIdyMmLQLdiebNFkhoceP8tS9wCT9cu4MrK2OYWowVgmVWQ8KTGmoPaJjVU3TWKFREuMit2mYWs05eTKHEYUvvH7zEqlNNMagji0z1no9lnXmzx5+jR3Pvd6ttcu0Yji0KF5LpwZU0WQHY+xnjOPfpln3/1iQnRIinrEW4+KGeI1UOFdSYgJ3NbWXPkM9mS7bVN6pU/day7/a9DfVbBavNpzJpI2IwIqXOW8QwvI7TXXsZWcK7rzCzz7hS/itdffQKdvmE0cz3/5q8k7g8RKlUCMzTOaXe88wXm00ukaGdOGfE/2kp5ikmrtvY6Uqkg6P9SeZYLal/bsyWWS3Cq0QUQBRfqslLYJqLaCVR18XSFtojYB4mxGkRUIgjIG7TJmJIBE24zDNiNbW2drbYs4mfC6u2/l7NqU05sThvkcPpacXV9jWpZU2zVB1wy0IytM2uNFoZnUye+rrvFNlaSK0SG+5PCwIMsHbI8rKr9DvwNLvSHzCz16Zsov/PS/waMpOgMeuvczOGPYmdU05QyxiZE0HVV84FNf4kUH5//shf1a/bnUIWk4emTAgYUlDi/26BU52XCecrTJ2tYuo60xp89tU9YOa3J0t0+voyhMh7mVIR1RXDx3icpHds5dwM1Oo5THqgaRSK4VyzZQRdguK1wVCGWDI+JqR4iaaV2SG4WNgSIXDnZgebHLoYUDzC8O6OQdMgUupO+jq0t2x1PK2lFYjS00qys9MjOHsjmSFUhoEBGaWILOcA4mkwmznQ221y9Rl8LWZEJ3vkdv4SCHT9zAkfkh3V5Ot98nszlFr4uo9J2LwUHluf/hiywsW66/bpUYchQNMdZkHcN1txxCWYUKIQ3nVGK9r8wZrBG8snhxiI9oHQjKYLMM5Q1RSrx02mRkjenNpyvn9g5eQZYZfFmxPhnz6Y//F17zum+g74WYGVQMKCq+8Q0vougOUQ68Tr5TiEXXNfW4QnezBAxFRSAk7zebp8FGU7JbVkymJVUdWB/XROmQmUhZ1cnPlxpfRyZNkujulhXOlwRfUQhYY8mMxuEgQvCqZZLXBKXJUoA8YjUOhXM1tAqELC/wMaCVELMtRM1Y3/wGzlz+OcbrB/lPv/eP+dZv+ocMBo/wqXu+hScef/MzzmNtKroL57g8HsHuiIbLbG661rKjROkuq92Mb37Lq4n5hHoypb9wmIXhkLKcsL45wtU1WunEvooGH0DrdujU/je61FcoFEqnVF7X1AQCdV2SFx1EtQNIZbC2QzsNal3ZhMYntp+Krb+hEpo9tjwJVEVbQhTEK0QXZLpLHTQ+zlAx9XxKHMTE1g0ITQRxikigaUF0EcWsKmnqBqMNvqnRVugVSc4co8Ur16o3JLEcYwqyQxITDImt7DcmkKsdYtmW+VW5ZFNT1WPqCw1zwwE3P+tWLq9d4PT5U0zLESv91dTv2wLDiI5qGHQN3WGXauwRJRSdgrKaUVc1ubXUrmE2S97hxIAOgTx6Mm1BGYITtlA8dX7ELdcvQ4S5uQwtBqJhuguDfsBGTTeLDIeKC6dPM59VLB2ZQ3QH8Q6RGuMdmTKsnX+Ig9ddR6ev0canPiZeAdr2B3my149c3ce0PWrSRbd+gPIMUE2+ou/Zx95av+IYHXp/aJ7+nD17HpPnnDhxXQqL+RNap311eAxEArtb25x5/CluufNuTJjw+Bc+S3ZXxtEbb2p7tD1P49Q6hRiuMBav8jTeY/dF9pjNVyk34t5trryudAizP7CPOkfLjOg1KwczvuNtY3a3A9/z9hG33PSHPPzoWY4cP8y//pcPU00bGl9TlhXNdMR4MiaXTc6vGb7zHW/lr79ji8WFizy1tsN2GWB+js9++RRzBo4cHNI1iiwTnnvzTZy58BTbtWVzd4KotE9IAYiOsW+oxoFga4wKxKhTr5xbFnqa5TnL2XObxFii7RhfDym6R9jcDKxdDDz0cMG5s1NOn51RNsMU+lfPODB/Ald6jNkEeCpG6j9zAb5W1+pa7dfXDPxtnX4SEzy6KzRRU2E4uztGApTt1EqjmDQ1Te3wRFT0DKxlsWtZnu/Q6y8xPz9kflBgfJJ6jKvkMzIe1+SFwgp0Ox10obFznSSZCBAzwQvEmCawztcwcaiiQxOFzfUx5y5dwlWRTkdosi69xWVQjhN33M3B40coBnMsDnvttDejqUcU3Q5uGnEyAl+hI4waw+++91P8lWNH6Q0W8MoRmimqgWcfX+bZ3/X1YPvJ8yOEfbtX7xLbKOqM4Ou0KTVZamYlSU1jbH0tWk8SrTN+770f4bbbbuG6k8eIwaNNRnQVmYXXvOZOhoPkOxNp2XkyIxfIsiJ5zGjSwuoSFRzXYDsFXikMCbzxPm12T69X/MZv/ife8a7vZDEL6FgTTc5n7n2IX3v3b+O84/yZ8/zgD7+T22+9iY++9xN88p578ConKvjk5+7nzE/8c77h617G77/n99FWOHdug7wwFDannI7JbQfvG4pOxqHVI2xc3sHXNf2iYHm4xLm1iyzODVEmYzItAU9dz2i8p+j1MURq50A0WkW8FmITwXmCVtQSyWIguOT14nyTjLQbRywybCtR8CHQ+ICJ7aRMBWIAHQWrTDJ03jPzBXQr9UMShzLJYyNiJDW21ZhXvOIlrB48ROVBV1NG4xE+ePLMkpnElouthNJYQ6/bQbcszbKqCE1Oo5PPiHcuNSpRkhdQDOi24QtEnAoYpZAYE3PQxwSEKE2klZNo2PM08SFgVPpKBxdTIiFJCuWiAxHyPGuTw0ICQLRpJ40tO0pS0tm+rJQkEVdKWuZfy2LQEIMk30alUEpwMSBGgTKJsRkjylq0UuyMdtnY2mUwGDDXH1LkOSjLZLzJeDwhz7vknT5FL2M0m6D2ku+0RsUcLZEsqxDn8W6CiaBc4Mzpp+l2+6wcOMz8YI7tjcvMyhlaC6IDufJY8fSG8zx2aoOjB/ocGAqD5Rw7dujSUeSGWVly8sgy5y5vUfsr7EXRFh+Sd6LWsDueEnyP2Wx2xcfFFkgzo2sNtRdCVMx1LSsLPZ4+c4nbbn0O3qf048tr55hMp8y8wtLQKyznnv4yJ599G51uxOgu3iQrACQxl31VgwJts/3PXiSdJwkpbOsZjepXNstfUbJ33uzdTJ4hPVHKwB4rj3AFWN4fXYOXgESFRTNcWuY5yysoX6NCoFjsE0KFZwIxa6V5CWAPMSThjqg2pVNdmfO3DxH3AcbUlCdALwWRAKio9ifk6fm2kuU9ykQLFkpMG7QQGpTodKWWQIg+SelVMmWPRLQSut0ulavBKEwM+LJpu32BLKNrMw4oy6BTcGljHTcbc3g+oyojX3jwYbo9w9GTR+h2Frh8foP13XU6uU0WF5Wn8jCra6JziDiWFnsMO30OrgyY7+fkShBJKdGd/jJaQT/LKZsSnSliVGRO4+MEo6CrDVtViWoUNeBFEaWknClcJ/uzlvVr9edU73zjy5lOSrZ3tzl3/hKb6xOm4ylZT5FlXVbnOpy4/jBZf57NnQlPb4555OFTMJnQMcKgV9DNQbwnekUjgd1pyaisEGOpG4cLycesnnkCLnnAqZROO9e3HF5dYblnGBQd+itL5BmIh92tXarKMa2neKPp9IeoXsbq6hw2WyTEihACWkMjjuAE8RXUDTMXqcaO3dEWly6uU5c1WUdYXD3G/M13cODYCboxMDi8iC7mMCGimzIN2Tp9JpWnCOl1BePQkhON5tzpy4hdADkA4hBlETGs9EoWbr0RHVzywANEGmIQTDAEn14zPiCSBiSoAFHjoydFfqQBVehlvOe3Pshcv8PLX3QLGoOg0KpgpQeves3LKUhM/DSXMwRxdLMMYqSxGkNN9KmvIISkuqhmkOtkoRcdDsOjjz7BzrRiOotM6orTl8fQRCREvC7RdYdBkVHNdqCsiZ0esU6g6mQyIzQqhZYMDHlw+FCisEQ83oIOFoNBWU9uFXWA0tVEH8n7XXxd0whkEbI8p46KLF/jube9jby3yCOnNhG3y513/iAXt0+xUTpWDv02h499Bo/QRI8OgSzb5czueS5VGT1lCUxbz8AKayI2bPOG73k7nbkeTelYPHCUaCxbO1uMR1tEybGSUkp9DO15ZRKzE9CkoasxmizPEhOo8USfrExsUWBaTzYXI0pLa0US2r4lgZ20rM7gk/XDvl0JLaiiwAfdegorfEgpr0GAKMSYFETESNSJgpfaJp0GtDqdF/gCLa31SVREY6hCADHExqMt7G6t08kystySZ4agYFwFgkvMxYYGp/bWKt+GyaT3IgSfrH1E0KLwviLiGFeB7TMjhn3D4dVD9AZ9Ll44j1ZdNA5VB2yWEZqGThaZG3R49KlTXNh2rKiKziDH6CUeefwitYfpzINJvZyV5C85GU3SUI6GoCUBpG24R1U5vIbYJIm81QoJNYrAfN/y6NmL3PrKF+LGG4RYUbtIB40TxXinpmzO8fRDX+C2l76SEAUVfQvGZnhCO3BMAUNR9kCwK/7QyWP8ynUhkXL3x5P8yf2P0Hb1V1mc6AT++XR7LUCorgBxIe73FumoEWJK2pbQ8MVPfYiH7v0kN9xxN94pNkbbnDp9gZUDT3B5d5dBv8d1152g1y0gpuG7UonsIO1OdA8E3IMt9wbt+8xDlXogYkDp9Nhpk9GqI1QLkpIBCeQ2RUFvuIDNS77pDSs8/uQOFnjebY6mrqnrGdNqQt04piU0o4yso3jF3Z8FfQk5vszpQc7TD5+mWnuKXbXMxHd48PRDyGiNyvT40tPrzCqPQShyjenD+uAU3Z6gdYaYiKiK6Gp8ZmjqGRIKVOOQjmU280ynNSY6esPfxU0iL3huzrd91zHu+fg2//ZnbuR1X3eZG/gAHzu1ydntBjfxvOCFz2UoJVvjIcAvivD3YuTJ/99W6Gt1rf7fU1+7x9/uLF0cW9lDjMmsvwngY5OYaMDCvGV1ccCxhXlWV7v0ehZrc5xzXN7YwU8rNiZTxAhzvS6r83N0iy7Dbh8fPbVUeJf8NozSRGdAh9TQWQ2NZ7o7ZTwrOXvpHKPxlICwePQEx5/3Ag4ePcLq0WOYokMWAn7rLJnNQHcQBZaMwIzaC//Lv/1VXvaK5/P1L3kJuJLQNGhlmCtKfuj7X0+/08URifU0+bBJRtYIs2YCMQc8Ir71XVMgGbWL2Ay01ildNUAwikktjLYmLCwXqKAQnVJaAxWZErqZbRkvQnCC0l0y77j9xiPY1nNCKwMmpkCB6KCJqOBbY/8a7xNQ4HTO+/7oY3z9q7+eXkdjqfHiiXHIr//SL/Fbv/G7jM+v8c7vfydHVjPWR/Brv/qf6Q5yttZmnDv1FP/+X/5b3vD27+W9f/BBdsoG4xMbDQUry5p7P/9x+vMFaxfH3HjyIIuHjmCsZm19m8/f8zmOHV7l5V/3ArZ2Gp535wKf/Ph/YVbOeP23vIJff/d7eOu3v5EvfulRPvPZL6RYe1E433o9hsSYVHia6FEmI+oq4RxRUdYNog3SeHyIZLkl+AYiqNyiEVSR45WgXaBTdIliktQ1RCgKrDVMZzPEmLTINwnkstgkBYgO0RqrhKBhOt7lrttu5O5XfR3dXkE9m9FMx4QQKLIcJaGdair6gx6ZSWbCkNbl8XRG1XiKoksdkycMUbBKt6BZ8ndKMqG2ZQnCzHuM1kki0k6qU2BdaH1j2AduQmxNromI0cSQ3tcsK9AqtglhAe9dAhRRhMTza2WTyUdQt4fURrcTyiQF1UbjXQIhRen9JOJAgODSpD0K3jekFLLE4gohTeDH022qckS2fJQ877JVVui8RzcfIlXJ1rmnmFteZnH+ALMmMB5PUER8U6JVRPIkwQlMEwCmFD4kFqsVRVBglMGTpLD4FMiShcigq5mMPYNhjwOHC85vRDLGDIuCzbJCK02v38NuTxhd3sTojKxjMcbgy5rQ1AyGOVvbUzwKTIanAhTGOzpzK7z8G7+Pc1/+JGcf/jSNWPKuwqjIA19+lFuuP0Q52WZre41x6TFmiNc1wYFWmrOPPcotL7yL4BzaKaLR+NkMXI10uxhtAfZFH+liEfc//iQH2QPm4Kub3iu1x9y7IqFpPW0SVRbvA3pf2rs3cL5KnrIHlIsGPFEMUGJiIOgCr2qIgrcZRiISNVG1wKJS7AvWW6PrGJ/BPUwP0rJckwQZ9nz99nyA9ngdcc+nSvbYfkDwrUSZfVYsKiVVExUiFu+bBESKB1UiRtGUdTuRgcwmNkljA71ujtQkZk/IiYMFMBmHuz22L55ntD3i5bce4uThJeaWDlP0emzubrO7u4OMLN7N8HWDq2oa0RSZ4uiBZY4cWCK30no7uSS5byK5ofV3UgTxeFcl5oUHrRKoUwTB42jqDrMpRCPEKtApCgLJyiAv7J96DlyrP9/6+CfuxdU1SgvdfofFA31WDszhtGE0Knnq4i6XHziFbxoyX4FRLM91cVkHHwMb0xmT7cDM+SRXjYLXGtcIUpW4ELBaWOhZ5pf6zPdylpYKFnoDhoMhk3KMNRYfDW5WUm5NcEajc8NwYZ6i16HT6SRQvG6IxqAzS/QTfAhMnSc2gdFkl8lkhJ86pjGgrKEYrtDrD7nuzgPccNPtDFePknc0uBLlG9Z3x0wqzYJJlhdRayRmrK+P+dAHPsw3veV19HQC7mLL/Pqmb7wbBgOUD3iVBnJB+STJjTWaIiXPExFvAYc3QpSG3OTEaJNvXwhsVCWf+tBneMO3vD7ZqVATjSCh4Xl3nCTPDEYJXhl8PUVIMrquTuESLkaUd0QVEFXg3AwVZqiqkxQeoSaEMVsu8tu/dx9v+AvfyOEVQflkvPD0+V3e80v/kXyxy4WdMecubjEaNQTXtKw2qJliM4OoQFPXBCeESuFinYK96sReIw7o9XtITGuLVxHjIkqFFIbRVETvcRGyIsdGjdaWYDOCSQPIqARc8jXsdDcweWuFknkGw8fT4AVN0d1C9AiJkVwblG/QWjGrI8ZLYuAphwKKrINVDW943at50UtfijUdugsZjQusr12iKqdkVqGNpAFrkgOhJfXJ3dwm/8vMoJTFoNFRJamrRGLWKgLq5CXXeN+yr/Zk1ZLktHtrRMv4ViItKzzsM8dFtdYoe0ws3/onB09UCmIa6Clo16F0n5Qq3A69Ymiv2yp5HLtmf2mMCKItEcOs8eT9YZJC1g2NG7M8P49Mx9i8wGeWLHawTUPlqtTTRI8SCCT1StCpJ3PG4aoSvAOxBPGs7U6YTGtuvfkk852bWdvZQOmGqISmmjI332Xn1BrLg4LLg4KdrV1uONHl4qjm/IUR0skpmxmB2AZ5BQK+9fGryYv0GcYIlzfHnDi6yPKcwmjDoL+A5zQhpHTqJiTCx9x8h7mdhi987nFe8sLr2dlap9e3aJ2loXBVoSRy+vEHOHnr8+kNCiAjBkUUh0al77uk4CKF3fcbTBZAglIgaJDUp+z1JH9a13PF25j9ZiG2fe0eaHj9TdfjmwrnakQ0Yq748+3Zm+iQMolEBXa3JgwWD7M+afjSZz+OYLh0YYMqO03pK44963qWs3mMSaEvSmt01K2PpbSD1L1qPbf31Q5XXtAzPJuv8gHcszXZv0fLGjUm2Tj1BgOKomBzY5MDB1cZ9IbEKOhMoaOglaXKHFZmVLbg+u6E7z94P+PdLhcv7aLm5nnWKxZYLi2//+EvUE5rmujoZ4rhYImVXkPZ0bjSkpsFJL/IyVe+kywTdqtEqtBKY22fqqmxRtPJLKI1TTVlbTplFiI1Aqoh2JLeoqU8+zE+/t7PAP+C7csP0DSnqIIhuhE6c9z35U/zmjtvxVdjgCGg/6z191pdq2t1pb5m4G9aqf0JprUB5QNznZyDCxlLywMW+z2G3Zw8c4SoaBphe2eSwBUJZEWHhcV55uaGFDZHmYDzNeIT22IWG5wr0UahdE5sGiazirKZMXUVO6Uj1hB9jR30OXDkBC960Ys5uDIg055i5TCGHOoJPoAajdG58IGHzrM1UrzlDS9JC4d4JGQYO+E73/qNLC4PINZEY5Csh4tC8BV548glXYyVUjjSQp6Qlwpi1TLwIspmNLHBA9vjhhXrUgOhDNHNEJXxiU89wPrmLu/6oe8mzOoUZhcNohyve81LEJsYTlH5JAkLEFxJFjSaAh89GsEFh6CJdsC5yRYL3S4DpYghI6qaGC3v++in+Ef/5Kf43L2P867vfxtHloYoUfzmez/I7/z+H7JwYoEvPfkYP/DDP8o//Ym/z+fve4AHvvwACwdXmBA4cPggD61tcd8/+wl0t4OVlF4WHWS54H1BuVVTZH1qO2H1umP88Qc/SVlOedO3v55TT61w/XXH+NIXHuChh09x2y03cctN13PvPV9gtrvBW9/8LWxvr2MsNI3DWosohdUKayxOG7R3aBX2mXDeNeRKM20cURlMt0CbHD2epiQ/aBlEllA3OB33afneB2ymaVySUmofKasZqp3iRiJBJYDKRHAxoKzCA3WdAIK5TPNdf+ntFL0+UTXEWU2QQJF3MToj+oaiyDFFgckKfF3ifENd1UxGU0JU9AYDMEJwMaV/RUX0UIWAEcG23jPKCPiEw4g2IBHfsrG835Mspu9l8IEgAd0yqoJvqf8tIYroEyPVh31Ax6p2YtlKyqO0LoHRp8Thlo0lCrxLhtWRSK6S7FcpS4wR55N0RIlGSSBK2JfeON+yKUMgxARL9SSnqiecW3uK/nCFxcESEoTKN2AKBsduxqjIhTNPE31k6ehhqiYQVQ9mMzJdYbqdlBzpalwoCY3Htu91kXfAmAQSKg+2S5hNyDLFwnyXyfoms8mIS+e2ePjREQFPlvfBOVwDGYFhN2+BqRbglCRjFg+IZtbA5rhGmYzGNQQEh6LIenR7yR/rqRCQTFgcdtmea7h0cZ0TRxbIrME1Q5QpMSaBdbNySm+wwMNf+CQnn307edcQ0TAZpYY370LUVzIurpK97Fk/t9y4vRu0fwlf2Vbu/z6SmIJxzxewbRzbhlTrVtwb2W96kw3f3kRd0sR9b0odPeylFUqSkUHWJocnlo3QbqrSA6XnvQc+7jH74pXnfwVrDPsMvtg270IKnpGWJXGFnSpEl3xEg/ftXdtJfmbSZk+n565UK5PXKk3Sg8aaDF95DA5XJ+m+jx6jYaAhE48hUCtFGSNZtOSHcnR3jXMX1lFGGI228SJsbG7w1JknWe33OLmwQB0qoo8EEQpr0TqC8lRlhVUZSlL4iDYGhyE2LcgrMVkIhPQ+e68IIlTK430PVQiaFFqggKgmFJIznjU09de8vF+r/z/X/MmTrJ0/z9baDhvbO9TlmExbRFWpt4iennXUOlA1QuVg4/KYBkAUwUfKMoE6WgWsNgyMZuVAl+X5NEDt9bKWFappZp4okarxbG3t0CsUEh2ZyVk8cpBCPCrLidIQY2KnBa8JSjBFAUG4fP4im5ub1KVnMh1j+kN6830Wl46z+II5Fg/cQK5zOj2DFshsIEiX6GfEnQoRA52Cj3z88zAuecu3vw4xHbzLENOwNG/55je+ln7eBUCpjNqnEIi6KrFZDnaAEp+8bj14JfjKE4uAS1dKWvU/Dz19CaOE59yUQgiIMQ1Fg1DHimQoIQSxoBxUcPTgMiokj2alUz8XJV2xkolcSNhCkARCZpFz2zWXLl3mRXcdItYTnIDYOX7jF/4Tv/yrv8oDX3yAH/47f43rj64QdI9//ws/w6n1bRas4smz2zTVFAkak2mUylG0Fg8irWVITlAKFUmwhxaUiWRZBiEBXlYsaIW4BhMjStJ65Z2n8cmkt5Pn6b2KrT80irppgIj2iT1VO5eULpJTBYeRBKZpUXgX0L4h0xqHxylpA72E4GpEFKHxZHlGrCuOHlvi1a9+Ob3hHEpbJpMp27s7eN+QZ1kavLaM8uA9ShRZ659adNPvGx9wPlBHaGitbYzGhUAIkUzb1K9oSbv9NpU3KSiTp3FaWzxCTB6MtIBcDMkqJXU7ZMbgW0ZXSphNzD+rJAWiiSTP3ZAmU1oS0JccjK6sVx5B68Tict6jtWnXztT7aJskszF6lO6wXSpKQM2m1LOSTqHpza1gih6T2ZjoIsSMGDOiSWEh2qWBf4TkPRnrBO6FEskLmiYy3dlmZ3eXyaxisdcHIm4yoZtnjE1D6SNrazPcsS7DYYZb7GBnNbvjQGMS2Laxvoa1XYKPyfc2htb7rstOWXL60ogbD3eQltTgoifECUKP4DU+VGRWM9+H02d2KJs0jIqhwfT6dHWXreoiAUMUxxNf+jzPe8XLaBFYhEhUEdDoYFNAYnCJkRljUg7s9bYi+4M/IO2fWsYm7IF9X1lX/VCuAtpa4JdWvRJDAn6jJNbfnvogKWNqfGzYvPAUZx5+iNe8/i3Mz1tmY8/3/dDfpKHPgcOrLK7MY0jKmyhpoBqdTwNxpfaBOgmpD9q39Ln6fPUR9hUScsXWZA+Y3nuhKaEv7VfFoFSOdwqlLUsrOf1qBt6lQJsQMAixlBQmY0Kyu5kVPPjYEW46+RSHDikuXrzEeNww3y941Yuu57FTO4y945bDRynFIJmhXltnVlVU1Zg5KykcRZKaKkZHVmS4pkKhMKKQ4OjaiCl67I5mOF+SK89cr2B4ZIHphfv54HbNuOoA8MCXPofRA3ZnaxgTqavIxlrF5568yHW5I0Ze99+6Fl+ra/X/9vqadwZHhgXLw4yVuQ69bkanyFASCLVrzfcdO9s1uAl5r0826HHocJ9uYbGZTjJAUUQXcE2ZpmcKcl3gvbCzuUNVTyknjqAiWINSGXYuZ+XwIY7NL9LpdDl06DC2WCDPLN6VSBQubU/4/Kfu5yUveD5WJXZTVB5vc5TNMTJG4pTYVGA0kFJtjy9qdLeXNoDE5K1HjSbD2i5eJ4ZYMB1CPcNoh887ZKy2zWBMf6KgjObCxTG/83vv4wd/8B3EukqTRRG0j3zDa+5O3nrVjKgUyjdEZYkowmgC3T4qC2gXk68coI1iLWTMRYORupUtWALCpe2Kf/xj/zsvf/GLedPb3sxyXxEkcOr8Jr/1W7/D3MISX/zCvfyTf3KBv/y938t1hw/w/j94Lyrvs7M7pTgyz8WzZ/i/fvqnOXPpMgcPLxNtjo9XkmCXDx+g2+vw2ONn0NHgQkkzUxjrGMx1GI8niK+xEQbdPpkUdAQyJcyawHBphcXeLvOrq5S+IQDrM8UDn/wE3W7GDTfcSFWlxOIQhUwZJuWYhY5GSzJBVkFABwRDCCUiwsB0wINdnKPodNnd3gKBbl5QT2vq0LS+LkkmULmIoU7pUzoyq2Z4AaNztAPE41VimUbvILXiSF2hM0VXC9/17d/GyvHr0gJbe2qtybUlszm51Ribkl2Dj7iypKwaJrMxs7JElNDvDRKLyAVoE1rB4VVEIYjWycMtKmzUeJW8QJSCEGMyMAaU1fjGJwZs4ixBjCl9LerEVgCcD8n/MTb42LZHETxpWp3gnuTngm49bwjoCHWbNleHxLbS0jIOE9WQ4BuUihRG4UNAh5YtFiNaG2KIWJ1+ZpXG1S6FrWhDDIKOATer2QhrdIuMTtZBo2lcpCKgh/O4nQ22L54lyyzDuRVq02c09UyqCSIK23ppRuPxMTWHpugmcN47tNJJbqBKRHUIecSbjM0txyuec4JjhwLnNkZEAk+dX+fcWoW1Hfo9izWWomcIpccGINfUUeMJTOrA2UtTji/1CE3y5jHRo00AAkV/SOUcPSt0MmHQs6zvNpy/cJlDSx28EwqdAFjnPBIttYtkasoj936KO17xDbhyG6UNKiuAQBSXAC4lLeMv/Wm3vfv/5iv+m06Nq+QvVzP3aJlwca99DF/lr7M3Xd6Xd1856j4Db//fUdD7oKQhRnflodRenNFVAF7LzEhT7hQ8JHvT+73WNwqIatN6E3snfSn2mH+JUSMxfYdiSJ6BUQRtk8w1tj5A7LfJMR1TpePtAZshJEAxbf4FbXMUCm1zau+oZYrRSealZiVEqI3GzzzLeoV+VnBp/RKj3Q063rN57iLlZMbS8iL9DsxqTaMMUbvWFsJiTCTPe+BBS0ClXCA8ikY8WkdMlJSuqpJHVR0g+flHRCLioIoGioKinhGjonEBZTXl7Fqq7/9T6uPv/yP6uWa+38eYDJ/D9jhJrWaxwjcBK0LpGrwYgq/3hzNWKQprWFrpcWC+z7G+ZmFlAfKMDJhMptS1Z2t9k6LbxWSahV6Xft7H9Lt4E1tLEqEpK4Kr8FmBR6N9yaia4hrDeHqJ8c4OpXdsbgSWDy5w8PpbuOnmWzm82ifLl1BhhAk1UWet7LEiNIEyZvzsr/w+b33raznQGeKLNPRsmgnf8LLbKIxpfTxjYgqLA13TK1rmDsljV6usHdgJuEDQ6Tx3rVebMh22pg06CkYiXiu0bwgq58LFNTrWEG84QdQqqTF8ZMkKb37tK9DeEJVPks/Go8RimoAjoK1GRQ+xQMRTiub82jZLywfo2ClZrQkIo2nNv/qZX+Gz99zL973ru3nzm19NT0U+e88j/PbvvI/eygpfePQR/sYP/UN++O/+CBfOneaDf/RxBkuLbD5xEedaprSoVslSYzRkKqfxgUwLhbJ4ExBPkjGKYDKomgovQj/GVgZqMCKJ7euFIBGX3EzpKAuNp2oqXF3ReA8NqJAGrL6qqOo6Xf9MjdKaoCImMwQfyHJDaD2HXfAtKKIJAh1jiXUa2NssS6mxoeQ73voWiv48ooTJZMrG1hYQKHKT0pHRhOjwMdLtdMmzjCzLqJ2nqiPWCHXjaBqXADzd+jr7dp3VFq9acKQdSuHT6Ih2cBTaYV1op+fJRzD1UCLJi8/VDT44Gpo0cLYW711iVbfrihIQFVFBpUFwK0dNdhh7fVeSuYpO778IZMag2/Az0ESlCT4k8E8SeH9pfQ3RFpspet0u4mqUm7K5tsFw+SBFlgDa0sVkp1I7gtFktsBFh57WGEnMNBM91XSXJ596ikG/R7e/iJCzM5phJb3f/dyyldUUi32+/MQ5bj6+wHT7HN1+h1MXdwjSBWuoqpJhv8uoTHxI5yNBPMoUKJWBduxMyzbcJKB8Gv7prECCZzKdojMAw0p/yNZgnSdPX+C2G48z3tmltA1Rj5hMGxqvmF8ccvqxezj+rJuZX1rCYPGZECWgMWlvVJf44FHGok3Wfs4REX0V6Pdn0P2eUfHqe7DfS8WQ2JsxgdNK7yUB77H9IqCIGmhl9ceefTsHb7oNqx06mqT88lMwOSroK/1U+zhaKYJqjUv2Ucl4FdLH/s+vDDUjMbRMkL1nfLXPX/sSoqRBYQg+7ZOigAr44BCJ2FwT6nTfNMgX+tpQ+4aoQILw2COav/djL+Vnf+r9nDxmKfpzbF66zObWFtetDpnrFTxxYcbpi2uMpptgc4xX4GCxE2lmN/G7f/Q/8/K7/iZRHiA2jliXqOjo5j3m5nscXp1nIReiOHZsZNjPGOYF84Melau4dPEsjVM4OQHAbDJB9TWUkSo6nIB1JQ89fpbB9UcQYQhMYto2X6trda2+hvqagb9Xv+gGpuMdJuMZO5uBkakZDA0LwwF5ntPtFGilU5qaGMSnyUmlHI1z5Col+iqT0RBwtePypVPU45rGRVjosXxgmfnlguO3PJfecp+u6pBZMJKSyZTxiJ1HnAMHoYroTLi0O+EDH7mHl95xK5CBalDegThedMMykaNpk5wVuCaSGZ3AjtDS/WXPK0GB5IiAiVnyW8PjMSg8ys+YxR4/8/O/xV/89m/l2KGDhNafSnvFwnyHN33b64ixImqP0YJ4S/BCHpP/X1AW7R3JuDDNC5XtEHsZoUwTaVJWKNg5fvKXfhXxnr/zI9+P9bt06FIG+Pmf+488cfoys9GHeODJs/zwj/wA83N9/t0v/gLbswlaG5rM88TZs/zEP/vnPPu6E6ytrRFqB1ki7FQS2HbCdqlxm7ucvGEenOfS+UvcfP1xglFU00jjE8AjyqACTGrFhYsXOHLyOk6fucxTT53j7pffRpZlnDm7zng644nHT3H33S/gdW+6gWld8ZlPfQbRit3dMZfXRqwuDaimFVorjEnNalrIDbNJyaDbheg4XFb06prFsmbiKpqyoRMCYSqonW1Wjx9jomA8maBlRlAaHwXlHcomfzLf1HSznLrxKIlkec661qyrxHQQlTxlolIE7Yh1Q5AsyX/qkrvufgl3vvgFSULnFTpkFAq63Q4aYWd7kwOHD+B8w2h7QgyRqmmoXYNrPP3BgG63j4hCScSEK7R+vSebDEkmHCSitUqSXaXJBIgBh09+ZDFgjU3nDwnwCK3/mlbJn0+JogkeLbRgSgoF0Som0/YW5BZAtQEfSiXPHKsMOrTT8tZPRFTEi4Oo24ZGE6JPIEnbdQhtCIgkc+rY0jCVUhgp2NyGxpeJsRoVpRuhfQ+FIUbIrCCxRmmwKkPmDxJdhcSangG3M2KQ5djYcGFrQqShYyLRd/FMqJopnayg083w04rc6tb/B4iGbFaz2MmZXx6CtXzsE59lfaoJPmMWNE40TGpczBEVUGJp8PhZheoXqDxL/pxeOHdhk14uHDs4SBsM8aChmU2YbV7kxutv5szZ02itGcz3yS5N2NqquP7wMr6eQKYR58nF4EKgqSbMDQqefOx+Dhw7wYHjBxA9JEqT3s+oEMIVlUe7yZGr/f2ewf77k5rbq3iB0spDrgbu2un3lR/ubab2HPauajjj1ZKUdNsr0/VnQoQtF5dnNK4Ie4SavWebJtgtKNcy3fZYh3ssxX1fnrB3u6v+bm+nbLbnvp0m6NGkifk+e/Hqp6bQoU2TVD4xi1vfqehTMIjSmkwbMDlRW5TKybIJ3cYxrUpEK2YROn1hVdeYzozZVs1zrz+ECjXjssSpHDEGjQYjCahWPl3vxBI11MET8YjOUGiyCJACiKxqZXU+YqWDwhOCIzcZ0Xuq3W1ms4pMQSAj63Tx5Q5LSznX6v8Z1R/2KWcVT63tUofEgHZN8rH1eKLTRBWx2jNnNfOLPRb6OavzQ4b9LPk26RxthFldMp5V+GlFJyvoF3MsL2XYTDBGgwRELMEFfJgRgmB0RjOpaXxge2ubaVnhoqLxkWg1/eEch4+fYGVuldWVZUy1zsrhG8GC8hlIwFfrPH1pzNlLZ3jJi+7CGgeNJxOPjw233nwAqyLBBEIzRUeHJaMbUmq8p4MBYqgSM9wW+FihtUlsc0mDjSgeR5pJGElMrCS79FQu8Nu/8R6+7a3fysL8HDamdVtF+PqX3YqSlv2Gbq8pDU4H4jRAnoLWlKuJpO/htKrZLGuOduaJsUSp9D27uFnzd//uP+WOO27nnX/5TazMFXiV857f+zAPPHA/3U6HX/qZn2d8eY3Xfsub+eVf+o+MfYCtCQAuVrz7V/4PdrYndPoDKEuOHT2Czgy7oxkXzp7HBMVzbj3BwsIq02nDIw89TK83z223PZsPfPBDfNubvpn7vvAQm9sj6rpKIV0hEFE0IUJwRPGISYxw7QJeKSoCsanIJU92JTpJUaNS6MySIbjcpnCUKBibJeZ+SH1CfzCkLEui0oldlwiEqJDsEmLj0UqS3DwEQlPy+te+kiPXnSSiGO/uUNYOrYTMZujWDsfYnMzmmMySWYNEmJUlZe2xtkfVMruUCAYh+EAVQmIKkmw9kt8ZaCWoNshMJLGMIj6BbNrsr5EeMCqFkO3JgLU2aR1QpMCO4LFG41pwEd/6ryWsZ3/wlFbhhNkmaXDLPo8R0e35JiDRt551V9u2tOuRKBxwce08qwvLFL05QoyMQiDv95lsryF1Q3cwR97vUTZQOp8Am6pBYTC9Lm7q8LFBS0Z0gYnbpd/v08lzsiJnujtFdEBJpPaOPAi9vGC72eLC2jZ33X4doxpOVJaNrYqRaygM3HjyEPc/epbJtIE8T7JsF6mmuxgT2NhqKGtH5R3OV7g0XcdazYtf+QYunXmc8eY5bEcY9gvOn9/guuPHmM5mKOvZKUvKWqFNQTWd0O1bzjz6EMO7XkKQHPExBa64mugrohhMViRgep/JlwYF7Rix/dkzULY/sVKLEFtrkb2+lX1wby+wLPU+4SrQ70qvFGNESyBiEFVSWIhBiNSp77CddL5Yk8gkXPEijqR+4quoiPtz26sAvatCP1RrqZMGn+kWV17vHiMwtl7iafCutMY1DqM1zteEoEAln8sY9vy/I0ZpuqaLrxuKLA1LbZaTdXqAYIwhGxRsXbjIXKZ5ziHFww5e/oK7WDywzMbmDvd8/suMpjXKXuaWG38BZdYpAxRWcXBllflBh16WMd/PEFxKzNaBlfkenRCJoWHmJ0QRMq0R3ZC1PocKRVUFmhDRXhOVIRhPbiy71Y0AO8ALgM//V5bfa3WtrtVV9TUDfzubO/SHBQsrSywsLqYvqDjGdYN2DoPBIdShREuFSE4WNZPdXYqi4Pyli4ybSKY1ly9fZv7AcY7e9iIOHlrm6MFVdL+H+EC1fYmsNyDMGqIJ6QkqGJeKH/uf/gN//Qe+hZuPnyT4CpNlBNdw26E5bvnht2MyjS+TX5M1fYIJFKGg9g0hKlQUdJ6lUIeoCCEn+AJtNDHWoHKkroiF5aEnz7C8bFg5OCBWJUoMnpzMFLz41uvodXupWWoNb3GBQnuWcoOJCSTwIf0e8USTUVUppS0qA8Ek0E8V3HfqLPf+7hO8/W1vxDND+2TY/d4//jwf/fCnCX7G+taUH/wb38XJhYw/+NSXef8H/oAdiVTTwJl77uVv/o1/wCte9fV84EMfw3YNRI8bZUxdicbw6c9/GZMpvDaUs8DZ85sUpsOpp86x64XtsmTr/oeoXWAcIg/e/yT53DzT3V2CSklyUQnGRe5/8ElcWXJpc5eA4pEnzvDoE0+jjSJ6i6iaUNV8+IN/TMgCSgZ0C4O2wn/52D3EqLi8scXltU+TFwVVXbfSlIK6CkxcRbdrOTht+Fd//EkKH/70E/PBL/7fOvFnSvFdL3kFm91eYh6JUAWHFYPKkpxipuHO66/jm9/0RrJigZ4uaNyIYDTL/R5eGhonFJ0eO6MZs7Iiuoh3NVE8eaHpD+eZm5tDK0sIER8cJiQZuGrZSlEEJT5N2F1MUhuSdE+FSECndDsESM343tQzNSQZewEMUSWgz+jWJ6UFXGQvcCOEZOWmIEiS+qgYiICPUIWK1KWkBOC432yllOSWd4ioiHNV+ncEpSyulVlq02FuOEe3VxCkIesIJ44uszlaZ1R6jICvLb7epow1TWhQTUahDEYlWYS1OXUIbE8jpjZUfpewU9FZWOHE4Tk2N3fYHW8isk4umuBgMOyRWYszliw3KG2JRHQhSJxhbOCxp57maKfkWTec5Fg5ZW3ccGljzNgVaPHMW8PK3Bw7E6h1RhHqNtUP6hCRTDGuAqMyAdYhuDb9VtPUNZPNSxw7eROXNy4xm4yYzzOOLSkePb/ObnMItKL0CvEeHSNeG6zKGZU1S/OLPP3Yl1g69hosLrEZTEBTgOwFl7XhGKJabOsKqPfMafbez9odDqRz5Mpo+SrWXmxRuCtWKfu8wL3G92qFjOyxANskxq/S1MhX9bbsZwNfOfreUxcxbW9tWq/UtKHT8sxXtHfcEK4cX7WvIRlit9NzIqHdrGmV/GgJsd227b0GdeV5ixAkJEarTsm/wTU0dUkMdWJcZQrnpd0MdDAmsRA63T7T3pDdrU2iEhZkg1JbNi9vcMPxAwQRNtbXEdUgbXqjEvDotHF2PrE7lcaFBOUbSe+W0klC6YIniMZroQyOGFIaZu1qMqP5l//7T/Dl+77MhXOnOX9pnZ3tdRYHq5w4cOQrP4Rr9d+pzmxWOBdSyrp3hBpy5Vme1yzMDzgyN8/8Uk6/bylIqZuT2QwfGmazxN4uCksn7zA3HKJ0wKrk06R1RtlMiUbjgpBpS4gah7Aza9jaGFFPxownI+ZXDtJZXOTwdQOKPDI4fD1Li6sUVlBZF1NV6CLj81+6QChmrC70iZlGhRxbQDCjFqRLNg+iUl+kZcaLbz9OJ8sggnGOaHuEaFBqRGi/zyF4RGuQSAgenRUtyx7QGuUC3sJnPv84Tz15lnf8wHcTK5c8+bxgpeFtb/0LzA07SYpJg0SbLl/TGowh5AqlYiIze5s8uboatEcc+GgJsUZ0wQfvfYxf+5Xf4h/+6N/mtlsO4aa7uO4qP/8ffpIz589R6IZ/9D+d4Uf+5l+h6M3x6+9+D71hj/OX1jl6dIX3f+RjfOgTn2VrOgEfCCF57S4VBqHHyvIcZ9fPcODEQZyPnD93imfd9mxG0xFDk7M41+Nz993HrTfdyA3XHefc2bPcfN0ywzd/E0ePLfPgQ4pZWSZASVQCnHSGj45CAkElOauPDdooKB1V05B1u+lq1wS0NenqqzXKmsSM1ioFRsWWHR1BXMTqDOdSPxBVBK3xTSQGR6FtUiVYlRQITSQq4cSBJV79qldiewNoSmaTEZiMbqcgeo8V0EVO0R+Cq1BG0TSO6XhK1fg0qNA6sZMCSFQElQLOlCg8CTgWpZJ9RIy4ALb1SPM+saFFxZZ1lRJZRaWgrWRJkixjQmiD10x6DwWSHDjGJAMP6X2OhEQ2UMn6QrcDKYmeWTUjyzL2LVFQuBDTtVuBau0uXDvg9TEBLD4mAIMo2KZhe/0idV0xP1xOkLjJkX4P7Wt8aAjjKeW0ZnhglclkhvOCCqCtRXX6xCq0IWoN0kA5HTEcLqKVQRuLUgFlcpx3aAXzPc1WJ9IrFBubG9x7/zbBVWTZkMol32bXlFhjmM3GRFFk2mCUpWkarDE4J4ynDrEFQXn2tCJFd4Eb73wluSp5ZPsMweQM+5ZLmzMuXFrj6EoPoqcKAkohylFWU+Z7K1w++zjHb7md+XlBUUBVQtMgxrZp2Cqt5/t9hf8KZUO88v+tJ+PVFffUA+yRCxIbk3bAuGfpsqd6SIPNqwaN+wcKbb+h2qG5JUSFqCSjF8nwvh0iooji22cpz3guctXz3evhrh527o9UJf3fPt6n5JmvOwZi8PjGpZAakdZLMJ2r2hgkegxZuy/wKb06D7hZgyhN8BVZgEp7VJaO28st3cyiVQ+FZpmcjuRc2rzMUAkvfO4ixWCBoIX1zfNsjLY4Nt+l0BMOD/4zAY2oJQYdTdHN8U3dEgMaAi4Np1RiIJqWtJCYsakfiqh9L+tSLN4FbGaoyhKtI5nKqJuIUtcGm9fqWv3fqa8Z+Hvu7TcCQlM3+HLCDEVUObkx+OiYNg2T8QjnHaOxwwXB4ymGHea6Aw495znMzS8yP+ijmNFbPoyxObHagaiI412izvmtP7qXkzfezCue/6zETjOBGBSDwvP973wjhw4s4v0MfPJ7iEpw002iA93rIJlq/WpqoraUsSbEMZkcwWsIPiJ4ghHWfGR3fY1bjh4mIGgtxKxAtOKxB59g58iU1UN3pcVB+WSKjOOu592MGqZ4cROA2BBFo2LA6iS7lKBIllYhgUoq53Off5AX3H0XBRVGNHWErd2KX/jF9/L5++9htrPBd/+lt9MtCs5fGvHr7/41JtTkKP7Lpz/JY08/zrve8S7e/Yu/xqy0LPUzqqaijhkXLl3i5375Z5nvHUC5yHbj6Lgar01S5ChNWdZEK0QXmPkZRitomuS1UhRQegplCTqCCYzKcWJxBgfaUdaORgRqRa4tofbJcBsNMSfPMqp6iiJ5WFndxevE2NRiacI2uU7SuSYkCYY2idFS156mbrDdDkW3T0QxqGsKH/iXtz6bp3XOZDqFqibv9YnWYlxDTcDYBNqomCQKM+8Ti1TZFI6qoNMb0NQ1kcjJ2Yz/z0NfYr6q2RkMaeoKEUXHZFShQYuQ5YY5It/6zW/kwOpRTF7Q1BNsJsS6gcJSlzURqF2krhwuAt6hJLK4tEi31wMsQmy9+SLb6zs8ceoMG2trqOgxWWLVaYTKO3ApmbEJLsnMQ0geNy6FlwSXzsPG1RhlaHxIDX/0uMa1sI5ACEynJT46nPdYk1FXFQEhzwxKoGkaRtMpoQ1u0cowKcsEloSArye4AEEsEiMmOoKvcV4QMYSQvE6caxBM2mgojRLLjSev4w1/4fXcdMtNRIl0csttN9zCRz/9GRaOHCL4yHRU43yJzDy6GFIZaKIiMyBOoUXodAsub25itKEz32fceOz0MgeXlig6GaPtC2QCnbxDDJ5uUbAz2aUJHmMM1lridMZwuMT5y2NGm2P6L11la/ciGxslo6pC6xw/SQmBM1fT7XcYT3axGmIFvhZ0lqGNooo1oVFcXp9SO7+Xh9EOACLWGHSnSwRsu1Hrz/Uwl2oeeuICr7jrZjbPb1BqRXSeIi+wmbC9NWGuN2R7Y43dzSmLy1l7XA2ULQArf2Jje4WJB1fa1CtgnsiVMXgC/p4pD44te1SulsP+Cce/8rt2wxUSCxXiPhtxL7CDr3iOVx3tK57rXhpvAhFUu+nyrk7Min1w7spjJ5P7PZDvmYhkkkeSfAr35MHx6ob66td55bhKaRDTgo6CiEWUwbkSV1fpWikpsEapHFGeIIrYNHS6HZRaptsbMh5l7NotjO2zvXkWXzfEYIlhRqfIiPg0FPJANLiWVhKib9kBCcTUOoH7jQ8J8lcZWgQloZXCpc1x7SMnTlzHi+56KTQBT81kcx1rCj72h+/+Uz6Da/XnXdI0LGaKleUei/MFq4sD5gcFeVZQAaNxxWxnwsXNbYrOHJ1Bl4Orc8zPdQkaEE0MkaZxNLFuAWRDUMKsrBGJzLYrSu8op1N2dqdE7Vg6cpj5G45w8vgJFg8epz8/j/I14hompWN7skunO4clye2jLfB5h9/9yBd58QtmvPauO5FmArogNJEbVgquX3lWGt5gk9xcTTCuw55XcowRnQ9wTY2xgnQGSD1KfoIKtBOcivho+dCH7uH259/K0aUhOPA4lBPufP6tPO+O5yK+xktAuwDaoKKirzRRMogubehjBHzqdehjJEL0ECI1kTLm/ORP/hx33PEiXv6yO+m1gNa5y2N+5t/9POUk8E9/7Mf4i3/p+/im176K+z5zD7///vcjumCSGx59+FH+xT/7XxEDw75GFV0a2Ubygp3tCUeX5xgY4fz59SSvVFBOS1ZX+kwnnlkYU+RHuXx+jWq3oN7Z5eDCIj441renhHFgfXvKwUOLNE9HHnzqMm5Wcv7SJZS2eBdRVmO1xTUNrp6QZckXUsU8SVLRhCbgQqAvHTomJ19eptneoSxnKKUodI6vAxWOYNKAoQmevHYpGEyEup7hasjyAh10GvapABpCnTxtldKEukEXhm6MfMd3voXl49dhqJkGj1Y6sfuMxuQZRaeTBjbe03jFzmiHyXSM8565wSKdPHkbEyVFbqiQpJc6SXMlBOwedqPb66VA41zyZDMpaFBI4IeKEPAQ2iTe6HEIUWs0DcF5gqRV0Le3SSFUHvBEk7JfHR4VAnWMib1HChnMTZE0QMHvg4eZTsw/FVKqdCCASsMd0z5H8YLBIxJRpiAwoS532UZRFZZuno4byKm0pQklk/EaVbnJ/Moq3f6Q0aQkNruUwWGzuZSs3YwQ5XFVg7ECeYe4u4tRgtIZ2tZEZbGDAdLv8/SFES+86XpWX7LM2Y1dAoGnzq6zPvUsDoesbY3o9zpYG6HymK5GeoYYQOU5D57e4rknVnFlDUGhg6PIE3liuLTKtK7pmZylYcGFvOT0qXOszl+Pq6ZohCzLaWKNisLWTkmuKp6+79Pc+Q1vJFRjYmxQ2QKiAsn4IiFfgb1hp2rX8mSbA1eDa6mv2fP4vPIjaYeMAHofCJRIq7LiqiFo6ha+ijy4NwTde+yYIsbSMZOHYxLBpCFn6gg1ySB67wS+wlK9YvnT9jkxyZxTS5J6f1F7z13a9yAB1DFGYuMSqNsOUnz0LThZtAPK/RcM3hNUYvgGT0p89h5rNTSBLMvpdxPjr1Pk9DoZagbSyaiNIhg41umwuXaZje1dRuPHGXQWeeTRU2QucsNiwbTs8Mil53H00OfpdMf4xoBXGF0gQZLiLQrOC6WHJjYYBZkImUS0hQrBBYVvk4qVQB0DmAyTe0xs8CFBv7s7k/+2RfhaXatrBfw3AH+N0ym9XqVNXjWt2d2dMp6M2J1so7I5iv6A1eNHOfmcAT0F+aDPgaMn0gRKK5SvqRV8/otrNKcf4OUvuJXgLSrvIk0AZtx8coWlpQ5VrLASiZKDOIyP3HLgAGJyjO4S1M6VFKhiiXq6RfQaVOJH+XpKrDydhXlGU4NDE2MDOoemgqLLw0/s8OBDj3PjX3kzWnrQ7KTpcOl53TfcgerPoz0Enbw/hGSMOq0r8rokz7qp2Y0RT0BMwbicMJwvkKpJmzmJoAe854Of4mf/9f/Jd7/97XzHO95EJ45odM6v/+Z7ue/BL5J3ezx23+f4g7zmDd/1Pfzu+z7KU09cSGBE8CjT4+LaLv/63/xv+FITJeKmU6Y+Jbkam2HNIt7XeJJfXuNKFJrag85ytDVMfIVu5WtNdEhRUMTEFsNYQlmilSFqTW4VMSg6UkB0dIyh8TUmKpSJNC4STESFkAJAwoxe0aWq6+RZ5wN4QZTD+YaqsfRMxBpLLaYFyZLvoygFWtGoSCg9Dk1FSqU8WlZ0m5LKNVC71ATmGW4yRfD0u12G/S518MwaT107NoAPrsxRW41ET9QGLyEteOpKQyDKgEpSFGlaX5gio97Z4du++Rt5zp23E61FYk3UClclltt0t8QFT1mnaZZvPC44hoM+88N5MpsTadqNfkQrw2OPPclv/s5v89CDj7A7maAj+LLCE1npd6ijp64adkcj5laXaOqaud6QyWxKBEzck5sEoqsSI0op+v0eoWmIRJoY2BqP0SqjqoTKOazJUpAICfgrOjmj7U0Ka1ldWaEzHHB5fZ3NtQ10XpDnOXmnYDrdBSdARrIRM/QBY5IPkzWKPDdpgu8dT5w6T1CGLNOcPf00a5cu8KP/6B/RHfSIOIaDDnN9zfrlC5y47gZ6fWFzc5t6MiE4h+oOULaLRENQMxCbpOB5TjNTzCYjBkXA9PvkRvDTLQ4dPErPZPR6c2xsr2N1SnNENMpairygq2ZUSmGshqzL+z52D8dW+3SKBXpkuFlJr5v8C89c3ma3UohUdPIObqqTB5sSbFRpA+QjLgiTRmPyTuvzpwihIbQSM1dVeBQ+1mSdjCMDw2OnLtDcfQtIiThFZjK0i1TNDI1lNB0zmlY89sD93PXKlyUQzWm8TvInaFkHcgW6A6548n1lCSQm6FWMvbh34u8x//ZAsL0m9KrpOXvT7/gV4OJVh98/JlfdJ/3wmfLfK8eOeyZ/+0dRV903TeSlTQAGlYza2+e2J4MJMW0U99t9lSTFzwBFW2N2JZIkYjGyn5LSvpAUXCLskY5UG2CT3hmL1YKPgm+aJLUzhkhM5tgtC8F5IViPAYJfTGtUt0ZyT7k5ZTxeJzQls2bPc6oNHyGBjJHQrhXpE44xhfmEGFNKdYj78nklNZICtYkIc51FBp1FxNeE8Q6hrgmjEbNuZDSdffU5ca3+u9S3vPzZ6FglMKoSggts74zIVIUylqVej2LYJ+seweRDhAYXPZV3mFrwiva6ZhAvrG9fRpxiMm2otKc36CIUrF53giNLSyzMzTM33yMvCsRV6LxDqEBmM1wb0HBuZ8Kvv/t9/P0f/C6wGUJJdB6pav76d76G3nAxDQFVgfaKaBSxmgIB0Rrd2hxELFE3qGATcyoGvChUnCFNyW6pue/+J3npy1bIjcFphQ4ppObAoQG9rtBIhVUGFQ0RoW8VyubEAEZUWku9IUpIAJj2xLpBVIZXHuUjj1yY8IEP/gHv/O63Mcg9NmQoH/ngJ+7lve/7GA989vM8/uTrePt3vBEfhZ/+D7+M2IyGKc4W/Juf/CkefvBBNtbOgk7fO98I0Vq2nGNzc0bXKo4tLYL3bK9vcOzAAlFKrDbJEqX1lqtVxpm1HYqsx4Hlg6yd3+DmW44znTYsLQ+4796HqevAXdfdweJLlhguL/D5e+9DmcQs/vRnv8Tzb3926qFIrBgfPFknY1JWWG0JSsjFoTxoYwlWp9AOoxiVJc3mJquHD9FcuohvapxrqCUFgGnXhpjY5C0cfXtt0smbzHvXXpOENDwSovZEB7MarG9woynf/u3fyrNuv5VIJNSCDTnkQrfo4uqSvJcjOjIdl/jaMa0qqrqiaiL9fp+i00tsrqgIe4wqSOEaQJSQQBxJEsm9sY0l7MsmI4nllFzOUuIrrWeb2mdpCSEm5pvWmgBkRNCKoCC2gQdW9L7fm2CwopNnsCSVBtonL9boMEHQYtPz1m1AVdgDcSyISoNbSddubQzBaWITaWiI3qN8oPSz5LsWDJ2iA+IRCRjJGBw4SaxLpju7rC6lQAVrhuC22J5O0cqR24LaCTUzgnP0Ox0mLVZkbZZW2JgRq5KBLhj2cgbDAZ/60sOsj6BxwsbMUoXA7s4Y0TlBdsmzHmVZghO0LXC+BB/Z2ppyeW6Xk0fmUh/RJgGHpqIZb7KyfJDxeAdlDcOFLlunN9jeKVmdM4TGodykVYwlZm6RCaeeeoCjZ+9kabmLyudBJzZhjLHtBdqeYb9HST3J3hq8FxKWKlzpc9o+Y29GGNvh2t7vAqHthfZvdbW+4E+xN9kbQH7lQPSqB9q7zVVHu/onPqTvVgIApbXJYR/gg5bhSzsUlas6s72HUi2oJum56L19XEzn/55aQ6n0XccnexGtkm9g8gN0KDRKaYxJcMDpM8sYXdDp7LK8tMvWqOHRxxc5sHiRpdXIVrnA+dORTWc4PLibhy6e49TGMhsbB3nPH/0tvvetf5/u4Im0t5PQDnOhDi59l5VBochUGmRqAaslebwGjTWKQ4un+Gtv/1ssDNZ57GzDpJqk0LUgaNNDmDE31/mvLbnX6lpdqz+lvmbg7+Kl86xvbDPandDpzdOd62OHlgNHr+MVd95K3l+iaxXGN3gv+LphJoHM6iSxdY7oPDoznL+4zfbWNq988a2EoKGpsJI2P3fceCOiA4ULELsEFBIScDMLG/TjAZwCCV1QEe0zQjPG6h5RKaQF6kR1iKHh/FbgR370X/G//K8/ynWrQ7RzBNMles3L7zjM3S+4Lm24VAPiiD6igkaTJbq+asBLAk5CQJHCQYLSRJ8u2E1MCa2VznjX3/pRXv/ar+N7/9LbED8hKLjvgcf4jz//y3RWl/jN9/wmUl7iL77zr/LIqUv8/vs/jO10ObpoeOGdz2Vrd8Sv/uT/xvqoQHoad2lM0+sRqwmVilB1cG6KFH3GCN5NicbipxCVoxLBhC4ueoxRaNE0oWZWzjBao41Ct2CdCLgI0nhUaChzi8o1OkJVTcl8RvQaLZ68a9kdJwPk6bQiB9AFVkPHJMAphhwfklkyOiVYZjpd3GvviMYSJKXr1r7CCOhME9tpviPSjBuMjWA8s0kDgK1rKmUYGYO3htgEdOOJRrM4HNAd9tFGQ+MpG0eMJXOTKYVSTH2SRDWNTyBSZrF1O2ULITFyokIjiPhkWl42vOA5N/O6t34rvW6fXm+O3fVzKJ2T5QuU1Tbb9QTjAz5CcIk9ubq6QpZ3EnAa9zb2yVR9OhnxK7/0c3zini8ynpXkOiM0M1716ldy5513sLg4wAGucjz+5Uf5gz/6Q3q2IHhHXmQg4KYznvfc5/Hd3/s9zKoSbSw6y7HWEH2D0jalyqHQJuM//Pyv8Mef+DDzwz7BBzbHDlcFJpc2+J6/9B1827e9KSWOkcJpnnjkcf7BP/7HTKc1vcEChw4OGZclyhqayYxBnvMTP/7jzM8v4NrU1BADQuD0mXP845/4Z+xMZ8Q6srAwx5NPPMFDD97Pi17yUrzTaBOYn5vn7EMPI9Lh5M3HOXp4ka3dDXY2L1FtX0Lnc7juMpYMpRxa1UTnicHjpGZ7Fqgml5kNh+g8Z3TpPHpphXFZEYJP7CujW2lIpJEGcg1a6GQ529U2z33Oc7hupUc+1+PUhU3iuZJyV7E9bdjYbpg5BTVkvQzpg0iyMghNQ9QWayPTcsZ9Dz7F6sIQo4RcqVbirdAmSYIkWvJYUyrP/JKic17x+KMbXH/iEO7SJVyocHUNuUFnHUy3zxMPn+apMx/leXe/lMxGlAlXda1xX7aSsDxpm9kryNuVXDjYa5AjgT1zIhHdtqXuqvvs+fDtgYF7Dxe/qhndO26EJPW7Wi78FSy/eNXA+Qo4+dW32z9iTEnDEiGEBhWy9DmqxOLYv1cLkBGuAIH7mwRU+56kAJsYY8pgUq3boOy9j20rvrcJiO17FyMx1gleb421xQqZyWnqOkmrVPKcFYTMWtLMQnB6RtQ9spnF+BH54mHG2QTpDDh3PvClLzzGcDjkwHIXRZP8nnxEqUhuM5SCpmrwLsn4lbTStRiS1D6k52N0BgjOVWQLmmgqvBkQFnqETaHONacvXOI33/sp3v5Df8Jifq3+3KucTCi6hrzfZenIAoXVGOOTF1IUFJoyNtRUEEZYcpxr0JlhZ3vM2s4YLYpLa+t0B8ssHT/MgYOrHDq4ilmYI/c1OjZkRQ/vE0MZl2SPv/NHD2Bzxxtf+1LEgbGa0DiOz/d451tfizGCr0qUVa2BfqRTR6hqou1gJUNZRfQBpCDULjHu3JSgMlRdgTGs707oW6HoJFa8whIxaEk+lD46lMoJMXk3GTy33niMrNtD4t7GuO33EOpyhrYGI4YQNRI8yuR87olTFPMHuPnYAJxDNxUjM8ev/8aH+dhH3s/jj13gR/6Hd3Ji3vP0luMXf/kX2aXm8bHn6d/4bZ44dZ7rb7yFD3z4E+RzyY5ibdcwaUp+9/0fZLFfEFt/tksXt/Be2NgYMQ2GrfEuM19R1471LYefBvLhkK3N7RSOIRYTEzPsyacv0tQ1WbfP7vaY8X0VWRF57DHDrJxAqPn0Jz5DNsxwD+aEpkSpwH33PoiojMefPIULHpHEzs9NDiFQjmuqrKSTGZpoGE0H7IzmmM1qvHc4p1FiwGdsjw5RVctMJveRdyc4t0LTHKJbPIgykbI8ildzFFmOrxvKEnS2S7e3mXz0JFmMVNFjxWBMwDU1pURecftzuPs1r0JJQaGEOnqKoqBTpKCROgTKylGOZjR1Q3QeF2q0gWG3w8LCPNbkiTnnPVnUKGOT9Ug7kxIJ6Xxp5b8RSSob2mCnq60o0qKUYKA25ZR23QhxL6neIWL2YaJ94rhJ4Egkrd3xqlUxU+3ANQqiLUTXMt1pA+M03tcJnAmgdYb3TZKy64LM5CgDgYa5uYIjzRxr2xewWYafORQVblYxAcrgsSJ0WnBSmQxvAnUzoJQek/FpYulZXFzGFkO2NjeZuRGG0NoZQbdTYHOLloDNsySzzxXaz+h3IpuTHR5/6izdrMNCr2R95BBqjM1QGBbocP6SxYeCWk3JpEZhACHEgIs5azsNSqeeBwViNNV0wnj9Ajfe/By+9MXP0riSAwPFqCs8fuocJ15yG+ub2+QhSbUlKjCaWeMZzq3w5c99jJd/0xuvEOo0idEqdduVJIbfFYsTuBqm25PRXoH6vtLihP3bXrnv1f1S+9u237p6iHjF3mQPvvvKutreZO+YzwQU29ajXduBqJNUWAQk7ROutmK5OsRj/6h7B4m0CcQJXA6RFmBrvZKf8fgpsMQogycBmEES0UOCxtUVvqlZnI90O4Ef/JHrAPiOt1ziX/z44zx91vD9f+PF/Puf/CgnDj/Kh/74Tn73D174jFf/kU+lv60p6Rc7aAltMiFpYKpMC4Sn3sZI2jtrpTFacMHhUTil8M6BCiwunEZi5I1vfDUv2ih59IH72RxN2B7t0s8yVobDr/oUrtW1ulZ/dn3NwJ+fm+emm5/HysEF5pZXWez3Kf0uzfYO3V4XX88wjSB2gM8DXz6zwW/+2u/wY//wHSgkUXclIk3Nm1/z/GQSPAsYrQmxIqoCJCfEbazq4iUDE1HREZQgIWJUJMQpEjPAEVydwIcc/ugjD3Hr7Tdy8shyWh4yg3Y1C9mEH/7eN7K6MJcmU8onqrj3KOfQ0zEx7xFj8hYgyxKbyoH3ChMzlKqpfcAoIB/w/i+e48HHPs0PvPNtHOwlM+AgXf7dz72HM6cvc98HPsJLT/Q4+YKXMvGan/+l/0Q1q6hKx+3POckjTz7Bu3/up7mwE/CjKXZQ8PV33EpuasiG+KbHc248wUcfeIwdmRBDQxCFVJ4mTqjEY/wEMQUSNYUGtZDha0umBdvJCEWOePCzgPI1/X6XpsipN0eoUNEZdrBZxtb2lKAMy/0+pdVMtnfIsoxmoim6GabfJzQwPH+GZ8/1qSpPqSNdZdGZ0On0KPoDqnJKU5b4GDA6sZ/yTNHUnkk5Y60JXCo0W6FBtEYISFTUonBNBKUwKiNKTSOOjnSIfgeAqCxlljGtXQJZtaBiwFiDR5hGjxNNrYSyroFAocGFhkYpmih0jMIZTRX2gA5QEnGhQukMgiPFW5UM+4Zvfdub6A/n6BUZuDFZt4OLsDPdJUaFakMyJDq6vYK5+UWMKRDRLWCiCbFB0MSo2di4zNnz5zFGU1jFQAn/8Cf+OS+86y4ee+wxHn30USZlxcljx3nHO76PO+56AT/7f/wbiNDt5iBCGWvmFxdZWD7EY5/9NNVkSjcrqKNnMh1TO8FLEqVkRcHm1kXm5vpkxlAZoISdyzv85Td9C3/lB36QL33pC3zggx9ka3OL59/xXF7/F76ZH/sHP8r/+E/+CUigahpy3TKgNHSNZnllkQe+9AB//LGPEwKMJhOKGNmpEvtXt8IJbSNeFE898QR33f0KlFTEqAliqVXG5s428kjFs5/9LE4cPs5kbp4LF59me3dE2KmQ3hDd6YMYiHUCuKOglGUminI0IrcZvcEC4/EO/X6PuaXDXF67TLRdXLOLRIPVBZVMsd2MojD46Nnc3GG1O+X0ubNsTzpc2gmUTWqcTaeLn05wTSDubGM7OYacaTlDETBeiMriLDx0Zo1O1iMMKqo8MQ4CAScDIJkUKxGst4jOyFe63P/F+zlx+KUp0TEocptRB7BWcer8ada3x7zq676eZraN0QUxZlcx99pMX9FJzrTPcqP9XatrT1dsUuOXPB+h3VSTQLH9ktie9+n57zeMLZgX2zTEfWwP2NvhXEnhjfuHeWZTvneXPWZhYrel36bnFGLySBQfCFKhxRCUoplsM/aRjbUtTtx0M0jaeviYnOZFUohB+4SuPN4zAk+ugJO6narvt/8iVzETBdHmCpsxZknCLR7Re5566T6qcTjnMEphlCT2lDH4FpxUOiV+W63YnO3Sl4DRNZ38eoa2z5cfeQSawLCTUzshMzXWKqrKI9G0146YTLhFg5cU5qMghJpMLGIV3jtsTCnsa+fOc+zkSYITnnz089xwx4upZMgty72vWsev1X+fuvPOm4k+yRO9a/DeU2MpcESB8azEhYrZrKYsSypXM62nDBeGzC8scf3JG1hdXsWqkv6Bo+SdDsx2IFh8dEQ74Lf/6CN83ctfzKH+kIAjmgS63fG844gWgq8IIaJUliS39RbLRcDYQGglYEFHiIbSl3QlJ1fzeCNEB14ctVGsTUsO49I3WGti1kM0fOyP72VxaZlXve7liCqJKLzSDHqO173yRVAUBOfQRGiDEEysEeeB7AqbRgsuK3jyifNcd9MKSInB0kjk8nbDv/iXv4ALU/7B3/vb3HHbTQQsH/zAPbz/I++ja7p86f7P8Vd+4CF+5G//Hf7wd9/H00+u058b4F1J6YSPfvSjvO+Df8j8YJVqt2bmA7Ye0RQdRAIbozKx4JRma2uMzQv8rMahsN2c2bbDSg4Gps6xvbWJ8gCOKIGZT/64pkkMvEm9C6IYjUvyOkd0ifeRzGREcqZjwaiANT1c2CY2HqJnXEKIDVmWpytn4wlaGPTnW3lf8g0+88Q388Tj3/Mnn3it5f2J6/81Swsf4uzmaznz1A9z+/P+AjEoTj/2Y0ynz3nGXZQqef7d30/W30i2NUrR0ZbaO7RAlmkOLyzyF9/ybSz2llMf5iZ0O0JmNd6mwT/asDuuaWLyFg6uZnFxwGA4B61M3LkUJLazOebi2jq7mxtYq9pU0zQ8buoai8KFgBIIzhF1Sr4VkoQ4SvpuaW3S8NOkQBMfWr9CLzRNTVlPkg+b1rimIUSw2qAUOO8Yz2YEn4CbEIRpNcMohXM1vpzgtMV5yCWm8DEleJfknE1TEWJKkvYxOcpqlfPc59zKN37ja1k9tAIEDi4tcd2Bk5y+dJ6Vg6vsbG7g45R6tk1HAo0u8BGshsKnwL+s6HBubZ08y+jMFWyNp/Q1HD20zOUNhZtt0jE5MaQhUqYN3tegNMamdaUzGHJpY8TFs7u89s5nYeMGjEHR0Mky6rHC6+RP2M0z6laRk+yGU3qvixWTxnFpo6Ssk8dc8j5MvYVRQtYfIkrIRbCFYWGhy9mndzg/mrLU7TCtHKFpUMozP5ezvbFLrzNgurvOpQtbHDqSJ886lWw99mxOEtOfqwC2qyt+xX/Vn2JxovYB4Yhv9wLqq462V1cgwj1/Ydf2HlcPNr96MJrYiEIKYLvSa+w/VhREWRTJ2sT5Ou2P961N4pXbtf2YqL3BZEyz2ADR+cR8VdKaAe4Ne/fgT3Vl+KrSv5XY9P0LJEWEMtCUHDpQcu9HHmZ9y9L4wOK8I8tzbrjO8dvv/hwnjgtKjvCu773Ma7/+15hNaqbjCbPpNmUZmE52GfTHLAy3iQghKAIaH9LrjlG1w1iSLFonML5pPIJB6Swp1ZqKze0VPvmFt/DiO97Nq05ex3e86w2IF2Ks2b50ljzv82u/+Jk/9XO7VtfqWv3p9TUDf697wxshJp+y4CNuvMlWGfnZ/+u9fN87XseBhfk2dMCT1YEbVnv85e9+GaIyCAEjFm8EHT3VdAclkbxYJuCTvCHEVgYVqcuKbgcQIeBADFHBemkYbaxzyw1z4CV5nIWA2C6TyZiqCkRRmJho5N4KvYFw00pGhwpUNwGJ4tGS40yGVg3Rl4gqiKpAhUiUgosTxwfe+2He/J1vY+gdSgKiLU+f3ebXf/E/s72zQTfU/NBf+w4Km/Pg02f44w99hLn5RYpBl8vnnsA3JV+4IHzh8w9CV/Pcg6t8/fNupmwqmqnn2Grg1a94FpNZTb+XMZ5NsbmjowynnjrLdHe8Z59PiCRJrEQy+/9l77/DLMvO8m74t9IOJ9Spqq7q3BN7Uk+OyjmNJISQkISEAAmQbEkGv2AMGHDAxgQBJtnYZOUcR0JZQhJKM6PJOfR0T0/nrupKJ+29V/r+WKeqewBj+fs++/V7vfNcMz1T1fuc2ufUPns9637uYMAFRm5MoVRKMStyjBbk7YJcStCG4bjGSUeea6bKApsXnMyG4GICa8nIS8XYriHynFyptFxkijiKeK1oS8Osq3jv3gcpQ/jHL5J/pEZCcP05F3GkyCmyjOgs7VwzbMaoPCOWknFTE0Qgsx5bqw1ZXgggTEYmFdJ73vTud7Jtz0WYsmS0tMS+r36Vv/1Pv4MRkVapaFydJpM2oLRCmOQdJpxHSJnSFCF5DUaPIqBFxChBCIHrn/c8Lrn0EjplmyAErnY46xjWNY7UNAbXkClFe3qWdrs7gUvWQzfEZGMjUlMaAxGPDw7n05R4+65dXHr5FXzikzfw4Q9+lGPHjoKW5Frzk294Iy9/1Su45inP4rs33kgIyVssCk2oLP3VNW74yMc4fvwInbKgP6o4dOIklkkogEwyqk5ZsHn7ZhwBrMe7QBkjz33xCzlx7Bjv+NM/5Y6HHoYAt33nVmZ6c1x+9aWcs2Mry+MaowtgApB6S6YMZdHh1ptv4VM3fJq87Ka0Z0XyWszy1IhITYNES0U1GKZmJYASYN2YwUqfrB0ZBU+x/wjXXH4+7ZkuiN3kZZ/lpeM0/RV8VdHpTKNEhiwaMuexViKCI0gYNIGqXmS21UOZJLuX0tKbmuHEwgAfFEa1MGoVHWBzr83DCu588BgXnXU2ufbsOiNHHHUcOL5CJXKCNkjdxlNR2Zq8kxOFwHkF3qbgBaGRIcP7MdbXeGcwaIIdIGXayFjrEKZk7C2SSGdmmk2N5uDCmLVK02r3qMcWvMc7y7AWHD+ySjVomN9cUPdP0C22EXUgxnUweTJJDommIGIC3NZJd+tJ0anhPSVpEYkixwY3cJ3ldlpjvMGCE7ARxDFhSawn+z5O2rLuOyNOazMnqbnrYKGYTHU3HhLTFD7GiUcdkhQxLiHWhPEQ2Z6CWBNd4KG77+HM8/aglEIgNuQx6WeFx5/P+nUfJhPz9STGSQjKxqR+0vwSfArviMlnVE2AP+89MEnSC3Gy0Uig6Hoqn/J+EmKTEvTU+mReTppoD6qlmVWKocooMcAqW8+EVltx4LFDrFURaBAyY2yTkbyIAYlGhEnCskqp9SE4RBQYldg3IkSskoRMUmYdZma3gHe40ZiVlSGHDzxGq9tlZtMTUpj/U6qqBUInX6OIw9aR/mBMf7iMD4HKGnrz07RnZ9gy1cFI2Hne+bQ7U2R5hvKWJjoefuQgBx7YyxUXnUP0GpF3EU1FUJZSg8fTqApDThApGOqcmSm8kWgxRdQjCMljT+Yz+LBCdCpda4C3I4gl+aZpnMxwk512ABCexZHm4x//Lq9//Sbm2m2wNVF4YuN56QuvSQMbL4gyIwiHJAVaVfWYlgMpFPhkORFCpIkGbTTGr/tbeQIl37jtIX7/13+HN/7oj/CyVz4HEQeMyPmTP3kXhxeP0WtlfPa976D8sR+mvXkX73znB8l0SR0ahMgZrjX89u++HT+M6FwjmobKBZxXSJNjYk6MljCREsYI0lmclOQ6J3hL4xxFVmAJiDynSBlBSJ3BuE4AgJFkShKDogg5RAci4IXFCElEY70DFcmkJsQxpS4QUSTJqA9EJ4nKYnE0zpBLj9ElNSENm5TGNXXyjNOScfD4WhN0jm+msM0cF+/5VzTxKH5c0So7+HKKpYOXEGKLIs+YyrezuvKDCDTzWz/KyaWXIaViauoOpqbvx4fkLexCyeKxl2DtFFKt4n1IXtbepwThIkcMBrz0VS9j21lnI3ODiDVRKmxdYZ0icxnDpkpAskuAWp5nzM9uo1W2icJN1qqAkoY777qbz33hc9x/38OM6zEmCupqTFnk5FpgQ2CwNsB0SiKRQmeEmJ5Xi8Ry89GDbxAIpNa0ypymrpFKsVYPcFYSomJU10iRo4SC0OAFZHlGNRqggNnpabJ2i6WVFforfWSe0yoKohbUowEyZMnPO5cUItKSEodCK4k2AmUkQioOHDpOkIbMKB584D5OHD3Mz/z8LyA1ECNb56fYu/9+rJ1i64551vorDFZXqdaWUWUHmbchGlAVEYXSYPKc8QiG/TWm2wpVlhQiUGpBuXkn22bnaVxKpU+RgwKkoihLXH9MT1ikFDhV8I07HmTnXIHzJTK2iLGiXUZqbzmxVOGiQ0mXwtKsQGhJLhUehRMRHyWDJkmApRDJtiZYgtDEGPA2+UF64ei0c7YYwWOPHmfTnm34YR9DRq5bjFcGiCAZ9NfwUvHwnXewefPzUUoiXEbQaZC4zr+UQmzgbI9XEfydEuvhY6cfIibDQnHaIySn0nxPO3zjucXj/v/vkulOVzWcskqZgG4b5/l32Ylq48HrLEUxSdpN7pLr4SWnflacWLZIRApHWe/f4qkTWZc9IwUxJOB8vS/bOD+xHo4mkCoSREiWJhN277ZtNVu2JMA4BZ8Yprpw1RUW5wT1WHPOmZ75OcmwigwGnuHymKVjQ06uHgcCtUuhat5ZiGry+ic9jjjlUbgOyk8y2/FBEEODFJYYDYsnd6FFj145h/INsRoTqgpjHU45BqMnPP6eqCfq/5v6noG/k6t95tsdZPRYqUBJeiby1CedwXRbJnNhKfBEVAi0I5y1aTM6GIiBEBWy0LjRGCFzHBatAlIWia0iG0IYIMpNBCEJKuDrQWpglUWVbe554FEe2buXC889hxgtXphkqu/h5c+6EN2ZJgZNMkHqE61HyIKgNM34JEZplM6JtkEpCEWXk0dHzJYa5cZE1UX4IbHV4Z2f+jQffcf7OHxshbe95YfoCscAx7s/9GGWqj7FdIdieJi//eKHuewpL+Mv3/lxVgcrtJRh97adaN1luLbMyqOH6WaRcqrD067bw2hk8U3NWTu34bVj1/wMXhfIumLL5jZRl6yeHMLiwsSEWCBcMkz2IsnDbIyoGNEmx9kGgaFlCmSnJGqJDxYTI9ZZIGAQuJiMXZWQ1NHRWIdRZZrMRE/lPUIbMBKvIzoEgos4F2i5MWUI/Mb5F/Go1gxGY/yoQhpF8J52p01vbgZfNWmjryY+FtZxsj9i27jmD48fYiZEjgmJrSqE0ngRwQdccGgl6GUlg6EFEamtYzyRI8rg8FEk/7cw5Oh993HHDTcQpeSZP/kTXPG61zE88CgHbvgEq01KMdYkSnmms9SoQArL8G4jJUsojVKKMkqCDKAD52/ayqt/6FXM9KaxITAcV6z1V8mExEiJkBNDbCnotFrkeUnwKflN4DcmgTGm6bSYdAZCQm0tMUKeKdaqVd797nfxgQ9/FK01Ic9RmSbi+eiHP8wrXvkKLr3sCm6+6SYaHxAu0viIrRxKK6Y7PRbWVllVkZPjBmeKCfCeppq5MghtUujIxANJomiXOVMzMyydPMnRI4fJVEEQkUGoeGTvfVz3lCdx1kUXcujb3yLPcqQWmCgSy0mp1JzESJ7l+MIgvcDiyWyAJmUICxexLpkrZ0IRpUjglTQ4G1kc1HSLArnqkNtr6nqQmkcErbJklLWwTY23a1QrFVl7lqy1hSz3rPVPMh5VlEUHfEAGxcraInU1oj3VQuoUjKBD8nQMUhCNQmpFuzSctWMrRw8u0x9Ckbe594HDDKqcIIsE9uCwwz5GCEzMMTb5TIra46wimIgNQ2QWaGLg2OqYC3YUyXO8qchMgYgBbSZDCwS+btClold65ma63HPvfp7xpLMZDVYRwiNRnFgbsnCkz9VXXcmuzS3yXOOiRAeQLvndJfAvwIb3S2LNIjdy4JIn0rpO6h+SpGxgYuLx31yflT+O2sdpDfPkv5NvJlvrUw1lJJ5qfCfg3HrDLCYT7yB8Aq4m3kcpvMPjnOOeW77N9Gybs3ZfgkBxeGGNm7/1LVTZpT3dRWuD1iYZy09Yv5NP8eNe3sY5nN6gx5A+h/I0WZgU6Enqc4R0PhOwUghJnAAeWhmCn9gBGI2tLdJokGICMqZmPFMGo01K2FOBOnpaOke0JLVQmNywMs4xMkMqw5Hjxxn0R2gk0iqiMiATi0rpHB8CRoJRCh9haTiiPx7jbQIxu21NK5ecdcYOOnOzaSDkI1dccS0xz9n32MNURvFE/Z9RJxaOsbS0Sr8/ot2ZoZhuI0vBuRdcxtyZZzLVmyeXDSpKfEhrt2nlmCiR1iKsRRjBgcPLHD+xwFWX7cajkLZCyYAOjhc+6UqyUqGjApEjsAjvqIVHOYHPI4KCiEV7g3cDtCyJQiFCICqdeqYQ+M6dJ/j2zbfwsz/7Y7TGFmVynOywtdvwhlc/lc5UCcEjpcfbGhkMKuq04ZOTlMkw8eeMmiA1MSRvYh/TgNZHxYc++y3uvPM+3v7rv4KKDUTHoycWecefvZMmN7zr3e/ED4/yfa/7Mb727Vv5+rdvptvrcNlZWzjzjG187UufIW9NgxRY3xCtwiuHbcasuRbRVpC1sTHg7JioDYzBS0vdaCIlIXi0EsgQqX2Dry26zFBaoYOYnK/GWoeOLn2ucomJUNUVmc4gRrRyyUd5JAhCMBrX6DxH6ZzcQIwWSZFsL5RE6EiQEiMESkSaYAnKgFA01mF9oMgn9yIUQhlGtkZUHroRu1YR/E6On7iWmen3UWb7qdueUHl0nEeoc9jcq9gyYzBK0W8cmAFGNzhrQSlysZTSXEMgy7qMx9vTBRsc3voEOonkLIzKYFjxtGuv4Gkveh4zvWmImuHqKnlrlhBgHCzN2OIC4JPP9fzsLK32VLrfTtLX1y1QVteW+au/+DPuenAfdeNQEeZmp3jWc57F7nPPQucaaz0LR07w5a98hXpYEVsRkcnUE9cNl+y5lFf90KtpXIPUBp3lKYwpeJAK7z1aGvY+8hh/9N/+MybL0QLWxpFqUNFfXeLFL3weP/L616GzLFkGScltN9/K23//94lesHXndmh1qGIKWxqtrPDaH34dz372cxJ4G4AJq2wwHPGLv/LvWFxbIxKZmZ7mtttu4+CBfZx97nn4YMnzjFwrDj16gJ3n7GZ+bgft1jQnTx6lHp5EjEf4zmasyFHSo2ydUufxWBpO9gP1aEjW7hKDww/WGJQtVvsjskxRliWraxVCClywxDwNHoosJ49L7Ni6gwt3TVNOd9h/+CTxSMNS37M6ipxYGuHGaeikyhInRhjjky+kFEgtCNFy2z17me+2UYIECroGJr59InikKJEMCS3B/CbBo8dGNJdMEVlDi0hdr02Sew1ZZ4qH9h7kznsPc9mTn8bUVAupTwlr43pA12TYmECs04W9p/cD68eu9zXrFieRtBNYP+6UYuH0nudUX/N4JmBk3XeY0x53mtpgA2CbHP0P4JGP/xnJ2oQYCd4iRZ4GEcnsdwOeFGIyNA0Tpt96ynFM6o8QfUqkjqdFnqz3axNw7XG2JiH57oWYJN5BJAaeUGDyDO8czidfzXTPWrc0EUgBzlYE2UOLDIOmLFoos4rp5dxz132srow5Y9cmpHRpUOsBGcmNScP/2uJ9en/X5dMheJABEQMxBOZnjvPjr/4VEJq8LQhaEzotovfUCo6eOM7f3nz/f/8NfqKeqCfqv1vfM/B3fO8DzF57OdEnWRZRkpuGJ+85n7aaxgdFFB6tdLLYNYowUsSyT7o5llBbdAwgC9ANAp8WiGCIsSJmBQ8eXuTP/vwD/Pq/exMdrQlujIolOMtzn7SHFzzjysSy0G0cEW0sjRvjQ0q7yrMSQUOMmugapMpYGQYysYmZOuJEAOUJseLRwzU/8qM/x9t+6q28/PueSi9UNMbxtW/fxV9/6KPsOHM3h++7lW/cANe88MXcdd8xvvn1G5Gmw57ZNudesJtNeYsvvvfduJUTdIouT9+zjadddwFrC4sgMrZu3cqOzSd4yuWXgMvQnQJsgDKnKyOOQIPF65y8KGn8EJNHyixDKUle6CRpFgIvNeveVY1LTaiSEGQkN5pocqx1iekoNbnJcL5Km22jkz8VAhoSEKslTgUwKk2StAaZ2ITaJ3aLU5J6YhK/ZTgg957GNmAD0kl8CGjbkNuGYC3GGHSW4YNnPBzRdZ79rSQ5kypFxdumphGafm1phhVKF0id07iUjuyjxQiBmzjuB+txTfJqCwg+/u9+le7cPK2ZHpe/+EXMn3su4KlCTR0jjQvkkwbTB5fSyAqNiDJJrXxC/oTWqJjYlMRAnil+9mf+OblSrI0GjCtLYy1OgBYpnzfTGapIiatRSJz3BB/QWoJISbJC6EmzIjeah8xkTE9Nc/joGgTBwWNL/NX730e326OyKfU31BalBJWv8M6hjU7eiRKwgdo6Rk1NjJHaNayMx6yNG2QdyHzEGY1TGkKgqAOxEDRKJbkpUEjNSlNz6OF97L70YuZ3bufk/QcQMpBHwZlnnQ0I3LChGlh8W06S9dJ7VBQFAhgO+uRGUccwkQpEjFZYAl6I5EukFMGmBD2iR8QGUDgfiU3D6MQxXvD0Z3HeuWdzcnGR/uoanXaLzlSHpqOxI4sqOsQoGa2ewFVD1Mwc3d4cKisYrR5H+jFeGqKExo1pVgJlK4VmdDZNI04sMfYRJVVig0Xo5JKqGbE8kuzZqtk200GoHseXl6kMHDlc4ZFIMwnpCB4XapoJwB4mm9lAQxM8S6sOG3XyTPEp6Ce6Opnka4W1FhEDKiimshZzXTh6cg2VT6PNEnaUcbx/gqNH+kxvnuUpT7+KXAlaeRejW6nRk5HkTZRYdnEid4X1FNtIFBEh1YRJkUz3BSoNQTb62vXR9MZMOv25HvRxGmC4ceiGh98EaPy7OpuN511vtAOnvnPqOU4P+kig37qpfGS0tsI3P3cDm8+8gM1bL0Aox5c+8zFGtkZlGV/4wmfxMTLbneHyq69k8/zc49r09ZON64zD9dcYAiG4iTdrBCeIShJFou5Infz5gnMbJysnAKuQSWKbNqqCKAPe2cSeCC4liDeeYC1N06C1xnuHEJCZ5GczQRiJWqAGmpmsoC8yTJ6RFYalhSmOn1iiYYirLWuDwJqPNH4ZGUGFSAyBtVHF2Dqsh4BiqiW4QG/GxQCmRJKGNCcee4zMORZXVrjlthup639k5/FE/W+tODvLeRdewfy2WWY2baZblgzqBdTYonSGCmNULKglDGTkXe/9DN//4us4e+dm4kTxIK3lRU+/GIUiVhGjmdiktBBSE1lGiDZeaaRIRu4EhcSDsBC7icXha7yvCSby5e88yEWXnMtZOzbhAVUURNvnwu0Fcy98MgUCMkmyDtAI72m7EcI5okg2EJgSgpvYoyh00EhlaUJAE6myKf7bO25g17nn8eoXXIcS6XkeOjTiwx/5EqOTy9zxqfey+6nPpjW7hb96zwc5cugoXkcu3HMmt915B/3RkHsfOY6Oks29NlecsxUPlGqGXWefzdZHV9h78CioACHiXQoXGeMwYYiQyRalVMB0Rqg1ZW4QZUYwHYyXjPoV3UxCpyR6QbO8TKtjmGlvYjyyDPtjZqe6+EzTX17FTCxRyk6O12cwXpnCDfvkvRmatT5RO4zOEXlGZ2qarDyBt0cZDwqc30qnfT+ZUvRXd7A0iLhxgzIDqvxoYq6JSAiKRskEOhoNXuOkI0Mho0fFB7nuWf8EmgH91YjzcZLwWqGUoJBjBBVCZhhpEc2AzMgkBQc8Ea0UhdJUoWb9XqoAHyqEypPnYhRERmze1OFVr38NrXYbIyGGMXm7zbgeJMmelHiRLFBMruj1NpEXXZg4jyULFMe6Bcqxoyc5fOQIRiuis1yz5xJ+/pf+FaZdctvNt3DkxHFmOtNc/6KX8sIXv5jf+g+/yvLJZbq9HlFEGhWY2zzPtp1n8c1v/S3KTcLjomVtbYAjyTKNlJw4uUCnU6C1wQdBsEOquuYZV13Jz/3iv+KRR/byuRtuYOnkMtddcxUvetFLWFpa4j0f+QgxpPcrkxIRU5jdti2bkUrw0Y9+jLW1IWujIdp7XAys9lfQKIgBnQmsCDy6bz9nn3MeUgWCBScMNY7H9u3HxB3s3HUGc71pFhYPc/T4Ucb9o2R5m6zTS+C8q/F2RJhYnvS9Rawu0yra6Kxg6cQhtmzfhQ+apayDE6tI78lNSSWG6EJTlBkIz8rakKryHH3wGCfXChbXAtYGAgqV54xqixjWZDiyrIVvAsMwQmtNNCVBC+4/eAJ9xi52zDTYTED0BCJedBMrUlYQdQIFM8MwDnls/xF2bTH0Rw2FzHBSoaJkYekEBxcWueT8J4OvCAFiNBMUbd3mJLHSAmIStpiYcAkA05NrN3Aq7VdO/m7d4uQUQ3DjKp+AdBv36QkgtwGhxVM9ExMlQzrwH7M3We9JJoqJDfgygXRCBkQQhJCCFIOU2NEqS8OKemzZsftciBEZI05MlHBCPO480zklIFNMVBfrIR9p77HObjjVGyV5iNwgZsSoEBQoAkom+TwhIpVEWo+19nGWJkprFClsSSpHphQqk4SxYHZTQ1nO0b7qSu6/7wGaUcWWmS6N90TlyXJJVTkQadia7EyY+FKmnt3hEdGTywKnPbpReGNYWlzEDvvorM3+ffex89zzmc83ceaUALgPqL73lfiJeqKeqO8Z+Lt497mJtRMqhO5AzIheIshwwaIKhQgRrE/G5VKhVEBowGdJyiUUITaIsuS97/kGz3zOdew+8xxCkyj5IcAZ23Le8sYXkkvSJlvn+OhRXhPrCjseknfnU5KbVAjhMbRo5DQqy5IsSpbgB0gZGWU9/vP7vs7M5nt565tfyxbfkGnHWr6J//oXfwl5wfvf/W7aDHjeC5/MsF/y8Q99AdMqca7h6qsu5NhjB/n8ez/Ao4uWTAYKNeJZT74OERrWKktnc4+r2wUXnQ9zmWdx6TiF1GhpkHikyVlrBmwyHuc7yJhxdOEEmVLQNERvGTlYHXVQwTKqAyfXVtJkrXHoSQBDHT3SWso8JyCI3qdEMkFiNwVQytDSaRMvlE6mxiKFTUihQGkUGVKkhGatNE4otEgb+9o6lFCMI0mTWleEqgHA1DVrEkYTOjkTSWkmJViL1poizzBK0VSB4CPTUWAmkt1MS4aDYUqP0gKhC4yuCJli2HiyLEIWyH1imIkJ8NfEQLSWkXN4GdCZ5uf/5ku0Z2cBuPdTN3DXhz5KVBEfI51eh5apKQrNWICJAmTEOYeMp6aEwYcEhupIIRSve/Wr2bJrG4PhgJGIYAGtyLSiMBmFzmm1O3jgwMHD3HzTTZxYOIEScMH553PN1VfTneoCFqVVAmmlnjQJEhFSMIx3Y2RhMCjGVcRFTyYiM2WL0WjA9a/4frJWwX0P3of1AZybpMt5TJ4hZQIwR8trDCuLjBHpPFQ1ViTwI89LTLBkk2RTrxRRSWop+eAHP8BvPeUP+KdveSvvf8f7Obl0jGc9/dk8/enP4d777+Xuu+9GS4OQ69NHgbOWrCiw1rLrrDN50vha+oMxxxcXePTwISqdXo+J4L3FWE/jLFmR0u1iTFJKqQvqtVWe8aynYZTnD3/v99l/4EGaZkAuM87YdQ4vefHL2LR5O4/uf4wtZ52FnN7C4sJBVhaPYjpzFJ0eXS2p1lao6iEqaowGlCEEqK1HeMfZF+zm8IGHaQZ9cqMZK01WapyOnFiruOz8Gc4oMhaXRshB8mCqg8eNLNp4lNF4V2Njk0A1GfBEgtA0NuKsoBYWHzSLiwusLK2wfdsmvKtoakduMkajCutgUxGIAtptSVwMHDu+xObeLAdOHuP4akMzrnnFD7yYlvR0etsRnSmidxA8ookEqZHaTKakkDxiUspwZDKdFutAnjgNu4uTpnW9gZ3cG4R4XLu7cdwpuO7UFP0fNtU5ZT59uuQmxJTQrGJKzJ7cV9LzpU1Tat7T90arQx7bd5y5M/bw2S/ewPzcPFnZ495b7mD+3LP4yle+yRWXX8SOndso8za93hwxJGniqbM/BWOuExbjZGMghEQomSbP6427kEQRJ0x0QKmN9yeGQJIIT46XKZzKe4+QaUugdWKBehw6M/jMJB8qqQk+EIhkSGrlUWi6KmMYJcpbpAj0DSghyXUPaeDO+1Z4YN8yjQgELDHIxDQMcSK1VMioEEpN7vWWQeVQyrB157lpaCMiZW+KwcIxOjMd2u2CzPzDv7cn6n9/Pf8F1xOjSxseZ/GjmgcPrPGtL3+DH//R6ymzlE5roqbnLa/+gSuZmZ0FkaGIBJ0hg8CO+wQRyItNBDxCSRwBHRXBOVxdUZRdfHSJGSICQ3L27nuMKy7dirQ1WprE6DBl2qwHObFIMenzarpsmh5TiGV0cMS8SENUIQgygWX4MUJ2kj3KxMrhxDjnMzd8gVf/2OuZsmkoKXSLW77zMJ//xOeR5qtsb3me9cyn4o3kE598F2urq8zMTDEarvHId7/KUpznq1/6JrQ1l22f57mXX8C4GePqyBUXzTA9JekUWRpWKEFbwXi1z2P7H0v3FSGI3hFiku0bo1E+MnIVhVJIpSHP0bnCtApyIbBCMmoqyKAsDWXZYq2xVDpQtkpEXuJCjhikEJPM5JQAmSQOA5XbzF3fev//8Bo4/+K/YG7Hl1g48XQO7P1pnvnMHyAIxX33/RLDwUUACDHmzAteRbezjPCOMlesDYeU3S4NDhtBeEczXqNTdhmOxwSjyco25VRANQ7GgiZofIwMGocZC9ywpl0aOqWkP3IEn+6ZSspkh+DTQFnok1zypDejskexIXnmCRHIlEZJySt/4OWcccYuyqKFtY5gHVVVU9kGYTQiBLQPtLpdut3eJB13EtwysUBRQkwsFRJw4YInRon1gUsuvQwbAr/762/nlpu+ixMBLRVXX3EFv/hLv8jLXvEa3vmXf0HKWJr4HFaWlaVlPvmhj9LUIzKjOX5yhRMrfaIUKW1dJe/hXTu3JwYn6ZrV3vO0Zz6N8WjIu/7iz7nl7nshCm6/6XbO2HUWV159GZ/7wmdonCM3ihg8UglC8HTaXVZOrvLZv/4MY5vgpCjBRY/MM2ITkFLRTEK16sFoQgqMiBgYj4esrYyQZcZ9ew+zdX4zczMdpNyBNDOcPHmcarDCWlXTmZrBiAxVWnLraZqJmkRrVkcVtqqZbneRSlPVA2anp1leOYltHFKUZDpjHEbMdVs8kknu3XuCK3efS6YCZ55V4A9WHFmsETIn6BxlAtVwhJ70zmhNU6UhoRQSGTNkKKibihB0uv/YAVIlSacPkSAKfGhQArZs38aBpSMcXhxx6WWXMNj/CFJpgq0Y2sCJpQErx/vMPb2FG59Et7cQdZhIRSOn25yIib+JiGmdDqex+xI+ptjoX9YtTjbahYlElvT99M/kuYFToOE6o+60NVSse/2egvMeb29ySsK78bOiQESX5LcIQEPUiFATqom1CTWuqnn0oYe44NKrJmcuUnK0UBMYUjyuD1sPtUkpvhPQT6oUALYONE5sTaK3KShJa+RE5fQ4S5OYgL319yt6EFKipCA4j1KJqa3lROWhBIVQ4KDTVmhlGKIxIiMAl11xAYcOHGJtUBGDQyrNeJiCACUNMmqETwEjUjMZcFiUSAQV5QSHjp/Nn33wd3jLj/x7Zme3oYQk1GOG/TGP7nuUuW3bueC8k8TIxf/DG+8T9UQ9UY+r7xn4a3BkLiJFhos2TZRFYj01fkARcjwOogUEyhgeenCJmZizfbYNVUMQk6kxku07N9HulAQcQViU1Ejv6YbI9p5PKW/CQByB7qabklaEukF6i5MZykd81IRccecDa9x/34O84YdeRmyW0Gic6fLZr3+Xu+6+l3y6TRiu8PM//1Z6aopvf/M+7rz9Xjrdki2bpnlk74OsnTyI6J7BQ/seRoqS83cVnLltjrgl53jfclFHc+GuJ9HKJJtmYDiUjAeRslVQmBa+cdhmgG0K2p0WmBzdChgFm2dmyPIettAo2zCul/F1SmBFZASTMRhaMilwukO7G9C5QruAjBGlDXmnJI4lbrIARi0SUw0Q3lMLj8kyZlzA5RILRKXwQhJlJE87YZxIDiAqRnIradwkCSqk1MoYJdYocgEtrTE6LWgmy6iIjIOFdd88pWh8QAUwAaRUVEC/rmgh6JlJwhzJzyYgaKxH5B4pDVmeMQoWI0pksGQetGxNkv0mUysfkhealGRFTga895/9FNNbNvO0n/hxLnrJS9n/ta+z90tfoJSSVmkopGL7jq1MlS2WjhxntR6jlCY0buP1FAikkZgQeMo1V/KMZz8DNxwxEp7oIjJLoRqFkHRbLUzRIiI5sO8Av/X23+X4iUWEDCjh+cbX/5abvn0Tb/upn0LIQFHkFK2COPEGE0RsXWPyJLm1RIxOPhhSCKSBph5x3jln88pX/iAHHzvId/7228QYKZVJzWZmIHharTYvfumLefJTrmFcVZDlBBvANUQBjZe892MfRrgKHV3yKQyRxlnanWluv/suPvnJG3jd617LL/7yv6KuRszOTjO0nt//wz9i6ANBB6JsJuw2jdGa6blZtNa87BWv5CXfZ7GNY3XU59bv3MSf/sU70EJiM0Goa4KtyYvEUI0TdqQQHjnos2U6Z9eOHbz9P/4yS+OGTEgEEtU2HD64j7/8z7/Pz/zHX2O6m3Hw0fs479Ir2d3aw+LqAoO1ZRxjdGuGVm8TrYEg+CE6byEwaGWwjcWJyOLSEkKXBK3Iiwy9BlmRp+l5ZRmujTm+tMbNdxyn6HYxRcHmTVOUpkZkksFqTTVuaIJAK52aMF9jraBxEJWmDp61/hrLCyfor1m2bt1M4xweT/QO7RxZtyQyJEbJ9JRBGsdDDzzEBS9+NrfceQ8LCxVPffrTmSoEmRSY7gwqCqrRErauKKam0FliP6bmT55qQtUGvDdh+5GM0deb2Xjqbx/H4tuoeBpwx6nHcWouvsEPPA3o25gybwSHnNrcKRknxyUQbX3DF0RiDAYfAI/0lgP33siH3v1XnHfFU3nTm95KXD1ILQf801/4WTplD11OMT9b0l9ZZGpTj0LHZHkQ9UQDA6yHniA2znm9UU4S6ZCYfuvyGE6pftdT9jYaaLkxwt94ptQgT/xPoyc4N5EGJ4lwlpnELnQOZRLQLSP4QmDrGh0hM4qGiM5LpqJkLHKE7oPexbVlmyjv4e4HF4n5FEHXKWzBTgYGWkCskUKiRYu1oWW1FZlWjm6vQxSKEBy9bTsJSkIMbDnjTA4cfPh7Xd6fqP/FdeLkEltnZpAh0EiJiGPO3tSleNZu2kaDMHglEVEgXGBL3kFTIFD4IJE5xCogRIYXDV4GpMyJMaJijfWWyszhVIb0awirE1tbalb6Fd/4xk1cfNGF5AS8UIggUD7yvGvPQLXaxJBNzrRP9BGhOkSxQG37ZDInSoVsLCErOHDQ0pnNmO8MEUxBqLGZ4R2f/Gs+9u4PcejQAj/9z1/PtJEcXlnhj//8T4lTHbZ1ckaH7uLWmy2HVzI+/enPs3mmxTXnzSNFhreBtWMPMltGuptmecrVF9EfprXknDN34qnYuXkWLzLyYClbGeNKUlcWBbhJumWudLK3CIoaUtDGui2KyGgXLVRR4ogEHNIGXPAYAYJkpaAmKcNj29A2nQn/J9BMZHJkCqciJkaacRpA7rrw92mpe8lMybGjV1CN03u6bvcxGuYc3fcCfK3ZtvNjHDjyUrxzmOwmOlO3EmOLYf+VRDdDPTqCLvLkD+gidtTQ7raoG08TNSEE+nXNWrOLI9/5fc678t8z0z2MdH0CQyIOqdJgSLiaTWWLt//X13D2efOURcbi0pAvfOEBfud3/4axnQS1BE/EkesltJEIaSijSunm0vGMy6/gJS+9nrJsUTnH6mBAU4/JlabQhmbCHG8XJUVZTuhQihgdQskNCxQh4sR6IS1jjbXEmNhot91zO1+76Tvs3/8o5BoXU/DV3ffcxd777mfPRRczNT3DyI6RVmB9oK4sWim6rS7HomOpqlhtAt7kICXeB5QyZDIlyGqR2GlaZBglmer1GI/GHD50ECUMSMlq3efggb1c+7Rn09u8mYOHjqA6XZRIPtDEmDxeIygkPhPIqCckBYGo0wAIH2lsQHvI5LrtiQYiw5FlqbIUeGZmC2JsqMYj8JF2mTPKS5rxAMKYeqUmlNMU7XnydmQlnKQZBUzM0N7jveP44lFqW2MKQZYV5CrDRUWQkqAE0iiKTHHWzq3s27tAfwStvMWd9xxk7EpQBUZGfDPCNxW5NGQuJ3OaUVUTaghR4OQYqRuc8BxZGXExXZSQ0FTkpkRGj5aRKJKndYgelcGOuZy77jvGwuoFdFpdqtohQmRtbDnw2AKXX3wxl160i8KI5JsYBGJicxJimGB/E6afD6z73K33Ioh1gE+tdyOnCwI2eHenKnLqgMf3Osm/WJzG5ouT/mK9hxBJZfE4e5O4cRwT1l0UcWOICBEpAt6NuOfWG1HKccmVTwEUew8c5babbiLv9jhrMszNs4KyKIgypkCz00JI/h7DUJBkvWESnrYuhRbp/cuyfBIQlrwCNx4fRVLqTa7l4NLA28ZkWyCUJPgEPcoIeZbAPV83+CygvERnAqYEhTFkRcFqVnCWyjl64hgLJ45N2OAaKQ1RuIS9ZhkyeIpJfziOgcX+gOG4QkTD6lpSmXXKjK07tyPbXWJVc+EFF+OlYt+hfQz+55bgJ+qJeqIm9b2n+voGKT3OBdAgbA4xTfnGWpOjUeQgxnghCUXBzXft5ezRkM1PvRpdZGjr8MHimzHPu2oPutPC1RVatyZTsBFBtghNmiZ5kVgj0Q2xUaKKFo88usi2c+eZCRIvJF54Bk3Of/2TD3L3vkc4cXLET/7TVzBH4PBJz4fe81eomVmMNiz3T/Dn/+UP+aEf/yk+8JFPEoSkV2jOPnMLNuuyYseU/cNcecmF7N37MFdcfjmqZRif8DAYMbO5x+aZTroZQvJJiR7XCFxIy4JWLQbjQKuoUHJAETRZ0HgyGjdkJhaYTDMMbWysKHWirfvKobKcEAJGCDKdI4VOXil2hAmS+V6HJZea0ygVokm+fHXUlEEgfY1CYHXyZclFw0gqau1oUzJqHNXaGhCJPhnmYxKTxauI1sl7plSaQRCJau4DYTLJUspAXQGB3GS85cMfZsfFF5O1WgwWT3Lfl77EV373d1kZDFBJm0TKZkmL6bipwJSEANkE02ucRDgBqkLlLQTgo8PbmjAYb1x/QXi0lFA5QpGxcM+9DPY9wu2tFjt/4ze46PtfxqGvf5nM5PR6s/iVNQqjaM912b55juNHT3LsyBFG0SJjWkAbISh1xnxR8P2v/H6GtqGWqW1QSpMpQ6ssabXbSG2IIXJicYHf/K3fYG15jWFTYQcjGtGwuTfDHXfeyTv+6x/zkz/9Mxw7ejhJZ4VESoGSikIoIgqjJVILtILGKZQDExo6ZcHb/tnbaE31+NWf+3n2P7KX3tYZLB1KFylLweymHFPkXPOkp+BjSv8UQm34+8mYJmvfuvEm9u3bj48RH1PqV6YLRksnuOD8i3n+85/PeFxxcvkETZOSJefm5vinP/Em/sPb3w4+IELYYEtJlXHg8HE+8YlPcfToUarRiOmpDtdcfTUv/f6Xc9bu83j7b/0Wy4MRSnUpO12aam3CQHTpWos5TTXkwnPO5Vtf+jInhiO6UrM4GNLrdqAZkOkWJ2PN5z/2UV76mtfy0GMHue/eu7h2z5Vsnd/EuFuydLKP7a+BhLycJjJFY4cTMltFhiPXLRbXFrDjiuneLCMqRBZR3nLpWds5vDZiMBjTMfC8p+5CZy1WxxW5aDiWJcmsbEYcW1ij1W4jREDLjEZaXJbRjIfI6Bn7kv1Hh1xw3lZcDOR5TmMdrgEzVfL81/0TFGvc9uUPMBQlmZJsmR7xyMPHeODIAksnK3Kt2HPOGZRqzNTsHIQKW48ZLx4koCmnZhAeZKaSfDxKCIIgI8KDkJG43pxO+tDEeEuT71MN7unhPOssucQIXm+I1z2YJp+6Df++ZEUTHwf+IU5LyWVdzptY2pPvTAJ61iXCKVFPyUgUkqByLnrK8/k31zwPpYBYb6TM+XqIq/sIAVoLNu/aBVLigkdGNRn+B+Q6sOgjkCRsUsnUAAt5ajIfJo37ejM8SV1cVzmzboytBCGm90xOpLbrUuX1BEARBYhA49L9th4nU/mgJdIFcpU6d+EDTht8sLQx6CixUtPExAAxRpCZHGM0z3zSFcxO7ePG2/bhRUEUkSo2IBIoIY3Bhkg3OM7fNs2OHXOUtuLu73yLqr/M0QN7eWjvgxzZ+wghlmzZNYe19ntd3p+o/8VVLR7DzbeRHlRIqYpThafcsgtFiSOg4oTNKzOghlAlxgwFoYnoYEEXBJmYgyKCcMmGQRUF3/7GvXhb8fLrr5rcBxxSaHZuavPTP/GqdHmrVvJhzhuc91jnCXZAkbVTSEfQRF9hZc6DR8ZcvHUeVfURZU6UDYsr8O9/+93kRc6/+Jk3c8FOSx2GfOfWE3zhhk8zt+1MBscf4Wsf/QCXPudFfPozN7Fw7CQz3WmefNFOWlPzrOw/xAP3PcqeC89kRsELn74HN1yFGjbPbWaqV/DUPecgnUS3W3gX8UZQREW0jrFrELpMFhgM0aakyAxKpzRt6QNIhY0eTbLjkMEiZcSLkKT4MsM7S8wlJkryLENU48RCioEQIsJLopegJwwZM/G7kwovFNJFlI+Y2X1c98KXsnZymcyBMD28PwulhkjVpMGlhOBaWKlBRtqtZQDqagiyIs87VPVOIMlSjRJYoRlWDU3VUKiC8TClrDoxCVsiEF2kaeZpxg6fV9gYGdc2bdoBIvgQaGLDww8d51OfuZu6gTe+8Tre+Ibr2L9/kfd98DYQIGOkarrsvf/nOGfPX9LKDuEnrLytczO88Sd+jOAcJ9dWsLWj9g6hBEIKMqlot1vEiVdv3TgaRuRZkpbKIFHKTPoAObk3C8qiRa87w2PHlshQ3Hz3/WRK4o3BNRCDAyQ+JusZHxxNCFgR0QHqxtL4lAxvo2NlWLM2qMnSpwavc5z25A6Ej3gpkVKSoTAiKSQeuOc+rr7uSey54jIOf/7rIAOb2h3Ov+AiqtGIem3MeOSYaqffHST1jNaG0WiAbSqk0jjbIAuD1gls9DIBjFIpvA0E7xP7KzgCSZYdhwO2zc7ztCuv5tiRo9x59DBSCLZu3cLc3DTNELzNyLpdmtUVXD1AzMzTmdpElRWM146Dr2iURhjNymhAYQ2ddqTTa6ElDNcaKqVRUiXLFiOo7YgT/cBVZ7Y4/8x5fMw5vrSGcCNE5YhSE4yfDJIrKjsmotPaKAwhOnwM9IeB2mt8DAQ7TqnGriG4ACYyrityU6CcYqZsMdUecujQSa7as5XD+46wNA48dugYrXaXZ73oqWRAUU6RyTKpAiZJtnLi4REnXr1CJpuT1FvIjX4AkYbsCMU6a494St2woQ1YP26iPHg8+LfOTj31iL9fqUeIceLTN+l/0o+LSOQGKJj8giVRJNvJ4AWP3n8fh44dZ9fZV6KyjM/e8BF6m+ZYXhtyx6c/yVR3iq2bt3HNk67BCL0xPN0YysYJ2LeeUDyxNQkx2SvEmHqVkGQKKJ1StEVyO5/gggmQVClxJgWCGI13lrzQ+OCQISbfYuFomgYlk9WNlILcGJxMr6vMJY1QCJ0htSHPUup5p+xw5Ogii8MF6iawNrT0vcOGgEYgYsA6z2hs8TFiHWS5YWrSZ4agUZkB5+gvLTM8fIjKNtxxy408dnAHQrAGPDNG7vifX5WfqCfq/531PQN/UiZPDiM0TYwEUWPKnBvvfohbb3uQn37Ty4gxA6WRQuCGY1778qdTFG2oAtEURDkgyCS9HDUV2mbkWYGVyTw9TACGgcoJzYiZTolvIkp4QqZ4+Hjgn//Sn/DM5z6Vt7z5R5gvPA7J+z/5WR7ee4Bt27fz7W9/nXM6Fc/+/tdwww1f4MjxFVS7xa7ZgjN3bCGGMd/5wic4Y0uXhYUFLj1nJ51SorWjnbeR3rJrk2G2cy7VeIXBcqBpLL3eNM5GlgcO7wRaQ13DaOyRmaaqxslXpejgmhG2ytHSoGTEC5EkWtHRBIuPjpGv8d5N2CUxTcYQOOsQyjOwNUiNig1D6fHVmOktm7jg8t0cvP9eGtuQZ5pxqPHOoaIiWoXOFCF4ssxQKknMIcYBIiZatZcxxbhLjyISgwQlk/TDpkFR5T2OiBtVVB66vS6Q1pg8y2m8RAnBsfvv5+7PfpZgPc9485t46ht+jOXHDvDlP/szRJREoUjIRAIcovOoTKKlJIzHODRKCaT3lKaN857KNziZfP1MkSR1mVQoaVBCc/Hzn8kVr3g5x++5B6Tk8lf+IAAr+/ej8py81cFFjw0WfJNSZc2YLZs7mHInR48fhyMLAOQxUvf7/NDb3kxv8yawYwwaozNMrmm12hRFe+JHlkCR++64i2Y0pt8fMh5WhCbiComtGsrZGb5764288JHHKDuBpm7IygJiQMmUeK2x2OjxCEoMKgOhoRnUvPL1b2TPZZfxrne9i/seuIep2VkypclUMtfWMmM8HDEY9Hnfu9/DI489lpKziGlDoiShdjRE9j56gGgkXgm00ETnyPC0Ms0v/OK/JBL44//yn/nql7/MsKrZuW07b3jzT/DMpz+T73/x9Xz6U3+NVgolFM5FjFHccutN3HTjt9EYGpGarI994hO86lWv4od/+PW89odfy5/+yV8idaSuG1wDmTKJtRSrZMysJabd4sCB/bSyjHromO62aZU6yVozmC5nObRvP3Y8olMUjPsr3Hv/3ey56EK6eU6+eY7VYZ9RNaRuhmTaIFAEYbEEEGBURElBVQ/xXnHWnqdRNTdy9HCfw25MKwpOLA05f/cmdDHDvkcPsjJMiWQjqxiNKyqrkSqfpOhKCBaDRLlAu8hpXEBqwcrAg4Ol/honFpeRxYAgJVpB2WsjqsD8lm0MHluk8YFts1Mca6/wyL59XHfVNdQqsHXLNJ1iE0VnltAElMzobTkTqTNCUGBIv2sFSoiJbFBsyH43ah2YCxGEP82g+u83sI+bfU9YfxuSrMkXG6IV8XcfAckJ6u/LZtaDbVhneEwAs7jRpDKZYDugQikPPkmIYnAEN8RIgSk6YEqimgCYwSNjal59CIkJECZpfzISqRHRkGQupzfzESFOSxde5wdGiFJMQpLlZCMQEdGfkk7LCWMnBETwqVmeyH/zvEB4T0TS1DUojQ01LjjUJLVYZwUKlVgnJlI19USq5Ikyx3iY6s1gjORJ1xRM91p89/aHOLE0xqginVsAP4JMw+ymgk1dQ+EbvBR888bPUyjH9KYOR+67hx27L+Zvv34TeR6Y2b75H1rKn6j/G+qM7dsm12YFuiQEOWFBjQky+T7hIgpJFBZtQGQeIUqEd8kHKgbIFb/z9g/zA69+IRefdyHRj5FaE1zkmddthyAQIbGWAg6JAt9gB2tkUxqvEygmgkdGjdQdVJHjfIWSHaRfASl4+Hjg1373PTzzuQf5ube+Br2ySOj1+PJ3bmffwUPE4PnoO/6CH/rRV9Lbdh4f+tA7CcJQas/Vl+1hZXmZr334Yxw7tkKnJdhzRocLLjiTweAkIss486xt7Nwt8YOGhcVjzLXbSGmSP22rTRMafBwRYxcVDQePnMBIia1GxOBB5hSFhibSt8tYW6XEVO/Jsoy+tYTgaJE+QzF4hE5DOD+RIiqp6chAYwQhSgSaICQKj9QKIU26K8jkgyeiQEsgOiqbgoqamNKAqQWiqnFGUdVVkskyJsoUsCCESNYXpiAvDEoJXNUQ3RCtgZA8+QDqqkKbBElkuiDLLVZA0zjKVgLZpIXaVuQTNUW0jtXlJXwGrW5BYycSPhdpZKR0gt/7nS+Rdws2bZnn+IkBu3fPJ5BCpvC3JOGB4MvkzZtHvISOKfiR172WTq9Df9inEgIcyEyTK0GZl7RaHaTSnFxe5Utf/grf/e7NxODYuX07P/Dyl3P2OWfT1A3a6ARAyLR2eOuxtUULg3UVKstoJiAdwtPNDZunppjbPs95ey7g1ttvZ+HkIp3pdpIRx5hsVSIM1voMFhZYHVZJllinsIkwYZC1Oi1mBETnCDqFFXgUn//CF3jZq3+Qn3zzP2HT9BaOHnqUF73wxZyz+wI+8IH3c+TYMbQwCJWAqKTQUGitaXfavOa1P8RoWHHw2FFuu+MOhnVFYUqkC/hg0Y2lCZ68zNLAK2qE9AQX0HbMtZddzgc/8F6+e8tNeD9IIWd5l6c9+Zk848UvYPne++l2Z5g960JOHDvA6uICphsoOl26szsYrS7hmzFaC4wxKGmwTlA1DTPzs/SmSlZPnqDIc0ZKkRU5olD0q4DslHQFHHhslWHlGDmwtiE0kRhrpFE41xBI1kpO+DRwdlC7QIiWug6cOH6MY0ePcdGF59A0I5wLmDwyHFT4tkqS0Ewwt6XHvr37uGLPLqSEhWFDVcH1L34Sxo7p9HYgOz2CaxDBIqpIMAlMSjrU9TU9hZqtM9uADYuTU7UOlJ0uxxUbeF5SFG1AgenPv2Nr8niVg+Dv25ukpwiuQeksyW1jZCOFV0ggbPQ+djTmlm/dxMBpbr79u2z+2Hvo9OZZPnSUqvEIcT8vvP5ZlHlBd2YOrVoQ1z0OeTyrcIOsmM5bopFiYs+TpB8oIdNAZz3hV+lTpMZJD7V+rFQG5xxIjQ/Jrz9xBiQmyzATSxOiJIjEbI1ErNAUQSHLtKYpLRAT+8RSd1FasjoacPvDB2gmno1EgZIaZ9PPDlEjEfhM0UTH4iDx+dqdaTqdGZRwZN0uo3ZBR7WY2zrPdO8BgF8Fjv5PLcZP1BP1//L6noG/3/2Lj/PWt/4IvXYbhUhJbY3j4p3zzHbKxBoJESkVPkSyAFUYM1geYFSLfPMWgnUoIaj9CNlOXjHWhpRaJ3NoArI1wx+/9wPgHT/zU29kPquJIqfvp/m9P/htrAr8zRe/zJSs+fG3vYGDR1b56ue+RrZlmnrkuOTsXQz7y3ztr29g7eRxZuan6C+t8fTLLqZsaQZNlzVrOXvHDJs2X4pQghYZ1tVEL5Aodm2bpQmaqhpSBwXlFI2HTEgaK2ksxAYWlsYIk6fUU5sAtcFoTFuDNjkiBDKjcK5mbeUoZTtjxVu8g6zMQQqa6JMHG4KmaYjOJz+7tVUMAklAx1MZmrOzPbh4Nyce2s+oGmKjo2cKhIrkukEjMEZibUWv08GPRwyqmGTSTYNB4r0j4nDRMuwPseMxLjMIE5Khq5DJwDUEWmWJiOtJWJGy3aIe1xAbvvhbv05vdjOhaHHpS1/KlvN240RGRBGlJ6RQ043FWCDZGgLTtkp+PI1HCocMNdomsDFE0CpN1Xfb9HOngmfe18QYmF5ZYuu553Les5+DVIrBwgK3vfd93PORj2M6PShLcJ522cYJhfUS4S1LwzGIjN5Uj2IxTdtbrYJf+Bf/nLMuPh/bNExlOUVuKNstsryF1BkxxjRJjBBC5OihQ9RVw7BukEIhtU8py1qTtQ14w6H9e7n8mj2TJmVdkgBSSzKlsT4iYwJbdYTBYMj1z3oOP/DyV/LdW27lU5+6gc2bN2EbRylzjEqLvBISFRXOeR7Z+xC33/cAtvYEBXhBLQWqskgVcVKBmTT0oUk+Ub7imqsuZ/uuHXzggx/kU5/+NO2yjS5bHDuxwH/9b3/CU659Ek9/ylP4my9+MV3vUSQQKUaCEeS6jYqKosgZuYpRCHzkwx/mmsuv4KqrrmJ+7lMs9hdogqNVdJLMAUkQES0EuRQ4CyujIVIGur0kP0kyqzbSRGSwtLPWhnwhhMjSygoPPfwIe84/D60LZnpdOh1Df23EeDhKPiQovM9TOqoao2SGVm0G/QWOHH4MG6Foa8aHHCZT+JghRc7t332Qxf4aopxh7BxNjBw+sYRvHGWnREaXmhRXYWQxmXQ2eBvIC83KsObY6pj+0POpz3+bK684g1wLmuiICLSUtOe28thX72Lb2ZtRhWF+c4eDDz3KtVddzbW7z2TKGGS7jVAQ6oqoJCIzaCEBhw8GadLGFSbT2okfXZJurH9EUyN1SgqynvJ7mrzj71U87c9/qP6hxyXpSSSw4ZkzASETCy+FjMTgk/H2hJWX/j8mf7IJQzVGgU8GkIhMIdCgNNGlUA4hk3dSnARmxCDQE8YIE8/D4CfgrK84lRYnkEol4C5OBuYTlmyMnhAceIerGsbDIc56TFagsgyUxOQZeZ6nGblMqb5BCITUCTjB471AGIk2EpoGPZHj19ZOgMyAVyo9XkApBFpLhBLEOnngmiZDS43CcOG5hunODDfe/gB37z9OlpcID0EGnFAcXVxhPKy49kKJAcr2NNVojcufvAd//dM5sdJw1TXnc/GF5/DosaX/7m/0ifrfW0205MEhoiHECknA4hPwTAM+B2FxMbFV9h5Z48TqgKc97QoYjIAmgdNB8sOvfQFbd2wn+Hri4wTGedou0oSG4GX6/Gk1Aa8TS6wACBIRBE5qYtbir79+F7fcfCv/4q0/yuz0EjJqqmyG//KX/4mxs3zmy19gVg55zY/8EKMFeM87P4pUki1zU2TTM3z8gx9hbse5HD58EK1yLr1gjq1bZggzgmN9ywvOmeP6cBHdtmTohzAsqRBMTSnqEcTSE+giZAcKRa40wjvmetOUnVlioZDWUtUriCbSaU1hEbhoaOyIrCyZnukwN3ecRxZXMTLd+zqdNpUAhyRakcKmgkdHwHsa5cm1pvCRRgpsCJhMYwl0tCSOLD5CkMkHLjiJsnEyC3B4AkJqvNGI+iwevu+X2b7z3zM1u4getVhEIkSyIpVKJecwHxDWpRRd6RiMhkBA6YLoTnm0hpACyrQArdbldo5ctZC2Is8NKIW1Y0b1xNfeNmAEZdamUALnFSbXSC2opCALERUCn7zhLfSmWwB88ct7+drXD6XkcJ8sH/Ksz7nn/jq5GRCNwtjA9c99LpdedTn1cMxYJXmfKgtkhF5ZUHamiEKyuLjEH/3hH3Pr7Xdi8hxJw2MHDnDrzbfytrf9FJdcfjFEx/SmmaRUAIzSKAE6A6MKGhXRMhBdSOm6OOrxiLe85W0MhzXve8f7IEQKnaEktAuDVrBpbo5f+JVfwtuKxlowGb5xeFdTFB2+dfPNvOs974amwrQKfIzU3mHykpOry3zyE5/kp376p3jzm3+CECPaSA4ePcENn/ksjZQo0QA1LqRhZrvTJQDtqSle8vJXIHyg6LQ4ubjIf/6jP+beu+/DZxrfOASePDdYZxMTXEpkPaY5cYQXPu+pfOHTf83Xvvo52p1potXk7ZzMwJc/90la0232XH4xd957F+dcegkXnnUhi8Ml1k6ewA0qdNmj0+0hG4EPFmWK5OXtIpnKWFxaBA9Fb5rxygkyLVBaUGQ59dqA/lKb4wsr7Nu/yvzmOWanJXvO3pLCPZTm0GOLjB1Eqcl0jo8N1lXU1oPUSKVYXFlhdbXFqB+48KILcC7gY0Pmc7Zv2wGmphmP0Mow1RE8dmjEoQPHqZzlxLElzr3gIrbN9+iaDD01hXSO4fJxmrqmM78VI5M3ORPWfZzshpLbyXpQRXwcK/8UWy+e2n+cPrwUcQNETN9ZD+1YP+bvd0MbARkbMOFp9iZKTo5ZtzdJTxZE2jvECdtzuHSIu2/6Ipt3nsNv/OYfMjj+ELU2/NLv/TZt00qv0w8ZjYZ0pyQijtLnIOrJsDSpLwRJ1bEh5hATNcNpDMjkLZ6AfWJiAYqJVF0m+jeTG056LZHkSU5aM7y1iZwi0uBTKYmXqadRxqQ0+aiJ3hKrmlIrnBWIrKAVJaqj0fkImRuu7XTpdFp865ZHWXYgtIcAPvrEvlQBcOioyWOJLaYAyE2kcQ3VaJWhFwxDZNzv056aYbrbJ0Z+739qIX6inqgn6nsH/l7w5KdQhAbhiiSB0pIQK9otw4xQRNoo6Sby14ZGakQULK8u09l9DXlLwcoa3lqMmebb9z3C33znRt7646+lIxbIrYNiii9+9y4+9zffZH6m5Od/6df4vbf/PL1Wi89+8Rvse2g/Za9gZ28zm7PApz/8IRp6GJ3Mz7eWLfacv4MoJYuLx9k13WbHFXvABLZv6tKvHWWWQd2wOBbIYpY4GiKUocwDc52UkJi3FNOmTb/vUKJBIhk4h46S6Cwmz/Fe0JnuIvMCWzUY2UKJgo4uKZXGizWi0hAluZZMmSmKPEOoyMiPKbMOhBLrGwajQfKKMgVCeaY6JTObNnHb3uOMT9ZoWWC1xdoKRstQD1lpBoTK0zIF3lqssHjXxUWNLDW1rzhj+06WHj1AEWtEgBAEwUcKqSm9nMjcLEpInG9Q5EmWEC0i07TaJUWrJJ5cnlwFHts0idGDggBv+/znaE1CNm776y9y08e+SNu0qdwQXI3aYN7Adp3xh/sfoBXCP3iN/ffq+qUTp744uJ/mYx/ng1ddxbCVYzJD2Z1BKYXJphAmIxOesm3I2x0q4RENVE0gz0CHDDWRLj/tyddx4RUXYZuKls5odVq02lNJkjJZLIVQpJldkuv0pnsILdGtnOgisbLMT3XYum2e7mxJZYdkuaIZj3E2kDKs0kKJlngfcc6TB0mTReLYcuE55/GTb/u/WFxY5N1//ufgAsNJo1DkPbx3FEZRmHxj6qh1UjPkZcHQDZEYLBFhkqeZEoIyKxJ4LARBRKwIXHDeBQihePCue5F5QY2kCZ52q2T5+AIP3Xsfvc1zZK2CKga0yZIHj5AIrwgxTX1b1qUwgwwGJ5e54447eOXrf5jZTfMcWzlMVIpxNaSqR2n6KQSgqKsxwge27tzJ4eOP0u52kSLSaQliUDTOo4Jgbud2TLvFynCEyDKCMBxbGODCwzzp2iejYyR6Qzdrs9Yesby6jAwB6Rtw1cRMORBVgzaBZukwrTzDlB1KFmiC5KGDh8nEiDN3buLJOy/hkUePcnIZjq2ukGWayieHRqUFUmtUkWMrh3YCpTUiNmRS0KC45eGjbO5NMR5axhUUuQGZJ7ajcCjdYjyE8bhi06YWU72CdmeK2269g+uuvBQRQImcaC0+WiSKUpWEGBNTJcuRKks+SRNG23p7ui7pEhs9bfrMrTfEqRGdyAjX5cAbNXmGjWH55OvTB9rx8U3wetu7Hqpx6u8n03VS8FAKh4nYJqUBSqEgpnREMZHpgk7ghQoIrZLcJGQpu1wHnPAJQIueEGwKkPIQmwmjUU6m+BNmoUvda0oMRiIx6XMs1yflpwTPMkpQGVk7bSpcNSaEimq4jLWOMisJZYEPKR3cB58+uzpDm5KIQRclKIUpW2Q6R0RP8BaaGlvVRJ/uuwKVGmapJxtsSfQKrRqsaVBKo7TBRcfmHTM8f/paNm++n+/c/ggjCnJtyaJk69wMuzZ3yVREhUgdK9ZWV/C+YX52C4/tvYfve9UrGC8fZf/BA/9T99kn6n9heZtCYkJaR/DJh+qhY0tsiZJt021i1AgV8InqhSINAWOWo3BYO0I42NmbIospvEKYkuhronEE3UGGGhnAa8Da5Ltscm664yihM+AFT7saqooAPLow4P3v/SRH+8sM/tOf8Qs/9wZ2zc/xN1+5lXvuvIWss4kdPcPegwf42y99iRMjxfGFk2zdNMXZO6epLBTtaerxMlfuOZfHDh3ijF27aFzDaGmMCSBajl4vJwpBxxSsVSPyKLEWYmiQMsM7wepghWmtEbGkpVo0UaPsgJm8IMs0KzbHixqjIs4mpYRUBu89yjlM2cK5dM/zYUyr1aWcm2e4uEQoS5QNkBlqL2kHibQWKaExCoOkkBonBUgPwjCsVtKGNuaYqKmVQxcGGz25zMm0Tk5iAYIYUhT7yUrJTG+O4/0xEJOlh5Q4AZ/86Fu4eM82Wq2MpaURn/vCvfzqv/0MjWsILnmWyklfFHyPZnwBIRY0QiFdg2ssoWyhkYwqjzRHkE2N9x0AhIhoJfCDDL0ZtrRnibZDZiDaVWSsKIucX/vXn2XLOWfw0hefxfOecw433XyQb3zjMfqrA04sjnGNxLkWOq+hqTj3zDN4/ktewLAao4TERIXJNGWW0W53MXlOmAARn//i57nj1u8SpGZpcQnra7rtkk1TGR949zv4hX/9q1i3RqfbQRmDILHX5bpfmxJkmqQyyBSmCdTDNX763/48O3fu4td//Td57MhjtHptbIzoIMgLSbudBosIhdcFQiZJsWrniNAixEivN40gx0kxWR8luSpYrZa57pon8drXvY5Dhw7xzW/8LWv9AefvPo/rnvwkfvotb+Ptv/97CDQRJgEHgv5wzLve9R76/T7BBaLw7DnvfK5/2ffxy//mX/M7v/1b3Hr73WiVEnfrUT95cgufEqNdpDfdpjAdbvz2tyjzNqura+StguArQqPIZmb4xle/wrVPfgohKvY99BCd83M2zc7QzraztjJmNB7giGTFNMFbrB2iVCBTlsxFvJIsLR2jNJqpLdupqzEsnGT7ljlOVBVLq0O2zbfZfe52GgePHl7AVQ3HfKQoJJEG65PPNBO/6qgk2CTptV5wdMljg6YONVprRnWNt4L2lhme9H1v4eg9X+HBe29k5EumS5jptrjn4X1s374VNxhz6cW7mSlzelu2I2yT9h92RK5zjMyQ6/1MmHD148SnLmFsp0iAsG7PywaQtyHnZXLQ5FrbkOJOkslPeX5sPFmMSTlxamC6/vdsPF/C3iRRmfVnTZ54EyZeUlxMhpciY2bnbt7yK7+FwKX79rYt6bU1Y4IbARmq6FBOzRDWX2dMaolTrMMEMMZAsjUhshFIAjBJQI6n+/ghNp6DCFFGNvyQhUy+lcSN90QIiZp4xFpfJUJPYyGkYQg2BQ5KoC0Uochx3tFrtagah54oKKSOaJF83vdc4Ol0Cr5988OcWLKgVFK5BQ9IvDAUSrFzOkfqDt8Gjh45zFc/9kHmt27io+99D1prFo712X7WFkTRQwheDXw5Rpb5f0jdeuutXWAbpy7SJ+qJ+v+1AnD06quv7n8vB3/PwN81V2xD6CLJlLIC7yqgwBMRdQOuD2R47VEhwGgNmxf8zXf38rzNV9LJFEa1cLnjeKX4zT96H8cPHOH48SV+4Z/9IFs25Rw8vsYf/5c/YVOvi1SKwlo+8a73cs2zn8YXP/8likIjleCZV5zDjjPmOXayj9CBZ73oOXz5q9/myt3b6HRK/LhidvsMlXW0ZzvojsKOLIXOqbwjlgXS17jxKLGNtIOmphoMKVo5oWmw9Ro6OFT0qJglKW2UiZ3SxOTFJ0Hisa7Bu0gQECagQ1lKyCTtooN3Fm8dmezgQiDaId6OECLQ2Ih1HlvVyJbEmESzHlVjhAu0VcawCRRZhhhXrB0/jO9XtKNmLXrGtkZJhY4gsuRh0zhPp9Pjgb0P45UmxoZAnujySuAk1JnByJT654h0pCZTmrrIwVumiw5ZmWG9n2jzkjFsqCsiAi8kioz3/9N/RnfbFp72pjdx+fXP5aHPfZHDX/kia6HA49NrN+nxPe9phcC/u+ASjilBO1csLa9ifWDLlimkF6z0K6pqRDk1xRnjhn+zfy9fnNvKQSnQrTablefFj+wnsxV9EjNH4fA6oIuSIAAf0TiKLKMKNZVMQNjYDlAi+esBXHTRebjhgKLM6fY6dDozKfUPgMliKPwGUKKE4tzzL6A33aMKHqUlbTXN1HSH7lRBpjWiW7D9zLO45ZYbefYLt1F003suZGIxudCA8BR5RiMsrXbOG3/yjeTtgr9455/zyOFHUUWJdREtFYuDAVOZmaR8OuqmIU3kDHUjyDKDmvgx5iHNQq0ICFSShPqAFwKPp/aO8Sht+vI8x3tLkIrgPI1oED6Q58mQPCpJdKCjRSoYisTyrfCoLDUSUkqUlAxqy9at2xiNx4yHfYzUyCjJM8CvN2mCqCIhy7jz29/kOc9+EXfe8h28hyhyBmNHkUeCkKyNhjz9BS9i78EjDJrk0tYyBS7THFkasHf/YS47/1yEgyglKJ18M4c1/cEIfJMkbwKEyrG6ROEpssj03BRRKZyDSrXpzs4zPd/mxNoaA+9ZHQVymTblPgSiTwbTMVjygpTs55IUzEgITYUxbRaOjSlNgfGRhcOrbNlsmMoVUHP86CFWjhxGdhKHV0bH1tkuy/3A0vEF9j92lPPOOiMFRniPUnlKvvaSEEEWRbJaCD6lGcr1Se9E1pF+Y6em1WKyDsRJQzhhyv3dxnbjcf/QdHvyX/G4r0777qT5fPyR6bki62BcmsBrYwjOEqUDaYhCI2WWBvMxTGR2k0T2GJDBpSYTPwHpZWpyRQrZEFLjWwohJhIamWQuMQrM+qd3421Zd/I5jXm7gW3GBKwiKVuzG8enl7PeNAdiaIi+Ibga7y11k9JTQ7OKd8sMB32sc5RljywrMEWBNBm6KHGNRbkaqVNAAt6jpcAHSZHleKFRXuLcGkVX02UK02i0GnHdlRczP7uZ79x0B71uh7luh05b4rAMvZqQFiJVXhBlRq/bxswU7Ni2lcf6C//g7/WJ+r+nKgGZEiihaTxoUSNMzj13P4odO7Zf0SUKk/wt7YgzZ0vOnj0LNQ54LQGfZFne4t2QEARatPBR4YREekljWtz78BEuvnAzLW8RPiJahn1LNX/50a8zPnEI+7M/xQufdjm17fPxG77EiZWTtFsdxkvH+Mb73sOlz/kBPvDBD6G7M0zryDOu2I1rRhxbOoqOGS9+7qU0Y8vZZ84hBeR5G+Fqyq2R+Zkz8X5A8CUiLyiEorJwcs1SVw4BrPRHidmrRJLtCqgax85egbB5krtKz7gaIbVidWSJIa1dKgZinew8mxASs8h5Qn/AkcUFprKS1XoAwSGRnHvxJTz24AOsLS6S5ZrVZkAeS2QUqKDIgoFgyfOCmY5htalRYUwIac1rgqfGYkUNXuG8J/oADqytibIEIsof4Ixz3k5vyzzeR1pli6JoIf2QPDO0jOahB09wwyfuRGrDm970FH78DU/hoQeO81fvvDGF93iQcoEtO19GNXgty0df/49eT5u2/i6bpz7FaPwMALzo4sMuDh74VXae9Ue0csfx4wCRVrdLIadQMvDQvhG3PHwvq2sr/MdffSHPe845fPWrD1C0NFObOiwcnuO733k3V13zz9g6s48fedubEIUhC47cSIqiwORFkvbKlDIupaAZV9z27ZuQylCtjXA24JEE54lScnLtJA/fcz+7L9qFbVzyHJOgtUJK0CIwCg2ZyCm1pHbJuuHF3/dirn3GM/niFz/PPffeTqvXJVeK0ihkjGipsVXDysoKv/97v8+Bo0exVZ0CJZSe+OoJxsHRiEgjQEuQ3lPoyFQr47U//BoGowH/8Vf/Awf27ydIBT7whn/yE7zmla/iOTc+la994+sUyuBCSiQejQfcfOtNqGgIQmJxPLR/H7fefju//mu/xqtf/WruuedBLIn97SxkKkt9GTUxejZtmWfx5BKj8RrS5GyabmO0RomAUFDmiurkGqvLJ5lut1keLfPAg/dx6cV76HWmyOZ6rI0U43pMNexT5gavMiyOymvamSfWkUwW9IerbNl1LlOVQx44yqFRn04I1FaSFRmHjvQ5eGKBtbFhYBUr45rRwgqN1wjhIAqCdWRGIW2kU+aMKwtSstJvsE1kcXmVhx4+QFQehECpgNSK6fkttNtTHF9YoDc9xaYpw8GFNc7Y9WQ2z/Y4/9wdTOWKrNXDW4eSinx6C1JqXO3QLU1wFqUnAOBk0BhCCu/aWOc2GLPhccPNxwd6nKo0Bw0bbMFTA8/TBqGPe+g6wnhaPzRROQiRBpnB+wlhIHmCJ4Bt/dEOQQPBY23aTwgRCbFBFQblDUgDRp/2csIpIG/S46RXlFDP5LkoTzs/NliJ4vSvYwTMZC83OW+RerUoJ9Jc7xHBIUVSWnmZ+vbCtInOEnI1kWCDp06WXzGgpIJ1oNBHhHKIuiJETRA5PkY6vZIi30aRtei2Wnz39gd4cP8JlOmiYmLmNl4gdWTgKkqX/N37dsjBRxe56srrufbic3C65MsL36WTKxaq3QAfBq6G//OBv1tvvVUCv6yU+jEhRPKkeaKeqP//VIwx2ltvvfXdwG9cffXV/yi76nsG/kbjhrItkaaNbyqE0EhbIQrJOAhWfWDKQCQjBjCbNvGlz32HP/zLz7LvROAnf/JV7CqhUZr3fvxzHD52krltm7nrzjv53PsVz/iB5/PZr9zD4soaeXeGngns3r0dYzT33nIXV5wzx43NiFmds3V2E7YeJJN2N2JK17zgyjPpTbWIWqKlw4gMLyMOzbhfgZ3Eh7saESw6Buq1PtncDMJXyWOl6DJuJMJLrBtClk9uhg1RlngtCB78yOGVRWSSECzaBCwRhyLESNUM8UoSVYc6DtFZxtqwTz5lsN6RFYoQItYJrPUYkSRfQgQa72jWxpxY6TOu0021KA00FcNxw/JKxDsY2QopUrJvkBKcRGSK2nraOoE5pqVZPrkC41XyXhcRJUYKdPQYG/A6ppuztzQ2BQX4CXBWloqmsYRwavNoq4ai1cIClQ+gcw7efR/Nd28lSMPr/uB3uOYHv4/DX/0y3XaLgR3jq5Q4liotKFsGfTYJT2kUg7qBEJleHaGlYuArRt7ByRXmbJKxbKpGCCVxRrBS9oAkhxGAlBIwKJkS3taZTiGAyHLsuEk+gkWB7Vvm5gqKiZdOZ2YK28qZn9tMXrSRQm2keEXWQZU4kS0m8OSc3bt5yfXX88EPvJ+syGiXOSYTFFJgR0Oe+dwXcHJ5lQcfeIDnvugVEx+niA9Q22ZjSmdlwNjIK17zCi6/6ho++amP89WvfhWVFYQQaKmcynmizlEmI1PJg0NPgDkpJQpB5SxKJflDqANBigQaRYGXELXENz75bgD33ncfxMBzr38+t9x1K0uDNXKd019b5dorruDM885h74OPMBqMKLo9KuXIYqQVBLnRzHZaLJ08TuwYnPPUC6tcvGcP1zz1KTz46F4WFg6hIYGROIJlozER0QKGfQ/ezcWXXMKPv/mt3PL1v2bfo4/hUcQmULZneM1rfpRaGu699z6kTmlg1jmC1uSmYP9jh5mb7rJ9voeSMgF1poVoZWAko+WA8zVSAU2Nr2pUgMx4dm7ZxLYtPfYeXKTIM4rcs7TU55a7DzC0BoJBSUm7nWNdwHmBFkBsyEyHIBrGw4aQabJ2Ngl/c6zWY5aXC7Zt6nB0cY25LfNEaYnU+MEqiobnv+zZ7LvtFkL0FEYxPwWra5Lbbr2dM3dtoRQZgZRAGEOgCWN0OYXUBTH601o5n5pNIhG1McXdMJMmknw11yfBcGryHUjefKeYeqea5NMn2/x3jjm91i0A1n9GmpwnME2wbuIuJ71pCibRhOCw1QDX1Og8x+R5ej3KAJ6IRxpNFK0ElnFK4pykzRLFaQ17TAb06YTFRAadXk7yOlw3sz7tFcaYfnckT79Tvfx6oMf6i5bpfZc5whi0ieRlnLAukxymFwO2qbHVIIWGRKhHQ2w9ouqvYX2FbnVot6fAWTKlyU2GVZFMZLhxIDctom+Y6s5gxi0yucZIVJy9UzHTvY5jxxYYjZdpmhTCpAUpidRMcfTRR1mpAp1WwdFDJxGmgxaSf3Tlf6L+t9Zv/8FH+Ll/+Qa67RalVnivULbm1ddfjZrq4X2BFhHvHFoUeGPprywgRhUzu84j+Ao5FFgRGZoWR5cjOzeX6KYiEwYfBd+5c5Ff+bU/5elXX8rP/cyPsLUtaeIM73rnuzh8/ADtos1n3/sOpvPXkvV28q2vfBM10yNzmgvO3IHvtvjWlz7J06/cibr7EGfN9dgxnVHHLv2RxYrIjh3bcaLBjQRKeqpBg0Ewv2WGed2hP1hjdVyjdUlwkbZIMlKZtakaxyhY2t1pnK2RWZLntzPozXRwfkQmS7SS1IMluu0eTSOwTaQ91UN4T2OHuBDwIfnEGS3IMsUZ85s4cGCBTEiIGhs9sRqy88IzOHB3xerSUgIUtCJmAaMqBAGZpbT5TtuwFsbEaJLNgoNSGFo+iQsHgz5+XNNogciTh4mzDVIpMtVGyosYj08gwoAYJZnJiUKDbMgQ/OavfZ6yl9Od38z13zdi97kQRCAIj4wy9TJaQpxneeX1dLqfRutBkggLv8EWdiEgpULKGdYGrwE1B8DK2nMYDivW1vbQuB5T+TIKKDJNVgqe/KSzec5zzuSBB1cwmeKFLzgTgL17TyZQVmh0yFLvAMzP9vjN3/11VCtDh0Cn1aYsC4pWC62LSZjYhD1EZFyNGayu0cSA0BoZLTlQttpMzZaEUWDx+GEuveJcCAJEmNyDBUKlsCOFASdoQkC5wMUXX8GbfvyfcGDfI7znr96JUgpva8qsjRZp6JFpjZr4HCoxCRvRBhclHkMlPJmzIBXeNxOmlEv+h1guOPtsztl9Lu97z3u594EH6E3P4HwgzyUfeM97eeVLX8bVV17OF7/8eYRUNN4jfERqxXjcIBtHVmaIKKlF5OCRw3zx81/gla9/HRdccCF3PnA7NgY67Q7O2RSWIpPVix8NkZ3N1MEzN6XJhKCTg4xZknIHS2eqQ3tqisHeh3AeBtFy1z0PceklFzLTm2OuN4VzBYNszGp/DQCJxluPbnmU1CilkK7mxCN3M/aBvJ1jLFiVc3J1xPxsycrCMlOtNlIL6rBGbSvWhhVRKvLckMmUWBxI8nOpBI3zdKc7jILjvsNLSKf4yGe+wwuefSFSR5yQ4ANlewqncw49fJSp69rMzrU4vrDGd26+mbf99JvpxUDMC6QIuJACaoxpgxQYKQhCo3U2WY8nSod4OvgmNvC4dUXMuhdeAgrXmW2ceszGA/4x9OXx7L705z9gbzJR1RA9QoQkX/UBKTXRiuT3Gz2CgPAaokJJi9Qq2ZdEndRh64m8Uk1UMpMgsSARKZMjPb/3gJ8MOJiwnCPGZKdUGMnYlBA8wTtC8AhfUw1HDFf7xCjQWXpPZWbodLoIpUHK5J0MKJWDSt70ZAIhDFkweFshdI53DU3jETESfCSqpN4wQiUJv9HIeoTOFM62qFQFUSKFYfpZm5ieeZhb7t3LuBFEnaFNxFqoh5a8TG+viZLBYEARHJdecgH3P7SfZz7rai69dDcf+vji/3Dd/T+sftkY89atW7c27XZ7JISI/+OHPFFP1P+4YoxiOBy2jh079tZJqN9//MeO/56BP5VpojQE6xFSIazD+Zqms4t/+wd/wbVXXcMb3/gSCjcGEXn0+Jg//8v3MzUzz9e+9g0WTxzm3/zKW3jo4RX++lNfYqadYb3g8nPOQncE3/r0V2nqMTu3b+bokT5XXnEuV5w9T1CCsY3IaHjBJWeTieTZ1i4ysh6Mxw2NMGTTBegcVEQERcgVRneJMdIWgnq8RNMMEEpSrfWZ73TpzHVRWLSSINs0LuKjZDD2lHkPyCCOicFRZiJ5hxmFUx4z2UArLRk4T8xydNZGAbKBXAMyYmMgisBCf8CWM2ZpZQVFpoh4FhcGzM/O0mkbVod9ltcsJu8wrhum5nu0OosMxjXUFcposkwhVZqyammovEXJgHOeICKNbZAqRymNUBE/toxXBxRGIn1EqZTp5MYNuhUp2hLrG6xvGFWSsBxxvgYCVVOlYAMPTZUAOC0FXnp0lFzyvOdy2StfwWPfvY1MS570o2lCvfDggwTboJWhV3Soqop1YCBmCbQqxyMO6shyKKi9x2iN94KWicR2G5GVDMY1eUyplI0ApTWFd1Q+fU9ZS9ZYcuMxmSd6kNYjhSAPAak0RTaFrPo466i9xYWGbtHiyiv2wFf/FqMM81vPIDPZJMCBjX/lhpTxlBxASIHJNC9+yUsoTMbXv/55RmsL5FXB1FTJk65/CXNnXsB/+qM/YNdUOZkGJraGFBIdJZkqUDLAaMBll17BD772Ndx9912870//jOlWSYiOgEfLnFwKWrUl92MyNYWNlugDWkqkjchRHyVBaoG3HmUDeZbjG58AJBHBt8mVJCpFt2hz1z23c+Pffp3nvOh6OmWXj3/6kywtHOWSiy/jB37gB5Em5zNf+DyDtTXyqQ4hJnlv1Yz5uX/5s+zctpUPv+/93HH3nXSN5KkveR6v+dEfJcsLbvnGjTQNVMGhyxqJwmqFwBNFQERJKzd0t07xlb/5HNde9xze+Laf5eD+Rzlx9Cjbd5zB9JYzePDAAb757e9iyi5SanKh8SSpZ+0NSgT2PnqAzXOXkSmVgBCtkUCm28gG+v0VXOORmaKOEhUFRMtMXrBrU8b9j4xZHUce2n+cnXNTnH/OFqTOsU1kYTRi9MCYxT7QOFwICOUYNjUFGqUzgnO02iXeOSAgVUY19KhZzXj0/2Hvv8NtS+/6TvDzxhX23ifffG8llUqlUkbZIipgskimbYONMTY2jxkbrHbb7Z5p7LbBHtzPGMyYBszYAhMsQCALsAIoo5xVUkmqUuWqWzedsM8OK7xp/njXPueWJNOa9oyFe+p99KjuCXvtddZe73p/7/f3DUuEjwg8dD3Enmpcs3PhLFc+WZBEviZbk5JJ1fHgZx/g8GBOGFms1tiiBASdazA4ZMzZikiOvP1yaFuWHSnCUP/qzIBMAZLJoNaQSuuTz8bPyMdJd79QxiIf97UYhO6fzxLMHecs/VkxC1Mkrw1SDgEfK8lMwossje4P94jdb6GL2gABAABJREFUAiUEpihRpQFlEMJkUC9n0iGSyNLgAdg7Oqc0AJjiuI+fYcZsFi/kcYIfAoTK7y+O2I/icRuIVfF/xJCUK3g1A/6QBsJzGhiKw3WJZP+cAdw0RqCkzRsCEaliJIUN0vYZYoy4vmXvyiXa5hDnenz0lEXN2sYGWkJZW1wnMtjP4NEjLarUKJMwSnL1mmA2nxG9Q8eUQdU+MBpvMto+xcRCjCOuPHZA49xwTZ4YfxrGf/83vpOJSqjoiElmCa6QLJoGlSwbkywpTyIR3CFRSaaHB5Rnn060Y+TygEBCFyd49a/9Nu997yf5Oz/6g7z46dv4ZcNSb/PvfvVXmYwsH//0J3n1//ZqfuCvfyf3Xr7Ge9/7HupxzYXtCd/2Vc/hgbvuQk6u8ZRn3MEHP3M3t99wgvMXdnBdTz0pqWzJd33VV2DrhHIBeoUbl+wdNrS9QEdLoUDLxEYNVakxpseqBbJoUcIhombqclIkMSAKhVGwtbWWMyS6iDFl3miiiFFlWw1domWgUiMmdoMkE7P+AC0GhrC0NM0SkaAqDUYr1tdqTm5O6FyHFAZpCkiBsNijv9rQtAt6F7FS0omWKo2JocqMsCQw2tK2oGWJ7hekKEhCEkRCCkVEIlXKoJIAJUEYgxCRQpWk9DQ++O6f5TnP/xFG4yk+ONrlHKsjJInrs7z7bW/9UbY2s7/e7/3HT/K7r/kEMsnMFAJi3GB5+Nc4ecMvQCwwYh8lljRth9Iwqgu6NuJDQFmFsRWhGcAe4REhHzuGQCAgpEAXmsmkZL7suOXmLf7Mi29AKcG1vYZf+42P8e9++YNkpZ0DoYcwAnjGHbczGVX0sWNUVozWJhTFiJxOOviECcXKQ3Y0HnPuhhu4OD+kkJYazaQs2T65yXi9ZBlbTp49zaMPPYStNijGBiSYskBoRec7RFJYneiCY0Nrvv8H/xq6rvmFn/85mrbBa4mQkS46dN8zrguUSjmQAHAhsGxzI9m5JSSLjznIJREZFRUmCdTgObyMnvF4QlFUTK/uYcqChfP03iGrEtt5rjx2idHGOj2RkKAQgkYkUpDIZHEGtEhYaRAGuvmSvWvXMjPSrGwmNE07w7luYEtJhNZcfORhbrnjK7jxwk1MZ7toO8KFltKCDx7n4JYn30oyhr1Fi9AaLUoWTvLxz97LV7/wNGtFSdIddTGmqCums326LuaGY+9JIZFkT6or4mKfyXiEHY0RRHov+NzFQzbHmqc/4yaK0RqfvfsBlktFaRRCgnMJKUGmiC4yY917R1mU2ZfZZz/Fzz6wzw1nN5G6ZjHzFFJhREVMjmuPPUpdbzFvWgiBjUnF9skN7r3/Mpcu7bFx4xkSmtC7XIEojREa5yMYjTIWgczN/pWEdsD7ViX6CpYTaQCkBWSvY3m0Zj9+XFfTHPn2HX/9+fYmsCIEhCOw+3gkiMNuQeSGbAwdKTmkFMQgiYi8z1SClHL6bZI5mV3FTNQg+Xys4IkhkIjZTiCp/G5DuExWQSiizHMRMZD6lMogpwigcoWj0hDBFhNRCkZrkXo7Bx+F4PHeIxBIY0gpEHyL9x3e9USfIKQcQmMNjesxZUVVreWauxojy0h0nugDMSR8jPl5DyhhKNQEJXp63ZIIaLNGn1pKa3jBc5/M6ZM17/rAPTx27YAz6zU762uc3Fbs7sNktItUDV5GooRRVSOC4Kte+nW0s2sDkeC/jfHhD394TSn1l0+fPt2fPHly98t9Pk+M//ON0WjUANsXL178yx/+8Id/5k+S/X7JwN8ffOgKjz32Sf7Cd38l2zqCcKSNs7z6P7yFj975Ce699z4+fe9n+Ef/449QyJJX//brODxskYVmc1RxslL81r/7t/RzxenxmMtNz85kxLOefAolLMVGZH235eufdyuPPnaZMzt1BrYSjOr1XKCJBV2z4HB2Das20AaKmEilovGDzMtn6vKsWSCVHJLXIstuSWEURhas1bkTooSk6xrQAg0YoamqMT0dbecYmQK0RqREQTZqFngoRU41Q4GSBKOIfULGSJckk3JC3+6jrEPJkkqNiA6a2SFVWbJoEqUt0NGjUyT2PaOq4nAWiS5QWktQBluU9GEfZCL4js55qlSy1/X0MdLFQAFHEJVVCllXYLN8IrmISgolCqJX+N6D0KjCEmT2ndMp5SK2NFTjEbO9Pi9wztGnvJD2XQeAjBEdwSmFO5hy5rYn8/RXvBylFbOrV/njX/gl3vuvfx4hBdE5igRURZbHACKu0n0dB0hitshGxTR04yVSKtoAsyiY6BKABaCFoAZGGc2m7B2h99TWo2YziGCtAXJAyOFoQiciISp8n82Gt9dr3LLn7G23AbCxsYHR9jq21HFIwrF/Wf5KSUVMmQlkreHrv+Eb+LqXfR1Xrz5KlCBlxb333su/+tl/iYoJWY5xMZL6iNRgjEaVhp5A1/ec2djiVX/vH1CUJXc8+Sn8v/79v88yRiEG37KShx6+n5/+X3+K8dqE4AMhBBrXU62N+Lv/09/nR3uXmQ9DYlcfc8fbByiM4bd/97W8+Y/eQl2NEQ46Z0jViJ/4qX+OLkue89zn8s9e8BNZUhE8+9MDXvMfXsOb/+gt2HJMShEvBEkoXIp89EMf5tk/+AP8337iH3O4v4+WmtF4zNW9Pf7tq3+J17/p96nqCalTJJkZSZvb28gEMiWCVCQ/Y+kMvS5545vfwJ0f/zjPfP6z0aMJn3jgQS7+8TtxvWO8fZaQIkIpAgKpTWY/pkhyPWujExQmCzsLY3GuxyiQsqAeSaKAbrGPn3dZPqo8MVh613H+zElU9zlaXyB1xa23nUQjiN5wefcyJMVOVfJIWoKGru/oukilHGvjGoTC+RY9yCw8iWXXMS4LDvuWSaGJeLQsQCqkEVgKEmrwrBN0naOqKk5s9tx1+Spv/aN38crveFkGhZxDSoO1Re7aBk+e0Kvy9Fjqm4jZ+0YIIplBg9fE6WVmiwPWz5wlqRIl1eCNwxGYNuSArO70o2f9ypj6+nmwAveOTKuTAKFZ8Q5JESWGhLiUSMHj+wxayhQxBIKwFPUWcuP0UKTmDjopkrg+tY6hGA8cxxqtzu06uc2qTj+ap4IvUq/n31htBo62CDyuuF/JgIHBG+foQTAAgMdMgug9wcfMpJCKhCBJiV4xhXPsR2b3aiBFCmm5cNNNtMsGISV955hNr7Gcz5kv5iQSo9EEoQxGCmRVobRCKok1JdrU2LJmeu0aV65cJcQFygSSj2i1RrN3jcv7D/Ppi3dh3vhGvuElT0MUhifGn45RlhKlJ6Byc4eQIAWsViSxIMRJTlMkomRFQvLPfv4P+Zqv8XzX97yc0huilbz30/fxu7//VkZW8z//+E/yL/7h3+AZL34uv/zqN3LPffewtnOSNWnZGFk+/M7389CVKUVl6ZaO57zwJuxEYKOm93Oe/bRz1BZu3CoxKlHZhFAj+gQ9c3wLSq7T+9wwNYWknTYknVCVgX5BlyIhaupQ0sUDopBIH7NcMZY4qZEYwjzSxw5VqGxfQMyNVhLEnk5LKh2wWmJtQdc5Yoy0XU8KEHwkhojrPaFvkUIRokEZzbJtOFw0TEyNSyCEQnQ9+1cvY4JCdwElBV5ndpmOAldIuhhYE9l+pQuBZbeHEQmpJygl0UagjMIrnYM+EKQoM2vFWnwzZ2OywXSx+pQFITjaxZxi8FQNAeq1ddrlgr/xt36Tsye2+cG/+ly+8Zvv4B1veTb/4XfeT+89KQZ8CBAN9dbHaPa/gsr2FCbQ90vGdcXmRNHYyN50QXKSJB3eZbDPhwWFzo1VHyMh+UGGqyDAvQ9OedX/+E588pSiwIWO6fQaMXmUUbjBWkEOvYIXveRF9H7B+njM+tY21owGP7NIDAIhFIlBySEkShte+mdfweceuI+ks691aS1rY8vEWsanTnL+5lt4w+t+nfM337FavvA+0fkcIqBN9q61IfK9f/kvcfOTbuaXf/nV3HXP3TlMRAjwkh7FxFqMHEIVpEIKhTElweVmkRaGEIYGjc7rQoiBNDDSw2BMeOnyFZaLJTff9iT8O9+CnRRUwuDbjvWy4tTZU9z30IMgsiJBJkcpBb22zMISVZvszSgAFyFGnvm8r+DStatcu/oYRmSg0ercJBp2DUgt2V/Mec9b/oDv+q4/x7//5V9EC48xWZIdk0MXmq/6+m/kvR/5OIs2ompJ6QRBKnCCz3zuAZ57x5NRUqNTYlxWSCFZtIEFguRalG4RyZA6j4gKE5ecP7vN1s5JHruyz8b2Njc96SyztuFDdz/M4UIya/JnpyQDeBmzvUkpKQpNs2zpOkdZGmLokdpweNByUFo2CsvVy3POnypIrieEBVceuIdiPOLsrWeJfZbRn92u2D8Y8663v5Mn/eW/gFGJFHIbU6Lw3iNNiSonQ0hYDkpDreS46UhJ8rhFXwyqhiSPf36kdlgFcKy87D4PvBtW78czAK9rOg5N0GNCgMjHFcMrkySG3AQWMtJ3LdgaoQY/0BSyPYoE4QNJQIwdhJ4UPSgLqkBKndl2Qg41lhyarIFVQnBKKy3CivM3hPAJQJgjL8BVIjBq2L9GBaUesMp0XT3F4JOc16WUsr81QIwBfE+xnNO3c/qDR+iFIQxNEVKib5aUdcFkY4foArEPWCFJMaCNRQSB63tkkdjeOUmzbJiLGTeeN2xNTvDZz3wGQcTIDqU0J08+yo/8wA8jo2c6E1y8uuT82jpBRUaTMf7wUg5O+W9nnBZCmNFotPxyn8gT4/+8Y2CS1mQPyf9y4O9Xf/W32b80ZTvM+ebv/iYmkzU+dvdlXvPrv8NosoPUmo+8/xO89t/+b1x42vP46AfvolirCU3Phc2K0UgQQgVmzou/4ibuvniVdVNQWIkLHdIbhM5x4bdeOIPvPfMONBHlm+wrFiU6rYGWzNsmJwh1kq6b0/aQbEkQAh9bogDXHDD0RohIDrsenTpqI5m6nsW8o6wMQQqc75kvO0aiRBHpQ6JfTimUIHrPIiW0tIjYI5PHS4P3S8pRiQspP7Qj+NDgpcSgCX3E1hohctJeWWQZZ5KaTghakehSIHTgO4FYmfdHj4s5xVWEiEgJpQ0uJZoIfZ+9barColTuCslILvBlykEUUaCVyYmUWiBkh5LgfYCgqRCIEBnpgpg89WRjWHAM3rXZDiJFZMgdqDwEWmikVFy8805+5pu+jVFlqYVCb2yjQ6QqKhZd9jDRSTApamzXAzmtFMhdUCTWqiytEYHv/ZV/x7k77sDUFYvdPT715rfw8f8ls1UfWV+jXZuwIQX3jMd8/f0P8v5zZ7ly6gyT7W3G43JgOGWqeRSBZDWzZc/0cMG6UoQAwrWsre1w8803A1AUNsvhxOOBhM8fRyDBCpOQeSG2suTUqQv80Tveyj333cd8MePCzTcz3Vtgiyof12p86jFWcXp7h3s+9xAuJYqq4r0feD9RZk+54CM+eLSWhOhI0bC7d43gEr6HgKJxPfc+9Ahv+L0/IDiHlHkTZZTOi7OCXPQIhIpcurYLCBwBExU+BhoXsbrgn/3kT/H0p9/Obbfdymh9jWuXrvK5e+/j/ocfAaXpXMeEMYbs21GXNW9405u4/97P8bUv/zrOnToNUfDwYxd559vfwX0P3gdqALxS5MbTO7jlIRduuDF3uEnImD12KNYZFTXbOyfZGtU8+ban8t53/zGPXd5FlSOqjQnaGpIyKJNZrsSIipG1QnHLDRd42lNuxSg1dFdD7gorSfCe2kqSGNFsnuJwsWRo0YJKdN4jU8Mdt9/AAw9NGStDu+jo+wCpxHUlXX+NnZ0RxaUpfSeoTEXwLTYpYswlZIiRftmSrEZJQaVNNouPgS5ElM5myrKwgEQpS5SJIAJalyymSyZac2p7g8s7DZ/4xF287OXPZmP9DM732EJkaZfzmOKYmZdIg0dd7myrlNl/UWa5t3aexZVH6bsFo52TCJnZg2IonJMYEvFSPo5IIjNwxLF65fHF7mpSXP/fYb6kfKwVOzbGnJYrQg7akDJ3tqPMbBk5fA4ZFBsYgUcKXgkiHZ2DWCXW/X88VgzF616cMpi3msdfLN04pjQwFNN177/yKxw8C3MfO4fhpZ6YXP4dkeUxKcTBKiCbXiNjligHRRASnyTCVDjXgZRsbJ1AS0HbLFh2DU3f43qH63oCCWUsxpRYmzv7SkuUzgE+B7sHLJZLlPRo5ahPXKDplrzomc/id978XiZbJTp8wZ/5xPhyjZSIwSGsguCzVD12XOktf/hHH+W7vuNm1k1EuhKnA7/9lk/yqQeucfd9v80jV/f5ob/4Upa94tX//nVEJK0sueX0Nh9+1x/zwEMX+cT7P8JkfZuiCXzN82/h5HbFom3Z2pB804uexMVHd7n17Al0FxkVFt1F+maPp54do6oxQQpiaLLHmipAKHo3x3ULko74psckxcR0gKY20PceM1rDR03TJJQqSKZAyIboA7aICBuIfSTQYyxoI4gx0KVEwGK0JSwPiSGiTcne/j7KCC7v77J9doSQgvWtmt71LJtAVRas7ayzbLLH1Lzt2es7rs0WBASmMLiuJSjBou0xwjBPLocNiUAnNCkIok9EPCH0KKuYzWY0h3PKUYEKAaMUrXOERY8sffZx6x2tktD09H2Pkoo+OJzLE807x2y5j1VbaJVNC5KQtCGHhN354UvcHR+hEj3//Ke/i1d+59N5w3/6JFdm+8SUUGrK9o3/gtnun8X3AuMXRJtTLwmJn/v5P89tt5+iqizXrs15wxs/xY//k9dx9ub/GZ1qUlj5lEr63iNTylYoWiMHvz0pFUmBpCBKCz4gRfZFq7TEl7lZYErD2sYmOzsnMmAlhgaTUkjFAEJk0CH3ehIvfvGLOdzd5U1/9GZEalA6UglYKwte+LXfyrs/8EEuX7mS2flSQYpIZSBCqWuiDoTe8We/7qX82W/+Vv7g917P77/utYxNiXMdRliWfUJYCb6nHI1BpqMgNt+34Ob0KaJVzH58PmJQKBFA+bxuioQESqF54OEH+eTHP8Yrv+s7uXTpMd7yrneRUmS8NuFv/a2/hTSGD37ggxipWJKTR8fRsD2Z8B3f9q285+1v4+ErV3CxZ2ILvvF7voeXfPXX8O73voeLjz6cQRrvSDHR9XHwoA4QAptb29z9ifexeeI0//Af/E+86x1v4P57H2ZUWU6fu4WnPe8lfO7RSzz2yC5FXWMGn2chDL1PPHrpCptrFXc8+QaSTygvkWiMaRGiZrGf6PsZQnhc8CQvGCfB1rjk/EnFfY8csruneeCBiE6G+d4cpUaMrGRr3bI7LTiYeUyS+NjncEBpCCIHWIzG2ScaFVl4z+HMs7U25rHdKSdPb6NsIPVLNJ6dUxu84uVfxefu/DhCJSa14OSJMQ/ffz93330Pt992EyEEqrICBL1vKEpLCj4z2oTIDe7oOfIOgcHTRwws+YHFJ0QOASMNEtv/XCGx+v719UA+hvj8bx/9/ufbmwyvGrz3pDJDUzWndQvX4/spvpkTgkOVI4rJWgb0lEWYGigBDUKTGbSwcibOzc/8niIJktSQ8p4wqwtWYqWUsU7y3ExCsgoxQarh+5GU6X/5MkVglao7BB7mEi3XUHKY20YXBDSjzQmF96Q05Conj2uXdItDRFC0Xcvi4kOk6FApIbVFKktRVvQOJtUY33f0wgMaKRPWGAoLtriNSxcvsr+ckZY9WoFIkSAMqu9wyjLa2Wb3SsOiKUjCQvpvqrEpAfGEvPeJ8f/LIcQRfflPDI750j3+Fh0bO9tw8BifedtbufC85/Ga1/wnUvBIXdKLyFPuuIX7p46LH3wvt92wyWcfWOC15Vm3XeApN24y6yN9pzGm4uSJnlHYotoc4ZOnd4bDGFHWQDFGmh5tJZWQxNASXESbdSItIXUsuoCwlhAFEZf5YylSYNgcGeZdz4FvIAnqKkegHoZIDD2jyQSqgsqMKUeW2XxOSIGtesL2iRPs7l3K3RSdEAQmGyNcCCyWkRg1KUZKawgIGjf4tISO4JYEJ+mCpyoFUoMyhqKqCEiKeo35vKF1PdFlf6tlCGgJoLBaIYMnek/vW3q3PGLp9M7hjUYmhYniyLsjxh4hJK5z1DEwLg1GJqKKRJEQMdCHhE9jiqJEyT2c70i9IHYVYlwyKkoEWXZU1BW6k8TokSKiQ6IYYt8D4FKAqNBGY6XMAQhIUjt4Ihaapu+zx5QQ2CTZGuXkueAGADEmrAClsv+Gi3DxU5/hU6//A6SAF/zgX+XFf/l76T/7GfjJf4pUkk5K5jExHxb81igOlWHZe1onKOosuzbWEAK4rkeSUFYRXY9VmtAteeGL/gw7J04CA6wxMJiuhzg+byLlvt5RotZKSiBABZSU3Pbk27jvgfsp63XQhs1xyYlqjLZAChmPE/B1r3gZ73n/Bzh9cpved/zGb/wqiZyOK0iE4FFaoLWAlE0u7KQEq8AnRnVNu1jyG6/59ygpAUX0CSs1PjjQeVNVRUM0Hsw6N50/ByohvWa0OWZjcx0hJJXSzA7nvO8jH8YoSQK0Kbhw7hxBePrUs1bVGKEgCoKU1BOLFpJ3ve2tyBSRStClgLaaO57xVOaLJYXRlLVia1Rx7vZbeOrTnkxMS0TK98reYcNotIYd1QjveNELXsJT73g6Fy48iQ9++MN89nOfASUwVcWi7ZBJUirJaFRx0w03ctO5U2xtTFCDPHPAZwCJSBItEqUGHyXleJN6p+dwekCaXSOgib0jBk1UkbKUdM0hUp4giBlR9yy8o1l6Fk1PVRcseo+UkmQVRVHhQiANxLaud0hrED5Dm4XR9C6g6xFaykG64QGJFBYQBB/oezg4cEzGBZVRbG+W7F495CMfuZOv/qodhAgUZUVKMt8L0Q9+k1liFVNOpE0Cosp24QSBEtm3zm6fREuF0nlzpZIBZN6sDcEvK5ArpRWf7lg4u7q90+CXFwe58BfMi5hZqGHAArMcWZJ0TqKTqFysDozAKCRKCHTwmQUsJBgzSIOH4x6xbvMGbfVejwfs/qTaafA4vK53f0REHL53xPQTGYhcfZk5AccAZxp+J7NTjgNLEBplZX72pggp+9wgs9w5y28yGChkDgpFSUIUoDSVsYSupes7XOsyS3VcUimBb3ui65kt5jTO0Xc9MXoKq2Bco2yJMmNMWSOuPEY3n3Kwv8+73vF2XvyVL+Erv3GLux66zOfuupMzZ7b+hOv0xPivOe7dT8TpjKfeYtCpI4ZEX23w2t/8Q37v9X/EXXc9wt951V/jXBW50jp+7z++EVJClYa7P/pB3rTdIfwmD9/9IKXWjMuCr3jyOarNiv3LF3n6LZtsb4/oDxsunFhjcy1vKnenc3ZGgo0bBNODK8j1CVu1yQy3csSi10gsMuaGYKs8StRD6ralZUZlLNErwmLBqe1t9g+mKO8ppCG1Pbaw9DiSV1SmGLgxnhoBISArTSplVqqhcAKijwhhEapE1BKrOjwNylRUumK/PyT6nqqsCJ3DCkHnPScmO0id64jUKaTWlKNNbrllxMc++TDJ9WRrDUWpFI33WGk4DAGrsxl9FIkUA+VogjAKqQSuaVBREyiRHvoISUjmAjathuRJMuFkogiO1HmCCHjZZaYN0DcNk0JDTEQRKYQiqMRXvfgC3/nKp/OpT13BdR3f95deAMDdd12ilIqiKFk0uabr3A1ce/gHGa39KnPrsK4n4nE+8JlPX+KP3vQpQoD/7vtewF/9gT/D5+69wi//yvuRRa5xAQg9zmc1RSKvu6RIYUwOU4oR0Gip6ELEe48LPZvjNSDXarUt2dnaGBJw8xDqek62HJ6J2cM1yoSxmq//xm/kKbc/lQfu/wQpRDY3t9naOcN7P/xR3vPBd3F+cx3nPLGPGA1K5gZRwCED3HbjTXz3f/fnsYVmsxrzA9/7fWhdIFQACkKK/OEb34A0AREjznt88NSTEa985Xfw1Xu7hKGp1DtHFAIhFSFG5rMp73zfe1BoEJHgFC4l/s2/+Xluve1W/vaP/hjf+M3fymI+48yZs5w9f4E3vOkNvPM978mejdGRkqRTirMnTvDN3/JNfP0rXsYnPvZRFrMZT771Vm5/5jN44JFHec1vvgZhK4J3OBGIAaqNMZqQQxMEGB2Ia5u86a1v4oH77ueZz3kmT3n2i0EWHEynfOTOj7J7uMTWGwg0KkmSzmtlEpK+72mWDVJokB6hFDYFpDekcp04VvTdjCQVSZQk0RCjRIWeG05u4ZefpalrZp3kObdvccutO4Dl0tVrPHLV8+CDu3nN9YE2BOKyw9aGsqhxfTekuiZCTEQPvc+M3LIcWL8xA4S61GhVkMKcRESGLG9frxJXtOVjH/gY586dRIlEaUuk1NlHMOXPOMnVaj7UCdepFlYwSlQy24U4T3N4DVuXqHKUQcAh3GK17h/XEgNjb9gnryTBK5VPZvtf1+gk5ubfkWIiIYcEXKQiekcMXX6WRk+KkZBynW4nO7mBPdgb5Am1qlYkImVrmMczEcXj6y7BSl/Byq4kg4Ti+GfXXZOVqfHR948v22BfnP2SxeAGnN9ZIJUgpszAzITGbC+U4uqJknIdKQSmqDC2ZrIFKThc27CcTQnR0/eO+eEB89kefegxylCVI6wxCCERYp0kl6jCZP9yqSl3rzLjgPsf2eQ3fu//yl/41n/CiclFCqW5un/A1W7Oh97/Pp532w7SPGFl8sR4YvwfGV8y8NfJEu8bjK1omjl/+Luv4cMffojxzoRHri04v1VxYSNQjWvaLmFsx9Nvu4Gmg6LW1Nrig+DKYombz9jeKanKAuUiLgkshq3xFglPEgJnLGGg5Pu+YzKu6YMixcT6ZJ1lu6DzjsKW1IVmrdTMfGCxf8CarNFW4EUGsHTwrK1JjDLMl4mmbRnVm2xu1Cij6OY9bTNle3sHP9vl5MgwriZUlaVrlxSjitHaOh/9xL3ZlFtrhLYEl81VN9fXCX0EG0lSsDHeBu/p5ruURpC0YH9/TpIWKQRWKZbLfaSUWBFYW6vQhWV375C6kKhaE+aRqrY00YFR0GfPvthm9qMpDD5EQsp+W8kIlBCoCCYmQgwQAzE4fGfoAxhhkFHimsC0X+CSYrSzifSC/nCBNuTrT6BznhKJd/0Qtw4uZgq4lHknrVxAR4GwgtTMMWVBmwLOeaSxmTGooBwkmasEUgGUxmZZjkzoKPn9f/q/Um5tUKxvcOs3XuHkk25hFTfvY+6oyZRwg59LILLbzNmpRqQoMMZQ1kUGQXtP27eMqpKi0CxnUyaF5bYn387zvvKrsBevDHe1+CKgwheOBEghiSnTvYQcAICkSElx08238V3fucnlK49hrMVay5lTW1S2JA4Sw5ACz3/+C/mhv/4DvPlNb6aoLeV4gpCJ2DsqC13nskwweKQoCaEjhEDyLSlbQjGpLCc3z9OHniAlPuZFXctsNi6koJQFKEHbNkjRI2LCloGRk8R6RCkh4DFqRAhQ1JvQLnKXcpRBbptAaXAuIJXGp4TcGpFSwtiCui5xrqHQmtgHXBcRp07Tp8B4POHJNzyJF37t11CMauhbkqr5xKfv4jN33c1obYMUJadPjXjWs5+OlIG1ieblL/tKnv+CZ3Jtb5e2F4SUGI1GrI9HbIxHaKVIyZPSAMYNBYyU+d6IQFAFWkOBYxISfmMHd/oWOjEj+gYCaF3ihaZF8bn9nnO7Dcov6GXN0jmcGrHfeHAK72bZqNlD67I5uDQKFyMiQuw81gpMYXESukXLRjki+GzuHLuG0M2pJztISgql6Vyg67LPpzWe86dG7O0lPvjhz/DUp97OiRMnEbJGCoOQPV13iBWTXDDGYQYJiZSSgBw2nrk0DkmAkRghkWmQbRDyh5ntCBEyDV3yPORQEqbH3fHHRa+UKv88rjaNQ/HruwHckrnDPMwlOfxuZtolUIqQ8mYnicE7T4EYNuC59h6kzGIlx1mB8lx3LgOol1ZPEb5w3oohvTeJI6Ln6rfzq+ORPCYXw2IABo9l/isFSWb95ebEEet3YP4lBELoHAxCPAIFj44xXLsYItKUECKRiJbkZpnMAT1J6SPrwRgTCIUpaybKYPqOsqxYLma07YLk89+2tT6hLDVGK65cMTTykE+87x188sPvZ7m3RxfmbJ29MZvlPzH+VIz/xy/8FpcfvMw//fEf5hl33IRUng/ds89vvfb3UUg++um7+Yl/+E/4B//zj/Hrv/3HPHjxMVSCQjgunN7gyqOHtMtHeclzb+Vj91/izFrJWiWJvacylq7pedqFbbQQdMDVaUehAtaWoBNOFBRF9qWb9x0y6MxGCgGRHEGAJ9B1njDfzc3IlGi9I2qJigmh4PL+LjFETKEHE/uA6j2FNXRtoMcfmXi0DCFPXUtKnmXIvmHKGpLMDEEfPYWVJG+J0VEKhRYRnbK9Rww9CY3QJjP5U8L1ESVs3ojqlGWRKvuAKRGRRhO8Z7H0HHTZDkMbjVJ5/igpseOKoPMz1CaJkYZW5kZewmUmuSgxIjNsSmWJQlNUI0ajCfudxzsPMeZaCwhdh7aZRFMIDUqhQs/+/oKn3HaSl7/idpSSXL0y49/9wnv4xZ9+G/jExnhC1yzp2012r/xfABApkMhBXdkTMvLPf+KNnDtZU9UFX/l1T+HWW08g0ga7l3+Y8+ffAkMwx6qpkiI4b+m7gEATnCKmMHQiEotW0S8VUkisUvhWM5lMAFjb2BgY2Ss1xH+mPhoaKjl8RFFWJbc95TaedOut3PvgPdx930O87Y1voFnM2BzvYMqCKCRoRUiOsjJMRjUHS8e8aXjGc56LKWr29g945vOfl0MJhCQJT/CS+XLO+973Ppp+RhIWnyKXd/eYzWY8+3nPy89rsfJpjUPjJpJQPHr5In/8kQ+QkgY8XsISwUPTA1719/4+3/Jt38oLnvc8zl44z5VLl/id330tb3nnO2mdgyRYk2rwC4S7PnUXf+9V/wN/58f+Ds998YvQSbFsWn7nt1/Pa17zGyy7ltKMMU6wUZXIQrK5dYIUBZEsv+xSwsttxifXuDTdY/vyJdQVyd2fu4+kLLoqqCYboEBaTdIaIbL3bZE8505vccdTbkUMAGwUEaNzOFkSiiDGxHSC5XJBCtfQQ5x96wN1CbfdcJbHLs8Z6xpjBL6JeXVMmuimbG+OuNocoKxCNYrYC0QpEDbb3oS2J0qBVCoHr+jEPDhKoXNYobRIa0FAUdT0XEEYiFLh2o6TJza4em2Pu++7lxdducSZ0+dwvkepDCI75zEmIqQ6asLJAYhOK0sRmcMNJZIwmzK99BDaSsrJzZk1j4cgsv+xIHseDwy5KI5v4pWf7+c3FVfNz9W/09CYlEPjOcVICD3S+5ziG2X+nIzNa/1QcYTBj1kKkS2P5DGAmCf8cWPy8eNPanaufnad5PU6oP6L7WuOjyKyBBjI5qn5OELlEMPcHE741OGDRypNEoP6JgRADSoIN7B/EyFFdFkx1pa2banGgs2tE0gis9mU6eyAw/nsyJbF2AJR1nTSoLYLtK0oq4IrUjJrIs952tuoqzlFmdja3sKHOedPbvDr/+H3OPFj34f6E/ZsT4wnxhPjPz++ZOCvp6MG2phoE9jxSariErfdcIbCTBnLwGEnqPuGUkj2gVFRs1F6Zp3nyqLjYNpxcLDHyIwwesKVxSFl1CwXy1ysiZJmnpBFRBYGHMxiy/JgyukdRZRzgof9rgMdmLaOcWERIYCHFsPCefYbT+cCTR9Q0rPoAZdYtoHDZYPQmo3YI9YNbd+x6Dz7s47L0xkxeapCMV127Gydol00pMWMU1riQ09yCa0lLkR8TAgH+/uHlKZEJNBlyWyxoCoty9ajZg5rRvTNAdF7RMoeKYicCNp0HWEaqEY1vQ/46DHGggeLQqEJZMN+azS1sSx9S+9dpmRLNZjH93QOvPKoFKgriVAKbTWpzZHxSTqsUpTFhKrSbG5tEVzg8GA+sAcDJjrwgaQ0PkT6vsvyYIbkKJcotcClQBklVklE8KiUSAczQvTY4BFkg9dFFLh+6MwMnfEsLZQIoZHEnLhWlPwPb/kDRpsbAHzkdW/gk7/5W3wtoKsCrER2MReuZM+fPiSMMlhrcC4iuohWkuXhlM31GmMVXE4oW6FEx3Nf/EI2Tp2HS9lbdbUoHoEK6QuBhBWYkaWA6niBHphmUkDEcWpnh1M7OwiRiD5kJYKIuWgdvA2lkHzLK7+d5z73eTz8yANM9w4RMYflRN9T2AIlJLbQCFkgVUIqhZAigwdSIJUElyjLAm0KVmGnUmSgTBqNUAaZsj9LEgk9FAhxKIitUYTYg5RochJYSA5lVDatFgohQzYoCwmSIA6gjSKhksSLzGxSMRFSGkDRXOaEBIKAT579vRld2/Hoo5/ij9//EUS5TlVIqrLmq178fIqiJMY+b0YibEw22Fzf5ri1CwiRk8ySGz4fBdex0VYUPJkN1RAxUiiBkzApYLE2YX5tAxuWCAVeppzk7edc3m0JzrFzYpu3vP9BLk+nHC4T11rB8qAhhAzq1IWg8w6DRMksC5VSsFg2aF0TXUQB3sHhsiNpA8ZkI3Ef6RFUIuG7llQpwBN8gXOezbpkPDrk/nv3+eynP8fp06eB7PMXIxhtiT576eQJNEicB7kuKsudYsiFsRTxiIEWVh1pnxjUVcdDZnDs8aWlOJoPpOu63cPnm8l4w2/qYpgPw8eUGIzqZXbAj7n7HOPK/2+QxA1FIzFB8EiVQOjP8+dLw7ms2IDXO/0dw3nXF7cprRJ5Ve7+r2S/IktmOOp6p+OjHQF11x05XSfvTcchIAI4ksmQ78Mk8ntkQHR1XqvEYAVSEpMafKhyI0aI7AlolEIpSe+zIb2RmcGU0pDQJ0AajSksZTembztmiynt4R5Ez8baBoWt2N+9wn69T3s4Y7RZUqRNXJI40fHE+NMxHrr3IQoz5rNv/l3W+AY2b72NX/r5X0V5QSxLlJGUo5rf/rVXs2w0509ts3vQ8Iybt3jGLds0XhGqkqIYc/6MZJTWKDcqYvB0XiKTxylDSllOWxYFxISPHUloeqnoupZZ2yKtwbeSICPBJ0xV5krDJEQIuM4hJVhjqJXiYHbIZqnY2lnn0u6csiyzvC85rPOcXK9pmkO8j3TzGYXOzdFl6whBEH2PEgmhCvrosVW2TCiMZLno6GRAlYKxypYstsr2AKYc0bY9ffJE14PR7C4XkAIxaYwx9H1L7CJ900PIvoBBepIpcYWi8orWN0PSvcv+Ya3DTDxSFgQR6JWgjxns8/QEYVEaun6BtSXaj5BSUW9vUI8nLNsWW9ghWTx7H0P2WA5KEGNeiw2CoAV33vUY3/Ptv0g5nlCYEl1Yrl56jOg8WmkqNKOyxF3vVR8TVoKRKQdH+Z5lH/kPv/e32NwcAfC6193J637r44zKCVoHmpCfP13bs77pMHrOcm5JvjpK61RKZtZ4CCwXBb6tsUoiRUSailuedALIzbThgXdEsPr8cT1IoZUmxJCfxUoiZUArzYMPfJaqHlFNNqm2FoyFROp0tIZYq3n2c57FpT98K9trI/7wj97EO9/1dnImr6brW6RUKO2JQWNMQdP3bJ7eYuk8McEjjz3G3/2xv51lnwPLXAtJSJ6os8LXSEknJJUu0FYjkkL5yM76VgZmouC1v/brvPa3fx1blrTLjqIcMarGWYUkAmuVRSdJSoLq/GlmB/v8i5/4p+xsb1LZgiuH+xweHrJ1cgc1n1OYgqoeccuF05RK89SnPYUoPdorZq4lqIqq7pE2slVN+JZv/Q6kEGy99/3c+8CDOJGwdU0fJUpGrEwYJTh5cpObz5zg5hvOYbQ8YnRZpemCQPmOSjmCEvT1OsXWWfTBNcK1JamUOB/wvWe8UVIctmh6XC/ofEdQicNpy6gaMR47CmsRXmJ1yLUnee+DEHRNh6hLrA/oCKVW9C6AKLL6QPoM9Isisy5TVj/sH7b0TcOF8RonNgse3T3kox/9GOe++QLO9Wijh2Z7ZuuJoYMXQ8xNyiSIIgOOCJFr1OhIIlBu71Cub5ESqCQRSZFkOGr4rRQFR4nSw/2bhjV/BUp9IdA2AH4JgvfZTETkegMpiLZECokgEwQSgTikN6sE0rtcp2Yj6qNjsvo7v9g7foEP4fXf53F1kTj62eoV16kbhnl8/JrH/01ZxTDUdEdyD0BodJGbL0P8EKuaZ9XglUod1UspaWIUJKUoRyarGroWmVLec47X8CS6ZUO7WDBdzIlDc1QpST2qEBpOGks5OWD7xNtYTpe4Rcu73/1BvvLlL+NZL/xq3nfnI/yn//j7GPvcL/JUemI8MZ4Y/3vjSwb+Lpw8gVvMufew4aF5h3c5rayi57m3naaMEl0EikoThGG0bJHJIU3CSMu1w5Y+dGxu76BEyZ6Yc2XaUS9G3HbDeZbzBV5AE6cQNbqHShk6FxG64sr+kvGGoWta6qImBEUKMD2cktYn7M86jIXgDZf2HX1smXdQSkFRbXD5ygK/XOTOsfdYOScscvJZUIIWwXTZobRhv+1JyfHYYcvedIotNFuXljS9o6xrpIt0sxkEBcqitMLrlmXboLSkKiRaKtwicWV5hYPFlFnTkrqG3i2QqqQoBVopfAp0wbOYL5HaIpIg9iBiwqySWWOiR5BcR6sNKfqjEFrvfTY4Fjrvo7uEMhHpJaUeIQlgFCZl81ddGybSsX76NEkl0rShGEySG5+9pUII2S8tCXoiWuXbZKEkhYQyuGEZzV5FRIFSidRFZGqxCEiBUpdMjSSZ4TYbVh0lJX2KELLcF2WJQvLLf/sfMNne4Wv/6l/kWd/yCh5740vhc59BGI2xBbhIt7LYSIa1eszGeJQXUu+wpoIgCEEw3txE+57tEye4uHsfO+fWec5znpflz1/Q1UtfpLC9blFkRUgaOnKJ3C0bmFMiDga7g2wyCYGQGkHMkqmk2L16ib2rV3Au4r1jXFaMThcYZSisJRhJaQqMkhipkbZAGZ097gQYU2YAR2mcB6MEavAREuRUsOzumAghp7ClEAf5YRoAlJDBHJmwIgOJSQpUzICglJokBUJGdM6dJHkIIQN6Mjp8n8Mneu8JIeJ7l8HhvqObLembjnnbsLt/mW45Z3+5ZB4S3gv6qJlsbHDu7Cme8/Rnc9P5s5k5KiQpFdl/SEbCwKYTR1IFscKRAJH9nQfPRSXkkQgjifw5SgEKOXg4BkbjCrt2Fq5NcW6BEQqlDNaMaJaRR3YbLk8XXJ11OFewv3fA/rIn9YliPKJ3HcuuRShBUoaY8uaidYEQA673SDQ6hexbGfvjm4aECBKip2tbklLUWrO9LmjbnqIskVKyPpGsbVTce++jfOXXeJzrkDrPaylKUuwHfxaNTDmVMKNY6uhzFTLkFM2Uk78ze04cFWYxpAxA5bt+uJ9ziRiHQjh7t+TrnmJCBJeL5kxRy/f70BlflZy5EB0Yfmn4NxxJdfO1WMWAZNaNQA5Mu+z3tzrV1XwcXjL8+3pUjutQunRd03wAKWMgkpB6JQORw1kGRNJEGSDGXHtHnaW611XNq/nLwOpbgZWrEBIhyPYLQuXNQ2JoCEgQITNthnszDRKj7EM0PAukHBoJOTSHFCiMzc9cQEidN+YDgyalSARsUaKNRRpBXVqaxYzp7jUkga3tbYpqxK58lIPpFN/16ChQqf6Cp9oT48szoh2DEaxvbHPx05/kD//4nXz2ngex6wXTvufJm5ucODVmTolWnidf2GR9MubUqQlnNtbpk+HR3cRyFhhNNCfKMcJIQlGiO0WQFiUlUWni0HSTtGjRo8wmKTjq0YiYcmBGPR5jjGNkNMsQCMuG7UnFtBVcW2SQYWIkxgqIJTJ16Cg4u3mCqipp2obpwZzzp7apjWBiLNVWTVEq+q5htDYhJM29D15C2CqvhcKw7Bx1ZXOTVChUkKyNxpRGQjfL653V2SDB1ojeIHyD7+bUtkKnxNraCOcTh4cLNieGtokYHYma7EMWBbHtaecBQ8rrQALnswQ0SShEXmd1cjm1UsKi7XCFJlBjZILkaWdL9pKm2F6jsmPcrCFFjzSSFBRd1x81NBGw9B7hXbYGAaxWeJdDqlK7wAePKNbouz435ERCpsi4rNg/PO7KCKCQCqlCtlwRmoDlr//N3+LkmW1+6K8+n2/5lqfx1jd/kre/8XUEvUVypwAyMKMats68hcn4FJO6ZrI1wpaWGMF1Hrds8EbyyH33MFEaIxN/7jtfyZmbK9769khRHjc9v5CFdHySq5/l4LPjACQQ3HTzU/iWb6q5+757kFpjC8P5U9tsbU0QMXsLBhLf9u3fzqVLl3n40YeYbKzlMAARECGh5BjXJ6SMxJilymW0CHqSC2gpWRsXTBD4GPAIQszP30KI7JsMVKrEJI8kIHVAE4hKMj49QZOXNqvW8DFSFBOE74BENDarhsjNvpgAIfExcHLtFFKI3DQPPTdf2EalHVyfOLOxThIwGo+45fSNfPXXvxxtFbger2o+c89HOTxYUNZjFB3Pe84zWVsbQYKve+nXcvulizx29SJ9MDS9YzyesDEZs72+xvpkkq0fiEgRB9AqM8YNiSAEylQUeMoo2VjfoDn5ZFrfEMKC6CNK1rTxGlFp7r+65OTZrFJqpUJUBZce3edwGVFCMe3nObgqJlrnSCkD270P4CPRSIy1RCWYLzrE1vqQeg++nSNlImExoiCFgO8NIfSk1HPu7IiLuy13ffpBXvSiy2xubSBEiRAFSnlcP8MU43yzxaHeRrPy3BVhWOEFUNYUowkiJiTZbzgpTfT5+gh5fE/DgHUdSXm5rvF/VBAMy/cghRW5iSEAZJaQI+VxHRVDrpmkJIncbs912MpnMNdpaUXxX9UOx+929D6wgvSGGuu6JuexVQnHf0e67htH0N9qv5KO/i2Ghn1+9AyN31U5FY/fNweWiaEmMWQ7k0HZIPNzdvUZ5B69QCmdXzk0iI02pBjp+9xIikMvWeuStY0SU41oupblckGznJOCQwtDXa8R/JhPfvZW1qv3YQR89hPvY+/gGsoF6mLJZLKN0QuAfwmsJFxPjCfG/+54wQte8JQPfvCD4+c///nzD3zgA5/9cp/Pl2N8ycDf00+vE9yEZumZyUDXRXokY2M5s1Hiuwgabjh9mkUbaPUB5TgDOqWps1yOnjZKPBu0qULEKZevzrj9lk02NkpkhNM2kbRFGMF6bXFdzXQZwFgOe4ijDlyHMAYnA5iErUcYV1PKnHh+uGxZHjaYegNcT0RglaWoHctlj0+WuFlSbm7hFgt8mLI+KtnZ2sYFz8QnrBR4HNEnfGVJSaOFIqJAasYbBVoGtB0xPWxIMrFxchuJRYRIs5xxz/0P4hRc3F8iZeLGnRGHS48tDN7VBNkxnQfUWsXBdElUmqRKZB8w44K19QkoQSU0QUQEmmXnkMFjtEFKgUeAEHlvGQIpzEEUpEIRtaePIJsWf7gkIOgSnD51klRa9q9co4ieKBPR9XjvSSS8D0iV/eMkWQIE8MH1daabJzBJ41NAa4GWekgVDVg0i7jEJ0VhJaWomPuec10DcJQSFYSgqMekKLKcVRk8gns++HFM3mLzvT/9T3nqd38n/MLPIYZNvBeCdvAJ9IApS5KWWSqnFUKMado5hU4UQqKqERfOaC7e+XFe+orvYePk6SwL/bw69oj597jvDgDI6vvpcVDHERNJJAYwkaEQJoepJIdPw0ZeSMpqxIMP3I90gVOnTmNlhSkrdGkoq4JJvQVSogpDGnxzBIOnGzk1tmsb8InQZY/IiM/AnbKEEEkiEkUk+oAWCaM0LqbcAVcaqY9BhSxxlAQBOg1FC2EoCBQiZUZmTInCaoRRqKqi0DVlVVCLzCjLHnEi26XFXISGBN47cD1d17G/WDJbLlE6sbl5mhNbaxR6SH4UgZQUUQSiyKCVlGQQZQCJGEAhkbKPX1oxDAeJJQL04IGea6DsISO1IPnAuLSMJmPm0xrlOkotECLSG0G0kt97x72osqMNgkIZGu8zexIIbZPZD1IjQsQTcbHHO49AYJRExUgIS6pijVYkFu0MGSWL+Yyrjz5K65aM1TYKSUolkTgkvVm0cPTecnJ9TF3B3v4B0+mM0m4RnEdplTvHQhKiR+sCks5xRWIFOJMT8QTDBpsBVBoCNIa7OPvyQZSRIAUqyWFe5nthBWiLFJDOE1IkGZ29+mSWUKUVmy3BsY/s9YVo9vdL5MlxpDxZ+ekd/f4KNFQk4uAVa468NFfeg6tS9LrZOmw2RX4d6XGFstIFKSOkwCrIZJDvJYtMBoEnBp+voRwYo7Cq/POxRU4eTeKo00BMERljlnuJzCyEASAlS4eOnhjXXaPcIV9d43xepEBUiuDz3JMqyxNjDMfsa61REpQQuDAwaU2FUQVKVhRmQtvMmB4e4FzixMmzaFNw9fJVROpR+gmp75+WsaBFe0kQAqckwVtsrXnKLRd44IGr1GUGkbYqyxXhUfU6t2xoIh37bY/v4erePpaCrY01dptDdFTMZ3NMNSI4TR8g2ogxBUsXmE6vcWJ9nYIFMXoWBwlTSg6XC0ZFgSEhdN6NLV1L3esh5CiSUqB1gC2JvmfhHL1fsrVR4fse5xKzWcd00rHoOkojCCpQVCcRsaXvGiab2xAdIgSUAS/AR0fXRbRUSC2px1XeEktF13lYtGhT07We4AJKSCQGiSF5j1skFgSEsoTo8SFL6Eqh0FLTDGwbIxVFoWl9h0uBmCRCaUKI9L6n9YmF9GjhKLVFmmxVEDqPE9lc3ooRWgnKqmakLfu7B4gowCR06AnOE4QkhAwM9MGje0/vPTJl7zp8pJQGPTD/hQssZxkA9CmikyLIQHBl9oUdRiKitEXJiEwBqUpiWfHuj+6jPz4lRsXP/6tv4tu/+7n84ZsPSTJQl1Ne+JK/jjQPEKNlGWacqDaYrBco1ZADWiOx22f79IhZt+CybbEyctOF03zDt7+Moir52MfbbOfCMevoi6kh8nnmp7QUx+nrKQ3hIXhuuHCOC+fOkxtDCSkTiOz3mmIORzp/9hx//x/8PT71yU/w0EMP0MyWaJlrHyMTWpYUpUTrGqkZQqMU0hSZxagVKgqKskQZmxtbKSGVxKeIKStAYVRuNinU4IeriEBpNCH2w5qcE1E9PcpoRMzJ9dKAEJoUEkrp3HAVCSvVUOOloSE54MAJcma1xEiJLixtm70t73vg47zj3R9ClzUTM+L09hmedsdTh1qmw0q44fwFbrrx5qG5NKztQmbp8+DVm/GffN/GkBtvigTSEEkYDbX2xELRbE64tL8FiylGQaMghY7ol9x7qeHpT9pkfb3iHe/8HB2Ow15zeepZzhe4FKlVPmbnekoMQSSk0hwuGkaTHMgB0HeRw0VPkGNUUSJ9yIohYyFkP9yma1EknOtZG484s11w7yNX+NjH7uRlL/9qhMx+lzEN4LBrs9Q0CbJHSK4lREwMSnwIAiM9JAcooojXfV55jV6t72Jo8MlVPZPv9GM1+9D4XL3HUUNfRqTScMSqY6ivBGk4r6Mg4VUlkDxBiGMgMASUTGSFw3W103V1zOfPsOF/X/iTwXZlpW5IrGrioY47mqGfBxSuXj/IpY/3P8cN1pXvH2QSAzEf/xgE5bj2knqoHRVSxxwGGT1Z+CEoSkvvekgJjSSo3DQti8xEtmXBaDKma1uW8znTw10eeXjC//1nvpd/8eOR9Z1PcDA94Oqle0hdYG28A9IwWr9CSvzdL3Jpnhj/XxwroOzs2bP9o48+eueX+3yeGP/l40sG/k7XiSANV2aRqfMYq7ASmjYidUKERPCKxaLLHYUhYYje4fo5MUTGmxO6gwOsrgguUdQFcTFn97BhZ63KiL+VOYGqS8QSEktc8MwPBWpUI1csi5Aoa5MTbPueEkXoOpK0VLbCGk8wVQYifECSuOH8BXanu1zba9jQJSfXDI0xGL3Dw/c/xJXHrrG2NWZkanRSeC84t73JzDua+SFFUWGkpNYlupbE0IMS1KWACBJLkgajYb2AJBOmGuH3O6LrMDpQaYMWgcJUdATGVlOOJ6Qg2W17hJJ0LqBSYlSWoBVEmSW7TaAuavous/K88yhlUEIgUySmPr9W6SN/iYTGJ8fhdIpJkZ0z55DGcO3qVVRM2W/HRWLskVoRkySmJTIEvMhBsf1Kg6I1CyUhZJ8SW9RUssJ7h5IJJzxNXM/oq0t4bVkmz7TJkrMVC0eKLGcTBnrnueXPPJ+v+M7v4qGP3QXJ85K/9D0AXP3UXdwCWJXDKIzS6AH400pR6oK+dejKYhhRxBmjSYcpt9hY3+DqfEllLF/z1c/nK1/6jVkCG7Nfy+PHcafsmG10vCgfFQb5N4buthyabNd12VZdtySI6JwkFwMCxdraNn/2W/8cWbaaPV5cn9MGYwj42OP6juXhHik4hE/IGBBKEUJAa43SGqkVdlygzAStTQZ9k8D5SAw5OXIljXXOYQZJhEhkLyKZO3LZZEzl7rpMFDLLDgWZhSmFQMYsAQ6hJ4aI65Z0/oAUAyFEjMpMikA2D6/KEmENKINGomtLsVazdfpUlkEcySL7XHzFNDC/EiJlGbUUgTDoUZXMrwkpZv+UlAZYWA5SzFxhR7LXC0kOzLUEQiIBrTVr1rKxNqKZnKZtZhQysFlbHk0dMXqCV/R9kUH9lKXCtTUEHUk+kNTxNdZD+mxhNG3XgdSoGDEiMG86mihYHHY8enXKk4o1fuXf/iK33XSWb7jlSSz7XaRpCaHEFom18RaxX+LrlnEJJyaChx9dctcn7+XMS2/ICtWYjhS30gXQkTB42mSzZY9IKyaeIYl8f4t0nRH1ylszkZ+XCUxUHKlARMKniHJxMKUOeMlgfJ/ZbAmuk9WupKwZkT3qQF83kxi66StAfPXZHafVDdBcvpx5TkQ/AIHZR/SL8XCvP/xxp374Q0TuRGcvgR6EZRWi1k7nmGqDIWEAKUWW6pE9UmNczfvhWq5q5RWzL2ZvpZhykwNB9kqMq78nP4MztJnvo5RyIyUlPcCVIrMRVcw+Sr7PRtpDAl+pNdF7vHNokeeiF3JICvQYqXBIiC3OBKwsEDqiihGmnLJ79Spr43WUgOnBwXHB/8T4so/T69uIfslduwvstGN336P6ngtbBaerc6zVmqQ81cSwPY1oHKQGLQwX9xr6/gBtLUaPuRaW7O071ooJ53ZOsWgbEInZ4ZxybDFdpE+RPgoeemzGaKJJOKwoUNHgvGZ3sU+/VnP1oEPbAt8LHuoa2tCz7CJjqxHJsDw4IPQBrwQT26EXU4RRdFHSCMlje1PGdY0jAnMembbsHexhrWTdXqKPiaKsSa3D9UuCV3S9pixg7uf0oaeuFNZopBNcPZxyuHDMFktC29C5NnsjW0FSsCSx7HIIVkia1AqSC0gfsFLg+kSXsnxeFZmtlZ8HET9IykATg8C1gaJIlNFQqgrJAVoWuYGqoK4Fk/V1iq0t+tkhNoE0ii72xJTwMSCkJYoF9ejdWNOjkmQhwAiJi1V+QmpJChIRA0lolssewYiARwpDCIKUysft7qVSNC4DH1LA17zsqXzrK5/BBz9yGSXgr3zvMwG4885DPnPv3+DJd7wWrZcIfQ1bSqKXTOoJ66NJfqbFgFaSrssWEpubGzCfUtdr9PsXednLXoYpa3yMQ3DY8bP1C/GI69UQQ/dz+OeRZFJkaaMYFAZCQPBpeCbHbHESBAf7V1kezvAhcWL7FKdOnkYkMDo3KoXWGKkwCoS0CKPQRiFSxJgShmCF3iesys2+SA6/Ct6DSEQkMXhUIvsLpvy8DimSzWYSQkSSzHWRDHmlQqojxpYi4CJEFwdwz4N3+K6h7zwuJmLv6fsO53rcosG1PfOu5XC2S3At+4ueee/Znx4g9Dp2XHLzTed5wbOfxfr6Fkp4SAUCSVI5dTrF43hGIfJ6mVYJstfhRkoqYkxDM4sj9pgxijJaxpXBrp8hLPfxfh9BBsqNLukaRxst+1cXLJ2g6yWPXT3gYNFjpc3hM8vM3FNSHzVhXQwZ/O4DKImOAaUlIThSgqSy2iT4RIyOrm8hCXY2LLNZg4sC72F9otg5NebOT3yOr/qaF+N8k9UOKJSsSHiSEsi48pUb6hAhh1Df3PROKwsYJYgYZMrhjNk7Vx4pHeLQlEsp6w8Qx+3I3IXIjY/8HnkCHjXijz6L4RUDCzERkEM9mkUEcnj90LwWItdsIpJiyE3DFaOAAUQb5tYR6rhSOwhWk+1xUt3sKZiGkIvhdYP6QqQB/EzZ71M8DmQcbqYj8O7YjkgMQSPH5yaG2lvkEBmxsk45bs6umrBZ1RBYNV1zLa4hBay1BO/zXnXY08QYMSqHIQWhMvvVFJjKsPZYblo+enECZ55K4x3TxSXm7QLNIZubh7SLHYTg24C3psT8859ST4wnxhPji48v3ePP1PnhaSOyz4bvUmquzhzj3X3WyjG+F8y6lqI0kCR+GTE20/OVMSRZUI4n4B0VEbOpCE6yf+UK57Zvp0Ux73Ny1rJt2Z3tceHMJqbynKwqZr3HJ4dWBdZWmEIRpCYJjW8X9LMWaXIq6iQlDpdTCm1Jome8vkZSnsNlw8Ure4xLS9mUlHhs6lnbrqmKgkJriI62b/Ex4kXDeJIDJJSMCJWYtYckn81Ps6gmUhpDJBBcouuW1FaTghw82wyX9yIP7M7pe5EXI3+JGBXBwFhrln2LNYLeL2lji2g62m6OVhLlIkJmk+ND12KjyHJlY1BG56JGJKKGtjGYGAmxQ5CDJpwEqyXbp04itWY2naO9B63oXYeIOQRFhZgNu7UkCghaUqacuATgomDRRwprEMLQx45JVWQKd+8JVrDwIFWJ0Y42OOYE1tSwPOT4YpQ2ubj2DhUj871dztz2JJ759V+LVIrp5au8/d/8W+78mf8nLwR805CkxvcdwecFqhhNKEcFru+IZMlHvbHB6XNPoo0F+/tTrl0+wC0P+K5veSlVXR4BRMd17GqRvf7r1QJ7DACuxI3Xy1lWvKMjsE8wMKKGLnga0leH9LV2ucS7ltA2BNdjlMCHkKWX2qKURQhJXY0wNjOffO9ou44U4WC5ZDndx7me+XxK07T4vqNvG5SCRTOnbzpc2+JDYLFs2Jse5IVWCqwyELIB70rKnbRCDd4ktS0wQyU5Go0yeFyUjCZjxhtbbK1tUQiNGilMUVDZEcbUVGWFlJLoerSUec4ET9O32eJd5IJYqSKb+cpIUVYIqbDWZLAckedSCjmsRkBEEjLalDvuDIWOGDYiQhwBuHJ11WUuulaejEhQSqKkpiwsdrzJYjrBTQ+HokwTjcDZQ2Ks8T5fuwQ5OEcJKiGILqFRBJWTo5MPiBDRUoCWuJg/ZxcSdaGZobm413Dj+Q1iX6HYJKSI1GN6H9marPPMF38b442TfOrdv4Pvl4TUcWqz5uJjM+688zO88EXPYVSt5cKIMnebB4BMWMBnGS5aktDkQizDoILciBBCZXLZUVN56HYfFZKRKEGGgOwdMUSEkWCzTySoXBgThr3dakOYjoFAjiZBPgeum1+J695rJSEWHG9l0rDpyp1h73uUMkdF8THjj6O5eDziSi2T/2/o0gsp6duW2f5FNnbOIVUG7O6/5162T59nd+8qF26+wGg8OSp6OfKvyX+bPHoOrMr8zFJBqkEelBm5uWMeh43xKm3v2P8zhfxzRBiu0MCwHJ4ZepCiZU9NRYgBqRWKRArZOFxLnQMQtMGHQFASJQtMCdEHolAo6RjpDaQRLA8rtC6QssK7Jzz+/rSMZ17YIvRrXD1wJNEzXUqiUGxXBjuxhJjYWF+jHq9zoA6wJiCswegShYTY4xG4tE6TZvT9AY9M59x28xa20JgUOFMJsAXWCMaF4WA2oU8JJ0oa14HPzJmiT/iyp1obE/oxpQJZwsFige8dslrLG7OgqG3JtJsSWk2vEnJtlPd9bY/VidMnTmXmeO8xIhHwWFsjRiU+akLqcGSGVmEDRksCJc1iST0psWKETILgHPc99BAHTcOsD0QRObtR0jiHtYYQCvrkmTcOTMl80aHW1uk70KJnUlRYK/FOEjwgI8vOkVyuk6QUeD88t6IgeQcyEIPBiwRW0vU9BRoWLUslqdYnrO1ssztvEMus6gi+z0mtKeJdQNhAYR7iwo1/E6ssymu2NfR+ifNrBBQqafywOY5SkoIHElZJlFD5mQ6oLF3LQyrKqkazIAS4dtDzlCfv8A0vvxWtJJeuzPnXv/he/tXP3gU8D4Gk7Sc8eud/z623/2v01pJJVSKMJMnB+1eMaJaHbKxZJIqdrRNsb15jNLnAs577YmIKfPJOxdd+jeXt73A8+9nXsYE+D/y7Xm2Y152VlHBgQCU5rNPpqFYSRiGSx6eEGMICUoh8/MPvZ1LWrK9vYqsqB7GMKwo7otAWaQ3amOx1LOQqt4mm7+i7FnzCd47oOpLwJCmR0mTVgcxNLeE9Rqnc5okJJXLTMwyBdQJyk1VkBUSu30IOr0oSmVS2wpAZeMznZJlMJkSVL06Ig6YlJqL3xBBwIdK2DbFvmS8WHLQ9bd9R1iUntk9z+sQGldVI2efrKARxALGEEAiVmZK5gTfUPnFIuI1xYHkNdapM2MDRcYRQVFogQ2JpSyZrYw72auhmVDrbawSr6BD8+n/6BKnwdF22IJo7lwMzvAcRUUpDCCQSjXN4n2WtWklEjPR+SV1OaEWg7Rs0gtn0kPn+HkJEdEpIClJUaBuRQ2M8RBiVBVvrG1x+dMru3h6T8UmCc7nWOsLXPFpXw992HTtutWwzyHulhCSyRdJwh+Z6SBBlJA5Kh6xckAiR2fWQkCGADwSRWaXZFmCQs4oVOy6DWkf1gRxA2OtUDqjjbcERyjiAckLmhmuKAaHMMeCXjkoYrq+nGADHfB2OP+uU0lHgxlEI2XCQhEckixAGkXIgXRQCBUdvkla44gpYFGE4l6HBniLRx8GPcIBMB4lTGs5p9f8Mxk85ZE6ilczzjmx9EgK58aBNVpWliFLZxsRqjYwJhcDHrKiQxZizZzVl6fnpf/PtX7CWPueOt/AtL/0FLl27AeA/AjfCE8Dfl2uEEPjJn/zJk7/yK79y4qGHHiqKoogveclLDv/lv/yXj9x+++396veuXr2q/spf+Ss3vvWtb13f2NjwP/qjP3rpta997dbny26/lOOdO3fuGRcvXrR/82/+zUuLxUK9/vWv35JSple+8pV7v/iLv/iwGQJFr169qr7/+7//xre97W3rGxsb/sd+7McufVku0p+y8aWn+qqKUZkYCcH+7DJRlTgd6dqG0oxBRpKMNG1gUoxJBZAEPmbJ4cb6JLOHRKIqDSlIDg73OTESrOsaG5e0QjFdJozKGzEfJcFZTqhECD6b1eqC5Doq2yMjeDHhkUuPEf0SKwVVlTeO24VhxyaSMsxbEH2kcY4ywFZZMG86Pve5S9RG0/Qt509MODEpSVLiWkfUsGgDZVygfGJrexufJIc+oisNfZcXDGGQyecOvUhMm6v0y46Nk1tsb1bsdz2FjSx9x0OXFtTjMX3fUxvNjee32Vt0aC/YHo0Az/RwydrYMNEFhdS85UOfRtg6M6y0Zr2q6WYt4PExe4xZJfFdi4pbkBJK25ziKRTCZGbcmTNniCJyOJ8SnKfUEiciMSU0uWNntSZ0LUJrSAIjJUob4uDR54PDsSS4lqoYo0Wi9UtikGgj8AFmywVqNCH4Ftcus5fQIBsJQ1fJkU1xg7b41PPwxz7JT3/rn8+FDQYhAlp6Tvi8cZ3NpjRCspYkZmANXtvfY3Fqi9MnThNS4pHHHuTqpYtU9gH29ve5+OijeB+5+abznLvxKUQ6ZCoy8PdFKfXHi9njYgTS0ZYeMTBzYspdu8E0hCOwICaIEd/3zA526ZYzvOtomzYzzzbWsfUIW2yDyGBN2zY08zmXdi9ysL9Ps5jRLOYcHk7zPa8TvXMsFkv6tiNGWC4amrYlpiHlOAmatgNhca6H2BNiog8OokeJXLTmTuMAVgBCqhxQIwJqqC2VzMVx9gVUFOOKqiyoCsPW9lYuAIeap6pqhBDUVcnJ9Q2Kcsz6yVPsnDjB5uYWa5Od4Vgxd2Vji2sCi/09nOtQQpOspKonlGWNtgUSTS4kViyCDKznmiqD5qvK6oj1lcjy1FVXNoGMuTiUWuG1pdKGsipR5Rpp+gjBSyplSGZC2z7MWNUUyqJ0xzxBXHqMMDmwIiW8TNloXUBHTn8c1yMSibZ1xNLiXKQoAroouHhpTvP0RBQeWXiigrbN576xvs6pG25HFImd06e4/MBnaKJjXJdsro944IGHuO/BR3j2M55FjNnfCemBElJCxkj02a8oF24rBt2q8FuR/AYZ6yo1V0iEFMcdXRnxTYvoPaqwiKoYQKv8HghBlIrrpgPHV/3Yy2nFZYuP+43rvhBD4u3no3krae3RJjInUxtbZpB98MI57oZfPycDK1nu8asFKTik8Ex3r1CtrVOVNSEGDme73H3fXZzYuYUnP+XWIekvX4OMI6+Yi2nw5FsdOlfJKzCf4zszn+N1LfiV1DcnT6/k/yvz9SGYKA2peVIhYm4eCZW9NZMEUoA4yK6HjaQxBucc1hiEEhAVKQmS9EhpCWlGTDrf30Jh9YSimrF77TGeGH86xoUxBFnx6LShDZHCKiQR76GsIrGXdG3EWo/WmbUiYiB1HX2IjNfHLA6naFmSvKQa1cyWS/bnDZPCEL2jLDWtD4N3bsKYhv3dHmxEm/xclzGhS02SitTnBM7Y96AMdTFm6RWqqBDdHNd0nDy9zvbWGo9du4YOijNrExwNKa2zd/kyB9emjDdqJuUYExWNb7np1AkOuhbXLKjKMYVS1GUN0iFVok+J5BOFKXEpp5AWlUdbhfIFXdPgfKK0ESMKlA6gS5YBdNKYtQ367houQUgK3wtsIanrEYtmjlARJTRaSvo4MOqdR0qNEgKRAiG29F5Sao1WCaESPhqatqW/cpXJ6TNsbG5xeDinXcxZs3bwtPU5uChpQlqiU5bgx1Cz9A0jWzDWDrv1RoIzOOnYnuzgOj+Qh1oCJjdjfUSpgtZ3TNuWmd8G/ka+YaQGlZsuTe/50Ecf4hu/4zfzcy86pAbfLzDhHAClkaSkSaHixGQLITsKZem6HlOXlKlgJGaINc+ZM2cQtuLwsOWOW8/z7Duew2TrBFImzpyK/PiPB86cuQ58AOB6NcTxfZ2bm4N768oDLDE0VFZr+PAETwxKiHikhDhx6jzf/N1/iQwWZilh8J7oIyl5QuhZtku6aYsIEekHX+6UPVCV1iitKEqDmqyjjQUyi7rvs39sGlKXncsMbCNEblaGiFwFNAiJkAqjDUJmxqZWmY4upcgJoiHgQ0eKARda2m7GMkac9xhliKsQtBSoygJpLcoa1ssxWm9yQuvhHlwx5X1mj8c4WEFwtNIpkS1e0iBZliKHRsQj5cPgK8uKkZn9cxkScBPZa04KgQqaSWHZmlQsNs6wWBxgadioDBdTh4yO+VISQg49ETFiMMjK4PoeIXOYX/KAj9mbU4qszIoSlSKF8CzanoWH6eGC/UWHvnqVX3rHv+brXvJ8bogtMR0QZSD6wGhSoWJFlD3WRE7Ugl0Nn/joZ7nx3K0IpTKAmnuXSOfBJGLSec0d1mKRUpaiigzeiRhJK7nZSunASukg0PG4FgkiZeapCxCztQlaZKap1ENz83gWfKHK4Xrwi6NaRxy9ILKyMsl1Qf6sJINvYPRHicX/OYXDak/yBXPx6IQ0KfQg9NF90M0WmDLX0VEMjxFy7ZHVC2kgMAzvGVdKmoGteMSkHNz+Vl7FaWgqD3+PQJJShJT3IALNkdZZJJQKpNSjEIThni+0JjmPG1QN2ZdbIaXMgT4mg9rnzs94/W++nSuXM2N02TYc7O3TLedodRmZNJtbDwDcmBIPfcGFe2L8Vxvf//3ff8Ov/dqvnQC49dZb22vXruk3vvGNmx/60IfGH/vYx+46d+6cB/i+7/u+m9785jdvAJRlGf/xP/7H5/9LjgfwS7/0S6dGo1EsiiJeuXLFvPrVrz759Kc/vXnVq1517Yu95z/6R//oi77n/7+NLxn4Cy4w6w6J0WCEpXERrQ1dN6cyFzBWMa4zNd73nrJSgAIv0UmgUiBGz1pRUqZEE3ussZRCMhnVJC/QAvTYEJqGjbJCT8YkE6hNNiXuXIf3NncCRY+RcPlghvQSQ4FRCikKjEpsmYLgFvjRKMttl3MKDedObTCuKy4uOlxnQRZ0occvYW2cmW9UNd4n1iqN7eYoEXDC44qSthdIL0j1hLbrMVZj0gKTBC4K1osJjdcoGdFaEBcSK2t8gNZ5aiKV0WyP19lcG+GCQSWJLiR96Fjf3CBFOLM5YW0rUYl3g1DYKFlIsEhsPaKZLpFKUJYl0XX5QUuiqhTOe/Z3W2xpGZUF9bjAhUCzmKNSh9YmM32cR6gC381BaFpFlhd4SAqsyAXPiiSPSiQjaTro2wbhPftGMVIlEBBKI5Vj2c5oQ0u9VjPDs+UH0L/P0ICBDJyqEUJolLL5ThQaIwxdH5FhFZoBIWr2DhbIlNg8fRKA6cXH+NThAfdUE0RIdM2CkDxCpFwIjtawIvKKl34tp06fHDy5GJLfjihQrJCII2WvOF7KjzpiHNPsM7M/fy86h+s98/k0S2yDZ7lc0jYLdjY2qUYTsKcZpUjbLOnwPPjgJQ52L7J35WGmB9foXKTzCYQfPL00KEMvJAsXuPLAFQ6uXkMGDzHgQ8DFHPpS1RXSlmglqUuDKiwLJ9DUSGMRqUekQT4pDUKbQWbjqW1JimTAUPVoWeD6RO89MfYoERDO0zg4mC7ZTx2zrmFtskM1qvAxsDudZX+j5PnsA/dm1ql3hK6nqCeYYkxEcsOTnsSTbrodYmBSW3Z2thmNN1FGo1PHfDFld++AuqoxBiQSO3TUlTEgVO6AS3JXl+yeA0e9SJKMGS4cuuNRDEbuInd/K2MYF4JFXeMnE1J8DK0cIiWsXqMsNV0EkmNkRqgkczpj8FluWyi0CxhraX327pnNlpRFZt1Coukii35JQnJ1t+fqbkeSik/ec4ntG+6l1JbkcqCDkJbpY/cw3tjgqi4wvUAoOH1izJW9OW96y3t45rOej4g+F3bJE+UIKRKxW+ZiV+l8P6cA5NRGIUzeaInPKxcHyUoc5Cupa6F3WT4+mZCEJMg8DaVfAYkR6VN+HQxhHUPpm/ImJQ3VcZbnrkCxNIB9q43f48pjVgzaozMUwwZHSlKIxODz3zd4SB4Vuo87gnxcMRqFJwYQSXKwd4VJWSEHD0gfPG0z5b7PfJqn/bkXMl8uUSJiCoUxmpU3T67Vh2uJZCUdyhsM8uZMqFwQx8FjUeXCOaWc4CdkJCZ/VBgT1fEGQgxS4IEZHAdGgZCglRxCdATaGmIIWGvwzmVLB53vMRkThQRTaEIQtLFH1mNC1zL3AV1alHAYI7BPWPz9qRmdrjP72DhkyOmcMRke3Z1zUmhqtca8dei6y7dcA0VlIEWkUiRpsyWI81QicGorA14HV3fZvPmmLG91Hh8FuwczFh3Uk5KtrRE+aZa+y03AYoQuFGhLSBLfNywHpYQtBaPYs+xD9ugtI5P1mv2Dq1zdnyNd5OzyBGUFut1jY2tEYQyFMSjhadoGFyNaNqytlcyZoxUkeg4WGUBA5EAHqwzOO5KULOdzkiYnyiOwRrPoEw/sziFpRPJEPycgiVYxVoYgPFZ4pm6JDw3tzOck2ZQGnrJg5lp0UkTfYbQe5pXL65RSLBoYj3LStsJgK4tQiY31dUYb6yybDt+0FHLVRIMYHcp7AjIrI0gs3e089Nlf4aab/yLS3I3pIZqGqgqEuERYGBuDaxxCOPpkcbJgVDpiaOhMSxsdstgEYG3tN7DWkboWJRwEB8kTQoPVCidy2JUwBgYXFt93aDXlhif9DL0XrJ88NygiWhDgtGTz9GlOjW4kUHHx4UdY7M85sRG545nPPHp2nzoNP/Z3j2hU143r66AVALjy9lsFTAxNoEzZz2uAGP4LgwQ3Zv9cIem6nna5wPcNoW1IwaOUyOFeyqC0RQqN0RZbVEglCc6zbBtShMNlw2J6QO865vMpy6bFd21m/hGZLw5xbY/rWnof2N0/IERPCoHCFsiQmzdZeSFAD6FqUlFZi5WZ2V3VNUppitGYajxi5+QZJqbGWo2oFXUxRuiSejzOc9X3OVU4Jpx39H1DHCxMYh8obI3UCm0EpqgRUlIaA2mQsqb8uyubipjEEBZzvfIh5vmEPCpnJZJ4JMPkyDJFKomWmtJYitEG83ITdzAd6iNNsonezBGhou+XuJTyueNQSmCDgCFsKoqElgLfB7QAjMLFHLLWh0hdaPZmgqszx8Y6xG5MiuXg6VESes8tz3guN9z6Eh655wNce+STgGJ7vcAaxWc/ez8v+cpr7GydyGoHUYIMSJ8VMkoZhI+AY7U8r5j3ufEWM8FOyePm8BdROiSZsm1Q77PqwGqE0iDtMYM1rfYG+d5Pw73/eFZeroOuB/+O3udor3AdYJe71JmBHByKdJ3s9/NmnFi9U3zcFEwrgFFIQgxMrz3KeG0bY3NQ3P333Mv6zmmm011uvu1JSGuPwdC02v/khmQ+8yHATKTsVy6ypzPpiysb8iVdsU/TwPTLe5gcQrI6b4kSIisZBmA9xZDl+qQBlM9ejMgsrQ5IpEoYOebCjY5Tpxy987jgaRaR5jBwuGc4PDyL61ueAP2+vOMzn/mM/fVf//UTAD/7sz/7wI/8yI/sTqdT+ZSnPOXply9fNj/1Uz918md+5mcufupTnypWANwP/dAPXf6FX/iFRz760Y+Wz3/+8+/4P3K81e+fOnXKffzjH7+rqqp40003PePq1avmbW9729qrXvWqa9e/5w//8A9f+rmf+7lHP/7xjxfPfe5zn/Zf6/r8aR1fMvBXlQmlRvQ+wb5gXBRYKWl9JElB13ma3pGEpKxHuM5jjASdqfGNc7gIpda45Fh4TxMCdT0mIOhNkTsPoUeIQBcTqigItOz2msJ6pB5D39J6TwiStcogxxbfz4mqyOBXlBRCsvAz2k6xaD3CBHQKEAxCJ0a1YhJKrvUNyVb4OWAtM9dTCAdJ40MGDDppaQfWYvR5Q5pERMSIVZ7kO7quwadEkj2u93jf0HaJKBNaRgwJozNbzQggyfw3NlmkF0Vgb3+WDfVEBjEXjWfR9SAlTkvCMktwU9shlMndyMFsNYYAUYMCIwWzwxlL17G2tsb6ZEzrO5pugZUSLYvcuXYR6RLOJFLeItM4j3QJHSGq3CVTCEqVWXaiHBPVJmYikVYj+56kFF4JhAs4CWVtkbLA6jHBRNz+3tGyeGQMSzZ5jrHLaW9JZLP9JHGyzzRxHwaQDlwIqKok9D2LpgVAyUQIieWyheiz5ECPUN4xUrnzdPNN53nFK74OrXMK56o7eh0ecdxPS0c90yNmPiIHFUQRkURiyKEQyQWaw2v0zSyn5EWJKQqKao2kCmZty/1XHuPwcMZsPmV2uMtifoi0loODJZpINBptNEVZUmoQQSNEBq98hOmli1y98hhdCJw7d47JaITUMgPIXZZtldZQ1iN809LMlwSVqL1mPJqAtvSLBYTMskWaLD1EUtiCzY11mrZjbz8S0Pi2J3qPtpbxaA0ryKmRUaLLGkLP5Qfv59FHHmI83kQI0PUIaUtQhm46o1s2mNpiVEHXB6b7DxK6nnvv+xRvT69nuVigtGZjvMapnZNsnz7FjTfdxpnTZ9na3GJttEZpRzjf5BCbtsuNSqUxRmFtibYSqcTAKJBkWYMfgJpVx3zlxiIgCpQUGCOxSlGXBQdKs2jmqMJQxY7oIRAQNhJdxbLrsjm7kgipkWEwdfY+JwkKkYN+FDn8J/SMakuQgt5JRPA0SvDZu68yLhQPX53h3/wBXv7y5yFkS9CGLnV8+I9ez81PvZ1iVNB2C6QcszEOnDyxyac/fS/33fcgT7rlfPZETCGzgEi4rsXWayA0xB5ck7l/usjMBHXMSpODND2uPF2izwyfENBlSdJq6PImdIwkkbJUComIQ7JtDMP1ZkWAG9h6EpFWhd/qDa9bNIafw6oYhrz9uw54T9cVxgKU0YSQkCIikicd+QIO/MIcBZxL1rj6fs62TgL2Lz/K2/7T60hO8k3f+1eILiBiZG+6T9d4PvKB97N99jTzPlJWFTefP8fNN53HrII60vWMliHYY/CTzDKjY3blEatl8CnMAGD+aQ4UWRXtWabGYGafRMyysaIgOY13zeB/OjCHU8qbLCKqtAil6Jv26DklkkSRQd6qUkjnSGRDdBccS7NA6YSSa19sKX9ifBlGp0rWRpKq98ybfYIq6KQHHzCqAO1xric5SWUlUWVvU4VibTJCyUhMkbIsIEj2D/c5NVGcrEosLcskmS0TVmdAwAXNmAItHfMYoCzo+4bCdHl9j4bLVy7j3RwrJaO6IKXI6bqAGrw0LBqBXyyJnWfHWpbC88Aj1zAokoiUJnLh1BiEwLv/N3v/Haxfft/3Ya9vO+Vpt/562d4XZUGACxIkAJJgkWgSEjVDUrRjynJJlBl6xjOSJqOIjKiJksnEjqKZaMaKx7RsMeTYlETHokAKhAiAINGxWCywu9j+6+32p5zyrfnje+5vF/TEWiWSKVn7/WP37nOf+7Q9zzmf77sGgkysekcdliiZ2N7exibFoQsUIwWuJ8SElBoZOrSC1i2xq0PqyYitjYr5zZbCRPpkuXJ7xfrGGrazbExqTp+Yst/kptJ6bY3gLFJHirJkc/00X37+EjsiklSCJJlOpwQb6YIdcmIDRim87SljPq9IVZBUdkbIQrO1sc76xjpHyzl9azEig/K9j5iUc+S0Kol9j1NZtT+qbnPP/X8FWd3Ck7CxJ+JI3lLqgtY1xDTMp1KzWrZ0sxFBOlKzpBqPKX1EK48pXmW88Qla/72AwMmCqBMySmTyxCBQCXCeRMCF7Ipo2oayTNT1Grd2LrEUCqlOcmr7FC54Xnn1JW5cvoLWBdevXWM+XxBc5Bf+4/+A6foaEk9Ec3AIn/qU4GMfS2xsvCnPFgNM8B2AR3oTlJBDNmscio7SsRptuD6kEAnOcnS4n0la19N1PaYomG2sUcxmSF1mkCsElos5+/sH7B/usjg8pGuXLOZznHd4PH3wNKsVfdsTAzRNS9t3pJRjOmKI9NaTRIG3q/xZBk+KPoMYUiNEIgQ3OAXye/AxgfTolK8zUuaMV2JCmgJTlUzqksl0xGQ6RaKIIVIWBUobjFacXN+gKmvWT51ha3ubra0TjKebmTiaCJSKRNvie8dicZvos+PG1BVlPclzzhCvw6Ci/B87H2IuXLj7vyMrKuWQ6cZwPZIix2iEoqDqC+rKoEZrpCNB8JKxKbBqgu93GCsoy4pEz8pGcAGNIYWAVFndVWqFDS5nYJYjpIK283RlgbMRYwJJaq7fbrjvnjWicETtCELS9gEtIhfueYLpqdOc6i+wf/Xr2ARlKdmYVbxxZY9vv/oaH/nQWWJMaHSeKZTJ6r7ocyyRDJmYQ5A9RMNncDdnI73pdJA5b08MgYkpefyqy66QqkIolWeMlBWAabDj3v1chzVo94dvw3e6HL5jpbf83fHPd4UF4vgqj0DgbI8p67sOhyTepEXffLz41k3J3edPIfu6++URQknWixOEkDg62uH5F7/BQw89ld1WQZGk53g4E8NnlEHMNDiXj5815xvm2XrYt73F2ZDyXfMnEf3dgSljnTn7OA5WdCEz8SnFMXklyV+rwdXAoDCUMtuQY0RrTVQR4TUO0KOC1K7AQygK1NoaRo8p6xl7e+84Gv641+c///nxMRH0C7/wC/f+wi/8wr1v/f1XvvKVMcCzzz5bHd/2cz/3c/sATz31VPfII4+0L7zwwuif9/GO14/8yI8cbm1tBYALFy70Ozs7ZmdnR//R5/yZn/mZA4D3vOc9/R99zn8T19sG/u7sHOAQJKmysksmisrglwXj2TqdtRwdHnDqxAkKo+nsiuQ9VkaiEqiY8FEQm466LllagesFy9UKoxMbJySL+YLe15ACk+0JqyjAaXa6DqMFG+szRJG1PgddS7+SzN0uE2NY35qRgsJ6CMHRxRI9nVANCo7eVSz7Jb71rNoeIUsunDpBPaoh9nQ+cqsLqBgoC5uDfKMg+oSuKuzegsJIqEasVg3OOiaTEUVRcLBwWBswRaJ1Pd5Ljo48h10gSIVSUCIZFTWFjmil0LKn7xeEpDjqHC4qovMoFehDT9s7dudzfEp3WRcZPZgSPzSNVkXFatWhNNgE1gd812KSYry1yXS2SW9bRFIU5IITGxIhRGQSuaY95oY8YqRCgSyxqccITUwM2TT5i+iTxNRjyrJCjGYIHxBJ0stEQcIYhdEJJWr8/IB+eQMVPPpYevKWOt2xMFmpZ3uUUsiyGqwXkug9znuKochjpDSt84QYOVg0+bVET+EFhY40Lg94ve0ZxXy8+a7he7/7Ke65eG4AC8gFEKhBuXR8adZvGWgDMgoQalApJVLwROeIrkFZTxyXCFNgqhmqqNjZn3NwuMvu7jUWiyPwkWvXrtB7TxcTXbOgb1YsvUCZCRtrE07OClRZ06yWhGoobyHik4WouXX1FriGD7zvKRKSy7du0x4cYZOjtwnpJXWtWLYC73qC9wg9QcnEmhFUoxFBGIysMESSDASjSMHQtxZioukVSYwYjQtc8ARhqWKkDY7lsscIcK5Hy4AVkpPr69zz4CNcvXaFxc5N1k+sI4qKEDtc0kSj6W1Ln1aopOi7bH0vqzGKAhc9oqqIvmPerejuXOfa/ICXr73BrBih+h6zVnP+3AOc2jrJ+Yv3cfH+e5lNNgkkGjenObqNcbkMpByNMeMJUguMNMSQQERiyHl7Usm7M1dQmigVShkQIOUYfIHtAwGFUBCDJHpLjIoUFTKkHGNQlcjK5BQ4rei9h0IRbLgLkvkEDoVJZMUkgFC8emufi1ubpAqOjlbsHbTkijlB9FlJUo8nhH6Dg70DRHIUJrA+9myuTfnCH3ye+x74WZSNJJVtO8G1SBmHFmaIfgm9RRgNogCR2xCR+TOIgSFbU+CWC4TMbZGiqPJxf2xvPWaR03CbSG/OqykrOITMitdMFQxNj+RyjLuSWZFyc/Axena8SZHHaHtWKGarCdy1n7wFcZNSQPD58VU5tN7KQfUwQLspD/AiV8uQkkabmnJcs7Ze8NUvfJGdmz/GxYceYOfaNT77qS+wtrnG5onzvHHpdUJ0zNZPct/Fs2ihciuyZACVIYWAiOnuMHt3uB1KPtKg5BMqvPn5JZ/PF9KRYoHQEiUjq3aXgKUuxsikkKGEwtA0c3YvX+JotUe1dor773+EFFfIqAdb/jCMy2xZd719k7kng7WEHIIeREBpBTJRUaN0QaJ9u5f3d9a/5BW9Y3HUQNDIpId8LIX3HUauM6kqQl0QPQiT8oYtqmyri4GUIpOqooiRzvdoVTCeGEajMdFGykIzLy3Ce7YmM2QBQkfGVY3vGxobqPSIAk9tEruLhuQkhhotFaSCSkfWjaazLX48y4VSybG5NuJMXfLa0YrDBkwxoosNpVRUQWCkhXKEVxVrdUfRNyADfnAjlsKQkibokuB6jIEKSfSJlApENUUJj9K5REdTkdD0ziNSZFwWbE3XWJuMcMFSSo2XDmlKZrpibAynT8y479RJXrt0RJEUjchNp+PRmL5ZIESgqCqS6xAiomRkPC1ZLFe4dkUSkhMb61TjiqP5kuhaKilAKrzzGFHiwgopBK2UBByETJBWZsFo89M0PpdUxZhIumDRR6ztsa1nXCaUD8jSEKTH9XOchNG0ZikSnW0pipc5dfLP4t2/hYqGGCS2KJGiJqahfCoWA/mT7X0x1gAsFoLlsuSll36Dxx/7tzm6+g32b16lKsfgPc52uVhIJIqqpjQVp06u8fGf+MmcjYtEEHjjdcnP/ozhK1+1bGzAsUKZu6fnt7ohJJkcyXm8GZDK2cSua1muVnjXo5XEOUfTNGxMJxSjMUGsk2xHs1zQ7B1w49ZLrOa77N25Rm97ep8ICYzOgJwyBofiqO24ffMOy4MjjAQxKAhdiGgC9XRCOaqRMTKqA14pQiiQ0qCUIIUOKbLlWJoSRHZPTKqa4CNN24FyGFnSdn4oOwkZdHWJxiYWrWXRLqjmSza2zpCEZ7/3RCQkz+s3riNTIMVAtD3laIoQGWC+eO/9nD15Hte3bG3OOHnyNNO1DerCIAQcHh6gVUlZKqJ3KCkxRYEqSrQ2SKFzXIcIxDRk5DLMqmTQOw02WAYi+bi8otKKSSWZ1BX9dEYIVzDaIxIUxQRtFF5EdIpUUqOUIUUILpfpCCWpypJuFZBC0TQdRsvsykiRpo8segsJLl/b5z1PnGbZeb7wzOuMNrdYHB7kHGGhWBzsE/oVZrJGOFoSgHOn19g56PjUp7/M93zPRzEykkKX1Xxqgkye0DcoU2YiP7hjFAop8/ciJjHYR4cjdXA4RCky8d12ECK6MAhTEu7agXNBZZJk++9AJMahQfhukYoQg2husMG+ZU/zZlzI3Vvu3g7H6kPJcUGJlBm8jd4hVTEAcOnu/uQ7HieJAXyLJAEheGRS7O3exLcdxWYmIUIMNM0BOzeu8/Dj72V37wBBwWhSU5UapY4J4JhnManIaNwA1B/PdSI3YP9RZ0PGCYec+uhBiFxUFjOgmUSOE7oLIwqRZ14phqbuYYIrdJ6zC3B2cDUoSUoOncjRUaIkxICoaoLX6BCxwqGwGC0pi/8/LsjvrH/h69FHH22LovgOLPzChQv2/9v9/0U83vr6ejj+Walj8v5/1N75zvoj620Df12ILLuOajxDxoARkVIVNP0hZTEiysT6eML6uMqWMwlFyrJ1WRkMItth20TjIlErQrdi0Xvq2YzaRXQxIZqIbQXd0hGMAuVwIWdj7dy8iWvmGF0TRM++FaRSYoQDN6EQBSFmgKhvIoVJOBdRRjCuDDZovAcXJAqfFT0qsnVySruyuKhYriyqtyQ0phjh+sCISDIV87ahFAmj82Y0BrA2UpZjEi2LZY8RE4oSMIpgj4bNa6TQigrPxmyTkTFMas1sPOKwj6zaJeV0zLJpcnuZc0g0pzdPslZO2F/2yKJAdz31uMRHaK3jyHbIlIgxW4BJAqMSVV2ytrVB3wX61RLpQZUGRz7BlrrAB4+VEK3HiyzdxgeSTHgXKGNBSgkvPWH4GhUyok1CiAIhDbFUmAAx9ogiUY8284Y5SWzXIrtAMDkbEKBQ+Uw91woVIrV3lFKiUkDSE8Sw4c1psIwGi3DdWaRUHCpFp/IhOypr8Nkyrsqco1ElSLqi8YKqhEcfuRetFJGspsssF6hjuXpUpABCRkLyqCTBQ+9WNEe7dMsDqloxm24j6xlWOprWsn/pFrdv3+LK689ydHREmm1y1LY0B3vs79ymW644PZtyuFhQzjbYOnmaYn9OLyO3Lr/CnoFzF+6lXt/IwWAx4lTAJIElcuP6JR64eJ6L5+7nuee+xcGNXe67/34YKRAVdSrwOHolSEIOeTACJTQyWGRUeJFwI5DRZau9UTTeYcoCEdLdTLzJqKQPIZ80k8C5MGScyCG32NG3Lcv5IW3XcOHceS63LdYqynGN9JYSj60VxfqI1fKIprPMJhsUk3EGuX1PSJHOOUwocvYOEdE4dg4b5tUBlZ6xoeDlbz3LN0NHch4pSh5/94M8eOEJLjz4MCdOn6NYGyNSi28amju3SQKULpnNZqhCItRxyHFC+JizC2PIg78ZkXRJKGtWWuCaiB1a+kiOPgimaxpx4HEig1mBxKJpkUJSba8hW0v0IZeYpCG0Wir6pqdEoYZYPadht3WI3QXnT9dIDbu39plVEWUjwne0tMymNSad5OobN3ApUCrN9mbB9f11XnnpJW7fuM76uGS2cZIUGmLwaKWRwuN9oO8WaCoKWeWhkpyniBwYYakItsUvd1BVha42htyZY5b2TU47HasLxKCvE8cNtcebvTdTaISAmNxAsh+r+gYm+a5kLk/LKQ32G8RdMl6q4TnFMYPOXTXhcexfDCE3PkcxgPaDOUUMxS/DNC5CQDrHzTcusbuInLvvab7x9Vf4h//N3+XP/Sd/ka9+8VusGsed/Us8+9z/jR//yR/nR37sh9icbWTbeugoiiKH7sfjTe3x0P+disUERGkR5KZeQrZFKTm0cyqJVGNidOxdfZF+dcTvfu7LvP7KLf7S//6XGU9qRHAE23Hl+ee55/HHmdlzfONLv8+JzS1G47yBQUkI3C1VkcagJNB3xKHlO/iAkpESkKIgeJfVnYA0WRH9zvpXY01GBqlnLFc9Gs2o0GhVEqTC+oBNicPFihPjtayYkIqoFIXWWBLWJ2qtCSqyFJJeQF2O6ZNEFQYhVb5+aYEzJWUFSwtBeFS1TiUCbbdilVRWMc9G0CYwNUlEvFSUSBa+Z9lpIh7vLYUMuKhAwfpkyqJdEbQntAJLYOEjVbLoZHBBIETCSk0bI0VMhGARosT1HZAoZSR0PfPeDhlSnq7v0Gj6EHLplYsUMlEYgyYRQ8J5S7vSKJlofMuq6ShKRfCCFASHhy3LricYSewixIQWgthn0vhYIZNCJAUySN57muWKoCWz9XVMpWiaBhmgKkpiDHgXUR6CykqmOBCsONAxEZXA+nXmd36M9a1PIqp9fFijrNYox4FSSFQICJ0jGFxwqIlkogqUmhBpsEeHSKkwKmLtGe7c+T9w4sR/CakgxDy/SFkSekkUJoddpBIVPCFMABCiQphcDhITCJWIAVxnSSHk3GcpqUNHKRU+ev7sn/1pNjanIOxdguYtWuz8uIOS7K1uiCQG9ZMQOdY/RlLMYEC7nGMX+yQl0bLGjMdIKXCLhr3DfS5df52m6WnaFW1zSG97oiroV13OXiw1RhVUVUEQCRVy9mmIksXeHkc7NzAqcv7e08xGE4SA3gbarkXGjsJUVGVBc7SkdxYvIkVlqNc36FoLnSQQSVqBB+9zJM+kMjgX6duOvpc07SJbS0cVpS4pRA1jwUxXqKrCtwuuXb7Kqr3MqJygK0OqRkit6ZuGdn8fVRcU2tClnsPmFskFLl96CZEEXd9TFgXjasTprS02Tp3h7PmLnD9zjtOnzlKfPkdRj3DR42LAHixxKSK1pCpHFLVCa4kUZgCj+qGfWA+qdElulIUY8vdGGYmRmro0dDoD/LIw1GNJdAlZCISO9H1Bbx2FMESVr8el0rmswXkUOQs6g0GRYB31qMj56DbP83PveemVXSwF33zpJtvr3+aBB0/RHgZiUXDztW9hdy8z3dhkdbCLlGNmteLE1oRvvnCFV19+jccef4AUXT4KtcyOC+9JZpSvkdESXQemyCp4rch1i4MqTsi7CrXkLdE5BAJVVySRyyjUAODlvN/scsjqtxwXMIjh8ncqJVL6TpeDPBZjkjguPxNZNUC6K5mId38S3/HlynmCMUZS9HddBcelODl5T+bnJoNwx+UbKMlqscdXfu8fcfmlq/zUv/8XqGuPiJGd/X3u3NrlymuXuLm7w1HrGFU1Tz5yH/dcuPDm60uZ6M3w8ZCrLRLHucrHFv3j/L9jZ4NIiRAzQSpi/j4JqZHSEH2LTIIoAknprOJ1ka6dU4/HGUg8VhICUSV0XSKkxHVDGdlQpqNI+fMRObNTjiW+9qy6FVKLt+pI3ln/M6yUEk3TfMen/vTTTzfHgPfP/dzP7f7iL/7iHcjuvk9+8pOTjY2NAPDUU0/dZaF/4zd+Y+MjH/lI8/Wvf7166aWX6rc+3gc/+MHV23m8t7Pe8573dH/0OZ977rnyjz7nv4nr7Wf89SJLu5EoXRJ8R2lyaKePHS6VJG2IhSS2mcnwlUIsHal1JC3prCVIw8iM4ChSIBhPdG7HTGCTIwWFUpool0hVgzRUdW7Jkloxno4RCXyUiJAIBNogEYsjNrcnBNfgCSgC0jcgSqI2ON8xKQpi16MqTYgCoyRKVTTtAtf3SFWhZN5gHecRSBXxvkUWJVqDiI4QLFVRDnkbkWATMXjqsqbc2ECWimbVorTCtyu0LrFBYAoDCTyBTgp01+JjwrsOlQyua5DaQOxRUrDsHUEIWhGxBHQIyBjRpcF1EXxCl4bkQm4WjZJiskY9mbFa7NE1Nl+YELgQSCLbVVJwGeyTeUMpoieTT/kEWxhDiCmfbEXCHwNl3tM7TzIRmSwpNvSrjkqP0JMZIaf3kXCAQ6DpW0vXDXaQoWnni1vbvE5EJU8fIU1OEIRA2IQjoaNApsC77JI/d7jD750+wzeExJiSU11W/NnO5lycaoT2Q0ZGyiHlWsF3PXYf588/QBRZE3TcTSUF+DTkDKYMkrjVguA6mq4nugbrG1QxZnbyPNYn3rh1i92Dl9i/dZvbb7xIqwUxBcrRlBev3GHVX8Itj5iqku17TjN+8DyFHnHBGMS4xq88o9EIP05s3ta88volXvn2i9z/rnczq9cRyROiRuG5dfsm9WjE6Yv38nuf+0OShKc+9BGafkXX94gg6GQ7tP4GtCgQ0WUpvSKXmEiB8YLCRigKZFnhugC2R0ifbZRZAkkIUBhDHzw521jmUhEkQlYIF6mKEdV2xZ3rN0i6YGPrDPsHt4gp4oQkhY7eG+gL6liwdmJEXdd54HKR6cYa5VrN2Ixpe8v8zg7WWwqpKDqHjJbNkycQ0tHNF4zrMSM5Y/P8RV58/VmefeYFCm1YX59xz32P8cDDD3Lq9Hk2N04wm9W4fsVysU8KESU1uizQdY3UemhWTQgsWnim5YijEBiVcOb+s7xx6RqFVNh2hZOK5bwj9YGoFeicl1kXJclHSicIUtN4S2kMftkgjWSkFG2M9N5jEIylorcQhWHZOYKdYmPk5o095DlNih30R8zG6xR6xEp1dA7KUiEIbMzGTKdzruxavvbFZ/joD343fXeELiq0HGfgyzXEGDFyglISKXNbYRD9UFhhQE/wqx3CckE520LWE0gDK8ZxwPPASh8r/oZMmrvWXJGtGMfNd2/NFDpWghxPv99pBzsG+4Y8IgQiqTfBxWGlIe8pg4LhTSPLELoXfUCqNwtGjsOlpYykkHP1Ym8Jvuf27Tf4rV//TUQx4d0f/ACjYsUzv/ebrPbu8O/+/J9C16c4f+9pzp44TXKeKLPtS5uamCSogqSGvKrj7YPM7+EYEMyse3gTHRQKqQUhJTwrjnYWHO7e4vVXvslXv/YtTpw9w0svX6VZer70+X+K6xpOnphxcvsUL73xDU7e+ySbZ07y9Md+AuUaCgRJBJxzSKOHtINsMip1hROarmkJEYQsMBIKwDiPEwInAtECPlAV5du9vL+z/iWvN67ewCbQpqbQEqUT2giSKJltniSEnlFZs76xTtPNc0upjDgBI6FwPsGqw1Sa+cpjl4H9/UPGE8N4XLBcWfqgmJSJUlbsr1b4riemwKQGLSNIw9JZmj4wd3uMVcXm5joEQ+cSLnT0coxZr4gxUhQTbPTcmu/R947eOk5ubzOdzujaJauuZ7f3xN4xqh02JFJSBJuoJyN29xYYoxC1ZLnKTerTyYSkNEvXklIkJIcNEt9K5ktHlwTCaCppGJuCuhKMioqR8UjhMgDUenwq8H1ApIS1HctVx6Lpho3yANhrge06hBQUuqRZtqhC0iPobUfsHOOqZra5SVFUHB3tUwhNUgE3kDsiJqQ0OeNMKFyKlEjQJX3q0ELRdSe4du0/Zjz9GkrdRsiSejQBUyHNCB16ojCQHNOqICpBlAZ7uKCbX0dFR1Eadpb3cefOr3Dx0b/AxLxEFaDzPb2TVONtMBVeaLTw9H1L6hqceIj9nZ9mMv5doonAn2fedozrSOUNQjr64EGVuYQiRqKL3HN2mw99z/uzZi8qhEy5Zff4egDcdUOkhCAMbaiSFEIGdEMuThG2RSqJHxeoYoyeSnZ297hx6xV2dq5zcLiD8JG9vT18CKy8p2sW2KZjbqGsZmysF5zdnKGFJjhLbww65ezePgaWdxbcvnGVD/3Ah0iLnpevXWV+aweLxQdFmQp0ZejjUDBQTplMK2SKGC0w1ZiyTGhiVo4ZSLKibz3JR5ISGJPYLNZyrq+P+OBpbH+3zM23LR0d8Shx9uRJ7nv4Ea69/DzR76KLU/hk8b2A0hBUxLkVXZvo+0hhFFU1BeGxNhBVgfOWZb/iyqHg+nLOazcvU7Sezi84ceY8p9ZPcv7cRR54/DHOnrmXUVnRi45muU93IEB4itEIPRqjjUIIM6j9BjGX1ICHmFtdg1BZtCBEBp1dRdc7XJQkBc4HrLUIYdAovM0W+dGownqPKA1LnwUDlUwEH0ha5dbkCDpEOu9IUuC05JuXbnF2Y5NqWvDyy5c5d3Eb0KgQkKJHl5LtrS12rl6h8x5wbK9FTp/c4rOf+QwPPfYAwnpkWSGIhNDm6L5giQR8d4TGgE4InRW+qJzDSxKEmBXwbn6I0gJlSsTg+mCwpGd8a5hjUnaNIHMhWjpGutVxwdjgjiBlchUyHC6AKAbAVQxzT84RFJEBjDxWzMqB/IwDwZkjQ1LwJGKOHogBoSQxxtwuPDgwYuxBQowSkTRlvcYDjz3Gqy9+gxee/Qqbf/InufHGJT71jz/LxQfvYdlFbl19nq2tTdbPnmd762Sehwf3hdQQg0fGRM6JfrMtOaVjZ4PJCsrjuShB9HaIJQr5fBETfbvHzZ3rnD57D5Wu0bEkSsVquWT38ussmyOaKHnvU99DokFGhZAhqzRjjj5BS0Kf581EQqpjwFXhU54DFXmu0aZgJd82fPHO+hewbt68WYzH4/e99bZf/uVfvvqzP/uzu7/+67++/Uu/9EsX/s7f+TunRqNRuHnzZrFcLtXf+lt/69LTTz/dPv744/ZHfuRHDj/5yU+u/+2//bdPf+ITn1i/detWYYxJIYS7G4LHH3/cvp3Hezuv98knn+w/9rGPHX7qU5/6judUShHC28YP/xe53vY35/GHzmKjBam5emmHEBMp9nTW8/rrN9CFYnu6gWtzhkoSE4gVsdLYztKHbIdTQrJnPV09w7iEjivqqsCPJ7R7+2xPDcuFxFpFoWvGo4qd/VukJCFFjCpyu2mKTNc2IDp0SpgUafoF0UeK2uRcsPGI1bKnXbXEFJnUIygarGspyjGjUYHQitJUNMxRpaCsS6RMBB+xrkcXJVoCShKszRu8pCh0gfMdy+UcLSuK0lCWFQZYzA+YaMk9Z0/zrVdfQyvoY+TWwRH1xoS93TnlQjM1FZ30NL4jNDnvQSSYLxeYwtGnHA5Mn20wPiRc75FjQ6kLmtURs/UNQgh0tkfQUY7XaK3Hti2VLrBREJSl0IYUcv5JkpmlyRv73Brm+44gckU8CJSI9M4TZLrbihZJOWg7JgqpkWKdXuwhQs4q9FjQJcFLXBA4H3Ke2PGq8kb0KCRuI9BRkoqKYnSCGALO5BwjFRMSR1fl84Edz7DaoEwGUoGsHqsnOB/I2E4OTBd4VKE5eXIbKTQkj1QKQZajIxIy5cP+8HCfw5e/SW0ko6pGmQo52ma+e8ityzc4OniO+fKAGzeu0y6O+PE/+Wc4f2LGzVuXGa+d4aXXv01UlocunuThe7+fajYmOMfzr7zK6uiI3WaBLCu0HjGuRwirGW+e4T6l6ZYtV1+9wkOP6Rw07TVROKy3TCZr7C5X7C+PePSp93PUdOACKg0ZL0OYcjIF0We5fiTnziWviDIgdYUvXX7PfQOxRGozBEcPFgUJwTvKpFACkohoKdFSYGWkH7LtQmgxQjHZ3KTtGlKhkMbkQVFohFDokJuB105v0UnYPQicnU2YrmuCjPiDjtuLQ1I14mgBtg9o5VAVrK1vUKnATGnu/8iPMZmscfLkGa7OF3zlW99g2SQKE7i93OHSzpIvP/dVpqOardkW9973AGfO388DDz3Mia0TRNfiXEN32OVsP6WIsqQ0ho3ZGCUFpId47/stsj3ijddeI8iAI2eRRpvtCs4PStcQKExJHzxdyN8r4QLLGJClIkpBlxxJgo2BoBQuOuhBlSVL3zDvWuS04s5yBbsV95zssKs7KCkoyxEp3EYqn5nNZChSxbmTPdevG57/1ot89Ae/i+gLhNYkRd6kBYfte6p6nJv8BIjkiCSUGBOiIbR3kC6i105BMSLFIUSZY+XeW8g7cZybOPwn4u6v09ACnd785aCSVG8JwOYuQww520mkgef+jsc5th6JITvmTTXhsfowpawvEVIMDcYx24lCyEM5giQHYDAmKEfIasK7P/TDnH/o3YgIs/UakRwulphxAR5MMSbiEV6QTG6NzIO4RKgMSuZ8vTwQJ3LG55vs/cDaJ0VSAoSBAP3igJs3XuONl75JCh0ntu/hxeee49KVa1y7c8StOwum6xXffPYbPHJuxms3X+H2ZI3XXnmez/3ec/yZP/e/4QMfeg/KrBFFoFsc5Rwvho0BcWiCBKEkRVHQ9w0xRQqjIeQMQq0kyWV1vFKCZN5R/P2rsmwQ2BSQhcgxFUgqVRGCYzSuaLpsr5MmUscZuvb0vSNoiTa5vdS7XCAmlELYJS4lbBpRoaknFcJZorf4rifIgFAJ4aBfNTTtPOeSikBnA6LU2NTRNY5RNULS4QKE1qFHCp8ERSWpk2ChFEkrbGeHUHpPOck2rBAVzhmcz7OhMgU+WHRvkWVBZx2VF9RlSRgah4mK8WjCwdEhggmTicYbSbvqwTtkkY/lWibWx1Mqo5hODLNxhZgH2k6iCon3gUKEnEVmRpxa3+ab3R2CVsjeUwmNHBXMG0trO7TKbZUhCSSaqoDx+hRZKBaLA4TtEUKTjCCEgJb53OBiIMVESCmTiCEQRG6xlfHNMPsgBDom6lLgkkcLiZcBCOAj0nhkNUWngigC3jVIC14LbGMp0w4nTvzn1LMdZOyITUOSPaquoShA5vKUlCLKBETqce4Wk9kX8VzH+E0AtCkYlTWrriVVEq0zmFBKRTIjYpQ8cN8FZrMpCIUgZ06nqHJGHJBCtkYKAl5ERAC/WrFqj3DNEqEk4/GIcrTGUhn2d3c4eHmPO7d32N27wu2rV7DFiGX0dPuHNKslMXacXt/E+cB4Y5PTZ2a0RwtWqefg1nX2blzm4oMPMZ5tYrzAaYeIkUoXvHpwm9naBNHB/qLDtoGzF+8hGoEQBUVSuOToxRD1QSAKnUl8l8tbUhrO6VJTS83K9RSFQBoF0SOFoNISRwFCkiJMAgitQEqUFKRo8bbj8GCf8XjC2Yv3c/PadaIoEVGgoyNKgZ6OWR4cIKRgc3sDPZugAowMRC0QPtEtuywQQNAeOZrlEbWZsLF1kubogBdv3+Cbz30F8YmCs/dscvHUvZw+fz9nLtzDqbP3MJsUBOfpliu879DKUFY12mikEcNMAFkD7pFSIVSBNDVeG1oTMEkTlikT/9HikmZSCjqbr7UiwarrcM5Ta40pSogQXMTHiLSJShtC6/DkvO4kJUHAXhMpZMv958aslh1He0cY69EiYu2SUV0wmWygzAxvj6i1YWs9MV5XXL10hUuvvMKZU5us1Vs50iQqhBaAw1tHCAFTjJDCkEKOE8nuA5lVzN2c1C3R4zGqWH9zPnnrIHNMUg6/O86vO25MPlbsHQN3MflMhpK4m4uXjqNOBvJzKNDIeb1Di7DMc1IaMlNyi2+ef4QUpJhLbeKg8zsuEktkIMyHvI9J0SJdx+6ty3zpi88RUej6HF/87GfYOnWG577yLFsntrl9a4/5/HN8/Kc+zhNPPEplipwtiUcNToXkByBvcFPA8VyX31cQFikzuZJCGpp+DUkZUBJve25ffYWbly6x7Ob8yn/1m/zFv/SL3PfIQ+jUUBWKq698mzP3PMDp8eO8/NzXaI7uMJmMcr4mmUgV5NxuJQukEvRtizwmh32kMgIlS7x3uYRISoiBqrwb4fbO+mNcf+/v/b3Ljz76aPurv/qr25cvX66KolBnz561H/7wh+c/+qM/uji+36/+6q9e+vmf//l7Pv3pT6+tViv1V//qX732a7/2a9vPP//8qKqq+M/7eG9nHT/nZz7zmfXlcqn+8l/+yzc+8YlPrH/lK1+Z/Iv8DP51W28b+DvqMptb1AkrHEkaUjkipgP2dubcd0/Bwe6SxVyzOasJ6ydxqkYUkhhW7N+6wfkLZwje4yx0zYrolyTf0a0s3nkqU7O+tUUIC9yqoV327B8uODo8oI9QViPAE5zHuxWPf+Bx3vvQo7z2wuss965R65ogPd2yx8fIUbvAdZmNlGXB7u4dBJFF4zgxrqmma8SUUEazPhsjfEu0HUYr2r6nwxKSxVQ109GIVClWoaDzEh8dzium4xnnz56gWTUYrVDRMlrkwWNReZR0KFGiVWJ/vmJ8e59b1/eZjkve8+6HmcjEZDRlvmzYnI0wpqCuNCEFmpAw0xK5v0SVBW4k6YOjlgUagSwLFs0y/43Q2OAI8zkhGpTUOfdiKAVIQ6GHOwa/yFlaLgZkAmVykyQhDQGzFq1NZn6OxS3GIIUnCUeKlqDHRKVIErQ0uSE0CLrQkcKCPiyxpGGDDdjh30bT+T7nL/pIILeLISOibwaGzMLdjaugKmpsv4RVVu/KQpO0IrqWOK5QaHQUdK7jXU8+wr/95/9Dzp45iZQSH/LmWSDwzrJ/4wpngNXeTU68713IomZ+eMgbr7zOt1/8Mvu3rxJlyaqD1eKAG7fvMCGy/tMTtp94iu079zGabPDNZ77O4ZUbXNze4vDgkN1X3sD1kV4b1jbOMD11P6LORRsuOJINOLuiKJaMzq7T64L9W1c4e/ERVHCEAoRLyKKgaRqmVZ0zNWPIQ0uKYBQpSky+9qGMyhammFAElDT4BMELrHe5LFkEko6IIEBkJpGkECEQvCPqMgOKCJzIFivhHaWItDFRD8BqVY3QJA7bjmgdQmf7kzY1drXPMnZUepuEJVEjTzxIGxNKwLi2bG56itDSzwyNnTB34Oaeg+u3KSrFn/+LfwUnHbOt03z1K8/zK3/3v6btW7QuCCpn0/XW0XrPbmu5fthy6c4d5Bc/R6kl509f4Ml3fRdPfeC7Wd/YwrdHtItdDpvAqndoIyjHU+qNNc4//AA7l1/mxu19ut7ifM4mMWjGZYW3lmRttteRkEaTfCQm0EJQF5ldTwk8iegiwkXUWOTcJyFxvsOmxO5ySVIRORkhkmbZyZxr6S1egtAaBDiX21hb1zCdKjamJVeu3ub6jX0unFtHSks1KXChR8SUGxDDAm1O5RE1diRyHmFoDjBGEEaznFuHzRlPKYE8tvm+ObBmhd+bLNjdZuv8bRsG6mNfsCBTz4MkcLhnGmwzxCGu5hgsE2Jgbodyn+F4On6CY5XCXRjyru83Zqbf5yw/KRTJ+2xDT7ncKESbQfAkSUGycfIUoIacQYmKltR7uq5h59ZV1kcjRAzs7F6jlAIfBeONLda3z+ZRXWhiYMhbHd7nkF8ohRwajgWuTywPr3Lt0je5dflVZBJ4n7BixhOPPoX5wqf56Pd/hIceuki7bPnWN79CZRynzl3kXecuEkXDmXvv5xtfe5bnv/wJ1saGR979OOCoxlOCbZFDVo61LhcQIJAh5u8nFa3rWTYNI10MNqGIkiDRRO/Q5p1a339V1sZ4ShABpCFGSQo9VZnoQuBoucKGkjObY7zoiC5nJ1GU6BDAKNrlgqhNDoJ3iqqoidoxLguigmbVoBCEYLFxiSnqHJpeJVxrKcwMETwxeWTyuORJQtKsDimqMX5oHjUyUkhJ6w2ts+gQmdY1c3tIpQUyBrTS9J2j63J+sJEKqSJKS2L0CKnoe4uUBTF4bN8SgmVUjXC+w1mw1mbiYzxBjcvc5K1UjtygpPMZSPMxEJShiZK08Czbht72mLqiW7V5voyRLrYsXY8TiU4kCIHSeaiKbMX3ibIq8b0bWkgF9cYWQiuWR3cgCaJIJLLtVQ5qP58gaZnzkINHuqzCiTJigibGxHG3kUuJMoHz2XInJUgswVtSa6mLDZIscEHgk8jnkiiwK0/bB8pyyezk17j28v+Os2f/LyBfxSSJl4YwHhNdQNmIVxrlE/VoxLhecfLsX+NgfoDqzwE5m3o1XxFiBFEhvEKJRHAWVUnqseHh+++jrGa40CFVyXHGVzymhIYG+O7oAL/YwXU9xWRCWZZUo9N0veON6ze4cuWLrJoGv7vLotmF6ZT1jQ1WxRovvfQ8E6OZisSTTzyInM6IPqL7llDXdEcto0nJaDqhVHDlyjWuvvY65x+pmJmKKMEEzVx0dIsV9z1xL8++9BJaGe59/F30tiN4B94TZUdCEmNCJgVYpJFEsjsF6Si9yC4cWZKiAJ9BJEQY1Fe5iVepgj54ZBIoIQnRE6UihhLhJVIZZuN1los55WhEWY8I0eNTTUye4DWyLdmuxsSywNQV/mhBEgY7LpCmoq5HzDZKbr3xBpNpzXgtoNmgLEdsbo658saK+x54FOUDD3/X9/Hpz/0Wn/vq1xl96wWMgtn6Cc6dO819Fx/ioQcf49S507kIsF+xOlwQY8DUY8xojNIFKoDCUirPxnjEQmjWpzVnt07x+S8f5PzvPhBloFsqfAjZ/KmgEDpnjfoECrzP+bMx5NIGIwRRQJ8CBRITJT5l5e2y6Qhundb3XLm+y6lRIPg5tYBROUOamoBApjzf1kXF+nTB7ZuCZ776HD/xkx/F9g2mqNF6ghCRvjtCCk1hpkN+cYRo86whs5jDHe1C36KnJ5DF+G5MyR91Ohzbc++udBwnkpuU01vJSY5tr8MS+b/T4EK4m5cshjKOJO8qCu8+XXpTVXcXgBxuyw24HqXMALJx9/GUyABZ9JKYVLagF5Zrl27yfT/0UWpj6ZZHvPupe/me73+ScnaWta0REz3OdmwNUpVIpUnkPVtMMZe/HTf25qFwAPxBxDi8l2wpFyoRQs/h7atcefUVbl9/g2e/+TwrJ/EIfKz4zOf+Cc8982lsN+fD3/8DfOubX6O3knd/8Ht59ANPI11ExZ4YchYkRhN8jsvREVKhc7Zp36GUQhmNAFTyOJ1wCKJLCC+geIfY/J9jffnLX37pn3WfX/qlX7rzS7/0S3f+p+5zdHQk//7f//tvjEajBPD888+Xf/2v//ULAO9617ua4/sppf6Zj3f9+vVvvp3XeerUqfA7v/M7r7/1tr/21/7a7X/W+/lf+nrbwF/qDpDJMJ2uYZxFas1MK3qRaFkR4hpz72lWDUTJ2shTzApi9MSy5Gix4vT+EaLSuTDDO1QU9EkiYsvjD97P7kHH1es32ZxuEZol0ngUAVOVHM3ntK1EacOkkhi9xqvPv8R9J+5DmQKnNKdmU3YWd1h0LaXMzF90jlLNSH3ESE9vAwKDs+D6nJUlUsIli/AteI8iMalGFNKwXKxQKKR1JNtBchALgvXIKHPArG0pUqAI2Zs+Kw3eWg76jhg0JElRVcwPO+xkRVEXdH2bbV+b29jYUc5GWOeJ3jObVvR9T+Ul09mIo+IIqRXWOaQoSVoThKBOks5bemuptKZwJZOUQ1SVLLG2QwiPEjlM3LlA0gVIhXIeHx1GK0SM+EIg20TwHq2zMVYhEU7kbCkghEgfDISewlcE1RN8T1QlIRbEGJAa+jbQ24S3AqFzSHA+iLL6bxYjpRCE5CjMGCfvOnNIyeFdg8Ghq/x3ShvQmrYPrM+mAIgAKQS0kKgoST5glcEIyfd9zwe5/4GHEdphbSI6h2uXHB3s0zQNswFoKKbbPPPVr/GVL3+W119/ldZ3uGSoyymhd2giGyfXeOLxh6lGhl/79f+Sey+8ix/6+E9RCsv3/fC/haPmhRef4bXJAY9/99NM16ZUscQXAhFy6YlIkd6DryqMXOf69QXLm9c4efYsO6/s4YKjNpFkIykohJFomZUJ2rYIctZKikVm6XTAxYgsJvi+RRMRsiDEkKEWkYjKgwUfXb54xoRF5Qu8TBk4TgpNhfUOISRlWeKjxwcgSSIBQyIp0FqDd4hCIV1FkAFNQGfEiuQjuiiAgsMbB8zOnaXxDp9qQvAUoYIUqHWFIjAdwUUsUe3x0NMf5cM/9hNEv+KoL/j9z/4ev/Ir/y0dgaYLTArF+XsvUghPCIYmdLSrFc18yaLLSq0kYWfniG98/Rl+67d+gwcefhcf/ujHOHv2JFunR7C/w+uvvMD+nX3279xClYI/+MJz7NyeIxSIJKkjiK6F8QitFUZWSO9ZeYtWmlJJwsDOLm1Dpat8XtBqCAHPDcIJTx+zxUaFkr6HvhPEIjI2AaQmxpJC6dzYmshNcg5QGpUCJilOnay4dCPyuc98jp//8xeARIy59IKoKbQgyg6BJiWbNz2ypG2OqMqSpKYo6fLgKiQCB8d2/OMQ6STfou4bmt7ugnvHJ3+GNrzBQjdk+cm7hR755uPSjzjYhrOTJiJQ+QF4096SVYHy7mMKNQRjh3QXjIyEPJQSCJ3H1OPczhni0K4uSWpEF8D1HSl4VoubCL+ib3pC7Ni/9gYRuPDQw8hU00aLMDUnLz6aiRqV837C8CaFyBYTIQ0MG4CMZR6rGhX7N6/x3Bc/iYiO9bWzvOu938udozu88PVn+MLnvsTNgz26ruGDH/oo589vEVzPE+9+nJ39KxzsrHj9pW8Oxwfcc/95vFvx2//wV/jWCx/kT/ypP8NkojFK0s736I8OaZuencWCCxfOEdueGBMu9LSuwXYtCxeYjNdQZYlQOn9+UlKqt2xS3ll/rOvi+a2sBNaaV168QgA8kVs3j7i5dYvJyHPQbVCNAklNiepkVuB3HTuLhnI2RgnBooeuqlFdg/Y5/ziYCT5Zzp/bYOeWBD+FWLBsDzlaLhDSYAz43mPtihNnTrM+WaNbLtDOsgo9qAJTaVKU+KKgOzzCO1CmRONxUpAKw9rWBrooGTMlxo66MCgShYG2y02txdhQFFU+vxSSPhp0VYMSGawTMFkbUxSSShY0iyOK5Dh5zyn+8OCAoBNJJq7t7DPdmvHq5UvMJiXbG2tYkYgy0qwWpAidUyyaFWVZ0Pue1FuMSnghsb2jno0YlzUHq4atjS0Yg21aoCdJQbNqkRG0MrQyIqVHS4kLuaQpAiEGSAGpJbGPdMGhTZG1OdJn8AkQMRATRAJa9AQfKMoZSRt6DjEq4WKP1mMkBQdti40hX6OFYMGY7ujDrA7fT3tmRrAOmQJmPKJQI2y0+IlCdxFdQKwEqqwJ1jAagY95nLcDAWCUwTmHUwlSpKwKerfi0Yv3c/7cBZSMaHUMh2SbbwqZnL194yqvyCtszGaM108ipwX7833e+NY3uHHjCqvlIfP2iNXhiofvu5+P/zt/nhuXX6BpHJdef435ziUev/8UH/7u72eVFL7t+eozXwPvaGPAlDWj6SZ1PSZ4z8bpCXVVsegjO9euMX7kHoyv8dEhG0sxnWKFYnF0xL3vfi+tDwifUNGTVC4YQEA0OTMtpgzKFkpDSkQioS6wqUc7m8kppUlJZgcEAqESPvVUaIyUpBhQUqK0pAuOLnqUlmibUNUIHSyOhKhyuZhTOYNP9R2EFeunNnA6ce265cmHHmY0ysdHWFmaxZKdgzmtMxzttMRgWdscQzxELzz/3r/z72Mma6xNT/D7X3+Ga9dWNEuHXDmElKx1B1zdvcPnv/4Mta44deIk99/3KO993/s5dfIEo4kmpUB7tIeKFitKZDGmqmrWpcZU7ybUYw6uv0JnW6yIBKmRBnxHVrfGgHUeiQKj8cHjGkvhYlYvV1kY0KZ8/EfriIVGRIdagaxK5qnj9mqBxnN74fCriLMt3XKH9dnDOSvdN0QZEJRAxfkzkTeuLHnu2W/yYz/+fRhfkpQkqoAQDpLHeUc5qkmiQIpASA4pJ6RYYBd30FIR1s8ghuzqJONQOnE81wwAt3gzd1gMRSA5CzwMJTDHdx/swHetvG/edAwqygEoHEwCA7mZjker/I/0lgKQ438NJS3ZhBNz0YXJak6tdQ4qEpLgc6SPMgUb4zV+4KfuIXmBTE1+LSbH6xAExIASghTApiWxCSAbynqEHD4LLVIutEsKKeWgPEx3U0yQiiQ1ISS6+T5Ht67yxivPc+Xqqzzy2FNceOC9fP4rz9IGQUo1sy3DlTcu8/4f/ghKneDVF56jPTjgP/0bv8hH/+TP8tM//7NMRgVJjuiOHGYAGo9B02M3iFJQlJpV2yAlFDIXMkoJxuedqVWC8A6v+a/V+rVf+7WNv/k3/+aZJ554ohFC8LWvfW3S973Y2tryf+kv/aX/SdDwnfUvdr1t4O/ciZPE5BnNJqhyRO/J7K8pkV6xVhjG6xXF2ll8d4CSDaY9BKBOknvPzdiaahoXWTMVzUiigmZDSkQ3R0WH8IcUWmKX+6AUIfVslZpRMaIQkaAkzisq5TH1jKJI7O5ep1kuiN2CG5ciPlqkCaRG4opAUIGjPjdDedcgpMIYQ6Fh1S4ojCLYBlMkZICu8RzEBToaphvrpELRtx3UBclUWBc5Wq7AOXShGa8b2h66riF1DlXVCO+QSnMYwl21i1QO1Jj1zSl0nmaRWLUNe4sjEolltyJ4gZSJsuqI0WCTRA8XXhU9yNx0JoVBmRInO0a6pneWJHyWgKWEwKESxBQQQmOjQIqAKbI6ycWAZygJIGeFiBCRWuDCcLFLCp0glQLscJikmIHUUYlAoEI+gKQGoQNGGBISv1zR91mxIoOgOE7yH1YZA2UU2LqgNgaEwQsQvsXh0a5DlaBEbtzWUnHu1EnC5QZdZvBw4+Q2HK5QUmNDpEwCJzzeR77wh1/ig08/zZkTa0Bmtcpqwvr2aYq+49qXvsYZ4Lf//t/lq/0SWY3onOO+8xe5tXvImdMzHnv4YcrRBNdFDrtDDvYsd+Z73PjGlyhPbPCB97+fU5vr/OjHPsIHvv97+YM//BJXXrzEw+97L2qkMSkRjIQQ8N6jhMhqqxjYPnGelVtmgE5UpN5hayhkhdCGJEJm+JQg+IRWDh09UUtyjInKDa+xz3l9Mau4QtZ8EEMiRE8qy8z0plyGUCSXWXEEyIAUCZ3ApRzELWTM5RRIgskFLAqPEjKzf0rmwUP0qEISkUjpSDERhSDZBtf0RFPmQhWpKGNPqSStBCtGLLFIYVj2gv29Qz78gffx4R/9AUal4quv3eH3/vBzhPkNHn7iEeY2B78Lu8LERLAO77PSezoaMRtPUCnQNx3zbolHo4uaw9WKZ5/7Ci+/+m1OnZhwz+l72Dx7H/XmNtNzIw6Xe8z3brN7dIQrFKPRBI7myMpkhaiKmCBwMofKVkVJaSps19B3PUZqqkpn0FNpqtGIrm1I0ecBSlUk51EqDo3EjsJFTomEkpKylnjbZsFBdAjr725gGNSv2kfWp3DyxIznvvUy+/sHbKxvop0nphajx3nIjIroF5mhTZp2vkcxnaFVTUx9bjnWQxFFkoO6Tr2ZXTcoYe/aVlDD7WkAC4e/IxwL3/KpIKN6xAEkTEPwM4isCh6UciKpAXh8k+UezMEQB02gzD+LCCSX7cMh2z+S1Agt0bIkUBCUJ7Rz2uUR7WrO4nCPvllh2yW2bwgqcG7rFOXGGYxZG3JTBaZeZ23rNKqo8mtLueAmCQ0iZAtJzJaulFIGZ5NDppgzUFEgPUEUTDZO8N6nfxDsCuclZSVYXZ5z4/p1VBH58u//IXWl+YPP/DYXL16knm5QVQoRJWVR0FuLTpI7t/fY39vn+s07rFrPV77x/2J1eMif/tk/y9r2Oma6ibU9IykYNUdce+3bbJ+8yNrGCZKEkWvxtudwd4f9wx2kNNSjGQiTLUPfedp9Z/0xrt3DFSlCPQkgAkrVVPWIw70FkIPd37i1y+ZEs745gY0JyQh6adjZ2+eUUpTjiugisVmifUvjGrrGsr35OF6MkWZEWVpS13NwuGKxWGKDZdG31HWNEpFgBQdLx/d84P1cvXyT21dfZmu6zvzOnPneKscI+Eh0lmo0wvkj2q6j94mmd5hiMqjPPSe2TqNjS+iXlMpQjwyt7GjbFl2VrBUGLxvmsaB3id46VKw5uVVTlfn7IHGMRYG3iaY5RGIRaUShFYtFw8612xwcNMTOc8+Zs2yVJQ5P21mOW8FPb044WjVsba+jSkUtJHOTiH0kipwhVZc1u/N9CqUZqYLWBuxiCSiMKu62twrA20Dns8VTpEQhIMgIIaJKjXFiyB7NLa6myPOREqDLHGcSSAg6fCqxMRFVJFFiVIGUAecdKbU43+DI+aaEc+xe+wsAaJ1zmcsQsC4QRSaHVAx43xJDjxyV2MUjPPuF/zuPfeA/wcZ8bSyVHooNBASHrAukV8gg0SnwMz/zs/zwj/4gRakhlRADfTNnsdjn1lUPPIYWcOb8Q9y8dYOvfuP3eOPq69y4fglre2Is6XtPDA2NC8xGBa9/+3nOP/g4RSEw9YQ/+OLXee3bl7GdpBrNwBRMT9xLtT6lMAZV1ESgsw7lEiGs6PobjGYzlkf7hGaRY3aEx0bARqy36AilkqgYcyZ1HK5PMpNOOimSCAPGklDEAYwVhM4ig0NqkfN7Yy7AyE3zuUwpuYRTLjuBtMbLhBJZYV7ISAw+x4VIxdpowrxtc+O970GMkLLAu44VkbEo6A7nTDc2OZQb7CwkSnimZaQarXNf8oTo8ozYJ5YHe5zePMdP/OTHmW1tsPSBf/zbv8Nv/MN/SBKacV2yfWaKlpGuD7S9w0doup5Vd4WX33iVT3/6H3Fy4zSPPPYYT773A9x77wPUtcA2S27dus7unWskDDZ4etdw/eYeN67t0feWECTGQ5UUxXjEcrFirLO7aJU8EzOCGEF5tMi2VjnkB3obkDJhSoVQCa0l1jeIpNhfdGwUKvdGO48oNylFBlZjVYM2uFVLXXlcbDA6cWprxLdeuMZL377Eu56cYGIJwuCsx0iDEHkfINSY4PYARYiJ4PYxpgZdognZyipidgiI7CLI1lsFb7HlwgD+3bW8ikGpNzigxKAEHOS9GR88rrwhD0LHtyVyJEk4tlmLu3MTAzgoj23H8diBcZxxHEne58gjpQi2Q8r82qXMDoSUEiJ4RBTY0BHaHuctrruOCAFVatrFgkldkgAXeipj8BiM3kYVo+z4kRKSRr11PJMit/YKSbNacf3yazRHO/SrOV23QhWKbhV49fIB9z5c8fCDD/B9P/QnqJhz88Ytrlx5jZU94sTJC5w7scXp++7h/L0PcXS4w+f+8X/PBz76o2yd2mA0WyfaFaFrEAEOF0uK8YhCSFzbIkQu71g1S/oI47omyaxA1crgektp3qn1/ddpvec972kvXLjQf+Mb3xi3bSu3t7f9j//4jx/8jb/xN27ce++97o/79f2btN428DeVC3xUNAeHxM4SpQYNWku2x2ucP3sBJ6CJkTAqIEoqqUkktDYUGxsk21PXI0ZKMlagQoEpFJWa0tsV969pVl2g84YUAjMZ2ZicpOuWnNuq2Fw7TT/foyURZclaqRAaOpdY1AVHAuYHnmg0JgiSs/gEnUi0qwWbtWY6OoG1SyrZI8IBy0bQLA+Zrk2IPrFqAtIUSB9o9nZJvkf2itEDD3Gw3KfQChF7XPSkEFk0CedXxKS5dWuHnYNLGKGRKtHHSNu1TIuCsSxZ14LHz0446jq6OCaJQOuWaFFyYn2Tg8WSedsRneHw4ICsF4OOiElQmYJkwTuPUBppFKOqxPUWESVGFtlyFjyBcJfJUghsiCgpkQlMjCStkVEM7Z+goyBKiUyevrMgoUpDFoUfcl+EJCZB8gIKSN4irCNMplgnMUIiVcItGyQKrSwxCbzLbU3Hj+NCRGrN6miF3pxiEjnLKBmUVSiTLd1xaKUsdOTkuU12d28SF5mR3t7aZipLlnv7eE2uiu8dY2P4yle+yqXXLvHooz9EEgZtSm7fvMYzn/2nfO2Ln0e/8A2+C+i85+x9j3H24gWuvPEyD99/kR/+ocfouki/arl15RK7FhjXiNMbXHzgfpQvuN7A4otf5rH77ufc9hlufPlLfM/3f5CX3niFZz77O3zox36MaGpKu6RLjkAOS4/K47qIUZF6XLEkIUyBjQHhSjqdB9gq5qETZRApF6wgAyp5YhQESkRKSGchDsoroXAh4cKgqpI6D8EpB+cqkYc0CDiVURopSkLhIWU1U4gQlcmlL7IgkZsXiRF0bu0rg8K4DuUlqla4lFBJ0GDQUqFktkSGkEAofFEQY6TEIWIPKGLfM2sO+ak//UM88sg5ynrEZ7/8B3ziU58n6JP08iKqKqiNYzpzlMpyYiQwqaNzh3SHLcumw7mALkeUdUEpRyyCwQpH1znwDtMb9m8dcPvqdZrVZ2ltbjWuazMModlKFH3OkYsx4ZyjGI9xiw6pNKYoSFqhQraPCQmmUMQQ8aHDVCVR5mbN6BO2t5iiRCtDSi5vJJOk7S2JgpgchQGRAgUCFRMxBmIYUJrB4xGJTCrFqY2Sq5cCL337JZ5++v1Y2+bsLgMknUOUgyPg6VaWamOSQazkISWUyhmM2baSkCqzqsessxjQvJT8kG9zXLQBg08lD6XHEQEig4SC3Gwn7tqGj4FDwXEZbgbVUm7/TQEZ4TtaQ2TuIcQHVHR5sywNIUl0WRGFxoeAj0t2br7Oaj4nOcc9p04SpADhGK9NmK7NSCSMUZiyRCaJrmuEEjz5vT+IFJJ6/RRSldlyPBSHvJX1b1pHWeZyp/y/QeTjOLUZ9JYCGQIyOsqyRp2+iHRz7rxxmeeefZ2jg5Ynn/owH/uJU2xOa1y7ZH60IPYe1+7TrBJd19P0Fusd0kBVJE6f3aQ2iRQiGx94Etfu86nf/FV+6Kf+V2xsbzI7cR7nLfdMZxzt3GLeHlBZqKoNSjNiVE6YTU/St/scHh1gu56T25v0vcW6u6Vm76w/5qW8oyw12xsbXHnjJlopRpJM5oge5cYUyqOMYLU6ZOaXhABl0GgpKUXANwuSyxYspWsKYagUnDp5lt2db3Dz+ooiabwyCNcwrgOLXYvtW1Z9YH0sKKTmcPeQl158AVOO6aPFtx4fGvrUUPkSRMxqPa+HVk2LDxElDS6onMcUIzE09GGJWzl86VApN8srnfOY2pQLeHzo8F6RQkSrRPKWIAoK2aFEiZAaobN6KqGwDkQpWNlsq6/WZ/R9g7cdxXiKs03uE4pA6ihMwaQomJYGowTGKFitCEkjVYkwFtl0CG1w3tOJlnGoKWXeXMoUCb5HqpyVG+IAKmpFsA5ibgrVIhFkJIqIjx6pMokmB2Ft0jL/bUw4N0GprBRMuHztTQIhC0gJ7yyrtsPbfL2sTM3iLV/XtZQ4iglhBGWlCSI3lioRcGGFCC2VqNH1HR5+73/G2vSQ3S5vhDfX1+n7im7Zok2BcJHkYWUi2sO5s2cICdqmwy736FdzQkhUkzXWNzYAeOPSJb797G/xwkvPsbKR6XSdeZfYGFXUIzh7ZosT5x9Fj2bcvHqD//T//Mt88EN/gj/3v/2PWJuu8dN/+qe5tHONT/7up7n3iQc4++B90FsoFCiFSiBcjyoEFBohNlnNTxGbHaZrWxzu7HHugRPQeogGjKHSObsU77IyKEWE0qQEUubMuSgjybohs1gTIGcZh9zAnGSRyxGCJJDt7gBaSmRylErhEyhlKLQmeJuhHaVRMc9WSilECkQNUWcFqiWiZCSlgI8BrXMOXtcl6pnCxZwfKZHstLntVKcekmJdKfrdl/nIh7+PD3/4+ylrxTcu3eCZ3/9dXn75KtvnTrPoLLZtMHWJwTOdlvTJsZzP6VYW4TWEyDw62lvXuXVwhy9//Suc2D7Ju556F08+/hTbp85hxjPu3LzCa994BtfO+dIXvkUTIlU9QvhcI69cRNpcOEOMBB8QRpNSIliLCBCUQ8uS5CLSSKSCFD1K1SQhCMGjYm4ZXrSeSVGgU6SuDUiZyxmNIPhItDk7FFmC8BgvObFpGM9q/vBzf8CTTzxCjCXCWcjm7aHMzKFiSwgZnG1WC8q1CRIzFEZky/pd3ftx6CHcVZglId4yCzH8Xg5kJWQEOWYvQ4pI5EDYi1zekSQy3YX/yE4GBkGFHEo/sgpYJZHJTRJJBo6btPGD6lB4IhGReqQF6goKSUqGhCIGS9c0LA72WM0PWaz2mJWSolpH1zWXn/sCq3bBI9/1faxtnqGoRwhlcvkbCanGRCxJDA4MmXI0UBzUhjHmYhQZ8ULjXKTZuw4iMls7ycV7K1585SU61/Clf/JbtL/tefTh+/nYeI2i2uLBkw9x7xPvYnV4wHz/iMOjOYeHc5bzJUfNgqsv/j6/+Tuf4q/84v+Je+87gyqnNN2Kbu82y/mKvctz7r14AaMnhBTp3RLbzdk7PAAnWN86gS5qEJokQBdvcaW8s/6VXx//+McXH//4x7/9x/063ln/HMCfdT1r6yfxS09VFnRtj9KaaBuWdolXkZweYBG6wtkOGxagDIHEykeUh+l0RHQNYwFSVSCgDwmpFKMCtO8QUg6NTFDpRFUXrLwhtCukbTCqROq8KRzFQ1JY0s5KRKvoo6NrEiZ4RnXOZlnfPMGJ9XXWteNosSC6lkk9oxoXXL22z9iM2F5fZ7U4pF9GbK8ppGa5mDMRjr7fwaV7IGpEbNnYHLHqIkIrNIbO9QhdI6qasnZUwmBERNoVhdF0LqvxZHJMypwjFkSNT5EmJJxrODHeQkRF2weC1ZhY4mNHrRKyULSux4VE8rAp1zIzIyWLbokpNMn1JB8g+qxQOVaHkQN6C6XxBLAWkkSjc6GGd4joMSnLqQsjUU7QxJjtpV2P90P2V0joKJFAkwIqJoSLEAJK25yBEluWzU2IPRFFwuciCcjh3sCiXdHrkjPbp+iVwToHZXG3pEMVGq1L0rBxLUVk9/CQUgrK8RgAlwKbp7ZZLObI5Qo5maCVxgoYr6/zX/zd/4pVf8D+zjV8c8SlN16nqEd0PrClMyu/tbXBrm/49tXneO9j7+Hk9AxXLl3JgcubG5z4nnezHkbs3W5w/TK3UwNRKbwueOXKDZqu5Ynv/xC/+/f/AWvrp/j4n/l3+ae/81vc8/jjTNY3sL0kCE3EcXDtgJtX3uCRD7wH6xxVOUOqt6irBFmiX5Z5cAmBYigaEAM5rRFYcjNxJp7lYFmJqJDZbZcSQoKKmaWMArQEr7N1O8pysIdGokqYqNDRkUKBKgQehwyRRCIogReCSimUj4TgEMKRZEHSmhg9mkhSClXWWCPASGyzZFy1JJM3tzHKfDz5A54cjfnon/5pTlU9rVrnH/z2Z3ju6y8Siy2a6CBBMA6kRKsRTuX2OSPGVOVF1s4tOGlahA+0yyXt4S5tkhQROj2iFRNcM8d312lNVj+IUuI7i3IRRGbKY1lAoTClQa9PWS6XSC3plit0yEHMXQqEFAYbtkUoiYsWeoipo48RYckWhjQ03SVLKsqcARN6ytGU4APOBSDbgfsQ0eUkD3RK09hEbdRgQepzXo4YszmxjGeGL3/5W7z73e+lKiSlKoGemHIRCSFn3dVrM1QxIfWr3BysDCLlkPZ0nDOTGHbMQ6iLZGCt010W+m5hLcfQ2HGjXf45b2bjEP6dBjAvP362ktcZ/Mv6YkTyWVgh1ID7CfABQp+bGwtFEAolDVFWpGDZuX0JkzTNfIfbd67jouf+B55kbfs8up4xxZLEAD4KPbD4guhXSFnk9ygicXyCbCWRd5l7IXIpSIYvM5GQYt70hBiG4puhPzgGtC7zYywbfGpRxQxZlEi9hpeGM2fX+e6n30VRzgjO4WOikDUiBWxsUKrguDzF9TbnKXVHJFXSreZ0dsXh4S7Nasl0Y4Mrl2/wD/7r/wc//BN/lnP33UtRljgvqGuHUiW3r95mfT0wGk+xQqN0BWJEYRyHB3OuXLvKmVOnWF9be7uX93fWv+T17odO07Q9bW8xytD1PVIkUlBsl1ucPbXFxckUHyx93zESIbdpp5bZxRlVsEQ5pi5LrLRgLaXJJEw8uMyjZ6f4KImtY2kta1szZvWMc9sHyKKAoHBuSdIls7rCVJLV4g6T0HPn9nV8EOiiwreRVATaFNhvjgh+xURK6nKN0sDq8CpJVth+iSkMo7KgtT2r1QoVDetba9jQwUqhttexQmBTZG/vFlJK6lHJaLSGtYmd2zdxHTknTAsWtqfznqquqSWMVeDRi+vsLluaruawPWLRdxhd0tmG3kV0IZGyZbGCxbJDY/C9p9IGiyL6iNQGoSWVLljZnGksyaq9JHwGOYXMKt/g80bZKLrOghAoqdCmJPoWBiUgPuJTyu6LoZRQxmNlkCKklGe3IBA9oAROBcpocwPpcom3gdJkIoXoEf5N+IDgqXRBjD2lLAhJkZJGeUFIAhEFKijKWceJ4ve5eM89SGm49uobCNlz7wP3c+ml1/G2pxGRsdLoGCnKmv/jL/0yf/2X/wrb2zPK8ZTZ6fO0bccbr73EZz79LE8+eg/P/MH/wGza8NjjH+TqtVd56N4ztDZw/uJ57j17D7tHK67d3OPKtVeR5QZP/cSfgqLit3/vd3jvk0+xfW4LZOQ/+I/+1/z3/+/f5LXlPo+8/32ZjIyWEByWiAySQL7Gnj51ima/wa087SF4F7Jlt5Qo74i+zzNHgKIQ+bqSEj4KSAZDJEaX5x0h8drgQkCTY0uEkDkfdjgXVzagVMSJSJQOJQu8FMSYULIiiJ4gc8xMEgIZHGYAeiMRrQzjXjFSCmkqbPQowAmD748Q1hExJEqkrkg+g4MVCS9VzmpLYA/u8AMf+V5+8Ic/Sh8dv/uHX+effOpzVGsVbJ3h5CRwKnlq1TM1Cdc2HBzdxlnB5to2Zi0Dzu3SMm9WxFTS9AtcmuN3Cm7/zif49G/+d5jRBpMTZ5ltbxK6hqPdfRZNj1IGaQq65QHl2gSXHEoLpMvVUspoCm3QAVbeoaWm0iUgkKWhnE5zZntwpBjRKrs9hI5YG+h9ZGl9VseWhmRXEBwqBkQIaJHnHlLITcQpsDZOnDk55tXXb3Pz1nXOn72QnRSA1DmTMkWIviXFxKI7YjSbYIQhpqz4VDrb8WOMuVxDDIq+Y3tpHrjJU06GB3PucSZA0zF4eOx8GH6fhmgUMeQMCwRSWHKAjiGRyH2IAYGHKFCoDPiL7HCQXkCMJHwm9jHZqiwgVJGmCzTzJcJ1pO6Io/k+h/u7dM2KcVXRdg31dIIxG5iyQBWa7TPnOFeWnDx9D8VonXi3cIRM1EI+z6HzaxWShEKpSKInxaHsLDikMkzW13ni+36cuLhDu2jZP9pncdDQ+sS73/ck66Mxwa347f/2/8l0PKEYjfL+QEpWXc9ofcxyvqRZtVx+7QYxGe4/scF/95//X/nJn/v3eOhd72KydpaqnjCzDdNbN7h58zYnTyvWt04y1adyI3VIHO69wd7uDiEGRqM1nA80/TsisXfWO+v/l/W2gb/OlTS3jxBlzXRjyn7fI5RibTrj9p5l9/YBRkG9tUWyCeUkQkisc4iiy0HlTtKvWpxbwLjC+waZLD4kNtcmLIKh8SUu5M2/qCtaa3F2RZM03iu0LgfGLkBnkQV4ofFoJJ56NKEMIGyHiJ7dgzmsPKdPbCCJ1EbSm5LOe+wCpEgE3zFftvSNJCSP9x4tCzQ5Sy9SsVguaDoHpcwsFREdJbbrEDJnL1QFrJ9YZ1qPiLFl0Rn2jpbZumcM8wC7tkCknN9mBMTgIJWsOodLOV/Nu9WglBxR6RqYQ5QoIqoQKO9wRuK8IwabL3ClBAlaDSyX1nmQjAGlNZ3PtfEoSDYz2IGQEaGg8z5cJITMqqCSbLHzImJMPky0UhijkTESgkcEA0KiBMg0yNBFgUwJmwJCGoQU+AE0kDqrmlxMxJQ4mh8ixmuUdRpY9UjfLBFGEKuao/19AHaPjnjplddQQuNsBg9dAqMV09mUlXOQsk1V1yUJwf7RnM9/6h+xaFesba9TbawhUTR39tgmt0E1vuOO69jcOsulO0uC7Jk8eD8jvcZ8uaTEcGYyocCwu2/pO0NQklEhKUUeKl6/vcedxYLv+ugP8dzn/5BLz1zhYz/8w3zzuWdZHuxw9t6HSNExqjeYp2usl4LZaModb6BMSJUoEBQy24NIgt55VAzo6BDRorRCSDMMIsdgh0SkSAJ6nwGWkAChkCIRQyBIUIrcoJVibgCTGiEjIkZSslkdpQREQ8AikkIpkPQZWRyy6wQgZcp5RLrgWLFFgCQEGk/fdMRkiEmTREmKiZE2BOEJWlEuDnnf/ds8eP+9NAdXuXPiAp/6B/+Ib984wOtRBoGkIEQYB0k0UGrQEXoUvVS4znHkDUpWeCOoim2q7VMo74m7h+hwwPrMspdqXL9AhQwgdjbQ2EBKgtpotJJ85OkP8Du//VmctbjkswJNOKLP45JWkk4kfAh3v0dJ5AHKGJUVfBFUIoPuSeCcRyVB0p6qEOhU0PU90Xmin6BktsmH6EEpUrAk1+ayltgRUlY7xyiRUnFiY8SZM2PeuHyDG9dv88B95zIDrwRaabxIKCGwDZTVBJzPKmVthmNlsGhzDOqlt6j8UsbHZD5Xk46FcMdMahqsMBkYPA6bzmLA4zvnJXjT+pKERwqZS2lCPteIKO4ChulYfVgURJXPPe1iSdPcpFl2HB3uMz+8mmMC6hH3PfoUJ88/kG3AQhDSApGyMi8Djz4z7BGUHKw0CGIQSKUzUD0o/VLKgHoKIYN7UiJExWhcZyuPzO16YlBFyjRkFIasChLC0y0afNTMTp3h3EPvgnAPqWuIQiO0oBC5tTGFhEgCI+q8uY0eVRYEFzHVFkLklvrKThlXU5bNnFVzxMMP3cfJjW0++z/8Ou/9vh/gsfd9L0U9Ik0MYS44deoMr732AqYqOXv2Piqd81EnI4M5e4rd3X2u37zBZDJmcuHtXuHfWf8y12r/OvVkk+XSDsVIWb2kpWdtfcR0cw0bWoIELWtC6JCiwBQlrRcs+p7RrCQ4x1hFlBwjlUSYKVImJqw4WrX05ZjCQFUZaqVQVcF4MsXYhi5W9HJEbaAyjonumG+OEc5w/fYevs/KxLW6giAZb6wRl3Bqfcrh4ZJSKjYmmkXbs1isWD+9jXctq94T5AgpEzdv3KTCkXygPnOWsHAY5dlYH9PHiNQF86ZDGUjlOtduXMbbiAGSDHjnaGWLToqxFFzYMGyPwIoNXHIsrWBUwD2n7+W1G7foA3RdICwPEaEjmEhrIyEEosulV1LInGUsE0YrCB6VVAZpvCPKHG8hQlavu6GtV6eI0iXOWXzoSNGjYyJJhUFgu55WwHG7h7OOsspEnYwaZyWpDCTb5NgOIIXc6Nus9jPYJyDi8SG9aQcEVl2PVAG0pouBQERoiUKhjUGVhhAibTNh//pHuOfCZdbWXuKpp/9DhBBU5UnWT53g1pVrCBeIhSa6QCxKDo/mvPTGZVL5IO31W9y5fpWrV1/jxRefZ9kt+K7311y8eB8js00oeh5/4nEunDyPlobDgwUvXbqDL8GtbXJi7QypSiQHKU64uepZffXrPPnQg2ydOMW3vvks3/3093B7d4c3nnmG80++h1JErPP4VOFjz/zgkBATa2sFMSWkNCAzuZmSJBAxSlAag1QalXKzWRQBlRIkiYsMRQwDECMVMqYBoI0EqSgwyJBpLiUElGpoii+ycj0pkrboKFFYki+QOhFFwiRDklkh6GOk1Bp8j4qe0PdInRXmKiYiCjMaQalQLmDbJdXE42RBEpFRiHgREE3DfcWIH/jJj/HIg2c4tIFP/tPP8fVvvUCcneYwCVACVYHRCa8CyQTG65G18/dg+kOCXWBXjj4mJsahSkVfSFZ2Ddt0NIsD1uqSWI6YrxZcuvJFIDEdlShlctlfUigpMWVJsD6TYD7lLHYlSQlcCNiuR0lBFJ7kBc61YAz9UlEYRQoO21uSBm0M0du7sNOq9yASRjOArxotchFZ6xIp6AGLc3g8o6Jke9rzigu8+OJrnDp5BiEspjQIGYiDSo7gcb5ntLaR9zauAylyrng8nlaOs3rjwHkKhCTb60m5PXcQHYi7EB/cHXAG98Oxrk8ex9KRZ9/scqgGejQ3KJN8/vuoOK4VIQRUyvEDIgUQElmMiSkXwUkXWM73uXP7NZaLQ9Znp1hbP8HayQtMT5/jTPBoVeQsZ6WQMpBCdiwIDdunLpBizGU9g5Agz3WDBUN4vMvOirLKwO1x7EqM+fNUUoB1xH6BLCfZBTaacevVV9i9dZNHHn6CD37oB5hM66yqdZG2aXCuI8aIcx5rPc7nAs6UctzNe584pFkeIaXBFDVf+4PfYr444n3f8yFMtU7QI2aboE3NfLnHQeiYTk5kwF2VTGdnkXLM7u4tALY3N+6Wwr2z3lnvrH++9baBv6Ie43xAVzVqlVVgWsl8AdWSupK4IDk63GFmKja2tmjaFmM0IeYyAiUaZGoYm4LQew7nK6ZVSbWxRhsS+/tzynqdrqjYu/QSdWVw402mayPcfElSGolDBoP3DcL2WDHl9l6L6y3LZk5Sa+hasb45JThHPV1jtWyIbUPjJKkYEVLHwaJhsbTY4KhHI/buLJlqwYmTM0LqkSmSmOJDxKgNVKmZaIlRJYeHR7TNkqgLfOOoR5IkYH1a0x0uWTYHID1lVVEV2cqpSsmr13f40gvXKbSmGhtGKhJ6R1lN6ERDl3rQAhUVkw1NSAVnz52kf+kySgiEDxiREEpihKLxKau4EpgkCQPjlsNicyubkGlgO3PbY09AG5V5riRQaciCERmIBE8TOkSU9CR8ikSXwTZdalxyFFEjosJHlze03ueMFdnRI1DJIKUZ2mhzEyZw9zpaVRWhy+Bucj6/pxRp8GiRSM6zcIHQDxbhJBBFgSAx38tgYCEl3ltGkzFdu6LvemY6gyreB6qiIlU1RmZmr7eOlBJdgAv33gPAvPHc+/SPMFqbYcwMpGDn4AiTEi5F0tqI6bigqitOTApu3Fmw6FYQE17ErKBUmmXT8PylF3jwu59iuX/Ea1/7PN/11Hfz+tXLXH79GR5719OMTEcXPfV4xFpVcigVKfYZsIBBIZWy2iCJYUCRxBRQKechJZVlf9E6lFSolC2hIWXLklKSKBRKDJ+/FIgYEcGDyoo1ZM4fFKkDbymo6VNCGkCWCJE3I2GYbLRUueVUSiwS6yMRwaQ0WJGQUeJl5jmtj2ginWspypI+Wk41DeOjO4z6OU+/5wnkskN9+0WaVPEH//CTdH3gtMgZdCb7RehVpIqJpAuUMiRnkTozsyJkpVmeTbPtYjEacWdrCztSiN2Wc7VgrluMnKGbJYFE7yxS5XyUGCMeULXgxOltrl65jlASGRKz8ZhOelxMzPuWcV0TrcXHhK4KUshZQ6NRbmfEegieYDM7LEVW0o60prc9Icrs+IjQuQweWtvSrw5IIhG8RaUMpMsqkKTBeZ3bZUVHOZKcWBvxysu7fPNbL3L+3AYjqSAZQgiYaozrGnRREZ0nhR5tChAqD4R3rSqDhUUOqpTjJl0pETIPviIds+JvDrkpHbPicLcIJB5/mbMi4M1ROYc0x8ESJUIGHmPyw/ArQJVIPYIkWc4PONy7RrM8Ym/nBrZZEUSL8x7z/2HvT6MtzfKzPvC3p3c4052HmCNynmrOGlQqSRRoAJVK2JKFaUluWpYbEJaXu5ewG5CQ7YXbDb3oZli93L2wrcZgg2S1ZNFUgZBKE1JVSVWVNeQcGZEZmRnjvRF3OPec8w577A/7RJa8zFC4ERaQe638kJn3Rpx77nnfd+/n/zy/R2UB9Pxj72Nj9yxEm/9GGZAUyw13tr1KIZdn5khKBQhJQOQCkOWGVkjy+xByYYh8631R2TEYARmIITdjJ5aHgs5ijcKkSN+0BCy6LAntCb5dQdQryGWETwgNqlwWlESCAUVFIDeB5vdNUlSG5D0h5iZU7TxFmKCrmrqsODk5oV4b8vTXv4sbVy5z9sKjrO1uo6qadHSP6AJnTu/yyiuX6ecNly49wmC4jtY1UWtO7Y6YzY6YzY+/1sf72+t3eFlvcNOO3iWGkyEHiwahDSC5c++EelBTGIkwNSJ6nLOEFBGyJRWC2EuMlQTfUY4KXIwIZ3HWszYZkqox2s7xwWOTJCmd7/GmpukCJkZiyoJI3weK0KCIBK3xC4dQktR7gu3wneD27QO2L9Rsr6xTy5bj1FENNomB/DyxHkFCxMwf7rocPxZxgDaO+WKPk7bBukClJaqsKAkYVeE6ixCZf7yzucr6aA2DZ9HNee7qG4QlZ9SJSJ8kUlUYDKU0hNBhEBiRGJQD2pMFwguKoqaUnkFR07YLepuHYuMlOzWkSNM2+b4CIBKCQGHk8h4nSCEilcQnlYezIaCkB0F2fYuISOBiQBiofN4+i+Ehp87+ZerRMSIltDQUQJAuD4KCQkiHEjbP0rzEuzk+Nmg1AGlzy2b86kF23rasjsj345jQIXNIQ2/xfYNZXaNrGtppwasv/yCjtf+AyXCOqQZEBTNvGU9GTIcD7PEJohAIpZBa08XI//jTP8naMIGJFFXBZLJOEtDZVbR4F8Z0HLT3sFPPrJ5RyIq1hy6i1nYwXcu57QHNPHGva1kcHhKpSaVjXBgKXfDq9etMxiOefM/7+bW/80nq1RUef9f7+MKnf53z73iSQg1RqWdQjbm59zL1aEBY2SEGhVaSqhAYIUFDb3MpRhcCyVsK4fMwRiyd3eT3aRnEBLJ4G3y3NHTlwqngM2NXyByrDEpA0kQpgTILWkJSSInwEJPL9/Tk0eTBuCOhtcr/HgOIiCwKvCpyxHc5PE8CuhCJsiDahHaeslB4Ir2uEIs9ntwe8+EPvJ8qOfbm8JOf/DvcOJhnJ3lKxBQopCaaBCoXs921iSAKalGhU0VZnII6UKcW7U7QU8tR2zBaS9yLAt8cY/sZQkaSlHglKaSiMCVaKt7xxCV+87NfplQSbxTeOpCJru0YmZqkFHPfo5PCO4fQIjtWfUQsC0BS7yikIcWED56Yco3YsDLEPp9JuiYgkskDQK1wCIQyBJ9dtSkFMhLd4WKkEkO21wLrmyXPP3+N97/vaYoVQwyBKDP7FwG26TGDAcoMSf2MGB1CFqSYkzRCZqxNWl5bQshcYMGy3RfxluD+lkAHsKz2EaT8/fcHoG8Jabz1vUlkUV6kRAoZDSBREHNBGSkSvcspYmUQpiCiidHSHi+YH+9z68aLFKqk6xfsnnuEMxefzOxplR2QhcguwxQiCL18XZak1PJ1hHzP13m4LaXM10YKuXRR5qGnKaqlSSMX3uRdIQgiUpl8XUWPCD1u3oIZU9QDzj/+NOcfOUYniEIhRQAUiMSoKAgp5AFnygPO6CNEjxSC2Fs619EsTpjNjwjC894PvIuXvvR5Dm/f4pu+4zuoh2PkcILpZ4wG6+zt3+Hg3gGnz15AxEihJIURrEyG7O3tMZufsLG+/s/9Of32env967C+ZuFvtFLiLYRklje1fEAclop23lFUApEMw6gotMe6OUYZZASfEt45allRGEmlKqZ9IooGEfKmVJDonWNrd42LD72Hv/vyFcquRfkp22cfop9rgmgYFAZnNVKWWCEIIaLG6zx/+QusVRVCnkAPW5MRISqargXhCDph5ZC+8wQc0WpOGkubFLPQE9oFo90hq+N1bD+iJBFEi3CJ0luSDfRVReNbRiXERuH7SJEEhVCMJmOsC0y1pi40RgSiE8goScIhjcaLilkLtUmIIlJGgcJw6tQZ5KjOLLCTlgLPyuqYKAKLIAkuYPQIXY+wdkFnLRQVDkXsPZFAKPJDW0mNiw7n4/1yR3xwqKTxIeUJqkzgfC7USIKIxKeIFAqlDKIqSX0gIdGBt879SmSYtXU9UlX0klxk4gNBCJJKiFjkgpDeoiW0XZ4ywTJOB8QQlvGJXFGfBUggROx94VLJLPIAdt5w1Fyn1IIzVXYNnkxPYGeTfrbA2Q6lFUEkgrMsnKUWkpgsEkXoBWVl8EmwvrHFeGMCwGTjDIu1FYL3+PaAXmugBSNQaIww1MOKkZSsDw2Tuubq3l1mJ47oLUl0aDXEVBNSjNy4s8fp9VW++Xu+ly/86qd48OwlVgebvPBrv8R7Pvp7mNkTdooxvmsRpkPFEuPAK4VdAqTjMvZroqAVEsqC6BJSBXzK02stZBaxyIwUpQwqRojgITOYJLmBNmSBQyDQLiKNJniFMB0UBh8sKiqSGJDoEQGwAqlVZkXK3KCqoszvpVT0EepSMvcdISraIFDBo4sCYzRCJFQKlK88x5/+5Ccovf9H3lO+7p/xZvWPW70p+E/+gz/FXlXRC4keawad52g6IEiLER4ZI6UI6JSl1t45RNcjU8K3ljQe0Ge4D9qG7PqKkd5ZlFLZ3Og9Omb3WhKRPmURXviINsvDeEoUqiQ5nwVZVULokFpzPF9w0sx5883rvP7mFd777qdBlkShsVHlzWjIYlvwPapMKFmzszFmNF7lK195ifc//TCnd012w5UlybUIodFFIPQnmOE6GVTek6IjRAsiR9VyxPV+fOWrc+24FPLux3pTCsS0dJWK3wbBjmIpuEHeLqYl228ZV08Zjq9SIsWOGG3+77JC6gEpaYLtuHn9ZW7fvoZrZ9iuQRmZ0U+ckGwE2+NDpCwVZR1BgYwVCJeHANyXHPPKTsO0jMMLsnc2IoRewriXrzAJ5DLSE1PIbZwJUNnx4UOHxCwFTkAY9m7ewKyvc3TzNqNasH1qlz4UjHdqEA6Fx8ua2fERo83TKJlAeyAgoyJQ5ki9WMaGlSZGB9ohk0agSbVAx0i1skWwLWuhz4JGCpw5/zBFlTlryAF9KEA6VjZO88Q7hly9+hK3995gY9MyGq+idU3wkboaYvTbDJzfLcvrASnB6uYK+wtLPJmjVElMkrbtsX2HjwU6zBlXY1KhcT7hfY+LDik9+LuoALOTwLzpqQtFMRxy3LTYeYeLGut6ythjk8ISadIMZxPDQQE+INyC5C1NVdK2gT54XOyp6zGTiUD5GqUVpzYhzOfZlVUKinKNe9MZpTG0fcBMKu7OOoSXFIOSYd2j44yiVIQgWNs5h4oNMjkqV3NwdIgsFE2/QIZAOTFoCtaGBaE7JqqAqQQrowEnbb63vXF3ygu3ujzUMi0FDt8HymqFWZxy1M7ofUJKhzIFo/EIJ3JstJSCQiREzBzYhc/XIEIuRTafWWCJ/Ex0AaUFPnk0mfOmNcjCkBZtLoQQJg84hYDo6GN2Djq9z3jrb2LIA9V6pcK1PVU5xjtPFFkkjdGgZMQJhaJEy4KYsjs6ivvH8LyKoqDtOoKPlLWllBEnBTZaSueYHU+JrqPzCwBa73HzS7z0ub/AU+/5Ec48dELf91TjATE4vHMMdIkKgtY7bAwElYvVkiiZt5bGBYR+mp/6qf+M1R/686yMe84+9jhru5eoqwH3FnsoN6WXiTNpwqXdCauN4642HC86Eg4lNJ1LBDTHR0fcPbzLhz7+zTz7mU8Tb7zO7/+2b+Nzn/l11i+cZrxxmmFZIrVga33MsBqxHxI+tiSfkCHgo18+exJ+yS+OrkfrAZKCoPKQJTqfh6FEQgIbc3lZ0hopFKUQWdSQEpH80vntAYWRERFbhLNoVRC0IGlFQCBFbkhOySOloAyShMTLhI8hcytFFvQKcolaKRzTeZujw06h6pIuBgpdI0PH0B/z4cceYXd3jYM7r8PoFJ/+1M9yzyucqFCAlDY/p6NHC41WCixoaXJCwzX0SdM6Sa8MIlUIsQLDyPzkJmfNIasjwZEekBYnxJRorcuutJTL36SEiw+e5cXnLnPcLABBlAIjBLKucAm8txgpsU1HURZZBI8eqXNh3qztMurFecSyNCsl0FrRO4cRCtd7iBGfRG6rbU7wvs1DzwDCW6ADM8AHhcAQcUxWDJurFa++9gbXb9xgPLyIVEOClChtkFrTxxZBSQoOkSxok11uLAeYKS4xG79tOMkyvit03icgv1rksXT+3S/9yOJg/m/L6eg/YtgZ8xkLhYz5OR/xS/FRgiqgyImCplvQzY7Ye/01Zsd7dKFh0VsqLcF5Hnzsac48+PiyfMQjZP6MZsafQ2mTX4sQpLSUuaUmLT+XgrhEukRSDHnwnyIkj9ADhKiRIuShDWq5M/II54hJoJSkn53gY4tQFYu7d1i/8Ci6qpGuhwBKZj4gNmZOIx69FBchoViihHzI0d/hgHp5L6rbIYvpIV3b8N4Pv5eXn32eL/7KL/N1f+C7kWWFMgLRBbY2Vnnlygs08ykXLz6CqiaUpkKNDcPhKvfu3eXuvX12f6ce2G+vt9e/wutrFv7u3puiUsQUw3yDjRYVJEIJ5t2C42lLNfBE64kmkrwhSUVvW7xNWC8YbwucNKQYcARKJZh1xxi3QutmIDRfef7zvHuwzcbWCrODI468ZHbcInVP17Q0DHNkoeyxMVK2Jzzx1Ae5+PjTvPbMb3Lz1h1CaJGFpiqG+JjovUUl0IXHVDVVlITQE0XF63caEApVJA4Op5zbOUUikJJEVDUxeqxIKLFA+SNSo0nLmK4pFbJWzGOHahpckuSqTgMllFWkqBTzNkLUgGN7tcSHSN9K3CBQjmsW3YxCBPpUE1zDZDKm9z0q9iymxwQbEMbTuD4XOvgKEfKGOIps4VZSU9clc9cijaZMCSUUPqXc/kQWhWIKaJ9IxiD8EuINhD6zrZyKeN+jkAx1QZc65LK1rnc95WSA6x1ydoSqDG1KeKGxXU9ZBIJPuNTgReabuJjw96dty4NoFwNBK3zfU2qPFyJPUp3DkYgyUNZreJsZf63rSKMRsh6ibBYRm66lXXQczWYIrYk2ZPC2BB9DjhBmqBw2BZLrKKVgdX0bqfPPM17bYBEjwgxQ3pPwFNowHBUUxZBBrbKbxwcgsLJS8Eixw+u37nI090gxyO1mMaKMQivFneMjuhh57zd/My9/9vNo6XnqqXfwyuc+T7d/QPHAkEgkOkUcVfRKM0IhXIMwRRbsYkQnjwgOGS1SKnyQ2aWWcqtdSCFPTLUiRoc0Eh/y7zoSkDGiyY1mQUkEBalQeGEJ+KUjU2VzUgJUjxQQliIKSWBUSZLQufwaSND3gZgk01mPKCtEsgy0zJxO4XG9Q5lEcpbh/k1K7zn8jj/AwkeK0Zjbx1PuHR0hhSYhcoz8/oYqZfZa8JHeWtrScPmRR1DjMUYOiLInihxXDja3+p3e3+d/+zN/k2E7JShDdAF7otgYVxydOJKMuew6CLQp6G2g6j1eSxbWkmyHqEqiDxRKczBboBMIpbMI7gJSaZyAQI5NV8bQ94mua6h0QaErkBKjwOjsNjiZt1SDISnk6JcuSk4WgYNZz/qo5u7hgpgMbXvC9O4dcA4TBEYljo8aGt9Rn94EB1vrJbtbBVffnPHSy6+zvXsWkzRJVcQQckSnnRHwmR/aL4h+iu8aTDlEVZMsBKJy4caysS67XoDoAEESy8hvXE6MxbLhlpQ3lEsvYCJkBwHZGZP7XzxES0yRtNygBl0h1DA3Y9+9ydGda8yPbrPoAkGVVEbmQhg0yvVsnb6EKCdM77zCfDrlwff+ftZPP5w32cK9teFO97k8QrzVFSKWgwOx3OjH5SQeGd8yheD9cuPuCTEgVZGLCFJEJkghYNuGYrKena8MuHP9Cv7OCrbtOdiQHEwDw60dSmNBODY3DUU14fbtQ177zOf40Nd/A0WhkDriF0ccTFsW8wMKU+GcZ3V1wnx+wvrGFn0f6Nqe9dV1hBKgNd4HTCFhyUlCriC1QQaIWrGIltmx58lLZyhWt/jAuUdI/YyToxnFIDMjEx29zcLn2+t3x1pbHWJtLl/KOkb+JBdaMKgNg5UC20EROqQp0KpAIFBRLCNigkIGBsWAxgmcn7NWl5RlQYye2XzBO5/+Rp6/dpMbl79IaRoee+wSsq/pUo/WlhgVqBIfAwTJzGsuv/AilRJoM8KsGM5s7dDHSFlrgvf0yTLvB7TREbxk3vTcnS4wAwPesloLnnpkF+/HGCCKQPKBMkai1LjBAOsDk87QLCx6+bMMtUaUNU2T8DExKIscjY+KlCyiSBw1lpev7TMsDZPVkgEJA6zvrBKMYq0eUp90TAYaU5WszDtWvnKFo3sNhRnibIsSafl+q8yC857SyNwuuhx4xpAdWjFPXZalIZlJ65xHCEFMGYXglwOR3Aybnd69m9AePY0YfY5y1RO8JwoN3hOUwYdAlXIhhTc9KZa4APiEFAnvloPT5WAU8uE6Roki4zQ0kjZ4UgSbsriVrEUtuYB21qCKfbZ2/hpNd4VuPgSR0AF89CwjH/TB4WIgWk9AIrzHW4EpBqBKHn1n4kfO/99B7XPx6Y9ASpzMDmkWR0RlMXKIThqtK+paMRgVbI8L3tyfcvvomOQAMcOIAaasgMgrr7/BY+//EP3xAbdev8rT7/8gL12+zP7Rizz07qeY2oazGGS0KOMpGglCYY1GOgEyIpRCR0lEEoqMkyEFosjpCylEboEP2cskpc5iRBIEKTCqAK2JMYENSKXAdQhZIlwJsiOpZfwzJJIqEQpUzGeBJCPehZxASAKRJFFoupQZ5L1zJCfposhic1FRlobeeXSyNAe3EW3LufUhH/26p0ldi9clR3HEZ371syxMbmJX0qKVQiVFTBEnE1XSOJuQMqHF8vOqEkp4UoAiCIJUeBSCSCwqelkxGSems4hQQ3RsENGhCEveHFgXCH3DaDTieHqC0AWxa1ldn9Bbz9F8ltNF5IKhBNnxFQTohCWRlM7oDFQuzpIKjUTGSBsAmbm+2gim8wX9puJLn/8tRGi5oHIyxaNxSmFDIsW851C6o9A1pzZWePmVKc984cs8/OAuxhhSzEJdsIlyOEAKR/ICWU0yeiY5IBBDdrFJ1FIsy9dWNs8tdzQpu4shEFNYtvmqr2JBYt5nkLIvLg874X5JSFoOO3P812Z0CzGnZ4oahMHantu3XqeZ3mN2tE+IlhgtsW1IvsN4T+oEVWnY2FrL6JwoQObPAIg8IFD33Yr5paSUh+wx2ow08TE7G+X9FNH9tuCYxUjp0LpA4HHeotUgDx2Splu0tLZBq5LmcMrq5gpRFky2xlloNzVR1rhmTjEaIWUklsuBfsolIollK3FMyGWiiVhjpCHVWRAtRi3DyTZdM2e+mPOBr/sGjo5OwE+hqpFqhbY7ZjioefjhJ7hy5SWuvfYiZ84+xGSylvFRGNZW1qnLt/c3b6+31/+S9TVfOYveoYzG+EAvIsEYvEhEJAsfeeXNfVYGmvOXznDY9QjXUajskpFSEGVg1mb7eoqB24dzhHMUhWaxv4eRksF4nfWVXa5d/g1801KXhlIrThb7VKVBT8YcHc2JMXPSFlPLcOM0hyf3KIqGle0NFrN7RDdgMV0wGkNRabpWUo83IDgmgyyuJSQbKyP8oqe3Ldu7OwjbE+2CqDQdkcN7Db531EXNZFzQLRkppiwZLx/UPgTGsfjqsVgGWtexaFuka/Ei4WPejCThqQaaSmlmTcQGydzCya1D6uGcVJQ4N2faNqAkpU5M+5ZqUCN1ys1wEoSSaKGIuYAJoSQhRhZtYG1UZsafULgETioECYlCupC5X0IgXEDnfCgxRUSl8d4TIxhRoIygVRFURbAWAKkM1oHte/okUK3NtvEit+rmB2qG38ooCCIitEb4ZXOaylwufEQY0KWi1BKdshhoioJgDKmzJCOQ4xqAShlG9ZBUldnyDixmM+6SUFIQECiTm1YDEqU1QkW0Ams9cglSTrpAlAO8yw8sozWjusIiKAclPpmMgU6GRdMR1gbEJatDyUxJWx3VPHzuDFdfv87C5QduCB4pM4cnKrg3P6G50vDAe9/N3Tdu8MZLz/HIY+/m2Wf/Fs32KVrydaGiw7qGKCcopfBhWQAQLKUcE5UnJYVPKk+uSZhljDES8W3PycmUg3u3uHT+AVJREXHEkONGKWZgORKs71EoQmQ5jctRlcyb60lW559zGQMNNhFFQJa55dez5NIJSEaQlCQ5UEkTkyAUidBFCmkIsyN21jXf8bGPwWc/T9CG6e4216YzplWNOr9G13uM1IwqhUwh8wmJhOi4d2ePrukp7YLPzu6xfmqH3a1LGRovBToJmhgwYikaAjpWoEArgVcDqkIg0j5jrZl2zVuFbiFGnBIUynB6a43njCRoSD7l3ZvzSGOwPsevygAxRUxdkmyCmA8hIngGdcVAa6xtELaE5WFBykRRiAyOjwklCmKyBKm5cXvBA+c2OG4Tr75xi2oguXv3Li4GpK6yC0UKgtY5upQSxsH5rSHX7jS89PJ1vv4jFlnUWYAvZJ5UG4VOgiQcvW+Y3rvHeFBRFUvYNAmRNFLrr8ZeIBv10jISA2+9n0uADvcDMCRBkiLfP5KAkJvhYvIIAs4u0EgEmmiGeGnoZicc7b/CfLbg7uzuMmZbE4oOvKNEsLJzhtXdS1T1hNFkQJKC/uKTeBcYb2xkR6GIIO63lMu3YNv3p/ksgewJmQ/6KS0Nifn1Z0Ebks6OP0GB1AIpMqtSCEnyHffeuELqHbsP18t9fssiLnj+8y/yDb/v43zy536aq6+8ghlXXLxwlgtn1vnI7/s3OXV+yNqpbf7eX/k/c+/eG3zdh5+mVAIXEiJGJlWNlBIvoF80FEJzcGcPET193xGbu4ToSEJyMuuBRNfMMUZR65LhyphH3vERqAcU9QY/89f+rxzufSuXHj9D6RXOGJTQLO7eZbCywWtXX6adzTl36cLXvhN4e/2OrqPZAhk8uhgjkkcFnxtKReT23SMef3QHF3qk7PG9w6FxMWJbS+8VmxNQZZVbr4OjLDQn87tsjMZ0vkNJweXLz3Lm3BPcu17jg2TWwLBQEHqC01nMSg4rJSPf8dADj7B69lHuvPhl9g5OcuFOoVFJQ9svXbWeYmgYOIEQmqPjoxwXDbl0a9Z2eLs89AUwVW7MloBOc1RQNLOEiolaa9KS+eqFQPqQG3x9iaigKANVpfCLLForodheH2derdfIMlANKqQM6GrIYuEZ15rRYEjColxLO28RZMZwDAnfB2RsyYytiJABJWuqQtOGDlmU6CXH1ocEIeFixC/RKhR57xASCJmwNiBDRmN4PEoItD3HjTf/PI8+/u9CfJWoHLVRuHaBCgGbUnZgBtDzBdFoXOgIqSMkjbOepBJBZuFv6/T/gWhezc9512NiohMQracInjZFCmNwgw3ccf6etpkzKO+yde5naeYnHJ8EBlXF4fSYKEDE3FzfCk+wHofIDm4pcD5R+ZbVWrO9M+CAm0w2L2R3ODo7mmKgVJHBUFCXg5xqMQYZA0UteeD8OsLA3r1jEBVSZLFSyQIpEjf3brG5ts67vvEb+eIv/QqPP3iR166+wpUvfDG3yMaOmAbEJAlVASz5e6FDkTl7pMD8ZMCtG1topYhBZkxJShgkUQJCUq0csDr2zBtD39VM1hakFJapiJAFPmEQapSHsCwyd44C7zwmglA5xut83tkLKShUhU2eGDKKIgbobKJvfU5jeI/WimAjaonAkSqhUmL/la/w6Hvfz8d+z0e5+/qbbD32FL/4pS/z+vWbgEYrgy7F0jOq6Z3HOEFjPTNxwtjIXCqjapJo8cKghcqNslpSRkEQLrv1vWXeJnbPKcpSsmihFFkUrYzBhUh0EadldpW2DQG1RH1o7s4XaK2zIzXmM4OSij7FvBeSihQF87ZFCYkxNcpoJIECSRcCi3mLHgwIAaJwmFhx6/CExy5MuPzCq2xsr5EQ9IsW2y0yE7iI9AvPopmzu7tOcpHdnZq19SFffvYqv+f3HnD+7ApK6LyvJTMvXTdFDWuS1xBm+H4GKFQ1QcSMIYpIWEZg76cFRHBLFXDpEEy5/CUt/XCQ7ucaQPh8thEgKZYCoyclSxQgvSeKlN2IZovgE9O7Nzm8foXp9B4nfcyOydATkkX3LeOBhvIsi4NrLE5OOPXktzJY3cr4LJZio8hAwexizPuv+0NOyf0hZz5XLzGGCCTJhSwKJrc8nxQZ2xMtUgi87RFaIQqNQHGwf5uT+RHdIhDNgnJ1CzXcQmhJkgEVHUJVXHnlOcabu5w9fYqkBbg5tj9h794Jkh7vIsPhAGtb1tbXAUPT9KyurC2ZtDVJFNSjEbXNov7oTIVSGVkl6pK5TaycOcOwVLx39wLBLpjevZuB5VIQfCAApqj+BT29315vr3+11tcs/Lke2r5nfRhZUYGxKdBRMdaSlBRHs4Q9XnD6TMCoMRKP0Yp6UKCCpU5ZgOiawObOOtWZx/nlT36Sdz71KJtnzuAOj1idDAh9j4qBtfWKJCYUQlLqlpA0siy5cXibsqyZ3b5L20oe+OaPE6JkfudN1jZX2H/tNaYusXdnSnVwzMbZC/hylUaMsN0x27sDaBfEoEhS8u6nHuHk3g02RjXIMX1MtAFu3rhNHxLJRw7sPR5+6CzVZDtTH8oxxSBSGEHTNyiv6F3H8cEeMgUGk1XsXKBloioctYqkUlJ3krP7R9RGYJVgYFaRekSxs8rR9BB7d8FiesSivYsqDEI4Nk9a3uUsyXms93jr0H2H956dFBjWFdHn8gFNYKVILCrDbDTJTZop4pNBJUsUDiFL2gBaRgqVaLsWbQq873Nhh6qyOBQtqiypYkEZlq7ACLPOUoeExxOER6iCwkeIkeASqfdEAUkrpAOjTY4Iw9L6nvWVEHNpSBBQBI9SEN2SHRQjJoFZtuWZYUUQgeh7mtkUgFpptFQkAlIZtAz0i5YkClLwjFdqVlcm3GkWKDL/LilNSKDjUog0CqFyF1duVcnlKkFaUnKk6JHL5lIpJVqAEgkzLHjg3Cleu3GDxjsKXeN9nv656AlA6BzPvfIqD57a4l1f940882u/wL/3R/8ov/h3P8n+8y8jjCW5klqACB2OEq3L3MCsJUpqpBAYmfknSSxj1UIShEEZw3R+wpd+87dQwLntbYqqJAWDIBJCQskcj/FC4GMiiZ6Y8iYu+YhSy80EKZdPxIQslkC6INFakHx2aGglISa09/jYZLFQ1fi0FD6Dwfcz+nSbs4NN/vgf/feZPPccAPtHx3zq8suEySqDySaFSqjBkISkL/NNKAYJ0eFsRxs7vIQq5nKP5t4e3capZXQr0UVHkpLWR/z9dFSyFETmQdH7QGwdxWBCDFOcDyQpkUIRcGA0MoFKEV0aSGkpmkVWxgM67zFWIIyB0JMnGClPsqWg7S2DuqIwgoKINDWuX3rhhKTSmr5rQQm0EFmAFRCF5N6J43hmuXsc+Fs/9cv8mf/oD3Hx0Sc4OX6BID1JgbMtWxtbaKFwyROUYntFs7qiee21GxwfHrM6XsN2HaWuST4iRG6OJQZi8NSDMdVwQIgCpRVSKGK2tcCysU6IJctvKab/tvTvUvjLm07IoOi80c2RbwEkN0PEkHELqiDqGqkquqObvP7yC0z3r1MNFFunz+HqAQfHxzTT29RKcuGxJznzwJOYskSkzOsJMvORyrqmHGa3soogRFxymQQsy0nyVj4DwWMISJndfSS9LBmWuShmyeaRySCTJvqAkImQenycI6OHFLALxZXre9x5/QofO32WcqDRos5t7ann9Zc+S0HLQhaUvuTFy9d4x8OXEH5B8HM2t07xwQ98gCuXX+MdT7ybarVAJEWlFVoV+OQoygLrsxO7KEqECIzSGOc6nJc53lyVdG1D1zUcHy+oao08FCSzzsPv+QDbuzvsnr/If/93fppvvv0U82bOwckRF049wMHhAUZoOj9n0cL7XcODT330a98NvL1+x1bTNJiixNqeqMHKRIEjSs3Ng2Nu7J2gRSCMK6YHU8aDRN97CgWNC8ydJNoEfspR04PzaCVp79wGCVW9iZvPuPL8b9B3CwZmzP7dG5zZ2SAW0PQO30fMoMQHOPGRsj/i9OY5woVLWPtCvg5tYGVS0p5EytJQlgMEnkltSMkyPj2h0C239w5YXRljVEnXzpYxLcl00eJaR11UVGVF33WEsqAaFISmzYOXKIg+7xOkjDgS84VHuAVRJKLURB/xxjGoJFoaZotAE/N97ObNfUx9gkMgpeOg7ygMzPseoTVVrWith+SQaogRkqQEMuQhgY+RaeuZ1DVKKKSUBCWxArRMiKQQvUVooPWYskCkQBKCqtT54BkTGo0qJbG6wuPv/xYSTR7EmoLWepz1CN/looE6l59orfOAMLcqEUNCaE0iUNZzNjb/O+riK4jYgEgoLTH3hQCpoDCIbul7Xh1RqVW4CcPBgFRu0zVfz6D+DaZHt2i0zj8bEa0kLnpkaSCRY83eoov7DO5ENRxzcLjG//gz38j3/pE32SoNXcoFS4GIERGhSqxzgCc6BzKjRUoheeT8aQqp2Ds6QurMYwMHKuFC4ubRXU6aE57+lj/Al379V9laXadJmt/8h5/hicefYJ4sIgg6u8Amz6pWJAtEifOGRTvki8/9Hr743377P/Fa+/Zv/wRPPPbrPP/iH+Tnf/7D/Nh/+l+ytnaSUwYpIozBBZcjnjK7qESUuJBjnz70eWgkZE7VhIDv8+AInX8PLiXCEvURCwlNxOQxKosq4heRImpwC0oB3/uH/hDf8P4PsnfjTcSZC/zcr/0Gh4sObVZZBMumLqmKSPIBT8AYy+HBPq+9+iYpecyw4Nylh9hem+T96HJP3chAIRQdDuMzzsiYQ4KXCLOKFHdY0YG2Ax8iSghCzMK4MYq1yZCggUISXESISHKRKAQWj1riR9CK0hhC02HKAttbtJYMtSHGjuRLksxmEK2yJz8ll9EZKIR2TBeGWRepSs3eYcft/eu00zmLpmW0MsZESZM8rQCLYJgEI6G4cGrI5w8bXnz+GufPnEWKGucTpsi6mNDZ+da7Be3xXVLoWVndyHsGAkRy2dlyqHm/2fd+suU+Ljj/81XOpkwps5JEHizmTZzOsW8R8K5Bp3xf8UYhdIVrOu5ef5GDgz3uHd/OLcMyO0albRiUJau7jzBa2WR9cwNZKOZHh3jrWTt1fiky5lTCW69WiLdwJgiRz1cRVMr7PSEFuUyE5d7Gg86scIRGmgIplvw+Ca6dcfzmFVY3zyLWJsgksanh87/x6zz4jo+wd+OIv/HXfoy13S12dzfY3RrzDd/8XWxsn+Z4MeO/+a//Ct/1Pd/F6Z1tpGJZ6ucwuiYmOJwdoJRkfngP27XYrmOvzs70JCVNk59dfd9RaE1dluycucDuxScQ1ZjLr77O53/ry3z9t349k2JAQjLcOE/fLSirAccnd7hz8zo7u7ts/3N5Or+93l7/eq2v3StrBPiE7zukipgqH7yFlBhVoOoRzjUkF6lGGmsj1WhE4yzKpvxQKQvKquTo9gGPfeM3UOpfpj+ec/oDF7ly5wRkIDcPgRaaiIVldbsPidB41tZWmDcdfb9AdAsWd97kwUffQdh6F1deeY5YK5QPFFpSSoUKWSQKNvME7axjIktcm1CDEpEUg6Im+RavCpIqEARKU0FyeCzlyphTDz7M8eGUpm0ofMIJcF0iSkEhNUZLikKRUo3zkT4kfICqrhCHltVFw3/6xS9SfeEL/8y/pP/wn/HrOyX5977xQxzUQ1RMeOFJZYHpwaqEjjGXc3iLXooFWmbIdQi5tKJLls2uwCeL1MsGTRcoZf7/MTi8DaSBJhZFboRC4pSHkCiipFWeWkrU8lkalsw+oSRGFyTvibXBB0eKIccIyMKTcB7plqqOTdRjgy40ozK/lkJrJBJtJPN2QRtaCqkhhAzWdpa+z3E+KcheJKUotcIt48JEoA/4mHBLR2YUikIICpX5eXVRIGNaRlJjjoIkz2RYMRpkuHjvIslHpOQtAa2nQ8iKy2/c4Mz6Kt/5vT9I20157Ef/NH/v7/w9XnrlC5zdWEOLEiVHaKPIsFzwtie4FhUtghxjic5hZCLIiOtaVArcePMGoZc8+NB5JuMBbQyZryEFSloQAZkkyQpmsxPaZs76xgaVyZNiKbI5X+SQVoYQx/uRiICPeVOPEPhgIfTE0OFCQMZEYk6hC6TUHElJ8pEnH3uS7/2BP8GKVojN0wA8/8LLpO1NFm1D0+7lVrG64tzOaZQa5tcpAkpH5ict3lpkDJRaUiGZTqdILXAxYURJFxLDpZgmZf6MRJEjObGo8bYh4QjR0aSYOYhS4WPEe2itJ0bH3XtZKCmlIkWHLBXedRRlTdfnif3KeIQVOWTazj0JxWBQ0vU9Jkkg4rVBqoCQDp9gcZIjQVppRMjMKSMrlJAcLxr27vbEKOhSweWr+/y+b3sQpXroI04H3vu+93HxsXdz682rHOxdobMnrK2NeOcDiWeeeYNnn73MmYsPI2ODSYkkHEpUJKVI/RzRt4wmI5RMCClIKhKDR0gN6OzyI75l7pPL5r60jJW8xc5bUmNSUqSUnWgylqRoIVkcESFLdFXTW49tZuxd/wp37r1B8gkxrIlGsrq+wXDQERb7nHnyIc4+8DRVOUIiidGjCgHBI4MkCQkyC+4EgRQekBAVculdFMtN7v0CjiQSQhhSUKCWzJ4k8NbjvcXZnsV0n9uvvsb+wV1kUXBqc4vJZMxgdZP13XMc7j3HwWtfZnowp7eR4bjC2chzzzzPSy9c5ckPfSuPrp3h+Vs/hRSe07vb1JXhZO9NNnbOY6rAO9/zAa5evsytm29w6ew78Q6qcoSQiaIaE6XAuUhhKqK3+XmZwPYF3i/bCctAGtWs1gPm3YKmOyHMLQdvvswjTzyMKgu+53v+MC8/82m+/MLLPPnoJU6P15kd7zGsCvrWE3zgZNbzxvU7/4xPjrfX79Rq+uzeWq0jtUpUqqQSilJ1zJ3n2mtHbK0pBuublNqiFRSjmlIGqiqCiPQWJqsr2MmIL//mZ3n8sYcwKytUIVIVBhESgo6NwTZaDii0xSSLqkfMZoe0TWBA5Pi444Pf9p2UdcnBm6+xsrLCXVMwbwOX37jD+saQcryFdZ6oxqRwzNbqgNBafISHL+yyPpBs1hVFPcB6Txsjd27eZt655SAy8cCDpylGmySpEWbIaDW7yPuuR0TJyeyQ0B5hqhHRgQgCKRLdYoW2XSdMV7l3/BCVhF4IdBzQqxXQBbW8RS3v8cabnoOTCRfPvI73lr67xKLp6V3Ee4c9zK4l59eoi4LgA1pdJQHtYgetNZPRXi72iEvRL7YYnbmrXnkGMoJ1SKVzoVm0IIocA4wOWUtGJtLMLbKu6HzE9w4TE25ZrKZzMAJrLULIJVg/pwi01ISUMHqftY2/xd6tP8HKyv8Tyht5uKlAObtsBg/IJdKgRBJSvltLKWmbba49/6M88tQPYLidhzspYbRBq4Bte4gKCKytjdFpQUoghUDozEBuTiqe+8qH6foDZBEwIaFSJHmPC+CsReKIYiNvV4RECVAyD1fP726SguOgmaNVkaObMeKjJyCYzjueffkFHn/Pe9h7/U2aa1f49u/8Li5/8ctsPvYo3rdUQhNjm/EUQuOd5pWXP4Qpz6Ck56Pf9Pk8iBKSGLOYFZfFVYvZjNeuHHPr9Yc4fT7ynf/GLzEYdJDkMkYq8C7loVKyhJByJYgLea+DAGIuuUjk8pcYSSHbWJOTS8EQZAgob4m+xwVBkkN8CIgQCd0RThywmkp+4N/5fnYGI0Qh+PL16/zCr/5NirUdRpu7lANDXVXZIisFUhVon5Cpwc3uoFNH8AGRBIu7d3CrO6iUnYs2BZCSzidAkSIY2eezB7CwkHSJSoGw6IiAEYqYHKlQGKmY1EXmWMaQU0QyUhYlvXMUUmWeJZmPKUJCS0XbW4xUDKuSWiRcEjgbSFHnP1dErOsRiFxUl7I7dtFr9g5btjeGfOFLr7A+GfDhjzzNyu1DnGhz0ZCfsVIPMSh88iil2V1RDMYFL710jY9+9Ouo60TfNBg9JkSBNMM8MC81U+tZmayCNEtmnV7GdPPnPueR3/L83Tf7fXXQmRIiN+0By7jvfaE1KfALiCGbJIQimgGiqFgc3uDOG1/h6M5rjFdHqHJEVQ6YHp9A3zBZXeHRd3yQ4WQVU46Q0hBFxhONVjdJQuUSsPtlar9tCJuWqQSRZMYhiOxGRUpSys3IUhlCSmSet0EIgwgRIRMu9Tn+7Oe5FM/Cp/7hP+SD7/8Ql0aPIpMEKZl3U+zsNrevPstRZzl84w43bt3mu7/9m4h2QQgLHn3iKbY2NvjyVy5z8WPn8MFS1UOGRU0kEUXEB8EynIYYT4BICD3WZXZzTI62XXByfEAiUFeS+WJGsXqayfoGDzz0CP+Pv/9X6OwhO2tDru/d4eypBzg+PkDLgtaecHg454Mfej8PPvVNv6PP7bfX2+tfxfW1t/pWA0yIuKZnVNckdxuRBEYFXHQM6VjbqDBGIaPFyMj84DbCFKTeZgECy6LtkElx5dnf5OK5DQyJz33m1zneP2QwOYe0EaU1wRtaO6OVgY31mv17U1Lq2T11luHKhL6rEP2Qw4PbVLc3OJg3HN+9g6nHrBjDbl2CzxFHIRO975GqwVHQSE1DQsYGJWp6XeGEpm1alPbUdUkxkBSlQQTPg+94ktMPPMTq+pznXngOb3ua4CnrAQpFnzxGC4bDETJ1JBEwtUKGGttJXPDspEQVI1c/+D5OP/ZQtqpHCL7HOs90epQnwMBiNqeZnxCSJwrDjdvHHKfAPxyt0C7jhwEPy/ZeKbIIUumSJ3Xiz7z0MiPr2BspAqBcQrhAkBBcQAqJk5HUWna2Nmm7nunco2RJ8j7D+dE0Mk/KcblQwzsHZUmQEH1EJYlKMsddpQKf7eciZCFNIbJrbsnDuJ8mFICRin7JYDGFppQFzjp0WWCVRlRmKaxA7z39tMEWS+7V8g/LJRd50yuiISGRUlIaQzNvsb3NTJgU0TJP76ztEcvNcuscfQiQoCpUjgkKg1I5EhhCjkVrLYhL0TI/hHO0eX2yyuHc0/QdgoCMbhnp1kSviGGBF0Nu7x8ws5/hxktv8P73vZeLD1/kmWf+Aa0/x9Q21N5iymEWFcmRKiFy4CAmkZt6pc7/X0ief+4rSAn7t+6hdcnr11+nmhRsnztH9AtQgpCyQ/T6zXvcvLVPCIkYNeLabR6+dIFzpzYJIeGFJIVAsC67Q6NEFwaEJ0qJEtmJlFJESxBaUomSKQoZDUlolNIUWhJHA24cHPLn/8J/wfp4h7NHd/kTgKlzbC3pgmhbiPC/+av/JbuPP46pavqTGTe/8AWe/Zv/PYPBCoPhFOFmSO9w8zmD3TOIELHeEZJgpAscHp9CPmSS92QhBTwNg1oj9QoH+zdAhcyYlIII+KU7LslIEgbf9UQEzmfOXd/2lEEhpMiHv85io8dDnsaLgI8uc2tUgU+BprFUhYDg8oZOG5TSpBgoiiKX7biIUgJdlrxx54TCQDCKly+/yiMP7JKCZ3swZGf3DDvrO+j2hDg/QXtFpQYIWXFpR3Dv7BrPfPF53v/hb2BtqJYb0Ig0BQmJt3OUSLnZTgDCAAVSZHR8htrnQ1J2e7KcdGfBN7fFsfwcqqWL0INXkBIhtcQo0LJEaknfLTg83OfOrZt0bUdIAWlWEcpRyznt4Zvsvx4oxys8/NR7GW1dIsaC6HooBEmVhOSW+9z7kRZFSor7lzosgdsIRBLLFk5JWrJ4hBTEGGmbBck3bx14u8WcdjGlbaYcHt5DVwWnTm1S6QHRKKzvKKzj8HjO2rl3cum9Pc/97b/BJz/x8/zB7/oe9vbv8Cu/+gwXHj3Pz/3cz2CnM775Gz/K+Qcusj6Q1KXIbJ/g8dLy0Dvey1OvXmaytsZk4xwpuMy6URk/kFKiuD/BD4maUT7UocnsoIBzPURP1ze0tie6Htd6pHK00wOGmw+wvjPkh//kj3HzlStsPbBDOGkIYQ7RYUPBbDFDJM1wde1rfby/vX6Hl1DkMgHrqHVEF/mSKiqFb2v0ZIU+zCmEJiiHqYZ4KbH9guAiGE1R1XTTEx774Dfw7G8+Q2wcl973JHtXryB1n8WLJNGSnLgQgNcEAqUuCMYxOz6Gdk537wYPvffr2NnY5MqrLxKMINqQxQ0PMuV2U9s36Jj3EHQSrSq0KNlcWUe3h6QgEbpCxogUhkKAI6EGhvXT5zg+nuFcj4kyRwVF5j8ZoyiMotQmN5mLBELh0in+3z/zl956337jy//o9/P/+B/+Fu9+6B9w9eoH+Nt/9w/zF/5Pf4IY4aUX/mNOTh77J/4uHnro3ySGGa9c/hPEMOB9T/8nECVSNMRKoGyOlIkU0ELifcgu+BRQIrOSU0x4Ijb01CcP8NLrf5LzD/xlpLyNXvT4FAkpELuehYkotU5MoIQiiSwmFEnSy0ClJM4KQl+yaJ6gt4+CqFHCEKMjFhr6jqgCFYK5j2gXcL2nSgUAWksqtSwush2TUUkXI1InFt0CG3s0GqynMMuCNamzgEVOZkgpWW6NMgeu7wk+cw2jcMSkKFAYJSAmBkWBSILS6AzxF55hqdhYGXPYLAgRgosoATHEnD5IHX2qee7qVS7t7PIt7/gebFjwgQ98iL/9P/wtTB0pC0Ovhig1IAlLShVtV6G0w9uC7Yt3qSux5J1l1m/0AmkUr195nUo3nD+7RT1a0NiSGGq0WpB9ZAIRDa7z3Du+x2SyQl1ViBBQQhKFAAwiRWJcOjOJ2eEeM0cwpsyPS7EjuI4YfGYB6iyszWx2gT24e5bv/4F/H9Gt8uptw3/11/8brrx4BTM6TX9boUQDpWV7c5vHHhwi1yzNQjKfTpis3GR2eERYDBivZmZuP52SVG4olqKkDz2jKHEiZbe8ABccSdekbkHbtvhocZKMnZByiSeCzgWEa9m/e0CpDYVY1l5VuSDCGE3f9OhBiVQaqQts05GEwmiVxVwb6GUiKoMwCSE8LmRnsVYKLSXROaQ2aFkRQuD63oL1yZBZC8+9eIvv+J4zDK6+ysnxCZbAAw89yAOPv4f9W29wfO81erdgd3vCk5cEr1/d4/rte5TFiLJQiBRy+YauIVq6o0MmKyPKuswfYg0p2mUzs0YsB573IXlCyeUQNI+/BV8lnZA0CQcpIFKRBcPU4pMHNLpeye9jN+fWm8+yf/cNYh8RRlIOJ5w+fZa9m28gXOD8e76eja1LlEVFihGpBSk5VMgQJoTLpoGgl225Mv+T8sBHiNxqvZRgl8zCJZtQ5Gs1+kgIAe8c7ew2t65cZf/gLqauOL21TVEXbO5cQBvFS8/8Gml+yP7eXR54/AkSkb3rd7j8/BXOPPhe3vfN38ELe38d20c2JxV1YTjZu8b69llWJ2OefOIpnnnmSxwfHrC9tY5GY8oaZRJSCXwEITI2ybmGGBO21yhpcK6nGBvGlWGkC2b9jK6Z0xwdc3D9FVbW3slDj1ziQ+95B//w13+VD33o3QyE4PabV1GFoukTve+4ezjnpcuv8k0f+5oev2+v38F15syZd/yxP/bH9n78x398/3+t13D58uXisccee8enP/3pFz/84Q+3X8v3fPd3f/fF6XSqPvWpT736v/Tv/cQnPjH++Mc//sjdu3e/vLm5Gf7p3/G7Y33Nwl8ZI9pIxPqY0aSm3tunW/i8QRSCCxU6uA4AAQAASURBVKsFjzx8hi4kXEygNLWIJCFJWtP5wKQ2rNQVaEmKR2yd22bue1IacfHUGiI4QnIUVYVte0ZlRZKg6yHFKG9ymn6BUDVmUKPKCb5Z8NKXf43x+ml6K3jppVcwyfL0ex7HJUchHN5ZtCjQKTE7OubYlMSgwUfm+3fRVYGdzVH9gscu7hK7nvFQoIsxptpEKUGzdwNlNhgIT68LKAZ4WRKtpS48oxRYG5T4EkTo6a1kUK3zwps3SaJFiXyKHZ7aRT/8CFPvWRzewFFzd/+AOBaMhkOsMLTjikpvIGLEBsXNg5eQvuMVITg0mjPba3jXMe8autZRVgNC8tRGMdb579ExFyxIlc/+Pil6D0bmmI10Ap8Ee3t7rKysIpKgbR1ET6k12IKkSiQeu2T8RRFwzuOjx3lPpTSpt5ACLuXpngs9vu3RBcvpjyWmfD3YJVsvxUhyjiAiJpIFtpBLQqQ2lE6iWrc84IOoKlISNF3gKOZruo1+uSnL4mcSBYk8dR7WI5QUyJgy+0vnzWvwnjql7Coib0Zlyo2/VSVRQtOniEgOGRPaFAQf8TJAygy8HA2JRO8ZVDmOnfkhkhDBx7gUJHqEGCJUwMiCg1nLL//8J9nZnGCHa6yunkP3JVoZpPak6BEq8wq1qVFlSewcIoEPniQ1pTQcHR5yuL9PiFk8iKIjCoXQNVJEpEgIaXj9xj6v39jn6KRn3i7Y3l4nudzU+/KVy2xsVJRlRUTinCcGi5KSRImQNcQOKXJcsZTLQgTbQwSFh9QTpULoAqREKUURBEet42D/gDfSPrPZIQDeRZx3RG8o9YDgLXcuv8y1X/x5TFnyzj/8/Tz8bd9Ke/s2b3zql9g9tc3xvMU5i9aGxrXcfvMqore0LrK+uc1gcwtRlMT7tzBn0FFTxEiSAlFEfJpTyzrHpbRh1veEkJukrV+25pHoRcRL0BiULHExx5vpPS2BELIgm0LIhgkgSUWIHitAEBjUK4gQWTQNqZB0KVJLTRQCrxWij/kzHiRHi4gygSQ97VHPjSu3WKtWeeDsBYbbO0vh2XGwf4eusazsTDC6ptSKi+d2+Plfe5bPffqzfNu3/x6SLFAC0BUEgUCjTQYgSwkJlVVRkZvqhMjOzoRGqsz7y411LJvvcqQla4ECksqcnGRzZEYNkEVBSIH53g3u3L3F0fExSeQYtDGC9vgeg7rgwQcfQzz6fop6E2GyKySkgpQ8SjhiKBAGZKqIyiKVz3gCVRBTIvticttezHkjBEXeACdI0XN0eIeju7fp51OO9++wurnGuXMX0aamLAxFtcFobUJUhnE9QBuNLmsIAq3g5OSYn/vv/r8c3J6R6Jke9vzKL3+KfnaHvTdf5+s+8A7qWmBkzTv/4Lfy+LueQERNd3wHKSqsbfAnt6mHTzAcwTd807eyd+0lUvTL4qT7/MR8yFAy83iULiEplEpvOTBFVBSyIAIjY6idx0aHLz19P2c2O0APVilHIx589F2cvfAAYb5Pv9bjl+9WcgHvc/xaxH90m/bb61/8KuoB2kW6zmJKTXJ7CG1QWjBvF+yMgFRCsAyMoJ8fIbQh9h0qShKO2fQQEQWvPv8M50+tI5LlM7/+a+gYOHtmgkmCpEZ0XUtMFjEaElLkzo19drY3mKxvcHQkML7m8OAme3v73JvPOdzfpxitUg16TmmDVoqmWYAQJG+RxtNR4aQmpBadelqhcnla74hpTlUZylpmfISPPP70u9l54DHGdw54/oWvUIvcSluU9bLYJOZiksEwDyMNpKrEHeWext/3kb/GbPFpPv7Rb+SD3/RhpCqRKdJ0c46PZwjxKpPVU3zDtxyzuflfcLQ4ok8FWzu/hS6+lAtMEOiYiMTf9puQHE+/ka7RDOs3EUpz5dV/mzde/X6e/rofYkW+ipAyN7RHiFpiW8vqaIAQiqPZLA98bEQu76OLOGR68gFCmtC01zIntsglTyImTBIUQoE2WOsoTHYX9jFkx9Gygda7S+zf+oucOf9vURbXQBp8yq+jGlSE5LMzcVDiakk9HNG4/Pxzs5awLGEryzK30ycQKjvaAjqLNlJQ6IKToxO2tibYYHMphlg6vn2+ZzR9n5EZQVAWMu9fRW6UlYjslFMSfX9AmgSk3CuwPplQHy44mjXE5LPDLOb7d4yaEOYEMeTVN9/kuDtg/9U9PvChD/DQY4/xhd/6+4zOXML2XXYwSUFIWQzp+4IvPfttnD//y4xXm1x4RH7ev3HzOkJC10wpjGL/7uussMNvfe7dPPjANYb1PZCJw+MFr167xXy+yINQJTl/5jQPnt/F+8xoS8ETvctFYyiUViQRCFIhhcQGhxIRoSRSSYyqsbFFCoNSEqMDflCyP2/4i3/pv+LvfeJHuHFzC/hT/9j7w9FHfooPf3SPZ7/0KL/4id/Ln/zRv0RRPsJzz/4Q73/vf05wdxmtbSJTovcOnRQDWdAllwu1ljzBoMBjEXSsjXe4dzAj4ui9z2KdVDifKE0WeWNS+M4SAWe7bA7oGnRRLbl9At9akgxY5xBCEtoeVWhKZQhK0LSWQgsEFqVLgtIgBAKJqQx9ivRdYFxrDmeWmwczTFXw+p27vPrcS/RNwxjBmc2znN49R4Xn0FlMMAgF6IInzknu3rrHV75ymd2tU5RlSfAdylT5MxA6kmsoq/XMbxQShMnNzuJ/PvBECERKy90OLDdAyz1QFufxAqIikveNSpQIXWJdy/HdW9y+cZ22bTJORE2oxgFp73J0+wXoDhhv7vL0478fXW/gbSTEFlQFeFg6+4RU+WyR9HLQeb80JBMGRcqFJ5nvp3OCA4HtupxsiQ6REn2zYHFySNtMuXdvD10WbK2PKIshHo9oLF3vUWrEg+/7fbz0+jV+49OfZvP8o5ze3uYXfuk38abm2Zde5t4v/CLve+c7eeSpx9gcGoZ1FnGJATHQvP+bfj+37+0z2TjF5s5OfutUjsArndN5UkpSiAyYEINfnp8SKfo83Ayepl/Q+x7XdcTeU9YRbMKUa3zX9/+7bIxWufjYQwTf4rsTkuvwGE7mCx5/VDFaW///86n8L9G6cqVgb+8fr9fs7Hgeftj+C3xFb63Pf/7zL43H4/hP/8q31++W9TULf3dmia0Vg1AKQ8WoKjiadphkoTAcW4cJLVENiSZAJxBKszKsWcwa+ugIUjEcDZkvOlYGFSIJBjEQZJ9v1AqSSEwGY4IpEEphbcR2lkGZWXYyutx0lgLeR1QUXDh3kdUL7+Qzz3yG8eoqR9dv0pwcU5lx5kHEhAgJIyVJFjgHpJZIZN55uqMFxkjGWhKNoo8CKUqSFQQ3xzY9t8xNEiNif0LCIPUmSVuctDCbszpWkBwGg0eijaALTW62lGNEvC9CBxa+Z2//Taq6pvOw8I6LFx5lsTgh9B2X37jJ9uYGG1traK3pipLaO5SUFLrMgFldZjejULR9h1SZoSirpaglBCxx+3LpuvPSEBMYE3C9JRUVK6XGtpbxoKaqLc0CeiSqkBRaY30kkoW7QpTZDZig95JUQpEcBM1gMiLYDtoxJEcKmfkjlP1qy9SSFRhlQCSL9gWhjogUQFqEKPN7v3zmcn/DHjXR2Mz0apYf3Kjyg2gZ3zXe4Y2mGI5xAiQRL8jCXAtKVeAh9o5QDgEYlSVyoDl1ekJKivnJDBmrPDUVkeR6JA4fNVIlZAx52iYU6IRBYHRFVH1+LUkiUBih8MWAKsUMtzYRIwZsn3kAubFF1zasbo8pC89AaUTUSOFwySClgN6hhMKiCMqgkiDJxNHihCvPvkglEr2WhJiYxcjOaMzaqMR7R5IDrl29yVcuX6UeVJzd2eLiuffyK7/1mxSDEbFz1AreuLXP6Z0dyqEGIzGyxqnEUEmi7NCS7IqTuUxES42RBd1ccnTcMJv3SOEx0iBM5gT1IaJTjxACG+Ak3N9SKaQqKEh4CVIr/sFf/Muc2VplOKq4+I0fZXL2LEoJQn/E/OgQq3JEnyTpbGRxZ48iSRauZ7GYM9q/zcrWdma7AVK4vClG0rQRfXIPI4ss8kafnWIuR3GTUqhOI5WiDR2DmK+x0LYEo1HOg1Y456hXMq5A9AFvBNp6tDEoqRHKMEDglSDGACEgbcjX5aDGuRxNXtUVx26G14oR0Pk5MhgMkocfv0BPYLi2TlGBKNUS0mzYWN3m9ellimILiSWFxO664vTpHZ57+TIf/shTGAmqGqN8h/UBPajwfUfEIs0E0TUIpfEpoVMEAgi95Nb4HHgRueEux0jiEnCdI7R4m0XpziImmzhTUoRAN7vFq69dxSdPOagIITKuDCeHe6yPSx56z4ewreLOrStcfHwXmQIpaWRaogeKMSSJ6xq0kshCkUSZRdscAl6WdGgEmuTAu4bu5A38YoG1lmZxQO8dVhQM6hGXHnyY4WCIliVCGLTsODy+QVVPWKkKtLYMxqvU1SqyrgnAeOsU/7sffJjrb3yF0lRMNs+yuPMGTggGwzOogUObMeN6SPJTopeZvTleJ0VHWQ7p/Yxyvo+crLFz/jw729vQzUhaZOelzHH9HEkWCFHkSL1kWTCS27gDPUlaNApRDNEmokMklZGy07TNCdNblxHjXTZ2HqQclkh1Cjm/jbeK6EEUllTEbNL0bwt/v1tWGRO60shhhS4lxe09XEyoJBhIePf5CQ2ahbPU9RC6hkJC1BrrIoNCM6lWQCtSPGbr0i5z17Etxqgige9AZMdeaQQpScq6oI2K8XhEwtP2LYPRGJlWIQZe+OKvUE82mTeBy5evMjKJpx57EB96StHhEpQyol1i/+AQF0qEErTTI2QxpG860nzOo+e3Uc4zHIBeWaGot5EEunv7lLKmFI5YjEnKYIPA0FPKxNBI4toAfIdzAS1XuXckMHrBzvZVzOFrfMvHvpt3PlVy8+YNZnevImLPndmrDEwkmQ2GReQ975wzVJe4uygYFIK2fBPr5ngSk7pGiERnO5yN6KLIIHylGdYNSo2ZznaApUimEo0HmQRKBLCZSXh0dMza6ioyCZo+kILLLFdX4JelZb3tKTP9mNglbHDomHLTuHPYFFEovHe4plsKiwnn7dJq9BKnzn0MY24RnUdoiCRKn3AhIKKgV4ZKaoSNxM6hx3O2L/6/MOaAeZ+JV4veEYzLm/sUvzoYlWI5GB2jpYGYOXVRClqfy97KpeMvxAgRBqWhqiVKmLeGogqZo4V+GTlMCkQWKULwaGmoa8ndaSBhCCERYm7BhR4hBwgZKOuaN+8c8OlP/Bzj1QFRakbVDiaWOJmQ0hFFJCaJkPot5AyJnFLIffDMZzPm0yl+yZAOwhKTJgbD8fEqyWq89bx89Rr7hw2H0xmjcYVRFS4Erl57lc2NmslknJt0XSAFixQKqJCyIMYOQYFCUCoB0RJC5lWL2BFjj9RDEDleaqJk2lpeu+K4cfMsp898CiFPCM4TJBhTZjROsJRK0B5FPverl5BFxYe+/ks8/+UP0M7fzdHxE8y6ERvDI1zoufPGq6Sux0bBxs4u5eo6QRQknwfZyifMcvgcdSTIhiJlvE4lC9oQ8CFze224P/yM9EuBTFAgRMCHQJHy19gUEL0jAkF5MpEyEaPEqXwWG9QTZKxZLBpSZXAxux+DhIAkOU8MEisUb+47rPCMg+Tq89dYHxU8cPoBNi9cwiiJTI67d27mc8n2hEKVGCU5s7vJ537rc7zrqcdZ23wQTbF8vlak0FJWI1IyKFUsm7k1uRQsvDXwBI1QOid4lrzg+w29+XJZ4kZSQqQslmacSUVIkcW9O9y5c53D6RGJfD1pCe3xPdZO7bB98d2oahtTjZBFRIoyM9NTg6QgioRIFUk5UB4Rw3LQGcleS4EQ2Rkt0IhUsuzxpW1mHOzfop0dc3L3DkJELl56kMFwhUJJ1Noa47UJURWZX1oYtKkhJgojefXV5/ilX/ktbOMJcc7rr1/nEz/7txnEBUXwvPvJB3GN5Zv+jW/lXR94D6UZ0h7dRqQC7xb46U3K6jF2z5/lox/9NkI3J6WtjNxB5aLIIFEiI5GUNpAMUt3HyiyHm6okpsSk0HgfsAOLWzi6MOf43nXWz5SMxmO+5d/6PvziDq6dY8mMeULAe493IXM4/3VYV64UPPXUU1gr/rFfUxSJ559//n8N8e/06dNvbzT/JVtfs/Ank2U8GiGIrAwMx8MBUk3xosRUNbenjnuLiBhBShXzkyNiciyaDoJgbj1KBxYnRzSdxa8PGI4HTFuPjwuGgyFSRLy1HBzeY95YlJIMtKQcaFQy+NAjUEilsC6il5G0G7deRgwH6JQIdlnhXg0RStFMFywWCyarq7TOEoJFyBLf+8yMU4rBKJcbzGcN08biFg1RBsajTUi5vcsUmunRCSE5olHM5geAy3B51zMZbVLLgtYushNO6GW0o0FLh+1yKYXWsGgWrO3sEJWmuXvAeDREqIiQEaUFO2e3sdZzNF0wHA4wGoj58EhwNIt2+SDNPKtKKjxQiAL3lqsuQfRZ/EJQBPDBoYKk1RGWLUp9F3BSYSKkJPHKoFxAK8WibYnBk1wWV2Ly9Mv2TCMLknd0sSX6huglEYmNFllJXNtSJU2UEONSAFo67YwsCCqhC4HzgUIJolTgFYXWX+0SXd5OolZ0eFSC6DOfL4pAUQ2pSkPhDY1sSD7lOKaWlEsgr3Api6IpUaTczhtDvjcODFw4fwYXO/CRxjtitMSUHWG91zivl1HlHEPMBQnkhtuUweMquhzNlSJHkFXmwOiYMgckwnwxI0iXN89Ikhc4qeiDpfYNMEHE3AAXRaSNPZ232Q2hc9zy+qtvcjKzBCkojKb1DpLkZNYya3omdUUfcjxlKBKhc7xx8w5t01HK7ByUSuCAV6++ycHBjPW1TcBC50haUY9qTp87hdIKTWaZoEqE1khVo0VBcgmjNE2zYO48RVFjCo0uFAqQPmIXFmnzgznmGwghqSX/yaNT4vv+Pz9LvYwjvvILv8BLf+enMakndZFqMELYEzog9glTa6IUjMshmBItJLf37nBpuLL8jBiiUggiqixQQuLaHiENuszFHgSBSoEYemzw6BgI1uLaBX20aJEICbyzlALMkgcZrWWIphHLWLtPBB0pyZvlRGIxn4FUBJGoioJgPUFpToKlWjZxRwE2gikUrnNsjmoe2j2LTwt0OWbqBNXhHEXPyvo2ujAcHE7ZOB3RJqB1hZQduztjnn/xNtdeu8Hquzdxff48589aQhcFzvUk34MpSWTGZXAtQmmW+dTlNR1BZsB9rnlRBERurhSCKCQxdQQkdDOUzoLc9N4NJuMBs/mUrbUJa1vbDKohXfcwi6N73Lr2HGm2QMuKKA3uZEFyC+r1LQSG2Z2b7F+7StveZufiI6ztPoAZrGSgfvLEZPAOXHeXvjmgaTps79B57IIUsDJZWb6vEikkmoQQDS501PU6ph6xrs5yfHCD1fU1+k5QFCWhFAiZS4e8lijteejRD4DzHO9do5YLDu68yUIfc+mpd6BcT7+Y5oP4fZ6VGCA1KF0RECxm9yiCRU9OI0sNukK0Nsf/hcC6Pjc8FwVSglQqO2xSbixGiMwRTwrIXCSEyiKoSlRqBFri2oa7b16mO5py6oEn0FVNbbbpFw1h0ZFiASoX4Ojia0f4vr1+Z9edWWR7pUQojdYVg8Jw1FgqGdn3HpsSJQ5fCJJUyCAYjWps02FDixcwHA9ZNJZRXSCBOgSi6lFSEZRARMloOCB6ATqXgwwGFX1hEHiE65Ba4D3oZNje2mDr4ffxmWc+Sz0asdjfp2/mGD1CihJ6i0BSyEQbNClYUvLYEDm63aKVoBCQjKILHpEKkheE2YKu7Znu3cLHEp16nG9BKKLyNM2CQUyIMqKWzhapFSH1nDvf8Mf+8PdTlBWLfgjCcff2Dd588TeZbG4wPW4oouT8mce5d3CDezfu8Mbrt3j48UcYDjYxpSHgMMbmwJzKh/NkbXZEhRYhFVpqdCkISS95Xzkyp2LGeMRoECpC15JMwWhQ03aWUVlT1p7FAvok0IVE22wDD8kTERhZ4OwCFSUOqIVHhEhtxnhtSdYs73ECFRVS2SUTqyM5w+vXv8SpM3+QoXgRJQ0WjyaLF1EabMjPnVoKtDlmffcTyMUeMmUBM0aBTgqiQylJVShC5xGmRA4GuBjwSIQIJO+QfYkcCUQXCEuG8sAY1keK7e0RUhim0xNELPFBZ7u1b0mxxssCJcIynKhAaiKRYTEkyTkBkEkhoqIUClcOMTGgZYFUYPoRmxcewtc1sW1Z21o2uyeFSBBjQKgSEe//lnJJlhCGH/mPPsC5cxOKQnF0uODXfvUKf+kvfoqZjexMhm+hZSya3/jscyy8Q/jAt3zk63n+8stMu7y/KhO8fuM2584KBqMxSYGkxCsYmURQPaWUBOWX4qWkMAbrNIvecXi8wHYdWhWU1TgPQX3AFPYtYq7Xc6riDsY0yEJhtCAJRZVyE+6oEtjpLTbOP8HmjsXPGu4cLkvopEYJTdcFmjt30Ega17OYz1gZDhnunkKPNpecvkCMEotifm+GaHuYTMA5hJE5aRMTSSmk0wilaH3LgIJGW0TnsmPPe1KRxdx6OGBxMscoCbbPbc5SIbWmEpqgIIR8HpEuYJNFlBWuh7quEN7TppTPMCpxcnKELioeeOQUemQQRUE9KtCDkhQcMZZsrG5z7eglNopNZHRIKblwqub5a5KrV17gwYd3UYVABQVpgdAJoUqCb0GPEH2DIOJFQoUIwiOkIYqMH8p9OYJ4vyFX5pRDFJmfCJHYNqhyBVePMAn87BbXrl2lsy3loEIgGJWG43u3uXjxNDuX3snxrZvYdo+zl1ZxfUAZsvu6HBBTiW1naNmhqjIPAGU+n0lywkJIRYqS4AJ9e0g/3SP0HtvPaZpjejSmHLJz6jSjskSbGik1Rntmx7fQpmJ1UKK1ZzjZoKxWEFVNjIF3bJzm/EOPMj26zni0DSnSzQ/wDFjfPoUXjpXhFvgjggeVJHq0RooO7wWdnVIs7iKHEx5+1/sQzYzoW2RhIOUCOHFfRJUmM7eJKGlyhiQKAhaky5YUNUaZiImJVFpMI/Bty+1rX2a89TiDUUVptrBaodqe6CVJWkRhCC4tkzj/Gqy9Pf1PFP0ArBXs7el/3sLf0dGR/CN/5I9c+MVf/MXV0WgUfviHf/jOJz/5ybWnnnqq+Ymf+Inr8D+N+n784x+/FGMUn/zkJ1+7/2f0fS92d3ff+ef+3J+78cM//MMHIQR+7Md+bPdv/I2/sXVwcGAuXLjQ/ak/9adu/8AP/MARfDU++3M/93Ov/OiP/ujZV199tXrsscfav/7X//q1d73rXf3X8rq993zv937vhU9/+tOTg4MDs7u7a3/wB39w/8/+2T/7P4sj/8iP/Mipn/iJn9h2zsnv/M7vPPiJn/iJ61VVJYB/2mv9l3V9zSeDk5MZ2mwgk2AxnbKwni5ECiEI8znq9IiOCplGFLqlGA/pQm651FJRj1ZpYiDQYAYG52Ax83StpHULrI+sjceYoqSzjq63jIZDpErMWou1DRJYXcluLSMNWmegv4o1N157jSJFCqPAVLx0bY9aS7ZHE7yHeReIyaAlVIXGIbAhsLm9lg1pwrB/OOPOcYt0jpQC14/2GZUVSim2VkuEiiQPKpVMCk+IAZJEmZqT6Qw7qHnzxiHaW8p6gJCSw+mMIA3oGoBBPcYriDFycnQXkeDJP/2fMzx3CWEK/PyES195hhf+2/+avulpFs1bzU0CQfCeuff4rssbuWUrZ1UWhBSzG5IcgfAiIgI4IagxGBJJLlm3IreaBl3gnWWeHCLKHJ9QghQDPvos1Nzv2HA9QpVILQg2M9E6qWldRKeAAoTzaKmwyeJDxLr0VqnH8qXl6ZYaEH1CREuwHUGpzKstEj56vJ3TLxl/g3pAOpyCvg+/heADrg+E3iIqiZOBQmlkirgQQRoCCZ8yBNeKmCUNrRBdvndMCtgZV9w8nDEZDhhXu7x4624WTUSOmKTkMnvRBaQxSwZORAJKBorCUxYekXJkGZmZeSKRxabkECJguxmlHqDNAGklyVSkPhLJzrHu/oFfZFExhtzk7H2HkhWvX32DW2/ewvUeXUmUiwgfkUnS+8Dtu/eYbG0QQ2RQlWhdYXtHTIGDgwOKYeaeCCkQWlMmQ9sH9vcOMKLPLEEE8nhGDJGV1RE6RfquR0kDQtB1c6paMdpe4+R2Q+gyQ6VvPdEqSAJVleiiwFhB0eTflQsBbyNKOVAFhTRYa/nUn/6PefdTj7D2rR/nod/7e7n6K7/A9U9/mnpYo5HEeUNR1ZSmIukMfpchxyedtXS2Qw5HAHTzOTeP5yxObrFVnUEW5Khw3y3B+J7OJVQm4dHHBCESg6DvbXbf6BxhIkSk1jRNS5kS0sdlu26OTREjQikUgiAF2hQIB633BDQiSaLtiAqSTEQlMCkRfCCZAoIi+oRSifWdCUcnCS8Lnn3lWfrDOZfOn+GC1tzcO+ToWLB355Ddc5PMRxmUjAYGrRJfeOYF3vnOd6NUFmilUSQMQgq0FATbIYoR7ewIlQBaqnqFlBIiuPt467cg84nMDxLeAT0hJsSSM21Ga/hoUVEQpaY2JaKac2bnIYp6glKSfnrAGy8/y+HN16lXxzz5Dd9DUU/yvWZcARNiH7j+wq9wcucaUXo2zjxMDAYpK5AVru/xzZR+PsX1LU1zTKFLBuUIo1RuOFQ5JlPUQ7Q2KJn5eKYoQZf5viINwkyo9RBJwC0OqcoNkovZSeKbzDBMkOIc5zqsTfiTG5ws7nB83FCWd5jdKRBqgFaGwhTIQiCkRsgEskIKxUApvO9oT45IUVKsbyB1RTKZtyWlRAlB0iq7KcV9E7RECLn0T+RYW8z0AjLRMDcKIkCoikJKNIbd7cj+vVu8/nLPhcfehyrHFCOTI0CLjhAF2niIbwt/v1uWUZHVlQIhoK5zyRlthyprXNTcPLKMa4MYjXHzltnJjMb1qCjoQqSWids3Dlh0lrWNAZOVCcdNJImOuqpQIuC7hsb2tI1lUBdUBUQDBEskoU2ND2lZ4gP7996A4YAigUoatEFUFQDz4zkgKAclJ7ZBKpNdqhFKoVgfKhCO2VHHYdNDMyfKwHC0gUTn1k1tODqaInWi6Rt6vyB6CzFhJjVlNcT2LTIFjCmJSSBFg1Ye2035Y9/3PYwqmM+nnH30Yfoo0fembGysgXLoUrJ1egMrJQfTGb0dA5BiQKqMFLHW8T/81P+ex584xWBQcHBvzt/7+ef5v/1ffoHgI8v+UQBczBG8lCLBOoIGoRSChO09QSt0zO4VLxXSRZRW9MvBiwwRlSI++CWzUKNRWNdi/YLg817ER4sqFbZdIKMiqixmtf4Uxyc/vPy8FESTkCIjUgoj8E6gkkAaiQViTMh2wnz6JJKfyckJcqwxRMugLKjKAlsXzI/nhBhQKWGXzjhCQgZBUgIV8zDPpzxYLVXk8XO7tHaBCI6Fd8TQ5+Gutzg/wQWFij5HFGUecMYQSSKiZP7ZJcvYn5H5/k1Ai/tD1MTJ/IQoI/lppAhB4iV0tiXhSWnJURXgl8OqFPPfcf3NKb/w91+gmbX84X/nab7n334f1167x9/8yWc4WbSsZvwhfQgMtMK2LU2Az33xK6jkchlWCiSluXFjn+Npy/raBmAR1oPWjNfGnD57Cq0kOuXCj6QM0pTEokJEjdGGzs85ObqH0nOqukKXuRhDLt9rGRLBTZGFR2mVWcCxR8uEIWJMyfpQcXTvMq4bMB6OIeShpq4HtABeUNRZLJpUBeiCFCK39m7zwGgdYQxBmcy26zz1ZAV/00Hj0aXMBX5BoEmk0NGFhA6eYB226bGxo1YG6wIyBIqkEUC/aCjJKJ8os1Dee89AGZAJKQVt04CUBAGVNqSQ6An4YHNpjpT0y/I5dADnefjMOcamZDJZ5cQL4v4x+BkbO2fQRnPv8IStLmFMzImR0rC5PuILn3+Bj3zThynkgKDzAD7JZdGMlvhukSPAy/c/+DZjTfKHfnmNxDzMXo5FI5lhrEI2KKTYLLnOHTLKHOk/3mMyLJCpZ2tjlbXNHYwpmZ86y/TOG9y4/Fl0Hxmfe5yAoT++jVzbQJVDFof73H75RU5ObrB1+izbF56inGwglqWBMSpc72kX1+maI/ouEkOgUhqVElVpqKtNklR5cCFAqUhMJyAVRT1iw1zgcP8ak5UVvDMYo4lG5ASB1gQUK5u7rK9t0s9mzPdeRIUZV156neH7v4XRqKbfvw7Kg1IkmVByiDQCpWtiL1hM99DeUYx3SIMiD/e7gDQhi3HeZ4SF1Bn7kOud/6fDTeTyPpvvG1IASjBQK7S6JZ4ccevFz7J98SlWd05jJkDR4GeLPDRRIt9D7xezvL1+x9YP/dAPnXvmmWdGP/mTP3n19OnT7kd/9EfPvPjii4Onnnqq+Ud9/fd93/cd/sAP/MAD0+lUrqysRICf/dmfnXRdJ7/v+77vCODP/Jk/s/vTP/3TG3/1r/7VNx5//PHuU5/61PiP//E/fml7e9t97GMfm9//s378x3/8/8fefwfrlqXlneDvXW7v/ZnjrjeZN21VlqUc3hSCKkZAqVBTLUCtHoxaMQwgM0LDhFoDE6CYkJppGjEw3Ui0kDQKpGIEyEBIgxUCURRVlE/vb2Zef+6xn9lmuflj7XurUAippAYEE7UibmQe9519zvm+vd71vs/zey58//d//ytnz54N3/qt33rpW77lW+7/yEc+8tSnc90xRrlw4YJ/73vf+/zp06fDr/7qr86+8zu/89K5c+f8n/tzf+5u0+7973//Rl3X+Zd+6Zeefu6556pv//Zvv++7vuu74o/8yI9c/U+51j9q69M+GawODwnrNcFHtFg0CkexQGaryOJQkwlDf0xaDYixhXUiAWUySI3S02KPsxaNoNMaG1uGLiCpotc9trIMacBIwuhMECGJZQgDWor1L6WEMRXalGJUS4NvE21cY7QnqMg6NAxD4Ny2Y7KpaYPGe2iMEMPAan2ErSflMdo1k6ZiNqk5urVP5TRZV4RV5DgETCOYw5bt+RRjFCG1kAyVq/BDab6IMqzaQNe2uNCRc2bwiWHoS+pY6gDohsjh/jXqndM01iJNQ7h5g6OnPoFzluZz3s6pt7+T+69c5el//lMYU+DJAD4LASH5AEqwCbTT6NqWwoKIH5tlMZbr8jmXxgeBikRvBIMikEg50neRIQTqWpPaAVVPsCT80BPDMDYGygoxknNCqUxTW3yOJGWwSrHjBlYhMhDIyVK50ijUTYUsy+tDyzj9FAqvIgeU6gl9RqZzTAW+86Q2cu7UFLUY03edRTuhqRyTMdFTaVCmsAH9UCyLSqBdL0mVIWmFVZrOmHHDEYbsS1PPlCbY2TOnEe+Z2opT8w1EPFduQ+8zkiwKV4I2FAXIqxSeVJQ+WZBUmH93JOc+BySVfykX9ZcTBcmi+oHzp2ZYKziXEd2hlcZVJTzDeoWqS1iBE0MYPAMKbMWjjz7J7rWbpDCmuXWearOCGMl9wirN7vUb7DQTbi9bbuzusopCHyONNRit6RF06UsyhL6krSVFzkPhiCGkpJhUjqefeBYxiRrDkCI+jw3X2PGmz3qETMaJLdyfVBh4OSbCEKgnFXoyRfmOJEXlagVMCoSsqSJk8aDguQ/9Nvf2ezQTxezhv8Jrv+pdXP7FX0BtTQnrwtjR1uJNxuUIXcc6eFAWEUPoO25eLlzWl558lJs4DAP9iW3cCVVSbSXilGWRoE9j0yYLtatwzQSMw9UNYYggHpMV1jW0/UBSurCcRGglQcisfU9jHX3X4cOaaj4tydjiUTminCWKJ5sCjFZZSpFmFCGDtrYklKeWWTPl6HCXW7v7HB4taPvEzvYGSRt+/bc+zAc++CSVsZx7oCXGKZJLeM3WPHJqZ4PnnnuBmzdvcu7sSTKRylZoMylNJKMxJFJo6Q9v0TQlVRARJEXkTmNJjVvASLVOBDQDDG1R/802sXpKDBmdjun3DjEnLjA98yD29is0zXZJhKRFpg0Pfvbbufjmz8H4QDXdLFaWEDDGEFLg6NYzNLXhxOd9OW77AYyypBRYrfdob10uzWyEqnZYp9hgC8hEv0QINNMa4wyVnaPqOYlitck5gTJEJdhYlCKZDmUaqo1tYlgzhEOc3iGue9xGad+bXGDtQ0j43DLdPku1fZ6d+yssGi0JjMWahO89tq5Lk0SZooYkoZQtNrna449uIRrsxnlUNQejiV2LVq7A1UVGfk+5r4qMkxgZGYtSFMWS09ggvDPo1RgxMK3BCmfrCXu3bvHik+/nwdd+ARiHzCYY0YTjI5wy+N/BNvvM+i+59nb3uPf8DJXg+OCANoAPCYZEGlaIbeilwiqNMorm5GlySFhjAI3PmUzLxqSCbFgc9nTrRBcWxLjBfDrBWMdxO5AlUtcNIa25fusQsmc+3USrDEGjHSAKE2bsXrmGip6cAwHHx5++hs2RB8+eY9m29B1oHBMMiUAfI7ONDU6caFAiHG6c4fbiAOUjpMgLezfZqCYYpzmzlRFTGmAzN2FeDww+oXKpDfeP16y6gf3rN5jNGrJonruyzT/8F/8zX/H2H+TSa97IyYmwv/8K64MjDhfHSAzMt7aYbzdMZ/cwPV4zcRvcXqzYv+lJfsAoAEWKnj5EPv7xl/knP/UhRIRv+7a389/92S/i5Rf2+Kf/7ONEhDRWOCmVQWElmoQnKUVWggoRsRVh8KxV4VrrqEk6k0LAp1Kn5FiUBt4PiCmJ5GmIRGtYJ81G9BjRSCyhZpmMTwMhglKaELfo1u8o1yIgUpGGgM49vvd4n3FOGAR8u0bqJaJfz5Un/8+cv/hbGFNe75KFmKDvA/26RSaGIIHGNTB4vC48sz5FooBXhaEaskKNXNDtxnGyMdz0ma2tGSc3NvjYS9eJfiCrkm6ciZAzRXij0GPoh1agdEftYuHkFdcwKXkklXAXskdUZlgfM23mONvQDUJWBoaEVDUhKwaEkGPh0qbReRIjKSV+6G/9a/x6yWRi+dJ3PMx9958kp1x41d2AXq3Hv4vHVTXxeI2kwNC3WFfu2cZoMJrKTPBR2L99iFUDcWQ2Hy9b+rZjOmuQweNDxGhL37e4Sqg3a6wKhNUhEiN+WEPoyTFTTxq0LQpKlQtb20sJiFEuI8YV22xIPHzuBOc3a5586QovH95mcTQQ5AQAxhjqekpCiJIwShBfgqP63hOyJoeO9dpzsHfMwdXLWBnw986JRGjX5QzgE+uhKO+MJFap/L1iVHcfJ5pE6BON1YSc8f2AtcUqLaaEfaWY0M5CziQpz12rK9bek6SkCw99RzYGnGCkuF9CSkhW9H3hRs63i8ovKMuzV19i7/Jv8OCliySlef7lG+ztwc0btzlzYYOYBpppzamdCR/9yNM8+ujz/LEvPoUfemxVOHnKaFIUcvRgGpZHe5hUMELNZIucIpITkos7grEpmySTY0Tlvrzus0AOuOnJkr0dM9k66npKcMdcfNUjaDtDiCx3r/LSk59gsXeNi699Gxff+iVlyCeByZmzSHTsPvtxrj75AappxbmL90JzBl1tkaWw7MNyj35xyDC09P2a2WSTxjWs2lVhSZKxrqaazDFaSMmjtUZVDdmr0YIww02Ek6cD3dGtwlLtI4qBaAVBQxiIaUHX9fi+p11c5eZRi6kahuUVFmGKVjWVs4iKiOjCIFU1SimmWuF9S3e4i0Jht7YQNyP7Y3LOaCWItYgx5LHOEbkz3EyfHG6OPNCSsTIONsWg9ISJKjZ5ReLq8x8lxsz2+YvoxmAQ/GKJLz35car1mfX7tQ4ODtTP/MzPnPixH/uxF7/ma75mAfDe97738sWLF9/4u33Ne97znqNv+7ZvSz/xEz+x9R3f8R37AP/4H//jnS//8i8/2t7eTm3byg//8A+f+7mf+7ln3vGOd6wAXvva1+69733vm/3tv/23T31qM+2v//W/fvXO29/1Xd914xu+4RseWq/XMplM8r//u39yVVWV/9bf+lvX7rz9yCOP7L///e+f/fRP//T2pzb+rLX5ve997+X5fJ7e9ra3dS+//PK17/u+77v4Qz/0Q1eHYfi0r/WP2vq0G3+b2xtoIzxz+Ra1VZy+eA6uZqxqEJ1YrgZAoZLC1Q6lEutlR64qUooF0JtanPIcHy+Zb54Eu0GXC5TWKk/tapbrJX3foVNJKDJ2isQBIyA50nVl0x5SxA4GZQasnhArYSoGs29prCmhuUuPSpGkMpUu1sUU1zT1FtPJpFhgjSNvOLJkso8kFXFVQwesFgfYuoZ+wWx7hqk3yoS2HehlDRHq6ZTVENAqonxm4hRDDzkaJEeqZk483mPaFKXi3u1bNGfvZXO+Q1Lw8iuXufaj/yNnzp3jzAMPkh55I2rnFIvFIcf7e2irUCiCEobkUaainlbYClw0LPqW9dDjoqCtIowHeNHq7karjSkNWxJRBD2oEuSQIiEN1FVVoM5WEYmoJAQSVitiTHeT3lDF+jesPFiHTsUCfnjzRWLqqXH442NCCgwMVM4wjM3C8cuBUtSGPNyddikVSkFjVGmyNY5Jo/jcB14Nj76f9uA2CUXXh6LCHx8kRblr/XYSCcGDgBFF17dkP2CyoEIqISQGTIhkKQ/SrdZsTBpy14NWaOWYW8ueBKwCowu3wpDRohh8sQgoVazUIZYGa/ARow05FtWeEUMWhbaKFHoqa7Eqk+OYlBoTet3Tz0t4iE4FfAuRHAOrw2PmZ7Zx2vL4o89y8/pNnAJT1ax9RsQTQqTvB2pbQygJdM8//yILX8JOhtDTR0HZCoVBxTJxi95DTqXoFCAFksqkIWKrmt4P1NMpOfQklaiVxUYYkiJFRdsn/PKAnDNKDCGncdqqqWaumEWNwU0nyFG5vaRM2ezF0Am8+gu+kDe9+110Lz6NToH6y/4rABYvPMs9D9zLahg4PFyRup7j1ZLYVPTeE2NfeqzR48WQJJF9Ke5N8qCKOiP5gSFX2HqG0cXi7n1J947ZEFDkONDGFiTh8VgrbM1npEGxbFty60cQ9DihNKCGQOUcShQ5DKNlOzBkUKlYfMVaUvaU05AixQLFrlxFCoKPmRA8WxODToLTDYbAwbUrHB5nXhyOuXXwMaKeY3C87W0P8oa3vYZrL7zIZFKRYuD05iYXzkYuv3yV3/zND/H1X/9uhr7DVQFSOVAirgRy+AWTxmKswdWupETGWBrlYwM850+m2mlKoEeym2jXoHVVrCq5w68PCYNHVrvYjdPoE2fLIUqDUtOi+tDQ5M2iDCSRxJJsT97fJQE7978edE0cErFbsnfracJQ4O+1M0zqGTGDjz1aAmI1SGK2tYk1cxIOZSM5yxiiY0CXIrMc1GM5rCfw3qO0IdFQT3Y4vPECRiqUqknLiGlqsrKIbqibCqc27h7Ko8QCBFdTNKWRqCqKQsCOQT+SEAWSanIaMPUEhSYtDgi6opqeIRmHqnJJFEzF7qL0GKKSyiGMEcdQwOKlEM4iIwB85BChSEVGjK43cG4Ta+fs773IC5/4Nc5eeoTpzjZ67miAYb0s96/PrD8UKw0dues5XLRUVYVVCotCXEk7z7oia+j2D7FaCKEvoTouksUhZk6KkZwCyghWe0xqMX1C6UhLixghhIhOPSEHkrLE3JNCJqXyMaVrlC4BO0o7hjYxhB6tBvo8kPIGyWdsXfaHIRi8jzgT6fsVbRjY2NzCh8gkZ+rKcHx7ycQZknbk457jMGCjplaZ7dkErTN9t0C0whhN8AljHSFl2tUKwkBohZA1VpZcOv8xanfIP/hf/xfe86e+lvXuE5w6eT+nT53ieN4T1gNVFs7f9wBdH3j2uVe4ff0T5KhwtiitAhAQlAj/1+/9F5zenrOxNeHd7/4sHn74DDEnPGNq63iMSAieyCRltI5FlUZRq6zbBT5CrjW565GqeCi6oSXHTyIt+ljuZQqDUQrnNOsUEclsmY4+C10e8ElhbY33PaaxMHjqyt19vnhJVOgSeESLDxZdVygd8W3m9GyKmkypzgW2zn0ne08+hclvAqCuDFpltAFRhj4knDH4vicniJVBYsQ4R+hHDEROxNDdZfxtb29SGUWtLFvNBBHPps30AXQyaFWhxaJMRCldmlLZY0xJXVcjtyznjE+BlMHkRM56/H9BJ4v2A2dOzjAGnA0IK4xrEAWpB0upX++EawFEhJdfucbi4JBf+KW/yNb2BIBf/Pkn+Gf//GMIGWM0i4NDAJ596hkm01usQsJpixZDFEUKCacUve8QVBnYpkybPCEJSlmCDzyzu4s2eVTfBrIo4jDw8AMX2EkT8nqgEsfar4vrJUXC4FGzBt0Upw8C1jksa1SK/L2/+4088sgZmsayt7/iw++/zMd++SnOntjiqLvNYtmX5gaw8h6nwOeIjYG4WhfHwnpV3CKrnqc/+gFWq4E0DKS2Z3NSRAnaOCR4KlWxTp4hR7K25CTUzmHqCrEO19QQMtZEZsmSiax6jxUNPpO1IuRI7APOGHLf0w2FgVyY6z1WMuJK3SEuI7lwsW1lUDGAs2QRQozUFiR6blzZw9hd1n3PzslTLIbIL//Gh/jYx5/n1IlN7EzjfUCbYl89u2M4c+oMv/Vbv8lbPusRqspirMXYKShDThrjUrGid4dkNHZalT30DtNYjeq/0pmCnMuZIHrwkTyZo+spKWno9+kO9rAn7qU5eR9GBGMalDEEidRnzvO6i68m+BUma7Q25NhDjkjItO01jFW86ou/kmrnwXKe6loWq9v0157BZoUoja0tSlfU1hGTJ4Q1s2mFa2qMdRg7I5uixrZk0jhE1BZIiZjXGDtDTzYxfk3f7lPVJ0ltizHprkowj9Zs1fScvudzOPFwVVwdGURptI6kUJKYlVhQliSU8DFdoQVcCPi9q4hW2OkpmGwhYUkOqWAVRI1qPhkHynfqGkEpVZidUpTZd/nvIuRsECyy5ZCm4oHJSa5cf5IYWk6evUSuHEZtEQ73sckQ5D/a//nM+t+wnnrqqSqEIF/0RV+0uvO+EydOxPvvv7/73b7GWsu73vWug5/8yZ888R3f8R37x8fH6pd/+Ze3fvzHf/wFgMcff7zquk69+93vftWnfp33Xl7zmtf8DhXhZ3/2Z99N57148eIAcPXqVfvwp2ln/pt/82+e+omf+ImT165dc33fK++9PPLII78j8feRRx5Zf2owyRd/8Rcv1+u1ev75593x8bH6dK/1j9r6tBt/R8dLlFQsB8fR8pBXvX4Lox0xZxrbcHB8QFgfUBtN7SYoozCNsLtsMVUmpcDUCPec3UHtbFE1FV0fqPQWKUasydRNw3SiyLLNatETJROj0EymbG7OiX3PtDYMfs26XyP1NvPGAQo3cQzJ8FmvP8/R/i5uKgxHa7anjqM+0q87nBnQZkpdT3HWEvrA4nhJT6CWTCXC6ZOn0BE2JxXNa2cFcpw9jasRqehiT2UUG82MVbcihkDyIxhZW05fOMfx/jHz2Yz18RG9m2J3DxE/qt36lsYW5sI6RIIPtH3Hfd/3/8TMNgC48Wv/mqff+5PsnNzCS8LajtYHzFYxT0RfMhyPVmt0Y0vhljKSFYyBCgpB5Qw54yOleagzOSaGlIsiJismkxlpXSgyWTLRJ/ohkiXjpOj94sjVq5RBZUGlSB/WTHU1Tj89+eAQM98gpjW1hew1iKNKicqVDSuOEzadFZWu6IZMY2eEYc3Wzkm2t0+wPxxDXZWmr4zssuURdjrFS/5kwnBMI8w5o7NC+VQSeGOkSplIQBuF9iXoZIgDljLB12Pysasb3KShWrblwKQVupmij5ckSsHarjoWMTD0Hcv1ismkoqosG7OtkmKFYJVCacFmjcpgchyLi1QS85QgRphslecwMSNJEVqPpHJw0yZjJKFjaSImSRztH7A6bpEMXTcUzYUpf93VqidnIQwenSCYTBoGuliIIdGDc7bAt1NGgiLg0SpTaUNSuiTXauHU1ozNrS1e3t0lrzoigWrecN+Z02ztbOITtF3k+pWr5BTpU4eS8nySpLEi2FAOWmEIqAhV09yd0IsG7QxZZYwohuNDLn3Wm6i//B0ginC4x/V//l7sYx9jc2vO7is3WA6BSVbkmFGhFM0GTbfuQRc2kq4Nqi170nx7kzM75wjdIYP2xDUoacAE4tBiFdgc8NngAacLi0kQvE9UxnF0vGBzsk20wiSY0ug1qljTY8ZoxdCXZpIKCak0hASiCiQ9BXQUgiScqckJQo4kn0mVQRFRUZFRLLwwBEM/dGiJXLr3EuvLL/Pk44ccd5p1XPKqS6fY2J4gdoMT26dZHO9jnAUSm3PLqZOn+O0PPcqXfMnncfrUzmj3jSiVETQ+RmK/KgpJaxlW6/E5YDG2AJbHCqwkGcbCMNLTTcTWRXUSe3SMpH6BIFTW0h/cRDU7qOoERlbkMKBjUZqoVKy0WVVI6rCi8FET3Yx6coocFUe3nqdfHJF9oEsJrS1WEqIzq/4QK8U+Vc020aZBdAWSyFi0tkS6MsHOGaXyKFYsfEyJFUkFshQ1Rx7a0kDLjnrjDOvFTWaTHZLMiVFQ1pHEY5JDUASbsEMq4O2oyUaIORcLdYqFXUMiE5HUIDKQVUakKhNvZYDIcHiz8D6nJZAh+Tg2y8u1puKLI+c8hn7oMQU4QpYxlbD8eSCPTUMQLejsEJPQRrG1fZoQrvHycx/n3offxvzkKWSay4F2sfhPqQU+s34fVzNrqKcNjz5/g0sXdzh5Zou9/SMqOyFEz+39I+69uIlWU0wFLNaEVJGUJyTIvmNj6ujbQDPbJOREWN7EuEBTC3ZqWK66YptVDSlnjFimtScMFSl0mHrCelhg44Sq8jS2Qmlo7JyMo3L7JKUY9gfmE0cXPCYHqIRpbZnOTnB8dEylLW6+ic4tLibEZozVSFOjDtoCcw8BY+pSn6TRlqYGlDLo2tLFAZMSk8axICO2QXzi7LnA2z//H2KN4cUXrvPis8/whlffw+mtc+y1C1569FHyasX0/ouEk2cJMfP8s0/yyrPP4c02OSZACJSGlBGFcZb3/eZfZWenDF9/5mc+zD967wdxdVXGHWOzS+fCC+1jgeunmMgJjFIEU4Ivsi9q6pgLRiUBVZEYIorSYMuZmDLeD0yNw+RIv9jj2RefZqPawveeHAYGiRhrSgL3eA/75BqHDwK1USUlHAciuIll5Ve8/fWXGKqKj/z2R1EIPt1iZ+cnMHJITooQxlrQOlwKdLknKwUh0vctOlt0zEiMpL7DqYqdzVt8w5/8IU7M78HWr0V0S9YKo2qmVYN0CS0RbUoirkqQYyblVBJ/lRB9IoZI9GFU2FskgSaV9HcjSBooW5knxoIpkCGRu4CfZMSD1poQyy85eo8abZr7tw8QtUSA//67/gWbWzX/7Td9Dl/2jkf4pV94gn/9q88jORPimFDcDTRNIoaBnhLqZWJGBHwcLYNK0COjTIxGQkY5RU6J6dacPPRUtWZLWWIqCJ+EYbXqCP1qVF1pfEoopahm05JML6XWFF2aHUOGWimeenqXf/nzT2FT5M/+H76Ir/6Tb6Q7XvPxv/PL6AAPv+GzeOzpomhaLFvstMVIafoEEjllUowEHxFd+KBRJVqKMi+kgd4PiKoxVSB7T0odWhJeabwoVPL4NJAJRFVUgJN5TeU0h8fHd8NhkNEQqxRK6xIGFiLGGPCRqIAkWGMRZYgkJBVPQfKRwSWMKHJWtENAS6Zxjq4NbM6ntMeHrPcizz39ErePjol6xrSe8No338e9Dz3E7ksvo1TB6ZyYTzh3bspjT17n8kvXeNXDl4jBY1wuDXdlys8zLHG2DPOdscTQlnBIZVBWlU5XjiN7rrgfkmpg3mC0K2m5scP3C0Rl/PF13M4F3PZ5hvURVga01IVbisfqOZDIOZC0Zljto1Y99c55Zifuw/sBf7jL6vAWre9LA80IzmhSzIR+ha00uqkRXeFchVYzshJQcYQLldT0nHPhXGopClcF4nNpOFJh3Qbt4T5RFlgzKYGIVcFNiQiTyYyQp5iUSCKkvCSpKUZMcY5JLuIGVZhQhV8ekVwhkrGTOQpDPL5FFkfVbBCMwUgeXUnlPgDFiSH5k8NNyJ/MUrkD4bwz3MyKpCKKhmpiiTLjwrnI7dsvc71dcu6BV0OlqDe28atjdPiMo+EP4/rGb/zGva/8yq989dWrV83P/uzPbtR1nd7znvccAxwfH2uAn/qpn3r20qVL/lO/rq7r3/EHdc7d3RBldL6k9On9zX/sx35s+/u+7/vu+d7v/d5XvviLv3i5ubmZ/sbf+BtnP/KRj0w/3Z/jP+Va/6itT7vx99LeIZdfucVWLXzi+QU3rl8BFejIGAmkoIhZlQ0gR/CZ49t73Fr2qGZCJY7pdKCSnhQH4mpJpWYYK+jKoXRDT5mWxtizWC6omqowIYZI0yia6QRjLL03TNJA09QjM6blaA3LILA6oF8tOJlOcmaikRCY68ykcZADE/GodIwyFce95ubRgvVyIEhgOnHcd/I0Wi8Bjx2tzEYLxIAfSjEYbU+jp/QJRAcSgcZMqJ0i555TJ6f44JnuVCx9IofEcJdNNzD0LRMUdeVYHa/oj464+Xd+gLNveiu89q2c+aK38wXf8PWo27s8//SjmLpMTiwTEh3EwMqHstGKQiiHfS0eM6p4UBBygKCIaMRSDsuxQFG1gFKJfr0q1htRZMkYP+CjxzuLCZ4cSvELFD6QFpzSDJLpUsQkhao0J3Y2mc6mRBtZrNZMtcErkCioT0l3BdAJch9xovFk8Gu2ZonPffN9/NIvXoYwsL19hte88Q3lGw8BM2MEUt8BceeivgmJlANdTgxkrCicUiAarRLoTMyJYUhEE/Ei4+EAsBukSjGtNd26pZ7UYBVBaeoY2Vss6Z95gWAdYQiQu6LmU5m6ucGFrQtYQKkM0lDrzMQGJEdWocDFu0HQKnPq9DmGE6fHkJfMoIv9VaQoxua6bH7RZqQCpyCQ8XkgD4Eshi4U23jMgg+ZqDOh6xgUOG8ZgicDWlWFnxQ9WsVSJI4TepSMyXyhMJ9yIsfI4viQtFoiUbjn3HnOXTzLrHFkFQkeZjWcmNzP/tEu61aK8s4HdBZSzPiYscaQnbBatMzryd2btFJgyAwoVGxRu69w/N6/i5lu0A8d6eBFUrSswpLF7ZtFiRgHKlsxMYZhIoQuM7eKe87PWZuKavMhhtVAd/vfAHDp4dfTbm5zdOMyE91DGBgY8H0g+PJcHQLE1EOsCAmMCFkEZQTtLGnIrIclohRKgXYKlcuE2jiDiULPgBhVGjU5l8S7nKBWuATGFNZRNkIOGRd0ge+nwgmEwmAaguZ43fHxx59gUhu0ronrlhwLhycOHpV7nNFsNxVHGxOODm6UZGvr2N6ccPb0lA88dZVHP/YUX/aOz0dFIQ4t2inQDlRGi0bbCh9CSdC1BmN0UcIliqoo9YWbZBpMs0m2ttjwUy6qvehLGrh25NSjnQPfIsYgbgLBEHVBOkgoyXXallCkKAojJ1DKc7R/g4PbV1geHbC9uY3SjhAXpG6BsQ5n51RVhdaCmBpRpeGXpNjDRCCloSTjmjuKuE/+LVJO5TVfPCRjQzOX38lkgrPbqArag33qqYEYMalB2abAvymNaWy53ypjS6k6smk+OcHOkAocn1z4gjkpNKrgKKxD+ZbV/lXmWqHrDcRmcu4IocOiyUlQZFLqkSwgsdhj7or+0qhEyKScy9sAvkzQi20GlLEYV2HMiqc/+q956PVvZ+vCGciC/Uxh/Idm3b59xOpo4PA4Ia/c5NTZM2jlSKHHKctycYheKYxVmDhBjOOVqwdop9DaUBO5dHITt1GhTcR7xeb50+ScME4RcmJjYun9BusVhNATSZw4dYrYd0ydJsWWHFuMq9iaT4gxonAse8PZkxM2qszGVkNczKmqRKImrPeZTBzkhK43MMmw6nte3LvM3JbGxsUz95D7opquH75ESB6VPc5UhGTwbct2bTFaOGq7EnqWMhPnMBsNs6pGKUhDz1Gcs3trhxPzl5nPK4aj66z6HZbDmiEnJGVWiwWuntOcOMWzH/oET7/vI7z9K76Cy7tLfvvpOcPNiLKlSR6Hwin+pm/8cc5d3ObbvvXtfM3XvIlf+Pkn+LX3XUZEUHzyUJETDEpISsh9JsVig9XKokOkp4TyJB9Z9B5UQsZ9zg+eiZVRZefHIJRI5SYkrTBBk1zCThXNWkirBNpRJbBNTes/WY7rrHCqImaHEyGEA17zwIMcHt5md7+EM0iMXL+ceO4j38OFs/8DMnmZkye/n5wgeSnQfVHorMk+MPhA0oqpq4oVWZXwky4FYpsw04rZFly69yOcPvsIdjKhqVYMbY9YTXYWzUCvNYvFkutohtSxWCyIMTCfN0wmE7Y2TmC1obaWeOewr8DmsTEjhSXrozDb2sCKIXbdqIqGuG7ROiEqUEthGGulQJe/09B22KqESXzot18kUFwk/4//8b/iXV/zRn7+F55ESb47aM4jY1jEou2o1I6lYSMabC5OFoMma8WF0ztsnzrJE88/j7SRSODsxbO8+p57oNYMUXF8sGB1tEfb7uFDi0chCFNXYYaEz5GgBPGjnTRGxGScBqsV/8MP/jIbjeX1r7mXFMtg/MTpC7z5Ta/BnLzI5StHDCM70ohDxfJ1SWds1QA9qbJU0oBL6NWCjfmc+1//Oo6PV+TFLQ6XC2IyiORS96SETYEuCD47plrQ4tAYfB+pleFosWbiZrjG4jqKY0fdqdylKNaUQmfwZNydAbxEUooYDZFEpV1JAfaeFARna4YY0FmxNpaDRUHckMFVFdtn4fGXeg7WDUf9ktc/fJbZvKGqT7CzvebocA9XV+QqMpk4nK35t7/xQe67dJGqKuIE5QwiEHNhT+dsUFVNv1wQ8DhXo4z5pMU0eXIMxJSQZgPVzEEg5R4dhNyvMamwvddHB6TJKUwzw00saegRAZ0UDBZ0LIzU2KHVHNecIE8rSMLe1ZdZ3r6CUYZBgGxwqS1M49DhtKWu5tjJBJQF5UpIhpiihCOMjoDCF81Z0CQkWLIeacBGkUNHiitEVVTb5+iOryJKo1JdeJumhtyVc1gWgtJICpC2sQhJEl4rVI6QHajSyFR5AtKXOkTVgMJMIS0HhoMrKHcvxk1ABnJMhTuPFHFJHNN3JSNixjC8ACiQUfmXi2Mpx9GCTcG2KDNQ1VM2t7Z55eUXGIbEpUfeBA04pekO/0jnK/yhX4888khvjMnve9/7JndUdnt7e/ry5cv1533e5/2uNtd3vvOdq7Nnz/p/8A/+wc4v/uIvbnzVV33VQVVVGeDNb35z65zLly9fdr+fVtn3ve99sze/+c3Lv/pX/+runfddvny5+nc/76mnnposl0uZzWYZ4Dd+4zemk8kkPfjgg8OpU6fCH8S1/pdYn77ir5/wbx99ibfcdxaZzajsJs+98jyntqZE1bBulxgGonKsOk9MA+hE5TQ+FPjn8WpB7yfEPqO1RrtIykUBI9EX3sSQyMrQTKdkAz5nRCVCFjofmFmN0xplZ/jB49s19XwDHRNqaAm+BAjs7t5mcrbCZCB7clBoAWOEOhc2TggJpTqC6slScbg4xm9VNNOKPgrJCFoqqiAUWkKB+qc2YycOq2ra9RpNCcPofcfUWPqsCaLJYc3UObI2ZEqgxN7eEf7wNp1RhLbDH+8zr2vic5/ADwvy4SHNe74J9aa38dH/+/+NzXlNyqEECsQ1Mh7ch3YABbH3VM6CZEovphQLMZSpm5KiHskxlMbfGImurCGEgDaOFICciDkjOeKsQiGEbmAIHhntw1kUOkpJaqscofe4lNAp4VfHHMeO2A9EP6ArS+h7KmPuJj2N+MHCF5RENgpSpjaW177udTz6sU+wf3uXHBUvvniFf3Hr5/gqgNrRlcw4jL1jH83MZlOWyyXtcoGqXSmulSEnRVWVBDo/hjsYseRcEtIYFYwuLSA4tGtYLJY8s1xy++AIm4VOpDDSYExCK6mhg0qobBjaxHPtTapKk7VF64AS2N6ccf7sPTz3/DUOV8coCttuSImMovKKTjKYCSIDXjsaaVDJ0aHpgpCC0MaMVpoUPDFmgkokpUriWMqItiiVMUbhcyKmRBApPYvg6WIiytjIcDVRR5oQUdoQxKKkhFRkZbi9XJG7DqNKcT8/ucN0NqGweRUqRYiJKJGs0t1AgpQ90iWysXgtqKFHtKJdrInLntqX37OWktRcE3jwgbNcPH+ao93rbM1K4783G3z4t97HdLZBL3C0GtAiCAHJmXaRUeI5eXrKQ+dOcLRc88LyMs+9fIu3jokx7ZjQtlgsaDY0VmfW3RKjVGHRpJKiGAeQpElkUo7MXEWlil1UmaLYjD7dDfCIPhJiIncDWQlVUxRfRlvSEFHGfTLMJQvdak0URbZCkwWpDFkVi3XtHHhfbHgkLvcDH3recmlzxo3dK/Rdy9ZGw3QayHqD86c2aKoatzGHo/1SHFEKb2tgNlHcc/40H/nwx3jrF74VW83RqoPUIHkghwHbzAkplUZqXRXblDWEGFEqkX1L8BmZb+CqDRIGQgQ8OaUCkCeDrsAoRDmM6WFYkuoNRGnELUpytzZkLYhypflJTb/uuHr5g9x86VnaEDhz/jQ7J6bkoSWFjpnRTOY7VFWDdiWhrjS0HFmKdV5rTc4QU0TkztvqDiUPyChJwJ2UXMg5g4CytljbfcSoBqUEXWW6tqPabGi7JZXMSppeTndxBErG1F2R0ahSFHiZAqwSFDGFT6bYkUi6FK4iNbUSWK1YXn+R+dlLSL0Jpi6qlzCgsoZxkJFz+btqpYut5o4SUwTJ6u6EPI9pg5Lv2GMMRtdsbZ6mrmdU9Q2e/Ni/4pH0DnbOnkc2J5/u9v6Z9fu8nttbs/nCNc5t1bx884jt0y17ywVmolHjgVvq8+W1liLt4SHDeknbO2o7wagOJx2+7YlKUKpBkTBKkYKBHFi3K5argM+Zqp6W85P3NDXUtUOoqCcN1lWErscqOFx41j4Rjm/j+w7dBU7OErmLTAWiqzApsKEGunhIpzSLrqNddBwlxhpvwkZdwsRCn8iSS6BO51HWoXQGHdBJM1GGkAoDujagVcdGXRoKfZW5du0k/+jn/hJf9yf+KpJvsXt7n3uPd8mbpxiOj7ny3Mts5RUbG47Uec7NK9755W9l8+xJFrFBmxKUY7Ip2BIpQ6kP/vZLqA+/AsCP/e3/PX/q697Cv33f8+V+Kp66eQmVOxKxHOijoQseLRqL4IeeEAvzKiqNGcrnDrbCmBe459LXoKtrdJRBr9gC5fcChAGDoWkUk52a7CPHWbNRzVmlstchRSV3Z0mIpN6DVaxjYq4d956fofMxl9c91nTc++D97K4nrFZfQMhTxE/oh4dR6nHqymOtwbc9fT+QtQJjqCiYF6OKcigQSUnok9Aoxf7tml/7zXfzzndukpxjOq1YHC4gG0KKROWoUuTG4SF7h8cE7cjeY7Rnb5VQao9ZfczObFYaTlhqWzG1gfl0yq2DBSlGuphJaeDUuYsMsSA7vCSStlgLRwEQiyYxaCGqxMT1nD//BGKWfP7n3sdXfNXr+OhHX0FL5uv/9OcA8PQzN8kpEJQqQV0AxDLsipDDADYTtEOjEGvIMaCIaO2IIuwdHnLj1k2i9zTNnDe+7hFOnNgEBlLO6D5werPBT8/w7Au3MK6ia/ti8e0SvQi1GMQqlqE4EnIujgEZ8QsqJX7+X30bW1vlHv38sy3PffwmZj7n8tVX2L21QOmLAEzqmqk1iImkIXFmZrlwaZODbPGzB7j67LN0HHP//Q/RnL2XEJ4ndEdMgJDWhJiIIdDnTBuFGD0SFH1SpYGkhao2aFujOhhSR/QBrUGJInYBnMJkRbaWmDxm4jB9oBeQnJHK4EZgiGRDLxGLxhmHJOGY4liJOZP7gWWl+PUPf5zX3XeWjUbTrgbyAFZFZlZRK48zmp25oz2gKF6zxrqaMycbtrYrnn3xCrdv7zOZTTFxIAWPsRNyHtCqQrnMEAIh+sJ01JbS2QtIDqQwEG2FnuwgbjI2ucZBeYokQJkGiQE7n0Ncg8zIxqG8J6mEMgmiA2tQUs59oGjbzOGt5zk6vE7Onvl0A4yDoUVYoaqayXRGXRdbu5iKTHHoZImFB5xDuYdrPaqSVUGbMNYhksaQjGKrJgt5iEjjqM0W1irWt2/iZqa4E2JAdDkrqiTjMDHfPZcp0SOHfax9UkSyLmfXwtghpZHVrgzGWUK7ZHnjJeanLqLrOWI1oV9hUirXmxXkAGm0U4sqGBMpw8ycSqhczqlcTyrvU6LKYNpotKk4ceYst6+/yJMfus2r3vwlqKqm2tz8Pd6lP7M+dW1vb6f3vOc9e9/93d99z4kTJ+K5c+f8d3/3d59X6pMCnN9tfe3Xfu3e3//7f//U5cuXq3/5L//lM5/6mN/6rd9647u/+7vvSSnJl33Zly0PDg70r/3ar802NjbiX/gLf2Hv9+LaH3744f6f/tN/euJnfuZnNh5++OH+x3/8x088+uijkwsXLvwOm7D3Xv70n/7T933v937v9eeee676/u///gvf/M3ffEtr/Qd2rf8l1qfd+DvReMxE8/SNXWbGs725BWLphkRTG9o9xbpVzJ0l5sJkuHh+xukQiAmCTzipQU2I0uFTJvvE7v4htnJUTnP2xA5OzYlRU0mgHVZMGsukqQocPgz0QdO2CeNqfFjRd4bWJboEmprpqRltn5haIZuArWvCakm/GtC1Y9CppG7FyEYN5xrP+ZNFmtx1HRMrWNFFAq2KZ11ZXRRmKTEMAz3C7nrFehgICXzIGBEkKlYeOge0Hr32LOiRnO+qzEKIxADDuuXg8IDpG9/Ka/7Ef0187nHsqdPw1i8C4NrHH+PweAkTC4wQ0yg0s6qowLwiWMElGdVEuWyyaix2PGg0omKBLUuF9+CHATfCQ7IYjKtJBHKIpOQJKTKESOrWqJwxzmLHAkqN0fPGVsSU0M6hQiKEwPLwiCEGjLWEFLDiuMOtu7PugOofIVIRSP0ACKdOnqb+8MdxL17m9UMLBFyomO/uA3B/GshBYxPc1xW8gGhNu1wRFVhTEaSEfxilYQgMvqcb+YKGDFqIGULbIrYkwdLe5vj6i0SliSmwd7Si7YoqJyuDVookDVkGjFiSGhNbxdErj0oFljyxDhFPDhkVG7Yry4MXT/P4Cx0xJJLokjIcWjqlS3M69AzdIVXfUeHpEqjsqFKm9T1EQdEhOSCqFMBpBAwqAkjGKikS/hjJSEnNi2XyKqIxVpe05xRBDFlDIOB0g1iwkom+K25gdAmPCJlnHnuc/ZPbqJwJKRcuXMiQPafObBF9YU1VCEElYhxAHH0OTHJFTpHVeg/rxttLKkaFe86c4J5zZxAlvPD8C8ymc7a2dlisVjzyxjdztDrmhceeo10P1Maioi9weBLGGC5ePMvLt/exObI9DNSh5fS9DwO/WUIafE/wA0pvlKJIyficyzhrC1BcNM4YBl+g1YkC6+76voCfjR2TsT0aimWn7QjtQNax2JfHZlBKCQZPZQ3RR/phKIEkzpJQREll8pw0JmuyeLIpKkCSQBd5/vYuB4s1r7r3JGdmjs0+sjmbQo7M5hWTqsboBrCElEhZEAXTiePCmQ1e3r3Kzdsrrly+ws4bt3HZFYtN7MtrQVvU0JJ9h1Q1GFv4f0I58IjDbG4g1bQ0nHJCciBHT04ZrUq4gOhMUq58vtKk0JHbfWhOEu0ESao0pLRBUqbrVlx/6TKXn/g4RwevcOrCvZw9c4qpVQzLIyZ1w2S2SVVNRtuYAV2VsBwBtBm3p7HRnMu0W432EEExpmBw16sn5f2KwhdEFdu7qoQ4rNECeTJBm4js3+bmzWu89PIrfPbnfjHWTMcCOyLKlsn1WBCXKXu+W+xkBK2K2hByuZKUy61OQ1YNStc4p0h+j+XuFTbO14idIWpCTqO1L0tRKIyk6zsBeIzDmvJzj+pDFFHK8/kO66o0K6GuN1HKEiOYexxXnvkg7ep1nH3g4U93e//M+n1eWSxPXLvFgztbzLcnOHuSl64+z32XTpBsQ7vscAqGoZDmjDNsb06wQ0RLIPiedoiEAUQJ862K1apjNpmgcmKqa/zQsrG1wVHbEgS0FpSr8anH5kyKAcHS+0y7GJhsb6BIyNAWBlQ9L2osrVFKED8gYmlqS6U1YfAYk5hUQtVkGl3RDz3RL2i2t1kNCQzU1uGCIwA9JSl36BLWKQYPbRdKAw3BEGhtxZA00g74MDKKs0fNpjz7/BUeefV5Hn/qwyx3b3HudMOZ6Wny4SGpep72eMGTT17hyV/4AGfvfyM+nSr3ohhQRvNl73wt737XG/ngh1/CIPzZ/+4LAXjiyRujklZw9pC3vOXbsXYJlMFhCgmVI1oMIQmiXUE6hEAaD62iBd11ZN9RVQu0tgQpAUwpRsRacgqIKFTKDEcLVt0ag2JoV+i6IcVYakcR0hisARAViBWiyrised3r30jbBh7/yGOIyqSk+Wf/5Oe4cfgAUFSKerjES5f/39x7/9eDPIVVGm+EsB5QrkKUJfQRlzQxalKyxG6NrapyD4qJfjnl8af+GO3t32LYn0POxNDz1O4+q77FpUSfodJgkpTGqdbF+ZIUWk1Z9pFVOMRZh1GBlAPONjxwzzmsqnjpxnWUJKJoOh9QOSPZ4IcO0OQUC5sORTcMECw5gjGHvPZ1v8rx3gH7B46HHj7FH/uyV6G14tatBX/v776P//Xv/EZJERbB1Xvcc99PMKmeo++64uQwJWnYS8KOQ+ukXVH3S8DHzHrISB/RytD5gd3921SuDGhCjIRhIPoAKiCiCz+YiIqBmIVoNMPQYY1FhZucPvOLKNWVvTQpgiQeOrXDP/y7H2Fzq+adf/wR7n9wynOvPsmT/+w5mrrCYwnxFl/0Jd/BdH6DmAJhJRgdOXFyE2U1m33Hc5c/zPHeEQ9fehi1tUXXrmjXa/rVipOnGobYQy7NOSW5KPuTQWPLa1wJjbXoLPjoURRkUMqF92ushazoR6uwayzEsm+JKnuUFsghEWPGhx7lXOGqSyYahaSETharNCEHJMDSBp45DFRX1symCqcGTu1MOWcBhDOnt9loNlD1BmDu7o1ZEpsbDVtzw+7+AY899jT3v+rh0rRTFdn3SPKjEyEg/RpXObRz5HEgqfBlGGwbzHQTwZJiROVASqXuUahSgxgHKZeheOxJvkXcHHGgUrG7Jy2obEkUdfOzH/sNbl17DrTh5IVzzCeG2B9SMWWzqmmmm2hbmH5ZmVKnaAuUpqFWipjSGGJpxkH7nZWK9VZSea3ImJArCmXLmSsHj1ZTxGwwnQ6s2xWHiyUbO4rpZKNULDIOF5UpYoIRKQJ37LclkEOJlNoGGWsWSArQBlXNmeqG9fE+691XmJ65hHIbmApStyjVUS7NysJSTSUkcSzZ5E4NVSCC5bHzgFbFwqxHV8psuoOzNUZX7N58mRc//ps88IbPxzT17/k+/YdynTkTcC4zDL97t825zJkz4Xf9+H/m+tEf/dFXvumbvunS133d1z00m83in//zf/7GtWvX3H/M6vrN3/zN+z/yIz9y7vz588M73/nO36GW+6Ef+qFrp06dCj/4gz949ju/8zur+XweX/e6163/2l/7a9d/r677r/yVv7L7sY99bPLN3/zND4gI7373u/e/8Ru/cfdXfuVXfke3+PM///OPH3roof4d73jHq4dhUO9+97v3f+AHfuBuKMgfxLX+l1ifduPvvo2Ghx44z/sfvwwoXDxkPvEo3dDoniyehc8s9pZsTyfsbFc0lWNTaRRqZBmVWHajDENIPPXsS9zYPSBmRV1pXvVAz9bGHJUVfd+TY8DU0A+RECN9u+ZosUIZR1z3xEjZrPYj1s1RqqdqGo66NTkkjrwwIXN4c5/V0RHGTWhXSy5cPM3m9hZ+uWZrMqXJEdHQ2g0Gv2boIsZUBDr6LqBFIyRcrej7wsY7XsYCL1MZ1+hSHIqhS5rhsMMqy4oanz0pDmzOC7/v/D0XuHq8pomZZBwvv3iT1506y8abPwdlDGlxyMs/9Q+pP/rLnNjaoLIV57Y3OTQa4yxp8BAThiK3J46WL1cO5IrRiq6EkCKuErIUFsjgBWU1KZcJi6sqRCv64Ek+ElPEacdiWFOhUFYzFCPF+CyIKCXYqsL3PRiNSoFkFDGD0wafiiJJIdSuLiD7vlzT2mjWSvE/XXnldz65Xnz2P/jc+4GXLv+Ot9dKsWcMlCEXtqkwWqhF2NraQCvh5q3rBJXIcudfSc8URtUcha1v45rjrmK/b7lx+yraW+TEjDZk6pBQOhCHI5RUxATiXGmkxo6oBXCEpEEqsnja6BFxbG9oHnngfh5/8VmWK49KGsGSQwBtCSIsu46V76nDgFMNSVt81gQxBFWR6JGkMKqEQmit0Rkklb+5ZrQ8itCPKc5RK9S0RrpAEiFkUFphMgRdrAOVhn4IBFMV9ZtaEXXCOle2fUncPjxEaVMyKsQTu4jGc+rcDijBBQg5EXNCo/GkcYJX7NXWCCrcUYrChoYtnYmLQ3xSHFy9zlO+5y1veiNNvcGVF57n5iuvkNcd2gccBQRsKo1BM6kqdnZOcOv6PpvTCampOLnoORpVhXu7V9i1ZrQIW3IMkDOiMtpowro0TayOOAupL7aQJAnvI9YUJl4QobIaP4ypkL5MV61ToEpyoULo+wEEhr7FSEOWwow0gI+BlFVpnBqBlLGxFGzaKIJTyLJD2YrF2tMtj/jc157h4izjwgRlKyY2sCKBBmsdQyiTUAAfCqvxxNaUc/MpR0cHPProU7z+LZ/N0LdUTpO0QZuKSCKnEjZimhk5BELsELFgKmimYCwpBnQebWu5qGZE6XKPy0Au6suMLl8nirRuSXkPMzuBGht+vu1YHV3n1vUXeeaJjzOdVDzw6lfjaodTESeKerLBbGMbMRXK1RTosylNwxGon6V8b0HfLRL1nUN1qd7HBmx5Tec7AOlMscEyHqZzYX3hHKHrEVeRrMNONpDjY6aVIQWP6DyGnBTRIHcsJ2NFmvNYFI9g6vFPUbg1uTBxUiiqA1EaMGA1alqjli3rW68w2TmPNHNyPSV3q6JSvCvuU0U1qUa+HzI2YvNYpJfvlbMZf76S9ocIJdDYMJk0kCesVjVXXvxt1t2KR976Zf/Be+tn1h/MujjJNPMJl/eOeO2FGWe3a0L2OGuZmEDbK/bbYi2dNJrtk5ucPqeLsjRmcgzoqkL0wOADT7xwld3DY1JONJXlLW98PT5PULlC43FWmG/MCHEgh8xxiiAW7xXoQDdojg5bYrQ0zYzNe85wcNjR2MwiebbnGyyvXaUfEqusOXKKzRM76FXPiUq4cPYCBs8QhTC04BMuq/KyIeG1YLQwyZHV4FkCXdvT+YiumnJIzgpJmiGVoSpruHpQzgiSMnUcmM8abt1acP7caS7fOOD5x6/zp77izQxDxFQz1uEVjlcHXNjZBqtobA0SiGScVuztr3jNa8/x1V/9BrTW3LhxxA//yL/mB3/ol6lHa2CK5RWlTEYpIQwlnffOYEG0RltHDBGVFD4MZB9YR4/uIyFdYG///8SZU/8vYr5MiG+8OwRQujgkQoh0g0K0IucBY4+RnPH9q8Ac0FT7aLUNgDb7NFNNzK9B0h7iDvjYx59nfXyWIT7AxAopCYe3DTHcA0C//iJm9cvce99/T5SKQE3btrT+LJInpPg8G7MJun4zRwcH3D6sETMhtGu0VUTRtOuGyQZ863/7rTx06U8wHM846qFNiT56VsfH9Cbhs6ZSFq8VEpcIDSFlrCqsWyMDEVNUY85Sbsq5DG7P79D7gWu3bxMSKGXxflmCWHIkxpawXJH7JeQBpcBpVxpWWNbLCaQlzzx9i//mT/3d4vIYXQ4JwRhDVdmicssJZ9Yop1Dajk4JNTYcEjhDlyNTJaXRay02QwhrQk4oFBWKW1eucfP6NQiZrIQUelJI3HffGYyytDHgMqxzIKaMzjXBZCqBanqDBx74n7i5/3X0KeEksVEbzpyc8/yzu6y7nqP9A/7i/+WdvOo1mzz59Bt54cUXOT68yRAtzWyfSaXIxpLbgUnd8NDDD/Hox5/kxNRybmo43pzRXHoVKijW/YLQdzR1VfAYFJWbpCVWWYzODIPHWYVvQ8HLSESJQafyOzO2xoREHgqGQpxGxVgUbTGUfSmGMdjO4+pmDA8KqMQYFKiJUpwoKgiVaILy6EqTrWIyRJYx8MHFC7zu3gu87f45suipa0etA7YGdMQ6hw9lF04ZskSmleG+89tcv93ygQ/+Nn/8q78S40xpEKu2/K2NRWIg+R473SAzMgdFFbV9XZf3ZwrGIOeiKowJpQyCQXIiiyYpi3JCCi15dUgWSzQNSpemlWDx4YibLz3LYx96P8GvOH3hHBubp3CSsdEznc2YzLZKQIYxaG0QUyFKj/WOGeudkWAiMjZW5a41Wcb/fjJtUQpXWVRRzQFiK5IUZWWsKkRt0diKJz7yQbpnnuHtX/qV442p2HHBFFQReRxw3nl/eXxElY/nkdA3MsNBSFKRlUZXNaE9ptu/zuSkI9sKVc9g6ApnfhyQyqjiy3JHBFLs8Yw/UuH8mdKUzb4MORGUchgD0yYhp+7lYO8aj33gl3j4LV/C5snf6536D+F6+OGBxx57jJs3f/d+zZkzgU8z9OI/ZW1vb6ef/dmfffHO28fHx+oHfuAHzn/Lt3zL7Tvvu3r16qP/7te95S1v6XLOH/73PaZSiu/5nu+59T3f8z23/n0ff9e73rX4d7/2C77gC9rf7fEAXv3qVw+f+vGmafJP//RPX/73fOrVO//zMz/zM3c//qkJwP9br/WPwvq0G38pLnjwwoyZnOEXn7jBz//qJ2jbzOl5T2pm9PmA/UXHyRMbDGi0duVlnYt1xSohCMRcgLLeRza2HIu2oh9KwmzsDDItkHNXa7wXuqHHZkf0gZwMPmpydiRR5BxJti6JvfWU9rhnsehAW1beF1l0W8IS7KiCsVaKJDwknLF4o3DWEfolxlUso0GbTFUZcq+QbNBRYytFiB5Bl/mTJERlhthR2QYlJeChDYEwRIK2oA21ytx/372cvHUTgNu3bhGbsxwdH3D+4gXU6pjf/PY/zT1nzzLbqNk7WHDlyoKlSryytwZT4/dv45Qh9SBTg2hBUk/2AawljIWVESH5O026TJJEyLqwFAgkUSUNykeUVQx+oFsO1NoRYl8mxEMYN1gYchrT2sopt64qjCm8snhHeZJSSQ1UxUqiY0K7ii4GJsbRpnTXcrFnLO964GG2w4AxrkCwR/WKAagMRgRE08XAw0PPD1y+zF971cM8r3RhjinNflVzC0X2Q1FXSU9tKmyGg93bJXTD1qSoyMqSVfn9ZDQ+KWIstuvrLz6B55jkdsgmcvkTL/C5X/+NLPZX2DgwLBcElVF2AhHEKfoYyMOS5D2ushgL7VBsfuC52q0Y2gGrE9pNqJotluuD8joQQUyFUYISg9GOylYoZRnw1CjIHq0S3dECTygJbCFSWUdSYERjKld4fqHI6RtnCf1QlAoiJfFaaXCFp2OMLvbrZoaOiZgGson4EPGKERsMlXP00aOUxqZMiAltLGQhSU/lajSKedPQhcgQcwHPS1G02iQYKJt9EmJbfs/Hoplqw0aM1MsW30U2s8Ufrnn0Ax+mX3clyVtpzLpjK1lEwWKi6JUmp5p57bDimTcG1yja9ZpT04qjJ8qedOPly+xOGzYaTVXB0BbWospCDAGyRetUGvGj5WAYBo73jtEq00ZfJtLrnpQDpjIYZeliQuU0NoUsku/cByBJpnZlWtzMpizXa2wsir/Q92DLFDeHUHhTOaFRJRk3atZhzcTWxByZz+d85Vd/AWp6Et1s8fgHfhVzc5daCyonQhK0KamYZOiHHqsqLpyecnn/mI9++HHe+ZU3OblhMIOBiSGKJvuuMD2twQ9rrG3QwY9NqQ0ypiSfR08Kw2if1YgphWhGlQnzqKTLOhcVmqoR2zEsbkOq2d+7yd7ta0TVkdYdQxs4f/5eXK1R2bDpGjZ25iTRVNUmVTMn5/F3ojRZyn3GqJJ8LWpsAKZSEN75V2THqnTnxmFSkdkxdtDy2PAd1XQhIVJeNzGsaHf3xibtjNP3nOfcPReBitFVXA41Y2CIYvw+5LshG2O3mFz4CGXaTkIkETUQgBiKDV8pRJeAGb88YB080wsPkkyFso44tEWJMU64hUzOuiT9jhy/PI7Z7zQ2RcxdVWTOaWxCls+3VcNMFEZVzDe2ufHys8BnGn9/GNaFTcfnfNaD/ObHnmbvuGNxcBOtPJVRTGYVR92KRV+sgs1kOuI2QCehUpCMLtxepQhoDhYrDhc9g1doOs6f3cMq0LojpZ6+daTYYStN8B1dN+CaKT4mMppIxnSZejKhXR8gx5Gj1cBCQYjCcr3H4fUbxL4niEFlz6v0Q6S1R5zDZUHSAqWmDKkw7xo3ofdL/KBx2ZBsJqtyv5BQgPRGSVE06qJqEaWJhy2iHEHX2KpYH0+f3Obtf+wd3Lx1ld2DXbqDPe578D6u31jzyovPM6uFYCIvP/EyDzx0kaPB8ptPHTAMA8ZVFOVL4tGPX+Od7/hbxfafGYGzisqWQ3ZJXT/BB97/T3jz5/5FppNnSVETBIzWhBQRY0qQQj8Q+4GcM87WxJCwWoEyDMNFRLU0xvLkE/+f/+BzwZib3PfwOwk5c+PKj7K187O4k/8LfjgNwAMP/hkqe5Wnn/olNrb/ORs7P4I/ehVXXv7R3/Uxd699O7uf8vZ9r/qvqaoX2L/9rQzdA7zm9f9HVIh86MP/83/w2jZ+/Yi/+Gf+DcuDXeYm0YY5x6nl8cee4YHXfS6Roh5jvcbnHmm7ogaXTKcCOmZ67VFuRlCG4G0JkcpLbh6ucSZzameHhe/Y31+igpSQhJShcgxR4UXhtSEkSBr6WPbrg8MZH/rgn+S1r/5xpvXNYnOXYlksgW3jRGYMWVmut7hx48vZOP0RNqoXsak8B7NSWPLIn7UYlQjZMwQIWcCWerWaNng/jCnsAs3YxNTlLOFjpqoqnGiGNIzNQk3ICR0iYhIpW3x/H7HPKCdEMm//0lfznq99E5dfOGS57viKP/5qAC6/fMBjjz/O3o1XWAdH223x8Y/+Jd70lr9Hs7WHshXzSYOWRGM1k8ahjDDdb3n64x8mSi4M6b7j/PacymrIQ2nvGMWqiwV34zLaJMRVQKJrO0IotvJEJvQeraXwrmMohLnRfqp1qc1CP4AGiZGh77B1hakqXBZ8jqQsxeFZaSRHIGNyeb37mJEQCcmSlDB1whtfdZ7tyTbJbrE+eIXDo2Mqa9HokSFYELuBEvB3+sSMC6c3eOyZl/jIx57icz/vtdi+h7o01GKKEPrS7rMllDD6FqVraDbA1aTgR3ROcXJkAdGWLMX9Urb8ghBJyoCdkYcF3dFVJluX6NYtXbtg3R6w3r/JrZs3qGeOkycvYpVl6oS6adDKMd88iTKlUVbs3kJSamzOAuqOem8U4qmxETa6HcpM85NDwbvNuTQ6W5QQY0aJoIwlLpfkCHFM1n7wwUvUk42CpVGlpst55APerXPSGJRWnBOlUVc4xmXAWQYhwXeQfQlKEYOpKnJuGFYLVuF5pmfuJ7qmDIuHwu4s7om7HT6Kv7gwpIsCcDwfRV2syCqN/1XkWLA71cSi9Aw/bBPibZ787V/m877yz/4H72f/f7Mefnj4/Wjs/cfW+973vuaxxx5rvuiLvmh1cHCgv/d7v/ccwDd8wzcc/kFfy2fW7936tBt/t9fClaPI9omzRHuLyweBg9WaWaPJq5Ykwm99+HG+9G2PcO7+83RdR0dEGUUKmfmsZugDW5snsLbG6Uhd1ygUKRlyzFy6tIM1irbz+BSpVIUzlsmkRklpVK26NdjEsvWQPFBRW01mIFGUcEY8XfJI6pnNG1ZOsQzCZl0XoK9oluu2gKbTQL21A9phKoMdDP168clJUdcTlcd3nmnjMLWhlw6fBB8LJLdbeZxRiHisralOb7FcBYyynDk5p5lO4MOlwXVye4v9ekLSkeXRIW0Lq97SdgNbJ0+wdXabR5//MNdWgcXS04mnXnZYFMf6mHWq8bo0M2qlSKZMIXVILBYr0h17pYKqqslR6HzEjMz7dRfYsA0pJ0LBxZEEnHPsHu6XhFytMFoYYkRpTRwhU/esVvRV4d4EH8vgKYRit7WuTIRiQjtLDB5LRx8C93YlQTtJ5pqruOEakhViN2BsjWoq0lAYaKI0XewRN8GMqZTPuYpnm4ppXeO90KaIicUSa3pPUCW9NLiGGDxtt2QyaVBJSErjQ4/RGquFtlsgo0T89u0lt/tnSe0xp8+fRB2seObXfxF36gKhXbM42Gd26gynd87SbBpuHh2hVIU1Cjefk0OkH0ojO6UWJQVcfLk/ImVPliOcmZJjJkuPSCl+dNYQPH69ol8sUSdO47JD+gK1XXYtc+vQEbKtMdKV8IMxbGLwCaIvKWvOQoLef3JCVhoIJR3UFikSWkMO63LoS46YBRU9jVjakJBsiUmT00BT14S2p1IlACbj0DaR41D4OUNPTmBdTTAJGSISEz4lfE5USrOMARmfix84fZKN1z9IvO8UdlrxwuXr5AzJBEI7ABljpyz8istXVigsHkHXiqgdVhIzCyoETm7OOHNmi9u3BC0di1mxJqisSdGwWATCYFFSY8RglCaaTEwdMSesnZKTYggelRNaNDl2WC3Evtw/hn4g6IwJMKkafPBgFMlU6FjsMtoaYgwQodZCt27xIZQCk4AWRRBBj6+9qDNJhK4roPIsERUSXtZMXFUs83aDmZ1huhZize7tA+6v5tBsjvaMkfE2hjqEkNg6NePkNcdTN/b5yPvex1d85RcT6dHBI1IVtZ+2OGNo13tkt4PWNbbZLDPisC6Wt8wYjqFAFdRBUbKl0nYSW5pSEst915fnWq0c1649xXPPPUFjG6qmQpJn0iScEWpnmExr6umUqpmh9AQxFUmbu5Ya0bqo/kglBRJGa8udhtudhpziTuJt6e+F0Rs71kM5khnh3aM3SI022hgVqprjEPrlEXregNlEpUBOkYwn5zJdFqTUpekORbBc0R0rdOkfjBaYXIZAOYUx2XBCypmYBxSxoBEqR/JruuUBw7UX2L74EJgKyZHQt0WxmFP5/Usef/jS3LuT7lt+pACphBUwTshzTCPfJ5OKzpqqthjdoC992tv7Z9bv8zpYtYhzfP7rH+Yn3/cE/9/3v4TJhjAsUaZib7Hiyiu73HP2FEhi6BN6bBQ4oxFtiFljjJCj5p4Lp4npJm2bqU3NznxO368ZQo+uDEZqJpUjRo9rapTWqLphcbRCiCRdYQSG6Ik4BIebGNrBE0PEGEG7muA9VtlyOAwZRLGOHtvUuOjG0LCKOKwJqcNUU2IbisImZ4xoamcZUkfWxb7VDwGdMjFERAXcvKb3ChJsbhRnxNmdDSqdufXiy+TUsb3VEG5dZ3MCr1zd58yZY85cvJ+DqPiV336Sl49gb1Fz8+orJPFI9hhJBFXCmTQgzpYhZohoElGrgnowLffc/5MYc0hEIQq8T6QxUCHkSLfscdZijaFvW1a+L80ILZCucvqevwD6AJLioVf9GbqhDNCGVCylmQxaF0ZxGrDWkgXuu+8vMaRdBh+p61/hgYe/Aq1vEHzmnvv+IiHeoLYO3XyCSw98A9YWe2HIkagUJgayXMC3FbVZ4upjBqB2t+nbwKkzP0YYVZlWLA899N/Qe8/ZcztsbdaQ+vE+bzC64uKl06yz5blnnuf6M0+yWvWcv3SS5eV92te/hWExoCXSrdeYrQ1q3dCnUJi5vgSO6aSh8/g8EClhTNkIH3nqBUT6ktKuJ/hQ6vYoCaNVSen0ntwNVKFYSY0fMFnwyTOv9njbW38K8jGSpaimVGGO5QyDL4ELxlpiKuEeKdmScBwDRptiX7xjUY4jwoViz029J2tVbIbZoLMm6MJDFB/JEkpTRRyiAoRE1WiWIqVZpCtCTIgvzYyUM/3xfXz4I3+Hs+d+ipk9JErGB7h4zzZvftu9iBL291b89D/5MP/oH7wP7yPKGNbDgMoWP0yK0yQrtDimTiGh5+TmlJ3thv2DYy7MGw6v7hKDpk+JNASGSaZ2U7Q4JMXChCubBqKKddbHQIyBftGhJNP5AZsNqe3pJWCsxojGGkufItp+6uBzDAPUBqfLnr1oW4ZQQmJygGA11ucSkEZJptddLGnCUQhxhZk4xEy4cOm1nL1wEa0qHv9Ez+rqTaytwNZkiupMjWr4HECbzPa2Zjbb4Dd/9d/w5jdcQPQUnR2ajKQSdGfrCcNqH1ttQ7To6RxxNcnH4lAJnkwsdaAqIgnkzjDPFIeQKkEVJAGj0OvAjZee5eqV5/BDj1hBp8y0NlSbWxgrNM6ysz1HNxul3qpmxFyEMHps8hUcyR3Vm5ByGrf6ESlyh/OLHmubONYGRbEq45g232l4x9K8JCuMcqwWB2hRVFsnsJPJiLApYSGg7wZpyOjIK4PFPDb/yn/Hymd0exR0EsqgxZWmo2Q0mqwqkunw6yOWe1eYnrlUuIUxEMOAHhuH5bFHN8UYZiZ3nb53OM13lId3rOnl+0ccRlu2dxyT6TYHu3+k3ZZ/ZNYP//APn/nLf/kv19ba/LrXvW71K7/yK0+fO3fu99xW/Jn1B7c+7ZPBrXXHJ567jTKBGweR+7bndNmzv8qc2RF0hoNly/7+AZMHz7FeD3gGru3uYoLB1JCC5w2vbwofync0VvPQmRlGWSBSVx1DSKSqYr2ccHx8gEkK7ZZsb+3QDj2571BVYmockjXJDDijMXXDi09eZmUs0Sg25ttsT4WZGPTU4C6cpmkoKUdEVquO1fqIne1t9g8XSAJZDsQYMKILz2AYcAIhebJE2tWSuqpwkwm7Vw65duO4HMYIPPTARRrraKwjxh7nICbNU8+8xGte93quX7nB2ymQ7fMXzmDPXuSxjz3Kw298A5s7p5ikFd3+FW5fvc68sXzWpdfw0SefY3W0j9EGlRJKG4YUIWvUKNEWoGlqbJ9YZBnVHxDG6dEQi4IuR0+iKMe0dgxpoEsBY2uGHEh5QKXC9MjJk7JgdWkCHhjLWhQ/cOXl/+wn2loUe64ixkhV1azEY03ZpENOuHqCtgo/REw0pJDusgiTj+hZhVjH4Huyj4Qh0qiGdejLlE4VkK8fBrKDqlY0Tmi7Hms1KYKWXGTrwxju4TSbGxXeWq5fXXBxR+F2n+OVm9fZeeBVXLl2g/jsc6jXPMD5R17HerliNj+BAXZqw0GXSzGhQSRixBBjYkgDgiFnRee7Ahs2RT1aS7ExaqWpa806TkjGFmm7cri6Qqdiv8ZNUfEArTJZFWVT8pnQ98XGSCQPAyGlohoagyx0ViSVcSLU1hSAt2QsmiF6wJU0w0pRacO6j2TtiKZccxbI1pCzpxgLY0m21oaMsA4RlcuUHzJOG5IqyWpRa5TRNCdmuNURAHbWoDdrlroUvdd7YbapcWaCt74UVdZxcOA5NgO4huQTJiZk1TJvGjamFSknlNFoq5G6xtJwYrMcFFMIGGWQHElhhU4dMWVMM2VYHjKihNGSCbEUSYFE1IKpaioyfRzo+gFtLCErohaWqzV15RDtWLYtjRQLk7Kq3DyVIqRAihmrDMrp0oxPBoOijwO1MUQFxALLFmNKUFAyxXEEqHRMc/oCNjWko5eZVQ3bp7bLtDVHUgxYrbBGEXxAUjlUKyfcd3qTmzc9/+bX38fnfcFb2NgQlHWkoSPmYVSFaVII9MMh8wsP4VOHDUDuiSKYbO82jsfotXI4umPVSHosMAv8GikNu2x6NjdqTu2cYj6ZoFJPxqK0orI1dVWNaoAZ2k0LP0+VVOGsio21NPkEJYWjle5YxtWn1Ll37snAHeuYwN1peLHGjvaYUaFJLr/v8lFP0hYzrQl+xXLvOvOdM2Dr8Tw0Ns9SKCmfcsc+XCbTjNckFKtYZkwRFkXOCrIpwPDYEeNQ8AIpwfj6TAHWYc36+hF9Gjhz8Y2IrsimNC/vOG+UVoXTeYfBk4udJ0tAkkZJJKlcfh9ixkl9wCDFAl1pYp8Qa6kns//s+/Vn1u/turEKfOylXXIcOE6RSit6pei8RfULjtYrnnjuBT7rgXOkYWDZdSz6Nb7PNLWh71e85jWvK41y33Nue8apLYc1Dd4HNjYUfthEuQlXr18jK4/PinoyxxnLYnkVp4XtWQNhIFnPydkGuprxzDNPsOgrhuyxpmJDMmcn2/hJQ201m/MZUUWG2HNz7wCaKRvzbbxWGK1ReY3JmW7VY2cWZzLe96QQ0WhqJ2hTc+Pmkm7I9MOa2QR2thusVjRVxd6iQ5kpV68Vhq+abnDrxqN86Ze8je2TZ3jl2ivs7R3wx7/2T9AerrinXpIkMvSZrckm9sQJnvrVx0hkrBe8SWVA5spNRCOkGAvkPwlDDIU/ZSyalvMXfp6cFwRfVOKJjNM1xljW/QIxdbFBaqHvSxBWUYKXQANjDkcltCGbx5hUhZdbaYX2kUXocFWF8pGshYAltgPCJ2iahtVqYDo1JLVL9FC7Cb08xUYv9BGqaWQuL2OV4ng9YE0i14raK4b8LG7TMasdbR9QvgSriDYQr2KcsO4jQiDqj2AlMZ+c5sypLfp+WRo3Iti64f7zgdv7lpwVlQWVjzi+MrApPQe/+nPszU+xc/oMjz/2GCe3zvC5n/MmrFXsHrRYVbEzqzHOcHvRljN87BGENiiWKSFYskSc6gmhRVTCZIWRTDIaoxQrSePcQ0i52IetsfhhTTM9YLk0kGqyaKwea66hNDNIGd/mwtrVay5c/AVqd7XURzkxqxpMDgSt0aLoYw+xJpKxxjM1jtsrTdSWlmKjdJWjjx1GpYJnUJpoQDtL61uiD1hjSSJYX2zqw9ATtWJr+xZvett3c7R4BK01lau4fvmIv/7X/hWrPrK/f8hkVrjIPgraOkKmOErcMW94699Ey4LQO4xp2Z5MkJg4eXKT+dzS9R07O4lTixUv7w/EUIZ3PvT0/ZIce1xVkXwipH4c7lWkoAjDQA4R1zR0sWPDVhzvL8vwScOQElUqzGyrDIFcuN/aEMunFKZ4SvSju8M2NX0OOFMhgI+RipKSLX15vRWepSejER+p4hF6KlTb98Cty9Q0uLpGm7pYYVPEGIUaFflqHBSeP7HByyeXvHL1Gk889iRveMNr0EPhIGcK6sYYi3T79F6oT5wnKYUeVpA6cjbcGetBmSHmlFB31GeiibkoFnMKiC+G2spZrD+i79ac2DqJM5HoV2itcMaxOZ9gmho72cGqSQl706bUVzmPDT1V7uWiYbTpKjWOGO+4F8Za7M71FSfA2DDLJSyw1GalMNK61DopRlJVMXHbHN24jnQNtp4XB0TsUVpKLSOlnuEuQ/COaKDc15BS66SYi2oXIEd0LhbkQBwDUTwiCaU1KXkOrl+mj56d868urMUYP+nQSAmthTvpxHe+v8id7xHJORaGvB750pQgOhtLmrnNNQrBnzjx+7Rbf2bdWV/4hV/YPv7440/+l76Oz6zf2/VpN/7OnL/EshuYn5hgTcV0Zjlld3jqqVcY0sBse06P58Zhz1F7SJYaN2lYvhxQQ4QhY5Rh9/YeZ7bnaKOZOE0WQ+r6EhqZFZI1B4sFuweBbKvCmOhWVH6CMgbVWkKf0SmVCYSPHK8O2D5Ro6Ijiipx6FHRNBbfJ6y2VJsRkczEGnqfcZsTfIx0q2OGXpGzIaVA7aRIihXE2JFTwGopyb1ZQcykrGl9SxcXGAsb1YTQDwRdsYo9tQQqr5GdOb/+oceomk1O6jvRSY50tOCpm0/yzONXOHvqPu4/d4GcLWnSkY6f5lWbU+b3nOPGtVvE5ZLKRfAeVddIClRYBtEMqmNrNsX3HdknBjJe3T0dk1MmxICzBm8VjVJoqViGACGgVQYCqg84rdGNZR1yYdDFQFNViAi3UuKrHnoVcx/KVmM0KkSygqQ0oe/RSjPuzEX9J2UjykOiDz0rN+FGXUHX0/keUxtsXdGljs2JYWYMh+tlURuiScaihlJMTI0pD02msUIyjuQy7TBQKY24ir5vUUPCqppYG4xxSBCsFMZJJOCcpa4MabgTOJJou8hiHUFpaAeabeGBfMjzlxNDCxOTuPzsc3zimWvsty0P3/8Qb3vLZ3PkM6usIZfEVuVUAWSTqcSAqlAogu9JMaFi2fgGV3Q51hqSUH7HOaFEYzU4Z+hDz8RW1MowoAl9kdtHEbSxaF+SlhMepwxKLDZpeqXISUixJPHqaOh70CjquqJNGasrautQGhKeqAUtkaoSTM6IrfA5M8hAg0aKvxgETuxs0RiFC4kB0FFhiCQZSNkizqKURUtEiVCPTZfTU4dpKtb9iv3DFa0fOF3PaZcdQSyNViC2KDFEkaaGyRq61Jak4mEgSuBw1XPjyi0Olp6uPsn05FmiLlZfqwJKIlpr5jsbdItAM6loJhVtq6mMYxBPTiUl2VhTbD5SLHVd16FHm2ka7bWCIM7Qh4ATi9YaQmkwO9FsbW6y7HoGHws7KGdiipikcVKUA6IUQ/bUUuFzKDYOyQQJ1BaktiCCazaws1Po1THtsODWzcushhbuTGlDQkmxoWQlZN3T+xai4dTOhHOnZjz+7BV+64Mf4n/3zj9O8gqkQxtL1ok8ZFIC02xgqAlhXezpvtiHRTtIkSSlmL8D7hYpzeScM0IcC2+HWAt5SjZzNprIPeeF9XFJOKwnM4x15XdsHKJcCRlRhqxLiundwpbS/BN1x/5RnjNZ8p25dynCC4yHO3aufIdoMCoTS5CLvmuBJaW7qkHyqBQcLTLNZI5RK/rumMZViJixwRnHGXoaLcZ3b6TF6p0YeTfl3lFg/IIam6Qp9gzeQy4W6ZwifmiJccD7QApgI6z2r3PIlO0z57DK0C2uk2PG2Ip1p3F1jZWAoligUw6gwOSyBxllSmGeyv3A+0wSQCVSTIgp+1/l5p/u9v6Z9fu8opvy8rU1VBnf17zuoVPsLV/kpRu77JzYoq4mLPrE7v4uJ7Y3EWfZOziiPQ4YDVlltl+5wc72BOVX1JUtXKjVEfOJQnUtQ5+4vi9c24s4o8hxhWWX0xfPQ1RF2VNFdFTkFNhd3WS2mTi8fsDCaFTTcO7UlO2p0LUdJ09M0FRoLWgU/eA5tTVlJYar166hkitBXkbYnDdURpFDj6REJZEI+H7A5IaOzPXdPY6XA8YWltbp0xsMnYdwTCMObwKPv3AZgFeee5H+3B7bsx0kXKGrz/MbH3qKL/jq13Lp3vPk9oinf+NncctrvOtLv5Dn63P82gdeZtlbgq3JmcIU87rY0FSgtqUZEUPCi8PHCqUbYqrZvfn5zHZ+i6Y+IoaejaoioelCUQJnVZSCPgcmlSPEolBOOTGxDqxmaDuCiqP7LhNJOIRoFRY72lA1WeVCJq0cVmsIgnOGQmjOqOxJOWKNIztBbChcPxGG6Kld2RNEayyx8INTQemIKYFvxhlSyLT/P/b+PFiz9K7vBD/Pes55l7vlzT0ra9+kkkACZBhsDAQGjA3dDG3TjRu6TY+HjiHaIsDhsbHDMR3jcTti7NFY7pjwSmOiZzx4LBazNCCwmkUCIQlKRVWpVGtmVW437/4uZ3nW+eM5mZIddlt2224C1xOhqFLVrZv3vve95/zO9/f9fr5ZoJUmMKBcIkuLnErmsyk6x9JcH0EZiZGStlsjUqKuwPnAClgeDZyZSzamLebkFdq6JgyCwzc/w6fTglO1Cdby2JXHEZuak86RsiK6stCTWmNjwsdhdC9pfN8hcEilSaKUmKQkMEqwMWk4xSPIaJmZTCKmXrM82uLuW+9hZ/NZDAuylvigS7IjelJOhemKLNdDADUgtYZUCmvSEMhWI1MGWUotlDXl90VonNQo4bG2KmJeTvQxkDQYFCKCVmCqmkld0S3W+BF7o2K5v6M02Riy1Gjj2T1/nX54EiM1O/OGlAb63nO8CERR7ilDGF1tQhdWbBZkoxHMyWJF6x1bokZbyaLvWZ+0rNwmXXMZYQX2bo9Oh1QCYlYoq5nVBiEU9cY2q+MDlLII6SE7YtJoLcla4ZNH64o49DQTQ9v70nCcIq7Y5anrmhh8uad1PSiYThqCBO9LgY1F4EWishaVJTlmehLJaHKKZc5NpeChFwEjFFVVIbWhOvMYMgkGSumdrIrgl3Mal5waqSUyCFxco0XF5rzmfGM5VpGP/+aneeyJR9F6joqBTETqRAoBHzJRZiZmQnSr4l6OCaELziNBQRWNQtfnRLfCac45MLYWoXMmyjWbyvLYQ5HoivvUbpzHGIO1FcpUCFmWMknpwj8Wavy8peSiGPkNpUQjkvI9N1/hiomx1It7Lr97KYCRty6EKSzhnIqImjPcw56kCGPBzXxrk359hFaKVE9QsvpcrDfFsawwle99dNuVXrR7SJVITnGMAwNZk5IjDsv76QvneoJrCT7RDQP9sKa/8Vm0nLJ55hzCWEJ3AiEhtMaHVGLjYtx2xkwmIAWINKY/dC5lQdoU13BWCF0YzDFllLHM8ta/wzv22+ft83v3fMHC34bxGBm4cvkSJ8sV02pCi8eaKfunPTmti3ihy8Pp0fECcRwxHmIMWKWRCA4OD7ExEYJDGkFIxUYvJ7I0y+UGoSxKLmlXDpEERmZWx6eYiaVbLGg2Z2hliX4geIEbBmy3wNQVIZSNrU+JdRfIvUOKMhQgK9aiQyhLljBEiWkMfggkEREqs1qtIFiqxoJSBJ9RUhCjL9EvW9EuW5zzNJM50bU0SiL9gB/AasVgDNrOmGXBjlW8/uqLpLbE0Z67dZdGGt68doe5NDz3P3+ETddy9ZHHmVJz9cpTaBEZgudsDqxiAGU51gZ7ZpdzSbFYHmGzJPY966NTokgYW40Dfbkx6JzwPqMRtG7AyFzKQ6QgtwPSR5qUiSowuI4+aYyUTI0kaolPpclLpwJi3bM1byWHsrpEi6sCvcYaYtsjYyJrhUERciRrwaSqMUjW7RIlLCoJPCClKhFI42m0QgqNS5rKzIhqYGJrYpLQteV7sRpFxodILTRBJ+aNRWWNX7rCIJEKM6tw0Zcm3Fig6ELq8t81U5pZzeACnhL17V2mDZ7Do8DZTUsWiZdfX/Lw1YqwvMutNyNVk4qjLS2YGMNVs+LuZz5KdelJqukGnczkOkHMSAGYwqaUKSG0oppYUkqjvV6SXLmRojNdl0hpoBYZrWxxDUpJlImqsogYaKY1g06knLEqQXYE6ZEpo1H0PtPFRJ8KGMRKWaKtRuFGd5ZKsBoiRhg84JKjMpLN2QStAkfRMZU1OxUsk0SRMbIpEYdYRDw5xgDqaV228VIhY6BKRS5JCrRWGJGZVorVGLsB2NmY0CUYQuLguCXHxNZkBv0+PgiU2qZnzdpMqOczqkqzDD1y2RFDYpU17UnNqZC8dbRmftJx/rJAVwkbRoeIFMyMZnNieOTSBV577YSJ0cXnlzMyJyqlCaHIszGXIcdaS5IOTHkAUTmTKAORkZK+68miRFV0iEQEtq6xRtOvWrphQFUGKSiAeqHwQ0Q3htm8ZqNpOFiv6dZdcZLZEhHVUpfrkoqEWBxw1kCcbLN3OtDbivn8PFpriAPQlvdRVpAkaWSnaCXIjeLMmQkX1pf52K8/x1e878vYmG2jbCanSWEaxg7bzLFbF8APGFWRhAdpypZXlJ+pIBbGncij42IsDBIF6i2EQmg1bp0BoXDtkroxTJuLxORQui4PW4jSWqfqwq8RI09GjMy6McaSSaODb5w6c3EWlP2zRKR75Rr3vqY4ipJla1zEQEEiFJbMvdq4MW5YJlmNFKqIgrrBzCx0p+ShQ9azwqn0EZFigZ1LEKlEaXOO3Gv0TT4Urmn2BN+PTkEIwRNij0IjVYM2liihsrMygCPZTkVcPTz+DMuj65htQ612mUwu4PoFfn3A/t07XL76DpKuSEoRk8MoC1EyPoaV93uGlAM5ifEuLoihuAxzFqSY7n/s2+d/+3N2PsGaNVuXLnF0vGR7swFTc3q0pk0LYnYg5kQh8cLRrQKxjSwXLdO6xBFv3LpFJS4iiXRDIEQBwaMGjcgZLTYJoYPUMrgKLTLOO4ahZ71aIZViYiyZnjBA6Ae0XmKrGYmMjJrgAnGiSX0HwhFlYUoaJdF1gw6S1A1oBEEIhNJ03RIjApNJRcyJ4BzGGqKPCBQhQte1ZRk0UdQCZjLRn66RWuNSYlZPmdoJs4L4IyjFzaWgffEtHnv6IX7qwz+FbxP/4w//Pf7sn/kBVL3J5ff+IRaLlqfe99W8+Yuf4uzZKUPfgZsjxVYRIlxfrlWpx3WyuMalJGWBU5ZKGXIUvPLS/5l3vuf/iNQHWKWwxtC6SBp6mgxReVLoCV6ghAKVkcoQUyTmjBg8SkhiSOAjTGxhZOVMrg1WSehdEfClRiXwIqO1LnHi2CMBLQQ+g48JLTJKaLCGuqqISeBTgLnAUDHERIqZprHEGAprVkrCRGKRLIJj2kuSUoi1p64t6+jRQuL7gJhPCyNVwnxrzuAcUWhSjrRdxIyz0ea0Yb3qWJyuuXLR8quvPs/h3cy0jrx2bZ/T9k0mteapOrM2jyBmW2QByRScRo6xFNAlhcgKrQ2VFiWKO8YHo084mchK0HceQ8IAUQhmk8yjj/8K+zev8tzz3857nv7/MGteIpPRVUHMhLEMMIzFWg7F3tHD/PZv/zW2t19GbbwCGQagX/cYq8scoxQ+epRWTOsKKSPHJ44qa7RPJFtK9KI0ZU018ua0kWzvzOlO9gqvMkqqHIkUdETTVAWz4rd55cU/RlX1mOaUraZCI+m9Z90NTCeaSip8aDGyRsjEEDzWWPp2l1/+hb/DV/yB/xqz8TKLlaNfNayl4JWbd7E3jjn/yFOoSjK3gskkI3oBAS6d2WZza4PKCmoVWYrCz50ogw9pdIwpZBRU2tJ2Q9mPJYkyBmSmorjRBh8IIaBycdwJozFaoYVk3XcIoxBkRCwOMrd2WGPY3pqzI6ectC3OlSbvQEBni9ESbctCOavSHM5kwtoFDtZLRNOUJFiKkB0pQcqmIDGQRApH99KVXW6c3OEzr17n9KhjUvkRQ9OQCAgiWlsmW5dRHqSckERABItkLBTLkSTSyAXWIAwiJxBjtJVSniWUglQi8UO/YD6fkoMii4ipZgWnIGWJsktDpJSRiZE9nLm33Cz///4yM5f7+b32XpEpzwiMq9H788y9fzIuTHMoX9/47/M9xonQyFFgp5pRS0UKPTY3hRk+OvByTmTpUFlAKvOEIBcWaorgM4gIviumhlSc3DEOkCRaz0vKSGlkbagbjZ1sshECrbvD8Y2XMI2gmZxBiQofF6T+kMPjJecvPFaWDkohCMjx60oUHqRAlORGCmOnmiCHXJjNcrzOliapt8/b5+3zr3m+cMff9hTjE+e15a2NKd0ycHZimM0ytay5c3eJ1oGF97yx19Ov1wynJ/zhr/tKVutjjFTMmgmDTITO03YSZWtIFmUlTEpjlNKa9XpBVdkyXA6eyaymqTUu9sznNaYyzJqape8wShCMpo+OjTMNbuU4HVpWWXNyveXstgFr6BdLdE50XQe1GR8eBVtNgxn5ZRJFM58y9ANu7XHJk/pM2/cYk6hnM1y3xhOoz+wgB1Bil+ACh6kvVmTfMvUV/eBpb7wBzvHwgxcIz70IwG9evsJzsaZ++EnWXSa6U37xxh3+4p/8L3jkoatsZcULn/gosp5ydPURfvZDP4uIkr3VMe3gUcRSgIEk5MKP0rmIc1LGEaRb7gUxl7YnQsY0NRFJ1/XICDEmRAws1z0ZSUyOcxcusDo6JYaE1gqXCqvM5zxyACtCDqTBI5oK3/Vo58diE1keNrUukNkEvR+ISiO1IsWMjFAZi9VViZA2DdF1+N4TUyqFA1IT+rIVU+NNdxgGkm0YfEbojG976olgezrluE+404HaVKxlxCrDNJsiJghPiENpba0sUlTFtTVmBoOw0ExYhiPS4ZrLD9TUbspnb7UkWyNNYJ0kwTtUCHzT1z3DxTNzPvzRT9O/dcDGxjmmZzbZeugSStSFXJHGVjBpiBlyFEhhUEKjpCRWDTk5FBKpJcKBNhqJJMvyulfWUlUaFyW20cSRWyZTxkpDn0UhtqjSzOFDIEtNHhlwBT2XMMZilUKkQs8IWaClIaWAGzKL6NDKM7M1D17a5dxG5JU7PX0/kEgoUaOtZTKfcHjnDn4EuKcAVa1ZuYEcY2GjVILU95A0ysyIURNlwUBUtWJ/GIhG0PWFAXj50sPsnj/L77y14mDjSbTKpI2MuLvPyY2PM5lWpFgRgiOqzOm6xVrF+e1Nnnz6MhtTzeHdY5a+CH8blWVns+KRxx5A6EzXDTz22NMslwv2bt0hkxlCxIeAiZoUU3G8pkhtG6LPxU2roXORBGhdmrJjziQyIoHSiqgEfd9TCYlSikRhPRlt8EPEaks9aVh3S0RKtKsOIRVWCKLS6CCIUuDIyC4ShWQIAzde+i1Uc5nbb93GTiqSjCNzJRH8521zvUO4AUEs5UOq4uwZz827A7dvn/Dbv/Wb/P6v+hpUFkgi+EjXOya7FxEyE4ZTlJmhgifoEhcVIZDHeAtZURgwUKIX95bgcoyXSmIqeAAdA0Z4ct2UoZiB+43ASLIsA7MY0QPpnmtvnGPFvbhHvjfujVtu4v3YceZzA3KmNP2WLfzo4rsXl0mRnEY3zFgGknP5nchCkFMBnSM1YXTYRdeDHstMUkSEOMZpi2ieU77PmxFIpLSElMqfLwRSmSJCKk0lNyDHMXYPSjSIXNAW3rcIkXEp07uakAc+8Usf4cKVp3j6vV+GNBVQce3NT3D3uOfBJ55mbixCRain6KxBC3K8t40f/YtSQkqImJFJFiZrTITgGYaWtz1/vzvO+W3Duckm22d3OL7YojBc2pxyO3Wctl2B1seO28cDvU/cvn2HL/+id/DgQx4rJZvzTZwM4CPLxZrKTglJoxVEbSAHQjYE0TOpBMIXJ+18ZwN8y3RmkUqzsTllaCG7QLAGasXOhTn9ssdpyUpYDq4dcu7MjD4EtCtChA/FHe6GgXMXL9IoybJfY6RhMp8SvOd05ZCmIruak2WP1kXIUTGwTpH5hXPotqcSmmwCJ9EXxpyL5Jng6LU3yH3Hux//OCLe4Ru+6r38v3/6l/iN1/aw1HQZfuEjn2C+8cP8V3/qu5htnueJ930Dh4d3ObuzwcMP7ZL9b3C6aHESrK7olwcoVdN3J1hlRnC+JMZEM6vZ2Z1xfPQAN67/F6SUEElibU07FpbIUSRx657WB5CCjemEyme8EHgj8d1ALRUul7hbhcL5MF5rJG7dYaQqi0GKezLGRJYFc5JFxlhDCgnhYVLVSDSNUQxKIFNkvXQoYQiVYSIlGl34ZFqWYiwh8ZTURfID00nN7mTOYViR14FaWwadqJPCCsjlHUdMASEUxkxIqUaYOVkM9Fmj6ykn/T5h6Dh/ybJ3V/PybU+DovU9fUrovGC7tnzXf/x1vPnyy3ziox9h98qjTDfOIs7UWN3QoEk5lTSONvgMamTiGZHRUhE0NKlHKkPwgVqX+2nOkZAHphNBPy+z7XTu2Jh2JY6NQwvJIi1JGmyGdUg4l5D2AkARcXIq6QGl0aow7lLKiFwKXPqhI7hMY2GqLY9dPcvZDXj5dk/wHS4rchbMNiYMfcfQrhBojKkRnUPpRBoCRhl8I4lDS5U1IZ7h+rU/ykOP/yxJ1WQUy7akc7o20dgJ843LrN0eh+YcSE2vUylqW5X51wSD6RReZQ5O1qx7T2PmPPrYDud3Ezdu3qZzHSpbKhXY3pnzrnc9znp1xMZ8m/Nnr3D71h1EzjgfCSmjU3Gsai2orKWZGtrVCqXK/dn5AEpihcanAZQkOodGoK0lpoB3HgnEDNYolJYEn7GTKfW0YvAdVlXEkJFCUlUGaRSh9WAi3nuGVNrsT29fQzcXef3aHjRNKb1TkGJf2oJzWaymvkf5iBSJrCvO7Mw5s3XEyUnkn/7S/8Sf+M//RJlXcgUh0bcd1fwcylaE/hhVT1HREa0qrOLI/VivyKMrbxTFhMhlsSc0QmhSiiQ6VAyovC6s8DhBy4EsNEKOOBSpEcp8bjk6zjylzXZ0zt1PJNyL75YZg/x5y8pcFp9l4ZrG1tuSXkg5jM8x4n4y4/6sI+8VqgiyqBCmoGRC16Imk/K9OV8ET10itoWll8b5q8x5cSwCTKE4c+U472hTj8mv4mrNuUbkOdGvSQpEM8GvBnK+yc3rL2PUDg8/9QymnrE+thwdXyeZ22yeOUcVHaiEyk1hdSo5zjiipJhlLjTDWJJMWha+fPIR74d/9zfut8/b5/fg+YKFv3ldczCcsuzWhAFcu6aaVFxu5ly5vMEn/B3uLJacuMidLvPA9g57124ifMfuRoVKmcZ6sjJ0Q6Ka1KxdImrJoA1DCOzf3uPMzLA5qZHBIhuB1xGjIlYpQvAIaUjB4/o1KQa2pg21FPjeA4naak73e/IgUA56s6Y++yjrtkUOS3KEc+d2iQlSbOkXp1glUSikLpX0g3dEFC4m1ouW3geMjExsxWnr0VZRywm1lRit2OtOkdog5YwUHOHkmOev76MbRZ0M+0dLqr4MLQunaGdbHK3WpH7Jhd0pcmPCX/vv/zbv/9Pfx0Nf9A5WmzPe+Y4vwTz4GD/3sd/iMzf38KaiX5wyn28QRSb1DpmL7TnlhHeRjVqXSCmQsizA4xiYilJv3ztHGmLhwAL94PFZo0RChsTe7UOQkbqxpFg2Uj5HUIX75lMszgJKI58SEuEiemqLY4BEkhmpygN5SJlKgRCCfixSULUlpcwgPTYbJnXF0C7IWhByQHaCDoje046lIA86x7BaYgUIE/C9x6x7Zl3L00YwzBQxBZbrFhlBaEOIkavHK3L2uGFArwem7YDzsD2+6/dXAfPwBZpzK/bf3Ge7T/T9ISdt4uBwQOgpSJjmyJMP7UC74mc/+SxHztDGNTfyTXYu7PLe82fw2hJ1aeiSMSKzR2ld8BuyiHSRTI6SHD0yeLZ2z+JOj8FYxHiDq2uLNQ39eg3TOViJ9ZZh8HQhMGiJNzVxcIgYiUIUgVHK4rYIgewTymqUzFQSfI6okDBTy6yusGZKU9fElDk5PWLnwi7CVtw9WiAwWKNw7ZpFO7DR1OxsbdMvjnjs0QfxwxIIzLbOcbjuyEoiCeh1Kt+vSFSV4EIz4UFbhL8tsWJoKoTU6Kkgx450fIPZ3PCQ6enETXJ2bGZP3FiTzibmesDPGrquuL/mm4qrlw2paTg3l3Trlk0NZ7eLe/NL3nGJg4cfJirFi8+/QByKcHx49xZGKrLytMHjfGKSNUaa4tqQ0K8HBJJ2vWJne047FJHVDw7dWCTgeleWtUXWKgBxX1xwchSofCoxYK0lx4tTjBas2r60B44FH7F1yMmUisjSKazLZJUQCt54/uOIyUViHMhaokQRwoVqyvsGVVqJtS+RfqGoKE2eO7OaRt9lUtd8+tNv8EVf8h6mdUU2EJ1H1VNks0F2a1Ly4AaksiAKRyVGP8Z7ReHVAZkySEKJlooRQJNzacHTsXyslNPCwWFk2WR/X8i719hbGnfv3U3kvXQu9wS94soZS2lEGLl74nOtchIKe7AUgOTx68tZjBw/+XkDcPlT8thoVxLn6X4ZMDmWL0eUVu4cenIuUbwcS9FHyv5zDXqj+CqEuO8K0FKPr5UYN/ZpdOBlfPREVwTT4AMCT04alTynJ3f4B//93yQEzWqx5vd9/Tfzzi/+cmJwyKrml3/j46wOev6zP/mneOe7nmC1OMS1AyrBZGsT4UpU/eTklBgDMWaaZlKE8+w52N/n9p1bbExrzp/bYfcLvcG/ff6dns1mwrIf4OiIdtGxFIJpnXhkcxu/KfjUq28xGMHtQZFVQGaDTZlzF6fICLV0UFW0C0+1OaMLkKqKgMalwMHtQ66c30Qk2GimeO0K07dO5SE9JWIIhK5n6DumtcUIRXd4gjISqyXHe3vIqoPOEbYsnk2WJ3cgRnRtOXv+PCdH+/TLJVYJjFCQytKp7TuS0LSLNd1pR+c904lBTKa41KGspq4rNjcqnIc7p0fM53NImR3h+O3f/G2WMbMxg//yP/673Lh1m2uvC/q0gcyBbuhwbcuFMxv85q9/lK265tv/xB9jrS0Dmi/9si/l+Veu8eor17GVY1ifgmyoJgNicES5LA+quZRQNUZiVU9OHqkuAmVpV0nLgMC1juxLZK5ve1ygFA9FRw6ClevRViGzKnNSDGQlx06hhEz5fpO79BGlJVQGGUuTZZLF5dM5R2MMUpTyJyUk0hb266AiQtVUCLq0IutICpl1rwixg+RRlUZpzRDL3BGVYxg6TiNsa83ZjYre2hIQ7FqM0AitiUmVRuXQkVLEe4cL0LqW+daMwz5RN2fQ2yfcuXHIvFcIOXDzoGNJRFhFSoItkXn31V3eeOnTfOp33uQEy+tv7bO1vcGTX/Ze7LmreFWwBzInZBqQSpViJyWKCJsBFMG1WKWYbcyohCQwvuYyMp/MOYyjC6pWaFvhXKT1xa03qIbkXIk+cq8Bvtxweu+xg0dVhnrkIGcfCJVkUpnCorWWnGG5PmX77BmkrTg8WYwcMsPQ9eSkObM9pWkqepPZ3Jhyy/fUTc3SOQYpIDlUL7FoYkoYW9AVZzYG5tYSe1lcdTSY1CN9TRwmWM5QDQ1JK1KISB2QzYJrwIO7lrou387uNHH1Yo3cnHJp9wyrxZoNpXhky/Lo7oygpzSbmxyfHnDjjTd54NJVkusQIZGlYMiRzgVsZZGp8Jv90BM7BRG8b2kmDcMQS6OqADttikiV8+hiLdFQ5/391ziODbGDdyQEfegxCoacSjkJuUSCI0zrUpgmUyaEAERe/8xvcvdgyfr0AFmJkfChELKBZEg4fHagPN7HkUuZsTpwYafmzl7Pp597ja+9fYdz57dQXpJCRAiFnp8h+44Ye/AaLYpLLWdR4q5SIbOmPA5/Lp1TZor8OTEwJWTMkCRKNGgNWWmyqMrMMy4hxT2UiRD32Xn3wCWfs+GrMvrkCIT7Rr6cC25EjKJh2RVIcg5j8kCX34l0z/k3AlHuzTpi5OTdQ5zIMsMoU5NDJIduLEfLhRnoHDGPBR8FWAJIjClzoTENsp5wD8GSUnHkpdAT0kAMPSCJbgAi0UP0h3zkw7/AnRt7HB4ccenhp/juJ95NyhnVzPnpn/1ZkjP8if/qezh3ZorznpQ81lqM1iSf8N7jnMfHgNYWI0GIyGq5YP/gAKtgNq3Y5kv+19+c3z5vn//Azhcs/KmJ5fDmmt2+JuXA7eMlW5uaJ3cNX/1lm2xUjn/yiQFiz2de/CyXvvzdqKbmdOWZZIX3jrkFtCdKzZAEYmTq3bp7yGK1YLlaM1UNW5OG0HuEKmaO0Ef6POCHgJ7UdENPNbE4FxnkgLaatnWowxO2U2a6bMnLNS711EHT3VkzX7RMTCmKMMNAbRQiBdQ4gA0BtLWE4Kicw/mA1Jahg8En4rBi0gqG/RO2NqfM5i3WFDFSu65syrKlBvL6hG989GF+8c09bnQLzss58sYxAE8PAw9ud5x9asp0usWG7akwPP/SHp/6ob/Dxf/9f8LToaN65UUuto7veuZR/s6zz1FNJvRDh/Y9R7biLW3pU0bEiAGqumYIXYHtAilJiB5bKaQypcErRQIRjaAfBlKOVNrghSoxDJ0JKGJUDENPJiGsAh+IKaGVpbI1QghcCggrSTLSDQMogQZMlvc5DLWpkErS1BWEiGt7hMpYo6mlxOVAFlBPp0Rhib5F54g0hqgUyRg6Kfm/vfrqv9m7+8V/+b9yRrPa3MGterYeeJCdC48yUS1mB7bqCbPjI5ZdeV9c2rZ80SPn+fmP/BbVuYe4JAP7pwGXAs4l9t+4xfzcObZ2zkI2ZAJCZnL0JRqCAKNKDDws8esjUqVZLjyTeoo0muQDCYGRlu2zu9x8+WU2leXMbA624vjohCEnQlgzk5ZBZoS1rL3DNoYoNKIPkDLKKNowsGWnGElhNG3UnN/aZXNjRoyJtneklJlPNpgkh84dyQg2jCXGzOaWZu+oo8qRDZu58q6nGELHtRtv8dCVq7RDKEzFaYPr1zgSTT0HkXBhoNEDlSobue1VQEwycXBsxIwyNeraLVRtOO8z7u4BKTh2O0nAUdVTpAQnNE4LpHfQZeK1FunX7Od9YiqidH1UIvQr77lzdIfDoxWDi2xuneXF62/QrhdFGE+eJARJqOI8QGCaDYYQ8NmhqwbqmpXL5BCpm4Z114KyBOcQPpVZLYGWkoGEprhHkg/kZAqXJwtCGKiqKTC6HABjDb1bQ5YMIWKERAeJrAVaZIxSdKFltX8TazZJQ2RmMz60pOBwfkEm4UMELHdu3UHbirPnA02aUBnNw5c32T9e8uatPd567QbvfPejBDeQkMx2LkCKyBhR0pCcI88mZdxLEqkAZQHIIt7bUZfhUwFJjjHSHnJGoRE5kURx08mkyKosFSR6dAsWOLvIRTC7d4qzj88bfFNxGeZ7bdSM0Vo1cmQS5FAcGoyfT2ggkMamuKJJys8JjPdceve35MVRS4aUSgM2QpHw+LZDqAFtG5KSgBkB1qr8mSM7qzQ1qlFoLH9oDGP0N/kCVhcS1weQGec6UkoEJKvj25y5cIEzD76bb/iP/nOYnWdze5vHnn4HAwMhO379V3+NX//UDTbPbPLT/9NP8eKndjk5POBkcYpuJmxvnUVPa7JU3L6zhzYK13uizxhrsU0pwDnY36dWglor/i9f+m3/ZtfOt8+/1aMnljunR1S+MENvH5zQVPBFj8y4cGlKPyx583jgtTdeY/rQZTZnE44WLZtnKqIPBBmRKY7hNSAMmEnD7f19Vv2ao/0jdmZQiZpIgJyQwLAeQCSyNAQSXWgJIYIPNFoRB+h7R1NX7Ew2yCLjJ56UO9rThI+JmtLAG3yALErLcAzFXatUKTdKid63KGmRukYkhesdPkdO1gPnzm6jG01IERc7bC1JOEyyHBwc8sRDV3lj75QXr91CVg/zxp3rvNHexsQpD2xYLl3dZXtDcn7qiL3hk7/yizz9ni/lqUcvsfXwA0Qn+Lo/+BX801/9DfpEaSfv1mRTXq9BJETwKATaaEJyaFXRDXHEBZRrtLIaF3yJ75JJMdG7El0MQkKStP2aJAUazdD1hZGlZFm6ZdBK09jJ2LybSxNqjsUxpVRxTUlBDFCpwvlrmoq1i/jeoaxEZUElEk4VR1ul5sQsCGFNJRUOybyel7KzmAhkqiRJMVBNplg9xXvPmblhY0NRmQnrdc1i1dF6qOoKpKbSlpwzXbvAZ83JEexeuYSTkv02snnlKrOdK1jTM51lHrpUce3omAeCpV13fNk7L2K949PXjjFbZ5gnSW4da+85eGsfJQrLVFAVBIsMY/lSJgeBMAolBCEsCP0a6oqwgs1zZ0nRFWZptsw3ZvRjKdu00pzdmHF0cESfPcEN1ELjyGStSL6A+O4tgEwq5V/SlhKRLCKpgXPTGRcunCOlxDD4skSPMxoVIfYkoZg3mpQtdqK4u7+G0PHA+V3qi1sc7N/CeceFs5c4vX6DppnRDSuCi+jpFKkSaV2Wn1fO3uXyzh7GKKSomNjbKLMmph0SB3zpO2/hkuH67TnDqlwjFvU5fvs5OPvgJXbmC5TrERNLa2rUQvDaySEhRvosCJMNtNIIGTg43mN//xgpa/YWC46ObhY3Xu/xudyP4liMoiczAgmXE1iNj4o8BBQSJSSdL0vINJSfW6nuMkRJKezIIEJEYIv4lwUxRaSxCCUIIaO0RsiMH3qUKQtwFYuoqEzEaE1Inlu3XsOqeXHjqkSIJb7t/QpjMj4mEpo3rt/koYcvUmtHDprzO1N2NnquLTue/a3n+Ppv/P24oSMnSb17CQARE1Josg+kyawsa8cGb5QekwjF2JBzyd4K5MgS9qMgp5Apl9/3MYac8SQkSphSWHEvhcC9orFx848Yg0ZpTBDIkWoSgJFxfC/5IOKYXii6auEDSu6VrRVzYEGm3BMlPzdVCUiyPH8AKQ4lTYQCGfDrFcpWgC4L2STLPDjOUEqVz5SzQkp1TzckhVJwEsO41I0Z7z1SQ9uuMcZycnLCxnxGvX2ZS1ceo95+jKcmG7zji99DJIKIPP/87/Abz91kvjnnFz78c1zYmHJ6dMjByQmb27vMt7bQdc3J6YK2a0t6wZWij2bWEGLg9q2bNFoxn9R833u/5d/dTfvt8/b5PXq+YOHP947FKtA52NqasVef8NRjD3H90y9g8oxaHlFpyXy2ge9a3nr9TZzL3D04onENL7x6my//4sfQMdLMJiwOjplqjQYak6i2ZpybT9nenhGRpLqlWziskUQRaZdw5fIDdH2LypoaQW4K9yQhmC0XfP0H/iHa/e5omQ5W86F3Pc3FrR1+4Kc/gvFlaPnej//Kv/Djv/re3/zQD9//Zw3wTeP/Pv+0QvItT3wRB2fP0C4D0Xf4FDBaMQxFbPHBYeopsrKE3tENrrBpoDjpRnfYpLYlSCo1SUq0loTBY6ViEIIQExqBqavSmBU8yWqyC+SqFFQoIUc+WEakjFS61Lf7xDp7nHMIqamMJYSAD47JfE6MEekyvgIXWiqfUFqSK40wmTvZ8u3v+RLqdonUggpDkKrw5rJHS2iqGi1BofGU1yBRWtF2zlT4bkApVYYNq5HCMt05z7GINDsNVkJaOzbqiq7eJGtIpmbLSs4mNQoXiZuHKx5+12MoZZAxcPYhicwVw3pFZQO0NwnxAGRD0oksNDGNAocqDbG5sqxOTxhWR5x2AZMz1WyTnMO4qQMRA7tnzrE/uUkcPF3lmG9scv7MJjL6wnYThiGVSGFKGaEsIQtciAgETV1EGS3LRtNojUuepppTVZBz2dYPOYGUiCGirML5vnA6pUEby4VLAhkcxgpOVye89tmXefCBh/iqr/1a/u7/629RSYlrHSIoMBnneqpqTgyRVb/gWhQMWvP1H/rV//W/UP8LZ9CKV0/XHITC8TSTCb0PrE5aoo8oBRpJrTUyZnTONJMJWhqi8wUp4AMEsE3DRFmWQ0tWitw7ICJUiSFMzYRlu0ZKUWIrzpUBN/oCSvalwdmvO6RSDJR4tktDmdNkiY5rrZA+4XRpftTa4kKmXR7y2t2bTKZzHrm6gZRF9BIUaLzwgcn2BXYuNKi4QhJIojRMPnBlmxfeOKXtMr/9qd/h0SevoJKh2tgBVZGHNaSAMpocXWmwlSUWXprV5Sj6jVOgFAj0KAD6AqcfY1PlY8sWtuRaJ+QUUERSckhtEKjS0Cs+n1HDuPXO41Y6lb/KwgwVSYyCoBxfLzEO4LLwZkTZS5NNiR7flygZ/xo+59SjsP/IsoSIfUSQIAzEnIlJlhiu61HGomuJ1BUSQY4OYkAgy+suxFjmEZDakJKDkAk+kH1HPwx0Q3FTnR4dcXh6zHKxpGs7lFSsu5bZ5hZf/dV/iCeeusLs7FVctw/9AXf2bvFLH/koP/ML/5TBWQ72O15J17l14xY5C3SliS5z7bDFx4gLQIJqUhe3TudxvrT1aWsQiQJifzsK87vmDL3j6Hjg4jnN9vYM7eGZR7YJe3ucmcyYysxsMmFSK/bv3IWNCUdW0+xrbtw95dGrF5gAppqyWCyZ6QqpJZVO1JOGcw9e5tzuDuu+o20XRCeQFoL3TCYbzJsJi+WaqW4Ijca5iFSQZSALhY89SbUMAxyeLjCto131oATT6ZRGwt29O2hryX3HpJqWB0GKkzBHmNiKajKhrjw7YsZERmgq9o9PSXFJageSEGSf0VFQS8d8ZphvPczWNPDRZ9/izvVL/JOf+ev8oT/wfh7fOOIPf80zzOaWNz/7Aqt15rj1TKqaC1cMv/QPP8jWf/mneeDJx5FVYLe2/P4vfx8/+fMfYdJMWQ+npYXUGLYnm7guEcNAoHD+ll2PtQ0xlplRGcm6X5Xf9wwuetIoNikS2gCpMI6jUfihtJ0OMhAoYqOUCjW6frMQpJBKi2YoEV+khJCQQqKtJYVMy8DgQUiDNZowDBBBb23Q9Y6YwFVp5DIrdKNIyiCzxihB73qUylihiaJGZIF3LYjMSmvMEPCixcvEdFahBo8SnugTwQekHlmEMTJp5rxx44BLl3cI2tIFmG9sEpsdpAdrKh4+s4GmKqmPlMm64+o7N5giGAigp7i2RWSJGu4Q909RaoJXCYNiSKIIClISdSkiWR8ds1ofsFhm6mY+lnOUCGROmvlsRj0tP4v9/fNYazn30IpGn3B6ZFmstrny8HWUkuztXyTkCbUqUd93PvMgV69a5Ci61EYTU0CaCfOJKc6vrOhTJAmJcgFtNS70KKGRWWCby7QPeiqVqCrFzWvXuXP7Dt/2rf8Jn33lFXj1NWIG6cr35PxAJTdQqkWpjp/8ue/5Z64Hf/xbf4gnnvoEv/mJL+GXf+Wb+IHv+284OFnwYx/6AIeHl+9/nNY9t249z+nWIUZZ0mlLTqU9VRuIPhCzwtQ1OfREF8ZikArTTDk5XdMtHcYUEanSFlJZCmhboTDkEEs5TAaSYr65ydCt6VMgpgzOE0cM08TW+BCJg6O2lt4NCAkuFFRS8g6RCpfXK0kErEhkI0ZRLdENHSYJuhwQKY5YIUF/esAre9eZzjZ5+IE5UgZydgiRiSGjFaC2mG04ZBLEVJiMG/OGc2cth+uGZ3/7Jd773qfZ2TqDrCpkMycNPTJ5lNXEoRR/iNEZqpQZRbVxrhCjyxSKIy5nyBGSL/tEKRCURnBUU+apFEkElC5FgveKZcS92O49JF+R4orwJ1MphPv8eQeJlPccfEWgLpzB4oAReSzDgNFBOLKHhSh/1jjvCGRJEOQMcSBmQUyC0LcEP1Arha4apCgM7DT0SCFKCi4XPErOcUzAlbkvBk8OA71zODfgh4H9g7u0XcutW7exupSN7N29xdd83R/liSceZH7xIWJ3jK4SJ3ff4Nc+9kn+8Y/9JMulovc9H//4p9BaUVtLMoJ8vEZyg8WqJ2WBtSUa7ltH3/cIVZYzAkHyvmBa3j5vn7fPv/b5goW/lD2L3nPjxDOIRO8HFifH+JwQWbE9n2FiIqyOeebRi9y6cYDzitXqmGAVr+8dM33lBpfObfPIbJN275gwr2k6x4YccFLSZcHh/l0aVSGrzMGi5aR1uNhTuczF6Tab2xrWPcZHqqpsfBKaefBoF/jMe56gz9D1HSlJspCs+o6cIMSAMZor25tIrUCm0tY73+aFBy/i6gkqBOZTXZrzTE0bEyGCzZ6qNmQh6X3geOVZ94GeREQzkXBuwyKFYXf/kK/8Rz/PrO3Y3soY7/mFL3mGr//U87z+zMN0swZCZtn3GFtTW8W0Ku2065MVWVgeePJJpEvI8+f4hycdP//x32aI8NDiLn/j7k3OpYCv5oROcDKcMjE1KYbRhwRKC0xl6UOC4KmNxXeevm0Jw4DRFmttaRWLEBUEke43LKUQibkMhFEIqMFaICecSFglyUYhYmmGSwqsMmgkQ/bY0TqupCImMDGja4OtKvLgcDFgjcBUhj5DlRNCJ5LKaJGoJgaiYC/URGOwxiBTRhqD84GYBxARLQ06DmzOLed2djm3OUUZwXwy5dbigMO94yIQ1AZjDe3pkvPnttg4s8PRySlx6JgowarqcCnQSImZzmhTJrUt83qKns44DAGVBE2VWQ+R/nTJpJojjWYdA8InYgxIDaXz1mB0BbEna1ua2hTIzrG5ucnm3HI0LEkhU6MJBGL24ByzapMrTz7F7Tff5Oh4CdIwm0zIspSVnK6XZBLBl/a1lJdFYFEKLSW+k5jKcnqyxPdDecDQgmU4omosAcBnAqm4NyhFLsO4KW+sRcZAlIJ2tUInQQweO2nITcX/78c+hPOOrA19TkV4zYLse6I0qKomSsX1QfDnvvEPMvWnQOHriKzIWhFywiDIIZafj5K4oUUphZIGZdR9vpoay15lqSIGKYilYYQMrGrLvjWFd5YlyXcMw0Dfd2QEMwO1Lk1hus00QqN0RIqMHOMYWYCViq7vMAJ8KmxMETO2tkAkmwofS3Owspq+bck5orPESkEMAaVKxMh7h8qmiFkjHy5LXWIVMRGULg8+OaCsJilQVjLZmnP4xjF7Bz07OwYpbGHh+IhMiUYJnnjvH+Tp2VWGvee48dLHaPOAa3skmYcf3GbdO557+WW+8tb7eODSZbSdIEJPSgXkLlJGKYV3DttMUGRIipRdaXBGjqKfgJRJYSDnYWxG1CXSKyjb7PtxkhLlz0SELLiBe8V0n4+lvserSalsqQsTc2yxE6Vprqyfx5KKfN8fiJRqHHDHATpFYgyFeToCtGVSJYp0L1MzipUihxEeXSIuoqC9ibLGzhug8L0ykqQVPgREyhiRUFIjZHGNrBY9y75j/86rdEPP4bKjOz5mCIHlkOnWJ8TeEbLGu4KFODo+JjtBNdnjq77hP6Vf3OXosy/w2vUbXLtxxEuvvsCtW6fcOGlZDYF60NS1JimNDxQGau4xSqMEhJgxqsQRe18evlMs7yvR92N7oyDmzxNb3z7/2x4ROWodbx70HC17dD8Qh4YQM0IZzm1s8Oqd2zxx8RKxh/39Jdt1Zme35qVbRxyvex5/8DwPXJrQ3jnCTSzTtmdLDXht6Hxk//YtbGXwMfLaW8d0eWAmDBfnjnc+8yBaJ5q4IqsARpGkYdZoDteCk6VjtQwcHJ3gvaTPC+6eLDBCctK9yRc/dIXHz+8y5ICJA1O5wyJCHyUyajbnFYaORkVWlSCESEWgEjDdnnCyHjhaDiyHxCAgJ8HMVFQpcLR3l/PvfgIfYD6/yX/7Z3+C4+OW3blhcfs17r4F/aLj1sEJ5x98kImOfOV7n+Z46fjoT/wIj3/FV/HFv+/LaWzFV77vvfzYz/w0Wc7wLmNyYDqZsDmfcRgcJ25Fo2y5FsgGoVQpGYDCsDWCKCTtuqXrVxgUWpd7lsqCLBNB5vFaEsghlftpgqwEZqJQKRERBCRGqlIMFSFrgdKaSiuG5NFSIlIiiVI2YmPGNhXZWMTgcd7RWIGSJbEhJGSRSGQaLdBKMMTC7TWmFIYYrfAhEVMkqUxoW3T07GxtcmFzytakop5USCN56/ZtQi5XU6EMqW/p2yXnHnqY08WCE7ekIrOs17gcmSiFms5YOY8eBmbTTZK1+BCxMpO14XjdUimHMg1CRugzKZ0glSfLiMCgVFXYjtqQ/ECSAhMCO7NtphPB0g3oLKiEpMsR0oo6GB558gxaD/zMz/3XAPzxb/v7vPtdz/I7n/1KfulX/gjf/998D64LfOgnvofDoyKeaT0wm+yjRYk0d6dLBqXAKvLpCX5SEaUguUTMGWsUZEkfPM4HVFVRCYFY3MWFgOt6hA8MwbF78QK//dKLfObZZ8lCMERHlqVQjzCQVMfGVuabvvn/QL/axihFFn1pwDWH3H6r48zuT/ENX//LHO7t0647vu4P/jWW6xJZ1soym6+ZTo5IPpHygJACreIoLimUrZFClPuT1ARV2GsiZYb1Ee2yo/MJazSVAm0yoUs0WdPUEqXEiLEwZDKVlKz7NTEGQkwIn0q5nh2ZbhRWnTEG5woj0khJJcuMqJQgqzL/yGxGprZAZUmQihR8WZwJTcoOoWyJ9kqY7Gxw+uYxt/busLmpkMLgfcCFgCWztTnnoa/4Y7zXNBx95ufZP3iLfliTYubC+Sk37665c/eYFz/7Gv+7L9vB2ho1ipdZFu64FJLoAsra4vqLgoQHVfh891jEOSZSXBeMBxaEYhxRAHU/wSCFHt/XRTRMucw4Un7epZ88tvbm+0KgHB17OZdnLkQmyc81+4JASl2GqKIMEmNZaipVPl4iSTHfH7JyypAyggAxlgK7WOZrhQQ9oW6mJUacBKhilshIFAElFUiIIdIue9ZDz8Hda3RDz9FiTXd8TOsDq86xWp0QOs/gc2FgJ0+3DnTrEx55ZsXWUxd58/lnOWo7Xn19jxdfeZ5XX7nN9ZOW9RCxg2LSaCa15Kh1eJnIuaPSipgyIoOPQ+HR+rEgyCdk1yGlQUjB2GP59vk9dC5fvvyu7/me79n7S3/pL90FEEJ8yY/8yI+89p3f+Z0n/z6/ju///u+/9LM/+7NbL7300r8wN/jTP/3T82/+5m9+Yn9//9nd3d34hXzO973vfU8+88wz7Q/90A+99W/6dX3wgx888xf+wl94YLlcPvtv+jngX0P4c1mh9Jx+yBgtCV4QEiSZ8LGlqUWJyTLhylxz4Z3n+OhnjvnEtVN+/9YFLu1scfeg5amHLqHnE3LdkLKi7VtMJUhdsURbpdCxK3b4yZw3Dg7IQnO4XnG3W/DQznnSJKNUhfal5TTFnpSKu+HUO/YaS5rMQVXc3D9hlTXaKLKp6V3kbvA88fBF0rpDJ0c9qTjeOYfcmtH1HXJiOXeQeGt5THrgYbIRyDgwm5WShhAUfRTcvXvCykdC1sxtRu/UHK/WtKspXwk4LMotAZhe3ALgpKpYb9Q00wlZaxyglKHVmYDEbTccnqzxvuPRJ55BhMjs6Xfw4rOfIWrJVMzgLoTUM/jMoj0tPpfoGdYDw/3nXYFKktgPJbIWM13fQ0oopchk6vmMGDxRQJKqbLdjeagWBnSURcJSkolQ0Ci8Ky2vQo+sFKOIIaOEKMOpKi2dPiakUASXiUR0VZEFuKGwxKQCrRQ5Z4xWSG3Y2domS8XhyQnr9UAKApEDSkpyTHjfl5+XqdDaoJThoQce4Ny2ZVJptFKo5MiEEsFxBcYdYsQkVYY2rTh+8xq6tpy5fAkjBXnd3795Zd8jUFQSqs1NpDL00SGzYvAeqSVKBFIfGOhQMeOGgJaa7DXZGoQIxGHAmlLuIG1NIlLP5jz0yFXe8cy7+fSnP8HJrTVaSYYUEEyohCfXCa8CjbE8ePUyRwenLEJL9mCFwQhdmrRiQo3FAjJTNm5Q2rmEoB8ymAmTakKICakMSga8V0QSVhV3oRskIvdgNLO6xjmHDJ5ARGaFrRs8UDXbuCHx2qs36ZdHZJlKi6oorhKpFWhDlhCTR5oaoxSHtWBpN1EiInNhooRYfvbkVIDJY3JSs0FO4EIkplyEvpzI2aN1cVOIBCTBECIhFjeZyh7pMyFGhPAIAsFlgo+FvTlu9NuhR0nwIZW23pxRxjL4Fu89wgdSFEQpSSmO8OsSeUkpEYUgyOIg6b0rQ20SxJSKUCQkSYhxo57Kg5ks7XBCJJSSNCiSFATSGLcqLjsfekIQxKCJWtPmxO39E/aPjjmNL9C5zFRbQgZdbyJ0Zrp5lslsG7e8jVMamRPbc00ztdy92/Jrv/5Jvv07HkYJRexPUZUpjhWRITlkLkNfaaUpjFSyKY+sWZcIq3fk0I8IAVGahWX52eSsxviJLy28QiKIZFGR0eQskUKOAqIsC4UUCisPQIhyLclALA+0hVQwTtBiFATV6CrMBkb3oRCqwLdJEItztcSGNTl0SJkh6zF6NBRCjdBgStlI9KXBToxDevAeEQYiniwq+mFNv1pw5+ab3Nm7y1s3r9O1K+7ePSF6Bb6j9QFvKlS2YDzKNFilmdQNx+0JbhgIy4TrAkPviLdv8os/9Q946qHzfPDv/DhvHnXMNy1Ii4sKpRXZe4LJ9AKGlEiiCLBGKmSCJFThoTKQXZnrowCtisPAGMswOCIlfvj2+d1xXJIgpzifqbLhZL1EG0ObBySBSQ0hFOH2a957hV989ibP3V6ysZt4YHebm7eP+JKnp5jphFw1pATrbo22ktA7pNRYmaFfs7G9Q2DNso0stYe85MmYEVVE1Q3aS8gtKQz0IpP6wI292/Stp7YGJzWfffk2vQNTKbre8GvPvsGD33QGFRNh3aPOK4aFZKpLqYUaIhdXLTdO3iQ98BAoCNlTSYmOgnkzwaE4aRdkqVBSkIl0rmOxWvHKrSWLQdCIfb7i8U9z+47i+OiA44MJE+M5t7vD5oUtEJIztiF5T2MFJ3PPcx/9Oa6cvcDuw09xVWumxrBwjt15xZ27K4yWWLfFaXsKJEIMDK1DxRL7NbqMwSkmspB4HxiGASU1MQSa2ZQsMjEmUiVJIZDDuHwwGRU1SUmsorweUiDcWLiWixMw6IxUkhgjQQIyF86ZkMSQCTmgq6oQxlxCa41SZUGTUqa2hmZaMd+cslj1LNYr+i6RQ2k3FckQfIdKksZWaF1htOChq5c5M9cl2SEFOjtCyizWrogJRXNh6EpZxvpon5PphIsPP4wSArqBlBIqeVJwqCSYmIq6rolCE7InJ8WQEkJFVIgMrqyfkx9ISZG9IhuPkJnoHFavEDkhTAUiMZlv8tQT7+TipYv86kd/GYNCaeiTQIopRq9wMrOzveDP/Nn/BzdvZlrXce78Ke3gefodn+TchWcLdkFIvuUPf5AYTcHMVEu2Zse0nSALiZ7OISUCCm0T/VCip1ZJUg50bUbQkrVioi1uGMhSMqiIyuX+kZuaibYs15433ngRGT0hZ9CaNDhGZaw4Q3NgY9uztdmN1+c0VrVBEhWTtGRroyNFRb05I4trzLfj2Pw7uj1Tmde9L3NQzBIRS0x0CJGYEkIw/k5pgusQDOSYCS4gMCOew9AOPVmURuVV25Z/bizdsiMkkH6M8AMpBbQUGCWJSZIR9DnQVBVt25a2bzQxl1kLUV7jlCJmRG54mcii/FysFigUWRWuYzOtETHi40CIHSJXBCnpyOPsc8Kh+wxDlGgjyarBTGYgYXv3QRand/FhIGXYnFY0TQY94Tc+/jzveu8Xs1FNCO0pstKIbMrcIx0ierKajlgRN3IcM0qk8rqmQHI9iIBE3xfbhZIl1UEk59JyXEq2Upl58mi6GHnEOTOy+Uokt+BLSvT/n513KO5CUZ6HSn2yQmRNzp7MuPSkFJBlMSYlhCKHAYEHDGRBSkOZraQGUxWOp/dIwTijJZL35NgTY4l+r09OODm6w97eXd649jptu+Rg/4RhEOBa1j7glUVTka1HqxpjNFZrTvsFnRtIIdN3kbBu+ZUP/yTnZ1/NP/jhn+JTr91hMrMIrXFRFZOI9wSr6DKocfEhKbzPHCFLS9a+sPazIqSy6BRjOaF3odwr1X84i81XXsHu7f3L9Zrz5wmPP4779/k1/fs4169f//TZs2e/IGHtXyXWvX0+d75g4U+wxmrHI+e2ObOzQ9eeICuJixaXIrayzDbmeCnYW2Te844rXDsIvPjmCZ948QazZmCnPsN2U5OcwOM4v7HFUS9YBEG9YVC2wgRXLPY5o9PA4xct1lQov8n27jZSanzvWcQ1ul+Rrh/gH7nIZjd+oUng7IRl9KzalpWSpElNkgJlBE1UbJ2dU5+csN48Q3JrrNZsTRy+Cti6Yd5Yqrc6jm/tM6gpG5fPQ1TooBEx4lxCG832vMY4hzENlYwk53j47Hk2UgPAYw9usa0NAGbkZ529vMvsgV18P1D5TJsyp33PhtUcL9coWyGmU67dvYGabfDg2Ys4BFprfGgZxl+B9eA4PFmitKKSG1QaFBJzL+rrHF3bYpRmEJnB9UQBEYGqxrZScmlXS5HgE2rIuBgQKhdhT2bmdUNMkRgzro9kIdAZqklDDhHTaHzviCEgssR7T9PUeDxSWZqUcJn7xSlkiEqgRNnoqKRIYaBqLEPXE4IntA6NuRcGhJCoKsnG5gabs4qzW3O255rpRFCbhpwrUgp0Q4ujfI2qqchHqTRp6WLdjzHiKZDj/bdeZ0MZ1MY2WVeksKbzQFQMCoRSyLpCmRqra2TS6DyU7T2erU1NFAHpPROl8K7wfYIuTaGmLv2mpSU10dQ1KdW8cbrg5Z/6ycJ4E5ogRpCvAp8lIpaI5HL/Nsv2FKEstTIIVR5Qcsrsbu+QREagCvcnlahwTkXIcG7Ap8RkMiuCWhYobUFk1LjRk0JTZ3ChQ5kzWK3R0dNnj5EalzVaFoHMOcfi+ISDO3eLgJN9YRelhBWKbGyJMymFVZJIKtEFa9C6YvAR7xbkbkWIDoKg0hOcEITQkbWirjTSZ5QoBRkhlPY5KSVaSSZ1hQ8llitIJFGizkpqpDQoEYgSspKEoPHeYU3hrFR1zWKxLDEjHFFKagkxOAbvEbI0xllZIjrS1qiUsVrjnSuN1Ql83yOVIg0FcFy8koosJfVsgncD5IQxGhECRhR+UYF82zJkZ1HcWUqidfndmxjDxNZMJPjRyZmF4mQdefbFN3jyqUtlGFWAVWhTIUSHmFScvfoIJ7/1JkRJTJGzWxVXzswYFopnn/0sX/+tPZs7AuEi0SW0noGAIEoJSYoRact7Vgpd4rUE0ngdITmUkkDhzJSwibwvmiVGHl9OI99Pjo81Y+tc/lwUV2QQMZbtNJCFJGdRhP17m+0xvls+b4n6ZvT4OUb8dAaRfIlwS0FO42abRMyu8ADD2BYsDVpNyyAsRGmoS6kIirJ8rV3X0647To6OufHWW1x/63UODvdYLlccHpzgoyZrxeAHEIYkJRM7QVrNbGaxegOvHGHocSFwvHeXw0WP84kQPVootBhQdotPPnedz14/5eW7nh7B+mhA+gEnEsFlKm0JMpBixEdVHvRSLm5EkQk5E9EoQPQRJRSB8vsoRXnfCwGjAeHt87vkKNFh1MCTF88TheHZYUE2kt5LfE7MN6aYpubUSVqneObRK9xdXuMTL93h7HZmZzplszJkDy4NXN7d4rBVtCHTbNZkJVHRM8QONQTObggunJsxEw311KBsTXCJtu0RIZJffBP36GWylNw+OkYETVSGO8enHK490RqMEqhKsj2VnN84x/TOXerJBsezKVprdqcSIR21qtnUgnq/Y3HrgE5PmV44h0sa5RWx94ScaLRid7O4wa2WNCQmSvLw7/syPvPpF/niJ89x49Vd/uFP/wG+4p2/zDd/y5dyePsmUSX64xU+ZPYWHUd9ixaZ4y5h6hqXBn7s//s/8G3/pz9DnwVCGUTuWDuPmUxZDz3heIk2Cis2qHRGZklW5frcjyVi2miGlBlCcQAhMlIrsizWZZPBx0QeEi58bk5SSjBparwbGFwkqOK+qW2FBKxSOAuhd4icCSHSNAaXAlJr6iRwySGVKNd+wAOSMrdVwuLbHrPR0C2WDG2P8JKxy5wcEraC7d0NNucVu5tlPpo1AqMbwBCjL/ORpDDJjC4txlohpCSHSKDcl/Zvv8lmVTPfvUCShhDXrPsIKWHtWIYwnSJNQ6UsIgo8AZ8908kmUZTZQOVESJB9IJqa4Ae0VQwiI7KGHJk0DUOyPHftGr/16WcLFxqFTxEtIWqB7DXJCNzRCevVbba3NFtCUE0qlDLMNxecP2uJnEMg2djxpNx/biaKE3zXYSqDNkUgaZQBKZGyNJqKrGhGl5Ewu1RKIoInjC7FhCBHT+U8i9NT9u/coFt1kMDJ0oxMiDTaghKjEFxmoZQlylqUMnTeEfslsV8RU0IGiamnDMER8ZiqQicwIuNDxIeAjxEpFVpJmqoiRIdhdMiLiFYSgcYoS44DUQqQmnUfSnQ0BJpmk+XxGpMVLYEgJTMpiNHhXFn6GVlmqxhLUZcRJZJdCjgEwQWSEri2I/uIGksRs8jYWYP3AyGl0sgbPFYaupzKclppdBwDqrE8PymKqWBaNUxkhU+S6Asz72Sd+K3nX+Ppp6+U2UIlMKVMMaQl9e5ZZnc3WC6OyUlQ6cQTV89yfHzIjbfucuvghCsPK+gcyUe0mo6oX4kWsszAWpJ8Qgo7xno9MWSECEgxzu6i/JaVBWZJOYwEP0r5mRx/UzMIR4EI3zPqCURK911+ZU0p7guD/+J55145Wfn8CUoBCRkly/uZ6MtrwgA5jhxxCdKi1JQ8Fo+lMCBlGueg0iS+XLScnhxz+9Ztrl17nVt7b7FatRwdHtF2mSglIZWnnKwk02qKqqZsTCuUmjOIltgPLNuW05M1qz4WxFBOaBGo9IRrd1p+9Gc+ySdfX3I0JBbeIUNPIBN8RitDlrEsQbJAKlFazoUg50Ao0w0mFDyL1BCixypDcL4skvM/h4/5PXxeeQX7zDM849y//Bu2lvz88zz/u0H86/te1HWd/9Uf+a8+V69e/d3Bbvs9dr5g4W+3miPDPnJo6VaRPAzs3VoQXY/vNY1JTLTkzUXHG/tH7J6c4ex2w1MO9vo1x6ctVx85y8bWlOeef55bNw95x2NnOdjP7N/cJ4rAICIP7c558uwORzeP2dmouCgE1XQT3Z0SVwv2VreZ1TtgJ8ySwB+8ziomTuUIph8ZCt5nFBYjErrWRBeQLtBMal65c8yZRpB7h9jeol8tiUh0EgQ65N1j2hu3yKeBt8QeTdQ0tUXWUwyKPnbInJhaSaMNWo/U/1zRx8RmLL97SipWbgRH68LXO3v2PKdbmzgXuX39ZZY9HCx6ho0J625A05MwLAO89OLLyKstB8ogRMTHwOeoBiUmWc8mpKAIdGO0bmw+kyXarIRk3Xbgi/3bSk0IEaEhu0TXu+I0kZIoChdOokgotAErMqsUCEi0tEiVsRGGGJAuIrXCaj0aBWXh2rhir48ponPEKsjO4UNxpoXoQNqiC2g5MrUyXVsKJ/CFXTOZZObNhM2m5uzunI3NqpSxYCAFSND1AymX6LJWpRl36ANbuxsYa4mLZeFE+FAaqQRoEQjrjr23btLstpyeHJH6Fp/K1k9JScqKrbO7nL3yEDrCzFRlu43G2CkiZbQ0ZFERvSs/DymRQpNUaS7OIhZmWAqEGEjxiJw20PXI5oqlITnFgJRLLDVrIVgcn+KHFblzLLpjhFBUzYS1hkrCAknIYOsirHnXE/yAiJm+Hxi8JyTPfGOLEATGGKrGsrF9BqstWkhCyBgpMdWEKAunsdcafMTnSB48p4tj1n3Her1m6DtQGaUEyRXnHqIIYtqY4nIzNUlbcteVod85ou2LuObLeyKMWOU+dCWarGuQCZlk2Zwm0FLhfEIZM4oYsUREhEDJPLbNqXvZUciluEPI0uSWfYmghpyQOTE4T993aBSprkkSKlHGrcF5wtCX1kOh0YWcjFYKKQRBlcII29TkFEoznciklAkScggIU9ys2igExV2rtSL7Ig4mda+hTZCsIQZHEolAibzGXCD5PgykqBChlFAMXnLt9gmPPHSec+cu0i1uU/op7l1vJH2KDO2KrCdjpDhwbtNyd96yd+A5uL3Pg+fOk0NGVYqUSomMFAZJJgRXNtmlerq81tERnEOrwtWL2RaxL2eyKA9J5NIIKEW52CRRIsKFHpSLyzGHAqlGjPGSEqEpkbXC/CnCOIzk63L9ZpyLyZRnbj2uAMI9TDaCgRTKtS6nct3LFCeikFUREqUofKCcIQ1kOfLycmJoV9x86zq3b93gzp077N/Z5+jolHXvWXQDq77Hx88N1SIIqmbOfL7BbKLRKeFzYXktFwes1gv6taPvHSIL2uSxdYMyGhUzIWl8jnzypTfpTp/HVDU6S7KL9ERkVaFVaVWc2CnTukZKQUipsEKFKLwyURqEpTYICwKLEJoc+jF2VB4vytv2bcff75ZT5qe75G5FnzK+c+zdPkX4SA6ajVqTQ+LuYsnr+yt2z8x4fHebJR3X9xe8+2LN9pk5v/PSy9x8a5+nHtnhTqe4c2uPIAOOxPsePc+FqDhdtFzZnVAZxVxYhtUBh7dXSGWZbuwwES1q1bF64RrLR6/SryNReEIWxKgwQjE1CWNL06eKjtuna549bPnKnSX6wnkOb+7Ra81EW4JfIQdP++ZbuKOO19Mtpk4xn9XY6ZyUM847KqnZbBRKaXKOGGUIIbO/d4tHn3yI45deYe90xs999Gt596O/w7mLD7K7ucPe0R7rquWV536Tg5Vh//CEM1tzVus1NZLe1Lx164hf/ImfYOPyFYxMuOQYRMYicbk4iOvphBAknpYsMil6UjJofcTFiz8KaZ9u2RYXHeW6IiTIEOj6AS8FKEUUeRRJNAmJ0QKZAyFFkrJlOWUKUsHnhI4ZVZsSlQyhOHt8II0NvyolrIbsHT4WZErfd+SmRgrFoAQ6a4KPtDGRvEYGwXQKW/MpG03N+Z0Z860aKRISQ46BmCAMHSn3GGXQOpNyYQzOpjU5Z1IGxsZnZPk+hFDcvXGLdnCcrk5IXUvMAiVLeVEWCn/pEpvnr1DJwMQWlIkxE7SUqBwRWhKGjpwiSdYIFFJZsigoGSkNMsmCxAgD6BlqWuND4ccqJCEOWAJZWU7WJ/TdKWrwLNtTQs7UdcPKSGqROcqCKKBuGpQyDN2aHDzBeXxItK7DVhata1KSVI1hc+cM89kMLRXeR7RUaFXmAykUvQGGQJaOtOo5XR7T9QOr9ZoQPNIohE/lfqw0ImWE1pAzWtVEXZG7FpUS3p0SjMb7UMryMoQs0BK6YYXSFi0rdBZjiqIkBJwXSGVLoVTy5OhL87NMxXUv9P0FW0quMOhSIvqIiBCzJMuMd57O9ciUsVVFUplqbOgdvCe6AYHACklhGpf225BLmmE6mzIkTwq+iJkiE8a0B9aSyChdXGkpJZTWhCEUx6oUYxS+8LeRCZcDlSj3tyQlISVCFIgI5EDnKt64dcLjj17mzJmzDKu94njPJf2T0XR9S/KlgTfJxPZMc2YuuLOXuHn9FvmLepKPqNqQciRFgRJlpkx+QAoDuWBmUnBEXxJRWpUEFLmkabIos1bOGe7NPFIWMZgSZYZU0gdj0VFxApavFYqoJYSkPO0U9jHjDHp/3hH3ysjUKAXGsasskeMwloKIEZNSUg5SVKCKu1KIND6H9WQpUbXGx8Dy+Ig3XvksN26+yZ1bdzg8PGXdetbOs1i3tN6TYkJSI62hqho2NjaYTw0qRoYYaF3Parlk3S1ol0Mx4HhPVAJpDTorYoDWRfZPj3jh1WtoFJXWpN4zJI+oa5QC73vmkxmTuobRSR2zJJGxwiByuUYKLTFSlpRDzORUFv2ZhBrF2P8Qzt4e+n9J9ANwDrG3h/63Lfy9733ve/Kpp57qAH78x398R2udv+u7vmv/Ax/4wC055tkvX778ru/4ju84ePXVV6sPf/jD29/wDd9w/KEPfejaz//8z89+8Ad/8PILL7ww3draCt/4jd94/MEPfvDmxsZGArh586b+zu/8zoc+9rGPbZw5c8b/xb/4F2/+83/+Px/1fe2118z3fd/3XfmVX/mVTeecePTRR/sPfvCDbz7//PP1Bz7wgYv3/huAv/E3/sa1P/2n//ThwcGB+t7v/d4rv/ALv7DlvZfPPPPM+gMf+MBbX/EVX3HPLsYP/uAPXvjbf/tvn+/7Xv6RP/JHjnZ3d/+1BMc7d+6oP/Wn/tTVj3/84/PlcqkeeOCB4Qd+4AfufM/3fM/R539cCEF813d919V/2WvZdZ14//vff/knfuIndpbLpXr88ce7v/JX/srNP/pH/+jyX+fr+VedL1j4a5ctPjpWw4CuFUlGluueykra9Snzzdl9gUNGiWhbbEpc2ZQ8eu48z756k5P9E1ane2zuNHz6+SUneweEXrHuB1TVoNsBVXdsttc5fO5N8hc/htiaY+/eQvz6c0zsjMk7r5Bmiphv05w/Q39yTHjjJuLyVnlhPTiXxwth4D/9+/+As0+9A9NMcCfHvPSLH+bH/uJ/i6s009MVm5ubdBlO1z3rVc+VrSn13X3CsWdbSU7aiETgOs/ZlAuXzjak7Em5XHyMLK6MfggcHh5xVk4AePTKNj/3iesAWF3AxM4H3HJB10Xe+X/9u5iLD6DqhuH4iDu//st88v/53+EGj5cR5R03rr/C/lRRTcG3grqqgTKMxnyvXj7SpYBCMAY+qZUlhky7XhJiRseINorK1rRDV3h5QiCsKZuYGNBV2crJLLj3ru9iwFjzOQeJKFyysdUe4yNZC6TI+OSpJ4Y8BEylcVEU1iDgUxH5tNZFnBlbQTOxgGi1gpDZ3ZyyfWnO9tac2azGKoFOxZUVRAHtehfLVG6KWOGlKCInEh89k6amaZrSDpwyyfvx/SDK903Z4i/aQ+5eu4UVGhk1UhZGT86RWkncyQGtNmydOY/XkIRkosuwMCSHFgqpFDpJuhCJGUxIDK6IQ0Yl1stDamUI1mB0j05zVApYlVkiSCUhQhaKoes5PNrDn67p/RpkpmlqFm2LJlBPZqUdORZH0LDokaKlqgwhBXzwZVuXEzlEuuUSpS1t37JaJFy7Zntzl8ZYkk4kpVGmgdjjY2LpPWFvjz50RO8JQqCyYHCeiMAIjR8SUmlkBh+L8BKDQGWYIpFSs/axiHkC/OkakSIJSRAJITVKj4JS6AGJTrE05aaAUQZ8xBpLHwO20hgJRhfunJKSGDMxUiLrOSFlGQgp5D/UKAiGJGmswkePG1stw9BDlZF6o3w+XVwDenR/xQzKgIoSXVkEFcvFsgguMiNTQlpD6nuyNoU3ojWZiDWK5FLpurCl0CPHiLAVkJExk0wu5TRaIY1mUmuUiMQckAqEKpvblB3eO44PWq7fXvDed56ljQKZNVmUB1OwRCcJHgYyE1MhlGJzQ1I1gXPnzvNrH/6fecdDVzGmRuji8FAohLDl+oEjdSuUnYzb46E0IIp7ABWFFIqcFFmmUkKTywODkkXo/2dOSqVxN6XitqBwF8X94Zj7zXl5dKZlUmnA00UEFIj7om6OuRSIMDYI5lgcSzGWchJtEUIhVVUa+rIYRfeM9wGtQUqHl5I7d/a5de1Nbr91k1s33uTO3i2yMPQeXISTVUvnHMZotNLMpjXzZkrTbKCtprKSmBJHx/ssD4+5e9oTkyJEj8oZ0yhMrVBC47zG+Ujr1mgvOAqeuawxSbK9fYZ1aAuw3CiM1sQUqUzFrKqYzWelGMYFrM6YVBpGkRktLSE6XFbklFBiTYg1GkFEjHjGwhbz/u1l6e+Ws1qv8Tmw7AZMY3Ei0A2BSmZcv8RkQUyOHCtUF5iKiAlLvuqpB/l4l2iP1uzfvs72VsPzv7Pi6M4hsVf0PlA1DdVqoF4ssZ+5hg8gvuRJ6sGjX3gOrh9SP3AB/Y6HyMcvs/PEBU5SR35hnzZ1RDuhaxWdT4TsESmgo6euBFcvbYPc5mc+9QIP7WxjuoHLiyWHOxt0beat030eObvN5PQAceLZ1obTtnDOcufwOaFkxpiakIZSBIZEyYT3nqPTJc1sjqmfRMWaG4syi9+4M+O3PlXRtT2LA03bz6inXwRHv8W63eHgcJeLF17h7vGau+0m7fAYH/3YAj17k8DjtKs12loGNxD7NZLr5bqREn0MGCHLUsB5NjZPUGf/77g+EUPCaIGpKlLMhOTBBSqrCTkTgi9ivhq5ZaKsJIYYqJsKkSjRQSFKwYdS+AgmpvHBPpZrcCrNuo6MllCR8SnjhUIrTZUiZA0xgPSoFJiomrrSXL66xWzasDGfljkjpyI8jkUE3qeCMKCIdFEJcixYh5wjZ7Y26ZAgNWHoERK0LvgDJTVJCjq/5PitA4zUyKSL836qyDFSa81qfw+TBPXFS/QpopXFSskQfVmCAcYoRPCsEZiQcN4jcqBSmdXihEZX+MoiqoAKASuLoNTGiJGAyIQhcHB6l/bwiMENZJmpJw2Ldk0Ukfl0ioiUEoIYWJycIqXCGEXMEU8kkhAZQjug6jJzrYc1br3EbZ5hVk1QtSzLFFORwsAQPcuuwx8dMIS+lH8pTfJl+aeVJg6RrDSSiI8RkaCnOJI2RoxF6wNZJlQSuJMTyOALWg4lRrxD7PFxoKI4z6KUCFUckdYYuhhKuZ00WFP4ulJqYhgb7YUs5a45F3QHoSR5hCPFsYQseQYhcSIThg5hLNLMQBRXqLEZkUUR9GLAGBBJUDdTupMT2mEoi+zRfZhVBiUQ1Tj/5EhtNW0fiiBlFC4VViG6PFfknApDOIOpLdPKkPt+RKFEtLFkYcmiJ4SBG3dXXL+94JnHZvRJFrzH6K5M2ZAGwUk7MJ/NkdJga8+Z3YpL/Xl+9cMf4Svf+262tnZK67Au9+Uy90Q0A2mIKNMQfQfRFQySTOSskWWSHJ18ReJLuThi873IgoDCDxYgNDmG+/zgski9Z3oqiYgMMF7nhZBIo+/PSOIeo49iThC5RHNz8qQQSTGMiCSLkrbMiZmCXhECHwJaZkJcsxocb16/wc3Xr3P7xk1u3b7FYr1EqCm9T3Q+smxbhCysxu3NKY01TCcbCKVGcS5yuH+X1fEpR+sAKGIOGCFQFoQuqaHBZ7pVSxoG+pgQGKZZszHdJKnIadejTGGPIyJ13VDNFPV0SsqS5DxWlySIEOVhSOWM85GQFEr0pGwQGbSU5ZlECLQ2xLfnm38v50Mf+tCZb//2bz/4tV/7tc987GMfm37/93//g1evXnU/8AM/cHDvY/7W3/pb57//+7//9l/+y3/5NsALL7xQfeu3fuvjf+7P/bmbP/zDP3ztzp07+v3vf//V7/7u7776j//xP74G8B3f8R0P7e3t2Z/5mZ/5rLU2v//97796dHT0L9WkTk9P5Vd/9Vc/ef78ef+P/tE/evXy5cv+N37jNyYpJb77u7/76Pnnn28+8pGPbP7SL/3SZwF2dnYiwLd8y7c8Utd1/smf/MlXtre349/8m3/z7Dd90zc98dJLLz1//vz5+Pf+3t/b/ut//a9f+qt/9a+++bVf+7XLv//3//6ZH/qhHzp/5cqVL7gdr+s6+Z73vKf983/+z9/Z2tqKP/7jP771vd/7vQ8/8cQT/dd8zde0X+hr+Sf/5J+8+vLLLzc/8iM/8voDDzzgf/RHf3Tr277t2x7/5Cc/+cK73vWuf2ttfV94ucdkxnRri8UqcH57wmy6QTOZIsOE42WPnUwQdUAtJdsTyXvfsc1aOX70Rz7BV/7+p7l8dgubJS989k2u2A0et3ByPGBmm0hgPgl420Ct0LOKuHqeufNUN66zs9HAN76LV3/zVcKLb/HYk4EHv/FBVLKkr77K6a/uc/e0CN1CZ/q+ZZUTVhuOXnmZN/7ph8EH3vNd3817/rM/wd1XXiX84s+hDx3twR63feZof4dnl8fMvvIJJrKj2UqsF3B8uqQ/OOGhi5v03ZKahmFwrNuWqrFkZVDeo3CorNiaTqhyifouxQxz74Wenhv/RjPdPE/0N+jffI3Tj36YtYuc/8Zv5ZH/6I+z/8orvPJP/nHZ7gVBH8GveiYZ5tNNWBQBOcsCPBW+MB+SC8jPYzodH55wWk3IArwQpJyoJ4bWdQilCMET+75su3zCCEki0fcDddMQcsImMbbwhcLj0wWC7HKxa0eRMFkSZEZazaSSYMQIL7YlCiwFFQIjFOuhxDfryhJD2Wht1DXbmw1PPPwAW1szpioj5YCPgaPTU5yUmKpCAGZ0SCltxw2VRAqFTAExbuUSmdnUwPi9KKkoS+2IGiO/AwlSRoWMQhXmDsO4KZdF5DRFYOpOjhHzbTbEjErUCAJeeIQYEMngREDmgI+OISkUujA3woDrArHrkNM5fhDYak6UAyJleiQ2O2JInO4v6NtT8B4nEq0rvLdqY471EdV1hOiJa1eEjn5AaUnIgr4bGJZrtNVM53P62LMelpAkKSSiX2NsYX2crBe0XYeVmq2dTSpj6U+OWcdE7iMqZoTJRKEYvCOnyJASwXmUyiSZEPU4+KSMGVuLU04kJYh5IHUOmRwueLSpQRRRI4xvTRE8ytjCk8kGKBGirl+hmilJCMKQyDnSTEwZTqRCSlkcFUkglUSIhI8emYvcXdgnniwVIZfIhKXwTXQlcCoy5ICKqvCHrCIliVEVxla4GMgCglJkAkIaYoysu75srXMmdT1GamJKVMZS5CiKm1CBlbYU7CRJtKWBzLcdOfoilgrBEIbiCIkCqSNGqOIbyUW4R0kCAqUN3nesVonPvn6Hdz9xlaQD2doC486aJD1Gwls3bzI9d45mcwdBptmwnN/dYHHScvvWbV56+TXe+czTiBgQqkKgQAryON6W8VTgfQe+QwiFkpoSTjEjMLoMpSWFUh4+oiihl5wyinsCXflcKQ+lkQ8K74bxfQMwxmUYH5oLq68sMPJYSCHLZyRHDyqUzxHLIJyTK0FrWcRYxvcgqXDuCo8rslwsWK9OeeP1z/DKS69z7fp1lusOD6hqysoJ2m41PsgZJo1lez5lMp1SGY0Wnn5Yc9IfsNzvOT5qWbceIzJCCeqNCRtKEbJhcIJ1t2Z9vCJ4yTBGURIwqxK2C/TJkWyFC5nZfEJMA0EIcu85c2GG1Zso2ZNQRAxCahKBUS0l5AHDUGI8sSLTlwfkOOBSwujCekoikWNGS/WF3t7fPv+OT7QTmtmcdZu5MJtQmwnbO9ss94rzwueMruDsvOEP/P/Z+/No3dK7rhf9PN1s3na1u2+rKlWpqlRVOhISEpIAgUi8EkAFPSA4IuciQo6Mwbgq3MsQ7iEHvYMbG/QcEMUGUbnKARSNSSAJpk+qS1Wlmr1r7127W3v1a73tnE97/3jeXSSYeIIH1HHMM8YeVat93zXf+c75e36/7/fzfeNJTh0VPPLY08zDnGNHBgivePLiLc4kyb1GMp5FdJkVE4OOgP4QOobq9AnqazfoiUBnPubI21/G5rUbPP+pDe4a7XPidWuoKjD5qhWkV+w0ilks0J3AwY1dIpKOkqyurXI4aWmblBnOZaSzOmSnPWR5c5dP7u1Trh1l17esnKvpjS1qJRJ9yWx7CpMxdx4d4po5Qkgm8zE+WHTVyfdjP2etXzPo9SkHJ3nP3387n3jk+IvH62d++Z38zC9/4TH84T/9z/i2N2zz2KUH+Ue/8Wf5n77jrSQU7//4X+LWzn3/yeN/4tSbKNwhSgqszzZFERPBBm7dmBLTfZjiOWAOWpKiJ8Wcvjt3c2RSBB/QaKKEtrVUVU2IkdsxnjE5pFJZoeuBwiCNhuQppaSVibrsEJQieUVBvsYa4dGIzAluAz4EtNYQHP1+yfpSzfGlLsePrdExmkIFQrSMZlNm8xZddxBSoERWKCtTEHxAINFSIYNDSo33kBRUlWIy9TjnMNrgg8u8W6VwKWaFto25NkogcBg0rV1c6xV4Am5yQOWPU1aGQmgiDiEcMkBUCedt5oiFzEaTRES0ONsiQ0QVGeSvZQ3R4lIevFUpcngw5nBnGxE8ulMy9Q5rPd2lAfiEnM0IIWDHc8TtBuZCWe8bhx1PMb2afm+VyfgA6xuEyuFdhdYoZWi8JY73mU7GlHVJaQzWOeY+gY8UQpK0wtrMzI6NxXmPTDErsqqFWj3lQaFaoGmjztZnOT0kRUvrPVqXJGEI0ZGyTgxJJERIUeeAqoVqVOoCJNg2p6nWtUEokDK7D2IMedApczCHd5FCV4vGbm6OZhV+xok4ZwlaEXXCC49IuZHrlCAkRVmUTOdtVrizwAGliBUKP5stkByJ4H1m0qmE1jojNpC08xalIcgE3pOExsqALnR+/0eZmzwi38ONluAtulLMvaNSGpEEQeUgHCkV3llcE3n+yi3uPrsGJiBKk3G+SROVY9bM2bi6weBlXWJKIOH4sWVu3tqg1ZKPfeIR3va2ryOFiNQBkWR+3USuPyT5eHo7RcTMmBNiUXekrKD73bpH5GOPyjbflDIzj9sD0pTDSgiLJt8CT5Jug04Wyr3FYwqRFsEbAlLINVkSpLh4/aLMaePJkdN+szJRCHJQSFyoA6WgbRs2bt5kf2eDF65c5NKlm2xt7zCeNzgSUpRMnaBxBwgUdVWxtr5CVZcYY6g0HOxvs7E3ZjJxjA4bbBAYkZBaYnoVPSGYB8V05jk4HNM2nhA0IY9tswI1BYL1zJSEVrC03KVUKuMRbGL9xACtOiiZ2Z+ObF8PBJIEyLzKQiVSKBfWX4Eg4P0iCVnmoW6M2bH0lfWHv44dO2Z/4Rd+4ZqUkoceeqh94okn6r/7d//u0c9v/H31V3/1+Cd+4ic2b3/8Hd/xHWff8Y537N0O6XjggQfa97znPde++Zu/+Z7ZbPbCxYsXi9/5nd8ZfuhDH3r6TW960wzg7//9v3/lla985f1f6nn8vb/391b29/fNZz7zmaePHj0aAF72spe92Azr9XpRKZU+3x787//9v+898cQT3a2trcfruk4AP//zP3/9ve9979I/+Sf/ZPlHfuRHdv7O3/k7R//kn/yTOz/8wz+8A/C3/tbfuvnhD3940Lbtl32CnT9/3v3kT/7ki3//fffdt/WBD3xg8M/+2T9b+fzG33/qWF64cKH4l//yX65dvHjxs+fOnXMAP/mTP7n5gQ98YPhzP/dzaz/7sz/7Hyki/3PXl934290ZQZJY59k5HNOMW/rdkuFQ0jYebQx3DVYQzZg/92cfRB88xulywPnzQ6ZThw2eI0dOcfnqBc6aA04TuDl2IKc8cXmTP3b0JZw82eH69Utc1ev0v+7lHLjI6TMr3PPGO2F6iZV7zvH4b11H3d/nY49e4nACu4cjdrXgzu7vApqDiBSyYFAZnv7f3sNIG+piibu/8Zvpnz2HFoFt2yCGiXQY2J96bjUtd9x5nJ3pPkI4tnqaYq1L51qL7kjOHl9j0jRc3pxgaElas7c3JiSJC4qlbuD06hLLS6c41VsC4NnPXaBcMP6GgwEAneVjxPWzaOHZ+5e/SGd9LQcw7G/D2TsgCbx1FNqgVUu9CDtZH/aYhvBikamEQZBwrsHokqAzL+M20N0h8D5SDSpEExBGEVJmr4gEzieSUMgF6yrGvJGvylxAiJBwUuQJj9S4GAmTFqMVpqxofaCQOeCjRIIWyCiJ0mCZo+c2F71S04RI8o5KCTq9ksIoBl3D+uqQ1a6hWwl6RULqWeY4+ERlDFWp0EWFCHnKE/BIobA+gUg5CEYpQsp2Cx8iWmWeSFHobEuJWVmkZFbI+JDDTbyQuBAodFYwagSlAFzMtgMpMIUmBUs7GeOXl9DGowEZEyaV+JQn69ZDihIZApGIFoKi6IJpqXvLFGUHRINZFAkieWY+2wj29w7Y2t5ApsSJY8cILjKf3UKLhEmCw+mYSG6yTSbj3D6RgthEolYs9bvM2oaZs+iU6KysEqViNpsu2CDggiepgJGS4aCP95Fbm9vkANqEswlpFGVZEqaRaXRZiRljVlMVJQifp5CiJEaLkRIrs1VIRjB1jRUgZnNssIQkcK1FmWwJFilSJElUklkIuTmMAXLYg9YlQgqci9goUTFgYsQoRYxxwULMwSEpSbz3RBuzvaYyICCGXEgITS42G4uUIKSiUjI3NGPCC8m8jQRZUFYaSbZQGqk4DAmjC0JKNNMpddXBNu2i+aWxudbKU3mfU9iUF0gFjWtIHmRI2HlEaoEoNUoqGuvQyiBCAinQMWKdzQ2nTk1pSmxKtA4UPiPrlKRUitHhlN2dHapKUpZ5Sh+dRZJQRjBrJGnjkJXeMoXMz/Pk+jIvXN3HxYqPfewR7r3vbmbW09GepBTQAokoQBhDJDMTU5IoXZCIOfE4+bwRJOaiPwHCosTtwn8BjZYQg4MYQBT5G6MgiZCtwUhIYTE9N5m/RMibCuLCsp2v4Sl4hM48mxRtPmZJEZNDyIgQJVKVRMBHj8pIGEKI7O5ucfPadW688DyXLl9kfzLh4NAxmjq0SkwtWDxivE+hO5jasLS8xHKnh9YRn1qcd+ztT5kejhhNRsxdRMUc8jIc1oiUN3jtbJ4bjLPApGlooqOSClKNCJZEIqTAtFU52KVToo1BaoUsJINCUcgC7xPdfraGuxgz48rPKUyRU5VDXCCBsto46IjGYlPAJolHI2XA2TYPNwQLy9eXxUT+yvovsA72J3gP03nDzZ1DxpM5VjQUJqCiZrUueUXd5Zu/89Ws+k/gbyVedU/J4U7gcDpmtXeSG7vb3FXCcmy4uTkiDjyPPX2dP/P1L+PIauLJzz3OYfcI+oFTTDc3eds7XkZHbVB1ImNvmKrEh57aZOOWZdw23DxoOXmsoCgDB5M5MhkqoVnt1rSzhvHhjOVQc+f5DkKuM51PuLkUmKSCvQsN4/qQU0d63NrZwLct40ozQ+MPK+pac/L4OpdvbdNMoN/JitW97S0khiA8OjmOLK9D5xV84pHjvPYVf4PZfMQTz/w4P/WD/5a3fMNx5NJR/N4u7dZlesUuaycf5Fu+ruHY2k+jwkl2R1O+4VX/G01rKCuISXE4j1zbD0yawHS0i5ISwxQfQlZMG4EWCqTCNx7n7+DWzV/i3B1/CqM+B0pRiMyZ897hhcREcvKty7bYuqoJAAGChkoqhMlJ3iEEulXNnEAMgUIIok8UJRAyrMAnULYhKUMqFE0MhNmETmFYXRvQqQ1HVvr0OyW1idQ6YtSMUpfZmaDNiw1CKTQyCoTIavN5Y5ELd4VWuc7IuIBA3emgpMaoxUVsYS/MfYiYebbk4L5SKWIKL2qfREyEmHC+RReG1MywkxFVvyISESnmelLkgU2KGZkigielbJEsyi66UyJEjS4MghaVcoPVh4AXgnnTcuvmLWJoWFlaou4N2RnPcvPLJWbtlBAdBsNkMkZJgdKK0GZ1Wb/fZeY186ZFlY7e8joOjZ/PMElhfWbaKSnplCVSKA72D5EyB2R4l4ORRFEwG1mCzOF5IYHQBi0MRIciI25UBuPiJBAThalwQiBcswifEPjgMIUmpnysC6GwZFxEHkdnpl+3qpBG01pPYKGojzmVN8RAIDMZQ/AIlZna0SZ8O6PqdHI9liRCCaReqNDIeJQCSSU0c+vxPjujojAoo9FSUsqsaJ94gREFE9vm2k4b3LxZIIFyzSfEbYdxQi+cp41tSXHx2guFkyCLApEkc+epypIUPcKBCJF5a5GdktJo4gI/o1JAxnz8jZIcHk4ZH+zRraFQJSIGUjtDCY+sSjau7HD3XeczZsUo6hIGfYFjyKc//Rivfd0r6PYr+roCnYP3Ygw5II/8umhdQsjYoqy6S8SYA9nkQt0nhEMqQ4yL43m75vGOlAJCVtnJEENuyImUgyrwmYkpslMjF1ALTrEochhfcCgdiCnvkxQ55COKHNqUUoFQOj/vFFFa4Xxge/sWT3/2Ca5efJqbm7cY+8B4KpnMGkTytBEskSIJqqqiXlthtdOlUxpmdsysGbO1bRmPWlw7pwkenSSV0lTdvG/1LjE7nDB1nvE80bSWqANdU5OiJoV5fq4xN7+Xl7pIrTCmQBtJ3e9QlTXzuaMsAsknWh/zsQ0NosgOMBETnoiiyOeIzEKegCBGQ5IO728HQ8rcKPxKffNfZL3yla+cys9rsr7+9a+f/vzP//xR730eUC2+5/N/5qmnnuo899xz9a/92q+t3P5cPk8izzzzTPm5z32uUkqlN7zhDS82xV7xilc0/X7/S76ojz32WOfee++d3W76fTnrkUceqWezmVpdXX3553++bVv5/PPPlwDPP/989c53vnP787/+6le/evrRj360/+U+jveev/JX/srxX//1X1/e3NwsnHPCWivquv6C7On/1LF8+OGH6xAC991338s+/2estWJ5efkPVN76ZTf+HDlJazJyhMGATRdJWxOOnRsQRaJTKN66VCB2WmoV+ezzOzx3s+Hm5TmDsxXbB2N2bs6oy8T0SAEbB7z0pRPOPiixe5J2f4PTpwRl54APXz0kVUOavU2+6s7zyA/+JgdbE27udbCHXT564TmubzZ4CUJW7I7nrMYRAEsucr4omDrHdHtMZSre8bFPU63k82/3ff+O8T//FWoaBus9djjgmIbjexsc67bMN8fMdxvWOuv06hN89sZjrFrPwXjGaNzgrWD97DLJKybzCfiE0AVaRVbHgc75kkefucGdwGw2J9h8ju5uvMAxAG+xo1uIkOiurrP2V96D6HQB2Pzwv2f/I++lNoooBKYQqORY6kncbIqgwodsGXYx87FS2aWxcwqjuOP4KYqrL7z4wgojsM4iYkQHRRUKSlNzMJtgjCaGkEM5tEEGj0kGpSU2JZQL+ELgk4AAJoGsDZXS+BSITQNljQuSoAyGFhsCWmQgq0+J0HpCUvSqgkFdcvLoUlZ+FgJcpHWRZC3JCyg0UmTujFQ5AGHY6+JjIsocZCHRxJgQvsGYgpRyYp5S3czjSS1LS0uUhUGrKqeIyQzEl1LjbchWlpiIyWceDZCEzM0cIV6czrWtJaaAlobR9k16gwJRlBS9PklKvMhsDxkkhVYkn61LIUREoUlVhZYFoF9suhESMubzpUyS/fE2u9ubFFIgTEHrHb51dEuDWSQyZ16MQhvN3FqkUkhjsqEjJXxIDI4eoZhNcftjtudzlgYrKGOY7OwihKD1FhUlURccHBxm+w455MOT+ZNBCpy12JBTTiERZMI6jxaKWhZY55AiEVJWnEotsEiUKpFIZvMJ+JbSGISPWSVHyBZMFD77UXLjlEAQgZgS2hRURUEgkRRYEkpm1h4p8weVMMQUMSon7IrFa9+6FuFTPi5SQhJoBUknrFwo6hYJtQmVOTgOyjo3ztu2IXNTEjZEhDTIBUfFW4coM5MupoSWWVGaXLamxJDVEVJEnI0EIiqJ/B5oAqZT40RE+Dyl1kktGjsRqTWudaTaUBtFIQRKCmTwufBNOSEPJWlcYOfWLc6fXyW5gBYg/CSnvzUjlteOcfP6TU6nSIgBgaBfKo4c6XHtpuf5ixe5sXmL9fVlSNkKGmKefMuF0sA2DdrUSKOQKhBTTv6Tiaywu/18IAffEIlxnuHhKTOFUlw08PBoXeD8DIRCSUi3rb+KPNFevM8kaQHTSsSQhxoiOqJrCSkH5qhFZIgUkQw0d0SfSFqDKRiPp1y7/DxPPfEw165fZ3tvwmhmaV1k7jz5iEA7nWN0B6tK1peXWFnuUleS5Frmk202tifc2G9pm0CpBFopxnPLtLGkCN06N4HtpKEdtZlLS0IJg4wQZIkNjqVBjTYVo8N9Ov0+nbKDMhFjcsqnQVGXNUI6nE/sH84JTYKoCEKCShREfGyRCAoSSQjsgokYvcdogfKJ5EElSUgtUmmEVLgUkCGS/jtKvftvfXkJgcDmgWfYL4hCMtk8ZKUQOBlYEy1fayz7V7ZgMOTR56dsbEteebrl1mHL5y48x+mjy4QlSXFwyB95aML66TknZIHdusKp1THjpZr339jGXoPX3q0ppo9z68IFnts8yef21nl+b8qVWyOsTxR1j62p5tnxNq87d4wjg2W6XcnO3i5X97dZq5eojCTEBmEtR8sVdtOY0K25pFvUmZqH7lhivYBx0/LcxgGd/nHO3Psg73v6g8yvHbC39zS7BzPOrS8zWDnOZDqnXbgAnKo4GCvOnSh5/Nlcswx6z1DobPVV6RHuu+9rqAvPpL6CXR6xfVjxq//hVTz56GWm4xpZ3sFsbpnNGpAS1SS0UOzNPbv7LdZDtHPmYUDT/CXWTv/P6PgE/aLk9NHjXN+4iSBSFs9z6o5vBXmFFC3GFeikcwiBXsD2rQeTr0OFVHn4liLaR5xKzEPExIhGIDtV5tHarMBFaJzUmXOrAjLm+goStUp0SsOg02VlUHLyyJCVfoWSifmsxdmYQ0H6BUpXQEmMbW6+KYEpCtxtyycFKSVMEVFKE0IO8yrLDs46OmXBcGWYbcY6YTTYmBtgebCV+WLBtxipECmiZLYtRylzUEGMNG1ABU8hNLs3L5HilOFwiarXB2kISSK9p1AGafKmKDmLLBSUiigMUiiidGgyzgEp8vNvW27evIZvZlTdkvF8TuMCtZZAkRVlPlKYirKsXgyeEMqg8ySTkARLx47RG4052D9kNhmzurLGKHr8LJ9f0QWEkoxGY7RUqMXgyPtEqTVOgLXuxQFKIaEJgWQjSSt0kgi5UIEtmqrCmGz5TOCmY5K3VFWV+dJEfMjp8lGJrAiPiUwmDwSRMR/K5C2Z1grXWsRi2B0jaKkRIjP0CpWVmkZpnMroFx+ahWot83gLI7KzJkZUkgtGnCSKPJQzWkNyNPNJdjf4gEQhZJHVrinhvafSGqFEPpcRpBAyuzdEIotBqI/4lDAiN09D4yk6Fdb5HNQoi7xXEuCKbE93TrDe7dERAq0MsnGIEDPnW0vQklnrONg7pHu8B0iUCMQwIYhAJSTrJ08xms1YXu5CgI4UnD21zM6T+zTzKZ998mle/4avAjJuJDePBCJCCA3OBerOEpERgswtVEkgFqEZPmUlYObpRVJ0OSAvBJILt8sYiPPF75+hZJWb8Em9aMFGRNLC85AdwJHgF2EgyRNstrmDIJDrMkkgptwsjDHQhsje7j6Xn3uWJ594mOs3b3A4icyDxHlJ085BZrdL00bqqk9VaU6urdHpKIJrONjd4tZ4xK1Dy6SFnpYYI5nZhvG8ZTZvqesupjXEmaUdW2QJ85RyyGASWKeQoWVlpU/bOExZUfZ6uSaRIUeduEivrkAE5s2U6eEc0etki7oQFEqQ4kLpLqBQ2SAdCLluyXMiRIgLZaxHaI2WGpsi8r+zVN//1le32/2CBtdsNpN/+k//6e0f+ZEf2fq933vXXXfZz33uc9Xv9zF+bxPty1mTyUStra252/bfz1+rq6t/YJ3jH//xHz/2C7/wC0d+6qd+6torXvGKeb/fjz/0Qz902lr7ZZ+k4/FYKqX4+Mc//jmlvtCtMxgM/kC73F92408CR/qrbBzucETCiWXodOakRjBLkdnmdXjhOnei+Bt/5yM8dP48J08O+ePfex4x3ubWP3qEYy85wSsePMayHRHPzLj3wU3mO4/xR+9e5uPvlWwnjT7V5+LNMYeu5asT3PXn/xXSRrrAyS/jeT54+SYP/t5PvuMdcOwY/MiPsPp1b+UdL70ffvVXv+BbvuH536uizOfJ/wDwzO/50ke/9OP7wvDr7/g6AO49fxxrG3gCNg/2uB8geqSAtiiY7e6w+Yv/H2I1oPM1b+XIG76eOx75OFc+/O9oR5bKdFCzZlFADZjtH6A/39qWGfsImegIxXgypr8I95ApIkuDEgIX53glmNg5+87nNKvkIOSU0RACpdI01lLVFSHmjaW4DbBdpF8lBFMfKbWhpxeFg0nM/ISQCnQhKUVi0NFUtebk0XVWVnqI6KkKSakEMjmUlwTpqOsCUdX42NCEFoVAiYTWgvl8SlV1cgGbwPpAjuWKSCOxwaGEIbQzyrokeEevV9HpSoK3aFPhncuNEG3QRbHgh2XbggoJLQUhOKTO0GG5+JdiJEqYNA2DMjNhdq5dR5uS7l13Y+qSoExW2CygvUFr6loQmynGSFQIyGgwOr8WqXUQBV7ncIS29Wxcv07TTunWFc46Nra3Wer2kDExm06oqy4EQV33qOsO0UustaQgSXj6dZ11W3PL+uo6B9rgdnZwuzfpDYZMTGYWVcLgUmYPGW2IwRNCQGlDIgcYWh9A5kCLkHIQjF5M4pSKCGUoy4q6N8C6RHO4TwotQsvMFgyeIuXEP4QgLujooWlfZNr5BFrIbGklM1/3RODaAAEAAElEQVR0FLTBgZQIBc5mXlrAU5lsmReLZFwfAkZla2hZltjWogoFSqByaCsxZluTJNuFo4I2+oVyQZGSB1UxsVOCnxG8JRGYe09VdPLzCrmBZYzCO5ebWwic8ygtc4NLCPyCcShlLspxEaMEWktm80jTOKzwdKQmKY23FlFlq8doHihTxLaRlZ5G+BbZyaS2GMGngEg6Q9JjZG4FEY0u6oW7KAKK3VFLaSe8+qvvB2sJZY1OQGo5e2KVra1NJjLx0Y9+mu/53j8FPm9kY1j8LSGnGqbQknSJLGqCnSFUkRuLISzA4blo18YskueyCjfFuEjrXoSupISQGTQuRH6eMUaEVChVgAgLy0wgLc6HlFJm99Fke0tcpAoWVWZU3bYJR0cInigEMcLOxi2ef+5zfPQjH2Tn4ACbFDYYpuMmh/Qh8SlgpMYJQaiGLPe7nFrqsFyWTILj2q0dbt3cpJ1bkjJUdclytyCFwP50xv7BBKQhuoS3De3uIUYXxDbRH3aYewsuoKSg0AW10cgqcniwz7Eja3R7y1k9kHJKZQqBIFJOH5eG0XRKawPd4QBUwk1mlKLEirwRTxFaJRHBgyRjBmSBtWIRsmIxmTaeNxgxZttfBNztXclX1n/t1TGate6Qg3aXV3WgOC9J5S77rmI+VZQ3tqjGjo+972GW7j7L+VPH+I4/cZJlsUfvYw3724bXPHCcZneb/p0V59ZvMr6xz711jwufkVxuSi52NMnB2WGHwbU9to8GLt5a54nrkmcPDvFScu/ZdQ62DtluZ5xcqqjq49zan+bUaB1AQggJGwPdoku3NsxmDT5p7j19lDAacWn7Fuvn7+T197yM1dkun/jsE1zciajDXfbjo3S6sL9taaaRSWzYOjzk6H7FqeNrbAdHXWecRKUUO+MJB/t52H7+1BrNdMp/AB65vMHTn3qEV33dN2KKgsOmYOPGBjvbDUvDinY2ZqnjWFrWTA8sIXhCMrlRgUKkQwoZaOSc5CuC74CVlIMSnOX6rZvMvSNIMCZQFi8QnAMp8CQ2p6NsBxY5zbQgJ2aXUtNaR6kWwxNFHsAKkMZkVRyBicsK7wKB0BDTjBQVNiaO9LscXe/R6ynWlod0Oh1cO8NoKKTHzsaLEI1IUVdUqsC6acasiMxfc86ipKTQBUJqWhdyeFmMIBMu+ny/CzYjP5Jjqb+EVA6l9Iu22CjIG2hxmwmYkFFmfmuMi814WtRm+VwOItulC6OxTcvuzU1UknQ6g6wyi/n+Lhecu7pTEUREKYH2DiVLjAYRI955YhR4ndlt+/v7TKdjIpEyFURy6nJdGvbHh6wOVpnMG5TSVGUNSTGZTHCtJ+FZ7g+Ye8ugCRTDIW2CeLhHu7+NkoJRaKhVSZSKqtNZcNI83mdWmlIaqXNAHUrlZq0IiMaiEgijqGqNKUvK3oAoDPP9EZP9rUVtIfG+pUgRZUpa67J6MEa43ShDZO6tlMSUEEliQsL6wFg0mNIsmmu56SOUerHJmATZiZFA6WyF9FpkVZmWWX1IJIb8OCIXvXhyDRRFZq2hsnIy+paQbqfGChQCGyPeJYzSubnnM0bIh/DiaxpCWPDlQEqBiDmYQ5qM4AgJ5vOWsBi+Kpn55qbSuHkghMw9VDLS60pCaElSEyCHssWc9hpjwlMgpEGXVX7MBG1S3HrhKg/cf4J60GPWNJmZlyzry32GnRFNo/n0px7jzW/52hwQkfKQUaJyMFhKyORyvIaqcrqzlMSwcEPEhUVXylzXJlBCEEMe+gpuh5YlpMrnkZKGRECIYmG/1zmZF0lM/sX9BfiM71iEqgip0aaT7doiu5OEqgnBMppMuHL5EpcvXuDChQtsbO8ytZGUJG27EFmgM9835tTu7vI6x1cHVEXEziZcuTrh1v6EdjLDaIMua47UEte07O5PmTZt5mZHjZ86mvEcVRZ4paiNRsWAjFCUml5Vs7Y+pHEORMHRleUFniSgF7CjVCWUyQIJkTSDJUW338FGz/QwUQkISqGiwCOwIkGIKJHxMjFBDFklLHEgJDaEfGJplYfz7iuKv/8S69FHH+1+/scf//jHu2fPnm1vq/2+2HrZy142e+655+rPt+J+/nrggQfmIQTxkY98pHPb6vv444+X4/H4S/JpHnzwwfk//+f/fG1zc1N9MdVfURQxxi/sDb761a+e/bW/9teMMSbdc889XzT45M4772w++clPdn/wB39w9/bnHn744e4X+94vtT7xiU/03vrWtx78wA/8wB7kwcDly5eru+66a/753/efOpavfe1rZyEENjY2zNve9rbJ7+fxf7/ry2786UKj5iMGXc8rO45127DlWl5QkesHc87qKV1vWS01b3zZkN0rN3nNm05wYvvDhFTytpcUtFduMXx0m0sSTr/EQztlb6TY2/OctILtRx1PbQlecrTHt75yicNfeRZpIx//5vu5ojvc2p+zdxg4d3oNkRy7u3MaH+kP+pxzjnd85NM8fGyN7U7FKEbGjafTLai2b6F2bnLqV36JV77mNWz90A/y3HNPsUTLC87RNR2277+DroQr420ueUdzCCTPqEmUwZAW4GWSpy89b/nqezncndFfEmhdELykv33IN/3rDzFYpE1WlWC0n///Y5/b4OuAJhW01jGeTnFRMNg/pOxGtn/7vSy99AFOvPXt7D/8QZwWxKljNgm8cDhnYg1Og7L5xO4qzT1n1zgYeUZNB9uMuXZrg2HMilBtNEpJQmsZ9HtMp3Os9XgSlZQI5zG6oG0tyRgceY9vYyQisCkgYp66xZSo6hIvPCE6ptFTqjwZLlXi2LCi0AZTaO44ssL6sqGoJEZq2qBoG4tIDu8XiblBEpLAJ0e/28+gfm+zGksVICTKlAglkUJSlJqAw7aOFANSZYVXjDFzW1qPEgJlSmLMgQ26qFG6QGqDB1rfkoiZ3YPKCiKlSWR2SlwAkzNkNgOTldTEBI23iKkglpHJ+JAloxe2h9z0IyWMkmgtiKkkiogSAWOqxXgv4VNuXgTvsqV0MqadzqiHXbx1nDx+iiZ6mv2D3MwtNMJkq421DWVVUlcFzrc0zYSkQc8SstvBzxoYJpI2DFfWUcEync9IIU+xhZL0uh3KusNsNsUvrBSNbbNyEpmtPjESrSWKRGwdCEVRV/SX+hSdDoWuiUVFcIl2NiPNp4iQcsBFChkorjWzWUNRFiATyhh8iighKGIiCAgKApoqShLZ4tC0lrrKxZITHi0MKQqkXnBSZFZgwe0Gn0douSiANSk5tJL4kDIIWUgqk0M1RMqvaUiOosivvU6ZO+RSRCpFd8Ha01pgG0dd5wZb8HkDRcq2TZkyqUXEDOiWMrN9bOuISJzMoHGhsiIkkbCuQetqYZNJyCAQDkJsaGxJd2BQhcEHTxAJj8gWn5RQMltGlDJIIdBGkpJHBQ+mZLy7iTGWtSNHmYzHTGa7iKKDR7Dc7bA6MLShy6c+9ijf9E1fz5GjJ/JQYAH3y6eCzOEmcQ5pCaHqrFyIOb3w9qSfRZMuhpiVucLlhqAUC45fVm5ImRMZ8+0lR2MKmdmJMSZkyvZvks+cOzfPzBskIQS00kipMscoqgyej44QJbvbB7xw+QJPP/ssl65eY/dwQuskLpS5MPQzotR4JbAelNAoU7DU69IdLjEsE/sH+zxxaYudmcVb0FVJPewgyY3r/fGMw/0RwScihjj3lKUmJU8hJMIIXAw0LocVdKuapaUuw5U1itIgy5LZeMxynTAi0ZCQyaBQaCEoC5W5NWiODTpoBSHC3Dp8M8AFh9GSEAROCLzI9ioTBCpplFIE2WT2X8zXoeDz+RlDIt2Gvf+fKg2+sv4g17T1FHGPsx04vX+L/szxiAhckHP2mjFfIxvWzhq+/w1D9idT9uYF/dFn8Vs73CGH3HjiJrvPXGPj9DpHzsPpJvDCDc0L2zXV3LL3dGJnveVbX7PE8cmURz884bfNSebGsKthZqccX+8z7CsmE8PpfpdBVbG+OmSnGbOzs0czi2yOG6aTxLDnKKkYxTm7h3OCK7g+mfFGZ3nd6hL/7pmbPPO5W9y/UuOV4NR9R9m8bLl8bcQkBE4tRw7nDauqoGkaDnc2WSs14mCfk8ePgk/szyx1tcLp0+cAOHZkjQtP5fC6py7v8asf2KZz56uZbdxkNj1AV8tUg1WOHO9y7pRC9voc7G1wYBqm88ThdMqtUcPUSmSV3QTKtCybHV77yqeoysjla2BDoLEtccHM0ukkm9e/j/Wjf59OcYvZeI5MIjMynWe5v8RoOqPslgSb7XAh5tGLUPk6nZQixkBRGAoZsWTOnQ+ZfXV8qcfxI0sIDafWluibBDoru130UGbshg8+s/5EDm2SIdLtVSTncuMoeYLqUFQFUnj0bZWYVkwns6zqimTWYMgpoO3M06trnMsMWVWUi7pEIVW2O0oBPmaLpmTx84v7m5AyX3NcdptIcrPTBg8xI0D2d3foD3r0l1ZztIEyJAGFziEbqSpxwaKMwCzQEiJJgipIGpIPSBk4PDig0AZKQ89UHDl1hmtXruQGiTI03mF9i4yCps1YA6UiMTqEljTzOaoocPM5VaeiKDuUx7qklNjauEmpSgKJqiwpi5LZbJbZwSkuFJ7gF0DiaHNYWoz5mCpTUQ86rK2vEVEgC3wUzPQsq9mDBR9ut9tw5Hu3kTI33yQEKTDkpmpOxxVoXSFjpDQJGz0pRLSUWA2EbBOVUuRrOx5tFhN/Eoms7hSLUCewLw63E1AYgxAamQIyJVQIVEphhKBQBVoqQgyowqAbizYKnTImqFNX7HuHUQpHJKY86AtS5saMECiV66kYQ77vi2x/1UIT0mKoKCNam5x8rCTKh8yhjSAJ9AcdYrIEIj4tzjlAq4SOAiNFdknIhIgtIro8sGTKcLhGtXaC+fVnUEArFSpETh/rcTBvuXLpGk989nO84tWvymxkkUM0EjJb5o3GtWOKcoDQgGuJ0WaRgMwMkZQS0ft8P025jyGkyi8BYlHrifxelxoI2WEUHeBJqUAtauSULM5NF8erAGROOZe59kFIok6E1LBz7RZPPfIIz198nqtbexwGzXg6JzrwAlIKIDKX07YeKQXD1RWOLPcoi4pmvMfTFzc5mE4yu7XuMFgbEJ3Fu8juJHG4P0V4j1SZTy01FFVBmMWMfjE5qK9WmoEpOH72KKbo4lygOzD0ThxlqXTE6IlRI2WBSFBqiUx+8T6QyKKPd+B8xATDfjOmFAofs7stRI9MAR9+t1ZUKjuahJA4kV1GQUBM2T5tVPGHeMf+yrq9NjY2ij/35/7cqR/6oR/a/sQnPtH9xV/8xSM/8RM/ce0/9TM/9mM/duvNb37zS//Mn/kzZ77/+79/u9/vx8cff7x+3/veN/jH//gfX33ooYfaN77xjaM//+f//Nmf/dmfvWqMSX/xL/7F01VVfUlV3/d93/ft/czP/Mzxt7/97Xe9+93vvn7q1Cn3qU99qnPq1Cn3Dd/wDdNz587Z69evlx/72Mfq8+fPu6WlpfAt3/Ito4ceemjyLd/yLXe9+93vvn7//fc3V69eNb/xG7+x9Cf+xJ/Y/9qv/drZD/zAD2z+0A/90PlXv/rV07e85S2TX/zFX1y9ePFi/fsJ97jjjjua3/zN31x+//vf311dXQ1//a//9aO7u7v6rrvu+rKP5YMPPtj+sT/2x/be+c53nn/3u9997bWvfe1sY2NDv+997xs89NBD8+/8zu88/HKfz//R+rIbf6mFs0uGquxycPEaygY+biOXdOCOuzpQKe54Y5dWHvDVpySf2LMcPn6JcMc1mongVLfHs5ccF0Pi2l3HufZcTXHGcWFL8uEXBG/pDzHjQ9YPNOu1R93YQo3ycb/cOUJ5+Tp3B8XMOfq3tmhsYF1qSiXoNhPW81WYfmtxeKoAZ97yjax813ey99RThADnvvM7Abhw8RKfKfqcVRUHOjDaPuQ3L91AVAPUwHDPA6e5/vg+86lnX1tOrXe4vjPj5EqJNoJOWfJ47DOygfWi4MTpNebjKYdNtquXs/y8jx1M0W0uls4ueARPvv9DTJYrjrzxazn3bX8aefMqQilOv/kbAKi291lvBPt7U6bjhrA1w8/3OVXULAF3tPnvfEPX8Nbv/FY+9pFP8csf/DRXjclJdNPc+PMkiDmRN0lNQqBFLkCiD/Q7XQQCJSSh0gTnqWSBQGbbQZVtY4WQRAVJZHWWpEDXBcu1odczrHRL1gYdqlpSdwylyJNCGyKNy8nHRVVACsTg8mRLa6L1FFJAbDFCIXW2yaWQLROdbhejJBJJECZP21IuFluXwdU+WhAa6zyDXg/vI7N5jprXdcxWRaGQ3Ibh5uldSAmlJNIURLmYdqqcVOpitgCT8gTKy0gkYIIjzD0bG9fodmsKpXJCocy2x0KQC9yiYGabRTEmYMFck0nnyao3JBHxbo4xBXXVpfFjep2aQiiYNTRTT9s62vnhYjMfmEwO0FLS6xTM2gBaYzAopTL3hEhfl4SqR2E07c42ctrmxqTMDaz5ZLxodgqstSghIQQa57AiJxI7EXJStBALlgxIVVEVfVIA6SKtbWnm2dqgJBAtMUpY8Be1LlFIQnQ5iCMJtDAEkRWYBpVtmlojosdIRdPOkGSOmlISbs9zFu7R4B26yHZfFjNUhSSqxUZFSILPk261aLpprRfgZCiEoTICFwQKKJTBaImMkaQ1rbBEJSmFIahsP8bZrA693SVLi4JbZsCzSmJhQwYp87QYncNhZMqqNRlBKjAq0R8MsAmm4ynBCMpYUaqCSiTy8ExkW1TM6cWIBbJTCQojUcTF4yaSnxOdQCSPXu4xqJeIMTE/3MGXniglyjlOHO8waj2HQvKxj3ySd3z7t8CLisuEUNnWo4sC71u8n2PKGrzNzEq5UG8oubBSxxc3lz7OctNYZpC1lCpbdlO2P0mxUCKofPzSglGTolscT5st1W6R7mwqzELlGYUAAklJplPP5Wcf5/rzT3Pp8lW2RzMORo5p63BIbEwL5arEqQIRIniPjLC8vsyxE0eQybFxa5drO9scjCLRRLQpWFktSQScc+wcTFCyZHo4I3iBLguqsqCQ2RruQmB/ex8pBP1eRbcuUErT0wX1UkHdKdi5tUO336dflawOElVx+5QpsxhHJFSKEDI7sSHlVEQn6RvoaMW10SHNxKJ1BVEgvc/nmoSgBFJIpDLIcFudmlmcRuVgk/xGNYuAlq+s/xbWkY7gRDWkmBxwcPGQq87y5LDkxPGa+45o7lrvEMpbuGafdtzhxqUJLz9iqZlyrJ6y1+3w/I2GS92GaCsu3hwyV2tc2Gt5xz1HaS7eYNiWXHpuTFCC66bL4awDYYr1kuNrPbq1ZHdvxFJRcXK9y4nTp1lfH/L+Tz/H1iGcPr9KKlu24oiONtRKYkPNdjtnMwqiHnDLRPTunMs3p6R4wPUtTSoib/u6e/C7e+xu5GbVel0zWOpybKXk6uUNCjXgqYuH9JRk49CxNqiZzEZc39zjhZuXALh+9QW6qxmrc+exFbr9Of/r//dnGCxV9JeWOLLkuXF1E3Ou5MxLX4UoarprZ/iuP685emJAUWp2d6e87wMX+Omf/iAT6+mWHZbLDudPnubcqZdwbfMiUyvQqsDGgKo07bzH4f63sXz0V5nGmyil0SLbWtF58DDsdmgI+EJlq25aKHMKiVSKOinmOiBCoAqC00fWGPZLVjuG3lJFLSWCSFEpjAzURYmPgmljCdZTlPk6HBUIrXM4lZYYBc5OMCoP0FLy+KZFdw11VaGFIqEgRUy3QiFobcIGi08eEXIjoqpKUgw0zQyRoHUWqfK9KySxaKBlB4CWILWh7g5pxhNiCrTeA5mhrFJWO2Z0ax5mHhzuU9wq6A+W0MJkbiBZ5eeTIEbFbB6oTFZMSRURKLQUuY5D53AUAlWnz9zmBF6EYjBcYry/j3NTRrP9PDQSMJ2MKYyh3+0wmU8IUjHoDAk6s761FPRMAUrR2jmqLPMgKyacc7j9fcpOTULhrEMLiQiRZjEglz7kJHsWro7QMp0Khiua0pQkEXF+xmy0n2vKBVc6umwNjYsEVKlTDrZRGhFzI9WmBi0EtdCgMn9baoMIuQ4lgUESY8iugxfDH9LvKtkX9WxuxIpF6IjAWp/rQpXQRhMJqCAoTI0uMt8v108qq1V9wktFGwEhkS6zd63NCcUhhAVzLzcJk8gWc09EhqxIvK16F0IiTEnyjpAERkjKQmBkotdfYf9wBEITVaRXdClFwMc2D81dJLqsPISEEBEt1aLRKdCqRiSJtXm4F0xJUVX0i4p9UdEuuLoxwvHjNTd3C9Kxo3z4gx/hvvvvQVc1iYhQGilNHqDKAt/MctKu0YjYoITKjWnSi+dxjC7zdmNLShKpSkBkdPHCoptxRALkgl2dUkYXx5YQWkJsESiij/n+LRVKmdxYlprGO25tbXD5+WtcfvqzXL92ja2pw0lDM2txfkoUCo/IzV0Ewufh4mCpx9qRVaqqYHd7k6du7NO2DYIequoxMCU2BWaHI8ajOY0HIxS0Lcury6i6pDaKuspIoZ2NHXS3gxDQqQq0KjBCkXRkPD3ATqccP36CMgRqDULXKK3zfkvkvWf0GSEgU2YqSmUwcsb5Ex2KcWR3e4wQMjMuQ8zqvjJjTUTSaHJaNMEipUGn7HSTKSyCTv77sPoePYovCpJdZOV9sVUUpKNH+UOJOf62b/u23fl8Lt/whjfcK6Xkne9859bnB3t8sfXa1752/t73vvfZH/3RHz351re+9aUpJU6fPt1+67d+697t7/mlX/qly9/zPd9z7o/8kT9yz+rqqvuxH/uxG+9+97u/pLGzqqr0vve977l3vetdp77927/9Jd57ceeddzZ/+2//7RcAvud7vmf/137t15be9ra33TMej9Xf/Jt/88q73vWu3Q984AMXfviHf/jk93//95/b39/Xa2tr7jWvec3kxIkTDuD7vu/79p9//vnyr/7Vv3rqR3/0R+Xb3va2/e/+7u/e+uAHPzj8co/RT/3UT21cuXKlfMc73nF3VVXxu77ru7bf+ta3HoxGoy9QMP4fHctf+ZVfufKX//JfPv6jP/qjp7e2tszy8rJ/+ctfPv3Wb/3WP7CmH/w+Gn8n1kccvzqmO53TzCUb0ynH7l7i7Q9I1N5Njq/1OUiCGQ3XLiY+PSp4eXef4HpUasL+4R5t0+VZD09uHNKbDfjU9ZLTJ4+xtDKjWjrC9b7nUzfH2I2Ki90+5+5c5Ws/e4Wbt/a5o02MlKOzWhMKxeH2AUfqgu5gwB0PPIC/dAV4ggMf6Z07wwBFMzpk5a57OP/134iQisnWFh/5+Z/j/X/j5xFlySiWmOYQYwO7OyOGd5QMloYMBiVLJ0r8Lck9deJMrfmm/9vrqY6c4dd++V+zLS2X9y5QeBCrJ/G7M4RNHA/5cL7+/dkL/PZ/87ue4O++kQNfvvrZhdXcafhTfxZe/VrQGm7cgP/lf0H/+I9zh//C9+/bufkfvR4//NwF+L4f5mXAdyvFN91xN1d8ypZD8iQ6uYAoNeOmQQpFkcM8UQrmbUu/12Ot22N/NiYWOVpeeTDKEEW2Z3aSoNUJ7Swryz1OHe1z4tgqSzLb+FyMWfrugXlAlZK6Uhip2Jt5fDuh2+0Sk0AKA0LiIhR1hTbgmwbvZAZ+K4FvPDE0EDWq0ihtUHhKJajrasGuUYymh0iRSCFQlppep4YU8o0XmM9npOgxMt+QE2Q2SlnSugW0uDQcXTvJ1o2bzNtZvpmonNNVKQOqwEaHUJLgcvEzmUzxzlOkrEZUkpyoTAQBs8YymUzRuiQKn6XrQaKEJiSXG63J0k5GVHVF9ImyKDDaEFCUZYXd3UMikSmC0kglca1Hl2VuuDhPConlpSXq5T57W5u5MZsSdjJm4ltkDHgZsj0lZPtRCpGqo3MTNOUwmOAcYcEfbLzF5FErJInE4WK2oCQUVILkGw52bhJ8gzEqp5uaiuBycismN1aliChp8LMGJQ0xKYL0qCQxxqCEYu59fi5aIIqSxjlKIdA+EWIkOIkqNMGHrIxoMyun1DpzZVIOUlExK+liyjY1RKLslCQUs8mUEByoAh8sftG/8wG8U8ybQBCSUuQNXXJzUJrxJHMwg3B4H5DGoITHLyzSUsoMbw4Rp3LKrUo5BEJKg9eJ6AVFkiiZKBZsQtdk9hFpjhB5kDBrW+a+oWu6JNdAdl3npo6IiEWCX0gSXQxIoiImQAZmbcKYHrqQdKLmuk9UNiKDABVYXa3o3hxz8tQxPv3pR3nd617N8WPHsxpTLbIFF3Y1ATg3RhUFpCYHp6jbm42FZTd6glso/RbnvDaKEHLSY05czoEeOa1XEr3PYR7JZBh2PCDEJqtt6aBkRVHVi3TJ3FhMqmB3Z49PffKjPP7EU8ymc1pv2Jt45sIhWkeUGVkQbcCnQJACHSqK0jA8OmB97RhKSjZu3OTqlStMU0U1KDG9HoIpyhcc7HumkxGxnWDbhKr7eDdnfbnDqVPHEUZiUubJHBxO6YQexcoS7WxGYQw+LdKhi5rR9ACtA2dODJkfTiiEIXpBKiVSCXrGoGRmR3pfIoKnTJEYIpGsUhz2upii4Irbom0cOgowitZGTGEQIaJiyhxMYbICKAS0yNeLdLthoWLmJ35l/TexhmGb3vUR1cgzby1hUPHO15UUfhOFYF8d4fLuMkUac2Gn5oG7am4c7DF0BktOWrzsKh65OaIzqGiKNbrLHdaP7fJkbHjhWM121KixQ55f4+DOOaGKXHq2pSqg76f0e0fol4azJ45x10vOc9/rv5Zf+uVf56OPX6KqDW/749/Dwa0tnrhyBX/haboDSbN1wHicmLdjQuURS2sEXxIKxXS7ZXkVTp5eY+YccxE4c0fJG0/dgX1hg3vedC+//eQOz41u8Mj+ZUZNy9nTxzharLF5MKW/tpobTTrXxheu7vGaB+b8T9/7Xt7y6peyuhqYh8jeZMxs7NjdG7OxcZWjx89B0SUlS9lbYTJzfPbfXePGzoi3feNZ/sx3vYrnLm7x937uIxjtmfvj/MIvv5xv+fpfZu3ceczBPvs3N6lltuhassIr+YSTefBXFAUigk2BeePodrsEO0MpgfOBFMgX6eBZ7hh6pabq9+koWF2uWel16BUKmSJjm/EugohvBKrMTgIpIjrGPNQyOeFW6QLvIoGEriXIRPTQ+kQShpQkOgacDTS0mFLnZPuUMQxaaVQJsgnYRhJjoqgrev0utp1RmALvI9HZF1NotRBURUWv02F9/TjXX7iAVS3d3hopwGx0QKFFbpb4QKGzGrv1nhhyQEWUAtcGrHVEESi0RpCDUKTO/DHfNLSdAiUMWmqkXTBmAVUY2rZlNp8QfA49WFs/iixUToVuJogYKHVB1LnG8N4jlKJ1FtdmvEvV6eBEZLS3w/Li8ScHu3gCtp3me1KMCK0JIhBSIvr8XyXIOA6drauehEqAkiSfQEVUCjTzEVATY2S0t0dspwslPtR1jTfkRF1BDmOQmetqbUuhC5IQaBnRIQ+mrWvyUEykXHv7zHYWi5TdGARWCkJKGKmxYYH7UWLB7sv3WQE4IZHGEGXKykqpmU3GlDrhIqSouOOu0+zt3kTEgA9ZbV6QlfspWqTIg9MQBVobQsj39eT9i8IBVWp0SIQUs8tCS8xt3If1CK2okIRgczq0C+wfHBKTwKgc7qZMpG0800lDvTSE2JJTrHJgmFcJFRYpygGUNkSyyhPXopMCbTAmZcuzzcc1ycwMXB/WTGctV69ucPnZi9x7//0IozNTODiEyRxPSSLaQ6IYkB0iCZnkQl3mMCkS2xafBNkjFJEyvIgTyRDr8KK1OsZE8FlFKpIitlNCciQRMGqIlAZjapwP2a4dLFeuXOTpZ57hc89cZGt3wmTe4JJg1gii8MgoaIWAtiXERNASpGJ9MODYsSF1UXPz1h7PPvM8s+kcXfcph0NEm0hNy/bYMp9aZGzxbYsUBY3yKGE5vd6l1ysJMWGFR6uacSEZLnUJ83bhlkmI0tApSnY3b7I2HHJkpWA+muJ8hRAw9i39osRIQEhaH4kh4YIj+YaQcjBN6xymCfl8SjmtWC5UzjElsHOEUDiV+YMiVZTGYEiYQhKCQxmNkea/0N37v+56yUuwTz7Jk5ubX7pfc/Qo/iUv4YtaWf/PLmNM+gf/4B9cA65+sa/fuHHjiS/2+Te96U2zj370oxe+1O89c+aM/+AHP3jx8z/3F/7CX9j7/I9TSg9//sd33323fe9733vpi/2+uq7TF/va8vJy/If/8B9eA76kSvGnf/qnb/30T//0rd/z6S+ZovtH/+gfHX/+czt69Gj4wAc+8PyX+n6AT33qU5/PGfyix7Isy/Se97zn5nve857/uOkDvOtd79p917vetfvFvvb7WV924+/w8j69dk5xK7IVJzRH1vmGuwy7L1zCa8MlV/LpgzV0GjIfz9HrXc4c9fzvH99luVAEm9jrKK6ONdf2W1bCLl//xoc4DJF2GvlXG8/TtHD2dQ/w8Y8/TUcohjnjG9mv2L2yy7SbSC7Rq0pOHD/BPQ8+wLDfwSvFbz36HN8LdDo1S8dPEoKjOxnxqb/8Iwjl2d3ZZX+/YXM0J1QlwlqqoosXcjENTexPPMso9g8sO3stX/tgl3fc92o2n77B0SNTPnzxkxwzjquHB+y5SMdUqE7Abm2wsryKXRQxOmS16i++/D7OnTrOW/7NbzH6jm9m8C/+LZtvfg073YpgA+n/8YOkaOmamqN3309vaYX44z8GwTKeHLK/ucvOpav8w3HgQCTa4Dm9ucPf2LnG3/uqV+LXl2iv3+AvfvZZ7j1xgmnjKDcW50sEkATrSBGiETkUYsG3U2VOzx0Li9IaQsiNEwFVWVBrOLPeo19reoMutZF0K41KIBdMttGkIaLo9U1OZpOaFkloPFokagWhWyHFwlJoDPN5g4iQ6lwwZOiJxEcQUSN1RJQK7yOTxiFVRIUEi0S0UkmiaOn0NHZeZBVNVdAb9pnNx0ip8C4RXUtRaHyKEANKKgaDIWdOHuOOk/dw9cYFtqa7qKJi7fhp0nyEUblxFLwnKYl0kdmCZULBInjEMJ7MsD4XQ4UpcqOCREyRtpmj8MyaETJ1MalEtC0Gm6H7RhCdo2mmzGczNIo7z56nMYnYWPbGh7R+QiEKOp0aUSrG41nmpixsOckHysqg6wJvPU3rmB2MKEyBnc1AwuH4EHwO5ggLRVDSCp88MXhsCiS3ODZCZkWlzvYMGcViK6QpIoTxAXt2SlV3mBxOCfMp3UrjI2ih0crk4kRlC4gMAaNEnlJXhtrkkBObFMYDUWCjQ9JkO7YUFMmgyDZaWWULBEiaCChNqTS5DA451CdGksyw4ZgSUWaVQZK5kTl1kv39MbhAb6hycmrV5eQ9p7l6+RmWOwJkxBiNsdAagRNuYRe3FEW21kqlUYXB2haZ02QIIU+KVcowaJEEsVDoBElJ3KyF0mBUIsp87FsXGc/HmLLMSj5jso1dBiZ7FjwknVUkUQJCoZFYIUjeUWuB9BYpbJ5aE5FtSydNaYouQUSMELgmUZX5mBgpqYqS42s1z7wwpZkHnn70s6x/0xGMrjPXLzhEURKCQIicIB4nu8hyCKpBRJct0URScGgfic4ThMYISMkTmGXFndakJIlJZ1vOIsULBMFaEJbUtnjvCAqMKTLLSknCorlsvWXr+gs8+tnHefrCRXb257SxYD61zNIhKUiE7OFcIgqP85aCrLyty4pOr+Dc0XUKI7l1/RaXrm4ysy112WO9rjJfbz4lTC078wNshEJATAajE9E7gsjcqSq1lKKk9QEvBYXpsz+7xUpdUgpFCjkJeXB0mV4huXn1Cl3TJ9o5jRtxbbNE67jAKDhqpYkyb/aaxhNDooktJiym3Ghs2zJp5jQuYuoeVdkhhUi37BNFQqhAR4JOBUWl8/tPDlEalICy0PhgMVpl5fJX1n8T67EbDeeS4h4LO0Xg2MmjzDa3eXTDUy+VjNJpPnPtkCoZzELZ9cmRoRkFkpesVhUbq4roFbVI3HnyJPuTObOyzycu32K5N+TUiRUefuQZlremHJ14HuuUTJ3H9EquHThe2LjGm151B9/07d+JcVOuP/MYj33iU6Bavvb++4ijEVW/xysfvJ+DI0eY37rG1uZTrKwVHO4kirLC2xYtNd3hEDc5ZNzOme1Hyru6aD3hdWc6PDCMqGP30968zr2TPbpHJJ8bK8Z6jRN2zgsfeZjXdXr8Gw/b08DJ9bcAcMedp7n3vjnf+DUjhp3zHIwtIzfDbUJyEzq1odfrM7l2i90jV1g/dYqI4PFHA9Om5NZ2DvW4kxzGJFVuTHRMtoRd3Zox27nI0SNn6N1xjs0bN4nC59ApwDlHoUAX2eZKCKwMewRvmcUJusgc10FVkoJndXXI8dUeJ1d7aJXxCYWG5D0i5jCo1gfG44bhUpdSa4TMdcy8yczPQhuKoSKGxeAqwnQ2ozIFiZImNpm9pnJTQWuFCwEfEnYmSI1Fp4QqFCkqSl2gRaRUClVU2BBYXllDKZP5hT6gZVYSBiIBiLZFD4e0eNaWunzNa/8cjz/9GHOpOXosUNGgZE4LjSLlwDUbaILPGNiU8DEr62/dvIkikVS2koaUaKMl+uwksLMZsixIi0C5SihmMWFEwDcNwjnmbUuv02M6nRLmcyajEa6ZZ8dDr0+vX7O9f0C7SF2OCRA640uEo503NG3g5rUNXGopyi7eJYKLFEblJFegMOUiwIQFxzZgjCRFiRCRosyNVlJCdzLr2UhJs7+Ln5W5qdG2VHWFFBIXElEohAoYJUlS5XA9LZExN1e1MXgiZexSUODwmNjgbEKVHVIMGSMjBKor0Cnk+jclFBm768nh0G6RChzJw7k851EEl5Vv1rdMRjNc41g/1stKQWu5fu0m0HBkfSVjabRCCUUoDUEEfJJ419Cpuzib7+utswTnMXUF85bkfCZNiBwOF0kQEi6F3FAWAiUi0miClMydpawKlFIZ/SITpU6EZBhPPCsDn1WSJJJUC9uyIBGpKpU509ohhEXLgIotvdKglAYUztnM7BNqEcqnObLe5frmhKrb4ZGHP8MdL3spXWGIwQIyW42FQGiDmE5A9HCmpPCOmNrMnPNgmzY3C4GkFTFFPG0O9xO5FShkRcTnIafK72dixLkZyUVSWeTaMvlcy3tLjIGLF6/y6MOPcOH5q+zOHOOJYzafoxDMVMoSLp/roxAdpTYYJVkb9FldHXLsyJDL167zxIVnmc4cRaem7vZpZUKOG2bzlvl0nm3XMmOPTF0RQr6WKG1wZEwIXlFqiTKK4BOj/THdXgeRIoURrJ9aYvfqTXSQ7G8dMOxVvHD9Fm0Tadsp2hjCvEEZTZAC2wZQmlZAN0m8EiSfqERiHizGlAxXlhmWKjOgTQG6oFdoRPLIIuOTiDngL6UIKaAWDq3fG4Dwf+X1kpdg/7Aae19Z//2tL7vxdysJbk4Ebyw1G5OSoTdcfWbO1bhK4+Z0TZcbraJth3inOCI1//Thlgs3DP2lDtNdz6klQ3V2mfNzxXxnk43rY2bWMxaWnd2CpU7JtIFZKLn2zC5ftbDMbu9MOVZLXF3gkkYaxRv+xs8xOH8XGEOcjHnbS18Df+q7qJRivrdDqnto7+ktrTBtp3jG1F3Psu5y0EhSkvi2pacMpqqRGmbziDt0uCVHDBPu7R1j54lnqE+dZfvKBks7e7y8G1gNHW6JwN102X7sAudNl/2r+3x6Z/YFx+wBo1iZ55TreicrNbujCdE6bOuxzqKkQIcJh5sforz/Fag3vwlKTc8HJv0XsKMGf+caTz19ASdaxLCCHXDH1tg81ef61awkbA5n9E4dwUxzurGUipRybDxBoo0iEQnO0u106XQqRrMp1rXUhWG132V52EWklpWlPsv9mt7tqHUpKUwi+SZzt8g3thDJzZ6QcmiDyGEBglwcCmkoCpdBtSlPyn2MixRcTds2xOTQylEUBVpnG2rj3QIWLABHIQUpBqLPBaeR+YYtZQbaHlk9ilEFThlCcJTGUFYaYobDpkVR50XiiQtP0x6M6Q1OoNwELy2FEhS9DsKUTJppTrZDokpNKXMSFxGkyYDvw9EIM84BCVIKtDTYGBYFjUCGiNobI8wuVinwLR2tmfqExCGiRCVNWXZJRHYmBxR2ghIlMsCgHoDSLA2GOcAlZNCtDRGfBGV3iCoKJr5FhIAUksm0xcUJSisK2cGYLqaoiCmnqikhkaIkRE+/XyFbm63UUiCjJIo8cZZSE1xAa0FA5kS4HJaLtQ5pFLUZZKlAEkSpSEqivUCQ0/+cTJlZ4gMy6Tw9Tz7bNXSFtRZTGLQMuFDjQm5GipRto0nIBYsxQ1JDDITU4mMgSImWgkXHmBCyHSO5zChkoT6YNy3RRhIBU3SBxGh8yM6jBwyH2YoTSCitmbcuF3TO4xU4nxVUmd2o8CHm6W7MFo1CZ0tQXHBgEotU4QiNtRiVm3chgXfZchxCRGqV/wlBSg6hPMp0GFvBdBro1I4QEyl40AWJBTtPSFACafI/gSWRmYJlURB9oNQdJmFKJCfhmkWSrjKB9bUel25M6C53efzJp3jl172ZFZ0tqElmJaJCkpRB6RI/dchenSfWM4GPY7QsCB6a6SxvRGUkap0b3iEsFJD5eKMynDokn4+N1KSUMiMqCZIuKesOKQosU5TqoEPkueef5qknPsvVm5vs7LXsThzNPNDGCRWK4DVzmSBM0WRVQlVUWA+rwx6nzxxnOKi5dPUSFy9eZ3IYqKuaou4jpWJ/OkU2gbltaVubg2t0wTzYnMZZSsqiptYlplMTtcEmKGRJgaOoEkZWjMYNS8s9qghlr2alV7Dx/FW6ZY/gPHt7Mw4mjus3NvA+EILHGI30kWTUIolSk0QiGI1pG5xUKKVZLguEEXR7NSurQ3p1iUiJIASIrAzWySOlR5UKKRWFVFRlTessKXpK2aXf72Gq8j+3LvjK+gNedcfx2RuRupRsHBoGL2yxKRtm/aNsjgKNOGA46JOC4o5Csd61fPjSLlsMaYOkDLB2pMtDx9Z49onn+eSnLiKVZKc9YDYCqSOf++gNTpoBYqdhfWdMZ+hYr0tqKTh5fJVXveoeuiKwvXWLrtvnJS85z0/+wPfyL37zg0xv7eIOdxhXXZqpYzQZMxWKYvkoy/MdRnGJeauZujlloYidGt3psaK7DDTcuHqLg61NzrzkQS595nk6d3gmN2/x7MYeUtR0kmZt2XNu7oipYDBtWOsMGHU017b2Aaiqiij6/KN/cZrv/GMzyk6gNl2UECAls2ZCiLA9PaT55O/Q6X8L9bCLLCq+90/1qarTAPzGv3mSf/oPP4KWgUGny4njKzzyLMwmM3rLFaP9AzrHlyn7XezhAfG2MDaCJPOOYwwURlIKycwHBp2KpUHFiSNDVoYdRJxTljoHaDjHbGRZWl7CN+NsIVQ5kTZEqOsSSb6XGSGy60LcvjeUkJocSKUUPkLd7WRFu13gAJynMFCUirKQqFDSOrdQaKXcTAw58KhJLUap3B0iq4R7nX4OGKo7+V5RFszbJiu0kDRKMptMUIXig7/zUX7rA5+kHNRUS0sIIbGTKbpTs7u7xbyZoaTBoPAqK9SkzIFVhdYsDwdIIahMYpwE3uduZlkaYsxpsD6AUyCCpdSZ25cSaCTKdBEy0YrE1RvXKFQBSVMXPaIU2AQHoxkkSV12sN7nNNlOF1UU7O+NUSknR4cYcUEiUubT1d0hMXmMKRCAEgUhZDVmp9dFkIORZFQkEXKSqMrojhQTkUXAAAG3CLsL0iBSxHuIUmFtbkzQzgmLQIw0jRBTdtQIS/4NoOKMFDxSRbwXhDDFhsyy1WkRCuM8lS5piTTeUZJ5x0IpjMz1W4gLS2mKSJ8WCcGGsfdoKpwQzCYCWeQ6bzaesbSkmLZTQgxoqZhZm1V+3qKKDsJLvLOkGHE+vqjEa5uGri6RUtI6i5JZcamMQkqJdTYr4FTGgjjrKFQFPqsn87BQo0xE1Zp2Ftk/cJw5lXmY0TtiucANJUmQChsSiYSSmuQd3npSUmilKQqDNjUog7cNpZCLdmGg31OsDmvGIfDsxSvs7E2pV2uS0IQk0OgcuqINUhvAUJSalDQieCaTCd5ajIhIoCgMSajM4UsxN55S3u/ElBW0idzcisETF04TpXSu3YQiiMi49ezevMYnH/4Mzz53gZmFSas4GM8zq7IwNPOAb8CqQKVBmURfdQmy5MTxY5w/d4yD0T6/9fHPsL2xT1Uv0xks45PFWot0mTu9Mx+jY66RY8jMaGMM3WGHWhdELQgRFGaRWp6Teatej52dMWWnoic1J04c5fDWDvPRFFGWqFIxczCaOqYThwuQtEdFhfQCHzydos58+LJktaMJWiFNSb8uqEtDp1tQqMzN11KB0EhTIYBKB4pSoesep46fYGW4QuvzXlIjGA4GqOorjL+vrK+s/5z1ZTf+jNjnhdTlqU7BZA7rhSPcmlF3a56nZvS5GZ2zXUyacddKwYNdS+cBw796v+DJXUFa6vBIE1i7NePMHatMJx1u7M/pSoEdz2hmlpuN47MXd7l3rcdbz51AfewpAPohQ4xlm3jwziMsLxe0Vy9y/dMfoatg+I3v4Ni3/0n47n+P/ze/QV2VODy2cRyO9nFVQb26gt2NdGSijQFVlLTzFiMlQkLPVHzV/edQxZydnYa1smIlaK5e36GcCrwd8+jmAdQ1syTpLhn8bEJv5Cl7lmgKzg2+MAgmGcV8YWNplcIAVBWhKohKY6d5wzwhoMYj9IVnWXv9a1Fln1gYhr0hK6srnD+5xmMXnsFtTxdJX/CGN7+Sj9kZz04+DcB0fADFCYoqp2TblBB6MXnSGqTGiYgusk2wnUwYloozZ06yulQz6BqqQhDaWZ4gJod3idnMsbyyhHVTIDeZAhlorY1G60VimRKk2GZAtYuYokIqTUxtZrxpTYpQdaoMyg3zDI+NZgHGTWgVqE2NEhHnbQZPOxY8DoEyApccISmIAhE9WmeorhCBTqfGOY1AZl5ESuiY8ErgbMBO5/Q7fa7uRQ6uPMH66bPI0MG6hsnBmE5tuXr5KpODQ5QSqBiZhYjSGiOzlUNpxdraKmvra1SFpioVIxcITaRIAqklXiRmoWV+GMEItIAZLSE6hCiJbkZwLcpIpFQc7B1kJgYG33qUhiAko8Mx1jrqarFxWASvSCOJwTObNjmoIXlCavBR5KQv5bKij2xfCSGAFCgRcoqtSyRjmAePUCB8Tjzz0SENSCTeJXwSucG1CBvwMSuTvM/sl5QELuYip1NkmLdXkuA8dt6ipSIJmYMpkDTBoWX+nUIknLckRuADNkIKgkIJgg6IRmCKEisFc9dSSZmPgwIjFRJJJGJdVl7qFEgikIRm7mEeBFpmZUaeWkuiWARNCEmbWrxzEEJOFUZmBaSRGKkIITces9UmK42lzA1YYXRO3SMteEkOUy04lEIRib8bzpHA6ALbzJHRUxZZXYzWlLVES42zMBo51o7fTp5L2VohQKGI2mSLcsxAdkIg2ICuSkJQFEW2SyA0yCpbglTER0lMgbqWrA87HG5btg4OuXHtJkt33Z3/vkjmAQkByJyYVuTGJkJBWRAmEy498wydyjBY6hKipFTlIsE3T2KlyrBrgcCHBrWYhgsk7bwlxQZhNEp1UTIteJ8eJSuuXLnGo5/5NM88f5mpTYxGDePG0/pAEhGlJXutJTSgCoUuIlpqRIgYpTl97gwP3P9SNjev8clHnuLKCzeoTYdqZQhC0LoJe5OGVd2jrDrcODygRGKkxNqWuiqoi5KyX2JkgRQhq2stlJUkmlzMG5kwdcXO1ohev8ZrzdkjR9i4do1ZCKTSkKTEykRAMJtbtDSo3oB5mwMDCCBRdKoS06moig4P3n0cJzK7SZhEJSsg4G2LbaZ0OgXDuk/UBmlKOqWmV+VN0V13v4xzp05TlhVIgXMWIxYw/v+ciuAr6w9l3X2s5ezpPhceE8g60T1isNcMM9Xw2QPBmpLEdMgrepJ7b+xz9KExD7y9y699ynFxvsTedJ0nn5Ssb/bR8RXsjgUvS4KinfFsgscebZBc4qE7DGHpBHsvwMvWrvO4cly4dJLlwTL3njzB6hmNbDZpD3eYXRVsXb/Jzv4uVhQ8eW2b/fkLpNTlxq0XWF0ZcuTUWbaft3TNhLvOrLMXC164cA3hI+fXVnnzS48x8ofsiUPuWjpDr0zc7A7Zv7bLxmzGTneYBz/TwHaIHKRI0bZMbOKW1+xMLBNfcWT9g4i4xd7B/fy//tbruPvO3+DBB+ZgNL1+l3kTEbohiMSs9aTxDhvPP8m5V78OiHz4Qw2IwEvvFbz9j9zHY9/9Rv5/v/Ix3vz6V9JOBwBYa/FEfBrR752hlxTPL8K0ANACbQRJCjqqpCoEx1e7rK6ssbrUozAgkssWXWp8ZKFQipQ9jSxZWBENkZyGi0hUhcSofH0N0RFjoA0RU9aIQiFTJ9dTQuCcy4zbBHUd8bFExwpIi0RTQdfUaCRocM4TfFoENYDD5ut6AhkDVVExm08xRUFRlDgRsD4PzXyMtGKhKgoB1QSGa8cWrOIhpl7NgVN1wruGZuJpZ6BkyzRGZlFQknEbMYIuCoJXLK2usNrvYaWkGc/QIVEvDUmlBJ+YNRGVIqUpMm83NrgYsbM544MDBsM+nU4XaxuQgq2tPXZ2NqnrLr1el/HhIcP+gOgd7WyOLgrmdkYzn2FMiSnKHG+ash1TpRkuRiazKYXIqaMxeqI2hBgopMFJQQyZSRitJwvVE1IDSdK2kSZYNImqNGilaGxmWJPAxRyOJ8mOpCRyYIZ3DtvkJGUXI3XdJTpHaxuEFjlUywd8skihCX7B7RORJBPOJhqV8qAyLtjUWmb1KAliwrtAFPlrVa3xIeBFpIyJlALDjkGbBMoRiSAlbSsw6x1i63ON5HNtYidTdAEyJoSROO8zxiQKJBqhc6KzSDG7M2JEhJzum5B0ygrbWpzzaCExC4yNbS2hadHkgWmhc3PaCZi2AdssbMKJPBiTMjMRlSLJkH9/gmTneRCQAoFsj2+dxUeFDYqu8AhZZP60ipxYX+La9hbzlHjkdz7K6T/+Dogp8+1SzCzr6ElFSfRzlO+SpOLKlQs899jjaODlr34lqqxRQUPyKKMyX09KYsjnR4wtCIUUBdZ5gneUpSJJhYoOHySpEGxc2+YjH/0PXLqxxc7uPhObaNtEu2BZpyiJ1jKLiVpVVCo35oSsGfS63PfQPWil+PgnH2Xj2hZNVAz6RxEdQ+s87XjE4XTGUmfIbDaHJDLCRkSKumB1OCBpiZQZJSOEpI2RFCKh8HivqIKg1ym41VqmU8vJu44ymc3ZPRhDXdMQESHhRcSUBXZ3TG/QJcrAUr9HWRTUnZpOaah7XZSqOXWkppnNaWYtlBo7dxglOXbyBMePHeHMieOolDCdHh7oForSaKZecfzoCXrdmkRmcwqRVZfRf6XC+cNev8ee+pX1f5H1ZTf+HjhT8PIHFL/9YY9DsS40VbXGrdkhm9bCcBXftAyS58zlCUsrEyZ+jx94x2n+1389Yb9zBzs7U/bGu6jLgkGhaccHvNIn6m7FR08usb1tSfUOKnqen055xTB7+NdKgWgMHsELNzc4deI+0m//OnWnTxCJsPt61PpxIA86r1zeIBCoArzgJS4Fjpw8glY9On5KUTSsnzjGxatbqMaigK+6+6W87O5VruxvQv+Q02qANy3x2Dm2Dg4YkZgtL1Oaiun+FulQ8KgQqGHFwwcNUxE41X6h4s8REb0eAPMU6JE5c2VREJPLjTkyoN0nhT3cYbRxg4E+jUiRboocP7bGHefO8P/+kf87zz76GPKJx+HyZezhTR55dAcVF0mnVUCHxMnjJ4DcJDBCEUsoYqSQkU6vS99ojhzpcnptwPKwAzEQgsXalmgV5SJSPjPTHL0lBTpvYFNUJCnxIeJaT1UoKp0tamEhF/cxEHPkF0IkKtVDqDxBn7k5UmmMKTBlnqD6KFi0Cxash8wG0UoSRSIlhw2eblFD9IRFgmhcRL8vLw0RKjPstFBIaWgaSyqzpWayCBRAwqRtsc2Mbk+ytlYwn+xRtIFEoNYBO9ljuTZ0xACp8sS4XlTRpVhAjqXC25bZdEqpexhdEkzB3E1QRYEa9igqzTBoGpdz14w2aCHxyTNtJ/jWcri3jzCGtSNHMx9RByaHc25cucJ8Pmapt0zVqZgFMHrAfDLGzi3aGCbNAdPJhLKoqLvZAqiMZD6dMuj2mI9mOBeYjsd0ihJNIoSA0waREnVZMwvzzCRRgJsRfMyWFAExCYKHmbOIFKkrQ7eumExn2ZbtPdqUTJsWmQSlyo3YlAJFoUheIimIUTBrLJ1+lXk1bcBpSRIJEQMqKWy0KFmRvKPqFvlrFkKZcjKykIukRIlPjkKZHNaSAikkIjmdulAGg6HxFiUlHaVI0dIpSkQRmLYhu4dJTKewvtbPCXwpM9GU0qSQCMGjyRN1nxLWWSpdgo1UZYfGO9rgUCqnDavFBDLarMCripK2bfHWZSXEovFvhMJ7R2szM0UFAaqgLSOmFhxOHHGeQzScD0TpM1BbLlLuVCCQkwuZjxDJQWiYO0tVVLTOMm1muKhwPmFMQqoKKSJSB86cWOfmznVGSvFb/+o3ufcv34MUMjOFQiRpAcERhAbj8c0I2VviYPN5fue9v8rhzgF3v+Ru7nvo5SBV5k1JhyzMovmXN38gECJku7zMk98QIsaUKFVAaAnBE03FzvYhn/nYZ3jkqScYO8F4Ms/MxSTxUiLRRBexNhBloqqzusR7mCvDmbUV7n3pGYbDDr/1offz3NPXKMse/f4RIBKJtKMZfjZhMp9jO4FmlDfBtVS46BgMeyz1uyRVEIUjWEssQAqFT2Q7sQgkWYIPLA8q9rb2mTWRex44y62tLQ4aS2EqJoQF6xBMWdCpSzpVRVVLqiNrHFlZJklBv9vBKKg7PZIq6BnHbNqigkB3DM5FFIpz972c+x54GcfX10ne0atqrDKkEOgUEhdg52DGkbU1IB/z29eomBLli1Kmr6z/2uvJq4omjHn4BqxWidG25L71Dlc3Baf6kklHMZ0H4s09RLtPGCfWj7WcXan5rY/DJx/+5//R73z/7/n42976Tzl310f50IXX8/PPfhd/qf81vPmd/yO/9dNv4yNPHuVffww6ledjv/DrHDnRJbQWuoKeNmwlzW9/+ClCDU5oSnrs7W6yM2xYWV1nqarZfOEyx+59gN1+j3lIrK73OTic0CsSL+zOOJjNeNh5yrXzJLnDcN7lxvYhJnXY3pkzGrccPdvlE9enVMLwpvWKtaNdPn3tJv3+j2HUKc6fPsW//aWfYdCtuLmTWF0f0u12ORhbYkqEKJBGE1PNxo1LHL/zHjrLK2xtRrz3jEZTzv6JHv/Dd70WvzHGFIHPXs9InF5R013uYhvN/NYudzx0Pxub27gmH7+qVCwbwbGTy9x5ep3hsCZnwEZSyLw8HzVR5oRWXWRQfxA5EMPN52Tgfx4ypYXbQOsc1pCEQWmTw3hUZrZOZ45SKyqj8dHiXYMpaoiLJqKUmAK0lnkYKQTWtwQSUhQ4b7HRoaVk7nIiunMe7xz9YYfu8pCUJELmxOAQoW0ts6YhAiHk4yYDKCFo2k0cIPUuM55HotDKoWSPkysF84FHijLbmU2EZPApERI50CyNmGwfcmEn5SEXWVE+3hVUxmTlswDZ7eLaRGsDyVRMDg6w7ZSQAvOpRZPDP6bTOW66YOPNGgKSTqeLR2ZutC5wLhJTwBQ1xhhkqZCmzs3ImBtU2geGZYUNDq1Ah0BIi+CpmP92hUAq8oA0ti9iY0DQ6UZC7GRen8xuj16vIizSx5oQMmcxLRR5UeT6u9awVONdYDqbU5UOWQlW1WrGgrRTYrRoStqQQ8qkCKRSUUZDSPbFQDHIVt8kI0oAKfO1hUggoCwkhe4QXEsTs1LQJ0dJpKgKJm1DVWqid3gHjfdE5xBEKlMQYqLX6SCMwsSC1ntcDBhjcv2SPDEEgpZoIfJ9nYyU8M4ThCR4j/ORojK4mAP2xm2TOZ4CdMzMtzp10UkTdWBmI5MGilriUszIH5MTdZVICER+z0hFaqe0k0PmzhFlHpaFYAmxzamxLuRQE6FIQrO8VLDWlSTd4zMf+STf8EffRrcqEUmDgITLfCOpCGFMMxf4+ZTHPvJBrI/c+7KHELqkLsqMWBHZbRQB7wKQ2cgSTQqOxjcoU+X38OJ5t8DB4T6PfeZhPvv4RTYnc3YmDY11dJJhGgIueYzMasOEplvm0K4mKLrdLvfdeYp77jrNc889z4c+/GkmLjEcrKBVyqrXwzGzw0MECpUUe/MpRQBRCLpVj06nwhQ6X1dUTtyVWqCFwEiJE9nZE5XGKhh0a8pasXrkKGVRcfXyJXTVIbUthIRRBYXOyr3777+Lo2sDjEn06wKBoLU2D+vrGtVfoi4ER46sc/7ECUwp6HX7GF1z7NQ5yk4HREK43LTNY4nF+8oFhBR41xJtFr0EFfJgRP/3wfj7yvrK+oNeX3bj79cfEUjVcmHTM9CeZq/kdad6PHtdc64rSb3Ac0lQ7TbEyZRWtZx+5RA7GzOeR567dpUlF/kqLIU1NCpR+MCp9R6n7r2DM8ExXXKksIoRiSLMGXRz0+ze9bO89I4lLt56gegbhhY6I0v3//lTiH6e5s4/8G+p//E/plheohyNUen/z95/B2uanud94O9+whu+cFKfczr39EwPZgaDCQAHiQgECIIQKVqU1yIlShaX0lp2rdbWbslhtVUbvLRd4lpLSyqvy7a8W5JILylRzBQIgASJHAZhBjMABpgceno6n/yFNzxh/7jfbhKyS4K3LIklz/PPTHX3Od/3vd8b7ue+r+t3JVyKnMyWJGAOD6lGlaZl9i3m6FkesCVNSPR1zc58xuyrN7h7LIwXc2bzI3ZPbVLZFTY3Jrz0wiH7+zOyqzjWN7w2h5XzY17tYa/JvHlthXeKg6f/4Jil5Lg1lGhThE98gukjjzCta9LeLoe//7vc/C9+VmHDKdHPO/a++SRr5RRMIsYOv73J6sY2ybZ8/9sv0CzV2vvapWscLveYer35rU42eOniFar77gKgypAKR20zq6bg7vOn2NyqWRt7qsqRe31Y5myIUXB+pAo8A9YYJKDTIhJh2WlqmLWklLEiA7xYm4MiXhPaioK+74fiM6uyy2a81bh2iQlfWLU9xCHJzGSMU21VURT0IUBKBM0qo207jBeauNDprThtUubI2voUM6rJURs3Xd8g4kg507YNXdfigT5pMpvLCWdgeXCTZB3ewTy9hsViTaSwI8oy0JVxaDpknMlEqxO+gAWypla1O9y8cp3dG3YoMgzLnNm7FJWvYw1WMrmugQwhYooJzXxO1y5JWZtg15tdvC0IMbFcBCY2MpkW5PYQYwtG3tM1hxgJ1IWQUs+4Esblmn6mMpCsAzFUdqJWY/F4O2JltSSSqJwhLZfgSshZlZeu0qmuAWeHRjSQghBj1jS+VN2GU1sS47JQcHRS9cFqKLRYzppsZvMwSRxZkhhSVGub8x1IpphOsEVJ1y6IoSVJYjVPCRlMNIgDKQpGrNDRajAEoilyZGIOw1g0D003KLKjKjWlTZJuwtR8oYl4hg4TExIyhTMwqBW72JN7tRhX3tPljC8KXFWSlg0hKRg8Z0AEVzqW3VKT99D01NxGxHpMghAiycJysRgg7YYkEFKkXajd31ihH7hwWYTCK/PGSuZgEVhGUdVkTniMNiMBkxOCBsSAhxToljPSYkY2EeN005LiEmczIWRy1Gm/NZaQEpOxsLXiSEvLxVde5rXLlzh37iQpCmI1JANAksW4yGIxp0hTdi+/yOHeHpsnT3H+3jeCGLXDoCqGPzylN2IhD5nBMQ6qXU9R1sqwihoYdH3niG9/+0s88+RzvHJtj502MV+2pJwos2PZ9wq3tw6GFGoviQQs+8hkusq7HrrAqe0NXnjpZT720c9wfW9GNZ3gqil9amkXDemgp1kswHgKW7FoGiZlRSgto3pEUXmKwpE6PT+tUUWvkCjEElMgWz3HOyOEwlJXBZPVEXfddZ7Z4YKdvV3K0RjbBXwQRr5m4kccLPY4f8cJtjfX8SZhbWRceLIYxlXFuCw4fuIUMp0yKhzldJWzW9uICdT1BCOe9bUtTOGVxDUUvYVYjEfDVUzi2NqUFFskq/KisJZsIPaJqnzdCvNHZX3mmUQxqohlx6yLlCtbXJQll63lJ8cFLy5u8O3OUE4qlt2I3pR85lsLPv61wO6Ohsv98Bv+U85Onudpt8KieRcX7niAdjnn6OgInMOmbb79woc4mkc+9KYPc+3cz1BcfJjvf/+CnetPUthVfu3D5zlilXr5Cnt7N7h2bZfpiueog2JdaA8b2rAkmwWJTBcyO/MOlyLHJpvs7+xz74VzjCYj9vdvcPmg5w1k3njuDNF2pGrMU89d4sQbTvDh3/86oRa8yzjXUiXP8ew4vmo5VdSMWRJGE4rasHOlZG+pCrmbu9fpuhVGkwld3zMajzVV3BU6dAkBa+DapRusT5c88k7P9ZuG2Cbuu38bgOdf2GW2v0dYHDI/uAMA0/W4mFnZPseVF54lN3dz/MwZ5ofKwjx3bIX3fe+bmY6cwuhjgxhNYU0CuQ8UpcMahzFCCBq+RUyqHk89Zel0o5q0YeELj9CRxA1KpaRICrziHwRS6mnbQE6JuhjhS6+ZnWLoukzXdTRtTz0qEeOJUfEKmQ6XE94X0HXEnOnjwPHzwmg6pWkCsQ/UdY1IxJoC5yzVqKIsPd18QYGiUCgM0YA1QllU5NST+gQ4rA30y1ZVWIMlVigJYiitHZygSQPXSIQeYtdqGIRAComw0E28yUK3c11TYAHrCmWjoQFzs/19Fgc3lBWIp65KpuOk/OV0hGQhLiHHjEWffb7QgIUcl5g2kzoAS2G8BlYYA2LpTMQ7h5FAH5aIiAZ2eX2Opy4g3qs9MmrFJ1nAQjK9JiXnyMg7jHUEILSJUpIOLY3WPc45jERtAMeeQjKTlYIudzhTYHNLkkzhddCVDVQxQw6ElLTSzA0OkCiEtsM4ixd91kY0PCsG5dWVzuP6SAoHGOkZZ1DzdEYkkvtALY5QWUzU2qgqKw2FsobU9UQMsW1x3hFCjxNL1ydC6kk2EgmMy5qma3CIHhtnCG1PTAnjFPVjjSV1gd6oGrKyDmdU5NAnDb9IKI+kaVtmTWL3YMGJeqxs7aSpM5Eeby3O6PWwbHpqO+fmtYscLBeIS3jTYGNB5QwH3Rw7MQgRJ44eIZuOc6dWOLp4yI3c8KVHP8cHfuADiuXJeQhGEYyxmGoM7RJJS9bWj2FdyfETJ/FOnRi2sJrkLUNwWUxI6ol9JEsgJQ1+G5DZJIHZYsm3nn6Gz3/py+xcP2C2DNxYtmAKxAjzvqWLKB5FDPhE6ANtMvgs3H/+FG9920Mc7u3wj371w1x+bZ+inrCyYuilI8x75vMZudNBa8xJ6/EQqcZj3LRiKg5KSw4dbQLfFyRJJCJlUdJ0Pf3IQWcprA7TxVvOXTjD9sYKL734CrkU6jozraesiKX0luZowUplOLFVUnt1gx9bn7J+bJPTZ+5kYzLlxOnT+NGIypfksqCypd67sgouXUbregY80MCqZnB5TV0gkjBZkLrWfagIzWKBsf/LSPV9fb2+/ude33Xj78WrHaaqwFm6zsD6iKdb4RVgo038gAvQ3GQnF5iVmr1l4MqrK3zsy9d46kbJpDvgH71wkVplId+5PvK5f+prv/e3PgrA1q0/+PTj+t+nLsGJE/Af/ofU7/8Q/OiPcs+v/dp3/OxbDr/LFORvPP7d/bthLY3hr2+/laWLjE6XnIyBV64cfse/Cag9EKBJCZ54gt1nv44cW2P8ng+y/md/kkv7N3n6l/4h9ahmEhrCm9/M2X/rL6prr0vMDm6wMmt49uWX2b28w/ZNbfyFRc/pjWPMntYk6NHqBstLlzi6dh0AN/KaWlt73vXWu1gdVaS+JYVA37Y4b5UPEhPOK/tBgbpGpeoMFscYIWXq2msCXE7EnCiMwVkNY8jisJKIUW0s1upUO8eo0/GgzYGqrHHWYpzaEkKAtu1ZHi6YTEekviclQ+ojyUSExNgr+yb2HQmhjWqjdF5B36nLNE1DXQnGJozNupkHTpw7xc4zz0PTIaIqIld6iJbCJ6wdUaSW0Gsh7r2lDxEjBSIRV2izJYslR3TjnlUBQAEx9OSgoF6xomljZNquxTgD2RIatTRbEaRZEFOPMZ6ULDkKs6NDnAwPa1swnTpSH8iVIdMisadtIyEk7NBYMVbIVhtaaZ408ZVM4SpIEUePpAITEpIzpdT0ORD7VplsQSf1EjMpR1rnIIJkFCIeIySDF0sXOyIRI8KorEgm0KVE6npG1mhwiHOkQW0gksgp4lMkpcioLmnTkMIVVNFQOgbGnhZpdYLOJRIG2y856m5ik0CXiSHhnVfrrE0ko+EYfegIMVH6itgsyaahKIVxajURWQyFySQv2Gqiybq1p1n0tK2ChZ2x1KOKoxtHJOfp2wZnhRh6vHEouCTT5EY3MAYqZ+mXjU5Lh0Klz5GcEslqerRzypeMRFJMWryKKN/PWkIKdEkDUIJkmpQ4bCJ7+4eYwiHeYZIoM08iVgRv1Uo8W8xpZnvs3XyV1y5fog+WyarB5CUeVSP0XYMZ6XuwWHoRkmk4d2qNvRd3kXHJpz/5+/z5v/DnSVbUrmNUeWuskMRTuojMblCNRmytb3PhnntwpcMKSEjYotLmLopKsCRIgdB0ZKPHTfmHaocTJ8Qc+MbXvs2XHvsql67vc3Sw4HDRsExgfEFMkXnfkkQtMuqyirRdJGDwZN508jg/+CMf4Nrl1/jNf/w7XL12SMyG6bTGVIZlMyPMWubNApuTFtMpDI1ES12PcCsVRVCoeY6B1kQkBlyGQKDIkWgd865lQgVdpvRJbT5Fwfl77kD6jlcvX6YYF4xr4djaBoskFE6YHx1B37K2VrJaw7heYWVtzB3nTrN95g62jp1iUleMplNEDIVxRG/xecgMTJGYNL33li0+WX1Ue4nKb5USQ8agSdXeeqLo0IaQaKVRkNjr64/ESkYIbaLDUleZr+3scWZjwoP3XcAfXuTuwyNeQziImVURfv33W55uVRE/2lqDl6EuvslbJs9TF2vM7vhTbJ9s6WY3sEVN17c0zYL2aMZk1GPigtn+mGrlbt5Qd7zhjm2eGfLujgLMXrjEo1/7Fi/PO+x4wt133UP9/GXapSN2R0jXE7EsXaDse0KfOBivsFhkuv4mx80xLh/NSYvA3s0j9g+uce+5NZ6JNzi4KTz+6hPYzYqz2zWxLdnbhzQxXDSZsqzJOXN1zfHyxUMOrp3l0ku/yVOrP8WF0x3//a/+Zf7XP/YL3HnHJS5dbDl/4Q1srR9nutqwe3MPyyEnRpET28cp146zti6cPecR8Rwedvz2R1/hIx9+jtII2euzFwaQ/7Jhcn6VaD1PPfE4brpKDpsAvPGubTbGV2mbJQDeqX0+pIg1Bl8ZVVflRErqfDBGbX4pBlZXVwZ+J0NYkZCM4H2BS8MQNWRVs7geYy1d2yN5uK8mxYpIyhirls/ppODoKBGTwZqSmLQWiDnhb/OOIYsoczVZrLVUtaf0XhnN3hJDT0odtsiUvqSoN3nXe97Ja9cucf3yLungBjk0EJw2AmxHSAGXM11whNJhkuItQnY4b1CzwD7G6gAuSaBPmWwduVKLp2QhZE1gtUVFtpGcDD4HjBWMBIz04DUJVbLFmIqYBZszK9UagZbZ/AgRVbCTPIQOi9AnSERctFr7GGUiW+OxBAxDUEsKGIkUKSJNwBQljpYUwFunGJWUFHnR9wMuJiMSNCcvWqwtEMka+OV06BW6liBxQN5YHaDaW1iWhI+GnO3AOO4hJa2HknKssZoc60wideBdxFIxzg3n734Do5XjSO3YHq3jS0e9vsrOS89y9bnP4icTymKEc5lJKYxKi6tGTMrAyDU4Y3GiisDkaz734irfujJjf7dn52COl5aiLDTIxEEMhiSW2DQUZc3R0RxXeHyIBGfIriA7A606inICyZoGXNiCfnA5OCtYHF27xHuvoXjOMK1LutAzixo0qMfS0pLY22+549wxiqKi7SImAT5jA0iKRAxXXn6e5w92mc/ntG3D1onjWD9FNYuGLD3JjnApgURlLcee9Y0xoyt7rB47xhOPPsk73/UB6soS0gIndlDoKiolNgcgiTc+8Ai+NBRFjRPlOeahnsl54Fn3HeRI17XgMqXV45PQ9NqXn/s6n//i13nupRtcny9oUg8hI04dVYvWq4LUW1qBEC3SJ2IbWBmPeNc7voc333s3v/nxT/Hlx55CXEm1MkXoCV3kcLZEoqYoN7mnzAXeaHjH2nik6leBmNWHXgq42mO6SGEcHUJfFNROkCENOsaIcwVFWTHZMOxfvsHx9VWqqUcItPsNjiXOjji24lhd2Wb7xAne/Z73k4xhfW2NejSlrkZMar3PK9NahyF912KMqB8jZ3B6vzJm4HWHlrIsycar0DV7Qt9pKrotyFnD7sqiJLzuaHh9vb7+/1rfdeOvN44ioMmcVeDF2RFn6zXe/saHeNjv455/iRVTcaM/YpErXmzhVz4SCTKimkw4Z3rq517ms5vrrJSehUvccd+bKCc13eIIV1SEEFh2Lc1sTu4i/nDOPc+9wvNvewub995Dnowp19dYLudIyoTFHpefe4nwiz/HW9/+dvgLf4GvXHyRZ3qIRw2+WfDJtWMscITS4gs/8JM0zMHHHkNitD7lYH4EywzNATd2r/OGU6v0REJXcDCb49Y8qyPDdDxh5bUZ//svfY2mKJh58FJztZ6ztTn5jmN2+fJ1xqsKWJ/PZvDv//u8+G98gMlDD3LuwbdSnjjNwXzBlYMF207YKEZc+NAPUWyvKTi47ekOb3Ll8kWOdnc5vqbNPNBp0pXLO6x47SxOqhHlxjYvvqjVfW6FOhseuLDJ8WnFYr7QqZVzlF45IClnCueUa5ICRgxBycB4a0i0tKFnfW2Nvu8xIrRtS5aBbWMdhRnSLQcbjjMJsR1iLF0TSFRIjpg4bFijosNizJRlhXOqSvHFiJh0atamhM2CI2GdIDmSrOBcgYlCSonJpMY7S4yRqi7JOdAtG6QIlL7G+zH3XLjAHXef4+JrF2muz5HZyxQoO69vLUsaQoqUCZpoiX2DTxEvgRAqoklUxZRFWCC5x0enzZgY6K3DGktfZsbUBBtJocVEjy9KIh05KcgbA8YETBZ8OYRekLC2IIknxIYVv0pVjzicX2M57yiKWtNjKZC+pzCWNgSyRLUEtAlnM5iMSIEnYcmEbNRO1HdMC0vXBVK3xJUe0/bkrNdBzJlIwjmPSSrTEgNCT7KqqjM4TdoyCWed2mJiJMeA9TrNdeKI/ZLCeXLqYVBtZYReDCb1lDHS9ZlkI7IMFKUnSEshDkcHSVh1EceYze0J9z34w5jpBm7kOVlNsdMR9cYqu89/k4tf+Qe46YRxZXCFMPKJUQmurBlVBbU5pPIGJ4acWywwkzG/+Ogar+zsc7DbcG0/4WVBURW0XcPKpGR/GfHliLxsqEZjmmVLrErqPuCcofGGGKM2oXPGJ0cf9XuJ1mJdQde2qkyx4Kyn7VusEXyCUAqj0lGPam7sH6htwjltFhtDtJmD/cS5OyeIeILJ2CzgMkUjuCz0KTLf3eOz336KthPEZOq6RNwmuBWi3SEkyIUhi9cNpkmUYmmjZbpaMC0TcXODbz72La7/8Jzjx8cEDrFBWX9J9PqPMdPM9tk8cYp3ffCPYUQHAyJJm1DO6LR8gH73TTtsbDuCTYxdRfIGjCNjuPzq83z1S1/ha998lYMGdpu5NrCNVWxhyiybCu/Vat0JzIPF9hBCy+Z4wlvf8Wbe/tADfPQTn+Y3P/IZVlbX8PUEk3ti6pnvNcxmHaXRc3oRA2NXYZxRhcuoxhqLDBuRPiUKSYzqCX1oGSVHto4mK6OmkojFkEoIOePciI1pDS6xd2WHu05u42sDBJaHDaWLWDPi7MkNVifHWdtY55F3vJvRygrj8QRvPL6oKJ1jVJa3AeFJZZ50scGIqGSSDKUyjpxRCYE2pv3AaVXokQxMoJwTlkL5nVGb5SG/Xhj/UVmhayjLmpqSnVni7fducefdY2aXn+fU2Z5XnxZOjEacWM5xCwfHN3E39mlDw9HsGU6e+s9Z3Vzw6qkxVaiwx7YYr3ScOHGCUT2hi4mLl16h8R0xlhyGIw6vvESze5mTZ05wMGsRqQG4Ss3q+lmu9E+zV25w6YUrPPPKo+TRCg7PeDJGQmRkLPPlQhNYxyOWXYK64JUbN3j65RdZ29rGlzWLPObabs/VvaucODuGQiHuVSl0yVCtCUU3Ic0PwG6Rq8iVxZxNCSQbKUa7nL3z38PbV9nfvYsXL56nncHB7ox6UnG4bPn8J3+LVTnBqJsiI0PbLVg9foLDWcFv/3YDklnOZrz48otcvnoDOz8kN5HJaI0b+xoSZythMdvj8HAPN1ohhEPG4YDv/Z4Vvv8df5s7Tx/gjMVUFTFGxKo9UQYVm7W6kc4JmjbhvIccqUf1H2LwZro24JxXJVtCAx5SwhmLWNEG0KDIKnzCOM9iMWdUVRpg0fXk2JNtQVFkfFUxKjzjUcns6JA2ZiQJbegwpoBsCINCJoQekcza2iY5R8QKxnhi1ytDdLAikxN1ZXnoTfczeRDesnkdCa/RLDuaZUefhKaN9G3LMhgyJaE5JHaRZci0rSGVJzj39n8bf9TQyILlXFlyOQa+/fjvsti5RkeBsTDrlnhTknJH36ch4MIDkdhlsqkQCWR6jLG0XcYYy0ohLJueGCGmBTEYvFeHSB+C8n4tOqyMDM0kIROG5kLEZ0MJxBTpYsAZR+gDLkcMHskd1iovz0pEioKcekXEDGowcqAgIkYbGQZNbo4EqpEg0uBMiTMO5xLG9FjJ1M4i3pNNRVV5XAqM6xHeH1K6hNiC0WidsS0xbklVRYqyxk7X2XzkP8BOz9Fcu8nhY59i8wM/iq1LuPJp8vNPkKzRAamAxCWpDyRzgM1AMsRgSURy7Fn0S6beU5YlyfYsMhx1ASFxNA+sr61h2o6lOLom4iXq86kq2WLMXu44ygHJgkFu7yUQKMuSvuu10TvsR1LKTCZTFkt9phnnWIZAykKFw4oBsja5nWPWRwRH4QyLNmATpBCYjkaMCoezFb5IvPDqFR545G0UpifMl4yqFULOAy7GkrIDEzT4Bj02vrBsH1th/9KMazv7PPOtZ3nzmx/UZ61+w+SkdW2Kiabt2Dx3jrCYQ98TjeCrCZITpF7DXsjkFEhJFbfZeLIXJHuO9nf4/KOf51vPXuW1/QX7zZGGt+BIKRDaQFkII5sJCU12zm4IMQnccfYUP/SBD9B0C/6Lv/P3uba/wJU11jpSjDTLluVcQ3Zy6nGFwyZL5UtG45LRuFZVcAp4cWRrmHctZqVkJXlCmXGlI3UtxMDKaIQxlpS0IVt4pwq+vkPWR4Q24GLLsc0N3vT+H+D0Hac5mC1ZmUyoSsNR09OVY8Ze6EPGtGqTr7yDlEhWVb3EhCvVXh9CpnAFrihIMQ7fQyImp2FLWZWhIqK1dafBZdr4a0kZEobRv6gH+Ovr9fWv0PquG38ptNhSmEjB4TJz9tiUh954kuef/xZ//KECf5CZzEvesm2oX53hV6es1Gu0s8huP2N3T/l3cVLzylaF8SXnHrqfvjBI6qnqCdYVLG5cp9u9SewSh69chudeYXf/gI2VVfKpbeaTEZz+Hop77qO/+Aor+wesv/t9+iaffJIvX7nJ1ZU1xt4xNmNe2t6m8RVdVF7F+nSdViyVLygK4ebVy7BzwOrGcWTVMT+YsLNoefJm5OTZGjM2mPU1ygJ2RlP8CE4d6cuZJiLTFdpuwtV2wTiY7zxoxmqqGcNeDnjz3/1V/OoaANc+9ftc/41fY8UbjMlQFIzWN5WjYQQpNNhgsTiEfsEr33iKesAIPntxn72lsDG4uXZ3r2Fszer6CrwMD9y3zUNvuZPVUq2ZdV2TBrVlFg3biKHDOJ2EW1uQUyZ2Ees00bQoC4qyoI+qmOk7tT7WdU3bJlIS2qRprM465TSQIFtIlrJwYAzLxYLJaEQ2hj5Flm1LEofvM947qvGI0bii8JbDvUOsCMtOzZ6SvHLlBCQa3fx6y3RlQspqm0Ss2jKtx1uHGKsgbBOoq4oH3/gA5x9ecO+xKaFraZoD+s4QstD1kdC2NNmSc0lojyBEmghdcPRpyrE3/29YLVZp2kDbzzHUJJuY37zEy09+mNxllknI2bIIAS+QcqbvW0KGkB05Q+y1EWq88naKwtL2ga7P1GXC+yXeGSqfIS9JCM72xJwJsSV5q+dJ6gcosVp1xYYhgS4RcmSEA5sIKVBKwlloQ4u1OgkXFjhrkQTWNJiiIOc0TOe0EWGt4HKLG5SMIglrtEDyK4bC66Te2Rpvx1gbNWlUoLYg3pGspfAOb6C0Bl/2VD4CQlFPKWTMyAVwSypvsYWnOPEw0zf9ZbKvOfrWtzn6+ufY/uG/iCss+WTkvccnBBOxsUPEIbkndg0p72vRnyFGQ8qOEDtMShy1LSYViCtoc8sywaxN5BSYL2EyqqnLJTHCfCnYFCFFxDjquqIUQ0OnyWNJIdQxJbx3YIXSlXRNp/Ye78iim8Cyrlm0HXFQIHZZU3GdLSiSqrNSjFg0FGLWBZx1WMlq/8mQ+sh0VFFXgjdjypGlxzCPwru+9xFee+55xnVNXVY48XhT0fS9TqUdiBjdY4pOlre319h5aZ/kCx774pf5oT/5I2rRlluT7ESMESvQLFpcUTNeP0acz2mbGaYq8eUISQFS0PMGEKIqgn2JE0fyuuFsFkse/9pnePTxZ7hxkLjWtoQYSKagRxsiBsE7GBeZLiZ6ydisacpZImfPnOBPfPBDLNoF//Xf+//y3MtXmW4eQ0QtZs2yp5nPNBlSLDlHjLd4a6mrEdXIM5nWdG0ipR4natNqugW59qwkoRAPowKRgG0iPgUmVUlMgDEUpacyBptbuqOG0djhRFipPWsbW9z9wYc5f+EsiyaSgbXpiEW7ZN4bbIjk2RxvHFWdMOMRfVJFJpIwrsRIxhaF2sE7VZwWVaX3sZSGe7RutFKMJPQebcRgnKcLQS1dSYNT8uuF8R+pNaknYAQxDUWfuLy/R3G95YEtS58POHH3Kn66Rrtv+crX99k/OKKqBW9X8RUszN9levoOjp08zkG7ThsCuzdu0owWnD1zF5WvOXHiLMvJnJu7B+BuYuuSbzz5BMfP/Ai+KGmH53/bCP6Oc/zgn/kJPvflpzjYz8wX+7g2spSAqSY0qWMiRi2fOVFZx1IgtB3TtXVGowkhCEsylYP17eO4domtOgprcUYY2RUO5h07V/YYFSPGK2N2ZlcYOUfOgcW8QvyYzdUZrD6BxB430oC0YnWDcnSVqp5y4+aCnVevYqaWonxA7bc5snJsE0mqVgFDToacDRjP7MYBr1y8yOqxDQ6Oxnh7g0J6cJ6VfMR992+zsnaO6bjEI6T4NCI6gAAoypKYNc3dGIcRTU+NJFIKxNhhXaEp9DmrvT5rIFLMPd5qc+lWMFnG0cTAuJyQotHGVFI8QhrUgdkashhcUdI2Wkd1nTawmnbOqN5gY32FZdkyO5rR9IEuWyRkxBcayJRa6nFJjj19MjhrSTHSx4RzVgcfVtmr1lu64FjkGbnbYeSOqEcJKhDnyVgkqdU5kyCPkCRkX5AT5M03whv+NWy2HDz+KYqcqd76AQTDux6C5uqnlYsWAl3sMcmCLQi5J8RMnzwxdZCiOiliRYoGEaENM+U5GoNQsVyWIJmUGlIoSLlTLrHxIIEclAmYsloBsySy8SQjuNjjEfDKopaUyVaQnLGmwEiL9zo4MabDFJZMj2SDodZmrXQY0cEfaEKrcxZDojA9IhFvC5y1GnYlYBkU2w6iQc+lbMC0QIVB6wikwcSGJHPIFS5BGmXEWx3sMsP0O2SzxEhB24Nv5yAFOWqYi2RFVFhTkNGE3iRxYMYJpS0pC0+MBmcsRchM9R1SVjVHh3NEBjxKacBbxp2lFsv1tMRmYbOasFgOwV1WtP4xOvAXMZhCQETrDRPpmpY8OB26pqU3IMYyMg5X6ndjswaJhJBYzDu21qfsHe1oYBtOw7VcUu5vbAgdXHz+Nd72lru4cbRH180xxiIy1GyoAtEYQ0LdFykmzp5e59KNI1IY8eUvfpH73/wmimDAeUXxxQXGJIwYnPHgDIVfYba4jFS1Xg/tnNi1ii1J6hhwzpOzxXq1fb/yyvN85guP8sIre1ydB5aLBclZvAwWfdLArC5YSMeyN4P7KYKDB++9hw/+wLv48qce5eOPfoXQgh2P8UZD0prFghyiIo1ioi4cQaCuRtRFhfEB4yNdhECLiCdLpqhKXBfpU6Qc1XQ5UxrHqCzwtabrFk73cPOjGUcpsbq+wT0XLnDu7B2cPX2CejJhsrpFDB0nslUOJhHMgqbraGNmvFIxrmvKukK8V09P6DGupCqtpouLQaKmXOcY/5DdWpCyUB5qVt6lsuYzWK/hdqJ8VIuQ83fdvnh9vb5eX39ofddXzko1Jgok1+H7wNEy8dzFq5zeKpgfzFhdC5w/N6I18Gqb+fqrDVXdkmrD6Y1TjHq1qJrSMNk4xi6WUAkHh4f0/RHnV1fxVc3G6bOMjm2yt7PP8vo+AItmyasXL3H3XXcxM55+vmC6dZLJvQ+wZYTu4IAXfuEXuPDTP42cvgMrjphbjZePmWwDXizZGg03KAq60OPFs7a5jYmJNjpyCoy8kDa2GeWOctzibImVnqlfZW+Z2N09YONIrSDz1EJcksMC6x19rr/jmKUYcV47c67Sgval/8f/neb0WU594I+x9d73ceYDP8ALv/d7SGqpxzV1NSJhcOJJWa0h2RakCHsvXePJSxf5E8DN3T2CKzXdDdio4PvvOcEb5hP42tc4f2qdG6ak7ROlyWQB44bkTaMcmLKslU2WlQeWkipnnCsxRll5xkASLcYwoE6IHrJFMIjxyqcxicJWkISUNQlMsKQYEGM0lANwg6VPslNpt0m0XQP0jDc3WFkd0zcd/X5Dl6FNAZMdxhUQA+SWqhoRQ0eKBm8LkKSBIkPwh3GG0AVSoSy1RQfLfEBqDrAmMrINMirAajqUSQMHhVYj5UNJKiw5W3K9CW98BFecotndYfHpX2X6/X8Ku3YMu7zGI+cuEptXNRks9srYiJbslJsXcyakkph7IJHiEsOIGHQzEWJLpCXEmqLQhNfQryO2IYZIig7oNe3NOi1y+3i7yBVU+RUxiC9IsaHMGk6QC6cqNSCZjElgbYkwwzmj027TYbyBrNM0S63nig2QelX5oTZQax3WCDZr009EmYvOmSFsxWBy1ng7q/a2lPLQ9O7IknG5JNETc4PNDeRANAGbJpjcks0RCUFShxkJ9fYKYjugousyvm1I4qBvySyRXIAYTcSjJ4vRVMIcB/pPpi5qvFc7cuksrk+sGOUijsY1h4dz7GDpcpUleqHsLQ5LdHCzXbBSTYjAYrHAGYNBKApPzFG/B2OwbmiyAVihaztSymSrxW3TtiSrv3dUOZITBYunjE3QtD0pChsrY67uaxPYi6MsLMkFEpY+LCEbrr52g9gErEmEbk7fL0mpA4mqkM1RN6zDd+CsI0nk9IlVXr12gLVrfO1rj/PW930vW6MavEXEEsMSYyIxR+qqJoaE8QXZ9KQc8H5NU9XiktS1pKSp0VoEF+RsMd4SjeXyldd49LEv882nX+PaYc/RbEGwBskFki0hRMR5CgRjPU1c0iaHNQM420ceuu8ePvSD7+WxzzzKxz73Rbo2w2iCs0KOcHRwROx7BKv22JwpSkdvhGk1pbQOsR2Jjogl0JPFYsj4yuMikDoyGWdKQhJWi4LJuMaWltWhGRfanv3dHaqi4sTpU9xx4S6OnzjJia1jFHXFeHqMHHvWcMTYY9D0uZx7los55XjMZFIzma7gCo8rSiQm+tAPKj5Nkha0uS8MmAX+YGh0S2GR060/U6t9AozVAQ8S0b2pI6R/YhD1+vqXtt48cjyxGHhiGK7vznGxpyrW6XrPhbfdyZXre5y+e5OHLy25Pzl+exmo19a5sVilO/oAk8VXuHd3ly/GhiYvMK7DzhsW8xnWdfz4T97HxrECXxj2dt/FFz/5NP+vn/kIX/n0p3j4vT/IpFD3wcrGKiNzleVynx//0e/jobc8zK/88j/mxrWbuLrEZihHE4qkgUbL+RGx7xStEXokGWIWRDpyaFnu7eMtPPSGE+yGJZeuH+FsS5o6emMZrxpshr1oGFUjVssx62bEbLZHPDpg+9jDPP3MB3noDR9lPNQJi+URi3nkyuXn2FvMGFdC0/Z0SZmzuUnE8AfP/CwRyaoKMTli9g445Qx7O7tM/YJ7j/8ia9MrTEdj3vM9d5P7QEvPsm3Y3VnjS1//Qf7Y+z5H9ruq4hnu5Cll6srTd7d4yDoYYQhySjETooYsFM7Rh8SoqohRU+0Lp4zVxYBXEZOJvdp8jXOk3FDiyd7TB62VLEaBWUmbc4KqBvf2DnFW2a9F4VmXCS2ZnIQSQWqLs47xeISxjpjVmWEygwXTEPoObwVvQKIjs8SWBkyNpEQKzaDsz6ReD6/JCWjoxWKlJJmIjUuIR0jqERuoN7aIsQNZIowAh89L5UV7g3c6FBbp1FWQlPcXU4+VBGKGAYcb7LUejX+L5CgIDTnb284UBalZBL0nSlI7tLEFkoMqsozyygwgCYJEjFM7pdiMiZBF8ScxZyBANreDuyRnDRGTCNIiUQYrr9WmqAhZaXvknBBpIOoAOOcBcpF7dbmIvT1gSwiJltuSgJwwqcTIhCgtKRfkaBEiYjx+ZZON9/4IZb0OxmNzQqTEyhhj5iQCKTnl/eZuaNIWWqflTMqBhkhOEZuEHBTVU9sKKTySVUHVJyhKPe45JWzl1J6awFjLYbMkxYj3DklJ68okLNsO66ymyncd4/EYJNG1czKa4Fs4y2ywUGfJNKHFFiUppqEBCtdvHjCp9DwVEmPnKZ1g+khRZFJMtDHz9IuvcP+b7tSwMLG0Xc+i74i3gvwGe2mKAWLCijAdGc5sVjy3XPD8M9/i6vVr3LG5rRifpPb8LrSIS5TW0y1mjOttpnYDMMS+J/QtfdOgSBSnTU4RsnV0ZL7yla/wpcce59VZx/5Rx3LZ4VxBbDuyzHHWU9qC3ibaLhOTXuf9MjAqLR96/9u5cOEC//Dn/gHPvPwqZblCW1uqGAmLGfP9ubIqrbl9fjpn8WWBLWpMBsiEtqOwuo8MZFzOlFiiZPrYUfY9J1aPEW3k7Po6KXe0ywWx7zhzx3lOfe/3cubOu5mOx2QiEg2ldxSjmrbXFO++WyJZFbDbayuMJytIikiC1Y11vf5EMTDJJGIO5Dh8NwaKohh447o/0AFyBrGqSkabgXlwLeSk91jv4OBwj8l0ldKV/9yf26+v19e/iuu7bvy9beL50hxCDzY55t2SF5/dpXjrKT53bcmDD9zJzT6wPppy9nzizoXlZWn5nWXNqdU17IFGp41jpDg44KAWFodzmpjoFy3LxZI2BOrRhK6dcf3GFZaH+wAYMs8+/jir911g8977CEdzDn75l1g0h8x39zk8uMFZ8RACK6srXFq2FNZCH5nWI1pnsa6kz4mjwyNOTFYRgdJ5jvqok1nX0TWBbn+fqnI8eOE415cLXrl6gDEtaTXRUjFeSdTDhsz4EsnChVP3sHOwQzh69TuO2YnjxzBJ/23XabPwlU/9Hpcrz+HV13jPf/Y3Of2hH+Fbn/g4NhjaJpDyAMclYWgxaYmRRHvtOmvzGafQ31eJYc1PsEl/78NvOMX1zTF1r5zBvk3MD1vW1gwhZ0IfERG896rqsw4jQ2GCI4REihkRNxS0WmymGHUildQWnKIy3MZlRRp4f8vFgtFojZyDFnKuVFZVbigpkaxFrREde2YFCIId0jNTpG17rt/YQUSofMG0HtFnLY9MNBQCUjqcLZiMJ/pARWPqZei2FEUBsSd0Dd5aVVp1mVzMsX4CxkNoITaIyvKgS1ps50yWJS0Gbywpo40pFpA6xLWUkzG86W2Y2mNcD+LxOZLzklIc0Wo4Q7YJIx2CFiPGQ0w6MRYRcoraNBW16oZocLbT6VfqMNKQAmTphuCUDGgxhCQtyrPaRExOZAKIkKQnE7DZkXIkml6bcTGCFSRCJpBFvzf9IgRn0N+X0c9qIdGgOKM8eICtvrYoc8yI0eZa7sidwdyyS0gaWDZa7Lpb9iKxhNwBassyWYMkLBMkNYhEUhppI4wIUlFMj1E8/B68nYAxuJwQPIYaaxIZtS5Hom4ock9OJQa15lixJImk2JFTxORE6hKVtVRSqqUn6msveyjqApuawcqqaa6xV3bLQbvEo4Bq64xmuWW9ZhZ9j/OWLELXdYzqmrL0zLp9KiMkk5nUI+ZdQzIWk9Wm1aeKnFS9Zaxj2QVu7uyzOrbcOBAkJ0beU3rBdAnvA5IcXUpc3jng1Ws7jH2NiCNnw2y+oMuZGBOQ0bC/jMmRECPOGMpaOLtV88xLBxzMO5799rfZfvs7B74RgBBTpE8d5cirMqNtKMdjVqpNchpSAbuG2LTadLVOz2sjZCzZep5+5lt84hOf4lobeHX3iNgJSSwkQ9fOsU4YmQprSjoJhB5yVNZk30bqwvDB9z7Cgw88wC//4i/z2FPfZjLeIJaGUix5ecT8qKFve2zhSWiCpgxpm76oNIglq409doHSliQMSUSTccUQxNCEJYUxHHMeMxozKg0nV1dp2zkHR4fUZcWFN97L2bvu5vSdd1NYQ9c1EI0mco5GtCFTGC2IY99TOGFSFZzY3FalRddTlhXVqCakNCQ+C+afKIpv3aPJWuwyfK58a5soA0dzkHHqx5OBLZZxJrG3t8PKygalH3+3j/fX1z/vFXrcWknoDFKW9K2lLAvWVyeUKxvcOKp47uYRN/ePONF1PH8044HVKU8cXqY5PMGTX/9pfnz1L1Esn8SuFrSpY33NUY8co+kahzd2ePprL/LMNy6ScuZP/vl38qN/5m1cv9GzCGdx4jh7yvD5z7zKnedKrH+E566d5vc/8lEefuP9/J//2r/Lb3/0E3z+M1/QEIe1FaIxdMs53nsOQ8NolhnXFS091ls8I3IU4oZjlQOwlm1b8/LBZS5d2cX7K9TTTba2VjmxPaIwDi8dSQrG4+Mc9Zm7zxbs7a7w/LN/lv/kP76Xa99+AgCz6Ni4e5U33HsfU1dhFkc8/cxl0jOQ54b1E/dRrp7haBaHQAlhdpRZzA2xq1js96xRUJNZk5rCGHK/JKWF1j2lJywC4kqO2hFf+9b38bYHv8qp09VtXrEVVeOkmCmKiqaLGAtGlIVFzkMqvKbBpxzpu0hRlBTeY43VhkHqKAtHlsjR4QGI4IpMF3oKp6FWzuqzJSXl7npfklPAGUPfacOkjxBSxvfKHHSmoIs6XAqxp+sbqrJkbe0488WSxELZhG6qIRGS8M7hrSUMzS5rNZk4RQdZcQ05GyQHXDYkmzSELWe8daS8xOYRZAfLDpu1fsllTbF96vazSMNMWrJkTB7pfRkh0UHqtckYwRu5PbQxEsl5NijOvboaTFDbbcxYIiaNwAayaEiXTkEiJguJYeiVkj73UlR2sjOqBNNeHCZHJBvScI8VY24Hr4gIQkZvx5mcG/0zEYwkbcYx1E9DwEYKgpEKYxoyHZK9hpKZrGTaHFQZJWaoi9QlY7I+M60pSdYgdJikWJhIRc7abFw8/jn8+XuQtsPVmeSz8m+Z6+c0WsvH6MghgPX6no0lJk0vJlkQx1ISy9yTfaZNLU3bUPkRITTEvgMp6GetWvXrkhgiLYk2BGLU5kzpLNkYlvMl5WiizyAryo+OmWbeMFkZsXFym2vXbpKyJs/S9QO72+GzJhQngTZHCufZPVhw4c4tbO4Z+Zpj4xHeaop3HxpGbp0cE1dfvc5Lz77M+bNrOtBNkSzgBgWekPR8sZYUZfgeM2e3Jrx6dY9Dk/jdX/t1/tJf/ne0XpbhukvgCk/uI+18RuemFKN10vyQuDiiDy0RxbgYpxgOcZ7rN3b4/Gc+wzeff5ndBezM5iAWY0v6bknOHdnWOng0iXnfIjHTJUg5srG6wp/5s/86Li/5e3/vv+fq1SPcaEqOkdAEFosFoVlgxA2MwYxYoZ7W1GVJby2SI3awN7dJXXTivIYn5oTJiaKaMjq+zvpKTYFQpIR3iZNnzrB6bIvNrZOcP3cX3nuWzZKub5HSUxdjigzOGkxdEKVnOiqpSk9djcgREupgWRzNyYNLQmsag7MVgjrL9J7JIEDRsMSUlVNuALIZhCgZMXov7Pterz8DOSYe/+pjbG+f4MGH3/ov/jn++np9/SuwvuvGX2hb7FpF6pQhFcMqRdkxDpmTD93Nwoy49NrzXJvAsas7xKOWixEeXp/wtSsv8mar3flpyPSHDcZVLOYN9/0f/2PK02exZUWaz9j78hf44v/lr2EzTOeL4U0a7n/HW9k4cYJaDKHwuNwzcqusT9a5srfGM5/4JGeB73vPOxjvHfL8E09C35FDg9QrLJZLVaWMKq7u3WC9GtE4rQTKSiHOMWXslmONGRHDVlXx0tFrvHZll6v2MtXkGOvH1slWJ0QjHxnVa8wJlCtnKItr33HM3vjgg+zfvALA2lvfBf+7/4gHmgMeWF1l470fAGDvxWeg63Bmyvadd2NKr5s8k8ktdH1EkiMve5jPGOlLc9YKC2tJQRuqOQZcXRCjqjzaGJkesxADIqVaV1I/qPjMoOFSeG3bq4XBGvmDgpZEHtQ8OUe6LlC4Eucc1npyTITYk3JkdWVC08xJPWAFR0fbR+rSqYXNqvIqDdwG5wrIWrymECALKQtdQAu1GDVtDAXzp5BocyB0HaN6xMrKJrPFkpgWOAdFsTLMhxK2KlSynhJJREM3sIReJ9hFWhLFklPGZOWJJRMJQ3Fb2IKUG0wqERxxGXB9j2RPG5aYzWPYUU1KJSILhIg1HSl3WAqCQGEhSgehx+RICqLhDkPisEhEJBJij8kWix+sJOjkOWXNY4sjsusBtTDkYSptzeAbodXpbspqeY4KBMdoszwBknUyiwgxq1JBRN+PWrO1HiUOhRstFp26WclgtNmXRB/QZpjMp+ixxiFmSc495IIkWVWhQ7GrRbJoIZAVMi2p1CadLTBAcCAhIWKwVhkwiQZZFMy//gWqe99K17W4ypIKsADMEYI2QUyGZMh9BinJYgZ4sCHkpJN550nZspSeeQ5QpKHoXVL5mtYuyX1DxtI3PaZr8HWBzZkuZfoYiSGq0iQlqlFFs1jQh4QpSg1cGexQOWWa+ZLCe44f3+Jo75CDvqcPgdwHYuwR7/HeYWNUhaJk2hQRZzg4WHD6xCrPvHyT0XTCxnhEYTVMo48NtV0h9T3NYcPTTzzDWx+5SyHezqri0Gi4jXMeUDaciMHKYOdOmTObE16+dAPnhM/+7u/ylocfpC49YhwSk1qV7GAdypnmcA+3eQbn1wiH+4T5nJh6osjtIhhrsL7g5u4hTz72GI9+7Ul2F5mdo4aYE1kKcoQ+zrAWkqkIAlEC867BZksbNThnY3XKn/rTf5JjK56f/7lf4MUXr1NNNggpkmNksVhCc0BKooMSET03nWGyUlM4Txy4TNYoWLpNBmKnUHGj51GOPVUxxq1tsLE+ZVQYiih46alGjpN33MWx7ZMcP36GUydOYaxhMZ/Ttw1FPRTECZwVJr4kmY5RXVA6y6iusaak7wPeOzpp1bY7qHT/2UWxQeSWFSwrK3Ro9KWkymsxWdMYo25eiZnQ9Tz6xUe5cOEe7nvjQ9/t4/319c95HU08W2slLz07QwooreWgt9TVCp9/7GXOn5nR41hYw6dHc06tbPLglRnHj63y9OpN3n3+z/PGeJW9ncjsxhLWhM1jW0zXtlgsFtx87RL/7//k44w3ppw4vsre9UPOnt+kLivK1XXm+wlXCCdOiAYNtEvKnLlxdMjP/eLPc/aOs/zAe9/Hu9/yZn7jYx/lG8+9QFWsIc5B0ICh/uiIpURiH6CqWMSMx9B3h+z3gZGZc/5Eyfve9iBf+MazLA4aDuYzLsWOjZVz9CbSdoHO7VNHz8TCUZsJTQfAbL7gmy9eBuDMve/gx//td1BUNSEuoYuMv/xNfvPzT+PHd3L/I+8mJs/BDiSr97l2XjObj1jsNwTWmcVMJ5Flt82j13+M9xVfYFI8y2Q0ok0dK8Ewb444c+aQ//Q/+r9BZ4jZ0vc91upgUERVb6HXoCa1VQqCY7lsEIGULWINbbfE2UKRKlZVYAlNei2cp08ZV3hCCPQhk4NaI4MEsE6HgTFoarB1UFhyShrsBIQh6CfEnugtvRFczsQYWYohdpFTp9bJErDeIXECOdHFROELIJIVrUaOiWiXhCyUeFUJB8GmTLw1WDAOsR5CImIHx0XA0hFMhZhWB457M8KlZyk33wddBp8xtiBnj0k9vXTYHEmpI2UNwTBGVT3ZCimZ27a+TBxYf4KVSm1+omEnKkFsyVldNFrzaeBCSMPAPPfDs8veVtuZrIMe5502Gaw+cw0LhEIbfsaRKdVRkdrBScFQcwngiYTbwzEZXls/QwLpCKm53ZwxRufKmazoG/S7TkbxDlqcgVg/hC8sh5/1JGFQGgphdpNyVFBOpvQ3n0fOvgljhwhVozWbDn+sWpxdRKO2IiYZiAGDQ+g16M1ofRSzI2a1XSbR9Ola9DMZX+Cdw4VEM3D5ckyMi5I29BiEZWgxztKkSOELcui1yStCDIll29I2M0227TtVgpUqvggpQIqU1tLlVq+zPtEKeJNYGZVMyopJ5ahKS4hQeEuXAtEZ+uy5cv06589MhzRo5TA649WNkAS55bhJFkSwxjKeJFbGnibWvPTUN7n40nOcvuMMErMqGMXqnsNqXTNv5hTTbZb9niJJxCCFpyrHiHFEEt/81lN86atf5dlLO+zvB+Z9RHImmn64XhKYEalLJOnAeWwuWfQLUgxsrk758z/x41x69SV+6Vf/McsmUdQFxEizyCzmcyoJiPVkY0kCviooq5qihJyEmBKVM1rrG0/vNRG4QPcia2trrE7HOGtxuaWQxKmT57hw9xs5ccdptje3wFpi6pGYaPuObARfltRFQVWOqEY13oMzHmsdsW8JISAiw+DdI9YxWT+m5yQRZw1EIBu9hNLgThBz+/rVJh+QM1EyNmtzPKZEHwJd22CNwVbKg0+h5a1vfycYYRl6in+eD+3X13e1Tp8+/eDly5eLv/pX/+qVv/k3/+blf9nv5/X1z17fdePvYOI5vlHx8gsLTYDMPX0uwI45mgmf//q3OHNhlb2dIxbjkte2DO9INRduHHLi5FkOrt7QF7SG/ZBZHrSkLiM7N1g++w3EGPxbvpfND/5x7v7Slzj8xEcYJ4UyY4SNtVWqUjf2YiH2kdC3WFEb3VGjDbBvfOMJTj/yPdzzoQ/y/GOPkaVjuWwV3N+22KogHM5YpoQNqnQLVUHGYUOg6Wbsx8DIzzm3VfB9b3uALz/1Akf7C+aLBZeuXOMtGxUAzSyxqBsW3XVOVcJ4+p0Ki4Tw4qXrvAmYFCN48EFO3H8/WAuLBYsvfJ6Xf/XXGE1HfN/7f5g1sk6fjDJwxFrq1TVSdxGfA85aetHWxyQKE1kSoqpCRlXFvBDq4U7ofEMwDhNrElocxpgonE5ijNUbrKr6dJKnoH57u6CNSQvarl8OCZ16kw4pgc6Gcd5j0Ih7I44+KLyZaCBAsH+oqA1BFWjOg/VqZQGcd/QhKF8nBkLqiYXFAD5lmhwJQAqRc9sbZAk47zBmAjnShURRlKpg01pMVT1dR+sykmssQxpuzDiy2kGTILZUC22fh8lor+8rC9lNyS6D9CRG5Ge+TN6cIqvnMG6wp1iPiQXQEqVHclLI9z9R4GIhZp08a6MzgH4qjFjI2pgxRutCaMBYcjIMPQG1DsJgkTZ6jhhBjKYNI2pvzSlhEJzVH8xWE1WtNJArICNGC3MkktNgX7jt6s1I9sMDnUFxKKjB1WFsHGy1WZWMaLPaGEO6Jdm/VewaQ5YAZrBhGG0AZmOIsUFCxmBIuOF1erKUxMPXqNc3tOC7/gz+3APKS2I4HkOmqRkUT0PgMZCHpq4lxE4n+SFhJVMYtfGE7AlZVZcRwXpHnZTXlIoKnyw+Q+gDrQAhURhL5QpttYagRbO19KDBJiHoBgUhRWi7jqadIX0iWMPNoxmro5rCJKLJhBCwWVPtckwDo8iwWHZMasekKpjWFdPK4b0QUqJ0jpADvRGiLbi6e0DbLjGskpJuGEW0AE5Jz02xjhQ6YhIwyniqx7CxWrHshd0rV/jWk4/xyDseIfYtNup3bY3D5kRC05n7BOLGLLpr5NghWFzpqIqRbpoMPP/i8zz65a/w9MWr7O70HLZRrf4WYlpCTIMlVQOBljlSFhWSCpahIfWR7Y1VfuLHfoyD/Zv85//tr7B/NKS8pZ7cCot5S2oXjEo3dL8S2RlNqiwKihpyrwyrUeEgRozVYthlwWfwkpmujFkZ19RVjbM9NkZWR2NOn7zA+Xvu5MSp06ysrICgA46YaNsenFUOp/OUrqIejfAerHV4V5BiT9d2WONJWTeKCUM5nqol0WQkBYxow3pgIvyPF8XplrIP4q37RIIcM4FIjIG+6ygKjy28Qus74Xvf9R6s9zSvF8Z/ZNaVJJStEHyFTR0TXxHa67zwpHB/XXHX+ghzAO0hvLgDb//AGdzVb7B9fY/i7Jj9/iqMZ4wqz8lyyo39S4RwgWs7B9y8dJluZ4eH7n0j/4f/5k8yXlHkyKc+8g1+/Vc/z31vLRnVG+ztTvn3/so6f+2vzdjamlFNKx585M3Mrs/ZPUj8/C/+OqdPbfKX/62f5Dd++xN87BOfoy5HRAM+RvrKEJqG1HeY5aHe94uSclwg5QqLPnBtJ3PyOLz/kXv42revsPP8gtRljg4PWD15lt0ucrC7w148YnXscIVlVGk99Sv/8DfY7bQk/cVf+nVmVz7KB/74B7jr4YeZjMc88D338n/664b9a1d55K0LxBdYX2oomQhhAY995SpPf/2bzHd/h61Fy4FLHHbrlH6HteoKoYssZjPq6SrRtFRFwbyN9F0ipKT2wKCNmWQ0YCL2EYwOTcQm5WsRyGkoNgQMBaSOmBKRTi2l1tG1LeO6wJcFYWkgNtikDZ9c6LOr61tS0NArJGMdkDvIFbEPWKPyqBh7TDYE6XG5JnVq9TOVQ2LP2miF7VNnmc1n2DhHvCh2JCsbz7pSEStkrCtooyr8EtBFx9QWhCEFVownBYONTkeIpscBEUdvekxy5DSDHEiuo7rnQVI8IHcWb0/QmwIjOnx1eEglSTq17pqeLE5ZX9oa1VonzPWpPjQ4RATCQpX6MWKtZ+iKkbNy3PSGqNbdlDPcQqBYQ04OXCZGwXqjNa5WKpAymeI2vibniMbV6nAlDy6LW3xcbapYMF5dHTEOw00d0KgqsCalwQ2h/kX93aIqRLJo/YJl6FUDGZszSE2yQs49on8MONxkA/uWDyKmo1zbBEZIgmwsJmfyYGs24geFYUlKBkdJlk4Za7GHbBC05jXZEnOLGI/p1aEhwKgsmC0SvqqJRPo+Y5NhaSK1GOXaecd8vsRbR5YMKTKpCpqgoRjSJ2xZ0M5bbOXpYkdtHTlH+tApR7pwuiewWjd4pwFWbYDdReDMqeNcu3QNJgU2a0BeyhkTkwbeSabpAof7R0xGB3Q4mibSxZ6YwCKDdRti7nHGk6Uj+QXntlfYnR8wXl/h8S8+xrlz53XgPagrQ4pglbPZLxb0h5eIyxmuGhNpKKsV/a6IfOqTv8dXnvgm+03Pjf05CUcnCYelDZHKl/jUs+yFbJT7GJPQdA0+GzaPHeMnfuLP8MSTX+djH/sYvqqpjA7nl13DfL5ga21CVVTcPNhnVJR0CJOyxFhDbDPBZryr6KXDSYn3sG4t49JzbH3KyrEJtm1pu4atk2e548yd3PPGBzhxfBuXFc8TxA54EmU2juoxYh1VXVN5T+pVbWJQ9TN5sKAXqjv1hSP2Se2APiFZHSCS0f26ZLLk2/WM9tJ1H6Rr4HIOPL9sRAM+UsYZQzUe8cy3n2A8XuP02TsZr2zSR0UTvb5eX6+v/+nru278vZYMkw6iLYlhyYofIemIqy9HpotV3n1ui7LoOVav89VLe5Sp5P3vOs/zf/ez3F1POBwrZjy5SGlL1kYV7F7k4MO/zGJccbC7x7mtM5QnTnNy6xhzEkNPC1Lk5u4N+hcuc+KuM5oS2wX6ZkEXA6tlwdkTxwHoDlue+PxXWKs833PfvfzEQ2/mv/2V38ZY5V318xl1YelImK4nNHPcMhOiw00ryrokxxUWTeD6XubkluE9b7mbbz9/g8effkFv3MseAKnXuXawT4yOvXSDh3L3Hcfsm08+xeUj/RBf+uVf40f+1t/m+v/2L7H69rfhnKNsO978ve/iymsvM5kUMF8SjDIZECFbz+rKGlZ0429jph5udloLGmRoBC4Xcwp3hwYQAKXx7C8C3nna0CE5kxP0KhYnp0wfAxqflbAeSJYsUSHZqG3OiCenDjHQNsqpMd7ptCdGRnUNYugWWRU1yWB8gVgts9q+0aK28GSTsM4huUMY0XY93oK4ISErZqJo+q8JWlAZa7De0TVzNjePsXX8NPuH+5i4BCfY5HSCTYsYh6EkpEhROrplQ0qJ2hraDDkXZKcsLQSydcRgh8IggmgSW7KGIAGbholdbkhxSd4YUZw4ST+7jJ1uYXBECoz0ZCwme7VCmgWGPBS4yk4TubVxUA4fqdN0XsmaHhi626m4KSWcrchJuMXeM7c6gkqIHopGtavIYLHECSFkVQSaQT1EJouHqJZuMQoIy7lnOHD/w0KXjBAxoo3RPDQmcopq40UbmkZQIPctxdvQ49TmoSYZ5qTFLlgsRrk+WEzqhwm9J9qosF/RzyFJcMfOYDfPIdJSsgGMteAVq/bmnMn0ml4rQlIZmaoVJZFpVT2ae0yKZNEUPpNV1WqNx8astpuUqSpP2wjiKkQSHWB7wVSqyKiypZc0hNW0uKIkhYhNkZVRybxPtF2APlGUJfPDBa5y9DFSGqvN7a7DG1VMutFYWZ7OE3NLVXhsgqMmcNRlTh/f5GjvAMaFNlyzfkM5JkLo1d6WMvuHhzTTVUyxZLFs6buEEEiUpFsFsBFC7imkIEtPtjPOHV/l2t4OK5urPPqJz/K2d7wL6LXRF3tMFvqcwHgK5wmHN3HjBbFVNk+WjrKagtQYb/jKl7/AJz/7RQ7bwNWdQ3L2tES88yzbDnGOusiE4FjGNITBGPqQ6PuIT4aNjRX+3L/5Z3n22ef5jV//dcQVVGOPwbAMgXbZ4i2cOLHNbttguh6coTSeqiqRnOiXIM5gvaeTiHEV3iamGOrCsrk+ZW17hYrM4d4u43rM1uZZ3vTg93Du/B2sjifYlDCuoE+JlCIOC8Yyqsdko2q+qihIQbEL1uimKIaEiKUotblujZ6LkjLQqYIm26GZbofGpeIKtCjOt68/vYh0iQhkTVFGhGRVVUHKain0jue+/QRnztzJeLLGdP04IbxeGP9RWnVpefWV64xsiTWO0jlKu4r3jjtK4caXX8VMN3hhtkNZlBzuHrK1UnHlyh5feCnziVf+M/7KW/+f3HH0HC7NaUpP72qK68+x1S+otkeMx4Hf+q8+y26z4I/9xNt574fexCc/+yK/9fHPUJWrnD/zHmaLbWJ2vHj1Jp959AluXLtBKgsOjw7YM57mpevcvHyVk6fPEmPAZU9vF1TlmMVyzvxgh6oqqesJo3pK32WcGJKJzJcNRiz+YM56VXDn8TXa+SEXd3d4+ZUdNpeRu+5a442n7uTUyQvc/+B9vHDlJT754R0A9hohZG18H1nDR77ydX7n05/n5B2nePf3vYcP/NAPcddd52hP1mxsOvBGMRWC2ndry/HTnktXhY0LW8i3n6bNLdPykLUTf58X+siNILRdIs4XyrjFsLN3kv/uF/9dfurHf5Y7Tl7FVo5Mpo09REVrIJncJ0yhavtkLDkKzmvt5V2BXrMWZ1HmW84U3qkKfNkgNqmV0yVCavB+RIw9WSLO+uGekDUNXtBmowxD1ghVNYZsaZt+YAv29E2Ps0LtLMfXjjE72uNoviC3wrLr2T2ac7RokBxYnYw4tjalqjyjsXL4jClJOYIMim/UqmsQMEtiXmCHZyypxNiM2DBgQCwJqNZOAZCkURs0YGxUViyeJAFnOyR4DdewBhnCWHQA2pOyYk1ySopHscrzyzEpUkRAJA8qNbXe3g4KEPWvaLCENmIViwI60HQD0ga4zR0OiFFnQ8phCDZTOaQdArFEdLgtwzBUw1v+8H3ZDGFo/dDw017GkEGgKJdhWJolY1Cetp6w3G4qpqw4DhnQDsYGcl4AAc0vEFUjZsFyCKlRd0EelOBWB0JDrAbQMcgVtSazAUk1mayMxjTHmIT1npsH+xweLMEWxCEkpYiaOH8UAy5pMFsMnb5t53Fev6eUE8kIs6ZVrEoEW6qlfTqtaUPEO4fJw3c+zLhygvnRnGldI8bTx0gqHNZa9vfmfM/D93Ht8iW6mDGNqspSRmulmBEx7O8vuL6zj6kjezd6OjPFYLBGG4OqjjfKLZeASSU2rbJ6rGbrRmDfGJ594Rleu/gyW8c3MSSMcYgtgUSIASEwP9xnZXWLtmupipqYHbP5TT712S/w5Sef5ajJ3NhpSFLQxUToeygdo8rT3VJbijpy+hAhqtjhzPlt/vgP/zAf+80P84Wvf53V8aoiXxBmh0uWsSWSmfcdR4sWVxfgPLVxiM8UeVCtlpm+DxRJ2Jg6xisj1ldqRr4gZqii5f4HH+ENb7yX7bOn8dFqQE0KFKUG8EmEsqiVQQpU1QiGACAxGeMZ9i6DriIHbdRnQYbQElMoQ1o5nZr+nFJEiMoZNUb3CAkkDQpAGe6TAsiwx8mKHfLWQk4s+p7U9xTZsTg4Im13OO8ISQeyr6/X1+vrf/r6rht/k9rx6sUblLbGGgc4rFR0wbBpDPWlHWadpZ2u89L1A7ZPHmO27Fhd91zcv8J8MOmFGOljyygZ2lpojeOOv/J/xU1WAFg8+glG3/yCckjCrXdp+dorV4gvXOfC+dM8/NAbKQuPHB5wOJvzwiuXsFeuAmAXC2KumM1bri4W3PfQm+n/0W9RZb1hlZXFuZq93et0XaNTlpU1vBvTtYHaGzoJHB0tQRy+mrE5rji3vcb+4SYvX73C9R19Y7nZ5/zWhNVjZ7jj5B087Hv47JO3j9n1/cXwIIHFMIH68G98hPTkU7zpoQe494EHGK9scNLqg0qsBmbkwd5gE0zqMcWkZHruDNVzJ+lfeh4AT6bKQrilCEmG+aKhHIDu3k9AhHl7iLfgjMN4CwbaPpByTw6oUimiQOlkSGLIyeK8sFzOMCZoimlIeFeiDBPBosq9ZtlQ1CXWadKs85GQe7yvCH0DNuGd12lpMnShUx6Fy2QTCQhEwfqCsirpGk15SjHR9Y3K042wZmtOrG1ycLhD1wedzoXE3nzJwWxOSpFRVbC5voazYIsx2QrWaMETRa2gYiw531KOZTCHpGww4tXWk2swCTFBG0ypIGewrmRy51tIEimqIbgiN1jbYwz02ZBNh7UtEh2JfihwVbWXhgTPzAJlw9QaxjCo8him2rdSybKkwRYMDOqfWwXvrafmrUYAQ5NWUA/jrWJWlXHcttkaKQDlZijPRgtNK5qAphP4W4UupKSkyVtLi2wt4FKK2lQaJncp6fGUYVKfsyNLGphBmRwHqwu3Go9aAIrEYYIoCC0pzzEmkv2gGKSEZDAcEJPyAW/x6LSA0WNgEJIEMtrwyFkQq41NTaw1yvUBrMvgHXuHhxzuL4jZkS30XaDyFbVx3GyXGJV94MQQuh6pnCrdvP+DjYFkjhaNblRCxhaqBllZqW833iQlnNGExdC1FIVnMV9SecHbcggkyTirDab93RkPP3QXn/7ko0Qx9N3Aq0kZ5xw5q0Wi6yOHO0uur16jCHOuXtnBj04i3UITlm3SO0UyxNgSTVSIeFphZS1yfL3jYOa4snOVbzz+GPc/eB8xdDhrSMlgXTXwVRzL+T7eGaarm7Shoa4n9NHRdod86Ytf5VOff4w2FVy+vqQLnmiE0EV66RmPq0EF6+hDpPDK0IxRfatGIlun1vmJP/On+fxHP8nvfOELrFRTxFtMzDTzjnmzIMVENSq5vr9Prj22dIxcpXZ/DyaWODqMF0KfcSGyMoZyOmZ7fcp0VNOHQDhYsHbiBO999/u46433MqnGSDIYA86CKyq6lPFRm/beO7zzlJUG36QU1BoHyoiyRq+h2CHG6fUa1dovRsg+kYbAGTdY329dnwyN+9tF8S1bDNyS/gK3rOR64VgjWDwhRELfIyQOrl2nthXjO8dYa+mT3FaDv77+5a9u3mKT3p+TS3z/ekkthm6tZhkC9bE1rknDmfGEmhHXFx1rdc1sFFmwxcVr7+SLN0YUJzf4xmVDec/dNFKxubaKW5+Slkf0seO1F17jqWeu0fSB/+BnfowP/WsP8uufvclh53j6ua/xk//mjNMn38Z/+f/5NHv7h4ivcK7EpUwVHMlnPvy5L/H8cy9is2GRe0KTsHZBmM8IveDGFalrWczmFOUIcWOSiSRXMo/w8s2WG/013nbhPG96/5upT2zytScu8dhXv84D99/Ne7733XhfUtWOUXmO+dvP8Y8/CjErPxQgR0tfjMlFzSs35rzyjz7G73/+UX7iT/2veOStD/HkUy/w0IP3q53W6YYVW+BFKIksd3eYmJ5pthx0Y745fxfl5EuIOeLapRucuGub0WjKbDYjZeHwaB1rPIU1pCxEhmd2ysSgg0RbWMIQHhCjURttH1S1PTQsrZMhXCmRQo+1lhD19xBVcR6TSutV/W9AKsBoOA/gXK2Wy6zNFWsMTbsg5kxV1QQbyZLx3tIkWIZMNMI3Ll4ip8RymTg4aqiKkr3ZISFqmb826Tg4nHFifUrhCnKpz9hsLF3qSVY5dNo0cyiyowejjaSkUjNy8mqvzEtI7cDj0rYF2WCyA3+MFA3GBg2AygaTA8YIt9yz6loAlVdq5EU2kHHkXENe/kE9hDbI9F7pIGdSUseE1kKaCnqLk3qLiaA1kt5Tc7qFVzCkKLebdWSNE9Afy//EAGZIHyVj3C3+GLdVeUrTNepmEIMxWVnHt7y8Cjwbfpu5fc8Huf3/6ZbNMQmGRCQQbYGJAaHXkDVjiZT0Q7Nl6HPqe9NiRM/XwbWj/423r6UYFd1jrMU6/exrG6uaspy03u1iZuQ9+/tzfO2IMeETOLF0ImRnaNtWFWApY63BOEeOgcoXiAiLoLbe5WJJlyJVWVOVJc1iQRc6qqKg8OXAPbRA0HCcDF3smR1kTF5Sj0ouXbvJsfFIj6uocjVECAJXru0xcY5qbcorr15j/USNywEZ2mdErVGtVAO3Ub9bXM/2WsXu0U2azvD1J77O933ge5U5WBeILSB2eOdYLCJ928J2jbcFqV/SdIHf/f1P8MyLr3Ftv+dgvkSI9FFou47KOYy1dH0iiFMbew6YJIQEJgbuOneSH/yB9/HR3/hNHnv8KUZrxwhFwbLraA5n9MsOawUrlmbeUJcVdTEhmwS5I0hFSgERg0+wfWyV6XjCylhIXUPh4OGHHmLr/F2cOHGStfGITI8JBiOCdYaExVpLVdUY59TGLMLuzZuKgjIG6zRU0hht5t4C7QhpuGYyIhlrNRzSJj0fY+rJ2WHs4EoS1fWaobBJt74jhrpnuGZvBUiaNOgtZEj6zZlz5+8iDNdh6DvKssTZ1/0M/yJWSom/8Tf+xtbP/dzPbb300kuVtTbfddddzd/5O3/n5Xe9613Lf/Lf//RP//T2P/gH/2DzypUrxXw+N9PpNL7tbW+b/ezP/uylhx56qL31737pl35p9Wd+5mdOvvDCC1UIQba2tvoHH3xw8ff//t9/ZWtrK/6z/j7GyF//6399++d//ue3Ll68WJZlmd797ncf/q2/9bcu3Xfffd13+zr/oo7jH6X13TP+ukBYJoqiZ+kz71kvOVeMWKw7bJGgqZmPEk17gwt3nuDGLPLMazc4ubLBbH9OHimnZLe19NMRr+wGzj58F6Hc4PDv/m2K6YTq+3+E+m3vo33i81QvvcpOr9/dAsNn7rrAvt3G5I67DwN/8kfez2i6xi/+6q9wfStzd73Kh77+DR4/f54nRuv4GPnG+hb5ox8ldZr2uUwJH4B+QbNoMEVJ6QrmBwfYtEdRTemtpydhyppFFl7d7bh5bZc3ntzig2++C5neh3zrGlx6mc21KW//4+/nDQ8+wrQsKL/9wnccM8ESh+7lLfVFHE25dPOAVz72ab721NO84+2PcM+FO7n86iXOjMaqUoIhsdVgXEFhgMWCrllQDN+YxITJkcLq7925vkd3ZoPjhR1eL+C8NoRKsYAhi2XZtYSYNXkVcKWFlPSmGhLZWg0c6PtBbq2sFOtE2XRZb7xmKNoymeWiw1iDiNpcteBRW0G2hVoLohZRxnhEKhj4QGR9QLfLOfVaQXaZpm81QME6+jBM3ieOpy9fwhrL3s6M+VJ5c9f2d4nJQ06MCuHE1iErtef8ubNQyu3CLxlDzAGTLcYo3FnQiXVOEYwej5h7nZRmbbCYHDUMJCvfx5pMyhaDI5kx2dTEkDFWFZWZgAyQaP5QgavKuqh1IB1ZVK1n8kiLVfLt4lOLyluKS6dFpcIy0CKX2xZibbJpMEcaOCUY/fmU0zDVZoCG5z+wDQ+F561CV9dQ6Gb0yau03T8odEFViGaoZ0WG10vk1N0udnMyMDzYh8yu4XPJbWej2iv0b11AG52SlcmSMuR+mJYKSZxuuFBrjzZDEynfAv7K8L3J0LwUtRbEW3+naX3Oa2MzxMja2grROJq2R2xm0QbGVcnscMEiBtKoUnt4G1Qx55QTFLuADEnYxqhlKxGpnCf7TJMDxEzf9XRRFbejoqLrO9p2qQ1A5wf2zq0k3Y6uD/jS0Mee3Zs94wcC9bjgtWs3GBlHzif0PBJNwAsZDhdLvvGNV1nZGDObv8rhfsfxc9vYFAagsyeFTM4JZ0o9V1AbdrQLjq+P2T+4Qb2yxle+8DnOnD9B7QwheXxdIdniTRisIB2zwxnHzh3HLVQ127SBz37hszz29WfYWcC13R0GzDOzZYNHqKqKtg8IjhZLNgIxEvIgXg2Buy+c4YMf/D4+9lv/mM9++lFGG9vEsqAJgW62oJ0vESsYMTTLFhMyK+Mxti6RviVaxzKAZYmIp7TCpKpZXz3O2tjiTcLZzOmtbdZPn+HM+fNcOHsO5wbbfABfqmKWpDiCyahU/IR1hBg53N/He/1/sW4A4zuS6luGa9Ld6rTjnP+DaytnTFL1QcgBsh82ffnWxTA09LnN0dSNoRkm4poafcvyJDEDqsDNOVGVY972zvdxKz9b0+kdXf5fZE3zR3KtjKecPXeeRcqMl4kmHzAJkXan4dnKctxH4ixyVAhLDllQMpElJ08L9UJriIPVgutvXeN8/yauLc6ytEc8tyx5w7F17nnAcufD27zy1GVOPnSW9/6JhwG4ecORlhss44QoK3z0957ga1/6OO98x79Od7Lj5Suv8q2nP8Us7BD2a/zKfTz2jW+xc+US3fJORqNjrJQlpzYnnFtxWFPhXeYNd25xx5lTHF95FiI8d2mFg0Umdt8k5ZK3v/fNfM+F4yx3d7n+ykXmm1f49krJV774LN98/FU2Vy0jC13v+Opza8BPIaln7dgV3vrOfwdf7BEw9NJTFo4uW67uLvjb/+V/x+nTW+ze2OdP/OgP8RN/7sc4trFFshmssL66ympVkWNCUsfY1rzUnOQXXvxZ/tyb/hzZPEW7DIxHY22mpY4QdC/ijXJq1XwqFNYNNjXLaDqB2NGGgMkwa3p1RYhQFCU5CtYWpJTpo3I5xQjGWkLOOhDImoKao8NgSTHo8+tW01+gLD05wWLRYGzEOW0KGlcQcmbetmRxeGMh9pRe2JsHnnrxOq0pGDnL5sYUP/Xs3jxkMl1HpGe5DMQUkWzZWFsldkGDJQYrJZLIaQGasT6o7AxCQYo6rDNGh7KSBHCkLmByD1aREDZ7sgQMhjZHrElItpBbkhT0RPxwn8xZ1dQ5q2I6ozWrcR6REbFNkFsYvgtt9IEYD7jhvpjJaKiK/KHGqRkaYsPdkEQ/3GMHG+Jgt0Vu1T7DvfdWmBL6R7dqFQYbYk4ysFdvWYa17YfRJo3+oB0GjXqPTgyMZrHaDEFD2MTcmn4ONZkZhrVRMMmQC6uqvJjIzpNjp/9vDdk4xQHdSjge1KdmCKIx3GqogohTHaqzeFeShnA2TEllozLQvSCSqcVRGKHzHpMzFqGNHb0krYVCgj4qKgjBGUvfazO3WS7JIlhnsSnrIM0aTX8ls7qyyu7hvjqXjNHwmlv/zUN9bCNNKxzszdk+vsXN/ddwpQzN4qjPv2H4GVPm5sESJ2vc/aYVQoJ2dxeJhmRUNRn6SIyZnCxGKjILKjNhbQNG1wVrCr746BO8451vw9flcA4mQt+SuiXamMrMZ/vUozWaruO3PvwRvvncRXbnDbNZq3gkEyFAXWioSu4SyXiaNmMceCwh6oP++Kl1vv8Hvo/f+PXf5rnnX6Le2sZGYblYspwv6KLWozFHSJa19QllXRMSVLbASaZPiWKlZnuywsb6CpM6k5sjpuNVHnzb+7j3/vtZXTmmDGQ0zCYYSxZPUZa4wmJFkKg1TNd3WKOOnNWVVRKqFLUDC12GNp0GoEQODw9YHB1x8uRJxEbSsIez2WoWQKH3qzzs+bCWfGvfYmXA/shtrMmt2gfQe5QoX9MUnpGd0DUtEgMmRZZHuyybGQd7+/R94qHv+xP/czyeX1//lPUX/+JfPPvzP//z2wBra2thc3MzPPPMM/ULL7xQ/o81/j772c9OL168WJ48ebI7fvx4fvHFF+uPf/zjax/60IfGL7744jdGo1G+fPmy+8mf/MkLfd/LyZMnu+l0Gq9cuVJ85CMfWd/d3b3U97380/5+a2sr/tRP/dS5X/iFX9gCuPvuu5ubN2+6j33sY+tf/epXJ0888cS3Tp8+Hf5Zr/N64++fsSpT8JaH72UeInHWcnwMK/2CfFXYu2ODeTEntD1Eg8SOycjxVBMpJ5FytSAP06ddL8S7RhTtmLP3PMxRs2TvuRe559gm3Wc/zugn76V+9x9Dfud38cUtYF3BfQ/cy2+/sMvGxnkuypz/6pd/k/tOnefue+7nxNkZ/ZNfA+CVwyOuziLrpzb51o19Ln/1cWIXiTs3qKuKzXHB6eMr3HVsxGi8wqSMfM9Db2BcePZ39kgUHDSBg6PItWtXyBQ88NBdvP+hOykkEOdzbvI4/Brs7c546lsXeeXFXUZ+xvHLc+78Q8esCD3J6SEuB/GFCT0j7whlxd71HT7x4Y9x8cJ5di++xv133sm9f/rfYH3rOIIS4Iz3bEwmHCRtiJk82IxRTp+xevNs5h0b01XS3hyAEDtySHhTICarzFwM1nhlgBFBMpPplNg29CkiXph3YdisWqqq0FSspI2mtulwPtN3HdOVFdquQ8MirDadjCMGj3eOnHqdLJmhIJKMd9roaJsEouwNYywpZlxRMVsuQSy+qNX2YAL4zG4Lzz1/nWXIjLxjbW1KY3q6oyUrq8cIoWE2D0RjmS1attfGuBRZtoayVi+QIMQ8x9OgsrioBaPR6agWj4IxkYROmcDp+4id2muHsIhb81uALBouAD2BRE9BloBXCQI6MU63Q1W08acT8qIoSX1BiktIYVDLDQWsiAK+cWj6bh7ec9LGVuYPrB633k7Wf5OzUSVeUi6HcsaUx6G9Bv0Etwrd2z9+uyl3q8UoQ9E9TPn0p7TBMFh9taB2t0HYOtsLZDSwg+yGBkYgDw/4W+3AZCBZGZhKApI1hUx6DbSxUSeb0euhtDVYTw5JG5/iYHgdDUdwgNUpI6IKR4lqVzWOJAHvDJiSUWmQHMEbxGZqKaidozeCN9DFRIyRNnSURUnhPE0foA+kmDDOqgU2JbUPxR5nDZJU6RU7DZZo2yWltVRVBSKEviGi57sZlLDOahBHThksLOeJxdGc9fU1dvavMx77YXqqxz8GtbtkEeYxs7+bOHXHBSaTGeKj9rCzbt5A6Ds9J0KwGONILPFSMZ0Kowq8VLzy6nVeeuES97/hHNZromIfAsSePnY4YwmhoQvKBiInPvXpT/DVbzzD3rxnd3ehzXTTq/VEwBeeFALOlcw7bZE5EczQVM9ETp7e4Pve+y5+56O/x2OPf53x8eO47GhDoJ0vWXQtSMJEtY0XhWV1c5XsLJIctUsEIp0x+NKzNTnGsY0x09qQ2kP+f+z9d5RmaV7fCX4ed+99XfjMSJ9ZVVm2y7SpdkA3tmFAgGi1hBsJSYxGiAVmpRE7Qg4djfaMEHtWAklzVmhZOVjQSgwgJGwjoGkaaFtdXd5kpfeR4V53733c/vG7b2Q1ZxCtHQmxR/X8UVVREfHGa675PV9rlOHsw4/x4COPcPrMWWzRk3M+tjSxIWOliMMobGnRMVFWPVJn98naoFJmOBgSowylhS4kJL5T+eQkitwYA/V8xnAwIBsB3hdAnU6GmL1kf3XWYFHIylCsOuVfVjIUq+68NcYcAPMSfp/RRqG0pRoO8G1DU8/BN8QYqes5TTtnOpHr3ANv2/wP3dbfWL9Pa2/S0sQtzHCAMSXPx4oHVysqP+Pq9S3s0SFHNpe5tDNmdGSNw6eXWb98C/upS6zvy+e/NugTd8c8+d98NT//S4qqGnKtcfz286+ycvwJnjy2zj2PHEEp2Lo95oO/dIs/+sdOEcKpg+fx0qffCcCP/su7z+0rv9Jy9MSvcn7vXXzil/8Mj3/el2EzXLn6N5hO3gTAb/0ur+vH/uY53vRgn5/4ufcxnjv+H3/NcOv2TR45YbChwZaWeZ7jp4mVouLZczdQ1RKDIqBqz4TArJa/EVIAWmy5LwRasp0SP6GTJ7aJwo149eJlDJp/8v/6Z/zKh36Vb/76b+Br/8hXUZYlRb9HtpYmRXqmhNSFzANlVsxUpG5aZvWMtvbSjtvNaFprlNUUymCMpvWB7DOuLEjBk3xDiomEqPOr0pJSEEubdmiTsSqjVUVdtxhjQWVs5YS3i5pMxJWBHGp0FvAjpDlaFeQs1/jgZ1SlglRIppbuZgwl2cXWQGxbYmrxZK5v7RF1D6ugqT2TnT3WVoesjgpCnnP2nmMs9StMSjhr0EVBDA05BaBEsnJHaMpO7WYga4kF0W0XwwJgULEiqyGYBtKYnGZine1UPTJXBoypSLovRWkhY0loHVC66khIj1bd/Ro6paGFXHaqugkmtaTu+wvyI5M6pZ8ohCQ6QR24CLRatGrk1x2lmRwFhAHdkfFSRJFe/3MLt8KCsV38lwT1sZhe6FSfQs5qdDagFrNdBEI3C5nPOldyFuJTZi0lgu6chPANSnIjtRRMpFyjds8R60TWER0aSJEYZuSdT0u2sbISAZIlKzZJmwhZNyIeiGJdTrnFRyGafawxSpG9x2pF0rkDZw3kTNvOUVYALBcT0Rha7zFFiW98Vyons2JTNyirwTiamEk5MBoN8G2NKy0aaBpNiJHd/X2578XEdDYDneiVFbYsJd87F1gqmhy4fG2X0/ed5IWXr1P0ulZkbeT1RykFjCmzPd7m9t4uJ8+sMd31QuJZ3SkJI1nNCSmgjSMmAQALm3AlDHqJWTNld3/Kiy+c48m3P0EIAVsIuexDizVO1PPzfUiZn/35n+W5l89za69h3LTU3qOyJaOwRmaaNgVyCAQloHcMgeQjOmuOHNvgve99Nz/7s7/Iyy+cw62sQMy0KjGfTkltpHBCGqJguLTKaOjwITGqSmKMWLfEieU+m6tLcg4VifXVI9x7z7t58sl3Y3qa2MwIzRSFxRQlhbIs9UfQ61FZJY3aITGfz8nOSHnQQumaM2gwWjKyhaDUaNPtGjRcvXaRpz/1NB/4wB+j54ZYWwpQmVtee+VVlpdXWD+0KS4zre+eV91eRR+4lro91OvAd7WItcldIqc2uLIiaQcZekWJDX3KpWV2d3d/l7vSG+s/1XrppZeKH/mRHzkM8L73vW/3Z37mZ16rqipfu3bNzudz9b/3O3/n7/ydq48++uhrZVlmgJ/+6Z8evf/973/g5s2b7oMf/ODwD//hPzw+d+5c4b1Xg8Egvfzyy88Oh8OcUuLDH/5w/+jRo+Hpp5+u/kPff/HFF4sf+7EfOwTwD/7BP7jwnd/5nXf29vb0gw8++OjNmzfd93//9x/+wR/8wWu/19/5/Xsn/2Ctzxn4uzOeEVKmXF9j9dAanxnf4YTpc3jYcuXKmKwmvPuhU1y+cYd6UGC05+HH7mP1Q09RXKuZRjnJB/2KnWh409vfSf/sAxx68AHOf+zjXMueB75S0Pv28gX6/R53Gvlc7n3gIf71p19murNDoR33nDnMV335F3DPvZscPXOSGAx7v7IK//yfs3rkMCdGS2ztjdnb3yHMA1XPsNIzLC07zq72WR9o1PoSbYZBykzPn+PE2eM89uAGSjuq0RJUBeO9e7izvc+xe48wUiU+OV469yx716W9d3t7zEd+4RNs9IYM+4GTO3t84+vf3BwYenndvS6PYJAEhEvJQxD26vLTz4HRfPCTT/G3v+07+La/+Bd573vezWBpABaqpRHJGZTSWNUNqUpBEw/C2xsf8LGhrqUJuXCiwHOmIJmIURpnDSF6gg+URXdBjYncZakIJR0oCgUHGSIWXShQkb41tG3GFUaAnw7II2UUUh2PnUuGX1fBqqgBS06idAp+jlZBygeUKG6k0U2ULVlDSl4At9xijOPa9W2mwZGsZToLFGrKYCANYbt7e5w+tc6D9y5BW7PUrxiMhjQYVJ6RQoEtMmAwaojJ2+RsyMkhAFxE6UCMkRS0tKLFPuRlsnYofR3iHqRApMFRkAnELhMm6Upy5jKY7j2MqgHVl7czt90mXoZArQ0peXI2pNQjRY9K407uLrJ3rSUXbwESZkQ1KJ9K7CweHbDWDbkLcCAjVhOlpeGLpIiEu6UB+bPtf6+/IX/WoNsx6Pp1cvuUpG1PY9DaSFB4lpoXlO8Gh8XgnLphVHWKx4wyHYjYvS6DQrWKpFswBUZlPJ7ctORyJIxk8JAjUQVSfakDZDs7y0JdmBdqRo9SXtS1XYFKSjUhDlBa08ZaXoePogJT8r7kqNEJmtmUnDW2Ksmt7/LxNCFHYhOxxtLERAyBrKD2AeU0SllmIRBzYLQ8EtC7suScKUJBXdfEztITIhBk6IypoT9YIubctbc6ctbMfeDa9QnHTxzn3MVtbCFAtcoKZxTet1hrUCoTTMuVa9c49ehJltyQvd2JgMa6RKDblpylWRcMIfXIUUkGTN+ztOy4cfMmM695+YVzPHDfPaiUMNGDAh89KbZYW2J0Zr6/Ta+/xL/9dz/DJz/zMndmkb3ZjMZ7SKKEU1pR2bLLyJJoh5ikbdqnSPRyvG5srvC+/+bL+NVf/BU++olPMzp0mJQhGKh3JtSTOa6QzTgZXNlnfW2JpBMkR1kamlYzKPqcXB1wdGWJ3LeEZopWlvsfeIwv/rKvoljtE9o5FihTokFI+qVyRK4qBoM+RskGbLo3oZ7VFP2qC7OOcsxqCYxHaUJcuBUWRTOQVWQ83eUXf+7neceT7+Se++6XQik0ITW08znT8R794RBXiqKCzt6SlShUleqUvInfsXHt9pmoTjkS5DztQsiTMiQMrmdwvZJeqKh6U27f3vpd7uZvrN/vdahfkgcle/sNs9Jil/uc22u4dyVy9Pg627lhuruLGaxiKsO5l++w4wNvPr6CSt29o57z5ie+lB3Xw8eMiQ2HTp7gY5cu8y9++Gf4yK/fR06Z2WyHuddQPk4Ih9nc+Cl65R3e9OCX8LO/ci9/67v+De/56rdy7jMfxhbw6x/9IHow4uSXB8rqr4DuM55PWV7+EGsrL3ZgfcQWjsraLgNNmqR/+N+ssrEyZHPtNkcLzd/8+yf43371T/GP/tb/m8ceucqVa1e4sTPhqYuXuLo3pjcaQlHh44zdvRlRQzo4nyzTyToXXvwWTpz5ZxTVJTSZVgEmM08t81rhqgoXE3Z5hSvXb/L3f+Dv88jDj/DI4w8xKkdUyWKaFqM0hnSQe6wUWA1+MmfeBEIr57WocQCVMRSUVogsrRUNXmIKfCBFybclZVJIuF5JOLh5OnLyotgtNFXpSEFafVMMWG2FHLJasvS0E9VbFhVa7LYg0USMthS6IFppm1VKMZsG5vOGcd3icUynDXuTmgD4kFAmcvTQEicOHWLQdxw6dIjh0giXIsHXNE1NzpIVeOXqVZr5nJP3nOju1Y6Y5mTT5eCpgKjrHSlKdIFVitzVe2S9Q9YNVlXEi7+A6p8WK6AuybqPsQV5+xlsyPgik0IHmmnHIsomd44GIeoSUnhhSBpinGJVjUoWtcDOFCidoSucEoVfB5p1M2jHQh4Qmmqh2ssyz9BFnECEHJDM47vJeCD3aEOXN9wRsMBB+UBOAbWwE8MBgcXrnC53C0eM2J5V5/7pVKDypLprfhJNYtIeVIHOSt53HzAX/jUpGJROcoyajAktKkusjhSgmK4NOEPKnZpyESDYlXmoEqMVUSV0TviQqGwmJYN1FSZbsoWkIn1XoVqZMXr9PrN6RmVKikKaaJ21B1mGxili8OQcsQOHyo7QehovET4mitJRawEPXVGJMyYkMJp6XtMvS5kJSJLrXVp2xmMeqBKra0tYJ2o/hRbrPBBjK6SzHXDh0h0ePHuMqZHSlqxSdyxagjdMxjWjpQEpdXEwOdKvSvr9VcykZXUVfu3Xf52HH7ufqqqwse3MKuJ8MmUP7T2/+u9/nvMXLnJ9Z8asjvho8Uqs7IURxWoTJRbJKyDmrogkEaPn0MZh3vr4w/z6r/06L527xtLhdVLWTJo5zd4+WhdYnQkEXFXQ7w8YDVaw1NhSsdQv6Zc9hstL+HaPHGacOn0vb3vHW+kvHaGqpMSxHe8LgRFayl7FymgZo62oK60i+5aI7Ieqfk/w3rZzpSXAaCmecxqtC5RZgO6SuWfInDp1hs3NY/SGfdG9KskmH9+5zavPP8Ojj7+VSbVNv9enqvpyviDnYE5ZzkUlEoK7qlfJAVcL239WxE55SBaBhQ/SCh+iovYWVa3/x92E31j/0esjH/nIYLG3/O7v/u4bVVVlgGPHjv2uoNm5c+eKP/tn/+zpl156qT+bzXR+3Sx75coVB/C2t71tfuLEiebKlSvl5ubmm0+fPl0/9NBD8w984AM7X/iFXzj7vb7/Ez/xEwfP67u+67vOfNd3fdeZ1z+Hj3/844PP5e/8p323/v9nfc7A37GVNWqrmO5PmMxrjpxZ50YTWeq1rBT7XN3XPLt1g+kUirLg8OYy127PmA37PLCqSTflPVbes9Q/jl07QZpOKdbXeeybvpFMZnb7NrNf+nnmH/koe9mi+gJrjacTLu9fRxWGY/NX+a4//CVUZszNl5/j8MbXcPncc/irL3EM6OXA8uEj7OzXlLYkuoyhwaqSdrbPa/vb3FoesLa0hMmK5Ap29zyXbm5xbH3EY489yrFyRN3scv38TS5deJX+8rvRayNu397BHD7NnpacvaQtg+VDtC5zbXcPe3vyWe/Zvz98HKvgj15+lY8vr/Plt6/z68uHeGVpiWwT9axGRYepNjBNTTaWvemc7/mev8q3f+uf4lv/3H+PdYrl3jJpKtl4qlOZFEaYwS7dhti0TOtA0TnbW2+kBTVnyBpnNaUzYm9zhnbuCdHT+ojKApbkHAk+0C+HxNgSY+RA1pWzZAFZS/SRFCSHAsTaEdoWXWl0YdBRhqQIpJA66yqSDxI8vaJEaWHhUJochUms60hSmhhgbzKnSZFJG9j3CVdoVitLvywY9AuObq4zGPalzW6pB521U2vL7u4O3s/RCtZWhsQciakSsDEDulP9IZlti8w4pTMq9SEXZDUj2QaHIk1vYHYukBzoZPC6QutAjpGi9XgNPntclsHK2EoGvc7OYq1CZSsh0ipizAClLSG3oMfokEnq9Vl6CqWzAISd0i53hRaqs5RIvoY+YMsWJFpeKJGyEvtOFhuuUgJaHAysdD8PnY35s8kbhcJogRpTWFiRu9/PpgMiZMhNOYolOoM2jiyJ1GJjBbTOJATgWNiayV2pgemCxaM0vKXxZfRLPwj1nGhBRQW5IddjdPZoAtkYdEKUmcqS0lwYYRY25W5jkQ3aFtgAdfaYnIlZUepIjBqnHCpq0JpsE4UrMMkyqef0bEHhCsJkH1sUooj1AWMMRVkSSGJ9QYb5WBlslizAWT2lqEqcEsWktY62FbVXUZV4H7DW0rae2XyOshBywqeIsxX04PrtWxw+ucJgWNIbOFEnoom+IYdFRmMmG83WuGWyO2FtaYhXGpc1WTdoI2x0jDCfJXqDfrdZMoRUY3SiKhzaDBitJJ59/lne+flPcmhjGWMMqhugJVvJ4IqCejrmwx/7GC+88DLb08jO/ow2aRqkIboqHFoZZl6aLX0MJO8BS2g8zkKMkaOHD/GeL3gnv/SLv8qLz73CxuZhmggxBprpjJCkJCWrFleWlK6kP1qmXxiiaim1pSwq9OoqG2sDKtVSkOiXjgff+gWcOvMm1jbWKbQiTqYURuHjnIY5K8ur9Pp9jCswVU+Ij9aT0VRFRVSZpMSSlGPuADdRLlgrkQnaCBivtSglTLeJvPfsWY6eOoG2UpAUVcSozPmLr/DyCy/xliffwXC5pVdUWFN0CtkuiiGlu2y4kk0oB5vMbvOcogS5a01IkttkjEUlRdN6Gg8+atrcp1o78bne3t9Y/5nXCopv+pYP8KufeIlPfvhDnD1xD8Vq5OJWJBroGcu8v0zMM25emDHe9tx3qOJn25bJIckJjsUxNp98N5fPt+zs73NoYBkVJafuf5jXXoDXXnwFR82+KsjliKwk9/iB4zX3n14GtQfAxvqEt7294PjyKktLNS+/VnJz5yblkbO89Ys2uHTuOJOZIoU5mVcph5mcPUlZIhqnDUkptIVpNoyv32J38jQxV8zmUvTwD//lv+fI8Hn2kmHa1EQiKMOwssR2xv6dbTmWQ0Sbqxw9/X0U1Ra+HdLEkmlsyaHFFRq8qJc0QJoTWo3DUtOggmJK5nv/6l/j+37w73H62GHUYIlIYpihzgmzQNWSwubMflYMq4JYJJp5wjq5XxkVIXpCBuVENdgfDknzluhb5kkRg1jalkqDU4lIpigcwdfkFLmzM2E46NHvD/CJroBC7pcCMilCiJA6m22STbFRQCFq4KbJ3PY1k7pmPPa0s5ZJ2+BVIjaKNidMcnglKvPNpRFHDjkeevAMJYlYe1Q95dbeDrM6cOX6TbannrlP9LsW1eQ9m8cCKEUTIzOlUAyQ0og5SiWSmoFykBrQfSCTTCNK5S6LNN34RbQVtV7MQbC1nEhW3BO6LQBH1l3EAVbsfil3JOSivAySdZAKXMwkWqJd5AbmAxvCIh1hAeotXAYHM0VelHrIrKcyKOXIVoAxkjSzEy0ZT9QWnQ0mZqKOmG4wyil1pQSdQjsKY6k7lZ9MYF1BU2oFlEwKZUSZji0/K89YEdAmd5HEClIi5oTSGSM9y4DEnYDYQ5Wfy30+K1EPxu5nCJLmEnQXNREBj+rakHOuxaWTHcpCGwTA9LEh5wFtbqXxvWcYN4FkM05r9nxDg6LSrsunlqK4wljaGEkEoisw2ZCMonSOyTQRYqJAo22mKCvSTLG0tESaTdgfz4lKkwtHoTTeNxQhU2tN8C3oREwarwNlR0o3TSDstxxaX6Lev4XVouoMyhBCV3aTNMpoLl25zp2tMySt0K6AHGWWyiUew+72mKIq0arClZlEojIlx46scv3WTdbWltm6PuGl557libc+SUglwe+jco1KFZ7IhQuv8PHnzrM90UxrT1DiwvEmMjBODqscsCHSEvDeE6PBRkdQnn6/4KHHH+T551/gM8+8Sn80ZN4mQqyZ7ddor/C6hqQoiwHDwQq9ngXtqfoFK72S4aiPyZEYpzz8yGO8+ck3s7G6RhsiSVsS0Iau6KfqM1papdfryx4htMTgiTFhdCFlY1rmfh0SdcqQFdpkdm5d5dqVmzz4xOP0h/2D4zfT7R9yZGV59QDnhoRKcv4PRht8xfu/npQdn/ytX+XBhx/BlhU6K1SMGK26ojOIWrIzdV6U6gh4Lph1vutGUh1I3uXU27IkhMQghoM82DfWH5z1/PPPF3/8j//xswuV3SOPPDKLMaoXX3yxBxCjsGz9fj8/9dRTL/zQD/3Q+sc+9rHBK6+8Uv30T//0+k/91E+tN03z2rd+67fu/Ie+//q/+dBDD82LovgsRcvJkyfbz/Xv/H69N3+Q1ucM/DEe81V/5Mt59co2T3/skxR5iV5Rc2l/TDUoKdct2yHQ2xzSqsC5K3vcvnydL7h3wG+NPIeVDK9ZlZx40+Ps7I2ZTWu2/tk/xQZ49cotXvvUxxnO77C+0ufObM5KEDBib3eP+8/eS+/GNd774BnWXcOnn3uFtfUHmdUldy5f574VaQ2uVOL+Bx/D2REXL56nafaZ7d6k8IrecIRymvH2HuN5wJE53B+yl2v6vT63Lm3z4sXfQheaou+4cvka+3Xigy/ssTHsc/XONvtN4MjNa3wTEFCUNlHPZzSzRX3J3eVtj1kUJG7cATuTAvYMKBxzIzkqOiuq/ghCIPvIaGmFf/Pvfo7Hn3w773zX2xgNVzDG4dqWssv00zmhXJakW2A6b1jRiBoP0FZjCkuhEj6CSZocJWMr4Cn7fXITMCriUyImhcmGnlMURlNHQ1GURB8gRaZ1Q0oNK0sDYtQkFaR9VlvQCSsRjsRoZMBLAR0zFicWjELTq0qSt7RZMW9q6ibR1oHJvGW/nuCbzCxkyclpoE4tJjv6RWZtZHn0kdMslwU2Z1FWOUvymavXr7OzP2Vv5uk5R2ga9iZTjq8PWT9xjJg1AUVQkLPk1mRasYF2ZSYqR7TqC5PKVFjDnEBV5JsfIdx5CmxByIGUShl+tSbOb2BVgFSSdZAAbGXRWIzO0NlnhGVOKKRIIisNQQbopLuAH7oBd8FBqwxd1s4Bi31wJ053pfmLAg6lZCDXTlj7mEQppkUZmHRnJckaFWXIXGw8cgeaKb3IFluAiKL6k/8n0cmKJHZaZRf3ZVLScoOGAxBRmqFlUEWLnRGFsLtdgm9WBVpl0IGsSkxIqL2XJf8NRJ1pDN1oI78fMov4bUUrtjBlRSkKkMSqEFUS9ttmfBI7Se3nZBVRBhJiIXZGM88Nk2youhIOZy0xJVxVMih77McZKbfYsmsxVpqqqphMpsToqfp9FIlCGXyMwnS2La2v8RFU4VCAKyzGy2daZ1GDKGuIaKJOuJBRzjKf19ikOXL4EPPxrc66jADEWUAiCRV3zLPi5rU9Dq0t4ZuAKjU5RRqAXNFEx872NrbqSQaeE7a1Vw44tG64dnObqmiZ7c559ulP86Xv+yI5dLQShUPKaGNpiVy9eoWPP/0cO3PLrZ0dsikgG1qdKI2VbYiSZr0YPEmJbVpnRBURPcOlPm96/CE+8+mn+cSnnmF5aZVWiap4Nq9JkxoKQwydpdr1WVoaYpzFOkWpDWujZYbDStrJ53PWThzhkcce4J6TZ+ktDWmTpfWeRCLnhmxKBv0lRktLlFWFRmzYKnQ25i4rSRlwSQZP34au6S+yt71LzoaVzXWMdqJWyUrOY2QbuLa6wbvffahTAMpxb3CkBEuDVZ548h2sb5zgued+mwceeBPKGgm8TknULuLMJmuxCZNkO8gimBNRieScpVG46wGJKZFUAKdxukRFh9Ze1IpvrD8Q662PH+PyC0+zage0tse58zc4tGqkzMq3bNx/jMvXtpiHltT0CWRevj1lZW2Acz0Avvyrv5rsFaPRCB8j+9szyiMDBiPH6Ufu5/ozgWHY5hQt09SSezf5I1/7DI/dex8rheX51+Qm/eEP/QZf+sce4tTDj/Pcb/8SOzs3mM4abn7qN8ir9xDtiM0jJ7l92ZHDhHreEI2i0AbaRFMpnJbW+aShDS3JRubNHJzMebbfY1Ia2hopwqojbTMnjKe0KRHagHWSNdXMr/Lmdz9F2yqa+T4PvemvQ5DIjdB6Yh2JhaHIEr8QsxZFTQkqJbJSnL96g+/5C9/Dn/8L305jDJMzp+H8eWxT4zrZWOEzE6vJVuPbiLHQdwqSAINtgBgT3jeY4HFWU6RIUBFdgLUlvpF7ilznZAYIoUVpSMlgTJ+qNyBFaTSNUQCp5BPaKZRKB8r2pBK20oy3W26PPeMG5nMvSm4STUy02aKDl2u2HaKGmY0U2G8SBM3nv+0sD5w+wkBXjOdT7oxvc+P2hJ3dmqYJWFuxM65RrsLoREuk8YFCa5ok2cC2G0+SVd18pCF7lNUoHcmpJOPFdZC0ZJkiDgCNQSUjpKkqSEZmSZ09GQeq6RwKTpRbpu4sr7FT4gmJkY1DqSE5TyBPZL49kPssQL3u55U+KEQidWVknWHlbqVup9ZTC/vgAkjIxBRQGmxUKFWhoxcHS9LdVJFAS2GT0p0V2cCiKVflLj9ZpOCSKdcVl+W4KEjJnXujyzc70BWmzrXQEbxdIYrYh60AMFrmtpztwc/K74Xu56LMmEqhtCKlQAwBYwohsnMhTfPZk5LHKE0bFA5FoSKVhv2gOX3qAT780U9gE0x9TaENqYngLDkkgk2EGIk5oQuHtQaDoleUzNqapLyogQHqlmxgGuYUrqKe1WQUZb9P8uKQUUCbckfEK5oQaOsWZ/vYrFG67VDdgqu3b1H0ClolzpwcY0d4yr0WEiZnfIRzF67z1nc+wW5qyCRsV77VG47oPfgEhZrQNnM0BTp7Ygr0+hW9XmbWtIxGBZ/46Is88ujDAq4KLo8tDJPxlF//6FPsTwN7e1PJxGsj3geqymJyRMXMJERCSKiUaH0UhWgI9Pp93vzoW7h+fYvPPPMy1g1AK3wTGU+m0qKsDISEqwrWNpZwVaJXKNaHFSsrQzIZm1ruve9eHnribZw6eR9tPWNeR6xRLOmE0S2D0SrFYEjprNibYySngCFjtZbZoRM5yDgWIUVy9KgMMWWuX7/MK688x9ETx+n3+qCtHHNazp+kIOtu1o8JpQw+eozTqF5JmMBvfejf0iZDNorUBLLJ2KIgdsRmWggOuiP7YJpXd/+v1neFEDlnjLKdUNYK0G8Nqnij3OM/9/r8z//8qerUzn/v7/29zfe+973nq6rKN27cMNPpVN93332fhb5+7GMf63vvFcBP//RPv/xlX/Zl03/8j//x6rd927fd+/qf297e1p/+9Kerv/yX//KtxWf9nve85/7f+I3fWPrQhz40/Lqv+7q9/9D3/9Jf+ks3F8/rm7/5m7f++l//67dA4qt+6Zd+abi6uho/l7/zBvD3e6zPf/ReTo2AI+tcP7wEk31OnR5w3hbc2A0cWyrxrmB31qBDINDHDjUf358QmsDXbIwAOHbyPjAlfVNyZ2+PqjWsLC0xHDjW7n+A/SuXaKbXWdKZpc4mu77a513vehdnHjzOmWFB3ezx/NM3WDsW+Jov+Are9sV/iNs/+yMANONtnv/wB4kb99JbOsZhLJfnY3bmkf16TJvmrPQGhLqhX8ArYY8eju39bXxO7OxMiBnqFBj2K6reMnd251y6s0WTHTPv6bfyvGaTKds+0XhPaP1nWQZkJRZ5aroDbkKMtHVLNBqrFTp4ZjGhWk22ksm2PZ4wnSj+9v/yd/hL3/1/5oFH38R40Ke/uY5+TVSFNiEKs0b+arG+jlYG26GPGmmcywp09jShwaWKJgb6gz6lcYDC6kAbHbEVO0I2YmcwJhNTe9CMOp14yqoCJUHBKgVhemJG50Q4sKK2NGGGAUqnwDt8Usyngdeu7hBCYtp65qFl0mp0zFRaWsyydaTQCruHw2jP4w8f47GzJ6UgITbEOGUyi1x/bZ/bt3eJyXBrZ48WQ9aawkScjmRt8d3AZXWJDw1ZFSjdI2ePIsgAZQI6Z3KQVl7VXRwWLb8pZ3KcoOIEEwp5z7K5a43WAi6oLC1bOYk1JutA7gbUhb1Evk5ghpANmrEMkZLaf6CMJEOO3dedHXBhl4UseGBeUMkyBNEx40qLIgliB+hFslYokrRuKYcKvitnid3x2akGdTeEIzdjjEZ1g8LCemi08Os6S8i1ABBSItJBdQfFL6KG62zcGWnV06L8U1qTQkCpJO4YFEq1AoRkUZstFI0qp4MmYq00GoXSgZwDMQYyGqtK4oGtOgOerBIqRnLIVChchkHZY7q9z7HNY1y4dQetND4GfBAFrOsLUBtiIIWIKwqmzRztJOiYFHFGbFo5BqxSGGUJ0xptFbPUUNiCQlsoFTFmHJG29YwGA8ZNjfIe0+W01c2cnhuISpaAMTV0Id03b1yj13PM9iRAW9qaoW2lLZLcDW8oLly8xgMPHWc4GmIQtRpeNiI6BHwDOtSiAjUFTityigyWKqoq0Uwia2vL/OaHPsV7v/Ad4AqUSvi6xVqx0dTNnN/46Ce5uTNne6/GGcs8RNrZjGJQUijJx5qGltAGlFa0bSM5TT52yoUBjz/2Dm5ubfHbv/0MRbFEIjGvM9PJmFQHSlPQxkACBoM+gxVp7jU0jJZGrC2vYHMizbdZXVvnve/7Ok6cvFc2KSEQ2kihpOGwV/XojzYZ9gfYUgCU1JVjOCMWqURXzKEgxdipZCMpenIKNPOaZz/zW1y48Cpf80e+lfXDm93VPXcbMSn+yd0mj6TQWSILomrQtmLj9GlihOc+9Ztcu3mHe+6PmCZgHBjrRImpZZBJWdhw1eXcAN01RDayuSMJ1IIf0Bpp4VQUhSWGiCqLgzymN9Z/+fXrL99ia+8ih4vAYwqe2Z3xUtygms+ItseLL2zTGwwgeJYLw/jOPvttTc9UTKZ3ADh0z2l2919mb8/i7BFm88jOnUA9DxwerPAZRvTLAXZyFR9hPL5FuftBRg99AXVdk6KAcsFW/KP/6f/CV77jCW4RufTaddzSCvupxlW7xMkc3Q5YXjnEdH+PtguJV1rxY//yz/Cmhzfp9Qu278z49x86z/f/4EfY2x1j2kDTCtg8nUyZzfcJdWKlGrC1P4HCkpHCnEjscmI1Sm0QJl/Pg2df5OlnPoLOfZo8Rge5fqUQUGSCg5gjJsrmMcUkgELI+Jx45bUr/JW/+jc5cvoIbzt1P76eYS9cICLAnjGRkTFcvXaNHO6XOUZFyi7jz9oC7QrqpqUCkvfU9QJY78B5ldFOdw4DUdmKil0ULcvDghg82hRyDmtoGo8rSpn3EGB/fxq4dtuzN2kZz+bs+QajDf3SUfYK+mVFVbdk7aiDY9JOCL6hUJD7kaPrQ44sL/Hm+84wnu9xZXyHre0pr16+ye4E0DDsW2xqiU7Udz0DbRsxyuK69zKnjMajuwD/qFqZi5JFLqEZTCInS47dPNHZWZXSZIyQjbmV75HAdsUTlKjUExKDgDYNGSPxH6qbYZRG6RJ0AbTkWHdWv262uZtD0s1H3RU70blZOjJU3aUbZR7qFHlAzs3BHJa7ohRQRDxJBWniVRGVNEYbchenQpdbeOCk6HiU3CmwM4trNFJaoYy81hgP5khpBAbxPKgDBbdGLca5bhakG+EWZVGighK1uTxbydAFlXSXqV1A1pKVaASwjanp3CsGkkclIw3ZxhK1wZtEkyJeK37to5/k3IuvkXxAGckcdFlKpJQ1QrS1nUUZRYhBVPxJ/h1zJqSIVUKehpjRWdPWDdpEtDWEGLAo+v2Ktm3lPTKgM1gnGZY5SB5iiPIeYgv25pnTq5ZJUlKmFWJng+7e9w4X8iRu79Yo7Rgt90izMUnD6uZxTjz8xZhywO6FT3PhhY8xHPaYTPcgBfzMs77eY3pln6rvuHLlFjdvbHP8mMXokjYUzNspn3nq09zYnbK1MyEkS6M8WSnsoEfygXlssVnR1IkmeFzOB86WpBMnT61h3ZinnvoM2ih6lVwP4qxBNZ6qJ+6rUX9A79AyOmnWeksc3hxx7+aIrTvbrB8+xZNvfxcrRzYwEWazCTrUVNUAVxSsri3Rq/oyR2RIPqCVEfeAkZZxslR0RKnL7ezMijZ4gtb0yhKM5p4HH+O++99Cf1SRadFZlH4iXOjay5VcL1CB4Bue+8xn6PeWWd88wi/+xI9RrY547PO+kH7ZF3VtWlj7FVFxEFO0aPIVopSuSKRr+D0462XI0Z3TSeLLJYZokRn+xvrPtx588MH2T/yJP3HrX/yLf3H4F37hF1aPHj06OnTokL948WL1wz/8w6/dd999u6//+SeeeKI2xhBj5P3vf//9R48ebW/fvu1+5+Neu3bNve9973toaWkpbm5utt57deHChQrg8ccfn/9e33/kkUfab/zGb9z68R//8Y3v/d7vPflDP/RDm/1+P16/fr2YTCbmB3/wBy+8853v/D0f5/fhLfwDuT5n4G9bT/nwR5/Dlkvsbe9zfq/luat3WLUW6zR7pkQRCfOaaRvJ88CtnT1WhiVvfvsJXn1WGm83Thzl0myGXa6wzrK/P8fokkTg0bPH+ej2Pto5+uNL9Ixkv+xcuc7xUcnD65mwv4WuemTb8K9+4udJdsDnvfvdnH91h5OI8fTO3h0sAymDSJljx+7l8isvSuZLb42d1DKeB8o6wwB6akAyA8qVPkXZMtvZIe7vklNB3UrL0rypaadjiBDHYltu64YmiepDxo3Phv5Kk6Fr9dULi2VIxNwSnEZrRRtanKvwrQetSSlIuH6C85eu8+3f9j/yXd/9bewkiMfuo7h+6+DxihgoO6DvxqWLrM4ewXR3xEIrnJFMFZ0LWlpCE3AajG+IsaVN0i5W6AKfguSZIbZTP2/lAt3lqiyNBpS9gQT+d2HGqETdRno9hyOjcqSwJTFoah/Yb+D6tZtc3ZtRN1rsbYWi13fk6CitKPHqnJm3AacrVqpMWUV2d2oee+Be3vGWB6hnY1LdMJnuc+7KdS7eGDNvI8NBybA/ojUF2RQUKqGzoQkBqxXz4Gl9Q2kHOBVJbSJZ3+XBCCirYucdMXfLL3Lubkhd7qCEUJeQawEHVEM0nUUna1SWQZIO+kQ1pIPhrbPeKlDako1BUUCuSXGKidIiml5/6HRPKR94VRY8WFd539l/VQeuZdWBkB0goHOQVtsc5XkgSj2zaLMjEEiopDqLse8G8MXnevd5oPVCDygqs+6GK1k4ogRMMSzI9bvM3cKGHOXGrrqsQHlY8elImHc3yHVDdPeKuqcQu4H37vuRYgIsKhcoLCHVKKWJ0QMFaFEAxFSjyWRdEjCy0bSKeTujRZGKIa++/Ely09KoRGULrJbWVocGK+DubDalPxzivSflzKDfJ2eY1zPZ3GkgtJTOkWMmhESgZey7ja3WVIWlwnUgEWTrqL2Ad21IlD5hksZpJWU6PpP0iDvjyMa6w6gBIBaxHNJBY2HIvrNJZG5sT5jOM8dPHWNyq6XNgb6G4eHDnD78Dt7xFce4c/5pbl87T9nvUdcTNAkVFIcOVexOJoxGA159ccwzT7/Kk+94HBVLATURBd8nP/oUr93YZnecaNpIsBpiwg37pBwJwUsBSFTMgjQSpiyh/UVWOGd408MniGHGb//mJyl7pSj7UiLNasKsxhUW33i0UgwOLbM2GlIYWFrqc8+hFQaF4c6s5cjGIR545Iu554EHqMoh7WyKyR5t+5RWszIsKYuS/miVqC05SG5oPGhuTN3sK7kzspEyAuIraLwnKyhcQWFg8+g9bG6eZdCvSH6ONlV3vEe0FusRZFQS4iTlSF3XTCc1qxuH2dsf87Ff+TluT7f5gi/+akyn2CCJqlZsXx3A0p3nd8+nbv+bumuWWlwHumsEwojLBlh3+Ls52By9sf7Lr2vbDUs5c99ogJpOedvykOfimJMnLdd2W1JVYfUEVUSiDiwdKlEzRzNO6CCAXT2LHN5YZTzdZn3NcOka3L6wxagoIBaslOtsnjzBlU/X1PM55cojjJvHuHL1JstDxagn81TPlUy2xuy/8AK36zHvOLvJzb0581tjWt2H3oCdeQNlSbG0RprcwFYOPYs8/8JN/u3Pv4Im8ae/5Un+2294nFde2+FH/9Uz7IdtYme/Gu/uY4o5pnBsTfZpK0OvIxuHwxFaTWiTkGaJE3zwgx/gv//vXuHGTfjJn/yrPPzYt2PK52nqhmwUto6S06VgPp1gq5JmNkc7i42AkfKcrdqy9cxLHDt9itHZs9x7a5e0K5+BIxOtpWojk+0d1MYyWmti7K4JocG3DVbLOZSyZh4CrQ/dZjmTgqeI4FxJ085F5R8ylS2oFrmrWcibppX7csqa3Ulg2gb29idMxg2TJlPHTNaaecwYVaBTwKeIb1u0cvSLQGpAKY/RTjLDrIFYcHpjmaNHV3jh3CtcurnHzizjlMVUSwxNog2NuBx8ZlRV9ArD2RPrLC+P6JUFTkHSLSFlcpGog4dKoVVL8hajgpRwgIBqWYA0rWVujV1mN7or8wqdu4ACg2T/Kg1JtQf2XNluLIhGcSoopVGmAGXIcQxJQAtRUHLXCQEHtj+yzCJ0gN+iXVctrIcqC8maOwVfpxiUv20wthTCxydU2APXQ5PIxpK1EkEdXVmGkl/LIXaz9SITUFRPSXW5ZDmQFwCe0fLayAKcLggiOcoka1EgPZQxHaD6OpVi7makA+AydveA3AF9QtJKlEtzV+F4kA+dgNT9NygDNmexD0eFxVIYwyvnztM2EVOVKD9HW8d83lK0Mu/5+Zx+WdB6jw6RyvUIPjL3tZRZKAVJlHEZKHoV0QdC2+JbITdtUWBiJPiG2WxOzJqidKiYiD4wn9dMCydFMAF0NszDFDUtWOpvsvpQn9TlJGZliFl3M20iZIXXmdeuXOPWzW3WhwGV5hglexUzXCO0Y4ZHT1FdfRFyjdOajCbmhtVBj60iMI/STP30Z17g1KkT+LbGGMuF117m6WdfZGu7pY5dsZ8KOOuokyK1ioSl9iLmyCnT5IQpNNYolg9vcPjoSZ769KeY1TWrwyG5jRxa6nOzrvEGBspSbAwp+z0GhWZzfYXN9SXwM27sTPnCL/xyHn7gPkKM1L6lRdHqzNG1DYa9PsPREtpZUlKEFDGIOyMrdXBMLGaK6IW8kIKZTIiR4COmV0LqgY4Ml9dQWVTVSmWRDyixmufc7WOzFjeN0sybwM72Lldm17jxa7/M5rEV7nv0XfRciTKl9O+hupgiORWs6gBIpe+qckUWfDdLs9sTwCL3uCM7O5uy+I7eWL8f65/+0396+eGHH67/+T//54fOnz9fXblyRT/wwAPz++67r/mdP/uWt7yl/oEf+IEL3/d933dsa2vLra6uhu///u+//P73v/+B1//c5uZm+MAHPnDnU5/61ODq1atlSol77rmn/oZv+IY7f+Ev/IWtO3fumP/Q9wF+5Ed+5OJDDz00/9Ef/dGNixcvVkVRmGPHjrXvfe9797/iK75i/Ln8nd+fd/AP3vqcgb+PPLtLO615YCnzpf2CK1HzjB2Q3Yycely/MWZlOMD1e6zYGW5UMWnmTGLgxU9e5eHpAlzV2Lph5m/StxUhBaZ3bpPqCTZECHPMyhJlWCfvnJffMIrYbKHdOmY4YPv2Lg+dPsPzx/f4tR/+UcyvfZB6X8A42wZSamnsGK0t47ZmNFrl2NkHufLaa/jc4GLClH3sYAXXLynaQAgRox3JWfQok/bHjPcneBJWWRo/R2nDwFS03U3cWEt/OICsGU/2hVV83XrkgXv4zY9+HDgYXQhzT+g7bAuhVGANYT4nGY0Owsa5kAlZPpzcH/J3/u//Kw8/cJZ3P/kE080jwDOEHOmZgoQM2v2YacaTA+DPGBlCLEmyV3Q6wKbqVnJOQpCGyIVyqrSyGW19IERPTmIDcUpT9S11mGGckbBmJYNFMgbjKqazGfN5y7yec2O7ZmcamTaRJkUSjtImkvOkqsDYgr5tqecJ1S/ZmSlCG8GP2UmJw2uWL3jzWc6c2ODGtWvcmc3Y2Z8znye29z0+l9gyoo2laRuUhZwalgclw14fY0sGpWF5STL8Ii1RBVAWo6PY4qLuVGjdQIUnx6JjoqJk3KTYZeMZyKIEWtyAjOqjTJAAYK0I3hzkzWi9ABBTpz4DUdQ5UCUwJ8WZKKCUkZwWtRjy7tpAQBSHOkVeH5Cq1OuGXDp/IF0hSJYhMCuR4RtbgCuEdYs1mTlRK1ABpRzGaNLC1rmwsOiOlTuYl7UMqZ2iSWlNTp6YMgaDfAC5UydyMIznbvjUacHMC1uuDxAJychRWiwcOYsiRKkuc1At4HSxMGttOruAgJVKZVG+oUkporUHnNiVM2ichMejMFYUgVpbtDH85L/7OaY7E4xz2ByIKeNbjy1FfZVToupVmC7sWAVh36eTKaAkq6/1pJQprRFFnnaQFcF7csy4qiSQaUOLdRIWHb3HmZJCK6ySjVTw0jQ5UBUxRay1BO3Zm0fuG6zQrgS0LYmpAUz332O0FTY/EZjGzKuvXeX4yaMY7clRbNRLR+9j497PI+eGtdiyfecmZWkIwZJSzXzesDwqGRQlrU8cObHGb/3W0zz2xIMUtlOTRcMrr73As8+8wKSF8byG3COEOUY7gjZQJ9okjH8za0kaQu3RhcEZg0Jx6NhhVjeG/ObHP0kbEv0SCpshKcahRZEZOE1rHMPBCDdwGCxHNjZYWy3JNFCUvPPhR3n4kccph32C90yneyijqKqSqjdguDSkPxyglZXjOYUOQFMHLeiL4PaUZCjWXQ6X0Y62kYzBcrCEdSWkhrOPPCb28e64TmQJ3gdSlKxJlSPZdJaatuXy+de4cukKx049wCd/4xfRVvHEu7+E4WiAcyVYRYqibjHWymMuGikPij/knMkLXP9gLa4T3QZykbnFwsrzxmD8B2mtbzjSFC5Oam41c0ZLjuN9w6lxZK/s0VsdodIUXZVM73hGw4JRr+bBIxusDkd8+195kfUzDoxmOCp5+3uucHrccufqdZZWKtr9l/mi9y7z4H0Nn/61bTaPbqD1Bt/xF1f5S3/sl3nkzD4vXVjlB3grzz//En/u27+SE/3E9OUXcDmzvb9HYo6vb2N0Jt2pIbT0+hXOLJMwpF7mb/wvv8DK2hIrw4L3fdlZzt63TkpRgveNxneAUMoRkxS+aTBBUQ6EHFNaEzOgBEAqjKGwL/NH//C38zVf8/2sb3wbP/mTsLm2zPWtKbpnCW1LnQJla6lzkDS0IFEWSQex7VaOrDOqmaGd4fqFG6w8cA8ry2uoq3LOlwlaBW0y7G7vMzy0QhsDhw6f5/v+2rdhtWJvFrHaMJvPmdVzfMrUbUvWitJZNpYHlCmgvDrIFE6pJatM0S9JyTOfwa07++xOIzvjMXtzz34NOki7vXFQlBUma5JP9GwgKQu5QEdDaCM73rNfaNaVZ3M05PCxDXKcYChJVnNra4fzN/exZcneJBF1RRPnuBgpXEW/qEi5ZnnY58zmBusrQ1aXB1gNKch9ZNamDnAq0FZUPRLVIio/tbDx0oLyyL24K49g0TYuoBdIrAfZd429pRwXi0gQDClLmZZ4BkB2/EZAP60g6E7RF14Hrsn1+W7jqMw6B5fCA6BMXAsZyTdWynSKxASdEk9n+YkYG7RRNOMpF1+8xOkHz9BbFnAp5ijqIiUgs7xEeewFAyvYY2bB1qqOeNVadwq/dECWLn5hEaeSMpiFiJvFtV53X2lUNmQCqNQ1xiLAXlYdIbS4PaTuFlCQYwZatFGkWKCUFNIsCKSkIyo7YuggwRC7t1EI0Wkzx1mZA11RYLWiDoHKOOZNi0NhrEaXXelZ8rQxYYxFFwbjNMFn6sZjFJRVAcoz9y06BkoUTkvu3+54StM2EBI2ynza5kxImcIWpKxQSRG84s6tGQ89tEYKAvb4tmFe1x2QrIQWzhoVMhcuXOHwI4fIVoOKFEXZvc8WyiWGozUm2xfJxmDQUh5TOEZDQ7PnGS4XfPrTz/C+L/tiIDOv5zz1mZe4PW6ZzwKucDShlQiQHKmDzMghJpkPuZtrrtqAHZWcPn2Scxde4/bWDr3BgJAyzbQhe8/+rMFaS41maBTLo5JTxzaoVEs72+aJtz3Jw4+/nZWlEU32UqKnLYNejxNLa6ysrKCVJvg5NC1GiYMEY1hYIBeEoc5daaDSYs/Vkj+ckjhJXnj641x49RW+5Mu/hpWNQ4DGkIlekXJDUVbEtFDVRrJ2hLZh++ZNLr7yPLeunUdZzX1vfYSjR89QWUvPOSyJrAsKa+VaDQeRP91u5+4xygLgy50qls45dDfv7wAUzIhCNb8x4fx+LK013/M933P7e77ne27/733/6tWrz7z+6+/8zu+8853f+Z13Xv//cs6ffP3Xhw4dij/xEz9x4Xf7m7/X90Ewju/93u+99b3f+723/o88zn+N63MG/srK0i96DIFP7M04vFSykfd5tMrcGgRenRiW+pE67OH6A1IdOXR4iI6K1dLwJn0EnnqVpuozUJowHmNUzSAGzr36CqdOHMX7wIODinsPr7ETWyZXLgFw7zvfyezIMs3WHRKKobU0s5oXn32ZR04dZv3hM4yffwmAQ/1Mb7bPZN+glzZpJlN0aTHLq/SWV1mpHNGV+K071PWYOrYYEijHcCrMe1ENmLcNvdAQCwnsTzmRi8zuZI/N7l0TA6fc0o0xVLb8rPfs67/xA5w6fQL+5mfYHO8AcKqd4oliE9Qio48+YK0jdbbM5OV7Kiexj2VYunSJ0akjNAvrcNSoVlMuiFddsXXjJveuLQEwndd43xJTwpYVcS4W35Q8bQy03tPWgQg458BH2lBTFn3aVvKjgg8UtqIqCxSBmDxGQ3Al43lkPG3Z2mvZGV+jbQ0+SMhxyJqUjdiElccqRwoKQsF07Ally6znKZUhjHcZDoZolRj0C4ZljxOH+zT1nM+8cond8ZzdeSIER6EiZWkZLQ9ovKf2NXXTslwWbGys8NA9R1lbHopFOQRQYh9IJpBtQdK6q6hXnW2ikaEwgQxuvpOyG7RyZOJB8QeqlRKAnFAqQtbdRtx1pR0NZAcYKUPAiIqNBTMtbX5oS44ziJ31wygWbahGC819APFp3ZU6LBQ+ogBM+fW2lk7lI/olFrfUFDNOGWmTTQGDot6eoGlxoyUp3DAdc5fpbBTdo2QZ8c0iRKz7SzkrGcygk/qDylYy+tQi7XeRZiOgZzooJeksxN1Tzl0jalQRKVl5/WMU3fB8N6PsAD7VCnLsrL+ZnCVPRZhMLZ/FooREB1TUlNqSWwluUQGskvjDmDQtYiWzZdWxkIqQM6ltCT5gYsY4Q1X1iGqA9w0hBLyPtD6glcKWFu+j2Gq1piwLJpMZzTygS8dqUckGSBtCjGQ8tAHlCtppgIFmnhMRjVKOlDRtmmLbHrF1PPTAUbwXO3fMmdoHYgIdMykpogGfEy++dI53PvmY5FWaFqNLiqIgZ09qZrilFQary8Tptmgfioq6nuGiYn1liWt39lk/vMyLL1zg4qXr3HvmDElHpnsTXn7lVbb3I3t7HuUMMSyUaVpEzcmQYsZHIVFQipAy+IDNluHaEifvPc1Lr7zKzdt7FL0+Omtm+zMKq5l5T7KGWZPprQxIPcfq8ojTh1dwKtLs3OTEI4/z5iffzvG1EThD285osyHZgpXRkKMb61jlMFYywBZKEKMN2nbt1ergQJJ/h9wBfqLCSDkSvKewlv2tbZaGK7hBIY2+KXb5VnIGpO64ltyoVs7XFNDKEUyBqUZcufwqr115jXsfuJ8jp07Tr4boAJQaZSWzMMdFqzM4rYkpHjxHtZDS8nrgT1QkqgMEOz2u4OSLMpDFpvWN9QdiJZ/oLSvujFsCJdsYru3XhF6fbA2XbmyRWs+hQUUuoW8V/UFBHQsubt3iC+73TLKmrrvrZeFZWQqoGezVN9ndusYTZ59gsKR4x5e+hZXmCs9+4l/xiz9+luXblylWltGFHFdf9VVfxpsO38JMwefIK9d2uLzVMo4DVMwUJpFtgHnApozrV6QkmZjB9vnwL/w51lbFNv9v/u3z/Pi//ASpCZTaMrsL2aC1wSpQhcGEjA+eYjTEFQWpbUkhkLWiqnpMd/dppxOG/QEA3/Fd38bP/sIOv/kbv4kqLIOsmYaWbA2p9mgjWcTzFCm15E1lGymVIrmKF59/hf7aMocOL9E/f5GvOPwvWO1vE0ODMZa9yYwzRUFsGibzmht7NVs7++yMW3TQxCjt4r4VIEipyMbQst4foHUm0uBDprAaW2qU09zY3efWrV3uTOfc2mtpg0URJCo4m+7ermhjp+zOCWtBuR6FV/gUaW2g0IGBhkPDHg/cs0m/30ebzJ1dwysXbzLdT8yNYzRyjLQB42j8BG00xpQ0dWBlqHjs4fvYXFunVNLsq0AUmUqJ3TW2QCb7QvJANajoQHeZbKkHXWBKjFLmkmk7HKxTAfmEshZlFko2cTjoDOhW5qzu/ZOG27vKN7ojJStD1galS5SadUAWiNfYsLDUsogQyd0V8PViQCSjFXKnolYdoZvIWhRzgnopSIasFI2K3Nwu6d3e59TaIVTIBzZZaRq+C/AZY0m6g++SFBHo7tqflWT1RiRCRWkhIlXurt1KkbJU8RmTJKs3xYPxLaWMVmUHIAZIuhNEegFtkpS0qa7kIuUk2buLe5iKMmul0AGfXrIXVUnKQd6DrMTa7hLoTIyRNmqUdVQVhFBTWouvpQTCFVJCVvYqXBbHUxNaelicEyt3vyyp60Boa/r9ZWZ1JMaW1DXGDqxme3+XqCzWWSaTCQ5NspLXZo3EA/nOfppoQFlK7cg5cPvWFg+cHYhTyy5iTRKLUJmkIEcHOXDh0mXecv9hsipxSVqpFYamrnntxd/G1hPmc2nVRiuUyZgIS0PD1p2WfmW4dmGfCxdf5Mzph7l6/TKXbuyzNasxBmatNA8TFDFnYu0hSsttylLyI1mPmoFx3Hv/vdSTMS8+/xqDqg9G09a1WKOdo185Kmdx/T73nz7K4Y0+YT7n6NHjfN7nfzFrhw+D8TS+xmRFWTjWRysM11bRrhDXTZe/6JxdCGiF8M/6QP2ZYuTubiGhjeQ/aw1Wa25t36aeTTh54h6suzvvpxy5cekCn/jUR/m893wp64dOkWJiMt7iwgvPcPn8s/RLR8iOh9/0Zmx/iO73WLMl/V6FqkqcsZKrHrvzV0lpYfQR04kJ5HTNB8OK6txEIqKQfY8xRkhRJZmeOSU51e/C/2+sN9Yb6z9ifc7A32AJ8jRzO3hu55ax9/T7fWKt2BoHNjcPgW1ZsxtkAzvTKUeOlLhmwiP33c/6NVGF3n7Pe9k+dYJ6HhiPp+zO57j3fDkvGs/FF1/mxOY6R9/6CPu3b3L6xpPw7X8F3vsws1KxWsBse8akafiNTz3NxuYaf/rP/xlmzzzDnfgyALO5p6Gkqbfp9SvCbA/XM/SNxZ7YZDoP+FkDm6s04xpXlihf04QJdRNIyUFMDHp9prszdBRwIUcNTcBkzUB1LXBa0x8MiG0k+JZmvv9Z79nyaMCXf/MfJX3/9/M/3LwCwN+9ev7/90/r+WcB8MZQW01WmkW8aUiZZlKj1lcByFozixCilpbbOhCvj9mbTJi3gRAzPkWK0rDUc5w5uk6vyMynU0gKay3GZSIeiopMyWxec+XaDte2bjCuJ8ybQFAlUVv60RPwaGspy4rcBtnsVI6YNbmQDW2ZDX7W4qNjZZA5tXmU46eOYcyM+bhh5gvO37zGnT3P8sqInB2zuiHbxCzWVK1mMtmhV1g2RoZjZ05y34kjlFby9BQBoxJ2UDGvg4TsR0PWJeQkyppgybmRmTEXneWvJuWI0rKJjimxmNtySh1LbQQAoECYbotSgZwC0IVNkzpAgO6+tGCKrYCMRqNiCUgmTkxRHnfhfulWXvyzexILxVLn+etyROTvqWy6IbDLGjsoAxDVnurAgK3b+1w/v8Xj77qParlAp0xUGWPcAUsodlq56caO3V64BshRYMWkycpDNjJsHMSPday86pj8LoMH1YGnHRoh73vulIQL9d+inU6et148VlZduUjHYhLIWDSV2I21F4VAtqjcHgwSSjuBQ1QghCQWHgMhRbTRjOtANpbQtBRVQfRRFHgxEa3DGcm4UbVA7W0OhCRgT1SZmAOD0YC2nYNKWOvwUZFyxDrD8soydZQsy/3xGFMYqqJkdbTM7ngfpRSt9x0wB3XuSlSM5FaZDG3bcOvGNseOHEIlhzKKEFum8wkahdXdBgaDMwV7430uX7rGyfW+NM8FyQEyRqN0jxgipVtix98GY2TDkSMGx3CkcTuQtWdpuc/zn3mFE8c2QRW8cv4yL7x6gxvTKU4ZAomYZmQUTQrUPpF9JKXueNZK7HNG4wBj4OTpE9y6eYNXX31VGi8RJU1sO6AsRfquwlQVS33HsaOrHNpYIjdjlHb8oa//Jk7ecx9EaHQi+YjRhrV+n9WVNQbDZbAFyc/xbU1hBTTXriAp1Q2NnWXqYFMHustTPFDKIpusm9ev8nP/7l/T7/X5xj/x57BliTGaGCKzSc1kusOhzWNo3ZONtI7UdWA83uPO9YtcP/ccL7/0Avc+8AhrJ0+hlpboqYJe0aNfWcH76VSfJouQWCtySAtRy8FYK8B8NxQvSn60et052/28UqJkpFNyv6H5+wOz6rpmXhuaVmMLw3wWiTryWh3RqmG1KrgTNNe3x6wcGuCmFuWWuLSruXmtx/N/fpk/8n/axbmbVMbQ1PsoVTLa3MDWfdpZ4JlnL/LAI4/xoV9+ihu/9UFuXt3i6wcj0DUbwwG9JcXhlUvcu9xy6dlXcIOKvh1wdfsGL+1MwQbwjmlzG+sOE6KUTFRAdhbVOGKa82f/h5/g8MYK3/atb+cPfeVDfPCXX+bnPvgyrnLYsoQpRKVwJmG0wyiNT4HGwnw+Z0DEqURSmpgN7fw4P/0Lf50/+0IixBmwxK29bT7wjd/M/W96hF//1Q/xyquvSL5rC41T4Gt6pkT5hHea2ayhZy3RgQ0BrzIvffp5Tr75QU6vNPzJ4vuYZ8t+sBgTuHNnwod+61nqVLI7PsFnnvkeHnr07+JGlzAJQszMQkPfwKH1ZdZHFfccGWFMoo2JybQmxMh0GhhvN4xniduTmaiWnKJXDHBaYlMm05Ym1lS5IGkjSqFGLMUpJEzI9ErL4fUB6yt9ChVYXuozaTwXru0T/Q7jpqWOmcYnyqrH5vKAnlY0oSE0U8qs6RWGyiSOnlzn7NnDLFWO6GvmNJSFKJejF81ynAspXPV7YDzzlFEUGD2W2IxkQQcBsNBonchJk7EoHYXUzKBMj5yn5CSq94W6CKXJVPKzuWu6Xaj3UhKQznTEXWxIOBkVTIXOkHPoQMKITgqp21UdiCpjkCi6uiIkpSQruZsRVBYAMgvcRsqJpISYUymAKShUoM2KukkoSpJOaO1RSXX2WrE40xUjdJW8MvcI9yP3jESn9keeWGcVVroi547k7eY4UeUpkhT0Cvih5TFjDJKvlyVTEoyUR2R94IBIyaNzQVKZnBRKRVKao1WJUEAeqOV+lvsoNDm1KJw879iKrdlabAyM2waJTDTE6DFWVJXDyjGfe1LjmZNoYhawjUgzb6iqAWHeYsoSQ8F4OpapTUu+V09DaALL/QF7+1OKosL1BtRtjU5CK6cUyMkynjZkD8E6SgJZFYBhP0dab6mqhpxKQgiErMga2pyIiLU1WcOd3Tlbu7dZXzbkbES5HyM/809+lJDP8+ib34YPGW3TAdCITYyGjuVBj702srI54oM//9t8wzct8cxnnub6nW1S2ykLSTQoTEqk1GKczIQi2lSSAaoisQmsnz7G8sYyv/mRT6KqUopRZi17dYvVjlldk31g8/gRTp7ZYLnvoG15+zvfzWNvfyuu6BNaT2gaXMqsra+wunYECicgexPBe3CaQlkBihcYcBYQXKnc5YRrFimTJN3N4omUpMnZ5sDpM/dw5NSDGC1lRLGdsz8ZM5vucvLocca7O9y5fonr58+DbWh8YuPU/awfP9YB/Yal3jKDQUVRGHpl/yCDz3SOXpTG5AxBrMjkLM4xEzqFrj7YLoh1OUmJiO5IzizujEUTcAAhEt5Yb6w31n/0+pzPnHYacFVmZ+rRvT5TIjf2Z9S2oFjqsb17h739OX3jGPYzRc/BrKYaHubZ16bs3hYr7n6GraSJ2jJxFl0usbuzz6RuGZeWm7MJxZHj+GS59dLT3At86Dee4pH3vYWZ7RFdwtiS5aD4jv/u69h66tfpD5YZDERtd2l7zk5/gHaGtvHo0hJTpAktNmeWl0c0xrAzHgMWrQzGLbHUWyPmhno2J5EY9krmEyPNqyhUadFZSYvtXF5LE6XYg5yw1pDV73g7c0QdPcz+R36N6a9+mON/8bv5Ww8/xifqOVYrqWJHgxfmu7RWKtmVJnR5YKZU2KRBFwTvefLtT3AUT3H5HDYnjEQIUhSaG7tj9jdWALh9Z8YL05vsTWp25g2xydhkCFYRkMIDZ0tGWXN0ucIuWEglm9CIIvjINCoubt1kd2fGeN4wTRCDA11iy4IcMjkmQoBkLT5A0C0qZ2wBHof2YgPpj0oKGtaGfUZ9x/HNEUYb9sa3mdQtF2/ssXenRpV9XL8vzaBIo1SKkvuVk6ZfGk6dWOLBe48yKkeQa6KfoW2JUkpUVSERU0biegw5SF4F2aC1WOJSNh2j3GKAHNUBi5q7QHDQqGyFUTUSgJ2TIoDYXHNAmSyWGJU7w0bR2TO6G+6CmV5k2Gkjg29U3c1YwqAXgIQE3qouFmYxSNOBZpI7uGibEzZNlE1382SQ1xiD/J2kSEoGpGlaZnd3zJG1o5BAUhY1KQprfAC2HTDcQFeuoXJnZ+miC1OOMqwuMpFSRCknKoecD5QOxoi6L+XOWtRNKSlrsdfTdHifgi5oW6dO9t/l3uTO2pI7AFKpRM5zyddMgGqE3c4NWvXENpxbSBprLFYboMGajA9dMLlK9KoetZ9T2oLsE41vqUZLhLaVJksn14+5byAoqkLsnc6VuCiAeyZjrMIHacHLKlFYx6AsMBaa2GKrCh8iTV1TOkdIGactWsvwP60bTNZERFVrVYUhsD0eE8MG2nmMlkIgyUvs1AhEef1Z0WbNq+cucGTlJFFlekj7X4qaF5/6JFcuf5Qja2s0dcBZUFajrSa0iUGp6ZeW3dmU0XCZl185xzve8TBVf5VzF66wOws0PlAqaNqWCGjfWalCQMWI6VjalkzWkkenfeDEPWcoeyWfeeYFYnSUpkdbT6lFdklFoucsy0t9ltZGnD11hEoHdDPnkTe/nSfe/Hb6g2W8nxCjJ4XM6mjAcLTCYGkZV0m2kPaixtDGoK2VY1DluztFXpcN052LKcdOISdMslVgcmQ22eELv+SrOXH8HmxRoa0QB1nBjSuv8dzzz/KOz/9CBv0VJts7zOptLr38PLs7N1lbW6EcrPCOL/4KRstraFfS7/dYcSWq51CqkHIXZJB9fZZnImG75uaFzf0ALKcrxUmpA721fIYIiEgWRlzJiY3Ov7Nn/o31X2rt1ApnA9oZvFb0ehVVYZl5RZzOOHTPGo2uqZVnfbhE1hWXdjLbzZzJtODWpcifdiP0YI4rLKrnyE1i3rYYnVGDkhc+8yJ7N7ZY3jzGlXFN7r2dP/XXvpvv/qZ/xOfPrrM1vcm3fMW/Yv3Ym/nEr95g6j2vbs+40mhidmSfWVvvMa9rUVvnCK0XAVJORG9xlHzqk1vEdAuVMv/rD34t73//o/z8B18Sm5tWWHceq1pRjnfFN4lMlRXN664ToWlwtkTZITu7D3Fr+wLzOAaOyD3Wj3n4sfu596FH+M0P/Rof+5UPs7c3OSg0ytGjdBZ7oRJwKJPxzQxjDbe3b7Nf38NUr3BjfA+Hq9fo2YZhMuzWidk8MTUNjZnRH13E6oZeVpTDwPJgSAo97tlcY2O9QmUpEBnvN2zvzbm6PWE6j8yiqP91AJM03gd523LGotBOszQasru/KwUanc8z50SpAxvrQ45t9jm2tMwseq5v77E3S7x2ZYtJY0GDMZlRr5D7ec4UPc1yT9P6SN22nDy8wcbAsXl8nVG/J4UTKZF8lri5ZLHaCeBmEk4pgol47wk6Y5KCoDuDqij0RUFv0FqOAyHogqgGI2gjwB1pikqarD0RJY+dvRR2HHzyEVRHVnZOgQyiBkQLMZmU/E5XLpdFRo5SVkCE3KK1oGVSFiK6r9wBL4rcFZEpURAesLZdvthCLagMsbMRKtsn6Tu0XpgWpSIpiCpRsSgoA4UUFKikkHZTg+paRlNSZFp5vI4BzWlRUCBxOVoZidshCAmNqCXljejuPSqgqTugMUtpXkokIsk46NpMc5ZUzJy7UpmuTTnjyd31XilxnkjhmiWFQIptt7dwGG1RyqNSwBlLmyOFsijTpUd7T9PUkrPY+m720zhrUDGhk5E4ExRWVUybBm0LKfQrqs5KLEUqdd1grWMynR40MZeFJWRR46mmxjlDGwIllRDPKoHW+Gi5dnPG/acHkKXULETQJhFaudZI2VyCHHHOdm6cBm0C0Wd2drY4feYwg/6A8W2P6wDqGDPOOnq9TFVl9uaKtdUB5168yrkLt7hya5u6ySSlmMeakCxWV2Q9w3hx69RaCAKbIXSfy3BgOHPPGW68dhE1a1kuxObatg1OKbG0F4ajxw/x4P2ncc2MSmne/eVfyUMPvgkN1DnSJE/f9Thy9AS9pSE5BCY72/RGK2QMWHHUaG074ag6mAnu6gfk+FIdi6h0Bwgq01nGE6vHTnD7wmW2rpwjWphNdtAp42shtAf9kkAkWcXhM2coBxXW9dCuD8YI0Ff0qaxDm4TpgDqt9YFLqeu7Fu+T0vgu+sfYTEyy3zHaEbMoApWWghlAFH4ktIpkHdEOFE4I+tkEszL8T3qffmO9sf5rWJ8z8DevPU0oaLzDlo75NFMUhjs+Uc0Dh4aO0XDA9Rt3KLOhpywqDdmdOXZqhd4Wy3frPfO5p+c0pkjEOtNfHpJ7iqxPc/mZl7hw8RKqP+A3P/IJ3gVcv3iL0ZU9mmaPe88+yKeev8wr22O+OrV88sYumR3srgA1t5pMXdTEFnTbMhyNiMoQou/yuqZk+rhDaAABAABJREFUU5K9w6qWHOZ4HJ5ANIHCadqs0PQpR6uMx3tdJLGYerVZqL6k7W1e11jdqUV+R8ZfTIm9/V1ulyX7oz7HgTf9yW/m5v6EX/qpfwsOAWXKgI8tLmta7TD9gqZuyclgQ8D1K1STyP2KW5dv8KVvupczboir99BBLvMFibZVPPOi2KNfuzXl+rKWxyj6GBPRPjOZzbEaTh1aZX2lz+HVHqujApRm6gO7O2Oms5qdumG615KCZbdpsMpinMMUiPS+6NM0gbYdE7RBYUlKk3yDsopSGfwsUPYUxzZGrB8aSmZY8JTWcnNc89TLtwlti3JSyJExMChYWRqwMiiIbWLia9J8Rs9p1jeWWRn1ObKxytpan2FpSWGGTw2FLSkLSz0Ts1Go54QYKUzZDbOKgO0iYVpyjhjdI+skih+QbL4k0N0i42Vhm9Mpk5Q08xplBIBLEVTBooWWRf6EknDlnDR0Tb6ZgEqeHOSUU7pAUNtWXrdpUKGSYVEBuUSatLq/rzrmrgMTs+oaRJUMgzIAC2BglFhN0kKFRwZjcFrhVcS3olbMqul+H0TBqO4y3CRy6EKkkYITsaLLQJwyEiKcxGMg9hxR+qVYywmw+Bs4UswkCdlBZ0PWGZKBKA2qxmiyakUtmR06e5IuiEphdSaHiMo9tMpihTQyVKQIShkBHbU0NadcA2Xn7pGihZj1gT05W4MKDcEHCSlPmqQS2imsLrAmYa2mblqC1tTRY7ICZ4jeI7BwQsdM2RuQU2Q2n4HSFL2S4D1aZXxosUpTA/WswTpHMejR1DOcdWIxDy25NahaQOCExhIlHF1ZapWZzDWrLhCjw/tA6zOxy0VOKXZhzpkcC3b39mjDIUqXyRRoFfA+8Mv/209y8mwfdfgoPkoAdSJIk15RYnVkaWiZzAzVUHHx1X3Ov3aJwcotzp2/zO7+FJU1Tdc6mIwjtzU5RgqrqRELOm1XyZIDxMDy8gqn7jnOy8+dY954ql6BVYY88ySrGQ4GtGGGdZb7Th3n0OYInRr6/T7v/YIv4tSZe9BFgfceP5thMWwe3WC0so41jmxENaOa0CmOjZwrXTD8gWWEjlVO8vViOFYHrZGpy5rJlFXFsOpR9FcYro6IaJrZPn465ubNa4RmnxObG9y6fJ6ygO1bW5SVYXlzjeVjx6mWltGFxtqS0g4Y9XoUpcY6K0B3p5DVHTFxIPFLubMSQwwZbcSSpa3r8HyNMnIPynlxv0lkJZte+QkBygNg1RvA3x+UNWtreq3B6oaltSHOVEz37jBtDVk5nn31MsE4+koR55nb8zm7rcK3gWpwi7MP/ClOHv+77KQeyiucs0TbYAuHCxUvP3+eteUV9vd36S0PuOwT73n/f8uP/HKP9c//Wj7+3D/hEx/6EE1UPP2jP0vCMNcKnwWIXllTDHsDHrz/JOfOXebijRk+tJLBicb7hnd/3gm+7qvfxCc+eQtjFd/yzW8C4PkXd/DekABT7nHfw9+J8jeZzTOx9XK8akVKkQJFalqSVuiQ5NrexVPs7O8zjV0Dr+uRix7azzGx5T3vfQePvuUR/tk//BFu3rlFTAmXNJUpaEPE6tSRbkpIlrbBFobpZJ+t+Sn+9sv/iL9x/zeysvwSuvVkXWB0ibOG5Le4/57/G6cODzmxscnaoSHLQ4fRisms5uKN29zemjLeT4x9pCGgYqJQ0u4eyOiucR5nqFOiGU/pGY01GVtVLBeus2I6knYMe/DOR06w3stc3wl8+pVLbE08PjkKpTorm6i/dRIARgE+Rqpen7ZpWRlVPHbfAxw/eog6TQm1xNYoDLZniTERosY6RUhCxtmunMPhyK0X21yRiUqT6aGYyb2f2BHBAnzlDDmFrgkZYRaNkCvJenE/JEvMiWQKNBmtJPbkLnEhOb0YiR9RXRQDJKwKBBzKVJKVGtsufsSC9igqtLJk1YKyXaEZB3lvHWvSXUs1aI3pohBi5x7QWq6brihIsUUZQ9nbIIRETFGes1bdTBcEsMyanCUDFq262XERraDEwm0FxEtZ1EidFLKLu6nR9MjZkHUg51ZAQ4wo9jqXikQ0lCStiEFTOE/yrZQ2LaJjopSWeFWjUsKoHoqEUrXAKnlB1JYYI9EnosAvMFoTkjiWJL9bkaIoGYeuZM/P0T6hUTQ5UU8bhj15nNl8RuGGBO+xxpGUlfxwrZjsT4laUTqDRdHO5hJbZBSF6wEthXXo1mO6Vuu2mdPGiLEOnWA2HtOEw6wosFiMK8kh0PrIzn5NzCOsVoSEkNAxYpWmTbkjmxNFYbFWCq60NijVQ2uNKTJLa8sYo9BdRrd1JU5bchSA6tD6Mls7u4z6mmLgmPuRNMfagqaNaCxZS/lOaCRvuQkelTQqinJ5YCw+O+679ySN91y5sk2INTpVjKczmtmc0WiET5pH7z/LPUdGTCYTDp86yXu+8L2M1tdpc8SmTGkd64eP0h8toVHcuXqNwaCHUuB9g3MLVSx326MXGX4Jkkp3I0K6+UbJBqebGTorrVLYasjmfWeZj7fxbUt/uIzXJSiNT4qmnUNSlNWQoigoS0NlHNZKi7BWWTJDVURpi9F3i8cWpUmquzbnLOenUlqyly2YZNi+s8Xy6ibGVnLOdTFAKS2yQDO5zWSjSPMp129eYrx/h729bT7vS77lP+Vt+o31xvqvYn3OwN+dVmH9lKKwpOhZW+1R6pI6wHg+IzaaWBmWl0a4HFhdP8T12w3b8xafEqO5gAGHhwO2eiXGFfSthgIaLwzfTtzj6uwOL3zqKT7vK7+WfrEMwANf9EUc/pKv4UP/5IfYu/ECv/jJ53jizQ/xKy+e4zOffoVGG+LlW3wDoiXyTeT0mRPM5lNmTYOxFp0isRigTUk7z6hUYE1BDpBTyzQEGIrUnNCSjAZXslwN8fWEmCOZTJsCbZasHB0TsW3pVQW1b1G1/6z3bG8845Wrt2mzY6BEkbgyKPmKd3wej7/5cX7h//OTvPz8a8xCpjAFykesVlg0KStwGpLcqI0PYB2T2YQ6ITciZTuQCSojgzSFfKSTdk4bejgyVXBU/czGkR6D3joD5ziyMYScaNrAeDJne2fMne0pNyYNMWi8AmUdqvEUWeOjpyGgo2KgjQyggx5a99idt1Ta4k1CG2mfWxrAyVOrHN8cMcByfW/C5Ztj6nlmMquJlChr0MYw1BaTFU3rUZWmshabI/PsMbblC9/+KEsDzcraEk4p6nkteWJNxFqNVQXWCDNsjMJZQ0yRFBMNLWXui9I9KJJdyO9kWOwcp5BTx8JGtIrEBFnbTpzWEgmoXBFVjaYLltVd2DLQBch0zLbkuWgtVhUQYFRBNxg6CeHNuWPxO2YYyeRQiMIQorDZi/DnlA+YbBVTx4BbspLjcWGbTQpptZPAGjJdBp4uCKmg9a7Lk9ak4EB1CgoW/V8SkG1QkEI3O1gp/cASs7RBo3IHDHZZakqDkpxErQpSakRZGeW80MqRsu1egyg5o6lRKZCykt9LCk2i6ZSXSjsBMcmgG0gt5KJj1C2JRh4P11l7elK6oC0pJHL0BO/xweNEc4FRCpOlsdWryCJaO3W2nflsSuHKg5IGnaV90WVheLPWpEayopom0sZI4QoJLVYa50qxCqFpWy9lHQnmdY2zFqct1mjqlPBzj0Wjo2PuPWVpyDGgnIBVrc9currPoZU1MlI0EqOSXMWDzYdYdnUXc2SNJed9cg5oYwjBMK+nDIdH6PcqdoMneoUrCjlYlITsL40sW3d6+C576rmXrnL2wTNs7U3IyoFOTJqarPuoIASI7ZqME9CEhPD+nqgMw57h7IP3sXVzh1sXr7Beij273t+T7MoQmYTIaLnk4Qfu5djGKml3h8PHj/CeL/1yNo8cwyRocqBJLaO1dTY3jgkRkhPT7TugFb3RGsoaFB5t9IEFVh2c34bF1pNOGac6gOzAIqOtbOYUYBQbx06xfeMW1y+9zKyeMJ/uMOivYgmo0rLa28StrDPe3+HQqRWUUzjrcOUIW/Rw1uCMpnIFWUWMvovvmU71I1/GTjVKlwEpQLwrNCJskk1npIsy0MhdbkEydCqQgxB3JUItZjWT3T2WTn5Wmdob67/UytLyrbRjb3dG8nNOHNmg2dtlMo0084QuAraXaHxNmInaxOQEybK1tc9TH/koj7zni/A5sjerefmFZ6nn+xxbOcQHvvor+eCv/Rr/zx/5V7zlzY/yR7/jf6TNpwComynuvrfw0r+7yVNP/wBnzvxJjm9c4OHlIY8+fJbzW2NubO2zv3uT6+da2joRA6SQmM/nJKSpth3Peej+db7iy+7DWs2Nm1P+wT/+FH/vHz5FNkNiA44BygyoihWyluiQRCaEQM8V4CON93iVWB+tUFYVMfUBmMzn5ELCS0IIlFVFk+akesZk5xYvvnqd8d4WlogrHMF72i7ewmlLCC3WOuoccM5hAX/lAif1Fv/zg1/LkfIGTY4UzlDkwPETFUdOH6WZVuxsr3P80A18GnNza5tzlxrqWU0dNbvzlmmI5NbQBOkDt9ow7QqwUJnY5c2arDAxoKIhF5WUm7XQKwrKkebU8jL9oWVYVeze3ufirOHKncAsi0otpQSlxvoEOUHhaJViEoUk6C8NOb3c4+iRwyyt9nCpz3Q6IzsN2WC0wccGFRzOibXPGCPWuQwxKXzIpBjR2eByAVlT64yyFsIiV3cx26QOVAAp8TKgQ6eiloZQQ+rud4ZoNDZl0J6u0pNFycUCQOzYN8nppUXMlIhKXHN3Hsky3y6cCCEFpNhsUZ4WO6K1y1vuMDe6nLDUSfbMguzpSJbQzrHGgKqZtzcZ9ZbQWeaepJPEMOQMWJmfUpQIjo7IXcw7cu/scgi767G80o44VZacl4FIMgHFwo4rzKnEqHQxEwQBClOm1EJUUoyIWaFNIiYDpsVki4uOyJSsPCFGlAarlglqzqJoRZRzoZsjE0FlcJY2J5JzNKmlUVImWGohTnVK5KjQRmFciY8ZZTRFNSAmSEaRYhDQLCeWV1axkznbe3ugFW2MYnRJCtNztJ0qcDqeEFOiLByFtR2QqogpUWSFSpF5HSmMIjUQ24xVoJVkqk+bdUalxepSiOxk0CaRunzelKVgQ+sO6NUaVI+cvWRVFwUhJnwMFMrSRlEx20KI68FAMxgG5vOGYyfXef6189z7wIOcv/1pdid7aJNxJGIINMHjioo2K0zWqBglJ7uF5fUBh44c4aVnX2BvOkZ7Q51aPI6kAs5pHn3wXo5ulGQ/4V3vehdPfv57sFbTtw6fIto5VpZXhUjPkXo+ZnfnOuh1bNnHpUT2NcmWMtNnIQdDDJRlxcLxwyIeZzHfIIT+4pxQWUBeMCgHo5XDxOxIviakjMo1HktKSwKaKo11BhXlfNPdeaqUQhnXqWmtAJFZMp61NZIHajRGQY5dCZBKkmfeFf/s7+8TguLwkRNwEGScWZTmkDM+TrFuCe8zNichU83R/+P35TfWG+u/wvW5W339HJsN2XvsQKHSEnt7u0xmgWQdFydjUjlj4DRrVcnW1V12G0WTNLkNaCehzfPZPoPhWbSHcjCinU9pfaCqKlx2PPHgo+zs3mR3vM2FvW0Azr71C7hVLvP27/if+Km//X/l5UtbPP3KTbZjQ9UfgFO89dBxePkCK6vLnFhe5p7ja+xP+jzz4gWiiujeiDImJvWMer5PzhWtH1EpA2VF0pmAo/ZzCDMyLUo53GCIc4bpdIfYelFldDyE0wqXErP5nIxY916/dvb22R+NMM6inYRhK6WYTXYZ2cQ3/Lk/zo/+ox/n5ZdeYjb39LShwNH4DFoKD3JMlL0eOeoumyLS7G0TCKIc6VgVHUMXEizs+VI1ooqWwysl92wusbwyZDQqBWTKisu3drh0e4edrTn1XDEnE3TEZUSSniPeNwKIZYUtS0IMpCagoyf3FMwmuMqx4jQZT6UNRdHj5GaPh08cQsUZr1xruHDtCnt1ImdHZTTOOlTOtLFBKU0791SFJZDoFwPK0lDYwEObhzhz7BjV0DFpJrTzKUk7tLaUpSamTIiKwkmVvdwsdCcflwFDpYjRmawg6BKlKgHQVOwGg3gAIpEFXNPGiGRdg7IFKSiynQuYlyqyKoi0aGVFFYiVTMDFUIvpZPXC8sugGMhZY5Q0dGWlxZoca1Tw5FSilQJjQVWd3cSQDaIm7YK8DuTzWcmQ1ansdIdApk55ZbpGLKWFkM6hwRQFZTU6KKLIMaCNPP9MOFAVCdiohFnvBn+UKADk+NJdSHBnbe5et7hwnQz9GFCV3LxVLXYgxKrdmQ/IBHQsyFhypx5UpiHFTKmMVHskjY4RrTQesdVL21e3qdELK5CH7MRiYLrPQ2WsLjHWEXNEEfDZE6LCR2hzZOhK7tRjDEgAvVXENqCSonAFc51oQ8Rh8CGgtSOScUZjtGZWt51jW0su32yONQ7lBACU8HJhhouyEBVCitSzOdEZCleSQmK8u0tUp7EktHYYXQhomRLjWU3tFWWlSMiQnlPGqCxgkfegNRqxryit0AzQxgElRmdMmVleW5Vjh9wx4wJWhQQozWjYp99raGaRzSN9tvbnfNHpN2HUv2eOJvlIoUuarDGpZTZrsGWfJkuJiknC15bK4bTi6JHDDEcDnvvU87RBEVVNS2Yym1FqRd+VjJZWefvj9zBwiXYy5dF3voO3ve1Jin6fNnpMSJRlxeHD65heSVVV3HjtAsoqBqMBWRmCr7HGQhJVqdELK7kw+il2eZ36/8vefwbZlp3nmeDzLbP3Pjb99a68L4AoGMKRAB1oIVGUSLU4Ysu0RGnkNVJER0d0MxTDHkkMUjMa9QRDwyalZotqikHfIkBKhAiQAkEAhCmUN7fq1vXpM08es/debn6snbcAmVB1TKMlzdTCD1TVzXvy5Ml9zlr7/d73eV+HV2d3az7EpuN4TErddampllY42evTLI4Yu1VYO4VTPRKBNghNOyO1DcuDFWxVUFhNZQxalSht80E3OmJoMptHVMcA7UTmELv4TSfkp3xDa0x3OFeZYbi3s0tCWF07T+SYh/O6S5HuQJ18QIym2d/l1vY1FvNDJtMJ73lT+PtPYvla4/oFSQulLTA2oco5Sz1ha3efP/gt38H+9g5vedujlIXhn//ir+CxzBQc7p3lxWd/k1/8+b/BQ0+8hWRHPPn0s8y2b/HBb/gG+r0hv/LP/zmfe/pZNgZ9Hnvn2xkMR3z8158CzvHqzV02r/0eXjY5sfEPEb3JqaLinpWK2Y2XGDjLukCvN2LvYAEozq6ssatXaFqIaoZJfa69ssf3fu9PczRLBGNA5bZ4JbnQS6Fp/QYvPPmPufuhv0mv90xGmaSUGzEl4VvXuc4M4/ESysgd4a/12fkNeRg7spqN5RX8eMztEpY2d7nvvrt54cVXmB/NCRIxlSUtckkFXZQuBUghgoYzolgyM1L/gDGafQ89FERo557ZpOa1qyv801/47/iOD/0VktrhaOGZt57oG6qBpleWFMZQ9UpmszbzkUPGovQku9zmHQpDXIMyINqAr6mGfU6uVJwcDSjKiDi4tXvEC/ubNASMraAA62OO2BmVgfgSc3FbgpAULrSUeC6eOcU959dQKpecNOoIYwrcPGFUICkIYQEiBJcYjBRtG2i7WLWxmfkakyNIHmZnp1AkBo/CoySDuQST+XCS8hAtZSfdcQst0ZFEQYz44Slod1HxmHMcczSWnIbIH1m51TifLbIIQNIIFlTC5NYLgs9uO9GSkxLpy8Y2UmbBgU5QlOM8bteAnuIxNSH/s8rsP+lKk7QowtyzeeMGB7MWX2va0iPiMruYSIpduYfErugju15zs7HmGFciyiIqdeVwMQtPsatSSBHIj4nOj0UMXVOvQ3euxxRyCYhIbkxWBFoJqLV3E8MBTG/RTDahDSQb6fVXctKEbthJIqWamFRXoJDPpCGFXACSNCk2qGhRPqKwEBSVsszTHBFhupgzLEsW7QKxGh1TPk/HiEQNpUbXHmMUZVHgUhaN66M5UUG/Kogx0MZAoQqUCLHNyZUQE2VZ5Gbu+RzV6+UzqvdobfAxEFOiaXIhR0xAjFRlvnaa1jObOoYDS/IJHzK+xMWc4kGpvLdqwRYWcGhjSanBuz1SqtGmojAlOkk+q8YAwSHR5OE1ipXxCoujLQ6ncz7+sY/wZ//893P36XO8+spVqhNjbHCoJAwG/VwiZwzK5LdDipFUwOlzZ9nb22dr8wBrNFpFFouWJJYTqys89thFVgYVOs545/s/yMOPvpWVqo/pZX7z2JQoWyIxkFRkMZkCnuWNkxxMDlmzfQgQlc6Ozm7YoDRoZbIj9Vj0U8cph9cbfo8tCsfc7hQjSXR3HTkUDVIoVIxo1aOMmR3eTvepXUu1tobCksRlIT3mgcdxIY4y9g7eIZL5rqpz76UUEK26YWzHHpbMt7546d7u/smRMOQzauaIHvNCPQqVFMVgxOTylHkzQf5NtNab68315npD6w2/c1JIRJMjAfMmUtcHnFheoho23N6raRvARxo3YXB2BatKkmtyW1doOwEErr34CuPH30a0wt7RlCe/+Fmaesr9Zy7wvrc9zpMvv8KvffzjbE0XfPP7Pwi/+VvsH+xxtL6ECxBO3cf2c88zXzRIqVjTigdX+ry9tACcNIbN+SG3Lze0ukRJwqqCo4MpoS+04hmXCQIczlransG1CS0W3zisFGAKfDunkiWCTCh6lr5OLCZH+BhwLv8sSimiD9QS6JUV5bD4itds4RxKGSTm8g8gR7VSw+xon8tPP8/1165AaBmUBclHWgLOB6xonAtU2uJq1wU4FComyq3bGO9pSIy7iY7WGiOREyv5V/qOh09zZnUDq1oWruba1g6TV1sWszpX0Itl7luaZPBKaFtPlAwtnsZwByafk8QJ1TrwDpMiyla0yrDwHpxQDQecXO6xMR5ge5Z21vD8S7eYec/WIdSxQKmAj5HGKGJMmBAQrfFdCUOMgLGcWRrx4Pllhks9+v2S1CqODqckJSixGKVo3QKkwFqFtgHRBnPsdsvYsNyU6QOmsOhoCUrwWmeHTDdhRhTZ+xPyxiTH7BUD4jugM0QRTLKk6PI0V4FEhY6RpLsYRhcryX//+LCYyIyZHMlD1bnNT+XNLCXfCWu6c9PlOE9MLkdppWvujNzZLOW4qCDROZSke/0yd0QS2JSbQkXnsonYBIrSEtOMxk1AxigUEZMnohLuRHaPY7OZg9gdMLvJm8SUI81dpOD4QHwcG0ik7vAxJkogdhEdUuiiKNk5oAjcKeoQIUaNDY4okaAtSfeJ4tEqEqPCmxqVDCZYgsyAHPdI4tFqmB9bFuR4tZDEdwe6RMTR4lDG0qaI2BIXZziJ+JTw3qERYnDopDBJY0yZa0ZCRNsCQ34fiIBNEas1PrScOXkW2Tvk4PAA0Yo2+M45ELGloWlblCjquqZpW7RSVEVxR8RNXSuvkhzQWiwcq5XBt/naOZ56H82PmMwc632NSkU39QbRdAdhueOIiCly3O0SFShVEmNDIrfIxkhu15SKNnh88hjby+9xgZU1w95kxrBv2d5p+e1P/y5f8/Z38rHf+TxtzK+riVlMC5LLMYIXNBqVQr6591CUihOnT3D75jYHBweoCK5JtAJRShKB1dURb/ua+1D+EGMqPvAt38k99z+A0SqD+lOEomA8GnctvYlmdkDUjma+wPYKSqNRzuWIuMlO0BhjnoLHQFVVdLeBd94/Xx4B7kbX+ZqHHKHqxG9rStTQkpIl+hoTEooajyWlAdrkEZAxqjN0qTsOC9GSb2pjFqlzhLdjdHbCR0wgWmfY+vE0PEX0sbCX8hBicnjE8krbISY64Z+Ock/HZcWjpQQxVEYhRYEZrL7R7f3N9VVeo9UsYiz1x7jZPkvjESE4vvc7v50zd93Hu9/5TqI4rl15kVdfvcrZe8/xzBcX7M+XaY/OAnDlxoCf+B9+j/d/x4d5/rORD3zth6lb4eOf+U2MOs2jF+/mre/wrJ86zS/8s6dpJncD8MmP3WR6uGCybdkYfYYzq/exbgf46fOgNHuz8xy1DSFcZtBT7Nw8x9ve9m4+9+Ias4VhdtRHmT7X64i1R6hin9C2gMNH0EqDZBFC6wlrp36VmHaYN23mbYow6lfEuib0hV6vD9rQaOhpoVnk4jfRGlvAhUtzekM4t7bO6rjPvFng/ZyHTo149A99gPUz/yW/8Esf4frmPp/+/S/mvTgFdM/kaKykbMQiclc1YH865Kev/Gn+5On/N0WxyUArlG+5en2HlzcXTBb57Lg5cSytJIpKo0pNipZZ29JMU8aUJI8xCVNoCpUIDZQhUSeFCjm1EKNDWzg5GrK6PkCh2Nrd5+m9GXUTckTZKJSLeK2p6pZgFGINqchcXnGR0EYWRUL5BhU9pzb63HPuJOdO9IjBEaPHIhQ9m/9u8DkWqhRFfxm0RsXsxk4xI0N867pyD0XTLmhVS08adIoZv+EVRENKHvDd8FDyQM1kkS10yJv8eRdQVhPVBmnlrZi919DNDVwRUc4BnVuuazqL0YO0pJid90KOo4oyJKny8/Q1KrYkpTKjLpjs5FcLSEsglpj2yIy/LmHRnbtERVLI/FMl+ZwWO2FTBJRRRFEU/RH9sadxc86cqhn2c+GKUgIUCD5zUxMoJchxa3v0iPRIBpJYPBYlvuPZ0UWYs/takQf3nj2Ig84hyR2h0EeH6s5DqUsUBHEEr0jFgITn8JUvcfj8EYMzY/qjFZSf0bRz9FDn/SXMEeURiox7QaOSys9VIkryzwJCiAqthIDLe1DK567kW0qrUQlWVlbZ3tsn+RzxboPHiKIMGi0JnwRXN7ShQdmCo+ChECqrWTSOQb+Pb/M+GrxHqgItCdc0BJfboZtFjVMpF54Ez9JoiJtPOTicEOUUUTsk+ew2TJooFfv7U05u9GndgqZpUYXkREdsSFJ2rv0M8MjiMexvX6dPJLgpVWVwrqYNAeMDttKIUaDz78lox3gkHPRg/0bNdNbw0nMvcuv6JrtHDaeGivHQksospjVtQIzCty2FERoXGA5GVH3F5edexaUWowzOJ4xzrK31eefb7yNIw3w257u/+w/wwMOPYkVhSk2KDqNLKEtEVcT5AbPJLsVggJYC6w21y5z6/nBMVAZCTofFbhBotMrCvX5dAEwcR2W7807XDB2jzy5dBUkERchCnUBUNidwkFyIKI5YGbQtEE2+FxCLiKdZzAkBqmqUmZ8q5WI9mwV8VLpTLnj8v5hSHnaSP1eQfM+gVMyfOym3Vd957il/Thzd2qYYzekvryLDZZY3TiPxeBzw5npzvbn+t6w3LPzFVuF1gSo1ZSHE1uPNnJ5EdGy4/5F7uf/iRXDCB77l/fzLj3yE6ee/BFLQFpr2KBdifOr3fodv//CHcGrIl559jvnBId/6bR9iMFjlIx/5NT71uScZrK3w4Fse4+6lDO68ceMmByfP8PwXn+P5l5+h9oKthjTuiHP9PqfHBe32NgBjE9ioBuxOGzyRE4OKu+6/i609x8F00XEqFMsbltpNqBdFjpckS4oNQQSXFJUkCmPxMsK5A8QOKIdgYqTsbiI9iaRgYCuqss+wsF/xmrVJCF5ARRJZ+Du1tMzowjl2lnoczOa8/YlHefrpF9ja3KNta4phhbSdGCFCUAmjNG1KiHdobThtFDoEFkDR3SP2o6ClYHqUI9U3bm3xSlPTNp7tw2ylX3homxqlPb2+QancXjoaFcznggNa5zGS6JPLIyauK9VoGyprCEoTXEOv1CxvDDi7NGQ4MKTQsr8/Yfu1GdNZi1QWrS1YMD7mCKcxBAUu+OxsSllACinQ1AvOra9y18kxJ9dXmE3mNGGKGIc2Br9wWAVBRXxsIBhc61he1tStp14s0KKpegMy4+VYuMpuHi2K6CEp102Mu8msUnnqKhB9ICV1RwQE8tRUNKRAqJaIRR9Vb6GpiGEGyXRuoRwxVNKRa1LIAp0cO/40kipQ0tncIXqfD8YqIFKQUgtYIhElZQbd0kVgOIZ6dM/reIJ3Z7qdXQKoXNchHVNJi2a2d8jlqzfZnWrcokc9bxHV5mIWIAXdHaAzVywP0RXQ5M2Z/NhRbJ7apWMh8ljw66DaKUDKUVx0B3iOLZIsibYD9obM14kquyqToKSLxfaGmKV3kpoXCXs71NNNcAmKSG+wBp04guR4cuYQzUjJAAat86A9xCyoSswtdgUD6Fgt0UFPWxZxhohitlgw7PWYp0jIDSSEFDI7MEYYdOUkbdtdWxGfIqVUHGzt4jWMej3akFsStSoQwNcNUQku5vKTYb/P0WSCA4zNgqsKEZTGu5ZoM6IgSUHspvVVJUA+QB5NGtbXKlIIeO9JStGS2U2idRaxU27jNjYDvZWyBD/F1Q5oMaaHNSUWQ8aSpvyaKg8SCCGxtrLO1SsTWud54fJ1vvT8Zf7qX/tBin/1OSbeQc9QRI9CMRz0ckRb6276bUgx4pTj7KW7CCFy9eptUlL0esK8drhFw2Aw5p6zq9xz31nS7JCV9SFf983fztnTF1gue5ieJRphbCrQFhUjPtXEJtDWM5aWVtl020wXC+ygJGqN6Oz2TDE3N2ZRTmeRL99x3ZmC31lf/h6SjvwXM5Q8ieocGDWJGikEHQWl+pTR5Bujw12mizlLp05gVA+Uy2/RJIQ2Mza1EpTNn7VZ3AtZnFA5lsdxVFd37Kx47G6xJIHx8iqj8Wq+3uPxc84t43TvezC0saUShakG7G4f0qYGrb9yEPXm+o+3Tg3WmPsjJLYMhz1ub+7w7rfdz7vf/TU0deRg9xaFqXDTQ06fWuPi2ffwD//hX/yKx7jy4t/iyovwc/8E4D5+6afgL/zX13jHu+/nN371NP/LT76NH//FX2J/Z5tf/ZkP8MpLawB8+je/H/h+AK4BT72cH++vffN/wbC6wcef/gHmbsgHH/2r7E80n3r+n/Gp5//dP4dIy9m7f5bSbNPGGoXqWu0bvPSROGH99McJcRflG7S1eJ3RFrZnKHsJMRpMdtvowt4xbV1/6QX+0B99iJ/6Z09DM8XVCgaaYQknR31G993Pxfvfwu7uNt/y/rdz6Yn38Hf+zt/nd379XxKNoKJDqx62+yx658klHrWBz7tVPrP/h/nguV+iX+xxG8VmVDQU9EwW9iF71nUI+JBvkK1JaDE0ITNzj+o6xyCVoiw0lRX6gwIaT196WAUrwwHKKOa158btPZo64LWmTLlAKwNfEnV0SEzMjSZ5j2pbxj1Lb2CYt7nUIkXHqNKsLw154vF7OXVyCWIgeJ3LD3xNUAEbLf3+Mim2+PooS2rWYrRmMTvCVhYkN9drFClEVIqIT/lsZhORhpgygkK5lIcdSXKzZsifNtooxDuUSngvJDWEoFnsbhJf/ml0mT/DTH8Z0+9nkVCOh5mgUuw+V7t4qxJQhqiy619Lx2zr2MaxE8pCmiOpAHpQgKhVEqAC0B4ScKjkiT4PZukYzceJhSBdSqBz40UdGJ9dYvn0kAuHh6ThGB1VTn+kSAx5gJPFP0c3lUVMlcU1bUiqzOUncUhwe1hROJ0wqURsbp1XkiAaRId8ThSTy+p0N0BO5Ne4G9RpIKiERbH19Ke59uIBD3z9u+kta3S7g6QxoZ0gzSIz6NweokvQFsgR3RRyUiVFlZ1tXVmfAAEPyVJooQlzknPYJPjQQG9EDLmQxmMyQ5QGqzSFaOrkSUpTmIJ+0LQpEE2mc7rOhUfjKaoiF4N0jbuFUvTGfYiJyXyB+NSdkXOZnC0Ug1QxqxcsvKIqDNblUj8VI05gZ9bQhpiLfAqbXcQxYDphOgSHVFXmsEcFpXC0c43nn/48R4cRlfJ5zPuGxpdoB0nlnzUkiFox7vUw5TI7022q0nI4mfHqa9eZ1wuODiacOrHOUApaIPiWmLPCgKCVYWV9iclkxsH0iML2SQpUqFk7uc47HruHtpljCXzjt3879z1wHz1jsLbEBd+Vk7Ro3UC/gF6fyjuOdncoR2OsSoz7PSazBe18mhEtyuDRiOT7NJVifj2I5Hzv65HZLPx1/ynlgp6uRjAbH5Lk8wndLPGOky5kNE5vtbvPyJxzECIltrQUHU/wDmOyMypoVXTlfvke+U4pITpf7MFRzyfYcqnbAyLtdB+UouxvdDzMmFFDKfHUC8/y6quXed8HvoWj2Zy7N85Rzw/f6Pb75npzvbm+bL1h4W+0JpAco36fMD9gUBUoAm99+CH+m7/2fSydXOaui2fY3t7h8nNf4LG3P8STTz6JOMe8btE+36jc2tziV37+F/iuH/jT7N3c5EPvfR+94Yh/9cl/RRMS3/HBr6foCw898hCv/vaneRxYW93gC0+/yJc++3vcvPEa/uiQM+tD7j9/kotVRZwtiE3n+AqO+WJBVTrECQ/dcy9veedF/ulHP4MPFTGWHDZj5mGGDPuoA0+sj4ipxqWAqF6GFuuGkBKt04QArV9Q6AzDLXs5mlIWBaPxmNJWOC00vv2K18wWlpQEbTTG5ud3/uQpZidP4X3NxZHl0vsf42/8lT/Fz/7cr3Dt5g6fe/oFbk1vZ26XjmALvMsONYmZEnJWF3hq9lufK9KB0iiUtEyOMqPllZsHvFQ7hAJlDbZUSAGD/oDaO+aNJyWhXyRIDjGJSmuKShEaTxkSTQIjRdf7oEg6sD7ss7a6Rr/X43ByxOWbuxw1DlcnVCnYJIiHEAI9wNks+KUCYnTgIbrEwiYkOXTdMOprHrjvFOdPjFgeGKZHRyilsMliTAFGQZHuNJqWg+XslInQtAFSjnwqFIvZDGUK6rbFhznG9ghpQZF0FnKS6abaDUn5zP+Kx1NtQOWYynFZhhCQQiFqTBhfQrOGmXvQDUH10THleMJxbJA8eRPlvmyybfNkWwuRfmdLXCBhgSaRdJHt+W6QRUlxJFaBGTEtSJ0/77jZVkTnaEh6fbotOb2Ub16UJqbQNZsqljZOsZhFVOWpRo6VcUH0EaUVkTy9g2MRQeXDYnKk1KCSyXFjbUgpl21oPF13AkkSMeTDnMYiEvFhD8KgO4BqlM7XWugck1ryt0lANJEQBEkBZUf4+hV2PvclFluJ8cUVeoMh4qa0kwV6oDPLzc+AgBabH4iEYIghElOdIzhicjRHDK0LWKsJ1OT2VsmsQddSFYYYAuOlJY7mc+p5A9HjJd+o9SnQIZK6Fm7aBTEFXFHifEJXmkILhMRw0Mc3IaMAYp6o2qKgrWtcU6OV4NoWHzwuBnQEsYn+sMfB/Ij9yYQLZ0dE5dAScD4hSWFsxf7BlHNuhBCZz2uC6qGszn5VH1Ha5CIIybc+osC7wP7mVWKRReWq0jg3z2BqL5SFQdkMW1fKZqh6ajl5ouKlaxPmdWAxm/Hk5z7HzYMdDhvh9IlVBj2V41NJqNuAMgp3Z/odKUyf4VLBzuYtjmYTlBVc0AQXGEriwbs2uOeuDfYmu5wcn+BD3/ndnD51Bqs0qlT40GIp8qRZVyS3YD7ZxxQl5fKQtDCsrZ5kb7JHMoJUmR1YxIAoueOE1SJ3puDy75uCkzosQCQm3zldM08rxsztVGIJortJuCJJkUW+QUVZVl3DpScmg9YR72rmiwW93ghlq06kztFDEcluh85SImQRPxGz6/lYnDwW3Mk3cko8Ibj8ezp2DqKywzUk9q68xsrZs2AsxcoJxsPBHQzEm+s//vr6b30vr93a48b1q0wP9jm9cRJNj5/5+V9itrvL9/7xP81bHn6EJl5ivrPHuVOPA/Dt3/Y/ceX6DZ596r/hvsf+Nornueeuu3jo3e/lwfvuZ2k45cbuAY+9o+Gtb1sw2nuNZu8yf+EPforJzr38rX/03fzVH/hZAs/x7PNDPvaZv8kf+ZofZjTYJCXH/mLAE/f+z0yawOa8B6bP/+vv/guW7Aq/9ok1ShOo+prWw80dze9+ep1xfxnnGxq3DGFOCnN056P3UdjdfoRBb5NKR1o8xhTENjuT6xgYVFVuro6RpnWd0wp+7V98jN9/+mf4Y9/3x3jrO9+CrkqM7SEKTp26G84YXr16nf/hx/8B21vb8L/8Ki+/9BpaK4JKKFNw//0P0i4mLK2MOOvnfOb2Ac925SEfj4ZC9WkjzKVh0Tg8DaErSPM+Dz/RJRqyA005Kp0IIRIoaB3UTW7ELbp43bmNEWujAQfOc/PGHvOjwJRA0TFwtVLMag+icZJjn0VZ4HzCiqJOiqpnWF3OTOYzKxX9SmHFsDyu6FURW3p8TPhW49yU/nCEoAnBQWxRukEXUKoRSUHbzEEKTNUHCVhbEnyNC4nZou4c0hVJGRKCpNzSGWMDVF2q4DiWmyN6hIQYIcUCo8DrOdOXbpBGp+nd+wFsfQvaCb6ZEhYBqhwjTCKIybFioQCVMTpJ+ogp8mAzReicjLoT7yTmlEd+DhbkELc7w5YVVIYFnnBrl+rcKsF15y/pytl0ji8rUdkNF8kIE5WHsykmSAEdEsEASZO8gC6JkiB5NJKHsSmXfkUEVKJdtEQ3p+iXpKLHfGfCcKkEKUB5XGzzqSTpHPk+jgunthvSSo5Ip0AulVIdqqSEoqJuD3npC7e49z330htsUU8GbN5o2DgPPRczc9hAtLn0KUrKod+UUKrIe4amS5N0A1oCKaou2eExWlOoAlLisGmojMf73BScr/3Ouajy7z8ajUqSS1Ak42WsMq8zLmODVprQld0k5zGxphWwrSLSJVC6YbPWJpeiNQ4RRb8oWNSe/tiQaDD6eMYVWMyFULdYbUlW0bpIIYIYi2syzoOU0wfJOXQkJ07yvA9Som4d6D5oS4xCDBXJ5AIypUtcUjg/Z2M45NQTJxiMehzuNRij8K5mbEvKQtOThHcF2/stquiRUsRoobIFr169gkgfJ4lYZyfpOx+/l3YxY1BUvP197+Ghh56gZyvKXpVVtlZR2gIdWhazA/plgUoKVY3Q6pBSKZqY0KbAGEfbOopelQV5lc/DxyigPODs2qK/Yn25M66LiBFeZ2N2647ZoUtDKBRJIim1WbjH5FLC1DVWS+adphjRWogeULmYJzMHJF+HKebzuXPUk22mh1uEtgES4/VLDFdOEgVefPpJXrt2jW/59j+C6Snq2ZT5bE5T19zcuspnPvsFtjZv8R1/+I+zNFrC8JX322+uN9eb642tNyz8nRqsU/sJITSMxn12dyecroZ84Ovex/JYs9jfpl1f5/aVKwz6lkunz/DQY2/ls7/3eZZHFSYb/uiPR3zqY7/Jh77zwwwGBWsn12id5exoiYtr51lM91k6tcGNGzc52fFebl/+Im1S9MIcmwwbq6u87/yIEZE6RUKy+JTFC6KitIbGJZbWV/jGb3g7JzbW+b/8wDmeubbJU1+6yTNX9pjMGzQWO+hjZ3s0sUZHRYpHOZaGQdoWqSoIgSJmp6C3BbmwAcr+CNMf5jYj3RU+fNnafvUy6w88xMy1iMsFBzG09GzixLBCX7jIhXsephqOuf/8Sf7Q9/5hPvnki/y9H/ph6qYl4rGqQMRgNEQlfNO5De6Kc27pkucrxU73Ob6rNbdVRRHzh6GSghQtSSWKkAXR41bIvgUthpg0zjW0MWbhJilKqymt0B8WpNqxIfkQvDTQVKVQu8Tu0ZTbNw+YAUOVp15GAiUaL4E6ebS3zDQkH1Fty6hn6fUNte+ceClRGmF9acS9F0/y8APnMTqRguBcylb60CDJUTDADoZEXxOaaZ5CGYu1htnRBFsZbJkFUt2x+hQJCQntUnanmxz9S2Kyk84LiRx9zJwayQ4dbZDgEYmEmEAGkCoWs0Pqm5/E+CliFdr0KUZjsEWOVZBf35hiFvNEdQyO48m2JkqRC0Ni5tbQHcpSFJLOTbUp1qi0nIXCsp8PkwjKJ5KbdNPtQIwtxyUcdIcziPnQKjE7nWKOfQYd2bj/JCems8zyKas8Me44GiFolCQ0ipha6G6URBUgBaICSZUYo0mpIroj8KBMxKNyQ6AORBe7KbdF9HGEWREoQeaIykJFEIXELE5KKtDiSKpEFvu8+uRtminc/21fj2aKCQcQTxLaI2hnqGSJ/hAlZXaNHBehHEO4le6cUfk9mr5s2i0pi3SNn5Ha16fdqhxkwTrkCG1V9CEGolIUKTtvPUKUSL83ILiWVkEyCWKijZmtE2uPrQqaNouHRgp0Sgz6FUZVTOua2GSxVuvsyiutxlph1OtzMJ3RRoMpDIUnNwfHfEO9v3DMasewZ6j6BUd1BkuLgO0OX4GANjly66LC2MjO9ee4cm0T11ZISvi2xYeGNhQYl90ABYkYM9hchcTa8jq///KENizoVX2u3djkYDLhqFUsD0vW18YMqKjJCIOIygI9Qq8wDJb6JBSbWzugDaWuCKFGK82DD1/k7rMn2N3Z5tTKKt/23d/JyZPrVIXFaIvznigJSS1mUcOgJBpDf3md6fYmNC29/hJF8lRFwWK+wCBZ+BSNwuRrP5HD7F82BX/d7fflU3CBFMgIACGQOakpSicKVt1EnX97El4tU3Ym3NjdJMdkUHrIYFR1TL9wR5AXyOBzbbP7JEFUnYgnqns/ZxdmPT/E2BGmqvL72rXUhzv0lk6TjMnXd4ToG9rW8S8/8ZucOnsX5y5ewIfE2sYKi8XBG93e31xf5TU7mOD39ji3eo7euXNsvnaT33txm2XTsDFY4qM/94ts/AnNsDfixmLCjSsvcObUBg/e9QLz+YRngWF5lRNn9ontTe67+3EuPThh+9Yuk8OW+y9o7glPMRZL3SZO3bvP5tI+AI+c2uTs+jYVkY99BvTqITe3L3B5+xHmERZ1g08Ko9/Og/dfYnv7Pm5MFxxNB+y2pmuZz1y4979jyqn1U/zrJw+IoQI9JMQF3tekmPBO2Nv6rzHnvoD0b6Eqg0RHiaFWCt0viEYxOzyiZ0uizu5aAFUMuLV1N3/+z3wPD7/lr3DvxUNOra1QDTIH9ebt2zz39Es0MWCKIWUB89rRKo2NASPCyvoyJ048wP50yku3LvOyjewNss9ukjyFyw604CU7zCw0XZPw1Hmk9RSFoUohp9BUgUkenTRiDH2jST4QXE2vJ/SXSw4az+7hHi6CYLP+kwQbzZ2b6LIKxFpoPejYDb+0Y2WkOH9ijdOrQwYFeARlC0bGoYuK2XzGeGmJ0XgEKNABo4o8EBKDthrnWnw7z42jYkha09SBze1N9mYLvGuZ1zXeBUIMHBxOUGI5e2rEu08/SkgGFwJBNJYqD8xCIolHdC9jVkINYlGpQpTCu0S7eRtjSoYXTpCYsmgXINDrDUity4MUAZ0MISiMtniXHepJlSTy2TZGhxBzEuA4RZAyuiSlphvmOJLSMBgRih7K9hCxXH71Ne5d6tPvFzmC2A1K6Bhmx4PQlDKyBcgDQhegdYgxiI+EjnVMiIgUgOtcf5qQICRPUmCignKAH64SrAZVcH2yx3ixx/m7NggOTOqRYsgcadUxZDsnY0bBqIxMIeMgkByzDKJQkti9UTM6scKJM4aXv7jDJ6+u8vTLU956Yovv//7T+COw1iCNI0rI5y/xubBFvc66Psax5HLm3CRc2IIYMldRcMxDQBclyQeamAVBSQFTFsQ6R6cdgaqocE1NG/PPkIe+kRSgTY4oKRdmiGCKIu9lIaKNztxdNItmATHlNlilCTHiQvc4bc1kPmNjdYnkusRMx7FzbcvW0REnT61TJEXrCxrTIl5yCUqIeS+MWayKKYJULHxL7Wums5at27cplODqBUobjC0IYYGWvOdrGzh3asDeIvHUlV0+//zLhCgkNKPhkEIUSUcIoI1hMtvFhEi/VzHq9zmcTpnOGlZHIyKBCYHHHn2AtnH0x8t84zd+E/fcfzejcR+rdYd3aSmKzFScT3bZ3rvB2aKiP9ogSku1MuZod4vh6gW8EoZ9RWhqvA+UhUV1jr3jlQ0MMcd31bHr78u44KLuHIizIHwsDB8XCOaVHXwQJXbIIZNTOSlkLqVADBqrSmJT09RTZtN9cFP6paU/XCMVPVxqYd6wODhgvtjDB4fSlqQLeoMVVjfOIZWmme3gfMn1W7f47U/8FnuHUx5/y2PM51Pm0wUutNx67VUExdWXX8Og2bp9i82dbZ7YuOursl+/ud5c/7+83rDw98FvfS+v3Nhha/MW+7tbrCytsrG0zCc+/XmOtj7CAw8/zoV7H+L8xbvY27tNr418+JEHOXHlGdRgwOx6njqcO5oxcZ7P/L2/xxPvfDf9F5+n1wqndm+xs/0UD164yPSTTzIILfpyzqQ8fusql86tsX2m4HLqMd+vWT6YUbQ1Xhl8gPFkBsDK0QHrdY/pIvLdH3g37yiGLDZ32IjCI2t9Pvz++zh4e2L3qOHZnQn/+AsvIGqN4BL+aAsdFpnp4Q0OCG1DamoKSTStww4qYsf4a13Ai6IyNtv0a/8Vr9k/+dmf5+gLX+L7/9gf58zKCgBl0SeVQ06c6LFx8m72J1N+8sf/IZ/4+G+x/onPcOXKzTtg6hSFajji/jOXmE73WDu5Qv9gl9/dU+xG4dpwmYOdPb4PuJxKDpXhyC3ycwsxswuNwZtIUja7rchihzVZdFJKCKnAeXC1xzuHFUMU4fTakBOjAbUI1zf32b6+YBJAVMSkiC1Lpt4RfRa2mo6rZgtLDGCVZh6FQWVYGfewRIpxj35Po0JifW1MYT2DvsaFFuizWEwRBf1iRLtoSCnStg1WC0Wl0Wqcp67NAtGJoj9A8GhdEGPdgYJbGudQukB02blqbI7sqkD0HqFjfyXfNVEdT7XpplQFGkXQDYvNTaY7hyw//iHEHaLcDjQz3GKKTRasIUVD1xCRJ8vpeLJtSPQRU4LO7XdKPD7mtlgRhSSV+Xnk+EimM+/gthcUwxHBJGahhc0DirMrhBaQMk/6kHwg7nh7muxAPBY18jS0Y6qkiMRItAJR5wI4XZAkEVJmSCZy/FYrhVDhaJGkme7cYmnpBMkscmHPzU0G59dQCaJy+NR2E3LTTbk7S1/qQMB08ZMEmUuWDyEZHt4nWs3e9Zvs3qx55EP3o8MV6lmP7dtzTl4aYF1ApxzTiWWP1GR4tCV1grshKZt/eRoSPju2UhfjDtJF0gLGaApdAIlJ02CVB+rcJCmC6wQ1pXW+dnQWcXVKuK6xTJTGHDshdKBNbee0jAQSwXlSSDSqxarsNAg6u/GC5DioMQU+BOatx1hLpS11G1iqNDG516feydM0Bjdvsf0CVRbUdUtPcis2GILrJrhdbFXFXLqSJBJ8QhvpHDaepHr5996hCFIRINb5wKcGLNwuRhIXT61y9933cPX6Jm2r0OKJzjEuSqzRVCIEV7DTTb/p+IIrwyVu3bpGu0h4U6K8p20bHnnwInedWOVgd5fzJ0/zrm/6Js6dvIfKKsqqyi2PrpuAR8didkCvV2UHiOlhywEq+SzgJ0NRVNSzBaGK6FLfcXpkFt4xVYZOFP+3p+Cvl2QIKeXYrcCX/ffuT/8dk/AMsM+TcCFHeekcwgkPYjJMXuVJ+fG1l/AQNBIETI6uKzHE1lNPD5gdbOHbmhAcg+WzLG9cQKzl8GCP3/7Ir/D4u76Bi/feRwg19WzBfD5lcjTlxtYtnnvhFTbWR/yBP/pfsTQeo6X5D+7rb67/Y9bWUcMr167x9kfXmO3vcHi0z+72LtWox5XZDnXR8LFPfIFBP/DYO9/L29474+8/+MtsvnSd+p4LfPwTYCSwOJpxeLTPC7//Wc5dPEPRL7h7o+Rcs8WDd1+gnR7iXcCkiheuTQGY1jXCMLe0A9oM2ZsO6Y+Ek0vC7DAiNiL1lAfuX2d1NEf6nrX1AxK5UfpgZxPnSnS1yje+fxMdf4vP3VIsvCZgMbS4yS0ODlaY7P9JtBbK4zivTkTnSS6gdHYRDfsVsfZ58DC8wVuf+C+wdpe5X2Pj9E8xm13mmRcOuDIYIoXB1w4/b4hFgThHIrFwHu9atFZoa7BG8+53vYWIZv6FZ2kbQSpD2eZBVkJjlaJRCWU0hQeT8lkJILYOXzsKbUAnRBeIMjgXsTa7v/q9EqsKksslF7e3J0zrwFiX2FJj+5pClYTGE0wiOoeKBl30KQtHr/CsrY0Yl5bh0HB+YwUjiVlY0ESHUT10iJlvKtlFNRotUZUFzgWUVYSQEBXzYNQoohcOJjWbewdMJjXT6YwQPFU1YN5GZrVnVi9yUgDwvkILTCauG3c0IANCzAJZdjp6FDo74aTpUg0+f8alALEhpD7FxdM001vcuJK4Mr2H2y99iQ9/W0VfR4zZIKZ55ruJJaX8uSl07jjJXC9J+nVnXsoN8XTCROxysIJCQuLo9jaHkxKnA0Vl2dmd039hk/vedjYLh13UUCRDXhSZexy7nzQFUCiUKJS15PZXQVzmmqnYaSOSI76iCrRKRBYksQQi050dXnz6edAmi0BTzzQ6Tpxqc2yRRR5AkveOO3aA47glKSdPOG5QJkdHRUhpTj33VKVD+RZVaj75sd+niRZ9ZgWoMX5Os4BSB0iOqENXEqJItFk0Sx1TNmWHYQyeQJuFwJRACyHVJGNRUWMls4aTFjCCAZSxWGvxMRIkEX1AFwaSUJaG6NvcKtyVNoQYMtlQErYs0TEPyBYSaRcthc3uzpSEpMlcYGtwMYAPzBczYhzkQUNMOaKtLU1K7O0uuPvuIb1BydHCIzHhU4vokuQdWhlCaDGSi1eiamm9pw2KW1t79MoRKm6RXKB1LSiXh3ladwVFgdFgGW1btmaRo4VgKo0QKIyAMVhriVqgnhMk5PNJtU7ZK7l+6xqFUrmoJwiP3X+aEo/SDW95y9u4eN8lVvp9rNIZ6wHZeRo8oWmpF1NGvQqiI+CJ4imGY5qjCQfbt+ivr2PLApsivvXYymRh1+dCH+kGkAnpOMPw+pnndfGPDmmS3YF3/jRfnun464+DwLnEJaQcyyYZNAZft+zvXOfG9RdpZocobVhbP8loNKBpW+Z7t3CuRY5FZ20phxv0bYXVFlKg6A2h7BMxtM02X/jMr3P79nWSWJ588kvsHeyxvr5M8BHRnsP9A5qYaBrFy1dexhjFS9d2eeLt7/n/cmf+z29tbm7qj370o6PRaBQ//OEPT6y1/+G/9OZ6c33ZesPC3+LwCGYzRnaJjbtXiZMJz7y2y0vXP82p8WkWe5/j3nPnuPviKSwl2899mvf8hf+WD7ivFMN+6EtP5X947jn45V99Q9/7of/pF9/wD/SDz1x+/V/++2cBGP8bX3O2+//39yrUD/4JfvLJbZIeUy1vUE+2iX5OCrlWXqspwbU0OkJpIXnK4528KtCDPvPJLLNXQviK75PKAVeu7/Jj/7e/zWNG+B+BH/+HP8Xe3ReIIbKzu8vvf+ZJDo4OMdUSN2+9jPMNdefkskqjQ+TcvZfw8QLTdsHn9jbBJlRRMZ37DsQMLnqCL+hSm7Qxcrio0baksBFV9qkkgW9BaXQSdMpOFm0LgsptUd4t6Pdgeb1HG+HK1oSFyzEBtEWpiE0WlcEN6CJQ4GhajW8DVSdIQcOgUjx86gRn1saMy4QDpCgYmUBRVizqBlEFa2uruQRFFNYoiqIgtJHS9FCSG+mk9vi5pywqUBaS5vqNXfbrGtfWtG3LYtGQSBweHtF6z/JgxONvO89gfBoXFD667sCZI6kpAOIRNSCphAotiEFSiZbMVWQ2xR/ss3HfQ0hVk6LDBcH0DEVT4PwUZQESKmmIGqVthhvfmWyXGUacXD54RZejrXe4M7GDS7egIEibxcT+iFD2ULZPbCOvvnyV+1ZHaKtQUpAdfjl+kkLMhz+VYeo5tZuneCkkYusz504LKgSCWBS2g1FXgEckx1QDihgjUbfYmJl6/RN3kfobBGkxasznf+sLvGWjR79X4b1g04AUXZ7eKkVSumN0dKzDZLpIscpMPtEo1SAYvIBRhp1bLafuO8Gg1/DMpya80H4Nn/zdXb7uoV2++w9u4A4FW1rUkeDVFJNMZjlK6GJJx++8brIfI0Tppt2GwihimHfT7sDCe1RRkkKkiU124pHy9ZdSPpAph7VdU27tqFXEovA+YHVuCnShzc6tLtalC5sPwD5QGEOIHmssbdugQ8QLVEWZfyciNDFBSNTtnEXbsDwsSS43GIvOLKDQNuzNZqyfGTMoSuKixQ0tKgTaAIImBt/FmI8LKyKJgkVoaGPDbO64ce0mVilcW6O9RtuSGDOgXNCgPOOR4r5zA0yvx+ef+RK3txckNFESy6MRKkZSEUl1RGvNZH6EDpFeVTGqKlwK3L59wHhQUVUFB0dTTq2c4vSpU0z297j74Uf5und/LesXztAfFF2EX0FyFIXGpEQ9O+T27SucsobR0nmiLLCjIdOtq/R0HzNchmZOIbnV2JQlRhRK5MuEumNT7b9vCn681JfdlMU7jM877dbHV9WdSXgGtGtlUckBmdUZJRGDYHSZ3aM+cFTPcLNt8A39qkc1WCNahadGZp7p/jbz2R7eNx3vytCrxqyvnsGM+kQ3ITYVOzsHfPHJz/PMy6/x7d/1YcAznc5p64aj2SGzw0OaWeTq/jaVKdi+fYvD6ZTVjX/vVvnm+j9wbV65zsGR57c+8SkeumuJ7/qOP8B3hcjLL32Bmze2ERa88uK/RpTi5Vtzvvj8l+gTuf98D7fI3F7pG3yMRFPx6osvULWO29u3CNeep39uQDUYU4yWidWQuLnPW80L/MZP/l/ZuvUah35E0v3u2XgeePweLp2IrK9UNGhqP2fz1auUeo9edJiihL4mpcDW9auMygWHxdv5v//4Gb7+nfs8+vBZbs6e5vq+wZCoU4VZPUlY5MTBYNhj1BsSlCdoBUljQkJ7QDy1b7GqwPtAbCb0xDGfz4hFzfLaz4CbIborSFg4muBJriX5wEIi/RhQWlNYBSliTMGg3+eui2f5zX/92wyN41s//E1srFp+/SM7fPRT5DZbEYqUwOSm9UCkjfncVmiDjQo3naGKCqM9uoigU3YRIdTzwFHj6Vd9INIre9gyERe5eGDR5CRCFWEePS5FBspTaTh7ZsD5jWWWxj2MRHz0uHBEDJn3KVpl0TEpDIaAouwV+OA5mjmUKHrVgMF4yKJxzA49r7x2ixvbh+zPIkdNdqapEBCrGalEX1mUdhT9knld5/bvENHWECQjXrXtIrIxICkgyefEgVhyq64nc1A0kWPesGewuoZz+0wWiZ/8hVs0G8LhtX2e+NpT3LuaMmpFKqAl0UKXAEiqoAuU5rCC5MFldsXlqK5WGYlgpCCkSFSCUp6qJ0z3pvi6wUTLXfduYNWCjDfWXZFJp4JIjtRKh3RQx89eCWIUKuVW0UjKbbuiSKYGEpLyoDAmjyiLooKUCCHRW6m4dP8G3juK4QitWuKiRYtCK9sVGWZnXIIugaLuPK2UjssLVBeNNJlRSEvCMhwVXLu2S1wsc/f5IX/zb6wwnY+4/74h8eBF0uSAYuUuQrOLjgI6J0iigWMQ7HGh3HHxmhhFFJOLCSXk1ujSQND4JpA0RBdoWw84UvL0ehWNa0gItqoIVqMKk3E9PqcL8EKbItYYtFIsVX22p0dIaZA2EnzI7b4IJZqkcymGT4FKZyNCHfIw3tVNDqug0SniUiSpSIjCdBZoW0WvtCg1A6nQKuJiwKhEoXPjcGzmKCwhRoiWlZUBN25d54H7HkQ8zOeOwgq9omKyt8/q+jL4XPJhdaSvI6eGA5q1lsnWlLXxgOXlZRYusLIxxgXBH0wJITGb1fhlhwsN9dGc5SqX+Zw8scT6oGSxmPOe93+AJ554J4NqhFUqJz1CuHPnrVV2KI6XNigHfVRZAm1Xyhbpr66T9vYodJbnzHDIZDGnaV3GJRzjeSAbGJR85YwzqQ7hI3fOx/moI93f7a5RyY/zegNwHpTkM1BB8C31/ICnPvcZbr/2Em09ZbB+gjMX72Vp0CfUR2zfPiQoSzEYU/VH9AuLEsEY25kUNF4UQRLEOf00RpGwvTVeePpZXrt6g4Clbqdcu3GDEB0Xzt1L66ZMmwV1K1BoPvuFz3HxrrsyW/L/z9Y/+kf/aOVP/ak/dffxv58+fbr9jd/4jRcfe+yx/yymvHVdS1VV6T/8lW+ur+Z6w8LfzsJz+fJlvu7tX0sbW24d7XI4OaRMiQPdcHsy4YHLNzicepY3BvQWnsJ5XvzaR5m0NWXteezZK3zsxAkOioJFU3Ph/CUu3HcPbQikusH6CafGPQiR1DNMVtY5/Q9+mi/9n76Zo411JAguwvW9HeatZj6bs9iZILbkVKj5Lz/9RX7yax5mu2j54Ie+i8efeIQ4O4BijNGZiVD7mp2r19iYNoz/2x/j4bWKc73Iq0dzvFTY8TlUe4ib3OgOZQarEkbnyYdSHZ8JwAeic/QKQ3J5evwVL66PJFswDzO2d3YB+OTvf5HnX36V0HpoMwdMlz1IWayrmzrHVY1GUmLcL3n/+9/BM0+9QH3liCJV2BGEpJg0NSvd93IaYmko2g5U7TxVUdE6T+08pViodI4rmJKY8s2qsYqYakbDikJXJKdBaW5s7nMwbVmxfcrSYvoaq6FY5Gm0UgpX1xhTYXqWAk+ywtrSkEIiaysbXDp7AhM9Mz+nTQ4tPZQj83JUTQye5fEao8EYHwLeBUqbYznGJFLK/B/RhsnCczCZcXCww9FsSlMvsEWfWZOYLloWbXvH8RSiRamKcNhSNwmXGkrJPLuUTGYWRpcBvBiIikQWfiR5iHlz0uKZzz361L0kEzi8+QJbt9f59OcPeO+7FHef8ahYYO0avtkhhi4iqzXQIlIiUuRpc8qiTGapZU5ch+dHUgNoXGgyUyUYhMBsz9EgOCYordjabxi8eJO7HzuL9w1KOmdTym4uRVcu0h1m80FaukGfoMsKdI6uJ3JTtDjJE0NpQVR2LilFTFOQhNcVuBlXnryJi8/l169v2dvrceOFGXc/WmSGD/WdyNadKXfHPjz2X2VYYOf/61x6Mek8pXaB+bxlbaNBRcvOkedX/tffQSnN0ZkBiMOkGe0BFJCFW8lcNAkqN/rh87ieY+5J5tD54Igqu0RiAqUFnxbEwiJBY1U+NAUFKXl0lBwRLSuqfo+6bfDeZZHUGLQ2aJ1IriGE3NIqZMi16pg7hbFobTBKMQuCjynHv3oVoWmzG9Oo3OAqEGKO2c7rBTFmQdOHCAoKpXBKsbffYE3J8vIQXpsgMTsZAjHHXYlonTqWogcpCDS03jOv4fbWAUU5RMIuyTkcmiQO8VBVOkPNbYvVPZaWDfvXbvLaQYtbBIrC5kO2SRhboU1BKCK0NYHAfHZIVWoGgzFbkz2Uc5ilEYrE6rjiwbtPM5tsc/bsCm9568OcOnealV4P6eL1pJRbJIPHN47Z0T5VoUiuJogjEdBVQTVeYb63g3iPHVSUVQVTjw5gCpMFt9Q13qY8/U6J4/R6t4TXT8f5Q1tU5uTw5ZPw4wNwkjsXs5AjxEqEEHzHi8rFPtpHFrM5N3YvszjYZD49RNuCpfES42GfxrfM92/Sti2EFt/kMp5iuEKv6FHY/N60VR8zWsJjCW7O5ed/m5vXNwm6YufWJh/9yEc5dXaD0lratiVRM5/OmTvLfAZXb1zhcH+Py7cOePjRt73RLf7N9VVcT714i+FIuP/eJUZ9xYWLG9xz33089sR9XHn+C8xnO7x69SU2dzyXv/iveeWl81x+9md477u/n3GVnXu9asjy6llGrmV2MGFUWG498/tcHGqaZsF81qCX1zi8vcPB9lW2b21y9dpr9AYrzEWxaPOOE5qaEI8YjE9T9TR9I4ge81/95fexulFiCsVi5rl2ecInf+0FeoVitHYP6gC+7p1bLA22+Lr3Pspzzz1FjJ5rmw1BOVI7ZajOsAuIygUAKoFJllYLbWiokkKZEi9Qu0hsA4vdJS5v/59ZPfP/ZJzgaP/dDHr/mjZMqOsjdFK0KqAJmKgpdeZtLrpGdqwhtI5mXjPbmjDbOeJCaXnPB9+FnW/xu0v5nmhpeYmN8Qo3dg7RNmKBqYsQOsZfzNFEklDPHSbV9HoKSosXlRMAZJNQSAtcDKhk6WlDrHoEF1g0jpgijkhVWVbKPqdL4e5Lp7A9RWpb2mZKspZCGaqiT922SAxYUaTQEhEWKdKvhiyPl2lDgyhF1Jo2wrXXbnH9xh63t4+Y1S1BCVEJVgmF7UEApxQHszlOMmM6+UChDcEnCqPoV5qVpYpCWRQFPqWOO6dAZdEk4Qkq5hyAtAhDJCSgBgyHr73E8Pwp1srAN71vhV//nV3efs8FTq+BamuCHEHVkiK57VNCRp0Yg4jNA8/gM2IielLMTcIxqvz16IxJSGBjHkb2V1a5sNLmoWogc85SIsXYbf2Z5ZyLhBUhCcixk7tz1XXvyYAnpRIIBKtyK7Nk/rPEErQCFl2iQJNiQuc0JWun+4BC+USUAWFljEo1LubWUyO6iyuTWa6iSJKjvSKBmGJuN40WJOLEoFODbhQn1yvm68vMZ4beCO5erbEnHO7wBsk7wvIlRMXM1SuqPGQ2Ojv+xID4bM7EAC6HL5LGe5NZcdbj3BGtUxA9pSmYtgtUBBMTWIPEXBLnvMf0ehgEPRzg2haxecifxCDGoNqGni6oXcPe3h5BoFaCDQFlNLQJZQ1+0RBUQieFkIgqsTiaEJTCWsvkcIqPQk/ZrvCiQ/boxGxRsLe3zVK/4iYlQWlSq9CiidFgTElCUErjXI22GgktWip8azGF4uAwEcKQojSMByd4+tPPs7q6lq9vpXAhEaVC6SnnTq1ydRY4c2rEykqP2iWODmZoq5jNapqZQwVhZW2Fg4M9VDT0h2PGfcXqqMTVga9529fwtnc8wdLyEkaZ7ABWEasUuXVZE3xAlyXWVniBZjrDVqD7/azhlQVlbwS+RgZLxJgorGX/aMKoHFAUNmMDJJfEoMiCMscOwNSxyjum8Z2zje7eY/m5xPwXO/dffqzgYTY5YOv6S7z4zOfZ29qi6A9ZO3eBjY2T2ASHe1tc3Y9US+uMx2dY6o9J4lHiMdqiuzKPmBLKZDex1RaNoVlMcnmHGvI17/gWXrv+szSNB1UxX7T4xlFVhvHSMmtrJ9jcuo0uhYP9Cd/2ocf49Gc+/VXZq/9TXfv7++oHf/AHvyLbfOvWreLP/bk/d+GTn/zkS1+t7xtC4Id+6IdO/vRP//TG7du3i7W1NfcDP/AD23/37/7d23/+z//5sx/96EdXNjc37dramv+e7/me3R/5kR+5VZZlAvjrf/2vn/nIRz6y/Gf/7J/d+rEf+7HTt27dKmKMn/tqPdc31xtbb1j427p6g4NF4pc/+q84v1Hw4IMP8Ue/6zGuv/oFZocNu9PIlz77ca6NLBtn7ma4GXkHsLVwzNcGVPM8Cb4x7nEtGlpj2G1rls+cZiHC4uarnOoto8+fQ3wC1zJ86DHgpwkPPMjW2NIcTYAxW2ViehRwS0Pu++C7uLDW58LEwae/yMPf/UG+uL3J/rl1/NkRKoyQ8RKh7HG0N+Wlp36Xs19zN/YoC2QXL93PuZd22XNTdo8CpQgtA/TKAzS7T9GLif6gpBJNkEA0itixB00SdBMI0fFvR8mgrmeEok8Ir993FlWJUSXBKPxiQWwbFsrTUxEdwWidGXCicSFw6dJ5Tp5c5rOf3mWsHd/6rR9EyZQXn3mJnedeyyUGgAV6VmW7OeBSJMRAaSykCuqGNiistig8USdEhc4ho2jqwLT19GwPIVLZHisrPVTTsmjnJK+pbI8SwYVEnRowkRgX9Mo+Z9YHbKyOWV8eoCSQkse5A0LUiMpMEGs0CsEkTYyCLSqU0czqeRaIlKU3HCFKmC8WzGc1Nze32Nqv2Zm0HC4ygFjFiCksIxF6trO/m8SizY6AFHKLcFVZvEtdt28uv0ghdMf3zh1HQZQ86U6S+StJYp6KxQY7HEJhUDT8zucO+L3nNDu1sP0b1/mrf/YStDXORTR9kDoLbsnmyTaWSI47KQGt800FKQOao4AWyby/6DBSEnEEFTB4/PSQvdvXCZLo9w0nNkbEtkFCLra4wxA8diZ1LqXssstut+x00og1qJSneyElVMoTf20awOZIawzE5BBVIZkcRwyRpDTj9R6T3SmqUlRVYuVdJyhinV2f2hBT20UMXp9yy/HkOY+5u4m3BsltwSkJKjiiLkgaetYyPziCRcG73rFMGiXqesA7v3adePgKcXKEHpwmyBxVA9qjE/hOuMvuSel+ls6WqwCV+Y3ON0Q8SSfKQpOiIoSI0kJMibZxRHFINBTW4iXS1DVRda3QFnpFx2eLuZ1SR8HFPPFWShhXA/ZmR+heibQOfHabRRcxYhCR7LhzLabINxuiNI33Wfxu2uw2SF0sv+NAOq9YLDz1XKh6PZRuUPS6BujO4BA8Vqsc33dgxBBDSwqWlbU+129d5a4L96I1zCeOqDzFsM/RwRFlbylHdKIh0NKzjiI23Hf+AlevXCU4WB2NqKo+bYycHA6YLRz+aEGIMJ8vmPfmJFnhYH+foSnztNda7jqzhNQzVsdj3v++b+Seux+iV1gsJsO2g0Mbm69LEUL09AfL9Aan0b0BkmpSF02uRqvMJhP6hVAYjUYhoyGN8+iQbxbQ0pVkdFNw+TfiL3em4Mcx3n/jszsr4d3XfvmYvGvBTh1PSBd3SkGuvPQyNy8/x/72DZpQs3b2EhsbpxhVBd4t2NmrM0et7NHr9ynKkqJfYIsii4dJEVB4ld3SJiWsaMQOufrqVb70+59kXluiCtzavkXtF5w/e55+b8Th0ZR523JUO1RV8buf+RTLq2ss3JvlHv+pLBsi08PIzdf2uSGw/0/+GctjYaPXY9HuYUOPnVBz+9BhveHimSnt/L+nbXbYnEXKcot2McUnj5/XrAz6XLl1lYPbm5y9uMJ47R5cjGxeeYlXX3iBg8kWL760xD/+yH/HX/uT/yvjU/tMDrMAFlCoaFA6u1al0kgy7G0tuPLCIYnEw29b56GvWWfn1iEvPrmHGYwZuDnverxmue9YP7HK6XMn2XzhJm1XRKRRGMknneDBm04ojxFnwCiFpEg9awhK4V2DPzrA+RExDimiIXGem9f/Lucvfh9iniEIWQxzLpckGIXESBty+7qUFuXzfj2bzzg6OGJlaZ2lcWRQGdysx7zJ+JPpdMrD50sunT9HvyohCV94bYuUAqPlzyBMiC7gSJguAeGSITZgtKBKQx5ppcyplRwZbVMeosWu3Ksicff5Nc6eWCaGQFUJOrXENjsfleQzkUseFQVb9YnB4Z1DKZPPZGiSWOaLls39Cft7O+zNappaI1Iwbxc02uLQWFGIeFQM4BKmEvpFxTxGYvDgIz1jMJKwfcPGyhKrY0u/SMSmRg1LgniapBlhUQwIZG6bmOwKU9SklLl1kjSYlmI0QjUKKTVf/64ej7x1g2q0yqC+TJhvI7IE1RhJNaLyHotokILWOQoB/IzUW0XcPJdGpJRLmY7pZTG/3rkyAggup00iBBFUyLHFYze2kvzZH2PeF7Xk6GlOjwooS4pZ20zJ5NSDavPwV1y+lkRnl7gGST1INYnwunNKSSfm5a9JKaA6HpwhkER1zz8SQ0c9iS7vFSqAspnx5gNKsjCqBaAiJkGZkvMPreZBsvTRzPB1gHIDvbyB8fu0Oy9ibJ+kCpSKxDTLv5ekCHaErreJqsjn3mRyq7aRLKgh9KxhP4JJJg81A2jR+foWTaEtcx+wYnGNYxFdjgGnhOppnPe4GNFdfF4JiDX4GDKX2HnqEOhZQ4wJlbq9uYtvh4UnlgZdlWgXiQJtGziYO/qjAqcMtAmfdB7Y+sj+wSHnTy3z/OXbQD7nxpQTJlGyiy75/FySd4jXEOdE7zk6XPDyC5vsHSXe9pZTDMYDbtya80ArjCqVW6tjgVUNa4OSom+wSlFJwoggxnDYeJr9OduHDU0b2FgZ07OKrf0FpdYoE1hbXUZFePAtj/C1734PS+PlfDYUhdYaa/KQU2L+ubS26FLhvaeZL3DzWf4M6bl8hkmWcjDCz/dwixptDEXnJQ3RoU3xeiHYnZXvdlLqHHHSpWxQHN8N5eFodsdGYndzVHa888T+5jVuXXmB1669RBIoeiPufuQEWgJt07K/twmqQhV9xksjBsNVqmJAYRRWZ550WZbZMQxoqQghHM/+83s5OqwpONy7ymtXnsVUllRr6mZBpGVze4+3FgYfGk6tb/DyYJv5zPH1X/semqNDXrl29X/vbfo/6fUzP/MzK845AfjN3/zN53/91399/KM/+qNnfvd3f3d85coVe+nSJffV+L5/8S/+xbP/9J/+040f/uEfvvYN3/AN0+vXr9tnnnmmAhiNRvEnfuInXr1w4YL73Oc+1/vLf/kvXxqNRuGHf/iHN4///tWrV8tf/uVfXvm5n/u5l415w5LTm+uruN7wb+GLz1xlMNTcde8qa2XD+97/Tt71dR9ib/9befbJL3K08yqbu69ysDvl2ddeJTx9gz8H3Ng+4NAM2PCdE20wpKyWIDmm0wXD5VWuX32RSgKLFJinwGhlA797QBvyQXVna5uDOEapQT6g+ERsAr6dsT4ULl26xPjqNgAP3nUPD/3BP8D8YJOD6SE6FKwMl3GzAxbbNzl/4iSn7noU//lnABgWnrc8fIGZe5HZ0ZSmEYJyiFOM7BK0B5jK4F3s3EuCztlOQghYY/EhW869/gpbCQvXIm2LShHpbiCPDqdM60SjExIbyqgpVQW+IZBjeiolghWCi7i9Gfs7+2xfv8njGyf5jj/2ncxee5rFwZTDL7zAY6fW4RlwDbShJYTXm45iSlnc0QqTNMnBYuagqLE9Q1I6M74ixK79KtDQhBatLCNtSZXFt0LdeOZpTqkF7z1UwhpwfmPM3XedQVQNPpD8HIyhQGOtom0aiFCYzLkKKdBKwkTN+sYGrfc0raM/GDAYjIgkrl6/ze2bR9ze3GWyqGmUEKJCaUtpLXhoRNiZzRkn0NZCSFhtcW2kMBaVImWlqEqLVn0kKiJNnmqlzh0WSqI4fPS5lIIADEheEKlBCuq9faSnKIYFd53s8S9+6waHNx33fc+5zJxzQpADrMkp6lSEvLkqA9pkmC2RGHP7sEjIQoeS7NhKoKIQlEaTUNFSiBDRrN91ktWLbWaWeSEZkw/3WSXNjxez6CcqT7c9CSMRpbpYYnctJEl4PBIrQBOtRicIypLiIkdxMSTmpOg6OLRCJJejbJyu2Di3goR8sPM6N5uCw0eFSIkh5EbU7tpTaKKQuUDiuzIROG45TinhRVCxQeqKs+d7bF+vcaGkMvD+t1pMAWH+Gqme4csxZW+AP9pBSpPbw7RFkskHH1H5Z+heV+kYPykZvCswWrA20E5mBCdoCRS25MjNIYKEiOgsmEexRB9wOtGzfXShcDaRAkSliG2L7ffAR0JyFNbSNg1Hh4eEFGi8RvvjwofuecRIO69RWuffj4rgI/PJnGgNFmF6cIS9dLpzUUY8DkVEdKB1PbZ39xj2DBIKVNeWmTlGCYmefm+IUpZAQ3AOJbk926ohzUJT9BTN1IJaQZvAeHSSZz73iRy3TwGhIkidC1mSZdQznFhfZnd7yv2X1imKiiZEmnluKW7rhmbe0i4846Ulalfjpp6V9XUG1rBxspddP8byte99N/c9cD+9fh9FxBeQugl4Eo9WmRukrGU4GBO1zkDoukb6PRQKMZ7R2lni/ACkRKxFuYRzDtcsGJgiC913ol6dCHgHcN05PlI32U6vO/teb7zrmr4ldi4Nviz+QhdTg8neFs9/6fe48uJzTCdHDE+e5a77H2ZptMRissfhzm12lDAcn2BpaZ1+UeYmcSNYVWGUvVPKonS+MTXKoJPGNwtIR1CMuf+R9/HZ3/k0jY+Izu2HvbqFBIPhAFutYYxFR49Iy7Wr13n00bcxe/6rNgR+c/1vXIosymzOLTolDp6/xak1SzMacv9DZxj1LXfZ88yeep6+NvilhofPf5GDA2H74Brf+J4/jNMls21NEM/j73w3tXN88/d8H2HrCk8/+wy7BxMaN+fm5j6NC5TjkocfbBifWqVXLghk52DygSM3o21O4EaBIub43ad+8xrDcY+ysly637O8llt1y/EaSRnm85YXXllhXu8SmwPe/vjDXH5xk9YfkcKASimabNin9p6+TrgQUdaS/AKiwitD9AnfNEzm2xTBUxVXWT3xA8RQsHDrACy8Z5QgVgoTPYsUGBib+Z4xdv5m8M5jEzRWoWv41JNPcv9jD3Pj8kvMm4SNnsUs80/e/tAZLpxpSKI48p6t/QOqlCjKq1x64K+jo6AEbMxFEDEpagGVFMlHYphTliXWloBH6xx7DY2jbTwDq7n3/DpnTi8z7hl0qFHJI6ZP7TQ6+FxqkCCGkFveQ2IwrmjqY2exgGiOZjOeevVlDmaeNgpR8tA0icLFGVZlgcyI0DqHLhRGIk1bo6Uihpph0XLp9BKVMfiQ6FUFg36JEY2WiHcNISZMSq+33uLwyaOU5HOoDIi6QvsDJHgKAScJlQoGqwPSfA9PhW4b1tMBce9WZmQvnaPUfdrYYo0FCV07eoH2RyhTsThy9CqDcgfE4LLzKpGdcpJdQndKByTv5zGmrmk0YbTNopLKbkAk4z3Mv3EOJ+aI8R2MA5IFIwSVFkiHI0n4XEhGyE7C2D2PjuWbOpBa6vaDGNMxqhilVHZvIUjsijvgzlAu0gmNYpj7ZZ6+fJV7Lw1Z1gU6JpJy+UxEJ1pqhVKJlFqiKTG9PsSCOLtOWGxjTA+xJSHlQbjQI+iCee8Etw4e5mz/OXrhBiFM81AboG2ISiC2SNPgnMsOQe+wpcW5LAqJC7RtQ+p4flHy+6H12a3VLhpUlzKxSqFSoF3UNKFlUJYYY1jMF1CWhDbk8g2TnYTJuXxKDKkTsPJwM4ZEcMJ0Z4paWiW1EasMLrX0i4qQhN2dIy7ddYHRuMe8gWSOESdQmqIr9hDEZGelDwHXttiyYndrizoEZm2bSxqTcFArtjYXLJ3vQ0p415VdSOT00hL7Ry03dvZZGWj6NrJYNExbmM8WYCOnTq0R2sg8KGgcF6oepQROnzvLo29/gtHqCcqyRBCUzsJfvpAFVEfiEU3wnrbx+NZTFCVGA+0Mqcb53GISqhiifUvEEPAsj5eo6yYPiek435GO85jZwa+vhIjHJ4WW2KXBzfGIHO0MUUPTTNi9foWXn3uK3dvbLJ9eZ3ziPJUtmO3vMd3fx44HFNUStjegqCpWl1cYVUOstShtczkMuRTGWEu+8rMJQakOFSD5vgKvCEYxPnEeowzXb97KjmAsQRVMfeT3v/QU9WyC9wqfItWgx6/86i+wt19z10OP/++zOf9nsl588cUSoCzL9MEPfnCWUuJHf/RHzwA8//zz5VdD+Nvf31c/9VM/dfJv/+2/ffUv/aW/tAvwyCOPNB/60IemAD/yIz9y6/hrH3jggfb555+//Yu/+IurXy78OefkZ3/2Z189c+aM/7e/w5vrP8Z6w8Kf+MTh4YJ9qQmjPv/sF/45Tz/3NEWweHWTo21HwyE3tjx785ozNj908Im9/Yj2udY3uEDsR3QDUStubt9icuMGveWClY2z6GLA7HCf6bWrXF3c4t3A4eEhem3EcKnH9UnD/m6D9w02GWYHNUVfKLrn2esPcdGxunYSMYomBGw5pt4/ohxYRiceQIo+rj4CwC8aHn/0fp5+9nlOrZU8f32eVQOEMhQ4ClhAGxPWKnCapuPqGSM0sxkUFcEn6vn0K14zK0JZ9Dk4PLojwDQh0IaW1HqiUrQKJHmci2CEqBJ4GHghiLCzvUk/9iis5YG3XKRMiYUM2J/vEaXHjVtbADx4zzrLp9a4e/8Qnn8GSUJRljgfUL4hGIuLjsKAQ4hOEAtJK8oiN80ikRAVRrJtPkjE+wSqQCmhR2JYCqcvrLG+vEqKC9bGBa4+BFPlQ5MYkmQBqhCNKfM0O0SHKJ0LIKIQtcG3OeI4mR5y4/oW13amqFAwOZoyCY5Y9PFeU5UKrVpwGrEWUyUGpmQ+g5aAiXmyW4oilLlsZWO1YmNUMDKgosfZiloEr8bAPlp6dIFYtOkhMZBoOtSF6wg0LbaC5A2JiofvV/zQX7+XzcUaD90r+FtfRBZzRJ8g6h5IhlgTEskqki0ILlAISGhxRR/rmrwxpmz1PxYbTMqH0nSsMggQFSZm9oxXuawBFKlzqEkncMSYiztUV84RdRZz0TYLFzFhkhBTD0QTVZPLPcSj20DSFom5DRBG6OAyByYlUkx5w44RIYvKgdgxcLJbVNEiqiAkg6RA6BpRU2o7vpoGKTluEUsxF6CgVI5NqhxXWTmxRtGbZfaOSmhfE+ujHJkenaco+vj9V4gxUsgySRJRplkkSwVocN6jXCLqApUWuezBGJTOcY6UBCvCkVjERQKO5IWie86hKOmHkrkkVDS5eS61hJRjFyl2RHilOWpdjiGlRIkiFQXNYpHbc+uWEEGVBkKOtujomaeISQlawblILC1iNJUoglUc1Y7DGFnSUGO75rp8YEpOuLG5w1sfu49RT6hjS0gBfCLozE9xKYOnEQPJI96jvEWphuBa5tOWV56/wf4RPHDvCe4dj9i+OWFzt+H86TGty0VASnlMkVixhlKPGfcK1gclbUrMomJ3f0rTNtzeW+DaxOpwyPJyj52bW9gkKBMZLleUylKZgve/7108/Ojj9PtDrNUIGi3ZJSlJw3E8SymKwSCLwm3NYnKILXr0yzFJ57h4MSgzE897Zs2CQWmwJCaLOf1lk2NPKt8oiqTOtJdh5/kgGrpYehaJleqiKGJIsQEJnWAbO4efviOu1tND9ra3eOXlL7B96yrewcqJM9z9yCoiiclkk+lkjxSF3tKY8coJeuUIo3OkvLR9JCWKssxt2REKyTyfkEIWNJQi+hacJ01v0E73OHXPBXafv0btBB89R5Mp7WLOeFSwf1By5tRZDmev4RaB97776zm9vs7Hbv/WG93e31xf5dUqKAzUYUERPD6V7O56YjC8+jtPs1ZWnD29yvnegNup5uBwzI2X38+D9/0e9ywZ9iYjbu55FrPrKLtE49/KoPcuJkeOj//WZUZhzItXI1b3mU5OcfZ0wQe/fplv+sCn+cJTfXbmh0gUIEKv5OjWjGuvXeVobukpxfLKEv1exR/8E49R9fPZ7fJzB7zy0pykS4TE3q7l53/jAt/3HS9zeq3loUtnOHtymZP7hxzMDDomfNeQ61wuS/I+iyoDU+EISKE5mk0IrcPq7HrBB0q9QpKGo8k+AMYakkpZfLGaImVH8DHFPgLaFETXIkrQVlNS8NRzz/DAWx5hf+Y43Jtg/CHDwQ3+zB/5f7A2usW1rSO2D2Hz9h5HrqUNkdL2Camipxq0ibmASSl0FLzKUcMOpMG0bSmIFIWi1Aqj4FR/yPKwx9mNZUrjkDSnbQqSKehbRU8EXRYIhsZFmqYhhkCvKkkx0U4X+b2vhMl8web2lK39BUchlxpVhUVbTWodLTGzhJMQ64S1BltmIaFtElL1kBgpU8NbH7mPu86u4RdzWpdofUPTLChtiXOLPCgMYFVOG6SoiNIiCoLWJLPOnr8LqwLjyqFaRwoNSRzEligJ3VslxQZVKCSuk/pzlF5BV4p4tE0RW5Lu4SVSqj4oRTKGj/7iS3zpsuMbntC89S0jqsKQiFlUSxlxkdLrE5fjqK5SnaCRMsohF4J0mAaV0xU5dZE6h1nokgfHuBHphvAWUREJTY4K0+EhjodEWkjOg4oEldM9Kb4ehTwuLMtmgBw1VtIlOiS7FCUlSIEYcgmbKA3a8Su/9jS/81TBE/c1fNe7K06c7HcipCOFrlU+kV2SbkJyEOsJLsxQqcJUA5JYiA02lCRqPAlRa3z28sP81uUR3/zIe3jv8idQ4gjiQcCaIp+/qWmCY1gV+JlHlwbRgM+FHo3Lw7eQEroourNx3k9b50BrUgRTWXplCTFyNJ8TdS7yUKnpHlPRKyxNyjiQVglGaYLOTce+aZGyyIUoXZnL1v4h96YcjdVoVPd7NKKYNYqmXnBiaciL13YACDGg0J2j0HfOTJPrKZTC2Jw2apsFImXmajdZuAzJ8flnX+PSpbchqSaqxNb+gudf2ebZ13bY2Togima61HDhZJ/pwrPXCtEtKFRivNznYHef2M45c+4kJ9eX6FWKt7/9Cc6vn2Rkc6GiqJz2OWZ6K62yaxTw3uHazP4uqx4+OIKrwbVY3Sdam88y5YB2foiKQjQq8yRJLBYzysEwuwjlWMrjTrpGOhwQJExX0CEkiC1JKWrv2bt5hVvXX+XWjavM6gn90TLLd5+knu1Tbx/hR8uYlQF9xvRNn3J5leXBiHFfU9k+SInSXbFa9xwyExVC8FhlSZKL9oLPLk0XhHY+x+/vsry6zONveYIbN27z9Ks3aOsaCTWr/XXm0zllWbF5e4fJ/oxx3zBxgYcevJc/8F0f+Gps1f/Jrt3dXQPQ7/eDUoqVlZU7kMPt7e2vipXui1/8YtW2rXz7t3/75N/15z/xEz+x8uM//uMnr169Ws7ncxVCkMFg8BXwxTNnzrRvin7/aa03fLGo4CAIWxPD1uECs3mLm1u3OGUqHnhgnXG/x8n1S+zNtujVkbNl/j0v9UvKwtxpwo3O831//x9w4oH7KXo9/GzKhc9/jts//0/Y29sjekGFBUdHhxwUSwD0xyv077mXFIWy2cWHFgW0rqXVira1+K7ZxjtH0IaiyM6PntVZW9E9ljbG2NEqMebpIoBRJWtrI06c2ODlW1epwxwlFX0Uuq9wjWVOojTQpBYrihAybNuHgPMekmPRTKjdVwp/0QW8ytb64+Y4pRXKRxaxpdJldoOlHL+UmDkLSmDhW4y2XL55m1t7O1SjZQ4PHWKy420+azk5tjxy8hQ8+wwXT/Upz63Q7wTW4VJFxBO6yFhyASOaoBRBciyFeSTZXOJQlQXdvgAxoEXRtJ7WZ1fSqF9yemOFsycGbAwLfD1DmRzXdFFTpMwdVHeYDoGQItXSMq5ucHXH4NOKGAM7hzNe2dzncOqZLmqaNhd9BBqsyTBiSXlyVXswSihVoG3mGNUDMVjlWR1oKlsikrBGs7J8gn5ZMehbYrtAScosvJjLL4gO3cVgUSkzAUWB9DExt8xqgUCuVC1GK6T5ghgbotdsVBPWBnPS5iKLV+UQW63j3QyjNT7laCxSoNsWsQpcFndVaIih6bwKmWOjJbvxUjfpR14/2ObDbD6Umo6DJl2MJY+RcyOxUvlgq5TJ0/qOcRe76GRCCCEzcCT5vPF3hRgRhYSQX4uYgdSxiwCkToiJGcT2Oh9H5cOvEp2dC6Lza4t003pBKyHELhKpNGJKdvZnVL3EqDRIDYo5UfUycFsMSUXKYQmpAVkiFRpV9cAsITEQj15B3Iyqv4yTJl+vIaCkRywStX6MxkVWy6fw8YiUcjxUAco7fMqcqILEoqlzs6/zoMErwXsQD9P5lFBmB54SoXUNKkHja3q2wNUefMAL9MSiVP4sqr2jMBqrS2bzGkThfQSXnQqiJUc8YsR7j9KSAc3aELzHp0jjE/V+zep6AS7fbrrYUha5UXBvf4HRcObcBq/dOgSdPzuSCCopqqJCiyFJQGmFC4EQc2TZFhV7u3scTj3XNmdcODfE9CytGfLKtSnnTo3QKuBdQgXPqLAMdMHFU8t86eXr7NeBUhcUAnXrmMxTZrHgWV/foBDLvIUQhOgCq4MKHT2Pv+sJLj78FoZLKxiTxWqlFNqYXLgROwerdJ9VKdK2Lc28xohGaSG4GcaMAIPEiOkN8IsppS3xSdMrKrzk76uKkgxizQftLPJlp2w6zvjSMadE3+FRZjG96DifmZWjUcTgmOxtc+3yi2xefQ2Mx1vL2bseIflAs5gwmWyjYoHpL6GqAVW/z9JwSGUtRTGgKAr0cfQsRmxhAZ/ft6jugCyZu0nKLo7hkJgqtrd/j6ef+iJ1HBOiJ0ThMCRu7O5jr99g98b1XFxkhH7V49Vnv8DHfv03aMvBG93e31xf5WVNiWkctnP0UwjJKBrnOL08JATP9uyIVdtnZMdM/Gl+9zN/ifMnr+Aryz//9R/j7NnfYXzi7zAefDP//Q9/z5c9+l/6t77ft7z3M1w88RE+89kT/K3/+U/xvd/4aU4ub/PEA7/KuDflVky8eu0mb1k9z+mz51AqgtF87Jdeo9cXHn3nBnc9sMT1Vxdcvdpxw9Wxk8oDgq3gwcfu4tMvvMJURUQZlMtHysIoWhcoijLfhQZFbB2TyTZCoigtPhaEJLThIa698kucO/3d2EJ1f9/gJFEAySqsN6C6sg/vUcZk0aUo8tArQqDlg+9/H/iWqDXTw0OW+pbteofNxas8+YUJLnj6VW7nbByMbMWkuY+Xn/ofefDxP0PfXkYnj48eH4XkI/3CdrUQORY47ENZWYa24OSwz8m1IUZD0+ZhD1FT2exy013crlC5/RQttCFHXktbkExiVjcc1oGbWwdsH0w4mDkGKydQhSElT/SB8cASROHrBWByrDF6vESMzm4n29MQEkuDIRfPrXJibYl6Ns+/L5Uwhaaoxrg25GZxHYkqO3B8cLQBUllkV39SHMpFfvnpcywX8B33a/rmeSL5HBdVCaqkiYlS9TIupVdgylP4xRZytJ+LtWxFRGU0iZAFF625uj3j+sLyiS8sOLPsuXjfOjF1qJsOYXLHbU2n85GddbmwQ0E6FvUSSnXxYAUxthl90SlzIkVOHpCRKymGO8MeRPJjieShLYruqsux4M49lUhdBLuTVlJCdec2iZEgAa1Mdl91XyPHT7w77wmRhGUWhNDX3DiA5y5vs3HqLCEVOX8sgdj9/KIUKRUE8SgFhayQaNFpgUsC0eHxYIakNMekq5xefRsPTiuW+zdQ6TIS+51LTNOKyuxiEVJRoOctQSXq4LGoLMpJvg9JCKXShJiQkHIMs40MhgNa5wnJ4YnUbYtGiCHmNI7qpNqYmC/mxKAx1ubiMZ8LeYLkV6IoSkQrwv+HvT8Pti1Nzzqx3/sNa609nfHOU94cbk41aqjSCEhIBrpRMAhjOgxtGdnRtLAjHEJ/0ES4CRPhMAg61B7CWAKH7Zawu900LQEtQYFAUpVQqaSiKisrx8rxZt55OOPeew3f8PqPb51bJdE4CkwFwpFfROY9071n77XXXuv93vd5fg+KTYZslYNuxapLLJqakCKV2HFel2jFcXjYcuXcad68+YCcSh3hMEyaGqEMD40xRVVLUWTGGIvStALjIkkgG2XI8Obb97n3YMXF85Z1F1j3CXU1MRiUGlM7KtswtJnjLrNsB7Tv2VpsYv2UdXufjabh+cfP4NPAx77pO7lw6SobkxmusmSkBL6dqFCFsTlsyCkRhrEGMBZfeWSAdrVk0kxAQ2nyA2oFN51BiBwvV1RNQ+M963aNDB2TyaxwLk+85WMi92hxgnGfacjFDp6Vm++8zJsv/ya3793GmJrF5pz5fAqpJ68bmnqXamOKmzQ0TcNivsl8OmdeNdTVFOMFrMFYOw5JDcbYkVOeRlVuCSCJIRbsgAj7h4d0aUXfwguf+zTvvHmdJJaDg9vE9VAGEJqYTGsMkbBesjx+yMULZ/nQs49z+fw5nnzicSaLc//qN+J/h9fu7m4EWK/XNufM/v7+I2nz6dOnvyGNtdlspv+y7/3iL/7i7Ed+5Eee+LEf+7Gbf/AP/sGj7e3t9NM//dM7P/mTP3n2a39uMpl8wJz5Hba+7sZfMBkHpQkmmfZIkVzR1x0HL91ms664sN3wLU8+y5fjmuGwNKAmtef0dkPtFN4v9thbL73EC3/v57hy+TLP/+Af48rv/X6627d57+f+73Rtx9x6QtvTdeWce/K5pxnOnOXhcUd7fL0gw4ygxvH6l1/l6UuXMKllE9i7e4vFE+eIo/TfOoOpPPV8TjXbADuB7ohx4EJOPXMH3/6RD/OFF95mXgt9skiMtCmgCkO3pq4dSiITaMxY3E7KJHZ9eEQM6wK2+ZrVhcD+g7tUlUdHLqDqaL21DtVMojSf1IBYQ4wBqxnfVEgy2MWcT/+zz7B95hyvvXmTMAQO2kNyUr7n409wbr+EhuwfK5/7wg12b94EoD0cGDYctThqUXINKY8x7pRQESamyPhjJA9CM2mwpDHlDXSIzK3j6qWzXDg1ofYZFeU4KN5aJkbI2WL8tEB4veVwfYyrbAHPZ/BDYOhanCuNtLZPXL9xj9sHK3otjD/rGlIzxSYlkUhhoPEelwXnHFFKQyqmRLIOkmJpuXp5m489dxWGga6P5Jxpu+MS1hCLtTalipgjlXdYMyvnTg6otWRVKu/QyRNo7EnxCBlsaQCaAZO0NI2bKW0a8D4joUbiEtUJdusq4iGtDnAayVSoTYhMSMZgzMAbr/a88OIh3/2JhrPn1ghfTZ7LOVPqmlTURuMU+6R4yTmPwSAFcpxyxtrx52RsEpxM+TSXNLmcxyYK5XXOYNSOP5shD4VvI4XXczLqVVMXfo4J5LGJpKpj8VksN3lsRpa+Xy6Wx68JPkBPiuPy3IDCoDTKS1+5zc/9o56L54Q/+j2n2ZkJAxX+xF6jEQkVRkeFYbgPsUZtIC7fQ4LDVAY7P0fUY3yeoKkFaqLd4F7/BL/6zhm6POX3Xz3HKfdZkluO/CctHCRTUgND31M7h/YR7wxN41ivOyrrSTGBK1yaKIK1hqQZWzlS2zKYzNAHalfR1IaJq0gp0HY9kdL0REviXd1MsN4QVz1d6EmGonIZ7SjOCv26pfIe6xw6JoPfu7vHhTPnMBictWQUayxGDH2w7B3uc+Xiaa7feFjsR+PxFx2zEkflqI7WMAWcLeyb1dEhIpaqmWBVSX3CVRXXb9zm8NmzbMyLEm7ZL3m47Ll/dEQzmfDO23foreH89ibbU0vfKQeDMgwtyMDO7pxhtaJbr2lj4Jsvfwih4/KVS3z4+afZni1KSrkp1wHnCu8wpYS1tmyoBHKOhCGSYjnXxRqsE3R9hEqFNHPURPAVtIakA7m1VBNHU3nisiPFiKmqolIQwYhB9cT+cmL7PbH+RgSDii22eU1EAPFo6Ll77zqvv/QF9vbukI1h69Q2OQbC0REro1TTGdpMqPIU2d1lY7bBYubZmM6o3bzYeb0Zn6M+UqgYEWLUEYFQNokhRYwz5GwZuoBPa9xixtPPfJSnrrzAy+/eRBSiRuZ2yvHRmne+cp1Vu+bgqONwf4mh5++/+z6Xz1zkT/2xP/L13t4/WN/glVOPdUWZ0odiCRxCzfF6xXrdsj3fwEhF6GtoIupL7TOfNCxOr/jjP/AXOOozb9/o+BP/s8v8hf/kkHZYsT3f4gu/8Xle/KX/lrPnt3FJWIeOjdkhv/RPEv/Z3/3f8O9/21/h1PwdNB/yuz/y08S248KF7+FbP/HNnN0tnLAsCWLg5ruHaO5JceB/8Mef5fFn5rzz+hHG+8JnhTJ0koBEzzc/+yQ/v/HrHOfEeh0J+R67Z36OiRyTYyKS6EPLOi6xtSf0kboqoUc6DFjjWI36AOMrXHn3ISPjtMxFHLkfEBFiTFS+KgNUgb4dcFVFTon5rOEPfN/v45d+/ZdQlIcHB1y68ARiL/Ollz7Ch577Za6e6zh9qkbV8HAJb96/T7x5gyeu/afU0xvMTOLi+S0W8wbjypDDjrfTxgqzSYX3gqaiolLJrMMamzwplRrv7v0DLp11TG1GxLGOYVR0eVxTM1tscLxc8ea7dzhYlX/nqFOWfalXfFXTrXvquiT5alUSfKu6opGKgxiprceEgs9oh44az9RHnn/2Clcvnmdre8rewzsYM8GYBeS2DJTXPWISKUM/JOZqcTRAxJkFIjWRfVys2Gze48ndM8ynmzj3Dmm4j5EGkx3ZFTWmt5YUIkgghgeYfoXNPSoT8kQJKVEZj82u1Ay5gu4APLS2YSU163ZZ6o2TWkdLarqxFj2pkzCjEk7HFN4TdEqxoUJhSeojbItFrUXJGI2jHdIgI6ZBVQoDTf3YFARRO7L4lhhtSEZRCdhsGaOzoGjJimNjbObo+JbIUprDonb8fRTVXyosbQDNRWGq1hOdks0EwWFMNdqFV+Uxm7qo18ThcnlspX6bEBkDPDTi7ISQ1ximIIYri+s8/swvg7kCaYtkIi6NYSoiOAfGSWFsRh1VcR5nHGEIRBKLWcOqG7AK1aRB110J3jOOHALzpiFZS6odYdmilUOqmjInLvfV6bQudZxJDCljxeFHNaZ1xUadhoCxNVkzjRiCqdCYebi/ZvPiAqdFGeuykE0g5zkP7h3z3PNPYaUcm0wqDeDRLowpg1VMsSY3zYS+j4gBl4Qqe9ohIa4iK7RB+NKL73L1yvNFxRoNm4uGtRGOimGEw6M1e0d9wTodd3hr2Dm1Q58Dx+uWx86fo8nCY1ef4NlnnmVrsYWrLMlmHB7nx/NGDCCPavs0Dsu9K43mEAJoZtLMMN4TumMq5xAprEatNhjaO2xsLFCp0FiufTEWJd1JmIeojK8DX+PaEUxOrNvE3dtv8Ol//LOsDjrmWxtM53PICbpMPW+oN7egqjBi2dnYZmtrm3o+pa4meFeCaywUB43JIAYjFSol9DHlPCpcy+NIKVI3DUNfwuuayRTbw+5swt6F89y9dZ8XXnuDc7tb/LE//n00Tc1vfuFFHt45YNUNBA2cf+IJvvOT385Hn3mGra0NbFWDrf+N3qN/p69r1671AH3fyy/90i/NPvWpT22cfO/ZZ5/9hqT6fvjDH+6apsm/8Au/sPHss88++NrvfeYzn5mfP3++//Ef//E7J1977733qn/xX/lg/U5bX7881NVUIZVpT+6ZTmeoSWwuzjKdKSkOvL9W7rzwJU5tz9lsypsyU6ab1Qh1rLzh5//y/5bTFy5y9Xu/D1mXBuEQEvfvL9k9JcTUMjFw6tQcgHh4wOrBTV575X1u3bxLbSsG7fFbNe2y5Z989gtcvbfHnwA2djfpU4sZaoxRhmFNpZtU8y0SEWt7jICz5fyMoWdYdTz55DkuXNzk7qpnrxNqV+FMpq3AqdLniGIIJiJanku3XLGselIaaCY1Gn/r4XSqiANX1cjqEKDklDUWGyyVq0mi5BCLGkhKJL3JCVFl2tQ87A84tbmJ8Y7jfmBYrln2HXt9xBC585V7/Engi6++z81Jw2QsoqMVrDhElew8yYzTMGuRqMScEUojzfqGGDu6vqOe1DSmZstZnvzYJbY3JuQ40A0dIhk3JkQZU2DBjbcsspBQll1JZau8LzcezXTrDuMm7K863r9zm1t3jwhmgptuYh3oIDS+xlaZ5dGyTA8xDDFiUIxzNHVNjEWd5m2D08zmzPP01ceQkImpxxmLWsFXC5z1tOuBpEokkyWTibSd0jc9FsVqRupTPDQf4tde3ebsIvCRs3N8fYsYD8g4sukK/Nk5mjQWc5M5TM5h3AJt78NyH5ML/DfbE+VdVST5kzmf+tQ/4ZWHc959/x4/+HvnXHv2VGkkGYMbbSwqpqS8nXw+/s8YA1IxpgkgjLZeoTA6rJAJ5XtaGj52ZJtlGKfZlIacLQ2+Un+a0VZpUbVAhYyMMX0Eux7DOMbep4y26DK1L+P3JBljHTmnkX+Ti7JSGRuDZbIpVNzfSzzINXs3Bhaffoff991bzLe2S5gIESMGMSO4WwIEIdmyITDSwFRwmol0GGpy7sE2JBlAH+L0PO/vT5ltNEj9PrTHo2okEQSyKQXLkNZ0oswqxzAMRCkMmmoMgYhJGXLG2rJxcNaXJq3I2LgSJnVDViWqFruTcaB9UacZU45UzqzWK4xVprYcX0yxPlhXPsmaizLZu5KeZx0KPFgvx3O9TGxtsqSoWJNI1Ny6c8j5M+eZTWqO2h5jLCoGZw2VM6iGwjKSikSxDCmZlCKYGlN5kFCUD9aw7tbcPwq88u4en/imU8Q+ERRu3z/m+p0j2q7wWgSln0VWdWR/HWmHjO07Ts3Ka7l37wFC4ts+cY2tSWZzc5tv+uS3szvfYbOajATz0kw1Y0O52N0LozLnxDDEsYgV6smEGALr5SGVUWw9oClirZCNQWcT7N4edmuH1WrJpGnAGdbtiok1OOfH946WTboKjPnHJ1NwRvuXyaEQFYNhdXTEjbe/zGsvfYHlcsV8d5vF1gYOT9hfE3Jka+cK9WzGYAML69lYnGJrsaDxU+rKYr3FunpU3hablxmDl3IqjVk3NjxTCmVSTma5WtPnQIzC2y++RGVgc7HJ5auPcXdvn72Dnj4cI5OOi2dPIRYWkyl3btzhzO4uj1+5RNVYnrpyidOL5uu+vX+wvrErOyFmkFiSwdUofbdicPAwKkfhkPvHR9zaq9jcqGm7MwBcv/+QzXaPMNykFYe3no8+e5GPfEzIUnNwcMBn/tE/5c/8B6eZVBCS5913b3PnxgOOfVFEXNq4QWU62myRdEztN3nq2kcIYY/3bt9EhoHHn97io9/5GHdvHOPcBh/9josA7N1bIzoGK0hxVVhTs2oD1ilb85oPP/8Er//iF7GySd3cYX7+b2JoiX2mzwPkiFGl6wK1dVSuIiXFjk4QHRuKxpjxegDDEKm8INaUmAfnQA2VtQyamRk75jaV66iKYp3DNRVu0pD6lhu3bvDJb3ue3fkV9u7/YZ74vjfYmr7BweGa2/dX3N9bc7TqqZzhuSd+k8efOMuZeUXTOCT3OF/RLtuiPEOovSWHviAgjCvvWwRrT9TCpQm2MZ2WYYXziK1ZtpGD45aDgz3Ww1A4dM4TELpYFNYpw6AJa5RTswW2alATaftA0qpY52LkzPaMeHCMxsTUVkwnlt0zC85ubbC90RBzx/H+Aw7uBbAZ5ztyTFhf2NRDnzEG+q4HEoeHh8zPbOJVSvBEDvjBEWWNayO/98ILRG2wYULWCtUSD6BqkBRwQVFXHA5JA6IB8VKaDWGJz4UlnZ0nmwqNYE2xZxKFkNb02RZ1nQZyDo9CQAyGLAFrq8L2U3mEYVWTR/SJYMSRNWI0j5ZdV/4zJaCMcYBfapiS7KF5dILISRhZYXgLBnHluilYRJvye6QoWktgQmlgYUp4mY5KM3Isg9BRQZgzmGwwJ9gIKQ6IEAV1Fd3Q0Q+RrELOPTqAWH1U7yGC0UggFfQGFIXmSfCJnZClKkE00pPEM9U3wGbUvkV2GdWarutYq6dtlQcPBx7srzg+PMABdT0ja3noORfrOEAhHRZMja0raiN0MaApslotCxNxKEixoS+uCW/K8DKExOAHvANsxSoHhhAxKtRVTdJMsJaJs3RS0qZJERGDE8eDg2OeunoeshCkhKpkEjkOHC0T3sOls9u8/f4evvJoNsUajoc4oC5j1SMqrNoOI46J9zzx7AbdYOjbNbEPhKHD154vf+UG33X0dGm2RYuziTopj5/a5kgzWT0au7H2LgNkPxX29+/ha2F7a4atLdc+/Cw7m1vU1oMttmprSkAeolhbLL855WJ5zWUfgGgZ+uqYKh5KKI91ltivcU09miI81WyDOPSEVP5u5WratuN4OGZjc2MMMwMojXGlBAq1y2PefPVlXnvxczy4fwusZ7K1RTIZ9RXT2QaLjU2MMzSThs3NHXYW2zSjew7vMd6Pb7+R+4gg1pVmupb9q2q5Jostw2ilMDhPHEzOVWxtbhG7luWq5aOf/F2cv/g0V5/4DUxOXDh3joTl+37/H+TwcEUcQvn6haucPXcaYqRPa2zMTOrfxvL8//P1p/7Un9r/sR/7scdCCPL93//9z558/Tu+4zuOvlHBHtPpVP/sn/2zd/7SX/pLl6qq0u/93u9d3rlzx7344ouTp59+urt9+3b1N/7G39j+ru/6rvXP/uzPbn7qU5/a/kY8jg/Wv9n1dTf+LIoVw8R4Qkz0IVJLzRu3bnF2w7E1m1In2D21wDRzrCtJao0YamspxFKY+Iq0XvMjf/+/o1osAAhvfIXq/ffp+0S3XlONKrSHDws38saLX0AXn+SF33yZ2alZATq7GeboiEkz4fLFM/zeT34c/ut/QN3MqU9fIA/C0C0ZukCMLa5eoLmwWorda1TgScQYxTeWb/vWD/Olr3wKW1V0wdCFxLyZEYcVXb9iWi8YcqBfF6tv3/eEnJg2FaW98VsvREYM1mRyzkzqSfkaZYTsYmnzpJhwYnBjWmhOEWOKJXbVr7h67jR/7I/+IP/l3/u79DlydHRMXS942A58+eX3eXZZGv1PXN6kPn2a+fsl5MRVo6zbwbLv2Wg8s4lDbZl6Tr3FGMUZiyOztbXBZGJwYvDWsJhUeJtJ/YohZIyrOF6v8dawOQkF6DtA1x7hncX6htl0gvGWoR9oW6XtM+2w4sFRz529VbEOJ0M1rzE5k3rFm0QKkdpNqZxl3SWyEerKkkNHFmh7kKTUNnN2a4fHzp/h8pVdNK7RmGkmm8Q4kDSiauiGDjWQkkNsxkqDUYsxGee3IO+VBkx/AM0Rb+9doE1bPL/zLp4DGJPl1E5AfUkNyxkjkWQe4vJ5crsP3TEqhtRMMQwYHFY9WSKilhQOqHfmxLbhQCbcv33A08+cGotDsKbI/U/UTnrS8dPy+iujK0BPLC8j70ZKKpemUswCiLGjPQaQMj03Yscgk/xIMWjwY+OwKLvQEWgca5TC/zPZlr6IjA3CE9sxowIwFTXKyURav1ZBZW1pNid9pKzKmlBrGVJg0tQMQJ8MMwAzQ0wkhrZYhmUMYPANhmKjtdmW4BgZEKnJaVXSX8WBTDG0bEwtf/hjD7F5yVR7xAnZVLjoSFRkFOe0QNAnU1ZHK5IoQcDgUFuOz3TWsO4DlViiEySkojB1JTF7OpmQY6IbBvCOvh9wzpFEqJwvlmkxTKa+FPUEsjVFdZmLElBsYf6JgmYtyb1SWlIDcLhcsn/YsbNYEGKHp1inswayaTjYH3jysmdzo2HZBWJKGCeoRpq6KN1OrCUqQkiJ6XRabLmaIEecKG1KJCtEoOsdb7z2Pt/9rRdYxyP6LjCZTbl0dcHR8cDewQHOe/o2k7qBdbasli0m5xLEgWX/YMn2dIOz0xmNwkc//DEuXLzEYraBqZQMOOuxTsYGdLGGW/HklImx8JCcHW9LUqzWzjlc7clEnA6QHWLA+wlxMmU43kdtTc6C9Z7ctcQQ8NYV1awoYlxh3ozvoUcyjZN9llpu3XiX62++wrtfeYmUB2w9Zef0aWpvicdLzHROvb3LvPLUvma6mHFmNmdjsY13jokrygmxjmwKp0qktPdFTNkoZkVNKZIFUzYFRuiHviiW+54Q13g7oW8P+fs//4945+4BvnE8cWGXj37sGjdv3ubw+Jj9B8ccrY8JMdJszvmWb/4oH37mKo9dvMRiewd1jwbCH6x/y6uyvuAexqFCsAJe8UnBl9HKOihZB4IR1selxrjxYMVR15aBji1qt0tnzxVUg1T87N/5L+kPbnDxw/8h3SufJexYNu5ZNp7Yodl+DIBv+tCTvHf9FfqYCdmAH3j3yy9y4dKMK4+fp25qms2aC1dP8ezHLyAG1qvIS1/Y58XffPgobVVGFbfzjqNly9asYpDEd3zTc3zqsy+y1yte5yyPnqSZvMXMTllrV1wTxpJzxAtlANKHR41v90hJmMGW5mJtilMDYIgZU02pfIUkpY8rJGtR9joLTqhwTCcLcNAdPiAC7929S5Qp3/Ytlj/xR/8jXnz7NjEkhmDJUTm15fn4cxeYTS7z1tvfzdnms8wmhyWcSgwpJJRyD7UGyGkc4DjSYBFTGvpKjyEiVjHeUTVzQgocrQf2jo+5fnuPNiSys9hcVNyVGqrK4j0cdWtSmwjGMKksVgy+ctTVhJxbjrsWZy2TuiaHgZ3aUs8NT547w7lzO0xmNdWIBNnbD3QS8JXFWE+KmZxGPl1VONXHyyWowdfC53/zRV577zpXTu2yfW3O4lyDNRkRj6lA/AEOQaVG0hwnBYcCpampKZWGmVgk90QSNhs0lYAsdQ5kUhRpoUdjV67drmBoBqaE3I7IgxI0IdaX+1JOqHGF/2YEch7V7350H5T3jWaH9Y4kkDRi5cRsm0BlHC7OCtdMhJwsVgqfN+eCbDHGoxKKGj8bksSiTo9CTEO5dqeAGC2NjlzQLKrlHNWQSoCPRlCLsQ1RDWpLYm2ptzLYTK9CiuAmFlvNkcUUE5Zo36CzKegROQoZhzGKDImUFHWZVd+TktBFQ0qWGJS+i7Rtpo8D3TIwKHR9oO2VdRCOV4kbD1reXx9wdx05WCku14h0xJQeKeOtZjRkWimqS+MdCByngUn29ClBKpb1LAbanuQtOUNdl+Z0GCJYx5rMTl1RV1NCXo3ZrkWRWTuLrRomAqvjfRbTLUJlMKHUxAdHa7qQxv1UQc+I1kTtWHYN+3v7PPvUFd5/f5887uO8M2OgF4BBcnETYEx53ypsbU1Z9wPV9hbteolQYVJimQ2H+x3bm9AGJWpFq5mJjUxcgyiE6InJ0FQVSWA+mcLhit3zp1hUmWvPPcf5y1eYTKbFxSNaAhU1jjbycq6W61zBvpzY2vMjW2xpQouvIX81xVo0YExN1oSppjjAqjK0Pc41VFVFVEF8VfazakhERD1DO/DaF3+Vl1/6PA/v3aGezambCb6asDh9FltbqrphWtecOX2ayWzBYj7HW8PET8A6xPlxaDnahqU0K62Ox/rRcYevhqVJafuNewcRirK0diCCrRsWVeF+zxZbnL18hRS7UUATiF3LcO7EkQTHx4e8f/0NUk4owpkzF8gqzHb+Ddyc/x1Z29vb+ad+6qfe+eEf/uEnTr52/vz54ad+6qe+ofHGf/Wv/tXbzjn9y3/5L1/40R/9UX/69OnwQz/0Q/d/9Ed/9MFnPvOZe3/+z//5K8MwmO/93u89/HN/7s/d+mt/7a9d+EY+ng/W/+/r6278JQ1E40maiFlxORKXieCEmw9X7C0Ll6HtIrNFz9aYLptHua8/gZlqYa299//6GR57+jnMh5/HPfkUsyef5MqZTXZ3a9zaMfT3kL78nZQSe+++Sx8i2zQswzEiHQvr+WP/0Z/h8cvnsK+8DsDe/iFHr79ZeEpWqZ2jaRzD+gAxDqtzTOXH9KCRR6VKu1rzTU8/zZnd32B55wiTG9Y50ffgqFFZseo6gkmsx2AQyVDbhtJEVH77/MFWNSYVHkbfl4Z82fyWC7yGoUx8tKR+GiuFqSelUIuaubxzio2dHTRH+r7jwf4+Z8/tcOHUNrWv+Fhcwcsv8MSFTXRrht8bQ0uGHsuU6eaUK7s1j13YYjYTmqoCMeS+G6dBSuXNV/klAjknco6sc1F0KRanluPDFdvbG6UIVle4N96x7BOrvWOGHAkp0/WBveOedmTzddmhtsZ7YT6ryCqgodRC4gjJcnSwZrYxIeWeLicIBh88q1VLMxXOLOacO9Vw/sImjTUMx4e0/TG+qrFDIKaeqvIMvZCzklIixERTe5qqhDJoMiWtMwTQRBLY5pg//vxdjJ9SSUdOa8Q0SKwQpwVCHhS1rqTcGkts7+MlkZ0vip7cI9mUNDEpNgqCwYY1GpUuVwR6upOJspQmk8hoiTVuLCgp00t4ZKFVGdUMjKql0XJrVcm5FKIYT8aWhkMOSInfGBPlSsF1kpAnlNeNDEYcol1JhNWebCyKweUCH06MKVxomXSf2CZNmeWdWDMtrvBFjClTwDw21scbvqggyWErz5AzKeUyTZdi6SKDxSDZYMSPm4BcFHVZcAxkLIkJmoaRyVNUlUooiqr+OpfdS8UmZCaoGxmKJtBMKqbNFOl7Ysy03Rol4X1drk3iabUnE6lEiZUjrTqMa5jVNd0AYi2mbui7NbUtluTKebp1IBnAOpyxiBXC0Jf3uHesh4F1CGhMZdMkFuMsXjKEiJBJo13bZi1TXWfYO2w5s7XFI6ZVEtQlNCdWy0zUwJlTm7x/ew9rDWJL6EpptI7FrpTPU86kkb1YV5bJRsVisgmxQ3JNigM4zzu39nlw0OFsjaaIE0vlMtNGYTGh6wKrpPjaorHHxoStLZPNmlV3wLpf8eTlx0ghcOHaVZ588im2pnOca1CbMWpGRqUCCWsdpsTZklMeJ+pFTQxKN/QYo9S+ImfQOBD7JW66g2ZB1WJnG9iwxrly76krqOqGHDMxpEfp1qiWTRSQNZU0SGsQsdy/fYcv/cYv8/abX0LVUM02UONHFa2nmm7irWKqivnGDrPJgq1mwnw6wzQNtq5w1hYej5TzVmzhTZHK5q28uUfFo6Fca40WBmtVoTmx7lpOnzlHWC8Jg/L8hz8OQXjx5S+x9+A+v/tbP8722V2euPY49w877ty4w3aO9OslH/vW7+BDzz7Nue1d8Jk8nDSUPli/E1bXB1RyUbsmRfrCxqq8JWlGQ8BYz9BFfFU/so2SM1VladtIbTyro31ee/tNftfl38Vnf+MLfPEf/zzf9/FLNKcu0XzbH+D4rS9w+TxUswkHLxfG4/bulOP1KW6+eRtxPftph8++/A68dszuds0nP/4Mx4enuHlvzdwAOEzqGdolq/WKndMXIKaSTE/pwWxvbrA8eECzMefKmU0+8dxj/MMv3KQ7usaNt/+PPPnh/yXRHNMtj6hMYUB5a8tAbUi0KTM3BT5/grXtYiR0peGJQDKCiYqtaybNhEYsR2GFF4c4YRU6vPHYWBqLWzsbvPv6q6wf7nH6zC5trxw/3OfMpTPIZIuD+9eRCupZxYeubvDhp87TOOWd93b4+V/84zx16UvMZodgE1mUlASxUtRIyTJkDz7jbS7oF82EDNlYrCpeatrBcv+o587DPVbrgagWtVOkTqS+J6klWGXIgl91TJ2DqKhxNKZi4h3JQOhXqFY4ozTicMDG1LCoPNuzHS5eOYMzkRB6jpeR2jiM7cmacc7R9S0mCzFmYokRxjrDdDZjuV4TYmTqF+zsXODujbvcefs2L/5mYseseeLyU0yMMsR3sTZS+8zWdIJ3hqq2OBeoJw6cMG9cUTKZjHeeurI4b3HOYfwmisNVgsmRFAOaB8Ru0tstsoE2B5ZmwTCZkPslrjJIymRTIWLx9SZ5OCrWWlNODBU79t08OQ2IlAAxsQ6PgdSWgVKuUFeDy2MSdGnYGZdJ2ZbkXu9IaSCoRZmgfiAlh7OGQIVWiZhdafKljBJR8eSopf4QQXIZMocBVGtiyLiqJikMfU/MlpQLM7vFcnflEQfvd4Z/8EpmLfto23K47ujpScN9UjYMQei7QJctbnaK/ft3cNGxVk9KSiJgnWMIiSFSQq3q+Sgu8KWmF0MblHXKtGPjsjaGdT+Qs4M4gBvDq4A8DIS6oQZcUtbHS9ZGkZSorKG4U4V6UpMSrOKApeSdpZiI/cBAz3Q+5Xi15mg1MPRx5PxlQk6FsS3Ccd8hWRjanlYSlYI6aLvE/t4R509NceIJfVG3qa2JueLGzff56Mc/yXziOey1KPDsyLq2hQ0ZNJXAnDzO+MZera8Mm/M5AxbRgltZohw+bNmc7RQ7t0nYrLSiuJSIIZMNhKyEOLA5nTJ1Ffv9PtMzC5rphKeefoZpM8MYN+6ZivW7OHBMUcExJkLDmNispFwaadaWwX1hJFowjhw64tBh/Qpbe4ozwmL9hK5bkp1AU64b4EsmZQYks3y44vWXPs9LX/wVVgdHzDa22D59mjwEds5fotk9hebMxE44ffocm9sbbG5u4MUVV5gtjW1jXOF7n3T2OBEepNIHLMqA8b+Tpt/JJbxMeZQMVkpdCZR9jWKslBclZ6a1ZR0iR/cP0BwLagdLl2C5XHPUHTNpGrZ3z+K8JwF76xVn/g3cm/9dWn/6T//p/R/4gR944Rd+4RcW8/k8/6E/9IeO/Jhv8I1a1lp+/Md//M7XWnpP1k/+5E/e+Mmf/MkbX/u1v/gX/+K9k49/4id+4tZP/MRP3PqGPsAP1r/y+vpTfZ1DyNR9Rp0tm2MpG1pT1bSUbv/Du3ucbmfMh6L4u7+35NVuYKMrja+D5TGNn7C16uC9d8rF8Xu+j3jlMS5fucKpqiNvKr1ZcDA2C2dbU9z2Ga7sLNlrD4lRyEPg6uNnkPYen/n5f4a+/BZ/ALh/4x1mlzeZb5xiPt9AJvOiIJGeHDOWTEpdYbQAVir2DldMmpraK9/0sau8fvOLBOOxcgzRE92EKnl6CbgYqU6ahhoRyRg9Ua7Ibz1mVqnrORGHGUEizlpSguQbrFoaDKvc4a1SqSXakmSVvGIj6MaiqEc0oTnz7o3rPH7tIk9fusRL4U2OH5ZC+ZV39/i1fp/H9w4A2GgmfOjZMzxx8RSbMyB5UggokZyUTgVnwVtHJYac13jf0MUCwnfGU9tiQVHnUCI7uzt4L6xSomqmHK0zb12/zf5RSz9ExFi8hel0ClWFas/eeiCHJS1l07Ndz2jmU3xlOV4OHLdrgkk4JzRVpHGWw1XE58TOzpQnn3yKC2c3aKwg1nPr9h16elahL0DnMBCGJXVT03frwhVJifWqsNPev36Lgxh47NoVFlbIVUKCh6jF7tjuccq/g+gMo3NymiMxoLYjp6rI8E1d2BnGF0uIRLJxgJBSj2ds4iWLuhmCJeWIrSzWK3YIhXWSbWFzmIBJQ5lejdwzlUzSiDMTUg5YTGHwqQUKI0i0pNdmG8gxF8i1rQpE27qxuDCklEaBbSiFjGix0DJOAsUhJFRDUTRWblQhJqzWJE0lzGdUX5R+sKASUePIOSIjd1BIpDhgpIJsi12E0gBRSSSUbDIDkKmIDLTZMGSDEUc/7GOYgBeMDpiYyDZiUgmoENGivnBjarGzKNUYvlKstkkqJFsy28XanSMrWTAotGvHl9/pePX193jnsGdv2bM+WjFBsL7CaLH7SyrFYxCD5oStHKbxaCqJjEPKrPsWJ0KymRAj4cEBdlITY6aqCmw+dgVOfGwScwuXz5zhoB04Xi3L5kOUCiFSbL7ORpYxstFM6HLhhBpTcevBfZ568hw6WDIDWUsz22tPdlMe3D/k6sUtXn5ZiKYkLCuOKBmJZVNqNOGTYDCsk5ZGnnqefe4cSS033r/O0B4SoiBDx+FyyRdfucN3fvISvR6U9754nMCphWN5ytIkoVu15PmC2byobOezitXRmmbq2Fp4qrriuY9/Exubm3hryU6xFNuVjJWvWFc2/SIkzcXqLlKYm5pIOeJcmTJHRvXyaKEmdRi7SZbCh3SzbVLsmU48blR07x/u0646Tp09XYbGksv0PUcQT+rhwf5NXvi1X+K1V76Iqy3zzVPEWBiAWztn2T5zHiXSNBOm0zlbW1tMJxM2qyliPca50hA2RRmbERCHpSRIi9hH9uavLYyLgGrkWVkDoTQim2ZGVU+p/IS2XbJxapuzF67xoU98N195/SWee+4Z1Ciha3k6ZvI3w2y+gaVwgoa+4/bdm3RDx6md02xufmMLwg/W179Mlwk2Eck01mGdxVcVKQ5M5zNWqzViDB4HEYZc6pP5vKaKCXG2BIIYy5AMt2/d51d+9v/NR586x82bN3jrjRf42Hf9APWpC8Rbb7D/9ktYKc3DL77wFY7DPbJ3dMD1hwf0GZwTHh484POfW/LmSxVa11w5e4rTFy+ys7PFjjdMZptkX2NiHBvyIMYzPXuau7duM11ATh3f+qGn+cwLt/GbN3jy2R9G3C36ZIryPaaihlPB+4oQ0oiAKViEUbSOUajqAza3fpood/FJqXwDxjMg2JRQa3DqSEOgbmaICLnraYzgouPaE49x9fFLRGn4u3//7/H//Lt/H22v8TM/8+Ncfvx/xU79Br/n44+zs+lIoWcVDCGX92Y7KOt1j584hsjYNBtwoiXZ1VjSkAgRqqoEaR13kYerwN37+zS+praONme6XNTkfd8R+lBeC+vJXtE+g42ItwRrWDSW4xAKv9c4OgQJgY3GsLuYwIZjOnFcurBg3ni8qbFG6dYDxgjWCVEDOmRiBDCYMSlcJKOERwFg6/UKay19u+La09/NG+8/IJoeO5+g1nFvJVTrGl8lquYyh6sle3f3sALORDT2YwsgormlkqokjNrCvZ3UFhGLasACtbdMGourhfsPl1jtsbZib2iYLaZ0Xcff/fQBN+4pNndogolANS2BEbY5QPKoGkp5dA6dhCCVtHoZa8shZtyItcg5U6kjiSVqGll/hUEWs9D1w5hWLYQhMwxlWJrJDFpcOGTBOkfbWoYYyFLY1ykJmiPWOrpBqbyl7xMhGYaoJAzGrNCY0FRsvl0OJHEYX2ObKbOtDfLhwCvXW24ddojPiEYq6fAsWKoimlnMdxCjtPc7km5gJzWuhhwbEgMQqUyFS6P92RS8T8yRra1N+lXHctXStYGUHcOQaNueISXUGJyAB4YQCi9aLYQybAy58Pi8McQQyzDLOzDCql1DLMe9SspwvEKNeYRDkagkNaiFynliKrxpNcKQBGL/SCkaUsQ3Hgk9bdvT1A1t2yJuPtq0tWBKxKAMHB52xHjMfGfK4a01iuLrihQyNgHeEnOpd8kZcScDsPJ8J03FwX47cjoNXoQh9QSbCKkjqcWkWJKLReiMJcYelxqiCr6CkFc4E2gcXH3qKXZ2dqhchWDKfhBFSRjnx1BDWxSruSBz5NFeUR+ZeU7qCC3AyJJWrkAOaA6IqUfnjaVuptQUVqcxhRtuEFbrFW+89BK/+SufYr06YLF9Cr/YxlWO+cYui51txDtcPWFrc4fTG3Nm822qyuN9VcIjpexdRe2oVB2LlrILKcijR6ZfHj2P37pK3VN45UUpmEd7RfnbZTituVz/kw74qsK4HYa+petarHFUGDarik1ZUBlfBuN1gzOG6L8h7tbf8ev06dPph37ohw7+bT+OD9a/u+vrbvw5scQYAP1qak/WwsYKEZwltz2I5bgbSOOFYYhF/VP7wtR77Pd8P9/5R/4w9XyOWczgmecBWL71CpevPkU6eAjHd0kpcvrsaQBOnz1D8/QlOgO/8muv0g+BZOGNW/d4+a//V1z7yDfzXU99O/C3ee7ME7jqHPloBYf3yOkmhkzXrnBqkarB2IS+9Q4As3v32T/Yo55VYB3fN51zw/XcXj1EYian/SLLzsqQBmIIXInFXvtMiEzCQOgTxMzj6bdeiFLKdCHgRMpxouCmUoaqmjCtG4YQMH3CCHR9TxRGa58npsBTjz/Ou6+/zPLhHVbZc+veITE1XH78Ep/6/Ktc/2IJ83j7xiFpZ4snr5yC1+B7vvkx9i6cgTAQhzRKrYWcS+KTdxkvoDkyiIB3Jf1LbeFtYQhpwJmAM4q6GjUNy+WSo2XL0eqI+4dr+pxRK1DV2GwJNrHqoQ4BK44+rtFocaamccUyFENheDlrsFhygsXGDIkRlyNPnNnkwpktTm/NaaYNISTEGWJYMml8OWYjMyvGjIgtBUNTUdc1y+WyhJd4g6rw65/+Iq996VW2JxNWz0+ZV2tOzRd4N0P8QFV5rBnw7ghBqKsFpA6rFuPq0SKbx0CYXBpggDUeY2qSmaHWYMwUk4WU1xgGxHi8d3QitH7KIJHswMRyI7ViUesJmnDisKaG3JdJmAYQi3WmqD+0NNVQsNKQfJm65dwXmLUmMp5sYrHKZlsaEHqSBpxGZWkEAiJN6SlSEhGzDVhTISkTgWSrUbE3sm1SUYSKqRFvMSRyjKgmXOVKke4bUCEQRv2rL+wSlHV2DCHiK2GdGo51xl6MxKWjkzlSZYb2AVZq+ujRHAi9R1xN1x3Rty1t9PRBiUlJyRAG5fhoICRDH5R+SCSEtg/0oYT0HK0zh4Ojq1xJbOs9Ez8nDy2hD+V1sBaXYOh6gkSMWioE6QJHZMIQqI1/BDK3IrimRodAlwKawTfTktKWUtkgYEgY2iHSrjqs8YhkUgxkArNJjSLkISIhYypHpCgWrIHlYWB53LNRCznWZDqMmTLENUaVB3tHPHHtEme3Nnn34QFVU+OlZ1ZViM3F4oSUKXUaSuJz6FHTkEgMsefylYuFkZWg8hOS6zg67PHREgYl4ghYOhPK+d4nQlZy5UhDLs16P2VazRiOA9cuXGCzET780Q9z9tx5prMZzvrCGMy5TN4phe3oIGcciD9qUuSUi4ITO/6sYmyNESXHgRwDNgwYEx5ZaFxVY4yh61r6IbCxscHW6V3ENaVRnHusOhKZ5arl3vtf4Stf/Ge8df01clbq2ZTZZAPvPLtnT1PPF2MoCJzZPcfpM2exxjObTFAtfC6xHqwbWYWMFvWi5lUtBXJxvPz2ghiKPaZwprJmjDPU0wkyBp9kk5kuFiPnJ3Lx/DnOn9ll6JYIQnYFiN5npR8iq3bNg/375dpVNzhf7PT3Hu7z+O6Vr/cW/8H6Bi7xggYl5IjLGVJmNpthfDmHbGVp1x3WWIbVktyOOJF1Iu0ajttAXiWWqzU3btzk5c/9CvOwok0tosIv/+3/imsf/d1MFzXusefZnJ/C3CuD97fu7TPZVO6vA4chsX+cceoIg2ImE45GO6AeHnPj/hK++A5i4OnHT/H4lUt07Wt88ts+UdhrgNQN86rGNhV927PYOs3zTzueujDly9dX1M075FjSI7WasloflsR2HCEEVm2LUlR6iBL68lwLi+4W26f/Cn2I2FijU0cjnmyEaDMOiw6Z5DzTjTmro8OCq/AQ+2PqxTZpecTrL38ZjZl3bhwR+46u20WD8i3PXGNzVjEMA4JDJBdOLkBSMIYQM0P4anCW9ROMcSUoy5Uh1lu39nl4d4+uCwzG04ngbGTmMuuuY4iGGEbNi7W0qcMClYckBmsSVityKI0i28yZ1RPO7GxQV4bDOw+oYuDUfMFzzzzFfLEgx8T+w6PymLNCVRIzm7qm7TuCUALiQiTEnjg2c06uUSEE8sgXrl3N1Wc+hv3H/4Q+DjS5ITCgUvPOwV1mTpjNpmhWvJ2jDsiKqYReB8QKJlg6P8F7T0prcl2xDIkwKEEChIq6yuiRJcSeIVYkhEubm2xcPMV6P6C6wcsvBe6/ZKhrR93MWPclQIEIIj0mNUXNHsFUgqaEuPK8jJ3Qtz2GjBtV70ksZEetpZFXWMaCMEFRhhjANEUp5ityqIkhYm3Gu2kZStoEqdias2ZMtVEwDZYyqNVxcJtNGYIaR4qJqi7XZlRIouC1KJ1yUbYuZo6d7Ro1nnkt3L9fYecbEFaQDZ0U9aGtiuodk5HaM3RrDJ5oFI2Q1h1JIikHpDHleYVAZWtCCIScWLc9CaHPACUwK+ZIzoIf74dAQe1UnnUMJahFMyHHoqrsOnxTEXIqx8FY4jDgvSeEWPYWCn0pImjEElIgdj1iLVVToSmSRmu+9Y4hZzbqqqBW4lCEDjEydIqva4Yhs7ff8sQTFqt1sWRrwGVLVTvWbeZ474jdU6d49/Z71MbTGBCJJZguZ8hKyga1pTa2YkkxM/GeuqqIcUmMAyupUXWEPhL7vjitxCO5IFqcOOq+uEbWq0wIIFTcfXiMiGPiLJ987jlqW1EZh/cea2Vkko94Eyn1T05pbITZci6NjWg9ua6aoqaLMZWwOyt415ThRuyLUw2Ky2ckb5vR7Byz4a2vvMan/+F/w4O9+8w2pkw2Z4S+ZXv7IluXL9GGNcZN2NjaZefMLqe3NmjspFRarjT5jJbk8SwjQgi+pkkpY9F28p0TPNGj7z76kfLByTdOGq95DN4B1aKkdM6SCIipwCWsGmosdT0tWKET5xIeTYpzjpADQiZ+kBX7wfpg/Wutr7vx1606tOxL8CJIGFU/3mIRgmY0Kq4qE+swXhFsVTaydlS8DYcHnLn2NNNr1zDW0u/v8+rP/DR3/vZ/wfa3fjunn3yGdHOBWwX8boFTi8w43juCYaDNSpcUMZlbR5br9+7wq2/f5Z+myH9rLfX/4j8pv/e3Pf5/mfZh8Z/+BM99zeeXgU98ncfk//DgDjz47/9eC9zPxa42sUI041VKDcZVWF+V6VTSUakFQQT1htQGKjUYW7O5mPLw1k2ef+45di48znuvvsy92zfZ2t0mSYOXEqJy7vQmVz96kSeHsYgeIl2fSCNXyFURTTAkJUclpdLEhTKJ1hCwpqd2FUqgz4LUtoD9o2W137K3POagbwlJCUHp1ZQpXMzEmAmuMAIHTUSTmDpHLYbgCtvQu5rBCDF1OG2YNR4NviSq6oqrV84wczXbO9s0tTD0Leu2JSUhhp6cB2Isdsi+74CilBliKVZiTNRQppRaElovXnmK63eOyXHgvYfH/O1P32Gimcunt/AmcnD8gKQ9ziU2mynGlBups5HKWzBDsYtXHqGn8p7KVcznFZVPuArqqgKj+KrD2UzXdaADdjFnr59Q+TJpvfGwYmkWpHa/2Ay0WFHVKtlP8X5KGBRUcKJkcQxRUSxWPLih8PaMFMHiaDPJgIlgrEdtRZJAyhGffWFsGMeyF4yr0AQhtsSgRHVkE4ipo7YWIaI2M4Rq3DhkVEOx+Q8REQUTSuGtQttGQsgMAWIqm6IYcymiMvQB+gRJHO/uAc7QuopPv3XI9b09zs0S65gYUk/jDF1/RNQ1IRRwdlSH+kC3XOJw5EpJ0ZJNBCkT2WEAU5UGalNNQQqgerGYsDw4pp0GehsIOYNmchroQySrxab8aKMkKeHF0ElJ3M7rARsznR+VvJrxWJwrhZlzjkHimHCmSIgl5CREoiqTekaMmYO4IgypMF6Kd5ReI5PkOV4uS9ouhvVqRfJgU08fSiLv8njF1nyBF6ULBhsVsRNicqxWK/p+4My5Td659wBNEZFU4M4UnZyKEE6ShqMgpjB7MkXtM5s1pfE52s99LTzc2ydkSxJXNjmjuvNEmdPlMq3O2TDowFZT4Z3SdWtcvcBO51x+/HGaejImEToY/05p8lnMo81oSZwDfdQwK8raouZgZB8iZoQpRHIYiKyo6gmqzViUulH5MuDrmuRKArIRyDGAsWRNvP/aG3zxn3+GO7ffQlWZNXOwjsl0yu7Zc8h0QRLLrJmys7HJYmuD+WxB08ww2MImdFJUuGIL30seVbqj0mVkao7PV/W/r/FXXiFjbLH6C4i3Y6Fc2qNKwhpDyqboQ0NL6FuGoRvTywNqG7qQ6AdF6hmz6Zy6bqjrpihZdPg672QfrG/0UhupkimBOxpwVogmMZltcHTvHt5bJERiVQLQ+nVR/K27gDlcYv0EhsipzV3+5v/pf8/v/+RT7Mw8aVDabODhMX/7//o3+RP/8f8c7x31bMLQFACSbF7gTnudveOW3gSsnRaEg52ARpJCCpTABs0YXxKoX3zziLduvsmTZza4+2CNYPiOb95nd6tFlku2d7ZZ7e/jrWd5cMDv+z0f4gs/9QZ37v0wZ3Z/huniAblZsCGJIRQ1fqJsfme+JhrFasLZ8T3iLXVzin79JL56A9+URta0qgkksi/20jAMYB25y4UVWI0W+6QYScxmDecfu0JnHK9+8UUO9t8H4Ds+dplLO7cgBby1RQWXx/cz4CZV2Yjmcq03JpNU8Mag0iHiGYJw8+4eXfZMNuZMN4WjNiFdx2q1IrsZvWQYMShFDedIsfCyyhDJFPszmd442i4zm8DUDFzcFK5cOk317EW8c+ShY3XwgBR6rJ+QbC7tmjBgfbErJhVWMRc+djUBY/CVB3LhKJoSNpRzJvYDVoWLjz/DzqkdFltzmtszUso4W5JrU4j01hGOjxlixtc1dEXjI2JK+rhYrBR3Sowr5tOGGOHhXov3NdY4UskdK1ZPV9jAvp5x7rynTx3aDqxCh6aW/ZVhx02YRojZl0aN6VEmo5XX4Cee7B2SczmfXAkgy64GHaiaCd3QozisQmvKOSVATMcYatBS11bVBNVAOySMB/ENs8UWq+OHZKuoRqRypOzHmsIT+6K8jzGXcBItDo5sMomAWkMXBOM8KUZ0VG3FXAZnmhIuN9jBsTo8oEvQBdC9IyaNo7KKimdIETuURNmHQ49dgWZXQu+6DmOLZyBGxWDp+zKMNHh6tKh51Y6hIorPsM4GYzxiHMa0qA5Y0yCqtGHNYtowqzy9lvtLNoY+BKyzhfGI4J0jGoFBRhS1YKzHpIwJilpbeMjG4LwrjTMD6hWbhEFtuaep4OuKEIpKNHcdyVhc3RA00VSZg+Mly3Zgmi1qBFcbfAol5MXCwYNDrl46x5dfeQtDXd4LYspBY0VJoDEkBpyByjpsVfAvmIqYwbiKNCiu8jhnMCjDeFwKk9QQjOKscGZ3g1vDAc7N2N6c09SWKnu2N3fZvnyFWTPHiSHJ6F5AqesGvqbOKfWPjDXCVxt/1jqKm6GUPGhAyYUxKRUYizFpxBD5Rx02Vei7wNtfeZlXPv9Z3nj5nzPbnLG5s0smU9cNO9eulIG+Ex47e4Xts5eZNQ07kwZxnmgNqMdoCb0pYgkw43kP4zUSyuciCGOCZInOofiBxo/zV+udk0EvoyOucAK1OIZQ/IlgwBpUBGsLnzo7O15ryvVNNZNyLCnfAogjq2CrD8LLPlgfrH+d9XU3/rxa+hCIkrFeMAbqyZS+65jOJngLQxuLziErKYybDiPU3pPWKwDufOkF/vN/79/jh/7D/ynb2ws+/0u/SG0G4nrFO2++yvala/jdM7iU0DNb5Xf7yGffeIsX3rlPZw2D9xyFNe/fPaQfyrXxhnX8yLd/C2dyYL1esdXUnLp4lotPXeOTTz3ObOrwW7vYkDEW5OXXqf/CX2H4a/9r7u7OObx9n83tKSnDV957yH/x9z47XmCg18wQlJyWaN/yRA78n+/d4cfOnOetuqEdbRrP58R/drsUmf/xucvctx4rBbrcDUUl6KsabxuysQQDmqA2FaFrqeoJuXKE4ZiUIzkE5nh+3x/6Ae7ee8iLX36VV65f5//yt/4bTm8suL13xJkSbcbHnjrDva0p8U5p/CVREpEYhKEPzK0lAjEJIYypn1UF+UT5BxhLEEs3dBwse24+7LhxZw/rDOdPbVBXlnVIrFYtQ1uAtJoKcFyqmpAjqRPq2qC2IpCZTSyHIVD5urAvjCcOHV04YOfcNmcuLNjevsKp3QmNV7p1z6TKhG4gDQN1XeErQxG7ebIWhRX40cqiiKRxMmRYr9fEWJI/p5M5G2cvse7+MX5Wg4PoNzg8XjPPlvnCsnP2eQ7XK27fvc+tVqmsQi72Qx0ZeCTBmSmaWupKaKpS2A1DIqYWCcfMJwVwnATu3N2nJuL0Ic3ZXZqtCg3wD750nddvfYmZGUjZULuKxqYx0fR9fG0hlSaFhoytLFlHyyAW6BEphUgMirOl0OljoBaLMZZ16LFjmq9ISRpsu0TUhKmbYpmINSEWGLniGEYAsWaltoZhaOjzgLF12ROJRXNh7KRcJt1VVdENsbBI1JTizGQ0Zow4kEzQgWQMVWWo64bNM5tocizvdbx/lLgvmRQK96luBZVdOs04m9nd2kLSwPpoTfBz8mSCMRFiQ9YABCZ+go8KlrKRTZGu74hqsSbSpTXrIZKDI8UxUW/IJcXOlnCNKp8oACw6JIJmsg6oKjUG6yw5RKJ1qCrWlo1h7HtSLCnJNkPbdWAttXU4I4R1TxIhO2HSlCl8ymOjyxpCH6nEImPoCSiVrSEOhJSY1A3L5RqVDXKKIJkcQ4GbW2UIib0Hd9k+uwG2vD+cd1R1RQ6h8BKdJ+V+tGWU94oxBiu+MFBF6fuBdrUm2gbUllATHwmpZwix/Lta1GmNr1kPgTwEXJ5AytSVsO6PcS4x88K1xx9je2uL2pXAo5NggEwaC1jzqDmpY9NrvFFQGoB5bIZljJXSEBzHyGLBU1SwmgeMqct5W8bgVE0DWQrSwTuGkHEi3L11nd/49Kf54q//U7Z2NtjdvsBR25Kd5/zlK/hmSsiZaVVz5tRZdmYLFtM5db3AOcqk/SScQ/KYPC1ffexSDDBjC5NHBfGjGvhrm3/yaCIuIyNHpWwCBDCiWBU0ZVIuwT8hBkKK1NNNXL2gbZfMqsId9TGx0Iw3WzjxWFdhrMWJEOzXfXv/YH2jl4JoLlgEFPGGae0ZYiJlJXcBnKU2johiqnvsnP1Jkt7iaLnG1IGJFv7qRx87xemdDVZH+3QhsQoBJ57XXvgcr33pW3j+Ix9HYmY6LS6LrSvXePfLn6ee2KLCC4o3hwy6xTBUqHNIKoEWAC5YQhrwdoskFavUcOP6wOXzhv/xD9zg8bPH4JSt02fYu3ebmI44c+4U1c5pZvNDjr7yA+ye+jn6fJOQAlMyURMRg7EO6xPegvcVGCmWrvptqoUjhSe4ef1v8fgz/xNq+wau8tBY8hBL8u3eAdb6okLqIuINE+8Qq3S5w3uLsw27Wy033oMklt2dOQAbGw3WCoMqVov1zhmDHa2AzpfGhIonplSU/qIYCWBMwRPkyObWlO4wcf/+mnYYWIlQR4MxDckYNLlH918vZQhrs4wWTCEaQxwiyQy4pFw6NedjH7vG5sxRacYCxgtde4yO96121YIPNNOG3IcRjyBoyHRtS98P+KrBJBgiDP2A86YEfOTEdDqj7zukK8ib5z78EZralY1+DGQSKUsJ26Kwx0J0hVEtgaae4B10IWJyhdNEIEDqmS5qUMfhwREhJFSUkDOOWFAZWPoUSWrxfeKlN5esuyPWIbK/ajnue/xQkaTDLgAR+hRwXvHJFeW6KkMciCGWhlYqm5cYEl4KZmO5zvTJ4KScb8RMSqawYLViICJOaLIjJCWNpsNMCYJYLpfEmKgQhmRwteDF0PY9Xb+itg7NoSiNRjatkEqg2dgUUU20/VBmfAhECu7BlCblap15uHfI/nFgGCJWDfshcNjB7kaDSBp/vKTqWuMIaSAapdYSDqNGcRRxhcXQq+IcOJQYSwpuYcyVO/+QMpiK0A+EFIESstNqxGWDrypijKQ+kMa/LKNLyTmDF0vXR1QMsRvw3uHEkC0YEbyxRcSRMsaVwDhRLQ4xMcUub13BWohgNHN4dIBxZYg+WMukqhjW6/LeSJF1u+ToaMV8Z1FEI9GQciKpYKTi4Hjg4tSzUXn6oYSmlAGlx0gDEgozT2PhOtrRbaUZNYmuPSal4lirp46qnhCCIGqwuaNSJRlhLZmZzWxY4XgqHPSJ0/OK3gcOjgJVBZUvw8PS4BsKO9IK5iRgTXMZZoodXTp5HITKicyv7JtHIKEdMUJl6KmEvseoom6gmmyVFGhV7t14n1/7p/+QN156EVsbTp0/x6pbY7zlsctXC2+wmTLb2mVja4dLW7tM5zPEFc67SAntxBY+N2oKTghGRLf5GtVe+Z9AUSuKfLX84STZ2jyi/Z3UfSdMv68GBJZjAVKYsabUS2IyKUbu3bqBr2pOnztPFvMoSdlGN2JiSqIwelJxfbA+WB+sf9X1de8M1GUIWgCuqmgYqOqKM6dOc3C4T1U7+tgRuoSrPf16CUC37OmrmllVLoLDkIkp8sYbr9Md3GPbKf0QAOHO2+9y/cJXePqJS6irmV8pWrw9e4437tzhuE0cxsTdo8AyDAxpoHYVy5gxfsIXjiIyrcBVCJ7h1fusf+M6Z0/XfPe3PENcrvnB/+AH+cRHP0rq1+XxPX6J6ZOXece+xOTcLvVsl51Lt/Fvv8/nXjsEK8WK5xzRTFke77HuDwB4s6p5wRjWWiZK5mtY6g9E6GIojRESOZUpSXRSUo4RgmR8XaH9QHIeN50zxAFNGTvxKANdaDlcBW69/z537t7m8sXLHD48pjcbDDGyXZXLrxWQrIzBe6QU0DRApkwrVRmGDFKk6KgvFjonaFLUJh6sWt69fY/jgyUkJfuKejEnpszesdKuH9Jng6EmJvDeojayHFom1uCsgHMgERMd2Sh9sjg/oa49l85scmp7ztH9AyyJ8zsbXDi/w+nTZwDL0eEaX/kyMfMOsYzFQcPx+oghBsSViXTKPSEEyIXvkTOEHNGcqZxnuVzy0Y9+F8lOsVKBOsyQ0CExWM8b995ntu9x7h6ixVqNF+KQMWqLXdVknAJU5KoUHFGUFsuq6zHWYpqGITnUJR6uhRgCTDY5ksxzF7eY7m7R3+ywXrh57yzv95nFAubThlsxk4cOr75MmDuFVJGJWEqCYYoBY8G4EkTRrXqERF0JMQWiWiRbnApC4ZlkEmSL0BBSSxYtr1UccK4ixpI2V3mLwY2vUYIEKQ1kn6ibHXKkJBSP4SMxtDBOutscMZUpdv+qImskYka7kWKlQfIcm5TGCedPTVCNBMk0GzXHq2LrtEMgWiVSxp3eW5Iqh8tj8I7jVOwr69BhxZC7FWlk9gw2UnlP3/VYV5GTklTI68iyXTHkYitVHVA1DCkhGCqEpIoKhH5gMp0yiNIOAS+evltC7enbNS5YXOXo+5aqahiGgdD3zGfzwmUyhpATMWeoLFYzIaZiZ7ee2lW0/RJRoR8C1Qi57mPi6uWLvHP7JtYZvBhW65KobL2j6yN7By1ZHJZpSQWWAYelMZ6YDbdvHPHRb3kS37xCiEKNxVMUpIiQY1uA5OrIJpV0SiwxRnzlC0tnVLtEUfpgaJeB1HXkkABHto4ceqSqsRFmWXAbM/YPBpJ6YMKD/UOcmyEKH3v6GbbmG9S22Nxt5UhDP1qPeaR6zCPvpmy6S2M5j8rAk0Ti0hgrCkvNoTQrxwFCjhFxAypFxVgykhzYEqwRk3L04CFf+LVf4YVf/6dQWS498QQxD6zDktM759m5fJU2tdTVhAs7Z9na2WZ7a8a8mSLqEE1gi2LRmlKk55MHNk65x7sjJ0E2ZY2KCL7m83/hhnpidR7ZOSfNQ81AIkbF+YqcOqyvCsg+lridjflmKa5NuY9Yc4IDKMzAIRaipnO/Xff+wfq3taqqJqUBj6V2U+qNCeuQ6I738ViiVRyWvu2wTY2z97l44f9GHwLZNhg15GHg9NkNrl09zfHBPojDaCIPwn6/pqo8f+dv/S3Mn4RLFy9wanPKJz/xkMV22YT14/naVInp7j9gI3tUhZVkmgjUnoQiOVFboVaovGWxuWBn+xp/+A/9IG+/rgw4ajtl4iu2z57j9Xfu889ffZPPvfAWfboKQNYWVw0QB/ouIMbRDQk3cVSLebFDJktVeeqNuzy3+SfpQyRJxePP/I/YPX3E0BlIqWygFdrVMZmImWyW6+0wUE0bUgbCQDCe0PUkl8khsLM9wVvPGJCMlXI9EyJKYIiKc4Z1W4bSLiWs88QhYaUwlaumIBlCdNw6WHH3zh5tGzjuBKxlnaA2rijcLNjYEXNGcBiT6aOCN6Uu6wPORCqEyXQCNnJuo+YTH36OSeMxogztmpQSlQVsCdNzrsGSqZ2DBEYMfcpUvsJNG7q2Y15XhHY18soymhMqNTkbjERi1zGsW2I2RIRoHV967XWGriQXM4bOKAErhcfW50CTDVktZmIgO0w0ROkYjKIq+MmUat5wdNzR9aW50vUt0kxGmyxUtgQxZVGSUVZJ6WOmXSdMbKik8FEPDwKC5cz2DCOWQSMikZAEdRabv3rvkAyaRvW5lGaXy0UlFPM4ZMIWR4SBbH1h7qmhz5mcRjuxtaRcAp/avgVjSQZiLkgRM6r1nPHEGLCaSTFjq5FZm4ulU2wZcomxaF+UcjpyFUuWlaWyjhwVZ5WqLo4OyYrtDdomjjVSzQxNZcuDPlHAa2HVUVmGbLBZsZXDk3AJKleDUeIQEAJWDcYncm7QHDA0ZO1JqoXn3VSEoTDhoLAsnUgZNIlga1+uOylReUfO4KLifUWKpTFZVRU5F9Y03uKMR7uBQBlIW8lMpGwvZ9WiiA0s9DEUZiCCjZGQIRowMeAoIzNrKkQSd+7vc+7sFnaI5JBJWJJEUGXVC6HvuXRxm9ffuI0Y0BhQE0pyMwYlljTc7KHM7XDWYs2EdrmmMsWpsV6vsa4EMDnjyALrHMt5mUvjOUlme3PKnev3iYNivKe2lsODQ44f3GB7+wwxlwZ/UjeG0ZbQMr7mPl8+LjZd60wpFXIJYRNTmllGS8NLc6Lrl6RsCjpopYBnNfR87h//Q178/K9D5ZhvzRkQDvrAY1eeYHbqDNY5tuZzTp29QDNdMJ9MaeqqqAjH2ldNUTnKo8Te0S0ioGMQ2Unp8lW7L2UIytfUN8LXoE2kpHBred7GnKgCf0sHsTzf8ZiU4J3y9bZbU09mqBR1n0pxxGHN1ySIn6CSPggv+2B9sP511tef6msTPhlQV2yEzpI0kmtPMALrDgmJerSrqitv5CxK2w+sRwWgyZnZZMYLv/EbfPyZC4WCoEIbM9ZUfOFXP8OpxR9ga+RoAHSzLTae+VZuvPo6t965QYpl0+idRWPC1w5rMtXEE1GiM5g4MNveYLI5JSblV1+5wbVTM27ffh/92IfQkStj4kBtYDqf0feBqo60R8f8+9//Cb7w+j+gjQ6vBlsJg3jmsznzWJqGYoWomdlkWhIiU3p0vJx3uPmUyhU5c9MUWbI3humkZtCEOoukQFgFnHVoVPplR135UsxYS9u27GxMODpzmqeMkNx7LA9eoXv4Bp98YoNnzgJf/jLkiDWek72eFYeYCtOAE8rxMm6cuiQQV2DNOYPUDD2sjnp2tzapfWGTLVtFh0TsWtQZglSIy4hmalvCQVISJn4BCrEfaFyZ9gQpyqq+G9jZ8pxZOC5tVVw4t8Bf2sGKIQ2B2K65e/sm1WRByBkd007zKO1GTZmqD4E4BJwrxZSxFptTYYigpZA2QrdeI8DE1zz94Y/w5rtfYVJPCRrpRfFWsDhQU1SXaSAkxVWKdFI2+OPEW7MQbbmR9WHFfD7Becf+/iHDYKhrgSHT94WlEgfBechDUQ94n1jtLwnLjoPUse72CZ1FpWaWi53PZIfaoYQziAF6shqsjSgeK46YOjCGIZzw9gaM1KQQS8BATGSBaMGKkEJAJKJZMRKpnMdLKRqHoUCajTRUkwnr1V4ploeEWIOtKmKfSSOTREUJQ1/4ZWrLJcO4kopqSoNp1ZXNWR5hvZKEQA9SrDHDYOHIstzviWK4t98xhJ4YG+oJo5WkpEmbIGQRjkOxhCmeEIQUB4KrMVKSo02JscVKxlKR1dBrQlOmNqYw14zQD5ByKWxEKpR1CXmQCUaVXkvgjzOWqq4K06iuSQa09kxxDCiVcYgtBbizrqjSnMU4h0+F1ZeQArC3ZTKPc5ASrip2+No7MAaHQbxy3K7AjCq7YcBWNZISQ1amdeZoeczR8ZpNW5XpfeWw9GiCVFmOjlqMtDz12Clefe0ObjLFVh5OtGemRVJRw0YdqIzBu3ItS7nkNfchI7Yi5pKA7WcNTk0JCSEWm4VUGLWsGWgqx+mtOcuDO8w3Z5zZmbIxESRa5pMZi/MX2NjaxcSMCgw6IGSs81jviyoilemEsWMBqemrejkxj0IENOvo9s0gijEWMZ5Mud7H1GLMBEa9napDVbh74wYvfv7XefOVL9GtD5huzcBVZBG2Nk/TbO9S+4ZUwaXN8+yePs9kY5OF9zTWk4wpHC7q8rsNqDUj3sZxgkjQk8TAcXJfLDDKCWjiqzaYk2L3t9lgRIpKQBUjJ8+hbGZ9bcam/4na1mCbatz0pmKb0XFzmBNiUlHCMALw1ZbAnQ/W74i1tbFLmibW3REkx2p9jHYRdbY06a2wqCcYUwIvVHc42vsYbv4iVlfUOKqJ8uzlUzSSCNaxGpTDZU+bIyuE1A0c3XyPT/2jX+Dx5z/CqVPn+N/9eOaLL9zFV5bVsgTJ+LphJi2pPyZjmWRBJGG8hZTw3mCcI6zXiHjWQ+add7/A2+/+D/kjf+Y7+dWf+zyXr9znc7/2In/nH/4S77z2Jn5iqCZTJnU59zdmFbNJg+aaw7Qm9B1N4wsyIIViY80RK54+JWZqcFmpJxk/uceq76mNw+XMsO4JbWBYHTGb17h6iuSI+sKl7UMJtpj4GmNrJAw01YS+75ltzjjcK+8DTQZrPF4UsiFZwxAizk4BKNo0xarSpYy6mqPDyN37+zw4XLNsYXAOU1msHchAIDKJglowoSjtnVJU4WXnipfIVl1z+vSczc0JpzfmGA9xaDmzvcl8WhVVlLNIVSFSXBkgNFVDSgkRx5CE2Adms4pJMyWlxIqBSeUJMSC+Yd13LPuu1C994MxiilglkVh3ia+8d7sEE/3yP2MQz8E6EvBITiVASwSvFcPQ422xXy42G2rj2Q8dlVdi34M0qFhmTU0ljnXuSY7CiFbBJC0ibjtaQrNiM2QtYRu+spz2RUm9HIRlZxiG0ryJqUeQkthsyiDNJC3Hh8JPU6QkohatEcVcnQuvGrBqigsALUNs1cJLfjS0sUQi1ahMSmJIOUOMeD8iVLSEcImAz6MNVxVT+2KTHAKNr8BAGALWFS62da402dRAhqgKrnDTVBRNsNl4Jo2yxhIPMlVlHrGBjRUkp5J4OsZaZYS46nEU10E3JMQKrQ1seo+YEraWYqlNVMEMgdZZohPaLhMUGAIDxQnrk5Kk1F85JKrZFMJQ6mlfEUeLbxDFek8cBpqmIrQ90YDLljYHUshghMo5nCpiymvijClDUBW6WF4/Z105zo2HPhFjImhpoJrK4FPpedoER/srYjbUlSOLZRgiMfeAJUnF/TsPeeqpx3jllTtYPIgr7h/jSFqGsc5OylBYB0ilJjHGQhyw6nC+3IvryhITDDGhtcVYoRLDoIaVwsPDNed3Kraqigf7K65cnOG3oF3DKy+9zqWrz2FcsRC7xmHsWL+UG/1Yy558LCdTzXE/djIolLHGLE3Zfuykx2GJZmXn9FXQyBsvfo5/8ov/Hae3z5HFsIrKmcuPceHyYzgj1LMZu5vb7GxsMpsusN5TeXeCBWR0yxYV4jj4/epsUmAMUgP7Wxp+j35ifNwn3zv5OCuI6liv5cIsHj0QiB1/7qQGKuibkg5czjNrax5/9mOolsG8EQoqhlIDKjKqI8vSk1SoD9YH64P1r7S+7safTWByos+xJAhVjvm8BB/okBhCInhHHYAEYXx7GmtxIWFDASi7ONAEePzsFgtRhnWPpoRJmRQViT1vfv5zfNM3f5LcBzxwemeL04ttpnvK0ZffYnPD0TClPVphFFxWUujpTY2NglghYHBZ6EPCGcO0mmE2Nnnv1fc4+q7IVl0acUYVvOPslUu8/8qX2NiZceGxS5jjxNZOw+pBQnymz4GYBhqNWC38HRWDtSUpyjmDTV9VWLjpBNs0pdB2FVVTmoLXQs+sPyrWPyAdHyMJ7KJGVwOrvsSWV33kOHYsrr/D7CtvsHnzJuZ4yd3XXuPiwz3OLzKSEqfGafXOw0PEOHYfHo3HXUosva2wqujIyogplHACiRjcCHUFmxXfWK7fPeTgsCVrYlUJ1QDWNiXAIwqaDEkSzjiICU0Kkgo7xVb0Ct0QyKanjokPPXGBj330GpXLaOiLUqeqGIaWnDKqhtRnUl7hJzXeOUI/FOl5yrSpY1i1JCNUvqbCsk6Joe/wtSuNsJywVV34QVlZHh7yrd/5XZw6dZY33n+n3FxSwuSScitmjtUlCSUOFp8TmcRkOqWysB4Cmj1VVlIOhLhmMnOIwOo4sF4O2LpmNSQokRr0Q+EihagEVVyAL79xxKqNtFE5bnuWbUtNQ5cDXhZ4b0g6YCTh1OCz0IuQUyJmJaRiRkkxUaEFhiuFr7fuUrGjhFjUglqgz0PM2OwRlMFEvBhcL7Q2kXVstCSAHs2xBDsgBWhtbFGNpsTxOlI5h8kBUgJb08eEH9NRzZjIaAAk0w1hbHAUBamc2FtSxovjwb0Ve8tA20fMIKjAneGYrcEynVUYU45Bzoqa0tgcciAKTMQWBVYujfNExmpJ2GuN4ilTU8kBlYYs6dHP5GwRawh9T0gDlQcTLCuJuCz4qkKAuO6KKlfBOVsSACtHlQ3xhMtnHDF21M7hjKGuK0wu/B/rPEOIhSmkirNpTGl2DG2PdeVxlIiLTB4Cy+MlU+tKEegtU2tY9x3ZeVLI9Lnj+HjNztmqWMVSJI9NORstg7UcPjjk0rlTvPPqHZIG0B6jFSoOpSbLQElrLq+FNYXPJ5pQk4lhWRIYY401mWbisbYh9YrRTD1ahHuJRBEWEtmohI25ZZUiG3XheO4dJoxNeIr1X2uDDh2MzKNih5KR6Sdj00/JOVEcv2XijTHlT6XEfGbFiqCmJmtRG4S+LZtqSsiP2DlZlTB0vPjZX+HXfuUX6ZYrpttzposFq3bN6YvnuHzpEiEG/HTOfPs0840tzmxsszGf4XyNiiGZMYkOHQPtLON4/MTt8i9YYMZn9MjOIgJZ9RHHMGsq8PdcgrHGcrk0O6VMxx81Psck+5yVE8+NSCmeH969wd69u1x96hnsbF42UIDBYVJC8rjXHhsOv4W8/cH6t7r2j/bIMWE0kAZDlIFaLclZNJXG7nroyUMgipKGp7l+/a9z9Zk/ycy9wTD0PP/YWc7OKmKKtAMcH7f02TCkTOyVNmcmTc2rX3iFrfNPsnFqzmsvvcrpxRZPX7vGl774JaQuCmUANZakJZwgC0g0yGhjzDFjrKVpGmw15Tgccnn3fX7551/j7t4LfPkfvcn1Bwc8HAKznR2SDrQq5LE2ciZT29Js8ad2adcdh8fHEAKVrUhDLgqTDMPxM7z5+l/n6jM/QpWPuPHuD7N74f+BnT0oymOBYd3iQ2IilspV9H0gSyJ3PSkEjHiGdsWy7Xji7A4xK1afJmHYu7kPgJgynFVbmmjkMiBjDPcIJFYD3D8cuH+84uH+kq4t1r2QSkhESoHYgQ9Q26K6iobC4FIpO+o+kXJiUhkundrh8bMLZo3FVsXa5lOkyy0b05qN+QKcw1UFIyCU8LeQMiQlacBaIedAXdfEOBC1qGFsVdNYS7fuuHPrAXeO1tw7OGJ11CIC1bTi49eexlrD23du8eBgzfKw41s+8SHqxS4SE1efuIaI5dbN91Dt6BXQgK3AiKWqFCs9fUyk1NGljPgZ1gi1L5iCmIoKT1NJL3ZahrNWFZcMxhliVtQ7iJkKM2JDEkpiWlmcFezM43yD5g4vo4tFi5NERmSOEcFXhZmccyzX2MyIRAGv5Q5LLqzVMKZJGxXSoKhVNBsCSk25tmsuzQqhNENyzoiWe3UWLeFnKZVEW0raMFLED87a0pSwZSDYh4Cj4EeSoyg0s4EEOSpeSgujT4nKeYTMbKNCVYhqMWRs7HHGlpArKUFAZlSQ6XgT8mS8ltlP3fYjmzLhsAzW04rwMCirLtINQwlDy2VQTUoYMVS+IaAEIqpC6EMZyhnQFEr9Zyxt6MEJXjOSC59vHQcmxheGnRGccyilwZs14eua0PdkpNhHT1RiKWG0NMWMEUKK6Ki8zK44V/o44I2lW/ccH61pFsUFpKPqXlwFxnPvzn2eeu4au1sLnElkjWUwZxwhDuSoWAk4mzE0WGtR6cEa1ssWIxCGAT9tqK1jnRLkYq2vUiZXFUEymjPL1kAMnDsz4c79PRIVlXWsrPLlV77Et3/Xd7J95gpqfREvoKAOjI5su7JObslSLArjJyfduDIAL8O8MlUcYgRx+HmDOFgf7GGlJznP/a7jQ9ee57HHruE3FzSmYjaZsL2zRWUr5pM5agTxliwl8flROMfYAP8tbgT9qhrva4eU/9/WyeASiv3Yjv+unjQzH6kdy7/7qCTRkwZiGv806Ik6UHUMLbGldS+UE30894vlVz+w+n6wPlj/muvrbvxV0ynaDlQBvJ1Tz6d0ObG6c5dJFpL3VEYQExm64avSXeupNbHpyq+ax8hsZ8GliScdHNGIpUqRbsi0YcC7ive+8gY63+Dq45eZADvzOafrGfXr14tJIzvQRF1NWEmHTwnFcBhbmiRI7UhGGbolxhkSymG/5pbreXDzNt/6xut80pTiN7kKTMNsUmM2tvn0597gN778Gl965T063+BJpLTGTx0uJbrVgBnZSX3M+J0NhEzOQhmpnRxYwcbCcjBO6CcbtMbwl994+V/tFfqZ9+Fn/muujZ9+87/kx/7oL/zqo48H77ibI5ITU5OJYvDekdoOT0IAV9XECMet4f37+zx8cEgYlC4KOM8qBZrO4U3NYBQ/9BiJaHaFMRcT2YE4RxoGqih4k5jWjmYyRezAld0FH3/+aXKOuMTIVytcHhUDvkC5LVrCM7TE1weFFBKTyQQqj1GhckJYHoFxaI4okUSDVQMyoLGnXxUry0HIUE354msv8fZb18sGJwFWMUlQu0JEiSkyaMCqRcVhGkPOrjS1pKO1CRBcPaVaTMgKh+sl4mrWbYurJ2AFayCjxcKdlSSlwIwimALGoTFT1FuGrOROuXF/yWOXdqmNMuRMNKXoGjJUviaHUAZvOePUkmOZqqnJpKS4DEYcQ44YU1ReDoPmRHaCQZCYUCusUyAnpXb20c01xzQWU4ZolJgzJglDiIiYUqCmDDmTk45pgB5SRMgkTVhnsSO3hRiK2mzsN6RcGiS1rcumQDKTRkliyR5SUKrWEpNyrInpvKRbDgmMVOP0sDRT8a4ArzVTGcF7x/+HvT+PtiXL6zuxz55iOMMd3333zS9fznNV1kxVMZVAuBGNpBZYQ1tCQ7NkgZAttGwt1MvCYJDsbrfdlqWW3AuXLGlZrEYCBDQSIAQIiqKmrKzKynl8852nM0XEHv3HPve+lzXQJUsgbHLnWvnuveeciDhxTsT+7e/vOyQfqU2V08cEWN8gU0TILjcTo8SngFYVEzsCoaikpjGRLsUsc5Fgff78w9xnTdcV0XlscBiRF+Y0HT1tcvqvlJTGIJVE+dyFTEpmiUxM+JRQSiJTRKlsqN7rD0kx5WS8EHHBowtNEx2F9yQpiVIQrcVIgY8+A1F4Nrb3OXt2JQNlVuCjRKoIeIKUXL92m4fe/RC9gZwvPAUxtFmepBV5ueQRqkeMiihBypRDSUSPdrqPiIFCBZpZixQxA64+obSg84k2euqgcEHhSknjLeunFnn+jU1cdxpVlPRNpGs8mzde59y5ewhKZuAsZVPyk2S7mBNvmfvcZCbmXDirc4c4xvki7LgzrgQxeATQzCaEEIgJpO/wXUAtJt586QV+41/9LLdu3WDp9Gn6iwOaIJFGc98jT1AsLuOkYG3lNCunTlP3F6jLmrrMnnhiDrwhMvCYAe3jFnmey/6nJDAnMuC3BH7kRY8gL2Qz6p4QyDsd87uL73xG5ruNJ0W1AIQy9BaWkEWPkKkLc7afzIxh4sn5RGRJ4Nvj98bwtqE2BU0HujYkG/L1GXNK9KAsGU0nGGS+HsvXuPDgN1OoA4JSDBcKHlwdIIA2SUZNA0EQgmd/lsHEgENJQ5Pg5eee4/bte/g//Ohf4p/8k2d5+KGGje09tm9dY2lpwOHOHlHOy7+uRSpBTA4pmPs3RRaW+qwsLnJ0NGbzaMLTL77I1ev/mrKvGCyfRfVWWTkV2Nj/AiByDRQy8OdDIHqBkJGqEgyWas4s9NgfTTmYtCRZ0CsLFIlC7LB25sfQ9SGiOc3e7rezuvZTBL+JMAaSp2kbFus+veU1Ou9wszHOthRVn1nX0DOGYCXXPv0xzn/d18+Z6paNZz9LFdfz2wwtXegIFNmDL8U8L/Ravu6DP871nTd48dYWh50jtYG+0qRC0aQMwqkYMUojhCTQ4RQY0aMOgrHoWNCwajTy9IBeqbi4UtOvNCFmSwjBvHlDwlrPwmARKxyVMNm+JEkUBply7RaDz8oRrSlMVrNQlCQXqRYXuHFjm43be+yMZuyNp3Qx0gZFiDWlULQtfOq5V1FSMhN5/un3C9bOLIHs6KlEO2t46j3v5erNLbaubnBoLVJBEWBpcZGqCIwmHUYqyiJymgJDh1aJLimChsk84X1JJYwGosX0hyQJFk3RG9JORkybKUlJZDJEFwha4UJACk1pIEWHtVnaJ1WiVNkrUGmFQtLaBoEkisz8S/O6JKSIT6CUQviIV7lnVAaB8GAltNGx4DV4x8Q7kpRYH2iio1cWnKl6yBiwKjGLIYdQyXknRQhCArybhzYJosupr41zee4QMitSIhglKJJEJ5O9tmNuitrkiTKTBcr58S1oiRUdbWepg6YWiVpmdqQWAikTwTqk0QiXFQ1SBAJQiwyq+RjZSQ3BJIZFQT9FVDtmlx6LvXUOtq4iSaReRSFyMFWrFS4IggSqrHQoosLqnOoqQsBl3Ta61MguN0JdDBRVhepCDnmZy/BVyt6D3jmQgs57iqLE2XmIYIwYM7f/SJnd6GUkYhEp0aVAZXPyuTGZmTltGrYPx5xdOYO345w+G8A7zyzmz3x8tMuVS6sYKSBFRIgo4RC+y36/MRK1wpQ5yASpQCdS9MiUiDF7TFe6YGInObFZaGxyhCAQwaJiwJs+PhQMSoWWnqaB1YWS1jfsjxquv/k6w8U1BBIp9dxfW2ZQ+C21wDGkNpdxH9cPGXWGEBFK4V2LdTn8qagHJFEym2zw6rOf4cVnPsuFMxd55Kl38+DjTxC6DqVL+oM+PaXRpcEUNULkZqtQmc2cpJjndWR1UYrz+mAe4vEWEBDBFzP67h5SSOJJozPblEjSPNtjDvQK9WUwxHTy+4lagnQC7GcY3c1VHxk0jcfg4JyymFmFOeTw7fH2eHv8u4+vGvhb6C0SioC2Y5JXzLoZsZ2Bzr4wUQqKwqCKgtS26Jwhz6/3+7xclzw66/iunV0+fnqVM+9/hGklcEFkNtR4RhMsIwfah7mhrOWbXn+Fs8DeZILQkuTGlFUPHxPCJnSvppKR1HUEFFXSpORRUhBCLtJ0kYMzQorMWihKxSc//Tk+8L6n8htT8ObtLX79E5/nZ37xN5js7iBrRVn36FeK1HUYU2UD7JilXscyYaMV6ThdTSSU8HedWIGIkV6/hzCK1zrLH3vyXazYAKbCW894uk9VSEz/VL4pty2SQBAFvp3gneWbPvJB/uyf/pNcf/N1isECn3r6k2zuzFBhwmqRWNw+4Nv/x1/h57/96zhYXSZEwaQqGZWK071lhPcoAiFkHxSLxEXJeGPG5t4Bo6lnZgXOyJzAHB0pgSNSx0jAopJEJE68J3wChEL6QM9EVlYGrCzWLA5rlvsVTgSEt5w5tZLloES0Uchk4FiqkUAXVZY6xUgUiq5zaJ2oBwPEtMGFSNc1LJQljeswRY9J2zCeddncOnacXewjdV50z9rAzZ0jtvYPGX7uefTwFuPRGKFqZrMRhRZgRE5AS4rgO0qVjX0HiyWlNOx3LaZIRGfRGBKSujBUSmM7l2UdIqHmyZkqCRDphM2lZA7HSlHhyHKMlaWKhKANMGrAWpkl3l2LrCQqFYiYU7yE9QgV0TobhIfE3HA5gyExirkpdcKLmCUbc7NfVCSFmEFCOQ+mAIzWJBJBRLTI2EM8Zl95jzQCFXN6liPLDlVKCDG/tnVCmWIOesxZS0rgOksAnPdoY4gxYWT2RMtak+y/g8h+fpUy6NrTKcN06qkSGC1x80JByIgIIHzuiB4LJ/20PZG4dC4glcDJgJGOWmu66ChVltfEFMFHRNBMdST6SBdlZk9Yh5eJmAQ65nuWQRI6j+5VaOWI0VMUBYqstPFSELXKsqLgKIsCFwKmMCgf6ILDpwy+GK3Rx53IY829yKmLLkRizDITmRIUKjMN3PyxBDImRKHQIeJFQgWYjVu8F1RGAiXBRmJqs/zT1IymLaFtOb1+htvXdtC6QoQ2g2VC4WL+KLTWOfU5WvCRKHP6HtGhokZqjVaSQgm0MXQuZC9FoebyeIGVipENDKeW9SXDQlGxfzTj0vk+elHiW8nLL13loUcO6K2u4ZNASInWOewlHSszjmUuwEna8UmRCXdLX1CZnajJjARiJIVA101ZXFzHVEOa8S6f+NgvcuvWJoPFZWadpaoHnLtyL6fXz6IElIMBK8PFufxlgNSGssjeP+L4WKQAlZkuHNfCJ0Pw1UpgAJRU2atUHHe/0x0ZjLxT/N9dYB9LtDPL77hbPmewCMXyqbMsn5aEkDKwP2eApJjlxGm+rztbe1sK83tlvOPeZSpZcH2voRGJOgyodOaalVWNkZqgJO10ipgFCp0YFoeoEHEzy+mziywMFN4mxpOW1ieSiNgQcEExbluKQrDdNizVfbbffImFxfv4nu9d5Ny5ki6s8fCDl5ge7rPcM9iq4qgNCCxCRAbVgINugkhynmoraZrA9aNNootMusCznztic/ev8pGP/ApW7mGS59zKEqNBzf5RS3KSbpbZc403lJ3EmAQdWKVwQeJVXshO2ilOBKJ3KN2xsv7jOcmVNQCqokAmEFLTjCckEalWVkm6z/RoK/vV9vrEyDydPRFsYu+FT/O6POLy/fey/+znuPnSF9BLGfirSpMl81JiuwmqqNg6aLi28Qpefo5b2x6tMvCfZGY561QQHQip8MlnthQCJX2WPpY9hit97u3XnFmo6NcGB5ldLUK2pUk5wTthMWimtkPrkrrs084chNnc1iBhVEFInqIyBGNwIRK6HGxyOJlwMG042J7lmiPCQQhMXcLKAmKWyiYVsF2gMj1amTLTxymYHvHwUw/wDe99P8tLQ3plLv9fuL7J7esb2GkgJEnUsLBYcd+V8zSN5WB8i2FVcWa1zz37R6zMumxroxVT5wiiykFkWAQqK0IOdxGVYCYrmv1A6ab0hccJhUJQ6mz7I3qGIAvatssNRhfx3lHpRD0TtEIybS1R6uzhLA2oSAwxS8OVgpgtYAh57o8qB27lUAtJzyU6ApVMuBQxMYDI7KRalKguEbsmzwfBYoJAGJnryhhIItcokczSk8cAl9KECFIEfISUImUCpXz20qMDqQnO4ztLr6rolTDQCnwOuZDTgNaamU3EKEjC5unRJgoRKYgkHyhrgXaWUkpCtJhYIkNDITyL55e4+O6HWRxIdJnVCoMHHuHnfvULfPTfXKUuK1rf4ZscflNUxYlHJoWiStkX1gz6SCfxzlNKTVsJbOzQSqNkVi84DzPbURUls65F2axoCp3Fa3EyB3qXVUBKSmRMDOoS72yuSQN0bUdUIifqCkWLIzqHkgpFvi8KoTnamxLuUUhBriVTQsQIOtA6xa1rG9x37xVUmMzrCJW9wVWRmfsye4SrOWFAaYUUCuEzgJdkTrKOeGZNAyScD5mxnzyCEu8dyVh8MJTC0a8k+9sj1pYqeqVg5Ay/8W9/k3OXLzOoB9TV2dzglOGuGeAOiBZCJhRIKbMy5hgMTLm2icHTdQ6hDNVgEYDop8yOdjkab3H+nof5Tz/0EaSSTNsmh3iUBWVVUxVF9pcUiihktqCCrJ/OdO45s29+n5vL5d8Kzs2D1u76yzHAd1zfHAN6EkmKkfH4EC0SvYXlzJ29q/l5XNLdJY/IPdZ5IMjczwWIuYF5DAwerzdEXtuQxDxQJwe58KUl2Nvj7fH2+CrGVw38HU4OiNYj8QQrCPOuVPazyDds5z1dCITOEuarvEZK2rKimwOBa+fXqYcFUxFpOjiyDa0qmRJoXTbV7SkDe2PeSFcB2NwbszUZ8e4nn+K5F69zeLCHKgo67+bmvpKAzEb2AqLPC32Mzv4TCIrSYHSJGBTs794mFR8E4Nc++Qxv9Ae8eTChVYL+8jJdyLKVIjoGlSbiECoDHmZpkZUEXH0DEWNOmYwa61yWecyH8wkxKIk2ZCkqgp26ZktHRDVkejDCyoKFXkVv+RRdiARxgIgxmyRXfSgqTqWIePe7Wbt0Fq8r7llfYfT669x67SUa4ol8c291hZun1yG4LEMIlqPxHlpJjFlgf9ywO27YG83YPxiTPe4y8ypJRfCe4MH4HD5SpEAQOUHUJ48rNKI5TmLynFkecuXMEqv9kqrK4SASiYqWGBuG/T79wZCgdJYXEqHQhJDwMRF9lkIqJSB6CiMxKhGEz0b1RqOlQhvDwe4BG9u77E4aNveP6KZdJgJVGvFASVkW3NjZ5tbuAbZJnFm/QL1yFiEEyysVDz3xDl55+VVmkz0CDp8EpXAonYMETJGQqaN1gZBaQhOQskJJRaETSmfwzbtIillWq6LM3d+YO10y5o6zDR4Kg5hLWtRc0hKBUkmW+gIqhSl6xNggY0DJiEYRENkHbp4CpoRA6VwUpxjnzJ7MpIuAFjEzk2JEEvERgkwYMkMwieyZFhLYBH2pTlhCknRiSp2lLSqnwYnshyMDoPPEHKNHhNx1M8YgyWEQhTbZhiaCEImoIJgEPqfSESGGXGBrBE20aGGoE5hKoIoSi6ROEpksOgbkvJguZAbtgspeiGlOYzJEzDwwpLCeKiSMiMgYCarAEzmKkb0ji6+hnbjsv+hT7pjHgBAqy1xElmQmIQitw8/ZjDZaTIjowhASdPNOZJ2yWTFSMLUtPW0guOyNqLIMSMaUGXt1lY3m54DeMRMrxXiyQNFGkVzMHk46+/9FqSjQNL6jLzXNtOXwcMz5Uz1c5zMbR8hsXq5KOjvjaHePixdOM9k5zIuvGJC6zuEl1pMCCGXR0iNEhdIKRAYHZ7MOKQTBd4gYqI06+S5IDME7SnJCbMATukjTSoTvOLNWsXuwj08FpdJ4E3n96mtsbVzl3qVVtCqIApJw5Pw4mZvAd3WSgROW3bxd/EXSl5SLvZR9Sp3PnjCq7CHrAhEdk/EmZaXZty3EAU+84x2sn7mE7FfUsqBX1yytLGGEZtgbkIREFirLweeMheNURoQkJfHWmvJYAiO+OglMmhelx+8vX1fZjDqSkdh0AtG9tcueX3CMgx531DObU8ylw0JkxupJgrAEEWQ+j8c7fFsK83tqvP+JB+hVFV8/WMAMT/GZ517j88++Rjkc5o/LJwpdME0TvAzYyRm2dr+fs2f/bxTqKvefW8a2gVHT0oVE51IOGvIZFO9izGEVXqJVS20Ur770K3zk285wNFmHFFlZWmXl7EU2r71BMRxAu0dPKkZKMunaHCKQBKLztCqb76cUqRAI7bixmfiZX3mM93/gE+ilKSuDxGk9Y2+xz+bemOagZeZzU3Q2bhAKlBhSNB4fLD7O8O0M8NjOkqoapSMxLTOZfg1rC1/AkxfLM+uzZ19KtM2U3rBmuLTC3uERbjJFGIEpenRHR8goEW2kkZZydZnOj1haWuKBJx7jHZtTdt1r/L0f/F8ydZYkC9qDKaM2sD055NVbBzRugdHR13Nq9RlC2CfEhMUT0LRNRynNXGqWAwOSE1SDHudPDzi70kcSMAiM0rTBo8U81VKoOTAkib5FCIVNOa2cKJlOJ+hC0c1AVQpiy6T1JFoOZuBnkYOpZedohkuC8WRGkhpdlGgSfaMQhaFrG7o2EL3HEUk+ZhVDShm0co5KRu45u8J//qf+OPecXkErBSmgBhXP/otfZjZr8N7TRMuZhSUunzvNmbU1RjPHy9dvofo9Lq6u8iFxwIJx+JmnWlhm4gQxQssM5xWNc1lGHaCZWqoU8LFlKhNaQlQBIRLGZR89cdThTI0LDpM0ViTWz66z+th9RDelm83wSKJ1bG2PeH1zjxAk2nsWk6DCU3iHKbMfZBcFLnnapNinJgRH0IliLrEtUBQ+g7hlodA+N1k673AyULgcLNHFCB1UEQIWHTUjPC2JbBHniDrRpMS6lpzWmmBzQ/L0yhJVJTE6UpkCN3M0nWW0O0N5TxlnBGFQGsTM84G/8Gf5rZ/9aZrDMSklapUbiIUMDGSiLAWVEVSmojSSUqZsMVJXqHbK2UdOs/DwGZRydF3i4LVrDJop/eaAbrLLVPTogkU4EGWFBCqXGGmFdJ4gyZ5yPpJaj48WGyPJGZrWMhByzqIM8wTohPeRKCKmUBB9Vo9QIEXKiqDgCTEhYsJ1Gcw0xtC5OYk/SsqyBBHxbZebYl7Q6ZgtWKQkCsH+4WQuszfgPQ6PSZ4oSqJMHB7NeOrJkuQDIXq8SGiR6Fybg77wJBmQIiBEgfC5wd5MGwppCKkjuhahItYGHBG8yFe/rolWkGJHVVTzpFtYGfa5trFDcKfoVQYbOjZ2jvjC5z7NB7/5DxNTQkSN0GHOUsucfTGXrMqUm3YonRNHUsiku5S9In206LqPmqfvJtfRHNzg6ObzXL7nYc4+8C6IHoKhKOosl9UapYu5lUjKwPY8MTfNk03EW+oY5kFid3c470Ll7hpfzPw7qWvIjc3oLdZ26P4wK2BOgj3mQSLp7j2coH752FIGI+faD5KISFXk6igvbuZ1jLxzpFKTFx13A6tvj9/t8fLLLxcPP/zwE7/5m7/5wgc/+MHm/9vtvO9973vo8ccfn330ox+98R/y+N4eX3l81cBf20zp6QLrQFcG6x3aZEPmgGBQVHTB07SWUirM3NPPRk9ygWgyA+bcoGSEwArFqJ2RfPYvmXSRaeOzqWcnUbLg1s0NAA63jxg+eT/veOd7+eXf/CQuBNrRAUsLfUa7B0Sl86Kn60AKcjIZJJG5UWVlWDu9Cq1jYzKhOGr4pV/9OH8YmPpIK/oUCz0Wl444uv1GZum4hNAeXQimTcBQzNNRE70q38zPra5wPQombaQsB1SuvXPCjAKpcmJfCpAC3nvQGklg1syotWG4skYoFG7vCNc2lFWFpcPHjloZ2oM9rj/zCZbXz+GaPVob2Hv5Ofoyez90Ie+ziYkw349Mgih6zKxg/2jM5s6bHFjPdGYpg6BXaFqdvegIERUkpc4yzZAsTimM7NH3klFqMRpOxURxboA2irMLBWeW+6TkiNHllM0IUngCMXvRLZZ0qaMSAu8CKYnsRZUCBEsKHVKK3I1TBcpk8DT5zKaiV/DGK9fZO5iysX/EuG2xHpqkSSkHIkgHT7/4BloKWgEdCS0j6+dWiNqhvcdPZiwN+zz+rvfyP/7UTzM9OuIoBkoJJkiWlxbQyjKZOYxUmCKwLitMbNAmYT10RhP8CFKiZ8AUGmJAGzBVhRWCqHoUpmI2OcydQ5WlHt4HgpQ5uCQpqlKAjFg7QUqNQ6BkQClNFzylzgnFnW2R84Qxicg+Oil/xllOqhA+5RAKoIwS5RNJSqYiYFxkMRZMbUOT8tR54D1t8iz1eqwVFSl6nIpMQ0CoPKkfB3xFJNFnw3ElJZKIsx5hMnB1LGFMaV6EaolJAh3n8hbv5rKGQCAhtUY5SYVER0hK0KUOMY0UKPoaSmKWyAqZPT+dR2iFdLnDL0XEp8hAa6KPKGG42U3wRaKUkroIhEngxmiXi49/kJdfuUrXTAkiYoYLaJE9a6wy+JCbF9RFlsW6mCW7WhCCIyqNn7XQKymlmnsaZpRTK4WLIXtlKYlCoedSFzdvRjRdR1kUxM5m3yDrsw+ozGzGDHYpWtHmgiomOiKlk0TvKQqV5S5ty9bhiHvOreDaFsVc3uMDs9kMnRT7+xPO3bPCoDZoIfEpIkOA5ME7iDmxTymFKet56aXnGRRZ8pJiBryGdY/oYjZWRiFVyn5KJFRsSUicqAhRMaw1+weBphWsLdQ0fsKktVx7803O3/Mwpalzx1kKRBRI+dYAizsm0cybzl8sfcngsVCKYC0uRJQpqXoDpOmTkmX75os8/8lPsHdjiyv3XOFrvu4bWb9wAd+2KFMz6NdUSqHLAlNUSKHzvmVCC0PumxxLYPI5SOmLC+E7gNxXI4FJZJBy/uwMiqfMzs1eR5mZcGebx+OtMpi3sAFFTr4Tyc99ADMgKESWex77CTJfVLwthfm9Nd55/wV2D6fc/+STdId7PPUn/xCff8cb/MKvfoydo5h9tApJYQyEkvGsx+ToD9As//ecv9hjqSrZPzzCxsRRZ/ExByDNpg39qqbQGkcOf7IhUuqC0UHBP/p/9vj2//mUsmxY6A24fPkSB6MD3PiAqARdl5PeEWS5nA14mVM+YwgkJZk4j8bw+u0tAKZX3+TCvRPOLfVBC94Qlq2Fmp0Y6A5ySRlCw2h6ncoOOXP2FKIAEUt0dYrbGwfUIdAFj0oBunvYvvF/YunRP3fCV40KqrKgaSbEGFhaOYVX4GZHiCSoFpfoZh3OdSQViGWBdzPkymUeePwRzNJFhq7l4oU19jcPOGo9RUpY19EpxYtbB2wdjpFJ4dt13nzpB6mf+EsMBxNEyv5tSim8zBEHZZk4u7rE6ZVlCB1nTw3RgLddZn7N2eb9QuO6zII69u3MDF6FEAEfBcGHbLVQGMqqpKw04/GMvT2LV4qtvSmTZsZhZ+m6Y/uRiDY6e8UGjcWia4UmYZ0lhdy0kID0YAnY2QTlI0EqtBZ8zR/4Ws4uLSGSxzdNZuR3ilsbW6gkaVNiaCou3nOZiZ/xic9+nhAkPgg2Njf4zMYO7zsVWCs8y+dXUfUC1c4ewneIqofvAjIGkimIIRCTQXoJpeRw5Lm5N0EaTYgNPmW2tZeKrrXIKPB6Big+/C1fx8PvvEjsSdLBdYLUyLP38tIv/go/9t//OrPKsRRhVRl6LtGrJViLViWd7JhZaIc9ZNuREBkEDZFKS0qdmzwh1dR4FFNWy5KV1QWwR/QLSDpgA5jhAreOptw6mlEWfc4N+iQsrXP0eiUuJbyGV0Yd3jv6GFaE5z//G3+BWuwimJIODuDiA3S3bvETP/zT7AeoCii8zaztNEb7wANljyAPufLkeSpnkfubFCohlUANB/jgIeUmHtEglUbWJaPtiDs4QvqGrktEb+kva7rpDvSHSKvRKiBcpKz6tNYxTR6TJJ0UDJSm8w6lFKHtMGVBGE9RxiBiytdBykxJnwRR5jnJWU+UEWGyt3ZKCW+7/N3WAi0EbQwEodBGUVX5fCUXCdGTvEdGg/Ndrjk9hDIDQUblIJEEtE2bvRGNhC4n/gbXMjh9iv3dA8ajjsODHRaWa3ASjQAP3qdshSATSmlK0UMJhVSBkBxCzpAiEqPEFBVVtQDlBC8UQQsIBd4mBAFdQNN5uhq0KiiKzKLd2Ztx3/1rFDOLU/DC86/yrg9ZzFJWAxEEc8+QOaPvuMaet93njWAx9/RLMeYgDj1AaEMSAdyM9mCLvesvsHjhYVbOPZElMdGghMqBNrZBKY02x8Fjx0oKRUKd1BJ34Le7/p0z8e5WHdxh3N2RKHPyCnHSUJRzEoHWmuWVUwil893uOJztbkO/E9TuDtA438oXKR4EZFH3vIEpyDCFyMy/43AQcQwa/v4aIQSef/758umnn+51XSe+4zu+4+jUqVP/P42A/tzP/dxrRVG83aX+XRxfNfD3zntXWaz7vL5xhNWCyg4opCAQWDQlVd2js5YQItE5jM/gWGkKBDEXGkCvEhwFweHhlMZHhMxSQe9UlkAowU47Y7lX4LqcnisLRVmWSAFXLt+DkoqXnx1xbnWB9mCMSxJCBymwWA856CZoJDHOwYko2do6IEwbnNTcLAynqwxMVki0SlTWcW5tjWb/BtM2oYKimXQc+IQwBYUXKCNQPhdiAC0VqlrASItLLUHd+e6GFDFzZrWUkmFRMZlOEYWhnUwJ0VGunELUi0wnR9h2ii4LKAqYTFACoku4acsrv/TjXHnX+1FuzJtPf4Fbr21w78P3o4ynLA2QQw+En2VpjBdc2zjk5vaIyazLXJuyRCFIKgMMRIVzOfE1OI/3HqUlWnuC9RhTYRZqHqyHnF0oWRlUxFJhW4+WnmBtboILQ0IjCIhkGM1GLPQHOa1vZhFlIoQs86tMRQiOotCk0hDm4Su1NIynDYfTGXv7M+y4xWe7C3YmDZYCJ+ccFu9JKmK7QFnXNCIihSYFjWgblhYr3vvEEzx4/wMMBgqVoB4u8d/9k3/O9sYeWmoCkk5FVlaH3HflAqPRjIPxBv2qYGmx4sK0ZXnaopsMyM2aGT5qhCmRwZNmmeUVY4MKI1iomKTEzE/RqaVKLnd0kbl4MymnmJkCa31O1g0C7y1aJfqe7I3jLNFZosjXRJKZ4h59QCcoZCIdy1q6CDYRZAbK0hxgrD1UMYtkCy2ZOYeWkphAC0UtFXrqCU1DbTQEy2IQyCLLDiLzFFhSTt/ToJUkeY9PEaGyv59M2ZtQxshASYwWlGL+eiEJPmDbjlJr6qpgQWiMKLHtjFoo8AkXBdbPu3feotAI66i0QIWY2Sa1RHUuh3qkFhNLaGYY5SkLyTd+5BFWTKC/NiRNj1i49wH2k+bv//PPEoCiqmhti53OUFJgSpO/jz5AoShRdF2L7vUyK3HWstSvcTHSzqVCWgl0lIDEhkBQiV5VM21mFD6hlMA7S9R3ACJrHcc+blpIVKFJKZJSQGmDs57WtqAVVV0iELTJkbxFCI3mLrnL/hTnJVLm84uPSCQCS0Kxu99x6Z7IxYun0DEQRBYcazVfIEiBFIbC1Fny4h2yzECcCAYts+9nEAohBa2d5QS9EAlRE+mQSHys8N4SU4fzPbTqqEvBwfaItcWKfqk5soLf+I1PcP+jj3P61BqmXiLlVf9byG0pHatBYmZlC4EUb5W+JBIi5HRpZx0hQH9xAV1WEB22mXB0tM2sm/DBr/0WHnrqKax1NLajX/dQZUVZ1ZTGoI0CqfFJ5HRIAXhxokA5ibw7kdme6JLvmgXFl/zlK0lgMoFQ4KylGe8zXFxC6DK78Il5EMhbNvvFMpiEEIrjdrlMCci+nDIJhMjJ2kIklJozSfPEg4g5kOXt8Xtn3Nq8yfbuIdffeJ2H7rmf3/jCVfZv3aCIM7rDQ6azyKxtSDGhtEHMG6WV1lxYGdDNJjiVa6TWRmyKjINg2ngWKkWkI3YRS2YZpRhx/jwf+63v5PH3fJRHnzBIH1leGnDvg/fy0me/QFnVhGmH7CmCCzhv6Vc9lBKYqJhMxgQh0XOP4HY2l7GPD6hvv8bejsabRR49f4Y03eTTtuHw6BrrZ/8iRb3BoOxx6dwCj9y/zNJggdc29rl6u0HgiMpRaJPDveZKiaQUel6SqpQIdooPgXJpicLUdEdHhGbCwup5ghHYZg8poOzVFKbAuSm+WKU6d5Z05hLLZ+/lQ/e8h1f/0TP8n//eB/jOb/t/oIpbvPTaJjcnHQlFjaRfv85T7/1WpOmIKpK8BA+1UQz7msvrS5xaqiiMQgqBlD1EaCi0wOhI0IZpZ2nblkL30LrIzdCU2W0cM4iFxHaOqi5yUimRLgi2bx4ymlp2Jo5xu8veJAdmaGmyHUTK98fOSlJQVDKhdW5SdJ0nJkFQAttZDNlaoQsWhSSlQJCJLnRc27zGq2+8xmOP3c+gWqQLga2DCS++8hJBJqQRrK4sEUJkd3ufld4ivpQY69Ap5oaeBpMMSefE1sONPYarAwaPvJOFs2eRG7dptm+SDsc0YQxjT/+eh5l+/gUees97qNIu3LpJp7IVDsJBlHSpJMaaxrWshFv4rkW4JeT4NoevvcH++OOIU+cJqUXGBbwySNVyXgqqpBEqEOgQxtAGT60cM+UpBCjTYWT2xBvokradoWsFKVLVBbUOGN0wHluQUzSGKCWVPGTBeJaVY7kfWFgYEazCFwFRaEw0bHWWWynSYDgnWx45U1NPb5JkgMPbtLtXOfj00yw89m7qumDYCk7JwJXTCeUtblixVjiWH7uH8NwN0sEINTQc7ndc+tZvoOoXdLdvUXYNKXpQgunuDl0TMLGmaxz6/nPoSiKty17BC0OCb3jsfM3XvfMsv/bSDm1R0nYWK0DpDBAPQkIVmkCkV9U0NgeB9YoSLwXeBtTcv60wGqKgjYlKGpwKaCSF0sxktrhRIeYgieQpEFRSE4XIqcre44lzUkJClprWdVnxI6BXFXQ+4EJi6lpkhLLI4Sd7B4dcOLeMMAFvHVIKtKJZWvYAAQAASURBVDZkS+0Fdnc6+ksLEBxSzQPalMKnSCk1RkSCsPhUUniNCQrfhMwiJFIaiYiWpvMY6bLXpizQWhOTxUWJtx5lCkgJmQLry4tc25tw8fwyhdE0nePm7W2uv/ICT3zgQ5mxFsIdWa0AIbL6LN/gZK4PyRYg3kesbfEhMljpk/DgGybbr+MmI1Yvv5P61Nn5vK4y8DWvmQpZ5/vnXCqQgTR5R26bjtmG5P3PvQbhRI171/jtVQ3HVcudekeBSHdt7049dMfDOM5Lm+PHjs/DcQP1+P6YG+t39p+bJndqo3hXcIrg9xvu55zjwoULT25vb5vjv21tbd34wR/8we3/mMf17zvW19d/W+CybVtRVdXbBe1/wPHVA38PXqQ2hscfux/VW+CNzSOe+8IreDPAmJI4T4oyRcm4m+H8sd9dlqUV84WID4mjyRQfwXqBdV1mwiVFFxNWJkLjKUSbk12BW1dfY/mhh7l5e4/Ffo+z587yxtUNNjcOKRcWmB4c0peSsVHMbIdIOTxCuICVc78JkdBJIrSjdR7r54mIxoAqODWULIaWvWGf7cM9/JElmcAsghYeYwbo4SKzkePUxAJwcLDHpOroujExShpt75wwnxAWbOFAag6nMxBlNrJtpphSs7S2Rtt5uvGUYDuKxUWiy5KNQmhQiXFrWTq7QhKOM+fO8d6i5mD6KWJI9FVxYqad2o6jQ8U0JV65vs24iTiRKOuC5AK+bfEyYYloCqTNMmUpRZ6QgdB5yl7JmdMV51cHaC3oKUWhFDYlUmcplMRHSZSaFAJKB2xnsymuzAmnRIHtOkxpaCYpy1hCy1HjiLElGYXvAtM2sjua4aJgMmuYNBZ0QakMRkT6vRqpFM24wfoMgPkUSD5QJJ27arrAe0ehFLX0/JH/9A/z9R96P6XWyBiQBlpR8pu/8hvEmGhx+BA4s7LCufUVzq2fRsgj0u0NiuGA+y+c5sOHN1iSlm7mKMshVhmsFXRMcQJC0oxdi4yGGBztfkMdLTYpWhXnkhYLKVEogZiBnEzxuqDxERMTTioq4NQj96EqCK1nZme5CI6BjY0Re21mi0nnWUiKSniM95hKo4PHRYnTCZ8ch1RYG7OsRSp8yB3ZoS5IPpJkxBiFjppEBvE64TExF1c2RISPVDEzsiKCUXYpJCpPCjGz3FRCC1gTUOkCa1swkqW6QBuRk2GLktA4WgPdxKNmluJoilQGjcfYyOMf+QhbzYTrH/8kyWiUzgWZFIEyRQY6okWiVomy0JSFohQaGTPjUoXAyvoCl95/H6E9oFpd5c1fvUYdO85IS9rewscOFwpsCMgQkEsDCgR4z0RJhPcQAyYJghCkLgOak9EYlGZiHXVISKORRmYwNvgs+W4tSSaEkRACKUUiJqcaaknnYmaOpZxcHpKnMNkzsnURhUQFQTXsE7ouF7RkuxOrIjpk6XgQkoODKZ2L8yRtQUxd7rKLAh+yh2F0LQ89fJYYpyA1NuXvoQuBKEP2rRMBJUIOg3GgRUE7aymlwbsu+1HJ/Fnbue9gdC7bwyhN8gKBp9Q5rQ4iq8MeN7f38XaFXiWxwTM9gt/62K/ybX/0OzGmRIW8qBcynbDpjhl/JwpbIRBKz+vOmP+WspG3dS3SGMqihypKYorE2SFHt18kjrZ519d/K2tnL5FcQKsevcrmhLnCoHSZGYdzpqFWCsgpckJJmEtv4Y4M5Q5T5+4i+EvZc8cF7t3F7okMZp7E2zbjfO9CZILl3UXvXaWMuGv/byEYzjlQxzW8VPpkMZGDAf1dUpjsz5kjIGM2G317/J4YH/v4G+gYGZwr6d1+leAGvPjqTZQWrPVLUIHFOlsx7B3NDfGB2sBa3acJY5zXJAGF0YymXfZ/iwohNJXKTbSiLiEGUvJZIgdsXX2T+x6/QiEk/X6PRy7fw9bNHbY33sSVNTJZTBKgdPYaFpLWdblhJEAaiYwxs47ITamua2lGilA7rlw4zTsevczqziLPVTu8fvg0SUvuP3cvq8sFXkk+9syb7IwaPIlKZe9YoQtc8lh3J53azc9XZRLrZxZ5880deoMFfGcZHe5TDhdQZY1vDigIRG0oywGt60hK8vyzn+f9T11C9/YoFtdoYqTsR9ZO3eZwPONwfMj2rKOkxNQVvbKgaae4ZoT1UIiKfg1n1wZcPLPMQEGpxPwqjDm9N+YAipmbARLpJSop6rIPZLDeOzdn/yaMTqTY4Z1AiUhVliRhuL1zQBcmbG6PGc0iTYQCjwgSIxPOgo8Bow0pgpLH/qCKGCKzcYOSGqUye9/PGwHed0gpc5MzZxmwtDDkycce5vz6KkUMdN0Yj+TV199g88YNSFDKksZZDnZ3WB4sonXJ1uYGWkswAhMUSga8DKTxAbPDKTutZv0d78Y88ijuc5/B3nqROHOEWKPKPqluOHr9TV6+PuLxb/sA/vqn0OoGw1LSGcnaR76D7U/8Bv1mD4THe01fTRC9B5DlgCBOs7A+5pWnn+a1z24SVQ8SzJJkXRc8ftYQZIf0A5Qq2J10lC5SDDypjeheCWnOiCYRfcdgoUBR4LAU1SJtd0TyDtNfQkiLxKF0jbctuoQKTV9WJDFib9QymwxYOOW4trPHtugRlUIFy4Vac2bZoBeWiYfXkUuLlOYS+5/8JJNwDVMZYjdjlmqufN9f5eCnfgy1f8hQtOiVRfa1x23tsnXTUZ+9F/X413H4yX/JZPuAAHS+ZWl5kcGF+0kvvYxvJhztOR66OCCduUSpBsTYEad7+MkBq0e3efelmt947dgRNuRANJXoXEctFd5alM61tBRkJYtUOKAwChc9EkFR9WhGU6SUBBvyFBQTLnhiShRJYEQOs4tCUSVwPhCEpKwLnLVIIYidQ2iJVILkU/6OhkCMAeXnCczGYBJomQPGtvf3Ob22TIyeiIcEzbQhBYfVBbuHR5xrhlQm+/ulFInRgZ6rDQjzEBIHOvtbt+2UUleQHKUJCBWJzkOIGKlIKlEUis5KSIoCWF8d0h6O8F6zONDcPAxc22u5vFxQFhBi4rOf/i0eesd7MGU9l8JmX/NjK5HE8fQtIObaI4aItQ5d9ikkSGHxvuHo1quEbsLyhQdR1an5vQWIbu7hLOchdWbeSJyDfif1Qzoh9eWgsK+sALgbqPtiK5Z0Fzr4FkAvAUJwAmeKL33t3cqgt9Y8bz2WBFnuLRKZ1nrMLBScMBJPmIFi/t/vr/Cytm3l3aAfgHPud1zWEULgB3/wB9f/8T/+x2ubm5vF6uqq+zN/5s/s/Pk//+f3AV599dXyr/7Vv3rx2Wef7V+6dKn7e3/v7137pm/6pinA5uam+u7v/u5Ln/zkJ4fj8VhdvHix+2t/7a9t/sW/+Bf3j7f/xVLf8+fPP/Gn/tSf2n3ttdfKf/2v//Xyt3zLtxz85E/+5NXf6ff5+2l81cDf+x65l1Hreey976cdjfimxWVe/fD7+bmf/0U2DiyNhSQlZa+knZWElNl6yUVm0nJ6tQ9vwnjUMJOaUWfxUTJ1numsoTYlldbMkkOrCpsSdp6Su3HtNdzOHkeNoywLFnoD7nvwIZ7/wmcxwWPxFBGEMgSgLAt8Z0mI3HUNiVQo2piQPpFax2tbh3w94Pd3WFxc4KELp7kx2mRJWBaHJWPv6XwGw0hTpv4Q7Sec7g8xvQxQnz414KbqISf55hSb0Z0TazRJ54I2kCUzfVPTdhNc17Fy9hwUGjsa4SYz6sUFkpR0sylJRrzMCWn7o0MWL7+DtZXToBPD8oCVoeZ2TMw6WJhj5UkrNqaRNzZv4rxACoVWhuASREVWFwa0NCid/a0ICSMCl9dXWFwYIELLxbOrFFKQvAUZCTEvwutC03UtUmhqo7NxvdIgBEpphMjR8wJFiDmh0xSGqi4Yj6ccHVowFfsjx2i6z2FnGU8j1ueJv6o0ICkwzHz2FlR5KsNaSwoyL0qQSJdwIuCaCWqawxqCdDz15AP8ga/9Wkz0hNmUtrP0lvtMmsDmxg5aFkxdy0Kv5uzF88zcjGe+8CLTxtM52NrZ4XO7I9457DhfRRaXe/ROnaYZT1DNhE5XOV3ucISUhlBqYhKkUOawDmBnmtidtIAgJE8ICiE1IXnaNrKUFAhHKBVnV9b4I3/lL5DaTVCCcHgNuX4fQQh+4b/+KP/m2V1CMWUFwZLQ1DFS9wTJOQpRYrWjcY5Zr4+PkJdlihRAKpO73TqRhCIlTRU7TJixUhQMqpoiNQykJOpImyKy6rHXerZHI6xQPNYfYlJkliw0gX6/oomeSfLsd4JKCIoQONcv+ZN/638Nk+soMYPxFM7dT7t9m1/4r/8FN8eWsojImKgikBrSbMr9jzzK9Gd/nvWHLvDAU/dgX7xKaRJVDETtMXWNSwEdM1tMiSqznXolzVQjOoeYHmGTIhxMKBYMqRtjTc1MGERjSalD+8BgsMis6bJHT5Q0GvpJ0HqP0ho7nlFU2WsopECpCrTSyBBBR1rbZQaWzGnHyUeiztLqLHUhJzM6hyg0Kvhc+CYok8TUVWaJupwm7b1HBkgh4sNcFh0SUUlCivRMhXOOmCJt22YmkNH5foQhRkdZlLTR03ZT9nf3OHd+Ad/FbBodNSk4nA/IKAgxIrU6kbwkaYnSEsU0d8SDQApBv7+Uk7qVxosIOhF8llZntmKicxEXIxJDWUhCTOztz7jv/nVM4ynrgtdee5PtnUMuLp0FHCmZE/Yac0A014055fBE+jIPwUghzhWxikoPkUWVC8vkiK5lvPk648MtLjz6dQyWzxOwSDkPpIkqs2lNgVI52Tgn5eYu+/GdJZ0Uj7nAvMPcuyOBgTv15peTwNzN9jv+WQqZbReI9Hs96v4iyuj8mFRflh14RwYz38e8SBbHycLMk++SyN9DgJO0u8wAEHOTbKGOgcW3m6S/V4ao4fZOQ/Fmx75oadUWKSakKen3BGPXYHTF7miEn7PjAQZ1waAq2NxzeOvy3B0jWipC19KkyN50zLBv2IotwgeskpTEuS8qTPZ3ONjQnDt/H0UMHMwOuHDhAs3uDqInaQ5mUFUYUyAFaCGh1DC3llCFoVdolheWuXoN7MIa48EhsZjR14LORc5fOs2584tcevAp/uFPPsRi//9N0Wu4utVxa2OPwcIiph5g2wkWS6/uk6RGBEU7L0NX6gzEvwa899EnWVh5kTdeg/HBGSb6OYL3CPMuRqOCZr/E6Au4JFHtEHc0wsWGcuEbuLYx4+r1Zzl94RuYjS3j2RvUS/+QT794P104RyXPobQmupysTjjNxu3/jA9+zT9maekW66eWMliXAsInZm2grApKBSSJkAnrPZEShEJFAwS0Tvho8T4iUw4AUlLS+YSPkc41IPts3jrg4NAz6yytd6SkkaKg1HA0sdS9AhHBxw5daVIKeU5HI1xEJM/UN/muFQRaakTIwQU2Jfop3/MySCgIzYyH3vUgly6cY2EwYDrpOGqmyKrm5/7VrzCdTXGpQCWPbQJn19eZOcsbV6+iQqIsFD1V4aTiSCZmy2fo1lbYvTDguaPIZ6+PUK//CtorlsxlhnHEcjehfzRluU5oI7nvlGJhvMO0FcheQSw0px54gpVv+9OEe9/D3t//4blXb0C4LntqX/4W5Ou/wNS+jNI9DmcKLyVN9NyvAo+fLrGhQUSDVxKTHLf2O4rY8fjpZfTaEN3rzX0iO0yh0WVJ07UUWiLahKoMhV+gFokQLbKzhCTwdQHjEVXsgISTkdXhAkYE4lpJuQiDYU1/p+WNqWMYE7XyvPHSmDPTMVJ0iMFppA+Y1SU2thOjaWI2bbnynd/O8vv/INP9DZqf/CccvfEq6qEnGaDZPTUgLq3zqiz4xE/8D+x1kiYu00XB2FvKjZbKbXKxV/GgkJxamCFkQdHs0nU3MakguRGymWKKhJlNEU4iKwkmIAU45xFFgWs7VKnxIjGZzTBKoooC3zqk1kigVobp0RGxKPEx5hAwMW8IdA5EBqGTlDlUMSZ0WSCVyHYts9ygaL1DVwVBhfnrY1Yw+FxLCARea0znMKi52iUxsx0b24c8cL+n0BIVClxwONsh0QRg1BgO9xrWzy0QvUAVNSE1GAxRGCIKXfQRskPIghgkRle4aLGpxaU+yRQ47xFmgeQsUVi8F/gQEQpMUqwunWbbWtqRR0XL6pJhe2fE+aVTFIUk0uO1169x6+orXHngYYSqThp22b74bkaeyEF0IRCCw1RFDjsUhtgdYXfewCjB0pWnSKaXi5A4r0d0NWceRhIKkSAR5uCYIh37CM8bq8xDvjIA90Xz0lusSr6U7fcWNcN8vFUCPG92vsX+RJ5Yj5zUU3dJhI9Zh3D37tKdbR0DpSeUvkRK6i6VxHFt9JVm2///HMPhMH70ox99I4TAd3/3d9/7u7Xfv/yX//L5f/pP/+naj/zIj9z4yEc+Mrl586Z5/vnnq+PHf+iHfuj83/pbf+vmo48+2v71v/7Xz3/Xd33XvVevXv2CMYamaeRTTz01+4Ef+IHNpaWl8NM//dNL3/u933vlwQcfbL/xG79x9pX2+Q/+wT9Y//7v//6NH/mRH9n43XmXv7/GVw38ITu2N67x6v/rZe49vcr+YInRUcvFtYqbN68TuuxTYr3LjJy6AEA4Rz2sOLtUAmCBifVMG48XcBTgcGo50y+yZKlJOOfRGlR29+Ts/gGTf/sLrD30BArNaufopynDXsFo64gLPhIPx8hBlSWGY0ulC2Sh0dJgbUvbdIgIKmVCxOiZlwE488qL9HZvMH6ux4oZ8k2q4AE34znRMW0DPkSiipReMKw77j074DGfv/MPE+m6CVM7AQVXvLvrfIEoFSYWhGBJShDtFO88xdIivf4CoWloj/YZ9AeolUWm+wfE4JBaUPdrChFoR5GlK++iv2Ao187SP3qEb33gw/zcz/0rbmy9xnLqAHjj+g7PeUVMgkpofGcpSkFIIEzKBv/BoKVEx8BST3Lu1JALZ5apqwJiQssaGVoqqQgqkArDzDpmTYPWdU40EyURj1KaGGNmEgEheXyAuswGs1Jny+utzRE2wNYkcdjc4PaepbUJo7L8MPpIoQraxkNRkJLMgagiH/u0aQkpZp88aymEwhjDOHSoBMkFnIbkPLf3bvP05z/LE48+xOnlRcoaKA2f/PjHGbVjCqMolOTc+mlcTNze2GXR1IiqpjIdhIYJHq/AIBB1iS803eEEYTuKBYO+cpHFx5aIBzu4/T1cM6ELh5RygerCOsUXXmb9nsv0zAQ1GdGgslcSoKJg7CMpSqbesVI5ytnncRTonT26/ZfY/K1fZeEdX8vC/evEZ65i4gAlDbW2rLWJXqeQ0eKERyrJ2AbOVBEvPG2I9E1CllBEz0pRU0pB61t0KSlFotCBlcUKqQWjg4YgR5QoPIbF2jCaWm6lFt+VXFibIqJGJocoSkRI+GB4fdTwSWuokmPNeJ5YlQy66zh7BAeb2J1rzF55lt75e+gbxYKSLOjEhR5IN6VMGnFwnQtP/QnqKwsYZiyiGZeW1LT0H7mHslokug5lW2ywRNfRHB7gUFR+CTduCKvLYDxV25Bszan107jk0F3ga59Y49rWhCOliVUu9juZUCJhYqC2gqLfp7VgTIHSCY+npw1WKKL3GCUgZL87XRZZViUVhZS0oaFAURclIzfL8FGIyFLTxYBRgkIqnMwm5tEHPHnBrsghHkImZu0MoyUpecqywAaPEopJ16AQFMbgbceNmzd57KHLJOewTUAJqMoKl2YwK9nfldhWESgwLheBMWQQKqaEURKdIi52eHpIV2BCSWgiQiqkjqigMPOk0JgCx6EqWpRoLYgSus7RNC2saGJIVCKzZ9/cGXPlyjqlkljhGM88LzzzDBeu3IeXKnvvREE6BrJEulMKCjJwJfLCXyJyCFDwWGfpLazNzakdrtlnsnkV5wPnH/0QxeA0ISYkBiFyWI1KJqthhJwrXvI+xYmc9+6K8dh/5u5u91uZiW957pcZX9zlPk7zRShUITMD/bhYnr/rk/0QT/DQO/45d8tg5gl7x96AbzkWAUll2cuxjIZwskAIIWU109vjP/rYHVlQA4Z92DhqqaXmGz5wHy++sc31vSkxanbbCd1MoZQ5Cbrp9yo6v4GJBorMAPNSUpmEsZooPDZ6St2n8QlElqTpEObpkZCi4/pzz3Du3L1IEnXV5/w5zca109j968yKkugDSSVKaWi7DiEFutCc7i2wuNCjqjz9SZ+PAVOvmVaGe+5/J7vXXuX5rSNmt7/Aduu4tnWR3/zCf8FD9/0E6eAa68sLfPD997PY73N7+4jdccX+2BIaIHpU0gxN/r6+7533MSj3+K1PgZ0t0vRnbG19G+PRf8blez+CoOS1Z38I59a+4nn+r/4v8Oq3fxtuYnn6hQ9x+ZznnR+esLH1fq6++n/8iq8zpuPMmmChVyJDl0O0lCKERBccOoApNc51gCEJiRL5+hNaEUIEIkpoosw+XjFaGm85mln2RlOadoYwMG0TLmTZmpDZgqUTjtBGhKwgCLrkkaYmRo9CYPTcOzFabJgv6kNuAuRmlUcmSSFkTi81IvuHIekPl3jwwUfYODygnbXsTUZ005b9SctnPv0sIQliyMGf/f6QndGYg91diJJoDK1zSBxXHryXN1d6POsss03HzB/SAj5JiHPgOLRoNcDoPkt6nyuTwPtXYTgc0y8dTb8mbEfiQUv5nm+AhRUG66dI3/rHmfybf0qcdSSdU3ZlbJBBEaXAdg6VEhaLiIpTSoNPmMqQEmgtkFGxEyOHU8PaTkNv2tDIEiMUtrN0QiEWl5hKga4Nr92esFC1YEqG/RJx64BCt0hXIK1Dz8asLJak5Fld7VGvD6hWeyAc7d6YC2cXUOKA8dVdRKnwUjBLgfGNLXqVp7x4jjQeU/YHuJEnGDjznq/hiT/2J6Ew1Bce4GBwmtUrD6BPr3L73is8l07xwkHH7b0DojTI4EgEbBK4kOeqgObGrOSZ1HLFDBh/5gYf/vB5qjDBeQEuEqzHWsHNmaNTks4HQqFoOztnjUGhClSvQglFczTBkf2avckJsIUpCClSFIbOORKRGAOC3EhUMRF8IoS5958UJBtxwSFKmT0shUYqQxMbeqZi3OUQDqEhhIgLAXT2hgsiUJQKLyMiCWKXiCi6tqUZd1RDSYgtSmqCj4QoqXBYJzmatKzrZXRQCCmJ3hGjx6AhxrnFRsCGCc5brAvEKChRmKKgkJJgs/xfasDl+TWmiE8dUZbc3h5x9tJDTF74AiEJVoY1R0f7tN0ydV3S2IagBK889wKX7rkfVaUTib8UkOb+v5ktGSFGQvBYa6kXFogyEO2YducGRvcYrpwhmt5JTzD5iFSKlPy8gTkPxRAyg4gn4Nm8Vjhm+KVjBcP81+Oahy+ubyCDbm9l9n25590NBopjdFPc/Xje1rF09zjILAnuKCrSsZ5h/vsJ7jgPmUKedEXvQIZyvp04j/v4/TX+3J/7cwej0Uh+93d/9+/K/g4ODuRHP/rR9b/9t//29e/7vu/bA3jssce6b/mWb5m8/PLLBcD3fd/3bf2JP/EnjgB+5Ed+5PZ73vOex5577rnqqaeeaq9cueJ++Id/eOt4e48++uj2L//yLy/8+I//+MpvB/x94AMfGP/QD/3Q1ld6/O3x7ze+auDv537+UxilGZ4yNO4IwxpP/9Yn6LD0ZcnMW7RM9GtN6yQxZEBIa1gf9hiYY4AIAgmtNZPWYgNzNF9T68h+ZylNBSlyqKCVku999iV49iXgZ/+Dn4AP/toX/t1e8MKdH//aZ57+kocbIahTQqGIlHQiImyLqhWDxQHTrY5q0CcFQXN0QBKCYrCYUzq7Bh89VW+I0DWdH9HGyPNfeJaHHr/M2eEyxXCN1Hn6C0uI2xVNN5dDHzXIepHCFNRFQaxL2tk0M5pSQaEl/QLWV3qcOzVkqdIMeiZPPr7JsrdkQEja2OQbss+ghZmn2uWOUZ74RcoGvgJHShFvBYrAYDjA+sT2wQQXOzY29zkYOyYBdLKkaFAkYhB0Pvt1pOjz5OEjXkW89wyEpptalCxRRuBClrJoJWiDy0mxUhNV9lCUJJ548jGWFmpqA943JB/xouY3f/3X0TGhtUEkQYun3d5hqb/A8sIK127fRBBQpaGIClTIaaTdjLi1zcbmhLWzA85+53dCvYR/9uP45ogYE6lcpKQlNZbDrUOeffOAD//v/0vcMz+PfO0FBkUiKsHwvoeZbm+xMB2hTE0z61i8EEkItJH41SFFcYHqxpjP/MN/xlb/AtAnJsGBKLlPRp68VBCERfoBoOkQ2NGUpcWIbRxqUVMaQRQRIXRO+rWWU6ZAAFYqirrHZLyPSA3oIVq0JARGKcbdmK5L9L1EqYIydhzOOg73FGYQiUzYbgw7TlNpMAEeXFScOVdhhqcQ0wlyeQVhHNd/4fNUcY1yqY8Y75Gc5PIf+E+QG5/Hv36dsh9YWio5WC6wbcfopRfZ25+x9tSHGfzhb6P9zZ9mems/yzuCZ7C6wuLKKpNX3sQfHjCZeC5/7TlYO01ZLJP8jNhNUe2U2d4Of/Qjl3n6tUM+dmuMiwGfIpUuSAqE99RJYq1DKkVdVIybCRLQUuDIZuiZ+BWoyorgE4RImINSca7LzcnikspopAwInQ2Xi5RyqFFI6KJAxUQnIq7r8vdGC5QUmfUjZGb5FIpkPbOYWYgiJrSIVP2CSdvQdLlYiiIQo6dpHTF4UvKMvWL/YJfVU0uZ3SsSgogQkaDACNAqoUtFjB1S5OLe2RmmKHCHjtIkCuOIPhCdoxKJRhTZ/1HELCVLkn6pObU8YLo/wnnNYr/g2n7gzc0RF5YrjG3wseKNN15mf3OTtYtXSN7l+4aQc/bdHc+/E+nLXWw/ax1CKaTUCOEIMeLG24w236Dq1axdeCeYHqSQ0+uSJ6rc/ZZSZ9/LuWT9JFGP43o3chyCcQd5PP73rRLfr1YC8yWPz5tWcV503/G7mUuDjxmGcxD0rcfwxUMca2HmXj3zIn/OnhTiuEgGCBnsTOKkKfP2+I8/jmaRhV72OlpaMMy84OlXr6N1wcKgZGsn0HXQSY/sAnFukF4bmLZkgMc3KJkDCryVeBcQ0nDUec6SqDWEYDGipOnCnZBsqZju7rF5/RVOX3oAYyI4WDy1zMb+rWzQP50gEBz4EUWpubJ+lqVBiSkiMnlCEPR05pTfuyh57MIal594gNdF5PnPPk3hE6mbovqv0//QH+HmRLC0sMQH3nc/WMfVW3u44HHThthBFwJGQiEDjz98iWc+CwrLysoe/7u/8jdYWXC8sSXpr/wUde8X0BQklbh8/nvwInvoydJgTEEXInY8olJgKsWrm7uotuPS5f8Nl9cWeebpmquv/l0uXPwv6Q9ucv7MCvecXaQycHxt9aojFheOcCmXxLnGSSAiSgSQNTaVJBEIPjfdUvToeWouKodIxJjQUtHaltFsxu6o4frGEa1LFEVJNUgEFymKgi5JREqZgZ2yhNgUEp88vrXUKjePERHvs52KCzn4BB/zPZyILgq8S8iUmVITQW7yWU8hEmdPD5nYKbNbDTfSPtY7ktS8+PIbHE5n+KjIHs0wHk1Jwc/9aBPaaOqq5PEnH0ZIwatHE4LUJOtobaLxU5QyiJRoGocxOfTMediSA17Uimt7I/6gr1iLjtBMqFJF/Y53U77ng6hySO+Bh6ivPIx5x7tw/+z/Tu+RhwFD3H+VmKZUpubS5UXWHlrn8z/1LFF4FpeH7EzG7I1bVDIUZcX+LHCjiRwUiqe3BXs68qnRhLos8NMWs1hxtnOoFCgGhu2QEHtAGGFFYm832yakbsbiyoBLjeDPrCWq4JmORuy/sM/audPo9SXquAj9BdzVTa4sSDyC0dGYM2cqJs+8Ru/DDxPPPkma7FDWBqEcK+96Fx/5i3+F5XMXEEqy/M4PMvjhR2jbGb/04x/ll56dshsbhGhwqUaVIAnYlKW1sbUQBFObLTsORWK7czz/y7d45uqY7/rWe1iiwfqEOzpkZ8NzdSfRRY+KOVW5rEqa8SxL1UOkaFwOPJnbrTgSKoJB5WRf6wiFBhsRQpGCp9I5TDGRv6sSQQwORSIFQZAS4SNJWjCCuigY9HuUStOI7H+sTU0SKcupAV2WBN+SMHPQLqBVhRCCtu24vbXHyqnzJJ/9JrsgUTHhQqICDsYdIiiYW5WkIBExIGNOBDY6IFSZ7VJ0gZtZhDDZt7oQBAHeyyyzdYnoI9EETFKIVGPDlO3bm1Spo1QFU+foyYQqFbe39rjv3vPUWjJLFU8/+1kefPIdXH7gkczSl4kc5iVPQLjEvBkooBouZda+65ht38AUJcXKRZI2kBwSDUIhNJkxeFc9A5ntB3mOyD3MuxuHkRM/FY5f/0XA3V1svC9+DPhtQb+7nnRXXXS3P/KXYREm7uR2HNdZzH0Bj8M+0t0N2nDXVsTJ/2NMvF3h/M6Oz33uc5W1Vnzrt37r6Cs9513vetcJgHfp0iUHsLm5qQG89/zAD/zA2Z/5mZ9Z3traKpxzwlor6rr+bX1o3vWud03/Q72Ht8eXjq+e8WcU2wdj9lvF7PaMWOwwbhpaCQ+er5FdQ9dkCvLmeILQ82QfBaf7FUrmy7addZheRRIJkNlbSgh2pzMuDPqZzislIXo2ewV/5WvewyIR5T3V6bM8+M4PgIdIYDyZ8MbVW+zcvE7TdYRmhDIlOToTpJI5XTFEUoh0IkDnGPRKPrzc5y99/Gl+5RufYn+hj4+BWiXW1tfQvVWia5nGyMs39rmxt8/y2gAbFDc3DljdO+RHr17lf3v//bxpykxBNyUhJZbbGX/3xRcJ0VIGiwuO++49w6Vzp+iCZH/nBVTSTKaHjMdHDFZW0IM+k4MNZAyYskSqEhNL2s5QiobB6mluXt1jcfkipSlRqmDnaJ/Pv3mVsxuTfJ6jpF9UFGWJ8x1tO6VWmtXFZbSULC31OHtqSFVBIRKiC0xnkapSKJUnjRA9MQVcFCShMCEvpOtSk0Skc12OhE8iyyBlQspIiC6nY0rDre0j9vcto7Zh2jnaTiBEiTSJ6SxiDBihaZqWolcSYsx+XCl732WWjuBoOsmLVxRCGJRPCKNoY6BKiaxmE7nrZVtOry3y4L2XuefcOfqmZjKeQmW4dv02zz73AqbSOJ+9jyYHh5y/cB6bEs+/8gr4QN0zmFggosqJu4sFYu0cUzVkp76fWypw9ekXaLcP6DcNAwn9aYt2kZ6OyCISpkesGInfPcROBL1KZylJPWT1O74HMwts/VffTz2MyChQ1Ag3gUsfpOga/OiXqGpDawtuTlqiFnQi8rDueOKUQqkGJTSyMBip2Ntumc4mnDu/Tn91AdFfpFTQdo6UAkZJQnAIMnjbB4LRyH5NKSBqjbSOIBxpuEBsp1S7I5yb0c0SshwwkB0pFqysLzDuAtvXLCEmTCpZxkET2L/Vcjl0BDkl1asoAmIwYOPlA44OA1EpwqlVlr7tT5O2nmLvH/932MmIbmsPtXqO8sY1tvaOMJcfZLtKvPo//ATbhxOaUNFFyZGbMdicsiAS54ThHhTMvWdU7CA2iJiLKC1aNAG3dZNVwGBIKoCRKCHpQsArQepy+m5MMJrmMB2hFcE5dFURXA7O8TYnlQuhIUW0KpExdx6FSznIxDqSTCgp88LPGMpC4TqL6jzMpaxIiTKaaF0GpogUSuF9JMSE7RwBSYVACQ0m5VTd6Li9uceVSzOGlcjef8HQdR1KBhwKmwpu3ZxyanmZKCMySoIuiUmiRUESKv+se0hhUbogxJIQ8+JRyJSZfqYkxEBMGqIiBUfUHQqVGWwyYoDzZ87w+tER1ktKEVhbNNzcnrC+WFOWChs0e3tHvPri85y6cBaRFELrE4LdiTpEkH14hCTEgEhzVoGSFFUPIUuEsMTxFs3eDXqLq/RWLxOLGhkTiBLwIMqcGP6WZN44Z8rl93hXnMYcFAW4W/7ypQXtl3bE7/z9K0lg8vbveP9lkPEOmy8DfsesQjnfc3or5CfEWw7nWL5zB0S8S0ZzV3f9pLn/+1AK83t5HM0iKAdR0S8LVnqChUIztoIG6BJ4rdGqQDqHm3/4RibwHhcsvVLTL/tYBTvjfbquZbnss3c0ZtbWFEXFdDYFHxjWiu1Jrp27LrLUq3jhmafpLywRdSJSsbY8ZHvxFHvTliQyy+qey6usrvYptULFgEwRLyRaFfNUc/DdlNnWBltFycrqEl/74feyvb3N4c4ez27OePNgxqKKMBvzmx9/nsPDFickRVlQmRJPQmqDSJGVpX4G2CAD2lGwunyAJFJVNT29j9c3iWqAxKHNi5RFBVIRpKIoSqQXkDZwIXB5+SyD4SLT2ZgPPFJy/z01v/HMEp8E3vdk4IkHDP2FI7w7RIR83TWNZzhYJIS8+M8NA1Ays4GE0sQYcL4jekXwARECsiyxAZxt6A9KZIi0PjDpInuHDXuTjpn3tBGIElP0ckNRCSLZbzS0HUl1FHreAAgBr6Ff9kDFXFcJiZImM3uDwEQ5Z+0IYkwgEoVSVEpSqIKq7lGYgpQsGsHXfOjd1IsLiCBpXUsvFoymLddff4PU2RwIRPYH9Sn7zwopEFJS9yuuXDrPvu3wowlKFihpKESgsw6VCpRIjGctQlp0KEmznNgakfjY8GxMbKYhf/D2Jh/4A9/MqUf/V9RXHkWJ3OBPGISMBDXAry8QhhcQhweorauEYGH5CsPHFLNXbvPg+UWe37P8/Jv7KGnoyZLgAsuVpQqKemGJ2DqsglesY3/uK1etDnnkzBnM6VU2NzYwbcdUGI52D4m6ICpPpyxdE0iFYDyLFCJQU3KgBWpxic039jFVw5nTy9x6/SqSQDdNUBuuHyZu+AUmG3D5Ox6jXE7I7Vuk3X3cbMrUSk5dPodSDoFCpqx+GjWJf/T3/wG/9enfYiaG+BhASjoilXO44FBao0QiRXCdJblE4z3GFNgEndb84ktjXr7+It//h9boR8utjTHPbSVe2O6oqh7NdIohA9MLy8tIBHvTESImZIiUQpJstvMolKJrO1JZgE94kUFmrSVFVHjrEEahqgpBIrjcuHchIqXO0mrrkT6HbDT7eznEsW1yWq2UYCNKaUxV0S8qvBbUcwlo20WUktkCRRlQhhtb2zz55CUMAqliBr9lZr855xhNHKPxlF5fUWCwFiKCJHPicGbXBbQQIAKBSMyGRwwociBWUpgUcUlQagEpIIVAkxj0Ku69tMJk0rJ+fp2b168Rg+R033Brd8ZFAWWRKLpAO/M8+8wzXLzyMKqQ2dswZY89KSUkl+89MoHpA0UGnw93MFWfavE0QmVwL0SZ17NJ3AWU3bEnOVYrfOU6Rd5Vl7y1Zrm7GckX/XT8/OO/w5365svt68uCgXfx9O7Ae+JEYHF3CMgdSXCeBu7s4rh7xVvqIYRAqLdhv9/p0e/3/ydplcaYk+ccfzdCCALgb/7Nv3nmx37sx07/6I/+6I2nnnqqGQ6H8fu+7/suWmt/2+q03++/bVD9Ozi+auBvb2a5dQinhoqtpkVVmicfvUDTJG7uj5naRBCB8aSjayTJ5S5EUdcMhhVukr0clRKEEPEpUWmFVgqLJ3gHqYcN0HWWvhHMYuB2UbKtJYUSdNNDpBGcvvcBrLNsHe7D6hlu2khnRxzuypxaVSj6ymQ/LhJt24D1DJaXOLVcQb/AxBzE8ea582yuL7KgNTo2bESohgVjSqZRcX17ypsY9nY7YitYOb3GxXPrcPUqW8Mhr5SGXrUAEVxKPBazxPnR+8/x8EP30jOJogzgIi9uzpjZlhQEKUwQQaGTYDTew472qcsBCUmv32M2s0itmLaBjd1Dfvaf/yTvff4qly6us3v7VT71hVtcvdYwmBtuB++wzRjshFOnF7nnkftYqEpQIqcjK4nwHcEpLAIZwfmOWhRoBd47lDY0LqFUneViShOSI6aQadVJgNS5i0Wi8REbE9t7RyChdRWHE4vzEmQkCYMpRA4YsGBjncEREfFVNvbWWqAC1GUf11pSSjkdGpBJoJLA+xkheqTO5ucyRKQSCC2JNoEseezRJykGA/YnIzb2dzg8GjGbNfz6J55ja2MHb0P2+lAlvf4ik9Zye2sLJRQYRdN5hHKUCz02zz/Mby0ucctFJoczdkOg8Q4xBU0faQZUqaMuh6xIx7nxbR5wNauLicuXClbLlq1SErQgtonh136I4r5HqW9cZ/FD30r3iX+FwBFjB/6AGCKiHqCSYGYdXkU61+JSh/A9yjBBiD667BHmoRzBOXZDx+sTycWjMfWCQoUZQRYI7wlCEYeLpN4STkQ627F7GBhUEYoeAxWJu5vI1CBtD3djl9A1FFVJ6wT1sKJ/psAcDlkYRqbNmLXeAhffvcRrV7f4+NYRq/2KJsBsp2E22UV2jnKth58aioU+s1Zik8ONO9a/8w+zcM9lnJhxc7BEevNVhr6lvm8Nu6SZiNN8tkvcuLZLlwpkyulwPnhcKqALJNcR6HM6Rd4/WGLYNKwKCPuvIKJCp4KunaJixEbD1cN9utTDS+hUoEYRfUBVBqMFalCRpGE2niEF2ZutMPjoMFqijUIUmjYEIgGl5wsupcALjJT4kIhC447Nm1M2rbYqocqS0oscWtRZgpGYJBBao7QghYRtLUIZTFkRnCMZiQ5ivq9jOYxEiMR4MmGhHhJjCyF7nsSgECIgpGN/5PPCru4hnAIliT4zdKXSxBDxEZIQdG6MkC1GSjrvSdEjdcFgYZF2uoeQEoeirhKNC8Qo6ZxFyYhPmtZq+mtnsZu7JCRrp3ocvXHIrFlkYVii28CkC7z28iu878MfRBaLHKfOwV0l5XHxGQPEiHce7yxlr4/Qgpha/OgQd7DFYHEdvXKRJDQyzv1tgiVKSRKgopwT7dRcrjIPSRA5zOMEeDue1N5S0tyR997N0OOtR/tl58a7n3tcyB4z+uK8+/3Wovmt27sjg0knfxXcVQhzbHp9XOzP5b/HrL+7jkwIlc9xjPy2ldXb43d1PHS+j3MwGKrsp5sMQghs6tjZ3qdzkcJUBO8wRUHnMyBspKAsFHU9QMmISImNnQmTaeLsUgYKDrUipHwteSRN13Hh1AoH47wwmrWrdOE12qOCz3+m46n39aHqkfwCK4N1NtsXCO6AaTdlerhMHXvMJAgtWVy4iZYd08kKq/WQv/6n/hvqxT0+/fp5wvNTqnrGwqAgcBrbneLG7UU+9vSf5dz934OOL1NXCln1KZSgLOZsDgtGJyot6dUG5zJAqY1Ea0UILUjF0aQh+oBRJS4EpJa4FHPSt/ckqVFS4GxEG4mLgUG/4uve/zghNSxrjbMtp5YGAFw622dlsI+zCaM0pIB1CSlBaUcIHiUkymSAREjmtiZgRAIZsm+oTEgl8MFhXcjeeiExmTlu70wZTR3TzuGFoQuKREmvEsjC4BNIKXC+w4WAiDFLcqPES4lOCeEtFkWpDAmBlIYYE947hMoeg8FndrRRgl6pWejXVJVAziXBnesgJIoUWVoecvb0Gsv1EqZf4Jzj2ZdfZzYaUaocWiWlIoXsRe1CBjx6heHU2iqts9ijjhA9zkaCbHNIl0gUpo9zgS6mzLq2MQdcJYvUmpgkbei4rjQ/8amXMWce4I9+yx9jNtmhLFcwhWG8d8De7Q1+8e/8X/nwey9xqvPI2S7q/COInTcIW1c52N7j85/ZZmtsSSlghwMUGoklaMvl9UVE07K8XPLy9Y5HFwS39hteRKEkXD57iscfe4R45jTXdyfY6IhCkdQ+vq6pimVmh7dIwjEoSiotOd/vYW0gdDOq3hL9VYE+Bc4KmibwxkFLhyFNPZtIjkrFyzZy8dYOj5kZiyuvEboDRjPP5lbD9U8+Tb26wD2Pe05duo9P/exP8+u//Gt86uVXGIuaaGcIIRknKIzAIelCB86iAGUklognkpzDi4iIgp5ReBN4edrxd//tFu8/XeDG8NxMsdt5LC2d9xQhoUyFs5bgs/0MMeLw+JTmXtRAinid51IhQDiPFJpkciBW6xM6RZIUKB+pas2stcSk0SqHgiQbSELirKMqTF5DKJWb71rnEEMtQUi6zjLrAn2lsww3ZEZ7WWQrIFkZxtZi20ClFJOmzcFD0mDQpKixAbY3j7jvwbPE5BEqzWsLTWk0SiUSIatgoqd1noRCKY2WIl9Tc9CvJbN3kYkgJKjsgXzu/AovPfc6/aUFeluGbiZYqA2bMrC3fcT9Z4f4DkZC8fzLL/KhoyPW1lbm4Pw85GJuHeN9h1AVOQnQ4keHIDqq5fMI1SPhIUbknPl9DJhl6Ow4TuMuCxFxN2fvS1l2X6wk+OKa5YvHl6t/jiXA/z7jt2cTijs20Ok4KfitQGU68YYWcxbl2+N3cjz++ONtVVXxX/7Lf7nw8MMP7/67vv4Tn/jE4Ju/+ZsPv+d7vmcfclDIm2++Wd1///3Nf/ijfXt8teOrBv5GM8+F04ucGsD2JBFTjl8vqoImemTU7I9HjF1ERYUu7lyUQkZal/3v5oQxhJE5uRKJQIOWhAhlUTLuWoIq6FzAlkDInkmDquTFz36GhZU10D3WFoZMdUe9eoqjjUNCUZCalqQkTddgk2fY67G+vMTaykL27Eoz+smy1GV26opSrN97D6sXLvH0v/xFbuwfsH90g61py+Es0klBEw2CxHvfeQ/3XVxi8VqWnl85u8x+0Wdzu0UmCzFRFxmIe+jiMtuLBd5OSE5RVyVCNPgQEHaKkZEoFO3RIVFLZBIkrSl0QRTgkkPGlp7S/Ld/57+ls4EXXnuF82eGvO+pd9PIGbICt5evH2UMD105y4X1Req+pJAR7xpcEDngUYDRmqQFzAMFfHSEVM9vpB2uy1JakkMKTUwJoVVm3sWE0ZIIWNcyaRp2Dhu29id0PqdNmqrCOoXSAp8CIkkiAict3gYKU4GPWO8oRZEN712mcTtncXSEqHACinhM906IQkFI6KSIKdIQKJJETHOq3XChYu30Mq++eYObNzZpug7vI+Om5dmX3yCqChsnCOkJITLpLLO9faJzBBSyLlAIVtdXufeB+7kVHM/uTxDW4kPCzoNMUmtzt1ZGOuU4xPCGS/TrMzzbRL6xtVxsNcG3hCjQU4dUFf13fwNisEb/vKP8c9/Lwf33cPQvfoLBw+dJegURp4ixA9lDhsg966cY14mX9iYsqymPXFpH2DFjd4SMil7dZxoTW5OWG0WPT2xILk4jn7fZm0imvCBJvZZ62McqRTFc5druDmUS6KJFKE23ESkqQWwalvo9+uPIN54TlFh6aNqmpFpapFxfRO8eUpoB+wcT6BwXTUlfBkJnWTijOfy111h8/CLh9LsJk39LrxqgYocbDPiGv/RXePBD34BQUFy4wtlv/7PIP/S/QF+8wsd+SfD0do8bk02OZjYzQWTAJEsHeCHxXYPwic4nKlFwXVjePHT82i/c5n+20fAHv/ESS2lKYwOha+lGDbcPCg6osg8loJXOkqwUSS4QAoj5dZFEwktFSpEowSDRxpBiIIoEKifZRXz2E5K5MLE2kPQ80MFkHxfb5u+USBEKhRKCUhfoQYkpDZPJhG42y75Kcw+mrmlIZTln/3miMnSuRcSESookBbZt2ds94vzaMsKA9uB89sMjJlKQ2GA4OrIsDhcJMaBiJIVAjB3CS2RpKIrsoemEpguGo6N2voAyaCOI0SKSwLZTTDmkmTQEaVAyy8Fjithgefmlqzz82BWOtvdoQ6CvDXVfsrt3yGB4jlJ72l7Jy6+/zisvvshj7/yaOastIaSaS4WAlAGqmObd6+PQIKkJKeBGm3QHWwxWL6F6K5n5Rmb2iRABk9m/WJI6NrSLdxrFQuTXzIM9YF58nuBq4q6a+Ct3tMX8uV9O+nu3VObOlvLvcs7sPC5qj5l6x6y9+dbv+jedsCI5YQEeH+/dEpi7PP/eqp05OYKY4ttSmN8j4/LFNSrVp3NTev0+XUhsHu5yY2vKtE0IU9A5m+8tBqrqBg8++F9werhDlAnXWVwMtLOEjYq100Ok7ebNtA6ZIoNK09iSkBylUqwtZtB59+gJVlb+LbtHX8cvfexv8MRjfwddtfyrn/s2Xn350luO89b1tx73t/8n38Py0jU+89x3Mhpd4rv++A+yY/r86D/7b77ie1Wq4SPvvUghBVIqbBLsHzbsHrRY12GMwPtElIbdvUOq9AZf+95/w6DfnsjfklJs7R4RJEiRU9w9gCmQiSzRizkNNKUOZQTCS5xKpNRB59j3ASELwnyxqWPeFkKh5vcQrcCUFXYOumiRMvuH3AwVQuRmWJdr3lwbJQiS/w97fxprW5re92G/5x3WWns4451vzUNXT9Ujuzk0xZZoioQtyZEsQBZkyRKQKE6sAAH1IUGA2AoUhyBIKJ/yIbETyYBkKZFka4wGioNI9kCy2BO7u7q75vHO94x7WGu905MP7763bg3dXW3YFhHVCxTqnn32WXufffZe63mf5////XNK9KHQF+Ho9JTj1cBinYmpVK4zA9Y6VEFdQ8lV9U3ZnLedoSiMUWjF07qGaEpNnhdPyanWbFpV0aat4H5b3khAb5wnSiSKZVhGln0PsTaCKZkf/9STvO+hh3jg7DlmkxnGwioM/OZv3aZfDzUwxQhjjAhV3WWtpZl27O3tU2Lh+HiFNYKRgNEOE2FRRiZOWK9vYcSTVSu2LEWyCoMvzCYdnVpOk4U+kBvLr3/5S3zy957Gvvxr7N5/DvnUn+Xv/sL/hWd/818zSQn5SIO7cox5/w+hFz+GHr9C4jb9iy/x0Ecf5tf++bfovWXdOrbn2yxPl3RGuNh64jCybxLX4sALK+GBzvEBnbJOkW4V+Paz3+LVL/0OclrYv/8ivtvmKL9Mvzykp2MEnLN4EyiD5+EHL6DpCGsajm4eYG1h68GPc7wI3OgTD1w6w9XFwNPHCZyvrpjW8i//+i9x/n/9CfY/tUfInuXyiOvXCvH6C/w3X3uWJz/7PH/2v/jPeOHl5/jalRc5bbYIyx7vPTFGWjG4Eil5o1VXcL6BnJkYT/CFUBxJImQYQyGWhCTLtw8hDgOPb1u+c/2EtQIkjPc4Kg82hgAp03YeaRuGMeCswzmHjJU7V6xgBYpRzu7usuzXiLXkcayOAu9q8JoTBo2kkiBCmTaswpLWtmQsvjGgGWcdqRS0KI33qGS8GLIoSTKN8RRVXOdrYI2FxgjrELC2oQ+Z01VkutWRXQYFk0awQpJMiJmT4wWaL2K9RUuq9mgMKWVElcY1WKk8S1WLcw3kHt9YjJPKh7cGKYItWgeKCDkVvJuwPZty+fyc669cpZnNWByf0nhhb7vltdducfnMNq5tGELP+uCAV557hnPnfnyjaq3LbNjLsgnhcBji8gbkFW7nftR4RCOCR4xQI/vuVgGb/9/rBpDqkrtz7X+bLffO/99e27xdcff91/dS+3031eFbVYbf87HkLaWM3hmB3lvrbBwj/5al+gL8yI/8yBNPPfXU1p2vf+7nfu7+n//5n7//c5/73Lc+85nP/A/eTJtOp/qX/tJfuv5X/+pfvb9pGv3Jn/zJ5fXr193Xv/71yfey/95Zjz766PDP/tk/2/vlX/7l2ZkzZ/Iv/uIvXjg4OHCPP/74/9BP9b31A6x33fi7eVIY85IxGFrnKCZz6+CQ1nac2ZpycBQYi0VdoWSFvhadVjNWEynVhyolM2saTOe4FQcWqzWN7Vj1geW6Z9o41n1CimNKy+n6lJ3JFiQhATmtufbKi1x4+P2M6Zg0Gs6f3eHqNU/jPElXlFWi3W44s7fD2Z1ttpsWIaCSEKY0MlD6AYD7dizFR85tTfjkj/8wl557htPDQ04XS66EludvnXC4LjgHiPK7X3uZvdcOALhy7ZTbk4ixnpQMlkTXbH7POBLjiBGHcXXTN7EeYxwlrbFuC5WIzXFj6+s22+LMGAw6JGIfMK3Dtx1DHIix8NgDlyGeYE+PmNrC3rwGjfzQhy6yfmQPckZKJgRAG6aNw5pMLkrKGZuqGqVrGyQaYq48uBJttUWrYmzlUYS+p502WHKF7QPrIXK8WHPrdMXRauD4ZMTZltnurAYTYPCmqdPDEHC2XpKkgDhIFlyxG1ueIq5CqOskq60NRqNIjhRTrZSIRSh4W217TWPovMc2lfHw+KMXoVWEluP1gGghhcLt0yU3rl9nGAIGg1VFxLE4XuCEysAyBm8N991/gTOXz3HtxlUcBus6nDjGNDIMgaZN5JxJUXGuITgFAqUYDsRzswwcrITPhhk/5ZWdxx9l8smPMPvYj9N96KMYhDTboxHhzM/8acLL32DrEw+TTIc9ukaJPeod2w8/gZtfoTuZ8K0rpxz0I5+7ekhTEo1kJETaSUKD5dhP8E3mtVF5/kj4/DrQSaRnZNI4Hjy/XxUEY8TbNUfGMRwGkJF1GVn1mbRSQorslJa93vPTXUufEsE7Tl44wpYjHv/UI6xOlwwmUBZrpjPL/Z3htcORFB37y4JxHrfbYe0OJRs09wQVLn78SR7+6JPMtnaq/bSdcP4n/l1Obh/w//rF/yNf++YL3BxbjBSMy4zJ0ImwUmqggxQ0FHIshDEzEHHOQYGXY+FvfvGAF68N/JnPnmfXDwzLNUe3F/zuy8rJaPFOSTHSGYftGmJItL7laL1kEjITWz8LZCil0FlDGROxpKqAMIZMwTuHk6oY7ETI1mM7IaNIrBvQHDNiatLzmAt5zHjnSGHEAcO4xnhfG5FqwFqSZiauoW2amqQ3ghgHMaBmMwEVA1iuHxzxAR5EjMPbQraV61QkE3PAeeH24Qn3Xd4nMyLJEaO9y6rKUgMyMhYnnnbiaoOSQp8DVmZYJ/TJYo2jJAUsTkBLpMMxZGG6bZnYxK1XXmFna4uDkxNSjGzPGm4dnHL+gfNsTyynC1AjfOE3f4OH3/dR5tvzTe9Kq6JGDGIqK0twFCKm7XB2Aoyw6omLBZOdi5jpDjhb040xFCzi7hS99VImd20w9Vz9RiIu3NsUu+uivXuTvOUeb153a9B7Ctx7i9c3WYjfWnijdxt+9Rh3bC68oTC8539vYWTffQZ3tIpvmdtvjlt4e2JftTe/t35/rKaZoTnRdluMMXC0Hnju9ZHDIQMOSqIxdShXGgOuZzr7Brvzi5ysM30oLGMEhM6CDnVLWBxYa8h5ZDbZ4mZaU6Rex7f8NX7kU3+cXHpGhf39L/Njn/qLHB7scG7+IH/yT3+RVf8UR0cLvvy1L7E+PkVTYHe75eL5HYTCdHoVSYZPfPjvMY7n+dXP/Qd88oO/wp/+oz8LUpsD1lrEe3LOGFUeua9hZ3uN2jNIqQ0rrOX4ZMVq6HGuQ4zD2gql3506PP8tBUvJgtgJxXiu3jzCtk3dKJcCarDGIZpr40xrkEApEWMMzhjICY2VR6oi5DzeDYmzAppHnOuAAWM7iqn80BQdpdRNtqFu1FMuTCaTymFVJcdM0UhGWPWR4z5wNGQOTnqkwJDGqtAxAsVikqJEfNeCb5FclTl5o6SqxwXrLNI6BGEiglHDEJWs1YZphLvNfSPUcI9SqvUzjIQwsFoOmFSvR76tQ5rORj7zw5/m8s5ZJl2DtLVxc/vghC/8+u8QihCL4owje4Nj81gI1je0Xce679EiRFUqa6tH8Gy1DTZnhsbR9xXRYLG0rUcTDCKsVyPBOMBjJFGM56UbB/yNv/Kz/G//9CM0ez/D81/9PKvVMbP5PnrS068Ksr9FzmBefgo5vIWZXsDOr7I+OsRky8obFsNIn24xMS2tWJ56+RbbvuVkuE1rOpwKf+T9U35ma49R4PZy5OUbh1w9DNxEeHR/i9n+fXzlK0/VFPv1IWe2Wva7hjN+ytlmyQ/7QOkHxBqWi0NeLC3m4Q9z48qrmA9/kMf/wz/F5FrP7/yNv0WJPT4VlMj8wg4Xn3wfZXGA9Avuf+g+tr78CmM7oXWG4cbLvPL0b/O53/06R4PgdA2uQj7WKSFeMaXafY0zkCGmjKUGbjlnoBWGQdFSnVa4jPGe0xh5bvAchMA46cjLSGPr9SOEQM4RawzG1iAYUlXPTudTkipZFIvQNR0hRKJWx5SfVKFHtVhWpIlsWLXWNCQviGayKE07ofQRtQbVgjHUoJAY8d5QUm2qGQXXOnIBl5UhRibNhLZ19KtTghhcY7BWaHHcun3Mhf3LWN/iyJS4CY7wDsmGg+PIch3Y35+QU0G0YGxBjLkb/mWcQ4qQg5JNZj7p2Nmak/tIzoLF4MqI5AjSVLeEKlYiJQbuf+gCt7/8OmnaQqPEUdmaN7x6cMytRc+lM9tM1iPJGL711S/xsU/9MNbVD/xG118/102HwVLGBToucfPz0HQVx7c5/xS0DqfNxg1w15Fg3hhcGt64/R2tDO9cs9w7vLx3mPnmppzeve3e7383teBbm4hvHZC+9bHf6Xh3MChvfj5vGazeGdz+W1jfPP/885O33lZK4erVqx74H0VF94u/+IvXnHP68z//85f/8l/+y/7cuXPxL/yFv3Dr3fzsz/3cz117+eWX2z/xJ/7EE13XlT/35/7crZ/+6Z8+Pj09fW8m/W9wvevG387U01jBdZ7ppGXStuxOJxyvRm73gUW/xHVTDJnUB9xmA9aIwUjGabX+7s0m6GzC1VXP6wcntN4ya6uiZhkKpm0ZMbTAfNriQ2Q1rNluZ/RZ8Y3y8re/zfaZPWw7oZlMObu7wxMPP8Gz3/wGU9+wTivO7e5y8cwcYyqoWIzF4Ii5siXU1ZTha1evcbRe8OLXn2f3gXM89PD9LO+7j9tXrvHqs1d5/XhEWsdwtOTk914Hccw24b3JCUkcYPG+4HG8//H74Qu/Rc4B0VybarmQJGN9S2ccoVTWmLE1ubKmPSVQoWl9lTDHiJZCPw586rFPYOeGrgk8sX8W65UzO7vcXPc8fryEr36V3dbSl3R3CtKvluzu7iOS0FLIKeOc20jHFTFCJxax1Q4n4oCINZWxGFMhb9KjMMJyTNw8OeV0FVmOyiIIsTis92y1HcZ5giayNaQ8oLFgxkTyEdt4xBskVsaeiMU2rqqpMDhXGzJKte+aEFHnMFnRnJh2Dbb1TDrLpJsymzkQRctIHiIf//iHme7tsGVnjJpqATIWXnztdfK6R0O1yJAV6sAdNUIumcmk5cyFM0x3Zty+fQwxUpIhSaKTjBXFGY8g9MNIyLE2QkaDKQmvlkTBSOEgJv5xt8t3/tm/5s/9xb/IAz/z71ULotlCtfL54ph54Stf5fRG5L6dS+RXb+L8LcS1ZJnQnLvAa9eO+dIXv4U0nqHPvJwsQkdnMtFkLmPYbS1nvZBXwvt2PDc1QjSsSk+3tcOH7r/EBz74Ya7EkRe//QwNsEqG076n2buAyIjVA9bHPe18CqYw2RIkgRilbVuO85RsVpRJQ7wycnjtOsdDIvmG9ai8kCccq3DYOz78Ux/D3v4W8epvw+FVhhBZxwLLFauDK2yfvw9pO9J6yfPffJp/8Df/Dp//xjeg3SalhLrEevA4W8glMZRMY2sQjEptTooYwnpFaVtKzkw6zzpnfvXlNdeOXuJn/9jDfPNrtzjKLb/2emSRRrJpKwS/QCjKme2dqoqwguQKwK8w4jc+F/0YcKarabGbRF5jhFLBkiz7AemaunENkdnEVYuqWpwYJs7Qp0AskNNI0YpftqZqw4z3hDFgFHJjaZsWTbAqgZlYhrEqRouW2vJJINaxGAPrPrLXCFkzRqGYhoSnzZbiDCengZPFwKSFpnHVeizV5mpFqiVEE5qUlAKhZLB15NAZz8w6DlLEiydQ2Z5OClmFqDUtcms255GH93jp1QMeffQBVssjcjTsNpZT23B8OrCz79h2wipZrl67ySsvv8SHPvIxoIZ63C3sNhsIDUPd5Btf/ybjinhylcnuGfzs7KaZkarRRbjLGq3V7h3rSz2fvGETeZNR5J6v7sCx317AvmNR+xbnjOrbb3xrAfuDrO9vtdnUuuVNo/DvY4Wp75n31u+P1bZCjEqfAkeLBS+9epODE4fkXNVZnZAT2FS5xGM8w/Lmn2P12C9hWFJEmHYTRApJFJMtSSxH60CMAZm1NKaG+HhXG/qNVfbaW4wiLIfC/uSU/e0Trt64wPb+OebbNzh/aYsLy56rt4+5np5jDCNBDMge5/dmWKe0wGTrkJPTfZ79wk/z5ONf4vJ9r2KNoXENTevxLUgRJtaBFFYKpi9szScUm+mK4mcd253F2QbZfE6DQhgbXrt+jssXbjDxK4zxLFdrTpYDRqrabZSEy64GCaS+suacI4SqUFobmEptJpTGU0cWhlljONZasEUK0RVcCWCritniyQwUKuqkSG2uVTW20naefhxR70hklmvldNVz42jNybqmvJcEjdbPX0axxaGxgLF12mk7EplCDfLwYtCSEdeQU6IUwa4DzfaU7WlDQ+F4nTgaIOZI62vomohUq6DGeh43NSRFrTBSX6fO2Nq6jIEHHnuAiw9ewNhaw5mi2GbK0y/9Hi+9eIWCqQiIUJDGbnhvdVAxnUxJJZM1UfG5HpEGYcQkw+gL08Zjc0vbjLWJ45SShIiSUwYtjDnQecFYKEk4KvDVsfCM22X+9Jf5u//g7zE/6Xl/69g647j261/mt27sM59+CWuFZYbXX1sznAyUHs62ltcTGN/UQbMWTAkcFseiKEfS4cn4ceD4Wo89PMQny9kizDTye8VxsxiOXr/N9ds93hX6lDC2YwthxxdsPiZGxzefucaHdgRnBBJcvrTFV776u7z24g3+9H/4P+NfP3uD3/6dpzjZ26LVs8wOb3JmjGwl5Zlf/TIXHn6OV5+9hTtY8MmmZ2yFaAyy5/nCL/8aL7x+A68toYUcE65JzOYtKUZizFw4v8/unsOkwnoRSNZx2q8Y+xFKgJQAT/GWUmBSlJKUXiM3J4UULGJq2JhRwDlCDBRrQAukjDowjQdjSGHcNJkBBYdDRZm6lmIdaeixxhOLgho6X+uwEgUxDnVK23RoyoivClcj4IwlxkzKhcZWp4PxFUNixGJE0Fz3P+vliLU9aA3FazuPMwYjluPjY5QL9RgxVlagJrwIQYW1Fo5Oe/b3Z5Q8AoWUFGPdJkgtk7WQU8QWoZu0lFWo7SPbsMgFtCIAsrOMau8GmoUcyMbQTqacubDHKkDpVqwXmf3ZnEceMBzfOuLBM1tMrbBuPE8//y1efeUVHnvfo2StuI4U48ZlYqtKb1xjp9uYbpuSI6ilWA8S63DD2Oq8unslMXeNCrqRS2wsE9yxA791cngHPXLv7W91Lnw/xd/34hm/m9u/37HfqHeUe+wYm3Wnw1nu5qDJD/4w/3+x/uE//IfPffOb3+zuvW0ymegf+2N/bPE/1mNaa/mFX/iF67/wC79w/a3fU9U3JZyePXs233vbhQsX8q/8yq+88L2O/9RTTz1z79dXrlz5ARNX31s/6HrXO4MnH90lBYtxid39GTG2nI4rjgu8du2YdSiEEhFboch2o3xrvcdbw2RSG21nT5eMsTA7CXxcLBNXyEPPXkhs5R6TM7t9oBtGHjCZWee5MQT8mBEVGq+kInRf/yqXLj1KdJ6LY+Kyz2wZwzIOnPRrzl65xQNZN7XX5kpWqtViKoZZ9YfRBoc9KvThBs21q7xKIkUPvuP9fcG2mcMcCQYmUsgu8YBWPqAmxTZKKRHnDBbh+WdeAsC6CZPZhDiOZBkpxvPa1dush56umRBLwTSeWGruZFalxACSsUYpBKQRRFukg0cvnyWmkWWK5Fj5GVs+I7nycax4Wj9FUyRloetajAuUHGmsx1uLMUJKocJi0crBoDYGxINzFUQbw0gMGeM7DvvC8WLNtYMV674whgDOkFTIySDiMY1j1IKoweaqjAtkxIPNDhlArQMveITslGIUI5a7SVQWtNQJp8PQa6IzFuscWxPPzlaDSiHmwNHpwBACRg1zB7Npw+OXLnBuus9ke0bWxK3Vmr/5d/8+mhNCLcI1FZJGsI6kGd81bG3NmXQdJ0cLCJliIilUts5JGZjaqiQwoyNpfe+FZU0M9s4R255WZ6SilcdSDN+6oXzhc1/iAz/xRzi98Q2mrWf28Kd55ne/yDf+9Rd48Yu/yoMXdvj44U003kA/8kcpyzX6zK+xeOkZbn79iDLZ5eT2LVQMp7OWqXWUsUc18OHLezRhYGdvzqvfvE3Ukf24oh0dY9MxRzl7dpveJY5vHDL0mfbsLl0wDJMTxjziTcsqWVw3Z2qhMZaH9ubEONaAlyzs33cO6TPZTil0PHcciH7GYVBy8Sx9QbxyM0T+wf/pb/FTf/IRLt9fGLRwfLLmuWfX3Hr6OgfrJQ88+BQ/+ef/U5775pf4L//z/4wrdoqRbQ5PVsysYUgjKoJVpVDQHBliwBmL8xVwPKSESMOYE4Jl7BVjlCEGvnLs+Ll/+gIfnk1YFXi1j6AQh0BUZct5aD2Hh4d1g9MY1FRmTmYzxU6ZUBI6cZXPiNAAE60T8miqHuROEnNIlQVonBKHBGoxjYDNdfAhjpQiE28rL8dACJsNYOOwBaCyqcomdGRESWRSqSjBSesZ1xk3bVmngcUqcGk+52SdSDHR+k0CNcqosFwn1ouRaTer9hubNnPRlsZZrKlFpN8EagwhkYtiXbWO4UCl0OfE2jUkwIqtrBtfzw2rdeahhy9x5dVrpFyYb804vZWwTWE6sVx5+SaPnHuErc4zaKBPmd996rd47IkP0LVNTTVWg7V2k/a7QRskj2kMJZ6STg4xsxl2trtp6zkUrdNvLZu/wxtcm5rQu1H46YbXd6c6vFtUvtGsu6PC+25T6XvXd5+Uc8/t7+Ii+pZj/ODrruHlDdUicHczUO/yhi34u2oY31v/U6+YhUDi5ET5zrWBRe+qZdMAtqo5VAxFAkYdZpxyfPQpFuE3aLxDJZBjT9FqHZ/4GX2IXD9aMhZFTMu0sYgplGJYacE7g20a9qyiPrEMyp6zHB/e4vVXnmPn7EXYHqHpuHjuAtdefg5bLCUWQlC25zOUjJSItQ07W8/zP/+z/yu8a2jbOZIKpiR0WJIzONeizhOxjKsjJs2MWAZSX6phrRisb0hpIGdhHAKTacPB0f383/7r/z0/+5/8Ig9duoIQafBgclXnGGXSNPR9DT0xYrHIRq1cWaetOlLNY8cbxdgacLSOMI71b7BOnr63pJJprGE+86xLZL0qpFExrWCBxrNJqnUsx8xyOXLSj9w67jldZdaxUELl6BoTqw1WfbVhqqI2U6xCURprIBesbTCuJhnbjaZnYjI7+9t0JrO7O2Fre4uMcvvohD4bptlQSsJ5T9g00rSkmiBcKisbgam1kJRgqpxYSiSWNY8+eBEjBbWKNZ6cMqZr+b2vP806B4wIQTa9jjCCq4OetqOqy0LBmkTXtmgR+uTQqDgK5XSgzCwzu8ZOPWMfiNbTNp64XGIVyAmrjiQNYhQTCykbrlnLX//rX+bBS4Hrp+f4ia0JF1LCnZ6Asfz6b7zOJz55HzZFnr3Vc65peNQ0bO2e8In5Noc3M9/QwtZWh4yKL4VGIp31iIw8ZA0//sH7ybEwLq4Rk4AOOG3pugkPmBYfl9w8OUHEIuLoWsEHRUxBrLBqhBfShMecR7uI7zzzvQnrUTnulReGwt/4r/82Nga2Lp0he0Mzn2DzMdNcMM8e8Q32+eZqh0+dZu7bcwhLmDc8fXSLz716SJ9hMIU2KmKUGDKzqSOqYzoTdrY7bIyUYc18OsWI5fz2PsugXL95wFhWpFwo1mKjoFIwnZCGTAgOn6pC0DYdIUYkpqoudRbXdLgxgvdoVo7XS1oxWGPJpUrSfSs0bsowBtIqVCeXFbw6cLY2KFFE6xC9cQ4ZA4mCeMPEWhRDFqEPPY21FYsyczhjSUPdQ6EFLxa/3UGGZRyZW0dxAmMklIR3nuPTU46Xgamp7iNEUOvJpVr/TYaTwxXhvh2iat2bGEcRqW4HCo3z9HEkiyWkxMQ3oEofxo2ILCFAEqHuAixqwZqE0RGSsL/Tcu3Zm1y4vMdry1NOTg/Zn+3w4q0Fq37FfCYsQ4Nayxd+9V9w34P/Cb5pSLkQI7RtqVzm9QmKQ+rUpIapaa788rsoj8y9AWHcSem9+/WmnuFe54HyVhusvikc5M5t331Y+d2+993Ue++m4fdODcY3h49Ua7ZIqcN4MdxhGsrm+YtIJbmUyur5t63C+exnP7v+7Gc/u/7+93xvvbe++3rXjb+tnV1aaSoA2Rq8dxz2p1y9vWaIBvENJke0ZIyFtNl0xZiYi+W2hdEa/uxvf/PdP7uXv8f3vvy17//z3/7+d/l3/+nn3uWTefMarMWe3eb8bIqxDWBovNDe2rAMsTVZKhuQFlzLwfES0zZkFbzWwi1bR6MVyo0WqmEiYFy1fIwUUhpZL08RIitpEDy7E4tBaU0NExFpKLnHiseYwmw2IcZATqUCbVPGWocYw9iPTGdTkMww1AYHOtSLfhLGLCwG5ej2glUfWPQDY1K0GDKKDnWaZqzHeE+WBpcUvQPf9tVeaEqhGEvTNljxJKN4DCYLpeQK1d4o75rGknPlX2mpk3E1lpALt5dL1mNDDLEmyUn9PdJwyo/+O5/lI098iDNbU7rptF4u1XLj2hVef+VaDYIvgLGEEvCtJ+aA9w3NpGM+36JfDoQh1te8VI6bl4awudCOQ0/OtUFZMqAFS2EcQ7X0sMAaT8ktSRPFK0996xu8/+/8P3k8fpPtH/4UXPoI3/ytL/Abf/O/Yjbd5okHdpDjF/A7l5DJJcriRVzjQTznzzlWZ/YYXrjOwsKYC9YJSMvEGY4Pl+wbA+mIkHuujzM+c3aH//i+MxxhCFrob9/k9559iVsB4rDi0z/2UV5+7ho3rl9h3R9CEYxXpkbY8y1dTnzy3BZtNKwPDMvFkqPTQy5+5scJH/okLzzzT5heusiHf/ST/Mpvfp2XDtc1ac4ZQom8/voxrtmBbh+bPd1USKU2zZ576gWuPHfAJ/74n+Dq7SvcaqYE60mD4l1DMpDHQtsoopkxl01DWKoSNSRaK5UnaiGloabNpYi6TBGDiOXFtWFuE8sxsc6FWDLGtXgxFSo9KkYMSGFifFVUDj2treoR1cooMhacEUbNYC3dpCGgtGpYDwPYyo0rBlKpU8iCYnIiFkWl4NWgWLzzoGnDsDMIghODiqJUnlNuHLEIHfVzMZlMEbHkMGzYSqWmy6nh9LSnXN5FfYdoRnNETKmFeKnqhdPjJWfPz6sCJW7Sa42SYgY1NN4jKaJF0FLZd0Y3CmtnSUNAxIKBFsVoxpqmqgwLzNsGq4WHHzzDqy+9jkwdoazxyTCbWK7cOuXqwYrLZ3bIw0hJicWtmyyOj/HnzlYFyp0ptUBKivOTau0uiby4hfFgty+hGKxkKAasQ7WyqJByj/Xljonm3mnxxvb7psrw3qbf5pZ7lH7fy4LyVgvMvfbd77beqWF47/qBG4D3Tux5ayG9KfvvMHA2//y3EIPz+3LpmFmo4+bBKcvVSMoKVmvKo9Sgn2rlrOgLP3mNjzz5Z5hPz9HHOnVvjavJ2yIcjCtePVixGKFxLUNITEyHd9Xirmnz7mw8OQyc9R2vjyOHq8hsZ8pqdcrlRx/DbMD7k67buDTqRny1WBLSPsYJHkMcB3JSnArWZsZ1X8MuBCbe46cts/mcMQTWpyOCY741qenotgEpKI6UCmPKlFwtrtZaLp55jf/dX/o59vYOKSKI6wg+I95jxoLJeZP4XRPNpdRWf9EazKHGknPBOEs38eTYk0JteiTnSJvPTSoJ1YxYQQ2sxjXrfiANkZwhSqLxDsGyGDKnq5HlcMrh0YLVkEGFECKm6ZC82YR7EGM3qek1JEnU1jOSF5q2wdBUyyEGp4WL+x0Xzuwz71q2pgYRmM0nrIfIwcmC7alj7BMht2hxpJQpoTYkSkyIr0MlKHTOIzkRbL0Ouc3Q475zZ/kDf+DTXNy+QDcRnAhqHa9dv8GXnvoKIpZxHDdukIT31dWg1pBL5axmK7hcFUdDCoylDuRCicxmHRihj5lG7EaR2tB4z3Syw2KhxNSgJWLFIq4OgaSsaTHczMKu2efK8chTi0OOMdyXlQ/vFx5uZlz+kR/liU8/xNa/+CLr66d0/UC+eYi6Ex6fz2kuXcLvdFx74Sp2ERFxaCk0o2FU5eTklK5VvDr8lmNMni3TIBQulIJZDhyOCsbR+MprVA84i8sGaSx9TrywHDkXHfdN4LC1nK4HPnb/ZT700Q/xJ/+Dn+L9Dz3CjeWKf/VP/hXd4hTNhpOc6XOm29rGScPy1jExndJYi23g7INnOfiNlxHXkOKIN4JaSCGzWK/AeIpYDg5u46ylm1T3wcxrTcEeEou+Yz0OOOPoN6rPKBGXLM46MkLRDEZYLJdY75HWYYaEphou4b0j5MRUPKWtqr+qfrSYUlmPY4xVxWoMtvpQySHiW18TZ3MmxsjWbE4kQ0h1oKdQrEGGxCiVbefF1LTyVINBjLOM6+FuoIzF4Qo0GIZcHQ2OahcOJWKs4/bpikcu7mFypuSEYqqlvxQycHh4ShgepGSLSgQ1lVWYI9mA2homksmEnIjDyHw6I6sjpERxLSlaDAZjFC2ZmDPONljr8WR2dz2LxYozsottCyFETnRJEuX64SkfuG+HmRuRlHnt1Ve4deMmFx+4hKRM21iM82gOtZ5qJrX5qtVtYqRuye+4Ft7WgLt7zZc3ew7uvYvea43VDT5Eead65W4Y2dssv7ytxnmnYLK3/vxbj33vz77VFlydF2/8nrVhead+q4Md0VJrPSxQKAXQ6mSR71N/vbfeW++td17vuvHX+hYpCeta+tBztDrmOy+tuble44tHNeKkEHOhqGyC0mHadbTecdg2/JWf/FF8PyIUcimU7Guya+t57dYpLZnzZ3Z44foaSuT+vY6druMkRFYhEUqmbRqmrSeOgY99+sfY3jtPcVXqfnq64qmvfpmjmzcgRzqvXDq3R9cYMNCZBig0TcOF0wX/i899ib/9E5/i2u4MS71A2KahWEEk01ph1s1rM8t6TK7qQetg1Ux531R4XDdBAFqnujvzO69YrJJyFKxjTMrVG0e4xqGpMMQRVzzee2ypDDpkw23JPWNKTEy1wTYYijSQmwrF9QMlt2h6g+NkTKRr53V8mxJJMzEW2IQDGOvIqmiqBag1jhgD3jpCyjV9LWSOF5Fbi4FlgpPViFNDKpsUBFEMGxuNg0zBtI4k1TZ5d+NC2WhwDI2pKXRIYULGi7LWOrGLKWFNteqlVJVIqkI0gsZMoGzS7BLZKzWRwUBr8Vj2dmf8yKc/wbyZVFVe42BMLIbA3/t//2PWy5FiHZaEisX4Wvg1WCgwn82xrloYRAwp1ELJucIYR9rOsSVC33jGBP1yxaSryinBMCZlTCN9zoipnJsmDUx2znNjHfmHf/vv8nN/5Q8T9xy/+d/9Vzz/9FfZ39llqp7T5w5QebAmuX7rX8HxK4RROYrC1YM1L772Elan9JpZh8Qq9Gy5jmnOPH0UmHnLth9xbUfMmV0b+QPzY6xtiAUWKfJ7JyN/P8Ji6Ol0xlozQ6m8RpsSl6cT9l3DljrOuMzejeus3EDXKCEkxkH5jjpevHqLcWr5d/78X8I9/hEm/p9w+rnP0y1W2BBpneHMfXO6S3Pyi7/NcPgK+3v7nMsHnPoJOmaauOToua/yj//O3+NwiCRv8XmJoYNcWUNWIKdCdoa2AVuqStNYYUwBK4aJMaxiIeOwVhBTLRHjGOmL8o1DjzSZSEeRgCODscQx1t/be4xWZhNjhKLM5hPGlBhzwBqlE4+U2ozXojRtQ9RI6BPON9W2lastyhkLOHxbC03X1rROHSJ5A5/vmqZuqIytzS6Vytt0DgeIlRrUkQpDTvjSUkjEGMlisI3DOUsXLLdvHWE+8gBiBK8GqE28qgKp0/pbJ4EHM0y8rZ1qzagUxFqsOEopWAPeevKQsWJp25bGORrrGUeliMXlgkpE1ZBKrkndpaBlIKXM7tldrl+/QVSL6ZQUCtN5x2yn5bWrt7jv3D5z35DXA0cHt3j+O9/mR859Ft0or9FczxLW1hOKWvJwgBGwW5freUs37DpTU/nezO17o0isX8obrpDqhblX43f3WiabQfnb7bQ/iP1F35H5990m4N+Nf/O91juxct7+83Ln2bzx+3FvU/S99fthnSbl268fcnJribYNEgq+VCV6yqVexRWM9/T9gMOxCMrJumfaVNV56ztmJdPHzGvHx/QnkZ3tGdnCsB5o3R5d41kMiVKURgwlhTrIyoXOwelYMEPi5PSQ5eqULQzOV2aumMrTKrlsNsuZtmmxm6bdKjzK/+cf/x/4M3/8r3H+7CsUccynDd4bjPP0Q019FZStrS1SKogRcnEVy5ESuYCRpqaqW8UA3mXO7r8G4hhDxaNotthY6EMgl0w78UisTSq7qUdSpfSDag0eSola31mMNAw5I+PAxPU8/vA36ewIxeF9R8nrGmyRM6a1pARFlVU/INFz63DJ4cnAaZ+RYijGkkUxUusRDOSNIiWWWLEuG1eJVyUWZbK1wzr0+HTCrLNMXcMnPvIIu3MLqWzYjAPOdIyrEWc8O9M5bhzQbSXbGlIWEhTnSAXIgomxzkHU4b0lSyaqwWHpJrDVOP7kH/kJnnjfR5gY6pCpFHCOZ559kRtXb1DEVfWVMRi/CUUSarNl0tVzTUokkZp2OgZSjIQw0E6q7TnmjEdxTUPXWlSUprGknJk1lpvrRCYiUpAh1mZHBpxlMMoqwzotCVvb3CRzdBjwR4bXbCH+8he5uG/58Kcfxx4fcPridU5uFaRM+cSH72Pv7BmuLQo3c2UpFhMpzkI0nIrw3OtLHp3WBtWYIqSWRUksyoTO1wG15pGpaUk5sQgQLWgWVgY6AeMtL8ZATIZHz24x+G2QwMUbT9P90j/g3/+xH2ecnef2V7/KueXALPYQhNRMWQwjO6sVotu8ul6xnyxnz1i2HzxD+zMPkf75d8hzMCUz0pH7QOc61NREDytKZz1N57DO4xF8Hjg3nzAMR2xNPGZ/h4NbC1JUEkJEMKU2xAulzr0UvPNYhFDKZmhNVaBZoBTGMFBaYaYeZxvWMRE3afRjiUQKDIXOVeeCMVBSqgYqlMYYxjBSRKsKVQUrhkDCG6GkVBOyUyYbsKmQTSFby2oYcN7RFkHHyIhBY8J6h2SIKDYrKokxGg4PT3j44i5OHMXWsJAiptZ4JTOkwuHhgnYygeORO9o5Eak8TeOIY0FTRZwMfQAiKgmrliKWogGblUKqwYib/VLJmaabM2mF++/fJ/SF/bPnuX7tBjYp3hheuXrC++87T9cVhnFktVpy5eWXuHD/fTgdangHBskR8W21RG8KEmNq/VJKvttkq/WOoZ4p76j2NiFl73CdEZENDnRjD5aaTF5RTm+uTb53DfLda587z+2d+HzvdPy3llF3mnx3Tzr3PKaUQsZsmola1X8oyD2haJI3teB7jb/31nvrv896140/6ytgdjEsOTgdeeW1m5wuDROtJ9bBCsEYShHIb5iwvKvTGINwo2uw0w5jIBmhwZKNcPOk53m3Yn82Z9jb5tkVlBAZd+ac32o5WQf6YBhM4XQVONu2+OmE67eu8PjWWdxsyu7OPvFM4ujkhBfHNX0/gIH97PjgxUt4k7GScd5guw65Wk84t8/tc+3iPq11WOtoO4MzGaueYhoWElmVQlmNnN2dk7zSlkJWR5drsdj6jhgLOY40phZRikGwoBFn4PB4zZBqoSSyAV6HTFElpBWu3UIEQhaMFkJSbCdovyaJIq2FONBpS2PcxlZaCJsNXs6FMQiNA3ENmkdUMoijSMbayiopGURNVQBJw0jiNEZOF4HjRc/t054xglhTm5GlbIDSBSsNOVQAdkoF300oWCgj1hictVQ+eaL1vrI+MHSxsHW2Y2vmsSVytAjcXgdyzGStgQjGVtCwTZGikYl19CVVqK0XelWMeCYWSDDGBU984FF2Lu2ipm6YSBlrG24ujnj62ZdpuwnLOCDGVqaaFaRUZ5U1Dmcd635N1gTF4FxLKYYce5rsWAwrzKRFisdLwXcdxkJMI5SGdd8jQHYBDYl2asntlMP1EknwdDPh733+RZ545VX+yT96jTO54Q+97wHSlRuYcJ3/5v/8TzhzvmG3LSyYcqOPhCPDvrNcEMNjE7g2FoKZUNQSi+BMIYlhLYZiZ5hhzWPekpeGdV7WUIjYEk3PfpgwTS12NuNbX/8KpyenWB3pafBuio8F50aSLjkKLV9Zjfz4Xku7Yew98eCEr+qKX/tXv8GP/9AneTZ4/tqf/0/JoWfv8cfJ3R77x9fY7wfs9cTX//qvMXniPM8+f8KZW7f50W1LNGvYmXJyds5Xf/cpvv3KEWIbrAZynhJZ0bRTLu3scXD7iMlswvvuv8h8lsjryNBnonUsxoHVsmccepzJmATSNITsmIoFnyjJsmp6bG6rVUnqKc6I4pwllVSL08ZicqF4h9iGMSVCGOm8J8cR4xwUYdJ0EANeBYmFqdRBBUVRZ5lMG4ZxhAAJxViDwVZej2/Qkmmoip6UCkMONEZQkWpZRYkpV+UsQFG89ayXPbhSWVDWYXxNgGutpV+tOFqcMm0awnpJMgZrqvLFWmHIykk/sB4KzkZyqRaWnGrzXwyIKgVljCNSFO8cmXq+LAi9Qp9qczBJptiGXBpSHhFja+PTOCbzOWcuBo5OI2675fatEW8cn3zyfXzlqe/QL5bMW8vaW06Hkae+/BRPfuqHmM9nFFUUwziMNI2nGIOkakcy013EN2iOlFwQ11KZNwCWohmD5c7U++7aWJ7NRg1UG39y93t31t0p9Ts0zd50uHfBvrlzvHe6/ztPud/9eudGn77lt74z+d8wcO7c910oEt9b/9Ot33vxKjdWCRsTrTEUMayd0Aqb96riClCUVgyr5SO8+Px/yYOT/w0fefB1xBiKZIJmXjpacW0xsLdluf/yDs9dv8UqjWgSJs2E4+UCg2BEmYvSbE0RjUxSZiXKGBKjJl5+4TmeeP+T5F5J40DWQtGMNYY4JowxbHlHFuiMZxgnLFZnqOqLxLydsT2ZUtSQclXrxr7n4sVLjHHFEGuydM5rRBwhjVjr0QI5BxpvcMVw+/Y+v/5b/z5/8DP/lP3tW7h2ShwjjXEkL9CPaFGcgaAZ2didM4qTAgW8VXKBrd0dYlLGkFmViCuF+d51/qM/+ddqQ5HMGNd0ToljRtVxGgsnfWJ92nO6jmSFkFJ9PYxUZXspeLUolkjGdwaNYIshF6Uw0LZTwjpQIsy84eJUuP+R+7m4t8XW1jbz2QRve0oaGEchZ6FtZ7S+hjOh0HUtWxM4vzXj/gxDP5Bzoc9wdLqiaCGlUsM2Uk3ObfwOYwns+hneBfZmc370x/4QTTfB28odNMBJv+YrX/kajXP0MWGlWjqNrQiHql4X2mZK6w0pFNZjIuRcz5mbWnA+22LWWKxlY0us6nXNmXGsteN8YlmkKbePIj4knDXQQtFEJ8LgZ7x6vbJ2b4d1TWHNhatrhzrD69d70t/+Nd738Db7O8JXnnqds6eOy+cVv7+F9x7VBXgwKjVQKzWIL0wk8cpKOO8azppMjKniflrQdWbfW/qxYBM4TcwbYSWFhJCMx6QRiVURZ33HmIbaAGvnjHGBC5b1r/wL8hd+gxf6wnNXRi5PZpybGg4FDkwhjRl39RWy3eVhHK5ree1qoH2i0IdS9wBZ6KYzhpRwRlDNkJVSEp2fM2kczrj6fs4j7czyyms3CGLpJhParsNYw/WrR+TsyEkQU1BjKDlX4YHWSZhpLBMDqRWImRwKqRO8WLq2pXipit+hWrtLjMQcQcBZh5/WhpwzhiFHJu2UJEoYY1VlKcQYcRic9ZVlh2FwFpuqtb3PEWtb+jziAljnmBlPNgLTBomJaDJT62vQiBasOBqjZGspoXB065Ac70dyrKEZ1Ou3AKUoy6Fw5cY1Llw6u5kJjKAdUkrd+xlHXq6x1hBjlUXPpo5hWFdhQYnVip+VXGqYUsog6vAOEonWNXz4fWf4/G+/wmd+6g9yvDyiPxk5t7/Lt1+5wu3jvvKyrZL6zLNPf52PfPLTnBxfY//SY5U/GCJ2Mq+OpLxp+qEbDMqda37NP1C9B/FBZQWq3mkMvlOj7Q0mYGX+vsH9vXOUd282ePsdv18d82Zl4L2Pe+/Pvd0yrCpVeCGWUup9c1FySThba3IVqZ3njYrTvBcR8d56b/3A6103/nIUoijjWnjt+shRaDBGyCVgXE2CIkOSgpGMzZt0WyIxGwatHfycAuNmIlFcy+kYuXK4IOHIKnTO0/rEKhpCUUIplMbjFPa9EsWxCJk92zCsV5ye3GLHW5JdkJ1jf3ef5xFcsahGxiHRNhZnLZSIMfUCIqVOtNTZqnwJES0DMiq5Mczmc7LNjEkYl6dsTbcYS6b0kSQGSwFTN8MaMqvliLWK447Vt7ItxLTURNoWbMGKqUme1rHSUE+KbgJkrArWGHIqNFTeXkiJxrZIGrAYYomcJpAIWQrrVC9+q5TpY0GsYSiF1TIS14o0IFiaxtQpoDjGlFktek6OVxyuBparxGLIjCpIqIxGNONswdDgxSMkjIGxgThmGiv46iGsXEcVbM4YlGlj2Nnq2Nua05jIzu4M5xxDShwtVth1ZmI7EnVzkVFKyrVpJeCsR2PduDtv6eJGym8zVg2QEQcffOJBOiy+MVjroCjJKt98+jusVz3RgOZMaSw6jtU+qqBe6NrKkXBiaZxWe0Qu9Agl1aZDmyt7pXMB2xiyFvqcmW7Naxqa8YSQkGLAe2TzcXICxRRWmvmlX3mZVx6Bw7zNtk20Bg7WS953seO11y3XdJ/HP/kIt59+heFwyYPbnvul0LbHXOjnPH0TgoPtvRnpdMRni9MaxGAJ7NDw4fsnnDm7x8nVlxDbke3Alm85MZaZNDzqPdeXR/RDoJgGZxytTfhiIIEXT2mEA9NxYlrO2gFvDGarYcwNQsfeY4/zq5//AsujIz78ocdZxBV9sERXU2XbxjIb4LXxPC/NPWeXhlZWTMoa06w4WTT8zu8+TdCCCjRFgGWFRfeJUUaMa2k6Q0gjBzdXGAriOhoD9+3N6edzbtw+ZsjHZKuVXZQE1VQDKkQZg8VZiCWBNRQRipG7FhQxFtd4fEg1QEYNy3Ggc46EouJAhMbWiX+0nmUMlAKZRDaKtb7anPqeDChlA6A2SKyqk2ihNQZTKtA7pojzBpOV4g3GChZLXI2QqwrQO0cz8eikcm5aY1EnmJApKVb1RU5cu7XkffdfIEktmLLZTKpjJqsSh8LR7VN2tvdJahExOOtQqfrgTKZ1jpwTAWEZqtqkM46shWGsIT8iBXA17EUzRmqDsLEOKWvIht2p4fnnbvPIBy9wfHiLxfIUHPhJy82TUx6+PGXaNQzJ8erzz/DCt7/Fx374M6CREDOIRa3B6EjpTxHTgm2pIBdXWTjcCS3SysCRWiTLHTUgeXOVMhvV8KbAFDb5ePWMfC/35m7tKm8yzNxjQXnn6+BblXv1EN+9in63zcN3thXfsR/fo1kUUzEJm3NZ/cbm9RFAawGtOSNG36Fsf2/9m1iHRwNOHeo9q1QVGF4MKQbSGLDO1j+wq9mdqkIpM6xrqNz7SNLCtZOe1w+W7G51PH5+Ri6JNGZCzCzjgHMWo1XdEyLszqdMdvd55ZWXcaYhxBPiKjHZnXF6dERYLchNy/HiiLHvsQY0F8Z+5HSx4MGz28RsEGtoXb2++UbYmu8yaydA3DSAPP0qsL97BmcqbxR19ZxnarDQnaFozgZxDZBJIdOHKV/+xk/wQx/9Jc7tKiVVPmG7PSMuR0qfKOOI36R6U5SkFbXgNwGXIWU0Za7cPOLhS9uUmDCmpnj2UTBhQtNESgnEYlj0maPjNYtV5HAViOIoIW+aWKZasVG8cTV8yGptWGi1hTrXUEypzbNiMcaSkgctzLaUH/6hx/jQI5c4s7tHMVrPc0VZLWsqa9MKWhwlBdhY/8QYutag2dTBs7SgmTCOFVUS9jACq/XAmMKdsx1WhJA7csz0Y+QP/qE/zO58C0lLkm0RdcScePX1a3zpq99gyBD7QE6ZYjY2vXyneZIpKoQQWCxXWLUMoQ6Z2yJo0sqZVIOS0SLkGJjNp2gsjCGi1hIk1IZGUIpC1EwZawsypERb6j4hh8RqtHi13Io989ZwRgUzOH73VuLV5Qm7reHlg5YZcO5G5OFR6M7sMF2NxBTxWk/jMQVarWKDaBuGYWSyJbTFk6SgparKd/A84FuesjBxpoa9ELHqMBSmxtKpkEsC68jWcHA80OdIn0eeOwk8NN/CxoHHO3j0sQljEtIY0T6wylOOk3L5ZIXs72Lnjm0v/MvrmWsvR5rlVxmsw2hLzkIaa7M9k+pwToSYYmXtAabAQ2e36aae06P1JkzO4ZzDzTLWnzL2PVhLTAFjG1KI1aWTFTEwpoArWm2lKeO7ltb5NxwIMaMzj0mFUlJ16WBoqdeTMI41Hdd7zCZ8JBuDmIooaq0Db5FQk3+dd6QYqgqzFKwx4DwGwRuLlFJ/D2eqDT0XxnHEtx0hRaIos8mU0I9oZwGDEwhjomDpWk+MEZKCq2IJ4xxRM7cPex59fM5suiLlflP3VeWhESFrVdipEWgs3hoollIy1hliAZXqbEobBqHZqJCRiKrl3P42omtefe0l5nPPejEgGtiZt7x27SZP7pxnNoF+EL7znW/xynPf5r6H7sNYi6Q1ahtUPMKdesZW2rSYTe2xUdVt/qvrrXZdfUfnwmb6t6mFNkKPe79910Fwz5Hext57s6PgrY//9prmrTXT290U7/Rzb1YNVpdYvzhmWK/Y2T8LzmFRclpyeOs22zt7NNN5VU2+xzF5b723/nutd934K2PkuBhev37IybqvTIZSsN6RSwVxwqahh9akOmA9FDqtaa2taXBeiKVQEA77nlcPlywDdL4lpowrMGkMq1UglhZyne4GhDYou85xfeg5XGVmezNWq1MuPPwIxRksineexnqiicSUyePIcrViZ3ta2Tc5M4yRkjZTkhSJYcR7g7eeSdfgO0/bTRiGkaEfsKZlOutqopptN9JpS0xQiiXlRLOxO5jFUI8rG9m2CGJbYhNxzkNWPEKMAS2KuaNKUUAMqhm7YWFoMThjmc0bjBRiSBTjKJsGoWzuf+fxCoUxjaz7vsrqU6IgWA9eOkI2nKwCt05W9ENkcdwzWkGyEvqB+XyHMfaMGjCtpVhLMbZyLkrGpvq3Fe8wE481rqZ2eYMmZWfqeeT+PfbmUxyF1idUWiaTlpghng7MJpZxXtuj41DZH6eLFda6OnArEd+2FK2pfFZrgmmqoatkqQmtj14+x4/92Cc5t3WWpqkTbYPh5vEpX/zCb6NqCGEkxYyzlpIzvu3IpRYsRQ0FqUotrbahPhXGkiunp0Sm04bkhHVKOJTGOKZNTTG0rdJ2DatlQonEOGCNwdiGdVyj2uNKw9I7xnaLw2EkhJ5zJWNzy6Nj4AM7Lc/LhAuf/jiX/+CP881/+P9la3aG/M2nKWuloefjl8/SP/I46xx4/ZnXkBCw1lNSpMtKco5rt09xpYaTTHc8Y/J48dgWXC5cdMprN084No5OHG1jiSGRfEGch1Q/N6EEnl0tiWI475TRWJZeOOeFh+8/w/2P/VH+wMee4PEnP8o/+ke/xLd+/TeZx0DBc5gjy1jopg2+7HH79ducywu6xoMa7v/4OfJTtzefiVi5Ra5UGwfKalgjpiXlyOnxMa4xtN2EYixWMvv7u5yuI4uhYTJ4sgghQ9ARbYQSMkYNTiyqdaJeVFkNPb5pYNrgh7pBJmVc4xljYCoO31hwhhAT0npcqVPzMWxsLlr5UiqbzZEWUFMLzRDQrExnHWkTSmJMZZBkwKTMSAKUCYZiBE2FPGb8bEY2MIwDYoSQFOMFnw02K0NJSFJsqRNzg1KM4eqtIx576BK+6dAUqyIDV8MBSiEVuHHjFo8+8lBtIGyer2wS7cSCuMoBCnGo540x4IzgfEsMhSz1sUpyFaRPrq03sTjb1lRNTWzvdwTNrNaZtoV+rZwse5pJw7Xbxzx6cU5LT2eUoJmvf/nLfPSHP1PPd7GnmW1VxEEaqrXXe3CuJhobU5k3d20e99hM7lHy6YaPuvnyHXVuRk1VVgncLWDl3kbgvVPzOxbiNxp3bzTwvlcj740J/PezDb8bZeCdevgN1s4G67B5j6OKbODf9cxcoNRNhIp5u8fmvfVvbBVVrGYGNTTSVASIZtaimKaqz8M4VoSA9eBqk8xgGZLSdR1xzFw7HdmZTXniTMe8dbx6OBBiRpwnaKT1Fi9CPyam3YzjxQlHyzVOGhZJyUYIMZKLYRwHFqdHzM9f5vVrr5FDQJ2gsWDEcrQ4Rdx9tOJRTN0gA950zGYzKAlFyaVweHxEHAfmc8cQ6sCgbS3WGIomUu5JKeAbj7eOmEac87Re6E4rp9g7x3Q6QzPMfcts0jGqJySloQ5bTS6YLCgZ42xtLhQQ32CN45Wrt/jE+y6z01m0JAye6zce4m/9nf+cn/mpn2X3zE1CNAxjYpETJSimGNSVGviFoRSlAM45BCpHOVODn0rCNo6ihqYx2KCUXJh4z2zLcd/Fbc5ODe+/vMeZSbU74yImW3KMeFOwpmPMEUygcQaRlrZtwBjqmV6Q4sipZxh7VMGaCcZ4nHVM2oKVgm8cGchDAISSMzvbOzzyvsexFhwCyZBST/GOL33ht7l9dMIqF8iGO2EBYh3OCnE9IMazihntB8ZhxJsGA0RRAorxDQcnC+x8wmxuKSo439RTacl4Y+nHQNL6PjPOkELAAZ2dMoRAtBGWgfWOMIgQSqQpylFKNH7KwiSyjfg84do6cdwruSn02XGNOfPk2RNh2limzlEwlDTStS0EGCnkRnhxKJxdN+zuRlxWQmkwvsM3gSe34eF1Zl0KayzRKPPJjIkkjIBRS5KM5oJ6z3EUjqMjF3g5ZL52mvn4hS3auEJtj6cltg2PbjdcWQwcmoZgHH0/EoqQ4ilpMuG5I0e5MhKNkEvPqNRk6Jzo2oYUM+Kqn9a0DlVD6x1CYdUPuGbKlqvn+PUwsl6MpCHTGUM39RRtOe37qpaVUoMCVdEh4puWGHPdf4XAzrSlEcNgoGkaTFbwDjMMlRmcMx5L6+v7TI2tbgXvGdYBO6mKQ6OWpFBiIY8R10plEluHy4J6j9uo8dMdJJARgpaqJnSWIQWc9TTW0Qt0CBMMsbGsS8bbBu/Be8PRoufCjkfSRvuuSmMtMReSwBg61qvAubM73LgZ6vmnpDrINEK/7qm0HyEWgzeGnOOmHvAkiYgbAK3zxxywrsGYgiaAGdZnHv/AeW4cDkz8HMMpEhNntubcuHbMalmYdNs0/oRhlXjqC7/Kf/Thn0U1UWLAdFtk6ut0p2ARqZ9J1Tt76Y2+/04T7+7V5E4D7rur8e69/72W2zs1xRu1xfdvJN5bE72zTXhTk23q7nd4UptjvzGEfafnXusYIA7osALdR1UwYnB2wt7+eYzU10w1s4l4eW+9t95bP+B6142/owzfeOUWq4M1MmlpisFoqNZJ8Yy5fgiNCGIdWmra7GLM5L7HS8a5Fu8apqWwGCMHt5eMJ4HdrRntVsPhrSNEYdpNEFcl+q21jKnQl4QYYYLSOstqlXF95FBuc255wtZkG+9N5VBQrazO3gG7Kq13daqqjtm0YSvXhlnXNXSNwTcN066ytDJSG48h44xhPp/V4lq0QrhFNwWngDiMVDthKVqBulAndikT8oChhQhmTIy5slGmWx02pTp5yglxtqqUpCC54K2DEGl9xxjXnG126yQ2B2QcKyuilAqZBrydYDZ8DFMUnEOmDs1KPxZOVivGVDg8XnO0HIm5pnMl6vTLNB2n4xrTWZBqxxlyRDXgxJBzZmIMeYyYrTlYz7A6Zbt1tGJ48MJZPvT+y+RxTckF5wwpQ2sdeUhY8exO5vhxjZsbxAwMnZIy+G7KMlSWjoQK6xUjTMTTeMswFsDQGmE2s+y0lv/4T/1RHnv0o7TEOrnLmaJw++iUV194pTZhVDdWFOgmE1JJGCMVIDydVHtFykRjqiVpDGiMDGGgaR2qpU59KTjf0rXT2jih0E5adD3gRLl5uqyqV1Xy2GMlk4tFHawFjpaJPq/Zmk65NfesD1e4W47cGF5b3eDs3/rH/MT/8k/xoQ9fYjKd8NJ3Ek4N826bT3/sYZ7Hcv2kRbLDZiEyYtqGEi0DwsunQjcO7HWe2wcjrjgGhOspE1wHJRKsoSmReXEsS6APQvZCScLSwLRkWu+4lTNmgPsvbaE750lROVMOyf+P/yuTP/CH+NDHfphXXnqBcu0a5057vMtocqSuZewHthYLJG5zc1xzYfCcO+/Z2/PM/tDj8PlraKOQIvgJYRhoreCsJxOwDhpjmHmP6xxI3Xj5FNj2jmVeM2sM953b59b1Y/IQaMWRckawZIUiSikZ5xxxCEzaDgusU0JKwTcNrXcEq9iixBDJVphFYWIbllkZw4jxnlgS0ULOGZegbV3l1SA1XCYVnAjGwDD21VKVa3VliyGJYryrhZ5CzolkDaKKLbBerGrzbawbYhGBXFORJRVc46uV3CouFbCZrIbT4wXrfk2HQa3BlwpgN95RQiIWYTUkbh8eM5lOWIUe2AC6jcFqwZRqPy5hY98ZApoThTq4sHgSipRECdU2mHNEaGobMAc6P2M2sbzvobMcLgMPPPoEz3znWWTIbFnHC4vAwamyO+1ocqGbwEvPP8Phzdvs7szwRlExGM1QErbtqvqFjU1XgM3fE7iH7ycbuPM9k/A7g6d3uHbdSeC92/OTyr2pisJ3PzX+fuq9N5J+356I9yYbzvdQCL7T8e/aebTURq7UY1jZ6E1VqZfyTUosBeWOauO99fthqTFkI0wQxpQ2Tex6fQxSrZTFCM7U4cV68x6Ztp75vEGbhsXxAc3EcL5tmDeG4izHyyVFEtFYSsjMZ4bSlJp0GQrroeC7TGuERE3Q3t6eM5bMed9y7crrnJE5N167UnOzxSLeYgyE6Bmk4ETprNwNirHWApGiI6U4hqQcLU+5eGaf1nfV9mvrey/FjHeF03UglYpcwBa6pgNxUDLObHLHm45SqoLbtYmm80gQ3PYW+XBNShnjW7Jd4cVhbEeKBe8ENZmERfuB51+7wcc/9DDEzPFiYNl/iyc/+l9wGF/l4PbIRKUmhYuQTSGVRJs9tjiKyYiUqi4UIWqhdYlYMpohASYJrlOsCvv7HZd3plw6u0W2I/3ilP35HpPtLczU43Ng6CPJZXKufOWQq3rKuQmqMI4VN+LUMZ1MGTJoinjfoX1kDCOt9ITsGLKiKaPDSLFCGhKFgmpVe7//Y5/AtRbnBZhhcsZgODld8Zu/8TmgkPNY2be+Dn1LSRRVvK+1F4s1ZT6tyseUKoZBHNYqUhSTDaEUTMg0NiPZMGghSKHNwrAesVtTcj9ic42nj1rQYUAay5gMIoHVKSSBVjzXdMQ1nmwLu/uXuHrrBjktMaLYbEhqsD4xbzyPGAtGMd6Ah1eWI/PW0JrMGIQyZLJkpqnlhduBywslZCHOhJOp8LmjyBdPVrySTVXJtg6H5fa654ZW1R0kkhZaVRpV9mLLB1MkY3m2V17IiS8NPbveMuQOKLSSOEV4ccwEBr5zrWFyyXM99Txx5hyHNxZ87cVbnDu7S/GeEqkhHDGjqWBtDVGZ+QZVZR0S80nDcgyc3la6SUMpJzgD6wFu3zwiDIlQFOcbcoR1GFAtqGFTtyfwhtZ1VdVnBWkM1ggqEGytHRpnIWZSisy2tijG0KdjmmmHpWBxaKrDN4zBTiwTI2TxqMIqDBhjYdLU5qAqOQtZI6ZxleftPaUo3XxK104wJwv8pGVIAaMN2cJaCy0GQUleaDJ4sZSs+EY4XSx59qXXuf9HniDFkYipCdeb/ZdFSFY5uHHEAx94lKPrtzC2hprFNFaXqCZUDOtQUBGcDayTJVhDKkpjICdXGYaiOFWyKqIJ72dkd0IImUcunmcx9PjpjO74BnkArwN0wutXDnny/ReZTRxDgtOD26yXC7Z2ZohtKnOcUtV4d5pxCjXIArjD9KtXD+BO8AW8Gx3/nSbfHbvwW77L2xtv9zbm3rDqfr9a5V4Eybtfb1cD3rUHK0z2L9HtXaS6OsCIR8n4bkopm4GnKsMwMG1+gId9b7233lvAD9D4+73nr3LYZ0wudCGSstB7R2uFGOrG9g6nRtEKYAaKEUpOzCcOtdUu16fMCwdLbg6RMzuOh+7b4+WDI4YcWI+JifEY8aCCOHAhc257BlpIcaRRGKxhHCMuR157+UXe99gHyWMhDJVVE3OksZY0JoYhMO8a4lgQZxHjsH2tYkUUZ2Gra5h2E1KplmU0MYxLLl+6zBjXrMeqAkpljdBW/gsFaxpSjIjUdLNhrA3QkgvDsKJzBosnxqoKlAz0AyVEnDEkTVixpJQQ6xGTIdWNtkHxzjDb3qXvI32EUWtgSKFgNsB9gDGsMWZK7BOaDUd94iTCsBg4XgykopWXgBLRyjzRRCmFBk/RCpJ1HlIs1fYgQtRI280IfSEPA97ApS3H/ZfPcN+5x5h1LTu7+1iTQFfkaIjBkjO0Rmh9JKYIIkysYz6dULaEy5whjCMhBLJYjpc9/RioHOFaCBmE+aQDO0dLYe4nWFlz6dwFPvChT2A2qYCZmlA75Mg3n3mG9WpdG3YlY8RgTLXHpZDQAoKhbVxt0BkY+0AsZbO5rgEls9mM7ekEkYx1NWmxaKKUhMbMGsVbYXt7wnGMrE4WTKRgRNGmJp9NBHK3xZXbParCcRy5drwmFuUgC41VyJ7PfeeYk//7P+Chs3C06nnxO0veN/XsXSrodIobHUVPwOtGdeUZgwenTGzisCiH4jg/y8igFB+xDmwRmjFysRW6HCnR0JjCjhOGUJtIxfhqI08Ra4S2aygjrIYVrZ0wiEHSDMm3Wf53f5+TX/7nvHwrkBaFD+5sM7XKqynXwJaQMVdeJjd7PCye2bbw2tXIygceXPUkEUwSvGtRhMZVEHEpaWM3yng/qcmKahhjrO+/Lc/Lr90kGodvqx0YYyhXD4nLQKEhl4D3jpQjqpD7mlJdUsY1jokaclOtuKlkcid4LJOuw1utitM+0rRttRZoDagxCr5rYUh1s2YtMURmk23WpSfFCFpTqENK1bLrG2IIWGsYXFVwWFXGspnmFwgxYAo0vkGMQ72jWMHETBJh6jxRC1kVKw4nBXGOMsK4HDk6OOb+/d26md6ATnTDUo2lsFhnrt++xmw+5+bh6i7rhqJYLzjnSEPGirAKI0YsXecoJVZbT05Y49FcT4eppGp9iSPWzPFWSJJoLDz+6B7/8pe+yad++NPcOrjKzauHdN2E2WzCleuHnPnARRhPEAP9asHz3/4WH/jQ45ATu7N9SujrhtK35FILYDHV2lvrvLcWpJsmGndsuXdsJHfO6e9wAbu3obbh3twLh/5+dt36Y9/7/m+GVt+955tuewPa/eaC+Z0afm9P9DMbBVVV6hSpyfDV7rexQRpb05HFoynCe4Xx74vV+apidRiKBc1pA8I3WGswpm4ETQGxtjJvqUqc2XTK7dMVY4jMjLC3VYMibvSB41BAW4yFUWHXeLZdgxWLN4L1hqhVpRxLVXR454CIFIcvI898+2mMWmRqKQkwhWzg5GTJ0eGKc9s7hFzIG+6SipJCJOZMyMLx8ZLt6ZRp12GtrwEAJVBESdYQR0WiYTZxNVEc3ShWMxhD3nxukwo5gTGekDNNa2kl45uO025CWo1YC2RHt7VTEzhLxKqSSk12t8Zy/cYJNy70HC9OuXkaWPWBnXNfpAhIEnKOjBuWFJsGiWw+az3CdtPWpFDAogwl0EgDCLjItJtw4cyUy2fm7MwMJgdUe1bHR8y6bR559ANs7exzenyAIeNcQxYwpnL8zKbec86Tc6RoQNTQTBy4jMSC2ExRy2y+ja6OKbnQ2kIMI7EEmkmL846SMiEkyBlrPI+97wPVzZAFaxORjHWWGzevc/PoiNUykDcNHIMgtloL7Z3BSSlYpIYm5Gq7NlaAAiJkCzlG3Ch4Faa7U9JmUOOlcle3trY4XA/0Y6ouFmtAKirFAq33iFYmXNs0xCGCsVhnWSV48fYRJzGTcqRxNYE5jInWCIfjiqGpiuY+FBbZcGQ9N1KAGJm226wWp1hfUFGeHxrMaLCl5wMPXuTJT/wQv/bLv0lsCnhDVxrCWPjQBz7IjZuvcOPWKbbUkAycJ6eI8Y6rY2RnEQjFcgrQTbkRRnwWQjGowFbrWa97euowczHABzrl6cGRbmW+dZpZNS3nJ45zVrh1O5LSiDUWP50ionRNS8nK0Cfmszl5SGiKiE0M/RrjGpaLyMkqcrzq8UWgqZ8phI0Cr7IXU6x2X1WtexcrTLqOQsRmRbRgybj5lNwHNCUikMcApTB1DSIG37Q0YgnrkTxGtBSkVAtxKQVtLE22kDLaWFrvMSHhnGUdxprOKoIpSmctJcM49tjGkk0NrmhKYbBSw/5ywfuGXAq6wbUY8aQSaVzDsOwpSXBNQ4p1v7Up3SsKQzOnJ6c0YrFdx7Sb1IFwShjTsQqFIE1lfjYFu7VNWfaVTd8YxhRpXFfdIQayF2gcxRmMgVamKCPtVCj9DUo3Yafd4uYYMUnZmcPRYmAwlqZ1dCNcOzjgW9/4Cp/+zKfwzayyy++stwwf76rxeKPSuaP2F6lsg+/W/HtjOPnOqro7652tut/t/t+7qadaeLPV9x2sx/r2muftz+MeZeA9g1+loFLFH7IRaYg4utn293xe76331nvrnde7bvydno5VWeI9q5xADY315BAoqUrixVULkjpzN1TQGYvZpLVhlVSEK0c9146W7M87Hjs/xZnCuKzpcydjTzdpMSKkrIxjRMRw8cw+Vw8OWQ8RI45+XCArpdudcnxwm3jfCnENx6fH9KslUMNIYojcPDjC2fuq1ZNSU6Rc3RE1rWN7vse0bchlwDqPGMfxcuDM/llEygaQ6irLRrqqasyeorWR5L2rrLpY6kSC2vjTEjBS2StN4+i2Z2ifyUMkh5HWwSgFq4aUMmIsjVD5MrZgtbDsA69ePeCRc9ubC7VgjGMs1FCDzQsdU+JgGTg4XrJaRQ4XI6M4yEKJY7Xwpfq7WFWstTgywUAfh8quKakGXJgKftYsODshhcq/m00d73//BT7+gfu5sLdHO+nIoqCGFIRxaPCdo2kMgiPFHuN30RxAoG0tFFOZeNIhzIhhRBEund0h54xm5aRfbWgPddMsKCEWUg7EAD/x2T/MvJsgcbFh2HhiDKxT4Quf/x0Olz1hTMQhoiIMWnDOUhS0KCq1oTCMI6t+wKtjTAFSplODZEhZqvqAjHWeEgtFIvNJxzCMjCESjAAJExMmCckW1GR0hKK2WlhiQnyhxMjQN5xaw0moLMILwDQ6rpuGk2dOeP5Gw6oPrO0OV9aB8zcjD2fPZL7FZNWTciJlME4JecCroVEopmE5jFgj+C5V9kopGJ0gxXK/n/K4X3OjwLRz9OMalYzBIWSmxtKqUEiUnFFfLeGzGBhM5nA9cC0LD25tE3PPR89YnrzY0a8ylMytoyWx2eEoKucXPbJ7BplYthvlc7fh6EbkJ3/lWW4eLRF20KyEHNEiILlOJjeNnpQyxdcU5tYoj993EbGFk8M1NabC4n0LPmFbTzxekW3lPsZcC5C82bxIqRyXMQScAhvejGsaWu8h1/dDLoXBg20cWRMlJ9TWd99ELDFmQhiwk22cSE08DpEiBmstWiKtsTCx6FiB0a5t0CGQfWUwaSk03pMQnBissaiBQRONd5RccQkpJpq2ZQyBZJT5dMa4Hsm+NgichTAESrH4tiX1Ec0Vby0UrChYS8Jw+2DFk08+QHP9tH7P1o1ujhEzEbKYGp5hQL3DOYM3nhirlSxorjYq48ipqgfqHNpRksHYgBTD2Z0tdrYt33j662xvdxzcFGIc2Zp5bt46Yhj32Z5YxiGSnOPLv/N5Ll8+w/nLD1arqhbEthSxG0uxAGbDvLmTbAd3Lb5vYta8tXCs93vbEqjcm2oBr9ybt97vzpT7niO+a/bNW5/LO/3Mmx/nzr+/G//mzccwqCopjhzduknXTZjv7WOMBw2s1wcsjk84c/Yitu2Qzav43vr9sbQURO4w1JSmaYh5kyRJZdZhDCZX9lXebPRCGSmlMMTEfKvlwdkUo7CIkeUYSDFhc+Ugrdcj7d6c7a0J65SBjLdVJTZWYT+tqYEF69BTinLRexadcOgtanJVLLtCcZb1EDk6XnP/mT3EVnYagHFC46v99/BkjbWOM7tzchoZm5qyqjmDGIx1qEnszCYkBC0VmVByqUzdMBLGXQCGFFmPQ1Uvd56ZN5hS0MZsbP+CJMPW1nmm23uotwxHR4QUURVsY0koN5ZrvvT8ayRVNHmG9TYHt36Ksxd+hcYf1YCnVBBVjIOY84YFa6tjpGSigFNDlIwvHjVwbs9w+cIF7r+8S5cDGSGXgZgLQS1aGs6dv0QYMqWr6AkkgzWbRp+p7DUqz7XEQI7VRjhrt/CTlr7vKWnENtXeqSq0TR1A5jBUnrL1eGsR6xjHgBHLGAKPPfIoe7t7NNZhnIe8BmNRsXz+C1/g8HTJOBQaMWA35xQgpYSaOqByBlLOlCg411QFUq5IjtRShyYG1uOIiZZ1OUG3JugwMt/gLk6OFpwMldUccx0uORHazlM2jZpIQY3grDDaquzpFTyGIaVqIbYNJSViSohaKI6iyrg4Jfct/dgz5IwaRZLgrEElIq0np4H5tJBzqimnzvDww/fz0Ic/iP0X/5pHHzhPdjDGwpjhp//wj/DL/+KIo9sLInX4awBvPAVBVFitQ32NtlpWyxHvWmxMzKeOIcPJasTZhsmGPSteOF32THPh0FpONGKMYFvPzs4ONw5uM520aKplfIiVQa4owxC4fesI52E2bfFSLbL9as04KMU6jHNIAdkMUEOMkHKt/YxDcqm2SFOHTc10wrBeQ2NqcAlKNkrfr5FVwEgd8Fmtg4icE6dpxA8O5z05JUh1cNpMJpQSoWRSEhrnuXjhIoeLQ1b9Gtc0SKnX9rxR24s13OFqBx0qH3MUZr4FVaIq1gjGGJIWwhgxzkIuGO/ouglmZulXS64fnHJxr6vbH2s2abAFWwzilJwt68UxW2f3Cf0Cs79FTA1jLsCI00KII94InTWcjKEODmPGR4v4hJOCZqlqxQA6CnbLE4IiYyI1ifsuzHn1+jHqC2ozOTimE8vBceTVG2sePdvRu4HRNHzx13+Zhx97lEv3zaot1ph3sMy+8e83mn7f22Vw9xrzPfl572a91aVw5/G/z099z8e4Yw2ux7+DS7n3Mb5b3fPmw95T820Ca75XY/O99d56b3339a59TkkVoU6NvbR0WFzJJAo4g2sbkMoZKUVh01gzWou9oAbvp/RRuL4I7GzNef/ZbXbbCasxsx4DYhsGzTRGabwhxZpaGwVefvUlhlWPNS2hCMXUC13BMvRrlqdHFGu4evMqcRxIKRBj3jTxFoQSaJvKPmvE4TYKaG8nTCYNKgk1kHLh6o2bDGGN6sgYBlBL11gmvqM1DR5lHHsg07YO7wRjlG7SMZ3e4dUIXTOhm0wR49hxLdOuw8+myHxKM5/iW49tXC0GrK2vX0m10SiGIpZ2OuO5l65QkuKlYLVujFMxHC4iL107BOClm2u+9eIJz94ceP000weLFggawRhSzqhWE5hrG6wVvG0xxWxSPqsyKqvQNB5vFFKhM4adueWjT57n0584z5MP7nLf9h6ehpQTmgJmTJTY03mLsx1qATfSdo7GN8ynU2azLbztcHaCM1NEC+v1KWMYKCiqBms6mqZl4ixT75jNWtrGYxG8hQ7l/v0z3PfQg1gLXgSTHGUcsK3j21/7Bs985znWItUCXWrTuSg0zQQjDlGL4jgdI/04EoaRmGpDI9vaiMU7TlZrThcrRCBnxRiHbxpyDvhaNxP7QBwTsUTE19RYI0Jnp5hSuTjjKtCr0FvDMZFlSSxyYMiGoJaFjIxqGEvHq4vESTZkM7C2HdeZs8gGDEwby8RZihhCCrRt3dqPKKNTrhrl5YOC6zpsUzlEo2uxTphOej59QbjPZ5yOFDzZerYnW0xNwViwziLWUGLGeMeyNNwOlpgsy5L54jJxGBxdO2cqha6s2bbKzsTzwb1dYug5NA3ZeVZDTyiWmBbgMrd0i9/7+sA6WnLpGfKK6CCHCmgvWhuxqSjOe9QLop7GtQzDmpPlCucnzKcztrtZhYivE/1iZOo8Mwvnd3fomqYyNK1Hi+KtQ2OEkPDi0JAJubAaRwyWTiw4i59NaIvBOlsn1bZuxktRfBFaY/G2soTEWdQIQwibhDHBGUdSyCETxlib/6kOGHxSJq5BnKW1m+K51GAZNhxC52xN1o11om3FUFpH5xs6NdjW0WsmaFU6zre2OFkNDCWTtVTFX1GcERpTlUVZhaHvKKmwuzPHiCWXRC6RIopaw9hXvl81s9sNT6X8/9j701jb0vO+E/s977TWHs5w56Gqbo0sFsniIFKkRlumrAFtJOg2HLgNwwJjIzECRYKhKIbhhi3A8AeZTj4IHgIkjh3LQxpOJ92BWpJlW7Fk2aLFSRyLQ5E13qq64xn3sIZ3ePLh3efeWxNZcjetdqte8LLuPWcPa+9z9lrP+zz//+/PkFJlmRZDtoq4HpURE6Boh/MZMZmSFGWGuMDj775At4hIanBGMBm2fW0YvnxtQXBzJm2LiOPaSy/w8tUX8ZM5aVxXK68PVcl2T2Otgq5PGn9mM9XfNB9kw765dzz+JqsObk5udlKI1sLxbs0pd+yXd+5zT0PujS24J/d5Y1tvta7c+xxvfGyv59+8yR2kKv1MXGM2ytbK/3JMJ6c4e/YS1rpNYnRG74SevL1+v1cxpjaKlGrDzdCPsSq+Ns0JUSWmRD9s+FJAPw4M44hgaNuWxbJj2Y9EgVcOVqhrSSYTNZMKRE1MJ6YqeczGEm48RaGMI64kuhjRbFinzGgL06C14ZUS5BGLYlSxznFrb4H3Ae8Ck2ZSX4wGYrQcrXtsMFy8dJbGO5y1DN3AmArOuaocLEMN2bBCaNqa1m0cxgXSplnRhAZgcx+lGEhDYmsyqe+CFmwTmLYNNjhSG2h3ttlqAxdPbxGmFucUkYwRZUyFrk+MEeLQkdIZXn7+f8d6sUPKFY9iU8YjlKT0w0ASJYviVGrTNVgKheAc263y0DnDex+7wMNn50zGRIqZkkZyVyixYAycv3iR0+fPs3Vmh6yJyaTFe0uJEV9qcyumuFF4CuM40DQBa4R+OCLFgZxHkEguddiUU08IDSIWkRZFcS4g1rNad6RU8MbRzuY89MQTVV2nhf7omNsvvcxqf4/9g9t84hO/gzN+ozqt55iilQxqRUgx1fAnzWBhTCMpjRSrtaHqawqrV4MBJjawQtlfD+yteg5XA9f3FlzbX7IcMlmgl0I0tbbMJZK17g2Mr0idZtLQhKo+TRox41jRDilijWGUyvaOuVpXewMEx2w+JWlhtVzT9zXtvaZHwzD2+OBwYYuxBLKzlOBw0xmzyRY3btyg3XZcuv80Fx64j5U6rPFMd6Y089NMT53CaB0292kkWRhLZowjh4sDvIHWOTy2DjAFlkOkHzJqLBElmkKXR6IKJRq0GBpRJsZhco/Yhne+6308/MB9eONIWog6Yt2GpWtgzJFxTCwWI/v7a27vdewfjewvOtYlsuwXiGaiZDRG1rE2JadNFSYodeiZbLWr2+DIVFFGGRPFCKnA0Eekr+EiduLBlPo5CpZJ21BSYrlasT5ekNJAEyw+WFIeEa11TBwGhjiyt79XreMbJbpJtVnpjcM2AXGGZKpT5uzWNlNjIUbW45qVVOSIpkwpVUChWpmAJUeMVATLYrVkPfTcun2INQ6kuiKEal0+GSisxpHlUcf2zpTgLClFYk6UsYdxQMWw3SgTk5g4yCmjUggKYjOxKKFYRi0YrSGDsQw0khliYu9gwBnH2TMzTp8NGOM41TSIZpwWpnPDiy/cIGetAUTFcOv2PldfvF6DQ8pJA+zVA8STBhnc23griOhrGnGvVfS9Favta5/vtd+751+vGX6+ugZ6c7Xht35OfVWNdfJaX++o2DANyyaoTM1dSafy6rrv7fX2env9ntdbVvxxh1FTpdBItaNOnKcrGS1V9i3BU/NNa09x4gxNawltIBvDclgzmVvOh8DMG4qr4Q5REmosQ5+YnVWcz/RJieOmoC2F6UQhZYpJSBG2d+YMOXNu4nnppatc9Ltce+FFrBZEDMU5BCW4CUedMmnzRvHjKZsThzWgVABsyZbVGFn0Kx64cOEOr0bNBkY7JIIvdH1kGSPbdopaxQh4P0fVYDYbU+cMk2ZWLyiacK3FNw7Jit3aJh9eZxgyeE82AyJKsIGSDNZFxAhJhKSJ27ePuHm85vyZKYJycNTxysERe/sj9y1GAI6PR44lVuukVQZGJiXgkgOTQTPOCKPdKF6MEk2kZDbchHpG9r5yXLa2Gx67r+WB87vYtrBaHjIznvn2HJkGghP69UjKhehTnYzlgkrCGoP3M8YxkYclmYxTx2w6o89CjpE2NBgJ9ENH0TXiGvqxNl9yFxFfm815SGQp1eatyrs++N3YQGXY6LxONREEy6/8yq9WO4TUFLPgqYVG1mqpoFqYggWO15RJ8yqODWKxFiQrpggFYT2OtCEjSQmDcFxGgnPkdarBD4DpBqxYnHWsS0Zjh3jLkAQxI8tFbQIGE7ilmWwtwUSm83OknLixt4eYgh3AqGcolkkbOcOUJ6U2ue2m2/jicmAWLHNfGTDaQyTik+PlsfBA7mrx4oUXJnBshb/3/ILlUc8LxZB0xASPL8Ltbs3LecQ6h5BIqricmKeCHzNPjhk7ydxIlmfWynOx4+HWgXqSeEyOeCfcyIkXxkIZOr7xSoO9GLie1jy5c4bjpuNLLx1wdWvK2LaMfcJIi8Zc09P6tLECJbYnLWOMWB+YNpmjXjm4RQ1ZSUcEB3203L6xT99HxiGDtwR1rJY9a414VdQK1luiZmwbcKVuMNUJ2MrRUlEG68kowVQW6Nj1TNoJZtowHh3jZxXCrxRcrso+XKhFbFFaIyQJkAdW8S7jpojgS21mllJIJqFGGaTQ2EAms717hjRm3LrHTD1DjDhtGQWUQkstdpIXXA9zY0kZQhCG1Zrnrt7gwfvPsmVLZbwlIW/UrCYLagtDLiyXK85dPEv31DextoBaYuoxBgz1PD7Eav8PPjHExCCWAcUrVS0w+no2LwWvnqylWtjCdMO7STx4/iy3jxbYyYTJTiAuhKGsOH1+xtMvvsjDF3bYapVVCIxxzfHeXm14lIxxLUXBmHuZN/omzJuTgq/cMxF/c+vLvesu9+aN5l1vZo05ef57G5K8yW1PnueeSbucNPbe+H7Ca0v2V3//Xv6NoBg/5fSD77oHS1BVsMYUZMPAkaKYUujWHbO3rb7/k1j9EEEKgWpHzTFTWZm5bljHao0VKsNN4ubaYhx9P1BSRmJl8M2mDbcP1xyvI1E9xtaGYiyg1tKmREBJmkmlWsBTSmy1gbA94fY6crsrNCbDWBMxtfFID1kiGn1tsFvL7dvHGGdonNxtJIuySgPHizVnTm1DqU0O3TB5RR1qC2kcECyqloSQ01DDzspmWGEM7WTC8aKqwKSU2igbC94YmqkjxsjEtazFgenxCimNdN2SU/OGYVjW5kBKlZ3qPJN2ztlzl2iallRGjg7OAPVcVoPiAAdaqqK4dYEWS8rV3osFHQcm3jOZec62lgs7jnmwlCSsc6TTOiyMsQAjujrkHVfu49R0wtCtyaPinJCp7OGSSh262kCMEe8c3ttqZUuxDhiHFVbBtg1jzjWVlQq3TzFjrEE04H1TQ9kWq8qxdh4fhTPnLhGMxVpDszVB/AWcCJ/4wpe4dvOIoYto1a+Rc65WTQWNtemSUqpW8NZDinUgYy0pF0reYERsTeV1VkBgwJIHRcbKWSwGXLFVuSobVVPOlZ2dIupqeq2kRB8zfck1tCpmsjd4DEdxZK41IVnV0rYtmuu1SkptSksu+GzwVDdGfb9MDROTE1u6oXEBU3qW/chvf/bzLP/NZ/CzxGFWWmsI8ymLl2/wL3/1X/DCy3ssVseMw8ikaTDU2l5LxmDpFpCmsmEAVodmlyKSFZLiJm1VqZnqLunHgaQe3za0JdKYSKfC8y9f58ql55nYxLQJHHQDxWRa43HWbAQUijhLiYWoSqdpE7ABstlvNWKrhT8mkql1veYebHUF5RhrA1ALXVdDzkopFIVJMwUjlG4kpoyftuCofHYR1NmKXnGOMJmi/cg4JsZcsCGQUmSIY00hVrAIMeWKxEEJTSCWAWPdJpTE0waPKZCdsuoHjNZ6tOAwScikGnyYC7nUMLFCDfkbhgGHIVrFOce1G/u877H7sN6SU70tBqQoJQtrCrcPD3nX5fOsrCBpYLFY03U9i35ktIFHd+fkl66jWveXWQtZI8VWy3QaCtbZqsBOiuIZfYuOI9989hUuP/QuXE60+Zh2OufBxx9m/anfoRuU7XnD1b0j1mPG+gkTP7IcLL/9b3+LD373h/B+gw54nfr/3r+fDAH1zsDzZHR5twkom+9XK+xr15uHcby2Ufjq+uekVvpWLoRXr00IGvKmpdGrh5vcQbPc2xisx8rGwXJyIPXYTmzMd2qiP4C9v5QSv/3bvz39+te/3ly8eDF99KMfXW1tbZVvf8+319vr7nrLjb/GW1QVR70olHTCqFHsZqOdDRt5uakdNcAYYTqb4L3h5uGCFAsTCrtzYe49e0Nmf4iUHLDOMBTwNrAtI2oNDoN4JSZDl0uNns/199x7T0k9VgIS13z1y19EisVM6pRNtFBchWnfvH7ImXmLw9IP8c6JNGtiHEayQj/A8WLBqa0t2iZseDWCKWO1cDpDTjCuCvPQ0viwKWiUkhPWhE32JYi4epFEEAmMKdNMPE0XCU3LcTNjjGucMZQMW/NtaOasVksYChZDUUspQimGazePsC5w6/CAvUVm3Y9ENXc2sakk+lx5gVLAW4sp9SIxSC0mtnzD3ZNuJlNomQAZE5RJmHL2VMPlMzNObQU8ERg5Pjqi5MIDDz/BfVceZrlYMvQrnLFY35A0IyZiRMhFyKmgtmbmFuIdfo3ahMSCMZlUIpPpDogwxgFTMhNbp3rilNC2ILAeR4pm8hhxruWxx99FKYaSKsMmUzDOcLw45tkXXyRmoe96VE6SUA0mhJrSFwKaE07u8ihyKmip9iXR2jhRUwvjFBOimZ3QQmPICh4HKjjvCSIcHi4Yaj+lFrnG1GMyUpPSgDRGQgikoVqPnWlQA1cPF6SSOcoJpxljq71ijANT61iXnhhqpmqf4CgL+8ZxPUXkONM223TLJcYl1GReiA2/czjBi6J2zX/2PT9EWvV8/lO/SzOfYVUpxUF2vOOxR3jl2rMcHmq1R2wCYeJm05VyojlacWZ2ipXCoXWsg+erqxXOTVinSOM9rQrLPjJITXE7WheemMCq9zSH8JmbI13TMGs858+0rF7YR6yFPOJCS+sNsWSMMQx9JHjP3DSUvq8WD5Po1mus9xweRRbrxMFyDWPGNZvfZ6n2I4ut6a1oLV61NodGAzhDO2npyogr1CaWzfjphDxEUipElJQTdlUIKlgxeO8xBmKs9UceRnJKWFODR1QL2nrCOmFyoQRL8AEzRCRY8jhWi6yzSCoYazHqSDETxx4/bRilTvq9ZnqzUboVKuy8VEuUGosTV9mDxiEZuvXIqdOBjCXlWDd0WuonXBwp9RwfHHH2wkWyd0wnbU1cjyPOtHRppFdHVou4gMy2KCagY0GMZ5BEGiLOTShkKIqE2jwtVnCiBFogYieWwB7rvmO3nXNzHSkxstVaDoznxlHHuQtTtrYiN28JX3jqC3zge3+QMxe3Ma65k5gMr1b9vb4YrEWgbhp/tRj81hXgfzj3BsC8ATPwrTQZ7z7fm7JvTr70Fvk3r7IE693ivzJwNq9NahPIGM9k/jYD538qKw4jLlhiTrVRlyJN4xEKqWQcFfQvziA18wtjVpAzk9DiHbQWRiNoMdw4GokKjUAudXAx1I8ocxtY+UxEycYRx4iVqloRA2lYY8dC8nBERZW0QVjHQrJCY9vqUHUw9CPPvHiDDzzxCBfOv8DP/1d/nljgpVv77E62mDaBEiPiGkRcrWeAZR85PuqYNBMmkzrYCG0gpzqAjHHYQDz0TtPeFDAKE+eIOeJdYdJ6NGYmeFYimJRp8ZRRuXFwyKLPlMHhm0AInq3TZ3DzLUbrK+vSNKhWe0cBvDiyF8KJXcxanAsYFIvSGuX0qW0mwXC2bchtxg4jtjVkHSimJRtBl4VsSsUlFDi3e4Zmul2ZZk6RxqOlsF7V9GLRjA8T0NoIzJrxTcMwDLTNtG6CU6wDxHaOGQfszEHOxKGrjQezYeaJYXV4zDh2eOdY3Trmez/6R7n0wP0Qx4rN0IJr5sT1kk996rPkUtOW1QhjzBjjN1ZDBQcpVltlzsrQpwoBKQkJ1dLdbHhquSgTdfSlMtwoBYk1AGHMuSa5KiCGIgrG1ZRc7+pPWjOZjC0CxlNwqBTGMhCoDbNgfEUKOlcHoXmgMQYvFucs1hlK6Rl0hNbhG4sbLBhHzoJzhtCAaqJp4OiwMLrC86/sQ2vZFeGpLz1XG5EImIbnn7vG/uG6Pq+vwy3nbcWrlIIYS2dhycj81IzF4RJjW47GgXbT7IipptSKUhl1aUSLIZtCEeXRecuXVpaYIp4OXM+FczvcXnZEIxgsaRwpCKFtqsDJWEYKxiglKUYskiEONYTGWksUoNQayCBoVuLYM7GuCghSrO8bhlk7QwXaYtgfe6xAmDbEkvCjQF+Y755mNazoY8RgwHqwBWPDHfU9YpCNU2mycYT3BoI4fB8Z1j1IVfG6rDixzHBElHHVU5qAUJ0mOReyOAIFa129niXIfQ2xG3Jt6jtjsNTf7ZKEbhhpmsoMrLSXjGZBjUedcHi0Ylgv8I3lxu0ln/3i87zj8Xci/UgbWiZzy6PndmkdJAret5SxoANgBU2b+qMojTfE2OGtYeqnPHd1j+8dHF6Us5e2uPnUAqRl6gyxNzSmsLs74+Xbxzxw6QzBdmAMr7z4PN/42pd5z/s/XF9H2ajgkDsNrrpeq+x7vbqvqqFr00+1YO5Yh/Xkf68ZNr55E+/1wWWvrsHupgXfrc9O0oa/9SO/dpVNc/OEzfzamujVDU42daFi6lBTqA1rrWKVtx7N9p/++uxnP9v+yI/8yDsPDw/v9G1OnTqV/tk/+2ff/NEf/dHV7+exvb3+01pv/XNTape9TowU6z3We5z1WCylVKUNpW7P0kapMeYIVoljoh8js5njnZfOsNO0LFNmOVRemlVLyIZ+PVAUTs1aJJgKvCcDhqiGdakTy8Z5rA2MZDRl7m8aWlsQ78BVTpuhwllVlFu3j+sEKxhcgMafKPMsrW8QHEeLNc46drdmpDQQiZTco2lEx5qOphS2Jp5pmIBKZfOJEGNm3fWs+g6APiXWKdYJU9fTp8TECpILYhVjK1+FIswmu2zPzrG9fY7Wt5SiDGOqYN5S6IvyzLXbfP6FazxzY8HecWTVwTAUcqxT+IQSN82qHOvkbYwjURPGKI01jHmsiqic0JIhTlGbOL/jeddD5/jDH77Mdz+8zeVTHm96UhxYD4VxgIvnLgOetI5Iol5wTE3HS1oB0CmnCgO2lhzHyhIznu3ZKSbTHVRq8pgxDqSqVax1TCY1YdeRaKwwmU0IbYPzHqxBVRi7gXc88jjz2RxnHcYHjFRloIrwhS98nldu3iQmxSSqbULsnQ113rBJioBIZb/kmAi+qYV5LoRYyFKLgGKU5dAxriPD4YqSM6tuDWPElEQpAwe3b9OvBiQEaki0EMQwCQ0uQ9AKyc5SbfJlo1gfRBgQFilzlDPGBAyOPNTizmYLGkh9YlwtKMOabugYVcHWDYsVW4NgmqqmCLbgXQ2ZUVOwVviu7/0gO6fPcmrW8p4HL/LYfWd4/PIFHn7wAj/8Rz7M2Z0tLJCkoFKntlMbcMXixdONwtiNuEmAUDcOzs4wKXFmZ0YuheVYbaFTmeDFY7xnsVyzSJlXRmVPc60KnWFndwuMwzeeWRNordREwlKbODlXTtXe7UP2Fh1RtXI0U6Q77uiW1dovzmOcx1hTBw4USkrYsSb3mlwVAc7aaqGzltC2DH2/KcodXiAbZR3HDTenJ8VI6rrKnRxH+nXH4WpJGjNZgZQYuzVScsUF5hEtdQDShMDlyxeZBUfsVqilhv+gZKmFWbGbqaURhjiQXAWYy1jYaqfY6uSt/EFnyKoMw1hNm6o1qMR7Tl84hzGGvYMFSWtBpAaMrQykchJeYYT1agAdme7uErsRYzwlB4YCRUeMZnLKIImJt5icK+C/KBKFkAUjsSr8VIkp45KlRIP4hpSEEhN9WnHx7Jx0WEM8khkpUlUbp86f4xvXDslYPIW2ddy8fcC/+/X/nsJmg3Nnkvsa/ZvcLXrv/u0N9H3fdsr8xv9+a0t4dfGtr/nvG9zjjh3l1c271xzda2772ud6sxe1+a7c+6c2GI2pQx7FgPi3+gLfXt/hVa2BQraGrLUuIRdiH0l9qqyyqKQCGUMzf5p3ffePszX5BiJKYmRMiVwKzx7c5ka/YqsNnDs1JeZIGUeMA58qytQbg1PPkEaSDqBw1I+s1ivstKnBQzlzvF5hJWF1pAgEaeqQUwspZ7ITbt5esEoDosJ0MmG16ggmcHo+pbGeYFtkMygpJdOlnv2jI6wovq2p6FoMMWZ0rLVUoibIeoGzu7f4X/+pv83ZszfRkuqWTx1xuWRn21crn0008xm6s420bQ0YsZYkDmcrJ7bkxHp5zOHebfZv3GDvxZd5+dlnuPnSiwA0G1RGcFVFvr3VcOHUhMtnGh65f4d3P3yW97zjDO+4b4crZ2ZMZ4LLA808YMUhNDUwJ2dc47HG4BiYtsJ99z9A6z1WHKYERCNZI+10i8l8Gw0ORSrqAaWIY9UnfJjSNHOcd6hrKTagecBQ3Q4lRVbdEuMyiNC0E5BAcC1CYcyQi69NkRJrw0IVqb5Hrh8v+MaXv0EcBmgrzmFMparTS+0UqzWUNlSng6sqRHEn7ouRkgq9gA+uvs+TgNVCsNXencUQgyCb1NYstSFknSWrEksBrfVgXwqly2Sp6k4tkdhHTKnKurHrMNYwllhD+rQOS7PzdOu+DklcIMdITIZV129YwQZNEWdqTSFSiGPm9sGCKAUnhglK7joogpqCzBoSltUwcHhwTF8GZJMMK8YybPY6pSiaCge3jjg86MhjwThYd4sNV1CwYskJhpiwjWE+DzxyZpcf3PHknDhjhf/84oQfP2v5vvPblGXm4s42H3j3fUxcgQTaRzKGJHV/0MU1xWbUWXJKlYVrFCvKxFu8KmNJGC04VTQp0QDeVu6dtxSBIpBKISWItjpb1rGvtmvNmFTIXWRINSF6ue7IfUdSZRwSZoyUHClaMEDjXL0P9XfCe4PmhI8ZpIaHBSOgQhnTJigMokZ6mxEjlDiifc/cGKZOsFIwRVmMPRqrXV/EUWKilMzEWKImZBhRKSSUvS5W/rYKSasy0LpCKZEt1+LEsFosmc0aupRYDwYmu/Q4bBtYjsp953cwpjKbk1bMQXGCaYTRgZpaj5ccKVmqI6tpIUW++NXnyU3DdNaQzRG/+Uu/xLW9FesciSkwnzXcuL1AjMc2mRAU2zj+zW/8Jquuo76KExavrdfszZI7ToFNoxWDqkHVbv6YO+XEvbiRk7FojWT71kKwk7rjjbjFd+24lYt8cpuTmubO/TZ/7iBZvoUFt97X3EG43D32+j1jTvZrcs+x1fdFVTAYZGP9rZ7CP1iSvy9+8YuTe5t+AAcHB+5P/+k//WjO3zmsS86Zv/JX/sqFK1euPBlC+OClS5fe+5f+0l+6+Mu//MtbIvKh27dv34mO/sQnPjERkQ99/etfDwB/62/9rTNbW1sf+Mf/+B/vPvjgg082TfPBH/zBH3zHN7/5zbeL09/H9dYbf9ZuVFRV0p0zDLEqt2Qj17ebD/Qw9JUVAmSB5braMbwPzLdmrNcDR+uB3gg3VyPZTFBbm4SqMOaMDQXfGCDSeIe3nqJ1MywxYUtmnQuaDV0pJFeYTwwTZ5EckTTiRDEUrHN0fSZvmAHzyRZtmAKQRkMfYTkOtNPA5fsvMGk8TqQ2BGLCGouIUjQiJmO94H2DbydgA2ID1nkOFwvsJmHTIBuZeLWExj6xM51uNmUF8b6m4DlL7z1+d5fZbMKp1tNOPC4I1iiuJHDCaogcDInlkBhTj9pqt0tDtfpKEVzKhFJtquv1QFcig1NsASlV/VioKs3Ge3bayJXznvc9foHHL8zZKhHJkRIHtC+koSDWsn3qNDtnz7N17jTiDCF4ppMJ5ITJGZ/qdKaoVqsCyjj0hFAVAMOwqBDgOKAMxFz5MSl3GyaVJTRTVKsiwTuPFlj1fX1dWGanzvDO97+PIcca5X50zN7VqxzfvE7Xr/jNf/NvcMYzjhEnUi2aAqlkbPDkmGpysghFMlky/diTSgRXQ15SABM8jRqswtQHkhhurdbsL9YcrQcOjpfcPFxy43DBkApqLStTyFZJklHNVX2jVZHqvWW2PWdrPsO4TJINF1ErjNgVRS10oowKY0rQWFaitLMJLjiGNHC8WNbUYwqi1SbW9WtC4/B+TpGW5AwycURruHDxClM3RS1sbwUu33+a+alT3F6OnNre4cIDF9nZPc/WmVM4FawIXRpJDgYtjKWwv9yDEpm2Dk/ldaZSGEQ5Xg/ErBQxJFWSFPpxIIqhRIdVR+sdU9+Q88DWdMZj73o/Vx64Qux7ihowaRPgkEETSqEfBrpuYP+4Z++g4/Bo5HhVOFh09Dlx3C+Rkim2oGT6vmdEmTQNrXHkTbgO1jBSm67tpK0wcQFNiSy1sd71I2lVE22lsYgDySPGWXzjK4eyW3O4v0+3WiJkgq928JTGytIp9TPYjyNHR0eEAogwlFKfK+e6QWobfNPQ28qS2Z1OOTWZ4FJCUmQxrBhCTUYsY6znzlJ5N7EU0jAQvKXkzMHREUOKXLu5ByagmikbPZxItfzkCEpm2Q10i4Hd03OMKClXW1QaB2wcsCJYk2l0zdQpZkxkqUD2YDabnlhB933JBAzWG3LsmdtC148cHiWcOHa2Gy7et0VUZbdpcFowKkwbZdmt2b+9wIvBkADHF774RRaLVLU2m2CWN5ps32n8nRSJ1CTbN64x32Ay/i2bfd+iwfa6x7u3rr3LvflW7Jt7C9w3f+5a5N/Lvzm57xsmCt85hBMGjnCXgbMB079ugv/2+v1cZsNoCtYitv58+jigpf68rDEghaSpAmRRiHDQxcpRNp7sDN0wsjhMTE3g8fu2GcYViMG3gRTrANJKYdJaUu6xJVMyte5xnmlj2XGZSSM0Ctu+QTaNi93zc0qpzaYkCSkJaRxdH7l9e8FLty/zN/8vf4Fr109z6cwWzbwhFShiEDxjXJNSJJeE9ZbQNpUtjICz9CnXBFijpHEgOI81ljaseceVL9GEJZiTQWLAT2tKsHpDkqp+cnaCFSWTOD09zbnTV5hMZ8xms5ps3Y3kbsl4fER3vKgDPqk1mS+FS2cnvOv+Uzx+6TRXLs146L6Gd9w344EzE85uBc5NWiYWnAPnhK3pjO3JhGnT0DaWtgnMJnPadoJzAYswCy3eekxTEOnJcVkHqwBE0BFvHJSxWiT7kXEY0VhgzBwe7HN0dECMPTkPxM21ZBiXdEOHtZ4x5s21MtKtDhj7JT4YjEZOn5nw0OOPU3BYceSsd4aczz/3Itf2D8ljwcY6QIpWGbViHVIpYA1FlZFSmbXYugm3FnKq6syxp2isksw0Is7QU7l2VhVnXBVHxUTKhWWMiFYbtZZM3uwboPKXfZjU57VgNgF6IoK3Bgc0riHYlsY0tG1Th9etZWu7xRuIUehGw3I1Mmhl+Dof0A1XbkiJiQ81hMYarFaVZ7ux6U7aCXMM88aS4po+xYrm0NpgFRWC1Dr0ZCCXSmJ9eIRkod3awjjDxHnGVPXnpWRmPjATyzuvXOZ/8YfeyWMXAue3d7maWsxS2UqFH3twzqlxzWw2I0eLjBEdImNOZK184JIKRiwT64ECpsW7KV2E9ZArvoRMMQXJAYPFqWUcE2lMkApWpdq3RTBqNnuskZJSDdBxlsZ5QmOZTicU42rQzbrHSKgMYzKl67BUF1Gfc92fqdTTlHOAMJjKiwxtQ3KgpZBOamEreOrvl0tSPytqSKlACGRT2fC1Pq9bUk8N6/EFmumU4hzrksgCQ0nEPHLrxsFGGV0DyqyvAWE51wGJNZb1ao2RgrNK6wzT6VblQRJZL0fCdF4fI1c1W5GC1+re8KooASioMeRc389UChLg2ef3SVpQlPe86xEef+clRAeEgZIXTJvAqltzdLhge2eL1hqa1vPKi8/z4jPPUrDVHYe+hgP8aqZwFfi/9lp+T5MOU2tY2PCj71qD77UOf+t1l1dc1X8n5cQ9dce3aOr9XjR/v9f7b7TZqCjZ1FrHUB1lf5DWD//wDy9/4id+4tav/dqvfT3G+Nmf+ZmfuQZw+/Zt/8wzz3zHoC4/9VM/dd/f/tt/+9Jf/It/8drnPve5p/7hP/yHz124cOEtv/l935uPf/zjl/7+3//7z/36r//6146Pj+2f/JN/8tHv1PG+vb79estW336IqBS8Gpx1dUNYKlQ3aqlsObROpoA81oZUMobgGo4XK0qBsasn0Z25Z7mO3N5f0BePdTAWIathHRPzpmG2GBFNDEnIxdbCIiXmjSe3hoM+sU6FdV8Zc1IiEhxmNERdUVKgFIEA627geLnm3KkZ3gm51M21CZbVMLI4WnPh/Bly7MmqqKnTTCkOcdWaQ6knp4yhlEjZqG2KViuAaxvcel0fVyxGFdcGdCgEDO3UEVOkdU1lYwSLjzCaynlxE8+Z3SkH69sVMK1VKWaK0DZTzs5OY6eQyohxvlpwNz+fqEoyAHon/XdqfZW+I9DYytRyjqk1TFrLpa2G87ueaRMgCX1JdJTKOxsyxhRKv8fF+x7k8tmzpJLoVhEnliJ1EltKoZCJY00Qixswc2g81lpSqsDmoVtgVPDBo8YQh0g/dMxnpxiGXO3b1tEAZdLSrzpMVIoV2tASwox2OicYizHgGoedbeOt4bmXXuar33iePFKtmkbQnElSG7BxHHEnNrgxogZ805D7ylbMFjSmKiXvB7K1jJqxqUbHF+tZjRDHTFeUFDOWqiolV9u4qMGUjFhLLD04RyYiKdH1PV3OYAp2VKIUGhdYjiOUynNLWWnEYWzCidYwnQ0LSXXDs1EPuaOLuRbCTU2hxfiarGYb0ELOmdHBP/on/4SXDg+5/1wLs122fGF6NLB38za/+Ru/ybWDQ1b9iqHvmDQNaMIaT0oJCyyPEn1XKrvSWAy1YYoxxH7AiMF4S9f1lR8jhn6IxLymdR43rGl0xGrhuasvc+Eb3+RdD12mMYVnX75FLwMUQ+s9ouCkbg6MOHI/VtVsNZlSDBiXKIXKngPGMRJjwk4mrMcBj0CwaK7w/CKVV7lcLasyAYUC7WSOEZBuJGbFB4v6qgQtzuK8xSjYHGmaFqPC2PcMMVUEgDF0fYfkuplPKTFxjiFGBlViLkymLTImnLH0MUFMtG2LpeIPRs046vsaS6IUwRYoJCyy2TBv2kKqWAyrsSdgyK7a2I+OViyXPacngcXQk1IC2RTBWhiGWiDdvr3HlcceYjkukdTTrzvGYWDZDRwX4YHzZ5ke7pNT5dykAkoiakQmdcqao2KtIVKHPqMK0TUUXfPs89f5yH2PQIrMnXI9Rd71ge/mC7/7aQ4PO4yvjMq9o47zp2Z4F2hUOFoM/O4nP8GP/PiPIeKQ1yW13ft3s9kc1nNcLY7vNs3qJPnVVpn/4dybk+e6e7tvz77ZWMzveey3CqJ+tR351VabVz2WsIGD33t49xbs1f7+Fp/27fUfYWWtOJC4CfUxgPUeKbWm0aybDXptgKz6K7z0zM8zefdf5fFLt5kYh0jiZj/ifeDR0x5nAsO68oCzwparag/B0BjhyFg6jVUZUTLFO7CWsHkunGOdItsFUhz4rvc/wfVX9nnmuZeJuaOUFiuGZ67eYPfUnIuX7mdn90UuXzlN297ihE+fS6YYQxFHLhnrYGs+wWZqE8U4JNUB7OHRktE5mjZA6XAWDpa7fOKzP8SH3v8bhPkhi9XA/uEB146PWC4cJmzjpCq7xFoaTURjKSSSVYrfJIBPGjQXZq1nWA+UJjCz0M48zwPvffd9PPiAYpNCVNaxYz5rsBrpuw5nW9ikn7eNq2nnpTaCjKnKZxGPUsOdxNeh96VLF5nv7DDGmtKspSbtuuAZY7epTaUON43HOEfMI1Yr/9kUg3dNRVSUxBAj1lqkWNarZbVUiqVxDZqVFEcsgmu3MWnNQ48/wanzDyCl1n7VC1pIovzb3/wtjuNIlyODJhCY2aYy+zap7sUUdIyE4BGp11fnLOucOGF2Jd+SNLPTzkkpsc6RSc5E77AyYEpFknjj8a2r9U6OeDGId1gxOPHEcSQ0U7AOHUaMqTxIYwzOGUpMGKrAwKjBaCJj0FJry1NbvibOx56jbsnQr1Ep7Gxtc/toATFj1ZIFQuvQAn1fm6BdGSqrPCZ2tneZbW+xf7jP4WqF5Ko2klIHhCVmStlch31FuHgxrNc95eY+81M7bO9sMQ0N7eIIE4Qdv8WZ7S2mE89k7vjc1T26g8j5hy/xzOIFsip71vL8N1ekIDzyaMOiO6RYCCLE4OmGvqYCF90k/FpSXld249hjEawKY9kMi3INw9GSyZo3DgdDkULZyMJLKTXlWaSG9okQWkeOBQkWaRyUSBgNxreVdawtE7HI3JFjpkuJkIUxJ9wcbOMp/UDsByg1GduIpYsDThzWVM56jCOT4GtwoDPYUVFxpD7ShJblOBJLYWcy4+bxISYWaExFRrlQU5mLIAXmtu4dJiiPX7nEfNbgja1DgVwRJ6ogJoAptDPP0dEhKZ4hFYfxFrPhmqbs6dKavdWCd7r7GGKhZEuW+n5yco4k1upCDOPYEdMa0ULMyvHNfZ599ohHH5pyejLw/nef55FHLvGJT36d42WixMTp3W1euHaTB+97jO1Z4vaqfu6f/tIXeeSJd2NMqsI8oxu+cVUE17W5pp9cRORbBIXd+Xp5A3beW12vHZreYynefP+uffiNnvzNB6Bv+GxvUKC83nJ8ciTV6eewFDbXUwx/kBDGDz74YPxH/+gfvQiVHf7lL395AtXlcfbs2e9IF/Tg4MD8g3/wDy78/M///Is//dM/vQfwnve8Z/jxH//x5S//8i9vvZXHSCnJ3/pbf+vFH/7hH14B/OIv/uLzH/zgB9/zG7/xG9OPfvSj6+/Ecb+9vvV6y42/cRyr0iOXygIZI9YJ3lV4tMl1ky3OVDvdZsOVcwX3TnyLGCEYiEZobcPziz3ipkFmxNIaIQ+FjMHLpnHVZPJYrUsljTgnnNqasxgiZrVAh0xphHUxOGPwrWV1cEzximCxxVFSTVt95foB73viHQz9kiHVz8nxasXNHNmZznFGKyTaNZVL56o1YkiJw+MeJ4HpNDDkjHObjbnUJtsYR0ITSBvJbYqxKu2M0FpP0YG2tXhbL2oNnlXKmJyQ7BhWA8ko/c3bHC8GvLR4W7Bbc7ZPn8XP59j5HB88jYDGzO31qk5AALFKcLam2YqhmbQ442qSFZmghvms4VTbsDNxEApTsdimJu9lE0gU0rraMEYsmpSJM8xm28RSGOMK66a18O1GUk4YsdXSE1pKjnWzLRWK2w893npEalMMhGa6wzBGwnZLTooDVjFjRKistjo5Xq/XiCa8MYyrNe//8Pdz+uw5bKksPOcMs3AO+jVPf/NZjleZ9TLW4BKgeh9P5OdU5kWuLLkcqxS+slIizjswlsbCGBNZBJ8gmoh6i8uFQiSobKDDBlNKLTDLhquI4IxFvAUtILpR9NVmRhKDtcLAGms9GItYB2lEM3jTggpZM63USbn3ATSRUySWhG0DYjaqSutJCq04MJAlcWp3h+ODQ7Iqz79wnZuTHXCJW7cz/37/i6CZdUyYYjn+0tPc3u+IKaLOV36h86DVMu6Mp7hAL4UwC9ggkD09hn7oKuuTmoLdugZNhSAWNJEUfCOQLecnwtU4wVihDEe8crxH1ycaF+jLgDX1/KFFSUXxIZBiqcUhGbFCjrWo1KTkWG2srfOMVEZP2eAFZGPNcUlpqJYALQnrDB5LdpVLM1XLQayWfNvYGgZSlDhkZrNdkipDGskx0+7sEMeEd5mi1YonziDG1mavtUxDTVgeRXCAT5kYE1kzwbvahcxaExFFSGOkL1UteceaWQTFYcgE59ESqwU3ZWxTG6OjFmwGcR4QShL29g65+Oh9SBwqZNsKY4yY4hHn6MvIrb0Drjx0GWPh+LjjS19/icv33Q/DiDeetrFc3mnZthBLQnwdeKCKDqBWKKluiJNkrEDZKGmD8Tzz4i0+8gNPEmTJ9taEdHSNB975AZ7/5lcog3DULzi7M+Fw2TFiasNj7LFhwuc++e/4yPd8iN3T56sd+oR5s7GU3Au1htc2x+5dZXOr6qevTb+7j1Vryd/LVFq5yw98I/YN9xzP5nhVNg23Ded18xk5ee43bgC++nXV4z5JMn6tBeee45BaDMMJKa1iBWQz/NFvY/N5e/3HXSrgrK0gfYRsTn5yBmsc3tZmvqP+9ILv2Nn+JKkcEzM0NtPlAWsNOwF2Jg0vHq3psnBhZ8YPfOhxHjhzlq3tln/3yc/R9x1jEnox1RpIHQ4Oo0IuSOuRQelUmEWLbaY01vDOB8/xyq1j4lEdHk2HgtiGl1+6yYOXn+OP//iznNneriIkA2IyghK1w0mglEgeE2J9beQX6ONwp0HRx4RzviqNURLCYbfNJz///Zy+8G/A77N3EEENq9Fx333nOTzu2FsuEW0IAqUkJLQY1zF38Mi7n+Ro7ybPvfIKooYYK5Rl2sK7HriP2F/gc5+BWWvxJaGb81jAEvAUgaaxCK7yfYviCuQUccGSSoX7W6nK6pQTKfZkGZhtnSK026zWHdY2DN3AdBZADUM3VBVnyVhCdTxswlwmziNaz7Hb81kNXLKe1WpFjBHnKivOWMU6Aa3Nrkk7uVNf5WRomoZ3Pvm9lKQ4s1EKCTgM12/t8ewzz9WmpQFxFp8qE1ljFWulnNBUmPoG2TTfrK3HXIdOdajpcyZpZhE7GlV2py3vud9z/cBw89YxI1oH5RRKTDU52brKww3K1qylBBiSJzSeLMqZ+Q7H6479w0OMETKC9R5NmS5GgngmHoYxI8Ug6ji/OyMOmTEW9g+PECxOLP0w4q2lJCXHgp80GOcYVx2t8ahRRiJndnYI1rJ/cMjYZ164cYNhMdLHxLSZgNY89Gjred+myjBPUgjWYxKsVmuSswQrrMcVPrRszVumk5bFOLK/v6J/qWOdFIZCCrcYfOBLxyuWvXIU10z8yANjx+FixWqsSB9N1XqdBRqVTahERXCICmOBnWnL7gSaJrE93eEbVweOCgSzCaTLmwAEZ+lSBNU6PDZCjmNVxQaHOMtMLHGMmGLQUjChoXHgQsUfqYemadAhw7pjOF7X3y1xGFMH7BhBvcOs6rBRgscmCFqgZEzbYFXpxggSEGMYNeInDt0oD713tK5yJMuG5WeMredMEbB2wyocK2+v9Txw+SySVuRhIISGMiaSRtQpki3deiRvBzQbjo7WTBtPGTtSsUSEZDOKYdGPFGMZsjJKrRlNMogzjGqxMqBOeejBy4h0GHGQBSceNPLVp17g8YeeRHA0ITLZ3uHypTMsn7nGWAa2pg0vXL/FcpFpJ462z4wpc+OV5xm7Aesczjiyjlhpufdaf2fIqfVa8abXFj2Z/d2lIN8dBOpmWPntax/ZVBL3Nv3urVlO6pj6eN9O/ffa799t6J2oe1/LFDx5vSL3KhXrQ9Xt4QZNgJKHgatPf53HPvB93/Z1/c9x/ezP/uzlf/Wv/tUuwJ/5M3/m5unTp78jBd/nP//5dhxH+WN/7I8d/4c+hrVWf+iHfugOg/C7vuu7+q2trfzlL3958nbj7/dnveXGn81Sk6osuBRBMo3xtRGYoc+JgKsTGl83xVCVCaXUNMoK27fghKvHe7xyeEgpcOHMDjf2bqGjIXvFaMAXaJ0np8KI57isaiIvllduH+JEGJzDmcwiJva7Nae2WqwOoAUjU0xjcTlQciE55ZkXb7AqsV4ANye2xbrDtBN2poGpDbVRtml8kDOjFI6Wa0ofmex4VDOkWkTDiMmZ0QZGqEq7kxRKY3FOiGOPGI8WR3+8x/a25eig4Eymnc9IMVXbgxHGMbISwSq4VlCpdsmxJFLfM46RBhj6ntyvGdKSYDfWYhtorUPE4H3ABSU4ZdJOCb5aC6c+MPGWIXYMecQ1gqpHsZQ8IALWW1DFl4FkIpfve4Ct2Q4lCqHZoeRElg6VhmYyI5cBNYKVCshWUxhzvTi07ZxpOyOlkXEoG0l9hXuXaGi94XixD0RyMZV15wNDNJQUyTqS0pTSK/NZSxAlh3p8ZEVLZpEKX/rcl+mOjhm8gnHE9UgTWhqr1eJLwUwaSi5IrCmyqaSaqqdK6UbEBpL3TIxjyAnTTonDCq+CC0JfLJgeFYsxQlJHsIrzjgxkNZVbo4WShWwrIy3piHcNccjECKWAVWV1vMDPZowGBsnVEp0yIp5oYDzu4Nw2WTyaD0lFGXLEGw8moXnE2Rqs4kVw1nL95l61dnhDQCixq5sWb1i5DlVDiaaym46WDJppZRPuYiyjxppACMQYsWvDy9f32d6d0QTPzdu3IbRkA00sJOfQIZIszOZN5QUuhQetZT8XQor8+OXTTP2Klzvwg2W2O+PBK1Oef/E2n332AC+GUrRO1oOhkCCOaNPU80ccahPKak3gNtBG6rGaiDcVOYBVUmOxqaC+bkJKyiSFPBZcMNhpQFKmj0Pl8olCMSz7jrBJHRySUvojhqKQwPYjxtX3bFBl5gM51eZORmhdbfqVoTaScQZvqyUkUxvFVhWk1JRAJ9UqkyBpYoqhUWEwMG74Vsdjj8eyzrVhX2Imp4jPBte0pHVPmHiKh73lQLQGI56cqxXCScbYgKaRs1vblNwzdEvmWxOeffEm126NlHCKdT4itA1HqfDYuTNcODUlx8oS9LbQn3AJg2EsI14Em0xFDMQEWZjOtxlXPV97+iqPv+N+5t4yO+X5f/9f/y7duEb8nDG1TBrHrb3rLJaF+SzQ9UeEZs7e4T6f/czv8kd+5EcwohR19dyspnKY7lyB7haTqnZTJJ4kydk7TbB7p88nCsE6sa+cReXEPmtObvUmJfUbUzDusG/uFNj3NuPuNvc2h8cdgWI1q7zhY77Z896trd9Y/XdSEatIDSgqmUrE1Qru/x9sv3l7/Y+1FK2Kcq2RU1qqMjjUFIKqRqdeH60Rtvw+zYN/G5XC4bjD1BXyWBvDk6nBxspOG7zl8qk5j+827B/tcXSgkApaoWnYBJqFXhTNmTgMtE1L4wpjjgy5MKjDOaEpPTund3j8yll+94tLXMl0pacxc/b2FyyOhbM77yFwC7EDJStgQarbo0+JxjtsLgwxUqPghKQ1OEOMYz6dbmoWw8G6cGt/yd7+Z/m+H/gJXt6P9Xrma1MsGOHy2R1++Ae+h5v711mtFJNGnnj0cSazLUafOH3mFGPJjOue5595hs986nM899LLnN6d8p5HznN6e5tr1+swVkpNaRWTaBFyG8hSVc4iQoqZDDRNYJ03Q4g+VaawCKVYcqnDxRQjpSg753dRPKvFipIXVannpvhQVYgWVy9aVig51iZMyayPV7ShQWxgjH0dzvppVdZbQykVTTKZTkg54X1TLfwGtrendEMkrY85f+Uxts/uYIlsZgaIKtIGfudTn+aVW/uMA4zFkOKA5ELe2AKTlqo+3KgaK0PW0Y0DxrkaqNCEqugcevAT0gitKKfn8L//6e/lbPM4T3318/y3/90XeGEBL+0VvFEaHBhlSAO7YULbBAZNtLZlPvfMZi3nzpzmqae+iXOVV+ZDQ7dcYXLiXe99N91qxc1XrlaGX8yEiePS2W0wSqcNx0cRNJOSoc+RibMY7ykpVXZmU5hvb7E+7gjW8Ef+6I/wx//4f85/8//6b3j2+efq1UIc4hv+yB/6Q3zmU59i7BNOobh6Hp1vzauboJkgKgyxpwD9MDDmir4okunXIzRr8nqg18xEhaQFiuW4i8wmgWuuZcgjo8S6L6Fw89YeMlaLr7EtUw0Ya+njWIdrjTDPhkcuT7l8eYLXHl0nFn1ksR6wFMQ6xgEaN0N1BVr5xkUh5XrOSCWhAo0PtO0M1a46e3Ktf3EJ21ikNczLhGIts61p5SKXTGOhTCxSDC2CbVvKOJBSwYaGdjLBbcIXjTGogRAcfYyMqiSBGQbVUnmZvioCLdWC3A0jk7ZBjcHmWg9WFSEMacRK5YKnYcRvT7Eu06hiDBRTB7JYWxEmFLIKKYGVwMFhx+OPX0Hfn+mHRWUnl5ogbI1HimARfK5unGxOnFZ1MGud4bkXXqRJHVeuXKpc5KyghZev3WC5epytpuDtDlKExx/a5cYrNzkaMj5YvPM89/Ie733iLNNJbVrfuPkKt155kYeeeLwmFxuzUbUZ2KSn34sQee3o71WBZfc6HcTcc+tv3aB71eMLvN5O/Hpnw51E3f/A2uJu81DhTi1257tvymSuI/WCkiqyJnXMp38wMXF/+S//5Yu/8Au/cAnggx/84PLv/t2/+9J36rlms9mb/qCttfWnec/PLMb4ts/kP4H11ht/xiBOqgqOCpIdY6xpq6ZC9LNW20kxukkZBCIs+8Qp5xgAJVN65cZ+T3KeR8+2lFRBvcEDKtUCMLG0jbAqBrvqaRJkLFmEpvVMgoE+sd/VdJ9AZcwFcdi5J69HGBOLPDAzhoJh99Qpnn/mGo8+fJ5iNo3mMXH/hdM0viGpgm3Jpb4Wh9DHnvXQMwseNUIqSpGasllSYuYdY8o1aMBYjKknI2OUlAaMDeQS6qSqaZhNHcerJUmFohZ8Wyf/IoS2ZUfvIx13BGMpWVmtO0w3UFydZjoxJFewxTALk5oOBpybK+XCFtYaWg9Tp+xsbzMWQ5BC41zlhcVI8IammdbU2c20SKSq0Iwp5ChojuxMZ8xnW0znnpg68nh3CuR8IQQBaejWa8Y0Mg49vqnJxpoUmQRWy2X9vRCHNZZSCilmimZi2my8jSGOkfk0VI5MgnbSMvQJ0cSpszvsnjpTUw+L1KRTqXLnW3v7fP3p58hJCWqJpdCR6+OMBSsV1FysYYwRbwTvA1IKYjeqtWFA/ca67ixFChCxDsQoBg8xYtoJhULu6yS/K0JoAqRNUmNJWGs2mx6L6QuT+RQ1Va1a+pGTy3JwjjTWCWzRgtWAlwhBEE3YIMxnLc4Iy9Gz6geOj3v6nPASyCZjSoVAVwtrqaEqAjZY3FCYt56VVKtC6z1alGUcWXRLitYUOlMG1JlNc6Qmxjmt8vEiytHeHvPGM53OsdNlVUkaT8HgxNGTmFhPKJaHLp/jex/a5dHhJv/8xoiGGQ/HFaspfOT+M9wYFqzsNruzKQ7FZF+5HZsNSMkFZxzJ5qqOESjJ45whWShjYm4bOtZEK5jkCVYgZYoYxpIxWlmEpeRNwq3Q+MBYMsSRtghjKRRb01q9N+ykwGCEXoTSdQTjCa1lGAbyqkOc0DpH0mqfcmKQrirx3KQhrgqD1AQ86x1RFKtCzncT17y1ZDJ9LISNqjXFQiYz2ZqxWq/w1tfpuhU8hlYc4hWbMr13NJMZR/2KtigpRYw13Lx1SN9HrBUoCesdJbeUnNBSbd9G4Phwwfb9W7TBEgzMd3YoL9dzdcnQrwcmc8sqrRmpzYciBiMG0YzDkYrF67o2NFNN0+vHjG3gC19+kcefuEIcOh5/4n6OFq+w7AvoGrGgOmE68Xz12Zf4Ix95lDifsX+ccN7z1Od/lw986HvYOT2v59AN9Bo9KWpfr7jTk1pXN+mR3LXH3oVIb26iJyXtyX3lngbePY/8uiL5zZLnuNvUu/P/8qqi/O7Se+7+RjVRLaJPVIlvVqffLfRPXuM9z6AV0o6rimGDwRZFNf1eKL5vr+/g8s4zxJGgBrWmXnetIFowAloy6qqFKefMwDZ9/xDz5jlWq0QOFmMdE3FI7jno1wxjZuosz9064NNfVCbBVIxJThyNmWQEZw3ZOMZuxf1bu9i54ebRGhFD6zwGpS8DrmlpZlN8tnzoPWdop4ZPfuoZkIZYIoPC578y4d/++7/EX/np/zNX7n+BlDLWBNbDyMHBAmzGTFrIlSuWSnWBFKtQclX4G8e6i1x7eY8b+wOLLsFJ+qgxUCyWgG0yO23gpRe+yQtPf5kHH3yQd77jYZ588gM89OgjnDp9itv7+xztH3DUr8jtjIuXv5vv/sGP8Gv/3a9x/fmvsTMzmJSYT/f48R/6p7T2JjlLbdZsRgV5jLTWETM1TdULY4rEknGuqs9Kzlhn8bJR+Ns6ID09OUXjPd1qgRPHZDrFhYaYhRAaVosVoWmxzoMB4yaIbEpuTSTNGJuxKOv1EiMO5yq8P8a8wWdYjJ+RFKSMjMuOGAV1Df16yQOPPsGk2caWkaKxNpUFVrHnU5/+FIPCOBb8bEY3Rgw1CELEMFDt50WEPkWC96SiIDXdt+SECR7rLY2x9LngQ0FbSz8mutv7DOOv8P2PneX69+/w9P9njyY4Yhw5f2rG4dDRZcP+cYcW4ZFH38GLL13j+OiQrckZVGoQg9E68Bz6EStV7fXYow8TfMPVc+f46lNfBzNw3/3n2GocY+x58eYBy8UAZtOgdaE6UBDEOqwRumEgDgkvFitCSZF/9k//KS9ee5lhHMiS0Zy5sLXDow/cxysvnOfG3hGL5QIZIz4E1ilVNf5iIHtHr0obPDJWBaRYSOOScciU3pNjgcYToyG2Fm8iq3Hg7I7n0m7g+qpHe8N0p8G6wDp6BmsQA1PnMF7QJnB88wATHDn1/OgPPMQTFzquXt9nvRSMdzx1W3n6lTW+9TSukK0nlw7rLOM40mSLcY7B1d9nL+CmDRllvVpVpIw3ZG8wzRTTLyFHTHaMY6QYgy+KaSzRw9ndHVQse7cOif2IbreEyQQdMj4bZDqpdtU+Y41jRaKh1ikSaiiOpsqzNhqr6jQXSk5YHypqxdbPWCoJO2mxJdENNYRv1jSAZd0YNCZMKcwmTQ1/w+GaQEoj1jTUXYWSSsE7w9FxJKbE/ZdPMfGFfrXEURns860pURPLMpC9UGKtRVM2WCrfMjhD0qZyAqfTmoougmpm1SdefOWY73rvhZrq7ByndrfZns84Go7JKbO7tcUrNw944pHTTBrHOghdt+Rf/8v/no89/n/EmIxmwFY0yd06YFNRqNy54G/w4fV7d9wGcDLClDs1zusVe/eu1yvuam1x11HxJnVPvfebfvtuQ+9137lzrHddHK/+/qvdFa8ZdupwIjFHC7jZac4+du5Nju9/vuvnfu7nLvyNv/E37gN473vfu/r1X//1b8zn8+/YhPfJJ5/s27Ytv/qrv7r9xBNP3L73eyecvxdffNGfO3cuA3zmM5+ZvvYxcs7yW7/1W3dsvV/4wheaxWJhn3zyye47ddxvr2+93nLjTzWT8p29FnJiKWgC5IItdSeUSq78IVs/uEkNezFxxnha9RiTubVcQbbcN/Wc3Z7x9NUbNU3MGHJWFqsO3ZozC5ZlXxjIRC3EpLTG04pgBKYCR85u5P4GMUrOkXc98SA3rx1w88YB1ifIDiuwv1ry5a89z/0PXeCoHwA4f/EcB0EQV7llNQnWE+MIGJw37OzMaTC16HMeRYlAFxOaM5SCNaGGiZj6GSypUFTIooylZ7XOXDtecrQw4CZo6nBqKSq0VGuFIbA12aE7vV1JBknpSyHkgjSWrkSa6ZSgCYvhzDxwv62NxocvnmN+apd1GfATmHooscckg7cGkxVrLWEaMEJVRVqHMZUL44pDTGA9dne4ZbvbZ5hN68QzOEsZRpBCCHOUnpQ6BE8wDjOp/A3rfZ26eSHlnq6v9mzjCiXVc/d6PeCDB4VhjNR5W20MrpdH9CsoDMzmcxZ7Bzz6wQ9w7uIDqBicFsY8VPu2D3zxc1/g5tERfSnEFMk54b3HqRCV2iRMGTttqpXQmKrMLIprPH2qzbhcMuo8CZj7KVqUhRaCFUZjsT4h44BxtelljAEnjCXiBJwxZKrySqQyBpvQVAXjOG6aqmnzX6oFA8HYajNGDY1TshMYEyEYtmcNmgZKrtaXfujJEpk3M5ZDqUEmRchGmFlPcJ5uWJPGjC/UdFpb4fFXHniQoe84PF7QrTtyhGJtPW6prBgrpqZwb5SQaJ1A7u8dMt/dYffULhozvutJM0AyZyaei6d2mc8bLl7cJQbH7+4pZx54iKeffRnTC8fZYBcRSbla021gGAc8kZIMowcZBhrriJLwpoKq+9LjMASFbqh22SHnGipiC1Y8MSuxKEVzVQSWqiwREcaSNk1tg7Eb+6NUhp9TodnwbdQ5ynLAi6csV+RZZfF57yixr01cNciYWZbCpG3wwZNyZhwiJRVGLTitXH4xgo4ZayxpE+AZgtvY6yKBwGoYCXZCTgPrpORiCMayKD1GHL0tlJLxwVNywvlAiomARUItoLbaBm8tYz8ym1iGLmJ9i8omOVQN1gsT7zk+PgK2K9Ow8dVWM1SO0TpFjp1F3ASTI3Y0GAeWVDfIuQKuK3NIN2nDHTF1NVEP5WhvycuvLLl0YcquDvzA9zzCN5+/xtWXjzladKCZ01tzvv7CDRarjt35jOX6iExh7/pLvPL8i+yceT9QKKVUiPw90+/XF4SbZXhdsVtvZTYlo4JuAgbuduvqbV5jAX5z9t+dq+CbWoaVN2/a/V7X64v1V0/H34gvqFIZuCICuSZW68Z6/vb6/V9jThTZ2PWNI8eE+DoGGsZI6zxWQENgbluW68d49it/hyff/+dZ802SaZEyIlmJGLJVGhFOtwEQJHgWZc14pBwMQqIqy1qxLIeOGHu6oSOtE4vjFS60hMZjWoMrNU3eFEM7aWjdhB9891n60fC1rz7Dsh8JkwnXr+8D1XYW1wO4hlwyh4dHOGtqk0sFjMcZiFIVgc4p/Thy8+CY46VyezlytO5r0I+1HB49yDe++Nd4/H3/FWd3XuHCqYazW5btnRneKyklhmj40hc+x9WvfoWL953jyqNXuO/+h2mn2wSFxeqYg9sDX/rq03zq05+iVeW+01PsLDOZJb73I/+6JpObOjh0YjaDmsBka4f++AhvzEaxr1hjCc4zllKbSVoQCzFW7I06ZbKzjfqGPAzMtye46YYHO/TcvrGC0kOu2BXvHU07ZewHUlzjvUNpiRqJw0DwDcU5KAlGpVdhXK84Wg0s13C0XmJSZD0o/ViwJtEAP+omlH5JCQ3gqupchOe+9izPPXsVcOS8xEWhEbMJI4BRFClgimKdq2nHTah4lBRBTFVZbWoB0YioweLJ2tD1kb/3Xz/NmeEmP/yDT/CFpxtK47i0s8uyW0EUxj7iradPHevYc9gdgBkZhsT26VPc3l9wvOhJCN4IuYyYonhvObt7muPVIfOtLU6dPU3JAx/40IdYH3yFLluuXtuvuJ4wQcmIFMTUAaa6DT4jZsQ7tvyElUb+f5/4HbaMwU8bmukUTaW6inTkX/yrX6WIJw5rCmUTtlP5hJIj2QvWQDNpMEU3SmvLsGncO9vSW8HGTDCW1FDtu8ayPOoo57bwBmxwOATvPN3YMZYOF2pqqQ2BYKuuSYOQRXjfY1f43o88CYdf4V9+5ioHwy7HyzU3j3pKM0GsIQ8jI2ActCJka0mqGFevgSbVIaCIgjGkkvHGU4wwt7X5vzKCDZ520pDciJZCHwcMlqiRrWhJIiy7NVY8JiVSLBRMddQUJZdCzolY6v6InDBNQxkLRhymCSgZhp6U6mds4ptao6vFWwcxk8aIGBjWK2zr2W4CYx4QX2isRxWOj1bsnGkwkigaQAuh6qpJKEkNy5UyOyWMUVmses7Oa8u/UAcS1hRc4zDZYEdDSRmyEEskq+KzQ4whW0HHiPGGaZhwsFojJWHUYYLw5a89zwfe9QBWO0oWfBu4cuUCL986pJTE1pbn8EC5dXvBA/dtM3QrhAmvvPQCq8MDdk7v1t8n0qaZd+/1feNM0Bp8ondKmMxJQi7I3fqGN64PXrtO7LonN71jF35VnfXq7p5unAvymproDR79De3AJxbee+uYV9dcb9RN3Dy+FERrwq+YhGjFA2H+4FD+fumXfmnrr//1v37/yb+/9KUvzU6fPv1d8/k8f/GLX3zq4Ycfjv9jP+d0OtWf/MmfvP7X/tpfuz+EoB/96EeX169fd1/84hcnP/mTP7l38eLF8a/+1b96+eMf//jLTz31VPt3/s7fufDax3DO6V/4C3/hyi/8wi9c9d7rT//0T195//vfv/ro2zbf37f1lvcFRcCK1KlaonZwjKnNwA3fyJjKXhNjUNsD1InymGldICVlTCOCMGs9Z3YbuiSsVwVHpjWOx05v8ej5bWZbE/ZuH9HIjOv5iGQdLYAWerFIhDRGEop1luOSORMtIoZZO+V733+Bf/mJL6LrY3pvmKqFZLh2a5+bN/a5uD6qb4DVGoAhVeUScySRsLYhxgFiwmDImwIwl5q45bxhzJl+yGzPpzgLhsimD4cNwmjgxv6am7fWrLrI0TiSRgiTXYJrMGopRpgwYtwMdUq/PKZbr3Aq+ODQSQNRMTnTTBpGHbm8PeX+i6c4farl8uEBAI0TSqvYXpmaFqsZyLSuTtNrCV6bTaWkqnbTAqUgkhGBXCJ57FEXabcmzLZ3CJMW10xYHSyr5cXWyX0qFcxcYmQ6bemGAbEe6wNBC413GArT6TZFx5o0lzLDsKZpWpz1HB8foGhlzaTI0DksDcZ3+LJFHEYa0/LO9/0hVHy1Am44fRIhxsyn/v0niZrJmshBsNHSiCGPecOONBipjdiJC4iAcUJjDZnNZaUo1jucOHIeSDbigyOkKbY/Ipaq6GvmE/ooBF8bZXd4QApSEtYqOQ2YUnt5vnVkyQTANQ3rWOHaOIt3ltgNtVlJpvECWoiDoXSZrXnD7twTh0zfLzhaHpNipAkWFwz0GXK1dBYRmqahW60J3pPHAkFIVmmbQMnKiy+8xPbuKW7vH5H6yIjFOk9fRlQqd9J6X1luIjXIJziMGlbLjoRhvjNj7Ae2pi3SGLZnLfOmqWqzNPD8tWt8dcyMx2uuaMOxLTzrPR2F568dopr5wP2ROPTcWo0kAtZkNCWwptrexWOaQMqKmBHrHblXTFJmwSAusbMdOF4lulJovWJL2sw6HUVg0PpvVTCmwoBJCTGGYg2hDZRxYyXJBlLGY3DWM86bjbpDmO5MmZ46xd5yRRkzkgbspAVnqd4SrVy9SYtu7MLFglFLa6uiIjvDzDYgShdjTekTU1P7nAUx9LHHGtieNByNFWmgweCKxThDyYZgPRor4Dibalt75PIldncCvpZDNL6pKk4pFZSeDCknaITVKrJaDhgTGIe+pmdGpeBQm1mkviIAUmbMilhP0kQohsEa1ChaBqz3nDu9Aww12Vh9VelY+OQnvsp/8V98kGBHSki85z1XCJNDPvnpr2EsTCctp7Zbnn9lnw+98zJb84ajZeVlvfDs13jiu76LLOOGeRM30/uTxt/dafGJfRfemN2nqq+uX0/+8jpezevv++r1LQrRVy15k5u/dqLOa2/wBsfzRoX7ifLwTZaAykbtovUzgApjN+Dmsze/39vrP9qSIhitn10D2M1GTQrYpiWnjIugXpBZwKRaSGRRDlYr4ukJc2fpcqFEkASNsWQjdLFnMSyZ2KbWX3mJycrUOdY1qYfROK73I3PjcNMZ5FJdGVLVb401zMKGu5dB0xFPPnSGBy7u8OJLt/na117g2N5VbUSvmCygke35FDGuMme9I8cBdbWBdOtoQVLlxVsdq7GQUmQshTYEnFqgMHWWOJ7j/PT9XNi5wMQbhjhycNAiarh4+htMQkKbd2FdoQw3+cKnv8y/+LUjEEdOkT4mujESc+H+03+YndmUMe7RpFfohl2e+vqHef+7P8H2rMfKybZZMVZYrY+xrp4rhYLz/s55pp14NMcNZD/Tpw7NmZKV69evEpzh/NkLrI5GpBdKLvRdpG2nxEFJ5YjbRzeZTbfxswm5F8q4wDcWH0b6VSLYTBM8+4uebiy8fPUq+8uOo6OeZBxGGipHsRCNQ3LHGAuPbDUQE8UH1HtEMkUNKQf+/Wc+TzeMDHFN0sxyuaQxloTgYiaHyruVVGsqKdW+agFbhN4WnK9KOSlKMg6vkHSgJbM8WPAN2/LgR76fX/nyIb/z9edw2fLAQxd45MFzdIue/Fzi1nKN5MJiteK5bzzD1rTlHe94BxTh6tVrrPpE03qCCH3JG6cBFCssFj3f/MpTfPgD9/GOJ/8QKZzn2X/3NDdu7XGwzPjJHGkCOg6oMTjjKDnXcIaSUVOrgqNuRWkcJhbipDbd0/Ex0+mMjNL1I51J9MMSpxWVYwpYVwdoOUeStRCFSRsgR8Y4QhFK8Fhbh4uOetxGlcZZ1kOPkRnjUBWkOzvbLAcL6xHywNhnKJYr5y+wt7xdG+o53RnsXbl4mnc8fJZf//TzXP3Gbb501TCfF7p+JJkGyQktDlVbm5/FMzgI1jOkRNJCoHLWESV2lYdnslJyxKonErEiNMFX/mRM5KIY8aziirFfs3Nqm6OuZxgSXi2qlc3pQwNjxHuDicqIQqkNRz2p1YNDbaIJAUQxKvRFkKxMJneH/7EUmmKwRvFOiBb89hY2FUIoPHDhAkeHK2KWamUXQ8zVGKtmwLsAYhmTQs44o2SoYXxD4fDoiPO7F7FacTkqEWNGwmxClsAiV8KqlhGLxXsqyij2dQbuFO9GnLfE1FOiJWeDscKt2wd86esv8uS7LyEb9f2jD17gS195hmXMaDY0uzu8cOOYyxfnTNuGflhxNBR+9xO/yR/+Y/9LXI19u0cRd4/yTuq14t48L+4EeEBl+50MSt98+vjqhN57lXcnGsLX1x33/v1O+SRvXsvcywl8Y4bfvaq+b3+cd5etzjgE1HyLV/k/33X16tU39DYvl0t7/fp1951o/AH8zb/5N6855/Tnf/7nL//Mz/yMP3fuXPzYxz52q2ka/cVf/MVnf+qnfurBD3/4w+958sknVz/3cz/3yp/7c3/ukXvv37Zt+dmf/dnrH/vYxx6+efNm+NCHPrT4xV/8xRe+E8f69npr6y03/rIqHkMuGSlCoVo2xTic8xUsXH1VmKK4zX5NJbO/HDiOmaCJvhTUKDsettRyY7lg1Xouuhl/9r/8Ic7tniFbw+e//A0Ob91kGISitSgoUWmDZUg1VSm0DfMA/XJgyIExeUxo2GoMW5PMI1cu85WvJKzNxNjhaDEm8M2vvcB7r5wGIFAbmt7UBK+2cQwpbQIXDFmFIoL3HpKyHmtak2iVZFcahNRE4mK5flBf+NeeO+RzL3WsY0bVE1wDo/ID3/MkXT/yzHPPMAyFtihbviZOTbYbphem/NiPfphTZ8/y6d/5bZ566mvEXK2tpgx833vewQMXzkNaghXCxlosRmm9EtTjbOUooopRGIvinduow4WUCt5WPmPSjJFCyj25wDgOxH7k7LmLzLfOc+v2AeghBmE2C3jbEFNfAyoKFfgfM05yVXsOhakPpDFRxNLMHDFntuZzjg6PK/9DCzmPNI3DODDW4oOjCb7yC4e+Bm4MA+/6wAfYPXMWTf3m96lOUq3zPPW1r/Pc81frBJIRSlVgZoHkDI2EmsqLksdEGwJGDE1w9OuuvqcqiPeUDIMOiHX0IxBHRDN/4X/7YcRs89WvPMsnf/cFJnbK8abZUCJQDNI4xqFnaxK4dPk8q+OeMVU2oBjh4oNnuXn7gKt9VTaLCN0w0liLWgjthDwsaqrcoDRhShsMp2aBMSlRpuwfXKfxDZqU/aM13lhsY1j3Qw2waSBMW+K6ozEBXOGxdz7Kmd1T7N3eI6bIYtFVa5Vp2J1NGVYdRh1jVpL3jBQm1oEIJTiK80if0FhYrlZEqb+vXaxiBlHPwfGC2PUMZUSHytSTbDhzWjFhymdvHbM+rk3FYd1zc/8W585MGYcRn0YGqeIuMWBDVUuuh46AZ6edEhzYNvPYqSlbTrF0bG/NeOrZkeeXSq8rgm1qmp0oSRQxtsIUtaYTZi2UnGlMqJZiMjNv6bpMToUkGZm2OGNpR4s0DSE4IpkyZGbWcVQGcDWtfDqfk1NNYExaYdxeLDom7HyKbSzkcaNMVooq3TDi5xNyVkZN+KaBnMm5INays71FWg/M2iliDSZt7CopVfWmVtZUMorEQmha3MQydQNlBDPzVc1Kfb5CxhhhuRjYne2QCxwd95w9NePi6Rn9UJMxBztQhkIpgcjGduQq35SSSVKoUU31HD+bWsTAwdFI8DMWhz1GLGjk2vXbrFY9294SrKeI5eH7z/HMN57hYDUyDrC71fLKjSMeu3yWWRtYrxO9CFdfeJrUDzQzu1HPVYv03anxSdOh1E35ptR94zLyZEq8sdGazVT8zpRbX327197729hk3uAeG6i+vIWC9I2aiRtt4muamK9+7d+iyblpekNBywhG6Q8P+OpnPs13/9j/6i2+hrfXd3LZskntNYKWjBFFcg28IpWqdimV9Zpjglh/zjlnUMtq0TPb9lUIi6OyjqBBWCUYirDbetYp0jiHUYVY00xFwSSIJZNnjjxEgq0JvCUCztIERzNtkNyTREhElgfHnD57iXf/wJO894n7+Lefdjz/Tej7AmWC1pQf2oljzAWjlj6NdP2KdVRevrbi2RvHNN5SmoYcC9aUyjA2wqx1nN6a4C42fOGzA7/xWz/1hu/dn/+zf4oW4b/953+OCxeu8Sd+/P/Bon+I/9v/8699y/f80Qe/zJ/+4/8nxrjNP//XH+PRK5/hzI5ULjU1lKyU2tRLOSMqqFrqQKegqWySfQ1Yx3qIDF3EWcfFsxdoG898Fii51sXDcgRpcSFQjNKrYegN1/dWHBy9ACp4Y2k9PPLARe676LlweYdlJ1zbP+DZ51/maJU47hKiAXEGJ4ZlHvCpMIig6wiihJz4wT/8o8ynDYvbLzGZz2jbbXTsWXeZl2/eZDl6Do961GxCH2zBSlX4nwxOpKm/UypKTokCiHE03uMwrIaOqQ0kKXipjer3vet9fOzP/GkefseD/Oav/gq//Pf+CaOtjMTPfPopHnn4Eo88cIYPffdjLLrMwUFHjJHZNLC9PWG56Hjx5VfAOmzbElqPNwZJA8F6khYWyxXPPvsCu7MZ733kLPtmynL/GoeHmWf31qS+4jBQiFFBChq0Nipzqp8bwBTIzuKKEGzATeaYGJm4OgjqV30dPHpDVkMQiweSZAzKOo+4YJgWYblx92gpmEJ19PR1SFycxZZNwFSqQ0VXHOOwolh45fo+D91/H5PQcOPmbabThlUXGVNhe8vh7C43947YPj0nx8SFK/fxzscv8tLLN/nSV17keFhjxNMvV4BB84APliIJNQ4voTb4pQYsWrXEPjKoUowipTp8RAwnfJ9YCg6wxuILaNuw7ka22xZrlWZ7ypAKUgyYFrUjfm5I6xGbKi6lHzt8Qw1E63ooysxbTFa6VN1fAqS+Q9VhRTC+QcYaDphyDU2bzOf4nOm1kLNiS+UqX758GXEjH3niIl3fsRxhebhiPpE6sBZFssGEDSPVTpGcsChjKizWik+Bo4Me7i+YZgs11ekyDpngHEZqoJ21ljEPUJRzu7tg4fbeQDOZkmJhodWZNQwZzFB/DmIJbeArX3yeJ5+4HzE1+Gwy9zz0yP184UvPoeo4NTPcvrmi6xLTeSCsBBcCn/vcv+f9H/4+Tp3bRXRSzz3IPcq/k2beG1Q5pdR5pj1R0tWvfzt772trqm+/5E3u8wa1zKYH8Poa6t7bbuqy1x3Pq4/z1V909X5a76968jh/cNZP/MRPHIYQnn0tR29ra6t85CMf+Y7ZZq21fPzjH7/+8Y9//Pprv/djP/Zjq6effvor937tz/7ZP/vZ197uYx/72OHHPvaxw+/UMb69fm/rLTf+nLOknLFKtQNsRBVOAE1ogWjqST5vpk0AxUIqjtWoBFcw2eKMEqaFLo6VBycwaObpL3yFp4dCcUpM0DrDWqvbICSHWMOQIzPvIY2IBkwZaLwl50KndUoZJGFt4N1XZiyW29x86ZC1MSgRh+X6/hH6YOUDGONwHnJUrGlrTPuqJzMwaxqkKEMcSWSsVtm3GBDrmU1ruqvmwq2jkb2Djq2r1Q5zezGw1wrWGYJVRnqmE3j5xed55IH7+aPf/37Onb+f8+dOcfnS/ZzZPcPxuGKIHYujI1Yp89hDf4KXb1zjG197jq9/5atcPmW5dMajaY3YNc5MyENt8lsUnyE5SyKRVh3OBGIRihayVaIoacxYMQxd5ah5G8glUXTEWAEME9uy3U7ouzVki5EKqR0S+ImvXR+tab1iBIxFs1QmTSkcHe7TTmeIMQxxXROhjcc5R/aOnDL9MBKaBrEGxDKZetCR0Lac85c46hYYVR5815NoSThqYqvYWnyWxvKJ3/kkt5Yrht7S44g5knMNu2iMJWpN4ZOwAT7nqt50UYi5FsGaK5fDlIIrhZxBrGIcSLY8eGXCD773QeJHL/CvP3mW//r/+1W+emOC+h6fHE0TOFwuUWOIUTncX+LchJgijVd2ZlNOn5lx7cY1nGw4HGIRUfIYufDAJZ543/u48dLLfO1rT2EpxHHN2dOX2J61iIvcPI50q0RKA4qrv8WqGAwhNJtG4sB0a4rYgbFf855H38HH/tR/yY3bt/ilX/7lGsawsQWcP3OOP/rjf5Rf/tVf4ehoTUkREwvOCs2kZT30uFRTsodciJpxWFI3skwJa2rIzdCvKFTVYwS2cKitRfhBv+bSdM7Zc7scy8DR8TFiPWdOn2XvcM1iMTJaQJWZb8iuVi/DYoU2FnXK/dvCOx8I7Ow2pOUSzcLVA+XL39hnf2Xw3pNitTtYI6Q0YKkYgHtDSozzaHBY47AY4rgGY1lrqcVoTkhZUxqPV8gxI8ZW9Yod8V7YPT2HOGPV9aCKmwRciagKjWsZt3Mt0Qo4LKM1OGvQYWAQxXiPHWtCoEFQYaOoVJKpChfRiPWO0DToEMmmNg6zFrqxZyYTGmsYTalWaWuYtR5nJhSpnuKiVderWgcxxloKGYxlb7/jgQcu8ZEPPYEzHcNqSZVHKJNZixUlj+PGDlPvqwiSQXKkSA0YePaFG7i45nu1gKmga6WwWHa8cv2Ince2ydnjXWDSFh64eJqjb+xhSqGdblH2evYWIw9eammaQMqGqy89z9e+9Lu8//u+H9X6OVXZ0OpfY8Wtq/6cVbnD+7u3YJQ7bMB6Tqtf29zzLXNv/uOuOoW/O01/fVF872u698tag5WEzbXZ4CdbvOd7fvA/ynG/vb790pLB1fR3oxApNJiKilBDNkLRRLccaELLerkEKjrgqBt4xSbuP3cRO47ElIkoPjh8gcMsvHx7wan7fE3Z7cFIVX62wcIo9EMmpsyQxqo1LAXE4LSCNnCC1cxMlcEEDhcj7XSL+awldZGzbeDJKxf4l4AEmG7OS4qQi7COcLTquX1wxM2jBV1v6ZZjDXRoJ5AVIeHUsTsLnDvdsD1vmXhPaxf8H/43P8d6Na3qFWM2nOXCcqhK7RAMf+I/+7/TTCqb9//P3p/HWpre+X3Y51nf5Wx3qeXW0kv1zh6SQ3I45AxnrBnJsaWRrC2SLCG2IsuQ7MSJJzAQJPEfWZAECAIEtuFACCAbiG34jxgy4ig2IsFyZkbjIYdDckg2yd7X6tpuLXc957zLs+aP51R19UY2J7BnDPUDdFfde895zzl1z3mf3/v7fb+f7/biDv+Tf/n/gBRi06AruI6ERClJjIG6CphaMVO3+R/9zf8pOzsnuGTRxpKcx0WPVgIpEpWShChAGEgBIUNpKrnN84meFDNtZbh44SLZgbWl7pxuLThdrsgxc7x03Do8pvc9XecLM1potK5QWePwuJi5ee8eiMTV/XvcvLPiZD1QtxXCQCsNQoALEFbFLusYsGRmU8F8MuHJR87zp//0n2Qym5DGoaj0QySJxJ3lAft39knJ4YInC4mNuii/YiIqgc6C6BzZGsrYNFMjGXMmZJhIjcmCoC1KafqUmBlNSpY/++f+PF/98nOEkPnuD19n6HtkM8EnkN7w9ps3OLx3wt7eWc7tzJnPNVrWnHYDt2/eZlj2nDl/Fu8OWdPjux6vJEIoYhYs5ltMbMXUSO7uH/DDVxpmZyzv3rzG27f36foyyHajQ/hMFBvlVyo1YoolFCqkRC01CTBalSagC3R9j2ktk0lLpQzrGJlIQ1KgI1gtUEnRr/uyoQvBmCNW6c1nuRwnKYXdQCUGP5a9P5aQLihuExcdSVXcOxjYO+u5cGGbw+UJ167fY/fCOZoaQt+xPd/m+PiYeWXYO7fDYtby7v5dvvfmVULMNGpClJmUHFpKsDNyjuzuLOiXHTlmnPD405GlLGpWm8vgucrF4p0GzxgSSklUZYudOXiylgw5YbyirmpkXdMvT+j9wKRpaKQg5sxse8Gx88WaG0sgjNGSOI6MFBmtJxbVYqJwgmO8T30ipzKwVELhgy9DfAUShciZKBMKiYga7zwiR4blCdu7U969dUjsHLu7c85d3GbWWu4erwlRUpmMUBqpNfgVSmVSKo25lMFnR9cJxt5j2m2U0dRG0vf3g8Q6cj8WW5sWqCzoRsm90yVDv6ZFcHFew7qD2CAFxCBIyeGTJWXDsnf4JNAykhPk6Hn00hl++OIbkBNGDkghuLnf8/RzM6bzltW9gaPTY15/+Xt8+eyvIu+n8zxwJ2z2+nwfU/OenVduGvjly/t24PKznwY58lGNt3KM96v9/qDr4Qbg+x/r/V9/HMbk/cnE7z2f99SD/+Ss+Xye/vbf/ttHf9jP49P13/31iRt/ErHhWBV+RoLN9GgzeciFczYQaeoKEQpDj1zst90Y2ZGFtWWzIqZIFxzRR7a1oneJa3d6dhaK5CNHJ57TCH0MCKGotWIYetI4cPnCFe4c3uPeyapYUZVAaSB6EAqtG6TU7J2d8xf/mYv8J//573ByzVFXgt5ktFMc3jsuTy+DiiXVVUjF8nhJ3/dUjcHFVhWSAAEAAElEQVSHEUmkMpqQNGksKpwUPEN0hKhZdpGrd484WY8kL3i8L424IQPaorFUQjBpYWdeMWklt269ybV3LcJ/nyuX9/iFX/4Fdr/4WbZbQwgN87riaHWKNhVbOzOMrfjed1/gzTeOOdteKZbSVBWratpIK5NAaI1M4EfH2TOXGYaB03VHbQwpJ5wr8fFKSJzziJTISVJpwegTRiWEDpzdvUw726LrlkzrCVlpmnZCtxzxY2K17FjM51jbInXZcApLrgICZqvFR8AU6X9OnkwkxhFyRCnBYjHFAeMoGF1ADAPrwxOWK8/EWo78Kee39pid2UVGQG6sLJsLgpPDA1544btYbemzZzFpuTsM6I1yYsggc0n+lUGSRWGm2NoQhESpEjQiQ0Q0FSlmmqRZ+og1GYwliJGv/+6byLtv89TCsVAXEdUC7Y/pdUImz7xdcGd9jJaGw84zazVXPvMUr7z6GkerE7YWDQnJMBb+oK1aeuc3k9DMztYWlRacO7uLFF/kzddew0rHU09cIruBoUtcu3mXcSzv0RgTUkEMiSwEIxEtFTIljtYrqpSxdc3t02P+7n/wH+JWS7AGKTXOjbRSU1WCV196gd3tLcZ+5MQPyARWWXoSCQEhE7PHE5Fal3+vEIhabuzMRcHihUL5jJ1YepdBKazy9P1ASjVTlTiOA9bUGJOptaYLI7qu8P0KW0+orSnNKWEZuxGEwOL5K3/my2zLa3z9u++y7GeA5O19z1vHEWslKjlEkoxqw3cRmZgyU2nBaAbRkUOkNQpdF2Vj9iO2MmQNlTaIpMmDRViFqjRy9DhGnI/UosLLhLGCnemE09Exnq7QOiCN2CQyxhJGZMqpNI0BFz2DFMhYwl6kkCQXSUaQpSgcKRIxlkmqBrIU6KbGaE0eAsMYEFoRXUdInkpYKiXJKkLWzGqL6zv0YoJmTfA1qAYTPbH4yckyMURB1yXmtcB5QTc42loxbSzrbo3aJAA2tS5TcBeJKTzI1MhaEANIAtE5VFXhRU1tPZNqyvr0FEMoKchG8Na1u3z2yYtI1shckbPgsUcf5Yev3MJHhXSepq24c+uAJy5fZNoIiJplkvzub/9XfPbnv4pWReWNSBvLdn5/MZs/UOjebwymyHsQnBKYVP62udtPUPI9HJ5xf294b159v+kGH6/ak5sf/TgloeDDNWt+wL/5uGL24Ybghx5XRDKBsp0X25eyFmk/xFn+dP0hrUxCxUIIUFIXjpcRaG0QQeARSGupjdjgKMr9tmYtR6cRpSxWC7xIKAQN5WLekbC14fA0FJW5BCslYxpIUiF9xCdflMLC4kJAyozMYaPkUSQyxkhykhz4kaPDNVlELpw7iwyeVeioVIN58N6TjCkQUCzXnlsHJ+yfdPRe0HUDCkmUAT0x1ExweaQ1mkpIHruwy6IVKELhAPoRlwW2uoNWiarKGFtCpsYccVEjUoNqMyLsY7LE6hqpIo/sXS21jA8kIl6CoMIAMTqQNcl7ckyc241lyOkj/XpJIhU1eAStNUJAioFARIoy2NaqWA8zpUHqQmYxm3L50Ue4/vYt9GTG0cnAq6/dYv/gmO60IymFsCWIzdqWlBTaWCSqvA9SxOfM7SPH7XtX0XaCVwata6S19C7R9SM2DTjKsHuC58ojZ9idtrQ2IYPnS194nphGcqpQMeFlwsqEG0euvvQy77xxnZNVTxYVShf2dgqCrAQjiUmU1NriQhmMpU0jWIkSPuOdw8XSJJJGkZPCxzLo+n/9J/8hf+qXv8LaD3z/Ry9hmooQR1wqA3GtJizXjnjtkBs3DlFWEEPC9SO+EmzN5/RHh6zCwKgSE6koNtAy/PNDx9U3X+bKlQt89rOfYbj5Du++8n3evLHkpFMoI8lSknXhsiUFOpVmtrYWn0tirDEC6TNaSpJ3JCGoZYNQmqg05IQ0GoF5kGjsw4gSkt4FvI9Ia8gkTKUQsdSzISuUrVE5EKKnqae0ouL49BSEKiy70RUsUBIEkRl94OatO1gVOdvW3FaGazf2eXRvl/VqwLZgbcO6i+jzhtfeucHrN4/oR5AuoFpDjJFIRQwRVSceP7/LfLHFa6dv4+LI4APSWrQPPNhKhEAYSRwjSpfheyZCTihTkZVgOY5YY0jDSFWVvS5KRTWfI8is+x4zaVjHkXEYCV2PMnqjcr+vHVUYa4lxwCePxeCdRzcGKQTeBYIQkKBpa6ZtjYiJPmVypRj6NWSJzxGpFZqM1RXL0VOtPfupNDLH2wc4P2f0EwKCjEbliC4vFSkSLhelnAwC7zJaCHoP+0drrniHImEqQx/TxvY/EGNGioSIkigTnfeIRrJo5wzHIz/zxPMojqkbWHcRJRIulGCxJAW57/Bdj55KtBDEoef8TsPOdsPBscR7aGc1r964zec/9ySTnYqT41ucDpnXX/wOn/vSl2lnhizuW3gFZXRdbM2F3/FwaEYuw00h39fwe69J9uE64oMzzY8acooCTf7YhuCP2+Hed5z3NfJ+muN8lLqx3D9R3m/iAxblT9en69P1061P3PgbU0lq63Ism4TzoCRaKobgSRmqLDGAtBXz6QyAZjbFWsOdvmNvsYX0Q7FUCIVQEmsEc6GwJiOrxHIYiKNgTIKQKKEdFJvKOAxkq3j12nWS9wwRfJeoG4OUCgRYUSC8rZYY2WKd5y/+yV/ht77zArdu3OVkGBA58sa7NwEIcWRwM7SR+HHA9z1bkwkCMFKRkkASEdITrEapjEuWq/eOOD0ZS/hIgpQklZaFZQHoHFnozLROXDg/58xEUk+nhODY224w9ZQYArkb+b3f/C/54Xf/ay4/9gRb2+cQSnF8ekrnIm9eu8l3v/dDsks8/dgFpI0lVTMLlBSYZrNRqFQu2KWirg0uDKx9j6oVIhelZoUt/BIp0FIgE6CKHTsgiC6RtcKlxNHyBC1UUSxO66K0k5HT00O60zWtrTg5PqRtWyaTGbqZsj4+IIQ11s6RuqVbrQg4jK1ZR4FtGuLYc2fZszze5/B0zTAqjrsBubmQcFngvEONI7/y1Qus756wc2FaEkaTRCHIuuaH3/4mt24c00XBOPSM3lGJktgqQ0bWghTLJqGQaFHgwTKLDd4XMBppNJGMVoqQRyptIAtCNMyN4L/4/x7wO7+d+LVfepw3TkbevNNx/omLbG1VLI977t46xKbCcNM4bhxe5/T7J6isqLXm7N4F3rp6naODU7yS2Jg3NsqE0JKqrnnsyhVefuEHODGy2FF88Rf+HBdngoM3v87tNdw6WuEQKK0RhMIPVJacEo2xRVk2+MIkqiuyFNw5OWW9XNHWlhw8rakQsjQ8l8tTDlfHjC4x9gNCFcUccnMhOgS8zihrqGJppAggptKci1qhfQJlcCmTskenjDbgw0iSFasTh7ikmE5rFgs4Wg4M3YBQiqPjU5IBkw1BZJSxyOQYkyeZRGsb/sqvfRVlDa+9MfDbL/c4UXPvdIUPGVk1aDTZe4JzyLZBkal0RRcDq1zssc0GTRCdI+WAVrbwmRzIJLFSopVgSULEjM0a32gYJEOIdOtTzMxCjvi1oF8NpBBxJAggQ6YyFllpcI4gEtF7pDSb1OkSqFOSdSW2rsoZd3QkH1BKo6wpClxfkucKAlCALA1zHxPKNkylYEiBTMIaTYiR4+OBcG5SCiGZ0FVJCjYSQg6l0EuSkCErSd8NHJ2ccml3hohFHYnQ5OxAF2t2jj05S1IWOB+RIZASVLLCV5IkFNY52mlF3dSQFCmVz2YSghs373Ht7pJLF4plKwbP3oUdHnv0PFdvHCGqxNb2hLv7K45PM1uzFtetaNuae4cH3LtxjfOPXEJmTcKVExQPW1mKdzHnzcBDSIqOFiAhpH5wGx5K7/1xSr6HG4LvNeDgfrvv/t8/fn0wxe6jrTnvO+ZDP374vh+cfH9UAf6Rr0UAuTBwxCY86EOV/qfrD23JykKKxRaP2YRBFeaVtBYlBTJ5qsqwmLXsTLd49YewvWhZrhWVLvwvI2FUaSNOMcTgmLSR22s4Wndc2GpRGqqUGEKB2NvGUmtDv/KkJEFnUkE0gy7Nv1YZ5GLB6b2El57Hz22jSIVTZjSikghTao2hG3jncMX+aeDkpGfsA3HD+BNKEChDlelUszttWMzPsrx9zIWLC6zJ+DESU81AJOdIpWoQGU8iCknykKRCKUUjFSFljFIsT5egFEK6DUMsMeZYBlUYIJNyYMwBrQQkTxAWKRMpS8Yk8C6htaXWhQdnrCWGCJkNC9mRpEZhcWSUSiWFNAWs9ui65ZW33mK5DNx99ybrQdL7TJaaym7hVMGYWBRGVTgiKY4kqRAxYE1hCbooinKeRHYdubKkIbLQZZhe6YbLu1vszi2N9tRaEsZUBlK25cnPfYX5dFHSUk2RTrmUCEnx8lvXOV4P5JyoEYVpJyIqa4TW5E3zGFOQEmiFkkUlLzZ1JRKSECWIJkaqnBmBJy5f4F/5l/8WqTJ84+tf57RflubxmKibpqi6BIxRYSrFMIyoYMk5o2qDQOHWI8YYGlMhbKlbJRLhiprTOc+777zDsJ7zV//qv8jFP/Nr/Fv/zv+NLq/KbhAyfRrICFRMVEqghcC0lm7oSRmsrckiknNAacW8nRKIJKFQWaCrFm0lspaIUMKQdApkrRGqfC6SEiQJ1hqIAVtXxLF89lASGUDWmrat2ZrNGPqOlIriT0uJ1hb8iNKS2hoOTlZs78w5c3aHc4Pj3u1DVDpgPpviR898Z8rNW0f88A3Hvf0TglSF2INgDBE5BurGIKzh5z//OGe3Jvz27/2IdYxUTQk4jEKQXQKtwUhCCKSUyNrgc3FjVHVFzqU+0UqxmLRIofDKQSUY12smuiCVksj4ISPnmloZok0cpMhCVaAUvSyOrdpYutWAMRqVIqbSVClsBmECZTXKaiqlaUmcO7fN7k7L0nlefO0WOsOQJXIzBEtkogRiRFSKqpKIlHG0HKxGDruOxaSmqSb4KDauDY+WCiFSQRC5Uq8qI/GUgDzpemaTlk5a1gdHZC2pqhYrFCIrvBLUIlErTwoeISxeeGwdubTYpmkUmjVCa5TwqMpgjMaMeSPCEESpEHoCWvHk41c4/sFVQhLM2wl3DpfcvH6Nc2fnNHXNqht5/fU3uPr6qzz3c1/b7Pd5gzS5XxvEcm7KD1cj92uORH4f22/TKPyI9X6u3wd/Jj5cLnyUueD+7R/6zge/955z4scNQN/36A8e62GO88M/ft/xN/8vjpBP1x/l9eu//usHv/7rv37wh/08Pl3vX5/c6hslMeeNwi+jNsMeEVJpFhRtPZWSKK3JsZx8QvA4LVmve4gLtFQkkcgehE+YJIhK0AXHad9xbjpFG80oOmQqdjYfJUOOaGE4ChFpNHVjMSEVlo0oFzwpJ4wSzKqiDhvGAS8H4rjmc1f2+LmfeZpXX3uHN67e5N7hEigA32wFIQSkyuzuLgibpmNJ9exJWuFHwVs3j/DRc7gOrL0q1gIRy3RRaRSKiSmnpV+dKVa7FiVBjsuiCjo4KpyOcYBUlJFaKbQUhP2B1bu/y0mWSMA7TxKwEyJ/elHTNjMUiXTriJiKtJ2c2b53sPlFSrLQBfAuM84NxQ4RCntPiqK8JFOss5rCQZOSwTn6cY1IGYPl5OSASWNo5rssjw+IJ5EQStKZsRVtM2HwiT4Ebl67yWw+x0VQQaLFyNauwpiR7CSyMgQfuHHrXU77yPUb+3SDYxgiSWmSVJgs8DnhhEQEV6Z2IWJzJqVETwl9wKpSWDnB77/8CmPOuP6UIBKjizSqhDfEMRJiJMvCaXTegVA474nJQy5ck5A3AQs5kSMkYZEikbLH4tnbuYiaz/nVL3+e1197mW//6C2WY4dIgun0DI9f3OH8ds3Vm8fcOe5QHQxxQIbM9nbLo489zvHhCXfuHDKiMFJRGY0LIzlndG0Z3Midewe88vJbXNkz/IX//q/C+V/kzrU3uDcY3r59QPCGpqmQlSH2PUkKtCpJZpmM965cOObM4D1eJEQCrCJITe4HktIEAaNziBzoRMSPiUpbrABixhhdUgaTR2NYdT0TYzBWEb0rFhqfSFqWZoSUyBQRpnBxpCj8SKGLIvhkuWLv/C5tIzgdPbOs6NYdImh2mjnb5zWv3bhNSomIRyjJ1NZ85YtPcvfgDt/+/hHXrx9wZ2VY1BEjFChJDiNRRLJQJFWCSQYtabTGbjg3OW+CMCjMUXxmI1AmhUQUghQ9wXsaY0CWCyQRBVYrohIcdWvmqiWiubvqGX2g1hVpDOhZgwTcOGIbBVIQYkYhsFqTUyRusAhaFI5MSgGZSuKeTwUGbivNOAz4UBKfVRKkFJEyk7TC2imtNCDXfOXpJxi6geUQWK8GdrYafASlBdF5GhtBF06VjLp8zpVg8I6VUyQPp6drLp2Zo1VRG0pp8bGjbSqkqVh6xyg0dYIcBXWjqJqGFDO6T2hhGXQiCw8i0bs1hIwPxdrsnONb3/wRf/kv/yLRJ6yUyDxy5dHz3L57wtoHlFEErbixf8SZ7fO0raU7WtP5xLe/8Zv8qb/01zAKNlrITeProWZaFgihSbk099j8pLD/NjelFM/3bTAftz5YhH64KP2o4vW9qvS9IvvhQlfwoYqZ9ybyHzfR/vENwx+3BPfh1wD5Pvz6077fH5klckZLgxUaJwJC5JLAmRUxetrGsruYsT2fYKXg5Kiwe1P0aKuoKkM/eLTIaEHhdslQ3BNDYtrUHK46zsxakgy0QkPKLKNHKcUkZ6IYiaEou0YpqHNJ6E6ZEry1Oub2tWOeuTJDyETahLHNqi3C4Oj6AMDr106RbYePmSgMULibKUElJDtTw96ZCbvbFqstq6MR1cLECHwEoxRCF6ugkC1pg92QxpbztdREXwbLIY9oqwmutPcm04qcA0KW4XDOmwtWJUAVBZjCkCOb/d2iiQgl8bkMDLRUkBUpOWIcCCmQUcSNZdgPA9lkXMpYa2i0xdqKFFteun7CwfEaKVuy0KVBlBxKZdC51FcospaMISClQiRBThkpyxAoS1FYdD7TtpLL5/fYnU8xMtK0DX23Zj5tCaLGCo8bVqzWHRFHcD2PP/UUu1tTEgItFJ6AEQoXA/eO7/Ltb3yLFD2eVJwgShUeXJdhDCgjN03OggshJrQo4XzK6GK7zGX/ioDKGY0iSfjaV77K53/xa7zwox/x7/+dv4vJFcH7wrg1mqHvS5NPGrxPBAFu6Ji1U7wSmJCxbUHCECPEgKg1JklyjgQRiCgQhuAdf+ff/neZzKZ4J5FJkKUniowWqrh1KkFdCRAto3e0tqK1Gtu0aBsxRpBHRTSZzsHoMlkl/OAw8wVt40k+M3QdkEkyQS5IkKq2aKmIMRCFxMVEUmBcIGm5CUNznB4dQw60k4axc+SQqRqDMIa4jhhZBmZDFty6e4wWiguLKdIl9u8ec7IeiWPkwmMzDk2xZIck8DKhsmRUmegd2hp2bc0v/NyTTOZT/qvf+SanqzI4JSaUhuxSGRCbghFp20mprfsRXRuklNS2RuriEgkiY4UghoglUVeWQMRqQQoCayuylaRxZAwOqRJ1U3F2a8GTz5znOz94g24VGKJnsT0ruJ31sNmWRUmNNqXmUUphjOSrP3uZr33xMe68dZWbS3gpKjAgY0RRUpJNrWimlp1py6S1VBpigrVLdF1gNinOJUFhHKYksI0lB4fcpL4KudlXUyLnzPHdI5II1FajhwE7bbl3vOZRPy+4I6pi/Qd6F8lJIitBYxv8OKDNDNO2DEHjcihiiZyLO8Y5EhGBwDuPVVNEzDxyccFrrxuO+hEVIvO24Y3rd9g7O6GZVOjVhNFnvvOd7/Dsl34ZNmpVsgf0AzfDZpr34X1FiM05577S78fXO5AfNPg+KnX3fcf9sUf5eB3fw+6EH4dXeW+oWRSaH7zvR9VK4oEVmge136fr0/Xp+unWJ278iVyshUKWRkkSCZ1LCi5Kcz/NJ6VEHPoH7Lm4HkiVxTk4PF1zdlahACcVUWZQiToLhixZDo4LC0nwsaRUqrpEu+fSoNMZlM9kmUhWEFcj2lpCCphQeHpaK8zEYHMgK0Bqbh3s0yzOsbfVsvfzz/DMsxdJ33kZXn+DnCwSS1ZFYaO1JqZUGh/DwMlqyemQOLg78M7tY9qmQrQ1wRe4NglqrZi2FTtbU3ZHg/um5l/6zW/8N/Mb+4jljKabTNFSl8lt9EXCHnxRA2VTNsEUESmScklPCxGU0TgHOcK0nXH+zHmUymhd4tNlpYg+UE9muOAZGTg4vMd6VKxcYN1nxqs30cJgdKZSmc+oCZcvLZjsVNy63fPu7bvcvXeMj7DKDUHViGagDplOptL0EIrsPTmBlJLPP/c0f+Kf++c4szOnO7pNO59T65Y8LDleOY5Oj+id4KRzRfETFVlkFOCFQIRIUmoDVJdIJfEb9dL9IrzWBoVk5XtqW+PwGCQqW77ypa/yb/zr/xrtBK5dvcnf+0//c/okEEJy5849Vt0xq8vnuHzpPM8/f5lnoqQbAiFk6taiUmT/xm3W48hkOqXrE0oXSLjQuqhzpCTGzJ1bd1itO87tPMrxcsRNTji88Qq3jzvunAyYZJEpI0Ii+cL6SCaWomDzOQwxIHJpoiutMSlR1y1JSlQOGKkIIRN9JJIw1hBUQiIxCEY8OUac92Qt0DEX4LMQJB9IIULOG6WaLVY1ITBiAzYfRqRQGGlwbo3WkruHK7bmW7SNRZ8Kjk9OWI6BMWZ8HNjZvcTk5gFNnajsBCsMl589RzOBF35wlRu3DhljQKNxY79RgzhMpcklEJeGpjAO/UBP3rzHc1HPSclmtI2Qihw3Sk9VGpMml2aniBFZNSyHgYlqqIQv9o1pi0mCnKA2LbqBOGZc12ESjCkSsicHhUuRMLrCmJSZWmrG8tDFUh8iPgWatkYKhVKCFALLsdiRhZBMZzOyH+ljLkWnL+nZOxd2EdWCWnjOn62RzYT9m4e0djMdlgoVQWZJVIkUS7I6XoAC5xODl+hsWB4PJOdR7RbC1Gh5QucLp0irTBpGpKKw+7JHZs28sRycnDCIVM4LPnGSAzFJUoAkPYLyb2rrlnfeuc0wZKpKkZIHIrvnFtRtzXDSkaVjZ6a5cfOAzz6zh64ltdWsY+aVV3/Al2/9CnuPnEekdmMl+qC1owQEvb/0FAiKfV/IUgA/rBL8YFH7Ubbfn47x9+OKzo8ri0uR+8HHvl8APzyR/2Cd/FHP7f3FtNq85vuPLX5i8f7p+m9vhZwLfy+OGGWRsiGbyKIyzKYts3mFkRFSKOotfz/NOlFlUMLQ1JLOpaLSTaJw57JDakmjAsenkuNuZGZleQdKgZESmSFJgVAS7TMuloYQCcZyyUg0Ne9cO2R7bpiamozEIannmuPRc/3WMW9fd+ye/X2O/DHWjUipyRTWplWRMzPDuUXLvG2YV4aqELQIE8FkvoVPsI4J4Tx1ZWjain5wCC0KLiaV/h3ZFxaqlIQgQBROqa4MLuSyn2cQZEQKtHVNzOV1ZFUSzhW5NCOJCJnIwWGVQrcGlRNJOGxdEUIZEC8WNTEmiDUq9wQCjVVomTjpen74xrsMo0XWW1TNFClLo907j6YkjaaUIEeEMCRtIIxYKVDG4NxISgIlFSIHrM787NOP88TjZ2mmNQSPG0f63oERKJEI4ZisEnVVs1p3TKcTiJLt85ceam7GTW2XSWR+//s/4tq9QwZESW5WEh8yWmsCASskldH4DEpIghCkVFRxUCzOxmjG1YA2FYmM1ooUEkkIvvmtb/Ot/8H/kGtX3yU3NSFl6srihxEREtOqISeHDxCdx+vSTMoU94VIojRnlSgWXGUJoQgK1EYl52TmtO+oJ1Oi0XjVcBpOCCqW+j4p1qerojg3NR6HTiNPXznHha2WK4/usVyecH6r4czOjLv3Dnjh2opX3r5DjgGQiDQQhoaYS9MmS1/SZpVEKYsSxeoblS4DTrn5nKRIUpn78ZrtZILJic5FkpQMMlFNSnhZTiPCamQqDSJpK9Yrx/V0l8t755i0id2tCau+4/bJKZfFgsVswknnUFpD8rjN3mx14tLeNl/53GPonPj2i29wMBq0yQgRCUMiN+WCTktFkoIYM1obXHDISpK1oDV1scQSMAZSUoTeU00kStdIBVkEiILJrCGGkdwGdiZTVJR0Y8dpTLQLxcVZwtTQHSWsNQx+ZHAdhIwOpjC+nWNSVzjvqbUihsyt6zcZP3OGV26u+OG7d4laIITh/FbL3rxmMp8QPZASIfaknAhDwmVJiiPokiw8DIksE35co1aey4/v4VIRCaQcMEqVoS9lsND1gnsnJzz2yAVOX34Xd3ZGSBopFH0EYSVmHIg6ga0RqXCbVU5UVQ22xaKRuS6DVeFQQhHjyJYtLrgUKLUdJdxwd7Fg52zD8Y0eR2Qxadk/OmTVg64SSnuks+zvv8ud29c5v3f5AWNEigxZbpSrm6bXA2Xee46An85K+956P3+vfO/hwelPvP8HHvnh5/VJH/vjj/zhJTYIBqAMfT9dn65P1x9ofeLGX46FvZASaCHwbCYQWpK9RxqLyxEjJH7oGbsSMqNVScy9u+44Gg2PnJ2xGge888QM1ihEymipuHM0cm46MNEZkQQEUFqTUqaSgmwNVSqx9FiDVhIoaUw6Fw6h0KBCRKdINIqjtUeZmp2dbaJP6BzZloKdR84DIISnyaEkfwpF7wSHXeDwdM294xMOVmuCMwSXyEYSpUKN5X4qa3ZmM85sabYXFVppjNrm3/9bf5l2PRJTQGlK0yGXxNFl7xnHTK0FUysxujSnNoObcspLQMoILRhDQiuLyLHYW0QpHF1IuHGgqQx+OqXbnZNGh3cOrSVKKqpNs9T7AhUXIpaD52IJFEoxDh0pRRYTy2OPPcLx3WMm8wYhDIszZ7hzcEQ3eA7373DneMVx3yNFJguL1BVIibENYBhEKeKv37nF0ekxnYvcOerJWTDdmuBTh1SZ1kCUFaujAZ00AxGdPOcnknljOL+14Fd+9cs8dvkySmda24IoSq1kLLcOb3L9xj4xB5zzICU6CVwqqaZeCyqhClBJlCaykmVCrKWky0X1YGUBPtfGgoAxwkwrcpJ85jPPsHeuRfiev//Ci5wuV4i6IQWJocat4OWXr3H95hHnd3fZ3pqQjMBIw9u3bxG6DiMNZy/ucf36bSSZ2HUsgyKmTG0rQsxc3NtjOmvZauDF167TWIG79Ru8+NqPuHvQk7MBrfDjWCwpWqJKtHGBjvtIzoXLN9U148bGrK1i7AeyVoR+YLFoaaxhqTRjjEySJFqFDhmjBULXdKs1KQbquqKPDo0sgS9RlIZjFgiRMbEoDfuhR8cyl4ybxLMCJfeEYDkMI4dbKx577BxjXnDz2h1uH67Z3TZI3xHHxLndLZb9mt1Jy+Pnt+mc53svXufNu4dUwtLqBqciIY7UUhHqGTkEdrbn4AOrZUcSAeUT3o34GKllsS6bDEIoQsx4N5JMRBuFkhIpC9x8kGWgYQfHxNRU0wl+veL49ARlJDuzKW50aKOIVcNhXJFkLoBrrTAe3NAzIhGp2NxcCqjAJl23JFgKJYuKIkaaqqF3jkrLTehOCXwZhw6pino3SvDOIcmcHB5w7tycLrQcXz9l1vZcuXyGs1sT7h6fslxFjABEROsWVELEJcoWGLhAEqMgRkc/KtZrj65mCK1oKsnpabmQlvSEoS+s1KxQCqJU3DwI3Lh9wtbUkFPm6Se2WN06QOW29FW9IKSAjwIXBT7Baj3QtFO8iygp2WoNZ3cty5M1QmRmNnEQEzf3By4/usV8K3M69Jwul7z20nc4e/HXUGrD7NtwZ97bjDLv9bfuGz8KyDzG90Ow7xejD/fAPk7l98FG3IfXR1l6f5r18Y/7cPPvvefN+57XxzUm3xuS399BPm34/VFbGYFzGWMMtmnYmhoWzZRmYtDK4l1RG+dcECjzZuTpJ36P2cxx8ewVZpWhbdek045O5XI+VBqnLV1IiE7jwsCyd0zthCQEOTsqICIIogxK4sZ+F8mMUhA3AT7RR8y84bFHtlFJsnQjd05HDu71HK7W3Dt1iBh5/mf/TZAV0mdQnrbK7OxM2J03bE9btMyQPUIkhuRJXoAs5424QcJIIpW1uGGALMs+nTMxg1QaCJsmeMJoQw6F4YWUxKjwIWC0YBgGJm2FyCXkQWtdLpCluB/qXhpiIhdkjFB4kSB6jEklkCsnrKpR2RIJDGLAmIzRhrEPXDs45d2DY047yXwypzIVKhe1OEqjlSGmglJJMZFSQhlJ33dUG1aebDXWGGQKzBrFY49e5JG9c2zXBu9XDMsVPkRyTHgX6Lo1IQRs1dD3a8ZhRd+tqYxFZMUzP/tV0AWPIUQJX8pklv3AN7/9fXxUuDEgQlE66hwhSCJlwJoyjMGjkiQLiUQSQkLrcn7ph5GcKK9Fa3JOKEqK7dW33yUriahqUhalrkmlKZhGh24qsqRo7aVCoAlJoJIn2WK/zsGgbUtOZUClc9oMbIokXyNp6obgM7qqcGFASM3MTlFKIZTAZ4UWmTFEUoz8zBPn+dJnL8PylEe2DcPOLr4bODw94kev3+Ttu57lyUjbVkTpmdRTTt1YAuNkRERDRWJnsWC98ggyWhX3TXB+ExyTik26qTBRMqQyDLVK8uil87z25jvkIKASSAkiSwaKC6OSGlRmDJlxiPgb+1x59AxXHtWcLBtOhhJEt5gbxjiURlqS5DzQ6oZnH93jkb2aN65d49b+kjunHpQlbhLCgxCYrAr/OcZyvZEjJ8slQUAlNcaa0jgS5fPfaEOI4GqLy45WGEaf6EhoJ6hOBkxVBgE+RramNZhE3SUao5gQeWRnxurwCE+5pshRgUjEFLFKIe1GFJIzMkOMiXduef6jv/99us6zGiQiBhACaQdcqujvHlBVFpSkhCGZ8h6TCdvMiDhSzISUiINn1TtUzpxzjqYWDINkHHNpDglR8Es5MEa4+s5tnnn6acyrV5m1LRd3K7pxIArIMZC9JFKV80bMxDyiJSiZS4q0ECR5X+FcuOXeF7dVVbXklBBZQtZF7SsTzz33BHcOR9a9Z15JrufAa9cO+MzjZ9hZTDgIPW418PJ3foczf/Ivo7QuoUXpvmpRPNhDxANXwPuNr/CTVXqf5Dab+MHy94dqjR93vw+OZT/J+mAtUwYD7z/KA7TL5rk8zJT8VO336fp0/cHXJ2/8yYxMqXBAZJGRJy0RusxXo1TEnGnqGuEjKjgAtmYNW9OGe/uJ2hikzASR0EKhc8anRMgRXSmEsqx7wXxHoV1GqcAqBjQGnKfHE7VCasMweIzKmBSRMZOVJgKtUQhVcZTXHB+d4r3j8oUzCN/T+45Gt2ijqdT9k6liGRNDgIPjFfuHHUedw3nBODqUrBAqYSaSVmyRZCjhJcPAIxe32Z3XyDiiRDkx9X1PmrXcNDU5BZqmNJ3IGZ8TMRrIkrGOnKSEcDCdtLgUEJvJlA+xbGoiFdYNFhHHEhWfLSmsN1bksyxlmaC641WxMkpBiiW1TQjIMROyg7RpjALWakQqTQkrykRwZ3ubnbNnWS8duarZP+x54eob3DlZM6yHMoGqC9dDaYsUipgkVtsynRMRpGDdR8aVI6cVtp4TdI2SkiQkLhlOuwEdB7KQKFMxEYHHdrbYWcyZWUlMPduq4fFnniHjSRFkCPgNtNyve9760UvcuLbP8ekaoRqkSqQcSBsGYDAZNWaM0qTky9Q7l4ZYTKmwG8mMoysFijYPrA9j9Egkv/EP/j5/5U/9CaZnz/LqG68TK0v2AyELgoTKtpg0wQc4vLdk/94RWglcTMTRE2vFYjZjfXufMQS8gVpYrFGMYwGOa5F48/WX2Fq0/NV/8a9xeu+Y4xtv8MbVV7l9eyClCmUzkUyWguxDsZrkYtFRShK9QJuqSCXGDKpQ0QSJpBXGWELwZFWsX0kXm3DyES01Lji0VKxHRwgRoQ1hM/U3QpJTJiRJxFC1irFbAoqzZ87QjwMnJ0ugAMAZPTFnhCjN7JQzN2/dYTG11Dlz7twZrl+/xaS6wNZ8i+VqyWKn5uYrh8iLNTcPj3n72j32T3tkVEQ/EuuGGBJJ1Kx9wGrHs1fO004nvP7GdXKVWR+vEFWDiBlD2gS55JJ0KCiKh7raDApK01JqjVCKbhyw1jJ6T84J7TRZSurphHpScXR0grQWoyzOdYS+J4+OrE1ROOdIZSwmKdAllCKkUBiMzhd1gCkJ2VFkYj+iZLlomVQ1675DGcPaOxgDQShCcOjaoiiA6yFLVl0kMGCVwS0d4fot7h0tsDVELALwPmAsyBggQQgCKTT48p5VUjMEuH28BjdgNtwilRJIkDoRQsbIokglwohAypHdC3MaKUkrzxeee4bjMwZbB7p+RMlEcEUZKY1AxgG36sjb5d9cxIxUI48/co5X37iLThOEVrTzhpfeuc4zT11ATzKN7lmNiTdf+h5f+PIvsNitSOJ+GVp+d5A3Tg9V7Nz3rSRsikd1fxK++f6mgfBx9tuPK1s/2PwTD1lRfnol3Ucr9f6g0/oPNwDv72WlMH4Pfv0pA+ePyjLAhUvbaODczhRrN7/HFICE0uV8KUVpwMzsbf78n/y/4lJACkNtG5yUdM7h+nuIXNONEZcTp/3IydKRhGc5GrZzoBH6QQppSBmXM5XVDNqDjw+aYHF0GAQiJs7NFP165O2TE/aPAkddIvaQiMScUVkRaJnojNKJR8827C4mNI1B5UBOXWlcRk/EkIVCSQM+YFRhQYWhY95YnB9BWGTOSFESxKOPG/yAJKViXC/XeQKrDSlHRpHKkM45Yswo1RCTR+uEhIJXYDMsQKC1LLVJyKS0OZOoGpUlLsBqecq8rYnRIYWkUpKDE8/V20ecrgZ65wgRajtFNhZpDSFpQnAQI1ZJ9Kb5NRLQWZDCSKM1KQWENqTo0MlzdmfKZ5++zM6sQsqIc4EsNCKNhVndOwSCSlfkJPH9kiwEWlXUVoLIPPu555jPKvwwYGxFFgopMmMYefvaTV5+5U1Gl8guUpkS5qC04MQV7ENKGZ8pjRatSHHTRtjUw6H8A6JMwSyU30UsXDspkE1NUhI5BrLe2AxzRlaGimIhNrpCi4iPghqNjw6poKo1AQdkshdIoxlDh8wRoRQxB6ywpBToV2vWIRBEqTFDCLSVZ/SJQjlx7Oxsce7clMt7Z9FDx+XLZ2nlOZZH+yRZ85tff5WD3nHvpCcKwbmzWxyfdGipObOjuLZ/QqsnbO/u8M7Ve3zlS4/wzLOP8J/9w++TXEBvrnOkVoxjKDxMa6jRxOCxWtPWNePYcXv/LlZohMrFbUJJta0XE+J6QI4JITOqrRDOkWPk6rtLZluGndmMnTqyvH3EU49cIK5WXHz2LCfrwM2jJSvnuLc64c6L97i77Mm5QpsJaViRlcR1I9EqlFelub+xq5Y0bIvyAZ0COgn6YWTSTsvnQUdkGLDUNLpCklExsz2Z07GmkQY9aRBhKI351CNlaWy/u3/A6fKI60uHiyNGNaSNwldbWZpjKRFTwntPU9fIXDilHYnlwVjCV0zBgSzHkdOhwd0+IcbIqHsmVcXemS00Hed35qy7gbX3eAV1Zbh4Zs4b1++iTEt2I6vVmr2dOX2/IokiuIBEliUwUhrB9Xf2+ewXvkQ9kfhBcWZR4QPF3UQZEghEYQtGgVSKrluW4W0MZJUZ3XrTGC5hHDEpRpFRxpCF4+j4lMVUU8sIUnFmp2FeQ7/yaFNxZnqWk5MVsZ8i0AiVkNS8+MMf8jNf/mPsnrsAmQefvYebf/eHjz8pqAzeX6t8+Pbvm6T+VMd66Jv37/mx93v4/j/+2O+vkj7J6/t0fbo+XX+w9Ykbf8pWkAMKCaJCiVAmYHHDmJAKnUCTmW9N2GvLB/bC9pRrRlFVNUokfAxYCV5HYhIYUbgMlQyoSnK3W/PY7pxBK4yAGgghI5SknU8Ia48fYylYtCopajKBLtPDComatKxXMATHY3vb1LKkaqUkoDYIP5BluZA7PFnxik8cLAPrzhNcJMkCwi2ssoRVMF/UbE8qzmyf4/D6IbsXzjGbTQhuxEVLMCXeXUuJVopkIUZJFJIYJUkKlBIYJYkpUdcTTg6O0Rmcd6RNXLsLRQlZ0p0kIgt86FEio7KEHEmymGhiFsQk8d6jjaUymuRDCV9JbJowGSkdPmWkrslJ0KWElRmiR8tIUxd77Hde+BFdnzh4o8Mlg4uQ0NT1gqBgjI4qC7SwlMyHAq6OGaSIKCGI2RPRKKPwRPI4YJoKGRJnGoNNAZ0nzLe3OL87QacOqzI5RJwfGU/XfOZrX+TC5SeJwxpiJG9S/nyMuJR55a1rrAYHIlNvJn9BREwq6bO1FCgFykpyKiyQkIsyNMXCKhRSIKUgbJINY0hUCbwSPHb2DP+zf/1fY37+HC+9+RavvvY6Uhn8GLG2AgMVmRDLxlfVlmHtQBi0BNFaVCoFmbFTam1AR0YcKJBCFrC6VJwcL1G554Xvfou//i/8DX7w8jn+8Y/eQVUVootEnxiiB0pwTrWxQOnaMPqRLAJS1ygJ0RTrQdU0VEYy5kz2iVoZMDVWBnSlSEOxq6joCEqRpUBoRdaJLDLaCEQUYBVmKNB1qQRe5JJ8R2QyqSEHBiMJIRNiQOuSFDgMPdooamtYjz13jtZcunSGM3uwHjqu3bjHznxOkxKTxYR6WnP11j3i2HN85EAJFMWeOwSHcpmqkWhr+dJnH+fCmQVf/86LHK9HzFTSziYMUZCyBwTKWkL2xATFQ1QUiUIKqrre2JZBKsm8rdHSMDJiGkvXdbTW0FDg10RJ2rCkZqai1wNBSqySKKUZvClKUqNwwWG0QkbQjS7vkVTYVEJJKq1BghWZxx85hx/W/LE/9jl++OptXnvrRrGNoLDGlosxIQhEcnDoZs5kYiF5om7oUmJYrmg9zJoZWRYbnM4eNu91pQJSStwYqHSLkhAIjN6D62kry3R3xuy4Y+UctpqghUaJES8UaEOjyoUsSHxISB1JueOxvTOFHy5KorEaI8KAVraA9WPhcIUYkXpKInDhXMvu1nWOl4EsYW+x4M0bN7izv89s3lBXLd0YePvqdd56+SW+8MuXCoNAsIFdb4rPDeMrp/caW/f5dmKTzvHhgvTjCsgPMmU+WGy+r7P4seu9o7z3nQ+35h5u2t1/rA8c5yPA10W4UJ7AfTvvR9XD4r4d6P79PiZd+NP13/668vgZ9rYnm8AMT6aBnDbIh4gxpVFVZUXTtvQ+sVwumE6OkSoTY2CQ8KWvfJk8DNx8521mswnXbh5y7aBjf32bLCtqo9E5QUjlnC4jMmd0jDRaMzYVfRrJsTBEK5cJY8CJzNXTwNGdY5aDJMtIoX45XFQIAs49yzd/69/hr/2l/w3PPX/EXEKKkTFqvItMG7NJFC+3lyITco/WGaVapEycmU9o7ASfIaSAFZ4YPDl7mtoSQkSKwiVMWVJ69gpHacCQCkfLxUA7mREQ+FgGADJFlBTFaSFL4zPmUBjKAD5hpSZrSlNOSqbTCW1tQGo6l7mxf8rrt4+J2dAPAT8OVFJjFzVZ6E2jNhc7X06QfeG4SkVEIDeNMJEzSteEFGhi4KnHzvD8M1eI/ZKuW6HrhjwmkIV95rICW9NYyTCsS3iLnJByIIyCHCLNdMLnP/clCIGUNozEJMgxcNqt+Z1//Dv0o6ePAaRgTAkZAzoDWVArS8ipnMfJJBnRothC0yZBHVlskrVVDxR/IUDUUAVQCToFISVmusaJooLzRGQpOrGyIuQywGqMQoqN1b2L+FTUTFGWvSkZSSMtIlNcNz4iUgkxydIyEFEpoZQgjBGnBi5tneexiztEtyIFxVtvXGPsOkZpMEpycnKPH71xnZv3EqZpmdU1n3lsi2nb8qIfqKXgq1/4An9qoem95zd/69sIq7h5fMqt336Rdd9vbNsBlCZXugzzpEYLTQ6BLCQil+FxQNEFGFIm5UQVyjnYhxHTC0wCaRU2JyoDVWVYryNJCA4OevYmmbOLOf/8v/q/44nH9vjd3/kW//H//e/imynZdUyF4s69JcoarKyJ2TH2ASULN1hLiUTgwohVimg0KoBRBm00OhYrt0jQNC2TSvCLzz+LnUR0TpwuHZW0BFGa3+/cPOQkV0xnM06PliUyOQj8CBfOnqeKxxycHnHrMKGExui4YbeXgXRIiRShqSpcTiUcxlSMq45IERDIFOnWmcpk5o0hmQmkRCKgG8sQEpWUtAbONBMeuTjj1v6IX0ZqYTB4pipzaV5zMMJKJVywBJ/JSpKjQqSEUkAKSFVCztbdyOrkDo88/ig/+v6bhDwlDiPZKVIjUDKSTCws1EQ5JxuLEhohTFEndwkdI8k5dNsipaSdSEgjUkteePkqTzyueaSeoVJkUs84M59yeNCz9AM785qbt1ccjY7tbcs0aLrRc3joeOf1V9g5u/cBp8LDNcr9mqeoGT9st/1oV8HDX4v7w9T7ToMPOio+ZuWH6ov71c37j//RA86Hb/fTNvLuI8Q+4tnwk/jNn65P16fro9cnV/zliBUWKxROOBAUOLVUJBIqR7Z2ai7tLLBWMr9XGH9GQ4yeui52h3EM6I2cP4kM0mG0JHaKWVVx7+SE9SCIIlBpAUGzkomcIlpKGi3Jo2eMCZLGkWlkCR6JuXAtwnjK1TcOePzSBFtlchS40KFUkWL3K8ftoxUAr95Yc3VqCTmTpQXGYhPJglpKdqeW82dmnNku1uJhnbAycG5rm26ImxRYX0b6odqw5CJWGfx91pJUxOBBCUIaMVbj+p7oA1vbc6QoickxQhSl4JJCgpabhkWRy6dU5PtaGTQJoSRuA6xWQiBoS+MtuaLyEoUhp4QmR4/3PaAIUqCtobIarQTrIfH7r99j1Y1oNSHLChTEcUTZXNRkQiCzICuNi6VoFqIU5kIkBKpw5pRGkpExMJ9bHr/wKFvTBkWgnbSs10vmk4YgGlR25DhhtVrT5zVxKFydL37x8yQ3IoUlMxApCcudG7mxf5MXvvM9YvC48uAIqTCVhF4wOofOYqMKkhtLoICUSzhJVZcU3BiJIj+wPUkKYyZLwfPPPc/P/sJX2T844t/+P/1fOLh5D1lVqCSRSuFSwG2aDhrFEEJJJPSO+XTGSMJEsJPqgf0nB19ScrUiR0XIrnCXkmQxX/DSi6/wb/7P/5c0zYQma0bfgY6Q5aaRm5FKYO+DrJ3HSsv2oqZupiibaNs5wRW2kVOJk9NirXKjI4yRydQyaWpUEvRd90ABJ7JGZUlVlQKHnPA5IiOMViBc+XxHY5FOIRHcvnmL+c6CylYl9TqCrSxCm5JqJ8qFkFeKuwen1FYzbWuefvwSr752lZsHp1QkFtOW89sN+/c6stAEBgJghKHPAzFIRGXYsjW/9JVnmG3P+Ye/9XUOjkZMNSENvhS1IaCFRFWF9VjrisZa1uMAIaJtAVs3pkY0EhkjXmSs1EQfqCQYJbCTBpkCKIOQBjOZsXYD2TnWy0hjBVEonn3sEvMdy7deeJO+i4QUmC+mhBzwJ11J18sZYkLojLFloo6VXDwz46/92c9z7fU3afKSt/EYGrxZkn0sQZsCTC1p5y270wmVlVQGyJohSVYnHROjoDYloVFGXIQWg9QS4R0QCh9VFeUmZHKCo7vHDKFnNmtJRyfsnp9z884BzkX6fnzA0tIKYsw4D4iMqS0agXM9ZtqgJxN6rxhiwGdBEpIUAiJGxrHYllPf49EYo5k1kieunON7L7xL8NBohdKad28d8LnFedppxUnf4n3iW9/+Np//pX+2pD0KSc4OIfTGbl6aJO+BrN/rygne33r7JMDr+xP0j4Jef7AHKH5ChfyTNHx/MPD1/an9/Uf44LHe92re++NTO8wfmfXouSk5WfroQVEaN4gSsNRIyAErNUYpfPAcHD7Of/D/+D/yL/3V/y17e2+WgZ/zqLjmM89cIdx9nUkjWFaSrilqEyk1Z7c0jaoQWhAISIql1QpL4wO+UrhBQJYFRZAl0ioO1wN3e02FIOjioojZUxm4eHbKha2zKBSPX/j3eP6pgYkAQQAJ/eoYFxzbsx2UyHg8lTQkBDmbjfUwPkBHONeTjUQmSHkjOaPi+Lgj58zZM1vEUGAyPiUiCZEkWZUGf8qgq4qQy74aUsRIw5hBRlgPI4tGY3RRv4dQhswxFyW8IBWLp4hMJ5aYBNdvn/D6tXv0sSij89CjckSqimYypWqnuOCRSqJlJseM1BU5p4K5iBm52X8Im+CpHGhl4LknLvLUYxfIo0PpBqMb3OA2jbYEeLzraOoFzkWEsCQfyLYlpx5koq0Me+f2WOxsgayp26LEVCKSQuDo7hEvv/Y64xBQLpYagFTcMLmomJRQRA0hBmohcLk4bxACKQ0xpDJARBBTCXYglQRgLQRWgzCSiZC4tgzUTMpEIGmNzQqfIoNP5KzKPiQyWfBAdaWrClIJXvPJoYDZZMLYdUg0XRyRqgR5iAxzbfChBN0JATYYumXHCy+dkIKgqevCSdMt//g7b4MfGGMG0bCzZbiy1/Azn3mMzz/7NN/53uukdBupFF//3e+wqC1PPHexKCdVz/WDgp6Z1FPcMNAFTxKZEDxaKOoQ0dZykhIWBUrhNpzxUfVokYhKFbUgHnSNCZnnnrwISnB6tGbSWG4eHzGeBCo5onLkC08+wbxqeeU738WMz/PUs8/Qbp3ltXdu4uKaCzvn6YaB4aTjr/+VP87Neyd8/wfvoCvFqutZH3fUxrLsR5ItybiVtYwh05+u+cyTFzi71XD7+gkn2fPLP/csv/bHf554eo+333mX1dQyjIpLly6xOjlmvXJ86bNX+Oof+wLf/8a3+O7r7/DK23f5wvNP8Lf+xl/kxuuv0KUF/+6/958SKgjeYbIiaejiAFJglUbriioGhMwlYThnbF1RVZpuHIkiI5s5HRGbFS4ExqpGuUSNKeE0UXLp0i6Hpyf84hef482rt3npnQOa+YxH9hYYPEf3PMEpbt875exshra6pFWncv4r4ZOFD+2S4GD/Oo9e+Swvfu8ltLV0y8MivFB1OWdmBYJyfZpTQcYoQcCRlWYViq2msBuLAnmiEoiE95FuJXjjrds8+fg2KUqImWeefZSr1+8SskDmRBaam/fWPPboGUxKnHYjicTvf/N3+eyXfpF62mwGCJsKQLwf/wFis79v7K+b5v6Dn27++pEts/slxWYAWb784ATyvZrqvabd+4/5Xv3xyQeMDysHP/jn+17dRzUIc4YcixlZfLJm5afr0/Xp+vD6xI2/mCHIAGlAC4XQU1CJiRW0bcPWoqWuBWJjgYibwUTSETFKKkAKQ1MLOhdBqA2gOhQOlRZUKZOD5tbJwJmFICcNWqCCwGZByOCUKBuLkLgQkBQWwigymcSWrnjr2jFtDWfnUwiQxARRJZLRXL275NqNe5y7eQ+AZQj0YUQoTY6lx2VV4PzUcnZeQNVTo2myKYVy5dh77AwuJIYMaQwIF1g0UyIbu4eRxBg2kHlKaIiSxfKaBMiSCGyaCh8TSgikLMVZ9COTpiaLTWG+sa/JTXMqZUHx7cYHwGrTmmK9Fj1VVQruwY00jaZuNH60WFXR+w5pwSLQMnL13jGvvHYN1ALZzGiaGUIoEuCcx4jClEi5KPIkgqwsEY/JmcpWxBQJrjBeSvBLYD4xfP7JKzz+6BlMrcnB44eRfhgxMpFiIOVjUh5pqrYk0grBfD5HZUPbboHPJAKZjEKRgkcoxTe//T32T1aMQiJi4fu5kNG6NH+lENTG4FMqtuRUQgdyzEUBEUsqdCYzDgPGVMWeoCU5JDzwwx+9yL/yN/9V3nr1NfRiRrAaKyWmrnA+Mm0aCJ6YE9klnHNEJWiUKc1PKQt423lUVQDrUVuIEIglyVlYPJkQIndOl+imIVtJNDUnyyOyFSUwJWqWJ8c0kwnCNHhGhOt58vHz7G1NuHh2zmw+pTu+y5c++wzvXr/K7dPIt1+7S/JDafxKTfZLvJ+RE7hxABXoM0itUMqiZaR3vnB5RGlwZhJJUtSUVqLGgKostS3NstUYGCV4GbHVhHEYECkVBVgqhZ60luAT12/d4/L589iq5+xuw3qIdMPI3ZMVl/YWHJxGRhewavN+iRIloFaZS3s7fOVzj6Jz5Pd/8Cp3R42qJKhIGhJBFKaOCkV5N6SAreoysJUCUZXU3YltyJshhd6ArX3vqRuJthXCbNIkY6RqK3QtOOhXNIuGuTDQGg6OD8BImklkt/WgM70vcOvej4yuJ8eI9gaJwsURKypijMQUqWzLwcEJb7/xFnbS8BvfeIM3jtdI26BExd7ujHPzmnY2IbhcANdhTQDiGAhZMvoOZTUoydh7RpOJ2eG7BNKwu7OA5LHKkO6zdmJC5DJQcF7z7q07XLlyiVu3TvDzzOlyToqFnTTGgJWKIfakelEKvlRQD5pEVbdkU2OTQuYalTRZjBg12YCuLSpl/DiWVPONIkRjeOKxi/zg1bfxUeKyY95M2D9Z82ywKONQyhOc5eDgJjevv8nlR598oHgTmylvfqDOEw+BqTdm3/8/YNf310dCrx8c8icXuR96BvlBCf1TP4+PnpB/9HE+hV//0V2zuqR1VkIjkkQgGXxkUrcgEiImKlOa9i449naO+Wt/6d/i7Ll7KHKxAktF5wa8W/P626c88/w2QkouXdwjXT1EiozyHltXjDEQB0HfB6q6QQtJaz1JK3KsWXeBlAMYiawrhLJoRogWZRULA9tbC/bOt0xrSa0Nwnn2dr9bhghSgVAsT1YMq46t3W1U3tjvo8HlolK0tkKQ8MGRBMikUBSOrgueWm8CaaRi2XWcPX+WfvAoWdioptKkEDZugoLpGENESMibEKfaVujNvupdxCAxSuKjL+meKAQKY0s4QI5lSITKuAC3jzre2D+mFwYUeBdIuXCsq6rCTlqsVrSNIeZiXcxa44OnNhoZCk5ASQUxYWRR2+7ONF/9zBOc3TkLOpN9h7Q1MQQIA1kKqrYmj4lJJWlaSwyR4A3BrRC5Y2oMTgtqW/PE8z+DtZPScM0apSxkT9KZl19+ldu37jL4UGy7GXQShbur5MbmG0GBURrpcxnAS02Soqi0BBgtqIQubgjv0RSXyZglWmtSDKioUJRQF5dS4UX2HqNL2IfIuTRrZbG35lx+x1Vl6b0nxmKFzTlTGc3h0RHWGDISKSVCgMAXRhoZqy0+eHxMtI1la2vOwdERwih8LiEzq25JDJqgJD/3mQtsT6csD4+5sGi4PJ1iZc+5vSn6+wLvM+f25rQTyzg4TtaOylYI7xncyAqPRTKkwGwyKa85lfCrLAWmsiQXChqkKfZeKTU6SOrGEnQsv2uhee6RXT7/5BY5K9bnJkynNdd/8whMixaZzz1/gVWI/PYLrxP67/PLv/R3cNGxd3bBmzf2CcHSuUCtJU4Z/utvfY9FU/Ev/IWvcHpyh6OjgZ29K/y//+FvYuwMRyT4wkSc14Ld2YJnHttjuHOTy1uKJmi++jN73H37W7Tbl9k9M+fZ+RZ5MuW3/sFv8DNf/AJ/6ulnGY5u0998h85F3rm25NlHt3n2TMvy9i108Jw937K1EBwODpETgQBCo9uWaa1I67E4VURpNCtKyrEHagxCz7DRISMMOdKIYss3ViEryfFyRRXmiBT44uee4Uff/T5H9065dXiKz6BTxKfMKzf3ieIMbaUQY6KPiWll8cJvBg+Fn5xzxugKIUfu3bjDZ798jrN7Z7CyKs1akyFExgyTHMgpEIUmiIQVGzarUhjMJnTDF44iieQlk0pgbI33Hms0r73xDn/sq09RNZKYJDtnJuydX/DOrVNkliymFXeOBrrjFbY2tK2h7yJ3r73JSz96iS9/9UvEVK77slTFuv2h5t9mPUCZyAd6vPvrwehQfJSj4aMadx/dhHuPsfdh68PDjOKPZhDn9932p1kP1H6boed7nL/NvvFPWPPv8PBQfuMb35jcuHHDnD9/3v+JP/En1vP5/FOmy6frp1qfXPGHYBxz4cPZmvlcs6gM01lVksqEIvQOpQ0pJuTm86qlYns24eKZM0yVYNL2hON1sWLGkUoqgq7KJNxLRJYcrTu2ZzOEMCTRIyMl2U4JOlFOBilFSBABJzNRl+SjFBKgePrJM2ihGGLk3vIuh8eBo+M77PeO8WikHUpqXvIZ4SMyQ10rdhZTdmcN27MWLRI5e6TIDKknplJ8ZyQxjCQkwziwO61JyRNCQkpJTpEMJEpDi41cO+WEUXrTRINaa1IsDU2tSgqvkrkws7wriauqBKpIWZSEhftQpkyK94DVOXiMjGRVjpkitNWUEDzRJnzfUzWGSGZ56tg/WvLuvRM8E+b1DKtrRIKIQyiNUZYkS0IqIpNiBKUJ3pPxaFmUCcpoaqvRIjGfWJ5+6in2thdMjcSPK7wThA24OoRIt+7wPlBVLaA4ODykW3dIIXB+5Eu/+E+j6zlKS1IqFkMRE0lKDo+P+b3vvEBICjf2EAJSWTQREQQhOYxS5ASBRBwGVFYllU1IfAzUypTk2hhJMSNVKk2uXBhBMsPt/TvcIqOmU5yQZEqARkjFtiCdw1hJDIlMQkoDGXwEkicZylTba7RtSUkgpSr2gFQ2QqmKgrJtKkQWKKOIMpVGkWmpbIvWxTbhE2glGWNJ13328i5f+/yjhJMTHj0/JdWGtV5w9/AeNw6OeO1qz639UyQSKcqU1ciKtfdleq0z0WtsjuzMFnRrR04JrRRKiJJIF2OxaosMWqIrTVp7nC6fl/m0YbY1451394lRIOvSfJMIHJnky2dbZuhDZMiSN27u8+TFbS4/sstwOnCaFCJ5qkoznUnyabE9oRRp6FjUM5559DyXz9e8deM6N2+dcvt4BF2X3x2l4AkIrDRk4YkksoBhHHAhIKTCGo2xtigPyAQytbaEmAm1ZcQhUWSfWcVAjtAuHcrDxE7wOSO1ZDqzrF1LH0dmVrNQgstbE9xqVRpzIZFjuXCJMaKVRlpDmc7eTzXMrFzkH33zBm5cMsYa30micsgskNExRkt35y5VXRUkQRZILDGGolJsy5CBVJqJo4+su5HgFEn2nNmdUleKcSxKlE3nDLuBXLsoeeuNW3ztF36O6aTiOAeeuLxAyMCYS4Mw+Qhpgh83xVzO+NgxnbSIHKik2Sg57oOuEzE6opP4lKmaCVJaonMINFJpvAssZjXPPPskr7x2i5wCOxPDG7ePuXrrlEfPTx7ArtPg+OE3f5O9vUdQxiJFSfIVKLgfLPWQDfbhNNuH1yctND94ux/XN/tvEnr9MY/44CAPF/8f5Pd8Cr/+o7uU0Hg3ILQkjCNKKLSUGA0hgq0rrFWkHJk3UzSBL+++TYgZIWekMNBUM7yXvPnuPmNTc2u1ZrqYcaob7HRODBTIfAIXMi6MKCNJOSBlopKBKC3eSvoh0lqLVS3VYoHIAisTiy3F3vkFF2cN2mQmRuNCIMbESTfje9/9Vb70ud+lXSwJLlJpy+TsOeqqwmgNYSQZyRgyUmVEHhAI2naL3vWolDcXsbEEbKTyuR2HnklrkKLgNKSgBIUogdACETM+SqzSGCkYgy8UB7XBZmSBSBGBp7UCZfXGepsJ3pGigyhAapSYIaSnC4GD1cBr1w7oNjiW5F1JIhdFKSxNBVKRsif5wgGWIZMorz2GgFWiODTIZR81mfM7LV/8zBW2G0MMAyF4FJFKWkChW0kAVFS4sC74DlXh48B0YVEm431PRpZhS1WxfX4PqQwprlFCktFEn+md43d+7/c47jwuRIy1pOyRUhNjREhFiCVkSXF/QBCppMQYxRgjtlIEn4CIRJJjCVwJKSCVoqWk0wpjySkRuhG7GYZHkWlNVepbWcLLskgYUZStOpdwmRg3ThZb6oKcMkRIUjGGjFJsnC1+EzRS7MxKFpxGEpFh7Llzx6GkJSbwIZBiae5uLQxfff5pPv/UeQ5u3+FQTZjt7iDPzPj9b/w+8wsXmDaaIQhM1XJ+MePVt28SpUQZhx89ptaIWIb0s2zwfYeuSvM6ppLeXCNwVmMEKK2Q0pDDemOr92AMNZKf/8JTXJx6vvbFnyFnwXdffIVvv/QmaxcxWvD0E1ucqTKvvnKX/cORf/orj7E+uYaenWPwXbkmcIHTrsdIEDrz9p2OP/9PPUdaHnCyf5cgGr7zwg/J2qJExCY4Zxse2dthemZCFoJ3rl1lW0+5e3LEUUi89tpNqmrgihmZTRY4Cd/77d/h3KXzzLZbGB12NuUf/ca3efnWKU2VOX9+jy/80s/hT475R999kZde+y85cQo3akQ2dHGgljXtZEalHCvXk21FyoU7qEJCmIRUlsBApSypEjQTC32mrkFiMQZ22gVf+5krbDeWWmau3riONIrXrt0lS8HZ7Yqbt084PDlm0Wxzb3AM3cBEG9Yrx85kwUCPkIaYYRgjda1xQbA7Mdy9fci679m78hR5uEfvEgFBpRS6UihRVL8E6HNCGIGUBdmC9Mi4RlPhpSdLDaPHmGaDXKqJKeOj4t6h5/HHW2KUkODKE5fZP3wL7yOziebeauDWwZqnnzjPvBlxY0Y0hte//3U+//nnkdYSFWwgAmxOSu+vP+5zj6Goa/lwvfHhcLD3K/nef7uPHpx+uFn44fWTOX7vr1c+nj/4EccVlPPSg5v8k1ffvPPOO+bKlSuff/h7k8kk/r2/9/fe+LVf+7XVH9bz+nT9d299csZfTJzf20IJOLczo64yZgPkFUkWLYYSCJWwKmE3R1ZoFtOKqjJUumbMim7sGLsjoKKLgkCmGx1Hq9JUWnrJ2ifmNpT4dJPJJTsCqwTGSLwTqJjIQuFkRA4OU1mIkfMLRfae6+sTbh0N3Dl1jL1GeF/g0PfHJ4DViunUcnG35cz2hLpSxeqXOzIKER0RW9LPpIGQUbLYwqIb0GS0zoxuRGBRuTTpcoYhJLQuU8syvSkMmJTAGFOaKyIjNHgfCc4zaSclLW3TRJGIDfOvpO8hVEkKFuWE/wBYrStkLjzB5ckJlZFEN5KFxOTAqCzv3l6xf7ik6z0r5xFRUU1a1MSC1KRs8GGAmLBKoJCkGOgJiJhQImGUwMdNQS4g+wGt4LGLOzx5+Szbi3ZjK4aYNSq7Aq4eHCILalOTsyAMK4oj12B0aXKpScVjTz6KIm54YgYpBRlPFPDSq2/wxpvv4rwgj5HaWLQ1CJXpYi5sMTI+Z5IoDD+FYvSByuoH1r8Qc9EAaAW8H2CdhUDVVUkUcxF8Yd/kmJBGFWC2kiAzTVUYNBJFhSZFh7ECUauSoEcmB4HUGh8Hkh8xVcUYPVZWECJhHFj2CRc9yjSILIjRI5rI0kWwiRAGzmxtc/bcFpfPn8GOI+fOzpg/ep714S0ImdffvM07t47ZP11xsvJMpi3TuuHweI2UmZ0dwWtv3uHCuXM4Kbl9b8nXvvQ4Tz/7KP/Pf/A9ehfQUhU8sxQlEBnJaAUTZcixbMCTqkGkQDeOcASttnTRkUMp0hGCZjEh3Adai4xuLWKMWOm4sb/idEjMJhU7bc3J8QgnJ1xoJlg3cOnZ8xyvAjeOFCFnDtan3HnpHreXPSkatJ0RuiXSSHzn8TmjiweMuAHDlwQiQdU2JWkwBmQU9GFg0s4I3hNVgDigUkVlDEZInI8s2gVO9cgxMakb0InKjZvG/BJbSdRa8PI7t3jDwruHPT56jKqJWaFyxlSaWGQg5cIo3mfuFct5SIlbR11JK28jVSXpQlFcHq0U6/UxIQSC7WmqinM7W1jRsTWpkQJO14FgIKTIs49f4vadY1zUKKnwbsSFQGUVfd9vEsOLAiUrRXIRYwW33r2D+6pgvjvheP+Uc4sKqzQ+CCqlGUIkiwpRuujkDEoZ+qFDSwFhA7r274GulRLEpOhcpmpaUoZVN6CEYrFoi5xaBi6dn3P1jWv0Y6KpZ8zqLQ4Pjnh025aMIJVQesIrL77I5756nYuPPFHSQIUsXD/xcINvg1MQP7mAhA+r6D5oPXm/wu+nP97mmx+Yuf/49ZMK5ocPc//L9z/u/YL9U5XfH9W17HtScChlUEahhSII0FqhpKKqDEoFlDBUtuHwaMZ3vvcVvvbzX2cyH1FGYUSkS4Lf/fbrPPvseaaTOZWUXL74HO1Ld1DLnkNy4fIaUGrkxs1D5ls7WJ1pc0Jmiagys90JSWu0skRpmFrNUxcnLCYVWxONFrDsPS54kAYhEsfLLf6zf/QXeOLJ12mnPU0NopZ4HwjR4cMIsiBJjErEnDleBXKSzPCIXIatkUzyFB7y/SReHNa2xRa44dc570polCzDqBAStilDPCMUSktyLE1JlC6NICmohGTwIyJr0kYpJsgYoxi8wxNY95E7hyccd44xFI6U7zwhBYQo6kuNYtLW1NYiVcZoTXaRoAv+y5ARwSO1RtkaPwy0VeT5px7lqcfOIUXG3ecdhoxUpoSIyIgLI2PwVCIhZKkFR3dKDIHTlaNtWqQUrPsRtz7h8Se+SlNNECpBLkMsmUdiGnnllZd4+ZXX8EKTUianCDEV1wiiqM1FRknIg0NWFcJq2NQ8goxMGSsV5LQ5djmbaGvJMbF2I1JCnTQiBtrKkBOb+jbRaMMYfOHf5Yw0CpkKz9oqi1Slmej9iDKaDFijC4WFMlhWqlxHCKkYR4cxZU8JrkcIibGalEvCbGSToKwigsBiOuPRi1tUaeT23SP2Lu3Rr9/l8vldVNNgd85y6cwel3du8fbtNe8ej4TRU21foOKAcHiISxnpMwmBzx6TKaIGyh4QYyTlyGQ6JSmBcr40J71Dk0lKlaAXBv6Zr32WLz7/OHdvv82bN/b5wY/e4Y2rd7l+a4VZGOZS0QrFC1fvcHSc2F5UzNqKb/zGbzK7cJnX37mGFBKrM93YI2WpXxtl+N1v/4B3d+bMty37J8fcPOwIYUB5xWR7xry23D465u3DNSpnHt9t2L60zTsHdxiF4L/4vTeZavjCYyuquWZ9mLjyxFme+9IzMFqaRvDtF37IzWOHGCNffv4xPvfcI4gQeOG1t7hx7ZAuN8VyaT1CGuQygMz0y1VxedUVVbbEtMYT8QMokxDZo0RLINE2FT44qCQpx42yMvBn/swvUo+HbJ/b5t1397l7dUlE8nNfepJ+GHFO0Kp9TrsRUxt0t+bcfMGqX+GTJxGpa0nXF9WfsIIkCgddCEnvJG+++PtcefbnuffuAWKM6KggRnSIKF3RJ0+KCS0VWkJTWTCanBWhG5AiE3Uip4KfIoeCEMoKFzNewdX92zx+5VkAjLCcObPNvJ1y9/AIpRVnFhPevHPMU49eLKGYYiDahrfefpVb777OhbNn0NsXyoBbZPKH9vcPKvbu1wDvR5v8JO7fT3u7HzvsfKiZ93ED0h/b4PvY4wKU4XneNED/SSt3Tk9PP8SsWa/X6m/+zb/5xP7+/g/+MJ7TT7tCCAghisDj0/WHtj4xHfPSIztcuTjnmctzah1AGDKm2AhTROrEpDUYEdiqa2ZNDYDImbbWkAvMeZSSL3zlK3zpZ7/MI+fO8vmnL/Ho7oKdyRaQCEIiRZm6ZD8ikkYogdxAWm2GxlpsY0EIYs6gNSYJwhiISnIc4Huv3+XbL53y7h3HejQMSbDKstjZyGhZOpNPX1rw1c8/xrMXt9muKnSqkMnQaI1VCqsatIhUEmQeULLHaIkwFW2tOL+zi5YzdLVF3RpqA1IUy1rbaiQFVm005eQtAa3wosC1sy7NilLkGqSxxKxwKeNywsdYWFnJUxmJUQIpEkbJTRJbxiqN0gZEKdrquqZtG6rGYuoKYsVLb97m9VsrjnrJUTcwdmsUqVgihSQRCNkjtSKLCNmDSBirQUuk0QVmTaKpGnyG5D2tCPzsZx7jC88/icqOdbfCxcDoPC44fJL4rEjK0sxadA2yitjWUjWGqrJUpryPnn72Oc7u7MKG2yOEIseiJrp3dMjXf+vrZKnoYgAlis0khE36LNTKlOZHzAVuvtkIKyWJothxECCkRSiDtRatNVprEApvJBpBFUvjtveOShmsqUoqscj45AnOEUePEQaQuDBSS7BSMMZEGhI+lnTl6EshHGRGGovRhkobREiolAmu2Df7bOljIBMxUjH0A71Yc/HsGX7lFz/LU49vs6haDvYPee2ta7x59Q5v7x/zyo0j/v5vfIv/z9df5KUbaw5XmcXE8tknznD+7IwkBq48fo4/98/+9/g3/vaf54//0lNo4ZFGcNj1fOMbL3GyWuJjIMRIyAlRW4It4Q61KA3llEoRHMZi2RqyYOVgFTxZZVJM5AzODzCOxVqqBUKCSZH5RFIphUuC5SpzcnzCJB7zxc99lv/x/+p/zf/if/9/5rnHn6Y/PsZWIMOADp6bd045GhO+F0Tf4/u+gMlTQKSMkYLoCtMyykwSEp0k1lZUVlMrsFYhQqKua6zw/FPPP87nnj7DL332UX7+yTP8ymef5MnzLT/7xDaPTyXbVjCb14xdz7AaIGVyjPSnkVZY5hruHJ5y415CJYnawN2NElRGk0lEl1CbtOgQY2kChsjYDbhQrqpUtqxOi6p2ZhV22m7CXzx2YgrrMEGtAucayyN7E3bnkiwGpsYyFZlGwm4rmRuN1IGsNTEYYkwkJdnMBcpFXyybbtioUw/2b3Dh0T2U97gYST6RR1XCTEgoPYJK5XwgihqjMhVSGKQwJR30IdC1lQaUoZk0BdAvEvv3Tvnmd18ma4NPI84N7ExaGilRQtH5ga15xdHpii5GpBW0lSJLx2rtefu1l8kpEjfKIDYXqu815vJDReZ9K8r71/2fP6yM++DX5c+NGuZ+IxD5iRSDRWgnyn/3v7f5/nuPlT70uB98fp90PXzTH88c/CdvKv5HdSlT007mGFNjTYs2NUjF0PuCusiJ2lZMmwarMn034R/84z/LqjuHpbx3OhcIOcD0HK3Zos6CaVVxee8RqukMO23odcU9WXEiav7MX/rn+bW/8ddZXHmSZT3nSExZygnOtKSqRZgGjEYITWMkT+01zGqFQNL3AyILgragMiKPEHqgsNmkjKQQicEjRERrCCKQyIAqCmEXWY+OelITkyeHoq4X1gAZlYszwY2hNPN0SdaUOW6YzobgE+Po/3/s/XewbelZ3ov+vjTCDCuHnXPvzruDuiV1KyMEskCyCTaGY3TA+OA65QLKxlVQLv7BrnKqizE2+BiXy/bF5lxsgwyU4NgKCEkttaTOuXv3zmnlONMY40v3j2/u7t2tbtE+PvLlIn1VHWYac64155rj/d73eX4P1lqkjEQ8dVUnhZ9IsHshIjE2CK0JMaMJmsYGqqaiCoG+D6yPGk5fXePpl5d47LlrPPbSFZY3PcNa4UNSTwvvCS4NB0NI/NfMKDKTUoadD+MgBVKASkhJr1IJvB2yd6bF/Tcd5MBMie1to+wQV20hvcWYAutq6qaPDzWhjijfxjtD4+ox+7ChyAtkCAz7fXojSz0cUJoWJ++6P3GtbEMUhkBIjgo75NHHHqOpPc2oJsZIFX06D4qxQlJphNT4GCnyglzrZPNOXgakknjr0EoRJUTriCJZggNJvZclCwvX2YFNcKiySPVCiNTDIcaYlA5vFFprhJQgE6faVw1IgVKS3JjEA5YCacbDxhioqmr8PajQOidGRUSl1OZcYsoMKXRiYXtPK5cc2DPDLccPcPzgPFNa0qsqrlxZ4ulHXqQ1NcNQ5fy7f/t7XLq8yhPPPU+7UyB1oKqGyKk2ShlW13epKkF0kto54jiQK0aw1oJ1qXlKUh71d3dgVOGDo6oqqqrBNo7CBPbOd7nvloM0o20ef/QRljcsf/jFl/j8s1c5t1NjC0EVHZuV4KGnrnJtKeK1Yr03ZGQj11Yv8+nPfR4jC4IQY2dGgbXgosbWDbuN45mlHg89s8al5R06ec7C9BRHji9yaO8UG9WIq31HFJ7ZxS4ru0Oeffpl7j56iNGoAWu59fhB5g4d4sqVPu9874McObif4doO7ak5Hn7kWV5+cQkfI7ecvIUf/is/wOL8BJ/7/MN88dHzUMyjywKlarR34Bq00sQs4kVN1Bm9xpPHhmPzMxTacPdtR7j58CKx8jR2hAw11o1obI3xYFDcdmiKj/+5d7J3UiE7JcNBD2lS+EwdKl56/gzbW5sIIjcdmaVbZojg+NB3fZAiawCJbQLeKZRug9BIDJUVVM6jREwcQaE5/cwzTBTQnZpiaGsCKS3Ye4XXAmEMWmq8DWTKJDWqMkhlEFGgtcIFjwwJDSVFJPik3q7tCJEFzl28ys5WD0GNq/uUhWZ6Mjm68I7JvM3O0HFtZQVjJGVeIBpB1cBXv/hfsXV/zCMNY9fF65tj4rX/fSXM6+udn6+vE67XOTfWO6+utz5EfLNa6o3W/0hCb4yBEJOL7voz/A8c7v8v16lTp+pPfvKTL124cOHpGONjP/7jP74KsLKyYvr9/jflt/H2t7/95o9//OOHPv7xjx/qdrt3T09P3/UzP/Mz+8KYcT8ajcRP/uRPHlhYWDhVluU9p06duuWTn/xk9/rj/9k/+2ez3W737t/8zd+cPH78+O1FUbztzJkz2Sc/+cnunXfeeWtZlvd0u92777333ltOnz6dXX/cP/pH/2j+4MGDdxhj7j1y5Mgdv/ZrvzZz4+sSQrztn/yTfzL3oQ996HhZlvccPnz4jt/8zd+c/Gb8Dv4srres+Ltp/xSQM/INVgh0BB8ctrZJrUUgek+hCwhynH4GUuVIKZJCTXh8XTPXNbzj1nt59AufYmqiw1nnkLbmXJ4KvaOzHSZLgXaaSpLUVgqkUBSAJ+AyTTNsMFLThJAUSZlkoz9g7Ywijym5lOARURCwdEvD9NQEe8qcI4Nd+AoszJSs4QAHUtLr7UD0dGYmESLisOQmQwiwQeO8J5DSjVtZjggNgYhWGpqAjw6QCGHY3NglzzK6nYIYI1qAdQFHSEWcSgwKHyKmKIgh0niH95YQA0IYIEAdaJxlqp1hlETF1PDy15N7Awg1htEKR6djkMBWr+Lc1S1WdgbUEXSUUNcYQGUdim4XXbZwTUOZK4SKeOdRWZ74OdEnVlQUmNzgvIUgsSEgRWSqZbj7lpuYn2lT9wfkRZsgIlXl0EIQpEMisa6iyLrYxqFkliSPoksINT40lGWBGw3Yt3c/RhcYlSOkh+hRBIJ1XDx/kdNnz9HUHtkkIHgjYvpsxEgMAqkVWkbq6CiEoomOlEsskEohRUr2EkJgQ7JdS52CD7SU5FKgRERIQWmSFUsImexJSqKMRGYQa4fOcwYji5AaKUPalPhAVApfeVRRgvcgI7WtUEoxNdElVjVRBlxM/2RFRj3yTBqFJam4AgFNpBUL6lHF1x5/keAUWhukrsnySS4/dBY76qOMoXIeXc4yP6k5vHeCd7/zbuqB51NfegQ9tkn+7u98kpuOHWJ2XwetNVZ4XryyjQmGqc4U9ahiaBtiTPwdAijnKJSmAerG0cmK9DsdBNCCRiTLkY+K2DRo4dEqQ9WOw/vmEFoxGIyYLFrsuj5XrlbI6Klryz1H93Dq2CT7Dh/mwjMv8eCHb+bWe+/j4efOsL28RFQNCxNzXKm36G/1+fMffge9yvLIYy+jTY6NgYEd0G616A1HCfQuFIVIBZqzHtFYThzeA03DYBCxeeTBU8f42IcegHqHpatLrPX6bKz1+cA77sCowGPPXUCojO/6c+9ltLPNc88+y0tLOyyt7PDxH/5z3HfncdavrfO1Z67we5/+Enk3QzYBg8brQBVqQKC1Js9KgojEaDFFRtUfEkKg3W2B8PR3+4iswJkCKRzdoBnail5WkNWQS4nINDKW7DswjfcjThzaz8xkjxcubBG0REnDib0dEBXndhzbvYbuxjYH93TRmcEHhwgWJSKZTtBR7xwexfryJe66770oniRrT+LDCG9HIFsILfDWoijwckQMiampAETAiwavNMPkRSH6FBwSiZQmolRIqsVGcP7SLru7Ne2WoVAZWUdy7OgiT710lagVpcy4OrIs71TcftMiGZGra7ug4KnHH+W2u+5nZnGB65B6xqiDFPoBrylUY3oNr0HRvNozfOUi3GiZvUFB9xq13hvYXl4Dvb7++PjKPV+te//7x9GvVw++WaH8hqyfSCr8Qxz/rPJbrzL+U7yU8MzOTOKDx1cOEvwKk3WZmiiQIqbvtcYlBdYrpVkagEmlybICFxp0LpFGUYUeZdZi6CpUDOTTbZphw6kjB7i2s8Mffupz/PT//mO8865beOapF7l04TzbA8eVlVVqn1RhyPQZKbXEk9QtzjkcnnZu8NEjlSJEgbr+mpygCZaMlKJaNTXtvGDkA0oFggzEqAFHN1e0c0XjICqV0CExoKUmBqi9TcmxYawIFNf3rzI5H4RBiYgyUJQZEUGwCbnRuJrMSLQxVKMRIda0ZApFGzWK3RrWtrfZ7DeM6oivE8vNCUlUMjGYfUJpROHw0SbciXV4pTF5iVeCOjiqGIl1Te4DaIVSEiMEAU1baQ4fmuT4oVlEZXExYvKCEA1FbsBXeC2ww4AVHi09hZTYUBGVI9jx3200NKOkHGqaNHR0NnDb2+6nbE0SXQXCjJVxCodkdXOLJ59/ARuTQjKMWbIGjdTp/QtNqoe81ngpkMGTKY2MAq8U0SY8jvUBqTSIVLuHGFDGEFziULuxY0KQElNdXRNlCuKQRqUGRaYT58+l8BqQBCFSk1hJjDK4xmEynTAWPtngRaEJAbzzMMau+DAOCVE5tfUQhugQmZksmJ7qMNMpMXo8BHSBSjqk1sgoOXz4AHWU/NFv/1e2RoKpQcPGIHBlbZ3NgcfIPteWrkINmAKBwAmfvsu9gyhxAmSWgYs0IiACSCMQmWQiVwTf8P53vY1muJkamtphdIl3DVWQXOvBlZcuMqoVUmv2TrSoB0N61uEVZBMlobFIoTi0f4o9U222dcRtpb0IJGQNUjI5MUWZC/ZNTyJzGAyGDEZDJloTTBeKm28+ylPPn+XM2av0Rx6ygrqGtY0+BxcXOLmv5NzZq2gZyXPDC6fPocV+PvLd72FmRrC91sO7kv/6qf+Lp58+R7uc5q7bjvDDP/JX2Fl5mQsXr3H6zDU63SkaBEVmCCOFLDTTZcbGoGZqIqdlDBdXdtFRctfth9gzZeD5mhP7Olxc7idOom8IsqCUKTBmopPz/ref5P5b9nP58gV2Bx4VJBtrFQtHD/PZhz+LyTtMt9us9nboTnjccMCg9hgBZ86fZWpujlG9gxABW/dodQq0djRDS6+ylG1DK2YUEopuwc52n2tnn6I1WTIIEIJAIyB6rI3jegcCkqA1ShpEUPjo8eM9H96QKbC2QRVzYCLBjtBaEZ1AUbB8bZP2TbMYMoTQHDowy+kzK6hMo1Rkuiy4tLrFvvmSVkszrNN3z6VzVzn9/NPcObMPlZd8XZMPGFc6CSc1vk2Mi5BIIHnGxLjpN65Zbnjsa4/52sbd62uPb6Tk+3pMSvy6x3yj299svZYd+GqQWzIW3Zhw/K2zvvu7v7t/66233n7u3LnievPtxIkTo06n803TP/7O7/zO7A/90A+tP/TQQy98+ctfbv+tv/W3Dh86dKj52Z/92fUf//EfP3T69OnyN37jN84dPHjQ/sf/+B+nfuAHfuCmRx999Lk777yzBqiqSv7SL/3S3n/5L//lhYWFBTc/P+/uu+++237kR35k/bd+67fO1XUtvvSlL7Wvfx5+4zd+Y+oXfuEXDv69v/f3Ln/kIx/Z/cQnPjH1Mz/zM0cPHTpkP/rRj/auv65//I//8b5f/MVfvPLLv/zLV37pl35p4Sd/8iePfed3fufTi4uL/pv1u/izst5y469TKLzzGKMJWZrQVD5glELIgIweLSRlWWCDfXVTpANKa6KrUVrhAqxvrbFvqsPLZzY4flOL3eGI44f38OVL2wQZEc2ITLdSSIJr8I3A4xC6JNMp2CJITWjlVE3EC0/MNBQGoXKU8ESniCqitWAyazE5V7A4ldNtZXSlYfLiIL1A55NyTmbsbOxgRyOmpqdSuikhFSMx2fNSCAJYWyXpfwAtJCHKlArlA0WmCF7SOMHWbo9Dhw5ifUSKcXKsUVjvX4FVSyHxwRPGDae6sWRGkcs0NQ9CU9U1WmhkjFhfp8I4SETUaCOIsSEGi4ppohqioFdHzq7scnlniBRZshg2HosaA4pLVJbTzjNCJglEnHNgTLIKaoUO4HwYqzpTA03plOJ8fKHkrhNHmZicBBqiEqhWm7q/i5ARYSSmLIiVJ1eGMlc4L3BW0VR90H1ahcGJDKlgz/wc+4/dhJCCKAISBUoSg6UOkdMvnqHXH1FbjxIQZArEiyFQKZLNV0AIAZFJpBNIFFKqFJwnFM43KKXIFQhhiDIFw6iYGm7DCF2tCT6gfEoPlJkkVg0+RppRSvVTUdKM0mfcCY8Zc+WiMhADWa6pnSN4j1Xp/c2Npr+7mxQDSoFNlvAQI1Kn3Y6RCucCccyuLIxBSIkLEp0ZdCbIsjZVU1F7cMYw09bcdeQYG6sb3HZ8nraP7J1QqAP7mH32GS4uDxjUDXmZMfIjVlY9LkqKLEd4R20do2aE9lBHR9nuEmLEICiUxJSGxnqkVgQhwAuE9CiVE4QnjxpKjRs2iOiIQXFwfpJ7bp7Hh8jmVsbB/fN88dHTOKnooJmazlhc6HBls+b3/uj/5MH73sa7PvxRWhoOLk6zsdMDDCPvyYzACsXy6gpaCr77fXfQakXOn1tmYc+9fOXRp/HREWXGSFiErUHmTBWGbp5x29FF6G9z+doOotvhffcdYWflBZTqEvAcmZ3i1Km7eOKRx8i05u0PvI3e2hYHJwKus8Cn/2iXug7ceWSS6ehQzZBO5vje73k/f/Dpz6aGf3BEmQp0UeSURiGtS39PpALFhoA0Bo9Pm2hVIrNIJhLXq7KWUggyrVGZRMRArzdCAT25xX2n7uPxx59Ci0iRKUZ1Q5nn7JvrstMfcXVzB6U7TE9YRnVDkCnRUkEqBGNM36chkkmJl57B9ogsL5jbO4t0gahLvCENICqHE5AHSxM8QaWi2MgMrTO0FGRk+AjEBD+vRPq76UqPNhohDZk09Kua06fP8rZ7jqZzgvTs3T/D8y9dghiRwTHRbXNtpcfN+7tkuSYrDFXl2Vm9xovPvsCD8/MEIjIGglQJsM2NTbDrhWFMisAUiwRRjRGrcVznppCQyOv7YuMi9U3bfuKGR3LDc19PDk7PfGMD8vVA7T/JSvNWmn6vv/01VJ9Isp4hxk3RCN/4MN9e/5PW/FQXJVIDDZXYq5OZoMxy8kLRNDUxutQPDB6dpfdUKpnCv3Dp0+UFU60W2ozwdaA7vYeVjVU6SqK7kwxVj3o44iMfeh+/+R//kE995nN853d9J3MzU7T1fkZknPuDKxipsXhESIq+rMwQKkN4T5FJpI5oocaDGjdu6qe10+sx2Rsw2ekQbAA0wzo1MKwVuNggdUBLQVG2IUqMdPiYkmhDCChhGLjAYGTRsqGVZ+RFmdR3IqRQo+AxmcHXFUYlWy8kbrSPEoUgeE+jIs6CbmVYG1he77O6NmBYQ78aEqUBpdBZjruORhHp+0FIgVGGEBRRga2HNK6m3e4ic524gVFQRhBoAoHGBVxItNi98x1uPjjFZJFTSE1oJeurlMm5YqMFb6EaIpQhGIOzlsZbbIhomRN9jVSGvMhoXMOwagje4l1FriX7Dh4heIcWGcjEFcYl1dv5C1fY2OrTH4nx5yslDvvoKcp8HOghU10VIrVPCj1lUj3JmEdNEuclfrRSiEzhG4dyHhcibamxrkYKEEHgScMd6SMhQkMgjhoykxFipFSC2idnTRMcUqb3qjAqjTV9QnI4I8mCwnmb2IExolwEmZh/WhmCl7hxKv3kZM7BPTMIb8lFQ93U6LyVlJ8xNYmraLm0tIqwFlGU1L0RL17bxlaempCCabzAWUkkkkWPiCTWn0+sba1EGsx7i/UGSmiJHLRiVFv+8g99N+eefZrDezWT+SLnL6yw7+hRnnr+ZbZ6NZubQ9Z2RnTabbTuY8ouRkh0q0UuHXUdaXYde/ZPcvLQJE2/z9r6Ntd2+wgpqaXGhoba1yiVAm5CDv3hLhNCc3i2w9qOYKKlyBC88PwZtAGV5cxmhnyyZHaiS6kjh6c1rVLRqzxlkbG6NuSeOw7wwQdvZ2rvPqreDoOe5JEXT/PU81c4uG+K977jTm46vperZ59id3uXfoy4rIsRgTyHUSNp54q337KPjd0Ba09d4t23HmNzy3H16g4+OlwzpFPspe7XrPe2ufXgAS6uDFneHtEB7rr1KLftm+Do4UlaRtLvLdPqKrbWNsnLGSoHF8+d5vixPWztOIZ+hAuwcWWLbtlGCEUVKvrXlohRoZVGS4tzDVIUqAi5NoTS4J0ktkghiiIQVcHlSxc4efMBhE8cZq2SQyVKT3QBL1LTydcV0qQwtcYFggNbVWgjkaHGBcPuKBCReCpiMJiYPltXltY5fHweZVr40LBv/wFmJ8+zPYgEWzHTKVhe3WJ929LpTqB1Tb+O7PqK08+9wJ3v/RgROa5uZBKESDkeMr5uMBkhnfuT+wARiWEcEClucEtcv3vSdLxuYPmag71Fx8NbVwe+HrPy+nVjs+81l9/EzfGttpxz4syZM8WN13U6nW9qB3TPnj3Nv/7X//qylJK77rqrfuaZZ8p/8S/+xeLHPvax3d/+7d+eO3PmzNNHjhyxAH/37/7dlc985jOTv/7rvz73q7/6q1evv+Zf+7Vfu/jAAw+MAFZWVlS/31cf+9jHtm+//fYa4N57762uP98//af/dM8P/uAPbvz8z//8GsCpU6dWvva1r7V/6Zd+afHGxt8P/dAPrf/1v/7XNwF+5Vd+5eq/+3f/buGLX/xi+wd/8Ad3v5m/jz8L6y03/nKdUTU1Rl9vXIGOkBcCGwRSZBRjC4dWirI0ALSKkjLLiTrJ5ydakzRVZDAYsNUIlnZ7GC1Rk1MErclFRhMjnahposW7gB/vX3T0xFiR6UguDa1c0tiKItOoYCgnphFCoaPHZDA11WHvdIvZVkYxkZGJgG8idfQpsh0QIgUYVKMGJRRz07O0Wi1yY2hsjVcqFUvCoaVNnEHTZmgbdEhslDw3VKEhGrA2pVsNBgOmp7sgA1okq3OuZWo2uRTMkbBoilxrKtvgY0BJSa41MV6f/AdktBR5ji7z9LuPAu8sMdTgU8qlEC2kbLAh4JXhzNXVV4IQvLOE4ElZax6hMlTeStPNYJEhokhBJ1F4tDa4GDBCkOkE1Y8+BbtIN+L4ob3cc9MeCm2wdoQXFbkyROvJdInIcnwU5DJnFHYwWmBMThANk502ea4YDncRWpEFsH7I3uPHycsONCO8q1G6RfCJvbc9GPDEM8/SG9RY5zBlRqg9Mii8dQilCDagZNqc50ohbECTAlRSCiGYTKWNsozo8cTI+4APyYLUwaCjxOlAANzQoeukLKptjRTilWMpJJZADI4s0xAjKqbgCKJM99XjE7CPRAFOgLMeFSUImWzKWiNkROrUcMmzgrquIXpGdZ+8FuRaYz30eiPywiCEItNw8sA+3nXnQVrSckZWBDdi/6l7OHfmHGu955mb7aDUFtF73nHv7WRFxtPPncMbiRApvTbLElhbaEmJxlcVssxRKqkZGh8olMbFBnQkU5K8LKitJPiGEEGFiCpK6t4md91yiCMzinffczvWNqzu7nD+8iX6tUXEDFEEji4WhIHl4Zcvgyo5uDdHqEieJX6lMYrdXkOmLZmQjDLBV56/zPc8eDe3Hezy1BPPcGB2GieqlDLsPQFBGDoOTLTozna49dQxlq+ucO7iFeZdxjBEGDVsXl0m6j7HjyzSzUu6UwXnLpxhZ3mFt7/3nbQmWkziuHjuPA8/fYFtK+i2Co6d2MuRkwc4f+4iX37qBbZ6f4xul7gRiCDp2QG5Kmm3O3Tbkt1rq0SVgzbYmBqeFgdZgrpHV9POS3yoyE2BCIGilf6WCyNRIufAvj1MKcF8O6cRDfsXpzh7dpnLWz2KtiHYyJcefwaiwgjNdm9AYRxalTRNpDQFfjQgiDxZUGrIc0VtFVPthu2NXfqDEYfvuIcLjz9EEB1GIqIRaKOJOBSRQmiGEbwEYQQxOLQ0gMVQodBYIChBtBHTESAMIURClGgDm5uREDVBWLwzzMx02bd/kYtL2wgC0zMFF6/12NqpWFicZLKTpe+46Djz7KO8410PIhREpYkiJYwni9/1oI9XDCAwtkZy/T433PpGBW0qNN/kxHdDbf31jJ3XF8ZvXsj+j4Cv/yTGYHrA2M4j1PgFf7tI/tO0SqNxvkErMLkh1zrxwLzF2vS+eV8RgwQ0Yaz4iUKCjvhQo1RO5RTbOzvE+Ql2BjVN1bB3YZGFA/vY3OzjrKMXLbcePsDtd93Oky+8xLGbzpOZxPJzLiEZQuNQmUbESCY93RyCG6KjJAYNQRBlSJwrrbHWMqqa9LMUhm6rnRi6MieEVI9ImbQlSuVIlZjKCAg+qfyE0AiREaLHxxTQMRj2WJybQKtUY8RoUDpiYw1K4bHkuUmOC9LjjPAUMvGRHYaqDqzujthc2abqebYbjxKKGAIemRrizr8ibFEkxR5KEZxHxwgkFbFWOa0sZ3F+ApFlNJWj9hZBqmlt49Ax0s4b7r7pEPvnppGxIYYKWw0oWpOEpgEiY4wvkpIowOtA5iNKm1Q7+AZrG4QyDEYNjW0QykKUCDS93jp7p/ZTTE4n3IQyxNAgVCBQ04SGp595jp3eiMbVeJ/stFoLCm0IwkFIyAnrk5U3REET6lf40UqopAIkJreDEOhWwbCpUiBWjDgp6TUOneVobVAmZ1QNMDIjSIcLAZNn6KCx1pGZ1MzU45pQKYEpCka2oheGFConzwusa/DCUzfJcixSih3xugtDKGoPKgpiFmhGnjpo2kazMNNmd7fh1B0388jjLyZ3RglaGtpZi0xFvJAMKkVjAxgQ2uCsI/cRpwQhy6CumJ2YpldXjAZ9CA5tDEoLrJT4xpLryExrFlUq+r1dpsvAxZdeJMjIS2c3sHaX3sjx8IUn2dge0DSBE/sX+AvvvItrazs8f/piOofWu6khpQ0yDHnbqQWmO4LermVpu08dJMOhxWiNQZEpk1JnnaO3tc2ob3ClY//UXrptxepGpFWUfOg77uXTn32a2vf44Q+dYmljm+3dim4uUNLRbpcsr+xycG6SZmvAXDdy55EOTVNz/rlnWTh+iD9+8jSD4Ygf/aHv5MTRWZom8OKLp3nxpbNcutZj23qmp+aY7eRs9BuMgmFt6RaGifY0Tz2/xMg37D3UZu6a4tKGR+oMQUWnKOj3A36mptQZQQxxwbNntuTkkVmWLp5ldnaejc2rtNuzIHNGowGOFHjRFZJBkAybiMWCiQzDiFMnjrGyepXtfmCiXVLq1PSS0SOEQZoOCkvHBLJC4+2IkdWUCoTIWFobcfKWkt1+Axk0PqBkGog3ziElRO+ZmZkkeovOTWKWO4E2GQqFzHPaOn1XASAUo2YESHSuGNWRYS+QTSdQsjaem07s50tPv4yigy4ETkgu72xz+/Qksx1N7Wq8avHiuSssX7rI3uMn8cGjJEghCPHV5t14jHHDmeaGAI+x++HGyoj42uHl9fu8fr1ZufJmyb3Xb/tG11+vg97sGDc2+77u9fBGFc23Xo1TFEX8/d///dPnz5/Pfvd3f3f6c5/73OSTTz7Zfvrpp/NTp07V34znvPfeewdSvvoZe/DBBwf/6l/9q8XHHnus9N5z22233XHj/ZumEdPT0+76ZWNMfMc73jG6fnlxcdH/wA/8wMb3f//3n3zXu961+4EPfGD34x//+Nbhw4ctwNmzZ4sf//EfX7vxmA888ED/13/91xdvvO6uu+565ZgTExOh0+n45eVl8//YD/5neL3lxt+orrG2RiBxwaFlTNMRZFKjKYUQkaJQKGEwmQWgoy2dliaKOYTtkRlNQ85vffYxFm/dT97pQlUzefOdTDx5jWa9hzWBVWfQMRBEw8DtIkJOkSlylZMh8AiqUtJWOeQZZd7BjxNe5zuahdk2e2fbdEtDVVnccIBQGiVybPBIlezkQhmiExRG0221sY3F+4ZhcATCuBknCDEwqCx15ZiaaCFDkxR5wVHXaQqrpULqnBAinXZB45qUOItKqbzWIjNFnmlc1eAbR6tsQxyDlVP3B0XARiBqmtCgWwmCPKxTSq3zFus8MYSk8BOpiK1jzuZOn2vr66zv1HhSwnLd2LGFNaKixBiDVoosT0wXJQSh8SBJ4RYhEGyNLHRKkQuRYIdMtjJuPXaCwwcWCE2gkRIRG2QjEDonz3NsM0rTbG/B9UlorkDE46xlEB3aaNqtNnUIOF+jBew/cALvasQNG3bhLLapefHFF3jp3AWqKPE+oHBE60EpopIEH8fTuZiSfkVSVRgxHhIpQXQOo5MdheBS6EFIP2+eZYQQGLjEjSuMRkZPptMJyjlPURZIn9SrTV2jpKQODi2SNYooUEKjjEk2pMaicoNzllxpIBIEqHGQiFQKPb6vDwGNQuCJAYQIZEVO00S2dwYJ/k1IqqLx397BA/O87fgs1fYWh0/dxnDk6e9uMT3ZYmPVcHjvYYIMPPX8Mr3K8UePvUw3Wvoix7QKZL/PqLIIp5AoXAhokU6wKqaTtJaSqqqReU5rsgtKIIc1wnu0S0pFKaHU0LcVH3rHnbzt1DF6m+foV7v0+o6Hv/oCn3/sLMXEBHkeuPvoXqbnMp59dpV6ELnjpmmuXnqZM088ynMvvcCV1TSp19qzOxqOLT+esmhz5txVmu11TJaxvVPxladOozuaMIwURc5Mu8PexSn63vHII2cY7A647eQ+pNacf+QCU3Nz/N4jl5lQcOn8IywenKf/fGT16hU++BfeT3QCV1UM64rHT1/jysouJgSO75vnz334I6xeeoG1nQHnrmyxNVLY2AIVkIVAVRXCelx/xGBk03utFdbWoB2uCYTYoHONwSRejFbkMSPICOM0ObwDG/nI+27jQCcwszDH1aurPPLQk1SjwPzeWd5/23FWlle5ttxjo9ewOD2FdZagA652BGGpqhFTs1M0ladx4BBE5fBCoXRGrjOaYcPLzz3F3e/9KKsvPYqvKrBynG7tyWIkCPWKBU7EBHPPMz3maQXccJA2j8bhoyYTHoJHq5hSJaOi9pHVXo9R5RFFYmtGaTh27CCXr/QJwlGWGRPdnLPLW+xZmKPMDDDE5wUXLjzDhdMvcOLkYRwtMkSyKF7fsL/O/vLqP6+/7c2nzdebf19XkApeY+99o8e+cte3qNK78fJbsfe+lYm6fGWMn5rHr77ub68/DSszhhA8Siq0ycmMJHpLjDo196Icn/s8KkvnOYCmsgwGNUVhCCFgq0gVMp49v8Wl9S1iuMrH7rmXO0/dyn/5nT/CRs/QbtLb3eLPf8cD/B9nr/Dlrz7FvXfdysTEDM3WABEiIkLjk1WuleVMtTTBeiIpJKOuPUiFMgahAkIEjEk1U5EZWllOiDphSRiCkECBVAFjVFLQCY8ykrpxqRFHQJFqGSeg3+szPz3FZLdNM3JEEYARzkmUGFsdrUupusEnJaSRhKiohGG7aVhf22Zja8DuoKKKUKoyWXnHCJSIAnE9YM0mNcx4qxtCGq76GFJyMQnZAZLNzU2CLJEyx/kqYTzqiqlui0IJjh3cx3xZUPW2koIMQZYHXH8XYsTi6Y1AaYMikosMKaGumqQGVuCcx0SJ15KsLIjWolXG7qBH0wzZ2ehz9123YUyOipEgPFIGYgxImXNpaYOnnnue/igNyAOCKFPWPUpTNxW4ZE321iIzCYIxNy1ATCq8qA0+JPyMlILaOzKToYXEVTWFzpAtgWiSy2FEIGrDyAacdSiZ6lsiuBBRIWBDRMTUbPTeY31Kax7VAzAR11icAm9Dij+JUAhJ5S1IlQamtUNlCp1rSiWZmCs4tKfFHccXqfqb3HPzcboL0xBHZJlhd22V9sQiVTNkaqJgq19RIzlwdA8vPXeOoRth7AjRmmKyzNHRMhCBjZ1NgoCJbgsRBFpFhI14k4Ee4YBWkWzYIkbyosUXHjlD5UbkpotRgjL33HH77ezu9Imx4fj+PVy4eJnnL60jREYdAz5miAj7OooDJw4gBHjfMN0q0bOzSOnxoWTUgBQORI2UkSBzQqgRChYOTKN1zb7ZOUZ9Tz0Y8Eef+TJzk9McOXI7nU7B+YsXmO5ME6ylLHNWNnd5/qVr3Hp0HxMqEOMkJ2+/nY2LZ5ETc/z73/oMW9tDHrj3ZvrDHl946BKnX75EbnI2G0feneWOhYIPfeDdCON4+I8fZ7O2ZIv7SWjxQF5odoYwt6iYmmhxdWvA86dXuWP/fg4dLDh3dYfy5CyTExpWBFFLRNB43zC/Zy/bvW1GVcbG5hbr1QhbGZyoqVxBEyxeKEY+IMiJCKqm5umzF8BbmqjRzlFkEm0k3gZs06C1JAZB3dSJLyrBRkEeBEYrho1nYCtiAFs35HI8VFQFSBK2SQjyXKfGXwhEkVPXA4iO0EQsOokPdFJxR+9pQqr/rG1wJrC6ts7cXIHzHt849u+dofuCpHKO3CtmuiUr1za468gRilbB9s4ufd/Bac1jDz/ERw7fhNLq1caZFK9p1cWxF+HVy2m9yioeXx/Hw8H4ijjwTWuWVxEqrx7r6y26rxz5DYebb2YXfv3/v3F98+qxr4euXXdWvPlj/myv5eVl9YlPfGLyL/7Fv7jzPd/zPb3RaCQ/97nPTQLs7Oz8T0/L6PV6UinFww8//PzrwzomJiZesdvmeR5ubBwC/PZv//aFL33pSyuf/OQnJz/xiU/M/MN/+A/3//7v//7pD37wg4O3+vzGmK/7EFy3P397feP1lht/NkiiMkgpyfOcXBpidIToMFKRZxlSBsosndyKcd9VqDQZCdEjlKJuahohWG9yjhYTdLIC6xwHD55gZuEZ+ruXEJnjYpBo77nvxK2U+xZ4/MmX2ezvEmmYCCkcw+eMQz4UQSb0U6fMuffmGXyAQmnqqqKpIlFJvJRjS6zFhqQsdTGipUBpjXcNUiWrRBUsUmpAoYQlxki/CmiVUzUDlHRpalpkqRnlBRqTYMauoTCGstA4HxBjMLAEbONwsSE0Fmc91qhU9Itx8TRWASTxhiKSUTVNUtN4hw8OFyKelPZrRzWb20OGNrIzbKjqmFg9mUk2ZhexTSDIiMkS8LnMMjrtHK0kzju0zpAmWWFjTJsCqUDpxAMzCBbnutx2036mJkpsfwttMmwFRiqUNDTNgDhWkdkGIppAk7oFMTIYbJHnOVUVEFESUFSDPrYacde976DsziBDhVA5QQZCqAmuIuL50hcfoho2aTMiBE5GkCK9TiFRpI2EJ5JLhURSy0gMAesdpigQzo3VDamZKr1AaoNApDRfYrI7Sgjjz3UK/jAIraltlZofQox5j6mBKSPosY1FMP5xpUIqlwJYtEqfEykgeLxr8B60MWlfLjSIiJAKgsX5iqJVIqRGhxLrGgQBo6Dbyem2DZOdNrPtnKWVDTKjePbJpwmjyH3f8S5eevki5y+sUi0kC/LCTIuV3YbW/DzH980ztDkPPf4I/X6NdAovPEKClxHGyb04lwJnYkga0RjxtsGoHEugrhp0zBjZmm6rpJ1r9u+bZnFa01u/QhMyvvD4Bb7y+GnqINGdCYQOZLLg6dPL1M9agtHkuaRva4Ls8Mn/9P/m/M4QhCLqDFm7pE4QgMjwteXslSWurHQoSgUiMDE1SVXt0umUzM5NEbzgxaUVduvA4swEi3tn2FjdRmvJ/bec5Cvnr1APGu44eZBiepavPvYCJ4/cwnvf8yCxt8WeA7ezub3OhaeusrM7YtSr+Oj3fBfvvP8Iw63LfPqzX+HSlkObSbwbUsaG4Dyj6MEBuaByFUrlOAPKRhaKghXvaZucmZlplta3aSqLzJOK2BIJY95kVY3YO9vhziPz3HXrfpauXmJ3uEnl+7S0Yf5gl+BqjBhQ5iUP3rvIUy9dohlaJqa6zErFc2cugMwYVY6IQZuSylYp9VJGCI6WDDgf6bnIhZdf5v4HR+w/fJjV5QtIFxBFxNdgpMbJMf9GCKwXKUlbCzAZiCwxmmTEiYYYBJmKaJE2p8FrBqMhykh2ql2Wljc5enie6CtCECwuTFDmgaENCOuYbnVZ3tmkt9un1c0p84LdUaT2GV/7ymfZN/shWnMnCEqNmyTw+qlv4vTdcJ24ocp9C+uNuTQ3/v9bO86NsOsbOThvZP39H4FeX39911/udS2AuM77+fb6U7FCVOR5TiANuxJ+g5TWKaBpmjFDLyWcyutMI6GoQ2Rztcdm37Leq2iYYmXYoEXJxZVlSiU4evgggqQ0b4LkC198hI//L3+B2+++mS9+5VG0PM1733c/I9LGUSISz41IZhQzM9No4agGI2qf6iAfBTFmYCGlDo25zcKADSjt8SGx4KomsL6+THfCMDszi7c+YToiNLWnyDQ+OBAxpe+GQKdTJpeCE/iYQQwEHDGWNLVFREtZZkQ8SIGUBYOmYXt3yMX1Pht9Bz6moIoAxmT44BFKjje5kiA80TWpMS4SszeSzt9KSHyIifAcIXowmUFrjYtpIEoz4Oj+WfYszpBLmO4WxDCiMIoqjNAy8Zu9SwFEnQmFb9L3WwiSZlghZURKhbWWQHoNJgJeIrQmuUolwigab9FZQeMii7M5t955NwoJ0aLGQ0sfHMqUvPTyeS5fXaIaNcgYkSrDe4/RKXY4OAEu4KVDqPR5Cj6m2gM7VmwqrAh44QlCUOosNUA9CDWOR/MRbyJakmzGIjV7JAKtND547HBIoZMjxbsamQlEjMTo08+mJXVdo0WBFil8yglJcMkqrJUiCkEmBApB4zwxCGxTYaQkb7XZtzhFt2NYu7rBzTfvoehEVpau0mzucPiek+R1pNGBxZk9eDdidXWVua6hO6pxB6Y5fOIdbG6v8cyLZxFRIooJDu6dZW6qTeMlyxvbhOgY1YHcKJY3BmRe8I7793L3icPkU/sIPrJ89QpFq40bjpg7MIt2go3VFe5/19v45//Hb7DRA6LhzttuZruB7R7Uox1sZbnjjpv46Afv5cLpFxHec25pGaFyTPTsnZskbPbo1XWyUpuE8mnGXEnnA+tbWxyd2sMLpy+TFSWzeydYXWoQcsgXPv813vHAA9x7951cWtrA7ihMWXLl9FVaU7NMtgt2+5LGCNDw+S89jW3vZ3vUkGeGZ1+4wPZmH9nO0UFio2Zhoctf/kv/K2HrCYbb1zBFlz//vR9hZWeZTpZz/sxp1td36LRzhjsN2mlmJqaRYYfZ2SmEyQlNYFRFqCMzky1gBS0Llpd2aQ4pFg+eYEiX0w//MTMHZwkhpxEBJyVViBhhELIh02kfWvnEi6xsJNc6/Z1GiaDANjWIxIrMsizx1KUg+uRkQgvyQiBFznZ/l+1eH52XKNkafwcNUS7NMRpraVzE+WRVV8rgVESEiGsEMjjymGHdDjqSulIClJfo4HEu4IJhdX3AbUIjYkBGTbsjmJ2Z5er6FnUj6EzmbO20uba6w4H5Lq1WTjXyBDSXz7/McGeT7sxM+v6C1Lh7xYXAmGFPqonEdbbma62y1+XOr/CP061f1+B7/Xpzhd6Njbu3fh688ZivOdprhqDi657z9Zf/JCfEn8X1G7/xGzM/93M/d+hv/I2/8ZrrJyYm/Nve9rbRmzzsf3g98cQT7RsvP/zww+3Dhw/X73jHO4bee5aWlsyHP/zh/n/vcd/1rneN3vWud43+wT/4B8t33333Lf/+3//7mQ9+8IOD48ePV1/+8pc7P/VTP7Vxw3N2brrppm/az/ittt5y4w/hmZ2bSCo3F5BB4JzF1qAyaOWKomiN+QIR4ccbH5GsV5kwVMEQtUQqMN02SpY4V+GixRiNkAK6hsYFFidniThevLTEj7z/AR581wO8+OI5Hnv8CXorm9QOhEq8FRHGNk8pySQYKVLceggMq4pCStBFaq6IBuljAkkD3loa36T0UiWxTUWe5dS1RRIQSuGcIjhwbsjUxGxSuHiFjCQenJR4a7GhxjmFloLGWqLzCERiqQiFEJIQAlIZfLB0u22kVtSVTxZWrZAiIFVifDW2QURFocZssCCogYGtWd0asttrqIc1SmY4NEMfyFWOCJGm9sSYEspkTE1H5z25yTFZThDJ8lwRqaoRBQJU2uArBNHkROeYKg23nTjIbGkgNFSjEW1jkoIOSZGX9BuLG9UJai0gw6Tk0HGhr7UmNBneavIs4FxNkBrvAhPlBEdOnoIYxgKeiDSaaC3EwLXVFZ596WWsC9i6xseAcxGFREsFxGRZReJ8BGNQUqKjRyKJWqfPYBTpdpKSARdovKNtCqIWuJCSuZwQSJGma8E5bACvxhBqYxAyJZv2mhoF+DAWykcS8HdYEXODFJLoIqbQCJEagyqKVOibpFLUUiebMdA0DiPlmIMEztZEmxQJU902c5Md2m2N1lDIjBAcUUa8lcRYcPuD9/LJ3/tDLq01FDJSFC0Gg5pruz02l/vsNn2WLpzBDiS9EIFU4HsR0Nai9Nj6rhQ0Hq8izvukWnMWIwVZHZCZwNtkpz9+aD8TpaTbbiOjZXlzi1UhWN2qWd0WVLJElYJ8MKB2qTmL9EiZ4SIwqhgOKo4cO8FXnzxDv8owyhCpcT4BzKVORVipFVNz09TBs7PTp5VlTBU5J+88hSk7PP/Cc2xtjtgaevK8wLsRV7c8i50Jju4tWd/YRAvPocV5RN3jwqUhtxw7xtsevIXe8iWU7LC2tcIf/P5n2R1ELJEf+tEf5IF7bmd38zyf+W8PcWVtiG7N4qKgjI7esI8Pijw6TDvDiYpcRWorsTFyYrHDHUdmefriBrOdkoV5xbWrV/AuIyqRgo+CIzqBziXf+cC93H54imF/h15vk5m5aQYbAw4fv5tnz3yFKy8/z96ZvaxuDvBAsA27gx3CQDAxPcW9776PS9euYUWJq5JdXGUSVUeaekR/6Oi0M8osAexNmbO1vcXKheeYmmxxaQUG3hKiwwXSplkkpqUP4LwgL8qkSsUgZEr5lkoTrMYIAbFBZyVRQYwOqVIQUfA5q0u7HDk8SXASpKbbnmJ6KtJfTn973WKS1W3BxeVVTk3uoywzRnWNaHc4f/p5zpw4ysnOXnLTQbxib3mtoi+ObTDXC0jGDbBX7C9j4HW6txiXwtcLylebia8+/rUNvG9UJF+/32tOm28CuH79Y96qtfeN1yvUwtc857fXn54VdbJdSqHAxzTQiR6CQsic6ARBOVRmqGygccm1c3m7x+XdZXZ7jhGSLEYmJxLftjSKK6sbXFtdJ9ABGclUi+jghfNXWb58iQ9/x4O8dOEil5d3efzJZ5ia3Yd3kOWG4D06M3TG56vhoE7p7GkcBjGOeVlmrOhK03QhZRoG1TUegSWw26+JSKampxkOh4iYsA0uSnQucI1FSIENDqk0hVSUWQdCSulVOkJUEFJzdK2/w+z0FEFJaudZ7dVcXllja2OXColRBaWUOBqE0ehc40eJ/aykAhxBeqSL2GZEEIq81UFphQSC1+gYCSIFbiglUFKS5QodNUWes7jQ4eiBLl0DZZ7jQ2pAajWFDDVBgXUNOuZkMhD9iMHWCG8b0BKlNVoVOCno2yGq8rQX5rF1jQ6ROnhE4/FVjXMOpSVIg208ddXj0PFb6EzkBDdCqCyxijFIH9jubfC5P/oClcsI1qEVCC3JfEQbRVU3KCMQKhtzvOLYyqzwziUmdytDRZW4qZlBxVTTZ8Ykdl5Ig02lJPWoQuU51jtwkJsM2zQobfDeUSqDyAzKJeWU15JYJwukIA1hc6WReYZ3DVmWQeMpTIZXkYgk+oiMkczo1BAvIloJjE/qzCZ6Fhf2IKsBzjoeeeoqk91Zzi3tsN08zU03neArX/oaG5s1Bw/up9sqmZxocfKeE3TnFhhtb7K0Jrnn1El+7/e+wK4b0es31NUIj0dERQyCE/s7hAbuOLzIvXffTHcyI68sm71NOpMdbnnPHQgVCVsD+nWfxkG33M9DX/4qmoIPPniMfVNtpmcnWd2a5pnnL7G4Z5L7b7+ZW45O0lRraAWtsmH/QotSTRKzEjtw2CYhkQwwsAGCRjtLwKNVTqEKpqe67Ox69u3tsrrew+SKLBPcdfftjEa7PPPIsyweOYAQgjvueoA//sKT7Dk8zYWVVVaXRpSzmuceP8egaJMXHu012sLM3CRHDx9kanaao4s5ZbtLtbtBUV+hCoZDt92LVJKdq0u0dc70nsOsrV1je9Bjfrpga7uPcH0mJzxlodhY22J9uIfDB/dwceUc/dqyOFOgo2DQVIxEpD/0bDzzEpOtnO/9gQ/xX/7bY2TapqG5g7ZpqIDoBSoagrMob2ksWCUTs1tEGjvERYEJIIzChZhEKHXCUxETp7pxFmsVha6pa9hcHhLsEJk1WJkwLKWsUFKRiRwfGtrleO+oDLF2OCGIRmLyDBkdkFNOdJFeIBoHWhFEQzvLQQusq5OYQ6X9QxYVJ27az/puD+cVUUSyVsnpiyvMzXWZnJqlV2+DUuz0tnjpma9x//s+lDiWUiYqwXWG7w3q/igib+nML16b8Rvj19c1b27pvT5Ifa1d+P+O6/aNjn+jqu/65euqv29ltR/AkSNHvs7KOzMz4/7Df/gPZ1ut1jftl7K0tJT9tb/21w781E/91NpXvvKV9r/9t/924Rd/8Rcvnzp1qv7Yxz62+RM/8RNH//7f//uX3/GOdwyXlpb0pz71qYm77rpr9Jf/8l/eeaPjvfjii9k//+f/fP77vu/7tg8dOmSfffbZ4uLFi/kP//APbwD8zb/5N5f/6l/9q8fuvvvu4Uc+8pHd3/md35n61Kc+Nf27v/u7p79ZP+O32nrLjb/JVot2XhC8p/INSkq6ZYuskyxaAofzER8TDy3K9DnUOkPrHO8hy/Nkd6iHTLQKinagqRqmF/ewUw+IowHz3UmyyZyw2ef93/Ue/ssffIbPfuoh/tIPfohjxw5QBovPIucubfKlrzxCVhQE65FjsHGea7zQiACKQF7mZGjUOH0p8RHMqwl1NinFrLUkb0hq2OAiSGgYjlNuPQuT02RSE0RSQokA0TtENGSmReUczidAt1Iq2Xv8uKE1lirnWUlta8qyRCbnBYFIFDI1C4OlO9Ghrmu8S5PHEC0exXav4drmkLWtHZzMEitEQRCpEE8nA5sgz8gxU6tBCaiGfURu6BRdUAobPBqJ9KnQcN5jXcAYkxIGURxaXODI/kmmpwzBOmIoyUqNs5FOZ45muEXta4TOUviDTAEwMjZIKVFlwaA/xNlAnqWUP1sHrG3QKqXXnbz5NrpTc+gYiON0tSgEwQPC8OgTz7A1qLAohJKIyuNjYoypIksKgSo1/pQSeJkaIiBQRhPiOKBEp+apVCpt/zOFkoLGN2iVIZWiFRW7tsFrkbg3UdDKNd5HjM5wMVLXTWqSGUP0AaUUMSYIe7yuR1eSXGU462jqNG03SmOUoArJAu+DT78rKdEyIXezLCcEaKxHiMDMTMni/DTdcsynDDaFzYQmpYblir6IiOEOX/3MHzGKCTy97mpWn3mZrV7AEgi6JOxGNr0lG4O9A54Gj/YxqVRDCihRxiC8IKhxWphWOOFpF5r3v/0eNjfW+fAH7qHaWefM2at0OgWXl3rozLBTBc5c3qQ/aAiupmiXLHSnCWWL3WaAtYLhqEQVjplccf+dt7N3SrN2ZROHR0SbFHAxUlNTdGaZn5liui04ujjPsOljBxX1VIHWGW3lib0+21sbbKxVDIaRvFNgTEY77zA9l3Nyf0kZFV964gxZlnPm2ibzM23+6vvfw8nbTjLaXkflba5sWj77O79LHSR75qZ4+4nDfMcDt7O1tspwMCCYnHxygigsxhtaUlFOdJibaCGJPHVuiQdvu4m2Kfjiky+hRcZEq82+uQk2eiN6Wz1mDxzh1qM38fjZCxS6wKA5fGiKfbNTTLUF733HAjQNO8ayu73FqO/Z2BqwtxkyatbYv3CALIPt2lE3sLG1Sq4MlIqzVy7wwv95hlxPk2mBjI6mHiB1si4ZIRi5yGBgaWFoK0lRSnYGOS899zh33HGC6CKKnFLmOF1jvSVWY66lkngSbsCYDCkUlQ1YZ2nsCCEEmfK4KlDZHF0WjEZ9pFYIJ9EyZ3lpg+3NRfYuFMRQYu2Q2265naWVJxEInBuyONlheXPAsd1dyryDMZFB4zCi5LnHn+TgyVvJJ2ZhnIweY5pj35hd9+olXilKpbg+3X71+qReud4su+HOb7LeiAX4J6XdfaOJ+psV12+lsP26RmF8Ve336rG/HW72p2ZFlVh3RAgpZd67AEISbA0xuQnqABu9IRdXkuPl/LWGmUmFED4JSlwaYuW+oN0OHFs8zO52j6u9XdptTeMzvOsxtJGvPvESP/gjd/Cut53iU5/+Mi+fX2dyrUIITQCycRNsYaqFDBYpXLJ8YtAiQ0uPEwEfPE1TU5pNvvc7/zOd1go2uJTKqgyuSkPGPXunINrENJZATNZhIZMdFGlAyWQpDgFpNB5JFCn0jRAIIbAzGqBVwAfHyo7k7JVVNvuW6DWIEp1pcIGgNKNo6QjNbq9mMiuohAfvkk0VRQwRGSVSpUrL+YRSyUiJtzE4VEg1mpaKyVabQ/OTHDvUJRsr50QMDCqP1pIyN0QiISqi1AjR4FWNswIRDEp6VF6kZiQpoI3gE/eu9OyurxFlJJY53ta42pONkSpKwaiuUEiE9xy79T60MiAiAYGnTkq+YHnx9MucOXuGOowthqhUQyCp6wYfIkidwj7SB5DoHZJArgV53sJqA04SmhqfC4IPafiZ5I7pPUIQg8eQWNdSKkyISVloEm/YK0kmBL26QmuNcBEpUr1mnSXPCkIMvAJfMpomjsPMgqfGIoUmjzpha0QKYVBRoJXEeotxhjtPHOdd77qd3vomy6tLXFvaYWXT4o0kqJL/9oVnscOC48cW+dB3vYeVK2fRQdPr7TLYWiWbmKCVd2n5ir/+Vz5IPrmHP/qjL7DVG3L/A2/n2S8/xKFDCwgCZdFloq2QsWb56gbTWcFwsIORGXLCsbZ8jZ2hY2d9LeE/zq+y//gR7jh1mIlWh5WNNX73v32NqZlZ/re/+J3MTmjm9x1jY3mNz3/qv6E6JTYrWbuyy9wc1DseLcGLJqnsRcBIRQAmOh1GzuJ9YDisubS0jpISvCFXLXxm2dzoMTPdZWFxhjvfeR9PPXOOQzNt3GiJfYcOsrw2YO9km5n5nIm9e7i8NWBUC2y1w3e8/70sLJaofp/9+/bQmWyzu77B5P5FBhstYt1n//4jbO1s0q9qiu4ULzz0GYoXniBvtZGNoNtuc2F5FxsyyjygtWFts8/2+pCJhQxjJLtDx/69ExTGUEnP+tImc+/fx9baNoOtHkZJju6Z4NzKBk1TY6OhGf8NSRERUb5qq1eGTEZckBTK46Ni5CNaS6yLhNin28owGpwzDIYeUQ1ptTL6/UAxrdB5ZGvkcFGRiXEDXCjseM9AACMU+ITZQQqaasgoKJxrqGNAFIJeZYlIXPREoRMbMAikkhhhsLaiqiNF5iDmRBrmpiRtLek7SbSWuckWq9d6DAYV0zMdcg34gNU5Lzz1DCfvfBsTM1Mwdg+FkDpkqQxIaKTro0yuBzG9SSlzPQ1XiOvD0xvtkW+lg3eD5BDGz/3a+uP1640Ue290H26o3V4bpnb9NV4f4Iobhr/fGusv/aW/tPve9773yYceeqi9tbWlDh8+3LznPe8ZlmX5Te2Efv/3f//GaDSS7373u2+VUvITP/ETqz/7sz+7DvCf/tN/uvDzP//ze//O3/k7B1dXV8309LS7++67B9/3fd/3hk0/gHa7HU6fPl38yI/8yPHt7W09Pz9vf+zHfmztb//tv70G8KM/+qPb165du/yrv/qri7/wC79wcP/+/c2v/MqvnP/e7/3e3psd89vrv2+95cbfTLdM6bMxovMcJQWZCGgZca6CsaoieIuU8tXuvBYoExExEPwIgcFFjfANhBpBoNWaZnt7l4lui3rHMZPnnBkuc2R+lgff/nYeevhRnnz2DKfuOoXH01aGIk+qtlyGZO1wEm0iZWHS9DamOHMjDIIxOBrwThBCw6BKytTKVTSjmqxdQBSEoBhZhzEmWVZFKtCNSDaagEYyIsMQpEcg8c7TCNjo9WhGDTNTBa2sxDuNDwKpkj0jhkgWEzBfkb6AfYgYJchVUtVEoagaj/WwWztM0FxZ6bHZrxkOGpCKiESGQHAWKZKSTUaVpr4yNaoylaDNLhgqGpTUdIqSiek2UklCYwky0JIKoTOsDwjf4INlYbLN8UNz7JnO0KFC1oqiNUEdLMF72kXOaLhO9B7pBV7UBJWjkAQRGdk67aR9QImAQCOFSIpIH0FIer5G9vuUk7MIHF7kqBABSyA1LrYHuzz39PNYL6lHDfhUUEqRTjZCBqRPFnIvkr8/WIH3aWMVo8KIcSJUTKEzMgZ8lIhcY4MjjxJ8oAoBEQVSK7SAlswZ1kOcdxihqZ0FowhKULpAM1ZymkzQH6YpeYwRlWdUdQWlRitDrjN8sFjhUhCLD4QYCEQynSW4NwJpJNZ5RPTjzxzkZU4pA9pVOBfoTHVY3xliBGitySS44LCUdNuSesOxM7TUUlI7gVWaiEeGmqFXND4kWHF3gl6o8LFB2kD0DqMNXgj8qELFnExp2t0UDLPbs9xx60E+/MFT/P5v/wEvPvcUbtSwOYRRXvDIy+cJQRMaz9HD+8j251y6chlTtBlWfUTQtIqCATWHyjaLUy327+1w9eoS65cdppXjlUkbIgqiHxCjoNrdYXU4YN3AxTOXufnoAof2TnBpucZIxx2nTvL0M1foO88tt8yTxzY79ZCyLOnmEoOnJRXbgxEHF6dZHtQYY3jf3YfYOy3ZXL7C1Pw0Lz++wVMvnodsintu2se9dxxldmaaR7/waS5c3qHvHC+f36QfPXMTJV4LAoJSed52co7V3ohnXg7smxKMmoZSRXZHI5wfooxisFmxXVuU8eyb0zx+QRFlRHrLxz5wH/OZxfoB9GtWNq5Qtmewo3UmZ2YJImNzp8ftx45ydbVivdfDi5QKKKVBmxYzkzkjWzMztYAd1RSZBJ9s+nnepo4NWSaYyQqilEjtsDGSB4/JCq6t7nKrdwQvscIRcHgAZfCxHgcOCCSellYgBUF5CA7hNXiBKQyCiM4M/cZhQ7KljKxDo9EqYIVmaWWdA/vvoLIOomd+forFuQ7XNiqU8JSlZnXdcWXbc3hvQStvGFqoteXK2horS9t098XUlI43tPuSrA94rdovnYRSgThulaXzFK/a9tM9r3tl4w1l8BtPpF99jlfXn5Ta+1bA1292nD/pGKn596rJ99X1rVUY/2leNoBGI6WkdiOIEe+TIl5qSa8WXFze4Mpqn43dEa7qc8td/5yytZowKUGSS0WgQZiGm/dNc2C+IJcVdjBkMFDcdeokjz95CRrHiRM38cSZJWb++AkGvW3KTpvdnSGD5VUiHouklBIZc2IMVPUIHyuMKQFNCDVeRIKXrG6uMjM9w/R0zQce+DxCRrwXqOiI3qOio11oJI7gQGVZQpJYj4opYduGxNhydUOZt3CNS5tXUsKudQ4vHKjU2JqemkJmBWcur7CzK3CiwEjGGJAGERO/S4WAU1CWOVFIgvfgPMEAzqFDxOY5uTK4pkFmafAXCIRgU1CagOHOLu+85xg3nzxErjSZSQrHajig3e4gmhrbjBDRICWYvKRqkjKozHJcnljAryTReZFqsdjQLTN03qZyI0KVAlSsdVAYMhRSKnIU6/0Ncro0sU87m+DwiePjobFCyGQxxNY0wfPQVx7HucTPi9pATLV5jOCkQIYUAqC1pGkajEwcaAXgA8FFoquJeUbIFSBBeASRyiaMjc5zvBII61MQDGnIIlUSf9qx3VsRkxW7CYgig+gQ3uGlJuapyZdFgTQm8YRlaqa44NEKYpRIGxlJCxLKIHFFUqFaG2h1p1CuZm31ChdOS6KN6NJwz903s73d5/LqLg8/fgGdG+675RCLU4KOC7AwgxKKxcMH2Lm2RtnOk+U6as69dBrX1Ny02Gbi5kXyoqa326OppukYxX3veTvLZ88yMdnlqT94lj3vvJ9bbtnP0stnsM2AK8s7bG6sQd7lmQs77FtcpGUCK0urPLN6nsFwxLFDB/jIn/8wzeYVNtfWkKbNniO38sD3TvPsY5/i0qVNyokuO70e03tnaIlAe1Cy2W+ILg2gGwkTZYmsBfWgoho1rPQapsoS2zQcPjTJ0Dq284ydtV02lneQRrCzvcXRd93P1sYV3vfAXeyZa3Pt/DU+9ZmvsK0Ni4sFJZ75/fPcf+cRzj3/BEU+yfrWMtEcRJZTCK/oTE7S313nzMvPcuyOezj3yFfBvkSuM/bffAerV84ipKVdSHwTqBpP0dVI7YkqUg8jqixpTxYsb+5y7PAMhw7Pc/bqBtt2l//wXx7jL3znLYgIosw5f2mVXeUY1oJcKuqYQg81oOIIbbp0WjAaOKQJKFHgvcP7mtHIMzHZotAGIyugApEThSMoQb3d0IhAtygTN1EOuLY+ZKc/IsqcYD34gM/T3gHn8TjqagAqS611IQjDXQQ+WbFdwcjvkKlAwON8ZFTVBCERKuJJTiilJELEZHuXOZNdw8HDizz5whIqaLSuiJnkyvImczMZ3Y4hxgZXCVaWr7G9tsnUzGwKwfEpjTwQxjVQfKVUiVIRxrXA9UFlCkG7XiPBdedDEgy+noM8XmPkE3z9zUL4tION48bjGO0ixsOH69WUeOX+37j2ee3TvjrITPd59QW8tvb61nQ17Nmzx//PTq01xsR/82/+zWXg0utvy/M8/vIv//K1X/7lX772Ro/96Z/+6Y2f/umf3rjxuoMHD7pPf/rTZ7/Rc/7cz/3c2s/93M+tvdntMcbHXn9dr9d78hsd89vr1fWWG39GS2LTkCmJNIbMKDQ+wZ3j2LIoI64ZoWT+Svffu4h1SU4sVYYngeb7VUN/oDi/tEHdXOXdt97JrXfcwubDz7J8rU8joDfo8Z533sXStXUee/I0+w/vIWt1yFoFvl5LX2gh4IVECksmFG3tqIe7lKpEygxbW0yREaJFSsgLGAwanEubom67pGl3k59QOBKsSxCDoizUOCRR45saKUIqGB1EFZNrVBiCSuyU7c1tbr/5JrzrE30keIdUBiJIpYlKYIPFKEUg4oLAk4ISlBGIUuKjZGurZml9h9XtbUZBon1BFSNKaQgeFyWQks9idGNgdbLdeZLiMPj0ZW/H74tSOe28AG/xZNgQsDapN7WxRA8qWE4cnuGumw5ghCe4ZIsN1HiboWNKpa38iHA90S8GTKForEV5gRCKoBVNVaF1RpQZwQfsaEiWa6rRAOctvXpIJ5bM7D2U4M4otAoEn0IuvJCcuXCZl89dwqNTAlxI6jkhBcZkNL4BH5AiS9NsKZFa4vFJcRrSCQlp0CbD2xqZG/S4CI0WtNE4azEmS4l9QoNQOK0QIUtkxpgA4BNlNwW+DEZoIVLaoUvKRREj42QOdGao7IhCBgqpCLhk8/YeG2KyGDlLbQSeiBGKECVSZyglqdwI4SKlzrj/1E30NtYwqsXhmw7ymc9/jUJlRFVT5B1s48mEwxiN0mlCHJEgAyZavI04bcgLDcMmqRxtRZAWITzOB0yWobQAkycWytiGXBRdRtWQ6enA6tIqv/wv/jOjxqGu9pBBM3S7+LMFQXQ4eGiOd997K73dDb781Mt4WZBFSXAOZyUtpZmUmslWYG5B0skNUbSYWpSsLG/TnZhA+RFGBIz2qCCJStJUFbloMbswTSc3zE3mOCfZ2e6jleXE0Rm2tnNuv2U/S8tLvHxuyOLUdEpbNoFR1XDhwionDsyyc26JmVyxd6bNYOQZNptcXFrhuQvLtLot/pePfpC52Zwvf/5Rnnn0KQbO8tLldXZ2hszNz/Pj3/9hnnrsCc5c3iQ3kkxlNI1lppNTZjnro8CBfV327G2xdG5AbyixdZ+9i4bdK4JRU5O3FG0U0Xl8hLJt6PV2cYMBW34L7wWjwTYbw4bVjSVsdDS2YGQ3GVYG6wRNCBhtqJqGxjfkecmgPyTEjKmWopVJiCaleaMQpkA6C76hyDU+WCpnMFGhpWdUS3aGnuDSZsvZkKxXqDRojYEYQEuY7LbAW7IYiC7gnE2g+hqklhgvyHKDViKFBNiKoAXeR8oJxcb6No0dIWNIOBplWdwzxdXNc3gmKDRkecaVtSWO7l9guq0ZjQb4JmfoHc898zhH77wPYQR6rJgW42L2dWaV11wK41uTK+bVJuF1a3BMkyteCcZ4i+sb82/eeML9RgXvm1335uq/8ase249jvFG5+K1rh/nTujIpQUXqqk+m0vBuYD3blWV5bchWr8JGlUImhEDkfQ4d+hzRB4o8o50XzM/lrCz1mGhPM6U1beVRokU+WdK7eIV777+XJx4/T9QtXnjpPGsry6yvb3Pl/AoHb7qTatgHkZr6Ahg6x3SR02nnOCJKTiKEwPuaKBOzbmNzi7m5RbTSVKM2L567lSMHnyHP+1jnkj3WFIn7GQNSpAFBFJDpHCk0LoDKYTQcsbmxxbGjMzRVUq4H4RFkKCnQQeJtxXRrBu08K/0hq9s1NnqsDkQnEI1IHN7gaNwobWy1oB7W1BIMEm9UQnCEiMly8J6GkM6RQtFIkYaM46GwlhW3336Iu249hsFRZBkmz6lcgy+SvS4XiY2nybDs4qNMg08aVCjSm6zSv2yTGmdogdZFahZYS2ws3VaH0XCEjIqyLHAukGtN3YxwtQc1ZDSqed9HP4qKDSn0BRLbIeB94NLSKs+9+DKND9iqemXgnvJgJFZEcEl1FYiJgRYiUQqcS0zuUQxIoxBVM07QNdQ6KS6REiEELgaE0kQXaVyTAtPKAluNwEf6zpHZQJkZopQoqWjimCNmLRbI1dharZIrxQaHkIpMKUZVjbegM4kLHhcj+MAwRApRIPNAWaa0a4kjyzS5NrhQsbV8hdbEImWrzW3HJjh6ZJ7pqUkuPPcSJpvn0voqe/bOIKoRsV8xP7PA6TPn6C50kU5jXWD9yhKqyFm/cImThw5y16nbmJmcYG7KcP6pF5ndtwiZ4G333sns/j2cf+E0p+5/P5/9g0+wdm2VY8eP8eS5Zfo28NLFS1y+UnL7yRO85z0HeOH8gPe+8zBbV59AjBSjZpX+xgDb7zN96Fa2ltfZOzdPiLtY1UYHQ4yWTEqE9GhpEMERRyN8t0WmJLUQNDGysTVg/3TO7qhh49xV5qenOLS/y86uTFgNp7j7w+9k7eoLPHt2nfWNF/mxH3o/eUviDFxcXuPqpuH7P3AvR4/tZVj1mNQZ+WyLxb2HefGZZ3C6xclskYe/9DWOHtnH3r37cHVgarLL5SubKJmzfP4MU1Mz1CNB1tugM9FhWFlkntNptdjZrdlyFbULTLUmOL+9jm1GlNSMej1UaJFPdxj1avbsmebClavMTWW0VZchFY4IUXLLsb3sbG/TnppiY3OT9bUKax3G5Ix6W0x0J/A6MJlLcpHh3IiIIzSOLOswqiyl1nTnChAa40YMB0OiKtnYqdgeNsSg8TGp5YSP4BxCCoT3dEpDIBCjxzcjvLMgcoKLiDzSLkRKwA4icVsRaBXIhBgruRNL3aj0nRAAI3NuOnyYZ5+/QowafKDbyVle6RFuOkCWFYg4QgjHoAk8++RXOXjyJCLEFEzIWBsnYFykjb/V5evKlxuQJa/YaG9wIsTXR4OkdSNC+ZVq5vpwEvXqDTfacq83IL/OSvzmtcjraxwpXlX5xRCRUhBjeMPaLn5DjeG317fXt9ebrbfc+NOyIChABISIGKWI/tU/am30mHeX7Lyv6CaqhkGvIsSKdktjo2Jz3TFoDF96foWBjQx3VvmeHyy59eab+PLDL1DVFVVV8bkvP8JP/a8neN8D9/Lbv/9p/vAPv8D7H7wPqTok88FYzSUkEUenLFmYmaBdKlzlcd7inGNnu8ZojSlTCp3SinycPiIhsamkpqotUTZ4p4lR0rgBZVkSfNJOC6OwjcWIZJU0yuB9xBPojwZMTXQgjlAyG1svKhrXR8oCnE8JpTHgFYTgk7UiU6A060NY3qhYWt2ivzNK6WjS0OSaVgShx5twzziJVwEh2fCEGE+x9RjDE2lwQEzJVNFT5AW7oz6h7qFUjRYSLz2dzDBdGPbMdSlNYHaqQ297G6Ml0ki8l2itkGoLiUZicZVMG03hybWmDC0a5xhWDqTEaEH0oDNDIyxZ1gKfeHUqy8FLhkur3PHAu5mcWQA/RAmL8xYICB+oveCJp59hZ7jL1tYAgUDrDOuT5F8IlRL/moAyHtvUiRsjBVqb1JgNgUxn1CSOj9RpUyCcx3tPoU2yC46t66bdIg5rhIAmBoJICr0YkqpwNBgQpcCHQHABJz1SplNtejfE+DOlUCHH6Jym8VijaRqH8kCMKKkQOrwCWR/VDTIqKDxZJtg/1ebEvknmpgzDzTW0rLj/7puoRORD776d7lyXtbNXycppYqYpS8GoauDMed559wd46rkzXLi4wk4dGHrLRKdNESV6rs1gOBxbkw1zM2UKY8QRho5aaMRAQBsO7plFNpFrVaBoFWzsWPZNtqm3d5hdmKHu97jvjlu459SdfOWrj7K9O+Crn/8aI+8YVjK9x7IGVeBcw+1HFzmwUDDZnePshctsbffoSkdhM247vpdLqzug86TmUAJTapxIfKIgHKYDeSnQqsDXA1otyUMPnWZutsuJYweY6M5x6doye/YdoL/TRwlPVnR5/LlzrK/V3HzoAGWUzO65mdsfuJ/P/6dP0Dl0O5/56nMM+n3uu+UY/5///PtUQ4f1FpF3GNYjJrMpPvCee7nr2Dze7fKBd97GXUd3efHiOfYtHsaOKqrakpeC3m6D2C+Z6LTJ1YC1zW36vQlmOgppBINew/RkjmwpBo2ipSPVep/ZtqJ99Bgvnb3E1soauyPLEElTZ4xiQxMDRAMq4gwQOlRB0mjNUn/A9uk+uuhQCwhSE5SAqGicp7SWTAlcFIycxzuJkJI00I7kRtKvI2u9bZxSVPUIrTJEHKVNa5CMoiP4kD73Y9OZFhLykqYaoKIgT2QEqsbitUSOi0rbNIgoEgAeydZ2xfZan7mFNg5QCI7sneGll65gcahGMjfd4tq1Hrb2TBQFnXwHh2JgPS89/yzvWl1l76H9xBBTUup4kHJd9feqpfd6uXhD2fi6ovT6reI13pivb9y92fVf39B77dHfzMr7jTh8fzKj7/W33/izfnv9aVwipM2ZMgWX1zbZ2B6ysdmn9iWVTby4GFNKeqgl3nXZ2H4vNx97nP17Gmbn9qJUZGOtR41mzQl0I1hoafJimo6+yp6FBZQx5Lrk8qUL+NCgdc6R47ews7vOsL9B3i7SdqmxBC3pFpGOFgQUwdc4bwk+ImUaJjQ2na+kEGxuT/NvfutH+Vs/+f9i72KFEwkPIZSgZQqkFDT1CKJHKw1SJ3xJFATn6PVr9uw7QjMaEkkNIBUUEU9U4KNC5QLhkotha1QziunvQSPQIkOIgI/gaXDRJi5b3RBdeh02A+3TDA6h04ZdjK3VwSW8SowEGyjLwJGFNhNlwdFjhykyUCrHZAapNd5ZXBTs9IfkWiBkSMPcqPCNhRBpdyewTZ2aZDrHx8RNzMYqPIHEOU9WakpT0O/1ccEjG0GUnhADtQvJzqpymnqHfQdu4sCJm1PC+3U7XkiD5CY4nnn+aXZ2t2l3O2z1hmiV4xqHGFuCCRFlDHJs882ypHZ0jUtsxwhCJkRJiClYLIYAISRV4fg9NSYlPKefWeCdpx6N0EEQrMMohRCaRoDOM0LjMEIRlSBiUeN+hNIS5z0iN+RaYZ0jEBEqXe+sRYvktFAyccBxgSAFdWiQSKZmukxMTHD+whVaWcH2do3seLJcMDc/zbWrS8xOFIzm5zAqY7c/5ED3JBfOPEE5P8/5C5dwsWF2qsXq6g7T+/ZSX7vGaBjYt7iH+YN7WBld4+mnn+Q7vvtBll8+y8HjB9keDCgKw+r5lzly/DC+2eXYsds4dOR2riyd4z0P3snci9fQwnH40DxFu6DT7nJkjySXDX5BsHVxk9bsQVaWlijWd+i5F5mfncfkit2+QcQRSjb0BhW7uzVC6cSFGzmkl/R2Bkx2OkQRUDopx4ZeMhkce6bm6LY0m5sNV1e3OX5glipaFhbm2V3vMbIr3Pe2Oyjb04ycJosKLTS3Hltg/+wUsb+DnsowMxNMlIboRmz0Ky5fOsP+qfuYmZ2lN6yYtoFqs8fe/YfYWt/Cd6Y4eGQau71M8H1UJhA4KmuZETkT7ZzLqsCNX/Pc1AQvX7iGtZHFqVkE61SNQ2sI0TM1PcXCqKbb6TA932V7dYMDJ+9g+crLTLam2OyV7O4MOHLqKJ/50ssobXAIRJ4zP9fiPW87iQtDHn/sAi46IpLKBoo8hf1Iq5AqEJXl/NVN9qtJ1jd7bA48IS9S+GOQBDXeuWqH9AAOnRmUkyhVokIkhCSAEMoQhUPGxG2P15V0wRKDRBGRSlDkGiUlYewmiCS01FQ7Z890l6WNhugibZOxZYdcXd3m8N4u7ZZh2GRkmeP5Zx/lA9/7/bTbnVf2GdfdC0IExqmCNzph0z3GHMBXBH9vgCt5Tenw+hLoNc6J65K711uEkyMk1VDy1arrdXXOjZdvrJVeU+/EGxp/ImF/RCTx/7+9vr2+vf4fWW+58efx6FyDgKquwQoIKX1OaU3T2DQ9kGl6F8fhHkiP1Yqtbc9LlwdsjSyjpqYsF+gZQykkV7aW2VlbZe+BY2htaBc5fdfhpTNLnDtzmrvvuJ0vPbuPi+cu8dRzZ3jgfffSkCYVSqfCQ6gMKSLtThsRHVFYKjdCmvTlK4TAuYhAI4RF6cQ/klETnWfcL8OHwO5gxOrqCvv2T2GyDO8iIlqqUcSFSIgCtMf5Jh1PKlpljsgNVdXHjG2+6QtZ44KkPxhQZopOmSyNgcSd2F7rsztsuLY5YtSACBFlFEIGVADhkvpGjNPzpCSpLH1FRKBNsi8IwEaLIX351x6kSiEWUomkknQ5WZFTZJG5bsahfTMszM3gmorcaLxvyCREZSBmiCCBhmA9ZVEQg8NWAak11nlQiigN1ahJqsYiJ5eKaBs8CudCUhDEEUJ4ap/YOKO6ZrLV4v73vhfla3wEjQOZ4f2IYD3rWzs8/cxLDCvAxmQfVxIRHSZLYPKxVp1AQOUGKTXOR4RWyYKEIwRFKysY2CpZta1jKi9pgic0DmHMWFoeGTUVhU68OyJkQhBdRCiDDZ4YPFoZrAyEOqDzcbhITEB0JSVRgG0ajM7TCUsIhIMialCgx/fRCFSMoA2NUBgkQTRkqsAJydDCTk8g8pr77zvJpdVlRoPImecvcdM9xyhEyaXly/QrSbdlOHdxlW4npylXmetmfOSnfozLZ15kqxrwxNMXWF7tYaPm5hN7WJhoszloWF3fYdQ0aJPT3TPBykafxX0L3HzrJPfetI/W9Dw6n6C/vUHlPbOtNsNhj5k9c/RWe2SdgpcvnufMucu0Jqe47947uf3mffzBFx7h7OU+VW+Hdqa5+66TfPR73sP50y+xceUqexYNV68KTt52mP76NsIoYkhWbREFShvwwzSBjYHoFRvrPW6dn+H02Ut0O10m5iZQJqAkPP/8S1y5ssE7334rzzzzFBNlzqFjt3Jx6SLRS07deQLve+AtgXUuvniWR8+sYC97UJpu2eXC0jZ+5HGFYf/CPIVQqHKKd77zfu647SRrF59jexvmJvcwNbWHm++5k8KUPPblP6Z2u0xPthj1a4yNzE9PIOMKc9M5+fQEw9UNVBBUlWdiMWNmIsMuj6ii5OLqLnJR0D04Q2iWcCqj0gEVDTJzyYpfi/GnPAXeuOhpfNpsGqXIMo0gJXhHnxMbBcIjx6mM2hjqpkIpCcGR6RInI1kW6WjDcJCzurzDxOQ87dYEI5FjAdlEMiGpjCA6EoBeSRASZXJql5qEtavwwtGKGSL2KAuFJCfKPjpmKOGRXqc/FWXY7PWYW+ygokQQ6UxNMj03zcr2DpWzZO0CkU/x7Jmr3H3rAcp2l76zSC+pR0POvfAoew/uBXGdrRlI6dw3TICv8/WuF8avH0+/bkUx/lu9fvkN+2ivbfi9cYPu1ar7/47q7vVBH/DqVPz1hfON/MDXF9ivv+7b6/+3a20wYnOjz/Jmj/WRpXaR3JSImJLkpdAIoRGxYqKQxHCcL332fyPXP82ly6fJJrbIyimUnmGiL3hueYPnn7O898GT7BM53cKwMD/HwsIsoysrFGWbehi5snqJyXyGrFA0TUpT1UqjhCbIZMoqjGJYR4Ifh1oFn1jO1Yjp2Q5KeIiOxbkz/KO/87MUuaduagqTIWVStAjhcNGjMoFz4KxFSTA6oGTG6sY2ZatFlkWqfp0SYkWg8jE1mWSJ847VjYqVjRW2d2oacrxX6VxZB6J2BJkUydcbR0IoEipDIGLickUFMFYQkiYSmRZjNWNDSxsO7imYnSvJQ4NWBY2PaCQheFpG4WPadCZEiIYoaLczTNbF+gLrPYVKSb0+CkAhQqpGSpOl8BbDOLBDUA/75LnBZArnBI13NMMeRavEVhFnbQo9EYrbTt1FuyyRPmFPYnBAw7AeMXKOr37lUWxt2djpE2Ok8R6V56gYCFJiXCCISHRpMNy4OjGnFWRFTl03BOvIpUIVOdY6GiLKeYTJCELgVKo3RYzYsVURG3C1xcrkgjBK4GLCjoycJctzrPNJNeg9IgjIDTaE1JdwHpEZpBD4ELEKRBTEKHFNCnTwBoKHRob/L3v/FSvZmaZnos/v1lrht8+d3jHJpC+SRZZro+6WWmqpNdJMawajnhF0cYCjAxycm747EKAL3epK0oFuBEiAAKFH0mkzgx7TTqXusiSriqyiSaZl+u1N2GV+dy7+2JlZLHZ3SeiZqdHhDxDcO3bEitg7I9b6/u973+eFJnGalQAfYGNzn1x62qZkYWWR8cEI21ScOnGKdt7h42t3OHX8BFuTPTotyUffe58P379O0I7h3pTB0iI3P7xBHWFnOkPVOf12h+2tOxzuP6CqJNMh7D04YOHEKtevf8Rwb0yvldO4hiaWiCynmTV0Oov0egvc/ug6yjcsrp5gb2MHEyQfl47ReMTisS6LJ06wcWeLXr+DLHJG1Yz+1FLkng/v7TA8qFldbePHNdt7UyoPLjQoE8msIGpPcDXlTJLlOTpEhNcUmWT7YEZdedb6kt7iGucun+faRx8zHNUsrj/gytX7iAZkHPH9H3ybybDhS8+dYeNbVxi0T7O6VmB9hhE5sS2w3jId7bGUKS5+5VVE0eHZl04z3t/j1q2PUFGyuLKEjODrIQ8+3GQ2HdKISM9kCK3wQtBV0G9nGJFxsDtlMpohQ8T7QOU8Kys5Jo+QabbGNVlnhQ+vbnF4sMFgaZEr77zP5157joPNhywNTnAw3CVSIHzJzQ9u0s/TkOCwDmQm4/bDTW7fe8BCR5PlPYrM4OM89Vd48gwsCi9herjLoLfAeDzj4d6Qot0nc4FGOlSIiZUeJSJmNBKEsBSZRmcSY6CalEBM9BCRmlPeZuiMxN+mwocMlCXqjBgbQpjvVYSa47IsSnqkiFy6uMrW4cc4n1jMrVbB9VsbrC626OZtDtWIGCOT8Yyr773Da1/8WaRIXHoVmUtfjsLIZCpkPtHJe1wHPHY5PMaAiEf7H8QnHvmJQeYPVRNPuizmSelHTyMij1OH/zSW3ydeF6RzDkKkv5kgcQj/NBfDZyXO/67rrbfeuvp/9mv4bP35rx+78RcVhPnGT0lJ8A4RY5p0NpLoBVLGeROmQ1Dp0PcOZ7wz2qcqRzRBUgYonMFog7Z1mhWInPeu3eLVpVPU1QSZF5iJIhjBH339e7z4ykv89Osvc+/WHba2J1y9cotm1hDRIBUipGTJxU6BlpJyUuOthzgPYBAC59N0WquY+DIuTSs80HhHwBOEwDpJWdYsLS0wGHSppg0xSoxOAOWsEFDVpKo5JQlH5yiMTlPlJk25pYgJou0DLlYclmPa/XWskhyOp9zbGbF92FBVjjoEjMpoK4VXSWIuZZrMhcYRlERHkabiwiMcxMYSlUTmBUIJJBHj9Tz5LaJk4rUoJVFGoon0WpqTJxZYW+nQb0EWJNiSTCuQisL0CHYGQiY7XtDoKBCxYTasU2NGCrSM5MZgEZSuBt+QkZO1DLNqSqEUjW0SJFqk/2eZIQhBU1XYesr6yTO0uy28TXyN9CZLhWBwnisf/oA79x4ymzdDdSaIMsGro/C4mN6LMZIakD5NkWWK7ANnKTqtlKTlAplUKZnQB6a2Sul2MSCsRUVQSGLdQDa/iLl5g1Mk6LcIHiEFam7llQFkZuYhHTVCiSM1PYUxiFxhXU2eF8jaYYQgqnmDMPnHkcGhjCZ6R9HThFqgpMLVNa+++lMsGI+tSx5u7HHt9kPW1tap84KtrX3W14/x4bUNNncrXnzpaV7+/Gvc/P53uHzpC7x4WYE7pGUnLBxbwJ1cYK3fowY2N3a4dfsBC0td+t2C5WKRtb5h8/4+f+OnnuP4qVU6HUNbFWzfvUPjPc+/9DLeWJpRRTmseXjzFnVVcf07e3x8f5eLF9Z5/dXnidWUu3fukUs4swBnX3qOzz17mZYasnXjXWazhsFSxnQ6pYdlfXXAt25eZ3FhNSGGcMgItglIMgoZsMGlYBRpMFkKXTlxapHNzSGTaUO/azh7/hTrx1b5xjfeRCqDsyN6/YyF6jgbO29B0WZjPGQ8k4idCd/+7k1Cp8fKQs6o9GTkXDyxwKkT65w4c5HcH9Jf6TI5HFIebLF/JyNvLXN6tUtdVWzcvIPKDF5EGjdFSFjqF2ztTPGuot1yFC3N9taUqzcPeP50j7WFmknlkEay0mmz4SsqYTGFYTIasfvwLmsLmn7/NHfe/IhON/FbbJWg/jb5pRAiA++QwRMa8CIyI9LOJDJGSl9R5DkqCoKPNDZtyKSSIBQheFz0ybIfFUW3IURLU7eZTktQdVLBNgGjAVshpU4qXuVp5Xkq9KQiVoGZ9wSVznVRlFinEUUHnEM50JmmAnpak+kMZKCxjhAlAkmMSTV84dwy2985QMoc7xwL/TbbuwfUNtDrDTDTfUwTiEXBu299jVe//BfI2y2ElOn1kqwviDQQelQRivmJ5Qnryo+zHltiPmEy+RPtt6lJ8KOFdxq1/8c04f50ReCPKgof3/Wo6Xj01/isKv5JWd/8wX0aHwloBAajIs5bNIZMGjLt6LUzFhdWWD/eZ2N/yKsH/xXOjlBKs7a6QKe1wP6sJjqPkzkqn7B9UPPhtXsUKufX//W/5f13v43un0bKAh1KtPfkRYHJ+8xmFU2coaIkKIXSgnHj2Z/OMCrDuSMLVUBIS3+xmxJ8QyCGQAiezEwTpzcGynJKbhRoTSDVflKl805tA1qlMAkvajrdNgLwlcfLHCEsNkSG1lOPHbsHe0yqmvFEEqIkkiNjwCgIQiFETkMKnwi49DqDIsqAC+mzF5VIw9IgEFHMm1EKHwTRSwaDFoOBYX2xR0tb6lAznVrWjq0hXUQ1njJYojsguOS4KIgMlgY4aRChTPgQ36SmmvO4ZoaQksxkeN+gcQQUXgRkA1oGvIaycthJibM+hbEhUkiYEnjXEFG0uxm9/hkuXLpEdDUIndSKUlFOSqTS3Lp1h+vXHzAeN0zrGiEi1pfICDHKebBdwIuI1Jq6KlHaEELAKElZV+nfURoEoEJSflsRKLTBC/BVjS4M1jlkSDzqIJIzxrmA0jlapaagj5FQ1pBrvDI03hJjSKpAQPlk/XUikkcovSUGn85bSqZPQwCfeqtolUHweEFyWzhJ1dRM25LRzJAbxdg67t3cItjES77z8JtEKTA53N7cp/EeX93BdHvIrOD9G9tYoH64TxFrnMjRLrEhfRRzxaMkyBrZM3zte1ep6yrtEXR6rwuRk4vELndRE3xJlAYpPFIq7jy8idceg0kDKOnYuD2jublDX0ns7hDrKgrdJtqa48cWaSnNSHquPzjg/OoqJpMI74iz9McIjAlGkZFTNYk/1+4WLPW7aCnZG8/Ic8k7tyb0+jXKJq6iMZq33/qIKDWm1+LD+we0oqSfQzuvKaRhMp3y9rff4bmXn6XotFmiz2E5pBlvc+GlS9SzhhgjhXQ8GB/Q6Q4QTWRaStbPnefwcAdluyytn2Q0OeDBw30W8oLhuMEfW6CXSUQomcwUzkq6uUDmBYeTKafW+gw6XUZVxc605t7WIYN24OHGmKzX5qnLl9ncqxEukHdybD1kf79E5hlZt+D0oqA19ojDwOZBidFtVnsZq8cW2Nk7JAtgpEi879ojRcB4j3WSvBiQi4g0PSrXIsSKyiaUD1LhZUjW9OiTAMA7pFaoqBHCYN0UiUjBQEJDDExqh1YpTMs5Nz9/qnkK+BwRYHRSAMeI0RKEwVnL8WMr9NsPGc4Su29ppeDW7YdMyxnrS8v0OnAwPKDX6/OD77zJsy++RtbO017mUfMuqXfFp5UlR7WAOFJBf1Jh98Sg8FG9E3+ozjnCicw3aED6HIQ5O5l5AzId44ee9ofW4+f9NMfC0X2SAEDOOX+PqpnPSpnP1mfrz2392I2/9CHUeCsITqAURG+T+k00SYGFRuddHuzusfsg8RxvPBiyv7RA7jQhOLRODAsXLG3ZZnngOHv5BIVwXL99j6WlDjv7AZVn9FqCK/c3ufXxA770+ot85533ee+DG3x4dYPZeITOCiISoyG6wFKvAFcjRA0ioESOADQRoRw2Qt3MiFEQg5n/Wi5ZzkyWvmsahJAcO7ZCsGOU0HPljIUo8daRK0GM2VypFNFCEOeWXxdcSsD0Ah8dzgf2R2MWuzlNXfFwx3Pz/i510AivUQjyXKdpkRDMgsMgUVYwcw1L3Q77boZwIFWO9QE5L1akTooz5xoikUzkBBFw3iJdYv/FEFhaWObU8iKXLyxTGItrkh1E5hmTpqKIUBhN8DVC5TBPJI6iIgaJK1tkOqKwRGOI84RCITyZMfT7y0ymh0wP9lG5xmmD9xYfInmrIMsDCEddNShh0DFy6YUvYFRBDBYhNY2rUMLibYOPgq9//U2Gk5ImQJ5l2CDmir9IY0OyoMzTA2NIQS7WWRSSTEu6/TZRGqyQhMbhZAQR0FGgRcA3HmUM0QaElrjg0Eqn0A4lyaSCEMl0YufFmFJ7RQhY7yiEJDiPNhqhHSEmVWKIER2BIFCmoLGBXGaI6KlwaATCza+KKl2QMy1RtQCTxPPaR3pZYP3MMWRtuXb7FtPScuXmvVRUKsW///Z3WOx0+bmfeY7jq4v0BhZxdp3WguHOh9dZP3ucZz//MuX+hDM/u0ZvbZnGF/zWb/4Gz77wMmfPXeB3/s2v88xTa7jo+fmvvM7O9j2092xsHCKnFWtn+vjtkuHuLpPdfaauZjQq2Tk85OHmGFTGX/zFL/PgwX027x0ynm7x7TfvcOnZi/zf/87fQNoD8t4iRes5fve3/i0Ho12kKTBCUtqSne0tzq6fYX+yRxM9ThrApuJeRfrtHrM6p7GWqvTcfnBAkWmwhkIaLpzrc//ODg/vb9Lvt/mpX/wKNz66y60r92mqbdaXunzpC6/ycGPIiy+u8fHDA55/5QU2N7dxVnH/zg7/t//+v+bsxWV273xMWxV0BzNmB4FoPevrJ2iWjpEpT6+/zJUrV1hcP0U26HL/g++xevw0C51lpnub9Hpdrt07oPaGPNe0MsNwXFHOLFpEslyyP6pACBa7bYLZIssUtz56wF/7+dMMd+8x3Cq5+PzTPH1hhQ/v7WKrmiBbVAAuoJRHhlRUSpnTygoypkTZh1BilKBsFJ1ckGuF9xbXzJBep00fhvG0IU4sC4M2VR3w7RyVlczqKVWEjILo09baEfEim7Os0ibN1w1SAEJQVyOczMHPCF5TE5i6GinT5L+KicEqgyPMLSCSGeWswDmLUhIjCqKbcXK9QzczzJxAesdCt8Xhjmdrc4/upeMUhaCpIk63qCY13/zjP+bn/8ovEufgagHpw3PU84tPqv/mU2geN9XSkPvJifM8fR35BDcvPD7Aj6XiO6pUj1R56ba58PDIiTz/2ZPF7p8eDPL4/p9ijXniudNzHHl9Pls/SatqEh5FRI/QGiEk0gYGC4K1QZvjCwv0iyxtEGVgW9R0VxcQvo/Ec1gJJmVJrjXSSLpZQbd/iv1Jxb23rrO/dZ2DvR2iAjMLZErgQ0VH9pAivSWlMCCSgi6SklhjMNggyIVHmiNWZDZXWsTEpg0BlGZ/eIzf/J1f4b/8q/8D/e49JlWJUB1cE9A6Jcha2yCCREmTNs5CoY0iCwbnKmzwGCWYes2D3REHh5bhuEx2Z2cweSIQCpmnwVx0SOnxBKSLSK2QWqa6JAgQDqUUXnhkmLtAhJyb0JJab3Uh59h6j8Weop9lzMYzRrMxTVmzNFik3S/QSiC8pJW1qOsJmclxwZNpQeNrpuOKlrF4P6GpZcKSxJqiaCfVUF5Q1SXWV8Qjd0mA2XRG1m/RarUZj4fUTUOet1HaYBCEYYkPjqAM0/EBZ559lk6nj2hqgnQIafBzTIzSGV/7+reY2RofA8pognNIFFKCFqkJq2NMXMQ5G0tlJoUKBA8ikpkM4SNeCdpS4UxEhfnQzbl5kyCgpEDM2cnIlOquTIum9shIqleiRLkUGlZai4wCIwSNjGRRpYFqnCv+Mon0yTpe2YoG5viYSNQS60K6zglBXVfkmUFGT5FpiiLDC8HUehAegsbrLNUSscEosJXFSNILM23KxmIEBCeTJRzJOBgiAiMlKkrqEMlCQ/QSmSdFfDCGbt4izAROR7ywZEHihSHEGiEhcxmeAqE90oWk7owSETK89AgJeabpF4pYe3xV8dKLn2OwaOiagvffe4eZA+cF/aLPdDhhsKARMSB9ahoJqdFZhp0l66qwjlFdshjbNE1Dq5sxnjnq2KPX0nhr+amf+4tsP/yIG3fvk4WCEB0mOJ599hzVcIyu9jFtsI0iKkO/t8zo4QaTvEHrjKXVU0yG+4xGNUsnjlPWkcXjp7j70RV6Cz3OP/U00TnKyYj+wgL54hLTKx8ijKPbk2w9nGJloNMSZK0MEx0TW9PudOj3MmalQiJZ6mdU1YzSzdjY3KZ9osdf/stf4f7DTcZ1QJsOs/E2k4mhqQKL/Q53720QdZudXUs5rfjSa5f44+99zO7YQU+zf3CIC8kZ5KLHesFwWrK61GVWJymw0hXT0YTF/gKtlqauFU3jiAE8EkKglWlq53EhoAS0i5zGNugso6wrCCmJPESVFL2ZAqmJIeBqR3TpnKRERGhQWhCiQ8WAiJbgLDrrEpWkMJG1lYLRvT2iz9FK0er22djZY31pmX5PMxwl4vLe9i4P793l/HPPIKOHufL2qNI58j8JHosQ0pfJSSPmddsn7QyP6MjzQiXGmPiG4ugnnxiiisBRYNrRelT2/Amlx6Oa5Yngjj9pCSBaz2w8pjPoJwfXJx/zKciWz9Zn67P1460fu/FnQ+KsSCkIoklWKjzOg9CCcQPDcsqdzXvsjxouHJQACGVQoaEGtNBkymB9RV5ELqx2ObuWI6RFOsvwsOJLX36F/+k3vomMcKq3wH1V8D/8j3/E6rffoxoNaRWLTKYjyrImCocTijxKjGjhY2BWlcToMaaAkIIpmuiIXrM/PMTkGQvdAVrNk6FlSkzDzVLRQmSx16Iux0glUHlKZXVWpOmnhiZEBA31eEq73UdoErwZjVLgfSBEh4+WqAKtVkav18GKjN07D/HW0ABGps2n9SUqajyK3EdkDiKTtPOcWfAIO6cphAbtLQiJLQqU1ISmxmQ6JbKSuIYqJnVZNXM8dXzAL3zlaXzjUiGlcgQ1rqnpdXPs/gQRAyK2UMqR6YyymhGJdLNOamaaQHANBEHwgVwaogEjIu1WQe0cPiZ4dvQR5yOmW6CCRCqB9Iqtw306apHSD+kXfc4/8xTelYiYFG9GKWJdobXg2u37fP+DG4iQoLiIxMPBpgaCExEZBVF4tFbUtcMgiDpLVtrGUs9csnlLgWtplNXEKBAiYJ3AeU8WHKbI8Qpk41FSIGOabkcCQkM5c0jv0SKg51PoTCpoaUTV4OoGazIkkSYGWijIdApJEGnyWDc1RgoIAumhCo6YSdpNRBU5vq1SMyIY8sxg3JSd7YeIekSInk6n4I3XnmUyrbmzccj7V++zeqzPxfVFpJ8wMKc5trpCrGF1scvi5z+HQnJwuM3qyTV2dg556w//A4vra5xf7bJkZmze+B6TWUnpJbltWDtzBi0FvW7O4fuJGXf6qefZbt0h2orQKfjBN66wfnKNj7catseOS6f6/PG//zpZ0Wb/YMRobPkrf/nz/Owv/CwPPvoQV+3SGZQ88+IqP/tf/bfc+ODf861v3aDIGkyes7V3yPqxJVb0gHsHjipEfIRapogdmRlicMRa0NQ1O9OMVZk+x8eOdYlacuHcMqGS3Lpyjw+/e5WQG46fOc7C4jJvvvk93njxBc7/8jG+9YffYufBNt+ovsvSQsZyS3L2pedYXyu4+fabxCAxZ06ys7HPyWfeIMy2mJUW4Wvu723Qbh9y6XMv8/u/9evkSpFlA8ziEoebdwnG09ago2BWNawu5JgWgGe4P4XiLK3elIM7+0xKz/pal0GrjzcN3793j+6bnleeP8aZSys82B/xgx/cpe5LaivRBGxsMFniaiplEaKgm2WUsxIUREZEDJWfUjXQz1u0TYdWnqFVCcKByIAGXRiaYc3+ZMag08KhkZlmZyKIcUyDoBE6qVilQChBDBkhRJx0acigDDr6lIw32k3FXOYpfIcmTDDSAQn3UJYWK1Lwh5Ap0EToHKVlwkRISaBgsTPgzIV93r3yAOMziBM6Sy3ubQ85f3aJbktjG89kWtFIzfbdG9j6F9CFBhGRUT6ylzyqLOcoAIT6IRvwUQruo0Yd4rE3hQSTTrf/aCruUe37+JsnfiJCShvlybQ7nybppH+/Iz3io0f9CaPsPy3xLsbHR3lsC378K4s5g+cz+PVPztJKIGRq0mipWOgqTq8vc3yxS6aPeMkOFxxGtBjvGt796v+TZ5/7/5At3MPEHCkseZYBEudn7O1XFFlB5SO1J6EjgiDaMSVFivvyBlF0Ec5DY9HKEUxGO3hwggNfMqs7tFoOETVSeqTUIMz8vSbQylMFz2wK1249S1NmuJbGhgZEjhQOKQPehcQpFJooJDIEQmywViKVosk0w8OKB5tDdoYlzoOXMjXsfESZhEYJMSKjQ4tIIBKFJPo5S3fOsRMSlISgBU2IaAJailR7aY3Ec2q5x7mTi7RNasRgHbapsbZC5orMt1hZWqTb1qjYTTypECiUxtuksIteUE49tYtEDK1OD5NHinn9W9cV08YytROUEHQ6XerGkUWHzA126mkmjqZOA5Fc9xBSYpsKXyfil48OT6SpLM+89CLClWlSIeYbeSFQmWZje5fvfvcHWDTOTdFIaiVSM80LvAHhYnIXzEMAVNFC4dExovI0dA0+ELUgzp8jyEjf5NjgyaykpoZgU2CTyZPirXbYIoV4GBkITYMMBtHUOCnJoiQKQSYFYT4MVyal92qlSLkGKtVWGlTU5FV63yAhKwzGg51ViNxQGI3RCmc9uTLkuSFH4AErBUFJClsny7pIIgStFbnXkCXsAy5Z0LU2aAkZGc4rSlcRRU7pAi5aaiFRMVDUyVqMjATr0EULQcAIhatmSKnxViNzyIwi03B/d0K306UjM2pfE3Ugj9DLdBJIRI1Tjk47YzaZsLO5R3CJb3lycYFf+kuXyYoef/S7/x6hBH7SoEVExNSklU7hQoPIkvIvRuh2DctrS2w/2EZlLdZXFTu7B3RUxoUVz2LrFO++c51jx1q08xxjIv2O5taNHZ7qGbpKUZUTpM+4dfs2z186RX/lPKONmxADb3/vOmdPHOPqB1fJs8iFZ19gsbPI9s4WF54GQaRVaNotg9EZ3W5O56DFWt/z8f0DPJEsL8iyyMFWBRFMgF4h2RtNkGqV48st7m5VFIXhoJQsri0z3NnmzMkeNihk0IgSHj7Y5/79PU6srvDyq88xmVV88N4dttB87bs3EURWuwqjNFU5xssuISrq2QwbBY3VrC0toTOHtw3BQzUF+oLFjmXoLD7XaGtoiYYmGOrQpCav8GRoZK4IJhK1pvKCRgiCUGRGEWnT1TM6nR4xgkMShKGVG0SEEDWCjEwbgrNEEVGqSBEcJsdhuHjxArcfbKfQRguLi0s8eDjk4nlHP3MMFhbZO5zSuCkfvvsWpy4+jchIzfcoHvHvjmyyIqbP/icv/o/JIE8mAT++3+OR4VEj8YetuOl79fiAn1T0PVEXHdUlCVQlEyd9PpB5Mn4kvZIftSY3rkrBTyqlk4NIwR8xIIQicpRU/ONcfT9bn63P1pPrx2785UIRpcfaEi0BoRiWlsPas7E9ZThtcChqK4lCEvR80+RBhYp+v8tip83ycotb1zbodxYwpALNl5KlM8tsPdznxRdeRZk3US7nowe7HGzeZ7fXxnzcpToIDM6cYjYcpYswAhE8pYB27ul3c4KMCN8GIfHCJtmw1AyHY7KsYDBYJDiHyZO91AeBR+OCQwpJlmdpEyhAiICKqfEkVYYyJqnpdEpo3T+Y0e2u4BpHjAYXahIpRqMFmCiwrsSYDrJy7NaO/YmlCg6fRaIXaCeTUiwEYnQQI8ZpfHSUzqGlRKlkc41z3p8xJlmICQk8KyVeCJQLiXUYI7ksuXBpnRcvnaZQEqck3aJNEDC2Fm0KbG3JjUQIg0QRRIPzNdEHJGlyH0OyMgipcDaghCaS4NEiJjabjKkZpjLN4XBIL28lFl70ZEpT+hkiCBoxpS4tz375y+RGIue/L0B084RmKfnWW99lMquSZTpGvG/wLuCdJ0qNEykRVHEUsqIQPqTmRHAokQZStREYF5CVJTQBMo0VERE8UqlkYyKglCYKR9PYVNgWLVxVIV2kCQ4RQEqBzExqYMRA7X16bSEgXAopiDFgjcTESBMdQiiMVDgf8DagMj1XQURoLJUQqNoSpSLrSbwPiFAjoiXLM4qihdaO+3fu0Vs+SW0tT59d5/SpASsry1z5znss9U/wYG8T0Te0szb1aMri4hp3Nw/YubdF1lvEVyVBGIaTiu3DCi82ObW2xgvPPcvKoM/KSsY7f/RNTp07h8sKVgY9+ktLvP3Vb/HiF15nb2eHN7/2h6wsLICUyFxjrefm3TusDE7ywrMXiarkcJbz7FM9brz3H9B1hoslDz++i/COE5df5961e6wt9ljuwd7hiEwXKK+obE2uJQGLEhkxzIhlReg3FFLSiIiXgvG45NRygYuBB5tj2i3D+lKXSpWcaPeJrsvq+kmKNrz/7rtcuX2I8x9z8tiA5VPrWHOFg2HJzAf+5k+/wqlTywgVGBQFxdISKydOUB7s8zu/+Rv8zE+9yoM7t9nY3eOLr71I3l1CuoyV9ePsbO6y0O0x299nZfkEk/E9sizSGXSpK0c1MfS6XbSeUulIIwItWUDUTBtLHj2+GlFV0FY5bZNhZxXd1SVu39/gmUsrxKLD4dYh0Ri8U7zw1DrD4RiRtTgYjdjbnTIrK0y3g7U1WYRja0uEaFnqtCnLJqkGXMBnnsxoyrqhEJLuUg9lWoTpiOlkjNA5dVMxqRpcSC2lIBIk3+OTzV1IZPB0WlkqMAHfVCk9M6aE7Njy5CZQ5G2iDOAlUgZM1Bjp0DEQBIiY0oAznScWFanT+9SZ01y5ch8fkqijV+Rsb4+YjCPdfoZRFkFCHDx4eI/7d29z9tJTKJGl4vAJS4oQgSPY9pOl5g/bTeKRE/dx8fuog/bp18EfJ+3ucc/uyQMfPf8nj/enj7+f5P0lBqGYJ2/ySOn4yTzjz9ZP3pLK0M0VKwsFJ9d6LHdbdHPNrCkRJFA8CGRITQV8l9Hh0yAXMGIfo026ZqkcpQtU3SCVwEtNjIGAxCNRpOFcUeSEQmC1pJEC15SUfpIYvEpSCUseJF2lqa0ltlL6alND3lLEGDA6BZR5nyGCfbQRDCpDSs/KwnoC2eOYVSXamKTOEJFgG4SIGNK1cTKtuH7/kNsHliZGMhkRUROsoI4NRZYUXS4GZEj1DlEgQmpUISNBJMi+D1MyneGmgbwl8EIQokmuibpG68Dlp8+y1M9QbgbBEaMikwZvG7Lc4OuGTrtDkWXQgDHQiIZoFNNZoMhylEjNOJNnFAVkRuLqKb7xBKlRuaKVaXwTsTYhWXCO2HgQMimjM5g2FWVT0zYZWmUJB1IUuOgQSuLrCuXh/IVnWFlfIVqX7LXBEmOq/1zUXL3+EWVdI2PEOo+t7fw9IaHxOBnRUmGDx0ZPlAIVJEokq6+zDhMFeZ7Ou86mgJJcaDJkqp1JWJIQRGL9EYkykgmNqR1BpLAPXRgIASVTgnKIMdUG2oBMrghXNzSZpB0kIk9YlMRllMlKPT9jpmNCCBGVZTTOUWQ5znpkEInRXQga2yCjTFxAFQlCEWgohMZGjQiRRkSk8LREi6gdIub4ubVYiRndpVWOZ8s8uP+QIDQ6ZATtaaLGK0sUNS2Xk+UtvBAsqQxrIlIvUElHqFP68NTWLB9bQo1rRpWlWxQQoKMDYJg1DevHjlNOD8C1yNqWnc0tzpxeTfeVngzJvZs3OXfhLCsLhit3xkxLj8lzdFmjgiQIj5cqNUWNJ6s1505c5JmzBbev3ebs+QXaRrF66gSDpQEHwwPaRZsTiwWFFqwuZgzaXZrpiEvn1vCHQ4zOmc4qRKHpLCziXWTz9u3EHDU5n//yT7O98TGT7UOWT63SzZZZfvUE53XAHR7w8Z2PqKYNnVaXB3fvcLDzEGyFEJZMt7A19FtdVjtdDs2Y4ciyNnBkec54b4aKltWVBbzdwTaG3cmIteMn+cbvfZ0XnzvOyrJhMpWMbMXSoEN3cIHD8YQi77Jz9xDRXSMb72A9HLqAmwWGdUWvlaNipGwayrqhUZpmWHJi/ThSZGkQITxWOoIQ5NJgiLRkoL+YMxpamiZQz5tpOga88GQEVEhuHVtXBGtpgiOaDNtY6uDmytuUSiuVpPEWh0ArTWYE0VoEYq7kDMgo01gxRo6vrjHodNkdeYiCtgzMtOX+vT2efWpAp9NhMqkJ3nPz+g+Y7R+QrfWT8g7xqCZJ9t/UmBVzB8NRsy+mDe2j69GfVHaIJ+oXcVRdPHJJiCfv+CP1D/zowFJGQWRer5AEG+KJDuGP1i7p+7zVoWh1OMrzfcLv8Phun5U9n63P1n/S+o+w+toE3lcFd3Z22dgZMRyWuFDQ+IAVlkg2lxqrlC4B9LpdTq8vsbTYob+wmhQjYpOZ02zXAT2FhUwyWDyDuneDtYU+/cVF6t09Dg+GNL4m1IZTy0uYaDncu0NTj2l32kQfkQicEgxakq6CgCGqmtrOCCEiRYGtYTxpWFxqE5xLTDvS69NSIYTCxZDSawUUeQFEmrqC4FBaI6ShaWpCSCer6bRhsLyeitJQEoRGBp0CJijxMm1Gs7YhNorSWXZHM8oISmkMDiUMQqQUWBsdQcy5XjYgCMgg8UqATFPdxCPRSf0n0tcu2HmmEgQHeavhwnqfjomcOrXKoF8gpCBvZahCE8J8clWVzFygXaT0uegdMUh8cAigP1imqWa4kF4vUoCComhBdPOEYrDeYwpNRDGZzsiyjFDZVDjGQGkDLliUzLD1kOWVkzz13EsYKYneAvMJVUg26c3tfd7+7pv0+l0ikuHOkHbRwc7GSKmIQiabslbIkC5KWqVmZF01FO1WuqpJiZgzdWUEkSUpvpx7/sR805yZxLJxzqJFSuBrZnMOkvXpdar0/pCZIfqIaAKFyQgqMRSljQQjyIWh9o7MZBQ6gb+Dj6Al3kess2gPMlOoKKGdYxuPiQpbWxrr6HfarB9bw+iCD69cZ2Vxib2DhmI5Mhh0WF1b4qMr12gdW+Hc2ZPzMJOMtXOX+Pr//Hu8nJ9nv9zk6pXrfOXLLxJlYFbOeOZLr/Pg+g2Mybh88SKD1UU+3n2PN9/+Fn/9v/xFhHR0Oxl14zFaUQ73eOOnvkBUgtXFRf7q3/xb7A5HTMcP+ZnVVe4/2OPYcofBQguhBYuD0zSjilwEFi5dYPPaJnn7ODOxx9bDPZz6gOWlZWpbM5qMsVVD1jWUzYit3Rm2AbTElR5fWmSQjA4nLPR6RBERWqCVZGY1LnraIufYYgdrJfc3JrQLTbct2d3f55mV8/QHazR2g1c/9ywHw6SI66uCaRV54cI6J5b6hNmIplSo5R6DbotQjRjV8PHtG3zu+fN0u13OdnqMZxV7e/cRps2Fs+fZejhi+cJTFHrIZHsD4gypPPiGqW1YV21Wei2uqYxZY4nR0u91yRVMy5qFXo+lwSL3dscE41FG4l1geW2VUwcjrDT0uorpMc3Zy69w/86HdItldjuG6XjKiYvL7B0/zvabHxGVhGhAw6m1Hl/8/DNc+egGV29NSJBkibSefJ5uh0350y6MebB7yNJii6YZc3dnRtbuEFWGn2MHhJB44VHmKO0xYLIM6STKtJH1iAgpxEdqgnBIwfwc6JBofHAQEudJC4HQiqLIEFISjtS1MWBdzWLbsL6UUu68i2Q6FdEfP9jhlf463ZZiPGvjnKRyE+5+fI2zl54mek9UGnGUmRcDc9J+OgE84diNT3TuPln8HnH9Hs29nxiKP77Tk1886hbOb5OPrTWPnC3qsRU5zdl/9NL6iTCOx/DrJ1/bkX3nCZWimFupxZNqx8/WT+J66kSXY8tdFlo5RioUkbqp0/VEplCxON8GOedoFUlZkbUki70eRdskZb9TuCa9r/JWC0Riy8kg8R6CCGipUJlBZwYnBOPDEW46xgeLVjkegZ8jIyC9t4JU7GxuoqRhMVvCeo+gQOAZNRVFsIlZBZQuoISksRYvYlJhWcFS3iE3GWVdo3IYzUZIYdjemnBnY49aSLzJMFES6opMxIRFiVnqz8eYygytkMLhnUApQ/AljQtIJE7WSAR1bZGFJuqAjnqefF5xbK3gzMkVFrsBE6okC5QZIQpChLLxSXnsBFk7xzlBLSRaC9pFRlU26MzAHKOS9XJQGhkD9TS5WMrGYoykYwwuWqKOCDKih6A1WTdnNp0lJV90uKYiUxlNXRK1QGiJQdHu9ZhMxuiswLjIsy99LgXmiVSfiqggOoKN7B/u8MffeIvGR6bjKcEHFIoYFUIEUAICONcgtJqfXyPKJdWkbuX4yQy0QWcZja0RCBotkDbZgkvpMcERJQnlQgpMicFTK4kioGPi8UmV6qPMGGqXmsLWeZRMTePoUypvDJGgJNInvrEGXG3n6AqDUAEhQxp6itTwNSpDREGWZamRGyWFUCwOukRbIciJmWF384Bz547z4P5DVJFjtE823ijxtWUWK2gCWdHi2GobRYc3vvQVbAjcv/MQpSqqWqJ15OKpdXY2dshbHepqSrRw+dkLtBAsnjvHg+vXOBjvcubyWW5e32R3VvLF117iZ//CMrPxkPffe5eNLcnpk12qWUOxcJz1pQXe+8Eei/1FJrNtLl8+zfH1RXa299jfH9PKNEur6/zR194l2AbnGop2G9c4bAChJS2pidInW6hOjeU/evNtsvo8f/OXv8zND2/y1NkztArFH3z7B2xvGxb7PVp5i5Onj83t0gFJhYmBg2lNZmCwdJzXPv8qjLZppg21Cuzs1KzZMf3eGhfPnmFtbZGgNQ0V64tneeftb7CxeYtMCAbL65y6/CJX/s2vc/r8aW6VtynyhrKssZWl11OcWMi5/rFkb1zytFlmoefYFCXOSbq5pMgt1mX0+6usnzjNC29c5vvfucalp06xcbDFUrfDYlsxCRV5f5Xvfv8qRavFV169yN37Bb/3jat0ex1USzEaj7C1gkwyqS0ohRJqjjOqWerkOGVw1jFrHJXzKJU4k3LWcFANGVURtE7CB5fY39Eo2sYQnUNqyWw85IjtrpRKjh5A5QbPDGs9+NS41jJL+7bgEbmmqS25SnbuiMA2NTFIdFZw4exJdr9zA1G0sN7TamV8eGebU6dX6SvPSAWiERwc7HPtg7d5ff2vEnA/3AxjPgw8GmZy5HiYD1HmjbYfqWnm65MGhsdckk+/pn06juQTxxSpoR+FRH6ipvk064Qg6W6SOyKtHwr0FU+k/v4nhKd9tj5bn63/iMbf5rhib3fM9v6E/dpR+UhmWkn9h5jbtjJiaFDCsb7UAmA6nXDlesV4XNFZWSVvDdBmDaaRja1D3v/BhBeeO87rf2EBFQKtvODFly7z+7//x7R7A1x9gK1rtnbv0pZdWh1DsCY16oRGCoWQEIInN5qyjlirgCw1tIDxZESvX9BpawQO5xucnVuRhUcERzvLkCqglCREm5gMucRZgbU2hTqYBHyezkpmleXk8gJNOZ03nzw2RqY2qbWEMFSu5u72kO39EeNRg1ctYkxWFmED0TiCVHiX0oKlAqGSui4xGeaj0AhRCUQQKC8Sr04Jcp1Otj40tKXmzNkWy6sDciKuahFVQR0FTd3Q67URIhK8T2w6KZE6TUm7vTba9KltgQ0pKbSqGnyIqQgNEWcrOq02wVm8dAilyfKM6XiMkhmCSJ5pylmFix4RGlqdDm7icN6htEFWgmdffIlBv4dwDShFcBYhPE1T0sTAu99/j63NXWorOByPUEpSuoasyOcbakXmJH6+6Q0RmqZGK0VRJIhuiBFvLXgwRYEIgTqmZqoOAZG3iDHQSPDeQUiX0JjisvCNo5GJ92H00aZaECVJ4Sgl3nm8S8EL0QdCrrHOpYuSC0ST7LshRKycJ4UJia1KcilwIiKswwWIOHwtkTKnrBwBwUdX79BtGbb3dlg7fYL97V1sU3Ns9RjrK+tc+/AGF8+eY3O8Q54ZPnzrO9y59YDSTVjtd3C14OoHN3H1lPbKKn/0e7/LubWnWOj3+d4730PgEKJNM2tx/+YG+aDLlWtXmAxndLP0+RpPDiiDpSg6uDLQW1xid3tCOb5NUBm1zbl3/T6ZMLy/fw0vPJ2+YeX0WR5eu0u/10G2FUXRYzzawjDjzsEBt+8M6XRarOUV5UhwWPrEk4s1WmvaueZQNggfmZUlWZGTBcApem3Nxt6Ituzg45hW3uPi8xe4e+8BV24P6Q8sMUg+uvaAU0t97t+/Sl2NcVPFF54/yf/4rav0OwVLKwbrDe2sRzAdpvUYJQKj7S3+m7/2i7SX+qisS6/X4cZHH7D18DZCpnPHykKX7Y+vQDlm1szwSjDIClRuCELRioGFTk6mDNXUsb11yFo3J1OR/VHD0ycUvYEk7jdYcg4qyaX+Cl/7+vvYZkTR73L32iavvvES929eZ2HhJLt7D1EqR0bHg1tbbBxOObXc5c5ORd7JCb7iD996n7e+/xHdTkGv10fNbaeNCxQiUGQxpdspQTnapdfuIATc2dglH6xifMQJSwiJE4UQKA9eFEQZURiKTGEykRLuprOUNjtPB40i4hqNySIxZHj2cEGnhqNOXBzvSrz3iBSji/OOSLI3aRW5eH6FzYOPIUqUDLTbOXfv73Lu9AL9PKNrHHWsiTZy9YPv89oXf55eP02GRUxGEpBHou3594+beWmJRxPsxPE7Gh8/VgMKjppt6fYnJ9Ofnnb3xONjnPcaj+6XWGmJvRPnhe2nF61/WuLdoyG3ICnP1ZxH+IhJ+CnH/Kwh+BOxnj+3lt4JPr1PvIygwDUNWsgUMBBJzXoimUkM4iwvGHT6QFKzOetwUSCUx1tDtyUhMxzKxJlC2PkzqmTxtJGmPCCnZlzV1FmOVhojDFZoMJKmCUxnlsODijPnFhCCxM0LDt+k934V05AUoKU1XmSIrKGlcoKNVBICgclsiJCK/UPLrY93KYNk3HhizJEiksWkEg5oKp+u3xKBFZAJRfQ+KUI8yeolJDFqtA6IKqJ0xBQdlIwYAd4FMIqBFJxYO8PqUgcZK2Jdo3SGjZ5kjZ7D+rVBKEG/kzNYWSASyJTC+hpXB6QPFJkkBoEkA6CpK2xZoxRoAbmMRGEJUoMV5Can0RHZkswqh7dVCtjwDUoqEIJyPMXHhixTdHWbajJlGsqkzlGKVnvAiXPn0D7VHVZGpE9KGecc9x485O7GFrMmUtaptkFneGfREpyM5FITRMAL0MKQ6cQzbrzHVRXaSNqZQTiH0ArtI4SAx6OQKCEweU5d1yhlcCHVN1ppqD2CgA+erJOnwa8U2JhYrT5CYXKYq3oyL6kEZFESSJicKMGGlPobvMdFgVESiUyoGJmSprWUtPIM6xvyluSlp49x8XiP7iAp2bt5m1E94vXLzzIe73Pp2Z+hmjYUTFla7vLOd97hi1/+It3eCt979wPWTiwhpkNOP/s0965c58z5c/x3f/e/4frV62w83GJpbZmzp1aophNu3t5isl3zF3/lb1LubqOMJBjJydUlzl04gyQwO2y40D1JPT7kzJlz1C3J9+qG9cWc42sLtFSL1nLO7PCAi6dXKDoN7dbTHOyPuH/vFge7SSiwOBhw+84mB4cVl545x/3tdxksttkpLSUKFxvK2SypgYXAVSVSSRaWFtmbTJntH7CyskB5uIc8vs5rL73AcGOTIDJG1SGX2oK1xWX2dncgGgYLHVwjuLc9Zjqd0Ov0kN02tjxEVVNOvPwGzXCLojdgVg6xZRqyvn/9Tfa37yOCYvXEaXqtDpu3rjLd2+byy69T1ttIldPNG1odwf6B4+S6oNUOzDw83B+ho6CfaerYMLGWxaJNr12wuT9C+gV29yf8L7/7Nq+//BQPHm4jtWCxt8zVrQccljWGGcO6ZPSw5Ovfvo7otnFFDzd1eCoyqXFB4nxABRj0OhgpcC1PXY3xHYOXAq0Muc4JSGa+oVEWskhjFVIKTKxAMnf6SIKSc+FDEj/MyhkzH/ECpDQ0ZQk+0MpynJ9ibUopB7AyoABtMoKNICxBZCAKpFRIItY1WF9y9vwa771/k5kFiafTa7NzUHP3/h6Xz/TJu4rRjiPLu7z5rd/n+de/QLu/8ImyY94Qm+/J51PIxG0VR3f94ebbJx0OjxwG84rnyUonPjrCD68/CUtydNh0bRMwd2HEKB/VVo8blEevmbkLQ6b7hvDoOcJR8nBMLUwlP2v8fbY+W/8p68du/L35/gMan5JtQ9AUJm3aPBolFJnwtPKGxUGf5eUWz5Qz+F9hd6+h7GvyboczJ1cxqv0omQ5ToLtDaif4zjs3qZH83u99jd/+//4WKl8kiiLZMLQkV4K86CO1YiIneBwqqCfS6QJ70xnZXLGS9q2JMdPtt0BKQgApIs75R2D3EBwhOKZ1RbtVJP4JEKJDaEl0EWsjXlpUiLhYoaRhaQlC1eC8RiiBC44ZksNZSbk3ZVw27A2n2CYnxCxZgF1AK0+QCkmOJRBFIOLnA5Y0ZQ7RE+08tVeAdAASfKSMgUxqrIfMKwaDNv2BZn2hR0sGrJgxPJyytnocfMQ0nobI+HBMKafJ8iIERis6i0tpci4dztYprc6GlDrXzIhCkGcFzjuMCARfEZShqRwtZRJ4O5NMypJoa0Di5iBwY1JD1jlLFIp2x5CbdZ5+/kWiq9PGnxRSYssZzjlm3vO9d69QNZKD4RhHhOCwRzDZKEi0Zk8QII2hKWdIlcJRMgmNrR9F3WcmT3Zcm/4tEQKlDd45nHWoXNPMVXhKJkWAkRJfO1SRoVVSINgYEC5ixzN0URClYFZOyedFvQsRHdJl0ZPUhKV386ZtUh9qkWxcNs+JzMNkQiRICCISHAh8KvbqGiMymmgJBO5/eJ/oUoLdg+1vJQVoBpsH71MHT6wDmJyi12Fzr+Jg5hnPIjfu30NGSRD3MY3ge/sfzDeXmhgEQQ4RC4Y3379F06Qk7KhBRk8QhlxolBB4Uop3jB6URsiAijV3N8ZEFdEYgvQIPHFjxof336OvJBuHUxpXp3ATBGsLHWoci/0eVx88JC/OgZuRt2A2iwiXk/YiDTHL0SKnqh14T7tTsNjrkGvF8KBBtAU3NhxR1gx2hlSVRyvNZDrj6o2amGfYLPDe7UM6QrDQDgjfUOiM4WjEm998h+dfeZ6lVkZftRlqmE72OHF+jaK1yv7uJqdXVtndfoAXsLZ2CmclRX8N3ZqSKUU96XK832Vr6yFbOyMGecF4UmPFIhkVhfYcTktmU4lZNPQXumwPS0KsWF7oYMQBzkfu7gy5cKJD8BVb21POL3R55oUX2NirkNbTDGaEOGN/axe0gZbhZGuBJkaq0GJSO0ZOESl46sJ5prbGlQ1KRZTUuAaCDSklc55uVxSLBEp6/YKTxy/i7IRGCRpvCdIQZGI2xRjwMTH7CB6pNSpoojA471GkhLsgFMTArPGgBDKkkKHgPFFGiClAR0lBlhmkkkQf0FKmYYcweFuzvrpCr/WQURmJTjAYZGzuVewfjlg7u043LjDc2sZkObtbm9z/+AaXX34ZcI9K0oiAqFLR+am14VFJ+ykT58f+lR8aeMe5Z+ZH0+6OniQ+oeeTP1yQP2IFPlFkf6JW/nES7xAkhR8kWH9Mryt++i/52fpJWiFZvwIeJcCInOALlEzNFR8geDFPf4TCpCabbzzT6TghLnxJJnPQSc2Cg8o2RKESs00mBp4RCi0UVihEsPhgqWwDViMxGJXO/0oVRDxN45jiOHb8JFprvI8olZTBykiKCBYIR4pUbxNDzSukDOQZKJWzO664t33A4dhyOKnIdJsoU6M7xIAKkogBkYa2FtA+oS9cDAQ1D6hRIENSyigv6WpDExvWj7dZWeuhokIrl977QSGFZdDJAUVjZyADUgWsqJFRUTuPbSqChCglhdEsLx2nIwtaLUHlIzJA00RilsImlFKpboiCYD1CSnAemek0dHQOXzZo1aKsG7SWxFCjZZsQLEYp6hq8EgQUebdFu72I85LJaIRrSrJWFyGgGo/5qa/8Ar1OB4QkhhIpJMiAc4EQI9/81jvsH46YVQ02xPmGPBBVGiIGkZipHj+31IFwERc9OtPY4FFRMHOWXCvSxDGQR83YJwZi5pmjTwxxHlzWyABag/AIFI1PTbwgI61OC6Eltk4Qal9bdKaIIWC0JjqL0BIVSew8QcJ2OIfWKp1Xg5jblT0hBqxLltDgGmysOXl8kfVFjYqRupxweDilKmrG40PaQrO/PeG5s4KVhQ5xBOPDXS5cOMfCUhttp1y+vEpd1Rw/8zwPtzcxS0uodo5oJjx1YZ3p4Qa3b1yjaUYs9DSXnznFeEEhpyO+94P3WG4bsizj5MUXEC3Bw6tX6S916K90WVlb5+a1D6jLmsWuIdOLHFs7wfb2Lru3t1F+hnSSapwzHu4zHU0RWmGKNoOVRWazKQfjXY6fHFA3O3TaPZrpBJkJIoroAJOs1FkIRJU+PwudFqZl2B3NWFlcZGPjAf0IzWRGzHMm44rnnznLw5sPaVZGnDl/EusLNh/eYXGpR6Y1+9MZ333rTZ5/9gLSBlqLx2mGe/S6bSbjXTAdxtOHLHY6rCz3KdorlNNDjq+vcrhX0V9bZTSe0MSKsqrJsoiYgiKyMRpzOS6yuNQnH2SYrINvGoxW9DLDeFqz2skoMoMWBTduPuTb332H06unOHtsgfzccfZ3D9gZ7/LR7X3I2pRuRGLnSup2l6YRZKJCSpMaQUriY0L+IDSZVLQyUuiQ83jv5wp5i/cuseLQOAexiRRSEqLHRvBBo6LDCZnqepUCg6IP4MFJjXeR0HiECLSKAqEV1oGdO5KMl5hgUSbOz/rtRwp9rTwhiISDUhJBoFMY1te63HwwQwGFUCz3M+5vbXPu1CJFp0Mx1szsjMl4wtUfvMmrX/nFR5eXJ5EgMaa2nThq2z1yMvCj5cWfsdJ89nFD7tPAIkdW4E9dImFWtK8IQuCFfKQKFk++rqMnEI+ViTyBNzkKawvzZqGIgXo6pui1/+N+of9M1t7envp3/+7fDbIsi3/7b//tw1ar9X+JInA8Hsu/9bf+1vlvfOMb/el0Knd2dt7N8zx+8raXX375ub/39/7e1j/4B/9g+z/leYQQr/2rf/Wvbv6dv/N3Dq9evZpdvnz5xW984xsffvnLXy5/nMf/k3/yT5b//t//+6fH4/G7/ynP/5O+fuzGX9VEtEof2ARqVygXKIrIseWM1d4iS+02nSIDBa2yAqCztERvcRFJZGfsMdQpxVRLWiKjvXwKGwVffesah7t32d++T+NrdF7TzXvUMtINDVoOUAScNAiZ4alTKhqKXEAIBhcEhfBInU4gzim00ikRTirC/KQojSHK9Kv7mIrnuraYPCVapoQ6ia8S505KQyTgvKDIDBFN4QPVnMHnpWJ76tjZH7E/hMlsSNNEIMPkLsmsVYH3HkmymjgC0c0LbC0QXmEDRCxKCrxWpPSkNP1INpd04dFKcWypxepaZ55Ul1NNS8bVFGunFKZNu1uQtQxYyExB8DVuDkB23mEyRWNLRoclvU5i1DSNxvsaYkNRtMlbXfKiTWMbqnqKMBJXeyKa2bTEtFL6r0JzUE4RHrJWhyAkOgjcwTQVosowGx9w7OzL9BaWkVWZJNtRApHgPLnOuHrnFjc+/hg/JzvIo/eb0EgpkhVXK1RILCAXfeqrZRqtNCqkibQxBmHTUaQUiMzgIF24fCqkxfzCooVE+AZJSsTzBFSroAoR6SNoCFKmKTlQNxUEQSYkUggaH+hkOX4uHBIxEnKJ8slyVdmaJgaUTLBfodNU0jtPJlUKgZGBliqIMdAqcnSmaKKgamxKZAwKrzMyKSlDSrALtcXJiMCATNP5WJYJ7O8C0ikqleE85D7SFBLlBVUMtGJNCAqRS8Q8xa6dt6CMWAlROkSMIArwlqgiyiVWkMWghEOEiMxABIn3mihFYmQKRbefkuxCVXHpqcucODUgE4KNu7d5sFMys4GVhWMMd/cYdAu0CknO71MjVMgMZSy2dsQgEI1jpGcsdFrUdU3eNrgI4zJnYb2gsSUXnn6B06f7vPX2WzQ+w0TwwdA18MpLz3H3o6tkOqCKiK019AS97hKzrV1meobJCvoLKxA9m7ev0VlaobEOsj69vuDBzWu8+PoXyNodmtmUzTu3OX7mLORt9rb3EWafTleycW+KJZBlkXYno7IN09mEWnZYWe1w98MdvMtZ6DYUBpoY2Bvus7fX4fSxNpd+5vPs7ewyqiPadJiOt5jNpszGNYv9LvfvP8TLFtPKsb835fyZNfKlVf63P75Kt9tlPD1g2ggymdIvrXdYLxhNZiwvdJjO0+0QU3yocLNIq9WhQlLWqYkdEfgYyaNAakVszbxYQAABAABJREFUPB6HkZLM6HT+yDPKqiQGCULho0ybOSMQcyVK8CSliVJI75CKxGtSiV8lo4ZQk5ihGUEKWgWsLudMHhzgyVAYFpaWuLuxzVOn1+i2c/IsUDcaEQU/ePtbXP7cq0jRAHoufvsxku5imBeV8/UpdWsiqs4bfT9ke3myYXj0deTT0u4eLfH4ED/yoycsvj9iP35CbSgiR8x/mumMECNFt/OnHvOz9ZOxhHMEArooyEyGaxrqakxuTGIJK0kIEe9rJJK5aISmbhjVY2TeQUtJFQJZUKiokDkgFFFGCqOptcbZGV6TlCq1ZUU69sOEUVNiosB5PWeHZWA9nUxjWoqlhS6EOm1+qxolM5TJsL6k8Q4VjtSK0LgG5WuEVGwfjNkd1mztT6mtwJI4Vjov0sDMekRIA4SoPDYKYgClI1Y5RPAYoRLHLniUUoTgaTysHOtzctEQJjOCLhj0WhidGkcieAotMVnANYLaNgShU9qtj6gokCh8SOzpKI4C1zSLi6usHT9BM6vRpkE2Jd56TKcLBKQFIQNOBwIKtMH6hsZFchcpshbCe6zQSblJiQ8Z3W4P4dOgD23IQweUQiCp6ilGKrq9hcT7aucUgwV2t7dYX1/j0nPPkUWFVTEhZ5BEpYGSetzwwZX3qWuYzSxKaNASgkdIgSUwn61QWYvRrcRMlhAyldjIIeKlxBNxs4os01jvkEqhhKTUoGuP94KYaTKjUwqplI+4zo1rUgav0kQJTVXitQafhrDEhuhTPVenv1waDuU5MoLPJEUUWGkxJjG6vUyMRpMVKOfRJkNFEv9QZIQSCqXYOBhSFDlbGxYzGDI7LFkcBEzPYIf7xE6buhoxHO5x8vgFoI2LDSuDU/ybr/4BX3rDMD3c58S5Mxzu7LG+doLMSN5+9zbbexXdfgdZ5Zw7JagzhRCOk+dP0yFClrO/scHD4R47d+7y5Z/7Gdra0GoPaHjIzs4Gn3/j83z3/btcvXqDtZU2x5YGVLbF0uIyVTXk9u27CCWZTSesr59ha2uHUE35wisvsLe9h5SBp84UfP/2XaKTGBHJVE4hc7xo0jXIdCiEoA6ew4MpX3zlWZbaOb1um+HwgPbaGsZIZtNtvvKXvsIH728yO9jg4f0HLB47SafTJUqLJNlWO70FDoYTTAY0HWJ0hMOKxjtOnniK/+1//SovnD/LS1/6Enf3hnzrG9/mS194he7SKrOJ5fatq9y++YBjJ48xbWqCUgy6bTZ2RwgXWOl1OdbtsLuxSyVOspBnNNaytzvi6VOLnD51goe7N5lFxf/ye2/x//5//S0e3rnG2bU+W7sjPt4+QJkFZHQoGXFRMm0StqTQGS4kRI8XgTpEvFComEQbIfjkYIiRpna084KiZShriWtAComRkdgEGqASDVaKFDYY3fy8IdExImRMQ9MYcLNmHlgZaJxHGNBSEHzCG1VVAyohCrQRBB/RyiHCDCUjUhiCjyjhIczRKEikkly+eJ47m9+n8oq6svT7BXfuDCmnNauLHWyvptm3WNPlnXfe59JLX6bX7T0e/D1iDafNiEAmlxRyPpZMNZDg05EjR+tRa0/8+HXEn9z8k0RfsfvwJq3+Cu3BMWJ086pGPWruPT7QnAlIfNQYjPO6Jzibwj5CIDYWOUdP/P/bCiHwS7/0SxfffvvtHkBRFDd+9Vd/dfi/x3O98cYbz7zwwguzf/Ev/sW9P4/j/bN/9s+W33777e5Xv/rVK8eOHXNLS0v+H/2jf7T6ydvefvvtK71eL/zZR/yz18WLF5s7d+58//jx4+7P43hH61d+5VfODYdD9Qd/8Ac3/zyP+3/E+rEbf1qBlClVFRRtI1hfH3BmbUC/UyTOqI944YguhVsAqGZGLDUuj+gmsd7yzKTGmq/YP5jRyQqqOKayFkIgFylVbSo8QhgaWyFVl5AZZGPRjQdpCbKgFTzBCfb9iFnToVU4CAopPZmSKJUYF0oZhPM4mcDywTfpBXpB48CGGiEtIiT2QwrsEEg0USiEj8ToqG2a2FitsAJ2d2dcu79LY6EMnkzn4BMYNuQRUCnJKDRoCT55RYkumdCUjAQvkDIihSBoSTO3gmUioKLEhZg21Lbh/MllTq516eSRKAVinlRX1SXkAh0LlgaLdHsGozpErZMNGo3zDd6VKGXwztJMpjS+ofQtslYPk0NLtonRUTUVzgZKt48QkVYrR6oWzewg8e0s2FkgqobQNBjVQopkV7LVDILCuZogIr6JlNOSv/xffA5lpwRCSlMmcbi0llTC8d67V9jcG2HrMJdyKxrt0F5AgJhJRBPJhJzbuAVZUaBERHuHzrN54Eiy/3hSylVQIEPAtDJcVWNQNCSFo3cSpXNE9Ija0RQGoRSmdvhQIp0BEiw7FxodIRLItaL2jnxuyVIhEqQkl0lt4ZEEnQJIiirZmQOQFVmCBM+qpMhspZTHEALCB9qtNjIGWkJSCZEUgVJQuBoZDUEIQmhQSpF7hcolltRz8AFa2pOpHFVIWk2LqagQOjXBG+9wwmMRqOApapk+2Drim4YsKxBErMigqRDCYW1qjhglUxBM4yhtoNcuiDFihQMdaQlBK1PgBAqDkw7VMhA8d27cppzNiATauscbXz7HS69/nt/49d/AVw0jC0SLxmNDQBqBsooQaqTJyGJGEIIsD/SX+7C3C77D+kXDxtY2WihWWhVf/NxLfP+dHzAejsh7Xfptw+JAQai4v7XHSycGtJSkriYo+ty6eZNnL51gcf1Zyv2HZAJ+74/f5dTqMnU44MaHV3jm8y/QLQqEVdy+cZXXv/jTjKspg0GXdpGDMvQGbTrTNsf6kZthFxc9UhuKQjAeNkybhkIolnptytE+B/VTLA8Keq2c7Uom5V5s0R20MaHi+PEOnjxt7ivJ1sYhV69tcOH0Oc5fPEdrocNHP/iYcdXmB3e26e2OOT4wqE4CWDf1DNnq44OiLCdpoBByVhcXUcaiXEMIkaYEK2FpULNvA5MAPvTIfUNlFB6PbTxeGJijFUQhcTogdMbMiZSwiCaXGkSLQs9Y6PfxXhNI0HWTBTKTEWMkhDZaarQ2RBdBSJTUgECagigLzp8/x92NHSItcIGlpSUe3qjY3G84vQ7ri8vc2h0TM8lHH/2AzXt3OHb2DAIPUadCUYpHk2/EI5/LjwyYH9l442O94KMG4dFdnpxyz+2YP/xTwWNL8Q8/x2O7MI9+9iOJd97PFQs/nHj3yZVebiqMZ9WEotWeW2eOrMlHSnfJZ4m+P1mrDgEICT5flnjbQHQEJzGFmScXeoRI1+vgUn1irUUITS5y6npMpjWhqYkyUMejYYxLuBM8MUiyXpcYA3U9xvQzxCSgMUTmAR0iUkRwzQTf7QORYOecNSVQOkd6h6snkBkO9h2DbosjA/t4OuP9+wfs7ZUMZyUEBUVG5qHSkSxqoouEpiGIiFESEwUheFwIRK+IXiBMRGFRQeIxeDejn2UcX2mxdmKBBS2pqpIyb2G8x5Oswdok1MaksTSNRSjFsbyNR+GQZDoNFG1IzDkRDSYHP53S6/RZ7K5xuHEHHzz52jrOp+uvrCymXdBZyDgcHSJEQFiFsDXSOpSXmNwQvEUKQ1NXaJ+sx9IoRNDkqUDA+oDMDWVZojNN33RZWOoTMdiegViglGRt0OPnf+mXaPfaeBdS3QgIVOJLO8E3vvM9Hg4neB8RwuO0JA9pQ6xCRIZ0/gkiDVAaDyJ6vIxoVSQWcdlgpKTVLjiYTWhFRRVDCidTqcFhXURonRwvEoQPKdlYGprG4rVEu3SujCGpj33jUEhsrJBaUNUlhdA0SlAoiTE5ZYyEusEoQx0FKkbcfCNfqkjLarx2RKPIgkBojY9poJ+3FLe3xjxz6QzldMjrXzjO7TsbjLYr7m9vcHxlld3hiJ1rm7z2+gss9Y8xsw1XP7xKuyNopjPOn13mqUunGI1X+OZ/+A4/89f/Cv/hq3/IZLrP3/27/zW3731Eu3uct996C/m9m6wd7zI5HDHIOmzeusZTn3uZ9+9cwyjJwolTYODWrbsUgxUGCwOiO8X23W3sZIpSgd2dA849tcbhw7vshgyta86ePsv9O7fw1nDl+nVyqTh1Yo2vfvu7LHeX6LXS3zWnzdhWIB0xWLJc45A0lQfvqaTBlo6v/PQlrn33bWSvx9kzZ2nnOQ929yhMh7oc8bv/0x9z78E2J1YNF86eQyvIKMDvI4Vgf/OQE89+jun925i2ZLQ/RPcHnHvqOTZuvMWdG+/w1//GL1PNSu5v3mXv7lX+xi//Mqa3xM0bN9i/t4HpaA7HU+zt23QHC0gpWBy0uX1ni1kVKHodNA2l95SVYLVtWRp02ZiMUUqxthCoqoasyMi7i3zj29cwzQg7jZw83iGowN2HNUJrHIKysen66RQu1NhYEMIMHxUOQaYtyIwYG5qyAaMJVmKKDCktZ9b63A8SKRtihFkTEFoQfBqKBz/ByRwvI54MIyxCZhgpsQJCllF5i4qWmZeUKgMfaEdHriQliWfno0AagY8kN5cYkKYJKdBIz+upJgqUVMgocM6zuNZn0OvSjOZ7BWko2oarN3fQL5h0LpUS2zTsbG5w8/33efELX0DE5GQjaZVBqEfChqNhYhoYxsdFAjxh/3389aMh4ycswXA0mIw/8vUn7jX/+dF3Do9gsH4RqY7Y+iKlDn/K41JVlF5VjGnwGnzA1TPq0Q6ZlpjuIjIvIJr/iCvwfz7rH//jf7xy1PQDsNb+n1rqhRDwPglu/qx18+bN/OLFi9Xrr79e/Wm3nThx4s+tSae15syZM3+uTb//q68/QZ7wo0uonMK0ODZo88qlZX725TN84ekTrHQNKlZo6clygZaBVq7mgGJQuo0xbWTsYlRBVAohMowpUGgUHisVgQSY9kIm42tIiUDdvI3McmoZCcowLkc0sUT6xN6oaMBbukpT1Q3MbazeSaTMiKR0OmMcwgS0FIBDq5TqGyS0WzlLg7VUwErBrJohtUishiwQfYWQHkWgECC842Bryre/e5dvX9/hoA6p+eJzrA3UMWKyLDVtIqlQihKCTEWaTQUcQhGtwluLMBbpI3kdyUNKPIshIziFrSy5Ubz84jOcP7dGpkJK03M+NY1ikpsXXpIrzaDbQTaBIgpUrMlakqmz1CSunxSRunQQHK22IjOS2NTEakZoaoiBtjEUgmRpcakh66tk5zVSEnXE4jgop0yaBi0VWmsgkreSHVa32qAMMkbOnrvEibMn8R6UnCf6epeArypjMmm4dvMKWmnKpsI2Djet03ER4DzOe6QAFwPWewIh2UiEBiSV8wSfEuh0USTmjfNkQpFLRYakaBUYwCBSgIcPOAFOCaTSZJVDVQ3YOeRbgo5JzRZcTNYUaZDKJAuMC9TeUckkrZd5luzNJK6XtwEVxfwY6TbrUnJb4zyIpC6NPqUfqlwSM3AxJdhJN28qSEkQNRkeGXSyWEqooiMTglwblM4ASeM9uBkym7G2PGBQGAwNCkURE5A4aoU3jqhqTBXoZB2EyRhkBUvtjMXOgE7X0O/ltI3ECUHpLVnLcGtzh+GkAQQyRno6YITCWuguLCGEQ+iMzkLO9tYWMcKxxSXOnljjwpk19jcfsHH7BmePd2gVhs3dBmkkMlOY4IlO4qQjCo0I0KiIKCVPnXqWL77yHLubY/JeINdwqr/CK89eQGfJLr3a0yy3M9ZXOpxf77Pe7zMb7fDay08nJarKGY+neBkpBosI1eXgwSbjscNJxRtf+TnMoM+DB1uUs4qWz1k7do6v/Bd/iRe+9FMM9x5w9fr7jMeHTCcTHmw+YO9gg1iXgKXb6VM3gk7WZqU3oOgIRuOa2nqQgVa+gB2PWV/po4yhKR2NFzzc2+LY8bN87esfUA5HtMIBzeSAiatptwQXL1/AZpFWt4/bqdgdBvbHDV2Zsz+17M8i9x4M2Zw6hMjxIVA3DbPGUiHY2R/TOIlUOTKqFAwkHUEJMqlpqQIjNEt9xaljPboEjA94qRLHVQYigYyAISAR+KYmWEddzQgx0DQNNniccyiRrBxKp4CP2s+TMJXEqJiUQBFcsPhoEQSkTAXqqfXj9NsdBBGPp/CWheWCWx9vUM8splvQa3UxCJyoee/NrxFtmqA/Kl/nRemjpDsRkYTEAYwBQvr/k8VrhMdJeMw5e/OOmhACKVIxfNQ/fLIIFmLe+Jsz95603jw6OD88QRdxzhhU6Q4yHs3ln3xNTxbX8VFBvbiyRqvT+aFCXsDc2jxXN/o/l4HpZ+vPYQlhUDLDNwFfe0SUBA9VUzGZlIxHDU2drGBVPcOF9L7VucAUXeYht+maIgx5kSfLsJsiY6St2xiTo4xBZ23qqkZpzcf7E/aDx0lLFDkuQi7S5zp6R6znjSobcD7iQ6SJ6b86wMFogtYR7wP392oA3r894fa9MRPnkpor0+QJpYdp0nU9OItUaWMbQnKW2gg+JqadUBJJho+GqCTdQvLs6TUuPzXg/IkeHSMYT6Y458gzh2lLhNIokZS+zgWsdZhM0+91mPqknhYS6qbGBocjNTNzI5DR0+/0eeXVV3DRUdeW4+eewjYWGQW1TRzjcjJlPLWIaOiaNu3CkOU52gTyzDMbDRnuDZE4tAlIrRA4orMJ7SE8eV5ADAg8SgY63Ra9hQGZaRGaSLfXRxmNq2esLXRZXT0DUaWQniBS008EmnrKaDri22++RTm1VC6Q6ZzoHXU5wxrwMmJlIOg0INQu0CaFIukg8FWN9EeYBkVjHUXWwgWB1oYsS6geFTSZUhgiuY9gHd55CFDV1Vz1KYhGI1xMKbxNxNtUi1mfOMZKarxWBCWx0eN8OrdbAjQOVzU4l/5dFJLgHNY1uODQMeKCw4tIR2VE57hwZo21YwOiCCwNuqjQsL7aZX254KWLZ3jhuQsUeYvFlQV8M+TW3dvsHOxifcP9Wxusra6wPujy+//zH3Dj3ffRmWFycMDuxi6370258eH32bjzkPfe/Bb7WxO2DoccDiMTPFs7DxmsncF5x8dXPuTk6RO89OxFPvrgJtvjwOHhAZvX7jHZH3L/5nXKyS6tjuHE6XPUZUWvd4zFpQG2dBwc7FNVjsOhZWXlGOefOsvmcJ/9kaCuajKTU3nHLFTpWhMkSko8DlRAzW3wja04GM14/8Z9plFz4thxfDPl/Ll1fOUYTUdcvHiey6+8TEdJTqycIJqM6x9v8+GNu+TZKnnRwQvP99/8NrN6xukLL3AwnKGdRYcpsrPKjevbPLj1IRsPblJWgs7yKb777te49s43OH7+AiLPef6V13n62ac5ceYcT186j29qVpd69BcXKJuSuj5kpd9FKsnmwQgtczrdFsNhoK4kS91FMpNRNh6l4MaDDT64t0nQhqXVVZaXevjQIJQmKEUmOwggb2XQGIS36LxFVrTp5h2kAoUlk5omSkYRSttga4+1EdVUFFlNjWL3cMK1e7vsVQlhowMEaUBALg1Ogo+SGHwaTIaADOBj2ttKHIpmnqmj8CpibUPTOERDck4FgZEKSY0WIoWGCED4pNITkYAnyCTiaHc7nD29gsQRcdTWsrbYZne0T13WyYXVGaC1JtoZH777TbwNyJiYySIKpPCPFH+P55DiUY1yNN48Mi6IeU3xQ3XJUZHzZ17THrOSH68jBd/RGDXhnLQxc3zE/HEcvZYnbMTzQA95ZO0VILDEakR9sIXOMlR3AfJW+q3+JHfFf8br448/Nr/2a7929v+I5/qVX/mVc2+//Xb3X/7Lf7kmhHhNCPHa1atXs9/5nd/pCSFe+7f/9t/2n3/++WfzPH/1d3/3d3sffPBB/gu/8AsXl5eXX26326+88MILz/72b//2owblG2+88cw//+f//Nh3vvOdrhDitTfeeOOZT7sN4OTJky/+w3/4D9eOHru7u6t+9Vd/9ezy8vLLeZ6/eunSped//dd/ffDj/B5Xr17NhBCvffOb32wd3fav//W/Hpw9e/aFPM9f/cIXvvD0P/2n/3RZCPHa7u6uevKxv/Ebv9G/cOHC8+12+5Wf/umfvnTnzh0D8Gu/9msnfvM3f3P5D//wDxeO/ja/8zu/0/vkc/+krh9b8XdyMefYSpfVQYt2ptEIQpOS3lKIQbKQec8cmJ42HdIIsrakp3rkbdDaIILBu/Thb7e7KF0wnFXoqPAO5gxpjNZkeYtgoLKOMJ0ynY5Tk1G3aQiJd6YSKBUhCEJxuL9DXTlW1lZTopky5DEytR4ajxSOyiaZsJurLBrriQpcCmViMSsockPZNMhcMGumRMBOAzfvbTEsLZNo0EVBaCqwHhE9KJM0JEIlBQoJjiyEJTqJFBoXKhqbQPRKeoSCprSAJGqHFnLeEvXEWHLmRJ+Tx5dYaEVUbBCZSRNXFCApGwfS0zhBt+gQomJqBSjotDKCsxitcUEhtIAYML0CaTQ4iy0rnE9qRqMy2u0CrzxBxaSgawRSZYl1EXOsbxAi4HyD8OkxZTklMx1QkJkMYTpMpiOUydACnnnuJaRIlmtBYlxAamCGaHn/g/e5eusetmrwNiCiwKCxLmIURCHx1qdQDCFS1JMA5RNDSLZyYlkmdlE/Jfv6GIkqhRnI0lPKSLCOaJMcX0SB1gofPCF6ai0QImBigq9LI8EGpBBEIQk+NRS8D2iVEpKD96AVLibYuLQehEAjcM1Rep1GyGQFdM6nlFMtkZmZX3wlWS5wswaDRAtFr1MwnU7pdfuMnKcaWo4dX2Z/axdR5DCfpOVSg3XMfEoq6yiDyiJnL5xi9/4ef/lv/HX++Hf/kOHBx6BCYotksNIZMB4eps+XqHFNzYlT6xTRsn7xMns7G2xs3GfleB9bSu7sbNNt5fzVX/7r/NxwysH2Bteu3aAsFadPdtg7qOks9jh1bI0PPzhk0FrExUNWl9u8+MIzlNMxO3sHDCcjjh1b4cbHm9y9eQ/rEvMJ1SH4IVFqlAm0hKESNqX8aYHyju9+8B5tsc9f+rmXsNaiveDp1y7wne+9y4MdhxZfQwfJQr9Dr98iirTRWV0Z8ODWNmXt0Cqwtnqcz736Ckz3aUYbhJbh3t0tLrUuopoZzz7zNINOwdLxdbYebnPq0hLg+aM/+F2KwrP3YIc3/uJfpd/r8N5v/xYXXrjMzfFH5LlgMppRzxr6PcVaL6OlNOOpZ9Q4FrqGhcUuh2OH8IGVlRZ3tw6ZTDJOn77M8dOnOHf5HO9f3eDiU6d4uLtLK9Oc7hsGPcGsWuTh5iHDvV1+9mc/j4iOX//Nr1K0uhSmYIBiPN4j63apmxovBY75JlkIJnVDN1MIofEhMG0sufX4kIpQ5SRNU7LloQoCoUWywEWHiyAyRSEl0XqUEkxHQyCmwi7L0rAiBqTJ8LHBe0dwHiMkRhpU1IiQLPhBK4ILaJXsHjFGXF0Rg6Iocs6fOcn+O7eQWU6DpdvO2Noecv/Qc15bBpnACker1eLqh+/w2k//AovHVpFzFfEnK9cfTbojqfyegFnzow/7kZse6wL/ZLPMp03CP80GI4XAhfCoaSj/jGL76BDhkVJxfpxHMG/mluLwmeLvJ2xJrZK9K0KWJXtvWZVIbZAiYzqdUVcVg0GLopOhs7SpKYoWMKKxE1ACbTzeB0oXWRYFz620+A/bBzTKoEOkyLuEGkI9JQjBeDajVUhkIzEZtBBEMoJocEIRpp5B0aKdNzRNTBttIG8V1FPH4SQyCZ6HD69T2bu88IX/B0X2IKWxBkVIM1pCTGxgSbJ3JiW/TqEaMWK0InpS4wqLyBzRRoTSoCS1n9HOcwa9Hs4JZqMpUugE4veOqZVIYREuBWLVNtlUi7zAKEljXbpOq4jKNIU2RB9xsSG4GZWdcu7EWVxZ02sX9NdWube5STUa0y5aaC2ZTGcUbQPNlHyOe5lVJWiBai0jokXGMa2OgSJD+AKdWVQsCL5CypraWmxVJrxvCMgYcdbifWA2KdG5SSpE1WAmFWde/DIm7wBhjh9QeO+QMlDPZtx5sMGNW3fQOmd3PIQm0BICR5wr7iwuBLRRYDTGGLSSWJsYZVKIR/ZjR0jhZIDO0pDWBU+UMiU2q2Qxj7Ulzw1T7/CziigVMabmnjI53pZoXaTheEjNaBmSWlTK5HDJRGL8eRqMKqCTrLzSNjjhUcEghKBrDA0BnWnahSEYQdSG2eGEz790iQunVxlubYGD8y98nlvvf5tyVDN0ka9/7zovVVBO9ikWj3Fne5dqMqIcFQy0oGhlHI4nbD3cRmSSq/fuceLUca6/+02WlpZ4+qWT9BhzZ+eAe4cTXn7pWRaXWqyvrBGk4eLlUyADk62H/LW//Xc4eWKF3c0t1teWybKMu9dv0F9YZm/nPrFtaB4ecOrkSTIUVXPArK4ox1O29oZ0W4Yg24Q4RGY5eTvnxOo6w5Fleb3NYn/AzsEuecswtp4YNTLWuLKm6LbodQp2D0qMcHhr2J1YQuU4tlqyvFJw4+P7dDp9mqbBzw65+8H36HUMe7P/H3t/HmNZmp71or9vWsMeYscckZFzVmZl1tBV1ZO7q7s9QNscwOCDkXVkyRiDEQhzRctCAmSghe6VQDYCdLHPRTK2udYBocuxzj3HxsfmgBu7B9s9VFd1zVmV8xwZc+xpDd90//h2VmW1q6GNwcN1f1JWxd6x99orIvZe613v+zy/Z8yRRc3RjQXuarhy4xpzmaY/6NOOJ2w8dYbx1pD3f/AZDg7v85uf+U9ceOqDrKysM7+6nMJdco1R86ysbNDJSy6+8BusHj1KoGC510XlOXkZKLKc4bjCCs2ojhQdy3y/i8kU97cP0I8fZ2XQwbqKw8mIhfmCbjcw3G/Z35vQtgWnlntcu3YDO6k4d2qeQafD1miMLgtiU6Xrpcby7IeeZG93iyt39ylykbAivgOqQcaAExEbPb4ZEUVGJktKLcmVotvJuHrrHq0q6VLTLzKkN4lpLCPaJheSrz2ZIbmLREQqyXRao1QKMFMyWey11ggR0Cqjbi1CBXyQRN/gg8KYNJtTMiNpWjwCjZbZLCl9lngbJeceOcFrF29RYxKLHodFsLc9YjBX0ikFo1GD0Bm3blxl+94djp069lYwVGIdP+Q++Kr/v1OxlxqEiXf/tTl9X0967lc3/9752m896m2syYP/ftVDYtREHCK0uLqi9R5TlvSPHEcIlTYd0jAB9Yer8RdC4Ad+4Ad+V5p+AP/iX/yLW1evXi0uXLhQ/diP/dgdSEq8S5cu5QCf/OQnj/3oj/7o7UcffbRZXl52V69ezf74H//jhz/6oz96pyiK+NM//dNL3/u933vu5ZdffuXcuXPtv/t3/+7yD//wDx+7ePFi+fM///OX8zyPAO9238PLe8+3f/u3n5tMJuqnf/qnr50/f75+8cUXS6XUf/mN+S7r4sWL2V/4C3/hkR/8wR/c+mt/7a9tf+ELX+h88pOfPP7Vj6vrWv6Tf/JP1n72Z3/2mpSSH/iBHzj91//6Xz/2C7/wC9f+/t//+5tvvPFGMRqN1L/+1//6GsDq6uofGO/51934e/rcOkaJxP7yEq/Am4Cb2mRTlSYdxIQgirfB6Npo+t0+c9k8UVhiDExti/cShCdEQ1cpfJ7RTEhWF9HOrm5SeEIHQTtpcG5EFivqtiUrCoSXaGFoo4Rc4VykdZGt+4esrS+hdLKEQKRpItamC6IcAbOmXKZyvBDILGKykqZqCS6REZqmpsgUbZRcv7FN4zW745baKogarT3CjvEBWi9QKibGipRYESnQ+OhRIQFY2uhRShOjQmUSGoGvGlSR44SgoxUiRIITID0LueHoiRWOLPeIrkLUFUZn2BRfgfcBGx1RaqQSFAr6i32ctGRZlxA8TfQoG5ICR0ukMCAkUXhsVWPbZAGRUZKJgDCRKAOxDWR5jtWgC83UpSQ2QkpQVsTEh4meg4MDovD0OoZer6QaT3A2qWyUMRhjOHrmDMoJRIg4ySzVM+CdxQXH8y98hVEdmFpP01iUTLZWQiCGSBBghMLHQJQKgyIqyExMaqKmJcaQiviYlJzSaKILODGz0ASSjbcoqNsmNeesRRYmnXrrhF8PBExh0ELQxEAMHm3SiVjPLIuegI7QylT4mgDBSJTzOClmbL7E8lNCJeyPNjRNsgdHESnyBI5WIiKkoNMPvPfRo7hqj9OPHGO4P+HIygLXN++zcv4o1o2ZHHkCJXP85D4XnjjHpz/1qzzy6CNceM/T/Pv/8GlOnTqNne7w9DNPsnt0l/rGFT787FO857En+crLL9A0nsWVBR4/t8HW3V0u3bjHePuAb/8z30VfQlsfsHT2AvlLU5b7XeYWuuxsHjCdVlw4fQTaKU+cWmNrocMrL73Ixvo6g77mzPGT5ANNdbjPo6eOIc2QLDtKXTkOD+9z5+ZdWqsp8pL9gykvvnqT9aUBplfQrVoQHucV4xBoYoub1qjCpIuOusERscFx9fYe50+vUCnIbGDUTjj16KNcf+MGIkTubE9YWCk5e/YEoVbcvHGF6bhhaXWNnbBNLneJMbK+tk5bd4mhIdRDTj3+FEJaevNzNNWITtkHOty5fhMhPsvSwiL1eMTSkRNseMnujTeYf/L9nHv8PcjcI2RJN4t0+4rhoUMclZS5xbYw9BWTUc1qb8DGesm9gwnRwdGlRb4crhN9S79Tsrk95pVLtzi6Mserr90EEzhy+hH2qjG7e4e4akyL4+5uw41f/g18aJhkfVQraF1FWRqih9onho0PgbluDwHY0jGZDOkV80QlUSLDqJwoNLX3tKIhZoK6DrQxw4iAUZ4mHdxAzd7DCdRHUILJdEw9a7wrpfFtQ3SOTlGkBp9PCg6j9WwoI3HRorVJqAUliKJESE0UEkQKWnKh5tSZdV566RLWpZRuVSjQGbduD9mYy8hMYrnKKmMYJlx85Yt8aPU7Z3aWdykI5QNL7kwhF8UsrfuBgu/tIvQdhW58ewL+lhXmq+rar1Xmwrs3/N5OvEuDED9TA0MkzNTFb8Ov39oSzBqrQjwYSgZiCG81NGdD82TtQaRhwzfW74vlH7zZQkjvzygwWYlWyY7e72fkuUmKPq9ZGFzn//G3/u985cYdPI4QI1oWrImAU5YbQTI/6FGP71BGh4sap3IULdJN0LmkaSz5LFxBFwXKgKsqmrKHKgxSeawfJx6qVTQhuSTG4zE7t/e5v19zUAXa6OgpQyeTCH2dECJCpkCtGCPKehzp8tUpmQYLzqZADyVARrwM6XnRJWeAhyxGglQQ4OyJVVYXTQqzaGtC9HihEn83CmL0OOdTOqwAYzK0SUmcUkTKXjlT2QEIrPOIECmKDOsdmUxsxfHOFiJKFubnefTMCTbv7YKzuNjQ6a2gtCBXGVJoGlchfYagxtuUGj7o9dK4VQiCMQhVEm1MzVypUFJh2yY1HmOgri34FA5SVUOOzB8DCSJaWFpi7viJ1AidqX+0SI07HyN5Z8BLr36Gqgk0jcU7R64lmTJMQkpsVmWJ8REdJQ2z8IyY2NMyy3DNA37x2ziRTGm0jMTGIlQ2S0rWTKYNUUh0rvFEtDH4Nimpc50xcZ7SK4RJroYiy8jCLKwDsNEipEjvt5hCEYRMByQZIyGA1gqjNT4IvLOIGOn3OxRZRt1URA+dQY6YK9m7dZtrqmLzcMr6YMxktEXeL4kKnn70HJduXScTkfmleWTHEFWf7RZk4zl6ZJVaBHYPRqyeOMXNy9d53/ufYf9gn9uX73HmsQu0oz3u1hUGRdnt8eXnX+bbPvYELjjKTDPcvMubVy+zsnKC5fWWW1ffYGfrgBOnz3D92pvUseXpR8+gCsH1W3dZOrqGG7f019c43Nzk3uaYsyePs3HiCHU15dTKEZaXu4gs49aVGzz65BNoCZPqgGnVcGR5iemdQ8Yicqgi3qfBkHeCytYoI1FCojONqC0fee9pNhZLDsYttze32RtW9JXm0fOP0zQNRSfj7t6U21f2+PCH38d4e5/3fOvHefUzn+ZIXXB/f0jrA/Fwm7nl49y4dIOjjzzG/uiAjaN9jAl4DBHP4so60+EBX3nhBdYXcrb3Nrn1+jWOn99gcWWVrVtvkuuMXFRkwnEwPGBlMEBmqanUNpE2BDomImXksJqyslSwPJhjfzpBaQHR88Gnj4BQXLq0x/ufOsK5EznrYsDHPvIsF69c583X3uSp9zzF8mKfrXuS+1sHOAW+bSF4jCmo2wkiWvpqjtADmRuCNkx8chOdOXmUExtLbB14DkYTvABrArIO5MpQY9HCY7RCYGfHaFLwHTY5FWJiG2Mb8iJLqtoYaZ2jJaIziRCKKDQ+kBr64YGx1pPLdB1lFAjhIKYgyfn5OU4eX+GlS/cxSiOznMV5w7W7+xxb71J0CwaDPvvDhkkTeOG5z7Fx6s8hSQ1F+Y6mXzoWvoU6ecdK9cbbDOHf3pjw4Rrpt6gFmfUgo3jrvrfDRt5laBrTfSJGJI7gHd5aEJKiWxKkBOQsGCsmML/MCCgUf3jWT/7kTy5+9rOfHQD8rb/1t+78o3/0j47+93y9paUlb4yJZVmGd7PKfvKTn7z73d/93cMHt9fW1qpnn332rfCMf/bP/tndX/qlX1r4uZ/7ucHf+Tt/Z3ttbc2XZRmMMfHh7b3bfQ+vn//5n597+eWXuy+88MIrTz31VAPw+OOPt/+1P9eP//iPr5w+fbr+yZ/8ydsATz/9dPPKK6+UP/ETP3Hk4cc558RP/dRP3XziiScagL/8l//y1j/+x/94A2AwGISiKELTNOIPoo3462785doT0PgQEaJFCQkhSwlmRhLCg7AGkVhvsw+5xhOcZNyO8DHSuopOViS+vIJYw5QpxhSQKbyUGJlsmEZoiIJKGDJSAVnXAeUNShYz2LlEZiWeQNM4DvZrenPLFEUH7wOZNoSY2DYdY6ijx+LRD6YFweGQyBiRtqWnIVcFtXds7u6ze1CxuTNBhAJpUmpTFB6lcrR32GDJ0dhMEdpAJgIyBKyKCJGKVEdEekcQqUDLgqHxDT3jWTu6QFF26GQiFbshAWEHXUG/7MxUZTVShtQcER4RDa31ONcmXaVOZKjlhRUW+8uUmaCyDgK4iacREZOpBGa2ab+kgBAk0YLQASFiuh6xHqEjUha4lgTdbsZo1cW2EHxLcI7oPVYErPN0Bl26ZZe6dgwPDrG+xWQlRkqGB4d888c+zsLCfHpfhHp2yvF4nxgOl67c4oUvv05QMB4nm78PgWjSRT9ZAp9nQlN7i4+eXGZIKQmiJcs0TkQKkQpWokdHhUVQIKkbR02gi8HGdAIyKkNGKLuKRoRkk1UOjaD2FkNiTBSdEvWAF6ZUsueFBGPHS4TUTG1LLy9TeIsxKCWo8QTnUvPZO4RQyRakkkrQRp/YcdFivSMIyxPnj7FYBroLKxTGcxgqtg8cmWrolfDmmzt8y5/+CE3TUm9q2tE2Z88c530ffIpBp+B/+NYnCUWOqHqU3S5qf8jIVzzSX8dP7/NN732U3e37jNvA7bt3OX5skeX1Cxze6bGYRd64foMwPmBnZ4s8n2fl0TNM7t3GGMWHPvo+slIjtOCVF1+mO9+naySPnjzJ3HzBrVubqAakr9m8eZu1jSM01nO4M0QZgXWCvFvQ6XZRStKfzzn/+DG+/PJFQhNQTAm5JEwVPoA3Eu8CZR6JyqNUxiOn1tlYNNy8vcXy6hy37t1jrVBUuxPKHCZNzvqRJURoeOOF51hYOMLZc8eBjO37t1lY6pMpw+7eHjeuXGJtsYtvamQ3RzdTVo+usb+9C3nO3a3b9PaHHNuYZzzdY2mwzIX3v4fB3DKXhjV5meHahv76Clt3LpPnkroBcNzaOeRJtUZnriCbz/CywNcRV0+Z72XcvnfAZDplfbFHDIpc53z+Cy9yZG2eZr/lPR89ynQacE1DLRo+8+IlRD5P62ucD5gs2WPGjYbQkmmDj4q2dpiyS2s9UglKpSi1RspUEMs4U+cIwLfJkhcsIRYEcrwPGCICTRMavAdhJUqlTroWAoxK9tmQbO9WZcm61QakiORZRp7nWDsmSp1qPw/RW4gVJoMYDcmQ1hKiR8WEWMiExgZLDJa5fsGRI3NcuzvFCEWuDOuLXTa37nPY9ul3u5hOpJrWoCQXX/wCjz31XhZWNh6A7oC3C9QQH1bAyVlN+lDn7x0rXay824oPPeStaJC3Gnm/zSUUEpDRERMNKA2+Yjoex/hwUZ2Kc4GcRR9FYnjbVvMggCTKmR05RkJbIYvya778N9bv3oohpmaKUsn22lj6vQ5CROpqymRc4bxP/DoUSmcYc49OFmm8wSqHk5H7TpKrPqoouFnVjEPOSEqc0GgVGejEIt5rDDHUiSkcJFkB1kZoLcY1BGfQMSBkyf39wNJSwd6w4sbdXfandmYFTgcMLXOCkEwnq9y5+j9x5Pi/RpT3UTGxJJEC7zx5TEERQSTFjNGa6B3OJ2qdCYFMZ8SoCN5TFJITqx2OLMyhCoGOjuAj01bSto75QUQKi5R5CscKesbtnPmeCRglk2U5WFSMGJlqz9Z7hIxMXcN0OEQow+bdTRYW5ojKcPnyRcqy5HBvzPGTx+l1e/gQ2draYnVhmRBqjIm0tUCJnCBrUBlCaKL35LlCalKAUg1SRSajIb1eQa/TZTQeEyIolVFPG9AWkWuKbo96NGI0bRkMFuiVkhgszJKYvWuQMqE/hrXlKy+/SuMCtnX08gIvAt56tDbgkvrTSYEKIEIaaCQvgCD4ZPtTUZL3OnhriaFNTUhrZ9gRm8I5dLLmGqGSPDqk40uUAoOCmFSIwlu8b8kKQxNcCkCTMwyCnO0DIL3Hput1jDYIF2gICA9Kp3pOZhp8y3g0oVENWWmIUVJNWrQKjIPA9EriwYT9YcD7BjFNFkx7/UXmV5cZTSeMK8GJlXVUaNg4tkq9N8KJyKDf5Y0379Ndm+f4Ixf48Ifew0svPM/OzpA7N25y4YnHQAuW1wP2jTfIzAaLK2vU9YSllSNYr1hc2uKRc49y5fabnD/3BLv3d9nauYmNgYXBPFt3rqGMZLo7ZPHEOtuHB2QL88RgePKJp5hfKLi7fZ96OKG/2GEyLuiVqxw74lhePcV0bxtcgW2mdLIsNUpFTCm0HoSRTOuGspulZp6UtN4yqgTON+y3kedeuM9jTxzn8fcssX3rJpKc4b17dFaXWOo6rr18Bfnsezl1+gRXXnuZopMxGY5RomR35y7aZVy9fpmN9Xli2zCqxiz0kmvNhilzc0vsbl3l7uYOtdXsTya0bYvOu+zc3aLsLHA4PKSyAW1KSqWZ1ALI6XWg181pvWfaNAlFoA13dxpOrwuOrPa5cu+Qps1QmWNra8oTjyzQv7DM4dRx9OgaW3sHXHnpeXq9PsuF5Obl13hj0nDx5i79uUXuHIxRRjB1NUUwIASZjNjWU+RlcvM0U+pWoJTFVRFBw0Kvj5KRu6MK7QKN8NioUUJiVI4j4CxMJkPWVwfEEGlcnZr+PkG1VRAolaGLHFFNkTEmvqd0eHKC93gvk9OHQIxZEsag0meMhPqQqGT3l3DmkaNcurmDiwLnPaURbFnLwciyXHaSYti35J0Ob7zyPB/+5m9naXkRSQu6TEgI4B2FjYjE8NDXDxpxbz/43c9bX4faLwV7vMuw9aHS5e3BakQ8vMn4YJiaGqcxWIILSF2A1gSRrMwRgUiHN5xO12HKO5ghu/4wrE9+8pPHHnz94z/+4281qf7SX/pLZ5qmufZX/spf2f/d3J+PfvSjk4dvHx4eyr/5N//mxq/8yq8Mtre3jfdeNE0jb968+Tv6Iz3//PPl2tpa+6Dp9ztdly5dKp5++unpw/d96EMfmvzET/zEOx5XFEV40PQD2NjYsHt7e193z+z38/r6fwjrcVjQkjzLEEHgWkemNUSXJtUh4L1DCYH3FoBOFphOR2kym3eQuaZJrgIylUGeGk4WUDObqLOT1NSTiigERQAdJmwP92gj5FLTuooiK6mDpxMkWqbipTeXk2mFEgLbNrjWoU1BFIHaN1jbUuQl3qWjj/Mt2SyNcdK2jGvL3rBhZ79mWDkaF0AVKJMsGLhICAIhayySNkpylaLgvQpvFULImeVFpmZoGwVFV7PcFeRB0pKxtjrPXDfHWSC2qAiF0QQvCLTYkJLkYggpwEKkZlMILS4KvG8JEryTLM132ThxmnrYoKQnKySudSiRIVRiBsoAVjk8Du8iVnhCLpi2SaaPiERvqRqLNhofx8iYURQFSmlcaMh7HWLtsK2n1ALBGGkkeVEQhcc3FWXRQRUdRsNDFubnOP/UU+RC4xTIQDpxSU0ILdF5nv/KCwyHIypZ4ENKBU0NgWQfscGjo8CLSG1bsrIk2EjwFqdjSnv2nuhT0RtCpGckU1shdIYWklpExr5Ft55G6pTcbC1KCZQQyJCAs613MONMRgTGWYLRuCZx62zTgnMIKZNtWCoE0HpHmWeIGPBSYKLC0pJlJtmEBTilkEqSIQm+RSlJDA6UJFMd5k1OVdUcThraO9tMGujMFRzc30XHLkW3y53XX2ZudQEXGvYPdlicW2E4HKbAkNoS5Bxb9/fYyA7Zun2H93z4gxzu7XP29Dmu3LzG//Z/fJbGKT760bO0wyGPv+csVaZxbYN1iX1ZdudRomBn8z73Lr2JzjuYPNLvn0TlGZt728xPd/jIt3yEl16+ymOPHqPb09TTZMN69ps/xt7BDjdu3sQRqaaRhcUVllbX+NxnPsOjZ49zZHnA4c59NpYWwI3YnR6SSYkGcjRaaowIBOeJuosJkp3dIe1I8E3PnOfkiXWKos9ofIjpZCwO+jz/ldd4+n0fYHV9mZ3NPex0h8n4gHElmE7HLPZ7SJmaQlevXkebU+RKs9xZZ1KPONjbZa/a5cKRZ7i9PebaxYt82x/7VmK+xKc/92uYUPPEe55keWHAxA159eUXGY/HlGWOF44gJHNll2sH+wgfmcs7rC72uHVvzLiu0Pk8RXQ004aq9nTnDQsL80wnLRdv7vHrv/ll/tSf/Aj7w002VhZ47Y1drm/vkOUrSb0VHDrLaBpPkJZMC4wUWNvOBi2eNooZRDl9biSBUiR1WVO3OFORZQorwfvUSDJaghXYBkImabzDCpUKOixNaIk+n4WMp8GG9g5f2aTKiSKFA2iHVpIgAy5CbQM+ekzM6WpNhkDEJl3Mi2RtUcyCelyyGSohEFIiA5w/c5rbmy9TBUFTebSBxgoO91pW5hdY6UmayZg2KO7vDrlx/SYLKxsP9/1mK8ID7g0S8KSku7e/+6CN93ad+7Wbf2mI/s4p99dTIH/1iiiinzDauUfeW0CXg2RhSXFQX/N5b5l35NvNTTG7iEgJqpFoW2w1QReLv+39+sb6b78kDqIDoYnOYdua4A1CJLxInvcw0SOlBxXY3l7hF//Td/G+D/x/qaf3iUpgVMSpDPI+ajLBuil3CEglwbV0jab1KYXetSNCmNW2Msc3Du01QhkmkyHznQEuWISqeHPf4O7tUY2alGKNwNOkT43zaBmwLsfVkenkFMFpCqEJ1pFJSRtdYgDnqdGnZgrW4Bze+tTIEhqpPCI6MgPHNhY4stGlq0G0PrFco8dHj/eWbsdgosCoOaxrKXJPG0kpudEn5tbsGKWVxlmHJyK0onYtUgak9LTjCVEIrM64PzlE55K5zgAvAlJk9IqcybRiezQkTKc0reVwb4+ja+soYYje0+LRQiJVwaiakCmoK8lkckiMHiEKAhWSyOHBFseOHWdhacDO3pAoJWW3oChztJAMD7eZVgGN5dEn3kO3MyA6SxAJPUJ0CRMjNNdu3eb6jetMqoaqqcmVogmewgd0lHiliM6lMIzgMcrgmogTjiYT5M6Ta4X0kbZNYWISQdM6YmZQ0ZNniqZucNajJISmRZc5dTXFe2gJRAGZUuQ68f1ylUFUCaMjACNprcVZn8JnpKDxjqAkQinqtqUnDE5KWtcSYiAqResi2Yz1ZW2ktQ2d3hxKZWTC0WSRS9c3Obm2zhPvPcuda9fYP6hwtmHx2HHW5vscVnssFn3mc8V4v2JhsE44tYo3khc/8+scO77M42eXuf7m67z8/GsMqyEnTqwwnQRQFj+xmE6Hc6dWOX7sDL5qqNrIP/+f/9/8if/hm1lcP8HmnVdZX34Mrxa4ceMW5x5/gjC+jxj0yYzCVZaj548y3Z/gfU37RsXK2gkuvvYcF86e48Tp00jruHn9Ct1+j2mc8MblK2xv72LbQ3aHNRsrHRwtjW3JhESGBisV1raoWFJVDUZrcpFBiDx2/hQZsLNdcebMgL3723S7ipX5efb39wl5hkLj6or3PPteskKR9xcYzC3y+hd/g+PL84z0PAsLG6hMIHY0naLAOs+Ro6c5vHeFlbmzZPMLKC+5f+86HRF43wee4uDWy5x54hmK7gqH927iYoNvWnrdPu5wj2PLHe4cjPEx0tWSbqdgWnn2DscsLvSYn8vYGR5QN0uszC8gxR2UkUhpKOYWiTEwXypsbMjMAvsHm9y4uckH3vsIG48cZ/vePrrIOa9yagGttVReM+gWSJ0xrlu0CDjtiUoivcdbyb2dCnSGcODo4lw1YxZrvE61/tSmSqoMYGOg259DSY2JmuglLgJSopVAGQnCoIsOVpGuFRtLbkCGjKiZ2YXLVOvHMENSJXUeApCRKBIuSwtNays2jq6zNP8md/YmSC8oul3KUnNt85DOwGBMQSZzYgi0tual5z7Pxz7+bWg7Qc0VsxnhzN0wGxI+cAw83Ix7q+Z5txNWfFuX93Ct87UwJmmO+i5biw/r+2bNu4cUhpEZc3l2TA8oRJYRhUDNGMxeSiJ+VrFJNAl1JMQfOKHV72jVda0e+vqtAtF7L954443id3t/vjp194d+6IeOffazn537B//gH9y+cOFC0+l0wvd8z/c80rbt74g6U5bl74l1RWv9jtf9r63zfz+ur7vx50KaWGQqS7ZV12DthIyMrDQpCEN6vPf4MAMdA92ypJo48kKSR4lta7RSiLbGCwCJoSDFY4DMwU0cWaeDzktG0wNWlWGhgPFI46IlxhpBwEaLAdpmTDbfQ2eSzIBrpwRpiCGlJrq6IujA1MHooGV12UBIyjJnG+7sjNjbr7i3f4j3kkYpcidpM4VWEikFtmmTBVQIUpQEKfLdegQF3kSCbjE+AgUyaKbViE7WpTcXWTq+xImVLsI1jCce6R2aQF1VKTnNB0KMWFdR15ZOJ6cjIkZoAqmAc87N+E7gSGmATT1CmQ6rixsIW9E2B9BdwHuBDQ4jFUZ1ybUjhkg1HaFUibARHVMR6IJMFhwBUpWEGHChQusMoTRCZeTaEJzAx5ACQiI4Z1ECMmBhoU9TWUSsKPI+KE2opnzkj34r80vzCWxLmiATJTGAEortgz3euHoN0e/Sbh4mi64QlCLDuxYlQTqBUioNp4yhcaQCORPorMCGgGpTspUpcoZNRYwaJSVTl8IvsiLDWvdWkIxXAiM0MnqM1iiZY31iCBqfUkulTj+DCx4RJDJ4pEpuraauMTFJ2EtjEMpgA6jWoYsS70JqYiiJs47WCLJ2ZunLJEWmMSpjiksKwYnlcFKT5R0eOXWCm/fuMdAZd7e3GTWKK/fvsLowT+McL3/pTU6dPcGRtePMza9zOJowLhomk5rte5fJy5Kl1QGHuyvcu36HznyPL37pS2S9gj/xZ76T8XiLYyce4fobr7F1axNdRESwPP3U07zyxc9SlgXjJnDnzZs0sWBlbh7X1kjZIUbBwtE1OnVDlvWYTFuqUc1otM3JR89z78Y1dkcVUVpOHN3g/r0t9ptDtrYrrt24zTPnH8eqKfUkULeSQgXmOh12RlWyZ0mPEZHCZAgFTetBSITW5FnOB585Rjjc5MUXhxw9tk5hNMPpFN04Fgdz3L1ylWkteO6FL/FHv+kxYoC1lTlCf4697cvgA8NRxYe+40/T7txlOL3H/vZdmhhZOPEIXWfZ2bzK6vIAv3GUcv4Y168/z+nVJZbXT9GdH/D5X/1lykIymk65cX2LXj9LKb69Ht1OTjOZUleeXn+OQZnz2sFtKreCEB6No3aWkfMsF5G15Zw3Dg8ou/Pc3am5tXnA1o17TDfG5EagZEqBVlIiVaChxRPJ0CjV0IQ8MZpcRRsUNZ4y0zgCRItrWkQGrVMgI1o6jqwO2N5xRL9J9DE12wlELWiiAN8gRCq1nGgTaFx5pMjQMqVXR6Oo6ilaBFokldSIGFHRUsaIFwp8otmoTBKUoo2OPGYolRMZo2VODKCjQsSYlE5CIoMiEFhdW6TfK6mGDhBIren3St64vMnRjVWicGQmsTGnreIrz32RJ97zQVShECI1+gRJiZ7A1vGtGjjOFIAPbLHw1o3fYt0Nb7UG32kJfrf11cXBw0ydh5uJqVhOfEWR9WZqomRpfHchYtqxGMMsEW/2swVBQKKipR7ukhkFMkMag+l0/vMn9W+s37VV2wYRIYsKgaLb7aaEWxKLVutIoTURRdtarBc0dYGQmu5CQd2mJMluvkA1OSS4lhiSylMITy4llSnx0uIqi4uOGDVaihSYFCNtMqGROZMURTLHSBDBoOyEIlMEB9ZFpEowdm9bQBKjpCxv8dhT/zd8kEnZJRV1cHgCHW2g9RRK0cqZWsxHgk7NTRWg38k5OshYWhkwnym8iGmAJyTae5wM2IknBuiYDJ1pWu/xIaBDho4W5yJaQgiOIBN7l+jRIlnDRPCYmAYfw9GYqrHYoFgtu5RLXTrdHKM0i0urCC3pdkqCD5TdLrXJmBMBnXfwdYX3FTorIOugQ7LVS+dxFto4QRcaEfKUiqu6NLWjzLvs7e1hWw8qx/qajlJMxoL+4iLTUXI8FFKxsDhPW48Y7e8xt7BEWXaoxy1FmYK27ty5Sz2tmBy2NE1CMXincAacd0QnyTONyQqqZowOEZ9rRJQUSqaGH5FMiqQeixAIEAVCJbaxq2vqtiKScC9aaarG4kjD+UKZhHghJTO3BIJMoV4mRkIEaQMySIxkxjBOeUUySBQZQnga4VCAzgMIk9J7hcBbh5MS4QSiUPhmykQ6WudYWihYWRqQ5YKLr72C9Ik7Ww0tnaZi++6U7bZhN4zxUlPVNWH7Enmvg4zJNh5tzYtf+CyyWOD65ZfxpkCEhqLo8uXrtyiKnMzAdFhRHdbU1jKdeLrzXfYO9tjenmLrmr1xwa1Pf4puIbm7eYvxfsXe9XusLC+jlSHqSF21ZConm+ty+crrNFXDixffoLx5h+HufdaOrFIMlvjU//Vpzp9eYTRpubI1Ys70KTLJdFolu6iMaCNxNkJUOBGTlVMFRm3DxvwiVTXmyztD7m42fMe3PkHWRKq2ZHUtJ8867L25SVm2VFNHc3OLoyfWkUFRjYcsrK5wxDvuX9+jtY6+rjl95hGm1ZRQjZjs30XPrdBfXOGNi8+zsLqInU44/fRH2B+N2dzcpbu6QVVNibZC55qNkycYTT2HowOElNStAQVGGbpZxs7BHpNGshId64MeNzdr2qljua8wmaIhkNWO3f2aU/MZWS+y0F9kNNlneV6xvHA21SrTGh09165t0QBLqwM6qiGKgKKgyBt6uqAsSwaDPqPRiLpVIPXsXGloZSCECm0i0QWUBOcENZEoLAKFjZFMCfoCWgcxVngBvgmIosC3gUEhGbctUiUVrZkpZKXW2BAITqMSGQUX3CwcLJJO8WGmHo5poCo8XtVIpRGt4+wjG9zfeRUnC2Jj6fc7bG2OOb6xwMpcTdmRtOMWrTu88eqXeeKxMywur84CPh627qavY3i4gfdOrIlM1d9MuSd4kAT8oFZ5cP9/eb2bZThVVyFtKA0neeAODInXFx1RaaLKeDhNOM4Ugop0/AnotwbcQkCU5rdpUP6Dvf7Nv/k3l998880c4ObNm9kDa+r3fd/3bf/wD//w9n+P1zTGBO+/PnTdc8891/ve7/3e3T//5//8ASQF4J07d7Lf6T4888wz0/v372cvvfRS/t9C9Xfu3Ln6V37lVwYP3/fFL36x+9vdTpZlMaSwgj9w6+tu/FkvkrWyDbS2wvnEbvI4WgvRKpxN1gYlBVXyvaGkRecZZTkHPkFYlVQgNEpbrIepmyCkoqNzqqiphUbmHZwWROsYicjh/ohaeUKMRFXgBcwpTWszhG0Jrce1DjstsBiU1kgVibYiRE+MHfYP9jkyP48j49Cl9+MLV4e8VLZEEqeQCHlQ6fjlLDFI7GwiEYjYmFIwK98SQiQKmcIbIngrcMJSxAwXGzaW+5w6NWC916Pslhxs7eFFoL+g0WTYetYIExEHNE2D9x5VpNAQxyyJKQR8CIhM42Mg89DTOZFA8Jrjj5xGCcPdmzfpLy4So8A1jigybN2AcxTzC2lSRUOpDLVqaWpHFiOl1hhhcNZijKNyU4gZKlPJXBYMKbF0iYmrEldKCrQxzC/MkQlJbJNNuNPpEJwiqoZHjq9x9tEnkUITJSnFV2iiSCEa9WTKiy+/yquvX6YhQ6KQuYBxQyVBG0kmBFYkXs/bjJrUCLHWYpHJTmtbyk5KucyKgugguEivW4LzNK1HtOnCv8wUrvUgI4GIFJLWJ3VnplPDSXiBbQPSCZz1EANN8GgpiQluRNQmKaBEskRPnEWJgK8qnIdSKqybpYF5h6sc0igIDikj01xS5AXWWh5/ZJX+gmJiA4fDLQYmsHI0JZWZ5g7vOf8Ivbk5tg8OWDx6goWFOYZ7U+7vv8n25l2UzDh/+iQnTy2TqYwsBO5eucOZ934TO8P7PPf5F8lyyUc/9gF2bmzz0t1dLl65TfaBJ1hd6rMnRlx+/iXmiyVMp8PVF76E6Wacf+Q0IjP8+5/7FH/+iQ8z2b5Jx2fs7Nzn7tVblMayNdph0FuinSikGJAJhaBD6Ea6XcV0MkfMHALFlZt32JxMwGacXMvozRXsHOylkiGAkZJGRlQuqW2dgMvRU7WB+9v77G326OuWolMyGh1w/pHT7Ozscfn6FmbQZ9DpUdcjvvnDTzM52CcbHOfFly6RhYwTxxbJuzu0O5u8cfE16p0tPvjNH+bejVsEZVg8chQT9nnz2h2CaFhczfnyc7/GdDKmmwmuXrvP8uo5zjz9YUZXX6Z3YpHh2HLsyDr9fpfLVy+zsTLHGx3DwXAfqTuUKoUU7U6mOA9FVpCXXcYTiQqKftFByh7D8ZBHThzltUvXKMUUPX+WjWVDb26fz790D1SJyg2x1ghaPJbgksImkJS9dVTkCvAV0QlMkVN7QaYUwUJRdmm9Q9hDuh2FEwFlkloOYUAKhEsN+TZYpBQonaUEbZ/4rUrqVDdGBVmRFELBAj4dj4IgqpQEGYLHTiMqS1Y2KRRaCEQMiBAQKgmipQw4HC56kDrxrmIg62acOnWE/VfvYKMH61lfHXDpzVvcvrvJymqPojPHeDqkUyhuXnqZ1198jvd86FmiS6mmBB5i3aVj7eyrt8yzwNtSv69WCz709VuD9P/C+uoJufiqDb59MyBVRmewOHtMQMivofSL79x2QAKJiePGI/b2NwnOMb+6ju508Q70N0J9f98sbz25MYCf9Zc1wafBnsoVEYePHoSh9ZaN9T3+yp/7f3H1/pj9UY6KEq0kk8keunUYJbBCE1yKeXJMEUHinKCtD1CRlD5PYlXFqGgnFcooQtPQ1g2UJQSLryvcsMLiMEUXFx2ZUNjWYUl84ChUSsy16TgegyBEh4hgZEJshLbFKA0GvMpp25roAuuLXQZzXfqlpGdqTKzxocBFgZbJSeEDOC9TfWMkLjqstYQ2pX8fjhtUFCiT0YTUcBrV+6ytrqBcIIiMNoJRGSp4fKixThCVYmlxgV6vZNDNkSYDk6eAobomBodGYbzEGJUseEKBMXR0RgS8s2R5TjWtmOuX1HWDNIa2acmURGTQVC1aZQgdiNIAiR29srSKJhKEIJMFriPxkxFHjj/B6pHTiODIiz5RCoLKKXoaYsPlN1/nxS+9QOUkdQwp9AoFwmN9avubzICSuBCROktN1JhqmvTRT00+qTQxz8Dat44zgYBwAeFAB00rQYm0LefSsC2KiHNp6NISE/7Ex1kdbDFSJbWO0ggpcXWTBh1SobQiSFBEXAzIzFBNxrSupVApFETlCicAJdFaEWVEIHHWI31Kjs90xt2tEQiPkRoTPNoUHB7WVFlEiwwv4eatLSDQIqjvHaBCZGG+x7RyTA5bJnFCaC3NqGXQLdkf7fLqzQOWej1y2SCNZv/GJhKJURlHVuYYD/cY1yltfnTnKg5B5QLNziEgMd0ek9EEjCIEQdt6ssxh2ykieDJlaBpo7AGDuQ3ubx2wvNrw3d/9cf63//WXCTrD5B1W5jImwwqtclDQhhYf0iBbidQYaqYWU2RIEfGh4s5ejpcZu5MDvvjKNY6uLLB34walWGZz+wbn1te5ePUmW+MGrVv2PvXrdJWgP9dhbekIa70ufnKP//M//Abf/cfex/OvvUDZlxw5fhbfVCgaLr7ym+wcjCkHq5SrR2n29hHVlLX1E+isoGtyAsmWv3TsLNX1G8lBYCS79w9Q9hTaVBjVgguMRzXFiT6DQZ/q1pBWQFE4Fnod7h9UDP2EF165xLc8/UcYjYYsrOToTLO/PeTcE2vcvH6bps1pbHJLtPvQTBoWlxfphci9zTHTcYsOgUG3A02DAeqY2PK1TanTRgnsLD07So8QAa8lMhiUT0x3LwNeVmRFJNQVrQdCZDJJ1x8IRyQjRkcmFaoNaBlx3hOiSspl22KUQtESfU3MOrgAGg0EfJiiVEYk2ZOZOY+UDpw8vsYrL99kb+qwIVJkgZALNncmnFhZIijFpE7Ohf3Dbb7y+f/EN3/8T6PnVnmnl/aB0m82kHxQ7jz4rpixjh96yrupmt7ZFHx4mPlgew8Yfu987oNWoHwwuBSpyShiRfQOgUbofCZAfJsD+PYGBDGqtwqvh8kn8T9vjPj/u/Vd3/VdI2AE8KUvfal40Pj7k3/yTx4eP378v4v88cSJE+3zzz/fe+ONN7K5ubmwurr6NV/n1KlTzS/+4i8ufPd3f/eBEIK/+3f/7tEY49dRMf/n13d+53eOP/CBD4y+53u+55Ef+7Efu/3YY4/VL730UiGl5Hu+53uG/+UtvHN94hOf2P6pn/qptR/6oR86+kM/9EM7X/ziFzv/9t/+22Xg62xwp3Xy5Mnm05/+9NyLL76Yr66u+sXFRf9u4SS/H9fX/bExWUGepVgMrRRlkRNCoHWeaWWZTCyj0ZTRaEjTDJGzVLpBryQrugQkUbRgIGqPjRapBZ0oeLLUqLbGodB5TmYkpenSjiYYNNPWceACfgapEgiECwQ83jia6IitoFsWCNOiaAm+wrkGaUqCKDkYjYlac3t/xG+8fJFXrmwC0FRuZjlTBCFmwROBoCBzqeEniBhtMMog1SzBVeZIpdFK0coWTEqSUkoRsobV+YILx1fo5xmTtuX29jYVSa0Ra09TB2wM2LbFtZ7ptKG1KeFxvt8nOE9T29kFd8AHh4wB2jQNjXZKPR2xvrjKuTNnMYVmZWWNwfIaw/EEbMC1nta1uMazt3fIaHJIkZkECNaGrJehewVOW+7t3mN3tEvUgqzTI+8qBBHvGojJwmDdEG8bom+IvkYrj3VNSouLEV2UdOe6SBPwWzsc3ThHXszz9uV1Sn0mesYHO0zGY159802CF4zGFY33SOeR3qZEuOiZ1hXO2RRIkGV0haKcNUuNMggbwLnUCCSBpkVITCGZG2xwBAk6y9F5js41eE8WAipC3bTYqqWpawIWbxucCHjfokUEmbKThRAIqSGImRoiWVe8FLS2wdqGTEqClhRRIpxj0tR4H1FCYUIkyIAXgU6e0esUyDxxlAySIpO859xpnr5wkuBynvrQR6j2pmQy4HXOrfvbyMzg6pbR/jbbW7e5dedNWhSDxWN0iy6elmp/yqf+/a/xf/7SLzOqRhzuXaW9d5Nef5m1YycYHx5w/3DKqJrw+IXz1KGiiQqztMrjH/wgJ9/3JM1oyPzKEo+df4JHH3uG/TtbHH/0FJv37nDz2j1uX71JEyoOJxMkmkdOPcLx1VWc22VhoUPeU9y8c5fbV26xu2e5fu8urYWnPvBeTp9bY3lxge5AsLGxRGEKdGnwmiTm9wIZPE1V0esW9PIs4T9CS/CSW5MxX7h0QIglKgr2D7axdkpjG+Jwl0eOHcU1nmtv3GJxeRVnJ6i8oMkl46GlY0q8Kti8dpMLT5yjUwzo5n36csKtl34dPVhjf19iJxPGwylLC0d58v0fJevNURRr9LKMu9ffxHUNT7/vIxw/dpzuXJ+im1ISlRZ0F9eYOEMUntWlPpnJmNQ13iuCDZSl4WBUMZ20nDq6gKcm4BkOLRfv7PHytSE3rlzhcL+msaBIwUXjSYtoQcZAJgWDTo/1xT5F3qXTz1nq9xjkBlOUdLoapaEBhrZhNDnk4HAPFSTzuqCQAmkyXr96h1eubnJ5e8zUNmQuqTecSXaWLDxQHCgkflbXJRDzeFyjpMQYgRIWIwVSG0Se+DXWBbRMyAHvXIL0B4sxASVS813KiI8eKQ1a52kSLDVqBtg/fmyFjgGpBCF4aBu6fc2tzX0KZegNBpSFJkRPrg2vvvCbhFmgzoNOXRqrzBSAD029BTLdfqip9sCA8g5l3kP/Hl5xlkb88OMeXu9+X3rttwvymRpRvA3lFm/t2+y+mB4boyCSBg/CW2Jb4dqKSGBx8Qjrpy+Q9xaRwaOFA/2Hywrz+3kVmUHK9PfXOrkIhJA0dkzEEwIEH6ibaWrOWc/hRLM46OO8TcrQFrRN0q1psFjVELOkwAq2RYnEwGvrCc57GpuaBVPXMKqnoBXSKFSmaash1f42k837HO5sMQk1bWupqgrbNoz292ibKUEk+5p0jnr4KK/85mdpx4+iUBRZjlGGbNb4E0rgArStxVnL8bWSb3ryGB84e4S1RYP3Y2yT0i29nSDdhOBqChFBWBSeoqcoS00jIs6mRpDXCik1aM3UO/aqioO2pbcwPxscKKTO0DJHCIvMJE1QeATdosN6b4D2AaNzlnoDejpH6Yzc5Agp6fc75LOgkFznEFPojohJ2ZZJybSxKdxLaQaDHrnRGKOT3VXlhCjQOikORVRkRYGUUFc127sHHB5W3Lt3h4PDXZz1PPn+pwm+xUuBMmVCjsRAcJbKBT71Gy/yqc//BkEohHUQwQuNLhVRysRVxOFJDhsRwCiFEWl4FrSklWC9x86YXpnJESoFM0XvcDHZcU2WkSMTzzkmFlhyWAh88AnjQ0SEQIbEIJBxploKgda1RBHJjUHOGhjOu9lQKAWuuMYihaRT9pLjJ5c4JQhKgvNoJdAIQkh4D6UkRZYsxwbHXEcxP9DowtLtwPxcTlHMUWQKkyucbPHSYpuKIBSVEuyNJmwf1GwNa4Y1DK1m2nru7Q7ZHgU2VhcRWuKzPiOnGdaKUeMZ1p79YWD3MFDXjsm4ZTRqmNQtu8OG3ZFjPI1Mp4GJFYyn4NpADI6qraisY9o2jKsD9g6HHBxO0FlA4Nne3OKlr7xC7SRLK3P0tSZGyHtziasbwMiY/imdnCdKpSAs5/A+sLc3QnjLQr9kbXmOj73/WZ66sIGg5s1bd2iaKXBIb63PuGoockVwioBhXAlu3NtjpCSPHdtge2/ECy/dQi8UZN0Ba0cWmFsuMV3JxLXMDRZ44dc+xXS4jewK2moXKTwmy5lMhjz/m1/m1z/7KnOdBVZW1xAiIE0kZoGD6T6dPLI616Pb63J3d4embhl0NJNJzWHVYkSHxbkOQivyImN/MubW1iZ3D4Zs377PZLTHqHIphAcJ9oD5vOSDz5ylNxfYG9ZMDw85fWwlhfnFAiv7fOXGLq/c2mLq05AkeEvd1DRNjRQuDSu8QGJoY7qexHtsbMlVcmNJmdF6QRsUmBJCwIQWQUAXAXyF8Z5eoYkqEFWBsJGMhKzSRgIOlafjjY4eLTxRKCKaGGUSDYgUlCiEQhBw0bPQ7XLqyFIKJRQCHQSL8yX3dyeMmwChRcmIjS0ZBa+8/Brb2zdmroB3qv0e1DeRhyub2fpafY53wZn8l75+eD2ojd52TQSCAIFEBQuhScdYYwgiwUDFu/aIUt1DTCgE8XBr8N24gn9I1vvf//76X/2rf3XlZ37mZ64+HLDx33r9yI/8yKZSKj7zzDNPbGxsPH358uWvqeD7iZ/4iVuDwcB9/OMfv/Bn/+yfPfsd3/Edh48//vj0az3+t7N+4Rd+4crTTz89/cEf/MHTzzzzzJN/7+/9vWPOuf+qpuKFCxfan/3Zn73yS7/0Swsf/OAHn/ipn/qplb/xN/7GPUhBI1/vdj7xiU/snD59uv7IRz7y+MbGxtP/8T/+x95/zf78XqyvW/HnCTN5ciqKEKC0Sow/FMHP2EI+oFWJMunvbZQkseAneBvQOmdFR2rRst14TufLnMinXB+21CSFlJE5woPwDa1o8Y1DRkchMhoVyDIwTaDtZUmirA3tdEJXy5SoSwr1UCLQtBMOx44rd0eMY6SeTAmhpZ1dsEkVCDKiQpo06giBpFpxEmIQKZxBJmlyICCMwvokWtYChAYZPJmIeHLaqoJexGQNUncJbYsKEITGIyGk9NrgW0xMFt8Q04WAMRpiIDMqNa5cUkwSIor0fSkjjppWaubm57l79RpaKNaPHqUVkcO9xJMoM8HEgS5L8jwVqEome2/rG6IErftEKo4c6QARY0pcUMnaF9L0GSGw3uNbC9GgpcaFluhmTJ26xVcT+isrRO+QvmFhZY2N8++H4N5qXGqd8+DUo0zOaHfIxUvXEEIznQzxLlmFyDJ8W5MF8FIhIxgEHoFXkMmIchBmCgoZASlwBEwA4QIqk5RKJFCsUggZcSLBsI0WhNYjpU6WF5uSn4WUVM6TG0kUAd82GKXRSlBbi3YeHzxa61mqr0wX6CE1iJXUhCyD2iNF+t0IMVMMGEEsNWWngwwOHxxlXuBcIPeSs+tdvvjca+RFznyu2dvbQhSK6DxZd4HbW1sMevcojaBcGHA4rbEO7m/u01WBQb/DrZ1dzm6c4MixI1T1BNUx7G3egtrx7B/9Fu688QqHe7tYr5i0jk635tixU2xsHGc8nSBdzXBacfON6zz7sY8gcGzdvcva+gbHTxpev/giaxtnOTZY4pVXvkDsd1gwOQtFl6mt6Sx0eeVLr3Dm+AnmFpcR0lJMI+cywcqRo+xsb3K4P+WRY+tcvv4G80tL3Lx8g7kyZ29Yo2WWJq0xYJvE05QxYmSyaUoB1WHNiWOrrK70mZ8r2B1NuH7lHqMDy4knjrK1c51BLzKpBNe29jh3co0Lj57k5VdeYen0E+zc2+T4sXkmVYPShsPtLR5/7zleev6A65t7zB1pOHt2EaLBRsfKkVWm1SFPP/1tTKptDu9vs9o1TAm8+sJLLA26FN0+3h7SL7uM9/aRwrE/HLK+UJJlGu8DTdPSeuhqxVwRqd2ExpbMdzVFZhBSMhxOmF8o+dCTq0ybll/9zTf5Mx9/lIO1Hpfu7/OtH/0Q49GE1y9dYtDt8uyzz7LYa/jFX36OGzsHKNHgZKQIAqSgDS0KTUcbXNaSlRnKaJwA6wJHjyxSFjkHdWR3f4oRGVEGbIAskhRIJGudEpFMgxCJYSqMhOBSyJPUIJM6WxMJM06RjYIWi5YaqRQ+BKQyM4C5Ruk0RBGAeiDGU8l2LEgJ4EuL86yv9Bne2oeZynd9bYlr1w/Z295nftXR62lq54h5j2s3rnDv9g2OnTyJiIows0m9xZSJM87f14bb8LBl5euxuXythLsHz327Ofj2Y1JRLN/S5iSLy4OEvXffr2SRAaLDVRMIAVUUmLkBzL4ngkeExJaNb6X/fmP9Xi8pJFmmETM7ZAgeozOQhta1GKMpshzRWEKUXLuzwv/zX/5d/vpf+THy8jKtmyXPO4slUBBZ7C+ytT+krifYUYXUhugmKTVXS0yQSa07e28ZkxRiPgRiPcS7mMKCTIaVARkEbmzRWpFpiQ8WGUWyMgpBDOmTpIRMA8ksIDVoDJB4eL0yY2FxwKBfsFgmy2KwDW3dkqNZXe6mcCGb46PA+oSACdoQW4ePAhckFtAhJNplkMgisRGVj2QiqZnLvKRppmRSIZTEkJpN49YysS3aQK/XxRJZPnqUTEnyMie0DUFEVBR0ipIQBXVtUwOsKCkkTCZjtE7qYx8gRBA6w/mZ8T9At9unthYfFVWdGI7dogNIGt8y6HWRgK0trnHUMSImDe/72MfpFDnBOTKpk9Q9xfwQo+Bw/4AXn/8KKs9ppy1GClrnqJygayQuRpSEGFOWcqYkrgm0OuD1TOnrEvswyIgj0gsRIQJRCtrW0tUZtVb4GIhSzoYyYVbbpWC4EAIykmomlTjFslAzviLE4JPCE/DOY5RChoCPEYymMBnO+yQWCCTEiwsoIwkqNSQSDjukRE+f1IFKSiKObqHJEThpmNYOnGTsArKaIrOM0gi0ERBbRDR44RCZwHiJ8hC1ZOol2mmk8CjUW6no3TJjPJ4SZcC16ZwpRUBlGqWTKn1cORzghSRXAqMkudBMfJsyRn2NKZMzpw6C3OSUKqBjRKkOXgka19Dv9tne2iUz0Jtb5NaNbd73nqPYoGnKIjXm8NTegKsxUZFLTxMEXgiE0SjhiCGkz6Au6A8MWTOhp+HFF77EiZUey4MByhhW+nNM7JideztoZbAC+p2S7twio/EWtnG8emnKY2vL2Bv3cAgWyhxvp+zfusNoPKUcZMTGsnJ0nvN/5jsRxRy2mRCiwxnFdLiDUvM88U3fxGi8y6TaoxkfYoSia3LKsmRYOzZiyWKvy2h4hyLrgfRkUrA0l9HYFiE8c12F8C4x063i2tV93ndhkUk1Zv3keU4Vy4h2hC471Ps1h3sHnB6cYr6/RCHGjCYtv/aZixxaT1losrxA5h2UaclkSyM9Ms8plaZqfWpOAyBAK7LZINOpNFhTMaZjpNc4m7A/O3tDNqyn8RERFL5WDOZy7HTEfj3Cz9jHwhhirKFpCF2DNmbW/DazM7tPf0uRJ3QOHkifNx8VWifGqhaCs2dXuHjlJl7mEBSdjmZv65Dbd4ecOrZAXkjqSSCXisNW8PrFa5x88lvSoFDMao8w+zm/yoX7bkPKt5p1X4UreTup991ronevj1KB5SMz15on+Ckeh5QFQvWJYlY7ifjWoDYS37b6vmOomu4LD6sR/0CaLP/bLCklf+7P/bmD/96v89RTTzVf+cpXLj583/nz59sY45e/+rHnz59vP//5z7/58H0/8iM/8g4L8r/8l//y1lc/793uu3PnzssP315bW/M/93M/d/3r3e+H9+/d9vf7vu/7Dr/v+77v8MHtv/23//b62tqa7XQ6EeATn/jE7ic+8Yndh5/z/d///Qff//3f/9Z2NjY23K//+q9f+nr36ffT+m0klGhidMluOcNsCpHPToAOZx1yJuuv65Z6mhh6tmnIKIkyEqUkRtDe0xOKvbzEFRnb1SFhNkXUOk/sNjkiyyRhmuFlDTFJhPNenqY30zGduTmMVpjQpqSlpiYKQxCGnXHL5v09docNtYW6tQSp6GIQpiAX6W/uhMb5dIIFiD5QOUceDcJopNRIKZEqgUkFzCwMAeElhSmwvkULgSLS70SOnDzKiVWD8oFpE7G2ZeIcWS7JZIsRAqEKpMxwTQ1S4j3oTKNkOtBJIYgyUhpNmgOlBDZPQAuoqpSaPT4YsjCYY1JP2drdot/v0C0L6klFt5sztzBg0jR0M4OOBU5WtCFgYk70LdN6iMkTayKTAhlHZDpH6A628vT7/STfzz3VuKWtJ0gjkyrSR4KtcTEgjKaTZbRVxCqIRY6VFSFmSDFr/vo05fEedN7jjasvcG9zl7rxiWGmA7lWtIUmm0SMUpBBHiQ2eGIQKG2weIzReCnBt0Sh0JlJxTyB3GSzhpvDtwFyCcGjs0RnFATyXoHzAR00LnoyIdA6Y6w9iiR/V0q9zWDKNNoGVJnhQwAfUSLxCEUnR0hFcCFxE53DmAyZKZrWE41ECodUEiUELgZCAD+uKOf6tMMht2/u89SHnuTatVtY1/DCV14Cb8C1vP/x87x+o6Vb5tTjPfqdLk+cO83m8jz11pj5bsGRMyf50suvcvnuAaiSb/kT34q3U174ykVeu/IavPgcJ8+dp7WBx8wmr1y9xtXr25w80uNm3fL4E08x2h/zpc/+It/xnf8TW/vbFJknioLDgwN6S0tI0aEZT7CZ5NSpc1x68wYjZ7m5d8Dxo6s8/5kvcuqRD7Cw1GF49wrT4ZRHzz3Om9ca7ty6hZuMOfPUUxzbWCdjiqtqet0CKklHGfZFSr5EKKTRWCcIeGzw5FqCloBheZBTT/b53Fe22J1MOHJsjWxeMDcYoFQkU5Zuv8PVW5tcfn3Ct3/Hxzlc3KbTGTA/6BN2DjgYTjgcbiMraGOgW8xRrBZcunKFUhuOnlzhYG8b6jFZbGjcmC/+p89xd3eXMxdWmNw/ZO/uiKf+6Icp+nNcful1nIMy76DcJrsHDnlqAW2g7GgEilHVsLDco1/mXL07JKiSAs9cJ09cxBgwwvLY6RV8hM3NCiUFZ44VLB09ydkjGcNlxc5NyzNPnuHe1Ve4MtynaloQirq1szQ5Q6E6uPaAQniMz5FZB601Lggqp2na9Dk/smRZF33udUYMqwqnNMKm1HYpFLVq6UqJ9REfLN41CJHj8ThXESNYHxHSkIlIJzd0y4L9ekQUnsZFTAlSRoQyjMZ1upAOEPFoXaSkyQjBBYSe9eNmuIUsz7hw4RQXr9xHlRrrAz2tkVqwPbQsLbR0+4tMq21GbbILvvric2wcP4GWILDJpvjQmSwh8sRvabFFUhEq4swa89s9m/LuNpnZq77zlnhw4Svf8RCRduThnUpcnEjCTfgWvEDnXdAKokfGmcVPpDRnIRQIQ4jiD5MT5vf16vW7+Bn3OJOJ1+tDSwyCvCgJzjKdTpEqw/lI3STmca4lPSm4X3uy3CBFxLYN0gceO3OKrS9+CTep0vSRBhUdmc4JMp0/JYYQImrWUJe6S+OqFJwlJFZJEBHtFEEKtAGtdVKjO48WGqlNsvU+UMGq1PDLpSbKBlrLoBywur7KynJGjgWnMELSYplaD6FlUMxC4WxIA7eZkjV4l3iHHoLw2ODAB5yUZCoj+EBsHC6kALTcSIwWCBvQMgMZ8EESqWjrgAs1ikCv7HLm2KkEnAuWQX+BheUltg/2mYyn+BApcp34v9ERg2c0GRGdpVPmmMzQtpZpW9M2niwrmDZTym6G0jOGtAg0tWUwN09mItFatMlogk8D45ll0/uGUmoEcPTYCUx3kcxogg+kS32Vfk4ZuX79Bnu7m7iWVFcrSR4EQSkKlWFFQ2EyfGghyjRYxtAK6BUlcdJipUxWUaWQeYaa1jidrNJlUYL1BCDXBt9ayk6HaXC00yYNX2f4Eu8UMssIpIEcPg1Wc60JGSn52YeUSOxTA8+QIARSpvARrXXiI9qA9Q6LhyBRPjW1SEQGtEgBa0c3VlmYy5F+gilyaCWtT3bnLOaETKNCRZ5rYigoM4lwEUyOVxFlHcp5TC9DKwN6DiEt1oL1mskk0DoL3YK80BgVUd4iQoEykGsQQXFYaZxw2CjJYwQxpSz6zOsBzWhKd2GJwmi89UxtQ24M3jZY6Rms9Dm2vsyNWzfBOZo2MbktibuohEEXno3VVb70xecYLC9ybG2Vkb3PeHeaAlBEUld6H5BREKQkzwqMUty9f8DRvuEDTz+CNopqb8qxIx3OnjvPF597kf3tBing6GIPrRwZjo//sT/C5//Tf+Cll1/j6KlHmD/a48LeEV6/eJtv++aPIZttKBShgfu3tpFGsL+/R3duHtEecvP6Xe7fvsbq0QG5PI7uRabtIQtG0wyHXHz9DaYESm04spSzvzdEnT5CkTd0pGJ62FC3yS5+5sQqk1FDLiRLcz2M2wTj8bnizn7Lnz65zublqxwMPX66x8HODqvHTlCrgovX73L0QsPpIwu8/No+x04scHV7ymBhwKgd4aYtRWE4tzbgqbPrfOHFS9QBEIkXSlQoGWac0IiMjiAEPkSIM1m2gWgdeb/kcFpjtiNgyeZKqkoihKEsO3QONVaWaJER2UWokJTKmcLhyGVJnklijLgoiFKQxQg0CGUIQqAeFD0i2epjgNZH1o8dYXm55N7uFGRBrjXz812u3t3l6OoChVCMYsSGCXmn5MqV2wz395lbWJidddKQM361l5d3Nu/ejcz3tQejX8+aPTlKBCm0w7cNMdTorCCq7G0LsEgavlR7QUo+hgcpwZFktX+w3RQO8o31jfU7Wz/6oz+68uyzz05WVlbcr/7qr/b++T//5+t/8S/+xa3f6/363Vpfd+Mv+hZPOon7GJiMp8x1OxR5n/F4jLOBuq5RRuJiRWZmYFDhKSQpFU62RC24GTWl7iGF5PbhkAMkY9OhiYIQGwbGUCrJbi1oQ50KZFRiuDiLaBXW11hXE2UvNeOU5OKWZ2GgOdjd4+7WPpUTyFwTZymOIgQaIiEqrE02KG8d3vnEakDhZEQoCcakCUhwMzVXBjYmm63WSA+5DITZhK7b0xw/MuDYQJCrkpGvEFEQRaBqFUWUzGuIQhKFIdOR4CHvlMRZTnmauEqiTzDuxBUEaTKsbUF4tI5MqylVXSNMyZ37m9TNlE5vnju3rlEUPSaHI1aPbJB1B1STIbv3dzkUgfnBHP1egQ6CJiHu6HYygiyJWVLslGWB9w1COlSmqaZDJuMhWsP8YIn+3Dw7+/tkWTfZRVwEJenOJZD8tG45ODjkA49+jOVe+ttEJ5BIQmgI0UJQBJXxqc99lsl0im0SB00pTe0aZB2QUuJdwFqPNZpCSHwQuKbFS08QEeEjmRboKMg7BdZZRAxY6/BaEiIYrWi9IzhPaB2ESDfPads2WRBJU28FuHaS1AhRJzWTMjQCpAeUoFWA97jg6ZgcZy2ESBMDWiebkImCoXJQOVQIxCAgl8Q20tQV01FFVuRok5PlhnZcI6XgwAeee/4rTCrN02c32NrdpOh0mTjPL/3K53jiiUe5u7vFXGee+Y11du5ep9ubp7M8x9C2XL52CSx40+HMqWPMKUndStbmNe7MSQbLA5wbkxnDkaMrjN2Yhfed4NzRFep2zCtvXGJpeZmzjz2GdyNGhwec+8i3c/H5X8M2Ew5HLbmGxbU+OMe0abD1mCPHj3C4dQcpAuee/hDRWeY6hvPnn+TO9Wvs721T6g4XPvp+Lr74ZXpmlVdfeInpuGV/b4v5/oBIJEiR3u/O4aLEhYbxKFAOSmJ0yKBp24aqVsz3c0JpMPMLrJTz/NFvfh+3r16hsZbCKXa29xisr6EqR3fQJzJl+fgi9+9cwuQRYR0uGKbjmk7Z4wuf+Q+8/71PEoJkeWEV1w45vHMP1S9p8WTZPHdvvEq5tsSHzz+Jc5vIMODUE8e5/eZLFI/lNE2Nw4CQHFtZ4srdXWor6RZpfw+qyMFozJGlDjLLOJhMOZha1voZK4td9icVNmr2q8DrVw944kTJyVXD1rjh+Poxtq9e5Tc++zxnzp7i6NoiN69fxVrLnZ2K0ahhvtPjfjVGZoZ2UiPJkvpLeJyCXOeEaGmaEYfjFqEFTFoQSS03V2ZUzmHrSCZgOAu00UphkHjtiTJimwodlyFAG2YN+xjAWUSIuCAJmSZoiUaCd+AFUipctBAlWmXpuCpEUg7JmFSDYtZ8kzHZ94IiBsf6xjLra/PsjGqkUkwnU+bnC27tHHB0tYtWEySS2FRobXjzled4z3s/zNraPBoHxSANwYEHyjhmTb63JuKzovOBrfbBejd77293CSTv5O48tL0HbJxZxy9t/0HhPNvPGCD4FPyBAK3T74uk7AyJ3J1S8JC0UiFjRIcGVP7b3t9vrP8OSwicT2zYEBIzU6nEldOq4HBkcRZMEZlOpkSR0pi1EORS4p3HywatFJkxBAO//LlfYzSpwQca16BkgFmStvQ+hWwISSsESgrmFvvofI523xInKinUmfHcvAIjkUqm8BiRhl4uRqS3CAnGJAVpJNmVo5T08kVOn1mkXzSUhcDahhg1UrY4oUFKpIwUWQ5G00TQIiXC2qYhCoUygth6CAotk1XVy0BmNE10SC0RPqE9Qi4Q0aI1KDlTiohACC0xKlyIZCKihGBlsYvzFhUjc0VJ3VZs7e0xHk3xfkJQGtFYokwMw6ZpMLnBO5/sztMJUiqs93RzkxTQUtDaljzXTIdjpAw00wlZPoeNkW6ZI3VBP9O4tk5NVSPpyAysZ3B8jZW1+cQ6dsn+GX1SuYR6Qt1UfOmlV5gIQzOsqPHITBOtwyBoppZISlsmJrIqIZILMCHSNhXRe2Q0WBnR2uBqSwiWTBhU1dIQIDPIqaNUmkbDRASMMETtiW2L0JoYEmsV5yF4WpMG4FonvqhvPajkerDWorNkDyYEVJRMm4bgHUorLIG6rVPCcxAUShPaNv0+o0UqiQuBPC85ODxkOnbMF5JOphn0SgaFxGhF78hpPvxHvp3hrVf58hsvcrg7QuqM9bUFBuWA2jrGTcOxk8e5ce0a40mLChHftsnaqVsQ4D10TUSGgLOKOkoyGo6uLLOyuszu3h5hXLHUm0Npxdygz8axNQ4OJty+cY8w36GxNapxmEKxuLHK5HAXIwzdco3DcU2uOpw8cY43Xnud9Y01XIi88tzrrK0vM7e2wsHufYb7m5S9Ze7c2kd7ONizOFKDSAYHzpJLg0UTZMJVRNGiZIe5xWVu37jNo6eX6C4U3Li6z5UrX+Dk6RX2dkc8duZRXKYZ375D6HT40qd+ibXlef7It3+Uwdw8O5deYbkXubFvubN1mSdPriBMn+AFSmVsbBzD24Z6tMfCxgqbd26w+uhpVrtz3D845Plf/ffI2GFtpYtzDbd2GqQJzOkua3MFUuTcur3D/JzimXOLkOdM2orCBBbmc8aHsL29z3wGp9cy8qVV3rx9n3vbuxzuHiA6Oa+8/hWeefIcY7fGnc2b7B1Yxtbz3AuvMqnSYGBzc4/D4Zj3nNiAWy291ZLQjnnyibNcufxmYhG3YG1DiIbxpGbQK1Jz2wuskgg0KjhsFMlaKyNZaaid4/KtTeZOrSFcRafbo9LAYUWNZa5UnFjIidHSBsXqYIGtvSnORAphkD7gQsSHliwzgEaYEtwhEBCiQIg80SlFREsDOBSBIDUXHjvHrc++gJYFVA1z3Q6vbG9yf2ePE6vzFDlUdUB4z+7uXa69eYmnvunDaVj41tH6Qc3Du6rk3tI/PqzimzXjfova76G229um27fvi29ZiwXESLQtMVSgDDpbmk1dLZLkeGAWxJQ2+MBtMWv6vbXTD0JBJKAe6kl+owX4jfVfty5dulT803/6T48cHh7qI0eOtH/1r/7V+//wH/7De7/X+/W7tb7uxp8Qs6S2GBEhogX44KiaMY1NipN+fw6lIs7Xyb0AdEtNGRX1nn0L9lt0+7QB4nSMio5xDCgVya2HoqCuPG1UNL5GxCnRJ64gFvCzJp7KaSY1WdFPEmnl2K0Mm3ubuNqCTz+cb1JxkdLTPSFoZGiT5IR0zZkLTRM9MgZq6zBC4ZVIF84IdJT41qbprFIzS6LFBMhzycmNJVYWcvJCQuuwriUHrGjxViBwdDo5IUqUymjbllJK2hhoo0u8n5Cson7W/CNYQgwIrbDSYWUKobDNhMmkJkiDlvlMbaeITUW/t0h/YZGFuQVCCOzu7tJUFUakdM3xZJrgzCEStQZp0EpiQ2QyGpEpyX7VUNtpQseLDK09UkiG4wrCPmWnINOa4eiQTMNcp0MbPcoHdnd2mVrH4nzJ8rF1bFvTHFZ0un2MMjTVlLzsIE3BnTubXH79dUIUHIzGFIWiasPsxBIgSAKQKUWUGu9tshhFRQCETtw8oxTCBeq6ws0YNNFFVJHj2zpF0wlPnDqCAC0Vtm7RhaF1dbKspMsftFIUWoIDZTIiCilAiIBGEVQqcBECHyMu9WtROgepUjiK1GRS4mYpyhIJLiCiIMtyohfYxhG9xeTZDIYtmUbPkunxxOMnGPQ102bM1Fp83fC+b3ovum2pogTXUHiPy3oIJ5FFzpkzZ/nCr/wqrW/45m85Q92MuXTlPrtbE/IFlQJC8g7ttMJiwUSWOhknVzoMd7ewIfJ//MJ/5E/+sW+l08vY3b5Lpvtcv3GfS29eY3F+Ab87JbQtly9d4dFT5xju3mf99AY7e4fI4OlOa27vj9i5f53pmTMcOX2W6C3bW/cZLBzh05/7NM14l+lwyrjZYWvXsTIHXlZMm4rgHLkWTAREqQkuIrWkqhtkriAqOlnO+UeOcTjcY/tm5NSJZUpZ8NnPfpkPfvAp7t28jpWGpSMbKALFIOf80xdQRnHqwuN01W1uXnyR0xsL7DQZRzdOEMSU9z/7UeZ6JU3dUHRLajFl0N9AdHpgW8bDPWzluHDuHMPDMdXBlKe/6Vkm+2N6zzyJw7G4sEg3FNy9e5PFnuRGpnBYCJr5Xoe9acXeLNGxXypkiLQuoBzMlSVIgzSQkXHq7ElE2E7cpULRNi2hbRnVns17u5y/cJJb97apK8eyC8wv9BlNKo7KHjtDz/HFDlmZs7s7JkaLUB4hJcoJQjDsHQZEXmB9YsuE0KC8S9Z1lTABhAaHQMVk6VJCsNgbpOTdGHB+Nn01GmkMg0ISgkIrhdcC6wKuseSZQKIIaAQWKTVZViJkixACJdI5JYQHOIU0IY7CIhTY6Ml1yZnTG9x77hVQOQJNr8zY26vYHdesFoo8V3Qqw3Q2lLr6xqusLn0AFz26IDXP3uLozcrGKN4x9U7fe+AzeciS+46C+O1y86ttve963uSBh/ndRuip+A0ze/FbivIZ9gHsLDglDYxAI6R6u4kZ/ex76flhxgA0KASOh0bl31i/50uR5wWtrdLnSUmMzohKUDU1IVi0ljQzNtr8XAqZq22DKCR5EWeNuGSN3NvZp3GO4Gucs0jrCSK8VaP4qDAkxhsEut0u0UdcPcU7R9QGIyLCqaQOUwItkwLMhYYQHJkpscEl7rGANqTAtohkbWnA6kKX5V5GoSIBg3MeM0smjlGmT5OPlIWcBV7M+HEmoTaEkFhvGbmEcShKjYuQZxnSaSKRIjMzO5xGohExIKMiUwrvG2SmkQiscyADTrXU05YzR47R7c/R6Ra4AI3OKMuCGDxtPaUwGikUUzvFRY8IKg0J6ynBtpBnqS5wkdIUSJkYo728gxCOadWgy5K2qejN9xFBYtuWcdMkOkpoyI0gK7tknQ7OekajQzZOPUrWGaQApqBTfSJtCtEInoPDKVcuXyH4SExGBVRMfxsRAxUCM2PvBRdQ3RwXoK5bRBRoleFkIFepTpJR4psWJwXWA01Dr8iQEjqdMgWDCIXynsbbdFzJDJV1SBtRZQEEVNAoLZEx4mVSoLk2oPIU+qdm6sU4U+13VKqdJiKgg0dOW1SeI6sGsmQdF92cZOoQ6ExjhMSonOFkRB09j65uMF9qThxdIFjodXPOP/V+/td//b/w7R9/GtrImZMnEFHQ6WoWljqsrp/hzTfu0s9KPvYtH+D533yJ0WRCb3GV+eVFRHvIcFRz4/Y2Jx5Zpz1o6fYLKllxcvEog6Ul1tc3+OKXvoDOe4S6Zn97l9MX3kNja6TUbJw6jheSyeYug7Mr3Lt1G+Vh4/gZfDNhruxz6vwqt25dYnF5lZW1RVzbcn9nn/c/+158NSbInOA7TB0cf/Q0t+58hkfOnWanucXB9pgoUs0oTYa3lta7xOiUmraukMqw0DdMxRzVJLB+quBg6pITRfXAS+5s3mZzf0wzbvlT/+OfYm1tka27l5lTBqMt5cIyfbtNO6nZPDAcX1cM791m7dRZyu6EenRAd3GF3e0haljhHFz+0peoVlfYndSIfI6Lb9xjZzTl5GqH+fkuVd1gTcHygsCGyIuv3uLk2oCVuZyiv8ro4JDQkRRZRC72eOnSLR47vsz7Hl0n5prJQY/7u/uM1SInT57k6tUvgq24d/sW2+MAEopOyeZew3hsITdE7+j0B1y7c5emjQx3aqKP/Oz//jkKnXH62IAYHHUVqGRAiQgyI4o2NbbD2yozKWbCj+DQSqOlRiPIi0CmS3qLK1R7+7TeUU+gEJH5bol3EqXg8t07TNsGNa2Y75bYmQo/BgFRIIXC+ylRaQiRTAWcmwIBLQVBullzHKRznDx1lMUXrzCdJDRRXuSUZZebeyNWFkvKXo5tCgiWTGfcu/Ymjz/zPkyhZ7bYNCyUMjX/HgR8fC2r71ff91vXWxPUd6wHw9S31INxJqRwNSYvkbqY4cJARDkb8s4syQ+eI95uUL69K2k0mvAss3bkrD/4h9jp+431O1w/8zM/cwv4LRbjPyzr6278TaoJSswOSEKS5Vm6UIsKk2UE7zE6Ja9meRfvkrVbIXDecurUCW7d36QVBTYY/GSICmBD4vcFPwvqjoJGGKK1NM0UITVSph2VgA9Q+Rppcoo2NbG80BgpMNKgg0lMB22wLiKJSK1wjcV5UFmG8y1uxlZqo8dFi51Jk6VU5CbDVZZSZ9S4xEGJEWm6QIuzDUv9OY6vZSwvluQyI1qLaxOU3UuJDNA4Tz1ukUpTFgVSK6qmRsRA62VKqJUCFSXeO6yzoDVqptiIIuKtR3lDGSVRNGwPp0RlaF3gyNw8me6T5ZpBb0DR7WG9xRQGEQRoQ65yvJsg8w5aaKKtcb5FFcmCK3zAEChNYpFJA/O9AaFNDUWlApPhlIXFVbSw1FWDtYCSKC2YTCeoomDaRqomTaq63TXme/NJvWV94gjlBmUKCJHoWqpphW0dbRtpW0emIq0PaJ2BljR1So1WWiGyjGbaoAW0RgCKcgberqIn0xIdFcJFhBE00ZJLgVSKaB1VM8U5hzCGPKSE4aqxoBRSpPdNcA4lFBpFjcVGgfCeDIkPERvczIKdTvCTyZRcZwiV2JBFniG1pE5JFATh0LpAu1nDNkRq32JtpFfmCAKtbYnekxFY6g3oDgpuXL+OwzKX9YjWYYXg6o07dKTi0AYOfMWwukjEEaLDeof6yksUQmO6mue/8BxRd2iqKd5Cex86QnCtvsGbV++yMNclVymqYXvnkNZ6fCN44sJJDvbucn/TInxAZh2mL79Crj07o11i43EOamcZj16nbSv0gUbGZKfZ3tnicDTEiIKLl67z6qUr1KMJx46vsXFine2dIW2wjCZTru9OmAzh0VPz2HEk+nQcqZhxEsM4qWVjRMWEFZi0NYNBh9F0xO6w5s5my/bU8YHHT3P73pBT24cE4XjsQ9/F//X/+V8Y5IrbuweMD59j4+gynSJD68jCkXXW6oY339ji4tVbnDmS0Zs7TjUasTPcRUbLaGLpL2om9y5z9c5dnnnyGXqDI/TWl7l3/3myYo7Nu9eYK7rQemw9Qhc51gaiybBhyngErgVhPCtLBa/f3GE0LjE6p5Mpep0uh8MxzCkGfY93nlYGRm3L537zGt/2aIfBRqTbX2BSj1g+usDGsXlaG7h354Bx3XLz0j1aZUA5Bl3JeLJPv5yjbadIMWW5V3Dh3Dm899y5d4+JjWitUEqBNAgTsXaCMSI1BqUFBFUMqSUVBTYqIGJMpBQe26aGXBsi00lEmQwXWvomY+IatAloISgEidVkcpzzWOvJdIZWYNsRWv3/2PuzGNvS9DwTe/5pDXuIHfNw5iHnrMzKqqyJVeJMsShRImU2BMuWLBhooNHqvrIv3BcGjG7Y6LuG0fKNjbZso9tDq42mJdOmSIpiUWSxBlYOVTnnmecTJ+aIPay1/tEX/z4nM4tksSh3m2wjf+DkyRN7WDsi9l7r+7/vfZ9Xo0yZ9W5JQMzpeilmtVEkEQgobQhdxzNPn+Kt9z/kZJZLWalAFZIb9w45tb6IwDLRoJxAKM3r3/sGLzx9isHSJiJlW/5H6+MMP56EejweVD9p+j0W3v0ZnL8/Ld3uT9yHx9bhH/LvAswZf+LJgf08rRdStBD8nKmY1VW5jfhxuHWeqmf9jcjNQSF4zA3khyzOn66/vNV1M7yzCBFRSiNVgZAF7WSKiw1lKUFIJtOWhX7NzObSTBrD7qFnNhP0FkvamefoeJfJ4SEiJpywdF2DjpKyNHO7mEJIiYwRFUGGgJvNcF2XebfagFboKKBUpMcJqtISXUuh55bE6PNGOMDQCBYHQ94DXry4xGeejnjbUOmIDyknCEeJSgofHaRsM0WJ/G4UkeQTIUQ8GhsCLmQmtCokRmkKBWquMFRCgMgqsJQipZIUSuB8Vhr7uZLMdx21NCgdmdqOaTtDRAgx0atqnOsoqz5l3UMbjW1b6l5N9B0CT13VuJCZbrQzhFQobeafI4GQAh89IubBnbMBbTRVVRBjou08g4URTdsSEIiUWXpNa3MzwASs84yPjpg1HS+88FmEkERfZCtt7OaNTQhS8Pqbr/Hg0Q62zZtkJURGhBT5NYl5cJFPgaIwBOtzgFIS4BVJC4L12FphygIdPMjAcHlEiBEvFSkFonMoNE5JfOPRCYRROdF3jpdRIqGMnCtzIsbHrJJ0EaElVb8ihMzkEykPS63r5mzYQHCBoiwAgTCKojaZFZjAOkdRZF60CB1GJMoSop9RisClsxtsrfc5PJpy7dY+C4XnzNZzXPvgO7z4zBpXr3/ISr/HylKf7XuPWOmtceODa3SzjvOn19BJsf/wEc9c3qSNhpPjKZ/73Oc42rnP7e2b3N85IoWOo5MDHt53bF1cZ/vBAz549y1+6dd+jbObG+yfdCyvrnP9g7eYTA5IPmK0ZtgbcvfWPZ594UXq5SHjo2Nc41leX+f9N7/PwrMb7O7dRwrB4cEBR/snbK1v8uqrZ6grzVvXr7J92FEauHzpLOXA89nPnOL69Vu4dkatodGKNliSV3gVKJTCS/DtmKQNVVFxanUAq4ErV/Y4bCwhBBb7fd794ApPX75EjBPuHk+p1jf47h+9zodX7vCP/t2/w1LPs7CwxsbWGd74g2+w0AMxbjEyMFpaplcoth9N2Dy1yaQ5RlcD7t+6y/bePoXSfO/tmwyWRoyPJ1x6apPfe+0Wf/PX/j6v/e7/E+EtgiNms5Y2SaY28J33t7l0ZpHT+ohKwXC0gBtPSW3DnZ2GW3sP2VgyPHP+DDZaiqLHP/uNP+B//N/7Gp99+XwO8ROK45NIOZSZWxgj9Cy+80SRQDsIfRAt3lcoAqmMuKQJKA7bhvHxDK8NzmiWlxdJIhBTREmNi/kqqlJgwUhq3adflaACBwdTXFrGuxl9ndgTkn5P0wVLEobe4gLOtshUkNC40NFOLBGRa23FnG8OCY+UJdIovGszAisEtMjKt5QUUhXE2BF8ojIVZ06v8cGHd4lJQXQsjUruHxxz4WjG2jLUlcS2CRE8t258wNHBI9ZOnSGRSEmiZN4n/4nE3B9an6hjnvD2fugxjxtuH/9ykh/dGB8PIhukjmgzQCjN40DhJwrCT/7no8f/Ka8xpWwJzh2/HNyYDRoiYxw+XZ+uT9dfaP3YjT8tFIXJTbgMK82sNuEjUiSKwuCDJQJd5xnOweJNZ5F03Lp1CyUNSXd0tqMICSRoUxE6T8Lj4iRvbFJJ546QvoOqwIiE0XMlilcIFzBS4NuGdtZAVdKFjnZ6QJi1uOgo+wNcyImsOEfnPUolFDlq/TEkNM23SZo8zURImuAgBGxKJJMIskewM1RsOLXaY2lpjV4hiPaE9sSi6x660MQkUAq87XApQUjoSqONYtxOiUSkz8dwbYNEIpUmRIuQklk3Y3FxmK1zSeOEIpiIKhTJdsy6Fi8rlIqcP3UWQWI4WqAoa6bzUAsRYOYbSq3RPqC1AgxEQZMspRT0qz7OZYh4WVbMJhP6vRLrLCjJdDKl1AVKJKaTBqNLiJbGzlCqRxSe4XBAVWRehzAFwiaKuiQeHvDc577KcGmNlAL9USQQSGhMKQhhygdXbvKf/5/+KW3STLqGWBhiVJQFWJ8LZVOUSCVBaTrnUKYkhvm2WAi8zklcKoms0KwLRKlJ1tGrMzMpxIAIiV4qcMbgU6IjIDwkreZpdWC7FiU10+gppSD5BCrhUsgXYvIUMEkJzhEal99X80GU0QZiwAuQWjE5mRJFovRdbqDIrBY0SlH2FFoIgvNIJK1tqKsK7wVdA+MJmKLkqM2pwlVRoQCnIyNTkJLIG6YENpW4UOBbS8/AqO7hvWBmW1zMDVVTVMxSYvvgiBl9jDW0siVKyeF+mH+uC0oBPiRskEQExls8kugS9sShpMTL3CCyXUtSBU0TsW5CWWp6TlIKCNGidIXSkfNnnubOrdtcv/o+r776DP/lP72KD1DWPc6t9ummU5IDY0qstNlaL8AINU85lEzHDVVdUWhF2014uFdihgWtH3N0IikHPdpkOZ6ccPW9O+w9/C946Zlz/P47H5DqEYfO0dy5R0/BYGHErD9ic9RnUWzzO7/7Hf77v/JV3n77dXp15MVXv0LhLP16ws7t99k5HFNWC2wfTSnljJ4KlJ2lv7KKqSuGZckHD2/SGy7y7DOvcOvaVR7c2WbQV0wnJzQnG2wsaPqlxojE/v4xutD0qxJTKA6OLfLpko3lEXV1iPOBmZ9y6+4tTv/qr3Dn6kOeXYDlhQXef+8eq2tT+sMht67d54XPvUoKMw4POw4mks5GXnr+Be7ce8SDPYt1ktDMiB9eo1CCfr+HFi0xBE4moMtAVReIqIhJ4oPPjS4tEEljkiAljReCkCJCe3SZ6GYWH0HEiLceUwdU4Qkps2QKoZBtQAiB9y4PEHTGLQQfUUZTGAAPGILP6YUp5XRKYyoSxZPkShkiQsBCv+Lpc+f5wfv3CdIjk2FpWXPnjuX4ZMa50yOmLuHHEWRifHzIt77xm/z8L/9dDGsfs748/uD+kFpPfNSO+6GbP7meFKA//OXHjcQ/2Qz808tZSCn/nHg8bReKXDlPs71OGoQqsyIwxflzfkJzmGvtpJ7U0B//HtPjzIBP11/6aqYt2swbzCmhpCCkgPcBoSSd99jOUfV6uQXsLQDeKpy3mKLGTybomFgeKFaHI/qlZmNtAUOgmVm29yd8cO123hClRKMk0khqKXHBk4TMrvoQsAlaoSB6hJI5lCf16UzKGHpvUUbTq3osDyoubY54tJM3r5vDmjBriUowax2lLoCENDn0p0ga50JWoMbczE4xN4JSgplriCSUMsxcougca8sFSUAIBYGsdhMRpAclFEWhM+N4zt+MMaFiVp21MoJyNNYTLPTrHr3+kEJqpt2UqbWMj48pyj4xecDNr/kq84yRxBSesJt9yE01mcjnxfl1yVqHNjK/hlDQNA1FUXF4eEJMkX5/mZAcVVkQvUVKGE/GGXPiHefOP81gcYXgHFKl+edaIL1mNtll3Hl+7/e+TVKGSXNICLl+c11H0gatNSpCcJGQPLNocziIVJS9GuHy4F3WVR4oJonXgp4ZUKjseJnJQOMkVVngdKKbtpTDGpMEdjIBIZg1LaUxFJXBiUiKERUEUmlcO6MyBUWvh+t8ThZOiaosGI8nKKORRYGWkiAyE9DbnFpvfG5xpgi9XvXETlhoTVlogkgIbVBaoITHmBxks38w4fLnL3D34SP2DsacO3uWe1f2WN5YYTV5VjaG3L+/zfLqIg9uP6Aa9qj9jEFZsHt0SBIK28x4/du/z97OA1CGYMdE16Ov++jFyLmNc1x67gJvfOd7/PZv/B4vvvIsN29f5cb7H/DVL38OVUsOJhNKrSj0XLUaOqbHjuHKiOQiyieefuEzdEdTlK65cPYUxWABU/RZX1kkeMv+zh7r586i+yc8uHOPJAPdwYy1xZqHFozpkI0jepcV6smjVMblpC7vZ2beYbsTRoNzjGcF1x7s8pM/9QXE7AgjPW2rOXNqxN0bj6iiwk3GPGqnrK7WLC8tMdm7x3R8G1H0UCywXI54++Y1vvATpzAK/uW/+iZ/7YtfpjAlle2R1IRer2Rpbch3f3CHlUqzv2NZ6Sn8BL76/Fn+s//9P2FzpcdiUeagxABH4yl9UfBzf/1F9nanXLl9j3HnebppSV3AykBlaj77+dMcbB9xZ3ufWdMSUzUPHBLcv30PrQML/T51fULTWiappZ0PRgQK6z1EQxIJN3csiJSoZR4kTGcdvV5J21i0NmglcqCSVrReIlIgzZEAQWQGqdIlpUloIWhNwXELLgZ62pCC5NTGCseHM5om4pNHBei8pS4NStW0MuLsjKosISiEyEE8KWpk6khOooVGhBIlIlIHfLAIVRMApWTeJ3jPM5dOceXGPRKRGDxbwx6Pdo7ZOWw4s76QOZRWISMcHR9y5b23Wd86P2/APXYtyE/4Df68YeaPWk/8C0+wJGKOSIkIHDE1CKGQukeMuUaR4qNr30d1zA8/a1ZdPk4lzirEx7bfj+6TrSYS+PNf61+hFYGUPopc/nR9uv4bX+kjoOePTCf+8Rt/6qMdhDaKFHPaW9eOkUphXU47bZsZKP3RSUVKNlYW2Ts5wRQ9VJifaGWiI5JihzYS72NmpnmTGzI2K+O8s2gSTkSs7YgedFkQZUJXBXZ6SJjk9CyRgCJPH5tZk60krkMoiSwLkg+QHBqBFnr+A1BZ6aUliYQWklY6jNDEIPA+YgrH+VM9NlfXWSw0bfTsT46oEFT1ECEjoZsRpUakIqewxYASCd03pAgdAuUlQuWQE6MUIoGNkam1CKmpB31MlV+nlFnFpoVAREuUGhvy9GZpsEDpIkW/RkvDQtWjHyEahUmJzkKvysnInXcoZajKGmyHnPOFjJREaZg0HVLIXFRqifeefr9PCBGtK2LsSCpSaDWHHxckIZAxcLA/QamCpj2GZAk+8OxTz7J1eoWunaBMkRuqREQKeGdpvOfNd2/y7bffohouw+4RWgg6D2WvRIqU0yhFzAlvMV80ZMw2XZVcThAVgihzgIdQEh0jtTQ4lZi5NisHUsSLnCInZEJbj1aKdp4WK7Uk5ZSBbK2TCZmgkDIz50I24smYsupTJypjcuJXyqEfMjFvGOcUUu86yqJAaY1KEMkNQRLEziFLMvRaCGzboWRWahRS4LspGsvaygrdbErrO0otEMqAqBHJEUWijTkIwrYeLyqsgLbtmO7l+EEhElGViKCYtlNIgqR6rAwDzgeCHNBZl9UcwmEcOGNompxMGOdNBk9OrXYxUKqCFANJRIwp8balV+XYGR8CVuQCP8SA8y1CJiqt6fWzivJ7336T4AOrm6t07Yy2bdhcX+f4aJ/psUUEQaUFSczTCJXGSI3GIFKks5EUA+tLgeW6QK2MWFtYZn2hz+qo4Nbdh5hhn5WlBUJpmUxm9IYVWkq6tkMVBXHqmMwOCKuaZ06f5ps3H/DhlR0++6Xn2L19E5UsIZywMBrx8GDC8soGtjnm8P5Nnnn5ZSY0SNkQwwBpBDt7j7j6wQ1Gy1ucP3WWwaCHMhK6RDEomfgxIQnWFvqMBj12DyccHB8xlJKFvmH74SEunaFf1FRFTg80umb3ZMr167dpuxkP7nQsr9dgFF7XWAdKWOzRLhc2T3Nqy/Jf/9bbbCz0ODk4YHFxyJXbBywtLtApwZ0Tx2JfoaoOqZgDrMF5T5XmYTNeIIQmkgM2lPXMCGgilZQ4F1Gy5nDcYKMmSp0VssFBSKAiIswYQIZmG4cqakSc5qGNFFnFLAJSK5LKyj+ZHHKeCp+ERKTHerYwV5nkTlYgoXzk0uk1rl+/xzSWJALDoqTuJW7e22d5qUaTQDlCkNRqyAdXb/DS7j3OrV/mow7YvFhNkEOq/uwcXfjT1Xx/Xsrvx++XHvtSfrjRyLzIfTx6ElktJJPNAVrKgCqeNAeEyGnvQv5w31E8li1+spQWAvFp0++vzNK6yLgUQm6OKEE7bYCEdQnnQKmS8ckxRb+XA1qAk+MR66sF9x4IJsdrvPisZXWkaNs++0drTHYCMjmchIPjGdNuCR/yMFaZQ0r9AB96zKaXGSzcR+mO4DeJzQgbEloqksp1SEiRsiqIQrGxvs+pTYVJGyTXo1fcpqoNAI311AlMl9+3joCBDHHvXG7gCEmwNieRCkUUAaNKbNehlaCbM5Z7MmGKgi7JzOAFQgyEeSfbIInBI5QAKfO1CYGKktRFlDRMXUeyji5EClUy7PUZLgyZzRqEgEG/R9O0uHZKURmUFJR1TRsENka0yFiOrnOZMVgWBO/RQjJrWkxpsM5TFjW6LDLiAyAGirrP8ckULTWEhPeWxltS7IgYbOcJtqFpWj7z2VdJsZ2f52RW3tERvUBIw917D3j4aAdR9kg2IU1BSoHkPUlpZrMWrXOQWUbpJAwK6wMhBFQKRKPQUlNKQ/CRFof3kaaBuq5oXaCZdYgYcdGjkyAJSxCCQgg6H6mKEjlvnkQiNjh6qoQQqHWFN5rpeIrSIjf4XHZuaJ0bvHVVoZQgBkGhFB0i/8xcxCUolEYpiVAK6x110UNax2DUY9ZZRFFwMp5xbvMyzz+9yN2dY5rJMQbFyuIiH35wjd7KEtoodvdapuMTJB2dS3zus1/msNlD1RXLq2t857Xv01jBl77wEkfTCapcRprE2npBrXvIzcR0+xFRTHl4+wZlf8CarjEi8MJnniHYRJCCXr2IP5wQpzOqzSFBSt798APOb64zWlpkMh2TaDh38Tlu3Dvg9//Zr/Orf+evI7xjfWOF6C26HLCxtcD+8TEbpmR7+yGzvQn9nuRw7Dk4bjk59hlrUhlwjqqfeYSTmCh0hRKBUVXQK3rcuXsEMfC582uY8R69QoFNPL06wj3c58L6BZRuca5FdBNuPdrPjbOZ5fzZizw4uINt9miblp3JhOvXdvnc557lM08/j64KClmx19ynV/Q5/cJT3L//kHv39/ny1z/Pt964xdbiiG+9fZOvf+153n33OnZUMNOGS2fWuPVA8M6797l46iyjKtFWjoOTGQuDBT7/4nn2D4/4gzducvncMl+6vMn3rOON9x9gu0BUcGfH8r/9v3+T0HmWBhVfe6VmVEum+xIhKowSOARaWCpZ0MWWFKb0kiaEhBf5vKpEpOsK1noGFnt0NrNDU4iUuiAUAmKDjBatDLMgsEkxI7IoNdELjCmZHM1o20CQEK1juDCgm1pOjjzHJ2PWwxIuBlwXcpCShhgEGkFVSogaqUDIkGv05FFGIEQkxEiYizRkzCrCJPKwIYrA6vKQlV6Pg+MpUmuEFqwtDXl0PGXceoJwgCQkR0Lx/e99j6987ecQVY2Sao4EEfOZ5Z9e7fzpXxd/4v+flD5PGnEf9RhCaEF4JBUkBYrsWBDq8QP4ROn05JBy/hyPgSvikzfPBwSPm4yPb03pR/Y2/qqt7ZSSm06nvX6/3/xlv5hP1/9/rul02kspOeBH8gp/7Maf0ZqizIWf9x7vczptUZVZkaWgKBQxFnMFwvwTHiN1AabMm3khAjpmq1gtElsrWzzaP2LSHtJNGpSAQIciEbTGmIQKYo7ky40vozVJKYKz4GcQMzjbGJPtsiERfU5lrQqD9RYZJcaUKKGIMRLDRyeyEOdqwEKgk8EkjfCOpVHF2uqAhUFFT2YbWwwdre3QXrE80uhiHtWeJE5KolMok4gys7G8j4SocupiTEhyE0tWhuQdMiRqsrploTfA2xz2gJJIEVEphx0cNzO6FCiMoOrViKJiYX2dUimqXsm4mWYVWGeRMqvMmibD8MuipNAa63NaZ1kYgvfYkNl2CUnbZWA1SOq6ZGY7IooQBbNmhhY9pNB4b9FastDvIxKMp222BCIoZMEXfvrrRGcpymFu+c2B80poEtni+/5bP0CZgtl0lrkWJCbRYZzKlpskYK6GeWzTcy4QK02SAhMlBFDSQFVkALlzRA2OSJIi26i1ZoYFkaeAUglC8NnaGwNECHOmUm50SjwRVSpI6QmrQiqZ7bohEWJAaY11uQlnTEllChprESlRCkUXPKFzoCWiVJiUG6pGSvRcdRFiIgZHWRu0TgxLhQoCr0v2do5zwypBO+vQZaJXSEQhUbFFUpF0Qg48yWv6NiB6FQiNCwmTAmiJS54QQSiFkInptM2DMgd9QBAp68wnlCHS2ECQgibkNGmtoUyGhMOnRKEEUiSkSshej84HepWhwKFiYmG4jJOCo+MJK4tLdG3H+OSQS5fPs7vf8tzFNYrBKk07IwKt7ZDlANRxthqFx2q/3ATzAoQS+BhAVEhZ0l8wmK5BB4sPDX/wr9/khae26JTAnURW1kdcuX6Luqgz1k0r1k+fYXPzDHdvvQsu8e77j3j18mn0Hc3BbMzO7Tuc2lwjNi3HJ5aTdgc7bcB3vPzlLxO8JyZDTDMa77H2GA6m9EeX+NJPjzg6vE/rJ3TjE2SEEsXSsMfRJBApKSVoBJPGMrOeUR3ZWhny4O4+IQb6taTSgpOpI5Cb4Feu7fGlF9eJoWV5+VnEwHP88CZmeZlTF88xnhyxuL5KLVY5vzFiZaHP99/bpgmSYGRW2wVBTBrhLbXSTHxE6oK6KDiZdYBES+hSDgHQMlGRaBQYoVFIhPfzk6SiKDVFr8fh8ZiVkLBIyqTAlSwuD9HHe+w1gS4kVPJEEfFC0vcRvIeqyCo+Eikakk6k6DJ/RpTZEkLMdsUEMSqEysNdkSQrq31Wlgz2QJGShWRYXxuyfecuR2fWGS0UaOsIHoyC407y4Yd3OP9CTstDzIvfmG18T/wnH1s/rNT7RJfth9R+fwJ8/adM0f9kOMhHT+7JaiYRHcFNctGs+wg1JIn4RIn4UfKdnB+DJ7weMb/t8WHin1HYf7r+sle2rc9aR3s8pTAa3+Wwm+mspaprSI5hv6QuCspiTGE6fvv3/xb/wb//DgM14T/5zf+QFH6dX/36H/Puh8/yf/1n/96PPOLa+v+FCxf+MUezp7l67f/A88//fS6f2+HdD/5dbt7+xR/52H/4d/8xF1bf4F/+wU/z1rs/w7//b/9PGNZ7DAcH9HtjDB2YeXK0kvgU8RFm1rN/PGYwKOhVBVJkW74UBpJlUOfGYlVHos2pt5jMIvQuZmtwzKwyhMTGACJSqgopFHiPLgq8z/ZkFxw2WWJ0JClZ7Pc4s7GZayHr0EXFZDrLyBCZqMoSa2d5Uy4EE9cRpMRISV0avLMcHR0hkkQrDTJhO0tyMOxVWO+wPqFVVuD5bopvZ1QLy3RY6l7FyeExqIB1YLuI95aV9bOcPv9UVvhJiN4iZERSEuKUg/ERv/t73yAaxfhomofpKWGEwgiNbR2NtSwtLhBFdloUpSG4gDTzIBZCHrZ2iaDzcYyHVChs5zFdtvHqCnRVokSJECBjJHQtutBIIuNgYU4e9S5QCoNUJXUhmcUun8tjRMkSrQTOdsTEnDsYKIyhDQG0ppSSKSk7FTyYqkBJQTebMhiNUNJgZIEoS8a+oWty+vPGYp+TgzEXzl7g4oUzfO97bzEaaCbtlOXVilObK+ztHrK0sEC/GNBbgsOdfb775vc5f3aJcmOF+9u32Vpf5vkv/xx/8Du/xeapFb74hReYWHAhsvPgFuXJhH495NSFixxuP2RhecjywhLBzZjtHbC0sEBMnnFneevND1goJKshsrF5hsWqonUTou1QTcMsFMxOxuw/usGXv/olvPX4OMEYzcJoiaQMJ8d7HO5c4e13dgk68eDhTZbrkgtnV/Eq4qIkyYCIHpMinU0IaoxxiCIP5rR04BJt29FNjpkcJB7tH5GcRPUNMm1DhFGh6S8vcHrUY2mlx8WlLXbf/2Nm0fDg9jZFmSiWVjnxD9FiyOr6KUBRDwQyTjhupuwcN9Ds4iLsPDoEYXDdBOcdRSlwKRLSlLI/IATN/f0ZL4lAr4BEyTR0zBpPXdbsH7Q8fWoJ7QILPYP3BdMu0doJW2eWuf/Nd9FVD0FG5ZhWs1gvctQ0/PM/usb/9B/8Gsff/Db71uVk8VDi5pZ8U5b4UOW6vgsUKjOIpYgQMzevKjQyBZKAznkKU6FkotKSpovz1lNCy4RrG45jgS4CwgiIie2HR6yf3uLDa7dJ1qBKzW7rGNvIuPPUpmTadMQo0SkSRUGIGoQhSk+SihRUtsZLmdW5MsyZfgX4QEoNyWTLbxKBJCWFMjz73Hn+6FvvIgtJkoKlQcV7ewc83Jlx+fwSbYoUPcf42DE+2mP7wU22Lj1PjCHbZJ8o/+bDyLmVF/7sQab4E1bcj1aas/byMMsRfEf0AVMMESrvsZ8I9J409OSTx37sKB/7+3Ed9dEL+GTJNb9PSBl+GsKPvIb9VVqvvvrqyeuvv/6fb29v/yNgpd/vz4T4MxLfPl2frr/gSimJ6XTa297eLkII/+TVV18d/6j7/9iNv/6g/8T2UBQlcn7ici5QmAohYDyeECMoo+lshpJXxjAoFT0DE+spygIVA855hE9srS2zc7BLN57lE6MM6GBJyqAlRGGptMb6PBcQyqGkIOkSKztUyAEKVuZGho6aZHKDwhiNKDTaZKaZkpokIgqBfCxIVBGjcnolsUNGy8ZokdOnTjNaVCjfkWykUAMsLU2MONuy0KsxShO9wjqHNJoQJTp6ggv4NOcdyIiPAfU4DVgWeQreOlxyyJjQhUAqIHgKWQCemPJEIwSLcwEVG2pRsLq0xLnT54kikGzDwuIyS8urpBPD8fExxhgKJah6JUFEbNvROcHxyRE9o9B1BULRRUfTNEBm/sxsiyjrzNTyAS0izWzMoO5TVguENgdztNbioiM4i+86UrKk6NAONk+fYthfQJcVWou5NVcAmaEXReDBw23uPbiLt2BtB0pS+oQvDaUyBDJzaFAZOmvzpcC6DK0mMap6uGmLV5IksuLO1BVlY4mhwxQlQkukDXTBY4TGAN4n6uECh90M1XhKlZutWihCTEhTElPIP/MUkCFRKUUykhAj0QcUCimzhdGIbInNf8gNSq2JISBiTtqMMUKXkD5hyoKoE1GAj/nvpaURFy+dpjnZJ4kIpaawEq8kBQUqGOKgoOiOKCtNcAVVIVHBZ7uKNggdKExEFIK6UCRTorTAuUBIBU3rsQ6ms4ZqaYQxglKTAXTBoE2i1gKRFOMuEUTmG6ookGqKlom1wRKTowmF0lT9kgLJrG0IZYast43HV4p6ueKZUxvcvH0LNxvjkWyc2WTv4JAgE8KXxHaPrbU1bly9ze7BMRcvnuPUxhoHJxmQ3aYMoy+SQCJQSWQQvSowWnD3/gFnFyteeu4Mm6dWef/7t1gY9djcWsUGx+/+7msM+yNWVmr6coBt9xG+z0997fP883tXePf6dV75wpcYrUReOFjnnWu7/Nrf/jW0e0DAUwwL9u4+RJmCxk1oxhN8jEQB3/md7zBalayr01g/ZJoeMZ3ssdUfcvxwmx/84G1amVDScPn0gJu3d0FcJDJmaVBSIdl+OGbzqUVObSxzfbTN8UHDmfURm0tD9nceYQaaKCseHQe2zq1x74Nr3N0+QroTfGOZHs4YDnt847U7bDUlX/zsEkt1TVFJLj61zptX91hc7HN8PKFQJSs9yVdfvMjplT5/8NoHWJEIziIEOJcoCgVYYgKRPJGET5EQJFJKkBqRPM53mLLk+u2HlPIUAku91COgYCzRVclgokllj0rVTNIhWkdETIQks4InJqrSoESe7zrvqUxJinMmjCqIQuSGfkqAz6q4kAMvqn6fC5dO8WDvGkEUEGF9qeTRPc3t7UNeqNfoC0WXPJaGutfn+vXbHB0csLiywictslmG++dVXh+HXguePOzPVf392bd/VOBKHMlDdB0kjy57JFkQ57ZkKeQTO1wiZYsLP+zfjXNlX7a/PL7/p+uv1koi4FzKCach4m1EG4P3ibI0VEaSCIgkCEmwMHzEf/Dv/S+xsUZiWRkY/t7f/l9wesMxaWdcuPA+/87/6D8kpcDeccPVO/sIqUCAax3GaLQ5oqx7rBYP6H3x3+Hs+oznTq2yvvDrvPjcb5KEYHFhyKAuIFoKbQjB4xNsLB9RyYKvvvqveeXZNyiVwPRO+Lf/h/8RRbFPSiYHphlFSAlSQGvD+GBCv6hYqGt6RuYhrMhNbkS+liYRcj0nFTE5TBLIFHMDKymEyA3/kARdClSlmSvsck2XN4SSWXA5WVVkW6m3nv7qgPF4zKxrWV1ZQahsHbWzCSE5TqYT2uYkB7S5QNM6dFmgeiWkQAgSkqHu93KQhQggQWrN8eSEpKCsKmazQ1TWGDNaHCCEwLmGThf4+XC367rc2AuS5178LHWtSaklBomkJIYZCI+3gRs3r3H1+lWCMhxPj+YKTDL2RUtKoaiqbI+NCYTMSbmJQPIZt6LrModkFSWT6JDS5HpIwUAbrLVIcpCGiyGHykmBICCNxsY8sNZCIaLIqqi5O6ELLc7lZOXkQdUVIli6EDFFQQB8imipkTLXMMYlWuOzalPlIKXgA17JHNxlGxAK1zmW6x79Xo+9Dk4aRxsUq6sDbtz4kNFin2deOMeVd65weDCB0nDlw2v87Fc+z7RL3D3exxxLkqjp1zBaWWFv94jZccv6mfOIYDlzagXnPdduXOf+vUfcebBDRNGraoT1fPc77/Hll19gPGv5wVvv8sILz9CimHlHsA1x3HDxqQu8/9bbiEdDZo+OWflrX6S0hrIwPJwe8fD+HerRkBcuXGTn8JAbV98mScn6ygZifYuqV3L/zm1OxnDq9BYizDgaLnD61AoDHNX0hKpX0NoZKSmIMVteAxgtsTErYn1rmVYzppPA9z94RFsMWF6s+anPP8Wp9UVef+sDinLIex/cptdKrm+fIIl85vJpejpRBkdPKmpluLV9xH4z4Zd+8ad5+YXz7D/cZnVpkXKwQsBy449ucOf6W3z+M3v4NENK8A6mXeD+QYORuQm9NxlT9ivaxlFIQ1EMGPZr9vcnNM5T9wvKxYoP7h3y6ucugFUsrpbc3z5i1p5mudIY2WPWCqq6RRmNUdDvOepU8FPPXcC1N9k9PsKyQPQTvHocvhiIhcnqOilpjUIIC9JgO0vZ7yF0wqDzAEJKlFakBEZCqQuktEiR03RkAqUETktisIzqIRLLvevX+fJf/3m+/903aWWg1CWyX+NkQdM5FHnPAVXWsInMaZfCgMjOBqEiQQYEOZU7+cx8FSrblhEFUitEyo6wFCJOBM4/dYY33ryBTZlbPywli6MRt+7ucuHUEj5k4YarAk1jeev1P2bl9CXqqkfKyZZzzdzHeMY/cn1UIz2uWdJc4SdEvk0gSLEjuAYpC3RZZzfW44Gk4MnR0jzETDCvjRJ8vBZ68vcnlIRPrp7IefswY/5idu8F/29yKf7LXP+xc44HDx78QyFEjz+rq/rp+nT9xVdKKbkQwj8B/uM/784/duMvIYgp5cIteNI87MAYiTEFTePpGoHUgoCl6zKjRimJkmCkInhPkDGDnLUhasc3Xvsu42kzt/NZUvIUQuK8QyuBby1tLfFC4FKg1yuoFxdIsqZ1E2TMSYcKQZSK5GVm2RQ51SwHkkSCABFzclpRZWYY5OGB1Nl2sLa0yZn1AZXpqEqH6ywRg1QOJztSAiUVdVEhjMEKkCFbIxrb4l1CaIlKieQiEoVJebIctaTQBkuewIiYKKQmlpnjYeapehKB0llZJwCHISZPMbdyLS7WtLbBKMGgqmhtw/beLtNJQ/BTklZEny2mSWmsTVQ9iVJ5dHIyHpPm6UlGCrTO/B+tNM5aKCTNtEXKhO+mBFEjZEFVGKQ21FqjXYNzjqLURJVIWuGd5/wzlzBVgihJwc/ZGSCEJ3ZTYgy8/tY7HLmEaxydt0QtUCKnPUcbcMkjyGEsKUKQ+ZJjUoIQabpZBoIncCKhq4rYeia+w5Qa3TpSCPi6QJF5kFVZchwDTQx5uixCngwmRfCRGBPRO0SMWC0QRqNFZot550hCoKTGu5CbfBl0mS98PtIkR4oBicKRaLts4QVBpUuCt0Tpc8qrzMxApQpCSly9dp1SegZmjZUFRVVLylIjKDl3+bM8/eJnObz1Gt997x28nRFEyfL6iPXlDWZNi0UiJBSV4c6HNxEVJN8gosb6HNzQdh6SptaBYAWt1fgkqOg4dWqLtY11dnYeYY8njKqKui4pqorLT51lOut4tL3P3W7GxacvcefGdWJSLK8uoCpFOz5kcdinMAs0nceIHufOPs2H77/P2sYquix55/X3ObW1ztlnnuL2raucnEwYDBe49nDCw7u7JFMwaxNeSqTymU0WHEYWRHSGN5Mni2VRMRgtcXQ4QfiGFy4vsf3wiLfeus3ZC2tcunQaOwsMV0YIWeLHhsPG89rv/zbnzm5w8ZmL9Mqahx++xagKqDrx3rU3ePXpNZaGq+zuHrH19GWUFyxtbnBy/zZLZzc5OtinS45Tz36GpXKZ1999nZvvX6VXjHiwVuFdx4N9R8IxKoYUMvLU2Q3u399hfbXHM6cHLC1fpDSOE9vifeDpp7Y4OprSl5HzK4bubB+9sMyVe9vcf7TDwc4Retjn/Svv8IUXL2PNCjuPHlJPNfvTBrm3zb/4xpRp07KmSm7d3ENJWK0G+HHDylqPAsdoeZHX3n0fWdfIDrzvQJRMZy39coDQgtRmi32QiUJJXMo2viCgkoIkNSfTltBNefrUIip66t6QmSxIhzPa6OiVkrOjAi08XihK02N1WDNrpqCH6CiIPuJipFCWUitAZct9mOYSU1QICiIWIRJKaiAPIoKAS5cv8cdvfEgQWaUaxmMWVla5s3PAxc0Rw0qjfcJ3ieQ9+3sPuHfzFqPltTlT77GtRD2+sH2i/Pq4ak/Mx82fTPUVn7j/R6nA6ZP3efLkzA/wOJ0u9+9iCCTfZuWirlBqOZ+XM1nzI6szkBPtPo7tePz1+OQ4iXy+Yq62zz/LP/+6/un6/80KPtsgVVFAzNffmASzriWESDnoo4qa2EVa71ExsbxwQCclbVS0ruHi+R2MkIROsFBbeut3CclT9xxJTpA6sFBXVEZRFQVK9pCqT6kENk4QqY8pEhcWG07bjulsQn9QI9BIOQ8QiDl7MQdGJAb1jKo4REmDJzCsDgmPPxNC5aZYzHiGSWtxMdHrSaRMc8WqyEnUwRGeYDsChTRZcT+3AqNKFDIHg2TKBk1r6axjtNAnkjEWSUlc25HmSkOpDd7bzOurKpQyDIY1VU9jiohQAq010itS9NgkKVTJrLXookZVBmNUDq6adQxHiywUNciIkeBT/r2Zuk/rHG3X5LpOloRocH5GTDnwwwdBmMyQSWTub/IIYRn1h1x85lkIDUImpNAQPUoIQswhRkeHDbPGMp52iJAVhcln9rMqDL61FCKzWFEaVP5+jM7N/ihV/l5DQGpBGQ1BQNd0GJUQOoceCQRFpQk25NeNJkVBCAlnPSLNNwVS4mVmX3sg2YCsDdooRIyEEJBoKpNr/slJS68oENFRoLDOIub1l5CgdA7NCyGHqKEji/0BJ82MXp33D0lV6FJgtKTUBS4lRFEzmSS2H32A9QKL4fTKJo3OTYZ33n+ffn+Nl7/2Fa7fuQ3JMD4+phz0QdX85m9+k81Tqzx18RSF9MxmHaPRKhvJILXkcP+QldUVrG24fvs63fSIXlUSupZKC5pJi8Vy7fvv8bmv/iRf+smv4n1i595tHt5+n9XVM0ytQ6shz7+0xZ1rN6ievcTyqU3C+ITxyZjgBe+9/yEra0Oe+szL3L1zi9lJx+6dI3rJUMrE0VFLmRQLxiJIjLuESBqtBUYLqrrm6KglaYnRgl5VcX5hiQdLjkMn+dy5LdLsiPfef8RCXbOxPsTZVUbLK1Qi0swi9cIQJVqczwzmFBrOLkpW+iVHk2PGJw/YfXSHk5NVRiuCw8PbVPERaytrCC/pmZpx27HbJKy1lPTBP8yqRK1wXeDwZEzyEqEFw5Gh3W9Ba5xXDOuSBw9bDvZnnF8fsj4acfXqI8ZNg9GRlRXFeMfiW4uWI3bHjs1Rn1/+2lk2BjVJCIwUxGDZOHOW7fs7jJYrSllwd/+Qra0lpJLcuLuLR1GqgEwKhMDIgqAciOy+ImZxRkiJICQRmRvTQhCEIXmPiZ5aCWRyeBL3H91HJMmZM5e5ducWUhScWV/iaNIi8HTeIpUktZYwV+pHfLb9RyDl5l+ICq0dMuq8TxCJGBXS6OyQClnlnGX9mac/KEuevnyaD69vE6NFSMHZtWVu3rjL9sExKyua2CYEgaIsuXXtGnuPtjl19iJqjgeRjwuCJ0q6H3YvfKxu+YTK7pP1TZoPGGNoCLZBaYNQJoeLJeYJwo/lfh/Zcz8JI/n48T56LcEHlJY8tls9/nrKqSHzkWf8xG3/XVmvvvpqBP5Xr7/++n8KbPEpgfnT9d/cisDDP0/p93j9+I2/JCmKCmtnuOCRSqGERhWKrrM4b9EKooauc6zVBZAbb11oUVpTVPn04ZNAETnYO6TznhQs1rc5lTUFHCLbZJVGixKVoHWWojRUZYXvLDF5QkjZupASMiislMgClIRK59CMGC1aVQgpCUSSAEXA5xk0dVFyfnOZ5WHJSr/IG8ykCS5itCIhSKnI0wsPQgXo1ySZiAGMkUDgMdy0c5nRVBYFQieizCxEHTSJRKk1iEhCITF5ixYEldbE6ED6PElOZLaNhllqqYTi4pnTmKrOaXUx0emCui7zVKhrKFTmu7S2wXcBReakOWtxbQNGI5TKJ1ehKE1FxKOVoFQVyEDTWkzdo+tm1AsDNJqu7ZglQXL5e5SxY7SwAFLRQzCbzIh1ZO30pawQijMI2Y6dpCW4ADEynVnef+99os8qlZjmKhWZKFOiS5GUBMZAZz1CakRZ4LtAcBaVZFYkykipFIGETILkHDEKmgTKeQpAE9FGE2ROQyuEwnlPDLlQTSisDVkx2isRMSKTRimBTJmtkZTCNzGHjGjyBSml3DQk/8prZbBzxpLwDt16VF2iZl1W5SEQgypbZIVEGEUpFYWuadopTecYLQw4s7qMUR3LSyN6VZ/lpQWoC/7pP/nP+NW/82V0EJy7dAHbeuqBoqgj5y4/zfGx4v7tK3zh1RdJbcvR0ZhZVLz0+S/y4OE1FqqSuw93ODppuXT5FHv3Dzh1foOT7pjzq2cYjBY5tXWG7732XYSpET6wv7vDheeew6eCaTNmcWmJ9YsXeHDlFpcvPo0oSm5dv8paf4W1i89xvPuQUxunMcMhN6+/y8aps6ytL+PalvsPtnn58y+yOKxBaZppolcMOPPsaX7w4SOqQZ+zF09z79tXSD4zhSQGqTUhOFx0SKGRUmO7Fh81q0saEQzNrGNwrsArwcG0YbCwwuRozMnxNpPQcuvOPuvLS/ytX/kVpOw42ruPQdKrE4sbp0nb26TOcn8HXnlxmRvXb7GwcYq1xSX2799CJ4UvFScnU44OG0Lb8MF3vsvqaI2Dgz1EOeKNq/e4MFtha6lkNOrRdhavK1b7mb303rX77B9VnF3TnF1dxc06DvctdS1YWajYPmp57+Yul88u88oljdOS44Mhx+MjpnqZ81tD3v/g21SV5P0rN9g+CQQZGY2GTBqYTg9wQnPQTXB6AGHK7d0drAs0OwdEn7j54Lv0dMXFMxUpOtom0sqAlpkSFaWdNyI8KeZ0USmzpTT3nDxa1ShyEIdWjrIa0l9aITUNLnrsDGbBc2lQk4JEktg/OWZ3fIK2FqMnlKMeEYNSihRDnmqTCMmSVGbYFQS8nwExF6wxW2FiEogYWV5c4NLlc7z77iOKSiGCZnlQ8Gj/kJ3JlF7dp9evmHU2n9uk4uGtqzz70mcxlSbGx9NkmdUuc8tszgz4IZsuP85k/GP3/jMabSnFPKl+DLiOAW9PECR00QNVztllZP6XyNedx0/52CrzuHH4cdB1mn8vzG05Ym7BeTI0/zT17q/E0jo302fTGcZkG5e1Eq1FVv6FgGtcZtYaA1KTQoLoCTEiVUSaAucc3loUHUopAoJBT/L0mRVCdIS2YXFUooygmzmIGS2hBaQ5/6pNAUKk36twoYWkqVRNEOIJ19jJjkhkd2fGwuKA5cGQymhc11KrEqUzszOkkFXCXQ7XWF5cRWFJIdv8hVGZ3UwkJokViiIGtMjBWcpUuXQSkZR83uDJ/K7X81APmQTWe0qZQ7QECa8EKiXa2RRdKIwWLC8ssbSyRL8qKUuDbTt8suwcP6IscuPrcTfc+cBsdkJZGnwEtGR5dZQNrp3DugiVxpgByc8oS8nkxCKixTWRppnRGwzRhUHJksYFer0esXEEHLNZRgrMZhOefvVLrG1soHyLT5EkIlJGiGDbKdZa3nnvw6zOn4XcJAiOlBJN5+jJEoMkCdBK0RFyI84HUmnwMWBQBCcwkTlSKysGi7IkidwM9DbQzSwmVKhIbrIW2Y5tnUPIPHCuRFZDRevpZEQhqYXB+kAbA4WUlEhciNjWEWVAIimEwhdZydTr9/HW0s1apJGUUmZld0gEBSFEZo1FC8PUe0wqsUctQni2FjSff+ES9+5uI2JkYXmdLhna1DAaDZAisLJaI4qS519+iZPZhJPJPqtLPaqFDR7dvc3CoM8fv/ZNvvyVz9PNxhSDHgMzZDHA3d1j4v4xLz3/FA8Gj7h16yF/7+/+EoePtmlOajZPn2U6m7FaQ6EW6JIC3Udpxd7hHpPjQwoUGE1V1MR+zfHxASetp4kNx4d7iKNDjqcneAJ7JzvMDi1H27uMj1uUb+kPB/it09z88Ar3rx/xzHOXkHHM9EQSQoWSHaFIlLVB+vxeJ8VsvUbz8HifY7fA1z9/kf2uY9YExm3kpVee4taNh9y684CXPvsib33/BnZ2zMtfeJYHN24zWBixd2+PxYWSe9v7XFzb4Ne+/Bn+9fff4reU51f+rV/k6rtv4u8dcu6pZ1lbPoNTCZtg57d/jxdPj6iV43PPbXF2reDOzpC3rx8w6i/w/IUNdt4eM/WCnkhsjha4dnWHk0nLxpLkzMaQG3e2eXBwzNnNAYv9hA3QzFqKQc259S1ub99ElRXeWVYWan7+lU1WBwbRr4hd5K//xAucuXwGYSd8cFUxcwXCdZxdqxDJ0xE4GSiC6uFDoCwq6iqQQk6/jvP6PaSU0UYhUhqVa4yQBSpCZUWas4Hecg9BwPmITJbdR3e5/MrzXL/+IUJBWWlSmiGDAFGCj2gFDZCiJ1iJEB4hs0pXRImMAmIgpblbSDg0AwQWksoM8JRVbkiVBQi25elnTnH15j1iFAgMAx0QRcGN7SPOn72ATxbfSDofaOKM2cEO8vwFUhLZlyQ+WQx8stn3Q0iSj/033/q4AZgdBzF0hO4YpWuE7uFlQM3v/uM15P5k0w9yDSoxiCSfNCizdW5e0MT8OYBIkv/davw9XvPmzI/VoPl0fbr+21g/dsfZ2obp+BjbZmuFFAqlS0InmI5PUMpTVnJuAU5UvceNP0EQBTt7HV0HsjA03vFwf5ejwwOaoyO62ZTZbMJsNib6kC1iZAWVMhLpQMVEco725ITxzj7NwQFKgtAKLTSmqtBSo6WhlIFgZxgURhTYGHJDIWbY6po2LM1f3yvPrPPMmQFrQ0GpA4mIUgaJQaUySwJDTo/VSqDnkPoygXCeEEJOQ/U+JxhFjykNRisKJTAiQ5cNkXKuuoshoIGeEhTkE9/Ud1gZscnTzFq0FCQZmLYz2s6SosA6l5t+rqWuSnq9PsaUQJ4IJpFtG1VZIHWNiyLbFKxD6wIpdT7Jzrl6IfpsI5YGH8gbgKqPloLQOoZ1P0/DE3MWYLZozxpH0zk6Hzg8OmZnd4eyWmRzcxOJIYUCITUxtCSRZeZRSd565wfcvHmbEAIpprzxVQplNKowCJkL2xiyJUpLgbAejYIoiF6QgsBbjyWgS4WJHi0CC4t9lgYDql6FqQy+s4iYuR0uJkLjKJJCP549aYM2BmVMBmYbhTIC4+OcJSQJbaRe6OWELaVRCKqipDLV/FORCN6SQsCYAikVGEVZG+phTWk0zrlsUVI5kU8TKYqEEC1GWtYXBrz0zCad7dg79Ny6vc3R0S51CdODG7z04hbvvv8um6MFRsOKbnpCX5Q8vH2PGx++x7Ce8MylDe7fuMPG8oCXPnOZrVOrbG2d5ie/9hNsbq2zsDggIZjOjpjMxrzz2vvENnHr+g2+9Y3fxaaOM5vrrC6v8plXv8LK6TP40LK3t4+Rhl5/wP0rt9hY3eTyiy/y1POXsTPPaGmNJAWHRzMYVDx8eJuyLDnY22N3e49eMeDVz7/M6dOLHOzt8a0/ep22mRF8S1l6PvviGr2e4taN6xiZKHUODvJYUjR4BWWZ3xeuPSFJKE3J6dVFzm0WSCX57vfvc+fhPprIzsMd7mxvc+HyRdbXVzgOAd0f8Rv/j9/hf/2f/BesrW2yslRx9vRFnv/cy1R9xbCXKBpH7CaMlldYHQ1yWmPZRxqfre0ucffuQ45mUw6PI6+9d5XOKprjY55+7hy/+4N7/MQv/0Pi1EPTIvwx3eERx/tHIBSvX3nIO3dOmMxOIEwYDQcsDEc0xw2psbx29YDfe2ePqw9O6DqNSxaja379n3+Dg70DXv38RRQ9ClMyGSe6oEEopCgRQ0XA4Tx43WWLRSwBjbd9SAWpqrAogpActI6doxmH4xnH4xkuxlzMiXmgBhKEQoSESY6NXsF6f8CphZLhUDDpbD6vuBl9nRBC0a8ULlpCUvRGI0K0pKCQssT6SIqGyaRFqqxgUEoiVQUi5U2pqpC6zgw7mQMQpBCQZDZ5iHyOCyHibODZpy6iVSAkl1W8OqAKxc2dI7rGYWJL3TOI5BEEbl57j5OjXUCSiHOrXGboxT8HEJ0tKx/781i1N//3kzWvSz9RPicBSZF13HKetupJYooyClMNENpkLeDjxuPjCfmTfzP/83H14CdXSrlhmIvjbJUXKSukPl1/NVYIjhQVRhmUVPgIzlmMgboy+GAheRA5IGLqAl2IyJRxB6UuST4RkkBKg5grVGJKxBSQImQ+Vb9HUdS4LhKFIChJ0gZRFNS1QQuLArRKCDJjzpQ1Ljl8ciQCSieE0kzbxKwNLPYLZOhy3VNVJGWwQeKdwnuF6zIPbmVUM+xnfIAWihCgcwnrIqELeOeZTjusm3NDlUAVBbosKAqDVlAoSSE1lRQMas3iqKaUUAmJmlvnBFBLiRAZtBGDY9QfzX8miVlzwvHJHtPmmLY9JIYW6xKICiU0XedA5IFnoQrqoqZX11RVSV330FWJNAIt8lCy7i3Qti2DkaFXVwQXGS2uUlYlhEjP1FQabDvm4PCE6cwTQ7b4LfQX+cJP/WJGVkiBUmXme4nMfBYk7jzc5p0PrxKkobMeN08yJ6YcZOezOi9Ej/Nu7qbIttqQACEhBGQApMDHSBKPh8mRZubouhzapQtNVebArEKXNE3HpGmwPuC8ywN9Jec2ZRA6awMcFhkixmdrp5QKlxykREjzx7gOWdVEk1nK0uiMeEjgrUO4zAaU5P2D9xGjCpyLWG8RxrNUFfytX/gKCwuKZhZYWVvj0osvsL66yWeefY7J0Qk7j3ZYXt1CSMOop/n8F77C4UnirTc+4L23fkDwLePjMa985iW65piqrHFty8lJDtcqYsNiT7G/v83e7gOeunyWt7/7BspFuuMp/YV1Cm0YLKwznc04de4Mo7LkzpWrVEnxta/9HDsnjutXHqIHi8TGcfLwIeODMWvrFzjqWrZv3GK4vMS5p57i9MYZvvLTP8uFl59nuDxgtLHFnQcH3Ll9h4PxDNPv8fDOAzpb0qYcthOjIThoxk2+hs6vNxpBiBHbFNw8abmxM2MgBS9fWOGrL5xjZAW9BGc3N+nHwLNbPX7ilUs8uPaAoeox3d7DdZG3rz5i6geI9S0mOL7w7Ap3b97gv/ovf4PoFcXqBscHe4yWhoxkj0pVbG5t8Uu//Mt8/W//Tb7+iz/BpWee5n/wD77OV772U/QGBYqGg4Njbj44wKGpCoMSkfHEQRIs9EYkUbJ3MEWIglGvBAWT1uApOLNaUqlEMAahBbPZDFEVSFXQTabcubfNtWvXOdk+YG9vgp2HRC6vVlw8s4iMDpUkp1dWWa5BEDk4cgg/yC6ikBtGQoBIiRQCWkm0yorUJBVxPmgRJApdoIRESEWkwFHw4PYdVk9t0S8MSUoGZsS5c1toUWCdwIWMSmncPBlcKJTUyKQQKJTI+0glCpByjjYwpGSJIW/HhcxNr0D+PKcowCeG/ZrlpR6CzHCGwJnVBfYOPLsHM0xVo3ROPE9S8uDWdbzr5g2/x/XB4/W4pvmTA0+Ax6VHbspJUpLz3psgRUsKM6SukWVFIKDSn9ZK+HhTUTw+Kp80Gz8umhIx+awoFh+3GOdGX1b85YC/FAMIgdSfTjU/XZ+uf5P1Yyv+mukMNQcGxxgxBpDQdRatNZHEdDpDln36gx5pMs0HUILJUUDoiNaJMJtC5xlUMNwa0K80G6sLDCrFdDxj2ia+/84HWR3lZyQBM60otSI6h49ZKVYgwAa8ErRIcBkCqKUk0acziSAT0nu0zEEfdWm4eGqZ1b5m5UG2ItcyElpLUgLvPIUp8kasEAgjMFHjnCcmCXgigiSgafLj29YTBSDzCe1gFtnQnlHfYEMkpZJAAjXfoIWcHFwVBudsTrOUkhg9Go23Wb0m5s2tWWMhKKregH5/iBES6x3HB7vAEWXVI0SHEIHOzrBWUOqKHFKbp6tKJJKPMLfwyBhzcl50xBTwPqCNzEEQsaRtW4qi4uR4hgst/d4yIXmqqqBtOqyCpuugbTPnMHguPv0CSldZySP9PIxFIS3MprvMXOS3fusPSKZketLQ2g5jdFbhCTCmQCuFbxxCQGNbNBlsm5Sk6vfARmJIiLokhUBFiTVZtVmWChMdUgcms0BVLuC0p42RMHXUp1aJx9MMDk+CpmmpyzInSuffKjIIlDE03YwCSTXoI7TB2UAXHXVV4qwjxAhKoqTEaIXvPMIFXNeRRKTwEFIixZyuLGW+KBqlKAo1T8GOlHX+nqracnTk2Z+2nN1YpVrsceXaPXyCwbDPzXcesXF2g+U1y8bpEQ8fPGJh1GP7/iPq0YDFsqavSvaTxU6hNJK3v/eHoFq6acPOeIJMAROHjPqLtKXj/MYFzj57hje/+V3+5W/8Hs+/8gx379/kgx+8w5e/+FmWV4fsTE6ywqNcYGGhR2dnaDzjScO5Zy5QaIUyhqeff5Gje3sMRkssDQeUwxHS1KwvLSFk5GD3EaZfceGp0+ze26VxM4529lmuC6ZK0lqPEA0iabyfN6BiTj2LURBtpABmrqPrjhn2z1MWK/zGv3qPn/6Fr9Ec7LE8TOzuHHL+zBm21kveevsepxaXGB/tcXhwzNOXtqhMwfFRy73ZNVTZR7HIer3M6x+8x8/+zWfpicT/67d/ly9+4ac5tbIGQTIs+lg3Y3V9kes3b/P+/SMWCsP+o46NXgmN5Bc+d4H/9B//b1hfrFgwBaGNRBeZzBomex1/8ydfZHlxxFvvXKNLge7eIWeX+rQ2YVNgebHP1778FG+9fpWHByfMplOUGlJWBbpXcu/GHR7tBJQR1LVm1gXaNKbzGh8y/cQFRYgOlSo84IwiuUitBLXMgP3pzNLrlTkwxhQYmeicxRhJEFkeloJDyByokxA46xn0anomkYKkkYYTl63uPZOTnrc2Vjg5brGdoHMWFSCkCCJSmgofQaSOFBqI5XzjaIlBI4VE6o7gBVoYRCxQMqJ1xPkOIatstVcCgyJ2HWfWlzl1ZoV7Dw6RhcHEyNbiAnfubjM5tcrWqMInh1aagODwcJ9rH7zH6sZZ0hPQdSDHzn1kYvkobfdPa679sC3mR6z0MSVeyvDx/IiWSIcUBmEKfMzq4j8ZDvJJa/FHEG7mr/2j5mOe5kNK4kkDEZH4U+J/P11/iUupKjfoCoGzAmclxiSckwipn6hBlVEkm1XrmWsXSELiYsSHhI+JQmtSTHif7fhKVjlQzY7ZWFqgbafZLC5y0WFEZpQSI87LzHBTLr93RIGzDmUiEUMKufFnPRyfTBktlehCk2KcN6rye1YrgY0WkMhU4iNoHzEmqxiTD6QEPgSU1BRag/UkmSjKEmEMMSZccMiUGX1SKAop5gOIgMNhfUOpDXLepE/I7B4hMe6mWSESBP16kaXFVZaXlhmP9ykrQ/BZZS85YrS8zKztMps4Jrybh1XJgAueSg8JQeBDQOoCvKWZNsjSoYdrlGUJYYqTnlgEXJwiWoU2BZPjHNTgU4lUCqHzENGeTNm6dJmFwYgQ22yDm6uJRMoNupAk33n9TQ5OpjRWYDuLMLmpWwlJR8ooFp0RMJ3zyCwTwotspZaI3CzyHpsculfmc9+0QSIRCQpT09kZkM/RQkS895lDFlMORBMCrRTWeYTK6qjSaBCBkAS10ERvwcj8u1cFwnuEt/ikQASKFLJ13Nqc5BtzwxMJXcq8vxDysDQWJV3bsdgf0HUNBbA+lBRmwjtv3yNEyTMvv8i16/dw+7s8e/YiPxCJcnGVzfObXP3wfdbW1jCFZPXMBm+98wMub51j2DccHx1x8eImy6vLHB7sceX9D0ko1s6fx4hFKArev/IOF86eQ+vE/dsP0EoyHk8I7RhVVvz2b/4uP/fzP4ufPmRpueTKlcBQSfaPd9l5uM35s4ts37gCfYUaLVAWQ9Y3lnnx1LMcP7jLnZ0H2OaEo+2HfPMb3+Hrf+Pn2L9/h9FixWy2w2QaeebMRY4mj5DDCmU6UnDgDI4xzgd8mzEOqkgobbCzzEL3zrKysoCU8MbdR1x2LSeHgeEC9PUQ7cZs7+0jleTRwT5iAvfaXQ5nLWNb80u/8qtMt+9y4cIqZbGE393l3LHg2+9cRVU1v/rSq/jxLvfv3qEcLjNcWadeXqFf1iwPa269c4OtZ17m85ee5UtPzfj5n/wM1959l79VLjIgoFXEGMeprR6FlvjQ0asUZVlma6yCYW/EQlmzd3jCdGvEoAe90hBSQfKWWBt+49sf8vd+9kWWa834eMrp82cpexUiVEyOD+jchIubZ5g1U4qFBfYfHfP8i2e4u33Eu9+7QVGVHE4dutIUSuVQHSGfXJNjigiREDKRYua9S5XDA43OoYBxzinWqs+tm7f5Ca1Y3dxksr2NEEcsDrdA2uxOMAUhxMw2jQZMQEoNSRICpORBJYwoISqECkhRgpzzjEn4GJ8EG2Y1tMiBjUJx6cImDx9dxZQlNnhObyyxvX/EvUe7nNoa0Bd9Jt0YGyP3HzzAtjOELFFKw5wd/NF63GD7Id4JzG3GHzXqchgakAKEBkyBECUxpbmV+ONIlCfj0fwcnwhMe1yTfNQoFOSBzkcCw48mqCnmmibGzIsXiLxnnjcLP12frk/XX3z92I0/rUuEzAwBqSSmMLRtQ4yWmARtE4gh84XG4yMIWUnR397j8qDFdI6jR5pSn3Buq49RZN6SSIiTI+RhR1CJowasS8w6m1lHQhAJGJGVXlIWCCVQ+Lzh7cAlMEKStESmlBtZlUFLRaklC72CpWFJr5DU/gh7Aqdstvp2HnwU6JDmqOQ8BcJFYueJcxdVsF1uGqFw0VNVJa7LdrnWd6SY1X09LdFFSevTPDk4J8FaCSSBSTkUxSoPMoOxUwIZFanNARKBxNGsIYqAQNErCga9AWVVMR1PQMKwV9O0FttOKUqDEJFBWdEFgU2ggkOQsNZDzKEqKUYKU9G6Bm8togTbWnSvh0AhpMjhFtbS6y9yMj7K0fNREH2gTS2um+VplAfXtYxtS1H2eOrpZ0jRPQG6JjwpebxLgObBw4fcvn0HXffxswnaZPs0vgOpcD4QQqTQ2f5sMHninjKjMQYPRKKWGGkoBHgb6WQg+Ja2FdSlxpNomhaja9rJBLRGu0CyHYKITgkbUrZi+4DUipAi1mdLDUT6siAUhknTUSmH1gJvI8HnRuljyXm/riAGtMxTPSscNkWSj3mDJjWmMEQJIQSMrkmuo1cVaBnJPUhPO7b80s98kas3t2mbJlu+Gk+Qgls3HzJcW6WqKg4OHdPpGNdNqELNy5/5Ak52WBdYXhrx6OiQb/z+H/KlL3+e1c0N7j+6xcwqev0Fhr38cRdDQTg4RpWWvbv3oKxRHbjJmGefu8zB4QRPQuqafl+xs3sLvxApej3u3n1A84MpW2e2WN5YJgVLWRrOPvMib37/fd78/mv83M/8BDFFNjfXEDGArFnfvMTJbMrSsmB3Z4fYRuJ4TCgGHD56wPFJQCSNSoJeZWiahrKfIAmmPlGaGk1gWBlqU/Fwe0xyh3z24jpmuktdCnTjuby2husa/GHF+VOXsH6PhRraYclxmzcnzmvW19bZPn6Iaw/o2pYudrz27ff4ha9/jWfOPUW/16PQPabdCVIELp1/jsWVR7zxx29zMmn57BdP89v/+gPWXtritfdu8Ld+5jO8/uZVRv0zNEry0sVTPNo/4Xs3d3HBcOnsMrPxPj4FHuyf8LWXnuWZszUf3jvgzXdv87VXnuazZ5e59mHBo4MJtksUPcG9nY7/3X/9h8TOURnFl57fZGujxwfXD4iyyiovWSBFR6klodNAhxSR2qvc1I/QdRElIl1XsLxgSIs9OhsoTFY9F9IQS4NwLYQpCo0WCi8UbZC0MtCLhpTy+fRof4p1jiAgdpbhwoDQBg4PHONZQ3AWFz3BR7RUdDI325OHupA5lT2kedqnA58QKWKK3rzQzptSJSUyOVIURJGyCjpGYvI8dWaDh3f2UMoChlG/pCor7h2MWVouCSEPa0L0xCR4/bvf5gtf+klkXeVGy+PCVso/05ryF7GsfFL8l+aFcAIRESnhwyTzfGINMhfheR4geVzAfqxufvxE+ZYnzy3IUO0cBPG4cE9PCviPNxlzONSn66/GctESfaBzHmcDhZEkpVFJAwkb7NwOXubBqpYgJe20zVy7EDFGoVL+XCtjMkNKelLSTE5mDMoaXKQyBVVt8Dbm9FsRsdES3OOkaEXSWe1Rxnk4oiqyxTxF2s7TOKjKkvXlRaz1CKGwLiBSVpMKkQhKI2REqKzU19JACLlmKiQygEngSYQUccGhpUBKPd+CJozM7+CQBD7PRzFEvE8oUyEAGwNaSJIPKCmJBPa7MSE6eqXhzOZpzl7YRKuSaGcMBjXKFHQelHAMUsXx0TFN64jeUpQ1vaqXOZspUFQG7x1Cyhx4RMHCcIlJOkIaQ3RTfDels54gNELU+C5RaKgGA6a+QWiJCCVGNiiTEJQsDCQvf/FrSFqEkAhlgIBIEqFqQjxh73jCO+9epax6HJ8coQGbIj5Bichp93VNSF2ulbUGG5EyoYxCJkmS0CRHiaZSPWxMYDt0iJhCIAc5jdj5QAyC5Bu0lvgwhx5IBUqgSagQmclIilmnHENEK0mlM3e5xWUuYEiEqPAq5bpRqnxOJyuO0Akf8gwiIClSgkISnAM0g8LQqoSzHXLqaVJG/ozrId9+7TY2JESM/J//b/9vhoMS3YPb/2rKyaRhId7jG7/jaKdT3mjfpzI/wEXPoN/j9R+8y3h3l+Vewe1bJU3jGR+OUaqkKA3TvUPube+yvn4KozW7j/bojRxFmZhOTzjYO+QP//AP8Q7qADfvX2dlPOTe3UdE57l34zq7j67zhS+/QFEu8K03vo09bLG9ksV6gXv3buCRiNZz/+EjBpVhZa1Hv9Qc7TykdRNuPWpQSrO6IDjs9jiaOHo9je2aHPynsiotCUFMjktnL6I0XLlxj6QkwUf6Vc3hyZjGTvnSl3+GoZzxoHfC9t5trj865qDrgEAdE0lE9lrHS09d5qtfPk2/iGydFvxg37O+dQrfTnjtzWssqMhmr+aPvvMW64tDnjrfZ2fngO//4Hf47Geew8YZcvg009mEXjWkbKe8++Y3UUpT9kesrCzx1Pp9jKzowoyVUcmlrRVqlR1OdRHpl4KjJuCFxMUZP/35iwDExjEaFmwsFjw6nmGlRLnAzm6iHAwJ8Zgzl0+zvryEtw17OwfUizVXX/uAQSkxtaSJGusjl86c5s7NR1Ra0asN3nm8k5RFVpPFmK+ZNnhKVVHIiEwRFQUiBRSQhMLFDq1rYpK01iGURkXHw3u3OHXqLFdv3qUeFvRMH2hw7QzrO5QsKVUipYBPPrspZERJg5AJjyMJjZhbVSNtPndFi5IlIebPlNYaIQRWWGJMSBznz23y+psf4pNGRsvuZMLKSo/d7Rlt26FVn15P4MeB2/fv8sEb3+PzP/XX+eEm2Z8/uxRP7pRSFkak0BFCgzIliBxCKYUk8cMWYuboqx91kMfNxo/Uf48FEh/dPq+hEJmLT1aJi6Qgpjln9NP16fp0/UXXX4DxF9DK0DnPbNwQI7SzFoWkaSweQWUMMXQs9Gu6KHFG8/P/1W/9t/n6/79aVmtmtUKKjiiLudUsQ61dTHQ+sn9yQl0b6sIgBUiZWTsxeEoj0KrOSXMykTqoC09Sgs6nrAQzihhc5pvMJ/eJwLAeYrQmtG3eCMt8MpNC0NopXezy5EnA2miBUxsbpBjoOocuSzrrMjciRqqyyAEVLmGUpHEdUit8ZymMRiCZTqeEmDhhklWRMtFNs8qq0DU+WqxPGG0oyoLgG+xsTG8wosPT6xeMjybE5BBGM5t5pEgcHh3xUz/7KwwXl4mhAVIOfpERicamKdOu45t/9G28gm7aIaIkKZWDVqSm84G2aZAK+kt9ZpMJZWFQWmFnFlUWBGdBprzh6SIYQySiXACZmDmPTBIKiSg1MViKhSEiJEIRKH2gS4GeMYjgaWLmCSUCwXlKoVGmpJaSVlti9AjvidJQmILoXLbZkDKjEAjO4VTKdgEhmKZITALnErowaCVpZxMGwyFCFfRMTWMVXiqmk45aelYXRhghmRye8Es/+1V+8Pa7TKcdg2XP/vEEFyZcvnyWu3fv0e/16RdLjM6u04ynvHflGhvrfVY3lrHKMzva5ss/+dNUZcl7H37AV7/yMkLUuCRpbcfJzh3qpkOvrLK4uszBox0WVwa8/OLzeD9l99EuF1ZX8DFiheS1194hHOwTpOLcc88zPek4d2odZRTjvYdIH5F6gcnRPnt7dzl95gwpSmbTBq0MVV0TlUES2du/yY0rD7l6Z5+lvuLWzR2eurhMTIaDk2PQfUIcI4SgRNA6KGWB0h5ZSGLwGBWotaGdOQyWNHU8vLFN5z2Ni1RG0O9X3L/3kMWVPmeXFtkaVQhZ4WeWW299C6pFth/sgmgpFkdMwwNmJxFl+qSoOXV+C9fs01Ut93YeUoqC7fv38MHyaH+KVoqmmVAXBmMEXgh8mLC4uAQUPDhoeQGPwAIFrQjMmg4jSpppwM4aLq2USOc5tTbgdw9yu2bSHLN+dpU3r79FMiUx5qCbuO/p6R6dh3/x2i3+/t/4Bc5uwNUHJ8g+FCHiUEQSxhiiMsTwOGs6YpQgRYXQkegyq69XGnLEDFjrqKsaKXPCnZxPX8W8olIi0UwsY2PRtUYax2yaODq2LK0tc/v+DsIVFL2CnabluPMctx2FzomlTWcpJYQo8UEjREkSiSg8UmhiVCilswk3gtRxztsxuSwMLUlCkiYHjkiIQnFqc4XRsIf10JFVrgujPtfu73Jxc5nhsIdOCY1lNg4c7e2wt3uP9XNPE2NACTl3v4i8O/1YXfyjlH9/FhPn44/9qGGYU8JdN0aIEqHqPL1O6aNnmVt4H2OrEx9/LfPC+JPdv4/dluaqv4997bHlN0aYs0g/XX/5q2s7lCjoXLa368IghKEsFM45nLMgs5JNqayY3T88poiRwXCQmzMpYWNCSIVMKWNUUra8Lo4KUtR0JCpdkPPmQ7aTSYkIBcfjGcsrfWQSICVGQowBoWQebKV83Y5CUFeSUa8C71FGMTc1zDfO+ezSWY9IjrqX6yErFSqKbNdPeegomTsaCCjFvHGXHQhJZI5ximT+XgzZAaBlfrf7rPAL3iF1VgfbEObfm6A2Bq0LNjbPUOialAS6MITgaGYNKclsIQ2SsjdAa0fXzUhSIoWh1AbfNUidBwtd5+jVVQ4McZ6FxSWEMATXIoWkCS1SQC0SqhREDdZ1KN2jaRucmyKCp209Wmi21pbY3DoDMiGSzPZfmT/H3s5w3vEvfuf3ODw6oGkdPgRSylgQqXIQkpGaWXKZ/RkFc/IXKQU654g2UpZ1RrGISBIS3zkKbXAkRIhE4RBeIoIihJDZgj47HGSR2dfe5bCONgUoFUmDKAz4gJSZ7xecIwmJddlhUxQQlISgCSKiyfZmrQVJJewsogtJ5zuMlEQXcfNQwM5CkNn5EFPMgUdaYkoFSVKpzC9ThSYmyeGxJ4YWISXjicd3u+i6IsgB49YRZGR2MEYVM1aXNVoJDo4dwVpkrw9KMGkdhw8PaUPiypXbqFLmY8+OKYVl/2BCJQv2tx8RfGRQF1x56x16vSF3Hx4wGPRYqCUm9UntCW99/x1Uz9AqQ/SSo6MJ+ycnpODQuiQow5F3THayAvedD68jU6KqeyQkPjjefO8hLz19Ft9EQONFIIRADAGTIqbU3L13F2MKOmsRUtG1LWfXN0gu8e79hu3f+wOePrXM3Yd7vPL8KXZnR5SmpiwhuUQQhi0EtnPcuHGDU2tLTE9OuLi5zHT/AY21rCwOMGWf5wrN4S3Hv/6DNzj7D/8Oa5t9/sEXf5LvvfYGAzkAGqZNZPX0Jv3VJSb3Egur6wwH8MEHd1g8/SynN5a48v1vkzwMegMKJfHJ4IXn1OYSB/vHHB/NIHRcvLTOt79zjZXlEUMNz28uM7W77HWZa9gbVmhKtKpYXRwQomXWwKt/7efYn7bcvH6fvRPHQGi2D3a4dPo8d69fp68NutDcfbDPxZWETDVK5s9fjAkXwXn/RF0XUvZzSW+RIdcaNoAsC/y4pZCCGDydcBzcvcr5517CfFMho0TpSOgckIjeY3o1vUISY0thDFpn909KghQ1Qgmk0KTkUaJE4nOQmVDZXi+y0lCRWZtaKKLMKsLRaJUz5zZ554O79NQCQcOwv8ju3Qm7jxounK3pFZpjHFJJvvXNP+TyC6+wtLaRy4i5AyHXD/k8+vFB48cHmSlmF4EUkeA7QugwukLoIu/hPta3y2rFuVsnzWuSj5Usgo/dmThXuOcQkE+2JOd0wZQxCIg0p5yIJ6XQY1eE/FTx9+n6dP0brR+78ad0ZsIhFRFJ1+aACCnm/DMpkMJnmxaa8eKA/+M/+nv02xalFcJ3OG/YPz5k0KvRdbZ5Bp87952PvHtjJyejhczLEykRJMiQkBK64JHKsLnQ5+LqiKPZhLHzaG1YGNasjAYIn63HObUJhFBoclhDCIkkNaHtUFpy0qvYKwqKJHJSndF00aEESKUZH52goqY2FcNKI8I8LVdqgrSQCjyWKMEF0DqTCXvJE4iIQiMwJBnQ84tLmxy6lKCyiq4yBqEEnYsEkWjaKYmIVDDrpvRMzfLiiN2dHYq6Ym15lS5EjBF0zRShBJPZjMn0iNL0SMEzGU+RRUFVlRid03JjzBvLuu7ln68SiNBRSMPxyQlo0GXJbHaMjPlkvDDqo3SBsw2hKhGlwc8afNtAKnA+UA9GvPKFr5CiJ+GQlMQkSMFmi0gXuHLtbd565/tEU7G3t0/jO6JQqJTVMEZrdFEhBFifeXkpBWzwRJlwbUtRGqJMiJioTcGxbynLkkpXJC3p+UhwHRCpSo1LAhMS0uSkQuEjstDYBNEIJBLlAR8wQiGkwvqOkHKSaPIC2atRwWLbGVEkVFnkjUnKwOtoFGrOA2nwaDG3TIrMKXTz9KlJO0Obgum4ZWm5R1FkW83MS1Q7YW3rWcYn+/zgje+wsDJiZXWJ7/7hdzH1ABs077/9A37qK19EFEPu7e3RHDxk2lS4DtbPnqZpWu7f2Gb91AWWT1/mcG+XC2c3+PDqdQa9Hm+//wGTo44QBUZpfOtYWzvDmcV1iuES33r92zx98RxtFNgUsHaG3Q+88uor/Oav/zq7r73J1bc+5Ks/81OUy33a2ZizF05x9b332b26z9Mvv8JPvPxZdvce8d4738H0B6ytbaIWVxnWPd59+02uXbtKijUvXLxACDP2+3Dx8jr3H+2y2PU5PAStIsFrRMppjRFJoRRWWEgR33r2xQnjqeD2nUcctooZjucvXObrv/gy33/rLWad5O7+Cbt371HqbaRr2Fob8PlLF+mV4LpdoleM1gbsHngeTo750hd+gn/r7/0yB7fuMSigWD5LNSg5t3Ce//n/7D/ib/zCM/RrQHuMkOATO1PH4dShUoDkuXd0SG+hpp04SllRFgMWF/rcuvKQcdew2NMMNwfs3ttje3LC1soCZSGgDDw6aDm71bI16NHMNKoS1L2cbjkoNGc3Cu7tjXnl/GnOrnv+6FvXCdUW7mSGix1RyMwzLT0uVQyNIhnNpHUUOpFkSXRj6oWcwl2QrSdIhdQ5SEhLQc9oClPQxccBEZZCKJJWTGOidB1L/REqzrj34VWef/kzXH33Co7A/4e9Pwu2LD3PM7Hnn9awxzNlnpPzWJk1V6EwESBIkAQlkuoWu9uW5A61o93hvnOEw1e+UPjGF33rCEf41mGHw4Mi1BFqqVvuFluiKImEABJAFYAqVKGGrKqcM8+8x7XWP/ri3ycrC5AoELai6ej8gKzMPLnP3pnn7L3293/f+z6vFAo9GrJEM2k8oxKW7YKkDNgOqTUueaTSIMpsuZUG8ESZGWEpeYTzmbGqVpZcKVGFIiWNEtniJJGUox5nLp/ho/ceQC8fEnY2BjzYn3D3/gGvPn+BZVjS7xuChdh0vPW9f8Vv7VzMnLIYs1JldZA+cY4k8fPvfZ+vEwvvZ51tyifx1f2s7k3EDMAOHqNqpDafmWrESu3+5CN5GPLZ58PnuuYnvpcTq0z8/IdTXhidNPaEkJMBg/9F396f1b/jkqak6Toau2RtY0yICRk8roOUHFpKkCXeRpJv6VJ+3x5urpNCS8azl3lwlhwxNngXUKaf1SESHJ4UQub6rYYHCYEk0MwtdWUy0mPpkYBSqyWnlEgtqITGBouUiVIbSiXwXX5uxRipC0NYqWR9jEyO5sjkKY0iJYMk0YVE6AJGa9BF5i4LMKogFfmgprQmRbApIKJESbDB412kWSwYDfoU1UoRqUpGOnONWy9onaNeWUePFjNeuf4SZVmjdE0ksFjOsG1D5mBBt5ghjUb6lqLU9AY9jCqQRV6G9voaXSjazkGC0tS0PuBsR6EhCk8yCqEMtYu4uOITK0mvqlgsLEEpCglSBhpZYjtPDDMuf/mrlP0KkicowAfE6sDvfcu9+/f46fsf4lzkeLqktQ4jNdFllbILEeUcKUaUNhATZWXwrkVJgdIFwkhCF9EI+oMeLgXc0uJi/j4trVv9+xM+eBwBoQGRg0A8kaIoiB6iPzm6S8wKZRJsR5QKlxL4hNYarw3W+rxuaiOESNSJylREn4OMkvd4aymkISiF9Q5DVitHH+lUHnQkcqCbFhqpFWujil5PUarMRe26RBQCLQukzIEk0tQoIRhrg1OCVliUNMhCo6JHe0kpSkgWW6j8mvEeH2FpMxfWS0GpIHSegSmoexVGg0FR90vaZUsXNcnCpJ0zrPrUVQ7oOz6e01nLxsYaXmhKtSREjesifuXS6bzPrLaYsM4hRUBgkFJgiTQzS3CCG1fPEsOMg0Zw7vwAOWsQLr9mXfIEBF3naNpACokUHBvjMb1aEpLBVDWogr1Ociwr3ro9R5oKk9TqGmCJMqKLPBju94cYKdgYr5OEpHWaaAp253epupotLRmkgmJc8eM/+w6vvf46R/tHjEdb7Jw6TT3QHNz6ELM24u1/8R12rr5IKeBf/eE/48bL3+D0zlnufvweAkGlS3q1Yz5fYGyBDIlaBZa243DWcmZd8cN3b/HWrQdcvHyKUV8TS4W1kXYW6a+NSAH2Zi07Rcv82HL2zGnWzlQ8/OQndIwZ9wfsTloeHM1JSbJYXzIxig/uPODhQcv66BQueI4XCzbWhphoiC6wCB6pczJ2kIlKaJCRzii86zC6T+c8u49nbFYFMVpSACsr7t/f5ZVfGTAYV7guohME71n6nNSdB4oBSUSLAEGDiSvHnEHI/L3MIR0NMpVAXoAk40Fognf5cC40xJj7hRSwvuHG9Zu8+eNbFD2BaJcMhorNcyPe+/iAi+c3KUqDLC14Qdst+fCnP+aLW7+DFGnVd0CMHiVXSr0nrcxTvUdaBWukvLxExlWQx4rxJT9bVubK7M6URF4uCJFD3IhkVvMJI/mpvulE1XfykE/N8U44f0+bHVjdx+cTg5/Vs3pWf9H6hQd/rQ2IGFClzsODzlNUis5Hlq5lrT+grMqcKtt6gvf4UY/lxhotUCTJ5HgCw4KurPFElFQ4F4jJM116HmwJfEpo5Rj3RqjY0dMjVBkoTIkQHlNISq04VA4tt6kdzJdz4sY6D1xESEtlDN5HAhGtDAQJOJy1lGVN03aAyMDc6AkyJ1kqlQ/QUoicjGQd6+MhdaXzJkYKBCWWSAyaIBI6hRUEWiODIwWLNxWIEq0k3ttVwAk0NtI52Oj3Vm7RhCdvQlOIRCkRVYldNmhVUCrPsF6j6QJVVVH3CtCRXl2hlUb6jmXT4qWiLgradkESBboeopREIZhPG8qqxpSDDJWVmRHkUkAXQyIVy25K9AJdkg8OoocPHQUeIfP4anI8RcSc5OxCyIO9GHjp+TforfVIdpoPwNKgVowGHxMez/GRZbboaG0kuYBRBucDUkhUbXDe5zdJMr9QqGzZRQTqQuFtQiiDLAUsGkSlqXVJQtB1FmMjopAIoQkxoSuFT5LgfGZD+EQUCu88zjlkUhQIopIEmSiFxq2UfEkLikJCiJn3IwxSeIa9iulsiU4iw8dNVjSFGNFCoX3ECzCFwSBXwHWFKATjXp9F11L3FdF6KEtG4xHL2RG1LFjO9rn20svcv/8AUw24c+8e41MXmE4mnDtzjuXhPlrDt7/zbYSo+eZvfp3DxYLj6YLjh4+RvR4uJj7+5DF//OYtXrl5iWgb1uuavf0plVnDjS1CS5QPrO/0+eTjTxi+cJ37H/yIXtFj1BvQOc/eo31Uz3D/nQ84tbnFV371mwz6FXfu3OPw8AFlDVJLFkeBoreBFJ7p3jGjjR70ataHp5keT1nGY6b7cwZrNTvnL7F2+gzHRw33P34H13hefe4yB4cH2DZRRkEtO1Kh6aImykSlJKbIiWZpAUlrlEz06orLwz4Pix7NEt546RIvn1tj8vgTFgcTXn3tBg9rw7mdNbZOrSF8YLpw6O0RB0f7jPprjMqIauYYG6m0ZtFMmO/d4+jwE0Sq2ahPc3z7DrPZHus9aCeBsTZUZY/350dcCbBctgSriAmc1RRlQWtj5k75liQ1VW1yAJEwhKCpdUQmw7ufTDm3MaI2Q9ZGNYezJYu2T20ka5sFB9OEWM6p+yMOGktxMOev/soVXjg9op86RqtmtxqUJAshOvo9SWMrFq5hc3PEbNkQQ05h1Fg6my2BpVK4FDBFVjgLEQkr/mdIAh8kUkGMgoTGRU1ykaJMVDKnuVkSP/3op7z0jW9weussD472UKnm3MaQpUvIFGiDy3BqGwlqiZDrmYMqLSn4zBdLefDmUkTLgKJArQIuYiKztjDEkGBld8nBFR4jDdcunOH2hw9RStGFhp4pOHd6i92jCdOmI+mO1EqU9JRVwScffMDuo4ecu3ANqcITLs2Tnne1/P5MsXeSKve5lTgnHznR6q0mbqTVtpuUCK4lhYwcQBer9L4n+/T8XyGfur+nvcI/b5NJ6SkloPzs75L/DVk1mvvoDMEmhmfhHn+JyloHLrC9vklZFDhrM1tKKIIqKHRAuHwQWgKtD2yNRwSRBzgKSRCSZBOF0kRhCLLA2xaEB11ljpMAby2IzG3TWtA0iYV1nN0aZFeB1kQtaK0lpERRFZltFUGKAhsjpdII4RGKzF0VmbOUosAFhyfRdS2b43W0kViXD3tl0UeW2Ypqg18dWrN6QySVZYOrhFIpIsKIFesy0dhEKGqKqkSJQBIRYou3gnbZUvYrbBB0ocX5hjNnznLu/AUQia6ZIaSklBVFTxOJ2ODp1ZvIssTOFqAFRilSgIREyxJVmIwcaAOmKlksF0QSdWkojcJ6T9d1eBsyXxjBsm2Jy4ScN5mfHHIgh0uSKAVaJkRyXLr5CkX0JK0gCKTJyvXoLLbruPXpJzza26XtBN5CaQqCc8ToKUzJMgUKWYBzCK0QIiFjwFRFZoUZiRC5X5Uu4oNHSEFpDD5FRJIURUnnHTFmBXipZQ6WsY7SrFTVq9CNlKAwJSlBLU3uSUVeirsYqHtV5pfFQG0KCgFLPKrQqBRB63z5A6KQlEoQRURbEPkZTCFNfi7JSEiWwhiGWhJl5oZ7G9jvHEoneqokSUXnA0KmFUpIo4NHKck0zGhiwkeF8Jkb52NLqWp6ukPrRNQlAc+yabAWljYHvqUoaRMMVA7ZaY8zvkj4BfpYE4SjrASFTEyTp5IF86nNQW1aMLcOlCf5ktZ3eL9EK4XUUBpNvyoI0ZFiHkjHKLE+oUWkrAL9QUlhDIvpBNtoxsOCUrOyzmvKGGhFwsrcp3ZNhzKaqihZdi27h3uMeqfZ2VnjeHJE23pO1RWqzN+LIByeAqU0Sme1sNJQKUV0Lc1iAU2gV1lSGUidZ3CqRnSW8VDw3Y/vcOrsX6FXa1RZ8oWvvcrdd77NUavZvv4Sw7UBP3n7J+ggUWXFhRfe4Mz162i7YGNrh4P9PXS3zycfT/nk0SN+++vrjMs+RaWZTi3TmePses2505voco/9wyMurW8yLBXbmyP2myleerqm5WCmmNuOslpy8O4B65tDhA2MTydef3HM+7eW2NDnzsMjDiZzfvjehLo3ZmfLIFPHsDTo6JByFT4pJUqJ/Lr1metXKMEyppxMTaJLEScUURtUKVg0ESWhC4Gj40OmBwfc+MJ13vyXb4IIRAxduyQJlfnmMiG1YjgYoWSRldQp5kVxECQZ83UbQSDjTLQqcjuhJCkqfIwoGVG6yM8d7QixZefUOjeuXmZ/fwpe49qOU+s133845cHBkks7a2yNPJNZA07xoz/7NpduvMLGqTMoGTP3VAhOEnrh6W7jyTYxOyGIQECKGqHTU2O7pys9+W9K4L1/8rV+0lQ9dbv8q9XSc7Vx/TxWRXzutif8W8hKQiFYBaM862+e1bP6ZeoXtsgbVYAStEtL8JEkPSGA7TqqInNpUhJ0NnPQpBQoZfL0P3isb1GlpOjVtMHS2Q7nLeBBSIoCnr+yzbVz67x8aZtzY81Lz+9wdttwdqNke6jY7ElqmZNdg6joUiDGSK8uWbYTnG8R0RC8XLFMNG3X0cUZk2XD/sxipcH0+qAVSkKvMAxrQ7+AQnt0EUkpcDhrGAzWkULgrcPHRFgNiiAgtSYIndk4MWIEiCgoTJ1tGQRSzCl5SYhVoKNHx2zR6YLPlpcUSH7FhgsBOk9jG4SEuiwZj0dsbm2yubnBeDiGAHZp2Xv8CBdcZssIAUlhvaJpHN5bUvK03RJdGoSWlGVCpohLDlGUCFEhpMucOieQwYNzOOtIySGVwCNZWg+yxEhNIXOCIF5go0dGx7XXXsREsv1IGjJ52iMQuHZJCJHbd+7TtJ7lrCX6iIwJkVJull1ApacSMmUiikjqHLLLKs1IVvpFFzAiK4AECRd93ippRVQCZSTOOXzrKKLMAEcEZVXhXebWJCQ+ehQi2/0CWe4foYwGJfJgRGpWgHVBDJJl25JiwiRFYRQ+WEpdZGsRkc51JCMppESobK+OCGzIUHaByrZQFIeHlqPJkkp5LpwaMhxu8dP3PsB3gY8/esBsPmN/tk9/PKbXK1hby3bdnctX2Th/msG4ZNiDmzefQ/dHbGytM2mn3H34mHOnd5jMJ1T1gGpYc/rMDrquGff6vHL9KloY5p3n13/n12hTy2hzjYtXzzG3C4Z14uz2KTY2dqjW1inXxmxtb/DhrbeZHu2jk6VtpphqCL2C0XhEOVDcvvshQghGvRIfPKpXcJiWvPvee/z0zXd59OARx48fQrPP2ctXMFWPD99+hxgUOztDxkWkNiUxgdYRVRnKWtMzikrnHOYUIwWKWTdj0Ul+85XL/OrNdTaV4MNbe0xc5MU3nuP27cf0RoaNrS0+fP8+R0fHXLy4wYPbdzFFn0/v7/Fo0vDe7pRCav7a69cJx3v89//ku6xvn0f1Je9/719RFZrhaJ2/8T/9PV7/ja9RrG0zLEtOVYH9/UNevX6KnbWCaAOfPDxmNBhxbnOE9REXe9Qysjkq8c5xNOtI0rO5NqKsEvuTCTZ4hIiMa8N03uB9QyEU670eUjiUMPguoLXhy9e3ubGdt/BJlXz11Zt869ev8p/9ja/xzVc2ePXKBi9cOMX1UzUvnx1x4/yI7XVFqSy9Oi9kdrbXKMoOEhQqW0pSDITgEUpk27wUORWO1eBNqRx65D0pSooic0IBls2M+fSIKy/ezIri1DEaVzi3wHctSubbVjrhvUAK8J1bsTpbhMyKYKJExNUGOMVVqq9FUiBVRz6lZ6bmkyTdmFAycmZnna1TQ7o2Q+xTjJwelhxbz+7xMVvr46xAFwaBZjabcfT4fk70jaxUej/PwcuPI39m6Mfq77j6geCzjfXn7yf5KckuMXpI1PoXMKT8+ZvrkwY3xoAPLg8JT+w0+RarJn7FXyOtGFHPGuO/NOVyyFhBQvhAIRVaiJXNUVGaEqkj3jva1pMShJhQImWXhVCQIkUpUSqgCoGpSqqqolfXlFVWRCmlAIVUJVKXJKBtIv1BhZaCQmmEyFy3pDRam8zjTJEQHd63hGCxzuOiwAm54hBna5ZSOeXSWsdgUDEYaowUVDrzizUdEp8VJUSkSMQYiNbl13KMxBCyrTVEktSgFMk6VEiMen3KIgeEaAQqCgieSuewMhkDPuW+5fLZC1jvCV1L1zQE5wm+y1gWKTG6BKVQSdMbjtHCYDuPzvInSlODKlksHYtZR0yJLjT40K3mk1k1qGWJTAKjJYoIKdAs5zTLeX5tqwKlCqpVcrKzCy7efJnNM9vgHdbZzOoDpMrXqYTg4PCYJETmMMOTRFGiJNqQFwDaoIYDHBCVyJt6HxAhooMktNlpUK4O2toYCm0wWmO0RgmZ1XTkRbCJglIa+qakLAoKodBJYaRGGUOwHawWpk3TEshIExkiwWdEghH57xpXiwVlNEbIHNCWRH5ex0RAIWPuy0xt0GW9QiFERBIMTY9eWREQuCgpTA8XBYuomQbDUWs5WrZMrGdhPU0X6bpAZyOH1vOwCSzmgq5JzJyjtR7vJa0XHLnA3Be0y0C3jHStpLWJnLKnSFIQnSdpTUNi2TmsjdiomXUtc+s5nDQcHXc0C49deLo20LQW72I+3xiIrqGxiWXnaTpH1wQWS89y6ZnPPIcHDT5J7j8+4HAxRyrDuK549cY1Xnz+Bk2Q9MY1w54iBY1zCakDWmSlbaUMKgrqoqLQmetZlQWdF1w8u8Pv//avUlOgbKLSJZpAFAJpBHVh0FpTSUVPyeygChGUwCWLMI4kLUYaQkpoU9PfrBkpQU/WfO1bv8pb3/8e9z56i9s//EPKao2zOztUtUHoHl//5m/T3xpgdEEpQFlHbDrqoaI36KFEwdbWkC4YQlCUKrI1HlDWmoPjJc4r1noFz50bsWwiThaUpWbcF/SUI7nA3Ebu3r/Lux8f4GzN/u6CT+7scebsWYyKzGcNtlMsj2eMBwM2+j2kklgBBEuBoosaKUtCmzmXLuTEe+ECIq2CzCQZSyAUMWU3lowdkkgIMYc7KlBC07aJhx/d5eJzL1P1qifp1VqalfofSAIXQEpDlA6hJFKZjGd6qr8QQq1YwDrzhgMQ89lZSoNIq2uusng8IhiKAm4+dz4jm6Jg6T2F0vSLgtsPD5FEhmVNYUoQiWY64e5H7676ghwgctJyCE7OXk+dwU4qpaz4Iyv2YlL/2mHbk0CylFl8xpgnfMKn7uzk1hmvkk7cDv+6HuWzpeZnD7caIq7uA8HP/32f1bN6Vr9Q/cKKPykz48+7RFEoojTYpaMoBUJlW27XLVfcmUAXNClkpouKERLU2tD5kJUgStOtLJzOJ1AREyy6Kpk3C9YHg5yOGRMhpFXOm0QXRVaUhYakDFJlBoBNEmU0MSXiSbPsAkkofBQcHC2ojESLDIiWVZYsx5BzSJTIUe7OtwgkWxsDQoIYBDoJQgAnwdoOrCUhsVHR4hmWEiEjuiiQpiCD2yPWZb5MQqJSouz3KU2JUAmfBFoqJJGYMidOGYN1Db2ywEgYr60BHm0kzlu8Tzn1TcFyMaVdasreEKUEPkQSLQSQlCiVqOqKotIMxmtMJ9O8iVH5DafuDzGqYDI5pq41tnU08ya/+fcrmqZl1D9F45cEAvPJHEGOhRepoKolV869xMVL10BopAogNCk5ksxDuhQcD/f2+dFP3sWj8D6rADW5iQwyN7IKcDGAkKSwAvuHrNaMSBCRtFIISq3oXEeIeUOebMC6hPcerQJSQKULnO3QSdC0FgqwbUsSkkBCa4VMgs5akgAvBCqsNlwuQdLEkO+nTS5/7YPArL5fTkA9GmJbh64rrIBgW1LwqEBmBoW8qfME2tbSr/vsL44pTaI0htBaLpw6zRdfvcJsdsT9uwd8/Zu/wuHScu36NX78vTdpp3Nm1nLmufP0xhtcMgWiGnD/0YQUHVFO2X9wB78Ykhae3/i1r/L48JCz557n0Z2PufHKF/nko484szMGKzh7fosfv/0TLl2+xHRvl+3xGDUYsHnjJY4e3acsCx7dusPL3/gqyhTsf/IJhx/f4aXnXuBokfjgJ2/x5QvPMVzf4v577/Pg/vuY4QbnL93k3ffehiYyPLXJqXrEMkSu3fgKt97/EbZtKIqKbhlYTic83L3L2miM9AuOHnkCBR2RlAwpKMDirSNVeegnBNl+HgOLmeDj+RxRDPj6jSv0B4qJDVSl5nBxxKK1vHjhIovZjLWXdxBS8+EHt9msax7c26VKmtufHvL+nUMuPz/k11/Y4ssq8Pa777Nz7jyyPWa8NeJw/zEXrtxYWUUCtxeOzaHmS7/yNW5e3yAt5hwcTvj6b77GWz+8S7BLzm7u8L33PR/d3+XquTVqXbI1rnl075irZ86zORjRKyv2j5e0USAWS7bGhg+mC7TcQAnJ2Y0h9w4meKPRyVMrxcs3TjGsS7rOcmjh8YNHbJ85zWL/gK1NgdMDKgOvvnSV2588ZHq8YLM/wo9qutgwt4L5LHJqMAIvCCKsbEh5qBZDoCxKUvQYJXFRInwOsQkxIACj8mHSOY8LAoHm8NEDNi89T5kcTiiUGHJ2u0etK0IosTbhQ4uLEo1Hqx6FMqtk+ECKHq0kSShE0iQhiUEhdUKkQPKZ4qK1JpzYFqXKO+jOo0vD1Stn+OTOmwzGG3hnGfYGlEXJnYcN1y4ITFHSuhyAI43m8P5dom2QRW81/ExZhbSqzzeTP99YfmZSOdl9SyCHJkQREb7B246i7hOl/GxDzYk672fv89/WvKaVDSau0pY/I9vIlR0mh3jkZjrFCNFnNo5+hr7+y1I2BOpSsugW1P0xwXsg0brAWBekkHBoooRBkWiIRCkyssTHrHCIDh87Epm7lqJF6wxXdylbUEkCoRTeBQIeqUqGgx4BS9talA4kpWlsi5YaQiQFj+0Cy65lMKzQOg+QOt+RpEanrOQKiMweDdnKuzaq8G0HUYDoUKKXba0hIguDSjm0y0cQMYHKB70YV2r6JAgEXHBUqmBQJwKWRReRgC40LraoJNG6oA0tTjhUgkrX1EUJ3uFTwgaHkiUIydLlRW3nHKUB10xJRlCqnGh8dLSHLiV10SehaNspQgekTBRFj+V8yowFSUiQCaMTXmVF3Gw2Y9F29PsjjM5Igl6/ZLFYMJ/OkUJjlOIbv/5XELEjlQUlCp8CUhSk4EHA/uGEP/vBj+hsZLFYkAgUJtsctVCIlChNSZACYRTSZ150cB7nHdqoVbKzJ8ZAicCniA6B5XyGLnOwGOSlM4VBJU2wHdoogkioykCXQ1UycSAxrod0bUdrO5ACaXIac6HzcCiGuEoiB+eziqpbLql1QRLkhM8YCSnR6w1IwGJ+jCwq6qKHWy1bkofKGGywNESMVpQCXPTYIElBEpUiebAAJLRw1EpgjCKmRPDgvcWLhEbgJNkqbVuEEiw7ENGtFIg69+EiM9MgIqRivmiyMlQVWZWrcnqqS2RFulCsjXscH8zQuqQJnmUb0V3ACYHyiqXLSbHCg0w57Cb5gFYKkWC5P8X73MO2zZJHjy1vfPELHE12Od0v2Tk3xgnJ8YFntthjfXPIhI6oFERBIRXO+dyrRoupCqTs+NFPP6TSgVdfOY8xNY/vPQJZUPUrDvcOMNKRdMKHxKk1Q9cKmibS6/V5sHeEaxq0qhmtCdZHPS5d2MYtMm/4i2+8zvmdEnfzVR5++B5FOWbn4hrLw30O995jdzKlmU44f/4SZ85to02P6WLGeq/gT//0LSbTY9CS0jhKLTmad5xe6zMe1Ji6Yhk6TKlZNg2n10se7i4p45L+qE/z8THrI8P+/oyiX/HmOx/xt3/nC/zK117l3qefcvrsOR58eo9HB3fZezRH6B7BSEy/x4ePHmenjc8hlG0MyOAJc8f6RsHAyGyjRuCkwAfQPlAogbMdXiuEDSiTkRlKeqLQSDQBi0Cy8IoPb73HX/v617lw7iLCJnxwzBZzgosomVi6fD3SOi89U+xAalJSCGmzvVdWOfiHIgeOrTioIXm0VIgUs7AheYzSOCQyKqL3bIxKdNkgXUFMhugSF86vcfeTXaY3LtPv1xSVoGkXRCl46/vf5YXXvkTVG2Ul3mpYl9Lnh39PeMerniMn6Kqn5nZPB3mIJx8/MeYmng7pOFENnix2f5FF5Mntc2+VrcI84R4CCHGiEHw2+HtWz+qXqV/4ZGBtou0CSuXks/ks0a2sIiIppCryTlEZEAaJyluCmMGmOcE2X2hDkoCkKGtgFZ+eFEZXxOAYDwrWxlk9hMiyaKWhrBRapdWmA0TIF3GEQKs+CI1LFhu6bLHVHllA2wVau2Rjo4cSEe87xBPpRgSRsjUtgKQmYShSojKCUivUio2QL+oFvXpIaQxGKrTUmLJC6KyOscFlWHIIWaUkNaXU1Aqk6HBxDrHFREcKLTY6MJoKAbZl2S4IrsubZtGnX6+jtaFpMwwaKfA+UGjNxqktqrpES0nTdviQbTxlXa2aNoMp+yxnS8pqiKqyoq1rGlxo8aGg7ml6fUnVK9ClYLBWY1221TXTI+ziiOViRtt2tD5mMH8KuKbj4s0XqFSB0PHJVghYbbsi0hh+8PY7PNg9oPORxWKZh75SUhcFRusMCXcWQcKvVI+FVEglcUT8ajghBIjOs7QWbQqKqkSEbEEK1lOYOqcjG5V5fCarH7TWWOexMeUGWOS0LB9zeqhWirIqUUbhZKSQCuMDSiSCCPiUcjO/4sQ45/IhXK/eAJsO6xwJgZIanyLWZcVAcA6TRFYStB3r/REm5QPcuNq8sEUAAE68SURBVJD81jeucfbMmP2Hc649d5Xzl8/glx3VYpdXXzrFcdcyV4JrV66y9+gexmief/V1Rps7/PEffZcfvfkjnn/tddbOX+D1r73K5OiAZmH56Kc/ZPfhff77P/gDPr31KT1d8+b33uQf/cN/xPpwwPbGGj/+3rscTBb8iz/9Ad1kQSRy//ZdeuMB84Pb9FXH/QePeTzdZX1rh/v3H/Hg8T533vuA2fSIIANVvUYMiq1T29x87XUuXjrLcK3HcKsmLHb56Edvcu3qNdY31xgNC6bdEe/fvk1db7FYRo5dhw0GJwTRJaRSdLEj2MRi0jFfOrxQCPJA2Mac/DyzgU4P+K+/+31ufXSX2XxOO2sxneELF3awt++hHh8gp0vS8YxxEoh2zuLgkB9//Jh5NeYbv/pl/to3v0gqAhvjkrN9zf/t//p3+fEHdzh/8zUGp85zuL+LLAS6HPLFX/0Wz73yBf4nv/87PHf9GkHBG7/xTf6X//F/xP/xv/g7/If/0e+gipLhoM9ykQ93UUaKMjJfdnQhInWiqmu6ELO1qyg4vb7JdNYx7SJOKk6NwQCFrDCiZH/R8Y/f+oS9RUsKgQd379PElqKQjMYbWNfn/oM9ujYrEiCgegXzxZRXXz3NcGRY+oal65g1gaAgSUmMHinzhjaFSIyBQEAaQZSZBxRjAKXRUmDkCddO4aLCyx7v/eQ9Tm9ssnn6NEYLdGrZ2R6gNNlymECVJZ2VgMlpdUojUpGtI5SktNp8SwFCIlVOv0NYTho7HyNJZoVdSJEoQApNsIGrV84xHlUEnxPmWttw48IW03nH7uEh9biiN6xQUiKU4u69O8xmx6SUeVb/Zk7Mn9NUrjbRAkVKIlt7UAjX5OCGekhUedt+kkb3RK3Iz/44ebTP/vd5a3G226QUSZwMDuOq585DlPyzz41xSiuejkKoz6ftPav/4aoyFRKFVCazNZUhJiiNogsxo1RCZqgFoFIaFyxFOaAyNUqk/ByOgc4lbJvwdgki0HaBpnU4RB4UKVAqq4aiaNHK0yskpqyIQqBiopYanRLRdSQJXgmOpx2T2ZKqqojeoZUgREfnPT4lGtvRuOzWkEKymFtikjQu0njNzHnm1tK2jqZ1LJYtS2tJWlNVfZQuMaZYKUIURikqIVjXgl5V0as0g1JT6D5am9VrS2UmIJEQUl5yxszi23u0S+Na5m3mDneLBYvJgtnRDDdvmO0dMj2ecjyfMD884OjoIHP96gHR5TAhkyRGaAbDMe2iwzcdhdZIKWiaJa5rmU2mCF0TZUl/MOLU9mlG6wOMBhE9tm2YzZYIWeJdx4uvvcGpM6ef9MJJqFWStwAUSMOj/UMOjqZ0NmBttrwqKRkM+mgjQQSSc3S+g7ZDp4BKgS55ikLjvYMYKEuDVpnxGFO2F2qjMUYhZKIsNEYrogZpJMZoqlJTlBLnWrQA51tGRnN55zTjtQHDUZ+qLnNASAyrcCVJkBLvA6RIJBJlVmEWUmXniVE4lTIHW6wsjCmnJcfW4polRplVorth4pYEv+D0+ojzp4acGWpGVcGggGtnNxj2+5za6NErJdPZkuWy4/h4xsuvPsdXXrqM8RaPRfoll3Y2GReKc9vnuP7cy+w9mnDz2iXKQnHl/CXmRzPaeQ5fsfMFwbZoLcAFrp65wBdfe43FcsZsPmO+9DTLRLtccmrrFDuDilImHuxOOHP+Kr514C0qOnAtKkF0NiuyW0vwlq7rWC4tQgecE1RVj6tXrtIzmq987Zs82jvmO3/4p5jasLe/5N0f32Iy2ef8uRG1VujSUKSs4o6r/ZIUAqN1HqLLHmU9ICwtoplxvHsfh+Bbf/Wb/P7v/hp/62/9HpvbfapKcv3aKd744ussreXUzgbT5YT1rTFra1vcePkSb3zpK3zlK1dYHyV0UpS64J0ffo8Pvv8DTp0qGF56np3z13HJI4qCRkiihZA0vdGYo/1HeNey/+Bj7j/aZXNrjA6eqoDNus9zZ9fZ291Hi4JhodksS/YnM4QA5QLbwzWCD3SyYL00nNnocen8eYQyTDqHi4Lp8ZRPbn3EoK749NP3+cmHt3j8YIo2JSFaVPDY2SH9oqY/GIBOuCSIKGyIdC7StR5BZkdqqZBCZ5u8TCgt8CLkZGuTz5yjuo8SBoCCrMzWKZBk5PH+AdOHD7nx4o3sfouJwhSkKBAi0uvVCCVQ0mWWeYjI5MgykAKER4lVr0MgepujBiMoqTFGI5Wm8wkpSmQoSaLI7owU2d7c4OrlSxADWkXatmPQN4gCdg8W9HqCsUkUKeLiktnBAx7c/Rgl88AsxhOm3tO22hP7bQ49hIQQZoUzTitkw9MjA/m5H096nBPeMCe3/4sM6J7CqTy5P0l8Qjp5IqlcuRye1bN6Vn/R+oUVf6Y0yOCxzhKCJMWAqSQhZOVaXIE9UwAwKO8xhSGttrs+Rjrvsl8/CaSQhOBRQqJkQsiCrs3y+43hENoGpTPAONhVQEdwRCHwSWMjlCiSCcQECoFzHbrUaFXjmw4fPG3nmc1b1sYDdGFwEWKUK65cTgYKJNBypf6QiJSZfsRVuqXJ/BsihLjaxJMgeorSkKQkCZmtvFrnw5gQSKmRCJSAGBSF0fiUMlsQgJRtrxJctCzsElMqhAtcPn+OtfUNhoM1vLNsbp0mxLT6egfaxWRlOWmJ3mGKCh1UtpGEhqLUBN+RQuayuM6ilSGkwGwxZVzXuNCho6drG5qQsAj80YxSKgbjNZbHewgtKdSQUERkBVpma3NdDzh76WJWGSaTt0KsrBRSEVOHi5IfvPU2SWnmx4vV1l8QiBRCIKwHo6DMw4UkFCGCRBCUwGiT30RSxJEhusIYupWCFGtRSlHVRWZLhMwg6toGKbMsvrWZtae0QiiBSfl73ogASuBDQKVswamLEhUT3jnQAh8DKSqCEBAtQkJMKid8dV3+9ySfIeoBgslvc6lQBJ+VUkWEpCWNt4ydwkdPERJSKj76+BN++oHh0eER/fUR3/7Oj5gc7lGYBSpJvEvUfcUnt+/zeG/Kvd0DHj2e4wWcunCOcxeu8KMf/BSFZfvMiMGwZOk79u4cYW1ibbjGsvMUg022LlxExmOKUnE4OcCYyHwxoerV3L13iyQNb37nTX71r/4GTTcnRMfp7VM82N3nvfd+SOr2ufTcc4xPDfn+P/9DUop0suL05jrzySPKQR8f4b23f8rQlBSl5L133ufszgbtYj9bvcKcgTGs9xSzhWSxbBgOImExR6YeYTWc9SG/vs6dO8OimbEwDm9bVNQ4H+gNSkSccf3m8+xc3+a9H33K++1jhDf4EGl9h0ZQCFi4loOl4+qVC6xfO8WZwvCt3/kmf/CP/gmyLrly7gu88/0fMi6XXNnZ4a2f3OXCH3+Hr792hcPFhD/4gx9QmT6XX7jOnTvvc+7KDdqjh0we3yeev8SyWRC85Vdevs7uqQ02Tq0x3z9E0jLuw8vPnQZfkGxLVZb0iojziYUPbKhIv6y4eekUy8kchoa6rxlUmsY6YsqDwh++t8s337jOqZ5CV5orp6+wc+YUk8k+Dx8+hKA4eHTEeGCIsuBosWQwWOPll6/y1k9u0zSe0ahg3gTqXqJnTNaspQyY1jp/vUuZw2pUkjnBU4knoRERh1g1wSFGdNlncTxnNj1ia+sM93cPkZWlVBsok3C+yao+ocCDQuMDSK1yYxmzki2IDpJAU5Mh0I5EXiTFtILhx+x6U0oihMTHQJSR6CN1bbh8aYd3f/qQshoQhKOoBGUVePBwwqULGxRlQVk1dDawe3DA7r07DNdOIVWZh2mr97jPBnPwtDXl6TpR+skTFR4SQczJnzjQ1UrBGHmSOyeevn94wvB7Sg342X2vbn9yG5Hy++XPMW0+s8o8QWYLsWKorZJTQ/zFN3vP6t9pCRVRWiJXqat5KBwRMuJ9onMBIzXaFCijKXS2caYYUUrgksQFn22ZStK1HYXRNF0gRzskYnKwWrRKIYhJYlLCuZBRGSIzNWPK1n4hc6prCgkbAZEoi5LOdnnYnlYJmEESFWhl0Amk1pw87+wqME2oQAw5mRQc3vmcYkuiLEs8giyvyc9rJRVJBAgBigLnW0iJwmiCj0ip8MFRFxolJc4GWtcSYqIue5RFQRKCtuuo6pqgC+bLJbZpiB5MrTFVjYwipw+rghgdXdsQ04LOdhxP5igpKExJs2ywXaCocvKtkJKi0FRFj855gnB0bR54VlVNZxeQOrqmoTbrFEXJfLJASseV566hoyVGseKl5sVGXPlWnI+8894tlo3D2+xkcK6lIyJDwImIEmBUVtoUElwSJO8ROiNVgs3DWABHDkRz3lN5g+nVyBQxq761XnHHhEiIqsK6wLJtqKsK5wNKGkaDIevDAfuTY9CRQVVkhWfTEpxHkFAx4rwllsUqMfiEtyWojAEXSFrilEBaz8JaSAIjJClZUJIQI4WQJBEZjgdEV9DMLVjF7/6VL+LaluXiMTdevsCsibz3g7c5Op6wYQx//a//GsF6NgYFi6NDLm5vsnPuNLc/+Zjf/o0v8f6HH/DSq18nSEsRHb/5zdf43nfh+ecvo+qaTz95n1dePMf+vQkXzp1CFoKH93Z5+aXLXHjuIj9+50dcvHiOq9d2ONidcWp7i+euXuWd732PtdbyW7/7a7z6+iv8l3/3H/DFr77Ohz/6Lh/d+pSzoxGjSmOlzEGAo5K3f/wxZ8+f49zlNf75P/sBX3ztJmuDmnf37/P2m99h+8IZ7HCLu7szLm71Ob+9yebpEXd3W/b2jrMFFUdqV+EyIuZBh5fIssSnvLzbP57y0gtniPtTpFD4ruODu59w/3DKnd0jLmxtstmvuffBTxn0NF/+rX+fP/rDf8LZ89v84Lvf4ZX1KwwL2NvrqPoFuq6xJIwo6QIs2sjWmqRxc9blNvMQcYsF5248j2uOGJ0+z/7925S9MZPjGYM1TVmP6LxHaUMSiWtXz/An3/8Yj2A4qLl5bo23bx+w6JYooVFVXhgcTBounlrneG55PJkjk0RoQesTn+wecuVMweF8zrRp6NUFTYgYEbLLK3RcvXaOn97aJSRywnQCHwNaSUypcQRqI5g2lplPNDOH1gYrPUnojAZIiSAUZ9c147pPChFSCym7ukCQQkDXfT7+6Tu8/uWv8MGRIWEyK7AoSMIikyL6FiX6RCFRSiOEQYgGIiSROa0yGSDzXo3U+RotJDHKVcJv4NH+Yx4+OuK5GzdIPqKMApG4dvk8P/rRXWKICJ3Pkr1eyfv3HnPjuXVMUaCNoogRg+J73/6nXL36AqlQeaiWVgo/WA3RVq6BVSjhEx2fOBm2ZZuwSCsu4EpI8TRy5Mn73ZPP+fxQMT19u885IE5u//P9V77/kyFiejKwfOb0fVbP6perX3jwt2wbZJC4YGi6OYNaI1QPbUDEyHw5Q8dE1atzWmNMuGBxzhGtQ5cVpc4DtSgMPji0LhBJ4GmRAmRt6RV9kikhRMZVTRc9DkmIgqgEbedZzhasj/qZOaAMhdFIG9FC4KKi8TNKnehsJERFrzaMej1kIjecZNuGj5lVIrRGeogyoJVARAlKo0JEiJgtqNZlJU5laIPFpYCQASlVHlhI0CKRnM1yaJkhylIJQsyKMyUyI2HRWYwxCJ+DLgSwDB1SJgZSo/oDzp47izYGowzRW6SSqKIAqYl2Tl33suVAGrywRJUQlOiqyFzF1dZqbpcQMwOm0gP0UGKKIifXLg9pY2KZNGVh6K8OF8pEggBMj6VbElyHipHoPJ3QmGh56Y1vsrY+RoZAWA0KMgRWE0O2V/zBP/3n7O0eoYQhhQWKzKkRQCEzB89pQbdi20SVAeYiBKRKBO/yobcu6KJFm8ys6XygSAJipCjy15okiR2QBMFmxZ8NHi3zG6iLITedytAuO1KlSTHmA0SKKC0oZaJzljZFZFI5CVhInAEpi2wvSTF/74RBlYEoIC5BK0VIiSpJ2hSIq4akloaOiEuRdjGnEQEhJHJUcTAp8W6J7g24vXtAioqYAnfevoNU2Ta1fP8Otz+eY8pA07V8+MkEREKlxK37+wwqzUgF7jx+iPNZ/WPKHjEk5vcOiSnw4Qf/CK1qgrLEYCnqOT3ZMpk2xDby3d0/QcqC08MBP/r+v2DQ32DeOj795AHntofc/mCPr//6l3nrrUf8y2//AKMKpvMlsjbcu/OA1uaDbKlKnJL0zJK6guHaFu+99wFaeQj5ILG1UfPpoyP2DiKvXO7DUhKdxMlASB0qBYQOaA2uWdIvSx7aI5QxeO/Y2hhjkuTj+8fUg5qt8TGirthZh2UrePv2EarXQ6428bYYoLSkrgYU0jGqDN//kz/ixZsXGfYNu7dvMzucUhO4eMrwuBO8+eYHjHslg/6EM6evEqvE9OE+47rm05++S1laXvvat2jaKe/8+F0uX7jK5tk+Zc8wW8y4eOM5jnY/plCG6AqS7dCyR0yR9c0e5nHJYp6IvmVtFPnaG5e5/8keRht2RkOubg346GjOIgqindOrhuioCNZz/fp1Bltj5o8fE5PmpS9/lXuPj3n0wS0ePprSGxa4aNmsB0wePGa736fdTjx4OKW/XqBiH5UkqHzdEkLS2o5C5KE+MhFSDu9RUoPMG3NVSEyh6WyHUQJvLbLXcXj/Yy48d44fvf0OMpQYma8/IgVs04HQDPsGox1JiPx+ITwigZAFUBJFykmT3qJkSaJFyB6kgEbgYx6Uq9UGWChJh82IwOi4eeMyH370GGsDyMjSwObaBvsPZizmgX6vZDAo6PYb2hj59h/9IWcvX2ewdvoz1IzgSYMJPyMEfNLPruwxq9tmtaQjuiUkC1UPiSHG8OSQIFLe6Of7OVn35Ps5oQQ+rfv77PHFinHzs810voeU4ooRlD9Hnlh3VqwiYjp51Gf1l6FEVmfGtHIoGIVEYHSBSB4lNc5GbNutAncSRhq6pkHKzNxUMtsQ/bJDSoV1nqIuUTEvGVNyeUCjBDFmpZVI2XoZpcgH8SiQ2RGMxyO1QcTI4dEx6+MeVVHQNB1ppUoMLq2UKHmRpUK2cmWOs1zZPQ3RBrTSeO8BSYgQvWVQ1+joc/L0yrqc0sm4PD+fQxRkLrAkBAcxI0VSIjOBjcCFfB8iJrbWNtje2c583ieLt0RKmrVTm0SfX5tKJ2QSVLUBoVEi0jaOlBLj9Q3miyXetYzHY9puzvrGgKwDVkznM5RINE1HaxvSYo5CgSrorEXgKUtNYSrm86xeGo7GCJmXn0cHBxhTUQ4rClmSVurflBLT6ZQfvPUjhFQ0zQKlFc5HvI/omMBIlCryIX818NfGQPJY73Gk/D2ICZzP4SymxCVLigldFyRrcdZD8ISY74+Y7aLWeYRQpCTROqt1mrZj7/CQUpcMRj2WkwVdirQrJVPZq1nO5wQpiYCWGiVEfj4rgTICJcnftwCFTzjA5w9SaMP65kbm4E0adCUY9CraTpGsxRjH3sFdlscLTq2P+NNvv8NkZhmUBb/ze7/OfDHl+N772Cg4QrM22OT5l64wO9zl9S+8xAfvv0+7aDl+eIurL1znd/7aV/mj//YfMRqtMd3d5W/9e1/iwd1LvP/BLTY2G175+jdJ3T7XLl2h1y/4Z//0X3DxzCn+07/515kuJuxuPkaIgu/843/MK6+/hm2WFGbCP/6v/s985fVXOT78lGZ5yO/9/u8w373L5tYarY0cPL7N0fSYyxe2eOWV8zzeO+DqhR3Obff57p/8kHq0xvmLp7l7+x7d8QIl4JXXvkqzOGbvYJejwwku5k1Xfn8GFxxK5a87Pitvk9fE0PLCS89z7+6nzBu4cfMC//C/+oeMBmOiBhEKzp/b5HiyQKiCV25e4h/8X/5P/PX/4PdpO0tvNEIhePDoEcnUaKG5++EHyGQ48nOktezdn7NY7FH6msPT97jx/E0u3niRo6PH7H7yAb3RGc6ePcfhfMqdew85dWaTZrmkrjdQOjt5NocDNvo17aJFSI+LAUdivgysF9BOl7x68zmaRYM+pRn1YdH2uXhuxId7j+lcy960Q1Y108kR3dLT1zWOhmAjMUowkZe+fJnbh485fGRzzycLfALhE0ppbAhE7wnWESM51EzkwA2DQYWspA8x0TQRbw/QsqYuJKZwiJhIVEhhabqOvcf3OTq4jVSO6B3jYZ9CH9BYVgIS0CumXgJikkipUYJ8RhT5OielycO2VVo4Qub38JSvjR98eJuPP33MlatXMCpfIyOC7VObnNnZ4MH+JKfCh8TpzQ0+vrvLfOHYGPbpzWaEuaDUhgef3OKH3/suL33l1zBGZ4eAWC1xVqq+9Fmz86QJyj9lx8fnQsggf+7JPvOpjz39O1ZuhZM/O+lp/vXYE/H5z10N+FK2WOSsEUT+/7PJ37N6Vr9U/cKDv+giKMm8m6K0hKJAhKwCKSuD9QYPdE6ghaNSksdNx/xoxvbGCC0SLuXkw865HI7hLRoQoiQgqLQmKZgtpvR7PZrVxju6mIdeoSN1YKoaVUti6zBCIq3FxpS3KCGgRYVLCZcsZanYKg2u9SSvSUKQos+KFi0ATesDh7MlvULSq/OFya8uQiElFJIuRhQatQxIrSiMQGgNWmcWSEx4ofFukcH2IoJ1TLolda+P0TkpU0uD0ayUYSXLrkO4bJcOOLx3vPj869TlGOuW2AxKZDZdQJqwXFhSyBte3S8oKoWQPWpdILVCSAhtkzeEpsAtHL2qoBoMOZrOKIOmMgXoEl9s0w8Rd3RMjAmfOnp9Q1IFnXUURUXwEetbHAHbRlCOGBtuvPTqCm8VssU7QhKGhKOzEw6PZvzzP/4uPnYcThuWnUXEhEYTReTItvSlpvNhlRScMOSEveRbhFY58MRFdMqaBlmuDsytI5UFTmZVRMSio0ZbwUJ6YrIElw8fBZFWe4zJh5MoJTbm9OZoIFQaMW+RZcXERUQX0FLivc4p0NpTK0NcOmKZVZ2VqUgCKiTLEOlZ6LQgBscyJZSXLINHiYJF9Eir6XzEV4IiKLyWmCpRlnOGpqYsEm1IeGdJqqbyFSI6IiVVkdDGoooePTTReYJMCCk5pQ2jnqNXF8RU0dk2DwtEIgTJopO0NlIMhwQn0dKAXg2/ZUFInt7AUPfXaJcNe80UYwva+QHTxrF9ZpvSJCSSn771Ad38gPMbY+aupRA1wtR45+mPh6SuywNg67HtAm9rXGgIiw4jBUJnSPCymXK437Jzus9y6WiAtEpaJCqIEuVbUIo7Dx7ifUZIyQyGY9DvET18vDeju/OInnme9z56xPntdYKxGN2nlAFZ9/E+UGuDCpK9yTHjcY/1sWZ90MctFhzed+i1EWfOnWbedmzLwIODljuP7nH741O89PpVnn/hCo8Xe/zkzQ/52je+xWJ+RLfYwzUHFAJee+PL9Pt9Dh+9z8Hekl/5xu8x6ivePLqDiopL5zYpleToeIKuFWuDPttrmoeHB9y8fIEoGj68fcgnt3d57sXLlIVie1zz6f4MvxQMqiGRQLV+mpT2aaZTusUcoWqu3ryOHvZ5/6f3+fj+HrKoObVTM5t3XD+vuXf/AfOu44cfHVApxXjZ0I36DPsBs6IcdMEjilWDR0QJQ/Q53IfOEeSSmASzDgZFQHlW+rLErNU8vH2Lr/zWX6EuakJ0mCKiwoJOVkQ8SSisC4xjJAVHXa5SNYXMdhMJWoH0mhAdiIAWJVK4/JxQkcIYuq5FyhJSTnaUUYFMeC/Z2DrHaLPg8aM5ZRyDtWytDXn0cJe7d454+fmCUgqiFuiUuPfwIe//6Ad86dd/D1aqwhjlEzsLq68G8DNDv1Xjm1gpJh2BjigTRo854d8IoZ98StY3s1L3rYZ55GY6fc4Kc9Lwhs8e+6nH/Zm/zKoBj0++F+mkSUd81hurZ3q/vyxVVTVK5GAL5yIpgI8e2+VBVK83wIYl3juEgC44pFSMBwN8sBRKYv0qpV5m1q3QBdY5VI6cQKBwzqGMpN+raJzFdR1CyTysPlGahISPMfNujYHUMejXjEYDonOURUlA0rY2vz6kxJDDAVIMeJ8wpYZ0Yk3PFmXhIwUaLxMqRXp1Ta8qIHiSJGNhVkpCKdQTi79M5F4qSELMzgQlBEJKpEhM5hNSDPT6fVSAflVzeHCEkifJ75KQNHWhkClR1QNSalFS5QO0gs462rZboQUESmvqXkHbeBaLCYNBj5Q8RVHiXWZqBd9hjKGzkX6/IoaE7QJKqcz3ExoPGBnpuoZFY/nCV77OhcvX6FcFSpckPKHLqbykgO1a3vrhmxwdHdNalwelQqFkRspoLSirEq0UqXPYEFcOkqyO1Cr/G7XI6pfgI726yirtlA/uPgRiCJBCdrSIAESkAOctIkVKkxeZKQUQ0HSe/qjHrHWEZQsh0kbPMnp6VUnTdUQfKcsCyMNko1ROG5USpSFFS3Ii91kxoPTKph0jIUamiwZnG0IQFMqwbFqarqFflgzrHiIJNjfX6dcVe7fuceb8NZbzI+5+8B7Hiw7vEmv1mP6aZjGfcPWl5/jp5Ii1cR8hBGv9PtVowPHjx0z3H/DqG1/k4f1Padycv/f/+HvsH7VMrePF587y1h//AQ8fP+Ti9nk63/LGF36Fsg6EtOD8zg5HB3u8+WffY+P0Bl5Dr6cJkzmnx1scHt7HVENsm9ApMegrtjf7vP/hLsb02T59mqpK9CtJdBMe33vEmc01Xn3jReaLxOz4iBvXrkG4zf7RPnfufkpdKGbTZV4awZOARGmglAqpNM4nkoyYQlLQ48al09jFHlvjESJZjnan+TlneiiReOX5MywmE+7e32Vnc4vpZMFBE/n7//V/w1hHLl29TFmUKLNGb3SKU6dPc3TvHomCftHj/uGcb/7GNxn2+xwf3eFw/zG90ZC4tPhmycXnnkfZGd7G/K6THMvZnN3He1y5do3HDz9EIVhOjmlmu8wnY4brmsXCslw2NA1sVPnfe//+bcajId61XDrd5+howdFihnCeoiz4+PYxP3r3IV96/TwXzknmxy0PdyfEJFkGCb7Hf/33/4yly1bTru0IKifjahTee6bzQDgtGQ562NmSZcoBleNK4wII1+XQRyE4muQl4qBWFKqkLATap9VrLJC8YDZZMDncRUqBiIG6rOhVkuXSUfUzXiQP1iPORcAgZVYqpxRO1h45vFAACIzMDjIpVF6+JIntFLOp5dNP7/HK85eJLmTVipI8d/0ij/beQqIIvmN9uEalJD/94DZfevky/Vown2Z2Zs8U/Nmf/CEXrr3E2uktCiWIQnLi6UirLejJz59X47FSBz69qvz5IeDnf86/flrl97OcvxPu8eeD1D4//Ps3swH/TR9/Vs/qWf159QufDIQpaJ1FK83aeA2SyJaRIGjbFiHzdlILRfCeqe1wXcup9TVEmcHxSgiSKChUjwKJJGKdJ1gP3hF8RIhsuYw+M4tcsAidrWYBxXSxZNiThC6iyVsOkiT47JsyZUFdKEoFlc58PUlOSJIyW2G1UhTGIIVCaoPShrb1GFORUIRkQGkSJSSDUgVlUVGWBXVd0KsMdVlTFxWlKajKgsJIpExUK34NIrKMiTYIlFAIKVCFRJWS/qAmiUjCE2UiCQ/Ss/SWnTNnGQ0HNLalqCpijLS2IRKQRYEqC8pegSglvm1AJQajHnVlqAf56yyNZrA2RgtBWRmE0LSNw0iJFonCgLdTYmxo2znarGLuo6JpyQELPmBdS0wdgkiUhpAqutmUS+deZGNnHRESQeZEq6TISgXnsNbxg7fe4vj4GOcUbeNhZad1tsv2HgEuRVTjkCEhQySz6CPSSIQUVHXBcG0AKxZtXfU4Sfh0nUMJlTd0ShBIeLNqmCpDUAJhBBQiPy+VynzE4FFGQ0wMTIkJCUJW5JFyUy+EQKoMOJdKEXxc8QcjSmU5fkyR1gdc8ITUUoiUD0chbxArVWCAKCJRRXQBNeT0Qw1rgz4xCDwev5LiK1lACBgZ0EZhdCKgkVFThQDSY2XIRA0FjZtzPPVMDwWLozlN55h2nnnjOZ42TOcNh5M5k/mSyXLBwncsF3OkdyvFh2BpPcvW0fqI0DXeC5Y+IE0Ok5g0LQfTBbuThijXmFuJjwXSGDpncd4zny+xXaDrWpCBsuyTkqfUJVronKoqcphK2wquXDxLpSKLhaXsG3qDgkRCJY0kYZWmSwmUzmpOkS9TvapCyo7WO05tbXL23Hn2Gsv6uU2Ok4BihNGCGAu8g+BdtoUqS6+WjHsGnM0pslLhKVkul9x5uM8nn+5jvWdrMKQLidv377I8nvNo9z79/jlu3HiOfqUJraVMA8ab5/jjf/wvWOwvmB/s8/Y7H3P1xuucXjM8vnMXIQq0gclkyVsffsLCObQqGVQwmS/ZPerQWuK9497jxzxeemazQ6RSLGLMh3of8FpRAO/desBksmQ2n9J5x/qo5tY7f8q9995hY6h4+cY2SjiaacJ2kY9uP+TDezPuPJ6ytbbG6Y0xWgsWyxmm0NRFQa8oMULm6xURj6cqFKUQaGOwClRMCFNxNHUs5o7C5MN5ChEnFLv7EwSBs1c3cF1AekFygs5GrIvIJGn8EmkUVaHQoiBFjRS5gVYoUoqEGEgppwPHlA+OCUGSgSADUYFLjig8UseVeM4gZIdILZfOXkOrgmQCsm3p6cj2+U3evXNE4yR1v0/dMznJvTS8/cPvMZkdEzFEyGqkFTPmZLj31Lvf6kce0mWlXdbTSakwukZI8cT6ssLcrGwzWd8nhSD4kFPTPwPsPPU4J+nAJ6OUtBpEnmzcn96Si5P/r/5qT/N1Vrf97BOf1V+C0nkyghQ58EzKbFtvbFbHL5YL/MpiGhHIwhBTYr5cYIPHx0BYDf76vTr3BZ0FATF5Wt+yaBsOJlMeHxzgQsD5AChS0nQu4Z2gbSPOOogRERPeWoyUDHsFtm1xncvq0egROMoCgmsJrqNfl1Slytw4qVAp5p5iFbggFehCUmpJVRqSBOttTq71ARs8TWdX7wMty64lHzTzoCoBUurcbwRPDJYQHWVtqGpDTIHtndMMhkOqukbqrKaRUq7cF5K60Di7QCoFMuA9hJBouwbnHQlH2y3o3BIfO4QgD2NtYD6f4WyH7TradklZGFKIFEUBJJSW9Ic1kJWbzjY439K1npQEzlqee/Emda/KKk1vid6SXAchq4L293b5s+//GZ3zWOdXKeE5bdVojSoUyTs6a/HE3PtoTdIyI0eUQJUq304JitIQgsenkK8dq0uA1HJlrQ05mMVZiIEY8+MI8rL6hB9qo2c6mTNbLDmaz5m3Ldb67DgJAe9cZgXGhNaGUd1DSYFGUiiVnTJytehIkU4ASmKkpFSaXq9H21pSBFMYfEi4kJXLi4Vla2OMFILtnVOcu7jDuQtn6JYT6lpy9fplbly7zIvXL/LaF69x+cUddnYGAFy5/hIP7j5ka3OduirY3DqNNoleb42ySpzeWifJgsnSc/7sOV5/8RL7x1O+/9Ytxmtn2dgYoVWBs1P2Hn/Cx7c+5PBgj8PdXTZPnWE2O+b+R+9SjgZUvYLTZy+w2RuiXOTG8zdRwhJcx8HunKpWrI8V+7uPGa2f5uGjfbQe8dVvvEg9ENy9fcSdT+/QzjuKPrx/7yGnTm/j2pZb79/FeyiKMi/EREKoBMKjBUTnECEhBZRG0x8K9g8mLNrIvcf7tN7Tuo7hqMeD3V2USgyMQJPxNz/+6W1+cusR1y+f4/kXb3L25msUdZ1dIlHgm45mekShE/PlksY5tq+cZ7iuGQ9rBv2acxcvMpvPeHzrXS5eucrauet00z2sn1PoktGgJgbJ5YvnKCtPZbIiVirF5ul1JtM5WgrWRwOijxxPp6iypBj0WDjHwbwhRMtar2C5nNB1DdEHWueo+gWvvHaDF248h20d9x/u0fiw4kl6LJ7pEhb2xA4qssI65qR05wK2y+6t9fGIQkCvKhAS+v2SQa+gqjRJhOzykgmbDFF4MoNPUIgEwiEIpChpu8Dk4BgpaqQUGCURybG5PmR9vY/WOaBQpEgInihymGAUuSuIIS955ErJnduHCMmvBvIhc687j1SGjz+5n0PKACUT3lsuX9xhNOxnx5wEbzt2tje5de8x0+kSbQxlWZNEwpOIwuL96hovVrO8J0vOtOpLIp9Zav/tlZ5oGvPvfvZPWfEC//xwj3+d+u+p34kTt8SJevAk1OxZPatn9RetX1jxZ9uO5Bzjfp8KRZAJpVaWDiVQKMrISlWlmLcNUkp6ZUFDwBTFytLBCnQKCI3WOc0opSVQ4axFSpk3oVrltCMlETFxOGkZr/XpV5quTcSQCAmsdeiiAJVTu0RWcKPEylISA0KBD351gcz3l7lwnsWyoTSa4XCYB1OkPDSr+/mOiDm0w2erBMEjUsGJPyzEHPggpQCjV8EjkdZHhoMRZaURadWkO0fbNSRnKft9fJQ00SOlZ2M4Ynv7LImIip75ZI5RfUb1mGKsmbWzzLNxAV3WtMczQgq4LuZU4hAoTAZ42wgpCrRSONfhbE5c1kVWaYEgdJn9Z4zBx0jrHa71zJdLtAKNIPhIkAVlT+PDHE/i+a/9Or5doKRGqAIlJJFs34ve4ZzjaDLBp8h8ZnEuUhhNzMkuyJjtC9pUubGUBuhIMVBqg5QaHxyIFYtRgULhvMMYgxIS6x3Re4zW+OjxzuJjpBQC7xOhCxgFKE0pJcLFnIjps/pPCoERiqZtQOYGOQCmKjLXI0ZUSugkcTEiy5Jilf4ZEciYiEogg8g21JRQZDtVlAF1kkglBSJFCl1QCUnSFiEU3jmOZyC0RKVAv4SlW0FzUiIJk9P9YkdQialWOJdfstEt0VIQhEMqw1wnjPQYU+e0bNeybCOtC5kFgyBJRWsTW2tDmkVDtIa6KvHdguk0EKRFmcDAKObBoRAYJ2i8pTaaulSolJNYXStYti1SCKpKI5WgMAplCtqupW0jujI4J7E2YIiMRoLz25skHAeHx9hZoDfo0deJpYsklSilxDaOFAPCGGxItM5SVBW9usJ7y4O9I86uX+DC9ohPH9wh2sCg6hPLiIkBLzuCzgESRufXgtY57bRAQvSZzxQthcivl54ynH/pIoVqWDtY0LkO3z/L6e1zTI5vs3X1AjvqNLdvvcPO1RcZV0Pk2pALV1+gN6gpxhVf+sY3OX12hzSfcvW5i8xnBzTNPcqqz6e7d6l6gfOlYXt9iClKDg5ndFZSqB6vPneOj+99wLKxrNeaM6Mek82W/WlLFJ7940POnL/O2+99n601x+LuAffuP2JrbchoLNkcBZbzwLULY2azzLT01Lz38QNGGxuY5RGVKKiLkgKBCJEoFZ6EKgwiZrg0QlJIiUsBkySl0DQpqzV0YdBViaPDyZjVQz4xnR5zcPch1197kXd//CHC+AyhthIhNC6C0ZIQE6ao0cYgVA6eEIAWgkRJkgERs/Uk4khJ5WE9CYRC6tV+PCQKrVCqJgSHFJmbdf3aWe7cucvxscWjmC/nbK8NuH1/wb29I26c3+LUsOIweoKNHD18xK133+S1r/4mWcOYbf0phdUW/GlTy1NN6BNvcAI8pBIhEzGtDLx/zqztpHl9cpMkfr7fXf1dnnrAzzXgT6fZfZYY/PkN+clw8Nk+/C9P/a//d/+HZ1PY/7FW77NfXhie5X//X3zlf7i/y/+f1O/+//j+/uO/4O0vf+Vv/tKP9eu/4O3+2n/2Sz/Ev7N67lf/U37vf/XzHz9/4atPfn31i599/PIr/96TX9/4+t/+pR/3f/Mzv/+f/zm3vfhrv/TD/Duv/+DfwX3+L77wn/y5f/6//bX//Je+78/6FflL7wn/bZ/2s8LBv/D9P/15z/LKntWz+v+6fuHBHzFQlQYlVvaileS5dY5SVlk2nDxBBrqFxVtHbziksw5dCaxPKytUwJQaKfKWNERF8gIp+yidlVgpZXVF3gADCrzLsPSikHgb0UrghESbzKFKIeBshzRF3rLKvPFOsiKShx8nQRFyJSFTRtJ1Aa0lp7cHkCxGJhSBFBQ+HOegCpGHiGI1RAzOobTISosocXG1fYiSVGTGHS7S14ZeZfKWSMp8OBQCpRQy6bwFCh3ed1Sl4vK5C1RFSde2xBAQWhNkwDULYurRtJlzl0JAdY5q3Cd2HdZalFaQMqhbFSWdbTk6mLM2GuJlwnmLLArKqqbrHAKJFp6kNSl6UvB0tsV2+THK4ZCEpFIF3lmctygJZy9eZfvCGQqVN0hEh1AGpQzgc+rqouHjT+/gszgPoxXeL3E2IFJmLGplEFKjxxWLpkWabFVO1jF3LXVVEbo8CKtNgbcdcgX3T9FTGo0yhugDIYEo8mBKrewoRkV6RU6Dii7iYkRrk+G5XUtUimX0WO9QSoP1aPLzTCtFISUdcZX8Sd6OxWyNMsYgrCcIQWs9ZVGhrcObhCoriihYtEukFqQoGNV9MIq260hJ09c9TFHRREcMCiUidtnRRZEhvyon/xYkhFJ0QhCaRB0UgYBXYEg5hCZoZilQFBVyGSFNsUHRhURIn+WEhuRQKXHcJoJziJhT6KRSxLgkIEjLQBsjspTIGEgrsHLyHd4LbC+zpxZNpI0R5xyygUIopFIrK1jEe8mAgoePH2E0XL9wAUPg4s42a2t9Prw35a74kI1Rj1oLHt2b5Oe6bXKiWSEoYwtA3R8SAdd11IUBI6h6PX7vW1/iO3864NYHH9EbCawvCUKRTKJEIpXGektPaRSWhKLxHl1oFl1HkSLTuKTGsbAthx/f4xtfv8T+7YYz5Zivff0NPvjkQyb33sctJ+ycu8mZCzeogmd6uI8MiVe/8jqz+YRNvcm7H7xJT48ok+WgmYCBkEp69QJdCWZLiDFQm8T6Wp97D2e0LqISnNnsc27TcDyNnNtWOAVSKfqFxy8dVW/M/+vv/j95+dpFzp7aJpYC5yJrG9vE2LJcLDg+8HivOdjd5+K1q3x6/y6jYY8QA7UuiChmQbBmNF3nKIucNu19wHtLDJlzicqpwgiZA5tCRCYLwSFW7C0RFdqASgbrIrc//JQ3/v3f59Spb6NkzTIcIyixPiCNwllPQCFlmZlQ0hHJSlAXHUoKBBpkWgGtJUIWKJVDpELIQ3sJSLlSwamOJB0kjYqa8VBx5dIZvn/0IQLD0iXW+5JhIbn7YMrzl05T6xpTSDo7x1QV7771Pa7dfI3R2gZPBm4CPnvV5K/DSry3KkFeVAUQBkQkRo0Q/ufeMp9sqRPZ3ihFvnZIufr4Z/aXJ8O6kwcST4/tfn6LntLJlv7EJnMSrvTZ5v2Z4O9ZPatn9aye1bN6Vs/qWT2rZwV/gcGfj5nbsnQtoqxwCSQRlxJlCqgksVEQVYkpYCTIgyElc4pRFCQREfjMsokJoyqCbygLgw/QdR0CmcHpK6aXd44YQGA4vTkkhA7rPVImkjQ0TUOhdLauiETbdEynS4bjmrqqUcLgoyOkDG3WSj+xbaYQ8N7n20mPbe0q0S0iKdEKYvDI0iCTwkW/4o3pFSctKwrb5BEhoZWisw4ZPVVVY6LH+44u5WOlMhprW7SQGKXposWLgJISlXLYRfIOrRVz1yJjQOke0RtsgLIomS8X1KWkXR6TrKBSitIojo+PkCbRrwfIlLDNhKIGUyai1ZRFRbNccCiOKIpyBQDPNupgoWlarA+sbWxl7pQI9Psls/mczjtEzHys17/4K4yMIuhsoQ0+ELRYCSPzoOrWp3e5ffchtgvMZtM8QCyLDBmK2Q5SSI0PYWUBz9YUn8ITu5xc3beLGVBtVuo/rTRNs0CXhkgOR4kkggIjDSG0GAFCpSypFxJZGly7pJAKXWi2NjY5mk7oQkAbQ5IC4VNOxksxpwrGkNOYY4CUnwcuCUxVkiT5wJ8ghcT6mS2ODvYJ7QKTCrQp0cGRJfOSJBKxWyKkpKwNQxnpmgWikNgGEIEoNUFI2hDQErTwSC3ZWe9z1DbMpy3HzoMUqFbgdbYdGulIBDobVhZCT8Jke1DyTyDBmohEZcAyikIYnI1gEiIZXMiv58YGLp4a41rPZNLSJMcykG3HbYRYkDzYFHP4Q8oDxhBySrZWmpA62iNLYSp08hztH2C2RmxeuMKnt76HnSx57swWu/MjGgZMGkdV1bhUMRMWLzLIVwiBtQ6hs30jEhHRcmf3EX//v/ynXLu+zvUXLiBJPLx/wBuv3OToeMrscEbjE87kRMyLF89x9+MHEAUhGQ6PjnGrxxyNDWdPDbly4zkEjrC0yIFkrYIzrz7Po17Jnbt3uPLqBjE49vb2Odi9z/3HB+A9N196EXU+MT51lnkzxQz63Ll9h6P9Q3QlSHPLtZ1tHu5OUcUZCIm1QY/b8oiF9eyMC5qu49ypMfsHe5RXS05tjrmz23Lm9Bqf3jkgyoLD1rAxMnzta6+wt/+YuuxzdLzk/Vtvczh1pCDwEoZbOzyczlgEndPXoieIiI8JEhxOO9bGhqKQKJEyL1LrDO/3eaAeg6cT+bWqYk7iLPXqeSxy0EYXLQUSHyW3br/Pl/2Cm8+/SOp2EQKOp9OVNT7iQgQpMUZkS1iKpNghVAkohPDIpPI1nxaRdYnE5BEi5WR0dcIYy0EDWmQWaQgOKQUJz+mtiiTmSLlOQUG0gfMXN/nkw4ccT2Bjo6Ryifm8wCnF40cPuPvp+7zwypeQymSjrZCrQZz8vOJPrGwwIq3+XK9W0dkinH//FB8wfabCE6s0PE7suCfWmKcmc3++DebJrT67/9XPiVVSw1N/LsTKePNM8vesntWzelbP6lk9q2f1rJ7Vs+IvwPjrrVKfCl2SkBSmhCSpjcKFyLzzeOspyUwSJQ1GywwVrcdPWDASjUyShMR2AYJFikhIEu/BJ0ApkkwgA1IGlIwoY1HE1QFU5ZS7ALXSyJjTdBMps8d8yjB9pYjePTE9OedxPuBTovOO1maeVHAB20JIEhcVNmlaYG4DbetYLC2zZcPSWqKUVHVvxQzMttSiMBitkCoxEIJxoZHGUBaCXlmgdZ0VbmSWg1EGSESfkxldimhds5zMebT7iMP5lOVsQTdbMDs4YrJ/wNHjPY4f7zN5dMDh/hFHsxmLw2MODg45ODhi0BsRbGSx7IguYoSmKGq8g2Y+J3qXuTspYW3HYj7D2oQqhiRZMB5vsHN2m3JgMNpDsHSdZT7v8DYRg2d9a4srL7yAKDRKVaQoQJn89c96HCKC+w93WSw72tYRV0xFIQRFVaC0yhwL50gyIbxDeZfx5DFbPqWWLJol2ii00UiZkwp9jCitKMqSojQYozAmM2akzoOBoi4pFFSlIgRLChaih+i4evo0V85sI3Si168pigItFZ7Iam6ZGY8hs3ACAS8TSEElFcoo0BJHIBmBTwFtNAfTXVJ0aKlxy4bQLtHKkHwCIZnFDug4vTFgVNVc3Ko5u7HGpfNbXD+7xje+8gZbGxU3Lp/GiMhkMmMxndG2ji996SavXTxDlWBtPKASjq9+6UWuXTjNS889x3/4N/829+4f8+LN57lwbpOL5y+wtbHF40e7eahKInQddakYDCuaoynf/OrX+O3f/AaLbsLR0QGNtVib6JqOL3/1a5zd2ECllo/vHPLya1/m4qXnGJaaUsO4EtQqcwhVcqTgidaipWA5XTA7XrC+McrKzgTf+u1vcXZniwtnz/Hg3qf85HvvsX+0ZB49t2895nj/kHNnR5TKUhpDoaEOPjOeYrbPKzI/RcYEqkfZ67Gzs8awNDCfsjye8a3f/V1ef/0Ffu0bX+K1r95k2S04t73Gr371eU5trvPJvUdsnjvP46NDLl7eYWdzg5dfu8pv/Oav8eprNyhKKE1B0vl7+P1/+SfE7pj+2dN85Xf+Zra+jgckXdHfvowuN9g8c4GqGrK/u0+3mHD8+A57h0fsnLvI8d5jlEgUSnJ1e4zrltguD2kubIzQMXF/f0pPJdLCc2FrHZsUC1mx1S+QyTMcjUmpolnxn2YTy/e+8z38rOP+7Y/44ds/5OCwIwWB1pqw7BB2gQkNg36Pfq/KyZtR4VEEmW3qzkWE0oSVojQhkUkiREKkQDIgUsQoATKhtWJjMCYFhSZRRrLqL0YSgdnScu/9j7nx8ouoIhFFRj9UVQ8fHaUp0EYRk0PLgAgJlUAJt0oqrUB0CHKwB8IRvAVyEp4QCikVUmYIN6pCBE0IAlUUeWgZBZfOX+L8mXMEayF52q6jMgnTk9x7dEBZRIYmMJAJ644xwnP31vt41wAryl4STwZpn0+piyu+TObV5FTM1XBPZEXf51WBJ0zAk8CPE/XfyXBuxRL8pfwv4gnTT6xYfunJ4+W/b0o/k9D3rJ7Vs3pWz+pZPatn9aye1bP6H2394oo/6Sh0Pmj4rss2XBHRehWO4AMhCKTPrABRQKkUTecJvkNqhQ2BkAIaiULS+hZhDLPGE0lIIfDBoqTCtw6lDUKYrPJwgYjH6JDVGVHncJEUEVogpSa5xLxzhODY2lyn6Wwe6HgAgYsCB1RaonUFLoGJpBRISeJiAJWDOUJwKKkJKuFj5gkSPGVh6GRCxYgAvBSoJPBSIlPAxYTUBcEuc2KlhugztNu6jspolFJ4F1i4hhgjharYXB9hdIkpNcYU9E71WS4989mU6BwpCepxzXh7DJ2jdRZpakSyeJd48OhehuKj2IuP6fdGxOixNmK0JKrEsrH0q4CQisKUWOfpjo5olx2mqinqkmAXpGhxyyW1MfR6PWbTJcvljJuvvsK4koTZEmoDKcOGozAk4YnRM28cP3znAzqf8DarGa1r8TZggqKTMfMTC5NttSaHOETniRLKFZctBYEPmS8WTVbieO/BR1SvAp/Td2WCSghiksjkSUVWry3mU6QWVDoPPnpVnyQFtdTMVMSUgjVZEpRCzBb45FFKQAh5IFxXeCHB5/TDICKVKTFJ4JPAK0FyHnygWUZUFIgYMTJBCcFaKqWIIrK2NiZGz+H+grLuceaFSzx/5TzvvPWnvPj6VfprPZaHkgfvf4jqEl+8epb/2d/+XfYfHtPMd+kXimsXT3Ph4hk+eP99Xrp2nsNTFePxRc5fMfzn/8nvc+nSJvfuDwntnNMXrlD1KwbFjLosWKs26Y+y1fjFC+u8cHmEU4l+Pea3f+sLXL6yyf07u5ze2WZrfY0HHysm0wl/5+/8DU5vDHjwaEbjv8jlnTH/4O/930l1j621IXUhkUWNNInKaN5+5zYvvHST8Zbmv/1/f5tf/5U3cLN7HB0dcXT4kGs3r7Hx/Cu8+6MPGA5qrp4/w8ZWn1T0ePx4RiDDjlP0YBOpSggZ8QS0k1lpHCXz+YJHDwT9ap21zRH3Hk65d+s9lns1d+/e5/7EcjRZ8I0vv87D2/c4PjriN3/zi7zxq9+iCYKds+f5737433Dj5UtMdx8yXTQIJBuba7hgScJQVDVN0Cz3HjPZu8u5Ky8xmiuW7ZzZ7iO+8Ktf5fjxHerNHQ4e3Ga8dYHbtz5gtKVQCvrjdaTQpKQYrvW4eP4C08Zyeqg5s9ljZzzk8HCBV2NUXSOC5dH+EdPDUwy2N+mC5PDokLqQtGhmneXDvX1ef3FIWE44PJ6zs7nBw0f71Ehs7BhUhhQC5y9d4E/e/BTTHyKTRxMJETQSXRi6ZBnoxHFrmafI7MihdIHUAak0ZVkRu3xdVKbixtkSkWq6Lif8BpGDehI5Id30enzwkx/wV3//Anv1iEl7RAyOspT45BDSQLLoVCKlJkiNlJooNKQJyWuQBVEoZFIrYH+iWA0no5DEJDAIJJFIxx9997tcu/7/ae9efuM6zzuOf9/LOWeGM5zhRaJISqIoyaoU2bWSOG2QJkGaRboo0EUX6T/Vdf+FdtNFggZdGG1coIADI66dWm4sy7rYkSVS5Ijk3M/lvXTxji6OW8NZRng+K4mERAoQOTg/Ps/zu8bpXp/cZAQLaMfVV3b59LP3UTiUNmQ6p5Xn3N57wmuvbWKzFip3ZFGRa8Otm7/m9RvfYfPSnxJMuj9qFhN6z0o2nq3gxkUamNaCn67nqsXknVpM1z6dWv6/hvieN+W9eAx7caz6xaDu2fpv+ngvvIMvjvK9sB68CP9iDLLmK4QQQgghhHjmawd/ZlE64H2Tfp/ZxWpfRgxNalNrIt6lRkajU4W4NYZqXqIWq1pWaYzWzCZzrE3rnllRYNCpfAGT1mJzk9rdokOrDBVSkQfKYrRNK7eLCa0mOqzOUMozGg/prXQocktZVvgIxhZ4Fwg+oC0451BNJNM53jmM1fgQ8DGkGvUmkBtLU6cyjxChaSrWOh0yIjRNKh6JgeDAKI1BpeZarQkhoHRqaPSuhsVtLNA4F4ikQhK9WCdb6fY4tb6OVhbXVKgA8/GE4C02K1jZWKepIYaaTCt0u6BYSmtympxy3lC0WrTaS0ymU2blmJV+H+8rTJYmDU1u6cwbyukIaw3zeUlVzzFoFBpXVTR1iVGBPM9otbrMZ1NCjHSWllIb1/o2x8cnWJXTyhWZzTEqVcLrRVvVo7097t67hw9Q1RU2s7gmgFsc0LeazGYo57F6cUlLa3KdU/k63TfU6aE3eA8xstRqY4JZ3MoKqZU3RuqmAe/TKnjWBlJDX2g8VptUwoFGL+4qjsYTGlfQzZawhWFyMqYOoFxIxQftFrPJlDxPk5EKaOUFjWsISqGtRttU/NL4gGlSUDBXaaVdqdRgt7q6ynReUg1LihYUhaVuYLmvUKpkOhnw3vuPWF/ucOfjQ/af3Cc4z6WrV/jBK2fZv3efX/7iX6iDxUTN2bO7XL7SY/jkgG9/5wYf376NRpMFw2yQ8e0/u8J/vPlv6BApioK1tucn373GeDLh5oc3We70ufrnP+bx3Q/pXW4znk55571bvHHjCn/zkx9wdHKMiRHvAr/82S/47g+/z8XtLQ4efcLwoGF8NOHc7kXefvsdLl+9zNbmNlRP6K2f5nhwxGDwkMHAs7tzmt2zy3z+aJ8LW9sstSK37z1GGcuNb73B4d4e9289YL3bodvr8/pr57lz+xMe7e+nEhmTwpIQIhhoQkOeZcQQCAHKpiKQfhBw45uvM50ec+/uI7Z2LzAYPOJXv9rn+vXLeOc5u7VJVgSGc8eZc+fItOOf/uHv+elP/5bj4Yid89vkxjKejbDdHsHB7z7fJzaWmU9fG/uffEprfZXZ3iH3nrzL+oULXLx4genmOT678xvKoyHLK5ucO7vDweiIzx8+ZHN7jcmowto+Nou0WpbpaMzWapdqOodui0lZQm7Zf3IC7BL9hNnxhO9965uU1ZgsWlY7juB7LLUtk/09VHAMp45xZShnh6nEp6ywWuFqTx2AGFjqGc5c7qE+dPgY0r3OzOI9aB8x2lC7QONcCox8QAPeO4xOwXUWPKXzsLhxuXcwRek5uWnRbSl01uC9BpWjNczmFaPhCXsPbxPVnOBrityw2ltmPJkBoKJOd1JV+hoO4WkbZyuVAynD00ZcoxdNv96jTIZSBqMWragm5+BwyMe3Pqe7fJpTKz2U9rgmfb4Xzm+zvnqHcVml1xPv2Nw4xe17jzg+nnPudJ9ud0bdLM4TNI633vxX/vrvtumtradm8hhQpDa+xSf//IXwWZnG09t66nnY94VV3C/e2Hv+N7xQ3KGe3sp9HgI+nwhUz27/LV56+fJ04O+FiIr0YrX4tZL0TwghhBBCCMEfEPy1Wm2MSlMgdR2JPhBUYDYr8c7TbrcheoJP1eV1SC2Jmc0o2gWNq8ispa5rfITM2hQGtgqqusKopw2O6W5aDJ5+t4WPajG554kqlTU4H1PzaxPwKqagLc9ReLqdFv3lDr5pyLOciGZeulSdrhXW6BTe6ZhWvHREm5wQn3UlYo0GH8h1hlMBYiRrtWgXOSxuSpWk5ooQAkanNTlIZSQKRWZt2jCNDdZmKV4zBq0iJ+MTgmtY6neg9vS7y0zHU8qqoWgZWkWH0ASs1WQ2Elwks3bx5/PUiGygrGrKsgQsMQaigryVEVWb0eiIfm+ZGD15sUTja/TTh0mt0Apyq2kXBU0daFxYrFSaFAQGj1Gapp4znc7Z3rnEtVdvUOSawrYJNhBrh1tMXEbvGY+GvPXWW7gQmZc1Maa2S63SPTFtYCkvUrmJMri6SStpKuCdT/8hrcGRpj1daLBK02oVuLlfPCQvwj3vUhBAJOhIiA6rIARH8KlFuIE0ERoCjoD3Bhc008k8zdcET+kCZfQsZW1m85LgPNZmoNO/SZPCEkUky9Ltw+gjsQ5pAlFDpjXGGAJQh8hwMqWezwhek2vLrKyoqpIis/SyAqst7W7OK1d2efudDzBZwebZbQ4Hj2iqY45P5liTs33mDE0scfWUrVOvMBqNaBWWCztnmQxHtFd6aKV4cPNdXrt+nceDQ8rZEb9+9z3ef/cO3VNrBBzrqyX//rN/ZDKasb2xQRPhR3/5I5w7ZjIZsLlxhqPBAe++9y7Lq8uUTUWWK+Jsxtr2Gdzc4dyctdXTHO095tLuDifDQ5aLLQbOkWUdds6v0G5DbjyuHvL44T7ry21eubrL0Ylj78E+57Y3ULT54OaHjMd9fvvRiJbp0NQNSqXAPMaIsRpjIybL0MYSXSDqQJ5rtG9xcbtPqIeY6NneOMXJYIhrHGsbpxlOHTvbZ1B+zsH+Ew4OB3SLHB9rJtHyzz//Oa3YcPHyZTJrid0uRXeV7a0tPvv4Yw50Cx3nHI/mbF+/wdbGDvZbNTd/859snd3CttvE8gTlPbtXv0GcD3FmGas1mYHpaMLRyQnnLpyHOGJ0dAQuMB0+ZjYNnN3YwDlPXdZMphWNUxibpspuffIRl85v4Oopu5s9RqMZT0YnUDfozHA8anjv5uf81Q8v0ekULAEH78+ofWAeNCFYRgdzDt/8LUq1qaqKumnwVuN8JFcG5xzjqaP0gf5yl/rkhEpHpk1Nr52xVBjy6MHV2NxQO8/RKIDxrC/nqW03t8ToU9gfHdEpZpOKJ4/3abUMKgRyo2kXFuUDVgfyLMMahdGKEFLoqE2GpUhT2SFiDKlVNy5CswhW23SDUymUsmStgvHDJ2ja3L//kG9c2QXj08ydD2S5Yuf8GW598hnEQHA1/eUVlnLLR7fvs750hXYroiM452kXBb+7d4u7H93k29//MZGAMdnidEG6LPm0yTcugsAvTeKpF6fw/r+w7cuTeml9mGdv/6o7f1/8mC8sIX/lbUBZ9RVCCCGEEEL8IRN/1hLcHGJMD29RoZVmWtUoAqqq8T4uChgMQS+aNas6PUxZhXIpGFRAZ6nNZD6nnpcYa4jBU+NofMCXjvFkQmZP4akhpqCoajwxpNUv5316QNVpIsJV6c5Yt51TVxWxcRRFGwhEX1HkGhcCx0cDLp3bxDtHY9JDnVm0/WIsymqsUviywRiFQROMwjlH1VRkxtA4T20Uqm7wPuB1oIkeoxXdbp4mBQlAlhpjYyCEkEIyrWi1cwipLOTU+jpr66v44ECbNL3iHFluqJuafqeLUj4d51caSO2disi8nKUD+jpQlSW60DSu4unkSFU1NK6GVDjMbFqiSNOMTntiSO3GWWHJWxmz6YyIwrsS5x3eAVFRlRWv3niNpeUlVGiIwRNdTXQ+FXYog6sr7n96lw8++ABjLM6Vz+5M+RCxmcXqFMzV3qdJQR1TOYdR+Cak3DfTWGXBKRSGDENVV+kG2WKyRimFtoYQIr5yBAPeOWyEqNPUpTWGsnZYE4nBEbSirOrUdus9dfTYqIhGkduM4By+cRTGUjdp3bzfatPUNcGn6cTcaDARFQIsim2iUVitU/CT5YQYKOdVmsgrMryPKJfCzemsYbPXY3Wlw1Iro9Nd5ur1i/z29h5+PuTUmTUund/maDCk2ypYP7vOk/ExfW2xWcalq69x98P/4pU/uQLesXXmHNPJPssrG1SxotfJMKrP/QdHbJ3bZHNji1F1xIef3KWaab733WusdlrsPR4wmwyYTvbxVY0KmoP9R5ze2GYw2Gf/wW2KTh9tI2tnNqmmczZX+ty59T/ceON16vkRrVaPweGYlV4bwojHh0dcuLzD44NDimKVv/jRKlZHPrt7zHAypq2hey3n7d88QBVdOu2M6UnJg8F92qsraBWIoQEdUdoTlSfD0NQ1KhqUgtxa2suao5Mx49UljkdDtMqJuqDbb/Pw00PKumZjrcPO9hnufHqfqoq889932Nxc59ql86ydXgWV0VYzGhfQxuLnNdOTI0IzY1rPKWcV/c3TdFcKljoB4zU7Oxfo9ns8vH+HUE159Y3vMRrNmTy6S95S5KbDcrcN0XLh/DmqpsTNI7ktyHLLUq/i6HiIUpFOq6DTbjMYDJnN5+RFQau/zOj+Y4bzGu8rVjoFs9kede2J3lNpRbeluP7qZa5fu8x4NOPjD27yeDBibW2ZWDbU0eNDxM1tupWarvgRFq3jtQ/oqNEhEDH0+10m0ym+MFRU5IWlyDQrKx2OpmVaclUKrxQ+kNp4A+A1GZ5AjcJDNDQenuwPOLe7k+6YWoXG01nK6a0WFIXG2FTgEb3DE4iqIahiEfLF9MMZa9E6rfaruCjOiKnFVhmNsRlN4/ARBoMhR0cjljb7pJ/VRIiBSxe3uffp50Rl0vexqmR78zT3H9zj+u42K6st2u0Os1DhYkRnMCsn/P4U3/OBurj4fv40oPtCL8dXenGa70vvi+l2YFrP/aqQ7qsn/V6c7IuLiULF07bgr/d5CiGEEEIIIV5e6uu1CQohhBBCCCGEEEIIIf6YfO1WXyGEEEIIIYQQQgghxB8PCf6EEEIIIYQQQgghhHgJSfAnhBBCCCGEEEIIIcRLSII/IYQQQgghhBBCCCFeQhL8CSGEEEIIIYQQQgjxEpLgTwghhBBCCCGEEEKIl5AEf0IIIYQQQgghhBBCvIQk+BNCCCGEEEIIIYQQ4iUkwZ8QQgghhBBCCCGEEC+h/wW2gIrAMOjWSgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "issue_to_visualize = issue_idx[2]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "05c9229d", + "metadata": {}, + "source": [ + "The people in this image should have had individual bounding boxes around each persons (the COCO guidelines state only groups with 10+ objects of the same type can be a \\\"crowd\\\" bounded by a single box). Individuals in the back are missing annotations.\n", + "\n", + "All of these examples received low label quality scores reflecting their low annotation quality in the original dataset." + ] + }, + { + "cell_type": "markdown", + "id": "03d5a521", + "metadata": {}, + "source": [ + "### Other uses of visualize\n", + "The `visualize()` function can also depict non-issue images, labels or predictions alone, or just the image itself. Let's explore this with a few images in our dataset.\n", + "\n", + "We can save a visualization to file via the `save_path` argument. Note the label quality score is high for this example and it is marked as a non-issue. The given and predicted labels closely resemble each other contributing to the high score." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "7e770d23", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:02.374360Z", + "iopub.status.busy": "2024-05-24T23:50:02.373991Z", + "iopub.status.idle": "2024-05-24T23:50:02.827331Z", + "shell.execute_reply": "2024-05-24T23:50:02.826716Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000499768.jpg | idx 0 | label quality score: 0.9748962231208227 | is issue: False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAGVCAYAAABAXjYtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92a8tW5beh/1mG7HW3vucc7vMrC6LLBUliqySbAug6EaSBdGSLMOGn+xnPxj2g/8Jwf+AAb/4zS+yIEsABUGkBbdwI0iyLFkWOxVZRVZmsbK/955m77VWxGz9MMaMiH2yCFw9Ccrcs3Aq79ln7bViRcxmjG983zdM752X8TJexst4GS/jZbyMl/EyXsYv57D/RV/Ay3gZL+NlvIyX8TJexst4GS/jv7jxkhC8jJfxMl7Gy3gZL+NlvIyX8Us8XhKCl/EyXsbLeBkv42W8jJfxMn6Jx0tC8DJexst4GS/jZbyMl/EyXsYv8XhJCF7Gy3gZL+NlvIyX8TJexsv4JR4vCcHLeBkv42W8jJfxMl7Gy3gZv8TjJSF4GS/jZbyMl/EyXsbLeBkv45d4vCQEL+NlvIyX8TJexst4GS/jZfwSj5eE4GW8jJfxMl7Gy3gZL+NlvIxf4uG/6Qv/5X/5f9l778QYAcg5E0LAe3kLYwzGGHrvtNa2n+l/0HvHOYe1llIKrTWsNeS0knMGYHRNNsbQW8caeb219ufet7XCsixYKznNuq445+SaoiPnvF2r91GvxRDjREqJ1hree0op9N71PRutNXrv22eO71VKptWMNQ4fAp0O1ug1QDzNtFrpFZzzeBOotZFzxhiL956UVoL3TNMEtQIdEyy5ZXqtxBhpqfJwfkNrsOYVEzvOBXrv9N6ptTLF03ZfnLNcbxfSuuKspXe5R3qrcM7p9RdqrXjvqbWyLAulFGL0hBC27w5sz8gYw+l0Yl3lGU3ThPUTnUpwlr/8f/+P+I//o/+Y/+5f/K/K79MJPrCuK602wnwmlQLOk2sizhPQQe+rNVDXlVZgnu4opdK7zJlO53x3wll4ulzwcWJ9eo8tC7/13V/jN777Xeb7O7pFrrsbjLH0Dt7L98l5pdaKcw7nHBgDRl5vOj/3jFtr239/PIwxOOf0ffNhXsh9Oq6DWuv2fo+Pj8QYefXwwO163V4zn06sOg9zztyfI94HjLFcr1dinADDPM+EOPP23TumadJnaPU5GebTzPVywxhHKYUQHHHyPD19wLlALZ3aCqVkluuN82ni7u6OUgree3kO1oK1GOuIMVJrJRUIIRCcrKHaCmu6YZ2h5pV1WbDWczqdaLWRUsE5x7/+l/8KP/zBj/jz/+ifkT3idMI4j+mVnBOtdTyOWhvdO3AWh4NaMZPFGYP3gbRmvv7qK1JK3N3dYZwlBo/RfcI5j3WBUjq53cCANRaHAd1HvLVgHO/ev8day49+8mN+8IO/z5//83+ezz//nNY6xlhiCDhjoDdojVIK1llSq8QQaL0TfaDqs7YYGjJvci4EHwBH75BSBu9ppeo+0rEGDB1joSP7i0HvO4bewTq5jsvTB37497/HJ598gnEzP/7pT/gX/4V/js9e33N//0r23lKovXE6ncil6BqXuXm73TidTqSUCCFwPp9J64WnpyeMc0xxlvViDLV1Si5knYevX79mXVeu1yvn83mbywDzLL+3rivey54xPqP3TkoJ7z0xRm63G6UU5nkGIKW07am1VplXuudYa8k5Y63dPq/WirWyZzZ9HjFGrHOUWrbXHs8MgFbqtsfJfpu2tTn29fFn/K6cK+z7w1jDrVJag14x25nTsPrcxvs5p68thV4b7bry4e0H/vV/7X/P6Ttf8N3vfpcpBHqT+eK8J5eMd7LOcs68ffsWYDuvQohyNhhD6wVjLMFHrLXEaSLMM93ImVdLJXqP03vX6bJGmnzHWitYQwiBnMu2x/e+72Oyr8vz6LXK9zQW9LzJxlBbI+WMaYmy3vjwdOHDrfKtb/0a8zzxcH9HSzdi9Dgvz9lZT0qVjiEECzVhg+HLD09874c/5p/5F/47/O3/5G+Qe+NPf/o53RZCd7Q10ycrZ2wFax2lVEpplNawNJa0yrw8n6il4qxljhEfA6lkzvOJWhtpWXDOUUrGW7fNHecctTfA4GygW7DIPJYzCgwQfWRdV/6P/5e/+vOHwst4Gb9g4xsnBPM8b8EV7AHS2Cj3jbkjS0k2XOss3geWZeHx8XHbyEspjODQOcc0Rax1OCcHQe9QS6OWIp9nDb32LZD33m+fD+C9Pyx2vx2SgB78EuDUWvWz2Q67EMJ2WOWcKaWwrivrum7fq9bKFCLzHGhdEhzT4eH+NV9++SVTiDgsGCMbMhrAl0JvBWtmrOnUnklVvgPW4ErF506ulcflA6e7B3704UtSLjhr+cTdcXd3jzF2Oyyd9eScqS2xps66rtD3e5Bzkg1PN/feO6WU7Y/3nvP5vD0jCZg1uAn+WUIwguDeO701Ss50GjFMWzB5vV5wPtCCo/VK9xbrPd0aKp3eKjUVqrEYK89rioE5RpbSuaUbmAK2450mmcbgoiOvCes1WD6fyY8rr9+83uaIBFYea+SQrrVQijyfaZp0g0fnrMzOEZAdg4NxL4Atydx/z2x/JAlz2xwav1M0MNvn9n7AX69X1nUlrSsxRnIpvOqdT9684fHpkftXD9zPkZTyFpCHEOldDv3rkrZn55yhVqtBXedyfYRuiXHC+0jvnXXJhDBtAaKxcHd3Ji8yp3/9139dggmd/6U2WgfbdS4BaUlcPmTO8UR0jqfLE35yXEvi/kGC0xFQ+OBJSebLw8MD8+krrIH5FLExcl0TdAnknDVYHD5aCJ5cClTAGrzOu3VdscZxPp+3td6otN5otRK8xzmLsZ1SVhoNYw0WCay9tVhj6K1xWxdOp4kYIz/7UhLA0+kkyVxeuTvNmJopveOtJI61FIzOg5QSU4i0WqHDPE1cb1d8kATAGGh0Ws30biQhb41cC7lkgndMMWgAXqnG7nOwSe7SWqPnytwt1XiWavlwLTQunF9/wqeffRvvJHnpRu6VaUYTaPn9lJJe77rtEyklrtcrvWV5Xa6U3OQ7tkbHMIWA0Xk6gudx348gjzEWa/fEt5SyBfPOSSI5nt3YT8ceMoL/3jshBEAApdYaIYRnCfhYQwOgGPt8070Ha7b1eQzyW2u0Urf3HkAPyBqKMT4DlsZZIcnI/hm1tQ24Mq2B0URUX0vr2+cLyCJAiMFgnaN7h+ahzOcT8zxzmmdMl+/WFZBIa9nW35s3b7Z9eZoECEhpVeDgnpwLtTT9boVUnujIvDOts5YCTfcyK4mxP5zN1jq896xrOty3xjzP2/2uCtJ57xWMM3RdA9FZbmul14p3jtway22lVYt1VvbenPX7+G0Pbb3hvaW2jneW3i2mG0w3eBf28yzoee0NoVsqjkTCWU/vkoR56zDRYVvF9IZzlto78zxjgFblmdZc8Eb+d+zJ3jpctJq4Q2mFphG/dXLW9NqYTyd6h1ISxlmc8wLqtf2MeBkv4xd5fOOE4LiZHpEWQXN4FjBZe6gW1ArO02olrSt3d3eCKioymlLSDVgupTUoRT5jbOzWWjlkvINmMM7SFCkaAdo4qADWNRFjxBiwVpCiUgo5l+11A3kaiBKwHSLjfed53qogrXVsdzSqBgL6XXE83L+mlhVnPa1Vau5Y1+S7tEZ0ltqyBD+mk6uhG8PT9QlbweFY88qy3MD8SK4di/OeYCRIa40NmZumRm2V2+2i9xlaFWRIkp6OMXVDvLf7p8/wfD7hnHznsSm3Jolcznk7SI/JwDhAfYiUkuR3NLHpvUug7y1FUVeDoulVgwIn6K5zXioEOAyS5FhvcSHQnWzqfpKNu9Px04TxsKwr0XlwlvPDPTgDtmOdoG/jewiauFeVgC0h6mafxxyCHfj5oH/83vHPjq71Ldlyzm3vcbxX41pWnfN3d3e0Jqju27dvZe71xjTPpJx4umRSytjblZwyPmTOpzOtN263ldY6teYtWJODvGMdGsR2nLP0bqg146yn1oSxfatkhBhZl4Xvf/+PiDHSe8NYyzSf0LuAc5aUK5+9ecPbpw/0KZKcxboT0VpidjgX8IcgT5DxpGt2JaVEKgmqIYaJME+06rXCZqHJ/bdWAtxGhVaxteOsoxuZB26eNpR7STecc6TlhulQcsKFQJw8pUhARu/0Wg/PVpHd3rhcLlgrKOrlcmGaZ0lODBgNJDrQeqd2BTWMwThDbo05TrjoKL0TphnvBbXstVNaF7TRWuzsSanRrZE5bSDVijUGaw2pdXI9rimrBQ1DWlZMb9y9+QRvPR8uV07dcF0WvCm02rZ9CiB7BRZwQMN5R4wBY5xUKV0gl0KIjuA9ubYtyV9TEgDGu+1aRpA+1rTMhxG4aWXD7AG7c2arEIw9Zuw50zSxLMu2j4w1MdbL2GtHcD7W1VhjI1A9Vo9bb3SJobe1u/1pA9hwW6A9/j7m5ljbx/3s47XOASRwxpJLIrOvadq+p8jvSwJZa4PeaL1hHFhvaa2zrongPd55rPfknOgdPZ/MdnaNKoj3Xs8pp8nrhDUrPWi1RtH6rgmscQPY0sqrt3jntwA/jDmo56x8t44x/llFX5J1B70TvNuqIHQBWYI1FDo1FVqRudE79Nbw3uh7yp/eu5yZpWIVAJKKrCeXhGngnaP3Rm+dKUaCc+ReSTlTU6dZcF6SB8EXO1bqa3KWBEMqBWcsLsj9o8vnnLSS2o3ECt2AMZa16NlmZP/JOdNbwhip1LVSJcFvHXoj5YVaO6WWf3Bg9DJexi/Q+MYJQUrrYQMGGBujIBIjEQCh+2AkoBsb8DgMRoA9kNvjhgw7zWggRCM4H38fgfwU/HZwDTQsK0phvRyKvRe8b9tBZ4whrSvWWQyGVmXDcs7KZuK9BOF6yB1R39YKxkNNQssQWkekrZXr5Yk4e7pplFpY1kxtlVwKt2VVtEXKsb110rqQ15Wnp0fW2gSl6JI4pMuV3/lH/gx3MXLLhevlyppWDPDw8JrT6Yw1VtgvB6rLstxI68rDw2tCmOi9bihfB1qTQ7K2SmujSmIO30+oSca0LdAdqFjvUrYN3mG8J2dBkeMU9+cxn2iAMVqZ6bLpS5nWkHKl9kaYJ5yV97YhEModdblhfMQUQW4k7jE0rUrkXMm5Ek8BjCXljAsO0wO2PUf5x+i90ZqW0cfhfaCs+bBP/Y/pbjsdYfwb299bb1sg0AGrSRP6/k3pDgNdK7WyrAudzvVyJU6ROE3cnc88PT3hgqf1Tm6NOE/knPFTlCAqWKYwgTESZKdKLnlbU6UUnDc4J+tOgrbDIW8sMcYtGXTGcH93x+Vy4e7unuk0SSXKOUEPjcGHCUzh7YdHMI7b+4vQUjAwRaJztFzIGtBJ0lglMfGGEL0eqhXnJRgptUlQmQseMLXRWDElUFqj1wa1Mk13grDTmaaIMZbbTYJK7z1WAyhaRWpDSBBW6pYk2RH0AbU1DJ0YPKVkugZSxlqwhlIhVUOIge4MqRtMhbVZfHdSOdEAcC2ZGKBqcNCRwE4YbobSGjVlqVDgaOh+VQutVd03G3W89lC9kzhU5rqWRrHG8Pbde+wnb5iip+eMHUlgs5RWMQqaAOSyAk3fS/630DBYbrcbyRasd1tSBEbug85TQZDX7ZkOdH+sj3G9A4AZ++7Yq0eQfUyagQ10GfvMoByNNTfodSNpHc96vO/4/LGGx2ePYH77bGfpda9UH6vWRyrSGOO/JdBvMj/6qAZL8jHui1EgIYSwUcHGHiCVk0ZzDtkAZe2VWujG4mMkhIlaKuuSNiqroOd7NfZYsSil4pylFAHMlnUlhonWOt0cqpiaCEl8a7HeYL2TecROF+2M6zXbmTYSp0HPonWcrqGc8zavjLX43qmlUnUf8C5gcVgD1kg6amzD47G6D+EVXDFgjaFVOd+uqWgiIRS6qlWXWgqlV3kHZ6A1qYr0jrVaUeoNrFDdvBeQcV1XbC3b3KRJtb3TcDGQe5U1GSL5tmC7IZe8MRGKVgPHXPVe9nXnHXRL7UXX+Mt4Gb/44xsnBK3VLTgaWfQoARuMlug7te4ou3MO641uto3TaSbGQK1FkZL+DNkfYwT4IzDdSotjg9PDaGz0g06xoUt20EfG5g3eOw38O0EPJKfl550r2/XwdhpUyc8G59465b3XxrJeuFw7JVd+9tOvePXJG6yxrGnl6elKyoKirzmTSpNgpDZc71ArJx+ZpwnXK63Ixmu74zSf8GHi7vUDU+tUH4jBE0IUznAuXC8XrLNg9mrGNE0YRXitNZQmNCvhyXQJhp0jAM4ZekORJnBekFZrLKUIh3I/9BtOUWjvHbm0LQkZfG4JHDrBOJyPYAQ9Dd7jLECn+0BeFkrvVE0iVuW01m4ppZOSPMvFFaF5YXXeWeIUFX0SesQ0T/TWaaZvB7bM0xEIdEVK3TavjtSEcd0fJxPynZ8np8bY7TvqD7DeQ7OCKLcugZYGArZrFaLLwRKnifPdHdZYQhR+8AjWr9crxhqi9+QkKHWthRCCJAxDA1Iz6Pd3zm7rYlyv91FBQiETlNLwQTQme7WuQYfT6USplbas+j4NH4Q2siyLBD7d4J1UA376ky9x1vLpp5/izgGHcM+PSeNIDOlysKaUOIdIr41lSfRWoTec0nlojd4EOcdaoaLpHuN17uW8SvnezNCF1kAbyLWjGw0+Ds/TaDIg2ZwmcUWqWa110ZdgaBUanrV20pJl3Td51rk0UhM6VNVrSmlRGkQnl0yve8DYWiOXTMoSUAcN7kvdq3RGqSK1ZqETtk4bQa7d6Y6YTvSeGAJvXj3wcH8iOLheblyMlSD0MJ9LKTjrsE4SS6dUulIarVW8D5zmk8wprZqmlDAWoG7VlbHHHp/nSFbG3K+10JrRfbIx9Epj3Y2kYVzbAGxyzlvC9nHQfwyGj1S9I31vJMBjqR6D2mMy4vxOVxnnyDg3fPAKbGjy3Cp0mQ8DGxiBswT04JUqdAQJrFZR9SIpNe9zzzmakWQtl0JRRP9YjRwVgQFuDRrrWEsDuBAsnG2+SbIve4/znug9pkNlT3Kwe9VkgAApJax3nM93PD4+bs9qjO1z+54Yllr1fDGqSzOQCzQBgSySdFrrmKKXfbk2/KD7FqlmWSPovvOOlitoTACia3LWbWes0LXkc1s3+DjRa6WWDE3ijWbkeksqGCeBe6sCNPXe8c4pon/FWIhz5LrcmE9ngneEaeZhPvHu3dcbWAngVKtYcxUgqRY6nRAjrRZK3mmnL+Nl/CKPb5wQjM19bI5jo7dWeIHddv1ZwRgIwQrNRZH44B2nk4hh05pw1ggNQpHrPViTYK5r8CCHVZFynr6u1UbTIHBsbvHAgx28wBDcAcnpWiLs9C5B4tg8R0KBkc0h5/VAZxIE6XK5sOZCTgu1JFJeef/+kVY6l6cbf/iH32cKYdtghd4TOXlP07JkbVLinKaZKURi8JymB0KYRFw5R4yH+OqB1XTWlrkLM6fza2qRwzbGQGtyzae7uy05Cz4KV78mas34GLd7eqRBjURnBLmCeIvOA8BUyziXj4jauFfGWKZ5Iq03PnyQA2bw3UEEj8bCkhJrSoAIpsPpgZxWUsnyhFuXMrqx9FxJLmnQK2eooMEBuhSKDZJUGcM2L+AoGNwF0c7brRw9SvMpSYI2ULDx3QZCNmgNEpy4nUJw+P6tCSXgiIKORHSj8OicPOoNlmWh1UpeEzFnqv7++Xymlsp8mpmnE5fLhXE4jvnnvVMevaWo0NfYveJDlxh5ua06z4XH3nql1KprDno3fPbZZxqAyesuy1URyoqxEugsy0KME5enD6y3hZ/86Kcst5Wn64VvfefbfPr5J3z65s0W3PTDFiLBltBgvAvC7S0ViyRtW4JunYh4jaFq8GzoUAUBNcaICHcLKhvORropihwWQci9IXhPUKF8HqLfsZeMhA7DPE2UUpG8xJCyBCBtWWhKpSlZ0EKhwxW6ET1Symnj/aciSOUcJkADlLxCH3Owk7vM7WgdlV2n46cIPQhqamW+GLNXTSWZafpvllv6ilwby7oq9ccoGjyomQ5jms4BowGmBs6m03oF60A1VCP4GoltVZMEa90z8f0RtTdmrxbCCL4Hau+2c+EY6B9/f+zJxwB/ADojKRjzYtByxnoaScaoVlgNeI9V5XFt1tpn6P1R6zZOldYbvZlnP6ut0kvFGivzoR8NJuqAAPZ13Q/7QR8JeZGKAkaKBNZhXeB0dyZMUaiKbk/khs5i7DE7RUvuX1GKa1fwqJQqe7oPuODp4/nrHl5a1WpUw1lNqPWMGHvauN/jese9g0FBM5p8FOHPh0BtjSVnTK/4ODGfDdZ0el51HwZorMsN7ywW3Ytbp1KJ5xPWQOuO7jqmVx5ev+L9eqObRjey7k/zzMP9A67c8C6y3BKn84neG3ldBbBwZlvPPYhWyOE3TYY1ej+sxBStNtK6cLteqLlR1kJaEtcQuVyeqDVTNdGafMD5IJV4I9+pts48Tyy3lZReKEMv45djfOOEANg26yNVR0rdAHsZV17byLmwrgvrKuiaUXRlXVfZqJxwWGUM1N8rtcjTigQL1lhcdHu5GKFJjENjBA4DdTFaGg1hHE6C/B2DrXH9A0URkW5hSTdqLVwuF263RT+z8fR0ZVk6tWUMlVYrzjjA4Wzk9SkeAlXRBUzWM4XAjOHh1Sv5F2sIUyCoqNhPMy6epHxv4Ht/9+8xh8A5BkFIp5PeHglOpHTtRHxmPKLXqEqBglIy1g4xmd1QnyHek0CzUEpCmC6GVBPLsipaidx7vU9Hsbb3jrwkMI15PtF6o6wrt9uNhxi4rSspN4yPW8XFmIo1nVCblGtToarQrbZCbWB6pWQRe4WgyJ8B6zqtVHF4apaHV3e0q9fydVX0Ssvl1uKcBivW0KogaUc+cZwiHTmQpzgd9BMHBNDaUVSR235IDAZXecyfIy96UGdaO/59R0vjNBGd0NyWZWFdxCFkipF1EQpWU8RxnieutxvOGYq68kzTRGs3cQSxlt5E6C/ceOErh+ApJfF0ecR7w6rPZpomejc8vf9ASokYZ+7v78ktsywrp/OdUBOWBR8iT5cr4WT5w3/vrzF//x2/Ys/couF7P/vPCP+N3+VVeyA45e0q31/mnSCHaS2UUjm7QLcW0zpBXXSaVl+8dWCdIIC9E5xQHUIMQo0RgH9L5rw70zGU0oTrrEhqbQdRKZ0pBKwVNxrhlQufOvhIjCesdXz19Vvef3gieAe94J3nfJ5pKWF6lyoGjVbBmsbsUIebyuu7By6XCyGIcHOKgZJk3UhCngnxjFXNTOtd1rnzStnIWrEMDKqQzBfZDxqSoDcca67EZlhLJzeDq42qwlmpooBk0FYCNU3Yex/zWZJ/24XrX1pW9NgpdbBvIv/hGCQc9rwF8ZLklC3RlJ+NZMFue4QxZnN9G+j0mP/HpGHsJyNpODoJBQVUNg6/JukjyG99FyaPc8QfE/y2awqONNNSCnGengFa43NyzjisUAgL1JK36yilUFvFH9F2zIbq55wkMDYOh8MZKzopH7HO04EQJ4IVPn0tmWma5fm2+sxp6UhPHW5W3jtSWvWeRlnHet2ti8OR6VYC29aIwTPFqBotsz2XqvSnEO6UqhsV6KqbGP1yuXI6nTidz1r1rNQu9LqSC9YboT9Zw3K7kPNKuLsnBk8rhfu7O0KQc8b5RpxnHl49cLveqM3gjCMtj7x68wr79U+xbiT7UIsK4JcrwVWenq483Z6I6mSV1yTPHrhcr0RNDKuu+VoqYSStVfZ/qxqEXAvNF9JF9ABtFrOO6GfsND+jJL96/UCteRR1xLzjlHn79bv/PGHSy3gZ/6Ud35wyVDu1DLTIESfDmkU8GO28ITDWe663C6aLy4vznlyVl1gLIU60LgflCNzHRmiNHJxOBU4tyAGac5JzzxsVOWW8P3Fbs9AAnKdi6UY40NZamhHBU2+Fp8cLxloROFtI68qyLpv15vVy43pZJMCsRSoazrOqZdn9+Y4HO3E+NYEnTFchWcVaxzxPuOnMmlbOd/fipGEMIURevXpF8zPQcRhazaSccNFLWRahTGCFb78oj/f+/szn8xvW2qgdmkHEjq3TeqZj8B7ou5gvxBmbvTpCZcAwTZF1zRv9ZNj+9W4oZadtxclLoqWodq4FqpBEnZXgo/ZG9J5GY/KW3/7NX+Nv/d5f4yT2LsQe6C7TjYoNayOEKE5DOKEbNEmWeu0EK6XxJe9IeIxiVWi9IcbApWXWJjQc4xyliujTTY5mKvTKJmIHFL7cxJI+hgO637fgAuQACV5QqtbEK6T3TqVReqE3QaC7EdvNRgUj6F/tjUaj68EqOhERl1rjBLWrHR9EXPnll19jreHh/gHrA3f392LleppYPggieJpP1CKHeAwTd+qGk1PGEeh14f3X7wW9q4XbbdmsFadpwvuLBmgO4yde3Z+wpuGCoM+Xy4XXn74iRKnoxD5T27DfTcrbB2cbP/s//3t88rf+Gg8nuLbAvfl1PjeO9MMfks6fkBWttF3cqTBS6r/Vymoa5/s7oEpAURLWRrwVM4CaC252BGsJcaK0ypoTcZ7BOdYq7i61VagVbx2lrmC6Vto6XVY8Tel80zSJexGeGCaWegPX6EYcQ2qHn375Fqzn/hT57M0d3jlalT3o7u7E4o2i8wjIoc+0tUZQEf75dML3hp3OzDGKGFod2ErOGHcvKHkZBgYaXRipFnjjlFqhAYzdRbriDGNZy8p6vdDygjd3mngJEDAqGCG4zX42BMeyZialfbUuglhjjRgZWEsZ8oQqzkySrFtSSeS8Wy+P+dQ0OTNGUG8JuiRhuFyecM4To98qWdMkdraPj488PDxstBrnJXmrpdKNaC5GIn7UGcAufH1eFTiaWTQwlZK0kpETNYu9aQcmrQYeE5FaK9frlSlOWGNISRx7fIg0Ct005fTLXrEq1fOY8KeRsLedLimuR0KFM7qPl5bFCUl2EurTjfR4wc6zCrAdtWVarzivOjZjaB0Rm99ueOcIMSiiH8S+dQSuiOVtaQ3j9d60xmmSalUtmV6L3uMuYlrMBj5U13dHngN4Z63li88/53q5sFwuezVB6VitNtb1QqmVeYqE6DBO5sr7p0ce7u+4poX8lGi1a/JZmb+cWW43EeW2SsuZ+XTmq3fvmOMEtePWG+9/+gPKlz+mG3Ddcm2FaEQc7aPaWLfGNE28Pk/QdnqT0Hp20KcjphklZwHtXMDPE1jL09MT0zxRU8JbxzzNfPjwYXP8qyUxxahJkybKOfGTn/34m4ZJL+Nl/Jd6fOOEICe1FVNhZa2FtIidmznJ8qkadE1TFF/kUlkXQZuGxVlt4mwyKwozqgUDaZnnWdCfZSHOk3j7tyYceGMoVYWmSWhHBhUwOkFUaq1U1R+UXLgtF7FeNJZW5fdqyZQqn+G95+F8z8PpFa3D09MHSs4EH+hYgnWcz/cAdG/FMeb+HmuFb3273ai18ubTb/HhwwesdxtCZrSummol50L0sqkb5/FhwisSb43dBK/ee2pvpJywDmqH0/keXGBdFeGbIvM8c70utNa2DXOU2td13ShScojZDZkbHNaj88cYrTd6EURNqD9mE6WmLCVW5x2prJSSiSFguuhBbGtYqqLaUuZuqZBWEXDenYNoF4ZCq8sBCQ7rzxvyPWwJB13AWsvd/T2tZJ4uF372sy/hz/5DxBC1WrWX/+HI91eq1IG2cKwCrCljTNs8+uXeBzCQ10UrDzt9orW+leV702oBypmuDUrDebG8bLninKflyvXxCYzhi8++xele3LXWZVGNTOF2rThj96oZhrQkbrcbt8sVPqJF3NYVVwrTNDHPM59//jm1Vs7n8xaEnc9nbrcb8zxheiOVQkfoQx1IWuHwbmZdV6UnNOUFy8H5yYcrb3vkVqD4xmlKnJfK3/njwm/8I7/DfJpEUbgNSyni6927WK2+ejhzf/9AnE6qL+jikJWLOIUYI0GAAVOsCONbpXRE09AbpjfxFM+SgBsrbip7BQHiPKugG1It1LWzJqHx+GAIMfL47gls236/lUYqlZIFBe/nmbu7uw1hzqkSVNw9RJo5Cd3NKJUoxCCIpP6sYzDGCWUNcdQyKjruRhOAZvBu1y5ZRXEBTBduewyRHArn04l1WaQaV4y6dLltHR+pZQPBHvO8abBteM65H2tu19oYzue7bb0MxD/nrAj3cMNp0Lo6tlXVFj2/FmATJw9azIb4m4NzUJW5MAL98XtHbdjYB44aLxGve4z205TeCDL7Ygi7+1IelZCwIcBpXRWNlsS/LQutybwvG7hjt98fvzc+/0ixGf8d3IneD3oBRGPQlNYWJ0nQku7Pw/ELJMGyTgJn54NofbDPaFGb+FscOsBAOYijlypWoONeyb6tfWj6fs1D49JKE41Ja1R9vTGyx5dDVWhUbdD90ztHLlIVz8tCySu9VFyMlJR4/3bFG0fJmfu7B7KCWtV5zqeTCPjTwv3pU+b5Dpzn73/1E5a04r3jsy8+59c//wIwpNtKnwNtKZxOJ5Z15f2H90KZRW1ru7qRaTVvaI4Ackksy03otX4SY4/HhI9yj71zdK16ZJu3s+E4B7fKilZQ7u7ueBkv45dhfHPKkBUhake8j6nCmTQdKMLpF5FalYTAO7w1rEkQ3Z1bPZBg2SyPfvnNNPVh1kXaupRjg9kCWhsg+J0DnnMVCkwSa0Zp8nTWBEU8ss93d6RUuS0Xnt5fcAZxcUgihrI0ck5M85lv/8pvYK3lfBIOY7BWuN69UJXO1HsnpRVvPLNX6kkDGyIYQy4dqGKTWjvWW8jSi8xF4TqKqs/ivfJAe6eVgoti6RimidPpzJITt2XB+koIs97HolSRvbHUQMN2bup+cBxFdiNgOIptj44c42AUEV7faVha3rfdYqqIVc93Z5z6ewfvuV6ecPMkCGiY8SfhQvt54rbcOJ2luZHFbAeRBAQzvXdB55Zluz5rLTVlQfap4D1pWTDdSUKg82QEFUdu8TOaz0f/PWhldQhDowQTy7oqF3W3Vyz56FzSWWthSPJqlyDJWUtTd5Ge2ybMnZS3LnQsxx/96Aec1UrTO8f9/ZlVOex3D/dS6tckTGxBZT5/8vo1T09PogfQdXA+n1nWVWhGpXC73Vi0opWzVIRCiMQoQRGm473jcll0TZwOouRKjIFSZL3UUlj+4Pd59e3fYC2N2+WHPJY/4tX9t5inL3h8fAIrnuodtgNUblLF9yq8es6kNZNal2ShNXJaRazshZe1JqF+5JJ50KSmWUMvEqiXlKVvgG2a8Ixg2qoQ31BT2ayKTXca6AEY1iXTquHrr78U3nBN1FawYSI4xxTFoWaaxIZ1XVeCn5jnAJqgDjceFwU5jbXSe8HZCcR/Cec80+wwViiG1iUmH9BtDIxBZn4XelHf9SdjbkozKNljB4Xmyy+/lP1mXTcv+7FmRzA+3NsGZ/yo9zrur7sOaA9Mcy4499x+eQSSq/YxGHtC23RMsuYXXavWipNRCGGz1x3z3xhxdeFw7X7eBbTjHoz9q9YiBVM7bIOHacDQie89AGQvrqxr3pKI8Z3FZjpve8IIjK0GhuLkE4BDAMzeq2bchxEYjv/e76HqXLreb9AkXyiD0zTjfSBOcfP2N2qAMKibzjluiyZeIVCOdNpBR7RWE02zCX7Hs2sqjB7XNZJSMOK6pJVTH73q1zSh0SRnzIlxPSGEZ+CStXZLrsyorHbUDQvonc/efEL06iZnHGfVCVrvwMB1WcBCfP1AtFLJql3m0HSaxQcrBG5rlkC+VNIVfJdGiW/fvhMUX/foOE2E4Dlr8p6zVGXGHHJeBPYhGG5Xqeyc7s6knMmqqXLOU1Le54cdjoM8m4tDyP769euPo6GX8TJ+Icc3rxDkTEorzlnmKBt9cA6LOGN0xH60dyk/D26w825zMIDdPWJswGPzHZvasCM9NkgB4UNfLxdqK4QYWC9PKlqV7o1G7cgMllaKNGiRaEWChlY43z1gcZymmfP5LGXIGDmdTyKsdF5K+EYCs+V6peTMJYm+IEyR3hQB6gbjotBfbKE0i59OuI+cHmKMPK073zWGgPPCCQ1K/YDOFCeMsXz2+eeEKXK5XhnWjda67fVy4E96CK/bwT+E0XvDn4Eq7+LWcdCM5zA2/p1Gs3t3Nw5ia9QFyVpaaVtwCVDXJH0JSubTT99gYmDNBdMNrXTWNVNN57pcOE3SRMZYp6hOFY6s067OSTm7zhMCONdx1uCUrzxK+7kUchYKgtMAYcyf8Z3Gz46B0DEhcBpa9K50uNy270pH/fCtcN6NJTiPtQ7bi9KPkHkGWCvzP9MJ0TOdT9TaSaWBdbgQCFPk268fpKNnKSy3G5O68CQE2R3IfWtNKB8aMH355ZekUljVVtcHT7vuDelO80yplWma1CGo8elnn9Ib4vYUvHwpY0TAToMuvP8xF5Zl4Xq90Hvnw4cPvHGJsFwwtfOt+wdK+sDVG15//jnnuzOn8yQ0wQbWO2rW5MoYpiDzvHfLmhOXRZDIOQZO5ztqqSw3pTHQhS4XLNclSYsCK5Z/gnQLPc7ZgDHiPlVH8K8e/iN4DEoXFK66BHtJ0egpRM5zoGavidKMd55WMqUmoUPME+e7e3qXjsNmoMO6BxorDjKlVWlW5aQaMjQxIQYwjmW5kUvD2d2WE6OBXW+S8OhcHOtNAsxhOykJ/6jmxRhZrmydf8ceKnNvt6vcq1m7RfN4j32v7Wy5m66TdV15enraAp9BwfJeKrojwO9Wks3T6bSh2Me9ZSSXRd2gholDqeKetVVNtcIzrmHcC1l/jVr377iLm/eq33G9y/fpjN4o4/se+flHdyNlFGrScQCjDvdijOPZdHzNDrAUFZMLVXAIalGb3euyaCXSYnrf5xENY/TZ+0apmmQZNvriuGbn3Kad6L1rEjy+t5xV4pPfpBzUtTmmPQi0lQoZgzsk1Xu1Q6pL+Zkr1Di7cs5Yvf9e1zdqQd2N5XK9UqJn8pG78x3vP7xnmmdqq5okT6w5sZbMZU3c3b+i1srj5cLT7SZ0tirdlKfzibJk0XOkutE8fQw6H0Vf5KOnGbgtC7137u7vxPEpiX5uXdNWfZS1UcgpY6zh+nSRmEL1OyFGoe56T15WvI8Sx8iD55V2B38ZL+OXYXzjhEBKzWFbaCnnTZRWSsN64U0vq1gZzvMk3QuVIjQOpZR2NEoaKfW9RNzGgZIxSPfA2sS1aBw0rRW8c9zd3anYy3E6nTHOsiY52IMP0kHRyTU9Pt0wGL74/Av8r8YNqbrdxJHnqp/puohg0cNmVfeFGCLBTLSiaJWxeB+FymQl2ElFsRknzV2siqxzyTiz24FWhF4iXM4heDZ0Iy3q7+/u8c5Q8002Y+cIflJLNRGypTRQWfvsgBz0HmBDO0aAOQ6xIR4c43jQCo1kePXnZ4d+02RtuS7UVvBWKihY8baf55nldqWultQaU5glyG6NnuW55lpw3WAsGCcoTCoZigQyzgvia624raRcsF0C4GEp6LwXFw/ryDVj2t51dEOpddQDmnasEgC0rNZ1xiCVeZmP1qgloVFeaVc0rFWMclejtZTawYmIMHg58EurrIpMVxrOdKqD25JpT4+E65WSMoZOb4VWMj5YpilQ6m49qBdKDJHz+cz79+958+aNIv1GRNPKqT0+29aa0rUKpgxbv650BvFWP51OLMuNy/XK4MkO7vr57kytjU8/+4zl197Qf/Y1c5i4XDN1PvPTKeL86A1RVJAqKGJaklh61oLpwsEvuTKfJpxD7k/KNCcNgHKSvgBWOebWWkozRC+VB3E+slAdy60QbKeWzrA7lr4Zkiguy0144V72G0FZ5R6mJBWYJSVqabpmDGsqJDLeGqX2WK7XG/M8uuh2NT2Q6kcZblTecbo740bS6EDcd8S1KNcsc56jXkXvtCa225rve4MskH0lhkhpI7FXF6OSSWvaBOQfdxE+CtuPc/zIv4edbmRGNat3TTKMis3j9vtjro3swXvps5Jz5na7bejqCLzH7+6IMjLX7U7/caOqo4nu2PfH9cp/Cx31+J1+PgkwivLvQuSUxDHm4/syBNJjfThnSUl7hfSdsjq+4+12I8a43atx3wZY9byyKUF5LgXbDfPsaa6wPF7IKRGnSc4oNabo6oI09hhjxOYyl3TYb8VdbVReZA20jR4mTlT9cF2VZb1pwB9xxommQSvy1CZJd+9q7Ss9U1qre4VUz16QpHNUaI9VI6o4MJXWdD8xW8COk/40zSDWQ07cw9J6wzmrLlfyDNZ1BWO4v7/ndDoL6FQrHz58kAq39aR1wXfHh8cLpRacj1Jdc4ZcK8vjIsCQfh+rc6rXg4h8ipQqVt/GSFIYvNek6VBp642aGz5K1/Ta9jkkLm+7A9TLeBm/6OMbJwRVm+tYJ5tUBYk6nSW3xv10JgBLKiypCIe6oSVgu20ybgs4C0WpNdLRUewpnXdqAyglw1plA3UhcLaWjtBiTiEwpSTlwUnQym4Mfc3iB93bfvDWqvqBldyhIlzzZwdIcBjnNGDVwEstR9s4vEenTBUs16bt53tTL3HPNAuq0qqgFT54Xs1n7k6K7qFOQMZgG2CFJUoVB6MYAlZUU3Lfa8X3Tqcr6ulpTVxcet8pQcfStgSLQQ8woVeMQKK19oxrPA67TbjXOjg2V6KBGGkYjXWWAtJHojXQ5jmxVlqDJSeqAWfFCag2aHRcEOTFKifWjWc7guC+l+uNsViQBjO1stRMmCfC6czdwz25VXIT+8pjEvAxmnj8OexJz9B23EohTDNmCtSUSGkRoahzNAzVGIrpak1YoBaya6ytsixFBYpiUdlKouZMXeV+FJ33y7LQe+PN69f81m/8Jq1U4hSIc2RdbxijaKaxG89+jFykSdE4lHPOYgl44ICP8vZ4jtZKh+2Ukt5b0TYAFG2YJ3NOENJSiiRlqPVmleZwp9/9XS7/2e+TlpUlGZa7B/jOd/jVX/0VYpygK19ek27pjbA3mupd+M6l6JzqjVYTtcrBnZO4WjUadRVHk9ZFbFuLVLmcdZRceGoNuvLDS6EP9Nt71RLIvXDWC6JdtSpixFHnmhKXpwt0RysGusVHD60yh4moAv9luQEoZWvi8fK0Vdhab+JlHoI6Qy269gzGeKGvOflukvGKL71FY2qlCY5GTc/mIpq8I9zorJWbQQGUIoo9JPu7GHSs00EXGvN87AlHStKOeO/JsSDiu9MQ7AHwuKZxLdbI3Brvf6TUHPn6g+55BBSKnh9VqTJHZ692CMJa27umV+0dsVcy9/U85toIXFNaKWX3+T9WL8Z98F4QdRg2wc+Tq6O26ngPxmf+gyiJQ8xaRz8c1dqtOZGL9mCwjmaFFlqbBKC91x3sqkVEw6NPgiagH9M7jR20IN3X1CJavneQXhpIFSYYRzWFXqtWHgS1N9ZqYi0UXut2LdmoMo7qcAhix9kRp61gxRjDOKeAoIUGOSWW640pBum9EgLXNXG5XHHe4dSq9vHpketyo7Ymld6USClznjx0sf7180ReE6VlnDYgbZrIUOUMknsqe2ZeVwxme+bWO91POthdmF6KCH6q9kvpWn1YUmKuQlU+2ud2pPoy5sDLeBm/6OOb9yFwYrsnzVYsyyr80mVdmMLM1+/ey7+3Qq2F83ziNM94Z7i7O28I0lhbQkESYZcgnZVcEj6cmE9Cn+ltdD8+ZOhm2GhOLKsEpa4jfNebUJq8doIM3inKbvAIN1oEXB5jnLotOEUTq5Ryt81WD1snFJVaGxg5IK2RvguSLOjhq24lrtjtQAAVHLaGUwVkqVW0AmpD2A/Wf+jh0koWT23jcFY2VzRglMMLoLNoYymxleyMzouD+1lr5XSaGJSr4wG3dTH+6NDbbjPPA2s5lPfNMaUsHGHvSWnV94xQ63Z/u1VkMgyOrh7AHaxxdIoeSBJYTFOgNaETyf1r2KBWjF6QOONlHuYiTh3+EFzBjvxsB/UhwN6CnN4p3bH0xuP1wk9++iWpZEpK0CstNVKurFWcsXJO1LxiW6U3aaiWUqU1C93QqySAXXs6yAG0z5W7+zvySYSxQ3CYEZ/z2huL0qYGD9tociSHsGU+nVjXlTjFrYfBoAYZa7YE4cgdH8gtZvCtJdjOJWlgs1eORuA2fq/Wiv3Ob9JMJDzdyI/v8Z++5vPvfJdzmKXPh3ZpbX1YOUo389v1Ri6VD49P2NuCeVrAOmyrEtRrMp3U+nWaZ2laBhiH0vUq59kTbKBk8VSvHXXmKVht5DXFSKmFqs21hqDcOU/wYj2KFTFq/bLy6uETLk8rtTXm00RwlslGpMEfhPCgPHAJg6d52taAd1aSxS5N2awV+1tDH/E/3ltqdzTANqliMSpMMgMZwfdYb8cKQatSZbg8XQRMUCciowT6jbtu9s7BO2q+v+dxXX+sn5HX7CCC2DEbzufzM1RYzA5Gn5KR6IFXnvkRMEjqmz+C8aKNqUbANuaI824L7o/fY+xdI5EcPVFkz2qabOxUGvlu5SD+LLJOfHgGCozrG0Gec04qWBZar1tX8aNmYLMw5Tm9dQTmpZTNXtUYfY3u47VIN+49EfJKFdOKjREnPIw8W0nG7I5qH+7BpttobXv2gya360gEQBiJ4RQDNUtLs06Xv1dYaxWTj6a9FWoVYbWCQ49PT1CqUNOWZROqA1INqoWiFTOcVL2lZ4MVpyBjsB3maZKKKQZvhZor6bqCc07ovTwi90yF6fM0E33EBYMzlps20Yt6rolGTyqGxtqtWt6qWM2iOThNHOIanV610t86S0pYtcq1ls26d8zXtiysKeGMICW1ioNUjNI5fllfGpO9jF+O8Y0Tgr/5e7/P9baIKNA7FTMKAvLp+RWffPopPk5Md3csKfHVl1/xrTevePPtb0n33c1/Wkr6vYq7igsR5wQdcJN0Rh0t4GFvTjSs6qSZlaB+uYmoE3VXCRoQLesVcPQ6qDRBhJ2DP6p/qpFmKdY4qjHk2sCFja7krMG0jmnSdt12oSGlLCilsZZeOqWJq8kUPNL0RX9XA/fS+9YsjdY0oLI0pxt+qzgjlI41S2k9TBPOQO+GXCrBBG0BX8F0nEF9nyNBHXek8VCl9YLBbQdKKZl1Tcr7VzrUuiCdR0XrIL0HtEmO6ZSSqVUDdj00e+1YKr2uTPGOOVScfc3l8cbnrhLDGRNnShMMy2JYiyD+Pvity2xvjTWnjYax3pK4mcwT1+XCPEd6LuQM3gmHOxpHK5Xb7SqUpSBBtyCI6hRzQCy7NiGqXVxFRndk6yTlqwZCDDy9e8ff/Ov/CevthreKbFaxGe1G6U2K3Dprsb0SnfSc8N7iXQcCxt7TjKOrH/3ju7ekdZXvvTxx+apw+fRzvvjicyqdpoe683F7/1f3D88ClJEADtR+CHhHoDcQS2ONBFF9OIBVpjBBq2odiCLUIJUAB7TN5tEY6WEhnOqCsx4zzczf+g7h8w7LDTNFpvmMiRbjBIUr6vzivSchQdfohXA6BbGfnSNxmhFmjVgi9taotXE+nRWtlOZbp9MstI10E9qfscJ/boLktVpY1psE5a1IgOAtU5Bmh6PB3gh4PY7SOk9PV7HtbRXrDL1VonO0Usg2SQJqR5dcof/ktGCjaCHWVV+jKGSpSfQk3kuyge4hVZvhOUszYQsEuwan1oit74C6R4CcqgTTMXqoHY/BWy/JZ0nkkkj1edJ+dJ4SUXh8Rq0ZWUjvZuPKjyZ9QsvZEfrRqEqVotr3Q9bt4P5b7Tkw5uSgBg1E/fj33jvX64WHhwd5vimBBtRjfQ40d1B6jsH78X2PCc1IPMcYweIQ8h4rDvC8krInR4rytx1A2GhdetaMaxj39+OKy0hMRqWjNtFMBGdpViswVprs5ZKZp0irYlBhnHZsbgXnIjUXlusNZwxlJFRN+k0479T0YlQ4PF6dq1pr1Cz0QNlVLd1YcI1WpAq4rLdNM9Ho1CZC6Fzyvid0aQxJl4RemrFVrBPHsFH9AKlqtFwU1HNYbyk9UZqYSnQvduKpC2BiZLeRZAfAd3FaqisEz9oN3XiJCUxi9pHb7QrG0RBL74ZUWhZd31atqkN0rDnJWd0aXtVkJYvNsNGO0aUUqSQjFubBDfcow/W20pxhTSu++c3sYjS9zBTppbS8JAQv45djfOOE4O37R21FbrHOc54i3j0IVaAb5ikSTxPdR7q1ejA67k+nnc8Ie7DsHbVC0cNJmggJMtwAb8RL3h6sDSWQFV6fj9Jd8EidGIdjLjdaBZpRnrEiQr1ilP+IFSee1rvSdWQTNn0X3hoNMt04GDTB8E48xYUmEbRxkqC5cmB2gotYK/Z/deu1IFvNoAzUKlZqFnDWgPNcl0TthRCF61trxXRt4qKBbVNL0HFoCtVH7pG1DkxTSoeU4AUh2ztwDsRsBAES+Mt3G41wjrx0fTHWijtMc5XbspJKwdgTxgkyY2uhVUPOQtvwXoIvax01CZrVlCdbU6N3CQwCDVMS18f34rqTVr33jdSMoMo94QwqOA7cLhd88Fh2ytMASkfwUPW5ujgLauvFR/3p6ZFbXmi9cr1cmEJgspZgRcPgnXjgW4voGlQzYoyVZj14rPHUsmJjpdRGzQ7wdF9Zbje8d0R/IgbH3TzxrW99m1ozt/UGzjM5h/ORWgXJo2uCeUCBBz968HztFrRqMFTq1rDn44ZPVZukFa1Gif98xYedijZcYED0LNZYapdeIMbBvRMKzv3dnQbbDusDjS6dfPW+SwImc+90PuGc4XyesC4w378Sq8jWadpASYTRhvk0b+u3945tXbvNikGAdDI1RB+I08ztetF9whJs0GCj4q2I0If7TVLbYTO0Pt3go3R4LlWQ5bQs2g9AeOs5DycZSwi7mLirJmQkGlEd1NY1qci9Urt8/3UVrn9QZydxrDog1iBiZGO2YsGaCw6lzmFY0iINEWPQDrSVaZqJ0/RMNCxrfe+KfQxiBxAx5slAnEfQvT+3ruYDY+/Y6SqDzz664TontpJj3owGe0fh7ri2wX1vXU0hNjrQrmk6BuHj344UxqP+Z28uaLd9bIhi5XOjBu57wH7UTh0Tjt73ZGAE+0fq1vjcIw1z/Px47cfKg9E/6D3rvUnX9S6aBess+bbQjBWbUOe55FFV9Zzmeev1IsCVVLmcsVRpTY13Qc4TrQzJvdM+Nr2Tc6HWK1nXpSTmmeC99DPA0HJVWtJuPV2LfAOjeap1Q+PSadq48uxnMTRoVW3ABfCpqnvoHdEWLAsGiy1aEehG+gEhwFrKWXpnNEM3Vs48pVplYyjpyu164zSfNGkRh0JhHkgZoLWV+TRRLkUq5FZoqNWI1g+6no9Ci6pVKFO1dXJOeIOYMuieVVphXdYNwBoLs1XpSl9LFQvjl/EyfgnGN04IfvO7v6EHUBUKjG7cxqCuE02aiJRGVS/7RT36pbY6dAN7O3XTGkHLvE277YKKIwGrr92sMNUf+2hzOGzrjm450zRTcsepULQ2obc45zebRjnw95Kw7WhAJhuFMwbpWmi2ILtrox83mglV8ZIWoZjQoLJueiIq1APG7zZ7bEgc22d39MBxTryec2KynhjkeowR9L8NnuQ8y70yXXngqrkwHuHHhg31O/J4xwE3uLeDkzwE26MUPZAyef0u+q4NlvxErhXvIk/pA6WuTHdv+HC5chcNl1zp3UKroE2rcm2cXCT3xuV2JQRx1PDGqBuN8PBTyXQaue/uQhI0S9IotplXpmlW8Rt7s7He5eAxgpKDBIhZxXDGWr7/9/+It19+xeXyxFo1kKVjbeB8foU3Bm+FAiQNhpo+fwmMQOz8Wm54JxUlawPOdnyTUv/TurLerjhnOE1nQpAg+U//Q7+FtRMuhE2TYowIbe/Ps6CFh6DjWO0QvQgMj/JBixmH8RAZD+7voA6N5zaEtK47RRfHHNhpH70J6r6joeL37mxTm1yZr0U7Io/A8KhJ8V74vnSZ19McpIdFyop0ImhdaxwR7twq0zxB6eJN7sQDyhlLyZnTNJNz0gqYBrlIp2KndI2xTwwkdbz/si6knIkxSsXGW+Y5EmJgCiokVwrSuPebHWiF+Twx+Sj9AqyB3oTa5eK2vhRuxVnLPE3is98EJcbuPva0Rquqr0K4zE3vd8mFZoXuGM9n/BRZPzTWNXG73liuN06v9uc69g44am/MIQA+du01WBu2SuvYizZXLfoz3vyRvz5eMz5r7N/D8WiIi0flaripPTw8bHNp0EXH3rKfHTsCP/4eY/w5OtQ+J3dNWtPE8khrhOcmC+P6RsVhfI+PhfhHYGV896PO4Tg3RuI9RL5bMgS7nab2VInei0NaF27++XQWa9Fl4fXr19xuN+7u7nh4eNg+d1kWqRAHSbzXdd0qeSkloQ+1/Tse6WFGpFECHNVCrV1sgOcACBI+TZGhz+hNUhkBm4RiK8lZ0f1FrJYlDbN8eLoSnKdZQ/TiwNZrZ10yGHBWes04fV69Ngqd4COmw5oWWjeUZrE2MPcM642aM++uV3w3vL5/4Pr4SFGqY9OEoOtpnXKilllseEeS2aRBoUN62/QuLmoNSUIaUkU2wBz9VjGbpkgvgVUblNpRWfSyZzrnCHMghm/uzv4yXsZ/mcc3numv7s7SRrw1wnQi+CCcyVpZciMGiwuT/G9svP70DZ98+looADnj4t48xVmrDWaUq45R7+C9KdXY0MdmPAJZcY4onKfzdm3jENh4l6mJ81FwShXJcvg2pCeAUQHm2FARZGRsYsfgeRyErTXhnra2CZJkM8py+BuhLMWot7SzldudNVjEnUXoQZJ8OGvxxm8BLcZI6/hsib5rN9Ig3Ezv6cZirPZCaI1leQIthdLlbq7q8nT/sKOvRzHckWYAbEHcMZgCNvRvUIZ67yQVZfXmsMHx8OoB48R67vzFJ6RuSKnh1XbSmsbsJkrrzNMZWmF9ulB8hdqZjFRdkvH4ORKmM8v1IhWY3ug07JIpyyI9sKbI04cnbk9X0sMd3SA0Fp0rA82liwh0reIS1Ywgwz/98Y95/PBI8I5zmKjqcuXmeROdd2OIweGcoTUDplG1y2vvkNKVbhqrC6TccB+AXqh58HItNYngVJ7FTC6Vy3Xhw/ufMZ3OnO7uMc4xTYGaMo8XS9Ag6cjNHvd9dLw9BiZbENNFKHlMInZdyPC678TNklPK36I72dfOcH8ZgfSx2dR+f4VGMALIIy9957HLehp8fkFSKxaEYoOhtaT3t5FbVX1EYPIzbV3xGmR5azGt0xtkk+nW4A4e4c5aaUiVBFXtXdahj3ELUB+/urCuiYdXr7jdJFhFD/6UEoNqVuuwCo4beLAsC+si1QbsKtUipblMJ+lOvK4LfTgNIIlaPQAbrWkiNALUIomXUN12cESSnM51XXn/+EjI81bxqLVyf77bnvmRvnJE2vfn8Nxmd3y3EfBuDcLy0L2w0wIPz9Q5ARzGPBjNJcf7DCHxmKPH5PD4/Y/XtgEjOo49Eo7VgvGdxvWM+Tx+dU+MRxCryO5HdKFxHUeKzxGUGv/9se7gWLkae+XxvDnqDEqp6ryVZR9H9AKmSzf2SRO22sQq2ajI1hpx4rHWsqyrcvAbSRtQjnNkPDOr+/4oBz9PAM2W7Bsr1WihiFrpytz69pw3oEGb4A172X3+2ENC2aglMZD3eDeTaZSUpGKQE3lUUWzeKyfiI0Dq2rG9NFabmU8najNgLS6vuNr46mdfknOFUvhx+WNMrdhpFiONoJWR3sQMwVhul0eAzW48ukjUOR23bt3Hc3sku3Lv9gqSuGxJh+KJ168e9sS4wRC0Dz3Fy3gZv+jjGycEYxMc6E8MUVqi18raCueHM6YL9X8kCpfrjfuHlYYhGOkYOqoE3nacD7p5DceM3bpu/EzQHenSm3PFGLGY43IV/2D20vlAR+d5wnvDHE9AI+erBFguYH3QAO8QKLcKTRAoDgfD8XvXKiJWEabtB0wpbXN18c7igt/6AYwN2x7eT8q8facNtdGPoVBLwQavPRWk2RJIVUKqFMIpvd2kgc/5NLqIKto1HJD685L78RkeXYX2IO55QDE6d8LOsZWkBUGVPZS1EK2FlnHd492EcWeMhVoMuRZM71QDpRke20J1hmY9MZywXaoypTbef/0VPgZ8nLmtyx6o0CnrKkFhLcxT4HwS8eM0TzSQ5juMSgEbRYEuQviOoZfK3/5bf4t3b9/y6uGOvKy05VFD207NMmd7a+ADt5t27XXogVgR7rFlNp7XX3xGOs2cpjtO1dPTytfXt3z59kvaZcEiFJWUFqw940Og9MrrN284353xYReBN29Z1wU3n7bDSObD7o8+WFsD+R8C8RAC1plnjkYjyBnvI91cxYFHOOFVq2iBlPYqkvduS3Ql+cvP5scI7Lz32onZPesIO9aT926ji5QmDll4RQuruE6lPCp/bqM8lQbTJA355HMczgg9r3UIcWa5Pm3zcguk9RlOcdLrkHt3u91IqfD26/fM00wHTqeJt2+/4na7SHO1Vri7O2tytFthDgT5fD5ve571lmUVx6hNsM0Q5wvdo2k1bYpR6UYaWI99wEovgqKixdFkToTUsgdcrxfefPqG2gyPjxL4BGt5+/SBefpsC1aPgeAR0R+BDuyC4hDi9j3CCLDaqBzK/jHeZ+wRMv8kITh+1hE8GM98VBjHfjf28CN3/4jSDzvHI8XtiOB/nPAc3+dor1oP4A10pmneBM5H4fLWlGx77fNmjOO8OVqNjs8a58pxnx30rJEE1do3ylApZa+Y2b3iMqonY5RStiZuR51CCIGofWa6vu4pF9KYT5LzbsnYqFQcE74wiePdmAutyT47vo9zHu/idj9SSkyz13kjZ5RUIbQR3+S1q7BUwBYnVrilFZ4e38leaR0hjMado2EeBBrxdOLORdpsuFyeSEkc1Iae5vNPPuF8vsM0ST4eTicFlxIheIyF6+0qpiPeS5dzZ9XNTdJva0Vv1KqYfWDAB8dwQhtWsaPitc8R2SOtNVwuj1rR0p4HVlzBPj5HX8bL+EUd3zghmM4n0My5tsZtWWTjQ1wH0k0Exh3x6hExUpNytQubn/fY6MXSzD6z4KtVXFeG7Z63O4Vl0B+iJhW5JtUYPOdVy2Emm/TSFqCS8yq0AWuxuqN2DUS2Axb1VOa5f/2gFo1KAkZ0ARw28q4H8OiWWvtzlKo0KdsrNKk/k80bK/oL4wypdaEmVAhqmdi7ofSGbxI0wO6/Pg4yQTrHZi7fb1CrPkbbxvc6cn6PqFqnS8MvLZMatHGM/vu63mh4Ag5ModcVa+/IqVHdSqNLAxvnmWPglkWXUWqmtk5NK4/rVbiwSWznTmaB1XGrldPdHfl65Rwjd+eZ8PoTWrfiR20s777+isfLExhLTir2NFbEs4PNa9RdYlkxVrqo/vhHP8DSuD6+xTtHNFI5SCVvvtpDTC6tiOXglDryEKMbrk+F0+ox8UTKJ+L8BuMqrjjo77FukaBbtQ2lFKW/eKwRMea65k0T4IMn58Tj4+NGiTtaH0oAJsJgQfj2RlPTNOG83RKCERiOYGV4mxtjWDR5N3agXovy6wefeg+aWhOHGA6HYbc7BSn1tCUEx3kus1NQypwzTj3YJ+egVPFhV/eTaZrwztObuPd0BQyME2GzQexe6U0TatE3dGuxSmXopeBCBGu4pZVUi7hXdchFeg+kXIRCVzppTVgrgcbDwwO0okLm8Exku9GZkL4XYZKu2PN8ojNQ/z0Q7b0qItqoJVONiN2rinAHoNBrI9VKysIvj6oR6a1swfbj5UI43eGnk2gmeuf+/o4P7372LHgce91Y15tfPLq39X29N3V+s2r92Npxz5UO6kdkfvzvoOqN53ukhslesG7UwqMGYMyhY/IAu7PZn4TKH4PiI53neRXAIDoB9PtJp/r9ew8r2D05On7++Pn4rOO+OMYRMJHX70LkoWezilQfr9mgCUSt235sg9X5MpIlsz2nos2/Bvr8LCEz4kZ3tHINzu8OTgc0/5ggO+cxBOmfUjtZ3XSSaj/cENQau6Hfu0Wr3E8psjkR/3aLsWA9lNuVrmeB90Gsh6vnk0/fEMK+/o0xGGSPMkBuBWM9Zqm00sjLQoz34D3X4ulOHAEfH98SDEzTzM+++ppmOreraLGmWRpS9tZlD3FCQxb71qBeCfoc1KDODpG+zqNN7zFAjSZAXilFxO/GkLO4iDnntGIq8Y7z+/x4GS/jF3l844Sg1I61nlRWrjf1vNYgJbgArTE5v7lhgCxM570c2hoMgR64iECq5IqxZnMbqVrC9273Xh5o+3DJGE1yRgA1bNJyzpzPZz14RJ28IUTrSi0FY4WLv236utaNEX6/MWzdOZ1zNCsiNOuMotDt2QEYvCenvKFq1lqcEcrLCNJq02RjZ1Wo00qlN1gRBLwhQUhdV7qreDNRMbRU6BSM1Ws2XdFv0Rg4p820QDjwhwrBEWU7CguPB+aRntLanhjJQ9z/vWHo1olbhYFbvmHuJj5cL7jbjcRVUMXaCKZzM4Z3lxtr7QSvjZxKwbTGeYqYk6dEBB0y0lju/u6B+Xzm4Xzi/nwm50KpndYCd6cz18t7lnVVVLni0IKAsaoH0yDDOkKQZ5/WhfvzibReWG83zvdnEdNZ8YbvRhAueTaW3qVCUVvWm9C2+ZznznTv+c1vf4sfvL1xmxxLrbjF4lsl0XDObH0aShGBtZT8zYbOT9OMtUPcG3n98HoLRsZ8/Jju1VVobczQF2S5N4ffGQHGjt4PvU2X9WPFj3yMjyknY71sVo1WmyPpNZS8u8wcedoDnRzBilOvcINSHgAfZZ9wwTOFKBWDWgnxxJIzl9EfA6hZOp2vy5U3n7yh9cF7Fl6+OOXkzWf8er3KHhFmrHWKUAoXWPaVroJip0mXxVixZQxBgofBxa81k3Paqk2XdxceLxfZy1RMa2rX+5SpNWMZIsYG3myOJYNfH0PEO4eP0kzRWUsIHms6tRUsEjB//e4dP/zJl/gQefXqgS9/cqHWxOvXD5ve4OOA9shnl397/myPyPoxiTvy9I+B8lFjlPMQqYZngfJ4/5EkHqsLA30/6g/+pGs+Bu4fNxDbA/Jd2Husao5zYHwX2CsPxyRl28b6HgA/T576s/c4VhYk+Jamfsfvc9w7cxbzARHb7mfDoJqESewzVwXQ5qEviIGURB+w3xtZ4zZIVDsapY0KTC1FdDOHpOWoxQGpdvfSBchgCO0NrQpV1tqAd6rr6WNfk74qUhkweqZoElakUdyaCy54lnUlZaW8AbfLlRvjnollbAiRklXMa8F7iA1ct5ynO+ieJcNv/tl/jM/qxB/84d8k3x6JzpNrIUyR+eSYJtVxoL10xjPtkhiez6eNFeCspZaKdQ5bqzbEi4wmd0ftzHg+g60w1sTGDGgG0ztNzTlaf6kQvIxfjvGNE4J1WfEqUMQMVww9bLTdlHWeXhJZG3blLB1HO5kGm6d18EHddqx0QGzDtWQPRstA2Y1lXRPi26+iZms4Tye8igqtNVsXwtPppK4qjV6Fw1TahDGLtoBX0StoQiPJiDFiCziWfutDxmS2P7018VTGbN7a3tmNw43ej0bfEoHaG0HtLGFPPGprmgCIy0IrFeO8dKUsRZpvBY/RrstGy5dNy8DiT2S2ezbsNwef1lkvh/kBuRrIXK2CugrnHfluHe2JIFUUEdyyCa1GoEYX6tBqO3/j7/wdXKv0aebD5YMI0QDbOy6Ilet08kTjCFb8o40me9MsNI41JXqIpFKYwj0Ej8dTjWdpBms9U/A8XS5c1xUfpu0eOmOgqSFnUxE34hRDh5pWiEGCreBYbo2H+7MIl5vczz4qClL0oTvRgqAdsqWaJMlQ61D6wtPlZyxPZ9anRx7L19xy4n65QV7Ul1tciryXzqFgCT5Sa6bRNltH66RCcH9/R8kqnDsGZ+qHP8TEvQ8ZvHqqa5VrQ/U1UNh7MQjvurWCCKSVStKa2m9K12OD2KzC7tSED1Ar1pqtI3FTBNEhzf2aFVF4Xlahljgv61Tvv9P/bVXWTK3iVNKtw7XGkjJPlyv3LlBzYS2ZqM+r5nXTGcTgua7S3ZhWsTHIdQtPh9ZlnoiYWJpAjQZRo4NwbZXTNPH0KB1Rf/rVz5hcIFjH5elRAntFcsf69hoU+RA4z7OsDetws2FWnQJdq6DK2261STfmJja9G+VIm+ilkuhV5mxRWp2IJysGQdzv7u5YU4LeWJYbb9+9o7fKSfUyOzXoUNk7VP+sPq8xjgAAOoekstmkeZrdmxfudCARaB61JGOe7aJfcXFBZad0mWutDlqVVN4GCn2kp40AWOb2c11Ka7vt6Lj+UQUZ3+VPAjRk3vetMrZ/d+mbMoL8Y2XlmDTAnrx8fE9HYilrT/bQ0U3bukE3s0gjQE+MQQNP2es7hhhFmzIC5+v1Cjq/5EMksTC69kst5CINLkczObGKHg3VJDEeupqsSbQxRiqSKoIvubCmRQCIkmhuJD5ClbwtN853J9k3rezvVqvRvXe89dyd78AYbpfrBpp14HT3II39rJGqh/c4K/Sj1qWpp5hwVEKMfPbmc75+98RiO3/613+dv/O9P5K+Kz7QehV6ZZV9KHhP3TqtDwckfS7W4q1l3QJ9uV5nDQYv68nIOnBOE0dj6IggbIqT7i1R+iFpCdYweh8NdoCAdy/jZfwyjG+cELRWoYsNaDdjk1bepRH0t7a+OeEELwd7XhNryhuysVUCWpXEwBpqGRm6IpLGgBFfZGfDs+sQf3lpKJazoKHBO7ob/P4CXYSgO+KkIl6nQeCw6NQPlQNS3ttoQGnVI3xEYJsDjLrWCMIvrgfyeyq8TUmarvS+WYNyQOlBkiRpXS8JAR2hVTmPaW2zhhNrNkXJSqIZ4bHLdXS6qdsBKmEaiPhU8o9aqthOKIIljhEdi6CI4sqjv6cFDNutMpsk6JZ7fmheVg1TCPzow9d8/fYRnq7YuwfuzjOTmZUP3XHBgrXE3qX5WwtyHa3gQgDnpRwbg/SWaCsxBqL3JHOD1gjG0Z3DhgmTGsuamE73ckiUTEkLmLY5YtRu6NrsN3gvz7KJS47RpmhZORKNwZlvCJVV/LkdHqu/B9pdtXdK17Z1tfGjP/4xP/nBT5SzKs9xRWgsBqdJiQTIDWhNuK2tNuYQsV4TWyPNtmqtWj1gczMCg9GKgnXS98M44dyW2hjtjsazGQjmSAZkamvQTMcY6fbrnJO53dWVCRR5EzvP2oranc7cPrzH4CToNpZuHL12HGKnmGxnLQnTqmiHmiBuXbJ/nDXSHLAURhdSsekU7/RVG/7VVARUMA3XxYnH0DDdEL2sn8v1Qq+NOXicNdIpvRlNkt0WvKZ15XwSv3ZvLdDIZRXRdi1YI0245tOZyQdez2dCdGC70Npql/mipgcb3WXw0JWetu0BreOMfMfaJIl2Ij6RPbJWmjXU3km10ErZNiDvgvDMdT3KfgEP9/e8/+Mfcnd3R80ZGyayVk+OAevYT0agvI9B//gT0G9rN5GzVaTcaEIg39XgvTjRjDlxpMbswbSip02STmuNzE+M2Emaw55qPnb4kQTgKCYeYE9rOwI/qlzHSsJ+Hu1Ux+1cUHH3sYogn1OfJQGjAjLWzDHROOoMJNA8uty57R6NYNlYsyXKHaECodSXMBpgNgPKZad36S/QpMM1VMrhuxoavWZAKiO5JDCdXJLsZ0j1u+n9yjkLpa01qgb59E7PmdYrqWaxEy4ZNDCuVfoQiC4NYpjByH8bmnZDloTWKUhFl+cagyc7mV8uBFycscERvSXlJMmMHpo+TpI0tc5qpXfAF198Qeqd1FZ+7z/8d/l//wf/L2ZriZOnlMopRvLTle4cxnic2P9t+7CxhlI70UsfAuek0gYi1m5ddVFNK0tdEgTn5VzsTfYi56QJG0NUT8cHtQY3Q7Cu3bJ74WW8jF+G8Y0TgmEHt5eW5edNUfOuwZBzVmkmYj86EMtNBNXFOaBWXeSH8vAIqL33TNMEEYwijwCdvtmG+rB772ME0StK3RmVi5G0NHUqqbUJdcXtHEqxQtSFr6iwbJRm8yWurQm33O42l4NfLZQIuYyjGK4qF90YKyJkPXRKKZR2EAEO3hWAUZ9smlBgMMpN7uzY8I44HVo07OVOxrWIM00zXZIjxDpT9B1WBLlKl1ctNcZIA5tROeGAKoK+1nuaMfzwBz/i4XQnSUfrBOOkc3BwG/od5kkQstLk8PAWw0SpVTQlTQ7HWipxisQpYnrHxQmLUS/2RjdCB8BIkJlyopSqRB6j6KbBYcVRRedoTkVE24q83W434W57y7J8IM6T6ksSVkW3y9OV6iWa6U2FvQBD1I06WPS9ssQoQ9M1uZD5uC4Ld2eHscLjdQ6MUmlAA5Qmc35YMz4PRp4/02NSORy5RiBxnH+HWUGrKups0kNhBDI5ZxXx201DkdbMNE8sqeDqjfvpjlwz3Rmqa2AKLoJJgsQGaykpc3c+UdJKpVNyIufC6XymlCwJL0KhilOg1rHWhIpxvps21E6QV2n6N6pNrUOpsv+Yop2i14QN6qWO43Se5WfOUYuh1CQalvNEmAK3dBNtgnK75zhxd74Tq1orHuYg4vdcC3RxPHGakJdSKEpR8dGTmzi09CoUrtJ2d54GpMsFZ0bVxksHbGvUg37snVaaEbay0bKa9uw4x4nJO65PH7ibI+n6KH0xzqefmwtH6siRFvGcWjO6+44Vs88v6ThbN3ecMZwG90e6z5FiJHv24PP3DZke+2Lv+ZlAflj4jiB9B0fKlmh8TJc7JgDP5/Xznz1LUg7fbbyHJDvPKwPAswrDUax8TAyOrz06FA1qHbCBArpdCyARAlMUe2WxgBZQrVVJUL2L29mZV+0M3CRxL3n0FRFR/aDKtCaNOeUi5bXGQCnDwOKgyUDAgF1n0CUx1iaW1okFsdDoBuULbaipCeVWIWfba+RLiotb8Hq/tj1YaHe9Qe2iWdAPYfITGMPXb7/m/YcPrNHy9/7wD/nyyy/57d/8Ls7JTkGHV69ekdV4oPWO0fXVuoAqVns2jOruqG4JmFKpRWyMpcomOo6uQrCtu3pvG9CC2emNvR8cB/tzx8OX8TJ+0cd/roTger0C7AmBLphSpUGS9+o6ofvIKCvWWnHqBtBqxca48ZSPwrFn3PZWpZOtbui9j/cTRDylzDzP20YtDYb6djCMsvcoGxrtvNI7GngLN9IYp8iCoH4G3XQkhJYv38QWtKiN5c+jSUZFierXrl2WAQlwtUqQlUK0Ce+q3B+jkX3T6669YYcorFusFWREIWRBnzf0dx/HQ9R7IyhnG+VWL2VgRXKNNodjaBk6WL8nU/DciWPQBZoxfP32Le++eouDzft+9kG4n+eTUGIA5zzNdLyz5FoxozOzUi+MkYY61uvhaiTxcd7TW+O2SofTNWdC9Jymmcf3X8l9dQ7T3Mb9721UmCQYt5r4dKQj8W/+qd/kx//BDznNkcvTlRg9eV1Z0iKBZ6uCzrVKKXJY9i6uMF0PEgzULK4/PjiMddRexW7eBSxG0L6ayaVwW+U+nO/umE4TpylsSZYxu6vJEJwyhH0yy/bk4BCQjedyFBOOZ38MggRtHNPQbCjooK4MWoYEMaKlsGb0H4DmH+nhzG1dif4BUwO2dlzrEI32YUi00riUCzVn+Y6nE/MccUEaWQ0etrgYKUd6zPcm7lnWdloXS1vnDcYEReJlDlkXMFYbYpmJVFbpMm4ddAmaLnnFdU+IguI+3cSR6Hx/x4enR9Z1lQBJk/W3X7/DO8vVSIM0YxAE0uwixNNpxqobCxqQpJxZloXpdKabKnSMNUtAD6RS8MYzUPpaBZDwxhJDVKqQVlQRtxXpPmupWRKzIXT86c9+yvl84nq5Mc17k7qjOHZ3oyrs28ExsN6D9uO82IKcrSO8JOd01T1pEDve87jfjXkmnHqzBcPH1w0XI9k/GkLdkLm3rgsjQRjzeR8yN/dg/rnj25HjP362awyOAdzexdgYIwDTYY8cZ844Q8Z9HQnCWFtH2tBIjsaQtaTbspUqoLWWnCu16HW0TutFAAwnCaY7JHK1VRpNOv1u/VbE8a5rv5D9ev12drUmTnUuONZ11SB510kY657dI+ucVp6NkE0NYMW6N0yOlITKNVx1rHU0U6m1cTfP1LTIfXfDQcoRvDT4wnmsVkC8D0oXAh8iUgPJmCgV2afHJ54uF9z0mvv7B5k/dtdBjOdpbFAKpfR6sVZomGtNjAZ1w3QB/R3rJU4oreJ653ZbmeeZV68etGIljdWkt44lxEhWwfVYDkNfJSYL8rpjH42X8TJ+kcc3TggG8r3973bgVbE0HCi/MTijCFMT55Dx+957DQYHD9A8cwrqSFAKaEfTUWE4XPCBO3nktB6D4W1TMQPx2VGn221RvvP+pvvvHtAgTQ5M31Fy04fTj/AKe+/CwR2nYdcEACMBK2zWiYMHGYI0COqtYRSFEWeggToZIODdaIalm5NcGMMazlorNq//AOSs738BDS6ts1A73VhKF60CRjisRg9QDgfg8fAEobNUY/jp118RfaCkTIiBNSdaSiRraNe2oTctle2ZpZKZ50ksY7thKYsi5Z0Y/Xb/pTukduGtjTCFTXhrrQgY59P8zI1HEPDOsAWUwE+oAK2LuO873/kO3/3ud/lbf+OvEZyl5Mg0zRhEFxOnSTpK23EoqGagjQN5JEcy/5dFhM2jc2irjazNgFoXp6naGu/evWO53vid3/kdSTi6CH1Hc6/B/Qd0TekcPMxF7yzucMAfk4CP0dvjfGijYc8h8RiBkLjbdFJJOgcmpjDx+OEDn7x5Q21eBJNIZa2bhqMSo+PWINpAdBNulnuMSxjrmeYTS1qZp5lrlaT+7u6O9XbbDuOBEBsjDZSmaSKlqv7/Urbv3UDXIAHLq9evWR4/0FNCQD1pIBS103CMkRij2NBaq0leY55P5JT58Y9+xHmepf+JNh06nc/4DtaIqNhYQ06J1ivzaaIF7Qyu68L2jhV1PLc1kZZ1m28xCmppjKU0sYLtdGqRyoUrDdcMqSZyLUxhxlhDyo1oBJWsxiGGRRZ8wHjP1199hY0R66dNHHnch4fQNUa/8f13S9GRMBxtj82W9I89uXW1riwda/z2Oq9dbodo+ShI3oGW55Ws/X8ruwj3eRMwY55//hB2yjx1zwLxYyJyrIAc5/lYB/M8PxMgH9H/cb+2/V3v4TzPm6B5r+7WZ+fK8fOO1yKfIQmPBP0CMJXayFXosyPZskacu2rN9OZFH6P016bds0cXb2vAuP3ztupTV80Fau0NWhkSlL/TyaVgNhFtf/aspSpe96Bdn8cw5AjhXpuKZkIYVaLM12/fMt2daK2xLmL/va4JN0+4TcDvtsTWWgWk1L7UjgSjjsqfwQXRuInbmjT+dN5zPp95//YdMfhtPUmlUPZecQiS+2W8rjlriM6LA5ECiCkleuvcloVpjuSySuKgFtJjH1zXVWyfnfSeWddVqxN7J+xjEvgyXsYv8vjmLkMHxwjZtIarRsXHsJXPhcuYpVFLSoLM6YZsFJFcc9p4mdZKKW9ssEcHiHk+6eFx3KS1K68V3/UxRqbvR0dR3UgGLUkCuyYl0UNpdWzKqJjIGTDsh1KrlVbVMs5NH6Fje/l90xygPRWMtlzTz/HOSY+BMJrLGBFj4elGqAZir+ipXfjkxlqsF+tGPkpaTB9CKhnHhMgYQYG6/n9QmkttWxnZ6HWOhlSAaENA5cqGfrCia73hrSfVwofLI8EZWq/0XrE+Mk8ed55Z1ox4P8cD2toIys9clyRoWO8YRXfSmlWEK3Zwyy0xxcjdnQiAHz+8I9gHmilQMudpxmJopdPDEILtPO+i98l7Ry9dUcmVf/TP/lm+/OmP+dVvf4cf//in/M3f+88IcSbOJ7GCrI3oAylLkCxN7aTc7pzdkiY5SKXKcUTqR2AyzTPTfMJ7z+XxEXojBPHyfvPqteoGykaN620XB49y/dHWcBiqHp/xsXozAsMj7UGuyWj30J0qMYIhpwifcRbjVMSYV7747FNulwvvrKHeFn79O9/i8cPXGBp3pwlKxS6Z2/v3TD7QjMPOM7mh1Cm53+8/vGOKAWNlAp3mE8ty4/X5bgv+Gn1zBmutM08nWu8qjtTExxoer1fu3JnlttKKVHScBqrrsnC73aRrsoHL09PG1fZOLIi//cUXPL57j1MaXSoZFyZqF81S652UREvSmlSEamvcrplequhZnDjXeK3gpJr5cH3iHCeCD+RaWdYV5x0li7jdOUfpjWjERjIl8W7vQGJYBmdyEd52KRnTGuu60Frh8XKhA2/efIYxbN2BxzMe60We7XNe/MeUouM4VgtKEZQ6J+mI7v0I4MW2N+enzbVn7C3jPSRJ3nZBnYtdk17Hc1eevRIwTaePktPwTOz78XUeqUHj52Mcg/Xb7fZz33UE+ZsV6M8F9FW6A3/k3nNMII7r5+iWJBU1WZ80EVh766VJtXXieOesNI5EAKxSRCi8UY8OwaYBTtNMbVtZZq+eGGnSJxQXhzGqV3GBWocwvVFqETAiZZw7VEFaozWz9bYRNzkw3m735+5OwKGxhq2x4DyvX71ibQVnA8ZIVeg0z9JY03uCD8QQaDUyqEvWOpwXjYwNEbwTByGcVMW6nLmmq6i6C7f/w4cPvH//ntev/OYIVVrdtB6vXr0irYk1rZQsrkLBOlqDlApoVcMYw93DPSktLMuNUvPm8OR9QB2NAWE/SLVBBMhO17okk35LaF/Gy/hFH984IbDWcjqdDpxPL+4hA1UphW6EjtK1QlAMFEV3nXPSpdGI+Ez7mT5LNMb/jox8WbMIsPpwQDE0tQk0SIOfTTDXDc5HjLWkvNDb4FsLF9a7iHXaydAYutCWpRmKiuKcdTg6m2OIBl3OysY77Cdba1tH2R092Jvn2EMiYBWt986K+wgIBcU6nOoAjGkUdWDyxpKb0JaE/4jy4OWznDHUPsRjbNdzTEYGbaoPsZ9FDwSpevQu1zVKL7VWDHLdOLvrJPqoNqgdKZW3b99yW67Y1LFdkGN85/40s1g06RJ+e9eDbV1XHua7HWlVhNYp53MkJTFE1lWSSe89zjvhhhsr3YN7IzG0HZacFymFK6VjK/drV85rXqQyY+Qgvl0u/MW/+BdpufArv/Ir3L1+xVfv3vMHf/h9nHXc392R15VpjtKHoVsN7CyTV0/yLnP/fD4LIo1oYmKM6p4lvOzr7crlcqHXSkmZD+/egTM83N9j2z63hm+58zsy2/tzZyEQBPmY8AHP/j6CtiOlQ6pY9RkFYyDIznnqUmimQzWUnCgpMZmGK4V/JlberW95+ze+z5/97X+YH6ydH/zkwk8/LPzTf+473H3xmrI2fvb2HZflibvzPa00rIFpitzf39FqY1kWQpPn47BcLhe1WnQ0JNEXVC5zf76X3gGr8s9txQdPrZmnpydB7roRkV/V6mAq5NowtWJyZV3ExjGGgGlALpymiW9/8QV//IMfCdKdKtd1waydKUS5lp5wiKi3KuXrdH8ndBttdlRao6XEkhPz+aRBVRfBc+usKUlfibVgnKDBl9tVe1tU0rLAUTvE3khsD0KzcsI73hpqunKKgUXtJ4/Pffy3BKltC7LHnvAxrWz73WMltQj1ap6D7h2yJ5RSsbYwz7OKzHdhcCmizRm9So5Bu0b+GzIvY698jesaAM5AYI/o/Ljmf1Aycxwfr4Xj7x33Z3Gg2gP+ATy11ri7u9uu9WOf/5G0jH87Uvec86qfqxrYj+SjcHD2HYjKVkUfQFHfOX1S/a11+5l8jp6LirB7byj6Wc1bsdE2hqw2oLlkmiaiOSWCglR3d3espTDHE87Ja0WXp/fCBdz5LPeujfmy71FrWqjGsC6Zy+UqyHpKZCNnRm8dZx3eR1qvYiJhZR9MtxVypjmJBR5ODyxp5ayC+poraU3ksghjwFp++7d/m6++ekunUtrQbiSsN0znCWelSWAumWAMa5MmlwYIPhKjASPNyOZZaEHeBDmDaxcASffMMAk4dVsuCK1t30s/7n79Ml7GL/r45hUCLasOhw1jzLZ5GtSKVANw4yz2dMKqjeXGHU1JjkGj4h0jokcY5clxYIzS8mhyM9Auw2gAY5RrDmZrZOaco7ZKDPN2QIxmYaj2QKw1BcUQn3LZZFsTuzWhdYj+oBwoHd1IYDAQMTOESIfIfDR3MVretFZQFkkANAjoHe/EN7mrRgJrcYqIeifJTlXRbDOWitx3r/xTowfFwNL2Q1KuS56THF5CXdo7uhpr8Eir+prEx12E4NBqUUTZboffSAysMaSc+erLL2mtCGLaHD4EljWRa0Os/Z2KxqXK4H2g+kLLmW48p/kkCZcGrFMMdCOUKPGNFs/z8/kMSmX47LPPuJsiy/UifFCQJlObwE6ewbgP3kv597ZK0DHNkVqbCuNl7uZW+PO/8+f4vT/4u3z/j/+Yh1evmZzlza98i6DiUYwTzUbveG/k4O9OxPIIzatWCY6eni5y6COi58fLI7fbDe+coH6l8NVXb7ler3zn29/m00/eYBWpPJ1Oopd5ViEwPxfsHMeRHjeCvN771vCu966WsUJr2tZYb5roIa4jKig9358IfeaP//Yf8N/7H/4P+HN/4b/O7Sff4//5b/zvuJ879Qd/yF/93/6rfPbqM778D+/5X/zP/2f8s//j/xHf+72/y1/+q/8Oy+XCFGdSXllT4uuvv+Y0Tdy9/gysJacsdLCqyKARytvok3A+iyNJSSIqLnR6lWc5TxNrzkwxYPGsWSomzlq6s3jjuS3LwadfNpjaGiEG6PDJmzd873t/JOsvelqruBBYaqaXTPSBhuHD05W03Gi98P7xkbpmWs5SMTNCXci1sGRpyhic5+npUQJbI05mNa1MUySVxHDVuTufmILMS6EzyX7lgvCvjTHEKWCoCjh4LhfRZpS8MPo6yD6zN8rqfQ96R0IwGoLtAbcg+DJXNrq//E4bDjqBYxAo+5fQe4YPviw1+e3RJ6apPbHRiuho+DgaI449fU9+dlBl+MDHGAnB7wDMgaYxAKhBD5VEZVCJ9srD+N57crQLjH++mlalB4Qi9seKweipcaywDMrlsBYdSRhIhae2jHFytpRSWdeFW1q53m588vpBrkv3KGssTRubtbZTXEKMGJCmjsHTDeSsfvm1ytookmh65yilstxWepEOyDFGOUtVxoZqG4YT0e16lYTdOmlk6MQVMKUFFzyv789crxdul5tWeII63EkvEBcnXr16Q4yRd199jXOO8/lOLU/LZineSsVaLwmSVhqmecbOAWMcpxBx3uO9UKvsFIjzxNlOlCYuYLfbIlSukim1bRXUqgBDzwIY4SypFGiN0zwTrSflVW0F9b5M2nhNq8S9auxhnSa7E+uy8n5NxLudHtc1UAk+HBLbl/EyfrHHN68QqCg0KEe3tkJpSUr9Nmj9TRHK1rHdEsJEqcKzbG34KyMLLQQJ5N3exGejCQAYK9aVHazRDoJWnDlyuhHUGg/E77xbpEOw0h92RKsSJ49XfqDBElzY+d8DtdHDqm8H20foUFqF9mMtzehua2DwNMcBOGzorFEuc2s0M/QEDn/Q8lkftAIgtBQMtIp09NUA19aGmyytG1KtBCtiVmeMaABAebd7w5Vaq1g36ndBQDtqA9sNmGH311Wc3Og0MF1RfA04MIJu0nEx8uG68OFy495FMPCYGnM403Pi7eXGw+dfEGaPOPBUApIIufOJEKURVEpFBL/eESw421lbI04z8zSzXBfpUF21CVaXbs1PtxVrLLlVHrzDOA3QzM7TFQTOYF2nc2iuVCrzPPOTt1/x4b0E5denC68+/Ywf/+gnmGZIT1em+3uxwWwJ0iKWecaw3J4IQbr62o648cSJ3qVa48ME1jHFwBwlmTjfn3Ex8OHde8qScNbya7/yHWKM3J1PEpyZsZbEmrHW5zaPI1gZB61xB1Enso6c2mAOG1tn7aZpOQZVMQagk1bh7LfW6DaBCdgmYtjL97/PP/7mU371t77g3/y3/wqff/Xv87vfsvyb/9d/h//khz/m4VXlU995+/f+mH/tf/W/5nf/yT/Lt3/7d/gnfucf5t/9T/+IdpLqnQ+W0zzjjQNFztdcxEK070JP5xyprBhjCGHGG6MVOgm+zqcTXelFdzFwvT5JAGCkyZrcoyoBlfNideoctRUqRlyr6ER1+vnTv/qr/P7f/btcvv6KyQkQMKwkR5BXSmGOUYOHvGkcRkWPWvjOJ5/ydL1uz+mzV9/e7qkEr9onohVG3xNjHK12aq8YizzvUrk8PRFmtU31jlLEUnmKd9RqcfFKs5HNU8sMNxmeVQwGXXKzr9TAvZQiQu2hy1DjYbMh0XtjOaEgsVG6nBftkzEGp/SkEThP0yQ0UdUrODvuoyQLffjFG9FFjUTAe0+rhSl65ilswIN0pGarhNZat670I+mVyrRUISV5BrEaHYh+PTSZshz1VtC29xrgUtVmm+t6E7RYnfC2pnzOadDetOHWLC5mfafUWCd2vEWD1xA8tWc6hYdXD1ivlapqhOaWxXlrNV189XunrZXb5Qamk3rHJNGmPD7dOJ/vtkpU6Y30tGyAWUorrVahJgXp7dMVWDjFyKBN0hvTPIGx4i6k5fFgLX6K6rDTmSfP+fRGEhiGPq9xPt/TTGXJi2iKWhaDDdXqWGe1K7Ihd6AXTG3YbjhpP4prujFNJ663C7VXCgXTE9hG6QUq9Nq2JmC5JlwI0pgTg4tS3bk8XZj9RF6lEug7TPOJ2hvr6B3TwXkBKVNOnE8naA5sJHcBsyRuMJQszVG9jXQjjnbeBegD8Oy48PM6vZfxMn4RxzcXFXvld45N3jhZWA68U1Go0oGCddJoaFkYugJAkauP28m7jYcvqPHOnxTEShwA3IEyEUJgsxxjR7y6kaNhcn7r2BpChNxIZRXkadibjd95VgJ2B1RoR7GMJjDO2v1zlQ5kjfgzlwNSNtCz3oUY4DYqhyJWKqqrfS9FyqG1o1H7e8jBNpolSrAvgYwzAylujOY+xmjZvMkhLtZt+2eM6zhSSKwdyY18n1yzOts01UZ0Uqu8f3xkXVZOkyCQIUQulwv38yQOSYiNojGCfIowuBC8VCnW2yrob89Y4+U+lMo8nwjOYE2l1YX5FLktjyzLohWIC9ZAsIZSEu/ff8W3v/VG6BzdIa0nBCmyFqoTW8w1F5wXwfSy3Hh8fOT9h/fM08wnn3zCw+vXPF4XvvryLa/vXzHPE7U3pijWfK/uJpbbwv3DK4yRZkLeBSYvgcOaxAO8I1x3sY0U/UYumVoyb9+/I18X8ej2ImI80iSOYsU/ScAIe7VAgdtnAV9rbeuQ+rH4bQSoQ2xqzM6XNXSC1HRIJ88XJvI7/8Rf4E/99p9muWX+W3/aMP25fw6TMvO/+wfMP77xD4U/xa99fs/yq59Tf3jj3/tX/jKf/FM/41u/9Zv8Y+8X/s7PvifzcQWKx00RbwNrX2ktS4fTKsHVkQc/0NfupfIizZZ2ZLv1CnX47QtPeiDCvV/ovWtHVsu6rjjrtoShA6l1soXkwZwjfo6c7s4iLJ4mbVgo+1dKSTv0Zs6nSe6XtbQiwXcthSlO+vs7h9+YnVLivds461KRkvU5Op3T7fbMpmnifJ7pvZFLkSqoJvdOgzdJLI6++/3ZGt72BQ3Yj7aYgv5b4UxrhUBlW4c976gLsHtfgxHcd1T3JNSQWgu11GcVyqNb3Mdz8OO/jwRmgDLDRUuCdb/x+q3dqyI7JcgAzy1Kj/qY8TOZ9/t6qHW3Qd1fa/QZzNv9HHv98TNH5cCoFfT+OY1O3c4o2bc9jx8ucq3eSEMw1L+/rHQjATS5SvKDwcVILmlL8KDinOf+XqqpSfUdMViiO+2Jb53kPNO/H6mezgtX31krNtdmBMiLJnDSL8BicGE0qdy7L49mgs57nEErVQma0ktNp2rTtOA9uVSsd8Q4SbLaJLguVtz5moWnD+/5dH4gdEPEScVa1zFFTEBGd3cbHNaok1GTru8Gub9J+w9ZK92JZU5Jjw2sGHbkKnqgabrj6boQvceq3XhqRQwyaNxUg1R6wyWhFDWzm2tYZ6H8fIX2ZbyMX8TxjRMC5/dGPZvtnW68TdGcGKO419QK1hCmKKXQA/XhuMkaa0VXwHOKBPr3boXDvSUMOqy16Pm8v7f+X4Ott8H2mfq6IRwTC0lBWS07D/d4DR8HZtJ5U21CVWQkXFC5jnmef66sviFJ48I79NFroPeNevXxwSrXrN8b8cM3bhxwnUFRcmrj2QfnVJGfjiFOk/BSNQg4Cg77IbkaHObNPQmxHIxxJjftotwNpcPb9x9EBOYCJYvIa55Pwt0MUdFQTRq9IefMcrsxBdnES+2bLWmtCWsapjdCWoXXag2PT0/kWjjf3WGs4enyxDzPnKaJ3psi/kUDLrG2c9aA9Uoj2Z/JXZxZ1lUQtlr59re/za//xq/jrcF0w+Ptxre+1fne3/s+0zTz6s0nvL88Mp3OnE4ifIzzHSEE1iSIVC6NVjqtymGYlsR1uQn1wwqi2nvj6ekDj+/fcZpmQqu0ksh5D/o/5jh/PG8+noPb0KSALtWddnjtx+P4/mIjuYsia+80N3FnTvzt73+P7/xX/jF+/Z//b/N/+2v/H84/SLzGkqbM67Pjn/6X/vv803/pX2KaT3zx+p714Ux9a6l24a/++/8R/7V/8hP+2X/2n+dX/tZf50e/9yX/cS1MPpLWSjVXjLOcz+ftmR3R+E5jmmdJ+OlYZ2gjSLB66Oe62SHGKeKbWNYC3N3fbbzn3vsmvG1dtBkiMHRUA9kaioVesiQd3VJTFt9xrT6t67p1IU+tMTkvf0esQqcpKAdfEnFozzQaYx8RlN1u1wma0CBOOhIUN61iTYg4dSErraNjmCdp9Ndb3QCCXSfCs3k0gt2P6UMgYkuDdHPe6UMSyG7Tqg/Xmed6gQHQjIA/BL/tV+Nzj5z98V4jqRhVy2eBu91BifHzIxAzPnP8+6ANHT9nB5SeJwS7BmHnf8t17O4yR4qlfLefvw/7+kRfM4CX/XVSzTNYJ5UXZwUckuSpkUtmCtK/Z02SuDulA42EBAPOGWozSCVpAGGdGCK17j0h0IZZRm2a+9rJKeu6scKRV0vSOE047ynaUXlZk94TZK+3Rpr1dbF+lkqZJjXWbT1unHN0FUFPcSKnVT/PSYNFTSKlqU0Ha5TWJZXPpSaohY4kIW+//hpvHcFJz6KyLqzrCrmS16zN0Bx1XelYsup3xEq6s3pPLYWnRzkXrHNwuWqTUnH3CiFq9c9vibXsm2J4YlRjdL08gboISkVwwllPzqv0IHGWvFzx7qVC8DJ+OcY3TgiwgmZ8HDw7J91kR2nZIK4Bgx89eKy7CPejhjrWboIgOATwXXnCzrELZO0W+Hbz3GVnhNW2i9vDuMZSijYz2a1N9YMOnO390D4eXLAjmCKqHRqCcShJ/wVrDHGaaS0rUjcO0a7o+97xuNGpZg/6rF6UGSwka8SPvmm1QBFTq64z9E63DWekDXsfVAJrsN1sB9ZwZbBG9AhDgLbzj3fryqbon3zvHcFz3qn7keNyu/L127ec48S6LMJLXRe885Tlxvu373hlAONIpUm309ZZrzeK7YR5pjW5DvHeliZelo5vhvPpDmMMbz75nK+++opuDKfziWmqvHv/nrvzPafoSWmld0iraAOcfqeBcjq1pB2BiLWWtK5CUxhUmW643W77vJRW2ywp88OffMn9aeKTN29UHB9YlvcaXFaeHi8s68pnn30KXSoBv/Gb35UutK1zuyyE4Hl8f+X1/RvugmMxnV7k84+I5/HPx8jqnxjgj6l7+P3jsxzv+/H77JSYnVbmfSAl+E//6A/4D/76/49vvfqE/G/8H/hX/8pf5v7hNafHH/PnfmPm0xlev/4V7j/5jHh3Jtlf47NXM+FTx/TJn+G3F8e//X/6f/Cbf+G/ycOf+cf5n/xPX/OTn/49fvzVT3j12beZz7MkH8bTosX0ZePv5pwpRZqIeS9C/qh+8UcxqLGWvCZKznhv8fp3Y4rYipbCuq7U2jid1N3pciHnAk28/k3wlJKF/lMrtnVSWrFOXKFG9+RpmojTxOVykWCqVu1LgoiOvVS+xr6wW3u2bT6NYNL7gFWB/QakKB9eOOFN+2eIjid46eZNE52RgC2dxw+PvPnk9bOuuh8j4h/vX7v7UN9ErHtVaVRd3bNg/WizeXyvPwmBH9/p43n6scHB8yB9zNPRDvG5mYRct7xuVHg+tlmVjzsK7EcvgEGDQj9rdJ01WzXzuK+PRG1Ulz6uBsOgZO3fuW+JoATxY88ZyU1rooGZY6DlSl4r4dVMN1U7TXtqMyxahbLIOZdzVi2dnG3OaqOwpk0tjRewqxYxgnDSqds4j9T6pKle6x3vhKJVsgS+18tFOPsuKI1S1oFgKGJ16pyIaWG38X4+DLclE7GkNXO5LpQmfXLev3/HVdfAoCTJEPppsIacVvxpYr0tRDw9OJo3co6klfcf3tPXTG8QrKyfEI30yzFONRNZtXWZdV14eLgjrYmn6xOvXr1iUrqX8zM5F84+aHVlFR3SPLOmhdblnjbtkj4FqZhO5xPWiWFE9HYzR5Dm8B/fj5fxMn4xxzdOCILzG1I/RF4jObDei5OAERQthEBxjmVZniFEIxgLIajnvaI3WiYwsNGAMELDcQPx6pI1SNfGvcHSBsD1Lmi/EQefrU/AoOfoJle7htldkDh/QKbkbfYS/DFQq7Xi54nO4bX6uQZYcyZV6ZLojigulugMW5lAIFK5l1Y5TorSWyubvDGCMg1agdHfGdG+aR1s107QG7uKfkgIjgHxEN+N51ZzUovTcdC3LWlyTgRulQ61klPGB9mIr5cnql3xypE+zZMkHHSmGJisw/gASOOzOM/MyjU2rhGjB+dwqlEIXpCiXoUGMJ9O3N8/cF0yt9uVGE6cToFa4Sc/+Rm/8sUX3JYb0YtV4TzJJn4MBLrcWH1mUhmYYgTjBQXOhRAjcZp4ul5Y15Uf/+QnTPOZV59+i0+/9R3++A//HqXC7/7u7/L09MiHD4/cLleMhYdX98z5tNnsrmshhInT3QNvv/5a2upaz5uH1/zar3ybn/3ojwk+buj1ENj/Sej/nxTYd60EjAWyUes6Gjzs3Yn/pABxD/LYglcJehy//7f/U/7wD/8+vzUFvvze7/GHv38hfflD2nLlbbvw/b/9U+q95aft7/MwvyaeIP565LPTb9GtYfpH/imWa+OHf+3/y1/5t/5V0tcf+Eu/82v8i3/pL/C/+Vf+Le7NZwTvKMtKxnBbVpzpikbWbX621liWrHPZbD+DY0Je6a2S1iK0MOXMp1U6JMuCkmA2asOhnAU9xYprTsBTl8wpRnIqTDEyzZPcY8Q6WKheRahBPYrW57jnIVolAUMtIXiclyDbWaUktqJ8dKeBfqQ29drfEkKx2fTzSQPSIl3Ze9PAxGnwD7dl5VOlZe5o+nMqzua21tqzOTCe+R6A71VBa583WDzSeY5JwPG9h5HEca4egZUj6PDxWbG/dvyRwF2qODvXf6eDPe8gPES4x+83aE7j38fP5MzZr3FUMuQ71u3zR9X0eE4dxzBpGN9fPl8pYOPvXYEwZ7GmE4Njnicc4qJDa2pn6eia9Ej3Xf38XLZnXlWL57RzeilZAtLeQTtbt7xXSGqRZ5FzxZpOcHtHYe89y3LTbuWGNa1gZO2IIxqUXIjTxLI+bb1OWlUtGUq98oHHyxPOW1pJpOuCt/Dm1QOv7sVadZ5Oyrf3sufrvuW7nFfVw+//wd/lbj7z7vKBVTsFnx7+/+z9edBm2X3XCX7OcrdneffMN7eqzCpJVarS5pIsyfIq2+2ljW3AIDCLgwEvNATQTQcD7oEemm66aTfRNEMzgztMAw0YZAO2sRG22zu2ZcmyVCrtVaWSqjKzcn33Z7v3nm3+OPc8z33fKntExER0hJwnIqvefPNZ7nLuOb/lu4zY2FhHuSiFLEVUYWrrOY01rG9s4T1MZ/H4TNswrMpoGihVR6jOGA6HjAZDjG04OTlmfW2MVprjk5OlItx8sWA4HHUdY8/GxjqmdUwmJ+zsbGN8S3CBtfV1FnUk8q+tjbm/d5cH48H43TC+cMhQL4hJlS4Xe/UdZCSLkpU+Oq4KKVBZRp51GNxOLSGEFbZVCIkN0cAndnh7gZJWeOuXCAnotPSTPrvoyMisVFa6mADECkrRrx6H0DlDhtCR4Tyu61Cc3RSX0J2U9KRgusMyiq6kn5RFTGp/9/D4qRoYxCqoiKZZvYpZqvSHQAhuiQEOnT9CkgcNIS7SaeNdVQBXSUG/1a2yDBsZymilKeWqha/ObObR7CZuMNZ1ZmtSYEyLEqAFbK6NeeTqw7x8/SaDwZD5fI7KJXmuaGYW8BRVjsoKaC2zxmA70ps1lkoHikEFChRRJcO7gJeSIAP3D/bYCBtkZY6UYK1hPp/hCQyGFZMTxWR6wtrakOAsZZnH9nB+2rArbfwgsI1hPp0yGlaRQC6jUZ4H2vl8KR+6tbXF8fGUK9dyHrp6jdnJhHqx4M7duxwdHuLahkFZsLGxTjUY0BjD3v19BoMxbbPP0x/5KFcfucbRwQEHd+9S1y2ve/3jlKMx5XiN44N72G4Sh1PzcuU4e3acCnhYBSmnOgOsvC76SW2/A7eCKK0+N4QIMZgtTqjmc0Ku+fzJTSpncdMj7q5JhnPL7SbnyoWLbI8a8pCjdMnGOEeEQ3S5jsgs1YWSLJdsB8N0nHHn3i3mk2mUAS6GTOcLko10nmfYto6ylSYlrF31XHSKWDLidp2zXfBiyYtobpj8G3zwCJlMmQzGnzY6M8bQti1t20Yt80Iz0JpmMUN6gfUQtEaVRYSDNc3yHjR1Q5ZlZFJh6xZRRcWVLNPkRRllRY3B1A1SCvI8GoYlzkDbOvJMRJUsJFJErwkpBca2nc+Cxfu4ZooQK5FtW1MISSWj8EJZlpxMpuR5yfHJhPPGo7O4jhrTD6BX1fVUDU9zJxluxUp5DGRFp2jkOuUaIVcKZ2menOqYhm6edTLBcT2LZNpktng2uU1JSDqW9PclrMdH7H1/ThNrHPHnHu+g38WIRY0El2IZlK9UgVbPTCp0pL/H6j+nEykRizCmU605Ky+aeCn9z/Te9n7uJJw7JGemNZnSHB8dUhaa+fQY08xpmyYWt1T0LQlCkHfnFVx3/DLub9Y7msZQ5iWDQRXXdgLWRMM83xGc43VWtMZR5AUChZdgQpT57oBH+LZBEN3Sq2GabzFgN41Z3uv1tYyiKKPBWYhqSPhOQtUHHn54NxKn6wX1ZM6t27cpgmGQS8qy4Ny5bepFVBgbjqsoEaw0uID0Hq8Ely7sElpHOD5gWJaYuqXMc86d26HKYnFoMVswHo+wTcv9vT3G6+MINS0ztrc2gUDTLLhw4QInJycQYPfceY6Pj6LzsYSTyYSdzS3yPOfu3bvs7u4yqxdYY1lfX2exWGCsY300xrSGk8kau7u7LOoJi3nDcDSGkyMCguF4nXmz8jt6MB6ML+bxhUOGfIia5bBcbF0Ho1HdJuO76lLC+2ZZRtaZliV4kfcrdYysyGKL0EX84TIQlwLpep0E6IzQPC44ci2j2kOXDKwdHlJ1Jj4IYvv1VAU8QlWstXTOO8tqe1dAXFZwSBtWl2S4DgqQpOCinF1XsSWg6AyQEFGhJkk+dmpMUkRfBCWTlF5YEhST+RQk3XgXz70jfOGiJKTuNiZHhxt3DilVNDXrtbTTEEJ0sJyOGCbVinog4kmHDmu6DCxEPF+bTk+KuGBnGc5FBYevHY/4DIHJzRvkRYGfz8mnR9Ttgmv1gtHhIVlV4aRiYdqoCBOiq2ZlHLJd0FrbYahlvF7GIXTgstaY6weomy/y0HDIlQBuetzJ4zmuKMlsfx9zt+HC7nnO33wxak4XxTIRWwZFNvIgho0h05JiMes23U5mUGq0jK378XTOlwrB8eQE96EPUmxscuX+fYxpuX//HveKAokjV4rZ5Ji19XX29g8i/vvcLru7u9Q3b3Dv7n0knp1zOwQhoxFPcBgBN+7c5sLlC6cC9D4OOsHi+p2DfpAlRQ9fne53r1eVoAwJVpcq7P1k1i7Jd90zhmAaJIeNpVIac3cCreHq1hXuHs8QJuCF4mh6TK4P0KOcQXEJeTSE0OAeu8xgfZt1AUw8j26PaXwgTA7JsxGIirr1bI1GzGaHOA/obEn0XJGJ22j8Veb49LwSpT2VUljbIlSSh0ycmxj4O5dkIFcQsUCEYNR1jTGWIAVKBGi7bkTwDAYVTika7ykIVMMBk5MTZtM4T7JOlaisCrSKKlxtUxMIOB8FCxS6q7Ynla9EWAVjavK8iHFtp1aidEfWjXcU2XVSnUmKNhlSup5BV5cM6k4iOIRTcLOU/K7u/yoh7jvzhhDIsqK7Piznm9YyFiL8ailMQfWyy9CtS/0ko99tXUIp/cp0K1X1+0WLfgchJqMro8X43K46CmkfSEltcjJOCkAJvhF/Jt7jZZdg9WyFcPoZWkmZdnMlwUCEQOvTCXn/+GPQv+q6nO1gxTXcY1qDcx7pW1566fMYa6nrKVW5QTmOhnsbGxtY7zqFpii5LYXsqt2xI26DI88lEkVdN9iOGBxN47LofC1iYUpJjWlbpNQsFjWNsSyaaAbqraWez2jrmsPDQ9bXR1BkZFnG1uYWwXvKsmRnZ4e6rqmqsktoW4RnBdmyEzaGFecv7LB/sEc2Ltl69Bp3zm+ytrmJU5rZYs7W5gZNFaFE29vbHB+f4IQkr4Yc7+2xc36HNz35Bm6/eJNnnn+OPAikUmxu73D58kVyAePRiMnxCcPhkI3xGjdu3GQwHqN0Rl3XbG5sMJ1OCMF13hExaRkMS3wYoaVEFjlyMY8QUNNSDCqmiznWO1SumdZznLNkecbxbBqTuDLn8PgQLehcnAV5PsSHwKK2KF3yYDwYvxvGF5wQhKy3yMoo25bgO23wnRFQNAjJhMIGiw0W4wJVXnScKEEmJbYz/AjBEct1aUeCuK8GBB5rmm7hFd3GHzcpYyVSGHwIjA8P+dN/738l7+TmHoz/i8b+/f+rj+D/P+Pm6seZEHzH296FfOgqL7/0EjrLCELw8NXXIjPNzZs3KAYV29ubNE3DlQsPMy7GvHz7Ji/fusvtu/dxZsFaMcRN58sgI1VukxNn4roI0SXaHdk0SVc2xpDnKwx04uXQVQ5VcoXt/j1T0XdBBAEqRLKfj0mTFApjLcJLKip8plAidujy8ZAJHqRiJB332gltvsNA5wxcRu5LnJ7hlUc2kqPnrrO4tM32pSGN8tw5PmZ3vULcWKCbKSgHdUs5XMdYi649Dt0RXFNQJfHAfGEip0RGEjEh+lQMBgPmiwWD9RHtfBELCy6QqwKlFSjF4uSETGuqwWB5fYdVRXAO0/k8CB8ThaZZEA4957e3KAfRdCvXmqraRe72oSEeqWPSipQ4YzDzBqUs1jsubW3QmJb5Yt5VvKOPCc4THFGWNNPL4LyZNGxsbtJ4i/UWrSSNNVRFwXQ2BykosgKNin4NPoBw2HaOCIZBBs5EWUupu25mx2eik2lNgXskdUZ1IO/B+0UP+hgda5XKiBDDTlZYpc5BjyAsWErdxt+FpXmU9y7CZPSKCJv4E5G8a0iOr31X+sS1SFX7WHjpoD7EwgyseBkp+Wg7Uj8dUTi9d5VwRM+Z+JKo7EQnLeo92NRxJRGwIyEWKQjd89TvCq+Sctldx8SNWMGKpAxYW9M2AS01Tmju3r/Ll33FuxAikGclRydTZoua8WDE4f0DpICjtuV4Pu2EKgJFWUSMe10jhGCUZ7RNQ54XNNZQliVlUbEINeVowHxRMxiUHB4fEZxlXA4wswlrayO2N7YRBDSdAp6KBHwXAmsbm5xMpwyHo67zVrC+vs5sPmc8HOKcZTKdkBUZxlhG43Wm0ykqy1lbX8NmORvr64yGQwYXL0OI6IC6ib4B1TpRHUoXjNc3CQGKUYlSDRoISqCko/QZMtvGzF6OBb5qQLAtwTik0jjn2T+ekFUDEJrJdBZ9QWbHBBFQQrBo6qhEpnJqa3BAlmdImTMabiBVgdYB6wKDQYT6NnVLWVbUTVxHxutD6qYmOMPW5hbTwwnT6TGbWxLnZrErJjNsJwP7YDwYX+zjC04IotFUVAbyrrM9J7ZJfVflWr3WLV2JCVHSTHQVde9XVaUgBQK/rPDIVOXuWsJKroiWfSynQJJ0OMd1TW4MP/Ge97C/ez5+btzjugU9wk9SECZE55GcRXyut0TNZXwXkDnStyopcQFEkaOyjIXwHB2ecHw4oywGSKei5nsQHNqGerHAW4sWkmAt1jQoBMeioXVtNG3pMMJRaSGD2iM8CBkQWiKlxgJHx1MGVYHwFisETuYoXTFe30Si2BgPefR81EsXMuGNHVneEVebKUWRY7xBEivQrYlqRTgblSS06Ey2ViQ/heyIfQLb8RhUJw3rvF8GDM986uO0znJ0eMjx3iEXzp1nY+c8jXWxL5FpCBCcIziHznOs9dR1gw8itr6zjEwrZgf3ztxfj1YSQXTA9j5K1wkpCdYgZeDL3vl21sZr6Lw8pXTS1xpPFcNXG8YarDE4Cx/+8NNY5xmNNzg4PuL87gXeUuX82V/8WcrZhL3pEQtbs5gf4RrH2miNc+fO0baGj374aV7/xidZLBa8dOsmb3zTUwx2NjD3b3N+Z4dca2Z7t8nzMuqFa02e50sTpQSt6AciqfqYKr+J5Ngnii6hZcRzLooSlzThhUSKiAGOglqCZtFS6CLeaxmQCkw9QwpPY2qCbZEyBl8Xd7Y5OpxgqopbR4c8ceUS08URYzMnyJJjuQthzPp4xM7FbS5e2qU9brkwuMZooJi0n8UUFaUucVVJfXAEVUawBreEdkTd90S0jsFihPvE6mSUF7XWUhYFIhGGlcJbt3TK1Vqj82zZbRNhhSGvBgN8sCzqmnpRMyhLtBR40yJDIJfxWSgGJZnOcM5ircOYBmsMlaw6qJ9A6AjJkFohnWC2mDGZT0FKEghFSRk7HSHO4ahMFTkTqhhSy0C7mOPblpCMkfBoEfkR+IB3MdBvvUHKjHIwYv/gmCCyWFlfElnF8prhw1K0IcHl0vPUx9KvgvKwDMz7nYQ0UqfhNAlXAKuA+SwkbdU1BSFWfihnu1UhhCVEqy/0kPaEVQeWU4F5/3l4td/5jhybOmVpz5BJtUFGbhm9z0hu4EmeOX1Of/S7A/E1K+6BD677ONFBwAouXbrEzs42Acvde3ucH4/RWcFstmDnwgX29/bY2tpkMByxWCzY2t5iNp2xtrbGfDFnNBxR5YqDgwOuPnwtQnOqkrKs2NvbZ31zvZPklTRtiwiQaw3OIbVGqAwtorKdNzb6BYXYeSrLAVttS1GWLOpFXFvyjMZ5ENE/pRj4rhveoLKcoowOxpJOgtY5mkWNM7Yz2BRoJZBaILwn0xKpBRqJcAHtAoVQlHkVjQKHOTaDg+kxm0TJ8kwphMwZ6IJZveDg4ICL53c53p9w7lyJ1YrFvCYXipPJMTJE1bJ6usBaS1VVzKZTjt0BuoMARmlyF80hdZQntdahVc50Ed2Wq6pivpgjQuBgsMf0ZILzjhvXr+NDoKwGBCEZDoevuoc8GA/GF9v4wjsENuomJ4k95yKJTnU49ii5udowItAzVnREkMuWbto4lptIEB1CZQXDibps8ecE3UGmpELgg11apidBhOfL13CzuYo07ZJXEAOPaF7knGM0OmJtuGDeDjmYbrG5fRt0zt298wRXgopfK7oOhvAZt+7v8eLLtxht3EU0DYcHY1S2ye7FmvFoQLt4hMGwQmY5YiCQgogLdZ5BWbKxPeby+m329u5z994Om+tzHrk6JNM77O+NIBcECW3TRPMaEau+u0BZnVCNDmnskI99vOXlO7+GuX/AdLqBt54rrx3zxKNvpW1rGu+wIiCMRzlPsbVgbQ3MYshimvPotRMkcPvlTRBd+917rI+VZSmTCU/g4qU7CKW4dXuM0pb1tUMWs8DxyaWoZKE19eNv5plPfpwjccyxOGDbb7NmC7z4HK0T1EevQWUvo8QJTT1CTy9gne9k8mRHkAs4Z8jlDsPhEcbcQshN8FcZFc+hpaeVjxEYLYODTCuCMwzEG6jCEOVLLpw/RGvD3t6QNkjOnz+kKApu3Nimj4nuk6iDBPKWcu0FPjMaYt2bePNbHubmc7/Kb3zu8zz0le8CYKQynn72BcoiZ6g0flBxNJmwaBrKQcWVRx/h4uVLBCEYrq9jdOBoNuXcufO8+Q1vZn/vPge3boDUHbwB8tyjVArAYmCjddaDJKx4EMkcaaUOtApeIuEveiXcuXufo6PDZRfv2sNXgaiGEkI0korYdbck3SYZXV3mtAvDvb09pA9UWc7+ZEaZDTl2h9y8VXJlpJGZghbWL4xoO9fduy/fhkJxXB+ws7XGaPsyOh9BEExtzZZao9kcUU1r9HjEotMQj74iUW8+VYHLsqRuauq6jlwcVjrl0dMkwu18iBwI2RlxCak6vfywxGUnV9kij0FzUSiG1TplWZDpnKooY1dTBpq6ZsGig5LEgFQXGUl3PsqAxu5llhVk3pOXOaGeonMdOzFdI6Y1DoztCPc6whedpSgrQmMh5Aid4YJHqIoWQGVYK5BEKE/dNLSmJQgR8dPVCOshX7oadmTdiPdbig+k+RRS5wA6CM8q8YzQmRW5uM+XivNvJaLQx8+viLUrYm/8t7jUd39bvifCvZJx4gpik5KCFbRnBRFKJOoQVhDIV0voT3EceonBKpjvqlV4Qjh9DqHrPEmpEEmmM+1ZvJKU3f/+1Wu6JJ4AQkWSfOeoq3SGVI62dWTVgK2tbdY3tjA2PneTkxMG1QApoTVRunh9Y50QAmVVdDBTwWA04mhywmA8AgTOe4ajUTxeG4spLkR50+Aktm0RxiFVB9ntiiOr6x/wzSLCeut5hL0pRbBE3wvie6RI5TCJNV2C3EwptcIsFpw0NWvjNaYnk9gBUoKmbcnmeYTrtaaDbRp00EgBi3ZKUczRg5K7L9/ABEMxKhBHEyaTE27fukm7mDOWOXPbIoDPnpywWCw4Pjrs7kngcO8+tm1QOl+qGYUQmE4mS4lRa1u8d1HSWkJZRJiiU4qyiKakw0GFdZ6iKFgfjdFCYYxhc32j8yBpCTLC+pwPDIejV8zBB+PB+GIcXziHQPTJWnFRdSEgbYdI8CtcafdyvPNYAj4LyCWmVJ3Gey6rSokIGb8uQpIgWwZHROKwoOMHJCdQuM0F/vo/+6/5o/wwWyxecehpiXvt665z9aHb3Hj5Mu2zY97+1R/CVQP+yjP/Cy/cefx3PP2/8Bd/mCuXAu/9ka/H2oq/8H+/wbyWfNe3vuF3fN+law1/618d8joh+b6v2eEP/OkZD3/LCb/xszn/n7977nd87+/9ziO+688f8PwnCn7qv7/M//uffgeXLx7w937gAr/48xd54UX4ld/mvX/mz/+fnK8+w/t+/k0887G38r1/9u8SUPzjf/SHmE7Xfsfv/e/+5v9EAH7yJ34v53b3+Lbf++84OlnjH/3Qn/5t33NyCMO7v8GVR/4cPqzz0qd+iMvX/io753+Vyd63cP3mX/gdv/M1j/8Qu5f+BceHX8ezn/yv+Yqv+HbGQ8MHP/RXOTz80le8/uOfWv385/7cD7Kzc5df/dV3c//+Ob7v+/4JQgh+8Ad/++MFGI+P+e7v+RsgBJ/51N8C+WEuXr3DdPEV3J+/BMD67i7XLj1EVZUIrdBKY1rDbDbjYH+PxWLOxz/+SabTCTvnz3Pr1i2O9/YYlgM+/szTzBZT5u2cWRNJzFmWd8G/WgbvUmqU0qew2UDH8QinqpZ9UrExhqOjQ+7du09rHRubm9y7d5/ZdMq5nXNsbW5ydHzMeDzGB1A6Q4vo/joaD3AoVDFADzKcdwSpyTPF/v19hsMh204gNjcQouJLHn8TR2GGmzU0g/NMFyDHDk4WDAZj9u4ckulNzo93WC8yfFiwg6cWBi01Ki+jR0kK3PoVXhHPtTEtAWjapguuImyqqaN7dQir12QyX3qI+M4x1xgLhKig0kE92q7irKUiKI1HInSGdVHZSGcqFgGkwgHWB3Sm0WWJolP26XTgAwEvo3Nq0xqs9XiiZ4dWGUIq5osFCIMNPr4v+KgsJME0BuNFZB65wLyJFVwpok+V8y3SRS+E1lqk1sxnC5RU3L59h2tXLhKQaJEcuqMYQCLcxkvaFVXStWU1X/qdpZXyTx8eI5br8Nmq/tkAuU9UTwWe1JFdHcfpZKI/znYlIHkn9DhVvePuf++rdTTSZ0bvB3Xq/Qn+lMzVlv4xIRqtefdK9aLUETgLIYo/q1PHKJCdmEQSiZAgFUpq2rrl5PAIpTXBWoQPNIsFeQYnR4esjdcwi0XHtTMEC7LIce2CYVUwXyxIvAxrLJmTGNOgRyP8osaHgMo8i5NJ9DjoEkTnHLaNfhveh05yt5MD99EET6kIm7LGoIgQRO9d519g0SqjaVqCD9SzGZPJCVJCPZtFk8lATJyVQDWrAD11l1oXPT50UVA3DQTL+mhELgEXif9FlrG9uYUdDMmsp5SB0WBIYw26U4WTnVmeaRu0lIjOaVh0iab3UTVJdlC25ITuu3sdYYRRyUlA9FCQkjyLXessy1gsFggJQcrIH/CB1liKqmTWPIAMPRi/O8Z/hA9BV4kiwkmkjHbnqSpkTF/nPppjGWO7rsIK6hCiSCBpw0ia1CtFiFTt6gyzlsFRh+vtMK0Rhxz1u29zkYKGr3ryNyg2Ftgs65etCD52CYpiyiTPqR6a8vj5T6KKkqqe8+1f/16a7ccYjLYYDjZQaxVNntFKiVRRPm73oXcyFS3v2jxgMm35qRf3yfMBv++vf5jZdIagjZAaYyPZ2saFWCnHP/63+1hjeOIPb/Nce8L1H6sJZsi7vm+LIstpjUHpDKSmGlQoCUp6dFXzC5/KgII//t/vcWcoafSAr/uzhq/57ruMRE5oDCo4nDPI4KlnE8x8wWueGPHo5a/nzW8U3L1/ne1L7+bg8Ig//1/8KtNZHQmZxMsUVVPqTsUCpouo3fxtv/99DAeCohiwu7vgu7/3f+sKb4HatGRlxf39fX7h53+e3a0dxuNI9grAm5/6z1hb20eInOzSL3Ph/MeXsCNr2mUlXEpJC2xuRuzpZvZx3lT9Zzg5J+iS1z7+91nUJUpH2FKWZdTzKdcefohz53bQWrOxcQDAu9/9q1ibpnTgz/yZH3pFQBLnUfeK0C6r7q95/V/m4sNbWHuNzzz9l3nH+K8BsD7e4ur2LgSPCRbrDINqwPr6Oru7u9y/d5fJyTFr4zF5luONYXz+HEVR4RBslOvkhUfoVRDUDzJSZTQdW3zUTlc1E/FSJEWoLpixxjKZTLl05QrWeKrRGOcFa6N15vM5m5tbPP/C58iynCeffCI6hXuHygomswX39o6ZzWYcHtQIV6O8Z+vcDptr66yNC9Z0gagEu5u7PPTUW7laCNqQ8fTzL7KR5xRhwfZA8tgbHsc1Dc5rZrduc/UNV3lIQlsfUfkx8+MGLxUqdFrttlMK6gVfokMBii6iDN3v27qJ5ypitdOFfrDbFR6869TOQhfkCXIdORcmRMdUHwLzuqZ1nqK7xqLjM0kpsa3FdcG7lBpjYhXYh4DSXYXdO+g8OIKN3Y2oVjZFINF5wWwxR2WeMIlOvqYjxELsAnpjyaRCIWhlJEcXZTRSstajs4IgYL6IpGgtoJlPKLJLZF13SOmobpaCW6lUlJ2UK3JuCs6TEk8K0qy1HcegH1yvAuwkRdqfpyslnxWEJt6DlTb/6WRg9dl9Av3qfnd7RO8ZOPtMpHvc/4w+QfhsAJ8C9ZjsJAjSCj6FAOctsesml4IUQkRvifAqCUoKNkNYCUn0E6e+rwfd3PVE47UsLyhay2I2YzGZEHysSM8XDVVVIUXLZDLBzmcsOu5ACqYPXDRe9NawWCwI3T12nX9GcI75yUmERwpJrrruo4AQFT1Istw63mikE0jvloT1LM+iYpa1eCW77pSO/goi8j60yuJ564ymrhmNRwgRk4v19cSviQakqkdyTwl/CBJRRCJ0To7QEn9yQDOZMtQ5c+cZDEesrW/Qzmeo1mIkICUqi1ySTEX5XmsNuqw6k86YqLuOzK61jopXXUIZui5LCAGpNCpAUDb6M9gWF6LRqhOCxhq8koi8M+0TMsqgS9BSI7OMrCdf+2A8GF/M4wuHDAE+FlrQMi4acQOG0OFLUy0+BfLBgw0W76PKBiIsA/lUGYzreecX4D1LN0YZ9ZCXwZxIiUhSkmljp6D3rI7XjlE7Fpt3smspmeiUbpyDhgw90hTtBGsyirbl6pNjhu98krsu5+60Zv/gHvfv3+fk8AgzM8yPJjTHU5xcYF1L2zQIAlWmCLbl4M4tvCjwnapOLhTCBYJ1SAQ+i5XAqI6UyM9xU8l9FgOBQQVFTj6o4qLUmXgF49B5gcxzsl8qyIcV5bDi0uVdHtrZ4IlHX8OlixfItMDZhvNb22TO8L//yod4/njCmx+5xsXzisHwMheuXuadb8vwUkQyZNsi8VhTMzk+Ynpywr39KYcnW7x86yb39z/LnTstmwfr7O7ssHtuRpYrtJAsmpbaOspRi8o+QTm4wObmFtYK2rZhPHyWMh8wnTYU+T7lusG7OBdM25BnWazO+cC6VrHagyLP5ojxMSAxHtY3D6hagzEWpTVFnpFnM4ajmt1dQ1UVXUCh2NmZEZUycqzN2do6Od3V6lX6AKazGc6vgdhgMDpiY+s8R8fRGIusq3hJgfHRoKhxjuA8qgsmtNJsrG9wYedcbDOHOOelApVlmBBomzkvvXCM8K9iBteNs/rnZ/8eAh1eOSCkXgbNUikuXLrI2to6B4cTfvmXfoWtrS3e9ra3cuvmDaxzOCeYTI7J84qDg0Oss6yvrfORp59GSs24GlKIgu3xLuc2h+RaUeQZmYBqs2SUDdHlkOvzEx4dn2fzyiNc8C20QxhkbBcDsvUtRkOBKATmaI7PA//V9/8Vvv//+d8yuHIV5QJH7YKR1sil3FV89n1H9nXeUVaDXmW6I6/KaFpnvIubfheY6iyLHB8hlo7Gg1Ivq+A+eIq8wLYGT6Cua6aTCZkCFRzNYoJpJCgNIUEgJTLLqTvHYucjLCTKT66UrJq2jdwY68izHNFVVXOtyIaaYZGhpKDIVyZrmdaRi6NiwlIVBUpE1Zs8LxBKYDyQVZ1hm+Xk5CQGiz5w6dzWkjwbl92eqV3PDXmF+49BbN97YlXldni/Uv9ZdWdfidE/202QS17XCtq2SgpWa3E/OelXjWNyoju4oOt91ml5z99unH2GV+9ZfafrPEIi3l8uO20Rj9QzQyNEmIxcyaKeLkCFruOQvmvleXD6WEPHVYgbpHCxYFWUBQKPaRpA4K1B6yQBKxkOx+gsY6izWJhQuiNmO4xxZHlOUQ0QyT+lk6mNwhpxXkshuj8RWhjdgzt7GwJaZWghccaS0EAR7kSUju2C6uAkUoHWMko0W0c0Bctog0fqjBA8pq0pB1G0QIXIPtPdfpspDQiM7/heXhKQFEWJX3gKXbDwgSLPGQwqTlx0Ao9JK+QqAy1prcFbT1lGpS6pVOR/AN5bcp1F2WullmaTSidFQkniEyWDUq0lyikQcV1OnaJI6M6RWmFtjEeUVDgXumIVy894MB6M3w3jC04ITGeOIhG4br0WnaxlXFrDsuYf26hxwXFNQ2sapEqVmrBcwMUS69m1szusdJCy63yLXuUm4j5lzByixGL3cxqJoZA6FMF7xpcv8yXf/T1sPf4Yrml46T/8Bz76j/8Jhc7wdYvOK3Zf92be98I9fuUjn6C++XnM8QliviBH4ELACUFe5uT1HIC8wxSTF7RNw1CvkdkFOs/wdH4JeVwMrbV4McR5j9aSPF8RR5N0alYJUBKEx9cNMmjWihEhgyN7HMlhrWVa7xPwOG95/rcsOZKN9XWuXb3KN3/LN/LGNz7JzZf3eOMTT3Dl6mt433v/NZ+++DmsFNhMkWUl43zAxkZOnknKXDMsNKNBwajapjp/gUcuwFPDkta0LOZz9vfuMTs6wTQL7tx5meOjo5j05AVIxXAwJM9z8rJEFxVeGDI01XAYF+UQAyPpXLw5SkBwKCfIZMTIZ3lJaywyK7DOUtu2CxYBIiY2z3Sn7e6pg2Mxn+KdJYR8iZWNuOWcj3709SwW5anq4XJedr9Lrq/zxYK7967QNIbpLGd79xgA17WJj+7fZx4kpm0xwpHnEbOfFxGy0tY1Ls/JtKIcrqGqIUWVo/OcpmmZHe0jTIDanQp2EnHzbFW3f7zLIE5FXGuSd0wJRdJON12HaTKZkmU5zzzzMa5cuoAPUJYDJpMZzzzzcfb3D7hx4zoXL17EWocSgSLTXFgbUwjD1qAihAapLZXaIDcR3++15dbnXuTRrXXWxiMoSg72jrl47hKFVExOTrBTR7E2pFo/x6DQXP7Gq/znLx/wt9/7o4yuPsLooMHkDtW6eLzKLZ+D5FHiQnQuj7K8AW8tpo0urgvTRvw0UXFGBKI7abf+LOaLjihYRqhiIpd3ldy6rREisLM1JrQto1wwHo+Xcp5lUUKIhNdMaQbDAeiIo1Y6dhOUjvesbVs2Nzdp5gtG4xHBe7Iij4FM8OisXGL8tVI468izLCoBCYXxniovEb1FS+sM6yyImDAoITg+HiJFfH6yPEeo2OEhRNx35FnEORJJxamif9pZNc/zU2T7KIn66pCbEFYBcZqDqznplwlBfO1KmWdZ1AmnZUPPdgps5xCbuoPps14NBtQnNffHq/0udRwTvl8ISHFcuiaJdM6y87biVvS7c6eTDXfqnFI3pPtWYqfDY10UZ1BKLbtfKlcM9BCqAojwpMZGAzoRYodHKtld0wSXDbF4lMlI+G1asjwHFc+Jbv6oMirzCBGTzbZZIJTqugMxQXA++vZECJPEhpj06qJcdUjoyMh5jjUNxscpqfMCH8CEeCGlDGS5Qqo493TieYhovGdNu4oAfEDpDBGiQagSAa8jpE5lBW3wTOo50f87ugNrlROsJcj4d+UDhYpFleDj8wCBICIcqirLeN96ClGZ1oQQ3b1FAO8szgakyAje4kNENjjjYlEzZgD41C33IRbhgsCLKHyRZ2pJUn8wHowv9vEFJwR5CLF9LqMOvg2BLNMRg1hHaFDCJOI9ranxzuCsQTJAoHAhEoEVxKpWxylw3iNUBl0lP6tURxAycaOTsiMQe5zrKk6dtn7awICu8OjxaLQEhOPLv//7qba3+cS/eC/r167x2Ld+K27R8PH/45+iswK9dZn3Pr/PL/zyByhn+5QqkHmHyGS0PVcK4T00yYTNojQoraibE4yNBixeZ9TWgQchdcRFB4cTCte2ZDoDG9u6Squua2EIuSbLNPiAay1GC6oigwKUzBjoSDhzIRAyzXg4wloDzuOE5XhW86FnPs3Tv/k0f+Q9f4D3fOfv57PPP8ef/JKrlMe/h5/5uQ+yubOBa2EwkDSzGS/PZygpI5ZV5eRFTuMtQmlGWcUgl5jmgNH6ECUCjz/6EI/sSL58/HYWR55bN1/kuc9/js/dvcfenfuc7O0x1wJ5cYdcaBbG0NZz8qpEyAwvqiir18xxBLLBCOGJcyaTeKHY3N6kbhfkIieIqIetMkWuFME6ikyDDIhMYw89QmQ0jaUarILnmGQp6rpCqZY8t11QkSAPqypkkYFUBiFqSn2ComB9cIELm/GRWF+P/I42KzHr29TzOdJ7RJlTlCMQMcHTayMgkOUFMitpDcxOFszqE4qyoJ4bBhub6EG+PM4+VCYlJum4YhCVJnNH4hcSrXO0DiQ36kT+zKWAIMiU46Frl/mKr/hKfuLH/y0PP/wQPgSOjvY5vHuAGudcG2aU1yrGo0e5ffwxpgcHXDx/HuUadKkxIaCspFIl1h+jdIkQFtUanJDcmxryo33OVVschCNC7TjKYjXwYHZCON5H3z2k2t1hsFHxDX/qj/HvPvBB/vUv/BxXHnot9cs1eRF1+6uixDRRzUcIgW0NTdOilGQ0GlKUOYfzKWtraxwdHTA9mZDlGWVZkYlINM6VQOsMjeLC1vkuKJax+6Sia7C10ZFYCYlWGVVZsahnSCkoByXz1iJl/LwULI5GY4w16LzAWruszFtnKPKC1hjKaoBds0t/FKVkhBZ0MB1ELEhkeY60Dp1rBnmOCRbjLUp0LsZSUS8WZJkm8xJFwDoX9dCDICsKRF7S+oCk7Tk394NshxDuFIRFCLEMlJxLVfXTruwpEE4E4L6xX/yOqMwSh1hW2+P1yJbV00gQ74jJHRTJmggNSseRjlV18JaVP4ZdvgbAOHsqWJe98/AuQkb7CkZRujPuFVpHZa0QImY8EvAVITi0zpfmcZG87Al25XOQxiu7c2IpAxyTgtBJoIru3wJKRWfhEKJalOySEWe7a65l7ExIiZJZR+wvlp4TEKGUCapTlUOatgXPsgKeZYpAvCdlHo8/KwpclzwrncXk00XxD+c9Wa5jh0wGZC5RRKhU6jJBdIuXUiAVeCdw3bWwnRRsDNbj/W0WNd53vD5YzgVjYmU+7cFCapwNECIMT9iA8B4tJUfzBaIY4DPIWo/IM3ARBtWKgOxIyQZPbVu8Cx3ELQbzcc60q45TCDT1jCIvVmG7jCXKLM/jGhoCgWzZxZFKd90VGfkfXVInpCAvMtrWdDyE6Eqe5/nvFBo9GA/GF834wjkEQUa3YiJ+NYgAIcq4ZfmqUuR9tCTXSlNVFQaWzoohxGUjbgAxkBEyBsOJqKWUQgoNwlDm+TLwEaIX/HcLZ1oUVscYlwTdVeY23vBGRhcvcuuDH+QzP/HjkGc8/JVfzmu+5Zt5/p/8OPm1R/nQS8/y9I//a7YHWyy8pG1m0a2R6NpLiOYxSkqMdbEy5zxCRoUcby3BWRCa4GNLWjqPp4M/qVhdRIYO+mE7852orGSco66jf0NRFOg8xztLlke9dm+ifGEg4pEjOSuQqdjO3dwaUBc1br7gn/7L93Jv/zb/5X/5F/jNF2/yXV/9ZvZtyyc+8RIPXV7HGU8eFC4PlGW1DAaU0jQmLt7BOYywCDVi5nJeePYl/tE/+UnW85btrSFXHnqYr3rqcd76trfz5aMRR7M5r73yEL/1gffzwkt3KbOS9eGQfFAitWBrd0jdRPy1zCSuI6GX5YBcaVqzwLY17sR1bV6DCD7qwTpNkApjHfPZDF3k5GUWO0/WMBqUy3Z/quwlo6KicGRZ258WS3x0whc3TUNZSorSExrLom44ODoC4Gi6H+eS8rjZEeerATRRpzuoCFWrpw0IT1GUNHXLxB7iJagsR8u4QSvR4O0E/GAZ8C/N9paQjVUV9nRScHasfpne1zQNWmmGg4rZbEZdLyiLgqooufHSdaaHx7zxLU9AaHF7n+f+rfu43RtMDw84tz7EtwusDJg842TmqTJFgWI8qDiaTNncLHHO8OLNu+TrA9YvnaOeWnS30a9vriOUAGsIWiGt4f6znyYvM9g6xw/8N3+NF597lmk75/zGBsY7RsMha+MxRVZgjWFQVZiO9Kh11tVdo+zoxuYGe3v7nD9/PhpqpQpsdy2c9+gyj5jgpSlgcvQ1IAXeWTY3NmnbyLXZ3t2maRboLGO7KJZJWXp/WZa0bQuoZdArRAygizwnMwadZ2i30tOnO+ZUpGibFmMMi8XqWIwxzDtjpIS5zpTGW4dWCussi8UchGB9YxMpNcPRKHYPloZlp6vmK5y/IynqnCYJRwGG9L6+Gd4qyF25ZqfrIITAucgZWM1T1Zujq6p6qpQvq/zCI2VnbOX8K44phNBzUT7djQjxKvau6Sp5RrA8tvTcrxKK027Iq70hLIPu9L6+FOpZCNLZa5e6ctEkM7odK5V4P7FDEz8ncpNCkCT5Xl2sIGzxuiwlNBAdhwXR42uIxMqLErbISFZOmPyoxNfBxoh/XxpZhiWrfCn7ndZ35xxSdfjcsDIGTefrnIuS1F2nKV2fmDC67lmg16HszztPH3J2qrvJSg1L+Lh3OmNxNsLtnHMsRa+FiLr/LiIEyiwapREEeS67RFjStrFI2Jea9j4adAYfCd7pnpySsu7Ntfhz4lqsjj0m1itFrHTvzAOPowfjd8n4whMCWFYy01i2hl10U41t7NCpagi0C4gsoHW+VMcQIi4Bvmv2C7qWdae4stQkD2L5cMa1Li2E3fYjkzmP57V8lu/7hh9kaBd4VWGdxYnA6OIlAKb37uKCxdYt9ckJg60t5FPv4Nef+QT6o5+jvHKJg/YYGhWrBV1VTAXRVbIDQcSFK9MKITvyIhLdJTbOukj0E1G/P1UYlBAgYyYUfAxggu/OWwm0EKBi8F+WZVRL8T4G5xArZd2mrKWKFbvgyaTEt4aQSWSWkY81g0zz0z/2Pgqd85//pe/l12/f5ru+5kl+sGm4f+8um8NNtMzAm7hBZNE51YlAOSwiFlULXGhjpSjkvONr3s0bn3oH84M73L5/ixt7d/j7/+hfsqVqNjaGbF24xNf+J9/E13zDtzCbN/zmBz7ARz70IebtFOXBtQ4pNc2iJi+i1J9UksY5JvOaLNeYpmYynzAsq7hZ+Qilsm2LcR6pMopqDe89VTlEhoAzcxaLE4TeOLXYn279p46A5/LlMd/zPV/C449vU9eWX/u1m/zTf/YxZvOa2XzO8Uywk3uC7OZ4Bxm6cG6HevcCoXON3tDn4/wLfuWbEUK8pzJHl6PYciZK+R07zRE3UWHwisAjbZ590n3/2UrD92Bx/X8TQiyhSXNrePLJJ7l16xb7+/f5yEc+wv7ePm964gkeeexhPvlzv0ip97l3+4jj6YfZWd+hmc+jkk+pkTYQRItUOfvTmsWxZry5wWw+h8GAC5cv8vFnnuHNT70ZM28ZFjm5DBzcv0vbSZgKEZDSM6w0zrb43DDcHfJ3/vZ/y6996GkarWldVwk2Bq01s9mM9fV12rZBEnXol/PeRZJ6tbWBzFZSq3T/HkJAGINCxvmqBFrp2NUTgtzlSC1pjeFkMYPkkq5iQDadzwmTKVIrDg4OGa6NmE6nWOeoqhJafypYtc50soQG52PHNN2/uC7FoLWua5q6AcHSTTsFr6PhgFFeLgNTJSW6rMB5snINuXseSBAgFc3wzlT10/Gk704BcPp9P/iPAZ99xTPSD4xTpyr9e/qOKPCQAkG17AL0vzPBP1PJOXTPgspiBfm0pGnqEqhlkJxgb8uuRqZXx74k/6/kZ/uflYK1fsC+hAb1Au2+FGr/d/3jOcs1Ojts53Sv9YpTYa05leSnY4zGah6h+4TsVyYay8C0p/SklMK4SLpXxI667zDvZ31LUncj/V5rTV4Uy0QYQMvVtY3JR7xT6f3A0uulbxiXnrV4rPHeRy6NInUvVzyN08lmmltSxDWQEDsAwXvoeAOjasBcxvstOyI0HSEbmfbUVecmdmmSqlAs8qyS9ZXylJQxMegne8t1tDf307OSXtP/f+qUpWTzwXgwfreMLzgh6G806e/LxVlFG/ZUxTj9EIZI0lE90pePQW2ECPm4IIQoZSpUpB26IJBdSxZiCzZ2CQAScTDgXWCNCY9deg71ssM4jyp0JEt18mSEaKBmW7MMEn/1+g3sM89zQQQUBQYQoaYQqd3pO8v4CGa3rcEAUmu8t/jUHfAeGWSsZCVcYqeQ5EMgOAiiwzR6u9rsOv5E8J3ZjY6bpDOG8XiMUpLGh46vIRGozngnXjrrQHgwWBrnqbIcrTSPfcnb+Lfv/TdsDSu+/U++h8XU8wff9Tr+wc/PWbQtXkdiZmjAiohhBUEpCnKlaUzEsFZlJFIezW6ztj5gtDFm6/I1+OiMxzbeSTjZJ/iGw6MJP/gP/gFeCi5dusyb3/BmvvIr38W9Oy9z/fqL3L5zn+F4gywvmC8m6FwAihA0+WAQ3TmVjtrxSHSmaeuGqqxQUhByjfdg2kDTtGxubVJmOVJajg/uM6sNm5uby6pRURRLQlnKX5WSfP/3fznb2xXvfe8nuXZtnW/5ltcwnTX803/+MXSRMxAlZTWkqKIJTTbaAmDuc+7XAiEyiiJj0nhc2+Kdi5A5F7W3kYpMGcTBXZq6xjhPNRzQzo4xdooTYhkEnw04Vs7Dp583iBt31nMpPrvRBUBnGglcurDLZz79LOvDEYvZhKee+hIIjsPZCZu55XD/AIlnY7Oinc7wmcR5hcWRW8g1CBcYDgYYGzg+mVJWFXkeNc+zTPPpZz7GG9/2Tm7e+jS1acmrQcQkh6jkY/FUUuFtTW09t+7eYvv8OVxoOZrMKMu1+Hz76CXiZaC2Na1tUbILRoREeEndtMzbhqZpGI2Hyw3dGLMMsI0xlFLjevCLtiNxChEJjlIJFvOaLmSPgQmAh+P9Q6x3jNbGHO4f0FjDcDxCIih1sQwAs0wTKJcQjjwrlhXns8FeChDT8SRYi5Q6rl09iWbvHEVRRLMuJTFdMG6tR2kRnV9lMsQ6Xe3sB8rOmVPBcrpWsVKuXlEdT5/TJw0nTksfRx95CSyrwnEtTslZf76eDbJkt2afvi5n9490zOk7ne3IvawC135QnfTm00jX2Fq7LB4lXP/yGnsXA8VetT6dZ/8z0jU9+xymJCkmBOXyd6lr0+dLxPNQCOFP3ZP+/YoJmO++N1b9V/Mozk+lFKKbwzpbJXvpWPtJYNbxUwgQfOzkJAWe2FxQ8fdKEgnNqQMpu2OOXIn+vElBcfzO1DWKx5uCc6Wy5XXvB+XLa0mnuuR9JFT7uM7jAgoREx/Aerec9yJ0vLpOPCFypCxtaygKuTzX2JVYXe8QQuTvKEVIXZUz93SZhPeQBWcT6/5zkb6//1kPxoPxxTz+oxKC/qYQQsIQiojr7LUQIVbwBCyNXySxzRwfXIEQuoP+eHQQiBA7B1IojItEIi8EYukiILt2fNca7BZWqSS3ucDPP/PNfNf6P4/YRsBYx8mtWwAMz5/HtYJssEMxHlPPFtz61Q9wqRTMJg2mMRRZRYuICxZp0UymPwEhA5mKJifegk8bV4jBelxUQ6e17pdGavG6ua79DnRt1OA9dEQo06syeWMp8wKHJyhJ00k0BtNV0JYOpC6iNsWqzZ8pzXS+4OE3vol//t73cWU85qu+49tYG27wre94C//+1z9K7loQOnYqRHRHFgKcNxhCJKZ5aBcta2tDKANaC+p5w2apuDhy3L2+Ty41OlNcHI84f34T5yyzds4nPvab5EKze+483/D138BL12/xwQ89zcIsKMuMtpl3rdmMMIsVaqSMpGKlqW3DYjGPrWGtsV0vSfhInrt39zaunXHx3JiNzU3GWxdOOfmu4DgK7yMs4amnLnDx4ogPfOBlfuqnPktRKL78yx/i93zLa/ln//xjEV980jCdzcgOj+J089HPwk7us7ZWkUuJOTxEZrrbwx3BRDKsCgGBBjK8zhlvRKWowWjIUXDoaoANq02m//++ukp6zhLUod9BeLWWfHyWAsZaiqLg1ssvk2eKb/22bwUf2Ns/pHENIkhUZjiYBfJBvNalzjixjtY7jFesFQXCwrRZUMgBjTGMdcbkZLrEHVeDijsv3+JL3imYzo7JqpzQBISi64gInAmoIMhlyfG9Y0o9ZFgNWR9s8KlnP8r6ekNrTGe8Fc/7WGuEgEzJDlYhl+cWiAnTyWQW53+nbKOUJJcKVIFQCt95PCglcdUgwot0hBJEoq7i+GTCbDJlc3MLAgzLAfaKYb6Ys7G9yb39PV66fp0nHn8CoFMBWlUinbMdNMV3alKng+COggAipOUK5yyu4z8p6RA6FjwQRBKj83hjaVoTEzulYlU4OMouyRUiqlf5XkCZ5kz6ewqUl+tiL9i11p+aO/05lP7e/9M3JevDJ1b/9911Ob0/JEib6KA9r1Zt7x9jCAmPL3t8hxUkaNk16DrOSfpVdCpswYdIrO6S0T7f4Gz3od8V6Afp/TWjf03SSMff7yKk16VkoH8d4/GvrmX/OyORO0Ha3Arqw8qwbfkdXWLQXy9W3786jtQhid/tES5ek3QdTa/K3U9a+klW+v4+jCx9X/r8/prVTx77Has+BE101bsILxYIoiu51J0BposC5ErraCwoJWjZSYTGYmB8hjNi4mK7z4csW33XKkHyBLdSgTp93f2pa9D//9lxFi7UP8cH48H4Yh9fcEKgVAy6EqZ/RdLsa1v3ugMdHj0u0jHojDjXKCOmdR6DiNB2nyuirikpu4/4eq2iXNhyM1QSfNys0wK5xw6/8dw7+MNv/lFUV52XUnHno88wvX2HC299K4/9wfew+dhjSK34lX/4byhzw5ExVFKg2gWN82SqQmp/KhGw1qC689JKIAlY30EbApH/IIEg8Dhch61VnYqGDAoXbEwOPICIHYUQAEneVTdjYSswKIpovpJpgtb440XEmp7Z7IUA74jBdZdgBCHwSuC0YHjxIv/r//Fj5BtD3v6ffjtvPn+Oxdse5f2//nFCFii0Bueh9Z1jp8NmgmAtudRgHd4IymJI8JJM7iCxvOOd7+RDfJTjwyNkaJnMDlB4tM4Y5AVDPaDQBbP5lI88/WEefe2TfMM3fhO/+Vsf4vbLL3B8dA8tBUVWoqTGywh7Ec6gQgbeMSw0ZZExGFQgVZSZO5lGYp30DNe3qKocJbPlYp3n+Sv0/CMmTXDhYnSavL83JxBoWs9k0rC5WbG5XvAiAS0lw6riwm7O6974DONhnMeb5x/mVrnBpGkp19fxIsJTROiUKqyjtS0oRaY1um27eWOZT6ax8ts9J/1qYtps+kFdnAJpo+pvWKuf+wGLELHinT53Opnw6KOPRn5D0zAclpR6nYMb17l/fMTtE0s1GoGVWN/gTSBkGbO6hdazUVagBPcOj6OKUm0YVyWmMcwXNVVRMJnXHBzs4UyL74QDRHCR+JwVqCyjCT52CvKKWbvAKcX2lYtsXr+BHAzRCMZaLX0HotuwpMpyrHOdzGBXhfUucpHm9TIhSMGOSq/reCPdI0QuUmU34H00K7POU1UDnHGcP7+Lljn1omZ7Z4yQgpPpFKkn7B9O+NjHP83b3/52ZrMJSkqsJ4oUSEUQMj4vIixL5HEZ6Fck4/8dHqEzpNSorINB4Ejyy4iAEnrZBQqdnonUmgyW8JAIv5DLYOtscB/n+6pK259H8f3xO5a4/N57+/MuBc79IPB08hCTgWWwq+Sy6BHHqlvSDyr7x7vqLshXBFv9JHn5mSImXqLjj6Wg1fuVE7IQHXI8nO5cn74+pxOoFBCvuiir56p/vOm9Ccra7/6IrqAVj2H1XUKmpCXBapPnSrqWEiHcqft16lg79bXlXpJ8Fzreme+dX7/jIYjVfET0KlFKLWFXhLCC2XUqRCsiuEDLlbBB/3jS9/Q7E/G83env7l33ZbfAx4JTOi/X/QlCoPMIV433NnRwouReDwjVcRi6mSVjYhvnS1gmcvFeRZRBPKYYO7xa4nx2np/tXCXCfv9ZOZsgPhgPxhfz+MJ9CMLpNnjalOODxbIKHn+XFgXHytglsvlVlpMVFVlRYZyNijndQhdkbOoLQGgFXpMXOd5HrGjoPApCV3VXSpNpzZv4BH/jO/8Woxsz5qFChKiJbL3n13/gB/iS7/5u3vJH/yBt3fIrP/JT/Pjf+QcUQSKNJeCopUQHkFk0FMNHWdNMRZm1ILrFzUYZNdvphBO6lqwWWG9B9aq3iWTnV1XDrrizxB5rJTuViLgwmrZhbbQOwVOUOW2nAiKIG5IWPeKcEBjvYw7lLDldxyaXnNRzdDmk3l7jh/7FTzLa2uRNb30jX/34Q7jZgp//rc8glKYIApxDZgIbwGKjkk/wqCAwdkEbZgQhUKLguAUjFMMLV9k/PmGQSapincW8pbGCPCi8B+sEeVERFNy6f4vLDz3Kt/3e7+C5zzzNSy98kmZ2QqlzBmWFFKEzg4qV06iUYSmqIupXO0meFXjbRJhJoTBti28Ng9E6MsuILfhkjJcvN+5lQHNmk0sa7fG6qzgznceZllzd5m1f9sMM790G4Mbzn+HpWU1Vlly6fInxxjbWeTIZuReRzwHWGqyJhPIQfEfO86wNS2ZaYurFKagGcAq+0f85PVPptTH5PNtBWG1uudZ8/oUXuHDhAlpr2rZFZ4qDo0Oe/tR1NusJJ1PHpLWUjSTLRVT9MAYvAl4IJnWNbWqqQcF82lBkBWa8RjOdURSK2WJOUeQsJlM++uEPM53OaOZTqsGAqhqBUBRlRZAB8igqkNmazbUBJ/NDRoVid2OdWT6Ix979kUIgVXRQxUd4l6DDrStJsCYmYB3ZeBmEi9hBJIAFsjzHB4+1bqXa5D0ixGDRB08uJYMQUHkJQpFLjVGRY5ANh7zrq9/N2s55Pv3sZ2iJxQ8hVUycUfEZZpWerYSWI1E+BDo8NEilY8WWSHRXKgYbIhUQxEqlxVmLzrIoE0lU8glC4MOqctshzU91lNL8jjKuKzWffpDZr472586rwYZerYOVsOKpMr36fcA6g5KavnpXetTiMa3Uhc4eU79T0O8MiN7eIkTElhtjTiUxKWHpnwesikT9anVKOBJv4WwXpZ9gpd+nfS09l1EqdcURWD2LCqXEsoMkpcD5SDyOvLjwiuucvmuV2KxI3svrEXp4/l4HQ/TuYb+bk+ZCmv8++KWEt5ZRllgSZWr7alJx/1pxSPrH2l+X0kjf1T/us2vREhbcSYLGrl9U/bHB0zqL9Q5Ut0Z3BnvJPCEWtiBIhRCnBSNW131VYInfteJDrFSxTh/72euW/j3dk/596MPB0rx5MB6M3w3jP6JDECW4rPddC9yRyUjgU1IhdKA1TZSdkwofZISfOEvd1pRFjpSaLCuxLtDMG0bDMYNC0dRTrDdonXdSh1Ga0zWGICQ2hAi5QOKNoyoL8sF6FygcxgMUAplpZK6xQCUFtVCcvHSLX/sf/1/cztb4zHMvYe/fxgePaT2jTp9YBU1eVlhjcC4gOvSj77Z8gQQVEMJirKG1kVQoACk0PnSYUCGX7wHwziHxFCp2Exq7clnMVIcXFdGQJvgAShB0YOEtQ10wnZxEspiSCCVW6hGAaw1etUihEEFFMxkEpnVoMlRhcQy5Mz/mvf/sH7O99ueQ8vV881uf4Ho95cWPfoZ87WFaCcbV5HoQ1ZEcGOEj7rpZIDONyjKUcLQBMlnx8MOX2T6/zQsvPMvJrecYqJZBnlNkQ2atwVhP2xqElbisZW+6z2g05uHXvJYr1x5CWcPs4B5ucUI1UFhfEPWyQwdxMGgZpWmDiM6xWkmMNQyGA/b2Dzg8OEBmK5Lhq7WAQ0dOvn17CsD5cwMEgqJQjMc5s5nh+KiNCUGH8VbFeUwzgFGsEO0fTnj9G9/MrKlR2ZCsWieTCi0ExrWILLbACyGQXiKtp65rLIJcatq2pp41DDPPbH6CUoIsUx0uNzqnQuyeiRhJxMoivpuH4H3iHvSqkF0QVuYFx8fHOOc4f243/uw9i2bBrb17rJceNW24ezRlZmvOBUPmFItO/UoF0EpTB0ttDdoovHV42UJrmGMhz6hkRmun5DTM9vejDK6ULOwEbx2j8ZDZdEYmBQyGGO0oT+5gt0tCcOjpAp1plGkJuSILQ2orMEVNZRp8McB1OOYYyEdCJDJHBdkFywABGXUFu4pn7F76EH0rlNLL6qcIAimjoZJWGtMYfJAYF1AShmvrHE1OOJkuuHzpIX75l3+Nz3zmU6ytDZEdHj1VaFNVMgV7fWhFCpxXAVEiVSZoZaxqCkFHhuoCxC5IUTo6wqouCDLW9uCGK6PHZeX1TNV9ValOr1kpVa2EGfpBb+he47E2JQIsq69Rpnel3b8K4DkVaEsV+T19knIK2OOc7isUrQLHfmcgVd5TwB2hVKmCK0lMGSFWxabo77CCEUGXUCcYp1jBYuLepV7B0+lfjyV5VBALOV0RQSxX8n5lPHo1pPenopdzoruGHZch3tHlZwshllwSpRR1XUcRie56NU1zKnFrmmaZANguIcqyDIXsgt7ErYC6bpYdArrqfQgBnekI43MOneeQnqnuM2UPIpQShRTwn+0UJNJySiD63aPVPIwGcPFaxcTX+4T3D2TEB8Jn0fwsEx4hdNQZknGPMSgEOWCXyVi8fv2kKQX06tRciyqEKyO8NPr3/mznJ7122ak80ynqJ6MPxoPxxT6+cGMy22JdhKcIJdEiJgJSdFXuaKG4eqBErL46H7oFXmCNpagEpc6YzBoW8xlaKHQWq8JCSgbDipPZNGqUNw3VYMhwPIAwoFksaOs5g6pk4QWLumHLBz7OG/nr//L7+Xtv+6/Ixwrw1MYghMWrAYtii5dv3GR27w659wQsXsbKQgwsYgWjbtu4YBKD+Y4KAMTKpcpg3radjrZGdNU8b9oOv0OEA4ju/yEglxtZxDLTcSpsF4QKFbWyXWvJM4UQgXxQgsw6t0pNnkWMZbCu26QkXmtcyPHOR5yyC4hCgbcIGShcjmgNg2rE5+7d51/95M/yXX9ylyAdf+Lr38H/vG+YvHSD0eY2QmhsO48LsVaIdG2CQKsMbwJFFSuZrmlovUcXIx567E2cDDL2P/9JWh/Y3lhj4DxNHSUWj6ezeL7zGXsHLzMcb6CyHCs05688yvH929TNCeNhxXw+Q8jowAmxQtQ6j7ORDJqIpLP5fLmZ0lWIz7aET1XTETzzzD3u3Jny1FMX+PZvfx3Xrm2gteQnf/L5yFEoFaFQzLzhM7cyPvYz38sf+9q/CUAxXONOU3Pr5Ru42vH6182InspRIaMJMUlzraGQkOsYys+NQxcVWnhq0VB2OPlo0Nclg8EvoXixiyYIPhr/JUMfIWWnJrLSXW9bu9y0QwgcHR6yu7tL09ZkWY50joOjI8br6+yORzz30kvMmobRxhpSgm1b3EDhVVStKnQWCYdIVJ6RExgNRnHTzHK8ztBF1PLfGY4ZbQzYOzjAesVotIbOPMZGbX+T52yJAi9b5kPD3u27ZErii4qJVrRoRDuPRfdc4FqDU0OmxjHs4AWJfxOIQX9UuOlXxZMaSNfi78yKBJFjE3uRUbbR4Yklx065B8loNIIgadoWnWW87nWv4/DgmHt37vGH/+B7+OSnPgbeLQOPOFZBaX+evVrF0RizDOLj71e8EB8iByp9hvBng1ex7JCsqvks58tyXvcClxjQ9Mnqq0pq+ux+Rdo5g5QCpWKRpt8FiJ3X086sZ+VMVzCRVdCVqvJ9/H4/6OoHkOmY6Z1nv/OxgicFvFvh/70Py+cgBd2hD6cLLD8jJTH970u/7xNh079prTt8e1cZF/IVnwGxAr0KhGM3sN+tiCo8qwr7eDwmhMBiETlJWuuVu65akb37SVW/Qh3Vk1adDaU00ek5vmZtrVwGzv1gPlXWl7j+XkCc3iu673TOoTuIa7+D0r/X/eNNr+lX1uMcYHkccb9LnildZ8U6RBQaYhkm6DwmYlKhFNioR4j3bW9un1ZnS3yedH4rGNpKjhZWSmZnYZr9TkHfgyLrFL3687HfOXkwHowv9vEFJwRSZ8jkA3AmYfZEh1EZYis5WqN7hIxGQVlWUuQF8/mcej5lPFonU4G2mVFbj5AmVuS9I8s2cKbGCYdUjiyHRT3FGkuVF2S54ujoAFWt0zZztBIYMo7nGxjr0Q5UUWGbI0qgPr/LiwcN92+8jLYNIpdkRCv4gEOoqHhig+mcSGOlxRJ1k6WUkQshJTI4ZAAtVMQ0mlih0VJ1xNeAVt1W5n2sEHpH42RMLqRAdp8bgiAIjUWQIcE7CpWRS83W+gZ71jCvFxQd3CrgEToRlSVZJqnnLnojEBdThCaoGFSrZsZwc0R7OMdk6/zs+z/K1atP8LW/5xtRt2f81T/+tfyVf/g+7N4J69vrTBuDRaAQZAocILUCL3CmQQ80Wa5o5g1ZMUSqjIUNXLz2OBtb5/nkMx/npbtHXNpYp5CBbJxhdKCdLWj3DtlrZ8zbBVs7FymyAXdPatZ3Huazn/o4s888zXhQgHeMx2MWbUvjPEFm5F01vm1byrJksYgJwtbWFrFtfJZwtxqr38MP/MD7+e7v/hK+8zvfQNNYfuZnX+CHf+RjSBEIrcFOpsis4fLwPtXX/Q88PLoOwIvPfYQXXi6Ri5q3fuWXs3vpHLmusK0hK3IMsbOTSYVHY1QedeN9lxg2U248/wKLRYNWOUr2H7nVhhsDCbkEMykdlYOkCNGroyO5OxfVlryLwcWde3dQSrGxtk5rDVkWXWm3NzYR0tMc7lEOK9bW1zmYT5jMZ4yHA/Cxm6ULTevskgS7aBuyTKMWDuM9g/EQ62C+aBlqgZ3WzC8YisEYqTOCl4igKWQR+T4ymktJpWA8ImsLRo3nlqjRqiQYhVc1duAJdcOF+TaTYYWWd3HmNE65v4mn38fq5xmJVtGr/CUPEBJsg2UVWHda9d57mqZFFxnDKnYG10ZDvvd7v4ebN16kaZpT82kF84jrXww0VtC0swF3qgT3g7z0Of2fz8Jb0r/3g+l+1T1hnF8N/pA+s4+PTterX0VPgfbq2jqSa/GqU5CCIMGKpLkSlUjdB+dWsKB0XdLP6Rr2Rz8IyzvlrLZtlwFjfI3vdQNWgX38nlUA6DtoSZ+MrIQ8dS37AWwKwvvzKQWUTdPEa6tWAbHWCmdX60g/WF8p0pxWokkdv34nJwWZqcKerkP6/dkA9Oz39DXwk9JRURTAyqshzYv0mj7ht8/V6AfLSkYOTzq//lw5W2Dpf3f6Xf8+9DsG3vcCaBFFQUTHu0neDUJIpNAYFwtiyRU4GboRHIkTUxTV8tgTN9B7ewrj318nEpG8DxtN97kf2Kdr1rbtmWR5lfClz37gQ/Bg/G4Z/xEqQ72NrGs3iyCgLy1HdIWMuPeuZe4Cpm5olY5uvd7TNHPKomI4HGGto64nSCJcpanb2C6VgbIsYgUrxMVo0eECpBDkGhpcrMyn4WOwZJSk9B45vsgdVXLjcx/FL1pyAbg2yqX5qIsiRScH6myswocoZ+pCQIYVZr+IpVU0EbcffFy0IOKZs6yDNaikkBLLIEKAcUDwVEohsB1hTCB1jg3RiEUiKJQmR7Kxvs6de/sEJIPBIG5OznRuzQ7vWwqt0YXB2BqFxraOtm4hCIxxFJueExMoBiPyekY13uR9P/OLvPXJR8guXEHm9/gfv+/38Bf/l3+F2D9gfG6TmStoTQMO8rzAe4H3EcqDN5RVxXTqmbUWZacMhxWHJ8c0jeeJt34Ztz79MV66+zKDUqAtZFoyqCq0Lqil42h/j8Z4dnevsLm1xf7RMU+89W2Ew4e5e+PzbK8NmE8O2d7aIeiMxgVkiFwO59zSMMpay3AY3Ty7LvGyW9C1ZJaShWncvDnlb/yNX+v+1m1yHlASUeTk4xGDrQ3Ki0Ne89qK/OgKAI+8/d2EYsBrLl1k39S8//nrPPba16FVHk3jvI9BtFQEF8ALrG1omwbhLGuZJw+GcxuDUxXTfrAFdK1pQRAqVsiFxHmHDQ7r2hjomwA4irzs5PgM9+7d5bHHXhdxwkJgbIP3nuFwCL7l9v37XL/1MpSaKq8ohQelqecLtM4xrSPPs5iQBMjzmHwcF57zg3WEDVRKsFYMWLQTFqMcbeZkeUGQkOsMqyw1glznjISirSSFlGTTmqA9R7lDOMf6yRF3dYnxOdQ1OME931IajysbNKNTuN9YRZZdRfR0AJAqj/GX3RrU3e5+UKyU7MimkbiotMB7m5A7GNNy4/p1NtbWefHFz/LItYcZDisSD+SsSk2aOwlLnoLVs1jkV4Mm9IO1ftCRhrV2qbqTRr+62Vd0WUFWVoFn+rd+0tGv5q7I2H1C6opis6qmQggpuO/LiJ6WCoUVufZUV64LiF9NhScdT1EUp4LKFKCdDUiFiCpn/ev7ateObs1ddWVO8yHquj61HvSPK91L13kNpPPpdxxSIrm6bqskKh1T/zUAi8WCw8PDZVcgvRd4ReU/fU8K+NO1ONtBadvoVp3+LCv8XbKRoEd9xZ/0mn7SmXXcq0Rkx6/uaz8BSnOrf736XYDUhVo+iiIq7nV/wdkIfTTOsDEY0DYW1blwe9FJoUqBlILYHwhooamt7RJrdwYmZ0/d1/4IIVDX9fI5S8H+skNx5vlM9wDounp+ec2XPIuz8+zBeDC+iMcXnBDMZov4EGmNEhLnkwqGJeoAr8hfQoglNEKrrtXbGgbDEoC6MRgPY12ytr6F845mMceYQN44hsM1rG0xraPVjnphcU6QlxlKgjMtpl2AcNSL+fIYhZDktiHMD8nCGnW2wfXPfha9d5eh1GAtmJpMe/IAubMoIRjmBY2QkeDcVcL6LcNcK3KtsK3HO4e10Swry/NYOTEOn2scIAgE4fEiqksECcrKrmqZsLg25jFBIKRChm6T8ZHUW1bRRTjXGcorZNCRYCii/btQgVxrWhcYVgXb4zU2hyMKFV2f26blyHpevH4Dl6t4l03N3vQuP/QP/w5/6a/9D9y7W6CHh/wXf+jr+Lv/8ufIFgGfLaKRU2vJKDC2xQtBpgPtvGZzYx3ylnmQrGmBcHPWRhVhNECEwFe++5t46c7neOFznyQsJqgQGI1KatOQzy3DLKOZzdi7cxPhDJvbW+wd3ub8+iVet32JZz/2EbaH5/C2RjoY6AznHUqvMJ4r2EznnulW7ecQ4t9Dx/w8HVj0sKHQKXJI2q7D0raGg4ND5HMT7j7/JOqhjwJw/f2/xMGjVzi69TR+UvOWt3wp7uXPMSgr5s2CUik2BkNs0yKdI5dgEXiVoaqSKtMsVMnh3WMuPNQslTOSi2bcpMIKOiQ68zYhEUFB8BQybvyp6pp+vnXrFkWRU1VlF/DEQKAaFFEhx1n2790lZJJqvMbxvfsoHz1DvFeYNlAUObaDq5VlQfCB+XzO+vaIg8UJm5sbhEoRZMtarlHBsyG2sC20k4Z6YZBrJfmwxLeKPSasqxwtJPlAIfDcEjPGtWDxKx9i/FXvxK5fZqEmZMoj9hZMhjmjegsrV5W4s0Fk//ere9oF3uH0PRYiEjM9geAiH0EpGRWMpGQ2m8U1q6kZDAY8/NAlQLCxubb8PmsdbVuT5wUJApK+OwZE4hTZtB8U9yu2Z6E9cJoI2z/HVN3swxhScKe1XlYqXy1AMaZFylUAHrqHIFX2V4mIx9oY7KdAL87J0wRYrfNTAXqqCp8NyPsBbToXWK2f/S5Leq+1lrquT1VlV6IAcnn/6EjMhFUgfSqxEiu1INEVVfoBXzq2LMtOVeT7IyUu0dfGL+8RIVajRe87+vOvv7akALJ/j7IsW3Z6+sH12Up2P3ldQnl697yfPPavk3PRvyLLMprORLGfhPaTLYjQO+8j5Ld/7/oJZb8D0IfTOLdy6z2ryNS2LYmzkuZb+mxE5N8JESFNrWmp6zryM0QUcvDWLb0nTCfWIbPVdanrBSQmXw8aFcLKmK0/0v1L3aqiM2pL70v3L82h/uuTUl1/vp893wfjwfhiHl9wQqCzLG6uqRJLqsT5CDeQ6UGK/xYCOOsQwGBQkWmJd51HgAt4CUfTObUjBtflkKwQDEbreDxHR3sUqqQsRhgbH+BBNQBvOZpNccTAMGEjGwpmxZBBe8ywqWFwgcn9e2Sff4E1Z5G+JYp5C2SHC/Q+cJiVzK3Dy4gbDUQsqlSS4OJiXugY2NjgkZkiEyKq+9BvnXaEPCJPQAqQIaCEIMhACKtF0vqoZBTNz/JuM3NkuaIclkgtWSwalNRkSq1a4R1JVgePsgblC+xiAXnN1vlNrlw8x8bGmKLI2Nh9mEeGgf/tJ36CX3j6OoNiQFVpPnZrwQ//6I/zJ/5vf4KXX2x47RvW+WPf9BX8i5/5LdZ9C1l0lTbeRBUj65FCslgYvHMoHTiZLxhmFSWW1oLxgYES3N67z3DrHLvuMW5++uOMtGbR1mRVTh4GFDKwPzmink853IfWLjh/6SLTRcPJZMobvvQdXH/207jWUGUSa1qEUthu3llnyTuteWsdWkqMWQUKwBJuIEQiCfZHPyAItK1DSkWGJA+S9bzk8uBRnv78tyAeewaAwdYuWbHJzpVd1odjbuzPELLg9ddex7mqwiKw3jEgKlJZ2TKbnUQlLAQ2OA4HOdbIXkW2H1CxDNS8jzKbSIUSAtUllQRL00RyntICa1vyQnPu/DZFpiFEyB5CkOfFsjK2d+cWd2/dJR+NmbcW7wUGQV235EWO84GTyYw81zjvmC1qBtUQVEFRB7K1EdkiIKwl2IDynitXL3N/cgxSsL61RlFmWBoaFyiygrVihG09R6phFDQjkVPcmbCxeQHx1Fs48rD9vn9H8cKLHHzjWykffwo9aWlLiwy9zk6XKEXzopjp9XHMQtBJkzoEernupGAyqXx576M0sOiCDOD4+Agp4zkfHx1grSXLYhB/69ZtLly40GHsVRfgnJbC7FdY+xjn9Pd+Jb8/N9Oa+dv9Wz/w6lfMU9WyH1yfDWwhwTVYvmZ1XGoZTMb3nZbh7B/bqhLbP2a3Wut7QfepgPPM+fRx9We7Bwku1MeALxMu2XFHYAllokv8Esk2BdhCyiUOXopIyj4bIPar6/3z6x/zKujuqRN1e0QfptX/vP7vlvNuyQ1ZwcNSgNlPePoqSf2OyyoZXUFizir6pGDbGLMkI7dtu+xm9SFm/URCab1MeLyP/Lb0fem56jvzpvnSvzfGRKfuPM97SW3ke8RjW5nRSRlVjwQyimbQJaIyoLSiyBUyBGQgSmoTOzKh6/zleU6eZzRNu/zs6EmwmmP9e5POu58spPnVh071r2O6P8CSo5ae634S+Mpn7cF4ML44xxecEDgX3XoVnQSmUqCjzXpyRRR5QSe1HGVEfUdS61wivQhUwzUqmROUZtE0LNoFa6MBWaYiRIXAvJ5Rtws2Rzvkec6aiiSitp7jbEtZ5tjgUDJbavosGPDhJ7+KrbXP07YZG0++g3/3yU/ziRcnbG9qhJ9CiJh4oQRN00YHYqWYhRA15YUkuBhMhM6Btsw1mZa09RwbbDTA0QoSmbpb8OLmESFTUQ8pkqmVACE9PkDjAZURnInBnmvQQna68C1eQTYskVoRgDzLsO0CyFBaIIJDqYAKjghwrZnOD7g7u49op5wcH7K5tc3W9hYnk5rzb7zId/+J72Sf9/Hcc9cJjSer1vnZ//PneeL1b+YtT72Rz3/mhDdd2+H3f/UT/PJvPUtdW0QmaV1LVkQoSSDgLJjZnJEWWKXx1tM6gxqu4awHLF5LzMJw5dxDlEZw/flPsKYzstZjlMIEy8bWFnU9ZzqZMV+0GAu7Fy9gvOFzNz7HpavXmBzcY3p0nyLLOw3/bpPJOkUMExVg3JmAJg0R30DarNLoL+yCQKYFDnAy4FTAZrDXHAPQzCMJsFWwuX2exeGCk0nLYC2jympu3/kEZVUxdw7rHGVWYmqH8BlBOKSOMrKbw5xscsyASESXsm9wFI9vhXfVyCUCfnkmCAlKrzY0a1tCcFRVgRKnCYUJUlUWBUd7B6ytbbBx7WE++slPU5QjzGKODfDIlavIsmA2OabQmkFVMR6PWd/a5Ph4wv7+LWQ14Mpwh63REJEHsnbG1/yRP8re3X0+/Fu/yXw6IZMDRoOCHIFsDC5oplYw3irJncMHx9jlOFVycvk8w/f9B+zdz1F869dT/+ZvMFzbRV95A6F9ERmq5X3qwx36kITuTqZLE4Pwzpl1SbzUaun1ERPDmFzEQCYmgUppfFBxHmSrKuCjj16jrlusdctgLJKLI+8nfedisTgVaPYrj8v5eiboSz/3g+d+4L48n15V8mxleTkzzgTgKaBcdmh7363UaYJs4t2kAPl0NVn2ziN0a9oqyUnEzRh0Zae6Ha8G5ekfVxrpe/vvXR4vKzhPv+sCnRdNr3od3OrzHeA4bYaWPjMlWWevd3pden5c8Kc6EcGt5FDT+/oyn/FckoqR7z4nHlPbWtq2PjUXUvDZD/5f7XP7f+8fd6pYJ7hgen+CDznnyFPXutdpSOdbN5GHlYjYZwPkfiCdEtHUycjznJOTk+V52F7CJGXeu+7pDx0MyeO8pTUNwyIaBUopMKZFhUAmIDiLs46sixOMcQQMTRu7qaman7qpZ7H+fahWuq5pLUwdvTxfcX7S71JilZ7z/jOSrk9yQ38wHozfDeMLTggGRzWL2455vYGSoKUgzxRFVADEeo+Sgu3xPmM94aRe495knYfW7lNOCm7tn8eEnGIjw/lA0y4IHVFywoK2bdldu8lomDM5HJO7wMbmc2R5xbM3N8A5BFEuMPgoU9YKg7yf8zkeAWD9ZEK1UXJz7WF2r1xicOMmxyezqAneTAkeCNH4J3RwAmz8TJzH+kBA4ZEEFMI5pJBkucZaqK3rYAdqCfHw3mIJqEiniBdVSgidRwCAUBhvQUctcxEcMrR4X1PoEmcNmQfpJUIXOK3IM0FZaKSPMpDCOdrFlHk9IdgWbyxeNCwmM4QP3Kpn3LlzH6krimrIoMr5pQ9WPPnkE2yPxmxtDPEnHi1m2PURP/JjP8y5nT/PhQs7HN865l1vfBilc376/Z+iaWukF0gdXZgDAh8UgYzRQHN4fEQYjhFZSZYVgKXMcgoZcCZukuPz57ngX8P9F58lUyAyjbAenWnW8jWG5YCmaZkdHXHf1Gyf36WqSu4d3mc8HLBR7DI53Iv3IECQcqn1DiKaVxGwzvU4A37pbmtaTTRRgtN9ArHMFayxOMCbDN9I/GxB7uJr17P4aNTHBxzcuU7bGGbTCTvbayAC53cv8JpLV2l9VBXKsoK2MZH0rSVOZSxaw7DIkMPPcbw3PVXFWrXr45+EHY9dpEgujrKKnmC6ynOn5hVb8Mm0SrGkUQCLpqHIC5y17N2/x3A0xBjD3t4+w8EauiipypxsWDFa22F7Z4eL57bY2tnm+nMv8NFPfILdnV0uXrjK8OIOwQU+8tKLPPmGxzi3dZXf+OlfZDLY4sCP2Lh4GaqCl/bus7Wxg84r8sKTWxcdxzEEWZBf3eHQOIrJAfrgJfTWFkdrQ3Z3R8hf+yXqtzvCwJCNL9GIgOvIhcLaiOMOsUKYVH+890u38nhL7dLbIwTf5QurgM91CkHGR08PqSRCxKDBWAdB4V1AKd3BAVfa/zHYh/R0x8Cp61AIugRvVTE35tWdYdOIP59NYuNx9jHLfenQ5G2QzqkfyK1gIj2TLhlhGkk+NFWbT/McUmC/go1E6dI+idtjOod056JjeppvMZjq+QWcOd8kWSq6goJ3Du+68k3v9M++3wdPkArZebT0eQHBRzfiU+fRTfzgI0QsVYT7yYkxpsOtd7r3YnWssbPbdSukxNr4mVpqPKFTv+spQS3X9PSf1T1KBmTpPiauRgrK+zr+/Xu4nAW9ZPEs9t11pp6EgHerYoKSEtW5/zZNvfycvqJOCnK99zgbic+eXhJK7L6GrlJPiDxBQQe9M4a2bZedjVNdGiGIVz7OY+c9bRshTFpHjwFnTeRUba4hnKfxBmtdVJRTgWAczhqMdBDA2LqTgY6wreTD4n0sBGR65UzfT3hShb/fuUrXOvEF0r3qdwKkVBSF7EGf4hqhZCzMJRTCg/FgfLGPLzgh+FP/8Ee52n7+/+frfojv4Xv43/mHfDd/ib+9rOC/i/fzAd71O773Ble4wsu8hx/lhDV+lm/mhDHrnPyO73uUFwD4vT/8T3hD9kn++l/+++zdm/L6jXM8f2FE8AbvM4I3BBSETuVHQggOby0BiwaCa3FegsjIdIF2UIYMR06mHJkk6qCHqKbiAjH4J/qSBe+xhIg7UoKFMYQWUAJvDaMiOgQnd1WXCRprGeQDRsNNBsMN9u7cZ0ODnx5hphOEC4wGOVnpCJkkuAxjJE3IKLxlPj2hmd0FoZB5SdPknEwG6OOKl2/vYVyEJ+VSkCvweWD/xk0++4EPsvkHvpk7kxq1P+LhRy7ylv17iNpzcHDEZDZDC6hbQ20Dz372mNG4Yjqfcrx/j7qeU+iMQVVxfmcbhGHh4GBac+f+PYa5RKmCe/t30Yt9yrKkKgusbVkbDmJCqXPaxYLJwQGD9Q0cnr2jI0qdMdq8iD3exzXzWAEzDpVHrGugg151WPy0UUvtKIs580WBcbHiHHv4p9MCSYS0eSFwfgOlFgxHBsq4+C9UfDQuX7jM1be8DS9zXnrhk1SlZrixyXBtjcP5HGsczguErmmMI3hP3TaQlRjjKYQB1zDIV8TQ1WYUq5HOWULogpjgkSJ07W5J6MzvpBAIKbFdhVt3AY5H4J1Dq+jt42JviuO9+5wcH3HsAyMHr3nkMeZ1zdbGOkoLxpubfPI3P8Z8ccATr70GUvJVX/41BBXhHL71zPZPOLz5Mgd37vF5qcnf8QZet7bJ1fGI17/2ETbP7+Kd4+lnPsrm1jmcKFhfG6Iyz8K0ZBtrHN27j7CBunVczge8fOkKdZUTPvYxnBrS1lOKO59jcm+CfVIhXncZVdso+6sl0kYXVR+iuVcMDETEISdFl86pdFn17pJEQpT5TBt9CgpcMwfvyHTEnSvAW4/OC4x3tMZSDgYEkZRNYuC8glNYtE7wlFUVNwaHYQkd6UOJVpXuSExOwV/6nH4lOgaoKyjiStP9NLSk30npV769ZzWfSApBpyvS8TzO+hMI6NTeYqDXl/1MQXEHfVES064gNel8l8lPZ5IVhOvw6x5JJ2McXFcMWgXaSxhS8h7wK4jQMmiWdF3n7vpC5ygvlnyCdBxnoUGOrtIsk0OvR/ekSFMAHTpfBZQg+Oi9I5Q49Zo45+LxhRA5ZfEYA23bLK9nv8Kfrks631OdiF4X5Gy1u03CCWmO+ahFJokBcN0ahIgdRAFLPkGe5wCnIFRFliN4Jence09eZBB0d33ieqN1Fplv3qKUpCzLU92wmKhYSPddEBMUr5YdpLj2xo6lLHK0FzQhUBYVIsvIhhmlLgglCK+odOcC7tTyehVF0a2R0R1bCk3iJaQ5lOd5vFa9a5mI3OlzUvJLV4iMv0+SxqvrQfdUO+e7c3qQEDwYvzvGF5wQ7LWbAPzlP/VbPPLQHj4ETo5O2NvfZ//oiLt3XuJyPuDmQyP+ZvHHcTP4C/P/B3/33J8gLwq+6eRn+armF7pq16pKJlEUw4q2bfnXw+9gVGneZa5jPPzj8V+hNp6/dvj38K1BeI8PXUveB6x27Owf8cgvfZ738G/4cvV+PmC+jI3FnBt7+6wNR3zTd7wHvCWTIGTAkWFDxKWHJfEpShVKb5EuYq0FmiwvsM4QcEynk1iJsa5rhUZNatOR0Wa2JRiDNA46vX4poG4aTuoFeVlyfHKEcgFlPW29ACGZB0urakRVcf/4iPnnHa010V21WWDmE6QLjPM18gKqaoAMgaOjE0TlyPMhm+sFpjHMa0NjYpVGmprQNngzw5qGpqmZOE+Z59SioLgzRbeST9y6Q6VKZnPFb939POXkFt/19V+PF5Kj6QyvM+atxQl46fPXmR6cYOSIumm4v1hg2xOO5nMmLyhcXtK0lrv39zk6PubC7g5He/dpFlOaxZSiKBgMKup6jlKSrc1Ntra2WFuroG6w8oSt7R2uPfkot+/c4/79A7Y3ztEe3KdZLFAEpAjgPcYnib5YqvXO4bxDa8+XPPVpgtdYv6rW9rHMcQIJXG1pvWX/6IAwf5rNagfffikAi3lMQh+7comXh5o7R0eogeb6Szdpnn+JK1cf4urVh6mqEmMNPrSsVwMQI4xrsWiMDYwyQX2n5KS1HQHPvyIgSG1ra/0yQFQqBYByCSFL7qNSRmnciJ8WCBU5LsE61gYDqjzj6eeeZT6bUQ7X2b14hWLW8NCVK7zm2jU+8YmPcfvOy6yv53zHH/hDvPtrv4o8G7Fz9VHmx3PksGIQwGXw+Wc+xqd+47ewayUHe/vsfMlTfOlTX8r6lYcIRcmsniO31nC24crlK2RyyLxpKKsK0zYsdi4zHA4x8xnNa2fMyy1uHx1S5JoT0ZDf+hAbX/m1TPcPsC++hJqtE7KK0ECtAi44CuNfNchaYYFfHf8uhAAfSPZWzXSGlhJX19y8fp3HH3kIWU8wbkFraxbGcnDSMmkUVx95nI1zm8vpchbrHdcvSQrw42tiuboPb+ofSwrW03xcdRtOw4QiPIne+5Zf8QoY0qupyJyF0fX/LX1GHzJ0+ue+Z0A83qVMKAJr2o6rouirDqVjXZpiaY1rW2ynFw/gicpZgbDsqvT5EakinmAh6Txs8FHWWkisN6f+7Sz8KokN9CvjQkQiPSFxOPzygka5X7+E4MiOwA8x+CSspDr7UCYpO4fdcFrCtI/5T+IHZ5PC/r1O68FZ4nGf7EpX0Y4FAxGTAS/IRUbbcQm0zqKZp1th6PuffRbG1b/n3kexjFgo6zn8+ui07V1MMPru0+keRH5Xl5x1xy5IczLu15HrIWnbhrZuUDG7xYkQ/0DXFZS0LpKKVQfriWthr7PqPMY1pxLjBOlJz0GS6E3nmrpG8b4lyOZKKth10DCloqIZRGdz66K3Sd+R/MF4ML6YxxecEKTx9j90lccfWWcxnWPDQ+TlgLlp+bEPPs3Hf/JnMPMpr734CPmFERvmgKncpKzGZLueXFrysugeYhvhOAqqEagW9uqLHMgRiBhoHIgrqDzHbFkyWeDaFiECdVtD66CS+LzhW/hp/ps//Bd5+sWv4eIHb+OtI9Oag6Nj8rxCqc79UwoyIdDLqmGHUdad3TqeIAWxJBOxkroz8Sm3tyOxuqtMJlMk38FS1nWJtxa8J8s1XoAJnsY2SBlhCHmWI5ynncwZj9exCA7u74P3zJs5UsbA1tQNi5MpQSjmxtLMa7wzzKcHTH2Ld56pKmjmUZIV1+JcixcNMovLVzM/YTad4CeHSBnhXIUuWa9GXLv8Gl7/9Y8zfuK13Lx7xMBqTjYMbu5YX7vKx24eMx5VrK+tM6py1oJDCM+1828hSxUu75nP5wjoJC8lrYG2bpieHFPXC+q64d69PW7ducveyQH7+wccHh5SZgWTkwnXT25y48YtBsWIwbBgsTji4YcvY9oFT739Hbz2icd58dkXGY/WOd67w/Hdl8lUrAYGJZCJjyElQmtELGehC4cUntaYZcJA4FSghrM44Tiu5+T5nPUtwc6lNSZyDYB86xwA6uIl3n/7LurYcT7b4OFrQ+r5DC0FRV6AFFRVSWsMbVtjhKV1DUFmGAvOWBZ2QTYqohZ3lnUcFDqoU4RJlFm5xOSu4Bydq6uPEraSVQtchI4a6qEoc5p6jhCCtllgFnNuvPQig8GAcm2d+3t7rG/vMJuc8KPv/ZdcuLjLd/z+P8DDF84zGhZ88jOf4Gve/Y3Y2uFQOOMJmYZc4tcGvO6pt3D9aJ8XP/kss0tTjr1hXGgWXlBUI3Y3d/nQz/177nzww7zpK78OUw7Y2j5HLSRTf8T5c+eZL+ZMqhlf/57v4Cf/7b9lMZ8iJzP27YJKgd2qkM9O4PCEsFOSoWkFBOkpREbr7Kmgqj9iUBe6YCbp5UdYjBLREFEqxbCsuHfnNkoELpw/z8lkhrAt1sdOX+s1M2uZW0Er9JKY+UrID0vIVj8Il3IlqgCrZOA0lKYHewqJn8Dy+BOOP3U1VOdoHuERq2PqV+NTsNOX7OwHlwlacdatte9Ie1pJR5HgRkpFp/AEv8vzVdet7wHSx17Hz4gVZhnigxeTsxRInuZRnMaypwB7lXzJEL9b9KAeZ7svr5YonuqkeEBG2FkgrvGeyEmIZFh9CuefrokkuupGSFHE7gfidUnLydnzPxt8969vCqj7Ovr9e9U/7qXqUO86O2u7Kv7qvgFY5zEdh6HfhUjJwfJ8euTa/jxomhjstybuLynBCd5FeKV3IGNnxBm7dNkmCIz1uC5p6MNwfADrLblSSOliUuY9gzKPEsmm6wSGECXMBXHtEZGDl7gK1rolaTomJacNy5bcIaW6jqCLnhLp/nbQSy11JzOeugTLO7jsHizhXEFEqGqIPMgH48H43TD+oxOCmy/e4fFf+wnGJyc4D4u6xQXJ71M1f+zSkE8/v8f0Z36B124N0aMRFvDW0A5HfOqtb+VkNifIrhLkHA6oZxM8gqaBzz7/BJNJTlPXMWPPstUmQcCaNpo3WYfKBZ8/nrDFgoFq+IYnfondD94j0wpb11RlF6g5h1RZp4nckhGQyBgIWIm3cfEIxApRXAQiaTUQKIqMXCnaeUtYLiK2gxXHv9+kpiwKmvmcrFaxWuM9g/GIshK8+PnP8+lPf4qrly/zxGOPc2LmNHjEaMRmOeKhMmdqJpzQ0lrLo+vnEG1nkqNygnAgHWhPNHsJ0B7jrMc0hra2LGaG2aymXrTcuXfAvTvXuX/3JsNcsL2xzoXtXS5ffJhqfYdDYbm1f4QaV1Aq3HzCplIcBcXH7k8pD2cM9QFrVcbu1ho7ayOU9ORaIWVsBWeloiorFvWC+XxGKFuUht3N7c7MTfM68TjlYERuXbeZwsHhIXfv3WM6n9M0Dft797l39w4Sy40bN/no+z/Mz//0r+NVxYXd81x9aJe3v+n13BUO08zjBpAVcQMkXmfoAgopo1/DsoooepXBOEIIBBchKCrL8UoyMw3X79xmpu8AUN+5AcD7f+JHeMPr3srgsddwnLdUekwhL9IuGg6PJxgfcD7gjImtb+lBBBrrCejost162mlL29gOY67wKpBlqcOhOJlMIlGfFdY7BQtNV2XN+oo23TmV1ZDJyQl5FonuZVlx68Z1ZrM549GId37FlzFaX+fFl67z7Cc/w1d8+Tv51m//Nl77+GP83M//Om++9DDPXf9FHr+3R76+wUY2JFSajZAhqpI75QDOab7yHU9x64WX+Pitm1y4/RKXH32EPCtpFi2YwJe97V3cfv4zXH/+s7zmqac4uH+HS1cuo/E03lKsjVi0Nbly/Kff+G5+5Kd/gsVHXmD3Ldc48hPKueGkXXB+f0a9q/ALg6oDTniMbyIMj1dX/Dgr05leJ4TAqficy+A5Pjnmzt69yOvA07QtLgis8ZTFkEXTcP9wRlZVzJsTxva0wkx/pCDkLITi7Gv7v0vBb0wCVkF/SgpisBYTwpg4RM8A2akpSalPfXcfi94nTvZJpQnm0Ter6ruv9nkLKVhMVW5jIt5ca9VVYf0SihIr36vr3T9/IQSzxZxcZ/E8lyov8VkVnL5mp+9lrCirZZdiVe1v3Qqidfa+nL3O/ftkrUV20sWp0yKEiP5XQiB6cLA+DCV2Blb8kD53QXQi09E5OHVcXAfDislU0zTL9yXFnnRMKVHrE4ITnDBVtJ2LJpbp/L33K76uTwZqK/lS56J88VJG1UOW5Us51HRv0/tTgpDev/SUUCuCrTGGw+mUy5cvI4lk+uFwjHcuEuuVQvQ8DPpzkhCTdSFFlM8WkuAdudbIENAIcp2hhcIJhwYcAhUEWb5STUoSoukenTXo63c7nHfLa5c6O0sPguA7T5LVve7P/RVfiA4GpbvrejrZfTAejC/W8R+dENiTE+TBATbLsYOSbDBEtzV3gmZqBA99+ZfyuZev82sf/jgPBc3uuU1kIykWC0LdIrIoo6mFxMnoEkzrkVpjjWaxKCgyQ1VEQqGhpiyriM03hiwPWO9QLiCUR8uWZ3mc977vPTx18Vf5o2wgrMG7BmdAECsawVmkUMxDdPyVSLzsnv5OXpDgkDK1D3XEulpPYw2hCZS6AhliJyGEruosEICuPb62lJnGiEArPK6UfPr685w/mbB35xbTWze5vr/P+Tzn4rVHMK3DaMmHF3d5/uAmW8biPvAZ5i/d56v/0HdQ7G7jTxYImWOCIyskRhrqxpJnFVW2hgSEqFCFoCg8YrRANzWXNi6yceESlw/vszkq2RiOyJQm0wVKadYVCO0xA01oW3wuaIUn2BOyrMTWniavWCjJcy/d4UWdsbM+4vx6xaAsqfIo/ylcYG08ZmtrCxs8zaKmnk1p3QLroDWOdjFDhwWJ9DsYFFy79lBUqFAKTR5dZE3DfDGnMZbDkym37+/z4aef5mf//b/j537qx/jm/+Rr8bZhbW0N6VsWi0UXCCdMtAEfyFXcZNuulZw24P7mMZFA2xAyyfF8yuHRMZcvbHNxa5ePAxcuvg6Ah9/8DrKv+To++bnrfPY3P443Ey5fuMC73/U1zBtDKHJ0PkRYTyYUlqiqoYsK5yWLkxNeDM+h8s1lUJQ2urQZSxmrrVrHjTkphUQZ3IB0q9fDilyZKnox6LNIrWmsY2f3EvlgzLmLF7l3/z6/+B9+mXM7O0hh+c3f/HXu3LvNH/wjf5RP3XiZWge2H36Il+7tsQaE0tAsDMeyJF9IqiJnWIx4zcUrfPXXfi1/83/6W7xmu+Jt73w3WQauULAxpLqwxhuevMa9l+6wub3Ny3ducnR4wObWNot6gQ2e9a1tJsdHbF+8xLuf/FJ+8X/+Sfh976QxAbICzp+jfuGA+eMNgyJjzXnqTIP3qB6s5GzQfTbQSoEJREKx6hRStIpYaxti8FEUGfPFAtu0NDawd/cOMhgefd0l1tdW0JB+JT19d58o2q/ypsDibKUaUtDqu45G6mIk4nvfxGwFLQqhq2qHANJ0ZYtYKcaaUwFdcCBDh8nvgA6246lY0546hyAiB8pYc4pbQ6fO5LtgalWJja9aLBargMqvjMki6TWcumZK64jDT7j4nrnlb5dkORdQiZdwBm4lhET1NOoJIcJR0nV2K/JsH07VJ8J6Hx2ORZeQCZEI23RriOsCbUWWKawNp569vreAc37pcpzOK81HreM9PPtvKUEpqjIGukpG7xsBSIHKopfMah5rpFqRZLMsYt5tZ9yV5ELjOrIyK0sQqFPPRbQ1IYSwVFaS8v/L3n9GWZed953Yb4cTbqr85tRv6IxGA41INEiAASRAkSJFUSNaEiV7ZGuCRvZYH0ZrJM94xuM1I4/t5eVlWuM1lmYUTGpJsihSFgkGkJBIELkb6G40uvvt9OZUuW46YQd/ePa5VU3qA/BxwN5rFdBdXXXr3HPOPft5/s8/aCzicNa0DVmeY7OMUNey5zY10+mU3b09udbp2MzivIoBQIyR+Xz6jmaqdU5oVy5I8GewuLYVSphvaauK6B3VdMasrbEJgGuMp3GHdruKThfT5VKIzkXOR7Z4/zGm7JEozVjXECwoZlH0AOKcdTg9MqZr9o4AAFq0RUcTmt9d767v9fVdNwQqttTzGWo4RA97uLZlZXmdpVazeTBha95w8cITlP11rr74Teq9MedWRvQbeeSWZZ+ON41O42QU3smDoqrmlMWM0op1o/YBo8VdILQVRVlQNTU208TYkukKS8tSscO/evXneZv/G0YH1ldHbO/uUuQlSgd822KNoQgBHcT5onVp4zYiOIo6glW0VQXWEnwgz3LKosTjqf2c4CXFOGrQVmOiEkeEsiCEKJSWqmEQLO285urnfp8vvfhVioFYaF6rWrZv3+dP/jt/HrO8ypdffo6v/+5vciw3tAPDzuwAmxd8/rO/zA98/McoT1/AOeGqRm/IYoY1Co2lmj9AmwyFwTlF0wSqWUtVVah4wNJowPrwPP3CYo0iqkjeK+Sh6CFoRVCRpbxkJxNtRN+1DHVG1sup65amqlFK04bAznzGTrXDoFdybHWF0bBPnE/RNeJBH/qUZUHWM6jeShJ5iYNO7YUILWJJResc87rBWpjOa7RSVPWUlZURQU05fmzIQxfW+dQnP8KDez/LvKq4fecWBM/Vq1ehqiiSwNh0qZ0GgpNNxB2hcvxhHrdWiuP5gJ29bWIvY2tzm4NqzsX1JcbFdR75kX/A1u5zAJw7fZIvvvZtrr11nfeffYhxNWZrf5c3Xr3KysYxHtwfczCbM7Qlvm1ozJystLQuMJ05iixjFvY5tiJ84i5ptKMNHEUk60qQsOCbd9AgjBEufFRS6HUbnPYabTKm85mM0ZVl1tR84+vPs3HqNMOVVV5++TXRwjSOs2fOsbK8wtlLl/jqV77O6aUT5NM5Z8ohYTpD399luzehpzX3RgX9WmGcZ7/x+G8GPv7xj9P/v/f4zeef56eUx7maECKjPOPbz32NvrU8+thTZIMeQRuu3bjJ+sYJctOjDULPGqgMM3M88tAjfPGZx1CXz9PfnjLMcoZnL8JGRMUMEzz7eSCfN6iyxyG1hsW17M7RQhB6hHYBSZ/hJP00OIcpcoaDIa6akWsRSw7ynJ5W3LlzG61bTm4cI/pIUwVQ7h3866NFREcxcU6KLikAA1qTgr/+qIPMUVT+8LgP/7vUwDI96Cxq4RCd9vGPotXwznCtjn8uKa/hHV7yRxHhP9yodK8bg3qHmwxJgCvc6pgC0DRZnotDU1p/2DXnaHJyZsQDP4YkCuXQy/8dTUqMKO2IhIVrVIfoao1M/46cx+48LNDzpD34w+enKxqVShkVUQLNQ6KTaK/w0S/QYSmg30lR6wrsdzaCIrTtruVRPQbJoegoDego9az7+S5PoFt1XeOa9p00qCP3UhXkOEMSPHfHq5VdCKy758nRpY0mxEOaW3fOu2PLs4zWyd4RQ4AAvSKnruY0bSMUnDTRGB+M6fd65HmOc00awkZC9FhjsZlGG3EZioHEwxfbX6W1OPjkOSbP6I+GFKaHb43s9ZnoCMqiWBTiYut9SHlShMWUqzv/i89UCCmf5J2ie2stbdNKiGgQWlF3H4lgWaN1LpO5GEEnzQjiZvfuenf9cVjfdUMQs4JZANd4TBvpZSV6eYkLn/kxnjp3Bte03PjaC4x/+3c4/oGnGb/8Mvc3N9FFTgAmU6FGGGsFeQ8BrTOiAm27TUQe2L5xnDk35K/8lWd47NEN6trxe793g//hH75AW3l0ekiusscPXfwVXnnwDADeOeaTKUVmUdGTq0DRs7imQRuPNgrn5UMftCIqhQ+yYcXaYH0gM1C3DucC8yYQo6dQ4myjgiMoQRZAiWNQ3xFdYBrAoqiCpGf+5Kc+xZl/59P8d3/nF6jnDd//0Wc5f+ERfNTMJnNOZDkXegNWqjnjG7fZ37vPaGMDtaTpmUilW7yWgBfX1kAkMzmubcWJwWraEKmbFu8kEK1X5qwP+hRZLr8TJCMgWKhiRcBS68jAWUxR0BjLUkINdWZoAtRTR683wIcGVKSXZ7gmYBnQ1IEH+wdUw5bVpRHFoASvmRZzJvUca2Q8bEpLZjPyoCjCgJh0B7NqTq83YJD1CD7QKxvq1jEaDKmdw5iSEFpmY894/y5awXBpyOPLTxB84Mkn30M9m7C7vcW9B/fY2dlJ6bNRgtyS4O9okRKDOEF1nPzt2ZhsaUATAyePn+Tg/i533rzG4EzgvWc9W8+/Jr/bVCwXJdnBAbNzx3j6o8+yee0ez3/pK3zwY+tcuHSRyrUslwOsh7ZpaIOEiPloIARuNi192woae6T4WjiPLFDW5HwC2M4DX2vJyEjJ3xEWGg6SDeVgMKB1DSvra3z7q1+nP1rG9PrsbO+xNFzh5JkTWGM4ub7O8RPHOXXhIvr2A97zyCVMFmmqhmAsx1c26G+MWCkHfOULX+H9n/g+Zm7Onqu5EPDXLgABAABJREFU/cp1pm+/yYmz53j9G19j89Y9jp09z2Q+owgt50+e5vobV7lz9ybHi4xLl69w7+4DolcoNIWx9JZyxuN97mzeZuP0KT7wH/xZfvM3foPB8RM8mEwwWaTUIhxV0dE0jl7W56Cp6XUCVkTDA4dFttKa7AgK/A4aQQg0bSPJ0tOxaGCAuqqx2jI+mDOebBF1YLCyBEUfp4aUw1N4P39HcRWjTGZCKjRCfKdrz6IYMyJjlmM5dBUK4dDuE0V6fkBnm6k7pDKA2IaCT9c6wgL9XFAxIBVGURpCLc+jrmDtrFmPWmEuqBRpstkV00qp5KaiUzOT/PDdYUHbCYGFy57EwMkKsqPnxTQ9jUiBbpTBarsQxaMNzrXy7E5TAL047u59H+Hbc6QQjAoXusRZmbapdO588AsanTF2QXNaFOnRo0IXDimfJ7RQOyOB4ISapXSXn5OaN2vRSuGcFJKdBWV3DywmREeyHDpkO8+zw/wIUd3SORzFGDHaLO6hrvnr0O6OmtW2LYEodEIF1XxOnudkeYZzaZqtE1XMOXltpAnqzh1KkekMlH0HdfLIrk7TNtgsw9oe3jWoGDHA5v37vH7rNo8+/hg+uaj1+32Gg8EiAFGnoEi5hpKirpUmzwtiSPeZF4tUFwM+WX7PXSMuaQpx4QtgtcGlZOHuvhOamUxLm7alV2QLGlSMQunp7uMQYzqeQ0OJtmlpdUuMYiebhkvps+nTxMUjTtPJQSpAVJJNlGffdZn07np3/U9yfdd3+qDo0TOWaQxEJyj/5Z/7M+TLS9z53d+jPHmcK5/8PuqqYvrZf0N+/jLTG29wb2ebzd19lk6to6LHU2OM+EIrpdA2I9bJbk9pPC0m0/ytv/lxNjb6/OI/fplLF1f4iZ94mFnl+Qe/+CJ5zFDG0pKxt3foCOJCwLUJGWxbch2xaArtyVQgBmiUxtiMFkObhFiZ1XjX4IOC4CgzScN0vkVpqL3DGIUxoENMbs4aZQ2Zd8IfDVE8LKIn+ojWMDz1FD/55/4y1WTGxuoq1WzMbHIHpSOXl/qc/uQneN8HnqJq5vw/fuEXeP8zH+Tc2YtUGKrtLXmQWYO2EgDjqVFKvtc6T9U4mkRZya1JglNHC5ApwNCGAG1ClXNNGQMuelRd0RiD1oaoNFlsQYkIWQoNAygqHzE2T5xWSUWd+Ro3idj6gNHSkF60lHlGoUUYpoKRwiJalG0Y5H0GZUHdSgHr6oY8K/HkGCtiyg4V8r4R6g1FQjo9zrdC04oRRcHKxllWjp3BtQ37e9ts3rvHwd4OTT0XB6ggo+0sy0QoZxQxSJ5FrjVN8PgQKfMClWecPnuW0cqTXLv9/ZywtwEo1s/QG61y5SNLRKPZOXDY5XWykyeZDwZ4B3UL8+hQTUt0nqgNsZ0SFdQeHkz3UXvXOXf5MbIiI6ZCNSojna82tK4We8NE9Wi7gh9wTUuWdZSUdJPHTmQY8NYSbMabt25R9obk1Fx94RtcufAQy+vrvO9jH+T5517i0pXLzOabXHrkYX7989/iiSsP0VdQq4ytuw8wg5LBwZyVsx/im6+/xod+4FmsKTg/GBJOzWid5z3veS/3X3+bYea5f/dNNh56hAEKM1hnAzi4/zZ5P2fjzBVKldO4Fp9BO5mj5pFbe1PuvPEt+mGTDz/7Ce7c3OSNt16nv7QMzQwKJVxiZRmYnDZGhkUmn6twWJBC4r8n3m8kpoJTdCQhRqFhGLkP67qSr/mU2Dq8E068V5rhYJkQI6a/AYVmMLSUOjILHRVNwAeh7Qjl0WtBGdGSexEBlKI5wneWmlLutwWtCEWTsgqstQubSIBQ+yMc7EMqEh29ByTI0EtwokJBNORZidHtYlqh0fggjjTWyKQzQEJJG+F0ZzYVtYHcZmijxaEnerJczrdLOhs4bGCz7JACVGb5Iveje+4GlRob77BFlyCt0RhxiIuKPD+0r5TC+DDF23TFc7q+3YQghrBI2gXwToTCIU1UOkRZJxpR5FCLE6NoyJSS0LqYDAY0EJ0jqoC2cg+BTjapne1konRFZNIWJa9BKYu1Wtzguvdy5N7U3TEYkyyD5ViDcyKedYmqoqxMv7vpkbbElCnhQyQqLbTIKEFxmc3ls+8Rn2GkuBV5gTQ3wIJ3f3TSID8bsNlhc9hNMjKb07RNaqwCyjt809BODgi+YTYdQxBefdu2TKaTRQPna5lwLBB9a4kqUreOGASkidHj25a5CoSywNZi7R3ryDy24ogXw6IZmTb1YsrVXfPOpa2uodfr0foW5aFp0iQPaaJn8ylaK/I8TdkUVFWDVpY21glQcclVyOC9NI6SXH9oRyoNslpMu95d767v9fVdNwRv3dnmySYwqSPeBIoLpynX19h8+RXu/sFX6A36rD/5OI9+8vt45Td+h8oWbBw/z8D0uL9bc7/d4/j6Cv2yEITMCl/VzWuMktFuKCIRzfved5zTp0d88Uu3+JVffZ2iMDz7sbP8ic9c5hf/ybcJjUiBH3CcX3ztf7M4RudaqmYu40kFTXCEJlJYTas0PkYRg8aWiDQOKkLUmuiA4OmEzJ1zDUpEzaSHqAS4KFARgyb6FlAonQJdfCAi6N1zX/59rDH0bMF0f4uQGovgWyZjSTv+ype/xtr6Cj/2I5+mbhwHewc0zhPTFKLRWlxpFiN0jdWaqDQuRNkQjJWfV1B7S9Pxmo3BaIsyGgfo2Dvk4CpBo1UnXrS5nAcFygf5AnE48Q5nImWmyawlKE3tI14p9LQhjgN2ORKXBvSNJbOOIgOblcyVXOdBr0QNDFHn0pjVjroNuNDZxiXXjCBFm2oN0Uux18ZAGx2tb2m9o/HiUqEzy/Kp0yyfOElTVeyP99jd3GL3/n0mkwmNa8gzoS3UjacsS1Qzx6BxIWCVZj6dcv/eXXb3LvHCH3yYn3zqnwNw6+rrTM5coIye4GF38w5aKyY793n1awecv/gQNstoA0QfCEoTlUHFGpsXOKXplxmtCngnqC36kAYREqoZvBMqUZSGVadrEmKiNihN29YYo8myXIofZYhGdDiZyti5d5/d7X1eeO55fvAHnmXY6/HQxQssjVbo9Ybs7B7w4Q8/w+bmA4ajjNrNqQ8aGl0yCRVL+3s4esxxHIzHZHnGfDIjlhn9fp/N7X0+8pEP8/nf/TxmeY3rL72A6a8x2DiBiZHJwZTx9iZ3b9zgY59aZWXtOJt7uxw7voHOc/YOtvF+jndz3nr5RZ469X4+8xOf4e/8P6/SNhU9m1HX9aIJ7e6FmMKjDn340wdda7RS1M18QcPqUNuFrWsQz/bGezlvTc10Nl8UntnAYNWQGDXZcEjv2C4rq1P2b60xHGaLokkbu0CjI4JKHtpHqkWithzW4ZRCll/456uUL/CHtQhSQMbF1DMSF3xv+azK5zOSvN6VXmhMIoJed0splYqpQwpNp6ex1oI6FKkaLdkWwbWL6Uab6BgxksSVekFx62w0syxbpEPLtESSfiMQjcZEkigZOiP9wwmDXhR63RRHvh8XGQUdnUZxOMmIRJTv6EBqgfh31Lt3ZjlEbBL7No0HdWgx2TXSC0ohh5SzGFhMVARdP7wOnfaiuyaN95C0E11B3xkDhBBoKqH3dGFfcr11mgzwR+wyF25QOlJVFY1rURiCt4TgxXIZnYpXKY61sWjtFu+rLLPFtTpKn+roPgv9BYcWvUpp2kZoYjoh5CEENu/fx+Y5Tz35BIWxzOqKrLSYUnIBUGrxWT1KiVqIoJ1LbkIBcMymU5qmxSEBi1prYt0QewMyZZgFx3w6Y3lpCR/DgrrWUYKEouQIoUtmtzSNXPuiKLDGSsK4lrA2mXJpjFZkmcYaC1HqA5yca2stWWbTOa3FRrptqesGrzVG24Ve4d317vpeX99xQ3CFN/hf/PQvcTDd4t69B+wVE9qiz/BhEV/efP06X33uFZaHBVcmU8rlJbKlAusbls2IR46v8Jd+4sf5/ftv89WvfoO16YBjvWX2ZzscXx4yLHMme3PEJdLQhoYTJ4cAPNic4bzHzTwHBzVraz2WhpaDnVqQsD+0mmpKNZukTTeSWUO0BucdPipBr5URbnYaX4bUBMSoJPglpmAcIiZtdCoKdaibdocgBAZjMpQWDn7wHZXg0E2jnwuFoK2nRB+xVqwdtZERe8fz3XywmR5SBcRIrsV+D44+wIGoUFERm1RgdKNopxCqfqCam4Saipgvs2J3GWMk6jxt9IKeSAiNIbMGbUqMzcjyDJ9blFWp7/Fk1lAagwuBGB0BjTGyKU3nY8xgwJ3phNttxbrJGPU9S70VhkPhamdZhoqR3LIojmKvR+NiiqkXjM4YQyDQNC0+GEJQeOfwbSv/7/OkFfA0rkkpqtC6htIU9FZPstpfpT11nq3tTXa2t9ncvA8Ryv4oIZURTUSHgCEyKAtGq6ucvRS48p7/mkf3HXwDbt65ycYzHyQq8Cqiih6TgzErq8c5f+Y0J06eRBcZzktIWBU0tXNYHEHBdDrD91dQo3W8k8mVikJFMFa0HUordGZTE5nEj6mo1VaKk/msAhXIMimaQ5CEbRcCK6sr3L19k5eff57QRlZGI5aWl9nd2WJpZYVbN++Q25z79zd59Imn+Tv//d9jfXVEbB3Lpza48eZNCm3p9wcsHVuhnsyZTibUVfUOQd3uzjbvfd8zTFvH9Ws3ObG+zu71G5w/dprcQusCd25cowyRsLeNWjvGuKpYbwKZMZSDgrC/Q6Yis/E+9+/e5uJDl/jxP/EZ/uE//RcMj58ky1T67EgRpZPQ2hwpsI/yg2OMWJsfCaYShWiMEHxHhUlibq0IvT4hijZIGSmnM90jMEOpIfcevMTpRy27d5+gaeYyGVDgXJO4yVIY1nVDlmWpEdGCbiYBokvBXkZ1aLe4wyikaewana5wOhQle0LsrCONcK9TToGg1j5lpxiZJCmZ1knhqBKFRtO2lTQIHYVJKeqUhJ1lGShF6+W6Gi3J8c55aRYSfUKaBaG0dM1EJzbuphgLsWZ6Hz4V7ULdkO9lmUWctOLCT76uGrz3FEUh1zBNS2IIi+MGuX6oiNUimI2ExfTgaBL1O+h3+jCTwZgMlFhydgnH3fvo7iWtNa0jtR3y7O6ujbXJWEKlwDR9mG0gryU5GdZmksTc0desUKRcLXqhbNFsdNMinWhIbsFvP+oMZUwkxvTfTJYKeVEEa23SniGhb9ZmGJNh7aFQ+GgewlGtxkJk60Xr0p0ra+U81W2L0cn6VRtu3LnF+TNn6C8v4V2TJhVCyVL60Oe/+zrqWNW9X9k3FcbohS7EpKkJPhByi2k8rY6YoBn0+0StFsX/Uavcw0mBTw25JQS3aG6bIJq17h4RKlG6dooFnaqjuC00JUk3YIyibWuxKLWHdL+F4vzd9e76Hl/fcUOwxJhPPLXJzmiFtTcK+kt96rxgdVl8qYdlzsn1EePJZPHQvP/6Hdy0Zn+6x9g0vHjmJBeefAJ/seJrX/0Gb9+8xXRnl/PHV/nAex9bcGVF0MViY1h8HhOi3f2zNlLk/+GlncM6l6xEI8YUi+mD0obMFlJAoPAhEjCS0Boj+Lk0AhGi98RUnAGp0E9CQNWF3YjDhg/d6P+QbxuiJwZP2zQUeYk1GR4vCbtEgguJ+qNEnIUjyywh1HgnRcuh5Zk68vpBaE3aiH8zEU2AKA5IhChCbMF7BM0hIH4SCuNbsVuMGodG2Yy8KEEb+nlGkRdkhTgABRxNXTOvK6Lz9LOS/qBHnmdkJjDoZZgYmFT7/P5L32K9OIUzBRfXWs6cXedBs4+q98lzy5VHL7O+vg4oOZJE69CZItNKxucJbdTaEArxl5fvZXifi992G2hbaQbmjZECxkPdWFznDa8VeVFQ9gecOnOW3d0dXn/tNfb3d+Uc+4gyiqIoKIsCvCBiKh9CNBybjwEosozP//ZvYTOLyizeBaYHY0pjaEYDXtvepLe6xLxpxQ0Hg7YW5eY03hOyAlONsb5Z8KVNsgpcbJzJXjCz2QJtVDohWioVP0qhjU38Z0tWWKp5TdnrczA+4Dd//deJLrC2cozhyirjyZSV9XX6wxEvfft5rDEMegXD4RLfeunbPPsD3890f0rvsUvc33yB0+vH8W1ktH6Crf0Z9XzOzvYWwbcsLQ3RWnGwv4dRMOqVvPbSa5w9OWIQDDGKZmK4MgJt2FgZce2tN3jP5UcZTyc0dUt/UGBzKew0mtgGtrZ2uHD+Mo89/h5OHP8ym1tbjEZD5lUlxZ5S2CQctwvB7eHq0OEFVzjRJBaOIwkV7YqJtvUobegPlxaIpvdzceKJBXnRMLTnefWFlzm5Nufg9oT+YABKSUiR7mhDUrB0bi2dY033mk4gZQk7RB4mXWHeaQi6ovQdqK1wnxYNgkl8Z6012lha3xIJ2NQcgNzDNhqEwi1FjLYG2xXpR7zoF1Qm4qKoV1qjsQvppA8RlAg/VVdkd89brTFFsXhdYOHyo7UmU4kPDqjwTktR+efUJOQZ2ulFcnR33jpke1FcdgW4Opyo0BGUFEcK/0ONBBxOaFAdcv1HRdTd/aG1pM4vRMzpvHUhXCBTJk9EBYULHu8Pw9ucEzDCJDCpaWQqrLVMI4gOpxLNMdWWRsvz6aio+Kj+pU2OUIdCeWmQY4S6qZMtqzR/Mg07tDp1Li4aje71u/cl91IniE40Oy8FdaZzSJOHPM/Yn0xwEZrgCZMpWVawNFphVlX40HAo3G2J4dDa8+j5FapXEsujsFZ0hBKyFsisZaU3oGo9tm4h1xRFyXw2l3tEH1q2du9JPjO5PL8V2EQFk/fakGV24RrU2bSqRMFz6b0aY5Jewi6eGygRL1dVBWgGg0G6H/1C3/Huend9r6/vuCG4y0n+0Wc/wIn3vcza3gHjuqHGoF58jff9zyD2ety8d4/eoKAcDWmmUwazB+gAxngKF6hv73Pd38CHwBOPPsL2zjb3rRWO4rwmzwdIwSvo+63bUpQdO9ZHocgLzWhUMJ027O/WRKBv/yi/T6uACg1Wp+RBF2hji7E5ZV6kcBtN6z1V8MILTZqATMlkQBwZGvDgfUx8W/HBln1SpgExarzW+CDpiR23O6pUFARHWfaoqoo61mid4b1DI4hEDA5jBYkoioz5fLIY61dNizV5elcKZYQC5R0JSYyoEBZIRsfmVToSXC1uQlELskTAKEQD0DbEoDEmJ+8N6C2tUJR9lDVgg6TGx4BV0Dc5a+WATCtc47n7YJPbm7co+yVFVhDaCY9cOcP3ffgZNoYneWzzOnnmWHrsEu7sOaav3Wd08DIPRheZbm9ybGM9KS8MBPDRM/cNMQSW+j05rx0dRikpgqJYcJo8p9AZwnaKhFjiwhDvoW4c86pmPq+pqxqfZzgf8M7Rtg3nL5zn8uXLXH3tNb72ta9hlCHXGXVTp1F7yaAckavH+fLv/bs89MFfAODKU09zz8Hu3i6N9yxpw6WzF1gZjTh3/jwVnr26wpYlKiqaNoJRaF/ROk+tDDvXX2N30zNAp6mMwhOxRwom4XknrnSiqKnoiQnhtplNKayCMAoPXeO851d++ZdpXct7HnuSXjnCo6mbho3+ce7evc94f0zZM1y5cp7nn3+ZnR1xCZnWNbSwtbPH+rGTNPtzCtvn1u4tjBaR6Xw2TW5RkcnkgBBaLl94iOtvXOfK6Se5/dorPPEjP4JRhv5owPEzlzl1fIPY6wOefp4znkwoe5bM5hhbENrI9GCKmVe8+fbbXLl0iQ888wF+7V/9KstmJO4kKk1OtEpTOwnL6jbnQ4cUaZAPrQMPqQudJaOELkmxLL7sGXU9x6iczGjmVUWeFZTWsL72DN948wanzzyg7K2LuFPLZ69DXYVbbxYIuVJiv9v97aN5ATFGVPRHUP53oqpHUWtjDCo1hTGxTAQ5Dijl6exHfdc0KiV6ApR8XkJEkl0OV1fgHmYLiFtO1F3TkehHqMOQqHSs0UshrLUmusMmgK6YPtJ4AQsaI5BE8EeEt/qwoVPpuBZ+8URCC52Y+Kj7jY+S8SGTHpWmuoL6Bg5/vvs7C5qMFfpISO9HJ1yly3eQn4+LeyrGw2wH59qFGNgYTfCHU1zRUB3qBrJMGkNtLUVhCCn1FqWSA45QolQUyqnSavH+/zBVaOE+ljIOlLY4FxaTFiE3+UXTFwLE9HwU6ssftbw9tFE95ON3QX4gRbDSgqaXZW9xjVdWVxfTC5QmogVMy4rF5Ik0qQghLhqCo42uNgKmxSC7k9KGkLIWVNcAQxKYs7AXHwwGi6Z18blQhzkZWotjEFFyFkwQfUoHAHRCeu+7EFGdJgcKeKcNrTwnumP3GJMtmjDRz6h3TEnfXe+u7+X1HTcEW2zwjTee4T/9833eG19lWpRURY9q2jB5sMOVj32Ij//8X2Tl/Em0tXzjH/8LHuy3QkGZzVh3Y7ZvvsTB/RdZWz3OSv8YV1aP8dj5C+ggCMfuvvhQK6XIreW55+5x5+6YD37gFD/1U1e4fHEVazX//JffENQmiHvBH14uNNShxkRNVFHgfhQ6N0QliHLbzKjqhA4aIyNQLQUqRGJwIvREJAQgNoVas9hISAxX70U7QKLoyGaiFt7yrp5TZEJraJoGEyWcxaiITsI8HwPRBfK8AERAVeQ5vq2Ft4pCx6N2ehGbOKXqKEdXyaZjjdgihih0gNBGWu9xMZDZEpuVFIMRthiA1jTNnDh3KBvJioy86JGrTAKCEOemorA8/vhltvZ2ef3Naygshe7x+mtvM+gPyQ1cPP0bvPXS83j//YTmpxhff4FLpqRUNbe3Z9T7x+ltHEdHLcJaHXFe03hPEaFYIOFSQFgylCpwHtpG0UZ5DyEEWteKzkAZsizn+PoSCpjP5DqM6ymuaZhOp8xmYqf34Q9/mIceeogvfunLXH3tVcrCCsLrHToEQsgZ751gvD8FYG9vk3LjGOfOHxc6U8jRXtNqwzffeIupd3hlMBhyDb6pxGGERu4FU2KqObkTAR5KyYQoIXe5NYL46lwSdZUgp633NM7JRh6FQy52kvnCrnI4HPGlL30Z3wY++MEPMpvOmbcNo6VVZvMZrvXcun2XGDzj8S6j5R5vX7tNv1xhe3OHarLHdHwFkymCDox3dwkxcH97i2F/QFmUjMd7tK2jbcWSkBhYOX6MN66+wYeby+zt7XDt7h1Wsz5L/RFOjxicvcLayXV2NrdYHYzY3t3j5Klj6KDpDwbkWcbpU6fw/R5vXn+LCw+d5fKVi/T6OXUzl2InTdk6xLhzu5HP4WEhKGh1S4yH3O2Ff7lSaGvQmdBRtMmIeJqmEcqFdpRFH5MHshx8q5lOJhw7tc7e/Daj4gytD4Q2JGQ1UU2CYjqdLnzgu9RWETzW2CI/cpxeGvJUtMrzKk0+U+HUHW+MMhE4qj/omgtSgdR1CpnJIFGVtFbYwi7Oi3MtbSsOMGVZis5mkfKanG26v5Eol1op1JG8BZ00S0HLf/NKEZP//ILP3ek0jlBBuvetjSI3NqHbh5Qeo7tGKQlvVeeOJKLYzGaHmgKtyGJHQQooKw3M0cKvKxaPcuSVMaL5CEL91MZCKuqO6jsOv/TiGQ/i/a9UsudUWjRYnbhZq3e85251hXSXbitpuXJvxI5eFEIqkA8Dso5y/Dt9hlap2aRrnOT1rJHpYoxCz+uAA5M0D0oncfGRhvHQfrRzMlIJdW8XP+Odx6brKfQ8qJuKzFh2d3fZOH0ObS2T2RylOtvVDm0/nJS4I+c4xogJChUj3ouCe95UNG1L8BkEj44wx7PhFTOj0FVNVVfkvR6urhfXtbtOnWuUNQVamzRV78TMMn5xycnNGEvwh78vgnSZjok7UxdGd5jxYI3QD0Ur02JtJIZDLdO76931vb6+44bgKb7Fn/7EX+fqg6d4ePM+ZmMVbT2D3oA3/sk/4cJnfpRnfu5PEJqGzS8/h3njGu//8IeYN1P0ZMZgb8r3PftTvLR5j299+zn87DWUr8isYW1lnaLXozc4RVRKePZao7KMv/1/+ip/+S8/xV/6C++lqhz/6tfe4J/8s1fQUREWY3hZT5//IsdvPBCOu0JColxNUWQUvR7aWvbGE3xbo6JD47BSe+Ia4cQ7lWOAGB2uaYX/iiDrmek2fi8od9pMugei1hqz4PIm9+XgMSpSGEGwMhUxUjmiXMBjCToF8WDQQeHxZJkIt6wRX2VxsBBhmcm0IP+tS0DPoaBRKUFFmnCIlMYofGCtNTZAMCWqN0IXQyrvmB3s49s5mYYyQhthH0VjNNmgx8rGOqvrKwyLSD3ZZGV9lUeyR/nWi68QspxhMeDN197iydMb7N8OPHSioOx9gxvbl+irY2xWr1DeCzxy+XHaGFFekH9tRMhdYYVqoDSOQ54ySvOPrr7Oi/e3WC5y1ouStTxnxSpKFEYpytGAfn+Ab2Zcv73LwcEBbdOysbbGqaURVueMRiOyLGc2nWGU5qn3PMqsjZy/eIkv/JvP4YKgVrdv3ebsQ0L9WumLfmUpL1gr+jjnuHvvHorApYcu4F3DyqllmhDJshLtFW3rCaWMuo2b47yjVSW2GnJj74Y0idZirGQxdBtr9NLoWGtBi0OM0obcWHGCChCCX9gY1nVNvz/gzp077G7v8thjj9H6gMky+v0RIUCRlxhlaBH7w627m6ysLPHc89cYDpaZ7k84sbHMJAvsj/cwdcO0nuOosU1NURTs7e2xs7PL6uoKMUby3NI0FbEoeejRJ2m1ZrS2RjlagcrTL4Ysr59lZnqouiFTmpXBkAe7ezgfMZIIRdvWNNWEfq55sH2XGzff5vjJ86yurLKzu0Ov31+IImOM2DyDeIQKwiEPXGwPOwY4KblVbBDb1kmquda0raNMNJ/azxgMhgSncARMqYmUBFURVSXFs96l7PeoqhoVxA7WtS2ZsRT9nKppFpSXpmnRyiyK+47mtSg+iQndPkQtOzRVppUq2UdmxKgTmh44avMpYESilLlAZqX4blu3oMYcotYZxnThUHXSKxnquhaqE0J/lAlDWKDoR89t59LUtB6NHLs14kxEmiS4I2F/XfHWCY+NVWkqEcXQQCm5HiGmez+5FanDSU5UUCQ+vgRpicbJh0Pv+Db9DWsbgWOOIOE2cffxHue7gllhAmT68JzDYeMoz8yOZ38I5oAUms4nYXMSjTd1Q5v0FkI5Ef2V956qqtLzP1F9XCOP5rRFdUCO0mAw72hsu2PJ81xErVWDybIFvca1Qot0RHyAGA5TgYN3TCYHybY4O3Itu5TrQF036dx3zjoO3VHfgMl0TmYMmTY0Xprmc+fOsbl5D5tn5P0+9bwVPYdKWhpiArAO8zngqEhaJtgxaqG/pmecTHAMIXgGUVPnmqEvGDdzlDGoIxOtbkJQJBcp+fIMBmVqeDpbWpUmPX5xDOI61InGj9CaoqJz8VLqkA7k2vrIdMVItoP+t4fovbveXd+L67tyGfr217/OrZc3ObPzBrv9gqY3JMsDeV6y/M++wsrQ0fQsS70VllFkvZyQiY+v61vCauSJR9/Hk08/jpnuszfdZeqm7N+8x50H9+lt1UzGFXubd7GDhkHWY3ow4D/7m3dxukGHZVwOvSqAzZn5KUuH0A4fe+S3OXvjNoOocMagfMTYjLwN+KKGqqJpxwQ8D27f5OZbrxN8S2EV586d4srlRyAYZrVDmQxrZbSaGUNVVbQqjSNJbpHKo2IDyhNCDcFgswIfFXhQ3pNnGcqIYAsFphAf/KZpKbIMFTQq/buxadQaxW2DEIhaixWckhG8d0JZUsZSawls0kSIFhUNKjoIjsKUBC8okPYBbYRzn/dKhoMRtY6Mqy2aakYZAtZVTKoJu9MpbV1hTMb6xklMGLJ7sMv+jYzzVy6ytL5CmCvOrB1j9LGML37tDzBmlcnYs6k0v3znAh87cY7HP/kJTmRPYfb32fuN57HFDe7vjrh5YDj39DFs7qCB8YFmXmWcOmawzFG+ILSAEkrM4/mA577+O5T9mvn8OL+XN6w0E4q9gtcnb7M99+TFSYYnIlecZorlzek9ct1ndWmJ9f4qS6sFw7XjnF1Z5uHjGSfXHmN0cZ080/ypn/4pfumXf402jHjsyQ0OhscBaPrLclMNNvCDE9g84/jaGUyM+KzEa8N2W6HzQKGFgW0LzV69T6YKtM+Zjluc2qfeuoPSJa2vqZuKQT4EpUEZtC4gBEqrqaoqFbQmOesgyGbWp2lbmtBgjKaNELXh/v0tVjfWmc7nnDp5ktl4gmsDqytL7O7t8+D+LlpB285ZWjrFtas3OT4w7I8ipW/Zm47pqRFPnH+Y+f4UQuDNN+9w+cIx7LMfYm9/i7auqKuaUydO8N4nnkIHhRlHRhuaq9de4qd++KextsT2G2zP8MjjF5lPp+iDBrTBFhkPnz6FUeL2Fds5o9EKxhywvXWfqg289PyX+YmffoRHHn6Cr379qyidS7BRLlSW6DxYs0A2Je03CpLqDTGbUtWRPC+pmylFFggYgl0jMMFEcQiazHYYlEsUJTRti7UbhHiAjQaNp8FR1xm6GDHoDxk/2EXFDNeCVjkheKpqjvNztO4znczTtYI2tAvKkG89TSvopVVpqqc1beOFMpHnaGXQSBaJMQYfHEGlVGHnDvnNyakly3PmzZxEuKFthEbXgQ/zpk6+/dKYQqIc1Z7cCh+/6Iu7WJflEEJAq87ZSB3SM0ghTzGkTJGu6BanrI5KA4Jgo9WCxoRR5IMevomEqMiKNAGJ8t+0EVRWxJ2dgxBSmEVBb622ci3rOiHoBpQ0INrmZKZzbJJj8CGgrBV/+ygmESoK3UWnKUibXHE8Edcmr/+ySCYFkkyv6IS7KTXceRGIpwLfGrHc7OWZiFBVStB1AYK4lSklgVzGGKH4WSOvHaCt6mSFKzkJnY8/MaKSC5JSiuGoT9lzzOdztAZjhGYq5rFmIcBeTGS8piwFwFjQ2hauS0IlQjmsRixAg4PUHDkXUNYwLPuLkEdtNEb3GO9tk6GZjitWV1LGgnJp+g2gmLWV6FCS2QUx4onJbFdjMov2jlZ5+lHTIuBaTbKgxdCPhjq2lFkP3ziULdCNI8s0qkjNm5OJiTUWo2XapayRbJksT/ehBucI3uEVKIIEcoaUbeAdWS6ieq26LJdAkXQxEpDa0YU0Xgnl9F0Jwbvrj8v6jhuCl3gPrx38a/6v/8kNPvrqP2Wv0Gw7x3hvxv7BDpXz3NupsTt7bPsHNCGj3wsYbSnnLeu65vf6L1DpN+itDzD5gBP9IcP8JMuPXeHYDyzhbjW84ddQ7Yjp1k3G9YTNvbvoAHmh0UVL1mtZz0pwQ1SucfpwdHtt6wwTBjgfqOeViDv3KorBiHo6AWB6sM03vvYlbrz67YR0eSDw7Rc03zxxio89+wlGy6u4pqHoiaBwMpnT6/WS42jER9AqJgcF4V9m2RJ12xK9QaXAmxC8IKO+xSqh7NR1SqaNkeg8QXmU1WjlZONRgtgZqwlewq1C0AthYgRiABNg6MZyAMnqEmWIOhKVEz46KQQneEKwDIarFL0+RE8znTGrp6jguPrGVV59+SV297ZpmwqjFLHx9JdX6Q2WePjhR7h85RHefmnCsZMnWT12hs3dLdbWlnj0/MO88NKrWNPj1us73J/1+Nr/+Dx/dvwIxZVTFIVlUJ9mMN1iFuccsMP9G7dZ2VjFYam8wYWa7b2afjnC1Y62hZ7JyHTg/Q+d5PMffZov/P3fYG38FXbnNW9nS5w41efi8Ys8fSqnmc8ZHzhOndjgt55/k/nr32J+qs/U93i7n1EOC9bo8U2jefyDD3Ppocv0o2V3c8LJiyf50Cc+xovPv8Brr16nHr0OwP2bbwFw863XuL61CVYxnc+Yjfc5c+os86al9Z5eP2M+ndIr+mSmEMpHO2MURPypexlxOiNUgbZx1POKPC8oilJ4tLHzuA8URf4OHrRwhzN8dOR5EhgbKXSqqmZre5vh2gZr68dpiOSrq2S2wI6WePTiRayxrI4GDEYDbGbxwdErS84+9RiDoiDOZwQfePbj3081mSV7voKgIk8//f5UeHgyaynKkg986EMYrXn8A+/h3r1NvvXF5zmVv8xP/vwzGJ0To2K0ukTWz5jNZhT9EfPoKVdGNL5FW8Vyf8itWcvQDPFO7uNb169RT+aUZcHBwYFMBJRiPq/IrE3FhsN7I1kDdHaQDu8gNhnKeNo2YPWQelahC02TvUlRNrTjAZldplccYzppyAqDMZGq2sVkDtcaMlMy7PcodU5rc66/9job5oDVlWOoKBMGazOszWjqKd63C2ExHKYPgxQ8RSHUv+jemQyLEdGxkh8kZoagpMHXShF9WAh6TQpwFJG5ojAFMbn3EA/tMSW3JSyQzKMOOsYYVBAHtBhD+ttJj5QEtUdtVGRaEA8VSWlasFiJUx9jJMtFxN9NQ4IT33k41AAcFqaHFKmuYVn8zSO8d20MQSka72iDJzNirZr6IDpxttB5WIi55VATlUibRSib0B3b1HSFpAE4tOVUHIa1aS1Wrni30C00ToLBiOCzbNFQRYDgF5TVoxOWjmInk5akP4gSlqi0AEJt+079Q2dtqZRiPB4vpgYhuHdMYZx3dNqMjuoSnV/cfx3tqBNaL8TTSlG3DcHJ78v0SqawLqUuZ0d0StGL5WcbPHmMR0LeDvMGSO8vIs8wHaWBV1EaYR8joXUo31F6LK5uUb7ENQ0q06AVVVUzb+YUNkMRJXQzBjHt8F2GB8SYEqWjiH1tjGIQ0U1YfOfiBN3UAkiNs9xHdUqK10a0XJ2oO4QAyfCBjmalEIG+fWfq87vr3fW9ur7jhqAlY2s85MqlHhd2GjZWT3BxIJSJlRxyndP6SD0d89Zswu88f52Dt+6SG0Prp4ynU7ZvvY23A7ZvWGa555WYUSiDs4qlwQhf93hw98MM1zJ662cZxcg0VrhZ4KCds713j42dfSZWEbKCgohtMx6i5czadT77zf8lV/k7RGsYZjnOWgqj8EbjcGwf7HL1y1/g9uuvoIj0ByVNXaF1htZw//Zt/vXnfouPfOxZzpy7gGvnoCzLoz4+xAXtJAahZ8iGEyQwLNSYhFxCKvp1QjWQyYLY0YkI2tWdRZr4ZUdtkrBP+LIZmqijIId0vGOzEByGGNk1WsTCUZxGTLCYmCgJtsZYg0maBxKC0zYR52YYPNXeHl//0u9z/8bbZLmcq6LMBZXNIbYV+1tTnt+8y70bb/Hxj34MX2SElWXWTp4kOsfJtRNMLntu3LtPZSpWT5/h5KX3cr2ZYV5/BdsfsLF6Eu2O4dsBg9V1bIgMo2dpZcAcx6TW7O5E9iaB0TCnDYH5uGVtJGnNf+PZ9/N3Byvc/q3f5Qk35nodcM0Br9y6xnxrh8079/hzP/UpHvvzP8U/f/W/4b/5z/8jfuGFlrc//w9Y1pr9g5p23vD0e57iz/2pP0vfZiybjIOz59htpjx66iQf/ciH+M3PT3nkxDluA6dOnoVvwcWLD6M3ToGGqm1oXMXy8gquFRG4yZGNJShUkEwAZSy6BRcjMXfsvv0qD3busa6GxEBCKB0GJaiptcyrmiLPcf7QOlBoaMIpVsZS1TVBgbUZ44MJ83nNyEOsW4L3jKcTThw/jvYtB7tb9PICVU/Z3Zbf19YwGPXIcwnhG2jLQd1geyWjwYgyz5m1Du8CvdzTtl7ClwxUTUPrHEtLS3zihz/CX/vr/xXuzpSbW/fZ27rPysYyIna09MoeZTmkS9slQm4shMDqyipv3rzN+pKld6JHoQxv3r7DFz7/OT7yyU/w2tVXuXP3DnnZo8xL0RBYi8aD0kJ/0blQIXyLUi0Eg87FecuYREGJJQ92brG6GijNGXzbw1MQo1hrauvJCgnb01YcwCazTY6d3mB7MuPciYew1ZKIQbXGR2hciwuKqCw44YK3KVW1Q/QXhWfib3slYt0utTgCrWvFUQsp5FrvsZmgnT4BDsF7OgvaCDRNC/GwMIyJbtYsONPmHYU1HHLUgz/UX6hU1KmUMOxTaJkYIshjQikvyD3gUwMBwvWXoEaPd46gwoKq01mWRpfyC7QAItEfClvlEDpbVb2gGR3l44trT1xoGCLgFhRCCG2zoOSIBkLQeWXE29/7JDxXLJLBFYrQtsIjzzKsMSLbVYpMG+oApKlJ5+Ak1pxSIKquKVJKUOkolCtiTIWqHPuhU1IUuow+dNzRR5ybWu9Tk5FeN/2MT4U7SmGzLE0mkiV2SmVWQShwhMMGUB8p/rsGoztHnU2uUooiLxa5CSr9He89rXeYLF/cM5D+RpoajUYjOR6lyDJLPZst0Hqil+OmS7o+zIzoxN1WK6LV5Doj04ayKNAxmS9kBt3K/V9kFh0Us9DiY3e/Jd1Q0tGhwSpD8A6FUIUydLIET82A0midtFrp/HRhdV0mRnfOO3cvk1miP8xo6Jrko05N76531/f6+q6Dya5f2+Hc5oQHM83xDcNOC5N+y3qxzMpyxr7KeWhwjJ/++DL/emDZvX6fPBac6ylOBM/zW29SVXMy1aNpJ9TTA9732Hv50Y89zeZE83u7JXHesK08m5vbFO0M2+/T1g4/cYki0oMwI9M9dFmywV1+7hP/b2be8vi/fIV/EZ4h04o2eIZlj30V8NFz8+bb3L91U5wwEjqAtrgQUAHyss/+wT5f+eIf8EM/UrK8uo4yCu8aJtM5e3u7aCMCMa2FF2msEds6LahDkTYUFcQlJcsytILgXdpAOscDT1FkKahIaAcaDRpiiOQ2IyoRPob0YBdvb3HH8CFKDDvJ8zsqgoo0ShyObJoqSOHiKEuDD7UkNhrD7vYm//pzn2Wyu0lvkEMMKBUJXuhLJHFrL8uIRG7fvc6v//oDPvj+D/BErCmtp7eygemPOHfuDHfv3WV/OiVvHA/6juFqnzOjPqsnljm9epljywN6ZU6RQTupCUExrVsmoaap5qwOVxjvT5nNW2LUxMbQ14recoYPlh965AL/9e+u8c1f/hIPXcjJ1/ocX+7RDs5w/PgJfO146ZVrfHB1mQcryzzzg8f44r+csxZy+lnG6vE+P/SpH2A0GoByUGjqgz3mzYRSz/nRH/5+vvbKqzzY3wRge28bgK3dB9xsm+R4o8Eodvf2pAEzCh9b2uhplUUHTYZQLTKPuKfkkXCwm9KJha/snQgIrdGAWXjde6IkyAaZEnUe/JqISsJUow3OBdqmZXV1lfVBn/c++QQvfPM53vvUY1y5cpm1tTW2dnbFdrXo0baR+byVNNp6ytrygMxqevlIJmy5pbAWGyNt03D23Fm2NrdZWhrR6/WJMVCWhRRkRNZLzeXLZ/jVz/8rnh28l89+/nf5mZ/9MxRaiiQTDS4otIHgE+AWhV7hgWee/QEe3L9O3TgGgxKs5f/3a7/C9//op3jPe97DrVu38AmRP0Q5lRSgQXzrY7BAQGtP01Yo1xKDJvgpZRlRvk/wltnEk/cKcX9pK4pSXKrqOmCynKYNWF0R/Zz+oOTB5nVqtcNDF0+we8vSJjcnodEIMumjJ4vCiScKAtkVucGLpaTQDhKv2SD0CS3i1BjjwuPfJGRdBn2doF4E912hHlOegYReJTQ8FT6LgjPxto/qALr/78oblSgtR118QkK8tTILakz3egF5zhiV3mN6nW565XxMKLM43qSDwrlAVgrwcVT3IZx5/tC/Hxa23fcih4FtcESwy5Emp0PHu+kL4hYjyH86H4vpjSYzIsBW5jDDIcaYkqVlMtBNHpTSQm2K0iHJMEJ1vceRJuYQ4YdOdC6FtNwzKfFdKlG6AluO/Qg3PRXnoaNyIdkSPjVCgSPi2iRC9kc5++rwdY9OZuQ6HhbpIRXNEXFvUsh76yaUjQup0RZq2P7BAbPZnLzIFyi6TY1nd31UUOikp0OpRZMjwmm5f4QuJpTBOgmB66ZBGbnHurRr5z0mdpbdsh+K4DvlU8gFFwe/dF80dU3XTsb0u90kKaR7WS3yO+Rz3DXo3djJxyiTiBCBw0lN91nw/xZr83fXu+t7cX3XDUGW5fhyjWMq41gJutCEsaKZTako8fOa1kcuLVmq957jG62jv6vp+Za1K6d4b7WG8gZfTZlOp+z6Kffu3eZsP+e977sC82PcvxfZ0ZoHey+wc2sTo8bCyY+Btu3TxB7LjeGH/sRPsqIDK1e/wd3RWR7Wd+hREb0E/ITG02qDzjW7W5vcefMq7WxObmXM2LgWm+UUqWBwTmgNBwf7fO3LX+KHf+RTIpwqS9p6ztVXXpIGIDkXCZ8xIwIz3ReRVpbROYIobSS6Hvl+nqXcACUiUZtZMqMSr1OcQ3SaFEiAUEQZ2XSVFts3azKU0UQTMbTCBw7IODoFrBAj0XRFfgA8MTYJvc6Z1lN+7/d+l3p2QL9f0LoabTVNJV75Zb8U5CiIq8h8XlEUBfPY8tw3v0ZZKAoLpx613Hctw94KT1y+xCvfvoHXmtnOPWa7BfdvZ5R3bnGBExQX13ji8hkun1xifW2EiRGnHMNoqIseGk2pDPO2IRBQJpCZHKc8RuVcHFj+xl/5GX555Rhb336Fb26+xe0HD1DzBmNrDjbf4IMnz3Fvc5+ta98gPv0n2dg4RaVr2thyfO0EZ0+fo40ej6aKgVbPOHHyGKvRMTxxjEvve5I3vyqbzaAnlI/lUY/11VEqhCS7IUZDZgzBNegMesMB2/szMlvK+Q8NtqkJRFwB0zhlnsb92hjQUkBGJcizch6TbBKzLAO6UKdc0NoYcUH8sLM8p29z1lZWeeqJ92Dw/PhnPsWly6c5d/Y0D11+CKst9zY3WV5bYzyp2NzawagMFQIvfuPrPP7Y09y+dZPe8hK7411GvYxja8ssD0d88Ytf5AMffJq9nW2+/rUv8zN/+mdompamrVEonGkpVMmz73s//93mLfbGM377N36Fne2an/zxH+Tc5YfwQivHBSfWg4lrjbEo4Mn3vR9etbz18utUkzEPPfwor7/6Jr/6L3+VT3/6M1x7+21eeeU1QhbIijLt2xkhVJhcpYRcsCpDafEiD2pCGxy5LZjPGryaUA5nlPY0KqyQWy1ov21wDkKwKK9QGFyYoqyhrQYYu8rqqGA+yZjNa7mmIQl8UyEd2oDOReQoAt7kYqRNolNIbkGIcVFAhRjwwYv2KCYWfRS6ByEQWkdUko0SU0HVUVmMQM0itk1FdBTOUEJ6QR8pkI+KZyEV8wqIh+jwoeFAGh7GTsgsQU2LgLAonHAxxVWL1zPGiv1qmkC03kMEozpBbidiNe8o+jtLx65wXNiEdhSZIzQbEbLni/fhQ5AmJR4KdEOiQkUUwcn3XJAJh8lke6ubRgIpAUxnRSrvwzmXrquERxIj2qTmILmyhRgXFqvAgl7kk3C5c+/pmpSu8QK5T32QY1ZRkqBDKjKPWtcSU8K2PmJvm4K5OnF293PdeRQqkE4T5MPjOnoPiHVmymwgJutqswhCi0QMipaWmFB+0cUYrM0YDIeS9N2INXRm7eJatgnkUpCaAJcmTKCNJiotupiU+VK3Dk+UlPso+1pwPtEAJWPBoolGGjIfHM4d2vN2trlZUSyAgu76yXMTnE8aktSASSMXadP3lILoA5nSMinSQbJtXEtu5D2blCER0uRNmXdFxe+uPx7ru24IfvX3X2I+ucsac04+WIaVPsumR0+33NtsyY2iKEpCnbM3H2Me3OXCaJXpyeP4U8fJbu5SlIbNGCnLHpc5z4sPXuCFz32J//DTz/LUf7zC5w/GvPGt28xOj3nlcy9g/A6FA1/NiNkyzA9o7t7jz336GVZX+mz/o2/x7//D/54nzj7Pz/BZciujxVxFqlijgmXz/h2mW5tkuYR9Ba0ohyNBdJQhywzG59T1FGs0t2/f4q03r/Lwo4/j25p+r+TRK4+wv79D6xqUFmFi09QoDHm7R/AtDnngeGPxIdK6QPTidGSItHUjG7jWmMzQqkK8x4P4HneuScbYRBmwCbmTjcbaDG0yjFYURmxVozZEnRO1FV2XdvRdpFdYlgc9ekWOaxt0r4/OMl766peZHeyQE1CJp+paEfsVZY4PgV5/SOMcSltKLTaYuTXM64ovffXLrKytg+1z7tGn2NveYjgasrxeEOuaQdnHWYsOlsLkuFijxzts39YcyyxLeUHIPEoZQdpLB94xWh/gw5BIwPmGDEMlfhwol3N86PirP/dhbt95hht797j+5rfZuzfn7WtbXL/3Nq/91ud4owo0n2uYf/kOWTVlT9WsLvcZ9VdZXjlOnlmUMtw72OPiiXXy4RrzyZTesMeZk6d4cX4dgGkjm9T+tGYvbwVNCwEfDdoUEFt8qIk68NjJs9x65TqrSyu0bUMVIlYXRKVoJlOycQXB41XoQFRIvvg+OaHoLu9CDNkT1SFlDSQZqPeeajylLBy9oiTkDW/fus6//I3fRBHZnoz55tXXqJuW0fIKxzaO0TRusZkarSiWBtza3KTRmrs79+gVlgc33+DObbj67W9z4dJlvvTcH5CHjOvX3+Tlb73I+QsX2NvbpyhKdnZ2WOmt8MGnnuKnfuIn+Nbnv8z112/wq/du8oEnH2L9zEl8aNm+c5NcRYoiJ+8PCSYjYgh1jYuB02fO8OqXvsI//Yf/iJ/9X/27/PCPPsLf/tv/LcPBkB/6oR9kNFrihRdfYjwe0+/3iRFcnJOXGpymqT1RZyg8WpW4YHChpWcGEHOiOqDMAqNiDTfJhAccIlUzxug+WZYRqEl1LL4JZLaHizUH2xP65TG0yVAmWwhP26ZZWAkrY2ibmqbyCS0FHQ+tUDtkvENyhf/tk9uQ0EYAoQEZg0uprqgjjmEgtqBKKBliYdrRIqQIjZHEfz5Mcu0QfkhFok0uOiFIoBMSCtj5zEsRl5odn4r/Do1Gp8RnZBIaUphiooB1xaDw/6XIUkrRtPWCF99NT0AJRz9KyJuOkaCOJjWTkuqRCW4qQjsEXByctIAcHe0oIflKG3To+OPi9CTFcELko1pch46KhFIYm4kFK92kIVGbFOn5JO9fp2upjEnNn5ZzaHSyKVVHJh4xTVQUnQ20QdzzOqvVQFhcIxFyH66jlK+OIhpDp13okpuT/XQ8/J3u6+i1X4SvQdIjZFibKElKAwGr1aK47zQ63WRJa02R5YL0J4AoJtDLOYdGSdMbI42Thi1P7ksKCWwjTRZ8JY5NeZZhlBE38DRh01khMX4hintget6GIKJ3pUWErxAqUDfxQstkgY7iZURzFaPC6EzAFyI6qsU9GKJoT4JKv6NYfP66ry5122aHe/K76931vb6+64bgV377szx/9i6rgxWKepVsXjNathzvjUCVmMEy55Yio411NrcbPvxz38+jH36cuLbEOav4l19+jjdffp3zWyWT3V2mYc76o+f5x7//u/zoF36QY5/5KK+88hzvD2fZf+9JXnxBcWy7BT9nWlY4Beure7w8gV/+tb/Hn/8L/3Oe4BU+9dT/l99+6WfZZh2Cw/sW66G1HjeZs7e7jWkdwXmyssDkkppIGpfGIFzDvDcgNjOU1nz1K1/moYuX0HlOZg2nT57l3JmzROUJKSzLx0DTeLRv5YEbwadEVBfAtZ4qNoLq+YBvxCO8quegNaGuUSkAKMaWtnHJSSXKCF4ZGacmu7Wguoh4Ed7JDqoJZERlCUroSFoZLJEzJ47x2COPSXBRNNy584C3r14lQ5FF0NbShhaPJssLYgwUeQmpGSl6A+ZVAzoQWk+vXGJvtstzL7zITxy/xPYbtwgrA8Zuhi5qZtOats6JdsKxcsRst6XYCPRMyXzu2NmZs7zUZ201I7YNmpyQZRhTSZgaPYKCIgOCohedCLCtYYhlkmVcvKhZHx/j7MlPYn1LMzfstvfY397jteubvPD5z3FMB0anl+hToG3L4PhxDlpYbx3eZISDyO3Nt5nlW7TecuArVFFSzb/Nx3/6r7O+dw2AUM8J8wmahH4GkxoBjzYBayPtwSYjanQ1R2MofENBI1Mk7bBKEaMk7s7rijYGeronzR4KneXEmKYE3i0Q08Y58WVPaNfe3j737t0nMwajgODJij6bd3eZz6Z472RD1xqbl1htoGnRFoZLA0bLQ5QyzOczzp45g28duIrbr79K1la4qmb36ltkgz4bFy9x7swp3n7rde7fv8d0OmcwGOJDZGl1wNrqMf6Lv/Wf8H/5a/9brjz7COvLhtMnBtx9+xrDnuGt579GM95mY2OdmYP3fd8naDF4J2Lsu3du8cjZs/zcz/wMX3vuW/zoj/4Yn/rRT/FLv/RLfOH3v8DP//zP8+ST7+F/+B//PsYYqrpBZR5tHEVeUleNFM8RWiZiWVlmVM2YMs9QpqXgLKHt0boJme4TfQZYJCc7YqxHqYK6tvRHBXv79zj5kOHSiTNcu9rQthGdEO0F3923aHJ8Jl7+TdtQGKED1W27sB7NsjylI7eoKAWYax0YhcoNrnYL954sz2naCgKYFDC2KCJDl7aqsFlCpWMqGpW4B+kA3lfvaAiOoqpuQZE4pFB7ZOKgU3EsxZ8S4UCQ90aaTAUvYl0NuKahjXFhHxl8kOA2pQkR6jaJYNN+cXQyIDSoZCWbkOaj1CbS6xujKcsSjFnkJEgTZmWKkiYuHaLf0WCMsdR1lVxwDG3n9FTkxMbjXSslpdaSYYLouhQa77w0XtoQvV8g+KXNJXEeIIoDUlBR6J0d4pymK6GbJAFRJUG16uhPhhBbmtbRxkhQnQbindeqOxdmIXrtRMXJyjR0traHUwJQi2vf0caOioyzlMobW58mVyyaAdJEhrTHGGOoq4bMSLhhUzdyzpSiDg7XtuJ2pCSTwbs0FTHS6ChBu+R1nYh88SJqd3VDdB7tIyZ0LmGBpm4gGKIPWBSN82SJlmuSXax3Ao5kNpNrRRQdn5Hr1SQdT64lTV40DAZtE4WLNMVJ7zV4CSSNCqLRi+anbVtanDSBybrXuXc1BO+uPx7ru24I2uqAqg7Uo5yqmWJnIxQaHaAcGHoork1hTVU8ceEsqw+fw545gc8Vr24eMOlv4IvbLJ/qs9sYDh5sc3p5jQen1/i7v/LP+UvnHufkXmBztM309h3ivuX2gyn9QUUeRdi7XwWWjp/gH3/1Rd5z4jd5H3tcPnOV335JjjHoHKsMtZ7TtwP25nD/4ADnPVYZsrJPlimmkzHzuRQWKnpibiiKHj3bQy+XTLYecOu163z0+76f+9UMHxocGo9BGQnLcj6Ko4gfYxO81aFNNj25V3QuqFNIqKEPyfbQkmmNdy3OC8dbRYiuXYSthOiZ13OatkFF4Z62bYOrG/KswPtI08r4N3hHDC3e14R6hs9yNk5tYIzFIoK2a7ffwvqGOta4LJI14L2GXk6ONEVeO+FoZzm96T5+uEwbC+rZAXMfyMsRV994jRtPvsblUUZ94KEZYckh1tRhRhYN+01FjI6t+zCZOg4GE+p6Su0nPHThNGurQ4xVZCiU6hGtpEUqIopEnQGiUSgVsDEwTOE8q8sZKyMLlWc3zjhx8Ajtcsujjwd+8D3nMYOTQEBHD96Q0cd4z+64YVI1lH7K0vmH2d7ZFxHqwZyf/ciH+cDGOn//n36O0egJ4F9w6cJl9NoFfKZxbi42s7aHs1KY5Tg+/MH3Mm4LikEfE70kxsZIGwFf4XY3uf3Gm2wwAiyZsUTn0DZDoahmU4LOk3ONoJp1XZFnObUXbvzS8gq9NuNM7xiz+TwhsYAP9MuCZd+wsjSk1y9pm4Z6XuGqikvnz3HqxHFee+VbzPa3oD2gnGwze/kqK6Ml9scz3n/lCmcfusLWwYzHn3qGvD/AFzkhBPq9krIoGI8n9HoFK6srDHsDZq5lvVfyA3/60/SqGR/98R9ndPZhWqco84xP/ORZJFiswfuAzXKGC+EinDx9htn5MY9//8f5N//RX2Prztv87E//CAe793jtzau8dfcOH/2+j7FyYo0H9+6S90v6KuP2ressnQ+Mlh9ivjXFqT4269M0OxR2Ce0r6tkYT0HvjMPEOZMDzbiakekhbWsx9gCCphdWiGGPJkyw1SoHW2/i4ttcfOKH2Z+XDJs50Xt01NispDVTmrZC+yE6BJQLFKZiPg141WM4sPh6jslG+Cg8bJNr5tMGlEGplqr2WJeTKU10Dk+gCRGswSP2imVZEJzjYDphOBiglWJWzbG6oEtcCN7R+lqaRaPJEq0jxCje/jFiEe9159yC6tEJJLvGpXbtgtbYphC4zEq+gmtbrDFiwRk8Pkbm8xlNUzMcDbFFj7JXJlcY0hQjoBWYrJDE+IS0x4iAFRG0gbquxbo0aXOatsXklswUSVMjIljvPV6qNbQ94hQUBLDIrFiBNnWDzRUhCZ99kAbBGOGMF70+Ktl82iyjbRqcdxR5DwjMY03jArnR5P30nkIAK4W5cy06zzB5xqAs8E6sZeXQxDZWJ4qSdw6PQtuc3AqVxXsHxmIMqBDIM0vdNqId6tKEE+3FavHLN7m8t9Y70ZsphfWJZqQ1eZYJlQcgTQ2UPtSf2KKA1lG3LcMsw+Q5hC6Ui5ReHKnrhjzLyKwhyy1aaer5nI3jJ2S/8Y4sy9F0jj5irZopTcyi5P74uKA3qaR9Mtpgg6JVmr7KaYylAdwgw3mPW+oTR0PcXByfRrbAhUBmwPpEPdIyPXPeY6yExLVVIEuJwgrF0mD4jjTpXr//jgYtJiek4JL42WSgjegotCZGj006IO+chIjmGd5LWKjhXd/Rd9cfj/VdNwTeV4zHW+SFob+0jooZ49ZQTwJhOqacV+T9IQde8+DlN/idq1d578Yq944btu63nJwOKYfHCZXj5MPHWXko8ObVV/gzH/thzn3yB/na23d4dGWJFx+M2cgNf+HHn0ZN38/eXs2NretsTaccTM7RG99gr2744he+wKc5zgtvf+jIUUbmkzGq0CIo0pF6MsVqw6Ds4V3D9v4u6ytrfOyDH+bY8dNsz6c89+I3mWwfEPIc52tUUfDiS9/k6fc9RVFYqoAIGhNCZ0RjSq8wuGooqImwldJIWv6nbiuyTEbzrhVuLErjkkANNJiClojVoHKLsdJUZMbSW5ZwFRCUuiMVBO/E4tSkMCwV0cqjVSCPhlmyZB0fjFERqtqzO95BGQ1e46ODhLyoJORy0TAf79BbXWNYGcYqQ4eCqCPLRjNDGhiU5psvfJNHn3iKST3H6BylA7k1SYQoFAqiwzeBdjYhZpbYtEz2D7h3W1PPl+n3c7IiJ8tzQQaPWLxFlUS4gHM+0RwsHovXkajBDA2raOLIoGvPjdbx9Ps/iAcMSn6XiAuKyTgIDWA+5vSp48SoGAyWmM1meO+om5pjxz7Mm998kjs7/x4AX3nhD/h6+AblUp/oG7IW5pWhUTVl3ke7OauZ4d989rdZ31gmzg7ERabX46Cu0CpwopdhVCuuQlGKon6/L2PrJNCLaMqyR9vWIk4vSqpKtBtaB9p2wvve9wT9wTK9Xo/cWgaDPkRYGg2JwdHr5ayuLDMej3HOo3PLvG3Jleax97+Hem8H21ToZk7bNvTOn2QwWqJuPVnZI0ZNwOBjoDQFZVmiNWQ245wR7YzWCp0X9JRGec9Hvu/j3Hv7dZZGGyhbMCgl2K+pa4qyB6ov1zIhmR3n3eLxvoctCn7gB76fq6+8wnKmufna68S5Y+uttxh97Fn+/Z//i/wf/w//BWpgmE0Cp449zP29N7hweYk7Owcou4dXLUU/gGsISICXNSPqKiNXnmFxjKrdgrhPkfUhlvQHI2azKVr1WBv0mMz3eOjKB3ji/Z/hxZf+OUP9XnqDAVVV4b1jXu2R5RniIeBpQwPRYuIKx89qlk5GbrxqKfIloo0E1eCajDYEin6JD3NM7DMoNc7VIjwvc3SMQs1DaCYheNrkv18UJUob6qbB+UhZdEWQCCVDF5poBZAx1iQXGwlw6lxrtDK0jaMLq4oxyoSFRLtJamFr7SL1XILIzILb3oWoDYdDnCspypxZLdaUMWmXOqtMoxRNZ5McIsE3dAFQIQRU40RkH4XL3vHzu8Tiqq6FnoWiLHsYa6nmlSDz1iaOODgVaOpqgaw3yRozRslmCeGQNuNcpK7rxfvoEPSZm6ASFYfoqVuPDy3RRwgB1zbvmHLMZrPFBCZ2/HklU4+gk9g1BJnyIOBPd0zdJEBrvXCHkue4F6ppJ2JNKclH9QCdpkIl2tYfngYtRMNeaGWdMBslP9M4h49dhoQU7FXVAlJku+Cx2jCbzrFWAsv293dp24al0dpCSL3QpgTRmnQ6lqPZB9odZlQ0PtC4hkynPAkfyLDgQqITiemF0io5MSmsVeBdJ5cQzYoWbUDbOkyyEe2sY1svdC4fHNFxOM2LkjMgonnho3kfcHW90HBJWKQRB0Anep2jguLu3np3vbv+OKzvuiFAeaaTHTSCRJv5GFX0KMuS5eVVpvs182bKm2/vsLV5F9+0/GYW0ANDVpcUTYYaZBRlHwrL+qlj3LhznWeODzm9vMRkNubk+oD9wQqFzhit9vjs3Tn7usfzv/nPUL/7i9SNo88yo4EUVbc5w5de+9TiEMtCsZRl+EFB1lp2Jw8wIZD1ClrlUd5zZn2dH/nBHyJqw5X3PcOtvQMYrvDyV55je3MTW+aYTLN1sMnbN66ydvYsrdOJk6ghtsQkKmupsbq/cDtAGeGIp9CgYIRD2W3m4nYgo2vJIki+1i4sxvEYoRu5OqCtOJz4kIpiOo9tmRhoHdBA8JLAbBUM8xX8UoadTqnbin4/Y7Mec3CwK5oBH7DKgI7kmSEiArWNlSUe/9D7ePHmPe5c2+fEySUmkzHZYICyGZlVNKGl1x/w+htX2d/dJhus4ZsJQUvKZPDikKGsJk9fhoCv5/i2DyEwnUxpqpqy1yOWGVku1q/9skAt+L/JqjFI6mdMExKAvf19WlpUrFkq1/hS43j5xd/hfctP8eXSkodtbH+Dtbxm1M/oLa0xHC4zzEYQ+7RhSl03ycFENpS6rrl79yZnT55n48xTcOdXefThJxltXBYKh/fUyhOKATFr0UETqwNOP3SW93/kAwwHQ/rkFGXO/nxOrRVlP+fBtTe5tj9LNAoRFCqlpelEoXQGLuB8izGKZl4JGqg1s/GUg90pt2/d4Quf/zpt44kRMqOwSlDAECNNW6M1LC8vs7KyQr/fx1pNnsNsNmVpNOLYieP4CEVfcgnUrW2WBkNiFHeRlaURRkuBYm2Ocy1LSyOx/0MxGPbZ39/DaDi1toYuPDef+wLlQHP7W19l+dGnidmQiGZ/f5+l5SFFUSyKFrHOFKZPVc/JrOUrL7/Ms88+y8NXrtBMJvzn//v/Euc8Vd1w+/qbrK5v8J/+rf8df/O/+C85vXGe8X5FOSxQxU2OnbnErTs7KCJNU9PvjWgVGK1o2opSF2giTesorKOqagq7RFWPIeRC0wPqKWR5zv39OdtfeZm23mXVB6ZqSgziLNS0FSHmtI2nP2ixpWcyn1GaFa7f+xaXTteU62eY37kAbUWwc0KIONfivSVQoYJlmFu8E7GqTwWijxHdepQKYmUaJKlcKSPp1wH6/RGVa6XAT/cRsLCv9D7giAuEuKOX+7B4Kh3Sazo+PmDioRhW0HQpPjMjgVqdU4+EqymCgjZ4YpO8/b0kGXfFU+fnXrfi9x5CwLUOpcyiebCIOYXRBu8qghO3pegC0ShsZheNSGdDuuDnp/rMc1isdbqANnnwoyQ0THHomd8vR1gtAV++dRIuqaWBcd5Ls6c0jXf4EBNbXRBjjlBwDt179CElK9nHciQTIQShbXYTme5njx5zByx5n4IoYUF/OqpDARZNWdcQdF/vaAiOOA+JdiSF+QUPbS3X/0hOxOLvKdGgLES6iRAVfMQoK8V2sjzuGjfnRLitrFBaYxQKmtyTco8GrWgRh6E6tPjgiQjtJ84cWVTQelSQqVbTtkJRcwoTk+bliOiaGImtwy8sVeX91m2inSmogxP70BDRJtHu4qGdqwsxiYUtmZLEZlf7RWPcTbl8DHh/6Lb17np3/XFY33FD8Azf4GPLa3zTFLRVxV41ZzpNVAc3o98vOX/qDCfPXGB/t+bOG28QceigCA5yDS6z7OhIvmM52Bnjc0PRi8SdMc/8lb/K05eXMT1Lb5TxI9mAm+MputrkL65b7FrB62slN6/tUg4LfDZmPD2gNsvwh0Z6rppBb0BTK+rpjJdeeRE1n+PbFnqWPpoPPfV+tu/f5+0bNzn2yGO8fX+Tl1++yoWL56mrKQfzMcvLa4zrmuu3brN28hR1XS2cg0BChIie1s1xekdcMKJwKJU2SfgHRdbDcegPrZSM54WHKxtJiMJLjZpkTynTatFCeqJW5DZL2gKh1ojzSto4iMkLWqxCjcmZhQbd1EQV0MZQtwEXxC41BCmG2uigbSjyjPVj65w+cYzpfMZ/8O/9Df7e7/4brv/WP+HCqVXoD5gYA3s7mNySK81kL/LSi9/gk5/6DFv7U6Id0IUmocRZxgVpaLLM0O9nKB2Yzicoo1CZZd6KyNo5Kc9cIxZx2tpFEWH0YRFUVRXO1cymU7SyZMFw7f4dfumXf4U/dWqFW4+0DLYG9M+e5tbNOReyOTuNY9fsk+18iR9/6gqjpYs4M6ffH1LVNVqLQLQoCk6dPuC//YUH/P3/cwXAte1t3moKovPYEHHa02KJuqJvc3Q94YnHznPz5nVWj63j5xWZAa9g3DaUvZIwPaBxM0IcibNMjEynU1wIWJtTt5WE+mi18BQXh5nA2to67/vQ9xEV2KyAEOmVBYU1ZEajo6OpZ+RluaCHqFToZEXJ3niMq+ecPXWa6XRGXXuyss9wMMIoQVrLQqxxvW8pk56hHI5QRMpSHD2MlnTakydPkPX7RO/o9wzVpdsMLfSGawyWVrG9IUopyl5Or9dbIHkRKMte8uuPtO0AYzQf+76P0rQtlx5+GI+B6HFtw2w2Y1ZV7E7mnD99hmc//Em+/JV/w7HTx2j0Mq6p0YWn9ZBREINiPHGoGCh7kaCn9AYlK6OM3TYynRjm84Lecg9dbLE73mFpsILWFbVGrEFDy7y+yuPn38/2GwN0OaFp5+JdjyV4MLpEG8fB5oClATg/ZtA7zu23b9LTYExLDBYdlzCZhtIyn0RJko05zs2TeYCmahu00hLI5AOESJ4Xkh6bUMq69Qt75KZtMVov0oOTfxgkLYDzThyQtMbqQxvR4KMktAJt0yb9hE0iXXGWWViPGikYRXOgifiE3EeauqWpWykGlWgXOt55Nx3onm9GKVQQBxuVmnutVHq+tfJ8SAi7IllfhkCbnhc2z1GNTDpUCDIJ1RabgvnmVZVSnzO0MTSuTci/JsSE9CITRmMkJdpai86E/iPZEQZjNRGh0GglybkxFZ8ScnbI7ZepTXG40USQRAF5vobk5GO1STamktmgjzYUXsLblBHdggAChzawMpmxkvMQwjsE31ofCT3gcDrQNQSdELzTb8jfUehMzCa6KdICedc60bkilavAOcpeSQyeZl5hbUZZFIBauPkQI1gtYl9EQxCIaSJyeO2DF82ZNoqszDEoJtMpUYPKMtrQYqI4bmUmI2SAF51JTNSn4DtzBZmMW2uJxtIksbo2XeI1Qj1LTU5Q4hSQ2S7bR2ioUclEXwdpfjMtdDjvvUydEn0tKmmktdXpHH2nVdK76931P+31XU0IMlvQy/v0rJWHn9XUbcvGxjFWR33u3rzOwfY287rBRodr52RZxkAN2c0V7XwPG6ApSlasAtVQkrEVWzbvXMc1nkEdyFYCMzy5L1gZbDBC4deH5KdOUfTX0MMCNz+g6BXs7O4CG+880JhQH2U5UA07Ww/oaYUqC3RTceHseQZnTvHbv/FZHl0/zbFySH+pYmt/h6GaMTi2wv7NMePJFLKc23e3eH+jsDoSohPhHaCIGBUBj40eHZNPehChb0wuINJISKW/CCwKARcTlzcID9PmuQibnFj8GSMUEx8hxCPWeOLHgFJSXCljEq+2TYEvgYaIS3oCFLQ+UM0bVKvxrhHrQ50Ri4h2Ff0i59SZM9w5mLJ59VX+5J9x/PCnf4z/z7e/yHTvPsvDwNLyiPn+tugMfKDX6/Gtb73Ej33605jQ4ENJiJEsM2iTE50jRKEuNK6majVD1cPkGq9aqnZOoUtiJaJqozWtS8FFxqJsJoi1En9vpSK+rSG05AbyosCanJWVAezs8egHH2f14kXu7s0oT0aWabm0dpFrzYite3sU5SqbW1sENNOqlekEGqVFZDqbzZjMGtpJRpmCpnw9J2QTgquFE24sOhRgKgI1wzwQxhP8ZEzdL2RTaxwxBkqjCbsHMJuxpEqhg/iWft6XQk4dopvC2xbheNvW5HlOlhW88cYbbG/eZTjo0yQOtGtqdAxkRlMMVghY+j1xzil7pRQIRHxTc//mbc6cPcVAWSpXE7Um7xm2d/ZYKix5XrI7c9gsI7MZaBgMB7RtmvIYhXadHaEUhm3bQGZxs5YZETuecjCZUJuM0emLtB4pKppaigTdhXOZhYhfxZCaYilGd7e2CSpLDjBiI6lNwcpKj/3tXX78xz/Owfw6r791DRWG3PKB5eMPUCYS2kheCIUlyyxKQ9uMuf7GPmsfXWXpxDL37uX0BjkH1SZlb8RgKeLamfDEhznF6gNG7So9fYKDncg0ztDeo7IavMXmuQj+fWRre4c838eEh5jND2hcwJZeigs1wUew7XHm1ZhykKP0hOg1JormJyqh+wjXXKhtJkpxXbcN3kmBaZOlqVeID3yU6U0IQYoukeiitMIly1CiUCskI0CeUs4FWn9IcwFEqB81vmkXIVdO++SYIxz8mNx6WucJHScbhOuuRLPQIdfiVpToRUiN5uOhwHWRrZGefV2ibid2RnW5CAHfRjwKvHjHkwTLkUD0Siylg8xHnfcE71IgWcCH5KiVprAxVYxt2+CDxxghCAUvxhAZlhiEThQSp5wIzrVY59LfTmFuiaqSNhlxLkrHEZSIT0MIRBOlwUZoNEopTDz0zu+yRZq6C4+UorxthYLVTRoW57Kjhi2Q8kN60dGAt9QBiZlAJ8TV0nBEBP0vigKC3E9ybeTdGKVRJomClcZmubxfkxG1huSEFP0Rn35IVKu4oCl1gXJohYmCuruqoSxLOe9EHB5HILQtrmnQ3uE1KI9Md5DJzIIulVyFYhTHIWJchP+FNHHthO1Cv1Ty/GlDcgiX5iWmY/bei4aFlBOUnIi6+9ulsLXu2kv20Lvr3fW9v77jhuA1HuH5vV8kjP46mX6dsiw4d+kK86B56423IIDOSia18F1F12959un3c/IjH+GXfv2zmAeRajbBjhuaqJn7KdOmT+0sX772GvpzX+K2t3xyb8hk/Sw2wtvtmGyS0WtaZpsPuNfe56H5Bi40uBiYV9W/5WgjM98yaBU7bUN0juhalNEUMXLuxBnM6jrZ2jrnz15k+9Y9esMe68tL9GwkH/R5cMdgyPF4dvf22d/ZY3h8QNO6xQYEELUECy18rjl8eKjkuhCUExFUt0EYg9WC6Pm2XfBMAy1BgWvEmSSaFOqkDCpqnO+s30RbEILwsaNJqZ5BCq16rlDWooqMNggKeDCfsb+1jWlbYmgxwVI3LVhPD9hYWeX8Q5d4cGvCY0/08e0W17/5LU49/hT3vrBD4eas0eOgzJjPHCFKA7Ozs8X21n36vRHjupIHsM8wKoCRB3iRWbIyQyvN1tZ9Nh/cZmlpyGhpGdAM+yMsirLI8UYmMC6CyQsyYxbIeVFkWCOSYx8cITTMfMuUMR++fJKLJ1bQGw16eofxTsv53hJqvsmjYY+nz69wfXiCcnmILSynlh3zWU1EMa8rmrYlM4Ybb5f8x//hE/yFnzkOQL+/TL8YoHp5KrgCMRbYwhCqho2NEb2lHuVyn3J5QKgbSmXRKuKQerOhxe8K4iQuQILeOecJvoKgwcqIW3eQqVJcunyJJ558D43zGKNpmlqus2/Z3d6mVxRoFTnY32d37wHz+RxjNMNBj/HkAOUC73nkccr+kPsP7hOUwmaGna27GGuZa0O/1ydqQ103RMSGcTAa4ROtIC9E4FjmBV0zUGjIllboG8ukhvGDHbJcrtdB7WhidoR7q8iyPIkfZQMnWaC6lDprshQW1ASKwZCgNVnRo3WOtq6YTWcMh4H3PPVRDg4Uu1v3GA5zRquKvTs5wVQ0riagmFWB4C2Z7qF8wfjAceJkJGhH1IqibGmrATqrMVkAn6NUZDy+yUPHBzA5zcHBPWI2BVOwfiLn3o2K6AuCbyiKPr3BcTSK8WTMcHnE5gR8nXN8NWPvQU60DYEWii2q6jRZCW09I/icoLUUQVqTGUHtOy/7rBC6nPeetnXMZlPyXAozoyIxBZbFIC41IPxqhWLe1mTGpkTozhkppSynot4YQ55LMFsIPiGs4RChhhSC1iWmw0KxpDRKg+60AN5R5PnCctRayXVo2hai+NW75AZDQsFjSAi6kRDHEIIg5V70JTFNODs9hTJi2uDSM0wpcW5rgzQu1mjJVlGKsixokz7rMOhModN7y3t5oqzERepvCBLGlRktz9vgU0IvKK8JATCC5i8Cv44k/QrfXKfXkp8zXWMTWNi9/hFqTyrkTZaJjXQqcrvwLbeYHutDjVFq5GI4mkIcFv+suolRSE1Ycioj0WCiUkRjaJp24UzUZT/44OUcKMX44GAhDq5bR9lXeBVRVgu1J6Tk6c72FOH+ByXFdEgAFohBBUGmuv1cKGIqBnSMKO/JcwEgAgHvwUTEpc85mVYpdeS8h8PgthAWoW06TUTEwjSCEjAtxIhrhdZkjbhxKRRGWXn+KgFtfHSEYBbnNaguZVpExjJdeHe9u/54rO+4ISipGNjXmJpGOC0E1jdWeTCeUUTH7r1b9PoFJi8oez1m0ymhcbx14xrnPvRBzq2e4tZbd7CFRfcHxHmFHsoosTA5v/bKN3nl7/6/mLVDvrquqZdGrA9XsaOceZMzwLL9zW8TbWDeTGl9lXz+/2iKoA+BkOf4uWOrmsmDQMsm1lsZcWztGMNsmY988tMsu8BLt95m+NBFPvnUMywNLG/u7nDjzRuEagoaGl+xvXWXYuU8bevF9z8lbvoYaZpWHBAW49oodnIddQYlyJ+XDTIIfJboNT7xOCG0QcJdvDh1EFMBpTL5CiR+sKBSiYQqznxJPNj9u/GB3MGsdnhj2Jtuc/vam6h2Ajhym1M3XaiLZWW0RG844sqFcyzr0+xPx9y+dh1bTSmPLzOZHHBmY4NemTOdjLFaY7KcsW95/Y2rfOSjz1JVE4y1KO0R61OwietuVE6RZcxnMw52t5jub/PAGPYOxtgsp5eXnD55nEGvT9nrM61rvNKURUlRlJRln+FwgDZgE8JnY4up5owm9/kTz36Iz13/Nq/8+mfZ33zA/oHhoNoiLxQqt/TKEdYZ1lfX2Th3mlE/Z2PjOI888jjDwZCmtfgYMMj9FOs5AO3BASpa1o+P2NrfoZo5ZhOPiwe4Wc1qfonJeJ9r166xPD6gqGt6FpSOtFpSZuvJlNzIdVdG07QNWhlym2FMRnCBNrRYbakrET4+2Nxic3uHIi8J0bC0PKJuarTRzGczXNNw8sRJ5uN9dne22N/bEwvI6CnLnLKwDHoZ2+P7HF/qcezkWe7f30Jrze1rV7ly5RIznfNga5csz4lpg41xyp2tB3gX6fVKcR3RmtFgSAiCgpsYGcacbWN4/NRlphpstY9SgX6/4Nypi+I33wkvlUmhQk4C1pRCq4gGJpMxo+UlZpMJe3duMFwqGB07hVcGoxQmem7feJulUZ/Tl85y7NgJfu93f40XX7+KXepz/Ezg+tWKU6ev8NbNmxRFLvHIsQVvufu2Ju+9QcymzCfHMcqBL6CZYrIeyrSE/RnanEOfnXN/XJH1lqh3x8xosINNBqOLHGxHlI7E2OAaRTQep/cpl09ycn2NHf8qW3v7VLVChQExe4szl25z+6VjuLrAqIALcwKSmGuDOLWA0Oq8SoFYyIREa5mkiGc/OFfTBkGvDeJc0CHqHafBRy+TgCTyjYmi0yY0NRLTBC5pCZyD4CQkTSsUmuAaIp3WQBqCrugUG8+kcYoRY/Q7ePU+SnCUaKA0niC2kqnh6axHVYQ8zwUtbwWttpkVNopiMbEQh5kgomuT0OqoFkWh5CqI+0wX3LXIYEj96OLYfXMoiPWHe0UMMYla9SIRWCsNuksJTzPZ8EeD34RPL86oLnhsLi5Czbwi+kCuisO/CYfT4balroX+5X2galuhWKXj77QQXeGLPuT8d8j4URrRoXZDibtSCGQpYGvRkCDnpU4i6TzPUqMi+hnlHFlmKfKcCMyrSvQjRiY6cn2keQwhSjBjugZKqZTrIY5ErtOkaI22Fqt7CPgfsTGyZDOU8zIRT/aqqE6E7amamkF/eChkTnSfoGRv7aYn0rhotLLyEQgI3c4IXSvqIM10cm+KQSbrXVCoKNJk+mysTAO6e6YLnpMG910Nwbvrj8f6jhuCC9zgyuCv82rZw9WKedtw/c4t9qsGW2RM8x5FDXXTcvbYGf70X/1f87Vbb1HfeZ1n14/x9F/8s/xnap/xt28wKgr2mzG2AZQmUzCtDW+98Sb1JPC6ccKZBnQWsUVJrnOqRrEyXGE2a+gpQ8Djj6QIvu/4f8WVB2+wdXeJCY6qd5ZmOpWNzRpMVGS2z/3ZhOFsHzW5z5szx6mHnuDbr7zIB08dx+o+7byldWNi0AzydSoz5q1711g9cZzpbI7Ne9g8p3GCMigCfZ3LWDYhSDJ+FqoFXc4AaeybmgkXpHHQSi2s1TQRoyA4cY0QEUFA+XrhYuQMzJqWXAmftUOwhKtq5QHroqTyRocPOZPplPlsRm4UwUv4WF5Y0J4sM4xWR2TtjIvFEptNpDoIbD64yvGgWV8/we3NNzhwLcYUol3QHV8z59obb/FDzz7Lfh4xFjxCE4ra4BH+uYpzBr0h6ysXuHLxUSDgmjmurTmYVNzcvMedrS3ObRwHrZk2c/ABVVW0eZ+9YsKLv/cHFLd2+LHP/CnssORbL1/j689/kzffeIXN7X1q31LqglhX2GzI1vg+IXpUVLja4ZuaLDcsra6ws3dA2etx6vQZHn74YT70gQ/w9Hue5NTKMQBWlYgBzx07xnztFMdWerz3icu88OpVtndr6ipjHPY5ffEK23sVTz/9FHXVQlWTZwbfiq3idDolqJq6qZjWc+Ztw43Xb6NQIrgNwq33oSXPc5ksVDMOth/gmykGT9sYijznYHwgVA4tE6ZXQktVJS2CyTA2p65rlFL0ipzQNDz3+3+AKXrkZY+iLBgOerz1xusA6N6KXCeFuGDFiPc1/X4fo3K8a7EWcqvplSVl3kMrTdYfYl1Lr2/5/PIS5x6+wPzeHS70LKsXL5EdO4k1JTbPGY4GQiHMcmbTmkGvTzWdsr21hXMNtsi5eOUK9+/dxe3tMhjeIitfJesPwFh2tnaYTab0mLCyfhk3eYthnOMby81vB576mKeXG1YGS9Tze/Syh4ixIThLVJFqb8bbLz/gmQ8+xavfgP3tA8r+lNksYuJU+OZaQ73BPLzK8qmSB2+eptVbRFUyqz2ry9u4nYFoQ3CM9xoGA0PMR7x9/wblBnhbsHfTEWc3Ga1ewOWw425T223cPKefWbGQ9YqiyKjrhtq1FKVkf3jvMU6RJe9zpSLWSBiZc43wtLMyoeoZPgaC81htheLSijZBmUTnDEFodyE9P7QmHCnWdLICNZlQ5nzwC/tLmXJK0+b//+z9Z7RkaVrfC/5es124Y9P78q672jvaG9oBjWsa03dkBuki3TsgZBgx0pVZEuLOaIRGo5mREBJcSSAECNM00EADbWlXvroqy1dmVtqTx4fb5nX3w7sjzqnqgmnWzBfR9a6VKzPPCbNjR8R+n+f//I2t4nVK7DmnyTZTobQxS0EhEC5mNqQ6QacpUzONvP8kjVQnIRCipQyNJjgVkXrvHEIDCrx11G3tFUJAtddJoWPegXV1tBpNFASP9zYWfi5Q1WV0OJOqtaBsKSVJvE411STqYHRrJwnoJI3C4tqhNCAizcareE58iHSrZMbpd212hIwnw4aAkSZ+J4WksRYlBK6uYy5F1bRUuUj9lK0Wp6lrSAqcs3M3HEG0kk2TBEJE1RsTPx/T6RTdUpni1DmJNDEXA96MaZg5GnkJjfPxc2PiFMe2n69o6aojDdV6jIlNUpZlmKadcvvYdNA2lU0T6b/eqEjBap3RfOwWce1UxoaI4KskQaqoGxKuic9HoPYeWxqMgqADLg24qcdXhtoYojxetudXU5oysg5E1GOYdpIRREAGh1aauqmwTkcxsJQgAtZ5pI+Tmzjlsnjv4uSaGY0uTnQcMV/DOofWxM+NMXHy09KinXUz/f5L66X153593Q1BSU5lbiOIK+RJ5G6ef/wcSZ6ThtZbOg7/uPrcM/zOx36ZDelZKlLOX1yj11/m0M23kQ4T8soQ8pzC+WiPqGAw6JHrBDOocVLghADvqOtJK+JVJDik86hCslu6KKx0exSdI92vMmDEE199hK88WlOkB9gNnk7jsJlBOuhkGVNf86UvfZ63vPHVbBSOQysrbK2scG7zCs8+d5mt3SHaGpo0R04tmciYTAykCSJ4rAQjHGknw5oaKRRNE4WTM9QhEL3oQ2hQM9QK2nFx5LYaY0hkHON7EZsID4gQqQHGtZ7RfpYMCo1pSPIElSSYZsY5jYK56BFdkyQJZW1obININJWpKasGYyzG2ejHnRaMp0PyNEEVHVSS0pQlZX2eutyic/J9jA7cinr4fg6vLiGwpHhCViCY8YAdedFl/fo63pqYk+BtDMJRGp3kkfvp44btgiUf9BiOJ9EyMxEEK8mzDDXZwTUlZBojHZVr0EqjFnI+/dADbJ59EpGP+Ej3BopDfT756c/w6S98liLkNEFTdAoYOro6wXgomylZ1qEuS/DR91tmKbVpGI9LiiynqmueeOJxHn/8MX73d36bm0+f5mV3fhS4g1fdcjMAvZUOg8UO3W7GicVFdo8f4vjxBEXC9vYWN998mo2tLe648STeBUxVI0XcpLVS4CxNayPpZLQbzZNeK3SM04gsy5lOJ2RpRp6lhG5D6hRba88x6GWIgUISWF3sMKlq+ouLSAHdVCAljCcTamPRSRYR1BD5yZvrm9jGIXXAmiF51iU4z9GjSyihaZxkOi0ZlzXGlOR5Tq/TRQHlcJNuN6OXZyjhwIxJhCXVGRjBqaOruGbE0ZMHyLod1qqaHW84pDMuPnWBIu9y/plnyFLJ9sY6w51dGu/RRUYqYjSYt5ZxOeWWW25l7foGwXp6nU5EfYsMnReMdif0ij5eTxgcfJTjy4cYTktUCv2BxoWM93zHcZ58fMzla5KDJzzbaynOTQiqoZf2wa9w46038ty5CzR1jlJjBoOCICwLCwOsM1y5fJ3J9YKdtQRTXyDPC6qqoRyWLPe6SJchhEYJQaqiMcFuZcAq0oUEVSjG45rEJow2rnPkthNMJwlpKqh3pnhylIJy6khERp72qW2DICPLk9axLNLJpNpzVxFSIEJM8s4yASiCs7E4xGNttKb1RpHolCAk1gl0pkmSlKqukDo+jg82IrFSRlqahzSR2LrCNYai00FJRVmWCCnROsOHnIgxRCME6xyiiU4ytOFpQkpMEFgXxZhNMCgbtTEykXgHLliE8GglQCW4ECkZVsxcagRCJwjbkLbT1qZp8M6T6BSRKKyJNEHpdcxcmfHzVYKSksrVZDqGKoYQQRhPnBz088He84SoxxBO4X0bsqYkiYoBiC6EaA6hVBQOu2iU0O92CSEwLactnSrSYrM8pbGOxlgsgbzTQwiophVKtNMQa2gaQ0gS0iRDOIvUGnQCSrXTM0WaFDhRR7cdLAEJQiGVRgmJTqJFaFmVJFmGTDSyReojGASuMZF3LxRCJajgsS7SF7M0o25qqqpG61ZU2+oPjDWIVjvSNDV1XdMPMWfIWUua5qhE4YylMQ1K64i0hwDO4kWk53jvSYjHKqSKAWUiiqgtMVCzrEqUKkiVwicKbCzSlU7pZJppPUGqWNQrpdFC4BuHlnKeqeFddCaax44JIi0xiDiZVgnO2FYX0bozWTOfGijiFMCaNmTUurbB9BjXkOZZNOOo6/8fy6yX1kvrv4/1dTcEj3E7944+Q7f/ThyPRCcLDNpCWQZ0qhkVoK3HhYazjzxACILnhOepz38ZIzXTFIRPGQSNyxTDEABJEJ48TahnnMYAMlEI34772mK50ylAxK6/NziAG9fkGtiJx/jk5ndwlc/xc//+/8GDJw5waCfwr7/weX7h3/87Mm9B5shccODIKg/c9zCHsy7FsVWeHN1HlmRs93ucv/IcS0qivKQpRzhZ0O8sMxzu8tAjD9Pp9whJElNkpSJD0i0K0iSOh1US+bE6TaPwz/so7tK6RcrbKPoQCAiqaUlZR+/5lvkTefQBrIOmtQh1vm5Hw46kim4snSwihmmaEVpf8TRNKasGHyQqkagATRCMJ+M4mge6nRzroVN0ED6KPceTksZvcujoARaO3cG4trzl7pfz5LmLrK+dR5gx2yNLURi0FNRNDF5aGCyytbPO9c0d+oNFjHete4ZECTsXsnXTHuVoxKE7FpmUu+yONxgsLaKTnFRZTvQXyOQivbyItocyo/KBR689x+/98i+TrG3yk//Lj7I4GPDQs49y9qmz9E0UUFdVhbCWflGA80zLkqAEthXOhZYTrZSYe5CPRiOyTpfGOLy3IODRx89y3wO/CPzPrJ1/FoC3vfp23n7T3Uwzj/Q1KydXME0gVRllNaXTyTjQlfgTh8jSDrpNmgVomujeVNcRdd8dj2ORR6Q41HVs3qoqpok2TYPWKVpJJqNtPvupP2RzY43V1Q7B1GgZKIOnKacQPCokJIkiSRPSPMN5WL++xng8Js8S8q6ic2BAlmWoVFMUBVmiyLMYNjbcHbO9M+TqtXXG4wqtwDcVdW3Iu11KW0NZ0+/3sK5ha30LAhSLPQarOcYa7NY2i3SYhIKd3oALNrDuPb0A+vBBnnr2UY4cW2GwWuBcINUp/Sxja+0qrgqkQfD0M2cZDAZ0uwNwBmcbyp0xQkkmoylGb9I/scTUdbkwUpx9eoML17YRQvLZB9a460zF+977vRSiYXS1ZPPSZXq9nJ3hlKEaMW2u8YpXnOOBL34es7nA8mI8B1NfwU1dXv/WExy9qeHzn36WaruibK7h6wEHjnQ5eEwzGQfWNq9grcCaCm8FPTmgSSt8bdkdK07cDlubW4SqwJrr7Gxf5vgrPBfPPklfLtBIi9eecgxbQTIYDJiWMeMgazUWCGK2hlJzikfk/EdaTq6TeZqq9566NlRVRZ7lFN3WkUtpQmslqpSEIJGy5W/LgJTRyGDmY78+KpFpzMDYLncxxtLrRQeo0tZomVHX8doihCDTaeTqe49WDhM8Tfs7SXQ3UkIgO13KsqSqq1bsSaSJSQBBY9vHVAkx9AyyNMUFibGRTiVkjhCexkeXG2tik1TZqFNIkwQDlFUMpMqSHipE730hfZsHAITAyJZtenx09tFJivUe4yyuitM8IVrbUBEBGKWSua1q1JmM5naqQiU0dUMmBc5G7Ze3HmMNIKJ+Q0V0nJb+pHVMz/VAoRTGWYyPycEmBGofcJUl162rl3BUdbR3rYxD4vDVlKLIkUmC857d4TCeh7pBiNZBzkWLaq1SmspEoMqBT6MVaJCSxnlUmkD7ecIb0jQWyUqlkQ470z6ohCyLeSLD0YhEt+FudQMqWsbiIwWQ4CKl2AdkEvd2T2txLSBPM4q8Q4Mg1SJaYFsbE4Z9BEhm1srGWZzxIDVKihiSp2Z0npgGbm1oP5uSGEAWtXZSS1KlWxekqMMQatYYh7ljkrORRqRlnApIIXDCzj/vSsrWGe2l9dL687/+zJ/0SV1DPSRNU4q8E3nLOsWGgPUSrQuMq8mKAtc4MulIEk8WPN1OgplUiPEYKQpqH/nFukgZTXYJ1tHvdBFaMZ1OUSFBJ5IkixfnyXiETgS9fo4eViS5IkjFMS5zVP0Lro4/ygarHF7MeMOpW+nfoXnd8Q4//4v/nmbToMhRxjPcHVKWDUm+xMR7JsMNjq4c59QrX89zX3mMJTHlGTOmaw1b6Zi06eGTlPOPPYPMU0KiSLMU6UA7T4qk1FEkjIDQiuxku7GnSU6apnEjbp0q0lY0liqNahEq0XIXbZKghUIKFf3iE+IGqDW5is47Ztoi36maNwWzC2VRdNkta/ARpQpaMxmPECLywptyyqSqSfMOQgaKogNKc31jh7tvv5mz08DVB/+Y973mBla++Q381hc+wWpnIRYX3pEqic5SSluzM9zF1w3bwwkHjxxnXE4JLnJylRYY6xiPdjmxcgStJNfPPcsH3/12rm9scvnqGtub22yFCTujDc4cO0ElPGmRoUL0ZT+VHuBv/6W/xvq187jGc/TkKUYXLhN2JqymPYauZqXXZTRypEIzqqdU1YRicREzncwnMy44gg0tl93QKTqUZRVRtyw6ABWdLjrpMargv33sY/xd4PbBgMmRLv3VVUY+umJsXd8iUSlHjhxiZ2eDpeU72N0ds7K0GmkYbWFWN7HQtzbOjUaTHZaXlmiapk3VjJ+Bum5I0gRrLY2x7WaX8Bf+4nfzwz/8w3zu059ioZORqkgvoiqpqinOVHOXKmNM65jRBhK5yN92pmFYl7gQ0TVnowf7zNaQEFNiEy2RIY7li0xQN1OUjKLOra1NJqMRAsHxYydYH2/xh1/4HN1+F3n2KWwFKssZ1mP8aMR0p6KxgeNnDnLk5EEuXDmHSlOclwhiSm8njcilEglJr8MoyRj5inIyQYn4fjVVw3Q8Aue5od9le3SBfPEky8eOcerMawneQddRTYaslxf4wR/7Jj75sUu85u23Y6Y9Op1F1kcXGbsO42KL7/qh9/LsAxndXDItpyAlO7tTPvXpdW689QSvefW7I4puc3Si2do9S3+5QYajLBwIeNcl7wSaxtLVAzrLGXZ8nY3hVayCt39wmTTrUW8/iwsJG/VXefPb3k4zDghRY2gITmDqmiRNkVrObXq984gQcMbEpF3n9nzdQ8C5gLFZFNAWBd4HjPet17+D6bW5Baj3nslkinWWJFGMRoaAQ4hoBhAFUPGv4AyJFGR5SV1V7OyOyLIYSueCQ+WR461kDFbUKiK+aZrSzRSVaaitJQgRAZLWKrjRkqo2LW1SQnBIPFmqqccV1jlQcs6j9y6Q6QSZJNSmiWLfJEMl0X44TVN0ksaQuOmUpmnIswTvoa4qEqUxkzqKahEkqW7tclvwJQ9455lMojaoU3TQrcNM0enjnGcyHGOtZWFhgSxNGI1GraC7ta6UgbJuSHNBvzugcTAua2hqlpaWKOuKqiqxTUO3W0Sai6mpxrFoThIdM0OahpFzNM7EvSLNQGgcUYchy5gh4J2Jacrd7jwvQStJOZmyM9wlz+O+Uhk7p55WrROZCIIgHXVto65LCMrJLk2lWh1DxbCezBtDpSRlOUUG2vA5i7M2NgsmsLm9gZQCrRM0grpqooVnqwEQfk8/ErMPTAyCs5HKJJRoLWsjpcc3DhuqaKphLUZBOS3pZJH+o5OUoKCqR0hnkFLT1DVBSVz0ICP4PbH3PJW4BRXres9NCOHj1HpW3LfH6qyPjYCUMbmaNn+i1QyUZYlQivCSqvil9Q2y/swNgfQSmfZwtWFajtESHLugJcnUYYWEINge7hJ0QtApuyEg6gq2YqHY1R1MEzAqkPsGV0XruFQl7G7voJQiyzOkcDhrGE92kUqTpwWuCVx+bp3FrMu0NLxz9SiHOM9/+BvXec1r/4DV732EaeW5Ot2lqxLe2jvE3/xbP8zTf/THfPHLT1KPLMcPnuBV73wHqydvIz3eQ1VjDsoFvjAs8YuHGG5eoqw9hdZI5XHeIIMj6XRw3keqR4hFfW1cDDFp/Th8G4jirY1cXgHltGZmHjNzJ0qUikKslu9LO4KPvvuy5YRGEaaXsWiVSuFNQ56k5FrNfeeTJJmL1/I8Tg2SvEuq2/TSJI1uEzJG0udpwiDN2B1NSFvGVa8/QOZ9Lpy7yq033sTBu05SOSA1TJMENZlwZnnCqExwdQ2t1qFbFJTecM+D99NZHGC9Y3FpEYDhdEyeZawsLjCsK+qyZLse8tVHHuVld93FyWPHUVIxVg3r5y7SzQvSxQU21q4z2RpyYWON//SffoHdS1c4c/tJrp47zx13vopX3/EyvvDl+9g4f4VukTAcjcgEMZXax6JoPInNgHcOY208p60lX1VFN6REK4IQ1I2JYWGpngvLOosD2ISPffw3ee87X814c52V5cOMtODw7bdy9coazlkOHlplOh5TZAnO1lEA6sBYCEjqxpDnHYbDXbT0BNcgRSBPk4jcecegX1DXUwbdDEQKQlLVDWmm+bs//uPs7uxw7vHH6PS61FWJqRt8sGilCV4hkGgp8cZinEGIgNEaZyyj7WF0eAkenSSR7pIXOAtKJgQCC70+zhqEdHSKHNs09PMOnTx6kltrSI4NWucPyYkjR5jYRaZlSeIlNxw7TZASm2s0GRiF0jmNdwzH2zjp0UmOaRzVpKbIYsE9now4cuwYu6MdsiLHZRFkkETHlEGq6OUFSkjOPfwUb/nQ61m54QR2uowfOho7oTSGZPl21i93efb8f+M1r/0OZLPKZDxEhIJudgbVOcX1C/ex4dZZWXwtaaLICoPWgaOHGpr6JnTnIrbZANtHJcMoYOcIBw/02d4oqM0m0ncJpiZXHYwfsblR4Sc7jKvrnLz5FYRxxsGjq5ydPkW3OEKzdoLlE7ewvV7S6ekoDvUAjto2UczZTq8yHV24ogg2ppc77+fBWlJKfLDRpSdJaI15YuEUPJloXXFC6zRDLHSapsEFg1YKoTyuDQ0MwQGS1EI9mhJCLJrqKuYMJImmcQ0NVWuW0OZJ+EBVNkggVxLjIzUHJdFCIWwgWMf2eMhgoOl0C0LwlNMxtmkospSmayMNRkfakHMO4aMGSgsH3gICqXTMSxGCbqfPwuICOk3Y3Nzg+voaTVUhhGd1ZYmVlQMIpTG2aS1zbUyuDVGn5UtDluWERTF3jSnLkqqqmFLTHwwoOn3GoyHjacWkrFoRNBGUETAdT9ja2UalGYNpg0oT8iJjc30dgyNLNHmaMNzeYXtjnSRPo8OakjR1FZuYosNgsEBVO5ROyLIMgcfUE7T3pGmKUgkCjxJhzwEo+EipETFQbaHfp9vr0ul22d3ZwdZNFHq32Qmz8EOPAe/iY860JUlCIgSViZoIKSVlVaFkzHNotrZItCbLUrI0oWyidqMoMrTWJFpiA1TTKWXTIJM2aRoRtS0+4GUMVvQhulllaUadxPA3JeJemafpXBgvlYraJWKTrEXg+uYGSZbigmVSGQa9LvW0bCc8ek/ATqs50QrZivbBE51DoxNSDJCLzyVCpBapmaA5BBpjMN61bmqteQcR3HHhpbTil9Y3xvozNwSvuusGFvoObw0HVhZZ7PfxOn5xwtQwHk+i/WBVMTYNzsV0X0kgaa2/rDGsbw/xMuAaw9QYrq9vQvBomUQxkPUI3yBTSTdPGU8q6iBxLTd7yw35ngO38//+Z/+A7W//i2wN/g9M8musAlMtKXqa89WQE3KFv//R/yPr3/dR/t5P/Vs+/x9+hfXLa7zi1luoRcanPvN51h6+hx/6nh/g5IkzPHjyMBsbl5DOMNSOQaWRUlPXDSYJSK1IASk8SIfs6IiAGNf6FUdrSuf83HNayBhUFkf68RyE4DF1GUeSco8uFFrBl3MeH9rYGxuwxkanDu8wcsrQ+X2Ng5sj4SGEOZrmXYMIUFuPzjsIF/DeMq5spG+kKZmKfuh5nnPmtps5f/4qzzz2JMmxhC9/+kHe8pb3k1S7VApKURB8g2hFasEYQrBY2/DQIw+zPRlhbQw+Wl1dZWVxgdHObvTX7nUZLCzQ6XT5ytnHOLB6gONHj3Ly2AlOH1ti0OshdA8zqTh04BAcOMxNd9zBG9/2DrafOYf3Fb/yxP385X/6j/ib3/Wd/IVv+RZ+/mMf44nHHiEvcupyivdQpAndbpemmoD381AgISKKlCUpeZ4zLcckSYZ1jkynyDShrkt06zlt61iIfeLTn+fuLz1M78xJVhNNJ1c0xnHk2HHW1q7iaFhcXGBnc5der4/1ey4uQqg2xCm6q/S7K3gn5qnVUojI4TWONF2gqit0KxBXMmdrY8KNN97GP/mJn+Sdb34LvSKl0+nSWAu6IEkE41GJpA0pQ0OIm6yQgqB9fDy5576S6gQlIoLnvEeqmIYcgiHLJVVZ451lfRppTnmWR1vLxmBdFTdyegShGG5OWVpY5NL1dboLixRZQZlKKBI6eZdgPYcPr3Ll4iWshSzJWFjtoNOU0WRCWmimZko+KKitwY88qYrhax6BqSXXh0OG27v8hb/0l3nTG97Cud2HcK7g+MpRhFzETLYR5FT2DlT+Ib765K9zbOFmjh49TGUaMt+l6CT8xu9d5/jxG3jtq97J+to1gmpTZF2GsY7Pffmr3HTmNm4+/U088fhX0dmYGw8fxlnPHYdPYPwBguug0jHeFTi/i2VA5u/gyUtfoAojjh85TdbJeGR0mV4+4Afe+61srlccPVYgpMGZQFN70lRTG4+xTQx0koJcRW51bSJdItJSJB7XCmkF0jd4HyinwygyDgE7iva/tY8NhBRq7qker7qA9wTV2obOnIta4MZphVoumCWCy0KTt82zdAUdsTi3BY2OZFnkY1tHgozJrz6mE8tW+Oqs43CnnTDoiLB6Z/GtCFnT7hdEh6VYTLY2jz6iyaoNzJoFLfsQMNZRe1g6eYADN95JkkRrU9+K6m1Vx5RjaK2cPVpHG+PQftZdKxSNybVACJhqBO33VYrWtSe4VmTs53QU5y1SKYRO2dreYWNni96gz6Ejx8iUJJVR36FVpPM4H5iOR0gBRZ5hXcxfkCoh251EK15vIzo9bZDBYWvLlnPRZtPEXJJxGUXl1rl5SGNjDeb6dbrdLsIFijyPJ8pGD33rHUWniLkl3kOYTQpiyrDzATVzOQsBmaRtwm88d001ZTIdU9UVeWchTqOylKWlJQb9LmmaUE+jc1W0vg3xugZUTR33PJFEVz6gqiusswgRwFtsU5P2e7Q5m1GjoDW2NiAC0+GEXidlbXsTmWiWF5eZlFNyncw1vs7Zdt9rgzrRERDCx3wKD6lOYtCY84ggYphaa+UqhKCpG5TSUfxuG6yzc1vcxphYb7xEGXppfYOsP/Mn/YPf9m3cctMQIQKdIkUlkrTo07ESk2uKoDA4ghbkqMgFDYFGCjq9LsrFgJlROUU4mFrP+mjMv/43/44vfurz6KRAhsB0WjJIPG963ZuRWcof/MFncE2kRWRZQjKxvOLWmxnqknOc4Qf+4Z2sLNzIp7iLVS8oy10UGWM7ZPTcJrLTY+XUMTak4PLFcxxZXWA9ZFx66gJ2fZOzj9/PnQcX0dNdhrs7DHQNMqOZgtU1eaZIsXQyxeHVQ/Q6HWzwjMsyXoBNoDENddNEr+c2HyCiTNEX3BkT91XEfNP2UuBkdEWAeHH0tCmSsk38tIHgHBqB0hKhJGWIgWPOx2TP/b7UjTXYuqaTJzR1TarzaEVIREZEktC4GoxBOtFuhoKyKjl8bBURlnlofJXHH32OdPS7hHJCViww8o5QRaRLBM+xo4eYTkckiaesSoY7u0Bsmi6eP890cZGV5UWOnTjGk8+d49xTz2As5J1eHP8HS69b8OH3vZXP3/8Vbrj9TlwduOPuu7m2scHpw0c5feQYx46vUk8M+uABBpXkN37r19h+2cv40Ifey9mbT/P5z32OZlpSTWp2tofUSsyt+GbJvz5EFxWDQQbmCbw00XYwtCi79SN0ei+FiEKyxaJLXVXYnU2On76p1X94rDUsLA4Y7m4yGY+pyymmqWlsLJ7i5gtaasppjRK6dd8wLQUkajeEcHGjlGkUMUoIISK8iY5o5nBcYnxEgzc3N8k7XYIXGBf5zkmiyFNJqgTORF65TtOIorVhSQRasWTA2QahJINuEfMIqqpFCj3ONnS7A7LBCuPxhDJEUXg5jbfp9fuUlQMvWBocRWUpvtdly2n0bgycSxLYtpvkWcbVaoNOkZEVKdZZNpsSV1usDfQHK2yVJVkQ1JVF1SVTLzEGdNEl7/ZBdTh4ZIF3fcu3ErYthzq3c89jv0ouGyZVzooacOBYl1AXDJZWCI8d4qlLX+bw8feyOdpFsUXqOtz12reyszXh/OWnOHn8JMNdx5WrD7DUXUZrzbvf+iFOnLibarLF2978Zj75R7/AmdOnOHbkttg4YHFG40gQfgERlii9QznL1B3EyJQbDx7gxPEbuXr1Fl539zs5ffQOylNbWAfBT1EhxVmBymKRXFU1SaL3ONhSYqPRcLS+ZOb1zhxEiA46dm7LObPDLG3Tfv/FPMcghIi6xyFDREeDd62LYqRyWB9pYrRC2lgw273E7BCtKevGUJY1NniyvIjuK60zkDN2juTbEGisR1JjrMW7fWm7OoIhiY+BX0EQ6RhCQHB45zEQ81VCnEIkSrbBXR4nAKEIIVoz4zwqRLpKqANdpVHBY5yDNlRMeIkNMahRzHJh2terdRQVJzqN50RIpNLEEjPmOCDaJqctPkMIOA9Hj53kyPHTUS/kHYLoOGddG2qFRJCwcEi0Zgse5x3eBYTW5CcDZVniW3qcNSamSwtiPo1zYD3OWJx3UUPhHVkSbUGHoyEoSZqm+CZOo2cuUc5bqqYmiIATcRIiidNRHyx11UT7UgTGTHHO0+nmNGXZUrsCzhqm0ynGNoxHJWme4SeSupoy3OmwurxMXVVcu3YFH0K0CFaSTq8X6cLEhlQpTW0aRpMxYlKSJpos0WAd0/GU4XDI9s5OdC9rLVlFcEhvaYTj+vYmVkBZlQyKBWqZEXyk+yilWqckT1WX1HWFkvHaW1UV3sPCwiJKJzGIjVYTkETBPQIaY0nFnjFJpBK5OfXOWvc869iX1kvrz/P6MzcE/5+f/s8U+ePtyK5pOe6KrPGMk8By1sEJj04kHRQqi4hkowRZlqNsQOdJdChAoLKUYjBg4/p6HHEGFz3a8xznSza3dhA68ldly0e11tLt9zk72eETv/2HfISH+Ikf+Bn+3i/8FQwJ997zAHq4Qy1SQkeRoknSgs60ot/JOHfpMgdWVzn+itfwpte8hmuDgvVpw71f/grrZx9H1CVGBaTx2ERjnEEJxU0Lff7KX/1B7rz7ZSwsLWG8i45ESjJp4gV+Mp3EC6mJaIN1FldXTCcTxqMoIC6rirIqcdbEsfa0xnjL1DboOjAWgq8++wyubKLmoHWOCc7S2EhD8sHTtNSK2UanlYobT2P4gXe+nf7NJ/nSl+7hxpM3sjEe8+Qzz7K9vk49Kkml5ujSYa6M1kHC7miXLz54lmOF5F3f/UGGG4LFQ7fQ2DHlxJB0JJRDauNajmr0nD90eJlO/3bW1zcY7wzZ3t5htLVLOZ1waHWZ4ydP4r3lHW96A2vrm1y4cJVHHnuapnEsr6xyZe0y440Rq/0+933uiywvDZjs7PC7n/wkL7v1Vm678zZQgcPHD/HgV+7n5MED+GzMpx74EhcurvFN730nH/mu7+TSpUs8/fQ5vvr4Uzx9eY2pdejgSfO0RS8VMk2j0MwYlM5xxpAmaSyGnCXJEvz0MZaTt9PLChjBRz70zSzcfBOXLpwnuAqtc1wbEjctRywtLbO7vYvWgiwt8CL6VscQMyI/tW6iEFA58I4gPEoLfIv46kThZORyW9u0KdSyTaquKYosFgHTBicShJQkWkKwBCnRIlpQInVLCTFop2JgHbQFZPSUN7ZBCkGaaIypsDZyv6WIzldKpaQqJUGQq8jDFkDWhlz1+x20NEzHJQTL4tIB6PQoBst0OksoneJ8oNcbxKZIxXTmNI0OSHVZMR0P2Vi/zurqKmmicU2FCo5quEaqFd2FAdnCCllvhRAE/W4ByrE9WSdIuOHUXWxsb2Ks4uCRBVzdoKzDjDd4+c2v45nzX+TalctAytWtSwQhuenm2xlubfLMU+vcdOoGhPOsLByj6OZc37yErwxce5oskXREnze86f1s7u6ys10jfExyNs4iZIL0gdqWkMDVtStc21jjrrveysWrT7G0sEive5KVg6fZHE5J8zROjWQKpDEXYGaEnyjQGgdYb9Et6h+Fjw7wbYBXDG+SWhKkIM0T4jc+etE3TcNCnrThXbTTJxkTxW1EuuPUatZsRGtR7wNShNYJLBb+skVOBW1TEmJyuA8h2muGgNQRaPBilhwLMV8l5rI471FNm6vQFlaubUqVVATpWx+21sJTiDgV8tH2k1ZQrVt+u29pU5FiF4iIsJ+nJM8AFtU63jSt6BoRJx3GWfBpG2bY3s/Fgthay7iJidHBz+ML8MFjnWnPkZy7Psk2sMr51p5eCLyzCBGDz2xwlFVNECLqZZSK9qLOIWUWKafGkqUJSaZB6Whf6qINa3y9BkE8VxKYh621WgalVETAWwelREdhdtOY9prDPPNGKoFrTLS/DkS70cbMrfVjsxvwtiFNNNaYSLeTcbJaNw3WNq21qEMqTV2WiCDIdM7JTgetJL5Ns+50O2RFxrSqmJY1PkhSoZFJBlVFWU5RAZQM+E43JiCHaE/byVOUhJ2dIQTL5vomVTVBKEWdjCDJmZoSY+N7rFQMdROtq5sxFVkSJ/GT6RRjHNZGalZ0GArgos1qmqYYZ5jUNd1OlyACWZbGPAvi+5wkKUKJeG19ab20vgHWn7khODHapju+GgusFtGAmOh3cEZV8O3lfvZLKclETNJtfMC2dnrTllkvBBwMgSUpWhvPyKM3zuMeeBghBa+QCqU8Sesbrpxj47Gz3PPww3w/nrO/+2vAXwHgP/3iL/BUbwGNJE3iyDDrdRhNJ7jhBgbFPU8+zeXKcfDoUY7fdheXLl3iq/c/zmhnEyEDDSkyeESokMajUslyfwGVFjz0zHmMfC5a0eUdciXRvQKdaBaXF1k5sDx3Q0AEUhUQQSBEikDH8BZnohNFBksmMPU1W82UVZcxXVjgJ3/mp/ncb/w+SqVtfHos/q1xFN2CQX/A1bW1WAToWNBpKZEuoJH8xA//Vfwrb+HpJy9yfOEAQwzPnDvPxXPPsbV+EV8JXvmat/I3/sv/i8l9T7FULNE9nFCvXcRVHn/lEp2eZ7cKMa1WGOoyYIiJr1jL2Qfv49Txo1ilKBYW6OUdjt16hKauub52lYvnnmN3Z5eVgwcYbU84fdNh7n7VDbzp7bfw1GMXeOrxa0w2JR///T/gL/7gd/LA/Y9w/MgC5c4mXSRmPMKYki9/5h7e+o7Xcer4gLWNi/SzBDFYZG1rg1/7+X/PwQOHOX36DO96w928/S2v5dm1bS6tb3Ph6ae5cu0q1ze3GY8nmMaQKI3A07hIY5hpC7x36ERx4OBBTt12lO+881b4t/+Ol3/TK/mFj3+CU2dOUVYlWnhIO/GzLw06yeh1F7ly+SqHCUjhW5GaRSUJdVORZAkqiY4XSuz7yoVAlmaRUhXnQqQ6i7kZQs5Dik4ePcJP/q8/yXA45I8++UnWr12in8bUZmcDaVrQNBWeNKK2whFkgieJblNKI2T04TZNg2yTkhMd7fxmRb8QEbkOOqUJDU646MwhJKQy2mSaMWmSsVnWeN9Qbe2yrDskxtM0FdY0MVvEpWQyoakqptMpeV4ghSfYkiyUHF2SeLNOIhJOHFxi89omRw8dYtBLWFgdILoLlDahnjYspAKaQDbo4kPgcPdlTIZPsHn9Apz2yDxndH2dQ4NVuv0pBw7ewpWr50nzwOrKEXZ3dshZZHt9nTe9/r1MypqpWePoiWPYRrC2cZUv3fcxPvTB/4ntnRGXL11k+WAXITqU0y2OLB+iMhaRKUTIwRpMmpCIgscf+zSjZg0ZPHWluHb9PMdWj5GpgBET8AkSHydAxHAmSZzopTJ66ANzdyqpEkKbWiIlGG8RRLQeH5FY0RbgECePUtDaTO6FWznc3JZzRmGbrRjw1KLJsx/HD0jU0Mxv7+bBV/E2og3wCqg0QTo/QyPir4kJBqkQyGx2lz1F5qywfeEx7b/N/vU1Pw+tsXNon1K0QEm73/hZ+Nm+x539mSG++wPGZv+f6TRmxzVbs4nA7Kln6oNZVoMn4HzMXPHeRY/+4Gka0zYlct5gEWgF3aHtn2Kq83RaMS4rjPX4EB1waivaa1LAtlkFs9dhCVjXIINvXX0Epo7gU7RCVe0pik463scEcaSINCQZm9CoZQkU/U50XzOunQrpmHg8O48i7juzUDlCQMs4VTZNE21RZ40b0ce/sQ2dlqOvpCS1jqx3gM3HP8cXH3wI4yUWRXL8Zm66+27q3RIvE5SvkCJwVGRksuHoxiaC0IrSI3DS1A1axryVuo4GCUkrZJYyEITHOEPTNBjr565RBKK1r3E0TRMnBc4ikoQ0TRlPpyReYU1s2JxrCKFEa0mSvkQZeml9Y6w/Qw5BvBj+zHTE3Yx5iLs5wzmW2GGNg1zmxJ96/2Nc5hCbbLPIOU5zNw+h8DzFTYzo/6n3vZ3HKBhzgZNU5NzKkwDczysB+A1ey8Ob/2R+nE8Md7k8HtPLCrSQ4Px8PJ1pDSoBPM8+9Tjnzj2DUhprGpq6JGk5msFYgrNIGehkKQTPc+OSf/5vf5YGyIsOwkMvL+LGm4WWrxpTEnUrGlZSgnQIqZEyQQiN1glZnpCkGpEk9AxY6UkXOmRji11cpGkydNZDBtPyUdvURa2BuJlkKka/Q3T/EAE0ktVDh7laT1l77HEwmsvTK7hMsrK6zNHDh2k6L6czhKNHbmHx4TOc+8MH2bw+5vTNd3Clari2XvGKO1/NvTuf49yVc+RFgmlKAhqhBEYIhDMMEs2/+qf/jN/71Cf5/MMP0uxusLZzjUG/x+tfcRunT7+PtMhZ31jnj/74K3zxi5/jyLED3HbHbRxYOURyR8rb3nqQh88+wtX1a6wcPIiUXXY2x6Qqx9Q1TzzyGMsrK/z+xz7B93/b+1gPDuHBNRN0ltBxKTsbazy+u8nlpx+mKHLyxRVuP3GGN9z5AVSWM6lrRpMSH2AyHpOnKc4Ztrd3CEjyTpfVg4cZLC7x9LPL/C//8AO8+thPAvAf/9vHuVSNeNebXoVQBU1jkExwXlBVE2RfIJVHJbRJwtFKL8/TiIhXFQsLi2it5i4woXUaiQ4x0fEiyzK8i6gghDYAKFBXDVmS8NHv/348kscef5KHzj5KNo2NDR5k2EWqaBujEsVkMiVLo+AuigtjoZPoNghKRDQ4y6M1bgxzivkYQkrywmOpYwK30nPhp3MWrRV5ukhZxoLp0sYVjruEQ2gma2uU0xIpBUuLi+RZHsODrCXPM3CGXEMwNZvX11lYWub8+Wf4wHvfyfrWNr//lUe58YaT2CbQGSzyTW9+HTfefhtdtcDuzgSI1A3VvtZEK65evcS4Y1hZuJGqmaK15vLFKzgxppcW5IVkWiYgclRa8+kv/Tteedv30+nkPP7E/UDGuQuP0+kJFjrHyfWYaadg2mwgyFg+dIDaN4RUgJC4xtEv+ly5dI1TpwZ0FwKD7DT3PfxlutlB8v4yhw8vUFX1/LyLViwMxMoysO93e8WxaGkXxvooAhUB6Yn+8oE2KXkPaHlhCu6MF73/518P3eHFbjM/3hf8e/bcAgGJ/JpjcPtey4sd56wQn93+xY73T24U4md01rh45+YBWkLK1pyBF30sZ2PKLsRmePa+JK05wwubiBc7R2HeF7XuNgS81/PbSylaLYZv9RyhReLj8c0mGcF7hIxRXN61kxdmExBQfmZN7OcNwfw4RBT0Ohd/56yLVFXTRJ682GuK/Iym1OoZSmPiz10U/uJntChIfGvJSaAx0e0sTowkxkmcA1rwRBCvTT5LaILAhPh5RUDlo+hdKYWztjV5EDGVu4xBZWnRo2xg4eAJVHcFYYbkeQ/fjPFNhU5jjsPKsRXyPG+nYGb+3sjQ4K3BOZDMAB0br3VxvNp+WuLnZNY/BzwIhzc2ugsRBfBJmjKZTMh0p6WHxXMU37fYK7+0XlrfCOvrbgie+Im/zSt/7lke++6/wJPC8H0/+bf5m9/1y7zulof5xJffxH/8ow/8qff/4N0/zxtv/BgPPfc6fuXev8P/6W3fjgpDfvWh/5WLu6/7U+97Oy+nI87yHP+QStzFm5a/FYTn99bvf97tJCU/2HeMZEpiDLWZMLE2pupqReMdEkVTVhFNSQt6/QG+acBaMgEmRGQt0wqkoq4rhBR0+x1M5kkTUMbh7JQQAtvjcdykGhmvQ34v5l7NriRa0DQRwVEqJXiobY3zFpX2SK3A40g6KWnl8N0uQ+cRpFg3aScxkfYSQqCqauraoOebaWi1zIEgAo2r+eF//M8p+x1yWTBAowqN1RIlFKIIaK84XBdsbz4J/YyHL3yV164scustN7G9PUIXit3xFmmhyUL01Be9lGA9tjakLrC4tEwIlm/54Af45g99kBBKoudN3AAuX76Mt45XvfxW3vSON9DvLrKxtcNzl57DmBItxqyuBn70b30vxjW89vV38JlPfYHLlzdxNExKQS407/jAO/n5p55kZ3uCySTBO3peELRAyA4+MUyERQtJaAxXn3qSB+99mCsTT2fQRWY5SdFBJxlZlvHyu15GosDbhu5gEessG9fXePCBB3jwgUvcdOO9nDv7uwBsXd9ldUWjZWBsDaEqOXRolfF4Sjfvs7M9JEmh2+thjNvzirdmLvbWMxvddkpgbeQI93o9nHM01tDv9+M5bj/LQgiUjsibsw3WeTr9AT/8Iz/M7miXe+69J1pDmsC0rFDI6MltLMZpmkbgphXetjaEIrqlNHWF1klkaUzrWJyINplWxkTWiPpGio9SsfjwrfhTa4EQ622eRiBJEza/+hju4UcIQKIE3proboWgbmq0TkjTBBsCgYQkSIzxpNkGQsNP/fR/4wMffDe7U8PHPv4gi4M+1u/w5je9kzvueCNmPGJnMiZJkuh8FBynTpxi0O+wvbPBlbVnefzp+/nW930vX/3q47zq1a/k6tUrbO9c58m1R7nzzleyvXuNV979Hn7n93+agweOoKShaVKeunAfIhnyutu/jZ2dLZATzl14nFtvuYvF/greO7yORacSkqLTo5rUnN/+Ci65gVtufQWTaofdZx7n1ptvZ6G/jBaCSTWh0+nsS//184CrGdXnhcWnaNF2pWZFqo+p5a0LmRJ8ze33/1+2BdvsOWf/3o90/0nrhYX9vPDfV7C/GNr/Nff7/9IQ7D++/UYIL3y8/c8/W741axAtNUpKiVCR2iTk86u2/UVxfEwRbycEHr+vAVOxUNz3mmbPOUPm58cvA4TZc0fUf38TFulL7WOoSOub0Zria9kTOytyJIEgA4lsm4wI+ROEi7awQRCC3Du3CGSQ0VI08LzjdN5BSxsN7edodkyhLYp1+z2fNURhfm6iK1BsMlykbrXaER8CPpgWMIi5QLEZao/ZGkQITKYlpjF0ej2890zLCoRC5RnKGhYOnuSp0TP82seH9JNA7g0isRxbyBh7hQ8NDkuWK2pXkeqCpraYageEJG01L857KumjSYfW7ZTGgQxIrZH7JjnQ7sHtuQtC4ILAK0ciJCKAkxaVpnT1AqWdkiQJidQzQlucALUTpJfWS+vP+/q6G4LVuw/wN/7Rs/QX78AH+Kl/9QWOHjtEv/923v2yhNd++N75eNk7Px/TqVahv7R8ipXl/4k7q5x3Xn2Qk6d+FHDcccEwGv9x7OSDxzbRv9g0htJWmLqh0/0IrhkyGl4nTe/lzKm/i9SCO577eQZXrnLzLz3AR/kvfOuHfpGjR96GmY4ZDAZsbW8znIxJi4zSRlsx2tyU9Y0t7n/gAbavDlsOa+QJhhBIk5RpFcej/V4HqTWpUtTTMaUbomUaXT4QyERgvEOHJJ6o0NqqSYkhIqsRFY7nQrT3TJSkV3Sx0qGT6JLgfEnlG6SpCNbQ6wnKSTIPr2pMjVbJ3GbUuMgNnVnN6SSGpNXO8sTVNapLAS1SOghGkyHkGmcCurSUvYysCehM0Eskk5117v/KH3D69jvZ2dgkkYFMO7brig4pBxaW2WxKfGMpgkIHTSUkP/pP/hFFnrM4WGJ3WpOnUazbKXIOrq4y6PWoq7Nc39jizA0nGVc79AYdDqwe5D3v+ghnH3mCX/3f7mGwlPLW97yKD3/3t/DDP3oDzz59jS996SEO6IL3fPC9jHe3uX7+IkWnS2Ya6nqESAOVr/EuECoDMqFUgdDp4oVikAQq65jsDhldW8OYaL356c9+Dhx0ex2mkwlKSbQQdPKUpYVFbjm4zasWO/AwWCr84BDLJ05AsOy2+hCtFUr1kfTZnaxhnUfrnM2tdbrdLlmWMRxNWFxcjO93Ft1/yrJEKUW3250HTMVCMNrbzvIDZrSh+C0VOOHZ3N7g5pvPcPddt/Pp3/8kNk1RWUbRySnLkjTLsNa2YkkRk0XTaG3oWzRw5rphrUXLiP5H+pNCq2hj6z2gorMVwaCkJNNJtMG1hryT0JQNgoC1Nb3eAOc8aZ6jRaR1yFmmhnX0F/p0uz2a4JmYGo1CCE3ZeKQSpHqFP/jjz/Gd73k39+vH0Umf973ve3jFK26gLK9grWZ5pcv6+jpptoiznum4Zql/iFT2WEm2+fjvfJ4vfOmzDHdrbr39RrrFCt5pjp84RVVJHjr7CV5x97sYdG9mUl/H1RVKKy5dfo6lpSVOHb+bzY1t1tYeYbCYcWD5OL4ysYhXAm8MzlUsH1nlwcfv5Wd+9Z/wVz/6Y6zoO/njz36Rd73rXZw6chwVKmwIdLvdyPW2dp4PIqVoEc2vRdbbiwchMJ8cqX0pqXmWzXMJ9t/nhROGWaE9+/2sYJ1d2164/qRif/b3iyH2s5/tf+z9xxURW/+8x3qx27zw+fc3CS98/vnt9lGYZrMKB9FR7EXOzcxnP3ied05e7Nj2F9h/4vlpi8vZz2bnev/kY7aquml1He2fALTgjm+RfCH8886HFIEG19KLWuoPzHUawjlEiMWqkO05UxLVGlhYZ/fuMzs+JRFA7V10mlJ7UxJa2q4OUZ+X6OiIN3u86MwW8D46HwXA2MjN9ziSLEEg6BT5XJQulGRpaQlrGqyvaUYNmbIsB0c9HWJtjQJefvctfPe73sjG+hreKxozRTcVVmrKuiHRSTvVkTgfqJvoYNdUsWkxxlJVDVVVxhRo73EiYF2gtnFiMJ+UOI9HonQOUtCYJn7XUkFppownYwZLfSINr4maD6VQCsRLjKGX1jfI+ro/6lVTkxWBqonjucNHJyAE44kg7QiWsu3ociGiyn+OSrUjXYDtsQBGLBwI7E5j975yoGLl0N64WwpQpChVENRiFPfom6INX4CqLCnLEvDcepui/9QOnV96HIC3vf02Tp86wsSW5HlGU9XoEBEk0zR4Y2lEQGcZTdPwxNNPsbW+QVNVjMcjyumU8XjKdDJmuLPLkcOHeeM3vYGiKDDGUE3qGGwjBNOyjJqEYKmsYTocEkJ0j8FHNw9jTGstx1zANq2mWBuLg0k9pWwqOkUGIQr8qumUrhTkUtMICEnKeBynBINub444pVlOZVQclwvRbgRRdGhqS7GU0fcJVW1IE8nBXpeQJ7jaI0WKkoIy09jGwG5JkRfsNA333/clQjnhm97wWp597HqLqqXsbG1jlCfVOUkdGPR7XFm/hioFhdR0rm9zZWOLotejmkwiP10r+p0eB1cP8Jd/8P38zM/8R44ePcO1tU0WBgPuu+8ebr31NKPxBr/9iS+zNbrOyTO38ou/8uN88/vfwcEjK/zHX/9lPv3Vz3Bm5STNpGExRFvDbHERqScUOlCJwDR4slwSgiXRkmlp2ahqbIj2hllWIHSg0zr0JG3IUX/QJ1jDYi9nud9ld1NzdfPbeWr9vwKwkkqmqsfn7n0QMs1if4kvPfQFlhdXOXHsJp5+4gpZt6Y3kOz0U4ajdbq97rxImFbNnBZUZDE8rtvtsrMzJEkShsNhTCKtDc4TN0Cp2vPeIr54ik6OqBqmoxEf+a7vJg2CalLy5Yce4p4H72NlZYW6rmMuiDEIL0nzgrzlyFrbZoB0lynLks3NDYIHmUTKg7MmBn0BSaIJNAgdKRohOJQMBB1w2rPQzxgLy9LCEkppXAM7o3EU3yWapjEYU+F8FC1u744xzhGCp9NJ8U3DZFLTXVhEaU2no7j7ljs5+9hTLBwsWD1wgg9990foDzxjW6KKPuPpDlmRMhzvUGQ90iSnyAcsDFZxepEf+R9/ik9+6hd51atfx872kJUDBasHBuwMr1NORpx9+rcYNo9z4uA7sB5WVo/xxXs/Rlbk3HDyTdxz3+9y521v5cmnHuU1r34bEC2R0zzDBk+3V/Dk449xfesqd7z2Do5/4TRfuf+ThM2zfOAdH+aOG15HPd3EuoqQdBBSUVUNQoh5A58kCQSxrxh7/nohHchaS6ebkySK6bREq+RFi9jZz2bF9IyW9mJF/gvXC1H+/bedNXUvdpwhBGxbhIsXPH60V1bPu+0L0XfgawroFzvO/YX2TGjsZrfbRw35k17b7G//Iscwa1xmhfULnz/+bEbmkfuOfU9IPXv20Ia9zV9dAJmk8/M3E1bPivAQxm3DoqM1a/t+N86R687zmqD5eSQg05hnEVrK1MzeNISAkgqd67k2wofoMiTaY0zEbNoQoNUBzFK3PAGpVGtt3e5j7bKNgtDqjKQg05DqVuckAmVVkWhNnqaMRiOscbiqjnkVeUpS9HBFQTfpc+jkjTRZn83KoxYH2LJhMtklzxZJiy6dNGPU1CxkKXlRoJNkfv6klOR5jnaudWKKtC8lI10pagcMtg139CJqKkKIzk2NaVoKJVjrscFjvKNqxeOhFBhjqGvTiq3jGzmbIL20Xlp/3tfX3RAYY1rEq5mjQ3H8GaAV0EoZL7CuMfPNRHkit1OI5125Z+4Sxnms8YBBq4i9iBCp8bXbS940Lf9RaR0jzGWClJbUWDrtYzrvkYlieWGZ3eEueadAIsB6+oNBdOARUDY13W6Xb/3AB1sahESKaKEnVeT9ayGZTqdsb28zKSdkWUZdWZI0xXmwzlGXJd5FBNW0zYAxDcY2OGuxTUPT1AQXNyIXPI0xWGMo64rReExTWYw11NMSBUyrislkAkEyqSaAwzSG6+vXqauKgCd4j2mqdqQcyPOMxcGArA0lk0VBVZeossFrhdWwu7ONkQJpBFUi0VVNnqZUeY5oPEhBrhRJ0aHxjqLToZxUyHTAdlnRKxQChzMVIstxwbK6tICXhtXVFY4cPkrzyFfj+Rmk0S5QSHa2tnjsySv83M81vPFN7+XxJx5nsLTE7u6QumkoigX+xj94P38n/TCPPv4Ih1buQKYfRiuB9IH/8z/4EZ595gn66gAP3vMABwexCG18jagrjAk0QuLzhEo6fF2RBkFfCgb9DpX1NOOSRKUICeVwRDcvSKTEK0HZlIRgKatAlSiCfjkPnP173HnDF4FHKKzn+o7hP//nX+Llb34dqyvLXDj3ELb2nDxyK5//3IO88tUnSQvPpec+zbETh7h2bY1+vz+3rZtMJrz85S9Hebh48SJpmrbFPiwuLvLa176W3/7E7yOEjCNrnZCm+byYLDoZvW43Bu9IRbfT4UPf9d0sLS5x6Lc+zrlLF+l2C/I8p65rRrtD0jRnMhrSaElRFASi/WDZ2uRKFR1FlPCRZmbb7yyxAbAmotVKxXC3EKI/eKIVk7IkSVKsc3S7PYqlHv3lRR5/4gkSpcmSDB9iyFLRi0h5WVVoqcF5KmdZ6PbodXssLCxRTif4yvPmV72S7/jID6Jyi6w3yMY3kckUJ9ZxuqDIMmDM5tYWy0vLIDx1U0JTMKovc+LIy/jSlz/N6VO3cyI7ycbGVZ568mGKnuGdb/8WOp3D1NND/PGX/5BvfscH2d7dYGVlldOnj/PQo7/B6eObvOWN72Fl9QyNMeiuoqyj3epwd8jBY0v86u/9Kv/m1/41N91xlJef+C5eduZlLA+W2d3cJUlysh4YGx18lFJIuVf4GtMgUfPJz4uKWNm7fZJqynLCPfc+xKtf/Sq8eT61Zf96IVVoP4q/v7h74X1m64WTgNljuBdMJZ5X4LfH+7zHCiFaggpg3+33H/eL0YFeWADvP45Zc0GgdXyZoeZ7SPif9Hizx3xh8/E8qlWQ+6hFz3/9e4OBGZoeD2RumtHSZ2YF9uwV+BDARS1QS9Pfo7MIgU7TeRq1ac+XlBKdJUjb+uY/71ggIGKGANHdSRDzGmipZMIHbB0diqScAQr76EbOxdcTk7na0yggCKyeNSo+2tOG2ZRSEGai4bY5EyHu395ZBI6lXk5TN5hqzIHlAaPRkKoyLB5cZGw8IjQs9nLKuub6+jXONFPSNGVnUjLa2CSYhsaX1FWcipS2RmvNdDqNAXPWtVP1OMV0om6blnj8QibRMMEapI8AoNK6DVfL0EkMiOt3NeBpmholFUXeifu4jRouYQJ4gWjTtqNGxNEqsF9aL60/9+vP0BDUQNJuOiBEe5HwAd9Ygmy5lK3fvSAmcIoWTXHOxn+3VogxrkS0ip3oTmRsgGBjQ9AiK7Nk3zRJESpuQM45JGCMjZ7T7bp4qYtxjjPHJiQ6sLvTYzgyHD0xxZqaJx7voBBoVdCYhqeenM4Rd6VAKzh5akxwjksXF1hc8qyueIRY4NyFDsiAC/HCr6VChIBuebOdpYTjx2qqJnDxQsHpG6d0Csv6esrOTjYXvM0sQwG0TiA4VlZ36XYaNq4JdsddDh26Cl5w+coiptFAFKE2pqKuauomIh3VtKYonkIES9OciDb24jxeJFzfPoIcWxoVUeBgLWVdob3CmoZh2OKwuMCWq1hfP0npn8HtPsu4WaDIX8/2zs0oM8aGHB8su7tjkkQiUTg9wqltfJ3h7I0MeYamMYy3DqPTVYyzMQBLSXCWO245yfbODo88mnDTzbfgwhamuYu67nBl7R7+wkf/FXn+Rl7zutMcPDDk/LOS3e2Saix46KEL3HnnbTy3NiL0BWM7oR7fTKHG9LIJ23rAxvZxsJ4dGTUeQcOorJhUntp6AkMSdRUtu0zMcfLsGsFsUttVkHdgmoqShOtWUTVRHJ9lBQBWK1jocrjQ/PYv/xY3v+wWrFjjQ9/6nWytVVy7foEHHr7Kt37H+/nffu4XePWrX8Ett97Kl7/0Jaq6xvvAW97yFi5ceI6H7nuQpcWliPSJKDA8fuwY9z/wEFWzX2Aav0GzAJ3Fbi82jbZG6pip4H0suNMs59jxE5w9e5Yzp0/GfT7ECUjczGA0jtxY5wNlVcf7JgnBxelDEDGJVkqFIBaBedGhqd0ciRVCEnBYbzETT5oJppNdtrdHUS+gJGknRXoJKor9ggJrG1yQSAUikZjKkfQyTFNiRM1uvUueKZ6++CyD1ZRv7V9lt5zSTw6zvfYQt9x8K2vrU7p5B9sYOp0F1q9voJOUJEto6gq8wtopS0sJr3vt2/nUZz/Js+cvcvONd/Ked30nu8NNdocNDz7xm6TFc1jf4aGHH0NoSZIpHnzkM7zxde9idTCAsIwWKZUxWGUZjseMxrs4Y7Figu5lbNTneV32et7+6m+hme4y3CjJuxIvDeOpjk5TYkb9iaLQJGmFq0HOUdmZEwzBzxFQIWLKuVCSopvx4MNf5jc/9uu84x3vZHNtN05sfCtSfQGqHb3leZ4zUCQ2xs+UgOcVz2J2DDwfxZ8V3Ptvs/fv9s8+nrpgZmUanXFC8HMLzb3if1bcyj2xZ2htS+OBxvu9gJLDrAhtnx8hUPPH2BMnByH2Hou9454dz/5wqRcW/rNJwez1z8CsECI/Pb5v+6cBbeG/z31pft999KFE6b3zuu8cAHijWnrprPhsm0MLVtroMzU7P0KACK0gOWq0VHj+ez9rRXQrXkbufcaCD9EBSBGbgdm7GMS8WZl97+PEWUa6zqwppG0kWivc2UQlCA9CMa4tSmmMczxz/gIIWF5exjvHdHsdb0sWl5dRzZCciqU8wda79ArNQpFS1g5FDShsNaWbZhjXIEIgAUQaXYZC8LhmigxtyCKKEMT885HKFCdDOzWxuNpRNxGwEzLmUYTg497tYaoiHc/UDROtacKEqJuKUxsC+OAQMnCCW3lpvbT+vK+vuyGIG1GkukDrXzwHdPa+lLM1+78NEdERkkhJcA6h9uxKI6de4nwskAhqzxs7iNbqjHifeAdEEBjfzCe3q2yQJYb/5798JQA/9S8/xfETlp//+ZNcvDjgn/7k5/GN4e//nbf9qa9xebnk3/2HP0LqhH/2z97Eu979HN/zkSd5+Kt9fuKfvP5Pve873/0c/+Nff4hLF/v8rR95NT/xf/1jbrl1wi/90il+6zdv+FPv+3f+7kO88Zuu8oUv3cB/+YUb+K+/8kckWvPj/5fX89yF7p9639/9/XspCsvf/NFbKQrDj//9r7K11eF/+L43/qn3u/nmTf7GP/4ULgQ++gMf5vu//7O87O57+eIXbuE3P/YtXL32tfcxZfz7lpt+ize88Xd58snT/MEn/zYfff/f5dBhwy/90oe5dPENX3O/zc3497NPw0r/73Pi5Jjf+sM3c+3aazh64mN0dMITj/4bnvhq72uf9IvwG4BWE77n3Z9goOG/3PePOHPwHl5/y79gZ+cGPnHPz/2pr/Xgwu/w8ht+lKld4YmLv80NJz5Kr/MZ1oY/wNrmj37N7ZUs6cq1+O/aQR+euf8C02nJaHPC4tGMfGmJ+z71+7z3/W/B2g2cr+gtdbjv3vuRUrJ2fY2dnV2+7/t+gMm05r/+l//K8aNH2B2OCcFjTMmp08e5ePE8zz57gbToEFzAGIdOEqwLCKUwzpHoWfMdm4D9/060xtSGTrfD1s4uk8mIrMjxPqaaImMqqSdanDrbxCRaa8hTgfeCICWh9aVP0wRjGuq6QkrdNvazxjyKOAUC4QVKJTgbaGoICpKsQOe6nQg6kHGz7WZ9tFQY50myDK1zil6fNC1YXFjEu5qik3H3y+5m7dyIa1uPkBePkOkDGNdw4dxVbrz95QRKrJkwGVcEMooiQ0qHdIokD5gg8KHgzrvezHMXHkWnDevbY84+/gW2Nq5x0y23cWHtEbqDJVRvyqXz93Lq1EdY7NzK6iAlTDRSj5FpiVIdgnNMJyMeP3cPB47ewtXr53ju2SF3nVnixqMnMI1nUhmyviP4AfiKIovBWqp1lYJoh+j30TrczP5SxnRXQizIhBQxTVUYhO5x5fpVHjn7ab7lW95HVacxsAmNFyE2ESFSIqyLWQNSSqSSbRhYOx3wFtEWtVrpua8+Usbra3sRjzjNDIneo3nG7IKADG3p2FpnzvIH9hD/tohXguD3CtLYbOw1BfGK7SONpW2GENG5Rs4K5rb4FiEWgoKADGHWRyGkbq1X5fOK+vaAW+A7cvb9/maIF7622C7N0Pn99KjnOyGpPYbQDMian7m9RmXfi0QqFTn8beMfZhqA+fPp+XN43JxGJmUrHEbsHesMyRcCF2LRjmrPaXzJsWeQsTHy+5oX2saNAApiEyD2GpXZTUIQCKJLXgjgfGD2Vsh2+qFQc8erGGAX0CpenxpT42zDgQMrZC0YMR5VrBw8iMDgXcEYT+IUweSIXkoHH/MXkCANiejSdCzSxSZJBI+QsbmOrkitFsvHqYEgoNOY6O2CxxFIhCINeq95UntmHNrbFoNUhDYZWwCdJEcAiY/7jw8B156bROkIbL20XlrfAEv8SdzSF67//Eu/Orsstd16aDcyCO3FdD9itYe4tA8QQOwf8coZPUiAUHgi4hMvkr7dHKJTiRR7YjNPixjp2CwsP/MMH/jxH+PX/tI/5Er/BoKH04e2SbRhbXuAcZoTB7bxBJ65cpi9Czrzf8+QEC0dNxzdghA4d3WVQa9iZTBhUiZc3ljYN0Z+gTsI0OtWHF4e01jNhWuLHD+wQ5EZ1rY67E66z7ttPAXxHHjnObw8pFeUjCZ9Nocdzhy5jhKCC2vLlEa1yJls6QfxuIUQyAA3HNtAa7i4vojEcXR1iAsp566soFSLtoXIGRUiCtHwgTwznD48IgTBkxdXOXJgyuqiZTwtuHBF4ryjU/Si2wSxIEy0xjvHQneXhe6Q8VRxeXOJ0wevE0LN+s4KwzK6KDkfN4rQujQEFEoJTqxcY3lB8uwVxc5IcXDpGs00sD48zaQck6SBwUIH5wU7OyXjcYlWiu2Na/Tqz1PQsFOeZpBXdNQVtieatfJMFG8T6BYZPljKqsbYgE4ypN8idc9iZc61yY0U6mmStGJcr1DaQygVE1GLJCVNFEudES9vnuWvPvYc//c3v5Kn77iJe+95DFD0Ojmvev1xVo6e5MF7nuLxex/k2771DZy8ZZmHH93gk39wP0eOHObq1St870e+j7/9t36M3/z4b/M7v/MJnn7sLOPxhBA8t952I4cPHeDs2ceZTiqSNMUahzUWKRXWhxg6liQsDgYQAnVd75ucuTbxGIyzDCe7jMZjrGtiKjKR7hO8xdgYKKRVgjU1goC3liRJCUSvckT0HtdJnNg51xaxHvbbZobgQUKR52iVxEZBtrxmKcFblpcW6HU7MbyqpU2ZxqCkjuFv3rTORZI8LRDCc/z4UY4eOkVde4S2LB2e8L73v4cv/fE9LC4N2E5LxtNnmGxY2L2VM8cPII0FmxKSLkkROdOjkaU/KBhNryG1olhRjCYbSJPy6le8hstXzyOkpK4voosxK/3Xc3hwI021g3E9Ov0UX3tWeqtsTC5x/rlzmMQwrR1Xzz3E2970A1wYPkhur/KGV/wQeS6Rsia4PknSJgH7hDzPKMsKWnAjDkclkoBSkfoRz59j5vKkhMALScgafJkxnY75v/3b/5kf+5v/gpV8laaJiKZUug0KcygVU1hV+97INoAqtChq/Fu3Nphi/veMhiLljA6zt+bFohAxc2RWFEJsNmbIeGuzORNtRketVpNizLx+Fu0JEG1xmvg60jeDiMi4kC3qLOO1rj0G6wNCanSa4gNY1yDEnnWvtbGZUEpF1NzaOHlocwnYd52eZUs9fzowsw/1zzs+wmyywnzqEEK06gyz+84Q+Oc1RXtA2Ew4/kJq12w9L99h33FJKdsp+/MpT/PbvchjvXAveuF7OWtGdaK/hhq1/4FnUypgPun3PgbivZDetl/b4ZxHKUmaZVRlSQgBYwzD6ZjllYL15y6RH72FjV/4WX7op/8tt3z/d7L26c/z7n/8T/lrZ25nWG4TBDSuhxMVucgg1K0tajvh8nv0K4hObd5ERzTRUpYdcXImpW4/47r9nW6PN1ouR0pQq1kkNuOEgN33fkV3pfh4Skpue9lrXvyNfGm9tP4cra97QtCY2F3L1nYt6pKilZtpuZBzcKdd8bs16673xtwzYVW7HYDw88CdWYqmaP+eNR+z8JhZYYv3EDxVv4fNMr7z5/7x/3/OyDfgetN/d8/5yAv+//Cf4b7n9v37GvDon3jLSgrGmeL1b3wdd9/9Ora2x2gUqwclU1Px/ve8l9fd+moGfUOhKt72lltIO4e5cvkyp06f5N3veTdPPPEkr33N63n5XXfz+c99mt/7vU/SNBWvfs1refbc03gP3d4CxtSkmUQi8SHQ62S86z3fzOUrV3jovntb148ojqurqhVDShoraKzF48izjLpukfxZAx3axNM2BdyHaB2qZBLxShGLeCEkkv1FwR5HOhassSEFidIRKQxCIJSOVoRSEoQg1TkCwXRakiSaw4cOMZ1MsdbT7fbIshSlAgv9PtZ4qqqhrMasri7yid/7dbJ0BWsTlg5K+p1TvOFN7+TLD/wyz+w8hxZw9oFdbj9zmgef+iKJX+bsI8/QXUg5ffIkzz51Ad8k6DShdiV5r0fviOSW207yhT94kEMHb+fa1jNsbU5YWVhALVT87md+kRP57Qx0isx66EWLx+OtpamhnjoGxwqsG1KEQ5x74jqP+U9zY3o3v/3bn6bopBg7IVULFJ0EKWMKdKcoKKspnU6knqVpGrUjwdAtMvK8w2g4Jk1TsqzA+Rj4JFSK7Aeq3WsMdzdZXj1Kr7fMZHcEMsE6z2Q8RCpJmmZkmUAnCdJHa+Bo7BCFlPEyKyMHWgakjuFmAAHXFq9tSRT2grOgBWDaVN4oYJ1NbaMrFUK04ExAKY1O5NzvXogwTxnev+aAkR7E5/I+hrbhITiCN20hF83fkzauL3gD3qNDi7DbeN9k9vm1geDb9y3siW0RYv5ZlfOJxf66bkadmSHqYg9Yn99kD/hSQrTzjXg+Zq8pYjttg0GLnnuL0snzXv/+Qtx7O98r91OJ4vHsuSg9r9hvpw2+LW5n79P8tYV2V93fSLR7anhBObvf0WlGidqb84Q2KTu+Wkh4Hl1qNsHZ3/gAu9vbdDo5Kkkpq5LlpSNoo7DVFdLtbXbzMa/9rjex/dzTTEVD0V9imhWU5YRMQjfJqKsJRbA0CdjaYk2riQBoxc5BtNMkLE1Z4byPmT+JxgmJl6oNY3TIoBAqplbL2VuOn9PuYgPZJl5LBcTXE3zrIyjCnML20npp/XlfX3dD4H3LcW6bgZY4EP9uN5OZ6Gg/F1OIPYeIIJ9vIzdHO5sahCBJ4njOedoQpD16xMw2UQrVhjxFfUJ18BC/9S//FflwBDBvNmYey/MmZN9xCSmR7Wh1hnbt97F+4W1nF2Y/Q3FmiFDbAcXR856f9X53ijmH9kWgndnWLBDYmSCw/bls0SoxC6ra12kJ0YqgZ0k5iD0ET0R0R8okvjYfH1epmKxpnSM4H9FKFS+Aew4cETFs6iZyzNvNRLTuHtHJaHYMYv4KpJTUTU2WZMAsnAi0ioifdw6UJFEqIs4hAA6pA1U9Jcu6LSIVNxhjapQWFEVGZQRCJfzmr/xX/GibpcTRTQLeWcrGMpo6bHsaskQS829qjIvHUFcNKA1IKmPweOq6oVv0ccFT1TVKCrJE0sk12IaiyFjsdNksElxecPfyMgsnDyBkRggpQlbUYYdEDjhz6lamo81YGAJvf/sZpJQUWc54XDEZWa5e3UYrzU133MWx0zehlKSuJ5y84Sbe9/4OAo3zsZizTURAhVQcOnqE4XDEHXfcGc+/tVRt8m9jGpqmIcu7PPLoI3zpy19gYWGBiTEIodBJEt8HL7DWIGVMYm6p3VgXKUWSfRQQ4qg8otZq9tGa0x1CiJ8z7zymcchEkOU5SZrEpsR5aiMIIqC0Ynd3TOVi0I8xlrA5oigKEhVYWpywOFig28/RheO7v+9DNHZIr7vA2rUrXDi/xn/62V9iZ3PI+z7wndzzK/+c7qDhXe98C71sgd//xGcZZJZbbl2hs5Ty7BOPceXSGt18kapu0GnB1uaQcFWwe+06L7vjBN5f5tGzD/OOd32AZ599jF5jyZzi2ugKh19xF488+BjPffkZyspx6swJ1q5OOXpyheuX1ljoLTB+quDUmWscea3gvi9c4olHH+bI0YPU9RRChlSBbrdAYuh0Cqxtw+HagmXQH+C94+jRoywvLvLg/Q+wemA5mgG0FB+BotMvqNV51jae5eZjb+K3fu13MU1DnnWZTEq63W6bUwBFkdPp5NRml6qqiEL0NKbEquj0pVWO1gndbida7CaaRMfvf6ZTtFR7xSExGVZKHUOprJ1ff/G+3Qdaq1oVARsfAr69dsn22mpsg3MOa6Jji2mzN4L3eJmhW3MIKSNdSWtFmmic1DQ+gHckMmq7FLT6KB2Tn/dde4IP2MZgrSOoOKFIUokO4NrrY5h9znl+gT3bL17M7eh5F+kw8+Vvr/X7aEozRL8xDdBamrZNCUI+7/mej8zvTc9nl/Z51sc+/cXXTAla4479k4j5NMFH+s2LTgHE3j4629tmr917H3UZYeYq5vHetqFcYh5u+MLrPgSsbdptMOBtSVkaNi5voZKE0XRKv7/I8vEBxWiX59JdDtx1itcf6fBTz13klq7ATjbw5ZBaeGTmGfQ0k50RVRNIEk2e5wTncE2D9xYpAlK3kygtEd7GBHoJqW5Tk6WCFgBh5uglZ35Y0TQBET8XMxAzEJCWuFELwMemQ4b456X10vpGWF93Q2Bd0xb4bfAJYINACRfHauzZzL1QTzCnx8RZ7JwbaWchSADBU9f1vs1FAGY+sp0VvGL+HHuOGtOVVSbLK/PnC/s0DUrI511YZ43IiwnJYA8hfeHvZmPq+ebI3qg4XnDUvsCdWITNrMukjI47Sin0TLDWok0BjxR7PuWiHesLIdpR7Nee1+heIuc2kfE17138vfc4BLpFrCKVQCDbvALbVMTOLvKIIf4X0TZ0PqBn58B7lpaXGDcNdd3sIc/e4ZybUwS89xRpQtVYkjSPwq626NRK4XHUVWwaIpJoGCx0kDJwaes6SaLpLyywsz0iSwuUhC07RegCY+CZfpck8ez4KYu5jMLoaU2ZKKrGoqVCC48SnjqRmCComoZGSbwQOA+N9ugkp6klHZUQhKRONEmiEcGy0Ekokg5SC7aSDNHtcqi7QJF3qaoGqSVNCFFwayaUrmbQzxkPA67ug7AkeeRoey+I4t6MNNUY6yiNQaY5aZaxMx6xcvAwwStiyRM/d9YYsjTDWMNoWqLynFvuvIs0SfEtJWSGvtZ1zeqBA8hf/W989nOfju8FUXRIiDkCs38H7xE+CuCddzTGkKSqpSLPuMqxKXPek2UK00S/cSFmVJAZzUHgcGRJQpbn6ERj2++Fzgq8VNjgcTKjCZqi1yFBUk4qGi9QiWBnVLK5tcNgUPDclXN84Nvfw423HOQPPvEId951nFOnVkjECo888hA7m0M+/C3fzWe+8Ot86VOfpdcfcNONt7OxPuLkrQf4wmc/z1OPXqOZKLb9JqfPnGRz8xqTckKed3ng6R0OpD3u/uitfPqPP8mjj53nwNEcFcZsr+0gew2/8uu/ShgWFKpHYxs6yx0GcpPr22fZvaKZeM/howVXpo+TbWt+5+P3cOzojTx29hI+OJK004IYMc04ay1mjTEkScyHSNOU0XjCO97xdp6yz/KFz3+OI0cOMa1KZKJQaYapa/pFl7d/zxl2zQYf/7XP4aoa3RuQKhnjUoQk0TFE7sTJYzz2+KPceMutVFXZNvEz29F4rcl0jlKKPM/nn7MkSdBak+eSLFOkWUaiNQgxT1mXUkKIt8/SlCxJ0O39tFKRkpUXXL5yhY316xw/foyTJ0/Ga6SIQl6tNSrNEcrTmAZrLOV4ROM8deMpbWBqA6PKMqkaGgedTsGg10HhUMHSyTRFmqC1IE0UWZailSZRkixLKbIClWY05RjvAipEao8PzHUZWZJEA4zZdZ0IAgkpkMLvlbjz7wGRMtX+XLUNz4xqBeC8jY2cVgRBi14Tk3q1xvh9jxP2KExxwu3iVKY9Ht9eL621FEXeTvXEXLw922+UjGL92d402x9mmhS5z8FqP4U3tE3N/j15f1PgTPTsVy1INNv3tNY01rbUKJ73eCEEkiRq/pyp6XZzHnjwAfoLC0iXMTXXue/cF+gpwdozl/jSpSeRvSWO3Xgjb3jrTTzxxMfQh06ThR6LgyUq67hydZtmHFjo9IAiCoBb1yCtomuS9w5caEE0SZomUTsTXETE4hmZ7/VShEhNDi2oF6IFshezqUs8z9HuvJ2ytOJk3xgMDS+tl9Y3wvq6GwIlRPQ5Vnto0gw98cHN0yKlECj2oe0ujqWDEBgbC2Qd4Z7IA0SQpUmk/9Q1xlikTlFaUlXVvJieLW/2UOnIAfTtRX1v3DtLoox/9qz65qi4FHPhmZRiPkXw+1IlZ+FAL0RTQoug7iE0bWMh9sawop1i6FYMOrMxFu19rbXxYhMCeZoi08h/nE9h2mOPY+Hn81BFW8AF7wjWtVSN2e/aTUBKnLHINPIfvZ81FBZJ/Fm0vPMIJLL1wZ7ZuwUiupZkSQzK8g7rDVILvHXzxidNEpJERQSwruhmmkRDOR0RaJ1urKM2hjTRaCTOWZJUE4xgMilJtKZTLKCTwGi0HUO7egW4BiNB5YowrambMcLVNNagFxapXaA0E6TUaBE/cSIEfIic9SATIIa1GecJwrefX0lINFU1QemcyjZUzoAzZEmXPItF0wxxk1KTF12GuxU6CKSqSEQPnSyxOdplokbUbpdOvoIEnLEkWYoxDc55KkqaxlJ0ejGfIgh2trZwxqC0JrjIdXXCU01Let0upjFxo0t0i9ALPLGpcd5hbPz8NU1DbQ2VaWIBtI8fHlFTS5qkSKlQwkekK0RbPt+KW6WUaCkhuMgD1+nX0Av2f7aEUPPvMwisdwi/r4BIEpKsiMenasrG4EXV9hqKfq8LtuT0idMoKUlTTdbtMZ1a3v/t7+fOO9+GbyR5BolK+K6PfIirl7cJ5ZDveMeHeeTQJQ4fv5viQMn9T3yMfOU6H/7wt3Lurgqtl9ncvoSWjmpq2d5Yx9iK7euSW858E//xZ36HG0+/gSa7zLMXn2KyIVlePcP5x9Z45v4r3HzTUT74vW/CdSW//Uf/mVsGr+PqhZLt9W12dp+hf/wEP/TXvpmf+mu/xJEDR9G6JMtc/A4pA6lAqUBIU65fX2Nl+QCdbgZAXuQAjK5e5+DBggfuuZfDB/scO7zCo489gaug0x9w822n+PJXvsBz57qsXTE8dPYs/SxF0EUXgvG4RAqFaidpQnvuvfdeLjy3jXMW1QYXCqFQMjbrWS7wIYIL3s0mhhopNUo1KBVibkiSzMGGCIJotIoWuYnW7QSDdvqgSNKUJE3odAqkFDx9/hpK3U+3143fRxHpLLPHmj32ah6nu15qvNBMG8/GxjZX1ta5trWJCQYhBRpYWV7ixPFjLC8tIZVorzuaRGnyNKPX69Dv9SiyjE6i5oX1zId+BuZUVfU8pH32GqWYpe4CM3LIbF8Qcp4WbqzFmTgtUczsUGfah719wDkbBbD7Jsr7pxCz2yYvAjBFvY1tbYHVfI/bP41Q+4r82ePtv6+1tt2Ln1/wBx/mr2X/Y87+GFPj7CyMS7cgUnzf9jcts+ednWdJ1LglyrO9tQEILj53mf7yCju7m3gPVza2SLoHeP2r3k2zsUOtDLedPMmo3OXc9jq3Hj3M2s4IX005uNShv9xlkHfxnghIzGoGEfN2tErahHVFluko2if+QcxYC+1kwDuCs1hnwdlITyNOuwIQhIoTZCEwKJxUc3tnKSJV6evVWb60Xlr/va+vuyHQMtJUZFuQzi+6bREipUT4vYvV/CJp4+g0CPZSN/M8IpdCIKSiMXEUmKYpOsuwLuB8oMjzOYdztmZF34zn5/eLumbjzzSNI9JWABfa1EfRRp0Hxz67UTWfCLjZxafd/CBe+GZI/+yiPNtk5l7FzpNkaYvqu3bEKlurO09b18eLSzxBEcUSgiyLTjG+nZjMaE4vlgI6pwW1F+a0vU0IYU9s3U5XkiS6vRjnEN4jlEAJHTcKQMpYNBhjsI1pKQstT71Nu51OpywvLBLw7XmI6bZz9JBYlM445yFYpBTkWRqL8BknWUA9rSm6BXVTYYyn3+8xHI8Zj6fkaYExNTJJcdawsX6dNIE8dWSFYGdUMZ4OWVjoQ2nYmU6oGoMXGtfUbZEqUK3DyXwSJERscpyL1tvOUU1qnLGoPCUpUvCOpmlIpECkmsoaulnMAZg0hpWVA63oNqbuKjVlsrsBNmWxs0rl1mJhmJZMxhO0zqlrT5om1Kamk2ZxOlCNUEpR5Cmlb1hY6GGqklTnNHWJE4Fup2A6nURrXK0xptkLLfLNPAskSVpErKV/oCQ6TZlMJgTvSZIUEUClkTZkmhKPJyty8jTFi2gP6YVoRXNtMNlseiZF+5mPDh2z9z5JExKtsda1I/iYWoqUWBdH9zI1cULUZogk3uOsxQdYWR4w6HVxtWB1eRVTGSbTmslOw2LvKBcu77JT7tBJepSjisOrN3DxnGT1yIDSnKLorXNjvo6ZDlH1Qc50v41H7v8Kr3j/MW48fZIDB27j2XOPI6Xk5be8BjupCToGKF67usvW5ByPXf4U49GIUydOspU/zdvuejmHfuC1XL52lUuTe3j24oPc89vXeN9b/geOnb6Zfucxhk9fReeeZ91VPvvlZzhyMOXRpzyNKZlMxmidUzUVUiiECAgV+Mt/+Qf52Z/9WaqqAuKkQGvNyZOLvP99r+P3fvMXcQZ8M+WpJx5lefUQly5eRHcalk71KIcJzz1WQeGQRYYaBmpTs7DYR4mEpjEsLw84f/48Bw+tkiQ78donEyC+v8aBs56yURgbNV7ehVZQuTftmSHVEPa57QgQGiHTWHwh5s2mbIWW0S0u0kyUVKhEzqcHnSzbK6qVmk8LpJTYED/fRapJJOQKennGiW7Bie5BkJIkTRFS4zxUOxOub+xGKqWCRCcUWUqnUzBONVdaapLQ8dqdZhlpnpMk+65VOkVJFT/DSdKGxAWCjLS35zVCMiLSSqlouSkFWZKSzh7LB4KNacJlXVFVFVmW0e105luVVmpOoY3T1OfTeLyJm8LsPZhd7/0MuZ6bdOyJgoUAFVoapm+TjPeh9b4VO7xQ/Bva4lfv0wzMdADMmxvRUs5iE7BHCY50rtlnZA/0aqlLVqClItGBLMm5fv0a09Rz/NhpDi4e4OBgmeFkl2lZsXiwz4F0lc1ym6Wl44w2zzMsLQtyCb9QM81KPCNylTGZTOJ1nTbkTkR6jwuBYCLCrxDR2tjHqSdKtCnv0ZUqTscjcGabCmcqlK/bqXVrs6wTlEyRKsEK8N5gTfz4SynnmoyX1kvrG2F9/aHc7cjN2Ta0hOg13v4SgD2UZB+CLnWrk4oIlVaxABEiag+si0hmLMCj0FiFgBbgGhP563ovfRGI/L65rV9baLfoepJlUYgWWrS0LcpnHH7TNPhALKgEWGsQPvI2tVJI1RbYwbWIpyKENsY9tF7QIY5mg5hdiD22Mc9HbTw4E9E40xZH1ntS3bqCSEmqNU1ZkfZ7regztE2URQUfufYz0jfgnWkv2LFwb5pYMCrZUqOkim4uKiWoMH+94BEOnDUkicbScO7ZC5w4cpqyrCnyLiJRWO9w1kc1RFPT73UY9AvOnTtHp9NDBHDOYG2Y+3rPmirrbGwYkhQl42tvbLTQlEKRZHI+ZUJBYy1ZmiCcpTJjlJLY2iFlQrcoMM4xrhxm3LA73CHPC+ppyYJwpFIyrg2JSklU9NH3ImAJlFNL0FkMhrM1zkmEzKimJSpNSVINuiZRBcNhGTcdJ1nudegKSIIl6y4Q6hFKLZAc6jOtCqrdEemCp24aAhV5eoyKHSa1ZVKNWOkoErWElxPSVOC9Idc5pgoIMgIWgqesRtTNFKl7pEnBuGqI4dYe31IEvIjOQdOypN/tY+smnu8QN7zGxwbVGINpLJPhmDTJ4mdeJdSmASTW1DGcJ88JwVI7R93mdvgQokjSOwyKxsaAO+8jXzhPugRiIqh1DqUVOtEY48mylLKqSEWGQKFIY+JxqEmTHOcCQWrK6Zgbb74J2xjyvKCTauqyxCR9dqdjskyhM4VrAt4EDuU3sHBkyvrwMba2dzigbiLteUBRNlcoryywMyqw4TqDpYRjJ2/m1a98H1966GM06jOs3ftJBB3e/dZv5+N/9DGOrpxEiJpEdVlZPsjDX3yQkNUcXTrK4mqXpcFNNPkruWRGXCmf5NnHL/GqW/8SH/6Hr6A3aChLw5te+1683CQk22xtBj73pU/w13/6R6i3RkgVkVVro1i7qgzee4bja9xw8jbe9Nq7qasKZzNqU9EfrHDu+oOUco2//iM/wu5mjcXzzd/+bQwnO9TjLj5ZJ+2tsbOzwZFDyywVy4xG6zR6RDOyjDY3WhRYIJUi+JiASwhzIGNWgM/T352kl+XRiaUFQmYgyEwUun/iGVrQRQoLwWC93SuOfCC4QOVs1Iq0zYVAYIxDSsVkMiHtprEhb9NkhVA4GwXIHkOSxuLaWjunMPn2s6m0nk9zU52RZVlE7eNFkERqUp3RCOj3OyTGRTvbRNORDm0UblAwYsRyVuDRZDoGTioJur1ezoTAearbvSk214h2CqI1aZaQpEm0tXQBoRU6yUjShFxnpFKR5TEJPEk01jVopel0c4R08RqVZCAUaRbDBtMsReEw1rZUzVhwS6ko8pxcSZytMS4WpalWBBHfExciwKaSFpDaR2sVQrb6rfa7PQPmWrBJyn0UJdfaG1vb7jnQyVX7mYl7upAxlNC2uhE9T0/f4907CULHcM/bX/YyRn+8w6nDBbquyPKUSTMizTRp2oMqsFauEQhcX38W40s6vZyGHQiBTl8BC3hj6SddyrqmtjWlj3RipRSDwQCtNYuLS4zLKXVdx4ZVBUTwqFTHbBUfrc69adCJJOn14hTU1EiVIGQSQY5E47ylsRYqE12J2ubQ1E10r9rHUHhpvbT+PK+vuyFIUr2Pk7jfr/n5o8fZZjSfELThZGGGXLSgt2vHmJKIMIhWnAx7AtwZmj4XvcJc5DsT4cqZcCvscyMS0Y1BhPmjtMmOrRgOEC0fMUjZJiOLufBqtvbTg7z3qH3hNrOfzzdTuYdMv9DBwbabsLMRqbbW4ucIkkUnGh08oqmRQqCzjKas0Em6dx4IKJW0xxRt3oSO9KeYXBlQMrKTbPB4Y1Fa0+l2MU2DtQ1JGoWOWZFz1113sbs1ZnFxEWtjWm0sBiLylSSahYUFNjc30TrDuZn24mvt8PYXFHVdk6ZZOz2JQkIbIte2thVKa7K0YDqdkqUJnW4X2ZRRP+IcnU6PmVWl9Z60ydhZG6OMoNAJWli0DGTa05iKoBJ8sG1KtMNbCzLaowalQQSm0xFSSbIWQaL2+I4F4ZiWU5RUTJuSPE/RqcIYTV/lTMOE3qJgaVlS74IUXUxl8KFi9RAMd6N1Z797jNpWEFKyLIf2eEBTNw02BJJUY5omov5KtcF6NULEhjVNEuppGXMArGmpCZKmbiLqHGfXsfij1c9IEdH31n0jSTVlVVMUHUz7/gulIbS3mdEARFQazBtQ75AyTvBCCOR5jg0RUZ5MS5IkIbiA0m32gDOkWcJkOqXo9gkiMBqPCM6TFR26nYK2K6SuKhKdoJWkLBukhzxxaJmAdSg1ArVLqhKm1RqjHUVglW5vg93pI2h3lLNfeZQzN76cM6cHXPpyD7n4FCo/QN3scvnyvSwOVtndLbjr9IDh7jaf/uRv8tyl+7jpO38I12RkUtCY62RJztvf9mM8+uSjPPPUZxhP19lIG2664QYYD/iOb/5xOkVKWW9w9TpI0TCc7lBW2yyuJlxbP8+Z06c5/8yzhDomhSulcc7H72pLNRn0jnBt/Qqd3iq9nkJKh/MaqTS75a3sXLfceNOtdO5MKI0nzxfZnazR6+c8d/2rDLdHvP2b3sfmWkmW5LEwUYrd4ZC6ruci3XI6ZWdnh93dXQAmkwm7u7sMh0Om0+n8j2sTc+u6pq7reVMwc8OR8wyCMJ9+RrqijMmwfo9jL2V0NdJpgpAtKKEk1ga6/S7TaUWv30MIC0KRJWKOOFvr2pCsqF2ZZS/EwKl6D+m2Bq8UQijqUDKcUW68x0vQQtERKdv/O3v/GW1plt51gr9tXnPcPdeGj4zIyIj0vrz3qlLJoZKgJIRmgEGwaEA93cA0zNANPTRrGkbTzNDQQDe2WyAQCFlQlUoqk1WV5dJVZqWPiAwf15vjXrfNfNjve86JLGZN8bFVsXPlirg3jjd7P8/zd65EWMPhpMPQFZRK0K00NhUoH9Mj4oV8j1Z7FaPGCCHQUqC1rP3la/vJWvQdxXGgk/qAlkZxTBLHRDoKZwAeqTVKRSAFkY5QMgRHWmtotVOiSBEnMQu9LgvtlN3dfYq8qvUK4UzQkSaWkuXVFUpjKE3F4uIi7bTN9vY2sZb0ej06nQ7Guhop1HQ6bYRwSDk7f4IuhPp2k3A2i3CeCREQE103gkkS02ql9bS/br6UpixLWt1uQHSUnNKPAposkDqIxwN9tAzNgAiDMK0TsAbjPTevXyFOIvqLi1RVRVkW01pgasRBGPxZPNIlAYGs6auVCee01i2ENqSxppcs4QVkRcFoOGQwGTGZTHj50nmOHjuGimoasFe04g7KQyIEpqqCtbJMkQpMWSFVghV6qtFTUUpRlLTSTtD9pYHyGBovUC3QdaL77XV7fT+s750ypNUtEyRfF9vOyVuKX7jVyUH4UPT7Od5+EC7aKRStUYF3SZgmNXkEQss6sMXRuDIEogo1N1VNRcaIIB5z1t4ixJ1Co3VDoJUKG3MtOXD1dG1mn3MrDNssWU9LhJgJzZijRs1ffv7v09u34T5cfbhaZ8NrYA17e7u0uh3AUVU2wO8qCvxJOYMso9pH2vngwGBMSVWZkKZY84LDlM5SeYuygQ6jtUZIHVIbVUAR0l4LFenArWyEzt4ihcfjWFjooZRiMsnRURIm+76eutT0gvB2BrTCWY+SGuuqqXNTI1J0ziGwJK0WznmGg32kVNTgBd5apAAdx0RRxN7+PkgduNkk7G8PiaxAUiGVx1YV2BJnQiJqE2okXcgiwDukc9ha6BfHaioeLIuKNErw0iN8RZoEt5Z2p4XSAidByBzrHbGK6fWPUBQVaTulMCNWl9fY3rrJcHCTVnqUUXVAVUWU5Ajj0Sai12txcDAgz8Z4EaOVwhpDNp6QxDFKB9QkUAEsWoVJfbvVClMs72vxuQ6feRUoWWHKJ2p0RlAUeVB81EVauGyY8E2bd2oXmOa7J1T4LjoQc8K7NE2nDYGUikqGxlVGwV5UhlkZB4MBb3/Ho1TW8O0XXgrhY1VJHAdnmxPHjoQMiiRlodthOB4jYkeOp5gUdKIIGVdoVTHYyylKT5ocwnhN5A4T6wHKC/K8x2i0RVleR7USTh8/y//6i/8zhdjh/sfPBA1EJdFWcuTwClrf4NBqzJkjj7PWO8yJIyeYFENiIYhSzWAwYnnxTrJixLee/QZDf523PvIQbzn9gziXcWq5R5aN2cm3sN6RtjqURYoxI1bW7mA02WQ43OH42ntJ9TIy2sMYjxAJZWkD6igDuuNMBEIzHFfEkaSyA6wNn8FxdYUTpx5i96ZlTxYYn6PSCdaN+N2v/CqFGPDhd/w0Vy4O2Nm6SafTCddVgihSqChCxzEdKVleWeXUnXcGwwPn0PUwBphqlYy1BIfPMGXN85yqqiiKgizLGI8HGBsMEEaj8fTfs8mE8WTCeDRhPB5PC1BjzPS6pqrwPiBVxlh6vS5JohmPJ6SJpizzKWWwGRYFCovAGDHVFzS69sZ8Agh5DfUebb0LqLLWKB2mHoMqI00SrJBsuZxUSux4yIGuEGUPn+1TKI2LUopyL3jahx2fJlLMO18jZbUtL762Xq21B1rhrQvnl/d4IYmjeFo0U+vmoig0Bbqe2sdRcHSKhQcvMba5rCCJEyAgzN1uELAHEX9MUvv443zQZ8URqHDOQfg+RlLQabWmHvndXhdXv99a6+AgpwKKLKUkSRKSJNCj4jhGa01RFAgBadpiaWkJ7z37owFSKrqdDp1ulzRNULUovigL4ljTTlukSUB2nHcYZ2jF4B10Om0uvvEaBwf7iCjCA620Fd7OGlGnfsxIEZyDnMOF7qVGnw21NhqDw3pPPpkEu1wp6PX7YfDRsRzcuMmN3QGXLl8iKwyHDp2k215kubVMO26RJAkLvW7QKlqLSCO8E7SjGONLEJY4SXGJw1sVdDmqqI06PFIF9Co48t2mDN1e3x/re24IxNzEvZmmN2KsQPSpEyHFnC2nB1TN5SPkU4YrhE3BWousKSdN0Tt1+/G11ZudBdU08J0DlJYz7r+1QcwsJE4KhJolS843BeHx1oVSEzJTP7sAG9zaDMw7Ek1fh7qxaAr70EwEDuObkYHm+YRiCmQUJk1xnFBWJY2ValGWdGUX7yyRiiiLEryc3r6vI9enGgVnAge25oA3AilXp4oKCdLX9AApg22fDJMZYwyCkjzPiSJFnldICcaEuHdnCpI0ptPpsLu7B9R88kjUdKSZg1N4vsGStqwqjA00K+ssiCC6K8oSIQStbgpCkOUTnAuTQqEE43JCrAWtJGE8npDlY6I4RqmIoqiQUpFNxihpqcoc31ZMKkdpBR6JtRVaBo+rIALzGGsQAiIfJlPdpT5KK65dWw+wuvREzrHQalEay3ic4aqSuNWhFWskCqlitPTE7YTBwTqx7hG7GAnEKuLGtTc4e+4OrBuStFM0gixzpPX7pLQGGahhoYjKwgQ9TsNnxYcUzMJUgUbhAe+wVYXwjlbaorI1/c7XPttq5jvefKadd+R5XlvKBmTHWldPJOvETU8oSGpuMtPva+AOJ0mCnzYcMoSGSTlFFHytDQrNVcx4POTG+joIh5DheVSVod1pkyYxKlIMhiOs93Q7Kc5Du5UQySC6jltdOr0UJwQH10fsjsaYOKMSBeghsYCj0TsYZxlZ9Cppx/Hf/+Jf5NgKfPiBn8Bla7Rtwb56mZFf5GDwOlJGXL0acai3QqfTBnUvw+wSnXQDny2ysbNH1FVc3nwO3d9EVw6VrDKpoMwFzg6JI0WkOyhnGI2GEBmyasJaq8/rLz1PrxfRThfJJrskLYtxAikDrc9ZOzMPkA5IQRmILN3eIhcvnkcqmEwOUNLT7Qs2d7ZYOXKINy6ts7a6xM7egLvuvQfv2wwGA3rdFlIlSKWxsiIrq+l+1NA+PNR7X73DzQ02pqhtbSHr8SRpQrvTng5NpkV5s59TW8u6xtggaKhc3WBUTUMwmVCakrIoGY8nVFXF6uoa+/sHXL9+nWw0DPa4ZR5QDVPifdAclYWbNhdVVYXmxRrKsrxl722QBQgUHhlrdGFDonci6duIK+vX+Yk/8bO87/T9PPnNJ0ndkLwSbFiFKrbZv36R14cxC1Gb0BZL6ugFvAtataq004n59AwSYb8DERKevcfaKgxxCAi3QEzPFI8L6CNhv1ZKYcqcSCcEm2hJZQJVqsmKEFLiccG+FYcWtVhbJ6GAFq52FpPoKEYIhRYxSuhQRKtgLyxVaDa1EigZUJc4jmgc76IoItJBeyRqvZcUsxC5xgGrCcAM11MkSbCHLaoKrSSJDiYSka6zSLRCeEE7beNwtWZDc/HyOp1OByVGRFpNz2YIAwsVBdFyacYkcVJb42pUJMPQTHqUajEZDmvXJUWaBqeuqijRJCx3VjE+59TxO1EqYXHpKKOhYXv/gMn4BltbW7zn3e8mSWLwteOaCJakO/sbOFHRbrXo95bAa2KZIIs8ZG/U34uGGmwr8/+nOrq9bq/fH+t71xC4pqRmSvsJRYmYNgXNZLKh8YS0yJmTg/SBohNqmdBABHeY5vq3Xlf4OsWypgQJH9I+Xc3/v0XgxswHe7ZJzx7sPJ1nKryqXV+o/ZYDbD4r6udt2xo70kYn8WZLN+dmyaDNmqIHMkyiIiVxzpLEEc5bjPEhIMoHQXMcaUxlwUNR1UmybiY+s9ZMb7/x9JZKoqSevjfhdfF1AxAQEe8cxgUnEaE1VeGZjCZEcYKOFdZ6lJbYMjRvC90ezlkmk4w4TsOEixomdrc2SlOeKqFZaWhXURSF91AEG0EdR+zt7hFHEbFOanqXrbnOEEcxJjWh2YkTTFURaQnSMylGaGVxRQF6gWxcUViFFgJ8IxwP76e1lsp64iTFFxXWGA529zl15hSra8tcv7nOYrdPYhXWhSK6l6b00pRICLyxQUjY6ZGoinFZoaMJRelJZJu88Cwt99jY9IzGO5R2jPMT0tYakU7A++BI4l1wxBCaONHsH0xYXVypm5WQtSHqab/3HqEU4/GISAkiHehFxodDP0yvZrafxjQ0tkYgGpCxOI4oswwQlKVB6wipRC2kb9y2Go5wEJNa62pOsAsCZR+QiUhJcIFfGydBkKm0wmM4efIYV65eJlKC5aVF+v0l1tc3ApInmPrfV0WBdAJvHabMKYoJxnv8SLJqNG99z108qvZ46dWSibqByw1t3UP4iqoYIqOSQ/138e8+83fpVF1+4AOf4PkXn6G/coS8OIa1GZ0kY3M0ZLTd4+Shc+yMNklanlLkVGKLSdEl90OchP3hEKoDlg91yDYsg3zElf3X2d3a5b6zD1EWEu0KBI7JSHB19xs8/vjbubrxEoNsnaPHHudgcEASe/I8uHdFkaIBAY0NhgVRVGFtipCGYTbEi0U6vYTz51/l/rsfw0y6ZPkOFsv2/g6buzdJEo1wHe448hhKKHRa+/lXDusrdCzQddBV8/5pHdGITcWcmDQUkzO+eBAUzywqK2spyqpOLZ4NHoSYWS83sxu8q9Nfw14cpy06vV49RZ8JTK1r7DwljzuL8m66H+A9TUZLcLMJly/ynEmWhUKvrJhMxuTZJITVZRlZljGZTBiPA6WwKHPKbAwOJlUVmvM4omPg2VdeJD/e522Hj7J46BxDnfDYkZhyfZOf+uN/ntHy0XrfDnvdVGOBJIrknEai6erA1edAGIIIhA17qyfY3QsRPtvOOZQSWIL+wVQVCE/USXEmNAhCSQKebcFbShu+V0IKyioPOjgpKQqHdzk1thcOXhmCAZ31SKWw1oRzVQUnviiO0UkcEFMXxm9xUtNLXUAMIh1NTTC0CnuO1sFpLI5j0jjYQWsV0Ol5sw1kcHWKdcivaD5viMAAaF7LKIlrAXDInknTBCkICEx9TkspUZEOe01NlfQ+UJuS2pgDYKHfpypLlAjGG8114ySq9/02wkd0ZBcpYswwohct0Vvrow471vpr7G/u0+m0Q0NnLZOiIO62qIxja3cb8PQ6+yRRG+HAlSVxK0UpTRRHIUwwirHlbdvR2+v7Y/0nUIaiW6zTmgnl/EHzXe4GDYWmnsA3MeSIIBALXXitUKqXbRKJRR2CBtOGwuND8JacZQdKIZA6mmoIbnEEEPV9N5eeTs1CE+JrbYD1rtYdMIWL5wv+Bi6fivSknBbFzb+raRJm8/BnPtDN/VoXKEBCBstOUVOkwiFY0GqlbA62aLe6xHEUpla1i4eQYQoUCv2AGJjKIJ2oOcAzDYB34QkK7yjygqietBV5TrfbJU1bjEYjVBTjAWOCEK7MixDQ1Wqxs72Lc0z1G5U1SCXRdVE6LyoOG3UckJPm8lVFlCT0+wtIKdne2UMKSZaXpFEcgtKcBekRRBR5iZSCcZ4hlKcsK5SIyIuY8WhSO+8EJKmwdvqZUrUGxLpwcAZ6jCftdSjMDgKJt46LFy5zzz1nGeztcrC9jW0tTKlm3gYnihJL0m0hooqiyFnqLrKyei/XNy8SpxavR+wPLEunjnL0+DK7B5foLvYZTfaodCjAq8pQGUUcxxg3ph1HbG5scHhtFR3FjEYTlJA1XUwglcQ6T2kziqqg2+njraUoC1SchMNTBtFhUZTTzyEES76AGNm6iAuFVhzFCGHROmDx3nnwtv5CuIDxCUEcx+R5Rp5nyBp9GA7GpGkb7z2xVOQuNFVpN2E8HrG8vEg2HrGy1Ofa9Q36vR55llFkGUkUsbe3j3EOHUdk2SQEC3lHWQRaWRwltJIOw4OKL3z+S/yxP/sRjpx5mFdfe57RMKerEx48+VE8bVrpcZ575fd4+qXf5m/8V/8ru5v7LHVPs7e3zt5gm8XFHkJ02T/Y49TJB5Cux82tV1lcLsjNDdrJXSx17iYbTdjYO8+DD93PpesX2N96nZXFiGy8zaWDPbCCveFhXnvl25w8cYyTx+7j6ubrRK2IKPWsn7/O6urdJOoulBA443C+xHuLkiWOkHJqDQgkWVYEbaoCY+FgcMD+/pAzZ86yvNhnMijAx6ytnuUzX/pVvNpnZbHD+975QRaSHt4WVJXDqdBUa60xpce5sg6tC04z1vtpcGA1l8tivakbPVFbkDYNQ0ABvA/7Sayjeo9qMNxm+DHb25thhPPNEAWK0mCNQUeqzqkQc4hDQCZjrRE6mjrChaA7jxKSpB1NUeXmuqLOYlHNfj9Fd2doiLUVVli88ZSjjHEMVV5wcPUGr1y5QF+1ee7ZS+yPv8O1a9u88Ng5/tjP/WHe9tg72I5TiiIjz8YURUZZ06ZMZTE20DCDxqcCT62jcCgdEcfRdB8PTkM1rUmqmt4ZvPCLOuRQRCHUzXpH0o7xjnoKnyJFMNKQxqF1rVeotUCiRkWkUlhvpwMV3ySMR8Fi0xOonUqBizxKWoTNgw21ry29KzvVPXgvqap86gIY9g4zPcviOGajyFBShyaz1iTJOuG5sDZo/ZS6Jdsm2BYTBldAVdOVWnFMVeXoSKN0FILWasqS80FTFycJkUqCkLvWOkQ6mj4mKwwCiKUgjWOUCqhrVL8GcRzMNHAB9TQO4qSFFsEFqtfr1giUod/vB7qV1sRRoJ3Frs3iYh+sxxUBWa+qMjjQaY2JIjJfv9/cerbfXrfX79f1PTcEcZwEqsdUOzDj/Iv/yPdl1gzUyIILwitoCu4AbeJmYraZ84WYFtC+2SBqIdybm5KGttS0AWHiVTcGPmQSTDsLJM6awFdvgl9gGgAjhYC5ZuDNhX8zzf2ux+A9adIKYuE5a7bm3ywGJQN9JtYR3hsiLfAGvFRENUfflBWtpEnx1LUw1U9dlqyt6sMocDvjKDQN3prptFkCSkaUvqopKlHgx9rQjA3391leWqDT6TCaTEjbLZCCqgrUnjRNabW6jMc3SdtdnPPkRQ6y9oL2wd3J2eC4ZE29gVYh7CpOYqSUTCYTojgmTjQ3b9wElZLnJa0kwdowGWq32pTWYI0lSSMWlhYYTg4oiknwxFdQZCWj/YykMGgZgru8C4IzjIVG4O4J/tQyCHJb3Q6lKBhu7CBljLCeF55+np/+Q3+A7c2b/PJvf4FDa2shNyCK8AJUXPPlvaaqJEePHqXX79LLE5JWj0RA2m5xMNmmtAccjK9x190/SnU9J1IaISzWeMbjMa1Op3ZRqSjKEilETYeKqCpLXlQoFSwJoyhie3ebbitlNB4jnCVOU4SSjLMRygaEoKzC7ciaWhBHCU3KtVSKsiimCFbznRHCgZ8F5qkm6bROcm7Si6e0Ee85deoU73vfe/i7f+/vk6YpzlmcrYgiwdJyj6LIOX70KOdfu0gxmWCsJ6pdWsaTnLTbDXkRccJgMKDdSrjr3rv58hNfR8kOayvgyxKZdPnb/93v8LN/+qPc/1DE1ZubqKog5yrd9p1c2vo1NkZP8rZ3vY1r+1/CFn3uOfV+bm5d5/L+Z1GtiMs395iMb3Kp/Cbj/S5rR3fIq5jI3clq8hAH+zd4+aVv8fij7+H8i9fYPtiEAqw0LKzlFMZh8jW2N68xnhxgxVFeeON3SFdL3vnYR3j6hS+wubPFHUc/gLURxu6gXCdMi5WgLCcBpVMR1oIUMVq2yYo9hGjR7i4xGK0zHlbcdfo4cRSznV1lY/87LB8+y6vnn+Xo8QWWltbop33KbAePQsg+ReWBAaqqSKJlfBwKubKm4QkhMPV+5GvapazDyBAKh6esbEhbrfeNgJAGdMk5sLZEyLoAtqGpbGwmbW0IMeWwu5lhgozC/hbpoFsoyuBoVZYlOtLkZRnSsmskU0g5PTOMK3ENtU4pXFnM9n3rpiixc3X67hSFMFS+ItUJ6UKHJNGYtuGuI0d56zvfjkWS6RhtDZKSydhx6UrMn/hv/htElGBMhTVl4KobgykDZSmrDEWWMTgYkOU5rgoOX3t7uwwHQ4ypyPOCSTamKksmkwmj0YCyqphkGXkWJvpZnpMmoQEWjQMQQbjsvQv20s6QRBGtXrcWfFs6nQ6xjsGFhklpPdUd6Di8F6ZytYGHRqCwlcFaTyzTMIgxngiPlOG+rS3wNWooBRRVgSBG1lRdXX/fo0hRFpOgY/J1E2Ed1nmEsDgkjhBM5gxY6nOSkLPgrSOvMqSKKMsQrpmNw4W9lBjnA0ptHe12G+Ms4/GEOE3wjRVrc17WFqxJmpBVLtiZBn4uAjcdrKFC46DRtNKUssrDZ0QJvJS1q5oPlrNiJuRWShHHEVEUYx0kSUyvWwcKSklLJ+g4Dg2+EERK02q1wDp+6A9+r5XS7XV7/e93fc8NwWg8wtYbXVN0eBe+tIEDGVYDNc7z8WcBX/VhVU9yvQ12oLfwYmv6gvAgVRhrWdsk/oaDLdz/jNLj8HO6hUCjaJyBxFSUDN6bMCaTEk/YPKRSIdvABa1CA39b7xE1hBrJ4AgkPQgh8TI0Dg0sr7XG2hJVB/g0rw9SBCcgF4S8C+1ueNGj0FhUzqKlIEk1lQkTcpWkOC9usY0rywIIwjNbhmlRv9enqvJwqFdMk0fH1QgpLa62+IuiKLgSaUHpSlSkGU1y4jRG6ohJWZHEMVmWE2nF8vISm5s3kBqcK3EOFhcWyLJsWkzoSOB9FQ6UWAQHo0hibIGyoYCQErqdhGIyRgqLkIbCZQipQ+6ElWilmEwyUIKDvRHr2+ssL3fx3rC4toy1ETujEZHMSKIwhZVS00Pjq5LCV2idBJREKSyEQ1Aqxts76H4MucPGAhsprBD8yq/9Fn/2v/rz7FWOX/33X+TuY0fopEFoFtnABU/iFjcPbmIWHma4t81gKInMGOyAI2vHGQwkd578MLv7v0k2WScfGQ73Y8q8IjNDhO9S5pCmYy69usM9d72VqlinEiXtFHSckE/Cobu4tMTO7jZrnUWE6NBdsERpymCcU9hdPEt4NDr2SBUjfAfvS0w1BJcwGlg2N7YxLqObtshKTV4K4lRRmpz+wgLWjRkeZCgfE8cCLVKqKifPM5SKiZMepSlxVUWaJiAKHnzoOGWR0+2lTHIwlcC5Amkt+3v7VMaRdDrsHAyI4pjSW/J8TKfXo6gMRb4PZUySDMG3ubyxzX/+f/8pzl96lsFEs3c1Z3Bjg+3LFX/3r/w6f+Vv/BT9eITPFGnLs7H7m2yMtxlfjHnXux7j2Zef4XjrEC8MFyjYJmpnbB9Isi3HmRPv4fWLv8qZk4+jXJ/hwYRIV1wrbzBx19jLDxiMHI+//b387tf+N65d3uHHP/aHWen1MKbiuddfgaii188ZHbxIq93irY/9AG+8MWF3t2Jx4RTLvdNUZp3UH8IbR+Y1UVyihEdYg7Ej0nbK5u6ITtphZeUIg+Eu337+y5w6eY6zZx4ICF26QGfxEHs3BNuXX2Ghe5Sf/rE/z+aNK1Qqw9oIVIrJDxDW0u8v4rqCl658gRPJfVOKWEAyQ6FurQdf1Zz04GY2VQQIQek9wkuECxQbb8P0VSoFNoh8wyQ5oKZVE5AIU26I82E/c36OUlOjEMYYdE1pi+OgR0niFuCRkaIZ1zgbGtGgtwrBafggSpVCTSlI+ECxlDo4ELla/CtEREIEXobwycKB9RyYkG+TOVM7eIXGV3pJboaMdw1Cq+keH+xHFVHSot3u0WdObzFn2SploOUwRcTBMsvgKctAbaqqinw8IcsmASEsyhAaWBTs7e1xcHBANpngnGMwGJCPJ+yNdhmPM4SXDA9GoZn3jqrIcSq87tMzTFDvqUHPkyQtOq12OLtcY+ctkDLG2TCASFopaaqm6HerpfE2PM8kSRCE5tKaCq0UpTVT1FdHmkgE7ZgUAuwsGweoA9fqz4cJdqTOVEiCzWpAKoONd1Rrk5CeopzgvSeJJRKHl/UnQ3icqwJtUSpMPka6QPt0zlGURRg8SklZlUQqxvuAWownAcWSIgR5eiTWuGkAaWFqalykSVSEsEDtsIb3eBkE5eHy8fTzgYc0rtEIrflrf/0vfa+l0u11e/3vdn3vlCGlQgaBc0gdCk1TVZRFgWogVbiFa9/YgDZhSqLeZFwtXtRSBeoO8z7YM1ShSe6VU+rNvL3pzD97HuJumoQ3W6DCHGpRT/2bv8//LIRASV1nGQTCEW6WY+Drw0r4JtQnXEYrFeDLOS1DLY5AKoVTweUiNEeSJnI9UN9dnRApSdM2k0lW81sD9ceYkJgbRzGVqyjLcipgC1kLqg79CQI4rTVCRdMDxTlbT0fCv9mqDNZ7TmGrksHBHlpI4riFsY6idjdqBHLWhuJfAGVV4b2dvp/NITEpc9Ik+Nh3Oh3iOGJnZ4+yzNGRotNuY40hz4P3f1mWGCnROuQfSKVI0y4B/TBcu36dOOoxyDJ0TW+xNqeogruQVkGoF6B2SbfT5WCSkaQpZWUYZxNWjywEdyCvGIxHdOOIsjL8n/+L/5o/8cd+lL/+V/5L/s7/+D8h4y6ri60wybQiwNSRYHlpiaOHDpE5SWYmIBIGoxt0OncyzN5gdfkeRuN1vC/JshwpDHEcocURorRgd7Ni7dhxCnUNaztEYplissfCYsrKoQ6D8QWGkxzvJSodUeQZVdXl5o1NpIgI5hpjbKzYHw4ZD0YsLhwnjiPiSIGX6Cjj9B1Hef2lPpEUTPwWUSTJJ4Yk6ZFEMYcPneX1/NuU1QGjgxX6fYc1JVFta1uZrEbvLEoLXnvtNUoruOPOQwwHFZEU4CuUShFa0Im73HHHKV5+6XXSKFAiynGwJy0me8Sdm/SSs1QM0dyBLffZWn+Vl19f4MM/8j62blyieHdGHK/y4hPnufp8i28/K3joxNvpxBtsvnEDLw6zfmkfsThh195kffcZjh79EFVm2C1e4nCrzebNyzx66ifRvsvJQx8lUTH7o2vIKGI4ucpBdcD73/cxyFJSLZC+4OmvbPH+D36aE0dOs7u5jY8WuO/+t2PVOnedOEM2usnpU4/w2osbfOPZL3PX2R7njv0k+AwrLZPxkO5CDgcLxHQRcgze4soOJoN2a4es2KWHw6tdHnzkCMILJsMB/V6Xy9cu8MRXvswHP/5+nvjaF/nEx3+Q3e0dWnGCtxO8rzBlTr/XIZItVOR57fI2z738Ozz4oXczGo2oykD3mKcFFVWJfJO2x9d0naoekojA65g659hG3D9XfN6qD2oc3ZjujbdkGSCnbkYwG+wIUbstOYNxIUQqWH5qtI7r8Cho9GdT6l7t8iCkRDRc/jltWnhMM7Q3FG9qus+m9XEmGm2aaGxyw9DqFn0Xte7D2SmyOy9o/o+5xykVHLoahFhrTRzHtFoter0eek6o65wjqp16GkFtFIWEXSkkRZlRVSZkx1QVeZZR5jlZNiEvCipTMZlMGA6HDAYDhsMho9GI4WDEaBTsZZtGw5ja3rmqSOOI7kKPg8GAwWg4DWbL8hwto+nkPI4DX1/UzytOEiRi2oBoFTJCoihCV1WtA6nDyeQsmDN3OQKCANlarHfTQNDKmGn+UJN0Pf2c1ed2cH+r3xsX8n8CTVhS1siRcxapAqrf63RASrIsC9eRon7/LFrJkETvAs0WKYiUnJ6NAo81Vd1cqWmaM/jgjmcrBBITDmXyia3nfjMr8tvr9vr9vL7nhmAymaCTeMYdryfjSRRRGTPljr+ZTtM0A1EUTbnlM3tSwM9Sg6WUwb+c8Hvha6tROfsdtXZB1lN2IURzHkzXm2Pip85Fc7+f/3n+d140zkBMBWZCaYTymLpp8TWnspEySyHx0uOdxTce8aJ5LEDtHT0TY7vgrKBrT2YbxG6BliTB15uglAR3GFM3KgIfSbyPQDisAy2DLWUYrIU8BEeTNllNmychwDqDsTkCT2VypBQkSUQ2GaEiTZoGLqjSMS1Rv8/W1hSd2klFaBCKNImx9WdASg2iotNpU+QBktc6otVqkaYxVVXVyZNBP9FpBy/sLCtCqrNSQdTmDaPhhDgOlnVKJ+xcvYIzhjLPKc2EOG0FPUOk0DpBWIcwnu3tbaJOFy8kw9GIP/8X/gJ//xf/JyZVhky6dLtdXJYRt1LuPNXin/7T3+IP//j7+Zk/8YN88fNfZW83Y+XQKpGdgM3odrvESYutzW32dvaQsUBI2Nvf5dgJjch69Puaa9cMi4stdGQRJjx/9CYH2zdJ0xbW7jApKrRwqGpCmqRU2YDd3T0GgwMibXF+jFw4Q6F3qIqM1tJyQFWcQ/qEOFrAizaJbhPrDqAwtqLIM0pbMRmOycc5lRAo1SJNNdYGK8ubN3e459413vWeR/jC556l3R9SmRhTtvEyQ0eqttXzFKYkbXXY2tqjs7TG0qEu165cpp22KJnQ7a/RW13i5W+8wKMPPkqkIxKlcdRBTwhE2cX7DhO5SVlaorhER5YYz6//L59haQEefPQkly+PeO2gJHnkDHec2mPntS8T6f8Ta4dajA8kqrvO2vENfGuV198ocOUCwt9BJFocXTlOPhAs6Q7adxgWn2Xt8BJbm7scO75AUXSAAXE/5tL554hcjBaCp57+bU4ca3PkcJebN67T7S2wXw0wI4coVzFyzHL/YX7ztz7D6tEOre4WhxYfRPgbVIWlylLi9gDsaZLoIs632dnKWF1epnI7FMN9lFYk6T7OtRiPDM4oFhf6eGfR2rGx/Rp33nWEX/rFX0HFEcc+cpytGwdBT+Us7fYqSVshcOzvDVhcOkVRvsDR1VPkuaEyAeFU9cTbWosp8u/Scc2GJTZoBkQYUNgq/D5SekoPadZ3acCo+dlm1ig0OqomLXe2l88QTaBOcFboOELKmmppPWVZYJrbF+G+rWs2SlAyDE5u0YLVt9+Ipec3+zCQCciwozkfau2YqxPqRUilZa64b5oPh0Anabi+c7XmYXY7gnqSXJ8jrrk/Ec6HbDQJdKj68s1ljKlwfqY7q6qKxsFJa01E0HKEVGKFVJKolbLUaYe9u0a7Q25LPKWrTt/XehBVVRXj0ZjRcMhkMsbVZ8v+wQHDwQBjDHmeM5lkYVAyHpNNgmZtMh4zmQSHKO8cxlRkeU5ZFIxHo6kNcaM3ah5Do6kLzzekCE+TlhvEItIBrZ8bxlVzfv4hVVvV7219VjcoRP1aGmeDIDrSWGcxVYlzQfNhrA1ovJJoIrxv7M+Du1rTfAgECkJifU1xk1MNVoWxRWAU1w2s1tGUtWBqBzhrZw5Ut9ft9ft5fc8NQbvTCXB0vckqreoNydRd/kzo21T6jXOQs5bMmCkU3Bwe1s4m783ytTgSmG5GYSNsDqxwUHkbvJRFPYHx9XWDc8at05356U+jVQgPc4YmNBC5x91y+UCT8YHPqZvrheKnuR8hoJrer5uT6IWDowlCEcIjVEOrEgjpkV7WCbAlzlbYqiCOVAgxU0zFfN44yqKsrUWDO5KYOirVUz7vECJwicuyRODC+xRgDsDhbJ0T4AVp2qIsCiQea0ra7TZFZSmKqk7yDBxTnKPdblEUOdLY2uM6/N6bCrSklUSUZU7aahHHcSiMgSRJ6fV67O/vU5Yh7MqUQRzZSiK81wxGE2SSghNESjEcDlhZWaPT6QRnpjLHe8vy6hLrmzskcYQX4QDTFrTUdPsLTIxlfzxiXJT8zud/j0cfe4Tf/Z2vEHtPmecUkwmV1gihuOPoGl/4ytd4m3qQt7/zbbz83OsM9wbE7VbwuPeweOgYB5OSTncRGUkqm3H0cIf93dfpdi2jkSVSfTl8UEwAAQAASURBVDqtFmWe01tYZq88IE3a5LsJdxy6m40bJUn3Ot4YinLIOC+IWy2SdsqCXKHT6tNpLTMajYntYTodSZEP0TIFYdGJZVxcQ4gEQcJovEsUB3emLLe0u0dQcUy7Lzlx8g666TJ4z3CyTpR43rh0jaefe50/9Omf4OH9bV564QpFURGnKvjlzxVfgc4RvlNPfOUJztx1lvGu4PrVS2gVs3ZkkcWVVSwhaTqKNDu7u/T6/RlfXO7jywUefPwUT33jO+xkEx55+G52bu7SEi1++59f4Y1Ljvvft8D7zt2J2R5x1Q8Z3gli9UWeFq+SrbZh/wLvuvc1PvtMzkvbWxxOLcNsm7MPLJPlbfYw9LvH8FxhQZ1hMTpLoUe0ZMZ4uM/RhTMIlSJcwvIpxd7wAlu7W8SJZG21w+7OPqXVtHQ7OMBECZO8YDfb5uG3fYBX3vgK9935Q/TTs5hiH4wkbQlGeYsquUFfH2Y/2+Dy+uscPvFeRmOJ95rVlWU2NiVWL7PYifDSUuQ5cdxhPKrIixF7+xnvffdHufe++9jf3SONJMJ5llaWcBhGwz2yYky73ef6xiWeeOp/5Ic++hdDRonSoSgyFq0DqtgULA29phmChIGDorIWLUGIIFaVYo7+wUyzBbPhS9AJBVvoxkXM19zyZm+ebwamNNLp72tqTTFzZGsGOrbmnzeocPP4hQhT3ebi00FQveYL0dlRUz92ITDhboMTnRBh8yT8XDk70zP4GYKspKIoi4A+Tx9D2ONDxxAagvqkoDnZgvBYE0dyOjl3tWGGcG5qAOFrW4skSm55Pr6qECroJIxzeGvIcheskxvKq3X1/h7utUHfqc8eqWTdZEh6/T5LKyt1A+hZO3yUNAnaNGtNmIrHGltP7Rt029fneVFmwRK2LKdZE3mWU5mK3e1ddC12Ho/H7O3uMhwNp/kTk0l2y/VCSGRFlgXk0RgzRZHmczK8NzNqbf0+yfp9K10wUAg6AF0PvII5gpaKJIqQSuIqQ6Oza2xsQcwC0QiouRRNdo6jqnKom5x27XhnrcWUfno/noCUhM/M7Ybg9vr+WN9zQ1BZgxaNdZpHNAePUkhunchDaPIbF4lmI0UECO8WCo9nKvxxzoUo9+mSBJeJ5ufZbTWTh4Zy5EXQEjhmE6PmPqYHErNDZX5zniIHUoCqm5L6EPC1uM5DHUBT80nru2goQ41lW+DA1q4czCDJwP+cCaO9D37vIGr0xE0nSWmaBgqKCs9Wi3gOzg7oRBBpeypb1Yd9sNA0LhwyIQvX401wKgJPrINlW1EWwQXDhsn70mKfIi/IiwlVVQuzncPhsELibUVZCLI8w3kwJljHJklwEcmyLNgmCo+pSpLaws4aS1mU9Bf7tFot8jwjjpP6s0JdlAgW+12cDZOtdmsR68pQFAhPK41ZXukzuLZNUUqMq4jriaOoP2hFWVB5qIQgabVxDp566mk+9Ml3o9OEfJIRSQ2t4O+tjEAxwaQLvPrcJovvXeP0PWvsX9YM9zWFN4i0w+WNHfYnWwwORhhXcTA6gGLIww+epn12k7WlB9ndPWB784CV5UVwGakzmMkLtPVVRrtPIdwOrnyDyWQLJSNarWVayd1ocZg8eglblRTFElH3XnR5F1m1jm5LRsMjGCRCVMRuKaQLq5y07RG+hSQiL6+R2ZhhscehO9YYFfuMiiFKyhAYpBSnzp7kxPE7WN/e5t5HzzEYjbh0eZ/Klmih8AisBe8kWrUococUMYO9XTrpAvfce4Y4Lnj5leskKWxu7DAcTRiOh3R6XaJWwigbczA+QClFfzFB4bh06TL/h//8/Xzz2Yvs7d9kazikJTQd1+LV3znPi18a8Lb3P8gDbz3C8aOn2L4x5Mrek5T0kYNT9NQDWP0qO5sZHedZaJ3g4YffwsHWq+SjRUaF5a5TXa5eu0S+Y4nkKmtrh7lw+TPsbV3hnrMP0185y8F4ixdeucpDj3yY46f6/PZn/y0bm/u0Wgu8cf0ZjqwcYiFdoaxGqFSyW6zzyivfYH1jh/tOvAvjhwgdAr0ikaJ1xKWbn+e+Yx/HiQS0Yn3vAp3WAkutMxRlxlL/FFUZU+GJ2hainLycYKsRQjgWeks8fP+jbG5toHVwmZFSYKxnOB7gbYSSi6Stw1y79KusdM9wdOEBDvZ2a5vh8P0LRdZ09DBDTOv9sdn11LTYF7XeYF7XJaauOWGF0blUwckIuIUGM5vczwr3eVSi+XOeHhIm9GJ2v7VTGVA/l9lzcDV1pLmd+caDORrp9ERozgHZnBUBKWgGQtMJtZx7zjX63OzFhWk0avJNZ5gPr119Rsm5+/U+uOU0ha5vkItaW0b9fEX9GisZLE2ttbWJQgIihCXiw/U14bNQlkEPEmn9Xeh2k/fTPBZjDKYOnGuGU1IFGpISoSkJQ6QQ8CYQ0wRi8NNpuI4jrJDE7Q6d5n4b1MczPdsa16hGvO6MneZHgAh2yXVhnmUZeRGahTzPKWsXpyzLyCYZxljyoqA0JUWRU+Ylpr4sdTBiaDqqOuU63LcpTXBYq1PaEYE6poTCiDrjoqZQFUVB3GT2CBB1yJh3jjzPKOr3XdZ0tEDPFTWaEDJdoqjF7XV7fT+s77khCNz5UEgH3mZzFIVpSgP7vXmFTVbecjvT6Tuz3IBwOw1vPTQKzXRlDnuoh+6ziVTTRPi523feTn/xZtpQs948aQq/q6cwNNOKYB0X4G2ojJk1G/UB4WxwQprdb+OLDwhVb95hol6WtQuRcmgN3gksDtXQg2hSXyOcM9NNVta3Y4wB74LYWrhA1cFNLdmcN0RKURkfvJqRcweKreFPT6QTWq2UcTappyeCKNIIXNAgKIWpXYeUEDilKE2FEJI40qGA9B6tI6yDsgxirv5Cj/E4qwVyYZMWOIosR8Wi5geLqaOJrz9PUoBxhiQKoV2dbhupBa12yvkLr9DuJKydPc3Lr7+ErJ2UQmBXCJtxNdxcFBWlM6RJiyrP0VLx6Fse46uf/xppEuHrlM5u1GacVVgMVmSsX7nJ6tFlDh0+SuG2KHNLf3WF/+5v/QJlKdDOkmcTClux1Gkj8nez2Hsvu5vf5PSZB1hfz9jdqzh6okOhx+zv79GKF1H2MEKvUqmMtHcXkpJI3YHTS6j2Ionrkk9G5Had4foXWVu8wUInx7tVVNKjsAvkk0VQUJYKLzrIaIIxOUpqlFjg9fNX2NrZIW5HdJdGLK5OWFoQSBzWRGxvavpLBQ8/chdf+sLT/PCPf5DP/s4XuHw+Jx9uoVxMGvcwzgdKCRYdS0a7A+574C6++dVv8d4PvI3d/ZJOu8XW1i5KCvJ8QhQrJpMhHuqGEKKoT6/V443XX+W3f/3z/I1/8Bf5zstXuHbxVfZuFFx6ZZ/WMGa0F/OdL2/w5Gcu8wv/zz9PEr/MjWstDh86ycQKlGhxY/NOXPkSj9zzbs4ef5jt3V123tjj8PKDJPEeOt6lv9yjGF5ge3SFzupJThx/K3akuHn9Oml6mDw/4NDxmEs3nmehe4Yrl65zx4lLnLzzFJ2FusByMY6Cg9GQb73yVfYmr/HguQ+TpD0OhjcZDLcYj3ZZ6R+nnSZor7m28y2srjhxR5fxcI+4HTMhx1YxrTiIUaUY851Xn+TQ4QV2N0d00w7tZIVDx8+yv7NHO9UYk4e9UAqGkyFEHq0FSdrnuZe+wc7oJT75wT9HORmiJcElTQdbS1xIe9VKB2OFuYK20W8F0wMVjAVqwa6vMwLC/YZ9qJmSNpPzMHUP+2RzO81EP4riuuC330UbamhFiIA22VrrpJRECRHsbeuBRkixb5BYZu5Cwk3RZM8MqRVC1JTKZmJeU1TD4HcacDmjs4SzxRgTpve+yWxoXoeAeItaz1BDxNT3CgQRcTiH6tcPAlJiQ/iiqJEWCA9L2HAjzQAsbL5M6V1aa3RNs7XOg5xdX4ggCI+0niIo83QVKeWMnlTTZOM4DunHs6kZQE3vYSqWCOetnxW/09cuoBrWuenEvyzL6XvtfZ3AXT9nT8i4mbqYIYL1s5iz41aSTtyhv7QYnH/mivYGyXauDv1ybvYYXQgircoSEQU0o6qqaTBeQKgcpigYjye17kmQVwVFHpCJLM/Ji/CdmoxDynbzWalMxXg8CgnE9WfEueDaZcoK5wSVqYL2papwNqDyZVF8V61we91evx/X99wQRFEUps3O42XYaVwdROS8nwqS/mNrfmObn7547xF2FiUvRMgeuGV6VR9M00lRve+p2g952oSI2YSqmV7NT5dmsPp3Q97NIdZQhrwPHtmW+sATvt4ATR3BTohfpw6P8c0hGgJZnLNBGEc9nXHhELK2QVIkQtRcXBum6FrXNqXOUhZ5CHTRITTM+XBQVFWFks3ELhTXWmiiKNCZypKpGLhprGYbu8A7SVU6VBQag9FgzKFDKxRlHuwovQ2nmhe1J3ZoKLRSgU+pQ3DVtEnzgdfbabfRkawbmZAr4GPJcDCqefSWg/09kihGK0WrFTQEVVlNRcoCh7EVWoQgmoPhkKVlx6FDqzzx9S/xvkfv5eFHH+arX/8WnXaEdxaHDS4RSiJVjC/K8DobS6fV4eb1GyweP0Wv10VXntIFypL0nszDqtbo2LG1vkksJDZytLrBISXLJ3Q7bXxLstxKOLSyxNGTx7nr1CHOnbqXzZ0Dhm6bY6cu0e4J8qxDu7XE4NIG48GdyPYqi8c1mjE7ww7egsv2Wew9ghQRKr7G3tYaQjmMOUqSbpOJ5/E+opMqOgsXGRUGOV6gtCOyStLrrjGY7JFEqxTFMnmZc/3G66yuabqLbfb2dtm6NmE9t8E9xkYURcIbL71IPlD8gR/9AT7/hS/y0AP3stjZ5Po1x8a1XZyrcE5SGUOcKESkuPDyG7zv/Q9yc32bi5evcv/D5xAOJoMNtPB4U7Hc7zPJc86eO4dUkgsXzjM82KcYDVjtr3DxuXV+419/nY/95LvotDTF2SGnHxlx8ds7PPGbGzxw4jjvesej9NqH+OITX+L+ux7Gyj2ydJeD4jUunM+47/6TvO99P8ru9W2uHfx7FlciThy9h5vZdYrsOseOn+Vg7yqHT9yDbK8y2N7nkYc/yWsXfo390Tad7nGsKoh7Q/Z2n+fB++7njsN3sbu5g0oTtiYvI6TAGMlu8R0Kc4FTh+5guV1xdeMrxMkxNoc36HdXmZh9ttZf4KFzb2d40KJ0BmEjWmmLtuqBETiRURSatSMrfOP5p3j90vN845kdHn/w/Zw9dQ/KxESiTWUrymIMwiOJKKsKIkdZKoTNEVHKUy98jo997IcoJ5qIMESwOLyr8Ohp6GCeZURpcgsd8s0cfFcHHM7TJYVvijN7C8USmFKKwoC8rpQJtPyqCv7uQvjvaggandB8mrb3zEwjJCgRJvTC18FlNSVDAK4ewrxZ79WIc1X9oJrGwTs1rYWtDbaXsjYckLWQ2JgQ5FX3BDgxK6jDDCrchzONG90cCiFDArzwQIMA06DZgmkCeE0jDchyOBtMzYd1Poi4ja2w9eBMeiiqCqUiQosUgsJcgJZxdcZIEL7WqHqdD1B3G5j6TGtccRrUwNaUJVM7DCmtaSxc57oEGposQiC9QjHj9du6AQqDHwW6HsJYO3UaVCKgCKJuDoy1IUyvntBrb2tR+ezMnSFDtR0rwcGooeVESoef62YrVopWuzOtBQRBM9ekqiulgji+bmyUkDgbTDSsDVbYTWMLQa9nquBoJIXAOUuZF5RVEBtXVUFZTLC2whQB0cjz28Fkt9f3x/qeG4IyL2okNGzY1M0ADaRaJw4C0+lRmMAEGk9lw3Rd1UJaIUPAj/C+/l3YMKbWnniiSNVT8ZoX6mfTImrItuEkOhM2gTBZsVN6jY6CQEtrhalsOIikxOIx3uIAJcJteefRUuEEYUpRC30DXShCCY2vbUwdFiF8PeAJgjkjQ4OgoiDYE97jKouU0dRtSUiPlh4pAl9U6BA0FtyEakGyDJJlmMHYcRwhsmDB6rBhsl/ZcMjIAG0aU6J8HBxEsDjnsZVFyRBZn6YJ1htaOuHq1av0ej2EVERxxHCUUdqSdtwNzj1SkRclSRKmWTrSdZYBSOXqwiBYm+pYYF2OEZZJbkhj0KpFt9tj72CbqohZXO5ijKt50OHgEEogawtCUdPDQGC9RcWOrb2rpLHhnkfu54kvPsN7Pvoo73j8fp7/6sssLHaxKqKsQhquKQ1KCoqqJI0ifF6R7R+QrDgO3X2Oi88+g7YxvTim0BWVLZBRJ4h3Pdy4cZOV40eYlJbD/T7767t86NGHueuuu/E47n74HkoNO+tXee3mGyjvMQVsXXOgB7STNhcufZPKDDl++hhCG0Z+naLcpNvtUgw7xOnDKJmSFdvIrKIsdlBqg3Ynx8f3gutQFj2ySYGU4ITlwuVv8Pi9nk6cMRweJ5H3k+pFNnZynMt5/zvfyW/81gFf+9yXGY9LRJXTUhH5MEHpCK8OWDjc5pUXX+L0/X3e9vgpvvX0q/ypP/aH+bUvfJbf+KUvEVnBow88yGtXXmV/c5vlwycYDce0O6Hw+saTL/OxH3oMqT2jFwxC9dna2+It73qIp595nWFhUapgUhUcWl1mc3sb4oTDS2v8m//5t1k40uXht55FFCmuTHnrD6aolYjrn9P8zE+8gy+c/xxjl5EuG7Ymu2xnL7G/cwFRrbHYfStJb5vXXvkCz7/0Mj/66UP4nddY6RymsIdopUdYOH6W9WsDGD+FtRMGXcfymUfZ3NyiyAe4col773kXextf4KHHDtPp9jBRh/3xBmkScX2rJI3hG098nXe94+2cWHsnaZryypUvodM36Lf7rPSWiOMexw49xs5wSBo5uvSpTIahYn10nXarTxq3yeSICxvf5ubmeVwR8+jdH2a1fQyqUIyWdoL3Bc4atI4RwlGWFuUliYLt4U2yapP3v/M9nF47y2D3gG6vS1F5lArCf7xAao31Fo0OwwKlpoXQFAEQwTVN6GDH2FhGipoWVHv13KodmA5kZD3ZlVDvrfim8JYIqfHG1HQLX/Pqg+e+s0FLFexIZ3QhWzmcdNMZvHdhymusDc43EFKUrSGOEypTTZ9HK0lDQRyI9bVma2Zx7ZwNKc+1+LXI8+nz0lJg6sZHEoYfzofhSvP4A+IxS/9unqsXgTYzDfOq3YQcMzRaCPBSTm1VERJEQIubSb4QwZhBqmB7rQNMHFBloKrCwKLMMnQUIZUiKwIVKE2SGZrRDKOmjUtD+/LYpqlzwYdJeJDGhvOybuqMtzgT9mBV00O9ENPCOtIaIQnPQ0oKa0KjVacUNxP/prVwdV6ObLRxPujLgnBYT1H9MBybOQs5PNT0XVF/bk1D5zUzhLyh7DZIRzVtAJrqJDz/oFd04PyU5tYgEA0bofmOAFN6XbvTCz+rJoslCNvxgX71HyE+3F631+/L9b03BDVsNnPQmZ9ABU5rcwg1jkJAcJIQ9SFSe/5Tuy8gZl/SBkWYtx91Nmw200mGn+UON4VyIyZy9XQibsSN3tfuN64O8zF4RzhICRkEztkw/Wn+82GzaxCL5j6CwMtOUYcatJhOhpoD0FoL0hElSZguFDlJ1AIftAFaNzxUj7MN/UciZZj4l2Uxfd2aqR1I8rwMB5eSJGkb58KhHccJ0njSNAaaADMoigLq5iTYsWmUAmNLnDcMRwOcc6RpSlVWJGmKUnkQkvmcOEpQSlBVri40aptXF1AKqVwQqSlFVVmkhk63yzgbEScRVVmR5+F2kiSl04mRymLLIPjyPlCEyionjhWVKVA6Js9KjPPYPCMrJ+g44eknv8X9p+7g8Kc/yhf+3r/l4z/zCY4+knPphSscO7QQ7OycYjSZ0IoUB5Mh7VgiE4FGsn39OifvfpCrL10iqipQJYmK0AL29vc5dmgJJQIlLBsMiTtdrr96kT/0f/wTnHr4MVyrxeUL5xnv7HL+pVeI2xotUnxnkbyjEELz+vl1Fhcm9Dtdlo4cI88NorWOEW/QSc6SVOeIooKcCqHbYDuknKKnJNmwQvuYolRYBihdokQPW1YIVXDuyEfZW/8i3ZVtTh35KG+8nmA5YLlfEMeHWF64g/Hur7NzzXD8+CqXLl9kIrsk/YK3fOIUx848SOdoxMpKQsdk3H333VS2xc3Ry/yRn/4xnnzyGxy8NiGrCj75Ix/imd/9Iq/uDGnLEmvaRHHCYHeLNy5c5/5HjqCiksff8QCHjva5eX2DjRvbdDpd9vfWSWKNyBQuk+h+xfr1K/zMz/5xPvuvnuSZzz/Dn/kzP8k95w5z4cZ1Hn+sxSPLBhY0x0+3OH3Pu/C7n0VlT7FSxqTqHMfOfYo4aXH1GxP+2T/4NRYW7+TfTK7z6R98jk70FtYO38vSoYQXL3f48Id+gEvPPU9eWr753JdZuXOBhcVFDrYP+NaTX6bbl7zy8sv0+y0K4+n1juPlKs++9Bn6y12eeflF+ksxj9734+wfjCiLPncf+hSO/bDfCUsx6rAjP8fpk29lstNGOY+KYqK2ZlwYsmyXWGpGZcHf+/t/mx/65Ef44Hs/wUJ6iHJicMbihcVYQ6xiFO1g5SzG6DjFVII4kVy7cZ20HXP3uQc5OBhQGcdwVNtL1oJiIQQ6ScL0WIasFGBKsQiT3WAzbKo5dNaHPcxSI6bMpvHz/vvNnmeMxdQFXKMZwzc6BAOi1gtYO6WCWGNm/POaStL8H4YihACzmqueZ0VoZHwwQ8D7KZVRho5k+rwUM6ro/B7dUJ0ajnrzfEOwXo2C1GeI8zNxsjFVCCVUIV08NAY1glwX3Uo26Ge9x9dDJeF9TbeMKEtDkedh4i/ktLGKoiACr8qqzqipEYs5qlGD5tr69dL187DNOVlba0oRwrKqqsJ4Ny16y6pE14hImHQHS+8Gta/KOnci0tNmESHQNbJgjcVLP80nqKpqijJ4CEnwtsnqqZs/E9AHSS2oFiBwOEvtMhSFdOn6PK9BCaYCde8xdVCpn3sfGyzqFq1I/WfzPsfi1rJlHtGxWLwI1KJmBVeoOujOm9mZ/mZ0S81oT1Mk45b36fa6vX5/r++5IXgzpNwI0Zrf3TpZErdcR8ogRpYehHP1lB2oD6bmOlMaUX2IiHqzbe5n/s88z6e33Vw3yzKyLKvDuAytVlw3GEGAq3WENTXD01N7c0sUsp42zYLPwm3aadMxc9CgfhzUaa+1yKum1jTuCFrrBgmnaZ7CRuOpKoe1robe55uisPeF8B+HsQ5nxZQbG55bOLia5yiED3aixtS80IYv6lASnPbESYDqna+IYsX+7h5LSz2UEnQ6HQ6GIwQxkVYhBC4K23LgHluSJIiEPQ4h7SzJ1Bh0pKhKg3cRWxtbJAksLxwnbUmGowH4DpN8iyTuURQFSZzOOUxYnJOUpqTKJyz0ljCuIop6nDh9JxubO6SdPt/87Jf4y3/hj+L+5Kf53/4/v8iP/MlPMMkte5dvoqXGW4/UmtFoSBQrpArCvEmVs7e9y733v53lpZNsr79IbguO6GW67TbOVoyGAxY6Kd1uG+ktssp47FM/wOsHG/zm3/7bDG7uceLwGm9/37u56+5zXLx6ifNvXOPQqmJ79wr33PEQ73jsRxmal+gvHOX6tQGtxX0WuhWDvTPE+hTaRwjfR3Yn7KwfIKjIxC5JvEQmxxAbhge7dDttIt2mqsYIPaEoDK2oR5T+IN9+6nkef+8bnLr3KBtXFjHsgZNslWN+7Oc+Qf+U4df+6RM8+Na7+OE/+iB3vPUYhgmTmwY1iJiU20TlCk8/V/GOO+9ksHeBy995if/s53+Yv/83fpnnX3iW9evX+C9+/tP87X/5L9i7pJAqp9uL2NpuceniBj/8qQcxWYdvfeENvvG1b/CxT34AZ7ZY6Z9id3PCUvsY452cJEoZTyYcv/c4+8UOL37zRY4sH+evnP+H/Nn/9qd460MP8aX/8K955NxHeH3vVUb71xm1t3n2G69w4uQ9TLJtHj/6Xo73DkG6h144yc7NiB/5xKP85n94mv0HDrFwv2ShP+bMiTt58bW7GQ8mfPzHPslTX3uOZy4JNrcusbe/wLkTj3HPPUN++Vf+Ie9553s5c3aNp599kpdffYpIHebesx/kia//FidPPMbbH/0Iz77yuxw6fpS8vEnPHyWOKwaDgrQVkbvrJN2Kp595lkoe5dDqAv2FFV5+/Utc27iIUAXaJfT8fbzrbR/m1PH7WF48hpmIkI6uJMbl4D1l4WklHSozIGkL8nxI0upz/vIFdvaGPHbmcSqrqMoQtOekQkQgnUZSIQBbWqQM3GhV2zDP04accxRFEZBRMdNRzYYOjiiOiGM9/bmqqun+pXQwUZi/nhQCVVtQZvkErRRKBfrRVKoqZs7tjTZhXgcgCYW6qe2qdRIHGogLNpuRlLXpQeDTx3FMGUVB1+W+222oOW8qU9a7bSjcldKB1OltQKOnSMDMVMIYM0MOZGN4MUuoD3udC0JXIKoR6clkgrFBHBzOgHDbVVWgdVyfW01qfeDZh7sU0wwf69w0yBIIRbQLVB1bnytN0d+cjdbXmTVudvY2zkOm0dN5Py2IpwWvlEHXVb833jqMC1Rf7xyibkLE9JwK5zQodJ0TYJ2b0oRsjXi7egov1Gx4Zm1AXb2fmYTcSmHzt4wTmyZl3oFIaTV9ftMwPEJx792siJ+vQSAgUlLrW6zMp5drzELmtCbz2psG+WrQsXn93e11e30/rO89mGyuKA6bHNMNQAg1E6LVa1bce5RsNE8Ob2sepFKBTlRPAhpe/Iz3TnBbEDPBW4MeABgTDq0wedckSTJtTKqqoigyKpOTJFG9OXusNVgv6jCempeqdeAd+qZRmXFom/sLB2UJYu7fa5i92bAn45x2kqBUi6LMwqEaxXjr0VJMX6Mmp0ApjZQhEt5UzYQuRkpHk9ipUZRF4MU6N0vLrKoKayuUltNmITRIYUOMIlWngQqEt2gd+KtSK6TzLC13A4ydCEbZEKVDUqMvHFrGSBnhrCccjI4iK4lihYoUXrow2fEC6zyd7gJZZqiq0Dj0ugnjyQHb21tEccqh1R6x7KBkaCqU0mil8V7S7XXI84x+v88kKjgYD1DCc7C9x/5wi3EWvLIXj67w3/+lv8V/849/gdd3C37vl/4Df+DT7+SFSUG5u0/STsnykjRuEYkaCZGaqNUizh0bF16jt6o5f23I4c4Ko6Ji52DEodUlhPJ0FhbJJ0O63TbLC31eevFl1m/ustpZY2V1GSEET37lqyweOcyJM3ezuHaaF77xVY4uJ9x1+i1sXNe0+8ssHO2wtb1N5TYZbt3DUvtBYERVZFy9cpXlOyTHTpxAI9FCMZ54+kvL7A13WOmvIVWJseOAWFRrtBSQPk27u8e9SYybHGWv/DKHz9zJeO8RCpMyyV9kaJ/kfX9wkZX7P8adJ5f41hNf5pf/wdNMBhUHB1uMh5p73nKMlIKXvrPOX/vrP8G9j6zRH0Y8+MCDfOU9L/KNz93kYG/IL/yTf8Ff/Wt/mr/5V/8pTz/3Lc7dfYo33thldWWNG28YWq2K4WiA1F1ayRKnTt7D8SP3snEjwxnDTv4G3dUl1m8OeP+Hf5Zf+ZVf5sip07RUxGDP8F//uX/Jj/7IOX7knR9kY/ebbLNLq+qzvqcwkwS5m7BSPcyxtcfJ2WE48XRdnxOH7+KJr32Vhx4/zTPPvspb3vcetjcyjh0WfOCdH+S3f/Xf0xEFd509yeK3ezx//iWiaMJK+0XieMLkQHDnyUd54olvMs62ePtb38dXv/IsG8++SNwec/LOt/D8i0/R7a6wsXuDQl7nxrhHPujy0P0f4PL1lxAiphq36a21ef3lJ9nbFBw/fA4zHHDHyp2Uk5JuusKhlfs4d/ddbG1eZ2t9h26rj6kKtNbsH+yztHiYUV5RVFvEcczebgF6wqsXX2Bl+Tgf/tBH8E5R5CGLwglHZUsCg0PWU2gR6Bai1vXUg8x5EWqzl8ZJPEUwm70WQgMwmUyQUvxHc2LiKJ6KR01N4Zg5Dlli1ZwJ9hbkNk01QulbHsf84ymrsrZarnVJKiTqWu/QQlKZCszsfCkaUacWGHOrFm3+72maTgO3mvMiigJdsyyq6Zk0H1jZFIGNbaasC/jAubcUeVkzlGr3oZqOkiQJkXOY2s407LWBalpk2fQy0wK5pqI0r2Gkgmi2CS1rmhRjDHldbDdnEPXrKqXE2cB9l0Le8n4G/VkIDYMZnQchkJEKegBb29LW1bhkZtkqRECxAzozSyQWzmO8CUiUZ87og2A7PaWLzYmgPVgfuPuN6Hq+aJ9vvuZ/3zg2vdkFsPldc92GSiTE9FlO/zTG1hqOmqbkAnW4qV1k+JLUOvRaX4ifukg1r+n8/c+botxet9fv5/U9NwRxHE9htmaSDrcW/s3vwhda1MjyzPVi/s/AbWXaBIRpigRczYf3U+FQ0xAAc42HI451SG8cHkw3RSklUdTAu54oatdIg66L1mjqPKHqZsW5BmYXSDFrfJqmp1lRFCbjTRPTNCACRbfTYVKM0YkMYU8qJlYJ4/GkvgxYG+43QPnhNkU9MQrQbw44Ii/xvkIqGZqKelMTwhPHcXBAcBZvDFq3AtwdxUGQhphCwt47jC2DPNoZNJLhaEi/16KVpiH1uCrQURymU1WOtRqbN0EuQeibjYcsLvVZWlnEmorSOiIpSVNBUQ6Jo+B21IrbSDTO73H8xGniqMNotIMUMVaGZNzJZEKa1vQygqOFLSxRlLCwoBjsb3Pn6SMYX3H1+QvIMqN0JWvveIj/9k//ef7M/+Nv8fcuXOaLv/sU73zHg7w2PqByJSqSVLnBWlBRGt6LVouzx09z19oqb733BFd3LlGsF+wVQ4yKGFcOJyRXNrZJtaTV1RwMRkRph8fveYA3rm6y50qGZcGJtSNs39hifX2DO46d4uf/4n/G+uQaT33zFTqLayx2+uxef5XOYgdXPUK3dYaXX36RpFWw2O1z8vQxjMiIxCLZcIRUFfv7+2Sl5fCJNYpBhdYRnjFKtTDyGmLhm9joWcYHE5JUoVONY4+tapHW4oSL17/KcPA1Thw9xZd/Q/P539xjtHNAPoBYeVqdhIhleu2c9Zf2+cRPvYUTd/T5hf/XZ/gn/+ivUdpnMeMz3Hv2/Xztc/+Kdm/C+hXDFz7zTT7w4cd56MFzbG19DukdR48c5tvPvMGHPvIW7rx3nUsXtpnk0F/uMSzXKeQe17e2sCIlKQQ//6d+ll//jc/gxp4y8rTWFKUeURwYrn17TPnIOqPiJPkoZUdcpygl/SSmzAZ0xYO8+OI3OXX2DGUOB+I7LK9VPPviNc7cc5jxwSbf/NbLnLv/AcZ5zvr6Zf7h3/9H7G29yt333sl9j5zjp370T3LlxnUWussMnODn/uiP8NrFr+LVgM2tLV678CoPPHyCr3zjs5w68xDnX3ua40dOEXGKZ597mlN3naLVbhOrgs/+3j/AuYJz9xzjLY9+hHLcpzxcsX5tj/Gu4b4zH8RLRTdZpaVaTOyQV154kdXVFZYXV8jzDOsLbq6vs7K6hiBioZ8gkwlatYnkMazYZGVNstw7Q1l4TAXdOCSDT7IJVWYQOlADqYcXEgkyTIyNDa5gQX/EVG8VNunwx5uLMFsbIDR7tFJqWsQaY8hdgRQzuo5WCpSiKEuyzNJpJbNBhNY0NqVxkpCPxm8qqmZnQ5xEjMdjvPdEUjIcj0OTImtU1jNFhrWcm+Yae0sB2dxu838xZ795CwJgDErqaVPT6CymRX792jQBmjPLVItUGqXqsLGqwpoanagn1/O6DSEcCws9vA9ucUrKGgmp6rBGPW26mvtuzprQKFVUZciaqWrqTxRFIKB0Lgx0EJTVrDkDpuiFqG1BpZQ1912ERssajIWYxu7VT6lhASlwuLIkSYIldFkHkkU6wgoPLjQjQS8QHPSEDE5IWgb3qEY83BTzau7cbqb1b0b/mwao+ezNT/XHeVa789U0oua6SIRvao8pm2j6WZg6MNUxEkE0HfQBkoau66bNQHOdgH7f+rloHs9t2tDt9f2y/pMoQ80mEn6+lebTfGGbpmF+wjGFiht3gnpC494EJ8MMiYDQhDRrHp1ovqBpmt4y8WkeR4M2SNXwO4u6OfGMxxNcLXCOowivXJ1fEAr9ssqnh4u1QajX6XRotVoYW0yn91DnE9QuHbmt8M5gjcC4kiRNsVJSVnkQ6tqgM2heH2tmzkuRDlOtsjAgDFFcHyKlIY0NkU4IsesFpgpvWStNKaq8DoGxeC8Dz997ytKglMAaX1sKBjja15MTqSNUFLO/u0McRxibYdwEqRwQ4Pok0SRJhMAyGECnE5EmisJo2q0Eb0sQFdl4n06nz/hgAF6SphEqDtZz40lOr9enKsF7SxRFFEUT8OYoyyCqbLdiyqJiMpqQpjELC112dreRDpytaKUxxhSwcpR//lf/Mn/kL/9V/tk/K9nb3OHI0aNcvHyNorBoEZGoiIPhCKRjNBzy3LOv8BVb8BM/99O89dGH6Nklzl99gxdeehkrBIX3uLJCRwleSjwSmSRcuXqTXtJlMpgQK804L2Chg62GrJw6xu999stcvPht/sCnfo5SjvEigtYKbmIwRrO5dZFTpw5RFGNaHc3lK69x5s5D9LoaScLWzg5LK4vEk4piPKS/1A1Fg10mmxi0XMbs/iD99p9m229x6cIVHrr7PnavPseR3kmEzXm0s0184i7+xb+8yG/9629hfIZ3gqXVfrBmFR4tKpLS4YoJ/+YXP89P/ux7+eE/dJhf+6Uv87b3LzLKR9x74h7e8uj9PP3cN0mTFk9960Xe+ta7eO3VS9x9zx28cMcBlam4dv0G33hykbe88xzPPvMKN9ZvsrAKi0c8Hzv3dl6/cIPrl7dZShbZur7F1UvrrC4dY6W7QFlUuJGnG3k++LG7eerbY0q3zPKqZ/WMQxfLvHJwQGnv5tWtm6hyhAIW11bZ3LnOuXNneO6FV8hNi7Mn1ugsLXJz/zziUkUn7fOn/uyf5dzZVXZ3bnDpjYtMDgR7mxkd7Vhe6VPYPYajfdL2Avfd8zEOH1nk4vlv8+hdPwWs0m+X6ImgsmPe+cAnELEnGw9RJHzg4TP0FipW+ofZeNXTX644efQt3Hk4RuscKVt4VVHlIw4mW0RRi1aSBH51jRBaKVheWaHXXSCbhEHH9s4N2u0Wu9vnESqn24mZHKwjfISSwUZY1yhgp7PCOJ8AtQ5VgBeeohbdGldO98Gp/Wa9XzZT8FtDocK/pUl6i6lD8/soivA2iGLbaYqL40DlkJJYa5RK0FoRx6H5iOKoTug1IBVCzOgXMDfhdmFK3RSAzjpipfEwFbjWD4Y8y2coLEzTgOc53lN6qhTTYrSh0ASrZYWsOf1NQ9DcRnP9+SbDew9iRiNxpsLMAnaD7qE+j4yziPqca4prAehIk8YRo9EEW1UoKdBxPE0w1loFl7x6EOR9MNaQKrjuyJre00zcm7O0KGcTfEGg7QghQNaFcODDTvMRZG3O0RTFuDCx91JQ1FaeAIrg6NM0FnJ6xjaog8Y4h27MOIwhqR97ox1p9IBh0CenWTbeB1dC7xzUvw+DQ4Gx5hZaz1QjEMeYyQShRHjMBLqP8z64D4nvTuVu/pRSI5AIB4jGZramVQmwcxrB5v60EPXAbuaIFOqN5oW7rSq+vb4/1vfcENw6UZltyDCj18yLcGc6grBZNxhmIxxCMNv8CZOc+YNrxuP3M3uxuYOsmWJprel0OtMivTkMjS1xzjAYHIRpjYrQOqLMS/DBtUGgGI9zRpMxxgd+rPTzkxs7hdU7nQ46alwKZG3JKeo0UHDGsNBfQGjPYHyA8xWTrCRKFHGsGY9yjJklTdramcF7VzchairG0krhfYyuEZMgBg7CXq0VRVFQlsFOTiDrg0Hja/vTKAouE0I33EiP0Io8L1nsL9NKOuR5Thp3MLag3Wszngxw3uCcIJKSrKyIkzZJolhcThiN9vFjgzFtClsgfVVrA8CT0+mkZJOS4WiDTq/LJBvgbYs8k8SpA6cZDPZJkhRbHwRxHJHnRdANKI0Sgm57geuXN9BxRDddweUGiyEWjqP9DpdzxeUvf4mf+SOf4h//o3/Ox99xN6MSrly5FsLYbEWkHY4Kbw2H+wtcWh+w8fKI3b19vvjaVzh94i7uvOM4RZkz2N/F1VoRZy1pp02RGQZ7Q+ThLkNnOLy0gEeijeDBRz7A3nhENRgi8pTXXnueO8/dy0G+jVaKvb2rxFgWu8ewZsLq0hJpp83B/k3GByOGaky726e/uMJ4nNPrLFBkY0YHlvF4SLvdwRME594Ltg6eY7m7gF6IGezcwLkV8ijBihQz/AGWk0scXbQcW7jI4krMYsvx6Nm3c/TQUTK3y4XLG7xx8TUyJ7lvsc/maJ0f+viDjAZtFo6cpBUVbK5f4uFH7kO0BF/7+nNs39hhdfGdHBxkeCIee+udRHHKxsYG33rqGT74oZ/m8NoK49EOp87cx/XLE65uPs+f+b/8BP0jEcONgn/yD3+Nzt1LZIXF6pL8YIAtct7+lnuQyXH2o/Pcf/dlpCpZv2p448IXyKqH+egHTpOfuMnevmDc3sZlJf34CMu9AZPMceGV13nkh04yKgaB7y6GlNkBNzc2ePSdd3N964De4gmSdotTd55By4xsfJ0XXnmNqLXKhz/6A3z+id+k2t5kNLY8fOY0IoqpMoErcnrdY0ilGJYHYBOGg3XuPns3cTRm49oERIXyR1jrakyRYXKD8UMqK2i3WljlQUoqrbGlRUcRUSLZ39tjdXU1UBqUJU3bDG9WXN94jeW1lIXOGWKOhOR1IgQOW+VUpSNt9dk7GCNFRVVrtaRSIeRPBTSvmexPA6zmkFhThcKxKYjnhzQw42jP768hSNHfUpg2+3NTAOd1wq91DoyZJqeXbwr6avbwZmLcDGqa71yso5rOIfA6eNM3WTOqFjE3ttBVTSt5M9IhXHBTmg1rbH3I1C41cxP1+cfWFNzNdZrHF/b/gDIrORs4lWUZjDEAqdUtk2Rf8+6rqgzTfS2DUw8hiycEbBlarRbC3eqcJ2skpHluSimEDWFciGC1KV1oFEJTInDNayHV1LYzWESbW6bn3ofzoHKOIs+obBB96yjQNxESOUcXi3RIJTbOUhqDimKKopgmH1fGBB2DDFkYeA9qJsZ1zqGlmroChWTombB8/jMxXzM053fTkMq6gQjGHzXtWDRN4K305HmNX/g50LQa5poxJugZmlA270PTMKdHcIjp+1BVs2ygspzrCG+v2+v38fpPQAiaDcZPfw6Qqf6uTn1eTxAOCV/7KdfWZs5h8FNHnyBhnTUHb4Zz5xGG2ZpNs2zthtEU22VVBZqMdSGkSydBtKQkrVZMWRqiJCZNWyStFu1eF+MckQ5uHd57hAziVICyKPE4KpMR6wg8tZBPhamQFcQ6Jc8dSItwSXAlyQcI6VBe1mJiQxIHCtA4z8Mkqn78URyRpDEOS2UtXoIgWNdFUUyRV+hIzahaeISusFWFEArng6MDOkYoia3t8OI0Rcrg6CCwtNtdRsMsTB1bfbJ8iC0tkYionEEqsC5DSM9wuEdVxhw+usrG9hWM9ESqRT40aG0ZjnLS1RV03A6X355w9EQPvEL4Ah0F29nRqKKdJAjp6Cy0GAyGCKlJky5lUQsBnSeKErY3Nlhc7BD3ltnZe5EsO6Df7pIXBhUZllsrvHTxFU6/5Rwf+sh7+fY3vsWZ++/k8qUNJmWFcAWi1UKWNky+vGf10CKjcc473vVObkxuMJjsMMlHpK0OC4t9pGlxqL9AKgWRjiitxpSawWhCa2kFLxXees7c/wDb27tcv3KdleN95EqHK5ff4PCRc2wNdzmxFLO40kHmx3GE5M3WUsTNK5dZXlxlb3iV/eE2eZXRW+xSVZYinxBFgeoR60NYV2GtxBlDrxdjbcyNmzc4dGSVza0xq4dWsH4LqRPa0QLD8hiPvvcKdx49i9rtIqpNji3FRO2YoYt45O4jFAcllofwi8tsm2tw41Wk3aboL9BVp7nzrn385jU+fud9tFcmLOllrq5f4/0fPcOzz3yH/T3FBz58D4cOLfD5zz3HCy8Muf/Mw1xf/zbnzn2Qr37tNb795EX+wd/8JX7sj3+YhZMd/shf+iEuPv0qL72xw+uXhvhXBX0d8dZ3rjA2l1k4aTCx4fzzO4jOOvrYfdxx/CivFi8QWcnqoUVS26c4gIPJFU6ePk6caK5d3+TiG9usHBKUVFwrr7LUOsWhI6v8u9/49yz1jtDvaja3thHSc/R4l929A4zf5Wd++pP87hc/w/7BZY4ceieH7jpGFLfJyh3SpE/hHMgK40YMhvvsVddJ01V2DnYQNgbRRbcsuTPkY0Wej0njHiiL9AkTmyOVIIklqU+oSolUsLO7S9JqoWMNTrO7e43h5kucuPMs9sqQtdVlWhwG08H6QEH0zoPUJFGMRxDFGmfNbPhST8AD/7uhTzThXcF3vrHRbLdbmMZDXkicn01yrQ3ZMvND0IbWYm2wuTRzg5pAyQg20rbhetcTHlVPtr0AK20dHNXs6Y05kUPJmLKsaqe5W8WczrlQRHtPFOmpTqyqc1CUVmFmK2s0oaHeWDdFl5vGp9GV5XlOmqa3UHTmtRbGVNPQMaUVOgoFd2g47ZTC07xmQjQ5vw21ssnMkSHp3jfi1XA73jtsVeGdQyLxpg47q8/G8PqYqc8/UYTBhEK6KaBdQAZULaptHIiEEGRFUacPE5qnmjIUGj8ZLLXr+6sPD7RWpHEo8L33VGU1tWB109en1gvU1CApQhCzVhJqRylVN4TOVNPb8s7XJkSiNr54M714llExFX7XDYGpDKYsg+GHYDo8Cja3dYNr7HRw37yPTXJyGDjWbIT6XQrajfAZbSh1AgnWTZvhRkyNFIFBUOccNfqI2+v2+n5Y33ND0ATNNH76SgeINIyi606+njw1G3OzEdj6IAIR4G7f/BmSMpWSxHGKd7dayjW3Mf3Sz08TBLfwD5tCWQiJigKkTb2pKxyTbERlDEkah5AVLEXtSuG8Q8kgRQo8flA6xrg67TKo5YikIlJBcOuFR2hBmVVEokXlPM4UKC1wzoAyxIlFqIzCaJRK6XZTbOVodxJarYjhcIIQkihtARJrPEVZ0uqmtRC4wPkqtErCBwtXaRHSYW1JLBfw1qCJsAKMCE2H8IaiCK9ZN0mpTEmeFXS7HaqsoDBjpJVYG+Gdpxjm9HodklaXiorK5KQ6YbA/JE07dLp9uv0ldva26bZbSB0TJ5J2OyVtLZCVhhvrF1jpHyPLJLgJSazxTlIYSxSl5LkBaYkSSbvbosgNRV6FhkgUoTGMU6JuSlaOGY1SXGlYXe5SFRNG+YSoSmgtpEzyEb/5b3+V9//gJ3muHXPx8mXWzhzm6vNX6C62MLkmVpLDx5fpLR4hN4bdcgu9IEiTiGEuKIsBeTFCCM9yL6Xd1eTjIRMHzmsW+jHtxUWyqiR3OUcOH+Xa7h4Xzr/GYrfLpTeus7ycMDSKVivi9MIxFvuSnV1IW6tM8uugFTm7xK1T7OTfIGkvkkZLFNmAaOJQcUGV9fAqcJOT2GMyQ1nmoZgbVSwu9ul0O1w8f5ml5RUiIfC2g440pRkhpODqa4611W1aaz0ONg7x+sGT7FzQHD7XItEFXgw4clSysbNAv3uGwiyzd+WzfPv1DU68+0c5srTJdvkFNt44wife92E+98U3MNEBzz5/mbVjXZ74vfMc/Orv8eBDd/OTP/MIr18tMXlOcj3l9B0Jv/Jrr9NtKV57dpN//0+e4YM//i6itS3e/fg53vH2d/L1GxeRO4ZrT7zC6h19nr92nXa0zOXLNxCtbU48+CiTRLL72pCdKwKGXdxKTH9hxEI3wdoxmXBEuo3JxnznpZc5ddcZom7K3lBSRY6jR3vs3txg69oGvY6i2+px7z13Mtov0aLDux9/H9/68lN87ctf5NM/+9PE8gRlZri0+Rxri0fJCoeKFLvDMWmrx87oW7QXupw4vIJyC5SZRcbBK95hocrQKsFQIFyEEg5nwHmLsR4tOhiXYzNDlpesri4zGpf0FhSDbJfvvP5VVFtx7PBDkGuciJFiDE5hXVnTeTo1CioQ0iFFRBQJkjhkjZTWTHVWWoX0b2tsHdgVxqlSgKkv11CKGpGwc5awK9cI7psoQ0JayrxE1LcvpJzx32tudyPExXvKrKjzA+JA2XyT/itMfBVVFYrfxn6yKeKFEMH1SM3OEmqE2VqHpAmItIh6stsU8rcYPsxN/AFardYttJT5SXYcx3jbJMhryqrE+YAKOBPOE1GnKze0I60DmulqWlbjytQEdDVoecjeCZSVxuFG12dIWWYhoE3VAzMPWgb7bi+ajAUxo35xq3xWzVFrZe3wY43Bi1mYZNlw8glUIec9C93gue+9nzoSNe9NuK1gDT4fICaUJKldrKwxhMiDUGQ7mvM4aAiVCOdYQEUEWjM9w+cHh00+g3HB9nWK2FSGqiynz69p7hpNiVIBDWkSm5vMIaQK74mtmqH/XBZBKFO8rC1xXc06EDM2gCM4SAU6r6lfz6pGsmfU5dvr9vr9vL5n+XwDFTcc1QZG1VrXlmrf/f+8bmCe99lwSe3ctKYsSyaTEDVeFMUsBOZNt9f8r+SMVhQagvA4wxdYAxYtBZEKcG2vu0CSJCit6XZ7YQpUP44syyjLkrKsMJUNAT7WIGWTB+BRQKQiCmcwKhxEMZKFbhtDiWFM6TKKKqcoHMVYUQw7FMNFnJ9Qun1QE7yYkOUDnK9IWwmtjiJOPUUxxjlPf2EJ4RwaSxqF1zlEylekqaYoJ3QXYqQ2DEdbFNWAIt/DuxyMoZoUiErRX2iRJpKqGJNlI3SsEIoQLhM5rKjIbcYgG2MRDEYZk8xSGYfSmoODfaQSrK2t8erLr7O4sMKhtSOUxQStSqKo4sjRRYrigGwyJo3bLC8vBGoR4KwgSWO6nZgs30dqT1bU/uB4cBXWheAzrRVOSvbKEttuszWecPPGDVbaLQ6vLXL8jsOcOXsKLxyV9cRpj5W1k+Sjig9+4oNUXnD67EnkimNvVFCMthmMhly5mfHMC2/wymtX+fazr7J1Y5d+u8vmtav40jDeP8CUFVmWc21jGxPF6P4inXaXcbFNPrL44Zh2p4trdbnwynlSUiKRc3QpYW1hGRUrWotL7A1G7O2PKaoVDBlSLtBfXsZHOcZGxJwg21tAWE2sI8bDnK3NfUhGWBPjrGA4HGGMReuING3RaXcpi4ql5VXanS7jcUan2wUfkIxO2qHfXmN7s+SrX7vAON4mOd2if99Z7vnkPRwow7UbG2xVE24evISVz5HL5zhx+ic489AH+MDbF7m69TJZdCe6exef/fIVvvp7e5w7fgdf+uzrDLcXGQ37PPb2x1Cx4HOffZJf+RdP0q0kn/rZBzhxb5cvfP1Vjj22hJAxHd1mwQz42r/+Dv/4//YZ/t7f+Rznv3WdH3z4bci25/EPPEj/zF1kUcLG9ctEquLBD72TUa559Xcu8/IXKjZeyVGlR2HZ391leXUZJwwiAmOG2Nyxt7fLtY11dnZ3qcYZk70rXDr/NC8+9zV+49/+S1545ps8cv/9rCys4Pc1C84hB20W1Wk+8L73cOnSDS6vX+SZlz7DOH8DIWP6/VV0a8zLF75Ab6HFxtYbPPzA48S6xWScoZRGCEUUxSRxQhwRUnKtwRlPWWZIoVBSEwmNl0MW+m12DzZYObTAwXAXFTn2J5cQ8YTHHn4HZ44+SORbSCAvM0pbEUXRzMmndgZq9ik5Zw3ZTEAbIXDIGlFTznxTFGqlbynGYOby0vD5p7aPUUSaplMkQAo5naxXVcV4PJ7Sh0LqrZvyxz0e42Zi1/n7m+foh32cW86EZn8vy5Ky3vvLsqypkeX08TfnROMk1xSMDdVl/ufmNmaaspmoWQhBkiSBuiNCwJuraTnG2SA4rbn5OtJTJGN+wGVdkKUGimYoVgOqYqcC4fBcqpnQVgUKaJZPgp7AOmxlpkJdhIT6nDXGkOf59Loz9MQF3Ug9HQ+CaVlrC/Qtr/e0eaqRjaZRat7DeR1G4850q5PgXCpzfZvz3v3WWqq5oVzzmjeC7KYhm7/O9DMRPgy33F9zO2maTmlpU33G3PtbliV5nt9SI/g63I03NXzN8/M+iMLLvAiflxo9mX5nmprEzlKOm89fk2txe91ev9/X94wQNBOmW3QCtcDWuls3/6n9GLfSh+Y5ko0Ia56fKpDTsJpmStVcfv7/5vHEcTzdtBr+IIB3FUU2wccJWsXBn9mHcBUpQSjwxoIK6ZeR0rVFGzTBPQhHrDWVtSG10VTByzqKqKzDlBXGeeK2xCvPZCIQQhNHCh1HCK+IvEUqT9yNODgYcTAccWj5EGVZUBQZSsSUzhEnmiPHVpmMc4r8ACEg0h2G4wHGB265cwV5rtBJRFenRC0NRQupgn5BKIevKiAIz8bjjCzPEQLSVot2N2E8GtJqt2gnS0zGY8qypN1qI2XoDFttjReKwXAPqYNTxGQyQivF9Ss3abUT0ijGGsfWxphjxw9hypLr169z+vRJbly/itQFQrZpt5YZTwaUZUF/YYXBKCfLJhzs7wfoXAqiVkRZTtBqgarMUUJhTcHO9h7t3hLnL76I391CuOAWdfLUafoLixwcHLC+fpOXX/0MH/jgW3n0sXPsXdvlk3/kU1z4+lV67YztnYrMO0q3TlVkHAxyXnn1Okl7mc3djLMn1mi1NIODISv9Fe48dS86Sai8YGNrG1MkFAxIuxHH7jzLr3/2MxxqdzneWWGpc5yorynthFYHJpNNxvTYGz+PVldw2cfZuTng5B0x5STF2yssdh2bRYZ3EVXeJe22ibqO4fCApdYqSir29vZYWOhSVaHoGQ7HtFop42zMffc/wJe//FV2d/dYWOgzGo1wxtDRHS6e3yfP7+Lw8R9mv9hnqX2Sp56+xFOvbnNwI+bqszc4tGTYGBfkwy/xC3/jcQ6d/L/yS7/+L/n4R1fRvSW2L57g8vlXufz1L/PH/8sf5w/86Cf5+rdepHB3sLl9g7sfPEYrTnnl+Zv8h3/1NZ74WspP/sG7GMUlw6KFNRlCQ66XWa/2sd7zlX/3Gs/83iaffOo6506uoo9Y1veu0S/2Gbl9jp39OE8+cYmXnrzBgu1ROYOWGUXpmGSQZznZJKMohqz6BT716Y/wO7/7PGW+T8t5UjVhq9LYYsBK0uLnf/7nOXzoBFs719i4uUWSniLWFS6vkL7F5Y3Xee8PfZTL2zd44pu/Rbe9SJSkXLz2HR665xgvvfYkL174EkfuWOQjH/sB8ollb2dEr72Cd2FiGCcJZWnAOdodjbN9okSAlxRFhi1BqRShJ1y5coU47qOihIWlLl7kbO+ss7Z6BGlj3CQiFhIfeVS7R5YNMMbUGSMWiydNU4qiuMXQodltrTVEdSE3ySZTFLfx4ZdCovTMEtp7P7XwnE6E62LSGAPGQL3/hj04NB1N8d3s5zO3uTDJbuwiQxiVIysKoH694phOu0NZVnXomAhuWr6aFoPN42u86HWkp3v/vO1p8Maf6cRCKnCYwidJ+l3U1TRNqaqKwWBwi9i6KIpp8RnHMUVtCTvJM6jPttJVwT6zCm5rwHTw5ZpmoP77/Os7f+YZZ/DWTUPYdJ1wXBQFQkXk9eOIougWFAdjAm9+rkBvVkBLLHme1645ILxAiaAps9bivKcyBqU10vvp75uztEH6vWA61JuGhs2dsc2SNOnOfkpjUrVGQNZFtWf2Xkqhpi6B84+9+VzNv0/Tz7VnOplvPv/zJiLN9QKrIDzzhhQUUrdrW28PUs6MTpoGJZzpoTHSqnZrKoqpc1XTfDSPKY5j0jStTTtuawhur++P9Z9AGZK32LYpFdxriqJACj3dvIDphgPgnAmQaJ10KaQnhGqGhM1mAwgbiZ5Ogt7sp92sZsNqtVq1E1A4LA4ODhhPRmitat9/QZlUpEk7ODhIQRyHMK88t8Rx47sdbPPwgjiqPay9pahTg6WkdiCy9JKUg2yCc5JEJUghgu0nglYagygRskRQYU1eJ1lKJoMIxQpFlTEcew6vHSGJI7RMOBgfUFRD8nKXuOVRicUUYKxGRzFKQVnltJIUoTwHwz02dyrSdptRNqCbdkg7CQ5HbkakHUUaa7a3BFr3WOj1KMqS8dBSlsGdotWWpCpCKIvJxnR7XQ4O9sjHkt5SnzRJmIwLTt1xku2tXXb391lZWaHVluTFiKqQdDsnEGik2mdhUdLqONL2AvnEcLC/j7UVqV5hfzyhvxj0EmVVYoqKSAsm2QglXe12cUBLt5ClYnyww8NnH2Yzs7hohWF2naVOi6vXbjIYXKDVanH8+DEeevg+yjzn2ivn+fCnPs7/+7NP87BrceHmBeR4n+NHH+SO011On/wUKlJsbm8iE8HRk8c58txFLl6+QquV8sEPfoSVhYTh/k0m20MWlldQ/QgOCo4cH/ODP/3H+dq3L/CpH/04ywuCMttne8dwcWMbIa5y8lCLtPsCd/ROsbFzhHbrdzkifoBCGdZWT3Px6jVWV8+S26dZPbJIyyUU5QbGJpRVj05b8call1nuH+PQoUOUZU1ZU00AXYyOEw4ORpw5cxcvvfQyjz76aG1XG9Pqlly+eZnH37rIA/ffw+e++hVWe55TJ+9AxK+SDJ7j3Kc97ZUYTMUbLy1y8dL/wtsffCcPPjzm289+jpNLn+TckbfxJ3+24l/88sv8nf/h1/ib/8PP8NqFG+jIcvPKDnefvRvvx7zlXScZG8uTX32V3esP8NDjd7Gob7L/rnO4RPHY+47zb//uFynWNT/35z7NuQ8ss/7a1zmy/CrlkmT/pmfr/E1OnH0vX//Cszz3+RscO3KWXb+Okm16iWRnuEeadinHOZfOX6TXV1x/Y4Ol5Q4/9ulH+Z1feYHJaMCRO5d4/doN5FhQGMtz37nIwuIeUZLz7DMvsjvIePzeo8hCo2QbOocxwzZPffkFDna3efxD72Vjd4P1ndfx5w3jasBb3/keDh9fpNM6zPnv3GSht4pSEZWrkCrkr0gpUXEognQUs7d7kyiKSNKI3BnSqE+sV7HJdzhy6L1Ysc3O3lWyoaLyUMQdlnuLdRbFPlHqKfIEQUxR5NNCCDmjjWitMc2e6Gei2aZAbbdb06I6CImr73Jxm5+4Nqm+zAl4q9rKeGaz6KcJxcA0yTdMUMNAZmrrWaPHFdXU5nNmI6lQauYtP7UxrSf3TcHVPMfKVNP7bM6dkJiuSJPWrWeCn2+Q7LTwb86Q5kxKkqRGgcvpVLgpGHNTkkhBmYfGy3mCwYIPfPJIqymCARApPW1QpJRkWTb9vs4PxLzwc0h04KdrrYniGMdsMNa8jmVZIpWiKGcNYPP4G9TFWktcOz41r0GSJGgpKcoyFL2NsLg+r40x0yn3FOGvKUTNa9tOW7egKPO03XltRvO+RVqjoniaDB0sWuskaoJtOHPPsfnMzX9G55GGeTpXnue3mIg012tejziOp41pU/BPh5T18w/XATWXPowQSBXNDEiERNRZG0IIJpMJQgjG4/H089x8vm+v2+v7YYk3Q3n/v9Yv/5tf8c0XLny5AmfwzZOH+SnA/Jd4/u/TO5/78gKUhbllGjU/TWhuv9k45i+DcFNoOVjUeTqtNpUJELMQIZY88A3DdHphYQFrLVmWIWXt0COCPsB5G7QEwqGUIE6imv9pOHH0GDdubpOXkvbCEmVZ4EwOWoEIVpyR1pgKnA2vRZoE2zljKoajPcbjPQ6trdFp9bi5sY0XhvFkG6EMvXbKsaN3sL8/wdqUXn8NZ0quXbnAyqEVSlNyc2OTE6eOMhxdohhZtGqzsLQWeJQeyvEITDdsqs5hnaG7sID1hiRN0GLE1StXufP0XeztjWilPfLMUpaepKUZZ/9f9v4zypLsPM9En73DH5/eVVZVlu+qrva+0QZoGMIKBEhwaCCJVm6koaSRNJp7OdIa6Wp0R37N6IoSjQwtQAMCIEACaHQ3utFob6qqy/s0lT7z+PA77o8dcTIbd37g/hyy91q1amVVnsyIOHF2fN/7vWYb24aJiVGa2136/RDDcnCcjFR1qFRGWb7VpVL28KoRmxvzqFRCUsEt26QqRhoOjlGlWmnQbm0hvDKSkLJdwzRSDCNhYytGWhYqNHBNm2YnxDVjpqfqvHblJs9+849RywtkQYQQEAY+rmvTbm6QJAGHDx3k8LGjjI9N06qlXHj+bUw5zjef/iZ37pvjzPoy3XZCpWax/+B+7IrJBz7+ON/4xvd44p4HGB0bRWYxX/iNX8fOEsbGx7GcEu1M0ltd56M//ADvLEY8/c1TzDYmmDs4TWMyZXJshP5Gma3NEBqL3PHoGK3+Go3yJONDZUS/RHdriOGxO7i59jbH5h5gY/UKvugjRROZSRxxN34c4zgOrtPm+pUmSRIzPDyUP8iMnA7iEQQRURJSr9fZ2toACvQzYWTqKP/7P/0lXn7x23z6px/kkz96B1tLCyyvv4rnbDBZGSJyFVvLEVND48jhlKWtMlZ8kP2NMk3nJfoLU8zNfo6lzjmev/gG0cWUcuUwXiXk0uVLLN1Q7JmtMTExzDPfOMcHPn4ns7eHvPrVVT708acQw12uvnaVg3c1uLK0SHrN40d+/mdIy6/z0vNP00tC7j4ywqk3b7G1mLFwpsRP/qW/zFef/QqX3hHs3d+g3RSEjsQxYd/UDMQKEXfZt7fMiRPT/OFXX6ffa/PY40fBGObilQ0wt5gYN7lyyeDE7bfzyitnSdOI6b0VbNPDlCUevPM4dddmcmyGIPTpR5LTZ9/h+Mm9JLJPn2063S4LK29y/50fo1GbYv7aOiu31jl57HZsq0ySFqJPnfpbLVURboTfBSFSkjjl2o3TzO49SL8fU3JG6WeXePvC1zgw+yQ35k/hGFVsZjh8+DaGqrMkYYsszSiVLZIsxPcdPM9EJTu0E6R2qSkcV/wg0PzxXPAoc6tKlWWQI53FhKHYI+M4JuXdyHWx76ZpShJpQa1lWYPvg4L+ojQSDINCrKBUaP2Btt6U31cM27ZNrxu8C93eXYQXhXhxXkWhK6UcUJCK/b54NmQ5uKLSXXqD/DyL50BRuBUF30Dvlv/e3TSY4nnheR4J2oAhUxlxmB+XaaIySNJYa8yEdqfRUwo1oGtBDorJHSe84jgMS+sF9EQELFMSRxFZpojyyUIRTKbFsBlJ8QzLJy9xrGlkjuO8qyBPkgTXdt5VMBeNSalUGtCrivMNgmDgslTo/KS5Q/Pxdk1Yivvv+wv44n3YXbwX94aQO01LEhdhpRKlkndNHgaMAJUi8gbJEDtZA8XftqmdjXbfA4NjQ2sKJNoefKApTFP92dhVKxQUvN01R9HM7dY7Fufrum5eE8hBsyqE4Cf/u8++5z363vozv37gCUFRWBcfepWmCMsYfMB2r91uQDtcVTVAPYrvLx4EA2Qi1RtM8aDY/cEtHiS7x4ya66oGqIlh5AmVkfb5LxAclQuYtNuOFv2FoY808gRfpZDSxA9jTGmDyLAtmzDWPEXbsfBKNtvbC4jI5cieEU5dW+bW9ipD5TJBawvcOlHSJEq2MS2Ik1yTkMTIxCAMYxqjI1RqZcIkoBd06Xb7CDxC36BROYJSin6vRatjooTDVnubGwurzEyOMTI6yvbWNlGS0hiaYG2ly9TwUZyxMnEiiJOUjdYyIutR8QRTUyXa7TY3Fq4TJzG1uEaqEhpDDUpuhlNJubl8DsN0aTc3cJ0azV6PUWuCJIwpeTZCKhIihseHkdLC74UEvZQg7DB3cD+3lud5+5UXeeD+++g1wXI8KsOw3WxT8qr0uj3c1MWxRphfvUGtbNNPQuo1l6npIbaaTdY2NhjyZrCrFfqdNvUxl+sbl/CjFjJpUq25WI0aG6vrumgJY4bro5AlrNzapNV/m1L9KmMzk0zdNsmdex7g7LUz3HbvHFdfWKfe8AiDLlfPX6bbS7nt0AkOTx6iuTHPb/3X/0jFdTm4dw+OYUBmYZoVgqVl7FKdhWWb7/zJ8+wb2cfE8BRRx2J+o8dN3uLY4VluP/EgL5+5iZvez+jkHhabz7LZh1LWZ2h8D83OEioax7F8SFrEdhc/PMWY/GmU1SFVEXEsMLM609Nl2u1t4iSiXq/i+z4ZGWm/i215KGWwvbmBNPRncW2jjTRMSuEKrmPiOiOcf+cG04evMVbuM1J1kXKOW2sHeO6ZG7z/yRkadxxjsdnn4MhxltbOsl6eYm2txv49IY1qh9row8xMH+fwD4/wq1/5On6/y9ye21m6/CY3r61gOCH7jtX40m+8wH/93X/EB/5VyL/5L7/GSKvKicOHKccuJ4cmePDn76UyFPOhD/0OoQUf+3tP8tvfvkF6eQ/tjT4nDz3Id559kfHh/Zy232Z5rYodJoShQjo2aysrjA9VaXU3Of3OPHecvJ1SWfHy8/PcutHnkz9+D7ffvo/5xT6h3yfoBcxfu4glUvbvm6LTX8APWrz92nn+6Hd+hyTq4dkGKnE5cvsJ/j//8T9x/coCW+sX2er6TE3NwpCgtRyTbLfZ05hj2Bkh9BOCfpcMsBwTyzbx+33OnbvJ7LFpquVx+t0W1UYZaWWsby2zf+4Iq7favH7xC4w07mJpqcn+PQ9wYPYkriwT+QFZEoCIsN0KUSQQlkO9XsH3m5DJQWpwYeVYcOLtfJIqclOgFP1/KsuQaqfg3Y3GWpaFtHbQ+qJoLxBQU+4U2Sk7FA0d0pU72qTpoPguKJ22ZRFHPqbUDcmAP58pstzwodjHYafAj+OYUqn0LmpKgVoXNFDD3CmsBw4zeUFeFHpFkVf8/+7itJio7KQq79iqDmhJ+f+FYYhhGQNqkiEEkpwmk1tLR4lOK7ZME5VTgBA6FyHOn4vFuYFufqQhsSybwA/x+xGGYaKsPPSSlEhlOEKj2PqcyH+mIIwiXMcZuCSFYbgzUckgiXaCzeI4Ji2ccvKGKgxD7WC0q1lwXHfgmrP7z+5rtPta76Ds77YE3T0tKJZ+H3c0gvqZXTgTinfddwMtSW4nqm1e9T2dqpQsf29338sDilP+MxBF+KbOxMiyjExKbAFZukNB3g1W7tYIFMdg2/a7wuKK61z83v8r7cN76731Z3n9/5VDUGzSQgikoe3UtKBL8/iy3Ao0SdKBJZxhGFrZjw7yskwjF1Fp27HBB06ARIu3kjiBHCWVOXqwu8kQQmAaJnGeAInQVmdRmFOahEmv55MJgec5qCzShbmhky+NfPRvGQamlCRJiiEsMpWihBbtmZaJTDP8wKdUcbEdEyUzTp15i7uO3saBPcNc7yRYQoJjYZUq+KFCotEy6dqADgNzRKhdYVRGmiomRqaYv7mIY5eYmq5QrRmEfkYQhOydPcL8rYt0/XVGRkbwfcmFC1c4sH8vSZKxd+8ciRK0O9dptm9Q9WZIQptMWJi4xElIkmRcvbaEV3LZOz0HVkwYKTqdgOZGQGlvmVLFIkkMPK9KPwiwrATT77Cy4tOojlGulVhba7LdWgNspIA4tojiEqbwyYSJaTvs33sIyQiea9PtLpO1dWrx1vYy9doeWpsBcbrFcL1KGPaoeA2ioMvy8gpZaqFISNji4rWr3Oqvc3WlhytcbKOOEVikYY8o7VOtemxtNckyhfJDPMem7JSJW4rI6aGCkG9+6yJLdy1w/Og023bKiRMneOPls4jMpuRmzO0fZXy4xOsvX+DVl1/h2IEjrC4vsio2GBtt4FYN/CSks77BD/3Ej3Hq4honjxylu7WO7XaRwqXRmKQbVbmwtM3FhW+xcX2D+0+8wMjIGFk/Jo4gzBRxwyawfOzaGMtNk26pyq1b32Ju7MPILMXvCyqVIeJkC2H4ZMpmeGSIbrdDs7lNY6iR82r1JK7dajE+OUa706Ix1CDJtQStrR5jUxk/8QsO9zxV4ebCGks3TM68vEVn2+en//Is/92n7+Y//JeL/Lt/+RtUDElSeRpkxC/97Xt57rdeY6Vl88M/9jiPf9jm23/yLN/swSOfPIFhjRJsG4wNT/H26xe4fvUydz94O0s3VvlbP/Ovef+PPsSdj+1j+3oXFfms97qIEvynLz5LbavMz//Mj9I9ClF6k3a6hFGpcGtecPDew7z62gJhZ5N4ow8TEX1vHdWTRKlFKF2ubF1nemqc+esbXLu+SU1OEak3ubhwDvGViM9+8sMc3j/JuRvXuO/uY7z80ivU63t57ulvcPTYNLZZwjYU42NVMoaoVVNuXF9jfGqIJOsTqYCDB49zSN2JH24yUT9GEN8iiRRLi5cI/JjhyWlKpYp29xIZfb9HtV5hfPQuzl4/Tbd3lduP38NWZ42h8UmuXr+AW/V47sWv4gxts2/fPoYrd+HZDt1mhzBrY1vaccwwBEmaoZSEMMXIfAyZIQ1deAdBQBKllMplfN/PEWQGe6Vp7NiQGkIQByGObUOmXWnSuLBuFKRxlBdreXGWF0ZCgJHnnyC0gLagG+2ezOr9XubORdqmU+wSPydpQgaYtk2aZQgk5XL5Xa8viqtSqYSUUh9rUdAqjezalkWaqUEmzW66jNYryIFwtqA8FUW4ENqRyHGdQeNQUJuSRGk7UdMgTbVtaZElo1RGnMbYlkWYBFjaFgeVptoBTaWD1N0kTgYFI2h7Uc/zBmJf8gTg4nvTfHoiRC7uzpQ2UMjAktrOUltp6mejyhTC2NFtFGCZbdl6epAkZEmKKQ2EadLtdjW6Xy4NwK80Ten1fQrXPZVpYCxJUyQ74uGBIHhgV1oA4FofoS1r9TOcLDcHT9/tSmQWtJ041pQoNL3IcYxcryfREpV3B7/tZAXljIAkxbXtgWg+zjKU2NEhFq8rGpXi+FWWIvPGLEu1Q5JEDBq+4p7bLVw28kZSKUWc6PsnyfMeCr2OaRgkZLlC4b313vrzs37ghkCpfGOWAs2qzwv/LCWJQcodt4WCr6cfLto1RUpJFEZ4jjMYveqfq9EElSVkWaJpOwik0PZiBW+zEBAXH/A434A0xxUwCkRNoZTe1rJUNwnSyOVXWUqc6tcmWUi7G+M6NYQSRHGINFKEESCEBGHjeQatTg/HGabZbNLv1ZGNKuevn+XewyfZU26w0U4IHYckaCMFVEuNPF1RIk1IUx8pNfrl2DbS81hdWWNqcgLbNNlubVKuVLAtB8dV9PstPKeBaQ4R9NoMDwlK9n5cb5RyJWNro8Xc3CxJNEo72kI4Np7tsr3ZoexV6ElQZkx5dAiR9kj7KVktANNFGg1UK+bWzQ2C7DKzs3MEviJLLQxpMdYYwR12iKMarbDJVtOh0UhxDY9E9VFyk9TRiZXN5hatzgbjI2MsrrYZdiuUK3XWtq8xPFRnZHiSVrOH53pY0iLqbmE6LqvNFUZcl+04oYJCWjG3thbJmhH33nkcS/QxzQNcOXMNM0kwRYQlU1rtJqhMF1Fphuk4yEzrQvpbkB4Y5qkPHOArv/MFPve5H+HFN19h/+QY73/qDvqRw6kzF3jjwi2GZi+xvL1FYAUk/TZP3X+MftzHVxLTdbiysMLY7CSJn3D29Zc5cvAQ+/cexDQNumFCN2pTccfoB1tcXlwi7Y/xrWfe4adu+yiG4SLZRIkqVCT+JozIMjXH5nT7NSacfchwH8rqYVkOYRCRKh3wo/Dxg4RSqUGiFNvbG3huCc+tgiEo18psbW8RBD6eV6Lslum1e1Tqowi3y/y8wZv/LKQ6NMraaoeVeQjDhO+8dIa/9nOP86GnYlr3NbArgtjzWL7ic37+Fu97Ypbf+70Nvvib32UoW+HxT/wQf/0X/hVf+f1X+Pw/vIvR+ig3NrfpB10OHTyA3+5z+N49pPOCG6ff4aEfvp9s/TQzdY+lxKcvajz0seOcOXOR409M0e/3+PafLFEXQ5w+F/Ghxx6js7pAGvTpSOipkHK6Sdz3ME1daCpMpPRYW+tiuWWu3rjB4cN76HSbeF6FW4vLnL54ivtqx5BRyvE7j7G4cB1khf1zx5ieHOXm9UWCNEBkAUINk6HoBoo77z4CiUSIiDAxuXjtJRA+U2NHCaIm48OHMbxhNreXaCZt2u0QywTHcoiTgCyOWd/cYni8gtru8dI7v4NhVtg7c5LysMMbZ7/NycP3MTnxGSrWEI6Q9LY7yCyj5NY04JGmCOFiiAwhdRpvoiIyJcDY8byXOQXF8zzNoZdyVzG0Qy2ybRvDMpFWnkQcxwiMnHKkIOeB7xSYTk6BUkgBhmVDqsOmiv3bNEzdXJBh5UW4MGTuMKRdhWSOcFtGjuQiSYIYJQVJGr3L/nP3dEHlBZgC0iyf4mba014KMUC8C5pMUaSTaeOIwsVGa8/yLAUhcHIKjUavdQaKAFzbAkNPQixDapqOgDjXK0hhEEdaoK2UIitsUjN93YqsALtk0+v2sCztwlS4QCEEhm0RJ7E+LmNHqOt5tqZtpmnuBgRZrPdQPeWWA9qLvu4SZUhQORqudkSuYRSBVFimrXn7GZTLVaJENylCmshMYFkSQTYQPSuVame3XCuyGyUXSOIkIYx3dHVK5RkE+XtWWNsaUkKyg7gP7DlzuleaKDKV5AW/fg/jeOe9L+6FgqYkhA4I1Zk6BqbYoSAjBaahReoCzRogn2CgFCJTKKnvSZFl2iQkU9iOO7hHivqiqBmkoW1di3t80NwYkkzqJswyDQwpIEtBGGRpihLvNQbvrT8f6wduCHRnniu4Bhw9MAxzEEyz8307XMHdvNHdXsJ6kzHI0Bt1EEakaYKUJv2+T9AP841LDcRKxSZlWRblsvd9Y+GC26gRLNu2EEIOxHe2baEyiGONABhSEGXazz9VelMwTQuyHSclhKBaqdHtdknTDENA1XLZysY5vXST22bAaNTxY4M4UBi2AUYvxxZK+aYoSdNs4KetbUNdTEOQqQTTkHQ7TRqNIcbGhlhdXSNKFEgL06wRRgGZ1aQfxpSdYSolh+bmMof2HeLM1XkWV84wOtRgZv8B+v2MuJvS6cVE8TpDzhCJa+Eoj8RYplQOGRquMzz8OIsbkyy3ruHZK6SdiNLItPY/t/sYdhmzU2d4VBKrNrbVxPereKYEqZCpo+1O1SK16gNs9NogJJZr4Fguq+vrTIy5VMsWq60OY+U6m+E14l4FxzMJEhthuhiWQTWbJHaWGd8/Qtmd5tz5P2JsZpFMWtTrFgYNRGbSmPQYGp6g349od3o0hoZxyi62Z6P6AfPLi7hGyrEDx7h4/hKHD9/Fpddf4dDxI9gxvP/xO/njr7+EKaBcm0JkZ7nVamNd8bnz2BFs26FDyHClxt333M2LL7/M8NAQqcro+wGO6+iCyYB2p83S0jaHDh3CVSOY6S3GhubYaF8jTWs4jmRj9bskq/upHjzBy9f+iFHzewzV/iZJ6CNFAqpMlkoMs08cgF0y6bS7GNLGc0vEUYDfD7HMElmq3WZs2yKOI27dWmJ4eJQoCkmSNhuLFi98e5WqN8uROyqcOLaXkrHM0eMBJ47HXFh4ngfuH2Ns8gHm+yWCjbNMPT7FC9/sUHNDfvgzHhvthNXmCp/cM8nR+/dw+ms3efYPr/Azf0sxPRPQbIXcuNqk39xkdt8kMyfG8bs+3naXYTHFmxe2OPLQFBVTF8533bMPy0h4/ltnWL3VImuO8fgHHmdmxuPLX3kat1QCaUFi0O+2sYyqNhVQKWEYIAHHthgZabC8ssyjj96vg58ySZJkeM4w3bbElHXq1UlcW/LkEw8RBhndzi3Wl5fxrBFKNUWrGRIEKR/+8AfZf6TM9fkbKBGz3dlgtX2eQ3sfIRMV+kGXle0FwMZP+7x59nmOHjlBozLDmVNvsrW9ykMPPMjpc69gS3jy/T+E37vO3IH9bG9sE7aa3H7gHo7M3okUDn0/0uF0nkvY7+kEanbEooVWZAfB3LFqNgyDJI4GPPCi0N3tDlQU3IXJQmG/WQSOqQGHXocponTwlmHqyWUm0kHhuRtJLaa3Uurk1t17+e6MGcu0kEK7t6Wp5oRbtkUUp7iu+y59AOyYTZiGQZymGKZJHCU6ZTlOSNKUVOnGxDQMLNPEtixNn8u0H/xA2GtZg4mFkDsA0+BJVEwmMt0Qke/KBVc/y111LEvrxgrkvCjOB9z5vNgVQmBKA7twvsuyAUKuJ9hCN06F1kFoWu33c+AFYFjW4FkIO9z7AgGP0RMpQ2jKlsr1AIYhcxBOYVqGrlmFDhkr/PMNQyKloXMClJ6cixypV+kO/ay4fwr6z26aTHF/Ae+iBmX6TdyxMt31rN8tpt79dbEKylNBgcrIMIQcNAYFa0AphWlpJybHcfRrcsrxbtGwJM8yyASWNMA2ESojTdIBXWo3TUj/HD09058JPR3Ksp3Ubs10KBgLuiFHZewO2Htvvbf+LK8fuCHIsl1Wc8ZORIqUBsKU79oMdj8Idj/wCkcGy7K0yMlySBR0ux36/e5AgBSGIZkCU1h5wmKGYUgsy0TKgjsZkKQSI9E2Z/r3FQ8fnaC8Y1WmdGKwgZ5CODq3wDL12DjNFEjtApFGeqqRiQwnTzNWWUyp5FIpu8goJR0f5tL8y4zbN/EmZhlxXVqpTaK6oNz894QIXLI0wQ90IR5GAX7gY9k2YRghMDGkjemZSAGt1jZpHi40PDJEEESkSQ3DqND1b4CxwtzMQYJumY0NH8uFkjtLEGTEqUSYEeXyKDN7aqzdOsNYZYal7jVsM0FkDpnsYxkGHf86DaeEGTXoqxbLvZRmvMrM2DAiVqhkhX48hEcV4nGoQ7yekjgJwnaIQ0EcRiAUSrQI4wTBNm46Qbm8l5K3gWKb9SChJsbZiLZwSts07DLb/ev4oo4tT+DLiFLDZnzmLm6dX6C5dI5G9XbW166wsfUO1dIQo1Mz2HnSarfXJej1MV1otpbJOhkjw8PIyMbzXNY2ejz46GG++sdf4SOfeZDrF12qpQrXbtykfWWdqpswv7rCkDtGrCSpZRGojKs3b6JKZcyGy8jQCC+//ibbzRauU8UQgm7Ppx/FOF4Jy3JpdbeYHJ/GlBa2GeNkNZLIRlgupuew0ZqnbnocO3g/37rwAr77Nd5//G9zbjnCMRR+0scxqhiWTxSkOKaNlAmu5xAnmgJRqw6RqYx+38ewTLJMP8BHRkbo9XoEQR/LMiEz2FrTTW6sFnjjFZvl5RGe+FjAsRMJpeGjlMfvQMR1EmeC9Quv8ZXfi3ngkWl6qxu8sfw6Y7MGZ1+DPScneP351/iZH32Iv/blJTrLZYK+zWvfuc7tj97G2FCZF5++wPXzaxx6UOJGB7GcNvbQBnN76nTb51CGgWWOs7p8jvm0hisNTh65na//zkV+5JMHCeN1Nrc3mS5VCHoBMhNUSx5xoFCRFsC2Om2G6nWUbRFFEbdu3aLn96hUyvT7MaONBgf2H+Oll1/iE594ihdffo6V5YSvf+1rnDgxTbftU6uW+Bt/668SpRu89dYr7Nt7nA9/7H5On38Fa2gVyy5xY+kVTNun211n8UabWsOi57doNy0MN2FsdIL5mzeJR20mxqeoVWq8+cY7HD12iPHGFGFbcnz2LyBTiVXuEhgmY6UZgr7AkClZKvRUK44QMkOpiCjOAC3KLQrsogkoim09fdVos+M4CCGIIk0VkbnIN1MKlSqdh2KaRLkbym7eePFzRaaBEjvXJoRRpFOGhQQysryYN3KkviieUnTRu9skokCM1YA+WoSDad92yynhlSyy9N1NBuyytZQC07YwpMQzXD35sEykIbHZoSJFUYjtONimpa/LLj73bhMLwzAGbjPkwtQi2As0G0YW14Jd6LDQdpqmsWONXeg3iutY6NgKgXahrxhca9PIf58chHUWmjUrv45ZPgURehT+/6Od2y26TVOdUm/ktNhMKKIk0cWvYWirb0NgSROkwDD0+xtnKi9u5WCyULz/BU0MdKG/+xyL87QsW1OWyLBzvYim4+bvPQJD6kDS3XQuYKDpgx1K0fdThL7fOVDmzZqmgVk6DTrRCcE6pDMkKmxVd12jIrsIofUdWZaR5VOETGUkmcLMbUuLhqDQswAYoFF/lV9zhNYdkJGQYQqJMAwyldc0mRb3v7feW38e1g/cELRazZwf6OAYNlmm+ZVZpkd1Sr2bq7fjZf3uNMo0iajVakgpCQKfZqdPv9/T8fGG0AW/AY5rIZWFlALXdXLEX2jXH9tG2yAXnnMFgpYSxwkMPJEljuOA0A9Zz3MwDIVtSxKVoBsaE8u1yEghE8hMuxEJCZVKmXa7CZlEpRpjUpmgasPs3rt59fozPN4YY7RsIZyIzXUHlXqoNEFlMVJ26HZiJmcm6HTaRHGI53mkKdiWC5iYRonNrWUMJP0gYKgxRhSlZEmGKTI8F+IIqt44XnWUxVtb2E7A0vIpDh+fpdOE7a0mq5tnOH78CMu3WswvuvSNlNR7jVqpSlKK2Wh3ubl0hgMjJxipKOJoBD/2sUtw99EHaXcEixvXsc0We+qjBJwnCSMqxiNs9+YZGbHoxw5hlmDbIOIRhL0fP9xicnYvqzeWSKng2S79wKbbSmg0PFpWwM1Ll6hMXeRQtcrq1kvsrz2MYVm0/ZvUvD5lu04YKDpRyEhliiMHpmlYI/hsEBk9hNmnv73F2vwyZ06/AxmMTo7R3m6zaZcRWUJWHSFxKly/Jvnpn/0FnFLC6AGXN69cZ2ZmmOs3l5ja6zA7XeXU2Us0+zFm1GTMKRNZAsc2yMKItc4anSCh0+ngGA5kijCKsITEVhm9bsDYeI00hRQH2xKYaczSwipLravU6zZ+v83k2BSiLnn5xu/yF596jMC6jVh+B79r4jolTCdBZQnCMklSgUh0IRaFEUqBFK5GYGWQ+6bb+WcrI4xChoeGuXz5MmOWieFIlIzoRxGG7fLIRwRB2uY3/n1MbWqJ+z4hqVbKXHi1yUdPWDwwMc7p77zEZ3/qY7zwz29QsgJcs0V7I+H3fvUP+cdf/Dk+//OjfP032ly6FnHlXBvLWyfodhk/7PL4Zz9EL+myeX2FG/Me1bGEF1+YZ2MlYXaszuP3TzHklPjDL77AZ378Azzy8KfYV/seL7/wMgurC0ShQqCI4y5CKoQCzy4RRB1UkpHmAr8oConjMmvr6/T9NidOHufF777CkaP3IRDce8/91IfqfPELX8J2BdduNnnn3EU++NQD3HH/ISb3Vbl5c4nDR+e44+QdHLvtGDeudlhf3WZiusb06Amq7lOYpmQhus7oyCj1oX30uoYmRYqMwO+yuHiDidFZKjMNDs70GWoMEwRdTFlGygxFh3LJoF6v4pijJElEkiUD/ncYdEnTCM8r5VagO045u20ddwAVDbTESqcJ27aN49gItSPeLZBNKSzSJM73vXdrrYDBvlhYNUZRRBwng8JWpbq4L+hCSWEBKvMEXaUwDJnTIDNEpjDYpS0QhXubLootyySIIlSi3lV0Fs2EtrtM8/PVqb9xrnEw8smAyhFdKSRxGJEpRSlPG3bslDTVhWMcR9raGS0ELhqG3QXkQJBcPId2HU9RtCbpu69d8T5YljVIqd3Nnd89+Y7zczCkJE100SuFwHIcDNDFPLuK5ry47vf7AwrVbiclIQQiU9prX+zYkkrDGCD0MqeCDVyW0hQrb6LMvFkp0niBXJOhn4e7z0PKneRppdLBz03ze9LIqa6DBkIpkt2TmP+La1w0T99/LYviXDunacqa4zpEYaQpdFLguCWkFCRp3qwWVJ9dDk5RpJOkpSFzPaCR34OKOMpTj/NGrmgsC4F0mjd3AxeoXY2gyMXdSbqToJ3GKWmmsFznBy2T3lvvrf9brx+4IahUKt/nPKC5pDqUbGeTgXfnBhQozsCDmh27L98P8GwTS1aI4ghIdcqw0GNvlJFzX9XAmzjLMprNtk64tUxsy84fNCaua1MuG9i2OdjwtYNARKoS0hSkIej7AUEYYFouSkHqRyiR6hwCo7AlSymlDlGkObyu46GUTWL6qKBH2XRYZYpLV05z9x0P4Fkpk6PDbG4phOEQxD1arW2G69N0Oi1UpvCcEmmksBwHITN6fot+x0cA9XqVTAja7T712jC2mduwBj0syyaKYGtdoQyXlc0FhsddklDQaLh49izdbpVrV1YZG2/Qa8OId5LTN/+Q/UNzVNUsk2WFs+devvfmn1JxUh59+BOoTZPYt2lHy5imYLRsEacui81l9o/toZ+tE6q36W9t0E6rVBzosM1oZZbVlS2MckLPqhGXm5RrJlLGXL3+Gmli0WqmjMYOojbMnrm7ePHKy1y49Ac8cOePoeJhTJYgcEkWIrqzC8wdOshybx6Z+nTbDi+9cJa18y9SIyKNMvafPM69j97NvT/0CMubG5y7cJ71Cx3WlleZqZW4cv48H/yRT9DzE/74Gy8RWTH7D9bxqhlpz+J9H7yH40dPcvXySzzy6F6ySo17xvcjkw0WNxfJIp/ZqUlOX7iO4TUYaQxhG1r8Fxsm0jAhU5iGiWVkSCHod33Khkev3+PilauURoYIt1IOjRp4To+XLv8Xfvz+ezkw9VnW189wYOY21lbbxGFK329hqBG8UkrXbzPkeLopNiVZnJEmijQJKJUdzNgmy1JMU1KpVIjiECHh6NEjbHWbdPsRQSi5465DTB+EV17osnA9IVMmQ1vbXDm1TJx4OLWM9XM1/pe/+z5e+F/b/J+/8gKpW2JlfYF779nPs9/awJAJb/zGy/yP/+MHyIwv8NU/WGRzLeP1524wtb/CAx+/jbX1bc69fp2JaoOvv9jnoScOcPG71+h3IlbjHuX2Oxhmj7ItOLb3hzBIefKxJ/nCb/8dNtoxhilwXAPZU6BiNtY2KLnguJCEEVKAZRkDmohlWWxtb2FbNkMNl7m5EQxD4XkuL7z4NIeP7eWtt6+w1c6II5/vvfYO/+CX3sfi6jWirMmxE7dhuV1WFjapuA0mJ+Z44eVnmDs0zGjjdpZv3WSkXmWsNk0YrSOVSblkEkcKp+Qwn6zi2RNYhFjljDQIkYaZO4iVMI06G9u3iBMIkhZZpukj5ZKLH/SwLIPhkVEsy6DZ6uG4Nq6XYZoGvq9zJwa87LyAchwHT0AQhlroaJpEeaiYZe047Aih6RiOqRtGaRTUD13AScMgVQlZqoPO9LQUfZ+JDEPmhVKcoPLBrw4f1JQj7CL8CY2+51Qny9JWzfrfJYZhEsWB5p8L9a5CsViDwi7WwVqWaZKkCtt1SHKnuEIobAtACuI4wTItMgF+4JPmGQW6YRBaVJrGpEmi91WxKw8nv66GaaLy66qKojtvZrJMB7kVyPpuB6YiFXqQDC3EwCJTAqnQFCyRT1m0PiGnVGUZSayF25lgYJRhGiaWabzrmrzLfSd/Vsqc/koObEkpiOJ44G5UJEsPJhumRtkHNtvwLiRfShPLMgZf76b8WJaFH/ggskFhvPv4djsFDqY9UgOCUmpR+27nwMK9qGiCimMqllIK3w/0RMhxyLL8Po98DNPEtp1BAzvQO+QUHlMwaIasPIU7yPOItAWvIowjfWyZzF9jodDNm0qK8Lsih0jbnBumQcn1CPxAv2/6LHVg267r8d56b/1ZXj9wQ7BbFFSM/nZ7/L5rPLlLsFO8pkA/kiRhe3sbIQSdThvHcXQBYAiyzMA2LR1eJgVhEJEkmj8thEOS6I1gbGyCIOjpzShvEvSEIkGphH6/lzts7ByHEII4SvHDSKOSQiIwiCKFZTtkSaCbDstAGCmmkMQq0cV4mCCFIs36pESkYUjS63Pv8Qd44Y9/hZHpWSruDLG6Sa02wsZ2hziOmJo4iGVl9EOFFBamtLQVaRogZUxjFEI/ZnxkUmsKsoRyuUES6hTKcrXKZhqTZj4qsTENwUb7MuOj44zVb2Nt4xyOayFklaHaHL12n/GhabKRFr35NvvrT6BK54ibPcKVNseOTjH50Z/jhXdeY/7WFlZgkSqLpkyYnpxA9hcYGnFIuoIksjCsMTK7SX1kiCx0yHoSYUjCcJ09e6dZXOljm1U2usvcurrIniGH2b3TrFzv0UpgtRtxx6TNa+uv8vbpK/yTn/wHXO1GzJYlpjFMvbHF/okSl1djDh9x+N431tnYeoMjh54giSPKZbDlOHE/4o3vvM5rz7xMZgpOPHg7P/6Zj7L5eJ/Tr1zg1tmbfPixB5g4NMoL3/sShlljdmKceNvHcw1W4x4zE9Msr53lrfNbHNuX0G9vcma7zSP3HOLDd7+f02fOs9XZouRYXFta4uDevdQ9m167BVYZ27KwLRNlxHSaKakSVIdLZGnCxPgsI6MjtNMm8fYqq2bCsHWAUhhz6OCnKMUVosiiJg3mTtzHxvYiK5sXafovsb19O6Y6Qr/fplrz2NrawPNqJFGCbRukaYiUDkrpe319Y20gEFVKMXe4TLkaMjwqaTRqvP3iGl4dfu5nforU3ET5Dp3NhLcvPktzw+O5Z5sMRd/iH/zc+/ivL11j7sE9HNr/AJ5zi5M/foDnv32Nqxc8tr+keOyj+6jaNS4d75FGGamluHW1Ra2hmBxf4/K5FjF1WuIocfU07eVNjozO8cT7j/PCK8/z8U/9ff7jr77I8y98k//HL32eX/pH/zP/53/69wg8xicmAYNDH7yHGzcvcdfJh/jmt/54gByvra1RLpdxHIfNjSYL87fYu/cAK8uL3Hb8EN1OyjPPfJep/QZhZ4utFUU3yjBLIZ/8zE8yMjLNzcWb3LhxmWrV4XDtCItLFwgjQbThc//dd7K49hZvX/tfMaw2+xu/QKe7ihAlLEvRaXdxjDqImBNHHsR1GmSJg+NatNpbmJZHZq2ThilJnBBGW0yOH8aPt6iUhnAtl/W1FWrVMjMzU1y7fo2MDK9UIctSwjBCKYs0SbA9J0fu40EBlabpwF1No5/Ru+yWC71AYZ2YpjsUjUzphlXmNAknD3EEsB0HqdJ37dEq1anzwjQGnvd+2tf8e3ZAnWLpvd7IaY9gSAPbsml3OhhRhFcp4XfDwffvfq1SCsu2MIwKjplTR6WxEzAmxLsyDUzTxPVcgiAgVYpSqUQURQOP+iLU0nEc0jgBuYNSq/y4hZQYCLK8UN5ddKMy/CjBdXcmKMX0xnEcTaPK6T1FYVsUqnGaUK6WB1MMUxogDcI4yic42q0uE1pIrqk3vItWWzwfi0amKNCzXNycZZnWeUidf4DUwZlppgteMk29MUXxHEwRIj83ikbGyKm2OynPReBWFEV4npeHdqaYli7kycTABlbl9JvCClxKORCYi9xadHduQXEexftQ0HcKxD5N04FgPIkThJS4XglXSPwwIoxjbJUMqFVJonUlQuoaI0oUcRzoCY5pYTseYRITJfEgTXp3AJ8w80mcZUHeRGVAnCSDCY9l2/r+URkq0fWEaWrRfBq9pyF4b/35WD9wMNmv/OqvZ4WvtN7QDAyj+IDHAyGX/msHDShERFEUIqVBmmiR3MjICO1OM3+txLbdHKVJSFWsR+RCkClIEv37bNvLR3+aopSR7qInFTqHFKUd3XLeaGHrlmrhsZESxj0go14bo93q5W4bCtMRKEMhMm3HlyHxrBLNZo9yuYowU9rtNjEp5ZJDQzhcj0NuXfgj/sqn/x43V87hi3X8yCHyR2nUR+j3O2AYJLGi3exRcm2CZJtSPaXcgKQzRGcrYmrfMFGiWFrYplZuYFopTjlju9tHpMNIERNHHapejfn5K0zMlHFqNbyyxcbGIiMjY4TdChcvvMMTT97F1978FnsrR4jUCqXKO1Sqd+HFs0wMT2A4da6tvE6MgUWJTvc6rW5EbfQ4QbTBqJOy2XuFA+Pvo9+6m++89V8Yr2zgeQfwvOMkQZe5gzOsbq0z2ThI5DT49rf/PX/hA5/gnTeuMTJeY3x6CmG5/Isv/EsM6zSfevBTTPo/jBwxUe4CQVjj6sJN6t4FpkY+jb/RxR0dZ3nlAkq2uPzaLW69/T0su4s0XMr1OoblEkRaeA4ZlfE6t91/mJqnqIwf4V/9u9/l4ovzDGXbzI6bHL7tEKoE3nDI2J73cfb8Zb739Os89MQBeltw/txF5sY99oyO8NQnP8XrZ95k9fIqy20FUZ+De2ZAuPRTA2FamFIR0Wa4dpBSqUJib9JaDzi45zj3/9Dt/OmrX6diwNjMJOudFfa5e5jdtx+7Pk5zqczNs7/Nw48fpFY+geNMsd1d4cbqd7Bth7T3MOVKiTj2UcpAZBZSKJAR1eoYy8srWJZkaHiIZnObJE0ol8qYVpl//k//BWfePENmbBJEYMkJYIOSU0JlilKtxMHjezhyoMJHf+x+mMiYUBu4Y/cRt0Ky3ghPP/e77Bu3ScYzypvfZUn+EBPjZeL1s/zR1y/zxMcbOOObnPnmHRwZPkl5uMqNi1tcPv8OtdkRtn1Fd2WLR+8+TKvV5vyVZeY3trn3yZMsXPWZaJT57GfvY8/MCC88f5Y3X7/EN//0u7S3ItxSSpYajAwNAZDklodpPt5XAmanxjl25F5WVq/y0z/3WX7tV75ItxfyyPsP8fzXXuTk3R9g7tgdvPbmm7z/ybvptK8w2pjELJlsNW/wyF0/xtLqC0wPP0Kr0yWJPYaGpzGdDlvbNyAe1simE9Nq9XGdPVhWn1IlIwoFpuGQJhmlcgUl1kkCmyzzsQyXNM3o9SNqtXGUTAmjLiJLqZTKlEsu169fR0hBtV4jSbXoVLuvSFqtJrVqI+csKAxzB+HvBz6mZWHmBaiJSZbp6QHo0CyBLtIs28W2bYJAAxuOo1FW3/fxPId+r4dhmriuSxBHRHGsEVppkUYJbskjVhq5LzkupjRI0kSLfIsC+l0iTYskSXNr3ATXden2u9iegzCA1BwAR0UhWFB6un6PcqmEY1q5MF4LjDO58/wogrSklGRK88td2waVDqYIUmpKaFH8BWGEYZqkuxqCImwq8gMUGQpAau2AFAKZZaSKd2Xe7G68DCkJfP9dfv1FQRslMSqfsrDrWiAFJa9E6OfJx1Kj+rDjslPQcIrmrqDvZFmG5VgkcYzMcsFx3rCZlkWiUqKcNrYDhhVuSLsC2nIKl5RF8FaaO0ulg6bPsiz6/X5OFYpw8/0iiTUlazBlV0pPc9ROxoHjOvp1iaZIFc2D1vfFg9cOUP58WhWGIUkc43ouSZpoIw8gyaDb9QmjiFq9RikPOouLRkrqpipJEhy3pBumvPFNyUiVQpgGMsugoD/tEj8X9+LuTAVgx0ZdSlSc4NgOKEkSJ5i2iZAZaab4/E/86HtWQ++tP/PrB54Q2I6ZowGaziMyyFSMynYEXnrD1446hZg3TWMgxbT0A8+plHAcmyjxsW1JmphkyiQOdYFvmDrkJAi7NIYqSNMlCDLAJIxiiEO0FE7kKD8awdEES0AjJkIIDMsc+FRrAZgJhsDARqqUKGqhspAoVEhZIpM21ZILSYZlGkRxHwgRVkiowMpcTFvQqNRxXJdme4uDMzWunGtw4+1vMn3vQ5x6e5PG8DDtesJab4Ve16fi9ukYYI3NYG8M4dcSbG+E9to5KlWw3RqtTo+JmTLLt0w6XUFj1KLd3cIULkHaJPITqm4dRJfp2UO0egGYSyhrDJI6/eY23rDNoTv3sTK/wuce/FG+ufANOksRpaRNYt1grd3lRu8sU/WY2xqP8OWzL/LgkbtA7qFqxGx1Bd0IzFab0cbtbG/5nFv9T4yMNTg8dw/fO3MLL3iTyeocZqvHzP5jfPuNZ/nh209y/La7eWf7DXwxhd236cd9NoKbrBttPj91P3cf/zhf/tY7PDg8Q7u1gZ+sM2IoapXbUGYNkVzm7hMPsnDjKhtbS4RqhWNH9mI5gm4rQhmSG0sXMXsRmVmmG/SoXk9ZOf86x++9D2t4nf/XX/kwzZ92+c0/eJlT330R299kMigz4YxTc8dQ9iKf+/SH+LUvPs1P/tQx0mCEchqS9iJOvXCGh596hP9w9kvEUYTjVLjZjhgeGyXxU2SgUCqh3BinURbcnL9AfXqa8b1j3FxZpPPtFR7+wBEWr90gziSxeR3L2cfZSy/zvvufpDEzTiY/ypXFS8wMhZSsa0xOjlLlF7gl/gZr0QrD5s+TZE16XZtSOcRvGUSBwjK6jI97bG326LfB8yrEbKKIkcInijcxPUjlKLbTxbLbRLFDtyfxSoIDT1YZ2TvO0o2Af/b//GMWFuZJRYW//7OXmDtxL98997s002UWV0CtlIj2l/mr7yvznVseZa/Lk+9/nFee6XD/Q+/jIz8yglxuc+aNFr3MJh72CCxB0t3GG7LZiC5gj9S588AdfPbgXdy6NI/XPUXfX+e5py/w+IcOorIuP/Ozn+CjT36eP/76V3juO39Kr5cgpUW319WUB0Nqdxx0yqrfF1y8dIEf+dxHef31i9y4scLY2Cjn315g34mjfPs7z/ML99Z59bk/ZcJKsGcjhoYaPHLsbp599RRddYln3vg6T9w3yWP3fppTp19iu3kNIUzStIKU2hM9TiXlUo1yOcUwKkRRQJpGKOXjOBZR3KLfj/FcSRgpcFIWF5eYmJwko6dD/VwT1ynT6XbY2NjAdErYtotheYg0JVM+MksQwmNmZoYoDghCgWGYGDm9RKPbJpbt6IJKmPjKIO1tk6UVUidjrX+GYfsYQ5ZBL9T6EsMQVKtlsiyj3+8OkO2CItFu66msnaP6OtRRo8NJFFGv1uj7AX4YYUiZi4oNfL+PmU8QgiDAthPSKMN2HEzHISFD5VQcSwh6UWE7qjAECKFIswQJ1MsuKo1JYkWWW2IaQpLGCXGmqTAlz9PC3V28cwH4vZAMTWEtkN4oDEEIwjimbNsYCAxpojJdNIdBH0Noj3pd4GpXoAzN8TeFgZNPU5JdjjZxkhCLjExClMbvmqpIpR19sihGGGLQfCB0E+MHPkJKojQGpekuA669IclUmguSdRNoGAaWndOUpMTzPEA/W8NAu25pkWuG3EXdTdMUlWakGQObWsMwsUyLOA5JUq1bC3oRpVJpkPFQiKKL8LM01G58ejKQYhi8q1kprssA2c/D0SzLGlCJkrwZQhbTGEFaUHIMA5Fl2KaJnbMKJLqREEYOLkpBuVQiSyGVCpXGCGkg8u/LkDheGVtBqnXThImmUQlD50uQT2rSNCWN80lFUtCcdlO1Ct2OZiM4tk0mLZI0xjB0TkUYRYAcOFu9t95bf9bXD9wQOI4zGHNqcbBGIQxDEu9CFECj9yK3QzMtE/LN3vO0SLcbtqnX64SJIggSpBHhlUwMU6M5ZCXanTZSamGZIbWrgLBtBFneEGgHlsKHW2cbZLtESylJEu+I76RAiIw0MrBlHT/p0PO7NBo1JiaqKCWIorzBMSRhEiFNk3qjCoaBadmsbCxhGtDstlGtDCSE69vccddtfOf0TT4wdJPK6BzrfptRz0VO3iLZXEL1RoiMbYaNMsGwjxtlhMk2Y1N7MbKUpaUlyskUnYqBH20xUh+l3dzAKaVYrsQxI8reKFIJVOYAFsLo0GwHqHiBkmWRZsPcWl5EOh3o2sw2h3ngtr/AeukG527W6W4GzA7txe8v07l1ne3jV+mmLb72/O9w4OiD7B0+yowymOreRlgO8MV3Wbh+mn1zMyxv+JxbXWG0XKW5vIxtbdJaq1CvrXFoqI5ZcliLm1S7KXP7Sig1ztdPnSLtX+BHZk5y4Pb7abhV1HDE9y78KUcOHGOLFaZHh+kbKfXkZbpjcPHUN7nz5ByvXumycnmdW+vrRJ11zMyg2+1jWBJLOggl8Ep1Ej/AsYYZP/QIv/VrX+DrX3qVp548xM/9yCM8O1flnXdO06TPfQcnCbwuC9ev8ehHn+SBDxzlwrVNTt47x9XXb1D3Kmy15jn1WpVPfPhxvvrfnqFkeUShj99ZoFTW4VQVr0KsQhbm5xkdGkUJ7Yntmjb1SoXO5gZD9RRZi3DaxzAaW1hqnOsLz2KXKxpJ7rks9U2mJxssbd7EswRl9YtMjT/NWvNLOOkH8aTEEH3MksIxFZ12k1q9ogOgRJs47RJEbUxTUStVqFXLJGEH16xiZS5J6FP2LEbmRmns8XjfHaNsRBHXsrN86G9+lNabR3jhm2f5zS9c4fNPSbzhIbrpKLVazKlrr2Ncupfvulu0m8M8swo/9tE2SX+d//D3L2GNKiZPhliMcnj/USy5xdhEi9vumaHZMVlba1GTs6QbFr/65f/I0lKHKDHYO72H+x8sUR2e4eLFM7z02r+j4ozz+Ps/xZNP3c5Xv/INzp65TpwkJEmMV9JoZZYJkgyGhuo027eIkz5Pf/NZxsaGiZM+7bbFniMdWlvbnH5zmcaojbBjyuUxri/cYO90Da86wfz6OzjOEDcWriCTP2HP5DFarRZCkqfyWgNEsSiYfF9z4l3PQUpBt9vVX7su261tlFJU61UMW6JICON+TkXx2NpqEccxlWqVOInp+y2UiBiqldjc6GDICknWo92OsOwalh0Q9CLSXBRZOKBIIbQPukgxDYXjNjBNk0s3v0NXnmJ632MEfo9MpPi+P6C8FHovy7LehUB7nke/38e27QHtLEnjXMQKURQShj6maWNa5kDgXSq59Hq9QdKwyhJSoXIRpkZRy6USre0tTFOSZiZuLsYMAl8Pj0Wmcw/yXIECEQcIowDLsrGEJAjDAUqfZRm+7w8Q3wx0s5Bl9Hs9ipR6x7HxTGOAjpumhSF3dCgGxgC5Rmq3GrKcPiR2KE3Fdft+AXJxPIUoNU4STGkMXKAKpBkYTBfSVFGEvmXsUGeLDLCiKIcdNx4pNe+90DwUwuaimTGUbrwKd6RMGsRSB5oZ0iARugAvaE62bQ+swosCfnfKczEZ0SYfWs9STC8KYS4woFAV13t38nVxzkWDNkDh5U7ScEE7K1gGhYtRlCYkSoOI9VoFbdOdIkmJ4wiyFJnbqgqBnpYlEZnQv8ex9dTEtEzI842K629ZhZiZXNsiSBXEcTKYsOjsBT3BEYNg1Ti3JGVAd3pvvbf+PKwfuCEgkzuBNFIircIDOyPDIIkTXVDnH9zCplQp7RogMkFYjqiUywR+SpZG2gavapIqH8MBIVKiJITMRkqbXq+HlAlhlCIwMQ0L0zQwLO0KpJEwlXszZ1j5MRUpi2mqcBwL2IlON/PQHGSG4ToESUrW9zHR42HPNQhVRLffIUsUy1du0ttu6fCwag1hSFSsreDiJMFIYM/sJCujyyxGAWbSJCal7Tv4a5CWXUzzFgF1YnWDRvkA60aG1VU0sxbV6hBO2SJMtsAcYWjYJezFRGHE7P4KQeIQdgIyq0OnGRC0PezyNlvtNf1aU9Jqb1CZKOPIjDA28aMVNjo9Vt7+LnbUxrYDLGnQihWrHUXdPcy33riK65s8eMdn8K2Mzc46HlArt6F7CplmnF2a4rVX/5if/vTPcnF7hPp0QILHCyvnGHXWuXPzJLP77mTx1gInp2dZXd5kO/BZap7i7be+zCcemeHEzCe5tRbgpGf54OH7OC1GkZnNcGJSH5pgtbnCjZULjB05zLnzr7NHLrLd7TM/v8iEGSNMG5FpcWeaSsIwolwVIDMyBEPmMEmqqNQU6XrGV3/rTb72lVe4/4GHeei+h1leeg1RHeGt197i8586hqhOc/9tW3znmTXaWx32zO2jtb1FfWSIG61Vhk7s4fGf/wTfe/57BM0AIzWIg4zZmb00t1t0/S6H9s4Q+4okSlBRhGtaXLlwhcbYXiZGDtLsBuwdm+KNq1/m0MGP0FtrU5sJWbjRplKdodPZphdXadSHuHmpQ3V4Htu9n7Gh77Kx9h0S9T5KkUvFsGnTASKSRFEpNfTDLSvRaW5j230cR7HdU2SmgXD7mJnJ1MRhcBLGZisIJ+DMqQ0OPzLMkUdvYz24yujds3z6vid47eln6B4W3DtbxRk7yXpLcGt7FWt5gRef3+SnPnqM82vDXN7MeOjRCstbCUE/4PbHTpApn7LVoTReptm8wrV31tjekLRuVQm6a2RmwlbHpxsoRobKrC7f4Ft/uszk4Yj3f/RevvqHLTa2r/Av/sW/5bFHn+Chh+/i4fc9wOuvneLmjSVW17bo9wNMw6JaaXD6zNv87M//GNev36TXi5iZqXH2/CJjo+N4Xh1T1Cg5Nifvupdjd43jjE0QhmU2/A3OXLlIbC1yYM/HmRk+RHtrE7/epFIz6XZ2CrmiGAQ97BRCaP1SnhxrmhaGoakWdatBFEVcvXaNer2uKRBJDDKj1/MRwsT1rLwQzGkJGWQYrLZPMzl8DyqqIgyfOAqRZoxjuyRJODge27aJoxiRO6pkKsOyDRQRSytn2Ht4BikA00Lm+1vh3b7b4KEoaguqUUHtKNDigpYThiFGHGHlTkD9XoTMi2HfDwYUnSAIQGQarc4g6PUBiIMAKcA2LSKVW5jmttOa2w5ISa/r43qe9otXGpmO4pg4SXBcF0E2QP0dxxk0NJZlgZBaXAu7KCRenjar6YTagSgmQ+VUFhOhdKNnWCaoncIxTVLy8XJucW3scgRSIHYsNQuxbuHItJsvv7uw3/1HSknOZ93RsyEGXvm7HZCKIltlGWneLOjj0Ee3exIvpKEPW2iHpTROyIzczSm33FZ5mGghpC2K4N1Uo+//uuDdFw3BbtdAAN/3B6Lr3e5Cg5VnH0gp8hwE9S5b0kKDqK9dhhAGQujsEd28JJj5ax3H0dkJ6Q6tJ/B9UHlYXxpjShPHsAZ0ZcPWFt660U0Q6btF7WbuSiSEyN2uUk2tEoUAPZ+ymAKBzCcl9g9cJr233lv/d14/cEOQpnpTz1AUexx5MZ7EDDZGw5Df11ELpGmSRBGmKbEsgedUiWOfxkiFThSwtrqNCiwcp4RKRG7fluVOIgauY0EmAT3OzBRIYydQpLBT23n4SaTUm28R2lIE7ZgyJQ19yq6DMmx63T42OQ+VfPIQ9Gh1WiRphmeV2L9/hNHRYVqBzjOIooC0sABUMeurLSbHD9HLLGp2SkUIYnULr9Qg8/dhmotk7Qu0nBIqu0S1fjspHRyrTLevGJuYIE769INNhKEQxialkgTlkGUKQzQI4nmkDbbbIErWcVwb6QhKboMoillvL2I7IJIatzZuctfeOxm1xrnau4afRGTRCmkU8/KlKxyuhdhDNqPOONuRx+bCNeZmJhASbi6doiQ9Do5+lJ98xOP0lZTO2jrT9QornkDVqlhbHhOTVUbNBo3Q43ynz0L6HBU1SWbcz9MX/oRD0zYzc4/TSSJKbo/rax2OOyn1EYutVosa+mFy9dZ1jk1MUomH8A49zrA7w6HpW7zB88jUxDdMon5IlGYYjo2rQBiCSGhx9sSBcTauX2X/xH7CSpvxgykpgvkb29ilEo88+iBudYzVp5ssLdjc94ERzpzzeeyBu3nppdc4cNTizicfYGr/EbKSSahsxmomM7dPs3Z1neUrN3j4gXtxyoIz506xegPSLNFhdqaFShJMTGzDplK3sEsBy+e3sZ0yk43bSFWfxZUeY3PfpTqekYWHUSja/S3GIgfXNemtnaBjn8EbOYhpJqhun8Sw6GSxFvQlQ/R7EbWGzdKtNVzPQeASBpF+qBkJE3vrDA9bVOoNSvVxnCEYGvM5cmgEZ3ic7YUu4fIWHzl8gmfevsobby7RXtvCcX1EeInZZJkzZ2xS5TEzY3DsxGOc3rrEwoVbbJgNHj6k+MzPTnD2rTbTpXkMU2JxD+MH9nHp8ghvvPYqY7XDULaQxPRVi3ojw8ks9u+bJsl6NJsxl964xd6xSd7/2GOcPt8hbAs2tra5+CevMzNziH1zszzw6J2kScqLL7zGq6+cQaUWI6N1HnnoKf7pP/1n1Oo11je36PZ61Ia6lMpHMY1zrC5ucNfDh6iOKM4vfIMkGmdsZJzhkaO0ApuhoRrbzZvsG30YQ9SIog6WbeXe9Zo7rdQO37godDRHWzcDenqQIk0T3+8RhimeV2Fru4Nj2ziOhes5mIZFohK6vT5JAiW3Chn0eorU3CSVPrZ1iJjriCwkZ7VjSO3gpgu4BCk17cK0LFCCIGmz0VxiZGgfU417tVe/FUBkDLjtBYK7OxCs8NQvpgJFkb0b3S7EvACmFFiOTWEnHYYBjUYjt8AVmupiGGRCF60axc6Iw1RbQ5umptxkCnLxqZSGbrTy7BcpJQoG4tsgCMgChUoKJF2Q7spp0AWz5qN7nke1XNGhkXFMkr+HUub6NmlgO87gXIsJAaahKSu5fsAxzYHgV5vKqNw5Ly/ui6fYrsJ9gIzn04VCoLu7sC4K6SKTQOSodZbpaUqhpyjW7gZC7SrCCw6/ym1Es1wgl6GTnosDzDLtdCSlxLTyYj3TlqxpLr5WGe86xqIZLP6t4NoX52Lb9sA9qPgsVCqVdzWZxedj8LQXOs/CyCk8CgbNw+6QM80oAIROuoYMyzCIowgMY1c6tcJQMp+qCD3xl5qiJQZ6RjkQPoNCDZqt/AJl4l31ycC+FaFNTPJGb0fsnd/bWeGM9d6E4L3152P9wA1BEIRkWZFCmEeboz90SZLtiLAMEyl3FP7S0F130NdWdUJkGJbEdkp0e9sISzA1McZ2M0Ciu/7N7U0MQ+C5YFla5Jtl5IhSRmYIokg3KIYhME2JkAL0NBjI0yWl0HajSRECI0iAOAbTlriuTer49IMNYlNoQVFfUau7VIbGabV8RGpgmZCkfVQqsAxA6GuRZQmQ4Dkg45CeEdHuZzQsj3bfRhnbjNS2iFLJnsoeuqnLrc1zlPvnGSqN0HBt+v0Ai4z1zWVGhkcZaoxwee11pidnSBJJmHRwy3XifhllNmmMB7Q7ElcOsbR6E1tUkLh0eyGkAVVPsXfPQ7y88R1GSsO8dfMG7a15Hjp6F2Fwk0MTJirqU1Ixjxx/jCu+QyAkSys3kWHI0L45trodLjU73DZkc2L6Pq71rjDumZT7Jg3PpTk0y7MvPc/l0gUefeIuJhonicO72Bxa5/S1X2efXeeh258iS8cplzwWrEXeuvEHTDmrTB/7GJcXrjE6lCCrB6mVJiiZghV1ibnKA0SJ4Mb8IiLxMSsmRiaQhqsLGDJEmtBtRxhVSXmyynK1R8OKufvhOdyqjTO5j/MXb+LIDivza1xeChHuAkcfPsQ7VzeoXH+T2bvu4eJzz7Dv9tt44mOPYpVKKGGRiRQrUmTNDqOlGqUjU6Rs8+al72CkETLOMA1dQEjTQQlBFAXYpkez2SbOHMYm93K73MObF97i6N5Zbi21yaSDEThMjI9x9drrmOZhLCMk7I6xZ88Il8/fQma3kzbXqdZj2hVBEoEK+/higXLJRKSzKBpYJYXlpSiqqKSD39xmyBUcn7uDq1fXWbi2TXWqy556jcvvrLJ1xQF3gYnGBOs3W5zjCi9/4wJ2eZTtMzbPnU1Z2Ovwlz5aYeOmpH2zxdZJjz17lzhw8BFOvb5Gu+XzxkspE9cWqQ5PcP2dg6xtvc3k6DzeXR43z27QKDWYnbPY/759rK4rrr11mjTM6NUsemaI6kXcfeIgcwdLnHv7NcZH7uHY0aP8yVe+yspiBykyTr21QLnsMHdgmg889Sg//dM/xkc/9j6+8pUvQ+Jx+tRF1tfa7JubZH5hEdsuEScRQkxSLRvM35jnY597P50Nk87yMludDir0mZqpE0bTlMQcI0NakJ7JDnEkMYydJFoh0ZbHOac7jtKBBsmWNkmsaYiO62Kakl7HZ8/0XmzTo+xKrJyT3wu7mLaFNA2kKRBKaH//DObnLzI6O0sUZFrr4SeksaLvbxP6CtMWA6FskfuSZRm90Md1TVIES8uLTE3dQdWdQKQOUdLGteuDQg92RLK7i/yCEmLb9oAnL3JakSl3wiR3knMZNAyWpS1BgyCgWq0SJyFJnIKUuK6rG41M0W638Nwx4jRHuIVAZTl91DTpdjpYjksSJzi2hSGknkwYBp7jEoUhgkzbmiJQSbyDMKsiYEuQFtPoVJGR5zJYhW1rRpIlBKFPkiR4njMQ8iql6Pv+QBuhUp3wKw3dRKgcXR5YbH4fAl6YZ6jcBSjdVdfvDuHU6PtOvgS7nHfiVJ97cd/tWIPmYNquRqQQHheBZqaVC7TVThIyQmoaFvnUIk112JzYaTRIlabZZIXTkkCIfBpSePRnKrceFXlzpG1syXYcAg1Di81Nw0AackBtAgZWsJlSkDcGGAZQTB9E3hRm+bNb24EapjGY7mf5/WegRcTkTVIxW9HOWUqHmkkxmKoM7lu05Wuaavcvw9R6it1TsaKx290MKaUGLkY6vkyvge3pe+u99edg/cANgbZcy3LuX/6BzpsAz9NjWtCdvxSaXhQlKdIAmShM0yGKQ9JUEKeCuf178YMuQdgjywTjYzW6vYh+2Kdac7SrghRkCI3cpdoeNNXUfTIl8NwKUkIUB0h0nDtkA/RLSoM0TTRHUGl0IUlTwkgiRELg+xhWSqVq0Q1aqCSh4gzrUDDDwMlK+P0E31K4nkka9/RYWSQ0hiqgFL1uBykU7V6LshHjO0O0VYQiYT1cw+xV2Ds1x3qzw4gHc/vu4uzWZWquIsvGcUuKRs1BWkP0ezEIwfDwJIqYXtAkyhSZvUGqIOhHqOQmrjtJlEaMjNh4dgfbhn4cYWQZBpsMNfbxvfkVDvtNjg3NMDQxTr18Byv9LvfszzjdusalN5/nR+/oMCJTSnfcztef+12e2HuSqYm7mfe/RRqdptk9zno2zEov4tQrTxN3fD716Sc4fugwN5fWeO7cWU7/5u/yv/3EMPcc/Tj/+aWvwuo6dsmhlXbxow0822Fftcqp5hwro5LZ9Td5eOZOVrbforl2nr2VCaIwYKnTRoYvMj51O9URh2p1HD/qIrItFtZDKladLO2iahWOHX6Ydn+NTlUy3xthOwl49pnnGbV9/tF//hdEwx5GJ6I8uUENSSACPMaxhkbZ2u4yOXqLqzev8zf+zt8kNS26YYgQPq6wsdIIUXJZXt3g7KnzXD33Dm4aU5EuVlTCd2FoCKp2NfdeD8kEGLZLc7uP301Rqc/RQ+Ncu7yMqNQQcpNM7mVjYwTXPYocep2SWaLVBrPxKs5MB7+zRhJ+hs72VRo1RWjWMD0Do9vAEAG94B2kXKE6vJfWhoVpJLS6Nxirexw/dhdvvP02p9++Rm2iSjUpQafO1OhBnDLcunmNzZUN4rBN8o5k/2yJd86sUD0wTCNKiV2PL/7pdf6Hv/hhvhRtMD06yYV3LjMxMsKP/OiT/MZvf5nh2QbrzQR3RHHx7CLXrm2y71DESrPJ2maHwyf34u2bpqdg7946tx+6k9KIxUZgsnB1m/PfXOFrX3mLex6a4Imn7uTWYpuH7xzn8admMcMTXL9+lVffeIVOO+HsqQWuX/ojXrnzTf7q3/gRfvpnP0W1NM0/+ye/TBT36fZ6ZAJM26LfV3SiBeqNKhudDfbuP8B89yYVOc1i6zR3PPk+pveMs3xrlVrJoGzWyVKTbreN41UHRW8RDlb8IYMwDHPL4x10WBsZCHq9NlJmlDyHTqdDtVrX3ORE5TFZgigOMSwo24Kg36bf7dLpLHN741G2NkJUtkm5VCWNJSVP6uT2VBddrVYL0zQJg5B6rYYhBV7ZIur6VOpjjI5MEHT7GCIiUy6xGQ+mAEURWlBEfN+n2+3m+7OgXC4PildhmIAkCH0c08IwtJBUpSmO4xLndBMh9L5aZAWoTOdA9Hr9vBnQRgyGZZKyk2pvmhbS1PzuLNPe/KnSjYkhJJ7nYhoGYRhoEXSmKJXKeWEm8YNgQE81LZOYWAdHSbRmzLFJk4QoiSk5JU3bIsO27NydLp+C5A1KrFJEPm0IkxTbMHXAJgwKzx2vfYltWhgyn1orHVolpUGW5xaku/z3C4pN4aFf0M4ytRM6V2gItre3B9Oc3bSb4n3b3SwIy0LmTnlCGghDa5eKiY8wdjIfpNATJdBNWFoYbogsp9XsaCMKWk2WZXieh8ptvYs06qIZLiZPll0kAAukIXON3k6NIMWO5qWYbJA3WLvpUYMphIluuJTONYgj7UBoSiO32dX3TTp4nue0p9wONMnyhoUMIfXkWKID1QypkKKgPqVEUYKUYFoGlm0NtCBZHoJWTLD0fmAMGgfDEN8/zHlvvbf+zK4fuCGwrJ2gEW0ht+N5DRoNMQwDlebJjxk5QqJRpAwD160RBD1EJrl89SaubWNISFQfw0oo11zcaol+LyVJJEFX8xXtkoXEwLQdev1Ai61MV4+zs8Ldgbz4V9iOQZEzEMchlulgGDZCGERZQKx8bMshDiLanR6jMyM0hso6aCiLabU2IJNUS5OMzEyyuDrPdnsbK6thWNDrR6RRn3K5Qq0ywtb6GoemT2JVaqw2b7Bt+GQVxRFxG2utLlcX32Ju7mEWz59icQg2N89Tq41S9sZBCLY31jCNMsJQrG2/DqJKubSPVqtNlBoEapNuv8XkyAHWVq5SGYco6JPGASE+ZCXSrImlZqjZdTqyyef2fpKNdB3pWXjRVfY2LuKNPcj1G2f58OHP0Z15kqtyldr0XvobGXv338W+uXuJI6jEw3hmny3zEss3QpQt2d6IeGrYZzxeQEYT/N0f+p/42v4v8OWv/DZ4Jsutm5y/9jyHSlXunH2QzbhCq9vHjU2mrAkOHXoYa88U59/5U+49MYJz5DG+8/bvc+dUg5cv3uLI9JOcWXmHrbNfwNj0GJpzufnKNfZP2Hz48x/l4ks3+Qsfupvw+D6+9F9eYrQ2xsGnZhmuzLB2Y4mNl1/h8tsr/C+f/5/57C9+knikyuzsHnrNBYa7NrEqY1WuYJw/x+s3UkYskz2NEVZ7Pr0sxrAt/DDENWFhcxkj9lg5v0rr/Db775hjaE+D0sQYSlp0Vpqsz28xOjWNgWS7tU2GII0STCq0tuYZmV6nNFanG1tk7UNcWmwy0agxNj5Oq38dJTuEymRzvcb09ONcWDqNZwhgilBtk6qY/rqNn5ZpeNNU7dvp91Ywyldxhi3sdA9yu8yZq6cYPbiP5tsv8blffJgwafHad+eZf+EKIj6LnUE7iBFhQigDKkkLb5/LD3/yAar7Ssw92mDr2nm6az5vqq8z8cFVOnKV+oTkzOYpFm++ziMPHmI+SFhc97l6aQtv2uTI5F00ucGSI7njI3djh3VefnqR66fPEjXhJ3/yR/n6+a/z5Gef4I57Zjly116q+87xxpevsdJ8FddL2OpVmBm5n9/61W/z1EeOM7v/EywtrHL27CW21jdZuOnw937x33DH7Sf5xX/4cX72r3ySl168wm//t6/ilm0cz8bvGWA5rG9s81M/81OkbHNt/nucvP0uZuYeZajaQCYuU0O3IWmSRg5p0sawbGLVw8QZoLCFaBQYIMMDJ5ccmRbCwHVL3Lp1heGhYaKoT6lkk6kExzbxHAff97EskzgM6Pbb2FaKED6IJocOHEQoC1OGGFlJU2sI8NwR4jig1+8hpaReq2MYuvmwLItKpcqlG5dZ2jjH2Mg+krRLFpo0e5sYUtsUNxqNQeFlmuYgHKpSqQz2ccdx2Nra2hF3ojTFRBgDepAQBral/f9llOTpyAmNRp2trS3981Jt9WIaBhi5XsDUgtggCClXG/R6PaIoxDIsnVkgBK7rkWUZ5UqZNE3Z2tzUAl1DUqmUUWlCEkd55kAehmmadLtdXYiamlNvSjMHcnW1VvEqxJEWTReglA6ngjiKiYKQWqOOSmKSNMUxTTI0wm3Z9rs0F8BA3JulKXmQMZK8cE8VSRyTAZZtDSYqWZYRBMGAVgU76cxFSJpt21iOzVa6Y9NZULsKipDKKT6WZeH7PkkcI3KBq8obRtMwyHKBdDENV1mGUDtBoFIK4lC7PQkpc8Bs5xx3TzN2OwXtTs3W4lxroB0o3I263a5uEkyLNM2/P82f9VmWNyE7v6v4eYXQvXArilVKGMZYeSK0nTcjgH4eSwPXcfImRk+3jNwK1DCyHderfKqm0p0mUIhd9QqaihcnweBcd08I0jTV97S+QhTp267jkiTvdQTvrT8f6wfOIfjtL3wxi6IYlSR4nochNXoFIK18U0kBdkWxq3TA2QviiDjVr02iGEtKMpUgSDAsM+cEQhz1GRlpYBqS7U6KY3ta7Z8E6C7EgMyETOYR9YDMgAQpFaYlCfoGpt3GtlzIOrjOCJY1RJIGBGHG6toNqhWXanmUze0NpOkzNDyMdF1ubV6ivXGGqbFJPOcBOnGEHy/hyiGGnVH8KMYPwLQFGQFkEYnaYn77EhNeA6Mxg22XcaVisz2Oqbo005vE8TbV0lFW21fZM+ZS8zxWewlNf5thq8SwMDGnYpLmKH60jZuN0yhN0+qvc81/hWFzAiPbRztYppIl2EadWCaYVo8oHSUSPabdGlusMjMxB60aobhGfeIkr1/9DuHKMzjlbfaOfZrrfQ9WL/Pg3nt5MYOvfe0/cNf+w4yPTXP37Y9wfn4b1s8x31rn9oPHaWU9vvSlb3NoZZMnHjzB9EOPc+amwcPv+xDPfudP6G1c47EPv58XL79BSfW4vZ6ykeyjb4wzYrZZ7q5y55EPcPb8WQ7vn+biuefYv2+SjW6flXYXtzyEf/M6jx18nJuZ4u6TjxIkGb/xa/+GO/YmTH7gfaw3R1BvfImJQwe4uHWVw1MjRNbtvPy9t3n2d5/m2FCJ+//2x+lu2lgouv4tzM0bPP74T+I0DnL6ym9x/tKLzL/Z5MADj3HtrE+jLvgLn74PuzRJP7Yw3IwkVGy3NvCbS/zBfz7LkQP7sIyED37qMewhh3Yo8CqCs6+c5vxzlxgpjeIOZVQ8gVlOGT82yTe/8W2Gaxb/+Jf+Cb/yH36LY0cn8NMr7N9fJnM8UDX6rU0m9h1h5foeTo7s47tnA6b3RPRbPsLu4NUEi/NdXHOK8cYcKuugVJcoKhE557DNEWqlGs88/Rwrq0u8/fpler0+C/OrSOkh7YTUt6m6GUrGYCjufehePvHZ25jeP8t25zKXLzxLd30bag7j+/bgWSlZaJFlJq3W29jqEP3lWYwhlyuLiyhhc/+TR7gyf4OVdW1p+sj+BpvvrHHmWspItcI7l7ZRdg/JPj7z6Q/yv/3j/4UTdx3k8U8/xEd/5E6e/fJ5vvZbV5k6mPLKN17hg596jO99/TXWttsMj1S4+57bef8HnuTWQpNnn/sm77xzGdus4tgG9z+0jw98+D5cc4bf/G9/xIWL57CMBv/g7x3jN79yjp/40F9nVazyyvnX8VeW+PCDP8wHPvwx2sE6jnCR6RCZEdPrb2BSxSuXieKYJI6xrXw/khblUp1+PyLNQiwbVCqII4soXcMyPRy7wvXrZzlwYD+t9haN2gSGrCKlgWWntPsdkAn9rsB2JD3/Jn7Xx3FcJsYm2d7skGWCocYY3Z6PEIJ+38fybAwTynYDKRStThNEHdNOuH7jAlfWTzMzNsfJQw8QdhJc0wEjIlUR5coQzWZzl3uKnSPKkizTbO4kCRgdGyaKYnzfxzRcTNOm1/ORklz4K3BcizAMkcIgjlMNBkmd9VJkHWSZdmsRUhLFEWmm8Lwy3W4f13FwHUm328PKE5Qdx0ZlCYYE1yvh9316fZ8MgeN6mIZNqhSh38fK6UWmaQ9oKn4Q6CLPNGhubzPcGCIMAp1QbNmYpoG0Lba2t/FcV9OtLFsHiymFkpqK1dze1hOGRNNRPNdF5bahaZJiO7voVEL/u23bmIZBv9fHsq08PyHCtGziVOU2xTau4xAEvg4pM0yd6pwX6qCtMTN00W0bJhhS02IgT0UWmFIi0gxhSHp+n1KlTL/fxzQkJdclipK8aVA4nocfBIRRRLlaBaVQObIdx/o9rlQqJElCuVx+l2tQp9sdNI6O40CkLUOFZWo+fY7wF1OColmuVCoEQTBoOkTuNB6E4SA4ThjaqrMIfovjmFK5PJiK6CLex/YsbMNEJVqLKKQOkYvTFFMag0nF7qyAogEo7vEgCLTNeNEE5TahnufmFq4Mpj9kECdx7k5kazpdmhLH+ppmMk+IZkf7UaRZf+5HP/1eDsF768/8+oEbgv/8334jK7naG7kYKUsp9fjZ0t18EMRody+DQlecpSm2pS1Fw0TbzPm+j2PZ2JaJ41kkifZ8NgxBEPqYRkYY9BHCxHUrOR0pyzmfgiSWOJUQMoM0BSlsLNOlSGjs+TcxLUnZGyNTCb1+X3MaDQPTNun1tzGEgSkchDBIianVG2xsLCOMjHZoYJf7dNbnqRh7GRvbj69WqHgjdLoCjAzDtNnYus6lK89y27GjICxkpc6MOYlKymwnK5S9lIsrN+mqZZodGC2N8P6jn+P69bN0vCaX185h+j0OjB3ierhFGJzmxNxHmEslVuVhOkFEebTMmSuXMVtXefLBj/LC4ibPvvJ/8Pn7/hqvbS6wrc5zm+MxXCpBHVYX5mm5it7KTeyDRxlLDPYNj+Gno5TKEZWxA/z7Z/8rBxfbPPTpj/PKG98m7Q5z791PEYmQaVnmrf5NvvL73+IvPfoUZ1YvUjZHeP7sC8QXF5jaX+Whe+7k4KEfYiXYZnaqwR99/TWevG8/HXOEZ976ImNuiXrpEFP12zg4M8rLN7/BnsadLK2dZXVlkcMzhxkuTxGbXZwhi63OGreZR3n4wx/j/MoKr7/4a2zeWqIfGhw4ei+WPUZpOEKKMXqLWxhxh4rXgZ7Buesv0xg7xPGTj7BChyFjmtgIidsdLr6zxdyMotU9Q9i6xFYyRGX8MEfvuI+wlxB022w1N9i4cpoj+45h2nv59tsvsLy8wNJlhVqJuPvBUf77f/7XefvsFQgUnlsmCSWVoTHaWcRbr77IcNan072CshJWlyKuX1xmamKS//5/+EX+9LvfpTpbIlDznBwao+8/xoisUxsu0TbfRvXnGffuJjE/wunTv8t49R6E0certxkZmubWdcXq1nn2Ts3RaQaMTY5hlgM2NzexRI1+f4vV9Sv8yVff5oXnX8KpxKjYYXxmjJkDDnN7j9NpbTN+LEVV6izML/L2Ny6SbVW486nj3PGR2xgfkZQcG0uWcGyTaMhmstsmun6GeOQw21nCWHWWS0ttXvz2d3nh2TP85afex/rSWT794SP88heWSOo2xw4O8+zTFxif2sPK1lnuOPYATz78EL/0D3+Z0rDL/kNjfOqTjxMlPtcuLXDx0i3OnjnH//6v/yF/76/8W0rlCL+vrUYfeeRB7rl/jkOH9/HlP3iLl1/9FnFiMjo0zN59U/z4X/wgb799hi//4Qt8/KeOsjJ/mE/ccx/10T5Pv/YMrpcxNnY3Rw7fw1DVxTFtttZ7SNPC8gL6nRDHHiEzYkgTTFPgWA5ClImSNpmSpAqETEkSSJIQMBgZLXHx/CIz0zOEYRfHNTGkTRSCV7Iw7T6pMLl86SZ7ZqcgE2y3LxH5GWPDR6hVXfq9HrblahqPlJBJSqUK0nAIwxjXjZHYNDsdvJpNtTzLdvsipy6d5vihO7BUGZlamIak1dmiXLEJAz3lcF2XJEkIw1AXS0ohpEmaxhimIss0Ouq6JVQqME0HIcjtF3Out6EpoqZpYRqOtn/cUa9i2xoxNi0bIaHdbpFlimqtQavdo1wuMVTXgl/L1JSqUtkjy7S//ebGFpbtUi6XEYZBmmakqSLL0JkFaGTZspwBch9FuulASpI4puR6rK+tMTI8TBiE2qHGMgY88WJSEvkB1VqNZrulwaj8tWaOJhuGQaQSwigaoPkFQl6Iik3TxLbyJklKDKGPIU5TXYyXyppylqUkYYRhSAzDxHNdbbqRjxikaQwcitIozmlLycBuWyhFv9enVq7R7XVRKFT+3khdpeP7AbatxdJWbuva6fbyn5th5kVzMXWoVquD5sCQJlEU5QJjRZTbvjqOg5HqFGQldIKvEEK7AO4SSRep2L7v57dCBkrrqjLIrWvFIIhMSKktavPXdzqdnGLsEQQBURJhCIlr27m+I9NuUyrFsXY4/8VkoViqcGAyDKI4HqRV62YrRcDg36I4xHF10rUGEAsjknwykDeGUghSIQZToAHlKb+PfuxzP/xeQ/De+jO/fuCG4Hd+94uZUkp3/lJiWebgGeGUtNg3TZROCcjkQDhkoqiUPQxbb6hxkhCEAa7totBppMIw9cMXgVIJji1JkgiZJSglUakORgNJGkss06MXRNi2RZwkuUAJMlKkBK8S0mm3sOyUyYkDRKG2LrNcg27XJ/YF9VoN0wyJYp9KtUoQdVlcvIAUCm9sAmwX1Q9Zuvkd7rptDlscpp16iKzE6sYmre5NTCcgDg0sWeXePQ+yuLVIz1hAuQHbG12mhkrMjT3Ira2Q1K3zzs3fo2T1cNQxQjog1zg4djukk6wnPle7zzFhd5iKDnPfscdZbJXZjreI2hbDVp/R0jgXVMjLV77IE2OHqNZP8vbyW1SGhrjR3SC6/Ap33THDkHWUqKb4+pUzbF4+x11Do+w/cTciUdREBccZpjoyx6+/8YfU26vsqdWo7z3K9YtNJq0u8QGbams/a1unOTH3AMutMgvrL9A8u06wdo17HjjOwcMncetzdN06vc2LXF24RTmL6XaXiH2T1V6HueP3YdoZi+uneN+d78epOFy9doZ904cIux5xpilRD+4/ycTBO/m1X/47NJffptwVTN+9D2vPbZjZARxP4cVV1sLrPHr7jxAi+I2v/VvWv/09nnzoDkbf9wAbvk1mKpwOxGmfmck59ozdyb//P/4ZQ4vv8MCxCcz3vY9NZVA2xwkySVZOKKkxbq0sUhYBZinh4vU3+MbvnWN1NeOhxw7yzrOX+InPP8nhj9xJ2zdI/HUazhB25vLWuVdZW10l61hIldKJbjE0OcTU3DEqE0OkRoKROWSBIglD4ihhojFCFg4z6u7BritWozeYLC9geD/E17/+H3n8jv+JVIXE8hr1qsfGQoVUdulsmDz2/gNcvbJJKhLi0KbT2kBKh/NXX2Ztuc+pty8yu3eY43fcxo1bZ7BtiR93WW1uc/z+GY7esQdrOGNo722YdpvSRo0zC0tcX1jhgFtj7/g0vWSb0bhEuXKYs8EpoisrTFQUw3c/DKGLUQn49d/5Nud/4y0++aG72b8n4l///mlm9kzz5Psep+fHfOkP/pRHHryD+aUL3HH744yPT/E7v/pHVKtl/LBFaajM0f1HaDqneP6PbvLz//AjXHxjg+994yyNRpk46dPtpJgW/P4f/gq//3tfZc/MYZZvbRMab/La926xtRnyqc88RKVexmKNON3H53/uJ3j5xVd568JlPvLYcUaNBtu+g+VWaG118JwyEotOcItyuYRghF6wgWt5hJGPSsC1R7FLbQI/QymLOPF1BouhyFKDJPVZX28xNTVGkkR47ihJLJBWn25vHcMoMTF2mLdOfY/a+C3Ghg/TabWpuHsxxQhRtEkURoAuwAzDwHMrhGECyIGTjO2mLK6tEaUGl6+/iiEz7r7zcRrVIYgyLMOi1Wrp4tMyMMROinwYhgPKEIBh2oShj+tZxLHm72sjCENz+lON7ELuFieLxsAijHZEmFma4Ni2DmrKXV4gI1UxURRSqVXp90PW19eoV2v4vk+t2sgLyIwkjRgfH6NeGyZNM8JQ02sUGaZlaavKVCfQFgVgMSVIkjyszczzCRJd8HqOi2EY9Pt9+oGPZdsk+aTDdhyiXAfSbbWpVCoDCkkcxySpTqY1bIterzewZYV3F47fn3JLXkgapglSEPj+gILld3tYlqZppekOBad4fZppSN2zHVKlMC2LMNKNRpbmznmF/71pkGTaUUnldCGZC4GjKELkGoFUZbiuRsTTRBfIxTkU94IG8XboZDpsLB3QlJK+j+lovUeS24I6ufg8yzI9pcgdn4rrksQxlu3kAvx4cA10o5CnGue6Ftu2B8cYhgG1Wo0gDFCp1usYUpIJgZQm0jTwe1rzUlCUdrsuWUIO3uMitTrNdGCqsYu+Vbx3pq0nDaZhIDMxEIWrogEuxNxSTzQKPUeWN4VSyvcagvfWn4v1g+cQoD+cnuei85gK3qEiDlVuIya1nE7mHsOASjOCMCbxQz1+FAAGqdICPcPQASUqAdOysG2HJI3xgxiSiFK5gpSKOBeiCdNCWBZjQwLTUqhUP0xM26DTa9FqNZFinNExk2b/daLMxvamWF/ewt/qMD42hN+HtY0ejhfR73fo9IaRtsLyatRL0xBlhGGP1Kjjjd7G5fVL7BsBKY/Q82+QpD4To5OMjx2k2+nQjxZZ771DfXIvJX8PytqiOr2XsL3GWn+DkG1WLq8yO3wnLRIsZ5uD1XtJkowbG2fZN17lhHuITrPNdvQOsXOL3jtfY7j8GNutmHrVop30EQpGxF5G4oOsRYpysoFjlrl+/rvUhg38sfu4uN5nYsghWTrHk5N1XlqZww8Ecdxl3ndZePub3HfyOL/+m7/MhJ3y0labhw8e5NPTR3jgiU9zZv08BvMcnDvOH6+f4oXL3+L41AdYWl9mumZwcGIf5ekGLc/h9OWXefzBD3DtssvCyhqGUNx36Bib29dozM3gjmwwZNzOA1NzNP0F1hb6tDYvsm40GWk8iEgdhmoVAqvML/3y36X54mt8+LYhwtYwo/UHaJVGsVNJGEqshs2DRz/HM9/4Gk//0XOcf/st9grB4mxIKZG4hoVvhPhZzIHhvTSmj/KP/+X/m2/91rMIYrbnZjluptimi/RDUltidyOy0jJ3Hj3AxdOXaL71Ip+cm+TBH/s4i5MVpu8Y5sZjD5FgcfqNi8yUKxyYmeNWu8czrz9DuNilwTgIj0x22DNlcecP3QnpCM1WiEhDICaKwS0N0+5u8L1XznDn7D0syFOwHXPPXbfxxT+8xqWLf4PPfvyvYqYJfl9h1k168SqVRg1pzmCbWwyNWSw9v8nYZJXhcUG/H+KVHG4uniPqu3z0U/fz3e99ixdfWqM+mjI1PUI32aLqRIyNVski+M5vXyVemae34tPpbYIpUGnA1OeeoDsUgmWipoaZb5/j5tkrtM8s0HYV9zaG8GYPE0UVfuGvfY6VRx/m+Reeo2cPs/++CWh12ejFNNd7HD90hJe+fZHHP3SSS/PX8IYrPPLUCU6/epo9+2dYWOhy9sJ1fuwXHuLs8xHPfOUCn/zMUc6/bdFphpiWzbGT+zl+4iB/8q1v84df/iYl7wX2zE7x6BNz/N2/9xk2N/tUKjUOHJij33qOlRXBmfMXacfPk7qrrGy4bAcm5aEZvPok07NTdLZDLEOnAve7AdLq62IrciGFqckhotBAWBFBTyfaOo4HZJCWkGaX7Y0OIyOjZJmFabgEYR9IMZSk2WlTqTdZ2w4Ym7QpVWcxswYiUwR+gm31yTJd9LglhyzTgt0CZMlIyUgRwkIpk9GxGV575zn2Hq4iwxkapVHifohlSDqdFkolWI5HmmmbUI1sF/SKQqS6kzWgXYJ0M9Jud/G8EtVqQ1NVcnpGlmWkce6wQ6YntznXOkUQ5xkvrutqVDWfrmxtbVAuewT9LiMjQ1TLNUqlEmmaYtmGvs4qxbIsms1OXpSKAVqdZSlRlKKSFCOnixR0FaU0Op0qhSIjiiIcy8K2bIIwpFquDLQScRxRLpXylNmMcqVCEPjUqzVt5ZpPSISUGNLCsHXxXBSbhT1mwWN3cuvSJEkG36NtVzNQKZZhDTz+hchwXU2R6vV6GMYOUg/siICFAMshikL9PhXWmQIsw6DT7VLySvQDX1t/5kFaMqcYFe8lccz/l73/jpLsvs874c/v5nsrV3XOMz0Jk4DBIGcQEAOYxCQqWZZlWbbXtrzetb1ryz7eXYeV3/W7Xr+Ws4JFSSYtMYlJBAkQIIgMTMDk6Z6Zzrm7ct0c9o9bVQPuntfL1+fVH5bxO6fPDKYbXVW3qru+4Xk+j5XN0Ok4OB0byzKJJYkg8PtFuNTVzCjdCbqiqojuY/QcF0VTu0FuCoqsgCQhevhNblN2ehP1XnMYBgFJFHfzHujh/VI5EWBZFkEYIimpWd62bcIoNQfrhk6tXkNT9f42w/XDbo0RI4LbuQc9f0bvtZkkCYosiIKw35gAKN37KCQJPwxQlbQ5yWaztLuJ3bd9j91BpCSlj5/b246e8uH/hph977x3/is4P3JDIAmBbmrQ1S+mBmOwbbsb9CF16RoyILprU4lIltIiPkhxfZKQuk0BQIygRytKSOIAOSElWGg6aHpKERAJhmWQK2SQZZ0wTHA7ewQ+uJ6P7wcgFHTDpFycpN7YxIt8XBcazSaGJiFrDobi4wYbDI4OQ2zgdHzGxw9g2+maWFZMkkQiih0KOYO255PRJghEmbML19lXvsHo8AFGy1lCv0Cr0cF2VlGMmL12lYmsRayV6AQxmpBYrlbRqzuMT88ysa9ERq5Q8GK26wFXq6+Ryw+yUt2CYBW13ORQbpil5Geotj7HliLRaX+N2aEnqBMQOSH4PgWjwcGhO1jjZXYDi7q3jCW1GMsfYLszCBmP77zzHKvzF/ilZ+5nplwgjk20jkxJlMkevouEkMP7j1K7eZ1PnLqb08d/Al9x2LC3sIMqIgx5de4Fah2P6ZnDxFKLUs7C1lWyBw/QxqXeXKE8lfD2/PcoD0/yvv2nOXv5OrWwzfj0Kcx8kWbQYGdvk6sbFxA7K2SLMarUpiAdxaRCK9olb4zwjW//Fpdfew49KjPHMXLHfKaGpsgGgih2yUcyM/uP89rL5/n1f/wb5HXBzMhoGjw3mScIPHQsMqgEpTxGqcTv/ubnuHnuMifvnSHYbjGSVTFUDS3KYpkxLd8nECq4Tb576Rt892uvYHoyf/Ttd/jML3+Y0Yn9LM3tMXOoDIHO4qZKfXmRZX+FXb+B0Dvs6Ku01GWS2CHwFMY5gL2bEIkGQZQgKSBrEgomga9TKGbJzVpsbZxD0mz2Vm7y7e/abO62+Oj7Zjm27x5WFz0k1ScRKl7gMHfpTcamx6jVbnKkXmBoQuDaMX7oIqs+mcEFqrt12i14+62zNGoxucIew+0Bbl6+hlsN2T87zJvXN7l09U0GR0zyZYWRfeNM3GkwmMuTKCqbu1VyGwqbCzeZ3D/A/G6b5otXKRcMNkOdF7/+EmP37jF991PImw7jh6c5xf1c7zQYl2NWzi7juxvUtj3GBkYYfCLHW29c5KM/9zSXr8wxPjDAgRMnmLu5QaFksbq9zjuvLPEzv/gxPv9vvko2k/DMp97HH37le5y+506efupDHD54jLfPvs4nf/InOXFshnJhjMvX3qBcmWRysoAfNNmr32Lj2hYPP/QL3NzbZTz/Qa4v/SZX5s5x6shjNDoOS9t/xKHZj9BqxAwONBgfH2Vr18XxHcJQQ5UUhFBSXbOu47oySSKQ5RhFifC8lKceRwEILyXiOHVy2TKqLuH4HZLYoFQaoOUuMjBoIYsce2smiW4hiQaqGiGLiCiRiJKAdquNqiq0Wx2y2QxJEuL7EWEEsuwhSwqLW+dI5DVmxz+DCCwCx0+ntZ6N73sYZpeABASB1zV9psSUIPD76NIgitAUmSCIuymtXR+YLBOGAUJIKW2mO5m/nbgrMAydKAxTjX43yTiXzaAbBrIQOI5NELgMDQ4QRTGKIpPLZHE6bipNMnXy+TSDoSdbUVPya0ruScIUXy11M2xE+u+e7yJIC3Df94EedjpG7ha5QTdFOZ0g070OPrIqk3omUvJcSr9Mp+qe76cmalmGrnw1fazS/w3Tmha+YZdAI/UpTkFXppJAX3aTyo0kwsjvG3GDMMVv9qQqveJVkiT80O+iWOU+GUkICOIQ3dCRVRnJS4vYKEjpc2E3HdnzvD75J5XspFKkJE4IvFQ+JZI0rKxHz9I1jVju4lCFQNY1wihEU1VUVUOKYyIS/Oh2VkWvKI+TBNOy+m/bvu8TuF73MYaEYZf8k/Q2TKmOP4pCvCBNNi4Wi8RxTLvdThu6ruypJ2uLuqb9JEmQJRkh3Q5qu20M7hbuIkWSxlGEbhp903bqYwyQ5bQp6pnkkyQlCHW/Qdowy7fTwIUk0q1P/MMhc73NxA8Fr7133jt/gs+P3hBIpAahME2A1DQVTVPp2G2SWCB18wdEF8eWalVjEpEgpBhZStAUhSgMiYIeXxhI0kmDIgSJAENR0GSBopr4no9QBLl8HkVLcH0bJ7RJEhm8HEKCrCER6wFe4CGA0PdodNaoFEcoZY8hyxFCdIijPSwzg6JmqFb3sIwckpRO2oQkYXsdDC1P4llU7QZNv8FQsYIitdloVRkcuAuntU4QRrh2nSDcJogCEiFwnBDdHGF5fZFY2UNWVDylQ7GSIXAijCDEExqtsIoswMzlqddLKMJgxBrHCzZoOQGBViXr1OlEFruOw8Xli+hHRqjHo+QSAyOxcCSHUI5ZXdmgk8Dw9GF2FZ3Ad7AqDZ599SxDqszY3VNseg53TR/i/KbE82++whMPJNxY3WBg/wDvf/BR/tDwsSQTKdxDTnRa7W1MSeLirVUmK4cZFcdwWx1c9xoDuQyNQOLy2XNUshIzU9NMD96FGJ3AdVpUd99kv9okN1DB0Ax8PeTGtQXsG68xWZFwhiwSv0BRL6BJOTr2Ksvr81y99n2uXppncT3kpx8e5b57T9PRN/CFQ5TISEGTE3d+kO+dO8MX/vk/44HpaZpqE7sVMVQepDwzSSIydOyAkiLYd/dRvvTbv8HO8hx3nahQt9skmTyVYg41UnEDCU1VEBmLTm2HsjGKX61SLJUxsxY3lmx27Agl7FB3ZKTVOhODWQ5OmXQGT7Ewf5Mhv8VJK8fVgREy997FWquB7MvkrRK3NrbI5Q3KhWFMRcd2diGwKVoVvvfaa3zksdPoY/ez12pi7r5JqeSzG17g4PFZ1HyCyHjs7tSJnSa6YdGpJ8x7DXKZSa5cW6Tt3WR0+BHqzVvUgheRg5AgCJHjEsVsEadRRRMmq9d9JNXD0E2uXN0kkTWOPZjl1MOHqTc2cVsB1UtwfXWBzY0qzladx+84yPTkMF959hWm7/ZY3lMR0jA7bR+tGFC7PEfLsbj7rnsIFIPZiRle/d4PsIw8P/bhR3CubzB1cpyvfftFfv5P/xyZQo65c5f5pb/wMf7FP/sm+/cfZTxymb+0wvTMPt65cI5Tjx7i4z/+4+xs3OCxJ05z9uwlMrmEINrD85v4vs+HP/whotjlzjv303E6bG81KeZMEE1ieY61qssum8ROk5xmMJt/hNWNN4m1ArcW55HMNdp+g1iR2dmbgzACoRIlEq4bEEgNhkZGaFRbWFmFuKMQxntUKiX29jziUMG0fLa3bPIlnSBsYoqB7hAkiyzFuMkNEqUDZInsESICZNVF1RMiLyQKBEJSCCOPOA6QJQ1Q8NwOkmjjBx12a3U8X8LQckTqEpcWvsVdR36ezVugaosYWq6rrVewMpk0vAmBrijp78p38dXfPeEUIp3cCiEwTQvXddB1rUtXCVBVrU9R6sksUqMlhHGYBjMlEUkcYWhK2oDrKr6fJsyapkHYCdnY2KRQKNBotCnmSkiyQNdVkiRFaRq6nqbo9ouuhDBKi8cwSG8njuJ+A5DL5lFV9fbjEun7TJik0/ooiiiVSrTb7XQaLgskRcbr6uQBPNtJEbKRRxTFSLLUR4H2NOI9GVIYhinVp7sNEEIQhxG6pnWDsW7nMiSkTUZvAi8QyJICchqAGcepTFXu4q976bi99N4g7iJP3xUOhgAvDNC0lM6Xsaz0OYgi4i7Lny7pp5ep4Ps+nuv1t0xhGPR1+lqXntRrmqLI7zZYYTcFOp2i+4GLipx6NLgt10rzCqS+tCYMgr63QJNTM7LjuCm1yTD6RmxIGyVJkjG7r7Pede3Rk6IwQiSph0LIEqZhpg1HnMqH0vtyO/D03bSvQKRKA0mRQYh0G9SVFAVhiGkaJN18A0j9BP0NQ0/nLES6mQpCJJEOL2VJSrMvuhKvXnP83obgvfNfy/mRGwJZTpMe4zhG0dIOPEpCEgGSpCJEqvHvB9pIUpoWacgoksBrh6hSTEREItJfzKqqEMdproBpGmnqparQsjtpYJAaoukamhTSbtTx/IBMtoKiZJBVGcez0VQJIevISvoLOUEwWDmEZangq9Sb8wi5Q9bKEEcSvhPiug1MXSIKLALfAdlJGxdhEiUOeWOAvVbIjgiJo5DJ4iiayLItSuzUl8jlZGwXkqiIkA3q9Qblgsvw9DSbC/MYSo5YjpgsTrG4s0lD1EgaKuWchpYdoGNXyVoKa7U58noJJc4SmhqS3iGrKkSdI2gFG3u8zbXVZY7ODCEiE1WSkCIVR07Q9CL3ze6napd44erLPHbU5crWGuduvs1wEnNyapZ4sECreha9Mo6cN7m1uYFUKFKPc+yuXeaD0xWySp7sxDCmKvAVn4vrLq21BtMzJeYjh4HxYd589k2OnDxNdWeT4ULCPXd/hDtOPsbq6i02b9xkZfltkuRt8noGyTiIophU11YpR3vsO5Djwm6bvZ0Azd3hjqlhltd2afvLzC9cIQodHMngwIExjh55gEuLr3Dg5MMEjkNH1pGDgC1P5nP/5NeRVzxWyk3seBnVNXGDDIZVwhEqvl3n8Yce5O25Kp///3yDXN5AaBZZS8EswJbnkfNlDNnlzY0lRgemWLx0neMjCbfmbrJwZZfZ/UMcyleYGM2gRQqu7fPNc2e46+A0GtC2PRRX5eKZJfZlZPafnGBwfJLL59vk1CzZ7AB+GOG2VrEGSkR+wPytK8i6YHrmBMXMMV566Qzvf/8MtlOnNDLFgNom3oNLizvE6lXc2MRJZLY2z5A1NAr5UZZbyyxv7XLlekyxpPPpH/8UK/XfxcrkqS2dxHe+w/KtBSThYKgSIpQwVIdElgiCEElElEoSUgivfHuJ3Y1dvLqDcCU6cYSQYfrABM0xHf3BIk8+ej8dxcGaMdEaIasvXEPJQElRmHvlVUynzbGn96EZD/DAwVmuba0wfMcMVzbqFKOAJ97/KF//znc4eegwm1e3qGDwyY+d5LnvX+X+e2fZ3ljDkjJU9RKvvPAq+w6e5tDB44SBx8ljR1nbvI4k2oRhg93tVTy3xVZjjfJOA2SNIKwjpCJRKJPJ5KhV17i2dgurrTC8705mphok7i5FK8PMzDCLOzeZX77BtXMXefrhcTxvm0AIgriEKgRudIOt6jqxPUwhstD0HK29OYKdAkoyg6z41JtbaLqFLGm047NISkwc6vhJlRgP2wFJrqAoBp1WhKYaJLSIwgxRqKApMhCimwmRneIMFdnoykFsZCUhTJoINYukOaC6HJv9KJI3QhRXyVoBcewiSSqGYWDoFkIIHLuD6JJr1K4JtOcd6E/6Ecjv0oP3gsnSwu9dcqFY9NHSvT/VfmEcEIUpEU4IgWvbJDHdoDCo1Rrkc3lKxUo3ZV4hjHxsO5XupIQbtVtspWmwveIy1YJLSLKEIsd9mQ6iKw/q/nc6HJb6k2vDMLBtOzUUCwjiCFlVEd33qziKoOdH6BaAqqL2pS9yj92vpterR635Ye9A2lQFfkDSJRUZhnE7KEukQV1BkDYJIk5N8X2ZS9e83CuuJVKuvaIqhFFM7PuoikLHtgnjCEVTUeU0tdlzXXTNRFEVEFLqpwiCflhXL7OgtwUQAjKZQj+Hp1cE95OpBURJL0soTBPf/QDf94kljZi0OerlH/QaI7n7/WVFSW+frvypS5mSutey13goqkoUx2i6hhC8i+kv9+sIXdPwoxBFkaALDRFCQlbSqb3nhf1mEG7jS3Vd70qPuw0WdL0YCrKqkHAbo9ojEbXtTkoAUxXCMEgfV39jkxBHYUot7L52+pQpJaVrvTth+b3z3vmTfH7khsDMyHRsB03ViGMZTc9C4qPrCaakE0egKikajSRKw8JkgaZqRJGDakkIEhpOOh3TM1o38EUmkzHQNK3LI5bxQwchB0hyDj/0sFsNPN8jlxsESceNmvhRQhQ5OG0JkZgkkUYQO+TLGo4LnXYLOQloNPaoVDRsu42u5yHWKeWH0BQDYWl0gpj5uQVGKoJMVqHl72LqJfRIoCgeyAY7VVCVKpm8BMlBgshGVmp4+JRVQX50HyuLLzM4OY06AMKvUsgcQtV0jHib0M+z79AxLp57nRnToKjHEM2w1XZZaa0wUa4xMbwfvzNIPV4j1kOi0KRiVbDDHZZ3zjI1/ADVQDBTGMJUQtZW9rgcncdTS2QVjTdu7VBrthgvZ4h3AoI4YSJ3gO+88g1OHnI4eud+kqSM0w5xIofrty4iTU+gd7ZZq+3y/oc+QN4sUSv43DINaq0VzGSYm9sLVPU21+fnOH10nONHHmNg6BHeunKJ829+mQF5m5yIiLSEvGrRRmZ++QZbZ6+QMZt4+w1mTz1I6+olti6vMDK8x9jonbz1vefIWDK1Zszi2g4PP3AYf+gEfriJpRQIJNjwAq68M8fm1lewNzYYzpjUW7toukGAjOt3SByfQKlTGdAYL9/Fn/07P88dh+5kaDRLdXeXiX0H6QSbVAYnULIGu62Qgcwg333+bZq31glnqlR3b7K2tMv2WofhwQyPShqDoUcxa3I98okuNAhclxNTJcYHh6jl8lzdW0RKxjDVmJgGP3jjAivjs5yYHSObO8ALZ1fIdKp8/JEsnjnLxZu3eOTEab756gWWqm+jqcO4HRsbnaxUwBrLcWF7ifpOE6Opsbd5HY9d6k2Fgu6AALtTYGXZZnTk33Ls+D3YjTGKg3kC7yt4nkehrFNvtJFFCVmykdSYMFGJAolOu82NdxqQWARhhB8kRElAYXaQu++fpjwkiHMa7ywus3dpj0fuO0Rrbo3Egtl7yrRWqyhuwoihkMk43Lr6VZ5++jQHRQXH7pBVcwwdHOLct87itkOO3FdktHKM67/x+/z6b32NX/qrH2fpVkS0qfCBR5/m+69fRU0ErZqHZZm0dncYGNAp5mQcJwuqw7e+9238sIMk8ly/9i2SioFu3ENF5JH0Dj9453mOHkj45GfvZu6GyuTsvUS4XL6+g+7v4XX2KMk5Dh/9CPMtmaF7xkmEwLCXCXOgyiGbO2fQyzpJNM729nkmpwR1bw1hDnNx6znGBm2G1H14nYRBy+Dtm99BN1ucmB1BVjzaewPoRgUzl4e4QLW6gzaUEPodwqiFKucQaCBUAtEhCn10zSD0I1QrIJM12KsGWJksw6MRTqdKHMWUSnfjOunk0lSzKHKGZsdF6XLf/cDDNC3COISu5r9HlEnRo+m0WJIFJDICuTthl/D9oE8WeneAmaKr3S2uTxLH+K6Lbhjomo7ruhi6mU5gDQMQuGEHWVNotpokQKUyQNBPBA5BJF2WvUzkx8iA63vEUSrxUVU1xb5GfrcBSRCkIZeSlpJ8km6wlSSluQKICElOiOOAMIr7f2932rhdA20mYyELkCVBLAtUVSYMk1T21E+jTUO6evALSBHWafhm+qEoMpph4neTlAFCP0BTVSAlI5HEaGq6lQjDNK8nzasAJY4I/LQ417pT6jiO0VQNSaQTeSErBHGC3zUcR0GIiLrkH1lJg926k2vf9wmjGN3Q8V0PRU0L3sDzMU0dzw+IhUDR9S61T8LzfBQlDZ5TNYMU1CRQDDP1gwgJy8ziOy6qppKQpBr8bhMSBBFx5KeGYD/NcHBijyRJ0aqKEAgSHLuD57pksllkOfU3xVGALCRUTUvx48ltGVC69aB7rQS+56USM91IU6pFQhAF6XWQ0iZCkiWELNAljUTXUuxsHKHrGlEc4XteiqyVZaJuExPFIYGfyqjiMA3Dk3UdkjTDwPN8vMAla5okUS+UMEEilUnHcdyXlb133jt/0s+P3BB4fhVTt4iRSaSYfD5BkXRazSyWZiEhCMOAOPJQVZmMZmC7NgkCIWnEoZ9SHmSTJBHU63soqkDXDartJrKsoKoae7UqkpIGrNTq26C0yOfzSFGGKAlZ375CriAReDrZTA7XDmg364ABsoxfEyiqhxs6kMRksha242AYOTLGGBmrTL1eIwx3kdSImBDNiHHbGdyODImM7ddQrRhLHSYMIEkaRIng1koVw9gia+TJ5DQkvc3yzg4Zq8bMgaNINYnSwCCbmwvo9Zto7n6y+RG+eeUltuYu8tkP/SzXNnWMAZWpyQqRBZfWFZ576xzFnW9w4v6/yc3WOY7PTvHmzYTYyRFrOjcWXmR/JaIWT7BSj9nzayx3tll84zIPnrqTg+M6r970EarM0MgdZMIqlYERpoZ1Ro48hRptcmRgkFdvOizMXeJQZZiHH36A+uouw6UStcI0V1evc9+Ru9hzbO567DFcZ5369gqX1m+wb/YOhK2QHTmEZO3jO8/9LjduvsjYcMxARiGgTGJW6Dh1DphN9NI+1HsGsdvLzEwfxe7YfODREvVZl63GFt989RsoQmdy6BA7m29y6uQRTtz9KI3mDXKFCeRkj1YY8+prrzKRGeDCG69D7KCYGaQwwHUTJBQano+UaNj1Jicnhnl9bZl3XjjDvuFBFjfncVsJKzddHJZZXtniL/+1YSpylnxliIJ6k0CPaXstEsPn+L2T2HWFjeUVvvlv/ohf+ZVfoGHaPH3qBG8+e4ayoTIwMsPW2gZjB8eYOlLipe++wJ0Pnebeu++msSvY2GpQd0KclZD1vRqnsw6+Dhrwicog8wWNQFJpuqDGgqHcGJmMTmlYsLS6gbm7zvtOfJjlrVtE+w8hS5tI6gg3t97i1tIGkdhiZmiQxZsrPHz8s0xPWqy0lwmUVA7R3AqQhIwd1UCREZ6EaQqkOCQJFTQlixP4OIGPrJqcevAI2nCTK1dvEL/jkxvymR4c4sTgNCwv8t8/81H+3ddvMbd1mZzqslqL2HMbaFezXDzXZvmNf8pn//ufI84buIrN1FiR4IFxnvvSKuo1n5//+4N8+asneeGNHU6+scR9Dx5h7toim9u7PP1jB/ni7y2wuRcweXKGjfV3oC1z9/0P8spbCccOfIKy2uCPXvk/cETM+OgMFjFDw2U6e1usrm2j6kX2qkMsrL/GiZGPcuvGMra3yNz1Wzx8+gg1e4vjhz6AZmbxlr+D384xVTnCnibheCtYyQky0jRRtMz5ay9x8sggWkbl7dc/h6o+Trn4GA1eImq5WOU288s38DJLlCunWFlpk88baCJLp50WPkkckstlCHwHJSkQhyZGTsa2Wxi6gSYXIBEEoYusKtheh8KAR9C6xsaujIyERBVDHyWJQgzTIAoCglDDtWOyuVxqVA1jXMfraqMlNF3H7tj4vovvh/h+SmBLUZhhtyhXcd2uvl1RcdwOrgthGGGaFr7vp8bPLg4TYjRNx/M8Go0GhmGQL2RwPZ8gjIjjCN3QuybhOpWBCqQAF8Iu6UZIElLSJdN0021TcY34oVToXkMSRSFJHAFS10x6Ozzr3f6ItNkJCcPgXZIbCVNP0dMikYijVLojSzIICVm+rQu/HUKWvrdJkugWq7dNv7en5D6ZjEm9XidJ0q2E6DYSUTepV9d1stkMtuP0J+GO4yAj0pyDdwVhxXGM4zpopkEcxYRJOmXX1DSYK4oi7I5NFIboutlP9U3laWkQmiTJmJaFpqf41yiKKBRyWAl4YZQW4WpKElIkmSgMsXIZbLcrn3JdiEISSZDLZDF1HU9WcBw7JSRlLBzXpdVqomsm2Vyma5JOm61e+q+iyLgdO21wJCktuqMI30+LbUG6nYrCEM8NkVSln3SddDX7SZKiUnt+F9M0qTcaaN3wMlnueSbSKb3rOn1KUk8SJEkSUnx7c9TzV/QM3YZhpFueIECQJjjT9TkkcZLSokR6P3thbO+W3BmG8Z9fYb133jv/BZ0fGTv63Hd/N8lkSgRBTMuu0WpVyVnFdDIfRFimmfKYJYi7kiEhSzh2gGs72G6DoaFBXMdnb2cPy9IJQo9EEWRzFr4XIMkWiqzRcWrIik8SNRBk0LUBwjik3l5kaHiY7Q2fcl6j2bZRDR0to5GQTqY2t7dJwgbFfInF5VUOHJxNTWuRjiaKCFkin6uwvbeMYgguzL3O2EiOfSNHCYKQpp/gBTbV+g4yFUaGB3GcFSzdYq3hknhQUfLoVpFspsaV+k3W1+c4MaQytu+n2dvaJIrXsN15hqUPoFRMGmqNv/eb/zPTxjg/+ciHuXP/vaiFUdqezesb53j70k1OmQt8+OFf4K2FEE/5PtncKGY8yOWVXa5VrzJ/83numi7y0w//LFvxMC9em0OIKs31gLzR4eKNC4xny6hT+7hy4RpSR5DXb9H0skzt17l33yCqdIjtUGOjvsDhoQxvnF3k6GGLZ1+7hCepHBufYGrwKGqQZXqmQrEI1uAEz/7etzl+6ij7Z0/x2tlXWd/8FkemVKIWuAyRn5wGzWBl+Q0G/ANU9h/hm289j71d5+6DD3Dskffz1pWXmBjQmbt8i1vXL2EGMkLNcPT9j3HvHY+xePM6u2t15m/c4Oc+8SivzK3x7ZfO8emHH+Pbn/8KSXMPTUQ4QYgXxJh6kY7j8NFf+ASXNpb55Sffz79f3eEb//hzjE7o+DY02w5ONcYsBnhBxD2np/jgjz9CYeJO/u4//TU+/tA9LL52lrjTwBUSSn4/WkllaKzI6uYcn/3ARwgm4MzSLq+/8A6fOnSYm9du0qhXiewmuXyej//sx2gKj6Zn8s3vvIaIPPy9FjYZDg5LqEJDPzBAUVun2TB568wa2XwJyzR55Ng+bq7Os7q2R1tY1F9f4H/++/8juYkyb7z9Oona5Kl7Psg2w/ylv/aXmL4DcqZOa7uB8BWiwMQ0Ak6dOMj64jbz1zfYf2CGhaVrzF2wsaQ8muYiSQmBryBJGprl4YdtRkYm8SJY3+xw7HSBSkWiXhXUV/fI+IJr23UenT1N5XCLiwvbDGkKhtpg+ugIh7TH+K3Pf53CiYfIjs/z+P0m80uHuedTD7K+9jonBvZTbO/n+6++wFJwi2ZtmCvfucY//JWfR5ZCvvSN75EbyJEfGOLX/snv8wv/7WMcPH4CrRVTrOTZaczjeCUWlpdQdZdme4so6vAXf+mXeP7Zy1Rb60xNHmJ29hS//9U/ID/5Fn/pib/LF7+1whsXvsXY6BSnjp9mu3GTk4fuRKBQZpo33vpt7nrKZH4nZCy3n/paQrHyEMtrb+O1BSdP3s3b594iU6lTrpSwt3QG9jusry9SGZjBkga4dGOHkaFx8soQCS2S2EJVTCR0EBFhUqW165MrCBQ17Jp5PeKojBDQcWuYGRNZKYMsuHbzRY4dG6G2FeE2FCbHh0BYJMiouk673SYMYww9i+N2iOMe/UjHsixczyaKQgLfJZfN02y2kKR0chyGAZmMRa3Wwg8CRkbGCEOfJImp1vbI5zOpbEfTsW23b0JNNdc+qqrh+0FfYqOqej9ky7JMZAV2d3eJ47hLXqJfUHleGlopy+lkO5X+GMiygiCFOOi63pUVpbIfWZaJwpg4vp0W3GsWhBAEYUAUBT+EoAzDEF030mm+avTlMb3NB6SSFcuyfoga8+4PSb2Nqvy/SlR6pl2gH4rV8xGkmFKpbzJuOzaG0dt2uxiqRhD4/e9l23b/vkRRWogqXUOsF9w2I4skxnNdVPU2BrWfli1JxEncN0Crkty9T0mK+IziNJhN6t1njXa7jaIquL6HpRtEYUQiC2JJkLUsRAJOs0P60BPCOEwzf7okwCiJu83e7WaqJ0uSSf0YjuuSzaa0J9tz+0V4p9Ppo3A7zVbq7egW32OTEyRJQrPZ7Aek+b5PPp/vG8Z7Bbmqql2jcvRDz6fruunPgev2jd7tdjv9fDdcTFe1/uuh5y3phasJkQah5bJZxLuuc8/s3Mv2+PSnPvaes/i98yf+/MgNwYvP/1GSzQsUIyIIIqp7Nm7Hx7J0Ql8QBj1smJKSf4IA3TK7DG9Bp9NItXtI5HJFiEASMk7YwfH30slLkiOOJbxwj46zCV5CuTxOrmjiBU3a7ZjJiSNECWyt7WI7ITERkdSg3dlkYKDCgemjSEmI50ckssJubZNmc5e8mUElg6KrCM3G9wKqjRqBpyFHGUaGssiyipLRaLkubuDT8ZcIPIeBzBQkIYluoCdjRO4OieqSywmijMHSwip1J+FUuUGpfCcbtmCn9ia2e57B6IOoRZc5V+YPztxCW/oap4ZmePiBZxgfGqetq1zc7rC6fIbxzi3uOvDzvOHfYO7yH/HY5N1kR+9AZHS+d2mRwG5xuJxDHc7S2lggZ2aoDE3zpe++w6sLz3KoOMnmlSU+/olPMTk9wXMv/j45fQC/s8qhg+NsRwnHcoc5+dSn+dXf/fscMjt8+Njj7AwcIi/lWF1ewIvX2N1yuL50i4/fd5xr11a448ARlMEcrY1VOq3zWKNZ/LbKvsnTnLuxweR0Aakpc/baayxu6/hSi9mZEs11l9Ub2/zsT3+GjlRgceFl/FBiY2eLSlZBFkXuft8HuXjhGluXXuCuR3+St77+Jf7Mn/4x5sizMb+LvuXy+nefo2LptFt1nCTBiyQUyYAgYeDwBMtek1/5iZ/kn3/jZd58+VVyWYnJwgjacIFQT1id3yFotrjz4RM4Wgffy+K0W/zEU0/zpd/8XQTgiIiOE2AHLvedepTicYPpyhB3nD7OmTev8Morr/LA4Cgrq1vMTI2jKBJRRscoJhw9No2n5Nio+ty6sci5awvM7ivxN/7sg3zlC1c4OGpTOXKAm9XrtPYqzC26tDseej1ke2OHwBjigUdmaDZbKH6Lj//Yo1y8dpmtnSWUpsq1tQ2u3fQpDRaotVexDBtd0xgYqGBpCZ1WDUVz8IBq1SOfzbM577B3AwxhEUgxwpIIEgciHx2LTtNnfMLg0MkCO7sJC2tb3PvkIL4t+MFXm5QGYHR4hIcenGH91jyOFzJ5cIKf+cwz/Otf/31evdDh0XsPsnS+yp3v22KvZrPVOcDTP3UHO1c3ef+JJ5jed5Dnrv8GX/7yAsVwBMsNeOjRe7lwY4e3z73E7Kn72F1f4/DEGCefGGN3fo/jhw+TyB2+9t0X+OBHfoF2FWqba8wtLDN57AZDpXs4+/oKidIkm6+wtb7NzeVrfO4f/w9EYpZ/+Rv/jtmTBzkwdpr1VZdyPsfa3hcYHDzImfq/ZHAky0HrryA5PiEKOekukjYMlkbZ6lzk5oJPEDqI0KOs6LSjDgEBhl4mmxEEvkVlYARVA9QWURzQqscEYYCVi/F8B0vPkDHLrKxdpZTfjy+uoooRssYUkdjBD6Dte7x6/j+CvMr4wCwfePjPELZz1HZtHK+DUBOa7SaSJJHLF/D9EFlWAZFq95OkX1ALIfDcFrpmdL1cKX9e0zRM08QwLHb39vB9H8uysO0OcRKiqjK6ruH7IZqScvElIZMkUbfoTQlESVde0UdPyhK+7yEEbGxsMDY2hqJoeJ6HaZr9YjFtItKMgNS7kMpg0mnzu5JogxAhK2i6nm6au2z5nnegh2bt6cJ7f6YNQ9gHWaTvP3J/awD0g7TebU7+v77nJSQkcfoYe7fpum5acKtyysuP07Rlz/OwLIt6vQ6JQJa1fiOhKAp+FPYN0L7r9CfVPW9HL/wsDOO+xr/3b9DDfEbdYDite51kki4yU5Ikms0muVwO0zRpt9tdE3PUb1LCMM2WCLrG3p4htzhQxtR0fNfFCXz8KERGELgeskjlVL3mq4d9DcOQgDSnotFoEMcxnU6nj1DNGCael5qaM5kMnufR7LQpFApks1l0w8DqviZUSe4X/aqi4oZ+36fwbkOyqqYZG7lcrm+c7j3fkiShKkpqHFcU3O7rvPdcR6ToUEXuAkyirnm7m0YsZAld19E0jVarRRp6mjZr705z7jWbAKZp8qlPfvS9huC98yf+/MiSoUbHY2NvF0n1yWQsJGGiZ3I0Wm1CP+nGxMv4fkySyGiGCkImIUWSRUmMUBUGBwfZWttFV7K0m3XCxMOySjSrbQyzQZDYbG6uc+jgLCoC31fY3dlFtTwGRvLcWn+Vgwdn2Qs2sJ2Q4YERFMlCTsoIV2fu0hrVvSUmZw5QKFXIZ4fZWN/A1CSyuQytlkdkS7TaAWHoceTwKJ0GyImJJPI0anuEwscLatjODoVcgUKxTGO3Qdi6gVBq2IFFOS+BZdJYWmS0JLFvYj+3VuZw1v4Vdxz+KPmh/Uh7ERoeo+WH8KqX+XtPz/Da+l28dWabnQsvkLc0fuyuo9x34AHy4h6+d/YWJ/J1PjL2Uf7F1nNIckzOqhAkVX75mYdoaWM8/8arfP3Zr7Lw+k0GRiXumz3E3/35v86N1mf5h//uH1OYHSRqa1x+6x2O3nEPcqjQaUvsuB4TlRns2KO6co5/9Bf/W968/DYXbtyiujhPs73DxvYuImmzWi8wdWIKO3Txwyqvzn+PI5WPs7J8kSOjdS6d2cF1B5C1KmYxYWV5DsseZGzI4v4njvLGm9c4d7HBWsOnrPu89u3PcblVYTpfxDAyjO4bZnB8mJyxj9/7j19gaf4GSt3j5IO7tHZ8trYWMfbdT626RfvyCpYiE4d+Gmvvx0SRgDhECkPWry+RDBhc3lwhWatTUUM6vsbC4gLuoqA8VWF23yw337mFSCJGRvfx1oXLHBoucObMa5TLMpMTE+x2WqhFjb2qz5Urr/PEzD0smwbeq+9wY3GD0A/Z0z3yisqtmyuMHjvChbcu8PiTJwhNid3dDXJKmayVo9NocnA4T7N9g8BUGVc7dOIxamvXmZzKIOdyXL++QRJnGdUFlUNjHJ1S2GlPINeu4DartLwG+wePML+9yODBMk/93AmWlheRk0N4TZvh7GEU1WHPvsZzX28QNlSyOY98bhDPFpSmS6zvrBLaIboQqHGA03Cx8oPYQYvZ+8YYKDU5d3YDFI07HxynVm9R39LRrACnlWFNWmf+ksHdd01jjgywudvi//h3/xtu2eDwPsHy/DXEoMaFSxUe+8gMU0smU2GBha0tfuB/n0xZ5cmjv8jam28we6jI3k6D4YOH2c8cH33f3+Ir3/oOP/vzf5UfvPot9tpXOXHgI3TiNrFksH/8QfLhIIUhh+mxj6ApZ/jqm9/mpz/+IR69+zDteJu64/D0qWfYqS5xayHgrmOH+dSHPsG1zpt0GqtYRUB1mZx9lNXNf8heAG/8RpP9x/+IP//x93N96TxC3qVinWZ5rUYn2WV4eJTI1yFxQRGUVJWmWyOrR2S0ISw9YGVlh+ruKkEQs3//JPlCljD0iJMQU9HwadGqLyEbWey4hqSUWN+tUioK3HbI6ESWVuMa01Oz4D7Ewcl7WL5Vp1xyQfOwjAhJlgnigGJxhHrDwbJy3QRYQSJS/TvQnXjGeECxVMLuOERR6icIw5BOp4MX+OhGl3CUhOiGiusGyHJq6nVsFy+K+6FQcRynsIieDjuM+ohS07S6Mg+ZlbUVyuVyGsjl2Oh6mgjbn7YDYSj1p7G9iTNxjKzIdNrtFGlpZomSVDokusVhT2bzbsnQuwv6IAj6zUGvgO41GXGcIMtJf4uQJPQ/3zv9MCp4l2QpwnXTvJvepsFxbQYHB2i327TbnRSmEUVdcpCEoRkISRB0C0nP81CNVOri2h2ESI3I756u9wr0niQmCAJCPzXryrJMGAuy2TxJ0p1WOzZJ97kWQsY0deI4pNGodR+HlsIDpBStGgQRhmF08xHifoFbr9dwVR3imESWULuGZ0XqBalF3awKt1+cK4rCULFEs9VCV1Qsy0KT07IhSZKuJCoBQX8KPyCGUpmTJKVyoW7Csx+k9CdFUei020RJ3C3wVYScyoAMw2B3d7d/vXrNQu/24jgm8Hw0RcGxHarVar8xAlBNg1w+hyTSxkHXdYhS03EUxSSkPoZOp9O/3kEQYJomQH8roWlaXzb27iyJ985750/y+ZE3BF/8yhcSSdHo2C06TpVC0UJXcngdGd930DUNrYtCI4GkG4GeRDamZVAolWjZLZrtOhk9i9eBeq1OuVhElcsIOQR1A0lrkc+O0GrGtJrXMbUBfC+PrJoUB2N2WysMDIzgCcHu+g5qohB0ukmRioyk6NidbcZG9tPpxCi6gZBiwiDEdyFrVQhj2KxeI2ea6LKEInnEskIsu+hqEVW1kFVBHKrcXLxMthhDIlM2ZWRVYrepoksltKxB1L6AltFQE4uWUmZhY5lcuMHYaJHEOECn8RpVO4MW5tHNLXLSNAstnbfW38auzzOTzfDw7BNo5Sm+ufks6nKT/+apn+XN3RtE+iB+rUXsrnCleZ1rl9eYCO/gyfd/HKe2wVuNdc59/VWOajl+4S98lNViif/w2hd4/etv8+jBI7R9l1pnk/KYzu5anU8eu4vkjiOM1NaonMjz/XducXy2wvyezOTAETaW2zT2LrP/wAkWt88yG5kYpsp2u82qM8PmrevMFEBEEvfdey+L25vUw5DBsXG212vccWSGxtoVjh4ZZa1TZbEd8vLrV7n/7lP85r/5Oj92573Ut0M++vNP0QzqXJ+7yflLN8iHMZ6nMGjJNJbb7DtgcfzjH+L737uAf/E6huMjEdJoewRyDsePUWIfTU6IfUGU15k4OsWrz88zRIubboyV0TAig1bbQ8uniZbHDt7BX/0HP8v/6/e+hukHxLsNMr5Lu5ZwY22b/XdO0PEF+WEZ0wRPMhkfG2BprY5TazIzrhKv2giRwzUL3Fxa5oNPn+KxJ4+yZTucubzOubeuknPaGGzymT99N/nRT7P3ja/w2H/z53jutc/jorFe06nvNDH1IezdKuZwgVb1Js8ceZzz188xcHyAq3ObrGyss3/4IKfGHyY2l9np3CQMskyP7idoFCkULQamNvmf/uaXuPBmA61Y4467J2j5DWQ1IZcfxLMjVs6tYNl5Aifi+PvGKZ9oEeV36GworJ7NMbOvglZo4lZlYscgU9Lway0atQ5JI6SyL0OYL7Czu44TOAznh6nuBViJxAff92E6/gCVoQ6ZSouRgX2YZobrtxaYGp9ka3GBwYEhXFqESZu8lQM1pFGrUyrmOP+qxx3HZshUJDTGcMJVzGzEW29eZGjgECOVKbY317FyOue2XkUPxzk1tZ+t5jY+MidGjrO8cIXyeJZWUGV98ywbdpNxq0hQdAkCCy24A0/+j2RkkyvXMuRmHMb1o0wURihnH2Ov7hLGHYqFEUIbQi/VaLuBS9NeQjGgpOyn1t5Gih06uOSsIWzbQVEkLENHUSSS0MLutGjEFymUBlnfPUMQCEYqd3HmrTNMTQ0hC4/l5VtMjd7H4UNPkjEsXHcLu91CwmB4eJD1jVv4vk2hUMH1InLZAkEUQiIThlFfUpNOhFWCwKfVaDA4OIym6URROsVVlJTeouo6SZIWuIZhYhg6rXYD226jKhqypBD4EZKkIMup0bfdaVEo5PuSDbtjo6kymUwG13WxbZu23WFsbKxbREEQhGQymbRxibqpvtxOt++FVyZJhKIq2B2HGIGumwRRhKKoqHLXTNyduvcINb0U4Z4x991c/15jEEVJv9h+N64ynfpK/Q1Hr8DsFeiqqqJpWto8eV661e6Gf8myjGEY/e8ZhmmGg+M4eK6P7/ndRkagd4vwXiKvqsrdwlbuf78eFlRIaRhDFEX94LAwCH9oKh12MaG9zUDqoeihRbuBXp6HYZhEXUNsupVR+9sXVdOwHTeV/EhxqukPunRAVSHxQ+IoYmd3l8HBYUzLwvfS6XuSxPi+22/SetuOXoMhSRJRGGO/y3Sr6ToxCY1GAyEElmmleQWBjyRSn0Fvg2N3Ov3n8d1ekt417j1Hve1OTwrWo2D1vBrvDpULutkEvu+n+QySlDZb3e1AGEUpdatLRTIMs3v/gh9Kpe5tSYQQuK7LT/3kp97bELx3/sSfH3lDEHgRahJgmQYkOUIvQQUUOUHNZ0iiCD/0SOIYSfQQciCERRLI7G43sQoamZxB6NskikRlsIwsaSS42G6L0PUplAo0OyFhFCBLEpoZk80buHaWwNHJmyqdzjYRgk59l5nhKeLEIpYtXCmi5lbxnDqDsY1lpIE4uqFTC1yEpuDHDivrV4mVXfRwlKx0DEPKEBm7RPoWrfoOhjuAKplk8zoH9u+nHTRZ36wSBwNomoOpNykXLVrNOkpmgkRk0M0dms1tjs/cids5ReC+xaDewVHvJolvIMQMrfYtgkxCWTF5euZxvna2Q6Pd5mZnnqNDAzw1/AhOUXBleQctY/DShW+C7TEzc4qLZ21yWDTUVf7XX/9b/MKpx/lTH/sxHj11jK8/+xp/99/8Mz706Pv4s/d/ivHh/bz+pefAq9PWDRrXXcrZErd2N5ltTPHy3DUG/RG8WogxokHc5ML8c3jNCTY3XPK5eYK9NbzSAdZ3WmSlMjMH9rNcW6LqBxhOQLaokPET9k0eYH0X4kKL7798mYqZIZ8bwU8cpvJNPvbUEd5ZucjkQB41W+RDH32Y5foO1y+cJSO55KSIStZkJwpptkL8oMGNBZfhjSWsskGcU4icVjpdlBQSlDTAToDv2cRCw94LoOVh5QzadoChuoSehC8CZEtFNyU0EXDx3Bxf+eJ3UUOVyeIwzbBF0NZYmt+m3g5Yv9VEAUTTQB6LEZHDx37iZ/i3X/tDvPU1DG2MrWyLXEZmd32PrJFl9doy9h1T2LLM+SvztNowUymxEDX4rS+/wf/2v3yaN0MP89w3IWmysgFvnfHIEqIWqvh7TW69vMSdx4pc1pYYOzGJG3tMjw2yW2uyXF2ltvkcbcdh6kiOUknl8tw8ByaOUncXyTuCxI5QZRifztFyakhGQiJ8SBzuuf8gFjK3LrQxRwIm7mxjlCLeOS/RWctBM+DiqxtIhgSegywEuXEdtWjwoT9/gvNf2uTW9esoAw4P3jsITYN122H8Do1sIcYTSwTtRRZbddQdn2Vph1wpz8tnf8CnPv3j7HhvsbtQYWbfQYLE5uriVTpxCyUncNV9ZA+3uOy/RaWlorkH8Tsh2UyBqZkpwiBmfaVNIZMnq85g+M9z8tBx6rsOtXodI5uw1VymMOyxsfUyu4bGyu4eA+YBEm8fjXaL/eMzbKy9zZk1mVMHY9TpOocrT6CbE8RBxHZ9Bbk8iGEV8GwfRdUI/ToNt0Uc7RKG2+hMkEQ+6BHZfMyVuUUO5ApsR9+lYA0jyydpuXUsvcDS5gZWMUGSI+ZuvcJQ5SjtzA3yhQyWPkLeLDF250NkzRLVjXWaSkKpkkfXC7TaPuvbNQwzj6FniUOJyJeo1ZoIKUY3TGQ5lZe4rovjdBDCRIgEWVZptdrEcQphyGYzXRmJj+t2yGaz1GpVNE2hWmuhqhJCSlITr5AxDB3fj+jYNp7nEXQnu70k2RQTneqvW60WtVqVfbOz/YKu1xD0ijaR9CbhwbsCpugWtQmum8qIJDmVpsQIwjBC4nY6LvBDW4EepaaHWAX6spb09MzCSV9W1JM7SdLt8LFes/Fuvn2vCVEUpT/Y6lFm6vXGu4LcImzb6SNJe4WjLKdymF6zAJDGBkjdYj1FsfbCt9I0XYUoSRNygXSLLkkpJadbHPcw3lEU9m83LZAhSUR3K+EihIzcvZZJAo7vEccxapQGnYVdtCZxQuD7JEKgSRKarkEYMzQ2miI3SVA1jSgMcZwOkiRuh52J1A/STysOQ+Io6Uu6IMXQhnFEJpNBkXro1xhVVgjiiDCOSEhSApYk9fMJXNdFltOGU9f1H5JY9ZrAd2903u0p6GFXe1Ituzv9l7r3V5ZlwihCJPG7UpUTVEMHIVIzOPT9Du/2k+Ryuf7tvnfeO3/Sz4+eQyCp+J6LmsjoiolAJgoiJBGQhN0wHFnFj32CKEImTmPZSTF3siqzt7NDeTDP+vYammpSyJvYsY0fVlENAyXKY7cjNDOg3tjAVGUanYh8ziab09ICUJFY2W4Ruw1MK0MkmaiGhaEX0OIQVTPZoIoThRhJjKbF1DsuiQy2vYfv1ZE1gSrnaTUbVAZtvDBEimR0Jgi1FUI7jW2vNRZQ9IjJ0UPMTj7CG9ffgKSNs+tQc9/B0C2Gs0cJQx8vkRkrnmS1Pk+1uUziu9za26RUuZMccGxiigtbZfKZATacJiU/x30HnqC2N0dsZthq7BDYMcXyKMu1HXbr15gtDLARN5m/do7RisWQcRfEy2z5W8zrbd748ucoZWRO3HEH4/mTvL3SJJS/zTOPfYz4YZ0X3/htRk0ZV1HQrYQNp8OU06SVsbh1eYs7RrK8cfUSWCZldYSZQ5O8FrZJfJ/xwihKaZza3jLfP3OWT03s554jB9DaMFKskOT2sXntGrPjIZnSBNJaldmhAbwIvn/lbYJ2jULJpVD0GZcqiEenGB/axxtvvM789esU9YRYC9BzTZZWXMrlMVa2d8gGCm7isHZrk1J2FDk/gOeH7G3uYak52s0OsqaiSgpqYtBOYoQkuHJhnjgxqAchpqYSOAmKAm7kIBITkEBPePZb55k5PE1HV7E7m+StAQZHTdwgoNlq8cjdx2DE5dy3l6mUVN76wascv/cUz66us1TbxW7vEeo6O3aLipsh42Q4++pVJp64j3ajiUiytJM6J05leON5m6XrWziHs7wzt8dd94wylcyzNpwjbAocxyeXHULxFjk4YDF02uHl55f4zAcf5QfXz5ATGtmRCpLsMKGXsCo5mhsNmtUG8+23ObWvyIB1BFm1kLRtctkMkRRjmBkUJcIQHuHGBsOTMbHpU84NcuvqNs3NiOvnIzKmi6lDgE3kSIhYEMYBSmGArJxjbGqMb0bnKRc1nnpyhqri8eYrLoVcnpubdYpDWaqZJqEdcOfRSe59sMzNa6vEqsr9986gZwZZ2fKoGCHvXFxkfGyIY0ceZ31zg8BVKdmDXH7lDHY2Q+ZYCVWqMzw+yfnzNWZnM+StgJIGOWOYswuXqbbmKJpZ8qN5dNPBUxdoty6w47fxWxqVzMdZ9l7n6Q/fy/bWEPHeFQqqxSsLVT72vp/nG9//GrMHwW+3MW2HtXCXu4+fwpFgeWUZp93BdFwGD5/inUtfZjQ/Ri67jz13F7+Y8OqFt8gXN7CjiPnVTTbrLzA+cgjXFEDI0kaN0sAYoSfjhcsM5++maA1RyR5g9I4DqGqEIIJIIQ59CgUdz/PxXRCyQNNjNE0QhT5CQBwLsrkcnu8SxwFO20FW5L5/wDA1ZCXV80dxREbXCcMQ27GR/bSI0TSVOAHd0BgYKNBpt9B1o1u0J8iaQIg0fT4KQ1RFQlMzCFkmIUQg8H2XKJKwYxvXc9jbqzE6MkKr1U7xmqqMQKSc9yAEJJI04oluZ4CsqOnPoEiRnJ7vYZl5gjBGU3WU7uQYYiRZwXU9JEmQyXapNoGfJtgiocgKsiQIQ7+PiRSS3CUQpc0JSepfiKIIQUwc3+bL//DUXcZ1nXSL0dsoRFGaHSDJJFGMaZhpwxNFyIqaBpV1twX5fHq//cAnIcb1XII4TPMO4q5Bt4vchDRJWVVVJNLJs6Io/WC0pCu7CcIAgSCrZ7pG6hBZVtC07mPofq84ifrkI0ibHVkSacYDKVjV7tjp36UUD0r3MwKJwPWJpADimFCIbsaAja7p3dA70jC3d21LNE3v9i8ScRKBAE1RusnAMXESIUmiHz727pRhTU0RqmEQQpw+B/l8jjiOUNVKt/hPn6OUhOXgBT6aqhIlMUk3tCyOY3zPSxvBbpPYa/biJH3laaqGoqj4frodUhSFwPf7G6pESvMj3NDt+2MQKZ61F6wahGGKO8/n//MrrPfOe+e/oPMjt76u104nL6EEcbquk6WU7yzFEIdx9wezx06W0w9ZoBoSshozNDCIjMrxI3cxPTmDZEnYokUUu+RMDVmJWVpfQlJkcvkiHSVHza3TaQfUdtsEYZtCRrB/eIJSfh+yarDT2abht2jbLkngUc4llAsWMgmyqlB3m9S9KvX2GoakkyQSQZKgawJNlVF1jSBJJ2aBF+C4TRRdwg4cXF+mXnVZWXyHqL3J8akJdEsnny8hxTM4Xo4ri68RJW2qm7tc23wZO3RYr+5xeWeBpdomby89y5m9W5zf+Q6+77PtvINnrhIbyzxyoMLs0ZO4NYdaa41rwRaX1l6nYW2wuNtGCgISHXadPUphnU88+VH2pIjqVsToQIVE38fw4D4iWSVTrnD3fSOQ0/mdf/PPuXd6kicf/wRbDZusnmU8VyJfKHF17hZD+RHiIIaMj1epMz40gqKWKQQms7kJLH2CRB7hzK0tanst2orN/M0LHCpOMTY+zI69wR+9+EdMLNbYl9/HW5e+QRR67LbWmRob5OOPv5+PvP/jaPlZLp31qIycoJwrEcQea/Vz7K6ss7NVZa/RoagZKBmPte02cqIQRRJ+J6G9t4mze4XazgpGuUIrgSCOkUWAkENs38MPE8IgffOLYgXf6aDGMWEIKAleJFAliSSMcMIESUmQfIedGyt0qjXilkLoyaiGxuTMAIMjI2yv7zB7V8LwvUXaxQG+e/YFVt84w6GRIXKGhaZb4MfkZZkjB/YhyzqNPZ8Lr58nn8kjJTHL81WOGRof/YUD/NpvfZljdwywtVZFb2vMjgQ8dlcFT6rhSx4PPX4ndpLw8nmbuflNhK1Q32nzwKknqDbbnLs2z4QVMzZSpNFuIzQLOWtxY7XBd775Bp//tS8SVnfIyC6b823sVRl3qUHjQhttO6BitCgXIkZHIjav1Tj3TZvrZ5tomQTViAlVcMKUfx74Lp2OS87IsLi4ydkX5lEP6HRkGMxY5MxBtpsNdjs1VEOQhHDtwh5BO8v8OzU6mw5jxZCJ4YABFUZzDsPqIPsHE5RIwa/n2KlXMUs5vLjGmcs/4PTdJ8nJBfTkFJI7BETsP3QfsWURaYMMjA1R3bYplaAyMUGn1cJjA3XQQ2iC0C9jGR9kav89GEZIsrXEta3XOTwjOJyt8P23nyUpOOzeWqCsqYxmn+SKcx4lP8L+kQP4XovqzSrJVgMaguHCKDeXXmNi8AhaXKLaXGJp9TrLO29gmWsU1HGGFIt2dZvx3CPErQkSTyMjTzM9ch9aUsKzNUxLcGjiA8wOP0FOHKBdbVPbarO1vkW1uk21WiWKJCwriySlBS+RROjFBL7A95K08BJpoq6hWxhGBkEa+BhGYZepnxZb7U4LP/AIQp8oDomTBNfzaLVtkkSwurZGsZAniSM6zTYy6e9nL3C7zYhGNptNhxu+Q5JEhFEqJ1FUicCPUFWFpaVFcrkCqqoBAt/3cF0HSAgCD98PSBU5cjdjICIIQ+JEEEUxURxjmDq6oXdDrRQcx6VZrxN0izFJkdPUetMijFLDtqzKCEmgKmp/O+B7Do16jU6nnRJlBMRxikRVVAVFltBUGU1T+vr2nqSmV0CmIVdpFkHC7aYhbWAEcRT3twyim6DbKzzTRsBLi2BFIowjXN9F01VE165wG3GaNgd+6BPGUX+D0fNGeL6f+gQ0LSXfhAGOm0qxojgmTkBIMoqafj6MYmzHxnFTclHQDSzTVBlJQByGiARM3UBCQpfVtDdDoChaNwshLfSFLKOIFHqrqxpKV8KjKCqyrCDJMoqmEiN6y4w0mVlOg7uSJM2aUFUlTYBOYuI46mNc+x9BeFu+Q5qaLUnpZkOINDMh3XylDZrcReQK+XZYmu/7qX2UpK4eAAEAAElEQVQmIU2J5raMTO4SmxIgCCOCMOriYdONgiyl/hWRgK6qKFKajaRrav81U65UKJXL5PJ5KgMVrGwGP/D/swus985757+k86MHk5kmtm3jOqkeVDdSAoNpmriugxAySrfTTo1oISId1aCoMo7bIWylwTECgWlZnJycIIwmubq8wk5nk9B1KecLZNQ8jcAllAIUIyaSd5HEIO1WhO/sMpI/RGk0SxDn6dgdnE6IF+1hWhkWt3aQ3VXuuOMpri2sYBYyZGWNtdUtyJaIhYumSYSxj24Y7NbXSWQPS1GoVjs0WgHFvIOWMfHsLLo0RLu1xK3li4wMjDFbHmcrWcG3ZeKowkhJpaPpJIlgtGgSeTZDU0+hF7NsRwu8MfcOl27eYDzZz8nS+7hefwsxYNGKO3xr6Q18+waHy6Pc6rQYzhzElixaznWePjZGo+5yonSMjGJSXbjE5774rxmcmubUrEKSNbA7CzSv5Dn8yH6M6X20wh2ayz4fe/LjzEQeB+69H9cxePXrX0EKFA4cnGCp47N34zIkCeVwFhINtZJBVSPWq3Uyislesk5GVtHyq5y/afPLP/5nmJo9wJde/Rr2Xpu6CLn+wjynTx2gJgQPHnyQWmyxcv0sl2/M4Z29gE3AjeoKR4bGWVzaoFl3IVjjo4/exztDe7z4h29jDZZZ3g6ZnCpw65KFqraJYhc5cqltblOTJLxdm3yuzOD0BOvXl5AjkLzu9CsMiCWFIAiJYoGuaCRRjBeFuH6aiK3rMn6YvtSj0MfSE0TUZntpjmyY0Ik7bK/XmT06hCV0gkad139/j1PPeFz4fovE9lhf2GBsNEN+QGG7ESP7HvvyZaJ6C1SNtueyfXadfYeyHHzyON/6PYebbyn8hb/+FK9M/T6v/OEPePTBE9zc2ODSrQa16hlWdmw++f4fY2bY5GOf+Ri7W5fIiEHWpIu8+laFe04V+bEn7+P3/vB5mnsx+w/mmdLbbNQ07LUWE6Md8ncMYq8IslqbI5UKiohxIpnNtYCdtoLIjCIvKnTqm4yNJnz2o4fZvHuYF39wi6vz5xFRB0XXUWQNv+NiqhoKIaHnML5vghe/dpVnfvkpXl+9xDvX4chdM+wbWGesPIlVaLO9WUVvbFNt7NKJBF9cusj4nYMEeY/mZp0j+2Way5vI+QOMDpl0ahvEGwrNTBsp22bP2+WV89/hwQdO0m7IuJkcu3vblCsutpRj25HJlRJ2olvk5YQx6zBbrVX2WjdYXZzj/gPHOVx+FM8o4/rPc3DiIGO/8CQXGqtsbC9xbuUyhw+NMDyS54XvfoPH73yInPEpWoU13l75He4cfR8dG+q7awxkjzI9fh9f/t4/x1QF+4+eJjQ8RCZHSVrFlGrsr3wKyxim43kcqkgoikCSVRRFJ/ADNFWQ6B4FXScM/h158yEITJDkdKOl6qCkSa6dpke73aInO1E1ozupTLMBXNdFkTXCoIMQCp4bY5gKup6iL4PAI4x7mNBUWpHNZmg0ml1zpt6XZciKhiZi1ja2GRgcYWV5FSNJkGQZ37GRZR8niMlmc0zvm2Fre5NGs4ksS2QLZVy/iSIrLC6kfpBSqdKlDElIkkISR910ZEEYeiiqIAxSnX4vQVcSgkRKRSl71RrZTI4wTLqGTqtLO3IJQr87dZaJAp+EBMPUkCTotGx01SSKAiAhk8khSSmqUzcMhJD7plCSpCulEV20am8Dcfv0aELZrEXUTVPuGWu7loW0QJe6+nUS1K48pVeAiu5UH0CW0u2N53nEUUzeyhOEAa7nkelKuBKg2W6hKlrfDNtDaAZB0JfkIEv4UYgmq3ie1yclqapGFCXA7SReSUq3HKGUJjJHUXo7Rp9elDZVvh+Q/uYE30tRqY7jdRuT2wnO7zZAR1EEspqibcMQWZJQZQVE+h4viXSb3vNqJIAilH7zlZD0vR5BEKTTf1VF1zXCsDfdF305VRQlJEmafqwoCn4Q4NqpH0CVFSIEmq4SJwlhECBkte9P6W+LSBBJjKrIaLJFGPjEod810ac/F77voaoKvh/TbNZRVA2pe61lWUI3dJrN9Gep51/54z5nzpzJAaP8/zCofe+8d/4fTgxsnD59uvWjfPGP3BBks9n0lwXdqYYEcfcNSTfTVXWcpNrRJImBBFlICBnCJEDVFVrNBrlslp3tbSRJYWN5kXzGZLAywsBAAayIhctLNOpVRosjaK7Lsr1H3VkmL+1hhSVGh4+z2V5B3yzSiVdQdJ99++/EbVts7e3QaG+yf/gwcws16p05NDlLTp9gJD/GTuSgZCNEJOF2fPKlAoHnEMRthFYmimOiMIdtR4yPmIQdj9DPYJlTOM4adRfc9irjuSESZZW1nQWE8HCum2hKBr9apx1KyMk1ZvInKMgmj90xDcP3MXizBhMjzOw+xHLwMrvra9w1+DSX7SM8+85voDkRB/dFHDr1AZYWRpivvkRs20waQcqPP3AXFQRZM4+uu9y4eI5Pf+A+Nldj/Ooq33txHSNe5Kfe/1n+1q/9Dg/nckRlhbvfdx/tuw6ysDHP29eX2TdzhOMH9vH8qy9Tmi5yx+gjnL31DvP2PPu1MfKdIsXpAd6a+y4/fuoD/OWPPMxvv/4Cb37/De655z5Wtm3a8hqfevJJ7jLH2I7a1Ow2z/7gqwypJUqDo1yprxM1W1QKBUJVpdUO+N78Bkb7JpUo4Cc/ci8HTo7z+X/yCsLfo2GOMDzWZPXiLqakQugStCWUvEXB0llbWOLIQw+wvrJB1AgwUXB8DyeMUmqJkNM1uSTwApcQgW5peG0XTchoiobtuUhIeK6HYRg0tm1yuUE8p8P+/aOsr/qI4T0GJorsnPdoXG8y6stEaoVm0WR+c5fxwEhTT/0AU1WI/JCG69J0fUbyw9QvVGnn2vzUf/cMX//Gm3zhX3+b3/7rf47f+O4Sr716HVkJOHb6LhLFYOW3z+EtvsLKaIODRypcurLOY3c+jri3Q4YjfPNbz4PcISPFDN61n4yhc/N8xKXtayyd2eXO/TJjx2aoiYSlH2zS2WowbCYMDQywbzzL3YUigaryve/OUTEy2Jsmuewqt1bf4c/94sdobT/C3/3Vf4oaxeiGhaoY6Uo9TpCTGKmzR30x4KV//xqDkznyuYjhouCxUwf45rdf5aEnH2H2xGHufEaikwg6oYqeF9x/MgeOyfb6KrtOxMG7x4nVDhtrNpY0yNrNqwyMVtC0iJ/4wKM8/9JF5ra3WNi+yMnjjzE98ESK2FRditmEre018iMlXHuPzuY5BkfuRnE2yDghQinjlmXWrt6gxiCN+H9ha1EiWT1C9ZER7t2ncefUAYr5oxz9mRNszb2F711m2juAM/AVFtpDHKr8aVynTmH/KOfnn+VS5xJ/4yO/yttXX2B0Zopby2fZ3lnj1MxHsPJWNzwsRAQhGSOP57t4tp0mzwowDIm2tIfEIEKKiZIIP9xjeKzCTvMMnithcaA78RS0WjVyuRyGaRIFMc1GCyHFGHqGQqFEu1NHlgVRAAsLC/h+QKVSJpMx2avupkFoQUipVELTVEwzTRVut9tdQ6xJvdlEUWUMVSaKYWp6HyuriyACPN/DNAs0mi0ECvV6neGxQbzAJwhSn0K+YLFa3aVjtzl8+CjbW1U0XaHdcclkDCDlzadkG4koCojjtJBy3VTykm4bYpqtOpKUUMgXsW2njyqVJIGiKsRxqgs3NJM4SdA1nXq9SqfTJpvLY2UMHCfuG4Pz+TyO4+DYNsq7uP1hFKUbAk3DcRxEIvpegx69xjTNbnhb1CcURVGE5/l9JKgf++hGaqaVVIVWu40mK0hCSjGkvnu7IVAURJx0NfbQstupHj+J6dg2cZL6CKLIR5bivn7e9/1u+FZKHnIDH13V0im/JBCyhNFFokZRgmmmvhHbttPHI5Nq/GWFKIFEhISBjxf4CD/dfgghoRkGCelEXVJlkASZfA5FVVGE1EeN7uzsIMty3zehKgaSrEISkZBO/2U5TV+O4rSRShsK0dXxp7IgRVGQ1NtyqZ4nou8JEKlROo5DgsDrI1ajyIckIY5i4igt8tMsiASRJNieS9K95qqqd7GjoktHShuhKIxx7Q6qoqSGcgkSZKIoJQj1fCa910JKikqzMpIk3QoVi0UURelf5z+uc+bMGQn427Is/5wQIl1NvXfeO///OUmSJMGZM2c+B/yj06dPx/+pL/6RKUNf+eofJOkERHTNZgqyIrorXoFt28RxjGma6ZTEdhGJICJAKKCqEqaRrjtdJ6DTsQlFgqTGyHZIyShw8p5j2FKLd67fZOHWNvtGBwjyIRv1RQqqQT4pYih5qt51hkrjrG/skUQwOTZE1tRBspDUEi+//k1Gx06QSDX2lQ9z8/JZjFIHzyyAZCDFEr7bJPR9LLOAG1UZHd3HxmqAoRn4TgtZdMjoOeymxsZWFc1qse9Enp1tnfFCwvjBQ+y1Vli9sUqjeoOpo8eZX9njwOQgkSfheQaT5ZO8ce0FFP88f/bDf4d25T5+5t/+Yw4u/3s+/tgHiM0M9bDE+V2fva0XOXLgLo4MHeXUVJEvzs/x/Ovf43QcMTR7govNmEb9Jjtrl3n4jkd4+cLzlAtHaGm3eOrkg7y4Os7Z3/wSf/tjJ/kecPH8Gu+7p0KjtsHkvkNcvr5BfWeXzZsNHn/8GEMnJtnYW0ZZiEAKsQ5aDOUFezc7rG/A4w8+xZHjY0j1Or924TnOPX8JEetk5Ig//8lP8faNJlfe/i6+lnB8/ChqyWC1uYGh5anX21Bt8xOf+CRfP/caeqlIc2EFb1cmm28RtgyeuG+YO378Ib7wGy/x4otXOHo0i73VpLHaoaCW0YsJYtAhUxO4NR9rcpxas4290cSKZGzPw5dlolii47gkiqDlJGg5QXGgwul7TnN+7jyebTNQHGR7bY9OvUNW1yiX8ogoIm6FPPzB02DpfPEPf0A05FAoWRyYzZEJRwh8Fy9w6bR3kJRJFFmnFa0iRSHThRn8hs+N+UXuvfdBCGX2dqq0aru8/4kCwQPTPP+1t/jUI/tZmLjMd/5pwCfumOHA04JQ2sdv/9tLPH16hEP3n+R//51nKWUSWlWVTz7+fsjdYnJgmjdffYUXbiwzPTWBu1vj2oLAyieUilOMlRIODeV48K7D/Orf+ypzC7u4dkAmk2cyafG+sRInD0/y4prHS1ub+HmZcK/Kf/dX9vP2D+p0/CkOHTvCC99/hRs3l9EVAymKkOWEymCR0ZEDnH/rTQ7de5z7ThhcOH+dGA9nT+LA43cze2yAaxc8ZN2mMpggx2U6To3DszrjYzNomUkiN+Sv/vw/5C//8kOEgUdxokzTb6O5eRo32wTVDfRIcPLOI5T2BcSHf5q6t0unXaecDJHVJZSCwDVlFl5+m07yPcYq93Dh+jvcc+IpDo09xHyrStuE6699h4GBr1OMy9xZOsHCSsTlhQvEUkze0dAPjNEI1qlYTe6+82FuxeMsLL7GZOHTZOxTdNjl+tw8Q48c4YC2RZhMc3Huj+hsKtw1+34kLaLldMjqA7juKoow2NnZYaAyjGXl8YMYTVepNrZxQx9ddzGkcdqtNqWBBJI8lxZ+l6K1n9HSPWhKhnK5Qq22SxSFaIZFFAgC3yMRDqEvmJgcJ4jq2LZNveqDBJpqoPa3ArC9s0kma9LpBH3CTWpIvS2tCaIEz3fSwCzXZXhwmE6nRhh1utrwDLJiIUk6zWYV01IZrFRwnQ472zvkCjKry7vMzOzH99KNg+O2UWQtDZdMIiAim80SxzG27WAaRXRDplbbAQSGkYMkodWuk8lk2NnZYXx8klar1cdSFosFoihAlgSylE6s2+02cRIzPDyI63pEYdLNBLidRJuy7GUk+bYJ1bZTKlKvoNN0s59w29sC9GRDpqUTdbcVQZBmL+i6kRqOwzBNefZcZE1N5Vuajts1osak7689c3XPDCxJEl54m3YkSd30ZWBnZ4eRwSHCrgG7Z8pNk3cFsSyIw4hms0k2k0HXFCI/oNlsYjse2WwWw9DSbIaku9XwIzTdwMrlu0V8anJOwoBGo4HneZQGBvuT+zAMMQyDVquVFshh1DfRttttgiAgm83iOA6266KqWheTKhAJXYN4arIOgrD/vt87PbJUzxys6/oPm38lCUSEokjpZqh73X0/lT9pspkOILv+iziKCQIfTdUISU3uQgiS8HaInSRkwtDr+mxSQ3EcRXieQ6eTPs5CsYxhGF08a9A3S/fkzr379u60almW+YnPfOKPrUg/c+bM31FV9S+OjIz4mUzGFkL8aEXZe+e98/9wkiQRnU7H2tzc1IIg+FenT5/+B/+pr/+RG4I/+OLnE03T0TWjyxim29mniYKKohCTUi1kWUaR5XSNrqkgEra2V1FVmUKhQJIohBEUCiW80CbBR/UM3N06kVLl5Pvu5crqFvM3r2MYEnv1W8iSzpHpEyTNGlY0iDrpYreh1bDJGQpy5DI4OIlljRBGKh4R33nzC4RhyP7hw2TkCJWY3XYHRcuRz2bxXZuxsRE2925SKk6wtZbSEDQZxoYLGJrCwMAY7Y7BXnWHsVIOYQk2OzdZXtzF0hVKxi7vJHWkhoIia8h+h6GCjCoKOL5NYeQgL5/d48rZf8Ffeew+jn/kf+fb55e4sfP7bC5cYlApc3Zuk+HhAg888hRfe/UPOKo2OHnoSa6LiN3NKvdqA3iDQ7xU2+Gg63J18+ss7QmuX43IhRqPTU/TOXiQa3PneSZf4sGf+EX+1y9/nuali0wfUMhEJQ4dP8DqrT1Waz6feeZpXrjwMm++dYnPPHGUAJvVi+tI+YjpiQKP3fOLXFxd5g9e/Rq/cvoQ04d/ic8tv4QbOrzye/+Rv/GnfpxvXLxEG423X7vGU4dNZg4fZ7PlcPnaEqOZMa4srTI6NMDBQ7MUhwf4t7/1VSoiJGMFmLkRdjZ8ZqSIv/63P8KLC+t87l+9xr2nR5m7NI/pW+SyAgZ08oGE6cNqtYZSKODVXUQrQGgKtY5LgsrQ9Cgd4bHV2KM8WCaOYwrlIvmTU6zeuknc8fB2bepLTaQgIatL5HIJJw/exYPvf4Lf/YP/gFkMiLJZEgm2ljc5dWiapqgReAVKQmazs83E7GEST2JhYR45NjCEioaCJVvIcpbIFzihhd+6xMf+0gO8+OyrREqD8SP38trNa3TO+xw5mWH2kQqv/cEKn3xmAJQiVXeK+45m+BfffonSlsKf+tMf5gtfusijB3OU7nmAX/nV/zd3TkyyuFVFilQSc4+x4iD37dvParTL9741R/Vik7KRpe4IlKxE4HmMxiGHB2R2dEjMAdbmmtz7YJnRuxP+4IsOz9x3kly5wrPPvUBtt4alGbieTalUQCtnmNxX5P0fPsLW1U3OvHoFlCHKEzHt3QxLq5fQpUnkZICHHz/K8vocM/sPkS/u8clPfJJ/+dvf5wMfOIISWPzGv/o6smgzfnCaJ95/BLkk48UWrWqTkmhz4TuvIbWrHNs3zuDk3ZjTh1hJEhaqm+hSm9b6De6bPYoXL9LsRPg7DkPaMOOj48jFfcy3XPKDE9QW5jDlr2GHFd64+GWy0waqbnCw+Ay+dCeKpjHiHqW6/T+RHfkMjXiN0N6irPwYai7A9iV+cO33ue/+OUbM/5G9NYlp805it85ue5U9O8H1WliqTGFwBte1ibtkGCELgtih7dTQ9RJesEvsaRw6MsLK6hzVHY1YXWEgdwCFDMQKlmX1ZTKSrKJIBr7nEMYNTKOI5wWYOZtyucy5t29SKg+gKFpKbkliCsUclqWysbmGbuSRhNwnEMmyTLvdAQSFQoEwCJAVBcf1sUyDsbEKN29eIkliZCmDH8iQqOi6iqZLRKGPqkqMjo1w7p2X0JQiw0PjdDoxppml0dyhkK9Qr9cwLR1V7dFuUmlIFMrISkK70ySfyyNJaheZGqLKCqZpsrOzx8zMFLdu3cIwDHRdJ5fP4DgOa6sbmKbJ2NhYl5wTIyupzlxVdJLkdpJxDw0ZRrclL0kco2m3g8BabbvfAPSwnL0psR+4kEj9ULLUeNo1+Po+hmmSy+XouE66NXBcVEXpGqpvF7mqquJ7Xj9MLQEQAt1IyUOu56VUIlVF6orxO50OmqYRxzGGYbC3t0cmn9LxHNchk8mgSukQLpXopPIbP/CI49t0pVQ2ZUIX2xkGIaqiYBoGspyiT4Mg1fUrSorczGbT7YppWliW2ceu9kzXape2lErU0pwE3TDQTaNLPUpfX4qiYmhpDlGPQNSjNPV0/o7j0Gw2+4nClmWiGmnjIisSQoAQqSFc1w0MNYPtuamZuOvXSKKYjGnS8TziJPXWRGFIHEapTVqI1OAuS6QBfmlxH0cBcRxiGCaSrPTxsb2QtE6n0/XPhP3XSxBE/Y2JLMt89ic++cfSEJw5cyYvy/LbY2Nj6tDQ0N4fx228d94729vblfX19SCKotP/KfnQjywZ0nUdz/Pw3K7BRqT+AE1TUYSCpuoEoUvTthFSQj6frndlSSFJImZm0jfQIAowTI0kUag362iyCmGMWtBIsqM0OyovfPs7PP3YAxyZ/CwXLr9JOZtnt3mB1Y23yErDhHJEsp2g6hq2U0OXi5SzJRzPp9q6QcueY3r8IZ6+92e4vvEm1cYOrogxvIiJsRn8RMdpd7AMi2a9QX1nl3JmjEqhhJBDDCXB7SR4rYTd6hWCJMPS4hzFY/t4Z2kNYdeQiAncCtXkEDP5VQaHFTpOm+tOyLmrNpOlNkks427N8efuP84PHv9HfPUPf4cL/+EvM1x4mCen7+HXb7k8d+kVCiJgQp1isRbgrARoM6PMtes0A5eN3Q5f3V3iA48+iLK8wJJnEQ3G7POP8KHPPsU3X/o+d+yfxZgcon3lHY5+6FHOXbnKxrlLlNUEw5uk6TWZv7ZMZaTCzMwMv/7vv8zRExaSCa6vYGlFQrPFgfFRnnn4fWwru7x241k+ceouFkrjlGuvMckWFx2PEw89xssXrrG+6JMtBmSFjzZ9N7m8wf6JaWpVhxs3VvHkdDVrOx0uP/cO+ZZNTTHQ8jns1g5aSWGhrvHX/ua3eexTFR65/wit1g5WLku0lSDcCK/exs9kwA/IKjodN8QoFPCCBmFMqoEOIyJVMLpvipIyRrvTRJMEipCJ9mymB4bY9paojOc4PDOG23TZ3tgirAlmDx/g81/8Cjt7VaYyGZKWhGvbDBmDrM4vYypFnGgVOyMRqiGLc5dRRR5LsfDdiLbXppjLsV5bZ2JoH4kuI/Q9qlWH+s1LOJbEVDjOM6c/gpo7y8SjD/P1PzzLwUmD5RMGFfUk8+YVMlQhqDM7WcZXfS7MfRezlGNupUE+epOxYcFWPU0Gd5wGyV6L3Ss+V99cAUOjswZTwyV2txrIkoYuu2RiHUmzuGonWJ5EIXI4frDI2qKgI2Ci7NKo7eEnAaMTFQYG8yzd2MQPJcxcnqGZLNtOnV/9B19mcNikUIO86fDYvR+mNDPAiy9oHJg5wOoc2J0Wdx07yNf+8LssL28jmgZFq4FoZslnRvgb/8MvcWv9BaLMCC+fvUgu5zI5PoKpDLCxs83zr13l4MQhNvba3HFzHkW8Ru5IjqMnnsKRxvGnBtirbnP2jctYgy4HxEFWm29SNycZHy5R9tdQwusc27fJpj3L4nNv8uTQ00hJi5tenXp2DMVVkEWVBf97tJMdpsLPI2sPEmh1bHmDzt4ab7zzA6YHBPWtERznIqvrDaT9m1Qsg/GxMuPxNHudPcyixK3FVZI4QhYKCSpRIiNrMsXiMJowCMIALVdCkVw2N2/QaekMj5UYGhzF7YREoSCOU705xAghEyU+qh4Q+Q6NRoRhZEmSiGp1jztP3sPO3ja7O1WKxSJxnOrN/aCLhgwCAt/GsjJ9bGe6RdBS74xlUq02CKNUW91s1CnmLWRZwbYTSGQk2UCWoFmvo2sanmtz/dpVisUshp6n1W6gqRU6bRfLsujYLTRdRVFUwjDE81KddhrspCIrkMHCNE18P+oXypKkUKulKM/V1VVGR0ewnQ4Qs76+ju/7TExOYJoWOzu7XZa93J0iA8SEYZwmy3dpOELQTelNi2RV00iSqD+s6k2wHcfpT7J7GQeqqhGFcb+ZSgv0br6BJPeD1TpuquPv/X89SU/v+yXvClEz9PQ14Pk+7WYTSZJRFQXfD1ENFakbnAa3Mas9mUoQpJQhQ9UIPZ8gifqPSekW/LqkoapWtwBPpbxRFCKSEF1RkBNBFEf9zX2KR1XT5GU3lTltbW2QyxVoNpq0263+dqW37ehhZ0vFfGr2db1+MS1JEqpmQAKqqhADajd8LggCJASxEPihT61Wo9FoEIZhv/lxXZcgCpBlCUTcpVSpKIqGaVoYpkPSfU5lRUGRJGIpotlupzuZbuOnahqamXo54ijCDyPCbhjb7XAzDdeNCOOYoEuUyuVyOI7XRZim6c4Q0263+1seRVF5dwr2H9MZEUKomUzmj1eX9N75r/p0N08WqUfl/2tD8CNvCL7w+/8hSeIERe7+oAlBHIepO1/WUxuMiElEhOfZ+IGLpimIREWVVIQcgxRBikImjESXYSyhmUrKDvYEhWyelreAE69y1+zDZEoHefvGmzjOEkXLoGkLXBER1KpEcYAQGpaaY3hwiEazhpHRqdcbVHdvMDU2w8DYNLE6zK2Fq+DuMlAawnEFbttmZnqaneo2pmpTKk+yuevjhXs0atuMDxzD1Iaoti/jJR5+5BAGbbTYRAoVhC5jO1WODNxBVaxg6GMoOZVqc4et2jae4zI7OE0z8NhZ2+Lk5DD18RL//KU3GN+6xt36MJ955s9yoySxtXKNlcVNnMAFzebqxVWOlosklTxq1iQ7dYDvv/AtpglQBqdpNZdxXYOPPPVnuLh8lbJdpZnRWNze5snpw/zmiy/QrvqEYRW1qrLU2GWqnOPEvcdY3lpjdGycy+df5zOf/hSDxVNcX3uRfcUMhjzDd84+x8GChzk4xSMHnuTrjWVufvvr3HfoHmjqXGlvYIgaHVeh4fvMXV3gidk8s3ceZL3m0vY1tuouSqyhtl0u7i4zMlTmytVbEEtopTxmWEL3AqbGDtD0bFau3GJsymFipohl5bj15gZ+tYlUSDDzGaRWiHAEG7aHVSkRux5uxwdZw/VDRFFDH80SZ2QyOR3FD9ld3IVGxOT+YdzIxnGbGKbWNeXFjOqjrK5eoSMEuYKMCCQ6UUQhk6WNYLtVxQwsdLmDHYKlKaiyjKSYEAuymRxrmxuYOQtTyVLU8+QVg82dZVpuQnlSxtaqPHL8MOMHZ/GjNymE9/LV71zg44/dxytzOxwsNzh63wBnz9e5MS8QgyqtvXUKScJ9991Fza2xsbvOofw0rckCP3j9JhvLLVTH5Z57Zmhs7VLOS7z8rQ3C3YjygMnKThvPg2I2D0mTpuMjyxqGojKczzI9XCCv5skXYP/J04i8yU4z/VlaXV3FsV2SKGG1sYBbVylPZGlst1G2m/zkg/ewHm1x9NOf5htf+x2yhTHOvraFmkRInk45U6Yk+zx66k60oUE2115ha6nNh3/qF/n3n/8XHH/qIFo+B1JC3rJIyPLO+Yts3djk537qGVauzzE6eoq17Q5ueJnW9g3uHT7JoYES8tF7+MrlBcKxt8i3h5D8KvceP0hBP4zkzfHqze/ixjKWOM71b38dmGYmt58Tn/woDSuD5iSQsfD9Oo5eoeA9R7JustZcw6wMsl2tgTbMhAhpWg2G8tO4QQZNpEVS2TAZtHTasc1Cc5Vy9Aie7yGJlL8fKR56MUYxLRKvTqvWxNL24wUb7O1tMVQ5gixrEIMfdoh8nUw2S7W2TRwnFEvFlHii+yB5tJsg0ImlPUSi06jC/oNTKLLOzu4Wgi6bn5AkCQEdWYEoconCdNLfbDZQFL2rv07R0UgSEKFrCaWSyfb2NvncEEEgkLDwApc49hAiwbHbLC4vcPe9B9A0ne0tB5kBothFkmOazQbFYrmbBOx2Ta8KkiRo1DrIaoIfOKmZOpYRkkQ2Z+I6LnbHp1go0u7UyOZTnX+95qAbBsNDQ3Q6DoqcSqB6nHgh0iwDEoGQFMIgIknibqGpEsWpxCPuavFTLXhMkoDn+ZiW1fcakaRITcM0iOOITtvuNi4+2WyuLx+Ko5RdrygKfphOyeMwxLKsdCKtqWkRGYaYptEl76VT6/D/ZO8/oyTLz/NO8He9Cx+R3lRWlnddbaoNutFoeEsShgYYiENSEkciNeSMtDyj1Y4ozfLDcuZoNcPhSqREURJnQIKkRAeQBNAAG64baN9lulyWyaz0LnzE9XY/3KgEJK3OtLTSaCThPadP98mOuvdmZNaJ9/2/z/N7RmbrOEkBAUmWcxOzVSCMviNZkeWc+OTdl93qOqIo4nseYRhhWPpBGrQ4OoVPknhEVhpp4MmJQbIkIcm5fEoQ8wyEMAzxPI/m/j6maWBZ+fdZqVTIMpFyuUyY5FsFSRS+I3sSRDzfI40jdENHkmUQJKIkJklSBElEFmXU0baFkT8gCAKUUV4GQoY9tBkMB0RhdNCkh1EIgogsS/ieTxhFGIaeDz2j99q0LCqVyneyMAQBz/WQVQ1FURGEDLIU0mSEjAVE6WDT4Ps+IowoUzEZGRkikiAebDHuy5hEUSAjodVs0e8P8yC0kRRNEAT+9s//jX9fG4KTsiw/e+zYMds0Tf/fxz2+V98r13X1O3fuFOI4/uAjjzyy9K973VveEGSZiCKLkKWkcQZCzoQW0phMzUaJgCAgYeklRAFcf4Cm6kiySpIoZJlMGAQkaYxpFZB0Acffw3dcNFknCEI67i4YGZ5vcWtjmfJ+m/mpBe6s9tnevs30xDRaXyNoVOi1msxPH0JAZ7ezjq4nyIJIJoWUqtPEqcTe1i5W0aOqKWjWIUREBuKQ3e4ykzMWiSbiuiF7a68Tm2Wqah29OE5WlHCSIXYyoGBF1LUjBLKBOOwiJAmoJiECL678Ke949Pu51++gtQMUscDE9Bw7e5vs7+4wdbRBoh/m1ZaN7D/Lx04s4sw/ya21Hv/g2/+YJ2fGmJ17mk1zD3e7zJw+RK0u8Idfe4MnHm0QV0SKvS0ULWV7L+Lh2RKvDRMeThTubG/wtRfe4IgT8t7/4oNcXd9i/c5FfvpHfpjfefV19rZuse8OmCtPcf7MMQ5Nn6RsjbHRvMZ2pPHy61dYONxnoVyiYJ7k1/73zyNF65x66gSKW+Jv/tZvIOgdHps7z+WlfVrBgKpVwqpNMGvKXDgyz+Zan0gVMabPECbbnKstcE5PeHHpBlcvLlMUSzx5/mE2tyJUPUWUEvqtXTxfJFi5hCYJnHl4nDAIuHm1S6Uksnj2GNvrW/S7PQIvQs4yskikphTotHqUxmvYfgi6QP3EFJIi4iUhiCJ+ZwC9EAsV17Dpug6KpmFaJUiGRK6DrpusN++gGDJTpkKURAiWgiEZBF6M2xpS1BREQyB0ZUqSStUskWQpievl5k1FomRZgIylGri2DXKIqlg0ygqdQYtEFBh4ZV797KskvsTQ/wb9zCf68iXqx8f4wrUmV5e36ZPxkXdO8LUX16mNFejuRNjBHRpWg4p+ghe//DyffOIxdqc0Ts2dYXf1NvvLOxALCNIch6dNrmwu0ZANHnlwjjdv3B6duhXQxCET1gRHj0xz/HyFoRPh9VNWNzbofeMKSUGiVjOYP9wgm1QxSgWUOGOh1yAVSyihjVcA7WjMo8+corU9xIltHj41Qc8z+cEPPcWE0SDeWqe73cbXNLKpFo41x353ivLJXdZXrvNf/dgnaQ07SEUNQZMZtgJcX0EzypRm92n6e0ycukDBrzA7V6RT6HF3ZZfNdI7XvvnPeJ8osOB6WINztPXr1MfrlOI6+72XKZdPI4mPcmP1n3Pk+AZTPzDF9PQHiRjjz9Zu8NDkETJDwRMVKpJOv32b5RaId56lFErUskdZPPshuplCFg4YNxW2uzYFWaZmqtxqX+fe1nWMxCBK+iyO/QCybuMkoMkSmRSgN1IQO3iBSewIlCdBiAd09oY0xhaQkYm9CFIBTU8IJIjTBNOqYHt9kjREFmWERMZ1QmRZolQqkxDg9CVqNZnNtVWq1Qb1hobtuMShQhjFqIqBkJmohksidhk0Jwn8AEkGWVLIBDHfZiBgagYDu00cZxTL4yBGDOwQVTbwA5soCpD1DAGJgdvn2JHzxFHE0N2kWDiO72iEWZMoyOkueSCVAEgkSYptd6lWy0iSSBy7JLE/OnnOqUYpGeNTdXqdiNBL0HWFINonSCIq9Vk0pchw6JElKaokEvoeJDFJluVbFy2n6mRxSJrlQ06SxnheeOARyL4rkEqWcx9FmmakSYIo5VLXLIM4zXA8D2U0MIVhngzs+94BKlNVNWRZIQp9FDGnFfl+AkKCF0ZoIohyLtWyHRtd11AVFd9zkWWdKM6Nq77vI6UJKRlD1z7YKqRkZIJAnCaoo4TdMPYxdBNFU5AUJW9WsxTTNPMmP05y6Via5r6Q0MulWLqCKCgjZGxE5Odyl1KphGVZWGUT0gzXdgjDmG5vgKjIpKKAaphIo+2HoqgEvockiKiShGLlqcF7e/kGl7z3R8wkJDHDDwMkUcR2HbIsD2MTxRxNmqUZhmWiGfoBUlSWZTI7I0vS/B6qiqJpOaVQlkCAeqmWZwqMNi5pkv/+FgyDOMsQhfznCQJJCooskaQpJCmqIhFHEbqqkiQxw6GdG49FEUEW8w1DBlmSIsjCwWYkSTKmpmYZG4tzZG6aEIbhdwXffa++V/9p11sPJksBMSFOAlKy73zQIEKUu/M1VcuZ00mKopgUZIU0HZBkQyrVKQZ9jyzNkEUpJxYkEtXiIVLBo92+h6QkGEaFfjCk3Wli1FU6ww5WZ0hxrEHTH7DV3GfaqKLpVSIlQBMV/MgljRISZNzAQ1eLiIpM6PVRtYzhsE2zs81YvUajvEDNmMAO9ri+9G0ee/ADrPoOkRSjxn0ySohigh+ukSQQRwGyVAcyssAhJEMXdKQE6hNjRMlZ3F5EN5bJ9vaZmYiJbKiY09warqPYIpgOfrvFZGUMQ+nipHXKVagaR3i9v4Ppv8Sus8/bzQsIxgPMT6tcm7jBpastzp+bYbfVpzJbozARYzVMjFaBvidj9HZ54OgRVq/doD1MsWSTb156FTvV+MQPvp9L31xgKfw2i4cWEeQhr177Mzbv9ThxpMFk3aS9EvPgwhg31pt0Lv4+Y1MCUTrNfqwwKce42x0MS2YlvEcqTWKUDmOMpfTFPs2uS6Myzr63h1y4wOtXl7h+6R73zNtMH51ku7WH7fqUTJ3tzWuMN+okqUu318x1ubKBpqjEvstgZ5t6vc5k1WBrp4XrdZmanqFWKeDafZyOjevbjJdA9TNiX0KpWSg1hViDUE5RZJVsGLC7NECXJKzJgNpMjdCJiDwXXVUI/YREUhh4YFkJWSwRhBJzs8cZDF22dzYYDgNK1SqDnoMYZEhagUDXcNQCUpCSiRleHDJo7YGYUCmXEQWXJAoJ0wFpFiCGVRTBZOgnfOHZN1AzCUMQ0IsVTEFFMxQa8y7XrwW8/SOn2AtNtNhgomhQqZvcfXWbK4lLvd5GtWy0Q0d5/aUtDs/Nsnnb5djJCfb3M8xEZ+v2gAsXzrGxssnG5j5WuUKjUcftRszOzyKrMf39IWt7O9z60i3e/aFH+eZzL6GKBpu7dxnTTMY1hZdTj7mT05x97ByvX32TXiZQnWrQ3bI5olc5O6+xv7vB9LGHaRn7LJ58B/pSn2IIv/vlV1m+d41ILzP98Dx7vYD3nSnRuTNgY+kea85djPpHqZ85ydLNlykKKjOTp+l3hvylR3+E6/2btDcv0mptEkwJOFKTyO8yXwq42/0qM5+6wF0nJVizCYchoRcy/lCFO/1dlt2AsXQfvdTgkTPPsLpjc/TIOarKGdp+E8fzeH1pjeOHZylUbG6uXqfvbDNeD+B4j/1IJKrX6IcuguKD5DIYihgFma6zw+2dHYadPRJ7D2HqUcbm34GwN8tQeBNBquJJBVJjEy2aYHvVp2K62K7K0cOPcOvec+jqOLKk49p9hExCFFMkBAwD/HCIJBQpF2NUSUZVUzQFYjKSRMJ1bQQpQ5R9SCzK5Qph0mc4KKBpVSQxJMk8siym1b3HoeoEmi7g2xI5lj5DkDQUUWE46KGYClEU5JprKZd61RsVWq0OfhASRzaKkmLqDZbvrSArEbopISsuwUAg80NkzaFsTNHqrCHL+ogkFByEQ0mSiOM4WGYJxw2QdAtV1SFL0TUDe2ATeAmVSoEgaNNs7VMulykYGpkQ44d9ZFElCCKSVMmTi9OMJMkb1TQRSEZ8eUEUEUj/FenNfcylJEm4rotlWQAHKNYoztN80yRFQkRWZVIl9xbcp/3k5BwJ1/PQ1PSAcuP7PoIoHSQP3zcoyyPT8H0zbZwkQIysKgc+hzCKKJVKB2Qlz/vO4HE/fVdVVaIgxrZtVDX3StyHzsRJjJRJo+9PQBTV/PsUxRz7LaukCYRhgiAw2j7kzW6cJGij7AFJECmXKti2jVGwiKMYIcu5/Xl8WW6qTWHkp8iJRpIkUTAtho6Nqmk5HjVLybKEMIowTeOAlOS67kiTrxz4CgqFwoFkKN+w5PfxgyBvMoQ83C7NUkzdIAXSLN/4CBkkaYKYQTbKm/ADfyRPU5EV+cBEHIbfSbYWBA7M9aKYI1KTNCWLEyRRyFGwKQf+gWD0LJIsIYvKv2KW/l59r/5Trrc8EHhZhpyIZJmCPPpbmcUpsqSSEeaM4hFiNEtTRDlnTytyiSyJGQ57ZEKEokQoqkEcpiTEpJlLoVRmfGIWe9Any3QkKWZ/r4WZmij1Gn2nS9RvU1AlyuYksuHT6XWwzBJJEhCFfWRJQlOLBG6bMPNR5BDPjymXp7H9HuVincBLaYkd5CxmfGySFSdEDXwkRWG3PeBYVSBLS8hoxKE34jObhIGAiE2vI1KQM6xaGS+JSQOXY7OP4DibBH7ATOUwTW8H37WZKCvMz06zP+igJQHlCYuhHdAc7NPpKJSCHcamHWanJ5DL03z1z66D8yyROAXxFP/VM4/xxrLGxsYlYtklzgIOHz/KG1dfI3SGiNYEru2haRrboc32vRtMSwbLgsgL11eoVa7x+JkL6JrL+u4yl15cYmJaRJkyubi1yw89eIaHz3yE5258C61eY6YI/eaQ9XstruzcJToe8+TJUwxcm/3YJ0IDO0DMWqyFTZKBw9yqwtnJBY7PT3Bj4NPd7lOY1ajU6mR7uxhagUF/gKoYrN29jVnQiaIQEoizmK7bRSJh2xdpDrYpWAZTUxX6/S7NnTXK1SLFsoZVrLHuhQx9hSyFwO+SFVVS2ST1ExIhYDB0cDdjVEVi4miBbpDhRTkRRTdlnF4PKcs/HLqOhxdKBEGMLChMTqbEoY+llum4HWJDol6ZYnV9m8ZijUAW6HshshejiWL+gUKCLKb0um1kSUGWDQTBINHKZIaBrlU4Lok4rbvIgoeQqehKmZbs4/V7bF1UqRV0lm7tcOtmzJf2EhbPHubyNwaY5SnWt21Wd3eYmJc5ffgBlm4t8eEHZvmDq19i4fg4DXWG6XmR4wsml795hyfefpI3Xr/N0PYJwgGiKNPpLHPy9DlCP+TNN++hFwyaHZfGIYP9TZicGiexAwaKAkHCzq0mE8UWjz38bl5ausrq0gZj08dYWd9hc2UPw8n4G39jnroCkiZxdWUbbUym/uQJgsM60kAEx8O97ODP7tD3N3jwmYdxY5mvvPoiP3FulgvnHuMPP/cs15c3eOCB01y79jxjjQJbss43bjzPzGAcVfBQdYFKMaDfcXggvcBedJsTF05Srj/M5o3b3P32ZSbmDYr1k1y9+A1mxo9SnTlCwVQYDEKccJl+Z49T03O0urC+t4Ta1ljfa1Gq3MT1m+iiRa32CFa1RBLu4g/3yXSB/rCDOQCdjLnSHG7tPFrSQdHqRHKBeCzB9+DUeMye67G+t0IcLKPoPjbfxC84BMEvEIcaqgwkY2RClG9txDIDu4tphQiiQuBGhHFGoxFgDyISMwUhQEhrFOs9nIFE4BooaooohchSjKR6eH5EoVikXB5nf8dBL/hksYLvSsiqg6JDliU4gz5JKlKr1JGkFC9sUa4WSEIN13aRFIFCsYRjtymaGkWrwdraHSTJZbwxx8BuUxKKQIphCsSxRr/fp1TWiAIN181xo1kmEce5xl+W5VGCcoQgCiRJgGkWSZIE07AIw4z19RUyXKq1OopUJo4C4qxHnMjESS7VCYIAURCwHQdFU1A1gySBIPByDfsoifg+Kz4c+QXCMDzQfd9HiSZpShCERHFEmo0kPKI8otAEB/r2IAhQVfXgGoqqkY62E3EUHRiPs1FQ2HeQmjLSKA/gvslYGpF+IN8+SIpCGIU57lQUERGQJPHABxGGIbIoopgGYXBfy6+MjMAyUZSOBhXIBwJp1MBm3zHejrwPjPj/uXSKPMAuywcbSdcRRRld04mTOA8jU/LhJ8vSXL5LLu0JwhA9k0dNtZjLsUZehiAMyJIYWRIRxTzRGkHA9fJntwoWacLB+3Gf5pNjQiFOUzRNxZAE0iRPXVaVfGDwHBfNyJG2JHn4ZBxGIEk4noskidzv04PERxYlsjQfrFLy6yajaypKLmlSNZUwjpFVFVHN73l/0LlP57o/CMJ38iW+tyH4Xv3nUm85AGPhUIquOKiCShZaBI6MJJhkiUgqqYQI+SpPkhEFhTSUiTyJ0NNIkwKem6CoMpalIAoxophhakV0qYKQCMRBRLe3TZxuYhUSTh5/kGKxyJGxGapjEyD4FBOf0ImJUZE1kSj1ub18jZ7TpFAuEMYhgpJRqecIsjTzsYoapBZxLFIujSPrZUhcDo1No+pjXFq+RMFIWZw6S+AV0XUBy5IwlTFMtUalYqBIIp4DGU1s/xWG0W1SMcW3+6SBj2pUaEiwG+3RcttUCofY6PSYSffIwoSlvT0UN8DWa6x1FLb6Pa7ve7yytMW3Ll+mu3mLDz45T2dCxp+RuNi5jLfX58hcAmbI9JSOJUVUGxM0hykFsYQiSMRmxubGKmHgsNdr0fT2mDt8FqVU5Pmlayxv3WJ74zau46CYJvfu2Qz3PcysTqvv8uz6N9mxNwi7K7RbTfb2uxTq0ygzNd7Y2WDbs7nXWaMXCiSRRnd/jd5en6wbk/Zili5vsXhkgqXLLyIO9vjYRz9EuW7x4kuvEnkOJbPIoO8jJioFXaG90yEYBijIkCVYlkGt0UCt1ZBKdfp2ys5WCyXNUOIQLU7w9lzsToeF03Ue/+DjCJaJ76f4PZ+g6RFsdwmWO/SXHGQppX7EopvYCLqAkPlEmc8g9Aklk509WL/lMNxK6DRFLGuOCJnltXU63S6WVUUSyzS3B0SZiDXVIEhjTAFk38Yetml2u3R6HkGQEEciWarjByrtfko/FIkwEAMZg5BCUWCrNaTVChCzlM3WPdobNvutmI11HWdX4Jufc9luuXSFPdpRn1IDMmMfQfWQ5Sn8wQR3VvZxQoHbL32NhdMqV66u8cbNW6zeWSOJeuzs9jh1bp4HHp5gYHc4vDjBo489ShJmXLtyC0GQOHP2GJqi8O3nX+fcg4vEQsD4WBVZFNjrdXBLKm7J5OvfeoWvfe451NTjBx46z7vPzBGqHk9+6N3op4/zT//xl7jyhy9zb2uDHa3I3//MJV75xiscKhd4+G3zmJNFrq6scL3f4fmVPW5tdlltDrAW53nlzqts3+tw+ugFUlPkxu0rvHb7En/07Bc5Mn+aqQmF5qDH9eVtLl/bxe/PEgtj3NxcpSBYyIUTiJHD0XNHiT70Nr7p9RBf/gZn3Bor91b42tefQ4622W7fY7O5ilaYRCsVqNZN6kqFw6UJ6uUe6XALOZtBKzyKZRyj46wQxpuoqsQwDNh3XZDHeLr+Ls6ZDeTmDolVIVEj0rCPIsSUjFm+fPsOveUXGT73Cqs3v4aovYLnLKPJDYbuLrMzMxQsjSQZoCoqqmIRI3Fn+xKBegUvbqNoEmPTKpnUA9lDUWRUo08kLBEJN9CLQwpliywrEvgqnm3g2yZxlGIPh/R7PeYOZzTMU/jO6O+XEKEINrreZGzMYXxCB6mLqPYQxJxOkyQxWSLi2hmakRAmHrKi4rh9BnaTxYVjRKGHLCmkkUWWRjj2gL2tAb7fxzJrSJKMZZnEcUSWJahqrvnPue5JniOgmei6gSznMpIgiGm3dxAEgVptkmp1PG+4o5hadYyCZSJKGYaZN3SSrCIrKp4f4AVBnpw7wkICBxsBAXBdl+Ew13/niMx8QxCGYS5tEgQ830eWFCRRHsljlIOGMIoiTNNElmWKxWKO1UwiHNfG90M8LyAMY4a2i+14oxyFkCwTDohHkiQjSwqFQhFZkul2uwwGA+SRf+C+WTeJE+zhEDIIg4DA9yBL8/yAEY0oD5jTvyNpSfMGNQ9Gy/X68Xfp3AVAVRUEgQMtv+/7pGmCYejII0lQflKe5chXP98YRUFAHIZkoxN+SZGQFJlyrYogSERRjGnqiKKA7zoIpBRMg2LBQpbz/ACrYKEoMqZpoOnqQYPtuu4Bqei+yRshDyNTVBmEjCgKicIAz3NxHRdttIGIRpkQjAzhYRgSBgGiIOZhZbI88ha4RGEE2f0wPOHg36qqEscRruMcPIvjOgRReJAWff936X4uwf3wOWEUkPa9+k+/HnvssROCIDzy2GOPnfgP/Sz/oeot/6ZfOBaTnaiSiiX6/YDdTki379PtRiRRbrTMSBCFNDf6AKokISoikqSAWCLwIlRdwQ+6GGaGkLlkCays3iKKYW7mMMUydN0WSeqyur3N4eIpBN9D1xfJwiGO32IyOYRUdLi3vIJmSliFIuVqmSTpEscQBTJhkNKozzDoOZTLRWr1ElHgEXgtrOoYiR1xfGKGa02brZ1VLpx5nP3SGHh9HG9Ab7ADacqRQ48Thyq+0MRUx+kFEUEAVTEhK86iGBVEr8ODR5/mj6/9PhW1jJQIZLHM9e0bPHLsIa5etFlr2yhWhfnaLLYVslE02OzdphQavLx0h8cfP897Hv0QceSxsLDKoOfx7NUXMPo2A0GkVDS4t73HidOnePPmJdwo4qg6xqPvfgrRqLF87yYf/fB72bm3wtzEOMl4hS899y3MWKVslTg7J9Mba7Cxv4W75/LiUowxTMk6GVvSJpaQsrjQoNkeMjNbIQgdOsOY9d0eh04uEA99MqGPI4QEERyam8cyDO7eayINmuytOxT1Jp7gIUo6xYLE2vYuUSji2SpHjyywvXYRIYHGVJ3x8TrDwRDP9amYJv3uPqYSkYQpkW/gxAqpKKIKGb1eQLPrYRXvcvTxGt98tktFqZKGGUkQIHkqE4ZBYVZnkEbEkoSY+iSJhKhqqCWLzuaAVFARCSmoKiffNk0mjfHyy30Mv8LZxXm2trZotVtIcoYThYiGiJQGiK5HTYNCQyZKZXpdB99LSDMFTTcRVQvD1JF1HYQIS5dp769z5WWbT3zsfXT223zrpdeQ6g3GD01w9sI0lVKZhcl5Ws02L7y+hNNt4q4PcCKwyLBKFpYiImcGa/sdrEDiG5syU2WBj7/zvdhuhyy2Wd50efjxC7zwjUtMTDTo7a9wxVnn+HGJSnWeVnOLW7du89DDDzHuJ9xevkviqTz1jrNcfukOk4cm2bnayQOvDk9xY7fLuKVx+41NjPmQ7/u+cd5//jwVa4yP/Oh5vvbsV/m1V27z8LRBdVbCHZHGPv/FNxh4NmfPPsqZpx/k1GmTCfN97O5tMTYpkUgCntTi1f3f4Acf/mEM8QKrw3tsNl8mqY2zOP44n3ra4427uyyX7vLQ4x9id+vrHDYned9Dn6Zz9zmWV++iZC1mJwI63RZSTeWWLCGs3+J9hx9k1Vggnp5jNjAQEoFyrUja6WK7A6qlhHOHFrDdGtbC+xgvPMhuO6EZbqIWiwhZEc9NEJKYsj6LRIm66fKVL3wTb/EhyoJI6ImMVUx2tl6hlfYoSx/HUje50/wST8+/kweZZWsupSUv0ox2qGsnUUseshWgZLPEWZPAfoP67ABBFhCqn0P1/m9IkkIqBuiSjhs0GbT3KJdmsfugqQH94S6aVkYSHTRFIXRlYmyiJCHwNWTrHpXxMe4t71EpTVOq+rT3MsLeFLIkoRcEilWP1Y27KMxSGrNQyiKDjkx/aDMzu8hY3cexPTa3bzM1cQ7XdVB0GcfJ0LXc4+X2I06cOoSqK+ztDUmiGElV0DWVIAyIowTHcSgWiximjK6ro0bYI4oCFEklDmOKBRNZkYlDmZ3dNtVqCQQF18lNuJWqQRJmCCT0+31My8IoWLk0RxYxTXOEIs0OWPeu5x1QhpIkOdgQCIJwYN4FKFhFNE1nMOhTHsl30jQdeSGgWCwyHA5JkgTDMPKwyixFRDwI1jJME0RhJJGSvou+l40oRAmB79Pv2xRLxYMmMwgCojjKT6URWFxcpN1u4Xku2iijJ4pypKY0OqobDOyDJj/NchOxJIxO/Mmb3yDw8fwcq1qr1Q6Sq+/nIqRZgh+4iEiko/dK1w2SNMEPA9Q4xrD0g7wASVYIoijX5GfpaNjJtxO+nyNXXcchHQWGBUFAtVpFEATGGuO4nkeapMRxgqSKBz+nwWCA67rMzs7iui4D2x55nTJMS0eWVIQsJxVJikS73SYTBURZQsgEDNMkTRLGxxsH8jBBEHFd98DQDvn7fF/6laYJUZQPRqZpocvKaOMTHwwL97crnucdDANJluY/+5Hc63v1r9Zjjz124rXXXitMT0+HW1tbV/9DP8/36v//essDQRxErK5dIcliGlMljh4qoGnjyOohus0OcZQw6Ht0ewGeL+F4MkmmIikJftBHFDR0zURWEtLMpddv0utuYegSY/WzFMwphv0dBsmAaqVBZXEeqzzG7c0lpicmEbQSjgjzYwaDpsN+cxNTE8hSyCKNG1dvMzFRplqs4CUKxdKQQdOlVKpSretsbe2RJh7DXpPpuacJHQEliSkVZlm5eQ9v8Czjc0c5Nn+MafEEu3ur2M4yjtPEUA4TeBGiNKRaXaTVXCZLXkMvlIjktdyYF+lMGNMEbpOCJnFmaprLg0leeP7r/LmzD9I6I7Czc5f16E3sdkwtHePs/HEeOvpuGqUarSSkn2XYqxvs7N6kOn+Kw9oJrKNDbq5vc/7Jd7Ny5yJnKzNoukMvGLKyfYvS+AQn3v44g3ibu2vraEaMaGlc/rNXWVpaZnKsgazYGK5Jf90miSrYtHDu7FLa2+LUw8fYzSIkLyBx+jwwewzTqtDtNylaBjuRhB6Z2JFHJKSokkKSyQRJht9dpaAtcOrRh7n9jVukjk1miBQkGR0PXQ5pOj43rm0wd2KexcVpdrZaqKKOPXDZWNskCBKm6jJ6ahIMBHRVwfds1KKFnyighChyke62zeX4HqcfmeTEhTIb1x2yWAZRRLJkarM6y6tNagvjVKoJUaIgShZhFOH2XYa7No1SiV7gUZvT2VjfYXVjlepMFVGwWdu9RrE4Tm1yikywmagX6fZbJJFHnIYkkkyWhkhZhi4J+JmMbpYp1sdw/IiB4yDFMZNTNQbeLs7Q57/7y3+RRkXnH7/5WawJi8ljCk9/7HG21vcJnV3uLMes720SehtEHZ9UKFKMbVpDB4ECSm0ae+Ahuwn9OKDjeBydfIzbX7rHzEMO9WMyUTTHn/3z51i5tEfFsJiZmmB54y7Xbt1hojZOqWbQHg547fXXOX/uFI89fJzXvr3Eh3/wbVyMr7PS3qFQqxI0u4yfq3C3ILPW3eXwVJUXlvt0nn+JR84u8IfPPc/glzb5yf/6SWZ++AEmG1Pspvv8uR/7foR2h+OTPqJZJMx8KjMDysI95DGFX/7tF5lZUHA7MWMzJuefkfgHv/cP+dF3/QzW9Ena7Sbv/cD7eeH130JkD6Pm8NBYCWtrm9q+wfs+8A7srMzvby8xMz3Lw8fPsd9uYdsxhVjl8ROz7B0+xfyxd3H9f/oVnikew3mkSs8N6W8skcpvgjckSifY9CfwswL3XvgWU+MOkycfwQxKaMk4YSLQqOuIsU8ci/jBgF/9nc+wJZ3hw6dPkvoRiS5wZ6uJMrRwB3dYqP8GraLH2KcstqLnaN8zOGyepnz6Ibr+Pml0j7HqJK29PVb2fheJMTTlNPO1QyRukVLjEE70LaLeRxDLG5QrCllUQpGPc/jQCXy/SGe4jDge4PQTSoVxNCujne1j9weYWoWC2WDp0i6LRwQqdZ1BU0aSVBJxjVjoo0qnSOKUm0vLnHvoODJ1Ql+h1WwTeiIFy2Dl9jpPvP0hvvTcrzM7+RSKCq2mQ2OsQZQE7O4vQxLwiY+9h431PrfvriLLZSRJJpemCBQs8yBkyx66pLIPQt5oFYoF+r02jj2k0ZhGU2sgQt/uI0oCGQKCqCAJMoN+kzSLMc0Sw6GHIEqomo4beFimThT7o1RjcUS7kw+kPr7nHWwHFEWh2+2SZflJeKVexXVdbNtlamqKeq0xIiNJhGEuCZEkiV6vl5tcR5uDhAwhFfA9H0bZBzK5lCeKkwMJTBJFZCnYtoOiyBQKBchEJCX/iG21WljFAtKIyKPJCjs7O9+5T5xglXO8qut6eG6OxlRVHdd1CMOAYrGAKIl4ro8gjLYRspzn+4zQoDmyVCTLcjlSkoQokkTgBzlaVVFQdA0vCBBVBUNR0FSNIAxIkjxxOAhtslET7PsREhJjY2P0eh10PZfxZGky8kH4aFopH0z8EMdxv8vDIeM49oGHwzAM0jSl0+mgKCrlYvFgYMn9GR6iqGAYJr1+j9pYgyiK6HQ6GJqeZyoIGkma+y3yIS7DMPTvGuryrYqiKPT7PdIULMsaScfy7ALVMIjimCAMKZfLMBp27qcoAyiaijTyIdwfJr9X36v/1OstDwR2eoiZhfP09ga07q2yE6yQRq9SKavIhRrV+jiHpsosHi6RiAW2mz5be308VyaIEzQ9BWHAzTs3MAwd0ywyPXGaWqmMpJbpDfYxzBRZrCKkErHX4+Tsaf6s9c+I+03qyQRO7NNtB0iGhJjIKFLE1PQ8QVDEmK4RRB3SKMWPmiS+xPzCBBmwvrqH7bUZq1cYP/Iooquy092iZ29waO4Q7cYEy+s3mRwLeeW1b1EqqTx29kdot6bZ2rmIVLpHqVjEiSWiQYCcTXFn7To18xaz00Wy5H3cXbtFYayOVq6wvXqFsanDPFif5Q+1aVL3GygLT/HKjYBCqPDg3AUMUaCvGVy+800Wp6aJzEmETYdaQeIjj3+Yi0s3ebjWZu4d72FsO+O5575FyesgV1SOjS1QKc3wyo3XEHb7bOy8wIyhsbp2ETcwKUlNXr+yzOz8BH7o08tEhvsDzMDmL7/3/exWLL7y9StcuXUVt+PS2nQwZ0v0hgpd+yKvv9lnunYI5F0mapOIwwL+cJ2pY1UEPaHUdqkkItUjC6ztpvzeb18nQkEZS0EWiAYDDk1aaAqUa2VAZWiPTt00kzTNEFOBklVEKCj4fsLQdVDihDQIAIFUSbHMBCfyEWQoF01aWwlX6XHoeIXCVMC4NcfqdovIGLI9jHGHKemdbQ6fX2SYtBlEbSxRJ+hmRE5AKCUUikXcVKLfdhibmUTQFbK4QyYEFOsNpkQD388xo7bjcer4IpkhcfX6m5RNGTGDYZSgGwUETeHGjZuUJ6ocO3mEQadFb/U2s1aVn/nJn+KrL73Knz7/ElLF4NjpGRZm5rj47CVWt/cJuz5xu8OZh2bZXW8iEhG0vfwD25DopzoLc/OMzSSsvrpKe6BT0ks0+/usbS7T9Cr87DM/zDdfukqz0+Whh86wvXqHH//Jt/Hc14pcvrFPJDpUxsc5P36WvZ19Vu7dxFQm2Ot3ePWNi0wfPsTtpTXGSxX2hz73OnuUx0pUE4XZYxInLsxzbKqBYOn8zM9+mJ17Q/75Z57jkbfPYxwyeMA4zrknH+LFN1vo+5tMLjhc2hXZuQfferHFseMX+Lnv+0Umzxl8+95XODZ1kuMTi7yY3eB/e+FZfvp9P8xf/OE/z7Nf+03cZJdQqHDy3Hlev/4sRxqrlI9ZbG5vYctXOT15CAmdl9+8SObEHJs7RB9YHb5Ba9flo+/6JPX3HOYbN77B8V6B2VPvpTF3nqF/iL7SQ0gCvvTbn2F+poRlHCYulLm7/SxHG58gcmMoyLhiRm8/JEo9bu6ssZGU+OSHprjT/BpKViIMA3TLZKZ6hqPeKZbdz7C99yINPUHUauw2BoSahOHdpmTMYSc6ve11Ii9ElB9D1yoYTKGJPnbkM218iLvO3yUTVgjcFqE6TRLb+L7L0u0ryIpFTBdNW6RYFkjTJmk8TrVSYWHmCaK4w8rW5ymUi9zbvsVDjxwn8GWCzKbbk2gUL+QErnCLY4efwB14+Okqh+cegqTE7u4KQRAhKQkvv/osZ469n/Zgj8jNG97+wAYxZH7uEIsL43zjxc8w3D9PdUxDlFL8IBkZMUM0TQUywjCiVqsyCLYZOgnj9RKe6zA3N8NgYBN4PpKgkwohkpyyu7OHJKqUS1WSKKRcKRMnAaGfYJomtfoYfdsZpfhmQEIYJqNhRMR23YMU3EKhcNDUtTsdKuXyAUq02W3heyGlYol+f0CWphQKJp5nI8nqAf5TUZSDFGNgZBCOR2bbvDns9weUKhXIMjIEZFnKB4IsYzDoo94P6RIFoijEsiw0rYI4uramqiRBRGmUClwsWCNKX0joJwjS/XCsCFlWieOEUqmU6+ZhlJ2gjKQweUCY5+f8f13XkCUVRcnfk+EwQFYMREnANIuEcY7fNAsWYRASByGyKiMoEo7jECYxkiiSxTEZKYWChe/FxKMtiyjkxCNJkel1uyhKngBNliHLufdC04yDvqFcLiMIwoGRulgsEgRBnj8AyLKIbhQRRYFWq00a59+fburs7e1RbzSYm5/PNzlRRBREyIoEWTZCn2dkWYqmannOhO/jOM7BtkPT1NGGI0YZJRjHI6SppmlEUYQ7tCkUCliWxXA4xPd8UnIsaTJKKv5e/ZtXkiT84i/+4vhnPvOZsfX1dU3TtPSpp54a/NIv/dLmyZMnw/uvazab0k/8xE8c+trXvlauVCrxX/2rf3X3D/7gD2qvvfZa4dFHH7VfffXVW2/1ejMzM+e2t7fVn/qpn9p1HEf64z/+45ooitlHP/rRzj/6R/9o477BvNlsSj/+4z9+6Otf/3q5UqnEf+2v/bXd/yBv0v/F6i3nEDSXvpTFaYiiCJTqFrIJZD6O18MeCgRhRMUoYmoKQhaRpiGaJuCK0Bn6xIFAlunstxxEycQNErqDIc7AxpJl9EKBJMoIREDLiL0hu91N4sQnDF3mpucQYomCUcTu9xBkjUZRYc/bww98purT7HQ6FGSNTAhQtSKNsTq9bhfb7SHLPuXCHHGmE8cZWRRRKglEcUgQiux395kcn2UYR/zZpd/lscnDVIunUVSLnrdDUS+Q+BXiWEbPBLrpLY4emqaWPshdd4PdnVUcp8/bLzzNTr8Drkigebx29zV0XUaVEsoTcwSBzx9/8Qs8ekjh8LHH2LFtmq5C7CaMyTGVkkdF05CVOd64fpNENdgNbdZWdzl++hgN0SMOPSy5xEsb19HbCbo2RXfQpTihMlWa4wuv3EDwYzLXxyqoTI6XkQsydhih7YWcm1zg5DPv4/ee/xNOZ0MOnT/LZ771Kgx6nHn0KDdvbSC5At19h/rYNJXCNOp4SHEmw9t3cZoRsduhocDimfciTlikrZg3rr3M6t0t5g5VmZ418VwPz9HZWg8Yq1dYvn2HSrnMoDdAlVQs08JzPLKBR1JRKDg+kpAiSzJirUKsG4gtl0RwCKUQU6iwtddn7lSFgq7T2ewxMTlBSMjG1hDfVkiyPuVxnakjRZw4pL9h074XoUomM4dKJKFNd8fBLMv4fRnfFDGMkMlyAWOiSBh1iROBJBPpDyPe9a53Mzs5xvPPfQF32CTLYjxXxvZiUAye/si7mZ8XUGsiz/7RG4RbMh985n18+dtfYuzhiFjVuPtSyGypzMZuzmZXtYw4SJia0BFihd2tZXSrwP5uQLFYRTIN3NTm6WfO89CDi8iCx8WlTRS9werFK4SrTR48+zaUqSovfes1Vm9t4NgJQiZx/oEGc4cLvPzKFlaxgaLEPHLyJF64hmzUmJg6wrXb3yYSejQWpun1JSIvZvt2m6IaUR+rg1Im7Xrs9XoQ+CSSi9UX+fgn388jzzzOF176CqcbzzC+YPKLv/8rXPvCJpmTopkG5apFEEYcOrZAPHQZtlvUTlR4+5OneOfJR+j190k1iSQrcfhIneu3X0c3NdrdjMNH5nFij1fvvsljx57B2VvFFwbU1QJxF+64S2jFBnKk0NpZZu5InUr5EC+99iafeOwTvHLjm1z4/k9y47lvUe1e4+F3/zD7wz7bzsv84fMbNOoWH3/yGRqFKv/bxc9DscTT04+SIaHrNYbJNV67HTJ2qEy2N8QUZZbXN7CKZaanp0jikP3ODhPT4zw49gxYx1CSS1y79YtESYjODLW5D+PFGkVVYcxcYLu7gqiZSClofoCMgYeGERfJ5H9AXf1ZbO8eSVpEr9uILghSkRSNVncPRYGCNkkWywhigOcD0hBFUbBtj0ppnMUjM+y0u+zsXMM0S7juJrEzztzkOfb2tlALIZpeod+qkuhvUm80SDOPoj7H0A7YXesjZW2efvr93Fx/jV5foKg26LW3WTw0w/x4yHPPf45MfQarPkMcbKNnRcSCgiabOI4PYszkjInTMrGH25QKCgPbQVRk6vUqQ9smDjN0tUiSSrTaeyiKxPz8PDs7TWRZIk5CRCk31yqyylhjAtt28YOYVBDIsoQ0DpDEHKcqCDl2NSHFNFU8x4EsDxq7L//QNAXD1HDs4EAGJIojZv/IgFywLLrdLpZljJr6AYaRH1wEoU+jMUYUxYRhOAqqyoeOQsEgCD2GQxvTsBAEkThOR0bePBiu1++gKPnQ4PsBulYkTcnxrrKMIAp4QUgU5WbWKI6pVqvouk7g+0iiQJYkxFGELEsH5tx8aBEOfByDweDA7CxJMpKsIEkytj2gMVbD8xyiIBz5CFJERSEIY4QR6UeMM3RdxXaGJGmapxGnGUmcbzMEspEPI81fZ9vouoqfiDQ7XeqVCrqukaYJSRLlCcSSjCjIiFmGIKQjmlKGYRYQZYk0CrDtQU70UVSyFERZwXZcqqUiiqIwHAyQJGk0aIwM2lE0CovL8xtkWca2HbIsY2yscfAz1HWd4XCIoekH75s6Mg/LsoSqqjjOkCiKUFSVOBMomhaMtgVJkuDFMZqh819+6oe+l0PwL9X/kWToR3/0R+c/+9nPjgEcPXrUb7Vacq/XkxuNRnT58uUbMzMzMcAHPvCBI1/5ylcqAAsLC/7e3p4K4Hme+N0DwVu53v2BQJblzLKsVNO0dH9/XwH4u3/376793M/9XOvf5J7/qdS/8xyCtLiNqZpkqUAYx4RdAV0zKAjjmHWBRBZIo4iUlCQREDITD5EsiylrIrImEkQR40eKRGmMoqvEcZ3WoMD12ytEXsD4xCEkQWLodukUBEwPolikXKghCjJWoYjdGyJJEtVag/X9ZRQlRFZS1vbXMcQSWqFG4oPAkE6rRZqKqGKdRmWBZnsNSRgCHmHYRlcn0I06GzsruMmQ1e0htWKNxyYfp4uPEa0Tx0UuHH+cW5tLSIaDEc2z2ruClQRs312iO6FgyhkX5kza8lkubj6PEivcsW367g4LqoQoTvKt/St8XI94qbuLpw7YaU5iVraZmBpH0D3u7G+jKDp93yUda3B36QXWhgkzM0eZYo5HP/huHLuL4A2xpkRce59Tzjku7lxlrhLyjsMnuLbZZX3HxlQCxK2AVBGxTANnMGTcajAQYta8Hp31JW59Y0h3bx1HM1i+dpOqITKMDORORB2VFdvGnK8zdXiG7t0dxopTdIYt+nsuhayBO+hzp9thcqHFmy/cwbm7RGZUaFTrFLQyWhZj1Srs2T5Z7OINBaqVEmHooxsqqqRgOwM816dkGsiqSjoIEWWZUMrZ1AIZkRghRSllxcSVU45cOELJNBi0dhEs2HWbSKLFsZM19jZ2CWwLf+Cx8saAxoIKnoIiRIiiQ4ZCqz0kDKGhwNmzx3jx2nWCNEaYlRBKoHgGcXeAruq4scvVV79F6cm3k0Y6QjaFEYn0oh5njld56ORxfuy//PP81P/w3xA7UNRUJs5N8IWv/jF+1qY6nGavJTPo7tMSDEQ9QlVNRERKVY8wyNjZWkUXa3ixxNGTc6zc2cAwMs4/eJK5+UnarRa+n2DqCrLcY2vJ4wc/+ADzE1P85u/9CYZVZHzKpN/xmJ+folKJkBSfM+cK3L3ZRHULvPLVV5GLCb14j4n5HSwLttZkjpwQOfXIaW4tbfPwqWPsr7osXb9HmPQxxhNcyeXE4zMoU036L4f8yWe/yReffZUf+u8e4W1nDvHZ3/sn/NyP/wj/48bn6Vzf4+w7z/NjP/0j7Ecd/sk//G2EJIZCyFDxGagJf/M3f5WsLbJ4yELRFHZ+v4tRFDk6N8X7Hv8LvPL6F5ibVzDtLlff+AoL8w8zbowTOzu8uH0ZXRyQZjI920KMznJi7knubn+TnWSXP1t6npNTD7B88XnW93dJ9CI3X/ky+sIchw7N8WMfMWhLY7yx3WeisMn7Zx5DLVu0MhU/EBGTAbc3NzkyfoIT+sN0S9egpGNaKuVSGV028T2oGnOU6lNEqYTrX8bb7RJ783hBi5NHPkEsWlgViyQI6fttPL+PEQgUgiGHVIFizaBjT9MNv0RQWGKpe4nllVd45PD7aG8sMVZoYGgyouQyXi/iDTQsZYxedBlNK4FvIQoGw4GLZZaYm17k9Tc+D2KFQzOP4cUraNIsSmmMKG0zMZ+giHVsB8YnVRRzjkppgrXVNfz0DpJQY2JGxkweZ3P3KqowgSFnGGZGvXqUJEz59qVvMrNwhiQ5RNdtIiKTihmpFxFlOVWnYGW4LYck0tAsi92giec4HJtbJPUT7M4AxSjQ932IU4pFE9dz2N3d5dKlN7lw4dE81Z6RDEcWaDabgISmG/hxlMtSwhBNkVBkhSxN0RQV2x3gOhG6phJHKdEI7+l5Hhk5MrNSqeenvyNj7/1T6/xE2KNYLNLrdSmXy5TLZVzXGwWaBezu7h2Yex3HRpLkUR5BgKzkhmTP80Zf1w+GjVarha7nuQDDoU2pVCYKYxRFQxDUA6SnAJRKxX9BttLpdChYFq7rIotiTtmJYxQlf3ZFlsjITcSDgY2iaCM/RHSA9oyiPFHadXziOCFNIYlTREkmCmM8z0dR8hN0S9Hw/TwzIvI8kihGFGU0QycavWeiKKAbJp7n4DgOmqbgDAdUCgV0TUdVFUhTXDfKoR5JShT7qLKMqkoHuv8wDBFTCZIE07SIk4QwjNBUHUVSME0Tz/NyY3QY5pKsNMVx8zDffCsAum4cpCprWj4w9ft9AAqFAlEUUa1W8Rw3H3qk7zzDfbIUkKduOw7IKr1ej0qxQBiGJEmKoqpEUfRv24f9Z1tLS0vqb//2b48B/L2/9/dWf+Znfqbd7/fFEydOnN3b21P+zt/5O+O//Mu/vH39+nXtfmP+l/7SX9r7tV/7tc1Lly7pjz766Ol/m+vdf/3ExER05cqVG4ZhpAsLC+eazaby9a9/vfRzP/dzre++50//9E/v/uqv/urWlStXtEceeeTM/1nvz/9V6y0PBLdvjVOwDJLYRRECBGzqtYCiqSCYCZ1uD10poCoWru8QpgGyJpJEIAkyw/4QUSBfQYYucRriDgfIqkm9UqWXdNCVLcQkxJwcJx0W8OUiWWSjywZJGLHf22QwaHH6xBFsu4kT+RQFAUEWsUo6JiYZMp3uHRYXjmMPfaJ4iKpBkO6TKS1KZgO7J6DLVUrmNEPPQZahUZpja3ODVAkoFxoMhsv4DtRqOre3bqHEEqoi4ag2qlUldBW8oIW7/DLzUw+wMmyCOWSnP2BCNcgyn769g1idx4+h7Nl0kj5rqzY1o0LXjnCGCklgM9B6yIqMapWxfY03l3aojxdImlsUYofSVJ3Ld7/GvFHg4Uce5ZWLz9Ptb3Dh+Pu5vbfL3m6L82PHSJIO+3afilKnvihSmZlk024x3N4mdUImxxu4hsvTj51jdW2L4RCu+hnD3XW0okpF1bB3h1RKFcTYIQ0EdjfXqNQsksQlaHdx7JD97h5VpYAfiaxu7VAfH6f/ekQSRxhVkd5WHyuDyPLYuuuhaSrdThNdN0ZMaRE38ImjGFVXQBEIHJcx3UAzDXYCG0VTwfVRsxgvSkiKEtPnFoidiBuvXEfSBbSSTElU8R2ffc+nYJkYVoRSGSdOTYbNLWJfAkTMQoZjO/heiqoWqJBy5swid5r77LT2GHT7aHURySqQBCAKGufOHaekWdTUCu9/8ikC38FUVQwzY/bYo9x8/jZCNs/KbZUg3eJtT53DdQPcdEChbBK2VKLmkNNnF/HijKQTYRQEJCFBk3Wa2x0Q4exDp5k6Ms7qyj3eNvcAswuH6XT7fOvrVwgdn07PwTBj5Mjg1AOLLL7tFP/0n/wh5dMyieMxYRSZnbNQRY0kkrh9o8nOukvRKuDLGbuhQLydUqz5RCJs92QCZOzdhK66iT3c55Z9DxmZwyfLeE7G8TmJ5lNQlktkss7U22TUuRjXTmkuyfzcH/33vOcjT6Amt3n/9x3nj7a7LB610I0BdSPj+z/+EL/1S9+kIM7w8IlDzJehOzfOql1i2MlozKUE8oCtps8Djx6imwbYooohzVMf19ncehOtqPDC0m0+/Mg5HhMkbqxfwvEDHjvzEMfHH8L3oahe4J2nEl5cukqsTbNYT3j8bSa+F5M4KVJQQpcfZHn3dzhx+BSVwynbW8vc9bYQ3CK6aaHKKrEncaI+j1JNabqXKRZThr0EKZOwHY+W26FaKDFeLjPoLFGafIiyuoByZIZOzaTvdNArCzipQ+LFCMkecmJgBBqligmSwUa0y2TbxzA26CY2WvQ+xmZP8u03X6IbbVDW60hG3rgJYRWyiJJexXN3IJYJPI0wDskilcmJExiFAX37Lo2GBtEUve5dUFcRRYM4Exj2M8pyRCx6uPYEbnCN2ngEiYueTWEIRbaGF6ma7wOlhVHQwUuwzDEcd4u9ZoveoIcbhjAoUi/5GGi4cUgvaDFRnicSRZIoREhSSqbFZq9PamQMhm2OHz6BqRisLC1TKJcJEPGjBEuWSLMIz3UpFSu87W1PEkUxaZqRpEmuf1cU0jgjTlIc10aSZRRFRlGK+J6N49mksYgia5iGQZbFoxP/HBfteV7eGGcxQRAzHA6/gycNw4NtQaVSyROJR2x8388PaWVZwnV9SuUySZwecOpVVaFQKAEQRgG1WpXhcIgiB6RphmkaDIc2tj1E13Wq1TJRHORhX0GEaVh4Xh6A5nk2xWIR0zCRZBFdUzF0Dc8PEQUBSRRRR2Fr6YjYI5DmuQGCiGboBEGUy4hEEUVViF2fKApAkBBFmSTJCEfBYZKkjNCiIaIsocrK6JTcwZRyjb2qSpRKRaIoJorzZGFJziU6uqHlKE5BZGJikiSNqdXqyNIo/C1OSKKQklUgSRKCIERVFGQ5lz8FYYiASJLkCFdFURBFGZKMNLlPTUoPTv0938vDyQBBlvKNiSShKmoeVjZKGrZtm2KxQJLkBKU4zlGyhUIh3/wYZo6V1VTiJCFJvrPFyTKRIAiRZQVJ1QgS9yBgTlJk/DBCGslMvldvvV588UXrvvrkZ3/2Zxd+9md/duG7//9rr71mAVy+fFm//7VPf/rTHYCHHnrIP3HihHfjxg3z3/R69+v9739/r16vJwBzc3NBs9lUms2m/C/f85Of/GQX4Pz588G/fM//HOstDwRBoIOgIFJiGDi0Wz2MHYdGo4qQCShajWpNJ0ljrJKBmWVoqoiqF+j3h6SRgKoXyfwQU9Jo9YYYpoUgxIzpKpEvY7d99KIFaUhB9KnVLAwv50W3W32SGBYPHyeKE8IkYrxsMhi0KOljFPQxFEWi3d3AKiUM+lsgplRKVQShguO0EEWFIIlJ5ZQkjugOtnDdmPHKNIIk4daL9Pwhk1qBMxMnubN/l8Trk8oiu1GM0mmxeOgUimGy3Q7YG8Qoqs4g3qcTKhDtU1OqeF5C2nU51DjBK7tt3ntMxQ8eptUzMZWAc0dO0mruULIsdnoePV/HKijst5oMXAczHTLTKCHIdVpth92t64TNFkO9xGuXX2RGL3Js/HEu37mH3e8S20O2Bg7l6QnWvH1UD6JGmeLsGPKaw9AOKGqjYJlUwBYi+r2EimiRxg6lkoEbirSRGMQRp+YlDE1E7AiUTI3G8SOo/V1+4smnWPFM3nj9Ept7u7iGztLFVc6+w8SOVGqGRppEeL0AWy9QGZcZdgWMsYRquYptewiZhOcGBE6IquVmLSdwUTLo+wGiE6BPlshIETwfMYnRxiswXaPvD+jf3kYKRBIhQ0DE81NkWSFw88CyYhVCx6U04SAIOp4PSqojygnDro+QKYSRz7mTF9hs7dD3hiiSihIL2FtdJo5NMHX4CEKSkvkezd0ed66vkKYZk1OHeOfbHmauUuDyazu0WmvU03VOzM1yb7tDKRPY6AT4oUjUCYiHNk89ucj4sVnW2j02b7fYWtskjgeUijqleoCqFVheX2Z9f5vm3i61Sp2drTa7+018N0RGJVMFhm2bswuTnDx6kt//3VewhyKyCplnEA5DtlfaHJotUyjWaO21mZg0KZdU/Eyg6bgkYUziCBSsMkppyNiYSqEqggBHT08SxHBnaRUjMXn9jatsrQgIR3ykjsPU2ASy6HNEkvj4Jz/M6xt7RJUCe0GAsarw8fcssHr3Hn/6uecpzjQ4dmKWxelFPvGXCywvbWOnPqokcLi2h7joMTX2FIHQoy/uM7t4DKVQx1b3WZg26dhbzE3VsYQHifoBuC77YRcp6zE+dhzfj5muHaGXbEBFpqDodN5UeeapM3z5y7c5MftOXnj1K2S6zekT50gSF27cYLJ4nJu9NfwoJOtvosgdJkRQBZu9fod1W+DU0SluLHcJpCHp3oC7G10WTpxBtSqUizVkNCI/4I2rb/D6yis89egnIJYwZI2p+jnkzEOOQ5bv3uHokUN0u31mxsbwQpcMH1UREMsGO8N7hJmD6B0lKsMHP/QXUZ0WftCnl0E4cKgWWlT1WVSpi2r06bR1Wr0OhVIZARXkgG7bQ5NEVGkCL3YJkx0UUSYmI1VXscoNfMdCNCMKtSF+a0jZOsPAXiMOMvrDAN+4QaSM49ljoIYYaok4cOm02phFlUjeolg4RpqM07f30YUZNN3DSxIcP0IpCWQxOE7GWD3CKEjsDIacbIwzXaly8dJNRFXLyV9I6LJAlka5KVgUyMhRm4KQn96GcZQHkKU5598d2gSBT7lSRhBzmpEkS6iSjufm6cRREBKnPq7v5kS7kbY8b/Rz1rym5nKgKIpG0p8cSymKImR54JiiSN/VaCroeh4Jpmnqwal7OiLPSJJEFIZ0Op2D02ZFUUdUGiiXSyRJymAwJEljZFlCFET29/ODkXK5kmvldR3bHlJUC0RhlHPwBQHNMAg8D0EAsvuZAipJEpLEub/C8VyyTMjlLnFCOgo4y7Kc+BeGDpZVBAQQ8vAyw7AOBiJBEInDCG0ksZIVCd/3KRRzfGiW5mnCsp5LcqRYJghDarUacRLjugGylCEiEoZBTliKYpw4QZQERFEYNekCcZKSpuD7eVCcruuEYZ4ILEniKKMgQxRzn4Yogu8HGKaJ4+YEJdPM/1wcxviej2VZBIE/8lvkkvRcNpXnTASBj2WZhH6Apudyo/vyI0EQiOOYKIq+Ez6WZRiGgUCKqmmEYYQogCS8ZTr79+r/R508edJTVTX97q/Nzc2F/7rX/7u4XqVSSe7/93dhZb+Hi/o/qLc8EBw7Po0fRCRJhqpNcujYCZrtJjeXbjJmFjl58jjr6xsoqkzBTJCzlDRqEcst4lSgXq6gSkXaw22SNEQUJRSpSCJKJFGXkirQCgSCSCfecpHVhDjRCAOXOHZQVZlatUSS+ARRwNDz0BPQ1DKWXiG2PQaZjWe3GQY7NGo1VHES3wHN7JDhQFImEBLMSonQd/G8LppewpALOE6bcqHIanMbNbaZnzjBVOMo62vLZN1NNtIuT5SO8u17S5woBjw4cZxC6UlW9u5xdecNxoxxVnsKRXGT1HPQXJlDh08wdBUGvTu86/GP8U9feBlnZ42+aaCJGTvNDQJVZ3W9z9G5CTo7PbRCFX+Y8OrXN6nM5nrT3f1tDLHM1UFIcXeFx554GjuIEaf2SC65iKnCbpBRrk0TRdcxhD4DT+SVl19CUTUM02QYRTjtFmVBw3dWGfR7BB1QxlOK42WcPQeUgKEd4wV9KpWMB488yTu+7ym+vnUL+xt3+OAz0+yMn2Bze5dEs5maVtldaVHQM4pzRSQhxfMCbD9ic2fAocen0ayYOI5AFXBdD0nUEFDQDYUsS4mDGENWENMYrVYiC1IQU7IoJHUCBF3FmqzR8V2SnkcaZ1BQiYcOWU9EKMm0ewNUVaZs1NlY7iGaNo4jYE2VUcoS3a5PPBQh1pGFDFGJuLKxh2rKvPfRC1y7u8L+cJvTs9M8OrNIR5a5cvkGa0traFmRj33k+zl2eB7HGdBurfOFP7qK19/gXq9PVevxF3/4Uf6H/+UeqiuQpt7I9GfQHzaJ4zk8t4ffT2nvt7C7Dqahcer4JBsbWzSOKKytOOysdimZFr2WzX7cRdKkfAUfp3hhQKlYZvHkOM/+yQsEmU2lPsZwZ4AXuDS32lx44BS1co1vfvtivs3ZUtAiOHtc5dHDDe7dheWBg1guE+6lCH0H5cF5MsnCDtroZZXGfJnWzgYX3rnI61evMyk2iEMJp22TCDFFU+SFa99gTZzk6NkJykqVsYl5vvHZr5I6HqKWsPr1a7xtfpGNZBtJ7VFqhJyZFnCdV5DGe8xWbdbXvg1JAzGymSkkRJ0N2ukemb2LKg/ZHARoQZle7y6xIOH507z8uSt86GNPMXPyAl9/7XP0Bx7zh49x7PwMtdMVlrc+j+hp2G5Eok9wZPHxPIiuZCC4JuX9JoW5M1y7/kUKEwnNtsOyN8Bx+vhJyMnpRwm8Ia986zVOP3iKuxt9zFqV+fk55FhkolwjjFMCWUAdmycTQ5Z3brCzt0xZrXB+/gIFGe5d+RaZoTAx9U5efv23eaR6DikJKSgeQc9jLUtwogqNYoM4dEniPTR1DuQCw2CP1K+SBD5WcUgQu+gm9Dsu+/seqaYgSBKqYiLrPvEAvGGApRcYODexyjGRXyRNJeQMZNOhas3R7wtgddB08H0b0hKxMEQ0AmqFp2mHf0DN+hSaehhvEOCHt5GMHWy/TKFaQAzHSWMwrTEiPwYSZmfHCd0CXtJGQCeVVFItb2hPHppmVnG5cXMJRdHQqnX8MIQoQpd0RFWl1dk/kGxIkjA6sdcQgow0gzQbZQzIClXTJEsjSGNUWSLJYhAFMiCKI4qWThBmOL6LKEog5jIeQRBy3bimEfjBQUbCfTzp/VRa13EODMmO4/wL6bSO42BZBRQll44oinKANGUUtJU3t3ngWBiEuJ5DGAWkSU6pkWUZs2gRhhGy7I+8ALn0JRnJZtIkgSwlDHxKpSqKohJLCgh5mFj+PCkgI0q5lEaSJFQ1l/okRCMDc5EkibEdB8/3sG2HSqWKJMnEcYI6CuySpNxAnVN+MjLyPIA0S/F9H8MwEYQIgbxxTtP81D2XDHkgiqhajgFlZMDtdruIgki1UiGKIxxnAOSSnDQDSVLQtAxxZLbOMhFFUdA0BddNydIM17GJoxhFkdFUDVGUMHQDPwgQBBHbccmieJQq7Y+wqwFxLKIo38nBaLVa+L6Xv873ESUhx6iOwuDu42pLpZyQlJHLw8jyULP7idOWaeH5/1FJ+/9Pr1GS9b/QbD/++OPu/YTqT3/6062/9bf+1j7kA9tXvvKVQrVaTQAeeugh7/6f+b3f+73qM8884166dEm/deuW8d3Xe+KJJ5y3cr23UufPnz/4gd6/55tvvqn9y/f8z7HeOnY0TpAliUq5hKzq+GGIaZocPryIlsT4wZCJsQpJEhG4LmFUJnA1lEqZ7U4TNyphDCXiuEYQDPAiB90NSBKIE4PEE8gKAmHYx5Ch7XkM3IDQG2BqCmONCaRMR5Eb2K5DZO5SVOuomsWgv4MkeaRJiKZVyZ0MGUkSghQwHHSJswRkBxINRRpHk8cQNA1FgjhzyZAggKnaGMN+D2SRSlbidslge3WZx84/yYwxyaQ+ydLNl3AHNzi+MMnMyVNc3p5lwrsG0ixXl7/ORKnLiYfew8r+PvPFCoFss3vjRd7Ye56HdQ1LFtka2GzuDKlXqjRUme7yJlaqkBHhJiGaVaQz9HG8NrWiTqlSp/fmKqcOH+f55eu0jRZjZ1sMHYVD1dPUxg5z/c27dJpDxmt1nnnqbVxbusuVW7c5NDGBqkgsd/byEDlfwE5CsjjjsUfO0/YGrG92GSs2SLfbpL7Ep3/8Bzh97B1c2tjghS/9CWP7Pb72ldf4xF94kLkj53n1G9eYrnd416cVasYKN5eLdFZayHKGphg4rk/Qz6iOS+ztx4RaRJIluc8kAVEYraFVlcgNqFQKFA5NkPS7+MSkkY+QRZjj4zj2AC2KcDoOQZQhKGme1mmLSFJItSAQCjCMBriCR1m32NlMaQgRZllGUWNiV0HKIIoDxsaL3N7aR0sjHlmY4eEHFvjylT5T44coBB5JOMfapU3+wk/8BY4eX2Rzc43PP/t5dE2l3/Xwh32UVMCXDH7jhYv8uCHwrvcfYnXFJwwyiD1Eo4hVNbl45Tb6iszeXorn+eiKRBbEDDtDIk8jCIeUG0Vs20GUI9IYFFUjTDMc10YU4ezRE0xNjvHmzQ3kioIX2uzaKQvHK9RTDwEHU61z6dJFuvYASy8h4rPZdOg5MROmwmOLJZ56/BS/8u3rnH7iIQ7XYi4ubWLpGsWSyf7tFcoNC60YsbO8wUTVYH6uxsSZKmUno6d1CYV1komIQ1qDYukIvfaAMBvw8htbbO7ZjNenqTfK/PHn/oDTj53k5MIxqqWIo9UJ+t0yt5ovkIQx5XJCQVcQskNI+EROk2Y3JSJFSE2mJBl0kcLENP0rK9y4c41HnjiOVniI59f+BLsgcXLhCYZ9h+dee523nT9Gw36Kp98r8fDpYzzx8AUqxRqGIOP3NwmVNi3TRnzldR6+cIGecJc7ewLnZ87iJbfocJfdjSWu3BxweGaacUHGmCmiCyGdu9+iNFFlzc0oaCa1Uo1zZRd1ooDililMPsrG/i7fvvEGc/MTjC8+RJamBGmRYydOUzGmiTMF1ZJoLIxRdVy29vvIVHDbIcOoiTVfpxu08FObwPaoGgmh+DJDT2V32yAUmpSmyxTko2T6LlEQ4/kpQ38TVZER5AaRuMOdOxnj9TL12jh9ZwtZFslkk6phYQ9TKqaP7b6OM5gkSkVq9SMQzqAqV9n1f4dq6b8hzlp0diQqU9N0hy1qxUMYcgE77JMKZUKxj6VX8YdbyLqBEsgIokQkBbRtB00wODVh8rVvv4wXSFQnjxJEGbKokoohkIAgHwSKRVGEKAgIQkYUJ4iSSBREBJFHFMUYhoFlmbh2H5KETBCQRAFRElB1FU3W8AMPSRYRhJxEUi5Vc32/rDAcDkaNc56JcDAkqOrByaE5IhGpqnwgGbpvWlVVFXHkOQAOnlmSch+DqknftSFQCIIATctNt6qiH1wnR4RKmGYuX7kvaYrjGN/zME0dQcjQdQ1NVYmieLS58A6eOwxzApus6nS7HbI0JcvyPIU8iVghDGMEIaPRGCMYndqnCYRhjCSJ2HZumDZNg36vh+u6lEpl0CSiIETVFARRJEkTPN9DEER6vTaNRgPDMOgPh9QaY/hBbrBO0pRmu8Xc3DylUolWq0UmkHvAhCJJEiHJCkkUkwkC9XqDwPewnSGSYqAoMnEcIUrkKcfuENd1iYJ8+JIUmTTNQBTwfT/3XKQphqGjacZom3B/w5Ac6P3z+wu4rpujRkcbHk3PfyaCkA8F930TIOQpzpICpCRphCiqB78f36t/fe3s7KiWZT383V/7hV/4hY1PfepTrd/5nd9p/O2//bfnfu3Xfm3CNM1kZ2dHtW1b+uVf/uXVxx9/3Dt9+nT4/ve/v/eVr3yl8iu/8iuTX/ziFyu7u7uqoihZkiQHQ8bp06fDt3K9t/K8Z8+eDd773vf2nnvuuX/hnvdzO/5zrre8CxMlGVESCQKb5u4quxu3GHZW0ehSLUmIUszm/i4txyYzdQI1xZy0KDcKzM1MoQgivuOSJQKioFAwypCpCJmKaJoEJQ0pEZBDGU+qECYVklTD8ZOcm+zZ9Pot1tdXEcmoFR5gmEVs7V5EMXwiUUMVC5gVnfn5Y5TNMxStBrKSYKgz6NIcmtRATgoETock3aE/aON4EaHg4dFBUlOOVCewtCJb3S53uyssjB9hqxmyfPllNrfWMFr3OHPiHdjWYba792B3l3eOq0wducDxxWOoUonunsPlpYs0tDoTiknYa/D3v3GX+l2F4pEZPP8WG4MB9UaJoDXkgakZ3n7ySX7o/T9Cd9/Bakzx4DPvZneoMoxi9vfb9Af3WJjReXPtHn/0+g3CvZCd61UEqUZtpkq7ucKgfQtFddjaaPPi17+GG3qEMvR7faqCTlnUSLOU7X0PvV6nUKywdHGf21e2KRaK2J2QcaXAB973CSamGmztX+Qf/vqvUk59vDTji9fusn/tJRatBpmq0WyLfOlXh8xni5ROLBIMYxQUFEFFkgS27zV529uP4dsecRKQZSmyDKahIgoZkghJ5FMsVRifm2cghbS9PqKUIogg6xqCIOO3h1Q1FdsLETKFoiAi6ypdInZaPhEl9FKJRLAZHxNQQwVh6DPcyFCSmMOLNayCDIRkQoKgiCiJjCgkrKzexPX20RUNQoHle9fRVYdf/wf/C1NTk/xPv/g/8yv/n39CZ7eJKWQ0O3foR232IxHF9enty3zuT2/ygYmjvOOpx1lf7qGpGa7j4AQxTuRhdxVqFpRMidAWGHZCtlf7PPzIEUJPI/AhzWQyVKJMZjB0kVR4x4cf4xM//h7Onz/G2s4lyhMw7DWZMnQWKzJWOGCiZnH23FmWl1fY3hqiyCoRCUmqosgVbMni1V6Xz7y0yTdeWuNIpUbU3ObJp05w5okSZx+Z5iMfeQ+PP/YIllHgzrWAKA7pDhUKqc6x8wW62S18bx/JNnntT1wu/fo3efUrrzFx/ATF0jTv/6kP8dGPvZMPP36Bq5vbrPd96pPz2JHL4Yky1258ne1OEyOboSBVmCsLNCrLCGYbT5ZQygqVskmpoFGIemzc2MFp2sxNXSD1ynRv3ebHfvKTvHLr89QKjzLXOMFOf4dnn/82r//pJteeW2W8amHqKaIb0tBriILP0p0/odle46sXn8eZOsmlCYman1GunqBY6mHGW7i7Dpe/vM3a7Q0aWcK4JbHaWke3imhH6sSiSu9eyhHzSQrJeTbbY/SME7TvlsmclDBZ5cQDM8ydmKTtZiyeuoDmgrcjsLd7k457F8eL2d2+zdqd1ylFPmcmFBbGxnnk/HtYXDyHpVYw1Tkiz6Sm60hZk42VewzcSwjVl6iNPYllvgdF6+I4TXb3Nxg6HaI4QpZM9tqrRO4UU+Nn0JQqfhBgajXcfo12Z4MsXcVSMibqJmX9EIYe0xgTiXwJexBihH8OSYnp9zvU6jGmodDr+gRRjCLOohCgChrtwRYhArpaJXS7JMkASyyjZhKp0CeOVR46fY4Xv/jP6ekZxblJvCgiDWLEOEOVJFJSJEnE0K1RYwayLBAEIZ7njkK88iZQ13NMpePaRHFEGAaIgO+5eK5LGAa5+TRLCYKQNM2wLGt0mi7g+8FB0myv1ztoKO+f8g+HQwaDQX7y/V1JxYaRN5qGYVCuVA705rlsRxvp1GOCwP8XhoxqtZp/VopQrVbQdZ3JyUnq9QaKogIigiBSKBQOUJjpqLnNTbsSruPiuu6BwVjX9RG2NMeIaoaBrOlMTc0yPj5BqVQiCgOSKESRJXwvT1Rud9oMBoMcJRqGCEKG49i5bj5N6HY6o2tKuK7N0LbxAp9w1BC5njtKkI6YmJggTRMESURWZNrtDnEUk2UgywqyohCEAa6fm5g1TSMdbVhMM8+nyMgYDAd0Ol16vd7oNQmdXofllWXa7Rbt9j7dbpd+v3MwYJUKeVaBAKPByURRFe7cucP+/u4IYSoBwiixWTx475IkodFo0Gg0kGX54J/cu5BvJ0zTJMvyAaJQKCBJ8sFWJ4pibNtmd/d7RMp/m/rN3/zNtV/4hV/YOHbsmNdsNpWdnR11eno6/Mmf/Mm9D3zgA8P7r/ut3/qt1Q996ENdXddTx3Gkn//5n988cuSID6Drevpver23Ur/1W7+1+oEPfKCraVpm27b01//6X98+f/688+/uu/+Ps94ydrS1ey8DCAKPve1dJFFGFpQcS6ZLCCJESTqKZfcJfBtZyrBDF0GW0HSdVqsFQkocB+gjbrWiCSBnCFJ+imIPXaIgxDIM2t0+UsHOV7RBSDAUGZ+u48YO281tjiw8QK/VAmEPVfWxByGyUKZoaUhmmd3WMlIaMmEdIk4leomCiUQkdAlUjcjrMVOsMV6dYXPYJKWAKRisuFus3rjEp77vB/ny179IWBF57uvX+HMXPsBa1uRQbRqJPnOVE6SxTyDus9La4cj0E6y5Q5T2gMVimVNHn+Lza5d46c0/5cHGI3SNXW6tXmYyK6IUSswVSwyUBvfu3KS9ucvTH/sEK8Mdjiyc4suf+xyFcMiTDz7El65fYhDYhH6MtxVhaRXkWsJxK2NpvcD0uVNcufUKsdtjvD5FHJbp7l2lWKwyPTlHzSiwvHSLbt9GNQv0vAGJHSIHAmapglRSIEtJejB7KODDH/kU6oTGZ/7ZP6K5GzORlEh8kXbW5311k5/4oe/nN24O+OM//TJmllIcr/PkY0/wld97kROPVxifnaezG3Lp1Td4xwceZK15lVvP90kSkBQZUZUolAujUxyZoiIjl2U6ewN0BNB9Ui9GM3L9JxFIAoRBRBrGiIKKJKvsNzsIskxpoohVNVi/t0dsJ5w+e5a7y2skqc/4ZIHpOZNuO6HXtunuOVRNkyiJkTOVsRmTWr1C102YnaxzamaBT/3Ej/P//H//rzz/1ReRs4SJiSLzJ2fpdzt4HRfbjhnaIe984ik+/APvxij43HnlWZ549G38r599gedvvcl43aQ36FM0BVSxwlDqE3QN0ghCP2BsMsYoiUxMztL3Nrh3w0JUQCvAE2+/wPxRiywDkiJf+KMvIwc6737XIb76pZcpVQoIsoob9ZElBSNb4OblZQoqBKGOKHlEfq5bDkMJTUyI4ojxeZOpUzVeu7iPHgrUQo20nvLw02Ump47QT6o8+9WXmR0bMlOSmZox2Gm20awGJ44/xObNfV5/9g7j5Rh3tsTdW33edf4sW/0W2+1t/vzDT+IXK7zSfZUPfP85SvIp1rZfIQk01lfu8eSjD+M7GVeuv0m97jFZk2g1Q+JCyla3ixoJ+IOMyJY5c3oRVRawBxnvePppVjyX1954g6pQ48c++WFeXXqZ1LII7Yg7t9axiiITpTN8/7s+ipxJvHHn97nbusm4coKeu8EnP/b/4kvf/gzOzZd56tF38ve+/VkYeEhdlVqhjlqN0WZL7N4tk2ariBNTTJfnGTM0jGCR2tgEemGMvrPP3ILEuPUgu9e22HE+h6/O0nV7VCydijlJ7LQ5Xn8ff/ry/8wH3vOjKE6X5tDGC13KItiJTT8MOTH7cV65999z/oGfRxMMsv4SxTig6Zm8vvVlxsf+jLRXpTr+PirlR7i332Y92GPoDTmseShNl6mJd7DaWqFSqVKzHsML+2RSgqKKSEKRYtWnvbdKqVgnilO6vTaFikGxMEa/K5FpKdnwKEnxJVZ6f593HP15hr1Jbu98jUnrEAVlEdnwaHb2qZSmUZUy9rBHlg1Q5QqiWibzuzT7t1hYLKPGY7x85Q7V8RlEEmRRJEtkRFFDlMHxuxR1i35vSLlcRZIkJEkkCH1EEbwgQZZVigWLZnOXNM358bm2vYKsGgR+H1EQEdBQFIPuoMXYWJm93T3GGhMMhx5kItVqlTD00XSVLElGxmIJRZFHWvMMQRQJI59qtY5je7lGPY7JspQw8kmiCFnNg87iNEMUJdI4N/3KkoyqakgyxFGEaZbY32ujmypB4BLGeV6AMDrpj+OQciknrcVxSrVWG20XUvrDASBSrlRIQo9SsUiWZdy5c5csS6lUKjkyVVIOsJr1agNBzAhDD12T6XWa1MplolTADRPqYxN0Oh0QBCQByGQEIcN1bURJwCqUEEQJzwsgyfMRAj9AU1XCOMqTiEe5C4qi5APJSDoVRRGGbuQkHkXBDzyCYNSwKwq6biKKEPgeSSoQpyArClkcIUkgChnN/S7FUhFBgiCKUGUZZ+AyGAzwAx9BFImikHq9dqD7n5yaIMvyNOpms0W302F8bBxVVUe4VovB0DmQQ90PRcs9IvmWxvM8FEUbDZ8Soihi2zZpmm9R0jQ9GCTvy8v+3Kc/9T3s6L+nunv3rjI9PR2bppkBXL9+XXvkkUfOBEEg/JW/8ld2f+VXfmXrP/Qz/sde/86xoy+//CVarX3IMiYb41QKZVRJw9AsfE8lEwRkRcvNTHFESoYfR2RIpDHEUYammaiqwtb2BpIgk5GSIVAwTKIkZxLvN5uMj1Xxkw6mFdIadNB0A6fvcmzhEFFUIAr7VMolut07jI/NEwxNmq1VFF1EU2XcNEEYtJF8g0Kxwp6/DlKCLArEQgVFbeA4+8xNLdBuNlla+Rqz8ycpVTz6g3WmdRMWT7F59TJPX3gHWvFxHp3fp1ppcSwUubX6MkbXoSlv47TuMXX8I9xZ3+Jo5zIffPztvG6K/IPn/owHb76ANXMUTde47C3j3e7RvLvD6UfO0SkW+Nzzr3H0eEJjcZaFxSI1scfCqbfz7MWLuLgkmc2d9jK267PVTDkxbrCTdvBdkxl9kuX+PSbHDiGJAVmSorgacdwjKUXUJ+YhUxkMEzZXViARGbgR9ZKGUtWJYoUog9JMka7XJ7TB7vd4dPIpJmYO8zuf/VUWJ2YY9FYQs4yenxK6Jq+1B/xQavIT3/8Y9zbvsb+yRjL0iEQZDJdb121e+eoGY42Qc6crbK6s8+CTTxLv3qTT7VAqFYjikOHAodexCV2RYSlBC3TspouGiFbLUDOFLM1IswxN02judKiWTdw4xHFsVNXgyNEjeKFP1+8jeRLlskFmZezubzE108BzBngDl9aeT68XokkVFhcV8CRWNttUNJWN9R7rax3m5xp86F0fw3cK/N//6n/Lq1fvUa5Ngt/H1BQKSomLNy5RFBXGpib4W3/z5yjoOr/+v/8G6/s7xF2PpWWfT3z6GTb+vs9m9yYIGX2vSDGLSRKRxM8DeVRRpLkpceJskXLJRdMMpt47habXMI0y16/dJvCK6GrKO97+doqUwGzyJ196hceePs6tG21MWUMa+px/rMDm7QQh0hFklTjtgpyRiDpxFmBMachjBqWagaKESBWNH/gv3kc7WGF7IFHTalx9bQ178xannizyS//jD9Jr9Xnt0gtUxmZZPPMh0IqoZkqYihjXV0kPFfnAD36cd3d9fvjtz7C0eYsrd7d47fM3mI9FqplKbTCO17rCuVPnmTj2Q/T826hohInA3Pn3888/+7vcvLfHqTPT3Fm/w+LJ0yhplcwvsLW+TKpNMwgHLJwdY8+Oae3YTI4vcOmVK9xYv8769g6qMYGRSbz7HR/lzNyTWPKQjZ09YjNjtyMxY74dS3T57O/cQor/GgsPfh9R90nuXL5FvVejFQwYKCmxnlDWatjbPl7UZfHUecpmhbKnoyUVbm0s8XvPfRbJULE7Dk4zpWsPmBIV/ubf+n4ePP0BVlZ8/uSr/w9On36Ss8ceodkUKJbnGbpDeltvoBYayEbI0E2QKTPfOMVma4m2e5Ptvb+H0zzG+u6fcnr+PAvGezmcGTS7H0euuiRpCTvR6Ks15MBjzG8zN/cIxfkZQmcdNTqEbsyw71xmYuwoWaIjKn1ae7to4sNMTnoE8T6iomJvDjCNOoNQIYtFioaOV95kTP4oSuP/y95/BlmS3veZ6POmzzx5/Clf1VXtps10jzcYYDDwIEgQhgIBUAJFilyKTt5gd0lu8C6p0C6lNQqKEkWuSFESKYKeBIGBGwAzAGYwDj2+vS9fder49Jlv5v2QNS19WOniKrhX4tX8I+bDRJyoyj51ouo1v9/zfJkb3ReYNT/CYidDxhVQJFIqzM3N4vsh/WFCs1aju7tNqmd4Q492BTQduhsV8ngPvTpkfvo03Z0udadGnkMYRohc0HQbCCFptKrkMiXPC3TdRlUNNFVF0xXSNMbzJvsLs9dZ88YtClGaprSbLaIwZzjo0+w06PW7+8ZaiaqU5dnxeIyUGd29HTqtqVuLwN3dLs1Gq4zyCI2qq7O+vo6q6ERRhGEYJEmMzFOsfYb99tYudqVCtVaFoozUZGmIaaoMhyNqtRqWZWCYGrlMKQqJougEXnlw2Ww1yPc7E81miUDN0nRfjhVgmxaWU0HVNGxd48KFSzSbTQzDpFYrqUZ5DopS3nDMzMwQ7Au4XNclzcqb1jSTGIZFfzBiJ0mpNuoIVScMQkQhKYqSphQnEZubm2i6SaPRoOI4TMYTDEMnzRKEgCxNMGyDZqtZxoMyiaHr2LZ969ReCJU4SQCB4zj7MrQJ/f4Q13XIZcZw5OEFEfPzC7iORZKEuBWbmZmZ8tbHUCkoo2DNZrlJ7ExPEccxg0H/lvk5DENGwzGNZp1Kpbofg9Jptlp4nkeBoD8Youvl7U4cx6XTYn8zUxbCAcQtl4PnDfZldAm2bd3aCOR5znhcdiBef//fmP9n5rd/+7eb/+Sf/JO522+/PRBCcObMGTeOY9Fut7NPfvKTu/+ln++/pfm2NwTffOY1Wo0GM50pDK3FeJRiqBK1riDVmGq9iecHRHGEqqkEYYKmlxIXRS1LVHalSpyETHWmaTQqWJaJF4zpDbfwwyGKpjA71yCJfZLEZ6o1Q7t9hFfOPUGnPkt/uIWfnKEzdRtRUqArbbbWb2JZBcsHFilyE1kk+Nk23e4GMzO3oWgKReahYpCFOdIQxHKMLjPyOMRxK8wemEcmHpPVLVRNoFYtpkyVr65fYHHr6/zAe7ocWLqTx17b4u7WFFN3fhBvvEqctQjqMyxMn2TKPYN5e51/9NRXOaps8OPf83ZG8Qq/8eRjsLvO7e0OL/Y2WJk5gFabsHN9RD1NcQyP/l5A4cDioSW+9vQzeP0diijhyqUROxsBumHRUquQx9SnLSZ7AYXoE2tT1Bp1dnrrGLlC7mmoTkJRHTI1e5osE0yGHsJScU0bzIL+pEe10qTQBqRFSDyoowuFlQNNkkaVNFf5pd/5VbqvrfO9K+9ltzmhtxuW9CPpsJs4/F+/91UOL7/MpdcuoWQFxUQSRn2OHZvm/OomS/fVIVa4eG5CPhrD5pBT7zjOtWuC3m7Mxs0BuZRoKlRdC8Mx0C2dzDAoohRN0VFzFWSOUASoCkkGumGhm+CqOXOzC6SZZDgeIkWBP4qoVisIs2DjRpcgGWHrDt4opFqrUK3rjLoppiqxdZvWTB0mCa1Gi/e+93187DveQezt8D/8q1/nk3/1Y8wsnOEPP/1FGq5Bu1nl8tmLnD58hLe/5UHcZot/9S//Na+9fBW77qB1akRayheeO4fZsvmOt93Gb3+uR0qCmY6IKznVvkUkY0zDIpMJSQxFZBL5QzRD8vHv/yhfePQpersh22u7eLshlip47anfwmm6FIVNmvjs7uzQ66bYCwrN1jzBUOHqhVVsQyGI+ii6SyZyKm0Tu2mhWSpaZOJdSHGWNMwZhQfumytL+9UlRAyXpiPSwS5be5v83h//S5r2Pdz70A+wsXWBtdE2Tj2j7rSYPXqMT/zN29hY3STf3iOfrPKvfu0PmV6qcc+phzjyFw7iXZN8R+cB/vBLnyMRgg+dyEjjC2S7HqEYYJpT1K2Cv/3j38/Fa+f5k8/8W5ZmmhxxVxgYCnWnjaarXLt2EWTIkSOn+PwXvsKD73o7yTjkgYeOYKo5B6ZOYVQ6HF4+SLvSYXvvGXZ2tjkwd4Jk1Kddc+iHE1ozHX72r/80F9bXcLKD9IOrbFzv88Hb7+eGNqLSPIW2pBCJjFPqA2zcuMLL/Rfo9RLGDnz1079KzWxhVlSCTMFa1OmcaMI3Cibs8Q/+0ef5zrcaOAf7HDg+zx1HT5HkPRJVJVLPkSunsJzDGE5AnPdQjcOohUcSreM2jjI3+THaas7yyv1U3dup1LYY9cdsXt6gdfwEl7f3WE03eOQtp2gKcAubnljk+YtPc6B6gEMr7+Le2xW29zyqzQXypCCNY1JP0u5kpPkZQk/Hqk+4cnWdQyuPYJoNslQnTgT+MMFPtwnSV6m0H8a2d9jzPoMpGphGizD1kbFgHExot+vsdYfYRnkAVBQZjUaFyfAG88t18mCei2efpXPbHOPhNo1qgyzJKfKUIveJY4mrdtAsQXdvk3ZrmizNS19AIQiDkCRNbhVf8xymOh1kliEzD12ziKMY9uMghqHT7rRApKiqQKCSphLPm+D7Ia1WC9N0cRwTf1Ke/kdhiKpoJa1IUUqevqPhOA7NRpt+v38LMaqJ0mxb5DA9PUNWFKSpxDbMkm6jCRClFM0wNPb2dhmPR5imiaoJ0iTCqZglbjnPb9GPwjAmTSWW5ZDEKbpWxlQcy94nCgluu+02dF2/FX0ZjceYhoFTqdzKvRumibYfNYqjFLdaQSYZk/GIZs0tSTpxhCRD03R0Rdm3J6dYpsP8fHX/hN+gyDMqlUpZIC5SirzAsq2S0GQ6qKogkxnZftnWMAx0TSeTGWmaoKoKtZrLcDhEynzfA+FjWyYLC/N0ewOSJMIvJFkWk6UJUpaRosArkxqqaaIZGrZts7Ozg+u6HDx4iDAMiaKAarVadgUySZbmNOpt6rVyAxHHGaOxh66VNujXNwNFUVKL/n02vEDT9Fs3DmWZXGIY2i2KVKVSuVUgB/bLyG/M/1Nz5513hktLS/HLL79cCcNQ6XQ62fvf//7BP/yH/3BzZWXlDQnE/w/n244Mvfzc44VpGOT7eDM/CFH2SQVKFpGmkkKoqIZBFJeZcVWjXMzJDCnLWJBp6uQyZjzukecpsoiQRBSkCEXgujXW1m9g2zppMsB1ZvAnBYUY41R0FDUhDAo0SyVPBFOtOaLQY+Lt4jg13MoimT/mxuAa04en2V3fpm3WaDgzjJOYUbiLpiY4WgeKHFSVVmOavd1rVMwmQstoNRaw23dyYfcCk2tfoTPvcruxgN8QDPd2WGkf59I45fqgS5FKGpUCEakolRp+UOP65vPMuxmz9iLPqxbXXnuZ0dZFilTSHwpaFUljcR5Mk6bd4Oq5Sxw+tkJet7hybRt/e8De9i6aYlN3auiK4C0P3cdvPvYF/FBixin1KYNCOcjB+XmGwyv0uiO2ro7ozGnMHmmiam003WE8mBBOJvjjPrqpEuYpFaPDaGfCeG9As+GgmQLLNGjVLBZuP8310Q32Xu1yTFc4/I4jfPaZq6i7IXok2PMjlDjj8HSbPT1hNATZ9Xng3Qe469RRfv93nyYoCjIlRdU12p0FarU2HStgY6tLLgz6+3leBYXJMMR1NYyqTriVQJJTnbdQJJiGRphm6KrBYG9M1bZxLJeK47KxsY0fRjQ6LkGc4nkhuqHQqFco9IwwDhGFQRrm1Goq7QXYWXPIswF5lGPWlph1dD74F7+TcGzzwqNf5Dvfcxd/8OwrvPnYIlMrp/k//tmvcvvxWQ6tLDMeS6bdOqPBhMeffpY0T5F+zNFTRzjXvUlapFiGgpWr/OXveoDNpOCP//hZKpYA2yBPPMJQ4FgVdKNgPApRUDl+Z4vpxZTOzMM4js1nPv0F7GoGcQsDm831HSorCXpRJezvUrHqBHGAXRU4VouFmQOc+doloqCMDwnDwKylOFaT0JsQBz6+J5ieqbF80OLShQkzBzu85+PLGJnKlUtrRBOfqmOBltMfTrjwWp/FI8ucuutuNMfCqmkUSoxMcqYbBwi8TZ575utohs7CgWN0Oit0am0GmxtM9q5yqLKENHN+97GXecdKjfe8eZZR+z6s+aN0ty9gyBaKUcearrC1e5n1698gGSQ8c2GD0yePoas6qzdfQ+DRabWYm2sT+Rr2XIdrq1c5efAgS9P30akdQIl6SEVDN6vkUuXixRfxiydpzrWJWUbumdx+5AHuWLqTHruEWcHmS3/K5vUr6Ghc2lnl9je9E7M5xcaNF5kMx5y5sI5RM5maXmG7e5M0dpD5EEvT6TgHSMM9zjy3ilbJ6Hd9Bt2Q+cUl/vqP/whHl3LyZJobm6+yPTrDqcW/gpKGIG6SFh623SAONOKki1tbQcln0JQQb6LiVuvIYsJq8DtU1FfZOdNFnzvGa4MhDx57B83Fd9Ed3aSu+Dz39FdZWfwoC/UFHO08g1Aw2zpFoeySpiFRnJBrPaRsYGUrqLVnkfkEx7iP8UBiO00CL8exG5gkaNYs/fQclvtVRHEHob9I1ZhiGA7wJwV2JWN+rsnm+phcGmRpQFFINLtGGl0DbUzqtTCFCnUbo8hRqKMLhywPyPIJBRoydWh1qty4cYPZ2VnSNCGOSmKOlJIojmk0mziOy163B5RozjJP7yBlwmBY2ulzqTA/v0CS+vjBkFZjrmTtBxGaWhZ2pcxQVDB1m+FwiGUZ+/KvFEVVsS2LNMv2mf1yP8JUloiLIi8RnVmBZdtkeUEYhjiWWW4s1AKnouG6DoqisbszLF9rWRimxtgb3DIH67qBquiwj+gUiFvW5CSJy4V/lmNZNlme3uopvB5nsW37FjEpiUvLsWVZpEmClKW5N4oT3IqLSkYw6lOv1ZBCJWWfsR+Up+jmvq2X/T6FImA42MNxK2RpGcdx3NK8nCQphdD2KUVZWewuSiGaEOJWQRegKCS6bhBF4T5RSUMRJTEqlTmuW0WmCZCjCIUCsU9cKvGvg8EATSuz/K+fzlerVZIkKW8SFEG1WkVTdFKZ7W8ai9LTkEtyQFUUojDA83za7RamWSLnpSw3RVLmt+R0vd4e1WqFZrNJEASAuEWayvOcaq2Ksu+B+Mt/8eNvRIbemD+382ceGaqmgiwIUFDIgYrQCdOUMEmxNYEiVISqIYAiz7FMC6HkJHlCmsXYFZfhcEQqFcbjPuQxlq0jZUya+uRFgqaXnOVWu00QTBBCo8hTGrUWm90dhB7tl4p8TMNm7Mf4/oQkitB1lzRP2Np7BVPUOHbwIcIsYKou8Ec7RMkeVqWFmqaEXogzA5NhQN2sknkBjfoMvaBPR68R7W3R0QXvXr6DT62+jFjb4eKiyVLQJMhdsizj4cPHOS0P8NjuhH/5a/8LP/LON7O3eYlxGrKXtJgEBs/deJVFV7JcazAMFkgcm8Zhn/76BNNoEKU5L5+9ysKBKRTH5eLZGzxw972s6Vusr23T7CQMB1uoEr753NewiirHT53ghae+QrLT4d73neLs+cswmbA01UKvOKRqyvbqkGbdJJch5169hKXr6KpANQWGa5KrKqqloTgamlPBdgwqVYXOYptcJCjDDLdZ4/i0wUc+9n6+sfcZ9tYv0pmfYXz1OpEi6OYF01NVNtd30AuHyeaIi50Rk8JiZmmW6lSKquX010PWrlxkM/QoVIPBOKBzYIqlxQ5Czdna2EH65S/3IpHoaOVniTLiZWkGw36IYzrYVoUCwY21NTRVQ9VKjX0S7Z+ypZLRwGN6qUlaSAqhUWSSuBAkhSSWATIvcGsGSTHk1J1v4dHPPcals2ssOzZop8llzOXrq9jzh3nkPQ+jyYiXz56nWmuShilnzpxnGKaopkQ3MiDApIDCQMsF1FI+/fVn+PufeDfmh+/njx97HjXKiFWXPE/J1ZRMCFRbkAYZ25sFs/MH+MzvPIrtClpTUzRnJDeudBl4AsURjLopurqLqQsyDNozFaIgwBQp4/g6fuYhVI0sz7GFRhHm7GzvoikFAhOQPPzdx2kc0Fh+cI6nvvoSn/vjK9x3fBolGaJpKjujCbVGk82eSvXgErctLzLdqDOKRuRBTrvVwa7VkTlg1Lnj7rejaiqLh44QRWVpsHZ0DrOZkQQT5Cs5P/9DH+fXH/0y/8P/8QQ/+kmoiHPIxMWqmuRaysbmTSrVOQ4fej9mkTN7dEgcSeyKws5eQBiO6HkBqy/u8PBbD/LylRdRCoeaMc1SZ4EwDRinA6q1RQoS/uBPnuDs5hc5dMc0BzjMjF1hZfoQkbLJuetdNkeXUeSY3YHAb1SZnaQYtQ5XNm9wzLiB21jkS8+t02xGTFVtbHzs6XLxo2sNlLQKecrU1CEevH+J33z0BXQj48CSwR2334NarWIUVQzbx/P7zLamUYqUKDJRFYGqWci4BmYMuqCQV+g0a/QTj9ybJo0LosRH9RbYtXsceOeY7Owq72g/QuJMM8iuU0++RSGf5eSJZWaqCnW1RpzVMZMho70hqNsIoaObLSxnjjDvMx5+iVo2hancTeir1BoOUVj+zHTNp95w6I9GDLsm0Sjl0PwKe709ihYUBZiGIIsl66tddN0l8GNUrSSipTIhK8YUiYGiVmjUXV7efJyZ6mkWZht444hUJgRRgOs2SnTkJMLQbSjKeEZY+GgKiEJSr7sEvk8Uxti2Q5bl5HmBEKXIK88lSRrT7rTIpVJSZEgI/ABd9TEME5nlpEmApmlkMqPTbDHs99F1QVGUJ78FBYoiyYuYMEyxLJsoim51CMrTYUESZ+RFQR4EWE7lluVW1TQMvVyISgnj8ZgkSTF0pyxIRz66US6kB8MRioio1Rr7i18dP/BAUctStaIBBbqhIvOUoiipfmlaLvTzvEDTUkCAoqBqOmKfuhNFpatA000c1aDY9w002x1u3riOW6vT7MwwHA/J9ylNWS5RVBVD00pRJCXSNEliAj+k0WySZXmJ7dQ0ClFiR4UQmKZxi/UfR3EpahAQhRG2XbkV7yrJPWCZNmmWUbNM+v0+SgErKyvs7mwTRjFhmO33Ccv59/K49FZZ+PWTeiEE/f4At1JFVbVyswJlT0PV0FUFUeRYlrkvsdMoivK5wzBAVTUURbtlXW61WnheWSw3DIMskei6jutW8X2fKE4wRZlyeGPemP8W5tumDIWTEWkUIOOIJPSRcYRSZBh6QZhlBFmKlySMw5BxGJALUDR1/4+OThhGpFmGHwRomkomU4IwRFENdN3ErVRQRE4Ye8g8ZjjeI0cQJwGGmXLo8G0ohslgmCIUqJhzuFWH4fgmuQgRioai2uQodL1tdrYvoAY9GprD7PQxhN5iNB4hhMS1myTREF3TyHWFrfE2Az/DtmcYTQo2ioRvXjjLM09/inZjis8NDJRBQSoLukPJCxdeYm/7JRqqwptnp5DTC7xwfYPnX9qgE4fUtB5pMsKs2WwMcq76HgcWBO84Mc3SzGFkLUSx4OrGNkkWIGydx75+htVzW5z56lM4VQOnVWeSCTLDYSTh8s6QZJjSIMIpBB9/13dwYHmW3t4WVdfm5PEj1OouoR+TDCWbVzeJhgmECrmvQKQhAxWvJ8kGPjVhUNNM2hWXhuHi7XkkiU9/5zpJP2AwGLK+NSFOmoyDCZWOzW7aJ0tzTFOlPxqThiFGScBmFBWcXV2lNq2jaSPGOxE3z/fZXttkshUiQ500EJiqxeLiDJkMCfwxrmOgaCrkIKMcIbnFvVaQxH5EGkoUVAI/YtAfIQDNUNEtjTRLMUwNTVWwDJMwkIRhhqraoCgIRQIqaaJhOAK32sS0q1Rqgm88c4bz527iuCaJmbLr9zl64ACz80cZhyN2e5t8/nNPkOfQmKpx9uo1BuMemQjwgwjVqKIUdaKRJI8ySFUc6RCo8C//zTd45NQM3/fj70BXk/0FoUacRqRSomgqbstgMNrj5Rc2MTSLOFJpNZts3Mjo9WLCNEGxMuqmTjQqsKoOi7cX7E0mZJGGrWjMzqnYVYUogKrbYmlxAX8cI6SGgoEQOlpu8MrXr+OtJ9x5p84P/t07cNoNbnR3SbQG23HG9WHIyE+5/Uib21fmKNQ+qxs32N4Zoqs1mrVZrl+/wbdeeYqbN65imi7znRXqeYWlSpOOU8HVKki1jjK1xE4NNl96hh9674c5fMcyN868ypULm1j6IdAdvHCEQYgqu4hcpdZucdvSYe48cZzlhRO87zs+ynve+xd5y8N/hWr9KJfP9rFcwb33vovDh+6iOzjP1u4lrtx4CV3f4dzqU/zJU79FY2GJEwffSctsEYfbxMlVXj57hiee+wLjEbx69gypOiQxUqyKwZxjkkWSV85c4uK3vsTpBUGbKvMNl6bbx1QtwqjArjbJjTGpsUqo7jKMbnDiUJUDneMcO3WYe+6dwjH63OxfIvR9UvoYxQmGk01UW6UQBpP0GuNkE4TNZBLitgP8KELXDTrTdXIZEqUhlrvMsvhegrGOtpRiNa9w/9JtdLY8Qq+Lohs41nnG+T8nUXeJwmkyvUNqeljOATRWSOIU3xsz8faw3BRTn0NRNeqdECkzQt9A010sxaEQBq5tUjHH9CcC02ygSYe8UDCUHNP0UZWcIjNLuWHdJi8KVD0iKyaE8RCFBrXKIXTTZhJep9M5yG63z2gyQCgqeaETRhlCzclksl8MTZlMRiRJgqYZ2LZT0n0sq6TKRBFQoKig6gKh5ChKQcW1CeOALJeYlkmeF7SaLVRFRxEKFbeC49j7KNLiVnTENE2SNMHzvVsyLM/zbvUTHKc0BhcU+7cLOUrZxsWyypNmVVWxbZsoDEiSsqhqGBpxHJIkIZDhVPSy1K0YZGmBbTpYVrm5ybIMmecIVSNOU5J9yWYiy8VtGEV4nk8YRiRJhqYZWJaNopS3DEmSEacp6T65x7QMpIQgKE/q8yLHj2PCVDI1t4CUOd3tTXRF4roVKIp9Q2+BzCSiyEmT0qTc3+uXsSGZ75+8a8iSflpK3vZjN+V7Uy6edV1F0xRs2ybLMnzfv4V5LQpIkgTP8/A9v4wZ6Tqj4QiZlfIv0yyFYZqmUXEcfN8nThIajQaqqhIEPq/z59M0xTBMFCFgnwSkqgppViKtgzAkCINbWNkkSUoKVZbdumFRFDBNHd/3b5WKS+Sovm+PDpFZRrVa3ZeTJfsdiTfmjfn///m2bwiGhoFMc1QULKdSWh2VgkIFkcSkUYmpsx0btTAZBh5J7KOqCpZlE/gxluUCGWni4dguBeBYLrLQCIIupqkz9IYE4QTDFmiGCVnCTvcGs4tH0I1pIm2dOBIMiw1UVaPZnMc0XKI4wQ8DFLWKlofIYkyQ6shRzIGlRaz2Kfqx5MbGizgMqWQWupvRLwZc3tqiaY5ZmjlIJFOmdQW13mZrNOCkHfNX3noPV9bGGN1trNYM1y+9zNKWg2e4XOgZ/MTpJdz5Nv/zH32R5q7kxO0LXO6OmBEBe4em6V3zuDrRGY6uM3/gIFnnduwpi5d3exTjPTquy+HDizy9+wpyR8VLzzHTqrM3VgijhFgtEDKj0XD4xqNneMs99/Hhj72H3z/3Ig89cBeOMuTspUtsXN8lCSKamktmJqiivBYW5FBAkSskacIoSoltg1SmbK5us3x0hdP33EXh+qhRjhcKVK5xrT9meydGGe2yND/DlZsb5HqBkWvkQcpwGzq1OiN7gjU3QzwKMLICbzBk7BVIM6faqLAzTIjjgiD2WTwyi6kpBP0hFcth1I9RVA1V0VDymCIHmWUoooBcQSlAFwrD7gTHtclzSZqnkILMJSDIkYiiKD0ZNZfBjofVdrEclVyHIgMyA8OMMKigkBPnBVGao5oQJwG7CYykwpHlFo9/7Qq11CIMJjhGhVMnT/L8a8+yseUhpIZQNRS1QFENtjZ2yJIMVdEgk6iFgZsrrBY+/9uvfZm/8aPvY+Zvfz+/8HO/hWoK1MIGKVG0nFwWuBVB4E/I1Zxqw2Krt8rEF5i2jhAZjZoJWorsWlS0FjPNgEd+8CHOfH2Xm5dW2TkTkvg5FRviaMLODnSmG8QBjPt9HENQaAWVKrzy/DbffPIy3/tXTzM/LxhNBM26ie0IHrpnGW+tzu7uLqITYdgus8tHaEy3AY9EiZlZXqYiOziJRqqneFqfeNyjbrqE4YA86tIwPHJPYWkx5caVTVY//Rgf/e5H+LUnvsLRpuDeyjYjL4FYYbS+itkxSBWfbtygbS4gTAdTqzFbaZM5LTJZcPgvfJy1jcvsZFuce+0c3bPXadYTMmuPCxeGXEvOcvGlgA++903MNNqYXsC1mxeIizHhuMWzL19j4gd88DtnwbyHhZkj1NwZtq7dYNYOqPV22Gg0iSoL+KNVLp/doD/pcfr0DFNTR6jVb0eIc6Rmn2sXuwi1RWJtc8+dbe47/lZG8SVmjIyaLnj2xhfY9BS+9M0rHF3Z4/577kGb8vB7l9HTIyiujownNIxpsqTJ5u5V2o06Bw4cZOKr2OgM/AlxdgUzl2SWQU/bZHTxn7LE7VS0u+iPdnHdhwhFyHb4KrF2CC/dZbizzgMnHiEK9u3beko6mhAlE5rTLlW3zebOKnGooJkBQhcsLt3OoLfJ9pZkb7LF3Qc/iChSCj1Gy3UsGybBLuQtHGsaz+9RqVfQTY0sjwniPVS1wDSr2I7BTvcGM517MJQ6WTKk5jpkMsNQHWzTRogcKRIMEwajXSzTpt2eosgFgZ+gaQmGqWJggijjO1mekMnsFioSqRPuI0UN0yLwR9TrDWRmEcURhqGTKYI8lvt58IxKpY6igKKoSJnB/mLaMEyybJ91T4GUGZZlQqEQx0mZpbfM0kMgytsi27ZJ0xhdE9i2ASLDtFRU1aYoUhRNgSQlTbQSy2mb+6fTCv3BEFUr0C0L8rx0JxQFRZ7jBeXfS8dxbrkNXseovs7XV1WFfD/yJDSVdD9u5DgOaZYShOWCXDcsMinpzMww6u+RxT7pf4BYl1KiqaK8AchSgiCk2WzuR5xUVEVHZkkpO3NcEj8hzjL016NDlCfzSRyjGwbJvl/Gtm2SJC6lYbI0PquqiswlpmliqBqj8Qhd1RCKQEWlyGVJfBICVVUJ4whn3zFQHg4Vt4g/eZ7vi8tKsaWqKsj9aBeAZZpQlBu61yNXrxfFFaXc3MVxtB8zyqnV6vuvLeNi5YaopLJp+3TEMPy28PZvzBvz536+7Q2B5tRRswxT00vTn6Ygs5Q8ywgTie1WsYHJZITl2AjFQU8rhFGI4daZrioE/oRCgmFY5BJykRHHI+LER9FtojTE8yY0mhZp4qOqAZrRYjwZ4e1ssHL4Hp4ev4KlV/Byid8dsDK/RBJJ8kIFGaIVIUk0IVLBsSRB6rHbW0MRJrZi86bj72B3ssPzL38ePY5ZPHUSpWkgEptRb0KnWaUSeGQiZKYSIiydwc1dpmt1+nmDqSDjpuXyuTM3+P6KgoJC90aft9//dh44ucbw5ho3RgproxHrIw9dMdgbbJElLc6ujngkHiMqFmoS00xDNoOcx790nnuPzHPw4BRra7sou2Pa4QxFmjEajsk0Fd2zyZUJ83MBf/0nP8heGnP+8mVWz7+CbULoj3B0DekoFCOFvCJRRF7GuVAQUiUvcgxVI9EMiAKyYcEP/L338+B7HmLt3IiXbz5OPuqRjTKW5mZQ0htMwk2EY3H+lXX0TFKr20z2IqyKziQLmFlskfoBUewj0xRv6FFEYKkuo75PpWVi1MYEA9AUBXfaZnczwhvnKErZB8mLgGqlSm2qThiOUJJSECMKnVxmZFlOKvPSYCoEQi3FRKgqQZhiKxqqkpIVBVLRqNQLtEJAGqJIm8koouImhJOU8XhIISWpmlB1XRzNIgkjHn7LQ4zG8NTXv0FARGdHY3s15P63n+bpC99ia9cnl2rZdSlUiqxg6IcM8hDdFdQaJo6hoGopwhdUbYMru2N+6X9/ks/84t9g76f/Gv/Xz/0ioq4gVVCyHCPVyAUEuk/D1BiuOXSWTFRlj8AT1JoGhR6Rxikr8xaGqhBu+Bx5JOMVJWTg+Uz8BA0dw1BJY8loNESzFDqtDpY9x2i3h5UrHOhMYUy3efzZM3zmD77FgfkpmtWUhC5QIQ2n6BxY4ti9b8JqFoyCgMFozGgY0ZmeIpX7We5QUGnr+NEEQ3XIFUnPC4nDFFtvUHeW6ad7eIyx7ridb95cR1+9wvc/9C6e//rnOCduoB08RGvm7ehunVrNIQlfw48hzkPaeQdhhMh4hCFGoPvkjsHCgVPMx3fjjR7lK998lLuPHOf2Ex3uWJ7hmUtddm9c4sPvfjPe9T7Pnvssej3n4MrbqFcavPehE0jXxHba3Hv6TQSjHlNGhaWTNa698gTx8BKdA0cI2gf57rd8mKtrf5O42Sd23sK9B97GZHKVK6s9XngtYTQwqPUytnYE4+gKB1o5SysTusE0JzoF03MnqdltTmUT1l8JiPyE3s2CVvU+NL2CUA1GxXWiZEQ1XaBuHSaebLF65QyzU3eym/cJ9mKqtSZ7kYqra2TFgFHSZ5h8npntFZzmMlrjbkJvj2pDRTZq1MYxUQ5xtIOpOmRCMNxbo31gmjC9Qm9yFsFD2BVIQwVN91g80GB9e5Vcj9Edg/HuBBk52M1tDLMgiQp0Q6fZWGFne4Cm6ihKgIyriDyhUrTZ9QOEtYiVm/jpOiP/JodPPIzf62JZBqCiaaUJdjIZUnGaRIGHIhQ6zWmyTO7HYihpQ1qOpqnomsZoMkbVlHKBqpnkaU4hIM/AMkxkJjB1HVVTGY5GWJqFpkmSeFJGWQAKE9POUbKcLMpIDEHVdAniProqIXdRTLFv7tXo9XrlgYSiYdsmkQDTNImimDzP0Q2D4XBYnoCLGEXPGA58+v0BumHjWE1UTcEwXJI8ReYpoCGL8qa85laQMkNVCpI0QdUM4iRB13QKUdp0VV3DVCHPMyiyMtdfQJHtL6D3i7KO5dAPYhRFI0szFEXFsh2kLOVkilBIshSnWiUIfNI4wrBsPG9CnMQ4jkUUCoospVJrACpxnIIiifc3A5quEkVBGcfRSn+DoZV25EQmKKpOmuRUHJd+f4CqqrcY/qZp41gORZETxRG90R4Vx8GtVFA1FS8ppWGaUEqkdFHQarWIk4Q0jqm5LlEcEUYRrlvZl76ZmHp501MIhRxBEIY0Go399FKOoiqQ5Liusy8mk2RpGUErijLSrKoCVRXomrJ/85Iw9ibs7nXL2wHDROQ5UTCi2aj/GS+73pg35r/O+fbFZAIMTcU2StW4YWqYhoZjmjScCp1KlaqucXh+DldR0VKJVYAiUyJ/RBSO8UYDvMmYMIqQKMi8/LpSFsSRZDIOaDbaWLqNZdoMekNG4yFz0zWiOMIbb7PcPMnGdkIcK8xOH0QUFYQw8HyPNM3RlAZuxcV1msShQFENwjzGz8ZcuXGFl5/6Q0K5h9W4n7FoUclsHmzcSZz3Mesxk2DIXtPlt1fP8S+ffJKnvvgSg5t9Nvd6yK7km71VvvbSOmdvXOFff+MlfvlPPsuHDjap1V0WGku4tRo9f4cbY48z5zfZCnZRQsnN3iZdf40nXjrHmedewsltjAJqiypBJeaxJ17iLSfvIohj5pYPsKsOWB3sYZoWc51ZTEslUkNOPHSaf/07v0Vve4vXnnuVjSs7mOjITMGPAwZ7ORv9PsdP3kmc5iSyRHd6k4BoEqEmglZVku1KfuF//XkWp5b5pf/xl/nNf/Hr7NxcRUYSW4eb564x8QRPPnOONLdQ6gLDLch1jcJQiPKYKAmBAn+UYgmVNI4RgKppeEFIkqeMgoCFw22cRg1DNVBNSXdvq7xOjjOCQUq7XqG7MWISRDTbbUzNJksgjkvBTCYzDKvMA/t+jCrKE6yiKLCMUtgThhDJiOaMgkKDYOyjoKIoEs0ARVjMzTRJ4oDIz5CJxNZNRKbzFz/+cSzT4cuPPcHW7h5JNGD10oi3vfkehkOfta0+uptiuBGKkiHSHDUTZKHE1Cu4eg2/F9PbCvFGGQNbJ9CgZitseFv8zZ/659zpNPjb/8PPwDjGlAZGYRCaOZFVMI2NP5KsHBcMBmVEp1pTObAwxd131WhXTUTusrOzxtkX4X/+5Bl6e3u0phxM00BRwfdDoihBUQUylexu7xCHKdPLs0RWxtdfusSTT53h/d/9EFPLVTIbGlJn7RWVTv0Iwiq4Pj7HmZvPcWFtRKt2mPnp20hChZvXNwiCAYPhDWzL4/LVSzz+2NcgVRCFSsWpsbx8lIXlk9h6h8biEoXWRNcKvvPHDtAyKwRn17nt9vfxhcc1JtdP0XAeYuqed7KqNZiZ/zjLzfdSt+/Fq0+TmYtYaoVYuIyGLmL9q3hX/zFp9hwP3f9dvPud38OFV89z2H4Ax2pjy4gf+rGPcf2VK+SO4L4Pv4/7HvoYbbfJxA84232FertJEvj86eO/TqVWMI6u8NLOc/yfX/0c36DG0czlUDdg0lsjHg44sjDFyal5nr7wdb5y6RnWYpdg5iiVkwdQGxr33Hsvh+dPsuev861rBas3NS5sDljWDbLA5567lvjL3/dhpps16tWcSrXAMC2ywKdIxgSjkHHwAm5VYxwPiIshw8kOlmNiGR38KEBqMaHcQ6aSXOnRSx225hOuhde5ceVfsbr9h/RClakwRXcH2LUWkaIx12kTJju0Dz2ASPqcffUMWegShn1kIji0PMti+yRqPM32Tp94vMS4GPCmB+/C1KcpqKPIPmE2JM1AN1SmpuaJIw1DaxLHCYo25MihOlJcoVbR0QsbI9dAb1JVj1KQ3ZJtpWkpFTNMC0U1mEyG5HnGaDRhd3ePOErxgxA/8JhMPAb9EYPBkOnpaYLAI4pCrly8xO5ulyiOAQiDgFq1ws7O1v6JsUGS+KSJJJMeFDkVp4ZpQhzmpFmOaak06y2SyGM86RFFKSjlAlZRSqtt2SHI0TSN3d3dW5IzIQSVSgVjP88+Ho/RNJ0sLTP/tlUpST66xWAwRAiDvMjLhWtR3HruskQryZKYIs8xDR3HdiiKgjyTZGlKr9/Hn3gYur5fpgWFcoEbhyEq5UYojiPSNKHIM2zbpCgylKJAKSgRrqrGYDBCM+wyZuZUUFWVRqOBaZhkaYZtOzRbLVSt9AtUq7X9QrbEti3a7TZpGpEkEaoKucwoSEFINL18T6rVGmma0Wq1aDab+5K2FoqqkhY5SS4pFAXLcUhzyTjwmYTBvgVaQVFVTLssd49GI3JZbhKvXr3Kzs4Ovu/R7XaZTCYkSVJK4ZKEvHjdpiz2EajlrXGWZCAUVFXHMCxM00IIlSyTZdRtP56kqSp7e11GwyEyLelC9frrNwYpmqrQbjVJ4jduCN6Y/zbm26YMvfrCM0Xo+1iaQS4K4jQl9APsfW5xXuQIJNs7mziORV7kaLpOpWqQFxJZlGrx0WhElkt0XUNVcyoVDce1uXb9MlkesrjUobe3iWnAwNtCaCoVoZFRIwi3efu9H+exV5+lSLZo2G2SIAE1wa7qbG/uoUgXy8pYmj+JzBy2dm4S08OtV6nXVljbuIlI95heWOCOg+9mmMX8s0/9Q95623GWDpzgwvYVZqeWyY0pfvNL/4b4ap+//cN/nd/82qe49NJl3nJfHdWdwbGWmO3U6EUTXv3ii1hVjb/2l9/Li5s9vvjMs2zs9piyptjMeiwbc3TjAkf0udo1malAzZTUrRYfes9pIkfj5375MR6u1bj/He/h6Qub7GbnuOvOh/j0o1+m6A05WK+xeNsyO7s9xv0x63seWa6z0GzRqeZkjmQ00UjiGqN+F8dS8f2AQgIZ5QI5U4j9lGq74EPv/yhKVeVTv/KHOIbg4D2HmTri8MI3rtBsNvH1iOH6DksLcxRTVRpVi/OXruHmVUgFg+6AVrXK3m6XubkKeZ4RJiByQTiRIAym5mfYHm/gNDTGqyFWbHD44QUufGsVTclRDQV/L2dqukSChl6K62rUqxWSJEfVJKZVYXNriBCgKALN0DEdk8l4DAhMUyP0EpIEDt/ZIcsDbr6ao2oJM4ddgnCEQMXSqxh6jpIXrF4N6UzbxBF8/KN/gbW1DZ544gksRwVRYKgx2aTFRz/+XfzBF/6I1FJBjbC0DNcBVTVIIkEYZMRJhuPUCPwUonKDErkWVtwnmCS4i1UeuedOvvX4Zf7uD/wkX052+dIv/zt0p8xnJ2KMM9/AznRG4S6KIcqcrKxQc1ymphLGY42XX9vgXe+4n1deOs+HPvgQ6+s3efKpDZIsJAtylEyjyMr4lKZpkBeoqaBRN7EbdYQDBRnou5x+YJ7+wGftcoxVzZhbmsF2O0zNLaNbBhtb12jWWjRbbWr1Jr7vl6e9RYZlGdhOvSxC5oIkiqnX6sRhVGZ0dYHWaCHCOnF/m81xRq0V8vy/+wo//LGH+NQXX+PAiSqP3DuDmdg0Ds5zaZCRqTVc3cagwjiFTI0xggFT2hH6nk8QX8fb+11aNYuo/qN8/rnH6Z39Iv/bT/0izzz7B8wcaHD/vf8jX3r131KPhzzz/CYT8wIJTZLIwfc9HKvC3/nEX2Xo7fDSpW8RBwMqwkQ4TcxRl8VUYXjvmK8+/SSmNs+MOo8mKlSqTZqWglOvEgUFL21cwqlNEW6nXFi/zmAnwxwGjGyTbDLhBz7yUSJ/lTed+gBj7zUSdRVdHKZVvZvdjZuExTcpotM4dYtLVy9y14NTDHsudft2xuE3SfOcIL1Bb/IoupqRxS1S2UBqHboipj3t0by+w4p5CvX0hxnFOcOeSt7UmckHWGHM0sFHaBoNvvziP8ERLe44/h6SoAnGDdJ0RDhuYdk5g2CMiA7x2Pl/yPd+14cJt07TWhmwe/M8iTxCLm0Go0vcduQetre71Joaazci3JqOwyrXvV2OzX4QESTsxU+ROBHV7D5yiv0MvE6SRCRphKaa2FaN/uACbqVOGmtMTS+Qpgljb7zPsddJE4mUpRhsYXGayWjMeOzR70/odNpohmQ43MPzAmq1FgKFdrtF6AUkWUSzbSEKG5lpqJogSzVyoZD4u6BWyKItMnIq5jSZoiGzlDiOoIBqtVwQNpvl5/51ko7jOAhEidVWVQaDAW7VQtdjFGGRZZKKW2U0TDDtgiwp4zwl0SfHsiwGwwFxGNBut6hWq/toTEmSZvvdBIswDCgKgaGrZFmy72rIkXmBadkgFAb9QXnKrpYL8jgOicKwlK4Z5j5vX6Koyq3Ii6aq1CpVPN/D2JdthWGIqoCmKcSpIMvKU/2S3pNjmqXRVxF5SRVSFLq7u2XPo1LBMEzSRJIkZYTIMIxbm6owDAnjGMOy6O9bkWu1Whl1EoL19XVm56ZB5hiaXnoOZIn31E2Tve0dsiyj3Wkj9jGnZckYRoMRjVaDyWSCauhltEhmRIGPZZj7tz3/Hj+qCEG9XkcWBXFSfv80TsoSuWki9ulCpm1SFOx3FiQyz4Ay6vSXvu8Tb1CG3pg/t/PtUoa+7Q3B1XMvFFvrGzSbLWResLaxhlIU3HXqNDvhhL1+lygM8P0JrVaDRrPGaDQkS3woMtrtKbzRGNd1mEwmuK5LFHv40YQgnDD2+lSrJpNJn1rNxDQ0VCtHZJIstVDMGXZWX2TKPYgyP8vVi1+lWnEZj/sYhiDLU5r1GSajDJlmdJrzLMweZHd3k8F4m3q7haZXCSKfzbUusb+OVisIIvj+D/84Z1+9xHB4FbfTJp4U4Fh84/pFvvblpzh2xCXv+fzI+76L+tGP8ZXXPkeve5WN7lUO33Y7X33uZQ7XG5x0egT1w6iOjd8f8OraTaQO3Z0+Vq1Ne6Jyfj3gvtM1FFthsJExvFnwN955BOsdB/n7P/UZ/sqH38Kj33qUlfYKd54+zJfOrxL11listchija3eAMVQ8bOEeBJBUbBUMymaPhfPCjodF7M2zUy1w16/y96wh8xzTM1EBjne0KdVb3Hs4dt57E+/yMGl2zB0H5UM2TZYvxKiJCPyPEYEBQ+99TTyaJO4O+HVM1eIRim6qlOkBSQSTeToWoblmgSywBuFWKrL/PwBVm/exEs8Gh0XU4/Jdy2qK1W2LkxQBShmhCYKNK3A6xcgdQoZo6sabtUmkyHVRpPhMMD3I7JcUq1W8YKQgoJqpYLMEoI4pT3bptIoGOzGJKOMLFGpLhdImWLoOWmokwQpMzMuezsRaqHz3//3f4tnnj7DZz77OdxqBc2EnIQ8MJmekRw9+GYe+9o3mFqpECU+QmZUGoKUnCwtcCs2URwTBWUcIPNz4lBFTzWsGkgzR9QbnFwI2UgPoL7W55N/5yd49NwrPPZ7n8WsFURWiBIrRFlBq93mze9eYXFpnq987kla1RyrMBlOfF66NuH0kRrX131uP9bBMQqef6YLCMJQkPsFSIVUZlQcmzzNEapCqkgczWX2iMVuOmDhSIejczNoco8+QyhC+jsKMtUZj2NsC06fPkJhShr1GRxrihPH7sUya1iGzWQ8YTBap16vUsiybKhrZQfE1A3UIsUQGUGwQasCnfY8N3tbzBUela05Br7Jq2d/A7HksJEu8uq3LnHH0REVO8GyDCxlgZWTB3Fbj6DaJ9gY9fD1CZ28g6odZXf316mrZykaH+eXPvMZPnTqMIcOHeb4yiNcv/QEv/qbv0p7NiNQG+x4CUvLhzl65AH2bpzlkdP3oGYGZy88SaVTIxIWp297CPKM3Fkku/oUZnyB85eu0A8PM3bWIYupzMySpkOcAg7ahzDd+3jiyu8TXgoJBkPuuO8w2qG7yIxFdr0d8tUX+O8+9ldYv3QdsoJKXRDJDUyxjKNXWVu/gGvfRm/SpVE7iRdfo9rUUOUUw8GQYXidvfi3MBWDLJ1Qaegk8Ty63qHqfg+rySa3VR5lLtLpN36CSTWmlatsrv5ztOAwhw6+lc3eNnmmQrLG4UNvJwwlmmLSG1zFqUxYnLmL1dVN7MoBomyC0trFim/HEjXG6bO0nWn6/SmEajAJ1plqL1HvxNy8sUWaNDm8dCfnXv23yI5g0Xwb9Tzhua2vsXRslnxvhSguM+9xnCJEUWIrU3ArdSbhRYQwqFbmkalKkma4NYvRqE8hdFTVQOSQJBGanlOvVUgSiaqaDEdDqlUDmce4VZeLF66xfOAQo9GYmakafjikKAw6nRa+F7G96VOpqEjVwVISLNWk238ZVZvDrnRQDAPfG1HkOe12m97eoCwX76NHh8OSzlOtVgnDACEUNE0lTTMQORVXRaAz6A9QdQ2ZGRiWpGK3iePwlhFZ1VSqboVin+Yzmfg4jkMuy9u9LMtQVUEcxzhWhVrdJc9S6o0qeV7m6MMoLuO2OUiZAjlupUK43xuIwggKlQKIkxhF1anWaow8n3qtPCiCcsGb5zlpmt4qW2u6ia6bdLtdigKazUbJ/JcpeZqU+X0knuehm1a50UszslSiCAXLsjBNkzAM6ff71Go1DLMsfCdpSQxqthrs7e3dIjlBjq5piALS/cjTcDLGtm0stTQNN1vNMkKUpvi+j5SSVquFoihsb2+XluQ0olZxMU3zlm/gdfGYppU4WSklXhAgC8HUVIckSYh8H0M30FWNPJcYpr7/b84QQsEwyhua4bDP3/pbf+eNDcEb8+d2/syxo+urN6EoCAKfMI5K9bllc+7sKxSmhWoZHF45xMSbYNsGe91d/JGHZpaEje5eH28yZDAoMHUFnRShQhgGTLwhc3PTyDxCVVyyJMJLUoogxswT9qICkW/TqTgk5g5aYNCpHkbi02goBH6Io1UQ0mVhziGMMyxTZXvvMlIWGIqNU1jYSk7NdTEPp+TKEhcvnufQVJ1LL32T5lSHmfl3cObKk8g0oZ01eXilw96bT/Dsc0/zM6ceJC1MjN7zvO/0cf7kxoiNnW8xeeFJ7p2a5/JklS9P2uhba6imx8mjDzB1RPLaC5fxhIahxJxdH2H7OvdM3cX54Ra70mNbTfnrn3qCj167zvd/YJ7L8RZ9pY6yus3qhS0ikdE4XuGy7zO8HmClMeQZWaoxJsbUbaSjM1VtYsqAZOKxsTnkenqJhQPzTM20GAcTwjhBqZnU622qlRZPfeVZGq06vhhRZCYdy8OZq+FdHzASCUZ7juFWn9sbc4zmTK51x+hFjmk6jIIJhm4iYxiNItyGiswSIpljVCqowuL62ipJGKGhkvRTKisWUQGT8ZgiScgVvbRUNwzQM6IsxlIkrmtAkZPnpRwojmKSNCbLJI7roOplPtUwNeIkJQ1SalMm7VmdG5f7RH1JZ8Yi9HOiNMbWbYrCK3OtmKzeGDE3X+cH/9IP8qUvf5XHH/8mqq4SpjGaAE0rCLKAw7c/zO5WH9VImOxlFIlNrerSveKR5SUtIyBDEYJGq0YWS3RNwWroSD8g13VmT87iba9RVU/y1qUpPvf8VT7/u7/Nh3/4O+hP7uXaq2fwU4WGaXHPexqsHJ1mezPgTz/zddqNhNvvvI3nH79OEApIFWxXpVqv4w0aXF2/jqrr6JpNmkZEeYK6/0dM1VTyREKhYGgmSebRGw2ZPrjEXadOM9oI2V7fRGlGbNwEzVSwHJW3v/Pt3HbiNr71/CtMNRwWFg6gKSaBN2bt5g2qVRfbNrAtjUF/j2q1iqpAkadImTEKJuj5LqtXbrLdH7B06gjdZ19GrHp4UYDIa7zt5Ck+39WwmOIdb34L0jhIbQEunn+ZY4uP4BcmyTDA7F+mPT/GsQ8zq1mM8wBfXsJpP4y32ST3/oTvfeAwqjOLkUVUA5Unn/kD7j10F/fe+RCffuazhOmQzWvrpFGXh0++HcKAhSWVR//0CkvaCorjMOnuMFedIel/i4m3we51n09vXUTkG3zk9h/mzJnzTB/KsN15zq1qzB/uMlX4vM15mPUjY55/5jq/+YVXuf+RER9/55tRpw+yNvUQn/v6l7nr8P04wuL6xhPUXB3XneLazXNUG1P0grMoyjGCsUXFXkEGr6BoGYqSo2sJRm5hWSl5vICfXGF91eHY6SbTnRdoB3cTDtqM5o+TCht388tMK2vsmbt46d0UoU/NX6F16H5Wu7/GancVkS5jWAPMqo5qqqx3LxLnY4S3yPmNVQ4VCqHxFNPOnTjSx5NbTDduJ6GLZdvs7exguQ51d4FJ0CPJVxmnW8za70LXEta2PofrLpNF00x3NNbX0/38eQioGLqNaajklLdqnfYUvheQJgqGVYqjarU6E89H0wQiV7DtOknqMR57OE6FNA2xLI0CSDNZLggNQZxENBpNut1NCpFjmBqjyQjLtJmeqhF4YzRTMhnGoA+5fuMSt588wSQcEvdy5uanSJKEG9ev02y1mExGqGrZlXNsC0URZFm6TxQqn1VRdKIoJI5ypMyoNxrEaYSumUz8XQytti/9UstTdlUwGg9RVZXxeIzjVFAUBYGg3W6Xv+eSqNx4BEFZps0y9vb2ygKwpmGYFmEY7UeTjLKgLSWarlPkOYZRlqH9IMAwTVRV4eaNGywsLpAlZZHWsi3CIGA4HOI4DlNTUwDs9YbU6ybtdpuiKKNNSRKXpe5EwfdDUpniui4IlTCMEYqGoWu4bgXHcdjZ2aHVat0Sp41HYyzTxDJNsjRlZ2MT23GIg5ACSSolUtfRFLW0UMv8FqVoeqa0OXueXwrRsuwW6Wk8HmNZFq7romsaTaNO4Pu3itcVp7IPnGAfYZrg+0EZmdIN4v1o6+zMLJ43RlCg6RpCgK5rQM5kMsEwSulZq9X5z1qEvTFvzJ+3+bY3BL1ej+UDy2QyB0Vhp7vD/MwUS/PTgEoSp4w2d0jTFGnqqCkstGcwqjbdQRdFSKY6K+xsbSCzlAxI45Q0LRv+QRgwGvVQRYFCQbVaJxgXZEqEZUkUOUHRqqiOgYhs5przxIwZhwNqloGBTRyFeEMf21bp7W2T5iGqYjHshexubLM024RGjfOXrzE10+G2mUXSIufyaEhrEtFpxMw1FhiNt5mIgM3NPWq54ORdJxiaFpkfcWHn69Qby7QTn7vrtxPRJchdgsRCHyWkhsqra0OCwYscv/sgdbPJeHe3tGk2BFGe8OtffJz2XId3PfQm9rSMS69d5tU4ILrW5W984H203Cme/+YqodJloeOiVhVWN/YIdhMWl6eI8ph+N0VTdWSgculiF1VfYKbaoRtMqJgpwiwYDIZMQh/LtXFMB6FopFlOf7JLdLOHqDsEYYI/CVm8a4ZsNCHPcqqVNnosGUYRei3mUvcG3Yshc4bL9d4Au1Yym1VFwVQ1slhi1w0sUZAmBVGaYBgGFdNk3BuTegX9boYaalT1AtVOKVJB4OXkMqEyrWBWLdqVJrpICSceUgrCKEG3QNVUFLVkkY/GQxRFYFd0gkkEqsH0fJPRcEjq58xM19nd7VKfsig0kKlEV00UBIVMWZib5QMffA//6l//Fts7fayqgaLpSJmiGgqqApWq4My3LvD2d59gHCzQ2/II8zHjccHssQbNORdbr3HptRtksUKiSbwwoKE3sFQTXJ8f/cjD/ItvnKFTrfG1C69xcrPFL/z99/GLn3mNX/3lP+a7/7vv5RtRhevRkzz8pgfo3KYgUHn2yaexNI2VhaME/Rk2V7foj8Y0Zy3Onx/SbrWZ+DfIcpui0IhkSuSnFIVAKIJMSuI4RkqJrZhoWYHZMUnygpsvbvG2+27j+s6A1Q2YMpY4ftphZq5Jvdqg5tbxekMOLU1R6DajgQ/5iOWlJRbmWgxHI5I420coSrxJmaOmEBi6gRAqkRdz921VqM8ykidZbh1GvWvIte0RcneA4TS5Y+Uo8/dXOXn0Nu44fD8bvTXm3vkAU2ZBnuv0woRMpISJh5YUXJys49gCu7GEKTKcudsY+Qra3rMMVq8w++Yf5Zf/xf9EceghXjv3KpdWf4PG3DKnTy+yOdzhxMpxjh88yu/+1r/lg+98F6fvuoe8UmF5cZlkPGCtt4awNI4cfgc70R/QWhe0Ww6G7fPgHcskROxu7HJy5ggH9YjdC0/yxLMXKOyCg7VjtN5/J4NRyqe/+SpvPply8MT7kZHF1k6X2VaVZmORghHrOy/SC65Q63wHanESIRqY1S2mqndSiIjrN78FWp2h9xq6I0hTgW4UTFXfxlzzYVTa+MlnKfwlpirfRSTOsrb10wzPdhlrp1m6/x2E1gpe0oCGzer2S9j1FM0ao0yWEMZVFFWS5xFS5lTqoHMN0/8WrvEu+uMWvfgG0/Y842CNIPw8zdohZJpgWRqed5PbbjvB2rUWN67eZGZxjoqp4A1yeqMaR+90GOVnybM5VHWhJPHoKpZVQWYFeZ4QxT5CMRgMfVRRQSigayqTyQTbtsnzlMCLUFUDz5c0m+XJ/Gg8ptNpI4sY34tQhIaq6th2geNYDPoDbMMCxSHOJsSRIPB6tJsVkgBknjAzNcPexteYnl1Gt2zMPKZhV+jvddF0nXarSRD6NJtN0iTbJ9coaJq5Ly1TysWkYD9SY+6/nzlZlpS5c8Wi1WqgKSqG6RAFAYoosAwbhYLuXh9V08vbgTxnOByhKCqKUDBNHdMw6A/6KAqkSYKiiH3spSCTE2q1Gkqakfs5tmXcou0Evo9p2RQUCE3dvwXIsC2VyB9hOw6FKBiPh2iaxsrBA1AIwjguvQXNBkFQLpqjKMbzJmiaQrXqooiSyGPIUg4mZWmGVhWVMCw9CJ7n3Vp8v44JNXS9FJcBQhHYlk0U+rewp5ZjQ17eUIzHE4SisLS0RBRFeJ5HlmXlLYYoyUdpWgrbFL3sk5mmjrEfDXIchyzP8L0ABZU8z0mytBSiCkHFdVE1bR+fmpGnKbuBT7VauSVRS5KM4bBfmpwtk729bilTk/I/tTR6Y/4js7CwcPrHfuzHdn72Z39297/UM1y8eNE4fvz46aeeeurcm9/85m+rDPKRj3xkZTQaqV/+8pev/ud+389+9rPVD3zgA7d1u92XOp3On5sP0Le9IZidnQWhIPOMghy35tLtbhON92jUmqi6jqIbpCSkmUQ3NPw0JBlFVDQVPwy5cX2bVqfNaDxhZxgABUIxMUyXKJJUa036e12m2x2iIMLQJKlZpWGBTBW6/SFW4tJu6uz0r5JrGrv9PoZQyLwJ/mRCa7qDNyhwGw0U06A/ntAL+0xVW3hJxrTqUJ2eR6oZQtOpCI2wkAhTZ9jbItJNciUlddp87bmv8ePv/CCrCrx47nMckRoHWseo1U8wZ6R8a+OPMIuctnWKtKqTaUMu9TZYnp5nFPZ4/lsXOH30MPWqwerahHpTZS+IUHWNrBjz/DMvcvL0CY7dcYStS+fIa8f4a//nb/PJD9/He378LTx+bpPeOODmtVX8jQBHM4mlzrWdHVwcHNMhC0NyTWPtyoBGtUZhCQxU/DCl1WwSjD2CwEfVVVRdwbQtCpFTqCaGLqnpBnFVI1Z1gq2M3rbErBnMNXOKisbN3TX0FYtgN6az4uAGGYHqk0QpWqrhqBZFEWNIFUcRdP0Ew7bIZYFVrRB5KWEYkyYSFYsii9FVldCnZGsbCnatgihgMgqJx0NUlLI0TCm8sSoV3KqKYZqkeYqiQV5IUApa7QqGYeOt99FEzNx0HS8co9kauRDkpARjlTxNWVme5+DybfzRHz7KOIgwqyaZzIC0RJcKlTjJUGXBZNLjq4+d4c477kDG64hxztHb53jwA8e4sb3Kay9e4cj9C9imTRyEeBOf4cYYPDi8XEckAbOiws52H6vp0FZUpqo2Iz/h3OoG2q8+ykf/9nv5puczPN9HaXQ49+I10jHMtetceWWV8eAqnh+jWpAHKrmpYQuL3X7EyJvQ7NhomoHXE2iKdsvaKRSBZmigF8Qixch1lpYXOXX3/Zy49wB7k4ucevAws+0mjqthV5rkFAzHfQI/xm3MMpzsMdVuIpOI9fXrGLqFolrkUiNNYmQmaNQbJHGCH/hglxImWT9GoFdIJ+t87fHf5Mh0yvZeC0eMeHDhNK3mNIeGV1CuP82V6xdYuu0e9Cxgzj5FWLiEoYOphtRsk9xuEAeC5uwsXhpR9PsEWkHsKDjmAUx7m9xa5dVXvsZ7PvajNPUqnQ99H088/xLPP//vmOwG3Hv6HvqjlE/9we/Rbrf45sXXaLddNE3j+SvP42UXaelTHKye4IL/LeYOvZs3rztcTJ7Al3D+0heZmVrk8MIMrhNy9UyL19a+Qe3IYQ4vLJLHBod0jTDq4hHxyqVrbIW/weH5UzB28YM9wmSN/uRl5urvYa5zN0m2jq4vk0kFKUbk6jphMKHTXqLrvUiar9LQF9nbMlmafTsH5u5ld3ADdVRDBh2EJfELm/GNJ2gaPv12jWtcx7iuMn90joHR4ebkHHblCNW+g998noNzb2IS7KLnc2xvr9FwXYokZa33MoWfUmiw1DnJJHqCtZ01Wk2TBIXxYBPdtkhjBW93h7S4ykL1BzGtNQoRYOQTxvk21WYFMoG/MaLaUimKRQzDII59hIA0TUjTGKFmOFYd03T3T9dzEOXiOo4zpjpN0jRmNAyoONa+XEyi6yZhHGAYpWnWsV00NUfTFEajPkIoWGad8SQmF2VZNU0iZKbhOBo7vSGqq7PTvURz8REySr58RTNwbJMgKouziqIQ+B5pth89SYuSqqfsC+p0jTAMsawyq56k4T5LPyvt6qaOopa3BlJKVF0hTWKCICdJJO32FKphkKYRWZpRqZR+AgGYxn6xt15FU0q8aJHnNBotVNUgleX7pOsaw+GQMErZf0w0vfRGREmMEDmQY2gKrUYVfzzCS0OCXOBYFsY+OajIQdEMhKqR5ykFkqLI96Ve1fL/yVENIMtxqg7+ZIyml5bkMEiwbGNfGNanXq9TFAWVSoUkSRiNRyAElmNjWhZxHFGt18sehqKWtB9dI0tL6VoQRTjVKgiB75feAtM0kUVOHO9TnnQdSbkJTNOUyWiMZZlYtkUuJaqi3hLM/XvjdIFhlGQikefoQpBQoOkKlYpNmsVMvBEUpbTMvCVKy0iSGMuq/Fmtt/7s5/Jlg52d//g6bmYm4+jR/yIiheeff/58tVrN/0t87zfmP2++7Q2BroBtmRiNOnmcYlgOSpETZTFFnBDKhJprIQrwgxCtKEiSlHAywTZNUpmiGzX8UGJWKvjDHnHoU7MsXKdOmkUIWTDdnkVTC7zYJ84lRa6hSx0hHKamauzu7BJWBUWuoAiXaqXCjesvUBEKmmmzN45oGwrjic/cwRMsTtlsNzaI/YAknrDRvU672mIQq6SjgMgqiLOQQtHQTRiLgM2dDW6fb/EXH/xOFg+uEI1Cbj9yJ4mf8Pz1b7Iw2WDxwBH64wHj7pjNp36Ho/MOS/e/nWy4x+FOkx1RpbfbZWN7g+Zsi1picf3CJRzh8JYHT+JaClurIcHIY65hslNtgTKhvjLFP//y8zy4c4PO0p2sTxIuXF5DsxQUXWU7GlLX6xRiglRUvChEVwrQYGu3j2yYVFwT3YoxTAOjahOpMSIvMEcGerVgmEn0qoJaKGh5QaprmJrO1LLKgZPz9D3B1lqEInQ8U2MvjAl2R2hHKxw6Mcvq5gZKoJILySQI0SuCvBfRmK6Sy5g8ToECbzKm2q6W5eY0Q9FzklGBzFQSmdKZn8IwBV7Xx++FFKmCKJTSvKmWxk3VUEsudCzJc0EhFXRToBTlf4aZEYclXQQFbqztsHJwkb6/QRAXaJbGpCeZb0+xMLPAC6++yCjxqHWqZXY3yEBR0BSIo4SZTpVarc7a9VUmfbi5dZ7bTlroxgyVAw2i2GdudpHi9gbdtU0mwYCGazFdn+OZq2Ncu0Cxbb766jZx6tE8oPDW+46jPb/G7/3pBe48Ps9ga4drYZcL557lI99zjM+nCS988wXiyTaiSFi/0sUqdOp2haAWMfYKJuMCd8oiDiKCcYZrGdSrJVIVmZPJHE21SGVKXkgsy0QzFWpuFU0psMY607lLp6JQZEM2L+3y7OUhcyvzvO39b6EwLOLCJNNjxmkfK7fpbe4RRiNMy8L3I0zDpt3RqTkNjIqFrmQo8YBKA1QjxlELCrpksUBRYt765nsJwh2MFYNf/5UtdrtbvOWUxa/93gssvanJRIz40IElzn3rd2lVXqQ2d4LDB+9gqjJLngkkOgNiFEzcqkqqphSyQMQhk6KHUz+Nm1Q4d3WNeP5pFut1lO4RlqccxredxrNrJFKyfmmNmalpdNuj05nl2Ve+SqVeIc/qzB1cIJMVcnuB2B8zYza47+F3cOC1hCILiGbuYJRJJnmVVOp0lh7mWOPzvOatMu2cYi3ucrx6lNUkp+Eu0BGbZMo6xK+y7eWMd65wdOUIR1pvxXHewsjbJs6+iqk2aNba2DUTTQHDMphMxmxsbZOaLjPtNxNtVUjjKQb9ENcU2LOrjIYrDPYydvwL1NsRURET5hLLMHhpcB01vw/HrOCYM/jJDVLFJstmGPhP4GRzSGuX9qEFin7EaByg2SYz9hyjwXVmFk7SHQWEyjVU5RS6ZjOJhkxX2yxVW2xms/SHXTR5AdsKEWoHI3cZDV7FshyKQmKJOro2jaHYqNYmYz9ChjaySBFaydE3DANdUxGmThJnKEIFBRQlL9n/RVloLUTpBVCUUiKWJTmaImi2HMBmOO5Rrzbo94a0m3P0+pP9yJWLlAMsp2BzPWFpRaILE28yRGoGljlDEsdoCvhRiF2x8HwPoag4dgWhCPT9NWGapLdKtlmWgShQVIFQIMvKhWzpJFCxLbt0viDIZUaaSvI8JQx8DENHUXTS8QTNsBBKjjcZU6m4uK6DoiilMyZXMAoIohBN05FZhpQFBRlCERRFfouLL0QJCYyiiIpTocglFBLDMMhlyvbuLqpQsAwD23QwTIM8TfcRpaAIlbwoCCYTTAUcyyZNYgzDQCgloS+O43Kjn+WksaRARYj939G6QFFKY3Cj7qKoABIhFKquTZ7XS9qPppBlMbZjkOflpiPNShqQYZQbCmM/shOHAZqiotgWhmWVGwFZEMYxpmWSFjmKEMRxGZFMsgyRqlTrJkLVkDIgTSLyIieTEqGqpGmComuYhkGhlD4JVRN43oTuXo99PcG/71bI1/09Yr8Dkv3Zrbj+LOfyZYNTp06RJP/xfoNhFLz22mv/JTYF8/Pz/5W+cW/Mf2y+bexoa2YKqSr0fI/RaILfHxOOY+JYZSJhnEguXr1Brzdg3B9iC4u52iwry4ex3SqGaeNWGxi6RuAN0ZWYqZZNGk/K0pJuMOgN8MYevjdGt3TsTgOI2NpZZ3d7g8SbkMUew+4Qy6mSFjmL7QYLy8ehqJLHEj/cQ4tDTp98B3Kos769ySRJGEUjrm6sE8Ua6STBymO2t1YJ+n10UyUUGsPYpDcoCOOc85tXGWbr7K5dIo8Uxl6BbU5hduY4v3WZp775GIedDnmicOKOw2BM82AD/ur3fT/TUyvcf+AwJxeOoJrTCGaYW1zEFoLTlQp/592f4K9++Af54e95Nx9901286+Bh7lo+xPbOBnMzOpUjx3l1HS5cusHG+hqalVBMItIYROaiNSroloOmq1iOS5FpJFIhd0wUR0PpKFTbFWKZ43sRUZySqRHNis4d801My+Odf+ER1Pl50pqBphYUacRUU3Dqtgbve5vLez+wwH0fvh1nxkXuJHhezuaGRzTZRis0ZF+lpqb843/897j3wbuIMoc4z0EpkFmCpWukYUAuE2pTVSzTptBTwmG5WXDbNmiSXndE2A0xFQNRFOS5QBalo0I3FSzHIgxToiBF5CppKhGoyBjyVCBEQZ6HyBRSKRgHIf44pGY7mIZC7Etmp5qcPn6Eq2dXIYowcp1CSPIsQQYpZuFwYH6FYycO8MGPPsRd33mS1nSTlVmFk8eh1fKpVjwcQgQD6lWXal2ycnSJZnuBnd2QZ792HTFOEUHKuReH3NiJcToOkTHh4YePYj64QnAoQxhrKLpC4eQ8/tRr/MY/eJo7qjZvf8db2Twf4ocJmZaRWgWxjBG6II8LDEPBVjXCOEM1EkxT0Nv1mOxKlNxAoJDlKaoqUVVJXkRkSUIhcyaZx2tbq/yb3/9Tbpzd4swXznHlmT6VtkOmxZy/coHXzr/Mteuv0t/dYLS7Q+CPsS2NatWlWqszO71IvdokjUL84RWKdJPB5kXS7RtY/k3S3ecYXXiMrRe+xvXnnmP9qSfxLr9AsnORY+Y2P/neB3nT3W/i+XM3cGfnOXnX27j/oQ+h1OY4dNdfpqfNcWk8YNPvMok3ydV1pHiJuTkNx2mgJgpG4aJpFhXbxURhNN5gfv4A20R87ckn+bV/9yv84h/9Ks+f/32Wj3RominnL30Fze3x0sUzXF+9xHLNRptYTKKCo8fv5NTMd3Gk9QgpVZqtBi9c+F1euPrrCOGzMH+Yo4fuZ6bq0lY6NJQVKvNTOJ0fYKZxgK3xhMvbGwz2LlBrtJgogtTfRh85bI7WaR/IaczMcOnigL2xQ2KGCLVKtXKUWqXCYPAqwXiIqVUYjDxyUSNTpwjkHGlm4bojFDFEz1T611KkmuBnO6RyjG0UhLnGIAyQqUlFpqCqKMYyishQdRtLzSkqPrpZZS98ltwzOPfCVxlPPLb7O3SHPoUCqiqoWbC993UUpYHMBEKFYW8N22gzSbtk7meR7ZtMLbyHtckFdnuXqLsHGU9G6GabmrOE7wvq7jwb233qzV12d67hOlNEUYSqaNhmB01VSKL4VpREVVSSOCOJErI0pigEWVrGSHRVIZMpMzNT2JaBIGcy9gn9CCEiRt4OhlHBdV18P0I3LUzLxjRsoCCKfWy7w8gLOX58id7oVeYO3Iah6yhoZHFBrpQCrzQt8/GaZkBRxoRUzcCybQpyTNMgiiJkJrFtp7QC5+XhZykLA5mBaehEQfk7TlUUcilp1OvYtoNjOxiGiaGXkk/HrpBlCWkWE4QevX6PIIxIk4y6W0dVNIRQUDUVXVcx9kVkMsvQNY1ud5fhcICmlfI2madEgcfG2k1GwyFOpYrjNtCsOopZJYnTW6XkKIiReUGclAciaZoRhRG+5xEEAWEQEkcJWSpJI4mCQZYICqlCoRHHZdFXiALDUFFVEEhMQyVLI5IkRFNBoSBPYwqZInJJkaU4pkm70diXmCW3SteObaEC/mRMlCZMfA8/DMikxDDLn0XFLX/elmUTpylC0ygUhZHnk2QSwzCp1+vohoFhmSXRcP/mBUprdZIkGIaFEBq6bqLrFtVKnYrroqgaRQ6qWkrlhKAkUP3XODs72n9yMwCQJOI/eYPwnzmDwUD54Ac/eNC27bunpqbu+Lmf+7npBx544NgP//APL73+moWFhdM///M/Pw3wgQ984OD73//+Q//h14jjWDSbzTv/2T/7Z20oZXk/9VM/NbuwsHDasqx7jh07dvI3fuM3mq+//rOf/WxVCHHvpz/96eqpU6dO2LZ9991333385ZdfNr/d586yjI997GPLr3+PlZWVU//gH/yD6f+71/69v/f35prN5p2u6979l/7SXzoQRdGt9/r/07P+eZ1v+4Ny/dw1RMUhTmKiwCOLQqYPHEBoGpVMx7UUFqbbaIZOEiVYhk0cJ9imABRkmpJHkkwGRGMPTQfUnGrNRuZpeUOgpHh+wtzsDJqhMk56mJYgd3WELChkTugn+H5CLkdcC8dUnS5qc4Fz577OQyeWUYsG7cV3cunskxh2jUxxGcfrGK7J9PwRtFQhy0IOONNsHhZohYppzRLuDhgLm2uDHn53lze/aYobNzZ5eOYIs6eOcnV3lSxNOHb0JL6asXnhGs1Ex1RNDh48yHNnL/L5r36J99zzTh48Nsc3zr7CxWev4ysjpjtt1vZGzDQU7njz3fzKb30KU6a4LQs1G1Ofszh97E08/+yrrPdCZpsJ3pTG8xdWyXtj7j19kuvzITe/uormeUSOga0nSNciU2PUWQWzaTJddymygrUbm9TdWYLRGG9nSLWpMnWqzm5vQvbckPved5yuSDn6zhw3LXjhUYVBV+Xx8xPuOhEzc0rlO+5a5sRbF/jT6+fw/R2KTFKMVdqHXTavDDjQmOfn/6fvAUvj0rnrSLFv0ywklmGXODcB4/6Qilun0DQMBQxF4DgOqDq93oAkCNFRy+KeTNE0BYqcTBZYioY/SWg3W3gjj8APSkpHlGKoBrmEJEtAKuQ4OE5KEvns7fWpZQ6KhGalwtzCPOcuX2cQjtHdGH9sEfY8Dq7Mc+K9hzCdguZcnUBG7MQROztDFt7URl67xmz1MGt+Fzcfs3uuYBI6VKuvshrvEUqbZeFRnQhu7maQZiRDlSgLKLIQvxBktPiVX/gid7SrzM3O8ejZTcwM0p7PxIvYsT1+5Rf+hL/5t76Dn/1ff4b/19/8X5harCFjj4GnoeltTDHCoII/iqm1FaQq8Hy1JIkkoKs6mcgp9U9lF4FUQeiQFkOogFtXyMKYvGJTn7axZExmDdkebLPx7A1a7XlOnrwL09IJwiFGzWAYhHSac7SbU3R3tqi5BWkyolLRyFOfIAnx45gL1yRXN/sUyZBpdKrNBi9f2QDPIQ4KOvWId532ec9DtzF31OajHYvtkUeQutRrKpqiccx+G95kyJPfeIo/vD5kuuFy35t0ppsXuOvE97GjGmiZwigtiCKw9RZxAf3hkDuO3c+/+8PfIhx4vG1WxTMKfu+zj7Kxt8N7v+MDHG0VvHDoLBfOu/zmL/wRb/nIPew1XFqqQn/zs9TrU3hS5XryPM+fvUE8yXho+RHUq7uMJiHTJ5Z5bfsLnDCmETvTOO0HaHomgfA5cfxecllgt9rkg6tkwmU9eZpluUC992668gLu4jYjKZlL1tD1WXo7OYcP+6iqha7Ms7r1GoUo8OKI6en76SgaF889zuG5FaJQYe36Lu2WyY0rHucvrnLs6El0TWNrO6LSmsawY3ayAmfmBMKZZjIe48oxleAaTuUCe1GfYTyPmvRomxb++lk2RzsYioMrTTJDwa51CFjH9yKkNkPIAu2ZGfLQY0d8g1FvlmrtrcTWWaozLbbHT1Ho30lsrFGb0pjEe1RlhNZJML0dxsM6ptIg8gJss8AxbQqZIURAoTWIghS1UiDzEmWbpilCUSHnVolX00u3iZQ6YRTgOIIo9AjCNoXSpVapE4UqtUaT3p5PIXMUxSQMMgy7iqqFyMRHyDZJ3icqLlMUj4CIKFAxDRtNNfCDHu1OhyzNyUVGUQiiJMQyTTRNIU0TfM9D10ss5XAwIs9zVE0F8bpboJSbjT0fp1LF9zw0FRzLJM0KhCgX0ZZll2JFpYwhWbZxi/hjWVbpI9g389rCgUKgawZxEhOGEdWqu1/aVVlcXEAoBVJKNjY2SJKUqXYH161RrzcQqspkXJa049EI09mPJLlVsjQjB5IkodWaIo0jBr0+1WqdMAxI4gCnUinNvWlO4AfYtkWa5riuzWSSEMcpuv56yVojy1LyvLy5yDK53zXKUZTSDry3t0enM00YhvsYV8q/BfuTpCmNRgPLthl5PqIoqDoVZJ7j2g6mVVKMZJ6Qy5yKbZEmKWmWogqDQmZlOkHTQFX2Ueg5hmERRxFy31+w1+tRrVYxTRPLssnSEu1KUVCrVoF903FSfibLm6A35j+cn/iJn1g6c+aM+zu/8ztX5ufn05/5mZ9ZOHfunHPq1Kng/+71n/jEJ/o/9EM/dGg0Gin1ej0H+KM/+qNaFEXKJz7xiQHAT//0T8/+/u//fvuf/tN/evPEiRPRl7/85eqP//iPH5yenk7f//73e69/rZ/92Z9d+Ef/6B+tzc7OZj/2Yz+2/EM/9EMHX3jhhf8oOec/HCmlWFhYSD/1qU9dnZ6ezh5//HH37/7dv7s8NzeX/siP/Mjg9dc9/fTTNcuyiscee+zilStXzJ/8yZ9c+eQnPyl/6Zd+aeP/m2f98zbf9oZgenGRszevstxqozVtvJ1d6raBVEyi0EdTVWQYE0cRfhSSZH0GwzG2KphqtfDHZdnIcR001aFRqxLHY8LEp1p3IMuYnm2SZmXDX491tCwrLYmKQOgqQZ4wfWiJy9du0mwZ3BsdYZxtkY56HDx1AKNW5fj03Xxlb5en/u2XeNdfOE6lWiUZVSmqsNhx8WKVrXN9ZqZ2cG87RPeVyxx7eJlnbm6WmDQ1J8Vg7coVwsjiTz//J1TDV2jOH+T61S2uPTsgSgVZc5EXb9yk6k9Yv/QCMoWLUcyLf/wnfOjUUd77obfQ91MsZZarvR6ukrO3GfKVb75ApVPl6o0d/Bcj5meq3N2c49f+919nd21EZVoiDItD9x3m0rxOrGpcvbTG9373I5z4yId56tnzPD26xPgGzCgJtYUahe2ytTFg0N2CYYi+m6NmfdQcWq0a3nCEP1QYxymj7gBroHPt+jpV9ya3LRZEkwZbYYQSjlgvVLa3phkmEa+8/EVOn1pk9/AU2fEhw15MGFWoFi4/8n1vJ4kCfvFXH2Nns0d71kLoGrHMiccTfD+AIicK8v83e/8Zbnl61mei9z+nlcPOqXblXNVdnXOrW0LqVkAtJCEQCAxGPsDYmIONuYQtYAaMB2SOdAjWICSEQEJIQmoFFLpb3a3OXV2hK4ddO8eVwz+n+bBKPTBjH+tcB5vhWM+n2nvtteq9du1a+33f5/fcN0LqIGdAMzW8ZCCUaW12SWMwFO368JyIokjXFfICKZACkgiNWovhSoWe3afV76OJEoHvo6oGsiohSBHEIZEfYGoqvW6MG3fA0cloAf21ZVpRk5QEwUuZGspx7P5h1DxkSg0aLZ+L1zZIRI3SUJ49uycQa6tQneHKpSap73KxHbJwpUucBGh+ndLBkHC8xLk5m/05qGwXaciQ6hITpSp7yzJHd04y11GYv3qNK/Nt7kgnsdUW1h6LVkvAboqEF0Nmhwt85NPP8LPvKvLvP/whfuF/+jcosodaFXDVCHvNI5/PMrN9Py+8/BKaoeDbEVIiEPkJoiaAECIICbLCQMiGgq4rGDmF0liVrUvrjI+W8QyfenEL09MI6zH7du1m5/ZJRkfzLC4vEXhZZmcOIQtZPK/F2XMvMVTNsmfHdmYmpllZXEbOV1B1CVH3GJnU6fk9Dt9uEHY1njhzHE1pMdLeztlGm3w1ZKPbYseNb+T3PvZbtLIWD735fnbvvImN+iJOt09W3IaozZOxKlTGpjl/7ThnT87RiCd59E+f4/67etx4+F3Epk9WHyYJBUJFIcc4sd5DI+HAtmG+06tx9tQlhqu3E+W32LHtdlbXW2zWizQutXnvI7v4kBdwPPTYHS3TtrfTXE+4udxgOjtMvXczM0MS1zyBumahkOXZxU9y+9hbefjgP+WlxS/Sr/fZ3nmG/ZP3EVRGUdt93O41+naNoiJyqfM06rhIUroTXSwTdgqMb4Mdo7dRDBOarSU69ga69Hosoz0QM6XjONE8CH2KuoaUzGALFbbqi5SGRrCsUYypC0TLs9x7516uLj6NkR+iUDJw2cTvbcfMCWzf9U763TnMuE/S+iZnlxvctfv1JM0vkkge1tQw9aUVVMWglBUomglyaGHIFfz6EJuNFrMHhmklKrGf0gk32dpYRCrczK6Ruwn6ixTMPL3iCN21PWSMmIuNC3hOkeHhKn4a4Cw5BL6LIQ8TRIsMDauQanS7DogtBFwEYZh8oYCiinTWVxFEE1FQEFKJfq+PYapIsozvhYCEbbtkrCyGHmFqWUKvSr23gevFREGHTi9kbHSc2tYmpDq5XI4gSug7PoVMTOBk2Ko12bXrGHY7TxhGSLJCnLiD/zeiQLlc4eKFKxhGBl038Vwf3wvJZFSKxSKNRmMQxUkSBEFC03T6/S5hHFIZGiZNBUxNJwgCals1MpZOpZSl0egN4q2yjOe7aIZJq90gDmJMU0c3BpZc0zRJU2EgBQsDer0eaToYiLX7No7rUiyVsPvdgTfA85EzAztwo9FgfHycjJUljhnQeWwPSMnlCgDYtk3gB2iWhSTL2HYfWVYRkOj3+ziOi5HJIqsqRcsi9AOiMMT3QyRJRjN0giikVCpRb9SJ4xBdM2h3+q8N/AoCeH6EpqlIkkyr3cVxXAqFPJIsMzYxybkzZ5mamqbd7hAEId1eD0mSXjsM1Rp1AHTDwrjuFHBsG9/1CD2fKI6QFRlNVQbPMSHw/de8A5p+/bJYEgnc4Lo1OUAShQERrlhE1TQ6nQ6iKGIYBs53B8RFka2tLeI4JJfNXfcbBKSp9Pe55/pHX61WS/z85z9f/uhHPzr/1re+tQfw6U9/emFiYuLQf+k5jzzySOef/bN/lnzqU58q/OzP/mwT4C/+4i9Kr3vd6zrFYjFxXVf48Ic/PPrlL3/58gMPPGAD7Nu3r/Hss89m/uiP/qj6tzfZv/7rv7763Y9/6Zd+aePd7373DsdxBNM0/6sMfU3T0v/4H//j2nc/3rNnT/P555/PfO5znyv+7QOBoijppz/96YVsNpscO3bMW1paWvu1X/u1id/7vd9bDYLge17rP7b6ng8EhVKeG4qHKMsaG/U1EsukVtvE81KKY0O4UYSlmwS2g99zmRqfZN/kdvq+x9LaMqmkkKQhfuxTKOeo1ddp1GrMzEyzuryCaUlkCjpr6yuUKxVsu0djqUYQOoxPjKBqCna/S7dVI5PX0cIGtQSayy533XUTWnWM+dPHMfNb1DZf4h0/+mb01GJVq9GKLjOVbmfhzGUO7pzCL6Wccm22rS+x4taZf+YUtrvB9ukRFuyLiHqK0Cmye2YnG56JKo3zwvHjpE7ALn2Ee+5/A19bvMzVuStonQ4P3H07uWyW3z/5IrPbdV7acFn4+Nf5+fe/kU9evMbFpy9Q9lzUTIYN26FCihP6WBkJS/F48ZuX6AcSEzslNusy7bmUe4/NMHR4N1EhZCiXp7tR5vnLz1ONLP7gh9/DP/vI5+iu1SkYCnarw9rZdQIhJIxSpEIWPJ9Ql8hmJHTRZOtaD11NOfbAjWS2VXjp6Vfx1SLViQ5hxUXVClSGcjhKjNNZ5+HD7+aBm9/NJ770AVqtFLkT0gt9An8Yy4ypd+d44q9WePmlFSrbt9FvLaLpAvlSAUM2kRBI4kFONPAT4tDFTR2SNKbXc4jcZNAJSJLXRDKmadJu95BlrmduJRxnYKJcX99kamYSN3SIkxBZVvGDiDhWCKOIRAwIQ1AoIsh9bnhwks5QBWPTZWqoDGM+V1b7xEsN7hjJsn3GYameUJuXuDrXIuiDLpnM15fYbNjcMFbgnnvHOLK9wtLmItawzh37MvzkG+9kzrDZ0trcOXuEZkfk2+eWWFleYWZIwet4xHKGLcflpeY1xiaz3DE7zNLlKs8sHEdIM4xWK+zao1OyLCJzhGFjg4sbLf6Xj32cD/3zN/HBX/kpPvqlRzl4f4H+mkQ7t0VjfZ0bD+/g0tmL2L6PLATICGSHLLqOM6A+xTKuK5ASIskRYRKR1nX6rU2Gdmr0zDpf+5vPs29yB1PD25mYmcLt9fGdBq+8/AKZnEFCzHe+8yQHd+1gamaS+++7nXarie/D3NUG1cIeOq11wqhNo3aebB50uUjWL5HPR/zcPWPUUhX/dQfxPnWJl7/6HT75W29joTvH3LBBuazzqc98hbsOn+eH3v4gvX6Fa62zqHIeKRVJgzL7R2YYvdmg3W6jant59MlXOXZAZ6S8g9rGRYqlCmtNB1mIQJDASZk6tJeRhSs0VZfnLr3CDTsCbti5n9//yAn+H+/9YV7t+bxyaZ7ff3+ZLz/W4NNfavDDP3ETdfEcbWGRsGHStWfAF6hUWixs+vg3zvKOHf8Trc0uS3MLvO7AL7KarbOxfoKXz32cxZrMXTuOYM0cppiMIrqXMW55L1aQIZN7ibDS5KA9SeSew5m7xNrGeYxqge0zu5FThZltRc5d/g6acBtiXMGsNug0F8irIbmsjKjO4oQXmZoe4sXT3+Kdb3ofz7z8ecJIA8mj3/UQNRPBqOE7Gv7FZ9Hjvfg5nbFylvNrZ3mqIfHgrt9n68LP0HNXOFdvcPuBW1GaDSwzj+/3kc0S/bDOzgP3cm1xGVl1KZQilteXaQg+aZAwKglIGGxurdJLWxhZkwuvfoHx/BRy7k7CZB5XbDM5sp3VepFIf5W4N0yzKaDpHrqRJREcklgkjRUcx0ONJLK5HK4zuE1XZAlNNQmDkDRJ8P0IK2PR7/VJowhZkgmDPk5/kYxepVzIECUprTYEUUi1UsBzU2y7i6ykkEr0nS0ST0aQBbxgDF3L4XqgixK6rg7Y922by5cvs2PHLlZW1wmjCEmSMS0LWR5cUHmeh+v4DA+PXGfmy2iaTuoLOLaHKMk0Gi2KeYvx8SE0TSJw7IGt1w0JE4GR0XGarTqe56LJGoZhDPLz6mBgodNuE8cMHD2eB0l63RQ8oOjYto2uaSCk1Ot1ri3MMzo6yu7du/GDgE63i6Fb6LrO0tIyQRAwPBwPUKGAYVgDK7Mw6Gb07T5elBJ109fka4VCASVKUFWZfq+HIAj4fpdqtUqttoVt28iyjKYZiJJIoVDEMAbeBs/zsG17sF8olMhkYjq9AdYz8APOL5/n6NEbaTQadDt9ZFUhny8SxzGCIJDJZAjDkFqjjmVkCIKAbrdLPpsjm80ODh2BAEKKYRgDyWk0mDFxrqNaFXVAXoIBcjSKIkgHf38sxUTX1zc5OUi2tFotPM+jWCziuy6WZRIEPrZjD2YUQg//umX6+zWoixcvalEUCXfeeaf93c+Vy+V427Zt/8VslaIoPPzww63PfOYz5Z/92Z9tdrtd8bHHHit87GMfuwZw7tw5zfM88S1vecuuv/28MAyFvXv3/p2uw0033fQaLWhiYiIAWF1dVXZ+j3MSv/Vbv1X91Kc+VVlbW1N93xfDMBT27NnzdwhEe/bscf72QPRdd93VdxxHnJubU7vdrvi9rvUfW33PB4K18+fx4gQ7k6PpdZmYGSe1bbQwQU0lhDjE69tkLB2hXCAkpGU3qTW3EJQQTY3p9dskUYwbhXhBncpQDiGVkCQdVVXQdZPRsXFa3TYoIrmZcSQEGvU6RVFjpDhKsrmMksDVCw1yEymlbVVWF85jGxW2erB++llylZju1hpaaRdJT6Lfc+mrm7iKwZn1S+w9NsHa6RWG2wbVN7+dJ5++xJt338Bzcxcxo3FUXcKKJFIn4hsnTrDHXqMlSeQ1i34S8tEvfZzpgwd484P38aW//Gs++YW/4V+9/QHef+cBnn11FXUmy6WVVf7Nb3+VNzy4hx9/9/381aceQ/MSksTn2kqX2/fM0kxgo9YkqHcRiiVaPRffEOhrMkQqaqfJ0twqLQuWz29w/gWVtlBj5bkzTAsZHlvwmb90lV3TI9x9635SElp9j2srW/TXITZ8trQ6WlZEUlTGpspUj05Sdhf52Ece5PyqxtePf4fY61AqmkxNjXLo0CSFksDrplS+dOUKSVHkbQ/u5U9//zzaakLoRPhWwKe/8TT1tZDYUAjpUpnYhyi0SEKR2B9IYCAhDiPsnocsJKgZGSufoeP2yGazBE6A4w3eyPt9G8syEUVIBYEUEccdEK2SFBJBoNlusvfAXi5fvYzdc5FSkTjUkDMyai5A6pvYPYc3/NAxDr2uSJINMdUKkiDQ6yrcdnAHOyer/Ptf+WNefho6sc9mZ53AkZEFmVLV5vYH9hDvzPPKq2dxUp+377iB+dnduGbEVhzxi5/4G5abHpmqzneKLxCspLzl9ge4dWyMX/3IV2i6KlNGhXe9rsA7/8WP8yv/4XPUdpS4uvU8qpBFCto47QZWZFAcz2CGW3z68eMUS7MUDhf5jf/0JL/23rfxT37sQb7y/GfR6hbbZofJGj1Gh0Le9MYjPH/6ZYbGx+k3XVqhR9HMEvZ6/NCb3snylTrHT53FyOvEhNRbPqKoctstNzE0PoIbeTz76At4nUVeWjmPZUkokowqFJCSEmPjI2Sym6RCDbtrYWhDjBb3kqYeouBxbfEZEqvDSEZmx84cfgBy2qWz/jyrV+oo6hRyr86+6SK/9ZbbOFV5L0Nk+aNvfo4b3vImwq7NjrtFOjWfn/q5f8+/+IX3MDPyehrOZRpOk1gJEZRxNClLlF7mnveMceKEiy/WqWYnOHexhSvEjOQr1PspWmiA6nDHzP24t8c8+u3Pops6Xipx/OIpJvbkubY6x6337ubiWp6PfeokO+8YYXTPJU6/+C2W1jfZPZvH1By6zhZrvUVqVxX23rCNirqfLzz5STLTVaqFPGPdF5gqTDM1egfHn2uxOZJyYXODIbdHeWwXK+3LHJi6g0X3E4w0p9iTvJmlyuO8uPE8+4sFQv0uwmZCv+Oyc+8ysjTNbbfcxosvvEqleJhaskjLH0ITDdbai4yU72CqNEFr6SXu2HUXZy8dZ7h6gKy1Rui4CCg4Xg+vP0Sk+Sx7LQ7PXmbc0Dl5WST1FeauPcqNN+8jo+dprL6ElplkbuVFpgsiz19YJtE0sqUpfNEhFyqUR1RkLWG51iE7tAu9Al96/nNM7hqmNLITu9GjVJLwHYt6bwMt00MTnmG1eR4hLTK3vIRllJD9HIYxTC6bwfFW8X2JTCFFVbIkSZZmvUkmk6Hfb6NrFqZh0m51cV1ngBeNYzLXbbiRnhBFMd22j2HoqEYPIc2QhAr15jzZzMQAZ6kItNo9okDAshSy1jCev4mo9EhEMPVhUtEjY2WRRHmA6+yGDA+N0u31QRwYbZM0wZIt2u0Wkpjiex6GYWEYBmEc4/k+qiowPj5Bu92i0x3EiVRZpN9rkdFjVjZqjIxMYds9dD1DwoDsI4oCxXweUZDxfZ96o4OiKCRJQsbKIggyjuOQJIPh2dW1ZXRdR1FksrkMvU6XtY11isUSR6eniRPo9WzC666Cdq+DZWXYsWsnQgq+7+P7HpIss7VZI01CxkeHqFarOEurSAJY+Qy5zGDAt9/vUSqXqDcaKJKEYWiEYcj6+jqKouD7LrqeR76Oil1YWkYQRXbu3Em/36dYLNLtdumtLKPrBhkrQxiFKAKkicDm5iZpIlAql1nb2sAQzIFDQVbY2tpibGyMbdMznD9/ntHRUXK5HIVikW67Q7vdJk1TcvkMvd7/gSUd/KxkEBSBbrcLkviaCdowjNfM7QgClWKZwPfxvADDMNA0g0ajhRuEaLKEIEA2l6GgFfE9D8GBbD7/324H9j9Q/diP/VjjjW984+7V1VX50Ucfzem6njzyyCNdgG63KwH81V/91ZXp6em/k9HSdf3vkIpUVX2tEyAIg1j/d+d5/mv10Y9+tPhrv/Zrkx/84AeX77rrrn4+n09+8zd/c+TEiRPfM0rq/5u1/mOr7/lAEFoxUiCx6XSxzAxz8yuIQcRQqUKSBpiyjGYarNXX8eOAjp8O+MFKQuDadNpNNFVGFEV8L8DSchSLZdJ00C4UBZk0Vml3fPLFIeYWrlJrNylmyrhth8BJ6HZccoUy3V6T7NA0ndolSrsqXNjY4NhEDu/eW9k8fYp6d46sLHJ+7RT7js4S2JNIvsXwVJWFlS0uPtlhz/48570qy0++QnPrFa5EN2HGAksbqxQsi7O9Jv7FhDe94Qch6dDWs+hawPlzp8kWspw8fpL1VhdzfJj6Wo2/fPlFDhzdhSmInFpZpb/SoBFI/PXnnub9730zP/OT7+RPP/VFOkEPc7LM+eUVDm/bSV1T2FBEylFIvxMiZYvM3FjgqrTFn//JS+yckDD26Ewf2c2euw7y+Oe/wudXuljVGuXxPHZL5sLiJtfWmowXS9x36zGGNQl7SqWgiby8eI1N1yOMUop7i1xbXeDZz57HTE1Orb/AntF9JHtTOs1lnvzWCqsvHWdsaob1A+fpCjr3ZfZxz7Eb+WZ5kfmzWzTWm1RncjQ3MwzvMSjrOo1ajX5zg8jp4vsJcQCKIpCkMZosY6o6geMjS8pgqCuMSUMfMU7RdRnPjXFsH0VW0XWNIAxJE4EwiklSiVIxTyGfBzHl3MXzlKpFEPrIqYShq8i6Slv0cZ2USkXg5nsmSbSQqB7SVdrIWo6gq3Lm4hWee+4kV+spTiNEVFQKmSwj23KMTuVIKhG1bJfDlsyhd7ybr37reb72tb9Aj0DLaRw8fICpG3ay8I3n0HodnnhRou+kfO25zyAICvlCSqzAC+0aJ/8g4XOPniR/s4k6t8bu4Z0sbGyQnxolanaYLk+wdWKV23YMoTvjbFR6lG0Ftmn82298nX/1rjdxQDvKJ596jshvIbh9aLxMrLooGY1zy02SxECyCuS0kGo+Yt8hi0btBDv2C+y9YTe1/iZqlJIMuQABAABJREFUPsVSA9y5czz76Qvc96P3cWXuMrlUZ/qmMfwoJEp8UiUiTGMEKUupUKCYnyKOEhLBp9Y8TxJ00ASR4bxF2JZYeWWBbq/HqcU2Lxxvowoq+WGTseoKuazEHz66whuPXuBf/OSP82x9k5/6N/+ctO/jJjLdwEPYFyMUf5DvHL/G6+96gYo5giwX6PoSrtQjFEOmKzP0WwHO2jzPn/gCf/3Fj7F73+s5VB6j261RzI0TOglp3+HaWpcjB24lWr3GxeYVFpdNGnaNmaJHYXSCjdUNju7ew1+c+hrd7kv8xENjPPOtCKeSheAoGeMcajpMvWez0fPYpapo+WEUs0K31UUKPbZMi099+bO890d/gRtvvZvs5jmcnsS15Yv4q/OUiqN0wz41Lyayt7FW+xhTs6+SiU0W26scMIrolo6g+sReh/X2IrLaZveuKS5deZEuDlIyBX6ZkeqN+KzRb9xKKVMhjWo4rk3fbaCJVRJ7hHz+FF4rRNVlPCXD/hmVfvItvvyyTNbaRykzTK3fR5CqzGTfx4n1F5i+4RBzZ7/N3qltHN03SxRmWK9vMjwyy3BhmvMXP0ZOV+g2Q9pKQnZ4N/tHbkFpxuizdRpbTTauhUxVR0n37qFXj4nkPKqpImcqpJu7aHop05kcnhchSV3ENIE0wveW6dZKBIj0bQdNl0gSkGWVKIrI5zMgRDhuD9vuU66U8PyQvt1D1wckHlmuoBsOfs8njvJMT+1CFDXqzSWE1KJUKg6GX/GIQglDK5NoXWxXII0bmJaJIHjEYQiJjO95yJqIaZp0u12SOEXVNOI0IpfPEIcRhm5ex15CkkRkc4Pb6o3NNVRZJY5iuu0WpXIey7C4dvkMBw/sYWOjRyaTI0IgCCLiICLyPbxwIDJL0wTLGgjK0jTF932CwEFVVWRZRlEk8oUscRRQb2yxvDyHaWTZvm0WUVbodvvESUK2ULzuABhEatI0wXFdgiBAAsrl4qADMDpKEgcEoT8wMCcJ1eowYSzgdFs0OjU0TaPTbKFpMkEY0HcjdEOlXC4QRYNDQ6vVwrZtRFFk967drG9sEoUxpWKZra0tMpkM+XyexaUlHNfD0FV0XWfv3n2sr64PmP+dDrI+iOm4nkccDm76PcfF931KhSKB5xNF0YCqJECukAcBiNPBjImsIcsqhm5gOw6ypJLNFRBliUwmQ6vVIgxjfMdHFiUESaTd6yIkCcQp/W4PVdcYGR8DAQZBVRCFlCiJkRSZTC772qbz+zWoPXv2+LIsp88++6z53Vv5RqMhLSws6Lfeeut/MS7z4IMP2iMjI+EnPvGJ0je/+c3cm970ppamaSnA0aNHXVVV04WFBfW/ZeTm2WefzRw9erT/y7/8y7Xvfm5hYeH/MpR88eJFs9/vC5lMJgV45plnLNM0k+3btwfVajX677HWf4j63rGjaYKSSsiaiWZliTWRfqfP3FYdSYwplvMk3S6dfgdRSFBkkSSKSBQFSVCw9BxhFGFqBeTUo9loks9qOEEPEhEhVXB6IQWzQq3W4OiBW1lZniOTyWFXAxpbTcrVCu1uGzdRENIOeiWLGhmMDh1gfuUcU/tupJ2xODByL0sbJ5ieKFELQc6WKUYKppglp0QstJawjytkDy0xU1EY1R+g4dSZKObI5AvU19YZGR1Dydex7VXKQ1U69SU2ej3yuSrZOMPew0dY767Qdhuo2yc4cfkiacsm6aqk9R5FOaauKOi5UX7j9x/lDftm+eX3vItPPvski/MNlKzJQv0cldESnqQirDrMjBSQ81W6C5uc7im4rsT5WsKxowqtcJHjT5/nne96G5fW5zn+lQu0xA6KbJHNqyRBxMpmjU/+9deJ5YShSp4qHmrWIiNHAzKQIHP1O2v0gpDf/+gJ9h3OMZTVqY5kWO7WQRe4uCXQx+HyUptiJibIjfHCb76IveEgZQ1s22NaLqGbJtqQRrsb0tloU1EhDBU0UQF1wHFLkpTQicjnMsRCSBwOaBJJlBJ6AUKaIqoJVsbAcXyCMERVFfxgoLpXNA3LMBFSiZWVteuc6sHQei5XwOn16XdsDG0gxaqMGbz5rQdIM31kI4umVBhy8tjNOtpoBt+z6C2mPHTLbk7rXYbH4AdumSVv5LmwuMYLGxusdGLkWp3tzgn2jo4Qlwu4dNBKWQQR3KCHG6XI2WHIrTGWU+i2ZZzAIHZD6MeU8gnKqM65ICF/3CEN+0wWZMZvUjHyCW1B5muXz9JfDHllo870xDiiLpBLZRLFw/Z7fPQvvsLP/+DdhG94gM/+zXdIQoGDh2aIhE0qN45zdqvF2TNLxFGIqhqsrHn89E98FNlRwEoIBQkhq5AuBdx5m0WjmOX0tQvc2F5i1/5RZF1h4XxAfihGyyUUC2OMDO1Bt/JEkUuYOChSSr/dgthDFiOsQpWr55f4xtOXaKy22bO/SldX2HeXRcHMsdXu4esabrGM3gu46657+Nd/9IuMTN7IvfIxMqVJolhCTVWS2OHWozezttLiqZdeZGy8zp5dB8mqGknXJ44TvEjGzAiM77yVXv8iARKvvnScMEiJVI+p4SUmJveCKWMKKZ7bpXT0ACNn63TbbWgHrEpwYW2BfdMiJ08t0agt0G9UeWW1TmFoiImx2xgtjmF4F9C1cyTKJLfcto+VzSt0+ltMjc/iRz2CsE87XWPHwf2cOfcX7C4c5PDYm3h29Y8ZyimIaRbR9yAMma7+Ak+u/jF7KrdyYWsYIfwirbVL9HaeB+kQG/MX2bs3j6mN40ctGp3jVMeGUPpHEDI6GgF9P4PLEkduPsTps1/k6qXLTO29jU5nnmqlwMXLz5Af2UfBqrO67jO842ZS1eHK+WkurF5h34TN+EiV3GoLmn2275zkhbW/xMwMkS1u59y5E4ixyPjQnezefi9eusTS1lMUVYOSrqAVdTbqPaqGQHnIgo1L+EoNsSdgh2v0LZ22ZzE8uguvs8LQ0FEMbwcL2ZhyqU4x77Oy1ERmG5aqkS/IdBwBKzfKRttmbLQyGGxNE+LARxIVkGWGh4uEUYBmpLQ6LTTFIF8wkUVjQLwJFURNJEo7yMIQ3baDaQnIsoCu6gM0pxQjiApCopPEAU7YACaxsjpRJKKpKUka4PsB2byCZuiEYYrne6iKQrvTuo4WFRFSgVw2B4BuGLiuy8bmJsNDw3juICGRzWQII4+MIVHbXKRQyGNaOdK0TQpomkoQx5i6SaQoiICkqmxtdaiUy/TtPqIoks1aeJ6H57kMD49Rr9eAGNd1EASB2dntBH6CbXvISjSQkoXxIGIVJwRhgO/5pImAaZiMjAyztbFBFMd0+z1AxdRlZGngDDENA0iwe30kQcAyzYGNWVNxXJtsNkMSJ0iiOLh5BxCg0+sOjMYxhHFMsVggTmIyGQvfy+I4LrFlMjE+TkqKqsh0Oh0Cz8OwTIQUHM9DMzUKuTwjw8M06w0c22ZxcZFcLku+UCQIfAzTJAwDkjTFC3y2tmroqkoul0MWRHq9/vV5s8HjcZqgiRq9bhfTNImjEEFRaTdbCLKEkTGRZRnb7dPv91ECHyM28YOAJInQVBXT1FEVBUiJwghB/J5hjP9DVLFYTB555JHGBz7wgclyuRyPjo6GH/jAB8a+iwf+/1Rvf/vbGx//+MerCwsL2le/+tXLf/s1f+ZnfmbjAx/4wGSSJML999/fb7Va0lNPPZXJ5XLxz//8zzf+Pta+c+dO/wtf+EL585//fG7nzp3+xz72sfKZM2fM8fHxvxM3CsNQ+OEf/uGZD37wg+tXr17Vfvu3f3v8fe9735YkSf/d1voPUd/zgSA7tJ1XXz2J3PUoz05RKBZQKzrLvU2SMKW+1ac0VMDIlvF9m16/B3GMmRmg4OJERs+qZPNFAselVBhH1xQku42gSThuD12BvKkhpya6m2esso9u2MTM6Wi6hdvrUi5UKDHEpcY5SnGWZreNnCsR5cqMtmz0/Ye5uDZPxiqSCjmygowowrrnYDVWyZg5wqzKqu9zcDHHtqNDtCshL7+8gtcQ+MGjt/Dq9BYkTVbWutS7W0hZjU7NZ2VthaNTB8kUShx/6TmO7M9Q3qkRbaVY5JmbXyG0BQxZw8hZxL0Qx6mTL+r89TOXiIdz/NTP/ASf+MaXWHjhPN6ax04hZvdwjmg4x+JynfVTlzlaHsXMGxSGNbbNjLB+psfdDyV07y7wxx/6NG94683c+eZ9nJ9fZ/nSOpqooGV12mIfRVOJwpikn3CuHmBUU5S8S3F4mG7DJwn7CJaMHMVsHxpl7uw1QiuH3Mqiey4IMeWiglXQuXJ2k1PPnkeRE4y8QLmQodd2iUVIygG2FxM6DQRRgzhh8LYcIysKoZ8QRyJJLNBu24hKgq7l8D0fIRSQBUiANBVJBJ9yNUu91kfVFHRDQrdUoligXW8QBCJBGmOVTEaHcnTqA1xpJqOTCCFaLDE+rXPnoRyve2CI5VRhfd7lbz77IjtHFB58ywECs8roVJZ1b5n+Zsj9b5qm4UR87bmLnHm2ztiuCjvuH0dZa1OzA5yzG0xXQoZHS9R9kXJRJyPLZESZyWKBmXyB1WCJpqfTt2V0NSKMXVRLo1Kw8G2X8ewEt75uL3/wsa/i2z3mWyH5YoZcKUdRy6IN22QRmakWMY9ETEkZLl9x6PmwpYT89pce42cfvpNs7h7+4FPfxvEkzj/XZUfqcs/bj3Boxxj1LQcvEJg/1OTpSydQAgMElwkrz94DI7x6psHFRZUT84uIYzJhYLPr4DDz55YwshpyRmForEK+UCWKfVynNzCm+iGxt0LSb+HHOpGmIuZg2w138PDOWWrdPoXCCCsLc3j9eSxDpH8+Zu1qh71jOX7kF97E1575PFuVCTbtOif/X5/lR956GzuP3YOkmLTdHr1enWylyKh+jPXFM7Q2v8FdRx4kZ2k4To809ghtj9ltOzj9cpdy5hrHbp7h3HwPpaqQqjpRPyIMG1TLu6h1uoxlhpAn7uVK+gqJ5XLzgSO47grzCwJBOs+OA0Ue/7pAYTLLDz1ymOHsAU49fYLyKIyPCBjaIuXMTh7YdzNCFLB97AAL64s49nkaV30EOUUIhhF9g4uXv4IdyowPHeal5a+Q0ZokWwa3TI/w1h3vZfvsDr75zedZ9LaRqyoksctC8xR6Eba6dVrtNuOzNbobMdaIRHFkCrf9bSJxijHhNuT6Gk889wkurb/M9rFdaOYwQ0qObqeD6HWZ3r2T88ezJH6XrNSg1TRY7F7Cl1Jsp0e/EzIyOcmZ418k3F8gOz1FVooo5GqEW3VWwoAwOoljW0wKFlZmN7lwlLmrX6QhymTLoySuy9lTJ4mCPneO7ae11ULRDQTPpDH3PFgOejnE6bzMDjOP2vcoTQ4RdVL8qEvXdcnJMr3+i9h2yNC4TFXQiOMB/SVIOkSxjyyqyJJMr98kTl3csE2YqhSsHfSda2RUA9/18X0HUx8mSS8Tiy6u2x+YhH0HX5CRRAXTkghclSjqIcoiQdRHlBK8IEJXFAQkkkhD0wRIUjzXx/FiRsbGBox7z0NEIE5EJEkh8MOB9E8aOFH8IKLb99B0izCJkRWJvKkSBzVIbCa3HWKrAWbGQpDB9V1UWSGOEtIkIkp9Qt9jeGSIJBTRlCySlCJJKWkaYZgyW7VVbNvBdX0mJqYolqrEUUychqiqhmkYbG1tkSQJBgJxEJDGMdVSlTAMiaKQXq9HGMesb9UwdIMoivGCFEUUCPwAWZJweh1ylo4fJiiCQhRFCIKAgEDoDS5mfC8kTUWCIMC2m+QLZcIoRVFUFEmm2+shyzIbmxuIaUI2YxCFA5FYkiTEsgxphCTKxHGKJA8iUonnD2APaUoUhsiKTHmoOqA2AXGSEIb+wC6cJCiKStbKkMlYhGF43ZEgYdsD+7EkSSTEA2xuCs1OG8MwUBQd1dBIr9OrPN8lThNyxQLx9SFxAQHX8QbzCmaG0HeJk5g4Gkje/m9Zw8MRqpr+Vz0Ew8N/7z6AP/zDP1z+8R//8el3vvOdOzKZTPxzP/dzG2tra+p/LTLzvve9r/mRj3xkdGxsLHjwwQf/zu367/3e761Vq9XoQx/60Mi//Jf/Ustms/H+/fudX/mVX1n/+1r3L/7iL9ZOnTplvu9975sVBIG3vOUtzR/7sR+rPf74438nF3bbbbd1d+zY4T/wwAO7gyAQ3/KWtzR/53d+57Vh5P8ea/2HqO/5QBBv9hkdnqayM4OTeqy2WiSihKUGxIJGdXgIWQLVExCimNJIgTiOyOcL6LqGG3hEaQKpgKVoqJIESYIqlnDilEiEhcUrFMo5ZvNDRIKEqqtUjDHc/jqyoeBrFa5tnKVcyjBrlgk0DTFWkEUVbXonzbZHb2sDTYgRBI25tXNMVqfRULFMEUW3kEWo5sfY6m2yKQd0T64xXE4pTGm8+LVrTBsj5Ap5Xlg+ztHRUebXE+ZPzLEl1RgpltloL9DuXKNiqbTqPgsLTbZbRapZWF6XCX0BP4wwooikH2NIMkPT22ksvcrO2/ZycXOLqN9gx0yVmmFQr/dQ1jXEQoSvm2STFocODHGmtUFOsDA8lc1rNk/8VcQDv1hg841DfO5jL3LgSIkdN00yMalx+mSdXt1BsEykJEIJJAp6TENPkFKREbHIrqM7WJzfQhQVxnYUKYgyp06toRTA9vpIokIi9UhTnbX1TcyeSn3TQ7ckZEEk9APyedAklU7dZduODIuNLWTNRJIi3MQjFRm0vuMIZIEoTomIUTUZRIFUSomFiFRKkRUFAQHH9/DchGJeBSJSMSBXyBAnCW4/IJUEBD3FVCWq41laPZt2z0MQUxIi9KLB3r0S5arCvfsPcfXEFZJMkRPHW0yqGW6/9yAzh44wX1tDliyOHbZYWbzG/OUrFKZuwtkWsE2Q8fsOU+MmoqqxdGGVME4JN+us1hrkcxqlTI4kD8OjRTTFYn05wnNVkiRAlDwCX0YVNORAo9cI6RNSFkPecd99fPwvv4GsJvSI6TV6hOs9JEEmdT0iXaFaLLB/psxXH3+J1qbL5J5xTF1h/swK/+8vPc3P3ncbv/TTb+aJb36TySMHcK9cYkc3x9NJn1rYZJs+zLHDd9O5q8Xxv17BjKG26HDb3hpHbxrjVbuNc6rH4V27MGSVV64tkGgqUk7DKpeQ9BKurwxa5nETO7CJ6+tIcgpqFsw8VrFMLMhEsc+28k7GcjXyeZ1DE3tobo1hyD4HK1ucShs8cvtR5q700UZu5saSSyjFPNE+y4f/8kkebjnc98YHUeIKtpDSCF0UJWDfjj28evIcT5z8Ivfd+RDFJI/dqyFrIAc+27dN8uKzV7C9F8GehXaMTJM4Y9NozTEy2mR0Yge2b1EoDzGV7EZcPU99bYnp0jhDB/fw9HdOUDC3sfewQq2/xPlrDkH5FKfOXSQbxvzgpMz2rM5i8nX0/jgz9jDT+lEsPUQtOlxde54wTVDEMc47Z5GDEE+ZJglUsiWPzrrHtdoiM9kdXL10mlBr0ZQXGC2NM2HswfViCuNlKvkqGyunEPNdWk2dNMngBxa67hFF8xRK+xG1LlfmLyOVIqrJbjLZYSyrSL8ZsNjusykW2eWPs2P7W3nq5O+iSntwegm+p3Fg2x0Ug5DljWVu3rGds8sn2VhoY+ZvpbW8webSZfYfnCBu1lnqrVJRbIqhztTIHj7/0ofoODnGp3MYJqx1m/RjmBzfSc/W6UdLpL0Me4wsO8dvwAnyVIxD1DsR9cAjEWXyikUqxpSsYapVDbe9TsPeJBaLbDVTqgWL2laPKI5xo9qA7iY6dLpNNFWlWBoiI2Vx0+dQ9YOsbwS4Ypt8LoOi+wiCiJXRqW3WyOXLaHqAYVaIE4U0lQZs/zAkjiOyeZOuL1Mul+i1+8iSiKGpON0uaZpQyOVJEkgVgSQMqTcbGLp6/WpDQpZkkjjCMHT6vR6iKFKtVhEECdIUiQG9RhBlfBe2ze6m74a0Oj6qImLIFhIJKRFJ4iGpEmBCJCAJManYJ048FCWDKlsoso/t9AijmFyugCjaKLJC4AdEUQyyhB9H2O0WoqYgiyJuFCAyoLJ53sC2bJkW3X6PMAyvDyZHSIKAosjIIqTXfxfHUYQfxjiOi64PzND+dWqPJA3oOrIqo4ridRyshKFpgxt534c0xdR1FFWh3+vjeR6VagUAUZJJkgDbtkmSBE0TCIIQwzDJFwqvdWHa7TaqqiJJ0iDvDyRxgq7rGIb22qByFCUDYpEksbS0hK7r5PN5ZHlgj5ZlGV0zEIWB4T6OBxt6QRwMiQuSQBrHSJKKpMp4voeuafR7fWRZZqhaRRLA91wEIaXft0lTsKzM3+OW6++xdu4MOHv27D+EqbhYLCaPPvro/Hc/7na74u/8zu+M/cRP/ET9u59bXV09839+3g033OClafrKf+41RVHkV3/1V7d+9Vd/des/9/jDDz/c+z8/9/bbb3f/S68HsHv37uBvP24YRvq5z31u4T/zpavf/cPnP//51x7/20Si/1/X+o+hvucDwVK4wPbJvWRlC8GFnaMFEhScnE8iRkiiQOR7VAsVyoUiKSmyrpJGMb7rEocJgijguDZJGJGzTOIUwigmjBPKVp6po7fRT33EYKA0V3o9tLwI5WE2thbIKQ32TB3k5MoJChmF7dkypjJMO5XoCQ06QpeV9R5mXmV4aITlzTPEQkjWsPD9hEjXaHV7tNsbpFKH2modyRqnZM1wKJug3R/xZ19/mv2jk+jFITZqDXbvGufVboAeJdiJP3Ar4OMnKlfXu6zWffy8z64dAoWDUzz91Cp5IyH2PGQM2q2ISs7mwVsPoqRFEk1iWCkiiT3cYoHGVoiz5jPSXUEoZNi1Q2JnXuVrJyIiu0O9bxNKAZfWIm758y53vtkiXily5UrMwhfPcvDGCW65cZQz81usnHQR9ADXgs66MtDC9yMysxVSUWRxYQsJn86Wzo4HirQ7MivXNhgrZsjnFRY2u/RaAWWzgue5JGE8YFUnEYKY4tsuiCK9ZsS+TJa662B3UiQCfDFEjVQCL0SUUmRVRdZFFFNHFAcXGF7gIcgx07OjjJbHWFvZwl1eI4mg2+2jWwrZQgbH95AEBUXR8H2HMA0Y2TZBc6uJ23a58ea9HPmBQ4hyA81tUNB6ZMSUkV2HWNUy1Gsr3PzQDoxOys6JUbotH78dU8yrmKpJX63STzbIDemU2i7jt4xx9ivLhHaMVY3Y21Ooliv03IBmrUscJJSzJcikaLqJ3Q65cGkDUVBICZBVAVlWkCKFfs8n7nvoZY3VRo2Vy1coaQrdyAdfQjVBz4Ljh8ShRL2v8OdfOMU7e4fYvu0I55rP8o77pji1WGPxfEhTMPjdb13knbdM8eDrDnN2rk9JGGMySpkdNvDrYBgqrfU53vGjN1Lf6rL2vMvyfJuvv5Qg706oFFRGjZjxYZUXTl2hNDHDpCkT6T5CLBP3U2IaGGZKGge0my1SUSenF8kVRsgXqiiSgN9pUtB1/MazDJsjXHr2BPV+l81Gl34rZqwg894HDpPLlGntFzhs9XC7WTpCwIMPDrO2ssKJU/OMjTzJ3iOvJ9JUjHYHPdWxBYHK+CxXV9d5/uTT3H34YXqWw3q3hoqIZmXYf/td1JeuEXpL9LZENuxlLHOOsW2jGJFLsnKRjDWLaphkqhX6yz5J02VhtUN+c56Lyx2yw1WmxyJ0SePy8hJBH8ThFthFSE1s2edATkUb2cQNvoWcr6BpMjOWyvIVjdbmBs72GhlZ5/LGOayMwwtbiwzPWpTUGYq7VLRyh9nJbYwZt3BGexrTmiBnFLHdHpn+KI31S4jyOiPDR4g8A6OagXyM010kjfbR7kgo/hJqyeHMhUUObnsjrW6bbVYJu7NEp7XB9t3bqW1dYdfsHm659Qeo5gTmewsUjWPcvOMYjrOKnlUolyfJtl/AczOUx0p02qvsLB5BdGNsd4PRYh41WcVVZM6e+Tg33vxmri6/iCb18NpQawbs232Mdvciy5tNJmZupdZymd+8ys1Txzi7tIzvxkRODs8KKY1YyOkSl1uvYJoRgX+Ahdo8lmKhS1laThNNKjA5Ncyrl7+JLu8iDQvEahtBEpFki3YLdL1EFCVkCn2mZqusLK0RoQwEYWGHbH6MRFogW9jB6upFcmaJOE5JYgGEYCBCMw0cp4eITBIEGJqCKKQ4dg9Vleh2+oS6hiwOTO2dVgMhjUnimJR0sIFM44HhlpQ0SQjCECuTAwSSKEIEfM8h9COmJmaI44hWuwGiRpwG1OtNCvk8QeghyikIKqJkkjMcNEOh0/FRFQ1JlOl0GnR7NaxMlXJ5IMqq1WqIoowsC8RxShQn+NFgkFYSRXLZHJIoDroBQUDWtIiiiMD3EYGMaREFIZqqIijK9c2yjSRJuJ6HIMr0Oh2GKlX6/f71DsFgrkMQBNI0xXFs4jimWCoQhgPrsKIoaIpEGERoqkIulyOJImRVRdX0gYxOSElTAVGUyOVyKIpCrVaj1+sODga6jqprqLJMcN3DIAjCYB2+z+TkxGsHHFmWkeUUTVNwXZ/R0dHXMLADm/BAOiZIArI4mAlxrv++kmWZKI4GhwxFI4kHl9iKICEhkjEHMyKKLBEFAb1uhzRNURRlcKj5r8Is/wFr587gH8JC/Oyzzxpnz5417rzzTrvVakkf/OAHRwHe/e53t/97r+X79fdX3/OBYO+2Y2yun0cbnyGTH0IMfQQCJCNDEAXYnS65TA4hgXw2hxf6eGEwGKQKE+IgQTNUMnqGjt/EcV3MTAYlY+G1uhSsLIsLS2iaQlAwSKOA2OuTmBJpEjMxspf1ziZra99gz/BNnK9fY3nhCR7Y+zpEbYK5q2to0SbV8SpLczWyIxlK1W1s1LcojlnIaoZGz+apa+coygn3Th5ixQhZ6cwxPrWb47VVqu4y97xtL8++uELVqfJ4vcn+pVUOThymWM3w0tnnCW2VQBBYbdZJAgld0FjotFl71uT1R1Ref/cE33j5CsNKgiSBOaSx2dxkaEwjJ4ItqFiWyo7pIqxuMl6a4dp6jd76Gnft3MO1bof/7YXLHJmYZSlscHF9FS2FvGvywnqWe90Mb3q3ysaFIeRugZq/QBj7vOUHZlm6vcTaNRfcVYpmhma9wtULT6GNFzj30jW6zS6ZosaBPcO0eyGVHRqSPEzG9Rgd19GK2znXWaTX7YMYs2vfLBdPLWKZCl7g0LcFrIyM3XOYHCrSFD3WF5pEQUQii2iyxPT2SfquR6vTIfR9JDlBVgfWzySxyWVNZmbGaTVtek6fTC5Hrzlo++cKeeqNJmbGJI4EbNshjiNSISV0FbJDFh/40A8yPTXE4199lQsnrjBaDWG7iTI+yaq7hBRLGNMmpVGJcyur7Grk8Yt5DN0gi4ATBYyMTBDbi2QqFteWsoSahJKRkDoxhutxcLxIJEUYWRW7mzBrDjPRBjkIWXDq1Nc6RHGMaWhEwcCWrCoKYRwgaqBqOqKq4PQ9VlY3IJTwEpGsoKOJIgkJUeQQkGAYPv3I41vfPs2P7L2Lg//0PSwtnyJs22gjGdx0ndvv2EMrC3N/cZFH3nkb33jyGh/6Ty+RVhJiXUC6wQc9pKSo/My/e4Df+fmvcW2tT/25lHKzw9C4wOyuvaSTYwwrAmMjFnW3QV7QEBIVt9tBVnp4dhfTzDMxNItcGkVOZUxFpWJoSEmIb2TYWl3HDTz+5oVnkSWL83Pn6NgB/ZbATYcn+LpyCkE4xSPvvAe3uI8Fu0FZUCkMjVPJFZiLfJ544mVy4wfRimPMDM2yvrlBR2hTHSkgZR+ksfwKG5tnqVQPUe91cd0mgh9QlGLiTA4nkimYMSgiXcklr+tcPPkK9952Kwf2HuDi+jJOKrF9203Qu8hUTuKVUz5j0we5985ZiqaOF/k89aVXuLK+wu79AvaGhi6B4a2zFuzgPbPzvPjKOqtyAyUt4Yktos05JHMHPcdha+kaTbHGeE5AyOgEvkqmfBFd204p06dXVjg7/2l2DO+jas1g1zYYLg2TxjEBCu1ubYAilsfY6HySiryfon6AUmk/a50ugSyxQ3mYl0/8IdnJnTReOYXeq2JkDXaODLNtaohO8yJ/+ujjvOuuH2Jh/STq6DwHSkOsrj3DUGkaTR7l8vxxNDmkm7tK3FEY0w8hyR069ZTUhtitsb7eR9i9wuLWCsPDu+l3NhAKFokso5kuW42LVCtFFhavsHPHOHPz30GXVdoNH1OZIvJckijGzJUZGR7l9FN/w/MXn2LfDTeTCiPokYhhiTihTNBqIejbubL6Z5RKO3GaFo7fJqcZCEKMoZeIE5tup0tGvImFxVcZH9/FvkMTLM27RLGAqol4vSKIl6i35wlDhZ67xVBpD54bgSCjKAKqYtLqdsjnq5Akg1iKKCEKKdXhIRRpEBUhTdENBScIMAwN1+mBICCJEqIgIgoCcZpimiZJzyEOQ6IkQRElMlYG24MwiNnaatLr9ZFUi6FqlTjusOm1URQVTddIkpAoEtBlk1bzFUrFWXRliCjw2dy6hmnJVCojgM7a2jqlUglV0eldv8E2DIM4TRB8gViMyRgGAgKdVmtAbZMkZFlEVQ0kSXyNECTL8vWN82CTG0cqsiwiyTJJKqLoOo1GY/BYHJOmycB+HA2SJoqiYFkWkiQiCAq+7xPHISIDiVyaCjSbzcEtPwKu614HhQgkUUwmM9hw9/t9NE0jlyvQaDTwfZc4GSBVBVGg2WxgWSalSpHQ9dna2kLTBubh70aZ+v0+SZJiWQa9Xg9V1UjTBEWREUUBEVA0Fdt2kXWNdrdLWVVIE0jjBC/yiKLo/+iGeB6GYWCZFo5noygKuj4QzgqCQBglAwTs9+v/Uh/+8IeHf+EXfkFXFCXdv3+//fjjj18aHR39e48nfb/++9X3fCA4c+0K5YLOwvpFhvQqcmYcUTKIeg1kY/Bm0en1yJgmnV4P13MQZQlZGKDcPF/FDwOyWQvD0HEcmySIEYWATNZEsFRW+x2m1WFKpSJpv0u7YJAEEV2nBrUN9u29iShOePXKXzM5fYyOOsPl1jV66QqplDA8MoNBgrZjJ2fmT5Gg40QRvTjk/OlX8CKJm6fHmB4to5lTlN02pzcv0Qo2KJkRm41d7KnPoTx0E49+7BVmLI2lDZVyrkNONziycx9rFzogmgyPQK/dQu+HdDUwlWHOXlxip1Dl7W88ylPPn8XwMnR7TdI4wTdnuLY0z2j1ELYmc3HpKpMzWU69sMbeHbuZk0z+5ssnSBX4Fz/7FlQlxl/w2HbP7UzOjLM7N8FqJeAbX36BB901kozH179wjvK2iJtvv4UrZ32GhFXe/uabeOIbfW67s8hHT9p4ayrXFhbJqVnue/AmKtMTnP32q8w9v4QqgxSrJB5k832O3LyLO27cx5lzVwmSkE6vgSirxEKAqAv0nRikGENVefKxE1DM4LVDotinmMtw04GjyJLChYuXcTo2mqlSKOYGWFG7j2VIFK0C7UaHSxcWiIIUCQlV0xFkha7joJo6oqTRbbQIXR8llXj3T9zEXQ/tBFXj0qUFPvTBr9LbDEl8hzc8tJuDh4+yJoq4Tp4V8QzDwTgTWoEvP/4tHnlHmZo/SaPt0fI7HN51J83mF9h940Fq82scqGrkixlaM236XRtNCRHLU1y7fI7y9DjLC+vQ7nDnwRyxv8ETz12l3YwxMxJx6hP4IlEYgRXhRx5iKqAaOm6SIrgxx+66E+vlK0SnzmEXEpJkMF+RRiKWrJKRQBRcLnl1nv/y8/yHB4/wG5cLnL54jbsfOsSP/cAP8tS3H+VKJPD8Zkjm40/xxl+9if/tjzZI11uMbpdRpZhqfhu1cAN1tcjbPnAHf/KL30BvuPTnJZYWA/7tP9G4436dp49n+fpTp8mbCrY4wtBQSmUyhyTkMM0DRLHA2to6Rf8KB3bfRBqlSH7MxXMrfOelOfqhxu3v2sVy/hxOfZPh6cNE59aYndR46J79fOpvnkMtZjn1v/wl73/33Ry48w5Wz3nUAh9Lk5nYvZullUUWt05x1+StdOsLhJmIXN+i3mnT6dlEUYmT5y5y/70T7JyY4ZVXm9hugpz2EISENBMghDEXT9dZ6DRIRst4cYaP/M5n+eGHT/NjP/wRXt08iZHs4nx7mbWX1rjr2DZm9hXJSxrXzp/HD3pkzA12753EGNdZEbboO3lkaYRTzhW2ugYbYZVercW2YsT5S1vsuekOjs+fxIx2cDpeZWQoR8cb4vDEXjadJ/D6AlttDTVS2Vl+M+bwRU5efQxxSGKoMEsSBwipR3trgW4SMzZ9N3/wez9Nhy5Hj41T4Ot0enXKU3vZPnw77ajCfT/wPoxMyO678oT+t1hbvcrwVIaXz51k6exVbtj/o6gJXNk4j94o4xUuk4sfpFers9DYoKyBHMl86qk2//b9U4w3Rb51/nnKR25ge6ZKql7jmec2kUZd3nzrP0XRDE4IDebXGlQnxzFGLXJSGSMeY6wk0VzawlnfYPfeh9ByFXaYEzTqq3Rs6PfatHSZoeEjlJp9ts/eRGvNIQhkUrGDLOQZqRRZaT6Grh2g23eYGFPpdRTcsIeQaPT6NRQtQpJ9MuY4bW+R9QWB8qjM6JTJ6tIiSqoQBi5SOkyrs8xE5a20uieoN2oosokoCgShh2DqxFGMgInnO6SpQBj6zM7uolFrYtsO2WwW1/Fw4xjLyhEELgIgieJ12lmK3euTzxeJ4vi6rCpCElIMXSOMAsIooFiuEHo+w8NFas0W9UYNMXUxDRVBgk7HhiQhY6j4vTWkqIIiZjh/5TlCAiqVHeSzk9hOd5ClL5cH2fooIJOxiKKYJEkwDYOx4VE6nc4g7uP7GIpGGsZYhkkUh9c37oONuSgI163xArbjEYQRhmkMKD2iQJyk9No2+Xwey7LwfX9AKXLs127mLcvCcQbfPyEdXPjF8aBLEUUehjnwECRJQrPRRJQkHNelVCgiSdJ1CZlPoVC47itwyOdz9Ps9DMNAFEVMaRBF8jyPNE6QBCCNkSWJtdVVHMchlxtYhHXDot/vk6YphqFfnyUQsSyLJEnpuy6KquIFAYo6mKkDMHQd9/q8gXZdTpbJZEiJSRl8f1VDo9Nuo2oDR4Wmm0T/d+4Q/APVHXfc4Z47d+7CP/Q6vl9/v/U9HwisUsRSL8aVYOHKs+waO8jI0CEEPUschWiahqKoiIoyyBVmLJJoQD0gTUnTFFVVSdNBjlAzLbKmgdNr4QYuOb3AXXfcThzEeJFNs9dkrb1MvjCEZQ3TZ5nj3/kz9uy6g/DII5w+8xluGTrMaj/m+NoSQ0FCf2sVLa9hKjlGq+MEgsCrZ15gY6PGkV1H2DWxl6X5y/SaLkq4xo7yDlZGK7x08TEO3fo2hH6Dv35yjX8xrHHpToni1hiZdAHHdJh7dRk/EslkcxiKgioXObe1St7xcXSVWu80PR2Wn/K40emxc3aE409tYRkZ6it1tPtGaXRT9momhXKVc09tMn9mgYOH7+Glx85x353b0X4gw/wXXmXY9fjs6kvc9+Aj5NVx1PZV5PTrKJd7/NTt06ysTaIqc1RvCVBW8jiLPZ755hlix2PpOw5veut2YnuDH3y9ihWMUxZMRDHFrJR48rEX2ZpbR7BTRqpFSuU8M3sKvPjiBebPL4IxIHa4LriuT7asoygCgmogKRr9botOs8fJVyBXTkgiFcMS2Dc7zpW5OZYXN0iSFNVQUTSVIAhxnC6aqGKKKtVclbMXruAFKbIoE7gBohyjZ3K06nWGx8dxewN8niLBL/zUMQ7fYfHxP/sSzz7ho8QJUSzjYjKyu8i++3fRcyX8vk/LfYWJvRVuaXT4+G++QGNjiGhsGw1nEU8N8HSBptDATiLkhUUmhw+x+eI5Hn/sPO5KTOmOCu64Bb4IoUKn3oFyjhdWVojnz3D/Q0fJtgKEuQWarT6inCCnOpIg4rsBVsFCSeUBH7vtYKTw9eeeQjAUjEREVASiyMM0NSRBpd8KCDwZMTDJZh1evrTOn37ik7z+jjeTFx12pgm7MkP8xeo4x88c5+DdOb7xxyvYHzrNP/+lu/ndD7/ExZWr3Hh4hk1nmcXTi0zs38/BXdv4wL/7cX77X38SQQgxhRy/87sn+fg3XoJMilUU2JM/RGnXboJojTTp0+mlBH4G2/cpDlc4NnEQpBxX1s4zv/QykhDz8I/exPj27WjqjejqKN1ei11DedJ1lWb3PN9ZOY9vJhjbegjeJD/9zx/jLz89TmH7QYTVLgtBn4ySZfttb+TRr/w1ueR/5ujd/wplcx7bqpAmIqoGYbHAhZMNPvvZP+CnfuJfc+SGm/jCE59GlTIY5SxSL6FRa/DIe9+B7zTZElp0t4/gSi5/dqHGF/7Vz3JwX49bj97M9PhBXrhyjfMnXuU92QN89cIJnj+5zB2H97MwL9OobXF39TZ2F3Uur7WYLtzLoR0TjNtjaBt/RSi/RDd3FCtX5Go/ojw1wsmLTzE1fYgLZxe49WBKEriUlJsoWrPcfMssGRIKnsRLp/4T+dkqtmsTsYrnS0wPT3KuDs+fep5651c41bOJpDz1c88xXM4hhF28LYG3PlDAbS1QKIxQEbYjiyn18ElWnHlaKzkkclT3jRFYJzh+0eHAsQeZ7N/Gk83fQTO6rC2uMjJcRkwMmo2Yhw7tRt0c4mq4hS/K6KmKH2Yxsocwc5eY34qxq1c588oCb7zvx6k1BB574U+Zmd1DpVTg2sVnmBrPU1vvsGf/DWw2N9nyNrlr789wqfYCW92zzJR2UduImJ2+iRHvGvsmbmEpXsYbiknCNnY9Yrl9gmxuFF0tkMsMsbXWY3p6hrbdwrcNElHAs0NyOQMxcdFEC1SNfgecaIuxaRW7keCGLSI/gxN4+GGLJMmQzUjEsUgmk0MQVCIfXDdAN0x0A9JEJA5BEEQ63R6VodHrpCGVdtdGlETiJEHVNCRRJPQCRFFAEISBPCsVEcUUMRGQlcEG2HFcRFWk3emgyxq1dgPN0JBkkc5WB3SfttPHMioMlyoUMwHnTj/DDYfewtXlFzEtCd08ShCoOJ6NmVVoN/uoqoau6yRJch15mpKmMe22x9WrV1FVdRBr7PXI5/P0ej0QIEoiut3uawIyy7JYWVkhDCNK1SFMUyeNY+IohjTFdh3E66KvVqvF6uoqU1OTKMoAEV0qlchm8/h+SBiEGPpA9mWaJkkcEccJmqrS6/XxPJ9KpYKiKNQbTdY3NjDUAdExk7Fei/X0+/3Xug5RFNG7LkArFArEcUzgeqiKhO8HRGGHUqlCqZjQ7bWxLAtBHMwMDFCrAVEUEccx6+vrpCnolkU+n8f3ffKFIqEfIAoCjm1jWhZJktCz+8RpgigLNBoddE0jkzGJ45hsLksQBDSaLUolEUn6nrdJ36/v1z/qEtL0ezv+njn3YiqkOpdjl43mWTq1Zziam+bI5LvwxQgjm6Hr2giiSBD4pGGAREIUxmiaThiFeIGHpqnX35C79LweliYQRz56qjBWnSbMmsxdPkNfdlETHzfskKQCplhiq9nk8vwzvPOB+1hpeHz28he5aXIHo8IsV1c3WEq2iO2QmeESgadw+sLLVCaniQSXrKAxLA2jWTLdIEO9meIpa5C1mZBzXN6qIYRZNkUJ8/hxfvIn7uA3X7zCdM2nrXj0VjqY5RG2Hxtn6dISW5shi36fdLNFrCnsquwjNT0iEvqnl3jk4Zs51Vvn2ecu8nP3v5PaaIsrJ8/yU//kHTx/SaL+1BzNjSXEfJ973nKEP/nNx7nj4VsZOVaglJmmNDLGmSdf5cyZx5BjuPXwEby8QM7vsJlUsIorrOV7LJ0S6bzos/jiGpHgML5vln3HyvibLd517wy5G3fxp5/6DpeWThEqMlsnIsw0i5ExaNZsRkZACDV006DjdfB9mYg2YSKSRFlMM0Igxk9SYkmgkquC3WN9o48pJaCV6Phb5FGINRnfC1FkjWw2iySLeL6N5zsokYjX9bEMhRAJQbNw+jZymiDpEoqloFoqpBIbC5uossDRfTvZOZ7Q8+a5vGBw6WqGVGtgJAEl0eDNP3wM66Yqc6urTA7lEMQMJ559hWvf3qTRN7jnxiJv/cA91FdDjk7uZH4jZNiSOdW4TLEoI0ZZRqdyLNQ8fucX/5zXv2GciT0lLlzeQHd6GJbCtZbL5tU2hUiiPFugtSpy9rkugu6RCh5ipCJKIoJg4Du96yxrkXLGotvv84ZHDrC8JXLm26coVQr4sUOAj2zKRHFKEiREToKUFHDkLqMlg59++53c9sa7+fpjT6IlLvtuf4R//+9+kzf+XIXjL6u88LE53vz6Xdz6piN8+mtPMTsWcOCO+3j1pRexLJu9u46xe6TCf/jEM5z++mVEMcOOcRXpdtg9cye7xifQszbu5mXiwEMSRVJ05hc3mNy2jZnZGcQkoDx2mF4YceXyCSpmnt0zh+j2unj1c4xsG8VPfZS2gGovMjY+y8nlLu1cit1KsdOQ588sMJ0L+em3v5/FTgM6Lea7Po4AvWaTx//8s3zg/W+msutems4WtiPQboVsOmuIos0zX3iS8XGD9/3CLzG30OSrj38GTdTQ0gDHDxktaXiXRR568z7Gt+/l8mIHWaiSL23S7AhEhkO1upcTp17g8W9/h8mbh3E3HJqLDjc/sIeXT26w0brCrbdqVIU8W0lEwVL5yb2/yEhmOxc3TvPYySc42Zvn1um9dBa6PHn+Fe57/TE6az3O1db58R/4QbYa82wf2snC3LPUGnUeuPVf8+Jzn+SyfYY0f4iHd7+bfPoq0cRROp01LAW+8tSTvOuhn0SMOgjWDJ/9+r/ECsocOLqf+a1lcmaRJN5EVe8gU93izInnKYzs5cjkjTz30rOsdtrcdDjg+OlzaCO7SVa6HNw/zerSHHYsMpGvUMgUsEOLuBfxrjc8wo/85D/jvb/+NqpBgzDJc612jaxuceXKOl9duMxnfv0X+eKffZuJUoWZmZ1EQYEXTv0FE2O70EyT9Q2fl8+9zA13HOTa8kXe+/AvM6kPs7Q8x0JjkZxZJmdmkTIjnHjuWW665W469QDSLbRizOnzx8nIVXZvfxOy1iR2stQ3XbL5gEIpR7fr0mwlOJ5DPpeAP0y+ErLaeRFDO4IoW6haEzEwCLwU3cyy0T2BaoQE/TKmUkQWswxVh9isLTBa3UW9OYcgxWi6gO8FTE7M0GzaRAGQivR7fayMhh+F9B0fVZbJGINsuihdHy6OYoIgpFgsE8UJaZqQkhD4AZIkE6fhIKMeDtDcuqXTt3s4TRs5B04cYulDVLIZli4/QaXQQZSn8bwCmeIUTuTQ97sEPmSMErohMj9/jaGhITRNo9/vYVoGiqLSt11UVUNRVZzeAFc6EGxpQEq73bo+XKshyzKSJOE4Do7tkqtUCVyXNA5RFQlRECiVSly9epUYiZGREVzXJYpCctf5+wOvQO41nGQcBdddQg5xHCKIEoqiYpgZNrc2KZQqgy4DArIoIYvidRNzjCCm2H2XxcVFSuUS+WIRXdNwbQfHsUmTlGq1iuu6g8iXqtNu93AdD0WVr6cLNLZqTSxrIIpL05ROpwOCgO97GLpJ33Ho2TalUokoGsyAJHGCpig0Wy1kSURR1cFQuCRSLpfwPBfSBEGAJI6vo0YluraDKIn80598338TGcErr7yyR5blr+/cubNvmub3s0nfr/8m5TiOfuXKlUwURT9w4403Xvwvfd33fPQtymUSRWI2EBgdPYhTGWFu7gQb83/OwcwBMt1pgihCkhIEWSQVQ1J05FTE7XhY+QLoEmHQQfASnF6XMI1o2n1QIhpqwtK1ZQqlCqv9LabKw3SjGFUaYsmbIxc0sSWJsFLmmTOnOLRrD285/A6ef/VLJIU2pcouqlKW5c4y5xdWWNha4t3HHqIwWuTx808Qo7HU20Sp2xQndnBg1246QYXf/5P/lR98252YeoOiaaOKBS7t3MZHP/UUv/7Dh/mNk6dZvRCxXc9RGsrxN198lt0T29gzVUHZWGHbvXeynMS0T2/gtBys1Cc/Y/L4qyc4uGcHP/rAMXrSAgvrINoaijnEWn+Ob3zrUVRZJVUTNmtNHvo3D7Fub5I0+9TrV/jTP/gzli8vc+Nt42gzk3zuGy/QvuYQtl3COKSUkTh6106Mis5qxyY1Qw4fmWT/629kc2ORDbHLXz9/GfvpE5x4qUWukKDOyCSKQBA7yORRSxukao7VlS5DIwGyLtPuOJAMfixUxcfphGRzWRLPwe27rGyskMnoGLqI5wXo2JTMHO1uD9VUMHMmMgKkAf1uMOCLhwqdpoOmy/gMtPJiEmJkNIIoRNEUJEkBNDbrDURNRkwENtc7bGx6RILExmoPSVTBDxFkiVBOiVWXSjZEmDBQ4yy9SECIiqzXVzFGYzrdkFJk4egBG802ZDRqfYdCTiSNVYpBTLoVYHgmBTHHxvEapXyLXD/CnMiyVLNpr4gotoVoBWh6Fk0VEOQNSCEJZWIhRUkhDnsIokCSiIjIBJJNGEcYXYEbh01OiIAUgAm+bRC6DmZqkSQhiRiSMwRSDTZbIZ//ynNsrxjcNnIDXz75DMEnfo8/+Xf/T97/4T9ByCyRWjbf+vZJpiZk7nn3Dr72x5fYdTjg4M7dfOPkU7z93m349RXecec0pi8wtTslm7cIAoWta5u4Wout5WskgkQxN856o4ZmqUzv2cv2yTH8tkxdk4kX1ymWqrzuyJuQ/ZTUayGoXYK+wPkvv8gXjl/k8rNNXvf6IzzynmFmto1RawtczW2h2DkO5hdZW13guSf/V3aN3YhZvY2O00CPXISMQOnG/XzgI1/ho/9epKLejWwEOMESkqvS9x1uf9tD/PWff5H7Lj9HsXAL9x29n+dfeAFPdciWCzTthPV4nU+cDblT6vDMt09y8uUmiZMyPityy6Fd7Cld4cD2aabe8z4y4xNcnHuMJ7aeYfWyx86pImJs4K8GKDeWyWxpbJ58lf944Zd5/wP/CrOUZ9rMcvZam9KRUcKNBMPS+LMnnuDnHn4T24/dwbW588wUJCzRQlJKuNYy08OH+XJfIdgbcahuYteeZyMD3uXvsG1mH5srr/JD995PSS7Rd57C7Zxhx9RNhNEIzsY10k6Ny0vPsGv2IXZP7eA7J19GkCpsLZ3mq4vPMJw/yEiuwMaaxeGpOpuGgewnnD6zSnF4FwUhpi10SL0Wh4rjnFx9hlOXTyNMjlGVp+l1a0TxOp2tCGW0yL133c3C2T/jw3/4J7z+6J3Mr7zCytYCu0s7GB/bS9NpoYQ5tLzI/tvL3DT1MCPqdoIFmyvKKvnCGP3GOYrKHqqqwFrc5tab7ieXz6HSwg6zSFGfA+XdMDSOoQd06jYZo0h1JE+ns8m6LWEqEqYWky0UEOIMkWjj2BFhYKMlElopxm6vU8iOkS1V6PXKFLU9tJ1nUJUJRCuP15UhrCNLMVFs4zh9ciWDju1RzRfIGhHXNnvIqoUX1iGBdjdmZCwlZ8gIZAjSBN8NENIAy8yCImAYCWkaEfgB2WwGz7dJ8EhTCUPJ0/f6TI4PU2us03N7uEFMbEaUyhNYvoAu+nQaq3QCj7y5HVGYRbMUYjHB0i3iJKKQ0RBF6HQ7zGybolarkS8MIpeFfJkkSSEVSdNB10DRdHK5HL1OmzDwME0DXVMGNCKg3mhQrVbxg4hcIU9gd9E0jURS2NzcpFKpcGXuGn3bIVcq0u61SZMETVFJ4pgkiinm8nhhiCTJBEEwGGaWJFJBwcrmiJOQTqdFksaUSjlct4dpZIABuz9JErrdDqoq07e7FItFduycIYpixCQmcO0BnVAR6Xb71Os1FFmHRMLz+gSBj5UxSNIUPwgJoxjDMAiCiCRx8QMfWVVot5sYhkYQ9qlWCpiGQrfTxcrlEUUBSZIJ4wjV0IijGD8IEYVBF9zQFVzXHvybCyKCKGNaGfygjyiB739/n/79+h+jvmfjhqvZ+F6DTM9hOjKYVSc4sOc+5Ophvh28xCXv20hGEy2XIQllZE8ljl3q/QYtf51rV5/DvraEEhq0hIjMeJnZqR3kzRGyWplew0ZDormxRKt2lX7nKmLYYMfkDKKsE/g+rtegYMGZdovHX3oW1W6wvXqETQx68SKdpIMSZqiMjXD79iPkCwKC12M0uw00nUzJwJEkmp0aGxtnCaQWN96+n+X5KwiJyUYt4tqJOaRGjbXMFB/4k9P885ldHDk6zZYjcOnqKiOZYdwkZm7uMvfecIi7b95HuHqV1vJFkk4dv9Un7os0NwTWlxOSsIxtZGl0JLQVHdPxsMYCjKk8iqCSz+YYGhvBWlpim5XlKy9f4plHz/CGB++mcFOFy6s9rp66SHupQTNyyQ5nkEYNaonCpZrDWrNPO6hRmcihjufYoEHkrWI0E06erHHpZB0jJxEFFv4SZCMTvxZhqjGSruBKItmREv1eQOqChoKYCkRhQhSklAoloiAi9AYUCOm6aTrwQ8TrwhZBEAa3NWGM57g4rottO/S7Np12G8/xyGaNwaBaEBCHIWKSkoYxfs+ltdWGOCZyPOQgJvVC0ihhfWMLxw4QUQaIvNgnSQc8cDeIqLfa9O0aQbuL3Wpxaf4VZo8UqE7lEdse2wsibb9F3+2jyQJZTaEZxwixhSmaJKqKpIksXj3D5uYGr5zc4PQLHZR8BacvkDoRhbxI2+vh+hrZ2CDxQkQVNEMjSmNkWSKOIwQhRZFTtEyCoEbEXkIiK5y7tIRJlliQ6UkChmxghDKpJxJLMkGSYhoKmp8yIZkMYeBtuPz5xx/nK3/5LX7wljcg5Kf54G/8Ef/2ofdy75GbGJ2cIhV0Pv+FC+xZ3uRn3raHTz7xGBPbMoyqJh/59J/xjQsXkEoSCjEvf7XDFz58js/97ipnnrpAr/U83Q2ByLHYasfkqzsYH56iZGZYXV2kJ28wWVAZHx9n7+QhBCmm3j3OpZNP8Lnf+yb/9ncf5Tf/4/NgTmLuyaFlAz7255/jqWe/xJB6jYlYwfE2EYZHOLvocGq1zrdfegqSZ8jkHaS0R1HNsnPnbmaO7eVX/+ev0Oq+iKjFVK08E4UCulKiFdiUJ2S+9OmnyYgt8rlRdh+5gXY3YGthGb/VZsdulQOzwwSeyG0P3INeNJjdpZErWFzeaPDbn32G3/5Pn+P4Nz/D+ne+zA6lwvv/yXvIVRK275hlx8wRNldGuHilQ2VMYHh4mqUtgRPrz+HXFzC1POPlWU5fOsFjr5xi367buPPIBE+ceYa9oyVEZZMmbZa2zhKmWUrl3Xzr1J/jeCu8d88bUWf2spQEBA2RODJptza4vHqFs3MvcPn8EyjaG2gGEjftqHJkuotgKJArUBrfwb5dx8jIKY3GWSJtgcnpO/HsLE9cvEqroHHkJpm1CxFZz0MTPHLZMkUTus01NKWC61hcXF4jO7SN1e5FDt+ZRTYjRiduot3L03NT0jQklTf48Z97E0Z+J+eX22SH91Io7WWrv8z4+FHK+b34gc3p898hmxliaekFdFmmbRoUqxNYBZEDU7eTKZSJpQLDgYndXcJtNHFDl1ptnrmFk3QVEdfJIEmjJPYlfLOOwwpEoHkSUppHNC3SVEXL9EilEFkZRlZMkBxSP6WeRgjZESxXRelcIkZH03Xs1gWk1GcoL9LzwdIzyGqPXmSjhlXETJOx4Snmzm2iKxqS5uMFLYqWysRUEUUYpjqcZau+SBLHQIiQpniuTRxHOLZPq9VBUaDV3qTVaqFKWYgk+s4mVk6k2XKwewqFbJE4rGPokNgRaejhRV0c9wzHjtzISPVmVFUhTWOiKLyO5NRJknRwyWKY2LaDYZgszM8jSiL9fpdOp0Wv30UQBqjTKA5Jkngg8srn8T3/Oo1Hvj74G9Pr9TBNA98foFi73S5xHDM9PY1pmoyOjjIzM0OpVKJarZLNZNF1fRDFiWMQBFzXY2Njg6GhodfMyt+VUKmKRqlYwTAz9PsDPKiiSgSBh+/7AOj6IDZUKpVQFGWANBVFtOtdjCRJKBQKbNs2g3mdkmS7DuVymTgeZPtd16XX69Fut2m1mniefb0jYKCrGsVikUwmi6abrK9vYNs2uVwex3EIgwBJGnQQkjjGNE1kSUIAzOuyOUVRB4ZoRUZRlesxpATS9Lqk7Pv1/fr///qeOwR6oBHLGlREnCTCd11G1ALbhoZY1HfyauPbrC4/zy3lPRQzIzRSi6ZjE/W3yGfHqMxup15bRUo9srFBbyMgsbq0/QbICXOrK5gSWEWNzaCJ5UPqdRCdDfQYfN8hq5pkzSrysIJjO7ywOs+EoTKbK9J1YCwzxnJ3DjyXkmBwaeEySiqzY/YYL869Qi+22eh02ZYbI0xE5q6dplDKEsQyp08u4Xk2eUNHslLyNAjGp/nMN9Z4z1v38meSx/wrXbysSKIkjGyfoq9KfO5zX6SzUme4XKKxUiOJVdwISoUKi4urvHryNG/7kdtodRyEtXU6cZ9IyJDEUC4pTB4dZWhqnBfOrbD4V89wx5vv53xtmQvPvMoDB47wsneZdtPGmjIwEJgsD7FV28SfMCmWRfpOhFnK4WykTBsmew/v5oLb4IbRIk7Y5oX5JRpbOp21PkkupDhu4R8PCFOXcjmD78sIaopeMnH6Ka7nI0mQRil926FaLhGJMrIgIaTCgE2dDG6JBAF8zyeUIlRNJ/QTAj9EleSBYExViKIEUZRJxGTAhU5jRKTBbVeSQgyyBiQJvW4XFRlRVNBUlViOAZHQS0kTkJSIJIEkFYhj6DZT7JpPy+ujqSoWJl6tRcawMKdUDMlkZmg7AX1Wm5sUIhM5TYkEEMKAQMrRdeucfekkkQeCoPPq8z3MXA8yAYJh4Mchmi6RtTTmL22xsNwlFUQQZRAGByJZFsllLOy+T+BGJImMow6kRrWtHr4qIAkiGdWg0+0RJyJqKiH7EX4M/TTGz0uYUYSqi2w4EtfWXLS1szz/a+e548Ah7v/hm3n69PPcuG8E91iev1j7Mq3Q5Y8/c4mH32VwcGIbX/zSSarZaZYvnGOu1sXePMnWSo+OLSJUIoqzAQdvGaKZpujVEqV8mfxICVkEI/HIKkV0fYie0mOqcgwpjFlePM6pCy+xdnyeS6+u0207VCwfWYzYvLTBW37sHsSay4YicGpOIOw+xa333Mn2aJyLtRW2UlhbTTly9Ba+8o2LPPjQMP1cnl7fpSirqLuGWQsN/upbX+AtD+YxtGlE2cNSdQQxy11338JfffJb1FaepDL5MD2hwg1H7+fqq8/g23VWFlM87yK6oXHDPQ9jFFM8G0RRQino3PGmPWTLZbqhwpIhkoRXMVtDZMtl2m6Xie0TTB88ROjXSNun2LbrGAv9KpcXztNt+wiCzq7ZEc5ttjlfq5FpXsIsixSGdlDfepWx3Cz1/gZrQo9dex5BdVc52X6KmpRnfXMUJUzZM72N8+eeIT9dpBe0GR+XWFoMGTmsgFZjaWOLjD6JpWrMbB/Hu9DCsUtsrCzT0nrcsf9HOHH2y6zaZ4mENu+8+w1sr8ziCxfwhwRUbTdZU+bVlcfYZ96NMqTQrnUZympoSZ+l3iZjmT1oUmEQKSFlctss2UKVleVV1hfrlEoOb779MP3NiMKowuXGOn4aIAtbqEmbg5PTjJeh7mcJlByJUWDSsulK1+huhPT6HfT8IdpxiiL7dPuXCKJlbMElZ44ihvtRsjMMFQwWN+ZZW7jEG2bvZkN1SUZEvH6ddj1CMy1EWSNO+wRxgqEZlArb6XY7CFKJqdJOdmYynFteIhUTzMQgZJqO+ijD6evoOT2QI5RMhV4gowgaTtxmKFtkYaVJoEqUMglZQ2S0OEujk7K+sYGuGChyhqFRi3a7T5KIBH4fWdFJEgHXjZAViSBySPBJYhCvC60EQcL2PEzNolwuQ9gFL0Q3C8RCnzBsEHX6aMYoprWdhaU5rGyJOI6QZQnf9wmC/529/46T7C7v/NH3yedUjp27Z3p6enpyljTKSEJCQiAQOZm4eLFZbIPZXRvv2mtsY3v98/Ua44TBATDJJGEEklCOozBJE3umc66uHE8+5/5RrbnsXmPL+2N/d6/Xz+tVf1T3qVPfOj1z6nm+n+R0N1ykrgWnbdpEolES8QRd1+YARRGJxVLYtotA2LUQ7bQJ/K7ttyQJBEHXIcgwDJqtFvV6vSucNjvouk4YhriuS6VSIZ/PY1lWN+TLMvE9D1XuugiJorjB+bdJxONUqxVKpSKO41Cv11FVDX9DQ9D9HDJhKGCZVve8kk273UGWu98TnuchiF3EwPf9LtLgeRvDUFcLYFktJEkhFovhBy61Wo1MJkOz1SIe71KYgiBAEukKvsPueT3P69pj+x6aqpFMpgkDgU7HxFBVfN9FEnXisQiuF0IYQuijaSqK3E1w0HSVEAHXcbsNTxiSTiUJQp92u/UP9kT/Wv9a/9LqZSMEkiaj6RKh7+BZHXRVJfBFOlbIaCrNbSOvZ8vIbTxslvjBwlOIdoF9gzvZNHEQD4+UITE6toVirc7S/DSELdqdBroQIyZn2DK8i77cKKGv0j+4CVGN0CDOTGuNphOyVK2TVxN06g6txjIdCQTPZ3K9hN50GFZTzE9XcIMOvYpC/0gONdPLomlTLy2yc3CEXDxPLtPDzMoU89U5WpUGa/NrJAYSjO3cRKqnnyCWwTUd3HaZjFImtn8Hp9YEDgyOMbFznKQq06MYVIsNfnjvE9QW2jiygaeKyIkYGAauKFOptWm1TZKpOIVilT6lRSHSpLJcJW4KGKFPYrOOicXJo6c5c/IS1brKU986wabRLEu1deaen2LTRJZA1znY38tv/Nv38rrXvYn44G7yaopGQ2Tt2DJ2sUIy7RMRq3jFNYYioxB1WLLK7E0Ps6kniUqbgV6F2mwVIxIn1xsnEVOJ6T6GKpBMJTH9ACQRRdZQFYWIodNpdGhUWwge4AXIkoQkSlimi2W5yKICCLTbbRRJRhJEhBACL0AURAIvxHc9XCEgVEREXQVFwiPAA1Ak2EimDLyAMAhRVQVRVQhlCdv1sc2ub7QoeF2kIOxmR66tWlhVhaQcIZ2I4ZoSoSDho9Cu26xZDRpLRURfxAx9JudmyQoJkloPdtvFFsrMzq1y+ugaCNYGVUln7lQJqxWyXqlTbXYTN6MJjZoZUCi1cFx/w85PxPc9XM9HlmXisQixmIEkhYiBj+000eIKfcNJQsnGrjeRzYCoIuAR0god9IiG4koYngeCSFsy8UQBGQNZlmmHId859iKPfuV5hESM509PMpoWOHRoN1YoM78u8uxTZZKWTyeIcGF5jd279pA14hQXHfqGMxy8OcLBVylc95oeRkcHmOjbT6+YJmyZeOY8bWedimey0iqTNnq5dfwuImFIZfYEq6UZqkWf2ZaKqsRRVAFXipLfOciOqwbYPXYFz8xO09O3jeWCzNce8Dh+cprNGZuI6JJUNOySQbb3ShZKsLpYpjcxRGA6aJKLGBcZ3t9PvWLw+EMPYPsOsWQCQ3aRTQfCCEZfim9/4wUiioVOh9FNowyN7aUjQst26Vgt1heXwaxyxcHdxPI9KIksPf1x5FiI6FoMKSKFyRUee6bE48+dx2isMtCuQnmN5tpp6qVZ3HaS9bLJslNmqqNwse0j9eSQhAie7RHIAY4tkkvuoEeVWC0v0JsaIiop5PomiKcCBpJ97BhK8Y7r7iQXHyJbr2LWLPS+TfSyDTnYTjKX4pqJzeiWwDce+RYV32O+UWK23MBp1MjG0hyauBUNl5XlY+STo2hqLw+fPks5toWebAzMgOJMhMAW0IQ2o327GOmxGRjoY1fvEeQwSTaawBUF4vFRQitk1+YtLF9awLUsVpYvUF6boVZew/IcFtZ9TE+i4i9Qb3iM9fQSejXWq3OIioJMjE3JfQyEWXYaClu1Sc4t/i3znSrx6ACqqtNvxEhGklgmlM1lLtReoG7OYFqLKJEEMSWJ06zhNc6R2jzOevUMgQm6EEEQakRiMoIbEnhVxNBA1wVsb4WoOoqIx0h/hgMDmygurNJxAlxFo2nVUNQBhgc2E3oSvuCTScZQjQ5KooPiNknmM5jrHUrVOnLCACHEq7k4DRdPctC1GL7nsb5eJhrNEY0r+L6LphpomkoQBqiaQhC6mGar60ajqji2BaGPKKiEgUKIh9kps766iCZrCKqCbVVQtChStJfBvj2sr68hx7qhnYahX+b5K4qK74fIskIsGmNwcJBoJEIqlSQRjxOPRTF0DcIAUQRVlYlFImiaiqoqxGJRFKVraPCSU5BtmwTBxr1TFLoWzhuWoqIobAwjFkHg0262aNTqVKtVarUalt1FG1RNQ1YkBgcHLtt7Dg4OkE4nN84ho+tG10hC0VEUjVKpTKvdJAwDgsDH8zxUVcX3AiRJwnEcmo0Wtm1jmh1M0yQMQ3zf2xBQB0hyNwPA84MNa1GAbt5Lp9NGEkUihoFj291hIwTbtLBMizDoUoQMwyCfz3U1BK6LZXawLRPPdTAiOrFYBFmWUFUV1/URRAFFU9E0HUVRUBW1Ky5/aUj41/rX+hdeL3sgEBSRIPRxLBNdVRBFEDWRQBNotRaRzSZXjmznmvE7UPNHeHDhOCef/ypJ22a4b4jK+jpuucNAfhNeMooVE6kHFdasSzSDNaJxgf58lpQaR6hDkgSqriPG8oiGQjIepWOuoLrzGKHCFkHHdWzyWi8vFirMLk8hKDaLVRPF9nE1n9mFAnXX58zFYxiI9KSGGN88jq6kuDBbJKbEySf6KTZFwkBhfGsf0UycUsNn77bd7N1/JX0DSY5ePMk9X32RASnH1r4tXJxa6LrpKBpSMkavqOEqJnWvSrldpWG1CEQRzxMJHI2WY1CaM0klolTXFwjtAocP59EyCrMX1pmZWiUwAxzLww1sjj91juzICBPXTNCbTfKGuw7ztre9lSt6ctx95R4279nElpEc6VyO7JYEW7fk2bN9mHYYYWquzQNfPcWJH87TcF2e+t46M6cL5KMJenMGrhEiew75ZAQtpuFFW+SGewhCAa9tIoYC7bZFp2mjqRrtloltOvheiG052KaF53Z3YlRFxXUd/MBH01UkWe5a1SkyghB24fDQJ56IoeoGiqYhyhJIIkgigiwiKxKRaAzXC/C8AMtxccMAx3ORFBk/CPA8EVGka/cnKSiaiqRKVGstOpUGYSegWiphdaqkewOyA0ka1RZrZjdYLaqq5OJpgniCVtMhLkWIxxOEYpPnj05TK6moqoAgeYiyz/Jim8kXihgtGaHTwvJCVism2Z442UwETVZwbRvfD1AVGRGBwA/RVBVJFYlEZAxJQ1QV1qse88sd9Nw2mq0Q15HwHJtQFHBED8txMAQNxzHxPQch9JEkgZAQ13Nx/AARj4emanztb77BD5+b4dzqLO989VUc2reTVtvixKk1Dm0JufumfWRTsOXwZo6dLXD2bJ1z56tcOtFi9jGBpcd9ph8tcN/fnOCBb5xBjvkoyIidEKcNieQAg8M9FFbP8NUv/iWf/uy3eO7JE0SyFq+7tZ83fvharnzzYe748C287T+9hnd8+NVo0hS3vekGWivzNJYXQXX5zv0zLFYvcMUBDd2WWG81KdddtvXfwtwlk1xMoSebRRItrJZAy60QClEWi0UuTD5NKqKTTSdAc5EUnSNXXkWhnuTocw8x3jdEQg8Z3bqNTVuvxRHAFXQCV+XZx55iaW6BRF5CigRMnVvk1FOTPP7AMY4+8yJqoo9CI8L5SyucOT7N8nSTVqNNeb7EzPQsoerj2Ou0y8scOXQNui5jaDqBFEExXF57+yj9RsiO2F7GoxH6e4cpNVv4QoLdQ+OkzDYnZ06yulig7b9IGLNJDw8wPNDDwa27ycX6CVsW/qrIxcUCf/XU90n372J9fZXVVo1Cp8zswjJuIKFGkySyfUzOn+Pex+/h4JE3cPfVd3P31tey1ozSEgOaQRU/IbFamycSsUi7g5RaS+iSy+DAJiTJQIzqZLO9xNQI9eVZRLfM6tIK8UgfmwcGcMQWq815QkFjU3KcZnkVCZHV+UUqTR1f2MqWzTcSKi0ePf4UxwpPM6+f5hyPICbL0CniWlVUQ0FVFIRYB8m6xGy5SEcRGeg9hOU1SGRlBGsGuzWHLKwzPHAAPb2fqO/ywvE/JUQgGYkQjQjEoh6+aZBJJ2mbc0SVGOPDY+iiSam0QlUTSOgxAskgktPYkd+KVBLRskvk0g6eUEPxfAS/THpglVTcwQ2iZCIaKcWjVW/R9iOYvoQmCBhKjHQqiu04FNZs4skIWlRAlLruQrquEomIKGpAs9lCCGVEUdoQnoooigyhh2dZRDQVWQnxvDqmUwI1h0AWWdCwQxVLCvEtnzAUaDSaeJ6PZVnUalWazTqu66CqCo1GnTDsNtCtVpN6vd615Ay7yIDnuUiyiKYpyJKIJAldCkxER1VVGo0GPb09DI8M4boumqZjGDqKIqNpKpqm0m63sCwT0+wQj0eJxaNAgKarOI5Fu9PC9RwajQaSJCGK4mVXn/8PbShElmUSiQTxePfhOj7RSIzkRqrwSxWGIYEfoutdgTSArnebb1EU0bQuguG4DgFQrtZQdQNNN5AkmTAE07QwjAjxeBzoIgbBhq4hEolsDChdJyQB8FwXRZbxfR9VUdBVFUPXUGQJ2zZxXRfLcvA9v5s4DRvBbPJGcJtIIpn8iTVc/1r/czU4OLjnk5/8ZM9LzwVBOPTFL34x9f/0Oj72sY8NbN++feeP+/33vve9uCAIh0qlkvTjjvkf68orr5x4//vfP/x/Z12f/vSns/F4fP//nXPAP4My1EFBliS8wET3JVRFAMlnbmmapLlGMDRBbcVhWFZJZTczrar88ImvceriH7Br13WkhndSac8gSxYIJp7nI4UWkmPi2xAaKhWrjJnoUGoXWS1eJJvJsVyoYpkdFC3Okt0gk9Jw20lss4LoqlT1Er6iMFcLyMRLOI7HcrvGdLVIfyxHLNXHmfN1Fqs1SjWLWrvFji29RBIWXt1hx47dPH7yGZrLq+T7U+iix5Grxsn2beOBp54na5osVkNyGZujTzzJzoM7ueWddzFXLFGYWsKqtxkyYghKQHokRm21zfpylWanTkyNYpk+7TZYhSa1poWIiGd0KDcthFaCDxzZQaUR4cHFC9x82wTR3jyOrNJenGG5XiDmy9ySyrN5dCeiEOHPvvplHvvqg8RcCX0Awl6N1VWf+twC2YEe1hePUVpZ49J5hV5bYz0J9rKJomrEtuhEBIXAsTj66DR7bh1maGuc9YsupUId2e86RNmOTyTavQnXOg1URULXdVzfxQs8ZFG5fBOXNRmkbgqx67vE4jF8x6bTtFAVGcOQcDwLUdG7vEzXRwi7cDuEiIR4losoymi6juf6XZ6pJCEK0AkCPA8I6e6MKREEsQuft2s2azNlbDlKXXLB9ohLDo4T4lg+jVpIo20TTQi4dZOB3h6ayw2qq6vogk+tbXP0iTm8ICTogBLx6JguriASFHyWnTr54ThS1MS3W3Q6LkoA+oYtneV04fYwCNFUA1XTKa7XEcIQUdbIGgaVik1kcDcD4z0sS6dwOy08a4aIJGMIAU7g08TDcAJcIcAVBaQwIEaA7QbYuoKi2fQpJoWmwNpqFecZl339SX7mTXv5yvA4jz/wOM///Qw3vTlDeL7AyE0pRvconD2Wolbv0Cy7eKbPenSajh1FzLT54C/ciRGpUK6KoASMj29lKLeLhx56kNMvPspT33dwOh2Wptr07fPoG9EYSRW46forWXPqjI5cQWlpiRMPP0x85wTnz51HCgV6ByIsVEweeXyOj36oh2SvxNyix/TUcfaOv5LP/cU32LS9l+zoONFyhF5UmpqCu6mfxYtVZpfOk8nkGR4dJ91JMDmzCEBqTOfR555h+lKNV1x/I/tGR+mN92J3HGbnT7OlP8d6y8eVAyKihK6Y1F2BVsln2/YDzMzOUGo8zxtecxft+k5Onz/BdKPNkJ7EawUockCxXCOZHSCU2xjorKxNolk1Sm2LYqfK6HDA0J4BZmcusn1LlagwjD4Y4lVitOuLrM3NUuy0uXbfm6E5h1bzuTg7xWxljp1X72ZxxWS5MkezUeDg+LX851f9e7790BOcPHmeQPBBsbh5/36uGr+BC5MnWGk3uPKaf0Naz6M7Pk6pQHYkhyFr2OVFRtVe5likWZ1hpbzO5HKbTm2OYGSOsU23MLM4TbU8j2dXSbiwdXwX7WoPj558lqXKGvu37ue6HTdiWh1awhyuM0dvTz+NxkWklsW29JXkjThnZ35IqblOmDDYssvHc6oo9hHyUg9RW0GNuFh+jHWzQ38izr2Tf0d8yzYGk/sQhJBIcheiINNulWm7JwhiSQprx4nlrqC0fgZBTxMx+rHLJqbvosZMoloUs1kgm4wTNZpoQpS5hYuI0R6MiIws6OR7emiXilC3KRRLWPkyo9phUEp01hs0JJ9EeonFxu/T1/dbxASfauUYyXgGV5Jo122kpkyzU2P3/jiulaZpBgShRCIjUlmtIpHHNNtIsoVltUgls0QjGXzfBwH8UKQrOQhRjABFdqjVC8RiEZLpEex2HceVMPQMS7OLJBIynm4QhgIg4DgOsiyTyWRotboi2mrVQdNUwtDboN0ogEij0SSVSgIhmqbied1mNxKN4tomrmPjhSGJRAJJkvACH9d1EBDwPA9F1hFFEcuycByHSCRCOp3ucug1lTAMkeRuHyMrMrIioxs61WodTdMol8uEYXjZLtSyrO5gItkYRnRjfSkymewGzcbvnlOSEAQBTdPwNtDUl1KGXTdAkkRc10VVNSKRCLbl4gcBsXgM0zK7Q5mqdXMcYjEUScB1u2hxJp0hDEMs10QUu418JBpDVTXMtkmlUunST32fIAgxIl1UIAwDREHC90N8P+xayzoejusiSj6yrBKEHh3Lw3H/Hw8Cftl16RJqofDj+7jeXrzxcf73/QD/kzU/P38qn8/7L+fYj33sYwPf//73UxcuXDj3v3pd//9eLz+HoF1G0aOgq7RtD3wJCJCVDMTGUINu6MmS6+KZy8S9Nvt3XsFydYoXFp9jsLZAPr+VZCKH7lhYja4ffCTThxCErC+tkVHi5KN5CGCgZw/pxChnIpcwVBnFyBKYdWbtVTzbZLIyj91SyYUCtMsUix5LIUTkNk4iTY+RJCXYDCohzfF96D15snGLo/c/wPKF82zaN8Keq3by/IlTuA2FW468kaXaOkJrkW29/Xzt6FPU5lcoBX04BYfS2Sp3vHkfd77lJjoNi5mjL7J8dp64EOX55jKyIKJJCqlYklw0yXqpSMNqMZjrAalKWXbYaojohIjVHk48XCTV45PC4Lo33chr6WVucoGp6Ufw1QaLa01Cu+tCZJxe4/rd1/Gt08s0BJXMmILQClEjbepFl/aMSpj0GIim6BENViptbn7vQbxEim2E5LObuLQ8zdTMDA1nGcvsoOpxtgyNI8XOcG6+SGmlhkDXX1sMQuKJxIbTRIgnhXTaJpLS5Vt6novndWkzii4TS8VQVAXHsrBsE0kQ0CIKkijgOh6KIOK1u7tbgu8TCgJ+4Hb5rI6DJkVpN9oIUjf5k9CnVWugSRIIAa7f1Q4YERVRkGnVyqgRCdGXWFtp07s5TjwZoa1oNCyVyclLpKMJfN9GDJtUW1B2WvQSwcgNcKz+Itt1nc5ym3bRRTFENDGK3QpBCBF8l1DQWVkRsVomu/Z59PRqnDtpUS12EFUT3VDJJJO02m3avsnCwkoX0lcEtm0Zwqo0KHllVCNkdu4oEze9lqvf+S4e/MyfUDk1g5KQaQQikg6yF2ApOrgd1DCK5dl0JJcACdoOSdWgZHu4gYIeOKyudvjDr5znjftn+NRH3sl3jvTzl7/xZXYt9/CG/Vdz9JvfxYjkueIOiQe/egpNE5CUPOVmjUCs8+H3X0Ei3mCmWCeRMjgwvo/2PPzJn/8eU/UFsltHKZlTJASRpUqLxQcvMTqUR70ig31TByM2TDKa4Ivf+RZtu0Ly0iodUUFTBOqiTafs0SmozC8Wuf7wfpYWH2e1UeTuvZsIlBQvPPIMd41tIz+wlaX1J2i0AiRPRhZlyqbDvU9+l9dpr2VLdhudDizaSwxuHUX0x7h07Enu+5pDXybFTW+5hve+9518+57vMD37DNnxPl54Zp1U0ECJOmR6dew5ifLUEnqPz5FXXMnffOXvuOOmA9x6xxjHzqxRFxWSCZFLBZPY8GYGokOkGwlOHj2BPrKF5586xVShwhVX7ycb2cJXv/cgB29NEE1so7Jikh8eRPOjFNs+2R3X4Z+aZXVqmlh+kieXGlQbGhGjl+nZKfREL/PFZXIDm6jKI1TXQl45YTOWej9PTN/PwuQSR2tVxnIZBlN7GUgaPHfiAYraOoPDe9l5ze0IxgzF0ipBw8GzG7z9yrfy5JNfAbtBZ80ld5OPlLFZbl3AjuSxo016h/P0hBkULYUnzjKyvYdq2+TszFmGc8NMbL4BPbeJtalFGk6ZzWMHqBUWONP8HqcvZklG+zAbIdm8TWCBVcgx0L+VfGoPpeIUnUAl9F1iKYGph38PW9dQVImdQ6NUqkWMdJSwExKg0myINEszaDkDr34dZxdn2brzEO5qgbV2EVVNkzUUJMllfHgbjmUhynNcPF6n6a2ihCo95hDxwV6cxiSNikQn3UDQc9SaRdpoJMIe1jvfZuu+V5Pz3sol8SsEpTIVq0Gz3WJzbjdKNEUy1aFYaJNIR0kYKcrGRfymRrnSBnUBQYkTuiKua2G65S5v3gURAy9sYzplQkFGC/tIRdM0mxcoleZB9OnJ72BhrkAql0ES2miCRtSASs0mmfZpuTKqqm2493QpPrrebcrbnSaqlkLTdHRdx/O6rkLZbA4johH4Ph3TAkEk8H1Mx0LXVBRVQQzpBpKJMp7roRv65Sbe9zxM09ygKClIkoS/IbLtdDoEdHf7LcsikUjgui6dTgeEEFVTGBzsJwgDLNPCsi0QIJ6IUalUyGZzuK7H8vIyiUSCyEb4maoq+H7QHUg2xLlhGBKLxREI8DwX3/eIxWKAQKfTpQAVigXy+TzhBuVJEkTY0D+IoUzgh7ieR6lUIpGI43g2kajO6toqhmFg6FGsjk02m+/aXssyIWwgHQK27W5kLVioqkGz2UAEHNvZcJCCnp4coqxiRCM/6b7rJ1KXLqHu3s1ux+HHWqKqKuGZM5z532EosCxL0HX9JxLzNjIy8q+JyP8L6mVThubOzVGYX6W0uk5pbY3iyhJOvUlKVHGlFhXfp+W7tOtlvEBE1OMMJPvZlxzj9qvfz+DuV/Ps9FmOXzhN1ZLx5TSCJ1Fbn2e+tEA8PsxqYPDg0fuZn3qaTqfEU8e/weyTjzD10P2sPPcd1s4/TLpQ5Jr92/jFOz7G69/5dnr3HOKqm17DkbuuIxiU0YwMW7cepjZfpe4lEAZ2sX3zOKsnzxIplbn1NbeTH7ueA9tuwBeyHNh7PXsObeKJi08xPz+LoG9idqnBq3enUOMpnFKLQGzwuvfdwg1vOcyv/l9f5U//6zcZz47RK2TQfRUt20Out4eRLWOgxOiEgKbTcWRKzQayGEPNxKkMwcpyh6QW8IbffAu/8fWfY9s7tvPCzH088eRfcuLME1y4MMPm6Di/8dGP8vHffi2/8J/fyuD7DvKzX/0Cv/6bf8SZp7/LTYc2I0Udormt2O0oqmHhOiroLfrj8JqPX8fhm4Y5smOQg+Ngic9z1aYcV109wU3vOoLRk+ONr9zP7PFLnFfKXL/rSt7//jeQSSchMNB1mVhapb3eJKf34EkBnurhEYAnIgQiEiIRXUfwoFlsYFcsckaeiBInDAQcP6BjO9iWRzySoGVbdGwbUZQJ3QDfDtBkHSGQLlvp6bqCj03LbIEk4IQQCgKi7CApEr4nYtlNRFFEEWVEXWJqxqc66SE3K7Sk84T1PGLNxJQ7ODWb8kyNsfwWtmT6aUoNrI7NaKOCU6vyrS88jRTqSGEEJ7BRkxJ6Jo2e1ohmZcSUTdW3ePqoxXe/22B62UGK6BiRCIHvsL5WIJGIku7JYiQ0Op0OvmUi6VG8eJJAFLFMAUOSWbj3CzzyG2/iHa+u87q3HaDje2iyguB6RDQdQ6Y7/EhN5JhAJBqBUCIUZJqWidlx0AQLyQhBd1lvr/OZR2Z549t/hy2FGT7zx69D2TbKgzWLH55Z4ezkCvlshCuu2YlviXhmmWg05H0/dy1NSkzNFtnVO8wrJ65h+skCf/ipv2XRKiBuDTC9FooNVhjgiB62EHBpfoVv/d15KrNFIuEqUWEMMeOiD/YR6zMYnejQMTpcOtmhMG8R03t58PPLXDUSIzuWYeHiDMvrk+w6dBXf+pszlM48SU8+zf5Nh2g0lhHEBlosi9wRWTwm8Lnf+yKiV2N4qAenYGMFdYLyGno04PHaJH/y7aN86nf+mIe//hk+dPed7N/6Jkqnl7lC7yFoLLK4VOXKPbvZu2sPO7flUS2R3VclEPtkvvaVY7Smc/z0nW+iNT/D2fMvMhTvI2jXWVp7FtOWeRGPO264gzuvvY1Mzzb29wwSXS7w9sN305l8llBtEWohzVoPmegwQbtO8eL3KDQ/z58d/zzfOz3L3i17efuRN7C3P4sTaESEKKqjsqmvnxFBpl/O8tV7nuCxx+6lXbFI79jDgTt+mUzstayXXuBC8/uogwHfOXaKv/nhSXZrMjG1n2Q8gtif5cHCCj9cfJJ0aoDy3Cz/4ac/RG90Kz2KQUyxGTUidMwKM0tzXKxN8vjUD1gsLtFpl4lFYgz3ZpANl1LpDAlrkJHRK9jSfz1mdZ3ZylnSxjjXH7yF3Zv6EKRpkrF9CJUBBDmCEh/AiGtIynGa5llE22Hq7NeZTIlog7exM/5mVk9cYmXqKKopsb7+NIZSRg3BlVV2bHsDYTjLzl1b0PJJ3IxKfnhzV8elRogkO9gdgbW1WRYX6+RG8pTlJUzdxI50oLlEqQxRyyB0Q2KZCVK4CGmX2ZmvU1ROs2JbTK1OkdeuwrdNMlmDibFX0WlpuGYTlRojvSlGclE0zUHD4ND2QZTOFBF1mES6h0BokklIpFMOyfgIMSGBJvoICmhaEkHUEPwia3MPU2oVEI3NKGI/YjRDiEejWsFzRSqNBoKq0dObRVUSxGIRRDFA1QSiUY2IoRCN6MhiSCKeJPC7IV7NZpNms47nObRaDaqVOu22hWM7eBvcdlGUcdwAzYihaQYg4vs+hq4TeD4iAvYG3eglWo0sdzf0TLODZXVIJGIIYYDvOsQiBiIhqiyjqxqZVArHsrqDBgKxaJRkPEEmlSbwfHKZLL5nI0sBPfkU8ZgGoYuqSsRjUWRJIAg8FFlElgQ810ZVJCzbxQ8EOqaLZfsbeDEk0wl27drF2toavb29aJqKKEKn06LRqDGzuEggSYSSgCB1/R0goFGrMTA4jCir1Go1YgmDaqMEkk8sG0VQwPV8avUWITKSrCPJGh3TRBBFRBUSmTjRuIauiawsLbAyv0SjVPuJN14/iSoUkP+xYQDAcRD+MQThf7auvPLKiXe/+90j7373u0fi8fj+dDq97+d//ucHXtKsQJfm8+///b/vv/vuuzfHYrED73znOzcB3H///bFDhw5N6Lp+sK+vb+973/ve4UajcbkXXV5elm+++eatuq4fHBwc3POnf/qnmf/x/f9HytD09LTy2te+djSZTO43DOPA7t27dzz88MPRT3/609k/+IM/6J+cnDQEQTgkCMKhT3/601mAUqkkvfWtb92UTqf3xWKxA0eOHNn2zDPPGD/6Pp/4xCf6stnsvmg0euAtb3nLJsuy/ll5FGtra9JrX/va0Z6enr2GYRzYtm3bzj//8z////o8nucJ/9i1NE1T+Omf/umhl86zd+/e7d/73vfi/5y1vJx62f9QcmObCEUB3/PxLItGs0nZauHKINZ8At9HVxV0LUJvX45qowJClEZqhJWLj7Nzax/jr3k/T1x8ArtTYDixjTCaxmUn6+UlVqwChjXFkRv38txDU3z5bx+ho/gMDafJZaN0LtTRJQMxVWXy0b/Goc3Q+DW4jTXW4iaR3nEOjNyKrzhUOnMMXLMNOh2mCuc49fBRDuw6xLHJ48irGkJL5aFHnqVlO4jVDq+45UreeuNVKIbOibrN9779ImMI3PHaEc4fL9LvX4+nrfFrv/g36EKSUsPiSDDIXe+7hs/93ncZMQdYs0oUHYdEViGXjbN5ew+1zgqBk8C3HPLpHCtzVVaKba6+I0pnep1fee/vMRjJsPsV/Vy7O8f6XpNHnlnkb+89yUN/f5StWoS+HZvYsmcnuycGiX0QTFPn2ckihhbHW2zRshxiYZRMn8rs+QYLkTLmmUke/JKH3bK48YoE8lgvf3bf87zhzls5tH8U/fZpZi7MYM00iR0Omeidpl8Yojih8+KCh63GSWki9o17WHtikrgQwfFCRMfHlV0kScTeEJ3JStd9yLIs1lfX0GM60VgUv9XEcV00Te26Uugqru3geQ6B33V68NzuuXzfJZ6MExLibPxe2rCFC8MQQRDxwwDfcS+L4TzPR3BDUOG+55a5LZbk0IFNXCxOdpuvmkJREXj+VJ2eQ0UuLVxkyEjixJuc7pzi2//RRlRD4omQ0NEIiSGEFoFnEUHDQ8RQdGRFIIwFjOT7cByfuaUyrY6FpvpkM/0sLlYIFJdsKkVETVIql3j+hVPIskI+ryDQxqqvk4vBuYUyX/jsC7zj3XfwrvcOcs93HqNeC3GEANf1kAKDmCajSDr1moMueniBgKRqeK5DLJZElkWq1SqiJBHIIkuewUd+7z5u3Q+/8Ye/R3v9Ch47dhrddHnxwXlG8im2b+1lqdDkqts2U+tcYtfgFg7tuYqluSa/9Svf4PixOYRQYHy0n6GBJPMny3iqhyTJyJ6MEsr4gks0H6MZ9Yk6SZqtixAUSGR3cuLYBW647giRTIGdb7sC6hFWFh7FFzTu+c4C//aNN/LJ//Q1vOIs+7Zs4psy/N5/e4zf/8MdyPkeNvf2c25hFc1o0bDKRFWJ2Qs+X77vHt79zo+zbdMqC6USmaEsnUiUnrVJOrk2DSHNN786zT33/mc++dvvRdav4avffRQrFJCcKJPn6qR78xRmFsmIwzSny/TJKf7z//UBfNvhr7/+W2zeJfHsSY+l8xe57a67eeTEPEdeE6NehpXJU9x36XEObdtMvVAkv7WfpOgzXe+lZUHNWqI/0c/5tRVkwyWQVLZecyubmg+AvsCjS99nLHKCoDREq92hkyrxtmsOI4kBjcoZwnAPTy4uEGTT3H3l+7h6fBvDjWM898ifsGnibYSiSZBocMXePg6O38bp+WVGDozD2iqPPfAQe667kz0ZgcnOeaqeTOORP2f32J0UFuY5u/gEFfM0V113C1//2mOY0Qtc0X8lsZ4UuuoRCjKziw65ZIUT5x8lGXUR1SSBOEdPIoIu3M1U8RI1uUjgR4hkt+BF1jmw+SMonVOcWfgCmnUHjaZIOpdhrXaSQlhBkfLc2tNHRovwgrNGJ4xgWvOkEjHOFF6k0ilC2qP64nnKbplrr/kQrgWNUCAfg3q7hh7todNqgVFh06adFAprhGKV3SNXIIn9KNEIiwtnGMzuYLJ9moGhg1x86hQT246w+Mxvow1vYfPwjUitFAuLOivxR0laPVTn4mjGAi2zhlKTaZQ1gvAio4NRtiX7sSyHYyd+iJ/I0mMnkDUPUVqkIoLT2EFWaOHKMZYrNXQNkGxUV6ZRnyWa0kkndlKo1vG0DtVGm02jm6lWu8hrIIIgyViOvSGwddE0DbNjIckioR8QjUbRjQiaHrmc6Nt1CDKxLKu7y++HWJaFIAjoukqn00FRlMtpymEYEobhZZ4/gOu6SFI3WbnrQiQjyxqK0hXettttarUaiUSCdrt9mcbkeQ6WZZFMZtA0jfX1dRRFwfNcIpEInuddTkkWRfEyqmDbNslk8rJdqKp20Qhd7+YmVKtVHn30Uca3bSedThOJRvC9LqUnl8vRbrdZW11l08gIxfUCuUwGyzZJJGMk4nFM26Naq5OIRhgZGWa9WCCdTlNYW2Vmeoax8W0M9Q+wsLBAiE+jbjO/uEhfTz+xSBxVVbEsi0qlgnpZv6ASieoIgKEZuK6HIIiUSyXEl71t+n9WffOb38y+9a1vLT355JPnn3766ejHPvaxTSMjI84v/uIvll465s/+7M96P/axj63+5m/+5irA2bNntbvvvnv8l37pl5b/+q//em5tbU3++Z//+ZH3v//9I9/4xjfmAN7xjndsLhQK6r333jupqmr48z//8yOVSuXH9qr1el18xSteMdHb2+t+/etfnxocHHSPHj0aCYKA97///ZUzZ84YjzzySPKhhx6aBMhkMj7AXXfdtUXX9fCee+65lE6n/T/6oz/Kv/rVr9524cKFM729vf7nPve59O///u8P/M7v/M7CzTff3Pz85z+f/cu//MveoaEh++VeI9M0xQMHDnR++Zd/eS2VSvnf/va3Ux/+8IdHt23bZt10002dl3st3/e+941cvHjR+MIXvjAzPDzsfu1rX0u98Y1vHH/hhRfO7tmz52Wv55+qlz0Q+IqILElk4klSvk8qnui6L+gqodNN+JufncIwNC7OVhEkGVXTQa4zPH6IQmWZ1sKzRCJZTqxPMT1ziv2b9hBoPXiSi1icxozJ9JgpBpJR4ge3MrRpE5PLs8wsrhFV01QuFblizxhrSkh/XCVuZJDEBPPLiwQzl4goF9m8YxvVWA+19hq35MYIs3nObqvz5MwksWQPLcHGDBs06iaSH6VWq/MX33iC3WPr7MxKvGLfAAffewVffGaJR795lgOvvJ7ZC6c4+zcFhnp3IfeZDI4GPHbyBXa0Jrjj7bfx5FceQUmqtNZqxIhB0KQwL+GFMQS9jNAXoXyqwcFtV3Lg1mt48vmj3P+HT5FIqiQ3KcRVgYWSycLKMrsyMZ5rVilXVYqiTzh9Bv2eM0yMS+y4doyZ1RJzS2UGN2fRtnbISQrNtkLJtAgKDoIK6oiMlBHpzyqsTcW54apN/PKnenHWJY5+6xs4BZNy1acvPoDzrMsz8iKjcZOtqV72je7i0bkX+eiu67n2l36Zt3/45zn73Glaq7WulaMEIQG8tDERChAKG/Z7Ao5lEwo+EV1HRsCzfQJCUpkYnZa10dSHEARdOzhBpGPZ9KWTWHYHORAJZQVJkPBcH98PUDQZTZVxHO+y578kiISBRyBI+KLOkw+0GcwbTJ5oE3omSiJk56t2se+anTT8AplMElHNcHHlCZ49liOXaVKvWXSqIQgtwtDHD0CSBVxCbDlAE0UEVcRyXLSIxlVX7MB89GkaDQ2r1aIWlpA1EdeN06ha5Pogp8kocpROw6NW7qBKBooXw6s3gCitVofP/LevcN0N+/j4L72fP/vjLzM3u0oI6IZKw+xaAMqyiKSIiI6DYweoqk672QExRFUNfC9AlmQQBGTJ4HunO4z/YIZccImPvuU2vvH4OUp2gYtOyO5Xxtil5MnkJXaN34hbSPF7//mbPPvMIpIUokUMQlej02kRj8iodoLQC0BRNgKBHBAhEjOIJ/qJ+klOLD3FakvCPl2l1kiw1owxlE8z9egMTz5wHMsRePd7XsuXvvEdbr/zMLuu3MSl2RVuvO4VjE7s4ez0aS6eOsboNa9n+/h1nF76O+p1BTliML6jB00r8eSJS2RHv8C7b3off/bdr9MSJ4lGZKLpDO5cA1912HbNHk6deZb/+NE/4BO//kF+6r138I1vPEAkaVGov8BiLcHFUyYf/cAbmH96hf2b49z/lYeZKTyHlgTRMNi/bQdz5xxOnGli6D4LFxbYc2gnf/HZrzN2YJhMIsrk2UWGNw9TXDqDZQ+zNOtysq5yo/E88+s1Er0Sw80cS6cmGdsKLzyr4Gsl8vuuZd/B3TQmn0UREhwrzCKLBnbFg95nee01H+Y1t+/m6aOn+NKXf49oeY0dV7wRw/V59tKXiCcH2B3fwULzOK7aYf2JZwndKtfccjNb+ns5f+EFyg2H247cxoNP/y4vzB3D822u2HsnPzj2NI88dT8ffe9P8eCj36JRXWEwpbNazNI70c/ewykCs0Y2OsJKxWS5+iLpXARNaJPth76hPajtDq63zpHRV/Dcme8jbS2wut4iMvgm6o06qtqP7Zq4tkhU7CcT244sm3zn73+PXVe/gdL8eZrtdZwO2EGObeMZipU5LpTOcfeb/xNzz/49cVmlGVcxy0lUOYbT7iGRkGg1KrTtCp7T9SSrmlMM9A3gt3zQVCy5TCS1nVi9n7TSoGV+i3JKZiw8glg30ZSQMKnSF95OameN9elBVF2mJ6vjez7xlERhRSaVT9Ns1HHbS5ixPD3xYcxmGyFUsDSXnDxGR+zQUWNIkkRM9lFEDasZUi1Ok8wqhNIAptmmXF5hcGQ7uhRQq9XpCl9DQCAMQxRFwfdDms02a2vr9PT0oIoKQRjguD6+59Nql7vhX2F42dFI0zQEQcDzLGKxKJIkI0niZYpPEPioqoYg0A0fCwIEQUBRFEzTJAh8ZFm53NALgsTq6irxeAzfD+h0LIQNXZeqqoiiQBAGIITYjkmt1l1Tu93obtAEHoRd/v1La6tWqwwNDVEul6nX68iyhCSJeF53g6dSKdHpdNOVr7zyMEEoEOIjy13TCLPTot1pkkgkiBkauq6iymCaLTy3m3uzsrxMT18vIh6VaglVk4lGo3TaHVRVZ3Awi2s7lDudy1kHtuuwZfMWOp02ltkmHo8jChqea284xfkoioyAQK1a26BpuSQSMXRdRVPVn1S/9S+q+vr6nM997nOLoiiyb98++/Tp08af/Mmf9P7oQHDkyJHmr//6rxdeev7Wt7510+tf//rKr/7qr64D7Nmzx/6DP/iDxVe/+tUTnU5nfmpqSn388ceTjz766Pkbb7yxA/D5z39+7uDBg7t+3Dr+4i/+IlOtVpUXXnjhfG9vrw+we/fuy01yLBYLJEkKf5RmdP/998dOnz4dXV9fP2UYRgjw2c9+dum+++5LffGLX0x//OMfL/3xH/9x71ve8pbSRz/60RLApz/96ZXHHnssYdv2yx4RR0dH3U9+8pOXP//OnTvXH3zwwcRXvvKVzI8OBP/Ytbx06ZL6jW98Izc1NfXi5s2bXYBPfvKThQcffDD553/+57nPfOYzyy93Pf9UveyBoFYsY2g6jtCh0+r6C2uGjmNZyEYEPwgYGB6kVC4ST6fRtCiO42N5bdxQxosMMLk8idSZ5ZaDV7NQLHJ69SL5oEA23kdPfgeaoRMjxf4ju3DcBmNZhVRykMVsjagTcvB1O7kwvwALUSJxnYtzT9E3sgkjGyU64pNKh8wW1rCKHr2+zvHmAkFhntF4HGt8G7GEQtV0OXn+DEUzJBlGSeRHqa9XKBYD1rMZPv13z7N3qJ/XHBqFfXfxw5PHGBiSWLo2ycrFeQaqKRJDKbxYP6em57k+FeO9H38bJ2dmmTo3T225TmXFRglsNg/3EcvmQPW59oYR9kxMcPrYY5gRgYiW5PB1W9i8X2el0OLi+TqxZoogW2PPHX2ceaSG0pQRkVAMgbOLHSovNIgnREZUmeKxAvtuGyW+M01UHODS+Rl2bE3Re0DHVEL6U3lWnz5PWJCoPb9I/XyHxcI5Mp5ISdJJGQp1w2XAkkjt2EI+qmEuC5TWptgxmGK1NMuz/+3/xUipwnNCg0hGJ2x3b96u66FIAqIo4DkuQdi1ChVEEdu2sDfSJbtfguD6Po16g2QiQaCptOotQEQWJXzXJxbXkGRwWy6dtt31FJUEREEiFH0I6XL7hRBB2LCRDkIEWUQkQA5EOoLIX39pDVEMyPTm2XtHnFuvO8T0U+c5EI2SokNdsXn0r9coXrLYdzDL1IWAVjVEFAI830SRFQRBwidACUQkRSGURULb5eTZC3iOwP59uzj2/BlCW8KxHAIhQFUCdE3F64CmxhG9gEwixroZYvttOlaTw1dt5anjZ/CFEElWeOqJc5hOjde8fi+nj/fy1FPnGOjvY2lxvYuOhCJOxyOfzyHLSveaKwph6BCLp2i1ul9sA2O9rEwuosb6MBJRfvc3H+bINYc5cl2O/pEM5xbqVBd8cvkY48YOvvUnj/HckzPYjo6hqYhygO17uJ5LrjeOoVpU5gWM0EHwbexAQtR0RFRUJUD2LbyIzJkXn6bTVDl7dpn+LVk69ioz0/MY7Gbv6w+gazIL0ho7bx3knvsf5F1vuIXvf+siV3sXGd+2mQuLJ/mrv3uC39xxBan4OEd2XM+Dz30DvZ1BzycQCg45I+S733uW3qbOHdffyFMvPITScnjf+2/m3Ol5vvXIc6w3F+gZVHCrIr/6i3/G+3/mCNfv3sSJFy+STvTTkRNcfUuWp56Y45rrRvne908RlWfZvmWQueI05845bBmNoOk+tU6L6GCCmRMeh/e47NyVp7BeoZlNceBIL0ZUZj40MYtrlGND3LR3AL19goO56wEbU7GYW+gjkRvirusP8+Tk3xG4IkFwkVwSTl98DjW/g0gugag7bB+7mtbyaf7w9/8ANRGyaTTPNC5BrMFU9WmG8gOU53KoB3sZyW6lsfA8L1QusWf4CLIVsF5bodzpYIRzWPUZxnYcYWVZ5rHjDyPIMlv7x2lXl7m0+ghXXH8LX/rbR8lGmyTTCUZ6IqzMn8RS0gxuG2dh7jlaTppc7BrG+vqYX3qMQL3AUGyMXO4AxUaV1fWA9cIl4nKBwcQrqIcXOX/pJGUSqEpAPPBIGQYvzL9AKe6xXqkgOB74Y+jRInvjuwmqC6xUTpPatptg+jynn/88yubt9PiD9KRvRlR7CXyZStnGd6NEkw6eH0XVVJrKg5xrP8NeXonWlvGMKPH+XoTiDKJ5grPzHpsmbiUiZDB0Ga9tMWgr1CoGoagjxs9hW8MEZpzAlzHbLXryBpa3RrO2TkPUGUwfwHGqyHEVTVZwiLCytkhSHcfwA0TZoSPEENwy2A2yuRySlsAUDdKGwOKyTdQIke0ABGFj5967bKUZhgKqppLX8zSbzY1de7qaANhwydE33I26AWG2bV8W5XYRVW/DVrSb2tttqLsOb57n4bo2YeijyBohAcaGA5xlOZhm+zJtKBaPbYiHQzQtutEYd0XFQegTiRhIkoCiyJhmV18lKxKEIWanjSh2s1Z8399Ym8Ta2hqSJJFIJLBt6zKa3G63kTfcfkzTJJPJEAR0Bc5217lIEiU0uWtdbegKjXqFSDQKooBidAXRsixRrVSQZZGIkWRtdZV4LIEkyXieieC4RCLKZV1Cp9PB93xcx0XXjK4j3Eb2QSQSwXXd7t/I86g026iqgqqqmGYH1+2uq9Vu/KT6rX9RdfDgwbb4I/DJNddc0/7sZz/b63ndXIqXjvnR15w9ezZy8eJF4zvf+c5l2sxLg++FCxe0c+fO6ZIkhdddd93lZvnAgQNWPB7/sQLikydPRnbs2NF5aRh4OXX8+HGj0+lI2Wx2/4/+3LZtcXp6WgOYnp7WP/CBDxR/9PeHDx9uP/XUUy+bquN5Hr/8y7/cf88996QLhYLquq7gOI5gGEbwo8f9Y9fy2LFjhu/77Ny5c/ePvsZxHCGdTv9EtRQveyBI5jLIkoxrOnhi2N0l9mxCQoJAwA8DXN8icH3wQiy3g2P7uLZLoJu0XIddo1cTmlXaxRY9mX4ans1acR41bNA32Ie55tIxXZLtGlJWZOrUGs1Gg+bKCoVmndbcLImYxmhfFsHI0mIXrtChP2+QyG9idqXJ2ZNT6JEQOeqTiifpBLBycZ6lpSmiEZWeTC8xIaAnl0KsuChuQMIOyMZkCusNzl60cdaa+J0p4rs13rEzy4yTo5E4z3pOoXO0g70cYceRcdyoy/MnL5CZ6TCyM0JprkJ1xaI/EyGXkBjIR5hdWWffUJ5y1uWvv/A19mUG6L15lLHr8uR3JlluVXnm+SXC+ZBWEEDZIjmm07cvxtoLNQxXxPZ9EESaix0acgs9rxHmohTPzPLKWzeT0fPccWA3yyE8+cA9FFdFehJlepptAgKoywSrLqnBNK7oEhRMBhSBVD5EC/KIBlyxbYTkK67mb7/9Na5UszxRWODzT38Rp6PiEqJaG2Jgv4sOhCH4XneHCEJ8zwfBRxS6PFGr7SDJMpqmd1Mz3YBOx0RTVPSIQafVwbRsIoaBrMnUmw0cxyX0Q2RRxnV9RCFAVuQNj2q/m9C58Z/G9wPCQEBGQRE9rFAgkGR6MhkGdiYxQ5U//p1vc3h3PyVHx/FXeeaR51i4IIFoc+xogcHNUZIZgXrJp90OUTUJ13ERZRnBstnUP4gr+ywtLWG7LucnLxL4LldesZOpyUmWl11sD8bHB4lENAqrJdZWilxz5T7WS+v4uR7sYJGVQp2+/gaCICOGEIQeoggnnp2lsNjgFTdfwevfMoRl+Vxx7SHKpRaymETXZDZvGUP226yuriBLEpMXJ9m5azcrq6sUiyUCx2fX4YOkDI2VyZMIusyZhVnW/A4TpQE6JYniosMzPzxG6TaHehAip2NYDR98j44Fsq6gqgpWS2Fxskl13SEiagSCiSr7BIGD7wp4oY0byjTMBqsFn72HDnLtVTpTi8sUqjVGNvXyxjv2ogsyTqBxz9GHGdHGOXP8RU4/foK+rXkmZybZMd7P0aMJ2orM177217zp3T/N4V07mFrey8KL57CyDvHNNu1Kk8FIL7/9yYf58H+AXYcO8Ngzj7A2d4pNm3p55R17Of7QKdSYSnW1imD08tiLk1TKDqIfMjSUQVUzTGRuQN4f8pt/9LtkNyUJVYWyaWKjoERlxNCiKhZwjRRpMceWXp2TZ8ps27WDbQ2Jk7PnKVkr9AxlyaS3UfJPUncarBUctibHkUmiaQE9+SH01BLT8ye47sDdFJpNnnj8Cwxcf5hUPEM2008us42BpMFsocTRi/fz7edPMDg2yuH9w4h2wGj/ftKaQsEdJRN8H2FwEM9s0htVqNYUxgZ3kOwRePqF04zIOfb2jXB8uYmlRlhZrjGW3U15dCuRZA/7N+1j5vx9LJybZHVZ4K23X0ejWCEel+iTBqgG06ytnKFeOcfm4X1U6xaS5qMaBiOD+2g4C2gqYAWIXp2br7sD21xkZWUJb9Ul4pcwTQs1k0VQHRYLi/SJU5iVDvsOHOGq1F08t/C3xCNJzPYq5aUnaZkW2dwR9oTDfPN7v8XQtTczkL6VhJTCDSsEfoUgiJPL9uEHbTy/gyAoKFqI1olhOgEl+SKWu0ZfYhei1eb5F3+b2XyMPbkPg3OKwHAJQhm7OkM7GicVjSI6MWTNwg5sBFLIoYvoawihR7l4jEqYpy91PU6jjqf4CPgIQQsj8GmpAYKikIx0xath5yJ+CEougRzEaJkCUlSmry/GwlyCuKzguetE9d6u8YIsIwoSjuPieV0BsWFoDAz0d3/md51sXNcjHo9TrzeIRCL4vo9tO1iWvTEkdDMEXNe9fE/0NsK9XhIIy5K04SgkbwSLbdB/LAtRFIlGowiCAIQbuQVdOpFjvzSQdJvu7lrdy9RNSRBRZYXA676nvIFgCHTvye12e4N6o224B7moqoptW8hydxdfluWN/BZ5Y8jpnkPTNFRVRRAE4vE4ltXNd4jFYrgbn6XrTKShaV1aT6lcRkqIqIqC49ioKqRSKVzPw3UtWs0GvmEQj8fxfK/7cF0CvyvQjsViKIpyGUmxbbubSqwql0PiuoFpNgH6T7Ln+j+qotHof9f4djod8R3veEfx4x//+Pr/eOzWrVudc+fO/bMv9v/YXL+carVaUi6Xc1+iEf1oZbPZlz1Y/FP1q7/6q32f+9znen7rt35r8cCBA2Y8Hg8+8pGPDDuO87K1CM1mU5QkiWeeeebcj9r4AiQSiZ/YWuGfMRAgS7hhQKBKJHqySIBESCqVoGXaFMsVQkVFSaRobtBCtKiGouoIeERUCwIRUR9lvbSEWawxoPWSzaRxyhUKKyUq1ioTsa08c7FC8YKLVuogyQGlWpl602KhrJLJJdiZSTG/cIqWKGE40JvJkEsPIfSKWOMiuDV0TUAWZBbnp9DbLns37WQxqFD3QzQlSQKL/rE8L5yZItBUxGjAUrVG71gKWYpxoS7RubdAZKdIuF/lCqOP1bGQJZZJmUn68ilevDhJSurlxNQlqOW585btPPf8FFqYY3VpHkcqEO1NkI6rzNbniEr9JHtjJAY0tnh52p2AyXMm7ekWESGFpHikckMUKw0mxvPIm1VWzhdwwxBf8Wi6LWKyQWXJItufpmJHWFy0OVd/klsGd3HV9fvwDl7BiQfOYC8XUWQVU+mAoiMIHjtH80x2TOy5NokelTsO7uHcxSorVpNnXrjIFeNxNm8b4fy5NdYqPpatIKaTUGlDy8SRIBC69p++H2w06HKXbuOHiCJdWNsNupCz52OF3S+zEJ8wAM/xCQFZURBCAT/wEEKJVruD4AtcZiOFIaLUHTwEUURRxMsJl2EYdn2wBYUAAS8MEbE5eNUuMsNDtL06rUWH2rqFZZdZKrkUayYXn1ARFYtQiaI4EoWlDhO7+xkaiTJ5bpFO28cLXCRXwAsDbjh4EEWR+IvFv2PzQB9O2+bi9DySEnLl1bt59pkLlGsthjblOH3qIutrHRy761SRzSRYWisQTYg0GyaaIiKLCqLg4YchiqgQjamM9G9BdvPsGtVJpHRAxrJDfF9mcbFEcXqK5cIKxVIR27ZZXFrizJkLBCE4roNt+4xtHuCut97Nd/7uIaxSh0CPMTa6nZmZVahCujfC9btHmJ6fp9n22L2zj4XzNZaKFoouI0oisiBj6CGlJQXPVPF1GysQ8JyuTZ8UE8iPphBjUaanL7BrfIjxHTlmlyoI6yF+rc3Cusuffeb7GJbFestEHxaJrQ3w7KMrOOsit7xliNXiCkYsTX9/Gluo8uTZBXqevI+hsd3cdtVNfHWxSKlYwhQCBMFDchvEsj6f/Ysf8guhwrbxvfzgvgcor51l75UDGPEIbaeNqKscviFPckzBWLRYOr5AecXlXa97LTPPLnLy9NMIoUuoKRQ7VXaOjrDerGNZIudm6+h6hHhcYtf2LegTW3hu8gxxI45NFUWO0rYCzi9cAktn955rqTgWimSSyV1DubjGUmkRZ61ArK/CsnOao8c+zf6tE9z3Q4eHT13i7le/nXGyNM0WnU4LU3FR6OOn3ngD0ZjC6vpFerIRmp6L40Y5+uy95Id8XnlFH4UT85y79FnWyxGciEkYcXF9DSMMOTrzMIM9+0CRqa1JFLJLjPf14DoSnWaBoumxULPo0TS++eTfc+cVVyPJBoXyHKoUI2VsRtEkrGaLICijKpuoFc9QKZxHTyq0Ek0ER6beWiNQSgTlKtsO9kF7D/Nrk+SMASJxlXxmiCfrLeLZ3bjuWeKewOzcPazWl1GENOX1Cm3boXd0gki1youXnmbb7f8OORAZjI1jtiycoIHptxjIb6FjrRCP5DDbCpJs0+r4iNYgSthGyotkU3HOnf0bimGcoYMfYn9nhUwkSdtSiYkaahBQVmy8RA58Hc+vEzEMAklCFWUcp0ksplG3jlIx19nSdydNs4NmeCRDnXrYxHZshBAMBWJZDdcKcCqPIgSD6LktuGKL0FVwwzbYHYpFl3gkRqe5RKg4BK7dtUsWRALfw/ccVFVHEKHRqF+27/Q9j1g8jm3bpNJpQt8nCAKazSaGEcEwIhtNfFdYK2/kvQRBcFkv4Lpu10d/A0l4qcnVNG3jdR2isRgA5gYlsev6E27cx/0N1x2bdttBkqSu8FgSCfyQRCLZDUpstwkCt0uxEcSNR5ea9FLi8Et6Bd8XUBQV0zQRBIEw7OqSgqDrUicIAZIkYJompmmiad30Ywi7mRZCV7OoaTqSrNDudJAlhSAIyWYyCKK4YWkq4nnd5GFVk7Fti3Q62W3yCcjnshTWCwQC6FqX/tNFWUIUWUKUJGSpez0JA1RVuZyCHI0p+MFPxBjnX1ydOHEi+qPPn3nmmeimTZvsl9CBf6h2797duXjxovGjlJ4frT179pi+7wtPPvlk5CXK0KlTp7Rms/ljff337t1rfvWrX80VCgXpH0IJVFUNflSgC3D48OHO7/7u7yqKooQTExP/oAPT2NiY9eyzz0b/3b/7d+WXfnbs2LHoP3Tsj6ujR4/Gbr311trP/uzPVgB832d2dlbfunWr+aPH/WPX8qqrrur4vs/q6qpy++23/y+NzX7ZA4Hqht1QKVVGVRSq60VWl5dpRA0iuSz9uR78AFTdoFqtIQpBN2hJA9sVsV2FllknojWJxHWUMMNiscCli2cYTMmoqUFqFY+Fdo3dh/uZajRoLg7hFOsolsLeHYMUG2VW5pe5eGadSNTm8OHriaoxNM+majZYrhZoNhcQXItyuUPoWdTOzZAVdfx0koHd/ZwprhJLRGi32gxduZvj0wu4tRr9WyfI9V3BwpNnidYqTBZcameKnEzkefNtOwh707ROPcKe0QSrLYEHnnyBlOMTz8fJ9/Zw7IdLyIbP4evGePQH5zESBskeDSMTZfmMi7HXJDocZ2hbjsnlJqXJedqVgOZahSgRbNGkXq9joPOqKydoZUQWMyZK3MBvWCiBgkOI5YmEnoBZKtGzPcpsBbS0wF+deY4tZ86S26ISlwXUuI4TughhhJqjI8shW/Qh2kKF+JEECXOJkr8Zqb1AQrJQ84Ocnj3H9s29FOjgFcrE03FCO8BttgmkgEAVwOlyQl+Cb7u7VF0vad8LukE5ooS30byLYveGjxeCKCCrEmzwUxVdRlNUAllEklVEAfwg2ODchgRBSOB7XZia7g06DLvWeGEY4nsBCCAKLrsn9qNHZaIpnbXTNebPXwLPJCpmEaomkw96OF4MVAvDM3Bli0AImJ9eJZfPkUylsdplPDcgKog0xICp50/y9tffhSjBnrFhHNvjqXNnmZkv0KhbvOLmPcwsLPHkk6cJQxEpIqIoEV48f4lbb7sazq2hKiKtcpO+dIpo0kESDEb695JNJxkc6lqzFpYWefCRFzlwaCsT28e593s/YHBwK0Yyx2OPPk+9tE4kYmBaNpLU5QyHdIcvLRSplqusl0ps3b2ZIAzJbu+jP5vj2DPLKKLPxWeXyA1E2HowjeNFqRYc8ttT+HGfpZkqkiAQeh4iEYqrPogmrh0iRGW2Xb2VAzf0omhN8lkF35dYmF9m7liLvzefZuyqffiCgd2qYbdgvdhCMyCmZqleCLD7LDxgcqXD0IkyPWMhtrtAelDi+Uc9tlwf4QcnThI+cZH33XUnR64/xONPf4t4qOBYEsUWbBrQWFg1+fY9T3Pkrms4cO0hvv25B3jumUvEMwkQAhzDodBYxljOE1Sb9I8McstV7+HZp2dorVY4cHiY+555FqexhtOQ0Uck8pE46mCMpVoNr9nCrHToG0gguiIT/hYWpmbxRIlYKsvS2jolPaB3YBP5yCADkWmCxB6KtQJywmBhuUrCaaMqAtceeD+TJ/6OZf80A3uuZtvgLUh6lrCxgK5KqI6G5s6zPNlmuv0MtuBjWyHXXTGBhUplsUxgubiZa7DakzwfrJBtqQQ9FpeqLTYFs1x3uJ+6byIoGWaXn6Njurxqz53MW89RWF3EFQPklsaWTWPMLM8iZxscGN3FC+fOcuOVt7DSPovlSiTSOVaXp7DwyAxtZX5tke0Hj7C+NosXdGiaPrnYAivnJxkeu5FNI3EWqheoXiqSHzxAT26YpldGFRPsyU/QmL/Apk2H6LRqRPNZjKpGsboMYha1J2Qkv5myEmFi19tR7RYRBGqlGTxJIpZOEzZsKrVJkokYraaJ6zVIppJUqnUisUF0xUP2TFYXH2d1aDc3bH8L8kKF6fBpQuMIMfL47iyO3E+n3SAS68GuNdCzCaqlBlKogdpCUqHZXMENHZKZm7G8BrooIIgGvu8hmW30eJJSWMWyRHLNEs3aOQK1l1RuL7VGGYlu4m1aiROTJVaLBSSlge1Z+Mow/ckk7XYbQRAJJfAcB5EAgq6Np+e7yHLXoz8IA0RRpNlqkktnKJfLXRrNhoe/aXb7B103Nnbwncte/l2xsY8AOI6zQf1RaLVal5OKu3TDcAN1sNC07k6863aNGuKxFM1m879DYmVZxbZsXNdBU1Vs2yYSiQACoijRaDSIRuNd5CAI/rvXvoRedMPLxA2xMwRBSDKZwvM8arVKNxFYVVA2kGBRFDZSiUGSZWRFBUGk0+lmFwWyQCRidMXUktTNGAiCrjYjcPF8l06nRSKRQFUjhEFAqVRE2hgeQr9LswrDsJuKHIY4TvdzOY4HCBu5CD4IAr4PoviyM6b+j6rV1VX13/ybfzP0kY98pHj06NHoX/3VX/X8+q//+uI/9ppf+ZVfWXvFK16x/d3vfvfIhz70oWI8Hg9OnTplPPDAA4kvfOELC/v27bOvv/76xs/8zM9s+sxnPrOgKEr4C7/wC8O6rv9YFOCDH/xg5fd///f777zzzq2f+tSnloaGhtznnnsuMjQ05L7yla9sb9682VlaWtKefvppY3R01E2lUv7rXve6xr59+1qve93rtn7qU59a2rVrl7WwsKB897vfTb35zW+u3nDDDZ2f/dmfLXzkIx8ZPXz4cPumm25q/dVf/VV2amrK+OeIirds2WLde++96R/+8IfRbDbr/9f/+l97y+WyvHXr1pd9Lffu3WvfddddlQ984AOjn/rUpxavuuqqzurqqvzAAw8k9u3bZ77tbW+rv9z1/FP1sgcCV/BIaQaBJ+B4AZYoIqVSl51P3HKZ+VoRq9ZmbmGeMHAY7c/haxK+CKEX0NvTjxRK2G0HTYhxxdhVDA9sw2xUKFSniUkB1bpI+9kVNMPm1gMZnmz0UHq4Ar5LNJKldzjg8OgYQlxFsmU0I8JyocSKWaLVaOA6CrZn4bRF5i6soBBlsdXEXa4yZgv0bB7i5NOnuPu2Q4z29LB93xijr95M0Glw6cQSLz40iYaPnFF523+4m6uvO8zSi5e499PfJZNROXxdBHIic+MKF+4pscNzWWtVGN83wPqUSyiUmLhhhFPfOc+AE8X1HB546iI3jYygaxXOrC4jJETqlYDCXIWoFhLVBYSWjwmUih2Kswvc9JpXUdHSCM48C8+cB8FAjvnE5BZSLAWeQLvjElMMyOhkNmk8/eQCR8wsRCU8x0JUFOx4lvJqkx47YOHCFFfcuZmLi+u846qf5vtzRS6u1xHqbaJJlUJtHedUh9JyE1sXSGTzSI7IXinG6Zk5/EBElkAIumiAv5FHYETU7g14Awo2TRvfcwiDLj/Qcz0UXSH0ApyXEiFFkVARcAUQQtAkDS/0icY0ZLkrfAuDrqWc7VoQCiiSjiB0+bKu46EZAkLos2lkgrJtkkhnSPemmfzyU0QND0WOEGp9TJ5eRwhjeH4L0xSQIy5CKBF6Cnbbo2CXMVI60R6D2HAMv2ghrLscX17kPf299KqbWSy1iCXyWG0DRXAxbYcH/v5Zbn7VNl77yQ/wH3/+TwkVG0PX6LQMptZmufquzTz47ROIjs/sTJGkmuF1d9+F5dZ5+OFnOHvRxPNMauUOATqFB07R8i1ufO0evvWVs+zep/CWn7qFB+99gfm5GSRDwLUCNFVD1wVct4PjiGSSOarzNU6cnOOVt+1Ezoo8+t3nCJsy0X4DaaDN1htHuObGPayvFjHLAvX6LG4qQX40jdNpEMgaVsIjNaIyvDlk/PB1bNkekIoHVKfbPH7PLPbOUYaMNnMPz3NppknfNaNk+3t59qkn8UyPiBrBFiDuN8llZaSJPtSkh+TvprhUpB1UaTWiGH6dAztVTj4j0vFd3LrLsJzkzNQiY+O97Dl4FQuzx6g1ZTotgX39MYrLHRaqLaxvHOXDv3gTr3zjIe575Ci9hspArpdapE5lbRXPjxFPZ7jt2rfj+wHbdo3RTns8cfrbNAYcqraAvyRwVjjHyJ4oGc3FiCU4vl7BcHQe/cEPyB/aixTXabY69A5OsPvgVTz48HcoLSxyzZX7WCpNkkoNsUmL0Kiu4fYIDPUa9BvXcOL8dyk1H2bV28Sbt7ybqwZlStUitdnz4Juo8SH681HuffopNg1dx0JznUbBpW9wnGNnipydm8WRHA4fuZ4Jw+PChbNszx4mEhF4bm2SG7cO0ig6PHOpxPhAngN7rmd69jSDuQw/ePAv6B9NIsezhIyghjp5ocG1V78RL1JlJD7EVYkrUewm5VCnt38E1+xwtrjA4Oh2DLvJ6ckXGEwZjA7tpG5OYXkOM+Ui2S1ZorpHupPhiSmL/vHDiJ5MsTFJu12kLzdMPNbHqnkRhTgJNc2mgf2cOXsOTU+STPeTSadQBJ/h3CApXWZ+rUJsdIhaZw5DjYMQQzAMmoVTqLKGK16JH4qIchRTnCGbSBE2bZ6fvgdZH2FYzdAn5KhWH6MSybJdjlCJJwndNVS3jKutkwyvoZ2sYrkztDopFCNEFxTcjkvNbKJlYkSDHO2gg+LliYkOdgiykUcLQsJOmU67jpTOo0ZHaFgBHbuAJot4roLZcslko1iig0OEtPEgDkfQSBLYFr7tIsgajhegReN4XtdpLSpHQBJpOR0CzycWjeE5HqIgsLa+jGs7XU2Aa3U3VoSuJafjBlh2N6jL930MI0K9XiVi6ASArkewbIvQcent68PzPOr1OrF4ZEN8FaKpGpIgY5lNFFnBsWxKVmmjOd9wLpJlXMdGlkQcp4tCVKplHM8mGokQhAGDg4M0mk2CoOvIE4/HaG9YgyaTSTzXx3Gcy05EkiyDALVGHQGIxWKIoniZQ/5S+rHv+4iSQqPR6NKMHIdOxyQSjaAqEr4Xkk5ncd1uX9ZoNLBth3Q6g4iEJKk4dldDUC5XiEQMgiDA8z2i0SghAubGoON7HrquUywWUbXuNXXcrouSY7v4fkA2k/1J9Vs/0ertxVNVwn8qh6C3l/8lnv1veMMbyqZpitddd90OURT5wAc+sP6jguJ/qK666irzvvvum/zEJz4xeOutt24Pw5Dh4WH77rvvrrx0zJe+9KXZ97znPZvvuOOOiWw26/7Kr/zK8qc+9anBH3dOXdfDBx544OLP/dzPDb3xjW8c9zxPGBsbs/7oj/5oHuA973lP9Tvf+U7q9ttvn2g2m9If/uEfzv3cz/1c+cEHH7z00Y9+dPBDH/rQ5mq1KudyOffKK69sDQwMuAAf/OAHq9PT09p/+S//ZegTn/iEePvtt1d/6qd+av2RRx552dHVv/Vbv7U6Nzenvf71r9+m63rwrne9q3jrrbfWGo3Gfzdl/lPX8utf//rcL/3SL/V/4hOfGF5fX1fS6bS3f//+9t133/0TGwYAhDB8eXDY6tJkaLkeISLRWIJIJEqz0eDYsRdYKZZxqw1EWaC3px89nUTApy8WQU0k8fFwrRLV5hILK5NUauvguQyO7mG5YdNpr2G3QmRRIR5z2LVlF3ZJJyVEsfsLiGEEpznAoCBQapap+l2+uIBAoVii7fmk8r24XsDy3CJrawsEosijjz2B0zSJCSq6rlJr1rj9yCZi/RF++J3jvOLIBNf9wo2cfHGKH/zlCxipESqVAkY0wh2vfyWnLxznxKMvYtVNMvE0I1eFRFDYvWMIdavKl5+/yPXhHp6fbWIuXiJEQl/usP1VwxRsiaDssLpSR/JcbrlzLyvVKqbvMzCUYWW2yfLcEo1mHcuWECSVTqOC2o4xstXnDT93LQtlDxyFR750iuaaiRIENPUYWtggmtHQUza+EzK0K8FgX5xH7l3mytww0VSb2mqDhJ8mqlpcfdsrOF1zWHj6Oe64ej/PzbzA7//Mr/DY2gLPP/EM52bOEx1IU1ldR1/3USJpKqGAi0JMjTC0aYwX55Z47sUzSKHQdQjyPFRFZnh4BCNiUC6XWV9f36AOvWQN2oW04/E4HauNJIpdC76NXStRkZE2gmuCoIs66LqOJMrYlt3lxCoi/oZDRhc270LdvhciCqCrAq22Q340x8/92pv5zV/7IrVZmb58E3wNN2hhuw6+r2J2QJRFFDVACmQ82+o6+igCgRKS7EkSy0ao0aB1tIqvpXnfq7fTUDMUVl5k+9V5/vZL51GbSfKxCDOFZW4d7eGnPvh6frDU4IdfvY96uY6ggxOGvPGn9nP80UvMzTi8+9++he997ZtYDng4JFMxFEVkbWWdwInjeyaaoSBqAbfffjVty+Kh+55naDTHv/nA3dz790d58vETyEqIJAr4toSMzMh4HwcnRlhZu8STzzdI5gTe/0s38id/8CgDepKJPf2gGDTtDpPnF2iXQJY7XH9thp5cmuNzHcy2Seg6yCMqpAXGMuNMxDqszjqcOlogE43TUSze8K5X8eLJFzj93CLzsxXe+YkbuXSmxNmzK4yM+TgNj0tHbaIpjzAusWXPGAOCztlLq7Ql2KwZRHMJfLnA+GEfSxzD6C/xhf9S4Zc+ejWWInLheIHde8eoF6epxwpMni6yeq9A2bdJjmhsGUwgeTq3vHWU2cUqLx5vIioeJWuNHk8gsCL8u4//Aj2ZvURck8r8Wb5y7PPEx3YS9UZYb56lKaaIdCTswouELuTyfXzv5CV2beqhsFzhlW+4kxsPDvHQo6cpVk1efdudPP3cD5hbu8QrDu2lz9bYeXAAvBz3P36ciStuRjDnOTu5zrfPPsZrD9zFz7zu3/L9x/6eZ059j62bokzOnmbn5sME6x6Nix6T9afp9KQZ35Lj/NwsUlRhLLMLQ9aYNg3ec/utrD7191wIHSb6kgymNzNlPkqz3sJQRtDtGG2nQkrKMLZ7DxcvXeKx2fO4Upxbth/hQM8ObK/OXHme/p40Rx95mO3bX005e5KH73+I3OY81+/bx/TUPMfOHmf3wWtYW52nWZrHiA6xf/RqFHMZT7PxxShKKsltIwFf/PKL3PCm32bp/LeIpDaTMsZZWjrGxOaDDGcPMr34ZZLRPkr1MsgaojSAaiTpyfdSKdTptBbIZZLYZpNS/QEGRw7RYj+NhkQ6CBFVh4SX4KnyPeyamCDWuApPXseutwgMCat0gdPtB9m86Z1YpUUmtt0Ek09wWhLZ1/92OvYT+PYq0VBkzmwzkHsT1fYKdvU8+aG9yJKOU5+jWlukraSRfZ9tyXHmrHUS6W24rSUcs0q6ZzPNuRmmSg8ytG0ncXbimjGyvREWli6CD6lcL4HgY1kttOQIWvMoc43zZHIfwm6cJrQ9BgY3YdkBluVimh0G+nsJQ5/SaomOY6NFDHzHI5fO4XguPiGO76HICs1GE0Xqioxd10XVdFrtZjeheIP/HovEKBaL9PTkcb1uerLrOpdRhJeoPMViAUOPEIvFCIKgizKGIalUivn5eZLJ5GWxbyQSYWlpCU3TLicUb9+xg0tTk7RaTXK5PK1WG03VLweOCYJALBajpyfP5MULxONxVFXHdbpIsSRJOJ5LvV6nr68P27ZwbfvyENJud00SYrEYlmVRrzcxDOOyBqJLYZJptVoIYVd8jRBcFl57no+uGQRhiKzICIJwmeJ0GVUGXM+9/D0EAY5t4zhOF3HRNAzDoFqtoqoqESNKtVbDbHf4xX//8X+W//zLrWPHjm2XZfm+8fHxViQSsf65r///VVLxlVdeObF79+7OX/7lX/6jiMC/1v8e1el09EuXLsU8z7v90KFDF37ccS8bIdA8kVRPL4VajbnpGU4/f4z1SplEb45kECHSN8AVB/ciiBJ+x0MQZZSkwXJxleW1ZexOG9sVGN1yK9raCrqioOsJ+vvztJ06dbNNO7SYXjrLgwtLLC+s4ldXCBs+oz0e2dEMD3oRmpU4O6wmscFtTFcaeO0AT3F56IG/oeNCT984Da+BE4bEexUcPWAkM0C1WicSzfLQ6Vnu2nM7o3eCPJTj0UePsrJaYeeRbVTXm1RbLXYc2MsPf/gwgQ35zDaq0gy9oyN4fpEzp8tMXZjnNdfu5EPvuIsHvvQd9h4c41svtjm4c4IF9xxPP7HAVddspaiFVNYbbB5NMjdXoFxr4zgBpbk6qysFRobzpIx+ltarrFfq5ON5QtegtFqgvuzSXqgST6TQkxqNQoOW6CB4Ac22STyaQ0NBjCo0KxYVrUkYilwsrjBh9CA7Kk7UwvctnBdP8dNveBd/3dE4vjzDZqWNkRZRVnQOH7wBQRM5U57BCQQ0QSKUAMdjy8gInWoDOTDJJhQyCZ1KpY0iSoxvn0BVVS5enMJ13Q2LOgFVV1EUGd/3MDQVWZbpdDrIqo5Il+YiCwKiJHUdSwFBkgjxQZIIAvB9FwQBSVZhIz1T13X8wCfwAyRRQZADBCScICCRj/Kmd93Ao4/fT2nJIRVJ0Gm2aLSbJNIGmhahXjdRFBVJErDMJrIMgtjluCqqhOM5mA0TSRZxIk0mbp3g7H2TPPj4RX7tvW/jr04dJ74Y8JbXbOf8tMOpp6dxfB+rt5e/+tZDOLLLe37qev7iy4/SLjWQ3JAT91e5/a238ad/+E1Cf510vo+Z+Sny/TFc26O81kFQZCTBQZFCsnmJas3l+acWeM2bJljfu5Xjz1/k1z7xWd717lexb+9WPv/Zb7NjYisjQz2UClWWCyXWCsvs2XmIk2dewA0bPPvcFDffch3Tzx1n9sIc01MNEAQ8zyXwI8QMkQe/V2R4s4fRp5NJDLC+2EJf7zDzwiqT66vM3J7hisObec/WcZRyyAPTCyytT3NpapYV32J4PI/Q1Dh6/yW2HRrBcatIocLI9jgpScISWyw+f4nMjddRklcJlxpckjrsS0tsyQ8SLi9h1teYiE7gNRc4s9ihpz+OveRQita5WFxkc5/BB9+1l989OcOWuEE8EVKu+zTKS8z8RpH+7b3kJ1K0iLNLitI+69A7dgsj2gQrT91LLVT59CN/TVnpcNeOgxx5xQ7a7UFa1TqW1ebspRblhQ7RRALDA01psPdIjtEtDroZEE9IiKqOazj0bh7BWS8zdXSVb16a4bOpn6PKMoeuGGK9Oc/RM8/TXsvwpx/4EquNh3Fqq5x84RlSI8PYTpOxkSiesEbvph2sxGtUXojTrJTYsnuCujTNXVu34rQN1oodDu89xNNPfpabd+5kcfko1cgQQt1itHcHj64/zr78APMrF7mwMsNVO19Nzeuw7cAt7NhyM4bmMls8ydn54xQXHA5df5B40uKFVpup9bNkxWkS6QhVPKbqc8SyUQ7uHEcXSug5mQslEVfQiPUbGHWFpiNSC9vIzRpPnlU4s1JnsHyMLel9GLkoBKvE4iJOZ4FKREdXSjzyzD1snngDuiLQqpTp7w8w2yYdZ4ZoLI0RL/Pd7/8xfdsNkuFd9GhjJIxTdDwZ11JRczG2Snfw5PO/xv5Rh4nkDdTMAjOVGmeXHiGdT9MryrSDLPPFSYayApLZIJmos37hEoG2hpU4RMy7CklcI+dbVGMSmuCD6eE0L5DsP0jGdAnlKI2ohmEbJKwydnsZX0yjahqrtXmCYBCFbQShAFKLatUjnezHtTvUSzWGB4fo2Dkkb5b2+UvsuOGD2K2Att5DM1hiubBI4InIkkboeSxOXQQCPLFCtVHHrfgokszamo8giQiKjCiliUViWGaHWMzA74ggigi+Qb4njSwpVCo1BGTq9XJ3YLBd/CDACz2iG8m6L1mW+oGLqqkYhnGZ2hMEAbFYjGq1SiQSuZxf0Ol0cByHSKSrWxAEgUg0yurqKoIgMDq6hWazyfDQEJ2ORadjASG+301BLhZLjIyM0Gq1Lmu+NE0jGo1SKpdZWVmhv7+fMABNMzZyZiQMI0I02tVROI5HKpXYQA3UyzqIZrOJIIToRoR4PE6jUUOQBFzPwbE9vI0sh2q1enmw6SLW5gZ1Sehm4QgCkiQgbQiwu65CJuFGToNhGN2BK+yKtfO9Pf/zndj/4hofx/nfIYX4X+tfRr1shOD7X/5yuF6tslIqUK/W6cnkSaSStByLcrNCIqYzbsTZcmgPDT9gea3E5LkL1NaLDA0McvjgEUzbI5pKYToWMSOC0ywj+R6ilMIPmxi6gir10rEtXK3BpOtTLsxx6cI0gRKQS+eR9YAXJ9foW79IZts4KyslmmsNXn/dtQyMRmnLBc40fZ66/wkGY1mmJ2cxAwFEDU3RsQKX4tIqb//AXRSDEpPPTtOjxahXKgSBws7DYywWysyeL5DXe3n+6PNMXB0ht2mMU8/MYmhgqypKLeD6a3bg9Pm0dYsXn2tSffY0g/k01UCjXwtIHkxw8myZoUicZDTGieOTXHPkCuan12i1G7heh9GRTVjNJpvHt/L8+ZM0lkEPLDbti7K4WiOfzhFsSrDy3DpSRScZ91l1mwynowhSFMuskBj2UBN95ONt5o5JJOJtepQIhm+g6R6u2WBLdjNX7NnNetLihZPHuSbey86JMaqyyMPTU1yo1wjbDsq6RbPaQdajOLZD0oiSyKSpuj4np+YxYlkmJrYxMz3Lwvw8mmZg2tZlLmsQhtiWCYSXHTCSyTh+uOFKIXRvxKLUhcC9wEeQFNwNMZooyBCGKJK8savkdb32ZZkwDP47Xm3XIz/gFa86TN+Yyd99/WmsUj+piIvd9okk4vi+RcdsoUgaiqxiWW0kpbuOwHFxbRsCHzdwEFWBfH8eSfIgJtEbKpw9FbB7s8GNr3k1D/zwMQJajOwa5vCOfTz8yCmGxiXmLzR57uh5bnvlbl7xpn189i++R/F0Czo2t77meubXawwM+czPhVyaOk22z6BVh3rJ7qYwSyIxVUcQXQI3QcdqMrG7h4OHt/HAvWcJXQ8jqvC+D7yLpeU5FufX6TRNUimFZ07MsrZU5M13vZp777+f1EDI2MQW6ATs3rWVh4++SLPq47sumuHihi0qRQNJjmLWqmweyjA4quFFQvr/3+z9Z5ic+XneC/7eHCqHzrkbaOQ0AGY4EeQMh2kYRNKSKFmigm3Ja0trS9Z6fZ318SX5HMsrWbaslZNsy6IoSxQpilEMw5nh5BnMADPIoQF0zlVduerNYT+8DVB7jveIu+vrHNk7zyegG6iqq8O//s/z3PfvnsrxnT9s8tBJj5/5J2d4661tLn/nJnImTf9sH5feqrK9sQFymqF0hvNXNjFUhcyYQ66oIfdUKgsxGiKVoIMjejz1rkPMNVdZq3YoOwozo1PsPzzElcXbnHi4zct/qDN2qMi1rR2yssfWdZP+8ZDCfoeNSwGPvPcQQymPL335CmEjhzHqI4ugCAVmnuxjZbvKyo0tilqGn/3ZH+FDp3+Wf/+f/i6Xvvkm2f4s8lQWp+syP9egats8/OQw48OjhHGO/ESafrXIC198iSW/TWWzzg+99yGa3h3OnPlJXn7zObww4v6TH8T3Onzpy3/M2o0NDk/2MfLgBKcimYHxfr514RYrXosJfQ9Wo0OztcT7P/6T/N7nP0fsb/Pek2MM5eDszQqPn/pRjjy0jy/86bN8+dsv8NjjT2LJF9iXmiJt9NNysuQyCt984xvs3TfF6alhblZfZ2ujwccPfpJNv4kfxJxduEbbNdCyedLxOAcKOYYH96PFDsvrb7MTCMhqP/2igtGXYnoyzZ/88b9haPwIolehJcsEziara5sMTYzx/lPHqCzO85W3LiKkh7hvagKnvoEsCmSzKW7OrxHlxil708gDO/zgA3+fzeWn2dxcRTbSZDMlAlFjZfVFhgefolAepFTIsbW6yshglnZ7kxibvvwprsz/ewjOMDGZJZZew/IyqNr9qJZBStZpuF3SUplbGy9QK1zgYPFHSPUsLsy/hqofJvR6FEdsrHaFyX0/jVa5RE8q0+q1SLOBHd5haOKThBsSltrH6tIzZAcGGciP4C6+RKN4gL7cfoR6jY7cI0BgJDXC5u23sdM26ZGj1N98nZpnse+RD2LXI0xFo91eR9Y9+vuLrNzeIaOYtN0NDF1mpfp5hoITbBtH6IsWqIg5Is9joH+YYnGQbscml8lCHCDGMVtVFzOXQRBEXMdBk1UQhcTEi0ujXqWYz1OrbiZTc9fFdhK9PwJkMhmiKMLUzISUg4DnBwhSMhV3HIfBwQEajTq6npDedN28Z0gG2NlJFAn9/f00m008zyOTydDpdFAUBcuyyGQy+EFAp9Nh7969+L6PZVmJ4TaVIpNJfBIJUcim0+kQxzHpdJowStCnd8PO0pn0ri4/aRKMXQKd67rU63U2Nzc5ePBgIluyE9Tn3SYG4C5hxfMiUqZBt9clk0kRxzG+lxCZksR7/R716C7qVFVVFEVF13WsXo8wTPwNnU6Hvr7Sbvhbcq+WFWXXrwaCkJiNP/3pT/+l3BD8H1XvbAj+26r/6huCf/Z7n2H/1B4mR8coDmZYb9V58cpl3K7NsekJanaPib0lXnn9DV57/nWK5QGWdyo8fuZhjhw6TBT75ApptmobmFmDrmMRSjFOLGG7VTzbxV1rk86soOd0JEFltAenDhzlo6fPsF6vcvulczxy9Ch1+U2e/cK3uZ8xwnSa4TJUN+fpbKWp+ypvVK7S3HaRNAu/k6xbFVPFdSJyWZ2jj52kuXidQImR0wUuXF8hLwWMjE7SqlqkFRlNDFlfvs3oSJZ8Ns/C3CpaIKMIEkVZIBhV+dYzZzlzYj+f/FsfoXDyJt/e3sBZDMkPC0wdGKPW6DCdNVEyBl4QML1/kKHhQW5eXaDX9BAFjRvXlygNZWgFHSb3F8mfLNFu2Gxb85RGSyjrEU994CiVT2Z55jefIVgRSAdpnEKIVLGQ3ID+XBlLCRgumew9s5fzl17HUPMIdpvIlRDEPi6sLnNr8xq5Qo69I1PMnnoCf88M3vI6gyMyc/U36OvKRHqRpizgeTGuHeHaHTbqHRxBYGRwGFFL8fprZ2m12qQzKXqOjSxJyIqCH4bIskyhXML3XHqWBXGE5ToIJKE4oiwRxTG+t3v4yjJRDAISAkmQTUIYSvCcgkDy73dTjRNaxW7ATxSgGQpbtUWuLq6iRhNomZBus0I+14fldvE8B0WWk8CxwCGOPAI3IR5JsgxR8tyKmJiafStAz+ZZvLaAVSoxMpnG0gXi9ga/8kufphPrbFWXELoe+8an+dSDRexHDH7zUJbmnM/mWxV+8KNP8kX7de6s3eE7r1/kx3/0ANcuNGl3K8ShTOSqCIGDqgTJhiQwsbER0CG2keSQ+ZvbzO4d5sGH9mL1HJp1j1/9n/8l+XyG8clB7swtMDQwjuDHGIqCZS1w5pFZWkoF1ehiRmPMTE8h5bJ895mXid0CnhvheAGf+vGnWFlb4IWnG6x2OoSrPkPDIq1mm/0HRimFHf70V7/Cg+/6GNoDMb4gMdQ/ys3XJbz2OpJkQx5Ks1lMQyVbyHH4SJ7eVofaSoMHj58kJuLr330TV1I4PXsfS5dewS9Dxszw5iur7FgN9Ejnkz9Y5PW3qjz8rn3YbgXfrtJpCpSEIqre4NzZOcZHR+kFKvkxFz+Q2FnUcHM11l5o88TpU6j9oHoCj5Tez+/92v+Zoffu47JVoH5jDq3SxI4dDp84SigWuXnubaJiG7ezxvjeNCuCwIbb5NFPDNPbHCQMDVo7aQp5n1KfgB8aREHE9obD1NQAeQ6g6mdpiVf53dcFivNFMpJOu+vxQvcltJzJ4fHj/Mlz32T60CzXX17j7OvrOPEQgzMPcquxQflWH9sr16k7AStKhw8OjnH2uzdITTkcGNtPvbqMmu5jbrNGH/0cHhllaaXGlflXeeDQu1kXQu4z3o0d9DM21IckjDGUVQh8m0bPpy/9OP6tFxjPSMxOfZz12y+hNWXAZu/hR3n73O/ha2ny2QzNXJt6zae6ZoBXoGhoNKIaOzUTQzIZHtKZyh7glTmJM5OHaFWgNHAw2QKKJmpqL164TTfqMlE6QNvzsIPbCM42azeaKJGJrkzSbG5QzM7S3IkQgieYHZ/ECVbx3U8ixw5K2EbVB0H2kFsBTbXJgcGP8I2la6zmL6Fvi8zXb/OJMz9Kd3mDDe+rpPIKoTVHu91m2+0xWJjGjb5NzTmBfbXB6OAQfu06cjaNWjxI89ZnaCowkj2ITJ2eKmHIJkpkULXfJB7OMF56gtadL3Ontcb9Zz6F6sZ4dLGsKqmUThCp+K6Kpsf40TqO6OOEZ2llFMYHz5BvOchOHyPFMfoMlSiW8EKRMIJWzyadNgnFGCMbgeTjRSGiCj27hRcECIqELuvkcyV0XSadziFJIqapohsCIO1KYTrEcUSltYUkJ6nFUSwihDrZbIZsNrtLEeLPGX19XNdG3Q3aUpRksLK6uszw8Chzc3MUi8VkWBJFDAwMoChKEkwILC4u0tfXhywr6LqO4zj0epuk05ldHb9LoVDA89zdS3qAImu7QV8B1Z0dTNNMpu9hSLebAFMkSWJycpLx8XEajUaCUA1CNF1PhkSiSKfTRZIkVFXFc11azQbpjHmvqQEBXTORRJkwCDB0/d7kX5akJNhMEFhb2SaXz9+jM6XTJr1ebzcVOnfPeJ2QkaR7xKZ36v+13nzzzf8VrvOd+m+/vu+GYPTQfsxMjnboMjszTV4YY2z/LAUjjZZOIUYBZcOgX9cozh7DNE2KpokiBmxvbTA1PoUXREwUpghjcC0HWRBQVej5NimtgNty2NpeBXSaTZc3vvR5psaG2DfSR083ubh8jl5lnb/91z7CkV/TGZ3cw3PnLyJUfap+TKdeZeRAHx+YfpKtyg7zS2tMTR0msh22aqsY/Sl2nC3cdIubK2vIUob3nnmMt/sKXDl/A3G9ypUrbcyURUrJMzg2iGh0cByDXtMhldEwCzFGWcb0ITo9zOLmKv/+n/8Bf/enznDkn/x1/uD3XqB5aZkgrlBzIWupZIbz1FpbKKrOxUs3aDVbZPQ8VqfLiWPj/PDf+jFeefUSr3zjEvf/wGFe3loh6hXxmjFVq8Pn/uPX+ODDh/ixn3mUxbbD5W+/gd2EbtRE1UzqbZGp/RoLqxZB5UXGhvZirdhkJAs7kLH9kHTewI9FVtoy9foW69c+y9ThUSbHxpgqlzjvxDihR61rY3kBthtQ3ekwNFjEDQIy+TKNlsXaxgJRHKOldLwwQNM1Mqk0qqqQSiVBMK1WE9/3UESJIAAxBkWWksyKMNG53qVJhGGIJMiIskxMRBQkU7D4z4UhJ01AtJuk+ecqFlA1qDXr+G6WyPURox79pWFa3QqykkLWdaIwIgoCBCEim83SbjexOm10w0wSPmU1aUpi6LZ6xJKIpMaYapGPf/LDFHSNp7/wOYqqRz2T47vfvYkd+AykdT7Xk9Cy+/nxM/dhfHSI69fWGE+J/PWf/iv82//4edZvLHDzjQb3v/sgq9+oYaRlothJ0KyCToyDrILtgqYIWLaNaWocOrif7Y2Ag4fLvHB5nYWFJSIhZmOrTdfy2Ts7TrmcxbK75MaLRG6IrKbxBY1apcWdN8+xutPhR//qu5kemOLF5y8iCCId28JptkhFZYqiTK5YRFAFKpsiM0NpTr5/nPkbK9x6sc6PPhkSW1P809/+Oo/c3+SR09NsOX0YqsTJRyc4mE6RNgTWV1fp1QJmRtOMf3qKkXaal147T2R5bN28w6EPPoYaaKQlha3GOvWWj9cVuH3OZ+vGOicfz7B6vcu+J4p0GxJCV8ILNhieLLNwe411t8XAwXF8uYO36VCYkJk4dpwTZwaYf+EKw8Igf/OXf5F/8rnfZHH+Nn9rZB8//9gZ/smti6wu9xB1Gat1kyOFcf6HH/pZ/uzsi2w2W0RrXSy/DZrCW0/fZngwx/7DQ1w4X2Oj3aSQnqHTdXA8GT2l06rWOX56mm1PZ/Fcm9TgME4oko9lxstTNDwdy7IRsgIbSw4P3VdgOS2zKvQxPptj6qBPr1Lh9oLC4nKXfFZkaKpB0JkiVW4w3N/P4sIak+NF3jedZqHq0N68gTUa89jx+7m56rLQVpCzE/QPZMkqZRwnoGj4tNdW2PFqdGyLbqMDsYWnhLSbd7jTuoCs/iSp6SM07DalPoOtsEm96TMyPEZtzeGNt85y+MAgx6dO8vSVt2iaNuVingidt5cv8N7TZzh08AQvfPtLpPQR6q0FrlWfY2cjx+G9+zBMk+s3vsXR459g8c63KOuHGRsrY9kN8qkicaRhu11Ec4U9IyVq4RL5vjy91XkEO4UxMIpDC8GHVD5PpxWSKQk8OvmT3Kx/k0uLc5SLj2DKA2xbZ1lr1tk3qdDZWaBWs5g99gRh60WWugqyJ+Omq5h9hwmbFyllToJ1hQ1q7Bn9RSS3gWAIeLKNjE+1V0VJBQzmi1z+1n+klo449fjPYARVHKuDJnikcjl6tkfbXcKqZujswHDfCAMZB6RDhPFRVLHMRKlJMT3J+csvE6eKCLKGKJvoukEsiHR6FpquoGkylusgSjJhHKAoAkYqRdvqEQQumqLRbNYoFnJsb2+j62mIBIIoQtc1FMVHkmLKfSWazTq6KlNvJCbcZrNJJpMmihISUDabJZ1O0W53dlOIxXveLk3T7sk6R0dHd/9vIt25i3i+GzRVLvezubnF0NBQMo0n8X1ZlnVP1imKiXeh0+mQzxewLAtVVVFVFcM0MUyDZrNJEIZoioJtO/i+R7vdIptNLuSqqiDLBRzHodux0XWNXDafkIb8iGKxQKMBYZCYsCVZJgojBOJ79CXP83ZD4UKy2SyCIOC5LsV8AUEUCcKAKA7pdp1dv4OK5zgIokQUR2QyGeJYwAv8XbLSO/VO/fdf33dD8Pf+xt8kjAJMQyXykthyWVHxo5jA8xA8HyGloiNTNDJsb6yhRC49LyCyAjYXVxgZH6bTrqFqBqYk4DsuXiShyCqq7LO2cQtVUPEDn8rOKncaHSJFQsoqqELAnoOHOTowTq9Z5dGxPfhimh86/hiO66FJAvV2m5WtCpWtVY4cPkyxOICRMun2qtSuLpMpuTTW2oS1fmZHz7DTqVG7tcaIrrKaKVCrN0nnShTSOXotibrjcuqRHIJf5L4H9tCzBURd5/bGHbS1HhODGudud2C9yy/94uf5n37kcf7B3/wYv/uNszhbV8mVIjBVCvkMtcYihGVuXVkiZYj4Vpc9Izk+8eOPc+7aWb72Jy9jBhIXzl7nzvw2miZjaiaZXA6vJ/Hi28uUFtbJTWQ5cHSajFxk/s4tKpZHs9OjvR0QD6To1iFyBHpOk6Ccw4whblp0AwlEkYyWo2HAa5uLDF21EF+9yGixn44iYddsFE0mFkV8QUAvpmgEHt2uy0p1Ht+PMVMmumlgpAxESdyd2ih0Wx02NlaTC5EgoigyIKKqyY+YSEwQJdpVUZISBNyuOTnwQVUTnWgYJYFjYRwh7sqCRFneNYIllUxsBKIwRgwFFCGPG7dIpyO0qER1Z4MgBtMQsWwPIgFN1RBFCPwQq5fg/gLPRxTE3VVzjKQk2wepF4Kf4tM/8DDNWodr8y/y6Effh5+K6dMj/tYPvYduqYTmpNC0Wzz3SoXrL+zQsa8wPWZSmB2kUFT4uV/4CM+9cJG33rjMu7LHGZuewHFuE8cOQRzheBGSIhIEHqIs4wUukiyj62liROZurrK1ucZ7P/Ae3G9ZCKKJqiQTrZtzaxxUhikOp1ld3eG5Vzc4eHCW1KEMTq2FJitUtpo8/c3zHDu+nxu3l6luN0GC1bVtbEsgSsU02h3yWZ04gsU5D88NcTtNBg8P8MfPzaErOo89McxWdZPOxSZ79+VJzYwzv7SOF91krDRA6FgsXGvAWowU+vznZ9+ma3fQxBxaZFKp10gNpXGDNo6YwUsLuLGN7cW0Q5n1r/QY7QvYd3Ka3GienVttRNekuD/LnTmF1asVTj66h/4je7hxfpVOxcKTNthZEKm0MvyNT/9VltdvMjxbZnnrIn/y9a9yaP0cs8fKNJWI1voWfZkB5uqbbHzj37FvbC/9Bw9jSSbn3n6TrO3S65R57cYSe/OzxE2XhWstZLVJu+2TM+pEXo83LjQpjy9RVI9xtfI8j09pbK+0uRk2ebhY4JBhcq5eYWVtniHV4Mq5a5SmjzIzMk1BbTMuZqgZCtBh7/gD6PkXKG272Ljksxpi26XmVyk7Knui/UjjN3n1sk22dx9pI8/IcBElU0D3Y2qb89SFRQbSx6k35/nq63+ETIqp8b1cvnSdmfF++g730Q5X0Wfz3F58jYPF/YT2Dlg2jdoWSpxjT3+akQMDbFbWkBSL/qEjDFWadMMaLd+is9ml7dRQzUUWb7cZLWbJGlkUKWYwc5r+mZg4ijHFIZruWdbWztE3tBchsGjba+iGRL03h2KYeGHATnOBLdHm0MxTbKxcIm2O0OhazC9dZHrfCSzfxcBnoBCgRHVUp83i7WVKA5O8e/Z9FPSIi2yDfoC1jXlGy2WU/jtIoUvLVxkpfohefQU57bO2+TTK4D7GFZ3XXvs8xUN/A9F3cD0HwbdR5B6yOoKRqTGVG+XVZ/8TzsTjHJs9Qs7dwQ4gJefwgms4VovqToAt1jDUPHv2HkFTKsxvvISR2stYXESJq9g2bG3tUCz1s92sk0oXUMVERhkGIZmUiS7JRL6P2+uRzmQxNR1FkunZFlkjBcikUiZWt4Ntuwz2j9Bq9ZBFFd2QUXUZ1xPw/ZB228I0csiyRLGYUNg8z6Xb7RIEAcPDQwgC+H4i8bmLIr170b+L3wyCRDufy+Xodrv3LsGSJNG1OhAnBKAkgdgDIgqFHL4fYlkOkiTdk/9Ikkw+n7+XCOw4Dp7ngSjg+Qk9ybYthFhHEGIMQ99NDI7xfZcwNLDtxHBsGCadTodOp3dvcyFLIpl0GlEEy+olqc6ajqKo9+RQup7kW8myjG3bKIpCOp0hDhPykapIhKi7r1fCNE0kJDzfx/FcBEDRVFRd4/uVVb9T79R/6/V9NwT9GRMn8NA0hVAUiFwPYh9ZEIiVGNMwcUWQYggjAUkBx7Fx/RhJUtGMFIpqkJVV4pDk0EgXcCOPSEiCSPJDwxT7Bqj2elCp8Ojjj/LgifvIpFNk0ip+7KPEMZ4noRsmRAFiHGCYJk7PIpPNMhhFyKKIaqTQ9Aa16iJb3TXW2xtUOjEzQzPMTh2j1u5h2222dix00+ZjHzrFxasLrNzZJlPWmD05wOjUEEa6x/LVNjfevMHa6jrtrk6322FQkXk4NUK/qrHZ2aYwNMOvfOc8P9jc5GefeowrfoE3XnmLwOuycGGJkw8+xdz6HXR5CS02EUyB4T1jrG42OPfKFUxDZWJikivzVzDTaQLHYWe7i2Hk6BvIkRtO0el1uXVljf61iMExl4yc5vj9/TQVh9biLbJlmZ3pIpWVbYbuG6G22aXajFHQEdsugSbTS3WptWxK/Sny5X625XXaGZ92N6Jq2aRsEUmUMFIZdra36bouYQzpXIHBUpGUrhNHMa7rYPVsHMfGsW2IIY4ipF10nIiAKAq7QTMQkTSQkQBxFCcTHSExDEeRQByFhFGEiIgiyYShTxAHSUNA0hREUYCIiBADYYQQgyQKiHHAxPAg7W0Pqx6gKBKaaOA4NlEYI0vJwS9LIj2rRxSGSKJAFIWIskgUhQgChGGCSW20O2RzRS6+fJaXLs5TKubpuj6W16HTrXFkuMyxx07wxjLINnz5K9/AzIuEfkzsR0wOmhyeGObAvr383A88zrUHR5nf2OLYqTF006VcLLKx1mRlcYvVhQ5B4KCIGq7fSd4snSYraz32HbwPSUmRzil8+CMP0q3L5DMD3Lh1g8s3LNwIsuk0gxMhjWabWJHoH7BZvtJFEVRKfRo3b61QqVd54MFDPPudNzh86ij5cpHFcxexOyGB6NNrWdx3eJT73zNBlDK4dn0ZL5RR9ucIairB3C2OTpWw+6dJ0WIoo1B97F28+ZU/5MS+CZ6+OYfX9qm3FXasbezYJ1JyOG6Hnh2THQ6IY4FG26XjVhHVFLIQoxkGvchHHY1wTZfVtVX6R/NIBxXWF2LefO4mbk/Ad6G51mLk5DDTx/excH2ZanOLQ/tn+cn/00cRohaxtUneSRNXZYLBmNduVHjfjx4jsHvMuSJtt0IqM8TlzR1uNl9jf3mSn37iJxmLB2hl1jh3+RxyO2KpssbI+ACtOytMPjRJRrVw4x2WWjaW5/H268v86I+9j5H+Im+8vkXfkEkPqLtdpseyrNQNNtYi3nV0lEYE04VZrl19CTcf0J8fpy16nF1Z4b7JdzFenOV3/2SRR55SKaZM6naXYjmHKqU4d/FZxk5PsufYhxg082iah+/UaWyco5wdZmd5jdn978Potri6dplGLGCv3WJzZQdDz4PqslPrkjMnODxe5FpnjrNXrnHfEYFGx6ZcPM1oPk24vYXSF9I/WCRjjLK20WNmfIqLqz2sSGAmN4Sp5an2NimmUtiaz6Qq0O1ukVNFWt4Ghj5Edec6I8N7yaSL+L5IKjVAJDdQUxpur0KIQ65ooJgQx1kkeRhZrxChk86lkVyddrMNhkbHbqGY4K3d5tJ2lVx2kpnsANm4x6Xl12jHAYNinpKyHzIrpBjlzuodZgfO0Nh5mUCVKenvxrKuECkBtxb/M6mpJ5hI9dO2FpHUIert2yhykZwh0O5e5bnXXIzxTzAiipiNRSJXJJBFnLCFomYJgj6MzA7plITT0XG8HXbqVcJwiEJuH6YX4osOiiwSZHu4vQhZTuF7HprmkTJ1fFfA7nUY7CuxsbxMwTSJo4DID2l3PWJRxMxkcW0fx+5gGiq6KuN7FuAjSgJh6GP3kqDDbCpLrd4glBSiECRJQzdUgiAgk04ThyFyLCAg0LV6RJ5HhEA6m6Vn2WiKAghoqkoch5ipNAICzVYbQZTQNY0YAUM3CcOE3pNKZ5PgtNDHsWwEMfEkOI6zGywW0mw2KJVKRFESmJbJZKjX6kiiRKvZpNzXB0KyHW61WoiiSD6fx7ZtTDPxRIiCRBTFu5sIEKUkldj3PFw/wg08NEXGsn1c16GvL4XrebvpydDt9cjncqhq8vWQZJlur7ebRqwmoXOiQCaTRYgFfM+n63YxDINMJo0gJs1BQnP6r3/xeqfeqb+M9X03BC2rje97WD0hMX3KIjLJ5FYUJGIRFFEklkQymsb0nr0Evk+YoI8RBYHA95EUBUEB13GJvBBRklAlhTgI6e/rRzMNRFniQ4+dIavKqLIEoU8UBPRsh2azi6JKqJIHcYQnBHRqTSzXp+M4mKqOnk1x9uILLK5cod1pkM6b3P/QASb2FJDDNKtL69xYXqQvM4ypZrDaLVbeWkKN6jz4cIHJ0XFqlRabt1a5dGmFnUqA1QsxpCyFYpaJoQms2OO1i1VG9uRQ0yqhHiLWIl6/3aXxJ2d55L1jSB9+N3/wr7+Cu1LjzEM7DKUUZv7uE2iWjds2adV3qF5ZZ0YfpCrcpNGpYWpZUoKOJ4vIRoAkQxhEtHZalIZShFKOKPboui72yjbVlQ1OPbQPY2CK1toOOArDBwq0GyGbVpteF+QAivkIoyQhZbLM7J9leXEey3XxdZ0lu41JjsAX2PHdxAzWTb53k5PT5EoFYkmm0WxQ7zRxuj2snoUQJoE3AgKxKCDGIO4GwACwezhLUpJyLUgC7F66RVFAFJM/y0nEMYKkJI1FECHEwr3gncD3iUkaDkGQQUzyCQLPQxAjNFmiXWtT3/aQkdHVNJqu0+r5xKGH5znJa4wFwsBDloF4d9UcRyDECKKwK00CL/QQ8Hjx2jJ2IGBVOyxXdxgaLVDeO8iLG1tc/9PX+OW//WHWXIE//LZITtQYmCyytbTKxrZPZWee77x5i9nnb3By3xCPPjjIhiHyZ1fW6Ix49KWyPHBsPw8/kWOr2cBbhitLl9iptBFCkzwy+8dLSPlhBKeHKcvYkoWRiYhEl6GhIfr7M7S6Hoopc+z4FJ5dZWbvfi48Y2PIbWKrRegGiHGRbLHIiYfHqWz4LL22RLPWIRZiRCEkYygMGzKlVp1G02LfUJniuMiVs1WU/kFWFQOlLvL4owZpR+BPn7nFBz/Vz74f/kHefuEaC1c2CWOdhTWXMEqmcoEnoqkh3XrIU/cf47k/XuCRR55CUzTm5q+wsrOEL/YYyqbJjw7y1Kef4pkXn6a70gM5QvShsQDF/gxqyuHGjR2mTsU88KE9DOomt6/CvvIhxmWV5649T9bQqFcDZg/M0KnWSStw8/wFRFfD2TSJ+gJEV0RwItyizHYrZDtosrY2R9bscub+h/nC81d462IVIwoYG1DoiyPMKCBnKAi+g2GorK03ePvaW5x57ARf+vwFYlwkL+DG0gpRKcPe6WnmX7iN8eQwBwsS1Y2LzC1XOZ0b4+LKOsUhk6HBPlZS53mUU8RBlayeZkgb5ebaNQoDwxiywcDMIWRlirRaYfvWHSamJPJ6xHa7w1a0zL59xxgQ0zSELlpuhMbNlxDIsD5f49QT95HSoNHYQRX6Wb32JvtGj3D1WoZQ2CQquBhSSFnJUo27LO0sYkUGB/IDRO0Gtiow2b+Xo9On0GIFLRawey0UTSRtjuP5Lhev/xl5qY9Gp0u5P42RypBOqbTsOwhBhvFUisjdIYptBG+D0MvjGB659H6cuETbXiX0KwjpITxxh0JZg16A02ihpYZQy328cf1ttEIBfbvBtfBbVDvzrLSb9BfGkbwWRmqULfcKg8EQaXkRVxyi3l0nLg+Ct8hAYZRrt7+CUjjJuDGO49UIwh5CvIVXr5CfnKFz6yucbbzBgwd+maGxI7z63L+m0bQZHdpHLCgEgku5eJhuW8OX6qhajOjniYMuKU1D06aw6g1cWcDrdXEaLYb2zaI6INEmndIRxQBNFdCVFButCguLS6gCaGqixd+qVAjimFhSCMIIJ/CJ/RBNkQgFAS+OEDUFxw8gDMim07i2Q9dxUCURVZGwXQ/P9+h2E/y3qWuogkqz3iKdzyIKArZlEcTgBQGFYinR2msadrdDp9Mhl88iiCIDA/2Eu0CIRr1ONpdFkkTa7Q75XCHZMgQBge8iKxoR7Grvkwbg7nYhMQTHyFICirB7FlEYkUqn8TwP37HJ5XK7MtPWPZpQFEXIogYi+L4PAkhiQgSCGNcPUVSVIIR0JodmGES7KNK76cyS5xHFMc6u9EkQRWJi/MDH9RNPxN3hlR+4iJKMmUqCNpNwtwhZUXaHXN/3Nemdeqf+m67v+yc9nc4QBkFyqPg+onhXEmIQE+G6Hr6XXNyiOJEUSYK0axCKkAQJVdeQRTHhx0symqahazoCMYqugQBBGLOxtU3gubQ6Eb5nY1u95KBJpQkjgc3VVbbXbfxuG8mI8RWPdq/K4HCRjtXl6ZevUFA1PM/l9BMHmZoqIXkGl67U2LyzykBxkPe+65MszM+zvrhA4Hcx0jLFvj46W12ev3qJwJeJQonhvmHK6R6yKFHbrLEd2oQNm17HY2RCY/+Hh3HXS/zxf/hTTu05TqfZ5lx3BS0jcyYr8cO/8EGe/9NVFpbWmB4YYO7KHdYqHWbH+gl1n7eurjHUN8zpg0e4fWueifIojWoTWRJACIiROXzgOG9fPI/V2SKT1Ql9h7m5ecYGsqRHCzx3eZ7jQwVCw2Gn08Vd93D0LO3YQSrqmFqaYl8ZM6vRdDrcWlomK+T50LFhljSZyyvrrF1fIYoDLDkilckyMT5FMZeltdOkulWhWW/hhx4xEYqkoggykppc5EVRJIxjwiC8RxG6S4a4G2sfBB5hlKRViqKIKkkIIsRRsraOhAhBEBGimCgOkEQRWRYRUBLUqCQjilGCON197GwmxczeUerWKmvLG6TkQQLfRYwElKyGVU1W2WEYoal3jWUQxSGCIN0ziwmCyF3fWBzHmCThPLmBProbW6hBiBxHhGFA9U4br+HxP/6jX+Slb5xHKazzr373h/iHv/kytdttJNNANExSXojb6vDG7UUuzC1z7uYw7/nRR/mBn3kvy7d8MmYNxQVdriCUhmi4LR6ZfQAbh+qiw/z5m3z1G99FljLoeAi6z8HTx3j65a+TL/ShKy6mnEfPxeSH97G2uIFRhpF8kUMHR3lm5RZ7xh7mZ/72oyxvLfLMC6+gGyI3Lq0jBT3UCFwCjEwaxTR4/toaL1520VImobDJA4cNDrzvGFtVn6d+5gCVWoMvPvsazSs9+vaP8OXPvsKDJ/YQFqdZ9+fJBj5d10tSgy2I3R6WFqMEAhdfv87kZEjHWyXKpzj9w4eZrc9QNnPcunaFqcF+JsMODw8NcGPjNn4QYWgCo8P9rFWrmJMhWVHlwpevcPxkmhN7J+g3CljLLi9ffI5z7jyze8YJ5DJqsYpiAbFN6BdwgpC1Soe87xMU1klnJOg6VN0mq501pLLO1nqPwhs1/tHHfoqvn/0qr156A1epcJ+s0HZtzMAgE7fI4uFKWa7eWmJ0ZJAf+bGP8OorX2Or2QXJoNG0cWoV9gwb3Dj/Fs5MniOnVfbOK6ytbSP3BLpLTY6/Z4aqYvLZF5f59Ic+Rkd8i42Vy3jpgHwmi5QtoFlLOCvnmNuukSsdZW3BQjNlssZh3J5DoBxnyd1BzvUxmJJ5zyOf5r7io/y9f/y3mRgfIu/NYwXbGFqRS3dusbG0yQcf/BQblT9G9usI7LAVaNSzm5i5/ZzUDnH+0muceeTdNDZW+PqFpykEAYX0EFnZoR3V2Nnq8eCeD2EWcxzZ/yStjkesrEG8xv7RH2J+7SyRnGbfoSe4fO4/cvtOnQPHTqDpI2jKKLGi4LIPz6+iqBUyZj+W00GUPHaqFQxVI1Y7eLZIuLrBI/d/jMXKJqvNbbJjBxArXfoyY2xvL9HUXTQlT1pKMV97Ez2rkBIEHFlFxyeIu6zdvEI93CYv1KnW10inJuk2trDtGn1Kme2lV1hxLU6e/AcMZ8C9/cccPTpFmD5ANsyys/RNzL4R7KCHHAQIbg0hp2HqfYhOi1jwMVNlqvU6pUweWRBptDt4TgC6Sjll4PkeqmywuLDM8NAk6Uwaz3dxvZh6s4vrVtE0A1EUiZCo7zQwJBHfd1HSJook4tkOqqyiKwqxphEF4T1aju97+EFAGLObOSDjBz5Wr4ucSuF4FkIvgTFMTEziRxGtThuikDj0yaVLxF6aVDaPruvUajUURbmnu/d9D1mSWFldo1Qq44c+QeCjqSpR4NPpttENA1XVkGUJ33fwfA8/8LB6Nq7rMzQ4RCqVIpVKJVCJ3Uu3gLjrO5DxfQ9JkhEEUBQVWVSwXXv3sXxMw0RVVbY2N9mptzl85DCSKN5rQBr1OnEUYprmPdJRt9vdlTh9L1hWVdVEphokmNR0JoMXBMS+Rzpl7uYqyEmTIIoEQZBgsN+pd+r/D+r7bgi67R62baGqCkEQ0na6mKZBEIa4QZCYhDQNRZIQYwVZFu6FUAmygKYpKJJM4PlEYUgchdjdLk6vRxiF1BsNLMdO9IBmmlQqhSLJ1DsWgiSgpzOsbm6zubWNIApsdar0T4yS0lOMGWliaZqebzNhZJAenebmtZd5+F2PUG032bxkEHXSRHWF2b4y0zNDzC0usLmxgaLnEdQCgSDT7RlY7QaiZBLEDXJFHb/TJWfopCSdE4+OcrXXYOPKAo9OpPnRf/gY/+qFt3nm91/m5P5TZAaTpuH+44fpanl+57cv8ZMP9vHQL97Pp//913j16TdIdfL4scSQKNENQzxVo+44RDUbU8/R6loIKZGg2yGKbFQlxfk3XyWbT6GbWXRTZHCwzN/5xfdzo3mVb3/9DXKiwMKdO2hTJXqFPCvnapy+32RbMsiYgwwO5PAdl+sXquxUHGKlTaO6yZEPHuQ9P/wJXj67yO+s/1ucfJuZ8RmyRp7N1TVu35wjdDxiP0LajZ8XRRFNVQiiJKXY8VxkVUGSJBRFuUdpgLtm4ESripDg8mRZJnEAgIRALEiIsojluYRRgCxKSCJIsrCbVhxCFMOuyVhRkiCzMPCwrBDX7iFGApEfUW/tIAkCAwP9bG5uAwJREOO5LnGYmIoFIdlaRH9uD5zwtrnH4pZEhXbPgk6dQl+OxloNXRUwFI09E5MceSzP85ff5A+/+zzg8UPtGr/z1w7zb57b4a1vb6J5DlU/oH/E4B//xE8xtuc4pT0iqe4lOs2A+VKD1bkcRsqimJIYl0zWD+5F8Nv099uMTI1wZ/1RvnP2Lc5euELvqkCnHvBwcRDfvca1i9eR1ZDr0goHZyY59+YbNGsNzrz7MHasU9zf4zd++DGKhVP8/r/+M15/4W0sy+LE0T1ErkesBESKDKqCZznkFIUghJYtoYoBh48NceLoaV5/85vMpDOEN1P0QoMwPUhtf4wuNhifSXGjvoA50OETn9rHVz93AyWvoMRQzKWxHJejj81S7Mvx9QsXCc2Y8pTHU3/l40z2j/PSM6/R3mrz0OnD9A338fVzi1zYuEK6bXN6Xx8rkU/frE+z7mFXs0gZm/F+g0vfXWOjcxFLEth8rclHP/AwD737vZiqxZf+6Bz79g+QL0q88fZ5pg/JhJEAzQ71ukRmn4CQKhHQRRVdXn3lBh87foDl2iJfuXaJl5dv8LGje7n/R36Ur985h+x6vHHxMgcOaHS6FposYmgSByaOs3ZrjbGRIgU1T13wKWdKGIGP50bEcYuFZsQhZYgrn1/h4AF4fr3KcjdFrxLg75zn448+ztytt3ju4iLvee9patmYicFJVCnNubk79HbqCHEbQRxiuL9G/+A245kZ9PxreN1HmFRgS2wQuWXG9zzCyPA8BVPiH/3jX0R2q1RqAu2dTdrGDk8+/GMsXXqGylaP2+0rhJFJXzTA5J4eA1GNVPE9ZKoVvGiZywtXODwzi7k8g9cAM1fmjaVbHDs+xFQxpBK4pC5epL1YYfzBU1R0kXpboNdcQQzmGTAeRKjeQck8yCMfKCNJBgpZYq+NpmZptpdwqFDMT2J3ZeRIJRZ6ZIwUWXMPotTm1p3vMD+3in7wKYZGD5BLPUlvc5OL3neYmRjm9MS7uN25hecJ+N23SZl7mSj9GAoeWTMDTshS8xqd+hLZqQPM5A9Ta62Tlmw2ehUitUAlpYGa59HCu+i466zWqxRz9yGl+lC2VrHYQCnuhzhPzeuyJzfKxspn2FHfzZ6sjt/ZoSsW8ba2SBeLjAyPcP3yBXKD/UR+SCiBb/VQZIVuu8tAqZ/aThXVUElnTZxegOu6lPr7sbsWru+TypgYuk51e42hoSFsu0vkR+iZFM1WC1XQUQQN27bxHBvf9xgaGgFRot5sYXU7qKqMnjKRBCUx3YoiEBMT02y16FkWZiYFkY9ndVm4PUfgBfRPTgEx6bSJbTtAMoQxTZ04DimXioRRgNXtIkkispyoAjJyll6vhx94aJqKIAqMjo6ys1NFVVSiSECURMI4OW/jEGLHJfKDexN9wzB2L97Jhb7VamFoOrKqkFHSeIFPHMWIosTo6BiDQzGu4yAIArqh4toOhq4jy9K9xOO7g6lut0s+n08QpJJEHIT0gkTGKssyjpMMjTTN3E1c/h7FzvM8DMPAMNT/Cletd+qd+stf33dDEMfxbkJhF0UBPaXSbrcxDINiqXSvC5d3pUEJOlJE1VVAIIwiHN+j1+nge0lkuO/7QEREItUwszn6+voQRZErV64wPz9PoVikttssDAwOMHNgH1EEx0tn2FlYYXpinIZVp7mxRr+q4gQtcnKXEyceRhUy5HMxK+3b2KJFLuVQa1jcfmmD4lAfpaFhnG6XvGFi6iorq2sQOvidNpHvoZolKlaXW61tiEUmd1pIfSopVeEjP3k/l3dC5v8opC+tUll4A6c0yeRkiubWFttzN+nKEn//iyv89bfmeemfPc5vv9vD+NYSlu/SaUHfts6n3/tJPvoTn+Jmr8vf++VfYf3GTfKKiioqmPksRCaKqtJpt1Fkg9XqNotLTdbXekyMmxw78RC3LyyjD3oEbYv+TolNvcnCVYn903toNpvMzy1T3d4mm9Ip5zPstGJmCuMceuAUT9+c449/7TP83N/+WRrbNb7+1T9jbX2B6uY2gROQyWYJIg9pV9OpKgqikBy4qvo9drYgCCiCdM+odjdz4C6pQtTV3Y8BcUwQRiAlMqBw926u7CZSCsHdQx28IPpeBoHvo5sGYegShQGOZbO2to6WFpBElUgQ0DWFnVoFUdbJ7pI1dE1DVRV838N1g12T2N3tgLC7KYjvmcfanotpGjj1HkpZZP+pA2yvbXDk4CFKpRzjJ0/wL/7n38XvZZGyO/z+N9pcvvAqP/fTg/ST4calFE99/HFcL+bZb75Ge/OPEH2NttUmUwo5ODNKfuYAr1xe5MbZa1iuTzY2ESWfQlYhLQZMjQ9Tmp7m/UcOYj4KbrfM09/+Lice2M/F8+sIQBg6FPqH2ep28XoRhx8/wSOPf4Rv/udFuH6B7NglwrSDbLpE3RBZBV90EYNEkx50XVRJout0CaUQVYh4Yt9+zhwc5ebi6zx7wePGSI0HhSJyfgBVafDIlMcbcz0qb1oEaZH0zRaPnFZ44qPjfOer84idGHICfeUCrljn7NW30HMjjAz189fe+1Gs5y7y3Wufo9ZT+Op3b5Me8Rg8rDGyZy+/8LEfoB6kufStN7AWXS7Nr3H4vgEW131czeH2+ia2ojL+yAHWq5Aeu0VmtIToqAyUdfZPF5m7usaZdx3nzJl+3pp/hoZrcuAH9hMv13mPVsRxdL5QXcUcV/CDGue3rzO3uoyadej0Wfzmdyv8/ESZtfllzr0Jh0+dgFhkp7aC71n42Lz6yjZnHnyATseiXBhmfmUb3wpBkpGViE6uxLAuMUyT71oKueWIDz11BLt0H2tbHkN9N/nGVy4zsfcw2qjL2u0ms8MHWL9TpRdvk2tEZLptcsMhF1bfRk89RhBk2RJkRsRHaMQ685f/72SGJF7+s4D7Hz5N295maOJhjh16P+12HUOcoWM9x/yt6/SXPEJCvvTsPyN/EKYGR3hw8t207M9gdUeQuxrXdmpMT36EZ157lk4wyoeO/nWu3fo8RtrigQNZdCVFpw35os9Xv32ZSq/H/Xt1RjMTFPIKyzvzZEsnmQ/nyYTv5uDkIN959T8wPnYfshTRb9zH8ubTaJpIKnuUhZWXSBsavp0ma8yQNfYS+hFRNaQbV3CHm7z25rd4dxTSkjogapQyE2QEg057CXdnjXR+nI1KgfJ4mcncLMu3vkpj521KI4dwek3yE/cxag4g2h7j2QWa1RrptEw6n0JwfRpXNnj5rc9hHTzM0dOPk025pNwKjrvCtjiAxARWdxsvpWErKumygZ7aR9e+Q6sXUJgeIVpZJW3qOFaPUj7H7a1V3EhDzGeRMAmDmFwmjyjJZPJZVjeW6DkO+Ww/jiXQ7TaSgQcR9foW5XIf+/bMYKYMbt+pYzt2MojTdDLpFFbXJptOYUsCmpJHVWWWllfxw5BSsUizWaNjdREFkbSxO/GOImrNOvl0HoipbG6SyaYRBTBTKVphmyAI2N5eTxJ6TZOtrS1EUSSXyyFLEr7vUu4bwLYTpKhlO5i6jiyLlEolXM/exZAmJt+EFCeQSmWTDfCuwfjuJR0SD0Eqlbr3nnEXOaprick4iJJNQiqTJpVO0e10kEQRRVWoNRJ6khAnklTLcvC8+F4zcBcX6rouURRhWVbSIMVgpMx7eQjqrkzJtm00VU4kqkFAJpuYq23bRtffwY7+f1MjIyNHNjY21F/4hV/Y/Bf/4l9s/B/9et6pv7i+74bA0HXa7TbJqDYmCAPMVArfd6lWq/i+j6Hp5NKZe5236/qEHZ8oCogi7hENiGJSqRRmJk06k0HRdMIwwg8DKpUKC3fmCYKAU6dPk8vnERWJnXqDza0toihCkVV2bt1gqbLB0vJNlBgkU6ORzzJUKJP107RwaXbqTPX3c3LkGBfnrtLadnj0wfuIJZmLczewgghRFmjZbdq9GN3UKJUKyOo4siYREdI31E+z2eKRhx+isdngmZefQZnM8s35Fc5+6RY6OczMAEee/EFWti8Txiku3HgTo98kZTjsHyzySrafuf/xLD/9U0X+5FSON//TGxzPpdCLJvM3n+OL/2YNfXIPH3voAVYmp9ncqjB/azE5XKMqeaPE1MQQuiEh7/jYlsP88gqb2zmEp5cQVZE1u8fk0SyDe2VsOU+t3uL2UoAYSoiaz8lHpyEQuXN1CwyD+dUllMn9/N4v/Q/Ur6zy7/7Rv+YDH3gPRUGnWt9kYnQcy7Ko1RoJdk6IE/lNFBGECQnoLq0iursR4HsBMne3BHc3ByHgez6inExuZElKsgH8RGomiCKIIEQxkpD4EWJBRJYFFFkhikJcz4Y43J3uJ4e+qumEsY/dtdGVLN1eC93Q6XY66KrA6EA/O7UGJ+47ydWrlwnDgHiXcPQ9ahG7xuJdH4EmEQQ+Sgx2yyedzhENC3z76Re5f3qIqNqj0dlBzUng68hCm+t1hd/6QsTf/fmf5gd/fIB//i//GdefvY4ZlmhJTYKcjGrpqJ5KzYzpc2/zA5+aZXhvhuaawPiRIkomQhKLLN5ao9NrEYU2xnKXXq1NSJeHHj2OoIf0N1zchkDRLFCrb5Af0vk7v/QPePi+g/yrX/6HrF/a4UJlh8iMmD2c44MffRcNq8XGqkuqD+KOQxx4CIZGHMYEbkQQx8iZNM8t3mKnAC0pQo1ipvcfp6aI5DrLKB2TNxcbHOi/j7OXL1OzKygjOqtfXWHv/iEeOLyPuau3cHUP369hr0YMlgbo+W1a19r887P/mZsbHeKsSBQ6HH5fH/lcigO5ExxP7eWb//x3yY8Vee8TjxJ/+AD9z64zd3UBzahx9PQsF76zwsqdHg89Ncz4oMnXLy/QXl9iYMJk6WaT1nbAweljCJGHkXIgKFPQHD7+sw+ys7TDxT++yPHZIify07y1ZOPEItOzEwhRk/17phnr38bKSbx4+xWqnshA12dK8XG3bcbzKSqmTk/QEOQmz770Jh/+6PsRVBMz18fq0g73Pfogr198i3L/KPXuFVynxIP376VTKmHtPM2R/CqDRo+jpUkuH83RUA7RbZ6nY2TImQJ3oiZWYLPlr3HwhEFx8jR2700EeZO3vnaFQx/Zw/0DJ3j1wssM7HkIX+1SPLnCb/0/nuf/+stnuNmUyCx+AV3JIQ+N8/GRH+T8tS8g6jK9Qpb3f+RJzs19i9pahUZpkazxHq7XXuJC5d9w4vinkUqH+Jv3naEcpFhZeIZusMrTL8+zd1BDG95io+HwkPLzPPGzezBNA2u+n9F+jVbLIEjX0UWVTHOQfLxOLUwxWH6Yq7du8sC7Psj5la+wUT/HqSM/RymYZXp8g62qhaBAEFfxvCyx2mXTuUaz6hLt1Mjsf4K2JtFxQozBEqMNifW58xRnZhlLD3DtxjcpHTlAkA/w/Dp6uMRad4nqZhdDnUZ0l+kfeZggXKehavRyhxHWXc5/5xKbcciTD/4ApfJ+osUl/uzsG2QzKscmxxgYyAAhot+gUMwT12O2m6s40hhZK6DSuYxZfBhRFCj19dHtdOl1OqQUmXI2z9rKBilVZaA8QOjbyaVS02g26gz291OpbSGlQyQhpNNrkcsWks2lKNNq7ZCTBdY3N4h7Nvlcnlq9jpIWQNZwehayJKEpKgIxG2urGLqKhogQx4wOj1BvJcnknuPfO4P7SmU8566+PyKOIwwzxdZWhWwuh2tblAqJsVckRlNkFEWhtRtsJkkitt1DllUkOUk99jwXkZhOp0M2myUMYoaHc8RRgv903AQ/qhk63W4Xd8clk0pj6gbFUoEwjrBtK9H4CwLpdJrV1VVmZ2cJA4koTj4WxtE9fGkcgqbpGIZBdjf/IKERGYi7W14/CO7RjbLZ7D1sqrq7wfZ8/15gmeM4iY9NTpoBWZbpdns4rre7jQ53B5fv1Dv1339930nFd25eix3HSTjGkoisKvd+YQLfJ46ihF3sB6iqloQ+ISASEvoejuOSzqTRFJ2eZRGLAoqqgBDTsxxiQaDT7eK6LvlMFsM0iL2Anm3TtS0azSaNRpNOu0NfuQ9BDyilsxi6Sd/gQGJMjiIiSSQjQr2+gxtFLCxtcHNugaGRQbJZk5wkUCyVaPoRL58/TxTB8NAQxVKOnKEhRxGCJpIt5cll8hiiTl7JYnW6CNmYpm1xYf67bF1Z4YPH30NuqsDOlsQ3zr9MvNmi3l6nFfpsNNe5ubDEcE5m7977WbMtypcu87M/cZLmvj28+s0tbm1WaHXXEbo9UlIaSVIYnBynf2KE46fu5/byOn/05a9R2dxGIoTAo5Qv0ms57BmdZCzv863XL6OqJXpSiNDsEWJjTgSY/UWEnoYRK7hOj7XNBnZPRAFCQWS6kOaff/bf8oGnPkGfqxOqJj3bQlUFRE0BUaTc14dre3RaXQLvrkdERFVkBJKpjyBBECdJmfHuGvju4Xp3U6CqKp7v4/k+mqYnaZmAokqJEc3zESSJII4RIgFNkhEFCIl2D2kJSU741oqi4PsRkqTgOj5aSgY1ptvxCZwQKbbRdYMwlAl8izgGSVJJZfM0Wq3dhsZF3TUN3MXUhaF/b90chTGiALIm43shYRQyNDHA7P5JKos7LC1v4MUes1OjbK91MbLw0Y99iOGxg7z27LdoNJZ49K88wstn36KzsMPE1EHMsVkGhYimu8Xe2TySBlGrzGiuy4MPT/Gn596ms2wjWSpuFOMoCs2uS71So7bqICgOouZg5nyOnZjm1pUG9U04ev8+hscy6B2fV589y3K0w7WrHdKqSOQb+B0wyhYf/av7SGXLfPPL1zDEPI1ajVqlhyDFyQTQCdi/rx/LqtPt+Xz4w4/xyvol9u87wsL8KrZTYbxvkPm3WkzuC/i/fOIj/O7XVzi7fodWo4EUCNx3fJgoJ7OwskGv26avPMq7HjyEU9tm+VyFqfECq5sueV1HLxvsuNtYDZesUuL6nWvEbprxvdPY3S3GBiT2nH6Q/OAEfbHFHWuOL//eLUojKfbNDKMOpHj2my/yyQ++h/xsgOSL/Mb/7SXslseefSYPPjDOjuWiVnooXQG/OIAuuZSKMH10L5JmcGVui/Zal06rhSAojO2H+fMxp951gN/71heZ3DvKI+8/SNBpcv756wRCicKQyoGpKV5+8wL3P3CQ0fI0zW6btdsV2gsr1J0mqdESBSckjgTGixky09PQ12B98w7VOYVj8hhL5Q0eeeAjPH/jEv3FSe4sPs9Eeoi8K7C+M4cxU2R9o5+jE0Pcd38/f/rNFfqn2xxKH+Bz577F4w/9MMOKgMNFvvylKgfvT/HRDz/Md59+kZTSYDvoQ7ezZC2w4pBGJmR6Yg9fe/73mR3Lkw3HmCkfQlQUNpUaw+o4cSqFU7VZvfIsG+ptyplJ1NI4I8N7KQQGdvcWDcdifPAkam2F292rFLP9lLTTtLvLyJqDLBUBjX5pGIsdVndW6HkVRgdPkUpncRyYzT5IXfgSYcoi6I3hNLLk0zKCqLG5fIvF7jKGPsHkgWmC+XWMyZNUu4uktTSLjYtMDA5R2rG43ejSVG9RSHsclx7j/MKX2clFpKMiM8VPks/2I/tbmLkNIudxele/w/mry0hjoxx+zwNMmHtAqpMxG1Rvt+hKk6x2N6l722TSAsP6EAoF2i2fQipHpXaLXjfEKIEsHYKgjq5qyJKC5fTQFBENkZ4gEPoCCBLZtIoqJrLFnVod3TCRNZnKxjJTU9PYPY9Go4WeMokB1VCJfB/P9whjAUlR8AIfSZSSc80JEMIYz3MgjnBcF90waHd7CEDaTCVmY91MZndRhCCJyKqEY7lks2kc16bVajE4MESt0URAJJ1JJUM9w6DTSWhnd/8OEbEgJcm9koKiaKRME89z6fWsJFHe80ink8cQxWRYEwQBnhdg2RaiJJHL5bB7FmIML774Ao8/+cS94LG73jDf9/E8D13TaLXbmGYaSZGxLRtN1dFVjSj2kWSJVquFJEkUCgVcx4VYIIwCUukkvdhxHOr1OgMDA0mjI35P9poAKpLhVBAENBoNZFmkUCgQBCFBkBiXk9cW8iM/8iPvJBX/f1jvbAj+8tR/9aTiKArvrfwivveLG0URnuOiahqO7eDaNqYRoKhqMvW3esS+jx8GiafATJCVqqKBFGF7Dr4fIAgSsiiBrCIRs7GygiJJqKqGKgjsGR/HLpWRBZH+gT7UjI5t29jdLkGziRf4CMQ4PYstv43V7OAHYGRSvO/MfajISLqBqqnUGg1azQbvvv9B8pkMshARBy5EIYVsHlMzCMMYzwoIhC6r9haqJqG1cizdnkPcavGRg/fT02Tmnr/B8OwoJ8en+cylrzAoGRwsl0jn84i+xlGtzFRfieaAyM7gEF97/g79a8tMTeXI7hvmteshm8s7uKZJ3OnSXbqG41dQlR56qcyBo5M8cPoIQuhRLmdZXVhlpDjJ88++xrWLmxilAo7VId8/hNRfZPn6CjlzFqG7QfXOFn2pIr22ixIp3Hf6OLdubuN3W0RqzK//439Jxk0hl9N4XkQmk6VULqBrBlub29QbLVKmyeDIEFanTa5/iJ6o0q1UiW0by+7hW91ke6CrxLuX7HhXnx9HEIQhUZwQoe5mCYRBgB+FRCT0CRARBBFZEImJCMIQgRh2yT/EMaIgIksyYRBCLCIIErEQEMY+aUOjsdVGVU1kKcmxEBGRRRFJUXFcn0ajTiSIKLqGEMrETg+B5LGjOCKOvidz0mWFnmcTRTKypCALCvWtOpn7j3PmZ9/Dd59+mXajxcTkOPnSKkMlmVIx5E8//9uo6SyDk4Nsv36dT53ax8bJKa5erdK5/hKLgY5uhSyfu4NRTjO3sER1vctAKuLJv/o4b7y8QX27Qj4lQKDQtWyMlIKWTdNob5CXhvEqGZ65dpMT983w1Kceo9vu8u2nL3L5yk0On56mcmcH1cmgBSEBPko2wG3CK19sMXNYYLhcIkQEJUu+WKTSqGA1ItKqwsZCg64XYI6NsoXFA+8+za0312hbLeJUmWYc8YEfmObs6zV+/O99mU8/foq973qIb5+9TK3Z5fyNVcZnS0xNDrFwBwRB5YU3X6XfyFJpOYyVuhiKSq3psn5nAdfrEQsq5UKEpGUIRZWZg/1UAw9VUlhdadMN38IOVYzcHn7kh6ZRihVW7jSoNprEikxN6BJ3ssj+Jp7vki5odOsi1y/UmD09zE7Lo9NVufj8dVI5h9amgKrMM7ZfYO/QEKNHFZqrLZqLIWO9Ac6+PscjH3sXYliiIOg0azWstg+GTLvRpjsfMiob/OATj5PL57h24SqkdVJ6ipVqA9fvUR4YQQqy3F58i+2KRnapxuGpUQTNJDMc4pgRo8xy5/oVcorGlTe+QXG0n82bMmudmG5fxImRSbrrLtLgEC9cuMPBR7Lk4tOk7HP0ly1q7nVq3S1mchKyWmHr1gBr8/MYzgGuXr7K7JlZbtfP0e9LRGoRpc+h0xTBCdHiLF1gzrrGeP8RCtIogWvRdeqYgkwUNdC1Ir5ZQG1v047ahIV+8rmHmB4ukxI1nPJ+yjcHsOwaUTpPYVDDdXawrQYpNY2nhvTcKplshtni/fTaVdrVtxkZPMKq/cusbWTIjciUcwcYG50ldKtEnowvuSi6zKlTp2jVLrJeXefEzEMcGHyAq+2LlHJjdNpbDBb3oAR11NYdtnsXOKeVcfQphFjFpIwpdUjrg7juK1y7Mkjjyr9Dnx3n1I9/nLw4gCv51Lfv4AsOdmmFej1PbqjKkJohpfXTrq6xXm6hqg7ZbInI38btdmk6IXlxhsDaIZvJ4AghcRiRzRaRZQHRC6l22+iiShQFuG4IkoDnephaCtcJkSWF0dEJarUWYQipbI4wDCjkckRxSKfTRSbG0HWiOCYOI0zVwOlY9y7giiLjBSGyopBOp0EQCQIfz0uoOs12i1w6g2P3kBQZ3xcJg5B6vZ5cdCWZje1tUuksUQTdroVuaDSbTQxd2/V6CWiaTrvdJApjcsUivh/tSoYsXMdBNwyA3WwBG13TUVUFUZLo9ax7siBRSrIHoiiiWCoxMjrKlavXmJmZJo5jDN1INrSiSCaTpdfr7AakecQCpFIprJ6Fa1u0202GR4aRxCS5uNloomkqoiCiaiqCAM6uxyCbzf65oDKROE7uLr7voWlaIseSFWRRRNd0vF0wiiTLWFaPlJlKAB/v1P+qoiji13/91/t+//d/v29xcVGXJCmenp52fud3fmfpoYcesv+X//5XfuVX+j/3uc+VNzc31V6vJ2YymfD06dPd3/iN31g7evToPef35z//+dw//af/dGh+fl4PgkDo6+vzjxw5Yn3mM59Z7uvrC/+iz4dhyK/+6q/2f/azn+1bWVnRNE2LHn744fZv/uZvru3fv9/7fp/nf6+v41+m+r4bAnlX3x3Hu9hIIcF4RVGMLMoQgyBLZEt5nF6X1nYFghBdVRkYGERLm4SSRBDG6JKAIirEcYQsyYiiQBCGOLaLIgqkDRV1oIzrJaxhXVEQY0ijJNOT+ha9OklglSzTDXzMVAZRlFDSeXRhkPxIRK/TRY4hDkIkTUEMI3qNFkoEJ/bMoKsJTUaIIwRFQVEMwsCh0moSxDHpbBYhjpEtD9kSwISRYpnR4Sdpeh5Wu02YM7lzZ5m5xXUO7TnG7dUl2jtNJiameeCBCSpbi1zrAlaXqZlRrIEsgiTSiEJaFZuTg1MwPkHP8tjXN4VpZJhvbfHq+dexdt5AEk1Eo8ChySnGU2VOPrmXs1dukxssUuofoNreQI9LHH33MfqLKZ4/e42JsTTu5YArKYXRCZ3BbA5JzTJ5/zTSaI7r37lMSwhoLd1hfO9eqq0d+jICupkim89TLBQY6B8gWy4hiiI7GxscHH+Ad73/Q5zdbrK9sklke7TdDgvXL7F2/jwEPrKSEIHCMEKWFNzAJZ3OIigyrUYVTdPwfDf5WSFB0QqCgB/4CGGCK5UkCVERiaJkOyDGQCzgWRaBn/yOKqoKQogIZAyZwT6F6pqYYOZ8H1nUQYyJYRdRKhLHApIoE8UxiqyArCAISVaC57m7ryVpWFwiZFFGiRKTWiQk+QLf+ZPvsHj5DrKuIss6b79ynlZli9uawtf/7DIDw+Okei5Rq4JbHOFXf+t5Hn33Xo7sKXK512Lx/AZZVSGMXQ6MlBkam6DVXGLHjjn/zGXy+SzlQ4N4QLfVZVDIICNjR12MdJ5UWiGlKgR2ES00ufTyVXaCTcb2jzKx7wE6XpPzr/ooskQdF0NSESKBWAiQdYFbNy02qoscPDDDcDGN52soWZ9axsZq+NQbHo98/DgPfOAApekyy8+dY/PiMmp/ntJwjmbXZ355hfc8cZi3RlJ8Ye42+p3zHJiaZHJoL4vNDLVbLQQ7ZGosS6/SwPUVLD1m/FiZmb37cAWBa4vrjI/ncXsu3Vqd/mKWUh6qC138lS4xAXK5wVtPL3L0XYfZ/+g0//oLX0BVUjw4PsD+R6eZ9NMI1RBJTNF0dsh0I9Khjm3Z+BmRWschClRSeZ3qWo3MqIQSSJQGRXJqlkCExdU6PakAUsjs+DD77hhDjQkAAQAASURBVD+N8eI865vzfPSpvfTqNopksr6xSq8hIUhdUtkiz5y7xfatDbqdPEP788xM9lM4MAmCwPU3X2N8dIJCK6K5k0Uq5fB8izXR4/DESTqtJp4ZMF3KMn9pjkZRRhcFivkcd+QdRkazzN5fINq2wVtj28qjGhto0QFk1+bVxTdo1UJccZXhQY9qr8zjH3iEjcoWf/L11xNJSFbEqm0y1Z9GRWN9U4C6w/W18wSqSnZAQwhm0ESVxe1FPCvN0f372bl9gYcO/hj504NcW/4aGiY9WaDDGKI4gB4LaB2PONeju1qn3mkwWBokLSq0arfQVANRM7C8LXIDBaTqOF64QaO5DJJFrGTY7K4B05w68UF2eueIPZGu30DCpVq9ye36HMN9p1F6MjcvXqEwvA9XcFlpLhI1A3RTpB1KXF69QHVzgb6JCUz/AH3pLNv1RTwxw9jQfiLLZuXy02zYMVGqSPaMz3ihjNRu4EgKkRQQxQ66WCcMDKwwQHVtXHmAjKrSN7afhr1JFFtoaZ22vclqr8a7Dn0Uz16hIfTYbrRIZQoYikkchLTbyQU5dHzErE7Qs5BUE03REZEJ5JAQNxmG+DG5Uj/bOxUMQyWwQ7pWFymOCYWIbDZDpbKFoqqoqo7nJZtPz034+YqmEooiiqLQcxwURSGfz9Fs1hFUCS1ODLeSGKLJMkQx7W7SQHhhiJnOomoanusThQExElEEuqYhECGLAr4gEAURhpnexX/uesR8G9M00DUFWRJxPR9RjDE0BQjxvAQKIYkyxMljCYKAIMsgQ8/ucf9DD9Du9JIt8m7YWBTF6LKcBN0ZWpKFoOsEYZQYgnUF3wkZ7O9P4CO6QRhFGKaZBI2FPoIYY9k9giBAQML3fdrtNqZp4jiJ/0HTNDRdwbZtYiEmICCdS6NKSoJJJ/GviZJIt9tGV9/Bjv6X6qd+6qfGPvvZz/YD5PP5oFwuB3Nzc8b8/Lz2X2oIXn755czKyoo2NDTkDQwMxAsLC8YzzzyTf9/73pdaWFi4YppmvLGxIf/4j//4jO/7wtDQkJfJZMLNzU31m9/8ZqFer6/5vi/8b32+r68v/Imf+InxP/zDP+wD2LNnj7OzsyN/+9vfLpw/fz598eLF6yMjI8Ff9DzvNAR/QYmSjCAlq7bQj4EQRZYxdQMv6KLIEopsgigQ+j6pTB5NUpDEGEGR8HYpAsQi7B4CCfM34Qzruoap6cRhALvhYpJuQBzhB0Gy4osjZEVFUWQMScKybQRE+golVC05HMIwQvQdmu02BAEg0ut0yA2lk8NA1RAkEcdxsWwbRZZxHQ/X81BVCce3yWTyyEj4TkS90aJt9TAyJgVNwI9CthfXWN/cxiOmONCHVCyT0VP0qyqHDs2QljX6cjmC0KcbHeP2zhIvPvcSw47EwZk9GEYKNVNkfn0Jd6uK7fukidhc3OFO4wbbvQ7NlkC1LRC1t1gJF9jYWmb4bIp3PXCaA6ODHDrzGHZBZ9NrUW3EbCzcorfS5COPnaBkddjzN3+A59+6TaQ0iWOHXEugTzOJ9u0j3qpwev9p0sM5Km6XN56/iOKFDPWPkCtm0TIaRiaLoutsb67TiUK87W0KtRpPDfRxSwi4tb3NsDHGxIEZLu/Zw+WvPo3VrSQHfxgTRgHpdIaBwUGa7RYgJN8bUdo1nSXNJUCMgCQmeNAgCFFVLZHuRGEi8I8hiuJ7mNAgDIiciCCIiTGQZB1JVogiCQmFKAiI4iQjI45iJFFMwmXiJPgs9H0kIWFvRHHSncQCyLKSvOFFHrquEbgekATixIgQRSzOL4EsEcWJzChrqKQME9vuMd5nMDI8wHath5qTEPMSL7++weqdbZ768BQnDozxpReW2Jhvc+f6Inv3jJPRRYzBfiI55uqdVYZGBxgdH0ZTNRo7O/hRxEBeIXBK+JqGXakTEpIbmeHW3DXWtipsXZjn/lP7CNSQffvHoRdze3MDpwW6KhOLIZIWoSkCvge3bmxh6CLD0yPkzBSFPoVVXCZPlvj0z51AFgzmLl3mq//hNerdNJnIQhzWiAWDC692qV57iyefnOX++0/y9WcucLu9iq5s0pcd5KHZ+1i7vc3qXJ2OJqKnQprVDoVhibi+g0TMmCky3D9Oy4/YqGTQhDzCdMDEdBcz1Hn7xTVanoSfknjzwm1OPrSHB05NcG5+laffvEXbTC40w1N9HDgwRMXXuH77Mp5use/UGIsLG5iSiOj32LtnmDeeryCaBQYHZO4sLVMUYwqmTKUT0Ni06LgdNrQlRvbm+dRPPMCzr9zm039lL5/7V4v89fsPUpG2Wer16N9TItwKMNo6CzWHWKiy/WadoN7l6CGZPWMl1raG6XQ2KWX3srjRoSDonLjvCNPHBxBlENwQp+Fxa3uFvG0xVSwz19VotVcpD5gsVxbQdgaZHTmGvl2BXsD05GPMGCob0S0sT8d3HMZVmYJqMVA8StfeIo5ahAwyuecEL33zaTLuFp3WFmIKcrljzAzuZ+3yORQlJvYDPNsCMWZzq0N5NMfUeJ6dJY3a9jVypoYXGBhCnr7sFGZ+CFXRSSkxptRl7sYcq5uLFIslgthBMX3ijoTjNWh788jiMO1ahXLhCKt2CyM1SKVxGTEq0JefQtcKEEbkxGM4/gYyGjE+zVYFXYsYmxhlu7dC3+BR8mmdlNCm1qmQNTNEXpVQNOjmDUy9i203GZROIgZVliqrDAyM0qm+RF1QMVM6k+PvodNeoS8/QLPVYLz/GK69gxLHFPPDbLRuozllDFNFDLKUSiKt5haCPEAxPYgbVLDa1xGzU+zbM0TPWUY0UvSbaUJBw/ciQMQHmr0uKSEmk04TBQGhINLoWliuhyzLtFodjFQGSZKxPR/dFMhns+xUKonMUtUQBYkQBcuLMTNlfN+jZwdJs6XoaEaYTOwFEVFOcJ2GppMyTVzHSabkikxMktOSSWVIGTrVSgVJSjCfseuiKgqqLOO7HvlsBsd3iYMAw9DxHItGo46qm1h2Fx92M2FCJEXAdXwsO0hS6OMIz3YIfJe0mWBF/dAnCJMUeCGG0E9Mw2EcJcOcMGR7YxPN0FBkGS/08YP4nqfLcz3iwAdRJBIEwjBGNwzMVAopncZxHIIwTHJkfB/fDyBOyHOCJOJ6Hq7rUi71J0Moz9uVDEn4fpKvICRKUfL5PI6TKHXCKEzO9ShEliU0VccJI1RN///xmvXfX83Nzal/8Ad/0A/w5JNPNr/2ta8t6Loeb2xsyLZt/xdXKr/2a7+2fvjw4QVN02KAr3zlK5mPf/zjs9vb28ozzzyT/tjHPtaZn59Xfd8XUqlUdOvWravpdDqOooiXX37ZHBoaCi5duqT/b33+5s2b6h/90R/1Afz2b//20s/93M/VWq2WuG/fvsPb29vKr//6r/f/1m/91sZf9Dz/+30l/3LV990Q2E4v6axVFU0xEmzkbrCH4AikUwZuFCBIMtlMFs/1kUUZkZCYAMtxCIIIXVNRVZVuq02v56DoKrq2m37r2QSehxhHZDMZbD8gDCMEEkOrrCiIokAkCPS6PRRVIwgT+Umna9HtJpMBP3CxexaFfB5RkRkYHCSIkgNElERcx8F2HIJdHWEYxoiSRFcUWd5ukbpdoy+TJTNcxs8qpPN5dEmi6bpECMjFAsOZLLqqoSsKURDSn4HIruKFFt3QpldZQ1dgu+eRSqX5yIc+ynCxn2Z9g9CXsDsenWYbK4ho91w22jv0jfUzM5ln/s++Qy5Sue++B1i1bdZvr1IYzLO6vczVb3wHNVKZmBjipz7+AE+eegSv0E+zfZpeJ6DXaZMKRfTxYdKLK6wvbeC5Mde2bNRbcyjIfPi+faw2t5n/xttoBYn9p/qYe2sdKQqIfJd2xUKLNRqVJk63S7vTYc2xub65SOf2LVrVJpJhEvpVzFyG4yPDuEdmWbkeJJ4A1yWfy6GpKn6YrNQlOUmH1FQVUZQQRBFJTiRAoigRBOE9MoRt29/DmEZJmEy0+72KiXcRdCKCKNNsddGqEkEYoCkGnpeYnEMfQjFElCJkWUWG3RyEkMB3iUR2v/cBsiwCIq7vAzG6qiRvCqoCsYiqJDg9JNA1lW6vR0SMqehoioDr+siqwNbWNnlDZ2KgzGZnk0wUIKVl7qx0+My/v8DDj43wYx/fzxefNpl7Y459M0PMHBqn27QgUilk8qQkjZ3lDQYGyrz30cfotJu88Pw5vMY2qfwAq+0NHjtyH4U81N0ahqZjKi5r8xvcWa2jSFn6SjLHH9jL9kqXna0Kds0nRqbddpElBWIJu2tz8+ptxof6GBjI8uCjeU68ey8rC2tsV6o8+x8W2a5CMQNiN2A4k0Mdz7P11gq3lz3aX7nJBz8cc3BikmtzN+jQpdNbJdoMUUyBvePDpNKzvPbmBYb6K7gbAa/ubDNz315Gh0a4OHeBrZVlolZAYSCDYEgJ2rVvkPd/fC8b2x1mj46yur3Fthhw6KH9vHxxnrEpCdEI2OlWuX3xOqn8wwyNlrjvxAR2a4irS3NEvoCAgxtVOX30QVY/ZPLNZy/xiYOH+I1zS/izKqvrLej4RCmBzEQOBIuXvnWLfaeGOXZ8lM1WiVPvnea1166SHiqyp6yy+WyNkmuj9RSqooccixSHdNa9JtHWEidmppi6v8DB7Ah31jaR9+1hJwR8i3iuxdmV11m3Q+po9A+UOdb1SHV8UoUsXtglyrqEcYeMNobqV8mnLeq1NdT0Ca5WvoCi72FuwyfVH9DsbhAtSZTlVWbKI1y/9hof/tDfIVZUBPU8S9sOTtQjkzUp5xwkNUQQHIZHRrH9CC9u0GgvcHB0H6PTh/Fq89huTHmyyK0bbyH0HcbVdJQ+IyGFWSHb9eu0WnXWquvsP/QIIh6mWWZz5xb9xSm2tq9SSB1Ek6YJwmVqrfMIskjbX0OUSgSei+PcgWAflnORcm6YrFZka+cipjFFN2yhaxGVynV0NcXUzAG6mx1atUUUXWKteQVVKaJEBQZKRQp6iXrnbTI5jZojMNH/BL63im+2yGuDqLGA032LrCQiSLOIkYNrLXNn/QWGB84g+i66sA/P9xkY62N1aYmsAk7LIZCqxJKMZCjYzQX8lsfwxCNs7KwzkO6Hto3jiRDbSKqIpCjo6RR+EGBoKq1GC1EzUJSErqZoBpqemGejKMIPY7a2d8imNXLZLAgCa+tb9A+PkjYydLttFFnBNA0838e2HaJuj2wmSwgJ/18UEUWQRQG716PT6aBqOoEXoOo6qqLh+wGBEpHJ5lC9gCCKMO/KfARhV6YUIUoGrmvvUuQMYgFATOSbUbwbNhlhqDKaqCPJIooqISER+w5OEJMyVPwoJIxigthHEhU0JTHvIgrEYQxhiGEmiM/Qc4kDH0mScB0H00hkQz3PYaS/H8fz2ak3MNIZbNsGEj+arCgIovg9jb/nATGaquL4HqZpIssytm2jKEpy3+h2yWZzQILBDoMI23ZRVZ1wl2QniAK+4yQ5CJJEsDuwdJV3sKP/y3r11VdTd/2nv/RLv7Sl63oMMDw8/P/2Mj0/P6/+zM/8zMTc3JxpWZb45/2ra2trCsDJkyft0dFRd21tTRsYGDg+MTHh7N+/3/7kJz/ZOHPmjPUXff6LX/zivdf18z//85M///M/P/nnX8O5c+dS38/z/Nf9av23U99/MJku4/sO7W5rFxsa3sNIyqKEFwakMmkkScYPIsIoxnIsiD1Cz0OQJMxUisDzaTabEEboehJoohvGrr4wmQLbu87/SBAxTRNd14HEe+C4HlEUYqRSySXNhyiMCIhRDR2/12V1bZ09M9MUi0UEQfheXoLnQRii6TqxKCKIIpquE+xiLhU9BVKGS/YNFlqbzKghw+k0I/195Ep5doIQq91FQUAUACkGTcT2HXJygc3FLVTTRFVNhvr2kjcNxmyJm2+9TSankE9nabWcZFJCyHCmj9iw0UYFGtIQL731Ft/6s3MUzBIffd9HMVouHzg2wtyxOj0/5NpcjtRAFUFOcWm5yu9++VWGP/dtjszOcOSppxgeHMCYmOT66jJrCzcw7YDJ8UPsGZ3BS+f4p//mt9jeaDI0kcNTi6xJ/Zw8NsPx94ywtPktLEsnr6RJGyKtRgcnjIglDTsSaFZ3+M9f+BPiQGZ4ZIzhyUnubKyRb5iMlEu47g79AwMIxOiaujtpj3FsG8uxidmd8AsC8S7aTRRFRFmCKLpHJpIkaZdgkUj9ZElKPARiTLxLA4qjCASRWIixLA/HjkmlDNpNizgKkEWBKIRIEAi8gDi+ixiVkEQRZAU/8u9RhaJdRK5u6Oi6jiYrdG0LQZBIotFEMtkMHj71RoOxiTFC28btJIi9tmPhRCFWs8XOldvo0jq228aVXVKGRt9AGjmn8trFDZRA5u//5FH+cN8Ib3/3Co+fmOLKeo1Ateh2qzi9Fqom4/UstlcrpIome08cZnlrleriMvtmD3Hygfu4dOkqXk/BabnEsYDVsbE7PoImYzsOHb+GJzpMTA/RzBggRLS7bSQ5oTjdJW0EfsTS2jann5hFETeYOixx8w8abG+0Gd5bJmh1sdoKI3066oRALCh4PZd1V+CNpVVOP3gf87UcjS2XVsNmXV9GdELKGyqf+WdnyDgrvFHt0pY6FDNZKmubtDrbrC1WODp6jJvOTRwhYvWNCkbJZOBRlYyfJx90WJy/CkWd7Mgsj4/FvHRkAV++Q/9UBtYcSKkYeoHLF1+neaXLx9/zCR7cf4D/+HtfJoiaKHHAhefOcnzkCOdSCm+++QrZUj9rW1Um0iWOnBnHT6vI+ZDlucvkymVefP0yJx7ey9RRgbdvahzZP826U+dgqoyxJ8eVb19AKcvklDRbmsjgoIFRVLFzLo4jsnWxS2m6wYmjDxHIf8prF2uE3TyWXefqSpvpk0fAd1HKKaq3t5mkH2XQZ622hqJJiH1F1t0222/fZHJohoqr8bnP/iHHP64gLlbIpbMIahVdyeCHEteWVlndXkdU91KpXsTU8jzx+EHuzN2h0cwyUZzC7lYRvBJD+Qw9y2dpex3kDjnTZ3vTYc/EOEKcZ62hcrsWEaWGULMmWc9Arvr4QZP+0RyXLr/NdPkIZTNFUVplrePhpAUMNcfa9iWyGR1F1Gi232Ygc4xbq+cpj8wQxBaKLpA2NHS5jBcskdZKiFGZpdVbtJ0NJgoTDIydIPJb5PRRHCdifvFphnKPgThAL1wgkjJky+MYYUSt9RZSMEZKVGg7DleWX2E0PUs+N44RZwmUAZT+MYxojp31LUb8PSiijxc0yGaGUE0JK6hRb14hWzjMcuMt8qVT5IwM5bJArVlDkkziVsDtqsbE4XEuXLzKvslZ/G6bXtRGk3RkVBCh221jGBpirKAIMUODZTpdG9uxkWQZz7VJpXRM3UhMuOSIAw8CD0kU6DkOsqphOy6mLFPM54mjmJ7VQxElxN33QM/3GRwawWwbOI6FLCRSSdfzSWfzKIqGHiU4zbvhZXEc02z1EBUJXdNQVI0wjIjCEGeXwCMIAoauY1k9ND1Bjzqui921yeZLEMXkzRSeY6PqGnEc0W62MM0UhqriWj16nTaKru6ipRNZaBI4JuEHfiI7UuLdbJnEU0YcY3W7/D/Z++8oSe/7vBP9vPl9K8euznGmJ2cAgwwSAAmSYCZFUqQo2bQVbNlry7trr3dXOtb63r2y7LWklb0WJa0pyZQo5pwDACIMMMDkPJ1zqlz15nT/qJ4h5T9seq+Oj3WF3zl9pme6uqq6p7veb3ie5zM0OITneXS7XVJGguef/yHjExPkS31ECCiZNEYigeu6CICq9b4G13XRNQ1NlXGsLu12m0w2i+d5pFNZXNfdZQ3IPXmw0Is7VRSFdCq9G6Et4nl+T6Yk0Ps+ew66nqCQL94Nnnj9/D8/169fV3/mZ35mz52p/MGDB60wDIWbN28aAGEYCgCJRCK+cOHCjY9//OPFs2fPJmdmZvQvfelLxS9+8YtF13XnP/axjzX+Ux//8cfcv3+/rapq9OP/NjIy4v2kj/Nf63vz39L5iRuCRr1Ou92m2+0iAOlUmkKhQDabBVEmCHpTeq/VRRDEnsRIFBEFkWQmcze9oN3tYBjG3ehJTdWIidB1jVQqSeD11quKJCPrKlEU3UWNx4IIu9PkjuOgahp+EGLoOkYyhet7JDIpBocGejj0TodCPo9p9wpSSZaIiPHDoEdUDkOajQZRDMlkgjgKGMlq7H/DI5AwuLm0xJUbN6mbDoPVDslcGlmKiFURNaHgdds0Z9fRgUvV59D8gLHhvRQHplhdr9IQPc5fWyAhtDhyzx5ajsnU/j3MXLuC36jy4J6DNGSFm3MrzJ65wOrtBvc9+RCTiSKTR6Y4t3CblZvP8YYj++kA46cOM1/bwejavP/EPiI1zb8/e425Wp1n/vTPeHCwQlgc5tDYNHK+H2FY5rH9+zAdn9//40/ynre8g/xQhdisMZyZ4n/5n+/h9tYt/tW//B2OFiZpmFXqLRdUBREdI51FUVVkJUGunESPRdbNDrfXZllbucXYgWmKhs7Q2AHEFy9TKqcxDIOt7S08r2fa6nS7eL5/N4nC382cFuL4brLEj/wp8d0Xa1XtTdaCcBddL/d+VMNQICYCQUIUImRRwbFicrkcjZ1VZEUiJkDVE8RCtIu773kFIO7BZ9gtil0XRelJi1KpFIlEAs/zaLVa+HFEEEUoERzdt5f1zQ0CBf7u3/3bvPWJJ/i5j/48Gxs7xDKoCR1Vlhgq59k7OUZpvI+0oXFrYZbhfUO01kwic5vu4EGWfIWvf+o8f//DA1w4+QBf/toOj773NJIucH1uia3lOn4jQDAytMOYnXqHgncRcWCE0yOP8WBhhLOXL3Dt2hy208WXRPxYx3FjVE3CDbbQkmn8GKo1i51Ok4FKgX2HRmmbN1lZ7ZBUArRkBtsz2Wl22DMxhJg02fRivv6/XaM40M+v/dY7+NrXz3O71UXeKdDVsiQth8iXeePHTjNxYoBbrzzP8598lvxgDpsCuUf28cBje6lVu3zvzz7Hh//x5xmYbPI/PPQ2tpaTfHLpeVptm3KYIp9Kc2npNno2yY5l0fd4hX3DCZp4FPIjyBIsz9zicOUkrZWbvNwQ+MgHH+eLX24zc2WG1dsWubH9OEkfT/KZqQf8s1//LPc+sod/8Ksf4dwPL7HeWqO5ZVJZvcbkZJ7BMMe57SuMTg+SDCO27HU2VnzWt5sYqsO+4xI7HZ/LF1cZK+nkJgf5wmee4fHDk5w5u82+n0vi9/dx+es7ZPrTZLcipveMsLE8S7wT4U+IVCYn+KNvfp//7ZGDvOXUzzLX/j9oeTEzLy5R7J9grFik7DWo73TZX5nkxpWzjE5OE1Rd9I6EIRpszjnU3CYL8QL//B3/I3+wsc3QkMTF+go7m10G4jxje6dYWa2y2F2g1D9OWlPY2V4kcLuEgkFlzxTTpWFqKyGXz62Q7zNAzKJpEivLOxRK/eiSipCo8exrn2dq5B5GDxym4zfoS+TBE9H8Ku2dRXwnRPcGGR8scKv7Nfpy97KORUItEzgiyXwRS1zDcyCZ3IMotjFSLsMDB7H8kFh1CSKP0JWQFBUtO4Gclql2GmTyA/g1B7ezTlnLsrpziVV/ib6h4wzkDuC0bpBPHmar7RAJEldfPIe50aJ/Xx7kFaytBUYn9jPdfw9rOxuk8wkEQyFRlEg0brO1c5Ni6R769Ao/XPkjhkfuIZ8/ihbGOH4dKZ1mcGCab535Aif2jOH5GqbTwXIdUrrERvNFpqaPkhKHGCjncG2BnCbTCSQEHGRNRlEV0sksURiR0FVkSUAEkokEO9UqruejiAJEAYFr4UURoqKQMAzUVBIAx68zMDDYk7N22iQNne3aNqIoI6o9v10qlcJ0PFrtNpqqYmgqW5tbJBJJ9GSaMIxBkAijkMXFRTLZLKqmIQoieiqNIPUGIJbj9K6xsorjuYRRjCjE6JqOrqo0m/Webl9RSGczKKKE49o0a1UMrZcyaDpOb3vrBciyRCqVwrYd2tU6eiqNqPSIyewOfzRdxzRNTNPspcwJIl7g9WSdwNrG+u7wB1KpFOMTYwiSSK1R68ErJRk/CNB1vfc1WBbpdBZRFGm1moSBQkLXKeQLIPb4A5LU81hAL6o0jsH33bubaADH6SXXybKKrMgIvrcrZfaIdmFoUfy6qfg/Pg899JB5B+L2W7/1W5VHH310Qdf1eHNzUzJNU5yamvoLWa1nz55N+L4vAHzpS1+6/eSTT5q///u/n//FX/zFyR+/Xb1eFy9evKj/03/6T7fvNGKPPPLI3hdeeCHz3HPPpd797ne3/lMf/yf/5J9s3XleH/7wh6u/+qu/ug09A/R3vvOdVD6fD3+Sx3m9IfjPnHy5n1ypcreQj6IILwzwYPeFSMTZJUzlshmgJ8nwXBfTtAmCqBcnpuskEgksy6LT7UAiRFIUgjAiiEJUWSFTKOK7LpIqIcHuNKO3BpIUDc2ICeMAIY5JZbJIgtibHIQ9I6ovxKQSSQgjttbXyeVyvcaCGHm30NQ0jXQ6TRSFvTWkLNPttEipMrrn41s+p8YmmRodo95p06hVibFIyzpbS4tIvkc2kcCttej6HoHi0TI9gu1NgnQaL6GRHSjy5GSREanIzs42eVnGtyKmpg6yubHMmZtLJLJF0oUC7373m/mHpb+JFcncuHaLULBJCBHbcoaZtQ7ltEJtZo1iepjBIwco1FYZu+cE6VzMvokJvvnKAi+eOc/i9W/g/tHvk+2b5pff+xTlk3u5GXb50N/8Re4ZnCSyN4hHJ3jm+W/zpx//33GjFGJQZnFui/4hg8biKm9+8q2UpqZ54eo1vvHd77J2cwat2WGsr0SykGF6/wEmyxNklQRyIcOzX/wiZm0D36lRLJeYu30D03aIgghF6/1/B77P9PQ+bt+6TaFQoFgosrS4iCQqhEGEY9u9iDtBoNPuXTQAgtBBFMXdlbUIsUgsCgj0IuQUUaPbdDAMHUXTkGSRwO8iSgoBPU0pCIiyRBQEeJ5HHIfEd+FqGrlchnw+T7VapdNu018pU+gr4YYu9x46THtjnTc+dIQ4IbP6ygv8f778GfZMGkyevhdPSOBULSb1PJHrY7XXWXn5OjtotDZlZp6rYcYrDJT6WGvWECOHy1mB+X8r8rPvyfOxXxzl059/leoNiYxkUDT6cQshaUUko4mIUwVsyySlKjz9kbfwzUuf5cbONiv1Ooqs0wldVFXGa7XQMyGKmCUKc3ihi56B7VUfq7OBIHoMDo8yMjHC7RurBI5LUs8jyg5Ruc6NRQvzeYmXn/Up+qu88u2b/OzP38Ppvik+/X8vIjg2znpMpiBRHNe5ee0CL35qjszkAH2HDvCWI0M8/vABupdn0UfneM+/P8o/+hdnCWoZ/s2XL2PrLqN7VfL1AE2JeOSdp/mTz3wRpeswoRv0DUo0uxF+ViPKRWxtulSmU6yu3OTBU/ux8FBuVXns+Dv53MtfpW3tkGhGKL7DattHydVRDst8f+kMs/9mgZ/+G4+z2Y35/g9v0dmscXOtxekPv43o6g0SiTbrqx0665AxNB5+5F5GSyk2rs5RW9aIczaf/fN1fu5/LjD58L18/YvXsLcW4M9yHPzQBMojWbZv2bzv6THqDYfZOY2t2g5e+gof+aX3Up2b47d/6//if/+FN3P/3neyE66xvuCSVm1oZWhbbdZn5zk5dhQlTLN6o4pSTtBaX0XLGoxP5tlvjLHpxfwvf/67fPJXP8HHP/XfU5Nt3vTYGxA7SZr1m0wMjZN1k1hiwJ5xA9NUuXq1Rb6UxchozG9sc2X2NpZs0lJCBvaPUBgZZuroQbarFnFnk831DsOFJ/AECV1yUT2VzdVbmGabwb48AyNZbl1t8Idf/gYPv+MI+w6VUaPTOJvX2Duxn62NBar1RfywQUIbIhJqjPSfpFZdJZA6EKVISAMomkK1O0uoRCQ8F38rRJZFNqvb7HSuMDj+NPPzc0iZYQ4U7yGjrnP28mW+cubbPPLYm1m7tsaBsf2EqQZ73nacnFBhu3oOdWSSheotjuafZDIRc918lYzqw4pG6A4SCQPEHZ/bO59EFou0bYtE2sUyWxjaKMnsSZy6yZ6Bx9jsvESu/wSiOYqhGTSry5iSxGRuAnPLpphJURmpILtV4vUY24tAcBHjGBUNQYTINVnb2cRIpZCVDENDQ7S7Jrbjokpyj3cSBkSehZQwaDZadGwHVVPprTV9MrkMHcvESKZ7r3kIeG6IafskUymazQauE1PMZRkY6KfZMfGCCEGU6FoWqqpQrvT3dPaKiiwrKIh0rQ6KrGAYyV7SW9iL1rRdB9+0iNO9+GhNNZDiGFkRcXyPSIjJF/O4ZhfTtnB9D0lRURIpZEkh8F26Vu91ulIZoNk1sUyHVDKFltDxvB6PIJlMomgqjuv24j53h0LpbO5u9KjdNbFsh6GxEWr1OrYXMTIySqfTpVarYVkWqVQKXddxXZcgCCgUCsRhgGV1CeMYWVIYHBykXmsiyzL9/f3U6w1EUdz1QkR0Oh1SqTSplH43wEIQJAzNII5CErsJT34Y90zZr5+/cPbt2+d99KMf3f6TP/mTvm9961v5gYGBdLlc9peWlvQ//MM/nJ+ammr++O2PHTvm3FEBvOc979k7MDDg7ezsKP/x/a6vrytvetOb9mcymbBSqXi+7wuLi4s6wNGjR+3/3McPHjzofehDH6p+6lOfKv3ar/3ayMc//vFKIpEINzY21G63K/3O7/zO4unTp/+z9/Nf4Vv43+T5iX/S/bCX/EIQERMSxTGSIqMbBoHtEEch5Uql1yyEIXHcA5ipcgJXlHbx4NouBEQCUeihzoMAz3eRVQ1JlLDdXVx4Ok0QuERRD7uO0JOP3FlvCmKMGMX4nk/geggxxEEPuCKI0Gm3SegGSr5IQu9xEQRRxIui3ai0mDAMiKKYTquJLEsEgsha10GXAhREsp0WgtWhLAoMl7IIkohoe/RVhpEECVuISAz00/Rt+v0EmdIoUeQhxyYj6TR+16R18xL1w/vIDg2iqirzty+ytV0lkchz8sQB0oUM7lqbarXJolIlIUucODrClYU5Hrj3ARKJFJ9//hu8urLOB979NgyzyfrsPFdlWL58FslM8HuvfJfNtU0yxREmUvtoZ44Rxh1+5wtf5Y//7PP83BNvIfHoES60buO3qlz5d5us6BY+eSrpCe45NcrC0i12uj6Pv+0kb3r4NCPjh3jrI0/y9P2P8sKFs3z121+jvlVnYaZKX9VhJj+D6Lk8eN9DhHv7cMMm7NSJwoDRsVFESaHeaGFZFgcPHEBVVVRFJZfLU8jn6XQ6xHFEdbuKKIl4gU8U9ozqmqr2WBW7JnBRAhB7jackosi75rvA7nkREGm323cplbKi4roeiBHBrkk9juVdOHGMoqj4no+u63iOQxQkSOoGpqax5/gJVDHg9sIshw8f5PJrL/HIqeOM9edwJQ/9vkkK6yncWpv/7hf+Af/413+DK1ducYWYwA3IZwuM9w3SnF9E1EKacYAQa5AZ4H1PDjI4rjA6OkHDSfLMSzfJzXYYSw3SsLbZ8jvYThVZEGgmJWTZRw59ZE/j5P3H+OTv/x6m5/KxJ++n+Esf4trtRaxFmzMvL9FYbhLLHqvLm7S6DQqqTqkvhb0SIKLgORqvvXSDvpEsh47sw7PqLFxaJu6XyexRWF9tMPNDhxwSdSXEWUzxr373FR59T5a9p0oUshFhOgejHt26x84li4d/5i3841//aT7zqT/n+vkr3Pjui1x8ocbhQ/DRv2/w5HDM51+IyJdmGBJ1Zs9mSOcM/LzDH/7rL5CWEgwcH0Dpb0GUorO9xpA8xtY3LrJ6bpUbmz4+Kf7Jr50ibK3hOKO0/To5cjScJQzZwbRl8mkBh36SrVXSyRK1tsP/8Y8/w8f+xjHe/7ZjzFy6TXh4BH1CID8yQeJgkwP9U6xd38IVN9mavcDbpt5L6nSR71zc5mQ+YmGtDY7Gm5+MMdeLXHu2RjpdofF8SFufZ/xd03z8k2d5+6ED/O0PneITP3iFm6tzNJYuYksqY4+9nV//3e/w9PtPcmDyAOEjHi/84DVOVPq4eKlFMygz2zKx7U0eOfoo59sbdOw8WkVme3mVIFzEKO7j1MRJ/uAT/yuNZIO3HHicPckHebn6VbY7m7Qjh6GRvURYVBvLDA29iYm9AgPJAvZmDW2xy9HsHooPZFlb3OGRh+/HDDR0LU9mIKAZd/EqCVBW0KSj2LVbXDz/Cu9863vYbl0EucPyco16Y5AH7z1FaN4mlWgw7myz6Uak1AyrXgtdnUBUc3SdNRxvi/m1JsPlU1imR3lA5ObMOYYGJ1HlNK4jUg980pkUXX+WUjnNQOVJ2msNkl7IjltlPnqWmxevkdBG+Md/67M4wm0emK5T27QZSOxnq3OeKGMiCyLj+ftYu1qnbrRw1A5vPPj3aGw+i62m8ShQtLdIlTMk4qNEtS9jOYsE+gCJ1AH8wME3r5HQ8vRnjrJtVdmsPc9A8qfREgZJIU8pOkjHdqgV1pnUJ/GX5qhJWyhSnlDNEtMhjsA1PXzHI5Ey8D2XSrafat1ip9EkkUxh2x6KHGB22xRzBTy7y+zWDuWBUVS1Z3xNGBpx6GG7PopuEIXguT4CIulsHj/wqTeaSAKkEgmq1SqFQoFUMkPXcYljUHSdMAp6/iw/IIhCrK6Drhmk09me1Dfqebp0VUFWVZBkSplsTy9v2ciKjKbKtLsdEGIiEdbWNxgeqNDptvGJEAFZ1EkmDARLIJWSiOIARBlVVXu8BVkm8D1UTUE3CoRR1PPxiQKiJJFSM5jdLrbbkwi7toORMPCDXuKSbiRIZjSq1SpGIkmxWCQKo7uAMdXQicyIRr2OKouosoyiSDRaLURRRJYlup0OgiCgKHKPSSP2pMuyJJHO5FBVlXa7jeN42LZLMmlgddpIkoCm6whhiCBIf/mV1/8fnE984hMrBw4ccO7Ejq6urorT09P21NSU+x/f9sSJE85v//ZvL/7Gb/zGYLVaVfL5fPCbv/mbK+95z3umf/x2lUoleN/73lc7f/58cm1tTYuiiImJCeeDH/xg7Vd+5VeqtVpN+k99HOA//If/sLR//377k5/8ZGlpaUlXVVUaHBz0Hn300fZTTz3V+Uke57/Od/C/vfMTg8lWFmdiVe2Za6I7OfO75GFjFzZ1xzB1V5t9t/Purdzu0Gvv/HtM1DM0CSKaqhL4Pspu8yAKAr4Q7ko+ejnHQRDcfWyRCGJ6MhTfJ4p6tzEMg2A3i/nO870TbQagqAaLN2eRZZg+PI3V6uABoqYhBDHEMaHnI8a9la+RTBLEEV2rS2yb+ATovoAnygSCiBkFuJ7FUF8ZSYzxNQhaLqEnstxu89zzz7N3Y4nK9Cjk8iSyZVL9o3TFiLWlBeZuLrC1vMb73vok+6f3YLoOop6g2e6wuVPj2tIaS+vL7BsZ4OjeSc5fvYiiJdg/sY+FlXleO38JQdTo6x+k2WqhqAoJQ+NvveNp7P4RfvU3/xn3ZzIcfuhB5m6ucGP2KrJaoL9/iGarhW2ZlMsFioUskxPDDPdXEAWLmdlVvvTZb7G5fJPBsf3IxTLV7g5xKKHGEYPFND/17neyb/9hNEmj6Zisbm3Rtk1mb8xw8+YcF65fR5QFyqqGoMnMLK6hG2kGMikCXDpRTCowUPWQi9uLxLZNxVeQdZ2aa7G4uILneaiKjCorBIHfIw0L9CBmgoAQS4jEqIpyt8HzAh9BEtFEGc/1emZkoZeU4bg92I4YWMiaTggkDY2J0SEGh4bwY4F6bFG7uUBJSyDoMpMjZY70pTk+XaFydB9//1c/gW2VqBQiPKmOUhyjttnGru2wsrlOGAnYjouiwNTIAIMjQ3gaHJweZgCZ7718gZdevcnfe9u7uff+UywV0th2m8997vNsrK7RXygjReDaFogCvm2TSPTTP6wxc26WuCvy0Bvz3PemE5y/Wuf23Dp9k2n6J/rZ3m5h2S7r2wv47YD1yx0SKYW+VIHb1zZA0vCUJnvH95EbdBHyFrV2wPLLXeJ6TJDwEPQcUtMhfTxD8SDYmxFHKiGjk/tYanRRRIO9h0/w/vtP8mv/r3/BStUk8hROP5mmMDnMtRdrNDY2aRdh4dlN0i2d1EQGUWyhZrIUkkXSscbq1hb3vGEvi5vXGByv8MMX5+jvZDk4NsDCWp0L1zd48wee4Of/+w+zeOEqW77DQF+a5146x6XPnKc8rHP6I8e4un2Vl/5oi6IVYQyX6WgdtMYgj759guP7Y2a2N8mWcxQjjSCrIfdlaTdq/ODbda5fWSJct6joHm9+8jg3b/rcXj+H7Ro8/r5DJL0mG/Ymq9fzzN3YoS+v8vCeQVZSbYYPJ3nhk/NMyEPc/+g+rreq7Lm3zMnhg9TtFs+d+wZRUOHQ0RSGeoAzV55DVEq0m23kdoNCZwd5bA8EJlMH9nD25gUUScfNWXRviJx68hGijS2ee+0Vhh4Y4kOHjtBZUrndWKdhL5PJjbJ3/2FylRJJJeTsK2ehvo65VWF9/Ra5fJ7EAYWtjRgr8rnnwXsITI+J8jCb69us1rZJ9A8yUBikT1PZWpnDbjfQZIfF7VmmDxzF8TJMlA6zcusMop6mMriMozgo3lF8c4NQSGG52yjqYcZHj9BqfJd6M0ZLJJEDla2tOQp9fRj6IKVMgajr0w10JvdOsbjwQ8ydNeIYNjqbDI7sI5CzKK5CaWiEyHYoaNuksg9gmbO06gIBHovNbyBqAzxw8Oe5fOHf4rs6crZArT3HcHGCwN+iL38SRRgFZYXZmSsk9DEqo9O0O9dIyKMkjSKOPU8spZDFUZRgG9+MUTMF1MjHCiVa1i3iRIlkYphEKkljaYGp3ARbloWUSiAHCpZr9kyvlo0iKCiijO06BHGEmpRoWSFe4FFIZ1AB17ZxHQFPCoiiEFmScWwbSVRIJbLEkYCugOObiFKEoSmkNB2rbbO5XSVdLuzyXiQkUcZ3PBRFpFbdIV8sIagatusiCBKdThdN70lptjY2KOQKPUNtFKFpGrKqoGpa73rsOfi+f1dzf8eY6/s+PXl3jCoLiCIIQkyr1SKOY/KFPvwwxvP83v0pEoHnQRQgyjJeCKHfi0IOwxBNM1A1Hdv1kCR6RGXPI4pjZEVBkiRsx0EW5LuU4Du1RW9LDJIggCITSTEpRSOjGLiWRce1iEQRBHDdHihNFEW63e5ual2M77oIMXc3zn4coScTyIqMHPp0LRs/iBAlBU3TCXcpxe/7qZ96HUz2+vkre/7SwWR3iH53aH+e592VctwhDN5pBKBX9IfhHeOxsJvoEt6lwYqiiChICHHPZOp5Xo80HIZogoakqoS+9xc+/w4BVxRFIt/rEZN3ichR1Fs/3iHjxnF8l6Qc72o2FUVh1mrxR9/9EuWNLr/0kZ9BPzRGwzZJeRJhHCOJAqqmoMkKkihiORaR2NMgSkKKluz1IsviEDGKKVshUSaD5AgIukQ+0mjkIlzLR96s8+6nn+bK9QvExSx7RodQFJ1a22f+2iy3rs4TKzA4Psronkk8SSQuFLi8uMbZl88RWB6ZXI49U/uZ6CtTKfbz/vcdwEfi1TPnuLW8g5wsk80VCMKIiZExTh09wHClSKGQ46XZGzy19xj3HDvEl7//LJs1E1HKgaDQdSy0lIya0Hj8iXvQxRg5DFhd3WB+fZXzF69DMkembxDTsYg2V8mlJCaHi8SxxT2nTlLJpXju+19ioH+Mz37qq3Qbq8jDw2xVmzhml1xGxo5las0Aw29QmuzD70YEqkKt1kCVZZxCCrETU3GStGUFRwbdD3vFjNlBNZ1eTKK7q+30A2RV2Y0I9REIEEQRP/AIdlkIYRhg6AniEBAFRFlGFHpkbEmRSSZSCIqBrOmk0xkcq8Nmow6qSiSKCLHA9P59KCL4YkSq0s+3X3yJV75/lsroBcrpIuu6SzW2ELoKeS/ggf4kh54+zZfOr3P16ksMpgQmKn10Wl26bpeT+4+zevM6Z87PcW2jDpUcv/vVL3HszLf4hb/9EURB41/+yi/yx9/6BltrDTRPZn19h5rnUuwfIJVMsjg/S2Y4gRUKvHy9xYXz3+TIG8Z58PFJzvxggRe/8AOMvgRD0ykOjkxTS20iuWmSoku96uCqAuW8hBprzN+eZ7iSQY89BDtFMi3RsRskQgXT9xE0gYQdsi/fx4bfJswMYsc6w3kwpAzHygn+wT//p1y9HoKXAGxyr8D42m1aazB44CDGYICqTdF+dQWPDgk5jyqFeNhsxjbT0xmSpkRjqYtvQiWdIQpcXl3aZE+hyNBghze+/c2Yq028TIpsx2B7vc6B8QKvai6vXdzh+DunGOkbpZIzKeZ8olKZx9/5FG6nxY1XryNoMtcv73D5u+c5UMpT71i8+6dPIqW7HDtY4OQbH2D7yjrRepbvPHMOSVcQjQyh7yK32sRKkmFjiMpbZFo7NkGnxTNrG3xw7z4WXnN58pcO8NVPzLD0XZ/+dJHxfS631i8yO9tB1IdxghaWUySZSHDs8EkIqwyYj3D99ots1iwmmimuJV1UXBKazPKWxXR+jExlE3V7h9mlBQamEqQUgWWnhd2VWKvdwjQE9g2fItdfoj53hoWvLBAf0egWDUYPTDMYjbJ6+xVCM01sRqjE0LR49ZUXWSj0I0kJxienOTX6EF7cpeu16CsdoZtZ4OL8MwxPjeJ4Lv25JNevfp1u1CIb7kfbVlEqK9jNmBCZrGFQcxT81k3aYhNPhrQUI4fDTI1PkE8kQSqiGiWCaBUvBEVWqG+dQ1dzREN9uK7FYKofz/eQ6LDZNam4BerVNdaiefp2IuxwjYyWIvAtNHkInRzt6jJSpoTtV8mkXARVIqkXkdV9SJKL6W1QXWuzZ/Jhun4Nr72NqKloqk6j9hpGag/9xRHceptt2WJ46h4sy2Jt8xzp9F7KuWO7WfhlhK5LK0ozE0b09ylkEGm3VUTfRBACtKRO4ErYbu9aqakKsaswoDk0XR/fdnAkmUwyhxhvYqhFut02Ugy63HvNCoMGui7jhDtYbZO0nkeQSyxu1hBlGdnQadTrPV2/IuJ7bi9eNIpJZrK9gZCR2I3mlsjlM5idLoZhMDQ0hGM7BFGI4ziYtoWRMEjGvQQhYfearaoqhtFLlupN1hXi2EdTVSyrgyyJpDMp4hZksrldcFhPgx14PoauEYkBjuMR+z6CpJLNZHBdh263iyyr2I7T85LR2/irqtqrD6Ie3yiXzuA4P/IAKLtJRXdCJ4QYot3BXctyaXu9zXQk9aJY79QfQRCiKCKGkUDTNBzHJooCdEXFc3eHS8QEgU8ylcQQNZqtDqIko8gScRyQSBq47ut1+uvnr8f5LyAV9xz9d/T2wF2Jxp2PIwi7DUPvlzGOIyRR+gsF/R10uCiKRGHYc/3vbikUVSUKQ4IohMAHhF7TIPagUdAr2AVRRNH0uxMEEHa3ALvbDkm426z08o/j3ReIgLje5oETp0idkqnnNXKuS0ZQEO5EjykimqwgIhBGEQhxj3AoxESGhqjIdFsdZEFCCGR20glePHeBB3IwvmcK0+7SqDe5vbTE5TMv88ZDR3jzO55CdX0UQeC15UX+/JvfRZU0EgmFcjbLoeFhgqZNZrDM7Pom56/ewkiUMJIysRhgqElUQSWrZ1he2eTq/CKzt5dI5vrQ0yKO4yFGHpHnI7o2GQkatQbLC7NUyiW+duMStxsNCtkK2wsrDA6oxJ5NXyrLI/c9hCpreILIwtY6V67M0/VdlFSRtllj03LANCmkE/T191HSPEZH99OtV/nzz32W/OA+Xrh5gS+cv8BAcYCxlofTaNKtNomKOYgEyqU8uUyOw3v24/oBz195DTWrkhJ7U0Q79siPDJIiQASMhM7q2ippNQGChiL1LgiWZYEoEu6ShW3HwvNsBEkiDCJEWQFBpFAq9RgGYYxm6IhSL12oF1Mn4Ng2kyMj+GGM74eMVoY4enCavVN76Vg2126vE4Zd4vYW9x/ci43MuY06QqgyQp1sIaRttnuQIVtmqbqCYevsmzY4dCCDlt+HtdRhsv8Qy8kmp04d4Qff/CqvvHiRgpIipcqM9pWYt0JeWTN55Tf/kMN9RY6/dhBZV9g71E8rsOhIAlP5CklZ4PvfeZVs/yixFKJ2HcxAYD0ImP/8ed5U9bj/vmFG9/YxP1fj5oVb1HeqKCmFUMwg6UmGJ1wEoYTjmJitPP0HQ9RCwMILJkU5yfBEkdZIkp2lOvGWiStKlIwyVk1BlXT23bMXzfHYub7J7VvrXHpmB2O0n0eeSDMzW8VpSyzebLExG5OdzLE2f4ETfQe458MPcPX+Eb709fO0lz38MMLwYwK3yw2/Tbvp0hfmMLcjIkMgSEN2MM/CYpNDj+ynPKLRXu2SxuDKzZdJHxhEjpLk9gyxOBewfsVm+uksxaEBpnJHeeJNj7I0/0Mu3LpNSkzRXvbYf1RgeaVMN1+iOAILuTLZdAXZ7VLudjlycJjivfsQk2WWV5YQ2w00ucX8lTVG758mDCWGUl0Gj0Usfd9Ab6vc2rrNA/e+j42ZHU4/1iDpT3L1pSo7VYHkngr2ckgGnY7fZGWriWosoPp13DDgh1f+hPMvtTk2lMU1TEwfkkWVA9YI65tzNNY3KA8UWQ+vEk75uBsu2aSCWIuJfJ2aJ7F3eoqcYXL9668y/2KNpc0t/v4/3I/prDAz8yKebZCuaOzUMiw410kpgBKRzKUI1YjjR6cRnQAl2obYY3tzlmx5klxxL+P+FqJnoUVDhJYIaRUx6JBVISwKaHqKyFtC0wxkIiZLx2h0l6mHmxSyx9nybjGeE6mbiyiahGmuQ2QixgGmeZu0PspKfQVRN4iEAtv1q2STGuX0NI4ZkM8NEdgBtdZl+kcfxGvV0I0KXcena9WxfIlUqcBWc4ZyrkLJP0rLvkB92yM74KJqbTqWhx9HZAtFdK2frfoVEkkdI96DIsb0D/Sja8lekk+8w77BQ6TEGls7XfoTBWK/RZjwSesGcqTScUzSwyksB2Q/R9NqEok2KA6BqxNHAkIcEMsBtigiKxqi2yWMdAQtwLdNVCWk3b0OgYsvzCIQI6gicehhqAnymTK6liZwK6y1G5hRgm7DR1OSBLEPGZV0rOJ1HDzHI0Igk8nT6ZqIgki+VKbT6eB5bo9wHMek02nMbre3IRd7QxFZ7UlueoM9F8Mw6HZ7jYNt27veqp7WXlEUXNtEFCSMpN7bMMSQSKbwg4ggjIniAE3TEQVhl4UAiqYT+L1hTdxDyaDpOolkomdYliVkTUEUxB5VGAF9N0Y09AOCoDeZ713DQ6Ko96ZpCoQ9urwsSoiqjB9FCJKCKIAkSyiycvd67/s+iqLgOD2/QSqZxHNcRBEqlX5WN9YRiOi0GgSSQjabIYzA9VxERBRFIPprm0r/+vnrdn7ihiDeLarvSIzudPZ3JDyRsJvuJNADTu2Cnu7AoX788+/IiWJiREGA3S1DT/e32zRIIoTC3dsT03vbpUhF9Ar93tOJ75JvJUlCEHqP5XneXZlRLwLNZ7ivj71DozhCgBt4qE6EqMjYQdCjJAoQAWHYezHTNR0kkTAMkSWbazO3qF1d4MS9p7HLBWqtNn6gcG1ljsHSEK/Mz3FjbZ3tRpvFepeBagf/3Fn65RSVvkFUPcPInr3kNR3R7mDZEXNr6yTFmMLYAItry3StFuP9RTq1BiRlurHLy5fP0elWGdg3Qc0zEdI6miwSKzKSLCBHCkHksLaxzkh/iY6eolQokC+XMVYc9u/dh9WySB6ZIpvR6WxtMjU+hirKpDMlbu7UeX5unZkrl7DNNrlsnlK+gCf0kxUFjk6OMTk1Sn++gBWErK1tstbxWbx5nVq9xb7RMbIphWqjQWAJPHz6jYye2kehlCGbTnLj/Gu8+s3vEWazJJJp9MBDEgRUJaQy0I+tChgoVNe3WW3WSSTT9Gditnc20BMK/UPjxAiYlo3rBwiigG2ZyGJMEPTgQJ1uF0VWyGTSWJaJbbZJpzMomo6RMNje3sLudjiwf5rh8VGWV9fZ3NgklcuCJPPS2bMEMXheiCeFmK5P9+IsPhJH7jlNbJpIQogbCXQaLTK5JHoC+sZL7KRjfu/MJTJxgbHRvaSGcoxNJHnf8fsxfZk//j/XIIpoOC4SMl7HZyBXZLK/wvCwQSqUiT0TPZmhtnibbDnNgycmqTpN6o0N9j+6j7mrK/gbEFoisgh9/RmshM43n73FSjPkA28f5i0H93LxeJYf3N6k3m0jt5s0Ngz80GTPyX6m9z3Fl5/9LgcfnGD22TmCHYflYJNqc5u+sUEmjw/hNLqsLTmkxzu4So5CSSYKTC6eWWLnZoA6CItzK5RUlSkv4PhIiWwpx9xig0tXF/GXOhy+d5BXLl/AWlhl6OAQB0/mCYc0xqeH2dxeZebKRRJ6hWNPP8I3/+ALZOo+qWyZWDLYs2eAzWKByeP30Wm1SBVVbl9Z4Pvf+jZvrZzEKIxx/1uO4/vb2E4dn4P88i+8m8VXFnnxy59hfW2G3PQE7U2T60tVnv7lCm/6mYiMcQxkm1q9RmxaSN0UL31vgXwyzzvfW+bwHo0o8rn/4fvwXI+d1U3EsM3m7XUyrspDT/XRd0Ck+lWbBWuLUf8GpUo/kjtJoNV47F06cxerPPrmPWj7h2msQ6w0ubn8KumcyeTgBH5bYfIRhZvtOWzLRqrspXH+DFV3kJGJPh5J6YRVidXtRTLDabaqLYbjUfqCftbbVaxug1xflrge88yrF1m5uUygyFTu6+cHX9zmze86jC4MslC/zLHcJE6+y30Hj2PVdgjbJkG3DaLA9laV8fwQW9XrBF6TrKLS7SwjKg6l1CCWZffMoOY2uWwa3ZuiZVskYxvdTLAZLpGLJ6j6XYhFcmMHqJQLeKtNhjMHsL012u2IpJ6lUauRy1nIcoxpOyw0v08iN4XgJKgkRJJKFtlIE0lJhkfGcNwGW7V5RHkYPJtseYCdnUVQQ8w4QJUUZEMGwWXh2jrHDvbRjTLsGXwLkW9hRzaW3wOCDfUN0bWbpJR+tq1rjKbH8a2QThBhCFVCY4tYGKS2dolurogdyqj5LE5tETfYpLXToa88zsixUwhiDqnWpGNtEiRTaKpBy0rgBCJRKJFQkgSmRavRIhFB2+rSCdr4eKiiie+0CYmINZVMMo3vxSAkMYwkmpLGDkV2th10TULWS0RRDIpMLIpYHRs11MhkdULJo93pkskXCMIAx3UwEklcbxeouBuuEYYhLccmk0oREuF6QS/WWdfvTtw1Tbt7Lf/xzX8YhncHf4oqEwQ+RiqJ67qEYUAyncZ1fKSoBw2TJInA7/nAwjBAEERUTUeUe9p9UZKRlRjTsnrXeGJct+cZI+55C4Q4RhFFVF3H8Zy7zysMQ8IgIAoDHMtCUTVkoRdZLQrgOBGiJKJI8u6gsccvUmQFQRSIe7NKNEUlDD3YTTXsdnsbD0UWIQZZkXFcF1XrcRaiKMC2unjOX9tY+tfPX7PzXyQZ0nX9ro7vxzV9d6b+d96/8/c7xb0kS9wBgkRRRBhHCLEAAkQxu1nAQk+HuPsCogji3fv6cdnQ3cnG7mZAlJTeei8KEfjRhqJX1v/oud9ZifpxhNVpUBA0srKCpYFDiCAqeMRIUUwsiki7a0w3CPBtH2KBdiDxqZfOk9mymBy1GBgd58z6dRYunic5lGSmVqXe7iLl82SzRR4enyYKAm5u7HB27iwffOc72T8+Srs1xMzNWYQIkokMrtnFk2V8BE4cPkr/wDBqLNEtpuj6HpZlkq+USWgymaTBqSNHCdyIrbVVdqp1hgYqyAIM95fJqDKRZuAEUNYThFLMvsoosebBgEsLh3ymQO74CWTfRkrJ+FjogsOefJLk3jGapsmB8XESMmzHo5zYt5dUHNMJQ2ZWFzl/9hUCVyCdLRBpEnUhoOtYTI1Pkg1FHn37W5CLMv2tFmUjxWvzF/nKD16iUsxRTifYbjZYWNlgbGIPU/ccxVtd5skH76cNfPpTn6WkaCSzOWa6Jn3jg+i6QihHJNJZTj32IG4Q0mq26TYaBKZFFAk4bu/nwex2EIChoSFCz6JQLLO2uYllmRTzeR55x9t44vE30LUtllbXqTda6KqM1WkznstTa7ZZ3qnScToUymVUO2TP0AjoCvNzt2n5HglR5XSlgpFW2KptsrG8g1xXSaUH0VSJ41NjWKHPi+duceXFOdIJieJwigiJbuAjRC5LqyuU0ynyao7qQpPLNRvfD5ANHZeIvqEKhYUu+ycmyOZzmO4Mh5+YYOl2l9p1E0XOEIQ2ehhx//2H2XfPCJ/6yqskbZtjgwP87MOHmZUjvvvdc1idmM4qjH5YZfSBHMbLdTa+GZNSDO59fD+OZbN4c4X1a+t0dgqUptPseTCNmDFpbntEUpfR0EeWVfYcEHlpbo6kEqFEOa5c38azG5x+wykeOjjJG95+hB+8eBu3ZuEHOlcaAjPfWCJRyBApSXYWlzm4ZwpJhM2lWYY9+KV3vIlnvvU9YiPBibExXr45R2K4xN7RLHEUk1eyOLUdfN3hldde48hhj+GxA7znp+5nuDzGRPo4zcZLbDlbfPXl1+humYz4OkefOkjfY8OoVkwm+RoXnvseK5dEYqdGkgg/LpPdUyAzkOXG9gqe7CFUHAKti6g1GTzaR9CNELUKkptk5cvrHHoiy8Z7DS59ocSF79/kY3/vFHYtYH6zTj4T0lQ32Ww6vHrmRTLGAPtPqWzZMhurHgNGzMryGu98/C1cS84zMThFXs3S1ZNocgWzucTJXJ5rawFSOofdkYgcn+KQitSuolVgfbmG5KXZ8VvUdixaGZ+nPzDB/PwKz98WSTynsHesiDZ4kE59iZvXb1Eophgc6KPtNYl1DUnTadh1Qr9JJiFg2RaB46GTIG5vkC/2M1zqZ235BmHsY7UbBB5omSIpYxV7zYdoEDV/lOHyPgrZAdRgieXbF7m5eZUDR5/E2MhQ3ZghPZagkBshkUkws3GZHb+LJXQoiCmGy/00atfISRmMKIVlLxCWcqxcvkRV2uDg3rcSNDeI5TT5zBBR3KJut0kVckSWjxM16Ko+P7z1fe4/+ma2t28gk8C0VhGVNIXMXnKpSVbWvk82O4C+M05HXSefKCC5HlV3i/70fsKgyo2Zc4wcfw/D/RFb7dsEks946TCeENIM1unUFhhLTCNmY8S0TNowiPHIBhJhEON2moSuQ9NpEcoNpHw/KUNFNC1EoUgk9OOGIYLnoygRCamIkArwfQvXdTF9E0VJYCQMzMBHVCUUIURVwfEcslkdPAHXskmnM1i2g2l2ULUQSRJBEHobd1Eg8H0kWSaRMLDMCMexUOSeZFYQehtSTdN6seDAQKXCbKuJqqqkUqm70ts7TUEcCySSCRrNFnEM6UwG07SJYgHljtzH94nCYNfr1xvSKEovdjwKI2RJQVVUwt0En67ZxXZstFQaWexR4C3HxtlVD8i712wBepJfQbgLVFM0ndgP8B0XFAlZklF1FUUU8XalRiIStm3tpir1Ps/3/F06PUTElEsl2osdQt8nYSRhtxaxbRtd10gnk3TaTRK68f9LjfX6ef38lTk/cUMgCAK6rt8194Zhz/B7p1C/O/X/seL9jnlYVESCICTYnUjcWeeJokQMu3RHDd+jBzbzPIj+4lbijswI2N0mKL34SCCKYqKw13DIkoTnucS7VMM7t7/TEChBr5kwFYkgjBE0DcGOUEQJIaEhx3eaDmH38UFVdVRVRRNl3vnI4yxevsFGd5PG125zIJ3mcr9DLj/EFiZHD02RSxdZbzbZ3txBilWQcgil4V5B/cMX8GKRcqEP34tQBYHKngp7pibYWq+xsbqOquuIqoBTryJFIgYRJw4eopLLUO12sTeqECts77TQVJWModJptyAOKJQHiMKIuWs30a0qicQwN6+tIgUiqhCQMwz68wmGShV0Q2V5bYHayhqLc4uce+Fl9hw6wOiRY9Rv3+DA/kmeeuqtOPUd/GabzfUtvvbdF3j2uTO86alHGRoqUF3c5KnDB9C1CH30GK98+U/JUaNr61xdamKtOJiezwfe+y4SusbGzCKF0b2MP2wQNWq8/b6j/F+LN7j0+18iraXoy2S4tj5HanWLgWwaQxORiHjXu95Ltliia9nUai0uLq4h2Q4BAZbjkkhmqNcaKLpKpVxkcnycbFJnu1rn5bOvkkgkOH7sMI5p8cJzz7F3bJy8oiEmUkiSSGw5tNpdzJZNMW0w2V+mVm0S6RLLG3Vsr4OveqQ0lZyWQs8YzG2v45sRldIQuXI/buCiWF2+/eJZYgRKapp27HOzWkMS04wNZAnSChutFoGUoOt43Nxq03Q8JsYrbK2skZRktHQCXxLotpsM5tJIFZtEdJRuZ519b26T/LsFVq9JXP6+w9INh8ODMt/++os0V9poboarM7fZM7/J+99ygP/pI+/gE994mZc3rlNJVbAbF1iaaeIv9GjTckJi374ib3rfPi69tsX6rS6iBXvLKWpqxPRojtaOi1p1kJwkC/ZVylNJ6jNNbryyzFOP3sc/+vmfpSPEfOKPP4P4tde4554+NkZFou4A7nbA7ZUa2nbEaCpku7WKaCgIUczUof18+4eXWHxuCSQPNbdCKnbI5vvoy5SIzDpyvsIrL11gZmaWg/ftYXmhzvXbNSanKpSLh8hbbb53+9PE0RrveP/7SE8K/OkfXmRsMEdZttgyA77w2RsMlU3Gnsrx3AuL5K0ChX0JTh47gVoWCawGMy9vM7inyL0nTlFtQTabRmpWaeUMfKHI9OBB9Effx4Uffpl73zhCX7/FZ37rG3zi977Ove+eZnq4gO2FjE7qJO11RiZTLK7O0o32M5jbz+VLs8wONfGzOs3tBRKbGoIUY/VtM336SWzTpGkGxJKIVMzTHw0ze/4GI4M5kqM5ll+9xvToCGvOGHVzk8II3Hdyitn1WY72d5HdiFLqQexoDfwa127PkEgEaKkcchTT19dHx3GY1tMYGKSkJGarTXtrnZE9I1xYOMv02BD5dIFat8bK9iqCLeDLJulCns7aFntLezC5TEtSODhyBD2ZoX7tW3QVg5p3i7rbZnT4ON1r56hX00gZj1szN7Fsk6Mn7qdSuZftja+yf+RBlG6KS7e/wdjkFJqUw24JiIlhbNNDTWQZL1aw7BVsU2K+9uccGDtFba1FX+YQIS08y2TbWuTS4hqHDz5AIl0mWruOIKXIp/dQ6y4jawZd8waqoGEHDoV8kVSmH1mqIQt1lFyOlDHJ5vZNBgbfwNH+mPbqNeSqiFoaRdJzyG6VAfVRMqJKY2eGnTigf6CA313DNwUc08OMNFAhlY+YGu1nJJhA0vpxQwE1cpGkOl0rJAwzdOsNnLpPR23ieSJOIBCLKUzbRfB80ukUOhDKEoEcEXouWc1AJGbD2SaXKROGMZWBQWJiOl0Tw0ji+cGPvAuAaTt0TRNVlsnmszQbTXKFPAC+K5A0dJqtFhurK3hWL+Y5CHr3cUduK4q94lgUFNptE0PvbSHiWOhN4DUdRVF68aYCvfd3NwyqKuH7AVHkIssKsQSm40AUosoSYeAROB6hHuDYDrKskEqliKIIy7KIhV5jQyz0AKRx7y0IAtyggybKEITEokgURxBFqLKCoMqIstSLOfcFVFXp+QR8v9dk7A42BUFga2uHQqGI1e1CHBNEvXoikUjgez7NRotMKoWuaX+pRdfr5/Xz3+r5L9oQ3JkaSJJ010wc7JIOgbuNwJ3C3d916DuOQ7VaxXVd+vr6UFUVz/NQVBUvCKhVq+Sz2R4VVlEQ4p78JxYkoohe4R+z+37cMwtpKnEQE0fBbupCLyEoCiNkpQe6kmX5buMi78aeQkwpYeBLArbrIjdMMtksThQgOAFoWg9gFvcaEUkRicOQZrPN2voW25stNjo+r65eI6puUU7leeqRNyEpGmkfltarXG3OILoxWj5LcWIINRRpxgHfu3YdxRYwZJ0Ahz3DFfZNjKJlEsyuLHH98k2wY2zX5vQT97Nw6xqGpLPv2EGkco6rywtcW5gjnevD6XZRE0UySZUoiBkbGmCgVKLdadNpm7y8cpP7B/KItRbFZJ6GF7Bm19C0BEJGYcfusDGzzgtnzlJtddEyWRIHTnJjbYWlly8SLtyivX+cOJ1hbWGWM888R/rACZYbTcb2jFHfNlmSq8Sxz7/+v/+Y+0+fZmynypMf/ChRMsv8mfOs2CFxY5MgkWDr6jyt9WWszVX+1vs/wsNve5qmHvLq8z9ACxJ8qnaZ2sYWD564h/GJCWy7QyhCp9vibU88Sc1s8ur1y+T7+rhx6zaGnkSKZQTH5uixg9y8Nc/AcIVjR49x/MghajvbvPDMcywsLlPMFyj1lZElCUWWuO+ekxRLBTarDX5w5iUcz8NIGJQqg3SbbXSSOHZE12niSzBY6mcoKtD1QyLdBsvC2XboSwwhFUELPVrtDpEo4ykyomGgizLVbhPLcyhm+gkFkY5ToxiFiGKC8lSRanUBr1lHIaLRbJLUDLpbdeKuQ9iW8JIif/q1LxC0HEqVAxx9bA+blxyk88sceyKi/N4syyvTnP/BGlu3WmQyRbY8EyEQ2BR0PvHaOvtXN/lHb3gDV/YO09SWEdaBrSxaNuQ9jx0jPzLKmdtzfOML6ySTIWMP6+TLEetNkZmZNQ4ZaQ6+6SjduMtCe5babBe5plJ6r4JeUWh0dvj4//rr6JGHO2Rwrungv1Tl2KkMOTlLoTJMfsJi74MnmP3SFje/NIe49ipH3rSHe04/xeL+HYTBItKyRSIdcPbWEqcPxOw91E86fwgpY9BQzjO0f4rrjVVabosPnn47iZpMeTLJN7/9NdqDAemNmK9951NMv3uEN37gOOGmxtf+6AxPfHQfxf6A8+c77HtK4+ieITZWRNSUy5XnX2buVpcP/NRRoqU1Th59GPG2zNKl57i+NsuVjsDbP3AQLW2wHVbp60gcvieLIR3kxGAHfr3O7/7zOVb/4AwPPi6gjoRI8SDVyMaRXeJ0jpUVk2IyS6Uvz9w5m4ceHqeTX2CuWSebBD0zziOKwNBUjlfOr5GSfAani5w7e4m/8bF3cu7l51i+XaXtp4gMl9dm1khO6gwYSXYacyTTaf7gC3U+9rF7+f3/90v83PveyJkbL7JatZkaHaE8mGUqGVDdnMHTc6SyA9w4f5vJsWGMiowYlLh56QrDlSKXZncojR/g6g9fYHLkJIKhI0kNEmGL/KFBlle/w1hmkHbYx0D6AFcufJ5OKBN7NjiTqPVN6per3Fq7xIF3v59A0pg+MIVZq7G5Os/ghMNIaoLUpsTyzi0mR96I5EW8dvU1xicPUCSivTGDJSXoV/ci6RrqUB/ZlSqr8yaxYuBLdSYHylyfv0IgZnjvG59mo/45bszK7B96mPPXP0EhP4qm6oTSPJ41COIWYjCCmE9idqqEXhfLjigVJKKUz9jIXlx1mxeePYc2cYRcLkIKPQrJaWR1jFvnvs4SEt1klqy2gDyfJp0dpuk26Rs4RY4QQ/TwOzUk20PwZEKxTa6YA0MmlpPktCaiUKevWMSLBaRAJBJFzG4Tz42wbQnHDul21tiwbIw4jbnlYhh5NiJQVAWRIp4doxsqXbODIMUYCZ0wiDH0nv5eU5UeDV7oJe5tbWxgdU0y2RSOZREGvaQ/x7JIp1JMTkxgWdZuCk/UY8bs8lqCICCTyRAHPQltEIdoqoDreciq1hvo7abxSQL4noOs6wS7mf7JlEy308Z1XRShVx9out4rPGSZUrHYg4yFJqEg9PyEUYSkyAiIWKaFLHt3Tcd3/IuW79yVN0lRRESAR4zoBrihg6hKPaRDFCHJu02E66Ck0kiihOd69GjEHuru5sR1HERZwbYdwqAHx4zCGBEJz33dRPD6+etxfuLY0fW1xZgYFEkmCH0UUUSWxF2tYq8QF3YTiBB/tCFA+JHxOIwjot1OPAxDBHpsAXF3dQns+gViiCGM4h9Jk3anAFIvlB5RCO8+tziOCKNemtCdhsQ0TaAXNanciTOzbTzPRZF6mwnP84DeKlKSZUIEAkFACgPkOEZAwA0iFD3JdrPNrbVlTBckNUUQxmSTGpVCktDtML+yQxBHbHodBrQ0943tozw1wtLOJqtXbuEnDRKJFI7r44c2x4cG2TcygG13ePX6HHXHwO14lAcSOFILwfbQg5g9eycRRY2zNy+wOHcNww1413t/mv/pN/4Fx8cmuPe+exkcHkTVdertDouraxjJJLMbq4yOjDFza5ZcKgWRz76pMabGRyjIZb519RLff+EMWV8nV6rQEBzCVodODDO3bzBdzPB3/sZPo+WT/M1f/GVsM6KSKzDaXyYxMMyl5VXEmsVoNsvwvQd508lT5As2W/NbPPODl2iGAkapyNbmJpP9w2zOb3ClPktF8TlezLJvaJhax+PVZpNNL6C6WaWSLZFO6JT78yyvLLOxtk6fJvLLv/gxHjxwnO98/zsUBZnESBEn9pgPA579zms8Oj7FNi2OTYxz8vRDNGbr/KuvfgG3baLLGu1ukxCbE8cOUV9ZY0//BFeXF2jYJpliGUVUObL/KBEiZy5cINbAdXwUJBRVpNWsYjaa5Iw0gqoiCTKiF1Iza7R9B3PHRBdVNprbWKHLoUOHEDwHVRTIFLIkkwkunXuNoFkjNThEbBjIikCjuk1khQwXhrhw4xpeEJArZPF8H9/1MNvdni5WVUkKHQQxS/+xIm940wPMXDpLMu1w7zsLvHK9zfnvdll7rkpaG2LfqTKKUIUydFJdhOsh75rsZy3bZSvfxxd/dwYhdDnYP8qBIYU3vesQyUODfPn5KrfmzpKWIlKKzP2HHuJPP/0Mgihw+PESt8+vM/daCzWwESOZzH1Z5FGJYMZhT7aEmjK4dOs27/hH72N/ocxXPvc1ZLtDqVTg2OExiiM5XpxxWLy5xKULs/zc++7BTCXIJm9w/dkUXavI+atnmc6U+O/+x48iDaRpuQ1+91d+j1/513+b3//6d/i5B99H+9oSdjZFPuOTdSKqUYtnzzxHeyPm4X1HeHlzkxNH0px87Ak+9dnvs//hSf7sf/4akdPmo//mSb732z9AqCWpxW2SeoknDu8jJ4b89M98hG9/5yv8zjPPcLJvP6+9ep373lPk6V94D/Pf2eF7t88x+sYx9kUF+vuK5Msu2dxDfPn8GdRLbYzSHDMb2zx8+OfY8Z+jr2QwN5fn6MEh1ra2+PRXv0fW0PnwT09w9kvbhMs19v/sEb792fO8472nWJlZo5jX2DO2l9nzmyjoDE01EQb7+NPfvczk+4YIGzF9Spt2x+OVuW2O7hvnxqsdPvzu07w69yzejk1LTxF5EkNZKI2PoxqbXH7WY+ihNg8XP8Qzr12mnPEg6DJczvLCjTlcJcOp/UPMz9qEQcTB6XFW58+htwtElkTKazLbcLG6Fv2HBhnuunQEkUbgUEqk6EglBvYWUPfmSPq32Tv+AVRb5sxLv0N6cJD9xSlmW3Oo2hjnL32b4cJDHD9ygka9hiKPkcvJ7OxcAT1NR7JYu7xNd2aGn/s7v8RScxknsHGjkJWl8xRSeUYHDuOYGQJhlbX1V9gz8Bb2TD2E7VW5cO3ztLpVhgeO4fjbqIpEvzhJqLp02aLZcUhpg5STWazOHKN9x6k7IUYyiyyFNDd3yBfSdFuLNAMXo5wnP9BHUT7BQDaFXVvDJYGRifAtEyfQyWU1GssWjZ0tJDUilVMwLAjDTeRUBWM4ixrmQbEI1SSEaQQtxLa3ESUDQx8mFkKiwEOIXQI/xLZcOpZFp+vRbMZ02zJ+AJKoEYUKpmlSKqfZqW6hawaipJDJZNBVhWariiTtRn2LMV4YoOoGge8jIpDUEoRBTLPVRVQ0XN8mm84gRgK25eB6Lnoige3bqLKMYRgkVAVJCOl0uoRRiGYYBLHakw7JAu1mowf4tCwkWUFPJImI0SSZyA/QNZ04jmmbXRRZRgGiXQOyZVv07IQ9/0JfNk+9XsUyTTRDA1HGCyOSqQzEAd1Op5ckKMvIioTj9JKAEgkNVVFwbQ/fDUkmU7hRgGmb6LpOKpGk2+3g+71Go1AoUK83e6oDBGLoQeJ2txGyLOM4Hu/5qQ+8Hjv6+vkre37S2NH/ooYgimLSyR511nN7kaCteoNEIoFq6Giahuu5hGHP5APcJcoG8Y+YBD3asdwz/MS7TINdRsEdX0IUhHcn/6Ig9lIS4hBJFBFicF37rpRIUeTedGE3dejOFiOZ7GHhbdu+e9+u4/TSj3Y3HoLQ8zrcySUWBJHQc5GV3gtQJMugGly+cZu1nQa6LNKXy9PfV6avv0LTtDjz2mtATOy7DBTznNqzDwWRjcDhpZkbDKsZREPFrLZQRYnJQ5NUMinqtS0uXptDVlP0FYsInovvO4RSTH9/hUqphGtavHbhIl3B5ewrL/D0w4/yzW98Dzlf4PjkBKfvP40gC9iez+2FJbq2h6InaNU3UBWNSqmf0PPZMz7O1PgIbrfDju3x4sos56/NUBYzICs0IoesohF26jx6+DAjss4XPvtpFlt1Nj2ftZ0WgqCjqwr3Hp7CDLtk9TQ7axuYssUDY2M8/cRTVGWFP/zsV7CrDgdGxnEjm01zh4Vz54nyOYYGJrl49jX8bpuf++gHSR4c5ew3X0QXNBZn5qjVa+QKaYaGBlBVHUUVMRSJ5aVlnn3uBYyswuOn7kNotjkwMsTII8eRyZKvjFHqKxOZbT7+6T+g1WpxeW6bKIJ7jh7mwOgwb33TE/zw1Zf5wSsvM26MEsoCeibJ1MQ4ywvzKIZCcaCPT336sxDAQ/c9iKyIIEcIqkS93abZrnLz5nmKw4NU8nt48z2PcH1rlnMzsyxfn2G8oDNS6uf+hx5mZWuH29dn8JyQUBDZDE00t82gnsCyfVxNYX1tnmTosm0LNBpNspkshqojCRLteguraxEJCtlSjJ4ZYW11jaMjOu946l5WnAZRZh21L6Zb01hfTbB5o4pkCszPtTk4Pokw0aTp19i63UVOp/mp9xZ5cPppfu3//C7r8/O4dsCAGvLUG6eonNzHszPncPyYcX2AzXV44lSeKCyytr2JU2yz0RC4+fIyjU2DtB5x+sEKtzYXUSVobQdMTk3QTtbICCrF0TEajQ1uX19C2o45eLDMwQfupSbKzFRdsFd58ME3cOmZF0kV2rz1oQ/wat1n68I8H37iKIomoSoCv/xPfpN/+NEP8Yb7JvjDz/0Jefk0ZtTFrt3msaP38rULz6CaCYanBvj8984TRB57SyL/4GfeTXHiEP/++8+SOajwqV++yVs+ZJOdLvD5fzFDuVCmuD/Lr/zy0/grMZ/8d58krSl0c1nqSxts1dq8/0NHGB8f4Zu//ypO1qXbSbMdbvLgGwY5evwQcrZB3/AQVqDx6hcWWM0v8MSex7h0o4OZusBHnnwr516axQuXubK+xY3liBMHBUpBidUzO/Q/NYC57TE1cZyLs5c5cOwYB1JlvvHVZ7HjCJEFMlqem9ervPvnD2LfghvtLa40muwbPIlOyKnhEV66chZds5ld73Dk6L3oiRwpfoil9HHj3BLiWD8D1g7F7hRLaYHhdBKh1cBLxyRSaXStgKYqLN9qIg9WqbU97BWVfCmHcSDEn63hmF3EoYCx4r3oZgdTECkP9jN/e4G8HDGaG2a9M4vqpkiX8gwXTzHfXsH1HQwfBvuGaIQbOHWRbFJEkVP4voackCkUi+zsbLBSu8XUwAR9w/u5sHyB7s7XmEiexKx22a42GTl0GkNR2d5ZxA12mJw8QNgp0VeYYGb520wMP0Szs4kiGziORTo9iGXbyELARvMyqjbK8so8+6cPUskW0aIyt1tfJRsMMzn4CFpiE0nwUYQGDQQSxf2MFA5ArUWz00LMKyiZKgmzDLaGLSiIiRBZ9knoaUR5kNiaI5Z9QsGltWJihxG+2qCSGkUQQEwW0L1N3KYPqTxaskjoWwSGhoKAKOQIY4sQB0FSkMUEEBPSxXNDPFej245ZW6kiSRqNehvHiel0XECkkC/0pvKSSiaXI4yh1qiTSiaQJZGkoWDbJrZtkkwnabRbJJMGGxtb9Pf3E/khgiQQhB6ua6OqCSzTIp1M4Vge6WSaIBQRBIVAcND1niG4p73XsS0H2wt2E4x60LVMJoNpmnevzXd4MpIkk80XCDwfIQbPsUkYOu1Wi9B3SSaTbG5uEiNQHhhEECWiwEOSJLLZLO12625Sku/7BL7Xg5epBlEMXdNE01QUtZc8lEomcd1eDaDrOr7vI4ry3aHhHRl0EIRIooQkS4iCyBvf9JbXG4LXz1/Z85feEGxvLMd3Yrx6KzyRZqNJEIQ9va3Yc/3fAYmIkoTj9nKShR4i9u70XpFlZFEiJu4ZjHe3AuKPRZOGfkC0Gy0kCQLxLsOAOCLw/bu/uD1oye5KcxdidieZAH7kQ7jzvrQblXqnMbkjexIEAVmU0WSdmBhJlYlUBTuGudV15pdXkQWDY3tGGS9nkYWQrhdR9wVuLm/gbW0gSSFHJsbI5lKEqkyIzKVbM+xsbpHJZRnL5hmr9BElZVzPpeXZnLu1jdc2KeseYmiS1tIcOXwCKZmkabWJ3YBGt8ul+VsYugJdC0VSQNZ47L6TbG6t4QYuAQKWDzML67Q7DoN9BoqsoMkGte0aY4OD5JNJDE3GkHVqYsz567c4MnaApeVVbq0vYggCYujyma98iY16lXq9xeTIXo7vP04Yi9R9B9Orc7KSxndNtus2O1stpvaM8u5Tp1gLa0hqls2ax63FNfLlInOz1yhmE6QHx+g2HSQ5QdNukXTbvOf0Ceaq83zic88wsfcAuXyRTC6DoknUazVmbs+xMrPAoUOHyR6cIKMZzC7P486tEMQBFT3Bffef4G3vfYo9EyO88rXv8nuf/DTjI4cQU3lkJaLjuYhRQNRoMlqpkBsZ4uraMpZj4oU+nudRKRRIKCph4DO7MM/6ToPT99zPc999hqSh8fAj9zM4OowThkyNTjG7ukZrY42jA3nM0OPyjRUCH2QpJPJsdpw2+/ftpbGzw067yb0PPMCLz/4Qu2mSyheJRJGjxw6jyTJf+LPPUkzlWdpaZWu7iiDLBEKMqGkU+/vpGxpgeWUT2e6Q1WWabRckD0kQeePbjlHdgs7KLSafkllr2ewvvJmtxjorS7NYXRUl75BJiSxdqhPnCpQ1m8POAL/4K0/ypVe2+eLnL1LdXsH2Y/Y+kEfKVdk7PsaBwf00m/3MLM6BGtFavMHR48O8dHmb02+ZZE2TENsx2ZUGA8MTnF9bZnNjhYMj4wgpDb8jsr26RXpM5Uq9yh6/n9rSEqNTw0zvrfDkyRJTExN89saLfOL3zvCxD/xtVNWkfxiyhSxm1WBry2djdZkjpw7gX97mB3N/zr6H30DaHuLrX/oS+QGNJ97+Hj793OfZpxykoolE+gA7QpMLLz2L0pX4wNtHsedidiZ9NpUCz/zWHB/4hwqvPVtDXEsgdjQ++Mg+Xlu/wPhDj3H2udcw5JC6ZxHMeTxxX4ml/SKvfmubdJzh0OOP8upXvsPV21vsHSgzesDlgYcHyI5JtL0iqrEHy/8ew6mj3KqmSWa7KI5HreEgBCovvnYNMW5RkmKc5TzqgSyhZLHv6AGyKY+UKWJkBPoq9/H82WfQM+N85bufglSJv/X4NNeDOZTIxwgzNLfTxIHN6JCP3+ry0m0ZRdXJ5VXuOZGh0Zzn0o0uSqxRvL+f8BWD+x7dS7V7BqE+yMp2i3bd5437j7KxusnzNy6x99helGKbobEyaaWEV5XJl9u0Gm0uza0iCzH5OM1EeZzt+iqOESIZORy7RpoEfjdAGC2BuczoyCOk/DSLjkezfY3A3mJ06BT5ZBlZbrI0u8rk6Gky2QzN9iqiL2B6ddqdRa4u1Zg88Rj3Heln4dK38TcNkEK8RIqRygEQTCqVfXz2c19jaFDlxPFJmlUfWdaRZJ9ac5UoyJAvqSS0PtY2b6CrQxRLaSSyEImIcYxjt9AkiDM5hosPY5pXyKkKyVKCfKIMgoBr63jMIYQyciyhawGOF6HpFYIwIpaSpDIF3OAimtCH1U6jZQRMN0VK1fH9Bloii9/cgHgDNT0OYotIHERyIYy2QUkiOTpW/ELPVCv2nmccaz0/m0AvVlkWQFIRxRRh6CNKEIQulm3R7Ua0mhGu7WM7AQvzK6TTeSIkdCNBaIkYhk4Y+Gi6RqdrgiCRz+dpt5rEgogfhsQCyJKIrvQK/a4FumGgSGBZbYLAIwh7xuNkKrN7/e759BRVw3U9BEFCEgSq21tEooCWMEhnMrSbLZK6QbW6Q7KYodFoo6k6SSNBHEYQxniOQ6Gcw3EcJFHA0HXm5xdIpTMkEkksx0IQhF6EqOfeHSrquo4QxYCI7fuEAiSTSXzXJXQ8ZFnCC3wkSUTXtbsSaFXVe4DT3ZhVWZIIw78YSvL029/9ekPw+vkre/7SG4KdzeXY3aW+djtdVFUnkUwiihKe2yOqqoqC4/m9TYAo7MaHSnclQ73UAAFF7MmEEHpuf1EUUXZvd8eI3Isfiu/GjYVBgECPUtgr/H+UONT7Gn4kFwLuGp/vfqG7CUXCriEqjmNkVQEiwju+A1FGjCUSqSR+HIKqstPqcOnadQrlPqb6h9CEADl00RSZUJQQEllatsfa2ga1zRUGVYWpw3upeRatrTbL61tksjkypQwDiSQJScQWA+IAkvk8F9drnD/zGoZv0+puMt5f5p1vfAo1laHlubSbTZwwZH59DdXQSKk9nHqjWuXYoT2sra/gBh6JTBZRSTK3uEWjZTMxPczK0ir1apV0MkkulcTpdtBkkWIqSz0O2Wq0qWT7WV1dp+2aCIGPGsYcvOckcT7H17//A7aWV6kkU2yvLhOLEttti2wsIakyga4QmhbphMwbpvexd6JAtWOx0bFoRxLrOw0unbvInpEJ9HKGMgqJfJrCgUF012N/fphnX3mNxY0qmWIfsmFg2W1kCTrtLlEsohgJMnoCKRbQRJmm3eHCudcYGx/miYdOMyoLTE9OcKO9zef/6DNkJiYwfJFtKSAdSoSKjOM7+HaHhKIgywa1lkWpkmJwaIgoFlhYXCaVzqFpSZaWV1heuEYqk6PeaDE9OUFSFtAQSBppZEWkr5TDTyeZa3Vp1KpojkVjc4vZ6zN4tkd5pIIvhuQVncm+QQaHhvnWSz9kcLzEgb2HMRtd1pYXqNV3sGwHLwhZ2NghnUxRzBaobm9jGCoDgxXKfQVK6RQ7dZf5lRlaLRdNtRBQSBYlPDFFQs0QBqsMHivjmW0Kmk0nTnHu21v051xGHyyzcz2i3jXJjyu8+LkOA+kEf+8Dx/AGRnjhlStUt00yezcp5Qq48z6oLiePPUFUSlHvBJyfv0VBDRiUU1yfv8nf/9hjdGyVP/yTS4SdDsVRnWWnSiIlMJAvMnduC11Osv/BYV64dp2hzRyb211KfTC2p4/NpS2m+yxSU0PM+CkGhoYRXYeV8ws89sgD7H/jJNevb5FyQ5bXa9xeOMPJN76BSqiys3UVIVFCauvUqLOuhTylTdFe6dCwXFpJHTvncev2Ct6Gx988WeDSjRrDf2cvL/27m/TlUgw84HPzi13atTTFoQROtMU9x04yN78CpkNV8BFti2E9yf637ecr37rFgcoE7z56hM9fucqNzSa1jQb7Dg4QNzsUDsVs2muc3vMwx/af5Mzyv6McHqTmbFEo7qGYHaJuVtnsxty8uMHC+df4H/7uL/HC5ee4sbzI1PReyikNzexS2FMgLUUk7Xv4D9/9JnG8jqDnOXW8iOXOs+n4qGI/6/M75PMyK2aXwUSZCdnBT2Y4O7PC5P0SaUdjY6VF7kiJRxIP8cKXXyTeP8io5LCwZJLKZlme2yESt+krldH783TVOmnLJBVlqRw7QHng7Xhbr3F16bNcn/W5d/oYduCTkTQ2ahskEgZxSmd1pUPJMwgVj6OnDtGszVE1DQ6X+6kLNt3OGnGgkJ/cz4gi06puUSoMcGthCcVIkMuNUilmwaqy3q71zJ9+RJi1UfQMbtWgbc+SkMdRFZ+NnasMj5wi8BVcy2F0OM329ioCGoIgkEkXieIIScgCYLZuIAt5jKSMphu0Ok1ULQVijJ6QSArjoJUZGJDRVYWMCF4o4jsRgS+AZJFMKGSyfdjtFSQ1jyjHOFaIIGWQDZsggHQ2Ab6M5TZRlEEEW8QN2ygJEcFuI8UBQlYmFgcJvRqK3kfoC0iSSCB6RJFD7LlIoo4s6iDExHHQg2FKCoFfx7W76HoGUdII/RhJUUEQECQBQhcEBQSVRqOJYSRpdkxs08Js+wiIBL6AbYf4vkAYSbSaJoaq0uyaZItlglhAiESkWECXZOyohaRIuLaD6/pIkoosKYRBRCJh4Afe7nU4RBRivNADIGOkWFtcI1XMIegKURyjKSqBaaMpCkgxnh9i2i7pbA5JVOi2O6RSKVzf7BX9iWRvq7871BMEAct1QOhxCxzHIYp6A71kIokQxriej0uEbOi9ZKIgJPYC4jDEDX0URSaOe9yhbDZLs9nu1R1iz6dADNGu2uBOmMk73/X+1xuC189f2fOXTiqOYhCEnqNfUbXdmFAPBAFD0/HDgBjhLyT7RMS9CT49sxC7ngDuEI1FASHu8QcEsScLuhN5puxKeuI4uptDLAkigiIjSyKC2MOqe55HGAa9qDFRxHXdXRaB8Bf+vLMlEGIBUdxNQxJFQEIQ4x60SpIIo5hIFgmDGDEGRRDYNz5BX18feuTi+zE+MpKsEwOS76B4JlFaY/78Kk3LRRBi/KRKHMA9p05SyhfYbO6wtDjP3olxTMtDDySEts9YMYV4/BBBN8aKOhDU2W5vkXBsYlkDIiyzzeTAAI2OSbXRRBUjivk0nW5zl8prkNANurZLIZckmTSobdYJHB9NUSkWCvSV8kR+HiGKKBWKhPUGkWoQ+AKpfJZyskK7WSebTZNOJGmsbPPw2B42CxlKeR13SCOXL7EspWl2ZfxQZHX1BgM4TI8NMlGo0JdPcHSgD4eY60srzK3VGBkep9vxCMQYpWaS0XM01+tg2TRW2gRGhuGJHE4QYNoWRw8fwhDB9Xz0TJaG3WV1cwPdCTEdm2wYc3B6iicffwNOaPOZr3+FR6cPkj6+D2lqDE3Pg2kxkExgRtBZ38KQRXLZPIEYY7uQTGcYy6R44MAhBgYqdKwuIRGarmFbJouLD3Lu5i2aYUCjVcePI1JGElVPI8Uu26tLPHDiMO84cAivmGKtFXLt1jqh+gwrc9cZHhtm/8H96LkcTcfBDCTe+p4PYohrZKsdLm8tcuH2dcxNi758kXWxTSaRJpPOEoQRA4MDZFIa/ZU8991zlNtXlmm5VZpSm1jLUCoOoEge6ZzCVt2h2d1hcDSP07HwFNhuKyR1lf0PT7K5vMFiNYZUQBz3MsKVhIcrKfzLT51h7+RN7r3/EJk+BSexTbcRcu75Lnk1pmu/xsC+YforOR4/eYpWAJIRUEoq/Ma//Q7H9wxz7HA/djDKjZlLJBUNb8Xm5uwSlfwoZrvO+sYySibJwqUGIgqhrNOyLXLTE/xg/RaVFxwOnyyx3d4kimyOvf1ByrkxnDBBNurnlWe+wVJk8f4PfoCdmUV+uP08hXyR5s4SI4UBVmo7HJx6gGo6waU/fYEHjh8j2HFYuLjMg/dOEY7HPPvSEsszJuXlEU58yMQ/14e5fZHy6TGGb8WYXpu+7DhrSxug6XR2fJS+JCcnDrBx+RZOo0UiG6H6If/sX/wxZjLmXR95NzkhooPFai2JuaOQiiK2ds6zU1Rw1/roDm9gB7C5ssnG2hql4XEUcZPRYhJhYJyXL38Pu9bm2OED1Ds7CIV+6g2RmRcXeeShfjrmPPmcj+rliVWP6aEC51e2qBgSou2jlnXS6QHcRsypI0dQ/bM8d/4GUjZFhgwIHgN7RYZKj2Eu32TFChlwfMaG78NhhUZ7E70so6dGUDMjrLVvcmR6D1EYUd2Oac02KY7aKKVR3Gs6fb7O6MgpthqzFJJJkqJMdbuNBhw5vJ9ouwNJnYMTpznfXaTsaCzOz+DnQ8RkiqH0EfJKmljqstlYQ1RLdDoKamhRLth0mlsgKqRT/dhmg1RyDDu4SWx1yBY17K0MEV38MEYS8mysrzE+dpCE7kAc4wZVFCmNoQziOA6iIhIJTUJfQZL0XuHq5JDUMlYQ0g48SuV9SDhs1kP6ciHd9TS3ls5T7NuDqAuosksmmSOXHmVno0W3vQRCRDKtgL9NFERo6IS+jKGnCK0QIWyjBB5yoku3ZbNTdclWJLIpEOMSli8gKR1UdYTIbxEHO4SBjGcFaMkKslqC2CKMO8RRjCCoxJFMHHlIgoKqGUiKRByLvQ28IBOFPgQBcRiDEAIuhUwG37WpFAyEvE4sKHiuiySrWI6P5wZEAexs+4BCqiOD5BBEIlbHJZPK0tjZpNm1GBoZZWl9FVXTyWYMREEiFtlNAQTTNCmU8kiSQGO9hq4ruJ5EMp0ijnsUY0EUcUKHpGGgCCLFVAI3jNiOGoR+gKDKmK6DnkoiS/LuNVkm6uWF9FhCXg8wpmoapm2jSBKJROpu0yBJCqIUISEgCRAGHkIYI8ZRL40IEEUBSVIxzR+lK4mSdFdyLIkSiiKjaz2lge95/09qsNfP6+ev3PmJG4LbM/MYCYOhwUFEUcI2rd56TZbxPJ8oCnumnF2GGNAr4GMQYpBFCUES7kLG4jgmCsO7v6R3JEF3fAZhGOH77u72QEGMuZsiFPgBtmv2kgCiCNf1kKQ7mPVe/Kimabv38yNfgaIovScWgyTKCKKEIEqIooQoS0iSjCZKu4RigTiKMFSFdLmI55j4YogoKQiCiOl6CMQkNZWEqjKmJeh79DF810HWJIyEgRhF6HFAa2eDdC6JEPeeg6brRF2XiJCcpkJ/kVbDRmrZoBjEqkzb7mJoMa5vkTJUBgsl8ok8smZQq68h4ON4Pa+Ga3skk5AydBIJvbcWDWzyepbllQ6Cb9PcCUjqBp1Wm4SsMVgosL56HdeLiMIYQYKJgQFURQERinvHuP7CiwxnC5RigW6URNjY4gNvOURHLnN7cZudvECZkEKxQN/AEO32FnM7DUQvphilGD0wzkbgsGy1SGoqaU/j5tIaTqdNLlnEjUKCMCIRxYSRQyWXR7MdTuzfi5EwWK7X6Kwuo1RrSKKCEIfYsYcZmMzN3sINI1qoVD2HdKPNsckplnbanDh1D9tem5nlRbSUjlOt4ZkthveMkylladkB87UGzkvnyCc0FMEn9iwSUkxGUciNHWZ6bJTnL1/kyP5pKrksq6trnL92DToBRA7XFm5wOJ3mUH8/9z/9VqYf2M/R6X5e+OEZJtIZ7jt+CCOfJFkuYi1vcev8ZW5tO/zZd79P14PpsSmsPouZW3Mc3XuIPftGuHFrBi+Me8WMZLB3fBy30SJSLE4++ACnM48wUS4Q2BJ/+oU/QexL8Og9R7i5vIyRsREEi40tMNQIy20hqzLj03043ZAgEyGlIQxdBFchrynYCZ2lxRYb5kX2vSFJKZdmbOI0S7MXWLm9TnNxh4FjJUZP5KhYOSZGx9kSQ/QHn+a32x/nmXPf4vBUA0ErMFwpki5KKMYQF2cXsVZbSF7EeLJAKo65qO+QzsWkDQVEAce2mMhnWF1vIRx+HEOts3Nxjs7tDgNvLyJ4Hl/6zte4sezwC3/z7Vz+2kVuNm+RqYSMFzIcvucEN2fOsL/UT8LymT56nMY74fv/4au8+233E2cexXZV3NoM+97yCFv6GerX1olHMnTN2+iuhHhih4UbIem2QkbrcPjUMVKFYS499zytoIm3U2NtfgPnRolsvo8vf/ks5f4y46Uk1167wYOH+zl0eIRUKcXmWotbzznMRhqz3W9QDqc5df8DXFx+hf8ve/8dbFte3nfCn5XDzuHkHG7O3Tf07dw0TTfdZIQQSAKBZEvIksZAeWTPqOzyWDMyCM3YHltCkq2ABAJEEqHphs759s353nNPzmefncPKYf7YDaO36vVb1FtQlqr4/rfXXmevderss/fz/H7P9/tJF3fTjBapbYS0BZt6EwpDU7xw+VneduI2Sm6blJEiJevYgku52mHd9qiuXyePTpiJ2fRknFCkIGZptRy2t0vYlYhWs8nE6C5mLp2i96AIUj/92SR+rYU+5OPMB7z+yitEdoWJnQfJi/DajbP0HpDI6wGxHKJrCSTVJ641Ca/LFIoS+UmfK8uLuHaLgiwhhDnyfR6zjes8uvch5pcu00lp4Ks0Gy45q8z+vUUW1zNYWxsY6ipheDfpdMxsfIOeyATFobpcQ03HBO4oricQqw0sV6Vaq6NJDQoTeZztOlGgUJZvkIk1Yq+BrFj4jRghG+B5DcLIYrT/KPnUGNdmX0Dt308utY9QWoO4RhyliDHQ9Dy+3ELWR+hYLqHk4xAwPn4XqpRF0ULaW2cZ65kgUGJcSaQtCaRCAeyIpfo2o4M6W2sz1God5IxOMt2LM9dClSxkQaenaGMWEoS+jy6ZEC6gSB6eGyFIEfm+DFpKQhSLCFKOwIrQ4zpC5BD5a0hxjBB7yFKEGFqEsYuAAoJGLESERAhCjCSmiSOQRA/eiOOWxW5efxx7eJ6NrqZ4YzsBiIglgdBpEccgKxkUWSQWPEwjJpUQEUWBnkKeWNLx/DxhKOB6Ea4bIMYC1kCaWk3HNEVEsQdR1rEsnzj0u9Rz20XXdTK5BI1WA03TyOf7EImRJBkvlAiisDsOLMkoskwUx7hhSKlaRTVMkCQUVSUIAxSlGxuuEGH5FmpOQ1JUAt/rhpjEIYrUHRV2XRdF17sG5USSTqeDzxssBsclDj0S6TSxEOOHPvEbnCLX9VBVBdM0fxijHgcBiqbhez4hPqHUHVWKw4jA/8fREGxtbUnf/e53U6lUKnrHO97R/GG9849AjuMIuq7/aOMqP9VPTD9yQzA6MUEchqiqhufGtNttRFHA0LP4b/zDCELXLSBKIuIbST7CG4U8bxCA4zgm5o3H8f+bIhSHIYLw94p6z0MQumATgS6ROI5ihDjuZiAryg+NRD/YIdA07YdjQj9oBqDrKfjBbgJxjK5raLrWLe5FCVGS8cOIwPVBCBAUGUkUCKLojZ910Q0NLwgIohBJBJEYUZSIYpEwFjGFkIRp0DFUPM9FjcDGx7Lr+G2LsZ4dBJaFXWuQ6c1TsRxcNUT2IoTAJfA2GckoCOSoNdpoqo7XriOoAqZmELctsmYWY+dObs07dDZXcEOJdDKHbOrIYjdvuby9hut36Dht0pkcg6NZUuksVsen0miRSKYJhQDfszl4cC+3FpYxVB1dFFE1BaVVZdfoNMudBnvHetk7uYvFhUUG7zrO6vWrtGptBneOYAhFLKGHXi3JdrOOmc9gWx0s22N5Yxvb82Flk2JC4v7dU7iayvZ2i1D2yBdTZCSd9WYdyRdouh6yqRJGAfV6BVWaJpPWiesufuxRzBeo2m2imoVNyERv1yjoeSG7pnfjxQ7nZ+fI670kRY16vcLqxjyyEyNoKjdKa0z29bBnfILi6ARiJsepS9cpLa3gBkI3JUNLYzVqhFYVSi/QMzjIwb07efDkXWQ0lereFol8iudeeo2thSabS2tclVUE5wL7X7nIY/cdZWTfAY4cvp0nnvgm565eYFffAHEIZy5cpNxu4Tsd9EwBM5AQrJhC3xDVeosjE2PkcirVlIqYymF5IRIwP7+M16zzsX/2i8hOjNFyWF+b53TbJb9bQRPaXJs7hxO51EtNmksh44UDCIMu6qBKu2LhRiFGj0ZaAtMbZbl5i4k7Rqif3SBMSgT4pHoVxnboVE9VuFm7wok7iozt6YFEwPEHDmNabb7z1ScYG8jz8CN3kJ9MMZW0eWlF52oskxleJa3lEddV3v9Ogx07Ciy/FLMyp7B+ZZuOIjK9e5wwtGg1LPzQJo48RkZ30n7pLO+6c5yNzhDfqqtM5qbwJYGXv/1dAj/Bv/x3P8/sC9/im996mcGj0xwfm6K54eJtXGHgqErrssfgeATLS7zzF+9ny17m2Rde4033vQsnofG5Z25x/foyjz6yHznv8/qrPlFDYt/dw2yUtth1h4F9BuaWVhkZXWE6EpAHxnl89gbfm5nB19PkgghB8ij0mOzfN4y1tUqUS1FJFNg6XUY2bPJehxOPjFCVVObdBG5scPPWMkYeCtkGcU2nFbgUCn24mXVSukbB28PQ6BTN8gwJMU/QFtlcbpHvCWiuSGTVHgK5Q2Gqh/XnX2V9K6YdV7m05NNo2whRwD3D97B8dRN7Z5Nj6i5mkw6DQ/1Ydot4Q6B2K0u9tMWuQwcxNZVEscOl0hrWfB4zkUQLQrbKm4wMm/QoKVw14PLKVabSIwx6PSQilY4XUrc8dg8arFTKrK7YDAb93Fq7jDEwROg3qC82qSfGSOVttsI6sfYm7j52Jy+e+RyKn2EgN0XLKuN1KsRuhsk9U5TLS/QPjNGoBphGimYJhBmNZL/H9NBu6qVtOlzBTPdRq7fosEk+vRerbTE6fJDA0anWb2Eqw1RqC+j6MILSwrU0DDWHaeaQxATZXAYlFJlvn0dVEhhiG9Wvkop9/FYbRSlghW1cv00yEbJz6gSaUqBqL5OR0nRcnYZTIdIaiHaHXC6HkE3gOgJWq0GwXWblwmu0rJDR/l0cnBqhWTuPkVXp1DokCh2CnhaikURKBSTMSQThCEE8SyQWkQQFP1omFl0EWSAKIhBiRFFFFHUiRBBDEHwQJRBFgtDvgjglAd9zkRRQNJmAuPu9RjetRxRVoDtyFMUeoiQRhRGiKCBGEp4VoGgGEaDIErososkBQkIlFkJyxQTD4wZhJDA8WSSMFFwnIvRjOm2NRtMlQsMPRFp215MgiBqypOL5LpHUHfdNJxI4joOiKUSAqinYbpu2axGLIkrcHT8KAh8xjlFVhWq9jusHFPJ5IEYQut/dBEG3GXqDZNzpdNDfIC7bjksUR4iEyLFI4Ng/BJkGMQiijGHouG53OqfrQRQwTRPP9xEFAUkUiQIfu2OhqSr8vdHjf6j68z//89xHP/rRyR88HhgY8J588smZAwcOuD+pa4ZhyL/5N/+m73Of+1zP5uamWigU/A996EPbn/rUpzY/9rGPDX33u9/NbW1tKYVCIXjve99b+fSnP72haVoM8IlPfGLw8ccfz/7Tf/pPS3/wB38wsLGxoUZRdPYnda8/1Y+mH51DIEImnUUA2g2HgaEhdEOnWqngug49+QJiHKMoMsgytu8jK2qXKfADn0IU4TgOsSCgaiqiLCMKAn4QIooykiLiOi4CMaLQZRF4QbezjxHpWB00pUsiDlyX6vY2yWQKWVG7qwdhhCBAEETEcbfR6DYYACKe56PpBrKmI6ld2Egs0CU2xhGSJndhB2L8hmnqjfGmECBGiECUVfwwxEgYuK6DIYvookir6SDEAUQ+EhGNVgsloYAsYXtlAmuYwcHdLGxeoyce6o5fBRGxItBqVWhb24SOgRCGiLJFvZ4nnU3g2lVcGzAKiJ5FUhynXl7HizoobowipzDNgEZ7C1HUKPb2s74+h9vZYmjXXqqNDoIokM9lUUUDU1PJZlPdXY5Oh/3jIyiyhplIE8VgN3Mo6SK5qEZ2Ko3vdBjrLzA2Nc5w7wD1hk217qArCtguugqDPQUqkcX88gaXVzZoBTH5ZArFiyjVbC6vXWZnf56xnhw/c2gv1djFq9rsHurDM0xsu82NGzNYVkDDF/irbz5Fbz5N6Lr0ZnPkBgpstlrMeatsl7e5eesKo6MjDPX1IcsKHVkmiCNqQUCn0qFZa7BVrmPXOvixw2CxyLETtzE83oeq+IwNprlyukR7dYHx3YdZqtQoVzZwK036p3ZiCG2O5DIce+gu7FKd8vUSN+vbnBgZ4o6P/hKrVZsXz17mhVOnaLTKnOu0KT9zjodbAne9JQOhRGVb4EK7jhV0OLOxSdJMksoNU11fQ5SgWisRzMkcPXkv33ztZQZ0h317DlA3Erzn53+Ogt/BjCwWSw2+87df5/UXFui9bYyxd+7CKWpkF5Pcun6LMA7J6gn8bYN+fYjmWoOUK2NURJLZNEFCoN6wMYsGaiFHT2zTnK7TaqQI5hpk+4bpH/axFprcuBKwJdQYHWyRlXIMZXpYOb/Gt//iBdqygLxk8ndPXmJy7xD7j+4g1DQiHIZySSotn+uLNn/+N+dYXioRuiqZRJ6G4JDXRSTLwTeSpHp6ub60gCK0+ZP/7SE+efUWn/nPT/HhD5zgzUcn2HrmAjfdeUQ1j28ts3b6FQYf2cE7xDRDUz28a9cUZ65epbrQpJBLEhTT2ETEQgP7yik+8E8+xJ8t/x7rl14hKKSJFZ/XTy+wuNTiwEmdRx4+xl98/jy5Wg/l7Q4H9yuk8zo7o9tYv7HMl5pX+Jmffz/WS+vMVwKiyMe8vM4DR47QmoInnrrA7h2TFIcKrCy75NIpVi9eI3Zi8gd80skMR1PT2OkVnn7tBe45ejdntp5BtEy0ahGaPvlcxLnra5y890FeWnqKXcNHSYpD1OvL9I6aZKfG2b4QsLqxxe1Hd+LKvWxvdjgzV2H3XoFmR8AOs/QWDJZunubC8ja//U/3c/bbmzhKncq2hdGr0F4V8WQBT6pSROfY4dt49dXTCHg02h7FlImarSFUNNxOyNjkCYQhm/HqYRZXHTb9KtOxT3N5jfJ6nfOeyz0nb2N57SUSU4dZWl9iOm/Sk0tg2RGXby2w+/gJClobwgmWrz3DRmSQVvqJ2zIjZppywWZjs4ps9bFxrcXI4UG2W8u0F9r07e5hu61Q1BKUG0u0gzyCJtKsOxhajt58TEYRiBMiliPitmeZGjhK4KxQbYSI4iJBmEYWU0RRiO/KbNafoKfdQUruQTMzyEIvTlBlpXQTYpH+4g4sz8INN8klh4lcH1GL8KI26eQQ/cUJGvUm6XQeXVfRZIVmrYamSCRTKdxUktW1VTbqEidP3otvezx15jLzczM4wjJTY3uZcPvI1PsxxBoiKxjaefonJdS8jqSpBN4SgWghKUP4Qg2vVSehJnAiCZ0coZxFjgxCWQJRIvRmkeI2sRchyAaSWCASUyCqCLFPELWQFAU6DpImEEkWUmAShRVE10AQkghyAsFUUcIa0EQIehAVHz9sISkiQiRDrCBFwhs7+y0EWUSPdZJKG1EIiPMDhIJHGHaI44D9uzI0awKLC3Vs2yWZNNBQaDcj2lYD1wnpOCFmKkPHCUgpeeLYJo4jDF3Ac1poiohhSFSrIQOD43SaDXBDJATiOCSKQuLQAUnohmyIEbqh0Wk20RQF3VAQJBnb9mm0LbYbDcyEiqbLiKKMLprEYYgsKCTeaAJ830f1fdRYJBaFbg2jKTTbDeq1Gul0+sdbdf2YVavVxF/91V+d+PvHNjY21F/7tV8bffnll2/9pK77G7/xG0Nf+MIXen73d3935U1velN7dXVVuXr1qg6QSqWiP/3TP10YHR31z549a/zWb/3WeCqVCn/3d3936wc/v7y8rH3jG9/IffnLX579Acvqp/ofqx/5r2DqOn7g4ztud1QnCGjU6ySSSVLZDOXNLabHJ2m3G28U/DqO3S3u4yDA97yuAY0YVVEBAcuxiXwfM2ESRTGB63VXRgQBLwyIY6G7su//AAwS47oepqGxtV7B9lxUTUcVJKIwBKHbEEhyd5RIURQ8z/8h0CSRSKLqWrcY/4F5WRQBD88LkAQB4pAwiJE1FUGQcF2XKAiJggBBk9FFmUQsgxUQOz5WZBESICChajK+4yArKolUkiAO3jBgp7GsNrKpETVCutlzMcQhzc4WnQ6EQoCHhiw1qNTK7Nwxgq6NsrBYwrc9tJ4iSCVamzatZg09ZZM0B/FcBy2QURQVSVLQZAVNSbBr4jiaKDLQU2B9s0w6oyAENrlUHtXQiKMQVZIwzQRhEFGpVkhn84iixNZmiWJPD6ZhsLiySCKZZObmDGtrKzTKJSQJhqfGaNXbtLUUpqbhqjC1Zxwjn2Vzu4oXetiOx/jOaVJmlvJGiVWnw9ZCGb/ZxExmaLsblMtlHCI8L6BTbbNr126cYoZOYJOa7KHhWqxXFyivVylmepgcGmW1OIisajQ6FrYckUgn0CSRdrvO4NQkkSphTA5jOx5WvUKwtMxg/xgdO0YWNDb9iK8+/j0GFIN6WCPKmGSUCfychR22uGf6IDlV5Kuf+1MqpQ57H3w3ce8YF2euUdSTRHHAP3/3vfzbT36Qr3zpq4wOTPC9p57lT7/yVR5/9imGdk3jmBrrlRXqtTq9xSxH+kbZ96ZjmEPTHD18nK//3VcQnBV2D6S4dtskQjTAreUX+JUH72QobvGt7/8dZy9dQShO88wr1zj+9kk++DsfYv31OZINl/9wbg7PiMiqCSS1l1xeZ2lmjUatibPSJp1N4nTa7D08yejtBaLAYH/fFLeiNSx3BL+yxMZqFo8qBaOfNBne/b8eQDdddFnlyZe/x8vnthhVs5x410GW16pcePIG4WA/12/OcfChkyR0B9mR6BlJUbu2jSA6NBWdwX3jNB2Rtdk1xnP92K6LZUcEWxZiusN7f/5nKM2XePJ/uU5zW+bj//kX2Ly+wMrVl5C0UZpymjBb4fjHjnBycJgv/fFTXLmywEf+5NdZ2irTb6xDKol63ePkXQJXNm2G0lle/PY3eUQxmLj9CI//x6/w7jfdzr957/2ceVSAnXmE1CgKZT75r5q4yT289nqSilzi4N05hPOw9fIcqbFpbr58hj0SLCYErm/5bDddhvK3MfjoYxy6c5XH167zppG72XffOP/pX3wClBpDo3uxnQKS7HLuhafozcDh2+9GGIvYUz7Mhl9nTi9T3qyQbRUZOtDPN775NT768HsIOmv48hblywtUKjJVW2D64B7Kwy3OLV3jkfEicu8OZmfn2TnSg4zEnqERUlaZF28scNeHTrB+tca1rQa9PWnIbBLUJW5d98lPJAmDkKeuvs4TF87z/rc+QLoq0up0EIcbSMkkxanbOXXmZfZOrzBY2M325i0syceIhpDCNmMT0xwdPMxK+CrNeJ7Vm2n29JvsO/gIlcYqfhizVLWo11bJZsqkTtxD59VTRAURYWsBWT/IoQMnOPXcX7HuNijLeQpum6kjb6KYUZnuL/Lqd56n7XYz3yX/BE7wElZdZGTP7awvP47XGiXAwGqLhFKI67bImUlsu4HjeBj6Doq9Q8TtFq7fxPY6WJ0LyGGHzXYfu7Mn2PQuoZsQR4P09vej6hIXrn4fo3+anVPvolOxKRZSxGGNVr1KXpdpNRpkkjmCCFzXRUtmSGViAs/F9310M8nR43dy29GTNOp1OnGDYydPMr1rF1v1Bs1WHTnp0XQDVrZselL7KK1usce1mZl5mjvvv43i0FFkoY0QLoF4CCWt4FbOoeerIHYInBaqPgKICHYLRd2N3XidoGMj94/Qbl4gZQ4QhgKiG1HZihHyaYp9/UDEtthLT2zjRRmk2EeJQyLFxeo0iAwVU8oSRS38MImm7cTzHMKwiSZ32UJCJCO+4RcQRZCEXhC2iKIGcmwiCTqCALoukhoOKPZBval26cOZmCjMEoYqtgWVqoPrBlRqdXzfw/cSxKJL4IqUSg2SyQyCOIysb1FrrpNNpRGikGqtQj6fp205aHoCUZDwwoAgkNC1JEZCIXR9Qt8nDlxSSRUQSYsmMTq+J+IENo5YQn6DjeT5Fq7n4vkBiiLiuSGSLCL53TSmhGGSNA0M0/jxV14/Rn3+85/P+b4vADz11FM3nnjiifRnPvOZwVdeeSW9uLiojI+P+z/ua9ZqNfHP/uzP+n7v935v+Td/8zcrAPv27XMffvjhNsCnP/3pjR+cu2vXLu/GjRubX/va1/J/vyHwfV/44he/uDA4OPhT8ts/EP3IDYHrutQrVaIwZGBgAEVVsRwbSZJYWV1l4dYsla0Sw8PD5Pp66HQ6CLFAEAWIkoikSEiygiCKyIpMEIbEUYimKUiSgO146LpKEATU6hU0TcV3uuahpKahyDJWp8Xy0jLEIYZhIOsamqFD3AWcqZqOJIkgSD/EsAdB8P8aigUB13GAbsMC3TQB13XfMBPJqLKEIHaTkBzXxWq3SSSSKLKMBvhhQN22WV5dRgpC/EaLyHZJDPchSXQNXREk0mn80KfVrJMyCyys3cILfXp7e2jbNnanRSbl02xb5Ir9bC112Dk1jCEOs1lZY3lrGceaJWNKTExPASmadh1RcBEjhaHiCKXtMklTJo5DCCVa7TKry3OoWpakrFDebCFKafoyu9hcncM0wVAhJsJ2HUxTR1cl5tdWSabSpJIqopTD8QLERI6q6xCZRdqiwNXVW7RtmU5YxNBN5udDKhUP06lgxDF9QwWKqUVEQaVPVJFMnb5d03iex5XLF9kOZBJRhJDT0fUktutyYmyc3W99M9U4xI0jmq02hAIFwySnm6iIRJHLZrPGuZlZzs/c4lZjk0CKEGybVCaDmc2wXa/Qti3uu/cEuD5XLlyAKEJGoDo7S9xusrW6wb59+6iUqrilKutXLvEbn/4PtLJpWN8iYblksklWt9f4T5//DP/zY7/An3zpCUaHp9h7uM366hb1WOO12UXayzM8/c2vsXRzhvt//kPMW8s0FJNj972F7fo2z7x+nqDWZu++I7RdBSkOOF+7wj2TOe7Ip5j78h9yUgrYefdDPHXqIj972wh//OIFHv/8k7z8t0/ywB37qcV5ronDREsz3PnRB/jZX7+fF/6vr7Hw/C2Wi2UkXaNf1tCjPFozg6KotLa2aTbrpNN5/I6KQJbr51fp1bKMHFfZXr2F24ADEwZ73/cAZ08IeDduMd4fgClQm50nkzLoPTpFfy3N1fPLXE/aSI7Dr/3WW7j42FG+9Affpt5sY4kdir2jlK+sotay9KQbDN89SBuD185fIj9QoHdvkvKlJeLIQE+kEFWZ1c0y1sWzjPSIvDbm84kP/yLTQZXe4T3okoMhGQihzNqZEpvfOMd/bD3FudNtvvilz1AuL7L07AXIbnC9GjHde5yxl5Is5hxKG98nmR/m9Pee486f+zCvPrfM650c5WaH6YzBma9/n43yDfztJKKtcPfPzHP/oyeZXwxYrtWYvXyNWi1B/uQBPvvFV3j4wXFGhQ1OHu3nqecv8JXP/gEf+eTH6du9j/eOB0QTHf7zp/4VG5kmdz/6QfbsOMyJ7CB//d/+G/P+GO/7nZ9j8VvnuPAXT7Hr7ikMIcH+Qolg8AA9Y0dodeaIdopcuf4ax+4ocOXmMue2I0K9ypHETsYT/aw+c4E1fZqXZua5+1Avc6smvrNFT79Mo1QllAX8psie6STf+dRr9Lx5nGy2htxOYci9mIVtbs2sIygG9U2P3X0qa82bVIKY+dU6IwdH2by0TbGwxsnDI4gZF1/pQ+rtQUvIVASL7VBgY+00pxbOoO0SmArryK7N6zeeZ7CvhzMXLzO95w52Do8SF3NsrFymtxjTGlAoXbmJKmSIBhosvvZ5Lj65xMCufRw76vGtL77EL/3PU1w59X3G+0a5fusmhyeTpHM+Gzefw46bJHoV/FqNlDHNyrbD1EgPVnsF36shxRGyPMx689vI2n4mpiewO1tUfYekIVHU09RtG0HeQUrfxfLyGTRdZW3rFKKQouMlcPw2+ew4fdI4RmMD275Ca6Mfw+ghaUp4tgehQBA6BEHXM9aor+O5AalEliCK3iDbVrqJerFIT6GXKAjJZ/vYNXUXfuTihjayKuBOWQSuy8ThadYDn4LyC6w0Ylp+i1RbpjQjY6TnsVIyZq6f+kWfsd1jpHIJatvrJFIRqujSrL+MZt6OkM4iqJDM3IXv1RGNPGHSoVAMCQKVyAmwwpA+M4HX3kJTI0RRwXEi4rZIItuLYEmEkYsqgGNtQLKDpmQIBI0YB0FpE1kZGu1tzGQCSerHt2a78/hSkjiK8aMKkuIjC3kkihhGFk23iaMAMQ4RBEBTSOsCvbk0KAniwMGP2oQhtDsuth3TrA0QRDo3b11EErLEUcz2VgVDT6JrPbiOgq6maXfWMBMaqip1WQmejyxLBH6ALAQ06k1cK0lvzyTNRptkSsNTO90xVjFFHAREQYzj+HheiOOGCIKDmTEJghDiGLvTvX9FlGiUqz/msuvHq5mZGQ1A07T4gQce6MRxzGc+85lBgBs3bmg/iYbgwoULuud5wqOPPtr8//b8n/7pn+b+6I/+qG95eVmzLEsMw1BIJBL/H7NXg4OD3k+bgX9Y+pEbgsBzsewOmqJSr9cQBBHNNIiBwcFBTN3As2xEUcSxHcIggDAiiEJUTUUzDJw3vAZe2OUZ+L5HwkgTxwKiIFGvNVFUpTt/6IZk0mnCN8zGwRsRYD3FIoqikM3ncF23CzN5wxsQR+CHIZIi/BA8puv6DzkDYRiSSqWIom5B3J0dTGKaJh3LIvA8RCEGQSAKw276gChgGAZe4GPJAkIcI0pgqDJVu41WMOntG0ePZQxNplEvI8tK995kkUwmgyxk2Khdp6dfpVTdRJf6EBURP7RIJiUsq0RPZhcSOc5feh5Ra6ObU5Srl1CFFM1Om/XteVRDQZEahFGD2JugZTWp1NbIJXvpLw6gqgG+32RoYBxdN8jnBpiZu8bSxi2KhX7SZh+tVodYBMM0cTptWvUambSJqiu023VUIUYIbdZvziMpCv3FPqyOw6MnDtAMAppBQGz7VDo+opokIelslzcoN8s0WyFe7NHX24sahNRWquT7CwSAXd4iKGYxPAOh6mIT8I25F7hjZZlj992JJopkE2liEZqOzVK7TcuxWJ1b5tqV64SRQIxMQlJJjw0QxN1o2VZtnXv27eXAxBSe3SHRW2Srts5LZ06j2AGS3SE7NYigxRQHczTTIS9+4at87L3v5e1vf5TNhsPmUJnvfu3LSNsRP/+ed5HZO86//Hd/wtvf9Ks05A7/2x//39z/wH1ISpZMPs/KnIQTZXGG9/Gxf/6vmb0+w0prm+mpMSZyGWYbmyysVjh7Y5UL5y8yHLY5fnScxbUF/vwzf8hiqYaka0z85dd42/HDfPapEtHUEPd/+APcuHqRSiqBHmfpF0MOf+Qexnp9nv+jZzH9DM4QqEkTPZkmESegnUCQVFodm+N33oWgxNy8PoPrgYKEGOu89MJFcpd87rn3Dkj6yFrM1W/Ms7a0ydRdQyyUtykFEjFNHrr/fv7Lv3+G66+UKPaLCJ7KqasW87/6ZT742GGOPDDJa99bIGh16N83weLVGW5cmCe3U6Fad5geLLLvV97J5FCWu28/xu/+zn/m7Hdv0YocTE2hvzfLi3Mt7hp6hHcc9tgsv0B/9a0I6gZ6FlhvMPvyLC9fuIKhWjRCm9vvn+Dz3/0/+PV3/jHNe6ewV59jurbEreszXLECdrznMHo0zdzmJUw1ZH+s8+n/6U4+/7Xv88z3VnjFDTmSnyTV6GcuanNp0+LmN5Z4hxShn5zEijbYf2CQ/p9/mPvffJL33Hsvn/iN32JseoAhGX72bfv4y6cvcPbqFa5+/2kWFm+yd3+Kgcfey70Pg9hcJJr9Lv/ub64yYwb82X/9Q9avfZNn/u6LpLQkV2Ya6FMxRkNkQgm4vvw0lizTNypSHLqN6/OvYTkZxvYUqFXmWFm8xo0+lxvlDr/4K+/hc3/8fzGa9OiZniA7nCB0NHpu38mNW9c59IG9hJdXyRcPcHz3AV5/8SzPfGmRux4xOXxsmNm/auBbTe6+/w7s9S1ulKqoPXt4+EAfOXOZ24/ezQsvnidfAKGWZmLIxW7Y7BvfSclwackGh3a/ifX7XW45N7j6SoOB1ADKLpOUkiBd3E1NatE/3MPq9TIjO+/iysJlPvjBD/CtesC4KVPZqnH+coO+qSnOP1PhymKN4V3TPHGqStZNMaQGHHrwOLYsE3gtolBix8BDdAKXktVkINVHxjjDZkMkryXQwl4SpokuDtNsnyaT8rCbKYTaOkG0wmarguGMoqgTaLFNUN8glWlRSB2hL3cQTTdYK5/GlCbIGPtoOcts1L9LPreTcnuFhABJdZpOuEFKUXCdEM3ofqbbtk8ykSYmIo7A0HSSiQRh2E3SMfQUQgyKItOxVokiFT9UiEMD00jRCsvEksBOP4k75tJqG8ShyIK0wWqPiKa2sdeanJy8H2+1ydJaSOn5S8S6Qj7dw1A2hxklCAttkqO78EolPC4h0aG9fhUjuxNFlgh8EBJ7SCWaBG6IZvYCWfA6xHYVJy0QSB1MXUeqNMFQ0TM5YkkCmkhSSOzHCL6KoEZkpDGC0CdgHkUqEgtNEDwENUJ0U0hiEqQQ360T+QaiIiEJIAQqUeRD4BNGHnHsoepNgiBGwyQWY0wzi69tYgjXyfeOceTwATzfot12KG9buHaIbTvUqg18X0ARCwS2iO008QMbVRMo9uRRVBCiBKlUgUptm46zQiKrsrB8jb7efhKJBF4oEoshkgaZtAR0R6LCMMT2XCRZ7NKMWy10I0E6lWBj4yc2hv9jUaVSkQFM0wxFUSSXy/2w8N7e3v6JzOIkEon/rgH4qaeeSnzsYx+b/OQnP7n22GOPNXO5XPi5z30u/9nPfrbv759nGEb033uNn+p/jH7kN4ssi+QyWXLZLOEbyT6+3406M1QT3/cYGOgnjmPaVocoitBlBaIARdIIguCNAltEN3Usp4Pj2LRFBT8I0DS9GwXWtpFE6Onp644fxTGqJBIEPkQxhmEgSRK26xB43cY3Jkb4AdNAEPBcF94wKP8AXvYDua6DKEpoikosgOPYb5iPBWSpS1V2LYtIi1BlGVEUiYUI22qjiAJhFGLbFsMjg4xNj+EGAR3HJuiEbG2XsDsNEqaJYSTwopBisUijEQExbbtGFGZIZFXq1TZh0EaTEnieTKRUaNZiBgfyCGIfV2fOkkoEiFIfthegmDKqIXLr5in6cr20rXUSaZXB1ABipFBvb3Dj+nmOHj2BJIVcW3iG3tYUW9UG/f29CAK0nQpEPoqUYX5+lv7eYnckKg7YKpWot1rEQkytWkUSJTRF49KVWUI3JJlK0dvfy9TYGHo6hd9a59b8LXzLw7U7oInYkkosRFRXZlAjCC2HnYbAI299M03X5fHXXsEt1ZGlJHEsI/QMcq3jMO37JEwdq9XEUDXSmoHmSuQSJv0Hh8hlR1hYWSYSYvw4otpoEhJjGhrj+3aS6y3w2o1LrK2uIUo6jbrNUHKELbmJW3OZubSA2YwYLw7x3OXXyKYz/NNP/ks6lVWyfkjLs8n1D3Hx6e9z782r/OY9b+bR/7qXv7t4ivfvfpRkMcnx++7GajXYWppnflahulznoQP78NcuM5D3iIKAf/9bv87t40O87x1vZ/f+fQzpJuHWEr2ZPsxWwOlLNeT0JG89foBiT4GXTz3NFy4skhZ1/s2vvZP+iWnOXZrFIeTG5gWG3FX85fMMDr6bt77/HXzwE49h9/oU9XEKcj9uDbZXNkiaTeZurZDL5Tl6+2Hidov3v+sdaFqCV18+TS6rMzI8xo35RYpKlScuNHjvL/0y5uXXqdZvIukqoqugKnUOj/iYH72TPy+8QH8oMj6Wwgl8rl7a5L+dus5wpo8d4wUWZq7xrre/i/kzNyiJdbLJPGkvYv3cIt7FBe7+Z+/l69/4IkpBphF1yPRlMPNJworMcDZBf1TlS3/xKvf98l1sp9ZZfm2WPkeCnnG2yx3adZH5zYB7ThzngQdu49L8JdTwGgfNfp59+TSWptCJ62xV1nl38TFm1ubon5yks1bjxbPfYLvhMLi7h589fJAnvnGGp5YXqZRDkjmN8R0qPelRVl+yeU9+nKV+Ae1ug/fuvp/K9bMM7t/NA29+G9979VXMaIOp3mEOTN3GqVdeJDl6iGe+d40vfPlLPPKzH2Ei9Pnan32W//OP/zXGUIKf/dB7uHjlq/z+r32O4z/bS9ONWL2wwIniBHIuxSsb13CrMYf2DHPleY+33+ExnlZ5vVJGa/fz/gfezpMXnqTX6Ofet6QZNLexWxp9D0wQOzLLpTIFJ0djfptyvcw9d2e5djZE2wm1m5cJ5hze8v6jhI0Usl/ine/r5elvBpSDTXp3yuzcMYbSSONUZ3HcJreiOfbesZcvf+4JFC3HsYkiT3/vBn/1X55jaHIH7/4X93N17XXuPXKStxj3sj0WU26XyGW2EdpVbps8QD1aY3m1wsRAP0HJY7s9w41Xvs+R6X4a8zJiwyc/1cfZGxtsaJu0lhVyB+uo4suMZe9i7vlziEmVwq5B7FSGysYiA/1rDEzdy9zMN2jjQzSGHij4QoOUbpBW97G4cZaENoGZyIDoYiSGETevEAQJgsQUg+k9rG5+Hit2GMwfIIxbONE86+sOxeI4SWOM0vYMopokV7wHQzNImR6uBUFrhXzCxHMjItmjXm/i+QHZbJGuHy3ANBN4vkenYyHEArKgQBgRxgK2baGoOr7XIZESiOMmsa9RTPZCKBMm6jh+GtkQ0EUdI5FiqF9AkmTkPRma7haThwaouR3GlDEadoSpqZy/eYtGp8bwYB/67GU6YYGpiXuoVWcJgn24r18nVVTJ9+xBsC4hZG5R7B2nVb1IXDiEIBiIYQrTHyByTeoBJDO9IKhEcYjvu6iChEyESASyShS2iOM0qqYSBjFOdAlV3ocgpCBqIUgBsSBBECEKKopqEuHh+x2IfGSJLvE3EggDhTDsjvhGUQXHLyPJOpo2ii77dGpt0plxpMAmpajkp9JERMSxA4JGGPpUaj5RIODYCs1GRK3iIsY+YSAjiCKtdh1iCCMR1xUZGdzN5uY2hukia10gnee7uEJ3tzyXzyHLAgQSYRzhOQ6pdBrLsVlcX2NwePDHW3X9mFUoFAIAy7KkKIqo1WrSD57r6en5iazA79+/39F1PXr88cfTu3fvLv/951588cXkwMCA+6lPfWrzB8eWl5fVn8R9/FQ/Xv3IDcHG6irZbJY4DIiiGMM0CKIY3dDZKm+gaXI3elSSaLaapNMJytVNdE0nl81iuR6aqiHJEookIwndnOAo8jEMnSAIsR2bdDpNwtS7I0eihBh349V8r8snECQRRBFF0pC0bkRZ+EZCkShJIMrd/OEwRJblH8JFfL/bPEjSD8Bl4Q9ZCD84HkfdSNMoCIkkvwtKi+MfvkZ5eRUjbZJKJRHDkLATUC+XSSZTCMkEltMkmUqRTibxgogwCFhaXsXQVfK5AhvbmxRyBdpWGU03aLVrxLJDMbefjbJHrXGTpG5QqlyjWMxhWRV8arScAEHWcT0fUYF8fqyLb48javU6gevSbjXpGShSb9bpyBHpxA4ajTo9xRzpRB5Flmg1LaIgQ2QGFHvyOH6X8tjpWMRCjG4YtAPomejDMBIQCQReRE+xl3KpzGa1TOPSDUaG+ijZNdqKgy+4bK0tQhQSaTIJQaCQL6BnC1i6SuTYdOaWGduzi/fcdy/nr9xgvtnEbQYk9QxxHPPid5/l4YceoCebww08bM/FD2I21zaZXdtkYW0NQRbpG+ylmM4w0tdLb6GHjJ5AFRQqThMxk8GxOiwsrjPVO0FG0lC0EG/3HrxyBVVXqOkm737TOxkeH6bqNdGiiEgWKRYzvP0t93Lj2mmeOXUaI/YYu/0AH7n7GIuvnufNBY2erXnSSZ2rxQydg4fJ3Z3j1NPf5NP/7l9yYOdublR9WskcXzt9AXejxpvf/xinnRr5lETFF7i1UCLM6zhLy5w++z00TWLfocNMPvxmGmvzfOUvPsfJN7+Fif2H2W43uPnsNZJ5nV968wdIaAX+4L/8NsPHdjJ58Cj9nRSaJXHq2XPI6SxLm6sEvs/83AJCFGDoGpfPn6Fab+JEMrEUErSrrK+1aKZ1encn+crf/hUnHptih/QAM+V52laLXCPFE194hd6cxN17ZWTXIqvn8QXY+bb7mb0xj91p4glJbi1f5T2tCv/8g0d56sZ5nKBDQs6yHLisnVvnq19/mff85sOsLX0fWZXJymnGzSRyoHFtZonX7Arv/s27sWsuX/3yBfpGhlieW6fQbjO7XkUeN0inIu79uXs5dvcU/usb/Pqv/A4H9gxh6CJDgshEbpwLWp5QFtHMDENqntxgnYvbEXr/OFI2zfzseQ4/uptj2p288jdPkgp1HFniyN4CQqNOffUaSVWkE85y5jt/TG/hME3rb/gnv3Q/4XCG7/7pVxi941Het/coj3/vv/HgHb3IdoXpHp3eyhxPfPvb/Mm//z1uNVxGhocozc7wypWzTB0fR9uaZdeuQZY3XW6ueeTaLqPZLA0hgy1WSe8s8+1zbd58933cPmrz7LNXuXajj727j7GxcZ1Uosj3n3+OX/iVh9GtLf7o609z7J0JNsSYXDLNg4P3srF9DjuoIBgq28sSZ6+XGBdc2pZO3VF5yyMy+cEsw+kCR/fuZ2F+iVfOvMbQtMnIQIGV+Q5ec5XhTA71zSpfufIsN5oimWN9zHYcOloPA5kdbG1sMJUKOTx2BH1gF2vXZ2j2b7CyNYOuDXH7rj42a+c5fW2Z/Qf7uTR3hfzsFKOTQ1Q7JdL5fvZMDDMwmMUOIJvswYmfJx6FzWsmmqOwPbPJbXccILdzguXlG6Tz50gUTPQ4QTIvUbc9YsfDD2Rq1jKqbhJKDn5HxpfXWKkt48ZJcppB7M/QthwqlsVA3xHMRC+218QLfTQ1gxQN0Gk3CIRlEuEwKUWjtH0WkTSqlsSNRaodmcDVGB6cQJQ0TDUFgkosqMiqQoxAMplCEgRCP0ASJFzHhlgEUcF1dQxDx3PbyHKMJIPnlDH0BH4UUNRUIhH8WEaRQkKvhRdnqHnX8QNASpAyhlCSIunARRBAK2aJcBAFlXYjQvAbBJkAQZlEd3wWLp7l9SeeY9/DMmOpmJnTGrc9+m7iFQfplojXWqO2tETT9Wm1BbSpKQ4fPkF/KkMotPHFNoNDeeREEscJkIgQwn5EtYkfNBBCAzmapN26DKiY5i4iBCSaiCSQhG4DEcYeimwSizJEHlHoEwVuN2VQ6MZ6B0oeLZEn8iT8OMDIJojCJDERjm0hICLEEoIoA0lEUYEwpDcfEYQOQiwjjybwg5ggFLBsn07Hx7ZViBN4nkCjbgEBe/cOUa02IJaQZYXY1wnjLu/GtiAMA8TIQ1F1FK07+ZBKpUimEvAjwlv/R2nHjh0ugOu6wrPPPpt48sknf+iC3r17909ke8M0zfjXf/3XN//tv/23w6qqxg888EB7c3NTvnTpkrFz505nY2ND/ZM/+ZPcXXfdZX3961/PPPnkk7mfxH38VD9e/egeAscm8BM4b6ywh0E3uz+MIkpbG+ye3ondsWk0WyiqhGao+CUHU9Ow2i1UPYGiKEiqwurqCrIMhqESxz5h1I34NAyFVruObXepgxEiiigReA6q2jUKi7KMomiEfjeDP467pGMjYaKoGkEQEzjdONMf7A50ycZdiYIAxN0PAFFCEqQu8QTwfZ/I93/IMCAKux8ecYxi6iQmB2hslwnaDTRZRtd1ZFFEURViVSOdzVLZWiVuxSSTWTRdptZuYTtbxJGMZ4NremiaQuAGxARoiRwblQ3c2MYNO3jNDpYbIGgRTtTCxyRwKl3wW5RAiEW8sEUQRDStOr4TI8shftghrQ/SskJM0yGw6+h6knwqg2s1aHsukqigK6CYGTrtNgJdWrPr+iQTGbKKzrCsYBomtuMSiyJz84tc3VohjqHthfh2SDKd4bb9h6i9+jJPv/AivYksgecRRRGWGFNvW4yYWWJBZ6vh0qitI8sKkzsn6L3jCI0gYrtus7q8Ra3RQqBDopgnCj0QoGNblOoN4pTOjsO7OHzHQRKqhiKI+I7PwtwiGwuLXKzVaHXa7Bwa5KHbj3B4ZJj6sZi2H7G9VWE8jukQIg71drOoXQdVypLUNHQtSUduIHgOkuXieiGHbzvBbXv30rQcZiouc9cuMre2xXee/B5qrcHekV6EYgEhkad3b5psYYRTl07zrXPfZmRwmj17D7K8usSmrLG6VmFr/jIP3flmlvuKfOviNVrVdVqujySJeK6PuzxL5DdoVR2Gj9xG3+Qg1eY833v9JfLZPA/uuoOFM4ucmv8TnD6Rdx1/B4d69vL008/wvWdeZbvWpunbyKrB+L5RRifHKFe2kMWIcqVGCwFEj5xmMrtVQlRV0mMqsVohTie5+up5TLPNnQ8eZLzc4Opsmb959gZZPeLo5E7WsfHjEsMJjf70GqXVLUI9x9vvPUrQqPBnf/MN8qZItezQOzlApifN9IEkuirSFFySgoiS0rHSSRoll1PXF+jLmQwe6uPBt92OOd9g3Yt45Gce5uazL9Pq5Kk2OiSGchwZ03HbG9x+bCfqvIuX8enfNUHTNbi5scINq85IboLiySEsq42rmYiWwpmrVVIDGaTZBeR8gcZ6hd0HjjA6MszgWIKZ87doXCyxtdpAarfY15NFt2TssJ+/qZyltz3Pbc1pquFz3LlTp/TAAe587D725oYIhcd48muf4tEjP8PU7j38+Wf/NX/758+wKsXIqkzQcNh216lWY3p7+lGHTaKwxB1D41TjTcxUEUURUOQmty54vOXRHNt6guu35skM2AwcMqk68/QECmauSLu9xbq7xZt33sMz336akf0RxbxBcd9eFl6b57lrz3H/A/cx19lCciSqGzrJSY16s46WTBMlYXa+zvDAGMkowzMvnGZ7fY3B8Rw7D+whwkOOapw5M0vkirzjSIaFa3u4Ls4yMpRnLFTImxqTvX3sHRwkqjXoVGdZrczh2DL50WNMjAnMXb1IyXFop2JOPHCS2tXrjE5Ok52tcvb1U+jpIuWFGnqfQaO8TrldQdR6CGsJmjvn2HM8hbOSoNJaYmPpOpP9CfTeApWyheuuMTD0VmyhjKFGiGEBohBRCdkubYDc4d59v8bVmd8H6uj6LmIEHKdJYFXp6x1EERrUWiFh1EAWi2QyeazOOlEUkzIm8EOXjeoKijQEooQduuhyEVFVUMQALwiIYhlTM5HlJJ4f4vhuNw7adgk8F01WkHUdgRhE8AIH12/i+nI3cELRCBUJVZFxwxAxVmlYDpphYjtNAs/D0DMIkoSpFYmJaXkBOhFhKkYSYwJkTEFElSQiOSLVl0VlAMdrQOgiSDL77ztK/227CJUCmlJlPDtM3Opg5B/AazbYKC3w+vUlZlpttuaW6RiXOJR5gaGRfnZMTbG8NMPJOw+xe984vu+gJpIke3eTyruIcogs5InFKmos4McOsewgSwmEGKLQRhStLqwsEhAkiIWQmACBEFGMAZE4goiIKLYQwgSi5BMETeQwiSQkIKpjJtIEQYQgScTCGwmChEBE5EYQSsiyCFGMFIGATDGfo5APIe6C2WJCHFfC9yIc26ZvQMF1Y3zXxfcEHCcmFnQsJyAIJRxbxPI9TKlriBYjAcu2MPR/2Ivbv/ALv1D75Cc/Oeb7vvDmN7959w+Onzx5svmT8A/8QJ/+9Kc3ZFmOf+/3fm/w4x//uNLT0+N/+MMf3v74xz9efvHFF0u//du/Pep5nvjAAw80PvGJT6z//u///j/srZafCiH+EbvfhdlrsaHpxIKAhIgXhJipJBvbm7SrW4xM7KZUXkMTZLK5Pjar6yRVHcNI0mm3MVWJ3r4+lte2qLfLjA4NY1senmchqypxFKErOo7ro+gayXQaIQjxXBchjrq04yBEU1UkWaFtWyDERFFIFMVIsoQsKTiuR+y63egwQSAmRpaVN2AtAmLsQhzjhxHEIlEE7WYDQ+36HOwwRBRENF3HMAwc1yWIIyRFQTW6/ol2s472Bso9YSTI5/JUWj7N5iadVp18roCiKci6wsLSGpXyTcyUgB81kYQeEgkJq+OhKjIJ3cRQ+ggFmZXqLEFQIqUZbNVqbFausm9kN54foOtJFDGDrsq4/haECSIlRRzKlCqzSLJNT6EfSTKpVTuEnkg22W0APC9GVlNIioyqxERiD41Gh1TCIGGmkQQZYhnDTKLKCo7n4oeArPDaufOEyCi6jiSKTPb3MdnXix96bFSqPPv8yywtr5PM5FBiGVFXKA4MIsk6oqSgyxKO3SYlWNx/5DZS+SSSrhF0WZKUbYuw0cDQFWIhRpZEJEnCNBJIUtcwbVkdREVB1g1uzi3w2qnzVOotIkmgUMywf2yUfRPjpAwdSVEIYgHH8YnECCKJSAjolKsYfQNsrtxCEQ0Gk1lc0QbPYWlpgXw6TWpwhFRygMtrKxSRePzcKzQVgzYGpWqL+s15vPIKYbtBX7GP5a1NljdWmBzoY2p0hJH+PtL5FGIsc3Nzndnrr/CvHriPo+/9AB/+3z9L3Laot20am5v050wqzTqBqnHHsRMMqgJyRuL8+gIbm216lBReZY3MWBpjYpD2rW16Y50YiaYvcml2hoGhQfKFXlw/oIjDW04e5DsvvdIleYoaWr4XN7IJHQsrdti2llD6RGRPJgwCxnIp9OIozY0K9lKZ/fuOUM7qnDp7FXfRRQjbIArIukx+MonRY7A9U2EsLVFz64wcGebFp+fwGyLJokGhXwU5ZPFim2JK41/9u3dxZnGZr3/9GkaQIJ9VOL5vL+aOXryr19k4b3Hgg3eRHA24+M0zWNtpRvpF5GrIS6fn2fmuw3zozpN87y/+moGTO2hcuc7XXqwR92dICh69CZP+yRFW5XUSB0fZL2QIXrrByJjK5mqH1TLMtjrsGc5QGO2lf/800UCeU997ndF2DlXzSLY91AQoRsgX508xdaifh/c9xoUXnuPcpdOYiXFuS+3n5vYyQW+WlfWrFFYF3vvPP8q//dwfU681qK/J4PiY2YCph3IUchLL39a4753TuNEG89ddAm0DJZdAyMRolki91aQ4pnDHPpXTLylk+zpUay2MZA9Js0iMRGV9nYapMCkmCVJ59h/cxa35GWgo2FUIMyUSAXzvxQb3Hd7PtfYlSrU2lXmf8QGTWAzYMTrNytYW29sb1IOAQxM5MoUCJ/fv4+Lpm8ydnaFSFdGPGewc0BmKJilpbTKyidBeIlUYZThXJK1FFLO7uLZ2Ac9MESgShtLHHTtu58bKq5y/uoKcztJfSCAoAXknyepfP8tF02T8nlGcc2u0tQaW0EZSk+iRR3VJo2+vxIEHdjH/FZutaIbj9+1DC+fIZqYpCnt5/eZXuP3292M3trC0BkLLpdMpk9OHmGsukehR2JV7lNm5v8PQUthxADqkzCnUyMX1S9hRG3STnLqDntQwogTNjkMQNghchzj2SCQHaTsdOn4FXekjbfaQMYewrAZu0MYwsxCryJJJMddH6AcgiEQCxGGEIsmAQOD72I5NIpFAlkQM3SQKBQRBolytkcvnECQJOY6RkgYCMYLnE0ciciJFJIkoAhCGuKGP6EWopoEmiASRT+TGhHKEpEkETogkm9SrZVRNQJIU7HqTTE8eLwBfEFFlkcjuEEUhUhjiqQrbjRb1jkN7q8JWeZNOtcLG+hapnjwri0tUl1dJmSq6GRM5DXTD4IH772d0bJBUMsQwQwq5DKqcx2o3MJIaSjZDKIqIiomARhC4RGEDMfQQURA1E3yXmARx7COo4HtVVKGPSAwIJAe8EFmIEaQQP06iiN21ukgQCcI3QKdhjCB36wE/8ohlkTAOETsNgu01QllDTiQQRRlF1QmCCFlUEBUFQY2JhJgwkIgiAd/zCAGr4xJ4Ap1Ax3YsAk8gDLvn1Soevufznp/9ReEnUYCdPXt2tyzLT+zYsaNtmqbz/+/r/I/gEPxU/3hkWZZ+69atZBAEj9x+++03/nvn/eiGE1kmFsTu7pkoIkoxHatDpVpl9/QUs8vLJAwJQ1Npt1oEfoSeTlDb3iZXyOC4MRevXqNZ2+D2o/cQ+T6t+jKGnEBXBHwvQI1DdEVDkDV8y8HzXHzPe4NyKEEUY1uNN0aDutAwWZRAhDCMiAiJ3/ADxLGALHdnAh3fw/NDenr6EEOFVrOBIMmsrKyxsb5OMZNkfGQQKXYJHRs3CAlcldDViYlRVAVTkvHdEF1Q8CWl6y8wJNqWRRjHuJ6PH9QRRBdEn1pzm6DpoagaiUwPolzFacck0jZRqCLLAUHcYbtdJhH55MwBCulhLi8t0mi7tO0VJEHE82xaThnZGKfpLNOf2EcoZlhZWmAwN0wsuMSBiJHsoWV32CqtACJRGKNIfUSegarlMZKjeIHLZuUmQwMjFPIJDE0hCALSmRTVchXPjggkBS+MEESFYq6XE0ePs75VptZsEbY7pIMQFQjCiIGeHt7xrncyv75OrWNza34RORIREVCJIPZoWDZ+FHD84B6kbAofAceykBSZKAjJhBFRLoXn+8iCgEj3Czb0PcQ4JpYEktkMnudjtTsU80WOHjvKi6+9zsToBAd2TZFNGuA7dBwHyfcRpO7OlSSqCHqEZUe02i6FXAclnUa2PBq2z/zcadzlVQqDGV5bXmGy6rLneIKpYpFQcNiRUDj41gdJK0UqEcytLiFZHdbWVvjzz/0Ze/YOc9/JPYyMDpLUNbZW1nEq6+w9uI9QGaQ2m2ErdPjLz/8l9991D+VWhQCZq+cuUl9ZYvfOXQxNjOEIEjetJSRbp2dkivXNq9xcWGT/0V1MHxjhuW9ewFpf4/7f+Bh9/YO89uKzbDgWO6bG8SyL8kaVazcvsbg4S7kj0LKrWK0KBw8c4OSJg8wuLBCadUb3D9BY3SYjZykUd+M1tzn35BxbVRc3DthYeZX8pMnJQ0MIb8rx+hMLVC2f+x6eYnwkw6kXZ3C3Zao4lMsCUVRnoJBBGpARYp2o45AsaLz9Zw5x7eotNpwYUc1h10MOHRhnIOczpW4y5MCaJyIlAzTToWHbrJ8vMz2d4OpLN1C2LbZzEh85Ms03P/UV/vTUi6SfPkPkZugIPifGDNJ5gR7LYpfssT0ywv6RI/Q5dZ67eJn6ZoFgoECymOXIUB/XnnyGm+cMpr5/lqFH7iNXcDkQbNGUwMnnSBoiud48H+zr5czG8wzYLcL+JNXCg1gdizPnr7K9KVJwkpy45zbOXF3k81/6Lu9+8CHObcww88o6gwP9VK05trba7N03yo4PSfzd377AWx56gJnyeQqDLhlEzIRJeaFOn6hQXbVY7A8wBtN40STLa5ewOx3e8ZZ7sVYuodp5Jqb2sWdohJZt07q2SH9fioYXUWnVOTx1iKFMira0xNWXLrFqlznwwB5KyRY3z83SO5DCCztsbVUpFmQKvQU6dYE7d+zgyrmrXDpXJmhlye/32PeQwfX/WyZ5h8Bt0xrPnb1GKpmiWV9n218mFDr0NWMunZvh0L5d5DJpBGOF1c0MKTXH1HQVdzVCK7WJCttIRpabSYdAdenUIqZvz1MtdfD8IrVmja2awcpci9Kqyx1372N8WuPS61XmSg53HzjBhfPf58B4jr6hnZTKt3A60Ds2guusEIQBMg2GiuO4mkDHmcVMmGhGHjnWkFUJXUnQbPiEgsJg4RA13yZtFmk3Z4gjE0lXsf0SoegQduoouoFmpBG0CbLpfeRTwxiqhFBeQ3YtMukstmVjGDqOU0MSIJnJEwkmUQREEZ7roSaMbpEqgGEYCJKMQISmKPT3FfH8gCgK8XwRoROiGgkMI4ff7qAEMZIU4bghHctCFETSqSSuZeGHQbdAFgQUT0AMZFzPgaRAvpilvLqBGEUopoxjW4iaTuh6hJGMphh4jgWKjCZK9Gay9BdkpKkJwiDsevI6NQRVo1lvUS/VaPkePhHXzl1keWOJ52e2Ea9tsnLxMnG7SS6VYHBimN6hITZWN+gv9jE2NICoeBy6YydDewcRNYEoEoiIEEWDjhih+xZCXKZuC6SSE4RxFwwmCjJC1EIIY5xQRJNCiERCP0bQNBAj4thFFFwEMU3gthB9CJ0ISVQInCSCMognlFEVkahtE3o+XiAS6hGqKOC3QvzIQRB0VEVFk0OCwEY3RZSURij4CGIKPwoIQpkQCd/t0Kz9wx4ZAvjIRz5Se9vb3nbh8ccfTyWTyX90pOKf6h+GfnQwGQLEEYQBXghBGFCu1Rgc7GO7U6fZWCOlDWK5FlanTT5dQBAjxKCDFBgYqTRuVSSdHuTy2bMEXoOh0WHUhE5AhJEy8BwPTRTRdQnfsQk9D9MwcB0HSZII44CQuJtOpMpErocgyl1ysaYhIpFOpEGAIPCIAUWSiD2PcnWbarXO9naFwA+7RiUiwiig6bRpOy0WN7aRdYO+vj5qjRrVTkQmm0P0PTZWS2hykkTSpNVqEkUho6OjVKtVXNdF1gMct0bCMNncWiTCBTEgijUC0adS2iShqwSehSjEdNwamp7DdgJU3cPXQk5ffQ0UFyNh4gQyoWKw1Gng2AEdLHIFgXZQQhV1FE2nHdaxrQgv8hEsGd+XMYw8lrPG8NAB5FikUW0y3pfAjcp4oYdmJMmmMwR+hO8FeG7E6krXA+KFNklVpqfQQ4xIqbRBOp0lNTZAEPbTbNlUmk1mL1xgoJhneKCXPsNgdO9Oas02k/19LKytUWrUaXs2aiwiBD6Hd+xkenIMz7IgChGIsawOQiyiCBKaLiKJKhLdtAfPC3FtH18MESUBJYzwfY/IdXEtm12To4wM9iEKAmocIxGhGDoQUiqVkWSFTLFAkJDIqQVyaRkrbfLSE89w7/EHaUXXiLJ9xBs5KoUKrZLF8SMPII+MIvse6Z4kjUimICfRFrfYCla4evU6vb29XF+YQfR8fu1ND2CoCo21DZLlJpdXZzm3uMba9WXuWliiML6HIW2UtYbOf/r63/DL7+1lavcIK6UNQqtM7NsIYcj22gKREvKW97+TYzuOkJZTnLr9En/9+c8RxTHf+bPvUBwZ4/YPvpd73nov//VT/ztxKPA7n/x1tttlLCdmjy3QaT5EbybDX/71N5ksHOLIkd1sbNzk5vwpGrLK2MS9xGWLGy9skr97iF0PjPGV/3wFzcgzPpnAElxk32d2vU7F9RhKnuZdHziB0JflxgszfP+/nMNxRcxiHitKsFm7TLPtoKs5NENCzzk4VElYQ2xcXWPm8haeJOAJNXaPiDx6h8F3vnaKK9UAUxaYWbaphgGf/hcPc/6pi6zUVA6EBq+fW8VJxLzrsXu5dfoqf3LmFEq+gNuRqGZlko0al07fYDKfZLltke3rZU8uxF+4zlW/xOFf+CBpWeHy5UvUyhb7ew1O5UaQx/fx7dNPIP/FMxw9NsIXN+a5/8h+CsNF1Hwva6t1pNYWGdvnDy+/TN+qw+CuPM3CLMXHUqx9x2Tj0jKa4bP7rXm81xSe+eb3ufN9b0LRk5jnGxwd6uV5dRMr2CI9MMjBB/bRCbfYdTzJWnmZWCpgGlkWgnXOdzwmhWF6xwoMnteY28oz0j9A2zapNNdIORpve/v70NJTXHv9Cxiux3devcHgHT47x3djz3W4tnmDc69UsAdjzB29jGwbNK5vkS/o9A0OEQohz12YZcDXSI6OUCq1GM8XcYUtgqDGsTvG2W77JI6UaTrbjH10gP78HLJWYPxQBr+jQSIm8hXCZpHdu/dRX28wVhjlxReeIGGMM/jWOpYv0d+zg/OrX2V9o02OXZQGljn2M7tYWFjHvbnChuewfMuhVM8xbGQYuWeYwL5KS0rwl3/4Og+9+xDDk2O0qk2uLttMH3wLeXEU0Y1puA0iXSGn5QkzClarTaXagEyEqZ7E0CRW6tcw1BJ9yR1EoU+pcY1sforSZh3cIr2xTLt2DVtsk03u667iyxPUWvNk0vdBpKEKOdJmioQOililVYsxVJlsOo+iGrQaNno+jSQqdNotOu0ARQmoVmtduJZpEkUSpmGCAJEkE4oSmqEThzEQE7g+2VweLy2SUUJuXXieVN8g5AfpKAZaHJMSJRKZLI1GC6vZwfddEoaOH3q4tQbpTBpL8IglgchxSGcNhFSS0voGF85cI5Bljt97N6ph4ocBkgKuG4PtEMYRgqwgx90dd0VV8T0PX9VQnRjdk5gcnURQZTRF5c79t1H3auhmko7rsri0TrVcp1lvUd4qYxZT5PU8mAk+/gf/Jx/4uffzR5//DPceu43jx/ex68AEPTmDoBigyTZBx0bTIKXIRCtrVBttJFkmmVIRjRApLaPJMkEcoiIiigKx6yIrGm7kE0oSYiQjazmczbO0HA+zZx9XF5Zolytsr0BuqM2xNw8TCR2UQMSQs4iyCLFL5CWQJRVJVIiFiDAMCOPuSFZse0iyhxLLSKHbjUo3oKj/44Bm9fT0hB/+8Ifr/6Pv46f6x6sf+Z2e0FSqzQZyGOEJEQnTQDVVXMdiobKO1ShRMNKk8kU67TJ96QJbpQ1adpNEkGPp8hl27DnE0nqdpcoCB6fHET0FMYB2u8ULp1/nwO69TIyPU1peRVQVZN1EVbregTCOESQJ1eymDHmtRndXIHRQNQ3fslE1HVnTsR2nix+PYyLfQ9FUioUitVoNzUzQrtVxPZtiIYeZz7G6fIuCk+f4XffTtD0azRbZngxIEoqiUq5UEZQUsRBgOW3aVoueYpGbMzcZGh7Gsmy2tzcI44ikqZNM6AShRRC2CUOJVH4Xy4sbGEYNXZ2mXKnRibbI9meIkTF0aMcNsoNQXrdplMuIchIllUIII3p784S2QzIexS+7lLavs//gUU4v1dnYmGF8JMfg4DDtahvX3cA08jSamzSr2xzafxsbpVnMtEKMQk9hF/OzVzDNJNM79lOrdpBElXQ6ieO2UUQVq+OgKArDAwO4jofreiiyQmFoAK+3n3hiDFmMIAqIoxAvsPG9DiPZNHvHR2l2LGq1Ko5lk9R1Bvv7IHAR44jA9wiIiaKYYiGHJqnYTocw8PEjkEQJVda63hC6BvDQDQk8j1QyiaaotMpbyKraTbuKwHW6u0mJhIkgy4iahudFDCYHiH2fWLTYL5usGjrNcIlU/yGc2GLtxiKPvfstJHv3kECg3a5zc34WrVJmdaNOuRSyWr5KMKzzub/9Aj1SgeK+Sa7euExONVm6NUukSEgJHYIQFZPcrgPMhAKH0Jlr1VhZqHDsxN387Xe+Td/3BUZ2DLM2dxPHhps3bzGxe5CP/rMP8s5dd7F8c5XXbp2lJVtMHJlianScqfEd7Nis8753vx1nrcRHP/SvePbUKZ76D3/AoYP72LFzJ1uRzXrQpLm8jRnX2FXM46ye5sb8ZYqDuxg0pildqtDeXGP3O0+SmOjhq//lCTK5MfyWg201kLGJHJtUu8Uvv/NdzI1cZK1Rwv3O6+w9vpPm3Xdw88kZ/PUGHX8DPa1SqytocgMtiEjZMrlsElUoIrUsslaO0tUGiZTNnswEX/jsC6gDA1TigJeevUZuJEm2f4xYhESpxp17x3m2tEhnQGLocI5byzN86alV+goFBlWNodvSjPfv5tVLz3Jwx+1sbQXcnL+KlS2zWhmgmMkhqhF7hkeoX71M5dp1zOwuitMpHtm5n+UK/Mqjv0JlvsrcjQts2hLPP3GR3SclepPLXF1q4FfrvOmRO5ByFfSCSrK9k28+v0jv5CWOfWCaL5xbY+tJeOytOZ6+tkagr/LNP/wO7/3EfTy1tMaLz80wcDSF3ymxWcrjiTBzfZZjdxxmZVUnlB2GjW12f+RXsW7qLG0/y063ySthiVvbMxwcyVEKt1CzQ/TsOMaWeob1009y+eY2E/IUl18qs2O3ycbyFWqNDh3FZGTwGKXVK9z/vt380e9/B110yGg9nHzTCV74yhlMVWAx2UCyM+yb7EPwXSRjDbdooqZcdhWb9CVaLK+K1K5VWekMseR0cPd49BcGkMI6uwenGd4xyuy1Fzkwuo+bKzP4xhS3rs9S6GvSf9seNjfTFIeOoYRnUVc7mKk8y+WQTM9evvgFj3vvv423/eoYzdMNrp8+y+78PoLBEnYiSzuQIJXgyMF9uG2ftJBj/947ufTE49w8f47j738P68svs7pwgVy2B1lWiXS9m+ZmiixvXEAVM2xtbKH2lZFEH98BXZXJp8dZXp0lk5sGVUVVZUJnE6fmEKdk5NQgsllAUZtktDR6PEbo1XGcNgkzS6O9wsb2FpJoYiZ76HQaRFEXBKmpOkIMo4NDBHHUjdx2nG4oRRggqCKiJGC54Rvpdz6uH+BXq4xKGtdf/h7nX3oSUgbFA0c5/uB7SCf6EQQLy2kxvzDLwUNH6HREQiEGSUbtLVAPg+7nn+Ohej7Ly8s0QhdjIEufP0kIxGKX7KsJYneMKJEiUiNa7Tae79FutVB1nUKhgO04jPb04SYjtswmDjEDikq7VqGViAjDEGttg4KWoG94CPnAXkJZRIpB9Sxa7TalRoveoU9z++0neN/P/Dzf+fJX+b3/44/ZcWw3Y5M72TU1SXF+DuXOIxzKCLzyhb9ieTvDii7j6jp7h8bwWjV0M6Yvn2Lv/XvI9aXxRBctmUASdQxU6Lh0pDpeEKAPH6cgqPjuGnsP9KLKRZqBwdZqGyPo+vsEowdUCc93UdQe9EQAgoKACLGGLGeI3ZAg8BESbUQ1QohE4sAiCEXCKE0siOg/qQrsp/qp/gHpR/YQbC7PxjWnheJ4BJqIZzmUmnX6e/vYajdpby1y1+33cW1ulthvsnNkL1vtBmo2iYpIfWULWfZZ3prnngfeQ7vh0K5vIEQqyyvLLC0u4DTbHD50iOmduxA1hRjodDoEUUQYRWRzWWzbJiQm6LRwXZ/egQGiMCYGEERURUWWZFRVJYpCLKuNF3QNxIZhIioyftSNjAs8H0kU8RyHTrNB4HrIsUiMgCwrSIpMx7KRJJlMNkXLLVNv1HFdmzjuRqCaRgLfj1hdXSaRlgk8H1HUcLw65fIy+VyRRtyAUCafTtKq1oiVKloij+OZ1KwFZCegL9MPqWEuLb5GX6aA1dxEijP05Ybxwm0Q68hCnmazQyKVRJaytAOFze3z9OR7CN2ITr2DIit4YRkx9JgcvYtm3SEI6vT1FygW+ml1WmhSL309IywtrqKqJqlsinJ5EwSPYn4YRUl0fzdNp9XqkEgm8D0fx3aIowhZlnAcm2w+i+u5tDoW/f39iE5ASIQfhkRxRDaTxbVsbMtCUAV0qWtgjiWJXLFAuVKhVq5RLGbRNI3ADwn8AF0z0HUd3+/yI4LA77IkpO77wTB1oihCVlREWUfTNMIwRBRFLMdF0zRMw0TwLWphgGBHZDIFXnv9Fcrf+yaPffyTnL9xjcuvP0/r4iztRhUrLzDkiHzgdz+DOrGLs9cu8eU/+ku0fJ61coOCqLE2cxNXilBTSZRIoLy+hZjUaToWghczmc3w1nfehzGUYXtmhT/72y+jZxPkZZOVlQqduoXtN9ixZxc9xWEGB0cp9iXJFFVWFteobFQprawwVkxw9I793D19kCe+9Szfeuk1xo4cJCXCaD7ma6+/TDBwnNHefpRmi4KZJjc9zOSu3eS9ED/2aUkOffl+zl26Scte4ciBA3zz1Wd55Dfewfnvn+LWF27Sn9fxRYnICLlwfZm5Ww3G+lx+8QO9GD1DvPjlTS5cW2JoqsjJt8tkdu7mq3+zyPrzJSTDY3x6P064goqPHIEi6zSbWdrRBrXOFg88eC+xvEWp1ECUdKLY5b4TD/Hc908xd3WeX/rZY6Qf3s/Tf/R1evS9XJm/SpQ3mBrSGdyzl3Smh/rNTV5++jm01TZaT5YH77+dwz05lhoCtWaDbLrG4M//MqlGh46/wZStsn1+nmdWrhMGHTKLIZ7VoNKfYKRTQx5L8rKwSaa1g5V6wNvueyv+9iJ2NsfN9TkSsc6Nv32KnR+YZKq/B9vW+N4XT3Hn23Nk74z4w9+1+aWfP8yFL5/GSsn09vaSlWHv+6b40leWGZ5osHlrmx2jQ/QdnOKlL87Q2xNS2DnF+uI19t7RolAfpnNJ5fbfHudv/+ML7Dv6FppOjVq1iqXFFLKD0NxgamoZc2WaJxYT3GlO8++/+nX2P6By213T2Kt1KsvLiOVBcpNtVhMytQseRiFmcGiAdz70i3z79Fdxe1cYNXKEJRe3WcZyNA4d7WW658MUBYUzZ7/J6ZUSutdLeleKuOUQUGP3aAI0g+biMulkgkxmiBs3F9lcSbNYfpY773oXHSXEb61ydHI/iZF9rG/P4ZevEK/HrLw6S8/9+3nl7C3e/dv3MPmURLvicl2q8q1XZ1iYW+L973gve4/IlOsZ1ufPMjCcZur2B0itbfHa7IucfP/7ef7P/5Kp/SeZqV9jJNUDTpVKrcrk4GG2tzcZ2JWlVU8TtG+RSI3h0EbTDCJHwbW3GRnfz1p5lYxW5Gbpafr73k5vcYzy2jkkH1QSJAd3EsQVUkoKOUpBKGKaGWrWLG5QRhINMpkBkslBwlAhnepFEmQcq0PS0BBlmbbtIEkKkiQS+j6yJBOHArphIEgiTuh36eqNJq7jsDq7zAsvvU6t1aBjbaLKDm958BFO3vkwuiIhiRKNjoUoK8iyjChJCEQ0Ix8JEcUOEeIYOWWyVa+gqxop3SSTSmHZHSJi4jDE1Aw6jSa2ZaEZGmEYE8URsiyTSKURJInA9+lprnLpudfIDA5hjfSiFQoYnkAilGinMkiKitVsENs2gh8SxhFSQqPSbKErKoauY6gqbadNpidHrligXm4xv1Zie/0axZ4hXvniF2mnTea+8iRXNupMPXySt997L9Xrt3j5zGnEkQEGJ3eS9CQePHw7y4s36dS2UcSQYr/B8M4s/dMZBocmkHUTQWvjxSGKO4DXaiB4HXzXQcma+IkhFDWFGKwj2SGilCGK3a4tOQqI4hBR6u5Qh76H7wdIRl93fEnugCAixgLgEgUmSur4P2gPwU/1U/3/0o/qIfiRGwKnWY2ffO059g0OYysxq7Pz5AcHkGOB9VKJob4CcRjRsW1kIaaY65odk/k8N+dmkMSAoFVj1+g0spqGdAHL81HiADf06O3tAT+iUasjSgqNVouEIpNOdfOA4zjGcRxiAZLJJK1GC13XMAyzGwsmCCQSSSRRxLYcICaKInzf/WHakCCIIAEiyJKC5wVEYYwkiIiiSKfdxHWbyLKEYZr4QYAkStQbdTqdDjEhuXyGTqdNo9FAVRU6HYdUKkmzVUXTQZAlwgCanU1se4vxsQnqtTQ16zKZxCDXrl2mdyBJOptBVgXmlxaQghBTTVEYncILWmA1CHwBK1SJBBcxlimVtvD9FmMTQ6hSP2HUoVVaQtFStC2bRCpPb/80Fy5dZGBUpzcu0D88QWm7hCoHtBpbCEhEokohVyAMBCYn9qFKeTqtCFkyiSMZJB/NlJFECc/z0FQVUZKQEPBDH0mVEKIYRVJwHZfQD1E1DVGQUAhpeA6BArEkYjfbpBUD0Q+JFYGEkUCIBRRDR9F1Njc2KW9tMTg42CVT+z5hGKIo3WsSg+e5yKKEKMs4nouqaghCRBSE2L5PJKroqornuWhatznwPY8wDJA0j46gkRUNkoZKtVPlf/rN/5V3TebZcfedjEzdzTMzM7idGtsbS1x68Xl+YXQX+cdOMD+3xfOXZ/A8sGOH9e1t6rYDjo9dr+NZDolMCtmLKCRSJIf7SJkyfVEHX3GIIpkbG20WGg7bK6v0aAZtDVK6TE8mw5G9h+jv6ce2OriOxbzVYKu8TSqpI4seO9JZNitlZi7eYPC2faSEgPpSBTEzypH77yWXMqlsbSEoacb7MuzZMYTg2VCv4MtJrq1tsbkxz1pti4/+k4+zub5GLbWJV/VYOtOgbILfiXDtGqrvoVkqy40qew4m0XKrXPyahK1WMGJQlX42qnOM5xu89bEDfP2FJW7Ot7FbGiod8oaG60ZsNEr8zr/+MONjU/zV332dkaOjPPH4k2RCnb27J9ncXuVk3zRGYYBaW+aYp3FjsMnjp85glvJUWlXe+kt3sVSqcWTnFJuVdZQoRELk0vk5tOWI6+dm2bdfZdexNzF88DiH904zu71CqHo0BJfN585y+elTHDpxgqmhAdpRwOmzz3Hb2AM898xZnlg9w3s/cpzNV2/y0FvvYt+dj6L07mIgKWNZS8yvlNlatNiozrJYXWChZHHz1BLqepsHPjxJ/1TI618okR7O8/I3Vjh2cIqgIJMtOrzp5w7z+uImG68u4Ag19h/fQ7ShsN65xPFjRyGQmJ+5jLolUb8rwbH2NDOzy2yzwsl9R7lxa4FsNsfO0T7WNm8xVwuIakU0oYfRjIzrNXBzJYaHB1mseURpkwvfuo6x2+SeE3u4OXeDjl+jsiwwUfCY7BdYuJJjfrZEarfL7XtziIqGyQQ7CrsQrQ22rQRhby9uzcIXNkiYOn5jlRY1vFqJwO1FlDXC2KCnMIxneWiSjK5KrC5dx1nz2Tk+TTmukz0ywo0bizz28Cgvf/7b1NVhRpxJ7PYcydHdXDq3wJ33H6RoxLx0apv1VpUTD+2iWiqxvS5hjugc3pdgKHknz/z1Zzn4yHEabkzCrTLnb1LQRhiQYXb1JtnEGAW1nzX7OslCD53VBfp6+nCkkGx2DCFsUNq6TqRkUZNTLLs3SEQiB4dPEgd1mm2XSIoZ6j2JEOnUmwsM9+9DE4dou3MsrD5PFAvIUj8DA9NkU/04jkAxNwgRmLqJ1alTLq9gpjIk0zkqtQZREJNKJkglUgiBQMexkTQFWddAFGi12wS+D4kiu4cLtGob3FhaZqNhMzE6ykgmjd1xAAFRUml1LGRZplDMQRSCGxH4ISgybdfGMEwMVcVutpFiAT/wQRJQExqCJOIHIXEcUa/WMBUZRVHQNJ1Ox8JyHCRFJpXK0Lw5x/t++SN0TJO3/dx7+Ll3/wyDuSItq01GFFAFEdf3KI4M0wh8LMdD9GNUUcaNPKzQRU8adJptejIFBCdE8GwE0cWPIyQlSyx4dNCw7RLf/e7TfOsb36BX0+nv7+dytcxtb32ED73zfbz+xW/x8gtf5K4H76fasZEwEBwFXIHlpSVG9AwHDqQZGi/QM9FPcSwPYYfa2inmt1wcZ5CgZaEbMfe+9SEcf4vIa6OIaWRDJ4oCRFFFJAG+ArEAckTMKoEnEEcKkmwgiiCIPggRgv6WnzYEP9U/Wv3YG4KlhZn45tYSY4kU1dDCLtcYnJpkY36FPTsn2ao3Wd9aQBVienuHqTcb9GV78P2Ate0N3KDD7YeP41QhlVFww4h2M0TBRkvo1Op1PNvBNJJUanXyhR5krZsUlDBNoEskzmQyrG2sk03liOIIRVbwPRdNUQh8j2QySRSJxHH0/7D33zGy5fl1J/i53oU3GentM/m8q6pXrquruqraN43YIpu9EmcosUWDlQBShpA0q5Z2SAkQMBxBM6Q0omkOKdG3Y3tf3j9Tz5v0NjLDm+vd/pFFanZGhthpzlDaPkACicjIiHszgfj9zu98zzn4gYvnOSiKgq4bJEkCgoQoSaiKgue55AtFElHEHvSJkwg/9vBchziOUBSJP6kq6Ha7kIjYTp8oCsnnc4RhyOrqCtlcjrFaje36Mo4fMj45xcDdoT/YYtDvk9EMrLxELjdHq+2xU79PuaIwUlxg6EC3v0EiyjT6+1SMIlrYwsoegkye/c5d0ijGswPGR4+jG7C712B163XyRhlZkpBlmUJmjHZ7jyTxWTz0OO29ddy0R7ZYIPEkqrkquewoujFFqVCk3W6xW9/i0PwsSRLiuS7ZbAbDLBFG4Hs+aZxQrVbxfR9RFIj8kIx20DgtyBKiquEnEaqm4vk+QgJSmqAKImkcEwsQCCkhAgVdQ0pEREEiRsCPAlRFQgaCIEKSpIPRsDgijELC6KCfQkCg1+3jRQmFYpF8scRw0EcWRVKRg1i66KCY0dR1FElm2OsiCQpJYqBJLfqtHep7u+QsjWDkEHJ1kt/4+5/E7LY4fX4U4+QRXnz1Nl/76ku8Z2qa9/3QE3zhcy9hXnyC3to2vf4Wk7URXnvjFlHfxazmKM5NMDsxQTS0CcOAuZFxXMdmGHk0mw02lpf4f/7Ez3D8gQf4w299i69+4Y85e3qRomYhhT6u0+fWvbuUKpMgWiwePwtGymZ9g/pugyNj84iawvPf/jqC4FKrjvPKy9/BKtY4evwimhDiDIccnprmicdOsb7T4s2bK2glBTuIyVsmi/M1nn38WaSwxZ3t1/GVUca0U8yOVomNkMbNZb565TnWtltkY5OBNiAJI3brEaWygOCLOEGfYeATJSF7a3WU/pDyjMp7P/4Iu94OL3xll3xcYSyvMjqWpVoU6GwlPH9tl4/+o6d47cXPcyQ+wdNPnON66wb1rTY/dOH9LF15nW9cv8PEQ0dZvbfDytI2H//oU7TCFrtdmdp4lciVqI3Bjhez2x5S3ujyha9/B6su8dThBX7gqYcZWzzM5lyW7SDA7W9xIi5x9+XXOVya4Csvv0HHi8ibGbbX9mjKA27HcPLsHKfPnOOZDz5B7/490u01VtdWaTRslBEfMTtBLmMwkldxRhOev7LBm1+4waQ1x8VzWXbENpffbHIqM8rRfJGNbocrW8s89q4KQm2Cja1lzp14D6/c+xzjxeMM3H1it8vphxYYNGManstDCwN+6/+1x7M//SRiJeXeWzfIFHSKeRPPtTj/2KO4TZ3n73+ZpU/3+Af/4O/wyZ/9RY6clpmbMVkduExfPEW8vQ85kyIF1pzL9FtdBq7G1iAhrxd55vEnGOIxP5qlv+riK11yoUSUkTk99wPMV7OIiojhldjuPsfnf+lXuZuzqeYnGK+VKY9peL0UUzFottfwwoB8bpG7y8uMFUrkqyWOnnic1ct3iEyLp555hK07t9ArCbZfRRi0ad82uF9ok4p3oG1REF3U6jh1e5OqnDCdOwSpRTEXs7bxHFOP/yWE+zb33nyFyoNZCnqR65u3sHSRqUIBNxERkjwFeZfN7oBANSknEnYvwjBMJNGiH6zhhEPyxTnCSKUVxTy8cIGk57Hv3MSXDbJmiaKs0R3eYWb8Ser7PWRzgKyUUIVpLKOKKEvkiwfz/J7tMjM1it1vkSYuURAgKxayZhIjkyuUEZHodXuU8kU8LyaMDz4fVVU7CFNAQCAlSH2C3g5J4qEXpiiNH8MLE4TYJnJdoijBNE2GAxtJkpCElCSK6DZbWLkcZqlEGEUMW12SMEbUVRTLIkoSJDFl2OugSTI5w0JGwDRNHEJ810VXdVRVA1EkjEK6wwHF3DSRLrJX32NmpEYc+cSxR2g7DIUhxVDgC5/6d6iWwUMfeh+F0RqmoON6KakgoMoQRS5JFBJFKaKiEZsKSSigeC6+EaMqHtawTDdxqc1ME8QxQ7tP33XxhzGNlW0GvX2OnDvCZ377K9y+d5WxsTy9+j6NzX1K1XEE3WB3Zw1ZzGLqItMlnWPzozz41HkOPXge3eghEtAcZLm/useFc9Mogk/shkiSBpJBgosgxpCKpHGKSIgghMSRTwrIchlR1UiTmDQUQHKRrKe+Rwi+h/9i8V0nBDvbm+n9nXsUZIG9QZecZmFksnSbDaoljZ5jEdKAMCCXGafR28IQDdLIx/Ns5mfOYuUqOOGAJFLA87CH+0imgSAL9Ps9qpUR3KHLSG2Sbn9IFAWYhkmaxGiadjAS4jiYpomQJESCTOAHxMMBEimxAIkkUs4ViUWwnSGkByMupmYgSBJhcKAIxGFAmATIikwiCYiCgO942PaBtKqIMrZrkyYhUgI9Z0giRzhDBzOTxdRk/KBPKIAsGJCE+IFDkgoEcUwiDvDDFv1+B0lxMaRJOt01ZmcXcf2YKG4ho7PVbaGKMmqcMjZ1kmZ3EymO8B0PQzfotOooeoaUAQh5etEAUVDp2Qmz0+Ps720hpC699gYTlTGK8gg5o0A3jClUx/CjmKyeIadVECSTII0Q4pAo8ND0g8lIXcsQhSnZTBFRPOhjUCQZRVUPmprTFFlRcFyfRBBRFPmgJEdRiKMIWZZwhg66ahAnESkpoiQSheHB+JWkIGkSaZgiS8pBp4JwUAYjCQLpO4Z13z8oSlMVmZSUKApJ4pQoTtDMLJKm0+v1mJqcRpEkBDElTUNEQWLY6yG8M8a1t7KC3e0yMjfO/modR0/AD0gcgWJOJq+X+Nl/8UucfegIp6bPMvQ8rty7jxD5OAjIq0tMTE3xIz/5U3Qdn9/4nX/L7UuXSdIQ3SwwOj6F3evTbDcx8zmWl+6jJmAqMoeOHmFvt4sc2Pzws+/iue98nczMDENRwrN9ilae+s42S+t3yY6UGPowdASKikahnCEQXebnTjA2NY3jhdy8e4et20uUJIn1bp28JvFP/+7Pkz13lpfu3KS3us7yay8zcfQIo5OHeeKRixTGJlE8H69Z5969N1i3L1OeWkBuGhhCDkGVCbt9nnv5Nn42pRO4GIKIXDJwOwOSJEUWdKLBEC2XY76sMyJm6OFQb+3yjZcusXD0OE88MsdTZ0+ycm+Vb79+g2vLW7zn5BmWl/e40rzHP/gfP8q//O//DQ/OnuGZJxe4e79FNlMjdPuQ9bgf7nPn1ZCVm9v8jR//MFF2nYZgcrg2S0ErEfsCPdMnvGfzmS9+FSmrcEwr0eg53FrZwN3xOf3ACP/t//DTbN7eozQi89V/+wZ7deg0WqytrnLhaJ6poyfwBj7jJ8boiiV+4L0PM1y+x4Ss0Fyps3btOs1gyDdXt3j8kTN02hGOESJrHUaEiLhq0lRshFhn7ZsNnCjh2OMnmDKG3P7WTXb3DLqoxKLLuz82R3egkO74zDzuUW+pOIMB9bUGxw4XqI5lOPJYjv636nz9aw75Hxwylz1H63qPOOni9TwajTyPPlPF3I8Ze3qWr315n5Mjc+zuy1y+9jWKUwJx5DExeYid7XuEhouSyyH6BmKio+gRVmWEojXFdJogSTFv319CTjrUzsUMdxYYnTSouBInZ84RJQZTE7Ms3/5jnnvpPluFgMS2EWWLsuJTzY1SKc6gmxXur7zGwxffw1b3ZUJmOFx4mLIkMNy4ysbOCm29wNTiIWLFInbaTGUzKNjs9bPkskWigc/ofIXdXZ9O6w43vnyN4vEMTWNAKa+iphXkHMyUxhmutdlavUx14SztdBMxDQjjhLGRB/GCBtOjKXdW79EeqJSVCrZrk7NEZEFnb7jJII45MXGeG3efo7DwNGOCjLd3izgvgF6ikK9RycyzcvtlcsVRUl3AcWNq1aMIgk8Y2khyAdPIIosSRSsHsYzvR++MMYYgSHhxwszcoYOT5URE0VQEEVw/RUBEVxR0EVRiho5NpzdESLqIxQkCtYghaSiui5gmSKaBqSnIisRwaKMoCnEYQpIgpAmD1EfTVbKSju+GOIFPIIgIqkxWt0iDCD/wESXwXIeMab4zUpuiyAeHR77v4Xk+wjuquaIqBz4210NHQfATUk3BJwE/RDEsAs9jaekO2/UdtIzFqRMnUAXpnbVZRUhikihElBX0TBEvEbGdAAQRTQzQ0EliBy9JSAMbR9ARZItZyyASfDxFQFZNwp6NHXvousnS5hqO69Leb3H/5m2WlpbwYwc/jNhe32ZhZox2Y0Bjr8X8TImP/eBjLMxOMTI5iSAlCEGCb2SYKlZQsqCqEikpaRoQJx4pGopkEPpdiH1UdYQ4ChAVH0GCKD2IlhUSBcV6+nuE4Hv4Lxbf9djRvueQ2l0askcmCtEKNXbfUQS6cUSn61GuCDhORKu1h2mppIJGq7HL2ROnESWNwA9RJJ1mv04c+Zi5DIIoUt/ZpFwoEDruQc5wBJqgUhursLq6SpqmlMulgyxlScT3PdQUJEUgTRN2mg1Sx2Z2YpI0FKgPNxkMB0zPz5GmEr7rEiAiSxJJkNK3B+iGzP7+PrIoU66M4IQew/5BpKlRtIiDEFkVUa0SvU4XO/LwhzvIiUngS8RDmygZ0E9Txqvz1BtLiILMSGWMdneIoRsIco5A8wk1A10tILWgX2+QLxexYxU/OjDmOq59kGLRvI2S6DTaQ8qjWdb31vACm1JWIbZTdNEhkx0laO0zPzZJa2sNz7cxswZWdoSB4+Gkqwxjg6w2wqDl4rghsZVDrXggZPBDCTNjISoSCBKaapCxDlKHojBElsSDkh1FwcpksG0b3TCI4wRd10k4iL5LSQ+M3opEDGhZiyhOIJWBFEQBRT5oUI/jmNiLEEQBx7VRNZUoig5ynlJQZAUSAUEEIZWIk5Q4jpEkFcMy0c0MiqIQxTG+6yIJKZIo4Ay6DPZ3kVHQrCz9KKDd7XFn6T7NvT1OqQqpKkIiMAxiBoM+A9dgqpbl5//e36G+vUF3r87I6BjvPnccw9DxXZtb1Ry5NOabv/PrIGskzSYXzp5mtJhhr9Hn7vYuz7/6KioSJ09fQDRL9Hs94jig02zghR5Wrsj/9KVvgygy7aRYpoKazbI7HDJQTEJzhExhkqmshWfbmMUyu6srTI9XiAddJpI8mdNHuXn1GmZBx45gbuoMzfs3+fYXPsPfmCzx1x++wC1L5X/51lcp5U0+8uRDxLv7ePVVul6fL7z6PPeG+4SGyMxqQmfDZugkvPvJp0hMhfK544xVDNJoQKLoqFYRAkiGHq7v8Pat6wy6La5uD7D3O4hCilk0OXP6DM888AiXvvUcb3/uVVpRl8xMhcmzFe7377Au9qieUWn2A27ddDlSTjDE2QMVyFK526xz+tBxihsZ8rn7nDyTp75T59ryMsdOzLDZvkz+2Dkc26W/2+LbL15jf9/nYx/4AP6eT++5V/ibHzrDN2/3iDSNOHJAhqEXIIsy733qAcxiht/51O/jRj56bYa5B3XmZibpXN7k2//v/4GX7m7z9JOP4OzvcPfeBp3Y58iJBc5NzjFyUqHn94E5Xr6xwU4jJM6GZJOIzGhCGAm47QbbIzbSe6pYVwJaNxPajYjvfGGNJ75/Bn0kQ3ujzKmzI1xafo6ps3k2rveZPDTG8sv7qJLGxR8ziMMRxuRJVgKbUEmRvAq3bjWZfDTk7Tf6PJPtsXYtpleu8wPvfwqBOfa8HXw5Ym33GokiI2XLxJJEqZJy8VSJldst6ut71JMtOopBJPa4/nbC499fpqIAvortBezay4T72yS2wasvOMhHJ7gvJei2yJFT0wxbNlKQwY9Sbu2+yenDF4lbKX/8R5+mvHCK9555kt7lr3Mzp3Pr9i22vJCJKZ3ly58lnx1ldvE0z62+Rih1KSSLJHWHl776BicfO09lysBpbLHaDdi4I6BPKQhym8pISD9KGXZsVGImjpxi4IEniui6ie6JZEUF13VpJiJhlMHdbtCbUChnp2gE1yEaQ1bLlHUVxYNSeZSRbArxkJ3IRfNUrLjJIPBIIgG1UEHOpwdFWCI0e9dQZQFDqJKkIRgeJAmem5KkFoqSRdWyGIpBKqqI3gBJNjBQSWOBME2wg5B8dhxLCAl6uzj9FpvDIWI2j1LOI8ljFM0soeMiEqLkjYPDlzhGQiCJInr9Nvl8HlXTGPZteu0euVIGDYmBbRP6IQIiYpKQBCFhlKDIIpouk6QCxXyZJAzQNJlOr0OUSmiaipWxsH2PNI1RRYnYDQkxyBtV2r0eQ8dDT0HXFLRsBimVSBWFsxfO84DxOLYb4NkOchQiadpBF0MSIqgpYRgRDF1ESUNMIjRNJklEhqGNJB98tuu5CnKakKYxsZgwTARiLyYKHYwoRsxnSIcup2cPIYkS4hmV9L0fIAgDoijCDW02l9eYqI5xd22Ft25eI/ID1usCVy/fQDPvsHBsjqQ5oCHHjKy08BdMTpw7xOzCJOW8jl4QiWMbUc6QxgaCmhKLA6I0RkxExERAQiVJ04NRLev/3Ibse/ge/kvAn5kQLLfuU7fXqJolMnEfORXZ7a5xYuYM/Y7Inn2JwsgFuq3rVGvT+HEWZ1Dn0NwxwsjCNCTCpMfmxh6pEJDP5fD9gKHdolotEQURg+GQYrGCasgIiki/30d4xzOQJAmiKKHrBlEc48YKVuKiiCHjxw+zs9fglWvXmTdz3O9sM9xvM5bLo1kWYhQxHPRp1/cJowTD0tnZ7OI6Prl8hb39JSYnxrEyJZIkJXJirt+8QrZv8/C5B2h5DXruNunARtFSIneALEU4w5hMpkgQNnHDIaaWQ5AFXN+ma7topgSCQsbzsTIRvWiILlTpDbbRrRKRpJFKAqnk4aY+Xk8mCCXc2CEnSshaFilJ6PS6ZLUcmlnk/voKJcXC9rsMJBszY1I0LWJFR5ASwmRIQIKbhNj2EFIFPckThTIZ1aKar+BqB6dYJAlSktDrtNEV9aCwWdCQDQPbtgnCkChOSN+JA5VkGVFWDlqcU0iSFPUd01sUx5AmhGF4kBAkiEiydLDxT1KENEVMD5pm/CAgSVME8eDQRRQEUlFC1SziBFJBQFcOzHqyIqOa+oFKIaVMjJRoba0iBAGd3oCBFyIikMvbdL0hkZAyOTvDxMQEkQbRMEBIUkI/AEUiNkQurb5NUdQZeAPKponn9ogjkZ2dbXqNBoZcZqjL3O1t0e86yIGK3fTYGzo0eg5OKDE2fYhMvsBKo42h6USKjDFSoXhojqjVod93KE5OUCsX2d3cIJfPMT05znZ9H0mRMawDY/Ta9jauPaTmOqSJj6KYCLLGG5dv8MHpIwSufRARef5RPvCuD/Pa3bfpdOq8+NxlOt95nVdvvExnY5WP837CXoef/3t/l6O5AvKpeW4N90kQyUrjBNII82erlMeK1LI5GvfWWKiZyGJEu9tmMjeG1u/R7nfopilDz2Vx4RBq9iyDdoNMmtLc3GLl/hJbd3f5F9/+nxE1maEqo2gG5q0241Me02fHWBFsDs+M0r61xdnFY+AEbN67Qb3f48yxC5yXz7F+dxdRHVBRXYziFPNnprl09yZXv3abhbLF5KDGjd0t+gZMHDoBuTZr9X1mqxk6lsDe2j5/aXaaHUlFd3RKXo9QSXjg0XOcrB0ikzap/MRHWWq38UWfoFvnN//w69hrXaoZDa1QpjRV4cr9dXrlKpVynnMn5ok7q9zZCMhndMKczvH5CbT+Kq6ecOUVF7NYoTRhIkc2zWWP0RMK0VRCMbbI9WR2Nxy+9VvL/PBPnOPwxTEadZtyYFGcEBgsmJRyCvdbOoHiMd6WqZVq9GgwsTDB2vUQozBk5JiFLAY8cDjP0nUXxnvkZscIuc7REYvNa0MGxQjNMlkYHSXSfdLIZb+Z8PbNDbQgi+tG2ATEokKpPMaJx1wmRlyGko44lRJ7DaZLZZy2xv3VId11maLYZcLMsrq6Qt+MaW14VEsWu1sJ3cjASTpEpXEef+YDjJZ9WLlEfdimvecSBBKHF46QRl18ZQo1P0GoRhQKCzj+NpG3TKc3xrlnn0CUE3o9Aasyy/t/dIzVW2ukskDjeovwqMu5R6fpt21uNm+SnTqPvyKys73LsQvjVNUpuo0Om849xE7IVP4J9qMO++0+1UMRg57M7Ow4Rc3A6TdoeU3M0jhhf4PtbsLc+Yv4N2+z3WhRnB6nnK0QhOts15fpD7rURs4zVX0IQ5aJ7QFe0MezXRQjj2qWSOIcsqBiyDESHAROFCt4tk+cxsioFPI5kmELv3OF9cEmQ2IyhWkCvYgpZylnRkh9mdgHVdZJ0whJSElTH0GIcRwPRdNQ31FoD5TTFE1TCfwUiBEQiWNQFJDFg3Zk3+0TiwpD38PK5JAUlSgIDhJ6dAVFtYjCEC8MyGZzgIAqqwhxij200WQFTRJB1xEFATGK2d7ZRlB1Rmsj+I7LcOAQJmAYJlEcEvoHHjLTMAhDF0nTsB0HBB/DUklSgUQAUVAIo4ggCA48fYqCIEoMoxA5qyMPXWTXRw4C7t+5j5IZYbi5SymfR5ElksgnlzGwTINAgIXD86RBwmMPPcyDDzyAH0X4vs/Gnfu8+sYrjBw9jF/ukyvmWau/xG4nYPnbtxl9c52yAJmRERbPzVDKxcheQHlMIcmZxKRIqoiQxqRpRJpIpFLy57H3+h6+h79w+DMTgo39dXRRoLG/S2myxjCso0kqrUEDtxtj5Ma5dOtlztam0MQRfNlD1xOSJKA73AO1TLfXJZEcVNnEdcG2W+RyCkEQkEQiC4eP4XsBYZrQ7DQOTu/LZeI4RtP0d+TOgxhM0VRwMVFTkaIA1tQMqq5z/e2XOLIwx7Im850rb1DOFCiP1qhVRogtHUXVqYxUEFsGM/kSqmbh+iGarnD1zdcZLt1FEVPqwNCwuF9fZdcfIJsFZEOlRx9TlBgmMaIpoOkSiZQFSSBMAwZOF0FOiIIQghjHc0mCADe8Rz4/T6w6tPptzDDEzE5QzpfxXJV+u8do5TC7nTtoeoqhTlGw+szUFtja3MJxbZrd2zjODmfP/CAdL0Dzu2TyCqai4LtDTMlEyx6i3muiaFlqOQ3P89FNEzfySKMWli4jewW8wZBUgGzWJIgiUklAlEXEJCT1fARBxPP8A3N1GKIoGkkcH3RLyDKiKBJFEUEQEgThQUqDcKAIyNKBFJ0m4kGFvSCTCgmJICArEkmaokoSgiiSJAlRDAgCcXxQNpctFFGUg1jRJAyIBw6N+i5JEuC6Nq32Pm7oUq6MUi2NY/d7IByUmRnZLEGcMrB9cpFJoTyGqiro3S4xKVgaPV3G3uxxa2OX7vo2nTRiZuowgyiimMmiVMos3XwbDQ3BD+lHkLgOGUcga+QQAptKpkCqaSiywImZKX7k4z9Lf9hFFVTeuHwFP4mRDBXd0CjPTiIJKZ4z5MjiHFGUEPohRxeO8Dv/9rd57Omn6Ya7VCOd8UqRy3e2iIp5mitLGFpIqo4wlckzEna5kEtRJ6dZW9ri5Rv3afRM/NpRfv/tq8SX3qRy6jwU8lzZuYOvRSgBaN065GIUr0+5dIShHNK0e9y9sU+keFRGxsHM4+kpRm0EMeww4Xvodg+ltc729j47A4/l/TbrjQ71QQc3K5BRDRTHA3mIPl5AEnTWLtvEjsLk0SrN/XucPDPK25dvsPbcLka2gqRdJ5uXiTQJxxM49+Az5AyNFy99na37A+RIpN/zubn5JrHS4fzDh1jImEyaKev1Pt2SzdyDk7z+Wofrt69z/kPn2bGbNKMBg0ad1c9tc/EDJu3Nu9y6tkp7tIxriNy5foPrb+9SLFgMY5iZG8OzWxw2I7YHbR6sVgnra6z4PmfOneDNF15ntFQjERvcv7OKUxJZWRuS3k0olPaZmZvA8QTq93Tcvkhqu2SNDNXTGe682eOLv3yFh75vmzPPXqC3X+TKN+5jLeZZW9rE9yUG8pDdpRyqCMeegjMX381E9TwvPv97hP42u7dy2AWP8XMW75UqONsRjWaL1+8uIU+LTI1l8dsCe/tDAreOWp1h6DjUWwnTEwpDN8LrB6ALjI+OcHfQJZVhsuDSVHbRg8P07+yAoLNweIS+rrB65RLFRR2jIPHaZkjRPI4vdCidGCFruCwsqMzrBjS/yht/GBNNlHB8KBUO09q6yVb9Ekfe/Rh+fZWR8QrJ3g43XrnJ6Scfwc/4XH3rCpqf4diDRRTrEO31NqcvljDjcXY7dxlbeJprl95iVb/B4rlTjLYfY3PvTRaPPMnbOz7b7SXIl/ATm1wmR78/RDVFDs0d5m6riZxVWUxmKBdr7K+vsJduUCvMMhwOubO0jZGbZu/2FqgxtcOTDP2IOEro91IEdZbp2TJqIuO1NwlEcBMBSc4xUVyExERPNMLYw/W6mGWTJA2JgoQo1jD1MpakEw13uX/jm7TtFYbGBJXxMxSzIyiez0zGQFMsQt9HIETXTKIkIQoi0ujgJD2MEgRS0uSgMCwIAkzDIpfJ4wxsBq5HjID5zrinoSvouoLrOAw8nzhJEQQR13FQMiKKoiBIAr3OkFxWPghnCAMMwyAJQ2x3gCRJ+IGH5ItIkkjG1AiDEAGQBYmuY6P3epSzFmEYICQCVkFHNDRcJ6Cxv0+Ss7AsnTSOII5wHBdF1YgB08oe9AkFAZp6YHb2Ax9VlglaHVJfoVApIauwc2eFhWqevihQMPI0Gy1s22Nubh5knWbfRbaH9MOA6cUj9AY2aRiTMUw0Sebo0cNU5kYoGzpf/eNPMf797+Hpv/GjSLpJ4vp4jSbttTW+9MKLfOftVT5w8QT3X/oWnZZDYX6G0fFxFk8cY2KmQq4sgTxEs+Lv/s7rv2LcvXtXXVxcPPXyyy/fevTRR93/X1/noYceOnry5EnnN37jNza/m9f3PfzH8Wf2EPz+5/91Oja2QLN9BzNfodPbIg1EvF6PYwvn6Cl5Nne/zZnCAyDlaYsdgvYe8xOz2H6IIJiUyqOsb11HlhXiABy3x0hllDQWCfyUw4ePsbe3T5wmxElMIZtF13XiOHln03kwL27oBhk9h594aBmDJIzw6tu4wz4DSSNbK5DPZNmo1yEIGc+UUPNZ+kRoqEiSQEyI73p4Q4eV1SWWN1fY3riLloZUy+NM5UqEpBx/4BH69QajeZPE8LjfXEeTZfp+B9fZ59joMXxhlL3BCqoqE4Y+hXyJKBIRZWi06yiCw3j1PG7UZHlzha5zn6KVYUSbpus49IcuRw+dYWvvFlu7O8zPH8PpDRFiDUPSGS1PU3e73Fp/C1NpMjV5jqbdQw5DQnfA0N7FKhTJ5avEw4CZ0hEqteN02g3iNELWM0SxiNd3GCuX0c0SiqIRRhGDQZ98voiiKMiShJnJ0my3EQURK5OlmMszHA7QdYM4joH0YK5SFAjCkDA8WLgURcHQDaIoeucrJopiZPmgyyEVUiRRQlYU4jgmieN3VIUUw8rheR66qpDNWEiyCGmKM+izv7LB3vYuWjHL2KF5dtv7BHFCNpNhb28PdzigYpoYmsbK/WVmJ2eZmD/CZrNJf3eDcDBAJiZOIkRB4vDMPIkX05IMeqlNf9BnY9jj+pU7TI5M8cqXv4WsB5w+dZybt+4gFwqkmQy+HzCazeINhweZ1EJC5cgc89PTaEOHC2dPoJgijb09rl+7wRPvforW5jZ2q8XM2AS9dpe3N7ZwPJ9qbYzNnV2a7Ratdos4jcFtk7oxU1mLpcRA67XJlvO0hJiZqZPs3FxCzOsg+Ii+w0AM0WIJPVNkemYeOU0pZRUeOrHAze46v/rFz2EJOURfwRJlZFWht76LbFmEuSzlbJYPPfUAp8++m1qlhL+2wuoL32Zrd5X5h5/EG8vyz3/xXzA1Mc+V69dQLYWhbVOwSpycm+DcqQf5jd/+A6pzE2zt3WNhZozm9i6ba03mZuYwiiF3d5fw5QLHzx8njRsovo8UpCSWgp6zCD0d0xCRwiH1211ee7NOcbEGloLftRnVLAy5x8/8rR/k5TcusdRsETRtkiZkC8dxKgp/9Yd+hLr9HTANVpaX2PrMGmldJ39uAnF+nIye8uIXvkN7XUZJHQxdJk4CfuqvfR9f/twrrGxuEuoCmpRiBiGdSODB6VF2Wj3anku2VkUuV5g8HVOsmDz3R/vIbp02MeVqlTOnH2GjtcrK7m3C/YCHaicQizFGLUOSphyaTUk1nctLmxw/VqHTHRKHRMgpAAEAAElEQVTWfaaOqjz1gZ/h0hdfYnfvMk++9xl6+xu8dbvN3ZU+uyv7PP7RKU7UFC7//h26So3Z81mG2SGjZYmNt7bYbQgEhkApX2V/s877PvB+IrvBvVuvkxnL0egI1Moyre0Og0Dmhz82xd71LihjnF84xPb+LveubHP7pRa7Xko+yuKfnKE6r2HVHB5cNMmV+5yQjtK8vMfvfusmH/mpT/DFP/pn3P7qJIce0zl19gS2HxKXZYyVHcRIYS+1CewE0bAZKUhkxqYZmxwlSvtcf3GANNFl1Jhi3BxHE94mTCepjBzCS0CKVK4u32P0fJ9McIrE22ep8RwLpY9y99bXyI1mCZ0UeRhRnHOoVE7Q3xpw9cZVDh8/irTXpzBRRUSik1ul28hjiiLt3TrF0hjDTkQzq1CxFDKCSKUwSRh1GHQG5DNzZPPjBHFCOVsGx6ZQWUQ2JJK4iSUX0eUMcRQhShaxmCNTyGPg0Fy7yurKJXpRgDV7jPFDFyjYGqHfI1sogKGx36vT2W9zfP4C/c1NJEND0A9a74kjZEUmjEOEVMAPQzTTOFh8U5HA9xFS8KIQxdAR0xQBAVmS0WSFKAjpDQYgy2imjiRJhK4LcYqoSCQCCElCLAkHG3NJxpAVhBQSUUBWZDzfw3NdBA7GOCVBIkkTJCtD5HoYIph6htv3l0CWKRQzFPI5SGPiIEQUBEI/oN8/WFOi9E8KQCUM06LX6+P6HoVinjCKCQQdaeizvLpMYsmcPDRPZNvIsoAqpWiqgayoNNt9dvcaKIbFyOgY9so9BFOnPDdDdzCkZOWREbAdG1/XQZQYtbLc+uI3eH1niUc+8gGyZgErkXEjl+2lu4SSgKBkuXf9BWBIEBWwBw75TBan3yf2h0zVypQKKvNz05x89q98z0PwZ8R3ixDs7e1JqqqmxWLxexLN/0l8103Fr3/1f02zR55ga+8Vur0hg6hLLHockieZO3SOa5sbbG5fYr6co1w4RT8ZInoBBbNMFMvUxsd5/c3nyeayJGmHIOpTKy9QLMySJCmKqFAuVbl79z75UoliqUQSBO8kzxxsOi3LQpZl6rt7zM9Mg6bRHA7xoyErt69SMrKMjRyiF3voMViqjmocpCkEJCRhhCCqWJqG3+sgKgKpodJ1Onz29/8dZj/iwx/+GHs1jXs3LlFQoLO9RdjbJ9Vi/BBEs4aohFhFn831ZRanzyHIJVruKqqYRRQlJDFG1QSiGLrdgGxuBsdeptm4g5xRGJ94gt31e+TldeZnnySK84SBy82lNzl0+DyVwjx7W7doNepM1RbY3riDOVfj9vYKzVs3mD95FI8BF6ZPcGNtiXJtDsKQvKrh9n3csEcuO03kDqiWq8hWBSfWUFWD0UKBrKJhmRkc1ydMQNUNEkHE830832HQHzA+Nv6n+f6WmSUKQ0QhPTB6mxamlQFBotvt4ro+iiIThwdysKIoKJoGHJxQSZLEXrPxp6QjSRKS5MCTkMlkGNgOGcNEFKDfbWL3erj2EHvYg3wGSTfQEgm3a5PGUKrW2KzvEfshhq5hyyF2u8lEuYyS1dlYXeH+1ZtgWGiZArNHjyOpKqLvceulFxkxDIK8TNzvIUcBuXyJM089zcvXr9NyBxyaO0SpOsL12/dIJZV2o03keowWSxyaneLt11/lwdNnGAwGqILCVK3I2EQZL4GXX7vF/dUVEkVmeXkFWT0wXru2g17Mk8ZAkpLP5Lhz4yZCkjBSqSKmGpvDXS5++FmcbIW3fu/zTGfyOI5Dz2jz4Mwx1u5s0AlDjGIWkoCskPKXPvAM1oUFdlY3UAc+V268xY2NJbYjBxMTcQhpy+bchYskyEzNzrJwbJaMlrKg9Fl/8yrPffE51v0MyunzzB47xHwmS2PzPjeXrvPAux5mu97m5RfeoNNooogRppxjdWmJfD6HH6V4SYoXDHj44ZPM5A2ubm+zHya02lt87Kd/gKPjJUTR5EuvPkc+a3Dh1FPQauAMG2y6Pt1QYunmEroeYrkC+UwVxxK4tbVJe31IJRb5qY8t8vCTJ3ljb4/lToLydpP3FKc4ef4snw2u4/cK3N25TE0sU1x8kFrW4uof/gFqrsTlV1dZXmsjJR6eFyDrEhP5CW6v7KDmIU0lMoOYoWSzePYwW76Kumtje21s2aOUzXFqPsvsoQkCS8IREqo1E6HpkFdLtIsmjuyh0CcrOtSkgJ5ksLq9CV2LWJbpxEPifoCYpLS9iHMnNUY0idYA2n0BPYpptJbp9gyOT51gkEbs9W8zmT1GN7iDVSkzUSkg7bW49HqTJgZjhyuMVue4duMmueoYo0aR0UMxX3n1EtURlaceMNl6W+XesMbYyZiZ2iWufGeck5UZJCFiactHrBVZWd3Em3L5wdOnMEf3mVQ62O2UsOshdk/RbxVY7u4iSBaoBuWJkOZKnQvvOkmntw+7Ej2rztbSDfzdCSbee5T8yAiFZo+lz91j4cnDbMs+04s5SoHHN95qM+NofPp3n0ceVflv/s7T9MNNalKZ0wvvYbtxlYw+z253mbmTj/D1V/6Ax84/jtTRubXzImZ1gSIt9nq3qY29D8tZ4Y2v3CA8rjJTzaKK4xDaNFvLOHGFUk7i+8/+LS7feZHbfoNqaYzYa6OFffqOR6X6IBPlSfY33yJjKIjCJCgKbXuL8ZxGbJvIZolAapKICROlRylYC6TBPsP2G9y79zotQWT0wQ8zPf84FVdG3K/TS1oIskkai4i+Rjk7wxAfeSRi1Am5dPsG04tHsAyLQat/0GOga+iKQLffpVCuMBw4BEGAoR+kFCELB/HLioZpWgwGDoaqk0YpqSjgRiFmxkQRBXRZotNqEycQJhGx54GuohkGGcVASaDRadDodRibGKdSrUAc0+/3EQWRKEoPorcVBV2QaO3v4vsRVr5AmCQ47gDDVKiUSsiCiNN3kCSJjdUNFhYOo2V1UinF90IEQUJVNdbWVrAyBqqmoZpF4lRA1BVSRUToDgjllH7skhFMRBLSMIQ4II0jXNc9iB0vFJElmcDxUSQVTVHpezaCKpETTATFIMoojGgGr735IgtHFyhoORRFo7m1gixI7NdttnvbKHmdN1+/TTajE2aGjI2M0d3vYkgWk7Uqy7dXiUKHn/q5/+4vNCGI45ibN29qly5dMn3fFz760Y/2KpXK/y3SxneLEPzn4HmeoOv6n20D+//n+K4TgpXbf5xe3hHYXXsLSZFRciq+ZHO2dI6es4thzbO+8wKKFFErnaAzrGMqJSq5McqlEXbqG/hRl1KpwsrKXRRR5vSpJxAVC8cZIqQJ25tbjNYmGB2bxnFcVElmOByQvtMpMDY2xvr6OoVCgYwq0h5ESLHPyvJVijNzTB0+TtTtEtoRej6L7kZ4gU+QU1CCBIIQTTMQVZFGv0no+bitHr5n00sGhH5IHpV8NccgVem5LoZiU2/V8VULaeAwUpsn0QLqOzcRkpRCdRIZ6aCUxdkjCPqkiYAiZ1FVjVZ7j9I7dfdCWqPjLSPJKv3uOmWzRKk4yub6DtVaGUmpsFW/TVZXWbu1w5EjcwhKhdW7L+FVUl66dIsff/zjCLmEO2v3EF0NXJWpsWnWNvYZmxrHdfbIqjrm5DhmGlMwLCZmT1AaP4LteGys3OXeW6+zsDCPpKvMHT4CssjQc4kRyGeyKJJMv9/HMAx898DIpevv5DeTEMcHpl9Z0fCDiDRNyeWypHHwp2VigiQjCMI76oGGahoIgsBgMCAMAgQOvCGKoiCmISvLy/S73QPjaZoe9B+IIp7jIEoSbhRRb7WZmZnDymTRFJ3djRVkb8jY6ASX79xl6AV8+NkP8eqta7SEgIlE4vi5YzT2tnjzxZe4fu0Wj3/owyTZHN/6t3/I4+dP00iHHJ2eQ7ZySL2Iar7E3t0lhnHKVy9dYvbcafw4YLDbQBkEdOwOjhpTGh9BECTyRhYp8LiwMEs5V6SXyGRKBS5dv8bQD9je3WUwtHF6A6bzJjMzs/QGQy6/fZVTZ07S6Xd44403INLB7/KjH/vLHDn3BJ/8l/+MjKpSqY3Q6ieMT44xdLpkS1l661t0bi5hjRZ59qGzPHFkAS0JGVgaX1u5y3euvEEqDakoGYrpGGkoYccuf/UTP8rTDzxE9+4av/e5L7LdqLMWpUilCeTOEt9//DATxWP86898mkDyGba73Lt2g6efeIATp0/xpRdepxOp1OaLLN+8g5Ba5McW2N/cZdwUmB6XOTGd4+WlVbpult5ug+qUgO50IbWQp0d59v1PUBjJ0Om28XyN2mSRV197he98+x4/8Lc/yN6Lm3z717/DR/7So8w+NkVb0bi+vMJzX/8yH08KLH7wMRqmyle+epnDuTI/aFVxnhllc8tjp7/GhZMX8O9dZ2u/x1vrI/zwA5NM5sp84n/8Nwij01g5i5X7l1B2Qk48fo4P/djH+cqv/SE3t1eYPzzOfE7l7pUtmu0OGBaeFVDK1cjGeRpb+/zID84z3Fzm89cCioslFjSZM3mVh2Zn+NJLl+kFCma0j6kUqNsD3ILBkZPzDHp79MMB+30PvZJnJj9OGLTxRiROjpxkazlDWs0Qby+xvf0qC6dncVs2t1c2kIsG73/XOdob93jlhgCqT6UkM7AtBq0WMzmLk4VpPv3VV7n4oSr5yWm+/OoaEw+0GR8dI/TOMOW+TsF4nG6/hlFqcvWNVwhmx3n41CgXDgu0o5uESznk7YgvP7eCMfcQmWM5CnEO1+0yLYusrm9wZXWbycJx9u5sY2RiyqlDqTTBIK9y66V19FGZM4+dZ/Jck8tXVF7/wtu85/EzFFWN8fOj9PNDzuVn2dwLWfrmDvca15CxePLkOEF2mWYcY6nniIVtLj46T3P7Lou172dneB3ZGuHO1m3QC3TqL7K/Ncr3vf8nMeJf495zObypHoePZdjfaeDaLvfbFjUlojD1fYz3PPbjewiTYK+3MY1RogisvEnS22Xm0GNkC2e5e/stEneVWuU4Rn4WLx6iGyliapJTDyER0ulfwrV3WFrdxVVKLJx5kiPTJxH32mTChFJtAkdSSIQYRRUR4pRht4+RlYhUETuSePP3fpvlxh6Pvf99TI7NkpUtVNViGISQ9slms4RJSmO/RaFQwDJNBr0OQRRTLJXxwwDH9dF0nTSOERIBURIJkpgkjVBJEcIQRZRAFJEVlTRJ2ev3kPWDbhi8kEw+QyglSLJGFPp4rousyIBIEIZIigpBTM6yUBWBl15/nROnz6EZBv1eG0mWUGQZRZToNJrkMllarQZra2tIqkxtYpwkFhBTAU3TKBYypES4wwGan5Ap5EklGSVjIrSGqJUcThLR7UdMjo6ws76GrkjIykFCUKvTJjs5yWR5hMbyNr1ul1BMKdXKkCQEBKCqtDpDxqoVCqbMl/77f8GLn/kywpFJwsDlyZ/6G7z3PR/i7ivPs7RV5+S730emqmMiEicgawainNLs9Eg48HMcmzryF5YQhGHI5OTk6f39feVPHvvH//gfb37yk5/c/+5d6f8RcRzzyU9+svZbv/Vb1Xq9rpbL5fDHfuzHGn/tr/219uLi4qnf/M3fXP6VX/mVkWvXrlnT09P+L//yL68/88wzNkC9Xpc+8YlPTL/++uvZwWAgTU1N+X/7b//t+k/+5E+2/+T1//cjQxMTE6c+/vGPN5eWlrRvfOMbxfe9732dT3/602t/nvf4Xwu+64Tg1z/736VeVOLU9ASbzS7tzhLjU4fB0xjYS3RbW0zWzhCKEZ7bxO67jI9PkreK+N5BiZjtejRbO4zkj3F04WH2W00SKUBVBJqNOpViienpefbqLYqFKr73J6ViCpquIrzTB6CqKne394mGO+SzOqOjc+S0HKnvomZMVM0kimL23B6GriM5HlEcIpkqXuAz6HcR32m6DROI0hjX7mG7fSzVRBJ0PClAtn0IBYSsjKkkKLJBq7VOrIvIfoKhQycZEg0iRMPCtl1C30bXRLzAI5spkKQKGSFm395h4fCHefv6ZZzhfaanDrG8fR9v0GWqOsni4acYBA6377/C5urrTBenOX7i/byx/ArZRKCjS9xZ2eEDs4/SCzZ5+N1PsFT3ufHWFRZGZ5iZmqU2PkFzMKRQK9Js9CmkIZEzQFOzHD3zIO1BC7tbp+9AEEZIpGQNE0tTyVsZQs8l0jRSWUaWJOI4xdQMfN8/mPGPQiQhQUAgShIM3SCMwfM9NE3D7reRZAVVVRFEmRSBVABNlkk1HUWWGfYHKIqCqesIgoDvelx983ksw2J0fIJEkGj3hkRpiqrq+L6NM+yT0Q1mJqcQBYG+7WBmLNqdDoPAR8xkUJFIBzad+i6C63Lo8Dw9GerL27zxwmu0Ol0EQ+GBhy7Qa7fZtvucq4ziKQHyIGD2wQf59Gf/mPV2gyNHjvDyG5dYPHGBw1MLDNptbty9zZ2dTc4cO8bDjz6IHwS49Q5iJNAedlASj4snj2KVMwx9j2s3bvDxv/JXefmV1/nVX/11RsemCGWDQW/AcDAgm8liGjrlUh7fc1kZ7DGs73BxGDL28HuQL0zzzMOPUo4U7P4WqesQSbDj2PSGITmrwPjRee5fucIXP/W7dAWRHzz+IPu9dV5Jl4mUBCHNMy4eolgssThVYKocsfnqm1y/2SBz4XFMq0i2UmX5zjVe++bzOM6AieMzBJqOOAyxxiocO3uKyy+8StDuMTE9xtLeOrovICAiKyKGmmC7HXoDl+7WEJmUETNmYaSEPDbNH719DaFapVZSObcwysMPnqRcKLLZbWLVEtobQ/7X3/gK86eneeap86RBwlc/fYlr15aYnKwyOaHykQ9OMVI9zb964ztwdZ/Tx6bxR6cYrqwwfKPN2Z/5EFLssrpynb1XBRamHmV6FEwx4FuvvsWxE1n0kZMsTJl0Ozt8+40djj9wFN+XmAiGmGMjlGtV5mpT3Lm/yc2dG6ykQ8yOiz+w6Lc2cbVdbEElM7B5eizl2Af/NhcWL/C7v/yvePX2MjtbffSCwubmBiOqxqyVIyN4dIWA6+0Bu0LAzMUxPvjYBxgs3aA+2ELPlsk3Na5d7yBOjvDeD38QTS/x4gt/xM2rL7B47CieHFMuOMxYBq8sO9hKjIlGMcyyvbnHySNlxnKbSPEEQUbmbsPGFwXS2EYRdMaPtyjJJfZujdHqW8QTd3n0wTEqoxppcx/FM3j71S1uXG/D4kni/QETR4+yGGm4+pCdRhNbTmk0N3ngxOPUt0N+4sf/Mp/73T+kL4SUlTx3r95h4dhJvnn9BR5+7CEOTxa5++Z1nvn+j1K/u8/NG99kpqrQHab0fZXKozVOjUo47iJZ4918+gv/GrMyztz5Y9QKBeq3X+Oh40f42tf/J979/u9jdeseUeIzURlBo4DjN+l3V3nx+RKnH5ymMPU7hM5JOnqPbOwieSHLdZnixDGqfpbpyXO0Vu9hhx3CvTUKE+P02grzp4/QG9xhfXPAqenHmShP0BrcI1Ij4tjCMseQ5Ay6lGNuZJxuc5lAcNjp2HQTgcXjD6N5GUqJy40b1xDKJaaPLaIT4XeaiEIBLWeQiD6ZrIGMhCJopGFKf7nB/b1NxKJJuZxHI0USUxJVRAhF4jhF0Q10zcTzPKIwQBYFDCNDnAogCCQkaLpO4LvEUUiSJAeBDySIcYQQRAetyYpMkghoukVi6sSCgJaK7Kys0Rn2GZ0ZR9MshCTCdz00XcUPYxJEBElGimN0VcUPHTKFIkM/IElSdEXCD2IkUUFMYnRVptdtIogprXaDBIFSZRTLyCCksL9XR1UkigWLTq+DZGRQI5HVlXWMyRoFUUM2NNRUxDRTxBRanQ6qYbHX7LDf6TM2N8fYRBVx4KKkIk27h02IJcsUYpFBv4dq5BkKCvW1LSQp4ehDp/nd3/wtMC1ajkRudpyPnJxA22twd7dOZGg8/vgz7G41iGMfLxiSyVioioKQqFiWxfjs7F9YQjAYDMRcLnfuf/vYP/yH/3DrF37hF/a+O1f5H8ZP//RPT/zO7/xO9Rd+4Rc23/Oe9wy3traUmzdv6h/60If6i4uLp+bm5rx/+k//6dbx48e9n//5n5+4du2atba2dl1RFFZXV5VPfepTpfe///39QqEQf/azny188pOfnPrGN75x+6mnnnLgP0wI+v2+9HM/93O7P/zDP9wFOHHihP/neY//teC7Tgh+8/f/aeqqQyyzxOb6Jmk65OShRbb39gkQ0RKRZx98hM+//iJlPcNobRxN02n2WwTBkMGwR2D3marO8+DJH2Gvs4YgCWjKQWpNo75PbXSUME6wclmGA5ucbiHLEpaVIU3BcR1c9yCfv9lpEEURU1NTqLJCt9NBEAR0TSMID2rkTc3CdT1EUUSWUnrdNpKgoloGoeDTG3QJ3RAFGUURScQUN/BwvQHD4R5JHKEoWaIwotXaopjVcQOXlBRZlDFNnb32LoImkDdNPKWK17xDtlwhchWGrTXmJk/RDnLs7n6Vh8+8jzSeYM/2aLjb3Lr/MtVchSM5k2KmSCczyZef+waHjYBHjz2Ep5a4s3ULKWyRGzvEzn6HWsZCaltMm00yxy7yyte/wumpBbKLx5GsKoZhkhFFbEumbKe83lwj3G0xXx5DLGcpyiqiZqJmLbw4wrFtNOmAAKRpeuA5kBR02TooJJMF4iRF4sBzIBEhxxG+HOHYA8QwwcxmSDWdJASZFEmSkVAINYUkTcglEX1JRNU0fNfBUGUix+bNV17BUBRK42NkrBwxEjuNFoko4thD/MEAU5UR0oNYPTkFUYRUSMkX84RpSnlk7J0FL0E3THQrw43b94jjhGoxx6//7qdZvrvG3PQYvX4DS5GxikVkFUpmgUfe8zT3l7fwQokXr91ElE2mRyTWlpaYqI0zOjrBwHaRdJ29ZousaaBJKW6/jROE6Lkige8zWc4R9zs88vAjrG6t0VxZ5smLD/HC1asMJY3l9TqZXBZdlMhoGtXRMpoqc+utyxydmWH+yDyv3LjG1soq73/sIRYna7S263zntbcQRZmcpGAUc6SKxG6rwcmFBWoZi54XYOdFUrnIH/zS78FcwqDqI/sq73vkI2Qjk92tVYJ6Hc/uc23lDmIqUpF0zj79MEcffjebHZcwArvX5kd/9IdYWVvhN/7dbzNXKPPkAw9y6sEL3Nze5NW33qa51WZ9r05G1eh2Gqys3MMQJQLbp+UHSLkCuhfi7G3wvh86zZFnF1ALJlVq3LyxxvXN+7z7xMkDla80wle/9m2ef+NNzj18kXcdX2TfXqVYKNJzIgZ+wk6zxaC+RX6gkHoRd9/eRJY8jh+bRJCr5MeO8tBTCyw377D06hV+7IkfYnN9myuXLtEN4NlnP8S5Y2f41V/9n3HCffLlEo5rsbLR4PEnHkH0HG5+8wXcVpOalUGbrWCOlri+ucpeO6YX+ciGjJaVEcSY0miNyUyZ+c42zfouUm2M9VjBFkzmZqa4t3SV69fXeaRQoWAPGGoS0WSFsCBz9j1n2V1aZv3afY7OHeGNl67SbiSUqoe4+K7HOXfxBMNAoOWkfOkLn2dv51WeffQY2fEUwShy7dpdJkpHGUQ7tO42GdVKpJsCy8NlDE3A1rJYBRfFLCAYOVR5Hz03xeLCHsJIhu5gjwmzTOdGB3tYQqSGYhi8cfU6iaRSqVb46A//AG+99SqmppM3DQxNo9PcJjVFnIbHE7Mn+Ze/9gfoo3M8cvEwATFLa3uYkkplQmRtb4uLR5+kmE9Z622jBxG7vR49O+bppz5AbWSSdvsOaxvPs3jiXTx+/P9BoGdp+n3SesJcbYK7K3e5dO8rpIPXcCoKVYpka2V29jcQMyH79T3ajX2OTByj01OoHVY4LPS5Zw8pZVzWVibYavYZK0+hixLHTx/h0qXPsHw1JujJnH14gcqYgaY65Mwy3cE4srfCQDLR1AqFkRKj4RiCrpJRe+zu3if1fPZDkbG5h6gVZsjms6hJyPbaCnIq0JISGrbPu05dRApCYiXFGQxQRQldVtENi1gUCcKIMAjQNJHd+h7ZfAFBklBlGelgn08Y8aeG4ij696WNoigiqgfpcHKUogggqDKpLJJGCWmSIGsSYZJg2x6appPEMb5rk7UsiCW67gDVNA48X6pOkqR0en3c0MfSDRRZBFLC4MAHhiiRyWeQJAkRgTRJ6HW6JHFMIZ8nJCXyPcQwwjR03ChAzVhECQgICEmCBKRxjKYoBL5Po9mgUikjKCpRktLp9Q6UCAHCwMPQdZxel2S3Q+HYAqmiIPsJK1duEYzkOHRoiu6NFXLlCtZYlSQIDsZ/A4/QHmB3e+zfWqPte7RGTB46fZ7O3TXWdvaxJRWyIou1GiFwavEkv/p3P0n2zGE+9t/+NwSBjSCmyKJKHMSIMQhpwuyJU39hCQHApz71qWIcx3ziE5+Yhz9/QtDpdMTR0dGz/+yf/bONn/u5n2v+b3/2JyNDv/RLv7T+sz/7s02AS5cu6Q888MCJy5cv3zx37tx/8D6feuqpQ4cPH/b+zb/5N1vwHyYEx48fd77xjW8s/3nd13+t+K73EMSSTTbJs9vYRJQdimqF9fouYuJSKowhJQLPvf4CcuCBZTB0+uzv72Fl8kipwGTlEB1hiQdPPYUiRniOh6hEyKlKt9OjWh6lmC3gBwmmnidnlPBdF0WRGQ5twtDH9x2iOCAI+sQxLCwcQgCajQZRGJLP53FcDwjQNRXP6WMPbIqVEk7oEGkpSeIiJSkb65uEbkLezFOo5dhprCKqKp4d0eruUCpVcOwD9SKJQ4qFKQqWSTb1kWWBOIkIIp9yeZxGr87Kms3YpEmiZpHiIvu9OmoqEac65Sx06zkiN0CRPQqGi6HkmTj5fQzjDq2NG8RuSqW2yAOnTlGJO3QHPcKsTHd7jVMzM+y195jsdHngxAd4QR1wY6WL87lXCcUCnaREPlLRQ4+MqjKMId3zaGUMFqvTRDPzGJFALELPc7GiCK/XR1FVsoaFKogkcYwoiwSpShKlOLZDkHjIskSqRESJc9BAKaigSfgS9BOV9TcuMZ+vMf/Ew/TxDmZGlYPY0DtL9+APnuf8P/wx9GGC4LrE9oAoNWh2OiycOI6qysRBgj1w8MKENBVAkkgkiUgSaNgOo2Nj3LtxHbs3YHJ8FE2SEDQTQRQPYk6ThOb+Plvb25w9d4Gp6gh9x+H+Xh+9WsboD3BKBZzWEH+vRT5f5OKJ8xw6fgxVlJh74hG6YcjDj52nH0X8wWe+gpIfA6OArFssjI6xv7dDNGxTnT2BamYw1MOs373NEw+cQhNCJiYnuHf7HtevXeX12zcpSxpX3ryJ6Cc4Tps7b11lYnqcykiV1VYD7b6ELIIiSbxw9S2++eJr1EYn2O34fOqzXycDRJrCwAmRdAtPiclu18noOnIEN5dfZ2gPySciRiFLfW2NtiVRmz7G8QmT2dwYb33lBdpdm9KRGVY3tsjIBsnYIk3HwVM1Hq3NkTNyfOTsBVaW75ETR1F7TTJCgJKoRB585nc+zZ2X3+TYiUWenp4ke+EM17fv86VvvczY5DQZPY8X2Oy39tGGPpVKGVWXmHj6AhMlicN2CTkSEHIGi0dPIudL7Hea7G7vMX4oZrvbo5DJsKCqzPRE+rtDkHVM2YdE4nixjFsJ0U2LVlenaWVR/CyRUeHBuVGs1jaN+lUGWkiUL/Prf/Q8imwQpBqyEvO5P/w9Pit8HldUqLe6ODebPPTI0ySGR65UQtNHWCu9hVU+RGxoJP0uztYq8miGntxHjwqIiombhIi2ze5am225zTfaNpVyjtPVClF3l2wOPLnN7MwshZEMO3c2ESdmyFYLdNv79G7v8PXLO6QjFgsnF1ne7dEc5MiNThCpCfmpMsXReSalIlHsonger31jCSGBTi/m0NkZ/G8tM4yWiY0uE4tZatUC3sQ262+OIWZKDFt1nJZKLhIZywuY5RmUkki9WcC9s05pssyuk6U1qKLGJuQieoM6mbECiqAwO1Zia/kGGSOhWs3QavRp7TUwsilyBMtXd5iXR3n/+w7TrJ4gCNqYicChM9OkzSF6b8jR0jTD/SZx0GZh5Aj7W22G/W1Gcxqt+jLZ2GSidpp0mLK29jx6KlPJv48obLG3uYsXPsT502cRh2v8L7/+KygnTiH0Q6LaXVpJglUoMVYpsbW2wf3+LhPxFPtXWvhHd8hmivQGPl7QwFEUSlPjjBoJq9du0H5bJVcRCEdadLSb9DcCpGSGkfEGdnqVefXjjOYyTE+Nkop5/NZ9VuqXMPNHKU08gxgkjGZlRGfI3vW3qWcNZucPo5p5AnzGJIW8FOK7fQxVZ9DuohgHSmnf92i7DlY2T6VQInBcvMhlZHQUP4gQBJEwTgiSCOIYUVIRRJEUDqJH3yEEaZrihyGKLJMYEt3QQwojzFQlShOiJEb1I+IEROGgUFKSFTTDwAsikvigC8Z3XEQtodnuI6kq2WIeNQiIw5AojBAEDg7RFBFVUUnCkDgI0DSNNE4wDf3AjBxFiJKIZRjU9zZZ67QojVQx4xTdMomilDRN0BQFRdX+NEbczGRo9/rEKWQyWSqVKnGSEAY+pWwGz3OI9QL9bIybCChOSBAEDCIXd2dIamWohw5L9TWOGwp5KwNJii5pCHkZs1ihse+wvrHGocUzNDox+YmjjI3OsrW5Rm22ysLMLLv3V7l79x5//Z/8ff7gua/y7W99nYcvPoBlaPQ7XWz7gJxYmb/4JQQ//uM/3un3++InPvGJ/0ve7+rVq3oQBMIHP/jB/n/sOefPn3f+5Pvp6ekQoF6vywBRFPH3//7fH/v85z9f3NvbU8MwFIIgEAzD+E8aiM+fP29/t+7he/g/4s9MCHqdBuMTZcJuiGlaCDJYMiRpnjiNaQ26RFJKQdfAVOmlHqql4PkDTE2DKCWnF0jCPvW2Q5T2cPo2g0hkfGySbCZLGMRYZg5iCOMIURKwnSGDfhdZEeh0WlgZnThJGa3N0m618F0PXdfJZnP8idghxilEMaSgmQZBFOK5HpCQRilB5COLYOU0LFWi19onDg5SaKQUNNGk2+qSpCBJGUQ0LEsGMSKNQ7q9HkNnQCoJ9J02Q6fDySMfYaN9FQkDITaRLYNMIGEHMXvrtxn0U6xChU4nQtIkcpkMdtgjcGzKIxOkQ5/UcRFsFy/1WN/cZORUhkRSkIOUSrVEq9GnubfByZGHkWdO44kJRs7AEATEMMGLYrRIwlEjtERAkzUIAqSWB7JMLIIha6iKhqypRElMGPjYjosmy0iKhCDKiJJCoinIsUBiu6iyTJQCYYKhiKSiiJKKjGkFik8+QavdY+g6JIAsS+QTEdGLuXb/Fqtvv0T+7XMYcoZeu4NqGGQLeXKZDKkgsLG+QWqq5DN5coqG4HjUG/tICBQyOaKMgKwbzC4ex/NcLF2n02hQ7/QZq43QbHVwHRt3OMTUdQadDoVCgW59i/mxMk9+7CPYYYIdynz5jSu8/srLnD71IBOzkySqRK/dASEhl8shRCFq6PLx95xjaDv4jofr+sRBn0rOpHD+DEGzR9R18Qp5qrUSzeY69Bo4O6tUapMIi0e4vblFv+/xwvIKu3YXRdOpzkzieSnttkOa6vRtH1mRkSSBrFklCLvs9LvUxsdJw5BuqwmSwtFTC6ThgM3ugFbs0LUDRH9AFAc4CXhyhJiIOOVxHn9wjrNPHqHVuk99bZdeJHHy7EkypTKSl9Lt9lg8f4qxyXHOnTjBZC6DESUkrs1Lr7zEhbnjHJo5Rrasc/7kefa7bVa2tthq7LOyrFHdNg6SWWo5Zsfm2dzvMzU5yuLiOHfXlnD7CfXtfcxchkJhhIwm8trzb6LmY7JHxymOjXFiokh/3ESXcuzsNOns1Mn5Gplunm9eusqyv8qRMZ0oEciGHlLcJtQMJClH2XR56IJMVqyQ8WYZNoc8f7fDA/N5EtGnUsghTSqYGQtJNjFliUg8SXPPI44Evv/CD7DfbOENYnr9XV6/+ga6DzOlAv3WPqHfp93ZY+riGZIULBLmF+eJxZDaZBmRiI31LSrFEVTBJRU9JMfDtQUa2y7KfAZLMkj3bYSBysbuLs2XlggjCNKQsRM1jszVKMp5XFFkbFpmYnyOSmmM9z/xXvxhBzNsMzNZwntrwFU34t7dJU59+DA7194iNWTkcYuiUSYYDKmHfU48McfIIYX8VIGbV2WaA4HIj0jcFtmcwEg2Q0vOMDL9CG17QPlwg8OUCTcqXL57n8RNkWyfBx49Qzvpc7exxPGxCe5fu4ybRAiqyKPF8+SiEUY+do40riNtqhwqGpzIPci3rn4HIZuSlKEZBUyVS9y7cgu5K3H55h6xlmdu6iQzpQKb7Tqt/deYC47w9InHub4yRjzcp5O8QT5/hEgZcG3tj9CNHyJbOA3BLP2uzbZaxQ8m2PI2GLcKeN0etYkyplGi29hkNWpS6c5ibm6iBxZSNs/JkRrFrM3N+5fo9IsUzowQeAmSaVK0FBQrgxhaeM2YvigSTLokA3CbuwhqGyf0UDOj5EojFNQUK3SIrBL7tszo6AItv0OzuYdl5sgaeURBIq9KoKoMhx3stTWk6UnmZufoDfoogngQ9RlHKIgEsorjuqQIqNpBB0wUiji+jSYLiJKEzL9XCtI0RRRFTGQIEyI/RCNBVBUiEfATxCAmkkXiJMX2XERJeYdQCCiaRhxGqIKEpRuoosRWd4fNnR3mjUVEAXRdRxYgjg58YVFysKGP/IOwCFFTCeMIgRTlHVU2iCJ02UDTNO7evU987z6ZQo5jx08wNTNLSkrg+5CkaKZJHEeQKGR0g3arw9bWNqquUSoWMXUNIYkPlA/dhJpElCRIqYCkKZx96DzL9+6x2mszceQQoh1y/8pNylNjzE9NsttuYDf3sQyNxVNHafo2g+VNsqMT7PdblCZGOVc8gRA4DLbrTI+Ns9lo0Akc/srHPkbQ7SGRoKQClqYRBTEDe8gwsFn47u+9/ouGZVn/2dESRVH+9DkHo2wQx7EA8I/+0T8a/bVf+7WRX/zFX9w8d+6cm81mk7/5N//mVBAE/0klxrKs7yUO/Tniz0wISvk5tgfrmBmdYr5Go7VHOhjikiK6MVYmgxv6HBudpBWHEKcIQkocJPiCQqFUwk8l1rbWSMNJIj3GzOTRUg3dyuNHMaIYkfoDAt9HkiRiQra3tzF1A1HSyWbzlEtFDMMgTWU6rdY7saQRoBKGIWEYYGayJJJ8IFX6AWIoUrRKDN0hg8BGV1NMTSYa9tne2kAxLTwxxel0MEQVTdWRlZRcscBwEJGxdAZOnVCQsLsdJBEkyWQY+Ax6KRlrFEWS2Nzc5qGTj7K9u4tsxhRrczieR17Pszh3nr2Gj5nP0h7ep6COIlkWVXOM7eV7jBcqBPYQUxQoZCrIcg5VsyjUxrGtHDmlgH5mnDBXYUoIyBUq6JUczeYmiR8gKwVypRre9i6jk0U6vQCRFK2YJQwCcAIMTQdFJg4PSsT8MCAOI+Ikxg1iYj85MPqKIqqg4CWgF4vIskLYd0mJ6UQ+ugBFI0uv30UIA44vzGP7A5QgRkmg22zieRHnq/MUfvLjtMMIt72DgIgRyzT298kFB6NJsWpQymTptDpIioJqWSi6iuu5SJrKaKFENpujpbXRTQNVVajWRui226RAp9NmOBgQByGFXIbuoE+cxriujb/Wo31nmV4aI/oxH7/4MBdOjkLXxusPKWfySHqGTmfA6to2fcem2WhgSwZhkiIkArlCkUanx2Boo1sWnc0mlqYSNlpk8ibLvRah00eJN/nB75ul3tplbX+PyIVStkC1PIrt2IxUiyCK7OzX8TyfNIzQwgPjdafVwjR0Wr5Nt99hdmYayVTBDxkdy9FZbvL4kWOMPH4Rx3G4+sLzrF29xomjC2RmqhimyaiqMZq02a1f59bOGqcrD3H4I8fx7C6FbA4pGSU/coqzp05TVXUsUaLZ2CL0Y0JDod9pUec+7XKWSHaomAmSZvHud19k5fYyku1y/uLD7HUbFEbHsddbtDsdhP4+j80V+dDxE7yxuoNV0lmYm8UUVP74M7/HvbWbXHz3LJK/i7e9j6tVqAomYtyidbeOFZV54LGLaFWD2liVxo2QidShemia7ZUWHcknaZnsDwNqBR26CoZxkOgjKzoXz5/GELaJPYGhEzExfQRVN9m8dxPB0JASl3FDxe3ZnNQ1dgyd5b7N4vQCjd4eUUklm+YYDgL22g2yo9OsvHWfqflpJs0qJcMgl1EYsxKcwCVVYoTdXRzXZmOtCeTZ3unR7fWR4ywjtQqRr6FbFQSxx9HREe6urlAaKfHsex9h8/YWvhMyoueYOzZJGqecOzVN1GsRBxFLOxts37/MH3/pD1nZdQnGp9i4LaAPdWp6nsnCURZPHmJt+xK27bB52SfjerjNVfK+xwCb8ckSTkMl8ULG8jrHKjGj0yfp7ofYWo9+Z50deUAsTxP569QKJv29DoOww0MPnKaxvkm1WKPTtrGbIj1vnxGtCQosvOsYdxobCOs3uBtfoVqb5803bmFmVAqVLDnDoDRRYvntbVIdJi2RkxWTqUyWqgCrjSa9xiaf/cJlkqFJ7eRpcO+TeENm505w44V/xXO+z7uLi8xMm2xkQIsc6o0QT9SxW1DLa5gj41y5tcWkJZKXVIJ2j4GjMFaUySug5A22t1aI9sHq6yyePoS3s8e1Gx6ZYoXpB48Rx/fwFIeJQpbO8CsowhSO8D5C1yZOhlT0MQTbwU4idCuDY9uUMzqu00PKm+TyFYa2S7ffYTSXJyUi7IUQJYjlMnZ/iD0YosgqoqIgpiAkMW+8/DLm5Ci1Wu3g1B6BNE1RNR1BlA5KwUSROI4PChnlg2U6TVPEBBBEUlUglGXkIEZyfCRNRTJ0YscHMSGfyR40xwsCgiAdeMZUhTgMSJOEJEmplMv0XYcojpAFAS86KEjTFBWAJI5AEFBk+eAaUiBN8T0PH1AUBSQJJwjIlUpcuHiRII0ZODZD18PzXEzTfMePlhBFB9GquqUTRRG1Wo1KpUKSpEiCQKfVREgjatUqzcYugsCBeqLphF5Iv9dnYDuYepHdpXXEtsNwMMBtiWQFid7ePrEWkStnEQyRB558iNgJyKQyvgReHJGECUrRQhEEPEng+ImjDPYbbK4tM1YoM+j1SKKIbK5ELpcnUyzgRn9uQTn/xeLkyZOeruvJl7/85dzi4mLzP/8b/9947bXXMs8++2z3Z37mZ9pwYFBeXV3VDx069L0/9v+N+DMTgn1nj0qlSs+N2NjZxLP3qdYO0dzfRIhFdElh0G3hKjGu6xOFB7PncpJg6QFDf0Czu0I1P0bW7FCvbzA7u0gxXyNORFJSiH2C2EFII/wwYmtnh2wuTzZnIQoSqqIxHLi4TogoQj6XRdU0JEmi1+u+I3NKZMR3okaFhERQ8BwPwbaJHIeCAnEc4akq91pt6lt1ZsdGKWc1DF0jXxlBMQTa3QGeGyLLEVvba+QLedzQR1YUQj9E0TJk1TylwjhCFJNILudmj1IuFWnZTSatIkKxwuDmdR6YP4IdJKiKhJSKKJFI6sYIgoVIyMB2SSoSopBgaSoIEtlCAd9LODy+QJotoIUJR49e4P7OPnv2Em9fextzM8BXBKqjo/hBiOt7TGWL+G6RUXMMqVbEIUDTJUIzgyobECQEsUMQh+imAbGGYFp0Ox0SSSRwAxwxwJdFrr72Gu9aXERwbARDJz82hmPqZLIZiFK8wOXtl17h8Ng41WqVrhThuS6RomBUa0zl5zhqHmd3fxe/EGKZFsViCc/z35mljVCtDEbeoFAdob6zTdayKJVL+I4LYYQiCniDPiPZLJKqoJkGGdMgl8vQ7rTZ3N7Cj6KDxUnVadk2+902lmHgBwK2n5LqOgUt5M03X0aRNPxsnkuvvE5WMRBLBWzPZ9i3SQyNciZHNiejimBlsti2y3ilQt8w8cMQb6IIQoDuhwRhj9bQoZgt8eCJQwSBT6Pd4qGHHyENZW5cusLAHpAmCXuOj1wqMczqaKMlkkYX2U8QDQ1HNDCqNS5WSviujd8bMGWNY/fbzOaz9CpVCpLLyaU3KR9Z4NLOPfqDJo8/9SOcHZ+ns7XE0G6zRIOdcIUzhSmOjB+i53p4dYlWq4kRJ8yqBtHqCm/sraEULFI7wVI09qOIt++scM++x/7WBpWJDLtJhuPHjjMlSEypOpoqIQddZnURd2uNJ4/Ns727ymZvwOe+8TJHy1XMyRpHNIN0eYPxE2fo9T1ks8bqWowQScRBRD2yaZoGbipy+XqTB44u8lee/QHEXI5CpsArV47x7d//Vwy++RLDfMTxE4t023cR8kcRWg2cfTj9wGl6fo+JUpH7N9bZbHXoDPaZk2o8dvQEUSbHS9/8FpJZIFETevsdwhDuOAMizyMexCRywNT8BDmjRL87ZHRhgQeOnGHx4hl+5Vd/ha7nceGZc0xmy7TXNnjpC6/hRTaqYdCNI5I+jFeO0vFT5FLIQg5GkzZs75MTdcqmxnKnx/j0FGa5iKinFGOBOwOfS0tLnJqZZvHsDPvdLk434FbQ4vLte8yWdXbvXuVOIJA7OsknfvQn+M43fxe7ELKQPUNoizRu2Fx86EPolTL3N15g89XPcOVVKGizeEkfd7NP0PDpkrI66PLYMY3G1g2qtYSHcmdZKxaZm5d44olJbryQ49qtOwSKQta2ePUzLzFIfT747vdyNPZZ67eIikXqu7cYnZjl9tdvUt+9R5TR2L7h85d/sMIPnH6AP37hTfb72+zdustsZZpz734GgS6H3SHLX/sKt8wMbTehOlLlsdrj9PWE1uQRrn/7KpOTMc3wPqOHtyjEVV757LdpH3mJzchm49o+w5ka/brB+HyR62/cpi4rHHu/RrUc0lk3UUsqWTFhww6oVjJYxTy7W0skSZPjhx4jE9fo2XWKUzneO1bh/o0dkt0BUe4E6riGvRaSLx9CTrskvk/iaLR9n9xklqBdpyOkiONZ/MhFlIcEaZdOoJD4ErqkULPKqKpFGKQMxRBFi0g7DpXRSZIoIXBtEgF0VcP1QsqVMqmho6oKcQQiKVEckQggyRKk/KkiACDLBwcHcRwTRSGKqWNpCrHnIWkqasmAKMbvOYRRhCiKqLKERIrt+miGSalYwgsDAsALfBLxYD2dnp4mlkWG/T5Zy0IkJY5D0uSgQR4EZFlCkg5a5yVZRhBFovigqTk9YAmkaUK5ViMSoCqA6zrYzvAgiEKU/jR+WpQk4iQhThJU8SBRThQSREEkXyhgD3ps7+wgSQmxF2H3bYqz05SrVSwrS5pKNAc9rqzcRUbg8YsPkygi680WY3NjBLZDY6dPpxuRnZtAi2F1c4P81AiSrmIYGt7WLptv32X04llaHYfIdbCyKpHvY5nmwfhSkqBoOkkaI73zf/ge/j1M00x/5md+pv5P/sk/mVRVNX3qqaeG9XpdvnbtmvGfGiP6E8zPz3tf+tKXit/4xjescrkc//N//s9rrVZLPnTo0P8Vl/89/EfwZyYE+VKVKHDZ298mDvo8dOoRVnbqjFazTI/NsL9V59lzD1PvdMiLOmHsM1GtIEoKmWKBIMpTb9zCD0PKkslDp951kJKgyMRxguuHeK5DtZyn1+0RxT6Lx04SRzFpkhJ4Ad1hB1XVqNVqhIGH67rYQx8/CICDeUlJEnHtDoqlkRut0PVsREOgvd3BHnaIun2MfIahCPlyjfn5Y0SDHss3LjExPg6I+GGA7fiYVpbhoE7G0hkfG+XW9j10OcGQUrScSN/10RUBv9envtMhbdcZFkuM5MoYosReu8neToe78TahusWRxXfh9AVy4ixCnBLJXQKvx9zCPO1eHzFNENOEkdIkiBqhkMDARpdNEk1md2mT7s4tFmdz/N6NN3ly8QFQTL728osEkY+SxNySTCbmF3h++YucnT+KdWKGgety9PRZksglNA3c4YDaxCgAzf0W5UKRsfFJYgmCJCEMIqqyykt7LX79pV8llyZoUcLszDwPvPc96EdmiYIUywupHJ7hXrOB2JCIpopk8zUyaJDNIWUK7F29yebuBqcefpA4jEiCkJyqEwkhipnBcR0GrR6ZfIH50Qk6wwFpGpPKAmGSIisyI8URAsdDESQSL0AiIbBtsmaGo0eOEkYRxWKJK5cvo2s6iqYDKRlDRxs1MB3Y6jS4t9Mm8cDrrHF14w6TY5MknQ7Dvo0YHZyM7SaQy4s4noOk6kwvHEaye+hWjrHxUcbEKooKuq5SKBWpFEaIBg55CSQijEIFWbZY39ghTANKh8d5/flXMPoBRyfLPPP9H8ILffbWN4mGNqqhs9tu8sx7PoyWxnzhK1/Ay5gcmT+Ci8fSzas8MTfL2IkFfvmTv8Thk49ROfYuPvJ0BnF9jS9+9itsqwpmRqT0kMmmI6OEGsLdOhIS1YkSfhKBqbDabPD4iQu0woTIkHj71a8wOzNNdmKG6vgs12+ssvTaXebnx/iFv/XX2d3dodNt063XCX2X2+02Ypqyudlg4dRJnjp9nIm543z5c19hD4EpU8KVQVJN9twhP/v3/iFv37qP3etzdGGa0VoRQpdqJscgjdl3hxTH/j/s/WeQpel5nglen7fHu/S2vOmurmrv4LpBkAQagABBJEWCEkmJVMjPjmakJSVtxA6XK7M7GgZF7WglkYIGAkjQgLAE0ECju9HeVHd1eZNZ6d3x3/m82x+nAEm7G7OMXSiCnO3nX57KrPwiK+u87/M8933dp3np6ef5cz/6ELEfc6ZQIfjAX+W5m6+yu/IWG9+4jpwGdBSXT3zq56idmmBYUth84WU2X/g6AgGTDx9joHpIQcjWH30Fv1mhuVRFU2ooJNyKQ4rlKaLA40N/4We4vdslcodokUO3v4fZVNl46zyDVGBt9xp//kMf5vzGCvP9nFe+9R1GksT973uK557+Yx4+epYbayt4QZeiFZNKLkNxgCWJaJKIXTBxuiNW9g7YC32O6xlTWczV9X1u6TN84MM/xXv9nN/8H/8FnfY3WJifpjC7gFlKOXt6Ge/2bd649A71+jS57PDat75JIqkkUciFF7+DXihx00uRNhZ5z7EWjdI+zU/8HG3jX9BdWed4+RThYMD13m1SWePNdZmB2ua9jy7z+0/vEV3/CoeXFZZn5jl5dw21Uiedm+XC7S0euudhyo1ZipUy95w6h+ql1E97SK0p3npO4EjRwFp4hKcvbdGYvx/hZMTzr7zNPYsey9MzHKQtlIKIaGoYPQ9JdGhOtvieVWOyNMd8OSb19ui9/fvcXu3w079U5/LDx/iDL/wRzRMNXvjyC0yeLPLAR+7h0tYBibfNJPNMFec4Pu3zxs4WS/dqXH5jyM63hhxZctAaC9zOt7jfrrKoLZBpGfG+hhyouLdrrFpb3P14g2TnCu8cSAjI2DOzDPwDGprKEXMW/8g4eVuMbHa7L+KHHkrhCJ4rkAslThw5TndnC71RJVQtJmfOMWtJ5EMXMRcYRUOEYIih6Mi6iaaZxMcaxIFLlCQYuk6a50RJjCTkzCwv0HZdOp0DbEOHJCbLcxRRJwhjyHJUVUVVVcIgIL+TwyOJIpltMEpCpDSjbBskq3tsfOd1vCyhsDRDqVUlDHyyZJw2bygypCndgw6KqoCUo+o6siDgBxGGbRNlKZOTkwTeaOzbk8VxM5KDomhEcUQYxwiCgKpqyJqOmGWIgoAXBWRJhi4pqIpKEPgIkohtmOjfB0JkOXkaMxgMabRa6KZJr98jIycMg/G5LY+bhnqzRa/TRtd01HKBa6+9xdb6DiyoDDwXGThx/BgPPvYwu7s7XHrxNeamZ6iWyxSaNQr2AkVFZxREBEkCQ4/i7Cx+GlENBWIlwtcl5KUJ9gKXUpgiGwpCLqCqKgNngBfH6GaJrY0t8jRmfn7mv8rl64dZDzzwwJFXX3218P2Pf/VXf3Xm137t12aef/75/2pZAP/0n/7THVmW81/7tV+b+rt/9+8qjUYj/tmf/dmDP8nX/uqv/urO7du3tY997GNHdF3Pfvqnf/rgySef7A+HQ+m/xrO+W3+y+hNThv7l5/6bfG2/TewNOHHkFGHssrF6CcVqsdvbJxqOODW3SFAx6a7scnT+MBWrTBxHKKqOl+XstTeolxQONR6maKqYZp1czkGQkGWdSrWKRMpz332G4ydPIBglDvYPEPIMSRSZmZ5ElkW21jfQNH3MsFdkoihCUVSSNEVRZG6ff4Os12frrSs8cs85eqHL/P13camzhVSaQNdN+jubqGHIicMnGaUxvi4xdAa0jCrt/oAo95BkAUWQcQb7WAXYGMLm1ctMNeu0ZmeI8hxdVHD2D2g0W+ztX6Y+MYtOjdX2GkQBMwv3EPgKkXIN8gq2UiN0twnjIaXmLO6wz2g0RDFMguGAxdk5wkTCshrsO9tkbpcjc49y+cprlAsq67c3mU326CqLhN4OrYk6/iBi266w0Q15+XsvoA6H1K2cKclgemKSWqXBmeVTlJ54jCQVUCMfQRbp9gZoqo7ImFVtVctkUUooQGJb/Oynf4aGKCPFKV3fo6UL/OKPPUos64yGEdMnTqNMNFHtIrkAJcUkElPKkoZkmGzs7rC+tkLj0DQLZoMbN24wNztLEPiohooXBRiWieOECGmGgkihVCC9ozs1VI1EEkiylP21TaQYDi8vc9DrkisSCRlWsYgoSYRxeidJGdIk4uaNGxTqDSR/yO3r1xE1GzdXkA2FS3srdK616cYBRCmCJNMZdKkoGpImMz85T6lg8fZbr3Pq6CHScEStaDEz2WSh1aJglOj3PY4uLTBob+LGQ+zpaTb3+lx45xbDKGGw32Vrc53pw/N8++ln+PQnPkVv7RpTssn66ioHckRhYYKJQon7pw+x09/EiYZYssZed0TbDSiaJo+//yG+/fXvsLnTRz66yP1nTvDI1Cyf/Y3f5pVewHt+5pO0bItba98j0rbY7Mv8nZ/6FXrXdxnJIUF3m2RrD1WXKNZKbN5Yo16bwKjXuHJjHdvMmZqeQC9P8ea1DaIYBu19dncucXDxBnFnxD2PPMK+AP0gQRd1dF3jsfedJXZ2adg11ra7XLt5nY8/cj+VehXH94jDiPr8Au9sbvLiy6+iBCHiaMB0q8rUoRMY1gSb3T6O7DPodqjkEh/90ccZpjmKrFE3dcKex0i3OcgclmpN+us7SINNctenEyT8D//yf2Zja8BTP38XWeryjc++wMziWd7z1Md47NwZrly5Rp7l2MiIaYgqjZibneOue97HRm/IV3/3MxyrVGmnKZ/90le5uLuFHmWcvecMs4Uyu0nAoN1G913OLM7STvpIssztjU3WejJbTsTcxDRad5fZUsrxuSbCMOTyoMOxxQlOTbV489Iq//6NiyiTNX76Pe/nL3z8k9zc32Popzz/8ht8/g8+z90nTvDXf+FvEQUpVqPIv/yN3yBs97DMDHG5yqPvWeLL//5r7J+PKE6oFIsNbFXi/gmbbz57g0//0kNMf+QMK92vsf+qwTtPO/ylT3+MjWu3uHj7Ir3A5/0fOMrRY3fxmW9cJ+mLnFuy2X37OqfuO05Bl2hNHiVstDDKVRgF5IaKUNAwU5Ody1c5f/lNInWSkiwSEKEIIiEB+4ZJOZHord3gSMXC3NtmmHQ4dnwJuzmFF4ZM6RrtK1dZ6ewxOT3L2jdvczHZYWF7DeOhu1hNDM7eu8h9C0f57vPPk7e62EaV9OxdfOWv/gYP1Rr8+F94hC89+xbXKjlpWWZzdYBQLHBkLuZgN+Psgwtk3Us01CkSY5aLu1fpt2c4PFFgb+cVKvXjROEIqzBHZsR4XGZhwifuiMRkRBzC7iZEw5C1Gw7v+fQvIkoF5mol+m2HmekjiE2T9qU3WP3Kd6kdOsbs/fciEHFwbY22BEfO3ktZssiFDF/LSKIES1bJohhV1wijiCzPydIYRdYQ8pwkCkiSZDwx13QyQERCFMehjsPhEE3TkGUZURSxcpk4S1EsAzFPWVtZ5eb2BnqrytLsAlVBIU1iZFFAVVTiOMULInIk8jxD0CVSSSBLUjRFI0nGsiJZUxDylCxJyNMESZJJs5wcAUmWiZPkB0GVaZr+IDBUFAXSMKZgFvB9n0wSKJXL+O4I8U5CfBIn5DmIkkwqQJQmTE5OErouUZTckTWJiIAsCnieR5ZoeFWNFhpKDqGU4YoxV77+HFqryqxSRCvZuKZAFqc0J1uIUUpOyO7blykUKhiHFwhGPoqsEAg5Sg6SJGAJIn6WkBgm/kEfP/aphkBBJldEdrt9DLtCEiZcvfgOi3MzPPbEj/yppgzVarW7u93u/8uA9wtf+MKNT37yk/8fJ/bv1v+264eOHf1H/8vfzEV6TJam6e+5bO3dYu7IEht7XfZv9zh392ksU0JIUgIvxFRVNE2k2ThBL9xn8/o6UtSnMVegoi5iyQaqUUDLdaxCA8WwSAjY2d1hpnUE26rzzo2vMlFqYJfqkEusHOwyo5cxTJNE0SgULNxBlygI0DQDTItMM/jaS2+iZfDZz/9Hdm9ucq4+x4/9yOPU6xKV5TlcUUM2EmylQhblhP4Au1AlCtoocUDfGaAWM9KsSsGu8/LLn+WBMx9iM/Tota9xfOouNL3CxvZFqhOH8UcH7B6E1NQ19On7ycKEKPYRxSJyGGFVIY4TCnaFq5dvcujQYZI8IU4TsiDE9xwyIaPRmiBNJIRMxBkMsIo2mqQihyJ7g9uo7oA3X/4WE3fdS7HQ5Pr2LncvnGKyMU211sQu1RhoEr93/lUu//ErHKpXcSSPm7cucTo2+Jkf/3MoDx4jkSJSN8TddZk8dIgdIcDsDCiJOQPdhCSmEatcKRb57u9/nup9x8n7PjOCyeTcNFkqUqo2qJRsRM8nyz1G0Yh4lCDGGY2pKTb6B1y+eIl7T55CESVEy2R//4A0g+FwhCLLaJqCbZiUyjaSKOJ7LookEScxgjzW0CYRJGmKqiiIooimaYRhgOu6JFmErIjIoQC6hiBmyEKOPNFCPfDoOn3efvttgjBEzgWWlw9hN6t887lnEck4Oj9F4g8pVBvc3Opwa3UD13XY2e4QRTHFgo2pqfR7HULfJw4DpJFPbX4Kq1WjWa3y5iuvcM/iIY4cOUSXDLnYIMsE3rp+nZ3NXXp7B5StAjtbG0zNNJG9hK7v0Xc9qs0mtWoNuiOMgkyAR11XOXHsMGFZ58VnnuZsblI+9yDWmSVOyAI3P/N7vLm3x1u2wt/7W/+Qx089yOVLf8z63ltc23qVu+/+Kd7/0MdJnC2SuMrF2xfZvXqDQb+HrEuIaUR3f59cyFk+fByhWuTwwgLDjU229jYQNY1Rx0ERZP7JZ77EbrvLL/3Nn+H+5UNokoyX9xEDmR3XYWJ2luhgSBD5oEt019cpVlQ0wyKzKmSbDksLcwxNUGyD/SBk0q5RFH2GbZdycYo3Vq6ysrVGPox47MwycyWdnd0OYa5C5pHGfU6dPsntnkjPH7B54wokApJWRK1NcOzMw/yrL/w17LBJu6PwNz72YYY7V7nwxpssTS9j1mXEQEG950G++Zk/4Mtf/Rx3jSQe++CPI9+zzCuvfo+b2x3qi0d58NHHeOu1F5kqaHi9Pq+vOdRkgcnpKrEs0usOcLyA2sI0L75xgZ/9yU/xE+97lP/LL/8dsvYutqTS2RvwwXtOMySiralc74U8+/LbNCoFjs3VOT49xfK9j7He63Lo3jMcP/tefunn/hJ//5f+KjOtWd7+yu/xuW9+l35JRx+EZLLJp//++7m6uYW/J3Lxyk2mNJWf+bFH+N3P/RHnuyLx27cpn2rx3//KRzm/9TVWbzg8UX+CmTTj9ZXrbA4UHnv8Xvws4OQ9D6FIJdb21rjp9+nvOoQ7B9x3/BhHpieIRj0WDy8QJiG5IJNmClEGoyjFCUJq9SoF22DQ63Ni9ji+s0WY5Ly8dZuXb1zm7O4F7loy2TxwOXTyg/RFDx0Fpx/g+dssL85y+Y03+cJ3bxPXKkTtbRqJwPDiOo/d32D+yCGuXw3xdq8x86mPMjo+y4v//ks8JETc2rO5GK4TTea0c4FHP/RxlpMOteM6QTfh1pt9InmXhRmJ3a7EyfuOcrCisLe2xqGpuxCkW2QzKa4eo8U+WqZSq0/jDxTqpQWuvHXAyy/d5J0LN/jRH/kAn3jqg6Rra9xcucVWu8f7fuJTSP2Qq/sbqKpMfXEZK7O5fuMS5VPLNESZ6PoNjt99nFzTkLQi/cGAXJDuXKwV/CgaS1tFkSAI6LTbxEnCzMw0sjyW5SRJgmma5HlOnuVkaTqW6wgCcZKiaDqarpFlCZqiYuo6rjPCGfSR0pwkjpFVjTTPEWQJWVdRdZPsjgcgJydOE+IsJYpDzKKNmUHgB5h2gSAIUFWVLGccTiZJaJqG7/uoqkqpVEISRAaDAd1uF1mWx9uMMCQXoFgsIkkSo9EQ33PJBAlJ0ZBkCVWSMFSRJPSRhHG2UJbnxElMngvoponjuGhZTqSKRCQYkoImyCSCgLu6y0u3LnL42DEmW1PoujEOZiMnDH0EIcN1PZyRR7FSRVEUZFFAICPKU1JZRM4FVEEi8X1UVcGPQlRRRg4SxIqFlGXE+RhAUtIKbIcOp07c86e6IXjuuefMixcv6v/5a4Zh5D/5kz/ZfzfN9936oTcE//IL/02eRSLhqE/FalEqttjtbKJoVTb9HfJkyELNprO5SUGvoukNGtNLuMEBHfcAr+MQD0dUJieZrDRplG0GI59WbZosq+DFAX7cR1UzBCFn7fYqtdocrVKDQqGMYdiEeY6SCYSuh5BnyIZJqdZie20XKY6QY5/JyRqvtG/j3lrj1PGjBLpBP1PQqnVqgorkjkjSHM1KGXQCBu0B1UoBWbXZ2rlMEO6iyDa15gydgYMz8NjbfYX7z54ltRZYubrCZLXMvrNLw67iZDa9/RdZWHgIz9uhWjlFJoMX7FCutAg6MUN/HVlW0RQT0yigqjpxOk5RdnptDKNElHWpV+fwvQQv6FErTtPdvgWJwraWYAYC1fYqowzmTi/z6tV13nf4AXolk+defJmWXuCx97wPo1ihINu0C0PqoUkayGwrMRdWL7P32gucKVrM1Ja4vb1PX5cRnJhDchHhcIPerVUOH1vCrC5wJXuLnRe/zPThjyK8vc7iiRpDu4VZqCNZJiNL4jt/+Ifw1hV+5L0PEtR1GgsPEhYMtrd2aK9tcezUCSIyLHXMm1Y1jTCKCYIxwi6J4vEbdRgg5qAbGlEQYJomcZqQ5jmyoiLc0a+GYYiqKcRxjCSJWIbN0HNRxZjI8VGtCqKTMnB7pCWBayu3WNvcpGraSGlOQTc52N3DaFbo72YQuyiKyNruHtv9AZKiEAUuYZgwOTXF7v4+rutRKJVRVA1JVNjvtxH9iKnJCcI0pre2yfKpoxSbVTYv3cSWTNr9LdqjfQqawczEAkK1wU6WsHNrk1wSKSkaXuCwtbbK4uQEvpZTk+s4eoizep3TUpGH7nuArdihOT3Joyen+a3f+Jd86eImk3c/xNLsBIdaU7QmbdJumxdfWuPcj5mk2Sanqx+nKqik/gjHGREZGslUE71YI3B8UET29rfpbGwwWyky05jmYG2Hd95+i6XTx9FrNf7Nv/0P7GkhS/ocv/gzP82+exsv8LByg9HuLtWJKRYWF9nvdilVymSMNc8DZ0i/3WOu0sAuF7DnKrx14yItrcSk1qBo6ux2t+kFKZP1Mr4skkglnn36ZTpRj0LucPbcA+RyhhCmVMqT/Oov/+/58F2H+djf+tto9RYXXr/O0kyFb3/j9/n2G+exxAL6cp857Tidgck9J09z5doFRm7A3JFlYs3k1D2ncLfX+O5Xn+fNoUttZoKXfu+3aZo6U4un0YoKdslAUzQUdGy7wdf++JsszVeIYwHXCcnynKnlBjOLBvPTNqW7Guw8+za9F2+zuh9xdaeLmWccMVRWU5lIEDl07AiCIrC6fhs/TNGUImU14uyhSY6fOcHLTz/HP/r1f8Ev//VfprB0jOlWk69//fOYhSIb3TblVov33X2OmQmBU4cPocizSAWZV194jZe/9j0e+cufRPETfuN/+deEnsi8qvDpX/5F3up+jmKnw5z2UW5JKQ1pyF4HppvzTFkmppbRHaRYuoVt6ZRrTTo9B9+PiQOfOHTI4hHOaES5NY2s6rSa0xSKRdyRix+4ZFHIaOAQBi5XL15l6eQ57puZ4w/+9T9nzt9DKiSUZ0WOLD2IXp1llHcJa1U2X7iAkkhMLyziNhuI+6s8870b/Ifn3uR9p2c4c+Ywf/jMa3x86QgFv81vrMT8yud+nbdeeJntKy+z+9YK/bxMffE0f/sf/vd8/r//aaTTMpFQQesnxHofqWqSegOkKGdkGLRqITcluMucJUtPMW3NI7YP2E16pOLrxI6GZso0Z2eZX3gAb1Dl8//28yTOLmW1wEFnhGbbUC5x7/0PMjU9y+mFQwj4yFqC6yYUdBk9hOfevoJVLLH7zgUaJw+zsLiIrpsEYYggSQRBiGEYKNKY0jN26kKSxGRZCgh4vo8kS8RhhCRJmKaJpmlj/X2SEgYhaZqgKcrYD+f647wDXSVPMwQgzRn/v5QEDNsiShLEXCQKQmx7nCswTiWWQICRPyIjH+fBpOmdS/p445rnOZIk4Xkeoihi6AbqHU9AEAQEQUCe5yiKwpgaLY03GjmkUUIQR+OhjjpuXqIwpD/ooZvWf4FVVRSF7I5cyskirFzAubWBkKdIszWyfCxTUrTx1w17fVRJQkAgzcabjiAMyfOcQqlMf+jgDIfomkqpYJPd2VKYqgZZiuMM0Qwd1VA5aLdRcgkDgZgUDA3RMnEGI0Q35MzDj/2pbgjerXfrf61+6A3B//lf/WKephlpnDI1WUVTVd547S2WlqcY+AmSIhGELlmUc+LIKQqahSkrrG5v0w8UDDng6Pw8uVYidPfo7x9Qa01TNGyQFXojlyB2CcMesmiwMHsazSiQeiGZH2OViogZyJZB2bRpD0N0Q2XQ65D4PrVSme2dHWTTYHTpZTRZpXL4GFZxmoZeZ0BEN+uTeh6BEyGbCbpaJvJSBv0Dao0Zus5tZCmic9DBKulY1gzb2xu4wzc4d+pRJOsIQTAi9EaM8piKJrLZdZCCLc7d8xFevvYyDdlCLM7heQNEMUYgpN/bY3pqls5BD8ssUSxWiLOEoTNEkaFUmGRr7y2KhXk01cR1dwg8A5MRs7PLdASZMBjxznef4+5aFevIErdDj2l9jiDJUTWDuekpVFkmF2R6roedZbxz5W0mbJ2arpEXTRLTInJiNFlGrBYwVI23V65z/pvP8sG7H2DTTLC6uzRnFmHxCNPlJt9+4zq3rn6Lc9N1CkademmCNBNRy1UOAp+9g20KtkGzVkYcjIjSlN39NnNz86iihKDIuEQURJU4TsgEAV03IGd8cCUxw+EQZzDAUHUGw8EPfCJhFCIJYGg6cRJj2zarK6uIIoRhyGj3gMFOm+Pvfy/9QR9BSMjFlNHtLq3FZYKGhYFIGIe4zoir169hFgs4e23WXbh65RJTk1M0Jie5fuMmw16bsqniewEF20aSZQaDIWkSo2vaeJoVK6Q5FE0NJU+oNkssL83R77fZGfbJp5qsr20QXd2iH3pkukIxEXjPY49j16d5a3sV56BN3B0gkiGkMSN/hCQVSaMQW5AQdYPmPUfY214ne+c6leIE18sm5VaBBgqWUkDUQophih8NEDFpTu5hqEVu3zDp+1vYVo0EeODR+3nwxHG6+7vUahUMWUbXDda2d+jFcP65F7n6zts88sBZHrr3Hi5du8q/+90vMNVaojY3w6OnjrK3d53Tp0/jpTIXrlyn2+tyeH6earWCoEjYVoled4AbxRiCgm1Z5GHI0OuRSwl5FKFLBqakotdrVOrTRGKI4HWp2GWeefNtvvP6earGFGePzXLqcJVwuM9BkDFz4m6++gdf5uoXPs8//J9+k43I5Tv/8XfwhYj5pSnWBl3KhRLf+eKrNA+d5omP/hi15TkOdraZwKdeLSNfb7OmwX/80lc4dO9Z/sFf+9t847vf5NsvfIeH772HmiHx1isvYtlFTpy+l0PL9/Dr/+I3ef3yCwSygiYVeOjMvfQO1vnUkw9y/dtfp2fmeFaLtX7ORz7100Sew9b2GrvtfeQgw3VSREGjNVGjZIv8we98Hrfrk3oxWtxjodlk42CXJ08fZV+zef6dFaZnpygVKgR+h5Nn78Lb77Mw3UJqabRCj8r8UUxJI4o8Lm57EDgsFTO++PW38POI127c5Nf/p39O4o1YdV8jiy/y3uaHiOVZvKzHsOti6TaJaNBozdDf3sIPApByFCFDFKFabxDlEmEqYRYtRCFCSEAWZPIkJYkjGs0a3UGfgaBiZDGev48wTPjuF7/E5Ad+lKvPvcTrV1dQttsoZZE5wedEo06xWkbJI25fvcW6qlMNPCYbVbqVOjc7Ptqgy1Nzk9zYvcIz113uO3WE37p4nQ+fmuKJT/84F/dv0jkIwK8xV7T4+JnTfPmtW7SXppnO2pSkDd66fRMn7ePnCRgTPHn2NNcvvMbdx3+Baq1KtVxmcDDEDSS0ch3Pa5OYAokHVbOCLKTYBYODrsPaZp/5k3P4vT0mrBLf/eLXmTl5DEVU8f0YNUvgYIPB9VUmzt3L9KlT1KsFCo0mg0xiuLeDbduYpkUYjqfuAK7rkmcQhOOJu2maZFmGLIuEUUgSpxTsAlmeEwQBo9EI3/dJ84zpiSlMQ7+zMRBJo5jQdcni+M5lWRtr/XUNq1DkoN9DlETCOEYUx9IcBBARUSQJMR/nFWSKQBAExHGMruuomkacjDcToij+J1OxJEGekyZjX8P3NwNpmqLpOlme/eDzFEVFFCXyJCZLE0RRQlIU4jRDECQUTSZNUwI/GG+Fc3AdB8M0KOg2bujRuXaT17/5NNcONpmYmuB9Z+4nnGkxvzSPpSqMBgNkWSFJM7wwHj93HBMlY19Ev9cDBDx3xGgwpFGpY2g6SRKTko+3A6ZGqVxm+51rPPOd71CYbTFZb6IqKjPHjmCIMsfOnHu3IXi3/szWD70h+MJz/0P+1vlrDByHZquEKpj4g5wk7lGsTKErCgVTQxEEZFVhe38bJxyQRwmtqUNk0Q6WaGJU6yS+x/LMGQZehzz0Maw6fpyCIFIpTkOiU6/XiVOX0A9QMwFJUTAEiaGYEjkuZiZTqlXY6RzghSFGoUAkQCKLuO0ui81JQnFsShVHEYKmkGcZkgS9kYtixGSpij+KqTcqjNyE3YMVakWLvf1VkryHqU9w+eJF5qc05iYOkUhFdNXmoL/DKIhoNeuIgsawdwPTKBIINnXVoDl9mhu7Vwj7HXSrhCh4yKKMLGoEfoppFZBkiTAOkSQBSdJpd1eYbC2RprC3v4lplBkNDliaOUImmaiiTG6o7G3dYkqrIE5ViAYDEi/GNmzEOCIa9KlNTJAVLMJBwIY/JI1TKpJJfWqCQR5RsgqESOReQBwFFJEIyjpeELF/bZ2B12aiXsXYjGgsmBhLJ/AEjesvv05ZGhADomUjCipmuY4lSaR5iqIpXLxxhXjgcfbcfci2RSpkJGGI73losoQoysTZOMnYD3w0RUVVFaIsJU1SNtbWGfYHHD16FFlVSZIEd+iMD8MkYXJyghdffJHWRIskjgnyjNDxOXniCFajgpwp/ME3vka4tc9f+PjHUEUdX4Y4G+tf8yxDt01Wuntc3N5jb6+H7ydYegExy7n61nn67T3K9TITExP4rsvi7AyBN0LIEhRZxG6UiaIAG5G77zrN1a3bKHHO9ede4YMf+BFaRw5zc9jh5UuXyA5cBr5PNwkY3lrj1HyT2YVFXl1bZa/dwxQ0oijBVjQGoUOkJohpjDAKmVtYYjhyqeoWC3ffTSbBQDYYdkfgDUn324T729RbLeYOtSgVDBqtGq2JRfo9B1PPaJUajA66yLlIkmcMQ49GtQRZTBCFWPVpwjhhtb3J9vptaihcvnKdP37zDVRZ58TSIh9476OUTIVwNIIYBEXBKilko4hSfYrK8hKKpNDd3OL6ylXCYERs6NTMBoEfUtZVNDHFNTLkVEDPoGQaDFIB34vI/BHzx09yqx/z2uoO7SsvE61cZ36yia3B3afOsCMYnG8fULl1i2OPPorXmqaiWRSdGGOiys7OHl976bs89SOPcPMrf8SEXqW+dBhvtEuOzItvvcP7P/5jDCWBWiBwdGGZXm+f5779x0zMT6JqRW5eXePlF17hwQceAF3knVs3sI+d5dhsDW9/DQURPxa5dHGNZn2GvqFx9sgydy/PgwBRmuH0+2Suy24yYvX2Gouzczx0/72srYypYBcvXeX89VWWDh/CD0fkwyHnTh8jdwM2D/ap1ia4trlJrWnxUx96kpWXz3Px1go/+999mu7WLpZeIhYVNEFnarLC3uYKf/D1Z2jvhwReSN9w+et/8+cpejlIVQ7yAZu3/hBREDhi3c+kPU2om8hFA1lJSBMVJU0hjckVjVzRQJDQVYXAGREnIQkZiiBT0C2iICBMQsyiRRD55HGCLRTodPpEMtzsbWIrBQyzRLFS5eqNa9z12Ht544WXWb+6wsyDD9GSJN745lcon3uYq5eucNfpJVZfeYWXXnoRzVQId9s0Ty2w5w05c/gJDtZf5vSZIxyfbbLXvYU4XSLvRbRvt2k6Pid/5q+jbQw52P4KYm2Zq5ffAK3AwvIDdNxNymGOaFew0hrmrE7JNkgDldgwkUwZNVZRRI2+2yYTfNI4QxVt6vU6qiEQjMAWbcxWic/8z/93dgiZqEwgFoqcO3MXvYNtvvi536PvHvBzP/dpJqwqjWoFSZcYuGCZ1h3MZ4KpjxUdoiiQ58KdJOKxWVdRZGRZotfrIYkysqLc8cQpSLJMkowlpvKdS7gsSpDlZFFIFkTEQUiaJKi6BoJAJoCsqiCKeGFIsVgkSWNkTSPOMhAFsjxHQMJ1HFRJxDRNkiQhyxmn0t/ZTny/4ji+8/zieBNxhy3//RRlQRBI8+wHhKQcSLOUPAmRhRxREEhz8KKUYqmCKggk6fjcT++EnIW+S7fdxmpNIIoCiiKBH/LHf/QV1oIhi8ePcXRyjla1QtnSCd3x1mLguOTiOHdhjDkd+xvUO4FokiRxe3WV3Z298fdCAAGarRaqaVCvVsn8kKsrN6lNTSAAb7/9NnOHlkjShL/8F3/+3Ybg3fozWz/0huDff/n/kPuuiiBH7O6tUSo08UcjCqaGpVRwvSGaJdAfDfDjBEUx8MOAyXIZ3dZxuwccm72L9d5tSoZJs7zA9sF1qmaRNNMxzBaiZGOoOmkcU6vWiIIQSVUwVZ2d3R10QcZsVNnb3qUQjhjEGU4mUW5MoGsasgSimCLLGRWtTNsPSLIcJUnRyiau71LWLeIkJ6ZPsdjg9o11lpbncf2cgbdLGI/Y2V5BAG6v72JbMq1qgYIhEKQavj+gXG2SRWUcoUNNHWckuFEHSZCQJYX51lm23D3UOCaRBLrtDSRBplmfpNMeUCpXUVSFMI7GSY66TH/QxTJMnGFAsVQmzxOSIKLRnIdMQPBFxJqGG4ESurQqTbzEp9sdICgy/V4bMQhoVWrIkoZcssDUCeKUaqGKLEj4gY8gCSiKjj8YUjIMsjzFCXwyVWHQ7iMKArJd4Lvf+Cray7/H3GN/HsQMZXIabxRgF0vYBZsgS9nrtRGimEmrgNPtU5idoVCtUrZLkGaIugxiTjIcoegGiqYx8gIQRGRFQZbGJIue75KnGUkcUa/Vx/QKz8cPPERFI05TZFlGuuMr0HWdPM/p9Dv02h1MSQfHHyNb6xZDx+Xyjes0HJ/idIvKRJPezj6NUoXW/AyioeNkKZdvrtN3U0Z+RBCGHLQPuH17jSkt4NTxE7x94TII41A2QRSJ04QTS/Novo+pa0wszBA6Lm9fvoIzcHjvvQ8QDnrY5RJZo8jGYIC/N6LemsMv6nTbK2R7AxbmF4mV8dQqiSNKlRKD3TZuGoIsUy3V2d09QNMUzt11AkOH3DSJBj6D9gBrepbvvPQCl19+k3PH5/joU0/S2fdwu7epqGWSQCeSB6RJhiJLZIY6Rht6MakgUShXkUURSXQxMg3JMBgJOYpu86//zX9kb+AT7m/ywINnuO+B+zFUm82ddfLYpWKYWJUWl199ne7OBo+871ECL0A3SpgT0+w7+2iKRCHXEQoGlq3T39pFrBZx2iMsw8S0BfBjRKvM1Ru3WCoUWZiaIp6c5vL6bV5++ns0FqfpdvZ45MRdmAuTWBFcX11n55WXOHp6meVDd5FXKuhlg+23Xqc6NUe32+HV86+wvdll6/YWsw2DM49/gMrsYRaW5hE8h9c/9ztMHppmGAWs394ksAuYxSa5bLN90KZWLXJkeRZ3NCDWbVqWxu7+JhE5w/0hcxMzdEYOpUqJgqwgJh6LsxOkYkpv4JJnMnGs4Tn7kPTQJIXeMEavNBmmMV/7nd/hxz78Md58/Vk++MQjxLnJi9/7Hjev3mQQqRTrOlNTNRqRx4WL57m54/P3f/4jBLJBvWKgKiUcL0Lwe/hOiL10mNde/iYvvr6GM7rNxz7xFCdPnUP1UwqKia8oXGy/zXD/dU42T1A3TxDEoNs2qpYTxxKCoCFKAq1mnSSOSZOxDnscKhUgC/JYV67peJGPF4e0plokYYDXD5GLVfJBB1QVsyDTHaaUJYduplAulhl5Em3f43BDoyBY3Dz/Ol5doTwxS1WT2Nnu8fQLr3Jr4xaFaosnP/QYBSPDaY+o9Ne5tJUyXVTo761ROrSEw4CV6xvcdfgsp2oVbn/3m/wH/yonrdN4G2soExYPPv4exNU9rq9laHMWZnMZ3RKZnZgi9XK0QgmrYKO6DokWkssFRk6OrdnksU8mJaSKTBKm2IaJJ8bUVZOddpvYixEaVWYnZjETkbXeDheuX2FqoslsuUTFNAkVmdCJ0TQN8gzf95BFEVVVgJwsFzENkygeT9e/nw6cZSmiIJJlGWEY/qAhyLJs3Bik49AwWRQRcsYYXT9EzEC5s2GIkwTNNMfhZpo6DppMUzaurVJp1Sk0aqSSQJTG5Fk+HpSoKpqu4fvhGC0qCEiSTAYo0pg6FMcxnudB/n0k6VhO9H1JUZ6PvQnflwylYUjsukikiHlCFPhIikKS5pSrdRJhLOGJszEhMEsTXGdIFAY4+w6t48sIqoIUpvSdEbmiIcdglnVkWSQJQ4QsvWN0HsNJNE1FUWTIMwaDPpqmEUUxoiSj6Bp+HBG4Pp2DAzoHbXRVI8lSwjDEdT0mpqYgjCnPTTK9MI8eZ7iRz4njd7/bELxbf2brT9oQ/Imxo2kQIGZt8lClpBmEzi6WUUSSM965+j0W5ucJAhVTKXD00DLdQYeB20bVUtJswMz0IkW7TDlpIiU5znCfaqmFltjEYoxtSeREmJqGoKl4gza6bEAusL6zjtMfYmgmRqmMVSzjZha+N0KXREQxpGgYqJJMjsBW5zpKC3xdQBMV1GFCzbaRVRM1zQhHQ9I8oOvtIEQhiTdCFQyScEgUR6iyjm6q3H36OF64xcHedXSrjhe7iKKKKEGtWsEbumiawTCKSCWbYLhNo36Ekdcn8ftYdmUcUoOIZdl4nodpmhSLxfGqHkjSCCUTiAKP+alZbCPB9X3CMKFSqyGSYhoW3aRLWS6iizHV1iEOhm1EUaI1P4eWS8yUq8RiysFBh5JVQraLZKS4oz1yRcENE7JMRNdtxCzE90cUFJVO7KJn4lgX36ojyCq6WuDEww+ycetLbOxtIOoKVsGgXDAQLJ2RCDOlCUzRZisckdeaZP46tllEkRQ6/ggxTVEOfFRZRC/b6LrBYDQCUSZJU3JBIM0EsiS5g5bNkEWJ0PcRRQFdl1FVCyGXUCSVLBszuDXLIM9zgsCnaRQoztqoukLij9M8NVFiutEisxR6m7sYhTKmVSWeNclNk71BiLjl4Lod5soNBhtr1GybvKyiaxKRKLDyxius77/OyEs4e+9D3N7cxvcizGKVW66GouoYgU9vdY9CSeX2zjqtiSbv7N1guL/P6FpG6oNkmKyurjK/NMfJB+/msKKQHJvBiDKK1TrCsSVuXLxC2BmiFWQKmYwYJrRUleOnTjK9NE+YhaS+xmSjwZef/V1ee/55/sY/+G958v77OLtwBCEPiBMb8NBL84jlOkmyj9dXyTEZJQFi30cUQbZU+t0usZAQJDFSPF7hm9KQsqLSD3YpyjnyZJmuIXNscYEiGbqqoBZ0cj9muNcjShIiOSMrllnveZQKBfzEQ016VCs10jjjyuvnqWsqdz90D7tCxJRRHIcGNcoUS0X2V2+Q7O2wtHyUbneP83/0eR547GHOnj7LxJPncN0ewuLdLC/fwyjwMWybRyea3KoV6eztcmvnGtqBwGRjHuf2KkKlxsgTOXfycR5/f4OrO2t0L7xCMw0Qsj7+rZykKOGasJ9FGLVpziydI0pj5IIFusaRKELIMgxJYnl+EVHU0PwRd9WbrO1ssZmoKJbGzFSNebtC6HtEkQmBhJTnqElGJLlUFI1UlNh2UuxylbwgU21MMGOIDB95FBC5tbJGvfhxIsXm0OF7mDn8IJ2+w4wVMNOscdC+jTpZ5L3VRbzROmKUsX11g5LcZaSqvHPrKnc/+QRyLhI5PXYDBSqnOX+rx13LMXGYENlF8CIePfQEe82znH/7dwm7r/PwvZ8gyibxBn1EMUZRRXRJJ/BjsiQZm/Y9B0PXSKIEPw1wXJe6oRHECYIgIwsqYejSc/rUyxWkQpHEC1GKNi01RQs1ZMFm2+2jJi6HbJvd/S0297ehVOfm+g307TcoGlXmZ45w9uwsi8sG3Z0NnNUXGMkam16MHQ4ZyT1ubI7IDZETaYHF+gLNeyZYe/05vpNluNsxy8v3MnvyCB2ziffOeS596SWGrsqBaeG92eeTP30X7b6E2xuiGyq2auCef52nv/Vl+maVj//sL0Au43g+jZKFIqcEuU8ma2QI6LLORrdH7CbohkHFsPH6XaIcaoUiH3j8PQRChnjgolPEl1NKxRxBHAd7FYtFfM8lCIKx7EYQyQAEEUEcT9mzNEPTdDx3DF1QVfUHF+08y0jiGDEHSRAQ0owsSRHTbKyhTyKyVMBSNdwsJ0sSsjQDBBqNMi9+7wW+/kff4u77z1FoVjh0/CiFgk2WhpiaQUhGnIy9A3mSkAsCqigiCOIPTMaqqo79BWlKdido7PuVZePNQHIn5TjPc8Q8RxVF0jghCEKcwZBywSaNArw8xRMkVMNEUg38IEY3NLqDAVMTk3T3h3TbHapmgf3NbSrL8+iaSf+gy8HmAa2JFmmWo6gaqgKqIJLHMWGa0HUcVGX8fVNRwtA1gijBGQ5RDY1Gs061WmF2dpbBYMj5829SLJaYmp5mlCb4gc9obYto6CHlGaXp5v+X17B36936s1V/4oZAUscXr0Gvj6rahHFCpqbsj0IkvUScS+gyBF6Pna2riEKGFDgMHZFcMcAZ4h6cp9ScZ29jF1PPaE4cpVqtE2cpSSIgyQa+lzMadkhCj3qhjDtKGQkps8vzuH6EO/LITIOWUWFx7hBD36V/sM+VixfR0oDIH6CVa5QnT+COPOyCTRy1cYcjMkllFIUMQg8/cahWmlj1IvuDDrZdI8lFhFzFGfaxipNYtkwyUhHlOn6i4EQOJaFF6MfkeoIumAxHAXJRwtaPsu/t0ijPsLm7ga7kRELGoLuPgIBpmnijgEqlTBSGeJ5HLuTkeUwSauS5j6aarN9eRZAjBKGIqsmMhg6+2xubtcIuaAV23T1wA9CBtocfpoRpQE5GxbDINUiGAxJFGKPrnCEYGmkWonoxwyRCURU6iQtRSqbJyEKO02tjqjJpC/rPv8F9cp3dxUM0p+dRJ44Q5UMCNyUlA0VBrdpMyBa2pNFcnmUQ+CiIaIJImEa8feMyndU1pktl7vrQj5JmOZo1NhZrhkKSxMRpiiGPJ5QF0yRwR4jkEIdkaYIsyKRJRBSFKKpK4ieIkkAcjNA0A1tSyUcRuj1OMc6DEDePqY5STh06gVC0GAQBI9dl4+I12p0eetFG1nS8wSaRKNNpH6DqEsM4olAskEg2m1s7xEHCH3/ly1QKFs1akYfuWaBabZKIAmbNIg09XvzGMzhOzsbebQrlGlEMmBp+4GP6I4aCys3tDt63z2NZCnqaoUoCFjlzrTr1qQojIcSyp+k5A2JLoy2mHK1XGbougpJTLCrE8ZDT730QYXkS39Q5VCwzVS0RBi6x52JZJTTFoN2+waDbx9LrBOEQRZIRDQNv5BD2Ehq1adwoQpUtzIKOWrLRBfCHAwaCRKwrxG2XslUnCn1u3jjPkdljlPOEWNd4efsaw+sBoqVwZHaak3NT7O7tUpxuAQIqAqVqixfynDcvXWb5gXPkUYS/u0bRtDFcn9HQIxYM7Kkyhtdmb+0GamOKFy/d5BHRxmqWuPzSSxRNjdm5FqZSRZQd/H6fmUaJxUqdSJJ5+5XvkW29jue0Ed0BzfoEpCGm6HFypslXX/Z5+80rLJVtLr/4dT7wgQ/SW+uy54l8+FPvxXM9Jgo1BAQUScIol4l8F00ScPp7CMmIQZbRTgTcMEUpFDm8dIiaYZFJKWFkMExjQjcgDgKiXEWMJAbxkIPugOmZI6RCjGWK1GxIvIj3P/FBkjSkNfn3sJtzbF59m+7uKrNHDuEP91nperRaBSqVOgNRpDAKcbo5ruEhT0yhiDreoI3RrLOkymx1djny43+Fv/qUxWKtRj4Y4A8GjEQfWa1RL+pkw9ssVOaY/rF/yKsXn+b85tOcmt9kov4kUQJ+0EFAptveR1VVFNMkCsZceMUWGPR6aGUbwdCYqzfod3o4fZc0VTEkleTGNaylZVxLJu2KjPw+QXfEsHeBWDeYm5hiY+MGzePHcBOFytHj9NshrrLIgeMyE9WYcmJ2X17jO1ff4Z73P8JMtcxTp47zxVeeRfbgsScfR6lFZGu7pFrO2tWLOBWD/dEa0sPTrPzBVVYvbPATP/PnecNxefnFF7jnIx9gSoQ3X73K2toG9x5Z5Nkv/xYzR4+h3PUoW2Gb3fIE57/3LQ6dPcnhcw+MNemOjiLKJIIKUoaq5CiegG2XkU2RUBcIPZdYBLlQZKFaQ8mhkwfoE1USx8cyDJKBS+gFiKI49hJYNrKijmk9ik6OgGHaJEmEKIy1/DkZmq6jyDJ+ENxBaisosjzWxrsBIjmKJJFnOWkYkUXRuAHIc5IoRlLGE/44zZAEgdFwyMLiIuXDi7x0/QrFfpmelPC+xx9HjkXCKCbNBfI8GYegiSJRnJAkKbIsIIpj0+/3CUjCnSRl6Y405/tegjiOUYVx45DnOQk5QsFEFmxUsU5oaOQSRMMQRUxRVANNN0hFhZwMP86oNCZQdIvD99yDn8cYgH/pMi/8q29w4pFzHD55DCmFvfXbVCYmySWZ4XCIpcgcbK4TCCLH7znLsNvBT0ZEZCRpQpoLyIgkI48EkWK5gixJaKbBXcI9tNsdJEUj2t4jCENqdpnJepO+02f11be5/+xD/7XuYO/Wu/Wnpv7EDUF74wZ5oDKzPIegA7ZK4oYsl0VOn/sYr3cv0dneIC/aeJpAnQq9MKeiS/haidf7q9wbZ5wpHkatFbFMgxSVV7/yNeaOHaV8/DRloURmKeS2jZyKHOzdpmzbzDeq5FHORKPGYDhEj0JsrYrrO+hZRibnrPbalMKchVMnKVSKbAlDqomKKKrsRV3U3MbzA0wSWrUy252I7nCALAnYRpFY8Bg6++x3d8iyLllXZ2L2fm51XkOUM6JhRqM6gWE38XoH7LhbeGEXNchRpQZCfB3SFn4S4Hr7CIaEPBQwDBNLm2EwvEKjfgwBkyR1GQ4GlKsqeZYR5x4pKRv7l7AKVTRdJXAN8iAmywNU0yRPM7Z319A1m9LENFqtyO7WDm6vT6VYRDU10iBEMTVIYqI4QVRV3MCh1WjgDkekfowra4R5Rsm28YJgTLvIE3JJJpdkMt0gSnO0QzOYT/x9lkoV8ihBs0wywUSakInDiCyOMVIFJUvJkxQnTUkFCcf16fY67O/tkaNy7OHHUSUZ01RIgNgfYaQ5sTNEMnU0WULPPHzBQDtwCRoCju+hxxYGNkHQJ1ZyJFlj6AVIioLmJBR0E7FcJMwFUllia2WFqqHTqNdIcnjnYJuNa5d58Mn30w88vvzGBS5cXKGomeikFA2bggoTiw329rYBg8njp8myjJoFh+89Qr1RZ219Y4zY63bo9MYXJiGFQhLz1sXzOJaMtjCDttFB1gwUPSUIYyxVIYpTiq0Wfhiy5nsUAoHAC5AMDUGG7+3s0LqhM10qEcVrLBw7xNJMAYEA3+1RMnUK5SZB/2BsNNZV3ntkGdcbEYY+URwRZRFBljL0RjiDdUJvwOzEFO12D01TUCWJwXBIwSowMzXNjZs3QRQQZBlJsunu76MIAqog0ig0WJo7zJbZoeL4TE8tIWjTKL0hvU6fUSLy+OOP0jx2kq43xD/YZ+XmKru727z32DHSgY+/2mE0JVOol5i3jvDc5UvMzsxx4doGcy2VrJiQxiOqQcxkaZmvvPMO//rffo4f+6mfoWWYvH7+IlNzMxSXlrn4veeRnn6WuXNn0AYh3dRjEDrossZwp8vB3gF7ecrg2iXmZYGuqBL1PR76wBNMHVqkoFvc7kScmTyEfLTH25t7yBMTHDtzD9PVGr6skEoyiqyShhGx46JJOQQeN69exolTzt5/PzoSYd7lcKNBs2gjpOkYgWuY6HFMhEiqawSqwt7OHqMg5PCxw8zPL7C9vcXu7jZFo4RuFxBTnyyPWZydxNYNLgx8zj78KDNz00w0J9jq9PEVFbta5NzxKqLvk4YeUeQQ9W8TujHOgc/hwwv03D6zukx88Q2O3Pco5vIEQ2GW4fo2ciQwElMKlsjubsbI6lNnwMOHj7BhLnFp9bO0e/83Di/9BJooEwwCBmGMbPhURYWSVcGNPPIsp1prUCmVWLm1SlbJUDUD1TCRayVuX/SJVYVh5BFlMaIYkYc+o4LN7MIDkESkSUS5NYm/22ay2iS8scWRu08iKQa3126z7blcuniF7sIUZxZmCTd2uPraK8hrB3z4Rx5na3udq197k7Ub66w1Qj701Cn8gs5i627a37tBeTbl1CcmWbnd4cr6JR790PsoNWUG3i5H6i28Mxrr71xD7O0xLBbYG3RZ+9xnMBrTPPkj7+fFbzzHxkaPk+8pkI5GhGFCKuSEYoYqSaS+T5SCqBcpIFNMDaLJSUqKTSZlKKqKCJQSkTxLyYsyyBJGTaPAHWxoHOM4I9IkxbaLpGJOmiQgCuQ5hEmEIICsKBTtIkmckGmQiDGSKJCnGVk8lhMpkkjWHWDkIJo6A9dHzQVEY9xk5CnESUwqCSBIBElKtdnkF//qp/GCAFGRCaMIJckxDItMSRn0B/ixj2FZkI03BUIGeS5i6BqdTmdMGDIMwiAYB6kpCnmakCQxeZ6RJGNDcpYmeJ43lg3lInmeoigi1fokeZ4im2UC30czDFJx3IDosjw2N6ciQRgi5TGmoZMJOYcffYisXOS555/jxvoO9x4/wcLpk2x4faY1lcjQ6YQ+9twc3/z877B30ObHnnoK2zTx/ADH88aeAllEUiU67X22t9ZpTLYwTIul6WkmKzVE0yQ/cpR3Ll7k+e8+y1tvmJiqhhgl/+uXo3fr3frfSP2JPQQ/+fcfzhcLE5Rti1qrQs93USWZsq2xvX6dDx79OAelKi9e/h7y+g0myzrW8mlW129QKaoI8jS5q3P1zedxwhHvOXuWs6fPcHtkMF1v0t9f5f4jp9hKFFZ2u8yaBn0jQI4TTD+jWKmDooEAoTLWC1pxTscdoAgCmqySlSyUXCLsD1mPdzhWXGDfGRIebHL8yN2s+UPC3g6qbFKdnOLarUssLSySxTKO18cPh+wetPGdDebLDcozj/D73/0n3LWwQNGcYa/ToVxvYekqqtpiZfUdTClA1GOETGdu7gFA5GB/lSjcplqZIMkqDLoHWAWRu068n4tX3mQ47CHJCsWShqJItPe72EWJido9HHRWIJeRZZmCJSGINkGUoCsqNy9f5b5z95EIGkGSI4gppWKBgmWytrqGrqpMNJtsb+8wM7fI7e1NJFXBLhbwHQ8hE7AsCz+MiaIIw9AxDJPBYEAURVQqFXzHIU9zao0mgiDguj61Zp3Y8xBEAT8Ix6mZkoSoyIiawsb2FmmeYyoFciFHUiQUTWFnfxdV12g06jgr6+zcWqM20aA8NzE2sMUhoyyi3ethUqAgKZRjH78g48oKmTeis7NH3SqT5JALEmmWQlEjd1wWK1MorSZu5HP+7dfB8zhz8jSCbiLbJdzAIXF98lxmkEi8vrrGXugQiwmDrYhbt1Y4e2QBUx1ycrLEmfnDfPPSRf7d//hvqZUqTE5OY5omuqpgqCq6ptAf9VlanKO3sUMipMzffQpbtbjU3ebVW+v0b/SRUw9RCjnY3+EX/uLP4bsxL7z+JpE+lgTJGSR5iiiBnKUMDw6wGgW665sca7b4yJOPc+TYAoXWBMM4ZTDKMUyLPB2b91RVJ0oSkjxFS32yMGQUp+SiQJqGBHHA1u4Opm4ROCOiKKLeapKJOTv7eyimzuEjRwn3RphFk8AfEY18SnaZ7W6Xr377GQxF4xc+8SFWLr/D3nCEm8U4nsddj7+Xew/fRb1UZn9/m5Xt26RJjBCn7K5v8dIL3+LHn/oolcUj1JaP0FnZ4uLTT9OarSKULM6eeZj9rV1ut/fodnp89Eef4vlL53n76ech6FFcmEOTJO5tzXD+6gXeuHKJ/9PP/m2ullSsXMAdObS3d1BLReoTU4iaznee/TLZTpdEEHHKOs5uj/ctn+F3v/iHnL33Lv78Jz9FrOh85blv8t4nHuLQ5Cy93QGVap1ACBg6HuVyhUF/gK6rjJweaRwxP71It9djb++AZquJLMnkpCiihCIqDIYDRFEkTcd6736/T6FQoN6oo6gqjuMgiiJhGGJZ1nhLGAzRkQhGAf00pdPtMVEsoxgqASnbm7sIssL07DzNZh130EcTYTQasra7ze6tdVbXbnP27tMM3Q7f/a3fYrC5ibU4y1+7/z0oj54jSQ06r11g/s89RJLIdIc7lLPDDNbeICuWqB9epN8TuLzxLJZ8nqXGhwiiAhIJBamKN9oBMQbNQtCLRFEIacrkxBSO69JotYiTDL1Yxg99wtDHkETc/oCh55ArMpPzh3E6bdxOB1WXibOE7t4+OiJaySAQM6bNMjcuXKE1M4U0CHG39rn85gXi+5d45Znv4lgSf+7eR9C2BzgPLfD0H77EUz/5F9lZ+Sz1sMd04xzfXrvOzfZlHp87QSJI5EKRw0aLOFa5sLLDLi4XnnuW9z/1Mcr1CooA4sAj7I848EaceOQhvvDlb/DJJ3+U07Pz9LoHCJqCrCpIUU5Ciq5rqLKGJyRYuUTPCzjzvifQc5kwCQg8D1VWME2TNM8QxLHXKYxDfM9FEkUUWUYWJTY3NqlW66iWxrA/IM9zyDLyO2ZcWVGIghDPdZFlGdM0sUydPMsIvQAhThFlgWQwJAwDjPkWgR9QlQwcZ4QiSsRJimEYFItFtvf2MWyLJMvw0whBFJEUFfk/Cz1r1hsMBgPSPEOUZeJ0vAWwTIvA9ylYFr7v/+CSr98xRwdBQJYmkOf/xWvfv1NIsowkK0RRdMfkKwLckXwGZFk2NgH/wLMwPlcEQUBKBZBFEEWiJEYWJTRF4bvf/g7rV6/jqSI/8Vf+EkaUE8UxuSpTLpYQw4j/6z//Z8iyzN/5u/87DMPADXy2trbI0gxdUVAkib32HqM4xI1jFpeWKRQK4yYsCKnYRURR5sU3X+fpl55Hr5T4Z3/vH73rIXi3/szWD91U/Gtf+Ht50DtgodSg3x8y9HuUywbxKEDUG/g7PQqLJv1ejywtEzpDpmsNVvaHVAKXPUegt+7zwT9/L5/99nNMH2icOb3M9L33oWvjw7MoKxydmWGk5ozCmELBotttYwoKVrmO4waIYUSlUUOLUzAV+kKEEGcIiCSKzKRg4ksZW+42hW5Gc3mRtbXrVEst2o6DJgcIkgqCQr+/S6VUJU91RrHHMOoxHG1j4VMz57iy1UfWt5kvH8PJupRLFdrtbQrlabrdVcggTlTKpoRpFmi0DvPWpRcoFhUMpYo3SonFfQxZw9bnqZYW2T54nVqtTp5pdHodxDxCiG0K5RRDmyJJcrb21qi3CgipiC5bmHYFb+QyaPc4tHSIDJUgSVFNHQGB3e1tVFGiOTNFRdG4vbNFvdli4HqIskaSMk7xzXNMU6Pf6VMqlciyjCAIsCyLLMuI45hGvYbnugwchzCIWVhYoN/vUy4VkTSVhJw8SRGihMgPEJKMgmmi2hbt3hZFu4CYJeRRyOq16xiyxORki+H0Ufb398hcl6w3RI1jipKCLUqEgk80NYs03SDZ3UHfd5F1i17UI0wj2nsd9EKB4+fuxkwEfM+jM+zh90boZpHSzCSyrkDko8sKnpuQZhJSnoIKsQJd18M2SliZTNA+IDd0qrUqrj/ixo0VvvutZ7lw6Rp9b4Ro2UTJmPPtj0ZUywUqBYuJRoXj546xevUyyjDi0fe9n1Ea0LtwnSOzc3S0jEBUiHKZK3t7bOzus/XWJeQwxCPFt8tYsoIuiCiKiiBLBEFEtVghFhJKsw2KS8fRBts82rBolGZIU4HyXAld0zAsHd8ZkabxmOykKuSSQZQrOK5Hp9OhVDDRFZH1zU0GnodmmCiCROoFzE5O4g2GTE9OEkQhkmEjahLOaEB7d5fADVA1g0uXr/K5V1/gV+5/nJMffoT2YETiePzx7/4BH/vQJ5i6/ySC6xO6Huu9PfwwwO0PmTi6zFYa8+K/+x1+tDZJoka852/9HP/mtz/PzNEzlFSdWhwgLk6gKDrBOxuceugB/Mjlb/yj/45Dh+eYKLVQcgVfVzj35Ht5+qvf5tzCCeTeAcJkkbvvPcPO3g5XXnidU/eco1BvcOAGjFZ2IM04/cH34icRUi7wrbde4fWvfJVPP/khTj98jpXdLRZmF5DcBCePGMUuehSRCzKCoiOrOkEQ3JHZDSiXi3h+gG6YyIqMAEiigDsakSc5lmWxsbFBGIaIooiu61SrVXzPxbpDbDFNkzAMabfbY+mIaaBbFoqqs7e5g2mavP72m7SadY4sL2OYRa7evEmSCywsLnLh/JvIQs6pYyfJco0g9NjY2sCq2vS9PqsHmzz74rM8+/QXOS5WOK5VqS/N8I03XuWnPvWTPP7E+ymYNdq//y/oLB1DrS4wCgdMLEyj9AV2VnbZzr7EzOwS5cITTB46xv5+h6wzRBEkQlVAVWTIcmRJIhPgwoUL3Hf//dh6BXQFzdTIo4RBr8d29wDJ0pmYaCBmOXHg44cBSGMTbBYlSGnOzu7OWIIydAmFnFWngy5KdHtt5iYmqaLzr//tv+Pehx5CTyX2b23S3bvJex+7j+bjT/Dt7W8THbyEbR1G79VptXTeeOUV0sE62pTGB+79EPsrAkGpib+5znq5z48s3EejvoA7DNE0jbbgsdioUW8ssrl6G3c4IJEFYhmEOwnXqSxgSSqqaRPGMZ43YpRnvP89H0QWFJI8otvuIEv/KTgxSseoTlVTSbPxhTnwfRRRvqOzz9ALBnmaId0xByPkY1lOliEjIMpjOY7rusiigK6oREGA2xuSiRliEGFmIJgaRVkjHHoM5JTE1DBkjSQI8ZwRmm6imDqKpuEnCaqmkTI2KIuigCxL5GmGpluIokgQR+QCY3SoKJHekQhpmsqw32cwGKCp6g+Mz7KijEl+dyhDvu+T5zmGYYwTmNP0BwnHwR3fnCzLaHfwoJL0n+RIcIdglOcQp6TkJHlGkqaYhkHRLtA7aOO0ewSGRJLETE1MokoykqYRByFimjExMcEXv/hFvvnNb/LA/ffz0Y99ZExvkmVkVWfY62NbFigSmm2zfbCHblqUTY0szQjCiDCKaDSaqKrK3t4ed504825D8G79ma0fekPwj//pX8mbSzWirocoWuRiQBoOqQtlcjIyIUQ1p7jhuNRqJYqKhf/2FZbvPsV1r0/38jvcLark1TLF+++lXFrENmrs7t5C6DpMTC3x6sZNjk2UiTKfZmsOz3Vx+32KrQaVYg0JlTiNCPY66EWdPadP6se06g0SSSTKMhRFxU999trbVPwcqWgRZBmHD59gfWWVJBuhGBahH7G/u8LywiKIFqPYYae/yZWbL1BTRZZmHmS100Xw9zk5/QFW/LeRMhFNSIgVg/WV1zhz+kH2nJCyaI5zBzQdzZTIMojCEa43IhNEGpU6WWxSrzXY3n6bhbmTbG5toWgaRa2GoWX0Bh0azRaOF7K1t87y0iN0ulfQBQnTKNHrDkmimMPLh5EVg6ETYBcbWJY9pjwIIlEc4g8GeIGPEww5feIeoljE8UPCKERRRWplm/ZeF8MwMU2TXq9HuVxmb29vbBwzVHJhvBoWBZGR66EoCv1+H0vXie9QJorFIp7n0ev3ybIMdzjEDgKiOCROQlx3SKNVZTQaT6GmjjyKr0AQh5i6zub+LnrB4Lt//C0+Wgx5sWDx56aeYNvvsl3KmdOneObbz3PfueNMHp1BSuHWrVu89PLLzFhl7nv4QS5srHBs4RDz80skcYShjKdbuWYQZJAnIzRZQJLAHbrIucT2+hae43E78dnYXKVariOKRdYSgb6cc/uPn8XxfcrVClHgUbJNbF1l0NlHk3KOz8yw0jtgdWuXki+wcukyJUunUrPx5ZyFqTmWmy3sVpnFUyeoFGvcPGhzrbOP7UPfGzBwHYIkwnVD5EwmCWLCQcLpu8+g1qdQbYGD/euYmkVNNVE6HeqVCqHrEvgOS4vzyLKIaWpomkWUiZjVGjEphqmSCwlDz0NVdIbtAY7joKnjy0iaxZRLZWzbJs0E4jxG1sZscafXp1YojY3hQ4dnnvsejy8sMbPQ4pUbK/zRH36Nj37qw2h5jm7ozB05TKar7G5sE7QHREGIkCfIi5NcWN9GXB9xbHYRJkxGvV2KSEi6jhUEVKarvHnjCjVP4fEP/ChfeP1FDm7tsra+BkpKs2ow7fkcmpvl+F/8MNsdgZe+9jQPv/cxGqUKTz/7Habn55mYm0XyYhIyREXGd10WlhbRDYMszbiyusrl117lgePHOHzmHhwvhlwkCRzi2EPVNRTNoD8cEUQR1WqNUrGA77l4nosoy3eMn+NQp0LBIksSoiRjb293TCaZmKBQsOn1+iiKTNky8FwX3/fJ0hTTsgj8gCiOaNSbiIaBMxqRuyFCllGYqKJIAs5Bl8rEBPudLhtbW5w6dTevvfY6xYLFTLOFFo0YxgEiAqZmY1lVMkun7/lsjPrsv7nC7mgPs6aT5hLDVGQGhXLvNr/wD/4Jd81U+W9/+W8xsC2WFmfYvrWNVZ2gdOg+2nsv8Mpn/ilP3vsU5WNn6MYS7mBAFsY0Wy3CMCBJEmzbxPM8JElGMyxsRSdLUiJRIJElqqUSo/6AYH+fyakpwihClGWCMGQ0conjhJGQkUkCpBk1wyYNIlJTZeA6xIFH4nocmp7nQnuL3//a13j09L2cv3GVxeVp4tTnsfvfw5QT8b2Vl7gevMhiFDD54Ee4+XWP3YrA4+/5JMOVWyjeOxREh62iRDVSuXF1jYWpw5iFOrJhMdNscuHVV7CUErWZKXJDxUtCNE1FTFOSIEI0FIRRgo9Ev9Nlammeex5+GMEJSDJAyFDuUIDSLCPPxzz/KImxbBvT1AnDALKMKIzH75Wuj1W2UWUFz/OIgwDLHodtBVGEqigkcTwmDIkiQp6RxjF5mhF3HbZ2tiiIEoYXo+ja+GfZKJFVLaKhj5SCqagErkcuy/S9EUaxgKJopFmGrCkEYXAHyzkOM1NUA13XCdMERVUAiKMY0zDIsrFPwPd9siRBFkS80dggLSgKumXi+z4AhmEQBOPfFVEQIM9+cMmXJAld14nj+Afbgu8PovJ8HEgmCAJxHBP6AXahgB8GhFGEpiiokkIaxzz7nWdQ6iWees+TvLN+k5JqUKnXiKOYJIoJo4hDy0v4vs/zzz/L/OwsMzPTDFyHXJRQRIk8irl5+RrNWpOZxQVW125Ttg1U06JYLRPHMU7PgSTFMkxaR4/+qW4IkiThhRdeMK9du6ZNTEwk73vf+9xCoZD9MJ/13fqzWz/8DcFv/JV878ZV7rvnQcTqJIOtbeYbdZxEJJNckGUmhElUu0TfP2D76m1kzWBmokC5PsvXX3iGcp6zfOR+rKkSchBg2dPEZYPewQH59hq1Vo3FmVN0M4GN3jZkITYClmFQMkrIuoFo6axcu4Ku6ViShlkq4iQR3nBEwTQxykXSMOLa1i0sLSeJIyyKFCwbX8px3RGKapIkEVF4QB4HCLJJrqasbN0gJSQb9ZhszdB2VeRoj7sPPchzN56nYTeR0pxAGmDmU9Qq0+y6V7DRSZKQeuskftqn398mj0XINcKsS610iDDqkSchZBlFa444ddBN/Y6+NMMPu0iKzPTEPaztXOPIsbNsba5gySLVUpNe10HT9LGufeU2mmxSLDcwDJPRyMUuFlEZJ05GrkehYSGlCrpikSCSigK+N0TKEgTJIP0+JUIQxuYqXUcSRfI0pWBb9Ho9oijCMk3EO9MvLwjIhPFa2HVdmo0mmqrS63aZm1/ElzScUR9vMMDtdUkDn4JpcGRpCT9PkSKQbZMD16PX7pNHGV9/5ts85Vyh9fO/xBeeuYyzcouf/vmfICyUOH9rB7vbZ6Jijc12ikL50CxBmhLvD5htNknFjMCLyBgnXI/X3jqKrCLEIYHns7ezR683oOd57I08ElWjqpnEukXWDkFM6dgpURyzff4Wa+u3xgE7ccjc9DT3nr2LtZUbLM5NI9pFgkykOj3HMzcu8/qrr1Lf6iORYJ05iiiZCP0eEwWD4c46SafL0cNLHD11Al3Q6Dp9mrOTxFmGoRuMPJ/d/T3E6WkiSUMXUk4cPsH2TofM75MpAmJu4DgO/fYBhiIz2aojKSJR6FMs6KiqjizrGKpCSVUxJJEojEFRGCUReZbT7XZI4gjbsiiYNpZp4jkOAH4cIMkiUg5yClkUU1NLXA17vPzst7nr2FFqU3N0Bw5lU+Zoa5JBEtIbDBH9lCzN6YQ+YZrgOAFFRaNRLSNVDYIwolGus9sfIto2xw8d5fJrryIJOfN3H8cZjmjoFYIw4Dc++++57+wDFItFvvqVL2E0ShAlnEyrPPjUA1y7cQ1/r80Djz3M5StXsWtlZqdmiQyVsmKg6wZhkuCNBqhxxigOkFMYBAl6Y5KFqUmy0GEw6rG70UbJJCRVxLBMBCAMAkxNIY4CVEVBLhSJ71zoVV0nT1KiKCDyA0ahh64bY0yvIt8JYRIJAp/U/09yiCiKxjkad8yXhXodUzW4fXOFcquO5zpIQUiSxkRCTrVapVCucuHyFUyrgKppDAcDsjhmoV5kc9DGqpcpSwZ5KmKIOnKjStDrQdAlCD2Srk/U7xGYEqJd4/KV69wKh3z5s89gMuSf/R//MWoQMdreRj22yNLUJEZU4MVrz+BywOmZBwkigVxVEJMYRVXoDwd4nkfBthDICUKfXJIo6SajgYNmWpRrNcRcRBZE9vttDNMiTBLSPCNLxxdCQZZIu110TQVRoC+ERAKUBRVNlmmHMREC8cYBYUXn+IkTdC7fYiccsTRzBBmR/to77Fy9Rl9xaUc92p19lu5d5J76ESr6FKbRoE/Itbe/zMH2FbTaGVIfWofncUcuRb2AqRQQEgXBMOnHPfI4xRA0LEkjS1MQBVRNJhdz0iCjsXSE2YkZQhXagx7lREI2dZIwRNV1hs4IwzQhH5NvBEFAlCSiOESRx6nAURijqiqaZrDT3mWi2UJAoN/rjpOHNQ1VH2O3gyD4AdHH0DQ0WSYJIgxJob+/j9IboQQxedVCNDRyUSSUgQyEXEDXdARFoue6lJp1kETSeIzo1EwDBAFRFEjThCRKSNMcQRSRNfU/YUSz8X0ySWIkWUZTFKIwYjQcksYJqqriRRGIIlmeYZom5VKJKIoJw4AsSxHgv9gAfH8zMEasfv/vH//Z96lK/7mBWdO0cUORZQhZThInKLLCt19/CWN/xNlPfoj4oE9vOKTZbKLp+rh5D8c/P01V6Pd6CHmOpWtIWYYXRZiGSW+/zcXz73D01AkSMmxdxx/59DpdNEOnMTeLWini5wlnjv3p3RC88cYb+hNPPHG03+//wBNaqVSS3/md37n55JNPuj+8p323/qzWD70h+Mu/9v78fnWCk8fvZtV1CNY6lESN/mQBcWPA/IljrG6+TU2yEOpLGAhU3BCvoJJ2AqTaBK3pBeQsxxciiELiPEcmx1Q1+h2HwNKYnZklC2J8csqaQnfYRQgjAqBYqqD4EZIhIqYiXhKjSwqBDCNvhOklqNUCTpJSsGy2Nt9BkURMc5ow8AkCB9suougWKRm31s6TBA6T0/MMRj0O+ttImoQ36tMqVnEjgzRqM1E6yq3BReZaR9nauEWpLKPLBVSpiKzliGiEXg9RrdBzu8iihG1oZGmOXbRAqtDuXiH1U2rlFkWziRcMCROPIHZRNB3f7THdeABEFzdMkTQB3+tQ0ZvYWoU4ElBMDcPU2NvaYqoxiSApJDkkSYqkqVRNi9WNVQxRJJBy0pGPpdk0p6bY73fpdw5olUqoVpnb6+tMTEwAOcViiTRNx5QLQUAQxqvk4h1UqmZaxFFKlMQomg7kxFFMGASkcYKQgyorRFGCZZkggKoq+IFPmibj9WwWE6cZhlUgF2UORi7bnR7be3sEN7/HvH6Uifsf42vPfpFPP/gQyWwTGZ1ckzEQ0VUFL/Dwtzs0ZqYZxgFZOE4yzmWFTJbIpHR8cLohWZixubvPemfIMMrGSZ15DqnE3n4XVYOFqQn6gUMqQEExifKUb732PRYsk1qlQq1eZ3d3l4WFeQ4vLyCLIv0gZas/ZNh2yBJQGlVef/VVpppNJqemGOz20MsFyHO2t9dZ31knDwKapoGZRwwdB3fo0CyXOXn8CMPAoeP1+Asf/wQlrczqKy9RqbeoLx0hDIeoBYtE1tnb38dUVWqVMr47QpIEsixBFSWCKMYLE0RBQiRFJEfTDaI0Jc3Hh64sj1NB0zgh9ANkSSaRxjzzLE1BEtBNndBx0ZFALUHYxU0j/GHKZKGIb+UUzBLuxcs4mkB5fpZLb13CtktIlkEQhshJjKpKdAYDKqUyueNTLpZQS9ZYE9wPSHOZ4tIChmkTuF1W3nidoqxiHz1MszGJJMr0h3103aBYrTBIcro7e5iaipfFBK5PRoataEiSjChE40u4H0GcEYch61ub6LZF6PksHj0EskTFsIjimJGYoJkqYi4gqDqCAL7vUyraZHGM747Gco5MJMsZk1Cy8ZTW911kUURUxpSVOIqQFeWOHM8ca6Pj7I5kIr7Db08wDGP876DqSKpKp31AtVRk4/YqSZagSOJ4Ilss0JyYpOeM6A8GlMtV0ixna2MLAgGrUaIxUUPKU7Qkod05oFiwCcMEq1XDGfRxBl0OnAF4CfHKDsOkw8NP/AjPPP8c5uGTTIs5Qhqwub+LpijM1SbI8xjBmCB226SDG5SqhxALk+RSjDvyMGwbQRDI02Ssd88SojAgFiEKY0qahZwKCKpCIOaUDQsn8DFtm9D1GfX7IGakImiyTuyH5LJEKI2bUFtSUUs2cRQzbHeJFShZBYQ4xotDBo6DoGg0FJv0YIc3rlwhmpticapMt9vhzEMf4sK3Psv1nZeZnZ1hLiry1vVdZu+6hzdf+wZybZJzx49jJwm9Xhe9WqNamUJCRxZydoZD5o+fxOmN0JLxZDvMY/Qk5cU3zvP+pz7BkaMn2e11UNMEU1aIZRDjFEGSUXUNUVFQZAXX9VHEseRHUaRxCq8AcZxADpKkECQBqqJCniMAijKmCGX52ISsqSqiJOGPXERypByc/mCs6dcN5P0+I2eIcngSUZDQ+wGCKJIYKrKmkZATkyFqGrKhE8URsiCQZhlBFJMDYTD+3bUNC1WWcX0Pu1BAEEVyxlvnOInvbBbHaOgojIijGO3ONF+UJHIBBITxe0yWjulHWUYcRz+QE+X5WBIlCAJ5nv8g1Ey847dIkmSctSCN6VZRHI0vKDDGsSoqI8chTRIMw0KplfjcL/8TPvgPfolCDDmQk9MfDCgWCzTqdYIgZDQaIZAThiEbF68yXNskK5rkpoEkSURBSCJljMIQQ9HJ8wzPCzAMA8/zOHnqNFOTk9x99r4/tQ3Bb/3Wb1V+7ud+bun/+fV6vR7v7u5ekCTp//cH/X9TaZryj//xP2595jOfaezu7qq1Wi3+9Kc/ffDYY4+5H/nIR44cHBy8Va/XU4AXX3zReOSRR05cvXr1naNHj0a//uu/XvvlX/7l2d/8zd+8/Su/8iszu7u76n333ef89m//9u1Dhw7F/1Ue+P+P64eeQzAzs0wWl9iKcxzHRZJV0Isoccpax0FY30bU6vghTMQSrpLTzhMkFwpTDaqTc4RxTqYkdNsdyARycib0AoKiotdrlCwLUQJLURDk8UGqCDKipZDHCZIAfuIxXGtTajZpd7skYUTJsqk1ajhZgJp52HaD0A3xA49EgmrNQJAyksRBJCbwBgzDEZImkCKSpAlZlmOpRTSrjucLJFGCpRh04px9dwuIGDgDMjXEVE06/T0qpYySME0vapMKbQxpgkZtAdfbxvPbGEqFUc+nHWySZQ6T5RNomkxvcBtJKozXzLmEIVUoFhQEwUVXbOJ4nzwRkPMMWUhIY5c8kwgCH1k1CfwO/kgmVwpYhSKSoiMKIgf9LnkSU5lssesn+D2PSlEjSiPa/QPSNEaSVJzRkHq9SqNZw3EcgtBDEIQxCzvJKZfKuO6I3f6ARr2OmGYEnossKMhCRi6K5KJMLCvopoUsy0RhgKmJ4wTTLCOKJUbOCFXVGGUeqqXjRzFxMECXFGq6QXNhkeVWi5u1Imqo0PPadAf79PdG2LMzRO1dyHJEycCRMsSCRqBndJ0OaQaabZDnkIcZUpIjKzmqDF4SoWoa9bk61OusbHfob2/SKBUoV8s055tYisJstUiYuUSBhx7BzdUV7l+exPJ8WhWLkyePEBxdxiyV8J0R3shhaXKCqbJJt2TgCCKXtjfwt9ZYnpojGwwJ1YRBbwN/Y5eCanB4cYnW3CLe5gEHowOKcwbe7h5b3S6Lks173/8ww8EBXi9CLIZ859oqM50eZ8SIQmOKDJHYcyiZOgIQjEbkSUKWCqiqQug5dHtdWguHiPyQPAlRZIU0B5KEbDRC0lQkyyTJ8/8He/8dZFman+eBz/H+nmvTZ/nqqupqb6Z7DDAGZuBBgiBIAqRAxS64ESAABhcR3EAoiBWD3IXAkEgsRVAhieAKdFgKFKEFwBkSGADEYPz0oHu6u9qUr8xKe/09/pzvnG//OIWRlrGSRhJmCYXmF1F/VGZV5q3MrHt/5n2fF8tzMRwXzdAp6xyjVrB0A6mrSE1BVXR00dCUFfdncy51RxRnPIqypuPYOJrGHhXzaczw4gUuXLmCIw1MTWecrTgan9Lxe2x4XYJul/v7+yR1ybO710jjmIeLA/Zu3uL8Ysnm7g65Be6lM7zxbz7D2vQQ6/3vxwl73Lr9Jl7gc05exHM7TGVKmSaseQGi5yGUBq2RJJM5PcMkD13o+yzuHiE9k/X3PoWLjixyer7PFz/5e3TCkMeeeAJjFVOsxjQSNrbPoxsGVV5QSZWg08H2bTRNp65zpKKSFyXdICSJE0QjQDbURf6II6+AorS0sCxDVxRKoKyqR/ppA5RWB13XNXUDsijQDZ0yz/BcjyRPWtMlCnmcspzNKIqCrueynEzY2t6h//g1lnGMgkqg2aArFEWCv7VGmiU4mkY2mdO1HMxOD810MPsqr+w94DA12Z8es3HxHIFqUNZLAtvn8atX2X/7Nqu4xAwMoqM3CHu7lKMXOc0X9LMp4tEmN03bzBXPdlitFuRZRhSvyIuCjfVNyqZB6BqWY5Isl2SnY1JRYFoWeiPJFwuqKsXuuIyzmi07pPHbbbxh2CSWikwT1CLD9qGMY8pZjm45xFUGKihFQd31UJUOO/ElZnqDtkh4OhxSPnwbO9jhqveD3Dz+HLNRg3z8AmpH4+zTl4gfpHzuzdd44fIV3r53j7NNw+TuPpvXLhGvcjrhkGQ8Rjd9sqbE0DQsxeT07bd599ZNfnBri7gS7OycIbp7j4ycvKrxVOMr4WF5WVJWFbrRNsuWrlHXgrIsMc32yqoqKkmSYrhmuwmv2p8nTXuknVcUdFUjz3JM3cDUDRpRURUFtmFiCkjTFMe3KCsdvRA0TUWugR7YVJVgMp9idTz6ayMUpd30i0ZSI9rBthEIIcnzgp7jIURDES/odLvUoqJBoioqtZQoikqRZRimgWVaaKr2FRPwHzT1SImiQFkWX/ESIBssy6R9GmovAIZhfOXvlWXb8Nd1Dfx33oE/eL/t2oiqohHtUAUNtm0ym8UgFUpbY7PT5+DoiPNBH8d1kYrEtg2SJGI0HKAoEIYhURTheAFXrl3nv/iXv8nb02Ps9QEXzl3AkNAgMRyLplrQ7/dxOx2yJEfTTOJ5xIO44OnnXvyf3YT9/6s+8pGPxH/uz/258Q/90A/Nvumbvin+K3/lr2z97b/9tzcnk4lx584d87HHHiu/Fp/3x37sx7b/6T/9p6O/8Tf+xv5HPvKR+OHDh8aNGzfsr/bv53mu/uzP/uzmL/zCL9yzLEv+xb/4F8/8wA/8wMXf//3f/x9sWL9eX9v6qgeCs2tX6Xohk719zq2dIzIrDGmw23d4/Nuf5/bRbXRbo24kyzrG1FyMrR5JlNPJVli6hqhKogennD1zCdkxEXlFTU2WpqyWU0aqJOjuMktjtLygMipsXUc1HZomIV2NCTohq7SLbZhsrg+R2ETpgtnikAINo2nwXEFc1SRihSUgPt3DcUx2NnY5nRxTNRmiqCibgjxP0bWaVZlgyQhH7WLZFuPpHrvr65R1wXBjm/233qZrd+l4HigOlVKTFCmuPECYFVIz0a0Vgb1NkVU0hs5kfkDf3cY1NSzjPI4VMJ7coWkyAlfD1F164RXifJ8sTxgGIfPFhNnqFud2XqapIwoBi3SOlCVeqLKYOXhOQJTO8MMQXdGxXYc0j6mpMGyDopKYlPieTa2UTJcTOp01LNVENdoXoG63y3Q8QT5CzGmGiWHZ6IZO0yiMj05pKoFaK/QHQxQhMQObRlVRFDAVA11VcGybLMvRpYJqOWiGjaIoFGWJ1zOxbLuNsFckhmm2+k1NoxQl6rIktB2evfw49TLB3Aw54RuZjkvWDIfKDRA6JI3keH+fS94FCtVgnqUYjfKImGGgKwqirDBVjXSZgKgpsoh1z2G4EeApNZd6PlUU4dYJRr5APUlZRSHzrEAvJEWvi6JoPO4N2Xfh//1bv4EVZbx18C5/7OWPIDsB6ThmHuXUVXvGX9/usfbcdeKDE4LQI5EpvmVTFgZv7R8xsC16ec3pwz2KNMfz+miG5NqZXToXLxOtFnzsE59h6FoMwy5hL+WpF17EtRXMnodl6mhxjKopmIaJoWmUVUmlSRpZAQqHJ1M+/+nP89QzOefObqM7BlldoKk6wahP5JlUaYbjOdg8kmxUNUgFy/BQGokiQdF1dN2gigvefP0Gj3/wJTx1hGF0qPUSzbYp0gZ1NmbW5OSWjmx0QqdDUeakUjDa2ma4ewZPM2kaQXJwxGOb66jdgOY0YmA62Gcvsn3uAkWZY3d7GHVNr2wIP/pdNIpAMzwWiwJV93GdsP3ZETmuoqI0Dbqu0SDIiphaNKzyhKYpMQpJtkq5decOL37g/aiBS7lK2i2oU+N0Qt6+c4vBoMfe228zXBtRGSZmsGJjcxM3CEjiDC3N0B6F50GDpoKKpExTbF3D6ARkaUattNkFeZZiP2oANU2jkQqOrhCnKZqm4HoWWdaQJWl7wdEMppMpg0EPaeiE6yP0pclisUA1DFQJTV2jiRrHMMmQTO7fJxwOMHUJik4cL/BNB5nl5NEC3dNpdJMyWRGLCs0wsZOSOI3YPH+ey1aXqprhGR10paasGppa5eHt+2B5WL0+oizor19hvpih6SWqrjIvCkzRLgqwm7Zxkg2WZiAsgdW0uu5yOieXkqjMMBXJxsYZ9hcJum8j84oozxjP56RJilXWRPMFTb/Gl12mqxX379/nqeefZbVMOTl8gOU7OKrBvBAcryJe/OA3cPPuO1y6eJHD+/d465Of5/g04cU/833cOrzN9HjK1edfwFudYGge33LleziaHJArJyRZwkZ4kVvNA3puh+ff+0Eee+wK8ckx6XLFIPQ4G5T4suGN00Mac4AVBAhNw5Yqp2XNKq34/S+9yrWnnqKpcvrrQ5QioYqWgNL61rIc23PbVFxVpcjzVouvKBiW3SbT5wVxmmJaFo5mkuYpYeC3l4GmQVU1iqJEV9V2yVKWqIBKG0ZWNQLDgIEdUKQp66MReZyiSbBclzTKUHQNNSuJNYWOpqHOUirPxDad9v9Jt49elGSzFR2/w1q3w41/9Cv8dhXxJ37wB+i6IfUqocoLkjzFMk0qWaM0GnVZkCQJju20QZK6jiKhbhqEKpFme1EwFQ3ZCETVoJlGmysDiEeDsKppaIpCLSX6H+BGm4ZGSpCSqshRsqb195gWSNleWywb07TIm5rNRkMNXX7jYx/j+fe8yNPXrmMrGr2wT1kWrFYxtmMjFQUvCNqvccfje/6PP8x7oyWqZTGZTFhlMVmSYioqZVVTlxVZGTGbTrl56w6jrW3cIOR7/tSf/ENvvv6w6uzZs9U//If/cA9aedabb77pQDtkDYfDrwkzdT6fq//gH/yD9Z/5mZ/Z+/Ef//EpwPXr14uPfvSj8a//+q8HX83HEEIof+fv/J29j3zkIwnAL/7iL95/7rnnrv/O7/yO++EPfzj9Wjzur9f/eH3VA4G+/5BVb4xi1ZRah6PpmKcuPclpuuD126+yu7tJkcb0Ag/ftyhFhqbkGKEgXdmsDm9jeAO8nQsczye88tuf5jHbJ+3Y2IZJEIbc37uPbmrYuo2UNYUQlIWgEQqVUlNUCaEM2Nm9TFPGJM0Es6zQLJM0g7wUKHZONmswnQFJXOH1O8RZxCrOmScrSiVhtjqBRgfHQq1jZKVi+QHR4T2ausCxbDJdI8rvc2ZwAdca0EiVbDlG7djMEzi7fYWkWFDJjPHxFN806GmCNJ0ja8k8WhEVK7Z3LxNofZaLBN1KqURNGKzjhzpNZaEpOtPpEYZuEoQ+08VDfG+bKIrQTIeq1nE7BmUVkaQLfNMmcHtIMvqDLlmSs5hHmK5D3ZSIpmQ6P8EyHMKOwWQ+wfbW6PcHFMmSxWrOaOMMi8Wiva50O2iqTi4Emm6iaiZZUWB4LloDqm4QZymrOEWxbFzfQ9Y1St3gWGabNFwLJA00TTtEKAqOpqGYGqqqUNWCSlEJgwCqVhtaqpDVFdEqx11IDNuiimOeXD/H3t0vM7l3n6DXRUGhTCO8TpeoqXGDkHQyIYlWqKqGWUsUy0CaGg9PT6Fp2N3ZJlouWFYF9z99h/37R6ySFdPFhPd88IP8x//5LzF76yHf/e//INb6JlUGDz/7abLllKAz5EPf8xHe823fQbC2gdG1+aV//bv0hmvcSxfkGOys77C+3qd8521eunaNH/rGD3I4PSFMwdZM+uf6fPMT59GDDnfv3MeTBurmiBsHc+plhBovSMb7+KbFsVC4kZsopwdcvGBSFSm6Ag/2V7j6GLUWFCIlcFx8x6Y36KOaGk0t6HUUnM1trn/oGwh0Hd3SQUoC06ZKCg7fuMnGzibC88hljdbUBKZHqUqKukGTkgbak3/dIEROVQnqRsGcCi7uXiCO50jhURY1hVFxHGeMts/gxjlpNEHEBXqvR+jacHqAu7ZGnec8ODhg/423mJ0e89Ef+OPcOTnm4vXHqdMYvQHHsMgnCzq9EM01kapEN1QaFCxTo1f1CQKfeLFCD3xs12G5jIjynCKNsUwdJ+gxGGyz2H/A6ckUxbW58v6XyKWkHi+oGoEVdigdm8JQ8YcjEk2lf/0atuMSGAaW61NLhU6vj+uVZHkBQFVVGJqCqCqqPKNqWvOobdl4to0ZDFlOJuRlgeu1JCHTtFE1nUJpUG0NFciiFU1dY+s6tuOhmiaiDvB9D1VV2mR0u/2+SiRKJaiKErMb8MXf+zS9QZ+LTz3O7d9/A8ux2bl0Cak0pEVCFi0oqpz5pMA1LGQjyfIlRVmS5hmFqPACH52UxSoDXSAcmyAcQd0QDNaQqIQdjyLXieKoJWtlaWs4tUwSBLUq6Rgahq4zSZaoioqtm3idAdl8wt54jtMLUcMQTRoYSsX22iaHkxNSHVTXxVVGdEY6dVkTdtdQTZNxmqI4Lptnz9MIidUN6AWPoUmNfB5hdh16oxq6Q/TBGlI3MVSbaG1AZ/cMTVnx1PPfyCqLmakKeRBS6gar1Qkf/+e/wlv37vGtH/kAHcdm5+WnePL8BbzaRlY+w+2nsa4PKDUTR13SWH1eMLssjkvWRi7lbEq0WFC+8ALf+9hlzMCj1+2xnM+ZlxWIir4TIlUFy3awVIUGiWm0kpiyKpFITNNCN9q2XtV0LMsm8APqoiSNEzq+jwJfaYot06YW5aNgsRqlkahNQx5HaLRo0ryqsBSdpMwwPAfF0BEoWFIH00DEOdM4ActCrROEptL1Q5ZNiaFo9P2Q0rQ5Ptzn9X/5Cp84eIez3/XtKIpOPF1SqQ2V0YCiUzYtilR9FHZm2e1wk+c5osjRTAvNsZBZjq9aFGqbOK96BnlZgWjQFA1d08jzgqqokLrENEySPEM0sv1/ZZhoiopuGkgF4sWKJEoIu11UVaEoShpZY1sORZaQxwnnXngSok2uXn+CbhBSJzlNI7Fth8OjI9bX1wnCkDiOW0+Eo7L92AVG84hcCq4/cRUpGhTg3t4eVSE4PT7izu2bdAZd1osdHhyc0JyMvxa919ekfvInf3LrN3/zN7sAf/bP/tnTfr//NTEWv/baa3ZZlsp3fMd3rP6XfgxN0+QHP/jBr3gcnn322TwIgvrNN990vj4Q/Lupr3ogSGuV/GTJ8cEh9uMu25d3mSdjpkeH1IqGojXQCGzVxLN6ZImGZQX0On1c3UDYCgerfdaUOUep4NVIEqo6V3YGTI/HBKnFmUvnKA0Qx1MWPROl0LAVhUYK0jxGVgVNVRDnc0Ql0EMLCayWKbYbYJkCVUvI05xGmbC1dZnZ4j69zW1m02MW8RGLbMJyNeXc9hmOTub4ckWWxpRqQtEoFKspg56NZWkUBeTiFnm2wO9uYeg1jSVxFJ3QclnFKyy/QxrvsXXWQ1FrouQYOxiip5Jef4Pjecxq8jY7m48xnp6gmiVoJkmisYoOCcOcs2ce5/jkDrPoDpqZ4xtn0DWNrMrp930aWZBPSspEZ+vMDnffvc/Vx57HtHpMJm/jeS6aISmyjM2NDY735uhuyCK+zXyx4OrGU9x/cJskeciFrUtEq1UrUbAMDk5OWBuug1RBSKqqQNc1HNtjPj5F0zR6jstwOETRjZaPrWmYmkaapgghMCyr1XwqbTKyAl/Z6gghkApYjQpKQxzHlI1AtU0UXYFaITVVAt/CUFV6ts/y+gVO04T798c4dSsH2treoavZ3Llxk6ooMDWd0+VDlI7bMrODgN5oyHK5Iq8llarzpbff5jfeOeWNwyVrUnDV8fn8gylb3/fnufo9Kv5mh24TY8qCeD+nrykMuxm9B1/iuW/+MFrTRbG6fNba4ihJGaJiNCCaiOPTI46OJmQnM55+YpusZ7A4Sjm3dYHl6QTf9ogfLCiqiGefukL26jucf+opSucsD5MVH/+Vexh3j3j66hW2n7mAcLucnh7TNBbUNU1VsdbvE/oBsSLwHJdssSJFEoYdeq6HImo6Wcnm1hnyOIIaaktFGCoicBCZy8ODA0LPZf3cWQpqJukS3/bR6lZ1Wzc1mmGgKhpVJegOh7zvIx+kjDMW4xnrqkbieNQIOrqK3NylXExIohjH1FlocPs3fo9QhbJY4Q8HjC5cYP38BY6yiHwx5eFrt3jim96P9CxUS2svg1WNbATLaMnWmV1m8RIrKnHDLrJpcB2HqqlZpjHzZIXXc9EaDUe1UF2FtMpwmhoxnrJYrRiOhth+QJymLJIE13Lo9Xs0qkKtKDz/4ntbKVuZtxkaqooqBIvTU/Ra4PrBI4mEQpbnbep105CkKbKpMXQN1/ewDJNVtGK1mKEZKrqpk+UJQjR0ui2dpLIU6hxIC3zNJFolYBiUjcRXA3RFoSoysqwNTCqznH6/hxCCTIVSA2uVsfPUFfp+SCB1rLU+F7bPEmUJjm2BEJimTilUTMNGPDIx53ECiophWNiuh2EaKKJqDa+qjqbr+L5PnqZ4Th9dNSjzEo1WOnZvb59+v4+hGwjZUBqSIOziKSZareCubeB5Hkf39nB8B33tPGfXz7Ecn3Bw+xZnzp5nNq5IzCWqIih1rTV4phmNozPsdlAVgyiKCE2TrCzoDEJMQ0OIgqrOaaRKd+CSC8HuaMhiskcv0IjzBc4g5Hs/+m04uofue5S2zmPuBcZv32avf5ZuN0RrFL7rR36E+//l3+e//JWP0zE9Xn71HRZPPcloc8DuE48h1ZJuUtLVTI6XMDw/xDf6mDs1nlGhNjnB9hprho5uuahoUNfYhkPouci8pKpL6kdJuE0tSdKUbthDVAJbNzEMAySoioqKQqOoNIoKCpSixPf91oheFi19p6xomjboyzTbBlnKGl3XURUFTdHIk5S6KDD9EN31qE2NlKbFlOYllmbQ+A5lnKIaGlFVYFkhSZqioSPUgiaZUY+n5Hf3uRcafPj/9Bc4O1yjPp5jKQooEkPVaKgROjSiveL/Qd5AXddUQlAJgapIbEdHQ0HPahTbpswLGlViODZa014QmrrBchw0rb1+VJVoMayNRJZ1K5VCwZQaTSPpdrutIT9OME2TwPPJ04w0j2mykklZQWCT3J2z//s32HjPi3SCDkWRoxk6a2tr5HmOrustqUlVEWXZyrdcC6VQqaL2WpOsEh7bPkcha3Y219nYGBH2e1heh/sPHzJbRl+j9usPt37qp35q4+d+7uc2AZ577rn453/+5x9+rT6X53n/g+ZTTdMkwH/fn1pV1dfEg/H1+sOtr3oguLz1PIOz6whRcnD7LtW8oohidN2kk3hcCC9SD0vuHeyjeJKdCxfZGa6TRROmIxVqcJNL/PzP/gx/5Y8/w+Yfe5pP/97r7P+3r/Hi+z9A89h5DKdHJgVHRs5lc0QdGiTzU2zXZFW0coHVasZgc8QiStEal6Ko0VWDvFxiWgZxXBEoPULHRcgFx7OEuJ5QaYJGNVjlOZVW0O9vM169zm7vEopWspwtycsUU7OJ85osXzDwdtjYDEjrgMN7b7DUXTbKNdb6Q44m+2hyjqX6bF09xzI/5da9uwy6OxgzhaG/0QbLOBqHYonl1IwnC1AsRsMOUXKKbhms4ilVadDpWYynp0xm97h+aZfJ+BTdSjg93ifNF5imxcbaJfYf7ON5Jq49ZO/kNkene6z3d1hFMzSj4uTwFTZHlzhzdptPfeZzPPPMSwhhojxqEly/y+nJmNHaGlGW0x0M2NzZJo9y4kWE2wloaAiCgG6ng2O3IViGaYKioCgS27LbMKpGefQ2Bd9vDYHQvgAYhoEoS6pHWmqpGKhNq9U0bJe8KKGs6bkupqKRS8k7t+4wakzWNvoMNjtMixXLaIGuqDSuzcc/828oioIizemFIc88/RSdsIsE5osFd+7cZWdnBy8IKWuNK9c+zJUXLPIm53B2wjKL6aou30bIWrdk5gRYyZJf+3t/m/k7N4gVnbFuUI08Xv2lX+NP/LWfonvpDB9au8jxccIrr7zFO19+hdAGrwSz2ycarvO5N4948eX38PnXPs5rN27zfd/0vRyXC/6bf/L/4M9/44cohi6fPZ3w/sNDts6M8MWKx//c93N/MSc+OqK4+Rbv/e7vJOoaiKaVpUsJjmkhm4Y8bTdtneEmZZlRVwKmSwxVJfUdlorA7NrURUVo++joLBYLzm1tk1KSrlacHB+y3uvTMQOyRlLoCqqUraTrkVShrgVJWmOaJrWboqYVRriNf3iA0vUocDCtCcPNLRZntljrbbLRSIbr55AyJ/RVZLZiGid4pkOlKGSeQ1wL0oMxtmWQ6dDoKklVMdpZJ01T4vmcnu2wP5uRaypeEKALBQW49tjjiCxGZglfvnOLelvFDzw0VeNkOkG1TC5cv8brr7yKZ9qcvXyJ3mjI8dERWRwTugGGrlMVAkUBC4siSdtGrEixLB1NheV8imnbdMIeQeDz8P4enmczGPTIkoSiKMizlNOTYzRNYzaf0u/2sAydRggMTSFPYgzLYr02SVcJp7Mpe1XFxvmzOKM+cVOjSRVXqZmOJ2RpStjp0PV90uWKCtBUHVczoW+xmQmyoiLtmZTLlBN3hmPqpKsFsipJ8xxFtyiyCikFyyhqg6NME8f3KMsSUQkUWdPUIESJqahMxxNUBSpVQUFFoW3SfM/jsatXmS/moGmYlknfd6kXKZqjkSY5y9t7vPyB9xH3BqhlDUWBnS+5cvUZ3vHXeXD7S7i+j6wKTEWFtKLJCkwpoWrI4xWi0agbWKwmBGFIkiQkUmBbBkqjoRo2UjXRtIZolqBoKnUhsB2LOi9RqozEEMimYk3pY8kCLwgYNApdv4/V83nm+rN86Js/yn/2sV/l7//jf8pnemucWA7v7W9wtr+LGq2QZcWxPkdVI+7e+SzPPvkMfrfD6Vs3SeOS4cYFAs9FNxTSeIXf7SFMg0WaEAQeCAVd1uhGu9V2ZLv5zuP0Kwx+27ZJs5S6bvACH8f0WUYrNNlgWhaibnAdr9XdG+1CpTaN9hKQtChPVdHwvICmKlFsyGqFRZSwtrtF2rQLFycIwBeskohMEfQGQ7IoIRj00GyHOJ6RFDm7msed3/48d9Y1rrz8FB/0BlhCpRCCxtUxFA0DGIsUxTOw8gbVUKmEQNT1I2mTiuu1jzmJIpS0RNU0orqmyAosTW8xqY9eNwzDQDy6DOu6jmaYoD6iezW0jXpRtlcSrUY0NVK2ryl5npMmrSzP1NtUY9Mw0DsuWZLyoRdf5pOf/gw3h3d47plnkVKSJAmu67YDfZxgWmY7CNs2WVOTi4rJ+AQFle3Ll/A0HUczqcqUTiegE15DNIKqkbz03HNU8o8+vfOnf/qn1/+j/+g/2gZ48sknk0984hO3fN//6ogx/wvqiSeeyG3bbj72sY91rl69Ovnvv299fV0A7O3tGaPRqAZ45ZVX3H/7Y9R1rXzyk5/8ijzoy1/+shVFkfbEE09kX6vH/fX6H6+veiAo33iT7fM7/O7td0AzsYMertHj8uY2YW9Ili4Zn844s3OOOMp48M4dpvV91jY2YbjJ68sHnL76SU578Lf+xX1+fHCVzfM2wdn3MfCHnDVCFkmb+Lh79gzzLCM+PMEzGuq8oa4Fnm0yOTpA8QJUFEQCpmWjKhal6dGIjNnpGMUuKUsboa3wzQ5RvKJpZMtadgVllvJg/yZ7B3usmz2qqqGuHHQ1QKCzt9rHq12G5yzG6YrXbrbJraO1NfpByMnpQ7rrfcp0RSN08qKmSQLQ5rj+Omd21jjen/PWu69y4dIOftjqTKMYrlw9R6drcffBAwa9LdbXLrFM9hhPEzTVRDMTwr7J7b2brLkbLbKulPS6PTTVQNU1tre3mc7H5GWE45h4roGiaMSpIE4zdKPm5p3PY1sd0rjk+OQm/f6IWoRMJyvWBgMaKRkOBmi6wXg8IVsl9PyQPE1oFDA0HcfzkIDyKG1VN3Rs20JTVXTNYrxc4ngetm2ziiNE+d/BAQzDoKra32uahjHqopaC5GSMWjeotoHm2CRVTl1KzG7AcjxlLVzHUnSKxRInNLG3N7FMm6qs2T1/np2dHUxdZzGf0+sNqLOCpqkZ9fp0XI/BcETTSELPo1MVlOURVbRgXRqklk7YMUmO73C8MAmjfaZpzeZH/hSrp1aMdLh/9x6/9ftf5EPf8828exxx9uRtnEbS2Rggnwi5kwd86bUH9PubZLNTthWdi0+9yH/yz3+bJ19+H7nM+e03Po1RJXzvj/9f+Ws/+X/n//BBk91veYyVLPnsxz7J0A4J/UM2nzhHcO483vUXqFcZttTJihJVN8jzgrxQ0XUDoVtMFmOEbmJ6PosoYpYs6bguYVnhSEmv3yVWEsaLGY7r03QcJklE6Lv0N9a5d/8u8eyU9U6PZBnT6/fxuwFlUdJUAkc3cC2XsqoQTc3Q7xPvn/Lf/p2/y5vjd/jmb/4wz3zLd3Dvdz6P+/pbPPXX/y9o0yX0bPphyeqte7wxmVFOZ/j9Lt2uwreefZpPFg27Tz9O1fNQpynlYonhOawN+qyWc+qyxnI9XMdj+8zZVk5WlBw8fMig2+UgaZvmdDHn4pUrJHWDVFtdu+t6KK7D8niC47l0tzZQTI1yvqKjmniDPkmSYMmGtEzpdrstylG2CN2qaYlItQqu56GiMD06QgqJKRsaUZGnKZqqUhUFoiy+Eqq0MRjRCEGV5whRUYuaSCwxLIuZqGkUibBNDNcmjmIsNNZMB8yGo9kEIQpURRItlkzKkiuPX2d8eEhNhaIa9FSDm9OHLOcL3jcc0B31aOoKz/ZYTlctIhgeDRU9KlHgum6rO9c0ykfbUADP81F1k7pum9AkScjLHFWR1HWbgu102jwTy7Dp6n0AZtMJHcNAqSWqVOkN+pwcHPP//KVf4un3v8j2qEOuuXzuN97kfLLk3NaQh6sCuiHKXJKYku6gzyxa8fDkiCBV2Fpfwx72SPOWenM4HrMxGlFmgrQsEYCm1UijIgw7jKdTdFVhe2OTWtakAmayAEPBrSuaIqfwbdjp0jN13GGAiGMmWYpr+/yfv+dP8ud/4M+grpasBSE0klW25Gg1h6Jm2JhoouDB6pSHn3+bUqTUOgSdPrcP7xEaBu5DA82yOb7/gK0LZ2lMhbRKCXwftYY4jrHsFqc5Ho9xLftRQFmJoMZyLTRNo3gUgtfpdyijBGRrqm2aVgpkGAa6rpOuVl8J93Ich2jRpgibtgW6xrDbQ1M0VtEKxTLo+T5JnBKGIbbrcdScIFUwUUmrjGY6I53MUI2az91+m1++8wrf+8F/n0uji4zLGfNkhl87SF1BGDrNKqGnGdQCNNOgLCps20bTtDadW9NQNQ3DNNF1DS2vUF2dTFcxhMGqSPA7wSMJT4sQNQwDTVNb2VBVtab6qqKuRGvg9pz251VXMVUd1dDI85xBt0eSJKxWK4IgIOgERFGbkXBl9xz7t+6xe/USkzJhGi9xNIMgCFjOF20KsqUTJREShVhtgSWBamBdOEdaVdiahmvaCFtjUwspiqLNWyhqTCnJJhMURYWN3T+0pusPu371V381+Ot//a/v/MHv33jjDa/f7z/r+379+uuv3zh//vwfOrXHdV35oz/6o8d/7a/9tR3TNOWHP/zh+Pj4WH/99dedH/3RH51ubGyUf/Wv/tWtn/3Znz24ceOG/Xf/7t9d/7c/hq7r8i/9pb905ud+7uf2DcOQP/7jP37m6aefTr4uF/p3V1/1QMBuj0/83ifp9oeYRpsuGwQ6fVdyev8dRJLSVVWKoxn9rV3K3ho3b71LfHTEc80hb7/1NieffYf/8E/+aT555xZL64Sn/DOkUcF8vIcb2AhNxxUG9SxioNk0joZSl+SFwPcCDvffInB14nzMWnCGJFnRGDGa1DHUgChfcOHiBiJPEGXKKBygLPpM8yNqpSIrZlA3VJGJMAVPPfWNvPXl3+a9L343N975PGaR0elvoEiDwWido6OYWyev0ug+m/0RBw/uc+gVbJohncyhv3aBOE9Qoozd7jqe0UURklu33kSRNkZg8qV3b2GJlG/98LN4dsRscczpZI+yqJFCkKQR49khYWeEKh3i3GD/5E3ifE5YhZSiRlXbJ+BVdEoaxUydgNGgy/RwgmPUJOkRUVywjEuefeobODq6y9393+c9T38bp0cTgtCBRhB4I2b5PXRDYxVFOJbNahnhOR7rZ3eZTyaYlvUIg5rRNJDmOaoKmq4hZU2axtBIyqJAStBUlThNUADPdWmkRFHbpE3TMrFMC9s0ORqPOXn4kHSxZHtri9AfYqg6jmajdAx0TWOzP+L+6QkvPnmZNImoyxK7hnrVfs4XL13n6OiI8XKJRLI/WdJIydlzZ9AVsHyXpiwRUoIC0o8QE5DeDqfLmAe37vH2G68Trg0wA4PypOKw0Yh1BcdQ2Rquc0OUPP3938EPvu/b+Me//S/5W5/9JFtCJfUll4dr/IXn30f27d/PuKOTvHuD4dkdDg8iztk5g8kdHLPHiTrky+8eMpl8gp0nL/D393+f7V/Z57tffpqXP/R+TmYR9778FrsP17lweZv91QHHkwTP9/HDkKKq8DyT+XxBmiZs7O6yMfCRIkPWDWHXojvYRmnAVgziOOF4uUAFOl6nDQcSFQWQxTnmMuXScJuVyKg9B0VT+OKN17m0c5bh2hqaYZJFMagFjueiNQpv3Dvkb/wH/yGdZy/yjX/+3yNY36A6OcZ64b38lb/9t/iV7/4+rCcuUMcl+TTjzeMx5y9dwnn8CuN4xa0kJV6e4AjJwWtv8fKLL5OUCubmOoZUuP3GW3iey8bOLkJXeTA+wazb4bPT7TIcjQi6HRrZcLpa0bgW4wf3OLO9g++YSENBFILodMmNd9/hqaefwlR0yqzNyjB9F1k3OK6NECWWZ5OWWduc6AZOx8eWLmWasFolbcaFH+DbDjffeZetrU080yZJEkzLwNDbJlsBGiGI47iVxVUlipTUjcT3fVZRjBF6KKZBmiUMuj2m9/dpjqe8c+cBRcfi4nNPoqsatm+zXKxQFYXf/PjH6A+HlFVrFl9fX2fQ6aI38PDgAN+0ODw9ItBUsjhhMp8TDgfYpklT5JiGjuU6TKbTVtJRlmiahhCCO3fuMhqNqB4ZXnVNwwkCFBoU3aBpJItF20ANh8O2UW0k2xvbRNECe9QjXsbEizn96xco13ySKOL2zX3u793kxY9+GEWzmdcaO09fIzveo1nfpBQpO9u7XO8GHC8mvPqZL3DUFIRZgm04xElCmhUUpcT1wvbSQgFSMF5MiIo5lm7QSJiuTinLqsW2NgrqMsPa0Dgsl2yUJr3SZK416HGKVCVJU0LRIPdyTMNi/+EbRN0Q3bLRVYvzow1KsyYtSnQ8HutfQN8ouHP/NqKqKE2LvuehKYCqEiUJw7UNVpMJaCoNNXlZYtgeZVGAotDtdh/RaVqyj6KpWKaJqCrEo8TfWohHBKH2e+M6HnEUPTLn1sRJRMf20HWNSrTZKIZt4XgujaiwDYOiKLF0g5G/QdG0f8axbKLFgkSULUJY0zGkQqaArqp0w5BaFuxcu8JffO/LjITNrMkJyoaO76BkGlkUMdMzjLIhTBo++6lP8fi3f5BaCMzawDRNloslpmWiqCqe56GoCklTYsYNPa+L6ugk8ZKyyNFsrSWfla15WFVVNF1F1BWirpAKoNJmyKgqutVeWqI8oWt3UVSVqq6xHecrBCLDtrBpqBcr5pMpx/MJvZ0NjLpkMpvR8wPcxmrNyqJG1TRGvQFSU5hPZzx8eECF5GQy4YnrT6CHOvPVgrtvPWAQ9HFchzDs4LkushJItX2d/qNc+/v7xv+vt8dxrB0fH+tfi4EA4G/+zb95pOu6/Jmf+Zmtv/yX/7IxGo2qH/7hHx5bliV/8Rd/8e6P/diPnX3xxRevP/HEE8lP//RPH/7baFTbtpuf/MmfPP7hH/7h86enp+bzzz8f/eIv/uKDr8Vj/Xp9dfVV5xD87m//1xI/ZHY8ITk4gDrlzOYmsQZfvHVAuYj45pffD40gzVMCR8WjBM+jMDf4F5/+OKHiIo6X/Inv+gZWYY/7N95GtVOUHN77+AskmsrJ6SmjoENhQp4s6QcOlerQ6DaTw3dw3YLDxZiutclW7yxzucDGRhouy8V9GhpW8ZRhx8IQfaTmMilOKaRCWcVk6YSmkmxt7PD2wQN61grHGnHj5B1YjTm7+RSVZrNIDqgTyXq/jx+c48HJFwnsTSo9ZjccQW3hhS4yyxHSIIuOkaaBZvSZTPfR0Vjb3MH0NlkcH6LrJrrdUkJEJajLGR23R94oHJzeZTTYQcoCUam4vqDIBMPeDggVw3AwDIvF4pRBZwdL7ZAVY47nD9kenqPMYhoMNrefwPFc3njnX6JR0rOvcOHcFY7GD9CtEEU6ZMkhg8E6pu4wny6QQtIb9EnSFNt3KMsa1/XRdAPTdFpzpaEiRIUQFbJpMDQdhXZLqxkWumm0GyxUsqJA1VTqpkFVVOazGXmaomYphm5g2BbSNAgHQ0QtWU4WyDjm3OXLLKuCL994C3MWs3V+h3DYQfN8VMNC03WOj8fYjoNhGVRCMJ9NMRWN4aBL4NmslksM08IwbRaLFYHT5c67+9w7PmVWroirHH+wTaG4RORYq4wr59YxegplWeNrDv2uwSD04CDhP/vCZ1Aqk+PjMavJmMfObOM1Gd99/WmuvPQEv/gv/jFPFx7WM4/xU7/w99gytpnYAwYbazz37NP85j/7ZaKmYv3Zp9lJdL7hvZe589pnaMoVnh/w4jMvMd4/Yv/BXYLRCInk2vXr7J47Q1M3mIZOnuU05IiyxH+kAy9l3eL5GgmqQaWqYGhoKGhVjWc7JEWGZpiIqiZarej1QkhyPM8l0RUSpaaZRsynU0ZrI7q9EE3XSPMcy7GJopy0E9LRbcxlQlLPmT7coz+8yE/+F7/An3/8Gl07JQhHDHausdIgnz8knUfsnLvMcZ0y7Ias97uMJxNM1WElBIN+hzrL+OKnP4Oh6zz74gsYjksla5KyxFBUmqpCqSVllmMZZptn0MBJtqSQJV1FIdo/wvS7rAyLRgr6noelqHidgOPVjG6vh4UOQlBWOY7tUFSCsqpadKJhIpsaXVURVUmWJtimiaqplHlGmiZUhcDzPaRsL5RSSlarFZubG+RCkCQxSt0ADWmaIaVEiIbJ4TGD0Qg3DGg0BVFXqFKwd+8Otu1x8eJljo6O2d3Z5fjouM0oUBQOj4/pDrqtvMTzsA0D2UjKWiDzAlm3yGOpaAhdQ9AQODZNWrSSD6CqazSzRWE2TWv0PxlP6PZ6pHGG/miwt0yDPE/odELCThdVUTk5OcEPAk6OT+j3+qRZiu256I7FarFAVILOoE+32+X4/h4HDx7yzt4J0lU401/n6QuXOJkfEAQbCCRWI+gYCicP99g5f5Z3Dw/Zny84M+zzYO8h5y9dotMfsLd/yGhtjcVyTlNW2I7FyXSKZuqoqDSieST5MDGpoZY0WckiWvHYk0+gqjpdv8Miy9Azgbnep6Smb3sUddU21UGX+GSKWSt4vksuSso8Yz3oMh7fQ88KmvUug40z5IkgqQpcCaIRKJoOTSvh8T0fzVBaBDUKvdE6NRIJ+J2APCswTYu6FtRVSRh2W/nMI49HVQlk01AgyNMM1/WwbRfZ1G3+BZJXPvM5zp87z8b2Nqs4wnFcQKIqCkVZEHg+q9mc1WrF+s4W1aPnWq2RzBYLSg02uwNOT04IttdxTANdSMaLFYaiE1oOhqGTOiDGc5o8J3J0jEbBtR2krlILwWI2p1ag5/vIRtKImiiK6Pf7FHmOqmkUq4ilIXlsbZdf+4Vf4tJH38u19W1kVtAEOllRfyX8sihLkLIdSnUdkFimSV1VFEWJoirolkmcpVRlTRgEFHmLX02SpJUL2Vb7/S8r7u0/QJo6Z7d2SZcrdi6ep1Zkm9BcCSytfa19eHRIb9jHsx2m8zn++pDV6YRitmL3wnloalzD5u7RCZP5lGvXH0czNRTZUOUFgWsz2Dz7RzaHYLVaqf/sn/2z8N/W6QdB0PzgD/7g4muVQ/C/pv4ghyCKotf+XT+W/z3UH3oOQZXEUCl03C7BpZDpcsJBnOPbPi9dvkC/06GRCnmjkpUpk6MxAQ29vsnAy/j+D38LmayYJlOc9W02vE2KqwKZRKiKxkxT6KoWu+cukhUlRbQizQUKJ1j+GlUNfhiyXN7H91wqMSUXQ1TNZbY8otYlVClrgwtEecHB6U02Ap1UzHBcj2SeQtO0wS6BymR2xGzxELPf5+7hG3iDAQYKUtQYZs6wM6I2C3y1g0ZD3XSYLiNcXWchK4KewSpZ0MzmuL2zGOEQS3eYrmKiVcH6Rpd4FZFNVmx3BnRHl3j93mcx1ApH7WKbHQxVZxaNuXDuDKWweXh8n53BNXzfYlodUBc6okowDBdRNLi2gaborOJTBDOGvRFFXjCZ3ScIB7iOzf37t5F1G5IkyTk4uk9e5gSGy2I5oxPopGnKwfQI3/ZZG61xcnqK1/GwHRPTUJESalGBbmKqCmkUo+oqlmm0BAlFaVGlmkacpEilRjdNGtGgo1KmBYploBo6RVUxn07Z2txk7+59DEUh9DsM/D5CV7GGXfbiKfLhHr4XcJTMCZoar6lYzWdsoKLoJSenE5qsYufxq0R5Sp2lnFvfQFM0kjRibzklsB2SOMI2BVEcc/fkiMM4ZiUrak1lNByxsxkysl0GwyfJ5od4esOyimnqlIFvk8eC5OA2q1XOyDHZ6o0YjDrM7jkkccaxbPiFf/UbfHQ158Vv+k5e+bVPsDNLeOGZD7GlB5x7cpfP3r7F8euvEG70uXj9PMV0TnG0z5uvxbzzcMk8L3jf1bOc1AqfOt7j5Sef59xuF9t1MU2DtCnarbZmUlJgWT6aLhGa3mZXoLcmxbrG0g0MFUSj4LoOUToHKTFdG82y0KoG33Z4eHTArdu3eOm5FylmCbZtYQ4H7TBXC45OTvA7PgCqruErNfYyIpEJb378X9EdefSuXyPND/nZH/kBRH/Av/7Vf8Xm8ojnt0LGB4dsblxi9Ng1NCEZlRZJtET2e5iqjuO5OK5NMZ+zjFc8+/6X0BStTWodTxgOhkipYOg6UZoi6gbHd6mbhlWZks9SNF0hMFTSNCKSAq0u6a6v4wjB0fiEMxcfyQDQsGoQtCFauuUwX8Vf4adbhkEjBE0tSKsSUVVIRVKIirps2zvFNLFR2ydJwyAt2gbI9FymqxW9bp80zaibuh3eLBtR12gmnHviKknyiEykqmh1g2gqLj12GUt3iJcr5uMxo/4Ay7Y4Oj7E63a5eO0KRVVgqRpS1DRIqqpCkxLNcciyhtfevEGUZlx98kkGawOWqwhbUVFUBce2SGZzOp6DrqkUogIp2VhboxA1Hd+jFjUNKqKsUFUNUddMZlN0VWdjuMbJ+JQ4SRj2B/R6PaIiQ10m+KZNLDP6ikn0cMximbIyHJ5637NcPXuZ8fiYVSPpbFzA2wlR3n3Ia2+/yVPvfZ7E0fn92zcZbm4yiDOooDfo0ZQ1D+/tsZKSc90+XsdndXhIEi3xTBXZCNRGxXEshJTolkZeCjRFkmk1laVzsP+QbhiSVjmG4zMVGeEqAimJE4HtmKgDBydLUT2d2WxGmWb4foBruYzTJasoZzWdM7J89k/v4W5scObcWUQeg66jSKXl5NcNpWjzaJxeayBP0girUVGyErVsqJoSf2NEnCSc3LmLdf48VdOQ5SXd/oCyFG2QpKvj2g6irGh0gaa0COeyLDl36QKmZVOlOWmWYbouEomOgu3YoIAd+BiOTZIXaKZBXhTYmt5KcRrRDoaPJEh+0CFdRAThGqqpQFOiaApSbQjXRkRpxkjUJE1FUVWQCHTLojcYUhZF65NpGkrZSutMy6ISgqIq8W2PXBPUwNMvv8BUaZhOJ3zun/8qVz78XkZnzpAmCUG3i6K3mRZFWbYhZY8M9bJpKB/R6rq9PrZhUYsMUYs2uKypHxmTBVVdYWttonG4NsT0XTqOz/HNu9xYrTh39TK+77GaLUjTFF03SNMEO3NxfB8nDDDKmmGny62TMf+vn//PmYuM7d0zfPjbv4vb9++yv7/PxccuoRkaQjasipzB/8qG7GtZnU6n+ZEf+ZH5v+vH8fX633591QOB6/coaklvOCArBKqm0wQ5UmSoBTS10mrPdY2e72PrBmUhiE2dbH7Ck1tPM3c0Ov0tSCuqcoJVlUSFACUnn2fMyoat3bNotk1NQK2orNLX6JYmmmIzS3IUu0OZpaTJKbb5gNA7y2kxJ14uCGwHU1GpZIJh9jhZHqCuDzg8fohaCVStJMqXpKIBpUGRMCsTpKciRYphDjhNUpJ0wpnQZ6SElEZNXkXYhknBAlPzkWpKaHYoGNDYBV2ny92j1+h3+8yyBWUlMe1dSpFzc/oOPb1m036eh8sJO55B0PFIiLGabZrKoUxromqPuoK6OkEKn/XBZVaTGNMwKcoIWaq4VoMuBbP5LXQzwDJWJElCY+Tohs+du2+QJHM0IyNNwB1AKUt6w02yrMR2XPK8wjIkhmUSDLrMoiWma+N7AWVSoWoGUZoSeD4nD/cxUPECHzSVJE6hbiVBdVM/klK0psw8WmGqFuPpnMUq4tLly5imxWhjE80xyQqVyLJoRIVh6GR5gWZbNE3J2uY2Jw8PuXd6wpof0vF1Nnsj6sBmenzKcrniyvWrPHhwny986QvYjzB2dbhkNpnguR7C1DANgXQsZocHYLWm5qtntrl5+w6O63LhzA6BIhnYBjUrjI5F0zQYjWRvMufV117jjS+/iSoFSdHQ6Q/4rh9+iaeVktcshd9/94A6t5iNdD7+7l3e0zRcvn4V1/f4U1cuc+P116mPTvjAuTOYTwbIEt7z9HP83z72y8xONHKt5Lu/7VsR3RCnFASexbd/3/cyqlV0kWDqBoZmQA2Gbrdf6wZ0GnTboChbWowQgqIsMVwTzTAxNY2yKMnjFNtxyNIUrWyvOFEUo2saQb/L5euPU2sq7mhAWhXUaYJqaEhdxbFt8qpqrz9SI80Lak8lpyY+s0ZdCczxBFRBRUN694D3bK1RpimvvX6HC889j+J0CDSLos4Y9rrUecHx4Snd0QBFU6mWS+bjE4Jul2S+JF6s2NjYwDA0sirD1FWEKBgfH5GmGVubW5SVwDRNlNDDNUxCP2A2szAVA8dzcM1HgWqayuJ0jmkYpGmOaVlouopKu+00TP0rA9Ti9JijB3uYroU37OJ7PqrSSjgcx6Osa3zfp4iWlEIgNY2g32cVRRiWh23ZCFFjGCZqA41SoyCxTYvpfIbndqj1GsvSiZMIyzSggjwRCDXj3t19btx4g8cuXWB6eoQbhqRFiR90UKMUEcdoCtSybYTKQtANXKrQ5tKzz5FnGQqSqqhwvYAsy9r04LrBsCyKvECzHXT10QBZ1ziGDrrWbrPrmkq0Mj1dUdtBRlVZrpa4gc+2Z3N8fELY7WL4Lo0siJdLgl7IcR6T5QXD9Q12fYsiWqGlUzZdjfF8xmpVIGXCbO8m155+nNqwCLfOU5+c4ntdVuqYwjLwdy/hagbeIqGXRLiiwLE62OGIqj9gfzZmlcR0HR9FNCAEVVbj2g65yNAVA89SOB2fkqYJmq6zcfYcZ3e20HWDaLWiaCqUGvSJ4GByim3ZKFVFFEVMjk4I+wMGwyFZtwNNjRZ2MCwbxVBJyhRV15BCYJsWum1RlQWNVAj63bZR9lx0TWN89wFf/NgnsF2LIjC5cvkScrrkcP8+b3zqdwmHI/z+kK1zF+gMRzSKiiahyNtravpIcimlRDaSsNfFsxyMUiJGPZqyanGfikbetHIbVIkZuFiqhihbqpGigG7oOI+eH7xuSM8N0KWKbpqYioam6ZSlpJINXcNFUcEUFWlRYlk2iq0gigq1kWRxjmJoIASL2QzL9uj3emRFgWYYdDs+RZyjLQpkX+XiS0/jPjxANwy2PvRecsMgylsUaCVqTNvGMXVwWymQVlSkRYbU2ufzKmuohKCpG7IoQodHBv45htEarU3NRNE0srIkDEKiOCY1CravXeL06Ijx0THmzjaGYVBUgnv37zEajtAti8VkhuO66K7B4vCEZ559luNX38E/F/L2a2/wZLJka3uTOs+5/867nLlwHscwaZQ/ehv2r9fX62tR/zMGgj6+qmMbFgYGtqpRFhaa1iWLU5IiQ7faJ4+mLgldk7gpsS0LS3OgKlnvdYlFTlrHLBYFaTJFihgr9ElywVII8mhMz+7TESqqqdPkWxTRnE7goOoKuWzodtcpywVVZZDkKyzbp6gFZa3w8PQmB6c3ePHit/DOgxt0i4xlcYpXe5RViVaXBEGPk3hBo9U0SULHcGlqaHxJFecIqXI6SQnXeuS2wEgkSl7hxzXDCw5HiwmW5uB1NSbJlNGl97A81TE0Fdfv0VE6aGXF0DZ44ewFGtNktTpA1VZ0nQs0us/DyR00r6RRanIGHO2fstELKOqK2XTGYxeeZKqkBFaHuHxAVkRY1hmKumFr92mWcY5sxmAIhuEuKgpxckp/1Gc8X9H3d1H1AFN3yMtWh1oWOQo6ogHdtCkrgW5Y+K7HahnjOA5u2CEREjfs8WDvAJEVrCkarmkSlwJRVTi2TRKlmLmOY9rIJqPIcur8FHvYZ6u/i66oRCcTFmmCNexQ5SnrQRfPd+iM+mSqQrWMcaWG3xkw72Sc2djl829/mYdv3EKcTjl/9TKlKCDNKR+coNQNua3S7bTBdMeLOQ/TGD2KMBStNeCaOmqUc/6FJ+nHJjYKQ9vm/NmzpNGCg/ERd1YLOsN1VFVnOl9id7o0loPs9/GvXeG14xmnt/f5M89fo4hSglAychvec35AlKvsj6cUdc1n37zFm02NWqy4eHEbJ/RoOkMcabMx3ORkfsqd3/09vu3cefb6A1xp8tR6QH+3S6PoSExq2VAUMU3uYnseSCjSHGqBpin4bruRm0wmhL02STTPi5Z7bxhYlomu6RRZTpa1xsJKCFAUNBQa2aDaDo5m4Jk2ld4GAjm1SvmIfa7r7Ytt2OlC06CoGvZwjWQeM3Q8PvDyNyJUwd7td0lOT1Adm4PjU9b8LitN4/ffeZctp8e5l58hETFlXlJWJaquUZUlvuWQpylpnuMNBnjdENVx8Ls9mrrGDXwOjg7R8xrbsalEw3Bjk3BtjaIqMYxWVmC5NnldtXI0CTSyxR/W4PeGTE8naIAf+MR5TqfbQW0kRZpiODaNoaJbNnVsoPYCXN8n9AM0VcPQdLKqRpUSVQhEnpNWgtVywfpohGM5VHGKVoOLQqQKFANKIdEtCwGotoPr2Ci+j1W6WIpKUVbYioGFzmq1gFGHtYvn8YddUnSyWqGOMgzbJV2lqLVAlRLd0CmqVn7puT5xkaIoKjowDEPyLENtJE0lMBQN+cjjYJom6qMkWF3XW7KL7+AYFlmRU6YZlq7j2jaGZbUyO1QC10PaBmkUoywr+v0+UlOxBUSaitfvIdIcq+tjuzaOblBpJtKyOYlzfMfFcEL6Vkt2Ca8/STSZ48anbJ7bQlMHRIsUd7iFFCWb0kaRFXK9w/0vPeCByEE3kYenLMcTzj33JEmS0h9tYWsmk9MxaZbT6GqLoMxz4jii0w1RgLIsufHlL2OqKmG3j4ZCVQnSvKBpBIqikRUlcZYShCEiTlgsZri2iR94oKqkScx6p0NVVeRJTL/fJ0pSZssVmq6h6e111bQsVFXBMWxkDcHGBle+7SNM4xWiSlmgMBhsYHc6rB4ecrxKEIsHvLv/kG/97u8CU8OU7UDmui5VVSKbhjTJ0HSN7HRB6mXY3YB0tiT0A+q8bBG1popltTjPRtWxHRtRxjS6impoKEVJUwsUTcEyDbK0TYtXZEOt0CKjTR0hKlRFQgO2YVLKCEtVKJsaURWoUqGWNZZhYrgu+XxGnEbYvRDF1NEbianqoOvUVcn89JTcd/E6AYqucv3J60xPJ0hTJ9gYoVUNZCUqGlKtcRUVYRl0HKv1EgCWbVOkGaZp0h8MEaJC0w1cz6cSFbZpkec5qDW25+LYDoaqUZcVtZRsndnl8PAQUYkWNaqp+EFAXhaYKm02y/19wvPb+KFDXpW4hkFo+Gy/+F4ePNhnrdPj3q2bvPnGG/zxP/HHGI2G9MLwD73x+t97/cRP/MT0J37iJ6b/rh/H1+v/u77qgUBRLXRNRRQ5lmYQdkPy0kXRddbP+eRp0p7y5xNsFAxFYdjpY3cGfPn1Nzi6/YAnds8gOwZ5z6CqK+SyJOz2UVWTUklRXY1VNaNOTxnVBkssrLxGdjssjBIljwhlRRLnuL6Hbazh2B6lsEnzA1zXo6gloR2yv/8F5rMlphISmA7lvN3G0KikeUnYGWGVc5RSQGkQ9nzybM6V9W2WzoA3PvsFttcUPE1gd3vcXwom5SE9BTZ2z1CpOpqpcXbnEoqmcmXnGUwlIk8tGitjmswohc7R8R0uX3yek8N3eebiecRYoSkzTGlQqxKtyRh1Bpy6S9JGYtkR58MnmB7domO4WFbFNFqxNriAq/dwrXXSKkOoxxiGDkVBlqgsV/fY3DxDXs+RMsDS+xi6g2aolFVBnsXUVd1uTsqSbhiSZSmWYVGJgkqUKLmCuoowdI2TySlur4P0BOGgj1Sg4/mtWlaCqRlYlo0oSuazBYvFEt3X2XR9Asen0MBc6+EvdYysZl6VJFlGqOm4cYWiwLxuUPodkiYnj5asuT1efOkFPp7Pmas11ek+cV6gey5vzg4o7x3z1OPXsf0eiyJFzGL8qKS3sQbDgGIZ4w/7dFUTr4GViGgE7KwPOTw55vXbN9Etk+l0xnrscOniOUqtwqglnqzZUCvWN0KuXj5P/vILvPPq23z2CzkfeuFJ7EzDoSYIDQbuBu8+OGUvrYgtG1XvMLl5wrptsRUuketd6mzGufe8yH7RMN47Yt12MXtdfu/NL/Hc3ZD1a4+hdPqYQiUzdBpFskpSTMNAqgqGaqKp0NQNZdEyy03DZDqbYdsurutS1zXRckVdt1g8123JbuIRIlCULeu7ygsMTWJoajtAGFqrq7Z8irICVWk1z3VNXVWEnZCmrAl6PYqqRBUVWiXYGKyThgG5SOmvXyfsbVPV0OuO2D+4y+xff5zz159idO4iumEQhAZSCG7dvIkfBISdTksnUXRqRSfJMkzdYHp4wsnDI6qsYDAa0h+tEfZ7KJqO+UgL71kmWZZRiwbd0BG1wFVUOq5PIRoMx6HR201e1/XIFnOUOANNQ5Qlumli2C06V2oqo61tHMNAFYI0zaiKoqVhWRa1EOiqiuO62JYFjSReLVGkRNIwn89B1zF1na5lfiVvwxbQtTsoqo7qWhiKgr9psFouuXH7Dp/97Od5/7d+hI2dTcKww/T0lBfe9z7eeeMGmmpQpClKI1jMp+imwdrmBlmZ4zgWlmHRVBVJkpDGKxzbpRKC5XJJr9ejpmllHWWJrmloSit3UhSFZpZQ9VTqJMfVDZZZyslb7zLqDdi5/hjFbMk/+U9+nu/4M3+SwWNnOYpjeqZDXZYoaoMnFDJVomo6+jyhWXfwA5fmIGJ8cIDieyhBB5FnjAKP6PiQQX9A4bqk5DyYHLLjDchWE+ztDSavvMLf/Zn/mG//qb/ExWsXsB7bQR5NcRcnPFQq9pUKZTHHdD0aRVJpklgVYCqkcYzR7dI0DbbtkKYptWwIez2Wq4gvv/Yam1s7bG5s0AjxSOpTg2bgBh7Sakk9vbUh6WLFfDJhuLXOaG0EKLiew2JRUJcF8XJBUwvqpkKVKk1d47guhmFQlhVxUaA5JppucPnsBbazjFrX8CybbLEi1BouXbrMfDqhznOUpiYdn2KbFnMlQtM0zOEQ1/PIyow6TjEdh876iIlV08sk93/ts6gffo6t4Qi1bEjGYypbQagqnUJBlZA2OX4/pGpUxKPAO9d2qavqER66xrJtalVBU9ogwrIsQFXQDbNNQTZ09h48oDvoI+say/FQNBVV11AVnbXhOmmZU8s2eKyuStIowdA0ds+eoahKdEMnThL6vTZDoBIVjmHiFaDUkGkqsdHgmRayaINHq7xC07W2uTcM7K5JLWpEXSNRME27RWabJlVZYpgWZd0aqbtBgCpM5nGMQOL4LlVVsb+3x+XLl0nTlHDQexTyabZfM3eL9XBA4Lk0usK1D7/EP/uFf8jrn/8ii4tneOnZ5/FNk1yHQlfIlBqzLv+Q266v19frj2Z91QNBUaQYvoMqG5o6pywkeSkwFBd9lWCrKobtY49MhGx48PCAB/sPKWd3qNIcUwd1OeblJ1+iyVYIWTK6dp1EgarMqQRYnmSWHXM83SfVW+Rn3fQ5r61jRSvqbo/9kxxfHjGpHnD1whplnaMZUCtL5vEU3w5ZlUekzRVcc5ux+ByaAnPRw0ISVQu0Rcml3gZH8YSj6SmG0SOblDhuxd7yISPDYPf8kIMHe+xc2SGsVzx5ZsDD889hNAaBpmLaJnpjcjSPeHPvU1xzTUR/wDJdoqKw2dnmYXSEc+YaeZxhrBkcPjyikhZGeUrg7LCfp+w6IenslKce/xZ+58v/hEt1n9ff+BK7G0M8w+H4uMJUNwmNK0TJLQxVYxkdoKJxND3GMSV5nWM7LppZUFQG3W4P2zDpdwL2Du6jqg1ZlhH4bWjPoN+lKHIs20BTJJPJMd2wh+/5JE1JVTcsT8e4is7+3T2unT/PvMqIFkvO9EdIFNJHG+npfMGDvT1Mw+L9z75MVZasyrzdUOs66WJFLSSTaIFSCz5/8wZaWbF74SyPP/kk7969S/hwzNUnLnGgLTj88n3es3uJeBUjNY31s+uEwz6G51JcXHKyf0Jz6w5CU/C3R7x1eIdkL+blrZdpRMrs8ISJ0hD7DjkVdVYhigVRJhj6IxaLiDVvCylz4nhBWiSsippqUaOaJo0C2/EpvhuQiDmJEbK3SKgVm9SoEUnEWtDl5WeusLmzyaSsOJ3MyRYxhyen3H1wgnpwwiiO+NZXb+NfXsepNTTX58xGSCd4ni/cfIcL9w958QNnWMUxXiwRnk1ZlTiuS1UKsiTCMQ0UFKpGIBuFSjSEYQ/HcZCKwnK5RKFllxdFQVW1wW+tuVUgKoGl6si8IlYKSlFQPyw5e3YHFFBQcB2boizwgwAhKjJRsZjPcLoBskjwbZdkMSevCnRNoasYqLXN3/9P/x4f+f7vYTgc4cdLtp5/gZt37vHaO3d4ebCGqCr27u9x9doV/F4IqkpRCXQhSbKcpq7xbJd7d26T5jlbm5t0Bn0MwyRNUyQqTS3bwCzNRqoCz/FYzuZopkFvOEBTVFTRQJ7j6AZ+VZOkKUGvS9Oxyagwa8nJwwkXuiGiKNHqBt+wMTWTSrRDqqKAZhkIUSNkjZANs/kMzwvQVJUkj1BVBaHCg4d7nDlznlgq+LaNikRWJXkWk2cRjmEiG6U1AzcllufSXx9x8ZlrWBs9uo6LVlaUTYOpSI4f3GNzZ5uyLCnKDMc2aXSFCkkSpWiNQpXmCKXAsC0UTUVXFRpF0tC09BmlxTD+AbZSU1WKrEU+ep5HHEK8SkjzlF4nwFVUulvrxLIhnS6oDZVn//R3spAF5tGYwHKQnk1aSRbLBSIqcE2HXJcMpML4H/0uPHGBiatxcHTM+sYOs7pEanA3HdM50+PWu6+ytr2FpVjYq4yD2SGdC+skp6ecViY3emt8VIIWKTz3+It89s1f4z/9r38da33Ae154D0898zI337rBcrHiqeee5mQ5ZmOwzuzgmDzL6PZ6rYTLNLFdpw0663VZxTF3HtzF8T1s26GuCjRFYTmeMlBU7I7HfDmnqwdYtsnJeMzamd3Wb1G3jH1VUTCM9rpi2ha1IikrQRiEZGmOriiYtoWptBt523HIRU1lG+g11FVF0OsSGBZCNgS9NaJVxNHeQ473T2mKEn/kthjclUZfo+X1dzwKUeMK2HRcZkd7/PNXf49nroe8eDLl6PY9sp7G/PZd4vvH3Ism9M/vsB4OSLOM8PxZrr34Ejs722iahmNZqEqLplWkRJYFZVmgSDAVFVXU/KP/6u/zx777u7Fci8n4lLwqWF9bJ16tUA0dTVMQaY6j6GimTZ7l6I8QpGmWs4wydMvACzvEecoo7DIfT/GDgLXNTXRU5m/eoXJ0vAvbyFIgFYNUl+gYZFmObrY5AVVRgqK2VD0JHddjPB5/JbQtSVIsywIVRCGYno6xdIPZdIZiGpi+x/rGJp//zGc4d+48om6wHZu6kWhNw/nds9RljYpkPp+jKQqj82f4oR/7C7z0PR9FDjdoioJBGCLEN2LbJgiB7Thfyx7s6/X1+iNTXzVl6J23viAVKSnitEVM+j41oOgGJipVLbAcD9XQqRUNqRtM5itevXuLT+29xa//i/+GP755lW/auczw8jbdSzs0eknTJJhSQ9NMOoMBWZ5xdHRE01Rg17h1yOHxLU7iV9lcu4Rvn2HVvE2Ww3r3AqYJ79x6FyfsM50vMcwY13VIZQenjJnmY7qexUlaoecWpq8zPhrTtX0w4cb+XdygS6DrbGyE1JVgXV1nlmWM00OuXr1AtL/g5is3+b4PfIRXqgValbJhG+w8+QyfvjXh8Q2HeZpg6gFqkqHZKg/376J7Op7ts+mNuJXcQlvVqGtnqMenvOf6t/Hxd36T5ex13nP5PQSdJ7i59zk+eO0DzLIFX977LTpyQMdc59qVD5DnGavlbZA6SbVHGD7D4fQ+YcdFw0NVauJoiYrL1uZFHMUiTmOyrNWV98Iuhm5TFSXTKCHodFguZjiOg6ro2LaLqTuEukNeV8RKTU5DuoxY9/sYQqJKSNIUx/OIiwIMg1u375CWOd0gZKi56B2XRpEsj8dUSY5QVBIpGJ+eYPU8pG+yJjS+5Rs+xCqJuVPM+a2P/wrfe+l5xGaPQPe4S0k4F6xvbJE1Mfpqxcj0WVoS1kKkVMgWK+azmFKaxIsF/UEPkWWs727ixoJEbziMIk4eHvFw7yHnLl1klSbopk68XLG5HjIcDNnZ2iZJcuI4Z2Nti5OjMYtoyvj4iKefe4rRxR1q26ZY5By/e5fxwQFu10WzdJq6IDBsRAMnixXS6rB/siRezVk2FVlc8uatG1zaDPgPfviHOHnnTd545T7Pf8d3IJMl13fWKXYC6lVB3ehopgW63m7XqpJhr48KKIpEKpBlLSM76HRahnfdIPK8pdQARZG1W/S6ptPpYFgmp/sHlFHC2vkzjGdT0qMJ165exV7rspis2iRbrU3ctQ2d09MTet0etQpKUbKYTPH6IaUUkJR86bd/j+efeYkvJmM+8NKHuPHp15hbgou7G/iKQB+GWJqFJhpu7t3jqcefwCgEWS1IqhLP9siqnDxNGXV7zCYTZvM5l69dYRkn6JqOqek0ouWXh2GXMisok4SEEkwNXYBVS4qyoLM2pLEM4jgijxOS+ZJh0EGtKjzLQpg6RidgNZvTCIGp6li6QbRcUYqSoqkIwg5oKnme47ouuq4/IpU0bYJuXYGmMo9i0qrC8TusuSNOTo/p9sM2y6ApiFdzFCTScSmLkkEQsJrM8WwLQzcpy4pFHGPJEk2TLMqWyrUWGKiWTd6o1EWK5bpICRQCKoHp2KR5hmpqlKXAsqx28/8oAPAPLkWu6yKlRFNVbNP6ysVgvljRD0O8focoizCkSprm6IpOlWZ4HY88TumoJifJEqXr4qFTHUxoNAW53qVKMs5s7TCbjfmB7/3jbJ7b4nv+3L/HteeexemE9Ls90sMJ977wKquDE973nS9xVBQERoeyEBSNYOBYGKaCHI0IN8/zzic+g7ERsPzlj0PoMPrB72X/eMbFMxfJl3NMTTIMPJQsg+WKyXRGZeocn56g6zrlI219exETlHVFJRpcv4PndzB0g6LKsW0bXSikRY7lWuiGTuC5+JbDfDolb6DXDfE8DxWYTCZ0uz1cPyAtc0DBddtE9Kqq0HWDuqxQdRVDg2i6QDH09rGUNWbgcRLPubi9znw8xdNsfK9DjaQEFNPAfmRUTrOMe7fvEHY6WJbVyoIMleXplEsXL7I3PSaqS2b3HjLTBReG53mwd8i/ee0LbAZ97n/5beKq5Bv+2LfzLd/0QTY1jVo8ksxI2YbxGTpJHNMNfKJVRJ4VICW9sMtv/MZvkCQJ3/cDP8DB6QmNbAg8nyovmcyndAd9HN9HURTKPKcUBY7jUNU1hahRNEjnSwLdoRQCf9DDMk3MUvLg7l3CrTVQFPIsZ2Nzk6KpiSYzRm5IaSnkRUEtGzRNwzYtouWyTbtXVRzHYblcUtc1mqZhWRaHh4eopkY/7JKtYgLPJytynCAgq0pkXXPn5i1UTeO5F19gsVigaRrj4xOKouDqlauE3ZCyKCgnC5ZaTV1WlKFNMc3wTYvAdaiqElVXmJ6cUmU5L3zjh//IUoa+Xl+v/6n6ailDX/VAcOPVT0nP9dB0E9m0eD0hSkBSGypht9vqHCuBqZmoqt7+0gxk1+Okyblx4wY3P/lpvv3FF1FlSak0aJrJYn5KHSicjg9pTiecv3SOKrBRpil+aGB2znC0jNg//Cyi3KcsMt73nh/irbc+SccboJl9NMfjeLzHdLIgWR1j9TQQ+5zpP0bVdNgbL6ijjN0za9RUdDpd0GwM12bv8C6NbHh46y67gw1G29fpro/4rc/8KluzhEvf/yf4rX/1Ob5x2OehvkLruHiGwRP9TdzwGq+8+ltcuHSOG3dusxlsEKytM5nepbAC7h/sM795j49863ey2L/N0izoGhlPbj6HsM6xFCppfcJ88Sq68LDMU6LYIlNV1vvbrDtnmUUHJPGEfidAZDqr8pAwvEAaZWiWSZzNUVWVs1tPIvIEV++QFotWGhUOqIWCrpoYqgkSdNvD9z00TWE6neJ6PmE4QNcsal1hMhnTxDlb3RHdIGS8XPLKrbcQdUOgmlR1QykqahRM02Rnd5dbt+8yX644f3a3xTTSMJkviKOEjt/lW556mmrgsKX73Dp9QHYwJuiGrAddXnl4kw0rIDpdcEyByCsc3aHJKsZZxLyIObO5Tc/wWC2WON0OiyJHoyETMZZp4Hd9Lpw/yzieM7u7z0sf/QilcDk9OuTg4ID+cMhbN26gSYVhp0uaJmSzOV3LxtYMSinobq2T0VAswdHBtWpCVcNWDR576mkO4xUPJxOcMOR0ckq0mGPWAkVKdM9EmCqu4ZJOIsqq5KPf9W385ttfYvNezbkPv5/f+a1fRldMZkXBqN9n5FgEecna2R02L1zm8PgI1bSolVaukmc5ZZ6h6Tq63kpn2rAil/Gk5c2XSYzvOPQG/Rbb2DQoikJWtDx0RVGoijasyrYchv0BN995F8d3GXS6LdXGNlFUaGpBEsd4rose+DRVwRd/91P00Lj22FUK3+Kt2RGmo9KrVILOANkN8JwQilaW4RSCIks4Hp9SLmKuf8P7GS/H6LaFVoNEJStzwsAniyLm09YboRkGruPTSEme5whR47oerutydHxM0TT4qk7H8ygRNIZKMpuTnE6oTlYotsHZp66TWyqTxRxRFPimiWWY2KZFlqSoNHQ7IVmSIh5tjh3HwrAt8rKlpihKq+tOkoQqTcmzBJBUdU1e1axt7qKZFtJt9eRhJ6SpKmRZ0ZQVTVliOR5ZmtLvdjg+PGC5XDLcXKfT7ZJMT1nGGUIq2HWbaCvsDk1Z0DEULMcjripE06A0CqpsUEydvK5QhURTNaRs2mtO8mg547WLmOYR2jKNE2oh8H2f8XhMHKU8//6XGL9zG0PWLJuKMq9xez300GE+meBqJkWeo3k2tQJGLVncPaBjmASP7fIwm1P+3ttMF0se+0t/mnc+8Rn0MuOpcxdZ7R+jo9Dd3eTf3HiNzSuX8SoVmZXEZU446JM1gsVqxZd++WM89w0f5en3nMe9dIXZ3QN+5/fe4NW9t/jI+SHf9i3fyd69QzqewypNePKFpzk42KeKYsbjMXjtAFAURculNy2yLEPTNPKyRFV1ctFgux4AGxvrrJZLfMcm8H2KPCcIAgBms1kbuGXajIZD8jwn8Bws2ybNctA0JAp5muF7LmmWtqFXszmarqPqOmVRkCQJtaNjWhZ9xUJUFbg2ddmgN6BLUCXYgcfBbEyn30VLCpqmaS9zj7CkcRS1/6ZaEjUljucxGA6pULk3echofR3PdrBVA71WUAyNRVNzd37A0AmxUoFtGOiaSlkWdMOQyfiEJElYH45IowWaprfGYlGhKBq+5zNfLSnKikJULJZLbE2jLkviaEXY72FYLp5toQmBXjeIvMDyPDB0ZCNRbIPTZIlpOkTHExzXwQw8KtqU49ANeO3Xf5tu2EM9v8nazhZBqVKKjBr5lQTkfr/fhoLVNVK2hC1FUR5JtEqyLKPT6VBUBePTMVubm5Rl1T7PaRqu79GI1iB/f2+PTthpZUiGSZ5lRGWO5dqM7zwg7IT0XJ+k79BZVCQIBmtDqrzENi00rTXZHx8e0XV9Lj7//NcHgq/X/2brD30guPXmF6VhWohaAUUFKdEUiUKD1ijUdQ1Kg+s6VE1NrSgIKZGlRBVgqhb9rS0qreJ3P/UJtoYh2WSOWjQEXZdbyUNsSxLMUnRTZ+4IyvQBnr1DmqzoDy/gjC7x6u1X8EOFcnqHftCD2iEup7hhj9UqJ44anNBhHN1D6ir67BhvY5u3b+7TFBXvvfwMZRNxEq1Q8NhZX+P4dI9FXVIoKmkV455EWOt99k4nPH/mMpdefI7XPvMFjPUe9eKAUWeNtGx4bOizn3eYNjGPhwrzNKSMTtHMLogMQos0N6mN1i/h2xG4HeLFgjVTsju4jh1u8Jl3v8C793+dZx5/Ec3YZXn6Nrv9l2jsGl0qRNkUU/EoiwMMXUeRQ3KxIrBG6GbIyepthv0LuHqAVtrorJhkcwwjYH3tLPNZgmX4OKaFrmqsDTap65q4TBCVYHtnl6ZRiKKUOs8BCZbJnf09ZNXQZBVbm1ukZcV4sYCmQdN0ppMZhmkghKBpGkK/Q5ZnRPEKy7ZwPZ/r159kfbhG0pGEUcXNmze5/bkv0dgGqqExOrNNrOssvnSLztWziKYmn68oHA2tauh7LufO7uL0u2RZzv0793l4/wG761uMNrY4PJlhiRrdMSn2T9i9cp7x9BTfslkbeITdPnFdU1oWTn/E2zfv8nDvgL6IGZ7Z4jRZkjcCWQnsWsUUCqqlo3kW0lDJ4wytgmuXLmK5GprrYZk+y2lCIiSLIqNoCuYnR4SaRl5lSKEy7IzobW3ir3ns/9q/4syHn+XBUY2RRxxMDmhWJS9/6MMY2yGf+IX/ig+8/2W6/QG9rS3mi1V7hUkTFKVlgyu02l+kQllWdLshURRTFwWrxRzf9yjKAhRokHSCDrUQCBo01yKbxZRpxixP2d7YhCRH1hWO6yBku2GN44R+2CVaLZCLAm+zR3d7xBc++SlO9o54zwfez2kRM1i/xu76gOl8RhbNWQtDykag6HorFZPwuU99BifwefLx68i6we91kXWD+f9h77+DbUvz8kzw+ZZ32+/jz7nnXH9v+syqyqzMrEoog6tCSIWJBiEQJRSaGSHEqCWFHKMITcSUzARNgIgYYGJgBkkjjRAIQTWmhChDmjLp/fX22O33Xn6tb33zxzqZQq3pjuqeKgm664vIiHP3NXufnfus9TPv+z66iaxKbl+7RsPxAIkwNBAabtCiOJ706pZFUUrKqsIJfIxc4PgOk/m41v/mOYOjA+IsIZeC9fV1ep0l8iTD0A0MQydNY7I8PSb4ZkxnMwLPochTdEOnyjJspaFbFhg6ZVWh0HBsl6OjIwxD4do209Gozl03bDTDAWGw3W2wWIQI28Ftt8ilpEKgaTp+u02WZizGI5TMmU+naLrG2to6cR6zmI8JZ3N0yyVwPVQak2U5u3d3Gezt8diHvon8GMQURzFn77/Ajdu30JISx7Yp8wxVVggNDK0mupq++x+LKKAqa1ZFEAQs8hxbaBiuwTycIZMcq9FAMyzSKKLr+kSLkFwHz3Mx0hIlBOPFnKooCKMFplDMfIM3XniN/+Z938q+VZFFCXkS8uabb3AwGfLh7/xOtrZPInyfGy++RhHNKaIpvX6brhlgmwFhu8kLL/wBp9fO8sjJk7z+3PNsPXUvo/GUl794iXsunqLhWtx++xrDoyEXH74fqxGQFjlZnpGmKb7rsZjPcRyXLM9J0wzHdtENnTCOQTfw/AZ5KQl8r2YqRIt6c2KadaqSoSOrCttzcd0mZZHjOjaOZaCEhmHbVEAaJqiqwnFtsjjBtuuBmCYUCJ00zqGqqFyLRbRgLajBglOV0zScGhLmOyRZTJbG9JotZF5QmR5FnlOWsoZ8eR6GptWmZRSaZ5PdGVF4Jm6zgWFbmLMMVUoW4QKrFWC3mmgIXNMiqQpypdAqgULWcLosRddqEBhKQVlwcHhEnMScOnMWNI28LOrmRllYrklR5ISTKdPhgKVejxdeegF9tc9Tjz3O0fWb3H37MpPhEM00OHXuPJrQKNKc2XxGY6lLY3mJXJYYQqPdbpEeHPHy7/0hU0sQXNih1WpzYecsKq/IFxOysqDd6aCAoqiJyADDwRHNVrOuKxRoml57FMKQhudiOx7j8YhFFLG+vvHuIGRwNMByHVY31kAIFtMZrmVT5gW+61ClKQd39pCWji50qhM91nObt+/coN1r0wrqBq0oS4JWE5nlLEYT7nnkfd9oCL5x/sSer3lDcO3Sy8o0TYaDAVQK27DQjy9klVAYpkWlKmoWjqovqoZJmRU1cTWLycqCJM9I8gx0jVKG9AIDEsUrL77AulFx8ZFT3JQzsjila/tEBjhOC19v42oefuASypA4SillziS+RFZkFHJGx9+kSE2O5rcIZYTXcKEUaJVNkmqMRgvOnGiS5HfY3dcZTwdcOOOzvvQId2YDknLBua0nePbVp+k24JHthxiN7tJc3eTm3gDiQ5ptm/3JmPvXzxPoEGyeYzSqIH0FjG12wxDHMKBIScWC061TVLbLC68+TaPpgdJRhAiV0fY3ydMFytJoNM5Q2TbXjl7lbHMVLVHsTu/QcR0sxyevIM8LLLuk4S4zHh7ht5dQykTTDNaWTjIZHRIv9pEyZGXrBJrcgNIicLtoGNh2zuryNpPBiCJJEf0GJzd3GAynDA4P8ezagDrdO8LrtBjIFCXhwuZpJknKpTu38ISJLeqUkr3BEXbgksmMKAopUkVRlbSCgO31VR6+7x5UlkBeMgpDLl+/xRtXbyENC7/RgKqkGXiUWUZZlLiOQ5FmeI4FpkFl6XQ8C1c3KKMCodu8cecWla7VUYQKfMej2wmoKkmc5sdJK4LllSU0w8bIcshSelsbrC+tcSgLnn76WXxD4dlufcOpBCiohKiLBMvCtW1UXmLqGiDpLLVptn083a0LkSID06AZNEEz2Ds4ZD5bO+m1TAABAABJREFUcHB4gO/ZPPbo+7hz8wbRYkGz0QTgYG+E7frsLSYsxgMe3Njmwnsf5O5swnOf/QP+zIe+Hb3fIh3NcUyTwjGodDBKhapKSlViGhpVXpLMQ2aDEcHKKobnksUx0WLG8vIKaZKRxAnD/T22VvtYvs9oETGLItbXVimzDB0BmkZQZZROhdNZZzCH9O4Au6PjBB2iwS7pbEiSV1jNJTbPnEYJiZZlqEJSagKv08KzHfJoQZ4mpFnBIk7x+z2a7R5ZmrF77Qa2VLRaDdymQ5UmHN2+TaPZJBYCdJOV7gqVAZkoMQwdSwqKNKcydNyggaoKNAXhZEZVlHUCTjNAt018yzueltdZ7lmWUBY5VVVP7BECw3ZQhkWURJhmPQHVZIWWl8cm63qL4gY+URxjWzaDgyEAhZKYZj0BFgriOCYdznBch7SoJQ+NRgOhFKam4/SWCDptJuMxlmUiZYGlaZiaxsFgt+Z8SIVSCs9zSdMYKQUSrZ6qAoFtY+iCcDHHC5xj47iGkgqtAnm8pUPXkFpNptU0jSRJMM2aKvtO5Gg0nxP4/ruT1nd+r9lsMh6PKWVVG6F1gedZROGcNM4ZLmKmRcl6r49ZlaAky6vLTNM5ummy7i6xf+1FxkWO29lAtwX2ly7zVh7z3X/1x7h16QrX3ngdp9fATDPmkzFLW+sQz7GDDi988WU6J0+ws7mFgYYeNCijKWmcsJBQaBIrzzDDhIKS3DIQmk19k4E4itENnawsa9CVVstwQMNyXTTDxDQtLMvG9wN0DcLFHCEEpSxxHA/TsnG9AE0XGJrA85zaXC8VhmWB1MjzFNOqG0zb1LEMh2yRUcgS7HoLV6kKhSBoBEznM4KggUAjTVJs08Q0DSbD4fH73qIockzbxnX92tivKhzLRFQVeZmhUFh+HTEsqzp+uCpKTMehUhWyqvA9H46haCiFoRvIoiBM6tjd2luUQCWRssIyLYQQ/3G7YpoURUFR1A1DvXGxqKQklyVVJWvgWsNHlSXxLCIvCgpVMZ1PMXSBIXQcx6GqFOF0QTdoEpgG/+//5y/zoW/9NoL+Er/133+aUJS87+H3IIViZWuDre4KSZ5xuL+P5zk0mg0cxwUEUZzgBz5lUaBrGqZuMA8jKqHqpn0WkWc5frOB32yQ5RlK1eELru1RaYLRYkJ3qc9yp8d8UsuGKlWRZylZltNqt2oPilNHyuZFjspk/T0LaFkui6qg7zbIlWR9c+cbDcE3zp/Y8zUHkwmgzOucct3S8d0aliKPL0S6rlEVddpJURRQQaEywjRBd3Vc08XINXZObICqUNTEwkJKbs2nhEu3eOHll3DbAaJp4hsOlmXgGU1y0yHNR4wXbzK9PqIbtDmx9h4O4xBXXyZNr6HpTcx2k3AwYz9PUIlkdDDk5MktbEvSsMFrt4m0givXFjRbbUzVZn8k2VrKWLYb7M3niHiBKyViljPeO8Bq2yxmYxqUHKkUdRiztXmGwGxxJ9qj8dYXWVk9yWtzRaPaZWtnk7ujAzzTQI4LDuMDYi8l6DexnQ5HBwesLjfJwwVNe42Zvc2tG8/R06/iyZOsrn6IpLzLTETY1QpROqqTPvwW4eEeGk0OJwd0mpsIy8YzHVQiyOaH2FZKa/NBxrMB0SzENjK2Nlcpc0U4n1CJgtt7KftHu+ycvIiXCm69fRU3sFhf6WJ5XRZxzqjQOJhPaDV8VJKRHh5huSabWyt14ZLkBM0W+nxMsxEQzSS93jKxqshmIQ8+9BCVklx67S2ELNgdHJKEGYP5jM3tHdorK1RSEk2mFGF8TF6tWMicRicABDJK8Cqbo9kUN6g1rUk2Jy1KGn6TMonRlMC0dcokJs8LMgG5qrBLg+RgjBQCp9NAGDqEBYfakKDR5OzmOvmipoQKXUOimIRz1jY36Cz1uX7jClmeEckMz3awpKJhO9ixpPIkWVFS+Q4Ht+8wUAdIqYiOZhgNj631VXQNyiLj4GAfy7SogGixwDQlSVtnyehw8uwOHVNn984N0jRl2QuYkuKEgtiU5FJCDDLLSAuJ4zhoQqE7NhJBXClK3yMajbFji1gVSFlw99IlNra2kL5JbFS8dfMm7U6XTqfPxmoTWVVkShIEDQxpcv21y6xubOJ0LNK9N/B8n2ZrhXbbYlC0OToaMJuO8cuM/rxFZ2ULIWzGeohWZhhJSBovmC5iknnK5tYGlmHjmw6ugkQTNAIHN3DxA59wPCEaT9GX++Seh4oyovmCtRMO6WxaG2eFSaEkiyip+QGivv64jsPhaIjnuKysrVKhqApJrlIqJREKwnAOVUWep1iWgdJ1NNOiFBq6ANd2UUWBYzhAQaYyVCUwdAMlIIpiZvM5ruviBy7j6ZSykjQ7LXTdQMqK1U4H7fRpoiiiqxt1VGQYYekGqqwIGj6ObSHaLXRdEMcReZIQpymGrmNaNihRZ65XEsd1KUtFpQRGWVBkGbbnYVsmmaZjCJOyTBFa/UaUSlLIEt3QsWybUkqKosC2bTRNQ9d11DERVimFZVnvbg+klCRpiu/7LMKQJIqxbYdOq81kNiXPChaLmMHhiGa7wwNnt4njBNNpYCnBdLbAKQRVVXJbHLB7Yx9rbZm7r13mwiP38fSNa8QP7DC+uct074jOxkbt1fB0XNvBbHR59Q+ex9lcp/GeB1BxhmGapGGIlWY4Cu7c3aWzs40lbQpZstBK5nFEw+riGDV9tpQFhmWhBHW8rqDWmitRF9SagS10Kl2RxAkIgWtbWLbFfDbH8/16S6QqhKpwLPvde5dumHiOQ6UUZVViWSZFFpPFEcowMRoWmm1SZRXmcWSvoZk10E5oyLwEWbNDbOoCW7cM3FYDoQmUEGi6iRSKOE/QdQMhtBqupus4hk2cJOTzBKFrIEA3TQAqKTENA8eyyZIEwzAoigJNCKReJ4UlSUx1POgzDKOGWc7nxFFMs9mk0WhQFAXlcQqTEAJd13mHaCulJJzPqVRFu90miaLjCGNFWuQ0Oh2CRkAeR+RpSlVKbM/D3Qi4ef0GW+vrXHzycb7y+qvc+8gjPPKBx3nh2S/y+t3rfPuHvwUxi9gPxyx7LdZWVymLnL1bdwgaTVqdLkkU02g26q1BXlBQb72oFK1GA2W53N29y/VLb3HqzOljTw0Yjk0mSlzfo290MCvB/u076K6D4RiUhcQyDBp2LTOLZnP6Rg8tTHEQJEWJr+nEWcY0KzDRCJOSTP/qhqbfON84f9LPV90QaEpgmCb4Nc20xqWLOsZP04jSlMHREMdxiKKYRtCsNa2uiWboNBoeQknyLKLMMgxdJ0oSHNOiD3z08Q8wf+A+ZpMhi+GY8mjChhVhNRKi4YK4yGjpDg0nQPVa7CZ7JPkIoWnIyqXIIsKjfXyrzcnuSabFnNcOX6Qza2DqJqanM57exG91ObN1kVt3L2M3lomjjBu7N1hb3sZwG7zy1su0TJO1nR0mYcr+q2/wkW/6Vu7kt2kEDeJkgTI0Lg8OuGfrNM9f/jIrSy5asEI5vEk43SeOZ1huC9dt4ZgaUgtQRsna2jrD0YgkUzScNrYlMbWUXm+ZG8MDGoHinJkSjV4nc7s0nG1m0SGW0SRJ41pKoWmcvnAvaWRRoKCKkWVMWE7ods4ynL/FZGJxcmWNVnOJPE1I0hQlqnoFnsW0V9rMk4glt8ciirGDmsg4HYwZT0bIcEbX9VCWxSIvuZNmuJni/vvvpbLh8uUrlDLHa/pcu3OTpVabEye2uLt3l7MP3UeyWHD3+m2Giwl+s4GOjrmyTMdzWe128Q2DuCiIK0mKRK9ApQWObeKbFlmesSgzkqpESUFyOEG3DDJV4dlObbQ0LOxKsdptY/YbNchoOEMUFeM4hMCnt9Gn57eZLSJuTMe4yRz35h22NpaZmjppmqBVAk0p1psOfQuWLIGzuskiiZn6EXGSsNrrocmKq29fYefcOfb3j2hqJnkakvomjaCJv7OEU+n4noOma8wnY5rNgGazg+sFKDRM26aJiZxOMRch2XqLfJGiXJedtTWChoumBPFgQSEVpq6TmRWaBL2qyIqUJAwxNIMyzpnsHdFaXcLt9lDzGY4ToDst0lKg6Qbnz91LVKQYCEyl4VgmWRJjSUjHE5Rmop85z9zRCF97mcXeEUOh0zZgdHvB7rXLdFstmv0Gi1Jy9+pbWHFIZGhohaAUBnHPwzEthFaQWxELcg5GA5bKglZRcHhwQBxHbG/cS5klTMcTVFHRdJoUaDgNhzuXrzL2A7y1LroUVGlFHKVoSkMBwjex8zrTf2l9Ddt2KFSFqKDMcsxAAxR5XmDqeq1BlhJdmAjLBE3DNExkWeKaJpPpFMOyKLIEWeSUZY5h1jTcME7o9frkWYqGwjR1TM0iDEMsy6HdblNWFVqWUKYxdhCQJSnD/T1WllaoSkmoappukaeUKLRKIsscVUks3SCJYnTdIisyLMegUhW6YaDyElvTMG2LJIrJE42qgiIv64k11NsOx0a3TLI0hUpSpinZcXEHdUH3TsGX5zm6VoPbqkphmiZRHNXUZduitdQlihLCIsdq+CziBX6/h9looStQ8wWaLNErRWtlFZFUVCbEs5DYs2g//DB9zaHfyMgVtO47yz1nzjIe7WK7EOcR2miBHThgCNL5lGp1GavRot9dpspGVKM5miZJPYvB4SH7sxkt04Y4xDN0mr0drPGEPAqJi5pibVs2sirI8gLLtsnLgqKUGLqGrGpdul6UVFJh2TbhbEJu2ViGji4EaRThOvXPap5GaJSI4+YOzaCUsuY+mDpVIYmjEAONqpTMZjOcIKDVbyM0jTwv6smyrHBsG9ey0RDox1tMqQQUso73LEoCP6CoElzXJ4kT4miObZrouoYsJalmoBDIor42FlVZN3aeg1Agi/o1lMc+kXe8QrqmUSmF5/vveo6klOiWWfOALAd17NHJ8xwhag/YH20gpXxn+CBYLOZEswWGZaBZNugaluNQyoKG72MJjVgJhG6QlgUIycaZUwhd55Fveor73/8Y88EIx/fYuXiOMk5RAopOg7ZmohAIBIEX0Gp1GI6GlJWit9RnPB5j2zaObVOVFSCxTZc0StEtg/P33YMdeLQ7HaaTCaBoBhbVIuTutRssr6wibJtKlnQ8v45vLkHXdLI8RzcMev0+WZRQhDEvvfgiweYy9z78IIZec09SWRJZikB91WXSf7UzHo+1Z5991t/d3TVXVlaKD3/4w1Gz2az+a7+ub5w/Weer/qS7jndMxAQF6EadBBDHMYPphNlxOoBvt2iYFlJWKE2ALJFljlB1lx+mEWkSHdNq54iqoqgULRoEhs1yZ5N89RR35yOK2YA4jalME98xuLYY4IiCznAXSzRwWza2sU6aXKe7co5KB1WCb4RYms977n8UqSuO9vfo6k3a3joBPotkyjTJ6fZcxGhCs9OmVBneRp9QFrhS42AWUxoaN6/d5mDriM5Gj8WlMV7TpCpDsjJFJSP8fsCtgytsn3mAYXiDOJwTCBfTDJgVBbYes927yJuXL5G15uiUFLmO0Wkwjnc5mM9ZcXvYjSWOqhF6EjFeFGwvbRHNMoLueaIiZTKZ0wq6iDLhaP8OrtXCtX3yIiM3x2i0mCYzROFx4eQKbW+Dw8MDhKbR7vTIsoLxeE6n06NT6JSGxevD26wur2FYPkVRkqqExNQYJBn+MOLMmVN0Tq1w++5thnf2uHVFZ3llGZFm9Pp93KABmuDU1mYNNjqouH3tKmWuSJWkVKBZDpNkgT6PWF1aJisLrr15BUM3SZIM1wtI9IqVE2u4QscyLAZJipIVldLQqxJTlHUxIUtUUtDsrBBnGWVekGUJy1WH5ZUdLqW7DOUM3fNZX1slOzxigUGhFBg6ludyEE6Z3LlGc+0ktwe7GELQDgKawiSNSsZqyu3rt/EbTVaaLQahJJtnSFunfWqHyjLQhWB/MaHRaVPqYDs2VqHI0pSkKqmoqFSFYVjESUKpIIwjqiIhPyg4vH3IYDFha7yCIyVNw6Z0DXylcTAZMx6NaPU7JIMh7bVlnKUmcZpQCYHZbiArxTiZsVcsWF06z/LyGqQlcRKDbaFMgzzNsGOFVkqyqsRqBkR5SiVLyjwHpehtb7HVDJhPx1wbh8SGgZBw7e1rHL1yk7evvsg3feSDbGyfwbECDg/2eWNxFb3dZvPkNvF4inZU0rlwjsGkJJylmHZM0OkiLYsbg0N8x2J05zaf+/Tvcf70Dot4gtNbxrBMDNNCGoqV7TXmg0Oayx00xyI+mlGGKa3NJSoTXKVRKolSFWgahm0ii5KqLLAMgyzLMAwDw9QRStTFrmWRpgmWYaALjSrLoKqIywKtygnDCA11LDXL0I2CSmiYplknnRgGSRxhahrT+Zw4TVlaWqkhZ6aFjk3DaUIlkGlFv78KuglahW0JTEPn5o27tJtN4jhGP5bzaLp2nJ7UpZjkFHlduDuORylLZFmgZF1IFmWB47gIXUcDiqxEiQrLcEBAmqUYQoeKd9OGdL0mLgshEKKW0BimwXRepxAhRB2jqNUbCr2U5LMF6TRhfXMNw/GxTIu4yijTHEMIpkcjIl1DKxT+Urc2ni8HdAyfdDhDlgVOw8YuSx774OMMX7rEzVvXWb3vPIHnMxQVeRZjmi5VnHDyvlN0vTZ6nBN5JtNwRqMR4DQbKNNky7RQcUxpmvhuAz2JaWgmM8unyOPaWC0EaVE3cpbjkIUlVaUQpkBJRSVrg7WUkjxLMVT93limidIF4/GYpuejWSZSVGRphTBMbOGgVVWtZ7fqyTO6QBOifl4UStdrv4yu1VIuAdXx9Nk49tchK+IsRjfqW2wSp1iOjZKQxil5mtafHVnhmFYteQLmixlBrwOmIF8k+JaDXsB0OsXJnHeL/ZKKvJJksiBwbNIsQxU1jM40TYSoJ/9lIZFFiWnUDI53kqfe+XxIKTGOf4bk8e9VVS1bswyzbhJQJElCmmUYrs08XNTeBc3EcT0yWWLpNnlZoguNPMlYlIrA8/C8+t6isgK9Epi2hSoyHMMiLoua86Aq+ivLWL7HaDLGa7ZQC8iynGazxSKbo2s6tmWDglKVZGnG+upaHcFclKRpgpIVZZ4xGY8J05R5kbJx6hTZeMBGfwWTgrKUqKqi0jUsx8bQddrr69ze22U0HnP99TdpeD7djVX6XotIryjD5GteeH0tz82bN82TJ08+8Ecf831f/uqv/urV7/iO7wj/a72u/znnnWvWO1uqb5z/OuerbgiuXL1Cs9mqjT7HkweqCtuxSdKUtdV1LMumUgopJaaj1+vMJME2dQpZMJlNKJHkFbUW0HEpyciyBYMkxNRtBntH3HvmDKv5jLmh0QvayGLCYHiHe5yAhdPDLn32py9izi06XQvNE2iawjYVg3RBkkUIKel5HYrKYPnkRcL5HK+zxP7+EakuuXjvo2iyQq1lmLYHcUzf6+CtbRDNZ7h6E0OH7lMfRlQOJ1przLditDTE1DsE60vclRNiZZPnc+yjXSrdoMLArRyadovYSLh2/TJtxyWPpyQzH88wSIqEMEnJkhjd3WGhMsoqRGEzTzMCf5V4koFaUOWKxXzM2Z33cHB0u5bMtC4QpQestptkok2iVkhlRhwe0rP7iHSK1T5FkszpdJeJ44zxeE6jsYTvtcAJcJTkxJkN3MoinqQsDkb0bYP+ygod02UymXH96IDmbMoinRKs99ibj5hkEaWs8JOUMI5p2w7R/pBcjLEsh3ASkpcVSVnS7nbRTQOtNFFhwd27uxiGjhQmqhJYjkdVKe49d44TW5uMhkOe+cqXyZXE1kxUmCIcSVXGKDxWdrZY0gLWzl/kyuE+R9duMlmEJKM3We706Do+CyNikUUcTkf4QnH61EmiLKeKMwaLEZZuMo/nGIMZ73/40Vpq4VjEcYjfrA1lcWCztrPBa8+/QhoneIHHiVPbbJ08RToakaqC5s4aRiI54bXQ0JjIEL3lYVUacRpRVRVLy0vMFhGD4ahunhpNjobXGFQRZUvntZuX+ZZv+Q7ydou3Pv8ZGof79O0mamMNs9/ixbff5qKmo7WbpHlGPpjQ8I5zsYVN79wFnCwlPrqDYRaMbt1lo7+MSMHwLCql0ADdNEiqAg1J03HRS42XvvQ8Zmlx7fXn8YMm01LjZhHy9isv8Ylv/Q5esiue+qFPcu9996A0HVWUBCe3sHQTvUhxbZPOms/bb77B7HBE59xJLj70IPksxrJs7IaH43nMZ2POP/QgV19/k1meIUwTRzOoqGh3WlBmaN0ef/jqy1iej+F4+N02XquDZusEuolIcoqqLpIbfl1gaEKgGTq2aSGLjDTL6iJIKRzTRKpaD+2ZFjLLEajjybhA0yrSPCbPc/I0w2+2qYSGVKBVFY5lMBmN0ADDslheWiIrclSlKNKYJFzQaQT1TUwXGFVJo9UkK2tCc1kYHOzNcG2bNEnwPY88zzFNE83QKErJfF4nygjqWMiqLKnKEtt18FyXxTxEK3Us1yHNMhzXQaugKDLKNK015qaF7XoUUlHJ40LuWCZkGMa7k1/DMOvoTcM8BtBV2LZVS6DyAl03UJUgK3LyIuPw8ADPCRDovPHmW3TXlzixtcn+6BBtVCFERVO30IzjXP9kjuaAUVjoi5LYt/idl17lPUs9Hjq/hrcZoCUJfrdJOpliZDGJuaAcLih9E2+jh9IMLGlgCQO/t85kElKqGaKhUxgWszAiUxlVJdE00DRBq9OmKAqiKMTSdTBMdMA4jmVdLGa1dt4y0Q1BtMjQVC0/C+czRsMjNrY2MR0by3UxHY9KaGiGdVzQZ5RVgW2bOJ5PltXJQLZlY2haHT16bKI3bYvpZEK0WKApKIqcyjFRx1r9MknRkDQ6TcJ5iNXwibPaIK1UDeFSgLBN8jLFsmwwNbJj4/+ya5GnCVmWIgyD9nEij2malKpC6BpCcSwhKtF0nVaziZIWcbggSxIs1323EXjnvxrw5qBpGvk7fhvDQAgoK4nQ9GMqs0Wr2aYSCsdx6qZLKdA0hNDRK+i2fYqsoNlwKQuJWYHZadXvW5JTWjqqqvArjUJUKF1Dw8DQdSqlcD2PJdtiEcf4loPneMRRfb/J8hLDsmswmmEQLRZ1SIHQ0aQij1N0T8NqN9k8f4ZsFnFwZYB/wSHNchZZQuDYiGMQo9IE88WcNE05GA8588C9nIgi9nf3eOaZ53j0g0+QWi6G55Kkf7wbgvl8rv0PH4uiSP/kJz956uDg4NWvx3M++uij5y9cuJAA/Nt/+2+7hmGoH/7hHx789E//9N6xl0n8xE/8xMZv/MZvdBeLhX727NnkU5/61O53fud3LgB+9md/tvf3/t7f2/r5n//5G3//7//9zVu3bjlvvPHGa1euXLH/zt/5O5tXr151DMNQZ8+eTf/Vv/pX18+dO5cD/ON//I+Xfu7nfm7l4ODA2tjYyP/m3/ybez/2Yz82fud1CSHe81M/9VO3fud3fqf19NNPN5eXl4tPfepTd37wB39w9vV4H/7Xdv6zD9L/2OkvLdHstLEcB4Qgz3PKokCWJW2vgSNMbKFjoWEd32jiMCJPa8OobTj4TgMTC9fwCOwWtvLIFhJH6bQqxWh+hPAVr15+kT+88Ryv7z7Dnasvk5YJ/rkNXpjexDw4Iiei0tvMTZdYy1hv3otvWRSpwE8cXL2H01tjUcxxy5A1r8WJtZN4quTMPSfQvHW+8B+eY91xCWcFz9+8znAyQ+2PaWiCXC9YX11ivn+X/vISX3z1DV569RUOx29iqhHbXZfTS32SRU4xL7BLB6HB7u4U3XPIypiu7SLDiDeuHnJnvIfddKnQaLdaBF6AppsUQFtLIBliCZMV6xQr/v1s9U7QXd4k8ZaJKVjZuIdFfIhMTTpeB8rr5PMFuUqYLvZJkxl5MoCqwDIa9DsXuL17A90pGYwOuHHjCrou0UTBeHIL1yrZ3tzkRGrRLMHruoRmzstvv8387cvMh7dZqDkrG8tUTR/LaTEaJGSWS4yiv7ZOt9cnnC9YW17h5M5JXMui57Vp9PssL6/y2IPvob+2iuGYtCoN3TO55957QQpsbCzDJUexcf4kDQw+/xu/zTO//zm2T+7w+Ec/zObFcxgtH73SON1Z59seeZIts8lDnXX6qWJ05SbFaI5muQwseCObcHlyQBB4nN7a4pFHHiCtJPPLNznZaOE3bOZxyDxOSW2HNc+A2YBlX6NpSdquQMZjfKvi3IXTNHotWisdTt1zmnPnz7C+0seWEq3Iaa312NzYYPWeMwyziNe//BLhYIIVFYwmE4pSoRkWZQV5UXLixA6B79EPDC6cO8dr126yf+WQey48yBIW3TDk5NZJ+laHV3/vGZIbh5R3xvitDn/w7LNc/u3nCK8OmIQpV+IZd6qMRSmZ7B5xuLfL4WxIYQiWN1e59PrrvPbFr7A4OMIzDSxNo6HAnIUs2y5B0+d3X3qOAyvDcHO+bDv8v156AXfZ5Du+46M88PFvR/R8/tz3fxdP3Xsf2sEEYzajKhe0Ap22qdFo2liOgTRdzj/+AcbrPdJ5SDU8xDMFrcCHPMVRFT3fx3Nt7IZPc2UFqWzuXr3D4NYe86MB6XBGOJ5x5t4H0FyP8M4++WxMt9/ALAuyyZxQU3i+S7vZIJ7PkWlKmdXGy7wqKcqSRruN3wjQzVqKYBoWSgnCLKfQNBZpikIQRhEgUJWGbtiUQmM8n7N3dMTrb75ZA50ch8B3WeQ58yQhTBI0XScrMxbhAkHF3jxiECUMpxFpLqlK0CTYwmQ0HjEej0Epirwkz+qIx7ysk4hMy6oJ0McSDVUnMeC5HqqC6WiCZzv4jkuZZVi6fpxyJNAArZLYWl0AdvpLeJ3uu02AUuo/kYAAZHGCY9nEYYSpG5jHXgclK2zPJ1Elfq+FZlss0gjTNekud8EUrJ3bwbAMepur7CyvcTAakg7mDAYDKt/B7S4htteYLaZE6YJKVJzoNPm2H/x+tjZ3cLwAA4Om4dAswNcEcVaSFhK706GKMkRS1GlLUnI4mhFFc1S6oNNdRbN8PK/C9QxsN6jjki2dOIkwhKAZ+LSDBp5t0wp8fMfBMUyEkpi6wDAEi3DGtZvXORoNubV7l/2jQ3IpWcQRuSyI0hQlBJ7v4TgujuNgGQbIElGW5GntVzAcF931amIzGpqsMKnTe4o0YW15icBzjo28JZaAwLFQSYynK+R8wo1XXsLOY4rFjIap4YoSuyrR8wRXSJabAcuWRYCi6TiYloFm1gRtPwjwPR9daFimhe95WGa9LTN1A8epfRCykgDkeU6aJKRpynw+f1dCBnXjoGkaVVURRRFQU60N00AYOmlRkOQ5SZFRCY0kTSmzHJnluJaDHwRolgmajmPatXE5L7BNE40K1zYpq5L8eHtnNX2QCokCzwap8G2XwPOxdRPXsPBsh6Vun8Bx0REYCBzbqeOHfR+haZRSkqYp7VYbgCRN6gQm2yJKYtKipNtZZq23ymT3iFeee56W4zE7GjIZjcmqEs9zGeztY0hY7S+jazrD6Rjdddi6/yIf/77vZmt1HXuli9kKaASNr0219XU6DzzwQPbpT3/60s2bN19VSr3wyU9+8gjg8PDQDMPw62KGBvi1X/u1nmEY6umnn37rU5/61J1f/MVfXPnpn/7pPsAnP/nJE88//3zwK7/yK9eff/75N//Mn/kzk+/5nu85+9prr9nv/P00TbWf+qmfWvv5n//5my+88MLrS0tL5Q/8wA+cfuKJJxbPP//8m5///Off/uQnPzkQov4WfuVXfqX9kz/5k1s/9mM/dvjCCy+88SM/8iODn/iJnzj5W7/1W//J/6B/8k/+yfr3fu/3Tr7yla+8+eEPf3j2l/7SXzp1eHj4jdXDV3G+6pSh29cuqaIoAOopiW0zn88ZDoec29jB1HXiLCVKInTTpBJg2zZREhMuFpRFiWEa+J6PqirSNCWOZnhtjTgd0HBtQtMkK0BlKbEuCQ9D/G5FsTikDDO2zjyA8rs0Z3A3ukSV2riB4M7BDbJsTq/f42C6z0r7PLqmc+3uNe4eXGez7XHP6haW8LEaTRbdB/jVz/8qreku7z/xBFEz5JWrr7JsB1w4d5q8Y3Dj+oDtpS5rS2u8/PKY0ppwtH/IA2d7LK2tIY9KhgV0ugG3DyY0GxpXX32b7QeW6foNWnEDGgF3SouDO2/Sby+jVRmup5HEkihOkMYBvmay0tokHU+YLCKstU0O336RCxtnEM01YjnENlvcuH7ExnaPPFdg5mysniAPJWk2RlVTTN1GK300PcbQOuzvZ2TlEe3mBrqwabVbtFtLxNkBwWFOe/siugxINYkmUzIFRatPv7+M32lw5fo13n7mJT78/sd59c5VLtx7gUC3mcwi0iih3+szXkxZWV/hP/z+v6ff6rA4mnLfvfdx63CfRq9LJwgY7O2xiENkXrDICsJS4be6ICCcjvEtjUKTNEyXJx5+L62lHrmh8+JrrxAOJgzHA3ZaPcy2xx9+8RkebK7z3m//KLdVymh3wDyKWGk2EJXE8Wo99+nlZQLT5Heee5Zmr4mbFUyGI9p2A7mxzHBvwMP3n+Xo6IhGo0EaRwgF3UaLwPXwPZ+kyLh1uM/GiS2KPEMvclquy+7BPnYJgeOTVVD0G7xy6wp9y6ftNciTHNux6kxspY4plxpKSso4onJtXpvsM3zuFf70n/o4yUaX13/rC3hNk+2VTb50+zJn10+w3ltGb3jsDQ4YjWNczWCz22NzeYWsyNgdHCHtmjTdC9p4toem62iWwWg2ZTYbU1UFg8N9+rZHPp6wmM3YvniO/WjB+fPnufHsi3QeuJ8//NLzLF55gw998H7Wl9ZJlrbRNIe9/SvIIqUd9MgTEAZYviJwOzgNj9lshGvp9FsdCsPg5vVbaI7JiRNbOLrB5RdfwjN0Gs02izSlsbJKrOkEpoWnBOPJmIUu0Sydnt9kOp3x+d/6La587mm+/cMfYfOJ96Ctr9Jp9hBRWDMojimpUilqZXGFZlm0gzbhYo5lmMzGIzQNTE1D2DamZZGHC6ZHR2RReBzH2SSVOZWmyEqJ4/jkaUY4nWIbAqqK0nZJshSoWF7qk6cphlYbHQ00poMBG90e1958i3Q+p99u0u/1iPp9DKtOzMqyjCAIcAOf23fvYLs2rWYboTSEqqiqjDSJ0TFA0/GCoDZSZhmWZaJULX2ZhSGaZWALgaVpTGczRrOQsw88TGtpiWuvvlhPTqMIwzDehdMVRUEW17A627YJguDY51X/Odd1akN+IYmTENs2CDyHKErRLBOn6ZPPI/Yu3+De++9nHi4IqVjEc1p5yt3/cJ2H/tSHERsOxSQlLQXjckIncGGcsDAhLRJEllENR1SGxN64CIsCZ72HyDMm+3cxioosl/TObeP1+nzp6ec40+5QFjFTmeNg0rAcUlOrIW26hmlYZElKIwjqAVSSUZQltmORZillJWvolWEwmU5QCvKsoNlskiQJ88WMk6d2MDSTpeU1llZW3yV/i7LAFLWRPcpylGmSVZJG0CRwfGSUEoZzZFUX2NPptDZmTyZMp1OW+n1IE0xNwxBQJDHpYs5Lzz9Pt9Vi4+I9NAOfPImRso5tNgybRrPFwf4ezV6Ps+99lExo7B4dHnsTLKgUCO0/boOAwPcpy7oxllQYpoXvBcxnM9I4wrUt8iRFHKdMvdMwvtNESimPZUaiLtip5WqlLCnyHGHZiKJCxQmqLNFsC9PzMG0bUSqKLCPPExzfZhGG5EWO4wY4nnvsZajjg9vNVu31qOSxX8ZCB7Io5MXnX+DMuXMo02B9c5Orb77JweCI+x96EK/ZqmVZsqoTDJHIPEcX/zFVK0pjNEMnTNKaNdNqM4pmvH7jKo88/DCjG3dpBQFep8X44IjldgetgstXrxC0mixtrBHOF1RRxjQJ6TRa+M0Gd9+8jLPS5bEPfvMf65Shsiy5ePHivdevX3eqqrYOnDlzJrly5cqbX7MX+0fOo48+en40GhlXrlx5453Bw1/+y3954/d+7/fav/u7v3vl4sWL91+9evXVnZ2d4p2/88QTT5x75JFHop/7uZ/b/dmf/dneT/zET+w8++yzbz7++OMJwOHhob66uvrQpz/96Usf//jH/zOp0yOPPHLh/Pnzyb/8l//y1juPfexjHzsVx7H2uc997irUG4K/+lf/6v7P/MzP7EG9PWm1Wg//6q/+6pXv/d7vnX893os/CedrnjJUxHM0oeN4PnlRoGvQagdYjs6zb79OmedcevNNzp8+w5OPvZ80i5FlRtDwiNMIw9AJGi5FnpLJDMPVkAXMknp6dufgDqapA2YNG0srjF7JfBiilS5FnHLjta+wvLyK21lle+WbCOMhR6MrOL5PVITc2TvgwumL7N2+SWWaLK/3aW/2AXjz8JCOq2GP77IsJ3z7/Q0Wzp/nv/u//0u2vSGPbJ1iecliMhhy2t1g9fwZhtMRi3DCzmpFWumU8wJrrtFb6RA3ArRyREd4rK5ssgj2uGy5RGHGcuBxt5gRDDOagUO10aFalPiOzbVbbzCJIs6s3UtlbTGd7+NqM/YGB7SabeLhPmcefIw7h0PWNJ314Dx3jq7Q7Lo4boMkPeBE9yRte4s39r5ION9nZ+s0ZW6RGxmevYqhlrh87UtM52N2zrepost0Gk3Onn6Y1tKDzOUAs9lg984efatJG5umAf2OBa6Bpyw+cM8jzCxFmGY8+Mj9HO3uUqYKa61Hp9cjTAq8RoPnPv95zm2fZGvnDIlZohs5jhhxcO0GN/OCM+cuIEyHeZGhzIIH+kustjrsTgbs3044PBrywLmLdB2Xl5/5AkWUsLF9gl6jyWA4ZffuIUm/5J72GX7oBz/JdDLlcDrhwZ0THGkagzikGs1pCpPVIGAkKgpS7iYzVk9tkSxibh4e4ggDvdXgvffeQ3gu4ejokAcfeAAhK45mY27s3iZbjPDmU+5cucWF++5j+9QZADSp0drYZnd4xNw0uXHpVVq5wPYdHnEe5E998AO89fZbGGFM4mpYCPIowfZtDJmQigovFaRpgZ/GfHTzPP9ia8TL//Zf8eQnvpcPf/QDlGWF5tt8bKVHMhihBgPe+uxb6FHO+77pPXTW1vjsF/6Qf/faWzz11FMsddtYZYI0dfyWz/jwOlVV0e+v0LVM+mvrHBwd0Dt5Fluz0S+2SSyN3RvXsAZT4leuINc7jOdHfOj9j+B/+INce/Ntbocp6405sT9ndXuZxSyEUhJNR9hYNMwOtiZpN1yk3mAyn9ea4ApWNrfRyxyzAFEULC/1efPSFZZ1i5UTW1SVoqkqtKpgoUNvtUO7yBje3cWdpYQIzjz+OFuPP8H0YIwzyblvp01V5mRZTlHmNEwfIQRUoEqJo1vkcUoiJ+gCirSg0QgYjyforltPcKsSNA2306G/tsbhwSGTJEHXBAKJSlIsYSKkgiBAd22SLEVLJau9JbI8QWY5ugLXdCFTaLrO0j2nCY9mXMoKXru+T0sekU6/xH/zF38IURk4DZ0kXzCYjFkKBGvra3X+elYXkb7rMBrFaJpAGOC5NkhJjiQ2BdLS8A2bIkkpygxT0wlFied6vPnWTX773/42588/w9/4e/9HbF3HKzU86TDSoUJnd3+MMHSW/SbTbIEyBCqNiaIZDbdBOEuIFzGGa2D6Ho7XJEtT0lKRp/UkWCgDV7cw19tcu3EZr9XGa7QRpgWxZHhfxO/deZNH1Qn8honXMmiXTaQyOSjnFGmO7TiIRsCteYYwTC42dOZahO7mLA9LMqtLbiq0ZQPP8ejrJh/5lo/yO/+f3+SJj34z3SjhaD6iKipUnhPOYhzXwWm4aAq0sqIqK6qqZBHOOBplOL5fA/2ExuBgBHo9Abctl/FoSrPZpN9dYjSYsOQ3cPslRhoxnUxwbI/Ab5AWJUUS1+C+vMKUEi2fEDMhTkLKLCNPY0zXpG0ZLCZ3aFkO4+EelZ4TZ7d565lX2L++j9fs8ua166hug/UHL6BHKzzz7z7NlVs3iAOdZc1CDqcMrZJH738/u9duscj+O/783/5vWb/nPFmWEsYRDcvFtV2SXFJmBYZmEM0iElmiCYVZFRQiJU4ydBSuaVFmNdVc08DUa7+CrOqEK00IhK5jHHtPHNsCBKqUGKZdb7NlSaEXKLuJZugooVHKGtZnGRppmqPZJsK0aXTtdxuVNE4QUqAEOLbDdDKDd3wtuo485hVJx+bi+9/HcS/CZDFn8+xJTr73AUgkaVGQRhFOkpMYCllRN4Gy3oSUZYnveIRRiEpLaDZYRCknzDba8g6T63tsrG9QaBWlUjiOyyQKabbbNJpNRnlMJ45J0oRWv0OnqP2S/VYTe3WJXr//v6AE+y97yrIUV69edf7oY0EQfF1NxY888kj0TjMA8MQTT0S/+Iu/uPLCCy+4Ukruueee+/7on8/zXHQ6nfKdX5umqR577LF39VgrKyvye77ne0bf/d3ffe7JJ5+cf+hDH5r/8A//8GR7e7sAuHbtmvPJT35y8Ef/zccffzz8hV/4hZU/+tiDDz747r/ZbDarIAjkwcGB+TX7xv9XfL7qhiBoNEnTlCiOEUInzSPSLMXzXe69eIE8z+m2mpw7fYY8T+upQJlTFiW6rEiiCAuI4xClJFLTaDvOMXjExgtaKE0irJS4GDCNDlnxT9Na6xJWIZUekEQJbrBKXnosbv07Dg9naGaH0+fvZ7l3jmk4JFcF+koPQ+bYUie6e0Sz5dNd2iKtckTYoDLvwdPusly9xS/9X76D3371ErfejKiGIVk+4/bNGzx8zwUqf4XRQUiz59F1TrIfjLGaFrrbYBAN2D98jel0RK/Xp7wm+chTH2J/dIXFfA6Gz2IWoWuwZLq8cuklvFM7NJseTq8B1RzHDshch9I20RyLJI+5eOYsSRRysh+Q5RPeuHaDRTai1e5x/c6QTsciKffZvXyTwXTMzvoWo4MhzVYby/SJwpJXLz3NAw9tUXkXcUSJVNssDg4IupuYNjRbBo6UnN08w15YIP2AL//Op1n+/Rnv/9g34XeWWV45yWPL9/Af/s1v8+QDD9DvbTK5dZ0gkrjtFjdvvs5gPGT99Dmi0YTXP/8ZNj2X5dNP0Na2cLcC9uZDEpmzfG6VM2aHJb/FfDrjS888TZ4kNB0bWh0Obt1hV4NUrzD7AW+Pj6gOdjl/7iLv/fAHef21VxnfuY2xtMKF9S3u7t5hPJtgmQary+s8t7tHVeRYq306q2tIx2A6OsKYTyizlOZaj3gRsT8dEbz1Nr7nkocpr999mSyOWV5d5sHt82RUZGVB1HEYlzmz577C6PodvH6XzZ1tth68h/7FZT776htkt+7QXOkzeu5FTssKMaswGh5+mZELhcqrevJttzgYHeGcOkl64zbD0RH24Bbf+/DjfAa4sT9hJ9ggnY7Y/cILpDLnc09/nuXtTZorS8h+B/PuHutCZ+OBB7nv27+N8XDI/t4BgdDoez3iKEETBo2GR5YkyCjBbzTxLAfNtcEwCKMpgQq45+RJqjM7HIwO6U0W+KnCVgIhC7z1Du1Wm1tvXsWXBhubmywmMcKz6fQ7mFXF7NYdilafw709dF2n2+7Q8m00qSE8h0RJDvbvYlom08UUpxVQaJI4jbEcn0gKHGnQVBZxkZFGOUlUse8XqDxn1XGRhol+oUs4nzOaDfAdq46OFRphHKELDdf1ME2LoiioBKRlQRyGOK6DLnWCZkBRFBiVokizOnYzzTiYTGm32kzHE1qtJkmeozd9xiqnUJI8jOhUDTa6fUZaXBcpsqJCkcYxaZLiOS7jKERkC3p+k49967fxiR/dZDQYMC1mvP7mTR43G6z466yvn2Z88ybpIMfsNoirKYZlQlUh0Gi12lRVRZImJGWJkIpGpdO0XQ6PRrQbXRKlUXkN3MBHTqYwjzlz3wX+1lNPcvvKJd5+402SoEWpCuhU2EpitpqcbJ/mcJEyOrxOoynQogjPdEiNipvDO/RbPcI4pek2SSczLN2gITSkVuL5PlpZcvja6+iWRd8LmPZc2rRYDAvMToNRfJ0H771Ar9nm5iuv4rjrfOb//AvMtnusdPtceOBeGss9FkmCqEoeunCBbBYzuBPTWllm74UrPP3Cqzz6vd9GM0+ZfvHLTAxJFlec/KYP0j7tc+m5z/PYk08wGYborSbZYIFpmQhVMZ2MaDVbjKMFrusg8joJr2HVKUxJmiKFoNVqUSIxdJ3FPKbd7lIUObZjosmSo+GAN958gw996JtrWnFQUpYFpmlhCJ1wGlJJRVXVvg1V1U1dVJYYtoeahBTJnHLvkD/43d/h43/qY/zm/+3/QbW8hLWywhUrY6m1SfOD53j70iUuumfo3/cw7vI2G7M5UVUSzUKuX7nO7tXLfHr/OlbbZO+Vu3R+/l9w/8X7uO9bn8I7uUFqeywKiWm7WDYsphNMU0Ozau9IEhUgSqZRWMvMdINOp0Oj03k3DalCggBN1+vJu6q3DZqmkWf5ccKSQEOwWCzQKgkoKgQqVZQV6IaBbTug1YPz8XjMfffeS3xMjQYIXA+Z11uaSimazWadpqXqAAZDHKeIoWNa1rvbiiLP0SQczGcElUEDE2VZzOKIdB4RxxmyLPF9H13X69hVTcN1XShK1lpdcplzJR5hL7mYRxnjo3063S6a42D3O+imwejwiKXVFZpItPqNYDIYsXPqFHGacPvmLVZXVzH0P/4pQ47jqN/8zd+8fOPGDes3fuM3Op/97GdbL7/8sv/qq6/aDzzwQPZf8rUsFgtN13Wee+65N/+HJuFmsynf+dq27eqPNhQA/+bf/JubzzzzzOGnP/3p1q//+q93/9E/+kcbv/mbv3n5Ix/5SPTVPr9pmv+Z7OWdrck3zv/0+ao/6bu7B7RaLTTdJE7iOic5z7AsCydwkUXBubOnyNOEIk0o8pwg8KmAXrBEkDeYTsesbq2TJgnTeT1lCUyTKA6J0piVtXX2B1OEHZAmCw7Ku6xaJ1h315hPJjAraTgmt+7cAMvEb6+ysrSBUDlVPMXMQ5b7LcqFxHDaXLpV58lnC41eCSdX1ln4BbPsNSolEO0uVz77Eo8sd3jwm0/y6p0hS3qJLDN0p8P9aye47o9pBV18JIk4yYlWGwefPN3FNQLW7zuNNCRiMGe4d0ieS3rdLoMkxg9MokLx76+8xKkTfYbzu2y0VxCBQZWnDKIpldQokoqq1PGbAePJDFWWlEVBKRSlWUcLzqMZ7XYfXWiMxwuiuODMzmkoChquh2OYFEqRpAkX7rvITq9DIUuSyiGdQrf/AG0VUC4SWu4GKs0pRcz9Z3fYjWNW3/sAi+GYZ16/Rv76v+fbP/EJlh69n3yj5Ct/8O/Y+eDD3F2MmM4j+tMJ8Szm/rMPIGTEomNjn3mS33v6aezP/As+/C3fxsbOefqjHovRiGAiGJtDDi5f55UrV4g0haYUHd1CizLufeRB0izn5VdexXI9eif7LLfbiCTl6ssvohcF3aUuX3n1RQzDYmVpmWXalGnOZHqLj977PioT3nzrLbJOl2y2wLdscsvi8PoV2kt9mr7HuYsXUJpiUaTMp7WBst/rkyB45e1LKClJw4gPPPEk2BaX/QO8U2ssuQ0MP2A8CWlaFd/y6BO0v7XFxuY6Ny5fxpCC0SQkWUQ4QQ2Ucrc7XHrpK0i/xVa3S/z7/wH/wgbWWpepWqPKIs4srTI6XHDuooF5cpMXrr3F0tI633LuB7l26TJL7R626xHOx3itDi3NphzGrNodNs71GY0HjKOI5GhBlqacPrlzbBSknnT6PnmeI/MMvSix5hXT0RjR8PFci8rwCKsp4a1beOs9zDzDU7B9/gyj4ZQ3Dm7TabTYv36LdDZl5+QJgk6L1BQoq45bffuNt7BNi1MXLxJ4Jq5rcxBGTLMYv9mgEdRFb9dvkMsCwwZdliziKdMkwjQ0hFNRiZyGazMYjjGDJt6KT9BZwzMsyihGM3WCZgtQ5GlMlERoQqOSCmFqVLLEci2KMsewHTQNZJmzSKJjsmyd/KMsi9FwiOs4eIZJOkrQi4rtnW2GozHzRFKECc+8/oe0VjdZ6Xdp2D6L+QStqLBNuzYCey6kKXmaY2UzOu0+r//+M6xvrfD93/xNvP6lz1IdZZwKTjMSIb2z22iOTTGImY+n+K5HmMSUZclkPKW/vIxuWSglybKcMovQmg5RP8AqDbJrN9F0k9IwEJ6BU0iycM6JU1tESYTIZkSWzWwa0y1Nst19rOaM7X6LnbVtFlnG1K6pzo5u4moaea7RbfeYTyYYQqAZtfxKyYosL2gGHTob57g+vMtsMiMw2ozcmNwuaGYlnmczeesKRaOFJhVXv/gyxkce4d5zZ5BHIwbzKQ+f2MIuIYljBnd3cfyAnfMXmJg5F4OHUQ0LhWQ2HvLSi1+mKVP0pODO+IgP/d2f4MU/fJ6Xv/gSpx9+iOl0jJbnCK3CbAQUScI0CTEQRLMFmmnieUEdJSolpllPuz3bIcoSylJiuy6qUkRJglQVfuDTXVpF6BqXrl5lqder4zqrGgiGqF3IlmljGCZ5EUFV4boOHVMjSqYkacTh3V1yxyY5c5IvZxn2d34LfbvP8toq7/m4i60rVnWTa1/s8uXPf57FuQ5dt0G/02CuJObSMu87f57vdT/BZDYhTmI+0/33PHf9Ol/83O9w9s3X+OATT/DIB56ku7ZMqSoqDTzfr6F0QrCIIjKl0A0DYVS4jQBN05EowjiEStXRplVFJSWyqgt/+ziXP03TOor0mGehlMLSDaIsOY5gNWsju1YXeaqqKHJJo9EgcD2iRVhzEIoC27JIkhTdMHA8jyxNSJIafuY4DgJI0xTLcY5pypIkjmuOhqaRmSZOlmELQVxloIHvODT6bco4R9d0xLGMqAbN1U2L6Ppc3b2KnpbsNHu89ZlnyRs2K+d2eOOFlzhzz324hsmlN95mZXUFbTPASyRpWWAInau3rrN/cMDa2horq6voukZW5F/7yutreA4ODvRf//Vfb33f933f7OMf//giSRLts5/9bAtgNpt93bTzL730kv9Hf/3cc8/529vb2WOPPRZLKdnf3ze//du//X92ytGTTz6ZPPnkk8k//If/8OChhx668M/+2T/rfuQjH4lOnz6dPvvss8GP//iPj/7IcwZnz5794+36/hN0vuqGwA8aaIZJkmWkeYFl2XQ6bbIkpswShCpJE1lDWEydSumUlaTIS+7cuoVSil6/y/6duyhkfWFSFUezKUeDfZaXl5mGC+I4xjc8VvtrGOQomXFr923GsxkSnTeev0u3v8ZWYwO9UuwdHBHnIaavY9iCt69dw/E8VBGx0uxz74V7CaM5puYQhzEihX6wSlRoVPmCE9unGI9izGrA+7fOYJkuZbYgmU7Z271NpVWIts3l3Ws4Ag53Z6x2S1YDl0Fism1usJukhNmIrY0ei9ggS2ZYtoNRgS0czt9/P9XgDnfiMVvGMv2dNa5ev4KpN/FbGmU4ZWtjBSk1DoZTtk+cZjCc1sbG8R6msul2uniuW2dmC/AdjSyK6QdrzJN9knSGH5wgS1IKe8GVtxKabb9OXnBaLHVOcuvmTcpyQWfbY3D3Fh3HYLS/R5gUbLe72OtbnPimD/Pae6/z+uEej9wyeWh5idv3a9w4mtHGp/QMdtOM7kqbvYObaJWGq0CEt/n4+x/nc2+/AmFCHo3odbrsXr+JV5W0T2wwLDIK38SOSwLLornWIxlWXL18iaDZZXNtkyzOaEub66++RZgtMF2PNE0pypokq9kOg9mCg6MhRRrz0Hveg9WwmScx/bVlWs0Wrx/cIR7GBN0O73vqSW7fuoWrGWy1+0wOj9CikqkOytRIy5R0FuM0fJZPnaY0BJqrgaXYoU0ZWoTDKePLN9m6cIawKnHiBSuLDDoOq4FNuj8kX/Mp8xLPCYiiGKKM/uoGb79xiWdfeIMv/M6/56/8yPdw/1PfzJrbR+aSpQtdkvQPcf0KlM5HP/JhZJ4zOTrkxBNPMp3NSccL3vfRj3J4cIiSGeEiQmgajW6bVr+H22iwmLrIMidXoKo6g77d7mBZFrZUKF0xCufcLSaUhsDRFLZuUugZdqdBbEsWewf4tktaDmiurrC83KbZcLmzu4e7uULqm7y6e5f1Xp/l9TUwNDBN7E4TmWbEcYgxs4iiCE8IigryJKNSMNg9QMU5lmGiq4pEKSIhcXQD13LATKnGIWMzI60k/X4XL2hQSkm8iMnTjEbLwXYcULLeMBZFbZzVayK6BiRJgq5AU6ArhZASUVVYhnFspjRQlQQlMXTBYDpiGE6xYgOhaZiuS0KJ1Q/oNc6isIlMwSyeESULGs0Ar9cikwXLucHE0Amnc/KeRaMM8bY6vHH5bdqnN2hmJlcOrmJaOpc//xL3fLOPpRm4hkbp+3Uzo0oQOpphUJQSS5TotmBmS5xRzPUvfInv+j/87xBLfZrtNrdefZ6g36VUdbyiqxnINMexXTp2k1GcEKgmozxkUWUkZcW1zzzPIx95Et+0UKJgBISGoNlvUu7vs5iOcFptlKkRVSVSV1BUFFnG81e+zL2PPszWUhvdNBm8dZO1px6jtbJKNl0Q793ltaM3qOYTLjx4Af9Ul/dLk+lkztbJi4zmY/aODkmzlDzNEGXFnRu3eHx5jZYhWFy7wdaJE8SjBZXfpffhj/D8My+gXJMPfPAjHFwasbxyghvD17n16vP0uh0sx8LChkqQFxLTPk62s0ETBlmeIZSGbTsYhkVZluimiSFLqgrW19eZzWrSshIVpm1RAidPn6Usc2zToMxz4iTGdo/ToQyjliYpiKMEXQNDExh5yeHrl5irEm9jhdWVNU6cuQBKw5SKRIsQ5ZxqOKPUdF4/HPJrv/lbTGYT5p/5Hc5111ne2KB79iSmEGhZSlyGNEyXZcvnr/y5T3IYTtkfHvHSs1/iV3/3t3ju2c/x0W/9KB/4+LeRVBpK6CSFwDY9NFPgGTqapmPoBqZRqySUUuRFXvc2AqpKIjSBoRkoVUuJJGBa1rtRte8wDKSUtLrdGrhWluRZTpUX6LpeN1yinqy/Q0BGKWRZUipqw7NQhOGcLMtwHAfHdpBlQSUlmq7X1/VjiZE6zlqyDJNFWeIKE1WWOI5FUZVUtkmlVM1CKApkVUe+omvHqUmg5ZLl/gpFHPP2lWs8c/UtBrMJm7dPUGYlL37lJe57/H2srK/y8qW3MA5u4cQloumhlGLjxCaapvPam2/w9tUrvO9978O0ra995fU1PL/yK7/S/Vt/62+d+LEf+7H/5PFmsynf8573fN2K5f39fesv/sW/uPnjP/7jgy9+8Yv+L//yLy//g3/wD+488MAD2Xd913eNf/RHf/Tkpz71qTuPPfZYvL+/b3zmM59pPvjgg8n3f//3//9M/Hn77betf/pP/+nSJz7xiemJEyeK119/3bl165b9Az/wAyOAv/bX/trBX/gLf+HUQw89FH/sYx+b/9qv/Vr7M5/5TOc3fuM3Ln+9vsf/rZ2vHkxm6OimgaNpFLLEMg00oQg8F0Vt8NOERlEVZGV9wdAMgzROqEwdz/OoDA3dtSnKnBKF1HVK3UTqBoP5lFXXwAsMUBFZFBMXKYWSpFWFYTtUUYGvFBuezquvfZGTm9tYpoWjezitFgUCo+Gj5Jym30LGA+LZnDyXRGpBdZwc4VcJRi6YZoeIpU02Llwk2r8CUch+NYJoQZSM6ayeQBtOyZIphW0jkhxlaQzjAyZZSlFpOOqIbuM8i/E10jQkieYEjRaFXlAlU/K4YHzliNPtiiNzmc2OxXAiSMOMfnub4WKfwXCA58V18kdVMZ7exDIFd+9eQyqNnc2TaChmw0N67VWklHieBqXGfDau4xKFw2wxp91o4BkGqxcepBQlg/1rlEaMkQ5oba0g8jZlFaO7GjNR60iDXgOvY+HZFeXwBuu+IOs2eG3vBq3cZK2/yjyrTWCmpbPU65HmkrvzCNuo0D2X3eGI05MhD65sUPpdFmHJ9NYblPGARWeL/M5dVnurrDZ85vkCsyiIb+7Sbga0NpY4HIxoNjvM44jXb12hKlIcU6e9vMKNW7dx0dhY2eDG7V02dnY4ONoHXSMdj1g4Jnt37rLc7FDMD1FpjtA1dvwOve4SthBUwI27N9m/s0ezUZOOl3pddATj8QDTNthod3E8hzxKCIdzbMcmFzql56CfXKNq+ASez2888wc897sv8V3/p7/C0XyCmCU4dhe326WS4Lo+SjPoSRPzng578zHRLOcLNw9YOnUFY73i6Mo+m5s9bs4PWXnuS/Qeei/zwYAwibBsk7UTm0zDOakjiOMQ13dJsxy95RA0AozjCZlhWnjNJrqot/dpmhxTTwuOhhNc08ZxTRbjKdP9Q7a3T+IojSxOyPMETSiWm12mqeTu3j4V8PDGGm3g9nRKx/Vp9Ze4cPZ8PWUOFzhZSakklRC0V1aIJhPiMKRhO+wd7NeTy2YL065NhlJp7I4GOI6LZTloSpAVBdZSgOm3sJXGtb0BtnBpr6+hTLPWnmsmSpgYgY0uBEpKpCwwDQPrWHoghFZTf/PjTP8sw9YMkqRAlZIiqwuhPMuZJTPm8zmnT53i6OiIopKsbm2CUkRJiogky90eo6MhhpScOLtNEoVIBB27To9pmy6ztKC0dLQQzEaD05vbpNGC5Y1Vglab6GiEsbGDayi0dpNpv88ky3B0yWI8p9H2QTcwzPry2+v1QGgoJanmKS1D47U33+ZLb7/BB2ZjysmYrhOwtLbGIktBEzRdr5ZwLSJ0CWp9k+UNm/lwgHY7wtYtGksrpOcqbs8Tllc8skogge7yOhSSURSSJzGGpeG5dfSykIrxdMrK8hIb4gSjwYR2p4UV5Xz5mac5c/YUh69dRc8KaHW4/1s/hCZLzDylGo4oDZ0VzyeMI2zTokoTDKVhuB5KaKjFnFtHB8SHAxZXbnLvyY9i6RYIg/sffT8PP/EUo+kczTZIswo1juic3AFH587lWxR5itdqIIyaYF3kBShFWRQkZMfEYUFZlHAc+WnbDrppousmnh+gGSbNdhvTNpFVgagEeZoyHg65cPYMSRxRliWKmu9QFZJxOKHb7eG5LlmacnhwiGYYVCc26Dg2nusigTKPsTWdDAG5hTJ0bNtAExpLF5b5vr/+33Lr+g3G+0fcnIfYWoMNb4WqkkhNYgqFXUEiI1KZ0rNsWhtbnPy+TQ7u7vK53/99/q+//EtMhODDT30IXWlUlkHp1M2QWdUJQsKoa+WyLGs2gVYb8cuqOjYwG8fMihruZmgmllU3UO/wLAzDOJ7k18W8bTtoQiM/luBVsn6Pi6LA8zzksdSoKGqWhut7x5JgVTMdFMiifDeCV1USiULKWrY0Ho7wXY/CcajKihINISCLFphNDxwDIynJy7oZsCyrNhkfB6Nomo6l6Shh0Oks4z7YYuOJ91AuYt6+9DaxVrH75hW+/PrL/OlTf5qHn3qShcxwpQDTwKoECkUQ+Jw6d4ajwQC/EdSNzh/js7Oz85+9wG63W/7zf/7Pr3me93XDLH/3d3/3KEkS7QMf+MBFTdP40R/90aO//tf/+hDgX//rf33zb//tv732d//u3906OjoyO51O+dBDD0Wf+MQn/kfjP33fry5fvuz82T/7Z09Pp1NjaWmp+JEf+ZHB3/gbf2MA8EM/9EPTvb29Oz/3cz+38pM/+ZNbGxsb+c/8zM/ceCfK9Bvn///zVacMXb/0hsqLgrwskZXENjWElLQaDYSCJM3QTZ20LJBSYlkWcRyT5TmO7aBpgjiJmM1r7Xc9WMixbEmlFItFQhymzOdDXAfGk0Oa/SWSaMqd2zcIvBbNxhLd5WW8hsvB0YLN5S6iTNm7e4ug00U3PEbjBeH8kI3NNXRTrymLmgFouI7DPIsJ4zu4ep3XbCibjt8mzRcIt8l4ukeSR0yTlHtP7OA4TaTSCIkxiyYpOY4ouHE0IJ4d8NSpe8mWdrh86RU8XWAYkn5nh7vhHGZ3ObGxw4sH+5Dtc7hw+cHzLa5EbTQ9Isw8RtEE07QJApfBwT6mUPi2jipThuMhut/E0m1so6DTajIe5uimQ7Pt4UifKFkwXsxJSsn2idN0nC4rzRWEsYRT5SR5QZ7NOQojXNtla+MUu7MRyq4wzJKGrqPmBVWpULZVUznjDDOuKF2Hc8ubLHxFlC9YdpocZgW27VEkGUWUIjOJWQkc22AvSghUibUcMLh7SKW7tHtdehtdXrt8Ffam5POIwrPIhaJlOQSuh+t5TOYzHvvgE+wNDrl9+zaB7RLPFtiWDygaTZ9mp82Lr77B2soalBnRfML22hq2bnDpzbdo93v01lY5moyIFiE7Kxt4rosQ0PADFkmM0+8yCBfcfvk1pKljWCbReMoD5y5w/sJ5nvnKl1i2XE7ee5FpHkOlcHUbQzcQjoXjN/mFL/wWn//pX+Kf/o2/z3UjoSxKTm5uYWgGhm0yOjhiMjrCbXjcd+4evnj5Gp/9wnPc9+gDNNOQM/de5Csvv4R85UXe930fJ5y45PmcdrOF3fAxey1c3UDFBYVSVIZCKEU6C1nq9OoUL10jKQvSvMCxXTzXpsjrlX9WFIRhzGIeoiqF0GH/7m3CwYilfh9pCE6cPYVZFKSLGN8PKKQkkQVJFrG5soKO4HA4JoxSgmaL9fUNfMslnM/ZHexjNwNWT2yTy4JssSCdzxFKgqFj2i6O45GkaV2wo2q/kW0hVEk8nPLGl1/mgx/7Fo6GR2SLCK3p0mz08H0fy6qBQbKsAVG2baOJ4/QTmdeTRCGQstZBK6VAqRoAJqDMCwQVmoA4it81TMZxTJqldHs9kjihiGMcTacyNYymzyLLaAYNjg4O8G2PfqPDYjGjkAW+75InGUoqXMejd2qDyc0DLh/tsuEHtFyHRFVguBTxCFnq3Dq4zXueeD/JOMFYhJRUlK5NpdV0R1mWCFXLVzzPoypL5ntHvPD0F9lbzJjLnP/9n/8RxocHtJd7VJaFodvkaYpradiGxgtfeRlDc+hvrHJ65wzBiQ2SJCNOFswHB8R5jCYMNpoNrrz4MivbJ7nwxFMkScTi4BZH0xFZKXE1g3wR4/s+4/kM4Vq4hsn+jVt0VlfwhMFbwz3awmY6mmAHHh2vRWtzjUA3iK/dRCQx5j0nSQSU04RFHNLqtknKHNO0ybOC9dU1Fkog84TKkuRHE4JSpzAEQcNFaBpplICpM0hDNmOdccfEbPiIWUw0XTCeThiMR8iqwjRNNtbXSfOMrKzqn1MElmnW+nJZ4XoeRVFiOw6O56PrBrphYNkGijppp8hyDnfvEs/n9LptPN8nL0ocy4RKcfvObYTSOHVyhyxPGY2GWL6NNEFHh0KQh3nNehCKRhCgNIkqFbrngmmjKx3bchGWSZEnTPMYrSjwhYEUkkxJfNNEUEPBKuqCXkslogKt7TOJM579wjPcuXyFM2vrbPT6eC2fRz/8ATTXRVYGhqHXXgEpKcuCZtCgKEuKqkII3k0YqnXV9dee69Vgr7L2fGqaVm/7dZ2iku8C1ipZQ8veicytqoosy+rI0neiTKVkPJnguG6dtlZKTMN4l32QH4MREYJK8G7qURrX11vDMCjyFA6mXNm7xZn3PMAijLEcl83uCplQFLKsGQzlf8rfsCyH0jBQWY6bVZS2hhT1xhBNMBoMmEch/eVlTMfBt92ak1DUaWdlWYKU2LZFlmYUssB1XbZOnP5jnTJ0cHCgP/300/5kMtG3t7fzD37wg7Hrul+3ZuDRRx89f99998W/9Eu/dOfr9RzfOF+78zVPGXJdG6ELNGlQyAKqEk1AlsSYukWR5+SloNNfIs3T4yQNjZbfqumoRUFgu5gtQZLEVJXENQJsJZinR4SzXaQq2Dm9Sp5nFCpF0yymYYTTaLK8eoJuYwlV5GSjMdvdgDe//BVGB1MeeOBBFoOQ0hjTXWrgdzcxDIssDLEk5FlElGSw1Ofg4AphsWB9a4cwmWAy4mh8k253jYYT4LZXCaMjXBRXr93g9KkdSpGj5RUNz0c3K1yxiu6ENPIOt3dv4toaje4y0eQ2xXRMt7VNFkucCopkzr3tDq/vzWjIiKhwuXz3i/iaj9PustPp4PstDgYDWo6NEhXj6RhDBytoYXtdAtuj4VcMBof0lk7iNvrcuPEWp7sdxtMhozjj5Nn70C2Ll198ke/7th/kK1e/jEgMzq6fxHWbeDKlEDl3j26BW1AcTGlbDeaLjMyyMRo+dlHgBT6m6+Cf7xIuQm7t3aKvVrGbXbRFybJroWsGM1XgtTocHg1JhOTm4QC9KBFug+luxPAo5tEPP8Jqr8f4zj5PPfIBfnX033N97wYPnD2PIXTa/RX2J2OceMj5UydJDw5Z3LhB9zgnvVIah0cDXF3QdW0Or11nu9cnTkLmizGO0CizglvDPUJNIOIUeTCkkCVrGye4O9iHsaJIU07vnMR1fTQFt65eZ/uee1GuiddscHR3jxjBndEIv91lY2eL6XxWF2lS1lPTcIIrmggh+Nj97yH6pjd5bvdtTp7eIbINTCkJHQ3XsRhpJWO95JGdE0jbwtpaZeexRzh7cocwjrDsFvc9/iHuLq/gWafpPNYmORzT6XXrCV5RMp1MaLW7GFlJJWpglWG7hCgMQ9D0G5Dl6CKjyHIkAmSFRBH4AUpq+EHz3ZudfsYhPS8JHIvw6m2cwxkyEMSiRLNMkknKSquNt7ZCrFJmkxK30cVr1qv4NE9IkjmHR/t4fpeN9a3aj+K45LrLVMRYDR/TtJBFRRVlBMKoZQGVpL+8hjI0pCzRTR/z5JiJBOU3ySvQkoJIzGEekgkNZ7mNaHjYroke5WRliWHqVLKkoi4iKgWylOi2RZkX5JXEc12SKKIRBBi6hlHkFFlGKUuEBs1WgySJMEwTPfAo85zZaMyG7dAsNfQ4pxe0UAKGwwOCdpNKQi4UTjPg+qWrbC6v4+UVC03n3gv3kiRz9m/forG8jFEJVLNPW1PczVOE1sBYjLk6nnAw2OfsyW36K8vIskQeZ8LXm48cw7BwlldYefxRTFnQ6rQYaYrm9jpSSIxIIn0Nq9kkHg+YTidIVXF3OmL1/Dlef+llrBee55Fv+QCuqZErg0J6OK0OUZ5yZzrmTp5z+qkPITWNOM3xdAsDyd7+Po1Gg8rQcFyHsiwJqxxjZQldswltnZ2VE+gIemurlI6O59roYUE6mPB7Lz3L/pWbfLz959BMl0bXpxnUptOm5xJ4Ta5duc6Nq7d4+Kn3cO2Xf52iY1JaJvb5c6gkZxiGOEoDBUbLo5GkyI6LkWWU+YKW5SObOj3PxWk362z8IkfpAst10CTomo6h6eha7S9JsgTTsrBtt06qKkos26mZFbpGpSoc1wGvohUEHN69gyYEtu1hWArD1JFlyebOSWazOdOklsc6DZ88yXCUB5aBtAW6adSxnLJgNj/Eb64iDEFVVPimhu6YFFWGBThGRV9qIGxKKTGFCanEsEwszybLMmwMGkGDhZGQ5gVmVrFsO3zHRz5I/JEnmUURlmZwcPMuTz/3Ik988EnMwK6TgyqdPInJpQRTR9NAL6p3k3nqYl6iaRplKUmzDNd2MKibkHcGhUopBAKhjhuJqkIZOkLXEe9IfEwT3TBI0xTbtqkEtLsd8qIgy9KaXlxUKFWzL2pAnkQJMG0by6olOboQFFkNCwzQePbF53n5+tu4Sy1Onb9IoeDWpSu4a0s16dyo1yCGWX+dZglZnmHnklKvmFgSs1S1gkFKTCXo9Lp4vkdUFFi+T5VkYBq4yiAXFYaoZUylTEFKZJqxCBM4cfp/WSX2X+isrq7K/y3Han7jfG3OV90QlElO4LrIqiJOK5SmUVIQFjnFvGYPOLbL/vCIOIxQUiIUFF5R6zFNG6hI4hBT13A9mzhcoEyTEptG5wRJvODm9RFFmaEJnTW7Qeh1iAmp7IJnXvwcm60t1lor/PNf+02Gs5TAt/jAxYrxLCPXDG6/dpmlJ9/D7//u5/FVyc6FDfB9JsM5plSc3TyD3elxOD7C33AxbJvFTBHGI6aT6whl4AceMyOHnmA/GbCztkE6n3Ewep2mtYpq2SwHBqZ3gqO9qxjFnECe5HqcsdpqMBpfoukFzPOCm4NbCNclHEcEbsFQNbHMgMp0SEuHO7eO0Izr5EbCysYFbtw8Ymltmd7SMpNhiMhyonDB/mjOkrdKdOcmndMxhhFxEA/IjYrt0xvsnNhg/0bCzql1SlzOnnsUKTQMOSY8usuKu8zIFogyIUolcaWz0MFc7dK3Gqy2ukwODzl64zJty8RNCxS1+dfNc/Lbc67PFuhewMFkigoLXGVi95vMTUVeVXimjunarPZX2N7ZJrAsvvSHX+DcydNMRkPee/Ic/VzhNXze99QHGMULOnKNvTeuUwUeL9+4zXwcYWs6jW6TXJNgQqWbvHXrNrpu0NIM/E6L/dmEWJZEu7tsbJ5Am4dkWcZgPqO33AVdsbW+zTwKmc4meN0eW5tbiErxwPnz7JzdIZ4vqIqKE6dOYzo2um2yvr1BNR6jTJ2hNsMudKh0CteiilLsSuHmFbf3Drj43vdhuh4rvoe3soZVlBSy4OKZs7jO/ZhoDIdD7ltZ5b71DSxVUaYpk/GYjmGwce/9VGkJ0wXtZkCeRBRlPXVbWlpCN00ykWI7Xj01LHWUqtCFhixyEAph6yihM0tqmV2v10GKCmGL48mfg+aBk+mMJ2O6vkVjcwOV58wXYzxNsOaaHCw09sYDuqpBEk+IM5vO2W3kYYReCeZ5Qqtl0bIsNEOyuHMXvddGHQ4RhmIx3MM/NIlKhdv2iX2TzsY2B0cHeKbCL3VMLNKjAVTwgfe9jyIvcJf7CE0jnM+BCqFgMZszPDhCHQk219axNANMnaysKEqJEjX8UDM18qLAKCsCy8GSiiJL6TcaRHFIWcubMV2fZD4nzQtyKXEsizwvyPMMUwhMx+Hw/8vefwfZsqblveAvv/SZy5ta5WtX1fZ7n318nz6noWmgm8Y0orm07gUGBPIjR2i4gyYCRUshhRSDXMTQzNVcJOQhJN2WkKAlnBpoaNod7/bZ3pSvWlXLpzdfzh9ZZwvpKq56UKMLE/39VbWiavnM/N73fZ7fk8Y0Om3mK3Wmx8dgGvRHPlGQIvMU3S3T1ltzLUaH+wyMJgdvfJGV5Q6VxTNY55/m6Hgf1/Z48PJtvu7bv4WrzRpyNmYWhzR6HRrnVqlmBSc7h3RqbcajEGO+hb3QIO4PECq4usljCz2EyFFNHbfZZDCcoptVDg8e4OQSq9ti5E/4+U/9G77zT/5plGOPN37j0xiVGjO9wLp1g2ahoS2voOkOC806mlLwrWd+kFsP7rJ78x20iYdORqwr1BtNECDzDF1TysmZpuOqOjWZlxJRKSHPcOrVU/SkAjhE8QlKzeW57/wOoqzAsGx6C/MEg8OS6nMywMgNpn5Aq1sltXS8g31+5pd/EePaRVbbS1xaiKhJqNRrVEwTz/dIZgG2ZZNRYDkOvu8zjmYIVUWlwNJ0DEdFU2ugFCRxgqGBYRgkWUYQhihCBVVlNJnimiWRMZhNsQ2ddAa261IUOcOjXXpzcwRhwPzcXNkNFypSgiLA0Q32d/dotlvYts308ASZFOiGg6IqoAhM3cAUFpqmkUQRiRohiwJd1cripJDEvo9pGkTejG6jhR8XSEoCjxCCiltBEYKWU+dwdoRulxvdiuuiWxlpnCBVBRlLbFRacwukheTs2hlGJ8fcu3OL9TMbVOs1FE0QyhxD104nBWVOAcqppEiWwXa246AoKlkQohQKSiHQROk9SGRy6gcow7zyLEPXT6V6MsfSdeIsP53YgW6ZFIqCqVvoQic6TVaWRZkynuc5KAWmbpWFVpJRSEkYRjimjVooqKZJkqdMBMy99ykeW+nxG5/9As16l06rzd5kDCsdKklGpMZIW8eMc7yJT2EbqCrkKsRRVprL4wzLNEEoZFJCJrE0A5HkjB9sI3UFZ65JIgTqwxHTyQhNgYkNS5ubdNvzHO7uf8U3Xl9dX12/F9eXLRl68TO/VkwmE86sn8GwdDRdJ4wj4jhCoKAbJsPxqDQymiYUYJvlVCGXJTmj4jpkWYKg4OTkiND3AUGQxwwnAxQpkWnMdDLl6tPXuHu4zdHOA/Q8ZnlhgSiFg7HPb734Glpo4Dbq5NmMZ1cWOfTH3H74gPdfuYpenae/fZ3v+NAHaC+e4ebRNjd3bzE6mVJrlqSSVtWhVlWotbqEmMyYcnx8F1dKGvU2hjFPtTHP7s5N9FxiYeMlB7TsJYwkY2F5iQfTbRSzzu7dV7hw/nm+8OBN8vEJm71FNKfLcDhFM1JGUcByb5Ub13+T9bWrDKYzClWFQmN+fpl+f5dza3OQ5oR+TJaUxrVcMRiNJVoOy8uXCZNDRrsJKwtniNUHSHSQNlLGjMd7LLQu4zo5rtamXVgM7SmR1SIJIFI9OloVS9WZeBmtZptmZhJnBf0sYvfOPYo0B7dCohn0B0MaTg0Q+EjGwzHnFhepuIIJGUrdRdVUjFylU2sw6J+A75edawSKrnN80qdRcSHNsGyX9csXefP6Wyy1Oyw2OigUmLUK2w+2KGoOZqvNT//Df8aTZ85RtS0ORkfouomulUg6w9AJgpA4TWh1OxiqYLHbRUqFN996hyD08Lwp3/6RD7P98CEHN+9j1yo8+Q1fi111CaOQ45MTVltzHPeP6S0tMg3KoDVXM4lHU3buPKC4sMrFhR6OuYDmpgiZE0QJiibA0Rjt7BL1Z2xee4zdo230RoV6vYmaKeRe8AiDp2gq1UqVk8EJvufRrFXKi3OeE4UhbqVymh3QoX9yjB+GdDpdKpUKcZLieSVpzVUNTEMHVSUrJInMkeXcHscwEbLAD0pijW0bhFEEsqCQBaqqMRmNsCwT2zI5OjqiyFNc18UPPeLJGK1QyFJBninYumD79jtYwynP/6EfYF/P0WSBU6sTD6fIIkBkKf5sgDny8WyXJLcJoxitazO/NE829om2T9h84YnSPBvmjIZH1A0dxdKYBiGGW8WuVAijCKmUeudw5qGqGuYpgtD3/TJJ1fOxDAPbtsvEUlUly2W5MVEFphA8fPCAKAipVyuYpkaWp0RJhKbqBH5Ip9MhjmMCb0YUlZN5VRUMgymNWoPo+g5nF1fxOiY+CW6hcX8wQAQpS3M9/DhkcPs+m89e5dbhDt2lGp/8yU/iB5KPff/HeO9TV7l34y5eKNBlxNaNW3z9N3w9u7MR7ZVlXv78i1SrdebnOgyHAyYaLJ09x7LTwDQNjk4OuXv/NkqR4eSC4GSMlDkbZzdBFGiGxuFRn+FwSMOsYTbmeDgc8ODzn+PDX/scrxsGD+/d5fxjZ3licZHZnV0yd46Vy9fwxgd0O222bt3h7JkNMluwvfsAM4woUoktVSZZgC8kbpijN6ocjIe4QkdYOrZaYpG9yZS967fRHZv58xscHozIBiN6q/NUFubRlLLJ013oYUY++zu7NLpNDoZ9lEJgzVJO3r7H5vd8iN084c71e6x3l7B7NeZMi/B4+MgjEkUR3mRadrIV6M3PMx6PSJK07FIXRalVP91MvxuulaQZnu9j2A5JmmPZNoZuEqUxpmliGCaWadHrdJBZxr07d5iMxqysrOBWnRK/qQpstzwGhSiIpzMC36c/m7C5uYnfH+D5PppjIoRCoahIRUUzDCzLRlNL2UwYhuUES1MfyWgdxyllKWlOmmVYjl3q9OMY3Sj9DnEcnVJ0SqOu7/vMz8+X07Y0psgkWZyWxmhNYJoGipQc7O0jJZy/eAGEKNGrYUjVreD7HpZlImWBpumgClSh4XleSfY5lQ7leTk10LQyFE/mkqzIQRaPUo6FEAhFQUqJrqokaUpW5BiWjZSSNEkRKKcyotKL8O5nlaRlWF+e5XTabdBUChSyMEUgUTUVqSp4QYAqVBr1Ov2jPr/07/89C3M9Go0G3XMbXF07S1rkmK6Dv3vE0eCExmIPw9RL8hAKrlMtA1BDD8dxGI+GCKGhOwYpOSKX5JOA2f4hG0srfOEzn+W1115Bb7qM+n3saoP3ffjDzPcWuPDs07+nJUNfXV9d/0fry5UMfdkFwT/5yb9bnD9/npWVFeIkLENMLAvTNFFUFd/3sRz70bgxTVNCPyCNQ6pVlzhOSJKULEvY299jvjcHKKRZwcHxIZomaNUqeLMxM99DigJvdsJyd469ew/JMzDcGre3dhn5EYrWRCk8mhWTTqeOF5ww160TTgJmk5CqaXH7zddYWprnqeefJ9BVtLbDSX+ftltBFAlCTTHdKr/58ms48za9bp315iZRkJDICZPZmGZlgclhnzQ45sxqF99Q6e9O0acFS8urZKaJUZ3HC+9yEMRYcc6ZXpfDoYcUGVuDN7CNM1Qch8P+O2xsPM7+4RRVCBQCdNcknSUsOA4yDvDilIP+BJkmXLp6iaHncXT/kLprsbD6GI35BW6++Ss8e+795K7Ordufpeku0G2sIBSVMB5gOwYnk0Ps6jKLGxfY3xrSqFUJdx7SH2hcvHCO1NHxZwHR1gmzOKZycQ3LcogHIbMwLlM+g5S5uTmWzm4wOBkwODpAzQNWKnUuPnWNXFPIgpxYSnwF3nz9Zc5tnONg/4g4zTBMjUa1gpJlLNRapGFEQkHnzDLjwONk7xA7llAvedXNVod3drZ4ODpmuH/AhUaPxnyHoMgYnAyoOA6WZfHiyy/zrR/5NuKZRxFEeFHEzTt3WVpeoVV30YuCnd0tVFdFQfDU+SssrawShSF1w+Ze/5CVxRVSFXYGxyimweHBMcc7+zz3+DN0zy6gJBJzlHF/9xb377yJejTgyrWnmLt2kVffepuXf+WzfO0zz7H4zCWEpmGqNiEFURziuC6GYeDWqqWu/fT4mE2GVCoVKpUK78axJ0nCZDIhSlJWVlYoioLRaIRulCbINM2oqGWRLTVBnKUUCmiqSpFLlLygUCh9BQIgZzwcIdMMUzfIs4x6s0ngeYRhSKvV4vDwiFzmFIYgTyM8z2c0mhKFCfeuv4Oh5Pyl//ff4a899rX84f/7D5NeXKUYj9g72kFaVRbmF3jt7tts3dzl6W/7KFazgk2GPs5gckB1bZlf+pXPkP7m5/jwt38r9jPv45Wf/zkqbYvWmUsIzUDVNJI0odksaUhTz8Nq1igUHumRkyR5RD3xp7OSGKOVab66YZDnpxIIWXYB9/b2sE2TSq2CUFWCKCSczsiSlNdffY2nnnqKJIkQQuA4Dn4cEEURuqoxkgle4LNuNJBTD71Roba2SBjEbB0dY+sWWt0ivb3F4dYWZ56/TL02z87hCX40ZaPbwhUWU3RSLWZ2dIwa5+zt7PLs5Sd46YsvsXTpInfv36SyucDZS1e50DsDmsAnRZ9FHO88AJERhwVemJJRcDI8pFW3sHUNtAZFEaAXEqXRpKU1Gfkedwe7vHflDBXV5u5rr5H6E/YHA/xmk/d95DvJsphWt8NoZ5+3fu1zvPDsM4Raxv7JAYZt03+wh93tsHrlAkdv3CLMQyzXoBZDIsCoV0lnZVEW6DAJfVY682Rhzkk8oSE1BrvHrL/3aSaTCcWDfZYurvH2rZuYVQfHdSCTZHHCj3/iE7xw5Sm++//259Esg8/8wi9SVxTOP3aJg5MTckVSqVY4PjzCMMzTTWpBrV7HD3ziJEKekqPCKCaKo/+oiVcEaZri+wG2W8EwDNI0x3VdkiKn3mjQaLSIwhjbMjF0lSxOSMOY8WhEVqRsbW2hqCqXLl1mZW0NbzbCHww5s7rG1skBvh9QeBFJmqA6FqqiglCJsxzNsBCaim1bSClRC8rrYBhiGAa1Wo0gCDhz5gx5mjH1Zkyn09JgC//RKEtZ5Fi6QbPeoH90BEVJ3zEdmyLPQYKhW0ihkGYxlqYRxwl37t0jkzlLy8t0u10UQCgKmlCJohDTMsvNtlrq/R3XRQhBfKrFf/e9fHdfUB6DpT5fF+ojydG7mn2hlH+T5hmcFjGqEGii1OMLITAMgziOiaIIt+KgaRp7e3v4vs/S6iqu65LHZaJ2kiXUmw2yMCEIAhRNxQsDDMvCdmxQVQaDIakXopsG5xdXObzzgHuDQ7qLCywu9sqmgaIwmcyoNRsURc50OkFFxTQcAiUlyBOUNOPiygaf+H98nNe+9BJf/8N/jJ3798gVyeygz+bly7zwga9HMUyePHP+qwXBV9fv2/UVLwhuX3+tsCyr5JpnGQo82vgLTcNxHI6Pj4nThIrrogoVwzBQZE6WxqiaRpZLPK+UuY3HY7Jc4ocxpqVjWwaT0THz3TZutcpbN6+TKwHDwRhNWBhmhVdfe4tavUUYxoRRxrmVBkUcMROC5fkqNUuhPwq4f/8BSytnODzY4cLyAovVHs3OAtuTXeIgIMsizKbJLPGYRRlurUaazaAYM9+rU7U7yMwlz1UMM6G/f5dutYWbN9A7Bg+nHkjJvNARSUht/gp7Jyd4Skzm3cPSZ6A1ybMa/XiErVTRRUG1buBHkt39Y1aWFgimR6BKikhlvNvn/KVljqOQvKgSnIx49vHHCXLJYX+PqlJhd/cEpRvRrs6zXLd4OBuS+QVPXHofk1GfW3fv8NyzH+b+3tvEUcDVpYuoqsnd4/u0lAZO9xKF4zLZucf0/g6Xnn+Of/e536SrVTi/cY6TPGL3aJ9epU6z2WRvfMLZzU3ikQ9CYezPMJOcjhRcunSezNKYBCEFOoeDAbmhUHdrPLi/xfziIqtnVrl96wZLvR7T6ZhpFNFd6OGaNrkfE0xnZLlk7uIZAE5ORmSKYOh5jE6OSUZTdFPDsq0Su2qYrK2toek6hQLHh0eYmk6U54x9jzfffJNvfP/7sTWVV7/4Rew4ZuPsWYyFLoUEmUpMx+b+q9eZm++yuLhIlKbUOx2MSoUozRCajuhP2Xlwm1/82Z9i/uw1xnMdlDCgS8JSt8fMdMhNg3alTrPq0rUajIZTfJmTnBbLQlWZW5zHrVQIgoBatcrwuE8YhTQaDRy7lEGUXX0bw7ZI0/SRwc73fVS1PIY006JQID499myho+cF3mCE3qhiWRZvfuElktGUK49dIbc0Aq3AMAwqhkmSJozGEwzTZDrz8XyP8WjMk48/hqKrKJZBooBjV7h9+wa7Oztc17r883/xM1yZjNkMx5zfOMfSs+9l5dwGek+QR3XUxCDcu8vy0jyJzDlOhyTSoFLkBHrOL++eML23w3c//wT3Dg/p9jawDKhUq1SrtbITHPj4nodhGpi6QbVWQ0pJkqVlaJEQCKEgk+xRuIwiBIoq0HUdw9DJohi3WsWbTh81KsI4AiGIPY9GtcJ0OkPTtLIbf3QIp+cvmWVkaYZbrZDECa994UUuX7iAPxjh3NvHevYKztXzzDV7TIMpg7v3mERTKo0e4XREHPlEBaz2VlCmEa+9/RpOu8ri8hLdRpO9o0OymsPQD1gyGuiW4P5nX+S5J56l9Z5rKKpACRNmh4fMRgNsyyJUwFcVElGgFhI7zXBQGM1CXNMhyWO233mbtfdcY+nsY2zfPGLv4a+xVF/m/t0DXn/nFlarwtkLZ1ica3HpyrPINEerOLx15wbpaMJmt8conGG1mxSqhhcmVN0awXiEkcY4RY4f+CSFiu3YTE/DJqu2S5Al9IMpvVaXYDKGHN585xZf84GvZ3YyxFIkoSlwHZs8CDEkKKqK3m0gmxXe+dxrvPyP/y3/45/4QZprc3jRFCPKkK6NkhekccxsNqNSqZ6aUDPiOEbXNaI4emR2TZKEJM0I46QsFk+DLt+dFrwbdOW6LoqmY9k2pmVTrdZRAE1RyLP0kdlc1zSkzIiShE6ni23Z2I6Jmma889Y76K0ahmmQjCZMpiOcWo0il+iWjaIZaKZZ0ns0jSLPUGR5HL9r4K1Wy461pmnYpoWuaUymU0zTRNM1/CDAsizyrNx0m6bxCAVaZiPI0+9sTuTHJFGMVXXJComla1iaTpTE+GHIdDolTVMuX7oEucS2y6ygsvgoTvMCyoJb13X8MEDX9dOMgJK2o6kaWZ6R5bKUaqnlhl+cbhlKypfy6D1/93Xqp4Zu4FFwWJImp/eXohsGtmUxm/lEaUwcxji6AbkkTGMQgiwp/WwFYLsOEjBtC0mBkoOu6UgpuffS6/zyv/55rnzDCzz93LOohTwtqFQWl5bx/YBUpkynE2zTochKcpQqFKIowrItpv6UX/70f6Bo1fnoN34T3s4+4yxGqbt0rCq5qnJ2afWrBcFX1+/b9RUvCO7dfLOYzWa4rkt6emKxLAuKAnlK9iiKojT7naLNsjxDkRJNVYmTmCDwgXKjomkaiigNh+PJgCwOqFgWoe9xNDihPx1iuioyLdCxmE5DdvcPMByXVOb0ljq0jAxRCPTFRXJ/RjqbcHv7EKYRvfU2x/6Y/oMRi26TtcUWcSFptXpkRcDyZo9aq8OLr77BcHxMIRIc10LTFIospeLaSJHT7jQ43NthvruAJpqYaYw0VALT5HBwi2VznuGdIzx3hlltQBySyBhZWDSrXfaiIVpQYKk6umaRKTGj6QlPPv44hzu7JLmCrtWQmcR0U7xsxpn5TcKTY6LZkMyqMkwD4rHHfM3hwtX38/lXPsPKYpskbuI4CrbaoMg0Fpc2mAUJA+82ZlzB1AQeIaM0YU5b4NyZq8yiKfeOj7j1zg2eP3+NereDuzjH4b0d5rpzSMMimJUBMZVmg36/T39vn978PCiSTs0hn3mYaU5YZBxlIbZVwUXnxJ9CktNqtHCqFaI4xptNMTUNLwmxDJO1xSXiIGIwHiMsk0kYEN7f4cLyGTqdeRIlR++1uLm/jVAF51ZWGBwc4k2n9Dpd8rwkzwRBgGGZRFlGoapUmnVG4zGdZp25Rosbb7+Noio4boVwOGN1fR3TcfAmHl9883W+5rknaDWbBKGPbTpEYYxmOORZgaKlPByc8E+++DZP1CpUQo9Z5KNhs7G2wvLKHFq7UeL8/JD79+9TOFWKOGOuWceyLPzAp95qESXxKQ0jQyAxrXLjnyQJBwcHLMzP0+50CMMIwzDw/dIL8S72TwhBoUChACjoqooiC/q7+9x4422qjRrrF85x4k/JdRWh6lQtm7lqk2A0IkljsrxMCzUMm5nnEcYRNbfGnOsQ5hluo47pmIRRgG27/NZnP88Tc2sYl8/wq9u7bF3fQfX7bFYl86bK5tX3Y2oZX3jx81y/f0C1M8dCw6SpFCxvXGS7P2Syf8ILH/gAB8GQRIKl6VQqdklPyUrZR8UtMybUU7xhehpkFAQBSZpi2RZCiFL/GyUlbUiUXeD8lHyi6xpaljMYDHHdyqP3WzcMkjTFn00oZIZbqXB0eMji0jJ5liOLkqgS5+X9Ht/bZnwyQNZsjJqLo6gQTtCkTrc1z/zVSxy8c4uxltCoVgjHU9SpCo06sR6R+kNq7R6jSc7+YJuV7hxmnKIhGKUxnZVl0llE5k85frDFg3fu8exHPszi1fOMbzxAzTL6MqLfH1B3TebmWswv9Lhz8y6L7SUe3r5HfbmCYlTAqfDg1h2Cu1s8/5EPoxUKr7/9Cs3uIkcjn//1n/9LVMvgSrPFWbfCPDpFUWAut9j8wHsYelOqmcLo1haJqXL5uWdxak2mUYCtCPZ37jMdHlJvtkmcKqqiQJxiZJDMfO7du4fdqPLU1zzH0d2HDH2f1LTotrtoUhIkM1JZoOUFrl7KU/b7R1iqQdOsIIXKoGVwuL3HJbdJToxmld18hdL7Ylk248mk1L4nGZpWptkGoV9umOUpVF9VGU+nhHFMrdkmTZLy2FFVPM+j1WpSdSsUSpnEm+WSarWOrumkSUL/8IDV9TWiOOLg8IDV1WWOjvpUq3XanQ5S5oRjD9u0UVwb17Hwjk/Yengf3TUxDRPDcjBsB6Fp2HaJ4S5k6ReCsvMfR3F5PKsC3/ep6jaaXnL1VU0tJYZK+dqVd6/JQiFM4lJWpKrI30YE8qc+3syj0WkznU0RSFzLLq8jtoWqafT7/dIMnOf4nldeq08lipZl4Vbc03AwE8u2yw3BKTb0XelQmqYop8VVEASYhnlq2C7zTmaeR1EU1KpVqtVqiX89fd2KUMiLAl3XEUIQBAFZVsoVC1mSwSSlXDDxQ+IwpD8c0FnoUW+0UFWNQsryOb57DhWCNE/L4jBN6BguP/O//gN+9e2XeP/Xf4AnLl2hVq2xv7/P+QsXsR0X3SyphopQyTOQcYJWKEhFEhY59V4HoRkUfkg0mHDyYJvCNVBMnVxRaDaabJ7/6oTgq+v37/qKU4YKKctOi6Lgui5SFmSZLNFhRUYmc3RVK3FilCdBWRSEQQRFQb9/iKrC0tIiSVyGkURhRKEUGJqKISyCmcdwOEQzTZaW1jjc3sILI/IioDe/wPkLF/CnHjJJaS+4iCjBsRyymstEasjCJetotJZNKu0W+t42cT1neeMs1VoNR4mwKlV0zWE6G6FIlavr5xiHDY6mR0ynPlWjyer6KrPZiDAPiGPI0dk52qXdSNE0Az1QyWZjvGHCK+FN1EjQsVrMRkEZz6638LwTtOiE/f4xbuZw7dI5NGkSZsdk0mQ4GhAlKQ46zYogRSOMUuasFsO9I6qNFmlSMui7vUUSJ2Otc5HRYUzVWMWx1ll0dUxbpZAaSRZjm/DgwTvUa11yC6bpmFwRXOxeQRgOB1tvk2oKm/PniGcxfp5zWa/Rf/0+589voOmnXOf5OaQC3UqDtqYz16oT+iFy5mOpGsdC4ebODrVqFb1eoeZUaFkusVLQrjaoOi6D0bBMqxSCbrtDPc9RkpzgeEqcxFimxfFoRKPdYrbR4zN79zgvUrq1Ot3EZb3ZwtINSFIMU8epuCRZSqPR4O7du7S7HUzNQPMCkiTBijOe3DxPGPr0d/exTRujWsGbeZi9DtgWYZJQ7bboOFUevn2b2pOPI5EkSk4scsLIw9Rt8mlE9PCQP3tpndcebKFHKhomraZJnM+QUZNqmJPkAZaus7DYIzJMlEhi6hoFgKIg1FJrW0j5KLAnpWR4m5rO+c2zCCFIwogsl2RhSHqKxzRP6RvFqfRAVcquuCIhkRK32+LqB96LpmpUbIdms0WeJBQI/CTicHhMvValIm2CIMDzfdxaFdN18GYzdMNglEdYlQpoKjKOyGczpFRIvIAD7Tbzu5IXhh6XF3SO8zkevHoTrV5j/niHN770GvbGCh/51sfYHR6zOr9E2J/hZzlnzqzyZhSxu3ufXr1FUqkgDIFOQRKGBL6HY5mEhURRBFEaIRS1DDLKc0zTRNf1R4hCoZXyg3fxgkJVME0DTSunKePJjDTNGI5HVGs1TMtCFSrkBQGQZCme79Fot/CCshMqpSSMYyxVReSS0FHQ1zr0Gm2yKEUKhcgUvPiLn6ElLN6nCcZFRJLkpIdTAkclcQuurs8TRFMeDI4Y399l8fJVnDjk/ovXWVhfRm1WcFULO8yQSsG0SOitrzB/Zo3tkyPUhxbNhRYPbt2iUq2zurFJMZsg/JTDu1sIRSWzDfTFeRTHpUimZDsPObvU446lcevWLRYX56gYDZLZlMcW5/iu9z2J2mkTDKZAwV2R0FrtMR2OsA8PqGkm0yDms6+9QhBFHG8d8syHPsBIxuizkMwCfa5DOI0wdYeVtTP0d/fYfnCf9bMbhA8KjnZ36NxoYKHxpd/8HK21dZRNlbptIhSJm6koepmH4eg23Wabre0diqZKniesNM6wf2OP42dq9BSz/IzjlEJoaLpOlCSoukaUxAi9JF0FoU+a57iOTRIlBGGEJCXJSv16yc8v+fpRHCPUMgF3FvjIrJz+OW71tBPvoAmVbm+eWq2O8AW2baMoKnNzPbIsI/QD6u0mg/6QmRewuXAFVYHV5VUG/SMSMjRdB1F28JVcIhAIAULVkCgEQUgWJyAls8kE23awdIPRaAxKaerVVJUsz6jWauUUIM+Q8t1UXxOZ52hCxbVtTNtEIFAyiWNZaKZJlifILEXmkiTJSLMAzTJwq7XT3C4V3bLJ0oTJeML27i62bVOpuNSqVfb29mjP94CSMCRP/Q62XWJgyQtUTaAoKopQkUChqKiagm4YxEnCdDpldip/Mi2zNFFHCbpRTk1KJKhBnpfnN13TMfUy1T2OQgxdw9Aq3Lx/F6fVoG0ahEFIkZfIUlUIVK1EsgpNoQgTDF1nlid87x/7QS7dfY5721tkFNRbLWqNBqqqo5z6S95tVGaFRDFUpKqSpQmGYhAOJmR5RlFIyHP8ispgf5fjvQM2nnucnt39ne7Dvrq+un5frS+7INCEctrR4LRbkZcIBiAMIopckhYJAkBRcCpuqVXUDZIkwanWqFRKv4Fu6CRxgq6pREnC8GRIkcbEQUCnO0csVG7ev4/bWGBu0aVq6LQaddKs7LjlCtRtHS9MKAqd45194qTAMSrU3Qr1VgMKwWNrF3ny/GMI3SQmY+z3ydKQMD4hk1NimdI/GmE7GbWqSXehi0wl4/7tckwpJMLS6c2vcrjbJ/cH1Oc3mQUhXjCj5TRoVJv0J8esLT7G3ugmul3F6Syy9fYBOjmPX3sf/jDBS0dE4yOC8JBGe4FUqpzMhjSFg21qKBhM7h2ztLzMJA6wWnPUukv423eQwymb567y8uuvoSQxlzYfxzBS1EISRAlBGmA5DoNRg1TGqKpJFEUcHHhszJ/F8DJm4SF6cwHXqVFrdnj2sRpv3XiLG5MDXnzxs3y4ZlFrtkrSiZZjWCa+N6B/dEAqJaqmU21VqTcaZIaFL1XmO11ahkkUzihsjXl9HiXL8WZTLEMnlZL1tXUs08JwKwwmYyazKftbx7SKClqSY8aSJ1tr7BQWrcU5JsfHnLzxJktzc6idJjKFPIqIZlPCvIA0JQp8Is8iEoLByQikRGiCwJuRyJxMBaNRQSaSeqNOo1pDKCBNjTRPOP/sVe586U0O94/RBVhWiFOrkQhBlEvu3LzB9oNdDkyD3voq70xukI1H1GjTW7iK3rAJ1RTiiK0Htzi4t8Xla0+TVyrESCbjCdVqtcQfKuJUImASR2FZvFgWRVE88tsURYGi6SRJiio0KpXKaehOXhYUusbU88mTFNey0U0DQ9cRpk7uhYSDMXEYEkUxpmlT77QwdQNN6ARJiBeEVGp14iQhTVOsU/lAw7QopIKWZkxODukf7HL2sWuYNZeiWuVo75CT0YCltQ2Gb9yjsdBjJgWfffsG/TznvXaToxu3ONjZpvdCg6PhCU1Dw1YNLm2eQ9QtBlFCrSgQcYaqqxiaijR1gqBEf1Zq9fJcYAhUXSPNUijKjYlCSSZRhaDZbJ52LktSSilXTCiKAs00cXSNJMtQTROpKGRpTJ5n5eZEycs0Y1XFsEzSNCUrJEIVp3pqWKq1SaKYbOoTRwlC6LjVOt0nrpKRMSDBcF0qhU6YS/Ye7HD48otUXzimubKCqVRQagbDo22kaTIyFaQ/Zb1RKbv/eztYrouhqfhhSFoIVq5dYLJ9gPbwmLZjEFoKtijQ2x2iOKHeahINjlFFwUKrwngcoqsG2ydjssMjet052qtLhFlOe7HJOJxwcLiLWiis9ZZYvPQYYTYlSxTq9RrmOZ3JcEgUhii2y5Pf9s2MpjOSmcdR7DO3PM9W/x06zR6aqhIWGd7xiN0kp9qsMwpm1AYDnnjmKUbhjJPjPhc2L9DbOMOt7T1wKzx97TJ5mOHOzTEaDhBCI4lSsjRjZX2dwjSY7e9yMO4z0QX1QiAcl0iGSF2gSIU4ycvpslqiPFVFKWk3eYoE0iwjTtNSxqLpEMeoho44zRTIZfnZqppJlhfEaYRhlIVGpV5DSlBV/XSSrRAnKYpSfsfeDddShQoFWI7N/PI8Bzv7oBTEccTQL9GjplUWAwBZmiJQSxmPrpMXEgqJqesUeU6cS5AFgrK41x0TVahESYySCaI4woujUmojyu+9ksuyySYLbNNkhkKt26RSqZBFEUUBeZZiaRpplpFlKYZREnVyKTFMs/RYAG6tWoI9Gg1klj1KNE/z0luhmRaWZZFm6WmjDlLA1DTyvHg0tYTTDIIiJ81SdMMsNftS4s1m5RQgT0usr1BLOdRpQQBg2/ajZmDkB5iOSZGXpCHP81hcWabebJEGEbamI1UNeTolMA2TXEpymaOnEjSBtHSyFJ669gSXHrtKnmZoqo5AkCQZqhDkeUqSZ6iqQpHlKJpKnhfIosDUVDRNEIU5MRLL1pnvtJFRxCuvv8LWv3pI+NyzrHz3xldqz/XV9dX1e3Z9+QXBKTtYCJUoCNB1E5QCmUvIBUJR0U2t1HKK8mAsspJCoNkWrXqVKImQskA3LCy7gufN8HwPLwhRioJGu4dqV0hmM1YWV6nUGxRJiowT/CBjMpli11yGJyeEQUrFaTCeDNEMk0azQZ4UWKaOVFVmsxFVu8AuFAqZopBSsxwGwYQgjGktrqPZDbKpwoODBxgHI5bmF9BNCwOVZDQiM3VCH8Kphww96vUunueRBTGOWiWRBXuTIS3LpmLmpGrB8ewExgcsKA5PLj1DamoYZ1x+68ZvUXgBzeoyc2ubjAZT5istHLNJIiqYToGsa3zx1SHLKxbVyCFrKGSZgp+qjMMxfuHR1AUi20XYTzDsP0DTJLUowrAa7Exv4OLS1h08U0fNTDSjwgkSQ7PR6z06hs0089CjhPNrZyhsg9aVDfYe3kOTMZ6p0pw4mGbZwc0pUA2DuXqDWq0CCiyYNdpVF7NQyGYBqq4xzjO07DScpuaiGBpmJomOR9jCJF4zMYTKXKsFRQ4FVNotAj/keHuXo5M+9VoDQ7cYyQGDwCMfwnQ0Igw9RllAKiWX2WDsBbiag6IKKCSd+Q6d+Q5SyFIPXqmTFwqVpoVQRalJDUPIcmzHQmQZm088QRqEnKQe+dEx1fGE5fUVDg62cFbWuLKyRiHh3Jkl1E6V3XsPsN0aZqWBrZmous7W9JjtIOSdg0NuDT7DN37zN+PWq+hpQqGrTL0ZeZxgaDpZAYWQqKoglzkoCpoi0BHMplMcvQKmTqJkmIaBnpfhVYUhSNIcYdnobhWRFwRhjNAFegFC0RgmIdIyaC8tkIUxwtDKWl0IlEzFNDREGlJ3HaIsQ0PiRR6+l6FkoFUamFJn/+CEjacMHn/6SdIswcgl/bdCfvXXfo3RYMQHP/IRqr0OUSI4G07ZfeMt2murtM9fJDMk8xdXSScBiigwLQUVFd2yiBMfS9HIpI6mCEzVQDHKzZuGgmPoCKGQhwGPWI+KQAgV89SgmMocQ6jMwhAjK6i4Lp6qoGYZhmMxC33arW7ZiR1NEErpb1KVgrpTBVWUeEddLxsSWYqu1SjqGXme4U+nxDIDoaA7FqHnk+57XFxcxqg6TIdjoqMJl9/zHNI0mHgzZhtLbI/H5I06wjIhS0nDBNNUee69zzANPJSi5LznuobUNWpSJVEV9vwJV+bmSW7t8q8++Ume/eZvYG3+EpOjAZ3OHJ1Wm4nn0a41mU1HZHH0KMPh8nue4XDnIQYFdUPFDiJC26KqVxlaOdeeexYrEygTn6Kq0bB1dt65QWdpAWkZkKm4WknESf0ErauSb92nXmsiDQsxThAix+o0cGpN/NGQMAq5dPE8x4MT7KJKVbOZhgWzOOXp972PzSvHJFFG/3AH26rBaMjiygbbW9uoMkE1FCwvpDBtim6PMI75hve/QJolxEqMTFMKPyaVgkSWx4mSQxKnSFkiJOM8Kw2uKAhVJcvKv1NVDU3RTr0FGgU5ll5O1zRNP5Xa5Ni2RZYmmIYFoiBXCjTdIJOSvADDckjiGE1TgdKwHgynpHHM2toZNKGQFQX9yZjO6hmiLCkxwWmGrgmyPEYvNJJEEocRqarQqtU52d1nNBriVisgBKZtE6kKapaSZRmOZdGc6yDzHKtQSZQSEaqgILOymM1k2Xgbb+1iagI9zbHnWgRJzHy9jS9zCikRaYShaWDqBGnpixAZKIqKpkIW+niTKZprstTucudLr2NfXMHRSoN1o1YjtmzSQpLLU+rQqcmf02AxwzRBKUMB8zQjiWNklkGhkCUZuloeY543pUiS0muhFKhA1TCY9Q/JhkOq7Tb52ENBw/cCvDRnYWWZLJdljpGWo5k6KAWWpiEoCJUMIy8QukDKApkkeHGGKTOyQpLlOcIsJxiapqAJpfSP5TlFoaAqCjItw9cUIM1DMiEolAJUQSrAUnVq3Rbf/n3fzejeLncfPvzd2Ht9dX11/Z5bX3ZBUHYgMlT1XRRZ+iip0DCMknyiqaiqKDufeVYml1JqBeOkwJv5JRNYKoRZzGA4RFJw7tx5bMsmjhJkIXHdCrIo0CyLNJNlYqOUKHlOIVRWFldQbJc8ywizAZVahblOC5lnhFFAnqXML8yT5wmz2ZAkCygKiTcL0bQac+0WeRAzPNijqSisX3mKLM9xHZPAG7I/9kFXCWcztHqVg6nP2cYKO3tjjuJjlps9upU6e/29MrgoDrj1zpsYi6sMTx4yPLjBirbAjfQdRnKbpYUmRZbTdQsq9gKViUau1hGLNsf3j9CUmLWmTrhSYZxWicIRciqxbBVNscikzfbthzSa8wQPt9E2DLLpDnYBjrXE3d3XMQ72mV9ZRTY1EjXEieHcWg8jS1k4e57CskAxiLwRSpRT1UxwHGJN4ZkrT/Bbn/t1zG1YvHyOJI3Y6R9wZuMshqEzDUKSKCIUCqapkyJJg5iJUsptGsJCDXOEaZRdmySlo1d45/pbvPXWW5w5u8lznRaTyEOTOVYQo9XckvWdSUS7xdnLF1GyjJ3DPdxWk2kUk/oeD49OcFLQz7RwVcHalQskTYuXX/oSK0YDp9XBEDppkBCnAbV6Hd1xGXseloQgjoiDCEUBM5MoloFRgK1LZj0HcyDxF3T8/oDxcEI09ehS0Lt6jqk/wh/s04li5pZWmSUJcZ4gc4mrmZiGxeUnnmZ54wI7N+7QafeQiqBmFWiGII5DpCYx6yaT2ZTCqDA9PqGm6lQsG71hERQpfRExvXmbzcvnQBNMghBTM6hV6xRAkYaIuEyQduoNpn6AIQycep0k8SlkwUK3RxZHKGFMlqbkSoFp26hBRDQe4cURSa1KmKTojkWUxNgqBGnEva0+SZDgBQlKIag16qhBwM7uDo7lMr+6ytmr16g1mriaxVzVRtPaBJMpURzT7bRxLZeKWeGhP0RtdjAdlzAKSomh7qAqpe44ztLyhKKqFEIgkeQyQ0rwhwO8KKa3sIRtmRSyII1TTMPET1P8IieJQrZPjukuLdKs1vAUiREFuLbNdDLG1Axs3SCKQ5IkZjae4FgWhmlSrdUQBcRRzGwyKeV9moqqlPp0R6k+MnBWahVkFBPOfMbTKbblcG86xP/sZzl//hxVW+f81avU6jVi3y+7uY4Jmk2RZShpQlXVKWRBbhgIFGSh0Ceh4pp8/n/7VexEob7YQ726xqs7d6mvLjD1ZsRxRHXklMnVukoiBLkEB53BcECYhjiug8gLJkHE7e17LPZWEU2XutWmLQzuvnMLo16jUmmT6VVaFx8rz8fjKZYwmSUR5JKFTp1U5tybTdC2bnNuYZXDHKKdffTBhOX3rdGyHXbv3kFNM8y0YDaaUJ/rkWcao8MRV1YsOBigN2zeGUdMXYvsaJulixeZa7a4v/uA+OiYw8GQxYuXmV/qUdEtQt/HFgIlyxkHAcmpcV5XNUShlPLFvEDVdHRTByEQigAJsijI8pzYD1FQSNKEilMpkZqUUpYkSR751TKZEXg+olAwNaN8jxv1MhhL0VCwGIyGFIpCtVrD1PSSjDPxS5mPZeEHIY1qncP9Q5xGk4qqkicp0czD0FW8yKeQOYZpIQob3xuT5S6dXpdUkQhNI5UFi80m1mRGphWceD6j4ZSNZ67hZTFmqhAMByRJjOO4uE6FKIpx3SrNZpupPwEFIm+GXRRkYURRg5PdI5q9Njv9PZTRjJXNNaDg7itvM57OeOY7PoyruYR6gdlqkIsCTTfR5ttUpI7IcpKZz/FwzPzqCrleyn7SMEKKUwN+nqOcIkSzLCsD1dTSdF68G1ymlEWMIlRM3SQYjcmiFKEKDEVBJil//2/9bequRfvqCo1Gl/mlM8ytbVBRVTSZYqCQmqWvaDIbUW3W0IRAU1RMBbREQjlIwdZVCq0kjgVTr2y2FAVCESRJUiKGc06zIEpMsXoaqmYaBpZZBsPlWVoappHIKKVRq4Ops/hYm+XLF7/iG6+vrv90zWYz8bGPfWz9c5/7XM33fXF8fPy6aZrFf37b448/fvlP/sk/efSX/tJf6v9OHkdRlKf/6T/9p/e+//u/f3zr1i3j4sWLj33uc59754UXXgi/nP//xCc+0f6Lf/Evrsxms9d/J4//e3192QWBLArUU12vpenMPJ/pdEqjXkeoshw3pglB4JXa3ygizzIMwybJSoOSACzTLGUTusHa0gpCVUiTFKTCbDzBdV0a7c6pASxHWgIvCpkNh9QqFUxNpeI6SGkRBh7tpTVsR0cVEj8N8MYndJ0q+cRDN0wiL6MwNSbRjGkaUjFc9FRiOS7dikP/aIck9Vhdnkc3NW6Mtlmcm6NoV9FnHtVQ8i0f+wj/7Fd/lcc3z7FqW/heQK+9TF5rEo/HvHrrFdafuYyRxlSykIXHPsiNvfv0kzvUM5t8rOMGBbWFDfanExYW5pgdHrPsRTQvrvHm3gPyqMKZpSU6esbeoI8/XxCFCa16C/aPOYqmTLeOeebsFY6KCmIrotEyUCa7OAtPs9RaIQsHtBbOMbz/Egu9OoNpgZPEqIlPPA0Zy4Blp844gakJrSinPtcCUfDcd3wbO2/fQjy4y+D4AHd5hfHb97i2fpF0dYnj/gFZkDMNwCk0ojCmMddBm0Rkjkrmupi6QcWwwMgZTSYM05CFS+d4+vnnUS0L9yBkFsfIpk2lUcPQTdQ45P7rN/CmQ1zHwXYsvHFApVFDkQWXn7xGnIQMxsds7CeYV238VNJZX0ekgiyDw90jmpbL9PAI19BZ2VzBdW1mVorhOAjbQM0KfJGQewGTJKT/uc/z9Dd+PYdFzLQ/Is9yjHqF1twFfvmv/r/4VvlRrMUuR7MpvZUzpas38LBbVXTTIo0TVrpz5EnK8P4ud37lN3CHM575tm9Ac8sU3SwXqIpDvz/GNh2aSoVKXSPOExKtIA48DENnc3GVHbeKYtgQptRqTUaex/TIR4sKnKUWhYyZ5gH1dpVWVSMfzhDJmIrrYLttwtDD0DQa7ToyT9k7PCSbnGCqKgvLCxi6ycPtXXS7imq61GwVO/WZxBlz66tEWUrn4hqJP6W4vYPXrYKiouk6C4tLyKIkhqhCPDISdufmcGwbyzKQUj5KD02TBF2tk+mlmTVLM6I0Qdf0chPxLs1EURBCeeQXUFQNXYc8z7CESZxEIFMUDFxU9DBlJlQWzm9iGyZqLNEUQRKHqKpWpv8iyJIMVRUlplAIoigkTSKCo5BGtfxedZ0aQRATqwq27dDt9hCi1HyPRkPiOOV4PKJZqWEbBj45qxtn0EyL46MjLMvA0DWS6QzLtNBMjSCOyPMCRzeQuSzJUFlClpV0KwqoFS4U8NQ3fi1F08WouXz7N38LSRCW/PvVHraqM+z3eeml67zw3uepaBoPDveon1nF1OtUHQfhWFiNKrbhcHlpnpMbdxFJwvqZNbbfuolaccgNldnJGNMcsbF2hixTuDuLmdvcQIsK9u4+pG4YmKrKmfl1cpkSFhmXL5zlgVPhlS+8hHXvLgu1BkqS0/enWHN1Hm7tca7VYtpzmOt0OJ4M+ef/8l/RaFV4/EPfxeoT19i7LTg53MH2YyrzTZSL6yzEBcU0ZnwwICcHFVzHRKCQSZ0iz9BE6cFJshTLsqgaNcIoRBMalmsSRQlBFJAkKSjl9KXWqJOeas05DckSqgClIM+zMmBRU2m0WqWkFXBdF4FSIjxVtZSk6AaarqFS+uSQkoPxiHZvDj+KUDWV4XCIzCXHh0csLi6BhGa1RhD6WLpJlCQcH/VpNpo0qxW8wQDTcVi/cA4vjki9AH84xXFssjimVqtzfXuX9vGIjY0NJqGPEkckeY43nVJMJrSaDTAVClViV6tomkbrzDLq0YTp0QhPZsz6Q4Z+xPzmJr/y+X/N+JWXeWr9LKFM2PNOmP2zn0WsLXH+3HmqzTqGouJlko2nnyLOM6Y7u/R6cxztHXD33j3OXrpU6vw1nSAoIRNC1x4Zn3Wt/DmX8hEaGMCqOKVXKs2w6xXqc13CNMWPI4KioL3Qo/cN72NlcYHmQo87t+5RZAJHMalUamhAGoSYBphRTh4n3HvtTUhzbMVAt2ymSlZKxHSt9G/kstzwZzmqrpX7BilxnSqtVqckSmllRkUJNSnlYnmeldTE0ymIUajkWcrWwy2ai3PYrQaGbmIo6ldyz/W7ugaDgfrJT36ybhhG8T3f8z1j27a/PGrM/4/rPe95z4WrV68G//Af/sOdr8T9/d2/+3fbL730UuXXf/3Xb/R6vazVauV/62/9re5/fttLL710o1qtyq/EY25ubiZbW1tvLCwsZF+J+3t3fdd3fdeZyWSifvrTn773lbzf/x7ryy4IVE17xCnOZGk6mp+fL7W+SoHve6eoNx2ZZrSbzRI9arv4QVgGrEiJZZYXgHfxZ1EUINSS3dzudnEqVYqioH98DLLAcp1ys6bpJFGIH2XoQmGuIdDyBJmF9HdnBEFItVKjbjV4MN0jzxVEYWCbJkKmLFWbPLZ8hsPhAK3iYNVdhKHSmGuS+2NuXb9OFsacffpxDo+36P/6G1SqHR68vsvuv3iJ/+l//CZ+/fA63UaTaRjzG/fuoxgWbcOm3W6j3d8n8XTOzjksLMzTbTqEWUK76vL6q29wUijUTQ/LUhD7Q1559R7/4Odf5U/8X64hzwn8UZUrq+sM9W3sx1ZpjiTZXJPR9Bh1rBIHKgejHQpjjTllnaDWZKRXKe7f4rn31JjaA27tvcQVUUEjpr91jy/97Od4trVI47vn8M0Kc7rFZDIldmuEScBO/yFPjuY5c2Gd6mhMkls8yDJu3HrAM3aT2+EJ3fUlbn/qixDnLJ9dx3Fs+nWT3eERT3eaZHWTUeSzXOuS5AXTwQRFFQQCLr3nGSxFw8Hg6OiE0e4By1c2MRAYimCmFDQVg42r5zk6OsJUDQaDEXmUEOcBa0vLaA2T/sNj1pbn2OaAo9/6dRpn1znfPc9RNCYMZoy9kCgJoO5y7E948PAGq5trLDqLJEmC6TpoacFoFlI1HNrdOsPHrrBzNCIQoOk6yytLFHlEx4eF96xxnB5xTmuzubJM/+QYBOhCoRpZKH6GpmkcToYEpkJydo4rf+Z/YnTzPrd+5VeZO7tBZ3OdolphHETgOBhujXQ8xYsCrHqFnBwFlTxKKfIQx4/ptOeQTk469Zk3DES1SiwUbKGgug7CV9F2DzDrdY6FwKzWmE4nyDii7VapagYnO3tM/Bm99WUUU0fXNLyZV1JeDJPF+SUmfnmB91LQAkmeTOnWqrR0k6P7O+wFY9yiS6vboVAU2p0O1UoNVVWJowjLtrHssijK85y8KC+0QRhSrdc4Pjmh2WoRByGmZZWZCUXpD5DyP1LGsiwjPgUMUBRMvYBWp40QCkkcMh6eEAYeR1lOrTWHVa/hqlUioZAJEDLHSyI6lQrj8Yhur0fkRyRFzsOtHTq9OdrdDkmaEYcB/f0DNLXUebebLXTDoFavEYYho+EE3TIB0E2bLIdufY5ap0WYxeh+iGWWZJppw8IqdAzXJkxT9NOudLVWZzidIlQdy9YRopSNabmkcppJEQUxqqrR7fSoOS7T3aMS0pDmCAX0BLzAo9vqMB1PeeX6m2xePE9rfg4RZZgZ5Du73PrSGzz+1JPUPvh+VL3CsGphRBkndx4y8GeMAh8rtdhYWSdQQg6396kJnQ4KxuERS3PzqE0TPxe02w1cVydIC/63H/tfuHh2nW/70b9AxakhghOmSUB1vo2TN7h59y5PPvM0B8d91lRJOjrBay/wxB/9Q/zSJz9FeP1znPu6azzx5Ndxe+cWeRqjXt/l2W/6BjRTw59L6DdtunaF7eu3sYVJe3OB6+9cp+rUmHpTEAppkpH7IZWK80hzrqpqOZ1OcyTlpt82TUzbhlOyjRACVVOBgkql8oh81x8OMEyDerV+St6RqGY5cdAM45GRWQFyCrygDAU0HZupN0MxdOrVBpEiqNdqHPX7pHFKs1ZnfzwECurtFpVKFUszeP3lV9hcXWZhY42jwRAGY3rVOmFFZ+ZmZKZOfpxSaCbv/8i3sPfaDT7/xi/RuXaWaqfD3NIylUqF8WhAEocYmsrWg3tsLJ2hXamTAF6e8+IrL/O+3oforS9jOVVWNs8x/2f/DNPZmGNvxILpkI2mPAxHnF1bx5Uqh9GU/kmf7mxG5fYOcq7GxsYZDnb32N3b5eDwkPF4wqUrV7Bsqyxui5LqlGVpqQqwSgKYQinHMQ2D9NSIreoailDI8hzyHF3CvFOniFLsQPLsxhXuPbzP3JlVrl17jP5Bn+OjXdK4gaOp2EIwPUkww4zdvT2SmkWsC/RGm/kz6ywWZbZCkqanoAEFx7YxdINcStIsK5GiVpkHEYYxpu3gVEoEahRFZXCq7VBYVllcQulbcXXaa0ucHPfZWJpHcyxq+e/KnvorvqSUfMu3fMvmSy+9VAWwLOvu937v907+z3w+7yKA/2vr3r175ubmZvTss89G/0e3LS4ufsU275qmsbq6+hUtBn6/ry+7IIiiiHq9ThiG6LqGYagEQXBqzBIYhk0axtSqDaI4Qjs1Ew8ODpFFgWs7SCmZzWYoKDiOg9BUojwlkwVSqJi1KuOpj+/7RGHIQqtFo9VhPJ1AUWCqKrqm0G40GUceuW6RKzlur0pN6BiWRRiGtCsJMoNmrYM/mWIZCjevv8Hx4T56tUnVgHB/n8Q74e7t22i6y8kw5PKTTzG4P2Tn5l3c+SajMGL8/DLb/oTuaJfV9gJxFKPngvbCIq996TXG7RbRaMyupxH4R1wxV6mM7jNnmMwmCltvvIFWz3j/xuNo+Zj6U9e4ufuQ9z5xlYWFS7wdXmc5zIgXDL50/y28Wztc+9ATvPT6r1BrV2naDWZGleqSRasY8vLRDtesGtbOa8yvXWNcTbjfv0vW6qFLm0rkY9SrZKrCbHOOO45N58RD31zg1Ttvok4SPvQ1H2SrnWMPRuxYEb/56U9RmAaaYdHfD7n/xhH1oxdJ4jG1+Sq/9PJv8oFnPsiLX/gc2hs3WVpd44Xv/ihH128jFls0HYcg8YkSOJqecNw/5omrj9M16+QC+pMho+MhjdWFkiRSgJ9lmJaNoRoohGyeWUeRBfVaja3tXUytTBRVCguz2sWdRKz1FjjK9qknAdc/+2s89t6nOKjrhJZCkCnMt+bZunGLy+vryChisnOIsCxkmtOam6M2jKheXuLma28w31ugb0nqYYE3nXL9xTdo1qrc6+9Siwqmwyn/4fBzWJrLxvIai+tr+BYczyKikwkizalXXeacBvf3d2mbFtHFJ4mrNu/ce0DttXfoqipVXVBVwGg4+Gd66DgUuk6aKGXHK1OYjqac7I2YvHiP8cNtZrZk/Rvfg2pqbL98neDWPoGQLJxfZmV1mWohMQydelpw8OoNajUX98kuUyXloPBRkoibn/48KysrVNaXGfdPEKogL1Lu79yi3m6Rpjmvv/Y2o/GAJ5bXUVOFI8PjgJhLzzyFkhv4UciZ9U10XWc6nWLoJtppSJrneSX6EchlWqYLqxq1+RphEJKfYgnfDTDSTjcJlu0AUCgKySlx5F3poVutomo6jVaT0JuWgUVpjGaYKKbAtk1iP6KlVFAxEM0KjbTKYX8fy7IYj0ZYuoGhqqwtr7BzeIBuWKdGRo2N8xcYDk8okJxEMzShkSo8Qpu+y7Y3TQshVKqGQ64pOK5LKjyEohDkULMMDKEz8qY0G02yOKPIJXmc0m22MUyD0WiEomRUag3C0Gc6m2JaNo1eDadSZXtnm1go3N7Zptlssnb2DOOTAZkU2HaV0dijt1im56Z5hiokeRgSqSrDSs5vGCf80hf+Lf/zuTmqARgVjUKVKIqGLjTm5hfI8xx/MmauPs+gEnGkgRzNyAI4fOsualbQe/oKlqKQj07otXTe///8v/L6yw9460svoakR3WoTxzCI/ZDFuQUO5A57b97mve//Wh5+5tcImgazoxN6okJVsbjxmc/zi7tT5ltV1p85i1a1eG3rJsVbK3QuXkWNXHp1leOtLcgTXv7i6zz+vmfZXF9h2h8wzjOKoqRLFUWBqgvyNCPPMgpZECdlOJ2u6yRZhu1WiKLoP/oHiuIRulRVVWzbxrZtWnPdRyFgpm6cyl/LIlXVNNI8QzcNVEMnCQOCuERd1hoNpr7HQnO5TOotCprNJktLS4ymE6SU1NptCkVBMVRyoeA26ly8doUH2/dx9202G3NESkF0iuGsCIuikHQvbFKXEI8mtHs9rl9/m1aywmRrj4OgfE2XL1+mZrqYlobSnuN4fx9DaGTTgH1/xAsf/DpqaYG5PMdnf/XTaNmUk1sP2bl5l2/6Y9+L06yzPeiz7tgUB30qZoWVhTrL7SbTGw840jKsY487BjiuS3t9GWkbTKOIl995k/MXL9JrtvE9jzSJS2+GWqDIAgqJqgjSKCHOC1RdwxAqcVyGnDnmKaJU5OSkRHpKUPg0njjLs09fIDmZMh1NCD3/NFhwl8PdHZZ6c4j5OZqKSWNjldbKIqqqoaSQKyoU5SZTnJqcpZTEcULgBchCohsGAGEYlvQn5T+i0KFEq/p+QBSFWJZVNibSBCwVNygwLINMkRzfvI+q6xi9FnPtha/oxut3Y/34j/94591iACBN098VVOp3fdd3nXnppZcqL730UuUf/aN/NAdw8+bNt+7cuWN++7d/+/l/+S//5Z2/8lf+ytLt27ftf/Nv/s2d9fX15Id+6IeWX3/99UoYhmJjYyP6a3/tr+1+9KMfnUE5bXjppZcqUEp6nn32WQ/gP7/txRdfvLW0tPTYb5cMnZycqD/0Qz+0/Mu//MsNz/PU1dXV+K/+1b+6+z3f8z3/1ULovyQZ+pmf+Zn6j/7oj64cHh4aTzzxhPd93/d9gx/6oR86c3x8/Hqn08nf/d9//a//de1HfuRHVg4PD42nn37a++mf/umHa2tr6Q//8A8v/uzP/mz73ecN8KlPfer2Rz7ykdlX8jP43VpfdkEwNzf3KCwpl5LZdIqiKDQaDQzTIQgC3rr+BpcvnsdxHLxZSJwmmLqJoWtlYEujiWVb6Ibx6CA0TYtM5iRZjuU4NFsm9WaDJEnQMsnM96g3GpiWhczSkgogoF3rIoRCmkeoWpnWOJoccHzSJzoaUa01STOTZrPK8ewYWbNQqzVkkrO1fRvbMjk8OKbQG3QX1ljeqBFGAZrbpLv2BEQT5tYMzjrQ31e5PhljH/tMIg/Hdnnj4S3OblxEWAbpVOdD//MfJoxfJBhq3HnwMqOBx87tXbpOlyfal/j1z1xn+UbId3z/k2T1Jl4+YtE6wTUaiBb85p23mf3S2/zBH/kj/My/+KecXV9nplXQs5SEMapjsNa7QGE4HJwc4b1zh+LOLS49+14iaVKlgtpaYjd5HSvsMmfP8Q1Xn6bW7HJkOni377J89jx63eGNnVukv7XP+tULfPa1lzGEymKry8rcPF1hcbQg+NnX3qL9lqA3stAzl5ahcP65c/zS0T0St2D8i7+COQj4hu/4FvYWMzYyk2q1SaNRZ6E3T5pnvH3rHZa7Pdqqwfz5TQ79MRYKouGSxiFmpBDbKjVpIcKs1G9HCatrq+QK+HlKNp7REIL+cR+l7eBaNbaKnL8/uMcP/LuAC+9/nHZvnuaZDWZhxt34bQ6PRziGzswbMRiN6M3Ng2XyG5/+Zb699T+QKwWD6T4LcR0pVOqtLm6rg2O7VJPLhNGASr2GORzRbc3RMF00zaStKATNFKW3yHQ8wKy4JELQNFZ5uLtPcezxmLuJ9sSTTFKf27duUvgzprt7jHcP2TArXHrmGcyleRzLJCpiAlUwDDzqF84x6pxwT47YWJin4dQxLQPx1FW23vck+nBGNJnxZv8I68EDWorKnlKQLs9xGE4QO7u4msG8WWVYg+TCIkPDwFQUsgKyKMK2DDSh4fePcasV3Eadc2tnCGXMXs0kT1NMvcZkGkKRYhgGmSxIo7jEDcoCTRWkcULVrZAmCZZtE4V+GUIInAwGWHZZmBu6jnoq/TNNk/g0tfVd35GmadTrdVRVJQxCVEUjyxMGJyfEcVBqhN0yeC3OUrLjCcI0eelXfh0yydMf/RDFYMJoOEYzdfI8Y5bn2JoBimB+bq40QRomcRwznc2YW1wgCAN838c2DYKJh64ZGJaFqqoI7TQMzjCYBSFmKtAjDcV2CAOP3NKZ02xCtcAsJEGaoquCIiuIowi74pJmOZVaHU6zDlynQqvZIU4iMj9GEDHfaBNkCZefeoIiTsmnMZZmExQZM9/DUjWKNIdxQDCdkaYRiigQroXruvyZ7/vD+FOfe/09jFoF4RVUE4VIyHKaJATztRqFAD8ZoIkCJcrptpu8+sVXOXv1MSorSwR39pns76B2BZln8szCFZ79pkuMZ0c8+OJLvHZ0yJnuAprQuL51n9b6EmpW8Jl//wuIisOcZdEwJJmi880/8GF+6wsLfOnwPkt6we07O+Q3HqB1G9S8HZbtNYo4xrvdJ/RnaA2Hi++5hjedQpyQBCGu45KfJvUWp36OJCs70EmcEgQRtXq9lIucdq7zNEU/nTiVWNoytC6OYyoVFylLSWu72SJPS3xtvdEgjCNURUNSlI0uy6Rq24ii7GyKAqyaiR+GbG09ZHFhEUvXkWlOf3CCoqlESUSWZHTnuiRpimFozMZT2s0W7cU5bnz2JV76zBd46oXnqa0uYAgdx7SRSGb7J1idFlI3mDuzyEe/7w+yvb9NlsbopsbDnUPM7Yf0um2KPIUsprAMJkVKHoX01laRScI7/+E32XjsAutnNhgpOeHFRU6yCf/g//OP+brv+ghnn34K753bzLKAL958i8nLE65evMS9rfvMnztDqhac3LzL408/xcWNs6zOLTLonzCaTginM3zDepSLopxilAsUdE2jyHIMVSMOI6QvqTbqWEYpC9ZNg7zICL0YpESnxIUWcYLtOIj2Mu3GApZTZ+dwn4W1TZ594f3MRkOsahVdSrI8IQ8SjDzBKFS8IiNWCgrTIM5S8kKWBaAsixMUCMP09Pnq6KaBopSkoSyTKJTnMOc0CDIJyyT5qmFSxAnYOie3H+Jdf0jabeIs9VBvbMH5K79rm7CvxHrw4IH+wz/8w2v/PR7r7/29v7dz//596+LFi+Hf+Bt/Yw/Kzv2dO3dMgI9//OPLP/ZjP7Z7/vz5uNPpZPfv3ze++Zu/efJjP/Zje5ZlFT/1Uz/V/u7v/u5zb7311tvnzp1LPvWpT93983/+zy/fvHnT/rmf+7m7pmkWAP+l2377yvOcD37wg+d831d/6qd+6sGFCxeiN954w1ZV9Xc00rl586bxgz/4g5t/5I/8kf6f/tN/+vhLX/qS8/GPf3zlP/+7KIrE3/k7f6f3j//xP34ghOAHfuAH1v/cn/tzyz//8z//4C//5b98eOvWLWs2m6k//dM//QBgbm4u/98/2u/N9WUXBGEcoRmlnjAIQiQF49GI7d0d6s02lqGzcfYMndNOTK5I3FoFNS/Zvu9OBZIshTQ9pSgIDCFKGolhkJ0aiDVDx6paBNMZuqoTnwag6IpCxaqSRSGqUeDPAgqlIIgCJrMpg8EJcRqzvHGeIIh40O/TjH2icMpitYttuhxN92m3O2QYnHt8A9+PWFtcYHB8SDwc4Th1DrIjao0qs9GIRmbjVOfIUg+SkHMXz6NkkstXrnEQBPzyv/13fPDsNYx3XmV78JA3t7aICoXFpQ2iNZeRH/DK0Zs8O/846XrB1lKL8c07mO0KLWsZE5W+3OLZC5fI1y4yKsbUnjpLrTNPeDTlIIlRlITlicKF8x/gxZuvcd5sUv3jf5ZPf/FThG4AkxHjw3u4vRUs8zEWKpKm1uRBuo/34ITWY/M4DZPoYEp4d5vX774FfR9loYvbW6bVaXN4/wGtlSWWLizy5/tt5mYmxQfWCO71WTh/hZsPHzJ/YPOt3/hteGHMcDjmnYN9Fl65zgfaX4dVt0htg5OdffIoIdcFdtVha3uL0fYePQrclR5htcr09pTW6gq+pqOOIxRdYzQeM5tOqdSqKHnO8soyfhAQ1hMykTHaTjnbmkczq2wuLPCd7Ta3fvPztGyTaHTMsutw5+Zdep0mtUaVMInYm41YWF4gNwz2Dvd58gMvcNI/orsyj+E65SSo2YAsYtGtoboWmZGT2S0MBUxdw0x8HEtQkJArGmqcI1KVXqNOksXIPKNesTl3ZpWte3cYDh5Si+vMxlOevPAYRbXKO3vbDO/f5aW7Nzk82aE6PGJyfMKFK5dZu3yBVmeFLAmo9Uycxze5+9rrjNMAmabkquDaxfM0L5wnVhSGScxgMGD75i3ObayxsLSEDBNElJJGMcPZmHq3gxb4VCs1BqMheQnvJoolpqaSJ5AEGZubG8SKxE5iarqNXjcJpUQxTGxFoSjKjXsuJUJRUCmZ3kkSlzptIfA9jyj08aTEdVziKKI710NmOXkalyNjwyDNS5qPqmqPQpjSNKUoTv1HWUZKDoUkzxKKQqEQAkVV8KMUjZSRLin8hO3cY+twj8X9K4RphGqZ9BZ6+LMJ8cxHFxqaphOlElnkTGczTNOCOCKahSAzHFVHRTllzytoukqSJaeABIVMZghNhVQyCmfoiUaqK1RVGy/PS+OhW0PRBHma4sdTqo0qSZ6gm2Xgmm2YNBtN4jgi8DzIJVajyuHOPg/fusnXffAbGRQKkZGT+jFZEKDrAseqEvoBeZ6CkBSGgmbYRHGKGuaoUcHDyTapzNE0jVquExQxQVLiVAtDw1YUIt9nEszoteZRvYiT4yO8ZcE0GvC//M2/wvf84B9iYf08Y1wGdx8SY/JwlLG2ZVFtVVGdCvOug9Ko4YchdbNGFkbc293BXGrTnVtADz2KJIG84Jw7x4UPfxuxkWCrGp+/foOff+0G8t5W+Z7d3OFrPvYHmJChmQbRNCDww7Irr0kCpUATCq7h4jgOs8Bn5s0wTpN8oyguEZe6+qgTHMdxialNUlAKNM1AVQVFkWOaOooCUBYOnVYZdjUZT4iTGEUILNNAyIJmtY7v+/iTKRXXAVmgSEmeSrrtNkeDk9NJl0EQe2iahlVxUFXBLPWIwoROt0McBihZTjzxUDyNiy+8h6LT4ObhNpccg7mlRQpLBympVSrEQYyuQJyEyDikrekM7BxRKGxcPsd4NGW2t8v66gpuvYJRqAzGUxTDIOyPsXSDjeefY3h8RKPRZTgNqGgW/8PXfQeDpyYcHewR3toiHgccGwrtp5+k2N8nbrc4U6tx+PnXWXziAvfu3OTXdvaxqxXOrW8SzHz2jg45e/UyQlGwTnGhWZahnR6/iqqW6E7TQJg6SRSXQYOqWk5hwhQVhaZdI0pjojQmiGNc10EqEM0OUWTBUrdCvbrCaDolmRzTdVxIIZE5kgxLhdGDLSzTxD6zgIqFIkT52XM6fTwNcRRQehdNkyTLSOIIwygxz5apkyTJaUgkWIZOHEviOCZTE4SmkO0P0CoWc4+f51/9k39ObW2F7/j+7/3d2Ht9xZaUkh/4gR/471IMALTb7VzX9cK2bflfktx8/OMf3//O7/zO6bu/93q98Pnnn39k2v3xH//x/V/4hV9ofvKTn6z/6I/+6HGv18tt25a6rhe//f7+S7f99vVzP/dztbfeest97bXX3r527VoMcPny5eR3+ro+8YlPdNfX16Of/Mmf3AV4/PHH47ffftv+iZ/4if9kPJRlmfL3//7f375y5UoM8Mf/+B/v/+2//bcXAer1urQsS8ZxrPx+lCN92QVBnpdIR0UINF1H1xW6nS7tdhtV1XBsG01TmUwnKIqCaegkSYwp1DK1MYkpFB7p/vKigEJBEyq6qpX4srQ0WamnJi9NL/GDaZKVMqHBgP5Bn3azwTQOiLMEp1LHtmoYtQUqrQ1UoWFZKXt7u6ysrJClITJPcewqrlVBX6oy9Wb02h2iMCJQDPYfbHMyGNBZXKAwNd535Son0wFj3UVE0FxocX/7S6y1aqiqJPZ9jKLJ1s59FCTVRpWdJOfFt/fortcxZx1Uy2CSjpgXLay6pHBCzlY6HD94G03J0RWdwjEJhwM6FZO1achRzWaw5bPenCc6eMjR4BgjW2CkVTmZBnQbU4qGzWjYJ3h4k8fPX+JweMQ48ujUFojMGFs5ZLA1Qq8tYpiC6tVLZBHUajUiXeXNW3voaDz9Bz/C+fc8QzoOOXmwg6w0OXj1LoeTMfdv3oNWlTlF52Bvi81LF5BKh8PhIZezgl6nx2wy5dqHnudIFrz59nXOv+cprKpLrsDuwy3yMGB1cYlMZMzqOrs7D4l+9kt888c+yjiPUAfHKDUXw3TRFYHRqmAbCi23wfF0ROGHmHmOHemktRoXnnqWbDjFsgQcD/i6zObW5iYaKk+dXSMOAow4ox8MaK8sULPqnDmzjl1xif2Qg90d4iDAK3LMqY/ITDw/Q809DoM9hr0m56pnEGqOKUqC1Vtv3+Tq+lm83QF2vY7SqJJmCbapk4cGSRRQMR2UNKSqqGwuLRMqEqVaodZpIE2NzJ/yRHuea60uwwuPcf3eTaTMuXBpk2rF4eR4j9qhQo4BtsrNW3epNuYYoEKh4GU5tb0hlt6gaNSxvIgN02H+wibRaMzg9VvMZgHHkzGVeg3XcVAqKd79XaRq8faDB/SWFqm1W6SAF0U0Wk2sShXfC3CFiuHWsWsVTN2iGqaYukkoSxNlGIXoQsWuVUFCHJdoxbIDGyGEwDRMiqJgNBrhVqtkp0nEyimusBzbC2yz5Jy/m9hayorKcCfbsUmTnDSJqVSqpEkMKMiiQDcE08MhjUaLqUx55vn38D6hoeYZTqWObpjkhaRmVXj7+m2mUcDi0jL1ah3HNlGEgsgzbE0r02NlThyFaJpAESrCtpCKQhTHaFopc0iLAlQFqRu4FZs0y3DSglTmSEVBphJvMsV2HYRQMC0LLwrKlFgJ9WoN07EIPJ/pyQBD07FcBzWV6LbFpQ+9j76aYuklvjexM+LYRQmjMom1VsWPwhK16dokcYxV7RD4HmEaU3Nc1DAuw5kCHzOHwBLkssCIYgobYk2jUa0TxCFBGuJ0OgRhzsVn30dl8yJHSYY9GeJW6jjPPk84GSFdwSSF1A+x6hUUqSJHMyxVJcp8pJSsr6ziex56ElGYKlKtkHghwyhlOt3GkmDUba6tbWJ9z/fy73/h33P74Rb7/T71F57mTK1KMD6h3mggNY1ZltBq1lGGUOQFSRqXtBiKU7Nohh+HhGGAbtikWSk71M1SlqqfJtrKNCPXVDKZIbMMS68iBCV3PssJghBVUykAVVEohFKG4YUxSRxjKCCTlFyUm9rJZEKa5jQ7beq1KjLLH33nhVIiUXXDOE38DTjY36NVr5HJDMO0UG0bq1B5z7WnmMiI7d0dwu0tzBgWLp5hoqRUazWsKCdIcrwkQQkihv0+S6tn6M71OFSPuHP7FsriAqP+DJlIxjOP2sYKyfGE7eEui1fP0ttYp0hS1CQlFYLDwRGDgwPq81328VHMGCW1SHYHLNgNGrUWSpBwc6GB6po8+we+hYeHu4yGx0SapLLQZjI54FiJWXackiw386hYLoppQiFRANM2Ke0FBa5dJ45isjQBTZDlkKQZlqoTZwWqaWHyLllYIUQpP5dZiKZruJUmSS4YRwlqEYOqoCtw76XXufuFVzCFwGnXsdZX6PV6OI6NXaugGAq5IigoyCVISlyqTMo8BEMr9xNxmqAUBUJRyPOSkpTnGYooiVZ6LggbLkoSs1Br800f/QM8EDFS+V1R3nzF1k/+5E+2PvvZz9YB/sJf+At7f/Nv/s2l/zOfz/ve9z7/t/8+mUzEj/zIjyx++tOfrh8fH+t5nitxHIvt7W3zv+VxXn31VbvX6yXvFgP/revOnTvW448/Hvz225577jn/J37iJ/6Tv7MsS75bDAAsLi6mw+Hwy95L/15eXz529PTkpyoCy1LJswxNVdFUjSxNkWlGmstHY8Usz0mSFKnmaGoZzR6lpQkRRTlFf5U8aRQBRY5h6KXJ+JQ+EvkeshCoqs40jJlOS8SiWymQqkajVsU0LLIsRwpQrfJkUKQe3YaDomrEmDQW1hAoGJqGmuf4XkgwSwiijFEYYVWrXO12MYoUmcRMZikVrU1tcQHv4Jj28iaPqQ7FeJfB8IgiCHn4cIvHz11hffkcqjCYTUfMnTmL3Ra4RkRVV7DceaoTk8ftc6RzFXb9e6zMrZEpTUQimMgCzztGSx3eVD1EPsWPM+iPmJ6c4Bpd5tbXaRcWkWrwdrJNngvu5TWqDw5Ya2roIqdVa5IoHrs3BlTViFp1ifvBLqutHmaYcPLwkKXLl8DSOUbS+8YP8tjFizCJee2V1zjcO+TewRH3j/oomoFVrVGkCrPtPqZTYe/wmCSJUKXH65Mdzs6t8ML6GbLlDtOHhwyTgMHDB7TkBLfeoL4xz4033iQ+3Gbj8kVq3Q7p5kXu115jNwnRDIP9wxOafoLWyNC6evldqlTQFYHUBCf9o/I7oZukxyMO791DyAJtZYHY1Nh55zaTMMSYW+Dk8IDr929xeDxhcW2The4CVhSRmSoyDimylPnFJTJZ4FQr+EHEaDrCJyNTMhY21zFVQTANsDUVVYsYDocIU2Oq5Ywzn17hUBz1cWomqYwRoYaKyuHgENe08CcTanMdbNeFOEWVEikjlDQjFzlxFGMbKk9euQRhTD7xGe8e0Wi4zIYD8izFXZynt7HKaq3Lzs4+apzQqNT5lX/3czzzvvdz5YXnMfQM//iI4d6AuwczhuGUXqfNSZpiRSH6aEJEhmKp3Nh6wEiHmqlScy0quoFlGeXFOArRhMByLKrVatnFT1OiPCRTUhSZk6YFZBmFEGRKOYVVkOSFxFTV8jgWKqZZJUsSQi3CdhziNKFRqxP4fplJEgSQFqi2jaDMcsqSFGSBlMWp10DFsjQKmRP6EapQkDKnUAo0U0OrtQgyiY4gn/pI08AwDaq6iTyVMfUHE+7u7rO0ukKSlxSRwBtjmiZFVjyaSqR5GZKW5jlJEKKT42o6jmaj5uUGtMjLcD5L6GUau1CYZgGmoqImOWrFpijKxkaW5eRFga6bWIaNmhdohkquSKRMEcWpJKVVK7G0zQaKooBSnhfjOEYVAl3oiIqJoRRkeYJ+6rvKUkmiRqRxjKEI8iwnCn0UFLJCJUoTVMMi8310UyUjRsQZRILcslFEuQkOshTLMom9Gav18jlEgUeWDDGtAFvTUBIFEOSGQFUgVySqXqblFlKeBnypWE4ZemVigixwHJtCSjrN+TKIUkAczDi/vkjlD36U3/riF/G8MmXe930UU8NPAixdw9RtkukMVVVJi4w0jUjTjCzP0ISCqRsEQUaWZkgZY1gmqqbBadhVIRQ000QrLBAKSiFxLYs0DIkUsKs1FMtGUctwMiHU02tWSpyVj5HEIaoiyNIUsjIdO4x8dMclzGIazQYn/QGGpmHoBiLNyCQIRcepaGiGymQyIschVwVWq15eOAuF6WSMVXU4u7JGFoTcePUNRi8O6F06i9psIHQNuT1ktNvHWmiyXK+RZzl+4LG02GPr/h1Ojo8xDINgMOTg5j0c16DR7VJtVtBiiaZJfFXBrVax0DAaOkQhL3/uLa582/s5O7dItH9If+hz/fW3UN/UWFlZ42uefwG306YIFDpLKySzEQ+vX+f4wT7tZouuVYcw43h0zFylgqVqRLJA1Q1kHBFFMYqqIjStlCYCUhVIAYZtgJqRpuUURxaynNRR/lzVXDIzI/YD9AJsVSOV5QbdUjT8LCHyfPw0J1mdx+l1+Myv/BryjVdwNI1Orcrm2bPUeh1aa2dor6yCpiJyUTYvFYUil/izGYoQj9CjhZQoQpBGEbPZDLviUnUrkBUYQsOMFfYe7hBOZsyv9HB/xz3n/z7r4x//+PK7P3/iE5941M3+o3/0j27EcfzgT/yJPzH67/l8/nMK0J/6U39q+bOf/Wztr//1v7578eLF2HEc+bGPfWwzSZL/pkrrd4ug9F9bmqb9J4/7Lnnr/x/Wl1/VFAWigDTPUTUViUIhC1AkQqgUp7g35TTGPZdlXLihG+XFj6IMm1FUpMxJkggFBdd2QCkPUoTyyISYF6CKkhEMgiDNOJpN0HWdOcegbtYJoxCZZUiZkicxulDwZzMKwLAqgECYNqJQCP2ATCvIlKzUk7Y6qDOPwhA4FYtoOiGIUwpdZ6Hdoaa5/H/Z++9gTbP8rhP8nHMe/7z++vSZlVmZ5bqquqq72juZlkMgJIGQWDECggjNgoJghxVmZmNhYgiYGCJmxO5EzLAYLUxjlhFIrUGmZbrVvqq7unxVlkufef3rH3/O2T/Oc2+L2WXoQVIAQ51/Oiv75jXvfd7n+Znv9/O9c3DAqcefxBcGkg5vbFcYC92VPp0gYS2NWO7vMTh/hhKLXxY8unWZbe863mLOu9aHXLPbfPX1fR5deYw39pfoGy9z9oGHGKTrBNJnR2wyn+7Q9ApOrG4y2X6LwYlLmHqFgZY02ZimmJD4K9zLGj6kzvPEey7z9Ve+xNvjinBVszKMOVwoposOsUqJ0yFBb4NgtMb+/C6lnfLSK68gy5r5/phBs8/nXvp1pnXOl59/ltGJk4wXGUHcxypDMEhojCWb54R+wN5sRq/fo5Y+g+4Gr+WHZF98jvMPPcpuvWQxP8BGDStv3OXC+n2cHG7Se+qDLAJLL4f9t25zMK0YbqwQJAo7qQm9AYtCk9++y8ayIFldJU1SltWSUdIhz3PmWU43iVnO5pShh01DsmVBX3ZpuilmmREnEeFan43gAq/d/gJPeglxHDGbjpFRhEZjA6jLJaEXENqK0Bf0zp4iSR2ZotdJme3tUS9LLJZlOWaZZTz0wENkVcnWqVP4njPWhlawmC1ZTBas9IfkumZ/MmW2t8/9nQ69JKXIXXJqU2uSOMFUDVpKcmWICo0xmiYNoQqRnR4HZY5+8x6NrhkGAWm6ynI+587de6g0ZDpc43Ze0Pzm56jrJXnqs5g3zCrBpK6pd3ZJ/BAvlewt5pysN4i7ffqn4cGtM/T6XYqywvcVcRBQZwXUBtVJSbtdhJTkeX5sxBRtw34EDQjaZkG3XgAlXNF8pBU2WlNXdUsdUYSBM+VGcYwA8rJESgFKYRqLaTRVWVKVNUJKpHVSBK1rdF1RVxVe6LxHWb5kUZZ0+msYAcxzjFXoUCKDkAWWbG8XDpfUScjmQ/cRGoEyFl2VYCSzxYKm0ly+8iD7e3tYC6U2qMDHi32kEAjlQuCyumI5PmQQR5hlydJT+NKlq0dhgBaQhO71AIHWmkZr6rpCeZ5j4isD2RK/scjZHK+sKTEoqZBKuQLdumboyOgohUBIRz7xfUVd5kgpmMymdDt9qrpiMV+6QUwYttIMz7GqIkXdl5S3D0m0Ig49StNQlDWy0fiDAcKTDq0pI5Tvo40zclsk0vNc+J2hjY2xhGGIafTRrd8VdMaitWWaL9DaEEZ+m9vQ0DQaT/nu2m5qlpWTilVlydb6Or/vk5+kbhqUJxFNgxcE6FbyNF8uqerG6cqxKOs2MVprGqMxVmClIowTmpb4IoTbLltlSKLY4SeFIjRQZkuypma4toKtNL5W+L7nnk/CDaFCpWhqx6mva4Pvh+R5Rl1WWKnwhKDbH4Dvg3LBeMKXHE4mrK2soI12k3FtUUK40MXhCsv5kvXVNaIwdtKmskZpTWU0ZVGQSo+nnngPzzz3LJ5UVIuMstJoT+L3uhR5SUfGGC+gKEtUGvPQU09yuL3P3p279Ho9vvr1Z3nx9k3+0J/4TwjDkF4cY4wLM0srSa8fcOvNF6mu77L7xqs8JD6KnyTsLOZcv3WDtfOnmI2nHDRzmq8/ywc+8mGWsxJvmCKCiI0r97PnXYdAEg1SKs9QTaf4p0+wDDwCLRweVEk8POpGo7Rx0qHGgJRgYZllLllYN4BoPX/WvW5SIKTAswKjPEcNizyqZUVfxTS+oAbilQEPvf899PZ3EKFLmt7e3uHqq6/y4q2bvPzVA5Juh498m8+Tp8/jC4VQTuJoG3eN13XtAjaVe98J4TwmfhjilyXCWpqmRisLdUN2b4ft6R5yvcuVc2fo2n+/saNFUajf9ucjsi5aa3H16tXo9+Jr+r5vtP7WpPFf+9rXOj/yIz9y8OM//uMTcBuDO3fuBL/T7+Gxxx7LdnZ2ghdeeCH83dgSXLp0qfi1X/u1/m//u6effjr93/t5giCwxph/v9dK/5rzrScVI5FS4on2n1iLABSSIHYPyLqpEe3H+b6P9DyEdZo+ACHc/+cc/xaMcUmMgZsQ63bVZwVIpMORBgHLvCBOYi5evA9tNShBVuREgU+axFRlRq4rMJoo8VFehyhOWS5z8oWjCRitEcpDW8Pq+hp1pcmLnDLP6XVSpHTT9sBPCIKU19+6zrM//yv80f/8z7BbzqkU/OYXvs7llRGPfuSDLIwmqxSX73uEwmj2rr/MxUvnefPmDi987RlWNDx8/gTx6XPsX+pSL2c8ceEh3rr5EsFkn7KGIs948+ptVDTm0TPrTJsMXRmGWZcsVFRmzqs3dsnqCZfOx/TXHmd/apn/1q+i1ZzNtXPYpMtkt+Zk7zJbD6Rcv3ubrCk43C55/a236aQdVtf7zBd77O5U9PobXLvxNpVpqIWlGa1wJ8voDUcEfkg3CcgnE5rJDB/LnckOp86fY3VlFakrhoXGj1Jeym8RyJwrj14kGb6PuPF57tlXsVMQ995kJQ1Z31jlVpbxP3zml/iJP/gHUesBcueQYNDDJn3QmsIG3Fkuqa8fcHJ1i5euX+OxM5doAoVf1FBMUYslG+dP07UeyvfYn4yxccSJ06dZHw5I4wR/x1DuHHDqhy8yMRlpv4s6OGCZLdFhgO8HhKFHNs+QVhKHPidGK04e0mjibofJbIIOPbw0oZskjPcnRF7A6MQamanpbK5iGk1kBHboc2M6ZqXbR6Ud0jBkuizojSy9Xo+8KDDAbLbEUx5K+fQbTZEt6Kz0qXSDzwgpAmKvj3j/h7j64ms8/atf4kNn9/ni17/AAx94L8XMcGL9BNNiya6tGKVDvDpizBLhlci65E6x5MzqJnuvvsrFxx9Bxz7JYMjZExsssyWTYkkSxwglKU1D2biVfuAJtGloakPTuCm9lO2Du65RgY+yFuU5Nry1xiX8qgBfSKqmdgSYNmcgbIEB1hjqyhXKUkmU7xOGoRsMaEtZFijpMRh0qIqSNIgobMGiWOArAZ7AoslzR3qpqgpdOByl7SqCQOJXDb6nKMoli5ev0QwStKw43RuyXC4QSlL4oJoav+XG7yZd/CBi+94uWyc2qfISURV0vZDUhOzVC+K1VarA597eNuHqCrF2RsRA+HSlT61g2pQsd3bo93v4YYhSkqoWSCHR1lKVBVmeE3k+mW2oIkmvv0KTla7wPzYuS7Q2x54KqSRCWnRV4SHQdUMchERxRBBH+G2gll/4+EFEXWua2rC5tYWNa9dsTqZUtSHt91B+Sb7IyaZTkjRFN25TpbVGWNuy/BVlpRHCYToBytJtzYU15HnhJF9KuUmwlGgNcRxR1eUxi77RjZvaC+FkVMbQNBq0oS4LhDHEgeLgYJ80jCkrlzMgjcUPQ4RqufZ1jW5pPrItLCvtguvwfYJAEPiBu58L9+ckjMiyjDgJsWWNsQbrK+pA0VsdEoQJw6RzzJw/bnyVh/Q8l15rDH4UEYRRK4n1EFJS5SWe9BCeYtDpsFuUzPPMBcNZgQSscQ1uGAbUVY1uGmbjCbqo0VnOYNCnks78XHhQVRUqjckXGfdu3uPchfMkK0MqBZHvUdYNu3t72NrQjRpOb22xPtpgWRaoQY8f+bP/KV99/hu8ffcWqtE8cOECvTAimC148fNfY+P9D9KRiheuvk496nLnay8zXou5sLLGiQsXHX1LePhGsXd3m8985jM8cOkMskqQtYCdCebWHYbnN0l2dxleGjK4dD91lhH7AaKsKeqass4pWwqY9CAbT92AQBi0cPeU0A9csJzvtR4E7eoBAUp5NKZG+h4WS1lX+J6HblzicIQi9SOsspzaOkleFaxf7nP+kUf5wCe+nWwxY3d+yCRfsrm6jtQWbIPwFUK1PgdrsVIg2q0AgDaasqlQsg1hRFCWJdo4OZFY6dDsa+JS4wtBVhf8+3w+9alPvfn666+HADdv3gyONO8/9mM/tvdn/+yf3fu9+Jpnzpypnn322c7Vq1eDXq9n1tfX/7V6+XPnzpW/+Iu/OPyBH/iBiRCCv/yX//JJa+3vuGD+3u/93sWTTz45/6Ef+qH7/sbf+Bu3H3jggeKFF16IpJT80A/90Ozf/Bn+1fNTP/VTe3/7b//tjZ/8yZ88+ZM/+ZP7Tz/9dPJP/sk/WQXaofa3ds6ePVt+7nOf6z3//PPh+vq6Ho1G+v+fKfrfx/MtNwRSSmw7+Qf3AgmJW71VFfq3Ib08zzs2IBmt/380eEEQEARHN/W2SWhXeda6CQIeyNDJBjrdCIxBCR/dVITCIiOFaSp0YSgWS6SnCPs9tLAILSibmrwqsZ7AiwOnFW0aAhVxOJ5wcDAmSRLOnD4NCOIwYrmcUeYF+3sHfObtF5DnU37tU58imRdc+mPfz33nznP/cBVbgQxjOv0Rt2/cJdcNyypGBSssmz0G99/P7r0bBFLwUOWzt7LFtbDms7/8WR7YHNFd69FshJzoxZz0cl792jUmt/uE/YgV4bM2kmxt3kclKy7Lj7Kf7ZK9/QKXTM0bvZJPX3ue9118gigp8BfrrHdPIsqclZWMC2fu57Wbe/jacEadZv9gl2t3Djh77gTn1uDunUOqruLC6Qu8/dqb3Ld2gizL6PUGiMAjmyyYbI+ZLyYs5lM+/tEP8e3f+Qm+8JUvcvLiaeJ+il96fNt7nuKeN8P/1Rc5+3/+UcqDkgcuXaZOJEE/YL57j1wXbJw+z5//83+eLbnkzvYBX375Tb7zox9FxJLtewfEMsR0O6yWksVkSrLaIx9PWHnPQ7zx0qvs3bqLLSoenmZw6QyTO7c4dfYs08U+la6ppjOy+YLn33yD0cqI7GAfRJ/pPOP6b32Rpa5JN9a5/PjjNA0gQ+IkZdksiYQl8WNMqRHWeWLqpkFrQy0VcbfH3u4B+8sFnSRiKAMyXbBQijiMeeC+Ne4tZ4QGIm0p6pKbN28Sd1LCKMZKp5MvjCAOQ2y2pNQ1XV9ijSVKYlSYcG5ljcl4yoceeJCH33WFl/bHfG1xk1f+xZfQmzEXVwecT3uE/Q7LpiauDKe2RqQPdLGTjNoYnnn6q1y6coEnP/Qe7r3+Fs10zvroDFvdAVWWMx5PSAcDx3K3ObXWxGGEFIJSN+37ztBUhqLO8KMIz/NpGk1ZNe3mTtAYizAV08khnU6HKPRZLBYIYQmjgLquwAqsbWhMTSACl01irJuiS0kQhFRFSRxG+EKxs+2Ka4l1KdBpeswRryqHMFxOJ5xcXWdSZjRG41lNtLDc/LUv8ctfe4bv+jM/QeApOkYQBgn7szEy6JCECqkE/fUhpdJYVRMPYgpbUJcFTBdM9m/R7w1YhAHrnQ5+4LG6torxQ3au3+LMubNYX6HLCikESehReZ5j2LfUtSROCOMIbQwqSfHCCGUF3UBxmC2olSJNetiqcMSTukYaJ10RnkKpAATougLtJtbWWuIoxFhXRAVCowKfUb/HZDJFSJ+yquj3utx7603ipEt0aZ2D3V0Ol0s86aHDmDzLKauGqirx2+Av3/NIogQjJIuiwENQVC5dvtYGU1bEQdDioX0WyyV13VA3BuX7UFU0ZU5dN274Iz1A0OiaQAVIFYApUS27XkmJqWv63R4GiTTghRHaumdAGLlmosoyGq2xwmUE+IEHyHbq7NJyfd+nqVovim1TaLVGVhW1NIhQMEgS1pMOabdHPOyTisiFZWpNUZYUeQ5CkIQxi+WcsiwJ4xjRSlsPxoeMhkPSJGZyOCaKYjzjsdLvYy300y7T2ZyKBktDpRuU9dFYsrIg7nSZB+7nWtY1RhuSNKGpNVoYLj/0IMVkzsRM+KVf+VUeeuIxTp86yfTggM7WKv1AYssa34u4ffMWadrlqYefIMuW6Lhk7Ts36fQ6fPYzn+HVF19iJYw5cekka4+dYDybsOYNGQ/XuJdGfMfJc7x192Wu/i9f4PwjD7B/cMiycIOwtYuniTdXkaMuL37uq6zff4nn/j+f5sU3X+XyB9+NWOZEQZ9T953lZJCwfe0OXDzB49/9CViUhL6HVR6zfInQEEVRu03z0U2Nzt3gtm5Z/0oplFKu4TMC0Y2oC0OQ1wSZxo9jcmFdKJpQFLMlVgmEJ+n6kUuvXlR4gU8QJmx0enhCUNYV0heItpaoG7fRVG194UvlNk7WZSgJIdzqy+IQqoCoNCb2STc3+djWaT77K5/h13/uF/n4D33/76TG+j0/3//93z8H5gDPPPNMdNQQfM/3fM/09OnTvyfG1r/4F//i9o//+I+ff+yxxx4qikK+9tprL/7rPvZv/a2/deuP/bE/du7bvu3brgwGg+anfuqntheLxe/K2uUXfuEX3vrTf/pPn/7jf/yPn8/zXJ05c6b4q3/1r975t/lcV65cqf7+3//7b/2lv/SXTv/dv/t3Nx577LHFn/tzf+7eT//0T5+J4/hbDkP7qZ/6qf3Pf/7z3Q984AMPZlkm/0PCjopvVft06/VXrbaWeRtAdqTPw34zaAjlpv9COm2xodV4WqffNe16XUp53GC4VbRBa3eDVy1bWAioTYG1oKSHr3xs3RBISTdNKWYzKgk70wn99XWSTpfFZI6uGsJQgXK6Wa8NK1FCMhkfUBe5y1QYraAQjPf2Ga2sYJVk+849N63ru3Cb6c6EL9x7g5Et+UhnhW1ryRcTwjRide0EdQ7xYJU7ywm2Loj6HToLRRPW7EwPUVnOem+V+fgem90NXhEh23eus5pKNsspJwLYObEKacDu/gHq5iGz8oD1i+cYXh9j64xMFkQnRryRa9ZvLnnL7HH67CW06JGvnaLevsPFzhAvCLmxt6BrBY9//IPMbl5j6+xZ9suam7tLtrfnJJFPL/XY3jlkkRWMpwt6gz5hEFIWOQe7u3z22ussljnf+chjPHzxPtJ+gi1zNv2Yc6fO0gjN1S9/hfP+gPx9D/KP/ru/w4++72PMmhmjj7yLzdMX2Luxw8G9O1wcDXjupa/x0Q+8n9fsjIM3xqigQzqdsDIMiN99ieVuzeTOXWzooTxF0zTsvHmDD378E7y9c4/xfEakfIoAQs8VnDNbkz/3Fo898ShqEGFvzfj1F59lee0Wp3LFD/53f4Wn5/c4ePkGjz76CIGvkNZAXTPd2cUXcPbs/cz29p22Os9JuilJJ6GqKg7zJX4QOPObUHSSBJ3n5IspvhdCGhMGITGCveUCk/gE1mN6b488X1BVFUJYTp06RdM0WGPwfJ/Dg338RcnKyQ0YJmTTBQMvoTsaoQ932M0amtGArpXMVc1vvX6VS+fu5//1uc+S39vhMh5DXzA3S5bbe1xcO0FpJDcOd1mLIt596ixPfuApWFvhuWeeJZU+sRHIXkLnxDq1cibdk+sbvPz8C5w/f55Ot0tRFC5XAPB9l+LptVrf5ni7J1pzsOD2jetMp1POnDlDkiTOxGcMvX6funJm0CPudxiGeJ4bDlRVjef5WGOYT2dY0xAol2bseZLAFyyWSxCSLM/xPI+gvdf4MibpdmgWGbXR1NLyj//BP+TLX/squ37F3/8v/yayLHnh5Zd5/IGHwFMcLhYIaYiigLTTJcsKOt0uaRJRFgUvX73KaGMDrEYEIb3NTXzlEzeWenefG198jujCCZrIZ3VjnThNmB/OSBqBv5LQaI3nhyzzDM8PCGNnPjYa0jjCFBVpFLIsCjTQWPB9ie85iZY2lrIsCQKX7SCFIAwdkjnPSmg3B17oOcpTS186nM5QXoAFkiQhr0qqWweotR621wbBLQvyxRItgbpid3eXpqzwlGI2ndHtdl2oU+A7UIRSVC31SUpJVVUEnkIJ4b436eFHIXlRoK3BGksniilLV8B7nkNLa+2C2pT0yLKM0PeoqtIlWDcNxkIYRY79Xzu0rRQCbTR5nhEqnziOaIyhbNOem8ZhQIVwIVhYi7WWwHPGdt/3KYuCQCnCfkrgKWY3tynHCz74bd8OgUL1u84XJCVRFB8n7HqehzYNr7/+OlGSuOwLrd0gS2tE6JN0OiwmU7pRysZwhS9//guYquHJD7yPqa7xfEWeZ6yMRpRFiecFeFIhC401NdpqJk3OvK7od3p4tWAyO6CXpJR5yTTLKHXD6dOn8ACVhqRegJc7WtHdg32G509TpgGz7V2q2QJ/c4VT/VX27t7jYHrI2cGIvbvXkYmgLEKe//WvMvzIU8hkxNp0TiDmPP3Ca8zyAuUHdLfWYL4kX8z44PkHECfX2Lp4Doqa7WzGv/j0L7CbTVnb2GA+G3M4PeT+wQpPf+HL/Nmf/r/y8fd9iHE9Yzme4ddtwyYU2miC0OE+67JAthK0pnFDB9/33TPeWNSyxDQ1URrS+IJcWKraYLVFhD5iUaCkIjM1QgrSMEYLsK0/QEpJYzVlXWGsRUpBoHw8odAtOtZXbuZp6uZ4W3k0ZDiSEPlH4JNGU0iQyxKvl7KczXj5F36dM9/9fp567H2/JxKQr3/961c8z/vlS5cuLZIk+R2vIowxfOpTnxpUVSV+L5OK/2M5P/3TP735sz/7s+vb29sv/Lv+Xn4nJ8uy6I033ug0TfNdTzzxxGv/uo/7lhuCO9fftNoYspbbC2C0wWhNJ4xbbvQ3DRYWC1Liec6UV9c1WZZR1zVhGBJF0bHnoKlrmroiaB8qxhiEtXiBQAhJllcoP0ACy/mCQbeDjn3yeUY3iPGkQkvJOJsj44gOwvHOESRph7qpWS4WeFIgpVtBL/MChWCUdgmCgGv37hJEPrXR3Lh9QJiVDEY+w8gVhfuzBY2wpMOIYj6lF3YxMiC3Aul5rOmEKgrYP7zB2toQUy8JeiMOhEDpHjc++5s8djLg1ajk4CBD5A3RZE566xB59iTefSOe++pX+NAf+AH2D3a589VvcHOxz3DQpc5T9jPDQ9/xCNWbE+5fPcf16ipr3Xdzr7rL7nPPsyW7nD35ILrKWTYFC0+wdmqF4iBjOi2JR2uMp1PmdgrWJw5TslnBcp5x/frb7B3u8vt/8Pfz8e/5btbWVrFFyc0b15jmc1bX17EWdm9v41nYPbyLVB6P3f8Y+UqXL/zqL3PizAbf+Z6PcTCruP7mTYRnuPPc08Q9weFbb/LxT/wB/K0TfPXVV3nml3+JH/3AB3n4Oz7M3nzO3Wt38FcHJJOczeGQ5sGTLO8esj+esDObUF3b4aGHH6a2mpWTmwRRwHPzu8jxnOzuHoVRrFw8x3MvfoOX/t7P8Vd+/M8w+oOfYJHt4HshWkMQphRlw97OQTvtWyI9j976Otu72wRxQL/foyxyqA3ZIiMNU+IwYTIdk1dLDJq60ph7Y85fvI+84xEbia4aiBypZl4s6fd6vHH1NTpJwspwSF2VCCwH8zlKKpqiJLWKYjohWeuxcek8/+j//j/yfX/qD2FTD6vh7q1tTpw7zb0XXuBM0qfznnfxX/+3PwPLgv7akPms5DO/8iU6Fzb50Hd8kPtXR9z8/Jf52HveS+eh+3j9YJ9qnrE+HHBm8wTFZE4+zxiMRlgJ82yJj2RlxQVpNdZg2jTS2jjfDi1zXErZbhYsWIvvO2pHHMfkRQ4WEIJOt3NMI2tq5wkIPR/f96nriqZxuuumqSmLgqZpiKKQ0WDIdDJBNxVlVeGHIQYnMVwuFoz6A5QKKBSE2iJqw1I37FRLbnslJxpJPM1p0KxsrGAPFhgNdeSjhGR8eEjdNGxsbLjCWliUNVjfY240oeex1l+hE3XZ3t2nN0x55qtf5u/9jZ/hwnsf5SPf/m089cR7GM+mHE7GJNLn7u4dkk7KxYuXyauSsqoRShHHCSMVMTMFM1MwGg6cp6ExZIslNRbRTiujKHIhTtZJJYvlkqYs6fT7iCCk0+sxn81QWMLAh6Zhe3sX5QecOH2Wqqkw1rCzt0MvcoSvKE2cnKiqjgcvRbGgaRom4zHZYunSpau69UG4cyRbQkmsxW1zhHSG26oiTVOiJOZIN2wBUZvW+9EcT12t1VgsvcGAqihQwoVa1k2DH8QgnZchCII2ZRbEcaHozKCe72MRINzEGWuPt9DaGBcQ1l6XRVG0Bm1B0PpOTF1z+/oNnvnKM5w4dYYf/OEfxmDJipwgCEla47tUyt0fTI02xmVI1LXDUgpBXVbsHOzS7fdYGa2QLRzSdrlY8KUvfJHHHn+c0cYGYRhgtaaTpuR5TtMY9g4OGJ04gd075M4rV9k6eYLe5hra90CFKK9iZ/+Ajc0TxHGC0YbFYoaxhsXr16maioU16NgnGgzor6y43J9Oh1hDbS1mnHO4s0eha9Y317h15wa3b9zi9OUH+Ge/8M8YFznf+fgneM9T7+LpX/00v/pzv8a59z9JlcYcjMc0Wc5SF0TDDqc3L/L+rXNc+egT5PuHLOYL+hdO0486VLqhF/rMswm/+pnP8On//mf5voef5KlPfpgT7303KoqZZQu0Ukjfx9oGqS11XaK1/VfkFsd/Nob96zd45Ytf4YHLl9h8+CLLxMfzQ1IZMm4qktKidYPX72CrBtloKmnxhIK8JAxCmthjZip8Kxg2krJuMJ4E5eRBSiloNHVVYYw9lhIdSZeLokB4TipprWG5zBiqiElgiaKQT//V/5b64ip/7v/yX/wH0RC8c35n56//9b++9v73v3+5trbW/OZv/mbnL/yFv3DmJ37iJ3Z/5md+5u6/6+/td3J+1xuCm29dtQKXMFobp0EVgJIKW2ua2k34ozhGtBpkrTWV1ggpnWTnt0VZK+WmwUiQCEeU8TwkEmM0Skl0VVJUDVYqpB/g+z55nlOWJb1OnzhNKOoCiyX0fXRdkS+WKCRhGFPrmqoxaNuwmC8o85z+sE8Qh+R1SVPVjBKHXwy6KYuy4uDuDktdOFaygjNezNsHNzh57iRV1aEpZ6jFwulFOwl5XtBrJHfm97iyeobrszcJS5BVxXp6Fm+0zgu3rlMkCZvVIV9+4xWunD5DurpCngmS/bd4bjHm5uu3uHjfSTb6fTbuTrgZhvz8l1/lyXNn6Dy4SawVgyjm7TtvsRkknHrkQep0jaBqePXtt/iNX/881559nk6nQ3n3Hpcfex9BOkD2UmpVI6RBxQkbo9NoFvS31jgsK15/+y0++O4n+dDDjzCwElPkfOPLX2WzN2SwsUb//Gm8XgdTi5YXJ6jThCDwiCdTtm+9zdYTj7CclExeeQvrRZRJwvMvv8Qrkx0eOXWJmW349gcu0ukk3L51gwNTYKqC7u0DTj9wDoaryFJTyobnf/OLbK6tkc2WVJ6EvGG52qEbpzxy+jzzMuPWq6/x3gsPIE+NONzb5Y3tfR5eO8vNpOQv/s3/kj+/9SE++V/9Z8wOJyRxxGw8dihMNEk3JQg9ED7KC5xOOwxZHhyyd/M23SAgiGL8bgev1yW3hsY26GxJIiXW87kzO+St117nQ+95D7IbY5E0hTOre0LSNDXUDcVyiSeg00nZ294m9CPqYUonSRnv7pLZCjOdcfD081xbjPnoBz/KypXLyFJzZ38C1w651VfsP/drfM+3/0H+2Tde4dW7N3nkzAkuXDjNzmzJxcsPM6ol2zu3OGDKSAtWgy6bF6/wxmuvMpsd0l8ZEcQRVVWjqxpfSDpxgtGaoq7wfI9+r4cf+McJwipMnL+inRoHQYjve66Y1BV5XtDtulDM6WRKfzhAiFbWYTS6bqDV5JrWUGktGCEIfI8iL1hfXyMIQ7bv3SNNIrL5gqppQEr6gwFlVdFUNUmSsiindKVPKQyNtvgIdGMZioCdwzGzOicRynmZNnt4QYCau/d/1HXhZnEco4TljddfI/IVy/0JohKsXjwFcUDgxU5CZkoW5ZJbs33q/RkXTp2l64c887kv8b5v+ziHqoK9Q+bzOfdduoS2OOZ50xppq4JBmlLc2+PG088y29snPb3JfZ94H8qPafKaqq6Io7jdMrgtSJXl3Lt1m97aCt3BkLiTMj48RFQ1SRixLHJ8P0L5LjCu0+swno4xpkH0Q7oiJKgM8yxHe5IgigmkQkQe2XKJwE1rZ7MZ44NDZ1BuEYxFWblhjG2HKdaZQRWCKAxJEnc/DcMQ5QmUUIhaoKR0gWu6oWkaF1ZlXeEVBD7L+dQ1G8p9bhUE6JYFH7cNhsAe0+mkkEjlNg3GOimWLxVV6VCkot1elGV5PJgC16AUdUM3jImSBNsJqQJFknYxZc2mCCiKHKU8giCgKAukUFhjqUxz/HtQgYc17nlSliWecTCNqJtSYmiwxN2ug2sgsIuCsioIwoC6KMmznH53wHy+xEtiAmu4deMa1+/d5oHHH2Vt4wRoQWQKdqdjOv0BPopsliE9QWfYI5uMOZxOMZ5kPJ2T+CEXtk4hi4abr7xGFgjWz5ziN/7mz3Jj+x7Bdz7Gt33yk/S7A/w4hckMPyg5vHubN968wwMfeDexqPiHf+efcePtm7zv/R8mQnH3YI9qNuXEhdPsT5fsvfU2q2s9Thaw9sj9bDx8hcFwRCC7SK3xOj5REvLZL3yBT//GLzH+2ku86/wDfPcP/xAPf+CpVjxlkLgkYymgbuU4Rw2nMabdmHpYaXnhlee59vIrnI77dIWPjGIe/MBTHNiaoQiYz2bo0MMXEsoGQs8NBoIAzyrqrCBQHsKTzKoCaQyh72MFaGPwlMLxDMEaS2OcSkE3zfGWSCjlPFRCgxUIBNoTrAz6fPV/+uf8P3/pn/Lpf/lb7zQE/xGcP/En/sTpT3/608PpdOptbW1VP/zDP3zw1/7aX7vn+/6/62/td3R+9zcEb71ulXKTrbJ0ZjKnHXVv9KOpDziZgTFuetS0pIoojgmi0E1g2hWzkgJPOJ11nrvciul0ynw+p9fr0et1QToKhpTKrbMBJQXKd+mj1lqSNCEIA9csFCVR4DltrzZoC7PlAi8MkWGAZyxl5rYcQRCwfW+HKIpIOymLZc7u/phu5NOJApIowA89yrqmKCsGvS7z+QHzxZQ47tBogRdE3Nu9x6XNDRqrmU7HTCaHDAZ9iqpyPOp0gzCKKcoMpQRhFLC7fY/BaMD45qsUe3ucufwovTOP8dzNbYYBfO6z/zOjrODM+ilOnz7Fq8tD7tzZYZBpeusR61owuO+9FAksqbm7s8033n6LN168yql4yOoDD1L2Y9730OOM4g6z/UOqxGPQ7xJNDjG6YdDrMuz2oKqY7Ozw9a98lYUV9NbWefjhB+l2u5RlAVYihUIJ6YLmEkWnH5NGEXs7u2Q3dtk4fx/PvPkWd669RZrEbA43WHn3A4jdCVtnthBVxRsvXeWZbzzPYDDEj0NW+102en2++uzTfOxDHyVcG/KN11/DjDMqXxLhYcg5f+lhhqfO8trzz3HfyfM8+8JXWd9YZ3Y4ZyUWxElCMV2Q3HeaX/rKF5n948/xf/vbf4tqEDOfz6lKp2Pt9XqUZUk3SRG+I+UI64yLWkgWVcnO/h4Hd+9w9+3r3HfyDIPBgK0LZ8krl7YphSTud9k+3OXtV69ydrTO5to6shOhgsCxwNMQ31oO7m27AD5PUVea1c1NOr5PPp84mUza4ze+9g2efe01mt27fHBtk4uXziBX1ri6c8jdN2/w0W//EAdSMgpSRmurxHHEvKkp8oxyZ4wtMg7LJZ3RKvl0xtOf/SxPPvYoDz/5XnYnE+6N95FCEEcRcRRSLJcuYTiMsNqiPXc9klc00zndJKLT69G/dD91kZEvZ84fJJ18pymXiFbjra2gLmqKrGBlfQ2twBhnJJW4h786Mh9rTdxJaaz7O4WgLHJCz2d8eOi0xb7DPgZB4CQAwmmCBQ4ikKapQ0PqBqMbsizDD3yWRenY8sqn2+2Sdnsoz6csK0LPYzGfkSSOZqa1Zn9/nzD0aawj03Q6Kbqp6cQJQeAzG0+oygLfNszHY4IgxBrJP/qHn+KRy/fz1LsfRa6s8eLLr3DlgQfoDvrUWoOSLW45I2wsL33xaX7xf/lFkq01+qMRv/97vp+420FI6czX1lLrhihMWpRrQK41KpZEjaYSDfOyZGhDDJJSmVaWo1HCsfWP5Jh+HP02eIPTRwvrJqRN7Ypn5Xk0WlPWDYvFgtl8TllWLJff3Ppa3GRVSummvcqjl6YYXWObEkyD1Q1KOjlR1bhGoNYNEoGnFEbrVroZIYSlrConHpWgdUPou62xbhsBKSUYS6/TAWsdy779WY5kpNZaTOshqOuasirxgoCmrluDsKKqKqIoQkl3v5pOp6ytuaycycGY2mr6wyHKU2SzGT6S2WSC9WJWNzcoqhxtLXGbqWN0Q13XxwOsOAiJrOT1V68yHo955InH0B5UWuNHIXVVY6uaAMn27btQNdSmIep18NMYLwgYjlYIogQ5m3JvMiZMOwR+QC0sVV3hAWESt1JZxeRw4nCznnDIX22ZzJaMNjY5qHJMGBBFCXpaQFUx6icsbtyk29Tcuv4mua65+PjDTKdLdr5xhzdURh5IljuH2Frz9NefYWNjAxvHfPjjH0cEioM7dzkZJlT5grOPX+byA49QFxUKRRxGJJ2UQje8fPUqv/HLn+G151/gB7//93Hp/FnWT2zR7XepJAipUEgsUOuGOIzcRqmqUVIh/IAwCsjzjIO9Xe7cusGNN9/kgSuX2Th95ptqg9ZgfuQ/aGpHO2sa9/s5Rp23uGBH8pKYNjzR1O7vlVLQNpRHSgRrrftvIfG04TC0hFYQlA11XrD72tss71/jk+/99ncagnfOf7Dnd70huH71FauUOsZ4SekmQELI1gPg3nB1U7dTQktZlY4mJARRFBFF0fHHHskRTHvjd+QHd/NQUhG00eRVXTv3f4v+C1sCRJUXx3hEcMYyIaSTJliN73kYY90KOvBRvs8iz8kWc7pJiud5zGYz0jRxXOqmZpkXHIxnzCdjOnHI1sY6cRKjQp+D/QNi5TEZ7xKGijjukCQ9DsZTGlPjhU57HUcBAosSirqsCfwAFXWoG818PmUw6IMSHB4eEAQ+48WM3e27BPuHhJ2Ug9fnfMeP/5/4b37973L56l3e3r7HOav45J/6T7jmK1790vNc3lilDmrS4UkWuoKyZrl9SLPa4+nPfZE/8YN/hDOPP8bO7h5x6iOVQAoPIXzKuuTNV1+lrmt3E21xiSg3ZYuTlOFwBTCODAFuEyQU4MxbZrZgpZuQJDHj/UP+5Zc/z1Pv/yAijvBsgw48isMlw8GI/dfeIjq3TqDhUFds1wXXX3uTc+sbrA8GGBqKbMlKlNLEAeteSlZXFL4giCOaZUGvtCgv5YCKqthDjgsefO8HOfBLGE+wy4LlfEEZKGaN5md+5r/nv/7en2DzD3yQPM/bXAvZ/rzO2CiEuw6lFQgrqLRGC4EMAha417RZ5ty7e4/z999HnKbUedGG7NRoKbh38xbDIHLMfVNT+5JymbOadtGBpPKgyguWkwUnTp2kns0wRc1sfIjyfFSc4HV7JIMBz+/f4+1nX+JBr8/oxBDZ8/FXe3h5RaA1XhKR7Y9J+z2kVNy9dcs1uIMe1eGEQbdHb7TF1TvbdPoJA9+gTYksPVCKg/19qqrmwsX72Nvbb5GOhti4iX0VSpZNxY1XrhIsK971wQ+QJhGTySFWeAjpo6wgwJKZmsJoPN+lwqZBiBQWi8EIgVIeVht00xyv5q21KN+j0Q3ZIsP3XIZJFPhkeUZdOZqL1s3x+xgh2qmxwGuL7TCMyPMCP/Cpqpq6qhChjx84GaIrHDwQzrjtUmst48NDBoMBQkCWZW6QECcIt/Si0Zput0tTVyzmc2aLOV4SIrCUeYG2kizLOdzdxrOacxcuE8URSZLgBQFFVWItLLIlQpfcffMOX3rxFe7mSxpjWFvr8wc//nHW+gOskhRFSRRFbRK0Izk5rb3CBh5Raah0g20aKl/iCYGn3D1NSoFAUpYVvu8m3suicE1Ae0/0pDreCBjtDMVhFDnKjlTkRdGiTw1ZllMUZev/ckWX5/kozyOIIjppgjUN88mY5WKO77W0Fq0pqwqD+/6VVDRVxXw+R7UZC0JwPHxBOGN5IB3a1mAR0v2eqjaLIfTdUOnIg3L08xzRjGrduE2T0dA+e5wPQCPa70lKRZwkDj8dhKRJAsZJRcMwRChBsciIg4BisWRvPmdta5NBv0+R5UgscRC61khbZsuFKy6FIz8JYFkWRGFIvcyI4pj+YABYyiynyDMO9w44PNjHRh5Wa9J267i5uUUqQ9ITaxzc28WLImQaY4oKVdeIyMfgI62lzpds37nFyuqQOA6ZLxbu2asU/d6Acp6xff0WgRfgJQlGgi4LGl1RK03luaXuydEmhze2+Wf/+J+z+uhlxosFdpazdeoUhS957qUX+a7f9z2o3SkHO/fQPvhVw6jbYxHAh7/tOxgNRuiyIg4jyrqiNg1BHFMHPm9fe5v89g7Z9g6mLNk6eZIzly+xsrlOYy1NiyqXUlLkhQtP1BbdaGcql7TZEor5bEJT1a280B7z3Y+vAe1kh77nO9/i0TXeQk2scc5F5XkOgW6tyztph5SyrWFkSxyq69oRhrTLQVItJMBM51x97TX2ygWPffAp3v3ge95pCN45/8Geb7Uh+JYpQ1VT47UmYaQAKWiMwZgG02LcGutMYJ7vbmhWgpQK3b6xq7o+DpNRUmKlAF8d4w6NcTIkWtmCFcKFySjZmtbaoq5xBrOmcXIGz/OoqxpPKQLPRxvICof4s9rgE2AbTagUUX+IUkfaU4iioMWSVljbYI3mxMmTKAl+HKOCkMViyWy24M7hIetrA/r9IUIoiqJ2Nzdp8Tod5rMZVjiKChYiz5XT3TjBYkmj0DVNRtNNexweHlLPCx558GHmVcmnPv1L9McVj179BlFjuC093vIr9g8WfDAvOLhzQKFqrh0ecGZjk0LVLBZLOt0Bhd7nxGiN7oceZJpP+frLzyLHjo5z+uwpZtIwG89QRuLHEeunTxH3uk6vaywYR1swRpMXLYFFuORTXzqTp1CKwhgWkwlYw/58Trff4+M/8oMoI5h8/XVWt9YoGgMiYJoXhKtrxCIiFzVJo7iSrPHQE+sMN1bwfPcAWNy6RyeI2D44ZJpqirIgHvXYGPQZlzmTWzfZfO+HiQsodhdMy0Ouf/Y3OPPE/eSF4EBp5qaik/mcH63ysT/yA1wra0ZVm5oJeMrD913wlTMiuodTXZaEvmtWrW6olgWx9BDaknaHiGEFeY0fQd1olkWN8DyU57OyuspkZ4/eyorjX2uN7wWOaZ3V9JMORodsrA7IdmfM6xmeFzDYOkkcp9RG4/ke2JqH+wPe9aEPYaVkXh5y47e+wKr02Dx7CkmADTy2v/4iq/efxwSSw9t36CUdVsIuweYprv7mlwi9V5k1GVvveZyy8ZHLiiBsg3iahrXRiGyZ0e07I3ldZKg0ptANqZCkjSF+POHtmzc43NtHrI2Qvk/Y6VE3hsOdXUJr2NzcQitB2ZqHpVLoskRJQRSFGASLbI7XNmHONOyhlEfo+1R5QVO7SbM1NUpJllWNChVSSBBHEoM2zdg0NGXDfLGk0+1iLO7BbgXSC0BIkiSh2+0yPjykzAvCIHTTaiHwgoCVlRUnOcwy0iSlLivQuhUTODrOdD4lLzLKqiLuJoQqRGKxlUYLSW9rQOB7xKGkM+yDhaKpENppzj0/oN/pYnTEygMx33H5CnWcsldMGfqSfqdD6Hko676mNg6xrK11CaqewLcN+e0xk0EHrxEUjZvMNoFCLkqSJEFYyIrccfulpKgqfN+ZtY8KadtuVlyBLFpztyP5lHXjJJxa44UumTkMAsqqQikPz3PGS0+CMCXZvMQ0GoGh1+mgTdOmTSuKskRbB5KQCJpWMqTNUTHnfvcOOynwPYVoswQsbliEBIxrIKu6dpkV4CYRrT8A4Yh2Eme6rpsGId29X/o+wnooXJI2rUQpDANXGAY+kR8TCTdplkqSZQW37t4l9H1OnT7FdDZF9Hp4SrCYzJkWB6RRhCcUWZ5hpKCoSnTj8hJqq2lK42SqVQnCYkzDve1tVCDprvbp9nykJ5i8dp3Xn32JD//hHyBThqrJaWZTRuurzPcOqaZz1jbWqT0JnkCqhEBaatsw0TXjmzdYRDFBlGClpaxLZk3N+NY9PvNznyaKI/JAcOWxR+l2u6xsrFMVNSERAR49Et68vcd4OiFZLOl1Orz48utUxjBcXcWfV+xdu4WXF5TZnN39bVY2Nnjz1Vs88sjj3Lxxk7WVNYI0wdQ1gecRKo+8yLALuLxxkmZtkyDwyOZTblx9i5//pz/Hd33vd3Pyyn3owkmAsdaZ5uvKSYqMJfAkGucRKQqDkB5hEhBq/dtUBt8cGoo2DFG32Nmj3KKjAr8xxoUs6oYyK9tE9RIJTqLXNMfbhKN/EwSBSyD3JPW1bUxesX3zFm+8/gqXfvDbCH5POD3vnHfOv3/nW24IjuRB8E1jkNba6UbDAKncw1tIZ0Y8+rP0VEuG4Jv/HtoAHIFSvqNHtK5/KWXrURTkRYGvPDeJlAopnNfAao0VgiDwWxOYOJ4OCeGMyFV745LC6Vw9z0M0rpk4SjHsdjpUZYFuasASKsWw36Pf7zMZjxkfTsiyJXEYQWPoDIcM1lbxo4DZbAlWEQYBtS6JG816b9CyrX0MYBAucdO6ny2IjoLWPJJODys9ROShsppeEPKjf/gP8Y07d/l7/9Ov0G9qmkTgNzFaFuy8+SZv7+6wefoiK6tdVjsh3toafqeHT8DGe9Y5d+YMe3cE9au7RJ119IUBT3/tC8xeeoWLH34vOvI4uXKGni5I4ph8toS8IgljpPJQcYCRkjBOwGiapiJfLjHWkHY7YAV+pVGbm8zLjDgKmVcV/cOSvCy4wSF6abn50lViP+XEYw/jRYI3X3iOs+99kuV0yXK8QyeKaXophoDCGg580JFHd2OdWSrp1X26laW+fcB8b8z+tGLvxW/QzS2nTp7k2lbFK8+9QLy/RSYFwSCl0+ug5jXGGH7so99N1WikcGE5R7pVYW2bmi2ojUF4ClMLKlOjrIfnewRRSI5rXo3S5NIS+YqiLI4noUdUljCKaSxueqgU2XjiNkS9mL037rF34ybD1TVyaxFaMzixgsUjiDvIICTE4ElLU5dE1kfPphwsJ0SDEa82HjtX3+TK7gI9n9CNYl6+8TYr23c4f/E+JtMpVRARTXbo6ILJap+du/co793msUceZGlLbmzfQ5Q1utH0egNGFy6yvbNDb3VEVmR42mCbBs9YPGuxtWEUdeheegChFHWdt8miGs82dERNcbDL9vyAtTOnCdOERV1iiLGAtsJRRfim3KcoCvI8p9Ptojy3ZZJSooWmrJ2WPk0SpJKtmRmXYB74BL5PUZZURdPKflKCOKLWhqyq0NYyHI1QuGLUNBq0mwjaRmNwhYKwhm6/z2w6dXjJ0CXvVllJuVigsQRRjBWCMAnpdrpoYwg0VEVOYA2mTVyOAp9eJ6asm6M6FU/CYrnAUz7dNCVKe0izJAxCpO8h0nWyqiSfZiysJo5CIt+nbgRog6lqhFTEccz0zj1u3bjF6bXHyW1NX6Ysihkjr0ceyOOp+dFU9OieenTfPOLsW2uPuevGuAlrVTWOwV4e/V7d5DT03bQ1jqPjsDTfT8BqTFM7E+9xU6eIEyf9EAbSIDqWSrmNkIUwdn9XNxjjvGFe6wto6m8Wd/ZIw90iRq1UzrtgOS72pFIo33e9gbF4yndfW0onD/I9ysrhYDGGIBIgXXKu9H2CMCJJU6wWCCxWWMqiIklTghMnwRqktmSTOW9MZmyd2MQKiww8pvkSicAKSa0b8qokVB7ZYklWFnhhgO85KetkOUcKiww9BmtDNxSaOP9GHXX47G98jlkv4Q/88T+KmebY5ZLDPMOzhtnBDvNqxsr5U1hriI0kTmKyRUlOxb3pAcPwJL70GPZ7mGzBsihQa2s89kPfh1aCZZWzunWCTtQhQZJnFbrWhKtDDvSCHZmz9oFHqKOQ7/jIx+j4EV977nl0oNg4fZK3b95kICW9Xky0ucr24ZjX37rBvcbyY+dOkS2XRIEb9Ekp0JVBWYunPLLJBNNoFnVBt9/jwcffxUzXfP3t11CDhI2N9ePNCm2R73s+VkHR1Ng2NOwo0ySNE7KqOr7O/9cM+GMJ2W/bIgWtBM9Yl2HgSUUjXIK5JxXSUzTmmxK7oyZDt/JliSAMQq7PZ7z44otUicdiNWFRlTTz7FsuqP4tjnFvh985l/+d88751532+rK46+1fe77lhuBo7d9+8nat7B4QBnv8EDpCkh7p/bQ1cEQaEC2ZyBiaxsViOsmORAiHKDQtRUIeFV1BgN9O3I1uWuRcu7KNIozBrdBb3aC2gtBTiDRFIFDtlLGqKsrGmdmiMHIFuufRNKB8SVHm9Lo9/EJz68Zt6rrmxvW30XXN7/++70UApSfRTckizwjjDmEUo03D/u4hZr5k68RJ/MCnQWKVwkiwCqRxq0t3YxMY2xCEIZQFgfGxfkBR52xWJe8+ucH2tz/BP/8H/5ThQc6lCyfxRwE3bk2ZUTJ881XOdx7nZr7kvnSTQSOJVwekUcphvuBcOGSmDjkbB8iTJ7h66wR38kPWc+h5ismd6/SGIzwhORzv0xn2sX6Drgu8XBFHKba9oaJ8hsMRk/EhQgr6/SH1snJrXt0gKkMVKoesTCMeue8xdm7dRK5t0BAwnhbIrOTM4+9G1Jrh2gqHixndtVU6m2sEnu+Y50KymvZZHE4YKYkNFXmWk6WKt/Z2WNk4w2gUEYSW5OQ5dr/0Nife8xgEXTQlvVqxEIpomLB24hSZNXSjGGGrY9qK5wfHVBUBFJXbIPlxhK/c7qu2Gl8qJm/epjcYkPR7+AZ2bt3h0pXLNCKgKl1CrTAWazTdfhfhKRew1e8SBj6R9Thx6iS39+6xjF2NmiR94iAmb026xjSMDw8IPYHCsixL3vj8b3DpwmlKUfKRx59kefEhdvJdZK0pTcPSL3nXlUdYHawSTKckQcjSSvRsyXovYTGPefBdn2TPSPLbtxgEiqbX54UXX4S721x49F2EYeAaAcB2ApQBqQ3Gk+SiQVU1ZlkwWFmnRtPkFfNsQeQrymrBohjTJeX221dZP38fnvIR1qKtBQH5Yk7gB0RJjK88CinboCefWmuKoqQoS7x2Em2MwSCIko6b0hntcMFBiBeFKASBlESmJk67WClJkhRV1RRVRZjEmDynrgqy5ZzbN++gm4bVlVXSNEUGNV1PMTk8QGvDcDigaakjtTBUgSSMYqJOStk0WM9DponzlzSaxSzDmgYUeFGE0CGFrqkbl5dwBFfod/tUZek+b2NA1xBKpst9QjyaWuA3ntuWakOtK1fYaENT1U6KcW/KW1+/irqwhfU94spw585t+idXXJKtdYWMUMpttI62rnBMxjkqlqQ4DizlyPt1NEkNw9AZhpXCVx5N7WhQVV2BFERRTF3XRGFMvlzgt/f5+XzuMgDqhjzLiP2oLehdsW5rjakabKOxjcZTrZlYmzbEzOIrj7Kpj4PFpCsTkUq64Dlt2qbEFXcu1dk1l1K57fPRMyhJEocq1prA952hGZzXwILASbOEkOjauK/fblKqwnmCojDAM4Izp06xu79HlhdITyI93xX72qCxhMpNnW3jyHpOTqSRwkm3irqh202J/Aid1eTzEjXTFCohvnKWH/4r/xlPv/wCb739Npe7m9xY3qMXxQTSIxgk7F27jb87IwlibhQzusM+8+WCMAo5cfoC0WCN/voWgZD4xiK14WA+ZvPyFTwpqfcnWAR1HOBZQ5R28YDZbEIQ+Xzkox/ksUlBLSCfLrny8AN0Lp/isMq47/R5tt+8Tre2+J7g5t3bPHLxYQ6nOZc+8l4uXbqIFIamchjQKIgRtqapDE1dgNXIwKVJZ3VJszQ8+ci7mM7nvP7aVUI/YLVt3BfZ0r2mQmMw5C2trK5rlHH35mw2I+x3jr2IR82hbv0jddUc1xdHUqGjyX/guwGQ0ZrQ96nbZsKabyoUjjwhR/WMEALTNBzu7jPcWmdle5VqFPPoxQus94eM7O+poXTbWlsvl8skTdP89/ILvXP+4z3L5TKx1tbAvf+tj/uWGwKkW90eFf5HxAfb5hAcmX6OAsmO13naoJwOyG2HpUQFAaFsw0naZuLoDXq8/hOCIArxo9DJjuoG3Ris0WAM3aSLERCGEuU7Ha4VkvF4QiAsge+xnM3pDfv4YUhtGoywpGmK7/kURcGydGaiKIroxF0Op3Oef+VVDsdjqqZkdThgYzRC4KLQaQwKRRIleF6AMYI4TkjShPxwxv50glpGWARxx3HtO0FIWTtdK1gWk8z5CIBht0+dlezt7rBx6hRahQTVIT/5kac4e985fv0LzzN5+mvEk4z64S7JibP8xqe/gLj7RR768Q9zaz4nzBp6506jpKJuGiQeFz74fgIvwp9rPnHmCvY+C7VhvDcGIamaA/LFklj5rHVXKcc5pYJFsyRbLFDKY9Af0pQVUa/L2vo6i8UUQp/aExgiaioS6WGbmsZWpFhefuZprt25xoMfeR+9dMDh9j7m9j3USsStqzf58A99P4vdWwjPw8saptMx49mUs2GXt66+ii8VD5+6wHaRc+2tt3j0g+8jeuJRTGORec7FtUvIoM9Dm5dYWYlZ7BwwihMWiwU3bl7jXY++C+G7ULpAxdBAVZYYbeh0Osdmy6qq3MapTdR2xrISp0sQpOsjGk8xsxXpygBh4fDeLqvrazSA9CR5vnRUrSRACIs0mrxseO65F3n41DmGGyP6vSG9TodAKKZ5xmwyZ3VjnbzMsWVD5AmKLEMIwd1rd/jNL3yZxeE+l556kk4MSRhS1xHNKOZyMuDSuYt4FubLJZ1en16SEnop+2ZGoApONX12XnmV4QOPMOumxMon6vXZOnuBnRs3uf3aG6yurRCHAaZYkN+dIMOQIAyppgtCBL3BgF/5zd/i/LseYn04RBhL10so5kvuvX2PRMF2sWSa52zd/xDdzoDFwk3Qkk5M3fg0VUVV1xRZjmg59mVZonFwgVQqp5VvGpSUVKXTzmMarHW3pMD3j4O/wrBLVVZoA2Xl/tfzPHylyOZzfN1QFo6vvrG+ynQyd79j5ZF6ElNXHOzv06PByQwAAGMTSURBVBiNMatoa6jqCikkvSDBkx7VLGdja4u6KKhnOaEfUAmJ8AOk9RCej1Q+UkLduGKyzAs6SUJR5PiRCxnTQBBL5oGlWBakYRcd+MisQXYCAgmmqhkfHpIkCZ1ul1hIZos5V69f5+c/+3k+cP0Sj1y8wn4sOOgrLg9GlBh07nj+VV2jrcUPwn8FoXh0/z3CNutWdmGFcLIeIYjjmI4SZMvMTd+lQGJZLN31HAYuUEq1uQSdfp+qrCjzjH6/bXrqGiyOLGQMNEcbC430FUGbRwOOP+82pC4wqixLhOcSnQOlnNysaTBOpO++JyWOizUpj7wIosVE5ljj7u/GaIQ5UhxppBe1unJ5DL1AuPd4UeTouqEpSwI/oN/pMJtNOdjbp9Pr0x8NGfkeRVEQxgFlXpCEEYFyr3del0iliMIIYSyVbtyQqSgcvnhl6FJ5y8pt3XyFGRlElrMiO1y+8i4+9Ph78aKQJIxI9iPuvvQat27coahrXnvjTe4cHvLU7/9u+mfWuFYtOHPxNFIoTg3XSbwYW2ukH7hNRRKzOkypdIUvFHMOEQgiJQmMwk8jrDQ89+w3OLx5h1NrmwzOn2W4vsLW1ia7h/v0vRUoStYqj+/4ju9lur9LFUrEKzFnz5/nv/jAk8xu77J36wZ6dYW11VXQhjzPna9MKYSvkHh4QGJC5wk0oIucUafDrN/jpW88x0MPPIAxhpWVVXqjHtl8QVk3KAtW62PwQxwGCKGOp/9HTcHRte0yJ8rjrcHRoPJo4n+UdxB6PknsiFNlWZJX1bEc+UhJcHSNHeUSeFHA4cEO4/GYrfURq8MRq0FK0X5vvxfniSeemH3961//f29vb/8ksJKmaSaEeCc74J3zu3KstWK5XCbb29uB1vrvPPHEE/+bAWn/uzYER1uB//XRdYPwPLCOG1yVpdOmS4sSAuUHIFXbSOAMlUrhewq0JssyEIIiz1FKubAja7ChxApJ2dQO5YhBeQovUEjbaga1YbnMQUn8IOSN69dpDg959F2PuKCRokT4Hl7oo+IAaQRlUR69WC7VsKpZzpc889xzvHrtGvdfucLl06e4dOECt95+g8PJmG6SECdDtK4omwaEPWZpCwvdzXWaBqxUTh+dFXhCEYYeGIEUUBQlK8MhRVngex6dJGFxegXhe9RaATVhNKK4Z/joaIOdqOBTzz7Lj/3oj/KJH/+TvHLtLb584UVWRheJk5PkaZeNuMf89g7jQNKJO9yXbDBOAkQ9pYwSUn8dkpgimzFYSQl8y/Wrd/jc01/mvU8+yfa1qygDJ9Y36AQh1lOkva5runop08kUbRt6/Q6yqGE6J8xyfBUwz5fEViJWUoqiIXjPo1y+/zzrcY8Ta6epugP+x0/9U/78R9+LObdkfnDAQ2un0J5HVpV4wx719h6FWdB78j52X3qD6we3SXtdmsBy59nnWXgdXvjyZ/nOH/seDq++wtxruB5G3H19hkwtazmUieQrv/TrXLxwASVrNrRPNV+SiQawaNOQ51krF3JGR2kEwhq0dRPWKHRhScvlksgP8OKIQhikb2HYY1nkTESN8pwx2fcVnW7K4Y195tMZW6MVlkXJ+v2XuGNqmjynWwq2b75N3EnBWLy0w7U33uTk6S0ms0lregzY3d1DBx36Gxd56c4B3suv8ODl+xDpgNH6kLP+gF1RcmZ1jdw2dMe+QyeGAlvl3Kd7HOwq7r/4EK8GL3F3tsNWf0QTRIT9Iecux1y5cpmrL71MWZcMBj3IcpbLJZPZFC8MuXb9GgAr6+tcee+76A2GhEFAnpUURpJ3uqQPPYjWBSuEbIUh0wKu33yTtZURaT9lPp+Sdjo07UP3yOQqleOCe1IRRDFJmlKVJcuiIkxDFosFVVEilTz+HUlt0brGVg2BF7C+utZ+TmiqykEMDIhaY3RFVZaIqkYqr6XE+BRlAZmhrgviOGA2W5BlC5JOhzhN3HsXaBqNNpqDw32qsmG5XLK2ukYQhPTjHovJmHy+RAUN3W6PUETYjmI8HqOAKAhYLBdIIRFYsvmU1I+Jh2toowgzS0FJTYOoGtCWtc1NLJa8LFHKx4tCHn/fU2x3O/zN/+Fvce3/cchHn3g3p7bWufnmNdZW12iUJUlTR1FRirpxcIaydI3CbwdENFpjWmNmGDpk82w2c6jZyumydVk6vHPTkMQxtEU31tJUJXGnS1UbjHU0tcn4gDRJ6PV6zGYzlOdj26agbDc/wrTUI8/DD3yE9KBxz4cwCojpoGuXQ3FEKqobJ2WSLTYWxDE5RluDqZ18xFMeSkrXUFvDYrEg6aRuy6wUFomU3vE2pCgcTcs07meqipxOmnB4sM9sMqXb7TAc9DkoSorJhNGwjzANddmQRAlNWVCXjfM0NMYRbMKIvM7xk5i1jVXmsxn4imDQJwwj4sYw2d0n7qRk1ZwoCJmVS5b7BU1Voy2snTjJwITsYug99Qgh8OQn3sf3bZ6mFyQkeUnU61LWFcIPUMJSZHOiQKGoUaFHaSpC7ZFqqKqctY1ViqrEqzWNqcm1IOx0eN8nP8l4OuHG7VvslgV33n6Tk4MVhqMB/qiLqWqe/pe/xiZjtjKPL3/hKzz6XR9jmHRRTYO/0eX2Czcw2iFq4yhGKSfFTdMOfuQzn07IlwukMfhBSJCmLHVNaTUnNjYJhOLqq68ymUyQUnLm3Dm2tjbdPVgJjGhIOx3KqiCrS4y1eLnB99197ghhfjQsjOPkWEkgWvDAEXHwKPC0Kku279xlPp9z/r4LjNZWWSwWmLZ5OGoy3bZMI5RC+4LV4YjGE0xnU6TvObhAFH6rZdK/7flrdV1z9+7dHxdCJLSq6nfOO+d34Vhrba21/jvAX/s3ffC3TBm68eZr9kjKc1QIH2UKuElUq9eVsi3anflLW1oNKnR76fHUKgpCDvb32dvZ5/Tp03R6XZTynea+aSjKgjQNv6mTtS4N9YhyZK27IYRtITeZzJnN5qytrbFczhm1k90qz/CVdLQfoWhMQ4PB8yOs8rh58yb7O7tMD8ecPHmSk6e2kMYF4lS6YbKcM+wPMFVD5IUsFnOKLGM4HDAa9SmqgsnskLQzoGoaojiCI3SfEPjSQwkPhKWpK5IkotaaymhnoNKWu9vb5Aq8OCZAEimfWlc8e/NtXnj6WX744x/jwGSo2uP02mluzfdZ7u7QG63SVBVxGLK+vkYURUznM+IkJknS4wmLUgGNNmhtWoJLgfIdpm9vb5f5bIrv+Qx6PQa9ARgwGKIopG4alB8SBhFCeiyyJbqpqaqCqNXnF8vMNVZGk8YR2WzG+nDI3p3bNMuch65c5vnte6TfuMbZDzzMWC9gsqSxgkkk6XROwdaQ29u3icZLxrv38FZSep0E6PEbX/wi79pYZ+Ohi6yGQ3aoUHnGON/nrIr4zOuv89YvfY3//G/8V6hBjBnvkocNnXiNpmlYzOZOetbKDZSU+KHPeDwhTVKHqMMFYc0XC/Is4+LFi5RlyWKxQEpJ3ZrbOoMUk2V4acokLwi1jw09Xv/SMxSvXeOD3/+97GQTpvN91Kkz7N68xdBoLj71PrLDHfb2D9nsDqkVLJXBHEzJ5lN6m2f50gtfZ+P8GdZ6A/waunEX5Xn0Ag9jtcsH8Dw8X7bEk5psvmA+m+Mrj/OXrvDCM19Dhj7x+pDAD+mHaRsAFiE9RZZlFIXL7jDaEMcxcRITxTEHBwccHBxw5coVPAHj8ZimaVpTqDOa1nVNEEd0Oh0WC5ftgXGJoFHk0JdVO8UXyicMApq6IPRbCg0CK1pZh3a5CHmWEfrOh0SjsdY4j4dyaNhht89SFwRBRLZYOp54VYMA5UmWkwVBHFHoiiAOSJIUaQV1UVFnS6LQR3ohvu/uJ7puiAKH4GxwWEzpKYIwdOFVUUQYBkhjqFq/0jLL8JWHwMlaAt9ReJrWCEubvZLnOWkUkWcZg+HIZR+EEVrb43tlURT0eh2qsnS/C6sZ9vpO3+wFiCjijRs3qZuGUb+DrCp0VVDUmn6vTxT4NLVLHZa4e5Wxbjqa57lrNCOHZVwul8SdDnEYu+anrEijmKoo8T2P6XJK2VR0ej2KwskwPc9zemvtiuCjKe3RJvi4QGs3NWVVUzY1eVGAcJr/fDEhjmNE+335yqGgrbVObtQaomezWTutdfcmi0u6lhaE5TiVWPmeu/bbz7HIctK0036/bdp1+/pa3NfQdc2g13d+tCxzW1opycuCsqrY296l3xuQDDrOAM8RpUgeI1qF5zbfs/n8mJJXVRV5njMajfA9j8DzUAjSKCSfzomjgOl8Tt7m72TLBdliTqAUURAyn8/xki7D4cBtCBHUWrPMC7a2ThCEMb6viMKQ5WJGFMdEcdf5oqQ4pqZVdUXg+xjTBtsVGXVTEoYRvu+5hqj9ffpBwHS+ACwC20I4HM0rjmO2Z0sCP2D37l2EaQilYjYe04lj3rh9C9/3efDBB51fR0qyxYK7t++yubbKIO0wm0wh8hBpRLfXY7K9R8dzmGuTBtS+IitL15wZyKYzqumSuiywuibwPbZOnmQwHDkClu8zHo+PG2BPfTN9WBho6ubYD3REOPQ854OrGod+FYHPzt27fOkf/wIrp0/w1A9+D/U8ozAV1BXevKCSHpOyYiRCVD9lls2Rh3PqXsTw9CajRjHzDZdO3/97XqR//etf7wJbxwXEO+ed8zs/Brj3b9oMHJ1vuSF489UX7dHaFjimVjimrysWpFLHHgIvdMmVWZazzHLyPGcw6OEpFxNirWE2myERrK6uO9OPblDKw/dCjNGYpnTUCJypOQzdiryqnK7ZeRYCyrJivsgAwcmTJ7l37y51XZHEISuDAdYY6qpmPp3RSSOHL007PPfSS9y6dZetrU3OnjzFcHXEeDx2CDhP0R0OKGpXBDWVMx7fvHaDTpJw/8WLKE8yn0/QaDwZ0O0PnPnUOF1iEieUWe7CloC002mDmgxa10gJqtfjcG9MXBny2YJ40GGczwlCRVEtefMLX6Dz4nWy8Yy17/0Y/c0z3KZgPUgJhitOLz0aEYURWebCh1TgcwTwEELhByHaWIqyRkjwPB9PSSbzqWuwypLZdEoSR6yurDGbzZhN3QM9TVPSXh8lfWe0xZCkKaZpsK1ZOsuyduJYUeQ5Fk1dlYS+xxuvvkpVlHijEb/1+d/iu977AaJRh8XhmDiMGJ3cYrB+Am9Rc7i9y93lAdpYtkarbJ0/zRvXbqKlZrPXwXQ7BCZgXtbcee5lstevceb9j7LrVXzp53+F93ZP8h3f/33MHz+LujfFT9y0ua6cdrRuanw/IIpaDbX0WCwWjgEfOfb30UOm1+sdp7KW7cZrOp0SCEU3iJnMphAIhknK7HDGP//lX6Nqat71vgcx62uEs4DHH7rITjbFlg1n1zoc3NqjMg1aCTp+QOQHzJRmXaW8cu8W64MRw7RHPp2BUlTGOE9KW5QaLJ7nONpxFGG1pmgKbl+7zt7126ysrjLa2qA0mkHSIY5irOeBgLpNxlWe1/7sDtdb1zWmZa/PZjPiJDkOWYJvmlQ9zztmsiPE8aZQm5qqcPSV0A+chtsYpOfh+xG+57PM5gijXQPS6bi1vTFgNWWWt82+JohCbN04+pNpkL4HFgKhUKHDjHrKOza4ZlmG73uUyxyLpWoqOr0OcRwzGU8x2pBlTvceRilRHKO1IZ8v3EZBSrqDUYspFCSdFHCvM9bQLJcY3L3M4lCHptGuuGw1zEcYyMboY6a+bRqM1vhB2FJwQuIkZblcuve/dddVGAQslwt3PVa1yyVoNFb6+HFEr9tlOj7E1IUL57JgjSaOI1Sb4nx0LWjhtk1Hm5nQD9opeYHf3otdVoM6nqiC2+4qKYnj2IV9+d5xYa3afICyKGi0QzkjxPFA5oj4ZrAY4xxr7jXWlEXbeFpL4Ptg7HEjcSRzOnqvHU1sXcNUo43GtLIkCVjBEd8OXyrXOAqXfRMnHfwgaIMsHVa0qWuU5wLG6qomjhMm86kblqQpfhiyzHInVWo0Wyc28dv8iSLP8TyfxmiiJKbT6Rw3Q8vFwqGsdUOv12t/l5a6KgmEpN/tcLh/wGuvvITv+5y7coUkiRFt5oau3c82m87wkk4rwcrxlEfa7WIQSOUThwl1XeEpSVm611AjCIKYJHb3rqJwhMqjqfiRVHexWBK1NLuyzI83R3Ec4/kBVfsca5oa1Zr+LRYZJkRBiBJQFgW6qhxYoqqZ5cvjayf03NR+MZ+TJgnT5YIkSVpUaAOeZKXbp96f8uUvfIVoOCTqxJw6sUkkJNYaOhtDGk8SBQnL+QyB4fq1t1ksM85duOB8gZWm3++BlM5LIhwdSgpJ0bgsI9kay8uyPB5Uho2l8gWN0aRegAp8itmCX/ilf8npR67w8MX7kVqTixrPgB/FNHHE7u1ttgYj5DTjV372H6NHHR7/zo8wClOMLzl/35V3pvbvnP/Dn29ZMjSfzxkMBgSBCwDL8xy/jatv2tQ/z3cmwflygWjNa02jiSP3AAs8n7osj+VH3Y7T89dNSSACrNEsshypMpeMWbXIyLb4KIrimK0dRRG+55EXJUJAv99FSo/xeIzvB6RpgsBQVTWLxYI7t++QL3MuXzhLJ46ZHYzpRgkPXLmfC/ddIFtm7O7vUpc1oXIkmcl0ShCFCNwU7trN63SHfdZXVxG+cvKopqIoCvr9mCzLWo63RErF/v4+BweHLtK+LImynMAP6KUJwjRYU5HnMyKlsAq6myPG0xl10RA0HnKy5NQDZ/mfX/oaH7pwlmZryBfuvsWjV95FFCSEcUQSRASegqahn3RotCOC1MYAAukBRrvX33e0pbJsyIoSX/r0Ry6sK45i5rMZi2Xm0mTjGD9y+vKmrKityytIk6RlzBukJ47JPJ72aAw0dY3wAmTgs1zOefip9+D7AdOs5IEPfoCoEUzu7VKbkP7GkJ4XYq3m2a9+xfkxLmxxMJ+TAZNxhu8rLq2uMylmxEXtdLpRwsvKciMoeWizz3Q658QTT3B7tceX9u7y8O0OYRq1ZvLahVu1JnKlFGXduOl6NkX5HkmSUteumMjznOl0Sq/Xo6qqf8V4tra2xv61bfa9hjSJEGXJ9vYOX/r8V2msZHDuPKvRKqfCPmrNJ1gUdDPJflWSb3Sh22V6+xYbW+t0opCyaVBaMJENqbVM796ljMbUoYc/6CAbjS0rZBi7IkpbfKUIkwS0QRuwy5yTp05w8eErPP3MM2ylEZEVRL0OVaMJhSu2pbUESqBN45Cyvo+utCtkfR/TNFRFwWDQZ7lYuCl848x7vV7vuBFXyk0ujx7CVeWm4saYFiMpCdoCWClXWDbtBM9a4QhfSrZTZxcwVFUVSRSR1QUYgx+FhH5KWbuk4gaD0caFCjWaKAzRbdZJ0zREHYdDrMoc31qW4zHKCHw/wHa6KN8jCEKCKAIEylPUdYVSPv3hqpMbAEEYUxQFUgjyPKPKC6IkocqLNkAsdiGGaXosPQBIYoczDMLQNV+tudi2On4ra+qqbO8XrpF2lB23DcFybHi31iJ0Qz2bU1vwGk2adlgsZseZLk3ToHEYziCImC9zeoOuK4y1S40/KhSTNmSrrt0EP+h22uwAg7EG31fEQeTus0q1r7MBbRztqS26jgydVSvNCMKAqq5odO2yaJoGLHhx5DZGUmE9NxyyxqBbwlddVccNR6/XOzaLHk15g8Cnqkoq47Tl2hissQghW3Ql6DbssswLrDGknY5DWFtBWWiKvMK0r/1ymeH5IXE3Rvk+8+WSQRAiPSe76q31KKo268YPCBziDmUUIGmOpvJSsjpaQTcOWxwor91ULNx7Q1fs7u4SBT6r6+tuU5YvWc4mpJ2OM2UvZ2ijSbsJfhCBrtFNRVXmoKDbHyKUIAg9jG0QUjjjupIUZY1pjbFNWxBHUXQc9EmbvxAEIUp5bf6DBzgZb11X6LZo9wIfKSAIfILQd8ALBE1VUBtDU7pnSJqmyJ4iyN3X8T2Pvb09qqqk3+/h+75Luq4bPE+RGUd/Gk/G9OOIC0+8i3kYUS4WTBE0SjDdP2Ddh06vw/6iaMlWmvsfeoSyqsiLAqMblmXBcnJAfzDAWNeQKQVCQuhFmDbIVLYEwaOAMYugrpwRfFYXRMRUt+6RzCuiomF65x494ZHrgghFHKQshebKubMcTMbUPpz8xHv51V/7DLf/xc/zR3/kj2Cqd7ij75z/OM633BCsrq27AqtuHKKynTQZ4x4sxjjcl5sWWTwsuqqpqhqFdEZDKbCmRYOCCwwxLmikwtEgwjBAG81yMacpHV/7aE1ctw86aI2dVQ1CHm8qKu0+h9UGv51oThdzrHYT4ChKMBaWiwXT6YwTJ7aQvsf+wf7xlCqMIgLpih4joGlvRp7yuO/CBSTgSffglFhWBiMWsylJmqJbic7R6yKEZDQcUlYVfhgRRSlCCCazOd3Iw5YFqtAY5RGMBpRVyZ3rN9CmodpcxfoeneA03/2nforOUhOORjy4dpbV7horaZ9KzzFVDUZitSavyhYZ6GONxvcD/DZoRSgQRtOUDd24S14ULLKlCyTSjSN2SIkxlshTVEHgEkeNpcyXWGtJk5hq2U5rpEcgAhcwU1aUVYESiqTbwQ98iqqgKktuXLvJE+9+AhGUqExTFhrjedRS4t2eIK6cZPf2Lss0ohmkdMKIixsbTMYT3rj+BqMwZjfwefvzX+Phxx+liRvqwON7vu+TXLtxH+E447GN01xaP4lpDIHvpldeUSMHCdY69GsUx4500zSUlaOc1NowGPWP6Vae5zYGaeqC644KYt/3j+UYop9y+/WrnN4c4Y1W+Qf/8jPceuka7750hjODDn4n5u1XnqFTTDn92MeQ/SHBeElcbpBXlrky9O7u4RmBOTnCixLy/SkvfOVpTpw+yanz5wmjCFs7U6b0Bda4ybjyIBROomUt5HnO4d4++3sHnDl3jofOX8ZLYrQxVHmNNBYRu4AqTzltrecpAk8dpxWLyjoajDWEvnfMGTfGBVr5njN9Nk1DU9fk1qFKjwLtijxHWEMnTfB8nzCM8X2XDVBVNca6bYFUDkEskceNVhD4NE3tkKNNg7QCr20iMBZPeviR5wg2LdTAKJCtdMRojcBS1QXdJKFYzskXS5aLjDDt0Ek7RGHHFazWOE09jmiTeDFBGCGFpqkLRz2SlkBCU1ekYYBsImyjEVIwGoyOJ8XGOGPlMbLwiIFe1+1r5TCisk1FTTz3foyjkGzpMItRFFFWpZNUNTVBGLp7WlnioaDRlMsFi+WcuoooG+c1CIIAhfM9GAthHFHUbjv7zebVNVy6adpQyABjDUWek8YxkfKgxT3Xjf5XwiaPfB+i5f8fbYSPCq+je7Db8trjYszgTMb5cgnWkhUFxpjjDcB8Pj9ukJrlkiR2AxTPc8FqVTsoiuPYbYV+W+r9sYxHSJqibAviBt93KNMizxACwihBCImfBOxs75EVBf3+kDhJwTSsr66xyDJ8z3fI6aahKErqqqQUopXVuZ9n2O+3qbgVSknyxZIcSCJ3TcyXGUEQELSUJqMbwjA4LuLLssDUNVY3ZIu5w6kaQ9JJ6fZ7UBrKoiBWChH4COvIVEZrcus2EXWL1nRkJdHSyTgmRfktLvYoZFJJha/cUK5ujvT1brLvKdVu/VzmRVW7pimMQvfaNva4yY1bzfx8Pkf5Pr4nUKGTi62trnKwf8C9e3cZDIYEgUdlKkxVEyCIlEJFIeODQzpxxPnzF0gGPRbFgnvXr9MZ9Dg4GCM9Hy920jqtNQJFWVVUVUW316Prhezu7lLNlwBk1ZTBYEAcxxhpjqXER0350XtQC4sIAmRRsx4k5FWJ6ne5frDD9rM5D91/Gb+XkCYJL//qb3Hvjev0H77Ewx96H8ONNURWcmnrDNF3fy+ff/Zp7hZzOmH8b1ddvXPeOf+BnW+dMsQ3EwF/O//XIe4c0UF6qi1E20Rh5YH97a5+F2IkwIVEtZ/PNQjOiNY0Gk9KvPZmq4+nROaYP+23oThh4KgQVVm6DUV7M1eePA4tK0sX5pOkCbPZguu3bhKHAZ1u38mctONkB75PWZXHRk9rDEIptybXLkQl9oLjiVe+zJlNxsRhQBS48LW6rpnNvonmA6flzaZzVtfXXWiT1kwP58wPC3ppRGRgmS8JYsWkrri5OGQt6lLfm3LugctUfsDDIqB3cYVJPmYrL8gDh4CUyj2wrQJtnEdAeY42ZNsHet3UVKVboYN1/HWWranZaaUb7eQjge+TtZsf9xq4pNemaZjNpigJwm+oa4PnBc4QqBvS0FE7srpmMZ8jGqfzTPwI2RtRzjJEtkCsDhjvbdPxIsKtNW7fuUUwX2Csx9qZs2ysr9Hc3eXyiRUOVMBbxZLRaJ3CWAaXLvJzX/4cH7lwhdMfe5Ly5m38wnCryOFzX8CLFIdNzsMf/hDdc1sUhxmqrtwauS3ox5MJm5ubzOdzpFREcUJRVscShvF4jFKKfr9PWZbHMrWi/bNSigDF6L4TzA73ONO5yOZ738+NsZM7JflpOt2QO9EQqVbYVZbJ/i1GVcJ8WiJsw+mVdV742tdo9ie8a3GZtQcvseiHXH7vu1FhyEGWk84rUhRZvqC3MaSQMCtyBt2UPMvIFkt6gyFVkaGiiNHZM0Sb6wRBwM7N22yurDsqVmDdRM33jhuIowK2LMrjbBDdNOB5dLtdBBAcyYOUcq9dXWGNodsacevqm6Z8a1zzHQUBWrdFtzIYXVMVLk088BRRO0Wv89JtCusaT0rKRiM9xXg6Jg0iR84xjuYVJ06Dns3mLvPBGPAUpkUHllJQtcQRrTV5UbpruKoIu06XHRE5zTUCa5u2+ADhKaxuqJsSWxc0jaTxFbqs3fu7qqgaJ1s54vlnWY7nBzT6m2x0r4UpBO12tGrvV1HgNh/udTII6ybuos1ocBkAGi2codZrhw7K14R+QFPV5IslwpMYJUjiLr70jgk/nucScI8pb4BtNAh3b22EC5PEWMq6JgpdkrM4Sm1tNKHnO8OsFFjrAA1YS1lWbcGl8dokeOcN8wkjXN6A8ogiVyg1dY2v3HWimyPWOyjlZBxSSfIid4QhKeh0usRh5FKmhXDyqhYHKgVYJNro1iPicNJY53lx0jlorHWkMNpgtiCgLnLCKKLT6bF2cou6bvB9H2MgMIoqz+hGjgInmoY0CPFRNIHvGsX293z0XLLGuMA0o1u/R06VBYShK5itcUGc4/GY4bBPli3Js5wwcPda25rWlVJIlAuEEBJrBQqcIbtpn6kCfOWjvICy1ijfQyrf4bTbnB6BxVo3QFNKURa5u69bg/J8l/3hKYwRSBVgrWq3L+6695R3HAYn27RogLpusNpSVTVFWVC3lCljDaEnicKQ/f195ymrak6cPMHuzg7z+QxZa6bzGTb2OXf+ArrULA+mfPXXfwt0w9rGKlunTjNcX8VrauIkxl8LuHOwRyeIGK2sUDc1B/sHbUNS0YlTtITVrY1jj858NsEvI+JuB9M0BG2D0rSbtaOGldowqRZEyicoGkoMYmPAj/ynf5KdnR3AokKfUafP/vlTfOON57n3lV/noVtv8/GnPkDU62A8SW844Pu+/ZN0OinNsWDtnfPO+T/2+ZY9BG9dfcUeFdxH2uqjSbiSEj8IaKyhamqsNgjjCEPS81lkbqIZBR5JkqBbNJixLin0CHGnlEdZlq0W1k1IwzA8NusFQeDW9W0T4XByhZuQKGdoFgJ0bQhCj8PxmMlkim6n5QJF6CuGgx6BF2CFw6b2+l3m8xlIgTEQez5lXpBXJWsbG+TLJcIeGfU0Ozu7HBzsY7Vma3OdXtqhlJBlGYHno5RHXVXkZUkQRSjlGoF+N6HMltzbuYcfBKSdLl7oURcFo8EKpdYYJTFlzVvfeJHVbo+Vs6epCkOzyOidH9EtKoo0JAhTGu3QhxJL6IeAZTabEicx0CI1G7eO95ULdrPGutwIIQjiECsly9yxoMEeG9EEEqU8ZosZxjhEqJKCUHkoFeArN1W/desm6xsrrK2tcTCfE0WxY0CHEWVWMJtMGA2GNH6DLxQmyzkwBSJ37HXtKw4O5vSilGGasHPjJraq6a6NoBvhJQnj8ZyeF/Pl26/Cs1f5w3/yj3FtZ4+8qrFS8/VnnsETknc/+iijS2cpFhl9EVC1l3YQBC5YJ46pytKtwj2f2WxOHEUIYY9lFp1O5/j6PkLpHgfuAb6VKAw39/6/7b1JzG3ZeZ73rGb3p/m729e9dasvVpGUbJES1RiSnNCdDDkyHBgBkiCIHAdIJp44gzjIOCMjyCQZGMkkiKPEQeKosWNFtqVIpilRYiOxxGIVi8V769Zt/+6cs/u91srgW+dUyYOAysQQeT6ggKq6zX/+85+997e+732f9wEH1QnTVPL3v/Sb/NP/8xf5aZvxcz/7owzPv4gNc7Stee8P/4B5doWXf+JT6F4RjOGt+pQv/8vf5nlT8vmf/Gk6NfLhN75DC6zGkWZTM9UN2k+89trLZCcHDH2H9RPrszNJe7Up3ThxfHyVLCtI0wybZXz49DEHx0eM3YDVCu9HwaOmKW3bxYmnHLSzTLTGW613luc78sb2miuK4mMbr48O98aYuDWIoAGbEAjRPJuSWC2H9FRC+pSxNE1LW9dkScpmvaGaFShr2NS1NI5BWPbTOJJVpQSLoRjajrIsxDgc9eHKB4a2ZWg72Uj1HY+fPJbAqSxneXCIUhI2573HamnAhn6QEC3vyfMUqxV13WBswny+oOulqZ3cRD/0u1DDcRyZz5f004QLniIiKkOcaqdxo9Y2DTbN8HEYsVgsdvIorTSTE/KVIG6BLWPfGrIsZ4xgAgXRCCt+DasNm1Ud5YiR4qSUNIJaCQFHy3vuvBcfhAITU2WN1ngnacBt3dC3gu/EWsp4EHSxwd2GN21zZbaSzY+HoaVpKnkK48gw9BH9KDkv4zAyjNHcGsMj+1FCA6dxpCgrhmEgsQlD18nPO01Jk1TyXoaefhzlPSly0tjsjsNA10vKtROjFlmWycYly/F4kcxYi7WyxRX/kCK4gWmYZHM8yDYkSTM8cl9XWkmWRqxxG8amNc5P9J2QnJq6FqnOMJIkNsponrCYzyF4QnCo6N0w2mCThKKqsGkqG5cQCECWCGHPTRNN3TCMI/PFAXlRYlOLVyridRNsPPDJz91HTLf9I7hurQXr6uRtiUFdkr8zDAN931MVxe7ra22i98IIzciF6G2bGAZJ9lXx3qmU4tmzZ1HSlf6RbVGzXonEa3LMspK+7giJ5d7pYzDw/jffZmg7PvHCy1ytlnz7vW/z0g+8wcHNq1w+PacbR9K8wNhEkru95+BgiY1DQmP0LpfIT3JAHfDyjIo+ku19TCmFngIXXc3Q92TaUl09on52zni2pnEiV0umwPL6NUYcj4eWr3/zLX7vl38Ne+uIf/uv/3UOdIZSmjLLSboJlxjuvvLa3kOwr+/5+q43BDoakLaSmC0WDogIQB/NP0q0vm0jhInQ8eT0GfP5HMhlPTwMaKMl+MXLnx/6AWM9p6dnu5vbyVVBqRljqRZzjNbCEJ9E5w+gtGANtwFpWmtsZjg9fcZ8MaMocwgKm2aik3RTDDJLJPVyGGjqBqMMaEWSWNTkqYqSajGnb1sSLbKJtusY5S7N8vhYJkjGMhDoxlESMSdZzQ/jyGyxpChLzs439PUaxpZnjx9ycu0q8+MrdBNoPEpZOucoU0lEbv3Ip37ss9RDy9t/8DY6q7i8XPFmIQ/46uCQtvXoTJNleYyIkM1FNpth0wQVjc1OiawhxARS5cGFkW7oafuGrKwo8pQtM3xeVQSl6Ds5oNV1w9WrJ+Rlxmp1IUFfVnFZbzDaYrIMbQzPzk8hKPLFglU90te1TLKqit5ozvoO/c0HHLxwjeODGc3mFNYd33r4Ia5vOHj+Lmf9Gn1twaOzM7zyzGoH04aj4wVhMvzUKz/A1/vAxmpMdcDl5ROSAH/qp36SL/7KL1N88Ax75ybztUIdllgtuuauG0jTHKstF/UlV46vcFk3pOl25T5QNw2HBwe7RmhLr+i6jjQSs7TWNMaRe8vhwQ2m1KE2T/jLP/xJVocL/uf/+1f5wt/7Bf7q65/kzp/9LP/ivOHR1x7xN/7aZzDlkmk451u//iVu3LiNfeVTsNnQP3jE2299jbMX7hA6R65TRmPxBwuqeU518xppOWPmPdaPXF5c0owygU/LElMKXWecHIV2LPIMO44YK6jPEOJGqxUJh9LmY+meOW3b0g9jNOwLyaMbR6aPoSz/iFRPazlQToGua0mTBOUDm9UKazVKW3QAJsUw9aRTCjbBpgGtoMhzzk/PeP/b7/P83Ts8/9IL+Ngbu2hcNamYatuuJUkTUmAYOvECJJZhFL+D6wfKLEVriykNt+7cYYgGca0TvJODiFITQQWCB4xMR72XZNyAwtiMrh8IuiNJUrJZhR4HbJowRd18P4ysNw85unJlJxlKkoQxMsxXqxUqTq2dF719sdXvD73ImwwoQpQaJTHFXehpeIXyUNgMoyzKgI1wAD851m2Dc0EMoF42DGmS4PwEyuAnR1qm4Bz9OIBSJGkaNwmw2dQUVSlBztaSzOcyfd36tLIMFw2sfdT5ey8bXTeKlIV4EFTbxtYHkS55yfEYx5E0TVDakcTNwDQJllTHgLqyKtFKZHjr9Vq2AlrTNC0+dTs/QdBa7vfO04xicg0EwdfmGel2c6EsSSLNqZhiDX6cZFvlHdpJ07wJE5iAUx5lxaU8+ci4n+QglaSJIFT7njwRyZL3IkMMPnB+fk5VVfLe5plM7gkslgvZ/AQNXkL/dBDM9Fg3BKU5yAoxnzvxzw3IEMvohMrOSccJpSVkzXUjSSbSqSEeUAXTrfEB2eaMnZC/oqzRTZN4+qz4UcaRKPdS5HkpeQ6JRUVZkAzP5HpNEs2kJlJj8HE7oLynbSIFKCistpRVJRACvw0LMywWBzw5PyVbLhi1pnUTJweHvHn9KiZN+fSnfohh7DAaMqOYFinfvv9tqtVT3nzz06w3DZu2oygyirIU+ZeRz0pd11Rphc0yrDG0TcPZ6hIUFFEC2kYvwXZQQUASpNuRb/2zL3LrzVdQN4441yM2Tbi4/5h/9kv/mE/95I/zmR/9EZ5fnvDaT3yeHz5+nnfee5fbR1covOZi7BjcRGETVub/M9x1X/v6nqnv/kCQpExdj7YJIV58WZbhpgljDf3QySQHkZGoRG76idIchCUHiyVWCYZtjGSiyU2sV5dkeY5DUiNv3b5FVVUMfYd3AaUV/dCjdTT6XqyYzRfUriOxBdpZbECmhFOPwzEFcECS5hRai+ygbWjbnrKqKPOSEAJ1vRFyiPNx9S+JmzqxkYTisKkVTraBqihlvRo8WXFE3QhRqANhTGtJIlbWUKUJRgfyzGBcRwgjm9Hx7SdPmF+/RjFN5MhrG1CEyXHWnPPk2ROskuj6+ZUr5Hdu8+xrb3N444Qv3nuHP//6D7JZr1j6hCEr0Imh7TqR9jgnE9EQYBRcpAqyEeji70mSBG8zdCoaeTy0Z2uyLKWaVVEL7Ng0a7RRZFkifGtrWMwPRSq1XmGswYeRqkjp6prlconNE9pGSCpD1C8rFXC+55CE5uoh/QRpb9GzA/pp5PDGNYzz6GoGQTH0E3eu3kFrSIzh4PCAYZxIE8Ppwyd859sf8NN/bsG6fsbJlRn1+Rl/+I9/i//nd77K7cuWn/zRz3BhMhbNhqlMGYOnWixw48jlszOuLg8Y3BA1v7L67/ue2UxoJUJKEcrHdgorXPU48XYKmyekBNpVw6yYcUMb/tNPv86/+6lP8O7DD6mC5s2rt7ieK9Y/fclRMzDdf8C9h095kmpO+0uKtCQtC371/Xv83f/hf+Hnf/DHuf7ZN3naPiYPcG0xIzcanWus62jrBm8TkrJCjY68KFksljKNTyQQaBo8zklKq1fw7MGHlNowO1jiUHSjTDXn84rNag2bhk29oljOUT4wNS1ZllI3G3rlKYsiymY+kgeiFNpY3CDaf8FPRm34NHBwdIU0y5ncSJ7JQUrIM4Fx6Oj7gWxe8dIbrzGfz7FJRt/05EVOlueMXY9zjkobdFGKzjvIYVk78NOIMoF8XjApz+WDh5gip5rPMEBpDYnS9J1QxxIFAS/XhLU4HVDeiy/JecYwEYxmfrBEKRubHcM0Ofq+FaNmWaJTR2g71psa7wPzwjI0DWWWYybPOE44DaQW+gGLIkXh2l62GHnC4AaUg34YsUkmEqc8w0Y8qzJgUgPewRhIVZz4B0izFGuFHCSmZNkEBOQeOY0DzWaSjaQ2KCMz3nrTkiWarEiZ3IAPjsQqyYkJCegZ1hqGvqfILV3bkyeWTd2QFcL3n8YxNpFCYwpKmvTQywAmyQqUSTBJHzMSLEHpj2RVXra9SZJgEysBk8GJYTeIhKknYHQgzQvGyaF3Db9garvgCQG8Gylyod0450gTaV5D3BgoozFKaExlVXF+dk6KZxYso3OMkxOwaQhYJcbhYXRYa1AYCcoaPN3YR5/KRHBONi1ZTl03HBwcoK3Bak3XrPHeUeZCN9rUHUZpbJKxqVd008gHD9dc1pfcuPUcWZqhQiA3Cev1SjZQ2lLmFW0rhx5jE/HPWMswjYzOy2HWK6w2kR6nJNnbBUbnUVrjRiHX+eAZ+5bECn2pbxshRk1CoEqU0KOmvkN7uc4nAuMooWpJhDBQVrhp4uziAhBUcJqlIt/ynjQxhABHR8dykHGebLEgtQajNWEcmPxIhsLqhHGYuH33ZV5/49NcnF3wwfv3KbMS1U+0w4ZlMSfLCmBiVB4SxaQcSZ6A8ySpZTGruFhv+MZb32A5n/PcnTtyDfiA9bBpG2ZHB9T3L/kH//0v8N6tjL/1X/xtPnPlOQY0796/5Ef+xr9Dt1nxpS99kVdffYErtuDB7/wOX/utL/Pw6+/x5ud+iNtvvIxKNJNxzNkfCPb1/VHftWToH/3KL4VxHHn9tdeiHlemYFVZoqJ5TsemwfmIplRhRzBQPjD0PfPZjK7r6IaBTb2hynMODg8JcQ3eNI3QTJRkB6RZCgrOLy7IspwQFApDlVus0rRNz3w+p2lqrFEUZcFgJKrcT5NIf6J2ejafY4yh3tS7dWtVCaddplupGKOjeRAC/ceMuo8fPRFJQp7jfMAYQTAGAt1GGNASoKMJbiIgyZxpkvIHf/B1rj93k099+tNcXFzghpHUWD548ICjoyO0tSwPluRpynw25+LZKSQpX372Ib/7f/0zPnf3FVbtmruHVzn83Ce4vFxxzVYYa4TCYQwodkbYvpb02PxjnOatDn6LVuyHgXGQpMskSyFL6IZBbuxZRoAdQebk5ISLC9kQVDOJla83K549foI1BoOiLIXkkWY5yoqR0VpDW69Rk6fICy4vLrl58xbPzs/wCpaHh5xdnEeSScDalNRahqFj7Dv84Dg8PsYnmne+/W2+8pUv8/mf/rOUNuXx2QVrGt5/fI9/8Y++yJ+/fouf+M/+PU7XMB8Vaug4mB3ggBHP44szlkdLrAskQe3Cac7OTrl588ZuC9D3A1km01UfJ4ZGb9fwYtpsmobzs0uODhbMypIwjTgVGP3E1PRQZGACpu4wmeGtJ/cpuoRb1++SBkOiAqrK+FB7/slbX+e/+kf/G//BK38a8+ghT775Df7g977C3/hbf4uf+/y/xThdUC0qpsnz6NlT1nWNzTLmiyWJTcQk2PU78721Fkfg/ffeI9WK288/T9DC2b88OyWME4vZjLOLU4ahx5qE+WyBsobRQBcc1B3BeeZlJShNotDFyGQxTVOapmEc5L1qNjXWGPKyIoRAWZViGvaOoRfcq3OefmuARZqaIs9pNzVlWdL3rSRlI8bMumtRiaWYVVw8PYUQyNMUpom+aZhwnK8v0N5yeHhM23ccX72C8xJalSQJBoWPQ4vRy3Wgjd1tgIa+w9qErCgISuNdIASom5pxbCjLKpp0HUn60YZz6Gtym9DXLevVirwsSMuCYBROCSFHhUBibAzfGsiKnOAgeOinkX7oWSyXMnVGsKbOOQxqx//fHkq1lm2PeK+kAZbrWUf6j8hpjLWiU1fECbAhsyZuiVoWiwXn5+c7Q3TdtczmM1Jj6PuesR8wNmXTdmhtWB4sRG40TRIWSRBZKLCoFvL505qhHxhHufcIdtbs0KZy3QjxTWtIkhSt5CA+tA3Be7q2YRpGfJy6Z6kc1pVW8f0XElDbdSRGPF8hUqp0gCFuRWyU0lhjaJoNRZ4LetVIc53mJSOBru/Js0KeM3GT0vf9LuxKlhGafuiYplGgC0b8WW3bslwuybOMoW/pu4YsS3dBcIlJ2Wxq6nbN5WbN8vCI1aYmzTI+8eonJDhrs2YYul2ugXOesZ+YVTOCNejEkJUFaZ4LLStKdcXvJv89yQrsX8mHGHdymrZt0ShJAx/EB+SjpGxLjdoalK35aHO49RmN4xh9H5IXMZvNZCrf1Dsz+BiJT9tcou1zRhKznQAD4t+zWCzoO6HyzedzQvD85m/8JvWqIasqXn3jFer1JTevX+M4LQk+cLG+pO17Dg4PWMznZGXFuu85Pz/nyZMnzJcLZgdLpmEgM5Y8SejcxJOLFS7A/cqz6Ca+/ff+Dw7u3CR74Raq6Xnz1VdYXr/Cb37pC/jLmtWTp/zms4eMm4ZvvfUN/sxnP8fPfP7f5Gg55+zsjJ/4mZ/dS4b29T1f3/WB4Nf/+T8NQ9/z2iuvRpOT6BPLsiTEBnrLlVZK0XYdQ9T2AxCn8CGuVOu65vz8nNvPPUeSpmxaYdk3TUORZhwfH2OMiZKGjnGaKMqKPC+xJqUwmnfe/Rb9NHHtxg00gW6zJrcJ2eGMPMuEjx/53tZaaWZQtM0fXTPO5/NdjoILgnbcIhaNVpJcmyRcNC1N0+zoBrPZjCx+nW1o02w2w7sJo6Dr5TDSDANZkvLi83d30qOu70mLSHjQUaeuDA8/+JD7732H1199jevXrvMLv/gP+b1/+E/4kR/+LN9Qlzx/AX/z5/9Dni0NqZb3x1gj6a/xexiHgWZTc3BwsDvcSON7xte+9jVeuH6L1998g8t6Ez8FMASPrXLwUGYFq8iXlk1KLVrYLKdrt1NAmFWVYBoDPHz4EO1lkpZmOWmacXFxwXI+Z72+RFcFbhrlvQ+aoiqp5gvK+Yyzs2cSWDd6Em1ZzufkWcrq8pIPnz4lyVLKJOP48JCmablcr8BojpfHjK7n6flT/tv/8xf5kSHh3/87/wlPT1eYtGRQE9aBr4XyNKaadr3hbnXEWRAp0Gq1IkksB4diJDbGoGyC9xOL2Zy+lywMpYIcniLLe7u6F977hJ9G+ZlmGZObmB0dkKFZffsRj0/PKK4ckapAcnTIoAK5VrhVg1UJ88UxqlJ8+d49/sH/9L/zRDte++E3+Ksvv85VN9GNE0onnF5ecL5Zcffll5kIaJswK0rC5HavfdvQlKVo8JVWeC9NyjSMMAyk2nB6+oTTcc3NwyvYIEjf0TsWsyVMHix457A6oR0Gmc4SmB9IAJ+1QnhZrVYAsamSqXtiDCcnJ9TNWkIGh4mDgwPGj4UJJfF+0fc9Csk18ZGJH5ygJpM0JSkzLlYruf7Wl4RhYjg9pzCWMdXUuWJGSZpmO+KOTC8TrNZMfsJNo0xtlQS6qUTjiDjLKWBtAlrLtZ9kuCjr2ckQkIP2VjITglDUFosF56tLVpeXzEohiGmloEjYbDYwORI0y1mF8vL5qfuearkgaIOOBvaAoms78QuIq1aQm9HLsj0QbA/3ITZ14zjEZtKR5jla6V0Trq3BJilaaUGeTtOucayjZwOIXgNFVze0XUNVzkRG5wPjNEW0pI7mWEHPOgJFXtC3rXhX4mZNK4tHJGbTNAB6lzy/bVBDPCRJam0Qak/wXF5eCHEpROJR9K1YLQ2mHyc8MGxTjeP9W8AT0nBOg5h/y7IgOMc4DCyXEkzWOBlkqBhOluQ5AQm48qPDaMPlaoWbJhaHBzscqg7hI1Nu9FI0TUM5n+GdZEIoApv1mjSV17lZNxKolReEEDg+OaGua1arFSdHRzjv0fWGYRxwTrChASWbCmNxViRZaZ6zODigLEs0ChXkgLR9YhutRV62M7gbrNE0bcs0jtgIU9jKfEIkRm0zKT6S/miRtMW/Z+shmSa5Xo9PTgC5R7jpIzyuMWYnPfooMPQjX4OLh1oQo7tc8x1d1zGbzTg4Oeb0ySl/+NbbBK24cuMKV68c81u/8es8f0WUAseHh9igePLhQ/pNw+9/5atc/9Rr/OBnfmiXJJxmcuCcnKN99AznPB92G954/mUWScHy6JDf/OVf4X/8l7/Kn/srP8tX/v4v8979e/xH/+Xf5vjgkHmWc97UqCTBFDlOa9755tsk/UA1wgdvf5P/+D//O/sDwb6+5+u7PhC8981vBBebeh/Rodt/n8ZRaD/DsDPYbQOMtkmn2wk88JE22ybMyjmX9Zq27zg8OsJNjiITg+zQd2hj8MHFyUYAZUhsxrmZyILm4bv3WGQF1WIGpUVlloUWbB+IOUxpjdJCHbHa7OgqXddR1zWHh4cS7mJtnBJOrC4uKPKcPElxbqLvB5L5kvPzM2E4Jwl4x/HxMc45Ltc1J1dOePDBB9QbMatOTvjMXmvKvED7wNQPLBYLisUMZS1d16JQkdceePLoKWmeUeQVj999ny91j/nFt3+HT64SPvmTn0OtG261ltsv3eXes0csFkvu3LkjjSAxYXkcqaqKzWYdJSWWNjK7v/S7v8unX3qZF195iYvNWvSaxgrzXUOR5KQmYdPUjNPEyckxjx4/liTXJGMahLfuvacbBvpBTLrD0GOC4/zigqZuyfIMfGA5m/P40UNeviOHoffefZeDg0MODo5Yr2sG55nfOGK2EGN31w0k1lKUgmWcp5IkfNZuILUyAWx7nnz7PtdvXKOZHF/9yjf4jS/9OuEP3+G//rv/HZuZYa3XVAdHpOuePrNMPlCFhHXXMD84IE8z6rpms9lw5eoJSrFrpmeLJW0nybTyUBvJsgQdNwNpluM99P3A4dEhp8+eimk8n+GDpK2WmaUuFKvLDZv7p6R5TmEU3mpMmmCtliwBrWj6gSKfM89LnjJw/uARyfkaO0/JrKz3kzTlO/fucXTlhHI24+D4iKbtdw9yrTVVWUoo1DDsvBHjNBEQva9VBt8PdPWa1fk5V+ZLCe3TAZ8l5GWB3vSkPdSpJAjnRQHaMnmPzTN6J3Qaa2XK3vc93kvjGELAAJm1ZHnK+fkp0zQRguZgeRhDrYZdY9304kkqinIXMDRFzbSL5tpqNqPuWtq2Ef15gLd//+v4ceTa7ZvkyzlhQEyJztEOsrUo85x5NcMZJaFSZ5fMciH/9H5iCHKoy5TFWEl79UrkYpIYbETmNIqm2hjRdyulUDrg4sHYKySQURumrqdKc9IsIQQYh557771PvV5TrzccLJf41HJ8/So3n7uF87JBRcn2pu9asjQmv0eTsGwGIsghNljaill6q5NXStMHR5EXu4NFYiQZWlJsJ9JUfj7bgcYfoSQhm8BtyJoLgTSVcMihH0jt1lgsFKlhHBj6YdecKiUSk7wQff0wDGg8s9mMuB+WQ0dEi86Kkq5tGSchOcnhawRUDGzUJHHSr0IgiffsoGDCC8koTtaDGxmGga7t2KxqQvBcuXIizTzQ9y1GaxYnRxiTkJelSOyUfGb6rpP72uRYbdaCvZzPd88sOaAF2raVnJKh3/1ctv9kSUIIMcm8mrNebQCFzWcSTBZkU9x3DU1di7m6qUlTSzWrGKcBjyIERZpmkBiIBl5BXhuMsnI/CvL+a62jz0HTd53wq7zDTeJdccHTxANYFcPVdp+pjyHDt8GD219zToYLHzeWD+PIwcFyd68pioJhEAO5BJZ9tFHYDt8kaE4O/U1TR/zsGH0lg2xoyhnzUqSim06yGPI8xQ8D9bMVv/prv0a1nHPnhbs4Al3bcXZ2yp3bt5kvJLTMKkWVFxR5htaGd7/1LUyacvPaTVw/0ltw48jNkxO+8q132Gxa+ssVLHJu3b7JvPHkiaG6eRXdeOkRkoSszPEKLtcXZFnCnRsv7A8E+/qer+/6QPDNt34/bDXXW52tUop+GDh99pQ0TahjYu1zt54jj783SYS4QyQTbDYyeQYilpRdkm/QirEfSBJ5SI1DL/8e5URJkqK0pe9HVJJSNw3fvn+PO7fvsJzPSZVCB884tUyD0FUSY5m8Y5wmoU8YszPYbtf/W4N0P45MXtbNScSjXpydimZ4Pufoxi25CXrH0HU8e/qEqipZzOf4IDfGe/fe5/TsjKIqOTk5kXTHIkcHqFdr5mWFTRI2bUOSZxB89F041nWLSTOK2YxN1/L0Ox/w2u3nGWcpaVnARUPnBvrDEv/0kicPPuD69eu4ye1oIC7e+PMsox9ErtT1kmqpkENcYS2DF7Td2dkZvh/QKLxWzKsKHRGw3TgyjkMkOqWsNjUKvXu/siJnnJyYHxEKhtKCWXRO5Fp92/Hk0ROqouTw6IBvvfMOi8USrRPuffAhKMPrLz/P8y+8INKToaPuO5TWEqAzSigR1tBOIkvLtOX9b7yDwqNnc3797W/wla98kStnPT//N3+e68s5v/N7X+L4vKf61IvoTc+V6zfodCA1Kc3VORWywbDWsljMmc2rXfOnlHhirDGRKDLgvKTPjtNEnhcEhIyltY7yDcMwTmJsHzty78gSQ9e3dCFgqop1r/BDR64MJkjaqpmlDMqR9B5V5CTesrlc0w8t80XOkDjUaEi1mDwf3P+A2WzOtavXZNtmNIOTZiSxkjK7bfYUQX6O3UDXDztikvcTisDp2TlhmsjShNl8Trtpeefrb3NYLZldK5nP54zDKA0zkJYV2lp8L1QYYw2BQJaljIPQe1JtCF6CkASRGACN0ZJFsNmsCSBNmfdCDLKWLM+kwXUOFaVvKurQQwiCf+zEuLoZe5wKhH7gJK+wZUnTNhRVxegGgpccg1lZ4rTQe86fPCOJ0pez1QWHV48JSqGDJkksPiiImMwpasYnz0eM9900VOH8SDoGunEgyXP5/PtAv6lp1psd8GDynq987as8efaUvCh4/s7zJGkCwbNYLHnxhReZHSxpmxYVYHSSBK6U3uEht9jPLcISJXhQHzxaR/lf8Ogk3VGg8iyTLcI4YowmBAmh2mzqXb7GdkAzjKP4ucYRjAEEGUqQDcpWZqKUYhwdeZoRQuDi4oJyVpBlmZDFICYUD5K7YkSK4kIQZKmxDONICGC13knxfJBNhzYGrRVD36EiglPF71vD7t42uilmJUgWwxg9LtuMHElq9tGkLn4vNzqqqqQsKlzwmHjAdT4wm8+o5guZqk9TDKbTIlUFSesdx/h95rR9h3MepZWYuoeR45NjJjfx4YMPuXrtKn0rmOK67qiqAhUUm/Ul3k1s6lpC8SIdKouEI21M/H8am2W7LdoWya2RAcIwiRRVa4NRIt3dNurr1YppGLlx84Zs57Wi63o2dS0m3I9lZmy9Udvn+RQ/D9uAr61MVqb9fmek30rCtp6KLWQkSeQZ8K8S2lRMJ+6Hnm269TB0ZFmOc6BcYBodwSp0YmLCfUKoCvI05+mzJ6wvV1R5znI2xwRF3Xc0XYtXsEgLZjohTOJbrLuJP3jwPnev38JPgXGZw9mK6dkl1eKQ8vCITRiYH5Tk3jFz8Gv/+Fe489Jd5s/dRpuENEtlaz8OZNYyjQPPv/rG/kCwr+/5+mNhRxVE+oSs2bthYBgHxn6QlF6jqapK6Adtx7yakSVWSBhbLFrEHU4x+RAvmtQkS6N2PWW9XguTO64evXckWRpxcQnWpkwBxmEkM7KmHYeefuwxRmELyzj0DP3A4WJJnufxAeB2/OWP61tN1M+2fU+IoT5lIRKX9XpFlmYsFguaTh4MZZGLnnToI15OY6zgG58+fQpKcf3mjV2g1TgMVEVJvdmwOFhCCGilGSZpzIIPzOZz8SWkCeu2pR173vnmO9y+do15WjChOL845/rBMd550lmJygyr1WoX5GSMIUtTmWp37S5EyXsf8ZqKcZoos5x26HEKVIDMWDIriZU+ctq33oitDMl7z+ilWVmtVmRpytWr12i7nn4ao1nQCeI1k0Pg6vKSrm1ZzpZQZqzWK8ahp207Hjx8hA+GcrbEri45PFzy2muvsWpWJFlGmhWCsh3FfJhYQ9dv2fkKaxN6NzIlFmsTfu0LX+Drv/Fl/uJnP8GV63N+9QtfZ/WNt3j9U59klXpOXMJBNuOFn/oRsqLEBU1RFDvJS1mKqbUoCqyyDGPHYrmkrRuGvsda/VEIVVC0/UiSZ4SgZIPlHF3Xk2cVSZXy/lf/gHu//Bv8wE//KBc3Cw6SApVU2EyjrUbphKlzKNeTm0BvFUVaEqZAfb6mqzfMD2eYwtJNYI1lPptz+uQZ56dnLGZzFvM5wSimIAp/FSd/bppw44QxwnifJkdZzXA+MEUM6bZRajZrwtBjHDhj+PJ33uPtZ4/4c6++TpoKd3wxX5DlOfPlgtF5pm5Aa0ECNrU0mfPoK+m7DqsN4zSQpvJ+ZWlOU7dM3tH0TTyYCp43KIWydoeKHIYBa2yUkgRWl5cy4V9dkhlBWLbB4bXCtR22l0Zg8hPzxZy6beQ6sAlucnTDxGw2ZxpHmfhay+nFGc/dfk6+PmonwTHW7BqmNE3xWq5pHUPGXCTiaG1ozi9QWlPMKgSsZlhdXPDW199CE0iynHYYeHz6DJMmnJ6fkyQJN4+OOJzN0GhOjo84OT7h6OoVpq77iA6UpYR4ENJa/5FgRhevQZTw+JM0pSiKOJ3dDmuQppmoa4tZMGmaRkzosPPH+Pi5aZtWMKGJxQ09afQdbDY1bd/J/Tmo3SR5ayQvioKqKvFuin4jwauKXEUIREmWoU3CELNZCC6ib4V2I5KWsCPpTONEXW/wk/gniPhT8VOEeECT98C5UXClWiQ3IfhIfhKz+1anX2QZWVYwDSKDSfOCIhKDpvjay7IEH3YDEflZQz8OFHkuRKaPmeutMehAzHKZePzkMTdv3KKL+Rt105AawzROgqO1hq6XX8urWWy8nVwnRmNtIlQwLfAHkyZYY0mtZFTgxVAuScQK5yZBd8dp/xS3LaLhVzsJ2Xq9pprNSOKBQ5DfYbcp2h4IkjhMEEyu323GrJXP32W8Fp2X58LWK7DdCmw/U9s/vzXAm5jVkaQSsLY9ZGtlSbURbKkbwRoUgTIrGLueruuplnORobkJ74RURgBHoJ9GUg/usuaDe9+hPFxy9egaH2wuWWY5eVnx+PKMeTBMVjEpg8OQJJZCKRIL1dGC+uKcB3/4DrNrJyyPj0jygiRN5D7aD6TWcPeV/YFgX9/79V1ThoyWG7Dc9ANJKsxqoUykXFnM4wRIJkI2S9nUG0KeS9ppnEhvpzBGi/xCI3i9IWp/lYah75kdVYzjtEuQddPEZlMzm81FcmQCF6tznn7wiLFpuXnzBlmV0TjHYbXAJAnLvKDv+h06TgUJatpyjbcSkSZuNtIsZ/SRyBP9DsVsJp4BAocHS0KQ8B4hb8R1/TCixoFHjx4BcOu5W7vGou97XNvjjPCoBzcxjRO5TTAB+lEMa0MryD/tHM/u38P7QBECtu7RTmMXJYvlgkELMUWPI+PYkhojFJ3JcXF+zuAdm82GHEnonc/nu9fincf6wHRZM5+V+CROH0fH2A8EBWkiK+opms6MNhhtCFqjQ6DpWxKryRLL4wcPsFkm2x+jSZRMVaYgD7nD5ZK10lR5iU1Sgu54Vl9inaMyCeOkUINDZRmHV06YwkS92TDzATV4TOaxSUo/jiIdsMmOmz15R54YLJaugR/+9CfROuPRvfucN8+4fv0qIyMfjB1379zl4YMPUZlhls+oreKoWsq2pCxF7hTRtavVCu0VVVnw+MNHFHlOkWXSGPQD0zRSzRbC5E4ykeeYhCkEEqMwU0vwiu8MG94t4c2rJ/gw0DoowyR871ERtEIpiy1yvBqwY4bvPcPQMNLx/sPvcMfeZeGWaCP0q6mfSJOEajGn6XvGtacqS9EAKyT3w5h44BQZkQuONE8F5+mEStJvNnjnKLUlTRXvf+c+T976Fq+/+CqfvfMCz790l+n0gjCMjH2PWWrmZUkYxMybpHLQ9S6aX51nNB0hHm6DUZHS5fE+oBhjloMiL0u00ihl5BDdD+RRf59qJfSTmPgbQqDZ1KQHCUma0HQ9bpwY6pZrV6/yeF1zOnUsbc58tiAojUkyJJ0r4/LyjOA9i6U0AfiUQOAov84YNCFmAYyTTJ1NNMKaOHkffBebwq28Jo06fMM0G0R/rxUhYiirowOOb9/k0fv3sdowAc4FFuWcPJvRdy1BWzbjRJ4kPHz6hCdPn/I6jvl8Jhs2JXkBPt5bdZym+3ivMVoTlMIFz+QCJkT0ptX0fRexp/L9BBVAxQY3TnB3SeYhyD8KtNLkZSXbtyRj07Z4YL1aMQwDWVGgY9hkHw2wZZkLVtM5mqYleEffdWRpQp4l+KBIrEFYq9I0Gi2J1JObKBJLYjOmccIYyzQNGA0hiLwtSTK8lcazH3qCFnKNifAEImnHxa3u9pAp2QkpfStSIaVkkh8SmcCrxEGSUFYzkYhqjfmYP8RHydIYTfppVaCi9GXbLEtzK8GMbhg4u7ykmpckWrG5vEApHY3rKalNcFMt0iptSLKCQGDsBoZeyG8YLfkbWq5PW5V4JQcrsEzKgYsHgaAYu56gxHej4zO57/sYMCeGboKm69qdtMp2HbrQ0VRv0OGjcL2PJ3CLMVmm/NthYfBul4Qt17H4QrbPlW3WAbAb4sn1Ij/7vu9xTl6H0poszSJpS0u+QmIwVgLyxFjvUUZTzGXzJwe6XNLOlcINk5jN0wzjPKu25fH5KTeOF6RHM+5eXTC0LbPlnGSz5tF3HnDlM28ytD3OAV4Oy9lsSRc02fyYK8856ouH+CRFjZ5NP5AWOSa1MjXb176+D+q7PhB4B0mWoLUDLbpUm1iMNZggN4EkSxlHx7NHT1hUc6qyQmkPWkvaaUTPbZn5RVGgvMMFCTLLbAJBRSKJEIdMkjD0jnGcQCUonbBe19jMMq8WTDfgcn0J84zRBVanKzKtWR4dUOYF987PcZvA4eGhBMU4+XraJDjZv+/wpkEHssSSmiWJEUydTkVy4IeR0PfUbpSbc1C000CSZSgfuKjXmCQV/KYVfnjwDuU9eZrKjcxNJCZFJ5YxTr67YWAMoEKgzDMeP3vKv/jNL/DjP/5nuHHreYbRce/+A+ZXjxhCYJ4XXDk5pnEdfjMBnlXfUWUpIYzM7JzFzVv0TYtzEyOK1bNzhq7n2o3rNMOADZBqw9SLFjhLEiGJxImOV8Kab+KKeFsBkXQYa9FpgnITxayShEnnmJU5aW45v7ygvqzJs5xqPqdpB8I00A4D1248x6Zp6NGURSUN22zB1Jzz9jvPOFlUJCblYlOj2g2zg0OUgX7sKKuS3vW44MGB8QqbaIyG60XFT33yddZ3bnL29CH5bMGd527iE80yyfnWW+9w97M/xnocoIOj2wfUm1pCoZR4VrTWzKoKreTB2Z6fySG2F+rSs8sVY9fTjwFjLQ458GVpKtr44Gj9iK4dz9+4xot/7WcIHmwzYBYpgx/xU5RwZB5jA64X5nowQudKizm2mPHciwrjITByuDxBaUNb1ySJ6KDTaDR007Rj3MuWRhKAJfpKGkjvvfhJbEJirTDGnWM1DgSrUEXFt85OUfkD2vff59/4mb/I+kT01bqakWYZTdviY9Ns0hQ/jSLvi4SSLpoNTWLFsKsUDoVRmovVCgLiUdCG1CYiZes6OeQhsrBtiFSSZPiYnLs8OiIrCqZ2TfAj3iiSqqCfJmySclQWJCA+CTRFNhPyzjBQlhVZlpLlGVPwaJXE0LxC8MEKRi+pu0YpHJokLzFKCYyAgEoSPFoOpEqhg4tbEdkUeecE92tFXvb6a6+hdML5xQXzqqR1nk3XcnR4RFEVtG1NOw0sD5csqxmp0RRVhbEJwcVck6EjSSypNXjnqOsagiKdzbCJyDB0AONF1nN5eSmZLhEdKWQeeW3GGLyS+9s4iaRNqEHS9CVakyZyr0NppuDIq4r1asWDJ89I8oyT2UzC8GIKsrWS/ZKZlA5h/k/BSWPrPedNTWaqnWdM7t0uGtwltBAlZlStTSQQ9Yx9j46yrbwscM6xWM52zeR2Mj6No9yLvGc2n8nzKQQsmmEYSZOE2VFFnuc0jTSUTkHXtMxnMghou06eX8Zi0gyjJHF5cBK0No0TRV6ipRdncrCYV3RdS9d2DH1Lnqb0Y08zDqgpx6QFm7qRwUua4MaJIs8Fv50kdG1LQLbsq/UKFcT4rKP8qChLun5kmWcoK0GSbhLk66g1aSL+lckPeA+Dj1JbJFcHBTp43OQZ/MQwSKq1V5Z29LTjRrw/qWBuxZ3sSbSR51/MKAggvgWtMUgwm49bAGn4t7khU/RYuZh5wEebp4iaTdOENM0j5SiI9wTx9YzeMXhPmlhSLVcxk0i0NBIUV0YKoHMupppbhq4ntZb64gLnHZu+4fzsnOrbGXU6Q19Zsjg+Il11NO3Ig9UpPHqE6TznZ8/QyrDZbDBJwmy+oMhzFrM5Z+s1F89EWri8fp3ejTRPn3BFJ/Dym/8/W6x97etPTv0xgsnsR0ZiBd5NMnFXioDHmIT7Hz7k/nc+wEyBV199hTRb4sLIFHF/ZVnSNA2r1YppmgQjZi3aGrQW3J/W2/RJJc1GRJspZZkmxzR6MakFCTmySUqeJ+SpxijNolqQZ5q+k1WpTTPmZSVSEG2Yxl50+8Yy+ZbgJFEZrRimEeMdVZJh0RwcL6n7jvW6RntPkUgaLKMj9COHh0f048DF03PyecHVa9fEwNvU4AM2kQj7LC+iFjQQnItGQkiLgqyc8eSpxMBfOTni/PKCvKpQxrI8PObJxQWz61dYHixY1y1f/73f57XXX0LNUmbZHO0dj88ekxwcslguoPNilpzPePz4KaUyVIslffeMth8hTQgomnFg6luyJJU0WSc39O0EaXV+DmjSLKferKLcQHToaS74xW4c6MaB1FiyRMg8INPpPM1JM5HU1O2K0/MnvPLiK5TFDGNlW9I2NRkKXRZ89Xd/g5DO+dTrL5GXS3yeUc4z2suG9uyCO8/dJjtY8vDDD+jbHu01Z5s15zqQlgWFK7EOFmVBcft5Ju8ojg/RScL5k2c0fUuqDDduPceT+w9om0ZkBS7sHnLbBFalNWenpxxfOaGazRjHiWEcWR4e0dU1KBXNtrK/VoCb5PC3XB7gFcyosUHRRm17mmWYAMYkOMS8aq2NOm9J/TWJbD8CgasnV1mfnYrOexrRSGNYzCvR5gbBVNaRolXl0phv99o+iJ5XR135GPXkKghlxSYJwcsa/mB5wud/7ueEmLXe0Aeh9GwbyhBlBVtDojaGJASCcZjY1EU7kCTdIgF6zrk4tQw7aYHyAT85vJp2YUpT30tTbiwhbKeTohFP4wBhfbHm8dkpL775BtZYmtVaGi1j4kE2UG/qXZqqBHcZmcBqhfIKqzTN0OGmLZoViPIQozXdOIIOOzRpbg0h/v0SYtgTvMZtEaIeJh8I0yRm+zTDaM0n33yTNm7cTk9P6aN8b7Ne8+EH98jSlBfu3uXqyRXGrsWNI5tNDcaQlOIDSayEjY3jyDiN2CSN/oFAliek1u5ADtZalBZizjYQTZo7kUg6PzFOEwodiTbiJ4JAvdkwDD3VYg7K4LzQWg6PT2j6kbbvIJJkgvfxnh99M9YwEtAhYJDPhRkdKGl6tTEiC1LicyAQk5Y1Wrg5UW4lh5Lgt+F3amd2ttaSJHLvVFozTbJF1tHDluclASdG49ELRYqtPl6htcXaaJYNkhGQWEtLQIN4BKaAG6eYjGt2ycp5qTBpSmo0xijmpaB0gwusLld4Hxj9iFOawYsXzNqEYCEQKLJsp7EnfkZ9NOdXVYnC0zUyYZ+cNN0mkW24SURmo40Wf0vcuFkrG3nvZbIfgMyKD8FPEz426YGATbJo6DbxOTqKVDDA6FwMcHPkWQJydojPJrXDDIPkmmxdSUppiBQu+VkZ0tTs6EJb70AIH8nVtJKtgLV250+YJpFRlWVBsBa9lRhNDrwnzQsGHwP8gH6c8GMMRZ2XMHnWbU09dNx+6QX+wosv8Nu/+s/5B7/wC/z4X/4LVOWcJ/cf8+D8Ceb6Ic/Oz5lnFdffeDnmR3Q8ffKEXnku61PUQc7tT36ShQp88w+/zr2zp1y7dZsHp2f8r7/0S/w3P/tX/jh91b729Sey/hgHAmTqjcg6d4g9wGQFwzhSzhf84Gd+iFmW07U1k5pi+FXYIR7ff/99xnHk6tWrOO+5rGtmEfvpXKCqKrxSQvSITPiA5ArUdU1HR2ItPgjb3BrNwWKGNcDkUU5zuT4XjOnoODo+InjP5flFZE5bbCYG3KZpmGcFi/kCpx3eaNq6YbOuCQ6SvKDrRXu8mC1QRtP2DdZDqjXBOd79xje5tTzi6s2bgh9tW0H9ua0xK8MH4aeraLLcejHSrGC9qTHGkiQJ77//HaxS/NiP/RhKaZrVitIa7PESXOD6yTXuX/mQs6bh08/d5nLosZnl8PhIjNJOJjBVVfD07Jwv/e6XOD4+5hMvvcriYIlNE7owslwc0DU1owtkuaYbBtq2lYdq8BweH5HnOfPZkvv373Nxfsrdu89TFAs5NG3N2ZPDTYFBC3lGW5FXJNrQtA3r1RqTZFRVxdiXDHWN9TLZTJVIxVJlGPqBH3jpNc7qifPvfMCNa4EbeYWrJ+pNx3vf/Ba68xweL4VRX1S0XU83TaSZQVnLFMAqRZg8s7JkCh7ft+hoUH3+5m2uHB9TJKkkxEaN7MdpGtvGua0lfKo6qWjqWqaYzsuD2ljKSNLqI+1jjPrbtt7sqCtN01CYhCzPKGcz0iIn0YqAJigTCVwjIb4OFKw2a6qqiq9loqrk66tOgvwwIhex1u4MiG0XU2qzHJSYiINzDD4wuX5n0N8awT+OAvRBJtuzIt+FjKXLObgRrz+WSuslyGubXDxt0ZZBCB5BO4yVpG8xbeqPuOjRcLjVneMdk5JDQYgG+HGaMIk0mtZahn4QfbZ3DO3I2DZsNg2zhaBLszRHK8n7UAZ03FA+Ozvl3Xff5XOf+xzTOJFlKd0w4OMpKctyyUXxsvGZQmB04+5+tjUzGyUbAR9lTtL0CDTBBznErFcbqizneL5kmnnxHzlpwMe6YZZljNPIjcWS5OQECDRVxWFZkmQJV06uoBDT8jSOeGRLqJzIN4KfxDODpC0HFG03cHJywjAMXF5eUhQFs9mMzfqS5cEhw7CKrzWPRlBQymAVEI2o23u2CuBRKK158uwpr56csF5vRAJqDc6N3LhxjcvLFWli0Xhp7rQmIBuYzWaFzy2FNmSpHHgTPXGwrPBB4SZHHxvFyQFKxzBAHZ8pOspLxFOlEx2fK5qpFzlnu96IKTkeGKTxTKKufSt/Mqgw7Rj8W+OrSEEdeZ6jjTTFW/Nzoo2AFJwXyVi8RpxLsNZhjEy9h67FJHKw2VyeR6KRJNGXkbSVKPH4GO1310w/SpbOGKVvxlqyIqcf5doKONw4kef57tq0Vrwzo/PxAB6HYyEQECwuTkLptDISquk9+CluAxVGx6yZYSAoSSPfym7HacRNTt5voxijOTsYA042PBrJCEER/SofDQN2Bv+PlYrm5K0EbYrf7w5nuj0ERU/G7v3pewwK7QJhnJiC3/kytgnEvZeNlkWTaYtJFMZaxouG+uySlw6u8+Gzp3zhV/4pb37idXIP86NDvvTbv83bf/gOb77xBo8uTtFVzo27L1KVM9qhI18suLpYcvfFF2iaWuTBAc7ON3Ta8+IP/in6KWCM5fqV67z+5hvfbZu0r339ia7v+kCA8hFPNqJDfGAiFIih6XHIem/seupxJM3ETFwUwrZfrVY0bcvB4SHPPXebNM14+uwpXju80oxe1tpJLlOVtm1RWku4ipbUzaHvCc6zKCvSPGNyA0Zlgq9zA2PTSURxlnDt+k26TgxlZ6enMHkOF0vaacT6CddIo3nnxi2uXblCM7Rivps8Qz9SZDl12zF6T1nNGSdHO00MzrG+XJMFRTrk/O4Xf5sXP/+XwDkSrRgixs1EQk0Igb7rKKqSVAnlRVa50nD0ccKrtabIC66eHAvdZZwwaGxq6cyENZaurnn9Mz/Iv/yN3yL/na9x58d+kLFvmc0libcfBON3kqQ8d+cODjhYLNDOc/bkKQeznGW5xCQJrlZ048Bw0aGCeAeUsfRtzfnFBbPZjD7mKFy9ehXi1C21CZPzqASyNCVRCU3TUHc9JniUMQTlowEuRKN4wWKx5PTZM6b5wHy5oO87xr6nmM1J8pRXnnuD3//mB9y/9y7DNDGMgeXhAcXt57jqXqZYHFB3PVjDMPWEIuH4zi2sl42L0pqh6ShSmYolxtK5gJ+EYvLSnedZVnMevPceaZnTdxHP5ya0huBVNG46hm4QeVLTogXYTZ7lEDrhmCMscqI0Y71acXBwIMSsYUAlVj6/WSBXGW6c6HWPA7RJMImSxNRp3Gm7dQxI2mZcgEJbiwuebtNispTn7tzm7OyMEAIHR8dMwZPn8sBHK4ZxQisvsiATUGb6I/QPvyXVRD330XIph1g/CJnFe3QQ3G86q3YygOA9xMPTFD+7Os4Mh64HBXlRiH8hNt8GhY48/Y9Y52KItVrvvD3b116kGRORTmIlbVbIQgOb1Yr79z7kz/7sX+LevXuUmSTo+q6jbTpWm5qD5RGvvvoKd164y7fefZc7t26RZeI/+fihT2tNnhcYY8F7gnf40eGUQxlNGo2UXdvh/Eg+n5MmYnhO0oS2rZmXJfOTknd+/y2+eXHBjdvPsbx6Al5QoKmxpCANXyr5D13fUOQZxdUrMmWdHE0n97Ysz6M2HWnYncNvaTLWEJyYKJfzObDNfBBwQt8NMkTxcevhROeepillKdNuwpYUJO+vmxzey1YrLyvuHh5y+uyUk5MTAuIdWC6XbNYbsiTFKKIXJEpFpgE3DuR5SrKoSIPgZOvzM8Km4Up2k6TKJXxs2O5hpNG3Zusp4COjsJffY4zBxhyVi8tLijxnHCTNeZ7MGb2LG4MkHk5dfDbo3YYvwpnAC8bTKI2Pn6vdteDjn9tOsZXCpjlKB8bWYdKUyiY4F1jXa8qyQGsEiWoUNhXpjE103BaKGXvsOsamQ1k5CHT9gA+eJIYcKqeZlEhr69WFILbzGUrLzsZH8IVNPsJzRw8t1mgsKhKVvAy3Imp3mqZdRoHzH9v0ao3V4EJA4+Vhr8Q3IkMIhQ2BLMsYBzE7O6N3ZKMwydZiiyk1H2v8gd3h+uP5Bdtf226axSwuP/eu6+j7niSVfIwyFQ9J30ayVJpAkUPQlPMZdhxle92PtJuG9eWlEAM1PHz8kP7hPeZXTwjXD/nqsw945U+/yk+8/pf5xhe/ytvvvMfR87e4+/qLdOsalyb4ybGwc0IzoYaWftOLZDnSzJZec7peEYyiyktMTDgvlwffdZu0r339Sa7vmjK0r33ta1/72te+9rWvfe3re6/0v+4XsK997Wtf+9rXvva1r33t619f7Q8E+9rXvva1r33ta1/72tf3ce0PBPva1772ta997Wtf+9rX93HtDwT72te+9rWvfe1rX/va1/dx7Q8E+9rXvva1r33ta1/72tf3ce0PBPva1772ta997Wtf+9rX93HtDwT72te+9rWvfe1rX/va1/dx7Q8E+9rXvva1r33ta1/72tf3ce0PBPva1772ta997Wtf+9rX93H9v8Xz5f6ZpsD3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "image_to_visualize = 0\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path, label=labels[image_to_visualize], prediction=predictions[image_to_visualize], class_names=class_names, save_path='./example_image.png')" + ] + }, + { + "cell_type": "markdown", + "id": "6c9464e8", + "metadata": {}, + "source": [ + "For the next example, notice how we are only passing in the given labels to visualize. We can limit visualization to either labels, predictions, or neither." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "57e84a27", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:02.830526Z", + "iopub.status.busy": "2024-05-24T23:50:02.830033Z", + "iopub.status.idle": "2024-05-24T23:50:03.047987Z", + "shell.execute_reply": "2024-05-24T23:50:03.047356Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000521141.jpg | idx 3 | label quality score: 0.8889923658893665 | is issue: False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAGVCAYAAAB3rxGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9V5Bt6XXnif0+u/c+JjNvXn/Lo7w3AAooEIYACJACOE12x4yaI81IMQ8TCpkISa/zqlCEJhSh0PSE5kHqCE20Qj3D6WGT7BYJkrAFU0ABVYXyvm5db9PnMXvvz+nh2+dk3kIBvMVmk1XgWTcyMm/myXNObvOtb631NyKlxCIWsYhFLGIRi7i+kH/fb2ARi1jEIhaxiI9SLBLnIhaxiEUsYhEfIBaJcxGLWMQiFrGIDxCLxLmIRSxiEYtYxAeIReJcxCIWsYhFLOIDxCJxLmIRi1jEIhbxAWKROBexiEUsYhGL+ACxSJyLWMQiFrGIRXyAWCTORSxiEYtYxCI+QOjrfeDXvva1VNc1WmuEEMQYkVIi0AwHQ9q2RWqNtZbSFHz8gU/yv/jf/y9pTIEUIEQipIgREvUesSIhBAqBFOI6300CkfJnQCARCEQCQX6t7pnzQ0n5+/tebxG/PFJKpJhACFLyyBRJCZIAZN5rxZAQQiCEJOWHElNCKEmMzM+lRNCdhPy4/Ar5yQQgEolI6s5RRKCQpJTyrm5+reTzHaXEE4mI7px25x6BJCFiyj9J5DfF7KKAGANbW1v8l/+Xf8ZrL75Ku7vB2toGbWm5+eEH+b1/9Pv8iz/8//Lob32en/3Ztzii+jzz0gv8b/93/we+/a//kOn2VQKJ7a1tloYDlNZoaWjbFiQcPHKQ3/rqb/HWO2/x1JNPE+wyv/ef/SfUW+v84L//H+gZTSMDa1fXSVKzKxNJKh5+5FF+/w/+gL/802/w5NM/4qFPPszAaHpCcfLlV2gmW5RaQpTEJECBdzUQCTFy6eoGX/7Kb3PHHXdw9txFnv35C5y9cIGDq6sMBj0mk5rlI4coBj20tZAim1fX2biyxsHVQ1y4cInjRw6RgqMZbaGTR/iWMhUkpTi/dgWKgiM3HueOu+7g1aefxTmHtXZ2wSCFRNQOBDgS0uSlJYVIjBEXPbffdw933H8vtW9ZW1/nzVdepd0eY12ClEhK0PqITAIjIrvjEUEpvC7x0tCMNhY37iI+FHHdifP9QgiRF9T8HxKpu4kEvmlREWzKK6aQXcJKqVtoxTyB/bsmsnlSFLBvpf2FSOwlz0X86uhSDk5IhFRMXUCGRGlUTkwyEWNeMCNpLynGhBJ0CQyiyolYJrEvaXZJGLovBLn5IZB4EAGASEJI0aVMAUkhEsik84WbumuOhMwv3j1lt6ES+TXTvpOulKYoCmJK5EszobWBBEVhKaXhz//HP+b3vvAV5KjmJy88h0stympCDEglUUIRY0LESJQBaRTD5SV+88u/xcnTZ/j+Uz/B+8TRE4fp9fvQjEFIpFJIBdoYWh8RUmJsgRQSiaAyBhtA1S1HDhzkxWefw40nlNbifYNICSk1KUWUUISUcM5xcPUAjz7yCM89/zw//dlzbO2OWT10iIOrq7RtA90mQwqBApQyaKUIznHx/HkOrB5CCEFd1/m45Z0uEUEIAaU1d91zN7q0PPezZ1DOo5QCQGudNw4pIrv9iuw2VyFGXHAsLS/z8L33cOT4MWJMnHv3NG+8+SZbG5v0lKEwJQnw3pOSzBvzvJTsXY9C/W1c1otYxN9KfKDEmVIipTRPdLOvY8wL1mxpFELgmhaZQMVcdcQUQQlm2rhCdBWm2KsUf8mrdp/FL35bvPfH6ZofXfP//Y9dxK+M2fETKeKk5M3zl3jrnVOUSrOy3EcbQ1EWmLLEWItUCqMU/aKkEGDJadAIunObN1jIND+LXUHbJTwQMV9PzJKSFMRZkqV7nIAUQXaJN4nUpcr8rgUyb9yARAQR39trQCpFUZSQ61NSt4FzzqG1JtYtbnPEQ/ffz4s/fQahEz7V6ELhY6DQGkiEGFBC4qJnsLTEl776FdY2t/je95+iHCxz7NYbuby5QxRgiwKURCjZbQoSQkisMQgl8SEgSKgYKWPkxGCZ1555Frc7ol8UuFATQ0IrSUwR2W1YhRAorZFS89KLL/H0T37CaNpy6PARlg4coKhKXAgkCVIoFAIlJMQILjDZHaGUxmhNCBFrLD46UvQIIKRE4x29qiI4x5lzZ9FKIqREa33NvZxSIgoQUhJjJMVI7VsOHTnMw48+ii1Ltnd3OHXqFO+eOsVkPGbY71NKjQgQnMMHj1QahMznWQhCYq/7sIhFfEjiuhPne5Pl7GtSom1bhBC5jYtASYkPnhRzi090V70g31hi9nxdRcDfKKmJ7ma6NqHmlp/Y/7D3+3IRvyJ8DGghIUXaAN956lmaxqNNSf32eVKEJAQh5nRllIYQKfslqtAkmSh7JVVVIkTESsmgtBwcDuhZg1WKqtdHyUQhJVokrBQokRd2IQQySqSU85ZvSLOORUTKfJZ98EhAIUEKfIgoKQkkpEhdIp5t6PJFppVm0O8hpUAKiVIKnyJlWfLcc8+xcWWNvrQcPHyY/nIfJQJXLpxia+MKRVESvCcEjzH93M7W8Pnf+iJ19Pybv/hLkrT8wT/9T3n9xVc5fWWDkCLKaLS1OO/wKqKNxYU2d2KEoGlqmrrGaslvfOIxzrz+BmE8ZlgaWtcCCWsLAGKMxK79GZJHpMjW1hbf/e53aZxDFCUHDh/EFiUASQlQipAiwQcGPcPFCxeRQK8o88ZC5Hs2uIQgYa2l9Y6kJNaUbGxucvKdt+kNBnkzbAwhRpRSeUQjZa5QZcJ7h7GW2jXcdvvHuPu+e+kNBpw/f57XX3ud8+fPE4JneXmZ4XBAaj1p1ACglMIWBaENpJRHQbN1YTFeWcSHKT5w4vzF70OKEbqdZkx57tJ4R5siUSSiEAgpCICWucK8/hDMXnqvdSNmP7mubCj3PXZx+/31oRDEJEgxcnVjihI9BhU0PtAresgkUELhnSf4gBaGVICrPU3t0FqxfmUHEGhtUUoxbcZEEspKmqbBSoPUAlMakgwYozDWYJSkMJbCWgb9AVZrlFKUWtEvLIVSGCXQUqKVQmuD0gpjNCEm/LTl8EoPFSNW6r0rpWs5KKXo9fv5mupatdYYNjc2eOZnz3D02DFOnzuH1wJdKu6+9Ubeev5Zmt0dekUfaS1SStrgGPYGfOGrX0IWhj/6k3/LqK75g//ZP6W3dABV9PAxULuGJWNBSUJIJPJG0zlHIxLDqk/TtEymE/r9gleee4PYOgqtaNuaKLs2eALIs+cYQ642pcoVJLk9qrUBpXLHQCmkEgiVq+IQA1opzpw6jW8dh1YOIFLeJAmYYxaSkDjXoHRuBYvu3pVCgA95xi0VUkpCCBhj8N7ljbPRRBK6tNx/z13ccfedTOuak2++xSuvvML61hamsAxXlhkMB/SKkiaOmYRpV8GGvDHvWsVC5GswxYT3/u/lXljEIt4v/sYzzv2V52xeOatAYwz4FIlKEHSeUSkpc3vrA77ONUCf6/2d9/l6kTCvP6SAIGB3Z8TFC5tUsmBnZwMXI2VhcW2D7vcoB5KmbvGhQSuNJOBah9IDytLkxCQCZaGRyhJipLAljdDdLigho6CeRLyIOE3XwdghhkC/32cymaCUQkmVF+YUQYCUAi0V1hTYwpBkQkuFiXB4qHn03ju44eCBfX9VvgKUlPSqEikFKUWEgLZt2bx4kQcfeoieqXj7zBkaAocOH0LFyGRri2FREFIiCZHnnErxxBNPUJQV3/irv+LK2hpHjt7ATbfexs64pqz6uBjQWrO9s814OmGpsITo5xtBrRXBe2KKvPr6azz/ox9kUI5SuNCSVEIZg2s9Sihc21BYS0wK53KlF1PoPkeU0mA0Qso5kEtIiVSaoiw4f/48WipOHDtGaB3GGELrukr+2s1xosNvdd2iGGI3Qk7zGTLkdUApjZSCpm5YXlnhgUceYrC8RN00vPnGG5x6420mkwnaaIYrS9hehbKWsteD1rPjPcqoXEVHj9Umt7a7zY4QLBLnIj5Ucd2J00iFkTK30mLKKFgg4rs5UQfhUIqAY210gZMXL2JWDuKJ9LTlYK8E2aEwZ+XfdVSf75f85BxRS4fG7CAmad9jF9nyV0bqqph89GT3/0BKAZ8U72wZLm42tO0OvnVsb22wRa5SDqwepO1ahrn6cd0iHCgReV5nC0b1mK2twLhuCRGWV1ZzG7BLnKurBwm+xlqLFgqkQBhJVIGyqEgxXyRSaawxTMcjYmjp9XvU0ynteIQ2BUpr6tohVcGlCy1HVg5zdLmfCyRpCSkRCCipqGxBKQy1VHgizWSXst8jTXfBSiaTDexoxNPf+jajjU2sVEQX0FITErQp8qnHP8mBW0/wx//qT1nfmnLfnQ9zevMqW0zwOEoDBMfu2iY/+873sGVJSh6TIqqUuKbGhsSSLrjnpsM8980/wwiFNZq2rXMFJxQqgBGaaQA7XOW3vvBFvvvNbyAUEBKSRCVqdoNDFgVClV21BvV0ihASYuDUyTdZWVlm9fBBUmVIQpKEIeJpRU1VakLdIlTM82af0N3mxEgFArRSe4DAuNdKDSQa5zh+63EefuQRirLg6tWrvPLKa5y/cBFteoRSIYxEmgGm6KOLklhWpDKBXSMmkB6SigTpSTJ3r0QCLaBQi8S5iA9PXH/FmfZmhzO04l5mSqQUiambwcSAalv++f/1v8LZAllYKqn5P/6v/1cMbz1B2Pervwzpurf53Tex3Hu5a9/aNc+x7/Hv2UUv4r0xO5By3gYXQpCEZmdUc/nqBuPxhBAjnoixFqRAk/AxMp1MiSkhpUJqTdM0iBRBSMbjEUFIhIKy1+fq9g4CibIF29vbeO+7ayVx6dIlUkoMh0OKomBjYwNrLcePH+fKlSsAFGXJytIy0/EIQTdfaxp8cKS64cDqKt47ZNIYJCFEpMhbu3mITFspioLoPUppEgmjNdYaEhGjJTccPcIf//d/yHM//Rmrwz7JOaTMoCDvPIPhgBM33MA3/vIvWVtf5+u//wdE7zn1o8u0bYOMUFmLEZK//P/9OV/7whd554XnuHj6bYQMGRQFrCwNeeihB3nhhZ9jlUIJ0c1PTQbikSut2HiWDh7md37vHzMZj6gJiBRJISFjyElsDsIjz15jnvfWzjEZjagnY244cQJjCxIZUayNQTRT8B5bFRy96WbOnzrFZDLGKkMMieBDfr4uZmjalBFHNL5FaM3Djz3K7Xfezmg84vSpM7z22mtcvHgFpTWD5T5RtbTBYWyBMQXGWLSxUFb5/u1a71EmGpePoZjvrH8lenARi/g7jw+Mqn3v/9+bmPKcM2GlJqaEDh7hBIZEszNC7KPw7X+2xX3x9xOp4+BlEFdmVDokZy+tsbm1DSQOHT7CxvZJkhLz8ytjzBSkGDPSUghCiJmj6yUxKJLRtCmgksCWPZTMJ35paYmmafA+0xrKsiR2YBNjTG49xkjTNIQQaJqG1jnKomB9c5MQPD4EnHNMplNSyuCh9StroEpWqn4GiYlrt1OyS5zWGmYLshSSNoRcOaXEytISNx8/yusvvcjK0hBiIglJSJlmk1LCBc83v/lNzlw6zz33PMBd99/Lay+9lGe/IbeDnZbsjkaoFLnr/nt564XnCDGilSD6wIGVFe6+6y7eeO01NGq+GQ0x7EtOiZASN33sVj77m19m4hzf/OY3mdY1Q2OJIlNF5rSbjgIUQoCU2FhbQ0lFr+rh2xYpLSkKdGGIrkEp8G1N3xzhhsNHuXDuDKPdHaw2xBCRUmeAlpQ45/JxlCKDAZWkbT2D5SH3PfgAt9x2G1ubm7z9ztu89dZb7Ozs0uv1WVleQekeAUE7zedbSolUmaurjSbESJJQWMvETXN1KxVCC2SIuZu0WCAW8SGK606cKaX54gZd1SklSe5VobPHkWAqImUhqYyi6JWoVuHbjBC8pj4Ue8CH7jt7z8PshnnvXfPL+7u/8Mh9yX5Rff5iCCE6uk4GoQShGPnE5Y0Jk8mE4coQ5xukVpiin2dyMWFtCShiDBilIMHqyjIqJPpFQYoRVRa4EJBJ4aQhqdlrZX4gdIl7JqoQY8erzJdlCIGyLLPQhhB51mk0QitcAlVWyJDBI1pbtDYkoWjaBtf6jK/e337oaDHa6HkvX8icTGNMuNYR25bLp0/T0xLXekIUECWSjmfYvc8rV67kBKMEo9Biy5LYOlIbmE6nfP8H32cwGNBICClSlSWCnFSJGRR09tRpovPojgsrhKAsy/mx8d5z02238unPf4710Yi/+Ma3uHLmLIcHFTE5Ykzz45mEANXdOyGwduUqbd1w8OBBxts7kATegTGW2AGMfGg4cfQwd91yG6+8/CJNM8lgI5FBRSKJ+T3fNE2mnSVQ1lC3DUePH+Pjn3qc3nDAeDrl+Rde4PTp0zRNw3A45ODqwXxOsMhpjeo2WMZotNJzgJPWGmLmBSulCSnMQUm5m7UPmr+IRXwI4gMlztnHbK5FByp47+OEyHOwuh4z3WkoJz3kROEmU4A53f39YT/vad6+by/3/X9zlmPFe5LvIv66yNVXSOASnDxzmd0m4L2n7BXQ5AW6di3WGDSZY2mMQauSkEJu/8XEHffdwXCpz8XzF9lc3+SA1ExHU7zRtCL/juhaf7MEKYSYVzYzZaoZ2GyWRGbyRCFlDqiLGbASEoQILoRMq1AKmTKwKce1ULEQchKTMgN8tFLUrsXYzGd87umfoIKjaRuUskhREFSugEJbk3yLZE+vCCmpo8cUFhET7XjCd/7y29xy441MdycE1wIwLEuS98RCo4Xi3XdOcuz4MawtkHGvFRljJISA854777yTxz71SU5eOMf3fvAUo80xR44eoXItIgWa5JEit0/9ZIoqEgpYv3wVYzTHjx3reJoGQf7cNI7N7Q1C23DTzSc4PFzm1edfgBQplMGHthM1SbimoSzL+WYZwAdP1JI7776b+x9+EGUMp8+e4YUXX+T86QsoKVg9uMpwsITWFmstCd0lwSyKMGdXp0QIeXYZQmDSNOjKMBsdpJiIKRFTIIbFvbyID098oFbtrDLIu0YDUtK49heI0EBeIJ3DSIGOAZFkBo+wh8LdH7/I5/zrq0Ox71HzX5vJxLzn1xfV5i/GrG2OSATvQBu2RzXbo5qLVzY4eugQWWomq8NEslJNDIGy6BHaCF2lWhQFzrVc3VpnK+6yPt4gxhpQeOlIItOUUoxI5DxRzpJlCGF+/exXpSmKgrquSSFkjrBSmcyvDUoJpDYImXLlohSBhDZmXh3NuU+iW4hjzMlKKpSSdDRGDq6usru9TWxbDLmlCoLgA6vHjnHvHXfwox98L1e9SSCDQCqD9wFHpmP1y4q//PNvcNONN/O5L32R1954k9q1TH1LOewTUsCQVXuG/T5Kqr3rNyaQZIm6lLjvgft54okneOm1V/nez37C1taIm47fykq/z2TtMrGJZOUk0EqgEaQQaKYTGtdw5523Y43tWqOZttLWLYFcEd90wzHKGHnz9dcgRLTRtI1DG40LLisyJeazaMjJzVrLo5/4OHfefRdXNzY4/c5JXnjxRZq2RUjD0soyg+EyxlqqqoctSpzLLeWQMh1ntgGv64ati5cyrUUpdFnh6arNtNfJkkJco/60iEX8fcf1V5xSkKQgCpBKglKUVUm77a5JnFm/VkAKFFVBYZfQyhBKWJ9mgAgpo2JjBypCyFkjDQDZMS9hT2nmvRVqt97P/z+XPv13PSL/gCKljlqQMlplGgJnL425fHGXqtCogSVoTdhtUG1EKsnIeUgJqyKtawgxYpSmSdA0NSdfP4kpbaYPhIAUMOgPGU1rlDHUdUNZFHjv57PMGScwpVyRwt4mbJ44RT7Bxmh8iATfUpZ9TCPwMc/BpC2IXhKRBLIQgppdQ904QIqE0hplLMIFUnDcfOIEqm1wG1sURQYMMfVE31L0l3j8M49z5vxZvIwIEZFtQKWEEBoZNKlxRKuofcukbvnq7z/C9niELSpiPaH1U0IlGMuWnqwwyqBFQXBZp1d1wCAdJCNX88jnPs39D93Hsz//OU//7OdsT1tWV48zGA6wRtOYgtHuGGXA4UAJdMrPNW5qisIgiAgticpCUeHlNqPRJn1fcP+tt7Jx+QpvnzlLryxJRIJr8/0TBYUqaF2LNBJJQsWEjImV5WU+9ZnPcOCGE1zd2OS551/k5KlT7E5GHL/hBlzYJmhNKktkWWEGfZTSuDBBVRY/hpbcjp/ujrh48RJhMqWnDDEGWkLmqEqZz7EAoRVCCqxatGoX8eGJ60+c0A0kBT4ElI6ZtNwp9exPnogsqI0sCEKihGbqJ4zqcSZShwhaZCCJkPiYaQL5NfLrzRa796OiiPeR6ZPX/OLe4xbxK2KmAhAjKQl2p4717TGTSctguUBqSeMjWin6RQ+XAi2QUkQrTbK5lSq7cy6kQCWJTjLTSERXqVYghMQ7j5Fy3u5v2xbvPSEE2rZFKYVzbs7Zm5kKeO/3ZN061LaUghgC3reETngjdUOAmKD1nhC7sYDqBPkEIAVGG5Q2ON8yHPQxSrGzuUlpNM61JJ1QRtMrSz79hc9x8cpFfvz0j1kSAt+2FEozbj1JClwMJB94+umnkTIPCZrgOViVWGuIbc10e4utzQ200njnkUniXaBAoJTBp4jQCg988Stf5ejtt/Diy6/w5JM/QgjDoBpw0823kKKjLEtcb0I9GpFwCCVJQUCcqf4UFFZDzDJ+PjiMVsTQElvFQ488yMmTbzPa3KayFmKczzFnMnq+442GFHJ1bwyHjh/lS7/7OyStuHDhIk//7KdcuHSJJODYiRMUVYXWk0wnUoqiVyG1RmvDoKq4sh4hRAySycY2ly5eRBjNgaUlZNPSTsZ5fpwSoptbC6lAeFIMhP3o6EUs4u85PpBy0Kw6UErNF7x527X7mMHoY8htuRgjbWjR2rC9M8K5Fm2zqHYW7k5omevPWc04H2sKQdpXdS7ibzmSYC6MLhVnLl/k3JWrSKsYDnu0IeEax3JZAoKqqmjaTm3HGoTIIvBKZg3YWU9Ad2o/M/1XpRRGZ1WZWWt2RrkA5sCf/SCgLPh9LdE+dtSLlBI+eEKK+BCIKeVEGTwhZN+UumnxMaK02Dcnl6Tk0TYT9rXS1HXNdNrQ65W0TYvHZyCUKfnMZz7HaNrw7e9+j5XBgNJ5MDBpGlwMeAKexJPf/g4HlpaJg2XG61c6pLJA0HJouc/LP/sZJ197lZ7tQYidkEJG8UpSlgjUksd+43Fuvu8uvvntb/PzZ5/n5uO3ctONN/Dc669hC4vSRd6kKEmIESlSFiYQAmMNTUqgND6BDxGRIkYKhK+5+9abufnoEV574QXGzQSr9BxFrcW1rXKpJM55EBnYlJSgHFR4q3j15Fu8+INn2R3t0hsMWD18CGEyx9ZYQ0pgtEYrheo2SUoqbBL0k6Ze32ZjfZ3VQwcp+j2Wqj7jtTV0p3gUReaICp2vhzb6vDlZjDgX8SGK6+5/zNqwM/DCbPYxm3vOuZzdz0EgpUIrTVVVANTTGhI4FwipE+gWgkgGfLAHufjAsR+8tIjri5QC2YMERtPAxfUxU5/oLw0A8N1Menb+mrbNMnsxEkLM7bSYeX6z62BGUdo/r9Ra5/aoyrZzs3asMWaucTybayqVFWRmj6mqap5UZ3xC2YHSVKeMg5B72qbkPNk6h/dh3gHJ388Va2Hz7C+lOH+/8/ctBUjFJx7/FElovvfkD1FFwf/k67+bxeFTnvVnQXPFzsYmW5ev8rlPPwEhEFOkcY6A59ChJW48dojTb76BTQIZMnI0IhBGgc7PI7Xk87/5eY7fcgPf+uF3ePbFFzh24818/Z/8hwRlCErQxoCwGpcCQkIUe6g5rTWtd0gp8TEidVZtslaRfM0NR1c5uNTjtReeJ7RTjBRdy1rMwTmz4z8btRRF1sa1xiCB3a1tvvvt7/DD7z3JZDLh0KFDmRdqzN6569DKHfMSlAIliSqDyVzTcPXyZapBn97yEmW/T1VV8+OfUkIJmc9r9z3vPcvLK3zm05/+2734F7GIf4f4QIlz1tIJIWQU3GSK6tREpJDzlu2MTwYpk5pjRBvD+vo6ly9dzlqoIdsQhZQrnpm1kkgdMCDD6j6grm2ORfL8ZZGu+Uiiq3yAd89fZTRJ2LKiKDMK0rWeXq+P8y11UzOdTnHO0TpH61qapqZt2+7D0dRNBsu0Hu9CTrLd7NJ7j/duXkm2bTunnvR6vZwYu0Q7S4DGGMqynCdiISXWWlRXtVptsDqDbYzSFNZ2bdjc3g2tmytJzeblUgiKokSpPFedXc8pgVQKoTWPf/oJVo8e46++9V02d0Ycv+FmTH9AHSNNynKSRkqE84zWNrFJoJKgLAu0UkgpcK7G6MSlc+9iYsSScVZCSIw1YCQTVyO05D/4R7/P8tIyT373e/z82ecYDgb89j/6PUYp0SpDUoZJPcnUHq2wVUnd1PO/O3VI1QziSTif59Dj3R1uuekGXD3m7ddfxQqBTmA6oYWYYsdpZY5enlWebdMgu82ySoLR+hbn3zqJbmN+D0VB2W2o8iYkZREM57qOQOhoJIJ3zp9h4tvs36kkveUlquUhRVUSSVRVhQ8hb8y87wC3+cSVZcl999zN2tWrfxc3yCIWcV1x3YlTyjy3TGnG5ewI72Kf2wl0CXRWeaj541NMrK2t8S//P3/IxbOXUUkw9/BLnRVxurYtO0u+s1hUlH8bkcjt2dipPUmubu5ydWuX9e0Jg0EPoRLOtVRliUIwndZYm9VeYsozxjinFdAhJXO1lVLMlAbCPFHOkmRKMJ3WpMScGzgej2mahul0ivd+TrR3ztE0DZPJZP79EPwcSBSdI/owl38kpTwaSJkq5by/Vt9U5PcppKCsLL1+j6Io5oILWmtiDDz00MMcv+EG/viP/wShNLfcejuujSAUsrREKTBaI5xHOMdKf4jtkpcUgmY8YXtjg5defJ7nn3maEkEZEzZEZIhIJbCFYdrUrB5a5Xe+/jVMUfDnf/FXvPTcixxZOYopB+xOGxqfcDFhi4J6WqOEYHNri0tXLtHv9eZ4gdk9EUOgMhYZAsTAzTfewOuvvMLpt99iWFVUNvNrQ4dQlkJkMQutMNZ2vEqJ6VrrSYJzLUZKrFQYJD1tkUIjlaFxHiEVWT5YUdoChUDERCEVzXTKG6++ytX1dZaWlvDeY4xF2mynlgA1syfraDWzkc+MX+yd4+kf/5hTJ0/+Hd4ji1jEr47rTpwpBLQEkQJaACHhpr5TLMmVoRKd1VdK5HlS9kjMCEpQEm44ejO9oocS2YVDzTlxexNO8T5zzWvS5XtEDd7vYxFdzAvMnLhSiiQCJIdA0PjExe0JlzdHrAz7DCuFkpHJtMEoS1s3uSrRAqUlvaKksAXKKoyRFEYhBCgl0Fpk1KnMggraCKRMhOhQWnYkdklKghQlJJm9N/eds9a1WZi8U6tpmmZvTBAi+JhNskMCn4E5MiRS7UjeEZPDx0DjEiF2/rEkZIqIbo5urEbprMlqREa0jscjHvn4Y9x6+238+Te+wfZkzGe//CUOHTuBEiUb69tEZLdpTBgEVkja5GjbGogElTi0OqQ5d46TTz3NicEBREg4YCISjchJLnhHVRU8/vnPMG6m/Nm//XPeOXWeL331P+CmE7fR1h4XPSn5DIQSkjB1jLd3uXL5ElWvBOdI3pN8QqFJMh9rNx1x4tBBPnbjTbz1ymtsra2zsrJKEoqJc7gECIUQEhEF+EiKgaap6Q16PPjgA8iY6BmLBIJMtCl28+SIQ4IxKFuA1JRlD2MKpFBIFCKAlYbRzi4n334bSeLI0goykiUbgdQJRcSUmLiGtZ3tzAvW+VzMKs4Zcl4hqUzxd3/vLGIRvySuv+JEINIMkOBRQuLbkM14E9mdvtvFklK3IEqEVFmVhoAS0FtazWoqSuB4j+yeeO+H2KeLyzVfL7gns9jffn2/n87+XfsrWVVHsjkac+riZRoPhw8cwCpBU9cU5ZCUwDVNnkXqPYH/bP0kOwF1gdIKrXOLcvahlJzzMKuqwNiOVmA11mqM1RSlRWuJUnJe+clOSWY/YGheUcXIrM71MZBEnp2FFAnOI1Mi4fHBUzch80bnlKXYOfMIpFZU/QKlDCnCeDzltttv58GHH+bpn/yUs6dP88ADD7J65DBRQEAwWF5BmQLf5hmvIBsKeBFQEnxoOHB4hdtvvYnTb75GZQykhEh7ouh6Br5JUFnD6Qtn+MtvfZOz587xhS9+mfs/8Uk2dscYW+CiwwtPWRmkkOxujzj7zmluvvEG+lWJIXM+VVIQBdpYppMx997xMT520428/fobuGlDaUu8TwhtCEqC1qRIlvlrI6UwNN6zeuwIn/vKlzlx2y1EJWnaBplipisp0XFG8+/T2Y8Za/P9Pdv6JolWhsuXr/DOuydZWVmmKguWq16u0rXKmxgXqLShnk44fe4sQeRzIlJC7bvHY4xZ8tAHXNP+Ld83i1jE3zyuv+IUGfGWl66AVJJxN+OcEaT3t1Kl1KS0H9GY229vvvwqk7VNLB0dhURnv/c3iEXmzPHLE+fez/f/T5IwtAkuXt1iPPFoLTA20dQB7wTWlKQUKYymsAYlNW3rca2nbR1t0xJ8yPJ2rulmmH5OGcmo6w4oJsAahVSBEKc4v4tUNYkGqfIsU2ud0bZSoREYqSiKgn6/T1EUWWVICExRIKyBwiAqQyoNqlcgS4uyFm00UkliyhWn3CfVlrr2tFISbQwuJAKSG2+9jc996Sv82z/9c958/W1WBqs0kxpTWIphhbeB5cMruODzZrC7WKMkywhGjxuN6QnB2y+9TNkJOqSOGhOJOflIQepay7F1/PjJH3Du7BmCENxwx21cGe8wJRBExMVAkLCyvAwCNjfXcaHl0OHDWS/Xe+ZW7iJTcx7/5OOsLC3x/PM/J8Rc0dFV53XbIq1BapXb7c5jkKQYufWuO/j873wFegXvXrnARj1i7LvKv6N+6W5DrHS+351riSnQugYps4SiVFmf9+raGisrKyilWFpeZrC0hNJ6vgnSxjDe3WVnfZ2BLTDdBkwalVu43W2tlMozbfVBzQgXsYh/v3H9dJSU95XEiMgwB9o6G/LOAUL7AB68Zx4pO8mtO277GIeWD+SbUHZzjNS9kevJg4s27HviV5fe18pIQEbRZlPxK6Mpl9c3cW3LsRtOMJ1OaduI1hVCSNpmQlFlbdPWtVlcPQZ8CnglUOwZDM9QsE3TZOCOtV2bFaZTTYyJpm6JKeJ9BuO41iGEobCh00Lt0NqCnDjaNiO4g+9mqp1gRkqEDkQiOmk2VKKwBU0nKGALSwwdFxBIIuXOiBRIJLaoGNcNSSluu+MOnnr6p7x58hS33XE7u6MREYk0OluRlZJXXn+ZzZ0tDtiCtg4dY1SQnGd5uc/LzzzD66+/Qr+yWZovRKyxOBHn9CzTicu3bYNOglJqdL8gKcV6M2apsPPuQAyBAsnLb71DijEDcURG0A6HQzaERCqVVXmkot/v09Q1p89cZjgczsFCIYSMUo1AyHNYbTKf1BaGBx68n1vvvxsnEs888yxvvPIqBoEyGt8J+WcP1AzO8h12AQQxJLQyNE3D2toaq6tHEF1lPegPWFkaUlqDwkDIiNmIYGtnGx8DPWuQKXDz7bdw6p03ic7l6rxr1860i69F7y9iEX//cf0VZ1fUCCEJPrvJkyK+S5wzNN4sYgoIkQnYuRLJIKD18S4XdzdxApoUO3WXDxh/XYH1axf7kLC/7N+vAk7NlSVmJxEaHzhzeYv17V36gwrowFwxJ6DWNUiVwSO7ozFSqq59mu2fZmc68/6ubanCrM0OMXmc8zgfiVGSoiIGRfCaGBVt4/E+zBf5aVvnzVQMNHWN827e0fCty4kyBKSPpLpFh4QKEd842rohhHytNW3mce4/BhkcJFFKYIwlIVFK8+zzz/OTnz6D6fdZOnwE3e+jyh5SG1YOrHLm3ZO88tIL3HTDDXNHFyEEbdtQ9UqGgx7n3n2H1aqiJxQEDyojSqWQuKbhUx//JIdWVqHjsuakG7KOrFGo0lBPRliZz4EK8OS//QuauuahBx8EMupXaY1WZk8sIoS5k8xbb7+Vzak7ROucFgQUKEwTYNKSnGe4vMwTX/gcd99/P6PRiO9993u8/PwL+GlDz9oM1JMiW8p5nyvBzvh7DgSUislkwtWra9R1g5Jq/h6NMVhrsUVBvz/INB6R2/d1XTOdTDhx+BCfeuxRdrY2cG1NTCHLP4Y9mb9Zu35RdS7iwxTXnTijiEQhAAWd4TAq4oO/5qLe73QRY/YeDN3NLYTk8tkLyNajAbuPd/fXvUnxPh//kCKnxwgdcvUXPthrl1/7e7Cf05O7d5K1nSmX1naoXUZtkiLTekyvP8hUFNdmScW2JUXo93sIJZBKZkF0qykK0yFT9XyeaW0W9i7LMrdae0PKosKoAq0sRpedeLpBSdNdF3TJSHY0pdweJCbw2WtShEQ7rZEJogtIBG3ddNSmvUrVe49vW5ppTdtmANRMjpHZ6IDEcLiEkgZjLOPRGGssuixYOrgKZUVQGiEU9WjMZHObQqmsyEOWI0pCcOjgQW655SYuXzxPoRXJO3AejURLQ4jQOMf9Dz/Apz//BHVbE0MgCijKAiUVMUKMiXoyYX1tDQHoJPjmn3+DleEy/9E/+Q9ZGi51FJtA3bRIIee0G6WyF6qUEmssxFzZiRCRMYuLSCWJIWCURgnBzTffzOe+8HkOHT/K+StX+NZ3vsdrr75Oz/Y4eugwKkmIEDser1IKLRWFKYjNDN0sGI12OX/+HEZKVpeX554PQnXuKkbhRaJJLW1qQcbcxdCKh+69m0PLK3z/u9/n3OmzSCE7y7qOiTanMPlr9HIXsYgPQ1y/yLuQeWaDRGpFIJIUTKfTvHvvWiqwT3YvxWw0nBIx5Grj1ltuZXlpGSEEPuZdbUx5zvl+6fCaJJl+8We/rpHX99xkzTOfzGuNzKTlZo/KKTXXMJprRAr3cRgjiRQhIpm4yKW1CZs7Nf3BgF4vz/tSsmij2Blt0BuUhCio65ZjR5bRVmc0DFkOTUlN6lqrsuNEwh6nD5iDfMqqwlgY122msqTQVbMZCKK7GSciKxDNFmps5m0W1uaRgNYonWefrWvR1uJci4jZCktKCSlC8CTp5lzCrj5CzBC9JMqizNJy2pOiQ5sK2+thehVFWSCS4I1X3uTsW2c42FsmOEcsFEqAQFJUBbcdO8abb71DpXJbU1rDNGRZQR0lXkge/eQn+ORvfIK/eOq7XNq8QpEkLgaiz4hzJTVohQyepqmRSjEZT1hf2+DxP/hPmbYthTFYKWhTYnd7l5Vuw+E7R5gUA8YYWu9RCFKIyO5cuOgzr9poJj5wzwP3cv8j99PEyE9//hwvv/oGa+tbrKwc4NDBA4SmweGxxkAUTJLPoB0EoW5QlcVWmp2tdcaTMYdXDyKUoG5GFGGIKQp8bGmCp40RJTJfWBSCIDw33nSCR+6/n8tnz/HKs29RFBZb9vChRYoMXFIizzpjpzz23m7GIhbx9x3XL4DQIR6lVNmHk0w32Nndpaqqa3aEM2sxIRLWKrSWWFthdMXlq5e5cOVS55SQQ8tfrhaUE+d7KSv/ECJd8ynM5OlmAhFRZpeRlHJFHjsNoH3KLfsmzEiyDFwUmo3RlMubu0zbmkMHjyJRTKcTysESbXAk2aJKxWTqqIoSkstAkOBo2prQNrR1TdNkwrprXbbCcm5OIZlpzjZty3Q8JgQHyROTz4pFIuU3PeNg0jWTZ16UKYI1qF5JtIpYaKLJqE7ZeXIaa9BKo6xBd04gMzBTr1fgY3cUsowN2T80t3KrsodOEisDSkRigKgUqioYDgZcPnuZC5c2+MpvfZ3xdkMKgelkN3MVpWbaTHjzrdcoZsA2IYkpy/gpY2h8y6OffIwHH36QJ3/yFN/+4Q+IEUptQSqCkqSUtzsxeEabW1w+c46Lly/Q6/exxrIxmdAYhdGGQhlc0zLa3qJnDSHF+eyRbqOaUpa5pBMeiN1n7zzGWj756U/z8SceZ2t3i588/RTPP/9zJpOawXCZI0ePEzo/TG2yz2qIIQuUyHxRiZjQCXxds7uxQakyFSn6rB4VyO3kfBkmBDHLaaZAXU/42O23cOstN/LCz3/Om6+/RmGzgIVAkIIgekEKzDdP+w29F4lzER+muO7EqboZ1+yGnLlbjMeTa9ReZsbEIiWI2UFj2tYkmRBa4p3DKJ3bOjI3GPPy9v7p8NcxSSbeL7m9z4OAvZQiCIi82CaVaQhJEpNCYhBJI6Pa147c9yR0M2oRcT5wcW2HS2tXuOHEcYKP1LXH2AqtFdN6nIXVXW4BF2VB0zbUdX2N+bRzbs+XFeZqUrPk6ZyjqWui94xGI7zzeYENsdsGZVDPTHs2dtWhaz0IQUiRpm3Y3t2h8Q4XAuPpFOcdrm0JjSO0bs7pnc3gs2pVpto4H7K4xmz2LvamxEVREDtuq0DOf2+pGjAoepw+d55HHn+cIzecwGrDwQMHObR6iOlkDCFglMkJXM7GFLGjqQp2pzVPfO43uO+hO3nu+Wf4zrd+wI033MU99z6G8wZjCoyWiBSo6wZrK06dfIfR5jr/+Gtfo9AqW/alSNAKZUuiF0gfObQy4PU3niMJR5KJJLIQyYzn2jYOyLNGpKBpHYePH+N3vv517rrnXk6fPcf3fvgUL7/2OgFJNRhgqzJ3BxJzGlFIkRg8hS26RNzV7FJmmT4h8D50BuIFWpf5EMuOjtY6pI+EyZTpxja3HDvBeGObV55/gWY6pVftqUXNriMpM+Bpdi3NvVgXsYgPWVx3q3Y+Z5AZ9CE7+bOdzS1CCHNnhRk9Rcrsmdh2vLcYIoWueOD+Bzhy8HA3a0vZ5SKCke+fRPaxWa6Jj5zIwXv/uOt9+zNd1pS9I6NMeMgtyZgBPT4kYooYJfaeet/rxY5nm5JnZ9Ry+co2tlegexVt7fARBr0+dTNBykRle2xtjzGmyu32tmUw6DEa5cVxtjmaAVFm56Ioiq51n4EhvixpnUOKzPWUXQXRtm33p0li3JthdQVS/nuRyJCQ05bKQd04jJKYmEFCkcSkbeazsOgSlc1qRFrCeEw3n02ZBpKZq1mpJu5RYEx33SYS1kjOvP02p14/SVEW1G1NVWbjbq01B4+scBaI3pOkZDyd0i97uWIWgiZ5UIov/PZvce9dt/Pd732bH//4BY6euJ3f+yf/lFeeeoqkU+fkkggxoMqK2rVcefsU//P/6D/m+PETQCKKyLieYKUhAQcHAz7+wO28/dar7GxeZKj6mSIWA1rpuWIXSiC0wMcASnD73Xfy+BOfAhTPvfAcz77wDKPpiNUjh+gNltnebfAuOx3JskJGzziOSSSUzLSe2GkEJ5lnz1IpVEodQjq3xFvnEHVNZQvGW1vIAM2opl9aDvWXePnpZ9nc3GJp0EcKSTOdImR2YNlvFjEDNUm5V21mCtACVbuID09cv63YbGcY8m4eAcvLy1w+f+GaneFsJuF8IMbstGC0RSGJPvDKy69w6Ogyx25bzQtwx+PMFdGvziYfuWT5S+K6/gqxZ9Umyfq/CEESAt95qjkio3FNr6wwSmTvRJgdzE6pZ5ZIAyEmzl28wvbOLtWBAUJ5muQwtk+ioq7XGCxrmrrFexgOC6aTEVZpbGGwtpgDvfYbTs+E3GebJyEE1tr5glhUJUVZItQIoyTKqCzfF8cduMhibTG3D5NS5oQW8wyPDlU5HwekrIE8iyyzl1GfIPE+0CZH3TTMBgKzYcAMWzwY9PeStRREHxnVLc++8AwP3XU3b55/h6ha7KAA2SBE5MqlywgpiSEn45m1mRaKIBNJCb70lS9z4uab+fYPvs8zz7xIEj3ufeAxXIhEGpJscRGU0Ghd4KVgNN5FKsOkqXEJdFEQQ8BNpgiVaPyYG285xDtvvsK43qFnBygUMua/Lhe6eXOAFLjg6A363PvA/dx9371cvHKZN15/k1deeZXWN9xw8w2YwtKGLJQfVTeblrJrswqU0hDTHKyVug1zjJGoZp2nyO7udr4uvGd3OmK56kGKWKVZ7Q/ZvHqVd8+dwbmWYVkRWkcgdwZ89HNHnNm1EmOm8UiV5/UhZCS0KRbKQYv48MT1g4PIUmpGZVJ0GzxFUc3J7rOLXuvuKVPEKEVZamISFNawVdccHJb0Vwd5hpVERtFFkGovUcC+JJnYW/w+7IlzX5X3C471+9Xq39ujFbx/ud3FbL5Jh31xjefNK+d5++IFRrtTVgZL3HT8KPcdP0FlOtmymPVoQWT7KiG4vD7i0vouSUmqakDbtKQYsIWhmU6pygIpE5PJhKoc4kLmbtpqQGEs3nnqup6fh/2C/7PYL4aROZiBvsxi5DJ1jiZErC6ou+fRnVSjnaNDNUIJktIUSwNiXSMU4DxegOmVyM5FQ5vOrkwpkAptDClmz826nWaKQ8c7nh1kKWA4XOoSZ8zkewVba2v0BpbVgwcIsaX2Y5o04d57b6OdjDh79gxV6M7FTCqQ7NCiTOJ3vvplDh85wZPf/xFP/egnfOLRJ7hwaQtPog0NZVUSvEMInTs3KUtO9gtL1JJxO0aUGltVVNLSrG1Tr1/ihWef4uo7b9NXlkIVqCTwaU/Bi+7vyO1Tx8FDh/jMZz/L6uGDXLp8le9890kuXb6ClJKbb74NqXK1r5VC6UQILvM2W4GWpjtUeaMWQqQwBSSBTwGSJElNDNkuDBTW9vFuDCJA8jzy0EMcWV3lhWd+RnItldGZdiayqYPRZq+yFJ0ogtZEn0FJKQYiHX9T5Q3BJz7x8V997y1iEX+Hcf0Vp8jtPrwH2TnWG0VZluzs7LC0tATkWZcxGpEiIjg0ioigcVN0VXD4piOogaFNGQsao0AjcCGiJN18apY0r23Uzm62D3ukOSClS6Bp5no5/+k8JBnwMwexZAZ4fpTIvx9T9oDc2B3zztnzXLyyRkieKDQxKTbqMRuX3+TtN0/ysVtv4qZjh1nulegOsaySZtIELlwdsbHTUC710crSjmqGvQqJo/YjiqpitBtQqqLX67E72UB1/L3JZIJrG7zLbVKlNKrbMM3COcd4PAayq0XdCbqvr68D0NQTbCoQSWGFxrd1p93aYrWkaRra1jMYVIhu7inIGsjee2xhMWWBG4+y3J8xhO5oKq0pbIFPecanlKQNnhAD+4FWoqvMhsMBVVkiZPbxlCjK2LJsl1jtH8W0BX53DGJCObScfv0thmicdGA1qp7gYiRKgTKWz37pNzh46BDf/MZf8dxLr/HxT36W3/36P+Kf/7f/gjbWaK3QwlLqPj44REpYrdiZTNG9Pi5Ymhp8EkgVsXLCQG7z0re+weV336Vvyqwrm7qOQwKlNCIkFInSFGynMbfe9jG+8JtfoG0dzz//Es+/+DKbO9v0e0Occx1/NaKURkYBsc4+pDFQtzWNazvpO0VSAlxL0zSUOqsyBSnyJlDmalBKg5WWsZtyZLXigfse4NKFC/zgyW/TG/TQhWIynWK1xnci/XUzpShK/GzT1XWztFKITixfyAx201pTBsvV9cv/Hu7URSzibxYfqOLMYtlZMDukgA8txhrG4zErKytzTl5G90H0DTKaLhd4kir48Qs/5+TWOnc/eC9CFBTC0BMFj9x/A0eWexkkJP6aEuxDGu9RhJ1TSlLa85CctaPjjKC+/8HdjjwJRSI7fFzd3OLy2hYXr26wO3E0rcs8PlNihCEKTes9tQv4kefnr5/knXMXueXwYU4cPMCRQysIEdiYBk6tj5jGyGpvQGw9UiaM0tTTCUpnvp93nkF/md3dHUL09JZ6jEZjUgBN1iJOOhspx66qpJNc2++rOZPaS2k//y4Sg8O3Eaea+XxzOs0OKTNz9LauiT77aW5tbEKKBOdoY6JVU4TzuBgRIVIUhuA8SWpa54itI8rENCmmrQcEKYVc5c0oTwJsUWCEJEiJNoq2dkiVEErAYEDranYuXeSP/7v/kZOvvs5Q2qw1KxXOR7S1hHGDNZrPf+k36R1c4k/+9M84f+o8D933CJ//4lc4ffUq0himzZQYPb1qCFGBdB0yGmQnQm+0yLNGIViqKh578GG2165w8cwZqrJHiFnycn69CDLtRIhZY4GjNx7ny1/7bbYuX+XZn/+cV958i+gFRw+dIIjA5vYGjfPElDAojFJYlVWExqMRLnia8QhZN5gI0lps7FCtIvNhs6eJQYqIMooUAkJEHn7oXlZXKl76+bNsbm7Q7xcIYlZv0oImNF2FmtBadQAjSRIJLRWqm5/OtGoTCQ1zU4Ltna2/5bt1EYv4m8f1S+7RLYLzmUQWOJBSMp1O9w32s1xB6DiDMc46k5HgGnrlCuONhpd++hZKVwgvGaiCjx0fcnipmqNrfx1oJ/mYicxRncNoBRC778Uul0pCkiASHsFoMuLdcxe4urHDzqRlMg2QFG0bKctBhvEXNlcNwpCEYDod0bY1m6MtLo12qXcjFy9tMugXHD92BOwSVza3WT10CCkNvnWYjjrgXaAa9BlNJhSFJUZH67IqjnORyWRKWZZobSiLHr4bL2abqlwZm05mb2Z2bjubqpmt2EwgYQYCUUrtE3aX89nmHkgkA9BCytZ1udmRxQ1ETCgfSaFFKw0ukERNKAStq0myYDytmUzqDGxJ2aB6PgpIUFZl3uh1yE4hwIgssTfxY2666RjbFy9z8cJZBkWZlYo6laToHTFCVfX42u/+Lqrq8Ud//m85f+YcS/0hSwdXGddTQgwU1hKalkHV41I9zYIhJltxQaJXVLgkMojK16jQUijBqUvnqUfbDHpL0AGJQgjZZYZMqU0dCM8Tcd6zbIecO3OWH37/B1xeWyNKyeFjRyirHuO2pQmCpCzLy8vz8YpxEZ0EIiRGOyOi8xwYDGh3x0j2qCCpgy2nBCpopMidgsNHVnnwgXu4ePECT/3wGZSU9Ksqt+mdy3zQlFH5s82WtiabjMtOyD+CkprgMkhMS4lVmjY5fIgQEutX1/8O79xFLOJXx/UnTt0R22NGwmqZq6Kqqtjd2b1GpzZXGd3wkiy1lWIkIhiWisCYUhdI4SlshU0pC76LPPP8dcLPxZSIAehQiqQM9JECUqdjGoC69Vy8usHpS+e4tL6GkBUhGSZ1IiZNv+pzYGgpi3KOAo0pZTEBkc9DVfU5cPAoO6MJ61evMh6PGIwbrq5PqaNEFxXD5WVCWxNiw/KBg6xd3aAsSkISjCYTDh08yGQ8QilBVfXZ2t7EWktvUHDJaHR0ndi5QJB1V5VS6H2yi7PkOdtMzcTaZ96aUkoGg8FcZq/X62UUrvc0TYMxmn6/nzWMjUUw4wcmirKErlp3TYuQCq00kUAINdZIpr5LKC52G5X3bMFSoleVFFXBNE5ype1bpDTUfoqxgcNLPdbPnqWnFcJ7tFCdeEPuqoTouePO2xgMB/zzf/nfcfLSJf7z/+w/55kf/5Rx8Eyjhw7kVGnLO6+/yfeefJJVY9AJUutRAXzwiEKhRGRoJT/+zl/x4rPP0LclVhlc65Ayty4Lawk+31POOypjswiC1igBa+cv8Sen/oid6ZiyP+DGG25ESoO0FhlDFhuwxZw+JoDtpsVozfnz5ykqw8FDB2l2tq/BFczk/ZTK97wSCe9bHnrwfo4ePsBzz/yUejpmUPZpmgZCQsSEVTpbwClJ8D7PgqG7/rP2LTHhnEforGokZZbyDG2uUBNZ8H/SLtxRFvHhietOnHoGCZddy0YpUoiUZcmVy1eo63qOqqSD/ksSM3I7ZHWXnYlHVQrvR2gFTrb0ZYEXM9WhfS86a29+RGKWKN77vaZt8DG3CwWJKEBbxbRp2dkZcfnyFufPrzGtHUEIIr3MP1SCpeEBiqqHDx6Spw01olPnEUS0kuRenSQERWgCpSm48YabmOxsMt7ZwIkG1eszXK7wbZ0TR3/IeDxBG402lt3phKXhEsE3eD+lqoa0TUvbOpZ6ZSd4kA2np9HPdYpC116NMVGWJdPpZP535zZsrlZnvzujsjjnqOt6nljn3NCUReNjDEzrliNLS1ler206hK3AiQ5VWxp0r8RkKAll2W1MGoFURSdKkDrE7b4ZuQAUGKMZTbLgvDGGmsjBfsVLP3mK7UsXGZYlPkVkknvUmehzG1ErLly4xP/7X/y3nL26zle//o+46dY7efrHP6eOCS9BxcRg0OedN97gzVcm/MEf/AHf/4tvQD1Ck/08HXnsce/ddzPeusqpt99iuSoxUhN9Iuk8o/UhEHxLWVa0raPQJouCCIFLAak14+kU7xtsJxYfY8SUlohAaYuPgmnjqQYKbTSubYk+Uu/sMp7scujwrQQCjkiUCfMejmWMCRccg9UhH7vtLpJ3/PhHP8JIxcAO8a3LGrwhdpvlbhyhBKbbGEE+D1opEBIfHR+77VaOHDrCyy++mIXou+6CELnydMKT3ILTuYgPT1x34lRdS00plVGMQhJCZNAfIqVitDtiaXmpYw/k5BqRWTiczkkieEy09OWB7OfpoV8aVqoehw8cyC+0P3G+Bxz0UYtIwifYGY05deEid955O+PJmP6gx9krG7z61ttMJxHfCJITKFFkAIwtkFoitAQlSLFFSjLISHSVfKfO4kOLzHUAmY0gkTIvtP1exYHBcVo3Ztc7SpthuSlm0v90WtPrVThfk6KnKvqMR5uUVqGI7IxGVGWB1pJRPe10Q7OLqgsJr0NuM8dE23rKUtI07dxmalZRjkYjqq59N6M1zZSFZgLlKSXatqV1DYN+lvJTEra3thhUPVxTg8g8TBD4GAk+o3ab1iEVJKFJwZHSTN04L9IZ0bx3HQmRTbmVUfNFvJnscuyWGzhYFFw6c46VquyoEHu/LqQkhQxYNrrk6tUNnMhSe5OmZW1rCzvs40KAEAghsTudcPbcGR79+MMcOnI4m76TECZTWIRIfOKRR1jfWmP9ygV6NiNYO/dLXJrxZrN84bSe0uv1eOjue3j22WcRRhFDNqOWWlKogqnIlBZti/zzGLPEn1JMm4yK3tnZ4fTJd1kdLFEWFVPX0rY+g7a69mjsIG0z+pGUggfvfYDyQI8zp8+yu7lNvyghCKaTBmMyYNC1DiAbmqdEComY2y4ImS3dpnXNcKnH4596nEMrq5w9fSZf210nhW69mb2utR8AjrGIRfx7jg804+yGFXMlEd+2LK0coCwqwgym3w3zhLQEso1QSnmxL7RisGQIwiFUiSAQhcAUJVXfMnPUmKHh9173oxG/UG2S/55J3XB2fUotLnLpwrmskiMM0yahtWQyGrM8XMFYgzCSoDxtSBhhO/oCiM7fdIY6npPCO73XXHdmjdKYXE4yRmSyvx1Sqia3L4PDaEPbjlFKorRkMhkzHCzRNFNIgcJYJtMaKSRFWbC7vQlkFKfWtqvcIloVKBGQJi+uSumusuMaFxGgsw2L3eMUbdte4985+wg+MJ1OcW2L1BpXTwlaE1yDMpbkPIRMgSKm/H8fcD4yIaIVjMceqT2jXebkfUjMnEIgYYssLRdigCS44cQxjh48xOmTr1Aomx06EIiYHWEm9YSbb7mZtbUNxpMWHwRJFigrETLS+AZdaDCSWNcsVz3+h3/1R2ghqfp9pq6b80rNyDsSgWgEjz30KCdPnsQHh839eyLkmWeUIBTGZPWeaTNhZWXAV3/7tyirHj989sfo7KqJch4bI9M2IIcVQeSNly40k8kIqwUmNhQ4rl44xdrVNQqt6fULdnY1QSqE0OhkWDYDmno0V4eaGYwrpVlbW2N0ehcpFYaM6g0h5Jln8KSUNyWxsySDhIwRhERpjVCKncmIe+6/nwcffpgL585x/uIFpm2NSxFrFKHp6G0zHvOcXrWIRXw44vrpKD6r/4SudSNSriKVtPR6A5TOs82sQyoIMtA2LY2dCZMnQgrsjkaIylNGQ0qC0Db0qz7a6L2ubAem+eUKth/myG1T6FD7RHZ2plw5f5X+Up/RdEyYBiIWZTTFYInSVqQYcbGTkeuoP76edHgiOZ+rCaHmyVOSIMSOyZIJ+apLDrGj9piO8hMsJNdilaSwmq3tHVZWV6mnI4xVCAXT6YS+1cgQcW2DKQaE1hOAQa+HUYLB0hJbo11KqSgqQ5Q2230JTdWzDAa9OeCnKAqklHjv6fV6aK3zDIxMV5klTwBr7bwtqLWmLCHESAoZVSm0ygkiBIwQTImUUqJdru6iFIQkkD6jVEmeupkQUkdHmRFrO31cgaBa6SGvWPq2ouwVnHrrVayxqJSrQZVAxkTjWj52z+088cUn+OM//NeIOqCiwBBwEbQ2pOBxscFWlvWrV/mjf/mvuOf++zmwusyfnj9LGwIyZTszbUoCEeFannnmGaqywljN7HbMzQWJUDIjmdusG3vXXXfzxOc/xbSd8P2fPYXUIlNLkEiR0DJXeUEIlFC0zlGQMFLRNDVlWbK7s814PGZpaYnllWWUViidheeFlJkXSsYwZPCf6DZEiRgS58+d5+DqKiJjZvfpUs/YVInYCRukDvxmtc72ZDFQ9Uq+/qWvM1xe5u133qbqlUzaKafPnqFtW6TS8+fM7kq55R/DInEu4sMTH1g5aFYxzKqrGHNlkWamuXm2T/AB1dPozvzW2IKtZkqlNNaW0M1ghFL4EDumwLXtNLGPD/lRiBkeeGbEO6tyxuNJtnxKucIs+gXjJrtb7G7voDvwRRKdgkuIWc1ViEwA77iIUkJIeYETQiBkNoiWwpBSBl+BIJByddpVf0pASgYQaFtRN47ClnjvcE2g3x/QTKcAGFsxHu2itMEazdb2NtJobFmgtaEJDheajo+3S91MSSGQEMTYuVxE3c0tc6U5k2ds9wE8ZkpDM6BKr9cjpdShd7OfY9u29Hs9er0eMeWNm1UFEtDRo4VGa5M5h1pitEKRkDobWOeO6Xvb/RG6Vq4xmtDZVp05c4bVlSFt3SDp3GTItJrb77iTz3zhN/jJcz9lezpGpoQSCS0cPkWELmi8p+r1wEdOvfkWd99xJ0/8xhO88sILWARtU5M0CJU3VQo63d5EWdpOkJ35XHCm/Rx8gzSGxx57lIc+8XFOXTjDUz95irffeJtjKwdywooRqU2eocuO1ypkRqmGiFaaJiVa17B+dY1jx47R7/WoipIUQUuJ1gZEtgOjE4SQCGLM7eTsrxvRHUhwT/HHd8pRWVJxtkbseXZK2rqhqEruvu9ejh4/xmgy4cr6GlW/z5kzZzn1zknctGFYVaQUyPZ5Yg421J0wxiIW8WGJ606csyoC9kAWKSWatkUpSewUWIQg31wdcV5KiUHMFWVmPp1GSqIIuSIQ4Hz4hTnGR27COZMO3C8S1B0jbXTW9fSOum7xKSeG4WCAc26OOs1SSiC1zGhDqXDeZyCQzs8RU2A6abJBMBLnpnn+LCU+BKZtQ384wNUtOgm0FiRvGRxcBSlpnWN5OGTSjDAdXaCZjun1ChofmbrI0vIAVzcYJSh7VddtyPPKEAIhD/ryLNMHEgnnWpxrUTLNr5UZaGw8Hs8rzBlFZb/ilPc+bx46FZmmaWiaZq5O5JxHpM4XFtCq05zVWRc3w7LTvNU/q6RCzB0PKWZzzw5AROLAgQOEEOe+liFGSmMRjUdoRRs8H7v3bn7zq7/FD576IU9+/0ccW1rFKgjCgcybGBk97e6E1196lTdffx2tNNVwwMQ3GGUoogKfXwetMv/VO7RSjF3Xik95swnMJQu991QrS3z6iU9zyy238Oqbb/Cd73yPjfUNbrz5ZuJ4TIweSISUBfxTTCQfUDpRSI1GcPHiRZTMVm1aa8qiQBtD6xxGlznhdfq5eearQRva4OYb5ZkMn8DNz5kQM+3fXMWnONtM7yGqm6bh+PHjPP7pT7G1u8OFS5cYLi8xmk556dVXWV/boDKGW265ienumBgdrm6zTV73HPla+kitBIv4NY/rn3Hu2wXPqs2s+hIpy2qOhkRkw2VB1r1sW4dPGYoOibqeELTE9PoAne9fRKm9HWWn9vWRi3xYZm88H6MQInXTYquS3dGoI/mDUJZ6MuXAgQMoKelVVbb9koIgsxKOdA6tNEvGEGKkbVpKpbCFZbw7QiQoi4IUI+PRCGstg8GA3dGIxrUcPHKE4DzTyQRT9ii0ZXe0Q1UU1PWEtmkZDlcY7e6gVaK0hrXNMbYagNBMJ+sMhkNSVzUH71FSkmJ2aglBEpxCJNnNJzPWNsbIdDqlKO1ch7Rt27k8X9u2c+ux/XPhuq7nGyzvs7zfDEDUNk03IpAkAS54Ysx0jhB8rrJjRHX8UUHq2rJp1vnvPou596tUsxlnykT+WQtcSGKCe+67j09+9gm+8a2/4qc/e5Z//Pv/U7YvXOal555h0K8yQK5tKaoh65cv852zF/jC57/It7/xLcbjKcoahBRoqalHU1555RVGkxGBhDQaRcdVDdmY23QtzWwk7jhy9Cif/twTNKHlR0//mCef/AHaFDz0yGOUleXCO292zijgfEsSmR8sQ8IISfKBN159jaqqOHTsEBfG59FSzjsWtizyuISEUpK6rjk8XObeu+7l9ZdeZHNnC2P0HKSz12XqZo+SjgqU26k+hDz7NDZL9RWWxx57jJtuvYkXX3qRKATaGl557Q1OnzmDb1uOHDzI8e46dc4RQ0BpQ/J74u9S5o35IhbxYYkP1KqdfcxI6tnKKFCWJZPJbqdZmqtOJQUhBnzKupNKZMQnnc/etHaUtk/wgo31TVzjUL1fEyHnTtwAcnU3nk7pDw6xtbOGVQViYNHlgN2d3bxpMIYoQBmD7wyaZy3bEAJeaZAKl0stfJIIXUCMRCFRKi9ISmdDZVsUWQFHQNEvc0WjNSSPIJtQN01DVS53Cj+R4WDIzs4YIbI4wM7GVbRSaG3YmkyQKVHagmkIaO2REYypKGx2KxE6obXp0J95PkVH85jp1s74ndcKHey1JmfzTe89xhicy+jMuTOPEPjkkULhmybTGYLDhSycrqVAGEHygToEdnxkOvXMmcFpnxh6ShibOaLG2k7IPG90oozc89CDPPjoo3z3ye/z6quvU/aWWTp8nPNnLiJNgUoK6QXCZz/Ky1cv8tjHP8mdH/sYTyLxjSP6GmNgeanHsVtP8PQPf0AcjTE6KzAZazuebxYWUUIQYqSwBXfcdSef/exvcPHCWX7y9NO8fepdQop87PbbWDl+hPHmFkJZoM1I3QRaZWuxEALOO06dOcXK0UMcPXSEEAOmsFmsXUp6/T4xxCz9JxM6Bu6+7WMs93q8+PLzbF69ita5Em3bBtkBvVJnN5aBVpK2adBGU5UFEU/rWhLwsdtv5Z577mVzY4O33nydorCsbW7x7qun2djeRgjF0vISSQqubm5QWYtUMm9Gmna+kZ4hej+aeIdF/LrGB6o4ZyLus8pTSokLNb1eCdPYcd1AY0ghtxytLZB6D8wSjUVqg7E9BBYlNMEJmsZR9uy82kzpo3erzOY6aR+Npm0z7aIvJe20xlpDQiGMxfZLRMz8xVRoUsrtUO1C1hFtfa4gYm41ihgheFRhkFLgQkBKjVQK6TVBSsrC4JtIaANRRpKGmHx+nXpKvyzzsRUGoyp2xhvYwuBDxLWRwdIA1+aW68rKckar1o4jSwOkUlRVyXY9yW296LFW5pl2ZJ74ZhQC3Yl5K5U1jUMIWGvn7Vit9TUiCbNEOTMxHnRt7Nl8dFabGq0pS4uMkSQCUSSEys81EwU2qiAGT9t0814Bs7ozL/qCpaWlfF2HQPABqRVRBB595OM8+InH+KtvfZufPfccn/z0Z3jupVd56513adqWQMSLRJIaKQV+2mKTIDQOHwNRS9rYYIrEcKi5+/YbOfnOW2jvOzEAhxd5fqhlNk2QRlM3Db1+n8998QvccuvNvH3qFN/77pNcWd/k2PFbWF/fQsk+0zogpEFJi/cClSRaSbzI2GptDVu7u0QtsIMKlwLKaGRh8Sm3dZNPKAQiJlYKy31PfIrd0S4/f+2lLKtpJaQAqZtZpoTSuaecW/GCGANKSawRSJkYT8YcO36MT3z8EwghOHPu3Qwiiom3Tp7k0tU1bFlhbYFzWWs5mQJpDUJJfIro6LFa4uO1G6qPgkb1Iv7hxPXzOLvFbHYhz2KW5JSyhG6BiilhZu70Ju+usxArTJttqqpCS4WIgsL2GJQKJU3eyUrVJc+Zh2JmgX4U4lo6Sq74pq3DmDL7DyIRSuDbrFGKELimwZgeddOgpUbGTPOJKmQBeJHBFZE6H9vgmIw8KUa8czRyD7hFjEwaQWizUHfrWpzICVS7LEkhFYx2dhj0D9K4Ovuk2j4bGxsYY4gxsLu1xYGVA0QpMgfTKLTM8zk/nWS1ICFp25pABp3MDI5TCt3XaV5hzj5ms06AXq83F0DYX4Xu/3o6nWKtpaoqJpPJfCGVUmCEIElJVJJeWTFNAaMNlekRkgCtMckymTbMSCh7fM68yVsaDPBtS1VZlFaE1vF4N0/84z/5E94+eYqbb76N2269k5deeYvTp04ip2OU6pxClCZ5kEqirMYRaUNEG81ktE1z9Sov/vQnnH39Hfq2IHoHsnNqiYkks3iBiOCbloOHV/idr38dhOGnz/ycH/3kR2jT4ze/9FWuXr3K+tY2LrZ453P3JqSMdcoishk8Fj0pKNCKolehtcVYS4oCpQpI2d5PaRjvbnP88GEO3nKcn/3sZ4x3Jwx6/UzFiZlaIqScm43PNh8uBoyW2Y3GGlwMuLbm8U8/zt133cVb77zD9tY2g8GAc+fO8+67Z2jbyGCljy0rdOvZ3RmjTUk5GFJaxVJhoW2ZrG9mm7d914wQGS2+iEV8WOK6E+dsPrXfcxGYy+tZq1HMBM3Jc6NOXi63h/KC1S8rSmMJrkEbi4uO2rVMpi29QQUwv0HzpCp+5CpPYM6AaFtHWVZcvrJB0StyhRQDo/Eob0aE6UQLsnDBTBUoxPx3Rx8683CZE2m3qBhj5olm1gaVZJNlKWROKoB3DtHZfmklcS5S2Io8b86qPrMEVvUqJpO6s/Yy7OzuIKSg6vVo6oa2aefcPq3zbC5JMedjNk09FzYA5o+diRzM0NjOOXZ2duYzzhlYaCaEAMx1bZ1zc8Wh2c+cd9mwWusMNDOK3UkDURDVrC0sMGWP3UlWMoopzhfflAQpCQ4cPIjSGq0MIUS+/OUvs3LwIP/mz/6M8xcuY4oe/eUV3j55KnfeY8JoQxDd305EGomTAtuvWNtc4+KF01gVuf2Wm/jxX32Hi2fPUVU9nHcEnbsoynfI15hQSRK14O677+TTn/sk43rK9777PV59/V16gyX+4z/4T3j++eeyw0hRMa0bhvgsO2iyiIOMKVfdZO6jVCKPd0mIlEXUfRvom4rkAjIlfDvh1luOM9kd8eR3v5dlG8sC51uMVjkZQ07Scq+TIoQgiITptH9b77jl5pu577570aXh+ZdeQQrJ5vYuL7z8Os4FjNIcOb7EpGmJSaJ0QRSTjCSOXYtfZwWr1G0sZpun1CmPJfmRXAUW8WsaH1iOY/+cE5jfVMaYzgZKzL0K59qsAKlTTPGBZryLXS6ofUskMB6PefbnL/HbX/kk78XSfvQatiBE6igPe4tZSgGtJa132YrJWMJkjOiSlLQyt2XVDM6SK27vfSeeLmibdq7eBMw/z1CMImV3FSUFIWUlGaU0KbQooDCG8bhl2B/QNBO0liit2N0d0+sN8D4nueXlFZz3uNBSDQdAnLdRheyqvu61tdZoldWhZi212bXh2jaLPXSqQPvbsZPJZD773O/pub9Kbdt23tadJeOZduoMbGSMwjmPax3CZBDLdDJBFYbYelznkCL2oWnpOiO9QT/zBJ3jxmMnWFk9wJ/8mz9lfXOHW265g/OXr7AznhJEVuHRSqNVvv5lR8Fw45qoDEhFU084d+otHnrgTrYvXWbjwnlKa2jadkbOzGe1U8aZIcw/+/nPcdfdt/Puubf57g+e5MqVXXSxxNLKQS5dvsLaxgZFVSKtISBog6NnLVrlFruWIGPICFfoqC17PEpBBjxJPFrB0SOrrCxVnDr5LpvrV6nKmal3RsbnGbOmDbkVO+sCzGloUjJtWw6urvLxj3+cpeGQS5cv06bEzrjm4oWLrK2t0RsMOXb0ANPxiI2tbQKSoe0RhSRpQ5RdpawleRsS8dEhpZ7zbud4u4/eMrCIX+O4/hmnyoTsJDMKjyxyQowQYqIwlraTKEuQy87MiAa6hBsCQgRSaLFW4UMiqcjy6gouBELYxxPr5jWCa1vDH4VIHYcTwBYW39FNEtlgmaSxgwGxmWZwScyeUVFCEpmcj8htMkEWyZ41geW+5HTN7Kd7zcwxlKTgkFIRVW5bEjw74xHGDDtqiaOsLNPJhBQl1lZsb69jrMQYw9WrVzE2cyS3t7fRQVBaCyR2XW7VagS2KPBN220O0rwSDiGgjenahHnwOGu7zZJfPlbpGl4gMJfrmy3YAELSKdRIhEwImSurmFLHh8zVqQ8e5x3a6mxF1jSdg0sniK9MZmmKyHA4yB0SKRhPdvijP/rXXLq6zm133AVKg9QkFE3IAK7ReMylrasc0J15terUnJIktI6qMtx87Ahvv/wq9cY2pTa4lN1ACAFD5mmGjpLiU6Q36PPgvffz1DNP8+RTP0JZyUOPPMKpM+fZ3L3MW6ffQFcFUQqkVXmGKhStj4TaIYUCGTFREpXOiODOGB4h2BmPWVk6wLTNnNsvf/nzbG+s88pLL+fNlCrosFKkFPeBtvJzxLB3ncUUCQna1vPgg/fz+OOPc/Ldk1y8chltDCdPn+Hy5csZTR8jJw6sZGEUAS5GpLK4IEBJWh9w0eNEyrKFMcsQis6xZ2ZHJ4SYvbl/37ftIhZx3XH9qNqOlC9mQ/vuWpYktBQYo+hoaGRCSpcEupnKzLPRhV1GO9v0Vo+itcqtJCWpemV3k3Qv2Jn15nyQv/mRSqCim3l2XDahS6QSlGWP3VFe3F0IKEARkNLkagG66jzPhEMIRK33EuJ7FpA5p5a9llZ2n1AoqUEkhLLEmEEyRWUZbW1TVQbnG7wL9PtDfNsQQsty7wCTeppF220PVztEhOFSn50NQ902iM4bMpCVpFrnrkmGMxTszDaqCdleKysClfMEO3v/wDXz85lgQlYTAmtLUoKo8qzN6JKy6Od2rCnRGIJriEIgjKTs52sphYhPAaGy6bLqjvGsj1HYnGik0Gzv7lDHgDCa3XrK8uogC8QngWs9MSSuXLzIvffcyvTiRVSAGEDGrMh0/PAqt9x0gleffR7tPf2yyJ6hHQ0r+ohIIht0W4VKIIygmU7543/9r3nxzdeplpf4zS99mYuXLoLqRh4m0dQNSheZruJbYki8dfotqu0GoyVKQCTQdkbRKSaESkTfYhTE0HDwwJCDqzfx+quvsnHlKr2yzCIbKVsE+tahtEJ0ji4+ZtcdhGTWJdUqo6Yf/41Pcdstt/Liyy+ROnDbSy+/yngyoagq+v0hl69cJcSECCFX67ZEmTILGliLQhF9IHZIfG0KPJq2DSAkIqWsvNWBp9Qiby7iQxTXDw4SAoXoOJd6JirXgREc0UtEp3CjFCAVrWuz2ovVeQHTEhUTw36PWDtkpdHCsr22Qe+e23OFFCNSZTcLwYw6wDXUhQ93pGu+SqTc3kSByDqk2VdRowtDapqOoJ+1DzLqc4/6k/mRnkRePHwIoOScbC67ltysSoBMqQCJJFc2iQAoev0BdVujtcQay+bOBGMsQjrGo02qfk5Uk7ph0B9CFLRTR6/qdQo1AVc3TKcTlDKZYqSz/m2K5NZqx7EMRBrvcKkTR/COEPdavrPqcyaIsB8kFELA+wDIbt4tkVITgusqRI0QCiEkWhd4V3dKSmQEt5Qoa4gmMQ4tPs1PBnRQIYHA6gJrityiVIaUckclGoVXIGw+fuOdXfAB0wGidBKYJLJajkgcPbzC4cMHOPPWGxmpKrKEnU9ktw/ftaARGRnt8zUufMSPa15+7VWcgn6heef0KaZNQ9EbMt7aJvhs4aW1ggg765tsra9R9Ay91SFhNEJFTy1bkCIr/JAF4oNzDAvN0eUldje2ePZHP4YYGZQVbdvmitlHZEr0CovzHmIWp1dCoFK2+YsJjDIIpbBasVNPeOvUSdqm5tLZC6xdWaOsKm44dhyUxUeJYJsYBVookpEYa7t2a/bbLK1FByiSRnrJ1vY24/UtpCwy/zaG3KHtuk/6w37bL+IfVHyAGWdumYgk5o4RQoisMpKytumcS9LB/UXKqFgp8gJDiEwnE1wKrBxTiAg6SWy/x2BY5rbsvO7K1YucJc8uPszJc3/ymk0qlwZ9locDxo0iJd9VVgnRtbgTkaKz3IjorD/bzUallKTO65KQSCKRRHaYkEoSZ5uKriU+O05RSaTPHJGu2Y2PKYsxTMf0qx512xK8Z2lwgNHuNkZrBv0Bm1tTlCxQhaQdTZEBCtNjPNnCt1N8XRN8IqaYZ5sz1ZgU53NKHzJ317tMik8kQjfv9J0v4wzQNNsgzMjuMy5wjImmaRFC0jQNIQSaJkv2ta2jadoMrtINiERwLkvDzRb/NhKTYFo3JDJ9IpHyddi5j9iypCx6uHqcZ/UxIkSZxwTCoEWJaxNHDx9ie6Nha3MHJSuS38KUCnzLgQPLDHo9Tr/7LoUxRO9ztyVGtFFkTFHePKmy4O477uT151+ab6K0lDglEUYQoiOkTj7POdrGEzz0+yVt42jbwNbmBsNhyXJ/FR0lfrybRf1lgpCtuoQQuLbh3gfu4+Ybb+CV519kvL1LZQuEzq1Qo3S2B5S5eyRIGK3yGKa7jlKXvIzSROdRgE6JtUtXEElw5fJl2tpx80030CtLghC0SUHKqN4YM70KJRkuD/NsJ6l8T3tP2S9QMnLx4jlETBwYDBjXLSJ1c/R917ZR9u/iFl7EIq4rrpvnkakR4tpB/b755UzxZQ4G6lqViUQIrpNpC/R7JVWvQCnZmdYKiqKiV/Xyr4tO56V7nRno5KMS++eOoiO593o9YqeqkpKgaWqCzzSEFPLuOvnsDEJKuQ0eY6YsdPJ2IQaCBC/Ak2iCp00Rn7KuahQZj5TXmQw6ccHjg5+33HbGu5ii6JR9JvR6vZyUYqSqKka7O4QYKKsiV4jBsbw8ALItlNGGoihYWlqiKGyewcpMWp+3WmWehUspkTpTmObauvuQ2E3TzKtNYA722e+ash88NPsa9hDe3numk9xWDi57NibnSXULdUusayajUW7MyryZiylzEVOKVL0yV9wio76lsWhdIJPCCMPO5i5f/M0v8v/6b/4rbr7tdm772B381//snzGNkabNtmdbW+usb6xjrMmbic4n0yjdzRCzLGHvwDJf+t3f4cQtN1E3dbYeE1lMPcxa2UrhaodRtkMMZynCyXjE1UuXKZShKiqM0jSTabYT8yG3fTvMgVCKouzxhc9+jqWqx09/+GPq8YReZ+smhMhi6l1LV+9TBjLGYIwGmW3blFTM9GhDDLRNgxSCi2+e4dzbp2inDcpqvBKMkyfMQElIhFRZNckYtMoyf1VZURQVCdBGE2Lg3LkzKANLyz2cm5DIFnEzjVrRrSPaLGzFFvHhiQ8kgPB+CWy2mO0nv+/XmIwpMJ22qMIwqWsKIdBlBqXY0uBj4OrVNdrGkXIZO2+lJWbaox+dxDmLGaZBKoktLDBFqUyfQAgIESMkjQ8E55E6oqVBxW62Awhi7lo5n0W7Q+Zqik43FmbHJh+fKAIKhYgpI5rJoJrkIyF4BAW2KGjHE5RUWFOwvb1Lr8pG0pNxQzVYJcaQBSkKQSKwuzMi4anKHmNbo0JApYRSkX6vh2vaPU1TKdEht2W11lhrqZuGojT0+/059UUIQVVV8/asMWaeIFNKWGsxJisoKalAMJ+LzsQTZteY1nlWSYyI2AHLUkJJQdNMmNYtRmuk7Bx9YC6mDkACZTShbdFS0bcFuxubecMhBa21lMOC0e4mWgn6xhJ9AybifZsr3phdSKKPKCHn1XPrPfc9cD/3P/4YO/WEn/706Sz1R0SlfB3EFNBCIISiLIquQtXZaHu0Sz3epCr6qJSQMWGVya8VQ6bYpBkWPaG04vFPPMaZ06dZu3KZXlEidUYha6Np23b+d5dFQXQOLWWeWXtPE7NO74MPP8TFt99lZ3snb4pgrudb1dno2onEtHWMXUtV9NG5hM0qSEZTt46iyCMKHyPWVHifxxSta9na3Obm204wXFkC7xkePsjF8Sh3nWLnjhMTRilCt8FaxCI+DPHvnDj3i7/PIi9+WcfSakNSmqQVUtaZHqCzmkxMCaGgrApmxey1E8JfhxBYnQ+zEAIfOzNn34mjh0hwHiEagsyAGyW6lmtXaUohkXNlnICPnUuKyEo5oWub5zZkyK3CEAkkfBDEkK29yq6KcW1LfzBgOp2ilMAYw2hnF636KFkwqSckIsYKmmkDCAaDPjvjKaTcgkVA07TUTUM9nWb1IimxZdG9lz3uXwwBqS3GmLlouzFm7o4yo5zMkmCMqQMapbmCkA+BtnHdYwxF57AzS6La2mz2XRhMqnDOZYpUStTjCc4o+sM+gazElLcbkrIsGe/kCt1HT98aLp07iyr6lFZQN7sYLehXGu9HrK1fIogaaQJSi9wyD7GTn8x+qK51BC2pY8unPvMbPPLoo7x79jTf+NZfMt7YZtX2OmRzTti0uZ2cpGJnZ4uVg4eJbUfZCZ5Dy316tkKKDBLzjSdWEV0YnBQQsyOPlAIXHc88+zMqbVkq+/jYab52BgCqa9XOkMsqCaTSQGJntMXH7rqT+x5+kGZac9a9hdFmjoqWIm/TQkwgFVJmYFs9muJdxBmFS1PKwTIuBdrkaIPOXp5aMxqP2N2ZcGj1MEZptNHECL1yQGkLesqwWW7QTiZ5/ZAKT+yMun9d1oNF/DrEdSfOucRyR1pGdiOLmH7BRkhAnuGEgO+EyoPzWGXwMuWFUUiUhCgFg+FwXlXKTjhAzsRePkLF5h7ide9NKyJVYVAmA0t8aojeMZ1OmE4nlEpRlSVRKHynzjIDFUmtCE0Ge+TjpzP1Ivq5Gk7KUFogZQ/OlAgCSJEgIjFqfNfalEBT11kNJiXqumYw7DOd1jgHS0vLTJopbVOztFKSQs1kOkUVfbS1NK5lOpky2dlFlXZuLjwTMZAiu2XU0ykxJQpt5u3YSRiztWWo6xpgn2hCMxfWyAL4e7NOIcC5Bh9avM9Mv9BxH3OBOZvrRpLIdAYvEklLSJIkNa1L1M2Uf/OH3+CLX/oCd951G0oIWtcgVBZaIIESiugdO5vrtNMd7rr3BJevXKGud4ipwerAcNnyX/7f/89MRtusDoYoXeQuATOhe5eR4lZQDnp84fNf5cQtN/HM88/z3W99i6IqePSRh3n31TcREYyxtFpRJEvrPCkk+qVlZ2uNUZsyVaQNVLbINmtNRs0SI0pKNBCUpA1x/h6yjB4o8v2npMx2bjqf80jHhdW5hYyUTJoGZOJ3vvY1hssD3j19Cq1157ji9o0eFD5FvMhWZUoXKO8wwjKshmgNu21ACIktsv1br+oRQuTSpYs4HxBolJRIoQhBoGSJtX2UtgilaNuARCFl6JLlTBv7o6Eetoh/GPEBEmdWs5ERkogkJfExI+T2C3anlEjeo5TpFvwWET1Jqezu7jK4aLy7TX9ZgbRsbY3Y2NjJgCM5G7zOQAofYfZzymCUXmmxVuFcILjMeW2kQhlN207zfFJJpDRICSn6Do2rUFKgkVghCd4jjSV13DgAkSTzXUw3F0Xm2agk5MpNRKyShNajrGFpaYnRZExZlJRFxcZ4k16/j9IJPx0x6BusVoxGEmUM5UAzaT1tTMQIVVHQ+iyvNwP7xA4xa8siJwUpsyqMVCgyNaSp60w/kIIU9jZcs8S7364qW5Q5ILGxsY4xBu9dN9ssmE7HcwUlrQe4tiFFjZEK37Z419ImTxhUVMtLhKj5v/2f/h/8F//F/4abbzlKUt0YQGb8sRYKI7OKkLIWKRPaCLa313E7OwyWeywJyeVX30UtrTAOEKeOtgl4GyiK7A3qfMMNNx3ns5//LEFJ/vIvvsErr75G3dbcfOctTEKNrAyi7aooKfDTBlUM0dKwcfkSbYLB6nFGPtO8jMzqUkWpsYUhhSxy0TcFkxiJQmFD1gxWIdE2Y3rL2VHHGEtpLI6cJK21nW+uom4bbM9yz/33cP9997K5tckbb79O2St5/Y3XGU+nmVcNnZpVbuOCR2DJIC5wLlOSQtt5wzrQSSNiYndzl52tbZaW+kQBjQ+4GEAZtC6pa0+MkqQEulCUhWY83cXoDCICOk9Q9fdzDy9iEe8T18/jnLGkYR9HMSMq95eFQmQeoYiBFCNGKYxWNB1XUUiJlGQCOwLnHVJa6klGRYqZJdkcLvoR3GmKGQEVSInCaJL32cnDO0RIlP0eSURG9YjaeVJoCCKRfYSzkEEQgRjAJQda0biu4giOoDLXzdJVGehuJtQilcRHiDIhYkR2XL3JeMKJ1eNMJmOCjwwHy2xvb+V5Y6/H5uYGUkJRGia7IxqXONDvE11gPJ1mA3Il6Q0qwnQKKVtIGa2xSnQCBZ1QgiC36JQkeDtXQGqdI5EVkmbt2T1ptYTo6DW50phVG/kS8z6jameauDEGXBtIqSKGgIsRpzW+zQk2ApNxi2/hc0/8Bnes3MDO6cucvnKZQ7edQB04yLA34GwMKDLqOylBEqYz4IY3XnmJ/+b/+V/z6guvM1rbYmD6jOqapLKmspWKUmqIgTZ5Hnj0YR77xCNcunKRH/zoR5w+fZ5jx2/k6vpVxvUYF1qkUrnqDS4Dp2K+lTY2NhiaxKGjR8GY/Liu1zOdTHAukLewkROHjzCwlsuXzuN91o4VqXNd6RCpoQNUJSFIIrf3XchKSlsbG9x66218/OOPYq3k9bdep20btnZ3OP3yK4zHNcOqRwqdQlWHYRDOY2S+Q+NcJ1fO9DcobIFUGqsLNq+eZ2I0Nx87hipEbrvujjvBeEOSkuQj9XRCKww4iTEKbSVayiwKkq+WX+AvL2IRf5/xARLnTLis66WSBcjfjyqSh/t5ZqSkpigsMTqCzDvU0Dj6BxR0Brn94YDl5WX+/+z9Z69kWZamiT1bnnNMXOkyPHREZqSoVFWVnVnVVZ3ZXZyZ7mmAxAzAn0GAAP8Dv/ATfwFBECDBQRMNkg3OcKanujilU1VmpAgd7uFaXGnqiK34YR277lld1Z3RqiIxvgFHRNzwe82umZ2z91rrfZ8XBE2nlBVhza9pofkU4iD2FGcdpWTB7RlDjB3LszNiETGK0VrUxEqi2FDjhofGpPHoUCJuaytRyM/KosBVSaFVECFQTpQ4WoJG/2gfekpR7DSNtO5CYDKZE3PPpl1ycHDIan3GEDbs7E0YhsDQDtTNBItis+xwTjGZzblnDZN5TdCFPGQR4YxkI+ucJF8MgTx+3RojxnqlmM/nEuKcxOawDWveBjdvyUDxGSGIUjKD3dnZIcZ4obacz+d0nfg3q6qirutfgoJ3neRUphiIm4HDyZSTNHBY7/Po448IyzU3vlJRFc0QBoyzGCWfz6gt/RDZmc3Y22n4wR//EbnLVN4Tup7ay9zPO+mqDKGn9g1//+//Hl/86pf48ds/4U/+9I8Zhp5XXn0dY2s4O2MynQOFPm4k+aYyhH7AOkefIn2IXJrvYK2mWE0siRpFt16LcjglZk3NV7/2dR7evc37t28xayb0XUdKWahUShHHmeu2WWO1lla2rS4wht/97nf50pe/zLvv/px1t2IYAh9+8CFHR2ccHFzm+tWXOXp4/5cIT8IeTmgnG6lAL+yIRww004aUE+v1CuO0aBiQIHFjBMnpncNpe6FxiKGXA5IRmLxRmpiEKyzdlOfr+frsrU+Vx7nlocoMU1IqSH9TwKxCj1J2gIIWc3kpAjfQbsxrFDZm1/WsN50UtGOChVIXJRu/Lq3apz7Op89dWlyJrusYYsAZqbDqqmK16clRZkLaWrSr0GSUkmq9aIMKZduwEjN5SFir8CqT0GQMAS1kp6IoWYufsbRAISeZ4w29tM+7bhBcntWcnS7Y271ETtB2K3b35lA0m26N8xWTSUO/2BBTZL63w7DuSCnRbTYSr9VHqknFEAaslQQOpYz4U0sauaNPI+i2/FnG2Xj9DG7PGIPiqdhsKx569rXd0om2M9DJZEII4eJ7thVs00hYQF3XNErTtSteeekFDmffYnN2ygvTt/j+n/0Zg3Yc7O1jiiKOG4BxonR2WvPC4SG3Pn4HTcBnRwkdlbX0g1SKOUVcY5lemvOf/xf/OQeHl/gf//AP+fGP3ybGyOe++BbdEME4MpqiDFXl2OgzQQgG2UjEZ6qp6wZnCqHvQUFTNyyOHnHp0oyu67h+5RIv3LjOT3/6c46Pj9jd3WFoW7zzQufaXqPjH++rcfaMzNX7yOtvvsF3v/tdzk5P+ZM/+WOmO1MeHZ/wzi/eJQR45aWX2d87ZHl2dmFRabuWglSTcqjJxBjAepl1as101rBeLnlysmL38CqT6ZSYIsZYqqomxB5rNMmYp3PTImzlkCI6DGRt6Pr+wvoWY4SiyCljn884n6/P0PpUFefF/jVemFo9Ixr6G5Zi9BQmIQo9FRKVC49aUZpSLKvzJVsTxl/X1/46rQuHQwHKVl0qNgGrPCkMAm1vajCZZb8eYQZA2ULz1fgayxeLFhOFNgZKQjkjm6SyJCwpISd8CkUZFElyO7XkeJqi0bUQfoZhYDqds1lvJADbOjabFdaCtYp2k6BoJtMZ/bCm7dfMd3bJurDpegiJdtOx6XtSLti2JcVEGDbEUqgqPwqAsnQjsgAMYogYLdVkHlXXIQTCMEgSzOjfGUL4pRQe4MKzuZ2jOud+iW0bY7zYQLebaxr5j9ooNqFDTTR1M2dybU5O8IYJdOcdbt6gFULN0YZhWPPyCwdc3p9x84P3iClQGzNCEzQpJKzSxJCwVqLw/uC/+C5D7vln/49/xq079zk4uMzp+QkhFyKayjmKtmRlKMpI7mfOYGTzyCURRjRdTInGOJT1GCtjjfl8yquvvMh6teJHP/g+YUhMmpo0pstQEEiGAm9lLJBSGmHv0HU9O5f2+f1vfoP9w0vcvn2bs9NThmHgnR+8x6rt2dnZ53yxIqvCZthQRnVe27ZYZy/EXNZuXwuBFLjak3XmyeMnhE2LdVOZzRs7qnU1MUUKjL+PAWXQRjyvQ8gijFpLC79qamK/QcGouEai0/6TXL3P1/P1q61f3Y4y3sQyZWyh5n8jdzknyLaQSyRnK7zQmEgp4g3s7u5RlKdPip35lN3duTzOxbz01wWx93Rtb/TylNUIcCjEFIhRqpTJdErZBLog7cw4Zh0W9TTvUIgpGpuAnNFFC4dVJRzCPS1KPJbea1zlREiTE2FE+9kiYHe5UQkYPYSOXb9HSplhiDRNTQiBlDKT6YwYEzHAbLJDLpnVekEzneJnE04Xx+IBLBmnFE6LeX/7ZyhBxGApUEoS83zR4sfN5cJkr7Wm61qpGkOQVmrJ5D5TOQk4jjFdxJNtfZ5D3xMGmQ9uY8ZOTk7Ysm3FMxnGOamiHwbiMqF9RQwRpTKaJMZ8a/n8N75GHiJv/+IdjNU4LWKaN998nboK3Ln1Pt54nPWoWIhJPLko6QAYq0fxluWdd37BBx/f5PhkxVe/9ptkZTh/f4OtKpLKaCt2D++8EJZilIMBMuv11tEDMQW0rbHOowz0myVvvPEq169d4ec//TmbdYu1IhgSO4l4Vp23lJhGS4rYTmJOWGfYbDb8/d/5Ni+//ipHizPuP3jIYrHk9q1PuH3nDpPZDpcvH6K0YrWWrohNPcaBMlq6E0p+1xQiuWR0McQCMUe6xTmBiDZwsH8I2lPXNTF2Eq6dMiEMGCsitswIfrCiqnfakvqOw91D3nrtNW7+/OecPX4kXmYl2EhlpNP1fD1fn5X1K2+cGpk5iuRCofO/GUzwVD6eQCXAytzLOopWLNqOqq4wviamgX5o+dd34l+fTfPp2gqaxk0UBJodA9l6cioM/QA7DSoL9owtgcdoQs4XN3+KePPyWNlfiGK0oRSDV4nHH/6U+598zKuvv8GlVz5HjCLWSLEbjf6GogopRYxVTKcTjo7OmEwmgGG9WtJMJhjtOT9bYG1DZTwnZ8doDc20YbNckdc9u9MJ9+vxZhYzdkjoMOArS44FXRJaZ7wx6GJRUVNNPJ02lJzQY0uy8h6FovKeGPoxgDnjnCX0Dm013tVQIAQRBG2rTODCB+qcG2esvxyzprUIp8q4ueTIaKPKFBQpJE7PTtjf28NVjiEO5Dzw6gsv4K3h9r2bTOsJRNAlj1SeAlYx9OLDRWtUFgLPH//RX2Amc5q9fWZX9zg/W1GcwVmHypJHWRnLZrHm/PwUH4LA3pUoj3NMGF1IpmDMDG8tMW74R7/725ydnvLnf/wnVH5C7SqG0FGUeBu3nZ+cM7mIoTcrS8bSF3C157/8p3+AKokPP/kIZR03P7nLu794n6qquHT5CvVsh2WfBDKgrVSD2ooNiEKOAaUMzhgKAmAnSxu4U4WsEqrArJlw5ep1QsowVvCFQMwajRw2cgHnJ4QMOUWIHTdevs7nXn+Ffhj4o//+f6A7X7BTV6QoYH2J51SSmvJ8PV+fkfWrV5xktvDIorIE5moNeTSPXFSH40yy8BTDN6omyYiQxGj6ECg2oYmEYcHJ6YlsGOPjCfa2/BpNOLcNZvVUATiyewUiPgKzU8FXnj7FMbYpkUuiZLmJbnu9pYzpI2RUgawtpoBVCtAUa1kvTvnonZ8QuwUftAuml1+hNLuSyWmWFAZpq2kvHkiVWSzPiKFjMqnZrFbUXlNbaDcLSIH5zi79eoklMZnPSEOiW3U0VmwNxcq7NLQrXj24wmtvvcUff//PyKNmzM2neKsocbTJoLFGk1VGGY01MOQBZ6zwY4ukhuzOdzDaULKh63qUMSjrAGnj+qbGVR6lDJWvqKrqAq5Q1zWT2WwM9Y40dTPOjhXeeQYUAYWzhthnPvrwJiEM7MynbNbnFDJeWR48uI8/r3CVE0B5Kbix9R1KYr3Z8MKNG7z08kv82Z/9BdaKsX9Szcl2hqlqFpsFm64dMXGO2WRGyQpi5KP33+eV116hrms2j45RXlruZPFFpizV9mTSMJ/Nee+dn3FyfEZTN5Qk4pxtzJ420tK/EOgpjXbys4pSfOO3vsGbX36TR8cPWZwec3ay5MMPP+FsscFay40bL9F1PafnK3qt2W92sb4mZzW2fh2z3R2GxRqdCiQBx+dSMMoTcyHrgnYSoG60PL7dghhCHGELiqQMyrgRGC8HqP3dCa/d+A0ar/ng3Z9zcnyKUZZ5MxULG/J7pVELYZ6XnM/XZ2h9io1TVpHB5VOS0FhYXuQmjgKZlCPgxbBeMozxQLHvMKbiYP+AIVoihUldM50JE/Xi8dSzs85fr61zu+TfhKgjtJbIZDKl789JBaxyEjeV5VBSYkJJp1VO6cJpRxUx+OuiKCmg6oqiCq5uqOopXo8tSGMYlFSZRllSHjBaYXRBp4LOkPue3Z2Z+EdLZDqZEoaevm/Z29unlMimX+Nrwd2tV4GcC9PZjNgldIbh5JyPf/pTjpzipz/+HifLUwG3Z7htLUMsvPjy59g9vAEZYjegnZJ4NWdG0ZAiqjF3M2b06C3UJVBSTykiKOmGVtBwRrOJA97JAUKFLAjC8bMWtskpW7M+hUkzobZO/KcR+pT5qx/+iIPdS7z5uTf42ds/4Wdv/whtsmxMOTA1DTZkrBM/ctESRhCGyBtvfY7f/853uPnRx6QY8b4i6UBIA8ZI3qfZ4gNDpPINXd9x7+5d6rpCnwsli7ZDFTXyizV1VXHUtlSzCV/6ja+wPDvj52+/TYmJ3d0dwhDoQ4/3nnGkeXG95VwuWuHSpRg4PJhy6XDOnbu3WXUr3vvpOzx5cs5ktsONl1/kyeMnnC1XhCGhnKOparwXoIViizbMqJLpRuxdAlDCXg4m0adA0ePGXQROoXREm4JCY41HIXF2m6KYVRVhaDmY11ze2yPGwN3bdzg9PkaPQqZKW/IQ0WPHZtt52aqyn6/n67OyfuWNc2sR2M6qtksQavmi4swXF7G++JoxRjYK51ChR2tN27Y0k0OsUjR1PVYf8MsyAPVrxqktv7TPXzBBm3o0cStiCnLDHIOgrVIiNHGjwGf0gJqxjZciAiDXhkyEUigpUpIwaaEQhx5rMqUMlLDBKEUIPcp6lPG0bRBBSwko50nWst70KGuIxnDW9vh6QtCas/NTdKWpd/ZZrZaEpGjmFbrWdJuW5eKUJ/c+wSvIpSUOkd3K4o2j37So3NOhMDqyGVbYXDHEjM0Z30gFkUqh7zsm1mDSgM2Z5fFjbN2wWPcYVzH0Azor6DKh3zCYJX6A3A/ERlHPPG23EizbMKGkSNt3aKWZTmrW7ZppNWG5PIXYcu/2bT764CO+/o0v4+ua//Zf/nf8f/75P8cOAUqkkLFaQYpUzhOT2GRSyaxDxz/4R/+Q1978HO+99x5/9Ed/hPMeoxXJKErZ4igz3ns26wFrPA8fPOTo8UNef+MNHj56JGrjBN56NqqQSxGBEfD666/xxd/4Mn/14x/SrTdUxsp71g3kki8g+hdRc7ngncMYGIaelEQc5SeOx49PuX3vHrce3OXOvcfM64pr16+zd3iZTdeTiqIbAnU1Zba3i6kdqExVO0loSUlSU7QWlOIo8EslY4oBVSQKTzsSI8ihFHJsBfGYHUZXaOWwVRGhkcq89tKL7Faed99+m+OjU6pG6EImg9OKfr3Bmy3YXa6hv36/eb6er8/C+tSRA9sLdwt1N8aT2u5CCamUfqpAHNW0IQT6VCgYhiHg5pqu78lqDdoytB37k0oQYU6qNrkZ/Yf/hf+jr196zpmURaiSS8Y4J9XkKKzJIUlQctfLBhmVtL/0eODImjAMOK1JQB7WGJ1QVY1B2mYAYZBm5MnH77N7/VXBlTEw9JrSDBhTsYlrEoEb02sM6yWNzjK/XJ8xrWB/r+H45AmNi+zt7tOtzyibgVnlmc4VZ4vHpAjnJ/dRm3PmzoK2WGWoXUOJidp7tEqsi6KpPYOT6CyjHV4lVOipjCfkxNAFTlcrTh8+oHKO+cElZrt7nG3WeOvIKUACj6Ik0KVQciIBQ0j0QXIjVVEMQyJl0MoKAzYWcio8fPKE3K5497236c6v8zu/87ucLx/xf/6//Z/4V3/4h+xPZhzUE4ahxzpLKZEYA8U4ci4MYWC6O+cf/5f/GVcuX+df/Y//ip/8+Mfs7e/BCGoQAIC6sMgYY6nrCcYafv7zn3Hj+rUxvBsYD5kpR5RWVE4OG3Vdc/nwkB9+/3sMQ8/U1+QhsIXlxCB/P6YoR0mlMNoyhHBRrXWdkL2c1pQU+P5f/hWLYUBby+7la6SQWa87sjEU5Zju7LO/e0AxmqxkUyzqqe1nuVjSrpf4onBIAg5asl5lHAHbQ64clC1dZxlCTxhaZrMZpfTs713itZevM2tq7nz4MT+7fRdfNLuTCWnbck6Z2A9UVixIeeTobi1Mz9fz9Vlbn2rj3CoY4ekGurszp2t7jNm2ascqKGW8caQosHAhvzxVS87rWuZYxtI4j7VOhAej9/FZW8evzQaq1GjBeablrBVd32OcI2SZM3Z9RxcyOUtr0Wojgp6cSSWTC5gkyShGKaHSDKK2NUWjtCUphbcO7x25rpnXNZ+8/zbnP/4e6/MTrlzeB+vxvoJBg064xnP7L/8U7WowRlq3uVA3NdYp+mHDdNrgfEXXZqybUU8nqCqw6TuImnZ9xGzmOR0CGUMsir4PqJJwW6ZoiViVcN7QVB47qXl8/xP29yYczud403K0eMxH771LrQ3LnDldLLh87Qq7uzNSBucdYIhWyo916qn3psQg8Wx1PWHeDCQSGImdyoDSAj5wTlB/y03HarPkd373v+bmBx/w3/w3/xeeHD/myuEBpY/if4TRS6spSmLb2hC48fKLfOv3fhftLf/sn/9zbt+8zeWrV5hMGpbnixF+nilZ2poGzfJ8yXLZSlKN1VhnWSwX8vkuAoX3yrJSEGOgrjynmzU//elP2T/YY1LVIhYa4fe5CIEJrdDqacxXCANf/OIX2Nvd4Qff/z7WWfphkMOGrdEoZrZi0wcWy456UtFoh7UOaz2z2VwC0RFbmBCFDGEI3Lt3n9lsys7OLmnTUYY4Qi6yWJi0kQpzJC2BEvB7MXg7waqEt5YvfeE19vZmLB4/4ZMH90l9ZOorvPKkLIeeFAJOjeI4rUVZrPRIi3omZen5Bvp8fYbWp05H2X6QtxvndDrj+Ohk/GALKs1YuchLEWJIVTWUGLGVou1bUj9Akotw6Aems10u7R+glJj3n3Zr81h5/roq6jSlKNouYJ2lawcCUbIIY75o8aUc8abGVw3ZKDLpwp5SUsTkQoXB9hpLpkuFwSRKCTR1xTol1sOAc4pplWnmNTOryQz4XFjlgImJSjccPT4nI5WPMgbrHU/aVpJLrOFJzugsPsuMoR8C2hcWyzVhyFy+vINzFq8iRSuGNjLfn6C1kvgxI4eHx7c/wk+POOUdSgr0XUubdvjwyU2cs5So2Z9YNDIbxWTuvP8ztHNUVY1yFdZbTAqcL8+4f+8hX/zyN1DUFOtRBLJeIvbFRGMddghUWnNJF2ZOc746Z7dRvPLyS/yrP/oj/rv/17+gMlAlgeX3scfUlVBschb2sjV0OfHW177Kt3/n29x99IB//n//f5JCpjnYxc4nsuEoUdyWEtEmoxjwxvLR+x9y9fqLGKuJJaK8wVYep42AFjaBelaLKMoJND2Ptgw1XlsJJYSpnASGHhJ6hIpsNhucs/yv/+v/FSkMfPThhxgSZKishZRJUZCMGEUx0KeOq/tXqJuGQAaV6Ic1qIQeo+CGTULjePT4ITuziv39Pbr1RkYvpQiuL0es8VijpCui8xhKnsXu1CnqKvPqK/sc7DZ88O6H/OL9j/FKYRR4V4kALAJKEdpW4upNGW1Lwh7MpHHj3B6k0zNAlOfr+fq7X7865H088V3kLo5kj74fsNbRtmu0AedFLCA+N2npdG3HUAraG5qqZkigYgadqIxjeXbG0eOGECLWqTHwuVycOn9d1t80i0l5NHgXUQjHFKEkJpM5VVXzaH0mfs6YGHJLMTJDsgVKDqAiEQhFfJElJ3IFxhtOHjzm5OiIAmz6nhpFDgPeO7CGgiSmzCtLnwu9isxmU7QyrFYrptNa2nu1J6VCZTym9gzDQD9sUCXRNJa+3bDjPH2JmAiuNigicUgolamqgnM1bd9SSqYywqhtbCaGAeUUXTbYrCAp+nZDiBsm3lDXHms8w9ATNuf4esbq+BiVE42zTBrDZV2YTS3h5juEDH0YOFeRprGQFEFX2GaH9TAwpMg9InuTCapklu2Kf/Z/vUnY9OxMZvQhQYi4iaWkwnq9wnohDlVNQ0yJf/gHf8DLb7zGX/7wh/zJX/45xhleeu01zpcrsrX4pqaoE2IYsEajdSbGlkcPT5nvHdLUlbwHWqhNo+MIXTIHsymvvnyDO598DFkCtJMWRGXZRraBQPQ1srGUsRmTM7/5m1/n67/5NT78+dvcuX2bbtPjjCHmUWSmFMpkii5kZbCVYrLj2dmbEWKk32zw3pDyQMqKdRtYrDucbZhO5igMMY1wkmfmjFtBYEF4yqVElHIohJM7nze8dGOXSwc7PHzwCW9/7wd4BTv1lBRkgxXIR6EgNiE7MnX7PlDVopLW4zVTFBgz2rGeV5vP12ds/cob5zb3MI+G/e06PTnFOUvf6wsDvxo/9DklUT4OQcAJTm7myhiGEHEuY0oiG0cfIillch4h8Ftry6/Pvvk3rmEI9CEKZHtI+MqRVWazWrNZr8k5AjVljIHSGQljLmCskJcsGokJSwQFSg3UKfDeOz9jdXQ02iUy2ltiGzBVYb1aMptO2KzWcrMzBu/NBQFKaU0/BACs9aAzfRjQWTySOlpKEkpOcSO6zaQR6JClC1ASVhtSVMznDbPJwOL8HG0tqY8sNifMdubETaBdnKNmiSEErHU443DOUnvLcnVGjonQ9hzuTGn2GkpRdENL0BnrFCprSLC/d4mHRw/xlUczUDvLZrVAGdAhYnOmcQZfOoa+o8mFMGSsgr5doq1GVYZNt6K2htT1pJTpogi2vvsH3+XKjWv8v//Fv+DmJ7eoJw3XX7gutiK4sMBoeTrEJJ/REAascYROgqLreoIujhwKoetRKvKVr72Jt4k//96fY6wXRXEuqFSIpUjLVyGz27HtH0JPzoqr167wW9/8TYyF73//j1iuNtx9fMTp0ZLDgx2sGQXuWmG1I6SCcZY4iCUpj+pYaywURd8NhCEypMTe7j7eVmyWG6rKo9VIcnqmXWqMlqpXSUckl0KIibqpefP11zjY2aVfrHj7++8yhI7pbApFEZLBGgFj5CxdjrzVSRSxNsl8uQhcYYyLs88gO5+lSD1fz9dnYX2qivPZdi3ISXSxXPDijZdYr5ds55Mg8VOmKMxoeO+TpGOEEBmSKAJ9VRFDYj6fc7B/MPrTtmpcza8bLuTZ16ZkOWWHEDg/P0cpzRAD6IJhPA8UfQEYrH1FthUZRSpREkKsgrCt8jWqaNpNT0Pm5M4t1OqUWmtOzs+ZThq8scQMsespGs7jgDGGMM7xhiFsOQB0bY/zhr29fbq2Z0iJELY4vELTNGNCyNPYOOcsMUTsXCDd286DdY6cM/PZjBQiGhi6HuMdja9JWgQf89mMru/x3mGNw1cOSBg1I8ZAbCosCeU8GE+fCzEnKlNR7xgePjnj9s07mEnFlemcfn2OUjDogkqDgMFVonaGPGzIm5b5bJegChEw3nG+WpJ1oZrUOBi9o4Wmrli1G47PTviTv/wLlqs1n//iF7j/8AHNzpySMnbVYpRmOp1ygsyvrZKgAm8tyViwVmhMMWOU5fzklIOdGVdvXOPjD9/nwfmSxtUMI9jBGCUq1VhEOZ2fzjf7rsdWFf/gO7/D7u6c8+UZZ4sT7j96zIMHp3Rt5vDKNSBQ8iB+xzKiMFUmloz1nrbt6PuByXRCyCK8OXr8mL39fS5fv87Zcs3R0RmXdg8EEJGiqGqVxhlLCXHEYxZijuLddJpvfP0rXD484N7t29z68CFq6CX5x9aoYhiyfO6k5awuNsILK1sZ/d+IMlkrAyX/kpJ+e1B/Fvz/fD1ff9frU22cF3mb4+ZgraVrN+Ms05JyYBsDlXOWWKAsoOikZVMZhoF26JmnhElSwfR9z3KxkO8pWtpSv4Z0yotNc9z4Sy70vdBlCiJYUUpTkvx2u3u7lLhBq63dW5G1AjW2WRWgDVkXks44WzPXjrA65uH7bzMvgU0cmExn7M2mPDl6hNeaqvYUDYGE9g6Louu6iwpnPt9lMpmyXJ6zWCxQShNCpKCkEu1EJR2CsG2rqnrartNPb345Z+q6pq5rFosFTdNgrKHtWlztmU6n1E1DjAFXe2pv8ZXFVXY02kvOYlM3pOyFZ6pg4qaoqNhrPM5rjIUUFM3ccX73p8zMhGt6RrWzi0PT+zlZW1Z9TyFRGxhiTzICeVM5UZK0pJvKYbyTVmAuqDwydPuBIQb+5b/8l9i64fqNG9jKkygUraCYi46LHylG2jkEpJ8FYj6Rlm/f96gYKHHDm298iWld8ZMf/hCrDFZLmLdWerymDNY4+qGX5JgsXtC+73nllVf4zh/8Qx6f3Ofuo/ucnZ3z7jvv8OTJEl/tcOPFV0gpkEImpYLNSQ4PWlFikepQgXeew8MD7j18yMNHD6m8pKRs1muePHnCug/o4nAj0UmSWMYNTIlqWEvTmKgyXRy49sJVTIl8/8/+BK8NlbEE44WbHDRWJUxai79Vjijy/SPz1owjCREbKoyW/5boNP1LiMatwvb5er4+K+tT21GeXcYY1uulVETWEPswzkUUJauxupH5hNYSmaW1YrYzY71aolyDMZa+61iulqK4TQqvHfJTfl36tNtNXnCEW2B5LoXzxYrFak1JBTsKZybzGf2yI+VCSGDGg8JTSqG0u/V4cyklY5wiDD2N0tz86D3o1hhjONjfI2OYT2pqZ1menzGEHu0lCPj06EzmmnqLpdOcLxZMJ1Ocr+n7DqPlBhljgpwxY1qJMYZhGOj6XjbKIq0+2YDzuEl0bDZroIitwzucKgwxcnb0+CL9Y9ZMWG3EG1l6acd551BF0nG89xhjGYaOOBM8o60N2mUKkaqqSKZw5cWrVLWTRA2viNbS5kzJEZxFFU0qGdfMsE1D5Wv8pJCzwvmKttuIWMV76QqMbN8YI94Jm9bXDQXNcr2haM2m7dBF4s2W52d89NHHAm2IAWuN/I5pTCcpmRwG9vdnXP7mb7DZHPPh+w+Y1buYotls1pjR44xCRha+RgeJhVMFmmnNt771TV544QVufvwBJ6tT7tx7zO2b95hOdzg43GfTd3QhkuJA4xyxR8DqY4SYGQ9uylt8XfPuu+9hnOXGjRucHJ/gq4ohBPJyRSiKymp5DcfNrCQBEBStSKWIEApRwjpruX/7DkePH3G4u4tOhRQjERHy5Sy5oV4pnC50SRjXSoE18rzkw6hGcVERIEdKXLlyFa3h7OzkQrSVns84n6/P2PrUrdpnfZxy8RcWy7OxDdtD0aAkp8+iRjNzBpVHDJmmL5G6qWgmNWGI1HXF7u7OM4/26+fjFLZKRuLTBEqdc6EdAtY35M2SdrWgqqdo3JiPqFDGobQiqyzWCiXGeo2mRJl5pgypT1ij2Jw8ZnH3Fru1ZRlahqTQykoYsi0EC2G0ucQEynhyUoQgCS0xJAqwajvhuKaMUkJ3UkpjtCapEXihFEUpQkxiH1CKlAQr6L1Hq4I1RnizyrCzs8umbTFFMa1qjo+OKHVFVtK6TuP8rxg1Zi8adIF2vcGNWZ5pGMhDJJSMqy3OKqrKsujOadtIzhpjPOt1z9AplA2sFgtiF8WGYSxoaNdLILOzty9zdhSm7wDZqHMY0EpTukGOPSXL57XIa6+UIaNAGwlz1pohZW5/cpuvfPEtBgXDcrhoI1rv5GCYEq9cucp6cc6jOw/oh46Zayh9JBWFGxNuilZobcXKozUxBjbthq989cu89fm3WC2WfPLJTT68dYtbDx/QhcL+wSWmzZyjkzOUzoSwwTs9qk65oHQVpVBjFFe0hcdPHrEz3eGbX/kmj548kVZwzhhroYBXhhIDmoTThhw0ccgoW4glEUvGFYVRFg/0FCyGmZ9AkAMiRTPRkHMiqUwq8vvmbMUjWoRKJHxdqTgjsA4tpSiuXr3El770Ja5dvcqPfvAjTk7PMMpK4L1+2uZ9vp6vz8L6VHmc2/bJlghUSqGZVKxWS65du8Z6PRI/JN94hGaNfNuSCFGSOIaUmXshhCitR4/nMy2ciw1XHvuzd82Ui+cmS2w4BVE1UkAZQ98PDCGjrWfoOnZ35qxWHVpPYRRY5DyGe+dMopCUGmc+kErEGw1JTuXzxvLTD3+OKh3K1Nx//IT5dIe9Zg4qM4SBPvSsNxt2d/cJXYfKoLzHW0MsCT0mVmw2A66Syl42TXk/Jay4XNyI0QalLZUzYwtP5qDbWDlnNYrCMHTkOFBbS2g7rDI02kqsmTFQoKlqQHyS2hiMAp0LyucRMZjwkwaNxpYMXSJbS7EVu7MZl/crPrn7AFN7rl3ZhxhYnZ5x/fAyYUh0Q6QfeiZVxcTus1y1DL3wfguZbrUc47eU2DISzKwbBT8RNYZFG23lBq8t1lXoVFgsFoKi04q9g33OY6RfLokpYb1jMwwoY/jOt7/F0YNH3P74JrPpDEsthxMyuSSUlqD3rEZuqwLrDLP5lP/lf/VPMUbz+Mkjzk8XvPfuu9x9eEqpGi69cBWShEi7idhDrMvszCd0y6V8loqgF+tJQ7cOqJRZr1Z0Q+TS3uEFHF8b8Q0bJ6Hf88kMSh7JwgXnKkqCF166RomRj959D4uhxAxF4Z3FK0PqI0VblDKyOQ7xKS3MWkLIxKRGa5Ukudix85FyphsCO4f7/MN/+F1m0ykfffQRP3//XUKRTV0pxRBGAdvzVu3z9Rlav3qrVmtSjM9AEOTireuG4+Njrl+/fjH0V0rB1guYtsBzxhlRoFIV625DHxST6Q6L5RmlDwx9ECC23iaMjN/4mVwjkr6I36ygkZoFiU4qhb4v9EPk4aN7TCY15+fnNE2FNhYVRUWZKJQ4oKNB1ZpEJBlQWVTFgUxUiUljWdy/x/LhfXamnqPFOT7BpekOKRbsIOrY6Dy2UdiimDZTur5j064u8HHOe6zRmEnN0AeM1Re5jQpEeTnGYMUigG2K5FvkIgHGMY8tRq1IsdBMG1wlIpejo2NiKPgqi1K2gNIRZw2bJFWH0oZSBjLQaIcySoAMSZODeFILGV8Jm7XvNgzBkMIZpIG+3bBSkIeB9XpNP2hKLKQsk+LN0EMxKG8oKpNCRFFEgFXSCOUwhNgz9GWk8RjQSTipZWwtmkLOiQ8//ojf+s3fovEVv/jZ22PQcmFImcZYfFJcvfESL33udd752c+I7cDOdA6MFpGxmrfj1hSxKAw6J5QbSLnlyrUD1utjHjx4wsNHp3z08W0qt8MLL73Bk7MjNssFALs7uxgcCs3u3h57OzscdT2BFoUmDpGsLYwHXe9rchkYup579+4xmc0uLB4xRN54/VUaK77SGHt8BS/cuMpbX3iL0He894t38NZDzChryEBIQfyfI5daBLhl9MHKQSpnDcWgTUEn5HsVxJIpSrN/9Srf+uIXuXH9Onfv3ebD999FafC+4fj4RLJa4WIjDs/FQc/XZ2j96hVnzlhradv2YvMsOWPHfMTt2s6+hDAm1eNWdGIs6BjJIdN4T9PMCCkxn0zYne6C2gY5/zI96LO2fqnalL2TCJyer9hsWozWlALrNtHM5nz5y1/h1s1bIuFPYskwWsg2ThlMVhgllaA2YnhPKqNUIueEKgG16fnZ9/6cncZjTeH8+ITLh5fxxtF2HX7i2GzWhCHQ9T0uS9hKSELHsdaiR5O5GbMgUVJhKSVZqc45nHdYY8RfuEn4uiFnxXqzeTqzLtv2GVhjMVpf2IbmO7usVhvarmUybQijvcA5x9D2VJUfH9OirMGiadcdRSlq49BK/JWTyZR+6LAoUoiYnKid5fh0xTBWyCq0VOONOipowyCYupIpCYHJWyMVNRpTGFvOhX4j7WGxTEWscWzicPGZM8ZydnpOTIkUE3u7e5LaMlKeptMZZ/YEVaCuapqm4Z2f/RydYVrXxK4bmcOjWhTGToIhp8AQO7w1kjqE4vHDx/xwaHn46IRVO7B3eAXrZxS7PaKJQlsbQ1XXLFfnHB4cotUYGF4kWchaS1Jy/eVSxkNCRd8PnJ2eM9vZxVkhdSmlMK5i00tK0bxx/PbXv4hRiY9+9mMeH53LvFtJdUqRz4vYxgTK/GwLtYwwCzMKx6yxVJWBMNCFQNSKG6++yOe/8Dms85ydnfGzd3+K1oaI5tG9xzy4/wSLZn/WXMyen1tRnq/P2vpU6Shboc92aK/H9l6MUUKOn0HycTFzGWcgSpFiJqdCiIH9qsJYQ78NeK4nzwCdt/PNZyvPz9raSpcEbJCK4sHpgpsf3mQ+m7PadMzneyyWC5qmZrVY4J0TY/s4J3ZKApTbxRlGZ7IqFFsDkZwTXmnxT6aBJ/dvo1OLm9Y8fviAST3hYO+QjMJW4KYVlSqojaiTXeVZrzcoxIQP0g4fQkCnRBxJT0bbC0FX3/fEFNiZ7cicb8QALpcbuq6lrpuLKmPr1922bPu+hwLDEHHOYsyErAq1U6zWLdeuXuODd9/jhevXcN6xXKzIRV7Ds/NzdiY7ok4lU80afF2z3Cw5vHxIyQIG2D88oB0S56crdq/tsFgONJVntVqwWHdo39CnnsZJmHLKRYQtKLr1ShJUlGIyneGVBCV7NIuzFevzJVpLDFmmcHZ6StEKP5sSY7xIDdn6bbfvv9GGNmy4+8kdZrvzixzQkgWZmLP4KUuRIOuz5ZLJzpQXX77O3bt3JQ6saLrNkttnd9hEsE1DpNCnnt3JVChFI/t5OyrJGZq6Zrk4EwiJlgMEiA/YjjNEOcQZRg47IURSFrj8MAwsl6dMm4rXXnoRQs/H77/D4vSYumrYbeakFGn7njCOUbTR1HXDZtOO+bD+qd9Siwd7O9axznJydgZG8+WvfYlv/NbXOT89584nt8kl4rzjyZMjjk/OeHJ0TkmJa1euM61q2sW5BAAj95swtmyfr+frs7A+hapWjdVgHsUI+qLyck4uwosNVWupSIAQOnKeknQmpUTbdSg9YblYYH3B1hPW6zUPugcMw/DM6VJuA5/RohPYtpGkJb3pI4vVmnU7YGzi6GSBr2csF0tCGIgh4utKiEshsF4sUbqm61oqZ7Ha0A+JbtNj8oDWEa0sqEzuVyzu32O/qem7DTllrly6OmYigqodgyq0OZCtJlvF2XKBRqMVxCQ+Oq21pJOMHlOjNTGI104iqxyr0w1niwd4azg8PGCz2bBYrgXunXsqr+n6Fm9EZGMaPx6oFMY6vIM4RE4XCx6dnBJJsjkeL5hPJty+fYd11+KsAyTM2hjDcrmiHSJ17QmhI7Yraqc5Oz5itd5AUZwuz4SQVFdsuhWL5Yqj44Erlw+oYqGL4kWdNhP6JJ5ZhR2ZsYoYCmjNzmwyWn7AG0XlFT0RrCPFSNe25L7j+vXrJGNx1hFDIIaAKlLKTycTFNL+TqVgrSHFhEGRkhxIcsyiIh0BAtYbvv6NL/Gd736X/+EP/5AYInU1IcaE1RVFQV1ZApG+X1MfOLCWXDTeV1y5doX5fM5qtcFXNQ/uPeSjWx9QOcvO6IFEa/puYOgDuhHEHVu3sClYr3FOo3LgxReu8qXPv47JLe//4q84PzvHasNkvivpNMNATInKOTmE5ARKoYv8XuoZ0Y5SCmcVpWj60JOIhJj5yjd/iy997QvknPnFz9+lX664dvUKt+/d58dvv8NisaaZVFw63GF3Z8bE17Trjj4OeOdl7j6E8d7zfD1fn431q1ecRV2oY3MpaOVRWLSOWGvZbDZMp1NSioASIk7JgCOEnuIMKSfi6N302uCcB21w1lH7mhTTaJvYXoz/cX7pf9+1vVmkcUMqQOg6lmdnTOopccjsTOakvsdbg9NGzP9tRxwGVC7UVcW63bDKPUkXnDUU3+Bsg1cDletAF7TKHN86JdFhrGJxvmY238M1jbwP1hDCwLAanqalxIjRbrSNjPOlsb1pjBGkWREot1ICKY8xELJitnNAnWFol+SU0Uqzs39AioqwWZMHYbJCuMAuhiBs1SH0pFGtWlUTDi9PSdYQ2g2bsxP25o4+ZeqdfXLUhK6lW3bs7+6QQ8E1u3QlEzdrVFxz9dJlTs6X9NnhjGJ1/5zGOw6vNpydnHH/tKMfOurpjNgNVNUEpeFstWLTJlJ2kBVDe861yztU3pGy4oNbj2gHmS9renQ/kNWoOC6QKFRVTaUMxTpSCGyWC2IY+Pwbr1F7x91bn0g3wFpcXbHZbLDeUYyR+LBScJWjkGn7DS/euMGXf+NLzOdzfvbTt1mfb7DKjSHWGnJGI0IsqwvzuuLFF29wei65n6++8ipY6VRM6hl3bt/j7PETZoczjLeYZCAO5AKTekrrBpIaq2MFhUzTOFaLE3anM1791jepfcXdWzc5ffwAVQrzqiHmxND3GG0v5opGaZTKWG1JMVJypqSIEkCeNJKdJsREN3TsHezx0qs3uPHSDZS13P74Jovlgkk9IaH447/8AcdnpxjnKFoxm8+YNF4IWLHDOPHIhjHarXLuM6t0eL7+57l+9YqzSCtom34ixI+tibtwenrK7u4uw9DL/9vyN1VGoiWFcWucJWuD0Zpp3XDadjR1w3x3l6quKSMeTAz36u9k99xWvf+aj1T9tf+vFHFUKhoF3mhOlwu0MnRdiy4TQt9CzqwWS5y1QnZBoYzm8PAy6nzB4sF9DnZnGA1aZRgWHN39ANN49vf2OL53E28yi+WSfkhcvXaJIQ545zg+esJmvYECVeWpnGE2mTKERFbir3PWiFBnFHdtX9+QRO3srCbmRC6yeYQs2LcQAtpXhC4Rk8NqB6kX3mjJF6+FryqOjk9QWnNlb4++G6jrKeernmRqlMvErIipULQlKIOpanQpIiRBUdDgGlAFryG2kT4MZK3xkxnOKKpsZLPtW7QpTHcPiasVi66nykUgBnlAWYtvJmBnWG05eRzoc2bYDHhf46oZqvZ0KRDDgn6zorYalcRGVZR8XkmZSVURggRoX7u0z7A5HwVCUrGGkskUSbVBxERWG7x3dOsNWsO3f+/bXL1+ifPlGZ/84hPu3XzA0ZNz6umUnIP4aMeDCGMW6wuXrzLzE5ZGMk+rynO6OuHhoyfs1PsMQ6TxFfV0xhBk9qq0tIRLgpwy2SqskTat857ZpObLX/oyYdPy0bvvcfL4iKbyVMaSQoSQ8ErJrN0WtltjyaMnKhf0qBC2SmLOjBbIwnq9Zu/SNb719a9zeHmPJ8f3OTp9gHOOdtVz9PiUu4/ep+02XDk84MUbNzhZnhNywHqZqTvnsdaTAqBHL3hO9DHg7L+X5fz5er7+g65fXRyknqKxRBkpfizxbwb6Xkzsy+XyoiVYaS2Gbt/Q54hylj4GNkPi/HyBcjOcqehi4PHDx7Sbdmxr2afYPdKneZr/zuvZzfBX/A5Ao0yhH3oePHpEDImDg11KNuzs7JAJVI2nZE3Oha7vQWuc0ZS+J67W6L5QWUdpO9IAUa2JJ5+wfnybetpw8/aHqLBmCInNuufw0mXqyhOGDmPMOJdMTKdTJs2Us/Nj4jCMFpciXr38FFlmrR1zUre/g9wo85hk0w6RPkRc0ShrKCXR9uL9NKXgtGLo1hRjmE9mzCYzlCpjRFYFzqCTx0TD8ekTBmsxUVGh8I1hGDRdu6KknhwzJkc0hZ5CaNf0ueDzgCmFWAIxwWZxjrMVDBuMVVil6fqOdVQYhFCViiKkRM6RrCVxJseOYr1UXUljTBE7TugZ2kIxSKVvDCoIvKDkiIoFN60gDWwWp1w62MVrxQ/+8nts2jWVr0afpCFr6EsGpbHGYYwmxMj5eslrr17n733zN9n0Azfv3+aTu3e4+fFtTLTs7x1SyKShUJkKsrR8i56IzcdJK91qxXQy47333yOkDXWzw2Q2kareQN8POGuIKQnishRsZdFeo42lC4Gd3X2+/e3f5nB/n7/6/ve5c/M204lnPq2JIRBivKAiZRg7SoK/JBex3DAKwMbrwzjLMCRCikx2d/nW7/0eL37uLe7du8tHn9xkZ+KpdMV7793k9u2HxFQ4PNjj5etXKErAIK6eQDtgbEVRiqQ0Bj0KvGQoq5VCWfvZbT89X/+zXJ9qxikm/zLCrmVmubO7y3w+58mTJxeKW1CirIsRakXbtgyqiMnaGFKMTGdjK7EEPI44DPR9j7XmgncrNd/foTjob7tWRfgLiDdtuV6zaVtKgZOTMxSWruuY7zT0Q0vlG/rRfL/ebKj8HFAsliv6kHHeCu7MVmAtdb5EXB2RcmLICuM8y8UJxmgO9vdISdihTx4/HvMVHU3T4LxnMpmy2XTEKBYIpdTozRyrzL9BZHGBUSyCk1PGksekE1U0TV0TsqH07Xjv1JixhTmEHgBvPUpBN2zh4Zb9w8vkuiZ1A+t7K3LOhBDZ3dkjZ4h9IveMhyWH9jUYqKKGdoAR9j0zTvi1KpFjoO8GSQ4xhhBk9uaUwSgNxtFTiCGQiyVKwjVKa6w19H1Him5M7sny2hSxDxkr4hdKJKeItZr9y4fs7e/wgx98HzUC8EM/UGkrTp0i/sxcIoVE223Yme/yxd/6Gi+9dIXHJ0fcvf+Qm3fv8PjJMVpZ9g8vEVLCao01lmEIMs8jsUkJrQv9MJCW53RD5ny5ZLM64XNvvcZisSHsBIyxQCLmgn0G9RhTEJasUdRNxZfe/AKXLl3m8e3b/MV//y/xVnF5ZybWor6TaLnRM1lVFSEEnHfkZ5S6egTOKxTFGAqZSGG6u8ff//1vc/nqVY6Oj/mrn/xPlGIhan769vvcvvUJMWt2D3a5sr9HU1WEOAheUBu8q1B2LaAJY0EJktIYjVKalAZUKtKqfU4Per4+Q+tTtGq3nsVRVTkCmp21VJWwL09PT5lOp8BoS4FRwh5JqhAzuMpTVRWz2YxmvsNi01EoXLlyjelkSoziBbt42PKf/rC5rTr/+lzlb3oaOWfW6w19P1AoojzF4L1wVpUqOOfJpabrAtZaQkgY7zncu8ymC5w8vov2Hm29GMfRnJ+vWK1WVPMJ666lT5Grl64xdN2Fh269XuO9ZzabjcB1ZGPIWToBMf2SnH/7zy1EfGtFkd9N2mK5CMVGFYH4G2TzTTlDjmgrlhbZgCMmBBSCo1O6sFqv0MoSssZPGkrdUIwEN+e4JWNI219rTRcCs8pLUsrODsEUVGtZL88wlRHCjjUoo1DOEIaegsFXnlrVkCM5t+IFRTZ1DVTekVUt72HyF++XVqNytniUKqQ8MCQh22ztNkPXcfXaZW68cI07jx7w+OiIiXWQFKSCLUp8jcgmQlHkoliver7w1hf40pfeQtvC+x9/zEe3bnH7/gOuXH6Bl175PA8fPaEHvLfEEMTZqdSYYCLYxcl0ytn5kuXRCbODF3DO43zN8fEJKHtR+GWE1NN3gXlVi0XHGbqho2483/jab3BycsoP/vzPKGFgd1ZTFAyppxgoTqFKwmLHWXUYPbyiOFYjvauM14RYdxKusUQKL16/TCTz3ocfoI2lXW+4efMBx0dnNL5i9+CSfIbrmhCiHIO1Ai0+4aIsBUMqmoIBbdHGobJ89pxzKCVQkees2ufrs7R+dXGQLhdXa8mJjKZkxXKzZnd3l7quiUPA7pgL9Z30XOQkazUEJexLBWzWGwJLMHKaXCzP6UdLC/zbN8xnvV1/vb367+772gLs/+YHLn/930ZzdoyF9XpDKoqUx9o8JcogIb9aCzC96zrqukZrhXUwpIGgBOCedZEMxZLk77crPInZpOHoyW0OdndpmoYQ+jHiyxBSYnN+znw+HxMtJO2k7wN9SP9aBNyz0OxnX7env7FERyklVpRS5P1WecxGdIZ+2BCSzLptZQgxUm/nlQpK6CTaym1n4hm8YoiBECJGQY5lpA8ZcsoUpOXYjCzTbA2ZLVRennsKgcoZKIqEQsXM4ZUDHg0BFYWlK97F0SKD2KGs8wwIR7f2TuALUVrLyWjQFms9pd8Ic1krfvfv/TYYzdt/9VeY2tNYoRwxvk4CaJcYrFwSxipq7/gn/+Qf42tP27c8uveIv/jBj1gPgd39y6y6TCQTi0ZXFbu7M47vPxTEXQzSHtUGrQur1ZLjxwuuv/oKlbPiBS0jDlA/Va6jIzlHbBZclzUjIpBMt+n48z/9CyaNp7YWai9sq1IoVpGUVI1WGQmVd04+s8imFVMmo0fmbSaV7WemjNUonJyecWm15vHxCTc/uUO/2tA0jldevE49mdKFnsXQUrQk6CRAazOCNhJFKQE1a01RGoH1KmIMF2Zp8Y9Ceg5AeL4+Q+tTVJxpZKgayliNKKulFVnXeFeNw3xIMaCs4NzGxi7GaDKZmDJ9O7C752mDSM7boeNsiKzXa/TYQnu6Gf7by80tXWT77xeGFuH+iapw9IX+zT9tGwf27Ma5jdP6pUdCmDJAMYI4U5qhjxhtUNpw2p1KLmMIVFUtra8xdivGxHK14sqlA3QGbQ1ebwH4kZQj2osHcTqt0SXTrs6Z1zWHO7ukYaCqK05OzvBVTddJaHVB/HnOVSwW56xWK4yrhFf7TItr+zoppcbKNzzjC8wUlYk5kxMYRJyliiiGg3XYnKiMIcYseasFqqqmCwEopCGgrYacCHFDUIocNyQKGNDakkNLzj2oGmuMVKcxkgsMQwe2Qk8nRG/RqmBCIiHzV60NKM0QE/VsKtFl2qKVxygR1WQAzYiHi4RBNhlvKxH8oMmjEEppTykRo2u0imh6DvZ2aBdL7t2/z85kIhjEKDxfoxRsOc3jZ6XyjvWw5nOfewU/ydy8/Qtu3r7PzU8esLd/hdQv6PrEpcNDvK85W5xLt6WqJYczBxQS/N6HQMg9MfRUSoADIfSUMWosI2K5mDPGK9puzaze4XOvvMSj+/eolIechJOcIpNJTVNVpBgxSj6vzjpCkuxRr6TKLQqU0VgjqSxy4IJsNE0zpaREt95gGJNXUqb2juXpOX/y//tTFl1E146XLl/i8sEuXb9k3S7os8fWU2xV4eqKEIXRW8oYRafkZ+URsVdKoQ8DKkcykZgDWSlizOz9Esv6+Xq+/m7Xp9g4C1oZsTmkcfqooI0dVdWgtaPyDapI1SDm5dGLKUfMkSEkoh+tNTuzHdZ9oJpWHMx38L66qIp+FdTesxvm9r+fru3Xt/PSX+VXfEoskh87VtgAo5oYtd2IRirSM8Zy7ZQg9bTCeUGOWesxRotnr6lJMWKNIXUdpUSp8VKkpIi2mhgLi9UajGHTdqw3HZcO9skhYI3l7PSUrutBW/q+ZzabjeAJM9J//AiS4MKe8mwUXIzxIvVk+/+0UhRt0LYiBYUpmTwMqCInDqMYPZ+RYsQX6kxFzD2EbcZnpPI1KQWMgsor7j16yNlqjZ1MSHGQLgJ5DGw2Uh0VKSmVKpydn5BXllWJlG7Djq3QSguWMIlIaYgJ6pqUMsuzBct1y06l0EbwjkkL9aeNHSFkbN1QcpIRgFYoLYHe3VogEykmjBKQu1OF9XLBZrlk3kxRSVSpGkEPlpyw28i3IvFfshkZHj96zMkfn3P3ySOSgivXr+LsnG4ovPbqq8zmU9brVroRMUCuaHxNt16hlHQcEhllFLYYVCrkmFB6FHgpgcyXPLDuO4rO7O5N+eZv/xaTAo/vfiJVWylo5P3quw7v3NPgaKVJYbz+th/jsYLsh0EoSwq6MLB/cMAbn3uT1197jf/pj/6Ivt1I0DSIjSkX8jBAKVS1xU6nDCWy2JyjSsa6hqwdqG7c6C1ZbR2lBVPK2OIXZrXWCucMoetoV0tRjdeea9evcXBwgHfuV7qGn6/n6z/F+lTkoO1cc1vVZSSzT5sxUzEllCqoUki5jMxZAI02GYZCChk0bLqe2vZYX5GKolzM28qFDUXatU8biX9d+aqe2RRLebpRyrPKFMSSAaDz2CIahzaFbRV6UUOilMwJ7927y+6OiJ64oM2PVej2uYwXeymZrKNAIbSjbTcopWjbnqaeEELCe0+KhVR6AQ+YipyXlCFgqgkhyvcbgGJ59933aLpzhvWaeroD2lLSQOUsXbfBGsd8ZwfrHFpBGAbZnHMcaU5ScWz7nM8yhJ/1oMpcVLN92TNJSDYGkkqUonHGYVQGldAqEUuk8UYUqEWA9Khy8dpBIRapRnMfWJ+eYbvExE8YGCiGEaLu5KCgxE2pFAztmmwtqc9UxtGjydpIy1/ZsSpu0SqjSkGliCoJkyGkRHSOkDMuR6IF7Ty+aiipJ8UWN5lQMPQJjDWSyektujcICl5sFjI7zGhrx5kslGJwtiHEliFs+J1vfZu3f/oTUlaoXHF8tKBLp2xiYDKf4mwjCmpnmc2nMhMePZvGOqqquXhvipJrKuaEMk5Yxsg8sShF8RA7hVUFRYdTHV/5wqu89bk3ePdnP+fnt+8KJVkV6a6MSMRSNN57hmF4JtdyPOxRLsLWtRUq0eJ8RdNM+Aff+S5vvfV5bn1yi9t37pBHOphVGl9XhCFgnSMu15TRWlVXFZUfw81LRmklAH+VJXIsxAv6WCkZCcxOGGvIKWE0nJ2cEboeZyJf+tJb7B0csFwsWK0WzKazX/VW9Xw9X//R16dKR9lWeM65MXZKk0cMWFU3kufIWH1Zc+EZjCFijIgZnK+ga/He03bdGNdUOAsDx8cnlPKq7Jv8CqKgcWPYxvuNnTTM2A7KGYYUQBynstFe/Ez1TB2qUCMaMObM//QX3+fGjZf4+je+ztHJCTHGC8SgKuN8KStSiVy/fpVoLIyw9Ol0Ss6FqppgtLt43byteHR0H2ulqvbeU6wlREm0yEVM5X4y5dVXX+WTH99EF5jPd0gl4I3l0aNHKDTr1ZrrL9Zii9Cauq5R440xx4BzljjaUbaAhr/+PsrrVkaqmbrYaFMRO0rJUbyVaNAZbSyRTCqBlAYJLNZaOKOxJ8VE1IWYZP5aUFTOY1DYXIhdj9OZXJRs8Fp4vYpwkdhyfPyQLkZKNBzszbGzA0JMaGWIKjBpGsJa1Nmz3R0+un2LVTuw/8IhBkUXM1Xtads1pWhyGUipR+lC1ThSjkDGKvHdbgH3KQ9ohvF1KKCFFlQY00x0JifDuh94+ZVX+da3f5vF+fG41SoYKVpGO7Qq1NWEq1eus1htOD09E7BCFivQdiP73ve+x+XpHO8MeRTZaWNkhrkNU0Chi8NiyKHnypVD3nzjBlcu73Pv4zv8q//2/4tGMWkaiGnsCmn6tkVrTdu29H0v9rA0VpxJ5riFTF15hiTvt68q/vE/+X1effVVzs/P+dEPf0A9KrTX6w3WWokpi3LAzaVIxS07Nc5aus2AAyiJHKHYCUZXxBhJKV10O3IubLoW6xv0mHd6+/aCndmcvf19dnfETnPn/ifs7+/zwqXrz32cz9dnav3qFeczaK3tjIdS0FYzhEGiisabstZyQ3q2XQhFsLNFk2Oi71va7Kmcx9aeyXQisPBPs4rElknVs60JExRF20d+8osPeHSy2P4Nfrlt+7R6LWMlLRtY4XiVefzuHR4uEnfu3WUYevkJY6uRUtBF2ravf+5VppOaYgzaGjbtmpyAYoBASoGq9myWLSEEUoKz8zMiEVdN8GOsVQgR4zJp6Dk82Gd1cIl2cYazltB1bIZ+vDlr3Igi284qtdZ0fY+1TvjAOY+5maLYzM/MOZ99P8s4AC4liwXAKqxSNK4iD0jlWQJoRYoDzhuccjDGdBUQIQcKO25CQ4oYCt7X1N5jsmI2bqCVkkixkgMqR2KOKCXeSl2g9p6SQDtDpTKOIB5RlURI1Gf5utoqfxNaZbQp1JWn76R9WDmLSpYQIIVEjAmdE03VEIZIohBzoeRIzvIYWSusDkLGyok8boSoQuoDs50d3vriF7l67QpHR4/48MMPKXoLic9y8NBipbDWcnCwTzuIoOX+vbvElJlMprR9z+07t7g838F7hxrnjxQhbmmtKFpB0Xjnmc8qzo8HvvalN3jr9Zc5efSAH/7hHzN0kVnV4L0HCm3aWo6KCLtivKgyc5b3t5Q4qmTlUBli4uq167z2+Tc5ODxgtVrxk5/8mJQS6/WG9z+6ycOHR8wmjp1mQg7S3lajH+vp1SQXnxxEEpNJRVGOTSxYZwltj1IIUGP8XqOMEIpQnJwtmc8r6roGXdgMG3YOdnjz2huY0Xecf+n493w9X3+361Mf47aYtWfBziUlrNOErkcZDUlJsHLaVjjjaLDIfMwYTU6BnK2cfrOkd1RVxWgDffYRf+mx4ZerXwVjvgSj76yQSqQdIj//4BMeHa3JReKmLvrNz/xkNSqHtkkvOUWsseiiuPnuXQnkzpJusRUYoQpJiX/xnXdu8tKNyxzu78pcxntU0eQk1ZjSDblEdnd3OTp7QuUNq9USnCbaFl+LsjQMkYEVSUdy3Ej1YQwpBvQYooxSdH0nbU4lQg0RkAxCnxktQPP5nKOTc7mBPvNK/msKWyMCqDK28FIKaG0uZpZKWXLK1E1DyhkdNSVmQfZlAZ1rLYzUUsQ2osc5Kxkm9YTXbrxC0zRoBabIJta4KUZ7tDdMmstAjzWaV196kRzkYOZ0wKiB2lmUsxRl0cZTJo712Rl91/LG6y+z6QKVGjBaM3GaPnc0zYS2U0ycQztLSo4SOow2JF2oqwa8IpSCNTWKCYvF6dPtQMlnLaTIulvzrd/8LV56/RWyzty/f5uf/OTnnJ4taJopGo2zGmcsUYMhC3owSfs9ZxFMGaVp+0Eg+MYym80uFKzb6k2N1i1tFWVIaApXLs146dpXWJ2e84M/+VPUkLBFM5/skJUEJzDGh7XtBq0UtqooKRFQY0IRGCO6gs1mQ8qZl195hd///d8n5sSd+/d4+PAhm7bl3v2HHB2fcHJ6RjOZ8MKL1yBFYtdvmesXI45nr0kKYBTNtIGSOD4+piuGerozovM0s9mM9WrF4nxB2/fMdvbEGhQlYcY5AwhGcjafyUG6bLNun6/n67OzPlWrdvvPMg72RV2qiGFAq0RREaksFToVUSGO40GlNIrMEEf/H1H4lFlaTKvliuViKdLzXNBaJopy9P/X7SYxJX7ws/cZgiglhaRSePPVG+zNZgybln4ZMVF+xUQUc/vFVguqjP9dQBdDjkWUn7mQVAQNIUo8lLJWVJkKieZSGaMcOWmIoLLCWscqrIlxIA0R4zw5F7SxpGfsIdbIz1ovl6xXHY2v8NpSjKUFrHOgDGEIpDigjKZozflyze7B3pijabBGk8KA1TPatmU6naK8o+v7cTQrG9rFhHYEu29XSlHmSyOUQhlwSqOytPEMGWMNbYiQAwYIY8dAeT/aMtKY06px3mMYszFTpMRMToF2HbHOYyZOAgHCwFAeo4PB+IQx8gxDjGIjGQrRgvMOZ2o2bUtMG/FvWkvVeC5dvsTR6TnT2lCCkXmmKuhSibo3F/phSe6EDqRyZhhGq0pcY2OW+XkMNKawIRODxbkJQwiE2LKzv8P/4p9+B1cpjs6f8PYv3uPmR/fp+8yLr7wC3QDDQE6BUiJgRVWsAGS+WVUNDx4+xtqGvYNDlK4E3o+ALYauk/eiiGrXKcWm7fnaF7/A17/6VU5Pj/nx979P37bMJlPcrCLHSBpnryFE6lpsSs46VM4YCipDHILkqzpH2/WQ4bU33+C3/95v4bzhg4/fY9N2aF3x5OiIW5/cYbnqGIbI1evXqOoKNXYSci4XBKpitKh0c6GMorkUI83OjJPzNbV1dK2ieE+KGucauj7x4P49GD9blfdjt8SOn0tFjD3VbMLu7gxnDKaI5zgZe5GU8nw9X5+F9albtX/9ayqLYs97y6YNhDygtcFGMGMLNOdMyXqcI2ZSCqyXJ5Tgme0YIdVkAYrDaAiHC+P13/i4KI7Pl3RDASqsUpjc8tILl9EaQhzELB9HdJ9OkOKojh1PzUUjIc1I/mQQUo42SuwWOZLK2JrKwygUEtSgtPkKJUS8tlhtJUQ4ZUpKOKcBCe3VWhNIF9X6fGeXPvYoXRHRnB4/Zr8R6o83Hh8Krq6wTlqSMcJq3WJ9JTPCGEkpokpmb2eH2jusFhtQCgOh6+RGJKZGSsnjeUbJn/GwYLQlA9oYDGCseDijKIXkdUPjnYUhUkJGpW3Leis0EkVrKVlmc6Wgc5b5ZoHeSiVqvCPqcUbuNQlJEnHGMsQWqzzWCbwg2tGTqTXKGOqmpmQP42xtsTijWi+xBlHIFstq01JKwNhKjPtlwDu58RptUNmKfcgoNIWEtHqNKlhlUcagU4GSMU7z1W98lZdfe5VVu+aDm7f4yXs/JyvLjVde5uOP7rIaepoMToPOBV1gSJmoFI32PH50xPlmI5FsfeLy7j65OOp6xubsjJRhEwZQhcp7QQXmyJXDa7z6+stMfc1f/NmfsDk9p6498909+iFe4BEpBWs92jqZsUpKHBaNVUa8t8oQY8RPGt567VW+9KUv4r3h6OyYs8U5i9WKhw+PePjgCYnCbL7D9f1L3Ll7X/B3XhThjF7bMs73g4LK2pHwYy4ScGLJKGMpWPb2rzAUSKpwfLqQbNMQqCqJ884UmSeP2bDeO6zVhJGiZJSRm1OCYsqFfuL5er4+C+tTtWq37dE8etm2k8PtXKdpavmLSgzzIOrOoe9FeEJBFYc2Gl97cF7sAEYx2Z3RNFNpm15MTv72U+a2Tau1BeTEqtAcn7dou+Heo1ParqPgySpSSpSfmsdpiRorz1HBm6OCktDFQIK6atgMncyeiiDASgaUIZcoAcLFkJPMdGMchAikDb6xpBjwVcMwCI1nOp/CY6lK265jGFqmB3O8rVkYxRB6+vMFuZoAvVBkivjD214quvnOVAKBk9gjdkZlrVIQ+gHrHSiFdRbVDRhrLhw0SquL/NSU88Urq5R4NUWQpS4M/sqUkUdssUkRCrK5FC7csEopic3CS/VaxDuprSXlDm0KykSUMRQC4AhDpqgeyTgvxDCSd1Sm5CK9gPEzVgosh3PqqpJ2fC6UolHIgcJaiTTTRqGLuVAUi1lfYccQ5pLGA0SW6iiPs2xttKR9aFFUaxMwOvPGF1/nldde4dadu/zsnQ9Ynq1Yl8yrr1xlWs9xVcV8OoPVipzG13JUtPm6oR8GPvroY9546yvcf3SKLxaVC431oHu8MUx9RVNXrNcr+naghMjVK1f4/Oc/x0e3PmJ9tsDpbUs3C6BfNOwoLQks8jUjVhKtSbkQS0KnEVWpNF/56tf48ld/g35Ys1mfcXTc8eDxE+7cf8ijJ2dAYW93h+lsTkYRC1hfURD1b8kiXospU2mLRLYzzoFFvZvHPU1ZAyExDIHVWmLiDq9cpqCpvfystm3ROeIrSx9aqmaHUkTV24eCt1bazyjISiATSl0IAZ+v5+uzsD51q/bZCnBrCtl+rapqCe41MpVQyqC1krailfmFxWCLk5u6NmjrcMayWq9ZLJZs4e7b9mL527ZPBdY4Nn0EEsNqw2zief/j2/z0vQ85enIiMySTRdgyWkfGX0Kq3xEd55zHWSOt2dAyn89pGkffyqBWbKhy0y3oURQhDFTnPHGMP1JKMYSBbtlRV57F8gjnG1CWbrWgpEJVV5yfndF4y/n5gj6tRBCC3PBLSoQ0YLShqioqX9FG2NmpJLJLC87PaM1k0lBVFVpD1/fM64o+DCxWS3JWJApGmwsAg9Fyg7Ijck/8c2a0F8lGKapLTYiDVCw5MQwJpRhhCuUimiyEgPc1PEO08XVNTgGtIAlGiZQidWVl9hcVymRKMoQy4KzF2YoYgliYFGjyiFyriDmTijyfaTMlxiTZkKmgDXIoY6yesxzstCqibFJ6nKlb0HpUXY9VsRmrXjN6hsffL5fCgycPePLHC259cpe9Sy9w7fqrbJ7c4sqVG3gqsvqY+e4MiCxONxefb9kY1rSbjhduvIqtKowyGBWZWs3m5Ii+WzG0a2I7wxSN6yNGg/E1T46P+MmPNuxMG2Z1DdoyBElPGQYBaaAyKUrbX6EFJJATKSe0Eac0RlGs4vDqJd744uf55O4djIOHjx/y7rsfcr7oJLezL7zy6otYW4gFjPPoosB6YinEOND4ihTlOWxfO6UgZTnwhhjxlSfGyNmTI0wxzJs5KW3oh16uNQPWSus6BHBOMlj7FEfNoChrXVWTYqZkMwYjQCma0EeS+dsP0c/X8/Wfev072VF+afMcq5hSyoXCU5R8csHkLBWZd56SAk1dszpfAzCEnrpqMEazWa3YbEaw+Lg58dd8nM8uiWDKpDwyNnOSG6evMa6iTU9IKkMemE9q2o1EPG2B1lorsXEoEScVCm3Xijo0tqhkhZKD3KhGbQ6pxC1JkJJFTSlVhyINgfl8xmw2g1LY2z8ghELRmj21y3pxTtd2TKdTnNGgHN54VsMCimI2nRG1ZWZ2GI5q2gL3H9zHT3cvKDWxF/Vk27YYY6jrijgIJ3cr99+GVseQpBU7Uln0uHHmnLHj17Z/tBZqjDGGENPosfOUnKibir7vQUHIQW6o2l28LyH04uHFoDGkWMhFjcpiizOOlGRWXVKmsk5uikiaSYkelQ3eeSCj0ePvE4gxUE3nQhgKA85ZtAajCqYkXDOh7zeihi2ZnDLOWqEgxV7YqyWRosz7UpHZptJglQh7GOLFocpax917jzk96ZjMZ7z8ymsMvYbHFoqnaqaS3kOiqhXaZBkHaDWiCTXz2YxZMxWYgVW0q5ZLl+b8Z3/wX/Haiy/y6PFjHj96xNnxEbFdc//ObU4WJ2QKO80EnwpDSvQqSuFVDE3TXHgg5SBUxlmpJqUgQAkk6muTerKBRbfmw1u3ePDwIbdufsJ6M7CzM+HV114hUvj41i20V2jjiDFRtPBis7bkMSAgpjDaeMqo0E5Y69BZrsGMzLMXJ6foxnF1/xIgFCettuMBIxtiUeJRHTsDAMY4chbUnnOGyleAoCtjP2a+lsxq3f3qd7Xn6/n6j7z+nWecF17ALD5Oo/UFILoUEQht5eohBNpNJJJxE7kB+Koh9pJfuNm0zCY77O7sjNKdbZ35b9o0y4gWS1hjsTj6kBhyRoSGdpxnZuY7E7puJcb78fkJEs9R1SMqkEJIljDK+jebNTFErl6/yv3790i5oIy0jkpO6JzH9q9UKUMvFcFqtWa9Efh6u+lwVUUqhRAy3jv6kNHKs16tmBxcYra7x+bkEQpFCD1d6jA2sVy1pAKT2ZyhFKxWbNYbUhZ4wXK55PLh4cioVRc+Tu8chwcH3Ht4NEZFFULfU7JsKDFGnDYSwv2MUEg2TxiGgcVyRYiRw0OpVrte1JbGWGbTiRB4YARUKIwMOdFKzLrOVKKgDomzs428dlaxszfHGkO7GehCT8wdJMWV3SsoJfziIQRylkPRzryCklmen5NKYdUHvM44Y1FIAs+9R0c4q9iZNYQsgrQYBNXW9wNnizVaw3wiBzQzHvw2w8B606JyYqeZUJDPokaTk2LvYI+2T6w3G1w1gTJ+JgY5JHWbFpWDCKWiQSmD0WVUmDvQBV8bCgPf+MYX+d/9b/83PHz4gCenD1ilgD+Yc21/Sm0N1954mbPjx/gf/BUzV7M5P8M4i8oJ31RQhAqVdaDrNuOYwtD1HQXN5958k52dOT/64Y+AgvWOHBLnJ2f86Z/8OYv1htrXXLl0mapxdEOP8RalxU6mlB2lfhpnPE7bMdRbcJJqFM2VHDFG4sRizvjKkU2hOMfQZpT3FxG63jvKmotuxDZE3Y0HV1SRFu9oldFaVOQxJRaLJdNmCkOS91KPbeDn6/n6jKxPbUfZVp0X1oYiobnFFHKSFpsa6StDyVRaQpLNtp2XEqAxyjGZNEQU3jfEEGk3G6kaLx6LvxGC8DTlQ0s+ZEisup6UE1GLiVzsMIVUEl3XivpPMVZcUnUtlwvWm62H0xILhJwxRZF0wFrD6eJUpA9Wy+xMS5CvKqOaMEdCSKA1Q9/T1DXTZgKlcLB/QBjbaNZW3Lr1MbPpjLPTJdNJRRx6FufHkBJKedrVilUIDCWCsXQhMgTht/bdkmG9oaoa1qsVh/sHpCTV8GbTXlSSQyes0el0yqaV0GmlZGNNMeKkjy6geK2f8d0GnDNYXfDNnM1iQT8ITCHnxGQ+o+sjZaukTRHr3YVATCP0J5BZ6Cj6ZL53CVVV3L17D7+J7Mwc1tW8+MoXGXLLw3sPOV5t2Nvz2GnF/t4bpKS5f+cWqzawO2/IWbF/5SouFp7c+RD6gYNLU/qYqPeu8uDOBzS1IaEpKVL7irbL6OkBB1d3WC0XPHh8j2uXD0gxkAkU57n08lU2yxWPHj0kpUiVIqpESArjNK6yFKuoGovRCesUymrqquHo4TFXdmpUtljryLmDmLHe0qtEcJnDy7tU3nD3zk3+j/+H/z1WZ5QxJNegjEaTqSrPZt1xfnzK47v3aazHOyMHImUkozMbrLHUTU1VWQ4P9zlbnrMz3+M3f+ub1HXF9/78z+i6MybTPRQelQOeBhUtTivstKY1CeMavKvRxmHNPrG32NqgKFg0phT8FiRiG3LpqX3N0HZ03YbQB1588QU+/9abwkVed3RZ8fY77zJxNaaAd4rWCG+2zwGMwA+89+RiMdqPh+0BrTqKalmvNc4brhxeYVLP6TYd3jqMdRijSM87tc/XZ2h9qo3zWQjCxdeQwk4VKGkc6mtFUoVEwY3qvMnUS/vVeIy2tF1PBHxTEUKihMSTJ08kNLfYfzs1qBQUklrf+BkhAylQKSN+NURMMqka1ssVKQSM9/R9wFmDMQqlRcQkFCQwpoJcxFs2tJSSaNtAQuK0ldZyAKAI4k8VnLN0Q0fOGecdXddxenKKryqWmxXT+YRu6FDK0fYbtJGZVImZpAPLsxUxDFBq+r7n/PwcT2JqLAdXrpNTz6rtGTZr+uWSoeuprGNSN+QYuX/vHjENHF66RMkyI80hEoYBDeNNXbJTU/7lzdJa4d2WkrHWkEKUFpqfkPVATIWUgiTKKYtyBqyBHGUeWjJksT4QZbadciAWwb051+BryJOaamefEnssig5YxQKmxtS7hG5DLgHrJpjJDhRDs3tIXB/TDgPVZE40NcVa5vv7rE9P6bsepRxqsgt+QqRgnCZ0kVUXKXbOdOcQVU+otafeLICC0YUUEweXrvLSm1+m3Wz4ef892lywoaVkhUePtgtHJl7MhzddSze0pJg4eXLC9YM3KGWDKgrvnHhsY0bXFb525LajMoarV65x/foBN9//BXu7O9RY+k3g/qO7okrtRVHeblom+0KBqt0EbTV9nzDW0bb9mEyz5tr1S/jaYirDx7c+ZL1coTS8+OJ11l2kD6IENwjWrpSMdx7vamICVMYoSM4QlKJRhlLCRWu89pZN1+F8jfaek8cPCDHw6puv8forr1Abz/HpI5SOLNZnVJN9DBZtKiDhbGZSZb74uRvYakK7PmcYApPpdLQvDbjK45WjENjbrbl2/RpXr73ErJmgS49Vcr0Ng2RyPs/jfL4+S+vfn2M1Fp4Xs08lQpqsZO4TYxKO6+jTMyaP2K1M1VQjNMDiK898BJZvW7TbWcjftokqLUrXEAIxCIkmI62fPFZaly9f5vHjB8QQUPQM/UBOjlwC2hQmEwnvNSj6bkMXM4oVE6cxKpMBa2qZJ6kCMaGzAjPGbiFt2pAzURXwlmZ3TlPXVLOaogrVxEOR/MWu6y+ef9e2nC3OqRHPqtYi+VdK0fc9fVhTVRZlFMPQY7UhpcxkIjD9s7MzwQGWwmazFqsMheVywdAPoDQhRCEKjaKfGCPOOYwxIx5Pi0BjjBHLwGq5JCuofIXWGWc8q/UZoYDVNRMrqle9jS1TjNYERSZijMIYj8KwWJ3QtmvZuJO0g+MQOX10RxIz2g6vFA7DZrnhdLgtStH1ionK1FqxXC44HgrJVpTFORVlnEVnzk5PycUwhHgReb5Vfh89eUSpp6TRmmQa8RIb51mcnvPOLz6AmBh6oU1ppSkmjzfp0bSSAjkWwpD45NZtLl15kXpMA0ohjxAD0SKhCs46YgjQ9nRnC37j82+x2Zzzw7/6K67s7WBwguYrmap4KBrnFCUFvLNC3FKFkCN5UOSsWC8XzHd3ePPzn+eV125QV46z5YKbt+/y0Sd3yMPA6eNTLl+6zOUruzTzKblPHD054+M7d/G5UEJHFT2Vr8ZIsQHtIassUWsIR5ZSyClScubh44ecHz/h6uU9/sF3fo/Ub1guTkluyo0XXqALLasu0PVyE4gAxpFix8G04vKVXZ4cLSFptPZQoK4003nNdD4hFcvu7h5f/sJb+LomhgJ5wJqCLmqckUp3ZLVa/Xvfqp6v5+s/1PrUG+e2Ynm2XfusRWX731pLJJdm2941ooIMAaU1ISXEwTVCAcab+cXPHk0pf5OPc/sY1hhSlpuWVYasosjwGVF0SrNar+lGYUtVe4zxgCZljXXjbM86KFA5Rz2tyRRcCRAHupDG+U8GpckUsaWYfHFo0FbJrJTEkBJZQSiZYUy3KCVhtRKxjoySRlFFog+B2nqErfBUdm+0Hv15SVB71pIUYjnRkm+5Xm/ouo6d3TlaaQGXp0RdNyxWHaBENarAOjtWTuYCw7Z9LylcYPm00cShpw2Bkr0kpGhF7TxpGLDaiG1nfG/btsUoEdrkPLKYtB7fd2jqGu8cG9OTz4RPW3lDryfM5zss4xPazUApE3xTMdk/wGA5R9EtW7z16JLxVUVSlmA8OWzIKtNMJ1S60K0dxmooCWPE9pAQGk10Dq0zfc6EPIZQG4V2lulsRuoGtHIMMWF1TSjDyCGGejKhXXfk7oSYI0MbxgNAlir8gjErat0hJzbLJW9+/nU+98ornB2fcPf2J5Ayk7phs45sVqd03WMJI2eLrhQWcKLQxx5XT8WverZg7/CAv/87v8NLL73EplvT9j337j/i/Q8/4NHRMcvVkuuXLnP1+lWMcTx+9ISTjz/icDajrqccXN7jygsvoo3i9PETur5lAILWTKrJeKCVpBxrLevViqpuuP/gIUWfM51WaF1Isadyhv2rl5nXuyhdeHL8RLoVxgm5qmRyVPjaMam8JOyogteGtltjS8P+3g4H+ztMpg3aCGHK6Qyxl7gyY/DaEmPg9OiEk5MTzheLC/3E8/V8fRbWv5OPM10kmTzdSP96xJceI5dGhA0lS1Bv7AdyFhh4u2nxk31KgbbtePDggSTMlyIRSfztc87tY6AEF6c1kLNspErEKsMw0Pc9k8mE5SpcfF+MkRAHCoqq8pQkeYBDzCxPT7HeYlNgWnu0EQ5sxsgTyQnPmPKAGPLP7z3g5MkRVhXy2F4yVuwPb33xLVarDYMKdO2GjERYhXET1kozhCipLUqRBpHeW+8ZukK/bslKjOHWeCbTGZt2Tdu2zOczSklU3pNGX13JWdSx2pDLyKmNIgTaCmO2B5KcRIkMhTjyasWLWOMx9ClQFcntTEpACdvPQcqZymhReI7Af2MUqsjG3CXhks5nM4J1uHrC46NT8aAic0FjLHVd0yowzhAp7E73ybnQVxtWZ4mQMgaNdmJbyUtLztB1G2pvaOopG+PJOeCM2IxCTCgrhw1fN+RsaK0ZMYOWUAoxRPp+QMWMVganPVkNaGXRSuGtpet7Hj58xFe+9BWJN8sRay3OCglKG1EppxCpao9Pnm9/83dxqfDe979PTIHZdEIsClKhZE0qSlqaJROz5JiCISUFzpAMtF3PbDrjO//oO3z1G1/j9OyMm7dv0XUDt27d4uObd1A6oaxjOt3F+Zrz9ZqSMi/euMEr089x8733+OiDTwhKce/BMS+//gJ7exOu1pfpY+b+k2OWR+fsNzMUmsX5QkQ50ymz+YxcYDqrmE5qoHD16hVMDk/BHylRFFhjASM5nyFga08qhU2ErktsksZ7zeuvvMBLN64ybyQDteSEbxo27YaSI5X31N6yXiy59+ABx4+fYJ1l0kyYVe7f6Ol+vp6v/9TrV984x8+tbJL5giJSytYfqcc9UnxeYiUZ8wG3bdwt8cQoyOCdJYWBajaFBM65XwIr/NtWUVKXphwJMYwoQPGYPa1aC13XjptEJo8y+qqqQMXR+6dHeXyhaWqJRoqMlCNh2BYlN16jBKBttSWURNd17O0fcOlgD53TBcS6lMzx6TFHDx7x8quvgrNs1h2bdUcZ4Q0lRnIIFCMKyUxmUtfU3mDKir5vuXK4x7LtsDszGAacsaw30o49PDwgl8TZ+Rn7+/s470hj2zTnRBnnvUUztq6fCrq8c2J1SFvm7HjYyQWVE6oUSh4tFiM6cXs42oILQwjszGYECjlmjLGCYgNRVedCXdeiluyGsYWrSUNiWjmmTU1t9ji+e4cc5TkapSlayEvWiBjHK4edNihdU6Yzur5Fa0tMEe/GdnnIGKTrYZwlxIxOCW8MQxqhDuNhwTlHToWhH4h9BG3RxqGjJhZRH59u1rQa9g4vs7s7v/j8XzrcZ71YYo3GeksgU3lH3204PDjg7NFjnty7z6xpmNYTuq5FGTNqAAIWEa8NQ5SQupHOpJwcqGYHM37v29/mpZdeYtUN/PRnP2exWnLz9j3u3LlDjIUrVy6RS2QzBGmJa4dxjuXxOe++8wF+XnHj8Aq7031u3n/EyWLBg4dP6LodLh0qfFXz4gvX2JvPuX//EYvlmspX7M4bUk5cv3qFR48eXCjIX7j+IoXMZthQbZXZTlE3Dagz8WoqIAsiMjnPUDR5gIOrN7jxsqKyhhKzzPijwlqPVQ6K5vx8xWKx4ujxE9r1hrpyHFzaByT8IMbhmbCI5+v5+rtfv/LGmXJGO0NJoirVCiiJwjaHMV/YE0BTcsHYUYii1GiIF3B1HDqKadBjDFVMA7VvmM1n48Y52lCKzEn/1idvNKWkcS64FRAYNEqe7xh7to0FK6UwDHFUfAa8N+LjQ8hAikTqe2GI9gOm8bSbFoVhvrsnVWoKeKtYr04JKbK3u8OkVsR+SU5p5N/K4WFnZ8bZcsUPfvQjpvP5uHlISzqngdoadiaVVEmhpZo2XL18iLWKzflGUHqqoHPCOwPK0a7XpBSZThu0kQ14q1iMIzMWkMEbkou5bSvmLOxZYzSpJKIqFKORZHLxfqaYMEjLbGzeCi84Z+bNRGw8fjuHltZ7SWPsmrPEmAkp4V1NVoUQOobk6PtOsHwpYpQldi2Lk0weOhwGbzzDUFguTsAqhmEDGopWpBTpFqegKv7/7P3pj6ZZet6J/c72LO8aERm51r53VW9sdnMVm6RICdRKjWQL1hDjD7Y8EAwI0GA88AcD/gf8wQYMjAEZ4wHG9mhGs3hmuGggjSiRFCWKzWZv1dVLVVd1VuUWe8S7PsvZ/OF+IrJaEoEuDQXVhzyN7OrOish8413OOfd9X9fvarsOHwU3p9C06xUxeJQzGHV5YQCjs3ByVxvJhR2q70zCJgHVN9stWclhaQpHbi0ki06O0iqy07hiRCosuSzovOf44gx0JGXPeDzCO1Epl0XB3ffv4Z55angfG7o+oV014PS8vCQ50/d+AIIIsSiEAQfZZ1575RPM9qa8//AD7t075L137nK+XXOxXrM7m1GNDE3fokxJQmF0Sc5aLLMmUpYaHxoODu9hVcHzLzzFfDXjaLHAVRPaPvHw6D699+zNdzFG8ck3XqNttjx4+ICc4Rvf+Ap911NPxmw3G1595SUyUeLi9DCuGDyfMQGDlSeT2NmZMp/OqKqaeix5tu32HOUMtpRQB2ssTdNw/vCY09NjttuG2WzMvK6ZVTU+JJq2H54fRz0eP1bxP1lP1sdg/fAABCUVmNYMB6dCMqAuEzgyeSC+XPJg1aBATSEOhwqkEPBdhykK1osF4/mNq03/5PRUVIAJyS4ebC1/lIPLWitK0pzEF5bkUI9Db1eYrnZoR8qft7e3N9B2EheLs8d+1BDRGWonEAecI8SE046+9/TNlpg8KnpGswmtTjityZs1vu9oYmAym2Kt4OestcQuMDIOU00oTEE5H3N8fo51lrJ0hBgpnZXDxChC3/Hg0X2K2rEzypAiJsOoLEnZ0CVJgMwEXGEIoaft2qu8xThA1eNAwEk5XcqsBLOnRISUYuDDGsUYgqTUaE0c1Mo5gY+O3geMdVSlo2tbisIKZDwMAcypxhWG6LNABrIaKD4BrcC5isnONequZfHgLsaCS4Zt05L7HhUDKfWQPYVz1KWhCZLE0XcRn4QeFTpPCHLQ+5TxMVFaQ+q2kDwhGEnmQWGtofcyV94slmStBe03UoM4qcH3Hj2e0BPpfE9sNtR9h8OgVUH0AVM6ISuhKKuaxdmC06MDJmXBz//0TzAtS87ek46BSchlI0jLHC1hzilJ90FpTVaIrcJp2q4npoizApIobUHpDGcnZ6x9wzff/DbtakNVT9nbv0G0TqAUCH+2qkZonQhBhvxJwtLEKqXk/XyxvuDuwRlPPXeHz37m03z3ne9xuF7z7PMvsN22tF3kwcMjlpsVdVFw8+YNQkzM5rt86UtfwWDxKZJzIAhpT0IVlCYqTdcLXg8VeOmlp5lfu85oXCAJawqrwVpF1Iq6tHgfWCxPOHj0iMXFgnlVsTOdszufsl4u8c2W1aajqKeU9VQ6P1owlTw5OJ+sj9H6oQ9ObcRb5szjVqQe/imClg+/sfNj/yCXUPKItVINWj0kxk/22HTCsk1R0bYtKT6OLLvK2vyjHpPWKD1wMy8DKAdnvuDkBqGK1jRNTwiR0/WpCIdMJmePdfbqsXrv6ZoWY6QNWFaF/LkxEfpeCDRDTNS13X3ef+c9TEjk6NHWsDo+YzqdsFotib6nKke0XcK4imu3r6OnE0pnKEpL2/V0TcPp8QnWGnb39ilsSV1VQ4yWYPdC1wnNJUmCTB7arMYYRqOx2Eqco3Cl/BxGY4b0FWXL4Xm5HBRn6Rhk4auay7kqoqyNMWOMkzakljmzcYV4/Iylzf4qNdzoy4pJ4XsvKR9J4YZw4r6XQ7YsHbPZmFGe8K2+ExA9hqIcCyggJbYXiqbdEE3FfDajCB6bNI9CIgTpVEymczpj6OjgshWNQAfq0g2teMgq0ftIzkpSUQBXVPiuICZPUmKbqccVuXJYNME3hN5ie9AhYG2i1IZ1aEmhIbUthc88tXONL3zqM5RWc/ftd3j38IjpqB7auIoUEnkYEWgSOUcBy2uL1k74sl4qqWeffYYf+ZHP8tu/9Vt03uMTlKXjG29+k6UPWJ3ZHY/Ymc0o6hp1cY51Bc6VxB65PJUlqW/Q2hDJWFOQQo/WbviMZnJquHv3IUfn53zyU5+g7wPrbcd201O6MdbWgOL04pyT8zPmsx0JXchp8FRnmmZLORsTQ0IpQ9N3tN7TtD2z+S7j8QjIKFOQCRKjpjOF0fS+pW+W3D15wPn52XCJ1VRVQcJwvm7wMWCVpnYF450xZT3GuQLf+w/hOp+sJ+vjs354chBctfNQP+jp/FfdBeUozVffrbUZRDhyg4850fUdSpWEGKmrMdf2romyFjUkpOR/5bF5WSVa4+RvUKKiDUEEGzkM7vthpgV6oOSowdeYhe2pL9WykRBlPmZLQ9s1pLbHNxuu7V/Hmw7ve2kbG83ByQn7kymjskLrSAwZW1ou1mtG45oQI9V4jNOOplnTNSv67Yiz0NGqyDq0kmwWYTyZ4IqCSKIwjps3bxNMJHcXbHLGaMs2erpuSwoRBuXxYrFkOp0NimbxMBKg3XQohFGbs4EYJAlmiDY0SmGykGK00YQQBYqglMANssyhlJGKLYPwSTNghC9MFl9oWdegFNPxlFjVwqZNGWc0XgvMP3RbQrtGF3O5RMWELoVDGnwgJUvfZYwuCalg24FWDqMNVsHIlQQVwQeM1dgkrea+bXGzOcYlVN+ikx4U1T0xZupa2oSJIfDbaay2xNRhlRZcYurJpsQaTZ8SKUdMhC609CmgC0PqevrlkudvXqc2jtP7Dzg6eITRmem4xCgRoyWEKqXVJTErk4kC3UhJotcwvPj8q7z8iReYzyZ0TS9g9RhIEZw2qJyZT8b0TSNJI9kTY2IyHrFerBiNxtQ2U9clXbC0MaKzIg8XxT4mcgzUVc2t27cpVhuy1dw/esTb33uPO3duMp9PuTjbishv4EWHtGY8nhAyHJ2cYqwWgHtiIBTVtG0DWROCugpn2N2ZE2LA94GRy6AsSSW224bjxUM2mw1ds8IYze58h65t6dqe3nuCgtJZppMZ1lnquqYPAWMN2lkhVMkN+I9U1z9ZT9a/jfVDH5ziZxSxyYdJePlfTcW76qwopMXb9T3J9wSthxzIhEpyI6+dpLxvt40oQ3OCfFnF/lEfGBGBXILRQ0r4FLDZSGvMCKCg7SQkGaTo6rqGEBLWKYpCUjaqqiSlxKbZoBQ4q6AqaNdrjg8+oChKnnnmabTR+BjofU+Kib2b1yAmjFF0PsJ0B6c0s2JCBMq64s71fVLqiWjGO3Pm1hCSKDkPHx3T9R6lDYXRtF3Do9MLbG2YWqmglVZslht86FDWUNYj2r7HDurd0jr6voMQIESskSSKFLy0rE2GaFBJLgkhJ0lTUxmdkDSNYU4VQ5I5FhF0ouk2TMfSUvYxEGIk+w7rFCkbtu2W0lmOlhdyaGUojcEDpEDXtayz5nS9ZTy/Q8oCZ3dKsd5uBVqeJCItpISPPcfnB9RVRbO5IISGtl1gtcb7nq4z9EnRbVuCKeWy5BObpkfFxLgohy5FxvceHzu0ymjlWS3OKHbGjIsKky1dgOB7+hzpw5oubKmNwpSGalrL2CAbPvuZT3H72jXe+da3OVsKSMMVBmsUkSEhJGdUygIc6CUdxhhDCEr8tShee/U1fvRzP0rKmVWz5uHBIe++831W2w5tDSnI/DsHB8GiVEHKMo5AiSo9xsh4PMYaCFnhB8breDZj3V1wsVhxbTLh5VdeZHc24+J8iTs5JxWWR6ePcM5yfHzKdBJ57rmn6fvIg0d3UaqiHs2Y7+ziux7nHDlfkLNiOp2z3TScGRmzOFeidYktDNmLMtgYTTEZkWPPvQ/uc3F+QQaquqAqK0Zmh816TbPYolBUumI6rehR1PUYpST+zRYVPjUoo0kKMBpj7QDweAJAeLI+PuuHb9UiH16sKFDlwNQ/cK59eICvjSg0L8+/qirpckS7gtJL5TmZTNi0Uvm0Tcfx8QnBx+HW/i+3aX9AIKCkelI5Y6wjpV7EIUPavFKXHFV5AN57vO8YjasBQh4x9jIDNHPnzi0OHx0SUiD0HVElqqpkNpvgilJyEEMYsIKG7CwpRrS1vHv/ATFrbFHhCqmmjLE8fPCIZ5+9TTEeoXKmDT3ZX3pgFbu7c27cuMHi7IJApKpKsZX00vKrqkoqwSiWk6A9XdtQDNACYwxt8LiyJCg4Wy5pm46220hL0mqMM6gslxWlrMyrBs9mVAlljXRfhxivHI3MGscVTduJh9Q45vOKovJYDfiOrmsxWaDuZVnTNi3FkMSisqhs6/GIyWTG3YfHnF007F3bIyZPpRROWwqrqaxhdHvGeArGt2w3D1meB3RM3Lq1w7iwaAVeO4rsSMpxY3/OdnmOsQpnErvTGqstlR3eNUayYWPqKUaOrDbcurPPfDrm/OiCxaqlHNWEEFlt15TO8vTtZ1i+/zY5Q4ieWzeu8canPs35+Rm/97u/Q6E0pSugEDScJOI8HhNYPYQtD7+atsNZwxtvfJJPfeaTlGXBw4NDts2WBwdHfPNb30Zlxc7OVMRMVt5POQYKNSJqhzElWWUKN6h+bTH4bFuisig0tnQ8ePSQ1eaEn/nJH+P2/jWOjh6xaZfM5jXLZs12gP+r7GQ0gea9997jxRdf5PkXnuXh0RHWlTJDLYx0KJTm5q3rvPDcHZzyqKQpimrgH0tAQFFalNIcHh5ycHBAapfUVc18NkFlzXK1ZH2xpjIFriiYj2eD31uC2a0tJPNTScatKUsKpa/8xpk8dJJk1PNkPVkfl/URDk5FTEEwZ5fG+WGGmXl8qKUkZCByHg7PiKhMNdY68sAxbdsW3TS0bQZXM6qn7Mz3xDagL/EHf/RsQwGlkZQGfEAn+WqfRCgkEvYkPrMhbso5w2azGgg2ihBhVBaM6hEvv/AC777zjmQ/psh2u6YuRthyxMVqzWK5lrmL90Tv2dmbMZvPuPfgERfLhp296wJkp8PkxLR2HB9s+O53v8PLn3iNyhXcu/fgKhszJ8V0MuP2U7fE4pHV8BwVhNhDynjf0StNOZjs+7an63pcXZBiwjhJQplUYw7vPSKlSGh7VqdLtKnZ9muyAV90qBgZxtOkDCprkhY/o0Jj0IQ+AkPws7UkEiG0QMLHjCksoesxSjGZTqjsiJydzEC1eEV7L1g/jMSIFU1Dt1oRXUWvIMSebdvTxoxvDW3KOJU42cYhT3IrF7KcBQIQBYdY1mNJmlEWZTU5e97/3hm+acja0NuCJidCDihtIYOPCevksqDJnD/sMRiB+sclyUj/OilNqxS+k/lgDJ5n7tzh7ne/Q9u2TMsSlZJUljlDzBJ6rTI5cvUZ0M6y9R3TUcmrL7/IKy+9wnxnwtHJAW9+7x5HR+c8Ojzj8PSMnfkO81GNSgGikIuyihQuQW7lOdAFo/EIXTkUGlfWksJCpm8aMJlHB/fJPvCZT71MWRku1hfcvHOT3fmci7NTwoN7aF2gMVhTQlbEQejzwQcfsHdtj5efe5ajg2N2xhWjUUFVjlifLXjttRfQOWCzojCWvu9xxuFiYLlccnZ2xna7lXCBlHHjKSlnNuuGvvNobZhO5riiQGktpCgfpLJWEFAoI8I2pTTWFbRdT8oy6kkpQ0zoDOaJj/PJ+hitjzDjFE/X5azz0rD/4UPzw+uxNUVyGdu2JQd/hebTAyDNWCsClRhRV/QZmTfmNHhC/4gPzZA+KCb/JPFGSGA9DL/vvccOySE+eIpiCL42Mv/MWWG1Y1TWJB8wo5rURTmYrIDWv/3OO6Ate7v79G1H9J6iLmi95/vv32M62eXw4QGuOCU4L/PDFMhtz2qx4e633+VTn/k07bpBwYDAi9z/4D5VXaGSlhliFmuPwrNeLTm4+x106DDacev2DXLsGRcFoY3DrFIxqmsCgWJUYo1lPJ+z7dfECNYpgo44HFZb9BDwnPLgUdEK5Uox94dEMIOnE4W2hhDzQFrK6BBJg8fxsmpQaLFWKJkPhpQk7cJZjLHYssYYy3w8Yh168TMaef6nhSJkSTMptZO0DSfwgTDEvBmV0aoioZnPp8S+J2ZFADaN58buHq25oJyO2PQyZ0OXoDXRB4oQKAsHeRCAFSLkCSFIZZMz2UrySG0MnS3QaErneO/tt5nP59SuIIaAzqCyPO86Zbl4JIH928IREaXvj3/2s7z82sv4PhDJfO3NN3nnvbc5OjtH6ZrJbJ+dVJBTEA90AKcLFNKNEeFWIimoRjXz3TleW0xRQhc4Oz8lbbeQHTvXxlijKWxNu1lTlQW7O+J/7GOg8Z0EmOeBW+s9ZT0SS5KVuf9bb36LT37yNa7v7fDM0/tMJgUhGN6MHu+31GbgIveeZtPy4P4jwuoCgLIsqa0hRuhCRxeEcoU2jCezIXfTEoloq8FZzDCvvJyfGmNIw+cfJZ0qreRzffnLaC3z9SfryfqYrI9ADnp8OCqtUShJhh9wXVdfdUkRMh8yzQ9eTPmnMEHDAFPvQ8RZS9M2HBwciOUDBsOzHKIfPpjzhx+Hkc1LWktye9UKSlfQDcpaayxkOQQBfPAi9FGQY2J3vk/ogwREu3I4vDOJTFGVxCiczICi7TyFkc3NhzHNWoK3m/UGqw0he/pk6YbWXew9WRUszlbY7OjWnq6TmVaMidAn1ost13Z2abtO4Akp4rs1/+Ov/ionDx6wM6rQyfDa6y/zxS/+CQ4eHmBLI5eKmMhtR1E6bu1fY7NpMM6Sbj/Fw4Mz+i5D1lilcAjYOxvwUapCjZGA4cLhg+SahhBw1hCipyws2lQ0bUtR1TKH3mwBgcILn1WeO1c6eU0GoITWmqqUFIxRVaGipvW9wB+UYlRVGOdQQaD0ApVA8jajQvRKEWesZGBaxfGAg6vHU863C3Rhme/ugdN4GoIPuMIxGo8pjONiubhCDJKlY9L7ntFsholZAsXrEbaQS1hMogQtXIFRmsK6wVqiBszeYPQnDwI5jW97dOHQxjAej9iZz9ms1hwdH/P1r3+T88UZ265hvn8L5yqMyWiTCLHHupIcxTpijKiHVR5EXIPv0QfPw9NDtJpy8OiA6dTy+osv0Kx6coKqLNmu1hizz87urqQCAT4Eeu/F6tVbVBJBlNYQQ894XDOb7PDay68wn405Ozrm9OiAnenTaG2lytOGFAMH9x9yfHBInyIhJ0ZORHmb5WZQdDtsNaYaSZarVg7ykFKkDUYhYwMjSEj9oaD6yz0jJYnH0wwRf15IX5dksnDph3mynqyPwfpIQdaX6zKsOg9pG//iv885E1LEKnW16Sgyylm0NdR1yXbRsLhYkG2N74UBqktLCoO8I+ehJn2M3rvcsNJQqTgjbcWQgUEklIxmvVmjU8YM6D2pjkR9WhSFzD7twArNSWDnVtF0HfWkhpRYLtaMRht2965jjHBvC2vwfY9Bk2KisIXQUApF63s0mpDBaEsOkZjWONNy69p1cj7jmadmdK1U1jl51pvErO4YVR02b6m15vqOJoYpr770HLf25vhtoHRzqtmYTdxiZxXOWXJMLPuGYlRxY2eXw8NHXCwW5BSwrkYnx0g7cvak0AFm6H9lnHEknQC5IGQyrlACVOgz2mbKrAbmq8EVlShie49SGmcNokZOjKpSWo0gQhxr5HRGsGzGFCSjMNkwqUfC5+06jFFURg2RbQV00oI0zhCzJ+dEHH6lJlJWNfPdKaUb4ZModq0x1K5mEzcolRk5qaZi19HlyyqRq0NTZohDVWwtO/MZyUrFMzaFUKMSjE3N8cmxXP6ipL9kowYbDISUCClw6+ZNdo3l0f0HVKOaGANf/oMvs9l2HJ8dsXdrn1feeJ3vvf19gs/yY4aEdSOib1Fag3E4Femil5mlM/Q5UlUzVus17eaY0e4uKssBpY0h5ch2s8HNKlGIE7hz+xZVWdMNlCwNVFVNViJoUwZ637BbjNmd7zCbzinLihg7om+4ceM6oXdsLs6pyh2y93zvnXcocqbCMK5qXAo0fUfnJShgMptLxqZz5JypRwW9j8QIxhbElIQEhajYC+foO38VMJCRkAZps+grXrLvPSlFaQ07R1mWV//uyXqyPg7rhz44L+k7lwSeD6/L9uuHGbb5w4g2rTDGogxkpbBFidIdrijZ+kjMmaqs2ZnNr1q48udeHshyPw1BZitf/epX+PEf/3G01viBk3o5d/3w48s5C0BBCaFIa/FqppQIvWyixdgNN3ERCYXg6fqWo6MjplMxnw/EOaT4kK+LMYiqd8jbRCiCmOxQvseZLT/zY6/zTFIc3r3H8e//M4zJTLV4LXOEXVvCe99lrTVaKZZaZpYmR/7iK6+iYs/J2ZLZ7h1yGdA5YauxVNB1IY9lf4Q2mvnTz6CefwGjlYRdK5ktWwq6TvPbX/59tn2PUY6khJGrB8qQvLZ+GC2qISJKQPQ5a+GSZmmjGaMGOgVAQhuZF18GapPFRGRdgbUG37bkECisoWm3KK0pS4OOPU3XSLdgUE/2vsehBiKVGgLGFQlL8oakIWpNiIJubNotZSFkJTOUME5reh9RKeGSGmLR0mA/yYSQ2DQtwRip2JPYHZq2E25w39NFD2iCj9IlGTb/ro+E4HnpxRd5+bVXuXXrFn/w+79PHzwlFdY57j96RIiJmCK7u3uU1QRMBcqC0rhCy88WYTye0tMS1huMMoTk6XwCq1gtV7S+56mbM2LIFIUBrfHe07YNfeyorRGfozFsthtC6PE+yCVy+AyE4DG24I3XX2Fvf05ZOkFgosl0aJMpipLQe9bLCxZnh8ymkVFhoQ/M5zvktqfbNiSlqIsSX2nKssQ5KzP3QdgUTURrSAHQmRwSSQn1IUWpqI1RAi25BJcYLeGfyONYLVecnJ3Qtx3L5YpnnhnSaIriI25tT9aT9W9u/fDioKHKvDwkP5yM8mHA+9Xvf+h7h88FOWVCCpIEEQNaC6ps2Eo4Oz2TDz7q6rC6jBYDObTOTk752le+yqc/9WnQDms1IUKIQTB7xqKUGZR6mpQ81pirQ/gyUssVhSDXhraQMWK0zinivWc0Gg2HsGDaYswiic8AkRADtrDEFK5UiIOigVL1/OJPvM6Ld2Z89Td/m5ODE1555ZOoget7acdJIUlyR9eSooRQayURYsscMCqwWpzTtBuq2hG6BpUs2ii64NFZkVB0vkenTA4Rox1JKTq/RivoNond55/hz3zxp/mN3/0dgoIYIiopknp8i885DZuqTDnT8KN2g1gjD4Z6OxxwISWsKyicQxFJbT9QcuT7o48C7LeWsqrJZEajMSkHUpLfN85hjaNptpKwojVKJdkktZOUkgjJJ5KDlDVBCYzB6QJjnbTns2NUVyy7Jbm7FDxJy8+UBcZZQozig0UwjSlFYSUbgzYy/+2HNA9gEMLJ+zDlnm3Tceupp/j85z/P/vV9Vss1B4dHHB0dUZYFDIB9hZL2aBLqlTYFxtUobXDWsrM7Z7ns2KBp2w6lIonAerHghRdfYFw7mph4/3ghIH1nkSuZvFe0hpQUthSBmMailKXvBvh6kkvRarVgtV4ynU4ZVTtoZ1A6Xo1CnBUIR+g77t+9y3KxYVQaRlVFs2nYbrfYdcHaOAoU46mof21Z0A1+7qIoMbYQzKOSCLa6GpGyhwHFqbR0fVxhh/d9QGlDDAljHH0X6H1H0zScnpxycnJMs2nRSuGsFcuSUrgnB+eT9TFaH+ngvPz14XVZaRpjrg7Vx2blx5MMrTXKKFJMxNCTY6BrNmArDDWaSN939NET8oDvG7a/FOSP+vVf/XVu37rFf/h/+I9QWnF0diEAgGGuilJXoc0kac0KHjRetXratqXve6yz+N6zM5lhlGD1REwkG2azbZEUkB6l0hXxRBTCEiN1tVkqmZGlDEZ5bswqXro1Z33xiJPjE177/Odw8wloS4gKcqYqLdrIRjvLCmXkgmC12C/EawnmwT2cK7g2nTMuSpTWxJworKXzPYUpRNQ0UHjIipwjKguovnaa3/unv8vi/fd55qlb/OE77zBxNSIOTWIviBFnDX3fUxQlMcHx2RloTV1VpBTp+kDoJU3FuYKUNH0X8J3HkdBRoris1mgSPrS4qiKhOF+uWK03OGfZv7aDsZbFdkvTeqEN5cS12RwVFV0wrDtP1y+xJnFtd4orofcdp8sVwSfqQuhKPsC5bzk6vCCi2N2dgRH0nystaMP51rM8byBFKgfjwkhrWcFm27OJsOk882okWa7D+1YrRcweleHGrV0++anPMZrucLE456233uLkeMHb73yXyhlm9QhCEsVukHSZZisoxJAiUWX2r815/tk7KGPYdAcoWw60qg0vvXyHH/n0n6cejfid3/5N+mw5uFijshtmqS3ORVQy5CQfWW2dXMQSmGSuDqHtZkPTtGgDzhZUZUEKkHvBOmo0TdNxfHHC4cEjUHKhqQq5NG03nsIVjEZjTFli61IAF1HwjdkqnLJXs8eiKK+sIioXmFxD2Mo+MIifrKuJvpV9whpi6Ah9y6rtWCxWnC82hJhpW2EuW1vgrMI5Rxw+1+GJHeXJ+hitH15V+yFyx784z7zKdfzwv1eSmAJ8aD4hbJfOe+qyBBK978ipRxvHzRs3cMM8MSKHSgoR3we+9c3v8N477/K5H/mcwBOuKEYfrn6HdmIalHgoscMoMdB77+UGC+hhxikoQTkYtZaWnLQwxWupVB5akIOPlUtAgxyYKDnk8zBL0wRMzpQu044KxhSoPtKFQCZilGFvvsP5+RnWXJJ5QCKzFXH4O6LS9CHy8N4jlFKE6zeYj8dUZYXO0KZE1NCqLSRIVzD8NKTGWFRWqK7l1Tde5ft/8Bbja1MUEmidsihDjTHSttWXoyZF33uUdTJf1IrSFWSlKFxBDJmu8+SksMpCSDinyWhQ0mrWWbB+VhuS0pii5MZTu5ydnrJYb5jUFdV4yvU7+2gM737rLbZdz3QyowuJ/b3r1OMx73zrG6yWa2azGejMcy+8RErw4O77xG1H3pvhs+f2M8/x3XfuopuOnVFBzBFrLduuRxcjnrn5HOvlBR987zuMn7qOcw7nDLnzXN+5wQ6Wk/sPCb6jUmJfKsuSO3fu8PLrL7O3N2W1ibx79wPee+8dlosFZ6cbnn7mDtNRxfrsFJOhcsXgP9Qo4+h9h7IKFHLBSpm2awjJs9xuIK75C3/mT3BtXHF4dJ/xdEY1Kui2QSxUCZRyOJsxRKwuSEkh2ueM0+Cc4sVXX+Spp26xOD9DqzwgGS1931I6x9a3hKZnvW04Ozthu22IMTGdTEjZE7zHxwSupHAjJvNdbHGMdSX1eIYqHDYPKMEP5fF+eHSjB8FgCpEco4xOYhCxoIMudiTv6dues5NTuqZh27agFUYXuMqRU4O2ctENEawT61sadAhP1pP1cVkfOR32wxXl5YFojBE4+/ABAq5EuBlJTgiDjzAl6DtP13um4x2qwSJAThADvu1QOQ8K00SKmS9/+Q8hwv/u3//rTMaTgQo0VHoKOdR4PNckQ4qPW8kMRurLdnPf99gsJu4h4GvgcApAIUQ5CFOSStoMrd5LdmfMIl64mulF4fWqQdQU80Ax0iIqiaHDmQkpSRJLs21FIKSyKDVTHqAPH57wRkaVpXaWB/fv8dz1mzhtENmNQjmLS4mgEsnqKzWiHPnF0PyOhH6A3SvB8JVDtRDT48tHyjIP1VqwceoyZ9P3RO9BOxHaDL7HrISAoZWoIIdbgwDoAxRWeLlt11FVNePxGFWUjCZj+u1KVJhlxf7+DbreU0xGdCpB6rH1mP3bd9DWsXNtn25xCjlTViNu3nlaWtrbLfc+eIAEdBj2ru1QfTAio4ghSZvYB3yX2b+zy/z6NUajgrPD+8Qkr1EXGopqzO61fbIpaZZrzhcP0cqSVeTWzdv8zM98kZaeN7/1Db75rbucnK6489R1Xnz1Vfy372LK8opeZdBXM3BxZIjvcTweUddjurbn4NEh5dhRVY6mbamNYrE45ebsGW7dusl0Z4e33/m2tEFdIV5NpbGmprYzcriHKRxalexeL9kZ7fHKq3eYj2uUiqjs8b2nLAusKWk2DQ+OH3B6dkLoPNPRlKzy0PnJbNsNo3HN2FUoazHaobWjqCpcWaKzoizK4UJqB/iHzLNBukghhCslvXWRkHqCbyiqEm0yy/Wa5cmW1XLFdt2QvcfpTF059vYmxByJQaNNQdcJT9oVDqVEjd/7nirJ/PjJerI+LuuHjxULgku7TBpJQ4vyw5Xmh6tS+TJRZhoZnA1fxNWhM9+ZY8oRKUGlC/p2w+psg2j0NSlmfv/3fp/tasPP/uwXcVU5JGCAygZ9pRuSm24KMmdJyaKCgMxD9DisKGkHL9hkMpE/Z/B+KhRFWWOsJgThw6ISPkT6TpJCQoyUpRLerhGbghyokgaTUhZBBIocwzBzFYFLzJkSAwZiFvGKM0g1ljNJI/V1zlI5ZkSU0yeev3GHp67fpCpLrDXEFDFa1IhRCSdVDc9BVojtQHmUKjDJEF3Gag0hka3MV40uSFlyQSVJRTZEySUdugJdhysLCievgzGKpulIUdrJOQsCLuYkVKWcscaRsoQdG2VQxoE2dJsNR4eHhBAZDf7Bo5NjHh0viCi6bktdOZzWnK0XnH77LbR2dKsllVIEJWKZkz/8Oslq2m5LWVXkPpF04Ovf+Ta9yhQBgtKUlUMpg6sUH9y/T//+Q0qj8KHHB4fLAVdInuqbb30Haydkv6WoZ4TtFkdkcXHG73/163zv+3d5dHLArVvPoNyW68/cYusVejShITNSiUJJfJs2gvHLhQUl3YXzk3NyCrx39/u89OxT7Lp9tjEzGo1wtufll15mXFWYXLJdN9SjgnaVMNqijLTGVShYtRfsTGueevo2t26L3zJGgcGn2FI6ubiFmDg9OOTw8Jim6yjKgtKW6Ky5WC8pygJVOMajirqqhR1tFGQhLsWoyNoQcx6Yzgmjs4jG7OC91sI29iHKeyiICtoOPt1ls2F7fMB6veZ8uSUGKApDXRjmuzs4o4ihIZtE8FKN60JhbEFWwpBWStN1najt/xUjoifryfq3uX54OwoRuKQAXbZH9SAqKfHe0/c/6OnUHyILXS4BbhfYnGm2LbENMtMoNZO6Fmk7lrZrefP3v0nYen7h5/8ktjQoq1Fa2pl5ACNobQcxwmOPqLEGuFR+CmAeELZrWf6A6vby3Pd9N1Sf6nEGaE5yyBtNTnGYZw4ZoOlfzgrNOZG1JkdpYaG1JJCgiHrwOMoglMuJadQanWS2FpXAIsQpIkkmhTIYn9FWhEBKG8KwSenh8QciGI2LWWDjQ6vZkjFZslD1UMVb58gaFAY7QACMtaJkTeJVDFE8gFlrjHZiHciZEKNU5trh1OVrLEpbH710CrQmRkmd0Ze+XS0Yv5yzBB3HnlFdM929QcJw8Eiqc0PCGcvejTtYV3L0MNMsTwlZU4xG3Lz1LJ7E8ckhq4fHkDLVeMztnae4/8EB7eaCsqhIIRLJoCyz6ZTR7BoqRu6uL8T8nzIhZpJV3Hn2BdA1J4/u02/OsNaQ+si2afjtf/pPaVJitrdDMZuj1ls2Xcd64YlZcb7c4JJD+TjQikQ9npRhXM85Oj3F24pyNEZpR9v0LM8vKPauEbxnfn2Hsq7ZbNbUhQSQkxVOS4pQYQsqVzGqSmbTKZ/4xIuMRiUxdRgDzdajMUQfOTldcXF+QbsVoVlMEYvCJAh9h4+JyWSKKwXbp5SS14SEKZ1wirUhKLG3uNLRx0ucoHksDMyXOM2E0RD7yGKxJOfMo/WabdexbbZEL4CHGGQmP9yjpW2NICmVHcR/zoK2WBOuKtjLveLyfz9B7j1ZH6f1EcRB8q6/bMuQZR4WggRFf3jOKZungBJIEjSdBstHjEKZuWTHaqcGIlGCJHL2vuv55//0yxRZ8RM/9pNclqs5J3KW6jUOVZIxl/g/aU7ay3bpwF5VKHK8DLlmCHuWyKkuBior2Ytx8KQqRHBBSoPCdKjYhpazNW7oKqdh5jnMBod/powkrcR05WuU6izjkA0rpojTaghcHtqml21gBeP5BINYZ/y6IWfZ3IpRjbOWGAK+95IGozVOGfkZxS0r9JkkCtKIRg8WgLqo8L2H0UAPSjKLSjEN81bZHEd1hVu1cihqQ06JmKVtHUO+suaEQYgV9aCqHhS5RT0SoHuOFE4zGY+hqlht1vjNEh8jWjt2dnbwIXNma9rNgnk9QpcFt25cJxtHt12zuTjFuYKgYL67R7LQ9R2nHzy6ak3v7e1xdHiK78UnrMn4EGlCy/7uTcaTKSpBWdRyuVMZpS0xK+rxiBBF4RtCxEaJFKtcQZkhKehipg9JyD7akZAYOd9HlB1RTca02xbfd/S+g8KxPluiXOK2M8SccNZgi4KyqjDWDsk0Cd9Ldd62DUoZUla07ZbpfMzzrzzPrds3USqIotZEtO1xVpO7zPJswWa1IXm5FK0WK8iZorAEH4dILktZVtQayvGItusoqlLg9EbsVNYVpNwLyQjk/VlYmtVl1msYZo1yMZU9IJFiZLVc8sEH92l7Tw6RoiikqrWasqzpLlbSvZhYyqrAOkthHUYXZC1pNDk7fHg8P40xYIzGuZLLmc+TivPJ+jitHz4dJRo5RKzFGD1g7cIV1eOynfLYSym+SzPk+nnviTHQR0/MkHMghp7pzg5GO2LsWbdLlifH/OHv3me7XPPTf/rnsGWJc2bY7C5r14FEpEAnjxnim1SOpD6QlYgoUr5ExWussVc32KZpML2g1mytRCELOOfYbDaAgLVzShijh9bRIPAY2rFKWZlParEupKRRSVSLPitMSCidUJUmhYCJmewMGXAZVMj0eqhMC/GyzayFdcPZm9/i4O0PuHj/Id1qLdYXZ7GlY/f2DW4++yxPvf4Kem/GJkV8zJDARE0wEW0y6AhRYYLG20zSAs622qFSpNAiggkxogaLijGXdhlP8p4UFKYQhmjTtcPFRVrgMYrdJKYI2VBXFYumoyor8clGT7YGhUepwGKxlJxMnyEbCleTYqbrAooCgsxpdUrk0FEUTpTHZJxWbLdbysKybju0skStaYMnr1rmNzosAZ8C5AIfIiGL2jtET1lV3NOzlAABAABJREFUJA8xW6xOaKPo+4CPLSr11M4yqQzNMEMulMJvOwpjCEbm0iZDqTXRd6TgcbbEGeEqn54fc/vmbX7hT32Rr3/rOzxcrLl37wPGdcV0SItRBDyJLkOtpOLquh6dDfieeTHm+q3bHD44xMSC559+EVvX5NDjQyCniEXTnF9wfHzEB/cOmIwnuKJiVNZsVxtcYSjKikhmNp8IKCNL/F4gYCuLCh5jHbH3KG1RWZOTgWyJUVTwMSvQkuITc8Y6ReflPWG0RRuDyYkcPJVzVFXJctPgjKUoHCrLew0jymZtNMoabGEpqmKoqMEUGTDEZMhdIJtGon1VRr5dkXIg468wmk/Wk/VxWB+h4jTDfFNmhTqImtQ5S9u2V+Kbx37ONHyfxhpR+Wk9GO+zwthI71tWywuMcpiseOH2s3zp9/85r37mDX7+536GLnQUs9EVr/ayrapUgiRMWKM1KmdyjmgFo7KmDdLCFKCQtDy9D9giCl+zroeZnJXDV4uSryiKgVg0VIbBoxWSV3kpBpIfjpQk8immKK3bQTGcs6YPkEPAOGSuGSIGRY8mp0CFwseMto4iR2oPy9MT3v3Wdzn80jcIxwtsgspZCqfpdMJ5hV0kNvfv850/+Bpv1o4bn3qVpz/zaW6++gpbgEHEZGOUKl47ktIEFYQza5xQnHKGPNh1lGRyWsPQmk6CSdOGnDUxRNwAaEgpEXKmGIhQWutBkSvgAGcdcYDsJ52xFlLypCgg8+gjVlmqsmbb9mw2G4wdQ5Z5aFFYUpc5PzlCFwu2qyWF0eToqazh9OgIbEHXtvgkF5jd6YzTwwMKo2nyAOBQWpizZUnnO9bbLSo68doqacWXZYlWcPjwAcbVpG6LQTi50eirSkuXFSHI3FYhWZdSqcv7oK5L/uy/+79kPp6wXi4oCk1dF6jhcAxB3huQ8THiY6QMPQZPYWrGozFVPaZvWn7/a1+lR1PNxrR+Q1UoCp1Zblacnp3QbMVKFUKQDkGOtM0GaxSTnYqqqugDUk1fqfMySWly0lhTYJwwhTMirEp5EOz1UcYEWg9CI+hDZLle07Qrjk/P2Nvb5YXnniclgx0EZUF1QuMywr/d29thVJf4rFg1AbNtyX1LVVWMJhVFYShtJWI45VFaYXJF44d8UKMpC0FdFoWVDlTfPSEHPVkfq/VDH5zGKGJ8zIy8BDRjzCBvj1RV9fjgvNwuhgpUKSVJ7spgsmK16qhcedX6nE4nbLYbnnv2RX7mF/8kbd8xm1aYwTtJ/hf8oSoLM9dofIjghI2plaKuCkLrZQ6JulKPxihtZe/lIFGALR0KOD8/x3v5IF8qdWP0ctO3khdqzSWmj4HpWgg43hkUBpAw6ByytD8rqZhiDGJ7yVAoDTEQrUOh2NOat3/3n3Hvy39IOllQ5MB05Ag+0fY9IQBWsQV0Aqc0E60Zk1l/+eu89e13uPvKi3z6T/0C5a2bdH1CYdHZDipeaQcbBc4IfD3mABgKawlZDjiVMyl6Yb9bi7EW7xXBR4JOV69jjJHsHgeM50EkFWJHH8SC5JyWM0oLcML7wMHhIdZVjArHttmw7TN5cc7Obkk9GrNaHNGHjj4amsVCotK6nrZpCWFEipmHjx6AcmybVp7rmOm7QJeEzRpTGi43+lLoCyoTYsLwOJgA5PVR1nDtxj5VNWNxeszy3n2c1TTeo0tHChlvRbg13Z3R9A3L5YLCTdHacnxwyOsv3gKlOF9cMJ+McNZglMbaCq8dDQZrJRIsBaiLkkrDi8/c5o1XXuT05JiLoyOSVkRXksuC1IlN6+LhkuXZKSF0lGVJ30myiHYarSx1NcG4gp2d+QCoSNTOkgZbU8qQYqRwhraVQYbRlpTEGhViK2OF5IbUEvHybjYblosF29WGd7/3PYwDV5ZMRiOxmxh7OTyRC5mT94s8BulgOFcQm4CPokeo6oqyktarGsRI2ogCOYPYUpzDB09VVwL8H0Y7VVU/IQc9WR+r9cO3apO05+TmNyhqSaQg7c/lcsl4PL5SwSkGYyCKPvS02y2xLAhERrMZevBAaq2xRYErS+7dfcRzL7xK8D2T2YRgAlolOZSGqlNWvqqWhEMrVSUxSqzYQOgBocjkyqJUxmqD0ZouBYqipGtasrNXlJiiKIghDqrW4bCI+UqNmxG7hsxYBSnmjLsSS8jPLIMxHwM25KFSi5Lhidg3uhRx1lGmwO/+6q+zevMb7EVFaSrWQXPSRua3bnDnlecY37mJqypQhn7TsXxwyOE732F5cs51O2HURcK3v88/vvt3+JFf/gVu/cgnOeoCI1egg8xSY0yEBEkNiTNolBKouRpmwyLaGPycOdO1LTGWVFaqyktxVIyS+hHS45ZtGnjAVkub73IOHoKnSVtp/6ZE3zQUKgu4fVAXjScVoQsYLUB+Q8ZWFa6qKIzhOEmXwG87+rYnKU9Iw+uaGQIHwJWVZIqGhDIWaxUhgdOW2WRK6AylK/HdirJ2eN8TIkPMmFwaUIN61Di6GEWsRWL/xk0SmhAjd79/n5/8iZ8k+MfRZbdu3qJfr+j6BmMchZPgb8uYmCB0Lb7ruP3sM9zcm3N9f0ZdOCywWa2xzqGNY7FtOF8uWRwek9ue2WiKSxrvocsBYwtGVY33Pa7UzHd3CQlMVQqJKiWUsjit8I1ACLSC3ntShtjLYdrHQIw9RSEWphgV6/WaxcWS9WYtJKss45kQE7duX6f3HW3bSLi2MqichhxX8TcbLcp24xxFIRVnWZRoIwaqdtuSp04oTRq0shSlHerikq5PxOApi5LpZIeUekLwtG2L9566rv8Ytrsn68n641kf4eC8BHkLGOBSIIQSs/jp6SnGGInxso4UB3uflu+xzuBDR9JDy1WB9555IUn3R6cnfOGnfxxdWMaTkYhijfsBTe5lwSnRYwoEET4obSPoof2YGZBgBZtmQwgigokpUQwHdcrCjNXWSGXTtlez2sBw0Im66IqKlPPANoUrwRNItaMphP6DIhFofUsRRyjtiCoRk1QLMUQKa6m3G77yG7/O2Vvf4HphIVnWrkR94jV+6ud+mpu3n2KjE5vUozJ4rRiVJc/Zks+0DYt3H/K1f/w7NO+/y17oud0qvvF3f5W88Vz/qR9h4wNGlcTUSgSZ1VhrKMuCqqrxfphtRqk0Uk6oJOkyZI3CDD/PZUUwpF1cIRfjcNhmur7Hak3hnEAHtBvQbhpjHKDwwaNNCUoTc6bzPX3XMxqvyRG2Tc/ZxTlQMd/ZwVoJSdbWCjg8RfoQUaYQBahVZN3j3ITT+0dcdJ56wLPlILPNLgd0qMGATxKxFbwnFkrmfyrTxwgx4sqSnDLWakzKjArHYtVQ1CXnR8fQBwojrFltFAR5/V9//Q2abUf0EaUMRVFgbMTYghQjRM/1vSnP/cwX2NuZo4iMCvD9htl0h9D3HJ2ccXp8yrbpsNYxHY3oleF8vUZbQ1mNme/uXAU8911HmxJZOYzVuGLMerVEKTNoECTyK8ZIyEFmnKEl5Y4U+yFNxfDw4oTlxZLtpiWEhDYSHl0UBfOdPR4enAKSabptNmw2m0F45yGJZsEUDlc6rBNgxsXZOTpninJEjhGnDcFJy1oBVVlR1yU6FygThruwwxpLUZasl2vu3X/AeGQZjUZMJpOrMOsn68n6uKyPpKrNWRSVl7NMqc4GrF1MNNutGKbzY5XpZXVojUFbTbb6ah46qkdkYLvdMp1NeXjwiC987mmwiqREiWqMvio0H884L9u26sN/EdY6fNcTfE/SZgAMiOJT+KtSRdZVBSj8QCVRAx9WfKlSUapBGYxSlIVsgikGEaakRE5cARhijCJcGqwfEei6QKql+k4xDnPYTFIGW2q+/qu/wcWb32TXibqysYZP/PxP8/wv/hyP2jXfTxsUCtt0qBjQhaMNHb2xKGupXnqWn3jmVzj/+te4+4/+IZycc91qvvVrf5/PucT1n/gC59uA0QqtBjGGUlJpBT8IQYaElEFIdWUl0WJPiSGQi5p0iWVQgxI3i5c1xkTXR2ajYqjOhUpETmg00WeClrlZYSzaWaHU9B6VJV2m3W7ptj2aTF2P6HvFerHApyTq2L6TiKkMoQ/y+mgj6TNRFMxWK6Z1SfQdWcnhl5WlNAVd41leXJC8PK6iELGZ/FmwWpxTVoHUN5RlSbtZURvN7nTGqgusG1FIF1pUsVoZut5DthhrSCmidCImjzFa5qExcG1nzmuvvcx0UmFVpLIWlQYCjs+sLy5Yn16wWCw4OzklZ40rhAq1bht0WVBP9qiMwygNGUZj4Se3fYdxBdY6eh/EApPBajUQs6QDwECj8n3Ah55Nu2K5XHF+vmC7bWk7jzGWwhXSRlUDLGMILsg5XgbqUBQVMQg8pFJiNdLO0Qf5+1VKoIx4vWOi7ToyGuM0qpXulDFycSuKYjg4h892LjG2I4bAdruVaMBC0bYtIKrpJzPOJ+vjtD5SHqeEaeQro7xSBpXiIFbQrM4XzJ56WiownQAvgiKj0dpSVSVd9oQY2Jnv4MqK09MTUhIjfxlqjh8eM7gRB5qOIuVBRcvj2RpKcHmXBzUpobRms97QJY9XEHJCMWz0ILfemOi6fvBRKpTL5BQFNG7VFXbusqAW/1hGEdHDDEdrJYfIcHhfZoIqFFkFYgbvERKOSvhOUdqS1Ag8fvm1b3P2pW+w70pA0+ZEgebdb3yNa5/7BG4+IUUJj9alwycxv1UM86sQaFODN5rJT36Kz7/0FP/kb/9njM833HIjvvWr/4jP33waffs20SuMCRKWnRKoSFYJrWVmedmGdqaQyj2K8veZp25hjMWHnrbZYrViMqqZT+do41hvVhLtZu3g7bN0rceVFVolidEyFqc1s7rm+advoWyJyQhUIfXU4xLnPNVEMa1u0bVrNGKUL+oxOSX2Jy/TNBuCb3nmzo0rokwX56xOT+h7z/XdOePplM12Q991JERlDF64qv0SnRS3b4xpmsj5yQlVUWJyYFxoVGwZ1Yad568zKm7xqZdf5oN796ne+4Dv3ntIFxJlpYj0JDqMi1RFScqRrt9iXSQWiaJwlKXj+ad3+MQrz2ONIYSWHBKl0VwsLjg5O2Hb9SilqapahHbWYYoKW1S4ssBYg7YGO9B7og+oLD7frBXJGFIKeN8iMKeW6Lco5QjZoNBD9FliuV7z/vsf0EdP07bCrk2Qtcy6q2qEG9V0XYO1GqUNuQ9iuWGgYMWELUsUkbooxRucjXxO08CuTcPnwWpW7Yb1tqWa7QplSglAoygldcdoUZ9ra4fLsMxejbaDHgFJUwmw3XS0jUfrJ+SgJ+vjs354c5SS2SYwtIMsdjDOF8YwqWsuzs6YjMaSYagTOUsCSkyR3gdyUngfBy8d3H3/fXZ3d9FaMxlNqFWJGlgGSiXsUBEO+lgua6SkIKvLSkpUtUYGbhidcU5TOAMqXh14OuerfMauaTEourYVy4k19L67ws/lLLiHPGQEmsvoo6FqlF+X6sxCPGYZid+iF9tBn4i+Ew+oh62CVCpWm3O+/D/9T+w4i0dzEqFzJTF4+tOH/IP/x9+mPrpgDGSXiSRc1Bgs/eVESDmsUZjU0fot23nFn/ubf528N6P3LTs+8ZVf/3vUvsEacDlTIGi/wjnabkvfN8TkCbEn5UjbtXRdJxjClPFdw3azIHiZUSolcH7fNqwvLqSyH2wSzjnB9imhH5HENJ8DdNsW37XU1oLvhblqNVaBb9Yszw5Ynj+iWV1Ieo7vWJ6fcnDvA84ODzg9OYIontrF2THL00O6zRnNeoH3iaIc029WHLz/HpvFgrowpNBiFYyswfQdi8MHnB9+wOnRAzarJYUrCCmiVOLi6ICwvuDs0X2cCzz/wh0Ozg9QpaaYVEKQSpGsGKwWivViSUqesnD0TYPWmvOLCw6ODqlrx3RkGBcwrix+u+Xo0QHf/OZb3HvwkJg0Rle0bWK1aVDasrOzy60bN9m9tsfs2p4QstCUypLI2LIga+iCl0zbwlKUmphattsVRg+WkW5L2zV0fUfX9/ggVWDXey4u1mQsk9ku9XhCORqRgC4GmX1rQ1YaU1hcXZCVQDZAVLohZrpOxgbWOpQ2JDQxa/Sgwk5K0/lARjGeTihHNemqW/Q4WclYTVFI8okeWvlKDyKqYRwgoxIoipKiKBnV4z+G7e7JerL+eNa/BuRdDfFRcpiJv1GEI33fc3F+gTWWPkWUFTGNzgqlJWlkNK7ZtB0P7z/g2o07hBAp65qqqtBepOiPESNyM/2QJmhQ6l6KXBhupz2+b1Ak+maFT4rkHDoN1bESmk5SItK/nJlczvZ63w2ABobWmxWKSpDQaUkDkVYterBcMFB+tHB6tXosJsoEutDTBwO2JKqWkD01noNvfB17fISxmfNseP1P/TyH9x5x9K032bGG+mzNl/6z/5wf/ZVfZnRrn3UWkpBWGa0E/A0RtCaqSOUNjUocTxSf+Et/kq/9N/8jk35L8f77LL78dSZ/4rMQAioFyag0lqTFmWGMVJeXbTAR9ES00vjQyxxTK6lOYrqKVeu6Hu0GURTQdh0+BoytCTGgcpB2LxpnLWRD8EuqqkYjYqWicGyaRkK/lSgnY05ShaREMbznBLwvG6n3Eoass2E0GtFsOprtllFZSbqLNjRtS5lgVFQys84QFOBEiNL3PW3foI2iKB1uiLhyRUHfeVxR88IrT/OVb7xFlzTaVqho6HvwnSd7jY4O3yS+8KOf5/btp/n2N98jxERRSUBzatecnrWsFlvatsdoTT2aEGLAxwC6ZLa7i3WaqpAwalsUxCxqWMmXSRR1TbdYkI2iKEuapkH5fpj3ZZx1pBQ4O1vwwb1HnF0suHnzJrdv35H5sGYAIJSwXJFCYLVeUVQlN29eZ2c6JWcGtasecmUTMXtu3bzJsTsiakVZ16QYKbUT726lyFkTjEFXNb7t6HOmrkYURjo46+2WCjuosaHv4kBWMoMqPRH6jpQUWg00r8FnLRaZ9JiB+2TG+WR9zNZHPjgvgQeXm62S0REgG/H333+f1157DaIXr6TSg/oyUVUVq3bD4eEh891dVJZcQG0s266lMCW+78kxkU1CxUBWdgj0fCzSIWeMdiiTGdUllVNc29tn7/oOhVYsVhu++fYHnC8bUlYDHcUC6uoDKHFkcWgT/yBzN6U4zESjiCb0YGkxeshs4Yqyo7TAzRPi10sqoRI0bUvwJUkbIgrjDDvB8O1vf49Z8CRnuPGJl3nx536SN4oJv/2f/x0Wb32D+ciyuTjnn/3Xv8af+Kt/iRsvPM952xH7lhgDZeXIKqEi0grUjko7+rhg95MvceO9V2j++deZtJ4HX/kGn/wTn8YPCS+FsficGNuKpOSQvHwd3YDES0mGtwrB8ZHBukEolSOkjHPCeY0piYleqYHZK3Pv0lq0UvgU8Z203C+Vt9qIPzJ4EWBZZ8lZclRTCCiVKEoh24QQ6PqecT2RuFMTRCymNe1mDQhnt4+ivE0+ipJTO27sXKMuC+4dHdHkSMh5SIQZPLaleF6NK1Ap03c9z7z6HKPxmK7rMdpiXQnGsvVbrDHYFHnj1Vd44YXncNYx390lNoGqnNL1LWenJ6xX5/R9i9KWnAxNF6UtXZcCX6/qIaNTnm/l3IBhtFySr0LoYVBjpyHMNqYklZ4Sq81yuWaxWLBerWnajsI5xpPJ4K0VWIk8Z4aqrHBGbDLCTgbtRFmdu57et6Qs1WNUmmLsuFguOTk9Iyi47gyLiyUOTbtqSK5AUoPg2v4+PgVCTqzOz1BEnJHu0Gg6p3AV22yJGbatx7keowoKqzDa0vmOtvWcX6xQSosvm0jwAVs6NtstwXumk+n/nH3uyXqy/ljXR0pH+XCVqQfwgFIahuw8YxzbzQYfxCdprUWljLUSHr3ZbDlbnHHzxk0ePDxmNnfYruPZF17k5PCUFBKPHh3IpqGkyopJhCE5JVbtSuwPMbJerwHL/fsPOXp0yF4/4d4H36G9OCVmx/TGC4zrMauLc+pK0HFRxasUF1HaDsG/WrO4WKDNcAAgoqTQ91JlgtyGB0GQtJESoQ/EECCBcvpKcSutTk/o5FahyDw4OuL3vvYWh/ceMR0VWKWYJMc//ubb9Enzk3/yl/jNi4a7d99hhmZ8tOXv/6f/La/+5V+iqQvu3LjBfDzjwYMHzHZ2qKua0/NzXDVjuThn/9qYM5WZfvZ13nvz28xVxeG9E3beP+LZV5+n00Llsc4OnkdJrBmNRvR9T9d1gFxOhNpi0NmQiHjfEXxCD2zbfJVMDsF7UhLARRjeH773RAVYMwSED2195IDMWdEPyEStFc5VQ6UPOiu6rkMpNczOJVy8bTtBB6qMiqIujSlTlhWqRypRFTEW+hTY9A3rdkMfPBmxIrVdixrYqwpF8IGYO5xz9N6jMOQYIXtGpYbQErqOOzev8/zTt5lXJWUtFKVxWTApNVYpvvfuXU7PT7HWMB5VFE5at6PpLvXYkVJiPB5hjSZrg9IaPQQF2LIQG0m+tMTIJbPvuscAfmUJwXN+vuD09ITTkwWBxHw+YefaPu3BIcparl3fZ7Ve8XxVk+KWzreE2A9WLI21Cm0yWWvaICEGqvdoFUgYsh7JAbdZg7L0faAfqFp93+EKiWzbLjcyzjSa4vo+o8JSGkWvFXkAo5iqoPUtGUfpDE5lLAZCYrPc8OD8IdtmxarZcrHoSarg2v510Hq4QClIkJPYWi6FQk/Wk/VxWD885P2ylcKwuV5GSimpGIqyZDSasFpucNoSYz9ABBK60FRVxfnFBbs7e6ybjqoakVKm9y1f/9pX2JnusTubYZ1leb7k6OKIw/sPcGXBeDTFGENV1zJ3UXJQa21ouhV333+PP/jDe5yf32O/rqhHd3ip2GUbDPqyWiJddXyNksQS0rARK0k/2ZlOr9pFWUHKCR86nJOqKqUkOLucr6LPnCuQtnIm64xhSI6Ikd73FFpRAcdnS/773/htPleOeLiJTPZnHL93jxvOYdHc2tvncGePs52bnB4ectNGQhf4f/0n/wXzW9dpS8t/9Df/Bn/vN3+Hn/qxn+DHP/85/sv/7ld54dmX+PKbb1GazC/94hf50m99nVff+Bz/8B/+E2bW8tW/+2v8jf/9v0cYFzTbDaPxiO1mS6HlsLtsicnBJq/z5cGotUIbRwxQGk2Kir7zEPVgAxIDe4hJ5sdaoS8FQ1ouPylHYpILUOgyvQ+kGIbnVLPeNhQuUFUlKQk8/7KzkFJmNp3RbDc4J211Y+TgEaVpJISe0iQKo/B9ou0Cm03D2WJDzJ6d+TWJGut6CuckqiAmqsIRsyVmyWrVVtCLikhVFajsMannpz7/KebXr9MslpjkaVcbUk6s2w0XJ49YrzegBMSBcWy2grS7futZeS8pwQVOd3Zp25aUpHWpncYwCOxARD4IAjFH8dpum5YHDx+x3qy5OF+QM1TViDtP3aKezdhutnR9T1EL5jAiaTxt2+CD2J9sCjjnUEkOoj70ZK/YbDa89vwLsF4wmxqUnXHv0ZqDsyWd7zDaUlcOv/XkIUi+KCtu39hnMnb0XSfc5BgIqqWynkXOVNZhdKSoa3RV0m4DXR+IPvLue/dE+Ryla2GMdG+sVuC0qJOjjArylbK95/TslJ29vT+2Te/JerL+564f3sd5KYpJ0nojDQmY2RBJJKMJWtOnTO892kL0np3pnL2dHc7Pz5nv7LBpNhhA50ThFOO6pCoKnFaE1NC2me9+49t0uce4ghdefJm93T2cswzUhWHQKQfbJz7xBqG3RHrefffrtKcn3H7qRWb71+kWG2jXQyhwQGfxouakMFnah9Zqcg6U1lJah4ppgKRfZnUKbDonUdRehlunnEg5yIc+ehFXGIdKlqgUmxBok0JnRdH1XCv3uFGUPLW/T/ZHcG3Cjfk1/tyf/lPcGI9JY0v/e4E/88t/jvP33+c3/+HvsGsKbhrNF3Z2+Haz5e//k99lZ+cGqe/IBGbjGdpYZvMRb7/9fS62DV0x4mI6prCKT+5Y3tu0xIuOmauZaDGu55hQhYMBaKHU4ypPeMOXXk1YL9d0QTa0vg8oRLBhCydKZiWikgSCKEQRckYbIxVKCJgBOl6MRlKZDlFsyjhcYSCLId4YyE6BMrR9h3aW3mdcXUJo6LYd2zZijOPpp5/j9s2nOXx4wLbp6FuZ+bnCMJmWbLYNmQKjNSFnOp9po8c5Qz1SdM2WpBU+KZq2oW1WYALaao5PL1herNnfu0ZZV8RuiyOxWq3pfU9MkvkJGVM6fIKkoXAl1bS+mh0rLakxtnTD/NYMoQeQgx/mmZIlm/UQqB4SJwfH3D84oM2Rqq4x2tAGuVDs37zJtWvXWKxXPDg4ZD6fC1c2JLIyJMA6PcwN5TKgtYwpdK5IXeTmU3NuXL/O2eEBqvWcnWcOz96jzY4+a0Jes2srlDVsm57tNtD3msOTJWdna6aVYW93Qowd8+kMg0OnAujpQsv+fMRsOqHNjo3OFEVNaDYkr9DR4OzQAYqRNHjXYvIiSHKWHCIoh64q8YnWI+yQcPRkPVkfh/XDH5yDojOlhB0qFQOkLJWFspqsZE6SciT7wHQ6YXdnh4uLC+rRiKZpqKuSoiioSo/PsF6cU5Y1k70ppMTR8SM++frrlLMxri6IZIz+0Iz1UqVHRmVhizZe0SfHredfp3gmgoZF06C0xilNDkFagVlu8jEMCD8kZ1TphO96Nsu1oNnSAHpImZyEORpjJHNp4+jJGWLs0SqTQwAjGDNyAVrT54TPA789eKrJlPOm5b2jhyx9zxtPfZqTXvN//dv/CaPC8ud/6eepCsfF9oyf/Ut/mrsPDnn03tuYENgePEA1PRc7U3Zu34DUE/Sg6vQ9RmlWqzVvvvktAorvfPf77NqadpVQLnC6btlFEXQi6aEtmBN9311VmmVZXgV9Cw5N0feemBQxgjYls/mEptmy7RpqdSng0ISUMUpJgLU2Q8s607WiVDa6YLNpeHR8gTaW27duk3JgvVqQs6PvevpmxSsvPUvvO9aNF4epT1ycHnDn2X3KkRBvQtKEAF//6jf5K3/5l/lrf+1XaNcb/p//8X/Mt779TT7xxgsYJ2k71pRsVhtOzzdoV7Dte7btijdeehqtFWVZkfrE9ZsznLlFyJmvv/kWpRvTe9BWs14t6frIcrHEGodzFTl5MhplMhnHaDJipDVlUQwt/XyFwLNaklC0EbFO2/aSrhMTVVXifctisWQ6nQuRqfU025blcslkf5fX3vgUR4eHnJwt6EPi5HzB7v51tBHMnXWWlDNd78U+lQbYhrZyQTSKwonwKPceV5Z0qwsmz+wTC81mozhbtnRomhwoR2N2p/vs7+/SLaR9n7Nmf/82Z+dndNGT1pmmu+Dm9RnbtmNc7aBUhbUJnzOuKlA5QUpYZ0g2EXWUi5KzaCVUKZQlZLGNxTgkGiEjnt29a1A5QvJE0g9oEJ6sJ+vf9vpIM0700KpVCj0cXDqLd8taSdFIKUPKlKVjOp6wWCxouw5tDNevXyflyHq94mK9JSnDjZu3AM352Rm7k31uPH2b8e5UCEOANWpA4F2CDGQppYjKAzIrCyGgcse1vV3akInNgnFVsep6bCHs1Di0a8uqgCxqzognJLHIWKvRQ86l0nrIpezwvpJ2F5f4PEUO8mF2VsQlDDFaKg2cgJAHAYxlnT37zrJn4Y513LKeV/d22S5a/tbf+Bs8c2uOUp4Pvn+fhYJ+7OgrCf092h6SUsckwf13HxD6nqfuXCdYIQBlNITMn/yZL/IH3/gG16dTxpSkZOiLgrbt+bXf+m3+vV/8aXols7ZmKUkWqSiuZokpPSYhgcJIaCdlWeJKKxeWnCmK6soiFL0nOIN1TpJE+gYzYBAFvSht75Akn3Mysaw3AiofzwxzN0OZEaTMwYOG7WZFOa4l5aMqmRRj2tVD+l5RFIrkDdf2nsKYkouLb/GVr3+V8+URvt9Sjg2urmmDInYyJrApklVBNRpRjydMVebe/Q1N1zEuKrYbT8BSl3PGo4rY98xmU4iJR5ujq4xZYyyurAgp0/edfA0S3K2dI5KxtsAoRdbgfYCUpRXuPcEncimtEu9FXnZyfELbtty//4C9a3t89rM3yUrR+A2z8QSrJT3l/PyMs7MzitLRti1FKTzXvu/FBjTM6C9b7t5HyqqkbzpCTHT9irZfcPuZXeqq4PDwhEk5Zjoq6UYdBw8W4BR933PrzrNU5QRLR2zkYiY/p2H/+jWK2mJs5tEHj4gKTi4W3Ll5A+00SfUoAs5Y1q3HjXfRDkbeowuDb6GNgZ2bN5nNJ9zYv4XOJd97513Wm7VYYABjCrnErpcUoZRLwN4O1eijbVVP1pP1b3J9tBnnYAeRbDw5wvTQpjNGC+lHWXLKTKczNpsN2+2WnDPz+Zy2aei6BmXFpF3XI3yI9F3DqBgxne2wiYlHxyfM5jPqUYXE8H3owBQyrcwbkTldTCL+SFkJmF0ZirImd4nSOnIKaJtIwdNsWqypyEkTSfjY40PP3jUzbIgIO1RfcnDFv5dSkipX6SElRlJPhAYkkAaNFn9MENtIzJHsSrqcqaxhhOaZosBvW8y6hQyPHnxAakZcv7VL4QxHjy546+vv8fDkmL/+v/53+b/9X/7vHKaCrUoUTc/Zex9w8upLvP/+AcoUhCB+u2fv3KSPn+Lhg4e89MZLfOv7b/PieId5ShSTGRNTojYNNmTatsMosQUoo7DWCp2HgYKkFG3wQ26kwtqC9WYjyLSqpO0aYhBGbUqSqqHsJZRb8levFNAKSldQ1SXNqpEWsJLqom0aYgpSqQ0q0BgT2/WGzXbDhkboSUqTY8aakvW6IdOyc32PznseHRywMxlx78EjdFGKoGbo6F+2J9pmS9t1KGcwRsLPey+g++Az33/vHnu7c27u7XK0PKLvNsO8FXIyqCFGr6hKRqPxVT5lXdf4kDDWDUHdaeDCpuEgQ2aaObHZbFgsFhweHtM0Hb73rNYrbty4LnaPDDEMQc6IVzIhPmFrhzmoMaQYxeKjlIDZdU9VS7iCcIPlYqpTIsRIWWlmO2OOjg/ZvzPmmRde4vvv3efdd77LzvwOG+8JOTOZTrm2e42H9w4oTMfOeM5kMiNnaNstR0cH9HHL3t4ON2/f4vDwgLb1rNc9k4lGOc2ksozKCettx6rtCWnLL/7kZ7lWz/j//Be/jipKYipZb6BrziQxyTiu7e0TyfRNy/5sb/CMi/3LqUzwLV3o/vV3uSfryfpjXh/xGpevTMx6UJ/mId1dZUX0HpWhqCpCiBIbZcwVok/aSpbxZEpImsV2iw+J8UgsAE3fcdG0/H//zn/Jj/7IZ/mxH/tRdq5NeWzk5Gq+eYncc9aQkFQOnTV927JqehYLTwrgScQUGWuFs5pHF2eARSsrQdvG0PUtk0nHJQVIZPGy+4YhaskYM+zGQ8t4+G83+BmVuTzcJZA7poxPmQrhmiqnqSxsc0suE2HbMhuN+R9+49cxwfNLv/hT7F2f8aW/93vcf+suP/fzX+T67WfQ8wnvbXpc0/HK3jXW/Yav/oPf5sv/7A/5pV/4WTb9ivGkpFmf8oXPvcTffefb/Pmf+im+/Rv/iO8cnbJRhr/4xZ9GpwA+4MoKV5ZYbfADfxj4gcNTnmeFtY5t39H5BqMVZVVSlRXn5+di0dFyqZD3gVwqBENohtb2YDfKWqwlvucS/q9RBN/T+0S7bQg+iOhKC5Fms94SjNBvtCkwFjbNgjasmM5mvPDis7z1jTcpijuEfsX5YoMrxqAsxpQoa4h9pu8EgGFdgSpLwsUJzXqFIeGKirIeUdY1s+mcg0eH5NQTQoc1ivF4QllCWTja5FFWU5QFIQhvF2PIIeOMqMZ7H+SgN5aYPNvthoODQ84uzuialroeU1YV12/eRCnNe+99H2UcF6uNQPiDhBWkLJmhl++76XRKs23o+v6KZpWGgPg8fCa11gPfV2abrtTYDEobnnt+wrVblqwb+u2Sz7zxIscnR6ybhqQ1bdty+/pT3L9/j7oYszOuB+yhZTwds7u3gzKaKhseHjzkmdsvYssx3jcslw03bztC0vyVf+dneWq+y3//a7/F3U0kpIY6Lsin57xwo2ZT7KKKGq0SpdNARJcKRWKzXJIaCQIPOjEqS1xIKJOIfUfXbD/aVvVkPVn/Bte/Vv/jSmE7JIJ0TY8bVZSV45XPf4aigtX64qriUMPXrjcbrNV47yWY2BVMZzOMNpSTGlc72otzjk/PQZtBrKqu4O4fXuLDFACBzlnCnMmowrA3mlJYxWKz5dHiFBsDNihC7LnzzNOorAXpBZgPqUmbpsFaO0jfE3mwYqTkL4WzAl9Q8qGPMWGtEQGMk7anHjarLnXEPmIrRe569qZT/sqf/dO8/5u/ReHg4f33+eX/4G/xZ/8Xf4m6b9j053S25hd/9i+ges82nLMJC/6P/+f/kLmq+er/79dZ/P4f8HypeYWazms+9+JtzPOfJq4jFkNQnv/Tf/Dvs9mecrtOPD0ac9FnXrxzg4v7d1EGQacluVCknIl9L68PgNIYawm+l58rRrFQqExMElFVlqU8/4OCNg2zJ6UUymj6bpj7DkrdmCI+9kzGY/poWa+FWAQltrBEpQltonCFhCrniLFWmKbOElND69coq5nNRzgPL7z4PG+99U188GyblspoRpMJbQ99SMSuw1UVOSpCiEznQsvpQqCw1eB1jAS2ZDLz+S2m8ynnJ49YrRbcuXOLupbLHyisMcSgxHZVOpJKg/dUCFfaiJAqhsRm0/Dg/n2WywXr9ZqYM2enF+xd22W+u8v5Ysnx+QOefeY5UIKiNHrIbNUa4yyuEnh7G3qCD9T1SPJPjZGWOiKMU1r9QHt9sVgwmYzRRmNdZDQa8+jRIVVdM9nR+BTZ3d9F9Ybe1+iiBrVgNB3Th4BPmXnhWC1OeerGhMPzBSH2nC/OmI9HdLHnE6+9znfe+h7Xbj3Ng/MPmIwmhJSwRnP0/e9xuNoydYYyt/ytv/m/4X/7536Ue2++xec+/yn+m9/6BvcuWrSxbNaHrBdrfB+xSmGjYuoqppMJwWW2mw2jekyInbTQJ0/IQU/Wx2d9RB8nV7Owy5mjDjCf7jC+fo1nnv8Eq9MFy+MDlBWFHEqqTe89O/M5q9USnRV3bt7i4aHMkezI0QeP9+1gCTDs7V3HleWHiEWXj+GxSAmU8DVVj1ECYnC6BKNZrs5oOk/hCrq2o+szRSl4r5gSw11doNyZwWsocVPaCNggZ6mCGPBjKUEcGLY5SbqLvdy88iBYUhmw9L7DZovxmTJo/GrD5NnrKGeY4Thdrzm9933SU/usUkJlTREU6/NHGJNBB1SK6AytDvz0v/OLfMkvOfzaN7mNItmO3/rb/29+/K/9eSavPk/rDTaXuIlm8dZ7XPdr9oyB0RTnEsRA33RQj2j7jnpogTvnMNZy+/ZTeO/p+o7VckHfiW+u6/2QSBLwfcdkErG2QOADcptIcXg/ZIEyxCGKrfceM1hWRGmq8MMMvC4K2r4VeISGznu6FKmTZ1pWFNqRlKIxii5EXBSF597uTbqmF1+pK9DaUNiCQlva1NO1HdPJCNGmBEaVo489LnsEYAgRC1oRfY/KCd9tWS/PuPP0bYoXn72CnRdZfn5rDGwDwXvxf/YBa410JVTi/PyY2WxHnq+u5e77H7DtWz756c/QdZ7l1nOy3NLEAxH1mAKPwpQFtixYb1dkBDrvQyf9E2PRIRH7gC7sUM2rQUDD0B3IjEYjjC5YLtb43vPyy8+hcwHZ0zRn3LxVc3z0gFtP7XJ22tDpLFQnVTHfuc64PiWSKYy7Yj5PxxO26w19sxYiWNsyv3WLs8WKi6XHVSVt3DDbn0DKxLTiV/7qF/lf/ekf4e57d/neB0e43/o9Xpwq/rv/6u+yPTvgaBEZmZ7l4T1G8+vECNOqpCxFE1BXIw5OT3AW2uBposfmRN8HdnYmtE/EQU/Wx2h9pBlnzlmg507+v9EakxVd65k5hyfytW98ledv3AQrG5dzViaUSRiodVGIbUDL3MYZS4pyCGotFdBsf8p4NKYsC4bi9l96LMCAYtOgPKg0CF0STd9SVAUhRpoYKUxBSC1+01xh8UTgIrPasijp+479/esD4i1hjFS0cWDVZmSeScwYJ2CAFCOuKLBDK1pmflkClgMYLMlHLJqkM3l/jr5xje7ggNGmYfnue1x/4Rq50xSMIIKxHUF7EV4phSERc89ZSnz+l3+Zt8sph//0S8ydZbfpePO//Qd88q/+RZ5+4w0OL9aM3YgHX32Ta9bR+8z4lWepJhUWSH1CTYWA5JSmj5EIPPvss3zhC1+g7TpSzizOzzg6OkRrR+sTXcgsFivadsticc5qtZSUkhQYV5LSkXPC990VazRnQSJekm9yiAKu15au7yFGFENYOBq0oU2BIiaSh9BHkhE/bKFGoGrImelkh822oy7HrLcLyWRNmUIrnFUoFWg2PVYbgm/BGHQ1luirrIkq4bNGZVHI9n3LdDwWdN1iw2QyZu/aHiYlQfaR6IeLljEWoyzNukWj+ODuPU7OT3CF5fOf/3EUhrqumM5mdAt49959jCmI2qEKhy4n8r414GMkkfHRo61C6SifE6MY7iMY7SShxmi0s/h1kPeYytR1zeSZZ6irMZt1N4iEFIV1dO2GUW3xoWG3mvDsU9clD3cNal7TxgZX9CzWZ6gB6Ri2PbW1BN8RchTLmdJkgTbLa4smd4rC1SKo6xpAUxZTatvzq//D3+P0ZEHXd8xtz1tf+RLRB3T0bJYtVTbMnCGFjLVjtq2AHHTMbHNLOyrBOnKMzKY7FLYaWu8VKj8RBz1ZH5/1kZF7SglvUqwcYlZOKXH/g/cZz6fE2NLFjkqVUm0MNJmQItoaNI7O9yTVUBWlxE2Zgt5Li69AE5tA6qO0/PiBCee/8HhkI85ZkaJCZQgxsN1uiJhBuBKHDEPP6fkx165dYzqbDqknl9zUkrbthk1ef+jAf4wYFEM+w9/nr2wHWmmZNSXB0ZEl+irmjE+JaBQNAUKimu2y98xTLN97yA1T8eir3+TOFz6Fr0oIHpMNkSGiDEVGIPmXuLtVjnzmz/0iX4meB1/+OjcN7Kw6vv6f/tdM/savcOP1V1h//x7ndx9w0yuaXvHiqy/QdB3ROdquZVLsU6LpByZoXRS8/fbbbLdbRqMRb7/zjhwYCpTSND7S9J79/eu88spL7O9/BoDlYsmj+/fomobVasnObPq4jYu56kiAQP4FkC8JqmpQ6KYYIEZs1HR9xCiDKgx9F1lvGrLLdH1L6SypKqnqmuViwfHxGX3vIWeWqyXlZELTbVhtN+zfuMMnX32Zrunouy3jyQ7v3D/iu2+/TWE0fdvjSw82ka3CWMv5xQVFWWK0CKWcKyD4qwuAj4HtOtM1LQeHR9z74AFWS07opr3g6eduyWuWhDyVUxIBD4qiKAeIRBzAypkU5H3pnNCU0oAWtCgRlBl5XDlFFhcLqp0pje+wzjKejPE+MJ1OxTIVFWlgJstBvEEVkaSEFHR6cka72lJVU3JWbDcLEonzswuuXZ+QtCdESWrRxqBy5MaN62zXF6wv1mgzpm1abtzY4eDBIeNCAwZvKvq4xYeGPgTeefsDprajWYqKOPqK06OesrKQCrqgOFutWXWRauSIOlOMZnRdi6sK+pBw5ZSQPeOqIHY9m/WWrusZ1SWp9f/iFvBkPVn/1tZHvsZdRlFdVmaRiFIZkyB3HU89fZu+7yko5A/PmUSmLEqyUlfM0Ni2tG3LZnNA2/SEHCkKx2wy4fjgiOXFgiF68bGHa+DUqkFReHB0xGK5RmFRPE5vmY+n9FnoQPlDjN26qlFKDwQXqVBjkKST9WpNs7MdvlZIQkrLjMwYg3OWS/pezlIhZx5D7mNOqBTJOgkD1Vph4ZpEdApbONax55kf+xxf/8Nvy+by6IT7/+SrvPCXfo6LbcPUl3LooK7+k6IcKDZqept5pAKf/6t/Huc0J1/6CuPU8QKG3/tP/w4/9St/mePvvE8RLRQ17NQ89frrnIYIzhByorCGkCOlq8BA13XUdc3FxQUnJ6cUzmG1wRUy61UqMRpXHJ8+4r2732VUj9Da8sxTT/P0nVvMxk9jFLTrFRfnJ4QQCV5QfgpouhbjBIBwcnyKV5rKlYJ7UxB8T6UcVgnisM+OJmTaGLAOIEmIuoLtdo3vek4ODxnNpiirGI9G7O/vc3xyxK1b1/n0Zz/NycP7LM8vsFaz2raQFXt71+SZ1RtyFsC/MYoYg6CQlSGFy+zPjHWWxcUF9+8/4PjklLOzYxbnC8qqYjyeU1Y1NY7twRbfC1u174XfW5c158sVpijIOWI1KGPJUeaYfhhL5BhRSVFVNWRNVVegFU0rSu/VYsWm73jlzk2qomSx3g4e6FLmyylw2TW5FGltthveeP02mo6cFKdHFyhlOTg84f17J4wmI155/SZFUbE7v0VIj9j2AVs4mmYFMbBcrkhJY8sdQjzm6Vs3ubg4JaeOfn2CMx5lZ6iYiDnQ9A3LjaKeBdrcEJWm9Zm7d0/Z3d+nS4GtDzxadrjZHk2ORB+ojUWV4LXHkEldh05RxjZZowoBH/R9wH6EIKcn68n6N71+eABCEr9khh+YO8acBhSaJYdAXZcoLaQhNcR0GS1xYjEGks4kpdkuV4ChWzecn53T58RLL73IbGfE2dlWkijS8PeirsrOPFQup6cX/Nqv/wOcKyWRA0PK8uHqQk+fFCmKvzIEua2OxvVw9l5632QuabTkAor6d8hmUQpUJsaAVlpat5dgeyXf14cerSeoS8FQkqzIPKRZpyCQiKwhRIUJmermTXY++zrvf/mr7NeOe//8D9h9/g6zz36C7UVDqQpyFq+fypmkgZRI1pJDAg0HfsPrf/aLvE3ivS/9ATdj4EaEr/7dX0XFjpE2LJLizmc+QTep0dmhrCWCZCwqhUHhYxoqafGxFq4c0inS1Qw5Z81m3WJdzc5c2uzL5Ya7d+9x/4MPePmFF3j69h2M1lzbvYZzjhAzDx4+hJzE8J4URVXRtlvcaCIKa2NBeZQx+CRzTp8CNlsqDIwmBN0TdcRoaeefnp7y7FPPowb4QCKLxSl4sZi0nnv3Dtgu19BHETj7jhCkYleuENawMfjgKVyNwOzF+hBDoO97tBUW8b17H/AHX/4y43rOeD4iLVqSMqA1pkjs7JWY6jqrxYacYTSqCX4LWgmDVomICiNh5jEklDUYJ8HTGcXFYiFdBSR0PWeZQVrjMNaIRSdnUSdrLYdKCPTe0zRbutZTupGMUXxgvdxwcrzg5rUZ9z54n+16Q8mIrpUMzRQdJ8ctfWpo2gNGowlN36JSYFYWpKhZrVaUozEmJyzCCe6zoU2ZqnaMgVVIVEUl4r+kWa07tDWsGmi3gXYT6LrANx+8zdm6xRWaOzevU2FwfSaSScYT8RKPkDUmyHtda0dZT9gOXmJlFUo9yeN8sj4+64e+xg2AvYE/G68k8drJAZOTJ4YeaxSjUYlCeK4qC4nnakaoFbrQNG0r7bsU0MgJHrsO3/eUVUFOiRgCeoAeXKaiaK3RWuGDJ4SE76Okzmfxdobo2W7X0uj0HcYaQkr4EPC9Z7veCHIuM+DnIuTEqK6o6xqJ3kxDSoO0Z9PVYfKD0UYhSgal0YYh4xshviu87xm4CKQMzoMNmmVKfOYXfo66rkSI0QW++l/9PVbfvcdsUuNVh81aNrmcsMqQ0aSsKZKlCoK4u1CJl/7Cz7H7E29wqhO6z+z6nknoGceI2hlz6yd/hBNEgYkSnbCxMoOMlwjFoRUNiBUgBMiKtu1RypICNOuOxdmK9UXL8ryh2Qj9piorNps17773PVJOtF3L99+/y2qzZtu0bJqWoq5lZmYF9m4U5DBkzGRFNR5jJjXRKFTWTNyE2jqu7cy5trvPbL6DT1EuZ4VlsxVWbPARlTW+j2zXLWBZrxr6NlC6CWU5wxQj0A5rCyaTKePRCBT0bcO4rgdAg+AEQwyCqRv8pHU1ZlxPKV2FLRTGlGRV44PClrBzrebO02OK0vP007cYj2ZoVcgcVCtyjPiuo2s7nDHkKBdPiFTViLIaoZTj4OgMLaU1XdcTujDQlsS2E2JGGY0xohW4hPG3Xcvp6RnLxYIYRKyUyHRdYrvKbFZQlnP2dm+w2jSs1h2bjcX3lve+d8yDD1asl1tqN0WLSQiloKiEfpRSJIUtNicmdUXUiqjd/5+9//q1NEvT/LDfcp/b/uxjI064jHSVmeW7pg1nOD09nBFIERrwRnfSjS4ECKD+CkE3AvhHiAAFQRoCIw6HY3uGbaa7q6ururKy0kRmhjvebr8/t4wu1o6olnRTJZJgXsSLAvJUVtSJY/b+1nrf93l+D7VVaAXCOrCW9XqB0SmzmecP/+Qlf/yTCz7+esZlnbCWGY0y+ACNDaytZ+k9tVFQ5LR5hzLr4vtjfKcP3T6tTmi1oRSB1kjIE6yRNG8azjf1Dapf++UoX/9JiRDRKuK9hVc0HxfHtdIFpIdEbeKmeLXn8lgflaLKRQZng8crkMJTGE25XIDwmDTZ7MSikCd2PtEK8uo0yrIIMVAqRatkY7yPO8E8TUiUoMgzmrZGaBmFRj56MvXGnK82DyhJ5KyuFvEhpDa7LWs35n4kRiuMkUA0tkPcZ2mlNgfQxrQd4iEUhMB54p6TgBWx+7TOMy8Mf/t/879mUaQEGdh3nr/8v/7fOP/Zz8mlwmeKUjtcoqiJGYlCOlpqWtHGn4kTNGj+4B/9I/KHe6xzj6emNZozL3j89/4OcmtAikAER6INvnUYIanLinJVbva14W904JtM0eBQKmZp5nlGcB6cxzsXf75ZipKK1XodPa9K8vzFC6QW5J2C86srbiZT6tZS1o6yrWmcJckMQgSss1TWI4XZkIYCJol7wMWqQhpF1inoDoakRQe0pnEwGu5hkoK9g3263T6drItRGc4rdJLS7XVIU0MQDpVqVJqhkhQUzJdTFqsZWZHQHfSoqpq2bOilHXQb8KuGplrTlEvA0bSeNBmhVBetDNpoiq5h/17Ow8d98q5FiRgFNhqnrKsLkOso8hGKNMnZ29lnNBjg2hohHPcO93nn7UfcObxLWnQRKo2ft9NBaYVWOlqzkoQ0iwjETCnK+QKNQPqACoJUaYyQSB9IhCKEyOAFSfCKTlFQFAV51qfobDHc2qb1DVlX42nJ8xwtDfPZDO8qEuFZzqesV0tmN1Nc6Qg1jIohQXgqV1MuHaH2uHLBdDqlKidoU9HNJVp40lyjZUHbCtaV42ay4vjkGkUCKEzRxYxGuEGHqkhYZxqrE4zpYF3AB0nbRg5xtDbFuD9n2zjZeaOqfVPfoPoNVLV+My6VkWW6if6yrcPIhLZtMcLEcZQgRjd5XgMTXh0uKgSEjePRRnjC5jCSEf5KXuRYkcXRlnekr4gHQbw+5aP3XL3uWuJhHhNQrHW0TY1B0WxA4a1t8M6RZxlyc9jFpJNIYhEihurO59PXgibnYlKHd1EpK5XEuhIZso1oaJPkoDVSRpuA2JgdvH91sYifKzJE457OBEHlGvJ7+3zrP/mHfPpP/yWiLBkh+fn/879l/5Ovee93f4s7hwfYVFLqeNjia9AOnSTk0tD3GWdPXvDZL37G/OKKgYa6kUys4IM/+Pvc+/73uW0rFA4hJVrEC0KiFakxFFlB615dAmIGqVJqI5qK3UddlxidcO9wjzTNogI2eFpno3p5HSEUIOh2ulzf3DAcjUiLHvNFCcJQFF2qJpBKxcOH90hMig9tpC21jlwZCiEYbA0hRKWm9Q2t97RCYoRgvz8keI8XglG3g62rCG8InrauCW7J1qhgFDJsuY7/TuvXkI5MBHrjEYE48nyV+YpzGC3pFl2atiE1BtL4s7IOrIss2m43Je8UhOtb+oMe4+0+Jgl88ckXZFlK0ZW0fk4vK6gqSafo8uL4gtv5MVvbI7I0wTlLkRuUAo+PsW1agBRY35JmCblOMVLRtNHLGpTCEajbNuaYEuIaQEkEBiVzjDYkSZfWTsmyPjujIcvFLUXucNYyX7foNKE/6rAuPUlqWC7WNKXlzkEXIxXjfAjBI0lwFqRIWaxKVnaFlYHKlYyUIi80RZKythm5iEzcpok2Fi8ttqlRItKo8jzHBomWiiDixbmxgSCJl1UnkC5eppWIF2otPLgGoSGIKFSyztJgcW/IQW/qG1S/vjhIvNp5xdGlUhohLK6Ndo2miQ9UiIB0Ng/sVzFdr9I2hNhIX0JUAwopSNIE6aJQZLleMlnU2A3F5rWad0P1kQAqov6Ujti4X7Fso1hHqciZ1VpFhJkIaBmFIGVd/n8QcqyNsUtFJ48UoldjQaUixSaIGM+kFSFEC4XdjHfbtn190KjXI2VijJYIOC8253qI+ZRSRDC+lNwGy/C77/NRYvjx//2/ZrsRPDQZ04+f8GfPXtI73Ofw/bcY3N+jGI+iclIElkcnrC4mfPrpE2ZPz9FNydjEUd6Zt3z0H/19Dv/273DZrFFaIr2MXbyJoAYhoKxKjM6ROsG2gQ0D4vUIPv7MJVIJfIgP7bZdEUK0aFjvCF68/lkh4pVGbxSqO3t32RpvcXszixcZ25BlHa6vJwgR1cyT2RRjDOP+kHcePkQQR7HSWYRvECrFkhBsHF3u7GzzT//5P+fxt94iMSEe+ngSAQSJUAlSaAgygilMzLBEhhg27uN4OIIdbEzF8fEy5zbe5ERrWjZgDGEZ9BPaZonRCbs7Q776+gXzSUlbe26vzvBuze7hmPn8kk6nR6ebcXV5Q5bFi2QbLIPBgMnNTeQBbwRnDh/B+Bqk9JTrzaRFK9qwicATET8YJCR5RlPXBClwAibzGUEqevu7sEkJGoyGFHmXejElS/uMhl3W64rpfInRMBz1kWbFYrGk20uRKpAXCW1VslyW7GxtY1vQiWI6X9K6BpmBkIHDgztkqmV2MSEZ5pS1pygylosb6qZiNBzhvSXLCkrnsN4zmy/o5x2UkXgsVV1hvSfICM2UCEIQm99Z1A5471Gb+D7nHc5HwUGQgrp5c3C+qW9O/Qaq2l8ZQ6TY7MlsVPU575BG4UX0dnrnwW88lsT8wdh5EuHt7Sa/0QWUiEkiQuuoYDWGxWrJcrWI//8QDdJBxDfbhjQQ46j4lYgFwoYkFPMPhUgobRs9mC4mgaRGbeDjEWX2Khw3bJirIWxGuWwsN0LirKNt29fh1X7j64ydaEyKecUJRSmiH1W8pvGEjapY2IDXYrO3jF/x2jvG773Df/Z//M/5N//V/4Oz03O6RtK1jubFCT/99AlKB6yKwce0Lbr1ZDYw6KSMm0DQkmnT0g57fO8/+/vsf+dDXs5vGQy3EC5gW4vcJKI0TYtJUpTRSKMjMMJofGgJ/ldjsiiU2qiRvSMEh/P2Nd3m1Rg7bHa4MUNxs+vViuVqSafb5frqll63B+sKqRS2bfChJS9yvvvRB9x79JBhr0fqLLPr640yWaOEpA6C1ktI4uUnyRUm1bS+pZPmm6lHTJ5pWht35ZsUHS8tqHiBUUpEJKOKKTfWObyUccwqomgokfHzWu+xIUINQlhj21sePxgz3inY3+9xeDji6uaYJ5+WbG2lCC85P7+k28+YzW95+vxLCF2qek2WGdo6XqriesCwWCxBwspWJGmKkDFtx9qGuqkonaStmxgIvsHo5Z0csRmTZ0nKqD8gNQl1s8bVluADtC2Fc8h5g7Bxj397LXE4hoOC2XzKzfQGhEMbT5pLkswwm1/gnGa2aLhanxO8xLaxG0YEjBL084zb43MGoxHzNVR2SutqZtOYDpQYj5YBleYEfxPtWNbiNx7U1cqDh8FWf4MubKIoT8bdbRBRByFciOsgF7URSugIyQ+vJlhvxEFv6ptTv8HBGfeVsbOLHj+7ScAQ3sfR7OuRbMAF0OJXoiLnLHVdo71E+LgDFFqS6JSr1Zqt7iCGXkvF9miL5XJB07SkJkMpyeuZYoh+TaWi4tP7GPcVgOCi4jbLMqyTpFrR3E7iuEhGsHxRFGRpTgCKQm0OS0FVNmj9K+ao8200fMfPHOX+XmyO6E1W56bz9gQkCi/Y7Aoj7MH5+GATm4NHCBO9d0KgWihUQulB9Qb8x/+7/y2f/uTHHH/8GfbyFtFYdoxBE9mv0oLwCWiBkJ668SyFJ/QGjN/+Hu/9/u8SdkdcrW7Z3h5hW5AekB7hBVIEvGtASLRQ8ZYf5MZS4zE6wdkQA8oTTVO3m9838UBp4mjaqTi6bq3boOs23GLB5tLkqG1N6+LvfDabsljPUUby8PF99vb2ObizizYJrnH41iLTBLRGuGhLQCi01PHhG1JEa/Fa0+BZN5aiVVTOxhE6CqUMuIbWNwgVmbutsxHIbxsIPqISeXVBChS6g22i/1YQVw5KKxrX0h/1INSkaUDrmuGgT7k+46Nvj1mvcwrT4esnL9BtxtntnM7C0s0M+3sjprOGJFMg4qjfWofU0Rt8eXFFkIFGBIpuj0HehaBQKsVZEDik0oiND1QnCfsHB0gpaaua/d0dXFWzWlckJuCWa7SKiu80MzRNQ5pr7u5t4xNLliTQGuaLCXmmWK0cZdWQ5il5llOu1hS9IWtfURQjFss5mmRjN4P9vW0u1QmL6yu2Bj2MAZN62ialW/TJsgwhJIlJmM9X+OBI0gxbxwCDslqT6Uh3st7TuHZDlRa8CpePod2x43QhxPecD5tOM17CpfevL3Jv6k19E+rXPzhDNPpHKEEM8Y0ioc3LPgT0RmASJyyvRrOvOrrNm8M5tFCbkaanKPKNkdvTVhVtU+Ndgm1jFxTVtL+iB73WCAg2oADw1saud7Nva+omytdFhIzbKprZPdGaUs9vNzYMT9u0jMfjCGoXf8NyAoRXb+gN+N15j5QaR7uh4sTDA/nqQRD/DrcZ/4XN4SqFwLceXRhaHwkxr75/KTLmTUujBQ9/77c4+OH73Bwdc/XLpyy/PqaerWjLCucDTRAkmSHpJui9Le59+D7Dd94m29llYUNMgzEJGQ1eahqp8KqDs0uUMvgg0ULENTUiBkdjCCIeKtEkIGkrixEC6yzBS0LQ0UuJxLYB52OuqW1brG1IdUpV1jTBoYymcZa6cVRVgwuO3f1d7t69Q1F0NwKvGEfX7fcp1xVHJ2c8/fIJdVmCd5ufvMAGidtQa7pFgbaSq6MTwnxOu8lJlTKOnvXGV5sXOdZWURUsFc61dHoxRKBuKhAB7xx727tMJ1PKzb8LPrA1GrCuWvqDDlor+t2Uhw92OD19RndryHy9ZDQcMVs3NE3DYlLR6/aZTdYsZc1ofEunN8Zyi/UNeZbGHE8taa0lySwmTeh2R4RgCN7gnWK8tUvTWMg6yAAyWAieTlHQrEvwHuMD0jtSY7DBknhNCIa2tZStxecpbZLimpZ1WzEcFdxc3zDojGjaEmfjxTXLMspVhcTQ6XSZTqY07ZrxVpeqrKjKBUFJvEs4PwtMruf4Ju6Xp4spd7d2SJMG216TFneQwlCtarTU5ElKtV4jtSbNUlbTOZ00I0lT6qam4+KoNoTNNEAKnHf4zVRJhQ32Y7NLt87HJCIRU4ze1Jv6ptRvQA56lcDuNqnyErzEi80OKXiEIwZBK7XZH4XN/jF2qEmSIGUAGxhvjZienWB0VBIKBKmJ//tkchN3nD7yT0MIhF9ZOePnC7yGiSM3H7v4AHxlX5EQg6xlHEEJLZkvlpRVi9ExRFhJz9bWiODjvjNLUxAC7QVGSWQINFWD3GSPemsROn4t1trXQiXbbqwd3oFKsK/IQRvQgvCxY3t1IAutIkXGlWgjqVxDRcAmKYP3v8XB+x+SB8F6Mmcxn8c9XBD08g55r4frZ1RY2hBYNhVaKJSWGJNh3a/+XhkavAKUwQdFImTc+yGpW48LLUkSua1GyRjULWpCGy8CUglwDqUFrtGRVGM3e2wHOAMiQWqFs4HFfEYbAr3eFr3BgB/96Af40BCCJ9EZ/W6fLEs5OzvlT/7iJ7x8ccR6+Qo84QmbUGyCwAfwImZFToucg4O7VM0ciya4wLC3haelWa1IkpzgRUTN+Q7KZCQK5vMZmTYkypAlcTzrrKffzXFtRUaCC5amqdgej7mZxgd/45c0vmQ07qDSR9St4+XxDU25QJIwXzToLGfpbOTOlgK/bPnw3cd8uPceJ19ccrWqaB2YTo7IMrrjPXrdIcNewWoxwzYNj966hw3xd+slEeVoWwgufr1aYpRmNV8QXKCyNU5AL+0iuzm5liTWIUPMAh3tdti+lzGZneMC3FzP0KLHbD7H5B2EF0yvZyTBkQhLP8swKZSLKwZdRSLBuhobNJ1CszQJi1VLt3eH5Lbk+GjOe/cGDPb3aL3EWkFdVSifYKIKiLSfkxYFy+mcNE1JtKAMgSzNWZUVSkYql2gDJghcUCih4nvYN6+50CDxIcTvLTje1Jv6ptSvD0DgV6MS5yKCTgpJaxvEJuFeuOhvkQECcRcmiakOr0DviZa064qd7T06WYqt6rj/I3onszyl04uUH17ZT9iIhF7LauNINFWKugERHNLHcZz0vKYL6Q0YO3asgoBga3u00bKIjQ3FY7TB+/pXlKHN+E5u0HBaSLIki99LYAM1B0TABhfzGmsb6Sfex9Gc4FfJIQF4hbGTIuLRZBwvv0q3lzp2WZmTSOuYh4bb4Eg6Kbq3F0k3SHwbuA2Odl3iE0EKZAIQlhAEbSs2Y1ONVgJvm4iBEyKONp2IJBbRgkni7tM1SDS2CWjtEcqAltD4iMIzRRyzK4MQfgOAiOCL1jrqpmVVLdjd2eHh4Q7j7RGDwS7/5J/8C7TS1FWDFJJ6ueavP3vC5599znQ6RSlFp1OQJylt+yrbNPpn438sEAhS0wbACC6nK/SwoJyvGN97xGqx5HRSok2DRPCdBwdMLqd88dlzpKgJwN/9D9/lq6+e8vTpU4SAfm/Ag4fv8tOff8XZ5RWtbTi4s83Du1t8/PHP+e4PM4qR5Oz6kqOjlwgfmC5qpOoyrT1FDipJWCynGJWhQ8sf/P4PGSYFX//yT/nwg4/40Xfu8udPTsl39inLmu3BFnujLVbrhuuzI0SoN/QkHYEGgw5NqOMI3VuE9wQfY9ecU8hEU/S7lG2NEIHSNxGOYC2i8WgLrQyEouJmXiKkw6QaHxRHx1fUq5pgPUmScLA/RgbJ9njIZD7l3vZ9PvzobX7xyc+Z+FsuzkqGWw6p5uikRSjPi+OXOAJZWpAmXV6+PKI3GrG9PcZWkIQ48s/TBGviPlIKhfMCLRS2XhNcINUZwoEIIl4yRZzYeBEwaUEjWmxdkgaJUBJrA4roO35Tb+qbUr++HWXTQYqNYEdtDpnEi2iX2Hg7N86R18KYQPRLCiGoqhorAu2ypK5rpJSsl2uMSVHo1/qjvMhiULJ3mxHtJvYqbEbAYsOIJWBbF0OqXUtwGiVNHAVZh1BxTBojoOLu0TlLYAMy8BC8IFFmA3bwm/FsHOc516JksgEi6AgpFxHwjuD1aFfIGOb9CpP3N0VBm4Uw+LAJIo4Hj/d+8z1sxrwiRmq9+vMagRQGYQN4T+s8DQLjQat4aak3f6fdAO7DRh2aJglGxYuCdQIbLCpInGvRQVKkHZSQG8UstDYe+EYYHG6zh7U44amblmbV0O0WeN/SupqyqpHS0+0mjHd73H94n16vS9EpCGGNUYFuN4UQLyZPnjzl4vSE+XRGXdcYpen3+/FX4GNE16sZvIzojKhGDjGrUUqBbRqKPOP47JrLRU29WvDRD/8Dbi4WfPz0lG6nR7At73/nI5arkpOza1QiaW1FMBnzdc31ZE6n24WywauMtVUs6gQXFEubovI+bVD4zetVac1iUaJV5LMuFivuHNzh9vYSHywtjt1hD6M0P/xbv4u9es5v//AeW1t9+tswCQ0vrlakGNI0o765jpFfUlDXAiUSjFAIZ6MgLdEI51AmjjOVjIHsfvP6WK1KXPxSMEIjjUIGA74l+BaVpzTWM7txaN3g3Ipxr8v+/pjbC8H0dsbazplpTdFP6O4UrFzF9Pk5vX7BoDfi4uyKu4f7tLahXMdXmE4Nd+7tcnV9ynJ+y+lpSTCS6+sL9va30AmEtsGJOH5tnSfJo2+6ti2yqynyPlYG2hCiRzNIWkm8VdqW3cGQ3eGAZ09uSZMU29ZIr8g3e04fXsWnvak39T9//Qaj2leouVivPH/bacHc19TOEUTkrL7C8qkN5ec1a5aAdR6dJrw8PsZn5vWBhhRkSYYLnrPzS97Ze0hwUUREiCPbTRvCK/S7NgZE+/pBK5WidY4sT7FWIJV+7de0TSBLFdPJgsW8QgiFkgFnS/IHCQhomxaX6Ii8E9Gr6rylqutNHmL00im1GbPiXzNt2XSbaqOmFVK8xhFGcgxY6yH4uI3TIJFxn2VkVBQjcSKOpzSCtmkwxkSKEkR2nwuAQphoLcc7gvBoa3EyckudjWpSqV4B1aO1JHiH9BLXBpTZKH2dRMmM0i7BRHWqLVvSpEPVWuq2omktnZBGwZAQPHx4j7v3dtm/M2YwGMQxfgjkRRFBC67k+vKCq6sL/vTP/oLTkxNSE/fhRVEQvMC5sEEz+s1+NWy8sAL76r4RItRChHjBSFODSlK6vS3qxQQTajLl0RqETlE6R5oUnSY03pOqBCEkKEenn/Dht9+hbVtuZhOCaUk7KVZKLLC0FQ0tTsRpQrCe1WyFRHN7uUSnGc3mwmDblrwo6OQ9bq5u+Ad/50cM/Iqj82Mu5jnPyjWL1rPTSXn24pgsHUcRlNLIoLDrmtA60iKNXfewIFUpBIGSGlQgSXOu59d00mxzpwjYIKMgR8mYuCM2Yq5gKKs5CIW1guBysiJjuTxnvphydnaL8hqTZuS9gvHumKpd0vqSvJswuZnw1z//OYP+EG0SrKspig6dXooILReXL5gvbyk6kuAN1dLTlDFZ5/Q4Copc5bCbSU+v2934aKO/GW9JpIriLy8ILl74jA+oEEOt7WLG+ewWo+JO24v4PIhK9nYztnlTb+qbUb/+wbl53cpNvqIg7jPtfIXIJCqLvkesR3jQOloyvIsjHAjUdUPbVHSTbKODNRs/ZINPDK1vSJRBK8V8uYhYPxFHvwhP2BxYMgicFBhtsK5ES4Eg+vPqdUtj19TeY0xCIhWrtsZZRyU8edeQdyKQQCmDcAVCKZIkkKY5yujYrbqNT9RJMp1F9N8GwxfcxpfqwibMO1oHgghYXFSG+gBSoRAgDLVryBRxdyhilycNCBntMq86LTYXhFd4vFddO1rFMGkCMoDyAojsX3z8eQQUCo8Plrp5lZkKSgSE0uA1ReG5d88wndxAIlmtA1plvP/+HdpmQdu2LGYwmzYI26FIsigEyQz37t3l/v0H7O5uU+SC4NYIoOh28D4wn6359KtPeHn0FKOHKGnJspQ02eiTRcTqIeJOPDYR0frjPfECFUBvVLpCRlwbHoKrqRqPtR5NjbYVsp5RmBrpWoLU1G2JrSpyqZBEQVcdPI4KL1t8Eig6GdeLgMSTZi3O1+RJircNRaHIc8FyPcPkBWmSo00XkzjG4y3W5QrvLe9/632qqmJyOaF1LV+8eIawC6rbcw7v7ZIVGVomrKbXKGGom4ZUgxcSZQyZGZFoRcDjnMWGwLKq6TU5zoZN2kkUvSVS4xJNW9rI8hUyelUFGJJI5ArNRrymkFrT7ebcubPDallweTrh7uEBN+eXJKlAJyl13bCzO+BmekK32+funSEhSNo65rHOlit2dh11IyjL6JVer2oGA8V61dJXhiTrMpmX7GzfY3Y930SjKfxqhfKBUMYLrZSCLW9oygYvAK8RjcRoiVcidvfB4WWgpqGyLbKb0U9T0hC1FU72WTn7//NMelNv6n+u+g3TUWJaR3y2C6aLOcuTGw4+fJtWBJyOkUphk4Dy6rAJm6DnPM/JU0MiFFYoZJZR1muMjhxOFyTOwaDfo8gzbNPGveCrbvO10CgexEoLvG9xHlyw0QivxWaPEuOhZpQIFVBeIbyjSDKEjJ2tFArpQEuJA5bLBUM9QG5uxVJImtCwqpabNIpNfJjwWOkJOLyPIcC12GDBQsC3DtqGqMoJBBHZqhAB8ME7Ei1o6gptdLTTvNoHIzYcXbB4jDGUixXX84qi1yf18bIRfMxxfD0SFwqC24Dco5CJADYErJAkPhBoaP0tb7/XY2t0gDBwenaDkIY0UzSNIVEZdZVxe9syn7cs12u+s3ePBw8fk+UFAgNuSaINSlqClXz58S84O7+mLFu8aNke3GVn9x7Pvj5Bm4CQPo7eA4iNLy/GsYW/MY3Y7LFFJFOx2aOGzUWpLRuMTEmzDnmvj8k6tFaiTQ+R9IjppwGFJTOBIhF4rbCVwLsELXu09QItDSFobuZzQuvY7g4obUC3npMXJ5ggefbVM3Ryj0CgrUqETLm5XWASSVnWnJ9fEILjYjbFKcWyqqlEwpoex5eB+WrGfOWYNi1Jd4TRKZo1bSuwUlA3Da1V1G1U/nY6HUjABo8hqrWN0QgtcCLglQStkOhNoIBASGjbBktABIUT8a0slGW+mNCZBOqqYT6r6XaHrNqavB/IckU373BzdYkmRVioqpZeb4TWgnV1RZYogm2jYAcFQSPpcXUxZTFVHLw1omkFrZ1zfX2OETLuvo1A5AkBjzYJAk8bGuZeohONMRobJDIzOO/RCAoZg72l90iTopIOuQe3jtF+M1fz1eUl3d3x/9Bn3Zt6U/+j1a/fcfqwAUHHsagV4KRADnLW3iKFRm3g6a330Vwu4oNS68hErcsSoxV1sMg0R0tNYpI4SrWOQMzWbKsKZ1tUjBXBOxAiEGT0VAbno6AAFYk8xJSWIFpSrXBtEz17gNTx4PLWk6Q509mK2XKN9R6BQ/uWvd1d3GbP5gncTm949uIFIWiKYkiSKIR0rwU4YDAhULcOnEbIjDZUSKGwTiN8wLSCxgmc0gSjEbZG4FlLTyI15+dnBCc4vHuAEHG36gkbALvbcB5k9Ic6mE0WCNOj6KQEaoRvMWikj5g/HAjpY0oLGmll7MJDAFeTJRlGGhpXIrNAfyvFuprDww5lWbNcTClXM0KqyYucg0Tx1uMhVVPTuhaTnNKUYFSfNOkxmU5Yzq9Jki4+ESQdTTboRFuQLtC5AhVjp2xo495b/GqMr/3/187qb9Cf2FhLwkYPJoSkSHOGvR6dLCP4gPNQW8AYdMeQZIHgLIEGqQX9TkG61cfbCrduSaViPVsynzQsbht++cuvGO0c4F48I0MiRWBrZ0RWZBxsHbI72kY5hQxnmFSzXC7wWJbrBffubZMkOct1Tb2qWC88f/LnXzKfN/TzPvPZlLKtePjuA1qgai1KB9Is0ppIEpRUhDahbiykKU47lE7ijlNFmIQQIu6iHQjn0UGgPa8V1hHUIAhBI1RK60q6JtDr5NRVzWrZ8OD+YybTKSEkTK5L6sJSd1Z0ih6utcznDVpGxfW69ZAUDIZ9ZpNzxqM+ddXiQ81qvYpTFK8QasD+Xp+dO9sM+gWzq1s6RRejEm7qFZlM8V6S6AwlE4o7O2RKkguFbxzKQ+IEGQLROryNRK3gGkywZI3HJYYLW/P5yQlz25COt/6HPuve1Jv6H61+7YNTSvmauvMKy9YbDUi2BgStwDo2J1wcr27+qWXsuqSUdIqcREtccKTdLgFNDSitIsMWMEiWswmT2ZS2aUCIzcM0RMXhq49RmOAxvkU6iQm8tsSIEAVMbW1pm0DwCkmLkR5jFnQ6ZRz1ygzRdmJQrrdUVUlqBM+//prj41M6+ZDioEe1qsl7BqHAURKCQ5EQxBqplyR5g79tkCLH+YBGYnSGD44gBFKFuE8qFPOqom0bDsZjRBBgW3xk2xBEoPbuFX6XRCsW9RJRaO7t7JKIBNN4vG6RwtF4j9cmdu86xbceK6JhXIcGJcFKh0oiHL5KGmrRUhQdpjcrnr34mqKT0O31UNKQ6A6+dVwvF2hVcHZ6htaGo6PnfOd771OuVzh7jVQ5RaExHYENFa0CnyQRUehFjIzCYrK4r7U+dj9KJiipSbRGWs+rMPL4+no1SWAzxhevldsySJy1LGdTfF2RqyGJNlgE2iQURU5/MGTZVpRO4GWKl5osTyB4rG3RGspmjU4lMlPkWhPmLdQtSkpWixu8BtnJICQkIWFvfMBodMqz85d0el2cr/j2d+9RdBWnR7e4xlLOK3SRYUPG7WwOJLQASvHorQesK8Px+QRSiU+ziJEzsaP2NoD0tMEiZIISBiE1QnlEULTW0zpHMAlCaXxbRpGZMax98xoCEkK0ESW65cHBmHGuWC5qtBD4ds1wmHLQDri69CyXjsV8Sn8Y4Qt1XdHr9RnkA24ml6xma3r06Ikei2kLPkcEQbVeo4JlUPRZ14qRMCSpw9oak2isb8ktvHtwQJYV1JXl2jrccs3gtmIsDcaWqESBDCQhECy0UhBkDDU31mOkp001T68u+XK5YhUAod4EWb+pb1T9RqPaV2Qg4DWuToqYGxmAJji00kihXvsu/SaRJIS4D5RC0wZHmue4BlKT4FyLEQFciQ6B0aAfu1AXok+UaA9Bxn2pd44QBInWBOdRMkH4FOklwiq8q7DWo6TBNRJfOxLrsIuGvs7JsxShI1IP4xF2DbZFNCXUBcYFtAUaj7MN3jYx5cEJvFNIkyISg7YCX+d01JBBWpJkAqsVKhhULZHBsV4v2Rp3+fyXn7J775AsWNIQw5lbERBSR9P7ZiSZhBD3sVVJ5QMYwaKp6KiMqryi8oJEwrpdo7OUtDckqHhYBe/QgLQB1TqMCOhNosnx5TW5MGRS8/nL49jtJ524gw7xZdC2cZfnplNWy5Lz8wl7O3fQost8WjGZXrNYr0l0h/uHh8wvpuwe3MW2NWmS0tSGtnV432BbKLIetfWMd/YQSIINrJYr6qqM9CJ4/Xp6HVv3aiQvNn5cooI7OIdUMh6wKqLoFssl20WfZhVojGdVe8o20Mm6zJqW6nbGvHFYJRF5wtlkRpalhLLm8c4eu8UeP/zB79FLCs4//wXJKtCsGqZlhX5gWNdzPGuk8lTNkk6ekCQpk5sZX391jjYFKlWs7ZpOkZMaTb/bYbZwmDylt9OjPFmjEw0yThHcxholNipRa9t4YWoaqrImFQm+dVG9bT0oiZVRiWoJeCliWkhiNngOiRQewopu2tBJLMvZLVmxRZallMs1nazAJKB0ys52Spp0aCpHVS0Y98foJOeLz5/QG45Iux0upnNyrejm26xbgZJLep0+3VRjQk4wETGppKRpLZdXt4xHW6S0jDCoagFecSRa6hDoVQ0HnRwpAo1taUQTkZteR4uVa6OQLTHMrOPzqxtO5iu8FJsABUdr3+w439Q3p36DdJS/4ackqmrLsmSwvYWtG5C/2lmJECBs7ClCxNEaDh/imPXVuLcoCqpVSV6kmKbCSI+rK2xd0zpHWTd4YtZn5NX6ONYMAakTnGtYLG4p8h51uwIZRRLWOoq8hzEy7q90ziD06HcKGuuobEuQAhtabFuyuzOmU+R4XzMc9ti/u0sICqUKWgdSW6QJ/P3f/x2UzEH4qPCUcad5/zCnfOcePkDrG+pSoL3FNxOurp6w/+AB3/nuD/jLP/ozWgJdaUhejZKJbN0QAllWILQGKbEuMNwe0x/0yFYWKxeoLEFrTbVsSIzi4sURUk+wTlLkhrpuolBJKVrfIlX8+pwUyCTh4Q9/yOVqhRMZ1xe3vP/e2xwdv2QxvWa4NaSuHFcXcwga3yYINGXZMFuuSa8n7O7skmdrlss111fXEfQvIUmJ8PGbktlyTeUWnN3cINKEyXRGU1e89egthIPFfI4UYcP/jcbcV2xfsbHt/E3O7yuYhQhRPOSNwmrB+c2E7yEwWlEup6zXJYtyhrUe001ZlTXzqmQ6XVA1NWfnpzgnqCpLGgQf3dnj73znb6Hv73Lysy94MO6zTDS/yDKOJ4vozbUtdbliva4Yjwd43/Kzv/qCLBmQqC20TBCZIc0SlEwIItBuxgVVVXI+uWbeCKrN7lI6j9rYqKJPWIKQWB9IZCDRikRpGutIkviz9c5C2KAafdwPI0RkdwWF9BKNp+go9rdyBGusW7MsFYP+NiE4ZosJeZqgfUsnKVitF8xna9JUYWRGVcV0FpVKOoMht9cR7GGMQFlHCBWr5TUd1WOxWLIuNXcPR4jQcHV1g1Ip3husgUxK0o19JGhYe481LZUsUdLjhUXIgPBRaCdti1IBrVNeLFb8/HbGtG43pjAZ420RG6LUm3pT34z6jTtOiNi8Tqfg/NxTrUo6RU5ZligZsXRBEA9P4NU0Tqmozqttg5eB0+NjDnfvcHt1xeRmCk2NQ/HLn/0U2d8i0QGrmjjuVGqzAZQIH+J4qqz53kfvM+gYEpOQFpIgKozOqKvAxc2MqqooehmtC8hmTbA1xjtkXbGu1tSLmqqEjy8vkcLTtGukDLRNhbOe9aoFNFlfkXUMF2cTbBORaEYrrKu5c/eQdbXm4mK5scVYgkvRJkMpS2YaZutjHu3tcO9v/RbFoMt0WoKIwqKqbfn++2+TJYar63OuphMaa5BVybzxfHF+Q+trmlWNoCWQkBqQquW7Pzxkd6+HB1Z1ibOeNMmxrsb7Gq3iQdVJcma15euzn5K7LteXS4KTfPbZ15ydXjAY9Li4uGZ3Z5tePkRKQ2IaRsMdprNrup0ErTRZbpAyY9DbQ2nPcj3l4uKUvYMdViJaNM5vZ5xdXXB4+AAfFCjNsmr4648/5s7O7sabq9FRBRPVXuEVFSr+bhFig/iLlCmpN5aV4NFJQbe3RzEYslgveWACmgYXc2do6hVabGFwm4SbAL5hcbPGEAUqexpuv/6Kf/WnH/NyecZysWA2LSl7BeudLVzj0VqSZAmDQUG3XIBoGA773F5VSNGlyBOgxQvP7v4eWmdcXE44uzrHqBSrHDezFdbnoOJYNiQWgd54biMgQyJRQWBtgzBJDN4WFm0MxkRLk97krxo0ovUYTRQRiYATFc5H4EF3WHB9/Zw8G5JnKV98/gVKCjq9lCRJ2d5znL64Yu/uFtI5VouaUqwZj/sUxiN0oJMEXN0SKk9oKkSbkAmP0pZJueL0YsnOYY+TsxOED5wd3/Dh+99ChIAXCQTIVGClA3UIWCHwQSJsQIdAK6O1TG782EIZvEn45OqGJ7MJMw8oSXASXLSEBTyNfzOqfVPfnPoNfJwhrhhVJNCkaca9e4dUizlISdHtxs5pM87d6HiQIkY5ee/Z2z9gb28XlaWM9/cY9IZMJjOWsxjUq01CbzBAJBk0gV/85Z/yF3/0L7FlQ+1a2maNDDHppCxL1uuWuipZr2oaW9H6kswUVNYiTQpEBeKqaUlC7NKUNqR5stm1GKQoKLo9pFBQJhwe7vPTv/oJP/vpx/T72+zdfcj9O29z9/4BZ5d/jkwNCE82GDCZXJKOHiGaFfb6KWmaIKTFtgovE4L0rMhYzR3PTo6w4Uu+9/0PefLVl6zWAUICdUnnz/+KvJDcuXfAn372KdeLNf2iYK875Kf/7qfgHVqkICLD9GCrjzKWdNQgsgFNOWFnZ5u8m3A7Paa1jvWiom0DbdMyE4bbxYrFqmZytebseMJbj+8zmV6RZh2atmUw6vL86JTiqoJgaOqG1lYcPujz27/3IYvFLJJydJf+qItQNb3xmHVZU3QNQivOTxdcnl1x78HjGDG1qrDWsT3eBWdZzOebzkHgN2AM62zswkIgSoFi7usrprcXHucbghC0dUOnGNAf7mGkQVhIpGTQTViWLeNuhnQtOnj2xkPqDTaRpqapWoa9Id1uSnp9w7/7N3/KWGgaWxESzXlZMr0tSZzm/ncfMZtdYDLJYGuH9sUFRsLOniJPRhi5w2KxoqyXBBu4ur5gPDogTXP6wrCulsg0MJ3PMFoTgo5dYogpH6++Z7W5ENZtRWoM0npQFU5YXAgx0s5LtAUVJBoFZYvUirZdoY0nIY8/NhcoK0snH9LUjq+PXzLsb+Oc5/zkmtGwR6IWSNFydVGjQgznDnVNUpYIUdMbDpgvZjw+vMOLL56zNxpxNdMIu2IxlzRuReNabNOyXk3JE8nB/gDhPYnpYFx8oCglaazFO4UQnnXbUukY+xa8RAkHeJyAuVL81ckR13WLDTJ22T4Q5UKbi7cI2Dej2jf1DarfoOOM45dI+BEYoxkO+0xDYLFYkOcZNoDWhqZtNz7PDUxow01dlyXHx6cs13PCLyW+hcZabNsQyobQhNhdpjndrMeHH33InUeH5HlO1inI0ix+XBToNOH518/5q5/8FUXRp26j+jPVKcNhwXhnF6k0n3z2hOPza4yvSKSgbTzL1RLfRsN9bUuKLDAa9qmnFWVV4YTEBkBHuPl6ueD2WuJdRetanG+pZiWNrbmdT8mzBBdiTqf0ErGJXfOCSAQSAZ13KJIeeTFk0O8jRU2SGPbv7BOYc+/OPlujIZObK/xuIMlg1O/y5N9LvPVkMkNrTdJt+eF3H3B2/oKqumW+IuZlqoL5vASdc317y3xqUdLQ742pmpbz62uSNKeya4qR4nZ9g8kK6tWcIs0pK0mvv09TW5bLVVRCS4k0CbezOXVdU3RHBG/44quvyXJwoaWqWoajIUU+RgRNojvIkNM2LWkS/4wQCbPpAiMiDcdauwE9RK/lq8xTa1vYCIReRYQJHz2gCE9wNXVd88WTr/juR9/icFDgbMtv/da3MUmObUHhkcLzo9/6NkV3QL1aIpH4oHj/w3d4dLjF0z//ay4uTuikASENpfe44FHSE9ol3e0CkeSYLLC9M2B7u2C9aFlMS4o8wdsFrZtgjGexnKNMhtFwcLDLzc2CTidn3UyRVtPJOrTe07QlSabxoULiUDZGaWnAJAkyQFtVmCygRFSwexdtUkZHb3HQAaMNKkkoTIp0SzIhkdLQH6b0Mst4d4+TswsO736HoxcXpEnGVBuub27pJNDtGpI0pZ91MCrl7HhJ2te0jeLrk2N2D3aZlkvSgUbXUf2slGK2aAg6ZsliEx4dvk9iAjIEymWNdw1etbgA3glyk5BqRdt6TD5g5hu8KOlIiQ6aWqe8WC55cnXKzLGJTRDR1hKIfFoCG1rCr8Id3tSb+gbUb9RxCuKb9FUuJURazGK55Or6hn6/H9FzIvoR1WZnZb0jSRJmszlaK6TajNGUYTze4uL8mPlyQld3UWlK0uszGOzy27/7H/KjP/g9RB1vm7Zt0FrRBIsuMublijJYprcXtD6Q5TkNa0wNl5//kqa1zCuLExCc3RyULZPVBPc32LGCkgEpSgecbzBakOeGRAtkqMl0YKuTk0oR6T2AcoLgFQkKYUF4hwgxukwID6HeCJdkNLk7jwoJTdOQ6ITf/7tv0xsovvjqS0Q7ZzwoePQoZXd0iBIddAKT2ZJ/kgQmpUOpBucVw07Oex/sMxhXvP3OAzodjXcVVyfn3M5W9HoFkpzpdMr+nT229gZcXpzx/e8/xjkRKUC9Ls9fvKRcC9Y1NA56eZ/VasG6XBKkBQNZmlI1jssvbyjLkiyXlCuLEJrd/T67e3s457m9uSX4EihIjQHvGPYzlBly9PKcxHTp9zqMuj3OTo6jDEjGyYWRkuCielaIqKh9lazzmrK2ASLYpsYoQdrJ2RqmSN9GulJikNLTSTLapt3kpEZoQqoVzieoLKO2C5zQFPsFxcs+Yb1kFSxZt4duKrKu4M6jLWp3zdcvZuQFlOWEx4/ucnZ2wex2zWV9yrC/Q5J4FvMVBI9WnnV5Ra83Zj6XDHpbdAe7PDk6QnU2eaxslOay3fiao1JI1A0uBLwShFGfLFMEHA2STpIy0oKEiInMCklqwIUaZT2Jd6hmSaIz/G3UCMzknNVyQZ7NGW0N+OrLY5omkJgurlmglKA7VIz6kvlNiZI1g+EAt9RUZ1eUizW51jhnWdaByXKOEzVSgZJx7BpaaErAGhIlkLRILA01a+/JhEYlBUpGOLvAUOSGZn5KVmQ4nfLp5Q3P5ktqF/3LQjg8oJzcYDyIWvNXSmv7Brn3pr459RvtOJ2zmx1VVNUlqcZ42N7eJklT1qsVnU6Hpmk3nWa8JppX0Gel0cogtUUbze1txe79+5ycHaNVgsGghMG6gBaKZrHCW4etlqg0gVTjfDTTL6+vuTi9Zna7Ynd/H6TBWY8UFhE0WqV08h5BNNzObsiEARxSBvb3DkiTDOdaBPFrUUpvQpkDD+4/4N7hQ25u5tzeLpgvyshzJSai2OCilcTHzSvSgNQ4NEHG2LDoS5RYL3FOQUho6xbrGrrdnOBX/Lt/9Uc8uveAtx7dx1YzLo9fUtkVWT7g4vScra0DkiSJ46oMmnpFVedUzZLvfPCItqq5OplQ2pq86JImGTdXc6aTJcFLhnmP2dWcp8+fMuyN6fXGeOFY3a7Y2t5lMllwczNjMpkDirpZcO/hPncP95jNLwHB1cWU66s5UhpWq5JqLen1clYrwbOnZ2S5pm0rOr2E0XiI1hMSY6nLmkJqfOsIbbQqHR+/jLvuzetCyVcfhw0037+OiosiGvAbjKMQmroOdJOcbqrppCmiDHgX0JufkQlxDFo7S2KyGNSdZTSl5+rmmu44J1E5D+49pl93+OzHP2ZelVQnU5aJ4v6dB3zwox8w8Zf8yU9/wjsfvst4f4vPfvGU4BygqMqG62bKzs4Y29Z453FW0LY1K3+L846TiwtGISHrShp3i7Obi9ZCxS5Kx1xX7S1DAd0koSSgkoTgWqSMe/SBgn08oqnItEHYFmHLGMTuBClxtNkET0XKfH7L7p0tHty7yy8++ZLUbPHO2x/y5VdfYVxLQsN4e0TS1Xz17ITR6IBJU/H5i+d4Bw8e3GO5nHN0dsnB7h4h6SCkJw2C7W4PI+Ds+JhAg6dCSBNpYUTlfJF0WN6uKHJNxxgQghZJHUqMzFBpn7PW8vT8jKt1HaEN2lDbGngFOtkENIRX7y0ZR9H2jTjoTX1z6jdQ1UYWbPx4g3NDoJQmTQW9EJjc3hJCIE2iL1Ir9Zr7KkQMnTYqR0iPlvFwmc3m7G3vcL1oqVcViU8QWlC1FU1TgwKVGc4vL3jx7Dk//MEPWc5n1K5lZ3fE7t42aZqwrh2tg9RIWueo6gq5gTB4HM7WaCnQm86lqSviDtQhKtgabSGkREmNbe3rjtr5GiFzXLAbqLtDChmjoPBYV5PJgrCxzEgMr4N5RTT0v4bQ41EqYVlZPvv5FaK+w9lJSSIvGO9olqVjdrMiSSTFcButMkwRuy3vLSZPUGnC4Z19sDFmquhqEhx5pmiqQGr6dLsdbidLTi9vePHyjCQZcD5zrLqW05uX7B1us5weI0TCzWWDdYFO0TIcDpjeLtAq4+johEdvPaQoOtx/2GFne5fT02O+fnJD2whWC5BCc3sz3ShONY1tSU2CktBULUYmGNkhUTlogez2Y/ddrqNFaRNQLLwnBIe1Fc55vI+HKshoGULQtA2NtUjZkssGrTKSIqGpa6SOojQICCVompbQRq5ubQP/7J//MS/OLvje97/NsLfD1fyMdW7of+sDVlcnuOWa0aDD4+99l18eTTk5uUCqMcPhDl999VPmy1vKpcakCcpoJrdLTJKhVMyNlSqhqQSNaJjPl7RNyXCcMh73SaSiO8i5OZ3QFV2kECgpMN6TKEFIBb5tubq+wu7skgxTahpCIhnnCeO0wFUOaSWK6NnUITKOtVBYKWhU4OMXp3T2PL12m6MXT0lzQ1NNmc5htNWhnM1IQ5fZckUu++wdHnB5O6OzNcL6CoXh8uKGqm4o60DlQXmHdYKyakiSlrzXISA3F5lXYfKOgKN1lizLWdg5/a0ho60BuY5jdteuqYRhQuDLqwUrKzF5D1uXtK5Fysi1xfsNeNLGNY8Ir5GLr0Il3tSb+ibUrx8r5v1GBBlvl1JEsIGQimAdWZaxtbXF5eUlWmu0lBBiJxGCf02It94iRAvOUy5XVKsVh/d3sLMVUzePHPPWIrXBNpGIE7ygLFfc3F6DAR9K9g52qO2aup3T+hZPikDifI0DkkRS1WuqxuKoQEYurG1arq6vY1dIoLENWZ6yPR7jnMe6NkrpwybpxEXwdprmGCUJNKA0SkRAnrOQJAlGG0KweGFQiA1829EohwgOYxQejQgGW3mm01vu3h1SVVecXp4h9Db2usXbBi9OCDctWd7Dty0Ei2g1wQeasuXk5JK3Hm7x8ug5D9++y3JVUlUrJrM53azH/v4BWZ7z1Vfn1EvHovYUWZd6WTKZwnx+y2i4w3KxQqoOrqm4vpqzv/82TeN5/vSK4Dt8+otLfuf3PuTy8pQvvvictnXMFzM6nR6TmxuyPCdJUpbLNfPlNcP+fZTWCN9QrUp8awkWjIJgFJIEHxSL5QrbtNRVBSGQGUm/3yPPh6+7/8QkaG2QMv73qq4YjYZ8/PHn9BI4C5ONLzhBKlivVqQqwflAfzDA2obgHT/5+Wc8PT7F6ITPP/uCg3HBT//iZ9xMW04vpqyaOVoncH7Jz588pa5bpINvf/CY5XxNmmUcHj5gctMwGPQ4OTnFDyVNsyRJMrTQeC/p9XqkWc7l+ZqmhNlVg3fXvH33AcMUur2cxAtoGgoh8H6T1qMUnzw/5cXshntVg7IpjfO4EEiDZVBNybwhzzK6RUaRdunkBblJOLpc89Oj5/yimpDuDpi7S85OTlksStaV5523dynLFUVnwPXZGtNN2N7bYr5c0e90KdaGo7MlZVvST1JC6ynXNbN1YFdptJDY4GiDpfE24hyNQqqAUlH97LxDa0WRauZihh5n7D3corqa8+1Rj9/54DGXN2eQS7qDbX7nWx/yJ3/yYxKl8VYjpY+B4z6QFgkaSblYE0RgZ28bk2qsa1D6N6SDvqk39T9h/foHZwhIGTtO59xrz6Z3FmOiDGg0GhJCYDqd0BkM2PzhKCoKsXNyrUVsSDkmT5lMJxzsD1FC0raWRAlcbbm+umBZLogqy5osTQk2ov2KzhY+OD7+5V+wLK/pdrYjXSRItIJeJ+FqdUlWZGRCkBqJrB3W1SRpwtbWeLOLDEgFWscg7eAd3rkN8O3VJSHgvKMsN8AHiIeqiAkkbdvgXEvY+AxV4xBaYoON6lAHihQH+LaOqSTSsnevx3C/w/SyZDG3nF+X7O8NWLWOponxXVk3p9PtI8IVEg1B0tSWVek5OZuzc/A2k/mUbneL1WLNct5SLeesVp7pYs1kuibLujjbMp9P6XY7vPvOfT598imLhaAqHc6DEh2CDzx/fspivqJu1jx+/IA0tPzsrz5jcrtitVozHPY4PHxIkfXYO/Ak6eZ3kxtWa0liJFs7ASnmFL2MPB/y2WdfUrdwe7OibYjjfaMYDIfs7uyyu7PN/s4IoxU3t5OYI6pfeYI3vkUCTdOS5wlfPvmCojCMRzmtsxjVo21but0OWZrgXSDPM1rrsK3lf/m/+k84+S//MZOLCZnKGAzGJMMeXV/z7e0tgl+QpynVakJ3WNAbd/Ai8Fc//pq9nb+DMfD0+fMorGoXHN7ZxbYBR+Dq8pq8ANPVDIaKxpb0OobF2tPtdkhtg2iWNCsYoTE1GAltqPGNx5kOf/zFU57PZnitCMqhck3SZJRixUeP7vN3d0dxzKoV0jpUIghtiTMJ/+zpLf/m+IRbLfnh22O+d+8R88sJL6cNeT9lNllTNTXr9QqZpoREoUzGcCQ4fnnF3u4Oq2qKKQZMz29pLaSmj3dLfNDx4ouPIeXeY4xGqdjdO1xU02vD40dvc3Z2wu4gh5HhcnFD5hr+0w8/JHRyftxP+KvPXpIWFdOjE1LlEdLS72rKusVJT5Ca7f0xy3XJdL0iUYruzhZJrkEEnHiz43xT35z6tQ9OpVREhAFqE9cVEAhlsM6hJSRa0isSfJ3Q2oai6FCV9rW61luHTJO4H1SKYDyTyTXlYkk/yzh3FXkyRivF977/EUkWD1slNd6uOD36JZ9+3OGrJ7+kt9Pji89+zp3tAcEmNI3FhgrpG6QdMJ+dsmwUiezSNSoi31SkrKRZilB6E7odoocOUFJitMIHKNcNSgugxdo2jqWljOHQIqafhODRMiBFTLkAhZNgbcwtdb6kpySEhlnbkPic9XoNRnLy8orlYsqdwx2Kbhdrr1i5a6bLFt/keCTWFeRZhkCQmJQ0T1m5BVbULOo5WTHk4O4eL5+fsV6v6XaHaKW5uZ1wfjmlahT9rmLnbsHk9obhtmD7juEd/ZCLs4rbkzM6RYFJJZ1igBQNnU7O977/ASenJwwGGSsPSgBOMp8G8mLJeDtD6opOt8/W6JDl6pbZ/BqtZuwdjOh3x5RVw+3tEpMKBqMEqWE02GM0GjMe7ZAXXaRUuKbGNmu8a2JWavB4HzNUlYxXGCGI0HESsrzACUGvN6CtapQqqE2LEI7XWaoigHQoBS+PTlgualLdoVlX+GrF9x8/Rrwj0bmlDbe0Zc1q6ihMgup4QiZ4sauxfonyku0s4/TyApTn4eNtLs4mXN1MSIRGGsF8dkuo5vS3+uzt7XB6viSpYHcro6wbdra6vJUJshq8UxSDfeaix3/5r/+cZ7MZjY5ymKYtWfmSIBKkUOznObk0zIJjZktya8msQud9/l+fPuMf/+IXLEL0O378yUtUM0ZYyaqyzFeOQXfMqLtDs7xiWS+Yr2q6uSBUDqU9k/mC9XzB6mqKkYakU1A3YNKAbdZoMySRMVeTjZ/Si4AOkmAtw6LHKEm5PnrJzeSWsrogLzqIVvJwZ4t0bHi5XvA7/9Hv8cHf/hEvnx7x+Wdf8vTFC/7Bf/wPSYzh888/4+j4lLzbJyhBOZ+jRExaSZKUTBvwNk5e3tSb+obUr6+qhU3uZPRpVnXJfFmys3cXEaJwSOAxWtLrFUyXa8qmRm0sHS5Ek5f38bAJxB2gThOuL664M9jCe8/J0UtKW5NmNafHn3H3WwcMOwXnZ19xe/01//K/+xJtAtVzT5oYhGuoVguklBi1ol4JXl7f4toGrwTdrMA3Fr2BMtjGc34xp7IRpk1b0ik0/X6XRGuUFLHJFa+k8Ju0FxdH1DEgO5JhmrbCJII7dw8IIXJ8g0uI8+UGZTRtyND9HUThUTKlViPy3ZwfPc4Z9RuOzp4z6O6yXio63REXJ6c0qxUuOCY3c+bTW4IP1G2LzhMCBi23ePH1V1znK+p2xbPnL9nfPaDXH7JelTgv6fa3MY3EB8myhv7WDqVdcHFzwzsffMC9+xotf8J4K6cpA/PFGq1T5rMZpycXnJxc0dY7+NBSdFNmU0u5il3qYvEV3/r2Hbq9Li9evEQqy87OmPH2gMX0hjSNeZB1FVgtauq2ZmdvRL/bwRho7BptNalJCKHBtRV127BazPCb3blt7QZNHNW3ddNQdAqmi4paGfTLM0LTYL0mSRO6vYyrq0ukUighgYBRmnUbyPOUulmzWsy4ODqimpboXKP7FU4uEBuz/XW5QiwDq6bko28dslqccXT0gu+8/4i+CqznJV/+2Wd4oqVje2fM58+eofICuw509nPOJ3NC0/C4X/AH3z/kj758gjYV+bBDB8Ni5jhb1PzXf/kpn1/e4pRBtY48hWAbvIx2DqEU2nvWtCy8pe8krVA0yYj/5mdf8t98/DmVh1R4fHC4En7+y0uGowyHZDwesTN+wO35Ob202EwFZnR0yryeUruaam0JXpOSgBBoo1lWK5I8KsGlUGid4G30TutU8857jxDOg7P4usQ1LedHZ/zyxRF33h9TZD1+uPuYYjnnzz/7lMXuNv/qn/xTtJJUJbSNZF47/tt/+Ue8++5Dfvhb3+P84gLpA3mWcndrh9nlOk5vRAx+N+KVzvZNvalvRv36i4MNuD0Ej7WOQVLQtCU3J19zeHiPJgQsCqsSfKbZKvqcn5zQ63TQSoGPoHg2QiEZQozz8lFYsKwbbqdLBsMB9w93GG9L8l7JJz//p8wmtxwfnbI97tPt5qzWawg18/UKozqMxncI3pMVXX758TH//L/7d/zn/4f/PaIIJEGRZp6vv3xOnhp8cBRdQSYTggfpNHmion1Gig3ibIP1U9EiEcIGbbM5RLU2fOtbD/md3/lb/Pzjn+Lahk5uUNrQ1FFYFJxDWEklM7rDB3T1gEFaIewJRh5j61tOn0353ve+y8nLMy5vb9gdvc2j+4cs5jW30ylGCQ4P7/Dy6CloWK5neJHwVz/+lGZ9xTvv7rG3t0eW5lycTfn85AXBBhLTp1OMEFiEVFxf3jJvZ7z7wSHHp0f86cs/YnfrkO99+0POjr9AaLDtmtZZ8rzD5HbGzs6YprH4UHP//h5Gd5hMpvQHOfcePGR7t8f19YzlcsG6umX/7rs0jWc+mzG9mVB0unSK96nqFYvFkkR30TjStKUME87OTlnM5ri6jkxdGbsMqRRVVRO8IFEJUhi8D7S+wbkah2O2XjDsBmhavEgZ74xJUxX5t16gtEIIaJuGQX+Lne0tjmcLXGhBC3wuKHopzk1YLW6ROkOKPjbVLCdTEtGlm445Oj6l3xtycvoMXcFWf4t2rCgnc+7u3uVoOkXKnHUV2DIdjo7OaK0APHmecX52w917u0zqBVeknK8NT09v+fc/+5xp2RKUQgaJVpZMRuezMhneCRKlSJVANwt2raVjuizkFv/FH/+YP3t+gg8OKRXSA04hsLRIBqMBnTwGHnz97Gv6eU7Vrnj8+C0++9mSycsFnVGHlU04en7Fdj9hdzxksSpZrkqsjWHz0mi82Owxncd5T+Mdo50ROIdUAak0z14eMV831E5w9bLkJ1ef8xOe8fsfvMvxPPDg7Ue8/PM/RCcJ59fXCBktW0295PTomNntBUqZ13AEqQxCShpvabyL9iYp3yD33tQ3qn4DcVAEBhidvFaXjsdjpudHHB+9ZHvvDgGNlBrvLGmacnBwwO3VFTJJUMRsTp0l+LYhDTKKikyEBzw7P+He+/dQqmVlL7G3sCV7NE9vWJdrpss1y/U14/GI6XzJqqopK8u9ux/ECCiRUi0n4BKKTp9EdREStGvIOxJtNK0FpQX7e0NaWhCalIxmHfeXbd3QJBqpolrYuTJSTJSkbmuEDAQRaBrL5eUlf/RHf8zNzSWP335I8A1ZamiqCVvbe9jG4CvPQglqO8frlq6wfHBQ0xM3ONvFFrt88uNPSFPD/b1dDIGjF89YtS0PHz2i3+nwk58cR/9pU5OlQAi89fgOB3e2+PZHD5ktlvigGI72McZy/OKUttZ8+fWX1LalalZkWcYPfvAOdw726HVGfPn5Kcvbhs8mX+CbNQf799je0kzLKXma4aymbQN1XdE0FVVZM51dIbUj7TjGe0MuL664OoX5PDDePaAqFXjFWw++R1vXZJ2UT395RZKk7O7scfTinNnkBd47QrA0ruH+3Xu8de8+tlpvkG3Rz6lU5Bzb1hJC/dq64WyNlI5lVWFtFvmvWnJ9e4NwFYkSaK3xwQKBRHtuLs+4PDsHQsyPbWsaGyjXln4vJXS7LKsGKz03lxNSJSnritmyYmtnh9X8AiU6TNc3OO1YO8fh3bv4AEdHp9w4QehpeqJFaElvMESdLNn/6DF/8pd/zOQrS5EI1LsdXpzP+bOfPqOpPEF6fNBoDUWaI0TA6gxMgWgqdGjQUtPxHmFyXjTwf/k3/5pPpitaqZA24INFBEWQoAhkSbKBMQRePL/k7fd28dWMJANBy73tbXKVc9PMaYNgvNUjuJrr61ukNpTlGmVSOp2U1jpaLNZZ+t0eaTeP41qtSUxGEtEMmG6Xtx/uc7n6lBcnFwSdcdVY/sXPPmHZVvzbr87ZHfW5ubomT1MQjrZuGO8M4tcrNV4GZBJFUdYFlFIo50AKghY0waO0/J/g8fem3tT/f/Xr21GIYdTBhQ1WL+6+SgvHR+fM1w33HryFwlOoKKLtZAVhtMX8doJMEpy1nJyfsj/qUS8rUpWwDoLaW3QhqMKU3VGXreEdmnaJSRLWqxIfJHmWomSKbSXl2lFVOmZ4Og+hxTpPCC2JDFxfX9HULVmqSXRkmWrtsXUADKenM9aNjV2lrUmN5F5yyGhrzIcfvcezFy9Ylw1CaJqmIctSdna2sdZTN0dk+RDna1arZbRTEKKi1tb4ugTb4Gygbi0hJNDU+KTg6nzOFydn/O63htxMl7y4OCVJ4dvfecxyfc717TGjcY+hyRmPhxzs7tPpfB4pKi6qkltbc3J6yuHhHpNJSdM4msayWJY0ZfSZrlfXUXwxSHi4vUNRFGjd4bNPb1ksLFcXFetyzv6+4tvfecTJy0uksfSM5GB/h9lsybOvr6jrljRXmDTwrQ8fo1VGXbf85Z8cU9eO4WCfu3f2aNyEyW1LW5d89ekRwiu2tgeYtE9wCVIJur0cY3LW6xXeCbpC8Oz5MWcnlyRGkWdZJEMVBcYo8sTQSWMYcuNrZFAgNVobVG0JzpHIFJPkSOlJiqhANtrQuibGu5mU8Zbit37wHb5+8oKLqwv+/Z9+TNbpc2drh61hgzIxrDvPUrZ6GUZlJGmX2jlG4yGpFkyuj1E6YXWzIvU5n764ZrKas2gDJpMUmSRI6BaCfqb59nv3eXH0hDuPB4gnN3z/3Y948uKcn352TGkDQXqEkiRGYITCZAlt0zAp5wQPqZe03iGERHQ7fPz0hv/q8yc88ZZKxA0CUiPx4EXMXMXQ+sB8UZObLR49HDLu77L0FgEs57d0tnKefnYCWwVr3zLY6mCXgdmkpJenFHnKqrQIpahry6pt4oA0wGq5YmtvRO0saZpDG1X2Ji1YLkvef/sBtoXzqxlBKxY0pCKhaQST5RyVgVeOPNf0xxl5J8UKaJ1HaYMT4JUk2VzMg/dY7zAqpfb2tb/3Tb2pb0L9+genh+jpiPtMaz0eyeV0wdOjC0ymGC3nGCXoFh2CBOkCo9GIYC3LxZw87zJfzrm3u4VtHHmecruaczO5oTfQvPX4EC1X2DBB0BBsIE/GKJ1zdPoCbxt6vYRBf0jrZsxXFVVTEbzfhFJZUmMQQtI6T08b2mqGThSB2FV6H0kutg1kaRaVtMGhtOLy4pJPP7Wb8bFksVyxWCzI8pTlYsl6tSZ4wWK+oLUlW+MBd+88ZDwecu/wgLKckOz1MImjmrVYr+iWaxpzi1WGWdXQ1x1uWsPLi0u86JBkCR9/8oS8GwOY33v/IbUTvHx5SrVc430VwTkh3ka8tHznO9+n21lzcnpDXZUEB0W3z7KZkuaOIByjvSF7d/dx3jG5WXN1dcPLF7eMx4ccHB5wPQl867t36A0T9uWYy5sjtASdOvrDhHfeO+Ti/Ia9gwFNU3J1dUGRDXn29JTRYJ9ESxaLJS9ePCPJK955+y5HL69Z3HhW85pub8Hb77+F84Hnz1+ipOSth+/x9OkzprdLEpNjm8DldBp35xKCDRhjCDiKJEF7wc54xGh3RKZMHN02kLSB0DQcH58gZIaTmwBwGwg2vhYiGtGzdo7zaQnBELTh4nqGXrScHc/Ik4oP3htTNxUzeY4QDb1Ol6o64d7Dd0lEypOnXzO9uGBnf4uL2ZydnZSXl3Msnu0H9/jg4T6dMGdtEt6+v8X6ZMXErTm5OGe1ZXjrwTtU65YvvnqJbQSZMQgU3jUYFaM5q+WareGA1K8Q6xlypRE+Idu+yz/75Gf80fWEdu8O/ctr5tOrKMoLEv8KUxcEPsTEoUSnJEmHRCYokVF09uh1BJ89+QV1uKR/sIPq9bi9OEE4T69jmN5UtE2LUilSQ9k0JKbhZjGlnw0JBKqmAS0JSmJDQAvJuqwhSIKPCuaPHt9nuv6USkkePLyDm9V88fkLbAUmEZhCMtoakqQpztbYNrBerxkMRiilkEKRmYxEa+ZVDOxWShHwCPmm43xT35z6tQ9OI1NK0RCkI0GgtaEMhtJCkXfpmIxQr5mvK/r7GVIKpJYEYRntjli3a9btksfvvI1rYvpD1bYYrWmtJU06XJ9fEsKa/Z0BiehzdjFhtJ0xuT1jMp8DcDO7oXGOJNe8/867dMx2vHULSSADY7BA4yxtsBid4HxL1gmUoSYEz85Wj71dgwiQpduUqyXgMamiaRuEEiADysR/LuZLbBvhBS541qsSKTQXR1dcn17xox/9gGpZYtLAoDdgOpnTH+TsmQLnLatQsW1WTHTF43cfI8Q1zbqmyHPGnRSRaTpDg3M1iUxYLFrqWvHZZ7+ktgIbAkYKBB4ZAlc31yjlWDdzfGvZ395lNqu4vLwhSQyH9w4YjrfxQnF9M+HmZoYxmjz3lOtbqlJhbcVXX57x+NEDXr685q133uGtx/vM50uuLqZsj4ds7xbR6C4OKNeOk9Nj7hxu0SkKLs6mKN3wB//w2/RGGWfnF+SzNTYESi8oA3z8+VMCsSu7d3fI1fkJrqwojEYqgwyQJhltsAQpN3YHhfWe0gNWUF6uOJ2UVGWJ8C0yydnv9bn65Cvs9oj9R2/x+Se/5Oryhsx0CE7SuDiqdW0Diqj89i1Cg1AKFaL3VkkQDDnc36OpbllPJnSzIVa25IMeiprdLPDbP/w2L1dzXlxMeXpzTN7TBGnQSYVd3zLezXnUK8hfLnhgRsjvf5v//uQTVlryyddnHI63ee9H32Px15+CMTTe4UrFvCrZGW/RLle4xCJ8i5aetV8j8oJ//PPP+aNPnrL1/ltknsi2DTEjJ+CjP5rI+0UIvJM0wqM7GuEdqIYs0cwmtxwePOLo/BmEwPTymmo+I98dcDNdoKWirj2D0YAgG2o7ITEmWkLShEQplk1AaYNOM3y0V9O6GIXmnKf1FqcFUoJRku6wy9IKvAQhJC5AXVucA4JEoAmuhRCoqooszbC+JZhk47mOz51X1jcR3gAQ3tQ3p359VW1QCK0IwqOlRuuMdVAIk6AAFQR1WXJ+ecl63vLo7btknQypE4QU3Ll/l08/+5yvn73gd777g8illDGgeDAYMbuesTvukBcdTl7cMrktCVpj0xaTKPrjguVijUTT6/aRxnP57JidUYo8iG9QqzRtEj8umwpUD28j5qxpIspM6xQtIqxg3SxpKsVqVTIY3qfX62FtHQURtsW7aNI30nB2ek7TWtq2jDYZazEmxWiBref0OpqqDTTriuADKm9oyhVs71HfzjFLh2oFmoCvHe89uotOWvpbEm8kk+WCIsv56skzzs5qZNaHUFA3JSLEsHDlA1jHcrHi3FeMDzL27u5w8uwltzclWdJjsZrz8vicVSV4+vyMq6s5H7z/AcvlAkhomhJQZFmX519OePnVL9geDzg1gY9/9hd4X7NeWgaDDt2+ZrlcsZgFlEzJcsHhvTGz+RWLueDs5DayfVMDKmFVBpywiMSzXLRkeZ/gHdOpR4lbRFuTyBwpBd57jDIb9abG+kDrPM6+MpVI2sZh6xKJRytJEI4089imYiQTnpU1Z0++YrFa02hN2bQQomkfAlJLRHDkMtDNU6y1eBmh+M6VKBV4fnzKV18teHCni3YeZ1umsxmVK3n64oh74wHDXoen12co34KS5Eaxtd3jYLyLreCf//tP2er0+U9/8Pf4tz/+SxY71/zs4im/9d5HnFxNWTeWUZFRZIbpekXlArJVZGkGUlDVLaxWdJKUsgZfSIL1XHrLSire7fQoMoWvWs5OpygCEUcARH06EGH5XkIrLVJ6rF1SJBkrb8FLMt2lqRL6hWTQ2eP85hqjc0Sq0NqwXlZUdcOo02N7uMV7Dx4wHu5z9fISV3TI04LgiQEAziFUElXMRAW5k5JEp5vxa4ZIA95H17ZWAreZWkkhQSqaao2WBqU0/UGfVV1FVbWMljDvPWmagoi8ojf1pr4p9RvgOKINRaj4pm6alpB2CFmCVYIGSUgTbpua44sTdg7G1N4xzgpq16KThA+/8x2W1/O4IxWKtm4QBAaDIc8vLpnc3tIfSLa3C1q7IksKJteeg7t3MXlCW0sSA1XdsL2/j0pBkcT7t3NoxCaOKuC8BSHxHpAJ5Sqwt73DclVzM72haVbcu3/IbL5Gq9jpdDo9VusINsjTnG4xwLeBxCQ463nr4X16gx6T6YxhvwctGBUwScNoq2A6s7RNw2jUJxDQvT6d8YB2OSXPE3xj0KmkyAqC06jcsqimqJCQJglV3XLn7n2ev/iUq6Pn3Dk45MYdw4bbaQnxUlBa1ss5P/oP/jaX5ycIlSO1IwTJ4YOH7O7u8tnnT9EqY9AzrJYtq4VntWywriFNMoJTiKDpFn2qdUNTNwwHPXrdPbJ0xPHxOS+eHaG1xDuJzuJDbHtnRJLqSJkp1xw9n1A3miAgSEuaKVrr4j60cphEs1q2CFsR2gp8ibUNShpCkNFPqxTC2000Z3xABkJ8YGqJFmCUwtmW7zx6m/XlNamE+uqKq3KKStSmMyFe6vAbnzFIAk1rkSZi4oJUJCZn0d5w7/4+h3vbzK+vaKtbdg53SLTn3l7GYnKBDwk/fXLKL/wxTjeAY7Eu6Q1HLMqK6vnXzJeONuvzxe2aL//1v6a6uUHfzLgqpyTuM1zT8PWzFxzu77JYLEhSw+7eHpfHN3zw/Q8JwfPJ8gv+F3/vP2TQyVkvlyAF0nvSJCBcwAZHojRBeqQImwi2Xx0kkc4V401NgFQIaD0qNSBz0sE+zlo6PcfPf/IZf/vvfMhyuSRLG5JE0gKubUlMyg+++z3u3ztgNOjjVo7lskEGqNYl3nkG3T7BOoJ1eOfxPgAChwelSFLDbL5EG41O1CbwYRNwLyFJDOlGr6AwCKVxQVA2FUJL8qRAagUh0onSLKOpy833/Kbe1DejfiOOlRIK7x3eC6SUNNUapxUkCU2QlAQaIWh9YFU2nB4f8YFMGY5HG2AAnB2fcu/gLoqA0RJqsC7QNAJCyr1792nrBVrHN4umy831EudbDvYPePniiMVyyXS2pisGvP9wD0/0vYWmJksSABaLZYRh6whu6HXGOKcYj3fo9fqkqUEgGQ0PyLMC6ywIz3i8RV2X2NYipWarP8Q2jucvjlgt1rSNwznFZLpmPOjT6egY77WcRrqMKEmCRaeSPFdUiyuwU4IzBJeyLmfs7RbMljGQeHjnkNvLS46PTjg4fMy/+O//gvmkoZd0+P53vsXTl0coGXC+xVlB8ILloqbXyfmzP/1rvvX+I7SBo/PnSDJOL6Z88eQFSZIipSHLBE27wIeG4aiDtSnrVc26XFIUBmSJDxXH55/yt373fYaDHk8+e8nzFy8geO69d5fBoIu1gtVqzmRyg5QZOwdw7/E+qfkWf/iHf83x+S1GpyzLBoEiUCMJZEmOE5bWCuo1xHi6gBCOIkvwUuAIm0zJX6XwaBm7UYSLPlZpSYWiazrUeo4uNMXtlJ3RkNvZDJ1GKIdSAuFAioAQCpzHKI21LVoqqqZFes9oNOTd9x5TraYI5Tm8d5emnLGal4g0YzQesbt3yJflpxSdCPSYLkqKJOC9Y3a7ZitPWVcV23v7PHjwiK9fvqQtU9aLJfeGI8qqRFuLajynJ+doKfnot77N7//d3+f//H/6L3jr7Ye4tuGzL77mrbcOyFLNp7+4JNd9LAGTFPgQ8EGRF316wzLu45HEYfSr8eUru1RABsfOaES1XkUcIAIbFMF5EsBIyfn1lMliiXKW9TruRddVRb8wZJkmMZrnL19ydDvBtwqXG8p53BmX6xJcQLWWRERwpbOOsAFlaK0IAsqypKkrRPBxf+0CIpHoJIniIixIG0f7dUl32KXFU9ZV/M42n2M5X2yeOW/sKG/qm1O/vjhIiEgIUtFvZ62lqhts7WPX10YItUIiQ+TLfvXlKSpoHjx6wP6dA4xW2NbSNhUuRF+n1pqmacmShN2dMcN+h9OTCSbrcO/efa6mc26uljTNjLOTa+7du8toPObs9JZm3dLNu7ARRjhs9HyFsMl6hMY1JCZjf/8AKaGqViA8V9fxodDWN6zWK7q9gqzIsLZE4HHW4pvY6a3KipurKcFrnh+fUTtL067w98Zsb9/HC40qNetyhWstTim6maRqb/FkFJ2UTt7her7ij//8L7jzj/4Bef8es/UVq9uWly9uGfV2OT+b0wZF0u+RZQOSfo/H777Np19cIlxACYMKgSzrUhSCyc0FxyeXXF/NaNqA3Ai30lQx7OYYrciynNl0jZCSuloTiJFReZHhfEugZm9vzP0HHzKbTPj0F79ga3SXpgo8fLTHwZ0xNzczjl9cU9Ulj99+zCcff7HxtjZofcnf+4Pf5osnz/nLv/oFqckIXtBUjoePHnI7vcHaisM793j+9XO01kgBaWri78y51wutECzWg5abrE4EeEEIgo40rJuSfnfA9c0toacYdfokSQ+LpPYVnaIgMSZ2dknKfLGgrKPVpdvrYKua3CQkqcFZSyISLqctp0dTQmkZ9C0CxfRmSe+OQamCH37/t/nDP/xDpssF24MtKGeknZyL2ZJ0a0y3Ejx/8iV379f0hh0+/OA9/vW//THD8TbzasXpzfEm0D1BKMnp0RFPPvmEcS9nfn1BkedYW1NVM7QsyIzCyEDVOII3SGJIQpIVdGRCXABqYBNNhoghChKkFJS1Z1ZZOkkXu2oQtka5QItFpgl1gKQz5N3799kyXX7x01/y4uVLOp2Uw7tj/uInP+Pj9HPaEJD7Pca9XRotaJxjtVpS9HOwnkJJjNYkKoZVp8LhpURrAwia2hJchPV7Edm7zrabfWYC3rMuS9KiYLZa0Gl6eAQaHUfBAWwTudEej3nDqn1T36D6jV6NUmzg5TLKxaVSGKEiv9UFUpWQqJRZuwYhSaRAKkPdNLx8eczhvUPe/dY7uHUVlauNpa5qnIHeKEMngaurCVnep24WHH19xqR2LJdLdsddpssZ3V6f1WLBemXZTgZIlaKkBiwykSSNxohoyxABUBrpBc+efUVrK1KtmM6XTKcNqexhXYMPnixNkNkmeBtNkkicb2PEmUn+3+y9d7hk11Xm/dv75Io3h76dc5DUCpZkSZYly3LAAWEcAMNgGGwwwQxg4JuZDzwYhjjMGIMxtvEQbCODE8Y4yijZkpW6FVrqVner4723b99c+eS99/fHqW7JJrjNMOBvptfz1HPrVp0659Suc/baa613vS9X7r2MXMP8Sou412DNVImhEUmULJNlkOU5Oi9o39IsJFcVAs8jzwRhbtHrROSZoVIb59CRY0gTs2bzelZXZshVmZkzq9jKwbJLDE1sJmn7fPTTD1MLHBzbJVUpup+K1hqq5TqrjXlWVjp4fonB+mjR/qIDarUS11x7LWmc0ml2WFk8BsbFcSyMFlSqDp1OD0u6GO2xMN8lik6QJAlxKFiYmyVwS+zZuZHKsMfiUo+h4RF27lpPnHZYv36cxmqH6ZkOZ2ZXaLXKjE3Uqdbq2LaFSg1ZFnHi1GFq9SpaZ3S6HYwwBGUPoy0UKYZzbFRWgRpGIRF9XmQoaneqIDPIMxzPIYojljsN1m7cwUk1w8zqIsYPUNqh10noEpHmijQBgY1juxidMTQ0QLfbQ+WaoaFhmo0FKraHyX1aKwnbJsao+RqrYlGqpERxF6kEDi6BrHF8cZman9FsJTiJRBuHxflO4Txcn0YY0l3pcs3l1yH1I2RCYUmQjoNQOehz6U3DunVrGBmsARpLWOQqZ/r0LGW/gjGyEEA3Ob4nC65klbK4vIA6F3UZUxCJ9GPOgm2pIOuIkxzhl+j1YnwjkDrH1qYQyjYWlm3oZTl0UzQJWlnYIkBKh7PLS+RoMmnTjWLWGYljJL6wQeni+hYGaRU92UIWtUrH9tCWIVY5trTQeYpt2RjboEUBYpKCIp2vNSpLMUgs16Xb7RFUK+SmUEJxHKtwnPSBQRRJac3FVO1F+/axC3acSucIbdDGkBiDY6f4lkvNtVlVOalSCPrCzhKE65AhUMXsSJJknD49zchAharvkakMRwhIE3pZxODYEEcOHWZ5tcXgeB1hEpLEMDS0hon1a0iyFNeJOfLk09jSplIfw8emsbTM4PgEbuDyzPET1ColAscHpVGZQfXTdp7tkkYhleoA1coQg5WQqJOinCqy4pNlEakSICoMBhXk/EnSksaMrKG0GOLPLxMFhri3SqVeYsP6KmnaJlcCYwqAg9GGcjCI7eRoE5PlkOcWWkvCboPRgUmEPcD8wjJaKY6dforJyTJCV2mstPEsB+EPsLjqoKkR2jmWyVDSwZAVrE06QVoWtWqVsaFxchXSbiZEYc76jZOo1CZJOnz1rgcZqI7S7YYcP36GteunsC27SGFakqGBEc6cmSfPDKMTo4RhhulzwZo8o9tcodsyWJ6k20nwfYfllQZR1GKgPsz2bVtZXuqBzpk+Mc8zzxynUvep1KpoVzI0MMGJU6dAa4IgYGH+LJZ06HbDvlxUjm1bfQUUwBQtJbIvcK2NLkgQdI7luCS2pF4ps/nSnQSDAetrJR5NQpqdEFcbdJaCKPqHpZH0kgTLERiTY1sFClUIiOMQY6pILNqtCJVrhO1w6Ogs6wcChFE0TMbgtjqucbGEhe+V0UaSZtALcxydUqrWaDbbjAxXCJdX2TY8ib3awTYpjiXIc4VrO8UqRxsc28YPPCrVGq1eRC/TrDS7KCXIM02rnSFMju/aqDzFFopM5AgMUkr8coVU2whZiBGcS9QWsXpBE6lzU9SMHZtYa3xpYYmCwlBigTI4SIQCjCDMEvAcwixmamyKubNnGBgaIihXSHNF4FSRyqLslvGFhSsEddfHpDm+JQlsF1dIQONYPkZH+JaF1ApLGJQUSNsi7/d8Sl3MBVoIjBBYjsOgX0YXQktYjgPaFJJyptCwdqRNZgTmYjvKRfs2sm9BHSUHpclU0fPoSYOtM0pCYFkCJcCSLhJJlmfk/bpVpgtld2FZfdHbAlyE0dTKJbKzS/jEOENV6rUBxkfGQLfQfpmznZSS5zA3PUukM4RjCIxHpV5haCIgWlji2PQK2/ZuIQljiHNyR1OqlMhVjGvZSNshMxlrN0xx5HCHKFO42BhyKhWb1STD9itIKamUSjQ6KStLXa6pjPOMOstsN8KNNXun1rJgGmzdOIGyE8LeEtLWBTBDC2xLkCQZURxjkhREjBQS2/bQWiJEjiM69EJFkntYssLmzYNk2Qo6z6hUAs7OLiGHKqzftZswF4RZjm+lYEmMAGFJMII0y9BKY2mLXNlYopA5y5KMXjfHdW2k0jSXY8IwwbHKGC2xfZu400FoC6Rg7dopMpWTxCkqcRHGIjGFUHgUae79ytP4VZdYxVx/w2W0mks4osoj9x9jZGQZo2U/nWrjOhW63RZpnICyURqm1kxSCUoYoznR6/U1WQ223U/qCwlIlNIgzkVNAm1U4XAoyPK1gCzNsaTD+u1bSVtN/CgiiSPqAxUEAs/3iVEgLYQ2OE7BdNNYXSUolzFC45c82u02lhR0egl33v8ocZ7gOw62EriRwdY2J7sJ3pRLLagjSXBLAVGWY4RNnkMgHUpeAEMW7ThGZZKsk7Nj42aM1BgLkiShXKsihDkPeGp3OsTTORNTa3hm+ixurcraqXVoY+jFCZVKFSEEvmOTadCOQUpBq93CLvnEzS7092eMKaI6pfqi8VAtVyl5Ns1mA+KcaqlKrdelnuZYWGiVs6wkI82QCg7aSHo6Z6JWYkLDVZPriKKIeqbRQQnd6GITMwhMDg0zEGfU55bQcchgrY4jewgjcKREq4yuTqhkClcbtnRiwMIVFqnIybShBSAFXjkgyYv0q92PsKUxhTqS7RUk74DOc0RxGWAu+s2L9m1kF+w4bbsAGkhLIm0L25JYUlIuBWiVo3SBZLSEhdEGI8B27T6rCWD6DCeWJFeaLFe0ozadlQbKVgyuHWegZFPVXa6/ZBu9qMW9h6dZXOohLQ/HNYytGWPt8BBnpmdoNNpUKzVanRUOHT7A+nWbKXuKNFmmE7c59PQBxoYGyLIQ6Uv8Up04zwhXVtiwZh2uH1DyfE4ePkpJwkStRECOqblURgYYq5VYaQqCwQnazjLrdmxh+vAjZCSU/AzhCKQFUqRFa0UgGKv79LohnU4hzuuVKlTqPrZjKHllhofGwRqnGToo4ZJEMZXqRowOOTt/gPKAj1OvYHJYmZtHpjmdqFmwI1GwN51LYVlCMjg4xOLqEpVSnV5nCc+tcujkM1xxxS5GJgd4+GtPUKkNIWnRCxOUyQkcj4pfphdlhElKpTYAxETdHrYphIRt1wbfwql44EpKssz+/U/TazcpeWV8ewCjAkyflUZYBTdqgdZVWNImS1OksApifKXRyiAs+s6SgmdV2v3UeNancdQIJKNxyoCKinqZkFSCErbvUy+Xie5/gIGFRYak5NWbdtCUNpZj40gIdUo3jIjCEIQhjmJCIalLyVKjSaNcRSmKkoJfIpUCpTOSJGFYCjyTUXICEIZe2GN6ZoYobBV0b5bAWAJhSbIoQmRVnDhB5AK0w5kzq8yfbbJuzVYCt0yWZTieC1L0nX9x72AMjuth24WqkLGK8VC6aMOxbKtfDpFYlotlFcIDhfpPUcfOKVK1RhfXhRQCAyRJSruboLSNZ7sMhxH/7c4H8NQ3EKS3jv39G3y5/c0ngeXFC50u4KEn/95LvVTxWgMhYDk2CBeliuyCOddOYxVRqgXQTzFbiELQ+qJdtG8T+xaYgwoKLGn1iaW1QTg2wtKAOD8hCksUmaNc4Vh2ISUmJdoupsg4ybCljVbgaoEjC8FqK5WMlIeoK4+XX/MCos5ZNq3dyMf2H+NsS7DajTl96hTRapO141OEGo4eO0vFd2l2ukzlOSuLC3TyiFLgsrq8xMLSWTzfwrccdAvKtk8WhThRwvLCIk0Bddcl7TYYHqnQWl5hLo7JouOUN4wQ5R2OHDtCvtLieLxC2lnG9x26cYab29iOJIpDPDfAdiwajUWEcHEcDylskhjCdAmT+wR2hXa3RTfMObukkG6dcnmA09OnMaaHLR2EyInDBLfdozE3R9l3sI3GlQ7FkOd9R6RQRtNstYmTFMs1fXJ5SVAu0Wx0GKkP4Ac2SZpQKdcwfZSpYzls3byDmbl58uUlVlZWyXKDbzvoNMdIGy0MSkjCTDNYrRWqHZnAZohyMEQWZ3TaMe2wQ1DySTKFLQsnZ0RBZWg7km63hy1F30kWtauiMtcPIygAYkaLvu6mYCRO+HKjQ6CfM9kvrTz7fN+j3/pV3uwSW5KfffHlfGqpxZr16zjTapFngkwVjsd2LbIsw3YlUkryLOfRxx4ljXts33kZBoHlB2hhoVSRFtVRUZXtRhnKaFzLRgmN7TlEvR6ir11pKGp80nEAg+MVNIRFDa+gUtRaF6QhUiB5FkNgCYs8TTEU7RkF10FRD9bGFGBko5HCIlcZURQXqeUsoRIneEpzz7oR/OFxxibW0Or0yFROFIWMj08yMjrCieMniOMEKQpQliUlYrDO2L//IUYm1vKx2/+KTqdNFPfQQhN2u/TCkDzPyfIcZaBU8gnjLiPlYepDAzxz8jCO5XPq6Cl6cY+t2vBhA3ajiR6ukai0wDgZSU4xdgXJvUMcx0hAKwXG9BftFz3nRfv2sQsnQBASaVn9la4pSjcI0jwv2F6yFCjqZ1DUeGzLIk2S8xODZUk6cYQSNhYanWlCbRhes4ZWq8v8aodotcX03O24jmFw/STzvQXK1QobNl/O/gOPc/rECt0lwXU372bm7ClaUYv5RagGJRaXVqmMDlHzq8QmZHBoiOGRAYzIcFMf01tEDLpQ8UDXmRwZw5ufpzJUJU0iLJHjiozhwTLzq3NUKpK1a2vkUyWON2fRJZeJdes4cvgkeBbLS0uMjtXJsgxEgXrNMkjTnEqlQq8XE2UxKpXEsodfSvFLVQaHXBrdDn5Qo14rkSUZad4l7LWwhE3JEwzWJDYJ3dUlHCmIjEZgIfpSS0r1a4SOw8DAIGfOnMX3AoaHhxkeGWXjxo1UG22OPXwI2/GI8hjPs5gYHmHNUgu/lzASS2Ij6MQhviOQFC0dSinW2i7kGq/ZwmhFW/qcljZx0mBkpMLKUgPbcoiilCzLUSiUNgiTYVuGNEsZHB5lZHScXrfTrz+KwnGaQnFG60LaTYg+wtqSjOaKQGvu3rCOUEranU6hrNOP9jZu2sqeSy6l025x7NhJpqen6UUdlEoJpc0XESTSIIVkbHyMPMsYW1rmj3oxE7aNylJWV1YIXJt2O8QzkpLjYwmFsQwZkGsbEwr8sSojnZj1y00uUzDVilg3MIalNGW7hDNcJhdw1dAgUmboHCZaba5yfZQRjAF+4JMnOWmes4Jm0bFoLDeQUpAnaUFobwR5qgjDiJINvu8ViwxZZGxc1+u30xQE+Ema91WGikhfyEJ0HWEjdYYURb+u6YdpslanOznJZx7aR5gmaKMYqNf40dtew4c/9jFmZmaKCFcIhBR4yiCzlGOuz2++7/38z0f20Ww1SHWCkQqTJoxPjDEwOMD0mSXaYY+6qTMxOcZXD5+CM4JXfdfLefrQUR4/MU1PWEgHSHPCXo8wjCjX62hdqNl4tlNkVYRARzGN5RWkKOq2kmLhpS7Kil20byP7FlC1GmEM5hy9lzAFo4t0CpFrrZE4GF0g4VSusW1BrjUmL+DoCIVKDUbleJ4kUxk9V+CZnMGSy7aJLdy3/2keXFpl7doaw2Gb5mJEx1O0o5NYlkVQdrDtjM78CnmUMlAfRVp1MhVQG5xC2haVeo12N6ccDBB1MnpZREUqolyTRx2CcgUrUXi5YTIok4sc7VqMbRkhO7uESwmdZaxabZZXOygcKibCSPAFjI2McmrmGLbl0Wj0KJUdsm5GltgEpQAlY3o9RavTQymBzC2Ea8izlLm5k6w0DcK2SNoLSCFxsInjJkLnpL0ux555jPWTw2ya3MKjDy0wrcOieV8VzDyWsHFsC9eWWI5LFEXYtqHVXKHdWEbojIUs4pf/5m78b0zTHZsBHvuWL5RYSn74yt14W0eZnCjRWlnP44+eJHFb5ErRL2SjUUUKW9v4fsDE5BSzMzOsnVpbtIi0OzSbjUJi7nwUIYv2A5VRLpeBZaZXV5mvlEk8DyEEliyo3ZbjDCVc1uy+kjOrIU+ePENpaAiZhXhKsloJaEqDyuFUlhKUfMKSD70CUS1NzszsWUq1CipfxJM2YZrQtRwGnBIGH7diccX1V8CTh/jjk7MEJ2aK0zzU++YD9eRz0qAnTnzdWxHw46UynaMnuN7z8OIYsf8J9uqcgdkZys0lNm/fRj0zpElKqgzPd13yxRX0aoPxoVEcWfRLa8Q5Aumih1IKSraFzjQvziKqacpIqwXApOPzyKHDjEsJ5QpZlvIdL3oxR+/7Kr2Tp1hbDshzjUSilcYTgpKQPLXvIRa+8Hles2kjDz80j1tywHXIIoU1v4rTaGP3uuRGEx+fZcqS1MiZn1nk1Cc+x9WX7EYh8EZGWdftQNpla244fmoG111CKHkOIIy0bXSeo9Ocq22bXpIiuj0Gj59EFZS8IMR6jJn+li/ei3bR/oXtwlG1QpAZVUDbbafQ00QS+AFCOAhhoYxhbHyMoydnEEZguS55Wtzctm0htcYpV8kzRVdHVKt1BspD7Nq9m5IjOXrkFJu37SATHQIvZtP6KSpDIxw5coTFs/MM1AdQZZ8ozvAqI5DNsrrQZcPGMTCGyfFxlMnJ45SF+Q5u4JInCSXHo+LVWG1FlC2by3fuYnJilOGJCRKd8dlPfJgsjDnWWKErBSOVgCSTxJFBCxstfMJcUK8FJGmbVHdxPYUwAttxSOOc2kCdyEpZbvYQRiPJKJVsVA5jQ5PUK2UWVqaxHZupNSNcc81VnDx5ktVGE8sI5ud6aCR+UEXaNn7Z4vT0EcIkxvM8om7Mlg0jNLoRJk9RaZteu4l0y2RJF9/xsLSk6vuYJGVzuY6vNL+zforu4BBrN20gSmO2bdrJdTfcgFcNyDPNwvwyK602vTQlTBOyLGVm7gz3fOVuqtJlcDjgqnqJH7zrYQZ1SCsLESIgirpFz6vJEWRYwkEbjZRF6tOyJO1OiyRNmJ6ZRuX5+b48yy7Sk1LKPt+qQalC61QUOVscxyYS0DMFMepAvYzQmoV2g6ZKqFuaS6+7mqdPHKOTdAgsm5IUjIyPsd2xGXcKqKbOFXK5SPVOtDrcMjiEh6Dq+exatxGJxJicYWkhwy6VoMSPvOF72LhjJ186/OsExvCxS3dxdy8hR6EyheMU7DcjkxO87af+Ax/7xKd5dP8jtFebaC0Y37CONa7Nf3jgPoLn3EMB8GcrLVhpPfvi2eXi70K7eBz/J+qIx+eeff6NTDpaQxgWzz9199e9te3xg2x77gs7d8IPv5k911/PLb0e3H47/PzPQ5Z93efeEkXw1rdy1T9+Rl9vjz5noTA9VzwAWs9+3w90U+imFJXOb2JpBmfmn/vK0wix66LzvGj/1nbBjtOSNonOsGyLVOUFuEEbVldXydMc13fJ8hzbtbA9G6M1A8MjLM0WjCmZNjjYVKp1akNDeL6F49igPWJsLNtjz9U34EqB1j0OH3qAY8fneGZ6kTxKCURAe7WJ7Q3glB2a8Splz+fqvVdw9vQM3/vKl/Pg/v3glTh9+iRZnhEnbRrzp9HK0HMrxCudwgk1O/gb1jM4MYw3uZY3VOrMnjhBI4pZinqM1IdZnj7K4ROP0Zo/S6k6QGgk2BadziKtThvLMhjLIcxySqUyvTAl79OQRXGIFxRixGEY0w07eE6ZVi9jZGyYTVMbCNsdPNdmeHiApcUFytWA+eVVKhVBu9XgyMll6qUBcl1G6RYSwZWXb+Dw8dNEuaQ+VGN5sUm5XKcTraKlJIwyKpUyp46fIl67GYAttk3U62KefIoBz2NIlqitWYMxBl9Ksm4InZBJx2O10SBFsWZsjMMvewV3f+GLbHRtVHOJHwSMVsydWeX0ySWSJEU4Ep1KHK9KGGdYjkueK7Jc4wdlms02J06eJIpijNEEnoMxmjRNMAiUNhjOAWGKrEUpKFyNZVmUSgEqV2BgeWmRkU1b+eH3vIe1V1yByTJ6Tz/N2N13sjhvKFmGisnZXR3iN+68E1/9faaZH7r3q/zQuX9OnfrHL/YnnwLgrf1/X/Pk07RHhmjZFGw8UUhZlwifforDt3+Y62uDhL0OcVoQTdiLs6yrVQmAn6kFnPQddgmb31pY5b+uW8vq2CjCdigHAa7rkiQJvu+xZnKcJx9/jJVGg1gZdK6RjsFyfTSCxsoqYPB8H4nkhTffzEMPPczszCxoQxB4PK9S4bcWFvnAUI1Jo3h1o8fjg4PcF4Yo10Zakh+7606soWHu/eVfZvKqq9j10z/N6rq1pH93B8J1EXGCGyXE3/EdiHoFx3ZwHIc8V8RJUhDl6yLVnuu8YH4yoGJNGHZJ4pQ8z4jDkLDXphe2CU6e4hWf/Bv+4pabaK+ZIM0ShFGFJJ8srgUhi1S+VnnBGdxonl8frGl3+cnHni4BI8BFx3nR/k3tgh2nn2tUphgLE8oqw3NiavUBdpYD/DxB9hRrVz0UMZdr2NrtkVqK+SRlV5ySCBBxiGp3McdzNCmxUThelUqpQqwzZhdXMKpI28S9Vaom50rLJQxzauWARCs6jTYYB7vbY3MC+pEDrHNs7vzIR7jqda+jXK7jOQ5nV+7h2it3Q7qBwKkgpMA1FnZQp7O6wtNHDjK9cAZRdjj01GF2bt+B79gsHjnEA0dP8PrX38b3vP4/8vj+x/ijD3yKZmjw7CrDlQGqfpmV1UUyIciUQKqEwVKZ8YkxHl08iM40i7029eEaUgQcO3GWp9M5hsbrRGeWOXlsGUvYJFlKqVTm+huuZ2pykqP33Ivf7FIZ2ESw6TJ0lnKw9xgLJYtn2oKz8xFzZ0OcSkAr0dRzQX1xlSETE4YZXqYo+z6xFjiOB0CQZaw4Ntr3iTAMez5huYLn2GALtO+hHJ+VKEGNjELcxTSa3Podr+DosZNIE5J3OwCE3ZRWnOM6PnlugXBIc4UWKcGAQ25CaqUS3WZMFMd4JZ/jJ05QDkokcUZuC2xLFuhZUUSElmVjTNFe4bpuUS8GtNIkcUKmNa7jUqvV+PFPfILa5CSPfejD7Lz+Ogauvprv/63fpPnV+zC9LqKxzA179uLfcQcHfu6nOY7m4MGDrI8TfvDer/GZV7+KF77lR5nrdWiemeWv/ugDZEaTJgkpmjDLGNmwhhfccA0P37+PGwZrfM8dX8UByAwLCFzHxiv7TG3fweyhg8xqwyXrNzB1+VXsv/9+QGE1m9QbRZS7TuUMhDlb/RIAO/KEM/Nn8DwP3/fJs5xms8HA0CBm5jjftXULT1maR7dvYrnT5cgzx1kztRbLclmoBGRZSpbnZLnigfvvZdeunXTrFY4/fZSK43D1zh2wsMjU+AiDrRY0ekw4DtdPjqMsyfCtL8adXEPnzr+j8qlPUd63H/Pa11K79Vb+9id+jP2+iycd1pWq/Nlj+7A3rGHX3ku5/rrrueW6mygbm//+336P5bNnOXtmljMLszTDNnGWkLQTwiQmzbKCN9hxsB2L4XVr2B1GvAL44P7H6DQ2cfklOym7oLKk6Nvsi5gbI5C2TTeOWI7iIiuBIcnzf6k574Jt//79LrABCpDvRfs/2hRw+qqrrkovZOMLdpxrR8pMJgE/8ek7cP6xi3hx5tnnzaeefX7PVy/0MP8MWwBAHzvFsR96Pae682zdtIaBcsCVu3cSdWIqlVGMiBE6JTWw4OVMXXkVSZ6TLR7nsu++maiV0Gj32LVjDSNDPjNnF7j/K4foZhbX3PhyTs6tMrRuEJV3GA9KrElyWu0WncY8zbkZrFyQhRnDI8OUq2MoFI7vcvDgEQK/hO+7rJ9aTxzHpL5g/drt5HlOr9Mk6uRcsmOEH/j4x3Hz7B/8lj3ghoefYkValFSXWgt+7cFDeP/AbxECn9hyFgArzxGOgzIaZTTB2Cjy1luwt2+HPKd69BjRXV/lbHuW5U6LKppanpFECdff/GLu+uwnERT8vyq36MUZkYxBaBzXsG7tKIOjNm7ZkNNDK02eVNG5Q64tjh9ZQBh5PnLIshwhbKR8VibKsop5Kc9zXK84lpACjMG1HaQUbL3pRQxt3Mixu+7kq+/5I6L9j3Hje/+A6lVXsnTn3SSdEFo9TjzzDLsBjp1Az8+zOYmpdYvapP30YUpPHGC9gMHGKnv7bVM9pRC2oFMNuK8e8Iljx9l94/MQiYE7imu3OjFBPXDI4gI1fGphiYV2l+cPjhBqKI+MMDA1RRR3cOKYSduC7jSTQRkq5aImudxiKUuw10+Ra8Ncs02eZ8hKiaxa5sz8IrVmm13jk9zbaKBclyjPOTk9jRCSsfFROm2FUIrE5NRGapxemGFqeJRLL99NHEZkeQKAl8YIt7i9B8ZGKG3djBW4ONddB0ApzZjYuJEjx44xurxMMDHBuo0bYXKMOExpnTxN5ApuvPJKLr3qChqdFvc9eD+3Xn8zZIIHv7IPx5IkRpFnsHfv1Zw9dpQ0S2m3O4yOjtLt9QjzlDe+5Y28uDoAb/4P/OTP/Dh/ceBJ9j36MHsv2c5ll+7hxPETWKZgxZKWhTI5jgRbGowp+lTt51wv/xq2f//+tVLKT0kpR4F/3YNftH8LM1rrpf3797/mqquuOvPNNr5gx/m273sNXruN84nP0/m1n2NGJZyePcXCasyj+46w2gyZ2jBON2kzN99kanScTOSsLDW5Ytduct8iMxqR5iw1F/FtAUKTZtBqtKkOV2msdhiuT7BmeJAsz3jFK1/BPX/3Zfyyy/HZWeaWFkliyejIGNu2r2VlaZYrduzhJes3MPYb78bptUm0oVKu4aiiEfuxQye55Kp1zK+cwVc5w0NVjh15mme+eDfNVs61V1yKG4zy5OFjDI9OEEzsploHr1SHwGLb0DBrdmTsiRQ9yyCslCzPSJRNFraxwlU6Z05SKwfsvvwyRqemWJ0/QbfR4s477yLfuJEnnjqJIGLu5DOFAszAJEe7KfVylXq9SsUvsW1oEDfP+P3Ln88LfvStlEs2d3/hi3SWZwkff5L/srLCBiRNBBUN1vQCXp7z6WqJCEFQK5PEKePS4ualFfacLLJZG3oRI9IiSxKyPOeKgRreV79KNHcGPTlJde+lVLtdtgrDdnstqtkkX1ik5Qds276d9T/07zn0Pz8AwOTkWv79rbdy2WVXEEYd0jiiXqtw6OmHeOyJ/YRxztzZFSxZCHQvN5fOA3swfXCTVkjhIsWzmovnejg9z8Pqc5IGns9AtYIzMMDq6iqjW7cAsDI9TZ6m3PnZL3DNb7TwhwZ5/NBBZg4cIAhDvhInvBqYLJeZHxtDpwlhdAqA0ugYqR9QqlVwB4cY3X0JcRRRsTR2GjFWL1O58gpmVkIGxqq4q93z13+SJIiSTbVaxhaCiR3becP738fU3r2gNCMPPczc0jyajCxqEZ0u7r1yUKE+MgbtImoXpRqL3RiBYanRKhyFjtm44xKc0gAnzsyy8coryVZjOnGCY7noXBPHPRrLEs91ELlmwA/I0hjHFpw5dZxdm7YxunEjM/c9eG4aoDY8DKcWELaF9FyMbSHsYmGyvNLgqw88gOXa50Wi5+fnORWHSGkTNZvY68Y4ffQYf337x7EcSW2gzqb3refHfvotZFnCY/v2kSifrKU4M3eG1e4ilUqV8mCJ7/v+7+bOe+7iiYOH+NtP/xVXv+o2AGr1Mj/05h/m05/4BIeeOoBTqWNLD992sY0gSVOka4PUKCPwPA+tC4m0fy3bv3+/FEK8MwiC9WvXrl2RUl7shfk/3LTWYnZ2dn0Yhr+6f//+t1x11VX/JIz7gh3n0cefYqTdZQRY+doj9JIQp9tmg+WzY+sWnj56AtntEuUZ40oz2OviOjZLecbmZoN8oMYDU2vB1pwVKVLmaCmJ4ozlNGHIcgnWrsWuDdHVku2X7CDcMsqhz+e86rbvIFk4w72f/AxdpRiQAaa2jmbuMDi+iZmhccaAZiun59iMbJgglRLp+tQHh1ntJGh7iNJggF+DqTVrabehXjU4rsVdd3yZex99lN2DG6nmsH77Li654QpkEjPUMqg0Bwk5Nq0wp5toemnBXONmKX6lTNJtYB3ah7d4kvj4UdJWk0taPa6cHOM7128izSQmyzA64cEH99GZXWHzpq1sq4/RnT/Jyc/MMgisaa6w8lcfwV4zzsCRg1itJhv6691XK8PVRqO7Ta5vDQBweaXGrDEc8Erocg1XaVha4UyjyVWA8hxWkwhjuwzv2EEwMcHi/v08dc+d7LjyKiq7dlO98nLu/4P3EIZtRBjhtNrceXaB0pq1DA1W2bBxAzz6KOVSQBKFHHh8P2fOnCJOezhemSjULCx5HD+zjCUCXFKElYLl4QcWKk0ZGRroK7woVK7R5AWoTBfcakpojMpZu34D7D9AnqU40mJxfoFEped5Wo0Ar2QjhX+ekadiC2qei1ApU6N1mD9DY3mJdZfsYkO9hr91E0iHK9/3Xsq790CeY586xSsHB0D3QUlhD726wg1v+VEYHMIYw9GP3n7++m80lpluLOBKC89xeePttzMwNcXnfvu32HDZ5Vzxmu/iqsV5Dn/+b8k9j8nchmMz1GtDLCiLRqMgGNj2/Bt41c+/nclLLyWNIp763Of40m/8JiefOUmepgz5PjMnptl73XU8PnMagUPJsfBsCyMtHNctKPmsom3FdR2SJC7avWy4/LJdcGYegU0cFVmnsBeCdKhefT1ycgqAYPdOhOdSHhnBHRwkbbXIFhZoZimWdHHTHDvMmTn8DKrVxi2VmF8+xR+/5w/5vT/8Q37y53+a3/8fv8czRx8nocvZ+WWE8ElTSNOMv/rrz9NYXcW2AponV/mT3/8TbgP+8H/8AU95LvWhIfzqAI8cfAZPSDZOTLFmbBxtCYTOQOU4lo2kYMpau24KHnj8Qqer/1UbkVLeND4+3q5UKtG/1kEv2r+tjY+Pt0+fPn2TUmoYWPqntr1gx7nviScZ74RcCpw5cpLlWpmeEYRpA5o9ssDBSAhRtETRf1XxPJpIUqCWppSEJHE00hFkBjwkKoyx0hxRFUjXYWR0kJHBOr0oItSCq265AadWpn2iR5SmuG6JRrPD+LbdbHH3Mjk+xpn5M1wFtOwKC2GHBz/1maI/Mcqo1YYZmViDKBlU1CXOVtl99VVc+cJbsH2Px792H0+efIJJK+QdH//IP5j6fK5NXMBYjX6T91937snho3/vvUmTcmRhmkPzp2l3OpRLAVlaTIBNDKsINIa5XrECj7OMPI3pCEUsJGPlMgBuuQzNNkGlSi3wObu8zPjYKAQBVhSRHTzE06dPM/ojb8EdHqZ74hl6SwsMewFWp0sNiyHXx2k3GU37YzK3QBwcY2LzVqqlQeyBURzHp9nqMhorXrxlO1u3bkKnPeKwQ7vZIOx2efShhwl8CQKiNO13FkicnKLVQBasq1Gny57+IqFsBN2Sx3jFpdNps3r8GQBKo6OsNhtUBgbwajXSbpfjR44SNpvYnTaU/GIHtuD09AkSy2GoE7HhM5+hsmEDc1/4HENbtxPs2kUWhViHDmL6Gq5GG1ZXVjg7M4PEsDr/LKLTQuNaAkcKdrzoRYxu2cKBz36G+/7ovRxeu4G9r34Vu17xCs5+9vN4VgndKsoWc3OzzDkedZWDZXHVb/w6lakp7vjt32bqssu45gd+gHB1lXve9Xu4rs3Zs2fIFiSHqmVqU5OM1gco1wdJs4S5M6dYXloiDCO0hkq1QhJH5GmMY0t0niPDGIB2u4Pbj5OsNKd01dXIgUFm/+xDrLn0Ump79/KSP3gPuesiHYfp972PQQ1rE4XSIUGu2NTqMn92gXISU0HgB2XmPvM5Hr30Uq695nrefPXlPOoour0t3HnXPdRrZXrdHrFJEY02m6SDLHvoJGWqf70OVOoMug6OsPBtj1TmGKVYabZ4zWu+m5npU5w6fQy7XOZ5O/ewa/cexsfXsL0bwsc+903urH8xGxBC2K7r/uuFuRft39xc102FEBVgkH8px7mchPQWirpZO46ZAZajmDiLMLro57RdF69SJZYWPa0puR49rcltC99xcaRAWQLHlphUUs4E23bs4ZnDR1hMY3Zdcjnf+d1v4PEnDuApn54aYnRqPbFO2bF7B9etNLjziw+w57Ir8KqKO//mb3n7L/wia0oFErM2ugE9cxzHdbGFTZ4YDhw8zPOmtqO6IdNHDjPiKzZtWkNz6Sy1NZPcc9/XmGn2qFPCy3N+Z9NG/C3rGRkISBoNNgwNgjEsrrQ5tdTm2PIqV954I9e+6FYWw5BultBcWiLtLXLvl+7myu27mBgb5eziaZSn2DQ1SRxmPHD/k4yMjXHj1Vew59L1DK7bxsnTc/zdFz+LEC61hx7jLWfmEVnCYh7TVQWhQH3tVl71wT+Ba67lJ3o9HvjoX/Lx/+c/0ckKZ9rqtcmlhev5dOMQNToGf/THvOSG66Hbo/zJT7DyR3/AxOQYlWoFgMFWi5c9daj4YftgnO89fRoWn22FePXcGdj34NddA7/y9CF4+tCFXjL/PPvU3wJw69IyX9y0ltWSTRAMok89Q/vMLLtuuZVrf+iHWbf3cqRtc9+f/hlzS8vUbQffL7FuzXp47AAnTpyit2EK3IDy7kth2zaW776bR//0z+mEId/3uc8hd+7iC//1NwnDECfL8eOED917HwdmTzNcrXGD43Jj/7TKfkDdtcEY1u7aDUB77gxl32Pm6BG6KyvUxsfJbYnqRrgUEXIch4jARUUxvOxlDG7ZwuN/82k+99u/iVMu899f9SqufdOb+Nh//EXyPKdqORjX4fgzR4lmThOHObVSnXKlxqtfdxvPu+Fa/vRPPsyp44fZtn03B554HNsukSchrmXjB8XCIdOGsa1b4eQsNd+HWg0efZT1H/5zOPA4fPGLjH7P9xStIu95D1vf8Q62phk3J8+yNL2p+xwavih+9vnbfgaAbf0HwI9cwE8bSUnLsvGlh4oVuhtTc11sy0Ii+MiHP4SUgte87rt54YtuZmy0uGaN1vDot957/L9gEjjfGnXR/u+w5/ze35QZ+YId50q7x0BYTNadTo/FTkhbK8I8RRrDz93xOdZedjluuUxnaYmnPvc5nnj/e4GixcxojWVbCE+SOzZBrBjIBM/bsJW1xuOemSM0Vpp86Y6/ozowyOZNu2k2ejTnTnBi5iiu73Pm5HGQCQvzs4iVmEk8jjz4AKkyXAn4UYfTp47y+KMPIGSdpU6Lu+6+i099/m7cGjz11NO89rZX8vP/6eex/ZBWp8OTjz6NOzJIc66ILq4b9MjaZ2mdajHkePROnyZLC7mrKaUZlZLG5z9Pu9nmkvXrCFdWOTwzw9fK8KYf/Hd02hEf/KM/JvA9/vSjH6Ja9jFkvPHfAyiscg0x4bHUyamOTrJOgOUHjNaq8GcfY1DAznKF+ugotudx9Yc+gjM8Ar/0S5y48kpe/LafIul2mHvv7wOglCZDstKNCS3Byz/0FzA1xVO//l/Zu3MX4z/2VjKdc/aD7yNtNYqrYmCAp2o1wnKZ5w0PY9ptzgwP0/NcBssl7FxRfcELCIWNbVlYi8uUPvMp5r7zdZx6xXfSNqCtQoqk4IkSfTUTQclxePT+r3HPl7+Aa0uSqE3gSn7qx97C/Ow0hw8d4Nqrr2DtxCDVWh3fdvAsG+XZpAbueNcH+HcPPIkNdBeXmfEKtRQpLT790z/BC3/+/+Glv/gfUUnM4j13UXnycV523fPJoxA3ijjcxz+G3S5SQR6nlNcW6cne3Cxhe5UnH3+C21ZXKY+OsvWKPUTNFkmjhWk2uWzjRgbXjCO0prS8/JybCqamJuj1ethOcV/5vgdaI59DMnF6+hROGBLPF4uQSlAi7PQw3RC2FW6mOTtLuVJCa013ZYX6xATDa6doLyxh91FUURgys7hEOXDpNRcoBSVOndiBsHO2bx3nNd/5Eh7Zt5+xsVHCbodjM6fwbZvl/i1/5VVXM7Z7J3z5HvLLL8cGsnqN7NWvAgP+5z+PDALiT/81JCnZTS8kb7U5u24d3W4X02jwtYkJ5jodNm3eTKvdwPd8RkZHGB8b4/TMNC9/5as4PX2G++//GqXAxZWCeq3GwMAgvh9QLpewHZuy51KtVNCDA3xw00ZsIYjTCGEEWilSlRH2QpQyhL0exmh6cwvMLK5QLpfxPAf3zCzDFzpZXbSL9r/ZLthxhpkmyIsJIkpSMschO085Kph5/Akevv0vcXyfm37yJ7nxR38UtbzEU//114nzlGYjodvtEUmL5STBTmIax+eYf/JpXMth0y3X8fTMNCtLC3STmHVrD4CwWD/hEvdShBGgJbblUQ4Cjj79OM3WIqcPH2bx5CzfDTxw15e46/4vY3TCyGiZB7/2IA898Rg33HAL17/gctYMjHDJnj386q/9Bi4e1z3/GhJlk3Qj1FIxSZZ6PebsmCaC06tNkizBGBthSaQlqZZrDJaqLJ+Z5YV3/R2WUuwAbgP4yiMAfC9A0oNXvOrvjaMJfJIvfILyug34nuQlL31JcYz2KvzZx9h1Zp5dAEePwyteAVNr4ZOfJP7v/51PVGvsev3redFP/AQf/+AfAzDs+bjCsMnKmHhJEdHwyU9y6Pf+G3u1jX7DG5j4/h/kyd/+LTq9p9h49QsIdu5kbGoSce21SMdh9faPcGBpntGxccJcYSvNtu276KY5QeDjVmsA+MMDjL7whVTrA7SjBCMlBkWuFFGcksYREbDr6ms4MFTja3feweTUGM2sx6997m958w//e17x+tdishARSKjXsKVFICWpNPTikBf/3H+A178ZgMWlFba88AbyLMErVYk7XT7xIz9CvVplcWkBgeTMmTmMhpItGbIkRzyXNwPCaHSW4gQlzi0kLUuiSSnX/EKIGzjy1AHa8/PIJMePIual4uDpUwwNDGHmn83W9Hpd2o1lpCVpzJwEoL5mitzkTG5YR3loiKjd4uRjj0O3x+WOAxQE+FkvZs1g7dmbzrVRJj+vbVucm8B1LTwNjoFut43vB0RZjOVaNHTMfQ8/wNiaMU6dPs7+Bx9FCMny0iJnZqZxXIcoy7Dc4rjzZ2Y51VjmVmCl12UcWGy1OXXyFJZjc6XWuMCxlRVMmhJIi8BzMVOTDNg2QRzz8jd+H8GaNRw8eJCnDz+NXwqYbbc4FveY3HsZS2un2HHDC9j9/d+H57q4VkHxI4Tsp+MLfmp0itEaozR5nCKUwpE2ucpI8wRtcgLfQxgoeTZJHBGGPaJexsrSfNGu9PiT3Hyhk9VFu2j/m+2CHWfgCJz+at6SIIzBkRJH2hgNn/nFX8AbGKA6Mcllt30nE9u3Y/qKKVC0ISwuLtONLaZPn8VKEzaVbCwDcaqoCMml2zdzeG4R49e496FHqFVq3Hzt69m5RzA0NMiDjz3Joac/RnNlGbtawjYRc81Fbty+CZ7Yh19zePEN13LnPV8hyxWdMKLRa3HN867g+NGDfPHTf82X77qDI9PTlNyAfQ99FdezsROPyeExmF1GIGjlOadXQ5KsgH4KKUjijFJQotfpUq9UGRE1LKU49uKXYjyfs1ffSBIEiLSHLXJ2bhojyNtgeyAdXCUxzzxD6Vd/B3WmiRpdg0ahdIpOMqzaAADtW25Cb1yPch2cm15MDZhRGe+zoBH16C4vU5+c5Lrbvgv9B3/Ajk7RavG8NjA8CYCeneXS666BL9+Hbqxij41DdYC01+Hwhz/MFddfz8iv/iqZ5zL3lx/lyd/6DbpKcfnmTRzct59Lt23HHRxgPAiwbYnICnxEKfDJB0q41RK5kERZTpoppLDQWU6aJviOT9bs8Mbv/C6O73+IuLuC1CkveNHLec8H/pS3v/3necnLbkFqQRbHiDwGW5P3uviVKsHQs9GbkDavfs3ryLMY1y/IEI4eOsyj+/YxM7/I7ksv5bUvvJmv3H0PncV5tmzYwNUvvQV+770IDJ1uiCstVo8XtWRrdJTlVgsZBASDg6TdLmFzlfnlZXQ3xIlC9ndazHR6HNUzbIuexYXkecbi4jK2Y9P+3Oe45dRJNt14E9f88Ju55MabsRyHu9/1RyhTUA4q+nVhDaVSia2bt8AzRZ22NjkJRuNVKpQGh4jbbaLVJSwpsbQGA5XAZ+/Vl3PkyUNIbDy/xNzpee6960HCMGd1YYFarUyS9JBIOmHIyNgoO7dsgFPzhHFI0k8XRytF+tWtVgk7bdwgwPY98jhm/vhxlNa4xuApxZFOG6U0NaX42uICeaVMrTrAyOgozVabmblZXnnbK1m3bjMTE5PUggBliowAaIxRxZcWhQM1xoC0QYK0BZ4bgNa4ptjW5CnKKNIkKag5sxyVJmRxWvTx5jlxHMPIxXjzon372IXLigmN23ecrm3jSQstBVafDNxowf976GnKwyMA7PvoX3Lkbz6NLAQrEZZESIPr+MiuYtfoBGNSo5w28/NLHHnsUdbt3kTgWOzcvh2jE2Qi2L5jK+3uEjaGibFxbGnoddrEZ5YJ4g7XX/NCKqpIIV+yezvlkuTMygLHp/NCccHxCFyPoYpLN2oxMBDwoz/y77jhBbfw15/8GJ6IWLdtM+nKKgCZkuS5TUX6TI0O4JZsbvzD/8nkZXtxSmV6S0s89dnP8NQ7fxOAIQQmivA7q0Rt0CrDJCHd0ycIButgcqTRCCNxFoqeU/v+e5FXbkJWKmgTYEkHsdwEoLRxPezaBqUSYqpwhNSqtEUhN3UuD2+NjqB+4Wcw9361aOd43uWIF9+EBZhrn8eWmePw5fuQVvETe6USl+7aRXTkGfjgB3n0L/+K+hWXsdJr0Vld5rpbbqF61dXc+h2vQqysIK64HHHs2Hk+VADbEsg8h1zj2BaxyhFIjFJUy2VsIYnjmFzl1AYr3PjiF/HFT34CyxLc87W/47oXXMmff/h9HDz0GEszyywsNnn6yYN89KN/wsiQT5p10Y1Zyv3jbVk3yfEDj7C0sky3ExMlKZ1ujxOnTyFtmzOzs2RRQifsIVyb+dVF7v3MZ3gJEMUZjx86zJr167HnF3n+sWNMvOAmbn7rz+BOTGA5Dl/9/XezMrNEY3EVV2smBweYGh+ltsFh7YZ13DI4BO8qyg3Ccuj0NGunhlldXeGPv+97ed1/+11e8Z9/GZUkHPzEJ/j0O3+VPEsJhCiI2AHHkpQdGBqswpe+ROPEcXa/5GXc9p9/icEt27Ach/ve9wf4no9RGlcAUcKurVvZtXMPJenw4AP76HZ61Eo+3cYMYRrjOYKl+RWyVJOZlJ5KiI3hwdXCSfqeR95v7UnnzxK1Wgxv28aWF7+YYGQEadmc+upXwZI4UmIphaUNjrRxbHDTDDfPMVHKSmuW1bk50iRBGc1H/viDSEtSrtYYm1rHho1b2L5rJ7t2XUK5XMZ1C/5qpTVSSrI+f4DQRSbAkgKDLP53fWwEtlsBo9BpThKHWH6MTDzo9bADG1OvXOhUddH+D7JrrrlmxyOPPFK5+uqruw8//PCRf+vzOWcXTrmXJ/j9tJItDLXARmqDMArbglLJ4ws/9iOo2iA3vO0/cMXrX0fjwD6eevIpMAYhJFmmUUnOSMVnULgMjI7QrDRxG6uMeoKhQFJdM8rIeB2ZTEEScerIEXpGocm5866v4lkWQgp67VXidswDn/4cVj8UTvcdIhIZ37vrMm5/6svIQ0+xM+oRPfwV1tYEVwrJ+soA27oRy1/+HDdqw6nZOczSCnv6SrlqtcHkYI2J4SoWFmiNfuYIj37q4+RKc9nbfoYbfuzHKR07Db/729gLC+S+j2o0MNJDGY0NBNIlWm4wUq/2lSsEpj+RyTBEZAUxujAGpVNIk4Khxmi0ytF5hlhZwgKCkdFCozAIKA8PE7Va9JaXEGtGUZUyQgjU+BiovJiiRkbAqML51mroToepuMfSwSexV4s6Z1UCi4W02JgQTL34pchyiYW//Syjk5PY27cj0gTuuQfmC1CYUoZOnNKxI7pxTNanGEQKcgxOYJMJC7dcpptFPO/6azl95FGSuEOvs8qOHdsZH53kL2//GM3lFq7nsWnjWtxA4bhgtI20n70kX3rF5US2w4bRcfRowTiUqxxxxaWoPCfLchDguFfiZBl2t4fatgn+6+9xTb3G5okJvHIZp92G226j8z8/yO4f+EHyMOTgn/4JR979LkhiJgEXQ6UXsTEKyaWDffwoi91nI85eN2Ljlk3s2b2NPCv0Vp/4zV/jkLRorDSYmT0DccyenbuYqNXpPfIwoEi1wq9UWG20QCk+9YbXc/Pv/R7X/cTPkIYhX/ufH+BL/+23UFHSpxeUWEaRqAylc7Tj0cPgljz8wRIbt29kpbVMHuXML6+QJmCkxhaSqN1lURUp6FanS9QnQIi6Ife++/e4/Hu/jw3PuxqVZczcczfTd92BpRQCgVAGYTTkKUJAqjWdNKGri3Q9BowjKQdl7DwCIUiThLPTszSWm8ycPMV999xJtVJl2/YdbNy0mfGJSar1ASxLkmmNhSAKe2RJSq/XJUlTPM/DdX1838fzPOI4o9fLCbtRoW3bbtHutPCmz7LpW5nZ/i+1c45mzZo16ZkzZ/6+KOpF+xexC3ec2mD3++Y8y8I2Gk8YrDSj5rnUPIf8iX2sKMH+ao3b3v37bH7pd5D+7u9jskIWyuiMLA5JTEyj22LPtc/HUV2Wp0/QzRMWWxFHTx3AHD5BWVh4JqbRU0xNrSEnY/3UWiqlMivtNr1U0X3yJH/TWDwfoVz953/B1f3n3w0wO83bAT70FwC8FuCJJ4vHP2LXr7Zh9RtEfd/8VrYODsLAALzyNti+gyt6xTa1px4HYOgbEKj/kJ1znEordK4QeSEcbSgWIFCo3ue5AqURp05gmg2G9l7OS97+84zt2VOkBN/7XibzjHPqIqKQQMWcPo5pNpAbt+C87BWYq25AOA7id36HHQe+Hg27o92BdqdARV5+efHdHn6YyU98AhwHfumXkJfthRfeVJy74yArZRxLorOUkhRok/eBHRFxt0ccxyityfOMkucwNlTlda99Paury9QqZSxhs359jR07ryTPYurVMpumxvF9mzRTCCtADI5hXBeRpth/8TGq33RU/2HbcnKGLd/w2sB11wMFf9qe/uMb7TXz83/vtRyY3LoJJsdJwi5JHBMnOZ04Jcs1WZrR6HRJDMyvrhC2Wwz1SxTtXsQKGmeiyB7MPvY473/daxgfH2d5uYGFYWJ0lOHBASzLwcoz/Chmv6WJ4i5S5GidIR2fHTt302p1iENBp5UyNjGJ0hmOrXFtG50Lxtu9Qr9USMKwYBGab7fpJAlf+d3fxfFchocGSJMYKQtRG0vYSFGkid04IrNt2oFPVvKwPZdEKRzHQgtJOw1B5SilCPwy5aDMqZOnOXbkKNt3bUKPjvL5vzlE4JeZWruegYEBhspl1m9YS6lcwnMsHn10H0tLS6ystli/YSuNZps4yajXB3hk36M0G00ajTa9bkpQDpCuoH7qKC/5Z14LF+2i/UvbBTtObcx5fT9LChxLEitFqeqy6eaXsunVr6Px2H521+ps/YEfAmDp6aexTNF3KG2LAcenXK9ydt4qkJLKEAgHT9lY5RIjazZy2a07cMpl3ETSXVzgxle9mJXVRYJqgOOXC0Ffz+bIkeO8963/mTLwLsfjZ7OEp/7d93A6sBmZnOL33/NBfu5nf4Ivf/FOfuqnfoT9j3yN9/7xX/KSF7yIH/7pn0S7ms989COcPnocZaC6tMRbnz7FA6NDzHsebq2MJQTogoj6lvv34wwOAtD9yleZfvIQu4HuZVeQVyt0nnct2nXI61XGXvsago0bUXHM0t13cf87fxU9fZrvazSLwTScp81RxhSUc332Fuk4eH6AcRzSLCP/3KcIn3cdL/ulXybp9fjK+97H3/7ar/GDP/BG0ixFakWeG6Jup0BOfvJ2gltfgXXLyyCJUZ/8OOq+ezAvfzEAotHAfehR9FWX061VmV9ZgS2b2A7Mdrv0tmxlw9op3DhGjo2R/87vYMURca6KCLPXw/Y11VKAY3lIO0CZaoG+tfrUegIc28a1JWLPJYDBkgVDjRACbQyWUKAzjIpprSzRXFnCFQJ/aITWb/4XBt7+/xK+7Bb0wEB/VVAMXfG0L6clQPb1X5UxmEoZ/aIXYC8s4nz5XnQQgOsU7Dy+j65V0EoVD60xfe1RIQUmjJDdHuHN16MDH9dxKc3NM/iff5P0put4zfatRerTaJQGjSFLCy3SNM1IkpQ8y8l1hkhSBobqcOAQ121ax3rXZfXJYuGipWTtunXUyyXKroMxhm7Y4+SZs2ilcTPFgNHMYghGJjl+7BhkKVaeMTk2wtqJMSpBgOvIQnHIkpSDCtJAkoSs78bw+wXTU71SAZZ4PE1Z9jws1yHKCl3SwaEJcp2QZDlZanCyjCDP+Uwc0pKQhG3C5UWkkJQrZRzbKmT9fB/ftfFLJTSaBx5+mMNHjoLWPPLE49xw7dXs2rqVvNvl6L79rC4vUy1ZXP+Ca5menWHnjh0cPXoYaUlsr0zcXWFpfo5jx04gLId9jz1GJ0zwgzprxtfRWF1lZekse7KLLZX/EqaU4jd+4zfGPvShD41OT097nufpG264of2ud71rdufOned5WpeWlqwf+qEf2nDXXXfVBwYG8p/5mZ+Z/+QnPzn0jWnTC9nf1NTUpXNzc+5b3/rW+V6vZ33mM58ZklKa2267bfUDH/jAjNMH0i0tLVlvetObNtx99931gYGB/Gd/9mf//ir228QuPOIsONOKDzlFP5ttWZgAmo0lajt3s/4Vr0baDqrdYPkLn+KJ9/1uMcnlCuVren6hyLHnsr3MH3yGucV5ZFmSakWCh18fIjeKuu8wMztN3knoNVcplYr6mR2UaXbaPP3Uo3R7MaLfbjPRn1WHmy1M5FJPz3BFkhI8eZjNi8sk9z3AFbbkO4dHGJ87w9lPfopg/TqsSy/jwNFn6PZ6bOzX8tJyiRULGr0urutiS0EahkQ//iOMbd3Mnh98M7UXXM+On/4JuO9eGllCkpdYlg6mUubyt/4YXq3Gkc98Fm94mM2v+W6e73rU7vgi/P57gELUO44TjBsXKVxjcJIEH0jjGOKkSH/mOdnsDIe/+lX+6vaPEyUJnl2o0Kgsx5YSbQy2bRP4AcaxMc1V4k98pBCL7vZwHtoHjoNxCpo71eniArFS2AN1psbHsNZugG4XP/BYdmzyahW3zx+r167FylP8XojXaFJZM4oeGkIYgxAGozVCWgj69V2K9iMpBDpXWLZXAGakjTa6IBuQBjIJ0sG4FvU1AX65SntuBhWlmOEhAMLveiXpjm1YQqBE4SiNyhCiUFQxWpNnaZFqNCB8j9SxEUN1ykePoapl7HIZYwzSstCAtC2ksLABx3YwApTRmDDCbnUQ11yDqtZRWtMbm6HuuZTufQDufeCfdYPtOfTM+chWWxY/+p2voG1J4iwlLpVI05SsVCJPUrI0Q0UhTpxyy9ggjTOn2Ct9dm7eilKG1a88gNaGeQPnVihCFMxL50TCW3HC64GBLCY5B8wTkLuS6sggnoGFVovS6BBS2vhCUMLCV4ZKlrNj6wZa0iLLc7TWpGlGGIbEcUSSxDTCLhgIKmU8r80zzxzFtS18v0yKxb5HD7BmZAxH5ZAnDFZLmMEqI7supbxxB/Nz83iTO4izlCePHWT6kYcZHRphzdopHNtlQ9ij2WwyNjZJ3MtJU1i3YYK1aQiH2v/IKF+0C7U3velN6//iL/5iFGDr1q3x8vKy/cUvfnFw3759lccff/zQ1NRUDvADP/ADG++4444BAN/39Tvf+c61/yv7A/jgBz84Xi6Xted5enFx0fmzP/uzsUsuuSR6+9vfvvwPHfNXfuVX/sFjfjvYBTtOk0dYorgRpTCUfBdlFCUN6eHDfPk7X4LvBRjL4JYctu/azquvu4Y1A6fpLS5hqZRAGdrLq2y+ZCvxWAclLMqeg+975BquvuYatl66jTxPueLyy7C1RCiQrksexQxObmBirWB8eIy5xQU+K/qUa/1IOHUdEtcl811CxyZxPbqWJC+VMLYhciRPz88hjxygevpp7gpjnj7+DKOjw+dBNEJAfWCAmZMnkdIuJoXAZu7Rh5nf/wh5pnnhb/8P0m3bCYDBep2oXCbzK/hbdhMMD7F68DDxwWfomeNsvPF61rzoRYR3fOH8WGptSPMcnSb98eyDbgBjDHkagV2gEhEC1/ORwiqc1LlINS/qe9pojFJkeQ7npbREEZkJiSkFiDBCZBkgICnqdq3FBUr1CsL3UUbgj4wx4AcEmzfhjY0i6nVMmuLovIiORR/gYQyWKhygEQakxPT7OM9xnoJAKY2QAqUzpGUXu+g7VGMExtKFbqkWGMslqI0CNt3pE1hWsR9drZBXy2RaI8+BouwySmdoDGgDxkfrPim8KNKwwrJwpI1luSgKZKfut1KpXKNFBgZiEwGmcLxRTN7t0l1dRqsEpAUDFeb+/D1Uv3Q3otd7DtV30UYi+ol2fS4C7osya138LgOf+gIyf1beTCrF1Kf+lqkLuN9eeXr2Arb6x+3G+QLslgJGwki5zHC5SqVS5eBqA9VuY7s2tlUokhilSZSi22mTnhMPN4ayZ1EN6uSqgu7fZ5kGBKystlDKUC2XmBgbxypXmT55goceeYTNayfoNBtIAb1pwdzcIps2bqLseYRxyPSZGeIsY8wfIFAu86fnKNdqbN60lSiOioVZ3UaPjGBZhsmVBTh0+H9pTP5vt8OHD7u33377KMAf/MEfnPqpn/qplVarJXfs2HHJwsKC8zu/8ztj7373u+cOHjzonXNgP/qjP7rw/ve/f/axxx7zr7766t3/nP2d2358fDx74oknDgVBoDdu3Hjp0tKSc/fdd9fe/va3Lz/3mD/+4z8+/973vvfME0884V111VX/UEXl39wuPFWrUowqWGaEMdi2hWsotDhdG6QkN0WvXC/qceixw2zcMMnNV2xCqY0kzRi9YSNpZZQbv/tV/MpPv51TJ08x3vNxVU6pVGJp7gwT66ukUmMcC7RDObNxdUwYhpiZ46R5Spx0kGkPP7AhglQXTkdJRWQydv7sL/ALv/k/8CoVtq0sI04eJ73/i4SugwpcnEqJ1sIy+w4fI3Jtzk4vsKnfZ9futFnRCq0hVSlbbn45e9/wBhYe20eeZVz6lkKl8eR9X2M3sDg3jzVmmJs+ybZrrgAgbzWJo4jMQB5GuNUK060ml54bS23IUk2eZAhhsC37vOPUWheizpkCmYOwsC2r0ECUFlIKpBBEYYjWpq86ogsAkgFjNFJaSNvGVCySyy9F5nmRHpUW8cGDlPYdoDs5ytxgHel7hHGXa1//WmSlRnbPXXg7tiMqFcxTBzBCUKCYnvvIEViAVTgvwGgBwkJagNQgJMZIhDGAptNusrrSIIoStFJU61XWT02BEcRRRqfdZGV+jry5xGTfQSkMruOBZZGlMWhNFCcIWSzejMoLWTJBUSnuR2KWVkXfYBQhlOqLZRfLiXO+zxhTnFvRcAhxjNYGrXOMztAqIc8hGxsjed33Qh6hibEtg9XXEkVIlCj+Fu0YhcNUKsfYFp3bXkr1S19Bdnv9QrQsehylRGuFOpcypgAvp2lGEsXkQUB47TWMrF0Lji4Iz3VCnmUorUiSFKkEJu+PO0XLlEFTmplj2+9/gMVbb6Jj4OnZWcyJkwxLG9FoYmvDsJTYnZDh0TriXIpAGDpeITVnqQyDIBegc1Wg4oUkVwYhLYxjIaVFq9MGIalUqgyPjjK5bjM6zTl5+iiX7N3OwJo6Wmt85ZBnOe3FOdpoXM9mvO5hW1Us6ZAmCuG65FmG6Qu7t7pdDBbKaOIsZET8fX3Vi/at2de+9rXyuf7lt73tbRvf9ra3bXzu+4888kgZ4PHHH/fPvfbGN75xFeCKK66Id+zYER06dKj0re7vnL30pS9tDg8PK4B169YlS0tLztLSkv2Nx/ye7/meBsDevXuTbzzmt4tdsONcWo4Y1v3NNf2bDRKjyZIYzynEdaUCI2w0cPzULJ3lJdaOjzIxMsYrX/8d7Ht6gfZqyG++9/3Mnpxh39fu4Z5exFyzRxjFeK6DEQlR3iHLFRaSbjdFWj7dToTj2QS+oBRUeed/+gn4hd/mhTdcBfftY7DmM93o0Tp+nCf//CNsWj/F2EtexuDzbyCanyFNNGXPYm72GM3pBQQ5Jd+h1cswVqEa0e70WApjQm2IkozG4iKjO/ew/eWvLHQC5+d55L3v5fDvvYfdgJAuWaxYnV/pN4DD8EANe+MaHj/wBKovE/bIw48+x3FmIBSWLCKzTGeI/nb6XO+rMf2HKvpm+4jmXCmMMWRpEUEa82wUakxepEmlpNC6lDj1GlmakicJluVg/EKnU3glFjtNPFnFdhyO/PkH2PD9P0z9u1+LTlPCfQ8i9z2A7QcIp1xEV6aIz5QoFk9SgRRF7TMMQ7I0p9NqM3PiJCefOcHxZ04wvzjH0tIirdUGvTAkVSlREjKxZpJfeNtPcWZujo7JidOI9uICmybHeP2GAj8pTY60Fa7vUKpUipS246JyTZbGxGFEGsVFFKtNH70N2A6qWkF0usgkfpY/qz+kFCJfRd3UFE80RY3USIFKEjACRzhorckcCYGHQhRk9IBBYknRXzhItBBFmhqNND5Ca6LxEZI3vBLSjFzp82n5XClAkOYpWZqjcoUmI/AKZKn0fKTv03YclHTxfZcgcJGm+FzVcbEsH60MSaLodLt0u12UVph+1L/8khvpjE9w+botfOU97+erTzzGxs0bcUslHk8iZs/MMuIoXMvGEg6e5+D4JeimRYnCEni2wRLFoOk8Q2LIkxiyACMMaSembFsM16qQJmRZh+c973Jm5qaZnVlkw4ZJdJ4Q6hQh+k5ZOmQIbGmTJF2MznFdH2HA9mziJCbNodFcpRtGIG1yo2nY35QF7aJ9C7Zz587Idd2vUwBZt27dBWlR/nP3NzAwcH71c05K0Bjz/0tewwt2nKsrMXmlv4BQGjfLydCQFZp5khSpcqSS2LbEJsK1AsKuRVyX5Hicmllkpdslnz7L8kob33V5ww+8me9581s4dewoG6tlGp2z9KIQqQyOEGQyxPYq5JmFI4qVq6UEOtcMlIreLr/vsOIkRhqY/dAHOHDwONWbb6C091IGN29BqAxPKBZWVglG63ilgIrQhG6Z5mqX2aUitYW0yXJDYop81PRjj/OHN9+I1BrLEmgDfjDI9uF1APS6IakCe9LmkTvu5dWvfjmZ7VAvedz0guuR9ToqjlGd54IbCmCM6keCUAg3A0VTeBhilKIIByRWGFIyBmXAMQZhIF5dxfRCyBUGhel00P2MQGYg0boAUln9/k8Ay2XuxAnGgVarRywD8rCLbdvEBx7nzKGfY2hgAMdyKVcCqrUqSAtpu6hegtOLUXOz1MtbWVpskEcpYXuZMIr4wt9+lpXVDiePn6bb6mAbQbfT5QUvvonlMwvkvRzfKhaVTs0m7rU4/NSTxGmErJeJ0xhhQS9K6XRCRijYc9pnTiHPR3QCz/XxPR9LSAQSC4kopDvRxhQBpO8TvvQmRJYDheYmwqCNRmuDwMD5YFMg+ynX3LHA85Cm+D20BtsrhJSVKTICQliFk+5HuQU5fE7/heJ/RB/pLDC+j/H9gppPSgwaT0hs26ZCUasVon/8PMfkmlz1F0tGI5IOcaiI+7FycWwBsg8qEwJLSIZKFr7n464UOOTBNaPYG9chKjV2XnEldz74EPUkBg2nFldoZ5qwlfDKV95MEJTJlSKOE8IoIowjWr2QKIxIo5A0CpHCYFnguC6+5VMql9AqRQiN6xoMMfNnT6CG1mCUZmb6LBvXrUMoG61TtEnAGJq9kHY7Io5TbFvi+z6W5bCyvEyaJLh+wOzZBTKlC1BXPyNQMRcjzm/FjDGEYfh1Tunaa68NRX/x9sY3vnH5l3/5lxehWKzfcccdlcHBQQVwxRVXnO/D+vjHPz540003hY899ph/5MiR4Ln7e/7zn9+7kP1diO3du/c8GfK5Yx44cMD7xmN+u9gFO856zcPqp7xyR2DnKWUMlupHN2mCwOA6No6ykbaLzsH4Ns1Ys7IUsu9rz+BUaoRpg3WlAUbHJ2jFKY0zy1QrVToC6uMbqeY5qtWi3Wog7DaWDKiWK2SJIctysiQGcuJ+k/k5sTzLtdk+tRa/5HDpH/4ppaGCbaT90NcID3wF6Rrmml10oljr2nRShRwSuJZFu1s4tjBO6BnIKALrXhgRC6iVA5JUY4REolF5cW0Zk3F2fprHwpjq2SWuPzXNwMYNtE7NMrBlQ4EkfeYZbn3Ji+FP/6wYP5WRpiG57Re1sueI9KpSCZIY0Y+UtAE/DKkDNgZba1JjkJ0OptlGiyLC1J0O9GumArAp9ls4iiIScoMydv83bLRbjO/aRERMliSoPEflGQtnz+I4Lvu/fJg9l+zgip1bOfLkAaSBQdvn6Gc+hrduA7NnV3Asn6SzgmfZLExP89TTzyD9gJSMUCtCQh545D7azQbdbg9loKcScqHZuX0n6/Zcgu86jK2ZwOqn/wZrNbz9jwIgpUu1NoLIDZZt47gOSuVF/dYYlMqwrILeTctnLwRjKJxVUKQvtdAYYYq0qClqmud6eIx5NsoPSgGu7ZEnCq0MKs9QKkdrVUSTwmAJgSOLlKtCY6RB9h1x4dueM1ed4/ozpiACyDMaqw1arRZKKVzXRSlFq9WiUqkyODhIkhQp2XKlwsBgHduy+0Q8sgBcSX2+joouWpsynaK0pkuPUqPJGqCxvEwyWEVlmh2X7GRkYoxmr81qe5EkT1HGMDI6ypt+4HsY9D3iOCUMe7Q73QIYJCTNjKJtZHGBg08d4OSJ4ySdLlEvKtLNaLAkkVKMTq2hHpRJU4PnOiyvrvDgvv04tsQS/XNWijiKaba6JGmOhcTzfFzPp1opEwRVMm2wnRKO54DUaFlkHGp5Dt3nEM1ftH/Szp4965bL5Suf+9o73/nOme/93u9d/uhHPzryjne8Y9373//+8VKppM6ePet2u13r3e9+96lrr7022r17d/rSl760eccddwz84R/+4cTnP//5gfn5eddxHKOUOn+B7969O72Q/V3I+V5yySXJrbfe2vy7v/u7rzumZVko9e23aLpgx+lUPHRYRDQHyzYzviAhp5tL4iTD9xyEllTLAziOT8+u4niDuOU6my/dyeUvvJFXbtlKe36VTrtHt9Xm7z5/F70k4cYbbiJYO4ZrS9CaAEFuAows02w9hbA79MIulqxQrQ5TLo+CTLD7UkV2H9gT9xK8EcXi/AIP/fgPs+t5V7LxVa9l+HnXYs0dxvvs/XzHrS/i9FMH6S2v0Ely2kmG7zvItJiJlAFsC9eyifMcz/fI0oRGO8SyBKkySK8MfToz0WtTyiIm0oRNpRKP/twvsetn38rEC69HZxk8/DDmji+xznXPj6VAYoRVRDt9Sj/ZB8RE111DumFNAc4QoBB0Wk0+/dA+FuMEz5aEKF4wOsqt3/cGFm+8qoi4AhchLKToR0iqmKyL/4s6X+QGhL6GB55gudlkNIrJrKJOKKSFVSQgaTZatJvLHDqQMVIq0elGlFyLKM85eeoYq9OncSrDSMfDJcM1kq27dvDAY0/QXF7ECzyUygmCEsJxGV+3nsvXrGFwdJQNmzYyPjnGZXsvZ3zNVJHyzXPiXodWp8PRQ0/hHj9aTP6tDs3pOWpBFcuSxEmElBC4LuVygBCCPP96FQshngXuFAApKPykwDoX3ZmiFpmbIhoVtkQiUVLgBD62K8AUjspxbYQxpCpH6azg4+11+ynywqFZ4hwci/McuOeenzs3rQvk6+DwEPWBOloV/9v93l4hi+vAtmykECidk2UZBo0QBqUzMqXQpkjVS5z+72r6oKSir1alxT2a5znLK0sce+BBmssxUZry9PR00X6iNEpITp85w/e/+SdQioJ8AVGsFoXAsiy00GhVpGqzNEXlGmEKQXKDAiH6hPc+K0td3CGX48dO0FhdRWnF9Nk5DAIrFwihkQg0GltaCGljuQ614UGQklTnBH6Jml9meHKCxmqTEyeOodDkDcPoc8b1ov3z7cMf/vDpnTt3Rh/5yEdGTp8+7buua61ZsyZ94Qtf2H7Zy17WObfdRz7ykVPnWkN6vZ71S7/0S7O33377yMGDB0u+7+tvdX8XYueOec899wx0u13rF3/xF+c+//nPDzzyyCPfdrRRF+w4mzgs9KOyU6s9FuouWmpCCVbZp5kapAjIKuMYOyAsjeO5VQYHy8ixCe566D5O/9XH6S0naFKmpibZvWMn33HzzcQ5HDl2il6nzfDAEKtnFzBZQrVUZcPYAHnaQdoGIWOUadCLQowGJ4wowfl0ZzkIMJZgzdpJvKMPsfRwThqmXP9ffgNr1/OI84Q9e7awZaLO/Z/+EkGmiHIIO3GBEAW0oAA9ZRmBNsgkxcmLiIPcEABeFtNoLZMCl8QhAC/qzMPDny8G668//I+Oo5YS7ZVJ0xz8FHAQiP7EBcZ1MPUq5zoOlBQIaei5Hm0h8DDESBbTFFOrkgwNYMliQjpXhxR9aj4FfafhIKRNbCwm+wodcZzQajUJBkoYYQEKIcG2HHKlyTNFHKUsNZp49QpZmOD4dW76jtfiTq2hOjRKyS8xPBRgWTZZqrj1Na+h3esR+AFBEOD5AQro9hKSJCOLEyyZkcdNjh9+lLu/9FlWV5voOCTrdUjjmCjq8pJ1Be60Xq1gDdSxrSJV67lWAVTBkMVJ4TQApDjfonLuu583aTDyHFFE4Tz7CVb6GdzzEWza7bLUaGNLB2Gsvnh2AYgRjsAruQX/ch+ApZXGaIV5zj7OHftcCov+6+fec20HY9nn3z+3mjbasLS4zJkzs+R5wd0q+99bSIFlScrlMiMjo1SrVZTKCi5YpZFWka5WSoHd58VUgnJQYvu2zTTGYtZsXs9yu8Pi8gqrzQ6rjQaN5hJJogkjQbvTodeJyPvkBpkxBUQZQZ5lWJaF0AUIzcii9isQ5LlmaWmFwa1befqZo0S9BKNkIcqAQgiwLMDIop9bFi1AlpQ4jkVQ8imVK/i+y8BAnXp9gLHxNaRZxtnFs6ysNIvFhfm68tlF+0fsQmjp3vGOdyy+4x3vWPyntmm1WvITn/jEyVKpZAAOHjzo/eqv/uo6gEsvvTQ8t51lWd90f/8Qg9E/dJ7j4+Pqi1/84onnvvYrv/IrC9/s+/xb2AU7zjf9zM/y0LvfB81pcunQy8FzXGzLI4wVqbCwghIt20b4Ltot1BY2rN3I9o2b2WyNc9lllyNzD9+1qA6W8Fyf07OnaHdjorzH4sI8Gzdt4cH7H8RzXcZHx4ibZbasH6fXWUaKiJ6MiBOFVBblhSVGgSSOqUBBUbZuE87zb2JreQptAja/+juLL7A4R8myWDwxTdppIHVGvS4JY+iFFrqPzG0asJSi1o8hRJ6fT76dgyd4YYTxA+7dvod1yyt0LJenvIC55RmGBsaR0iaMYkYGhrhk7x7Wb9yAODvP0F/9KcmbfohUGoySpGmKtjQWEjsrjp+rjLxPJWchybVGC4r0oNEI20FmiqjdAcsGNBgLI/tOoD8hn5uoTb/uhkox0kX22zJc16U5t0Cttg6TZiijENKg7BwPg5NprCQjbawwPDmOtjS+53K21cQu+aSZYj7POLBvnqjTobHaQ9gFyCSNY+IcDp88w0o3YakdoZVN0mly2dZRBr2Eku9iWzZDpTJuuYY7XMUVhlavw2RfjcXzJaZkYWQfmKRBmGJSVqoAUAlj+rR/nHdEQgiU7hMbYND97MB5x4pA9qNEYZ6NSi0hsBwHgUQrUxDciwLFrIQhT1KEFHiOQ56fa80SBfeqLsZbqyISOydu8Nzf49zjue+JfjSstWFoaIDh4cHiM/q5ZPfF/pVWWJaNyhWOYwMSLfvb9YFRVv9qtR0Lz/fwfJfBYQchDK4XsLSywvTsHJ2wR6u9ijYWWe7QDXu0mi2U0gUDlNFoy8JxHHw/QADdbpdWu8XyUotGo0GSJCRpyvzSWdq9NsIStJtdjJD9fLlAG0XOOWIMgVEKKUy/5zRlrnn87801gkLbXPSzJ1qp/iLmov1r2e233z74rne9a3LPnj2hEIL9+/dXkiQRw8PD+S/8wi/8k073/wa7YMd53QteRP7wQTjyF+S2RSIscgVh6LDQ7OLVBvA8lzDSDNfL1AcGqXpVBJrp2WksV6OxcK0S1kCd1WaDpeVlmqsdLNujlySEKRw5OUMrzRGJIpNNlk7P4TsOmzcO0m6eQWkLYyTGpOfIds6nOR3HJ+rF2JPruewtPwdSkjVXmfnUX+IeuBenVGZhpUlNxZQdl0rdxW9E2IkqYP3a8AXgiBD9LosCoGQZg01RN5QYqo7LlTuv4kR1nMv0E6xKSc+xiSyLAyuLjAyMsJJmzK40UZ0EpzSIX44YAkx9EJ+MThgRlFyyLEIbid0H9mhjivoaBWpZi7yYrC27aJcwBbgljxO0FNi2hS1sQCH7PYvA+XoeFAhYI4u+S5MVE5AqBawurCB1xLrJKQZq1aLlodsjiDNqShBkmmRuhcrQCI1ug9Npl4e+/DeEBNilEjkpltbU/ABpW6RGUK6UsW0PE9RYajSY62Ukucfw4Ai+7zE6voapikW0Ok8S95hbXCSKI5rLS0yODDCyZpjyaB0A06+NCWkX8B1ZAHCkkVgW5x1QnufPRpxak6YpllX0vWKe7QEVunBcea6QlvUsqFYUTtcSFlKqYuLuO1noR4zS9B1xsYAySp//vJDWObhuHx/09ena5/6Fc6jnc7VVc77G+txjPtsTC5ZtY9kWeT/iy9CQZAhpkSuNsQRCSoy0oA+UC+bOYs47VRD9Gu+otBizbXStjqlXikWHkkUfLuL8QkHKoobLs6ddrL+MLlqpsgxjDEme0emEtLshYZzTarX6hAkx7U6HJI7ppWlB9JBnxcLiHAuUlFiWhW3bSEvi2naRqXBsHMfC9zw8zycIAtZFMdz9zyOhuGjfuu3duzdat25d8sQTT5SjKJIjIyP5K1/5ysav//qvz23cuDH7tz6/f2u7YMe5sNziBTe/CP7sL6hOrWXu7ByBI5BujYHJMaTv4VYKphbHq6EyQydtEo9UWG0pSiWfeq1EpVIq2hKMIs4UmdDkRtFoR3R6BaQ9igtEXbOX4uWCu+5/kLXjtzA8PAy2jTEGW4ITFWhnzytaLPJcY86eZf497+TRJ07SasS88iXPxzddvJKL8CSlsk+gJNL1mF5sY9ZvpBPPkvXrtyGSFSwUCmEVKAxHCDwhsLXGlzZZZlhOStijdezBAfLFs5TtKkkOezZtotfqYFcD2qsdzhw/xvr16yjNzbIVWJw9y/iebZSHBsmyBMtSGJ2R6+K7aA1JqgrGJanJSRGWwLUtjKaoOWlNN4yI0wwlDLboA3B5tt4nnzPxSiDvt2DIvNjwseEhviYV3fkmpU7K1PgQtdFB1q8ZZWhghLvnl+i2Uqpa8JZrL8eYJgSwXTlEoVP0+FmmIJNSoITCSQ0mjmnGHZaiWU7PzNBTFqqnWHzmCYxOOP5wgp0leKIAwXhBwNj4OLVqhV5mU+q6DNUKxLLOLMAuamvi2e93ruXCkoVGqpZQCkqEYYjtuEin4F7NkgSwSNOMLEkLgJFj45d8cqXIclM4nH7rj0Kjcg2moFmEfpR4Lvo759TOjfM3pGWllM+iZP+Rmty5BY3br3krpc7/Vs+NTs/tR/e5f/1qiZLv4wcBucrJtcCxXbI0J4kisrRwSnIyQXkum/77By/01v7/k4XA8jfd6qL9L9ttt93Wue222y4yTvwjdsGOk8UmSydn2AS85NaXYjdXeOSRh4liB8f3cPwSlusgLUka9hC+AWnTbHUoV8bBdQnjlDBaxnFcoixnubUKQtPttmi1YtIkKxQashijJLbnEauUs82Ipw/PsHv3EIluYQkLjEPQbTNMEXHAs6BG13Eo+z4rSRuTKuIsxrF90m6EKNe48vnXEi+32ConqO+4gvn5JqQ55DkSi3PQEqM10giksIuoAInCkAmB8QVWNaDjeqwZHGJ+7gxqZYWlZcNAbQDbCKQFVnsVp7HAAIVjTjs9um6ZjZdcwbHDB8mSFtI8C8DM8hxtCoVwrU2/903g2vb5PkTHskjihCRLi4Z7XaQHzXnSd/F1jhNjcKSF0BLLL3ghB9dOsNpZJvZLzIYpt97yCvbs2ctDd32BfQ/so21LwsCmmyQcmJ3jqqu20mgskCQRre4KSWqxuNphYXmJJEmYX2oghMXI8DCtZgsti5YYW8GQbWFXA4QXsG5yC2snxjm7Mk9taJj773+IuaVVTpyao9XpcN3evfg39Xl1jUDpfttH/7tLKTDSnHdMWVZEOcvLK2T9SLPX6yGkLEgzjMHzPCyniM4cx6Faq1ALynhSY4siVatQxXFE0aNp0ChlUH1O23Pj+twxFf3ezfORfb+++o2O8xtfP+cQz0XMz3WSzz2O1rlvSI4AAQAASURBVLrIFCBYbTRIs+w8N69tnL6SjMBxHGzHwfVc2LSBuU9+ELfbQSuNFBD2ukRhwjnwL32yCNOnOiqYj85lKsyz95LKz1+Y53iqi4hb9IktCsd/DqCkdcEWJc/1q/YzAcJY5z9rzjE1iT7rFbr/WfX10fm52vE5ggopeOGvv28Xxkx/k5nqol20/+12wY4zi0LiZtHrGCvFms1bGF9a5vSpBdyyjxYUfKL95n2VxzheAQ5ZXF3F7jTRGdRKFaQQ9KIIvxLQi1M6vYg0iYseTSExKscg0VlCqlMsy+fRQ6fZe8Umos4ituNgtIVWfcagfpozVylKJaSZRkjI0ohMxWQ6Y2mpTbsREjZOsnFoCNe2+bmf/zl+6R3vwurE2OrcgBgcWUwMSogiyhMG+f+x9+fRkmVXfSf+OcMdIuK9l/lyHmouVVWqVBpKAoEkhhZG6AcCYbW8MAYMiNXLMlhyL6D5gd2ghYyXQWqWwOBlM7RbNAaEjQAZAz8BwjItBDYgqTSUVCqp5qqsrJxevvfiRdx7z/T745xz40ZklpQ0CEl2nlW5KjPixo1zz72x99nf/d3fHQJeBCgKZsFxZvccnN/HpWO3MgotH744o9scc6E5y4n9B2k72Op2mdQjzozX+dpnPZtTv/cfOfOFX8rHrr+dlxSbHL7pFI9+/INMlMenOmCJiJ1kQkgqMx6tFVVRRiYnoLXGuYVAuTc+SsQxMDyDIaSI0nbe0abepee3zrE3s+ALKhX43d/5//FHf/IXdHuX2LlwHkjMSi/5zf/0bgyasgogOra399jamtEZQesVJijG9QZdCJy9OMVYz2xvhnEWETwzFyiqIjbAbjtme4YDhw/gQsVjj57BTaeUWjPvDM95wTOxzNO8c2Nksah3HUDQ2Qmtr62jlKLrOkIIbG5uRgeT8mqx5EfSmS4qDXmD6CylAIGlMR1BChQL4hAyXr+QMV83JP7keRBCP688n+H8Vkc+R6bYDx2lUmopN907WkAohQyCUVklpxJnKWysH3XGYvweUgqsDDgcfjJCyqQZvDZCijJuCAJJSSkTyAxBu0QsW2xICAHhF+uc5wpQ+EUONjvfvGlbWpP0P+kkMqTNQvD9+XxwkdXMgkDl0+8siNCrQQVCtivXnOa18Tkxrl4AYfsSZhpFlqfzjku7DTMjkOMJnZQURYmQmuBDdH7e0sx3OfOUxQuFF4qN9XX25h2uM1SjkgaYNQ1N0+G9YW9vh7XRGk3XUJQl7XwXWRcUk4p7H3uCe+97nJtPTpjtbiFURzDRwOYftXMGHxzCgRAOay3WWZp2imn2eMHdz2Bna5vp9Dy3PeMZ7HveF/NTv/RL/Oov/CL7H30IfuPtKCxlEGghopSbjC2/qlJE1RwpuOu5L8BIxWhU0LQeX4w4JyRWQ3HgGI9tT5ms7cNO1rnYGT768GledOQoAA9euoCdWT5+3+Pceed1HDx2HdOzpxmJGAkKBMIHhIrkJGsd46qkKsqo3ynp2YzNvI25qxBS+cRKVJSGREXSkbWMEovzxuuOs7kzZ+fiDtq0zHcvsbt9CUKgaSJjc32tAlGwN7f8wq/8FtYbZAg4QsoBx843goAMIAlIoXBC4ktNUILCBbwDdlvkzgzz2Fnq8lFsZ6nLGuEidccER6Uk9eQgjz12lkNA01k6E3Vls2MZRtNDaDPnNXVZJCdpMK3poxdFKv1wNkKqusQ6Q/ABWVTRYPuYx8xBTmz3Fh3DMN+5IPWkGtKBE8mR42pZyoKsFeeqU8ohv96za1eiV09y2Cm/qqRCkqD4EGKNZ4KIAwHlY5QptMbh8dZFONt3KFVA7jvrLD44pIyymTk360Poy3lkXxwrkClqJMaICKnid2ZoWcSmBIJElgrxOELACfBKRBKbF0BACY3yDrzrNyZ50+LypjVE5rNzniCusWqvjc+dcdWOc+Y62i5GK/NZy4ceuZfpzhyhEiFBRMPpg8M2M3QpUVrR2gYfCop6ndZ7zO4uynlmXQvTGcZ7grNI11AIsM0e0hvs3MQi9soz9wZZKT784Qd48XNfwc7eAwgdkOdjeUxuSzMSklJIRGdZV5LSWiYohK6pNxXy4CbcfAM0c7QbIWRJvU/xJS//MuyfFvAbsH+t5paNCWujCiklTdtG4kah0PWI3S5GyzNaPvnQfXzJi7+Co4du4vCxI7z/A39Mu9fw5OnH2L14kUMHr+epc2fZ2Zlz+MCRONdKUm5scGFrh52dGSdP3sgnLl0gc3YlCkRqoC1DzONJTVVElRgfAlJJWmdomjl1mfb6SQJxtaYxwnMuGTtBtj+v+tqv5UWvPc4jjz7Ehz7w53zkY5/koYdO08wDQsdSC6k0XgS8M+hCoVxAiKhrGhCI1DLOJQBPeY/wkZ3aeYP14K2M5/AOuoCVEMyUUVVCmFGPS/avHWQyGbNej3nvn/4RcjzhbqJx17pIEUmMPIflHkPoMzssqRRr6+sIpUFIrItOwbRd1Hq1kbXsAOuj6y9UETVttUi1kQ6CG8CxISIPySFKmcOkwTqzgMilEEuRKAxIQh5Qvi83IkVT/koRLfSRnIsPB0rFzkTKu+hEfSy9JOVFrYy5eediNBe/NyBFZOWKRCALxO42BCiEjhsFH3DBg0uRcapV9UMmMCL63jBoM0hEmqTIcK7vnR5SgNSLNZAqkt58JB4JlRjTqaQnXksS6xdxrkpK/DW/eW18Do2rdpznt7fRbVSmubQ9pShqhGjw3lAWCmsNNlgEEhccwUvEqMI5UEVB186QhUR6h3MeHUpEsHRtR6ULvDOY+YxqMsZ0DaNy3DMLvetYW1/jA/c9zBPn5qzVGozrqfdqEjWAq7bDNw1OeNZtYNw20M5ZswLdBDwNAc+0aZncfD33f/wjvPMP/x8efOQTyA9+kK8GjmxOUEcPs742oShLXIKUlFZIXRGKNaysOHjDIY5uHOWT993L4/d/AC8Ut914kns/el80zM7T7G5RjjyPPPkoW5e2AOiaPc4+/Cg3XHeMbrbDA6efJEiLVJlu70DGYvEgAooolFDXMtWmR8NjsMznM2odDZ7SUSZuyKrNjsVbB0qgtYyGF1APPMAB03JQBF74BV9E89zn8cQTZ/n4xx/izFPnOPPY41w4f4ld62i9j3nYWFNAzLplfdxs8B0yRDlApQVFXaAKzaQq2dhYZzJZY7I+YWPfBuPJiMm4Zn1tLfZ3rGomkxFVWVAUkvUnzsLvvpuyLOjIjkn1pRuXbQ6IEakQAtcZLp49R24lprSOzbyVoqgrxsU6ZV0SXMB3FtO27Oxs03qDRPZ1nVGkIiS2qUyRPkNdoFgC1EsfxDejKpFEEnppvoWXjGUwkGBaFTvFiBCFBXzK+6XEbowyxRBCTZFpcrTG5VIpEdnDXhKkJ6TU5OB24WVs+SoGkVvMPwpE2nRlh5Vu7GJjEARyofhLyHnndIBdgXKHpTcASE1gmHNPUHFGDtL3CSGQPkoOGu8WEC0sledcG9fGZ3tcteP85Cce5brdKHn1+OkzbO/bpAtQqpLQOVQmo4SooanQ2CYgSoEzhrISzLYvUJYldVFiujnSQSU1ouvQomUepgQk82ZKpUuss+ig4/lHa0yR/Om99/FVX3Qz7WyXbjdGwI8d3uQU8MGjm5w5sI5zgifmjncHz1wq9oyhmTfsbp2nxPHCl3wJu1bwr7/rH3NJTCkKyR1NdFxWOs7sXGDmDMePHmVtbR2b4LKtC1vs7lxkY/8mHGj46m94OTf8g7/NtNnmwY89yrt+579w6IXP41cfeRKpPVQdzjR0nWeviSIa7dZFrrujwJ59jP/ym/+NF7/oWVBaOhHXVmmPMQ1aK4INCFUSUGgl6XCU3uO0J/hAO+9gbUQz3yOIJjJJjYlC4TL+fTKZUK2VqLKAAOs3S0Jdc8OP/evL7vGdwMuu+tH5FIasI5Kt8jh94arP2p+9qjBra0sbALgy0SbmYj3GmP4Y71PUaA3M5jgXyTjOO6xzlGXFeLIWiVUhlh0hRYS8ARIcnTcLQgjkILfad6PpnfiAcJPyhT64WHsqsvRhiE7D2zj35Oyz13LJgfUC2CK2ayOEtElMkWwAG0zMLaZwLToWgUL05TdLzotFRDyUeExTX1rb1b/32HV6nSR+MBxX2sz0BCifZAkH69R/XCw72hACqlBsHjzMkaNHccGzO50yb6/J7V0bnzvj6iPOs+cJZ54EwBjDbD6n6Tp0gKoqUwF4hJLibytQ1CWdMxRK0sznqEoDgdlsyqReQyuBNwYVct4qFrA7awg4nLMUsYKPbt5y7Nj1/Lf3fYgjE8F0dpHxw49zG/Do+SmngD/9xOP8RbvH2fNbNN5y7tIe3R/+V1o/44CWPP+FX8j/9NVfysmNDX75V9/BxoExVTHBdQ1j4g+zHk9QIrA3n/HgIw9TlyVFUcXNgFJUaxVWex5/6gLveNvb+IavexX1WsUzbz3O5Oteyg//yE9yafdJ9o03MGzg9gzXHzjKRz8YxTPWmi3u/y+/ibGB48eO4Lduptvo+3VgA1S6xgeLKKKikPWeerKOEBInPFKnlk+6YPPoUSbjKVVVUtc1ZVlGyM5a2oQQCCkpCh0N82SN87/5VvyFrahOIzOcGzCmw9gO7xXBdQgV0FVFkAXBuZgPRLI73cP7lrKUsRhfVVzc2qauRxw6fKhnZnamwwaHd7G8Q4oYpwqx0OeVQkNQfW4tK8S4/RvYwwdQmUgyINIMWai5/nG1DERqhSPgrEP42HS9KAp8iLKEHsG8nUU408c2eSmdN4iOMoYYIemFDxKxyH9pRIQgk1mikxPpfKRMcOijq/i/BYNVCJEUgESf1/MhdgdSIrrN4ENsTBQCyi8cVQiihzJ98Ak6X4FYrwBxDzcjq+U0sFzS1F/lFXLow3syzOUu5uf7SDcuZ87tLueB8/DWcfGpc2xf3EJIyXgyZjT6nOssdW38Dzz+Et1RzrOWdn2m6/C1pSw0uCjA3f/4lIw7dxdp7kqr/keZ9sOoVMxvbWwTZdqOYLrYOLoYAZJC60xLAGdp3R77Dh/mkfsfZq+TeCEpU/3m/oMHAHje3c/nxLHDnDt7hvsfe5D/cv4vOHnddSh7gVf9nZfzxS/5YkI35f1/9mecvvAQVFFsoCxH6Db+sJVUjEclIfdKlFGFJhAQWhKUpwkttZWcefwMH/3QPRw4fBh0S10UfN//9x/w4OvfyKyRBAF7bs653QtcPL8HwMOfvBd/w42Mygmzi+fYvXiJG+94DrOnzgFw+NAB9g5t4qylnNQI66knEw4ePhYNaLpjQQomm/vYf+ggvh5h5nOstTRNE7tsJBKKHwgCGGvQSuOUwB7YwHsfm0aLKCIh0WhdMN3ZYbq3SxASLUcEL7G2AQVFoQgH9yNlSSjXccZgtWckPLrQXBLRUCole2erVCzviJF7YnV6kghBhCsh5sZEWBB/JJcTb5Zk6lbIOEtRjxdR0ECo2B8UsC72ylRSxlrQEAjOxxyaiTnB1eEDkcCSz5u/Y8X5wTAwE+m/heOJJR8JBI7es49Qs0tNe5iUHkilHR5UiCzvvlTEk10wECWj8ndbkfKUREbtqqNcEnVYWb/hWsMi8l299kwKyq/lP9nRDlnP8Y+lDzLTxiBAH40PR0i5Ux883kWC33xnFxA85ysuvz/XxrXx2RhX7TiXKfbxh6qVXrQ3ItZ02dQqS3iJdR5VlxRFEWXLUs2hIPRalyFEw2WMT87U9T84Yx1jNMIHutCgxyVOF5zZ2uOOm/azOZum702RlTdUBE4cP8B4v+aev/gYf+uFz+P6kyXPvfNGth/8CM4YphdnXNoWeDYoaHF0GYlCp8jSkwwYgAixu4iSyNRDM0hF1wQee+w0Jnh0JZjvbvHc597N1375C3n77/w3Dm8c4vrbbuKB++6laSOMqKuS3QD4Btycxx9/hOeNXkJRxh11M9vD+Q5rHc3WHBEEnTEoGcFRawKy0gjf8cgnPsHB2tDszhCAST09swEbKtQYY2I0r3OEBiAxSd5PuNiU2to5QgfW9x1AC41QhkALpkAXFdY5hFCoUqGkjQ2dg0wO0COlBh8JLFIXeO/wiXsbI4xUZkMm4ESAMQQIPhb2hxCWWKeZUZuv5UpRVP7/UtQpJTqxUDNrU0iFj/TjmEbUuifgiLD6nBPh1QH0uAp9rkZuVxI/WDombR4Egkz/QSTpvxSt9lFfgjFNYgUHJfpayeh9UxlIWLBvBSHvEy4bwfv+WvK8Vuc53IT09dEr65w3ZsNnbHVdltZw6TvzJinCy1KK3hEvvicSzISQFDo+G7lh+rXxVxsnT5589mtf+9qnPp1W7WdyfPzjHy9PnTr17Pe+970fffGLX3xV3VNe/epX37S9va3e9a53Xa7ReJXjt3/7t9e/7uu+7vZz587dc+jQob+ShuNVO87YHSKXfUTCROzssRAggPh376PjDM5SaYlXMcqUiGTMYg9ESUAJUFrhjMA5S2ebuPNO3INgXXSowbE33+PI0RM8+NhpDqzt59KDD/JiYHc3lslsXbzEeVWga89D22e5eOEi0ntu2b+fi4+fRuvYU7OcSJSbR0hZ2NQoOs7fh4DUKrXrIjbn1jLV9AmkC9QhMoaNE2y1DfPzjxA6RZjNqMM9PPvWE7y7LJifb+mcZ1855syZWIK2Ppmw1doo0l1K7r/3Yzx+/wOEcxc5Amxf2mHnibPoQqOkwhONZSEDVkARJM45CkAZi503zOczdFXFzUmKxjLTuGeCAkpFpR1rLYUSFFpSlmOcS4pEGopCI0lydMKjJBRaI2sdpeqSSLr3sfVU1ExVEGQvaSeKCLkaaxP8GmG5XErjnccpGTdOHkKIohNSaaRaRKV57pkZGqOVAVSb8n/OL6Thlgy6D1gxkNwLxHP42BVFCpGKKyAIiRC+h2MzI1mmkps8hnBkHksw4yAnO3SY+XVCjCZJz3hIIgCIuCnLyb+QHDsqRl+R2QPWxXKvBQCcrk2mz7sFH2mJyBQCXspFblKEPj8b8NH5DpzTlSLQ/Pe4+R1ee46wWfrWBUqg+u/tUSQEUsZrGDpsAJ3JVQl0/lRKTJ+T4xOfKHnqqae3rUePWm677f910+i/yvjzP//zj62vr19jWv0Vx1/CcTb4kPtfOrQKgCWgaE0XqfFKpp28B+Ww1lH6Am8jZKZ1gQoaJTxKhsix9yCLEkQZOyck6nzccAeE7QjeUYiC6aUdrj92gqcefpB9k2cw2hfFwNeqGK1pWaAKSyhbvFc8NW245xOf5Nm3VGyU4J3FF5rQGhq7R5CxINy7PrWGAKSQaLUw0Frr+Dqxfi9kkoeCS9MZdJ7QCVRjOLLPcHz/Po4eW+OeBx6j2w2sl2MOHzwKj085dOQA5/Ys2DnCKsx8l8fv/xjXpa5j3hukjgbVmYAsBTgVI0QZBRqQgjZ4zp07D8+6Hl1K8B0uCFTK1bkkDlEUBQGJtV3MkRqLdw4TBFIEvLdIGXthRseYoc3U4DmUmC7mH0NIYvgCQigwVmG6gBA2lTYkp5V6R4qovI6SCmSEK0MIoBQqk24ki8bQw5wbIGRIzjVA+myID2BvlBcklmFnmBi1+BRL5p6k8f4O8nAQc5zEZuxcds7FGDrA4b9hOepahSmHx+YSjZARlxxV9tF4dNYioRqRLOTirk6o+NtQsRcoQiQoPG8uBM5Hhq5Uql8P73OkTYKcY3TnSd9PQKBTIJrh5Ly+AybtYAOjpE6OLttfkTYwXTpu+JnsMqOzX7pv0iPdoo41r6PDgV9ID35ejU98ouSuu+6i664A/KdRloGPfOQjnw3neeLECfvpj7o2Pt246qcy0CFUXHOtAy40QIcNEc50BKz3CK2QhcZ7R6kVWkjwDuEc0nsKIWPeBhGLr4PDI+i8ByXpuhbnDLZrEd5hbRd7ZAaPsLHgX43GuFBw8vpNAA5vxibhhw8d4sZj+7j9ths4sH8TYRXTnSmj0Yjd3SmzPc+jD53jY/c+gu1KrFG4ThDcgjGphEQF0CJmZBUCfCyzcD6r9YDH0LiO7Z099rY7trdaGlcymyqMC9z5zBvZdRegcHQO9u0/DMCx644iSyiLEts5tDVcOvsU1ka42VmLbeaY+QxvO2zXQnBUhUYRnX9IWqpt16C0QkuVYNKAMS3WtXSmwXnDvNljPp/hvYvrmmA2a6Kk2YKUZVLE46OQhO8IWAIOn/SEbfB5rxNzdiLCrSG4pAQToz/jLJ2zqbOLiJ9LEKtzkSy0PJZtTI4kowMMsfRPpohZJiUgQZpvilpYON3sNHIk47zHJjattRbrHcbZ/t/OxjkNo8Q81/wnQ8SrkeTw2KeL0PK8hBCgJGiJLDRCK4KK+VYXEdeol0vg0JFD3HbH7dx4yykOH7ueoqpp2o6m7ZjOWsysRVhQaLQsGJWjCEuLCuc03ghUUCgvKEIsOwlBYAOxW4nUeCEJKISIf6TUCKHT34v+dSE0Uur+fSUrBCWEAkGJFCWCiqKo0LqIou09ySiA8AjhCMHivcH5Dudj6sAYR9dZ2tbSNCb+vbM0xjFrOprOMu9M37T+c3489ZT+lE4ToOvEp4xI/1+Ora0t+cpXvvLm0Wh09+HDh5/zxje+8cgLX/jCO77jO77j+nzMyZMnn/3P/tk/OwLwdV/3dTe/4hWvuGV4jrZtxebm5nP/1b/6Vwchpt/+yT/5J8dOnjz57Lqun3/HHXfc+da3vnUzH//bv/3b60KIF/zH//gf1++6665njkaju+++++5TH/zgB6urnbe1lm/4hm+4MX/HTTfddNeP/MiPHLnSsd/7vd97fHNz87lra2t3f9M3fdMNTdP0a/3p5vrXOa765rWd6dmG3gEuymKpUlGUVb/zzRcgEtTpvUWhCdbjhUPoCA11rk21dwWdsZTlCGsaQgDTtVjbUpcKLUIPlwk0l/Yain2bPPjYGe6+9RAAKlWf1cqjxid46MHHmV+c8+Ln3c2xA8fYu9ixu7WHsds8ce48586dp20aTCGQWhF86CPOkIyg1GqhUAMLEgXEurdYjU7bGrQs8NKwY3d57KxjbRK4685noX7nj9EKqiJw4XzUpt48fIjJxW1kYwmdYa2uOHv6NM88FglOQcjUDSR+sQuBedsyHo8IKRfmfSxH2bl0iXY+o23nkWmpFN67nqjhvUOmDiq53VZZFVjjlyKrvLP3ftF+K5Nwhk5Aa40uihTROqzrEoK6yFMtwZPCI0MkBkWHR8/cjE5mFVBk8bpIpJn++5fVd2IEnCOk5OwG/vgystAwgsxruOrUGLQeexpCzfD44ftPF6FezkINS/BjjjylUgnCjc/ZxQsXOHv2LPsPHWC0foDrj52iqGukgN2dbebTXXZ3dtjb3QXncU2L8FBJQSkEulRYY9FS4BPRSqoMA4P38VmSkYHVQ67DfPKQBLSYq0fIhiLJQob8m0g5SekXsOqCdBTfy4L13rukTRuPzTW4IQSsXeSwnXNRK3jlXl4bVx7f+Z3fef373ve+tV/91V/95IkTJ8z//r//7yc/+tGPju+6667ZlY7/5m/+5ouvec1rbtne3pb79u3zAL/xG7+x0TSN/OZv/uYtgH/6T//psV/7tV87+FM/9VOPPPOZz2ze9a53rf/Df/gPbz5y5Ih5xSteMc3nesMb3nDyTW9602PHjh2zr33ta298zWtec/P73//+qxKJd86JkydPmre97W0PHDlyxL773e9e+57v+Z4bjx8/bv6X/+V/2crH/emf/ulGXdfhD/7gDz7+yU9+svqu7/qum77v+77P/fRP//QTf5m5/nWMq3ac3rsY+QEkIgIh0MznsSNFMoY5n4QUdLZD6ZIgBMZbtKhimYAXkJRYtAKNRKmCPQLjcR2hG2uRdexsIQkgNa0D3TkOHdnPxa1H2JntA6BLTaBtd5EPfWzG7/3nP6Hct4HtdtCq4fSl01w6f4Gm6eisw1hH13VYoRE4tMpNi8E6G3NzgwhG67hM2ZB476N2bQCrPPNmjlMeUSou7lxka6vkxv37ue7wJucvTqnHG0yn8f5X9QbVZJ2uvcj6RkXZKbYvbccuI4DWFV6XcY1ReCxlPaEer8XmyTYyVUMIzGbz3glk0ocQMs03iptnkofWIpGvLCB7Rzo0+vn4HF1Za7F2odjjvQHTpX+nr0y5umEN5dDRWGeBkMolfO9k81zjcUM4U4BIpStSDBys6h27c2Fg1ENvnBdQ7eUknVWN29USlmysh4X8q63F8v+v5ChXx3ADkdclX6wPi8g0eI+QyVkNHLF3nuA8506fI4QLMa4OjtFkQj2eMFnb4PChoxw/cV2vfds0Lc1sSte2zKZ7dDIiGD44NAKcT8+zQqlYEypCupYrbhTyBou0thKlJG7wO/cJsRA5yh8I8C82SKltgrp8vVcds/cerXUsYdJRwlMmucFr4+nH1taW/PVf//WDP/dzP/fQ13/91+8CvO1tb3v4uuuue87TfebVr3719nd+53f6X/qlX9r/j/7RP7oI8Cu/8isH/tbf+lvbm5ubfj6fi5/6qZ86/p/+03+6/yu/8iv3AO68884L733ve9d+5md+5vDQGf2zf/bPnsj//r7v+74z3/iN3/iM2WwmciPsTzWqqgo/8RM/cTr/+9SpUxf/9E//dO3tb3/75tBxFkUR3va2tz28vr7uv+ALvqB59NFHT7/xjW+87id/8ief6Lruquf61zGu2nE6a5BFjOys6/DBUqhIJBFiUYSOEBSFjs2YKRKEKLA20unLssI4R9u0kTAkJUpLnBeURYF3lvPnL1CXEyrrKIoIF+E9mDlrYo3d0w9hdh5G3fZsINUCAhSK605s8s3f8lXMWsPFM9uUds5jjz7I7tQjZY2uNGU9wVuP1yliSTAeJI6JWI5YMgynovQKkBRlXIyDO2LBvfCSUWiRpoXGcMvRE2xfuh8lOupE1lF6TFCgSkEhNMpLxkVJXUe4eTpruXBpB+8ss909vIS6KDh77ny6VpFk6Dq8d6yvr9M2c1xIsKNzjMdjJpMxxhim02m6P9FoTSYTBLKHF7PhMsbQNE1fBypTr0QYQo8xKglh4DjDMuHxMlZqNrwsotF+PZWOznNQghKdcTbWuVwi1/xFT62UTK/JFLn4CKoPco2ZJKUHpVJXmls+/krkk7y5GB6Tne5qqUY+32pOboktmlewd7o5BxtF1hHLEarWmkqBCAoVVGTMGoG5sMu58xewwaPKAus91aimrEqKesxoY4PNo0fRZUkIgbYztDu7hLZlur1DszdFKCBRcLTWvdbscOMwzHcOl0eKQVQ62PzA8nr1ayKizrMY5Cyzs8/O1Vob2fdps2K6GJlm4te1gPNTj/vuu6+y1oov+ZIv2cuvHTx40N18881PqxxRFAVf+7Vfu/Wrv/qrB//RP/pHF3d2duS73vWu/f/23/7bBwHuvffeqmka+cpXvvL24eeMMeKZz3zmUhT7hV/4hT079rrrrusAnnjiieK2q8zj/uiP/ujhX/qlXzp0+vTpsm1baYwRp06dWmLcnjp1ajYkNn3pl37pdDabyQceeKDc2dmRVzvXv45x1Y5zPu+giCQc72JZhJABlKAoCwKgU9mJVAItaqyxhCAihJYefmctk9GItpninAfhCdagVEArje1MLMVoOiYTH5vxCkEhHGPdsfPox7j+hhN8zbf9HcaPfBSAelQDsLa5jl2vqBpJrQVHb7mBBz74UR594jxFvUG9Hn/ERVVGxp6zUWvVLZjBMaLzifYvU5uk6EgyqxgRC+BlMhZKB0Iw0HiqokS1Drs34+Zjx/jQxz9GXSsKG5d6PF5jvF7TtRItSmRjUULx4Q9/hFuARx99jPPesLa+TlmWlGXBof37KFQV4U4P83lDCB7TWmazWWI0xuisLEu2ty+xu7tDXVeMRqO+c4hzHtPZyyDVbPB1alNlrUUphVSiJ+gIEfcuBIFMOdXYnUYSBgWQV3RCfRnKAsqPDiVqoWbN02E5QnaWQ0eSI9BIJrGUZUUIPkJ+5FrGVUF2+k1C3uDl94ZRZgiJoDToCLJ6rhzhOhe1dwMLxxHnJ5ccT/5snxslRMa48AuEOh9DSOQzsfTZEERsbxYcJJ1grwXaa4R3sak3EjG30MHOhR2Mt6AkLgSkVGysrbO+eQA5nlC2LV2q+UVGyD+YWKLkXZyXzBsSrhw1B18sPNnSrZ4vdgeLVemF8+MSD1WfYgcboRQg2bp4kUuXttk8sMm+/fuwrUfIVNr0+UYS+jwZ3/qt33rhq7/6q+944okn9G/91m9t1HXtX/3qV+8A7OzsKIBf+7Vf+8SNN9641Ly6ruslZm5Zlv1dHz73VzN+7ud+bvONb3zj9T/8wz/82Jd+6ZdO9+3b5//Fv/gXx97//vdPrvY6/jJz/esYV+04m65l1sYNQBAB7yyumaNqRZ3qMJ0QMYoUKinhWHzoQCi0Trtf2zLWGxRlTdO1BOfxoaFtYlNm6zxrGxPOX3iczbrErU0opECJlr0ntrj4+GP8f170HI5NJkgR88+yiJdRqjH7Dh5gM8QSiVFR87F7PsD29h4H9Ri6DqMEqNz9YY6QFVLGXCpEGx+cx6tYaSeC7FscieBjPV0ygp6Ur+sMqJLCtqxVIEJgPrvEvo0C2bZMd7aZm/gw7XWCUV3jQ9y5X3Qzbr7+Nr7w1puAf89znvMsprfeghNRS9UjUcIzG8VaTW8l1UhRtoadpsN7jbOBoi4oiuhYqqpOwgcW5/ZS3io6IxN8cpIF2cINywEyHBphM3pnMXRqmQwUbapfcm4Z6s3njWvl+5xtPEamHGU6fwrzMywbRdSj41S9LN0i4hRCEUJsqSXQSThgmZATjTNpsxM3aD6IKLCQodI851QeFfDx2U5tuzLjNUe4Cyh1sS4++KjLLEQs0fHL+eO8JsMoUwZJZqQKIWP+3gcsro+infPJWWi0iFl+n65fxtAUgcPbNpF2BG03RxEodEEISWAieJqtbXbOnsd512+QlIjpkgihxvWVKt0zIgEuNhBfjqIzZLu4Hz2FNrr+QPrsokduRCdkVDLKJCzo2+KFEG3KvgP72XdgPxAik75QEQlKIiTXxtOPU6dOtVrr8N73vneco7wLFy6ohx9+uP7iL/7ip4UpX/ayl+0dO3bM/MIv/MKB3//939/4mq/5mq2qqgLA3XffPS/LMjz88MPlXzfUORzvfe971+6+++7pD/zAD5zLrz388MOXkYvuu+++8XQ6FWtrawHgj//4jyfj8djfeuut3eHDh+3fxFzzuPocp5YMeW3C+viDrkjUcUcIsT7LuZzQV3jX4YOjKBaMSBeilJuwjiBlquPsUCIqAo1GNRfOPIFwDYXxCDNjNtulu3SJzbrkzIOP0D37ZkQbf0zGRDSgmXfsbbcIOScAe16yvb2FkuBMi7MFWJnqRB1aKwwOvxQlJUPev+YRQqF1zC9mA5qNhguGEDSqjD0vO9thnWVuIhQdVMwDfeGXvxT+039ga3eHg+MxBonVmk7BgeuOc2lvyglgZ2eb2c52JNZEcI6ikFSFQonYvSMSgQRt28RoLyisATEg28QoUOBcMlB9NBOSU20vu8fDvOBqpDF8fTVaHf5/tYRg6FSNMYgU0YQ+LxYui9Kcc4lQtAz5KbUgbGlVpA+k863MKUe0gQh3xI8FwPaQ6FDTNTq87HQXzjEEjzEunTf9FnxuvAwgkxKQTNHvlddvIRMYnx9BztOmHK8HhCRIQfBZ9zmdOzvsfG7iRkEI35OkMlQafb5ISE/8xSqtGGm1aMp9hXzmcGTnf6XoPF5P3pgMzkeIMoRp3Xwu+0ktyiJcD2GgkyuQWOfi5ignyyHmNxPao2TMxYZPpY18bbC5uelf/epXX/jBH/zB6w8ePOiOHz9ufvAHf/DEME//dON//p//5wtvfetbDz/88MPV7/zO79w/POdrX/vaMz/4gz94vfdefMVXfMV0a2tL/dEf/dHaxsaGe/3rX/+XF6G+wrjtttva3/iN3zj467/+6xu33XZb+2//7b89+OEPf3h88uTJJZjXGCP+3t/7ezf98A//8JOf/OQnqze96U0nv/3bv/2sUupvbK55XLXjLDyovLkkFk8HERU+bNfhA6giRpsh1+ZJl8TGO7Sq0KrE2I7WdBRFRQgNSkiscZE5ayJbVQtFEQSXzp1m/3oNokUFqErB3nTO2a1dvJIU6UeYuDuMxxViso6jRQhFgUx1iomhmdios9mMmHXxBBeQqiCkHW1k2CYoLbXP8jbEsgpro3BDYkvEgMsT24BFzrE0Dt91OAQey7Gbb+fuF30ZN28ehf8EnZQ0tsEFiw+S8f59TA7so3n8ceLpLN4avPCoQhML0x2jukIhMN5jbYTgZtM92jbWznmbyzPSPQpDmDFXNIalCOJKxn04hoa1rztMY2hUh+zQfK7h+aWMZKSc11JKD6LCDNkuzu18EicIC7nADIPGWxMjZu+yNuyyUc1zUkrjQ6yNHY7FucLK5+Ja5YhzQYwJ/fvDkQPhGM27/jOrUHXveELqHpOECHKtbfTkMfLM/cPi+1GosFc/ghwIg4zRrrMWrYrooCQ4E/P2nwo+FyQ5vgHZbfWefyom68JR59KhdI0pvIwRpejny2ANl5KVUqLkgkeQIVnjLIRFflpKifp8yXEePWopy/Bp6ziPHv1rr6/5N//m3zz2bd/2bTd+wzd8wzPW1tbc6173ujOnT58uPx1U+e3f/u0Xf/qnf/r4iRMnupe97GVL0dpP/uRPnj58+LB9y1vecux7vud7qvX1dfesZz1r9k//6T998q9r3t/7vd977p577hl/+7d/+y1CCF75ylde/NZv/dZzf/iHf7hveNyLXvSinWc84xntV37lV97RdZ185StfefHHf/zHe1LR38Rc87h6x9l5VJXgpURkQEu0ymUMsieVBE8SF8gwl8dYw2SiaLsWMZfUGwcoiwLnHVpJnJWY1tF5gw+Suhpz/tx59stNxmWgswbTdmxuHuGps0+xu7fDAaJBDDkWDgbvW3wAXSi6NkrXxegkqtQ455FCE3w0LsEHgliJFEJIua7QR0c22Oh4pcThU5F6QEkP0iGwNO0sNhD2jt3dGfWBw3zZl381h28+Rb0Tu6NsjDbZmp7Fti1KKg4eOoIsC7osyA4xn0WEyrz1UATqYkQhBPMQUF6igmQ+m2NtR9POKcoC7xdRWTQ4KhnNXHy+oPnDMmt0SKAZOry8JqvQ4+p4OiOb60YzeUwpFRsei8zUvYLObO+w6MX187xjM5NojVfZrUPx95xD00qT/UIkoaR+m32uLTqCjJJIKRJpKW5Ycr736UaM+HPUd2Ut2MU15eg0NZJ2niCI0ZUQeJGh0Hz9CVL2sX62v04hU2sxjxQqSlsm+HfBKGbJAa4iBvnvV3MfV9fZuwUHIDpp3/8/4hyx5naYF15c1+A+J5g+ku7Ss+c843oEaaPqV0qiPufHbbd1fOQjH/lsKAdtbm763/qt33oo/3tnZ0f++I//+InXvOY15/NrTzzxxIdXP/f85z+/CSG870rnlFLyQz/0Q2d/6Id+6IoSfV/7tV+7u/rZF7/4xfOnOx/AHXfc0Q3fH41G4e1vf/vDVzj0ifyXX//1X+/fHzJw/6pz/X87rp5V21lMG+911gLRSsc2R2JhsPAuOiXrUFrGDhHESE4KjRCeru0QQlCUimAi/OmFIugCZztEUSHLESJYtrdnFAdGWByT/ftQZYkJLQ8/8hAn9m8CoGS+jDiPqiwXJRXGJMO3MGg7OzsYYxEKVFH3CjPxgHicDPHHrkTKJwUIYkGgUELEXG6IjZ7rcY2ycdfd4qh0jW0CagQ4TZtE5He2LQ89fJ79oaC1jtHaBFSEq+P3g/OxHMPFLGqMmpynkDK9p9LaRzF1mSAymWrlMtwphFuwnVl2jvl+XamzyHBcFq1cwTH0ii/JyK122Mifz04z/314zmV4F5y3hOCXnHd0oiJtelhyAPmaIZMSEgxsk2C6yFFzeoL7PGQEDa7EPRFCIsTlTnO4wRCphjgeG5bfW1kriAxkAamuUqY2YVE4IvQR22JdQqAvX8kRorUdWkenla/VGEtOK+R62eE8Vh1ivk+r93e4plcid+RNCyJJJpJzngxywJFQ5/NmQqo+0Bzm03Pk650nk6a9D1gTNyvB+wHM+/kSchKd52dBFei9733v6CMf+cjoS77kS/a2trbUD//wDx8H+MZv/MZLf9Nz+e99XDVVTVoPKddD0vp0AmwqUs4/TpdqxYQUfWQhpeqhMSFiXsM4gyoUNsSuFLqqCEWBVRKnNHI0QY43mDtF4yraoJi2ge1py3Q6431//gGyRK53qcO81xTFGO8sQsB8Nk25pFx8H2i7OaNxTZWYuFLLy7InuZmxDAGZ+yd6A97gvUGKQHAuqglZjxKKqtI41yJcytH4AEKzf2MCUqBU1NSbFTWzcoNL23sIqdh36BAdPjEL44hRTOrnGALOG6SEqirwIuZdEQFjDG3TIqSkmXW9U+q6LtapptZiq8o38TvCZdHeUEA9v38lxZwFK/byKDWfZ6i4Awt4dAjt5v8PjxMiia9L2UfMWd5tOL98zqe/nuhgfLCJbJNVr3SvQLSIwkP/WizboX9d6+Uc0WWbi3TslaDuK32u1zhKG7LFsXlzF/+EEPWDg/cxwrMOZ21UlrLxmry3ifnqiRwD30fJWdR/eA9Xn4Phe6t/Vp3p8H4GHEoFEJ4Qktwijki6FklJDFxGnvvLEr1AfXyKA9a5uHEViciVUkCeECNxlTtwc21cxfipn/qpo1/4hV945yte8YrbZ7OZ/MM//MOPHz9+/PNEdunzZ1y9Vq2syXSSIsjEoekI1lNUo9RJXiSN10BQsW2Y1hVlpWjbDmsbqnpCtzNnvjdn3/5NmtGYaecYiw5RFBRNiZUFstRoNaLtDNtBIKxA2T2UaNFC8cmPP073wgRphri588Eyb6YY21EIzaXzW6lPqCJ2Wqi5tH2RL/qyL+b8juOhJx7Au4AQLnpLABFFzyQytqQSAonvNwQyKLwFEmMxeCiqCjoQrcXWAqkKKu2h0By87jbmawepkiEqJiNuesEX8OGP/leOMAVrsL6hSv0KpRBRFELo5KAcygmUlJE1G2LE5WVH6wMhKBA25pVDbCUGMaLLHUYWm5rQsyqd88mxdjg3651FjswAyrKkSq3bVpmisJwDXS3dyGPx3Yu6SljAxTnyzcZaipD0YwEpcT5HilGDN4GDPbEoX+vqpiAae4/SIn02IgjODaJURA+TEiIhiLwx6ecfUxHD6xzOPTqgTD5aiAngfSxXShEu/fplIl2cT09KIpJ/+o+kyC6EQJeuWLmYxw5SYGwSsEhYiU1CAUIQhQ6Izoc+0o6pk8sgXFj6k31cjvDJ6ERYJl5lJAkhUh2vRA32DXFtVVTZ8hZCFrmHYC1KqiTwP/i+fDVSLG20hFiIkFwbTz9e8pKXzO+9996Pfbbn8T/CuPpylABtUujxQSK9QoUYrYkQd73eWgpdIollD0NSh0ytnLRSlIVmb7rH+sYmuqgplMTMtwGBULGQXUsdHVahuDSbUtOyb6zRUlKXNcZ2XLx4EQBjY43vvN2jaRuCs1jb0c7njOqK0Hnqusa6WKrxvOfdzvvv/SAPnTYQ6mQUr5Q/j2SlTCKJP+QIbeLBp0hZFSXeSbCKLkDjJZXbJqh97EwtAUvTXIpznG6jjh5EFhorDFOzh/abMUJNX6lFhKkIEbJFxLzbZH0dz1mCj7BsLg4vywKpdBSpkJKyLHtYNEcaWeBAqYLZrMFakyITi7WGsiwoS01VlRRJCWoov3Ylp5n/P3xv2MpsNXLJIx+7QCSGIumiF163ziJkXH/v47EqkbMWhfeBYXee1Qg4cr6SWxDZSEf3IKXs+3+GEKLTDEOnGa8rkpmuLNEX85YruWAApZA9nBx6gQ0pFvWsIQzymGHxjA0hdOcdQhXRgVuHdTaWfYiFwyFFeTKAyso9Ica2WuvF72+w2VhEwANiT7yg/BdsFmYgwsTOO3zqkJMd6tOFggvoPxKihsznUmtAxr6hYuGA+7mw3HM1EgzNFb/n2rg2Phvj6stRyGSAuLuNgtIxR5Offe88wTuCXLQRgmgMjOn6OjIlNbbr2J3uUu8/ShkK2q5Cyo6golJQWVSAJJgZ02lDUYLwUJclKkDXWc6fj2U/Om11y1JjtEargtGk4tH7P4lpOipVIoSgaxuOHj+ENYIzT15CqxoX2qUEl/MZNoxRjvc+QqZ5dzyIPAg+tVbT7E5bRsUYhEJJh7KBUiqkmCJDRbe7DcDek2dYP7bOE9sXqY/cwOEbbqANoVffUbGYLopBeINNMKPzjvWN9d5YeRdr5Xanu1RdFNfXahHNtW3L3t5eEj5wveGx1lCPRqytj5JzjDGcklGRKMruxdZj2XgDS39/ulzoalT6qRxnH2EO4NYlqFMkZmjI+cNFxJLPMYRnn44RvPT9IUGlIc8hEcByjhe35Mzi91yZmJLh4BhlLkPGIYTUWSbEJtmZUSvE4Pxpk5BDrsG6DnPGSilcdkBKIn2M9nzK//awL7GBtTc2NixIDjWEgDFd2gyVS+znkCLclBl4mnu7+HdusD2Y8NJaZ3bt8P67pOwUBvfMGIPWRUrhDDYjpO3rYB2yGtbTkc+ujWvjszGu2nFWWnJwfQ3mDa1pUYXGiFieERKxIaRaNuds2jFGI5+hFh88nbEUZY1pG+a7O9SjdQpVIqsaJyydawlCAQqERxZF7CARHM5YdJkaTPjA9nZkqgaX2aKZDAJnL5zh/o9+DNda9NoIgWS2N+PZx28khMBkohBBowuB9aZXjCGEBM0NiRML5mCsm4u7+Vh/BnvzhsYYilIjgkV5z0Rqzjx5nl/77X/NFM9zLXwrcP897+O43+IZz34mz3/xC3FCxmLxFPk4nwTXg6coS0aFYjafUxQlo8mkh8ykknRdx+7OLnpzhIAkUxYh2Ow0tdZoHZuJb+xbZzKp0/fYXokn+BhV5ehaCN/388zGOzu7Kxmw1VqxoQNYzX/m94ekpCHLNr8fwqKZ9fD83tgoUDHIq+cxzKcOv3MIra7Cyc6lEheR5f6y3Q79Z4dO+umc8XAOkRyT19b3sGf83DBypa9tzrDt6jotnr+ck7RRyGEFIveBSKZJ3x0R20WuWQjbr8vSvRIDmPYK93Z1vVbVkVYJSKsbmnRQv0KLDU0sqxo+DxkS9sme5LW8XArw2rg2Prvjqh1ncC233HA7nD1PEcsW8SFGnt57rPcUZZ1yQnFXr1MDaGsdShVIqeOP2XqUFMhgMbNLjPdtMvUlXpUURUVR1nRyjhQwKir20s68qEpaaxhXekm0QMhUrmAtMsDaaMwf/+G7Of/UOfaPJsRWhA6lNQcP7WM2v8Tdd5/i3vseQcsyNnEmQ42qd5oR4lLQ1/TJdFyIDa9DIHgwXYN1htHmGpqWQsZWabumRBT7GNcVVWjhCQjrBTd+6bO43pzAdpbZdEbwEm8WhtyYSOwpi5Km85jOsL290xtGHzxKF0masEGIcb87N8ZQFAVHjx6lKIrYjzPESDMEh+lsJGgQNzpSSJAilewsri/Dn9kQ5rKSK5FghoSiVePbG3a/INDkc64a4ezgSMY8CxT0bN2Ui7ySEc25x+ykcunLFZ/lQenIENqNrF2ZotKs4rPMPF6cYwB5his4VJFgZB/zjUrrdH3xeQrR45JzsUOm7zC3l6NB533sv5mj3JBUeAZrF0KgUJGgM9wkaB2hXucswynGZ4A+6szrOFzTYYnP6r1cdZCr2sbxVJeTx3K0v7op6Otr0yZ1+J2fqiTo2rg2/qbHVTvO9bUxN504CkAhNVqWuGgDIgkgZNq5JHiPTm25QsrDIXKboEA9GtF2U4JzzGe7MaqcxPZrSpWU9Zh5NUNaTxEkY10SugaLRyrBPDisAp/qHU0ixEgVG1CfP3+ehx58iKooYr2bdVg7x1vHxsZ+2tBy9OgJvEvlEWGYasktsjILOP+oRZ/bUVJiiaSQIAPOW8aF5MT+NSYGSgw2lHz8oacwraUsQKeyhfnccal1iL2W2gcEBa6zdE28hkuXtjl7WmCdY22yzu7uDlIqiuo4ZVnhg8d6i7USLaOxKQoNUjGZFP39ys7OWturt6QiiL79ljNRaD3W2op0rctdUzKjcuhk8jo9HWQ7/Ht2AEOnNjSEVzxH1CPEGsPwXed9UqnyQwRxCaodOp7h/Vyd0/Ba8t9jROeQKroT5+zTXneGaiPEqJacR1x71//bWsuAM71wiv1rl282+u/oH0zifRSqL83ISycESUpwoc0bM4XDKDZCw7AcQcZ3EkQqBk4PkWqVF9F6HqtIwhCaHRK1YlcTj0ibh+E9WFz3Yj4969p7wuCcwzTBtXFtfC6Mq3acX3TrJjfdmhynspR0qc0xBG+RSkeJNOMQIcScmcxqOzHnorGU0qBDwFeS3ekeipqwu81ISkZFRRsCKgRwbSxVKcZQ1GD2CNbhMAhdMirWaGaRFKSKsp9nXWvu/cDHKIJnMprQNjPmZk4rBPsPH6PYp2lcQNVrNI1EC4MDTDJ0zrdY5xHkXXqI1R9CEYKMReoyOjYHlEh0EBzY3GTXFezueYyRTJ86w2MX99DVMRSBWiYn38yYPn6WWs0JlU4NtCXGJ9lA09C5KAoxb1uMdxQ6agGPq9hkWKDAlTifJM2U7qHxGGGGvvNEhH0dvtc+zWII0ZHmiCOXfAgpovRhb5XT+yL0NYciZGEIIIlEZEcQ82v0Rj/qrMZ/26S3qqXECXCJxRuyTRQ5Qk31qMQcbHT+yTGEeA6RIHMBvYoVSvWOA0/U5U0qRENjnwkzq5FQT9BxcQ7OxrImLz1RN3cx0RhpLueA+4jZJ9cmRGzBlZxJLLEQSKH7+tII/8fNhPMOl9yi8wEkBBtz6aR0hC50YhQn55jWW4rYu9XbKCUZ2eSLCDFe36LcJDebdt4jpe7veRZ3FyJukI0xEV0Zbj784tmICEBEA4KMYhNxGRcs3kWEHZY2QqKHriWJA0xwISIwwad8f9osPU2u+dq4Nj4b46od59e/8uWYrdixRgii1qnWBFJfP5HkzzJs5R2xoYMD53DBU2hJ8C3zbo4qFLouaI2hne8yNzMObB5Bo5nubiNkZPK1nUcVVdqBRiNhjEVbSZMFGfrdaWBvb0rbNFx/8jounDuPrgq8l7hQcP0dtzPFc3Zvyn95z19gQoMgtgqTqdA9kCLMvjOHABnZvgiBsQZjDTbnYZzj4IEDzLuOdtvx8XMgRUXoHK0s0NKjZOhFqrf3pszmc6o1SWcCUjicM6wlQspkbYI4coSqLGIui4DWisOHjnDo8OEIUbtAluLr2o4sp5fhr2FNZM5RBpEd6YKQMexpGZcwsVXFUMc1RjqRker778gNvwEKrXsyqkx53/yc5LpFoWQUkpOSYKNwd3Rc+QlbnFclZvUSEYssE6dQcpFzzY2UY4vXuAYiHtxPIvhl6DlHv0P4GBjkWrMzzH0yk16qz4Z+CEsvr/XQwcikrJNzd0oWhESgU0qD9xhj0m8m6jSHEHDWIURMRySWACo5ueDi9UpJD9vH+lOFtXEdMqwO9JsE73OuOjJyY0Npj9YFIaq990zu6OACQfrFa4OR2QtxbX0SQRF4L3DpvkRGffxNZuZbCDkRkAhaxM1RHDl/LtEpSo/rLRbP4LXxVx4nT5589unTp8vv/u7vfvItb3nLFRV4ro1PP67acd5y26188HffE/+hCoLSGOeReli4TV/GgEzQS6rn0igQks4Gpk0X23Lpis5blJKUZcV0d5ft7QaPoBiNaE0LNhKEXP7dhDCATeNLVRkjzslkQnXsGLt7e5w79xQ6dWWReoQPmltuv4319UOcuzRnvueoxxOk8gRhUXrRV1BpjZSaEFIuxntCgq3mXRtrIYuCoqpQSjLd22M8GjNZ22D/7ALGBJxXGA1eJlg5zb+xgacu7LC5cRStBWWp2di3j30pWFnf2MBVFVpLdFmDdckQesqq7A29lIIuGV6tVYzgbGTTwgI2G0Yc8/kc732f+8zvR6O/KIPIGqE+WbrAwnYOCSZlUmhK7gRCwHkRmyYneL7PnWUnHULs2sEC5stzHDqdYUSY4c8gFlzt4eYgk036iHEAEYd0U1eFGHLUlc+Vr3sI8w5rCeN5F9+5KLNaMI1X87e9cx/A3kLEzUNkYy+OiVGdIniHLgoQoKWI0WvarIic00zXl+s2F2sR/+iUT82lSHk+w81Dvv+xuXlk+ebrGOa1r0SICilyXIK8pcTheiZvPE4mKUPXnz9/P5Da8sUccS+5l+pRh/clhHCtHOXa+JwaV69VW09ouvjDC0JjgyCokrhTlP3OMRoVFXe+wcbIMcFRKEXrBK0tUVXNaP0Aa0VJXRcE17J1/jz1+n4AjJnjWouSBV7J+McHilLjWHacKhlAISP8++hjj1MLDbKgqCd4IVhfm7A2GdHuXOK6Q4e46YZjvP8DH4xMYAoaEx2OKmt0NQIkwQec9Vjv6GZ70bgpxfrGBlop2rQrXl9fp6pGqLKiqmp29ubgSI63QxVr+DaRf4Jge7vh+utuJMg2b917Y1EUmqqqsM7Qti0F0WE3XcPa2hhEzHEKKbG2o+vaPmrMRj6zUYeatEOHmCOlGEWRyFFxhN4oR8OulMIRobhVQsgwUvPJ4BprIoQpRJQSzM7HR3lAlyDuPKehlu3w/Hku/f97g7wwzKvkoqET7tWNfECJhUPLUWFeo/y5VcawWHV2gw3IMErNDirnbVfzp0NWat44aKEisSdB00opZIi1lPmaBKmBd45uSUIPIZGkiA4p51rzGDaIzvPPG4T83tCpxoh4IUm5OufhOgy/Y3id+Xlw3i1ysgyVqPzw5cU9EyBJYiq9Lu9Q/P7KRLBr49r4bI+rzrgrKXni8ai5641jMqopC42SqhfiHu6yHQKvClAl6AqvCoxXdMZz6OgRNvbtQwjJaDzh7IWLPPj4k8y8RpZrlOP9hHJMUa0BEfordNHDNxmiGk1in1NnMxtTcv7iFue3thBKo4oKpWvmneGWO26mrKEqYTQKHL/hAEZ3zEKHRdLZ+AO1DlyQ2BCYdx1z02KDp6xrDhw8yLFjx5BCMG+a/gee2bbWODbXamy3TdfsIb1CB0EwBmGTutF8zl133Mqo1jhvevKUd9lZZEMZ6ZRt12J9zA6uT8ZJKCEgZOyJ2rYNxljms6Y3cnl3frnoueiNfsgKRH5hnIqi6I1sNvLOLSTc4rWKPmLJhjHrisosVpCoKTkqAWhTPSnQCwMMi9wzkSlLxfUOJTkS51yEXN0iasoR0fDaIBr2siyTvJ7qnfRwPfLIn104ksXrw83B8DuGUWVRFP13La/vYu16qboEReeep8Pvycf335PyuNnh9I5rcHwIi43qgty0KEG50shzHq5LhpPz96ySq1Yh86XrGa6LXGYGr5aRDOcIiYA0WM98/fSZ98GG49q4quG958d+7McOP/OZz7yzruvnTyaTu5/97Gc/80/+5E9GVzr+jW9845FTp07duW/fvudprZ+/ubn53K/6qq+69UMf+tBSP8x//+///b7nPe95p9bX1583Go3uvuGGG+56xSteccu5c+fU1bzvnONHfuRHjtx2223Pqqrq+RsbG8/76q/+6lvuu+++8i/zPZ8r4+ol9/a2uPP2G+C/fhRsh2suIesaVY3ImFwIkUQiEoVeKtnnvKL4tAKhcG3L3mxOWa8xDVEw/YYbbkLoGtvGH1y9tg+kj2xYpTh46DCXnngEiOf2zmOyMwpZrk6yuztNOVGFUCqqn6iCG254BnuzFtMYnJzyx3/0Z+iyZKQ2kCKwIUt4ak41GiG0RitJPR7jvKdIRIqu69jZ3cV0HWVZUlcVk8mEuhxRFBU2SNb27efAkQPsbnX4vYJCVhTGIm10PCeOjHj+c2/k4vkzqNEERCKV9EZpkZ/KuUiHp2nmbKyN0ILollJhedd1lGXVw7TZKGXyRzZsuaZzGKVlp6fLhXDCkPYfoM85hlSiks8B9MY3+EChdXQegCZ1nUn5upAizq5L4v4yMkPz3DKxZugEh0XvMZrxeKAQy1Js+f3Ach4sO14hYm41X+9qJDgcq68NI8yh8R7Cn/n9HDnHnqPLjihvRqSMc4n9UUl5waEgQVx1iYiM8SB63eRAhKCdz2IK+Xd2OUM435c8zzzXvKbDOtd4jZmfEJbWdbgmw3muiigsnpdEs2fhJNNlLq1//ozLOXAvel3mXqloNVK/Nq5qvOY1r7n+F3/xF48A7N+/3x46dMh+/OMfHz3wwAPVi1/84vnq8e95z3vWH3300er48ePd0aNHw4MPPjj6gz/4g/1f9VVfNXnwwQc/PB6Pw+nTp/Xf//t//1ZjjDh+/Hi3vr7unnzyyfJ3f/d3Ny9evPi4MUZ8qvcPHz7svu3bvu2GX/7lXz4M8IxnPKM5f/68fuc737n5F3/xF2v33HPPR0+ePGk/3fccPnz4c6ab+dV3RwmGW246AcDa/oILl87iZMX6ZMJ4skZVTdBSEUIUFpgFgUAjUfiQdrq6oNYFSgqanY7CGq47cBBZlnQBWgSikFE6Tnm6UclFD3vbZzl58wmeePRJjpY1QcfIpm1i9DHdi0IIO9uXuDC7REmFDBqlCrb2drn9zlMIZ9i+cIm6HvPEE0/y2IOPMpEVbdvhJYTk2AgWJQq6pkNKTVFGBqT1jrZp8QjqtQ3qsowlN4XGRTyNMuU8Tx47xD2n72dUHmJ3tovDcyIZ9bXxGkJAvVbjhMTYmCPMT4QQOkUVkfPq8NGAekuhYnTrUDgpODAqEMEQGZ8KKDAm5kOt7WL+K0dGWiNlNLa5bdaqwR1CjunF6ARS9AkQnEcqicq1rul1LRUyCAoV5++SIZRKEkRUJSKxrMPA4HsfNV1jt5nUkxL6iDsbUxlSJw0fOz0OndYiGsvEk8z6TBC4v7x/KCwcwPDfQ5ZsHx2JEJ/l5HCkLIBYfxmd0eX1hquRVD6/SvnN3vlLsWiSMMjtZQZzzmn2UHVuDE2SuQwxLxgG6yZInXKCo+9cBAQRVYg0MrGSXWr/199upIooknMuSWkuQ/PR6ccNie+JQ/k6DUMVpf6ZIae8RUzphIC3gdbncp+kwRtyb1YINjOOZf/pa+NTj49//OPlv/t3/+4IwMte9rJLv/Vbv/VgXdfh9OnTej6fX3EB3/SmNz1x1113PVhVVQB4xzvesf6qV73q9qeeeqr4gz/4g7Wv//qv333ggQdKY4yYTCb+/vvv/8ja2lrw3vOe97xnfPz4cfvBD36w/lTv33fffeWv/MqvHAb46Z/+6Ydf97rXXdje3pZ33HHHXU899VTx5je/+ci//Jf/8vSn+56/uZX89OOqHWdZl5i0g9zePs+8C0ynO7B/l90tzc6049ih46yP9zPZ2EdZ1VSFpK40nbEY2zHb2iKYhrosGAWD3bnAR/7kQ7S248R111MUY7rWM17bx15rMSZQK8n6wf089/l38d/+5C+QsiAER2NiD1CAqkxC5Hi8MRRCIpHxxw3c/qzbqGuJ0jV7zV5qM+UQLhCcw1oRWzkA87099rxFqpLRZA1rLNPZXk/E0HVBURWUddWzPKUu0brGx8QuRw8dZX3tSc6fu0Q5qhmP9zNKNReFHiN1FWtXiaUfUuq+Nk9rnaJ0gSQaaREEwTYorTDOI4Rmb7bH4QPrFFqxu7uTSjeisHvTzCOU6x1FUUTClhZItZy3q+t6KULqum7JUPa5PL8QIwguQss2C5UTmcVFUaCEwIXQM44RApMi6LIsF9FReqbyd6gM2SX2aDbSi7xZbGGXHQ0s1/eFEHqHG1hEK0IIgsv5wuXOKrAc1eR/D1m3/WZCrkY+mY2rBk5nWbXoSsIBmaxknF1yRvlzQxg2v9ZHs4nM5BM6EQmnKXIXYYFYeBd1lK2PQuyC+CSFgNIaby2pWReexCYaELVCSNJ9qQQmO/48X2sthdaI1Ic0yxaGEHO38RpDP5dAILg8j+W2dlIWCdL3kCU8vYubAWKdtkj53uVClmvjSuO9733vJD87/9v/9r+dqes6AJw4ceJpnc4DDzxQ/oN/8A9u/PjHPz6ezWZyGN0//vjjBcALXvCC+XXXXdc+/vjj1dGjR5934403NqdOnZq/+tWv3vryL//y2ad7/+1vf3s/r9e//vU3vf71r79pOIc///M/n1zN9/z1rtZfbVy149zdbtHpcOUD1x8+gjsIorA0rUFJmO6eY/vi2fgjKAJd1zAe1bikJLS+NmZUKDos3lsKLTm2sU5rO3ae/AjTnZayGrNdTlhf30TrkjIIbr7pAM++/XpKrdjd22M0HqFUwd5ebFaeb0pRFJw/f56iKFFKM5vNufUZN7N5YJPdrS2kApTg/ffcQ9sZLDEK0lIREuNwVI8ZjWq0qpLGq43EH6UoK4koHF4bgtQEWRJESRAVrY1SgHSeroVnPvMu3je7l3I0wSH7gnjrPLIo8Y2jLGsIgra1qOQQ2i62AbPOURclIkRDSIji7YUQFGXJ2lhy9sI2Z85f4PlljUk5RCFkErTvkHLRBNr7gFJxZ+9sNIbz+bwnjAwjiisJCCxFaoPXhRCIRLTpjxGZEBYdmzFmCSoesjuFEH00NYSZ87/14NzxOp6m/jI56nze9Jc+csvHDWHKISSZI8whe7OPIGMz1h7OzA4xXv+Ccbx0TYN/D79zuDHJ+ci8qVjtujJ0vHndljYFCZkIRA7C0kZAiH498qbhSrnU/H7+XN8vVaqeAJGZ8vlPrDBbLr0ZEruWpP36XRJLQWNGHaSS+KS+EEtzFkxqKeQg73lt/HWPj370o+W3fMu3PCNHeXfeeefMOSfuu+++EYBzsZZhPB6HD3zgAx/72Z/92YN/9md/NvnEJz5Rv+Md7zj4m7/5mwfbtn3wO77jO7Y+1fvD7zx16tS8LMulHez111/fXe33/E2tzacbV+04R2uHeej0R3gBsLG+yXldILzAaIdSJeuTNbSKwuzee9puimDCkcNHMNYQnKOoKrwxUf6uLBFojAkgHeX6fg4fLKnqiq41iZrfUTvPlz//TjZrOLCvpL2wQzUZESRJ/DrmUiESiJqmoapivlkIyXOf+xx2d3dQZUk9qvjw+z7A+++5Hy801kbxhPhDzaUJi+jGGIvWirquKcoSFzqstAgtY1sxJC5IZtOGrjU0zRzjIYinqCcTglQYF5BaI1W0GrP5HpND+3HhAvN5hxIFhYTcFVRmggUx3xmFByJDtygqCi1xtsW0krJUVKM11iYTTFnGYvVE51eeJRKKXKmDywZuaDRzzjP/O66huMzoD41kJsUQQq8+IxAIJXvSECzk9LTWvYHsmZ9uYdSHQgKr+bvM5hzOoa+9VMm5Z6hWRJ63khJn7BLJZ+iU8nnzv4dr0M8vdcnJ8x86nwxTDlmsy/nD5esYOqwhkeZKjjM7kHyu7EBXGcD52lbZyMM1y+8PHd4qezafK/47Os+8Jovvu/Ichs9E/q7VZ2iIYsQypbB0PwGMiV176rq+DDa/Nj71eMlLXrKX1/onfuInjn7Zl33ZQ3VdhzNnzqi9vT156623LtX0/Nmf/dnYGCMA3vGOd9z/lV/5lXs/93M/t/na1772luFxFy9elPfcc0/9T/7JPzmb78mXfumX3vbHf/zHG3/0R3+09rf/9t/e/lTvf//3f/9TeV7f9E3fdP6HfuiHzkJ8Rn7/939/bXNz013N93xeOs49p/jgxx7g6wGPRqlYa+iEj3JiPjaLVlrirEeqNVpnoRyhVJnq0VXMB6ZylbiRN5RV1OGs6hpdVZT1OnhFaxrK1nJkcz84Q1UqjFjAYqM6EsWcibvkpm2Yz2dIGSHLA/v2c/DgQWa+QYmC8dqEjf0HuOX2Z/DAw4/jrSfYDOnF65RSE3xUBqqriqqOCj3OWoqqRJc1je/Y2TXs7u5w4dw2072WqixZW5tQlBvM246q9RRVhTESGSJEBnDy+hPsX68R7QSFoGssCI9ONkirQekIgpDyRkJFOb2q0MxmLYQCGyRPXbhEZyzT3ZjnLcsYKetC4xwD2FGkaHJRXDmMfrKRzsZt1RBCLDvJ0VGOIDPUC2kdRarpdAKnVB8JlWXZH5OdY+/MBkzZPK/8/2E0nJ3TqhOMf3wUPcjGPARC0p613bKjFCJGN72yks/ShUUfgQ8ds0rNrLNRz23bssGPcoXLxJnhNeSx6uyGjOFhlJ3fXyUlDWHkfK9WneZqxDs8Z167Ht5Oc12IJCyixXzO1cheCFJtZrjsGvO88rlyPWn/bIRFOVDO1foQyVN5A5Q3MUOUY/Waro0rjzvuuKP7+3//75/9xV/8xSPvfOc7N48fP75++PBh88gjj9T/5//5fz546623Xhoe/9znPrfJz/urXvWq244fP96dO3euWD3v6dOni5e97GWnNjY23NGjRztjjHj44YdrgOc85znzT/f+nXfe2X3jN37j+be97W2H3vCGN1z/sz/7s0fH47F78skny+l0qv7lv/yXD3/RF33Rpz3P38ASXvW4asf59t/5Pew0wcxFiZURYlF6LUZLMhFLtKZQBaYzOAtalHjfRaKJLigLjSWA9zhnCAGkVkzqilE9QRQltpVRVm99H/aJ0+wawWZRUVYjhNiNgvEBZrOoZCSTyPv29jZt27FWbtA2Hade+Ez29vbwVcyRbG/vcfHSNvW4xOHRZYEUBUoqtIt1nIWuqaoRVTK0znqEipDT1sU9zlzaZmfeYlqDkJKiqDh46DBSSpqmZWc6QxYV1VqFUoJmbhEy9M4+OEMwM0aVZnTgAFsXt+k628u5qWQ0lBQ4D4UsozA+gbV964xGFc28JVhLqEqatkMhET6gqyKViThCsEsw7MIIeghyyTlmg2WtXaqnzK9nVmhRFH0edPV4n5yX1ppSF33OcZgbG0Y6Q+PNioFehf1gGUa8kpOKDOAYaQ7fd+HyEosQwkK8YQUSze/3MLTIGr6B0Wi0lAvOn9M6NjUfOtxVh7YEX8LShiPPJX/f8JqHudBh5LYala9+Znj80OkMRR5WHfwyJBqVqVY3UZnMMzz3MFrt1aSS9KOUEqkTUmAXcxYh/ib9ULhiZd55rEa318bTj7e+9a2PPfOZz2z+7//7/z780EMP1Y8//ri8/fbb57feemu7euzdd9/d/ORP/uTDP/ZjP3bi/Pnzxebmpn3zm9/82Kte9arbh8cdPXrUvvrVr77w/ve/f/LEE09U3ntuvvnm5u/+3b974bu/+7vPX7hwQX2q9wH+3b/7d4+cOnVq/ku/9EuHHnnkkbosS3XixInuy77sy3Ze/vKX717N9/zNrODVjat2nE+cu8R1VayblEWFqKpIvJCJ7B8CHo/zEqkKykrQdi7Kq2V6ve2QhY5alB6gRhcKoTXFqAYpER6UsIgiUI4UenMfe8awFhTWNIzKIsKOWrI3j5uQLGe3s7WNNQFZl0yObrB+/CDTpgHrKUtD5+Dd/89/5cK0YToPCA/QUZWyr8mcz6ZsB4MJAuPAmBZjDXvTPZrOEdQIqSvqomA0GrE3m7J9aRuPwBqoJjW6KJk3hrX1CT6YGFElx/nQI0+yM20Zi0BZFhw6sMlTZ56K0oRACA6t065feIx1xPZfkU1a1TVSTBESkIJm3mFtQJdRK3hvbzc6z+CpqpLRaBJl+VJPRGcX0OkQlh229hoaymHBPCxgs6FDFUL0AgkC+q4di4iB/nsgprr69lE+at8GHyPGYV5rFT7M51h1Mr3jJpZr9EQSHy5X7VmJfIbnHkbnISyin7ZtkDJC3zGasog0TyEFARWbLyfmbwBEWER36erT9cRo3VrDeDzpv3c1ml6FjiMMf3m+c3gNQ2h0eI4h1J3XcHGPI4lMSoHW5VKEan2U88vknJBKZYRa5Db7BtVAMHZF5F32tayIVOeZJC6FED2MD9HRtm17Gdx9bfzlhpSSH/iBHzj3Az/wA+eu9P4TTzzx4eG/X/e611143eted2H4WgjhfcN/Hz582L397W9/+Om+89O9D/HZe8Mb3nD2DW94w9m/ynk+V8ZVO05BiQrxcK1LRFXFXGWC/USQCB91PB0KdEBO1rF6RGcMslCoIlLirQkEGaOkolSIogAp0bKgEpIuOIKyaCHwKJ587FEOn7wR3BxvGkynKWTMpwL9HPZ2d2mnhif2nuLlX/wFyPUSvxPVd5p2h30HDyPLdT76ycfwDqQvQFiUdGwkTbwnz1zgEaVwumBuHHVdAgEfNCZAsB2+62i9Zz7djR1hyoIgFbqscMHiQodSY4SqELrBmgahopHYutSxN3Uc3BwREFRFwY3XX8fFh6O4RFEqApEcBIGqiqUPvrFoGZ0hUuKFQ4pAZzydITEroao1xqT+numP1uVCMUdFwz3MH606kGHEthqp5WhzNVrJ57NmxQF7vzCaOVflI3MTIroayS2KIBfG9FPBc0MHsxp55Ugn14yKgbMYXuPws/l8ES6Nee4QYn9XIUBQJIfiECL0TlSIgC4qrAcfIpzufGoRhojM7hB62cE8h7quqOoisVL9kpNcjeCGG4RV2HQ1Kh+OLFAxjKKHkO3i/mZykyT3BY2FUAGpMxydUJ3kIL2Htm2p67rfsAB9F55hSQ7x6Y0bpRCbcS82Oov8rDGmf67y3IbnuDaujc+lcdWO03Rd7FBB1GyWqkCrEuVdlJpEoHNeyJtYoiFLgq6RQhNCh9AC7xWCWEivhEw5MImWKtUaQiErvPKxBEIEPnrvR7jpzoMgo/i3JlCJwP6U42xSS67KS44fPkwXAs+4+UYclkmtCC5QFBOm846P3PcgUFAUEtcFWqNwAabJKLVuRJM0Np2XTLebaERS0b4XcRde6pIjR45w9tw5rLPRTApDsIEuBOrxCGc76qpkbjq6pCFbqIJiYw3fbRHKEm8tWimOHIlt1YSQaF2kaC+KBkA0fEVZxtylD/29MNZQFIrOglIylUgIvGMpihyWNhRF0efLMhw7JKEMndDw2Ay3DiOaPHIUlPN1xpglgodPEVduspwjFZHK+4UQWO/gCrDk0LmsQoxDAzuEMIfR1ZCwMhxDssrCiUpiJ5yFI1M697J0iXwVu3ksojaIJKHUVivE2tv+nCxHgOBABLy7HFZdPm4RpecIP28Ihg7nSoSfpmkoiqIXrcj38HJiUSwLudJaDjcbw89576mq6jIhiCvVWkopoyatWGYTD5+jVZg+z3tVyenauDY+V8bVk4NmM3LXCHpjlLppyMhszTtJ4QONsVRVha5qgjEEBFIDVqD1QnUmGoHYfkopSRCxebQUMsGblr3ZjJ2dGSFoqqqkKDWTqkA38cd0+FB0Op1xzHZn3PbsOzHGYGiR3mOMZXPzCO/+wz/n4qUGLwts11IojdYCKQLKO9gDahc1YFuHkCVKLoTVbcodhhAwpuPcuYiGaCWx3lKPRqB1LD1xFmtaCl1E6DJFWNO9KdtPnePIkQLTdozH49hpJOXvSMZf65yjX8CmhZLx+MzvEYI25duipF00/FJqQPYEniGRZahiAwumZc4fDskyIQRms1n/7+Fnhv/O0mo9qSkZ3qFMnycQkpapil/UvydVFgUIMWLVy+UYcVkuLyHJ0e9wTsPcbH596OjzeYbXMoRx82ZiuNmIDifmcPN9zNFR07YU1ah3UL1T8AmS9n7pGuI5LD44lNRLjjFHiVeKLIfXEkLoiTe9IP/A6eXcc9u2S5uDfN1D6DqE5TUZrvNqJJs3GEVq45efq34Mcrx57j74WMvLMiFqlfizCjcPofpr0O218bk2rt5xTqfMi2jM69GIsizjrtAPyAd5l6oUItjokKRAlQXWWZSMkZLQuX6P2CkCEQkiPhCi8EyUZXMW0zW84PnPZzJa5+LFXU6MJwgJRQluL7Fp57Ev59a5SzilOHnDzaArlNR421KXY7b3DJ988ImoaCNk7KdpA3PXRQeUCEaz2R5tAEKJDAJk7PBS1RWh9RgTpdDwgbbpQAm0joo57XwPoTVSFRRKMJvPsKqgLAoKvzC41WTEeFTSJv1V5xxlMvT79+9nR4oUdWaDHR11M59RFApP6tTkHLbrEswVNx6ZvAEL55CJPHnk6PBKUOyC8LLM8nw6UsowbwgL51RV1QqUGLCp5ZwUufiGKMcXAoRlmDI7xRxNDQ30MCLKUfCwTMT7ZZ3UJRnBFUeUI6ZlR5Hak61EZqDSpmThyPP3ZsMvpYw59xAwnekFLVy/uRCABL9ck55zycMNZX79SnMcrvcQ4szXm6M2KWXqoKP7fOmwLCWebzlSjOderOUQzs/OezjXnpG7sqmJZ4mwMWKxARxez/Ba8t+Hm40roRvXxrXx2R5X7Tj379+P294BFrvRDNc452Klm0jlCCGggkNjkS4yanVSAXFeIkTUNBUySn/JIFBBIBFYBVJocJ62afDe8pznPpc/+9B/A5dqQIUgSIuq4vT/6x+/l+uBZtrgDx/iwl7Lx//sA+x1e+AthZR4dG5iGMkNUoELKApCkAQLYCmo0YDHgbDkWrOd3Xlv9AVp9+3BOkclJVIGcLHPYde2nLOWzsH119+E8AG3G4lMBw4dZGP/Jp29hC5KCDE3FBI5aDSu0VrTNvPUBzMqFpVlQVkW7Nu/D+c8k8kGxhratkMJCVKjkiRfCCLJoi3gOVjkkYwxPQQLy+UEQ8M1jBwzVDh0rlLKp81LDWHikPJgGartNVeJwgwylSUIvWgWAIsIJb92JdHw4XurjnzVQQ5HPn410sniGUMnnEk9DDRd++sVcqkuVaZnLPbJjM6h6zp0gsOFCDgX0EXR9zDNI/+u8nrnDcFQGGDI3B1CqFe6l2Wq7c0531yCk4+NqlKCoeMcOmSts/52fB4ygpAdcT5fT+YK9Bu9fh4ivcYib70KtefXhk519Z5eG9fG59K4asc5Xp9Q5XwbkSAUfMCJEBmeIeSWvimP5fDzHYKIUaZ3Mcep5CjpmwZk6nyilYqyeUohU8NlZyzeOzpnOHP2HOeePBsdmumoZR2dXaTFUk3GADRS8LJXvJz1A/s5wQ3IUqElrI1HjEZr/IffeCdKaFA1uuhAdBRJ8qvwPkrLEZBYgvQgLQGFdY6yjNJ1xnq88wQUSiuEVFhjUQ6C8zgpKXSJ8471yQZN1zKbzjnhotG5cOEs81kLoyh4P2/20FL2dZxVWXDyxHHOPPlkdD4Qa95ELIsoiwIpBBuTNRrTYdoWkWyflArnfHJcZsnwSiVj3i7kSMZTFHrJUQ0dRY7msgEewoFXqlXM8OEwMhkycRHgSMSiEA1qbpoddWmTFi1XhhaH8OuQhfp0NYp5rEaq+bxFQk9yJJ6v13tP25olpxzV5xw+pByvFHGD4j0ej3Wxx6mxHcEHlFYpyoq/lqou+/SGEALbOSpVYBl4ThEVobz3GGuxzqF1ajqeiFWEgcADcQ0DkWglAn1JjrWLUhddFDhrU+52Ocqz1hFbky1HuYuo1MTfs1ysT7zHoo9mh8o+znukiCQj72MfUikWTON8P4YbliFE3j87+fV8zas7jGvj2vgsj6t2nC0el2noQiOIhkEEn8Td0w44pAjHe4LtkCbGbyE4pB6Dt6isHerSj68IzPAUVUnlC4z1CKWpRhN81+GLMcIpxsJSyYIaScU6pY91nG4eo7Wb73wu1bqj6Z6krsY0ux2ts9hpyawYcfLgOO583QxvYhmBlBahNcoHaABpcKkrCUGmyCE5iSDwNhoaJ0GIaCi8tTgsQgSErFBFjEabZo9WKaQqETLu3r0wPPzIBW581nWYbi9CenaOSNBdO5+xPimYb6xx8cIWpdSEoDA+tmrTVUkhFedPn0GUmrV6na6bo0ZZ4qxASA/C4oOMuSUlCMGgUm5ZyeW84JAlOyR7DFuMrcKhSimapukN3rDwfVicn6MirTUipF6UIW4+hAzLOVV/5agwf1+OtrIDyjlBWEB5Q0g6O/PVPOYwosss3KZp+s8IERnN8dwpF6sE3kbx+kLGZ98lo64LiQ8GpXJ3oJjHREZnIsKie4ogk3/SOg82H52Pv4dqMqJtWyyBIBL8SwC9OD59iLTniI3CvccTSWSERW4ZorC/lDmHmlEB06/NlVqqWZs3SJF0VhR66fhhJCiEwIm4Tgy+Nzrz5c3NEAnJ92XYfFukHrA+5fGNuVbHeW18bo2r7seZlV8ACD7l3+KuOLMytdYoqSOxpRzTyQqnKjoKvB7hZIkXiwii70JPPF/TzAg4dBF3rVpJpICLFy/QzhuUCkynDc18Tl1oTBeN3dlzsQzpiTMXkXLE5v5DdJ1JjEGJktExbB48gFYCIRTIgFSiF0HvF0TG7x5GOdlo2yRYPswNZgdR1yPqeoxKxByiTUMJwf59+6jGMSrW6wd580/8PO981/+DLssYQcoF3CkEtN2c/fvXads5AYfSEinBOcNkMo7Rj4h5wSigPygsTw4wR2cxilrAtWGQS8wGMBssrXXUw033RadWYXmN+igmOdArsTVXiTj5PDkyWVWSyaPrOvb29pjNZsxms+g4UgSYvyNHtFVV9fcEFlFMvi85hzecSz5H0zR4H9nKQ8Odoet8rflPzMXnsoork3byGEa9w2cqr7EQAq00ZbFgsYbBMW3T9uIKw8h5NRe9CneujmGeVCCW9H4z7Jyfg9yDNUPyeW2Gm5ScM86kozy3oSBFfh7ytawSe4b5zfz6EOYfXks+Xz4+owPXxrXxuTKuOuKMrNkFJDPcwS8ZqCx75gWNFejJfpR3NLYlqAItFMqHnsAA8UfjiBCT7RqqaoQIAWs6tFZcOH+eZ9x6C/fd8xfccdctPPnUBaY7W+zLgtwqzqsLuzz8yBPccP1RnPcx5ycFTdsxUQXGtOhC4aRECIMQoIrYIksTgIWItoqK6EBmnvokNRbLwfN1l2WZHHQyZkLhbCyil0ojhIxQbuqO4hhzbi4p1g8SREgEqw5Sb1FrO7zrKAvFzbfcwIXz28yblrIq0IVkMhpF5q0PyBBbUnXGMBILubyQYLsFKSakWx3zazLfxxU5u2FJw+p9zYZTCEFVVcyT+ES+h8M85zA6WFX7GebovPd9pFcUBVVV9RDgEHbNIvGTySTmf1Pf0Zyvzc/Q0JnlSHi4icjXOtS8HULMVVUtvTZkGrvgYzs2uVBZGjqWVbnCfL1Xiugj8zmzxuPt0VrjCL1jvxJ5Zuj8rvT3/H3R2cdTG9NR6iJtWvzSZmF4zmFj6yF8ne9hfm8+n7OxsbEE5w/HsoOOI2+c8nOUr2/4+++fnxAgKRYN78G1cW18Lo2rh2qbZukHHB9+hRDLD36vNVmAaTRt16GUpKprvFAIF6PLfK6qii3BbDtHBYdtG0ZVlWo4BRbY2rrITbfdiHMKqQSTyRpmdoksMCuTQHvnaj75iac4eewEZV3jQ4NSAh8ETTPjlptv4I5T1/O+Dz7AaFTStC3GQFnVFLoAYu1bpTXep+bJyeAAucy7hy0XJQ+RlOOsT/koldpjCaqqRmlNaZJh0xpnFOV4jaAUzjvKoiKkUp+iLOhEwHnLZG2MVgXnzl9gOp+jVM2o1EgBk/U1jh05yGOPnse5QFlWiCDxTiJVhfddyl3lyNL2EJ2SxWVGPv97GN0Mo64hMzXXluYobjiGUOqqo8rPToZe8xrmyOdKc4LoDMbjcW/U8/GwLCG3TGzRS+cZOrAh+Wm4KcjHDI/rHVFInWVS9DXM6+ZrGpZ65Ogtn6t3pn5RpoNYKC75ECgKDaLu1zsLVeR/D+cdn7uFktDwd2l9QInlsiKZnsfhyLJ/Q63YfOwwOlwt+dnd3V1yssO8dr5fw5xx/mxe27xBysSlVRjWuaQiNdjMDZ+/a+Pa+GyPq4Zqnen6XIVWmqKoULqgKBbQnkqi2lKKmPsUnmAahOvwpkMG24uY5x/WbDaj69rYGFolR+wd+ER3VxLrPKPxhLLSnDl7kfV9E6ztyA0/Mv/j0m7gsUcvoNUYKRVSgg+esipTBxXHM269AWsszplIjtFFX4wP9NBQVVWDHN8iMoDLIzIIsYu9FwQfC+KtDVT1CFVUIHUf5YXQUmvJ3s4llIo9HZumxad+oF3X4nyc33w+RWnJxr41hPA43zIelcgQVWxGdYXznjZFpLG9YqqL1bnxcpxhvj9Z0m41qhka3+H1DR3LEHJbhSWHTmO10H4YGQ3h71ViUi56HzrvHNXnKG/oHIcRcr6GIekEWDLQ2aENBQOG4uL52KHTjM9X6pgSlmHIVYg/i8AP55hh47wOecS1jc/nahQ4dBKrcPNwQzF0psO5huScQwh9PjvPaxWOz2sC9M9M/r7FM7QsXpCvZQi3Du/bECofznHI7u66jm4gI7j8TC2T054Okr42ro3P1vhL5DgLVPpRdZ1h3nYY62MfSBvLRETwyBDAWaRtKaXHm4ZuPgXbIJwhuJh7HI/H7Nu3j7KsaLsWqRWjtQlISedsZApKgSo01hrW1/fzJV/+QmZzqGoFYdHcdv/h/QB4tUNRK86evQAolNaM6oqqKlFKYLqW5z3nmSgBglhsT4jGKxsPKSVaqZ7pWyWjnTV5Zfpxi8QUjf+P5QcIQUAmp62IpAoNQmbUF+EMVSl54BOfwM7iZqSqajInuW07ZnszrLWMRyO8c4yqmuPHjtF1LUoElJJ0reHhhx4G4WN0bB1d2+FTHs900Yi3bUPXdbRtFzVSncVaEwUirKHrWtq26XOhUf1GYq1hNp/RmW4QSUSnHDcVi0hq6ChXGbVDw5dfn81mcY7JcFpr+3KJoVJSPkeEyV169rpYyiLAJnKZStGl0gpd6EiYEZGok8UiXIgsT13GSDULR5RliXWOixcvcuHiBXZ3d/t10lonxCE6gYgORD1XQsAag7OL/HGVHJJzDtNFx+WzuEQqahRCoIsCXRQR+hXxOY69X81SBD2ElFfznMMRBnPMbN4+zymXe4f6kFi71qYmBXEucR70Oe0iPfdXclzBE4lyLhA8STns8rZtPdrAAp3IjrqPRgewvQ9R+zowRLWWN0efb+Opp55Sv/ALv7D/13/91zeGvV4/H0bTNJ+fi/43MK7acQrvFxGeiyIAWtesl5o1BWvKU4YWYXbopufYfvwRHv3YR2h2LlB4g5/u0Fw6z872eS5Nt5jOp+zuzagn64zW9jP34IoKUY5pArRKYxwo59FKcGH3EqeeezfPfdFzOHndQQrWCEQjqMo4sUkVaEXDY+fOoMb7mBtJ27VMdy+wtzdje/sit163xt3Pvg3bCfAKKRSCYR7Mg3cUHiqjkCYw2jdGT9YphUZLgVUCi8dLgShUFK5XiqAEVgU6Z3DBEnTsYo+CmcjC2YKuGHP63JS2i91X6Ap0yoGOqhEHN45RMMbNAt28gcayb7zGiQMHObBvjFewVq+hixpMx97uDNlGGBzXojzg6VnLyxFk6Fm3Qjic77Cupe32aLsZCBcZohrqWlMUAl1AUYr0OUegS4zYHHUvjFzOXeXvXSWSKKVYW1sjlzIMPzfMg1q3kFwzJtarGmMQSmKDZ3tvl9YZDA60RFYFotB4KQhKxq7iUuCCwDhB03mazjFrLCYoZFFi8Ox1c6zwqLpi/6GDbBzchyglJnjm1mBxdMEync3wxtHN5vjW4FqD9gKfjKH3PoqhJ4enlURYj/QgA3hjkD453OAw+OTcRf8c+eRUhnnG/FzmSHn4Z1jnOEQDvAAn4x8bPKLUeCnjM5oYunmNOu/wAkJaV0vACaL8IYvIPhPFIgGwIiqVaKyB4BWErPO7QDJ6QtEgas0wfVXXqEITZGTjBiXxQqQNs0yEu/qyPO/n03jrW9+6eezYsee95jWvufXv/J2/c9uNN9747A9/+MPVZ/I7nXP84A/+4NEbbrjhrrIsn3/8+PFnf//3f/8xgO/8zu88edNNN901Go3uvu666579v/6v/+uJtm175/g93/M9J06dOnXnW97ylkMnT5589ng8fv5ncq6fz+Oqc5yhGBFU1FvVSjApAjrMsfM9vDMEohzdpe2L7Ozs4DrHrDHc/8mHuenGk4xGNfX6GuvjNZwXtKbFdg7vfG9IC2MpgseEDuFifseHWBIwnc04fvQ4L/3yF/D7v/NOZmHGzaduhU+e4fCRAwDcdtMJqCtgztmnTiN8x761Gq1LTNcCDt8KXvLFz+W++x8hqEiYkUog7LC+Le2GvUQXkrV969gLc7ySeEmMMP2wKXBUgxEiijjkrF92Gi4sIjCImrLeW6QKBAne+ahSRCwbMJ2haw2iLBmNx+BgNp8zWdvg2HXXMSoKZnt7FJVEFopmPiNoQWhjQb4PnuBCntbyfQwL+v8wj2mMYTQa9RHTas5zuXYyxGhaSIpioR4zhEmH0LeUsu98kQ3xeDzuma3e+4HIQtHrrA7zhFUVhepdYnTnxuO5efcwOlqUqUjKUmPtIlLLjFHvHQHfNz0vixopJNPpHKUk0+mUKCbhcM5HZrb3FLro24Dpql6KjJzP4vzRWaoMHYtFz9iQHJu3FuN8LwyR70mOPIfQaM5BZuGKYQQPC7gZlhm3ORKNr+s+n5pfH55nSOLKn5EpIh7mqIUQtO3i2KHsnlChd5hD8tDQmQ6fizyGMP7wmGGp0fD38/kwtra25Gtf+9qbh689+eST5T/8h//whve+972f+Ex97+te97qTv/Irv3L4n//zf/7YV3zFV0wff/zx4t57760B1tfX/c///M8/dMMNN5j3ve99o3/8j//xTevr6+6f//N//lT+/KOPPlq94x3v2PwP/+E/fDKnqq6Ny8dVr4wLCyk3gUfYBts6cA1CAMIzm01xpmVUF1hd0FrP9uwC5y9tMbET2N1lsrbHeLLO0WMnMMbjbMC2DZVKXeF9i5IGREsIAska1jkuXNridnWCdm8XIQNf/XdezpccOAy//V85cewYAHffeRvPuO1GXGfY3p6iZMGkWqOZz9hY348uYHtnjy+6+y7+83/5cx45czZBq5KcVhJJDk6kmrTnPf8uLs62OHt2G6lkKtCPheaLfJ8caq9E4yYiVBx8hOv6A0LAW8tkPGG2t0MpDN4IapnZqRpVaCqiIHyQIZb3BEFnGur1dXRVImyLLEqO7l9jd3eHqiiZJ+KSEirWEIaFIY/nXsxySBrJzqtpGpomQru5PEMI0Zd/aJ07j7SRaCSjqMKQWAMsOd54yWEh0Ziipbx2e3t7PaM1nmeRZ6vrui9TsUkUwAeP9Y7OGMbjMevr6yjllzR4s+N0zvUycHmOZVn2Gq5SKHZ35j0711mHsS26EL0D1lpTVRolFYoo2pA3HUppECpGac7hWDT7FiJyAdq2RZdFL4FnnQOVGdipK0xY7qe5KmWXX8+Ep3ydZVn2m498zJCQlNc6P3dC+LRJyqpJizzxsJREyrgpGpYDLZ6ZZee8ysTNZUJLggYD0lDvGNOfoQNfJQp9Puc3f/mXf3nTGCMA3vWud933zne+c+PHf/zHT/zJn/zJxsMPP1zcdNNNf+247dbWlvy//q//6+iP/uiPPvr617/+AsCznvWs9uUvf/kU4M1vfvOT+dg77riju++++878xm/8xoGh4zTGiF/91V996MSJE9fozJ9iXL3jbKZgYumAloKyqnCmw0iN85bp3h7OW4rxmM60IB1CB6SMhd3HNvcx35vTzGdYY2ibhv37D1IkYYBOgtQCfAcYChzGWqTXUSy9VBS6Zm4Vf/ebXoURkr2PPpRmF39spp1jmykQOLh/jDdxZx+8wzmLM57D+w+y08x43rNv5ROPPo6uKqyNZBtIpSdE+TdvOl7wvGdzz333cB+PoQpNZwx4BywgSNmzaGOzbqlU7FwoYllA8L4nFmWCiS4l1s4JvqOSFbn3VFZ3KYoCZx1KSRCBQmsCFfXaOmVd0847gof1jXV0ETvNaJ0Nbugdex5DFmme9zAnCSzVNma1oKqq+s/FGkNPUZRIqbFmEYkO82zD4vYMycaynQVk17YtSinquu7nF+cYmEwmGGOYTvfY3r7EeDyODkFK6qompHzmEOL13vdM28xGjY7FMpvN+/PnfGrXGep6lK6hSZFTSHCkTCS3BZs3eE8p9VIJjPUuitdLseQ8jDHUZdU76K5te5JOUWhMgiP1kNATsuRfsXDsg81IvtZh7Wqubc0OZkjMyrnSzFwOQWJNfK8sS7RWl5G44vO3XOpyWeNrH5Y6o8Ain+pCexm7ePj8wYIFnXOaduDoV79/OKfPN1bt/fffXwFUVRVe+tKX7oUQ+PEf//ETAPfdd1/1mXCc99xzT911nfiar/manSu9//M///Ob/+bf/Jujjz76aDWbzaRzTkwmkyVa/IkTJ7prTvPTj6t2nN3Oedq9CNV675C6wKGwwdMYRyhHFGpM7FeocG6KrspE+BHsTndYG63jjKWuKwiB+XQXX44oy0hoMDZJdqkosB6wFHWJVgIlYt6oKGu2t3doreWgS8SBlOuURQEBZnszqtLF2kkhCN7SmUChCqbbu3jR8uIXPZff+c9/QWsNztrYw5Lk36SkswYFrI01wncI4VBVie+6SChiubEzqeVUpB0pqrpECoG1jqKuCH5RgtB2LRsbGzhnEMHjWDA1vfeYtov1sEEQjKfrDMho1JWOovE7wVEHx0OPPcbd02mSQyv6FlbIKHuIvxzmGjIis3EejWKLtr5Qf9DCakjoiJGnJzb+Xja4Q4huWNIxhPkWxlantXPpc1CUETrvTId3ntEoRpTOObquo2njxq0sS8qq7KOk7BCH0F7eHLSNoWmafi7ZqRZFiTVRBaoooiOoqhKpPEoHtFYURbnoLuNiWkH4RRsy51zqUhNRipwLjM/cgEkqBL3olhB4F5tgysH6DEUIhtBofsbyfcts5CEDeSiGn2HdVeeVmdbD5yzehwVKAAtxi+AXpS9lWS5FkZHntOwUpZSIIGJZlxBYY/pnMX7exzX0IUsdJXRkuTPPMPoePq+fb+PChQsaYDweOyklm5ubvYM6d+7cZwQDnUwmT7tQ73rXuybf+Z3fecv3fu/3PvGKV7xiZ3Nz0/3iL/7igZ/5mZ85OjxuNBp9fmHin6Vx1TewlvRF+l3bxo4hoxGdgrqsouMIFmPamLPTNXVdsLsz58CBQ/hgMLZDEOGsyWiCkrqH0mLeSlLWYxASgULLAMpQCk1djnBuzmhS4K2g1pLgpgCpBhPmxjCftYhQUOganEX4qLxjrMMGKLxAl5bjRw9y863HuOeehylLhct5FUd0OlqhgmdzY51RqUDkelERoddkPDM5xnkHqbckZMkyF0kq2VgApJzXbD7HeYeSsZZV6mQcE7QrkRRFFVuWEXVDpdRUZRWjNyWjg29bprZjfX2dvad2UpG+Sv06o07wlco4hrV6w4gxj0XkILHpvseOJ4vWWsbEa5ZKEPyy+MEQfssOITuvmMsLKeqMzM/Y3zKSqURiJufNTHTaMa+pdOyV2TRNDx9HtqpCyQiNxv6ooLRkNIo57ny92eE08w7vBVXqGWptR1mUIA1S5rZuiQmKwBkXO/ZET5lypxYXIh86OsMIvUZHkBPMUazCNR1CgLQSg4+9Z9Ui6ouPxsJxqMF7w2gzhCiSMCwdWZXLy/8fqn0JJJ1fFsK3tiOExSYmz6Gvax2cc4FWpHuUonCR60X7J1/grCOI6DZ9iOhHL5riPEJF0RHrl4UWhs9LRiaG3/35NA4ePGgBZrOZ8t6ztbXVh8yHDx/+jER0d911V1PXtf/d3/3djVOnTp0fvvee97xn7fjx4+2b3vSmM/m1Rx99tLz8LNfG1YyrdpzFeB9ilnaGeNrZFuW4pi5GGELsehI0TkjKQuG9xvk5yglGXiKrCcWojrBjX2TuEdKiJAgvKGSN8pndZ1GFpg2xYN92HtPO2W3O45zg6KFjWBn7YXYmatYWQSHQqEIybw2TcY0XHtc68J656wjrmnZvm43RmBCi8Li3AkJuDA1NkIiipfWShx47ww1HbiSYj6FqzaiU7M0MwgWCLPAiOlOti6QNq7AoCj0GUTCfblPJgqKIkKQ1ln37au795BM8/MmTjIqGG06t4dyUMWBcgzEtKlQIZUFICBJlFbuzKSUGXSiED3gp6dDMZ3OkdgjpMSFEViwK4UEp0UdNw5KHaIxiiUI0TppC1xjTkTtmxNrXKAafo0vvc67bI1UsjYnOxSMkOBcgSKx1MVeYalqFLGOMriStS8pHuiAokFicdVhraNoGZwU7Ow2FGvdRpdYlSgumsymTtRGjcb3E3ixUjXMB70XcNJHmKDVVtSiNyPq6o9G4h+djlBavQyqdyl8sRVFijOsVqIyPecHgPUpAEArr4m/CuRxlKwgeGwJCKozztG23cGIuUJQqbVQWZSeZbRrPtXCYmayVpfhgEVH3tZoDWcjhxiVvUuI9F0g1JGwJEArvIkKUR47+RuMx3vlIePI+9kxVeXOXJBRlYlTj49oHQSxXXig1AThrkbLAJ2Y5niRgDwSJVlGcwRqDUmkj6mwvKr8K+34+jNtuu60FaNtWvPvd75783u/93kZ+79SpU+1n4jvH43H4ru/6rjNvfOMbryvLMrz0pS+dnjlzRn/oQx8a3X777c2TTz5Z/tzP/dzmS17yktlv/uZv7vu93/u9zc/EPP5HGH8JclDo4TzvHdZ0lL7CmQZ8QCHiQ6+hCzEP6kJAlyVBpo4HIVDJAuWitJzUGkpJi6MuSgQ21uhJ0FLiMQghkUpjXUBXY/xMsr6xH+dEH8VlA6iUZDQuo9GWmoCg6xzBRSWV/RvH2GunbO67nvMX5zzwiaeo6zHNbApiYbQ6S4xWheaRx57kq/6nF+D/w+8hUt5LSxElAp1BO0UgOpOqGmG8SBBhS7lRUo1GUUZNyH6uQsOlecfWrOWZX3AHsqpAJRH4IKlHE0wyYNZatCpRhabwCunaWAKjVC8ybr2nGI8olcIISesMUqTygLT7XyVoxCHImqXxfd93v3BJ4UlJkSDohWD6MK+Zc5XD8hIlVXKoBq0KpEzlKCr2Qc2dUGzwuM5hbJc65sClS7tIWVBUFTaA8QZnPaFrKLSk0LEWcT6fURSDPCxZvGLRuNt7+jKWJilfZbi2qirW19f7tVgo/EChNT54nI09W4O35P6c3kdYObahW46U5vN5H9HmZymv14J9CyFoQnLqwzZveVOTIfEhjJsj9iE6kMtDhqL1w5rPIdxuOhNnG2I6ASHpOkNZVEt57tW+pjm/mL/PGEPwoi+HGco6DqH5IVQc65oX8Gtcoyj+EQI9K9r7yHI2tr2M5PX5xqr9lm/5lq3v/d7vvdEYI77yK7/yVH79RS960c5nIr+Zx5vf/OYntdbhR3/0R09893d/d3H48GHzbd/2bee++7u/+/x73vOes9///d9/Q9d18qUvfen293zP95z+P/6P/+PEZ2ou/z2PvxTWng2CSu2rmvmcoppQyEGuyQW0F3SQiDGx4XM1jq22DIDUiZEZwHuUkCgVAAcxWxQDrcRcFFLjgsTYwPq+TZwNNKZlTeR5JVmvEI1iWZQYY3E2EiFa21JWmtlsC11FxZRDhw9w4sQRPnDfA5SSSPohF3KLWN8pNfd/4iG+4VVfgSw8HtczaIsEbxkfS0Csc9B0CF2iioKiirqmeFBliWkj3KmUpnEGTcnDT17itovbTPwGh9KtGI8nUMboLCr96AhZCk1RaMpQUdQ1LnhqJVEyauFuHNrk3OMP40Nsqh0ICClw1ifYdvk+LhyoSMzY6CTTLenhMhmyksvi86tw2tAoVmUJqD4SytFNEBLro+hESOUnne0IgPGxWbiQCvQoil6EABiqqmZcVhSlRniP6eZorYAQN19S0TawuztFqYLYq3SyBD0ORevz9a/Wki7DzB5rAl1naZoWrRXWOqRcqBh1XdOfO5KNul4JKzuUoTThguQDzquUcwxpk2L738+wFCPPN58vO5ehbB2w5GSHcO9qTjS3ccus1qwENswx5tG2bU8Q67puCbVAxHPm3Gd+JlZzq4v86moThUUDbe8FWSko34/8XCql+jKmpSYTnwdjc3PT/+zP/uxD3/Ed33FLfu348ePdz/7szz76mfxepRRvetObzgwh2Tx+5md+5vGf+ZmfeXz42hve8Iaz+e9vectbTr/lLW85/Zmc338v46odp9Y61gYCqigQKuWMTNvvhGPhNwgE0suo0yoFtu2oRyWegFOAgjIZKQ1UQiFdICh60gAJ8hJC44WicwFdj9iZbkWikEi5Q7KxhuAE3oKVITbTVpGII6Vn3myhqopm3rBzacr+owd51d9+Kff82IPMW9dHPC5YPCpegywYj8c84/ZTvORLns+fvPdDjIuKVjZ0JrY+K8sy5nVclhmzBAHz+ZzJ2hqlqnAW2tkMANN0CKWRxTrbu5626RC720x3tzhI3DZY1xGCo21dctDRMDbtHF2U1PUEb1NZQHCcv3CGalJw+MgBzlzYpS5L2qZD6QIk2G6xwc1Gbaj0I6UmhBgBeOfx3tJ1Fl3oBNsuWKartXtDWbZcrkA+v1xICu7Nd2itwxiLN5aIfyboMeKeSAlVUVAUkdk6GtfU1QiEiPJsNlDoGhFybV8qe5GC8XhCCFCW1RI5Kc93Pp8znU7Z3Nzsnc5qaytro+pS27aYzvWfj6L9HucNTTNnNIqdbpxzzOfznjgzdJTDaDHnVhcMVdlHsJHUFOJyiEWrtHyPVstLVmX2hk55WM85/EzOw///2fvvYNuy+74P/Ky0wwk3vfvy69c5oNHdQDdAQMwCLJAWRQXO2LJsSQWTY5YsiqCL0qhYrKJZBYsUDNbUFIe2ZqxEi3aVVNJYoigGaUhIHAkkSILI3Y3uRufw+sWbTthxhflj7XXueU2Reh4TFpp+q+tVv3fDOfvse+76rd/39w2IYw9h5x1FmQ8xZ8cmC+kwkNjUwOrvfd9HWVF/TDBa188mHWrqftu2vek9t/6+SzrbCFe74T2m8N4O0YTHln3r9/bttL77u7/74Du/8zu/8Eu/9EvTyWTi/8Sf+BOz20kvfzDWrXecIkKhQOQ8qJSr10Y4D4EPQ7rBQCJwdtCR5WrYHOMsU3iPzGOqiBcSKyAgUUHjXYibig8EpbFeoAi0vWWZOjqlCZ1DquEXeIDMTKYoRzkIg7VLlJbY1mK0JChJ1wo2pidw5RjrLN/4h97Fux97kM989susZnh4BBGu6nrL2TOnef7Jp3jisfv4zKe/jHcebQydi7ZsdDEs2OjogiK0QWqNySME1vQdRo0YFeN4w5ViPpthRorgRkwETKQgLObxNRCDjvuuxRQFRmtcCAgV02R6KcgzM8CHDi0kvrMEIZhuTHAq48qNa2il8H08Asg1VuRbNXhpc5JSEbyMBwYVf8hxZhlt+FaMUX6nyP6ts7dV9yMETdNweHhIEJIhk5m8LJBax8g0JTA6QruR0JIPXVyP63ra3qKUJjca1matiemqTdS49jISctKmvd4Np2tPo4a3rgjltgObFASaPM9Whce5Y59XCPR9i3PHhSAVnNQVpQPJeqETQlAUBSF4TBYPnaPRaCgc8X4l/ew6IvDWTNT084puSu1K5pO6upRas04eij8jCCst9nFHB5GIlwp7Ih+lw0cqjul1tW0LwayKanqN6T3w1mix9fddupZj1nNP38cQCK1lTDSSEmcjvHtsDhF9pt+O6+TJk+7DH/7w4b/v67i9fn/XLRdO7/yqw3Per5ilKkiUyQgMs0YRob9CaaT2ZKMSWWiCELjWomz06rRtjzQalWk6D3q10cU4LyEU2uR4GQkq1llmswWmDHgHspckK8WmTa4wgfmyoe8X5JlmvlhgTE7dWIQXWCs4PJyhlcBJAaXl3JlTIJ4Z5j+RZu8JhIFNuTEZc+HMadqJ4F2PPcpv/sZvIYVGKoH3YF2PD9HQAESEVWXcYPrekpmMzOQYNxRm5ygyA75md6ukbRZIqSlcPFG/8MrL7NV7bJ/Y4fSpU9R1PTAUY0dmtCQ3KvoCDx1e31ps56mrJSdPnKbpGpbzGlPkkZH6FoZr2rhih2AHOEwNc9HYjaQ5Z3SEGkwe3sKYfavkwXuPFHqFRgjCyo3IE+hsNDDAebyNqIDRkVUrCCgtybSg7xoUA2OWSGCij+8tU46iJZsQSDMERMPKnGH9NQKr2DJrLaPRaCgK3FT00vyOEC3qpIwkqCSV6brojBUDqo/dooSInsvr3VkqoCbLcC5qfG/ykQ2AsENHpejaFjEwq4uiRCBofDvY9xG/30b3InSU72ilUUpTFnHWTQgorfHekedieF45hIXH1J74cxIDZBsLZ9O0MZlnDSaNc2KzYi2nn+0xnKuw/XrXyKq7TEU0sbjTIcY6ixApJWeI5yMglUIRUY34kUDvXHxNRP1zQKC0jgek2+v2+hpZt04O0gGjk71OwOk4ryu8IXgRhzdSEggYXZIBMhPYYKm6jumooDQ5mJweT6YNTgjwgkIbpCOadSsHBmrXYpcNJ8ab7Iw1uydP0DqH9IKqWiK9JrNpdhI7CaFLphs7mCwVBonzYbVh9c4hCRiT0zYN2dhw4ew2MghEosavJCVQGMPLL72CVI5NPKFv8cEghYper1KCd2gBbbWI+sJsA4GhKEdxhiUChVGoPD7mqJSc3phQ+padqaLtlixbKOuGe4Hp9iannniE4DzKC7q6JviAMgZLjw45UxO7Qyk8mdZUlcP0sDHewLYNJzdP4OqreN+RaY0eJAKZ0Njgaft2KIwROs0yM8xRibIbOej8hF/NwRKpZl3nmQpnkkcIAW3XQIiboRBqIG55lBSUuYyHjd5T9/XQSUhk7IuRaFwfECEVzUgckSLZvgm6pkXoKGPKjMa6wRJPaRaLBU3TrApkMk5IUF/f9ys7O601UmgQGoJkuWhxrl9Z+a3DikoRGaNCIIRBiNgZj0bjSPYhamgj/JoMAQTaqMHmLnbQTTMnMznWRXmSszbOZb2jbSydcOR5jtE51vaDibpbwZXpUOCko6qWkUjTV0wmE5pFvfp55Nkofq2MjN5jVm/UK8f5qkGgh875ZhnRevcJ3BSu7Z2l77kJUm7bdtXVLxaL1ffWdU1RljHBZ43ctEI8hIzFcw3udR5EUPR2iDxTeiVlub1ur6+VdcuFM8sKpFwO3yTRDnJp8b4nN0PCSfAcHc5YzGvmsyWbp7Y4f/4EfVfx0suvcdeZ0xGmyw3gkEGiohs5tuuwVWDz5BZb26c5ef40G5MNzm3vUGiNUAKhOnyIm3RZTNBDsZtuDcSaicIXg4WYOg7BjbOWaCCNj6xO5zs0IzIjkQKU1OB7otgGtFFopREo+q5nXGTUbTWYZCfYK2CUQIQIL9dNC92SPBfkvif0lqqZs1W03HlqC56GkoYbrz2LUZ55dQYlzwGBbLB+7tsFfl6RmZiYUhYjCIHeO4QPuC6yOqWJsCHeUy8r5odz6BpMlmG7gFaKzncIFd2TtNLR6s07XNCEwT93c3OTyWTCG2+8sYI/I/QHkbxxswB/neiRZoTJni92PAUENXRLAmv7OHfEYwcdrzEaKcdDZxLJXVoPcpAhzaNtl2tyjIAVcV6dFTnCWTpnsV7HVJiuRxCNDEajnZXX7XoHum71F+HIdmBxD4SlVBh8F4v1QASKnZMZ5m52sODLV6Ha4FH6eJaYtI6RgBNnvF3XoZRiPB7TNu3vzEN1YnUoAYZrP3bkScU/eeSmWWMIAucCs9l8yLW92ZwhQbhFUURNMTfPfqMvcL2CVNPPtiiKQbYTmdXeR2ctY7LhYHU8007GE1mWUdc1k8lkNdtUWtH13TEREG6WQ8ljO0QhYme5Ii8Np7hhCHC7cN5eX1PrlgunyiWXLkdLw71rl7kyU+RSEnBIwLYtvm1xraepHRcvXuD/+iM/wKKZc/Xqm/z4x36aK1dfwziPVirOtYxCCMm4KFFA0znuuvcPs7Oxw0Y+IveOXDQIH1BC0DYVeakRztJUjmIQ5nsf/+9sdxNUtM5KDAGMjDCi0gbvLQHP1ubGUH8G4pNI/p0eJwLLrsYHAWTM5ku6riGL8nq869E6bgomLwjC4NxgOOA76nmH6FtkM+fSjXjvtoqCM0pQd/tsjiQ6U9Hs3sbnf+aLT7K7u8N99z9IU1VYEZ1XhBRoofBCYMxgW2Z7pDQ0Xcvh0ZytAtqmpXOwsTlhWXm8k1jXx4xTIdFGUyg5yBSgrhvm8/mqg1jvCFJnuT7DXM9ITPc4MTeFyHA2RA/iJGdRirbt4vtkqLnJZD0WBI+S5pi04vzKpSh1jGlDN0ZhXYvtLD54jB8Mz0W0KrSDA1TqFuu6pqqq1b/TewHW4eaYUSoEeG+jL6/WGK0ZjcfRUMH2eC9WnVZZlrRtS7ToE+AS41xGZjKxqHTdMQzsfczJ1NrQde6mw0i6z+keJHg5Wdut6znj+z1JTfphLqpXJCPnxApGTa/VGDN49DZEUwc7MNGPmc+LxWL12BE5yYZrjNYG8TpBqZhfm7rQ1EWm90V87/vV9/fWxji24THTdaXv82uIRrrexOZdHwm83Sz3bq8/2OvWC6f2XLsSzSgWh9dw0xHClGQjgySQZQrrJUFIsJ4Tk4xudp2+byikQAZBJjXjYBHWogYfWiUlI2NQSmKVZHPnNPOqw12fsznSjC/u0NklUkg2p2NsiLNV7yXBJ0H2oIH0Gj84tFsfpSPORSq/sxaCJBsE+0pH0+08j0beygbwNo5xfSAERxCO+XwWoUIpkVoynW7QVy3exaQOMdjs9R50njPKS0JwLBdH7GyMaSvH3uV9prNoH/nayy8h77qbv/Rf/FnuPWNwTY0pxgQXocm7z97J1f0DDq9e5Y47LlL3DUJJhBI0XcfW1hbbWxtY75iMt3Ah4/qNQ7LRmEzVNF1HURT0vmNnZ5O2tTEiyoEUhkVdR6LOULTKssB7s4Lb1hmbqbNI5JfjAnlcQKMfbE9dN2SZQYgI2UoZnYW8DxgToVjnjgX7bsi7BI8fXITWCUepUKRNVojo2RuEQ2WaMstinqqEtmloekvfxU4ydl/H8ojUcabXkDb8LDM4F4ttzGxVK7mJUpJoiu4pCoO10ZZw3YEoHrYUzbKOrM9BumMyNXSEsfgtFguqasF0ukGWlYQQX9N8Pl9pMdfZs+m6U4ecDoOpyCTCUiyaciic3TFHgFSgG8qyRClJ3zeDA1QiBbmhM2aQ68hB9jI4TonjQ8KVK1dWmtDo1HTsg7t+ADhO01iXsMiI9IRjO8F1Peq6TWKCpNN7a73bfrs5B91ef7DX/wrLPUWhAQs5kNtAJlqMN0hl8ErhtMN6RzACraBAILIc20OuFX3T0IuACB6vFJmMM7e67TCZRmZTVLnB7OgGxcigsoIgYwixDzGayeg86gyBlQA92bNKQdMsUSpuRvhAbrIIF2qFUAoRQrQf6xq0iLDbkMwbHyP6sqO1QaHo5y1dXaMn8B/+kW/l//XT/wRhcoxscT5meQpl6AbIL9eaPJfQKE7ubnLnux7kX/3yv+TdmxPYnzObXeX63ojXX3mRe87cQ9s03Dg4Yndg1QbbsTXaZP/6Pm++eYl7H7wfOZBrlIkz2HI0QipF17QEJWmtZVHX5LoZDhWRqVk3DUbnnD9/hqtvXqPrWoxRBKFWgvtE6CjLInriwk3FQQjBeDxeFZ+k60sFrq7rVTcSOwYXZ4eA0lHzKyUrQwcG6U6ytNM6OiMlcsl6F7O+wcYORlG1DW0dWM5jJ9nbDttHEk4IEWbs++6maK6iKFbQbewAFUJA37eYTDOeTDHGsLW1tXLjSQeHPNdUVU1RRDZ338dDAkDfR9s+bWKhzEyOGwwSIHIAlssKrc3qGlK0V9u2lGWx6tLyPF91/VVV3WTennSiyQQhaW9TFFzTdCttZ11XQ7GNvwMpMFwIRdfFghSDyDVaJ62pjYb3a7rQdBiazeY3wd7O2cg8XkMlpJTUdZyxKq3QRFlK1/cYYW4yil8/zKzDr+uPl9Zbk1Nur9vra2XdOqs2tLGNwMd5o4gendg43wtK4dEEGb0oT545jessvehRWcF4kjG7eoQTHmMEoyKjHpiX1naMtEBKzdGiQmoTSQHO03Y91gpMFpm7nfPHsNpg4SXVkDmoXNSgaRPZf9aiRTRs90Tv0hBc7FRDhM6MAi1ZMYZXRTTEOV/TNlS9Ry8sOYpzJza4sX9I7wJRHBEp/UYbnFR0A+mlNJscHdWcft9JRJGhshyYE6RntjhkdvkGqrsLYTt2d6bo/ahDtrah62v2lxWHixknzpxhsrFJlhlyY3BeYkYj3KA77NuGTEqEh+0TJ1kul9StRRmDNpK+j5DlZDqmqhpm8wqVxbgzM/ithjWINnWc684wVVWtzNHXO4z0tcdMXY+1Hj1Yu/nB+D7a15lhkxUDrDoUaQFNU6+guNRppqKwMjH3PXVTM1/WWBeIWZnJAk/F7l8EqmoWn0codGYGpMGTZ/kgBwHE4OAkw02M2OSykw4NUsZcTuccGxubA1tVrOD5PC/p+xYIjEYlIJD+WKPYd4627SkKhTEFznp63yBECmlO+aB+pQdVSjEajWjbluVyiTFJShSZzcnMIXbyOd7FFKGu7WiblqIsh/uscQ6MHowDRHS2IoBU0TTD9onBOpjt9/HApQqNEPFwIQBCtE5MM1XB8cEizVy99/FnoORqDmqyiKLYvh9Yv34VL7fSEK+hDMMbK74v1mbpbzfXoNvrD/6S/+4viWuyWdAnanrvsdJhlaDzEQp0zqECCOvJlOTM+VPYDBweU0qmm2PaOkI2QslB9uEQWiKkQsqMyWgCweJCi9QBQo9tLcEpbOvpW4cKAi0kWmmkHHIIk8WZj+kVfjiN+2FmplXctNumxvUWH3qCcHR9R65zlBaDuzsIEVBIhI2Q1GHX8dKLVwhdzleeeplqXmNER6kF0jmEC2BB+IAQAaECvfUEZThcOKQwbG1t03XHOjQlNUdHM4zIkA7GeSQoAZjCoPOMYqNktD1lfz7n+rXrHO0fcvmNK1y5dIW+qhAy+upGD1VHs1hEVmeQ6CyRfwySDIZEj42NjeiC07UIGQ8sznVYd0xMScUwbW7JKOCtXUKCPVcEF8GK0BKIhv8R7kuwp6BrHXXVUdctdd3hbHQsSp1IhCQ9IQiyLF89fl3XVIsldVWDH5i+IdoAOmuRSgxaSx9NFURAasgyxfbWBrvbW5RGE2wfyWA+snwT9LzeYa9DxlprptMp0+k03s8QAwO6vsUHh1RQFBGSXSyWzGazYyZqGzu2tu1ZLiu8i4Ya0eAjkqZCcGSZJssjCzfpOVPRjIc/h9E5Ska2rdHFcPCLzGrnQKuMPB8hpYndfohdfPBiILFJbOcRXiKCxPcBvAQvY6xfUCiZYUyB1jFmL3hBrguMygems0Sh0eI4SDsdOLSORiAIQd00dNZGTbOMSSpqsOrruo6qqlbsZje4SDnr0EqhpRoOFMfGFenvt9f/tvXcc89lQoj3fOpTn/q3i5lvcb3vfe978Hu+53vu+P26rrfruuWOc2s6wQ3OQRJB0/QoaaJVXrBIL/G2pywild6Y6DfadC1FnrFz5hTPffEVVHBDjxY7Vi0keqCda6PZ2dxkXtcEGbC+ReaK0C2QJiN4gZSOEAQ2OLxLhIFButBHg3btJITktALOSZTKMGUepRBdi/eOMs/YmEwpiwxV96zEnDg8OhKSrOTG/pKNyRG/+hu/SSED47LAa8VsXoFUBK1iyHLfEXQePXJtT0Bz6fU3OL2zwfyZF4B46Dh18hSvXdvn0vUjtrKMvrVIEQ0SDo8aLr38BttntjHCsJzN2G9qzpw+w6xasHv2PKdOnkArTZaVuEhF4ehohpRnYsajURAG6UQu4zx20BRubm6xf3CID4l0E832CTfb5613l2k2lTpBOM6DjHFc+dCBxhlZmsnFWZXH2n6QjGRkWZzBlUU5sGfbtzxPZAsvlwvm82MrRRGIRZZIjhJrna8xhskkspDzPF95vwohED4gAyBFzPIMAZ3ncWbctyuYNDnjFEWxuv7kw5vg6fjYHRA9cUOIjlN5njOZTFayl9SNl+WIsgTn7FoXK4YDRiQPRWKQoqkbmiYeJFLRCCHKbJwLRF/bqBOu6xalEpwtSekmakBpgIGcFQ9zSddZNw1CxtDwpqoiyamLrNdjt6K1ueMQdyeVil7TQq7MRhJCke7LOqz+VmLPuqYzwc1KypiaMhycmjq+j/qui+xajolT6e+317//9fM///MvZFn2f/gfxi0XztOnTsbQ4a6JaRd5TEuQziGFj6YF0T+IUVlyx8U7qJYVSioKk1FMx/TCM8okJo/ZmnLwuMU7pIy/4Hle4nwkeZjM4XyHCD5WxTDMyoQgCHCDm0gQaX7WQ1+hvIkieQLC2ehUJETUzQXJZmHoe5DBsTkZUYxKmLXgXeTLCuhFj5MtyMDla9d417tP8/ijd/Hc82/S1g29g6A1XhuQEikkzg2wZGZwBIwq0DLjvY+/g2eefwlsTBqpXEsbplw56jh530mqrqeZxbmZ0RN2dk8DHTL0LOZHnDhxkul0g8nGdvR87WpciBsvKibJzKoGqeKMyYm40frA4GXbr+Z7m5ubBKm4eu0qmcmBuDnb3q82ucSUTZuc1nrVieV5vip2ie25Pk9MBWI9AHtjYwqoIcorQuHrBuhJlN93Pb1drhJHIMTAaiGQKrr5SBMZxuudSCAasztvbyIxAfRdS66zldwlQp+WatmgiwhjJuYtwOHh4Yrhaq1dSVKS5VuWZfFQaMxN3qxN0wxQ8LHZuXOWLMuRUqxYq3mekeflcJg4jnJTyiCEH0g93Yqp2ncWrXP6Pt23xBg/Llbpa4+JVMeWfyuyDRGizbJ4sFBaEwDrHHJNWhKv5diuL71+O7z+RAhKoecJTrfW0tv+d8wp4fhws14Eo1nG8fsnWdGFwYpwPSHm7dp1Oud4+umn889+9rOjtm3Ff/Qf/UdHu7u7b08LpGGdPn3697z+pmlEURR/4AvrLUO1m5sbqGzoRobTYyQ6WoLtEM6iQyD0llM7O6hc0bUVdb3kyo2rjMsCJSRFrtHCoYUn1wItQwz5DdGPre+j1q+rG7x1uK7Hek3bBTwK6wJeCKRW9LYari52QVmumRaaTAU0ltJIykwxLjSl0WRKU2QGFXoKHXM1G+coJmP88HsZiML94ANN14MXfPnZl1BmzEMPP8SydxwsWxadxYaYNRh8QGiJ1AqjB3swIbDOsphXPPjgvTEBhbgxXLvyJl0feOPN6wSp+fRnP8/V63HGedj2MJ5SjEvKXDIpchZHM1579RW6rkYpx3hcRuG8cygZJT1NE8kjddMM8KrFW0e1jNpb7yORZ39/f3AhihFbq45Aq9UmnDrJm6HYaBmXNvqUOLJYLG4SwKeiEv1Oo61iNEDvCYGVVdxyuVyxdZM2shyNyIuCshyxubnF1tYOk/GU8XjKZDKlLEtGoxyTKbSRqz/GSIQ8FuunotZbizYmbuiwIssorZlMJ6vNPDFtu66jaRpmsxl937NcLlf2c1ELaVdz0KTNTDB2nue/I/orMVyttUynUzY3tzCmGMwQeoKX2N7TNpG8E8Kx81DqgK21LJfL1fOkop669a7rBsnMsQwnEpjq4aAQX6PRekh7OZ43LxaL4b1wbO+XCtRqtvwWE/wE16evT88P3MS6Bm66FwmeXScUrcP96etNng3B8pG41rbt6s/bafV9z7lz5x5717ve9cj3fM/33PMX/+JfvPtv/I2/ceKr/bzOOX7kR37k9MWLFx/JsuyJs2fPPvpDP/RDZ9Lnn3/++fz973//A2VZPv7ggw8+/IlPfGKcPnflyhX1x//4H7/71KlTj5Vl+fgDDzzw8N/8m39zZ/3x3wrVnj9//tG/+lf/6tnv+q7vumsymTz+Z//sn73zq/0avxbWLXecfd+T5/FUqKSP1mBtQyY1IoC3HQiBEpLdE1s4G23FrIvwmW1aTIi+spkU5IM/ZRCKQYjHeDTGe8fmxoTd7U3uOnsCo3uKLBqCa5XBEAzce0+pt+LF+dQ5wFEr6Pu4eVTLw7ip9B19l+j3ChccTd1S5oqFs9imxiSv2hDog8MrhUChxJg3r+zT1Y4vP/c8QTYU2yOCBbvsjoO4g8BkGucE0kNQgSwT7B/uU47z4XXGOWxTV7z6ymu8cXGH4N+BlZbXrked52994UvUh9f50Lc8Sq4cG1tTrMg4qnr2Z3NOlTnLxdEwHzN4G3W0165epe165vMFxcYUdHSn8S6SZqI5QY60ntb27J7Yoes6bty4Fg0KPDfBaeszzbRBHh4eUlXVisGZZVnUPQ4b7HqgctQ5HksNkk5WiMhCXfeUhXgYM1lGVhSE1dced7AR7ovONUKAVFFO0rbd0AVFg/reucGRR63kFSqLzlFNG2O/ZCcJg96yaZqbCtG601AqQpPJZAVRpy4zpZ+kjizBkek1ikLGDNGhMMSZZfyYQBO8pbU9xmRI6aiqenAukkwmk+Ha9QrKFIIVySoVs3RQSYedlZGAUqvuMR161g9C7VDgkym7yczqZ566vNSxZnlG10Y4Nt2PxJI1xmC9Ix/YwX5NI5sK/Tr8v07yEWLgIjTdqnC74MEdBy4Aq2t8uxGEmqaR165du8knsO/7r3rb/P3f//3n//7f//snf+zHfuz1D37wg4s33njDPP300ymglo9+9KPn//pf/+tvPPzww80P/dAPnf/whz98zyuvvPKkMYa6ruXjjz9e/fAP//CVra0t97M/+7Nbf+kv/aW7H3jggeYDH/hA9bs95//wP/wPp//yX/7Ll3/sx37s8lf79X2trFsunGdPnmFzcwqXjsi0YJQZvAAXHGIoOhJJ7x2z+RzZCkZbO/RdR5FN2N3dRapIFMhM/BP1iYYQJNoUbG1ssr01wWWBfFTy8htvgltQquh1GyHHSID1CE5eO+IdwIuvXOVe4JmvvMqV+RHCFFFOImNBlmikySEEymKMl4KNE5quOWK6UbJxYgv3xn58DUqiQwxcFCFgVM6iqtmbX48JJrvbsQiT0bYH9F2PUgaFp29a0AGPRMqMIBzLKqCy7cg25BgGq7uG555/kbr5Zh5717vY3L4HfuUz6GLM9VnLl555nScevZ+DoyOKomRzskHTO0LbD1mhDk9AiAxCS1Mt0Vns9BwQeoezfezee0fXNzGQWqhoWGE7CqPxfU8fAiYbEWUOx8L0uq6p63rVXWVZxqlTp1bdR9IWxs51MPYfGKCx24qdTty4YwejdRHfB/KYMCK1isk5zqKkpHddJH8JhZCBosyioXleYF0f7diCwnYRxhfBY9uepqqBGBxQZHn0xPXx4GAyA9aDgK5v6axbOdd0XYfwYaXTTDKIyWRCURSrw0KKEEv3Z92QXUoZc1eTPVyQNE2Euo1RKys6KaNBfPSblfhgWVYLlJKMRuVKjuK9ZzKZopRidrTE+8gEXrkiCWi6Nh5EswyhJFrG45/t7eowkDxnnXdYF1nYq0IWogc0cUqwek0ACIHzjnr4/m5gQQslYfCWrdsIT6cDh1kzuQdWHXOCd1f31kcP3aRhtdbSDxB0uu5UMOP9M2sa0bfHmk6n/qd/+qdfcs7xvd/7vff8u7/jf/s6ODiQP/3TP336Yx/72Gsf+chH9gDe+c53tt/+7d++eO655zKAj3zkI1f/zJ/5M0cAP/ZjP/bme9/73nc+9dRTxeOPP97cfffd/X/z3/w3V9PjPfzww9c+8YlPbPyDf/APdn6vwvmH/tAfmn/0ox+9+rt9/g/iunUDBCHYPbEJvBHhJKmRuaapKrx1FEUezd89XLt2gxtvXqfkJFIJmusztqYTlII+CDIrYhq8j6YEPkiUElSLOYQWayv2DhZIG8ilpJNxvrWzczJuVEogtWArxA3g7NmTANxxx2nufvRBbF+TRNzeebyNwk+lBHXdMhqP8M5ySE+xsYERDjdAfcJHun0hDCJojJC0WK4c9YymuxzNrtDXPV50BBuNuiGatxsp8XRARgiWrrXUuuCLX3oe28XTeNdZWgnCSK4dHHL9WsWp09uMRIRU675Gbp7mqVcOeOPyZ/i2b313vIfzfbQxeJtx7twZVKbRwmP7+EM83Nujriq6vsOYEqkNQbYgNSYEsjxqMaXSg14z2g+ePnWSxbLCOs98OWM+X6DX0krKsmRjY2PVoSS95boc4bijcFibJCjDJuiieXsslBZEoNT5quh6AtZHz1whYxi6FAKPRRCom4o8y4buM6IY3qXDWqDIc5RUWCTbm3m0SZSDVVuWRfhUBJCB3vWMRiPqpmU6FKn4GqITgBhmd+PxeDXfTZ0msCqeqcNcN4kHbtLFCqFo2/i9VeVWySl28GCVSiMlgxVfidZmcPQ5dmaq6zpGw4lIiAK96ipNpultZI6nYh1CnPXqQbKyMn+IvomRkQyQipOJLkBGq2gFqI5RER/8yiPWrR2Uok42Qq52ratMcPe6kQPcbNeY0IPIvF5zcRquKblEp/ucoOHVYeRttr77u7/7YDabye/93u/93+X5vvCFLxRd14nv+I7vmP1uX/PEE0+sCuDFixd7gCtXrmiIP48f/uEfPvtzP/dz21evXs36vhdd14myLH/Pdv+JJ55Y/n69hrfLuuXCKVrL3RfPAU8jtCIEhxEFPstxRMZmHzwOx6Ka8+JLz/PEhfME6fAI3nH/RcbjnLoPFMZHSFMErI3SAAgsZwfkWB6++w4Wi0UManYOXIsQMJ0qrIvaPx96tsq4YZUqblDaVhztXUGZLHYPQiKUpG2W2D4yfgODvVhwVHWLO+pwVU8xsAXfGSSSuHFAYCIlvQvMfu23uGv/iJ22wWuJd5Kr3uGI/q9CCFzfI4JGCIegQkrNqA5c+sVf4WIV457uDVH5IoUjm9V88Z/+Mg89cA+P5RFNMblmMd9HWzjqPL/5mSd57OH7GBtJVig611GORiipkaHBC1BEFmU+2cR3nrwY4YXF+wifaz0UBwJGR7cmIQrmswVZZtCN4plnnyXLRxiTsb19YjXPrOt6tRmm+d5bTcePnYT8CnsQg7+oDx7feWrbDD6mDctFZEansO1AlNVYa5EqQyg1mMsHppPJSq6SikY+ZG4mqLJa1ngPWhnqrl4laQxqUgKC3rpIOut6GJJeIvwYcEMyTTfM0lInnGziiqJguVy+xVlIrTqtBO8m4wTn3PBYXUw8EcdZpsdSHyiKOPeO8994j5umpSgKRqNotyeAzETzBylj99q2XTQcGF5HO8DKSUtrBoP8NCPUKeRgOAyss1whzr/L0QjBMZyaQq/X2dPJRs9LGZGEQW4yGo9XUHE6ECU4e10PnJ43dZkJyViHhlMXnwhb63rO2+v3XuPx+N95ujDGrL4mHW6ci9FNP/qjP3rm7/ydv3Pqx3/8x19//PHH6+l06j/ykY/c0XXd7wkxj8fjtxeO/vuwbrlw5uTceyHOhHshMNMS6QTLRY3W0aiaEBMPkIIrN67x0nPPccc957lxdIm7H76Xdz72CF/4zGcpTXRVyVQWYb3c09mGsHS8+OSTfP23fiM+dEjvkTIwyXOWVUXoa2YHh3hvETKgDvbiixh+t4pMo7emWC+jhtNaqrpGDeSNYjwiLyNz0llPUU5pekk53eCStyyBv7XK/bPxTxMLHp/8zO9yZ+zv+c+3rr+z+joLCwu//tn4B2iV4rqPmZzGeGxd03Qlo+kmuQiRIdv1ZEKSCUXfx+QRQqCuW4woqNH0rokaWWK0lDQFmYlwWVVVKK2oq2a1MZks446Ld3D9+j7X965x7eoVMmM4efIUo1E0mddF8vAV9MPmuO6vGn8Joy1ejGcTUa5BGDS3ciCIuGHzlFR1jVSKrCxWhBjvot2h0Ya6qijLgmwQ0gtxzOZsmmaVmam0IlNZlBo1Nap3jEclUgqkKmJR9gGtia5THvrg6ftmtbEnGcv63DVtLCn9Jc0OE1wbbfuO4clUZNq2RaAYjSYrwX8iG0Hswuq6ZrlcsrGxwebm5vB68pu6tfT/5TL682oZjQqUUKjC0Ky5LWmt8cPfI5Qd32Z6MO63w7WlTi754RqtkQisOg4nB3DeEYZDUvKYXfenTahDKn6pSK57F6f3V5oLr1s6Jvj2ZrhfrhVzv3rOddLS7fW7r0ceeaQpisL/0i/90sZDDz1043/t9//mb/7m5EMf+tDh933f9+1DPHi9/PLLxX333Vf//l/t23vdeqyYC/g+MtsqB/tLxwYWZCBIubJUEwEIgct7V9EvfplzF3Y4e+Y0fdtz/zvv5bOf+Rx149CFBS8ROqOTMvYoAg73bmCXR2RY8nJC1VhqClrh8c7QipKs1IRgUQPredkMu4TK6fqAVpLZ0QHj8YRcxeipIKCe13Rdiwgh5iDqnHKk+aMf+iY+dWLKdz33Gly/Fp0FAGMyHn74Pt7zdQ/w1JPP8spLByitaLoaKTIuX71B7wSSyJ5ECoRUCGkGAbihyEpGuebE3uv8nabmv9CC55Vga3uDCxfOMR5tIKUgk5K2KFgWGhM825OSOx66wD13XwTVY33AWk3re2wwSEk0j7ABKaBetvi6J/SONrRILVFCDzKMboA540yr7dyK5GGMQUcGIHk+5mg2R+SRuLF/dMD+0SHnzp6j9wlui1DsutfouoMQ4TghBKKDT9v2q03SZGmDl0wmU6yzkQwk46xRCoUxCu8sRZEhBCtGpRAepaLlXJ4n6NMOzx0diTY3pwO5J4Y8o4ag5r5DqTwaGRA3+K5vCMGjdSwaRVHctKkf28wdd1PA6uNFUaw60/VEkjzPCZmg745JRlrrFeSduvf02E3T0HXdqrtPuthYlAyTyZS27XA2hUYLkGHV9fkQHZR8KkzOgU+SDxGj14JHDoU/HRAgdpaCIbUkIQkMkKleg3vXyEXrhJ0E76bXlbrLpPldh4wTYvFvO5ykA0iaa6YDx/rHb6/fe41Go/B93/d9Vz760Y9eyLIsfOADH1hcuXJFf+lLXyp/L/g2rXvuuaf5xV/8xe1f+ZVfGZ84ccL9xE/8xOm9vT193333/e9x+W+rdeuxYr2jsfHNe88D9/HZz36ZYiTRJjImO2vJBglCJGjAjWtX2Luxx507Jzg8XHDn3WeYTqfYxYLG9cjg0TKAlDiZ46XhzSt7zOcLds5s0fueumlR7VCUtafMs8goLXKSm5gd0lH6LmYYehxlXtC3LVIpXN+T5Tmj6RTZag739ymKHIGEvuLRC1tcPP0+2j/6TTz/3LN8+XNfRIWWyeQ08vRF/v4XnuLGvIGtbbxvEWONFCXP7R1SOx/naokopTVSZgilkSYjU4ZRJnhkdxPeqDk4NeVgUnCkNPNMc/L0SfrgkM0S0y85VWzw/ve8m1Mnp5FtuayQeoQgMBpl4AS2EygB1nuUDEgCi7rlYP8QQkvvLcIplIwHBu/8qhNYh8SEiH6ryZz9/Llz9L3lySe/xB0X72AymUb4LoRoouDdgCpEM4J1R6HVEtHTLoRouqCUGdjMwx8f00yc89GxyFukVmgzaCddh5QGowcfYCFQg6FDLPw9UkjyPFvJNyJMKQctqlrBgYgIAzsfny+EWACraoEPlgTmFkWB1lEOkrqfBMkCNyXErHdQiciTitAa9IWznra1q+9JH09fE2HZZiXPWe+02rYlecr6AHVT4x2rAheCIIgIg4ehM8ykWRVwKQTBx8NhOljkeR7DxLvjBKEE77o+aqSbAWI1mfkdTGk7yFjWZ74Jol//2pX93mCMsd7FH89iw4qEtF5812Uvdg3VSCSjt9t6//vf/8CnP/3pafr3j//4j1/42Mc+duGTn/zkl7/hG77hq9LF/cRP/MRlrXX42Mc+du4Hf/AHzcmTJ/sPf/jD12/le3/8x3/88iuvvJL/qT/1px4oisL/uT/3565/6EMfOpzNZrejad6ybp2qFhx+cCV5z3vfxa/tX6U+OGTqBULHjkvI4e8q0v27qmW2d0SuFdh6iMdSOCGxQURLMOsxmQfpAU/TePZuzNk4GQtnUx+xM91Gaclstsddd93F0dEhPljqKhqj5ya+jDzTeKNZDt6qZR7tuybTKb3tOTjcp8hztk+ciBmVQoHtOJodMC5y7rlwhvMjzd7TXyb4jkwLDq8dUR1KlNxGmYLOBvJM4omv0+MJAoIUIGSc80mPDy1GKQKSquooN6JcarIx5uTuFkaPMHoU7fOU5e6zO/zh974boyxRl9+ghCQfj+k6kCiapkNoifKBAkGvNX3n0EZwWNe8dOkNTp0oyUcl+Ghr2A8brhsiugkCKYZYsgBSDQU1gLM9J7Y3eOLdj9H3Ma6qbTt83yOEXLMlFBit1ja1VBCOZSTR+s5jXYPzkf3btj3HySNi0FcGVHY8D1O6iBt/nHzivUOiUDKGYks5QJlCIILEOj9kxWp8iJ7EcR5naLseqTRNU6+YqnETFxCi1y9AHVqc9eS5oSxHKygzzzP0kKKTNvrE8rTWrjSebduuWJ/pe72LRLA0z0vFeN00IelXi6Lg4OBgxTJdT4aJM1GPQKKkxPVdZCwP8830nxLRjQdACkHTN9EK00ez9db2x91wCKuuLoTo4KVUtAJ0zmEHrWvqMpPpQ4Jy0wFgRSYaINqV3eBglrB+UFs/XCXIOJGrEqybXu+6Pjb9++0YK/bCCy/8Dns77z1vvvmmAb4qhVMpxcc//vErH//4x6+89XMhhM+u/3t3d9etf+z06dPuE5/4xIu/1+N/+tOffm7935cuXXryf+s1vx3XrUO1hWK0MQFglCm++UNfx7/6V5/EHAymb4Mdl/WeTGu887jOszHeoCwydne3IcvIlWHhbdzNQ5R+GABlCb7H92D7wGi0geiWXLw4xbroRXr24jZ7R3Ok1CyrmhNyBMRxIYDJC+bBgxRsn9iB4RdzUS05deo0fm8P2/V0LhqxKxnF8+cffTf55kl++9d/g1//pV9G1YbMjCFkbJ/aRB9ciuxGRDQYV57gBDpT6B60yWhtj8ozXOdBCfLcoKQiOIFK/qLAxuYOm9vbLGY1CkHe11w4scM3P/oONnRg+8QWN/ZvYK1lMh5T1RVFOUX6aFR4NJuTFzljo7h62JCVJeSKRd1yx333sDmGrnUEFwCLdLGgrQvc0wbYth3Z4KTj+jjn09OSzemIV15+ha88+zQXLlwk0wZCIMjIhuxtTMgww8EkDLPt2BG6eJgI8Y+UxMzKECiKEmf9APXGOTeCVaxYehwhoiuVAJTM6brI4syLyIa2zg7XXhKQdDb60kodIUPbO2wTfVGtdbRtRwrIjnZvGuf9ivkbej/oKWNKy3g8IcvyFaxprScznoBfSTbSPUzzPzgm3xhjULnGmBjd1nXtijQUk2jKVZFwzkUjgjUIM3WxeZ6jhRii6obsTG+wnaUP0XTdhzjisF2P6xwmN7RdS900aKUQUlKMylXHty6hWXft8T7OyuUatHpM+jrW8yZ5SSp0yVs2MYpDCKt5dXKbir+j9qZOM3WQSSO8vtKsc/Xekse5nW+n9bM/+7PPP/XUU8X6x8qyDN/5nd85//d1TbfX78+65cJpEPRtfINP8oIn7n03y8OKpz/5eQotyYf5hXOedllRjsooaBYBGxStyFFOgROYIaPPBYuQOcEpgu9QZBit6fsWKQVKSRbzJb3zTKdT5vP56hTrPciBFZRSGGKXUA5sSce8WsYQ5RC4dOnSUKtj0rwm5jgeLjz3vOciJ87ezc/9k3/B5RtzTo0nWBFJR1//9V/P1rldXnr1BWQoEb6gty0vvHoFhSPLNVlW4BoRi6OROMAEQ6YKhAKpoWkiMUQphVSGPHf01YwTJzZ5/3sfp8gVTddycOhoe0c5ntBYCzrqXaumBQRFniEzA0awtb1JGxyu7enalqODfVwLk3ITYzQuaIwJg2+pX4nh0+aV7qVSZpBD9MTGMXDnXRdZVHOCCCvx+2rGJyXWh0H6YsizfAXpaRg2Oz3An8Oc0K6CLxAixrYhAkIJXLCrzTuEaP8vRNzAtTHooTNyziKNJstip4+UKKFou466PlpjuMYQ7a7vh1gzcdPr98HdBI3Gzi8bAqo76rojz3JsZ5HSkGlNVc1j5qw7hlbXu8w0h9VaD2zZZIAeBgZtsTLMT/PSld3gmltQSj9J9816T7Bx/ti1DVqrqEXtOoSICShSCgQhMqS1ihyCwXg9QaUCog3lUMATzLzOXE1dYYJb152CkkNQIgRBLHDz+XzVvaYinIpkKqgJ9v63M7GPi2m6n+sWh+nx3o4zzm/5lm+pvuVbvuV31T/eXm/fdcuFM3SOkDbOpmMiNN/yxPuwreP5J59Ce4WynkwpOhlhsDLL2DuYMa973lzMKbKCRdXS9ZGQ0fae8UjQ9g1ZoZHSkOuCalkxn83w0qEzjUn5jkLi+gjvFUV0EYJVHCd5UdBKydFshrWO8WhCWRAhwz66stRd1AEqCRvbG5SqYH644MWXPs2b1w8od8+wbGtC1+AP5/z2b32WD37bN3P/A6cITYvqA3XVcf70VQ5mn+bZV6+g2oZMCjb0BERAecdEG3TmOFgsaBsHKWrL9vTNAukt9z94kSceeSeTcY5tl5S5xoco4BdS09YdSknmywohYnKEVFBONsnyEbPFEU6A94reO4zR5NkQQE08eGgtUQPEvk7iSfDXsb9pwPl+tamOJ2Mef8/j3Li+z8HBLMKBSg0RKBqpY/EkCIQSaGUIIbIgpRerohx1iYCWaKWwIsKCSgxCEREjsPCe3OQgWRkOpM0Vbt7Usywany8XC0KIHsRJa6iUoq6XsWh7i/Xx+WMsl1h1dutQ42gUkYu6roegZkFd90BMH8nzWCSVFrghi9I5B0EwnW4gBAT8itzTdR15VuJ9dAaKs+RjKUi6jnW2qJTqdxgFrLx8nWPZuGiQICUyU0hr8e4YxgzBczSfISpJUZYUWRa9pKXk6OhoVZiTef06+SkV7FSk0j1Kz58OCcm/OEGz60zXqqqGWbFefX8yhEgFcyWPWZliHDNz160e8zxf/Tt1rbdZtbfX19K6dXLQKCMMDLdMG2ZVQ6EU737vE3RNwxvPvjAQPyRGqugnKzWX9/b5wOlzfP7SFa5ffwMno/Bey5g+0veWbCDqBCJrsygKlNRYb1FG0tYdeZ5h8ozQBKbTCbP5bLWp2uE0OpvN2L98mfEkzqnmi0XUmZU5Xd+SkZFrg/WgVaDre6QeI6XmpRde4PIbl7C+IwjPyd3TLBYdTz37Anfec467LxaYLHYAo+0J79/aYryR8fTLlwih5IWnnmOaS3ZcQCvF1tnTHAjBq9c12ztbfGA6hX/8z/mW970H+dg7ITjuvesii9k+s4M9Lpw/S1MvqduWnd1TtE1HlpeMJqOB+DKwOqVgMhmzuT3mhRcqRhsGhaG3jtb2HC16hK25cOECbdOuHF9uYlHKOA9LRBrvPM71aB3N96u6pu97xuMxd9xxB3X9Isv5YugMhjxKKSGl5cgI4fkgILAyCVAyRkVF2b3EOY/JBN73uBCvQypB07YgBL3zq47LDdZres1svm0bvLfUtRj8WSVKmggP+7CCEIuiJHiH0IJuYEiPx+NVUYppIsd+s9FCLjGFo5GD1mqYp8q1g0Y0Iug6y2g0jkYNwQ6HCrli+sbickx6gdSJFtR1vWKLJmJN0pSmTg8ik7hpm+Mu0XtEK+ntImqm6xYpDCHEa1JKxTDqYQ5tjKFuG8LgLJTuYSrI68UoFbZ17+BVd74GkabrXtdoAqt7uO5xvA4Nr8tRkl1fet1p7rw6jLzledblL7fX7fW1sm65cB7WS7ARPrHe0fY906LgZLbN+7/u/RgveOGZZ9E+MDIZwigyMpat5WDZMu88n/3iMzR9hZHRdzNXJv7SS5F80QkiiuGdcwgl43xIR1KRD4GsLFjWNc4fe4P65NzSdYzGBUpJxuMR8/l89Qs7Gk+p6iWZkjHQWgS8dSwPjrh8+bfYKja5//w5nnnpOaz0NAquz1uKbIztYCxG+M6SZxM64QnW8dh9d/HEYw+SjyYsj76ef/7PfpGD515me/sE3s/4zj/27dxx370sFzWbL70M//ifc8fpLdqxAg/7115jPpuxMZ1yeHRAnmeMxhMQinI84ejwEJ3FFAwPjIoCoQIiU4w3J4O3TgwXdwLK8YRJGagOag4PDymLMs4Jkyl/Ii+JqMeMkV+xI9Nao4ZA4/FYYW1P13ZIEbjr4p289tprq04DouWhDuCsjTBgABvinDRtxDGV49hEPf7xCBHt7uJMNNrhCTH4rTpLtVyuSF3t0I2E4IYOOs5ksyzDaEXXJcLQEGodIM8LjInFvFiTUUCclSfCDQi6rh/IPxld10YjiTzDZFHyFAuIRpsS51pGozHGROhQG0WKTev7OCooy5I8L/AuSmSidjX+3iRIc72TS/rWGGjtBnu8KBuSUqKMoet7rHd0y8XQiTUYoketHqQtsUhllOMRCDjY349RYMSfUYJF0+w0rWwFgx/DqKlwpfnjukYzmvfnK8JU6rAT0ScVwfXONZGLUhe7DsOue+umf6cEntQJr7ORb6/b62th3TpUqyQmnaidpRgVdLZHeMnu1hbf+sFvBRF4+dlno8bMaKTPsCgOq543ruxz7dohJBaqZ9CgeYQMiBCQeIKwFJMCqaMXrlYxt8/Skamco9nRcEqNoblArLjAdGPKQsfkeuc6tI5Zh5Gg4UFqOh+lKctlTdtYrl25xhtvXsHLKVf3jxiNNrDB4nygmEwQIee3P/cs57YeZ3dsqJuWbFrg6HFdRwgdrl0ynW6gtacxEptl5CbHHh3R3biK6zv04IzQN0syFWhsy7JeRpZspnG2o3WWUVGyubVNQDDZmAw6wZzJZCN6/JYZ450TjCcThJRkOmO6kXO1c3TLmqAzTpzYiTPL4LB9lIQ4H+L9UDF9Qgw+vmYwoeidxfsYLOx9oOssSmfkeYb3sHtql739A5y1ZEajpI5Zl4KBBGQQErJkEtB3mCIbJBQdzoZoWj5IVJSQCCPp3+ISU1UVxkRGrOttnGtLTZablRVbVUXf193dMwRfI+Rg+N7VSDF0OyFgsoxcSWzXDd1qfG2QuqwYqRbZvscdo1SgDXF27Xq8F6TIrxgsnRFCuyoAznpMlpMZsDYgiHPW1NErFfkhWZbdxMRNxSV1hN4HeusGtm8MoO67PmowpaLvO7RSKG3ITUZwRHaziV6+bdeA8GxsbuK0XLGGfRRXx9kukOVFPKSGGHPWtf2K0Zs0panrTHmbCbFomgakQKl44O37KCfq+p7ReIQU8iZrwtQprifxJEg6FUS/BrOnzjUd0NL33y6ct9fX0rrlwjkajVgOhaof4K/gI2NwNB4jCsMf+sb3sTi4QXs0i3FXKLLRJtlog+nmCQgKIRVNY8mNjFFeSiFMlKVIAm1bo3Q0LVCZobU1RTGcbG1FlusoYZCK6SSyfIdRJ3mWUWtF09YolSPwdG3NZGMHaQXaaOb1AU46nBDUbc+J7W1efuVVLh0tePHyHsF57jy1y6XXX0GU22yfvYvRiV3OPPAw3eEL1PszRvkmfeiQBhCS3hq6XtDZGlMUlOUEEyQn1CYblORZTlkkWFkwHU0xRYEsR4zHIxaLOTundiNJR5lVcLAMUVpAgKZuODyoWMyX3HXXPYyUJPQKZQNbIzhoAs2yopIdRuaRRFPkqEKihKFpGpZNlAQFH1AC8KCNjokdXuGcpq4rdJYxKmLREDp2x9IYLt51F/t7exwd7uODRZsMIQO27fEETG6GLieGRjvn6LsGUyhUr/E9ECTL5ZL54R5t29EM88ntra3I2uz6AQIW9K2lzKKMp68dPZZGWnwILOYLblz7CuPplCw3mAw2NiYIEQ0PgoiuSX0X4cpilLNczNFG0fcWYxTOx9Dyjc3xUMDMTeL+uq5ZLBZsbW0OjNJoZ+eGWbHtY/duTEG1rAdrvgo1NhRFQdN0QJw9B8TK21UIwWg0WnWZkQSVMZ8viRIcMQR2G/q+omu7AXI10dheRFtIkGjEAANPsS4QvMPZBiEcSsUiNRnnLOsaIeXgecuK7OO9RclsVSjLsqQsy9XcMRnfp+7TWksnAtLZmBozFHWZGfrB6CLNMY/lP+EmlmyKfluPLVsvonCs71z//tvr9vpaWbfecTqHHKDRqq5wg3xAZxldVdELz4kzp3nkiSf44q//FkIayvGUM3ffxeVrB2yMp2RK0OAwucBbgQiB4CW9CJRCR/MdLZhsTqLjSdtTZjmu6clyTdP1GCVBRIguEUbywfOz66MPacxg9IwmG0gzzNYcGCkxeMosp5jmbI43efXNfZ59/ZDOw90Xz6OKnmt7lwmF5vz5i2ycOc25Ezsc7e9xcmuLkc7Iyw2UclhrCCEygV1Xs3fpOriczkcCTT8qEaOCw6uXKeoYZLy7s0u1rPA5bG9MUFrhXY4IkrZqWNQzjDIxmaJuBpKHIohAVhjKkSbIjt42BBVomh492mE6a3j99dcY33+eK1eugg6cP3+OrMjxwa86ingA6WjbDqXlChY/3rjCGjQmOTw6YjqdkuU5bRvDsvUg1RAizRUH6FHEhByCpKs7qmpJXVVUdU27bDBoWhuQoxJZbjKZlIwDSOk5OjikX9hoXh8ytCk4PFzEWLQARmpc39H6DpUrxpNN8vEQJxbg4HBG01iKPGMyntC2FXlRoPUQ0BwCZTmiHTZt59zKgxZYJZ+s+6pCPDBa62ia48ixCLcS82iJs+LpdAoEJpPxioij1HHAtJRykN74Fds0FaTFMoV3K6TSaKXxwWJdi5CSfDA2KIbONMvyISkougElaFRKic6zlXnCOtSa2Z7OWuo6FvgVk1VlsVCvwbVd161moglGTcbuRVkQBiP6to3XtzKHEMfZrYlElHSjSa+5DtmKta9PUpd0j9dt/N6OBu+31x/sdcuFs23bVfbkdDplNpxGmzZamzVtw+Gi4dHH38f+5SOWy46zp++g1TlXrl/l2tXLTEcTljccwUGuwmAaMFjKOIsXmmJUkBdFLBpl1PDZtsUlmzhjcCFqHPsBKgvDKVUpNXRLU44OjrBe4KqO0agkZNAt54geGtdRaEOWCc5fPEUrPM+99Cru2ed5x4WT3HvHOZqzOZiM5vI1biwWPFddY+PRu8hHBU4I2jpGaY1HJctlw+c++2Xmteb0mTtYiAKTjXlt6fD7NVlRohaxcLquoe9adBbJG7LTuD6waBbYvkeL2Eu4rqM00aA+y3Ia26CzKUp5bF8xnhR4HEFIjo5mLKtAtawRSpAJjVeOg8Mjtrd3GI9HN7nXrMsP1kkiQggmk8lqs0xdghjE9dlotCKxpADrRBgyJsP3lqaqWMwWzI5mA6yZM862GG04ilzT2MCbezNu3Ngn2EFwH3rqrmHZdJy94yzbJ7eRTvHqtT1cgKbrEUaChJ3RhC2fEdQElOErz3+Fza0N7rhwmradczhfglRIAl1TozOzStxQSlEtlyitmU6nK+JK8qpNBW+dNJO6JGDVlaUZnxARVUkJOcvl8iannmSnl+61HOzxkouPEhI1uCZlWQbDnNd5hyDgXD9EamWDy5BF68h+9W4wkm8axuOYfJOM6NcN3NfnhWrNPi/aEnbocbaaayZ5zDpsCsfG70KIaDhf5KvCml4vQJbnhEHek4pl+v63WuytM3qB1Uw1yZ7SvUtzz9vkoNvra2nduo7TaK4fHAAwHo3wkxFlOcK7jpHO6aXic8+/wL133s/+oqdadmxsQ21blv0B129cjb/YUiNdnLH5PmB7CxZ8UGgZT56ZMQQkeVHSdQ1FluM9jCebgyduFNqbYezRDb+gJss56Dry8QSUpm4txmiEzrC2YbSxwexqhxCG4DzS1jga/sJ//if4x7/4r/ilf/lZPvfs67zx2g1G4zHL3vOOex7gO/+D/5jzp0YYv2BWzymFQOWGrm85Wh7x0suXee36Ia2aUpx+gKO+ofYCuX2BSwfXueuMxg22gJmSSBnolg2j6RTveibFiKapQTpMpmiritGoIM8ypAaTZZRqRGd7go+b1WS6Qe89trOcO32B5fwKR4cHdK4ltC3ZJKe1LUcHh7z0wgs8+I6HVoL3ddZkKpJuDSJLm3wyHk8dBMQN7+zZs8zncy5fvjzoICMUvHfjOod7B4xHY7Z2dijyEYKCuulYLI7IigneezZ9xsId8fqVqzS2xwnPZDRCY9iZ7JJ1ioPljDCSqOCZFGqAwMdsjCa8+sIrvPjmG3zrH/4AIS/5B//k57h44Qzf9Sf/GMoFXn/tMvdcPIdvO7wU5KMyvl+0ZjqZrmQwyWd23bkmdUTrrNL0+VRsjr1ePXVd0ffRtzYV37btgDjDTJBsOojYwWIv+OiZ23URuRFGReZ3blBBEIJCqXw170zFOpKNeozWjMooo0nXmmQ16TBwHGVmY8i81iitWSwWK/1qTFkxq4K1bjW4Lgdav0e9Z/X+SDIVKWPUoHfHodPr9oTrB7Z1uU06mKTc0LTWDyxJRnV73V5fK+uWC2dZFpw8uQvA/v4+nNuhqvbwtqeYFGxtRwPr/+ff/rvsv3lEpgvGG6cZnzjJ9et71HXLlSuX2Z0qvIv+qlHg53BOgoyn1Mlkghms+eq64cbedYqyiEbXTYOQIhq0i0Auj3/BgcH6TfP6G5eYz+Z452i6Dm0M07JESgOhoO8sQge07vH2kEXb8E3f+F72li1PPfkVrs9b/H60a/vcc0/ylY8+xQP3nOFP/fH/gHKrwPnI3s1NxsGNObk2UX6QF/TdkqtvvMF4Y5dXX3qR7VzD2a3oyQsEZ3HWUhQ57XwZ/UXbBgW0zsa8ztBgW0smcrquo5AC6WA62aJqapQas7F1Aik0RmW89sqbzGYtJtNY2zIppxSjAlNOUWg8kQSjtcE6T28tRg9m4cSNzKTg4BDohw4MWEF7SRLRdR29tZSjEafPnOb69evUTc3e3h7GKM7deR5tckKQ7O3N+M3f+G2efvpJ/tM/85/yxotX+MKTT/KtH/gAd589x+mdk2A0L732Mgf7B5gAwnps39AvK0TbsjEZc/7cOZ5/4QUO9g/ZffidtNLzuS9+gSs3rvIf/rE/xocv/Of8/D/9eX77c1/i6594jO1NR7uomY4M3ll8b9Emvj7r3YrZud5hJvlD2tzXPVmTn6z3MZKuLAp2dnbwwdG2S5Q6LrZRZjLAi0LgQ/LmjYUjGw4v62khER5tqNsabcZMJmOcS51hoGs7vItdmRwOO0opRDg2sRBDYZRDwUnSlhUkKgVykPaMRqOVxtKYPNo2rukvk5TkJha192tdbMw5HY1Gq85TCBF/P9e6w/R468zYdN8haj+11pRlueqCE3loXW+bXsPbbVlr+fVf//XRc889l585c8Z+4AMfWE6n09sngD8A639FOopEqjgX2dzcZt+CMQW9VMyqinq5RBjN4WIBRc7Vw4oX3nidBze3ePPSFV556QWUEtz/8P288PTLuG6BEjlaapAGqfTql/3o8JC2j+L1rMjwBJq2wQ7zJZSEEEiHUCXjy6irmmpZsT3dpNQa5wN7B0fMlw2TMuPoqOLSG29S5CX3PXSBstRMC8PRouLJZ9/k2vMvc2HrBHXZUreOjc1tFIHNcU4oBM++folvu+eboKsxQeKFYmuywfbGLoeLitcuX2Wced55/91ko02MdmRmhOsCfiBUeR+wUjApMzw1QQQOZzOU1pSjMTrTjNWUZR035I2tCd55bOc4PDhgWVXRRi0zKBFjoY4WDU2IQcyjYkTfB9yyIrOQmRKlDXsHB0w3NiiyHNtHmYJdS7AQQhCcw3UxwSQ4j5ZqgD2jbMNkhlFRxKLgPdPxmGo+Y3awT6Yk0+mEqq0RquTpp5/j1z7125y6cA/v+ZZv4JOf+wwvvfw67/2693HYNnzuU5/k9KnT3H3XPdy4ep0HH3oHNji+8MzT5NMxd56/g6PX3mDvqOKO+96BKMaIoAnC8E3f+C3cceYC165eoa8rdne2ed/XvYfNyZi262jamnJa0PmecjSJMVuEFQyZoMR13WGSa6RCsF5Ak/sNQVIWI0BQVS0IT5blKGUGtq7De4lSEuddDIPuY5fadi1BECPWhpDwtuuAlI2pKcsRShm6LspjtDYEFyjzEjskoyQ4FUDqQWfqPdrE3x8G1nDSia4ML4ReSY+Ukqu81a61SKlvMnBfGS+s3a/0OD4E6kHmlQphKmql0gR/bJGX2LOpgCf4NzGLy7K8ya82FcnU/aaOPZnXv53WZz/72eKP/JE/8uDh4eFqj93e3rb/8B/+wxc+9KEP/R8u+PkP2rplqtre9UP2bhwB0HceZyVd45k1PRZF0/fc+8AD3PvgQxxWLXUApyXX966jhaFvenZPbPOhP/ohxrtboAUugLNuNSMyxrC5uUlRFEynE3ZP7TIZj/C9Y1TkjEcFhdHIEMhUTGEBVqza4EOMJ7MWI2BrOubuu+5iOtnkxRdf5ZXLb5JNN3nsiXezNVaUrkI2HVNTMM5zghbIIiMrRuxun6A0OcW4gExRdw5CzlNf+Ar/+pO/zSc/+SS/8RvP8MprhyxrySuvXqGzgi9+5RXmXjFzgTf2r/LlZ59hY7RBrvPhUhXlxgZWOZZ2Qe07xlub9C5weLSgrloWR0tc4+mWPViP7y1tvaRtKnAdmfRsTApE8EgFGEMnJHk5oshGbG2fQJsC4QdzAaU4ms+xzqNNRl4UKHls0J1O9BKJlhLlBdIHpAsI53F97NqEC9imQ7iA7zp837E5nZIbQ5EZlvMZOxubbE2m3Hn+It//X/4F/pM/+a284+7zfN273slf/N4/yzsfushs/yp33nM373j0Ea4dHnBtb5+66dm/foiwkrOTE5ze3uWuB+7l3e96jGefeopPfepTOCUp84Kf/4f/Cz/7v/y/Ob27Q2hbfuZv/11+85O/xrgsaG3DxuYYWSo6FehFoA9uJcZPrNkEC5Zl9HFNxgSp40obd/ReNQjEap67XFZ0XU9dNVgb5TRVtWSxmHN4eEBVVyyrKh5MrI2d4NCxt31HGHS5CJBaR36slCiZIdDRaSpIbJ/g44xiTXsZZTNhJftxfmDrDgSkdWek1Nk2TUffBUBTVT111SNExnS6SVmWq64wyWQS43exWFDXNV3XDR87dnJq23Z1H4uioO96jo6OVgeSo6Mjjo6OaJqGtm2p63r1HOuFeb1QJxg3efamWfo6AvB2WF/60pfK9aIJcHBwoP+z/+w/u/ereQhwzvEjP/Ijpy9evPhIlmVPnD179tEf+qEfOvMLv/ALUyHEe27cuLHCwz/1qU+VQoj3PPfccxnAT/3UT52YTqfv/p//5/95684773wkz/Mnvumbvun+F154wXzVLvhtum65cLZ9v5qpgGA8GmNMxsnpNkZITmxtsTkec8/5c5zaHPP+9zzM7sSwf+Myh0dXGOWOd913gTvPnuHETsHSO4K3MQbMBYSKRI07zl9ge3MTk+doYZBBsrk5wnuHtxbvY/KF0nK1+fswOJhoRSYVzjuUlDHVwwc2Njc5cfI0p0+d4nBvj1//tV/j2a88y9F8iesCTdVSFGPG5SZCaUQmUUYilSDgaTqLNBlvXrtOVZbsZTmvtS2//Nkv8bf/0T/hcy+8zO4d51k0S+64+27uvudezt91kXe+872cuesc1kT5C0BWSLIgmO3N2d7YITc589lRlFQYjTaa8WTCzokTbO1s44KIukHXce7MKU6ePEcxKjHKgxMcNguWy5rM9xweLekaS8AhdAyVziSURnPm9FkWi4obN27gvaN3LgaYDBuX7XqCjxpbT4QZhYqbvV9zg0n6PK31kJ1peODBB9na3OLq9WtMRMaX/s1n+b//3/4W1eUDWDj+zS//Gj/+sf8HX/jS5zEy8OaVV3n+pWdYLA+YjjRf//53oWRNVlgee+xe5ss9PvPZTzE7uIbJAo8+/jB/8b/8L3jPY+/gM7/9KZzw/OBf/kHuvOcuPvelz/HQw/fxF/7Cf86kNEyLgsl0ihTRqcdZx3g0Xm3kiTXrrSPXcdadYMgE3aa/J/JKnFlK2ra7KVvU2mQgEaHfqmqoqoa6qgne09t+cE0aiDMDBJoYp4mlHhm30ZAirdlsPhQLyWK+oGtbgnNRclXVhDB0w9bS9T1N266i3w6ODlYFMBWfpqk5mh2wv7cXmb0yzSAj6nB4eHgTGSppN9fDu0MIGG0oy3L1fkiwcd/3FGXJ7u7u6jWNx+PV+yUV8nUpSiqYwCrYu67rVUGeTCYrBvDbLR3lgx/84OLP//k/f/1f/It/8Vzf95/9wR/8wcsAN27cMC+++GL21Xre7//+7z//3/13/93Zv/pX/+rlz3/+80//vb/3914+ffr0LWeyNU0jP/7xj5/9u3/37778iU984tnZbKb+9J/+0/d+ta737bpuGaqdjidodTzvmA2G6yrTGKCtGorxBs2iYZJPaOs5r984BFOwOd3izOZdvPvRdzAuSi5cuJPnnn4RTzx5i+DxticvolB8Pp8jtKa3Lc51iAQlJrKA89H4e7g2O8CgzkMHLK/vMR4VbO+eYNn3lKOCUye2ubp3HeuhGBWcOrdLoT1N7alt4F/8f/4VTkRtqSXg2hZjApjokNN0PbOjfd7/jvN808ObzJcd83fdwY3DAxwdr7+54B0PPMjj734X2zunkFkWZ1vCw/6CIgz5gy30TYtSmqaNrNM8LyjLkqJIQQrDXCtY5FDcxqMRR0eH9H1gtugwRlBqD06is5IuVMxn+0jvqZct2dggRSArxjRtS6lzMqM52N8jUzCZjHBeHLu8BAhDPNi6D2max63HQFnbUxQ5MZAq4Kzjrnvvpuobnnz5eTZOneS+Rx7hJ//W3+T/9J/8Kf74//lP4idbqGyDxmkeePgx+gBHsyXXr12jqpZcOHuOc+fORUjYGEzvkF5x9dJ1Lr9+Fa01586d5bHHHuO5557n537hF+n7mnc8fB933X0Hi+oAowQb0wnjPKNtLF3XrGLB0ixtPeFDKIXvu6F7am6ygkssz7TBWxtTUsKQ2Zm6UTgmuyRI03s/uP1EuQhDp/vWmK23BmYDN8GZQgh8SBmdsWtumjaS5wYDCyHEwBqOZgl971aRaVodk3qCCBipYiKR1ljX03fHgdap804FLplSpHuRCGPpY+vvkdQpdrZdfT69V+CYvLTeCa9396nIpwOJ957ZbBZtA+v6JnLa22Xdeeed/f/0P/1Pr0H8+T311FMlxPfK7u7uVyVc9ODgQP70T//06Y997GOvfeQjH9kDeOc739l++7d/++IXfuEXpv+u7wew1oqf+qmfeu2DH/zgEuBnfuZnXnniiSfe+au/+qujD3zgA7cN64d1y4XTe0/dxAi5dSNmlKapW0YbY5q246lnngEhaZZzJkayubuDzje58vqrjAqDbRvuvutOvJAEJQcXU4GWAikEOyd2kVLhBns2bRRwvMFHRmGG9w2ZGgKEB8i2bRuuXHmTLASKXLGoashKnn7qGQqdU4xHKKnIdE6mNEL0bOye4Uuf/iJHS4sxY1rnMNLgpEXq6IYTnKX3lqpx/NN//PP8iQ99M5vjTTKrOXthi6vX9njy9ee5frTgtw4/Sb3sCEHQupa8kJw+VfKoa7gPuLFoUFKxOd3Ctp7JeEyja3xw9K4FD32fNJURxpZK0VtL37VMplvk5RSvC0aFYbno6fqa0daYtovFIi9G1HWD9h4nIyFIdm1U/TjLslqijUYO4dBSqSj56W20cFtj1q5nIabNfrV5Kk1VL2Pslwi846GHyLKMV1+7yof/9Hfx1MsPMK9mbIaa++88T4Zg/uoVltUMk08IzrFVbKG8YXN6gmAVXd/FdA9ZEJynmjXUTcNkMgUnMUqyvTEG37J94g52T26iQs9kI0cGj6RjOV9GvW/vMHlJkAohI5yolKJuGpy1MV5UxNDtlEWZ5A/r8KExhqqvh3izY29Xo3SEHcVxdmSCPF0i06y556R7uP7/t/69qqqbSEu27/HOYrQ51jb20Rc4MnNj0Hgfc8ZQUg5pNRY/vB4vo8UiLs61m6bBuh7y4y4whMB4PF4VuHTISLPKtAckwtO6h+yxJvMYwEqPkwpz+tqbNcPRZCK93mS6kKz24JiZu24T+HZbf+Wv/JVzv/Irv7IF8Of+3J+7trOz81UhCH3hC18ouq4T3/Ed3zH7//cxlFLhW7/1W1cz2Mcff7yZTqfuqaeeKm8XzuN1y4Wz6yyFiW/era0drglF10UoSpQZ1ij+zad/g4VtmBZT7KFlWVt2TpZ0y54bVw7oGofve06d2kGXAkdAaTMI3BUmyxiNR7gQPUyV1mgN1sV5U8oxFMQNPQwb0sY8/jy3ru/zoNmltR153TFdWJww3DWrgI5R2+OaJbqtyMM+21sjruxf4oVP/Dp3o7GhIVhPVS1ofE8xbpEqBnQbAbmH+skFv3JpSUDg+x6co3c93XLO7Moe19xT4ER8TUpy5vxpxpzF1jGC719/+vPMr73KN3zdo9x9/m6cH+ZdwdLUNdZ6uh60MhA8xSi6KGV5jnUN88WCWQVv3jigagL3P3g/Vw5ucOOoomk9lW2pZteRQjMtJ9T1kvFkm8WyYjwZc+rMWa5fvUpvAye2NgGwQ1B1XsQQaWcdve1WrM0I6TJEvkVf1aap2NzaIMtyiqKkWi5Y1A333n8XG0XB8y+8yh27I6SZ4pzn5Mkxl/Yucdi09Hi6o0NMXmCynO2zW4y3xti2IziHUQIlA0VesLmxSVHkSKnRyiOF57GH7kWKexAiYF2PySRNPaMoCooshzxDC8nWZJPGOoRWMZptsPPLswyv1dDdDIEvStP3MTkkz3OqqloVvKqqcPa4UKRDXIoSW+8aU6GN5KAAMjoBrR8202wvkXzWHXNiuku9+jqto8dw27YEIMsMBPAWEGFVzOTQeQoByqTQb0kzZIE2bYvSOSHEGa1Skmyar2DZdB1vDadORVWvzWmT6UK6P6tIuGGvOJ6rNjexYdM9SoXWez9EubU3fY1SKqYZaY2zFrMWkv12Wz/8wz985id/8ifPAjzxxBOLv/E3/sYbX63nGo/Hv+tNUirGM63fx77v335U5a+RdevOQTJgB5P3plog2ATpoQ94PHvVgpcvXeWOc3fxygsvUsiS2eyIz3z+y5w7eZ6Tu6dwNhBs4NTuKYq8RA9uKFlmMFpz4sQ2xTin7juUyQjeY210aEkU9qZpyEzMO/SbU3qjufMf/woAj/2P/+zfeu2P/jte23f8rp/Z+10+fovvfQu8+nr8A7RaIU+eoW07fvVff5r9dy545J0P4W1Dbjx0NWVeUmQFbduzrCqqZTRGmI4zDmdzLpy/C+tbTu5u4YTljetX6Zue7QJstUe1rPHBs31il2Vd48Ng4p4VtFVFL2B7e4v5fMFyuWS6tRmZqFXNZDSi955+MD4fj8coEwu3GUKRhReUoxF1XTGfL2NBKAxCaQpTUB3MMZnmwbvv4np1g7qpUVpy/vQWF86MaGwqUj29D3ihqJsO6xaYQlJkkvOn7kUpMZije7SSWNcRrKfIC4LraJcdRiuUCri2Y1SMkAJsH7vHpu+RWBAKLWICjO172qqODj4h2kVGtqpGSUPwls5Zlst6JbXQSlHX3dBl3awp7PoOwnGO5Lq/qlIKoxRSR1YyHEtHsixb+dyuw7Tr8o1UhJXWCAFCxFSXruujGUWRs1gu6W2PdRaT5xitwUXLQ0QMHVdD5zYajwlesmiroWArDg4O2NzcXKELxyk0x8HbidGaSD193xO0JMviIUAi0JmJKThD4DjE4pmYuwlmTYeO9QK93qWvos8G2VC1jAYI/eBQ9HZbP/qjP3r6v/1v/9vzAI8++ujyE5/4xPOTyeSrdgJ45JFHmqIo/C/90i9tPPTQQzfWP5fmnK+99po5efKkA/jMZz4zeutjOOfEv/k3/2YFy37xi1/M5/O5euSRR+qv1nW/HdctF86XX3uRu/p4MmzrCutarHOUQTLvGw7ahoMbC9586Qbnzpyj9/DqlassGktbv87pExOapsY7j8SwtXkCd+M6wQ2G8BJO7W4hjUeKgBIB30PbtEgT4cuUzhCdWQzXM8Uv/8j/BfP0S3zbP/oV/tZ7HqE+c5KLZ7c5d/oEeW4QxrA3W3Bj7whjCq4dzZgtZjx8z0UmmeEf/dNfxoy2sDgabzFI6G2EwGRM1Ai+x2QZIQis6xEiUOY50mQQAl1bo1XBcjGLRcaUKBkwRjEeTyjHBZkwdOWYZnMTqgU2eF585RI725tsjgy6AB0s/XIJJuB6z8aoZFlXbE02sX1NX1e8/MLznDm3yyifILTh4KhiZyT5I99wmjMnJMEG+rpnmR2iiylGQugbPDE95fqVy4zHU4IQNA3IRYSCTZ4xmoyp6prgLHlWgBJ4GTdtn/IzjQYE+WhE3dR4Ieh8ZDSTKYLO6KuWjVOnke2YN968hMUTRACfYZRA0GNMTvBgradUBYE4q465mhbnLBo/EMAc0TA3IELUNiJtNNoPAu8CDo+WmizTdG3cqLUx0dbReg4ODrDWctDsk2c5k40SYwbpiBVonWNtzAH1rqep4yy3l56us6tCFqPvfCxoSg3RYgGt9Gou6mwM3E7MWZ/M1gf49t9mXJ661vT3YxMGhXcObYrY/RGD0Nu+JysLhFMYEWVODpBCEWPTjqH2vncIGeg7y3g8AsJQjAVVVeG9W13TeDxeS5NhRabqum7VCWdCI5xHCQk+IHoHipt0qeuOQuk60sEikaPW9ZkJmu37Ph7WRLzGZjDsCOHtJUf5Z//sn03/2l/7axfSv5988snxzs7O45PJxH3pS196+u677/59H9qORqPwfd/3fVc++tGPXsiyLHzgAx9YXLlyRX/pS18qv+/7vm/vzJkz3X/9X//X5z7+8Y9fevrpp4v//r//70+/9TG01uG/+q/+q4s/+ZM/+boxJnzkIx+5+K53vWt5G6a9ed26c1BmcC7CjUjo2haZaXzVYUVgVs25ev0GR4uKMyEAGU0fKAtF09QoJky3xjTdkmxiGBWCVgomWrIpFONsxKmdUzAQNKyNlnzCKILrcd6hlUILSet7ls0CS83kzvNMsxz+0a/wfBb4Chn6yhF31S3nt6fceeYs5++5j6V+GasKxg/cz6d/7f9LPsl44tFHqJ97lpcOZwST04cxrnKEpsMHh8qjD+1oVNDUDcjItgVQK1G5RBFZnPL0CQ4PD1lWLZsbY3ZO7iIKTdW3KFPgnKE93MP1lnOnJ7zj/gtsbY3JlIjeqkqDgMPDw2g7aAPWO5q+oWtqLtxxkfnhgr5u0eWI6WiD1jaMStidGE5swlYOSzVBK4PoWxrraOqGsujp6woFNIs5W1snODo4oJkvOHf+HEVZ4gdHmLIsV1BcABACN9jIrUT1UlAUxQp2FEYAAeEkk9EmXVORZxk72yfYO9onm+SEENm7iAzvQyR5GTkUUIseikrf9yAVIkTYOM9zlJCrcAEfXCQmDUbuUiqC8/SuW3WFxhikjgku3juKPKcJgSzP0VoN5BkTYU4psLalKIrjxJOhkITgyYyJkGsdC2aCLlP4s7OW3BxrDTOTDWkzbogXC/jBAMGuOTQlwttxJugxOSmEwGg0ilplnQMxnDyEQAC0yvG+o1Q6ugJlgwm7D9HMXkWEpigKqqpiWS0G6Ze4aW657p6UCD/rJKY0005xYkIIjB464kF/ue5zm649FcZ1a700M06z5PjWutkwQecZnYtG/kKIePgRYmWr+XZZr7/++r9VwrFYLNSVK1f0V6NwAvzET/zEZa11+NjHPnbuB3/wB83Jkyf7D3/4w9fzPA8/8zM/89L3f//33/l1X/d173zkkUeWP/qjP/rm93zP99yz/v1FUfi/8lf+ypUPf/jDd1+7di17z3veM/+Zn/mZV78a1/p2XrdcOC9cuEA+ix1nmj9Y58jzEaVxhIN9louOumv5/FNP451Cak8uM6x0bE5LTpzcRMge4S2lMWAypDLIrCTInCzfoKp6eunoiMG8Ikh6JwlC0DlP33UEORAYphmEmm55CMCD993F5V4SfMZrR0e8cuUqv/r5l9ja3uEd5wvuvbDLhBF/9P2PM5oKbHeN//g7P8Av/6tP8ZXX3yBkI9ACMk2WlXgCwUNdddFHtO+RwpAXOU3dEvBIJSjzEqk0XVXT244yz2mWFf1Gz8J1GAm+3cf1gTxX3HXxPN/yje+hWuwRQsvR4ZJMGfYXFTozoOI97ntLMRpRDw4rTdMiJKjCsLm9hc4NuBl71xyvvXnI6e1TdIs5VpaUGycRIs5fc2OwfYvtochztDIsjvbBOZq25sZVyWi6xXh7c7CMa1eG3OtzvETeSPBd2vTawa84yzKcdczmM/KyIFjY2twkCDiaHeFsPPxYa1cbYRgg0ER8STPCZDaeurAk+4iFOrJAgdUczdqA1sfwX+wOwfc9ZXZsh6eUYlktsK6nbZthA9erOeR6XmWCKI0xCBUlI0kakdig3sXi2Pp21VH2oUcoeVPqB8MM8q3hz6njUkqtordSgYqHCMd4NF0RxlKBFcQuNwQfO/UuQtRZZqgrsdJK1nVE2JRUqOyYzZrg2KT1TIeAddODdYMI7/3KEzdZ861bEq7Du+vB1etFMd27lN+5bsUXfLTR9FLQ+2OyVfr/2239+T//5w+zLHvprXPE6XTq3/e+933VYE+lFB//+MevfPzjH7/y1s9927d92/IrX/nKl9c/9t3f/d2ffevXffjDHz788Ic/fPjVusY/COuWC+d8scAMb2BrY+CwEzCvO5gqeicoJ1vc2FsSnEAGNQQjC6RUvOvdj3L6zA4Hh9dBClrrqPuAnxRUnSBkBpvlKJXjXUMQjj705CGQS4n1DiMk+WiERyCMpnc1gUi7B3jongtsXjyPCZogWhZVw96s5+mvvMqvPf0crZqyfPo5umXFxk7B3fed59zWaT74xDezPX2Wz3/lBSrv8VIijWG5nCNl3FjKoozRZFrgfYf1PVIKvIfOdnhnabqGyWSMVgU4F4OgnceUORfOnOLCuZOc3BlTGkVf36Ct5lgpMTqj6RpMmTMej5kvZjgfJROu7+i7nsl4AiFgsTRdzaVXL+GCpZAZSvZ84ZlDzp3qeN/2Ls3yiLo6YFKOcV2FzARt1w25jQFyYmpMCLRdtDEUKqwYjlIKmqZedW+pK0obbeoqEpEmFbzo6qSHTlITtKKqa8bjEUVZcHRwuOpwYocS30uIY9nEuntMKizrnUsi86SZmDHZSl6SRPNaa4SUaGLBaLsuGugPkhBjMpyPbNWeATKNrTV5frNLzYpMIQXZYNy+Tmbp+x5BLIpJo7hyzlEqduXORXasPzZAT0U8FU4hosF+kv8k4lDXdQS/GOBiv+rkwJPneoCa3XHRL0ryomCis5UZ/3rhSd1jKoZp1tg0zQpqTj+fxIhthySkdYeldRJRKpSp0K0ToNKf5DC0bqO33pUKiOxulxy2/IpIlO7P22ltbGz47/3e7z34930dt9dXZ91y4Tx//jzta1cBmEzGLJ3HiUCmS2wISJPTESgmY5Z7MwpZgnBUbcP9d1/kve9/L4v5nJHKyGXGxuZJ7FJTZTl2PGJ65ixutIkPCuMshfT4NqCkwasGYxQhTpjwSGzbkpkR0KCHDqEIgR3ZUxpPcB1nz0y452LJnRdO8j8e7vNzv/0keS84tbFDdeMK//KpZ5gS2NjYoNMGSyxUMgRC79kcb8R8Sqnx1iODwCgDwbExGrNYLsmLgr5pkdqQSYUibtomM3gR2CwUj7/jIc6e3UH4CiN6lHAYWbC7s0vfD8QH1WKM5sVXX+DkiZMUeYH3Lhag4Nm7cQOtFdPxhN4HfvVf/2sODw5R3uCUZL/K+MSnXuCO+17kGz7wGNeuXqWu5ozyDKwDb6mWDS4o3GJGMSrJ8px8WtDTM1/OmWxolFRIFQ87ichihziqtPGtd56pyGVZxmKxQPgIhwopWDQVQUbSjJESs7vLm2++GbNWZTQUCCHOUNMsbb1wpgKdyCvR6DyGUdd1M3S5hhCON9n0GLaPhg6EQK7NTdctpRoKq6bpe/IsiwQqrVbPl+ztVtAl0W5uXb/phmt23mF9WOkdldaYzMR5cd9TFMVAMoqNRtIlrnuyAjfJYVL31zQNs26BVtnKIEEpRdPX9EGhtIzWfBLQgkW1RKvjojydTpnNojohPd+6rjWZF6TuMmmJ/eqQfKyvTKb/qTsuBvvFdK2p2KWiexxPx02do2BAGoaf82g0ih2ytZjMoAVYnzx8u9U9u71ur6+VdcuF0zYt3sY3fm8tQUBucrSUeBkY5RldvRwcUSQeT6YEozLnQx/8JkZGYKSiWrYsdM3k5AWqbsz21hYX777A5mZJZ1s8GVa2GC2HDbJHSAFELZs2hsLk1F0M4XXOM/xu4TrwtcApgVab5GrM4WyJbwPvffg+Hr6zZb4/Z3Nzyu6dO7x+/TJXLx/RtR7hekxnKYsM1/dUTY3WJXkZ7dastyybisZpirJES8jHozj3FHHTddaSK5CZYFwYtnd2eOTuc5yalFFHOBpzdLDP5tY2RpcczZYU+ZjxdISso1PMw+98GBkkTd0iZITcNjY3Kcsxfd8wmpbUfc8n/uWzFJmhDQ4pMzCSNw4tL1w65J7rB9jOonpJpjW9dZH8szHBBY3MChyeohjRNzWz+YK2t9w4OOLB+x+kr+1gy2dwNuCcJ8+zlag9wYVJSpA0nVZahIzh2HUbdaNaykiW0QZvHRfOnefg6JCDG3uRYCMVfRe7jNRtrXdiMU5rzU93KB5ZpmEwYAghQpppJRZnzOGEvnOx82w7xuMJbW+jq1KeoZzA9g7n7AoiLYpiVYSttVgXu+Jm6LxSdud6l6xzE1vhQJx7K8Xmxsaq0EohogxmKOZyIBalWSFC8J73vIdnnnmGq1evrqDrLDOMRhPaxg6vMzJXx5Mpzg9jMqFQKrFVBZnJV/dsMpmsUl1SkU7zWTju3Ou6XrkMJZg+HYhSIX+riUFaVRV5I13X0fUpCUahVJTSHOs802w3Bmqn+5w6cK81Td8hzbFuNBnAr3f5t9dXZ/3AD/zA3g/8wA/8blKC22tt3XLh3Lt+g5GNv6itHUwInKfTPc4LTm9ucf8dF/j1335ysJDtUM7yRz/4Qb7pXQ+CmyMNeKNR000Ou8BvfO7L3HFyl+vXrvP4ow9yz0P3ojR0pkMGwEI+3qRtPM51uNZR5AVCKJTyeBGYlFPKPJ7kZ3VFJQWLwxZoKeYtXddx6c1LVJfe5MzpMzz00EVefPkVLmTnefTx99E8FnjzyhXqqsIOG3cIns2tTVrbg/cIYnTZ4WzGom5wCPb396LHZ5YxGY/RQpAZTSZByZy7zp1nY2OTifHgWqqqiV1OMeFw2VPmGeVok6pesLw+oyxHzI4qrl1+g62NKdvbO3jv2N7ewdmYwbm9fYKNnSkL5+mkZFk1BJ3j/ZLCG0plMD6n0Duo7R2uXNojyyYo4XC+ZvfEDlXVo3QxxLJpegd5lnP6zDnmVc2bV95kVE6o65atrS20NmQmJxDNJ1KXkSA67z3OOmoXg6O7to2uL3mOd46+7TCZwVofLe4C7G7tIH1gb28fqUArdVOs2brpQtq0U0eZpAsQ6Pt22MgZzCKOWZ0rUgqSznaMRmOyYkTvAi5ECNd7RZ6ZSBTSYvUcx53pcdfUD3NZMXROx3DzsQuQcw4BVHV9Eyxrhvm0944skYgGn+bU2bZdxzPPPMNsNjvumq2lLMdY64du1q3Yt6Uu6ayIEiEUw00AKVbFPRnUj8fjlRuRMWbl/7reVSYoPhUzIcTqILHK8xyuNf2c0v8T5LroG7quj1pSQLgI3SqtB15E1NPG904gCIEe0IakJ81Ehg3HMH1CG9JM+/a6vb4W1i0XzmW1RHQDUUQpehdnNrkXOBc3jm/8Qw+zbA84ODpiwxR8/ePv5v2PP4q3c7xtaLwkUyV17VjMlizbmoNqAfuS/OlX2S23OHtqypHocTQ0BzVHzXXyfIQSHu86xvtzhPe07RLro1xh49VLvBu4dP0aV03seNuuRUpBnuU0zZw77zlPs6xxtmYy0Vy/fgklo5h7LDp2dyf01pGZEolnlAtAkpliyKt0ZPeepXcei2C5XMbkhjzn8GiG7WORK41hdjCjzCQZLTIIGmeRSpDnJQHFbDYnuAYx0lRVx87ONj54FouKyWQDLzVX92dIAntHRxSjCVnImR32HNWHNC5gW0tpSmrR43H4EEkVR8sjjC6pqzl5XnB04wjro96wml9j/3AfKQWTUcnGxiZ6cEe6dvUyi7qmqlpmR3NO7p7hvvvuZzweEYRDkkT6x13LutNL7C7iHDAGm7cx/cJ5ur6Ls77eopTE2p4TJ05gnWc2mw8TwnjeSptl2qjXZ4YJNtQ6ud34oXj51aa+XrBi8dOMh/SSruvQWqO1WhXgvrerLnddSpHWuulBKprrcGSe5ytD9HXCSzvcG3zAizjvZCiI6blTgVRCoqVi78YNmrZddYQRRu1wlhgU7iUbGxux6AVHluUQAiGIAWrO6PpjMpfWelX01nWVKdszzaXT609G7kmSku5FKroQg7Hruqbve5qmwYWAVBLbW4SSaGPouw7nYnxZgrKlVownU4ohCN32PbbtcOlnL0TM5MxjeMM6eanv+1WHfHvdXl8L65YL59nTF+FGhGTqqmcxizMm6z1104I0nN04yXd94D9AComQnnGZc+36NV7cP+Dui3fh+57Fcs6d770bLeKmcGXvBr2CftGgreUPf/PjvLH3BmEs0ShO717EuZ7Dg2tMxgXOdYzKApWVjMaRzHBqeBWPPfow1b0X6OqGLM+HeU/cAPIsYzY/YjwecUd/JorQ6waJ4szWWbwbCE8uQpjV8oiyzMm0BGXorEfhyZXgxv4BmRcoKgyBSXBk44LQLBjl21gZUL7HLlvMZIzvI9R39eq1eNN1RlHkCBHnxdevX2djY4OTp07TdC1tAC8kucm4ceM6Y6vYHRtE8HRNiw0aYzKW7T46UygRyVZBCmaLI5ZH+0BNpgRlkdH3UYQvhODOO87T9TVtU1PXC6pFxeb2Fhs7G5gi49RuRttalNBsbmzQdA0eS2GKwZQgQoBJmpJYuMCKrRm9VdtVcdna2ordTnbM2uy6jp2dHYSQLKoqxmGtfGGPk0nW0zLS54DV59I8sizNQBpa7zg9fRdnostlHCNsbGysvj9Bw+ui/8QoTZBomu1tbG2SqeNYLz90mclRB46lHakwGmNgiNkCjqHftTlp+ngm4PqNI4SULJdLyrJkMpkMspH4tQm2BCiK6KK1CggKAR88eV6sitq63/BbiUlpdv3W2WH0IrYr+DUdVoSIh8XlMrqxrQhHAlwff/aZydBDgUv313uPHJCApq6xQ0RbnmX4tl89vpKx6C6qis5FRnQIgc3NzdWI4Pa6vb5W1i0Xzqe/8joblyNJ7MZhzWU9iyf6UhMClPmYg/2jIXKpZbGYM1/OmM/mNHXPXXcsOHvqNM+/8DIPdBqtBE88/i5cgIqO3bLk4OgKW7uGex56F5VwKA8qCKrZkvvP3YXCo7SKOj4hqewSgUASN+6umlEfHoL1VEOQtR6NuHz1KipTTDanHB1EiLWrenCePFO0yyoWhTZmXR7tLxiNp9SN5bBvBssvcL6l7aOnbdM3SK+g8TS1pV4eorVC+oDvLJnJ8NaxmM2ZN9WK8h+7nKEDrPZXVPzZbB4lL3iklrRdQ7P0nNjZYTY/ZK+bI0VAFyVVK1nWFSIDnAAvCCbgg+TG/iH5OGN2cDVCbp1EaCjKEePRmN5Gx57QC8qxJmQKXMfBjesIpbG9Z2dnl6au2bt+le3dEzSdi/KKoUvSWq8IJ3me0zQNZVmyXC6RMlrbpfnn+ia+XC5RA9M0dmiBra0teuepqmg+IICwRiRJhdOFNCc7hu/SigU0GQccMz+77lgWEdm31Vq3p9HarXWmx7M4ON74E/vVuRgRprUmLwqEFGipVrrTt5qXa61p6iYSj/yxKfy67jFB0k3bghBMNzZuShNJMWZSQvDHTNNk3SeEXB0Q1gtjYkOn1+F9/NhNELY4Nm+PzODjx58dHeGHuaxSkZW8Lj/xziGSYcPgnJTnkRyYrPrSH+Cmg0J67fjIvNYy+lX3XXRn0kZHqHbVcfc3aT1vr9vra2Hduo7zzhMwuw7A+Qsn0Kd30ErhQxSiX9s/4vPPfImXXruMzgqyEGcm2hjKzS0uz5dcW74KUvObn/8Cbd9w5eoe48k2Fx++l8Mrb/LGm2/QzZcw1gjb0zYtTjqkh2Ye0Hi2tjaQStP2LbID27f09dDxhCjDPGqWCB8o8pzlcs75c2eou5bJeMqrr75KJrLB6zbgtaC1FiMMqDiLm82rGC8mwTtL5xxGZxQmY1yM8SGgEFSLitrVbG1vYV2PVNA2Ftu22LqjnIzReYbTYjAVPw7tNVlGe3BAUZQgRCQXOUc++LR6Z2mbHmuWhLpCFBllucFovMOLLzwX8xX7gLcgpcFhUSrjlVcu8dpXLnHh3AaLZonFYwJ0dUWmJG3naJYNSmicbTBK0jcNXsLGVkGPw7Yt506f5vU3LrG3f53zF++kWi7Z3NxcxT4lC0SIInutNVVVMZlMVgUh+a6mztN7vyqaQgSUVhipOX36NNevX+fo6GileZRSUg1MXq1VnIPikELF+LM1SUQsdjczcAGM0Qg03kNZFpRlsdrY+95GWZXtVyzedbLKenZnXUebPjEcctT/j70/D7otu+v74M9aa8/7TM98h749T+qWuiW1kSLJvAkofo2BUMFSykBigSDBJg7YwUlwsLFfUxUinIADwpQFxBAFnAoYgoXiJC7ZChaSQOrW1Bp6Hm7f8RnPuOe11vvH2ns/5woMF5CAtntV3eq+zz3POftM67t+v9938BRWC8r6tGJbl88opajKklW2whrTA9T6XLADa8/zCIxx8WNtlZ4kyRqLWSGF7Cvp7rlZSztnbXA4ZNo/lq5CdX8/bQmvz3+7f+9AqSqdE1gH6IFyjkXdbfNWruL7PlYpqp4PYPv7D4OgD4KA01zQdS9frZ3JPMbgS0Xku5Qj2ZpPmHYmLNbuu7umV9Yr60/KumngjBMwURt95DcEoUZKQzXPCQYh4UCze+smephy8eohVVFjqoZhklKanDj1aYzFD8ZsjDZ46vNfYJim1EXJzmCDz1/6BPmy4ukvvMQd58+wmi6ZJAMyryFKYrL5gigOWZUVxmjmi5ULiA5CJsMtAIq8YLXKGG9ucHh4yCAJib2Ug/1DtwEYwdbGNliw2lI3ltCCVB55XiAQREHE9maAFA1hqLCRT1VUaF1hq4bGOrcgnWcEUjDemKCthVYiMUhH+MppIVdlDrpiWWQUeUGapH0bcLVathq/BiUVWbYkDAKEgbquSJOQ4ThFSYloIsajbRYZXHxxxr/89UeRykM31kkrfEUYhMTxiDLL+cVf/QB33nqGc2e3edWDt5OGHmW+ZDlboo2gqRr29jax1nD58lVX2UgosxwlFcLUHOxfIfQF2lqOru9TVhWfeOyT3HvvfZw7fw7HaKVvcXZBxcPhsJ+XdbrAoih6faC1tnWzWdHoGqV8PM9nb2ebqsjJigLlKerCebJqo8E6BipthWehZ/Z2QOLcf4yz6msrHSFguZyDddUZuGqtLHM6zaZr07r5XZIkN8hDOlZnGIaOvCRoN31nttAYg27bnVI6QO9cboQQpGnqCGdK0RhXtQsp8dpUn8ZoaEBbR3pKkoSiKHoGrCPeGJraEgRhL82Q0mXFmraKdNmaoE2N1g4sHUi618XYBmznsnRaqWutXdi2bigrN1s1wn3+TGl6VyQ/CBCtMYF1vCaKqmxDGFyFWOYZujh9X7o2+HqaTvecfN9Ht/pXYyArC5SQpHFKYzSNm9r3v9f9zivrlfUnZd00cMqsRpRt+6zQeKV2FWEQIBvDbWHImQcf4HJm+eUPfoiZrqhr56EZScMg0pw7c4HtM3fw67/1KPPpCdvbZ7AYmmXBRrLB7Q+cITcCFXokmzF5VmAbQbZYONlJY1hlGVVVEUcDClMR2ICqZfuiFHGaMD0+IYkSirxgVlaMRqNeyjI9mQKwtbVNURRYa6jKgjSJKZsKP/bboGDLKq9YZQXGWobDIdoY54CjGwzOvWUwHrjYLk/hGZ/lck6SxGgLYRzSGMMgHrAx2kBIwfHxcUt6cISOuDXLXq0qVvmKMAiJ/Jg8K8maBUkypKkjPvzJ53n22gkvXrnGUVMyuG2Ho+dKjPAgiUmTAdZXZJHghdBHyJQnP/8iS6n5/7z2DsoiI/B8lIwJvZDFNEN40FSa7c0dLl+7zM7uLsLAIl8xTBKnpTMaTw4Yb22xtbWDH0bOG1ZrqrrsiTlSSjY2Nvq5ljHmBkJJ14qNoqhldwZoXWBMg8CjaSrOnzvDixcvcnJ8TBjFrgWpDcbWGCGQQuLg79TVB07nnV2FU1XFGlmHVmdonEl63c3+JLahB5lOq9i1W7uWcAf6srV/68gt1liUkCivA+5TBq5j14rezN0KF2TdzX6BvmXctExc0x4ouuqsqqq2VRyC0DdckzEGbRqkPLXsszQIaQlau0oXsl1jjOxb4LKtiDu2rWjdjKxoO/4tuEspnJYZsEqicQlBdVVR69YyL/Bdi9UaiiJ3AGncTDhJkh5Au+e77lMbxzEqCBCaVuoUIXEzYqSTrQhtCHxX8YfScyX2K+uV9Sdk3TRwhmFIKV1byvOU2ziUh/BiZrNDZOqzWMwJZMpDt9/Khz71OKGX4CmPus45t32OV9//IP/qo5/l4rOXCIMYpSS5ztm/doUzOzvsbGyiQsnJbEpFjq4hCD0CT6KlIMuW/ewkSWJ3ikfQxQAqITBKkkQxxmi0cW0fpdwXsKxLkJYkTpgvpgghmE6nDIdDVvkK5XkslguklNRNQ57lbG5uOcJOXRH4ARubG2RZRlU3NE0NwkMqzXQ6c2zIwKduavI8J4witDEoz4nhPc8jTdP+BO3IJ06ov1ytGI3GjIdjptM5UlnCMGBzvM2/+vRjfPriVaLtXYa7mzx8z1dw7cpLrA7mzFYlSZQQ+xGNBOtbbrlwB3fdfi/TMOZjH/s0t2+MuPO2s1TlkqoukZ4iTGKuXzsgjkPyYoXnSQ7295FCMRqNWCyX1FVFlAwpsgWBr8jLhlQI4tj5n8ZRjDaNY3ZySiTpWmsdCHie1/vadiYAm5ubCARV3bBczBkMB+R5xubGBtevXePg2j67O7tOvtE47WNtDBqLti6HUhvjYtDa9qtr550CeQeQUnpr5BKXNuIcA1QP5utko96n94sISM5ezxnar7dNOxBfn8s21mVydm5DHZB0bei6OXXIAbAt6HbMX4sz1XfXLdsUF9kDnzZVK1mpSZKYunXcEVb3TFrXGnXyECndwQNx2kJ17XSJp0KQsj/0iLVKz2rdx4hFbUXe+c2us5dPtZru+sqy7NvdveGBdQeNh2FVAACQ7klEQVTpuq4JPPde+YFj3brq1rjUmqJ0c9n2UCGVelni5vHxsfzIRz6SXr582d/b26u/+qu/ejUajV5+/oGvrN+2bho4a930riJF4YTgaZqwKmuSKEJKRZL6XHzpOp/+9GegcadfXzod5N0X7uDaxasY7TGdZrzq/vuIQx+J4smnPo/vh1wOEiYP3YeSgjKrCFSCRZAVZX+at1b0npkY8INTv8+iKJifTFkul+zs7BD6PlEUMZvNeqebUjttZ1ddDAYDlsulI6nUTV/VRGnqfif0MVaTZRWzbNq3GqMwIBqPyIvcOeYIQZzEZFnWz/yUUmRFzs5k3OsDO1u26XTaO7eU7elfSsl8OsMajZ8kBHHMo597ksefewFhA7ys5ite/RoaDB/85OPMD2eUFvxoRRr5eELiBwHz4ylP5p+nPDkhzwUf+cSzREnKme2AoloQqgFCG9I0JIoiyqok8D08pVAq4Pr1fYbDAVEUY3XDcj4l9AOEVOTLObOT4z7kWwhBluc3eJ12M83TeZztpSVpmvYgUzc1g0FKHIUto9lJJe6//1V8+EMf5pnnn3fSCE/RVLUj5wQ+yWDgNH+tVKV7L9c3cncdDUKcztnWnWw830cKr7+Wzj81iqJe7N/92/r8cn1W2ZnCr88wO21rGIQO4Nvf78CsOzCtW9op5WGMMynoCFVSOUONhqY1dHezy+7+3GGwoW4qqlq2BhDC2TKu2d15ntdeU2tKIP322hOs1S4FCHpZSvf5BPrnsj6rXHePWpcOdbrR7v3vXmetNXEUtbPubk4riEMXaKB1ZyRRu9D4piEIPLReY2m/DBm1L7zwgn/HHXc8tP6zNE31L/3SLz3z5/7cn1v+cV3X72d1n6NX5su/fd10yN18Pme5dO+3O2FqijIjlAZf+ixLyye+8Dz/xz/7l1RaEYXOkg4MwzTg6OiAza09FoslIAijGGMVdWVYLjLyrOTkZMrly5eZjCfEUYgVlrwqe2lDmqYOdE6mrBbL/vTbSRSU8hgOh5w7d67PGZxOp2xsbPSb3MbGRr+RdxXgZDJp50eWqi6pm5rDwwOEcF/8+XxOGIZtWkVrEVYU/Sbn+z5bW1sURUGapk6+MBphjWE0GtM0DQcHBzfMl7a2tnrm6WAwcPM1CVEUcO7sGRpt2T9e8MzFl5jmOQezKS9evsL/8b7/ix/90Z/k+tGUrXPbIDWL2RFBoIiilNAbcnRlysnBEccnx6yKgk8/+QxPPf0MumgIw5SD4xOOZkdOHrRcUFUVw+GAwXDQVmCnbcU8WyFsw3J2TLGcs5xPuXr5EmWRUZZFb9PWHRTWEzCytq3eudN0G29d1xwfH7NcLpnP55SVm496npupJWnCm77q3yXd2eQgX3B1fsL1bM7S1EQj91pFUdRXlmEY9rKQ7kveaSHXrd46ZnNH+jk4OGhjtUxPnOmedwcC3Wc/z3PyPO+r6s5tp2uprqeDdNVa9xnrkkW61m9HPnKfWYUx7nHyPHdgWdeYpkG1155lGUVRkLfGCo7Y5DSxgR9QVTVVWaHbSq97LnAakp1nBXlWtiHkpdOHao0xugfydeu9oij6P53z0Gq16iVISZLcwJTtZt3d691VpEAffj2ejIiisO0a+ehaE3gBGCiygtVi5ar5lrlr1lrxLzfLvfl8/tv21tVqpd75znfe+Tvd/kux3vCGN9z3jne849Z3vOMdtw6Hw9dubGw8/Ff/6l89133+8zwX3/md33nL7u7uQ3Ecv+6hhx66//3vf/+w+/0f//Ef3xoOh6/9hV/4hfFdd931YBRFjzzzzDPB+9///uFrXvOaV8Vx/LrhcPja17/+9fc/9dRTPTvwh3/4h3cuXLjwat/3X3/77be/+h/8g3+wuX5dQohHfvRHf3T7z/yZP3NXHMevu+222179C7/wC+Mv1+vwR7FuGjiFPU2sX62WaGOwVlA1illh+dCjX+Ajn3gCL5qgjUI00vmqVgXz40N85fGxj32Cxz/7aaQwfPLjn+DSi1e5duWI3Z3zpMkIJQWDUUqWuQ1EmHZzCMKW1OEAdDgcMp5MetBcLZ22LIpdRVzXNQcHBz0odWSFjuW5voF2G0N3uu0qjtFohLXO+HyxWPTkjcnGBmVV9fMocLOvrhLtHqssSzzfZ7Va0jSN88NtQURrzfHxMUVREQQhTX3qwBOGIcvVkjxbUhU5i2XJxauHrFYNL168xEv7l4g3U+LJiMJatrZ38aXPpRcvsX/lGvuXDzjeP+H69X1m2ZLD1Yzj1TG1KZktpkync+J4SBwNmM0LkniMwKeuDQJ3IAK3WQ2HQyaTCXHo9KxFvqJYrZhNjxG4TkL32nVayO4wsm6T1lU9fYvP94njmDNnzrC9vU0QBAwGAwC2Nrfwg4AoinjVA69isrFBFEfce++9PPjgA0zGk14a0bVRu7W+wRp7ox4UTg3JhXCVWedNu14hd+9PV/0pJRkMBl8EdA5c1Vqrtn+sdh5ore1ZqboFko5p3HUeei/axbyX8px2dQpngbdaUdXuWoqiYLVa9b+3WmWUZUW2ct+Xcs2IYb2Sdp61A+I4wliNHyikPK0kuuq6O+B0n+Gugu6utfturRuvd/+2TggKgoDhcIjv+4593bWFpSLwfbRuWK0ytBGssoqiaGg0bSYqaO3ANsuyXg+7fuh8OayHHnqofP/73//kCy+88Blr7WPvfOc79wGuX7/uL5fLL9sp4Jd/+Ze3PM+zv/Ebv/GFH/qhH3rpp37qp/b+/t//+9sA73znO2999NFHB+9973ufe/TRRz//H/6H/+HJ2972tnsef/zxsPv9oijkj/zIj5z9h//wH77w2GOPfXZnZ6f55m/+5rve/OY3Lx599NHP//qv//oT73znOw+679l73/veyd/6W3/rwl/5K3/l+mOPPfa5b/u2bzv4q3/1r97xa7/2a8P16/p7f+/vnXv7299+8vGPf/zzX/3VXz37zu/8zjuvX7/+si1lfx8zzpggcZubBqpak6RjliblX/6r/5cvPP2s80C1FqndhEb5PovlgtBO2dje5rn/97MUVQ1SYrEcHR8RBjGrZUHdlEhbsn1mj0VeI6RHXVY0rQi6Y2F2VeYqWxH4zuTgXOyCzPO86LMdO3eU5XLpBNet3rATl3cbhNbaOdysae2SJCHLMqTwyPKcjckmR0cnTMZj5vMFk40NTNOgrcUKSd1oFsslSRz3pIvZbNZa1nn9xlrXNVVVMZvN8P2ANHVEDKMNSZK6Kko6e7Z7Hnwd6c55gt07ePrFn+LghaucPXuGeGvCxtY2WZmDMNx9+5184rFP88nPfgETlDRlgdCSptRIW3L+3BZf+//9Sh64bY8oUCgZkBcNYTAgGRiWqwKtDVK5FnxVObP51SpzVaIQZCtX6Wxu7zCcbLAqSi6+9CL33v8q0jTl6PAEpRywSM9VXFEUOWelXmjvNlSLBa0JAhde3R1ougrt5PiYMEkos4zdjU0euPseHn30UapVRur5TvdnTgFyfS7ZAR/gZt9ConUNqFPBPg6Uuspaa0Ndn7YnXUXsQCKOY+pWctJ55nazuzAMQQiX5iFO7elOgdriKwcaXbpIx3R1Rg1Na7JgXJCBdQzdxhiMtVTGUBYFynOSEyUUWEtZ145YZRukkkgBdTdvBHyperB0JhUtE95TCGMR0seYBmMA4SGEi00QwqJNQ51XfcSXYxM3WByV1lrIi7qvmDug7QBz3T2p87rVWhP4Pr7nUeWu2ra1pjaWOIwp8qJP2bHScSca3bhw9ah1OHqZsmr/7J/9s8tXvepVDz733HNR9/m7++6788Fg8GWb2J45c6b6mZ/5mZeklDz88MPl448/Hv/kT/7k3jd8wzfM/8k/+SfbzzzzzGduv/32GuAHf/AHr3/gAx8Yv+c979n+iZ/4icsATdOIf/AP/sGLb3rTm3KA69evq+Vyqb7hG75h+uCDD5YAr3/964vu8f6n/+l/OvP2t7/96G/8jb9xAPDQQw9d/9jHPpb+yI/8yN5/8B/8B4vudn/hL/yFw7/0l/7SMcCP/diPXf65n/u53Q996EPp29/+9vmX67X4cq6bBk4NzFfudVChz/WTKSUBn794lS88ewk/HjpgKMo+ZX5RrvCCgPPnbsWGAY8/9zy1ccnuxljC0FKVNVXlIrq+4nWvZVYWfOSxz/D1X/vvkU1PuHTlKlo7cwGU2yTnyyVpmpLnJVIoilbHqaTH9aNj6qZkd3cX3/dZLBbMZjPOnj1L53nZ5R52MzVrLcfHxz2AXr+2j7UwmUwcMUUJlPSoao3nh22qhzM/r9tZWlMVBL7qq9Y0TSnKkiAIXQi357FYLNja2nKts7ykLCvn85plxGlCtipIfB/P9zh66SWqkxOSo0v89b/wdXzi+Zf41FOXuHz5Os+8+DxFpbESPvWpzyGU4c6H7uSFly4zHAakQvLAbbfw5tfdz3137jFOFHlhCMOxA+bmGOtbkJpVlpMkCUfHR4xG7pAYxzEbGxssl6teL5gORk6qYBpq05AXGb/1Wx/lrrvuIU2HuISTGs/zeyJLNwvryDBl7TZEayxBlKB13VZ1AilckkcZBEynU0bpgDhNybOMO2+/lSSKAYEVTiLTge26KUI3j3EAZfA8hTHQNKYn53RkJWstCIuxTU+eMdYgpSCKwhbcTnWXnW51Op32CSFV5QhjjdFUde2AqtUrlmXJ7No1wjBkNBqtJZNo8rzAaOGY4UVBGAat8TyUdUVZOWATKsTS+upqjacEuqwRQlFZjTTt6yAVujV+qMqSQZJgjWW1KvA9nyDs8lPB95WbhwqDMXUbrC3xfElM0L5fngtpl5IglD1hqSPZCevm1V23pmvT5y0BrluDwcC9L40G07J0ARVGaKPJ8hwpFUEUYQXkVXFq5uD7TorVsneXRfaH2+n+GFbTNOKZZ56J1n82GAy+rOSg17/+9av16vzNb37z6qd+6qf2HnvssVhrzQMPPPDq9dtXVSU2NjZ6j0nf9+0b3/jGXoy7t7en3/a2tx39+T//5+99y1veMv+qr/qq+Tve8Y6T2267rQZ49tlno3e+850H6/f5pje9afme97xnb/1nDz/8cH+fo9HIDAYDfe3atZffaahdvw/gtCRtO21ZFGzceSfPv3CV33z0C/hRjLFOTK58iVQSYQxJEBEHPg+/6j6KLKfWmsoYPOX0eabK8P2AnTOb3HXnXSRRxNMvvMg09fnZ9/4ir7nvbi7ccp44CJkuTjiezkiS0FHi5yu2JhsEfogfTAE42D/AjBMsLrEhSRKGwyFRHLNq5RBxOxvrKszhcEiRF0gh+y9/FDkj+Sx3ByvP86jqmlWWgXBA4vkepiw5OTlha2uDyWgHKQybmxsUhZvLlkVBmMRsbm5QllXfsjw8PCSKEk5OpiRxyvbODrP5rA0mtjR1hfJgviyIhwEWwdd89et529vfyqWrV5jP5xyczJDKQ2pFkcOHP/15Ei9imMRE0mdnI2Hn7C2EUcz0+CW8aERZF4S+x2oxI40Dqqpgb2+7dYNxBu6uSnGtyjAMieMUEORFiZWCvDlB+R533XM3AsFikXFyfIzvRQwGA/I8R3kSax1w2jaOSwBIl3ijtaFcLpHSGZPXdU0cRW5OphTjyQSAsizY2trgzNk/zcnhIZ9/4gmk9HpwUq1TUNdy7NqIHQHFWHowPTVib6stnEFC1671fZ88d61Wa5w+Vko3N+8JP2HI7u7uDb62ZV05Io91nrxdhR3H8Q2i/64Sq+uGMIiwVrZynfbwqGsaoymqCiUVXquhdIHftmWnWtI0pa7bClRA1TSUZY1QDsBCP0SpAOVLQkAbjdYgMBjrZppdQLm11h1G2/ayH3jINmXFZYxa6tppWbsKM4oiJEHb/h3ewOAdj8e9Gfs6/8DHaVtla25R1zWmfUwX2u6Sj1z3QKBwTl2GtqMASO/l19WLosi+733ve+r5558PfvVXf3Xjgx/84PhTn/pU+pnPfCZ86KGH/kjjXhaLhVRK8dGPfvTzX0z2GY1GvS1TGIbmi9vi/+Sf/JMXPvzhD19///vfP/6VX/mVzXe9613n3/e+9z311re+dXWzj+/7/m+rste7QC+3ddPAaaymKZ0Au85rDg5nPP7kMyAkjXFtIzyFrzyE7+FjKJqa+26/gzvP3MoXLl1BW91a5DlrUtto/FCQJiHXr11EScP53T1KIziaVfyr3/wM99+7Ym97k0U2JwhCzuxtYZUhMAqpXHBx3L4lO7vbnKQRUTJBWOcNG8cRURz3dnHdHK4jXEgpmc3mbG5ucnJy7Jiwq4zhcEwcJ27mZy2B57u4I+nSUxaLRb9Bus21dpKJWvf6veVyCUqyXC6Zzea/jfUZhRF15Vp/AkGSxvieAF2R50uGozFhGHPlymXqekUxOyIymkRCUy65/bbbKRtLQciquZ2PfupJsrKkFD6crPjNT36Stzz0ajyt2IwDTFVxNJ+6UPAgIB0MOZnOieMIL3CVk2cNg3TgAqGVx2qxIBkMieOI+WKBH4dIIVgt5gRRTBD4xFHKYr7iiSee4PY7bmeSjNvKQbcmA4pGd2AkEaJpXX1AYKkr+rliVVUOdAAj4PjgmNFoxObWFnfddRcvvXTFAZuj9AK0Vau6YZapNa3cxyDEaatWtKHZvY9qP9s07rMpnCtOHAdOKoRuzRNOZ6gda1QphURRN45I1FA7n+b238Iw7Nmm63NB1xJ37kmi1U/WTY2REEYRRdYezq112aXKgVDn2OR7HsY6tyHVMlo79x4hJUg3w9XGYAW99tW9J/Q+vMYY1zqXIIxo7QU9qqp0P+82ibVqXQioq7q32VtvyXZV+LrTj9YaJZSbB7eHiN7eTwoUazFyRrRSH1dxylYiI4TA915excm1a9fUr/zKr4z/o//oP5p93dd93SLPc/nBD35wDDCbzb5sp4BPfvKT6frfP/rRj6a33XZb+cY3vjHTWnP16lX/a77ma37frN63vOUt+Vve8pb8v//v//trr33ta+//X//X/3XzrW996+quu+4qPvKRjwy++7u/u48j++hHPzq455578t/t/l7u6+aBE0vTsv9ubQTTl66xfThjC3fClkphtMGTFvICHwPSw3/qeT75hSe4dHzEQ9q26vXG+W9aQVhXDE+OGU9GBL6Pd3yChyXyQiyW/InneM48hQ8E1vLip5/mzIU9ds9sMp0eMwhDBifuc3Cwf4DdGRGZGITk7NmzFEVBU9WOet9Iqpaw0ZFEXLs2YDab9uL8dOC0ltevX+f8uXMY7SpYJT0nBhcKrQ0XLtwKCFarLrElp64r4igiCiN2dneZzmd4vsf29jZSSvI8b63rSuzagUsIwXK+JIp8osAFLWfliuPjQzY3NpEIPCmZTRdkWc4k3WIQDTGHJ1hZ8uCt57h69ZBPvXCJSkuCMGX/KOcLT1/i3gtbVHXDcBAilcDzAuaLBVmRgZBUjWuZjkdjirJEYJlN5wzTAQjBYj6nqBuyImcvPsPW9jbH0ykD4eQNtTbs7p3B80Oef/559rIdRuMhYRhwfHyM5wdI6TFfrvrqbf/gkDDwCTwP2+ZKdoQtC66tvbNN1FYwR8dHXL16Fd/30I1pW4aCqmkPc12rtG3frhNkOnB0vqzuM9yxP9dt55SnWkMH6fyEAaMtQpgeLNdZut33oqtm1/+9A9nO7xZo59wFWneGAM4kIghClNRkeYYKfPwwoKlq4iRGFI6Y15F5dMs2VVFI0LoXWd0ycLXpfV+RqgVdF+VVV90hQPQzSSmduUGXgNLNRoFea9wBY/ea1nWDkmEPvkBvdNF9r7o5bxAEbk6c5U7zLV0nqqvEm0ZD22rvZD3dYdasMXbX5S0vl/Xe97538/u+7/tu/St/5a/c8PPRaKQfeeSRLxuoXL16NfhP/9P/9Jbv/u7vPvjN3/zN9Gd/9md3/+7f/bsvPfTQQ+U3fMM3HH/Hd3zHHT/0Qz/00hvf+Mbs6tWr3j//5/989PDDD+ff9E3fNPud7u+JJ54I3v3ud+984zd+4/TWW2+tP/vZz0Yvvvhi+M3f/M1HAP/lf/lfXvv2b//2O1/72tdmX/u1Xzv/5V/+5ck//+f/fONXf/VXn/pyPcc/CevmgVPU6FFC7Xt81S//S77qD/yQ7UnWtP9f1FCcwP7JH/geARrfQ21vUmu4+NKLbGxusrW1RSAilnmGUh5xEEBLRnHtWNGTdtY30LpqOH/+FkZDV5UWVcXGZIKUgvlqRaU1nqf4/Oc/y2g0ctZiUjIcJOjGYz5f9KQRgNUqp6qa3o/26tVrbGxsInCG6LPZzElcyhJf+VRlzWS4hZI+3tjjZDpjvlxQa02cRJiBJAc+c+0qG0Kxf/kSydYGj7zmLg5nM67PG+J0gK4kF68cs5NE3Hp2j+PDq4wmYwZpQq0rRukAbRz7UxjL8YEbVcitDZSnSIdudpnnJdVsxu7eLtpovvD5z7Oxuc1Buc/tt99FXVZMZ1OSJOW+++7l6Oigly8Zo4mTAUp5WOEIO1JKLly4wGg4IPAUYeD1lVme54RhyCrLiNKknxcOBkPuvfdeXnrpEljRSipOiUXgqhshBZJTtq3n+a38yH3U123cuir1VFYBtgWHLnakYwx/sQ+utRYrWo1q20noqubOfaj7/U6y0pl3CNzc1WL7WWEYh6QioWxchJurKk89Zf0gIMAZkQgg1zUGB8BSneoqfeX0uE116uCktXb+yurUXQlc5e0pia9OzeA7o4iuKu+/X+1Bs2tFd/Kb9ezUTqqzzoKtqsr5DLcEud58oW1b53ne32fnOtSNUbr77DpFL6d1++23/7YL3tzcbH7+53/+2SRJvmzkoD//5//8UZ7n8k//6T/9Kikl3/Ed37H/1//6Xz8E+MVf/MUX/sbf+Btnv//7v//C/v6+v7Gx0bz2ta9dfeM3fuPvCJoAaZqap556KvqWb/mWu6bTqbezs1N/27d928F/9V/9VwcAf/Ev/sXplStXXvqJn/iJvb/1t/7WhfPnz1c/9mM/9vzXf/3XL/519/lvwhLrdP7fbf38u/6yvfj8S1TPXSU/XHBQNJQiQOHYgD1Rg26uFFI2Gl8ppDE0tsBK2vaWW8aCwPmISs9HCImvBEK0GjAlsa7Wcqf+uiD2QnwJfrHgKx55DVubE4oiJ48j8vEQISxlnrOxuUESRyAhy0u0NiSpM8/uvuhVVTEYDFgslr2NmCPsNCjpNq/GWKTvu/zKQcIyy9FIqjInzzvja8+ZVnuKpjVyD3yfsqpcWpbn2l+DwYCmaZhOZ/iez3g86QkWcRw7FqWSNFVFFMUkccpitUBISVGXNE1NGIXM5zPSIKaoKzdPFK4t54Uhi0zxL/7Vxyn8FD8I8IoV2wr+3be8njQyIBqQEqk86sZQVCVJHNPoBk86yYAF8iLHUx5GW9J0QFXXBFGIES3Bw/NRns/W1jaBH+J5YUv0CJhOj5FKsbu7x2qVYYxFKMVgOOgrFSkUTV0jcESernXYVWhVXeMHAQiYnkwZjUdMT6b4gZv5Hh0etUzXBnCRWs5azvnGuhafwvM6Yb6+oRLsfFJdRJh2TF0pwULTkYKs7VuvdV1hjHUVr3afdalcZdQxSztg6AC2C/7ugOpU2tFVvsaxi7uZbRDQtAcZa9pQ6kYjrHXvi11zMJICvZYiUhQFutFtW9YCAk8pitwxiBEGIVrThbVKWHrKmSAY04eJd8Hi3XjDHUike7+kpKlOK9K+Wm+/U+sHkZ55i/vd9Rg3CzTWPUfTdHmngqrdS1Q706xaT1utNX//H/78H0nZ+dhjj93ved7/fc899yyTJCl+79/4nde1a9fUb/zGb6QnJyfqtttuq77yK78yi+P4ywaab3jDG+579atfnf2jf/SPXvpyPca/ySvLsujpp58eNE3zNY888sgTv9ttb7ri/D//z99gWhTMtUbGA2olMKVF+YKqLl26AxD6QUtokNgQsALfG9A0nmuFYfF9QVVWzn5MKYqqJkkCEE4KIqVwmy0ShKIoC5Ty8JJN4igA3TAZjLl+ZZ+HdrbYu+tO9q8dwqykKjOqIufwZMne9ha3nD+LbUpAcDKdk6QpeVFQVxU7u7uulac8LALajVYphSfdl9aqgDAdcHRyiGkKjBWEgxHLRcXO9jZ107Bardjc3EAIyFcZQgpWWdZuIoI4SVnMl4xHPkaCp3yGw9EN6SFN0zhXGQGTrU0Ojg6xCsqmaElNAcdHS5fvKCL2brkdYQyff/YpQt9nICM867GxM+Q1d23x4c8/jxydIS81eIbf/PQX+Ko3vw5Tzwg9hWkki6xksrWJpaHKSrKsIolTwiAAUSGUTxR6REmMzVy7uhOvCwyBL1menKA8D4mkMYbx5gZh6KMNLJZLmspt1tYYsuWKKHLJNFVtwDpNp9ZNP9/sWM7GGHdwaRrSOMYT0pngC4H0PMaTIcvLCwe62NaODrq4MqV8hHBWbVIqfF/eUCmdSpgdWBrTYLXGOMxpdcoWa5uePCSEaeUi5tQ3t9X6dnPGDjjWwbMD1iB0pDJraGeBzm8W665NYAk9D21B2xa4PQ9fnc4YTQueUgikI8eCMMSeS/cpqpLauPlnFET41h2OfE+BVFRG40mF9SR5UxGIoCVLtf69FqxQKOGhfPf8fM85IzXWYhqnf+3W6etJb6CQJEn/dwDbtrA7oO1lQ9b55Ia+a9EWjTssNUZTVe1hnLaq9l9+5KAzZ87ol6vc4pX1u6+bBs6DJSxLgRcPOd6fM0yHhJ6iMU3LmJPO91IqPD+kbjQI6063TYUQFikMdaMxwkdYUL5E64ZhEoK0aGvJC5cunyYJGMtgOCSOx6wWKwLlU1dOPtDYhMViwW88+hRpepnlbOG8YXVNWa+gKdlMQx689y7uv+9u8qpw87u2IghaQ4WTkxNoN0apFFEcs5jPGE0mqLriyuGUF65cY2cyBhQ7OztcOzwm8CNmM+deJIXH/v4hw+HAtWhxSRvnzp3j8uWrVGXFZDxuXVsKtNHs7++jlPOFPTw87KUwVe6ILmHg0TQlVhvKWuN7IUpFDNMBs+WCvbtv47lPfYZzO1vM53OmiynDIGK5WnHnHbdydVHx/PU5+D5zA/XhjI9/5gne/Lp70FVBU8N4sMH8aMpgFLExmmCNYHo4JVtmDIYD4iim0TVlVTGajAnLiOPjY+q6IY5i6rKtZozm6OSY3b0z6KpgsZzxqtc8zHLuXIeuX9/HGM2582cpi6Kd1/nOPxXXeeiIU8PhsBf/SyGIQkdGms/nrqJsTQKkFIxGw7Yd3OoFAye1kK01o2zzKrs5543G4xIp/LbjYU8JQKYB0bF13c+6KrkDw651W7Wt4q41O5vNGI1G/Ryxe05Va5jR/35HepHg+QprQHkhdeO8YTEGr60MTZtxCbRGAhLZRqjRAoswjv0r29tb3aCxlI2rEC2OFS9xVbWxkKSpIxzlFZ4KbyDzGGNb9m2I0S4/1nWRugqz9cVdA8HOsnDdbL8zYAhaI3xH8vFcpF5ZUmQrV3mvuTZlTYaRrhrtpC5NxwB+Zb2y/oSsmwbOkhDjK0oDcTog8DxMWdEITRD4TijeUdhblqHFtbFCX9A0Fs8PsKJC+RJjJVpbdGOopWYwGtBY3WZqSsLAZz5fYmZLgijECwKyqkA3NWmYMGtylBewbBqy+QpPKFTgs9AgvBGpZ7n7gTu57dYzlI1r1XXzk24G01UKnUwkDEOmsyllXjATS65dP2CaVYRJSlUalAgxWiJlhDE12WrZuqSk7SncCdw9z1mtPfPMM0Rh0tvNNU1DFMdEcczJ9IRhOkAo2UsXutmO09uFZNmK3TN7LJdLFosF1lqyogBr+Y33/188+OCDHJ8coxtNMhywygsCK6gLuPfee7k6+wxFadHGo1Dw+PNX2Z1scNveBmWVIRqNNBpb1szzEi8MGW4MWSxWlFXJarUABHleEIYhG5sT1xJWEiE1URKyf3BAWZVsbW6ysTmg0lDnmheff4E0TqlaIk9ROOKU5/sYI9BN5QwtYmfW39nlrVarfpYmpZNsHB0dYYxhNBqhrSUr3Bz0woULnJyccOXKFXTdULUyEt/30cbpND1PIZXo2ZlSSnzPp9EOHIToKhn33oFjn6577XarA4P11iuczkG7LNLOGKDrJHQVa1exO0cdn7I0NLVuGbgRUhqaukF4pzNV0VWe7etT13WvY1WtzSC07kXtLDdoW551235P4gRL43SrxmlV66q6YWbbvTbd9buWs8b3FUL4fcW7zlxeN9PvKuuuPeteR3eddePA0VjTzpDdfBalnMmJdg5hjdV0ZvBCnT6vdQvBV9a/fn3sYx978o/7Gv5tWTftY2WEo61bT6JCn0q7FmcQ+GhtCAIfP/DcF0CXaKNvbLv5AcZYZyQuXNsmCkKU8qjLmiLLyJfOQgwBWV6QxCm+HyLxKLMSZcFTkrxY0YiKQucgBX6iqIOMSuYUeUZV5iRphMWwypZUTYWQhigKe4sw0VYxndWYEIL9/X0CL2BzcxPfk5w9s8t9992HEoKqLMmznOl0ynw+ZzY7xvOk08ZZjdfOvobDQb/pBkHY24Y1TcNkMsH3PMajEVsbm2xsbDgiSLvZdMzJLFsynTqy1P7+PsPhkK2trX7D9jzX6n3hhYu8dPESUvjkWYkVisYqTN2wGfm85XWvZhC6eRUyoLYBn3vmMtPcoKIBXqiI05DFcklVNRweHFIWzjkoTROCMCAIA6wEjebw6JgwjBFWkGc5Vy9fYTRIScKQpiy5dPkS8+XS5TT6EU899RyPfewxTGN41X33k0QxSRjiSY9VtmQ6nfYeqd3G2G3kURRR1zWLxYI4jknjpNWZOoZqVVUcHh4SBAG33HILfhgglGoZvG7WCU5m0hFPOq9ZYxtHivE93MM5CYRbp65E68AH3PDz0/at6P9t3QTd8zzyPGc2m/XX2/npdv7G6w5W64Dc3e6L7QTXDR86clP3mvVA38ptHPFnLUascbNgpWQ/S+6udZ11vJ4Kc4OkpCVhdS3XdSefTn7TVdjrh8CmafpIMN3oXq5SliXGOnMRgyGvSmqjQUlkSwbqZCodAL+yXll/UtZNV5xJ0HCSrcALqfGwwlIj8K0hCDzquunnklE4JC+y/hTagZNjFAqqosILFXVTIqRhOIrwQw/PBDSNRrZMQVcJWuqmYjBIkAqscMbtRtTEyRCMYLUqCdKYqszYHUWcP3uOr3j4ISLPYMqMpjXWzlqXnK69dObMmX4TW60yJpNNhsOBq4aqEmUM108OiCLL1mRCbXMmyZARPrNZTl4siJOU1WpOELgUldVqxf7+PmfOnMHzFFme0TSayWTC5cuXXUJL6QwS5vM5QghWqxVKKW65cAvT6QknJ0fEsbOsu3r1KmXZMiY9py0sy5I4jltQiaiqEiEtw60RCsn9d93F45/5JLuDgHtu3eMTT15EYMnrhpOi4rcef5y77zxLFFoCKcFAqBw5az6fEXghunZxVUmcIlEoJYijEN005FYjlUcapxgbEkUBum6YzUsKvUAFAdYeMF0eM9nc4IWLF7m2f41/501fQdU0FEXZ+9N21U1XvXWJHh1IhGHIarUiidzzzfIcKyCK4z4UPI5jbrnlFi5efMkxbFuyUdNUNwCQ8yMuECik72EMGG0Q0kNKF1cmhUIqx/hcD2MGbpgxqlYyse6O1G3y4IAySZI+AQfoARLogeu03dmgtehBqGN80+ktO1KTlAicCUdH5qlb5qpSitq470+oFHKNLW5s3b8e6w5LTlqleyDugLMDwe6Q2T3H9Qq1k+B0jNfutt1hozsQhe0BuXuvq7qmtm5e3FiNHwZQN9RNTVGVyPb6ut/vruuV9cr6k7JuGjhf/8DtlMClo2PmVcO1wykqSrArqCqN8gKUklRVyfH0iLQFKN/3EVKi2llLXZegBI3WWKHwgpSy1ijPQ6HJi4KN4Q6mrtF1g7DtZiElZdXghyHJYNJGDXlU+QpPgldLLpw5y2vuvsDtFy4wPTkhHg05mq8oi5w4SSiK3FUvadqzIFerVZuRqXnuuWfZ3NxECsugrbgEmrvvuoM4DDi8fpX9g+sEUczOziZaG7IsdwQPYdovvMf29g513bCYL9ne2sb3Aw4PD3uj+K5le3R0xGw2Y2Njg6qquHLtKoM0JQwjwjDG83ziOGFjY4M4TljMF62tm6ZpNNq4qLfFfIEXBBwdHjIZbfKpT30a6ort3U3uvdXn0uVD5rnGBCGzvKQoK6Jhwp2371I2FbHvsXN2j8ViTpYt8cOAosg5nk6xCG45f6GdKwus9IkGAXle0mioiow0TbBKQSOpiwqtDWmcMhoNkVJx7sJZDvav8dnPPc5XvOEN1LXGWif7kEr2jM1uVmlxshCllJtFVxVREhMYl2cZxzHSUyyXK3zfa9muPpPJhDwvXLtTOHsFFy0mevs9QeDSRXSJNjgzCOURhF4rIWoFU0IhFb3LEMKNIayE2uheKiIEPYB019+tDkTXY7464Okqqi7Gy4GjbCtlejtIKaU7fBlDrTWmdm1NtGwtAiVWgmgByUh6c/l143ppaQHIaa5Fqz/1/ZC6Mr2TUD+/bWeWQE98Wo8M69i061mrQF+Vdubs7nYWbWqsFFgBjdZoLFZ2uacu5s3zvf461qvcDthfWa+sPynrpoHz+c8/Qzoa8ep77ybe2uD5w+u8cP0Ky2sNx4fHJJ7XtlkF8XDYJ0SUTY2xlroTkHueY9U2FboRNI0gDEZo2yBo8DwfGoOPAquprEF6PnldYoVEVxVGNwRKsji6ztYk5czOiLtuv4V7b78NzxgCa/GsZXEyw2jLzu4ZyrJgPp+3xt2nZI8wdMEAZVmSJDHD4YAgCIiikKOjY6IgpspLjvYP2d3ZZTo9wRrB/vUD4jgmjFzFJ1tz9qKoaeratSs9n5OT09zNTuCtfM8lYhQ5wlMESUSUJlR1RaM1ZVljtHMhKvKKPCw4OjrmwoULZFlGnmcIIdsYs4EjFlnLMB4ySoccZRlnzpxHKIEp9nngrjP81qefwhIgw5AwGlKTkhUekSeodc1ifkSRF2yMN7i2v8+Zs2ew0gFHY5zva144+c7lyy+xMd6gzEtM0xD4Cg0Egc9yvsDzPeZCUlQlQQKi0Xi+4JYL55yBeNPgKc/N6JSTenihAzStNZ4AlMTgZl1BFHIymxGEobM6NIZyWWC1JogiVsWKsqpcpqg3YDqd0jS164AIiWlaJqoU+EmIyZoedJTGyTSUQHDark3CiKJopSNVS7KR7hYuTNtpRn3ppEhNfVoxAze0FtdboeuEmvVWpJSyzRd10pKuyqyNRngewji7POU7LWjdVm91KxuRSrn3y1rE7zCHtRaEVHgt81dKQWM01oi+uuxAsauw1yvdbvWVb+tY1AHoesXdsYihdXHCOFmJdExklKSuKqT08b0IYw0C93q5DrBrnXccBGPMDR64r6xX1h/3uulP434lCQ6XHBw8yld91Vt4YHODB89tc9g0PPHUM5RFQ55XGCPIsgJpJFbbU9Gz7GYVPmVdEiUhoVDMZhlGgfUVpQY/TckaTVMWGCVY1RXCzkmSCKQkjCIGqc8o9rn/kTvZ2dxgGCt2NhJW00Oy3KKHG/hhhLGWzeGQq9cuUVYFG+MJcRyzWq1aezHFdDrtn2Mcx0xnU86eOcu16weMJ2N0U1PXrn20v3/dtVqrCtdFk8xnCzY3N90X27rN8crxlNFohO97PeHF8zwODw9dFeF7WCzJIMFTHkmScPmKa+OuFkvQhiAOGY/GZKuMo6NjkjTh+PiY6XRGmibs7GxhrXC2eLVhuVqys72FpwyL1QxvDsZURGHNIK257749PvXUZWoMs7xh9uyS4+shD9x1jtFegsSghCVfLhkPUkyRkc+npMmI/UuXmIwnlEVBs5yztznBCEmQDJkvFszzirKoGKQxke8jhUVSE4cCbSq0db6vL128yGjo5ruzudNHa23IqwpbGQeMno9pZSXgXHPyqqQyDdJ4CAtIS1M3rJYL5q0cxg9D0iSl1g1h6COE00q6hBdJ05zmZfpegFDOML6rZJx28NT5p6pyRGsVZ9oWqNauShI4z1VjDHlVkAQRFu26KvZGW75u3rdOpOnApavY0jRtOxcOYLv5blVVvdZReopQRr20x7amBp7n0QC6PZyCIy6sm9878HGkG22antGsywYlHYh+cau5a1F3qULd81mfxX5xFdgBKNDnlfbALYU7zGiDlO5QadoqWNpTUwmnu3Vt4cFgsGYw/8qM85X1J2fdNHD+2a//M1SzY1SZMwosodIEUiKznI3zt7KsLfvzFQeLnMv5PkVeQNuqjTzFdLFgNNpo22gKaAi8irM7iigMKLWlsQHjdABaM0y2GQ4GeL4kHbgZmlQeu2d2MVXJbbtniJSgXC3wTE1xNEMiSOMEqxvq2nl7ZkC2zEiSiKPDQ7KWwdq5kXRt0o61GrRt1TAMKdvgYCklaZq6KtUYqrJkY2Pcuw5Zazk5OWG5XBKGIePxiKg1Le/kCQeHh/19reYLkuGA46Njdra3qcqKQeqSMpI4oS5KBkO3aezu7mKMZbnKqGvFaLiDNYYrlw6RShIFLposDH2uHx2wKgu2trapTMnO7i6r4ylhEHNua5tnwwUroaiqEs+Hk/mUw5MhG2nEKEzYHY/ZP5qCFJS1ZZzskNUNW2cusJwuWS4bwtjnyuE1Ll65jPA85sslURwSeD4PPPAAm4OYejXHrytUEBDGisVixu7521gsSz72Wx/j7vseZHM0QTe6NS5oN+26oRYuE7RnlQpB4PkEnu86BkFIo5w/rAE2WtJUUZYYAZONCZubmzzzzDP9vK5ZY3nqpmulCpRw5hFdxefyIDVSgrFNa34AnvKojKYxGoVCtLFgBlAImrLqCTld5daBSldpdjrd7u/rlZwxxplj1JYsK5HyFLgUUFlNozVSSKo21qwDqC7qrMuC7VYHhH6bFdu9pu4hnc56OBz0BKj1a19n6nYt2y92WuqsE9fnnh2odu3nG6rSPEdw+vf1a+1m1Uqp1mQ+6OexYRje4PX7ynpl/UlYNw2c28OMWhhSNUAYQdHUXD4+4viw5trBCfvTOVr5FEh0a10WBF6b5u7yGbWusKZhMkm4+66z3HZui9j30Y1FeT5GV8R+iBKCNIp7QfVyuSIZjMmKAjlbsDUZExYlq6xo9aA+YRgwX67QRUU6HHDt2iXnvzoec/bsGdI0YblcMJlMuHr1au/W033JOzLD9vZ2D6x5njsySHsS73w0ES5vM02dn/J0OmU8HlOWZU8KOTk56VtWdV07Aofn9dmgDYbJZML1/X0Gg4w0TR1bUXnURcnBwT6bm1suMUQqRsMRTaNZLpYYY0nSmCxbMZs3hFHAZHPC0cEJZ3a2OTo6Znqc0WhBYBvK2Yzx5hZf/2feyPt//bcwlaSpG6T12T+eEoUKGcY89ZJ7zTwFTVFx+eo+BYJSKLSGKi8oioLJeIQf+Eilmc9rktqjrHJy/TSve/A+NtMhxjbuMYRhkgyo85IL58+zf32fp77weR566HWuos4ztNGABQ1B5CHEKZFmvWpzBK+MoJ25dfIiYy0InCmAcKb64/G4n2Mr6d0wv1sHMyvWfWtPNZ++H9DUrkpTSuFZHym7pBTnhKQAZZ2Ocl2ucZrQcqO9Xfd5Xie7+L7v2Ke1ZrUqMNqwyjLCMHRgKGhlHJbaOEtCOLWiW583dvKdbjbYyUO659QRd77Y7acDsq4l2jsZtY5EHVmou2030+2e67rlYbc6tnR3jesA2LsRtTrbDpytta71je0r9O6+Xm5etf8mrMViId/+9rff8eEPf3i0Wq3kwcHBp8IwtF/8s4cffviBv/SX/tL1v/23//b+H+RxhBCPvPe97332L/7Fvzh98skng/vvv/81H/7whz//5je/+aY8fX/8x39862/+zb95YbFYfOoP8vh/kHXTwJntXyOQAbUvqKzHb3zqs1yfLZguG+I4xUpB4El8I/CMRTuyJoEfoGvXkgo8webmBm/5d17P1jggpKbOc4ySNLrCCkuIIfQC8ukxEklVFoyTlNEgYRAGlFWJZxoUhjrPqWtNE8fYwmJRpIMhuqnY3t4miqK+XZRlWc/268Ayy7K+bbu3t8e1a9f69JSOXr8Ofk54L6m1YWs06tMqtNYcHBz0m3VHjBgMBkRRxOHhIVtbW/11BEFAOhqyWC37Tbyz6RsMBozSAScnx6Rpwny+aBmcNUJo0kHAyfEUrEdVrrDGJwg8Dg+PCKOYZbaiLituv/UuVyE1JX7oEaYJtVLsbYxYLQ5QCsJwwKLK+MJLl3nq0gFYR4iRUrGYLRBKUBlNPBiifEkQxlDVZLYhEBK0wQYhpVWIMOFokfPpJ55lMw04t7fJ7XdcQDYF1tZobYmSmMFoSFZrnnjiCf7UI3/KaWePpyRpSl1WlAtHgFqXgnSbb5qmoA3r7M1ucx6MRszmM45aX1jHaE1YLJY3HI6MdTFdprXYW68A1+UfnvLQTYOQFoEDC20Nwj+Vd1jrLPlas6Hfdj/d9XebvjWmNSM4bXMul0uWyyXDwZiyrEnTQT93d3NJ0doIyr4KzfKcQZqS53kPnB3ArUth4LR92hH1Oh1zVVX957frvqy3rbtD4rqW9YtJOp7n3eAh2xGIuuffGfZ3r0mnl7bWupksgqpuegDWWlM3FUHg94enjhvwcmbVHh0dqV/6pV8aB0Fgv/mbv3n65bLd+1Jb7v3kT/7k1sc//vHBBz/4wS/s7e01m5ub+n/4H/6HnS/+2cc//vEvDIfDL0lL4K677qpefPHFT589e7b5vW998+ttb3vb7bPZTH3gAx949ktxfzcvRwn3mM+XzPcXvHjtgItXpmjfJ5YJgfHIshW13zBIh+RVQVNUeEHg9HGeQguDkYZbz2ww8Q2yyLDGEKJY5TnjjU1WdUmjNU1dIIRHkg5cwkrgU2vNcuU0mVm+crPOcczJbIGKFI1uqIuSLHe2famfYq2hKDI8TzEcpkSRkzaMRqOevNBFjHVxVnB6wpXCxTMVWY4f+K56bqvpqmnIypLVKiOOIuJByny1xDQNyvMYTsbIlqo/Go36zWM4HDIYDDACoibk/Pnz5FnOcrnAH43Zv3adujXsFsKZwI83Rvi+ZJXn7O7t0diK7e1NqqZia3ObxTwnjnzmyxkHLxxiteXFwyOs9KiWJVcuXQERcnC8QEUxofKwKIq6JkoijDRUWtLUFoxGhR655zMaDUiFpS4L0IbFYk4QhiRJ7MBLKqy0GNVViZZFbtBVBXaJtddJg4bdjRGFLbhy5RpCwNm9MxwfnZCtVhgsB/uHKO+EjfEGYIkncetD6xJPulaeMQbRErqyNl81aP+/yHOiKKasyt4wf2Njwng85ujomKIoEVKgq7ZSa2futgWCG3SSqD7I2fnCWQQWKcATHqo1qsc6J2XVbhkG62yQOE0K6SonrXUbleViywwu8UT6AYPBCOl5JF7Qs0tdRSeoTOvvigPiMAhQvtdLvdYPeuuBBZ1pftDZFLaSny82rF+XfHSHiM7hKo7jG0wRuqqwmzt2M9q+fWs0XuD33x+l3PMW9lTO0hOi6toRykKnA6/KCuFe0vZxTN8JWNfLvtyWMYY/9+f+3F0f//jHhwBRFD3zLd/yLf9aU/U/iuvpDva/13r22WfDu+66q/iKr/iK4nf72blz575kIOd5HrfeeuuXFDS/HOumDRCuHGf8v7/5KT726c9z6eohvgyxeY20iqrQJNGQpobZfImViiCIHCXT1CihkZ5lmAbsbQxRTUkShE5DZkG3Js6ekAySlDSOSZKYoswpipynnn6K6/vXkVIwTAeMhkMOj46YrRZoq3FblsYKN5967rln2N+/ytHRARsbY8ByeHjIcrn8bTmMy+WSzc1Ndnd3XUC157FcLt1mQCuLaBmP4FiLx9MZs/kSKT1AtoHJEuUpp2FsJQ2N0Vy+coXpyUnfQgvDkOl0yrXLV8iWK4SxWG3Y3tzGkwqBIymFoQMPz3cVxqVr15mvSp5+/iJHi5KPffoJHv3ss3zkE0/wrz7+af7lRz7Jhz7yJM+8sOSzTx/zqacO+ejnrvDpF2ZcNR7XtMRMNll5iiUNK2oHekBZNhRlgVQQJRFp5BEEUFc5ZVEQhQmeHxEnQ3wvxGgHLkr5jMYbKM9DG4vnhxSN5WRV88LlAy5fOcBXEbYBW2oOru5zfP2QZ7/wNHHgc7h/ndViQRwn7O2eJYpT/CDCaEiSAb7vPFLLsmQ2nzuwauUrYRwRxRHKUwyGQ+c0I+jb510lliQxe3u7BIFHUWS9p23XYlyXWLh2pmxbkc5yTymBpwSexGXNGvAQRMon9AIC6a21ZEW/wa+3Rru/dzpQbcAgaIzAIJFBSCPAKEVpGvKmpLKa2jr5DdJVvJ5ynw/dNDStv2/H1O5AsQObbl65Wq16w4OuWqyq6obXCG4MAVdKtRKouAfY9Q7MeiJNv5FIideaLvhtAoyS0tkArrWAuzZxN2919ytJ0qh/vZU6le0URXFDNfxyWz/2Yz+23YEmQF3XX5YTwNve9rbbP/7xjw9+9md/dlcI8YgQ4pEnn3wyeP/73z8UQjzyi7/4i6MHH3zwVWEYvv7/+X/+n+HnPve58K1vfetdW1tbDydJ8rpXv/rVr/rVX/3V/jrf8IY33PfTP/3Te48++uhACPHIG97whvt+p58BnD9//jU/+IM/uNv97uHhofqWb/mW27a2th4Ow/D199xzz4P/2//2v41v5nk8+eSTgRDikY985CNx97Nf+IVfGN92222vDsPw9W984xvvffe7370lhHjk8PDwBsbYL//yL4/uvPPOB5Mked1XfuVX3vPiiy/6AN/7vd977ld+5Ve2/sW/+BeT7rV5//vfP/zix/79rJuuOB97/LMcLFeoIKBoDJ4fEKQDllXTbmgCGYUObHwfL/KpTUGVL9kaT7jt1gu8+tZzbESCqsrJS5+yrInCAD/yOZmfYLVlOBxwfHzcVhqKZBCTLBOW2RLPU4xGQ9I0ZbFaYrUl9J0AvKwKQFDWFRubE4o8RyrFweEBceROzqvVislk0ou2hRA9I3Y+nzMcDvsvaBAEbQanxGCpdcNytSKIE8Ybm/iex3Q6I07SlijigHayudGzc0+Oj0lSZ5qeJAmr1QopJcPhsD+lF1mOJyVl21LudGx7e2dYLpdUdYUSPlKFXD+a8cRTz9JohefFWKG4fHJAYxo07WGAJYUpMCahspZIQlmC8huiyAMt8GTQG4wXeYVUirpYIW2N1T5aKnwhEAJ3uGkatAWpPJqqbgX1zkYty11r1GIxjcZTAZ4v0Lrm+vFVEl/zqjtvxSiJlRJjBZ7nc3RwwG233UmW5zz59JPc96oHuPWWW1mtsj4fUmvDauVYy+PxyEWEGYNUiiRyM7OmZZ+GYdiDoFSyj+xK0xQhMvb2dvE8N7OrqgprhUs5UbIFgi6wWrSzztPWotEaJYU7HEiBNW3omBAg3ftujMGINjuTUz1jNxv02sOFUB7Ca19Xa9xo12inacSReIzRGN3aVArwWweurh0spMRvZSvdYayrBLsqtGclr+lLO7LOF88Mu2qyA7iO2NZd93q12mttrb3hAGqMochzfM8jjCIa3VoYmtMYt3XnJalcKEDTVD2A+77nGOy9IcQpk/fluJ5//nn/e7/3e2/7o3isn/qpn3rpueeei+6///78h3/4hy+DqwSffvrpEOAHfuAHbnnXu9516d577y23t7eb5557Lviar/ma2bve9a7LURTZn/mZn9n6pm/6pnsef/zxz95zzz3Vr/3arz3z1/7aX7vliSeeiP/pP/2nz4RhaAF+p5+tL601//6//+/fs1qt1M/8zM88f9999xWf/vSnY6XUH6g9/cQTTwTf9m3fdte3f/u37//n//l/fvBbv/VbyQ/8wA9c+OLbFUUhf+RHfmTv537u556XUvKt3/qtd3z3d3/3Le973/ue/zt/5+9ce/LJJ6PFYqF+/ud//nmA3d3dP1Tv/6aBc7CzyWG2pNIGPwnxw5imMWga4nTYttPcl7uoMpRvGCQBt91+D6+++242BwmmyPGUJInGZEXumLJRhO/5rJpVT6DY2Njo5yxhGHH77bc7Q20pOX/+PJ/61Kec4bVUBL7PdDbl7rvvZjabsVqt2NnZYaG83tWlazttbm5SlmV/uh4MBuR5TpbnKE9R5M4g4cyZM+R1SaEbTGPwI58ai4pcK62pNCcnx05zCo5wdO0S4/GQg+sHPZBsbW06CQeGVe5ai9lqhd+SNmaLBVjL1uYm06kL0u5A3Pc9fE9RrGpWixXReEI82MALR5hGkDUGfJ/j+cqll2DIVlOCWCJ9iJTEw6fSGiUNCkm+zNxcz/cw5pSwUdcVvufjqwBjNI0wbWJFicABiqe8/oCQpGPyPKNpKhcLZSVdAPRiWRB4IQpJ1WievHgVGySc3ZuwtzVGCsnJbEkoBMtsgQpC7r33Pp595lnGgyHjyYSyLFllK8IwZDJxbXVTGYKOSNNKnFwlYnsjgb59qHySWDKbzfB934Vpt25EbgOn1TO6DoLbmFvrPFpAbUkwutVIGgOibe2aNfZpB6BCSpQxCPnbC4puhg3CMXKNS10RjmeGlW6mKnAes0p6eNJD2xIvCOnuUbezwWFLauskH517UtM0/QGwjw2TpzaAQE8aWq+210lM1rq0l+65dySf9bDr7vb9waIFttR3ZvFVVqCEQFqLaYwLgoDew7fjDVhjnAFFO3sF0NoCTX//68D8clrGGL71W7/1jwQ0Aba2trTv+zaOY/M7tTp/4Ad+4Mo3fuM39kkte3t7+Zve9KaefPNjP/ZjV/7ZP/tnG7/0S780/v7v//6Dvb09Hcex8X3frt/f7/Sz9fVP/+k/HT3++OPpJz/5yc8+9NBDJcADDzxQ/UGf14//+I/v3HHHHcV73vOeSwAPP/xw+dnPfjZ+97vffXb9dk3TiJ/+6Z+++OCDD5YA/9l/9p/t/4//4/94DmA8HpsoikxZluJL1Qa+aeB887/zetLYZzTZ4PK1fRoDRVVxzh87TVijCfyUNE2ZTCYM44CdjRFJFKJMA02JoaZqLFVp2uR3mM9nfcBvGIYOUGazHug61uFkPEZKyec+97nWIcblakZRhMWyWq16Ek53qp7P3eekazkdHx/j+z7L5bJ1C+pOz8aFRreba7ZYsFgt0Vi2treREo6OjpDS4/hkymAwYDwec+bMWebzJdPpsctxbBqW+ZKNyQZ5kTObztjd3CLyA45Ojil0hfI9RhsTjg8OkdZSt1Vml57heZ5j6NYVWVUy2phg5jOEB+M4YfvMhKcvXqRCoavKxazVmsj3GW/sIYShLAtUENI0llEQU4V6TRLgopyk57mN2PMIlADrYa2rPDzpuRQbbUnSCG1MK4dwGZR5XqBUQFk0BH5AFAZk2RJqQewFVEVBnMREYUieZzz53CWs1YzSGIkhjd3GeXh4RJAkJKMRu7s7fbXt3j+B53scHBwwGAx6YOg20MVi0c+/ulnbaSvSMZGjKHIpK22VHwQBVVVxcHDAKisIougGvWVX+QhL3+oE14Z0MirZWyT0hgatrhJO5RjrpuQdIHUtSt00CBW4KlV3FZtqc0BPZ6JAH0DQEaA6oAL657ZuopAkSR8K3bkOrbeOuxZr91y7x+ruvwN4IURvN7hOeCqK4ob7Ww+b7l63uq0UAUQrL9G1K9G7x+0dltZ+1r3e3Wy2m9u+XGeb73nPezY/9KEPjQH+m//mv7n89/7e3zv/x3k9b3nLW1brf5/NZvK//q//63Mf+MAHxgcHB77WWpRlKS9evBj+YR7nE5/4RLy3t1d1oPmHXU8//XT08MMPZ+s/e+Mb37h697vffcPtoigyHWgCnDt3rj4+Pv6yuWbc9B2L5ZR7z+8wnmxydjLEWPDDCA8HPEHgI9v5kJSSOPRZzGY0y8w5muiaKAypSydTiKKI0WjEYrFgNBpRVRWr1YqmaRiPx730YD2eaTabsVwuOXPmDL7v96ftjiwyHo/Jsoyy1bpNJpMbNpcONLuNoPN8Xa1WPSux2wTGwxFSeZSrjHyVcfuFC8yXK6TJ0LUmHaU8//wLDIcDBoMB6SBmuZyztTFhNnOn/jzPmc5nbG5ssLG5QZZlWODo4NBVT1Xl9KHAeDzm5OTkdFMxligImZ6cOLu5MGCel2yPhuwnKYfLDM9X1GXDIEmoipIiE8RhQKUVzap0pKrVEum1h4Ja4ymv16JWwn3OkiTseo8o5bSDynOB46Hv4tdEu/FaY9CNpixzrNRUpsSaEC1KBnGEEJrAN2xvhWxMRowGF8gWC/bObPUtOt8PKcq6J9lkbXv2uRdeIIhCNjYmNNpS186pqCOHrCd3dCDYvV4dSKxXJr4f9HM09zwdsIBAX9+nbMEB2pZme4gyRvSgIaWgqkocFrRgKMG2f+/Bdm1e2N3fuglBxxAVStAgEeY0ysw5HNmeRNRJRdaDsdfblq66VjdUYx1YdYfQdWbruqk7nJLf1q9vnVHcHQC670LHwoVTE/51P9ruAFO2Lka0RDHb2h02uumvc7VatTacgrKq0OZUFgPcAOLdvBVudGJ6Oawf+IEfuKX7/x//8R/vq6Pv+I7vuLMsy+e/8zu/8+SP8nq+mPX6Xd/1Xbd86EMfGv13/91/d+n+++8vkyQxb3/72++qquoPdVL5cgZ1/27L87wbHnfdzOPL8ng3e8O9yZDZzCJ1iSyXDNIBYSCQxqXTG9OABdk0lGXFpctzkjRG64bJeERlYLlcEHgRSTJgma3QFpRUzOdz8jxnMBj0ZIQwDMnznLSl3eetGcFoNCLLc5CSVVEQRTGRH1DnObppGAxSojh2LdiiIExiZEvXV0phsIw3JsRRDAJOTk4IfZe4MVvM2d3bA2MoiwqJRteaQZRycjilbCpMYxCeO7mPx6M28qohSZI28BeGo0lrvC4x0nKyOCHLc0I/IPYjVos5M63x4whfQlXVXL1+3bF+W7mKtoZstSJJEpTncXI0BeGTqoi7z9/N9MknwAuoG8uizBACdMv1stJDGksgPIwPTd3QmFY6IZyvaToeYi2sVguEr0iSmOViibYGUxs8YQiikGU+dz6nvkfdlBR5gVIwGIaMxxHKp2UKT7C6ZjJIELpmkKSMR0N0U1LlHmkYsThaYK3kzNmxCwyXygWfK8nd99zFwcEBTz71JLfffjsbkwlFWfRsUs/zWtKUm2VWLfO461S4yqzB2u57L5wXrhQ9g7A3FfAUF269wKVLl8mLAt/30I3u27BS+igl8X1F07hM2TDyaGqL8hRgqasGi8BTEpeaZfoDWgd+6x61tJISgcBY51rkosycVrSuq1NW71oF5trLGuXJ1i9Xt1meIVJJgvZg01WP3dyxA6DueX8xEK9rO9dBqQNJlyLjbpeXRXtbZ4HYtXn9wEfhgXZGFsKTaOuMGrxAtbrmEowlkD6q9aIVphsvOYZ097zXK/x1kwWlVE/6ermsoijU2v/3JEyttXjyySejL8dj+r5vbla28+ijjw6+6Zu+6egd73jHFFwFevny5eAPew2vfe1rs+vXrwef+cxnwi9F1XnPPfcUH/jAB24gFn3sYx/7fX8YgiCwxpgvWfvipoFzkWcUusLqijAOiBIfKS1VqUFKtHWViCc8vMhnyJCNzQmr1ZJaa4IgxvcjsIqirLFWMhqPmc/mNNqlNHTSkDiOuX79OpPJhJOTk76SlFKyvb3N/uEhxycz7rnnHsqypKk1Ve0Aum5qtNH4LS2+m2sqz2Nzc5PDw0Om0ylFXDAajYniGCUlSkVo3Al6lWVUZc14NEZ7kivHR8RJTJIkVNWKxPcpygwBbG9vEIYRR0dHlGWFEi4M248DhISyLgjTkEo7KUtjDEVV4ochYRQShBHK8x0BR2tGrRZ0upjhRwFe205MRgOKokbWgkGacM8dd/DM5atIK7CIlpjjMR6MyOZLmmJFpSsMBq0Evh+02YguhzEKPfIiQ0WWUi9RdY0fCZrMtcu8SDEYROzupMRKEg1CtDbESULs+extb1BnC6qiYHd3FyEV89mc3e1N8qX7uZ65iDGd14RxQB2mGOParHm+YjgcsJjNsJ7k2jWf0WjEnXfdyfHxEWHkdJeePG0hdsDXEVfW9Z7GODWl5/nkeUbgO6s9JzEy/WwbYNBW+WfP7PHcc8/RVG42715JMMZlybr8yoYw9KhK7Q5CxrG4lefMy82aTrOveq2bKTuTeIvRnUetcnHS2mJMTVfBrstBvngVZY5SArT7fc+XWCva3FKJjbmhXdtdy3pcWceGzbKs76zEcdy3RYG+PdsdXBFQtN85VzVql9TS/hHQ+gP7PRB3z0NrjanNKShL3P5QO2KXbitkYw227Rj1+s62BbweY9bpTF9O6x//43/8zFNPPRUCXLx4Mehmcv/xf/wfH/y1v/bXDr4cj3nrrbdWn/jEJwZPPvlkMBqNzO7u7r92nnf77beX73//+ze+8Ru/cSqE4G/+zb953p6eOv/A6+u+7uuWf+pP/anF29/+9rt++Id/+NKrXvWq4jOf+UwkpeTtb3/7/Pe+hxvX93zP9xz89E//9N53fdd3nf+u7/quw4997GPJ//6//+/bcDoGuZl12223lb/+678++vSnPx3u7u7qzc1N/TuRm2523TRwGgRSuXmL7wmWrdeoEKIlijRsbm6SpinHxyc0WlMUp0kHZVkR+GFb+Xkkg4ELol5lgGWYpn281nK57JNLOpKQtZbhIHVtKGMZDEcsVxnW0s5DfJTnDBKKljGrrWG+XPSV5kuXLzEcDomS2Dn/DAYkacKVK1dOjQ6ahtlsTjoYcv3wCNGyGgfDMXVdYqxG69Msw6ou6Vp2cZxydf8at03GYGC5WDAapqzmSwLhM8+WiIHHcGuLOIopc8fwNNZtbstsxXzpWKQDb+het6qibiriKGQ4CGlqS1413HHLLrPFgpNFQVlqvMjHVDXZ0Yw4CpkpjfGgqmuklZiycnmYQYjWFcNQkgYRSRKxMRlSljlGN2yMbwFr2NrZQgrFRjxA1Jq6bkgHKVEYsX/tGmGlUUYwGY4xy4w4CpmEMbEMqJCk8QBrIIwC4sglu5SFJo4jEI0zpteteXyeMT0+dNKPIKDRDZcuXeKWW265QcwP9EHXnejfVVmu1RmGEQKBkq767KqsDjgd+9TNFhvdsFwuSFN3HUVRuCg7oWi0QSmBMU0LpBo/cF7ErorsIrls+947GYtSrlIKAh9rTVvh4dx/jPujjaFumja1xf3uektpfSaqlGoNGwyNtgjT9G3OqiowGoy2hGFMGPo9saeTjKxXnl3l1s1J180Mfqf/WiyizcbsjR6si15bNzrIy1MPYCVOwa43QrDO8rAH5PapSiURVvTXDNxgGi+EeFkbH3zDN3zDAlgAfPzjH4864Pzar/3a2YULF74sOsX/9r/9b6+94x3vuOO1r33tg0VRyCeeeOLxf91t3/3ud7/0rd/6rbe/9a1vvX8ymTTf8z3fc225XH5J+uHve9/7nv0v/ov/4sK3f/u335Hnubr11luLH/zBH7z8B7mv+++/v/q5n/u5Z7//+7//wj/6R/9o77Wvfe3ye7/3e69+3/d9361xHN80Y+x7vud7Dj/0oQ8N3/zmNz+QZZn8tV/7tae+/uu/fvEHuSYAcbN94Pf8/77DZplrCW5MNihK1/rsiDxduyhN034mFoQBkjYlJS8ZjsZobfC8gDzPUMp9iYssI/AkVVVw2223ce3atV66EQQBFy5cQCnZkhMkRVlRG0sUOamPtYI4dvrIsnKGB5PJhNlsxvb2NrPZzG0e2hLHCfP5DKe5Az8IkNJVIccnJ27DQdE0Bs/zWa6WBIHPYDBkuVyQ5UtGo2EfpSSlwFM+s9mC5dIB+fbeLr4U7O9fY+/8GZbzOUmaUDWWxXLu9GrWJ/Q9qlawj7A3aP6m0xlJEjsDCSxRHCK0wVce1kqi0QYv7h/x+Wcv8tylaxS1ptY1Wjdsbm1S5kuGg5g7LlxgNZ2zOd5gmKZM2rzRIl8hfUUQemxvT8iWc3TTsL21hbaNqzA0VMsC0Qg2xpv4QcDVq1c4PD7i7Lk95osZYRQgEERh2BqpQ5ompIMBWZ7jKQ9jLbPpvH9NwVVhvucRRCFVU/LQww9R6YqyarBC8PzzzzOdTXnNq1+D02MmN1iwrVdnbrO1eMq/YT4mlSTLVgSBd8rMtC5izOKqpKOjo97dqWubWql6BmjTNFhj8IMQo6Esq/6+nIRFYY2gaTp2qPOVtUajPAds2kia2ln6aQOV0eiW3dsbL8hTiYsz31AYqwGNC4d3QdSiDYFfrTKEVYDzyPX9G23wTme08ga5SQeg69rOjojTyViUUq3DUZdrejqjrKqqB86OzNPdfwf6HUu2rmtHRuO0lb1uvlBVp1KUdZvAjl3f3b577B/9iff+kTCFHnvssfs9z/u/77nnnmWSJMXv/Ru/+zLG8I//8T+eVFUlvpzOQf+2rO/7vu8787/8L//L7rVr1z7zpbzfLMuip59+etA0zdc88sgjT/xut73pitNaQ1WVbG9vU7fsvyiKEMK1jcIw7D/0cRwTBiGHBwckaUJeFKSDFOFBXVYYY50dXlFgLezs7BB4AmN03zoaDod9K66qKnzPQ7Yto7qu8YKoJ+Bcv35Ali05d+4seeHIHUEQ9EzNbsYlhOHg8DpJkpBlGZ7ncXTtkAceeKB/XCklUrhcycOjI4bDIUmS0jn5jMdjPE9xdHREVVVsbW1S5I5kdHIy4/zZs5xMT0jihHQ0xlvWTGqFWVU0dcVWGIJS1NqirfOZrRtnCRdFEScnJ+0p2/ZB1ts7WyjlM50dc2Z7FyUU+9cuk68W3LKXsDG5laPpCXEcsbd3BonCV4pJOsTUDeJsTexHKASzxRwZekThEKtzFssTisASSp+jkwUnlSQMfNcZ8BSeF2CV5erJPlEYkUyG3L45dBVDICnKgsVqSYUl8F3L2eYrTmZTmqYhjiOsBSk90jRCa4PyfIo8I0pSmrpmmA44uHbA0eyYebbizrvu4t577+XatWu9jWFXQXUSjA4cOvDqgNTzvP7QtQ4SnawiimIWy0X/+ZpMJqRpShAEXLlyxVVVTUO9BhZCCKqyBFQPMk6W4Uwg6krjt3NyISTWtPPBusYYgaDTQrq4ONOylzuz9nVrvlOSkzsIVLVr6Xa3k9K1rcMgpK4NYRDRNHVbtYqeQBQEQQ+ineWgu75ToOpWJzdZr/hcLqmL9nLvoW1TS+i/K12rtwPf7vDcVa69xGUNyNcNENZNETpA7RjS3Xe/ez7dofLluKSU/Cf/yX8y/eO+jpfrete73rXzpje9abWzs9N88IMfHPzkT/7kmXe+851/IF/cL9W6+VatMUgl0ca11zzPd3l+bcXafcjzVgtpsWztbDtg2D9099FohoMhIDk5caSyKEoIwxClLEXmTqjnz59nNp26L1erNZzNZo69mqbMF0v80DrLNmsZj4YEgdfa240ZDJJWPiLbVmDhSDZKEQQ+VVWSpilnzuyxv3/AYjF3ZgZtVmeSBEw2JkRJTBSE/UbcNA0IwWIxw1paT1GBbnWAo+GQMAqxM/CUzzxbcZgXzGcLojTl7LldDLBcrRCeQUpFXbuW4Wg04vj4uN9swjBg0fq2LhYrhFIEUcq1/UN2NjcpygJfSiLfJ1Ee951/Nb4QNHWDaTRhEODbhrzKqHRDod1rM1+dUE5rNjc2mUwG6KokW6yoi4rR0LGb4yBgc2PCfDHH2hokRJFCoMlWczzP4+yZPXwpGEQxozilLCsXRGyhbhqU75EOUpYLB1Ke5/cVnFSSdLgBRiCxFMsVRVawubNN1TRcu3qVW2+7jbitMrvNuAPMruLstMNOx5jiKf8GNqYxFikVZVkApxrOziQgyzKSJOk38Z3dXebzBbPF0mlus2yNWKSQa3NEN1eUWNsBhIsxM6YzHqBl5woEEiHce205JcCsGxNAx5690QKwmxmGQdD/PMsyojBGSnVD9e2qZL9nHHcgtS7t+GKQ7ohA3Z++Gm0apO+5oOtaO5asFVRVjec50F03SVhPWPniLtZ6Bdy1i7ufd+uL7QnhdE77isn7v93r6aefjn70R3/07Gw2886ePVv95b/8l6//0A/90NU/zmu6aeAMlIeXDqmyHBnHKC+gyFeOmKItcRyRrXJG4zF5njObz0niGG00cZygG0upNVm2IG7N0rsv7TJbObJKWRCFEXlZcDSdopRka2uLNB1ghXSCfOURpylRFBEFMZdeeolGawbDIUmatIAzR0rPGV+iGA5GbhOSPsPBmP39fQaDEQf7R1gDSvrcftsdLBYLlosFy/kSY6EoK8J2k93b23PylSihrkvm80UvZbEW4sAyGo44PpkzTFOOjg/43BNPsjQefjImnJc8fuUAzyiSMOBV959xnrwSzp8/R57njMfjXlqjdUMQhE6qox35yWjL4fGUNE0ZjiZMZzNMqRnEKbEKmS5njAYD5tmJM83H0DQ1yWhE2dQ8feUFNrc3GNYWU2lOThYgPJSyiNAChqJaEGhFID2CyHMs5sWK5XJJEAQM4gjdGOZHJ85MwVooawJjqcoc31NUjXakIK0Zjca9B7DbtKEqG0TVIAygDb5SFFXJcj4lloqiKDm4eo2tnV2k9Nzs0/fQ2oGTAwRDUZxKi4QogALfDwij02rFgau8IXqrM37o2K9SugzMOI7xg4C60WSrDN/zW79id+hrrGmrTAcczvTBgwDqusHzBI3ugqot1qr22pwjkFLOLKLWGuxpRaa182ZVXqubNBohHfDbrl1aN1SVqz7DIGpB+zTtJWxb5c68wcmJGq3xwwCsqxJ1e9BVSrYtZ4EFpKcwdY012rGqtcaCm6MaZ43nDjACrekrxvWWLdDKa7rEFPezLm5tnbzUVZrr4dTd/6/Liuq67rNAu8/QK+vfvvU//8//80vAl8S4/ku1bt7k3Y8ZjkbsHxxgjXVVUFuFbW3tEAS+a9kGIavlilAGBHgsT5akkzHz1YydM2cps6yVcoxdC6xqqKqCNI1IR0OqquLo6JAwiZyAvqrw/JqqaaiaBlnX1FXNYpnhS8lgOGznlG4GWuQFZV1x9uwZrly5Sp47R5nJZNKTjqR0LMnlYsH21jbCCEIv4Op07qQHfkiUpCyWy/5Uvd5W85THhQsXevs2o11rLA4jpPKRymI8y5133sFLy5zReI/pwT4bww0C4bM5GnB8csBg6CGNx0svXepnpp221bXG3Cm8LiuKsmI8GXP+wnkqY9BNydbWhGy1oiqXrDLNaBAzHAZkmWI8HnN4eMhwNEEqSZHlDLwQ3wpqYamlZXp8SJImeL5CGEteVqTpiNAPqIqKutYc7J+4isJI0jBBBYp4EFIWJdPpFN/zQAiyIiOOE7wgIJICawyRH7LMVuRZ0VZQbpNP09RFyUmJH/hMpyeuQvYlQgPGaVylkBRlyWKxYGtzk8FgwGq1oq5qstx9jrrZZ57nfaux0256LYPT+dQ6HfDGxkZvntFVN11KSBRFTkYzHGH06QzQVW8ShAPCU/cc0LpuwcrSmLr1uW2rTeECyx0QaKe9VAqr21DsXjfcMXhr13qWLlxAW4M0XTVp8bygbVk6a0CswFhNVZVUdUngR/3jubSdoGe7djaE2rZ2edagm9PWqPQkto1Vq+raXQ9V24ZV6JbJ7weSqrwx9q17Ha0RLt5NKpx1oevEdHrT9Sq705uumyx0s9IOmLv2ehfC8Mp6Zf1JWTcNnHWpeeG5FxG+RxjHVE2B50niOKWqapeZmSQURYWUHqssJ68aPE9RVzWjQcrRtav4nk+aJj01fjBwlmrz+RyEwfcDF+rbNMznCwaDEXl7n5ONAWVZsrm1zfPPP+9IHVevsLu3R+D7fUxXGIbs7x+wWq3Y29vrZS6dHV8QuDZoEIYsFgu38RYlSvlIpSirChXUbU6kcx7K1qj5g8GAvCj6KrEsSvI8a+3UGvKiJmtqJtubjPccuzcVATsbA6TWJDH43nmOTo7wgoA4FsRxTBA4gwYhROuxKshXGY3RnNnd5vDwkPFoxMl0ihKSpqop8hI/DMiLinxVcHI0c+YUXoBCkS9WGKDIc7a2tyjriuOTQ7wwYLwx7tvTfqhQQrJaOQCyxnLbbbc5M/35nNF4iFCCoqxwhaJGY6jLgjCK0NbS6IamaFBSEacx2pwSOw4ODpiMNwAYDp3xvrWWrFjSCIunBLPlgmGaEA0ijucrsqJAeT6z4ylpnJIkisAPkUKh23gxrCPLuBmjq+4cgII2dd9KjWMnJ+qqzE7G0lnAdWzuJHHMYSUky7zA8zx85YEUSOmjzamj0Gk7+JSo5Colx7w9bVm2TsbtHNJVYfKGubqQruXfhWe7SrKLK2tbuQaskU7SIkBKgdainbmW7jASeCjhEljyougzS6V0nstV4xjhXjvH1tZgdYPXziulVEjj2LzSBtS6wmhnBCGlxJrOw/i0guxmqLqx2NYC0VMKI3SfQnPDptPmeXag6zJnZQ/G6ykunePTl1PM/sp6Zf1+100DZ5HnBGGIlYLaaFASLwqpq7onCQnhAquVUpxkhTOC9xXCaoTWjEKXHtK0J8uqqlgs5gwGKQiDtpYgDPF9j+VqxXKZEScJUZSQrVaOWKIUq2zFzpk9sqoglqACn/2TY4aDIYFSLNs2aufZ2dv2TSasViuqqiLLMkajEXlRYKyhrCuiMGIxnztXk8K19mpZtZFj7oDgGPaCpq1G6taKraseirrEWae4KsI3liT0iDbG1MUKP/TJ8yXBaIvxcKNNglAcHR8jpUvlGA+GaGtb8pTpq9HFYkHWyjEGyRCBIoqGDEcj6splfeZF7ownrCQrS1fV+R5FXVKjndlBnyAiCYIQayyeUpR5QRS1+j9ruH5wnaqsaOqSPHfXWVUVUgwd6PgBNS6ke5AkgGA4GjKfz5nN5pw7e7aVh7jWptYG3/NYLGdYoynKApREhT5GuKre+QPXGGE5PjlhPJnQ1DVlWbK1tXUD23owGLYVi6uKjG3tE5Wba66nqwC/TYbRSVqg6ygoLl58qWeW7uxsc3Jyguc7/aWrLG90KFqf3XXM1C5dpa6cLAohXSxZq3fGCjoc6K7PYghDHym/SBOqDVp3ySvgB87T9tQwwN2R7/mOtds49m0HRJ3+tSPXdJX2+p/umnvJCOCs6l2wujEG3RhQrhWrvNMZLdC6MQGt+1GbK+QIgUKg9ek1rc9XO7Zu18rtZGfKcwcVq52loRf4N7R1/wiWAV4B63/L1tr7/XvKXG46VsyGHo2CXFdUusIPHPX+6rVrHBwckGUZy+WSLMucDGRri9Dz0HXN0fExVVWzWK2YLxb9xrS1tcXGxsSlMRQVAkESxyza8ObN1vy8LArqqiJbLrl+/brzTjWa8XhCEkXUVcXZs2dp6pqmqkna2eNisaBuN910MMAay3K5ZDp3RCOtNcfTE4I4ojGarMhIRgOSNHUsw9Zwva5rqsqByvHJIavVgsFgyGQyIW6jrSYbE5I0YTlz0qCd7W2wsJguEQVEMsGTIRcvXqWqIcsKptM5ly5d5fr1AzwVYLRlOp2R1yVVXRGGQe+Yo5THYDAgy1ybsTENylcYU1MWOUWRuWsMfUxTU1cFO9tbBGFAFEdsbm5SlzWe8giD0Jnme8rNpttWWM9kbs0UdOMYzaPRGCHcHHBra+sG3Z3vO+OCwXBI3dQcHBw4DZ7v89JLL7VSCkcoGQwShqMEITXSg8FwgO8plFSMxiNGoyFKSI4OjrHaspjPqaoaPwg4auUiYRjeUO30EVVS3FCpBIHzPV73bPV9v5+VFUXRM1u11q0mVJCmMaPRkPFkyGCYcMuFM0Rx0GuKe6aotT3odr/fEXIc+LgvoZTOIN+1I007HxWwBlxCyLYtWfVaUCmdbEZ5CtG2ZTuA7g5q69ITpTw8L8Bo06a/2L4V+sX2Y502uqvuOjP4dTA0RmPRuMAYSxAq/MBDeevXvW5NKAkDx6wP/ADfC8A6TW33OelWd/BYtwo0xhDHMXHsPI6j0AUe6KZBN5q6/CNt1U6ttU1VVX9oJ51X1stnVVUVWGsb4Pe0Q7z5Y5wQrJYr/ChASMl0PuOZZ55FNobXvPrVDAYDDg8Pe2/YuC4YhQqZjFhISW2hkTAejNBN3c+jPM/j6OiIJImRwnDtylU3K40i9nbPEPoByvOQUpGOUqd/szgygywJcLFKnhVsjcb4yuPy1av9CToIAuazGZ7yKKuSvTNnuHT5cs/SHQxcwHWe51RGY5uKjfGE5SpjNpsTBAFpmlJVJVm2RAiIkwQhJcv5tKfOHx8f4cmWOaobprOp05k2hrKoGW0M0Ui2z5wnL0v8wDAaTiiKiqY2BKlPFITEUcxssXA+tcfHbvYWBOi6RreHArcJWWYzN39crqaOwKGc3nOxWBJGKRaD56seQI5PjpnPZvhBwHgwREjJwf4BO9vbVK2zTtM0hFHYs1aTJGFjY4OTkxOstRwdHfXSo/bDhud5HB4e4vt+667U2eEplkt3kEhTx7SWCpqyxBiwtkA3hsl4A13UHC2P2dne4fZzFygbg58kCCRlWXMyPYbPfpb77ruv1wl2ACCloK4rtGkwxuufrzGGxWLRX2fTNKRpetqeXrvdcrlsWdcKIa2zTBTCWTKGIZtbE2aznCovnA7U2huqpg5IOk9Ya0XfkuwA11rriDfGxZF1lbNSEm08hDhlkFrrwEs3jszT+Ro1dceiFUjpIaUDxI40Ba76bMyp5+36IaMj9HTt6y5ebz1dxvd9pxu1DVobqsq410VY134X/m8j9zgfY7V2bawl2biDTccQ7l6L7trc9nIKwtZ9OPCVR9PUoA2aP9Lq79AY8+vXr1//Ot/3a9m9yK+sf2OXMUZcv359ZIx5P3D0e93+poFT29q1k+KQeZ5hPcHt99/FXjLBNO4LmSRJ/wUt88zp4axkMBxhcJFISilmU2c0MBgM2NzcJMsy5os50pNM238zQrLIVhwcHrKzs4cVlvliThxFoA00hiovqBvnE2saR/KoVc327g7T+YzQU5R1RRC5uKMwcsb/586dJc/ylnBgyVZLsA1G1wSp08UJ0TIovbBPMAn8EKUCiqJGKU2aDnrqf5KmzGdL5z7j+xyeHLG5sYEQhnSUkA4D5gcnDCYRZqEdmcPz2dnZZrZY8Lmnn8TzlHPgGQ0Iw4DRaEwYBEynU+IkwQ8jGuuIIsrzej/cdJC6NmFVUJQFw9GQKIyoqrJ1bHKVqxSSwdjlt2qtmS8WjtxjLWEQUrRxUl11JgB8j+uHB+gWdJI0xW8PJVHLjjbGMJlMepIOuI2w07+6aDcHbEmSMBgMWyYpYFyealM1eEJx9dIlojjFixJMVXBwtI9QMJ6MODw6JHox4uzZsz25xBF0NHVT9frKMAzbisq2ov6mN3yfz2fOgKJtWXZ2ftbaNnBgwGI5Y7GYs7u7RxC4+5pMtgmChOvXD9rPx2mbs0sx6YT70KV+nPrCdq+5kBIhvB4GHOD6eEJhrW6BTOLG607mIhTOVd46co+wqiccdWQg5TmWb8tr7e+7m+d2INe1bLtKuzuEdMDfAz3Ol7Y73BprnLSmnbMqdRrU3UuGhEBgsViXrtMRfRrXUl6fVXaOT+vmCV312ejT7NCqac3r1R9dq/aRRx4xjz322N/O8/w1zz777A5d5twr69/kZY0xF621f+eRRx75PVu1Nw+cpnZ0+7IgFuD5AZ7nU+YuaqjzmI2iiOPjY5QKsEhGSYIxkMQREpeUMBwO+1PnxYsXqaqKKEq4dnidMIy59957mM1mNNowGI7ww8AlrZQ1y7aNu7OzQ9KyLBvdYI0lSmLmywVVviIvCra3t0EITNMQ+gFl5lprh4eHvY+p73ssl0u2thzbUlclWVmyubXJarUCBFeuXmXvzDmM1pRFRYRsN2Pn51pXDassR/oeIKjqis2NDTxPEo4Sqqokr1ekw4jlKkMJw8bGmGJZYPyQrClJdibkRcE0X7G7t+OcW6ygqBvyqqFonBVfmAxYLRYkycBtsEZzdHTi2qWjMU3tWlvG4oT5ngP2jjmq2s18mWWEfkASx62tnOkzHPMi76uT6XLBYDxECh9j3aa4ntdojGlzMU1rMBBRFEUf24YV1FWNH/hYI8izkqZx7FPfd5WRlAqhDEWekQxS4jRlmZeYUjNJY9LBCNNuxBcvvshk4tr7q9YEv6oqPD9utYCmvyb3fDyWywJjGppGMxgMWvD0KUvRz/cGgwHdHDHwI9LEUpUN1kiiKKbRmslkhLGGK1eu4HvhDZKM7vmvV2Gdl3n3sy7bs5ugdMDmQMPNzqPQzdKN0SAVSoGxGildtUnLjNWNdtpYv7XQazTaaIwVCOsIROvax/UKuTvMdFVeR6i7wWvWGKxt8HwPpTzyvMBvk1aEOHULiqK4ff/B2q4udPIb3/cwpmY6ndE0Lme3s9HrgNO0KTG2dQLL8pxGu4AB6fuIxoVH2N8h5/TLuR555JHLjz322J82xtzK76cz98p6ua4GuPjII4/c1Ezgpj8QvvQwtkHnJePhCKsNSoAMA5Tnc3Jywvb2NkVREEXO/H+V58i2ArBaU7czpaL94uR53s7QRly4cCuj1tbu4Mo+URgicZZws8Nj5+CzmXDt2jUQUFu3OV4/2EdKyc7WtpuxFgVCij6kerFYkMQxxtdcv3KVrZ1t4iQBYwmjgFW+Qhu3CXmywljJKsvJiiM830cKw2gyZmd3i2y5YjIZMpvO8JSPp3yKvGE43CQ72mf/YJ/z588zTEbM53OaWhMOUw6OpxgZuiiv0rXEyswRd6q6RAjDZDBge8NV74PxmNVyyfHJCWfPniUdDFgulxwdHfftveli4ZiLVmClR5gMaIwA6XF0fIDvKTYm4xui1LoNS0rJ1uYWx8fHANTVaZU0Ho+ZLeakUcJiuUD5HvtHR2xtbDgmZjtjTZOU5XJB3TQ9WMZxjDGG4XDo3ueicC3uPCOykYueKivqumIySajrpm8VhmGIH0eoMKDRLqUkzwuSqsS0aSi+r5BKcvXqFe66627SNCVr02T8wGuJVM7ycT6fY4whTWP8NqlDSMhzF8fWkWA6MEnTlMPDw76FOR4nSCmIY+eiU1YVy+WMIBBsbAzJVlVfdXbA2VVunVQFbnTq8X3fzTYR6Lbk7OQijv172oK11sWcCSmxtsbgWLSNdoAGonUMan+fdS9Y0RoWdBpRy7rbz3r7eL1Fum7Z5wAU4LQyrCr3fHzPkZ06g3eBRCDxfPedXm/jBkHAZhupt56z6T5woKRHU7XxblYQRjFCqTYsvLNo/OMh6rSb6DN/5A/8yvoTv27eOUgoGinxwpBCSkybXE9ZUS9XPdmm++ItlkvCKCKKI4zWLFc5SnmUVcVsNmN3d7dPbajrmic+/3mkhih24nVbOQMAqy1KCALPJ89LUAo/8KmsRtQVo/GIxWKJNpq6cakWxcoBshN9G6w2xBshg+HQ2YJpzXAwQEnlyCdhyLXr+4yGI8qyoGpcZeB7Tk9YlRWHhwekSUyeL/B93KZGQLbMqaqaIi/Y3dvrc0WjMELKgDzTWOOTLRuU8h3DNVsRSncqz/MMT2u2JilFWVI2hiJzbUallNMt1jXj8ZirV6+Spimr5YrpbMr58+cZpCnD0YjpyRQ/jAgDn+F4jC5LgsDH93x0o/vora6dqbUmTdPeCMD3/f69wLpNejQYkijY3N2hzHOuX7/OKB0QhBFlWRCEIcPRiKZ2xgYu7kq0lbAz9x6ORsRJ7KRHwwHT6QzPU5xMXcs0CEKapiYvHIFLScFqlREGIcPxBkVegucTBD5lUZHEMScn0xuIQNZa6ur/396ZbLlxZGn6c/PZMTOCwUnKuTI76yHquespuntVXVNmlUSKImNCAPDZbejFNfMA1YumdlzgnqMjkScUASAAu3aH//vlUA6C+VgJv1VM1oWfa60j8h0BYcyKPGSaNB8/fmS73fjZ4vPcTfShGUWek2Yx/dDx9t1b3v/4kWGYfLs/JDyvn8xSICLyiex8k1cuLylEEVJEiWlBYNeKXEVaodZGnvOaoM1ImmZCFnKySRwoQ/DMghUspbgNhVYvPG8U930/z6jPkXy/XA4KF4tzdxVpvVqiyLd/05Rx6FGBJDSOxIlIdAKyMFS6gdA060qVUJeSJEMrTaT8hnOsfGvYzZSjy3brJb61+OrEuVysUVECkRgEYx37wxPWt+estTOiLNwyk0TwdtoY6rphsahIk9RrFuWDa7ThcDiwXa/JE4EoBFPnw+HAZrOhygvSJKUdagyGIslBW6I8QqEo85yulw+w7iaSTJY+gkm0mbRs7FYVk57mn3081hinUCpltBMuybjdfyJPM+wglknaaLIix6F4OhxJk4hEKaqqpGl6VJRwOBxxCp72TxRFPl8iJjPR1B1JlJIkMZFSpIno5XqtMXqkWFQoJFngHGWe0w/iPxp0h0qpeeNQKcVoR66urr5IFM45sjSh61qcMyzKgmnSTKMk3TiRqitUeMF3Mc9zyrLk/v6eu7s73r17x3a7xRlLtSwZsNztH1kUpWw6psJP7dqOPM/AOeq6YbvbsVqvaJt2PiAzr60MSbXv+rni2e/3lEVJ7G3DcI6mrqnKwm9FdxhjKcuKrm9pa42KE7K8xKQCM3j1SmaQw9BTFM++jkopirLw/NWMNE0Yp8EzlQvRKqqYvCwYBtkm7ntpsysVqi5pi263W7q2p+9bBt3RdT1RlHB9tePp6cD+6UialEiVJ8lCJCCJ/10/e3JGKrBv1fz1WmtUJIlHErY7q0BjrB18xZpgzDPSL4zdQnKZl4CUT7pe8hIIXYfDYW6pl2XJer2mKIo5MZ1fqM69O4MX6vMiz/NMePZLnQL4QarEoI2VKl8A+L331pXnKZ2ncRAyEF7DGicxk9E4I6jE0CW5xCW+tfjqxPnpp0+kSYIeJqZhoMxzIuNIlynb7Va2O+t63l6cxhHn4PrqCpUqbq5fUhaFzMfihPooAILb2890fU+WZ+xPwkFVU0+jR1SR0jtN6hSx7plsT5ElRNYytB1NXZNnOW3bMI4Tu6sXVEVJ702Bp0mkDIEmo62hbhvc6URRFLx89ZrxeOD2/oG//PkvNE3D1fUN9anm1csbmsY/H2N8hQn3n55YLVe8+25DUci8r6wyurFnt9vSdd2suVwslmw2a4qiJI4VP/zwo8AFgFZPRElEHAmrtUgznLV8+umW3//pj/PBE4hIRZYROUeR52x3O9qmAZiF/GmekeeZkGcixzCM7Pc1m/WaKFZ0dUdRFLx+/Zq7uzuenp64urqaD8w0Tfn973+PtZbj8chyseDjp0+MWJquZW8eWS8WrFYrweQlKWme0Xsj6KY+0fc9h8OB33z/PVmeCXmpnSjKkqvtTqQ9WrNcLHhzcyNtPWuYxpHVcimgiq4DJ1XTULfowetwu4GsiHCpQeuJn37+SF4UrFer+TVwCAIviqyXjxiG0c0JTZZZxlmuoo2YUrdtDRF0nZ5bqqF1eTrJ84pT2W7dvdiKPV43kGYxRZ4zDPJeDwknSaQlLZUhhNYpkfOOn0I2MFaWaNJUqkNJlt7D84zv6rD+sT/LYUJFGNrEYUYZirNznGAcy+Z5nuezA0qY7Z5bhMGZrtQvf4Xlt/MElkRKyEPDNF9WRm1J0wgzaSbrObOTJF0Hc+s+6F2nacJ5eETT9Yx9T1kWpEU+L46d04kucYlvKb46cRaLimEc2XcnPt3e8sc//pF2bHmdXQuFx7f5wgd2vdnQ9R1PxwMqltadShTail3TMI0kWcKb795J201FLHcrHh/37I9PJFniAQUdfWyw7UhBwfHQEOUpZV6hp5ama3hx9YK27Xh8kplglMTz3C08tkjJ/C2NE7YvtozDwP3tHTaNuXl5g5k0ZtIsqwVJrHh8fPCLMxEvr67FoUPF5IlUSYfjiXHsyfKUJFG4QSqUtm3PNg0Vxk78x3/+SFkWjNNEksYQwWq9wkRSpaOELZPnOb/73e84nU6kSUqRi97SGMOhPlGuVkSx6FvjSDENA/liSVrk/PzxI8vFYj4MC99G7duWxXLFOO0FLu8rstVqOYvOh2Fgu93Oh2lRFOhJU5Ulw/HAzfVLbj9/pq0bPumfKYuCoihp2lYg4KP2SeWK7c5vSdcNWZ5hnUPFCf3QU1QLUmsECJAkqEQuEWmeo73MqOsH+n5gt32BdZDlcnCLuF7E9OLE0bPfP5KlKcvVwltYedmGgzwvGYYePVmpwoHNZkPf9zRNjVIpeZ5goomsKIUCtd7Sts1zW3PoSeKEOElo2hoVOxaLFcEGbLPZ4Jxi5RSfPn8mTiJfJWmiCCY9er/MHOeMd4ZJAO2RgwggBLGOc5EVdqzC24xZnAWjnwk8IWE66zDGSRdIxRgtrU3jHHGcoOJkrjadczOacLlczhUjMG++PutB4y9auOewh3CZQDlcBNrJ6yDtZIP2Zt+TMeihJ8lSSYIwd6VCi30YBiInHr9xDEUhVoNOQZwmX8yML3GJby2+fsaZyrLP6nrLm999xzCNPJz2dF3Hbrv9QsOWZRk2ctRdy2KxmI2l664lSzO0s6R5xt3+kc1mw/bFhp8//QzKAgalHEo5tB7AaQqV0jYT//b3D3SDVF3ffb8lX6TEacqhPrHZbsEnZoD9fs80TmR5RpokGGtIk4SqKGfN2mK14tDURNYy9i3T0HE6PrHdblgvK1arFdfX1zw8PuBwFEVOWiiauiFTCXlZ4JyhHwcccDgcWK/X82p9uMm/ffuG+/t7kiSm8sAEbS3LsmLfj2gm8rIgTzP6oSfLMpq6wVmDShJ2L16QZBlt31G3DT9/+InUGzwrpSidJUtT7u/vZ3uo6+sr2rZj6HripxNdPxJH0HYtzsphHjwoi6LgeDzOVVlzkkp7uV7x5tVrjLUsi5Kb65e0njXsnGOz3dH1A4PWoCPKxYrddkv38SecsfSjXCDuHvcUeUFdn1h5ZGBVLfzrUdEPA9o5xn4kLQqKxVKWQuKYfhwZxkHmh2ZCRRF5lhMrxYcff0DF8Jvf/o7ISovQaAHi49mycZxgrSfvEFMUC6IooVosybMSazsiFbHbVRitWW82OKRiDTImUCxWC7q+wVpFmmbEKjixWAHxTz339w9Yw0wXSpJUkqfT3hVEgbM4O4F1xJFsolonD1fhPEj+F2SgGcH3vCkbqRgVSeIUhadoJ40H6Z9LTODZweQZCC+ylPPZa1giCtvVvwQngJezxPI9rJn85rRvEauUOFZC2DJyEQChbDVN80XLN5Z1YZwzREq4xVVcMJpJGL0q/kIec0mgl/iW4qvfjbvNhj/97ve8fvmS9ulA+7BnkxcknvE5jiNL324LGrYsz8nynCRNKauKcZqw3lneRXiLsSAPkZ8TsH0rv8gzjhOHY01aVtz87h1Xv3nDd3/5E5TyIQyOFmG70jmp+mKlqLzQvW4atLVMeuL9xw/894cfMTiarsEajbMa56QyKYucx/t74ihmaAf+41/+DxlKQAZNi+47ijzxPzenaXvwllFhkzDczMuylDmrc1xfXwvLd+jFuqwo+OnHD+hhxPp2mzaGT58/zz6WkzG8fCkt7jiKQBs2ixWH05H98cDkLOsXO1wk89vQYgyOLSqOUWnKZMRtwxGRps8tu6DZdM7x8uVLQEABkYqYjGyyPj48cP/pM7vVhnEYZn/M/f7A3//7Bx4f99RNizaGu4cHHvZ7hnGCSGGstCb7YeRY18SpSFpW6w1pljFOmm4YIIpE9+cc1sE4afpxJM0zRj3RDz3aGpq+Z7GoyNKY7WbN67ev+fn2M4MeSPKUUU+M00QUK0Yt4v39/olxnAiOKkZL1acnzaQn3zKVLd4ky4g8GD5Saua9WiePLU1yunYgVqlA19OE1WqJtSJzKYqCDx8+8PPPn7i7u5/xgIECJCbXIdmIC0nkHMp53STiROJwflvWev2kmqvB8P6SJSHQ2qC12H6pSGa3uGd5UfhMhcvOeWUZvuaXFKJAEjrfwg4JNE0z0iyV+abfFlYemUcUYR3ESUKkhP+sz9xnAv4v2MsZa4SMdEaCCuSk8HjDBfQy67zEtxRfXXFusoq7uzu6rmNoutnfcrvbcjqdCE4VAKvVks/393ObKCy1BNH1OI5stzu6tqM5nbDWkBcZj4+POCeQbml5ikzEuZj+eGSZJbzYbrDOkqQZLlF+xuaJNcPI6XikyAu00RxPR9abjbSsvMvC2++/x2E5Hg7CeO077CQbuOv1WrSbSppn/dBRrpbsa6nGlqWAziPg7v6WJEl48eKKu7s7IJJFFu9Haq1lv99TVZWXg8A0jWy2W/pekufL6yusNrRdR9M0GGu9UbYkZuOTYBxFYBw5MfWxJity0jzn8WlPWp/I40Tam14nt91uubu/Z+m1lOOoyfOMqiw4Pu1RvopZrdYsFwv6vqeuG6x1HI/iSzpOI1W0IFKi+Ws74QYfng6M00S5WDCeaq5fShtXtLjFXM2fb+u+ePFiZs0ej0fSNGW5XPL582cOh4O0nuOYrutmnnA4sAHxYV0u6dqOvmmJsxQDlOuKpVty//BAVS1ZVAuKspgrJmsM6/WaPE2w1jBOE0VZEClxLomiiCwXKEaYpckcTs0V1zz/c85vOiezrEIA7G72U/3Ln/+MNRH/8n/+jcLB7e0di0XFarVmDJILnsX8z5VU5DWyZ+bP523Zs/ljmEmCb5NasfAKc1yHX6hRzx2gc0nMOI7z5/KXvN1AUzr/meH3GPSdWveorJgT73nLV2vrP7/+tc1Sn9Sl7a+9rCgka2thONUUi5JIyWw3MhFxjCcWjV8k1Utc4luJr644//aff+Pjx48ys5o3F0tQ4pWYJAl91zGNI4fDE+MkB+mLFy9YrVZ8+PCBw+FAXddYK9XdpEf6cSAvC8ZJmJkOi3ViJyS+iXKzTnJFtVxg1cRoTmjHF/xQrTXjNAoQOpVt0816Q+IJMXGekpYFh/rIqDV45qf4EioPl5cDXcUx6aKktZp0syDfrXFlxu3hERspPrz/SNM0LBYLuq4jz3N2u93sRNG27VzNBRZoHCvevXtHfTqBc9zc3JDlOYOeaDrZRH375g1ZlskCDnIo7nZbImSDcRgHhqEnSTyuME4Y+p7j4TgfisHpI88yjsejF9hLJfO438/ggSLPMVrTNC1FWfH48MjV1RVXL67Rk3B6h75HRYrVZs3V9TWoCJQYdr99+xalYj68fy+G4l4O8fj4SO3t2MJW5uFwmC9D4cANl6SyLAloxDCXBuavCY4dbSM83ckauq6j71r0qBl72Rg148QUfpdZJoSi1ZKiLOm6lnGQBSgVKZxxZGlGMFU+n+0FtnEU4eUsvuKy+A3kHGMmn6wkaciGakXbyabx69ev0HrCGO1dgDpwlmmSxbm+733bNJqfq/X85XP3FnNWdU3ThD2TtYh2RQD6ykP0AanavSdmSDbWGozvIPyyugzv0b7vZ8ci56UgQaYSvj7MJ5/ZvnJ8PCdiSeh933lLNlmFmsZp/t2H94RUkOIa8+y7GSRGnvHrgQvhd3KJS3wr8fUV55tr7D5GZSmLTLw0dWTFNSWV2VKaiFRBa8tqucJ6zNb79++pqorFYiHs2OMR59xsy1WWBV3XslisaJqGvh8o8pI0zXh8PLB5cUWkFIexpiwLjNO000CW5PNNeBxHqqpiGAa0F+Uba3AGtrudMEuVCO2btsM6S921Xi9nOTw9zZ6am8WS7nCkUglZLElqt1vRZoVA5JcLdtvtF9zNsiz5+PHj/N9pmnJzc0PTNPOH3hgjj8sfgI+eRfuHP/xBSElak+fCzQ2QekCQeKVQVRbrNcrBbrUmso4kUTzcP5KmIlcIr0VY1hrHkXfv3gkVyWjSqvQaQM1mu2S/f6LtaqqqoG8bVqsFjw93RJFis5HnGFY1h877ahrDp0+fOPpq0Xn3FhALtvAYApA9PN/wz3kVE94HV1dXX8zdgog+HNCDr5SMkbZoVVZzEjDGzObUIYGDtM4j5wRk4Q9iFYssaBhHaWWfHeZho9ZaaX86v2gTRcw/J1SgQc4j/5+QdfpelqzyvMQax+fPnwBFXTcMncz5VZKiopgkTkizVGawzjIZw+QMwzSRxB7srgRhZ4yZq9HIzyJxMb4QRsy1E6k6owht3FxtSvIJb6PnZBkq19DODQhD59zcNTivKp/h7xZt5fcUKsLw98GzNlCbBPyeoQqBfwQpUmgDB0s2bQwmzFaL6ou2bKg25wvDJS7xDcRXJ87T0NFbjZkcm9WGxC8DtccDKlKkWUE/xlIJ9gMFjjwXzmrXdTNNJnwo1+s1i8XCo9NOJElKHKcURUFZlgI/10bE51mOHUfUpEnikdSC9QkttJ5evnwpCx1+fX6xWMw/L7QL//v9j1ic99Ds6buOvCjIM3G/qMpqrsTq+sSiWpBPjiRWPPzwkShW5GXJbrmm916HYjlWihZ1u51v0/v9nqZp+NOf/kThZTi3t7eUZTk7dhRFQZ7n1HU9tzeDvKCqqvmSkRcFVilsHNNrDdqg7x4p8kwAEWdyg2ffUNlUnKaJ0+lAnucslwuiJCaPMx4e7hnvBOjetd5XdJqI4phXb94yDhMqjjnUJ/I841CfUHFMW9dUZUWcJLx69Yr//NvfZhh8tViwWi5nIHzA7oXWdWCmnrchBz83DRSpAGZfrVbsdruZO1uVJbvtlqapAcvT0x6VZUzWsLu69prPUpabmmZOys450kwS++dbWZ76zW9+IxvPXnoR2pOhAnVeRvKM0zNe+B/RdbK8Ja91x2Kx8q1HyPMMYxy7suQfi7+QFyk/vH+PHS210VhjiaOYNCko84K8yKmqkjgRvXCEEyatkRmmwRF53FxIdrF//bSW7WQXWYgElDDonghFHCniNJOkGilULARZc5Z8Qos1VIEhMZ3PE0OrPfy9ip51qHEcI7s/8hjxCbcocjHsVgrnDMM4kCfxfKECZq1rlqS4CHCW1H9GjNfPhp2k8NgurdpLfEvx9QxGB1mS0rct0WLFw8OjOMxjyfKcoiwxDjQOE0ViW+VnRS9fvpyTWKgKQ4tT2layfVfXDVGUMI6arpN21ma9RY+DHDBRiTYa00+UecXD4z2LhYDlHx8f5xlVSEJBCzl6546rnRgpj8NI7CAmkqRsDavVSioIa9DO0pmJq82S+nBCEZFWMjvrzYRzmuzM+SJJkjmBr1Yr6rqeIQifP38GZE633W5nR/tQqbZtO5tWh8rpcDjQdUJ4aZqGUWtsJPB40oy2aTjs97x9/ZpExSyXK+pTPbe3D4cn0cSlCdvtxjN33Sx4N9YRxxkqS0jykjxS9KNGGwNKFjbu9o989907ytWKyUyc2oYyzbHOCThfxSxWS9bbDV0nhsj3jw8cj0eKPJ9nu6GKOx6PgLQ7j8fjfJEahmFuEwZCzWKxmP8+zMbjWKD2i0UlLb1Y4VRMuVzy6dMn1ovVF/i40+lEnktHwmmpqtabDW3bii2dJ9+cY/KkJTiKnZdPvLnXaSplyLICpeQxt634rkoFLR2ONE15eHjAWE2cK/7w598TZRE/ffyJOI6woxWqjhnIo4RIJVikoo+VRU+a2MpSk9aC2YuIRZ9ChI4VRmsxMXd2Rv5FUXB/GUlUQuREzxK0xxFC9XHRl/PSc8uxcLEJl5tpmsSYfdLzEaBtWCSCJJNlICcrvFI5OiFhhRa01hpnLYNRpP57ArOW0+GIVcwwjOhAayJIep7h75dq8xLfWnx14oxGzfHhkdJ7XQ56olou0aPDqQTtLA+Pj/z1H//K3e3dbFMVSDXALOYH5nlgIN+EW7zMTzqUirm5ucIay3G/pygKTm393GYaBpyTD9RyuZwT52az4d27d3z8+JF7v6BUlqXIT4pSFpm83VEURRhr5uonz3PRDKqINM9p+57FekVzPDF0Hcv1ChXHTFYOpJCksyybb9TTNBEMjVdenH86nWZPwnCLDz+r73svVUnmrdzcbyLHSpHnbxjHiTdv3nJqO/q+4/r6mt1mK3MrPeGMyFHCJq/WwoPNsoJJj+AsbdvgnGO3uwIgKwpPsnFoLckfq2j7HqIIYx110zA6Q1ZkLKsFh8c9xhrW1YZ+GGmOE4vlkt2LF3PiWZYi6zjHzLVtO0PmQzUdQBFh2zL3M+ZweKdpOst7xnFktdzgMExjj7FakkyWUJYVD/v9XKmHdm5IoAKwsCRpShTHKL/VrI1B+YM8VMShVSzVZvhoRM8XDv+cBMOXzo95vc5naMBqtaQfBiwRy9WKP//1LyR5ysefPtL1vYfsGyajRTo1DZjeoMeJYfIzSCOzP0mYAm53kRedRBFZmpDECSqOUGFxaZpQOMEIRtJODzEvauXZ/OfQNj8fN/w/SZWIScts1a/7ymjVySUv8i3X0E5VSeRfxwCJ971kZ/0S05d+ppMWDrC2FhfkMKYlTgPF6dmA+1JxXuJbiq9OnP2xZllUGBxxmrLYbdAqolhtqY8H9OFEnkT88B//RlkIoD0cjGH9vG1bXrzY+coyml070jSdBfh1XaOU4tWrV/NcKi8LbxMmyxpNWxMlStxPYN7QFIcLSWih+gDmLc2npyd/uK3o+56XL1/y+PhIPwxcX1/THI8sy4rRaGwJ/TCwrCriNEFbQ1WUrLcbDscDjd8AfXh4oG1blsvl7D8owvhnsPZ6vZ7nnEEnF9q0TdPw/fffzy3tIKkJSfD29parqyvq4xFtDEWaoMeBvCiIk5K2bTCjoAuzLKOupfLc7bbiluGBE0ThIJpI0xxjLfuHhxm9ZqaJRMV0w0hRLdiu1pyOJ1SekpdSua9XKw6HA03bYFxEsViikoQkTTgdjwJLr6o5ia1Wq7mqCQL8MH8Ns8gw0w0XojDbFAasXCKqquLp8IRzhjSRC1icxGRZxuHwRFOLiXowGQgJNCSI89ZwlolEijNxf5DmhE3ac9eQ8+WzkGDCAtZsxUU006HaVjjFOiRiB3/9H3/FGkvbtVjjUC5mGAe00Sg/R5T5tLwmM9xda7nEOJ8045gIJ+1PJRhH5VF+Rk+kccLkZGN6mOT1UyaWRSVr0b7LE5LQORHoGU7/XIEGApfRYl8WKsU0UTRD700G5EIR64m0yNB6mrXESilUFIle0z57kkKYGcvzT9NELMmiiH7UvupN5/dLHOQul7jENxJfP+M8HcmKAhJZeddag7KMk3yo19s1CY4kgqFvibNi1hUG8LkkinZu151zMM+RXMHZBJ4XRYa+5zgMfla3nG//xhhvC3Y1H2gPDw88PT2xWCw8JWc1b06GNmFRFLx//x5jjEgg6pqjP3zrwxP5ouLh4YFVVc0z2bu7OyajaUdxNtn7LdVXr17xX//1XxRFMbdpn0181bwMESqq0LId/PMJjN+w4Rkea3DtiKKIfmip6yMvXuxYlAVNW2OMYbPZkqzEVUaq24blsiJsXLZNC0CapeR5Rl13nE5iAXdzczO3h6OiEAC+liWT3fUVRVuyqAqMmUjKjJuXL/mf//t/MZmJOE45Ho7UbUO1qFC+lWw8/k0p+fPkW9jX19dzhR0WV8LvNsuyudoOdmHhe3z48IH1eo3RlrIqiJOIx/0DL1+98ZvG0jb/93//d4pCvDrDrPtcjxg2RcN76hwMEL7ml+/H0H4Plxjgi0UkkEponGSOXhSVb/WKPIpU/GDNpPntb3+L1hN13dL3UvGO48g0PPuXusihrSZOvLWXMSRphrZWaEtGM44DKo4Z7ei1oZ5Ta0ULiooxFqz1Lc5IQPbGGvSk58/YeavWGNlUDnSfAHDXvmMQJcJY1lqLHnoQ2pQw6YV7bKzDDp1fSIpniEPX90TGzrPtsBQmDzV+Hq8oRZomrJYV3TDNW9kB3DA7qlziEt9AfH2rtsqxSpFlKWacWJelgNWjibhMyNKYrhuI85KkFNj4crmcb7XX19ez/u3cxzFJkllWEvSLwLzxFxi4YSs3LL+EUErRtu08Kwwg6SyTtlQ4MFerFU9PT3Pb7XQ6MY4jm81mli+0bTt/feJv4k3TkMYJdtKs12tiTzQJB6e1ltvbW6qqmnmhxpgvvldIhk9PT9zc3JDnuSRh73oS2pVhrT/Pc/b7/bwZ23UtVVmwXi4Yu46EiMha9DiSxIrT6UgUKd/+Fnj4NGms9Y85jhnHgdPpRBznRJGlKAoeHh6+EJqHharw+kzjxNA15HnGKkn529//Rjv0rDcbhkG2p2WOmGCNoSwrhr6HNEP5uZcxZm5jHw6H+fUHQdaFNn3TNLMeVzi/C+q6nluicZmwXC3QeqCqFjLHrdao+BkG/q//+q/zPD05m0GHtm1Iir/cBD3/unPBffjv88Qevk+ohsKlJ/x5vV7L5yWKZHNXqbma+od/+DM/vv/Afn8UoLn/nTd1g4qVx+g9y1FkHm3IywVJlgOOXJczLF6d/bvrhBJlTE+WlVgXedcSR3f2mdHelD28DucOJKHKB9/OjYXxbK1DTwPOyfMy2hIFFxMr+D3n/x/gTPPpAffGYiIzf/bDOAMQTXaSEjlveu30F7rNIFG6ABAu8S3FVyfOZFGinODOijSlOzU4bYiyCGfhbv8IUcqgpU1UpM8HVAAgHI/HeQN1t9vx+vVr7u/vWS6XX7Rzwwfv8fGR77//njzPub6+5ueff55vycMw8PT0xHfffYdSavaWXC6XxHHMer2ehdYh8dZ1zc3NzSzCv7m5mTVsIZG2bcurV6/4+48/+MQ/MblRLgtLoRkN/UBZFvO86xzwEKrFzWZDXddz2zKOY/q+nxdhwq2/rutZOxcO5MfHx1n3+PbtW24/f6IqCx7v7yhLYbAqFeGMbP923UhZVXRdj4oijHPeE9XOPzMvpEUZEXsouZuBD+EgnTnD67VUF9MkGDwibCnVhopjmr7DaEuRVVJ1+Lb0UimiLGMaRKYRtqmrqprNrYNGVaARzC3sgIELjyUkvmmauL29Zb3a8vHjByY9cPP6hu12x+HYECUpy9Vqdnj553/+Z/7pn/6Joii+qCpDcghz9nBhCMkLOHMA4QsJRkjMoY0bKtdzIPy5m83kAREukjZsrNT8Hry5uWEcBdMYyFq5v0yoSEllqMXVxuGI4physSaKE5y/hEVxjLZaNJvGkqQJWV/Sdx3jMOFshEIkL5l3CjqdTjiPo6yqiqqq5u3jUNGFJKqUkrmj39Z1ngoU/DdVIhCQsFwVSEV2GOcKNrRl4zgmSWP64Tn5hdc5XFBSAGOIY0U3DdhIWsDOv49D1XmJS3wrEYWD4hKXuMQlLnGJS/z/40JOvsQlLnGJS1ziV8QlcV7iEpe4xCUu8SvikjgvcYlLXOISl/gVcUmcl7jEJS5xiUv8irgkzktc4hKXuMQlfkVcEuclLnGJS1ziEr8iLonzEpe4xCUucYlfEZfEeYlLXOISl7jEr4hL4rzEJS5xiUtc4lfE/wWDb4N+EycRcAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "image_to_visualize = 3\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path, label=labels[image_to_visualize], class_names=class_names)" + ] + }, + { + "cell_type": "markdown", + "id": "d8744ab9", + "metadata": {}, + "source": [ + "For completeness, let's just look at an image alone." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0302818a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:03.050420Z", + "iopub.status.busy": "2024-05-24T23:50:03.049994Z", + "iopub.status.idle": "2024-05-24T23:50:03.230253Z", + "shell.execute_reply": "2024-05-24T23:50:03.229659Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000143931.jpg | idx 2 | label quality score: 0.9876495074395956 | is issue: False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAGVCAYAAABJvAM7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9266tS5LnCf3MzN2/b4w511r7FBEZmVlFUU1Dq+ECgdQS3LaQEBKPwBvwEDwAr8Adz8ANF9yhFo3UBQhRVGcdMjIqIyPjsPdec84xvs/dzYwLHzsiMisyc5cqpJLQslBsLc05Dt8cB3fz/8kkM/lUn+pTfapP9ak+1af6Dy39j30Bn+pTfapP9ak+1af6/4/61FR8qk/1qT7Vp/pUn+oPUp+aik/1qT7Vp/pUn+pT/UHqU1PxqT7Vp/pUn+pTfao/SH1qKj7Vp/pUn+pTfapP9QepT03Fp/pUn+pTfapP9an+IPWpqfhUn+pTfapP9ak+1R+kPjUVn+pTfapP9ak+1af6g9SnpuJTfapP9ak+1af6VH+QKt/3hl98+GGe8w1Kpdlkbj+gNqhPPyTqZ3QpmAkyn9GqnH6wpTD6YJ6v0APJgy4XVCH0QKWg3rDiSEJkg+xMKi4Xine8drQkWxTu80IzSD3JmKhcOWTHirD5jaI73Q1Xo1UYfkPLhgq0MFIPQi7gjVZPNk3O8Yw1o5bJbQpFFCmF7hM1B4egAcY17zQqQnKIovZGlMZA0TRmU95noeyFXYPunX0TyrPyg/c/Qt5/wYf9A7skmY3UIEZFyolkxWVgBCLCIcklBsYzbgXNDc+vEQHRZ+462F2p2kgmSRIiDJQ9naBCJqOehFcEuEQQahRJDGdI4aaVjRNJw1QoU0mc1EHJxtTgIHgflZnByaSI0U0Qd1RgoiCKauGSd440qhg6FFqgCpKCqDAyCRo1g24TxkbIRC3YQ5kUQjqbBWTB0zh9oCaoGoWDU40nqY+/ulAQzO6oNoo+0XUwSyITSgaiG/vouNi61tKxAJeKdMdFmb0jwKGCppNDKDjkJMuORKdK500bewhHTWqC+sZpg2skbhujKrsrZZzcxCnAMKFpIRE0YZqi5mxRIY1QA5tsFUo4MQrdEmKiFCwSNyU5uE/l8MTSEXdKVnweuBrpnRyGaDDtTo8nSnbaSIYad4JLJiVPko1XGVhuWFYyO6N2qj+R2jEbyAiEjVRQGbRUBglsmAZVjQNHQsktEC8UuWCm63tshUuedCqvQJFJnYU9nV6dHkYOB4UmSilK2sHJM9WDFsLYGiWVKicelQGYBo0NcLBBTUNTeMtBaKFRyITMBBVUgowBAZrKnYlQ0AwyDwLBU9b7E472pF8UjQR3dMIUQWYy5CBTKCihMMUgHI3JEHhyJTw4s4Ke7Al3m+TcmZIUcUo6MoKbGiadzQcxlW+kIZHsM+glebIbiPA6Gi5JwbkM5ZBJ40JHCR1UMQxBESIPeil0KhYTswuZky0OUoxhG2o3tmmYJC4bPic7zpGTrTTGmLjuCJMZA7dCGwWzG6M4Y25UTzBIC3pWXJIWUHKwpdIl6BJUjOIbKa+82JXGycbAfGOkMYpSJFHvgKICinHUQfPCJsmuQXByk4KZ8YxyRFC1oiW5VrggbBflqy8u/K//F/8lX3z+GSlCAibyh985/4H6TVJ1gkuSOAWDFFzAcASD33Nt664TMDKTzEBR/tl/9VP+H//s/8bb/JrXkbwdiczC6TciE4+ChBIZ4M5HFbZzcmx3LuPCt9kRrWwTen6DGdhs3IciGnjAm03eDRBxXl0IA5uKMxhS+D/9H/53/+CL+b2bCv/xf4a8Haj/Ch9BHh8535zj619SqiLXL4j9B0h7QcpntC2Y4x3t+T15/QIfd0xuPJ/JeUyqFXLeQYMcQWpgwJsFJYNLvnIvhS0bGQdDhGJBSOCpZOxcmnCRk+lPnJEcRSl6ULyAGx5P0CcIdIMiBZ87mSdzJqcmyiuHb2QUNJIoTs4Bjw+AUal2JyJJqbxxoGrM+Y59guUN18aIzvUUbvvJdjPOWcmmdN+od+cXX/+Sbfsp70tj+/zC0/Vznvdn3m0F5Aqm4EIknGKUCSqCpIMErp2UiotSRueJZLTkVZI9DVzpOjEM50TUaQk6hSmBWiCaeAo9C0WMlsk1HKRSSA5zahopwvCNE8d8I8vgW5Iihogw3dk8mSVJDS5ZmJn0CDoB1pgReHWqFYikKjAHqGB60hFKgonjeRAhHGw4Jw04qGQmDWFXxTlIvxAUrpmgTk24s/620iteBYuDJkLJQnHINKKdHLUg2YCOk6QmnsmmTnAw6zNNjCc6dxQRZ5MCmXQZvKFc4gOVJEXYx8GshrTJZ4dwtgrqtL7WiaMYFjAxigOpq9ERoQaoGiprgwwLIgvuoNEQOSCSyMYZjkYi7iSBZLBFYpFkwLd6Awmu80ATugQzB5GwR0fdGSqQHcmOULiXig5hlyQiaDmROimueHaaJ+mG5FpsOoL7hkoiJkR2phTSAVMywW+FrQpFjwV/Znk0k0+kDDaUgtPbnemVEkLJgYuS08giZHTGeGK3DgYqF2QOCOO+FaQNLmNyZGNwQ1HCCzadUSunVWo4SX9cqyJRmAwm6/uAKFsoKYOQRlBI6RANQrjJpJaG9OTQwR5BCkgkbyg1LohMegSG0LKTE5QGmUwVUk/Eg3DjFMhhEIlqIiWZU+nVsQjEOz13hMFlCqcBbaDS8LygfqcUkAhMQQJC4S5O86QJvKGgzqWcVFf2kdQykRSSF4oIZ2l4AgGTiqUieXJysk3hbpVRFKZQTTjjjVTBrKEeDO24VVpWbApeFcsgUtAcmBhPkXQrHDJQoIRRJLjzyjueqXlSZeNMYbeBTNg9UeAoSvOABLTzrhtRBp7Kx1AqT1QZSKyGqyKEgmWuNdINEvrsTJyMBAWV/7hgfAIWQooBQkiiKYCuz9X3epR1w61VKg0xxY5B2ZJTO3E0wiBmsk7Bk1EnGyA1Ed8ZDLZinB6QQrd31D6Qsj6XL1YxmezpHBWGK8YTczhHe6OEcJn+va72ezcVte70z95T8ytsBCeGHTds/IJ5fCS++Ujw12CVUp65PFd6eWLf/pj9aeO277R8JtsT9bPgcr8z/COZSg5lnjeGBjKdYh1SqaaUhPSNbmtx9WwUuSMm3GYu1CNPLArm+tvTyXC0TfBKZsP9jmtS7BskoEYDrfRU6AWxRHJ1hyqrEYmZoEZoIxk4k+zPaDtIe+WeOy4bNTaKQOcFHxVJYcpkOzo3BLWTUgt5wivB68vJzX7Gr9R4uoC+b5SnD3x4d2Wrn7OrISEclpgLJSAkGTMoAqdMdglqVBhBbI7qai6kHdhIMpNXFeq8YDoQCt2EmpOLDBBIcbYMkieQZHN4yURLweSgTRj1DdGCuTMFoggmC9GQCWKrmZFMzBVJRSWY6dQs65pxpgRZjDoBhT2E1MFsyT4Mx/jGnOuAPY1XcVqA84qK4F4J7ZQ0IgUPRxBqBhGVUyclhIPAi2KzEApb3LiFEChN7lgIEoVhjuDcfSKl8WSDrsEI5Z03Zh0EgbpgTJ5DeUrhrSoaHc2NzElOmFaoj5PxqUnoRCa4+NpgC0g6TYzEqNkwn2DrfasYI50+DdFBMThJig9ynsQ0QpKZgllQ5qQHhCjWCxbBTDAfq0mRDbrTuWNRcBHEgosrgpAeaCw06ZRgCFh2NHbUgiQ4UYoLQxRJuGQiWoicJEL4+rlpZ+YFVyEIEMVDwAK0k6FcRAkq1deiKmIcGuTj+yXJanimUiUBYbgjdDgHsRVsDlyEEVdmDlwTk0Sk82YVy8n1nHQLjmJcQnGgaGe4ke54Blt27lIQrYQ4tRdSJ/cMbBpVg3UIP2k+mWHMTISkSIe5gSXoxKeADWjJmMJI40onczI1SAeLhaSFATZIN0oISWKZkFeGBI5R7c6z7IyoRBZCLkgImkoIaBoHhs6B1CRKUMMoauuSRmOY0yp0BLQBE9FCZiKa1HSCSWhjhFCtcJROjp0WgkjiWSmyELbMoEVwiDG4Yn5Qy0JlIittDrZ9whBqKpDEVCwLNxmkNEQGv2yT3QUjkd44W0OtEwKhSUhQU8hQzgIyFFJIcSSFe3EuITQEB/ZZmARejDkqUSYRDq74GKwP1X/khuKBVkyEV4ErUNdvSJHf21D8dhaXfndLVuuRtEuBWqBDqkIqLVfz1GNQSVyDKUK6MSXZRNjtsU7Jya4CLmxF1to9nFNO3gV4BjqvuA2IxGqnHJMRRoYyie/1d3/vpuJtPKFbIxEKv6SPC/r5hd2fIaDHQT9ObN7wt3/L2y9ekfIr7vnXyPWZuhfm5Svs8kdcq/J6uWL23wEXxDvqb+xH0uKGxI08IYfzqoowaXklgFkH1YzwTmQFAi9OzcoeNzKU4ZPDLqh/S+hBZMO0QD8Zpa2Fd96Y6cx8phVHrJORzKJIdzQ+kNpwn9QMBo0RTikH+tg4U08cQe2NLRuhTxR1egQtG0NOdCRdnDiEu3YKHd6ufNyU4zJ5P+Ddx8GMX/Dzq2DPz/zw6YnPP3uP7sZtXtiun/OBfZ2QHpvYSwYbRugNyUIT6ExyFJ4smF4YIlAPTJ2WSYkLJRVRIWchKJyXgTLBOzkvXJrDvLETGIVvw2gO6IZE5xLGLSdeIHyCCNtIHIgCM6Ak7OiiaiIJS9IHVQqnXhgmVE6qJIlyV8U8eTcdz8bdklNPahbOqDRzhIHoRpckmdRRuZWkifKFT+4SC61S5Tqh1QOVZKgTDNp0hhbUT05TShgWCbJjYxBVqCKEOKOB+WQAYpWaEKlEcZp0tjDeVJiZ+CbgTvVKR1FZVJ5IQDRCgpYLlXEUIhC5EXYltaA4EuCAsk59pFJnMrMzASzJuTbMEgWG4QxSO5fsRFw5E44KdSgyHygSDSOpuU706YOjrFPlKCfKE8adZGK+YFmXxFmnecukDUAVVzg5qFTSG/XReEuAlc7ASJRR1/ftmjueicmdIhd6TW492GMnZJ2WTlGKDlxOZhSCiulHUpQ9KzI7lskxhSbGdXQ+1omi1BjITFyMXk42TzwXumLATRM9HVVjS0d80RUfM5kSNISO4nouiJ6BpBCitDlJ60CisagVUyijctc7J4p6obKuxR0Gi9ZIETIFzdVAvbVBCahDKDnxbLwhQCB2RyTwuFB0kFm5WVBZFJzKQLNwFGcXwfJk1GeqbxTpHMC9TWoKMY3NjNdS+Pim1GJEPYlo5KwUTnpJkmSTSZeCI0ydtIQsA8/1vXzLKxc627gQsk79pQ6mvKG6cbph3OmWdHUshKZwqJMSEMJpb5SshA+uMbgchWnQE8p+PDbbhiDI6VhR7jZ5IqmjkhGkNkw6UTpXgkbBNSF3VCcaTmjSh3GRRvpkhPByP/iRLKoR8vdSDP+h9fsGccrjef7m75JJ8ELS0qiLl8PNKI/byu+9PvnN/b/79+WpENYIuxB6En0yM6EG1idDBZkbookyqa6ETd6iY3YlZuFwoW2g82SaE2I0v+CstbNFMteqwZw3vBXMg57Kod9v+Oj3biqeBNxfQISb7nhNSOVWGpkTyw9YNUwr+uEfkyPQeUPGn6O3wfnNX9O/+Sso/y3RBPbPyMsPqfWHZLmyXXe8NlS+Yohwm9+y3YPST0Y/OGfQdNB6QBmYPLMlSChMgyi8lckuNwxB4kSk4VkRLTAdiYpqQ6YzozDDSAnuY6KzclVj+qCJIPyaYGPGxpufNMZaCKfhgJXE5gfK9oLlOvFtUUlRNp30OHiyC86JaXB48s4v3G2C3JHbxmU4Iwa/0MrWPnDpjeObyT+Xb2n1V9Q2qfPGRYWn9+94/8c/ILbPOO87P7h+iWlyoROuDIWZF0LfmFSaJBJC8Z3UN2YRZutMNkoaahPXyS7QU8hsiBnbcA4p3KXQW1KzcJOTGucDahS2WJqPGYlUY9DReUXiBrKTqXRzwjubFyIVzSeGKHoZfJgnpxbMd6oLtzJJGirrdfrgg9XfC1dX1Pal5fBJqK7upcCHRfjxcXMihaGKSOGWBc2JjKTnho1nyI5ZxwnUFw1kKoh1RHN9VmZBWoUMZlH2qXQT7hitwMjCIZVUWVqNcYG54OhxudN8w6MwI5ltUnJid4GsfGxwcaXmxEtjRxjy4PYlKSXx7BA73YNgQmzrWpdyAZmvRC/cs5Jm0JVkZ/hqDEsmjj80REs/EylMAvPJlEYZlax3dDZc4wGRb4g4QtKGodVBknsdRAYple00vrJgyMHJztBBWEFHQx/ontoBd0HLaqRrKKe+J6xhceO9CB8lcHdMFGOyZ6GHsIcweSV6Q0WIrXKyEXpQptNroF6xFCwhzTlTKJHUCE4phE1aJjoKIguteCkn4sok0Qeddj2CaZNajZrGjGCEYXJDRuEmE51KFUF10kYwFW6yEKfLVDySXqBGoc6JhBBieD0ZNFKCFg5nRWG9nwIp37JnxTy4iRJZuMSkTME10ZGITrQkZOBRuOSGYWwxST2JsjOyYRjNBc8bWQq3KcjsPBU4rZCRNOBiB4fY0ghJcAi89849N+4GbY4HCmmMLFzDUL8wyh2ALZKewlTodnCJKyWEK8qrGoZyU6H2WAeJ7DR/z6STkky7UvPAA/Z07mMQ9jl7dMzgMHgO5S2FNxQFmjmFN+5R8YTG0nQ5hZDBWwqldRoVa4Uj7xSF0Z3Xl6/J/EfMSEqx77vFfe/6uyZ7/+7Pv/t3IlSEz2NpO75DKCwg5e9qKL57DBDJhzYkuDxV3mH0odx9sNdBD6N7A4SWg7O8ghfEjKd58OpCsZ3L7ERslDrweXJHKb3gNWnq6DSuMuiWpCRNbrweRqlXSr4h09i/Z2/2vZsKrW90Gg3IB9x/m0LTjUwn1CkiS/9gG6MKe3xOyI9o7ydlfgvHr+H2NefbG/X1lSm/xMufUS4Nu1yQyx/j5ZnaPqeZcv1wpcdGxBfsxx3vDZkfgY47OE4KYEaxScTkyB2hklZp6TCFKG+QitCw2Zk2mLpROEGdlIJH8tFP2iYwxxJOWjAI6BfUHkCUCCqd7Bu0X+FDcGedOh8QnKeDTdwND0G1sqWSdqI+8HiIMqNRNPFZuM/OSzl41xzE8KHo+IzYNm4Dbj+78/Of/wv2opx95+V/8KdsfueHf/SPuezCNi60fdCycfTCmw3KLMx6hyiEJ1tf3LUQnKkQgzPWojC0UEmKBBcteIBF5ZbOdSipi09/yWBTXQu7FiKTmUbViarirhQ5yKicphw1IVbTU7Sz9+QQw1FqLhomIuhiPAdcA3oRxBunJdIGTwEWRi9rA0aDI4KQQqBLSBfGRQP0REQYPkjLJbYjmbnoIpcdIx6vP4wwQowqD8i0V5wlfvuuAVENKMGlFw6BoUqNjtoEb6gVjrkTmSgNkaDNwEjOlkSc1CmEGb1UTIVbDgSjsD5jroU9NiC4yaTlxsGg2eCeic+JzydcB5mDyxlYBN0CIujWIRsFRXXAVJJADSIDV2Fn8GZJHRtVYXDHxRCZvBVBPRH8N/+vo3CmEiaMEnyrG0IQMokoRBS2x3uNLh1GjwsqhWd1qgqzDIoE5MQxdpxbLNnaHM69Aul0g4E8KLlKOweSzlECRwk33tSpDil9NbVqiDvkWNc+lWGyUCKSmzVkJCpOm4sCDFYTmLHEk2cmwmATweSZkidFk44w4yHwzsTSwBKfG1Od0EBciHS6BKgwQlAvuExEJxJKL4M9g/BK5sYZrHVIBfW56BA9eKvr2koowk7PZItgmONl0CbcY6F8m3XONLQH5wbbfIY5cEnUASlssdAyRziioJYoiS0ggR47xZxnkowLo749qGbjtEmhYBQKoCpYGk8j6ZIc2x3rO146HiAZeAo7wcxEDTQOSOfkwszBOxQUQoPNn6j5BiEcUrFSOHrH1BbN7R3X8kCdBg1dNLQLriAYWRKbFwCinKhdH5qjwf3tDiSokvxDNMPvr9+32f9D9/nb989MhAWUPGeSCHdWM3H9/g+EPBCXfW9s2450wWbhzABxCsGpBtN4vAsMnFsxDhvgxlstaIfEaKoQkBU8Yon1y4lpoXTHvSKW7CaED0YRVAyif69L/t5NRdoz1RefnurcRyNU6dy5GrRkCagyUF38GPqKC5ybUbaviPc/os4bfhOmn7T5S8b9V/j9ja9ff8pT/gI2iOsXsF2Qpy9o9gHbrhwfviB9w61hw6njDesBY6B03kaSCVWEoU7RNyIN2KhZltuCvrgoV4QTJ9hc2TSo1rmn48czs6wvZ4tA9Y1RLrxysGci8Z5QR/OkdyOASqdFcPZG1YnoAK8cLOBKcmLqfOuVUp5QBj2EOguZipUTYnANg7sRGrxIx1S4TMHN8O1CzQ9Id/o4+dU//wV5vvFv/u0v+eqP/5gP1/d8/n7jPDvt6U95fqpwdjrJjqOiRFkCtR1BYsdTKSjVklRneuWQArbU/xtLyT6skBZcUyCT1EVxZIJNWUK7qogEIxWnQJk0r0ybdJs8zbY+E5lgST2V0xTVYJtgKKnCqAfNBTQpsYSrbgOVJdoylBClpmCa1Jhoe+hfPJgSzHpSZiKZXBxuNjkt2LWyATMX5zxQwpR3s3NQGBg7iajhCUWhE+xTmNm5i7FLUmYwLJhWl4MpjNClFbvEJC3XUuidJoDUBb/LQPQkfcNKQ7UzMilZ6XFD40LJZMsT1caesZwGo9DtYBuNgXEwiFRcQGRgUnFfugtnbRphxhYDtKBuuA6mKmUaUoJ7VsqYZF3irvB9OXToMAoloddk88lUpU7B5UTyguRAimF+EghDeegswOQNoXK2thaXLJzqeE6uLngE4KgcbDnp3jAqJiBjbRqhAw8jC6uJDJBwKk6RQc/VLNZREZlEDCDBDoJAaNRhvJSDPRRMKAI1O2/RGKlMdXa/I1FIGwwRei53xnebwdDHi6kLCS3yBlqROam5Ttgn6zuwia7mKYw9Oy5L89Pm0rMkk8gCUlCfqBYqzqknUxbF5tmIrZM+CJISlRChxkOroAJ6rOYAGJaULJA3pCY2gk13bpGIORIGBmQSgKCMAsWNjaAzSC98rE6V9xzibNowv9FUkWioTqYUiIWGNQr3WGSdeaVKp3iuRkw2giA86BlcDIw7dQlKaHEuND8Hs0wONZCD5olqZeqgPNCop3Pw2jaUwMIxcU6tWCSb+KI2dLnoJBN0CbCnKC/H8aAVlgYgU/9eRODfux69RciiLQ3Q75CJx/OsZkIer/06/S/SKxkEBWX7B65p3V2+gyywmvim9FtfOq1eVyNugZ4gW5JjLl2bO9OcNnckgle5gpwU7fTVKlI58VZofemgpk2mCSQMaWSbzMe6Ac6W3w/1+f70x+iLR9ZKqcln2Zh2X3BwxjqVa+INQh5w6ATPK7Mb19q5WOcmjbIHIZ8x7B1pf0o7C9vRsdvPOY6/4vbN10j+ml/rT2i1PqiSD7T9K+rlB2TZKPsH3toTFzvQCLb75O4H3m9wBjp2hI7IQJsxZSw4fCShhYucpBoTWxt8GmGDwoAxCW+4KSYDPd5wDY4stPLgt9sd4x3VT2Yt3OUNnUvot6GYJi92R8VoI9cpvtyJGYjvSzW/36lTuWclUik16GPibKg3VAYynCLJMYybOlKE7VIoQ2jXD+iY/Pxf/Iq/qj+nXYF45d3lX/Lujz7j8+vnfPnFf84lJzGcFy9cdsF1wcmiutAdEhXlWk80Fq8sWhmeCIpXZw9lkwXh3YhlewpZIsD9YCx/GUV8nb+nEiiRyxo8SM6YNE3u5cLGyRbOTBgUGs6Uwc5q6E6WzmIU5+6FDEHRpStQZ8qy//UQ2tClCwHMIe+TooJ44LnU1lpsOWFK4gRXAjLQUYnSEE0KS6SXCBl3XDdw6L4xvWPlxKPwEeM9QpWOZ2BX4TIWlK412alcwoDkFMMpVHtjSBDzwsjk6T6xazI8GTrZD1BLXqRQc8c8iBAQ5WIdj0Y2g7vyFGWJ2FI4ouIBrXTU1vupc2OXQTdDSWYNZpS1yejAPJd1WSu7r9fDZqe3hVHUVLrkoghVaBFMnSy/Q2ACyLn2h9hIOckwoEIIoknzYJZBPhApDSUWtkhmMANGrVxnR0XQSF4EWiYSxmHBDrSZa/HOylGMIhORSkzDbXDiaAgmYARzJlvC5k7eHU+jDOEowT0EkU5GfQiX69IYeaCqaCpuCf2CefCsjsQJqhxycHgFnMaOMsm4s3wJOzMPRISQgvpCBocaGUkXQzMp6fCAwFt2pgWFSZvCwZUiB8+n8NEEEWXaRDXIVFQVq3e2UAJ5wOIbV2+ccqefCqZ0cbQ44Y0mScrE3OlmSOgDdjfuFmRekVRKG0hOqq3X54PeEU2O9CURlLH0QbHcZ1sY6MGMHaHRtHMrQvWDMXY2S2osZDgf78XrJuCFIpMn73yTlZxPvJOTFjfOTUGMy3ReStKKYj5xSXqAaa7tW5OJYxOO3WkM9lRa2ONzFhy3O+KKWXkIHf8+7cLvr+9Qie8Qh9/8nN+qHWbCmU5F2PgdK8fvyiHWg0AuxGQRFcv++7ef6/eVsBBHUhCBLSt1VkpCyUnRjfs8uNuF4q+YTpo/AScfdWP3gpK892TS6QY9kmaVNzpv2tmKoWFkrUROPHdqBmZJhPHUA9dFwn6f+t5NxYsEaRuSb8xjo/MRrKA5kNw4nw/2WyUigB1n58SotoSORyqSC3NRPVgL0KSPD6SCfG7c3v8nWP4TLpFczhf6Nz/h1u/k6zfIr74l6v+XbJX98o58+jF+/RFv2xc0/Yz6Pmh5RfgBMV+ox+BVHfn2hHmn2Bu3fIbq7NkpcaU7TBKThsyJRluclxa8de4jaWpYSSI/IHmivDBp2Ei2GBySWFe2zVD7FmHnnDsI1L4jcgeUWQTpilFwPdZp8q5U6agVLma8ZSCWmEONC+4nZ5uQS8AobjQaka+EVL7tnTSheFBdmXml6Xtezs4vfvpnnPPGP/nPv+arH/+IHz2941KTETslGpskWYIqDZOTIXDPyiWCo04Ew2vjfR7U2BENRjpDoVohxtogCoXp79nzzhSlkJhNpk/M1plqwXeNbQrRJpdzsGvHlxIAlcmsgUwhu/KGrc1M4XkqdxGWzDE4h+LzIXprwdmUOISubSFJTHoaUwITw6VQJCiwYOk0nim8sDbKJx/IaBiwmZCSdCkLNB1KWoLfliBqVO4WaNy5yQOdk8a8Q8WhOa5Kn4GKokUp4lQGYy7dQrXByIVsSAQyY+lPSBqTi9wZGbylUUTwDGYkGRvjvNE0EXGOSEQKlxC6LAFgmc6e0G0tvJp3kCstYUvFIjmBKYUtoXvhXhxE2auxzcGg8FaXNfHdgFdbaFHJZbm+bb6QuXNlN3RxoFI1aTk5qrGlPtwnymZO1Aq+dEwnS8/SwjGZ3FRBE5mCiuPFuPryxOPrdO5louJctZLnBbEDj0kpleiOS0fZOGIjCUKSX5ZgE2XLwatdCU72DNAdZJKPXIm0ioURnojASAM7mSQVyHjYj2Mp7d0LRwqVRLkSekCcWAYHhmRdGpYsnLIQSqJRUQRnZiDhDFMiDNQYKK5CSuNFnT3We9ylsEmlx1zCRQp3b6gWii4Xx8ELkROxJzZ7w9CHrsmZWREmRZJpgQJ7Kl2VXkBn4ckHlyF8UzrXWbhlpZfPaDEZFCw2ZkyGOU+Lq2QGaK2kntxkMPMCI3gthYveUYSZzoayTzhr5RJzWaNt0PmKpzvE9kKY8Uu98uEMMhsv5eBpJqckRWWl0EjlvQ8+1qSkUSUYRXmOthw+klSWWF+zcN6cCMdK4fuaNoPfbuzyO5TJ397w5bv/5GpXUpKlRvo7nklk/XYZOKhAQRay8b2bnMedRdDrBmbEuNGzEyHsYojeGBjdL0wb7LFzPZPZfFm+RyDNeTc29lFwGRQRrqNw6mp8Ww8yC7PCJU5KOEdUwoIzbDlHvkd9f/fHT/4ryv4e3Z+xy+dQdvbxRErhZsbsha0m6kvQI3pyVRipiK2Oz+MZJClsiz5ohuVHLIz7FPbinL0S1Rj7M9u7/xnmQRkfmeMFO/+S8Trwb18Yr3/Bk/0UV0X3Df/wQ0I/o14/Q9oT3p75EBXfOz0m8/7GcxrZ3wgvK09BJiUWtD+zUzMJYp26slNIMoyZBnHHtBKxTvNTGy+54FnfvsbiwhFCiWdUD9IElUnzC6etjAA/DLYTjcVdNoUzCxqvdCoZF6wpMJlauYuw53WF42jiORfE7RtSlaTRxyRRPIMxkxNHrFE//0d8MYV/+ee/5ld/8TN+9lTYnj/wJ1/9iP2Lz6j7ey56JcyxMESU4o5LpSBkOBmd9TWYOI5hVAr3DFCjPGy3LrkcBY+TMbkxzDBZ4rc5jZDgbEnmxsU7r7pCyYglzPN5UkXpxck5aa4MS0QdzXU6uueyIJYIvMiDGlCueoAqbRTCHDUgjAmIDsQHK0hrPddRxnqc5cYiMNw6RZaDw+dEDQ4620g6J8iF8MEuvjIIZiN0cI0bpspZjBzKheSpOKnBSAEqEkHaugbJRtGxgpAQajFKGN0OjpzYAIkCYmQ8woNs56MFGRfCg4mAnOgcdBWQggxnSmfYtj4vtp4rMrAQXAaiC+2ZIgw7QSrVg5TGlEAMPBXyQtjkFGfzR25JTcSDGssT3L9bQmNB3xrBKUKbBbfgJvB0bvRdkD5A1msyJ0gmPSt7KFc5kRRuPDQhHe4CJRcqEGWFVxWB5EJud6ZvUJUuk4vuTBX2DpqDyQp1UpkM3bk34/3bgdfl8Mgcy64ryj4C2ZxeOuJLN9H6airdgOnsqch0Qo1eciEMUjkoWEw0C6mQE4o4qq9MXZqKAgspYQlf3ZbTJ2VjYjQORJYGYfNJijAvk/t9wxSQyURokryV5UBz7Vx8QirXEGa5EOqkg8ay9oobs0y26JyyrJnqyRS4mWKu1BmkdKRM7iQmV7oKT2mUnnhLtsylP5HBlUlq4GVH4ormEp6qVPCBmbLJIEwJKUjCjULbD4grGjdUKsGFqZ1SHc2NmMkOWE7uJhSuUMayFS2VCW7JRwonBUpQTXjKDTBSc9Gm0jEMs8YRzumDohv5UFX8vYJIWc3j2r8F5d9FKGA1G/n4H8n6TD6CxyR/tyl53Fq+a0rkbzzGb5oM/i7HCL/52W9/vzI3nveKDEOi0JrS/Xi4SILB87J5++D0ZeVdLplkXJI6l1j7ZsKwwNW49IrISbARJqAvxDQOK3Q1PpC8YrixMlS+R31/oeZxMG43hiZmF6xujOtObh/Q7Sue2xO9NLSufIB0hzCqGlUfYrecZMCYhjw7OQwLgWJMF3o09jaJCEY0XF/JFGJ7xp6eKPkD4ovlKmn5gn1z0Mcrfv8lH+4/4Zw/4d6S3J7Rd19S7AP9+oHc3tPKVwyttHkic3L3N3x06ME2DkYGLorYINMQVTQCe9jyhr0uFwFK8kpORaohsVIxD6kUS7x8XBBwJLAoD4sLMQtmTogvYSOT8IrZjTl3himDG2M2ilfUfo3MZ2Q7CcD9SkrQ54S5YPEQRzTJRwpmDCWr0roSp/Bik4s3BpWvZ2O7Jy/f/CuKNuTSeP5gfP7lMx8++1M+XD6g7R0mJ70rqVBDGCYcKmy5RHHBCquZ+oDxPCg2sLnCtJqsk29G4iSijZnrS/1uJB+LI7Y+nVGAMalaVqiPTfZUDnFcFxR/Kxs5BsOcmkuEdxenxfryG0H3gqQx7b4sm1xQVq6G4gyJtXnmIFV5keCdxFLsU3BJwiZd7JH5kMgIWhqWE0UwWadFc+GwlUo6BfDkrkFLJ0J4lUKLiviiUdScyEBlef5dOhuLr7csRASHTqiNNpwUBQPJA8vGlIqVwftQ3jQ56TRXSjRussSAxmCUAdIgkpGN3QPBuQG5shYJkllgkMviasu9kBiec8WOWXJhYG5LgGhjoS4oTScZxl2TyZXGgRFoVKKs93BEIOlYVYZ1JIxZAotlobP0lbliyWDlsHSZTJSdSTehhKKFZeVl5SFEGJQDyYra0oHI3JAMWjROWwgFI+maaC7r7dUDNyNlwlx0WKoSslCV4t8lBhopFZHOySBcqL6a5RAjNGkpqF4oeqPGclJErpyQ9TovncRBQbSwz6VBM4EBDCmILvNtsuzCGgoiRDXwiR0b9/pIgxWj26KTWy5dg+nG2Je9NFMpEWyhnFbJAjkFa3eqLC2BoqQGvSUR6ztdUKYCmpy5IbEsnZ4TIX7TYCKyggkl6XZdDa+DyrKbz0wkl0vGpdMiuYWiYog4kU5EYdoBFDwrO0powTnWd0p5HNJ2igaJM6Jw3Zy7b4QmX3Dykhu1KKaKUECNaYOrLPRJ5LreY4PpA5/zoWdbJ/y/V2T5Nxygy23BdxqJ36VBvqNSWIcRRRZdx1oLf9Mo/G4T8RBaJvmbsCtBmLJ0Mb97u39QCCqC7RuuGyF3fKyQsZhg0RYFbJUWlW6vS6fiS/ghASW/4NCJVOcpgxi2Uo012WPisZGipMUS5g+4a8FiBRIW+wPTH1KuMF8Wj3O+0ucb8xRM/hr4V8xWkPYllw+NdvlHZP0xu1Ru1nmZQTmeUZ2EvTHrhZBC8xW16+PkXalgS7dQ5b689alsaowJcwi3AhvGsTWe+MfcvihsJTg9eI0Xtpefwesr85sX7Nt/yUsc0Cr16R3RvuR6/Yr5xZcM/UDhc56uRk8l7502X2EGcb7S08GvKxDI1ibj8o6wgaqRabgv4ZfPhhdFvSNeudiNnsJWCpPJ27wirDwH0Tt5XrEyaUV5TWc++Kt3vhIU9zoIGbgt18CIAlMwuS0+Oa/LmhbQx8G+f87EUD7y2ewcI+ntGVUhyySjsqGI3BjsvLxtPG879TA+fhx8/Ku/ZJafcL3stC8/8I9+8Kd89tWXmP2A052rD8wDt4UsuK4ku92Fgq1IbJ14WRHnpOHqD5HjSQ2laVIy6Q3ehXPTwoWJjY1bSYp3JrnsUalLaZ6FQwJdBh56eQjidLJlUGZhPE7dmrlO1WI0L3QZiE22KIxc0dzCCqWqojRXIh0XQ/1OqNPzggULjZmFow5KyIoC952hkylJE6OFES0ow+i6ToL0FX7kRSkWSMLUddoTEUYKJoGqY6rUXjgNTI1GEGPZzGBtnD0rnU4wETFcA8qxUgcfQjtIvhZBY6fBEqliRHEiglCnzsKpitWFJpQwrgFqDc/lHtliORjGghgZJsw6qXMJtpZu1lmkGFRvFJywRX2ELx3MJkkyGKaP768TM7C8YKMTpeJWKA8V+Ymwi0PAJVf6aO2y3D/q3OxAcqVVZuxs5BLu5nodN13NtcpkyuTddA4x7pJUSUImdU563alTuKFkChbrcURiNRBF2HPSxsmpy6o8IwlRzpK4Ll0HruwPanD6OvlVFo24hWNTmQhbgNqylk9RRsoSj7qSWig2yIyH6HBis3CTpUkal8GFZKoz8onddf3NmoQYeyaVNzwC9S9WBHS50WSQvnO2QXplC+Gs6zNrc9k/LZJQZVqC5PpekxS9LmpaA48GAmJB8UavRhsfeB6vdCtMCv5wB7UA8UrRQEshunCtK+/CzsqHIrg7J8Iwo4yNYn05CHNZniuTszjt4TWZNI46uefGVpwSO2dbuR3vcocwUhdFdWFDzWgBuk0KFclK5sFx3viQ7/k+LIOwGgTkb/cXv3+T/66B+K2E4u9+kr/xeAKS8ttf/K27/O3G4nfRFZH1hK2thsTVESZa4TYmoo06l25oaBL2RD0HJYMslWefdJ0oE8slri714JC2sm63JPPOu9lIdY5z58mMYQfqy4aMz7//hXzU924q7D/9X7IdPyNuJ/n2EzjfGPNOhlE0mMeA49/w7ddC1X+D1MLx4Svy8hX16R1P7T1DnyjSKCnIq5LtEbb7yDe/xo77icf7dfIsbzQ7KHZdC3JMLtaweOKMC3X/mpmVDEfLlf6j/wz5kXE5OvfzTh4/o9x/Qrzc8PkTRv3nlH97JdsFffcB3/4UefcZfnlC2hMlHOSJD6cwbjd6vHDeQUJgONRJTsUqWC2YJ84F8oUsTqC8JNQwDk/6uaHtxBR2Bn00vN4xh7sbm3eqXGFb+flaXvFDiXjGt0GJSVVjn4NbWZnuZr/GdCfEuWwbyUEvArnxakkwmVFokUT/jJSDyBtHr7h33m3J12PyZH2dhGbjMi+8dePj1x/5+l/9v2k7/Pgr5csffsX+2R+R7UdLeChwaGJq2AjCQPa2ki/lMYUjGq4HmUFGY1ThkoM51222mryfwqwFcvLDMD4WI7OwaRB6rAQ3DBmTWZLqhqdya87nDkbjpSjhCXQuVckp67nrpMVGxI4xOS0hK3tWNCcuk8CJh/DUsyFT2KIReYLeOKqSsiErZYRpQsnlxEnrZGzoNIYK5k7OBSemBYXCmANTWel5KSv1P5OslZGNy9w42kBC6JKoKzYnR1UsG+TJpHLVxhk3zrHEVik7midWG782p/jirF2XXz1jXyLKmBzGmp8iyQVnelk2ShvcbMeGQDtJUQ41PCraFkqR2blpMG1fokZZtsIcMAqkC3s4MwZhlWwdySSiEqqUKAxTMialVswGGUK3Zfc90RUmFZMuQpmOSOEpJ9/s6zz4YTTGvK5U1EeTc/gSavKIxRZ5Y+jGeHDUvcF5GmUYW3HuOMOCOgZ3W7NiLg+6rmgiaeCDizv6oBstg0OSYvZQ7DvbcFKSXYV7rHkvV2309syprygbnFdCHG8vqK9JHGc0LgKpzsYgU3iRtsTckhSMIydRgl1WxoP5cvXseYEcPLPxtgUjV07OcpVUZiqzDKYWdmuQhTBln1emJW+z85QPGjHhNKHlI+g0gihC6oVmnamB9mR/5JXcLsKlX3BzUk8u7IQ9oeHsNrlkch+5aI4aLPLqc65bp3jFCWZzTkmkLiTlSYzz6Y02GsRgto0oifqFiw1Eg5gFTdhLgYTNIbbEZEOnrCTQGpRyLk0aT0vX0IILFdtANics+fb1xg9/+HdHYf8uAvGbDZ3vkIR/d1P//bVcHX8Tm/iOtoC/+czyu3f7Ox/7N4hI8lvdRi5nowBla4QUZiiZG8xOK5W36HQv2ObMWPkgro27NYwB441Rnxl+pcpKug0z9lmpU5j19UH9TDpO23yZA3KwbYWn0dA8/4HXY9X3bipanLB9wJ43av4x9OCtn0j/Brn9gnq80PPAxsnwEz0Osr9h+rPllX6+sj19Rrt8QZYPZPsMk8buT1S7rgvOV7YidL/zTpXuMPoH2IIzb0heuevEsqJ6p3tFMaiVPifFPxKyMcozew3i3X+Kxj8Fv2F9Mt++ZZ4/R2838u1rBn+BtQvsT2R7Ylx+zNP1A355Zny5Y/4Fz2PDzkD8hTyN4zG0yTw46n0JuHzByxogJQgRtnS8OBYH8MRbCkMG24BAkTigCTIG3ifdkjYNFwe7k3Jf/GIPvtGOAvW8cJcdtYHVjXShWKHmhOy8pPHehNRvsf6Eb4LpGoh0VfjWC+fRKd+daF04Jgw7uOgKC+vtSr8FP/3J4Cc/+SvG9ks+fPnf8ifvf8jzD3b2/Qe0y3vYDaGCn1wwQlbEbimTQpAZUNfgshmCWeHZC7cMSgNLJZl83ASJSUvFVWl55dTBRuC643TeamFzKB6cuZOSFBkUlyWMFKWKE/VERB8iJGOGUF0YFW5zskkuj3Y+xIEqTHVaGjnv9CKUcV2LnS6Ovy3PCVNliUdZ8bf4mjkSxWgReBoha/5DL/CEklm4OYiuuQ3kpKSAKsw3lH0tMJGIVUokM5Y7aLOlm2gop+QaEhSBqPEmJxdrdB6zV8bSnxwsK7cXQVwYUmiy8vGmOK4VAjadaHPu8Yh/luS5JDmX5GzYjs3gKY2PBbw6dvq6bC1s+cjFiGdSkoxCitIzGKIkybaMxcQUJsuG3jzYzOgqnBKAYXlSanLksnp/6H0N6avLhikUZlnL1J6T45F6Od0g35F6WwiZbxwZWA6KBTkUpOBieAb4yUYyZSUGehrKQLIsqjUXNUKRJaSUFb9WsxBqiAdDjGLBeCjon8ckAr7NiVRjqnGJxrQNjROs0IuQmowMZhW2jBVXrmvD8OIU34gcDDWaD7o6qLNL4nQKlUvsjHC0NNIPxJItnae8MGSSqVxlYjJwL0gLDioWhbRCiwNIUjdMBtAJSyTbotBschoIlXdjNdPmwXPqg4p8ROVyQRRqvK7vghfYgusA00IXIVXZZYlZ36wsHV0qbkve2k1pY1LCuRehyRPqA0yxXMmmaH2EFS7aE4JRG4VkZsEQzM4V/a9Kk7YSfn3RRuN4W3BuCujfrVv4zUb+oDH+vlq/D0B/h+pgva5811p8R5usf3+HMMCynn7Xtfx98oT4zc3yIXLXR/MSeByYDs503nSnjuUSNN9pFvSYiJQ1A0fgeRojJ0OeKL7hMhhZQZZz7igTREGeuAc0u5OxkLUn4EM2PvpJt+Q6/sD0R+iCtoev3HguDa3P2PVzxuf/hJ1A7h/J8cbz8S1+/waPF8w7vb8RLy8cL98w9KdIveB1Qy9P1PY5cXli7l9A+4yQhpZKd8XkIB/DdKooLZfN0XPNHSi1ECMQcfIxQ6HQcXmj4ryI06yitTLalWh/AvbfR+fX9GNQ/IV4+xrOb+ivr0j8N7w1w+oFe3rH5foZ3j6Q++dcyoX7h3fUKOj5yuhJHV+xH/eFBERhk4L6E1hh6MqG686iL8rEfCXlZSTkzr2XR8LaxEnsgK0ZdxvUc0NyQcwaik6h24J+t4AYDwh5LCX4qEntnfsAk85bkyV2cyXdyb3TQqhjx1I5UhnqpE7Uk5iNtJ1zfMtuV15U6NZo98btpwd/Vv+c65+DXX7G/t746gfv+Pz5R7x79w6t1xXSPI0McF3CTGPlOIgMpimuBcu18NXseCm4CsRGMlBxNCp7acxwZnFMOlcKFkqRSWhyy0rammZ4RlDPyqxr7ssthSZBUSEwhq4UxamxJpTm+oKqLEuYJ7gFsU2evDEM1IPQbUHOE04pFE50qeeQmaQ+JkPGSURZ8cSZYEIVXbKXEHYBzTXUrUxAhbc8Fu8voL6udyVaOiUWzO2pzKjUjAX7x9JCiAdN4QIoa6LtaU7OugSDNrlmMoFXW1ZMy0B1smcua+c0DjNMnSJrll0nSaukCBrQRJg12OVghDBro0aHFEIGsCEP18qilhJU2NzwXKY50yXotFwZJlkqRySWk5YrmElyielarlAqwR9R5kvvgoGgjNmZWpcDQ1Y88dKqrBU47KTlzsxBT0Ub+Bx4NPQxk6J50NVRmUgWMivkQno2c1KV7k5mpUpi4StMCwhTTk02V6SszIkXDVQbK4BUKGmYfHjA44qXpclI3YhYVlyJgbbEcjkONp2kNsILLctCz4pSz8ZshTM7FXvosR70TxEuuSEJp3QyWCK7lKUjKoN3LCeLmhF6x3Us6kySuzYKO3sIbvHI3ljhdybJTF3ptFkJM2oGQnKYEQyuYqg8QU+utdJ9ZU6IrqjwqRNvhRzOPgy0AJ1nnFp2ZhWKKuLGswwOW5TqcwQ5L0tULYOtOfcUeg72slMIVhRa5SmVfVZ6FY6EYicqhXCBAm9vnRRnKRf+/nZhIQG/n3b43Z+t263xAxnrUPIbOoPVWvyH5GF8dw1rIN9qTFLk8R0LYgYv375wmweEsveCyyvkpEln2PXhYOwIK/n5MEddEVOmJrhQWZq59IddmaV/bOjKp7CG5kHdkjmSzY0bzv17ppP+e4RfGZ4dVVuRs5lgZY0nDjhso1x/BEzsw/Hd54g6TrL/HF5+yv2l4/MjzQ983hj3X+L8JXcRsjRa/Zz9+kS8/4J4/gorP2TOhmRgVpfP3aCUpX498oSy4mpF7mtaRVQ8Cq+m5NzQCAYD0Weq3pmZ2HYhLzvMd/TPvwDWRMl2/2vs26/p51/jv/g5k78CvVEv73m9Xti399ye/xHZPrBtPyJLsMcTx1DsfiP9DTsKw3++BlHFja3u+AwmnVKSKUuUqmVFKpMryGX2YJeJD0OyA8YZOxo3JmtWhdob3pIbO0Rjz4OwO+FL7HTVzmsa2XcyC3p9o88LMyqXs1Li5JvSkHRKHrwfG74HYsrpSbMg2VmJ5IUyJ8Mmfy3CkwtxOv1+p33c+ctf/ATTv+TDc2X/7DP+5KvPePfFjymXZ3Z2ZBQikjmDpoVdwOVYJ7CunOW6sgWmcygLihZBZZ1EBkLVQO1KuNI3AX9eNrfsXHvjLMlFO7F1ttxRUXYOnMqJIWVB3CUh6+r/JdtDKDeoAsrgsI16XJhygi0IUDyYpogq1yxL7IVyxjOb3Jh2x2Oj+JWskyM3NnGqro13utLkbUVZR8OiMVh5CHhQ50YpjuN41t+E+cwiMJ2TweZrgXKEkRvoidqaH+CPNL3HxBDUBheLBXFnMNWoWpGciAiWDYsgymRk49mdewnOdN7lxl02itxRb3iAl4D01RDYGnBlKbRIhihO8I6NGQORQJkMrbhMdre1cImzqTI9uVBBDu5qi0YJmLbhwKYDmwEtuY/tkWC5oOUyN2b6Ejx6YbI0Ad4O9kNIjJLCCdx18izC3SAjGBpUPZYgN3NRYQSI4LYmspZeIQtzKo2C2ElKEpmr0WBZM0sKMoXDgja3NQSuJMpJS30Mviq4Dop2cq7PjKZSWdNjJVgOMlZIH6Uwq2Hn5GJOpnPXpOhEy84U4cpyMXkKasKBsbVCG4PwhoVQTan6Rs7KnUrTRScNoOHIUFIaUZLpG0bjPQezCJYFKQHF6Rg2lfSkhnMzoWXB5kTMME+kCDeBz8vOHecIp9gTV3EUXw4uqQ8E6FyTac05RLiwkWI8Z6B141aT6ynsQ5g1mV4x7Zyc1Ca8xqDaxjUqxwya7niCmnNKZ4pRHUwmZ7+yXybYylN5u92WMyf//Tf733Vd/M375cOV8p0u4jsU4kGc5L/7HN83H+P3oyiy5l1JLGfimfzql78k8rYEtUBjErGTeqHnQDOWQ68sPY9FJfY7ZTRO1vDHNtYMoZnK81hD1l0cr4NNnDnvpDeinNwleBKjWKHoH7ipqDJBG07QZiG3ZPQVZ1tUkRIccVK0stF4C4hW6e1ztvd/TPvBfw8/hfN4RV6/5nr7C/ztBacDJ3F2zv4XnC+gP6/UkvhTpVz+hPbZD3l99xXJE41niME9JiZCzUHYwLUu6C0mKoLZtoa3tI5F4TUOttnYtldmNHw4T/Iep63x2/Nge/9jyvWfIFEZfEPcXonjF/j9jXx94+0X39LkX1P3J2z7nPrUOK8/Qp6/4vrZ50j/Ej7P5e1+PZG7MvyOyp3KBgdQhM3WQBn1V4oGp+80DbosYaXOAC6ENlociE3Gw5pYJpzzIGRB8daU7oFl50134uEeKHES55XYD+TYOaOR/hG9/ZLaEurGTQSZk40V3MQ41iyXmjA6Rxa+EuHZJ2ck3yBE+TVX/Zw8jA9l49u3k6//6q/5eftXPO077bOd9z/+Y/7RZz/ky/09sV2YWfC5lOhEcIqjM4iiWNm5xp3MZOYkqnEwucxk8x3KpAs8iSOptDwYzTilLhtd7pCTIQkysXxCHwkYlKWOH1JRVWo8FMylwywrFCvfo9Kx0jlzo2c+NsRcM0vEIW9IrmjxIp1hkynCbotGUYGtDKorEknRbTU084nBomZEghqC+VqIhjSIFzSEEov2OiLJUFRYJw1VjjrZfaK5si/QpM4Ve54RzAfPflPj2SsRndOMTCh5xyTJrGuoGcpNc9kYfYIp5d64ayNJZllDsrw2qhrHSL7KwT2VWYJZHqdi1zVAikXhmU/SBXAKhSKJ57m0E7nsaEdxzDeqL3dIKtic1HKubIXNsL4wO0TwrAwJ7nqu8di6UeON2nxthOeFswRmJ0cqZWw8PWBaEUFDqbLhGYgEe8RCU1yW3Tidpsa8wH6sSZgpJxGTXtdgsj6vSCnLTi7CxsRjQjhBpaZQ5IFqWUG44exULcuJk+v9tpLsGPcBYkuOaLLg7WsKqkoxg5GoVMwTtcDKjWVnqJBKUfhsrtTOt7qScFuvSyg4rxSFXVZSbbryXg5yKG7LsaRxWU6tcpKx4+bEnIQZF1+IWtedXe4gTjiPjfIkpOBhXKxy6cnHugaxqVygviwqkjVnqeZcp3pt9HzjbmXNtNFOlZOkIDa4upLNGbL0aJO1du9i2FHI7cLMGzmF2qD7pIni7qB10XHAc82Fos18DP4TPvZXhneKbfyuXPJ3LZx/Wwj5t3UWv1u/sYbm0paJBpFBhJMEmsuWL6J/7+P8Q/XdfYMgRPHgsZ4Zf/7Tv+YvfvHGOQoyhM3ecFdc73wsT2sCNAvdsQCTYEpHzkIkbJp0Va7NVgT+fDTLccfLnTqNqRUlaTbwoexsfCxPZL6S5eV7/Q3yffPMv/ov/jeZsZTt3gtDK0/ljk+lZ+G9JS/xRlrjWQv3UcHmOrXpMyEDzZNTCqqVXd+w80Tud87jW6L/HL29kX3i8ULOkzXtb9IBqY36/Ezu77g+f0lsX6KXz9B8T5cVl72W4g5SmarMnNQHFx92RcUZekOyoYB74nHhqor4idMZor/5wAbOzk7PgcQr+5tw3H8J/S/huHHzv2bLhjbQy5fYux/h756J8mOKbhQzBMHPJM+D6ME5bsC3hIC5L0+xXiCUtIK6U9r5G7tjPtTOGn15kLeJzp1uV+BOVQUXpg5OMbaUpYg2QSPIuTFLrDyNrIxM2ujEpqhtPAB9whTPg2I7pFETdhncRMB3qkyqCiOS0wZ7rlkXroMmhbKByhXLO5sEeYXy2ZUffPUlX314T333ng/bez4M41Shh3AW2Gn04pQhy9dfJukLYrQB94tR3dlEVu6EKOYNeMwd4ETm4mtvj1kaKh3HKGLUEE6BUOOSyq7JrA4soW3ERDGGTKrA4c6phvqyiGb6otR0W9McsyI6GakglaoHl6icCeiyD4oMwtaIaxEhSlsulemc5iiKSlITuigloc7JkaABu8Brg3qubId9KoctmNJjOUuirAj1mCuCLMd9NcepiDRu6lhMUpUUYwV8N+6htFxzNQaV4ISomJy4bIuC0OApnB4FR2nmy9KZimRnasFk4i6YKJLCGU7qb10pjlBLpctgXxNJoAkjnOwg2ZfGIStpK3rdXHnTpX0xXxNvDadRGLYWdQUskzBh2kJliJWHU2TSR6CpC9YViHB6PpJCSVJP0Il45SbJ5oVNBInBQaOoUnJyNOXSkyjKaVB8UWEUw6xTva180CJcaExdXLtgpNww35k5afVE+8agLdpIB6RhUTATQjp3hTKFdGi2hvU5xrtQ3nRZZS2Tnm8U+UCJwcHizLcITBVyYxNFGASTnrKa0wQZyqjBdxkMbiuJsQkcY6402WmcCJNJCcVIfC4BvZaxEOLYuTR9CCyNICiPnX1IXRZZcZKkhOJMDk9Ex5rpI2t21LEXPJM2z4UAzkaJA5mTrhXXSWTlQsXlzlTlGsqQZLPlLulifG4wXLGSpM6V+aLwtDk/fH/hf/Vf/s95//Tub8kov1/97YYgF+SxMAnx5UBiJaZmTMQeJlP5dyPBv+8ckd/8LMEluGWwSWXD+fpXH/k//1/+G37187/im2PNmZkSvM2Cy52tL2H8URYNmy6ITJpMul8X8lomx4P6raNicaMjxEhCjaPcaV6xLNx1zf2oOtGUx1C+4P/4v//f/oMv5vdHKuJbaBWNJ9olObnx6oWLTdzhmxoUrbSp3MrAvCG54eVGi4PI++IdQ/BwaInXd8j2BRJ/jPBPyR5c/c55fsvor+Trz5D7HfobMW7w9TdMXni1nyD1SrRndH9me3pmu/yAuDwj9oTSUEku45GsyMr6d7lhUUlLMh0zZ5NkYGiFiB0iuKRwpq0vWB64JYca+uEZ3r/D4sfE3LDzG6R/TT1/wTl+AX/1Z+TPTtI2YhfG5YfY5Ufk8xfw/EQpV/ztc6p+Rc4b4zyJHmQmWr9FemdSEb/isdL4ZhRST1QnWzwxcs1J0NERAdkUZA0yU5R04RgfibIjmti8ggmRH3F5T1HDauW7xFUFXAOfTs2G+wCZjKy4rdNbJgwJPJIn3TAqpwaiTgml++DoDiFcyyC0Ed8Y2y35F3/1M/7V/ks+uxaenxpfffYZl3dPXJ6eKe3dOqn7yoNYsdmNlImLYdJ4mneEC9MLUc5lMcwgbJEYxELJ0KDOpaXQR4pnMEhJLqncLUlbVEFl2ZdHJjeUFlCnMJpyKUqJySnQNBBRBk/r+gQ0JtSkzXW6XRv8Uu67FjTAbS3eHQOFd8AZg2oGKKFCHQ7SluCUNblUXZB0XhTKcFKXaK3rapqPLBgwZVIeYUboyuDoaRRpoE6VNZ1yZkFzjclOKj0er0kKFhXxiVjBZCCyUi+VRoRyN6WJouqoOoMLu8d6DS2o3ri3jrmS3wUB5dKpNGQNgfKVEhkCmNBmsqVxqDASUtZQtBODEGYd7DGxaXSE7ZFTcbOB+oqE/20wkVJWJCZuyeBcM2FkNZElFrUUkqQozUGKYCnIEHqBjXWaW6O2lKrJsJMaRgknVLj4apB6sjbf8qA5bOm6NBzEF88O5DRmKYROhMTjStSFJtVgJYcWQJMhSRuVXZ2bBnsxbpK886UHSlnptFtWJNbnRSXwUC4AtsTMVvoyekpF50kRWyLQWJN7W5tYrkC1SuBZ6ZlcNCm54SEPEfCKNLOHTmPowypZjSaFJ5SYq3ny2slszHnByhuqTiRUn2sOTjGqr/fjmI7b0rbc7c67CEbueJbH3zhWloYVwgNhpxKEHeC5xhVo4ywrW6ZiNAGXRZFKJENX070HXL0g/WAeHa6/3+75vXIh/p07LTFnpq6D2HR++Vd/xtvrv+XLP/4f8e7dl79BKn63kfj3fZ7Q9V26pGKS/Prbr/m//7P/F7/81Ssfpf5mrb/nBOlIFM6HXb0MAat4DcIficI+eHvE7ZechAgnlWdfrq67Jdc4sZicKo/sE+NKMlJ4E6GqM6J9r+v/3k3Fx3/5f2XbL8TTM++fv+Td/hm5fSC50HzjYDL9DekF90LfT4pXJhWzXCN6dQcqqZ06lfSNUQ80G1oaR7vwku+p+xdcN2Ee/2NkBpf7rzjffoa8/TVy/zVzvNLPN+x8wd/g/uvKSUHrhu079vwD9P0XZP0Rvm9EuS4Xwnxacw5iMMPQ8kTkSbGCc6OOnbDOmwa1KJdReLVG+hobpnrSKdztwlZ/Rdl+wMwP1PlPeaLTj4nEN9j918TbXzJe/w1z/muiCbo/c3n/OZftS+7vfkSpP6C+/5wcsMdBmzt+Om/3SXjHZrJtSouN+xxssjEzGFmoGXiZiAsyg00FmTt7YY0jz8DHnVIn7A3vBaxw0RtnBN6ekFQkD4oUThGSTtAR2dHYMRmkL2FYcEeoFDE8b4gYEYISpO+EKjkade70gNSOJnQF5jMzhF/2Ox+/OfnmFy8UUdqTUj7b+fyLC199/p/wxf6OWTbkbEskJ4OigmFQJpmriTIqhDJzLW6WT1zyzresjPxMSJ1LKEhyUngOoXlyF6GUClHY9aAqXDiYcuWUp6W5kXV6rpIkQVgSc1m6NjbMxprgmooWwTHUCns0+hRS+yMVcK6+LYyRRmqBPCjaecsrshs2lIgNkSVUHDlxA5GJReH+mFr6bBdmH1SD+hiiZDEpOnEaI5yxL05XZuFelH10XILzcZJNmVgpDLeHVU2X80AEFeVgUSstVxaIziBzoWSBIXnSW9LiQnPnLra4d3FGJpgSc2JSCYR7CZ6ir2CslkxbEyOvoahURBKPwmmORLClkTmoadyBDqjmb0+DOCXWxt5l0WCRyUlly0p5aEZUeehAHgLnXA2Y2EIanI20SqRjGY9NQigKS96aRK7cwxJrBkqhY+gSBztkbLg5Uyc7jZsm9pj1YqXTMtAQkIrJ5A7UoUwzWghnLkeIBLyokAJXXXbKlEIaFJxRlT13DnEE5Z3v3DOpRaEMNB31SmTF9DFrpzbOqah2SjohgnLFZKKyDllORefEmajCTZKai1qwPBeCFoCt5qS4EqWuqcDfjeIOp5D0duDq1HvF2olG4dTCRQZFG0Ocahc8YkW5ywpby6k0qUQmEQdBYUbyLpJpg/MxVXNYYClMn+yqtFCaBUcYd1EaTtaBRmNKQ2299rc0xlyoGfyW7vi79RL/cK3eYHW6osk3v/g1//Zf/D9JnfT5zPv/4WcrOFGUiER/J9Y6Ypm+vhOFLleIMCOourJINOWBnELaChj71a9+zn/9X/9/+POffs3rfOUM58U2cszllJGyaA6dPMkTN72vVOVoSzhPEKWQnhw12H3jYwo1g14V94ZKp2sCjSHLxVSBY033Y9pYAx7t9Xu9Tt9/oNgf/U85b/+a+7cfmb/4JeSJlgvb8xeM61fsz1+RpTLLlcgndk+6vLDPghco9YqPyYxB+oQGtb4i3ZjlTswPXPLOVEEiYGy8icC1s797R/MvkPgvYJ6M8y95+vbXnLefk+cLfrxiNRjzjePbN+TXv6SlM5qxPT1Trl+iT3/K/uFzjvaMyDu0O3I6Q4TdDmRUPrY16lhxbAZ3GqInmwuuye4Q6rRsbOMdr+lIeeXQHeeZcQ3Qz9HP/gSV/wn7/AZuN+btG+Ltpxx/+S2hP8GyMi4727svsOt/F9mfOPcduz7x4UPhZYIfwn3+GiuTp1kJu6HdqUcjtLJnMs0RCkdeMJyIV7wkSKNlXbbC8xHcI3AbQeSdzBfUJmU+Y+0d8EbLnXFesHasDyIVVxgjaDRKxBJE1TWqvE0jKuCDjMbFOlEML5Az6LrU4ZYDvzkdoWuS241akrfxQ8YvT76JV/6s/pT64QN/9CdP/PFXP6C++zFPeiVi8XsZg4wLm8CmJ4dNalaMgRXjaxrFE6vOcKFRIBulOC/DyaaMHBRpRE72MikTUpRhT0gY1V8fi4ZxlYqkcNhgenCRyT22Na1RAXGGbGvcs9wRXcOzNAWNSp3ByRNbCaoOPJ1LrKCheFi/no9klJNSnenvqPkNVf9/rP1Lr2zrtqYHPa217+u9R8QY87Zu+3Yy86Qz02mlwBilLJCMhai5QpEKEkKCAqQLRoJfgAQVwPwBRCGBGv+CKhS4GSV5MvPc9mXd5m2MEdH7d2mNQot10pZlclk+s7K099qae84YEdG/r7X3fR6l+4qFcoRzVmUfwa1fOa1ZA45ZWKVxyEH4iolTFgHPvHfRRKfvlrcQmxMJ8jXzfGgPEXab2H3dcmDIfeXVJf0UKsLJHIkgesLKDi9p5ZSJkljrKU6vaW49TaGvmn8WUXbp+DJYqyFamffGhs2DqoEvQenGlKDXTlBxKhc8JVlq6J2HkjwbY/N84M8wht4x2DNruuuYKA1fAo6gyQnnxmGGRK6mynRiGqEVsQZ2w9k4Zk6xwje8XDF1drImTS0wc0VSw7IqLkKZQpUkzJ5wbCrviydcugiXCOjGXIIhiWDLM7EgYvSiVA9kGl7zkLaFcWVQohA4MxIRTmm0mJSYWN2IeQYCLTl0bOrYfEG18qTBaskDWn0gejBjMiWoCpdeeSmTmwqLd95O5bZ2aiu4Vp5I42oN5/MmfDEKRSZuznDlOYIljNULdBiLYtoYrlQ13k2hy8Ykf6bFnVlzynHxSi+BLDe6V3Rk6ybUWDPqhPpgjYYK3EZBqyAloMGQheaduRoPc6LhHGXlTTitDbwGT+fCKTrXfgW++i+UcfhP/rof3IVc7dyA+cjrLwJZz4hkZTaC+4HipwlF5Do9N1CIZnhUZ4oPfY6kJt8D0LMPfvz+B/7Fn/6BP/ln/4LjJnx46bgKba9ECFIWlmG8xBWdJwYnPvJEcdLJNYOoLSfM40AMfJwZsmMU6qiMzZnuvCCscqbMbDO5H/QYHDZ5mINlrCBK1Z83qfj5mYp/878dZUm649MolPEZrt/BywudT7kzKxO/vKKc37AsD8zyBSwnUGM1eLmthFZUA5uKaDDCiZKbQCVP5Gsow5VpinrHfE3Y0zwQO/FcK1qF0ne0Kf36GUZjXv8Z8fIhwVztBZcbpaf2ezCx8go5b5xevSHqO+T8FfP0gJczMh+pdSeGs48lR8k+mfXKwco5HOXGzR4ybKad57bwugRd4DQLux50JosXTHPQfisNixzv1gH78SPbyx+Y/SPj9gNbDEw3Qgv+6MzHd/TyJUW/4HS6MOdGl8mtd5bDidsL0wbW+z3YVcDiTs7rqAnXWGBaEuvsJcfsPnNl4C/0a8FKsKwrfWYArMSKrJk3nhykTgkwY0YqiLcI1A4iJsRKr5VJQWe/43OVKAMNWOWRScf8ruOuubYo3qlr59Yrvq7Y2Pjy3LlFZfFOrI1XD8bjm1ds737Nr9+8pTysrPJldvNVmLPm+yaPPlylcj4cUeHGkbXr4ZgVZCa5UsOxstx5/YNFLN9f4dgxCXPcC1WcvSzskmZNQ1nlxpynfChqgmMmScIs5pgUPFZG6SzsHHEBV1yc6hOpB3Vs3BBCO+pZuZziwGA9Kn04usw7ljr3+i16jtilwFipZXBVgxgcs6NWiemsI9A5kQJdwOMOKZuCy0Q9cBdMEyDHWLkaVJwyoQmICmt0MsuoPItzlpSIRZD2tL6CBtMa9e5YDw0YziiWOGADJOVVKllrW5aKaiV8QefOlIRu1cgcQYsJ0pF5JhhEdJqDUhhkhfQEjJE2XalARnFZQjNzcPeatMyLon3iWhA+A4WRXnbc77txmcg0VPK7xTgwcZwH/F6hDKtUUYgDD2GqYG65uiqRUyWMnWChUczwLhxa0Vq4jOBqWcGMMcH0TmiNnI4gLBpp0rXMDIQIOjaGdmpR3J3qTi/Qo2ABpvm+8hIsDkjBEea88zB8UlmpEjSJzCHRc1JTDQlHxGAsyBx4GblGJD0sL0ORMgnJyuGja/JuYtKHMMpGtZ1dcw02QpAyEVeKlcxyaPqBdKZkr4axS1DvLIfHLnzSxjSwl+BaoJZgnY56oWvLv880NjfG4oRlANvva6zSCgVFqnMXYHBagnM1fKv8e/+Vf52//3f+Bj+1Nf5ThMr/nL+C+2fBBdfG/tH58c9/h6yf+eI3f4PT6RXIHbh1z2DIHc8vktMIyOo1kRoDPDj2g2O/8f2nD/z4/Q/87rsf+PjjBz4dQUTBe+E2nTkdGbAnNQQZOYFvOri55aE7dqZPdgObBZ8F8yujGt4nFpMaKRYMWSm9M1F22zNLp8oRjWsx1p4aASSos7P45H//v/2f/PVlKtyNGMEQ5yTCWF9Rz4/wRSpna38ibk/M9pH54ZnWf4dIBztTtoXn0zeU8y8YekLlNbGkU6A0YYjhY8GYbHpgEWCJdkY2EKfIYNqJXoXRGzaNEgtzbZTyGmJFX38Bc+L9QPoPyPWJuD7D8QN6fGD6QXx+xp9+YBSjWEXqA3FeKetjHoi23zDra7Q4WzO6PkK85BFzPlIkME10cgnNNDxCk87Q9V7zE9qslBJoODIroZ11McbyhrF9gZSF0l4o/hk5njmeP+FPH9APH7D4S2Y4t8uJtX7Jun3DejkTl1ccly9ZYqVHQ28vxDioCDIawxfQJ2w3xBbcblQ3+r1JlxnrwsOSONzhjkeORafs+MxADka6WlC0t9w1y8rVnNKERR/xMlm8M6LRWRH37Mh3Y2XS5YaUZMinCyXNnxGV41jyRr0HLs7tuecHwwpbrPzBG08fbsSf/wm/XSBeL3z9+g1vX7/jyy8eeHt5SylnbiFEO7HMwbTs2FdfGKqUe69fi1ElK3xig0mO9MT8HiaDttxdL9NwCYYOFokct5cgZsX0SG4CK1XzTr1IST8GhVk7dTojEi7kRdhmjs9lX5HqXMi2xosKa4dSG34EXQzqnbfvxiHCNOHWAvFK0cGlKEOUepfKreooOz4fcD1w8Xx9PfAirBGskF4NNWo3QhWNxqiTMoxJZD1TnCqAZ+I8nRITVCnhuEyuU6AEJ09oleM0TU7EIkH4xDwflFSlYBkgtRzTG4FYHgDWyFrtzkKRgWmuPJbpqHTmzNVD1MCGc4qFoLPG4MU01+QaqA+8alI/PWFkpRYsFCtKl8l1LtlSMGcZQZ8L3ea9BGiIRwYvUbRXpnSmxp1nMvO9NAuinjRWB1TwUMwdK51zGOY1YX06WDyY03kJxaZxlPw+w3uC8TBu8pN4MQ92HpGvv0WGWKdl8YMBVNYJix5MrdgszCK4Kr07ZnoP7nWmgs0Vt8YhncIGkTK5rJAqhwWbT1Q7XoMyZ6KfpdAnlGVQZ7CrIJqHt+nGbsJZA2NkAHRW+oRFI/MiEsSc7A4sCUlLJk+kJ0TTWH0rxmcx1jCGN/oivBrB8EmTdFwfKMUGJZdHVDEsgsMM/MRlHLhKemzuwMGTwjIVK3AWuPbbT2XP/0JNjP/kg/A+9cDYHuHXf/dvEupoze+yiDxQhAh6z7Zwn17IPXcUc3C93vjDp9/z/OnKjz985vOnJz48X+lHsDeQWDjoRE+PUoyg+4J4JLlXOl1A/cB05yGEKfW+8pmcYmX6jfV+6RrxwkJll4KQDqpDDs52X4OJoFKZM03ap8NwbUnojaxgt5/5Gv58oVgVmj5APFHKZO2SQCMZbFRu5SvG4zse9TdUE17alXY0xrVxevmAf/4L5vh/E6vxvF64LN/Al49IfcOqr5DlgYVBb0KPhTOFITtDHI1AS+ATJAYlDPUXmj4iM0Uoi+b+0NYV6sbJNuKLye0mrDQu88rxfMVfvsOfP1PbD8TxmXn7QLzAYT9QYzL0P4L1Qr+8Yb55S3l8g+pXOBekpuJaJBBuvCoFFmfEiTZWSjzjMRiqqCTDY4/ArbFYMPxE6Y2bOEtccdt4XityfsAe/zYANl4Y+2fq/pn9+S8ZLx+o/pdYvdHXjXl6i51/wXn7kv3xNdjre61SkZeJtisWN5T3tKH0oehyZDjVTygnIg6IkfXJIrgXvDj9CMSE2paUl4kyZfKwQp071YOjzwRN7cLUSahQ6hVxTUy2Q5eOyqCNcw60SwMJQowwpU1DcEwLizgfB5xFWI6J1cpswZWDaQu3fYMXsO8+8K1+Ty0by+sTr75RvvryK754+DWv1gvTFvoh9DlYKZRF8DAYBZHBtAOiEL7wuAafZmPRlk2MMKbn+HYdBV0mmOWEa0iCY6IkhZNJnYWQQtcBmkRNiU5oYRkbnYFM0qBLh7so6wAYcCYIbezDEN3z0MdMnsV0LgJzZLCtFqfMApJsmC4lg1NSKD4YJSVqyyjsWXegDEWJPFCEQRTKMugETRcsgtcMPpWZ1TPPdoR4pZtxmLIegyJ7Zi/CqF4o7rh2ZFSapnytDKerEpFU1amZPjcG3chqpQTFjaV29qgERtecwnRzmq+EC6PsaAhIQZmMcT9cRcdcCFv/ilpoMwFN2wh2uQdIS4GfUO89EDUuYnQXZqx8omPqLBjeoVpOP4LKoKeOuoBTUclsUicYOCqDs1c6gunBNINYkGbskuyE7pUHX6jW87W3QplKi5mtmBjpAblDjcwl9euAzKBn3IXCQasXkEkLp0r+efqcHGVw1hR1zQimT4o43ScyV0q5sUmnSbDPiplx6MjV32LUofeGDhxqFA3WnmCjOjIAWFRSTSDwusP0cWcAOQbcmNh91dd8/FVjq1selk0AcZof6KiICS4H6sER0FRZ7i0RpxCDdJ8ImE92USJ63rSBagl/a54C+Ys4h+Q6IFQ5RdA848FdJ5WOUvB2ZP0l/tN10f9//Ij/7Ol9IBoQftfWC7GRn5F5949KZoEiFxnk6iPLCdeXK99+9z0//Pgj7398z9NLZzS4decYkz2gDcWnMN3Z571lEw2LoLsgmnVdfIGZq0oZK32umH7GEXYxNpzhj6hekZHTH3RgQ2g4UQ5WPTECdllAlTkKpQ7KfRInBUpfmfGESWf7mUHNn73++Oa/9t8JxgpyMOMVrkeeWOWgxOQ2zjzWG8c4J6lwcco449Yp2vGpySb4/AE7fuSl/UDsTsgzcoLT6VfE5Tf081fo6QHx/H3EB9UOShifJNjaRq2dqhWdV14m3KpgumTIbKb6Vyj0tnPUnVhXZCbyVf2B4IW13Zj79+xPL8Snv8TbR1w/wJw5Pg2ly4Hqgp1X5PINPP6Sy+UNpbyh6WvcDygwvVDZsKIMy/ETTe/wqAtmmWAeOogxMgAnFe8LZZlMcvxYDyUuB4yF1Sq7XoljYTve018+0j9/Rtp73N+z2CC2lVJWTudv+PTqa2IprPqGWApzX4lZ2G8fsL0TMaDviDVECjInVi8ccUsVu0VaM9WwPpPiCIQqqCPTwIyuoDWIOVj8FVYa+3xArTNqp/YNiZoHC3VUDlRShxyePxutQZgwbbKOhVmT7rgJ2KgcNfHJk4JLy9O5BKUGl7JisSbRrl7xi/LV66/5xa/e8IuvH1nWd7yWC3ucsTgw6wwClTM+O+7JFlBRriYZ7GtKqYLroFM4TaE4XC3uTAbnsCRNVgqhgd337U2cTYQS10Q/RwWMwY2OIlNx5j3QaDgZHpwmjL2ljtyVbR68LJVl5i59yJWqG20Kfq/wvjCQGchIMZqK0Om0aSxTCCscMtnuyPgXB/OCrI2VxpxK05UZMw/hM4iZX5YWOebMnEJmSs42OULYY3DybB253FjGdk/Up2wvG1bCrUqaXTEIZ9kKS3f2u+fhVQ3GMOaAeT94TJ9Ml2xaSqOZ0kfaK+vI92mC4nI9tZV8GDUprLFSCEQaqsHuQmihGsRBrhN64JocF2EyZ2GPPFit0ZnSEhIUmaXSLdhnZkDW0DsYa6A1aZURg3PkeB6ZBJqB5Si4K88GlykUy7aJe6F4RnGuTKZnbgIbwMSwvCVGvoatWgqfEBacvUwYhTVqrtPGQVRhslKmsOvAquFjZJ10JjgrImuZrjlZWsKoFgyDGs+5QhSIMOqo9MURL1jvmcsKJ8bEEa4+WUIwmXda6IJxJLBNKsHA1GncZXum1OncfLnTM2GLyZCkpfYlxWbshZNkbfiqwjGFh6iIKeEH3SezFM7dGRpUM4xOYzDrlr6UOVnGhUt9RtdOs41HE9b1wt/7m6/5d/7hfxn9z1h7/Oc5VOR/F8R96hNuBElgFRGK3VknQITjPui983K98t33P/K7P3zLh88vPL/sTM/20vRC68KcQhsHqoWjJ5jvpefEG9eE3XlD1NAOXRSPzkpLBkjfeI5gKx8oceLWlMNWGINqDZ+G9WAszmTgbggj3TOzY1IZMdh98qa8Af9I13nPY23ICJ7UIZz/8//6P/hXjit+9qHiF//wvx/DOjWCq6etcY2ZeFipfKJxvqdrzQtdGtVXIA2NIYPwB7oGW+nUOXMXN56pzz+y7z/S9h3hBa2FcXpHWR6Q9RW+PWLyGkwRC5ZuHDUBNuuoVIM+DkZdcQSRCbNT5cIeB8NyP1vmgVPpqlRvFD2xlo7cTtz4kfrJ2dv3+PEHpL3H+hNzFzye2e7QpnBFHk9weoNtr9HLL9HlASkXxrKwqHGi0qMwa6MeGw3FtbOg3OSGtEKoEXOwLhAjd+3d32D1KVv+wxA/WOSBQytDV2Q21G+M22eifWJ7/khv74n+jEpHbbBubymXrxjnB7q8RU8XIl6xx2BpB2N/Yooj7TMMYUqgkgyCghAk0hopCDC7YFUZ0RE2Nh+I3bjJinFi6DOFNVHUGFWWBNzoTN687uArqoZxMDxDdRr3wJJeQNIEWXWmMlobUJkiGHlTG8OJOVHL7ISUFLchlV2gWHA5BcvbE7/68jXbl2/58vTAdn7LiTMmelcsVw6uiFRkKlUnk+Asxi4TRfAQSslRt7JRYiSdryYCOgTK7BlM9kIgrNqJ2dk99/Bd5V7RjDRK6mR0w6cRy6CMBFpNguNuPx3Twc5sTJ4nvAqgHNCzVrwPZRfljBJ6MDxQNQ4x5pi8noprPqzmNLokH+JCp7nTJaue4UEvefvzabgJVZwlGiEp+bvGwpueQczdGkvkCsu5EVopSIK1vOKkPKybU2W5f06dYndygzygdLYlvS1zeHJAIvXfMidtCJ897j9vQX2QMnaljMKLpLnzUQsdoxOcRRklt/TbHAxGZgsiaJJ48jJecg1Dz4DnXBHphE5mXzEduDg+NgxF7EYPw7SgerD4JYVbxfFICqcN5abKquX+nhqJAK8w3NkkmyCC0N05ea5fgslwmAoifq8kV0xKPnANNiq7dmpbEOugjZsvlMiG0F5KtlR8ErpwGcIo2aAxkk3xdF8DnJgMKhHGLoaVPBwtozHdCMnMynkEfQFc6LOjEph2OAZzGsdMgNkiDS9KGamxH/csR7fBqQ12K5iNBKnNhWIDrZ2yC7OuxEgiZ4giB4RCMaPHjVDBZrBoBlnpAIqJ0wL6STiNwZSVUOfSF1qd9xX5ZDGhasWL8bhN3tWNP/71mX/7H/6b1FLQ/3jV874TkcSG/cePDv/ynwmk4K+YV+H3f5ctMyKryGj6OTycfn3mZf/E+x//wL/45/+EP//9X7KcvoT5NTMOOoU5le5Gm5M58/e1INfZEfTpzA7OQkTP9s3w1A9QCdkZngfKsMFNnOpQ4+C9p6uodCfUs8VU4CXykK02oE7WedDHSvSCrY3dC8VvNC3ARvUXdgrbONPLjXCnTaUS/B//w3/015ipqB1zY8rGqjvFdgaVPs6s2ngoPf0tobRSYabXIlS5yMGMlWdvFC1sPoE9A3WnE/LwNyn9b+F9IvMJ2uTcPtE/f8b5PTIrFOeoj9jDBuuXqL5G5A2xFro7bhslJL+Yo2BlILOjRTnNvK0UNdRzZ1kjGNNxgqLPlPKIvxOUd2j8PTRu1P6EP+9E/0wdT7Trj/j1Pf7yGXn6nDbB+s/opeLbA+V8gfXMvn2Jn79C4oFdX1BZIZzbPXmbAbLcU3XJUaOJsG0f8dsKJb0Bt36mGehojBGcrWOlIW/eEv6a/u6PIIJy3fHxzLw9cfRPtE/fox/+lPCOn1e4fMVy+gXl9CW1foWfgmi/4DhuLP1G9MbYJweOt0apk7BMqEtJKU+Za+6YbdIlkb0uKXczdsLA2JieA/9wYS036JMjCqeaITC/P4y4Hz6HP4EUlhBGAbSxF0NoaFRccp1SZEUs95UDJbqg07npC9UWYi58HE67DX74/bec1t+xrGe2xxO/+HLj9atfsL15zavLysUeoFfQQcyJy0arg5j3vy9OzJJIYDeOMhHIm9kELYrIie7gMVnkzC0G+yCTBKUjIxijpIgscrxdccwiyZnqmAtG4XFm68LMsFS9sYmAOO7BIZn36LqQ8ulGn4JbujYsnI7cm1PKVDhwkM7icFPDS8lwWGSTyacR2jELNlWk5z7Yy3rPpgRWOtDZ5kbEnjVsWzDPL1FsYloQVyh2H/saporeYVa6DtAboUbTAxNlCbtLsJwyg5srtyhsDGYcWa0TBy80NxowdFKDpK6qo2zsxRPKNhP7jRtDE21sMUGcKZXDM4g8yInc5nJnJBi4oqUjpSMzx+9KZjxUhU0PNnX2WZgKJ9cUzyG5GDFnGwIGNYxlOos53S1DnjUhe4gyQlAphE9CJqUKk1TSV7WEfSq5jrGW00MpLGMQkkZb63YPpgbMyMol3MPIqZw/HzPdNiZMg2GDOvO9JC1zRREdl0mZws0W1gldxh2T75SR6zrRrNM7+f9T3dEi2fm1ifhALGgYcQ8AbtM46c4yE7m2A6fhuEP0zL6MyO+AZY58XXxBSJuuE2gEQ4SqI8mlXRK3nwEJNBqNZLNUvVK0EAQmELNwM+XWnb0ddz5MOpfEcnIoeVLIZhw/RTnvAcv7GkPuB4m8d8t9djv5K5+pH7w8P/P+0/d89+Pv+fj7P+eHpx94+vaZ999+4rk7X/7tr9F1gzZoWpC50yIryD5ykqSzE1I4PNLwS2P4TsSKMTmAEQu9XNG5soQzVGka9Ci4OG1ugNDLQRNlHcrmcBWnSOCJ5uHwSZ9nukzm0nhwo0bDWNmnUmtjjDUD0ZFB3SedVB/ZfvsZv372oaLMMxNjlhdMnhmcUhTlzpDC2r7E7T2rXvgMVD3lF0CAlUfgiYtUOvCswWOc0K70O/zmpM7JJvt2Yi4bYr9kTmeVzugD6+85Xyfyw7fE/D03OyhyQh4fOS5fMc+/YrULZX1kNqXPBig6J1WMq+9oya+COjKYt5fGCMPKhfKTQZIbi2RgasivWL58oc5fc8SNKpV6faG274jPHzn272m3vyD2AzueiPdC07tVUQ152NjWL4hX38D5wrY8EvJLphYKDv0Ji0LTSkiFppzlxvAHJoM1ChsQHiwGYleYG+KOS0dipZaDcToz5Uy8+iMI2HjCxo32+T08PxE//MD0/2sGMO0Lxusz2/kbluWBUd/Q1jeUYyJ7Ifoz3a+psj92zqK0sjPkhJZJMaH4Rtxv4rEEs2f1Exn4vGEmjFiQvmRYN5y9pTEzwpltYVRYBCSMWBoMZ50PyBx5QzLj0IZYYbpjZabHwFcWAjcnFJZeqArPDvjOeTiuF66tcn2abO+vPP/uM3P5nuVkvH0r/PKbX/CLt99wfv0VpW75uuxOnStqk1sEfXTQ1Di7JvRmBKzFsa7UOemlU6TicSUm1KMAB3s07O4dmECxAUMTXBTBOlLcI57I7GlO80mNlSHGDeH1GNxqIyaET25sLLFTpxNaGQzSe5EHiCGCxMgvO6ks5cg8gAgyB1ucGBrMkkZYekJtfnIAuDitJAhM5+SCYoNcGehE2QgzlCsFYbqCG2IDJGgyQYJ1pvZdBBYUm5XmhWVRHnxyZdJVsbnS3ImpwODEjlu7txAUmZN1Oh5Gt5l4gJJwpHAQ6Zh3oNwngZFh3BgZGJTgocEnKxTr1LEChsh+l9vlyHpGY/P8XhKbyKyITqp2Ght7NGRUYCR+WitCBmEPuQcEi9FiMEI5qzHdkJKH9HShFlQmVZ2rCWUI1YRuNXf+TEI0deYSnKMwzNHIdYmn4gUsMnwcG+YT8Q5zEGz3E++gS801rPS7rG9BraM+OKygM4FfO0qZytDKtOA0Mxc0Z6BmvPhAp4GlxnwdgkQejBhpnRWZhAh0oUiDqIxpdzz7RGY2QtYxkVqSqJz2M4IF5cqVjo2HzI+UlvAzBNfCNie7C7sVTvNKiQWm83wKxCavSMFgiOcD2YwiN6oUGAu3mzBuAznZfZWb+OvER8S/bGkAd+oOU5IXEQ4q98lFZDsq0WvO9brzp3/6J3z//f+H9z98z/U62J8b+z45YhKH8PFmHHtne76yaCdmpR2puy/39s9hAiNXrsrCi++cPO24MQ0CWuQzRUrjBaVOvec1hD0MmyPNzJbB0KVvNAaNE/vWkNHwKKgJ02GbyUM5NAVy0StugutK4UYvloh3F7AbE0VlYzVHaD/rrPCz1x9v/uv/g9BQHsikfe8J+EmSW6eFoRSUgkWnkeZQZmGbxlhmjtmp7D4xuXJh0qUwBcSVBzpXDB8rIZ2DE6douI30HgBqC9NvcDt4eXpPub2n7B95mR9Ytoosb/CHX3B6/Bu4Nrq9ZdRHtgHSHKmT2wxWDbZwWhnUadwKyLEiksG5TXJ/d9WVbh2Rg3VumBujTipBaxd83Ci3j5T+gZePf0a//kjxHbxDNHrP5HtZF2Q9EZev2bavsVdv8IvS/AuMldBCo6ESFCswFbPInW53gjPmEw/B1x3DKNHv9c8FixMzJmEzQ3OjUrYd6YU5K7x8ojz/C2R8x3p74TY+07XzcPoCe/dr+vlXeHmNsDGXjT6ekCfB+kduI5D+BD5ygyyJFC9LY3oqvp1XiA/Ub1RdMzxYhMaksxBWEX7aa2veMOQgxKj+mlsZgLMtz+RcYCOk4SHUeEgENY4t/9LyihTYdjhWqhSWmmK4zkBlgMNNJqY5Cl7KhYWsM7K8cHn9lre/+YpfvfslX717x7KeUD8x5YqPLTM4CKYF5EAHHAoeG3q/Q3ySwWVMas9R6fDOrSiXEDyccReAhSmMea80Zq16qLI152YdBbBK6MBH52RrBrZmGkafpbL2SdNEQ1ubd9AXTFtZ74r16c4GuWttGUG8maDauYjQZt4KV13Y/SVHt3IPmlWnOIzIxpWOlqswFUCR3mkxQPLWuIRATNwWmimrCItbrrUsJ09izqtF8BFoWVEtdC/cOFiaA53mQR+509cY2WDxbKXsmg/W0yx4xN1Nopie0gGUDCHWULwoo2cAtHgikycHTWH1fO7mMcRAjemDOqAvefsUtyyqihG+EOGECWscECsijR6Wa6TInXcvhVXSvxOaa7QbgZfBeU9F920Zd9NoobcrokrRBXEnSmYopiihHQ9ljZxm+Oi8mPPYYETk2sQX0E63jsrCGkGLkXVdA/NEwPeY+T2Cgg5QpflKDafLTsGSuWML9E63zE3JDJ7EqV1xMVY5WIF9CmHZLpouuJFwLfK0bRY4mTsKNYSDEQs5V2ycWRmeojNH2PXIMKULTSrniDsnJTXpRYJRncWdpReebBJrrl+7NSyUUxihDa8wR4VSeWc7y2VFivB4OvHf+q/+G/zRL96lrdVzdcp9zTt/OjCQl4ZyX43kwQ0SNOqM3vn48pn3P/zAb7/7ntvnG7/70z+nXX9L3QqzKv2p0uRKtEBc+eH3zxyz8dUf/U22h7/FTYw+W4rkprKr0gOq3rC20IGDyTby+60JjFDCb1QKpRRm70g56GKEK8ssCSnDudaD18PwWbmtDR+FNQ6etHJhoNppR6FYQWQyCLw3qqzcogErS7zwhCG6cpqpaBgYq1teusdn/nf/4f/sry9T8ct/978XPvLmEKZ4BDo2FpnM6Vz9hJRJXSYwkaiU4szxBLEScaZIJyLwWAkaMLGqaASNknCQkEQr//RAMGeOC+jBjI7KzhYLhcpnlCiBdcf3gY5P6Mvv4GWnxxNRFK0X6vJAPHzBtBOlXNBSudXKGs5UeOiFY14IuSX6diijHNRyRg5jSkdscByFc1nA9mwFVIVDiVrxpSO9st52tL2wH9/iL+/x8QNzvyHthd4aFjuu+fd2OfH4+hvs4QG2N8z1a1zP2HIhqIgeRBRGCFWEKYWIe59+bpzLgbdHXuoNnydEbyiBzEv+eWlZ/psKJfev13KlHg39+Il++57qz8z2gTUGy1q51TPz4Rvk/IZij8z6gPtbht7w4wW7dqy90OctteEyWDyrZ1M7RGHxxwT3sINuwADtBIq7IMWpYoQ6XQ2dcIk1T+4yssNfgjmDIhvBkbAufyBiMmNDyk6YYLGyFuXwe7gvQEqhSLIJzBZsKrvcOMTYmJRaOFgoDu/OJMv/ceHd240v3rzm1Zfv+Or8lloeWUKYesHkSiA0LBPXIaz3wFPvjcNztzuAkIW3Y/BiDR+GW+FSB+LG6NxhZErThnp+e02rWe0MQeaEWqm9pe5+nrBwNgZDAvGZbP+S/P8RMKegVqlyMGRifcNEUBoSQjehCRTPW174ypTI/0yi2DWEZyucfUJV5gxOo9LM2frBTQpt/lRzvOcCJCdQRgJ5SuSu+qjp3thQRBdqKcwquAyW0bAuPJG3p+w7N7THHQlv3KJxGsopcpL5XEY6C3ygBOo1329SsftBtwbZgrBcgYQH6imKA1g0mwfmE0PoMdBasZmjgDnATFBP4Rlk+DAkWL2gZG5gRe+l2gxZNml5i43CFhkyvpWJzXuPUDPnsYky7vTEVTWhaQQulXNJC+5NHWKyHc41JrMNJDRdQT5wVcYysQ42VqI6JSYljAihywQ1Qu5uDheQjtrCOhNhfrPgsTtdE5g2tTLnAJ0MHxj5s8tUNtRqHP2eTImsk07ujZW7p7uEEioMCx560CwbKk7WjRcVlgkwuLIhmq0+0QPXQZ1nDheaKhcfbDZ4FmUpwjILLz7RUnmU4MbM1WykDVfNWOXGbSlctLK6s5wqW4W//8dv+Lf/rf8SixVQoUVwCBzhLMCqxoKgc6IizJgcrXFrB8+fP/P9+w98//4zz58bL3snRtbUv/3tb/H2uwyha567SxeO/SDE+fH7G++PH7j85o9598W/Rj1WPA6mFm6iYMHrno7JERNnpWhw9MDnTGqyjBR8+c4IKFrph+E2QQYLlemeT1LVbL34pADNVw4xXF7Y5sKwzs3tjji/Ugle5sqLdQqVkx8Ud1q8YZGdKY6OSWfiktC55vCP/1f/o7++TMVwqCYMKqc5CTdutdM4scrBYz1ggo+VzoGWyRrOjRMuF1qU9LVrQ+SGijB84VQm/RBWNQ7r+cU7nWEX3NMNgE6iL5yXxAx3DWYUtp4vbo/gtBUO+xK/fJXEsPhM3Ha8Hbz0Z7Yff4/ER4aUvDVvG7K9ZrG3tPNb+pK7w5hrpvvnQmgqqE86kSmELUhJlG8RYW+KWhLgbFc8Jke5t0V4RfFKnzfqPlnmt7SXG/N4YTu+Y+zvkaOx//CX6I/KERNdVmx9oFxeEcs7lldvmPIaPT0w44xguJ6YcWN68BQbKnlDiPubbs6ZgaQYnFW5iuNDWOMGU6gI47xhpwdk/jE+XhhHYx43bvv30D8i3/4ejd/T6hNleQWnB5aHtyz2Ff3NAx5vOMdbriOQPhgv2cGX3mC80OxHxBYQmHGwWkJcOo5abiWPGawBOgaqSuMFxzAWhittDiJyTbQoME8ZXJJJl5q1yek4k2sPhnnevghiOF0mxYIenQYUCg8BXoKjNy4xuGLs15UTTj/e86ffrfyuPrFt3/HwanB5PPPFF1/x8PoVD49fclrOieTuA5/OLQSUbB8A/R68DA+ePMfFPg2lMV0wm0QoIc4WMO5pcY1AfLDeqY9DNUNpmvCoqokanJqB51UTt3xITolEJrUMarIYKb7gcmNITg2YmfVeYlLNEVm5qbPMQGd27jtKyIF5iqG2AatnI4aYPMmGqWBhhB9MHRCWoDcLjiJ5CwywELa0feFmCJU9hC2S1XoLI6gQByITj4lGYdY0PnL30PQ6YOatd41EDWdiXxgohxrVlTKgF+4+jsBjUj25AR53p4ekpMkYTL3f4HuFGQx3TFLAVH25A8EKR4EaE2Hgywv7PHNiYjJzrQRpDpas0ZYwrpq7d/XMQ/TibGPAfbxefBBaUuXuls2Nkk0NNaMMZ9UTL7LjY+ICZw+OEkwVhhdKs8RuqyPD7++LmatEYI5B0eSHOIH6wiS4WR6TLtPZf2owRE34l+eYnLHliuDUMvflhb0lHl4iGFEoHqni1gwR7iaY3LNXHa42KA7r6BwY6oYvzpMqhQXzYJmTXQUdZ0xvTEZq0T0PyYycZkpk02pRY0y5i9SEVcAtL6DTB82UaMZRJ6s4OoIXcf7s9z/w1Rd/wb/+x39MmVDUKB6c9Y74DsfdeXq58fn5iY9Pn3n/6QNPn555eum0JvQOLbIp5VPwg8wlHI7poJ4rxwAf6WqCToyK9gW/NvSV002xCHZPo+m5BZ+XyJUEhtqN2irNG6GWKxCEZe4ZZOee66mdmi81uyd35AS43xt2kRku5YZirGMBBIbxRThHAY+VF184RafGxtCBaJYZNjrMjvqauaZY8Qk37mvIn/HrZx8q5niApbN456gnWvvpq6gRtnAdN6QYW4AujdqXrK54YRbF10bLDhOdB4opJp3rNMLu6NqYqJxZdCYoRTvHPOdJaetZxZFHqO+R6RxREd0ooxK88KiNz5zodmP11/irMzKFs9xvH5GW0LVf8adn2uffo/Of4nqj6Fv6w1uWV79At69peiF4Q9GWK4YY1KURQxhSs7pQHJOg6ICRu8geAaNQKAx9YauDsDOhf4w8HOidvMhtsO4fqO1HpL9nfvgDY/8BuX3L/vw9M/6EURZCHuBcWLZv4PWZ+vprWE5M+TprThIsYyFoScpTcDlwDpovXNyZcmbG4HPtPMYF71njiiaUKtj5Da2+gbevKRGMXonjE3X/gfn8A/H0LfP3f8FeoJ4eWC6vmW+/4GH7mtv6Bnu10JogE6Q/U+YTc0+hj0dn1xtil9zJT+MnsVG774qlF1yVGU9MM4IrOhZUDhYDeiWkZSJbhWvsrDpRP+Ex2bSxjRvdH3heChbPSChIoY8TxUo2A1Q59RWVncnCEjDU+IM7j9cNAfZ+cL01jqvy/g/w/b/4M4bAu3cnHr+58Isv3vLN22/w9UztlgfLozBLOiOqB+rCrhOdQtA5DXI3DTn18srLnYhI5Mh6mrKEM6NRuTBiMH+6/ZSOiRIhGfiTXAkcZixTEQlKVMxzbz0V+j31P+kgwWV2IBhhiExOwLVmW0s1vzBLGDWE5iu97AnT0YXCFRFnH1DMKTpZcEavzNqhkC6ZqVTPxku3bDOcBPgpSOeKDgClecfVWXwkdMqNIUq3zlKVZQx6OCI9v0OUe7hXGEWRKJx60FW4WeZtfCbMTDy4aqKRJeZ9XaM8hLLHgYRTJSOvcXfVhK94VG66Y6UwZVCiIbElj8IXiI1qg509cw1i3GznNXeVegQ+haNGSus82ObCgVNLtmSKkg8nFcRmAqzkxKb5oAwTDlKMJ1boSurbPVjIfFiTiYcnTdLItoVqShKl5j/NKTP9DmU2uqVS3dfBbYD4SmGitmOerA+LiZVkddTu3DCWUA46vpzwdnB24cWMHo2NxrTg9Vwo5aB5oXlhHQpFmHakCK7kAUw9xWCqB0coPQx8Z5UFva8IpzhNjeI3Vr0yotLYCD8QXSkjiBp0C4r0XItqoVMp5UpM4yaVqcLWg+do/N/+n/8Rz7cbf+dv/Q0eL+c0B8/g959+5P2Hj3z8+MT7T89cbwf70TlaMO7EWHcYM6WPLkHrE7jQfc2gf28Uq5xEaeqI3Dh0R0TZfae2K5MreztzKkkzXRnsNpAuBGuGlifMroxyJvTgmM7CzPWyBFoaPisvc2PzyeMciDtNJ886ibLyah6MqHRfMM0/fzeoPgkqSmfOySzKQkrmqjwx5pnplYEnKdZXOs4lKgtXllqge7J6fsavn73++Fv/7n83dn+LjoOlBte5sy4L1wGbndjnADs4+YrzgsQ7Rpnso1CkoyWTy4gSvuNyJ+/NwvM8UbYXvvAbn2Yh5ExvzoO8ME1gQpMVi5LPchnMLlCS+DXc6VFTtCSD6Q23DfHJIkq17xmxQr8wotF046yNU51cWyeOhj39ls+3j+j+Pis3lxV//NdYlnfo6R0v2yveFGO04NBKG50Hr6CkD6F2VnlivHwFp8lslVKeEJv0sVDvO7wek63k7WHX9C9EWal9Z96ucH1Gn/8Sf/5M6+9hfKSPTmjcTZBOOW+UyyvK5dfE4y+x+hbVjVGSC98pdwnTlU3PNCnss7CUD5S+IOMVshxEH1Aahxasn6g0bN2ZR8Hkwl4sd763G60dLC/fUZ9/5Hb7C6K/p66D8+Vr5sNr5PSW/vAa7IzzFTIhdqe3G9OfkZvjxwtTOkUmYUkvFHnA9MTiFS87WivX8cSDVHChTcVC8CpIObLK5hvqQnVDtTG5gl2oYomrlYOiNYmARHpQVLI2Ww9cCutciGrosjM4s/YJy8BnJ2TJLWsPSgFXpS7Oa1uw5jydlFdfbfzi60devf2aV5cvuMQGs7CPnRFK15RHWXSGdYyKe2rbFs+q1un+Mx3zIQuPdlBVqExGWD44wilaGHXix8pyByKNKFTAlwYTZkgGFCOrZIsXSrQUNlkgeO7/veY0yGBw5M0rJhKBeCF03G90QjOnDs0VTQlkptHQe81kvGVjYeHALMeyHob6StyrhQuFrUjexmfBw1Gcp+E86ELMno0Vh2mO+eQoyghj8UHxA6bRuXHtCyEL612gtrjnA1QrIR2fkb16cioxZyCaAdIhlQcxQm7p+ZgV9YZI0KwkQTMK0/LB2cQoMamWRkqJQSwF7cohzqmQ6GvfuOlGiZ0ijkyhVMdjQVzZ1xtbLyAbXqBKrk3WEA7Ng24RZapyssKhDdsXYhyMftCGEbJzeFC1U0Iwd3Z1YKGGctWCuoMMJAql7EzZMl808juxrBNxKCHsSVDBE4/DMiuHKMN3Co5rweYZ047JFWRJM7B6ujdisPUDD6O5UqZkZm4YR1XWcb03twQng/wVmDHuEzdHZUcjr6WvKOx2RXRJSaKC28CmsUbBUW6WWZ46naiVYpFB3dgQGQyDxQOfC7HubPXEeUBYZ6lG3ZTHs/BqqZg512Mweye6MELZu7KH03tgozL1BYvAPfMtFsKLJBH1hDGug5fv/u+sxblcHhI3cBMOUdw6xx+e+PHTj9jbB37xN/8hbSz0U6H0g/NY8Do4pmFxcBXN75i2YfMgbKfFKWUJ1mlzYFJYp7HQmDi3WLFo+N1gfCI4pNO4oHZQ5g3mmSMGJRaqFKYfSQj2wvQzaGPSEC2YBNsUun6i+4kaO53KrZ046TNHSeHf/+l/8a9Wn//8TMV/8x9F6Z3BilqnRKEEjCrs40DDqHJjyMaNwubj3nvNUZmKMlzYS354S9xrPbqnjvde/8I32lC29YqPE4vsnCL47JNFlaaTyZmYja1O6IV+ryiKQB8XRJ85M7jJwjIWRPc89c+Ghua+tClmL1z1zGIdWCgUbG/MfWfefsT3P8PbQY9gtUlsb5N+eXoA+5Ldzqid7/tZT+FK3BBdGOLUXhC9MWVjceUmPQ2Umm9W3Cnu9BLUUYjqIJUR2YIo/pn29B7dP2AvT7T2B479Ce07xA0yr8yyvkIeXiGXd9j6BbK9ZZQTslyYnKiS410z5ej5kCQaPTa0C8v2jAzj2QsqlQeU8MaxNlY5mGPFFyHqSrll+4HbZ3T/wG3/Pfr5GVs+s1jH7Yw/PqLrA5x+idYF8UdGLFxLQ/sVfXHavqNHJsRjIb+oo2KrIQhug+mKxJ2AJ40SlarKPgy3LPyrnXH7jHVB6qSOM6M8M/WEjJUs7zpeGxoFw3DJPaHpiSgtaXMhrHcS6lgHk50yHmgiGHBhEgaH3RHYARqDug3K42te/3Lj7asHHk9fUOoDq2QjIebKnJXCYJTUgW80witRSULffZTeFeQOSlJf6BYsmnyFNHYqPRJnXH4KRXNXxktir/sQqoCUnT4dlxxjrsM5W8U1q6fu6YlRkgkQDkOE4ZMxYUVYDJ5JDXKzg6JL2ik9NeSesfi7F6JkSBOnlaCosowVL51ZQboi2hEmx4CuRtknLgM1YzjoVqmt032gU+m2QHTUswE0ZVDFKd24lolF0MqW2gfPiYwOYzCoGpyiIF1QfeKjFSx+AuBtmMCLHoy5cLqzbca9hmtyQu+Gz6KCSgcEZ1BsA5Ko2iLJpa6T1cHIjI2XnAhVyCpw6XffzAa24nKwuOZKymBEmmSlVCKUo7/ACGZrjNGIO2NhTs3PseQ4PqFelsUQ0kfRBUr81FCZmBhDoFgG3ecMjpE21yUOAnj2mtMc7awhaBgv2ggc0UrxbGL0EowBNZTmDaGikaHbTZSbWPp7ZGITbouhYwcWNIyhCczK1pIgPmhiCEpYx6Qgd+lWEaVLx8Uobmj0NOGq8zpyRXeoJd1YbkgULIQ1DCPoa2P1hWlBlYO6bFgs90vo5FwVN8P7oIkzegMMi073yW1uLJEpqmGBoYwuEAPxSnjh6Q//L7bTlW1TxCvmnd7zfdN+dP7idx/wb4Tf/N1/g9K/4rYkMI5xEHNDMFQGwoJox/yGj8rQDGkKjsmBz2yVWRRaFEKhrZPT00qrhSoHEnBzp+hCmTsuxqEbnacMsU/jCMc0GSOtCHUoRlZQIwoyDkQL4jtM40mzbXK1g7fR2dvGP/7f/A//+jIVIgdrvad73XhSx5TsWFOROtmjwChsd85csGTNTcHrAUdhM8BfEiSjF05RWDwFSOqd4k+sUqh+4SZXkht2peuZVZQizxQZKUmKyh4roZ1yt7VVD1Q3gs7iCjJQC/o+0KoUzZBVL8aQjfMMZkBwY5rQq+DFqI9/i2X+htEyOLXEB/b9iXjZ4cNvWfTPU+uyVbRc0OUtt/UbllOlTqXqSrPORda7aGmAdEpbCU3JF1OIKiw6oAbhgkdQ7GCWhB2Vr39NmX9E6ZNiDX26UfsH5ssn+v4evz5B+5H9h++Ib3+HrUHVR8ZpoW6vYPmC+eaPmMtrom6IGGeB23QuZec6TkQsRAkWdw6dXOWgdGX2FV/PrNY5Dgcf7KK8YaU9vqN98YD4V8htJfoB4wf86T3j/Sei/45S/pxxcnR9jVwe2bZ3WH3HfPcOIiVL43im9oLvO2M2+m1HZOCaG6YVIwRCl1RGkxjcOfRuX4y7QvzA22s6A/oFsUCmQz0IjD7y4FA1sdmmxozUzN90Y/MVLFBp+J4yuI7itnMqQsxCjwFdcR9caxDA+abE/sTTj51v14+U9bdcThdOX554/eYtp8vGyR7YRmZCOs4+F8TyIFxcWdxRK/QI1ILNnW4HJsZ0xTztjVXIQJylLTQ88dVFDRtGtY4syhzp9ihaE3+ksJpnU2umQ2Rxy5prFZpmwE8iA5d1ERqNGQsWWYnNDETJNENoMgrMmKEIEKLMewC1BogLuw0IUI8MVTo5wYqgzAEmSBjdg0AofbJHHqw95r2m6pxl0MipySwVaseU9GN4rokMTypnDOQu6Tp8MhZhIdcXRSYLymEj68Ek+6VMY4Yzw/AIQhVxwe8V0NVL0kTLiYpwaP5FTj4ZUtHYEO00m1m0uD+0kUKzQbgSVKY5y7gxRJkiWZefgbthRRDfsem4OPPe9EIdPA8NhkA4LYKpynlqujzKwEJZRuVkjaMIyuTKQhXBPLkxqKf3JDwnFiY5KZI7kTWEF4wikoJB0jkRKlzJvEwRT9uwZcB+n/n+8kgXi2gwbGNocJ4HgxVXsvo4t1x/W8sKMJkJeFHhdM8DhN2bOz4pngei/leVx3x9PxehzHbP2xmwgCjd05iqc7KMhWedLBOmCnKrEI1nTYX9NQar7siEQcUneaicSVaVaEmudEVbAtaaXrMFRCDzQMRos2NjZbGFObJR5NbwU+GzTuRamb2AK9G5T2I2TPMSUTwnYjd3bnMDhSWcIjt+vyRkJXSikhRURzm3ShcwaUyUUQzdJ5PCrpXFjXIPlfqELi3VAl7uK88D1NGoSX7GoOT73+WMlc6JRo+V6hlw3ta/5kyF6mQMRWKnb3CeFfeJjqDUBNQQRtFUTA+yT17mha4vtG6cZGHblbBKjxe67gyyTlV8Qjlxa4XSnVeyc1SndeEVF5oVltkZsjEQNAraFi468BhErAgrxfJ0HvpCeLkb7QpzmbQK5jsxF1rNDIJqQfsrpu0olUNunKZgtBQ7nXbWbqz1K/zhy4QG9c5hz9TesZdA2kf49DtW/ycZsFkfKA9n+ukLXtY/pp6EMV/R58Zin2Emp2HVoOpPhLYVdODsgBKuSUqbwmBwrBNpZy6vB8f4Nf7lr/OEvj9Ce896/Yx8/i3zeI+NHyh9Z//4hJc/5fT9P6HrifH4inL5Gn/8Ar1ckPIKH6+Bhs3A5saZynX5iOrKyTfEszZaMJp0FmnctLL2nACMCnM16vlCn5V480u2+UDfP6HHC379jvbxd+j336H6p8Rq1Msr7PwNsn1B397B48Z5VKKt7HLDP+xpT+yfuOE4nROGSksbZilErOjdJFvMGeosY2coqN6Q+ZopM/HFfaOUnrjxsRCmhF8RVlScLQYqzosbEidkBJfiuDbcd7wLO+dkj5TkE0i75BesDRrB1ga3MdFdef/8zKtPz/zAZ+IEr16tvH195vT2Ha+2t1yWhYORK5YodJnU+yFocSVGQTTwovdds2cmZJwwsklQI1in0SxXJIHkrY6ZD7O7gwPPJgBFGJJpfUcYJugEbCDT2CLpgJMgFMLgPIU57p1NgS0atyKpRfdCC8+6jU9aBLusmFTcgmqTNQbXSEKrdliPlWk7h9yQZvnZnDAUQpza4l5HzIfy6kkYDHG2YQwLCo1BSU6GwMmgkbwcVaWZUEISs2+ejMRp2VjQSVNhRrZFFi3gGW8lQMWhOIuDmGKSPIBpC8WFXYSrFs4EUhKFVJojkVCvQa5UtshGSujkJQIVTxcMmnThyDzNLuSDlMha6RDU7w25+/RIQjLk63CzPfXtQxBRVIwag5cKs0/qYpwwSl8ZemPTg6JG1MKQQbgxo4I05ki53dJXvKYIrSJIadC3PLgXp9z/HGG5Wrv5gpTJg8CYipUJXumUnAgn7wsfieFX3RFZIAqTTrnnWcS5c1GdJSqXCJpHumNK4xCwqdSxUF2yYqv3NUEPRh3ErBCDWeCEYX6go3BI5OE1c748xUqj86hX3AurLLQ5ebYMrnt3IhaGHETsxN05QhiZP81miBBJwpTBWQqdwjrygDmrsOgDfX7GRx7gL3IQbdD6gS7PnMc71KEXz4smjTmMKBMN4RRKjwz8YyvTJ2ErSmWqco2D88wDzosq8+wsPUOdZVSWMnDJyauulTYGtSjl8Gw6Lc46ZppRRqXHwtxaPjsHjCio7lxcYS7oFK7SYVnwgGP0n3VW+Nnrj1/9N/79sGXyMCa73Yj5GnOh0fkolVPpPAwlXLgh7Kqs05m2MJbJaYx8A8iGszBHYZErrhP1QrvcsONyvy1Nwi+oDkoMFhE+FkdvlSjjrjk2riGUheTezo6a52kx8obr93Hk9EKvV5ZZUHV8GkUHrtlYkb5lEIysOx7WWWdHe+GgUul4nAh3ojSWGDyPQmWBxalaYCgHB6W9oNcfuT3/QGkfkXZjboZcXtEff0Fdf8lSF6ZdWGfJCpdmIl0YuBRqG/TqbAbig6sXoi7MZkm7HIVNX/AxafGaWlrS52TlmCvC71meX9CP33Ec3zPaM+3598xxoAaBYHXFH8+U17/m8fwGv/yKEW+YtcAUmM6wwqKD6sqQipWsS12bss4TZo2hB4sX5lB2X1iXwZjGQxFi5CiVeqX3g359z3z+xPL0PaP/iMqOLUI8fMV2+YLt/DUsv+SDK1XO6N7o8Yl5NcZ+ZY8byMDGB2zZ8sagxigF8UtqwrVQdRK9MuRGkcqigUcgrCCdLo5N6Ga4JsOh+Akfjlvy9h6LM33Fq7Nop/mK+EbZnnB9w9IKTRtVD1YKoYUiB11XxpgIB6WuDF0wXdJYWHYeXwffvN14ePcb3lwKD+cHJC7MuSB9Z60C5GG4T5B9siyDWYIXf+RkqScPL0i0dOuI4ZKyH/OFqS1DnlNSUU4gtSaIS5zQ5BqEBaae6OA7eUPmpBEUFcZM5gADTC1hTHj25805+aQUpXkaSzcHtwS/VSmYN2wu3IYTulN04n1lyET94HBQW7EIdDiiwREHRVd6wGKFfTrDnOqV8J7CMZywyP+dOBKTpWXQLGxigIWy28D2CmWiMmkegLHocq/szYT9iKLzCneTKxbJ6ZgKqnQL1lgoWu4NJcXrROWA2REpWM91leF33kggfealyZzT8HS+RH7+QgTD2IdDFVZbwSeP5nw3QWa7O1IskecTIiZ7NWobWDhuQmHiVrAhaC2oBc0VN2HRFY3J2Ru7BLdiCW4bzqGNPSrLMOZyIMOJWf/Kwhz4PTRtIEFpCYHTGexa0OkUhV6CdX9h6CuOyNXq2TplwJTb/SClLCNQLeBwSEvxW1S2bswCqwn4gDLwqax9YWIcloe3pY4UTnql4ywq9BrIWDgN2M0JghPBXjpdKpcx8uYdlXUdREsQ2iGVqEHpwcKJa1xRX3BrVHc8knvhcWCRbJ6hhkRhlTRW+6z07/7Aob/l8fTA42XleDnoszLsM7ML//xPfschk9/8g3/Am9PfIAYcqnRrKGcuc9JswFzwqTlZVQM6dfnIuL1lakvcgu3YLJyH3ZtAha10jsNQ6TQRmnakO+t4wNdJiyfO8sDhxiGeLhsf7CW4oMx+pLNkFqaUO3Nq5kWkK11HcltKR1zouvJ/+J//q9cfP/tQ8et/5x9F2KDGwioNpHLVifqdKR6C9zOhQYRxLA3ple5OKcaYO6YloTihrPGBpo94LCx01CJrMQhQEe9MqYhNdCjuwYmO6JlB4+aDLoNXkhW6G43VKiOgkWO000yR0HTjOipaDJ1ZOepijFA2feYaG6aDYkobCQBaQ3ELbh6YGOaTVYU5rzQRSmSobQBMsFiQLnB+YaixxIrPjTHfo9fP+PUDtf2B57agulPKRnmzcauPLOWP8PXEg1SGKUHPClJf6ZpMBPXEAjMXdHnG2WCcMPvE7gVtlh8yyQCjGfQFtCs6D+LTnyPvf6T6t+zPH6BfGb3h6RxEN+N8+pry8DXtiy8J+YpaT0zNFoWTjZZQoUqHfqab0e2ZC4bfNtCJnl84ZmX2jWWSIiub3BZjtRzXXntlay9w/Y5xfQ/7B+L4yJSdyylgece4fAGnrxF9jS0XjukgwdFfkJdB7M8c+d2ExkSXG64Lej8kaLzGSRR10UrzrCsXHZSiHF2pWllj0CWzFDccY0fsMfNBDrUEJwmeZ/ogwiumjpUVj07oSC1UFTaW+4fwQj8myszDqgalGKtnQ2gJx9fJVhceHhYuXz1weXjg8vgVa31gIzHlOVVY0xoYwtSWnhWNnLo4iGS3H3HUF7CkBtoUqi1MHbQYmAWXAV0VmYWgslhHDHZR5jTqzBVkopCd62xUXXiW4F3UDNpVx8a9NmeV5oFFcBJJzHRIgr6s0mSnOMxDc70pkzEm5td7OFMTLoZgCoOsrqtV+hQSCWSM4thMRsIrjGaRpEgcr9m2mR5oqagMDnfCheKNqSeOCRuDGiWzITJYKEkYjRM19wN0T3qpieXDUApiymU6RQM06Suumak4u/Msfj+UOEOF6jUf8qVxRhl9MiIoogn965HaaXW6BOeIdF2Y5dpUlKtOytgY7WDaQJgUz6bKVKF6sinuZbrMttiS1E5ZmNoJW1DJyvAWyvPqnMLwNviknXMXHGVMy59LmQSTS/jdQXFKiV56WRlNEAtWcRrK8MHZc3KjpORsc0l7KIXZszkyJRtPG4GIwkxbrsVKWAcRrCutDIyCMdNJY+1+fBPmmKllr0INYUt+PhaFQ6CXnXIIUk4gV7ZZ0ytVhRmSn7ul8zwtRYlxB6DdsywjRsKwI1soFgc6FnYFkWAZG5NAygGW9lCLC/3H3yHx57zeVk7rhev1hfNS+bw/Mb3yJ//0d0yb/NHf+ftsr/4OrgciAX0lSk80eewccqbqjrnTijNioQ6jx6CXwiIH2oVhGbSdopwaXKuDJ0rbPQ+fST93qmQwtw9B7V6z0zTaDsl1bg2lyeSQgnlF2BnTqD7ZF2ftCYRzTZFgOPzj/+X/+K8vU2El1wy7r8i24GMQFIY7q0EPY+rM8VdUzk25WrCocVOhiKGx3i1/zuxvqTUPCyUWqjeGCTc1tDvbAjZujJbBm08sjO1gjk4lWEIIfbhDQRKRC8K8p11n3AVDvjFQzidj989MVSYr03O/vpcTOjtYIE0pOggzXjQrVud7paqb4mVSZEEnNAzuP2SIPExZQXXFBgwJqt5opkj9JfXxG4r8A06tw+0DPm/c2gfKy2eG/z/wcG4Voj4gywXZLpS6EfErvFrWpXD6sRAijEgqqQusssA20dFgGdBfcYxO6UEvsKghb/82PP4xVW7MPvDbM7z8QOw/sj59oPVPPH94j374A/KHQqkbfbmgl1fY5RfI6TWzvgMtjNOFqTvSHyhzI9YOpx2dcBuVAkhpuI50KPgJRucWE5VG+ECscrz9NfXhb2PSuI4n7PjI/vI94U/Yd99i5beoKNU24nwmLt9QtrfEVwuj/wJtJ6I/wR7E8RG4MnqyDixeCK0sNnBJ85+qJY/AswIZHjSEzgseD6CCUHB/ps9AijFH0MJTBkRLhkGkc8LmknRODbQtWRMTQ/tntICKYZ4P8c5k+ExRVt+Q4QwdPL0M2sdnFoUvH/6C9WHly8cLy9tHloc3vJorYivITglleucqC5UF0yBmPgz0rgsHoUhWDW+S4CtFqW50HJG8ZeO5Wx6AzeQLTgvckjkZwziV1F2HS8LUorDkBpdBWhqzVVN5sQMVZ0VQdcCZfsLGQdjgzZEP3UaAF2J6Gn4zcpU3+hC0FGqM1FpH/pvqWQm2Uu5B1S1XXhQ0JiGdWe6rAxdEyx3HvFDnjsWGqjNlTxycrPSQ9NZIQ7riJamBQzKEWsnMQ51GUcMtUPKBWjyvPiNWjJ63PVUqxihBpVH2HHOLCj6TzTJdqES6LmZllTRDVtmQ6cj96L6WoHgj9R6Fpp0hEy/kFAbBVeiRpFDxeoeeKsPSsBshuf4Tp6lSRmZfXJVTrKgKg06sgvTK5plXuqlxtkb1wZyKiOPhSDGQnbhf2jZbs+mgBzbyZ6oUtihMn+xlImNgwV+F8D2yrWdiyAhsWk5GmH9FsoQMIo6QDMuGElrBO8sITCRJut451HFfkF7BNiyu7AhdCycOciF14ijO2itbLsMSl4/Ta7DOdFgxNkTyktx0w0pQ3NMxIpOIB+pQjoAZnaITE6d3o41JKY11qQxxdIJqZV2NW5888ZkHrjmF8JTRnd1p9GzecaOqUAi837UBmUikjMpM6jg1cmKlDr2OtBub0n1Jr9IYHNoTQtbXxOWXJ7J37MnS6ZW9KBcGwytHUYofKDPBZpLB48temUu7wyALVSq73n7WWeFnHyoWEwaPVGmUGbwMzRuJTp77ymsRuhU+jyU73kU4u+MyYTaqFuYwvMAWnQ9SuMREQ7ktAa74rsTWURZ8KIvnD6nbjTKyfqrcCCvEEEo4WoMxK5cpdK7UqEw9qC5ghREHNVaKvrDpidGzQsfasD7vng1F+zMWD8wQuk00btjccFZWTVtgm0L4iV5fsJ6hmUnBrGFTaffTvlKzby7CSRZ894QuRUHKJB5+iXKw1G/Qw+kMTtLh2TjmB/ZPN07f/8CIT9R6ws4L7eE18vAFVn+D6CNlKlahXYWL7UwVpiwcckoDqwn4gpVbBsHCOeoTBxurXpDzhfWLr9PNcsBp/8RxfGC+fESe/5L9+Xv603fUp9+i8SfMslLqRrksyOsvsdMv0PpLyvaOQxxsBTHG4ehyUGRS/IHDb8zSqRbMCUxBqNxioLeVqTtzcagL/fQOef1LJArijdKf6J+fGbdvmT98i3/7z1nMYD1RH38Fj2+wxy/Qhzfc4hUWn6lPQD/ox84xnNZuVH0BXZl2poVQloNJhsGiCKEnlqFIvDCjoB5p242FMOepLMRslAZeGot3OO65BYxFBntslAHojhj05hwlKJ5WzEoQngK5sTylNZGJtoXWOzMq75+h640PZVK371lWg3crb9694TeXd2yXL9F6ZhuDmEnnEzGYzqEHq6zZbgpNdgSDpXem2B0cltRaDe7wuWBI8hzijkkWoKFZfcUSzTyFqwt1eAreEEyDIYa5s8XOjmJI/t6uREYT6cCcledyUMckZ8uSrIB702WKJqNGIyVk8ROnQag+7+xKZwnhhbx1DenEzHAlLFzuAcohymUanYn65AhDrbNLgFe2uTGWHY2O46whDH3B5oqiOdm5a+UF4yaZDxkGW19gDqZlO+bQmeCoO+b5kElzY7HAzAkqnU4Ugwi0QreCtPSlBMKDZijVXRnA+6VxwujaGTW/T1ZZ6ZKSMAkhXGkEKhnstrqwx2CostBI7tyBzkKfgboyNLhJz3UfE6pgEQzdWctChNEcFneuc+GokzoFi4V5Xzt1XXMSF/eAqSbO2zyQJTM8CciCkMIsAxnK1nMSguTKozCYdmVwJmJwsyR3ygx6ablG2pXAaNVZRmcbk70q+8yWiphBVEyAMom5Z0ZEVoTBkAWZJCWUHZuPREJhYK64dbaRDpr0pOQE7tCG+mBKSc6MLEQBYU+uzt3mq6IcRfEj24/FK4ueaG3HRCjaWAWe9k6/3bi9mRDOGsE5VnZd6EVZZseAcf9sVc0g9FWvVE31QVjmJGQuDB1cNTiPC5scPOVHPSe2Jde3dRpzEdaZ+AOdCz0mYp1YWjpURqEXgeE0XXgkUetjBL0W1K6MsYIG9d4gsvnXLBSr4bmr3rJ29hbjyW7glQctPE9n2OBRhWu72zjthRav+UljHesNE6PPFFAdeoCcMlwiF0yFEjcOFQ6p9DmpZvT4iqEHfrvAthM+gYWYAxXhMjpHXHCRhLfoxGZNZXD1BF+NQvCEsjF1zWSxtkwKa774bo2VxmkuXHnHqoNGgwJ9vKXxmWXpFK9Uu0Hk4QGWbAq5UXxFy07cMbA7j8j6GezA/YziPMxb7hb9NVF3TjQiNvx15eQbp61yuLF3p+wf4em3xJ99ZpY/pcz/Czw+Yts75PIV5fFLDn9FuY/u1jGZUXGdnFw4xikfGjPrvWWd4IO+G7vCUg44F67LhV4uVP97iPxbPESnfX7GfnzPsf8z7OV79HiiPX9ifvsdU/+/sBh63ji9+zW+/hoev6bWN6icaP3eGBKlNaOVHVMyKe43plVUD0I6EZ3qStSssrY58VoRPTG/3hD5Nae+MY4nysv37J/+hNvvv0V//0851QMe3vHm8ZfM5TfE69fs9siJB+qzcLR3HP0D8dKJ5nQ5OB2dUnIMWMJQjEFncsbCURawD7jujFiZ4z1zFlSXnDfHCfFgxkC0sWOU/szQmXTMoRDnZI+goAchgowV8RQEnT2YtTJUWaUiUTmOnV46wjP9eYHrQvnc+fbP/ozf2bec3iinLy785u3XbG/eUs1YxagDYjGu1xRchXS0N6o4Gid2d+Y0tOaJQmeAPtHd2H1hYYJMip8JCbYS1Hqf4gzPB6wqIwrOREs+3FyvmFZe3DjMOc1gLJ3CBXzh4Ebxic2ZBzgCjcFeQCd0nJsab8agSjA8QJ7ZZYFQZGb+xSUJlGNMhq5ETOQINhU8kkaZq5OO1R2Pwj4MrcktcBri99Crfszd+Fg4inPTinn+HeesmB53ayRUFmJ5oYyFmEmxHJpNHJGZYUCDGPn+qSwMTRR6k3uGZRq1dmwqWwRPsWOyAnlgCC8glnIzGZRp5Pwj1eKBghwsPVs/Q4OXJZjhvPZHdvnItayU0Xn0wpCKtLjnYOZ9HbxzoCzDwCZNnTINL5XSN5Ad0T2nXVOoc0VKJ/ygudBV0ZiUqDCdWoJgB4TimkJJhGAyprN5wUdwjkGLYGiyEWBhqqRa3RemTiIE85Tq+RJsQ1l65/AtOSm+M10YxTD1e23ZKH4wxGlROO/Kx5PzzdHSfxTKrRjXqryZlfNMwdxeR6rS44CxspNel0LjxsY2N2QODg1MFzYOdjIb9ipudBYOLzTZuLizTWE4FJQ3W6F3he1E4+AGsApRnmn9TbZpJnRxTmSzT/WF2lbGcsJrsPtkzpUalvVvD266Ur2DnOkWPMwbG6c8wCr5vYlSddBk5WEWpk4M57M5GisnubfZomQGzI0pC+UIxFqabOdE5MRmjcMHzR84q2I2aDEpMVB9/FlnhZ+dqfi7/97/NCwOoittKJft4IVT9nbDOcXgxUFRnuMNC42rQmVSRRjS2LxgPfjsA6sn1pHK4SZ5q87TPlQbLBG8xIrHCfHOUp1jGpWDYy6U2hC9IbGyunO4MXShRI5sZU6uNZh640GM0hufy4XFFyIO6hB8UTodccfUOeLCKQYzHLPGrhVGZZXGjJqjTipXMfoM5p1hYLHjRVlCWGIHLQlhkYV1fsZNOQQiLizeUiseg2O+YPEGq5EP2nkkmpbgkIBYQI1R8jZQhzCun+B4D7cfGeNTHrDqQNcH6umRfXvkZF9gnHAW3F/ja8d6Z4yCbgXzg4MDKa8Z7cpakgR56GSGQgzO1NzJx8JNA78Oon/H/PwH/PqM3b7Hx/fMY0fHJKwhy0LZXmGv3iCXb+D0FVpXij6CPDIs+RI2BWk50jxqCrOKJ2rbqTCVswQ+g16CMhdqdA4xqBm+Ihbq9Vvi+p7+4Vvq+MCgYWtBHiusr2nrL1jWb+h+IYBoHR03bs8H4k/4dCzSVxIaCWPTIPPrIGwEhWIH7hVw+P+x9q+x1m5Zfhf2G2PO+VzW2pf3fc+1TlWd6qu73G4cjC/BjUJi4khJLEgQIHCCkROCEEk+RCIXRSgiAvlDAgRFSEZRYqJcSKQESyhKJBIMCCJsGdqN3feuruq6dJ06dW7vZe+91nqeOecYIx/mauejC6nPt5LOKb3v3ms9z5xj/P+/H0IVZcqN3J2Ieajes1F0x2PGkiAmzBlmyZzlar9MmUjGaoWqxhSFLWDSIKcJ5zJgXlm5AQ73haOs7HLLF9uFuw7nGrA0ylFYSmdKwvPlwLzeE2/PfPXZl0l5ofjCOTLSHM9nkudR/UxK8oRkYfY6MMgaVJQtZ4oLOUE26DKPrrxWug5GQbZMDsHTTha5IoUXxIUuZ2YKyMBXuydIFVpl75mzjpZRRGLqzsWFlp2ZYO6JNo1mRAnlFHBj0KPi+Ygw3BSxJ/rUSJEghtRNI+hqg3NgoCTGAHnom5VOJCWHInLhuqRBc2e2zBmILCgDMtRt9JmLGiZDlOZSyJqp+ZHSZ/acmHoasjw5YzExRSekoiRuorEV5eQruQUUKN64RIcso/4nYMX+//VNcQ4+cZHLNUOhEE5Eo0dBEgiNZDsrmYsUFOUMHMUHyIuESZDoeJtw6RQfvhnTofp2GdXA4jOLjWBq0yt63CBy564pj6JEVySNVkHqI7znBrNljEDVCfL4+SloFAxlj0eSZ7IFfaQsaOpErEjeEG94O8AEKXayHyE3Op2+P0OkEnEhNKMOqxgmI3SpBKKDONlCCB+TnFz8ytaYKWFUnMUyNQdTVCxmjD5gcaoUn0BPJIMHUW7F2GO0isI7uYFmuTpkCnuCoBMYqRjT44S9+gY3t5XlMPN0FqoaWSqtwumLxvc++h1uv3LP137y74B+z65B6AB7ScxjBZUayswxgp53zGbQxFkrs9ygPlYxPTrKzEWNWSuLwW4jPyiaab2S04xLJcJ49NFGKqkx2YxEouto0hBGaXBKwXT9vnQLZtnYxdkjs6Qd8wMqHY3E5E/8+X/+9zBTscqZZtA8kacTUww0bUNAD3SpTHkAWqZ+wmS4A0Qq4guqHbJyEZia0ai0lHHtuJdxyp9OZAop4NETaUrYbqRUOYoS5Uw2ud5u71l7wjWoOmiC3RtFx4hL0wXVGfUD4YNJYe60OIEqSTI1G9ZmwoVFnMmn6/69MHth8x298vGbJJ6yMvWdIsIqNtgBe2aTGVFjDqNGoVoma4wxXBoCthY6gF/JRgAvBNJCbkbzwqQLiylPIsBMphPaqbmS25GeKosr2+0den9g7V8mmRK9IvWM1Up9ekJevuKSfkDBYD6g+j5tEaS8B+meiwg5HYiuzL3SIo82RORx7UrBoWe2PFCyqQrFd9ptQfpXyHfvDTa/7XB+ybSfkf0lcX5A9k/YHx/ob76Dpd9A80rON9Sbe/TwFrq8RV7egWmll4zIhNoVJ71chtiHTvSCpYSRsHjAdKa1PNDGVsjRRh1rfkY8f5f8wU/T9hN+qvTHV3C6kF69RP0bkH+DXBbk/hnp8BZ6vKesz9n9q4Tt9P2C7jvFXrLt48SepNHzgC1JktFzrzOltJGqD4V+YJMdZOy41UeTJ8vGZBmPgpvxlAKRGYlA04b1zKbnMbYNR2MEFS/dmXxGtLB7IBbUbryZT6zra9YC8+E4ZGbbgfrUOZHpari94ck+w/Q1n3zwHs/XlZt3f4a7u3uSBKs9hyTsbiQTJpxWdTxgZBBlNmCtg0FwceWG6dqw8NFUiEIaA2TG/GUae/xIFHUAelX6NKyKu2RabhTzcZvyymz9qpM2moxK6WinOKfkrE2w1DnJhISOoLFNJG24gxm04uTIiI8dtPqE66gqRsQIrWmQYuQrWgIhDXhUjNVkE6WI4SZcpkruK51gsZmmQREwrVcYWafrhKcOKqy+YsqwCWcDP9ExcnClxY7D55MIasoiT0TOY5QfgxgZbmRmXJ2FPCY5abg4zJQ2HUezRwfULJzBr4jh+XBmEKFLIqfG0cp41UkiMWRUmyuZemUMDLw5XcjX7EVEIFpxEk8+UO+rG9KVpoXH1FBXJO+EtwFlArTHFaiVaFmYIgBBrSM2YGwqSiPhDGR4phGaxu/S9DqtK4QEkykhhcYguRZPtPRIj8Jiich1hPetXEP8CumMibD1NALK+gQUos+4GiEDnNdRpjRMyM0KSQLxCQ9jthFg38to7xR3VMbac8x0jdBEikS9HsYOblRNKEF35ZQETY1mZzgba7pl0oTVjnrjkkYA4tQ2zCeSdyiw1IkohvcLkRMRB8x1tCqZ6FmYLFhYUB8X866wycLBO0ca1RObzWypMTuEdCItiHacytQW7kRwUbzPw3BdgiKDszNUvsY0LWgbK8YsnRbKijDlkXm5iBN9EHhdb36ks8KPfKho2TjbjCSDWHhwEHHWbPTcudQZQjlWY5mURudiNzQVOo7W54OGKRuHcmS3Rp8bpd2iMnbMyRJ7CMhMaOEYnciduO42UxwIySgb+EZNEOkR9yMTCwcd2GkTaL1cQ6DDv1DTeHjBqLDty/hQzgQlBckEmx6pAavPRApKL4gbXhrJhNlGV9rEwA4oT7RpIzyjdablJyIZXEFBS3S6riP0p09ozJw40q2zpDa6/iK05DRLzNzi6kADUVY9EHYZOOueuOQZYR/+kdSJrvhhohwy0g6oNFY/8RhlBBg5YbVRvvgewrfwCdL8Pn73HpFfUJeJ1EYf+pxg3oSYoIngpnjiWrGcSdZwf2IvM5MaKSZcPsSedSRt5D3D/sDSHqkPj6TT57C/xE4v4enbkL6NpUwqN8zLiq3vkW/fIR3fQudbot/TSNjcxuSkJA6t0y3z2h5Z0oEzDfeM9Rtmrbg4fYOiRuE96u0jrM+wENZdCDZse4NvH5NefsH66mNwwyflcPcucXgHnr9NyHPC3sUvFT890tuZ0p4oTWg8EPtES58PZ0qbKSJofiTnQuhKkjPSjsMVkGdMK2or7oaoj1u87wxz5qAbTslo3UZCn0KNwRKY4sK8rVhWYh/AofPTTI+dqhtSKnt+w1FWLjYRqmxlIXtm1jsev3/m3D5GvvOa9GxlnW74sZ/8MUKCt158mez3WK907SOUfJ02TE2HxbV1SEHIhuFIJJIU5g4uTsuCejBb5+KD5ZBtkDVzsdH86naVSim1w5l85WcUehiFUfksaRhApSvFg6aVHANON4cPYmIkjrbzmAotCaU2clcQ4aIX0FEtbpEpriNBrwPuJDrmde6dSIFIGquS3Fj7mNBGC5DGZIK1oE8M+q8kJGQU0yMhBtlHzXJPUFyYK9QyMhYajkYmZFArQ0cTJYUjAWGdXY1JrtzNDEUCT33A58zQLJQuqO8jYBlBtpkww2WEVpsZwkxo5wZlc9hyYsJZdiXrThNQU3YKd2w8XS94DUhRmFyp2kc2SBpHz5wj86RwTM66w6Vw5QGVIQ4LxQ08CuQhMhuHxSGTK5RRle2GTpXcE0gf4DRvNJ8pTTHdEWKQb/VEk0BiCM86heKdrPs4wI2kKg8SPJUxiUp70FqipQlj5OqICaZOsguCIL1Qr3p60yGMW3pG0wWRwS9pJLJ1Uh+22ByMg4wHkhpdMg24MA4ZSSsNIchMngk6VRNzHDnvGzfHiUYdGgoMY+eYxwSgnirdN5pkckvDtHwNFGUfDizVmV4UtYE93+YThz4gfnQdsr0KUS7jIN5Xum6UMIoq7Rox2ASWtrChFHP0eim6RBA++CM5gp6Gln5pYy2VzHgqRpXCWhMtnCrORGNPO8ea6Jp+bw8V75rxme3sTLhUZHLUVmq/+hl65qv7widaeFmHvc6TseqJpnkYC7sz6UKUxmEfxMvztA34Rq3M6YaDV2qewXayDUgIk9AkiBNIOVNy5pwXJunctGdUAsuG78ZZC/fApWwkGwCVrQZ5mka1pimSHCWxEuTIuAiWH8BmsitNdx6jckyJR1GSLjABvnNoKz3GOXz3hHhiTUP7bXHPXDcKM00qTYNdE6SNtB2pKVjTTlRosfBKNmQ+IN1I2oZCuSu3c+MciaduiN6Qy46JkeUNqQlVMuoLkRK7GtUd0k6JzF4uiE0j27EGyJex518jLhfs82/SX36X8sNvMueZ5VmC9Z6n/CX68V3mdCCOymkveAjqHbxiIvRwis5MZ5iODUeRqaGXmbbOZIG03FDXW/S5UDzjG+h2IW0/JN58Qjt9j9hfsW+f0l9+BjhahDjcwd07LHdfJpX36MeVJu8PRLdmSoZkhfs04EhNA4mRHUm+XclwY0+vJbDa2eeZFLf4seDTO6gHT7Vij2fizSf0H/4O1r7LnBPrTWK+fRfu3kePb5P0htafYRvo6X2svkTrGekVs0rVM3lKYBXyI3gh64E0MXwBXcfLwheyGciJzgw+VOMqO7UqJooXcKukMGDG9TAOjFKpPdEvE4VGmQvn2JF2x3ppbN65TE9YWtjdeDsKr8+BHGYOaUXOD5z2xEs2zh/9MvXVJ7zzBz/kyz/7Y3x1+YCkB7QXrCquRi82kvtlSMiWENSE7oVtKtRcmXtiUxtAJpnZfSN55ZJmJgdi3PFEO4t3pE3sU6VYQWWEJ6ssuI15fLaOJcdEaCoQxyEtEuUkG3OsaDT6FCzNSS1RmailUySN6RFClkaJxJbBUiX3cZt3Uc5leFckComKijE1oTHjeuEQo35YRcjLUHCXOOPk8RlTG7CqyLQk7JK5352eCpsYdWocrqtOUkNjwvWCIoMlIgnzHSQxWx8VUUuI78yaUJs55SHSKmZcpiC1hSlfSBI0MZzOgpKis8eojC/ubNMIxHcLKhMpVzoz576jxViqYizMvY2plI4GyJYMrUq1W7ZSeUbj4E4Lh2g8zStTdda4sOeF5oFIp6bE6p2zjWppxHjZHfp4hqYwYprY+8xkDU+Ni46cxxLCtth45UTCUSzdkq0iqVMwMp2WnBxHwoInbeBCEcGtkcSpQyzL3B3JRo7KHIXeNp6YB6di6hz6sP1Gd3IUNHee+s2o3cZlPN8YqICuRiexS2HRC8UKPSVEGibBrsIShZ4CCeFcdsSCFzbR3NmBGsbtvFArJA6c9rEyL3HE6gVPryn9DpNCn8al8a4d2HVYrzuV3RMzwo0K9XKkLQvZO7tm4Im7MoBnOwutVLDzqMtrRnvjro36Z5cgSWVbYOuNWwRJAzCZ+5DHhVUSwVkSRSDFhRuHPV/LFdFxuaVaYpUTrBV3/ZHOCj9ypuJv/6/8j2OPivfAUsNIzC2hCZ535Z+dZv7oh1/hL3z5T/IX3/+Ap3ZBP/+c/aPfpL38JvLmxCMdK4MYeX8ptKVR+4Ucd2z5CuaJzhRKF8Gj0tJCxM6xKVNWnqQDlbdcOEtl11taG2Od6kZOC633IZWyiUidPYIcyhQzNdUrEKvjul4RvZX7eaP2AxcZXgXRDqmPnq8rTY0pzVSbmbrjU0O9UWwiqXBKBTGnpI46GEbIwtKN6krLE1JO4GNUTh79+lyHvrfKjpSgtZlFDbc0kMUlyDghaUC4uiN+HHRJSUhcuHgZzIUa7IcT2RJtO3FUp09vM+Hs9YRdjP3Fe6yX79A/+zbr+mWettfM2yOWKuAs88J2+yV0WunTkcSRWW6oSXF2pBUO2rCYMB6pPEfLa3DH+h1wRvMTuc4Yt7ScmKUzieK1EWfjsn1MOv2Quv8Qf3rC2pnSn3BpiCby7TMO7/4UbX6HdnODzguzr2x+oKTh3UB0uCtqZZuEvPvQIvsV6asGHaoPvn7WEapSKQiZKc7s3fHHl8jjR8j+6UDvroatTpk/JK0vqPMtFu8ORkjdiPOO1AvneqKQkbhgLrSysmRnATadiLSQPeBKi4Q8SJ8haExYMrwnolyIBnO6h9jIZXAMLDIlyWBtuJCTj3qqHCDtWBjmhnga9cSyk8qCC6w68yCO2MZ6mEg9cThM7LtzwljvV3787YXbD57x4uYdbtMzck6jgugyWk0GKzMhxiRC5I71RPPB5WjRSVaJyHisTKmi15t0SEZ9TLNM6qgAqlHrAD8VGSjs0V5QsjgeFc1l7Lv7lfgplaAQVFKDZBN7aeQ+MgOGYp7JOgKBiDCFUIWB05YgtA1CZmS2NIKIc4JCQO8YBqVgChKJkmbSlWpJGnkTbMKTjIaAgkgnU+hpjOUtGcWNJcHZOuYFkXwlujqLjFolpqQKNgtg4DDr73IlB/lU3Ac3QhruA0Zl0Ufjxjo3PdMJznNlaRNNx7RoVmOPa23TA48Zl8HZeYajkjghiHa0Jywb2RgQqR60SbDYoU9kHIRRd7RgykY3xWpB0pksBdMncmRSzFwcjq4k8SGccx2HCDG2lBDdKT2Y7IAS1NjwtAx+RQgmg+5pEiwOsxdelQuTKqlDxjmlwW4QqbgEicJNv9A40rPRuZCt0IuCVvIuJE2Ed5oIsw8iK1rxNmMkpnRmi4mCc5CgmtLzwKJHTIh25Ar0Eklkb0QYqka9rEgx+hffIbXPONwIMt1S9421OOfHGVXnm9/8No++8RN/9A9zkz8YxYRkuAyfitngIbXsrD4Nmq2MddrGDUkrIaMmb6LjexANfBptGkuAYaWSfSGFjfebDTCgR8VjRpPwaJXVZayBpFLtSEmFjRMpBbUeOSRnjwtdjJwOeHMK48A2V+Ev/Lk//XuXqQh5opLJScmaGHk2Q7TwD3vnv/D7C/4WPHv/lpufWvmwL/yX33rBL3zxIX/1+z/P9qvf4PStX6e8+R5zeWQ/cBUETahs3Mkore9MaBiXunKYA9OByY7knC0xpYT5ypsU40sEQyfsmSKKyBNzMtRWWh7j5ayDl+69j662CMGRlNqoQ5pw8emacs60NB4khcKtVLrCJDOtNm5x9jRuDSYzIuOQldmAA9bnkQwXw7RyzldZkHWKbVRWCorZNpLtaajfzYLsGdVC7UpW4yYLaCcsszu0aSdiHZkS2cEyR70Zu7BeiUOHutK1MjO+XPMkLIDLG+xk3O4Tb958xGH9CttbP0nxC7G3wVXoD1z2YNoMffyEEpXxKT6gh3vqcmDpH7CtSk+N7HcsdqFbwsjMXvEASTfIVbVMfyAVRn1Qoa0LevgJ5nd+bISx9p3p9Ao/P7CfXsHlE9r+hodv/jVyAl8P2HyH3r5FWp+R5ue08i4yZ6JnVpnJsjFPM8Uqqk6VzjmCSYPU01iraBDqdH0Anwced1FkfY/87Et0r9AeaecL+fKSdnrNLr+JpjMyHZB0YL19hrx4C5db5rinPxa8O+wvkd6xFjxwwqKS1PDEuFH7DPOO9xkRZ/dgpaOWWXTiIp3WnZKF2kfFTCSxm9FVBrLblJyUZCeyZLoF6HwFF1311buRxNi1Udf3eOFOrs4Tmf1JWIoyNaF/fuY7r53l2w+s9x9zfGvm/p0b3rl7l3l+xiIFS0M4dfZMlZHerzIqh41OkyGW8oBiFYt9rM1EEY/h/BEfIbfI7IyQbpYdSGgIRpBEMQkyOvr3KkQZOZUIRVwRClXHdyH9bh4jJjwP3XclqNWJrCTp4OvIRgClB8JwbWgC9R2NjFnCs+FpotjEbNsQwMXGnoYG3gD3wnSVtqWerofEzK59+ES0oxG4jZFxI+Ey6nzqDCqld9SCndHZTW44w1WhMtaNmgyLiqrSPFBPJHYwZ4qOyEQQvE4DBJbqREujQiuitMjUECQmwLGkmBtTCnoEycbhdrpSRcMgJDAXQgZIMLsPuaJnmo3Au6c25GYEpfiAoolw7PdUUZJUct54ipliOtoXGjRPI7AblckOrOa4buyaCFuvVFcdNdCkBDtTW1E627Qx+4CodHW0Fw4KrgYupDTATudS6GLjGWwrIonugouziVBSZ5aRA3rQzLFXWiSkOLOPQOSUHUIHkKsEvSVygionNOYh/NNKVCPpke4dMcVyx9Pw8EpK1JZxNURmzDdIlTAjqXNulbh00n2ihWFd0eScBY75Qk+J4tMw7lLo7vScOPBI7WPlMFATPqaBNtMj8AxZbEyYvIz1C4GJs2lhuQaU1Yfb5iATkSsWys4NiTYmqq3gyVnyhTdkDkkRS9AaipFEuY0NT3/L88R/ukPFzSzsF2HBWRHOOOqZQzI+lA1ZnuE90Ztxsc7Xl4k//TPw7mfBN/QWe+vnefbHvs4P/pPfZvuV/5D19CmvcqLlxLEuWL/D1yN3h3vKMjTSBzYeT1/A9hr8h4NoRkZUMBl2PsFIKhS2cRsJGRW0SQbhMvIgzjm4ViYaxVYebSKpDX6AZnYZN4RERUIH+rsmLtMyHowoB5m5yBMmw3jYxbmkNDDJJpg2km+0ND4I0SbIG/hEiTPiK6seqbbTGCdZclAMTNLY2IViqeOSqN5xn2gKoaNrLZHoMuh0ky/sYkgXsjpmziTji7bReOY3SOpYJMKPg0z4+C1ubOXwwZex+sgbM0rOLCG05chhyYQ44TfkKsz9Ffv5DfaDb7C0M8eblQcyHO7IN18lyjvkpQzugq+Ib1yiYpJYCErKVJuRMEoZdeSlDtx5zBtySJTyNu3+fYpN4I947ZT9wrx9hj9+RH3zffYvfjCAP7lgyw3l5ojfvEccPiDb25wnYZcBnMJjaMDz8KaYzFgPElBkfB6sGGojH1Clj8l9eo4e7nF/m+YTqZ8pl0fs9ISdP+LyxffJ07eJ0knPfow03ZJu36WUr9D2C31LlPYauXSsbrTe2NVI8kS+dFoI5OeIDp+F6k7rjucMupMjkCv73/JGRknNkVCK3tAZdtUeZ3IcSDJ291kKvZ3IwzeF9ifWKuyT05vSS6ZbZ5aVzol5drbWUM1cXu18/rAxff+Rb0+fcn934Pjihhdvv8397TMmPSAh1JaJJrj0Yb806EW56M4aio4jAhLDBWGimMwDH39tiA1M/sBiu8OkDoxwWJtWVh8h2SSZfEVadO04g6GhMRwdFwWxNrwMNg4LJY+XZvcFv27od1nHwVL8ClYqVC8UUXo2klYIZdfEGmP3bAHFApeOe+AEoQPCpKZI2ihxM1YbNFxGtkDp17F8H2uBnPHUcZ+pPgK5nRGI7GYkHVTHMCO0j5eFC8rAeYsVJJQtFJPDmFKqjJXweFuT2tCIIzGaHUk5WBrituRMBMkmPJw9dZJPoFAJIjoKeKQRlDcZXA1vLNdQayTh4MPxNNZaCQlniUbJ4+DVEfADhKLaMC2YpIGflkQKUOucBUiZYMV0ZxVwTag7lne0C1mClgYpdmLkbzQSTTMajijo9b8JEVwmRHcmL5B2kia6Z+Z2oOVKcmXXjlnlLkbVePz0dKwUvFBi2Fhd52EIlqChzGnQnXMwpjHlRG9OJKFiiBfmnqgp0zZnWYN8PUSoFWagTUoqz5hOG1vbaTmYqoxasMCxKTXNY7XsBcsF0we0Z6SPaquTKC6YQo6hpq8EqsHEaOOUEKQF26TMljARJjqTL1SMoo0TXBtThdkSomcEYY/gJjvYwLDfdEHEuSBozEy5jxCoTUy/14eK2RfuD4r3wgOvGANEBVc+ro6+//Nsf+xv5/uvF0rJ/FWHf/pbHT0nHjbhjx8r//0/9Ix/8e3fx1/7Az/Lx7/6G5QffM5NP3L79te4//pbvLoNyqFQsuIVWnSeN8FePiE//II3v/kr5Fe/xoVXZC0DbxpPI6Wagyk6iyfCBEvj5Ll555bMkwc1CikW9rRznh5YPNBUSA7eYJ4rvWUWErVUfB4EwxxcgbHBuR/Gjn/uzE3YLCgsTL2Q40w7TMP8ZzPE6LQnq1hL5JTR/JLkt2MvrYrWSmWCHLhuI61sHY3CJNO1RhS4LHQJpnRm6kHzG1IJLCotHfBsqAv71Fn6AeF7PMpzJjtwSI90jkzlidOnGy++/nfyIBu5wZqP2LRTL5lozkWdlUINONkRWSb02QfML34Oubxm658jH/0y/vFHPPmv0ZMx398x33+FtH7AfvwqXTJLvu5cPQ+DXtqQOnwaTxlkNbQdsbpQp0A2ZdLxYJgPC/H2WzT7EnP9OVZ/4vL0kvZmh4fv0M/fZ3/1EZJ/wMZ/gi2F5e5LlJv3yfdvYeVIT884x5Ekmak30MTGOLylfiYyBJl58PyoMmqgqkGXnak0fBb2+V3K8UtMy5eoW6afO+n0beyLT8n9I4RfYD++xXH5EunuBjt+GXs2YVXpW4P9Db1/Qf/dwN3+OSELXY0lz7iMqqdIp8uoWzZfmAi6zZB3ChXaa1QTPgmXupMlyDL2wk0G8c51JnqQdMHkTO0CXVlqZZ6cTceLo56cnibO9UpUvH7+z3ujvnnN5592PuJzDreZF+8fOLx4l2fHG/I00UwoG7gLaGL1QgnG4W0yek+UcBLgbTQMKk7JnT0qKTITPiqR+Pg5EGhzvMyUZkjpRE50G20OiTxwzn0gpSdXmhQ2nJyEowTajZ7sWg8Ncgzol5NQHY0XodGTQQrWltg5QBaMzmMIxzrS/lIqYIhMOI55opMopSJaMB+rwGxBcIOVRzZRDt3YU6K7Qgt6zBx0I7WxWirSKUyYCBJtTIBaImQipUZhMHCIsTI9JR+5JqtUXVAT1j5yWi47gqMxgS34VJnN6RqDVulCXKckWYUL40aP5XE41YnVG6JBSGapymw7L0vm9epMlwHgwhsqI+DnqeKRmfvCxRuF8XveQtFk47cqjUgdrDDZUMYvwD75mF7ohVQYmoC0jt95T0OVnhoawRIF1c6eGj0Vsg/OR8QApalMUIxUF9yVlBunwZhl0UrPDd2NRuG2TZyBKTXeLJ2mw/BpLOTUQYTNZxRYxceaw4xtLNBwLTSMqd1eWUNKAxbrZDUszTgrfjH0fkEp5FDO/kitxkxCY2PzCy43bDE6LFMFwa+2Vmj5EZFbtBdUGhErKSru8IQxtSBlGxc0Mt0TKq9QgWyFWkZZ4FEqkw5GUGdUeHvEAGiZUFwRbbgqrRS0BjkFJ3UQ4YjyQB75C+0jT+QF88qPlqj4T5Gp+Hv+gX8q9ua43aBTp2plvghf7yv/3ZsP+YP/zJ/h5dcP/Cu/vvMNPzInw07wP/iaMC/KX/p28Pf+DPzKFyf+l984MCH83Kr8VjM+DuFDD372qHynNz7vib/vAH/4Hed//5Hxq5eZn7sN3rwMfvW3X/Ppt36T9L1fRLfv46mivgxATapUbYQpc2TakFdzEUAnsJ1ZGeMgdOCB20rSjQy01CBuIAzSE00yiyoFkJjZ/MKsmd0bxFAnm9xg0ZB+4JIemGMargztTDl4igEicZtZFRpPJEa7JMdQ8vo00LFbZIg2WIT6RNZCoWN9QlWx3khM9DAcKNOGbbdXvHGM25BeKOrY42vScoNN99ykTj8rVj8hrDO99QG9XliycD5Po7HSCn1uSBGWp4l9EkIvFGuoKie7xbIxsZFjpcUj06myvfkB0+PHXLbP6P3EgQLrBDcvaMd3SYcbWG4pywGzBbcZuaakNYJkHc9HjhWSGKdUAcGmRI9GNiASk2YiLePAtlculwfmh885nz/BLz9Attdou5BTYDcTevccPb6gHN+m65eZpxeIVnoc2MWYbcck4ykT3emMhLu4sZVCjs5qo6ZnUXFvaNGx9os7Ni6sfkLedJ72H5CeXrLaIz53ZM7k2w/ww9ss8w3EzH4ZVbN9P+O1kpoT/fW4vUVDsqIyj4dzTiQSzY5oqUNg1Gdy7qAXIgohKyKdxIRqJVlivOc7u04sEyx7oapjfiHlmdahzJniE0kvEAu2TLjtzKFInnmSjRvtWKxEgllG6PD27i1u7yfWd+55bz5wN90QrHRzTEbmZ/y5TkjMo9lgDdKEY6QMtg/bYtINI3EnQAitTMPEOY9WSfNEU0FtCM8iMpMInTqgcn3iPBmlDVGcqnGRwYlJVglZCetU6cyuWDBsrjJEWyUEDDZgDmeW4c8I0UE5jNEYqDINkqcPZ5GqQ+pUmbBIpHgk+5F5uF15ysrqVyz3lRIq3umMnEluiaCxF2HmuipgGGiTJEIyhDKHs9ERB5IRbWhjU0BKiT7tSC+YNFLIeJ5o4BJXkJuTZBzArBtFJ5pXIhcWv2AmRCQKiXZ9mYQK2R+xODB1oer4mXSBKRI7TnFBBMid7sYUM5ME1Y2eMsKOSBn1dO1EBBVGC6f5aGKkNGRj18mGp8BNSOTRBIoKfcHTBQJCF3I0+F1iK5keispGlcRExTThzMNmqhWPTjUl4yPAi4/bee4QiTWMl3OQvUM/EGKIdCQCj4RqpXdHUh4GbCZ2mzjiQKXHmad0YHWH8wN2+h6rnHjr5o5qHZGZqBcu2Ygvgl/9zje4+9r7/NzP/l08nKehOiBoIcwqJIKqsNDoNuMa5C40FI0dzyBMY70mwRyduU8UNx7KsAKHBap9IBC0E35tI3lCBYooKo90n9gVxJRJOmHOlhIlGBMzcZIvg8osxhsmZq2jlt2FP//P/qO/d5mKtx+Fr8RECkFb5j7v/JQU/rPvLHzw1Y4tF85+y5YX/ksH+C9+SfnoMXjjwk/cdr6Z4H/xTeWP3B/4yVv4uyblH/nZyr/5O85f/M7M/+THEj/7FeP/9r3gL38CP/cV4St3zlfegPfgz/1n4Duvd/6HPvHw/h9Hvv51tm/8++Rv/pVrXa0iMmRNcaUGZhXOZkxa8D7qnV0ai46QlPtCKRcaXINJQfInlDyMlH7LrhuGsbjS0zT077Li7ERUVLaBul6fKBaIO5Z2XDM1LtzYPGid2uhhCLekGPu4GkZZN/BRCUrdSHmMXJOtuHWa3CCMYB5xDdj7gnrDQ4f/gY3khVDnEDMwBG8LeqXydXx6JLpTlnex7phNvJydZVqYYsPnTut5VOhyIsXObgd6b0xLZ5nOtPPCnOronPtEul2Yb1cO8fvxaOTtAR5P2OmHpMvnLK9+iz3OSAp8vYPjHWn+EnK4RQ7vwDQe8E9t5oyTU+MSiVmcNYRLT6QkWHc2nGIbpSVOeSHfF/zubSa+DtuOxmu2p8+5eTgx7a/4+JPvk/pv0+TXkOWIHe7RwzOY3+Zwe88+32HMFMmo5iHawbGmHH1mC6MWQfeEloVeOlO/vj5sVEWtHIm3EkfehlrpPYjtAdl+gHzxEvnhF2xThxKk9Y5y/Aq6PsPTTNkKW39B3TeknqF3mjnSG7IP+Z7qtTuvAIVOQvrKnIxkOyFGDaVrY8VJIbg5JW/M+wHX8QIQD6KPALL1hkdjPjn9LtB+JsI4W6Z0mBVMJlpquCTod6CGvznx+vXG+lHlk9W5v8tML57xbL5hOUxMupLRURv1wFH0SgXMKXAbbhEdZCHEF2pqpOyEN6Aw1fEy3SMxm1Bj0G6vImrwhWTGWRxzkDwEXkmE5VoR3SVI4aOgmIKLjkyFeiaFYhF0FVIId77TonCRGU8VkaC4Y64UndDcB8qcwDUhNErPoM4kHWIZ1U8UZyP1IKX56hmBZjCrjdG9NSIHewRhQoiBDm5CSePC06VhAe5K6TYooq40sbHiQElq1K7M3WAaL/2wivQCqkzpwiKJLeTKrLiGYXG8OpeklCkRPWE4s8MegYsPAaKA6LjNkpTVBskyCJJAxBCblSSEV540KDGjOK7l2noZ5mlXH58JG5wKYuRBIusIyl/XvSU73vfxXIsZwditkFPirIHFzJKM2SubdKTNZM2EXmVuJBJjZZQdhBG8VSCFMUemz0KkzNSDSwSzLwNGVhqCMXlglgcyoJfxO7t6VSI7i55IfWFCeEgTxxAOVDab0JqItfBkivg8sjtTpjnMZQKbedoq50gEhaNdOGsiJSfHzMUDjUR4AWLUTdMQjvWhFsLZKF1IKeFZuWiDbtfmTKB9wSahpJ34XXCaOHsKJAfeFFfHbEblPA7YFiALKqeRa/KVkB2XC1tamCuUfGGLlbl33MqPdFb4kQ8Vf+7tFzxfh9cg0sp6PDJ7JR0E5IH+dOFbp84PT8pzgk+qwAz/zg+UjyL4+ffgh5/Bn3hL+SO3nb/0g+CvbIU/8Dz44Eb49d3p5+C/9rXM26nz57838w+9pfzZ3wf/1red/9U3C0kz3yFzohN39/R3Vm6+EWQr7CWTw3DvJFGaKkgnZSF1xoNUJ8yuFtOAlU70nZ4nwm6wOHMwwTXokfD1iakaIVBThchYG22Pkjvuwu6DR2Y2HowhyuqwmdM0ESXoBqstNHmgEEPs1JUQ5UmCG5/HiGk+Q1dIFxYOPIqx2BgDhs4kKhcJ1G0oviNwVSIExGmaSX04SFYdPIC9CF6VLkbhjlgyezirZHxvhBoXdfYYnEGLM5c8EuSafFTTPNhESZpJ/W3q4YnVndpHoh7qcKDc3OLHW0r7MjlVpJ9h2+H0RH16Rbz8jLT/Mo2OTqCHFb1/gcwfUso7RH5Bno3khUsqRL+g5rRIFMsD5Swb4c/IsuEoJTppOdCYKYd32N8dZMLj5Q1+eSRePeJPn5Eff4A9fJMevzZgRocb8nJHPX4ZOXyZ+bAw6R2ehmRqpl9vwYnYd45l5qJp5B5Sx82RNtMBd6fkiZQdO75NxLt0PyEXAXtCLz/E3nxO+uI3EHugrAm5eYf1+AH5+C6kW1KHy7lhe0W2Exd7Q9RO7OMm7vMjeQfPikSBcLKApIrGQsSFy9WDcWiNFpWdCdvtyo8M+gIpMgWhzoK2iuOUZeJUx5pisoUiRgrH3DEqSQJqoYmw9Ef2nvj4KSOffsTH08z9HcwH4fnd+9wdb5jKxOQr+MTmo/nSqFjuJO3M+4EmxlMRDn2M4zOVUxo77RKdADQNGJSRSEmv7YtRdRWEiHFz3rWSc6ISlCbXencgZIoWPEZN7uIJrlXOkD6+n7KTlZH0NyCBWMGvBEOJYCax2wCvaYqr6bIPK24YmxoIFJvoYiAJNSGlymNk5u7jEMFOCpgD3CA4YCmYKhDBrMGJhovQGdNRN2eRwFSoKOagjEZa1ITkRpsU3QSnj0yOJzQqqsGWMqlfUDV6UnJkShuGU4fhRhHAz3jK44DhQm7D0SEI1oWkmcxgiYTKGL/rCKx7aYQnSmogaQT6/OqAUUe1oD5CpaCoGwfPI6silVInTgpJM2aNiY6VQumJg1z9Th703/WWqiDJSVnAJkAJ63g2AkhJKV24uJDzOMgezamSSRo0hd1HyFK9USSDj0NW143Jy1DOS4MMpa1kqZzKCe8TS6SBfk8T+XDBTonuTlinZGfrSkrKZEP8KAqPj4/XC8LOo85EK0i6UMXHwS9t7BJYL4gaxaDTSF3wHOPdNg3RX/EAv2CUMfWwYQKXCC7otXXWOUQmRImWaGooK9qNTTJJNqwEZomDKz3A1NgyHPZgT5WHyVh9ovTBZ9rj9zhT8RMfBP5Wh2mMgvPU8dQ4U1jKV3BJfPQAT1345VeZ//iN8/e/FfzdayM9JP74Txm/NSf+ykPw7pJ4nRN/49POP/bVzltR+PiV8Mmj8HwRvnSj/LeOnc/OE9+rxjc8+P8+GdubwhzOaxOmdGL/lV8Yq4zJWLrxKB18YZEJeMQlc+zTqMCqU7hQSNAWRMFEMB0VPfUn7rVQr+ferH3Ar64ipp0DmjcWqWjLeL9B3aCcaIxQ6DZfyH7HHheIibXdEmKkmtA8sUZlx7mU4GjCFIWpOWnquFdyW9l5RJg4dzjIHZdsFC+EgaTMYTzfEYzuCyEjHe8RTC5cJsBm9lRHANMrnnfKdiAfg211pi8SdoBtP7IcjWlPmMLsFS4LvnZa7MRWYFLchrI45JEpORd3Wj4O9HNxot2Q3fBuqE4UlLxl+rxgz3Y4PGN966dp133lzekldn6A03d5+u7HRP0t3qSA2wW9/5A4vkO8/S4lv0DkhrVVRudgx+yeWTdadCZLlPRElQmJ9br+8XEbXO7Rw3PyCyfFH6LsF/Syc94+on/xbfzyPfbX3ybiu6SkpGMibt8mjl/Djz8JS8GZ0NTZ1CmMAJPXzE3OyNKxJjzLnYt1OgoOh74MpDX3xNJJssLdO+Ro6A517/D0MfLZ99HPfpmkkKYD84sX3D57n17eZt9WtvOHdHtD1Cdsb6yXyp5GoK1PDQmoFHKCLkqfx9YutGMSRHvA5S1KckzBe8Mb9KwwKaUmondKPqI+1nze3qASbCZsVSiLMSVFayEnx3jkxDpG4l2GF+AMT5fMxIUf6E453PL8WeLF8yOHuwNlvWHijtSV3BeSdvZprDbWGkx0ehZmV2RwfiAqF1aKd0q0v4lLj2Q84cxJBvnWgygz3tO1Wz9IpC0Klnb21Jk7ZAlmyZhATwkzG+tP0RGQDtBQXJXsmV4CzFlrGeFgYQRQJ/DuRBs7eEmdHCvqT7jlobMWqDamEcmUVRyPRngmx5g6DfOmgT4ODL+sYJldAzUnm7IBGnWsBWJi9s4kRs2VCaHPCXfBekKoqO7k1El9RqISxdiZya2wpQtHK0yMNsUpKUdTwsf/TqKYLVgRjgItgokg9oQvSk0NlZkelTx15gpiyzCJ6jzssMx0G9kT1TNJCq7xN8OnXfPIK0UHFEs2RHd1wnNi9YxrQ7QTqZC7Y5NRExytsAQ46zCeTs7qmWJDGte10BLciHFxZTfnBhkrU1NyaryeV5LZYMDEjMQJ1URNQ3WOKylP0PWKHfBxienKjuEpQV/oMUHaWKQA01AolJlebfCI9MiimRpB9TPdlMKRdX9DAEsEu5whF2YKO8qlCc2cUgavpnfnMRUm3/DsZF+IyKMya6PuXNKERkc3ZVfI8kTENOqiKSF0qmdSA42dVgpEpWnhlsvIbblg0thTpnVBMKIVLlK4qRsyVVQGA2VxR/30I50VfuRMRf+f/U/DbyfKXcaOBjcZzW8Rz75Oe/8nqe+9y7/0HeGzFvypdzPff6p8sE784XeN/+B3lLMqIWf++kcT/+TXhXeOiX/l142bm8SffCb8wbc2/toXM//mJ84/8L7wM8+D//O3Gv/Rm4l/4kOhd/jnfrvxw8cRBPv8F/+fvPz3/j3enl+wa6dG487hKZTkhVRG11v7SPu6Jppcx3g+aJcXhpBFrqz3Oem49dCoTARHXOsgaYqM7q8kVDtm47Y4lwunWEgoE4LZAhoYGyaFO+14N5oonp1NDtz0AbvxLqODPY8DT67LgEqlCy1n8lnZ52BuGVJjjoba3ZiaiDN7J/zMY7qn6cyzi9JyG+jWx0+Ybr/EOY3KVqqBtsblcKC0xkmGflnTgG5Ne4LyMdhPAUaXSrEFn1+Se2E3I0mwSHDyhMt4SBYJ5tyG0MkWLDlHdryN3aDnzr5d4UjlDEXR3oh0R0RjE2Ftj8jrC/LwPfrrH2DtzZgGLM5+c8/N8fcTy3NkPaDcgDync4Y0sdMopig7EhMNBrZZ57HiShcWhy01Sr+HPI2A1H4itgf6m0fi8jE8fQ/ZXyN2Hgn5ZWK9fZt68wHL+oK+PCOmYXMUMkhmajdkObHlM8VucORvKq5Vd1C9jjWHK6SxUzxR+sRDKdy1J9rThdObT1j2byPxQEwHYl1YDjfE8j5d7+ksJFfO54ZuO9pe0qPR+8Cag5PmIzoJmYVIQ6o0ubKVduX2G5omLjhlB1snJA9Rl3pwf5d4eOyIQo4RmDUXQh1jopQL2p9B7iAF0cQSjepGpIk5CZohrLCJ05bMzVR4/165f37g+e0dN4cbNL2AMLQ7Lc0DF02jKNRQXGeQRvdgadebrgyhkQv0lJm8oHkakwsC+uC6dHWKO937iEVZo+aVlBpb6MBj50zuHZGx0w/JeIDr+FxMvdOuVtEclY6w9ImeOs0KOTXqlEi9oNcXv4RSFUIYk5QQugSlO+LOLmVQViOY3YmALc2oOJMbTSvYgSQ22DwIyYdD4wBsCJCYxah0IjVGuWKoB3Ygi7B6ouuF5AUBqiRCZ45+4pzW6zRkpMks7Vgk9FrF71xwgdQzvYwp1SoT6pUk87BFRxpTUhoSZcjVQlk0E2lI2AjQaDSdWbzSRSmWOUvDZUwGNC0gO2qj2XFjOy0ES1A0qDpTutG1g06DuxATRzrNgeR4ghtzNmFk37ZKSxOTOurDbpp6w0PoJGYP9jRMrCXG1INoNKYR6i07UxNSV5IpbVJ6NGbfkaRsHmOC5xPJIWXhVanMu7K//IjL9oq3b2CaFs7uFNvhKbj0ym999/t8Hq/4g3/i7+PG36d4vRKLR921tkQIOIO6nGRMJ7cmWFlY3diy88xiEFtpVJnYKBx7MGkf63Zn4OoRUto5x8wkBeuOyj5gkwQRE50gecC0M/WCcCHyRFSjiY/gOOv45PkZvFAl8X/85//M712mQl78PPmP/Bj2/gt0EVgnbJpgXZiS8XqbeNTOV28zf9tz+Jlnif/D94K/8ZHzsCu/+RT8k1+d+M9/XfikB997Ev7gsdIo/MLLwg+q8HP3zt/7jvP//jRoBn/3u4lnKE+p884xeEcan+tEf/MRp1/766zH57TurB5kc7omXALPDdyR5FSASOSoIzxGJnSnu5MoII3QlaawUUkRVApqB6Qk1BO7ZAShaMWy457JItSU2eM5a3eSwE4wXwM/tQgS0FwwnQkTcg1WDCHwSfAkuBhH7xgTJuP2s9hE2hKtOPcxalE1BVs9sFwFbGskqgLxDIlErpmnCUpUUii13YFORGu0LiMRrzMpBUk2cg9mvaWGUwpDAy/vUfJLekxMoUTeaSmTSePDqZkn31hER4XVDWnKk1YSSvIBta2pjpCbQiGRUyKSYZrxUCZJ+Nao4hySwlKId+8o77431NeXjX55RX16Sdo/pz7+Fr2fx/RovSXfvAflHjt+iTLdktKRFgdIZTASDEQNS85qiT4N3LSoIdU4xYUlz6T7tym3b6H2kxA7dX9NnF7C6Q3rw8fY6xP+6S+z65mYn5EOd6R1QdYv44dn+GFh55bZjqBXNwOFknZgjJrJleqdaCvkA5d0QgPutuCcMnZzx3T3Ni1+HLnspPNrYn/J5bPPSfwGrjEaOMcjx/VduHkb0y8j0eCp0mtjqp3WL2jbISpREjnd4VQchWubp9DQlHBNLM0wh0YlWuNkxlxecOljTEx06Ms4kIqDLWzyZqilBYTgEkqKgGicmqJNkbSTKeSHjhTjB2+ETz7dWabXHG/g/sUz7m9uuF0P3KVbQmf2K0eidBk3LIzVHc1KNzBLoxqeKpJGzbSYkz2RQrjowE6Lxag2y5WwqxNEIQhElaFHG1TWgtLsWk1MgoeQMbYsJDcUoV0vCJSOeUamEXB0Gzc8TUJqgP5u7HuEuCVG3T0YFVjNo75J6AAOyJXhEeNlJbEM10cIYkpKghdDzOmuqBpBZo/xwE6+YOFoH+HSXATtMazLOZFN6AQZwa5BRq7Lg6QDZb4znmmkkV2RmFCETR3iQPHLYC2ocBLnSLD5kJVJKmiHnBXXTGuOOgRKZqwvN4QWKy4dsrPWzGkJaCuzVc6amcUo7FhJuJ8RnbC4Qc2x1BliuHGA0dgwWcYlL0a481wK1sFM2KeghyAhTNHQNmHitORE+FApuFEwWpHBtKnBnMCSs9jIZng2tjzyNSKFiEyVziaFZDNZOlY6uyS0jxzbGaGkR8IPWHOkByJ3VH2DJCWycNwS+amy34xJlSajN0WyU2RAFkMHs8QEFhtU3sV3Wgwn0VNw/Z0LGsotG60E58hk6/jvHhhNcZmY6lhxdLiuzJ3cldBHZoSahWwJ4kT3lZQG4n1jOFUma0RkFKf6TvoRjws/8qHC/sE/ibyXCBFQR0zRIuOUL41feXRei/C4Kf+b7xl/4u2ge+JDgf/mTzi/9OmgSuxz8Jdewa+/Cv653z/x/mL8tTed33mptDvlxeR8fVHOD8G7H2S+Uyt/4ZcK8+J8/DDhuvPZt/46+lSZi+HJsDqhutJ0ZxWnGSN01ZXpiuGuXshqZOvs4uTfTT6HDIJeaoiBlYnkMmRSPsayWYI2NXo3kivJyjWsZVgr1CxoNi7X27y4IrqQ68DSHiVxTk6Pgbe9pIEpWdNCaglSp1jhnOsA1aD04hCd7kOwlupCSQ+YzNDHTbH1TqyFbmNfq9mpXli9YzrAOTFnlt7IyekcONgJxMj9lsjDeje3juUMXbCcKA6ijSpwd1Iu6xDnLG7EZJR9ZqfSyhGNhKWFEjYAXxgio/eee6NpH04LUTKJPQzJiZk8Rsm0Kwt/I+rCdIAyTfTb9ynP3xv8/HrB9gf27ZH+9Jr28BI//QCNv0FkIW5WyuEr5Pt34fCclu8RPaAYnZ3eZiRtqBu7nDlSiGhEV0wqXRijz+kFfvcWGsa0/yF87xy2T3l9+YT54UQ8/g7+xccEv40umX1aWW7v8OO7+PEDdL1hZWXnDvMz6gmakqbAGMEr9ZULDS3XMaV1hEeWCGQ+UNcV5X02d0rv5MsbOL1i/+IT5vYreOlMy3OWmxva8jb19sWox9UZLo/4/jTWcv7AuV+QbsAd5EytGzrPY/IRE2YN0Yz4zNPTxvzc2WIkwhOQCWrbSSpjwkSm20R2vx6+nXO+Vq5lHlOP3oeLw+Ap3aC2c983mix8+kZ489krpvkV0yHxbJl46517pttn3M5vkaeFald2DIyHXgRBZ9POpInkiUwaaxK/0kpj4NGRoLOPh7ZkcnZcGhqVORKaEo3OpAtOI7rhFEQbs11QFbrO0H0k/pMhItd6eINrQyunJ1JAt5Vsgz2RAnramVCqOLOBXiupCcUZ4kCXzAQswGD/V/Dxwq86Du6indwaSRJPpXFoZajnr4ZQoiGTDPVoBEuf6aKEKoUNt4mqY0Uq4vQsLK6D1kgHxvdPaXSpuMrftNiWPA4qYTMWQaayknhKRglj9qDJxJYTczjFHJdOlSH8MhncjSJB9sImBRBy6mQTPDWKZW5zxVDOOIsosyy4jnpv8iCTuWiQbTRCQg+4G6FDKe/R6R3EYIrBSFm00+N34VGORxoveJ3Y1DAf2P+pjXyHlk53pYhQ004yYWPGcdR3so+6+RSdQ4LuThNAFiI3kpSRxpWJZDPJb/DcKMs0aK25jck4E1uDx+01700fMoXiOD0XjAsaGzUWhAPZHWTo6ddITCZUYrhbcqNxJIWj+kj1GVqiSB80YckE9co8MrasmAdO49Y71u/Y9HHkSnwf8LbmA53PhbQnUjKOofSamDnhsbLLRE47G/vv7aFC3kuoZoRON0f7iXj8mHiAX/r8x/nX58rdNPP+5DyTzk/fJn7fcecXHzIpEj/9wvkXfhv++Kb82Q/gP8ydf/G3lP/6+zP/uXfHL/mf+TXnn/iK8l/9scq/+t2Zf/U3hX/6feGP33X+578sfPqU2V5+l/Sbv8QqBr2xxwFc0Rno/Qp7KYjvCJmImRydflWxix8pMYKXqo9IzJw8WMics3Hogmqh5MLCxmMsuAYahvuBkhzXxh6ZxGDKJxdS7xzVudgNB200jDYN6e/WnDWUlDKh2wCnhJCmyh6O+0SWiQklOaAV00z0YYpckyPNSNwi3ijTE2LPadzg/USOmaWML8Ib7kcJej2xJOhuJMskMSiVKSfycsOrPXOrG92MZmm0SALcbjnLhUUELQ1awXvCkmA2I7mSro/9ksaOUPRE0mUEKvuBJk8wZbCCTidWh1Qzuw/KHf6KHvesaRyOLJSyTGRJ7H2C7CyykSYFD+aSyDf31Diyy09y7kHlQnrc8cfXyOMXbD/4Lul7v45lo68rt/fvMd2/Tzu8A+UDRMf+E2/U5ritrHoeh5qciWaAU2TCQ3hcAs1COnzIMb3PxExtldjesL15Yrl8F958h/PjxwTfRUjoupDu3sFfvE+a36ccnlFjYvOZpcsYjXtmFyVPQTPBgdCJiy0k2dBU8exQB6VUbt5jvn0b0t8G9Uxsn9DfPPHw/TNJfpNpPbEf3oabA/7iA6Z4gSD0fWY+PVH7F9iusFd6tBF+deW0HtE8OBCaFqZZuZwvqGSKynBlpKDqiWx3cBE0O41GF6Xl0xBG1iPCRpMzvWRWSbgKXaHUBsAJIfLTsO1U49SUtCmv5cTnn16Ypu+y3ivze+/xzu09z9ZnJJnAj0AjSyP7RNjQf2OGTqMG2cyRlCAPQ6fUA6Ydl0FdXCI456FYz14oTUGMk4xVSxJhJo1cEmUYKlOi58qxG2KJ7gZlBLineiJixYCjJkquPDKQ3Hgn+TqoqTTCJtqysMaOewFxJJyu01iFyTYIuj6hpVLC8bQhnqlppWTnrssVsqckPxA6MijHuK5304qOVCcpAqPQtDFLxjVooczSiDxG2RZO1pVCZ0/TuNmLkLXiMYyoohWyYWkaGHbfOHrBfB9ZkASxj2xES5mumckElY5pwmIo1z05DR2qgqmMA4IoW3YOfeQsVskUGv1qiM6+jQPNtDDZmdkLl2RoVCI5kyW6CLt05q6D9SM7nZVqDdOOaWH2RonAfGJ3Gb977UR3LAvZjK5DXtfM6F6YslLMyLKNZ5GNP3+kG9yHjdUCXBJLF55yGvMgmdg35c3xDc9yZrHKyaAb5FiYYyX2A9IeqXR2MRTn1k489BnLMC8OvlNlQimj3mo7jzoo0FkGKp2+EQhPU2aKisTMnn2I6GpiS3nI0vSRBSh2Yo+E68Q5N5Y9qGq4J5J2TqpEqmBO7s4lwDE8gpPMiAVFd7LlwUT5vTxUpBD85S9i3/l3kTffInxD6jNevfn7+X+89zUens98EM6f/Uknkfi1T5UXzya+sTt/+VH5YDF+4q7w4saZZuPDW+W+Kd88d/SkhBn/1E8Hv/Ay+Mb3Fop3fj6DSfDhO/Dhlxq/84nib35IO104+B0XeaL4qGZ1MyY/Yu50cTxlXDbCOxcSswXHbkR+jXhC7JbGSkI4IBQm3urGphMaFfcz52xseeFWLhAdTY7FAI/MOnC0Z7FR3byOLTXv7Mk4NudsN5Q8U+VCv64IrA80eZZGq0FSYQrw/Ai1cDO3UVu1nX1SshlnG6CxMbydUHcunJiWwhbPxg3LK7kZ03Rm9xl15Zwd9oU0X2jmuB+Y3JjnIMR48GBRYyZTY2OaE7Y30tSZ9wnC6aWwWKPLjqcDTXaigLWFuT1xSTOt35LUxg0nJy4ZUnSOPfEIJEmsCfaAKDcU74PbHTuXmnDNiF2Ys3GT7qk8Ij2NFo8Ip7pRy7WPzxMWsEgmXizoO19F9y8x80c4Pe6UxzfcnH5Iff1Dnj7/FYILXgrTzT3T7Xvs6wtiuWedntP7RJPnI3GeGuYLhdGiUE9kNaZeKdvEad4Gse/mHfKzd3H/abRWbvY32JuX9MdP8fPH1M++IH30Q1runG5uSce3KHfP2dd71ultIo7EHNi+ME87aRIiMid9GH/nNuNNWeRCunohnkSZ48J5hnn6Gn6naAhqTzydH1lf/YD95Q9R/YS8gMxvwd0tfvcWx/QeFaWcGlMX9u2J6E9Du9yV1ArT/OaKDlZy3KLJCB4RTWC3eIaYthGW9IA4QRO8DEtwUmfaheTOuQS2z6QiRNopKdFlItcZzePvo37d2abEF3pC+sTNG+Xp+9/nO8dX3N8ZL96+59nzZ6zTMxYKWYU9hEgDVz7ZaCcVYjRxQmk+gXS8DFQ4QLfC1DNzt4HMLsIi/apzDkqcMZvYVMmqkJyQRt6VGoqV4ChOj4J7I2JYJUtfOF9RySk6giOS2XUYO9uVh7H4I4GMVpGmsQJBccnE9SV/UyqdTBNnQdkQZq2ED2eIZedgRi+VWTPsgpXEEjF8Fu4ccqdauRJ0g3x1DCUZbIfcnC05WYQtO+bBIj5eVhGcYtRsrXTWPVOnmWwnTKDIIJFGHgska41DUbpUmhr3beZxvkAX3JWZQhppJ4o4LXcmnCbKEgNjvceEO3jpV1JokA26zNSSWOwRGAAwvHAw45ICk457Z/aVVoTJOt2Hst5EWCRj4mgEloSL7IgWmo9DZrkqJmqCzIaXhIcwpwxbRlPDbeEsRi4gNtOsMqeGlGVAzWRnJ/Ps/MieYniGpkavhXJ7h15R+3TlsAa3x4I8wJvThcO7O94WVpxTGsbdYFSwncQSaVRFlREm9iAYqPtMY9JMo3O4ZGqCnrcrRv1AlEoSY4rR2ynduaA0GTC8eSvUpNw04ykPuF7UQtGNYp038wGtPuyy2ZCYCYIlwxdX3MDv6aGiP36b+Cv/GuV8wssKzz5kW36e/8/hj/CtZxMHzVymzi+cM88S/BuvnPfPwVduBKmN/8aPCQ/nxr/+mfDROfEPvuf846vz//pM+dVXzp/5QHky+I3XimzBP/4zE7/0+Zn/7fcT+yfKLz3MdDtRv/Hr5N7YsmD92nzAKVyLjddMwh4GoiQyM8qkRuwzVYLF8ggB+USTGAwJPTOHoiUghN6MOVaexyNK5pwKMzH2zddUcI/h6BjgHUN9HQrjMDw7MztCooQBjaoZWJh9IHmlGBpBpI3shbMq3hcyhnhlrQtPaaCEk4waXRdjsyOiF8KCRU6oXb0WeWYX5+DG1BckOic1zpHw1EGdh+S8yPOQNYlyScrM8I5sCEWNDeU8OZMkNr0wxYSzUAhKKHsEKxVzQIOpy/gklUach3fEc+ZJEtUOLGq8yQNzrGmHKVNsRZqOyUe5A98wE5wL0StvTAenwUDnCalGTwl0ZU2KyIZ7sFcjmTOvlfsXHXl3JfpPMO1/AG+V8+VzeDrDw87p40/J8R1Q2NZCzi9Y1jvq9CW4W5HlTK33ZMsscSGiDbnWVJBUaAjujbQ7VYYi225X+s1PMNmPk6ns+4X96YHl8RPs6YfsLx+QT34HUeNhObCsb5NuVlg/wJZ7+nSDM5TUomPHbQaaB265W2H1SkkzL/RA0p2uJy514ewz/TjzePucia/RL4FcHmD/lPbxZ0z+HcjKdDhQDjOtvEe5uSfbhzhn6hmknrnEibZ3JIQsn4J2skzUrJA64gdyaqCdEhMmCoydf/F1WEb9zJRhACRGpfDUlDV1NJ2Iq11RI0HKVAKhEy2Q5rxWRbXA5ZFXF+XVS/D8wNvHH3J3t7A+u+V+veUYRzxNNM1kjxEeJBE4KfUrgXbQFZFGzxfSVdTk0vFIBImSKuGKxQghphiWUHMfmScZXg63nT2XK6Uy0UsDDyJvuBYkZjqGJFCH3CasVJI4zSc0Z3pPJM9k6QgDJOTAEoMJUYkRuE1BtQEqCoRA2WJUN23qJAcJRzSj2shS6X0hZzhLJpGQnikOWaATaBJO5kzXAKm7otJG3dYY2QAPanIKhdIneg7CYRxxbARpJWPSEJEBmbo6RFJX9qwkT5gMBfyUds6uiMLsQxaGKIrTGNoC8j7yQi700IEA85msjcX6aOMITB6cZeeSx8/DIzGRsWn8vtxhdA0mFm8kr6gVfB4tEAlI5iOYqNBiUEePZrQo9ABB8G7DgyGJOQ4kfQI9j0yMTbRI1CsPKXVl7o1LbjTLdBXmXNAEIcK5g/kgW766XDjxxE0ytksf1uL6MC5fkjmkEwFjTRqN0IkekMK54IQnJoVNDPUDT9HxKETKeGokE+aYUYHdDRg/E5HEJoHLRgKqDx4ICGcKyYMwOKYLT2psaVygQoSeEjcV6kgk0vaFRcf3//f0UOGvHsnz3wNffgt/58vI8ZYf7nf8yifDyNeB3eE/+Az++Av4xz40Hk+JP/yO8Kuh/BsfCV9ag2jwxT4c9qVV/tRbhY8eEv/ybzl/6gPjH/kw8R+/dv533xFu5ombIvz2G+F5cU6Pjzx+8hFLX2nThRwZMxuUQymgG8RELmcAIpxORjRRA+rSB9Mhz6iPukyLzBxQHZ7mwaOTmEHSIHKGsGsa4huFGPFjuggaHbfOnSqLCL0bQaX7PAh0OLtuqFQ0TcMnIuPG1L0R0Six0FjZAxoFsYap0NMyjJYIF80sbqBOCgZFFKHEgDFtoSR5ICVhNYE0DI7aM0kGZjilct15T3x+8SGnctib4rITvgA7LbdRdZVAK+RVx8FIgdihZ2LOY1QqBaYL4isg4B2TI9TAFSavlMikZYQBqSt9y/iSaWq8e1jZJagZ1pRICO9PSjsXXp4TlmFLO+dLo5GJHuQczDmxC8xJKMnY6wiWrnT2Pah+otXAWFkPHxB3Z+KdW/SycUw72+VEby/Rp89pT9/H668OcuF6Szq8oNx9BdfnhLzApnmEHfdGkY5IJ/qMlH3IvNqMxHYlCq6D07G+QN55l6X/LEuDff8cfXgiPX2MP77EPv9NJP0GMR3Q9ZZ0eIfp2QGf32eajywp45eVKoXfd6v81Ns3vPUM1jQ8BC3D4w5PT4XP3uz81uczJ+/sK/j6FsnfJcmRtn/OVEcmIx5f0vcv0BnyPFNvbljm95luZyw+wKtxqQ2tCd+fqLUhFVQbVXdsysDgMKxpOGdyKgiVlpQkM0Zl78PNo2GsWhFvEIlOIfsDnYxJGbyBaUZFyNFp7FgTpAtJnHzZUJl4eNj44uWFeXrkuArlcGB9vvL23S3PlueUtIx6NeMlZCysBi0FycsIsGUQYMFIEVxkwshglZwzkw+Drk8VVx0cDA8mVUIyhqACUhSLlVkaKUaIVMpOtXGICgxKJ5hRF2btA7SVgsn1CqjbqeokG1OfLjb4N0B2oyZFr0KzHsGk40WNKRJOoERp5EhUvyVZ/E2c9yqdajImIFIRn0i9QyiuMg5DquSAIh2nITFaXDfuqCg9hkgspwEQq57wKMPqajHQ3yrj74oTODvjULGE0VPjpJB9/DtdZjQMzCg+0aShYYzZzpDIoYPwlLsRfv1dpuuxKkabasvCYkNFUNVxUww4xPhTtDjRdCG1oNPILVi80KQNCqgUKgOMls1okQfGugerCJqCGjqmYtMTmwTYDSGFPvfhXNkUiZEp3PPGoxVyFLIL1YNJ4PLYSUURnfG2MaVgTUdelgfa40Z1o6jgnklxwa5m3upQxInYcWa6j0lFwpls/CxC39BZmBgm1TeROKDsqggddUEVtgziwhQ2MnihHKRz0SP4xhKdZnHFKgS5BZcyWlApxuE1pIzsjoDZzl3ZebrKzf5W//zIlVLba3QLclFMGmcv/MvfEH7xc2dZMl9b4b/348HjXnFN/PSt8u9/Fny8Jz643fm3Py38WAn+ofeEv/Rx8G8/Cn/nQfhHf1r47UvlV07KbWR+/GD8Rw/w7/4w8T/6ieBZMf6FbzT+nTczr379r5L+rb/Iqspmws44Zc/MgxoJhCc2V1Q7x/IEbeIiO+YJnTJphz0Xoho3aaYyDHyr7HhkVIKHpJRUuGnwREUQUlRKWfDdsGnCm6OyIHahipInY+uZpBcWMnMIJ79hS2fmmJljI1KlxUSEYCXjaWM+OVmVruDdWJJwkmmw9sMHWVAVM0bKPAolgpDG5kcmORFxB3LB3MmyDKjM9jE3xw95ijeD86/CVAv9ODr3p83H9GYLMkYrhdZXUml0OpNU5u1AywmXyiTOPgm53hDxhklXtrIjLVjbRA6hZhDbcElE2Wj7jGiGvA+0bpNBDC1KmLOi3IkzHQtn3XHP/NRRWA47h/6COTduDs5NLnz/i8rr6nx62vnBq5lqBctPlOxYCFEWiIpLYnUdsqnpjNqFLTLLfmCvTp/HNS75CdPE0RPeTzy9qfD0QDx+m9heYmyk4zPS3RG5/xpt+hKyvEXiFt9PDIn3eVQvpVDLxnLObLkQatz4yCC5Ok+yob6g6cLcBNtO8NkX5P4J8upbbNtLDEPKTNzdIHcf8M79l/ijX/8xfvKrK8lWetrQs9LLkAxp6cxd0Fg41eA3vveKX/zCOWNMlxXPjZ4q4gcOUdCpsZ0uzOeP4elz/PySPTcoiXK8Zzke2PUrWF6ofaV3o19eIpcO/WnQOXunzHmYzNNEpEy4kBJM5liZKKUwmbNXyEWwNBPSMR/uArWZSRvuRqWQciZUSTpxLI3wle7CmY3CDVPp+HRB2g2aOjdJoWRKnpkOicO7mXdeLNwf3yXL2yQBb0OCpAjoePmIDGhUpnAxMDr3HZIam3aszVhWVEZ+ymoQ12ppccZLuU+QK0kailIx9Pr/O4jaikdDtZBk1GElCoaDML73OnIAsxmzBJeoeBsSweSZkxiHRZhtxruRcqfidM9kmcGMlEbX5KQQ2rAeHDwhIuz44A/QaSlj3bi5ZiskhFnkamwd2TBpCyVAygWzTE8wm9HKBO50c5oGLkfcOrMzZFtqg3HhwuwFSxvSoeuMh1HEOE2Qq6A+M/kJT0fQB7rcUmxncaeK4hFsOvJVWRMpOs0b6gpZCSoaebT40sgDNPqYUIRhOMkPiI6QY9Y21lB9ZQsnWyHpRlOjWELkxJl7Zqv0ZCyRSCJXC+rIXqBK6yOT1tlRFcLTaLqMeAWtG6KBPFV48y10euT+5jkpd9hhu1TqFLQvhF/53g+43AS//+/4Y4jfs/YNlRVJgkuDPjGOg4FdrdUiQoodDcgheMpkn3jSjQNKzVB9oviZjOF6HDK0CJJuVBrSFyKPTMlJO8Xh4I09lEl2HnRI09QU3LEU7JrJrTJF5anMzOFky0gr/Gv/0n/7b1kp/ZEPFbVfQhjaVzzzNzb4yy+dyQsfX3b6JfGnf19Qcub/9L3E/WRsBk8O/5334cu38PEFjjPQFC8n/u+/PbFp4R/+ipEi87/+ZuPD28Sf/bDzS58Ev7EX3l4a/9dvZ34B54d/8f/Cu7/xq0z1gE3GIxuxT6yls7sD0/hg0WmRmcTAh3LZ69ifSb/DVJnSGfGdxkoGPEb9aOoLRCMnY48Dlv9/rP1ZsG5rlp4HPWN8zZx/s9ba/d6ny8xTWcrMUjVSVVkNKqtoLSRbERgDF4YAwgEBIeCCG6645gICI3wBwQ1gZMso5CAkKiyLkCxZsmVbpZJUbfZZ5+Q5efrdre7//zm/ZgwuvlXi0klEnrtzIvY6e6+9/jm/b4z3fZ5+Zxi0IRqrnaROJUF0xIZk6KiO1MCGRmyREDs3EebolKJE6czaWO/6viqCjhgzSGDtK0lngtTxoQZuQ2fyxCTDFFiJINd0nwc1zjuLCJWJnXUsrYQW8W5o+Rzdv8VpVc7ykdAmlhQJ+YS3DbUFJBzRmqknI5x1bB01Jgl6F+oKtK54apyfZmyzIGumxWFdPLqjObKpTrUI04HplCka0LxCE05eqbph44VcJ1JYifmWJhlaHiuPYOx2cH+74ZzE07OVr5yt3L9IZA2cP7nAlmt8Kcj2jPc+v+LwcuK3Xhif3yTKzZHXQQjSSFqGGRRQ3eF2xEOmljGWa6Xj5ogmxEboUIMRHbZpCNx67bTbE/XwGdy+h94eCLrgc4DtOfnePcr0FTQ9hDjfSeUyrsNVYXogd8EtYbmSW6bYzMwNLjrQymFPbw6sxNsTevuc9eoT2uEjtF6h0pnuJR482PPkS2/z9NEzHj58wLlGoiTWNA80s4/q7DZMHF4b//GPjnzvKpC6svprdsFoElEfI/w6j51sPCizH9Drl5xuPyHJJVEKUzyjbc6oZ1tKfoD4HophBUq5wU8Fp5Ks49IgzEh0VPP/T5WtW2CDz1fEviHqxOITwY1mGdWV2StZlILiPqFh5Ao0KpoLGz9HuyO6UjWOqZ8nVhXmydjoaVgu5T4hKBf7Qjzf8uzJE/a7PXm6IDIT9TAOJASQhaoNdxtirdju/AijTrh1pcnQuqM+gG+tjZUBcbBTAJdp3PRtcAsSlTUEeo14tiH7aooGR3xUeCEi4qifwCAEobTBW8jNwRIQWAJknE4nhiGd6imONYF1gk2oBJyOyTVqSo1nw3lixkmMeyLk5txoH5AqgYmFGhT1iCg0j7g0JoekQscGK8ECjcFDEAd0AAfFOy125K61le9qxc2FioAMzscsjveV2AOWRibKwiA3Bu0EBKHS2oxFJ/AHWvZRs1XGdNb6gLMHHbCnYIk12DDmaie1ickMi04LjV4rs5yxaqV2J7GhxwO0caCLOoKhuIzDeAMJQulGSz7CyV3AZWQyKByrIVKZesVbHjXXllkIiC6oZbp32lqR28+I/VN2j2bmsMWPEysHvBdOl853P/wI0sqbv/SnyOxQcbLMNBWiLmRTWp3vNA8La4QzG06cKwJbE9ZYwEbLpYfAbGNd18KO2ZWDd4oqk6/D5SET1fvAlXenhoy3I6eoTGYkG9m6JkK3SjYZ4Xpx0JWio54ffOa2N7YYf+lf/5//5A4V9eW3nS9+Dzk+43Tv51mebZmzkCVwZY3bRfloFb5zhN+8MX5xgn/hGXzzVad45t7G+IfXFYj8q28oqxm//txYuhICvD0JT7Jz6HAEvrg1/tpzeFmUz8wpyw3X/7f/I2fHE/TECxNSqmz6NLS/1knWENnQ0ko9BVJQzMbIOhIpMlF0JbkweQN1SpgJvTLTuGIiD+A7Ik5tgeyJGDqVyiIb9r0SRDk1hdDp0tm4s1jENJOjDdKdOz0uJNsNqpw0IqMuWqpTUx32OBLxToec2JDEwZ0ShdRWik3UALMIIiu9jduPBOiekXAE0tgFhz5yGFJIyzXx3kNuy8R5OiE14dnBO8mgWaW1hExCu63kNJG0couQwpAtEYXtopRpRWuAJLjZYG6EhvVpBEijobVjsdNCYj4E6mbFU4GrB4TNLcoC7YxkMO8L1QMmyqmM/nRW5/72gvuzcp6ueLKbePNBYJ7g2QVIamx1xrpQl8B1g+Oy8uL5kR8833C5Hnm1Rm5PzolKr+cEO9I00NI1gjB5xq3hNkRheANGP7x3I8aJVJ1DqdhsBN+Ow8l6SVxPHJdrOF4S12tMLkdwMc+su5mcnxC2b5CmSAuGyJbqCUVRG/mVjQvVE+KwMvr26LAWoor1LaVf8VRX/uS9wgcff8rt6xdcXr/i8nRFfBB4+Oghjx6cc/bkDZ6e7znbXRByYvZM0sCxFL716Yl/+rFybLCJSjPBRDEfHBNsobMfo08FL4FQDtTlBVqv6e0lasvwwEwTbPaQ70G6R7NI0B3H5UBcVmi3+ApFl5EX0A0pdea+ZUmRRYwpRJJFghRCyIzlcxp21CCjreDrKFj6RPSVGiOelFln0LEai+acbIuFxoYjLWZmcZI7S9iRaKSzTNwGznc77p9f8PBszzwnQtiPoG9a6dVZbUDMpjgqkaErUZ2TxqEw7yClYwhFxm5eQkcwggixj9BoSZF+WEkxDEiYjGopFunacQmEeMJ7IPQZlRUzR9nhVBZpTD0BDVGnGszilBD+GSZePKA9sGHcMNepEr1Dy0zeWFCKd2aEJSoihV0PVFHwDLbQQiMirKpM7W4Nqx31HfiYiAxnBCxSyRKGUM/H5yN5xnWAkVqHFOJYx4jcqQIUZCGL0WRLZajAJzcgscpK8kBg/BkXVWJq5OogdyHsUCldCXcZCxMjiRJsYKK7D1d0N8XcwA2ik80onhA1RITWC6KBTKdJZNFhd516YI1jTRW9snqiRNhWYXajRKe2caATnL5EoLIweA3nvlIljBzKXcXYLLH6wnz9I1K94uJig0rCeiIGpbaVw+UV3/vRJ1zKia/+/C+xi2/RpZHtjB4HV6jjVAl39t9GoDPbsPMWqUMUZpVEoOgGi8Kjfktzo8gQyiXvHAl4TKRutOaDJYKhzVgsEnRwVFqL5LRQ/C7T4wFrJ+Ys3PH0uIqFszZyg6sGbHX+n//6/+InB7/SX/+1YeN842eYH2emjRJs7MLuB3gk8GyufGknPEX5nYPzrQPMG+XvvzLOD86zKfG9G/g33oOvSOO//5XE907Gv/258M4ZfPWB8He/MP7Wp/Av3w/8r75q/OXvV57fTtQP3me6uoLpAlHjce8sloah0ZQid4Q3C1gDDQ5SmUQpqiweB3/AO5M6xYTcM9kLXeHU8/huGBiChxHswRsLMsKfJI5RCNZAAkFHH6NrIFDJKKscaLJDCIQQ0TbU5R2ho1Q1ZO4kN+ISqXmkyYlCMYFwJJQZbZnkbahAfLgFekvjq8TB51frxNw4WqYTyMlZfSFaJVIwaUxhjAktrKjsaFpBhdIyOgO2MAWhRqeLMreRx0gtMwMnqfSeQaH2AAG2Eug+evTeDbdRNWp2cwFllAABAABJREFUIEU4heFLUUukeMRbH3vG2ZjdyHF4B1iNbY9UL3S9E8CFhp9msgXON9Cq895aefP+xBLqcEG0QjODLszbM549PbC9CnjvbI4RrzNX5YZmyiWVtFzQpN7ZXROrO9sAItOoiIWKBx3BPgFpjQ3Q7Yh7ZJEt6V4mtwvgy+MhJ6+x5ZZ6qpzfXnK6+iHafpcSGjJdEM8f47sd2/w2Jd2nW+KoFbdxCM0h0m1slptt7m5xKxuN/NJXn/Dlt0781De+RO+F0+3Ci5dXvHz5mhefvuLj3/yQT8t3udgJ24sdm2ePeOPpM7706A325xt+8SszDyblb3z3lqpONB2jbo9ISThbEk63ijMexGnTafN9RC+Y/W20NvqpU9fnyOU1sX+M6vukvCPs9pxvZ/LZOaW+SVmcuCz0eqDUG/qqXMXnOGckD0g44JYomkhpHVnOEHEfbIMAGFuKOD0c8L6l10jvJ6Zwi3uk5U4NUIOhIdFsovfIrRZSc3pfWEJje1WJ15ESF15uLnk/TZxv4cHZjot795j3Z+i0RwNkX4cEToUUx4ohdRk3OwHLAzKk3TCcJCAeKd7x4AMsZYUpBUQ6LivenegZFagEWgMNE2bDVYJONK8YdbBwPI5xP0N6hhsLnbtuCJlA6IUaOkvImLUhLpRIonOMoM2YwgiYn+EcaaxkUhearig2PBQiZBTPHWpntsxRTgMOZoOW6VJJ5gN01BlNIDWaR0zBgRgCSQNu4N4Rt392+KArIVRiV1YxTE90YzRqFCZXFhuB5E0Nw4PU4ZidyY3QBZE+GBMoNVSmtXDMie5Cu8tfaB95gCRyJ0BbRsDZN4gmgjq9G+6F5DPeOj0UpA8xXNGEWGeqcQC+gOZjfSJdiCWhekX3Ti4Zi+NAUc3pMrQB2gIhNnZtKOglbHCZid6Q3Gm2HTK8cA/6wl4/QE4dO49EF1wXot/p662Oi1aoZAqp65iqWUYsckidLDPZQKyRW+QUFPGIexyCQ08EHZOZokpLbaw2cJoGYj5QqxAEMkOch8GkRugN0U415TQW/oPl1CPdBla96Y+XqfixDxX+X/gf41FxOaGv/z/Yx78Li8P8iHj+R7F7XyPPD3hbjSdvwtNP4C+9r3wmTmvOf+8c/tyXnV/7GP7qR8LP3Hc+ssa/+0HggzXwlw/Cv/3DFQkBDSOB+u658mzfecsar198zM6hR+dUGkrnKBu21jHi6B2LDnRwmwbQxBsHPfBgjazi3ObE1I3KkAYtf3CjiKBFx1hRO706yfII4hFQKVhQAitB9G4PNvq9UgVnxcMg9NEGWGkXIydLrBLGCRqD1cmzs0oCEj5B7StbMpM5U1w5lMgxwn2vSMu4FiIDYayhUWUi9Do4/lHQviNypIWJeHR63FAihBjYrDOX85FtnXGOFFbCGogbaE2oUtj1PcRL1CNrqCQirjMWIku4RdqGRKHH8bK+6AvHFkjhRIwVb4Hb6UBYtiQfuKnIjDYf4qqa6Runh3EDuekwNdAsPCDChXBdodGweiDESKBx0zuvD4WvPwt8dB3YZyUF4/JVZZFI0o7EiVoqqQiHZrSbyPEYuPVOS5lTG2Ajn4y9dVp3SlCSNjo2CJ91O/grttDbQPNKiDQfDBK1BmzoTbDQSVJZT4rlB/T9GbqLxKdKqhlbTkh5id9es3z8+7i95tD/U/TiIcuDN9jsHqDTG9R4RtSEtnVQHWMbbJI2s58i7zwU6sloeSXg5Hs73rg4581vPGFrO0628Przz/jkwy/48JNXfPpbH/CBfZffCMr+/p4nbz/hp7/2Vd552Pnw8hxpT8k9UL0RvVFkyzEchz65rkRdWcJEX4TOAj5x8hk2zny2I0ohLBPx9JJl/Zzw8ob26iNCukXyM+LuAe38Cdv4kFgeQ23Y6Zq+FIq9ZMJYmfB8xOpMl4mWGike8DJR48REH9AnNmg0mgQ0Z440fBXqERIbRC/xOGFJmT2immia6G2Mrqs41RtandgSTRf61YbDi8qn8SVpn9GHyuOLB5xt99wPDwi+51QWTApRxzQ1xKH1VjsRNLPSCdZZ2uCKuJ8wne4AbsM5A46FRAmVxz7yIR4Mc+WkAwuePNMZU5HgY/zvYaDDVZwl9WEGtcBRVlwGnElbQkiDsxJk1OMlELqS4pi+VR2tqzwITSOngVElIVTw4SLpNdI8Uhn7+mBOkUSwOD7/0qk4XTuTdZaQkDD+f+JCVDj1Cg6RiY6hNlQGRUYuwMXH5KmeUa2jU+LW4NgcgtyteJVogcrAza9t0FAJnU0J3KbRgrhOglighkBuhgUfmoLYSUVZQgKD5GE8f2yoGYrPuNrAzss0wqFa6D4yK0lvOHmktcgkZRhGdaVb50Y7ScaqX7MStXHbJ2IshKpMIhxEEBzRHVu5xvRyHBbjjhiU0q7YSmA/G9EbpxZoveBBCM1Ycc7rRA1DcDeZQDOMCdNE84UeC6nD3mDnCj7yHa0f8bahZ8NDZZjwnN5PNB+f2eyBIoXUnYxwrAplC7Hc2UxlmJhlYg0Lu6ZsulNDZGORtTe6FoIGijiT/niV0h/f/VGr63JJ+9ZfIV6+j4ULRF9gtiDrEd89Qd/6F7C3/nls3pAs8KI5//4X8JsH5Vmq/MKZ81uvlW8tys6Fty86X8mRN8PKmSeSGS9X5dNi/JOD8d515ItiSBR+/9/7i2y/f0lOkXoylAmXuzR5i2QrMDtLzRRv5LziNXMQZdY6qHG1EeWMTsF9IaYxgq3eyO1soHNDx5OM3IeP0bTIBgsAJ1aZaVbY9y3oLcVBJaDdkLCwxgti7QOlGlfUd0g/Dpth2CK+Q7mkEKBBTo3aA+LjdiIhoaxUG4leRCkEuk8QVkKPSJ/J6YSZcdLMXEZgrEThQipXrbJZD8j2Gcfe2M+GV8enRKud1DPeG22+JaxndFZcIoUwHBXVySpQlDAZantWGfjljZ64UYiypXhlapmJWxaBoluw12z8ASdrxHxLLco9n6nTym3P7Gsm7itzrCQPnPfGopmb0NlmpffBpJcYeLBbeXyW+dI20qzw0+9c8MMPb3h+reTYEVVuqbRD49PbxNXSaYeZg6zU6LQ1s0UQKayutB7IqdC04VbpHvCax9o1jpP6aBBkRFaCjV24+Yq3PHwQ+Yj6RF8Drj78GIzbRZA0NN+x4nVPste0wxXt5jX98iVeX+G5IPOOePYYO3sL4jmSNpjsyW3l6483/Omvh5F6v3uRuUCJkdxAZSDQNU3kMCDc7ca5fHXi/R9+xI8+/pgXr99jWQ5UWWCa8PMnhOkhcf8WLe4RFWpwprpjpbIXJfnEo3Pj7Skxz9MAWhXlxe01L9fEy9pYI+yDU5vhi7FevUKPH6HtOSRIOWLzE0J+jMZ7iBoHT6ynBTmC1Nf0vmJhBB2DRkLajd28gGpBdaCQo47WlsQZFR0v7zAU3yoyvvcyIVqZ00wUWBWSbTHvmFe6JrI3dBKMTIyBe5rGxCo5c56JDyYeP5h4fLZnmu9TdeKsQMujNSXBUYtUjUylU1Ak3jmFZDAOVrExERVH3ZkbnOKgU26ts+pEw1CfcF9Y20DH7zC0KWVSrBVmnbA27KkJw7XhZHBIdJABshvSw/Hv6kJxoUlkckfM6QKmkCzQdXg8iglbVUaXq0N0tA5teyERvaBaaRKoTYgyXkRK5DQ5cwtUYdgurZMxPASKCTMjgCp9HK5MFnIdt1rXiFJoEvC+QXTBaYQ1c66VJegInLYNnhqTVWKDGqCbgysqwhocFRu1WumM2EtG6AQSQf4g7wI9dGSBFhx1BZlwqTTxcbM3J9DxCMmcXhsxOb0EOsJGF46uaAvI3fTItHCSTLLB+JAARUbdPphyvPyQC23o5sjZ+TnL6rRjZYodd/i9b3/Gq+OnvPHOOzx58xdp1gg2AzNVCyIrtW0Ga6INUmpRYRPGQStUoeWVKAZ9wrUTw5Haz8l94O3XAOctc6sV68OTU13ZaKObMruhVumu1ODUZOxKRz2wIricRmC0jyAuMbL0lYaz7YJ25d/8i/+zn1ymol2/dk8KxxM630Mk0tcD2q6www8JL34Le/0B/uDnkK/+OTh/gLuxNPi9JfD7N873TwHFmZPxcxv4lfvCeRg7H2F4MJQxJqzV+U8/M/76Dyt//4vK87/5b3DxcmGxQDPFrDI8bwNtvcrEkYbYgC3hyiSFEguUCZGAeEF06HF7SMzGnRb5ztgnIK7sgtIMcu7U1bGUBhJXDPrgYvTUabah9ZXAQrKMJQZwxjtdC9FnJHRaF1yE0A2/S6O7NLp2IglvCc0L7aT0IGwwvCslD0FStQEh8WiIAT4RtKPdqSEgOKE7UKhJkN5Jt0fk/Blt6ZCPRMvs58hNO9EtIR5JodHcmVsnhMx1y0g6ICUgk5D6jrr7HD9OQBrabw0s2tm2QI1G8UBSIQRDTgGLFfORnJ7TFUknpttzLnc39B64WGfWi4WkJ2bfEjSSrNFjY85bFq88ILLRSt4tbEPirXuJDaMtkDcrv/ehkkVG/SkmnrcTx9stV+uJy6LDpdAXuoDbTO2MG4hHJguU+Apni9KIPdDF8KqYDH108CNJdtQW8WBAHVAkxhgXNtDGA1x0pjLqYKK31K7kHgl6pMhMdhlIXlG0GL4+R24vycdrbu0a9QWdFOYzCOf8/E+9wS//zAVR9+S8AS1oTZTWiCIcm/OiG1tVzqQxJ6cxEdRJsqG3xulm4dXlwstPP+L5i4/4wRefczxeDuritEPOHzBtd/T8iO3+EX/04Z63Hjr396NKbbJgOqFdqG6sxfj4yvjhZ/D59cpJFdRIwRCr6KnRygKHS6RdjmfCNNOjIrsdxIcEPyOEwLJE6nKN+xHK7cgNYEiS4aoIG/AJD4aokhk4c43pLkwX8WR0WcklYuZ0Tag0XDMhTkgyhNEmCM0G78ATPRiLVC480KdM0AFl8ilgm8h+u+HR+czF2Zawu2CO52x8YumQw1BLdzqRBdcMrgP41jotJoTIpq2cQr9jSYzgZJLA1CKug3/hNkiIImPKkXz4N0xHLsDNiV2JOp5JTRvZZKjpBaw7JQzaRTY4eICog3Pb75oqXph95EOSF04xk91pfTRcjNGE8OBYr6xREJTcKmYKSUbdtDmeICKcPACB2Sq3obORRGMluXIyw0JiciV5wbSzupI8kNzHmkNHrqeJkUIYUjkZnQcVhvVU+oDAudN01FxTV7w7p3injddOc0WikBiBddwRM9wDLSpiFVfFbVRxuwhi44ACUHQF2ZDbSgud0mDjQ+kuIkAZq2Yfz33zMQlzFpRA8QwdulRmrRyubkj2nBA7bzx6g+VwGk23Oqai3/rOc15ef8rDLz3m/lt/lKyQu7LYID67w21SYoOkI8sjd+8N1Jm8EVS59sxEJ2gFlMWFJGMNn3qkS+MkkUkOpDazakJ8BNFbU1pcCCESWmXRxGqQpbLpHRXDbB6YcKlIHwTRkxobCyDKX/7f/U9/cpkKu2mEp/fo988wsVFBmTbQtoT7b9Gf/Dzy8gfo9/42/o//Lfjn/kfI/oxtcH7xXPil7dhvn0pkFuH+pGQZpz6TcfLWHkZ1zZWUO3/q7cDXL+DRr3/A/+PmQIv36es65D6t0adKb2BxgQ57AkcZPfepd8LdraSKjuqgGB3FfMbqiulMdSFQqZPhRQgaKWrkMPIMbd4gFYIO02nLhTl0ehl1LnNDPeGqZL9LUQfQlqhh4K/pgdAjLa64VIIFxCAyU2X0vekw6ZbFVkwSQTpiicQ6xnlqGIybEgutjx11DiviDQuCdGOqE819yJjEIOg4ZIWVZgMVPV6enbXlgfD1I4uPF4hGY1MzVjvTfCS0HQujQVBjYbd2zianBMckM/uClDGJmFxZRFCpZA+YTBwsswhYTzQtrKETjpG8SQQiZorNsO0N9Y5WJW06Z7mziZn9ZJRyIKQzbo/GzI4H04nD0TlI5HQcL9VOZfWRMZK04D4CdUbHXUhAtIXQtkicBj1QlZpgdWGmEPuEMdMl0rXgdsLjhsaAyuBbQnWyRlq4pUnE3Zjgjg0w4zpMgFl3ZDPAcBk/s5Yim+kJfXeP1DIbjoReuF2veaN23p4WXn/vO/yd7zXqhXLx6D7vvPGEJ/cfc765z03t/M3vFa6OM1lX9ruVrz6d+NqFsO1HbnUZXJC98Ob9ezx7Z8Pl8V1e/s4LwqVxe7rGDh/CyxfcfPYx8D7xwZYv7AILD2jxbS7mC8Q3uMBiTrbAHIwvP4q8cdb44XXmOx+sXFenY6wkzrIi80w7P0faW+ipsvYD63LD5vUrpL8gasA2Cdk8JO/v0eN9gj3ASqXWA7Yu1Foxv8H1BMmRuEe8oWaksuUYE8JKtA2maRz4dEv3PjbAZWIpFc8VrIzmVYgkjcS8jB3xacshNM5LZVFlbQ2pAU6wvG6cXr3mk3jNfvMKmffIgx3nO+NB3BLTFo1AOyO0YeWsYWYKRwKF1QtLVFwC1gI1QaMSUKq04X4JBdNEaqB0ahDMRq4EGKE9PQ5nUYDGuCSoQCTjFLJPeA93wVHYaCcSKAIWuasIZlQ7VSql5hFikkHwbU0A46ArG0+sIQ04VO20gQhFXDBpiIaRX2Jo6pcw08cvxwViYNQ7BXBnDX0Am1okhXEXq2HU2PXuWSldoHeiCM2G0XSySgpOrxvcxiQl+8iirVFIWknBKHfTw2JjlRMssCgkNaYaqN1xE3qUkc/QYYZdfWQn1IzgZXAYZKURae7EGKGtxBAxPY2WSkkUqXcTqIRSCAK1TRxZmVQoXYh9pstYyW9DHqvcuwOidYF4JAdwz/TSiOIj4EmiqrIQhs24rcM9Y85kjvk4UEcfhM7FYTDS+5hOkRAZqycEmhzJHjiFlZOHOy2AYKGxVCAEjA1zPdFFiB0qRvBME2PqTryj4kJgiYp2H5AxN1x/wkKx+HA79jnLS1QLbns8PcCjY+LodA5PfhHfvIP++r9P/7X/M/JH/iXsG79A9EYA7sfEQ/Vh72SlS0Zl9HHNhpjn7txKI5Ct8sYe/rtfh7/F53zGPWJYx2wvbDE73u3QZsSUEnyErGLBm9DWzeh4x0qpgoiTfSawUhhwF9GCtMzZMtTAx7yi2ohywVJPhARoHD/Q0QdgxCLJjE3oHBkfgjUcRgfah3TtpDNJKm53+t14Zwksewi3BDVaX4lp7MKkQ4kNtYCxksXvlLxQbKWRme5+6KJksjlmTmhtiGRCoYuy6zbUyVQCJ26z08nc8wGbMZ/R3kY+I90BVpZRNWvZyD3T45HQZm7d2K2BkAPejOjOFGamaNwcxkP7OC1sLA06oii5RmSGngRkGin66Ui2TlJj9c6uR442IDub7CQ/QQpcujOHgHW4KR2mSGkHHrDh5CvhrFN65zwm2sa5WZyildKdJJVZM0t01jZ2f96H4TGnAXUqEqh5od8JqULbMsVGkiO9J7wNYJrHSg2O25Z5nclkWihoWKmeWHvA8wiR7trwJrToWO9MJSAhQyqgDfVA8khPIyGvpbH0ieBHJI1a3Zzvc39/wX/pj80cDiv15sDl6wMffvic73/nd/hH5TXxPBD3T3hZH5HOnnKatxxuL/jstfDti1v+q1/d8yxVigUkKbftksk3/Pbnh+GmOL/H7uIxyb+G2hWHwzW/eE9ZXn/ID37nM777mx/j6deZHu14++03eOedL/PO+SNymlhdhsgrCl97Bk9n5z/6ZudV3BHWymKCO2wYMCffzGTPsHsDLIDdoMfXxPU5dvgMt49ouTHnR+i85/b8glg3qEVOa6cfb+nlhK13RMTUcX1NbzOJCY8HCIP2aZRRz46RkAfbRQRqr7SudFc83fK6ZOYY0OmAW+Cahdw3GAUvQ7eueuLQAwTlcNOwXNFXV5xS43UwTIwSV9796i/xeO94PEeuAz05PWSCB0b5PCBAdiHe3ZarBqIc8La7W98UjqqEkWLAog2OiwfaNGE4q3aqT8wORsXFhlogjmkJKlRtJNuDL2QB1zJEWyGzegVvSMwEnLVEQjriUcAyyQInBgRpqkPJrqPwibAntECVI4hi6kQU8SGKnKyz6koT5cJHJqZqwXpGfOIY7/IgZrgJ1ieqg2gnSsN13LJDT2x7GksZX6nxCNbuIF1Dh75tkdUy3Z3ECh4oKkQ/EHwagDOLFJvH5zY0vG9QOvjKjQwWxHmLrBFOkti5s6jQY2LTQRmW4YqjdQeyUKShomQfBlCIeM+4GYmJwC3ZoejMKsL2bqJ8WG+Z9B6I0vMV0ZwtwmQLS4s0CWNt4idMQboSWdnWiZY7izROqrgIG1moXmmSmUwIfsTkxNQ3NO9MDsGEmCGIchQQ2w75Y2+oZkIPgxHDgdUnbkMgu9H9TpYmjRZWFs2kKsSWUWkkVgzloFscmO4Im/95//zY64/15j3Xb/2fiKdr1n5D1i2EDf3+O/DkTyH7n8OnUf9qHpm++1exT/828qX/Jrz5yzBd4Ey4Dr2vykovr5HDLXr1BVJeQ1/GaSg/xudHtPPHxO2e91++z7/2v/7fcLh+l8PaoFeaGNd9g4cZtYr2A5ISUz9w6juuZeYe4zYpPlH7GIdFGaPB0cueEAXxwOSVrjMiBZHIpG2sLsaAjTUnJjsxtnjQpdHbiVDy8AK4DQ1wuEFRrMPWE66FIhvwFZE87i1tZe5phKHikAC5r8Q6obmPhwGRKDYw0Z7IlonhhorQ+xb1xkYAxiFL/YzSOrJb8X6LLw3ZPObEiY1HNtLxIBxtS6xOVSGHRpEG9cDG96g2rCbWlMYIVJdxHUkN7XG0Pdw54cwSCCYsWTmrypQKh3UYDku6xe4MoLuQscNEiIanUWPd95W6T0MgtM7Mm4LJytE2nIXMozRO3rvcB71w3rEJJ17fBO7fE7544dTgXLfxQ357W1hDoIhSTMm1kQkjkd6Emgqhd7DdWIn0Qugbss8seiCROcSCtk7qY3LmYqgcQBTvW9waYRZWq6MJVDo9j664uZFyxGujWCXnjlhmrZUpOpYiFGVuafhi1LnQSu0VC4HVN1zsbvlXf24PtRLCRBMhTZks8PLVLf/Of/Ahh+PnyPKC2F9hGWTziHzxJh7vYftz/szPPObLFzu0HxGd+dGrzn/w/esBhjal64FuGa8nvvF0x5/9xj08dLhtXF/d8vGPXvL7H3zEZ5cfs6yX9Fl49OycN5494snDpzzePUSnDeeT8t5nyn/2/g3XOuPNmALQ7uREQJVGrgkLQ04UQkYbBArL4tTbz4ntM0JdcAmw78TpTUI6w+JMtUA7VXwxqCser2mWiARsOqGa2VrGidQoo7mkA7scZUvQzqRCd0Ws0DlRPRA9wJTY5kj0PWsMiFSiFdwT/S5gaB6JuaAy0TQzRQhpBj/SD7d4ODE/vuBnf/qPcLZLuE2YbEikkX0SoUogIrit4+KjjUbH0pDW0Q2lM6EQhNXH3nvVjraA6XjJZZERMuyOaGTySPSC0FhUcHfcM5MYJoMMaR4wa5gI3evdS0yp3LIXwXQ8sxZtJJnJq9ODjfWOxAHpwqFHQoSkjcUNd2HnSvVMw0m9kOKJPhbbdBmY9uCKdaOFMUmcbWjRu3fwRk0F70qUzEJjKzNYIRTFk9PFaXfTkOxGiQ3zRm6ZeDfB2HikxsoaItoUkfFMcTGyxfG9DnaXu1CWqOCGroHZ293NHRI6rJ3aaC2hJiyqeK9MYYGqJE8c5AbxOFZ2DYqC+0LQDqfMXH+fGAPbzcx+84h2PHBTT+w2yg9//xU/+OGn+LPEl37uFzirj4nacR+H1WqJpCdaV7KC9ZlqTo0NdSFpoHui+Ylwl787xMhUFQmBjQcOMiYkZ32h3q3Kb3yAGJNmTm0lhBPaEsGViYUjOqaC3gm2peOYL4DQWmWNgSgR72OF95f+D//58Ksf31Janb77M/DoHlEv6csJOX4fXnxM/OzfpJ//FPrkTyGPfxnZbGg/9ecJGfjo1/CXfx97+NPE7bsDQIXQ14/g0+8hn1zRT6cx/umjDmPoqAVtfwq+/Me4icbhNGEMMItqYNEjm74izehhKINDUxbf0qKRpWAtDhiUCDE6sZ3o6Q9qOM7eFZpz1I70SNHODmWnJ5rOVIkkEqGvTGvGPNKDgy647ekt47GzWEN7wL0wWxz1Oe8sYSTFk4P1iOBMXhCUVQ2LGyJHglXUZuqm0JdI1DQUuCkT1tHRXqWC3hntTcEjRRv4jGZDWqVEJ7dAt4kcNlhqxNNMTwudjIZEliOtZ5InKpGzWgFnicMpIGypsjDJikgcUxbLxJHqwBOk4vQ4kOE7P3DSmdodTU4rAj2QJRLKnttpQUInBR3HM8kcQiOvEcmVjXaqCwfL9JpIc6eURp7HGNFNyG1h0wKO89mxj1vXIqzuXC6KxzSaNyZoG5bEQkUkglSMRCWwx4hdaOmOw9FWAoLJ+AB6dFZpAzDUJqooEhZmPRDqQ26OHU+ZLgtZA2aQxFmJ1FpxDWRNhJpB5W5c3em1gQWOqRJ6RAUu3YCZ2aDLiVDukwRqTHRviCvr8cjRK/P5Ob/wc2/wm58+oHliLgfW42v6urJ88ZwgH4Irf+fTLT/7h97kK0/vI/tz/uOPV04t4ZtILApskV54azvzJ79ywe2xk1xpQZgeznz1jXf46i9/nZvbhdOr1zz/5CXPX37Oq299wXvlE9g0Lh7c5/69c549e4MLPXK4yYRpR0tK1ImEDo5K15FGR1ALtD5CsLNGNnsnbL5Ca1+mtwN6Kri9wi+fU/xjCErKWzbTY9bzHa4Pae0hdTngvRFXo3XlOq4gR1KPCBHVEz2MG2eMigSlUokhE8nEBpFOOVVulozEW+Zpj4Y4Rvky6nVrm+jBqRYG1TbeUJtzqgfmuGHKE+aZ9qLwD2/+Kdtt5vxsy0+9+SZ9d4/Z9kQvVNnSdaUKlDiw2RHBW0eYmENg6SMrgY91yNIrXhMWRoshFSFEQaJTXDB3Vi+DEurDR9MpzNYoNEwCYkJixdXG5QHwXoeJmB3eO0XGwex+m1lDY8mgRNKd2yj0RiDiqTPk84XMgEedRHEqszSKCCVOTO5oG4eOIVAb0wYQIpUunVWGdH3XhjQLAtaUnUY0nliISIYqTpLxNbueqOIomQlhCRF1EOscNY0QYxuISwsFupBdUD0QGSHsqsJkI6uS2wwUijihrcTg9DZCndFWJumgM4WK4Sw9E72hUqkWUHcEaNrBlUjCBFpMJEuYV/LWWNsNFjuTCw3Y3dtjsxHXhakaR6lk6WRATahhZfWZyU4cCcyyoikSfThBUne6N+KdF6aZcAF4OGGyo8qCitC6cCuM+K01dpzTHEq5xfG7NX7l0AOuiaoDmoYnqhhTD2QPdK3ksKWzon2s9Fd+vAHEj8+p2L+Nfu1tRDqE4ZDwfoUcb7DLD+if/gP4wb+Lvv4O8u6/glw8wt/+l/D0CPvhrxE//LsDwtEzFiIh1sGxf7C/A7QEqBlfHT1dY7agn38L+eA5Z8eZh0W59sBJGmbCfpnxuHAjheaBSZQWGqGPW8ZIxALxhJuQVAdQhqEgbgQO2oluYMoaM1FXmgSWEEbKmZkqGWRh9tHhDbEQ+znuhajGycbttnghmYIqiyqdxNSgS6DLSgA6iRoieCeaEMoJnRvVnZSUFcjSURG6QutG0ggIQTqhbRBvJO0QGrREyyvWMtEic+70U2eKhvYR9okpgiWKr8Ce7E4IfVDxLFCT0dcdIQixKbfhgPeIynggzGHhyPmoPbaA6EoMHZVMDkqxiehp1HSlEQROvkXpBINIROIJ9x1JTmScgwkeOwmjmpLMOQ9Oy8Yiym0zwnVnM3XO54XSznhxcm4PEzUGHsmRMI194RQ6rWbmOAKxlT4Wy5aputBlT7eF2cBRWnSigKYbhJlmA+ClrYxb+93flIbC3BJr3LOGW3xaR6fbxtrMkqI1ECQjccFsQrxTY+BUdyM4mdZBCJRAZOwkG4msB8yV4DMuR2LfkKcFjxOpDHLDGkZwbsOeZsYf+dKWOSR+99Mjr9s95of3iZyQ+jZiQllf8s7OqFcn/u7vv4d453UbbJJ8dsE8n3HMZ8S052fe2bKbnHKAqoUahNwiq3eC3+Cblf3bOx49e8Af9q9yPC0cLl/z/HLh+uVnvPzBaz765m/zurygNkPnHXG7p2+fUrZ7QrqPagZRMplK5/4888bDxP24MCssnrk6VQ7XOz6PW279gsyXsPWW0G+o5RX11Uum8CkeDU0TIV/Qp3NCuEdsE72/htqxAoGVNazQh4663gW5LRnWjR7Gy7JLwvMI97UOZTnSbUFTIoeJbcykJGPKZYG9ZWLvY6LoTmuHsVLJAdcNfl053VT6zZFvv/qAMn/Ko3uPeHw/s9tv2cgZkdEqGMVpCDhiKw1F5EToYTyDfEjWzGd6G6scxajusI76omuhMX5vwnh2uES8t6EpT4XoEFUwGauNYIrHAWqiwxqM6BPSJpYAqsJsQkUxhdgKJkNhkOlIjfikFB+SsoSjvtBJqEXamvFQUZwglapKtXDX3Ohkr4gEqoLaioogYTg7Zjq3GNEyG1dqdHYqd1ZnYWLiKIZquKuN6mCHyAiYDkHaUM3TAyIR94VTF1Sd2W2AuWxC6oLKcfhYvGMsWN1yktFYgT4YKr2xmJEixDamSSsrMWa0Cv2OZeHoyAP6Xc6tJbIak+9pXSnSkDTC9puoVFOqF1pdyJsFKed0LRQS3jsXYpzCRDcdCgoaoisCmES0VyTkQWaVAQGTHiAU1gCp7LiwhseG9y2hN07hhJhSxUCUAwvJE7nDVWhsbWQbwchtpcoWotIt/rPnQpNM9kaXn7RQrHfIeVTYTIlR8HgPz2foxVvEN36e+uq3sPf+X4TvPqf94f8JYfsYeeNXsLOvwce/gdx+hq0dCYKkp7B5AvszfLpApzM8GN1e0G4/J33yI+T9b2LHa6YfLtxblVdzQ7RyY0KdMw99Q2hD3CVescrYSaYAGnE70dqOKE6tTg8rK51oGZFCl4mgJ4RCCpHkTpFlTASaoqmxIlD3NBpzVroGTrLSXJA6XhgiCuZEmTiGK6QLsw/uRZB1TEbEmVxwCq4yWPwhId2QppQwdvotV6Y76In2To3jUSQk+iqUrOyLc4qD7b/VDMHo8YT2gm5mpIEGQds5bteonxPUaWHBqpGScQnMViGCr41OpErG4w3OeOhPzTidO/GmYMnIfc91Gyfns6oUZexCg6FLJuyONCKbLvTktHoHBdJGXOE6ZkJsTOt2uNW0gS5MAtUiRxqbMrGvysGFSzFetMQuCKdjJbtQWTgtka0vLBapllgMzn2l9YC0cSgQDcw+gS6UJsQolFWwZGgJbHViiac72+KMrwEloqqcwoowwqi5V4pvcanMqdFbZ2pbigolG2tNEGAjhbAqzRLL/Bpp59Tq1LkyEzh2YTOiglSfEQTSnWVRndUEK2fEseVmNsN7xOVEENjLhj/xVuCnH0V+84MD3/5cOYXAnAQpHd895YvYmTZO3SukBW2wuTnQn69c2u+jsiJnW14+/BIfPnjMWw/uEzxCqaCKLkJWJ7cNsquIFqwZYXYePn3Kg7cKoX2JYJVPbwrPv7jhs48+5v0Pfpfrq49I8hlEx3Z7ps0jNM7Es/v8c994iz/0NJOSIz1idcbUmMPMze2RVzeN73zmfO+qo9szVtsRzt5i6ycOp0ZqV4TDJVx/xKQdUiJu79HTE1q+wM6NcNpQSiP2TzjZizG1jAeSzSzDWkWUNHb6ZuPWHYTbGkjpjEilrs7z4w3beA3skE3moA0Hcg8kn2je8NCwksmMF5tEox/gaB07HvjkcM2LL87YbgLn9zP3Lh5xfv6AyIQDG4eDr7S6IcrQkodww+rnnHwmhitCnQfmOnSkMhpnAWbrTL1wkMSqkVQDkOm+smXl0BNVKzUoojNRAt4X1I0UOjnLqI7LeBZ1HUpr17FyDERIhd46TuIYAtKcufmQQJKIYnQf2HFSZbKG90CJgjORK7TYiVIwYSgCoiHdxwtdBe0zPZzoSdhWp0eIHTChkii9EFVILY+pcxy8j8m5O5w3QuwjZBtv0bShlZXYhZPEQQxtEbRRW2MVR61R1XHvBAcvmTVWzApxMdDdyGNT2DFxawdyCHSLdA/0umXnB6oJ0dYhKlOBXqk6Y7LhQlZOyxW7OKMkQp842JFdTKS6osFGYP4Ol64eQEHrhIcDSToWOtoTvW0gQAydLlAITB4wIiadTKGGTJfASQslX2HrRCXetZ4cyASXgdCXTmhbqiqTwWZtNI24KAGoaQE7Yr0jjOe86p5e68g76o93VvixMxWnz7/p6aO/g5RX2H6Hbr+BnH0V2z5Fp7ORwA4Ru3mJfuev0A/P0W/8D/DHb0HIYzTT5G59oagOdnwYhTIQx20ELUUE80K/ucR/5x/w6t/7D/kL33Y+mN/g9bKOE3I/sLPIIUQmW7mShLiiPqMsRBqHsCDViRo4yMwkgC1j76YbQm0ogZNmgixMOuNZOAOyNtaSqalTdaWKM633yelIlVEXy825Xe/QwnLAULAVlc0Y0WvCZeBmXQpTvfs9hkDtRgjOgpCrDVmOLCxhJlvDmFAqHg9Y34JNtHhJ1S1zG/vJ4pEWhI0PMY/QcBXC4TVnuuOUdhRpRA1MwJqVfjqwCZkjSuiJ2W+xbqy6Q8xZ5i1TfU2WmdvYQQP56Ph2hPFCP5HSllJ8HEmLkDYLWgOuBbeGljOW3KHAMjmzreR1h+UjLXX6ugcalhqbNXCuiRILJwWzib0YWZwlD2aFV+NcEgcPHEypvrBPgnmn9YIxId2JBFoPuEIuowK4xhExUr+ihMitJ860IOFIMyd4p8iWahPbbkhVPK1UHXz/asK+BrDMmjqxrUiaUDdMV1ozVAainWoEFZwDXXZEEVzWAUSbgLuRcvM2KoME3A+EEFmb8Od/ccs7e0N9oJDxUXftoswUFots1dEEn37h/JP3Gj86FNbYx0FfO5NXqo1b6kTDNGJRuF8S/42fOefzj7/JDz/4hJcciWpsH9/j6dNH3H/4Jhe7HeqB58fGNz+v3CyVfZj50qMtXzkbBl6IqKwkM/L8CPPCb/7eJb/7w0Y9fsy6/Ai5+ZRSlzvGi3P2MPP4K894+OQpb188Ybd5wD7OdB00yykrVhrf/qDwGx+tg6NgnUuELPOoGVKR0onllrrcEMoLgq/4VNDpghYfYPHBkBUXww/jIuHcElqCUGhzJ1oEmZEQCbJikokhM2kBn1lCx62QPZKoHGQC3bINTtwK1mY8jpZasIxKQWzwRE7hDJmcqXVyhhQSaxfyFDg7E3YPz3l27zF5uycyk9tQqK8e0RoRrTRXkg66omNEOpjc2V2dfa94n7gJSqIxW/xn43hJQg2wcScaEAXxiR4aLYznbByABaaUhizLBVFw63e697EyT1XpIrjY+JhT8SC4N9wD6n2YixlTSgiY9DtPyiBm7nxgyL1BiZltbZhWVhJUZ6/9zuXhaBhySAlpvHTvapK4EEU4uROTs++jDdQ9cNSOumOuLDKqoKEr0Y6UwBDBdWM1JaLk7tTYCb0PTksJLNJZYmSq0EIge0V9JciGU27Q+qjWeyVMjViP5DZxihPaA8iRgxpTS9jxE57shyI+ZGFrnZtbpeYTU8v8o994n6Nf8e43vs7m4bsUEXQJSCyYOymM9VKzxiZ11u7QN8ziYAvimVscYhtcojAR+0qqmRYbu+4sEao72o1b3XJvXfHUaBboNqa7a1wJHkieuVUjU8k9ju+fGEe2bGWlFaPkjkpj9ciE8u/8b//CT45TUX70Nz18+/8CPSGh4WK4n+H7P4w/+hrxyS9i+7cG9Kk1+vf/BvLidwlPfwl780/C5gGqw9yHj8aDuY8+ufsgtrngMpDu6iMshwnv/eP/hP/lX/wrPO9vcigLDVh07NWKQDZY+pbcG6Q6wkI1cQyKmCAyHq671odWXBpmiZgq0tPA50oHHxjhRIZ5KNCHjd4R6YSW2KQy9t2tU9WwovTmTIydejXHZCbewVa6nWFywunsLNJFMSl4cLRUusxsDKqOOmRsY8RoU6OSsS5En9HeIVc2tVOjUCzhETa9YFZGVUu2iFR6PSKqLJsJq50YE9ErqhPBGtVPNA2IGBercmMbUINY8TazhoWNJ1QN6Ts6ZTRUErSjkjeG9TrkWS3TN5W2DtFV1RNxzfjUiQ16b7QMoWSCjT93aYEYwIOhLaEVZNN584Hwpx6c8fmrwqu6chWcm17xY0Jl4lQddbiNNwSZCdopTUjmLApqgdgCwSomnaIz6kPB3BGiGGvtTCGgoQ0kuwvibbQ7PONNUI14dfq8Yj0Q1fE6XA0ah85bJQyIjhhOYFJhCZ1uHdrEWTAWQHociXRPBFmZutDCaYh+bE/TQvZMZeGX39jxx76UiW5UPbHQybZDxRAKEMYI1BgK6jrzzee3fOfThedHG3/PNqrZnpbxK/qG0k58+aHzL/7CxHoItHbCg7J+0Xj++orL20u+++pj8n5me37Bxyfoyz3mlFh4QJx3vPWo8Ce/lNhqZhWh+8oZAcR4fnXg733/yCpbSjM2x0qqr3j3HF6//pjryy+4vr5htU48T1w83PDw0WPuP3jAs/MHbHc7pjRzMe15//Nrfvv9xuV6B4EyY+krJ5kIUkl1okUjtEburyml0Zcbkp2I/YRtImmzZQkXaNrTWxgZhlaQulD5A2dFxIIRpJF9VIE1GSCYZoJkopQB+mIEFTVNpCCYJzxGcoRJzkc6PyxIm6mciPmM5E4g3CURKjlG5tBgG0lnZ5w9yFzsE/fSA9CAuELfEKwDjRZlZJy8o77eIZOVO4/3MLxiJFkwEqI6nq/YYNj4DOq4QrFAikL2Ma3pvmJhhCl7L3SJiCtRxuGk1EDMAXolihDUKSi1Q/Dh/4kBVPrwIboQwnDMFM0EraRuBFcU4+ACNngkao1DgE3L1LQSugLGFEb9u7vSJQ9PjAOW0FiocGcq7SSNdAn4upIZKvaTDXFZakqkUVkwEaQ5XSPuijcHbKjLFbSBxzY08zaDFiKV2QARKhuaNlLvVNKQknUhacel4D4hDboeab7Bl9d8ZXe4m0aMlUItg2YacuAf/uPvcLi64f7P/jSPz39uHOBiI2inFSGGSvXEUZRtcFJZWBlrpGw+WErJaCqkJrSgQ/Tmgngi3wnlxeEUhbk4wkrxRCOwl4WDJk4u5FDZFmcNO0IYIED1jt9VVhXDdDSCsjvFI8GNf+t//xN0f8gX36W/+T+k7x4x3X6MXH0bu32P8OI3ac9/G374G+g7f47+lT8JISFf/1eQ+29i7/01whd/n/L0j+PnP4VOj5DNPSTNIBvEC94v8XIzACayhXSOhHnAhqLw9Bs/x3RfyK8WjsEpXaku44e5CwG/S7AOch4WOGEEU6IXwKndhuWzCT0kIp1giW5CxOlMoELQCb2r7/R1qN4TTgvG4Q65G0lIrBQb+Y0inWAz4oUlnJFtIFBz6ix30BKkD+a/RMRhaUJOu9HYUKXdrWM8gfUNs63g11R2BF3AIgcG210l4jr2yKZgsqVZpCHMOpL3c5iJkjGu8Z5BN7Q2eApNt6gNvHgXIKyUqEw+KJ+EPuh3fsRp6Galj6gzohu6dIKM3IKaYSUxeyM0J85yd3AYt/a4RNZkzL1iCBYDk0W6CxpfE8SxDt2NhzLzU287XzmfWTdQKJRTpy2JLy4zr8uBL46duG459M6pC9WFtSpJFPEFTZFe4vigUYl9Q9dODmDFBim0Oe6DiOnSiMEpLaLJ6NqxugM5YG0ELgcH5IZmkbkJIoNAFzyiOIRMiZV2NHyzJbtTW+d8jrySxtqVTaqELli4O6xpo5eV6Bn8Fvw+P3h+w1efKo/zuO1t0DtHgI82DomuTgpK7w3NJ37mS5EvPTjjN35wy+++iExTu6vSTaPpFIZU6dnFfXo94ml4b0Sc7dNz3n5rA59PHG4DN/I2z1++INYrdL0k9SNx8x04XfD5TeAf3r7Ln/75J1zMwlKVbELrxsM5cr7JPL8dhsxlN/ONN77Cz3w5wPGnacs11ze3XH5xy+dfPOfVZ8/54Xvv8Z30HS7OZ6b9xOPHT3l6/yH333zCl59MvPp4dOU7nVkSgZWYZ/7Q48jLqxOXZlS5RwuFND/DWan1RF4b/fQ5af0hWaHJhG7u06YtdbsjM1OLIHUhFselcpADwbckX4e91sfPRQ1GYjQpqm+hQU+NTiH6kVAzSxA8O7JsiXoi1BEn1yzUNvgNhtCWzkGd0Art+JKrV8Lnmrg4/4J8fsFms2Gz3XIWdiRRtBdyNVwyS9iwCHfNlEpkuEUwo9uWHnwQXR1up8Ru3aDSWSWyNUG103vgpAJSSOaoBYpD0MgfUDLMbeQ8JiPUEZh3dfACfR5/FrG7g7qy2AgERg+YjElPMBsVWRkkyXDH2EEc7x0MZmE4SQxmjxzod3keZ41G7MbqgShG8E5to+Zb+sioxdoggGljwckG2QJmThOn3q1nAiCx44wW2BqE7I0IbCxjupJaZMWZfR1rcs1gE0s6oaFDH+TNYB3xioYJrFM8gEdmKk66e7lHXt0IT+7DWT7jamnMeRwwzuLEPYkjb9cqGgyYcGsku3N3mHPygVQ4GuxNCVqHCIwNp1hwh7mNs6Xd2Vsnhd46S6woCVcj9ErzSmE72CQGB8+kNkSbncYxb9iaUS2SXIZ92wLNA1WE4ic8GaU4exrFfsJBzXD527T5FdP2V5Ev/xm6/tfot8/h9/4a8vGP8NsVu/zr6NUX2M//WULe0J/8cXT/LvbBrxHf/9v4pNjG0XAPjxF3Qc2BG9CG9TEVML2A/hh98KexJz9L3E1s9w9YXnUIEa2BZG2M20OEnpnNaSEQW6VGYwqBXV1Z0gA3ZU8UOqpOckN1xW3LkgS3ypZOlchZi+h0zSHMhO00GASumAkbjcPY5oWwRDZ9w9ErwRLXIrRc2C+VFDtLm+ghUP3IXCcmHSrfleEVEVFCcR7Gm9F8sHNSWJG4glewaby0ZxBTQlyYu2MpM/VG10TZrKS2pzahe2NShVbHiFMS0lc87fG+kntilYgzrIimQrDMUYcBLxdhTQGfG2IzPQsQCEshLEIjgzRiuuVYBil0K8ZuKrS2YVXn1CED0TtLnymbI0lmUltYk2F9M0aD0cGM3Gd6CaQ6E+lYz0PSo5XYEj4VNrszNjnxZBdAdzS5xKPw6tC4OgRuLjMf3XRevZ647iPHcVKlZyPR6dOBrpnZCppgrcYmRjwoUhpdA9eeyFJRGeFRfCVk41QnokdcKjbdkGqm1xGSS0FZonGks7ETsQbsLpew5gPJA2ttTBmkzYRyZMrCoRrVG7vmFAHxRtEtpiuvS+Aff9j41Z/ecEFkMaWq4D2SQsfpw5UgFbQPIVBTznaBX/35ic0PnH/6aaDHmdic5usAfdWVp/eF1QOeAhvvxFXooXBbAt96/5L5/D49OX7zgJTu4fvCAVA/UA/Kg3DL5vXv8Fu/NfPoLLN7+oQ3HrzBtJnZ2czX7ysfvD6RsvL0vvJH35oQCusc2IT7TLvHvPMV52dlpd8q1y9e8/Enn/HRh5/y+Y8+4Vsffo9vR2OaJ+b7Zxw4g/0bhLAjhnus3Xms8EfeTZQV1gqvr4QPLxsvb5xDjdS44ZSVFBLav8SxrvjyAru+Rfw5MXX6fM5+c07b3qe0HWobdDkifYQhk/Sh644VmrHqRNAVdEwKhBlCYz2OB7PxEtJ+HExl5V7I+F0INNWIphMaEhYGrRdRSnfsGGgh0tcjfHFiN58jmyMPzl6yvb9lu9lQ50yokNrAxstdxXw4O+J4sehCtEQXRXRi04VV7kb5wbnFUJmZutGsYA5zV6Q7x+xgjvRGiGBqNDJ5XbCYBi+LgATIXke7SodYTHGyd4QM5thJKKlg2og2gQ68tXoY/g0b4kU3I3bHUiN04UinGrQwJs6bIkhxfBfod5dC73/A8zihVSmxkYvjknBdsD4OXejgCBlKywrNCC6cdBz0kiVKHM9KtYJoomjHvBEMah+Nv2UzGA+x+1343oiu3OrMzla6NzwFVK5hnei1k3QGdzwLpQ4NQFMjmFBro88RmWbQ16z9REsCrYJUrjwTzKlydgf+GuJL94hJJCTH2sLWnILTQieLkBj8DaszNY+VXWCozDdULI0JbOxC6gkJTpWVrpmsY50SdbyVmk54n0ECXU+IJ85NsHVisZWDKjHkn+yhYvDUv4d8+3cw3sTe/BXS27/KX7v+KV7+jff5F5/NPH43IC/+Q/TjD/E/8d+BJ89g9wT52X+N+uS/jr73Twmn5xBf4dVQG4lU90e4ViS/hvWSVC7p9jn24ffR9pT45Od4fH3N9/yc6p19NE4euJkyU4nENRG0cQy3qG0xL4Seqdo49AmZVrwNIUvBWFF2ljBXUvXRA44dyBQREjtyC0xkxIyWO6oN1Qm3I5swcZU63sZueUoNL06pguXxIdlpp7bETMWCsnBD8IckPbLXWwoTTZTbnpjCRLaFIrCuwsYVi50Uw9jV2UJT5VxmbsrKbZ5IfktYE7Upk/oIyDXDsxJvnSmcOMqM9DYkMXklidPrFuvLcFz0SEid1oSSI7kPXHfXWwgn+hoJeTxomk9IhRh96LSjwBq5meyOAwCTdiYTbpITaZx8VOFUnc6AgiWc5Aekz8TQKduGmXETOzI7JSltFTYkJo8sWglBmatxQjhNOyQ2HtyfeXY/Mj+LUOFYnMuy4flN4fKm8vlifFaF2+oUO+GaWHAiw9B3aEDI5DCEVfhEC2PMuosHRJQYx++1daPWzcB5R0gSKc3IQEawkFl8iJJoylTucUo3ZI1IdSy8Qthxqo74iSzCwsS5CZHGahNHu2XWyPvPO+fbhf/KlxZS24IWPED3AGojb+CBxoSGThRDmmEx8c//dOdM4R99Yiy5UKux08rX3ow8mAzRjpoR047T6Qi7ieefvOL2NOOPn+Kn10y7iWNvdN9i1VCE6Sxwms/48te+zq//rb/GN19ccnH/IbJ3dLfl2dO3eG1nPNm+iUTl3ftD+611IkyFFAy8oWSWDmnfePpgzxt/6I/yx/ov0y4XPn3+Be/96Au++PgDXn72EuonuP0+y3Zimp5i8wWP/tCXuXYlOoQUuf8mPH4zojeJyxL5/HbhixeNl2Xm5J1dvMdp+4i4M+CAlxfo7Q3l5hMkvM9m3sHmEb45Rzjj0C84tkr2L+g101zYyJHeA70viEbW0km6JeYT0gUxx9otPQZ2ApYaN82ZooKszGFiaguvETQoqQj7NrHkm7vmhGIklnYNx5VXV4nd55fsNjOb8y0X5wZnD0i+Z2dKDY1gkUkmNBS0LoyrQhwNCA8ENbaWaFa48MTRVxZ1dnf8nCKZLEc2JiPP5gEpSkgdpCFhInqniNLNOfp8ZzoeEw31hdBmiH8QGlyQWMl9Q5Tx2T/0mSSBOoGZjfxMD5xSAl+Ye6NLQn1l4xGrCzKG7sybQikTW8YqGHFSOVCjIqGRbYRHEw3XRFNjT2dxx9RIHqHdUBhslJ0FliDMfqJZRMm0ZkioiPa7LE0m2wk3YzoIOiXiapgm1CuNFemJG8mYBna1AZEejKBKaE5Xx+ot10G4n52NzpTS8HRG78b5dJ8ftJc8WI05HLE6sljD9bGF1MhSETNqLFhXKoHcA0jE+8JelNITsKX3A4cp0pNzr+wosTCFhvSJK9mydWO/Vq4k4BFaNPYobpFeHqPTgVPPqIJqplFp8UBah3TsqjkZ59wT1iHK+pM9VOizf5n+yX+C8QK1G/juf4S9930+/r0T/2/O+Hvvnfhvf/6EP/115V76iPAP/q+EP/xfxt79I/g8o4+/DE/epZeCLiuYDJqYDqUGfcX7DRxe0G4+Qa6/RdDn9E+eE/7JP+Lrn1zy93bnhAZXkhE3zm5nGs4yd1rtXOh9jtMNVRLJV1YE85l71ahhhXXCZiM3MA+04Ig05jpkQDY50gqgqC4Uj3en9YRKwkunbCa0wOTOGgJNha4LPSjmkdkzhnEbhKSNk2UmUbreJ4gRDRbfjFqQCaAsAsLox1sKLL2TgNCE1TptNqzNxFRIVkauhT1UZxsbxcdLZ4wUx27U0pZkY4XRYsR9xjwjVmmTjgNVAKsBFeOeHlk9UGRF7YxQRm5mFSG3LdN8TSgM/W1JuBvqDbwgBMy2tHACiSQ/4SS2PeBywHywOvbWuXUhphl6ptBZe2AKGWmFJjC3whEf414qHgZ4q8iKh4msMva4FuhVxgqkT0xSeHSv8+hRxugUX1mrc1wDlzed14fOi5Pxeo3cngSvxrFXSs90NZI3Qg10mynR8XCLhCO9JFIQ5jLS7VEbWCOQkA4SOnNs9MPdbTQaRStzzYTcqHS2tgFZ0eDj58GFKiduddA/gh/wuiEkI6ryu99fiLblF98R5rsN5uSwAt3vBFNSaBpwN0QSsQhrnPjau4WXp8q3rzNz7tTS2O53nO+U60NA8kQIQkmJyTKfXRt13lK6k31DEWNiA1Lp0UlTHsHRY+XzFyv/xV/5VT7+rOC7e7z/6ZHXN695/eIG8y94c/cDJCWO8T6fyDnnD87YcYHrxJQCHecCQXRCTbFYyFnIG+HrT97grZ99C3vxNZ7fNp5/ccsnz9/nBz/6jNPxJXb1Md95/V0+ff8+Dx484P6jLfuLc/b5KdNs3N8JDy4y33icuFoDr4/Kzc2RF0fhunZanWn5XeLDDr5Q65FWbkmvXmPh5cgXxcyy3RDCfULakGwCX2l1pXsi1cZGVropbQ1MZmgonGSDdeG2N7ZAap+w5B0x7VmuOlOIuBk2DevlVSx4DUNv7gOk5wq93ZIJnKpwOhjh8sCrCdL2wHwWebDdEeYt8zTh2mgtkPSMxSpBnKCj1dIVjiJoOWN1w3NBccwMdEF0iMS8C8qoKBKE7gNS1VIdQdRWcQ9IUBwfhyg1JheWO+U8CDUoUz8DKtWc5gKcCOqcahoCPjFMGsmOiDYWZnZWqFRc03ChMOi/1UaWrgQG58SNU3bGyWbo6Es+4R7ANiDOEaAXTAWVhtmO2A1YwH1MYsOYXiwoUeIg4DYGI8NX1hCRMOia/U6O1vSWyQPeYY4dqxULnaITKor2homTBTRlrAw5m2wyXs5I8prcDvQYSPci+vuNsp5oZmR3DEWT0FnpIqgHtClaEkVnUi8oI/Tcwsyl+2BXxBuCCpsmBDeCnwgYUmcihSbC6okWFBVIjKyZoASclozY5/HMCiPIig2p52JKEmcfhCLGjfr4GvqfG6f4/+9Q4e/+eeTRH6Z98p+hP/o2+BH9+AO+/M3GZn2Hz6bK//248P5vr/y3DoF3vnZF/b2/jr74LeK7vwDP/gR13hJyRPLgtzuMgCSC2Ax+jj98B+MXCeuvwMuP8PNvEb79TR4FYwkB14b2lSrDC1/UiGQkwNEqQuaMjqSVqegQJGkBmVhEyDYqNjfamAU6nZYz0RqUgus0buEesLDSQ2JPH0EWLWwrVBFOgMhE9oW1bBAxkglmDAaBBFQWkkU0VNT76JfLUAvPkgjrCjLR6GgQtt4obYU4mh+xZ6oEUp9RU9biTDrRHTQa2RvHwNhtI6icEVwIcgOW6D7WPUoa43O/RrOzmAwJz1TYnDqrBk4+YV0wDYic8ADuMjwCHFiIzJKpvbGPNoioKrS+uWvCFKoa1SORISNqwfA6EUMCv+Hk50y1sU4djXEkv6Ozl4bLoHQuMY9brg9OQ/JEsD3BHLRQtYIMEVrWDbHowJVHoXfj4E5TH6KyKXA/CffPOu/iSBnI4GPrHG+Vlwfn8mh8dlBen4xjFbpBbYp7JEfDYqHrBFSyDmGcmWA6PC8bz6R2YM0j01N8InlHgnH0RCQSHKokqjSEsdu1vqGbkmQERFM4Ue8EPj0rv/OjI5cl88femXm2DRw5IT0SNNLkhLsiDo2ImJHj+O+RxC98PfPZb95w40oQZSfG+eaC4+WJKQZEDU1Gs8blsWJ5j1lBNNA9UENF2xXRO9TN3QAm8dm1sqYzPo+B1y9WNG5JjwLN77Fr7/IrX9uyLLdcXx747HuXfGRfsKaVeTfxxr3HvPPVZ9z0QuOMM9/SqcTUeXi+Y1eF7gfKkw0PHlTOH+z5xs895eybr/m9T19zOr4ilhO7dsVH3/6c79stea+c7y+49+SMBw+e8vD8Ebvdlm2O7PdKfxD5ejVe9gm7Ut47dT54vjLHgOctNW7p528MFsFyS223yNVrqr1A8g6dIsw7NtNDzAOLRw7HE2rLCJVbu3Mu3JB0BHdrz8OXUFdMhPW44ltFbCD8sRkLe4KeWGTkcaKONpEQcY1j6hkboTpzgeNyzeW18DIcmLZ7tlNgd5HZ7jc8nHakmHHdjYwVjGmZV5xKCcbc0iDzSkcBDEIFEYOwUoPQ79DRzkJskfUOQhjFsZpZxNhQ0d44SGbrB4wZozNZI5jR4gCPTZYwl6Ggp9CDY8ZwuLgisqFop1nCfKxSxrEFEBt5r9gQUaY61oy4MrVAF+g6yKhy9zVNC8mM4kp3IbogoUPwwasJzgpECUTpmHdUK9UjvcrgCU2FaI1alBaVUgOi4W52ElgSbH3QlmNLrMkZkoNB6/RoWIlYhZad0/ESlUbvlRQzOcKjecM2z9AaqReazkClyXZkSLzhFjBZQQfae43Lna584L5dAtCopmhwkt9iMppCio6VJ0pAKdwSfc+2B3qsKEaRxISjukDY3jloKt4MYsBrIGlHTcFmNnEBCm6R2H+8TumPP6mIEb/3Vbh4hrz9Z6mvL5mff8Qb3/mrlA+vIO14ro2/kiZ+61srf+GzxB//eoLLz6kf/1Xk4u8T3vo6vPUz9P1DNO1QTWMnJ44jiGTEnWAFm+5jbzwkPPk6/NSvkr/zFzl7/4ZTuzcgVDr6+90yR6lIiJx3QzLYklnaHVHSHJMd0jsyjTBh0glxo4SZbVGaJqo6GiqklakrS3C0b4gywpCdgnjiSjOKsC6RSGXtAZV1hFPdKXGc3ne9cs1MlBMmMxs3ahE0ZdwOlHBimoYBUWQk0gNC9w27LhyCcUpOZiV2xdJK65nJHVfnhDDLNCYGrRMCdFaQCGE8HFwu6MmwtQNKECeGwL51zCeCHSgWOaQ0PnBpYeYC9eeksuHkO2o+kEIjVQVZQIRFHLEZFZhXp8ydIok1gq57kjLCQkMZiy7Q7hnzaeUgFY/CvTIkUF0qJd4FT0UQbew8UoISJI7wmDZEZDRc3OnAriemdaBrJRTWZONDHjshCFMNzC3gvY29qcbRCceZsrB/lHj22EjaKH3mVG+4OTivbozPryaeX+25PJ24wjip0eTIRibUhZAU0wW3IWC67RuIR1Rm5rUR6f9f1v5sybosS6/Dxpyr2Xufc7z5m+gyMiMjmypkVgFFVMEAAhAogpAJpK4kmUx3eg09hS50LekJZCZKZqJIETCAJQkFAgKrILBQDbJvIjK6v3X30+y9mjl1sTxxzYt8gIg44e5n77Xm/L4xuMyKFTAO3OmF5IPbn+ic7Yo9Z6osg/VhlcSOZmdUJ6yP39UPXzQ+fb3xe99R/uZzY1GntE6TCbQR3On660BqZksQuvDu1PmrH2T+6McTXU+sYaxQShQ0N2hDnHfZOmXraDows9JDo/dEaIVUIMstzRPH4MCFF8fGl+cTkwRCSAQ6mY71xJMbZX6e0e2Km3duIH5ML2fisfLDl6/5w//2U+K/+jF6WPnWx+/z9HbPb338Xep24MdfHfnw+Y6YhHnVwSXxlYstfPyNiV+dFix9zHtPEn/v+zsuL9/w4uVrXvzqjp99/gt++PkvCPJzphRZnh744MMPeef5u1w/f5cYI08skhfF397z8uWZ3//O11hPG2/uAncX5a2euez3JL0mxQ8J5wdsvRAfXtPe/AwLP6UvV0xXmfjku9T+IVEasnW29VfMfqC3MyZK2S7kkHASbbUh9asZ2gXZZkp6IKcjnWmYTO2eDUFkT9TCZCuZRGnKUTI1NZ5UHRXPeKFsTiXx9s0RnwL7JfLsVnl2e8v19ISUBfONugEEKuAe6D4EXtmUCmwhMEslcsK7MvnEjFCkEuljOusblxQIjGdGj6BW0NARGxr06J2pzZy0Q98w0Ufgm1HbjDBabhYSKsMmuvaBCC+Pr7/mHQNiaCQzgmWSGvJIezUJgyuhg62RbZB2jUyJbThCHuVXIh2zzNxOtJgRTaMNCEQbq091aN5ZqJRZ2Woa2QHdmLo9NijskSScEYE2G37uI9cSjKceCC1zZBnrJ2vUJRMvTwj1gUPMtJDZemE37bFtI8ZOTxPaG61HQhhMnegXpDsuM0rB0jiQWYz4mqm54iUyRSW50L3j7khNpHjGLNI9E/qGh0AkoF7pHIYEUx8JosNji/mgjrqvxDQjPdHiEJbtNXESRb1zpWfutGGmRE1g9ps9VPT7l7A/EHyBw0K8eZf6re/y9Ljxtf/9f84n4QlsynF1frDs+d++Fv6jP6r8rz/sfPcb77F/54R88U+xP/0nsMywK5AbJhM2BfzqHWT/u8i7vwe798cui06PEX3/XXb/i/8Z9X/3f2G/7IjrhpeZszbmAEErmzl053wZp+4ETCasoZHqxhrT4A0k58xKrhC74CEg2tn50GSzzUgwQp9IatjkrN4428IkTuiFuWeWuLHZBuJcBCbOxD4jHSwLHpTJOlPQgSKumRxnmjxQQ2JG0TSInvJ43gWhx0JTJwkoieqgCsZCCmMEnkzRXjlF5eCNGudHk6ZT8wl6IeYdqT6QL6Bx5iSJ1A6s9W6MDKNyCgf2+oq5D3Ko9US3Qk63bDg2v2HqMz1cYfCYlk6k2DDejmCsP8V9w0Nh3xT1E5f4QOvXzOsVKRzZspJtR4twVWZOckalc5REscDSK3PtLN65SCHrzNwC97lQVElxaJM7lWQNC50qPkZ34khqo1kTnQVBmtGCsMkGCGoL0kb9auBgBirZ/THtHB8Iwbm9mXjvKXxfC9KgPizcX57xcr3n1b3w06Pz8tzZumBNx7dHKpqEx94sdd6w01MWFzw+YNbYhcBqhvuBEp3ohlomhBPSwCTj/sAWZubWQC9sMjNXwevGH/+F88Nn8He+tuOjp2EI4aog0Ui90+NEk0YkUUVx4Ntfz/zpp3e8rpHY9phXJs/QGy6BVAulOq0VWCKc+pBfdaUxU+dnnPUtSQr0SJyMbEqzJ6NpcHngordI2JhpvP/sQBAlqo1x92UjS6LcCG/urkhf/z2WBnfHI//mT7+il8/503d+wc31ga8/f8KnXyjf+vbHfG3Z2OoB1yvM3vD0qfDujfB6Mya/sPeZtpv56Lc/5Pvf/Yj/oH2f+7cbr7/4ii9+9Tm/evUV/+7Fj/lz+3PifsfzD57w9OaKj772IS9OnZwCT3aJ+Ql870Pl4dh4c5m4XAJf3q28uSglP4NF6OFDrBh6eSCV14QXbzjlf0GMz8jTFXV6h7B/j9wC9bTjyp3L5RVrXFE7Eu0wguUMKVftZ+yc6JyYZEazsokT5oDSEZuRbcer6S2TODu/IraJB5QQGgvQKATd6KsS1on1rvEXL43bvJEPL7m5Drz37CkhvsOigSwbXWYqMvIE3UmyIdGwFjDNmA9h2MqZGgdZtT2+rJ1O9/Nj8FK4+I6lD7R+ckCdB85DvdAjamnU/bVi+jAcNXU8s7pkTCtTP5E8Dy+HjdZED4IGcI/cR4YXSIzYG9GBRz9KaEpRocpEtA7AljbyJTEA2sP/4mFGe2aWxhyF3Jy7NBQGqfd/f+v2nhCpaNjYTMg6VsQxOK5nmo7DSi6BVYbbKrWNtQstVCxBb5EQItJPhLTRw0ozCF3Z6561XijbA1fL05HrKA9Iv8fyNdV2o4IbwW0dmoGeEd1T6hmRSG6NGANFhE0EJCJd2ULA/YqIobnRyoHisIZOkk7yy5hIyzycOcJQysvEZTpwxTZspzoAfPRKFcMMVh/TLWxmskDqgunpN3uo0P/y/4j99vexD/4KfvPeoGsKfPjX/zrf/t4/5qc/eOCUb5hq49KVngr/j9n5Ny87f/DiNX9w2PGtrz/jwwM82Tu+OyCHFQkbIWzw8ieY/xTmP0Ruv0F8/rfo734f2b+D5MDtYU9cnNUCl7CjTHGMfFrD2jUpFIpGpMOkjZYeu8M2pDFTFR6CEYJSayfkyOZjrzWLj2pSX4ixDfW5rkjckDKBKrvutGUlt8hsxtugXHwoqKONU/WWGKPonrDuo9EQlS0kRBIaO9IAS5hGeumI2ZjOMIGsKIHuShAjVKP7HtMNb40WEgFHxQgeyC0gsbKZjrGiDVhVqD4mD7HzVhKTVHJxWhBEIj0M0dC+dyQLVqaBle4jYIcNO1+TTKbTwkZrgosgOuRNxjUaGsUfkGjQrjilwaHAdiy6Es24j7DIib4pRXeoO9PJeZDMYOdV9rZnpYFCtkeUOYoSyb1yqE7N/u/1ysmUYBHx4d8wC/RQCI8ekSYBtUjsv95RBsQUixPVH1HuNm5gKhdUDqg4zoW1JZpk3C4sO+XZ0nlPZ8SFv9Pgzbbx6b3zwy+Uzx4ibyWjPgie9AkJC+1w5ClK8chriag4k1S6+MAA++i9W92BjNuPPRJUv/PBDkrlL14bQSLFlWaNr97M/Fdv7/nmbeJ33w98fDPRQhh7XRv0uy4DY3wyuAkzH93c8eJFY62dHgKXcGLHjqjzYP7HgEkiWGULY1plUllU2NqRnQyjcNYKXGM94tNbclJquhoNldVZpsB3nybaRYk6fh5MgWidL06NT191Cp0qHVkycf8OE+9xvzovvtr45ednfvtp5cVP/5i0Dxye3vDs5ordcs3zeebdp5kfvVl54ZEfvamk6By2zMkLkpyrJzPXT7/DN7/3XU7rysPbBx6+fMPrr17w6ssX/ORnP+Un//3PRtj5yXM+++UrDjdPuDrcEJfM+zeJYIkPzxNbDby+v/D2EnldG6srfXlK3d2yVUX8NXY5c757C/4DQkikw0SYDgTdIXliTk/xUuitghlhy4hUzDJBx7G2WKOunaAZLeuQcoXMWTaCBbo2NjlyYCWERkkz1gMyBbrvkRbIXAhBoAz+ynZx7l5G7j6/oPPnHG52XF3veBoLcRYie9wfEdhd2HyidiNLp0kYPI4Cl5CY12EgDcTHz+JoHxbfqrDqcRyCTPFHdbuo01lHLdUzASOvjS0w/nnf2DCCZBqDMxT6WDFMfVBmzQemXh+fN+6KWmAVRUZ3jWSVyS+j/dEjm0VWSez1SBNHLLNIxRxWDcQ+IGsIuPdHUdtMs0LwyhqUxWCSysUzEhqLd6QllMBswsUqQqMEx0Oi6AiJ5m6YNxBn8cjZIJmgmrnWyD2dfhqI85jgKjzn0/bAHZ2rMpO1MQMiyskBVaIq+JHimeXxAtXt19N8p1tAVci6QhlhUW+jDXTtQ8RWdAcCRROhO6ZKoZHzNJ573mgaqNK5cji70G0g7iWeSRWChOFd0SNNMvym2x/86gF5+8f47l8hy3PkOmLTzPza+IfrHf+s7ylS2BlUdc46c71tvIqZ/0Ir//Q48/wHnfdd+J1p4xv7zkc3mff3iQ+eQro12EW0OuX+E/jkl6Trr+Pv/A38u3+L/ZMrPAb8NHb/Ih0LDaKidmHzKya9J5pS44r4AWmJGDdyjljbCDKRayD5+CW4CjPt8VSc6QgyKYlKVOgdgjQuITNHIbUJQmebKkNhv2A6kv+hVWKcYGoDvWyVHjLSGqqRLoPe6TKRMgiVucPmggShakdaHCsDEsUDuTckdqIa3ROTD9qoBwdGo2KTzILTtdNiQdixio2kdghMbRhhk+rIn5gRPbHGTiiQmelah2UxK6IrXuOQCzVDcPLjvq/5gEU5j+laD8ziXNoCYsNL0gUk4zLQ3ilGrMWR4o6NZo/4ayraBETHeL6P037QOsKCHpAe6SLjZ+QCIbKKIdFZaiZaoqhTwwopDr6AGzOJbIH+yBFp2kZXHnAviCSCOuIVRJE+wDgp7AjRmFqgRrDQ2No9l7ZHbUbpLDv47ZvCx88jL18Zf/oV/OXbSKchMrJkIyWuBO/MDjV0go0AqYg9tm4GjMi7IHHjgvLuEvmbHwZ26cCbP3nNi3Wh5YxtkaSdSYSXbyv/+Ajv3K78jQ/3fPDE8CK0ktFJadIJHilUnj8JhK8KmwzYk/uMe6MNViHmF6I0Lq6UCPNjcFi60HQjMsiwRSsSGuKB4DvEGp0GXdEwc3NTudkrZn3wD6yTm1CD86NPK2uZ8biNvb1uZA9UMcoSOUyRk+3JH05881mgvy1c1hP3L8982l7yx+0yVnVHp/Yd/79fPaXawhQ7+2y8s3PeOQSWOG5Yc4bl/Svee37Avv8NTpeV8909d28fePnyFT/+8hXHL/8SnYTlcODw7Irnz6/ZP3vK8+mWw5y4uo58Y1VOsnC6h4ct8uZcOB8bd3KLp2eYvUsMhXqp+HZBzq8Jfg9+Iu4WTD8g5wnmBXpga0eWTahlw8VGXkAEIeDVMZyyXQZ+OXVCSJA2zpJHqNWguI5cBqOlNZClA7WciuBqXELnuBp6Vh7uCl/t4Iv4luk68vRww3yl7PsTJCmTO7UzJqC1oSogRjaha0BsHeZlV6pXZuLwHTGhdawCVSsPupL7NbNVVg0kq/QgVHeqgFkbTCF3ICJByH0YoFuqiCVEOtGcIH1kfqrSZbSdLgyZYYidZo0ikVh/vcZR5j4z9cqqw96svlICYA4+nBtn3chtSAYtOrJthDBcJ1NwEjzmuMZzrasjONGMGhSLOrIfkkjdiBK4hJE30VSQ5pjKqDM35X67sM8RE5DseLlmxYhZ2N1lpK/k/XC3XMjk0Ik2AsxVnW6JvQ8woyRj69P4+0YoaSVbGpdEC6gkikc8HumWRyg0BCbasM3IjEVlkSGaixbofU+3jYRyciOJ4e50hc5EDIIbzAzxYYsB9PKbPVT8n/7lHf/psys+/LgjN58jn1TUDvQc+d62Y942SBMezkhNWDpx9v3QCfl4B72MzmfR+ZOe6Efh6s3EO1b4Rl75Vhb+Jwfntz7uzB+8g8Q7+hc/I3zxEvmzP+ag1ywoa9xoXchTwmrl0m6I8UKoG0SY0wgtdnc8rUy+cLELIjPCilvkqJnrHpnZ2GSEC2dtLD766skysnSCZ1pQruKQltWoHLZA8U4icM4r+eQ8FecYDIsPTCysNkiGEjYqgspEYEU8DdyqdFYdQt4sDaNQunCtN9DPiHegYEvELFBqxgKEeEZtsPs1Qm5Ct46EQLE4Jg3TIMblDhtDNz4hVDMaiS2uLOrEFqiyUdbELBtVhdKNHZlTj5QpIPWMaqZ0IenwDnQ3LnUAvDrGJiMtLVLAd0x6pl8ETTuiPe4vJXKgUL0S28SaAqFC7eB5jEVVhATgaTx4YkbjiaiN2A9IieOWM4PbGdywUMlh9O/FhzAqupCbIhZHjVEVNAA2evM6rK9qStcBmlEPtFDoDqk5wQJCptio2AVd6ZKIFthvgbNnptD46Hnio+fOX39Z+Ec/MV71Bp7pfaaFMqBYXpA2GCitG1tWgmfUL0iEzWYW2zHR+f0PI+8shiP8g796y3/xb+942BIpVBZ1BGEVgXbk4eWBP3z9hv/xb13z3WfGJYFYo7qwkAk0DocdhEZfC4sYzgWVa8QrASfLjqQ7TpqYykrzQI7jwJB9EESFQJbA1suQG0nmzoXeHl8e2lhkgW1P1zu6QoqRwzLx8nQkBuG77zqX456yXrhvKw+2kGKDcGGTROiZL14533/3inZ4xRVP6M+u+JYH/vXP3vLnn78l2Jny8jO6fsFumXhIE1/FJ3ySn/J3fnvh6T4M4mrpFFZCHJmcfAgc9u/y/ofv8/TN1/nq3x35gw8T5c0XfPX557z46Vu+/OHPsUVIVzs+fvebvPfOc/a3t8SQefZk4tqdj2XmcnrgD39cBjE3OGqRPB3Y8g0W3wXvzOd77HSPtV8O781ux7TckpYDulxR60ywjl9Wps3Hvj4Y9AsSnbl07qVTLsOgaZNCumaxsTKLbnQ9EWyPa8BSQqJxF++ZTbmxez4or3m6nbi6Ttx9ec1Pr5/z1foOX7x44CoG0nuf8e4cud2/w5zeQ0tkUsChcGEXnKITdg7EeUwrxAIWDdn6sIH6qDKX4CSdaWGl+voIXas0G7dvfFhOc4sIgmtns/ooLKxMfqbrwlw7lSu2qLivTPrr3IUz0YGKdMhWWMMgiHqv4BH1ZeTqvEEXqs6DYxQ6wRrdIs0H8Mplo9ZH4rFuSFtIRWkieCpgSpRBxagqiI/DsugjXNEVCYKFjX2b6cFoPRMoFB8gxhaGvr7slHo/RGRBKmpCmgPrKfG6NnYhEXonSmU1YV8bZ8kY06Cheh5WYx4IwXBdSNLRdqBNzuwB240DyLVfaExImMmewc+4L1zyxo1uREvoptQ8OCPinVAdkoyAsSokhpOpQxCj0+nJx/qzMyaQv8lDxf+hPeH//rPC9z4583vzge8fIvN+48XDif/rFzt+tX9CsiOrC7MGllW4CxdMJsQCr9QIPhOrIFKYNNHjzGdEvpLMH22N/2rrfPdz5x88PfJ3Po6897Wnj7XLiv+rv4C3V9RZyalw3xSxa+ZgYJEelCKRXieCBkLYmKxz8o2z7lg0sH8UtMwMFfWahx8i05lF2aIQNHEfOzd+wLXwzAuntuBaORiEuZM2457t8Ys2cw6V0BW3C6Q62Pe5EYriEaa2cm4RnQ3NjtSZpzTM17EXkytiabzRRg5O8MxMp3OhqSFL4VAWzr5ji3DVjM4A3BzKTAnOQRlcgTZS5G16GA4OF+Jm5GXkCUJ7nIxIYE6ZXho1TYNA2VeqJtA2/j0jzEEX4ZKVpRloY+pGTEBRZHLM6yAN1jgCYCGwphNeMhc6IXYKxkUCGpVZBlk0hMhsK3V8smEvxIneGNcwiKaIVCQbOVUuuhH6eBh3GRkQCx01BtDLI9UHiEpMcel0Nbp3kP7vb2O917H3lYXeO3THJbN5h8f2SWCPSEF1pWGYKl12qDnOCY+Cu/HR+wf+N7cb/+gvN/7dfScuTq2QZGVGcRlNkSlk0rYO8JoozkZOTsN4Njd++6NrpCkXV55fO//L37vhH//FiS9PiWMbN46hS1YudGqM/MmnL3n/yS2TjYzHJDYOmt2wKLiGUaHtC1nGWinKkF+lKfL0AG/bmcAO93WowjuonhAb2HXrgdG1uxC6cwgTPRWwQU3UqbPtjFgnigEYZ3PebsLyzPno6cJtiLw37fnXn8x8ci+0c2S1zOtLo7jyZl3HtG7JaIfVAptEDocZnQ706cDu9kPuS4FLJx1/xZRWru4/5TM9YB895/n+hj47EiZ+8IvAuRbeucosO+MwO1sqWKo8+fpT4nd3fKf+Ndq5cf/mCz791ee8+uwVv3zxQ35if4nMwtV7z3j67i3vPHnC0+VdXpWOt0aY2sBJdycuhtTK1MbvMyxPsZvnpFZhqxzPb5C7ryhvfsqSrpmWp/jyBL26wm4nUl3RS4IauHKlhpWbPrDz0iK9XUAutFiwKKhFkjVqKPQwQRMkdbpcsfUHnmyf8K37n/Pd6xN/8P3Ad/7BNf/i/9345598n38hf5WHcMB+NvFLKj/Z/4p8+4J355nlyQ033DJJQDahEEk7MBqbOR4GHnzScZtfHaYY2PuRI46XSA0T3gNbqDSPhA4tbMwlssV7VKfxckMxNcQT3Q70EFi1oFS6QQlh0E29g824ClEqD31mobFsytsYCdbYcUb6kRR2rC60CJkLXiKaA5GG6YbGzsVmcu9MGDV2rixjQTjPSm4NFUG14TohTfFu//4NKUSCJq7qaIMkrkAvrJLQ4I++E8ebQslce6WWhavdAesrd/aW5gemJVCmDbaVZ9o4VQbyX5w+LwQ7j8O6QAl9mFp9hwA1dnqPLFkpXahhZdHdMNfqLbBy1VfMYZNMxcgkLjGRaiDq8PZIrDQ5k1wpOrgdmiBbI7aRudIcebBBhM1RObky2dVv9lBxL53ztfCz9oR/Upz4ZSHEhTuJ6FJI2bgUJYXAxhnNcbD7PfBrCn7HMTo3dLZS8HAh98xRA+qBlzHzxb7yL94sfO/zyH92e+bvf7zyjfcbbw28Z7QL7jN7cSyv1AbimT0rF4FTOJE9sNiOCnQ1rlDEGm/ixtwzQSHlQu4OOWGWOflgvs80rpKR2j3NZ97M4bEKtWdlHTdZjSzWOHrGOY9deo+IT5hNIyNCpAenaSWrkKcLsV8Rw44SVzbXYbZzmFhJwagyEyRh3llFmH3GJSFeWZNAL+TS8JSw3gZ6N89UVkIcVaqmw5ia2zXVjV0OhPKAsOAiXGmkegeHSxU8vGEu76MqeBK8B3baad1wgW0q40WyOSqZJhVriZYGPfNOjbQtzLGRuvMwO2nrZIeKEptCqngJqCrhURpG7Mx9sCnc9VHnPnFhY4kGbaEQkdjJPdJrxZoSHCKBUJXhSHAk5qFE7op5oruODKUO6qH6WJm4GNDwx4CZiw8iHzyCd+oIezV77MQb9ExXR6OzUdjCEW0T2J7Yx5f/QS9MKfA//d4tt7+451+/3JA4s1VljKohuPGAo1MiNCM4hJ6wmLG+8Xe/8S5RNqp3ltCwtvDuZPxnvzPxJz8N/OgoYGe6BapFshqhJpw9JjOdNoirwcGNEEdtOIlztyqvreDqVPpwHYRI6I1vPp149Xrm1Aonb2TvmC/jQc7wh5gNDkjrkeYJKWW8FGymt4J3wbYNtUCKFdjI4ZbztvHmmHiWbKjjY+XmWSAtjespgO4InvjyTefu2JmC0S6BLQy2w+pGzuN82SziRZCoyGGC6QM+/OCK33lnx8uXb7n71ZlXvKK3DfYTr+8Cry8TP10WDnnmep+Rx/p5uYzx+jkcWSbn+oMP+N7X30db5fTmyN2bO15+8YoXD/d88fkX/IyfMF/PaLyitgMyJWTakWRHP09IeoCYsbaMh2W90DzR93vytEN4B1/PnMpb5P4N8/El5I6GGTs8oS474v7ZQNfXjqxnkl3ACkvdQa+0esRqwrcNkwVCR/OJECDVW+AtH2wvObBynhLpJvHO3/+I8Pd/m//R3/6cD/+bE7/4P3/CX6RvcmkNssCbwPl8xyfuTHsj7b/g5nDF02XH1XRLX42QhpgrhJlaI0UEk85iDdNEKxM1xLG3l0pSoVkeFtPuTMyYQLJA91GnNx+cm+Tj6tDoWBeCDHvoVTWKBjyMSjxSBw+md1yNLTRSrXR1jjojfmF2I0nDLQ1PTh5tOXcgONMWcTG6TgRpSJmxfMYpJF8wqWySh9lYVnoKaFd85CIfyZrguZMxzHyAqTAcZRNhaXvcz6QEbJ2QX2L6hLU0QlNaWIl5IT5k2v2JbTKsQMARV6QIUTJNFiKF3DrIFaZGoLI3o4ZAjX0cjmyPqZKYidbYJlh1JnZDFa56GS6n6COLp0YR6EREI6dcyD4YG2ZOCYE1RnJUpg1SyKDOZG1YjP033P6Yeh8gFDNKBEsB9whstLDQNx+3nepAw6LjPh5w8ZFhH9J4oD8QB8nNYAtpjJ0Z9L5+ngmh82eHzk8vif/XXzj/qzeZz44HPo8Lpp3YdOQqfMdkDZFI1XUIwnUmCGzS2W3hEaBSWVw5cE19xLI+6K+tlpGmnRs3jiKgSqiZh5jIuo0ajoPqkSQDdkXr0PfMfqEzsXenxg0jgVdEDesBjyvB81Cdh0DoK44SHnd2tz1wr+DSCUm5ao0VSCKYCCaN1gNq1/QwSHEunZMIQRaWBtUaGmTgfB2adJY0xnKkwEYkqoDOqFc2v2C6ZzIGE8EXmgglKPLImEg6piDFlae1jj9ECWjPrGklJUWlYrkzCeM2QMMlsRMfP/+6H7CbPrws9bHOZl0gnMbPpCVC2KgusO3G/zcdVEldmDVhOlYoVRM1dAxHZEKICM4mDVGlupFMESKqHWRjC+PgEBidfNNKd8O8MutCc0WkIOqDD9DPiCeSBniUZknf0WVCamdWR6mcwnl81rZHLDBTacEhbfy9b0+gF/7lFxf2sset0VzoArvaUE1U+qj6ZYN65j98d+I7z+GyBSw4JyDqipty2M/83e8rH78w/u1XO97cOW992CSnWvmt9zJX3nEVSnhsqwtoFVrLJF3Z2oXP7wrPdVhu0EA0ZY2dq33iSVEezgV3pXoiq4N1Vkt0GZbI6oaFCamVJYFtw5lAULoJWXxAnGyEfV0qGq9J9Z6H1ehBkZMjPXO/Rk59ZR8nfusbiSdXwstXJz565x3e3h+5tIneYPKNzxtstid6osZtSJhEaC5UC+zmhXff77z7zjNO/cyrV86f/OxL8Ib0V8i5ciZxyjM9T4S08N/+wtjnzJPryNUsPEsndhqRBIcnCzdPb/jmx99h3Va2U+H16zseXr/gzeuXXNbPaKViWelpz7Q8Qfd7uia6zlR2gz8gldQrFipr38H8jDRfEfdfI3Y4+wOUI/LyTOxfwpKxNCHzLX51YOFAcce2E3LeUDsitVKLkeKKm9F7xkNg85csUai+8UoTInvCZ43v/6sXLP0Fl+0JP/83hV5ncnvvMRcVcYcmzuIXVtnwk/LF6zvexLfE5StiSBxmEM6k+YZnT74G6tzWPcWEsxQ2FVIY3iFMMRrikWRjXB6ts01DDhltAKVidzw4TTrRElL3RH1FlTz02tYwj0Qf5tJGxiRSwxBR5jahXnAUGftXLlNFqiBA0EzanC3ymI2IdBX2PdJ9ZP5cFG0BC0oziMxMasRQKPzaPMygZ7hiEok2smTdOyhEj6g5a3QOPlP7Sgs7Yr3nhLOrA/AYU2faK8et4jmRQ6X3M112JDZS2HCNw4OEIA4aFa2g2mg2wquuGdWNqQeaZ2oOBO1Yj1RVEnE0g2TGMcwjHmW4lVIlJGdvcfhMRFnDKB14AO/D8roPSpJGnyKLOVk6YspkgZrbb/ZQ0UU4u7CTAPWCP6pzxTNrH9reySoRw2SieGWP070goZFsT63CthR2WydLpFRF1JnCAEb1ChrayBuYcYnOv5TIj77ceDHNiHeWpjRp1ClgWyeFwW0Xi0yuHD0T5pValc1Be6blwttmzFJZKJwB73uKGCKNvQu+GKkERBJNIkkqqpHVOjNCk5nYOp1AkJWoG1sfqd6H6I+HLog6QoVVlMUjlXEQcBs8+ZPsUaDZxhYrkQMwqn54hlgIwUgC1YwgEKVRZMV7JrowFSF4peRHFLh1zrLHcmSu9yTZhl2wBjbZUC9IvxAkc5ZEYOCyPSvT6UBJjaSJFiaO3ugtEGW8nJorJTRyEwhGUiXGI4JwJrCvo5Lrxrj5X4yK4qxIUKgM2EwTtgyOcsCoGKEvhDYxiYNsZK7ZAcUjRZWugSYbFiLB9yQbIB2VgCCoO3sJY+RuffAXLI7PEQWhPxo+hY4j7iQLRBQXJwONGWMj9Ih7pIcOwTB3WqtMsY3pSg/0PuGeWXLDvKFhfOHVIvmxhvdgwt/9K+/x9vSan9yPvXgsgXN2Qqi0pqzTcALEnjEa+ydXNNnIKF4HUnfqgR4coRFi4TsfZL7zXHm1Vl6fnLIKN7s97944QkVUSdVoMQ+QkIyaazOhxJl/8/PCP/gwEx1aqATpzK1xlsD33jN+9sVKkpnoM8FhtYIEHbRF6xQR2Jw0K2tQJFTMlNWUiwuNmdAbk3Z6i6DOdn7D274RasK2xHqK7LMwWefL48a933Fq7/PBzcbJhK0IcYpMOrTPWRNh2vHsqrLVQvIVsUQxUFFup8ZZ7hALBDf2c+ZucVrYswSh+C2YEPqGlTv65Q6zwv2bidN04PX0DvN8xbR0/sZHV8wqpJboYaWqIYtws5/Z3ybCdz7k1WnjxZ99ST6fkfULysNLTm9/ADEyzRNhf6BP70PekyXTWOgBZOqIn0cwMxgmnagzPi3UPiNuSL0jnt7Qjl/gdqQtV4T9O8Q5QXiG8Qy2C3Z6QZMjWn1A7hDcI63t+Fz23JQLxfcUO/F/+/9c+Cs/iLz/3lf88z+pfJGf82a3cvDKphN4pPWZS6zEU8dkIs+Nly1yeyq0VDjHHXPM1PoVv/zBZ/g7nd//re/h9YZumShG7Q6xM7lg1kagUcFCpTQIPVIZwc1UMxdpBBcWHOVC1cBc95SUmbywxUjXQIjgvZE7zMBFnMpMyAUtgQWD1ChtZm2FHGRkKHxc/oJEDCPKuJi4VJABwXJd2SRwaAME5bKAK4LhOqM26KGuQrBA1EAamA26CNWmMYHMG7vWSdaRFJAeiG5sobOfr6k07i+NKpG8dZ7uJubdxFobiz8wT5GqO3oXNo0kcfZuJBE6irmM9Y0I0kbbq0igaRzvAE+kqRNWRcxwnx75NZUSlGsX5uRsNsy1q0JMQsvGkzZjFYoq06O9O6tSPSA+A0fEGtp3rCYc7H/YceF/8KGieWIKBWkFY0F7o8bAjPN0q9xJBblms0ZNyt5WyuMutvSFddmYeySVzBYLp3bFLsIVZ45izBK4+JBAeY94n/DH0/dXGrheA2/iji1euG2OdLiLTu6Zsw60diQSecAvM1mMdWnkWsglM0fHvVIHAZ8ldqQKa0i4XNBTx+cECmcqz6iUAi7LwEbHletYmVqElsa4zs8QhIMrwsQDw40hDfZeUUtUv0AIBJkpXkGF2To1LqxAbWcmhCYJt8SyFTZJGCspLPQIpShzHKllvBDmzMUD3pSdBJw9CWh2hKCIOV32eHSCC9gtswfOGkhkAp3y+DmLrMwh0KwztcgsQ9DTdcMDnONMEGOVTgwb+/WKdTJcOmIX6MI2NazPBEYeY9MTqWWM8QWQWPCgQz2ejOoH1M+YFEwSFpxJOypQ7UBSI/qZ1Ts9BnIVpmpcdsIWRlVX09BCJ6l0rcwuaFS8w8YIWHoAUx/2VALuCes6RnlNqQMFQ/QZjx1hQLM8FkJXJEREGmrj9D+1YSyUDptGaljJJdCKEGJiaY7nFe2Vf/j9G/7zP33FZ1ugpzHivKREAPYtkrPSNqNr4l/9/MK3rhPL1LCqmDubDl17E+Xmcs15LogW3lkSz24LZvtRsWtp1NikE4ISbez2PSqfnC9cDOIU+OWp8cvtLd96tieUyGaJKQWy3/Hsds/1fuXVmpk5P6bPM1p/vWMWsmf+2jcyf/niTDMZOPhmHJLTV4Nwxnpn04yoU9SZpgPrOfAqGKcivHdlrHHjuAYyB8J24EEL3Z3708R7z2ESkHgg71bWszCnwhzvmOTAV20mFyHG4WR4/u4HpK2x2YU1Gfuyo23H0ShiZoojj+CWiMszRD/Azp3YHpD1LfX4Z/QcuZ8yn1x/xIdPD+x2B6JltsvKi1XYzQvLrCysWNjY5itur29Y/RugnSdv76jrl9Tjl5xfvSH013gW2v5A3L1LnG8eoUbC0Rf6HNgpWJupHpi101Rouxv64Qm9d7Td088PxBcvh/xqhinNoHviYQK5oZcN1g3qiaSV3t/SSaxxQiTwCV/jizcr/88vL1BO5N0zzrfP4HzmNJ3pp1ssO4vP49IYDPzIXc3EcsslDWup99f0omhasJ1Sf3nHn735hG35cz746CPe2z8n64HeleRG17HuWEvHUuIQBxZ98wG40xjJbo+I7YkqG5NvlFAhKNoyVw2OcUDaTEBj4EKkqzHVR1NmivRuVAmIC4e5oy0yueHiaFAevCMSQaHVDLrhIUGEtAWaRO5zY4fSLbIBU9yR3HhIbTTlTGh0kneyDxCeEZiDEUMDN1wCbVbWkoeNeF3I8gB54+Jwvdtx2la8V8K6sXc4r3AvStKImJJZWOyCTYZsRhfwGDGX4UnSMbW4tAUNlakLNQ3K6bwZD1q5VqX4yMslnei+ciGDCRIBL+w9oNGxMJg0tjdy3dhkOI1a6ISyUVoh1Y6ExENfucao8hvGdFcZI3YLmS1ULmSUQinCOQjiE71fCBF2daSHKxADCBuHNVFluN+DKEt6g/TM2QNmRtNRX9lsIuGD7GaRVUCD8toj1Qq5B155YuqBSTpFxu03e0ZFyTJjFGRyDpfA26jsg9E1Yx3UKj1m7n1D907alI2JipKtY6mQFTYi981ZckPciS3SojJpoYaKF8FFydUJZlhkcC7aSDufVbnSxmRjl6taiV0p3tmiIdZIqvSQqAYi25B7mdNxkk+PlahG8kCsTpPRIZcCe+us3WjZUBEOwbCiVOlUC0xqqJ/H5EY2Ns3U2EnFUBKTD+fHUZX1sSsudE46c0NGMTaHEoTgA0MbGMjqSKFLQ6LQ2CNyJNqABM9A1EgWAe1UdcxHPXMWI4jSayAnoSdwEXbtTJc9BCVoocmKcnjkcVxwFy6x0r2xl0gohtWxkkmp0wy6TXiNEAoxNAZEVwbKV0bdVFogkuk1EroyScekDVVz0cfDs1JFUTESTpex2jDdWLWP9UrN5DohUdnCRlsct4JLJruDOm0O/O2PrvhvfnDmHDdmnyhbwBRK7EgZzoToG8c18l//aOU//d1bdjSCKOJG6gET5zSdiNZwmSnS6W0o0VMH18aiGeGCkdmCoGbMIfDZfSWSWBycxE9eTHzz5oBIZZZG6cqmgVvZ+E++rfzjP33DOe7Hzyr42Ne7YTXzzXeMP/gt5TpF/vvPN16SmCcQOXPcJmrdkWRFpaE2wdZ5fh1ZUiHYRDXn07tAeGssVpmXmTesxL6wnipsG1aNjmDpQr+MMHBww9hjwdEtDSdJTyxRmcNGZkdQo5kSZ+fnp7shdqNQPYFOiK7DRNkdwoxMAQnX+KXw9Q9mvjEFXr14wU9/9Rr2RpxmYObHn2fi7RVLFK4OkTk4U5hY+xnzhtWEHd6jX98S3vsez9YHSjnTHz4jrq8prz7F4xdIDiPrlJ4S6y1rEPAryEYnkTwQLECHLnsWPeBXV7SrgNcHtGy0coL+khwEVUViRm5mmj1lrSClEamcG1x8rDw1RNjtaYfnzKIUe4uv90zbnpruiZuzqaHbYOicorCLG5sKNKBl7vOGsGe3VXbR4TrRi9HXmc/qW77SE+9+IFwd3sd3V0wa8BgJCrklqioqmSAj/Jy6jWlgGxK0ngzxiJCZHDwErBkSFHUniiIqNBtunqhjguKbIF2ZQqVlRdp+QON0ovZGZEK1jKC1CyGuXMLEXAcfo4aJXSj0HjAedQQiSN8eEVqBzNA4RJxunSOKtUCPQu6JYxg00RTaoyV6wryxhkjqV9zVzo5IIdA8cemdeV4wSaRtZb6UsTaTjQmjE+nNaSREMtbLCIX3ANpooSFhQKzcKvQ40AquxCAU61QiO4TWOyIwSaOJ0ixDXHFbsN4w7+O73QcCPdBo3qBltjWyhkTnzIKzBKM1uEu/YUx3F0g6jzVDd2pQkgQkFKrBImmMy5oR5vzIFHeqD6ZClMdWghoTRt4SJYCHTjVh8z17To/mOkjhhPdEDYm0TZDOHNpMjZWslwE18UyoY1QkEjmHC3OLeA9YCzyosqMTCVyqYWki+Up3iJYIXfBYSBbxADFUQl/IPg4SSxK8+RA3iSFtocjIBxiOreASKBRChSaQPdEozEEoNVEXp9eREejB8Q7eDZPBaAguuDdCnGll7PKybFwkEHT8YTeRUfuzwK51mvTHk6yQi9PdqbGgPhOCs3pBPJD6REGZ5gmXiczwnXibqFrALuTeKJrpKqOKSuSSHmiqBJ8Rr7SqaMj0OPIfruO2oSjeLkxaKZJQKZhPdIEqAdfR/IhA9wmt0ENDxVBLTG2cmh8mwY4zOUScggDRx9jd+oy64B5I3SgychEE6GKs2qhdmSQjHrFWkWDUMGq5swWSC8VGGwSbKBiuKxBA41hNuaMqCG0EnUTHLamCEqhpJMCLGJ4MekfaPD5nPI6sR8jQldgDMTS+9hy+/WLiz19nuhaiw8WEJYz++NYi+bFT/tmd8U9+dOY//njPdVzxMtGT4T2wEKmiSOj0agRJNHFqHA/qTGXtxuTD+ZA08OoOXh4zpEBrsIjz2VvjzaXyfO5UHdXjJErpkasb4z/6zjP+u09OvOoKWhEiW3feO2z8B9/e49vGN9/PpNz5Zz/pNBl/ZxeDl63xURTokSrjNtlxukycaydp5DoFSjHui3DXLngfD71LN+KW2cXKcAuObJPVQBHnbMMzU3EsDGNmCAWlsemRZs5+OdDaibotY9KlBQtO2AqIYiK4Fiy2gXewRpSNZ/srntwc2D+LXNYV6cof//ALXp9PoCv8qnDSa97MM2k/k+WGHhbUFNWNrVeSgQXwfI2mG+LhfbCVqZyplzdweUt9+AT6Axp+CXmCaY8sOzZ5QksZS2mArDzQQx0vFoeQIz0cYLoh+bOhL99OxHUD3oJs7BXasqeTcM20tsNaQ/2I9gvSlfsEcQMwjm5IPQ7ZFJWQAn0GKQs2G9UTiUbUQRZ2nVgxKg2zzCSdKobeNXQqfPbzA5o/ZXcIPD/ccnh6xbxLxHgFLTzyY3zk0VDcZ3IIWIQgEbXIRGULgw2BBvYOmzOmFakijJdkc7BVhoAyhJEhakrXTiJDd5Y+PdbBwcKMqqDeSM3Gc1BkTEZsTC03qSDG8qiQR9rw3dARFzzA7MpWM8TRPDvFwlKGablq4mAzD2nFRUkq5NboayJcJWJp7LPRzk6OjugOswcu7UuW+duUDoGOuNLdiTIIwU36WOl4RHqgkRHrj1kPI3rGxHhQg+aoG92dSzKCGVV2Y12MEGT8Xkd0vaBdaAbNhyl8cEE6wYZMbpIVDz7YIqJInNhJ+s0eKuaSiKnR9ETAmVU4+8zJlb0Z57yR+sQOZ17hLjUIkVwKXQNbVJQLwSZKD6xpInkk+kp0Z+JEjcIWzsQWoHQkdfYOog90j5S0Ya5sPMHpzFIgF9a+p5kxJeFBVqYwPYpqgDimGdUD171wjJ3QR3o91yvcOxqdFpzaFzSDE6kxU7uxQ0gMQuNmGyFE6BCisPo92eZx4sKY40YzQIb4rKogdRq3t60QpsQlJcQzqVecRhfYko6deOhcpJLahKrjsSJtx9IjRTeSbRQF4mDhH0zwWNks4DZIcN0LO4003Wgou2rEHki50jalhM5lGoCt6AVsZc+BjYb1C9ECF5mINm73KSpCGpMjifRoSMt4VGJvlLhRbcY8EANYN55a5+iVZIY7LG0QAh9kMHsPdsWW7inbDmyl6MJV6OwEQh83AXQm9U6xDWIn+cIWnR6VyZRJnFUaG5UYDFkNl4LK+JK3UAltIviE9DGlUAzY0KAj6CWBTSE+kvZQJdk4/HYHcQdmsBGKbLoN26OCyzpS6S5Qr+hhA9mw4FhV1CKqG3/to8gPHk6UEJhDQVtj6zM5Za5apbZhwuy58slXzh/1I//JdyJ7NYpXYmoMqcqF0CKdPMJfYoQWGafhjeAR1SMV0BT4Z1+9ZeOGSR8wz5hm7i/GX76o/MffSNANlUTTkQDvLfPBO8Z/OGX+xc+ct2snuPHRdeYPPjpwkHHLWXrjW8927HTlH/07pSj00llXwa4DqxtTG/TTpxr4YA784DWQGq/qRmLwSaRFQnL68YGge6p0jm1kTZo0NDW0K6/PxmkVXCD6hnvCJXBCyLLQ2AhJOW13j0K0CFo5+5DRXZJhdSFrZdIjoRndjS46IGGpcQ4bRmSOe5gh7G+Q4ETp5NWwXrHjmfXujkl+CfOM754QpyekFJnswNEqRc5YNsQEJRLma3RayO98A1m/Tb9c0NNLyt1L2sMrnC+R/DPysiPv3kOWCZPCMWSyJNDCFBdmhDqeMGTJrLtrauhk37C1sl1eEs4PZO2EZHi4wqdbWjwQylPOtRM4YoDqmUkL3mwMI4qztUJsndkql1UJ04nCjCXIRJA7TBXrGYmFJhnTGdhoVhGfOJaOXDY+e93gyxPLTeDmJvPs8IT5ao/4jrkG0ELqRpsbuU2PaHfHBHJQzgY7NgoBREkWKDaBGaYCdXhCJApqhfR4yduFgjFRHTw50h/TUtJB4njRm1O10NXIOsK+w4Uxpt4Eo0dH3Qmu9ACmDRxaM8iVbNBCJLniU0VdCUEpAcQOXMk9l6aUVHl6eEK1TvfKpRgfffubfGP5Fn/6b420fcHlDDYl1AbLx1LBK0N86Z1cFSNR4jggeRMiAxJW4sC/uwWqw9wTwev4O2kDl7/0Nzg3NA2cxcBAuUCf2KQjBEKBnsvA+xukWNk34V4TIo2gigYjWGOi/GYPFQ9aydpYfKJHY2qFhJM0o8lJayeIjwd7e6wKhbHnlegEq6S2YDrGQ6Oyd0G0QVi4EAh9Y6GNytBhvMSXOnEfdwRriDTQzNSOiAvaI2s6kLINc+AayaHhCMnnxzFxGoRG3dH8nkNdwDNHPdFkw1MbL+MeUZ7ROYN38gZzHkaOS2pc9I5cldIXXCpuidluOfZKEkfVSepsjEaEuXLdKqek4zaomYegPG2d0DpbEGrpTHGEzKqDkchmhNSR3smuXPxEiUMAs4ZMFWE2ZaUMv32MSDeWnrn3lX1MhOOG5YC3gM2FUsIw5iVongnV0SAMPfmBVVa6VMQMYuOA0rgwlwNFC6v2IaBpYQQjdaMwMQdwMmeHEFYmIlIjjTOuiaYTroW3HthpYacbLU5gDTFFM9Q+k+rwceg0ET3T9QGPDxQBSY24TnQ/ozp+V06iNceiImHHvIHJsECeY8GlMPmMqCE90FtCvYJOVOkQYNUBwvEItQjiAZFODWC9IWJEG73wVRMJIfg0gsh9gzCmXNUCkcPjatCJseHhhOuB3CbefbbxW88u/PEvr/Ep4wqxKb52qmYkJ6gKLaEdfvqy89k9/MPfjXy0mwjFqPMRb5GqoPUx9S+C+IUa44AXS+TsgRidH3+p/PyLhckXily4JVOkk2LnVy8rX31t4jp2Vhf2KoBT3DjEyMeHA+/+1QuXTUFnbg5GbStRJza5UHXGXfnwtvA//53Af/3Dwlu/cH/XmW/3hLWjIXMWxRG+/lz49G5MLGtRPECzHVijsJFx6lr5ax9CUGirkWahrbsxgrfXaCvMc+LYDghO0MosMhpFDoIR9ZoZI8jnFLsmB6H1irNjiREBLuUaSUMyp2Flmie+sX8CteE+mCYP58K6jsq1NaWEhC8zod+w84WtH6nrBX35Att+ge3gdPMBeXqKx4T3A2pGxnE/M0tmLYrKNWl/oD95wvK13yFezuhl5f7uM8r6S8rDzxFtSAz4PNOn5/T4jC1taDxCFCZN4ImdC94G8VBCxG6+xqV0rNyReiNsd8jlU6IuhEXZ7d8j6YHSItua2RqYr8hWRkiaglvnwSfCGukt4uFIKYkS3hA0IGkBPRPDFTFeMC64Bk4ddv6SORwo1jEa5Vg4Hfe8+eyBXy0vuLnecfX0Oc9vr7hix0lnFjOqOps4U0+UrFAiqjqMojXj2bDcWTblLg3DaJBId0N1JUpCeyCmRhUnFZiSoTQ6kZKU7JfR6CvKFAoabGSCyqiYO5XZoU+d3jKxJxJnigihPVqhq5ByhwY1D87FbsvcTys1GFYj+MYSIkedkKuZ+XjFxUbItFjC0pm/9zf/Jp/87DUffXDF56/f4U19zdflyL4p98Goq3JjE/tQubjRaoDUwQqhZQiN0sAQ3FY23yPSmMVxOeMxcNUF8c6JA0UyqoawsfRK9MgpVSYCcxXWUKmeSZtBMCoJN6jB2NlK6OPSJVXZUsX1N4zpnmPFWZBSyGHDuEI7LGZsXdilcfs7acLVkWgEH+Ga2P2RRdDYCEztjPkzSjZcFe/j1qgkzGekCf081hEAUzrSbY/YTFCnaxy762DsWTmPoTW0xqwLKwkVR9JGf8S1ihypyQY22yDGQVdMbdjukDQqop7pwShLZzHBemGqiZgXxB7DPjbTvVFY0ZQp5mTPrHYCmYYm1joWJpJUSp9IUVE7Ib4bk5PwqG6XjshC7n1AndQo5kgUiididJoFtIPmylIN0UT0iBMx2/DQcO3kHgbU6PH34260oogIKSa6GduaSflIc4eWWSmUqHSF7BPBAxdpTGTOU0N7QVMcqvcaaNlpzQbiV4wUhbzB5okujRQiZ51JTdnoSFIoe6pUkiWCrtzHQOqRqTLcHGklScQ9IRxRucJCQ+qw0BYZAURhqMubh9EsCU5oHfeKeYZYIZRRN7WOmFAwEEdkvDRML4iA+IZ6wNtwOVqAbhGVEQQsNHroxGAEHzt7+gjBqu/xnvBwBKlUPRLSEMB1y4SkVDvTw0womd//5hU/+nxlI5J7wEPhIUxMvhJroyrsV2WdHWrmYSv8l39W+d7zwO++P/HM9oR5o1LJjCnFykAOZ48UnJNE0MiPXp745z+/ICmQ1nuaZmoMRK0UnOPq/PCTzu997cAUG9ac5k5qaZAAWWnJmKeJ1BrWG5sK1kAfmQNCobhSD53SGxYXfv6q89e/uSOmjUtwQm2cUJ49W3jvS+fHR1BNlLYiPn4Hex+jZImJ968XrAkuhbalIRSMna1Bl8i5GykUAp3NnK57ulWQPV1O4zNVGaPu6BQCCWVuDnnUzTU6GhqdSrdAnhIxR3xLVO1MqfP6NCZ6YQrEqSN+YesC7MhcuIRCPFwRbg5QVvZ9pa1n6ulLRAvuO3rKHHNC0jUxNLJHeixs7kxVUL1QZ0V2V0xXf409v02sZ9bjK8rxFXZ+TTm/IPAZGg+0eQfTjhgWjvPVMAzqjOd5NKLqWDWHJWO2o/st3jtiR5aywvlXbJOwl4kUM+fplk2EYJlaRyU4+gnthmhB7AyMIGRvlRgELRuSMj1upLIDHZeSnpxqTlgunLfhNngaA2vrtJi5nANlrXzx9gt+Nr/i9iZx/Wzm6e7Atd5yq1BTImyBHkfGyWW0F6IZ7p0WB/BtwOuUZDOZSAttrGJtorCxxolJG8UGomDXh5NjlUdwnSeqjeyY6B7CW6QnehRWzWSEhGE242HkmjbvxNAxC6BD+FdUOMeNXQn0JCMDkjJelKgrRCMmZekF2kI9n/je736Dhzdv+fLuF1w/6YPZVAq1GU1HUD6EyMorWp3poRPS40RSBua8NkM1DMBfMFzumOuCSGIm06RxDEoInRjuqZYHxRNwzayhMa1prLFxZjoeX3F2RW0BHfZXV0NdOS5GqmGwe/oese03e6iQJkSNtFBYLLKmje57gsJsF4p0pseecpWASeTRszL+M+oc+6AmQsbmSjZF6uP/xGNtD6sosKYw2AIEXPYEdaKuqOWhGO4FicrsQupC6YrMfYSUxPBamBWOltAQKL0y18SqcXgfehrhTR3Qo9AUFmOnG8RA3pwaItEiLhPWjRDGyxXq6PuLI17GimATuoNOkdY7MY5qU22BIMMtEVPiHEYQcyR+I1VHFTIxOspbqGA7sq20bmO0r0ovE1ThImdERzJZa6DGhBnErgTJdN3ocRwkLBh77cPJ4DPJO+YFLBA8YMngcQQZ6GTbUI1DOawOUtCmkCa0n4kGYhNVI5M50iNr9vFX1AKhCnUusEV6aqgLsTvNC1EdKQktzm6LxOVET+OuGpJx3SHFAnYYplQLA6QjOkBVmnA2cEVJiAREfFTGwkKtAeKvq7ij+ZFFyB6wYKOmLGe6Xuipk+sQdTgRsUhAh0b+14p4Atbj6M0HIw7fGeLjNC9SxiGXiZLGaLnXSmIhlGmwL4Jz6Z3n0zUfXr/lz88VN0G3PfvgYw3mY295zk5sQuHxYbrBn/2i85MvL3z9WeWbzxrPd3AzZSYVdp6Y9PEAtBZeb4Ufv1B+8MXKpU0cZOOoo9/eTZj6ATHBxfnRywf2U+D77wRONuylOQjVFRwWm+le6d7pQbCW8HCCtkdsrA5iivzpj1de1cicnLu3E7+8q3x8NQq8SQZuPIry/Q8zn/+7xibDZ9H7sPAGNzYLvHcrPL8pQw5HYAy4T+ATd6eG6YRaGfAhc9wCM2eSPx/TpcfpD8no/UA0QXT8W3wyrMd/vye3msbNW8uAMOkEeWUCohy4+J6S3oxbrDnYFcKFZhVQRAeMzorSJZIOe6LfotaxXmi2R9Y79OEX9ODUeYfHp+Qps+SM6RUrYH0Ai8ZzRJG8Q5/ekp6/i9SKXQzbXmKnB8LpRH/4FRcaMWdkvkWmAxonmk6oBILs8RbAzkRJg3eQF9q8hwqbCN0ay7oSwlcjlK5CzhPZM03fpZjS/AjbgWCV4OdBknRFOEPfgxonPyFzIIiPZp9mwmVlrwfoytadagUwnM5JMqkp4bJyd688vIQXc2J3+JKnT5Rl9z675Yp9HOK/oIlmg64Z64xKJ7lTyOTHdYITEIvjGRAqS1U83FP6hFlm1YYQmCSxK3CUQlMljgrKcIm0yFmV1CGbE7rQtSMOXmWs8jTQTNForHIimWAtUsM2PD8WxiqtjguiiZLahGnh/lR5djVzs3vCfrfnT3/wF2SdePHVC0K4Y7tX7j9IqESSg7YNwgFLcFU7XcNg5Hhk1cDULqyMd2zohotgQIvGWRuHNoB/aorUhagbapGOorEStkzVikgFItWdqJmlDbR4rjoyGN6xEIjtkWjsjlOYftPtj0SkywVRYwPcAyGNnXKXmcaGRFiaESzxoIkgQ+DUPdJMmcKKWyfbxLZ1Hjyym4TcIt0UWVYojvkBjxvJE5uFwaGgUoOySWDvxi4pZwIXE0KITF6JHjCH4I1LVFYTJHZCGzSwGmY8Q6+G2I7UyviMwdg14WRDYiNtIgk4Q4zj3iCsBG8caubsY/SqcTgsQhtypj2C147o4AZ4BfWZHoZUqsfIUoyhrzEubuMEbkYVkDxCmaKNXhMtNFLL9BCR0EkumGaSyaNIqI22S8uUVNk1JQdHSidY4SSBTZxcZvpU8Srs0salBkow9q6UZKzBSSUxYVyk4LbgHWKuEDNTb6xd8RgIxWHqWGyEEjFzph6JaawgjKECTtOwndYpkrcVlwya8PiAbIGTR4jO1GZOXh9vHIY2JXsl+0KxwBYvpALiSmG0ZKYqeFop2ik68gseKi6NNEf+6Kdv+fyLzPVV4OmSeBaNZ087h6nCBAecTKb1AGuku47GjClKoIUjUZ3QI2aVoiOgUxUWLqwOvSnJD2SDqUwQtgHn8oa3hMpCaI3OBc0b33qe+MGPAz0rOhm1CVGFkxrUhMUHeriiV8Nxeg+k2Li0zs9fCT/76i0xLuxm2C2dD1Lg49vAwwn+9evG8eJcehwYZHdan0aozH08aFoj+B7VlXNX/uxXysdPMjmcEFWKlBHGLY8ZnZhQFWIvLNaAzEbBc0XZ87PV+MFXG1Pes3knqPKTL+/59s0ta69YXBj5N+fdw8Tf/2bgv/v0xBcXIYSxNz6p8FQmfv/9PTk0iheijClD8MiDdV6dB569l05tjuiQzPUkhDjQ83Mb66BRLA903UYIj8DFxmEij9MhJmEQVtWGmyMecRuBQX4tmYtCyhGXSikHUuioDUJka4J3JcgRNWPd2jhAJiPrQmoBuV2Iy3tYHTIrzNjuP8PrhkyZuLsl67swCSXucc+0bSNn51QyO9lRDifsydcILbFfnUs5w3pGzp9S7l6Af4mr06cDcdkj0xOIebQGzKmpESxSWmOJkYQheU+bAsgV0iCUddhU+x0ikZiVNGV6nCh2gDpj/Q3eDfGFHk9oy2CJYCeQiuuZVSKTRrZ0wsmwXFMfKZlogFrZLQIxUT3AEWStvHpz4eHLQJguTDfKs927PLmZmQ57ZkloWJBWKfIYFpTCCcUCJN/oNkymGgSRAD5aJjOVhz48HG6j/p105UGFap3YhYU7qhh0oCfUMzxWzB/U8TbUDWfaCEg3WDVRzZnljDRja1fEfsbpBO1sCFNPeOss84H715/BzRP2IfLVJ18hIfH6eEfTMiSTZUM5Evo1TROz9Ed7axtTQVZ6bIgFFs40ncjAKkpFmZuQ1Ajd6L1x0TxqsE0xHG+RVQ3thtbMORmpw9QNSye0J041MWmjqtHiNrLrntioHGRi8/HsczH29Tfs/giy4j6RNQzHhp5BBCwxsRIxmsxs08TcVyInQsxcJCJmJG9smpjcOcVI1JVdD1QicYLYoLSAS2bGKW0hSSXJhXXkIImtYlFoplyAq5YwOkdtsDN224XALavtOGE8CUL2jUrjIHuqFaqfiTGhzWgYJQR2vXM/KUbkmTmbPoDu6RYpUZm7MJcdLxbHrdGtIb1ycWVyGw+5PD+O1J1LGON9S85b37gikcTIl0jMQyMcxFhqQ2zmHAuYk3ogysRclDIrc3AkbJxLJdgIbDkNT05A0KCsobE60JyJC60XgiWKKK3DwY0ldFoVpBt3IZFSIiJsAtk6SwlUbIRptyt8crw5pc6QFGuVMM94P3GWDiESaseDMvXBoujNCXJGpDPtrugMMZfXQcBDHfOC2BVhObPzRLVKbHAdT8wRJFzhGYgLtQ5XR+6QZR7NFDOqJkq+we0elZVsSu5CsMQWK8TAVw/GD9+Cvo10G9mZqzmxZOV6Fj7cT8xT59l+4TZnbmnsQwWNxBbIbeakRlRDW2QW6DmRrYKOMBesiHUcobZMaDtycFCjpRObDulWloWyFT78oHP745WtXtGmFZcOfYjiZol433GhPNbahBQe7ZwW6WaoPmGtG71F3rxpsBP6BX55UV6sGfcKDA4KGmgxY90R3VhTo84HtuORg99wzcrx2PjDH134O980rlul2sTeCxsrCSP3QGlQNA9ejHZic8K2oGHjT/7iFUme4W1lkg12Fz591fjydMOTvEOsYrLiIXE25/2vO3/7OvLjz/a8Oq6U6nyw2/O7H0eud52+KYccKeo4R2bPvD5Xzm0avJd44epRGtX88fDKjMkbZntC9E7wytbrmFpIxAwkzbgbq3d8zAaJCkUaBAh+g8gJb4KoQ+toOI4MSe8EPyI8Qp5mJ0ghSUAtYWvArDyuxRotGmHJXPqOKFekaBy8U/iEEN6hpEYxYX19IvifEyPsdjNNd7TpOYWIpkTvM+p7OBcWEWqI9P2BcP0UlffYlUp/uKef36CX17TXrzjLZ2iANL1Hmq8Jlgka6SYknpKiUfuYWAozHgvIRJCJzTu9nwhlRc4PaDqStZOnhMstl1Vxd4LtMDaqPzAZmIdxOLPCRqdvG6KN48OJsHfCtDBxQMR52CJxXZksoUvkddpIttAr+OnE8V64Cyv75YZwtfHk6gm3V3vickWMzlKvya1RoyGts+pYJXUd2bGgo2ptBKpcuHEdWPoQESp5E0SU6gOKeAoT3SpLF0ocBx/BCOIsDbZ44WwTUZ25j5XMZKOR03ymK5zyBbyz1IK0iak7LUCXzpOv7VjsXYrbOICla6YO28PKLlxzHTP1JGhVgihzr3RNzLWBds5pvE9DEaJVLipDUa+Q3TlY4Exl7UoOK0UiS12xaPScCR1K2Ej1CUGOuN4x2YRYHhTUy4KlgXLI2oZvsR+I3DP1M1kiFrbhUGoTyY1L/g0fKpQdXjPn0DCMi++YGengGhpTS6TVucyFIhPVd1QtHFpAZDwMt7ljHXZmVFOUTtALlxrIpFHbpLBJBITmE5smxI2bJVD7ivWZSVdEnVchMSGkIKyb0OueokJnYx8jWw8cUXIS3DZMlJu+H+MsrVQxNmZKmAAn6/jS0yPJnWadHhubL1zUWM76uJ9bCJZYWiGEiNUwVh3p8aZtHUGZmtOCklsli3IJUMyZImNVkZVSDbdH2QsNc+j7jbQ6DwSSJyaFFhp3Mo8DzSMzf/aANGficWKhENtMagMqFTjivuM4NyKjfjTXjaSdGiJmK+IBVx/vIu2U2AYeV4X6aP3sPVK9sQsRa0NOs0rEU+FQ68g4eCYEwzzg1h8lOUYLRonDuSGayHoCizhhGPdiGklrCbQAVjs2CxY6URIEwSSivdMmQTWQ22tqdBpjSiVFce9UCYRYiL2gTINzMQVmiaQO29r59Nz57BVgEWkdifdcTZWn+8x1btzOhXlynhzg+TRxNQveK3ENEEYIeedKJ4+aXGhI7vQ+jUCoyWBDSCcqUB0LE8+T8eT2yBfHgjEY+iaF1Hc4J965CqQSeGjOsXS6Z6oYaxjQm9giSZTIhf0sfO+pcba3PMmZ0zEP+2MEt0BvsOiFLI4xIb2hW8Qm6GXlSGDOG198ecc/LTO/9XX47lVBfHpkkuxYvRLn0aYZeRJDxGjR+P9++sCryxOarOAwc4W1C0rjB5+85e9+75qw+aD+tU6MiVKM93YT7/22U8qCmzFPQrdKsURLTpU91QtCxkX5wadfkUTJsg3+S0h0U+iCD+gM0ie63tOlYxpRAiUq6hXRQLCOuZMQ0EKTQP3191wDLqPCLMHRNAJrwRe8B2bJMJ+wNn4uUgQPPnw8eo0mGc0inTnzBmokurPEhqhgduZyPI3mSp5I8wHRmWl/Qeu71No51dOYYDz8DKKj08SqT4lZmNM1m41a+UE3aAXrkRI6frsn3jwh92/SLkfq+ho7v6au95T2hvDQiOGA5x2bvMWnjIWZKR8Q7+jjLf9cj+RoTFOGOSD9wFoh1Hvq+YHUTsypUOOEhIUcJkKfwMoILLszaiV1ZAsIuL2hHxP1stL1AmFlyteDhJwPpG1HujRsGqC9mDq9CqUvlPaKdHbOr898MR3Qq5nnB+d6d80uZaIkgk7kLlxyxy0zt4ozrMRBAyWClErpaaxJpLNpHBPgbjjQiiC5sUnH20xGuMwXtAWkdRYWkBOhTjTJrFMkdaWz4QKtO7u+kTqUMLHJSuOK2Tu9N66vn/Od3/2YLz/7ghLOSI7UN2cuKD5Xzh646JHOWyYyyQOFgbPvMjP1AZ4zHFMnitM8EitIqlTfWGLCXWm+sDfQ4MO11RsWINpEY2ObMqHPiBUG4iuM5poU5rpHZMEl4t4odab70AXsSiWoIqVzTBHZwm/2UNEkIvFElowlJfgQqqhuiCSKdlgiSSNbF5a+IzCQzaYHYjxx8BEIPDYnaCcSUZtQGX+Ype1RElkrMWyEOhYFXY2zjR7vpAPmsTMFOWIE1JSskaCd6j7gKwY9XtjVSKRiFshkLKwQhKJK7QuygafHHx6KSWdlopAwX9ES0LDSXdGh5aJ2w5pxF4XFfLRHFHbBqB1MwOiYwIShaaSto81Y3OiWqD50ukHHaF/Z8LCS+g2lGzVlkjRic0aUtBK6AKOeaeojjBgbvWZ6gGwJjZWehSZOkMAa26jxBYfm7CRxlIF03nmkACVkkl3oEmkKSxxwmiiRYoUcDHrCFZJC0A1IpD5jVliiEXol9khMTmdF+ox5IsQVpdPrDNqA4ZNwB4+NVgtJnhKWShRAA5kNcWW1CeUIOlwzomGMX8M4WAWPeFfwUTV1hdAcr2HA2IJAKHQGtTD0cWByXzAzYgpsHvhqVd6sw5/RrXKQhEyVDw6Nv/XhxDeeJrptQ6/uI1/kDHJktEL3IVn6/7P2Z722bVueH/RrrfXexxhzrrX23qe4N24V90aZkZmRhQPbYMsWdvKQL5ZAwsg2vCB4QOIL8AH4EoCQRSUBQoKUjP1ggZ2yM20ynXIBLiIiI8NEdetzdrHWnGOMXrTGQ19hvsDVeTkP+5yzz15zjtF7a///7yfaCDdgwbswbFBLQ3uCuvHu8syf7I00qV+MV8FZ3RP/9F/f+NbW+Phs7Ifzvg6ed+fDYdyOhY/14HbC3hNfpkxnR/qV1efKrFtGAI9EURiqSO9kGklXSJW2z2Ki+MrLUIptxA3+kz/def+Y+e1fSiz5xlMCqXMCFDLtjdkyX7XBf/inB3/4s0A4WIYS6pPT0QvqF/7wU+fzr52/8iQ0ZtAuDWXgVA36mIE0BO7h9GEkoFiff8auREr86H7yw09BlITXjtsyFdwMTASNjIiTEZwH8Ar+5y2gNr0Q0klq01sSyoiZ0UnDpnjKFyQ6IrOy6qqcftIDkiQiKn0I9trMStZxNbpnImL6TSxIGixsE9OfKtGmfM8j06JBeZovZRXa+EiyTosnyMoaiYiVzjNRd6yeDH5CfNppaaWyIhdl5AvDHrG8TVjbaIR3Ig3YMkv6Nlw/Z/RgyA4vP6e2k7jfiP6ekmw6cvKVWC+k5WG+oONKqBDjhlEYXFhsx9NClTcwKmkcmJ94+zlunWLra1j0CbEFlQPrmfM8gZi5LA9sDELuMyy5fz1vvbqTbEUtsbSFao1qKyTHtKCpU9UY3dH6gXhJvJhzvbxwuRSua+btVljLI+u64OUg5Ip6IAz2MbC2cFBfnRZ3FjGqgg0Hb/Ow6EyXiupsIkmg5+QGWSzUfnJGYouBO+g+zdBDA+X2qmNwXsTRPhk3po3enCbB7/74RxzXD8h1Q3aBUXkedzJjTr6Gwe7UQyjZeDEjdaUgrwIxZY82wV+MyYsYzrAOrgQxYVXMCbuQ6N5Qu89CwXAGRk/O2oPmiSYyg/UhM3w9NkaGS9sBIbMx3OkWJIeXCMScNTcuYQz/BQvFNFV8GN6VnoJLny9xSYXFOs++ENbZ+kmKK/v6nq0pTY2rTo336F+g2lhK56EHVSpDO0hiROdhzAfhQLjlDc93kguLDHbPpGx0D0orvCxz+pDECBrXWAiZdsZBQ+tBSpnT5kGG3Dg95u48OSnAfcAlKMOpDqkXjoBIB6dUJGaidpIwCx/NMQ9SHyhTQ3yIYiYkKn5XVFaaORbKKR2Necve0gNiDR0LSwR7GsgQuieaymxe+DYf4l5QEVoXzDJVdxYMjZiUzT7oyTg9kZrimrj5DBmecmB5hhPFM3lPbBb03DhKotV9hgkZs1vdp2hrRsZ8hjDDZoDMHHzy+BvCMWTyITSReuFqL1P2ldtkcYwrXo2hFaJzQZBq0MFxwuaD2sfCpgdntxme0xu9vdIxY7pTUihpOLkrPU5CEmbCkA51xbPhcqeMjukjhx1MPqESOVMFlpg/r118GiXbQidYZDJORnSKvkK6AH9Fk9eWqE24fTz4k4+Df/4vKf/E58bZZ8tIxwwzaUD0TAqh2RTJndqmbfK1nlZLx22uD8pjJv1oMIoQ2pBzo5BJdnBpUB4WHq8nbx4S3/WB2EoL6N7oe+a2F57PxsUeGffgYwn+rMM+nCEJ9U7OOz4KjwTNOiqZwUAJCECuhDYuDI644fkbWHN++PMP/PSrlS+fFv7Ct4N314ND5s3zqI1/+PUnfv/HcFSj2sIlBs0E18B7wePEZWG04A/+v5Vv//YjKc3vhfYxEc1dmOYVaMywcJLA6ORhgNGzE+z8wQ8bTTfwZ0Rs3tq6zuqvgtmAyMBORCG9BihHVCKcpIkYidMhxZxKDHUuPggapITKDv2JiIMBGEYpDwz7GqIQEtCfZmA5B2aOxJgTm8h4KMpspKSxMvI+WyYq9CgMTjyCkp4mGfKEXhunOu4VU8F1oNoIXUnXFRkzi5UXp41PyHlwfOyofgD9KV0WWC/ouqHpAhgeSjWjtOnrGbZh7747J3FUolf02OE4OO5f4/f3hCqjrOj6gI+Fam+x1Ci8QJ4UTGUeVrs4SR4hfcEYB9FPtH1E5Ed4BskG6YE1v8HDaO3OqHc0ZtVf7MLJjvqGMyA6uhdqeiFZxtIK2ZG805PxlBVvKzkVshh7cp7PF/aPma+z8j4brI3tTeKLi/JwuZPLGygr0Rd0GDvC2s4ZOB/KPHEmmjeqDLpAjlk1TdLZXzOIIzpv4uBrN1okSIKNyvCME1w8OLQxfEEkSMx822mB93NKEN358Z+eBD8hXwqbXUnm3KuSWVhTnUFlr9z9A4u+neK+KAwBF+GjdjorSxskDk6BLU7OZqTUsAKnzRDytc8AdsoDZEV7kIC7gXehy8DsmLV4bTQPwjMujrjSNGOvwMddFAsnNGAMljOA6VPiFw2/utvUpxJGcafrmPhp5u71wQ8WE1p+S2qV/+63Lvytn37gsRZsr9yvNkNr4UQo7xPkSFgUHFhVuHnClsrQOxYbKZQuhSyNRTd6r6z55E4DMm+9TPJeFo56cqYLVzrSFSlP89HlgyELL3mh9MZGcGmNmyZWCtEP7qKk5KxxcurrQ6NduengSSEwtnFQekG7vBrhBuJ9ukN8GkS7CSnv5D6wuFB0IrsLD3yQinDwuT/wVZ7410ym6M4aGUkQcRIx3R9lFB5M+GSd0yfJTduJDiHlicMJAV0eeagnhwq7dThhCUhjTgR0e4/UR5Ik3t4HH1VRq4it9NjJ485obxjYRJ9b5S5Oto3kU9s+YnnVkN8pQ9BmdLtzhqDD8LYQvRHqWFIkCdaN6JOQp+sOnud6oF1Yygv7eGDoVB0vklnyQOhcR+bZKqKDVQ8Gg2ETqHQflex5hr/kE5pgjJXid/JyRzDSyMQB2ymka+WewIag48S1TLX8cD7lhNmgjE4aDd0M3Z21K3e9c+bgqT+gevJv/t7Ot37nDV9e7tOeKEGE0SNoXsgetF7Y5MqmFZWTlp9nOLk6LokzB4/Ln2O2E8kLqbzQdOFoB23LeJ/VuaqdysKgItFIWZGR+fIh+DIyv14ae3lk2Qc/fx78o+/u/PiD8tUR/Ojo1FZ5369YL7QYlFx4ugjPVcg2GGJECKJK92MekMfCbhf+0fuD3/uqkkwwXWdIbxzsOlhkYdWBNuFTGNtcHIAEW2TuBInEh+fg7/6/P/DP/+MrCwlNB6eseAfLdQZ55eBgY9hgrZnKQFKwReKPPzb+9H2jpM5dN3oVRuyIvp/Y7WFQILKT+0LXFzpGtQTd6OnCaJWkK2tq3DWwJggnz7ayAhFBe80njQYdJ/ykdWfUFc0TXJ+J6U3gZHibEw+/zYf362015KDJZMi4OVqDIgcWRoSRitBcGBLo5YFH+QwZldafEU0c7ZmQPEmao7Etl6knGJ+TLoH09+jInLXi7QP95Svs1qY4zx6x8sjFruzWGSqk1yaUj43FFN8cWb7D8rmxujL6TxkvzvHyx8T9Z7gMdPkRWjZ8LfS2ELGSbSGVC629Q5Yd7I6q4+kNffsCvKL9huyVPj6h6YbawrIIkb9Jd6XWYx68YsH7icUx70U2Zg7vbIz9a7ZiRNywLNzyBc1P2OIUubDkjyT9Ak9Bq4O7KM/H4N3Hxm4PjG3l4foV16e3LGKUNbE+PHH0+T2t5kTMEG4KsKg0F25DWHNjSKb2gapz9cpHcTamP0r7weHOpjtDtqkuGBtX6Yg6pW1EeuasGYsN04bZSrrfKI/KsjzwlDdu/QR1znYyLgV7LKR9gbsSG1z7CZ5wa3hbQIKnaIQUslwIpgpCYpAZjD2x5o3ToBss7FQXfGQSwSFC8w6inF4wrawdGht3XyHvFM+MaCAnPRk2nidoMQsSymrKHk4oXIZM6/gv8lCRPWN0jlTJMROu2ReK3Dls9uXJnWt84m8O5X/yP/1v8Z/+L/9X/H/+NBNPK2d7pKQD64nQBe0NlcRQSAxGn19QRVn7lR4Lye4UOemx4UNJmvDT2KxDOvnKF5bX8RVWCL3T3Yi8cI+OUdBUiaF8VhsHL6hs3G0BVrpUjMYWK+ITQJLFuLTC0PmAdwlyO4nh1BSYJmwEQ51bTIfGUOeDDB6lI2F4X6E01DrSlJtX9FRySXx0iCFsI6NpJ9i4q6ADgsFiFx5wBBi5swynkOl70NN1InKrwGKkPGjnR5IoCzFP1qIsAnUINKeXJ2quSFbGHvNWIc4hbd4cLXMZd+4KhwbpDMqSadLJ3ulDidcvkNSFXpzkFVzp1jlWuASv8q2TqEFgmJ9EKfQxyP6ERiMnR7ogPkOtzcBNGCGMuHLXjTV2ShyoJnoWDgm0KVoztibCHe0DUiH6nBrcQhieQDvNE/swWhmMFIgLmxdiTDBPHkozJ1ubAVcLVBdGndmSwyfN7mlXskyKYfTOf/C7zn/7r10QZsPDE69h1AoI6jBikg8XMh7BsEl9jOpcSTxyIy8d+ngd2Qvhztbgkdkvr81mAO1ViegG0RYW64zeESt80Mo6FlJxLk/Ku2Xly28NrD5y9gf242Tv8NWL8+m+sJO5W8MfnbMG2oM9OptcKCqcBN6ViMpTKDeZFUTtO4IiVnjSPrXxbvMBlaC+ZhawoLqhspMVqmV+dOv8W//Z4J/8jSvf1o2lzsPm4R1VJbxQAP3zrIPO0Pen84V/8IfO4Qu231lWRQKWUWi2YUM5+wE9vQoCD1QumDekgWZh1WPWrPXglEH2QNQQu/LQBibGS2TwDaFPVJIYK1fEPyLSEa1kURiV3jrJ8gwjjkTSgodP3HwI6gXEyJ7ww9i0gWZafU9kp0Wh+UDzQtMG3FBJaHmghyL5LaaCjRsXgXp+JLlS9SOmGXXDk2HlSuGKdvB+x/uNMXbG/QOjfU1KDrZALpxhJLtzukN/QBRGr7guxPotlk14fPdt4OD49BV+Ozj3Z/zlA2YQRXHbONJGWb6mSaGSMc0IJxE3VMGWDbcFkWX6OHywf3yP2Z+S0zIx10WJ2Mh54axGehWDNa+4OZESLx5EvKA1kF7J9Wv6TanpHceyQPoJohc0rfSSWG+N27rw4p+Q8TX9tnB+fTBWIalOSu5WeHPdeLguPKYH2khUMiFBFabEcXREKu6JLRJ7CEEjy8moxrll8OAeFzYG4rDwwuHLnDKnF0IS6xC6dnoc2HBqHgw2TIT7aNzryUUzLwMeTMk1cybnPl549MIYC6fNz2buk7BccyWnleZXTCpiJxaZ4iuRHV+ccUyjcmjCqIh+wscKGqxjru7xhRft7PEwp6J8mkHjOOYaayS6g8nTLEdEp7lyRkJSmz8vV5L8gomaW3Rc50tfZDLMR1TuVrjEoOSOSOY7bfDP/c6v8eZ7f5F/8rd/jT/64Ud22aaexRXXhkfD0kppd1qamYLuwbIcdMnUoWy6s8dgiTQBKDJQ6ZMxwUIdhaRTI4wu5G48DNDowIGSJiUsCpYbdxFiXIihJGk4B81nyCbBDFZRoAstBu4xPRkOLTJuoMNJkegyuIrQmGsQ98TmJ2MZ4NsUzPicpjidbD5ri2Mj1Mk+CBtYLtRz0E25iMOZOa1haiQVounERZtjUkg9CA3qejJEyHVBcp/VrqHkvtHkzrDE0AO1zlkTa4bTMznfkFhYe1BTcLpTZcWyECGYzvLAkEqJyekXDVLS+TPKAzy4IYTNjMkDjTaCJrAkw4uTdP76hk/4SnGOY04h3Q+WBDWU7FAD9mhckvNIo1pAFHJkpCs975gorTgu8yY8HGA6RJahnCkTNvHnDMFbMHSOOJdQRmWyRlRp0kErOozlVfLWR54+EWQWmkYhD6PamCHYtPKn7xsfPlx4d830cSH5MyFOU/A0e/SDO+5KPhaWvFC9c08NW5zeB0Vlrq9sgO6MkSEGIwR8psbdGtVn2j4QtM+14tkhi5Al2FzpejDySu0HPoC9c8i0D162wqMWvvn2xvBgKVOF/qOv3vD+bPz468rv/WTh3g6WNXOKkuwgVHgegqiwRiXm7Ichg+GKe9BxsiacCWszucycBIMsCzKEMoxuCz/96sa/0+/8le9t/OpDY7OEBmgoNQKT10OZTrfJj/fKP/iDys9Om/hlu04Sqgsm83NuvpFlGiJzFJILTYMQJWzSA8dYEUucI6OcuLzSfnvDNSb75DXrlCIm2jzGfAbEOVd1w2jmLChd9TV1vzBTiQkPBx30CEKdc0zqqIoxfAUE6xPyBYNFhMQ5tdyRXnkIr5czc3zwWu0NuLxFQ6aJMj7NrFe/M5iK3DFsiqXyE+ErdGHkTowBNOR4Ye0QKvgSjPaCps9o+ZHVBQ2BMdtVgwV9/BbpjaJxMvodv+34+QFpz4zbpznZWgqRV2JZwR5BN0KDbndghlt1DVwW8mUhhtPaifiO7jthL+gyG1hJC9WAsU73SD0A4dSMA7l18EGNgP4T6rGRcplV/fKetAj3eKBzIYmSdeN9atwrjDYZOj0r13vj+ScvlA2+vK7I2ze8uX6Gkrl2oapTnNmoizlR7ICkRB+VZpnU20zyxDndGRLsOt8Ti3Q2ndgDxlw5F98wDKl3ztTRvXMt8KSPDBWGCelSGJrRPc8VlTpOoTAoArUMSioMSUjqJOnEcA6d6vPuQfcZUdOYK8Ehg943kggSgY0Oo7OXgY2EDqfHSetwEWfmnZUOYPPXuB7sIuQwJDJQ2QKkJV7SQFl+sYeKrp33yXkTiRhBHgWxwerBsioaOxdVflCu/IV/+ndYtoW/8uu/zv/z3/27/LQP3Hau0aApL68SriMx++RjpaVBEZ17wRDupohvuENNgkij9kLGWCxYxsklXbj1aVhrDJyFZCcuE8yyNeVUnVAXhbevJ9XBzAwkKklmu2AdwUeb9MW9GKXPF1CPxmoLdjo3McJg8UEXQTmospANUnfquHJaQ7TRY6W4w1pg7MhIiK0kbxhOlaBWoQgkbxDOKAnzoBKoJCqNtkLuQeg01I1esBiEJ/BM9zvDDNMN0h3rgabE0TJJhMWEPBJC0GyaO08SopWSAm+Bi3AZjZ6MYYniwSkTJPSg4G1/VagX9rWTosMolC7cLnPEllrDY05HzjS9C2kExZWDAyVzJp3o4/RC7pO97zpYx8JO4sjG29PpJDqdrJkhU+x+kOcKQ2IKmbTSGXTWWcO099hxIZKwSgN7mGwSglUElco9Vnpe6HLyzl/wvjF0sLTgJYyrQkrK82hEOkETx1CwzssI/vhFebMFw270UVn7htgr5joPRIwkJ3UF90zuysMQXBtVK5INwVij0GxHPc/de3JGaUgUJIKmJ8tYCTsYKUi+4OlO7zIZFFbAG2N0kA6a8Xiah+7wV3BVQz0g0gTypMLT5RNfXoVf/2zj+28P/vbvO3e5oXFFzWkYxQcmOhG/6SB1x0ZiL07xNHHWrxmNcMdTJcQpI3ELm8bQmMRVkvD8Sfk7v3fw++8Sv/Ud4dvbwhsd5CwMQH3hqxv851+95w9/3Kh1JUfDLNBIyJhcgj6mdMptcI7gZEK2enZiTB6GhyBs4DMPoTEwuVDlE0iDyHTPZBVWeSaPOXlMMUPVjYRqpiRIFrg7yI4OxZDX3IWjnJOSOQyiEa+QJAlB/IXIGdUMttGasPWBsdLYIW0wHMYMwPY8aYYanRowymAdRpcZhk72jm6BRmXzmeEYNNpI9H5ABOo+CcJlg0jEsqAjGC7IADk/ofEjIv+Uno1tWWnLhZBHJJwlGc0P0EAvV7S8IfgmOjp+Hoz2TNzfw/Mz9eN71H5E3jaibES6oPEIudEtMURRyZSkaMoMX+kjEBn0446NgyYvkMFsQfQLMMV9tuDoc7I8pM3DD4MUTvABJBMNPtwu1LRTzhdyXlmWj2xsHMsTiel+uZw+nR2pcJxX6tc7x88OvvHlnW9eMuvjExctqGQOXalnZ0o4O0vLHAY57/QxAUKZTKSDoHBpRkqGUFFxUlLU7mS/0NKs5vWuJAla7chloYnQ2jT/pnFyLcHH5zFrwzSGb7CuuDopMm7Ou+5TjKbG8MlaSuYkDzowqiM4yICRKV4REQ6f9mKRhLbMiaEuuFWiK90EpaME77xzM590Xj1pAw6fJmpJ81btMv9dMn7Bk4rDP+MbYxA+sxWSdlZNEyJUn5HrA9dx8le/8cCb3/oOMhK/+r3f4tuf/z3uPw/UB6cYpyjLSNw0KDlBPRm5kSMxQgjNSMhUsYoyrJJDaH1hJCjhdO20tnIpjVIa3q+MMsDh/nrLrcNAp8XyEo0SxiftXGiQB9oyJaZPoQyf8pyR2Lpz94qnjGA83jMtGY2D1BMwVeMTFbyyheCuuK64NwzhEisjCiky5/Mn9nxlaGKr95keT7O50HQm92mFrI2enIjM1vqEFXnC2yvtUgc2BsrgvV9AlD3vFA1SZMqr9ljJ1LOgpXHHuaTB/ZzkRalGkcYzmSWUXAvKwd0zzYzFHVdjJzF4IWnl66XjvZJlIw/nYVdGSQTCUXbkNb2fVHEvZHc4B2aDMHguO9eqNBNqnCxkWk/0NI2oFoHnwTXtZJ+yrB6OmSB92ke91xkIlcZyJJY4+CCO+IIvY2Y5yKy+YK1wL50sPwO5kvcHmnWO4mR/YRuFsMTpb6FnHKVJw5JzSsftQPxxOgLsTluczYLt08YhO3UNJDqWlKozB8CZGC1ICotdaVmp7IQJ+UikWGYbI3YWqcT5OSM7KR0ojaiZ3L4BeiPCWXVF0oHVBbfOiIMmFyQNtIIsRvXMEidjCMozLhuzTzXVyP5KIbRXRwLl1Sw7jEHw2WXlX/rrmf/y68p/+NPOT89O7spYIFqwjMHQxG7K6kJxnRXCZERfMJSUTro6bSh7CBIwWiBaGHIi2egY1jZ++LNP/OTnH7luwvWaeNROo/DVXXh5cXwUUpkhylx8emhKID7BR/cS7HWdUzDrbKGU6BztxPIKKXPc5+3W9aCIzBd5fCCGYWwowSEVRGh+YW6IMxFXgoaPlRvPjHZiYiiK6sLKVHDvEni6EOOkW8diypa8T7Jtlkw/GhbzJYABY6fpE6on+xDcjZUd4mnmreQDHjdEL6wyoA5iXSegSCpSF3Y5GTYns5CRYpg0IhaiXoj46cTG0/HuRC/kNWZwWSrL+jlnXrnUj9R65/j0CdFPjPIzRmQu2zssL1QWrCWIhluaBMvtQrp+Rvr8e3i9kY/Bcfua4/gh/vwzRBzJC8tyRdOKp0JNj3TJXCKjr+wWNJOWByQ90mrFekfqM8N/xGlKKplresDTRpjj/UK0wOPTbLMMwRASOyM60SucwZ4Pzntn0yvL+pGRrnxYLpR14eqFGFDaHds2LO788E9u/HHO/NLDj3m6fkl6SjxcL0h6ZGFF5YXD2sz6acyDeRq0ZjyNZbaY8skiiTquhC2ovkDLaFbg5Nk3UluJ7SQLEIG4czHjoIE+IFvBUqdzp6qTNmGNgxEbYzjEzk1X8oAUHQ/FzNGzUAVyHNwSmM+qa9jAY5I8XWAnGGWnRKaczpDCEgPHyRGzxRMKInhaeOqDW0CXFVWnMwViYYPcVsyMu/2Cg5qy3inNCOtYyrhsaBwk2RHJlCg85MRf+qu/zvr2wpngi3ef891vZn74c2d/9R6oCM/54MmvjDEgHmDs9LjO2/AsAxG+UBh02WZ9NRsXf70leKEvA295svjlmTgusAyutbBJ4z3KbsFDAJYYfpJsQcaAPrXWrQSgnJYIpna2FXBZKH3gS6c53JOSEBY/YWRuNkgtcxlKl8Ghg8sYJDWGNo5YSOw850Fqje6FTW4sS+HeM7l1isNYGtISM+4KlzpzGsNmFiGy4tHnmkB0nui1cPF5O/SRZ/0pjMOD6EbO9TUPUhA/KB8zedsRX6hVkJzZpNF7ocvO2sGKvTIyCkU6PmDhLYcF1z7NsJ6VloK7KFlmNRFd0WE0ragHNxusi7D4TBwHTgnllAVxyAJnTjw1Q6yyMyjZeG6ZA5tEt2QoMyg0yHgYpw3WPuiSqGlhRMJTZTsVOzP7emPKBBsRmdMX1O11TN/pXclaKHoj6YC6UUcwXrkL6gXXZyK3iW7ON0SdXCf4BYTdKuqZbcAZSsXJuuOhRB4kGXP10gNG56KznlzXgxqJEmUq52Xn3L4ij8IY66zZSZ/0VtmRVImRCGamJroQWSnjhBA8w+lGVudEkTEwW3Dmg0vCgCBcaQ4nic/FsFb5moEvztozPZ1kXfjN78Dj1fg7f/DCh5ZotU2AzmLQmLct7UibmP4WwUyTHHgruCc0NXpxSnPSstMi4eMRzsaiJ8M6l+ioFNoNPjwHP5RBcYOAUpg8/14YA7w7XdNrELwTPc35ohh3r6+rJmV4njAyJkvkkge57wybLaqmz3h3NPnrzyWz5JkJidhRfUfHyLEzQihSWcbA0lzN4LMKe0qZFVV31H0aVm2Ok9E0hYljx0nEkmmnoJcCTRivBMpkldVXTq3ABdfKOYQ8Fjw1fAiLGpgi94NjCUyD0ypdF4w+JzG+gO7AwvQgDLR/QbIbIwa2JmzcaG0DlD2tXIEkB1oeuC4PeIOmlaV2pDljf09qTuqO6wVbCgsbQxUXnXmvDp2OLgvX5duofMmoSjs+0s6f0I4bGjumnWwXIhfOtODJEMvgD4gmrBtZjChzogKdSx/42ajyM5IMNC24XClLwu0teRzsQ6fnRx6nnNLvSOgsqKVKHwfRC2I7+unCsTxyFkHWzJOueDSaG7TCBeHjz3c+vK9cr8/85OEjy/bC59uVsiq5XNk4KPKA6+CMxLkeqAg+EhtvOdWQciDjhoz1FUmQMD1YLaBcIJ7RLDwsVz7dXmg6mxRDTj6/Fn4mT0jrLGqEgLHhEa/r+YyOSmPW+e/pzy+1N6pkLAZLv4DXSfKVwFHSqIgojz1xiiEwD7dhGE7CEBbMOycLZzipOTcGLwaP6nRfWMTwmJmYbhWNwTrWX+yhYm3PLLGCFZopJQRbllmxUuHtMvhL8sD3//IP0LWwCKS33+C3fvXX+I/+4I8nqOM8OfqGxMaZd7qAeQa7MNpAtkatZa4kPFCtlJh2tAtTy8pwDg9qZCwgUTCEh3DGEKI0enUWdZIE+ErqDdOE1EBMOVTZIjCfBtLkDRtXjpirBxnzBnoP542tKFMq5ekkbCEPMDEinUjPPIlgehByQfqYHAkC75VrW8m5QxiVg0gD94yPTok5GgfYRbiJoi6z543w6J2fpMYxI6ekEZxtwW1QEULLhPwAOQ8kDZo0SswqXSjUDNsrv96L4x3WzOvvKRjrwK2TEGSctJgqYpVPJBa8r2huyGgUMirtVZnNPGBW5gMeYXPIdFxkBtdGUFWgOyQYacEPoWXHxrS33mIGO5ew+XNvziu8A9PZUjADd8VwlmjzYT8UQabjw4LDjFGVbI0hB85ncCa6AHmQc8dj5Tzmn0sOBzU0Gn1trPVkuGKh5KNwxsDFMdXpBBiZiydkGBqGxUdW2Qg9uKvMQm4CGQpi2MgwjDUnzjjpaZ8hxSr0JdFtsHbFRmJ4IdYXXDJjZFQPhhdSTI4JraA62KmECIODNAqYcyqEZzQc1zpBS66zmYCCr3R/vWFoep34zJG5SeXowrsn4W/8hc/5N353px4CqvNHJgl8TGR7WmA4hhDMtZLmio1jZl7G3PdGXOeDkRuqwqCDBWcEUa+QXlgxNB6myVZujDAWDXwMkiWc2ZNXncyXeHXtOAcrC20EFswbW5o6ACxxv08+BRiEE/QJ9BqThCg221h9zMMQ2mkhiJZ5KFOlMYPUiEyN+qioTMuyCNNHk+vrP7/O1QmBRsalYxFI6vND5oOc24QuSSIsWF0Yuk+zJMt0UIihI+Z/14Sh8/cbPqdSVp2MUTmxNEhMQyndMPc5eYnpRMkxGUKRHNGVTKLFSdoHZ25zujJOkmUiGbUYWT7n6d1baCccN7zdaUedWSkzVFYsXwnfXn8eUw6ny0FZLmj9y6S4Mfyk1zv9uBPHy/SI2AAylq/YcqVrBl3oWkhiLBl6uRA2WGNljEHrFaXh+gmrhapKsbfEteIYvj8i6c7who4KzacDqRm1nRSvJD+hJuIu3MrCsWQe7Uq2xv1+shZB/afc94I3qJ9OzvRC2TYerp9Yc+b6pDwuhbf5JOwyV6/D6EOQIlwj4QZ05npeN1Q2ijl9hbPN6fmH+05ncPHrrD6PZ3S7sFewphMlb4OtT9bOXGooPRrJBzcJlmqEJHoUZDQ8FtDOMGd1nW2ikOnuQDiTso3Js7iVydMxmbmsUwyJAWNM7L4ronCJZWortJJ0MPyVyZKhNEVs/8UeKv6Vb36f8mbn+cMzH0aj3j4SdeF5GF2Vi2T+6pc/4M33v6QLaDgmiV/9wfd5u/we1r/gQwhhB0/DOUmoK107BnyO8ZM6K3zmxvCKJyWHUHuaxrgSqF4hEsbg0RsfFdrIpFxwq2zd6DahHuGDZm0+MBj0krlSIRQROCXPQJF1CEG04arkPrngq8HanCOPGSYbmZaDrRaCQKVzZnu9MYD5QV0WFp/41BSOzPInTY00nFUGoXPsjjQ8BuaFoUZmQXOnjJ0hTo1AbcFcGQa1p9lGAYpWKsYS6ysy3dFuRGTMlBLTFRLepnI6G3mcuCVcEpacejidC6UbLwqLzRLd0V8oMg8ybp1kQbSgGly9cuiVpXW6KoeeXCxzolNQkzPRBhs6g09x4ym+4Kt8sIzZk65SmJGsCnRyGijb9AYwV0KqFRsdc2driSqJRsZ9mZTH1FiaojL1ydoL3q6cpdNkvGZlnBSvEwM/uPoyWQo6GOEkEQ6rxICRVmLMKYCrMETxoUgksgcXgc8ujwz2CcOJd5wI2TMXUZo3pBgec6pxmuJVMBcMI1riY71N6I8r3gohg5Ea7g1tX5DzC4oTnigajDHDZGEnpzeKPlBGZ28C25iYY99pBNkLIpVgGmzhTledfAoZxGLwScjpnATTpkQJkq281JPPH4y/8Wsb/9Z/8cLHBvq6vkptoUnG9ZyioTGhXx6TfpkZOIoMp2WdanhxrBsHnRiZJyl8tilv3xUuG3N9GCf3O9z7yqfbjY877BqUV6CVhkAFl0zoPhtFfcHUCR18dQv+9u/dWErnzZPwretGjjybROM1/CZKEsWs02k0EsiEx6mcbOHIqHgaRE+kBJGVkIKK4zbQcdLV8JjE24qg8YCrQ/SZw0DYpbNZJ7cxL15joaaE9IK8OmKGC0ME6Z0zX7CxY2aT1JmEkw6s9NxYvNJTInkgdgcKxVeUisafX+ZArCN+g7ZwwFTMyxWTwWI6mSS2MhYhvYqzXqLh4yAsYa50S0h+JG1PxOMTMSrWBg+tE+3Oy/7MsX9AW5BKYuhCpOs8dEUBOm6GWcFSIR4ewX8JPxqcH9jvnziOD6Tbz5Ek6PIG8gOSF1qzVyDhZBqNlOm6TXW8F2R04rwR+qO5Yixptkr0iarQ6wXCsb7TfMK3elKk10nNjcS930g3oLxhz0oBblHoHdbSSctCE52G3Pvg00vlum3opxfK9si7a+bNQ+L6BOtq6Glkh0amW+aaTpTZYuw9oQR5mVPLaI3Ydp4e33J8mN/lYYl8PUitId0xThTD0sGYhC2Kwp1E1uVV/qavWoAx4VQEqTeyGCIQVthZMOk8epnZPl5IY+MNTiXNqarVGXgVR4fgkiF1Bk65L9jlpGmniZJItCZkTXM2addf7KHir3838zf+R//ifGncb3y635GXg+evfsbH5/f4n7zwvd/6VezLpwkFMsOH84Nf/i2+8+bf5sP7r6aK2JwzrzQSXw9nI89aYHGu4WR3LBq9CNoKhxpYQu0gD6Oo46NysvJVeUH8MicWAnk0Xkx4JFBO7rlN4mVb6WQyQpeNYsJtou9RT1gXIhnrWMhycBcjvHCexr04QxwL4XFASJt69xH4aZjNm+a8nN9Z6iswKsGZ4GNKFO8wKptCH5mOEdq5N2eVhVqUXJ1BoG7caCyRUO2UMzCMJQYf44bmwuJBHQtbUg7dgYbVDaWy1szL1TnVeIyFm32AWyY/TPyytpPdCtYDCyGniYG9RIU4WYaSUmYP5+4nWYVzCMIDOu5U3fBo3BdHCLJfMKuUmGPhxxGcOrgPYVGh2cptVx66z+KDdq51pvBHXzmzEw0sK2o75CBZIjzIKHsMPG3TtGqdqyaqHkh01BeGOArkkVFxgpPsg90H3tZ5YyuK+0L1TEIJ7+iy4y3RJBgGa1XoM+0/+qtl1abL5JNe+dal8vT5jf3VSoufCJne54Mr9AptGl4tGsYxLYJRwcaEidaDI8W8Nac8BVWeeaMDslDrwuXVS9FaR3PgAnkkhs2bRdMZcL2MhSoHIjbhPBq4r0hMSqSOOXoe4xUlHp0kDWWhA3WtjFgoFa5NqSJ8+Tbzy78Ev/vDBGE0OdkDwub19NHAJdCekaYzzBVKTsKtDFIYqc9QWh3Od54yf/2bymefgRbB4kAk4a6oLITPMGmPz/jq48k/+tmdf/iVc/dEskEKpfWKeGIxQ6zxLJk83qA0vv7QSVH5kz+D/9QCSzuRMhL2usbLzOz+lIiZVoYLmwrNN0ZayflOO69kVs7aMV9Y7KRHop0rlu0VCd6nqAyhjRUI9BWkZshM3atzSprgKDuxoUSZ07WIhMtgzUqLackUvRByENloPoBC9kbWgGSI9rkGHE+gByEfWcY6CbHWXrX1RhkFSZXSHdVC9xP1B3p3JCuHN8IKSKdxIUshFHqteH8hrxnyAl6YuLMVXTLYyeVxYzu/wAnObuzH19xu7+H+xwxJIBdqueIkihibF57bDcsFWQtsVx7e/Qq1Htj5kfH8Fef9xvCv6QqLbehywfNn1JwJ7WQDwcAy1RKRrxxtYHJy3g+GHIh8RM3I6YHCheBKqOOuSJthVqUTep91c898jBekDg5xxj1I9sDoK/0ASxuWnqYY0Q25O8MWVj3oyfnp9ed8vm6Ut0Z598S7yyOaCvSVXRLLudLKiVKIgEqQ+xs2rSQzAsWuwuXeiNtB6oVRLnT/SKvOu9A5nUsDSY6RyHSGG+IrXV/AEkHnMpyWjG4TZyCRKA6PdGreaAgZQ+RxXjJ9oKmTxHFPFHOSzzD5HSNUWfOBrDdOCdyvXP2coEeE0wtLami7/2IPFf+L/+hH8L/+1/ln/wf/Ao+//Mt8A2GY80XM+uD0uzHNeTHT4abKN7/8Dv/jf/lf5vZHf8rxYefnLwefPgaf9h/y41vhZ7fOn9TgDz7dKfLILoN7nnpp8sDVyH7HvYA2drlC3nnyyo03kAbWhWE7NzFST+wyMdzFN6y//qDKSdyXuZd2IFfCHYsF1crZFMzpfWMs8yV5GY0kiXcjuEvn/WLgE7F81WDYQh8dT3McKZEwcWruBJB7pwBVKzll7hSGNxIdH04W4UiwemfYbHmteqJ94ZRGt04Zj5zu7CFYMR7OQrWBpoNPoSwyH5oNp6yZITeCNyzunP2E5LBA00QbO9c8U8SOEipsOIQhmlh7ZvRGy4bFwoVgjBn/i1RJASNn8tnRnhk6qGnnU3vERhCh7L1RV4cmlFawqoxUOV4lVaTBMwvkjskcwRdJXMRII2CsRFMiQxUnkjBaQ0aCBndPYLMVNGzB6dyKs3ljsckc+O/8he9yfnS+vgU/bXNd9nXL0BL3OAkb7CNhusA4WPqC+mCi0XYe1dnbQS+zavzGPvDP/eaVtXTOMavEWWcNd+SGRyWfRug08porPS5o7qgenOOGLe/445uxV0NSYXuF/7ThNDIFJ5VOi2VOWdKgj4K40Kyy1guhffIcIth9sHlm+E4ym8ppD8z2OSESKCNwb9OPIQmXhshsEulxIHLCcuH0ypKU1OCLVTBr3OMknReW3Bg9kGR4T2x2cIpS8sDC6RKEDaQqlcBT48tL4h/7duK3PodDndo7o87aLx7zhv+qfD+0QBTevQt+5wvh124bf/hnOz/+6uQrbzNjIPOW3zWxnmNqyXH2ULI4a+oMYdb6xqx8n5LmpLM3fDyTJUEI3RfcBImGiVOYVb8WNy6yTLNubqS4kOw99AQEIxxL66S9cuJkXAouU/p3DEFHJuKg6Jxsmr2w+PSKdDtZrKNDEM0M8Zl9Cp1hQJf5MJZC6YFpJ8RoXYBOHgJkms0n7aKZk0oaM39SvbNJIHLSdGPYziWMPBepnKGEzCNWskYXQ+VGTvc5si8Day8skRhiJGnMqOeVmjIjPoIF6/KG8lBQvg/3k9Ge0f6J+xF0nY6QJdLcevirzdqOeSh7XLGHX+ZxAMcL59Hp7ef4/gHuHxEt5FyodkHLMoOPaqDLa9hzQe0CHVQG1g84O8/2pyy2sOmC2TwgR8n4AXoamiaGnXYHqYQK2jItn3ivJHE6H5D8MyQVtDxws4XFNloRdgcbO18dN5ZPFx5+9MKPHwpvn1berk+sDwmWRPIVlTkVQJWWHF9Okn1Gu4+pk182PqGUzbnaxos3zpjyvU+LoWOdhFlelRNSwTomRhppkpJVCE2Tyhk6zbsGSQYRE73QktJ6muwSHViUuUIMZ6nQ1Wj5QHzyXm6tsA7nAogM7klY+05PK6XfiSETCf+LPFS8T8L/6Q/+kPq/+Vv8jX/xb/DmL/468krZajYxx/PFKthEfxHqqBu/8Zf/Gvz2X0UIonVkVEY9OZ5fOF52/sHv/7v8z/6Pf8Q9voEMwcxpkWnqMJxdMiQleiYTvA1wOvSNSIIKiBrbq+FNhpKGsAjzy+0HWyu8WZU17fzRnmkKKQqNSnimSGKXwTUKozUOzYgE3o1PJgyc3Axhn3WikcljjmKnbrqCL9RsIAfmhSIJESF5AoyuTpgiPdjcOFLMpG0IoszbfA+aBWUYIy2IHNiYY9wxlJ4aOaBq5nIkFlO6d05Vek1ECBsnjQxiRDU2g7seWDgvKpQ+1c/WhSYLIwkP0qnmVGDeo2aTZeSOtZVOpQPhThdj/uUkBhKdLI0wh1EIX1joNBQpAb7PVYyAa+LiiVY7EUrTqZgOAZNtKsxHJ0pl6KQ+DjdEBbGD0MypThKFHrPi2+fY2MTY1fnuLzlPb95QvbIvlT4C3wvtXvjQM7dx59Yb91N4eb6yH53394VP2jlkOiruAYsVvrUF/81vv+Xbnwd11LnCGSuijUaf8COBsR440+iaJdPDKW2d1tfkHK3y1dF4TMaNitZETY1k05MQLqAAs0s+ZKK8U2S0Zyyf3HuB0Vh94J646Xz8nOHkMLL2iTHX8Ro+rYgZocKMAwsxCqKdRQtHc7ZiOFMIN6LzvTcbP3pX+c++HmhuQOWqiVaFTqOny7xBDZkhvDYPNtmFHAt/6ZeDv/YNYVmUjx3kFe+bZeAYSKFLQ0SpQzBxQmZOJtXCYzH+2g/gV79I/OEPhd/92dTbVznnRSU5HoUuirnjOC02xDo+KpI7OjKJNmukmuiyMaJPiZ/OzFQW+HBW/vP3J6suvCnGku+02IgzJhQt1sm68ZnrGi5TeUEG2edRPgrRp5VEMmQPlMwYBfFCy40g2DzQMRjpgriwxGRteAhd5TUICRnYxTFRVJ2kO3ts03NjNidlwydozQfLgBZG8QVH5qGGSbIlKacKxZwsCXGjAaPorKHGwhE7yMqBsKWCt41hFSFIbLORZ5MN5Aw8jGt0XDLteqHwRIk3pBr4+Ymj32aFv3+alFOCwsKigz7SxF1rR8ob4pJJ/hbpDek3fL8z6g0/f0w/BmpX1K6zopuukMBfa795aYQXwq8s9kS04GgvU5fwGqgXWYjLipOJMScW1oMIJ6TiDdxPTjHCF3IXktwQ7tS8oOlC5JWxLJScGWb0cvA+N+yWeP5q4c+WTzxcCvnpgTdL4nJ95KEUNnnkNmB0o57BzQ+uubGQsNopl0osRrBPKul14g1wpeXKCMO8kGzq0EGxBFkV9zrJoa8V1SZOl7lmN18otOkoemWjHG5kHFEIyTROqlSsXsil0oeSJSZSQAOjokMhFioGebyygX7BQjEbd75qn/F//sOv+PC//1v89/6lf4HH3/nLBEGOAOYJSghCdaZOAzxi9mxfx4WaC6IFW6/Ylvl3/vDv8L/9+3+E8AMkOi11vCpFBhtClQzaybFzkUzTSh0ruzlFGsOFuzlDlYtCEecogTGTwWqDZVoo+B9++Yb0X3/gf/6v/edofINkddIN3RgrfN53OsFuSgpF5Y6IUsjsJLZ0h1E4PdOlstqghrGpcUohD2WJoL6Clg6MVSbUJmhs2rHY6NpxC2wUVneqnzRNk5B2LiQbVDe2o3DKeAXwDFLbSHnH3Sm+0pPTdMyTrS6YdvqZsJbwVVHpyLHSizDKgdwF6xvGMR9koqR8o+bM0RMeJ8MyWwvuudNeHwZDOqULoVMqM1JDuk69O4HzKtuJQsSC+B0LwXOndSdEKTGDlpVOjwckDc7esag8DGMLoQZICrQrER0Lo43JHzBZUbY5mo2DEY2QhDqksYE7PZQm0M47uV3p1uZLFufJhHYJltVfhWwb21GwEw7t3MKo3mjV+PBycNPMkya+9w6upnAEl7ZSmeIpG04eBcdRFXYrqM1A4Z+3E2o+SQHKW37y8QNf3xPrOvfcAyGNBwgYqaNJkZ5mJzydaKz4mN3yEcxbsDWW/kDVO4nOGAtu88Uf5mQXAkNqoH4ylgXXHaWAzpdOkoMYy3yw1hd83XCV2SZSI+XKX/juyu/+1KczIAXVlWor1k8kgiAgQx1B0BlauAz4G7+a+d7nQSwVD0FTxz1jrK82UJ9umxnzRFVY3WiRER30fNDFkNh481j567/hvNmcf/BnJ3eZAbWB0s1JJEoMqm9ENnw0pF1mFksbkVZUgmJz1/0yDHQe5scIRhrcbye//w8XWuwkKzxdKy8tyDYfXiEJicEiRvikJCL6X+Ve5t93IsrMzegg9KSOhWEOqXMhUQdzCio+KY44phAUzvm0xpJhI5AutE0Yp2Je6SmzRAd3RhhrKItOaFyoItlpZyPpmCQNl2mx7I+46FQFxELXk5Q6Wt+hsTOkozibGCY765ApDbQDKHg2agPrzoXCsMGLD5IODt+ItDAi0HBkFHxN6Jq49At5XGm1Mvoncruz9J3bmJ6mpAdnumCurxwKJS1XRkqk5R1JG1Ebfj4Tx504DtrLzyALUd4wbEPKNj9X+ZVjMQqxBjKemA1OZ7QD6QfSXghtkDLbcsXjQvSd7ImzrbQ4kKgUFPUDT5O+Wmqnt4PzULgbac2IFnRZkK3Q5ULB6OfJVx8HfDW4LRlZ37MW5enNAxY7b9cLzmwGprzx6SXoI1jzRHKfe2bfwS9Gt0yxhOEEwUjLdGNFY4jMSj1TweAoL2VHZKA1E74xkiN0hDaBaQKHQOqZLg1GRsecgJVInLpTBqwCbkobndLSjN2nnaEb9AkzNM+E91/soeKIzxlU3pvwf/sq+Piv/t/5V75+5st/9h8jlXXeimEeKkRwAiNN5GuMuUeOqS126fzZ13/Gv/qv/e/4O3/35/y8fh8tjfU8oRv3pGg/2fVK8oMnV3YVDgpnCyC4ln3ukgYMm8Hlkcr0cvhOisSaLhz1BdkOfvsF/uY/+8/wo9/IfPvf+X3+7NNO8gyS0BTcRuNF1qnS1alkr7qABhNZaNz7rHbZUG4lsFroKLc0U7WajjmpacZhgyVBd+FAMQpr2xhUInVOWSjRaSIEjzBOXuxgrJnPXicsX/vB2rdZFVOnyY0RmaaTS3FKQvo0w5IFb4MUjXNZaGOwykqKj3i7IPWBi97psjMio9q5peDKyjIMT2mORr1zbnOveIZgEZS4MWydiXScbQRdGydGimU2S/TEwkn9wHRDXF9zBcaITGiijkZyocednSCp0lX4KW+5WWFlcE938nhgeEa8zApf3nEfRASZgDjo4sAAGwQri1TG0lg4yXqhuk7/jQeP/Up1QAbCnIhcTubhJQfoyiKdRRbkbeXbnz+wjkwNo52C3YORoIlO86kwCZmSsUiMfpI1k+uCu5NT0PXOoR0tAynK3/+DOzI2np4dTUorbYZrW+aJY5IhDTyMMq6gTHFWWyabX2NaQVMlnevEz9uO+ry1B4MmGx4KaVIk86gMMmYHatM42m1BcMYC58tg5QVBGW0hbMAIvndVfvOzzj/68IDEicRCoiMJPHVeg+N0OpcMaRj/3F955FfeVW4tof0B1QNnAc7X70+bzRMtdDYEJw8YOvMaf24bVhoS07sRXfmt72W21Pn3/qSzSyFi5m3aaEg6IZQIIWnnr/3qExvKT7523u/By4DTd2pcJha7/xxNF7pkiJUuzrM6CYha+cltI9YdqLg/EEwzM9HmiqALLYRqYDrXfdUSLnP6ZzXR4x0qBzkcHwvKTizGTcrMQwREFrwzW0IkNKZ+3cUJLVyHT+prGGdNJL3h8chKMGxw106O6fg4Y+7KdXRUAk/QyWAfsbiw2mV6iOYxjrMcpJgvnVsamFasZXIkVE/uUVjyDKGOsaAJPO7EeGJ1x23nWY2FcxJRBcIvrL1xs3dz5WOdNb/FPdP9ieaNtSpeXxD/iN2/IrxNFk15ovYNF31tlhTWXJByIR4CEWc5P9HvHxnnHbm9EKY8q5CXDcsbsiaWuJBzQnShOKhd6PmJ8Io24eid83yPakf1icgJzTcexoa3GTJv4cQ+IAmh56v7U3CD1gbqymnvsEXwknhZP/FY37Bop9STo36g1wee+yM//OnOm7eDX/v8Qm+V9fqGZSyccXDaiajxwMqL3ym8Jy13Wn+cKwqFPQoecI2GRIMBoplqTpc2twK+ofqqm7eByaBLn5bdoVh3agaRTpVJwl6kUTWR9AQXdChtJCIOOoVaGqVndCwIiUWe6VI49f4q8PsFHir25eTshUc1Wtz4d0fi4//1b/Pf//jMr/3Nfxqu2wTvvKKO5RWlHDLZ/RHOkMpzfebf/0/+Hv+Hf/1v8/t/ciHsB4jceZFO00dIB0+eOO2JwcFQo0qwtkTFSKmS5WDxxF6m28GYJsLDZyVHJREiSN95t6yoBv/YtvLFP/EbWHnP73zDeb7NL6c25aadF1958IJuFXdnCHROVAsLQj8VycIbVz6as4xMmLPRJwYVm82CmMrrtwJLh69jsKSM6g1JsHdDvWACPQya4nqnUMjxxdRFj4aGc7EFy53TgycSz3TuScjijAar7rxYQVqQj3nSvSgMSSxD2QI+bSeSLoQbzyMheSC+TucJJ2JKUDHv+JgPT8a00F4Jggt3q1yHzKyMTCohOhgeYBeWCDqGSqOmC0920MZCwugd+upEf6GY4GEcZVBksIyCRuJORTXNnj8bMRZG2ZHkhBnUTBqZroMWcyo0dJDGZI1oHHhfCROMWZ3a7OTFZmXZhk5st3VIQYxOHwsmRn1dFyzS6Dr78np+Nt0OCAVoq9IZiOxzrRcJX53DDvoAc8d81kCFxO5K8sI1NtROfnZ85E++DvoWfO0H5lfSeTLK4G6ZtxqMWLHRkFw5yCQXssJIiR7LnDyoUMLnakgy0PFUWUdCZ1KHFHMfW2Phbq+p8vEGGYr6p8mDlI7WQs6ZxZ44akWLcWB4HywFfvDdB/6Lr4OUYNCx3rGstKEMX0nxTElK6cI/9SsbP3gX1CNY8qDrzhmTaKhuuOoc80fCYpB9gEKzzNI6bmMq26XMQwgO4WxL4gjn8+8+8U8uz/z9f3Rya+21cu0MWaf0y43wRF6CX/n2le9+S6DB2Rq3vvLzj8Lz3jjvD5xt46Ps7AGiDyx0eh/cTci2k6Sjfp0+k/aJaEawQukzk9LTXCWEoepoFKINklbMC3taGDEnGCcZiRNL4LZzilPsSoxgxJygpDKIUEwcZ0GsMrQw3BHrJK3s8Y4kTAMrirdA5VXmNxRLM1PlnpEOye9oCdROhmdU7tOU24TwlVOgJ8Viop5tVZoECaO8Vns1A8xpmaQX8IOSDzyEN8yaqGojXKkaTBxlfyWHzpcRQxgsLKws5ozlwuAJuT4TZ6eOk9oPUv+E2UoPZehcx5mWSehF6Okt8u4LMoPcB7Rn7PYz5DwY+zPjbkRKDNlg3fB0JaWCSCJEyfkgpytne8sYYH5jnHdUOl2vaBHWcCw9cK+DEZ0cHW8Tw88QHFBzZLwQ0cg9qJ/u/Kz8nLQZb+wtKW14HiTbwQp7ec9zvGHoyvUyoD+zts7enaNdeHz7hp/eCi+9M1iJMBqD0RKb7QQCPZGY7Q/3PssGsRBmqO6sDEImZC7JoDJA81TP+0FG5zPBp58JgtqCkwtrNJruaHTWXkjpE6MnGgt3nHU8o9IZY6WLsvyiJxWXKjzbyZGCy5kIDf5R7vw//s3/mG9//1fY/vFfI8JnNz4c0dkXj/DJoG/wu3/0n/Jv/t2/z//rH/wxX91+iZSUc3QaxqgrVxM++ZUPZLKeqBsTnu80Var4lBDJxmFt3gpDaQirzob6vDELaJrI4fKRL44Lv/MXfhX5cuNNh1//3gP/4R/tnOOBmmZF8xoHkmaV1WJ+qC0a/gpJutiJDuUA/DWkNnxiTLsG41WPpKnNuldAjQURJYcSfSJ+t9ioKBadoh0YPCt0Hyxt0O3g0DTJotKgdiQrHz2RJVi7MRhEXDnlILvhVnHvJAOpneQnocZdlHpPlOKU2PHI1Brkcs5bYeuQX7VOTTh08kWGBG7tlRExD1CmfY6vdTLhkWAQiMQrxyMhUUipzht+cqp0zmVl852MsI/CQ+log3BFZPpZUpwsfaGOTLaOaeeUxiDP3fBIqKcZBHZHTRg+9fWdgdqsD4vMz9qoy3TKiCOkuULSREuztFfGSpICOMMO2iLYMNaaSf2J0MTonZqEYQ1Pc4/t6gyxqXOWBmPWbmuG1I3IO4cncCeNzNEhkfkH/3AeHh+TcsRlHohiY2vzoDbSBVug3TPWMyYnAoxRUKlcrHJDmCqnxlVWfv/5zp99Gnx5TaQ1+CJ2rCg5MfMVGCEb0qenpXtQNZM1cenQaBM9TKfq4KEtXK3xQXaiFX7lzcY3y8/4ehildECI4VwddnvFyvvge9945Lu/BLUO1DbmkqORXGk0VAuQwWeAbH5qCtEFSUE35xRHmVMsfc1SJRK3Oj8L6xC+/1nmqMrf+8NGjzZXcSNRpDN0Z3T46UvjV/uVXp2iJ8sKyZQvHp3mF866YC78x3/S+OPbSQ/FO0SaZWaLDNEnb4KBaJrNs2DSWz1PyZjeidBZp9TKSWKXQlbF7MT8DiOT5aRJJoeQuUw2gDinBWpM8++YAU0PZihtXHG9kbWhAiCscSdrY495EJ7rpFdHDMbuHdUZNj7EEbtQJCZTxTbU5u132JVIAd6QMZHwOVbAEZsT5p35/3rpwSZOt04nMG2gG8MLp3cszw27p0YeHXeb4dXY6ZogMimmvMsFXKeFGF2pRXlYMlpv5Ej4uNHulcVvnOeBWCC6TNiXFTIbHUctSGqc6Tss25fzcNBOou4c542z35B2Z8hPqWmhqJFSoa+PhJ0kKXje8HjLIq9SNq9Ib7gOaDtZMvLqk1IDcad60OmkV+S+90B6B/2E7YlxX/n58nMe1LAls6eClv//emh1g9vJLQYRwqrK5pXruqHZoZ1o7CwkqmQuo6MyZXttKHta5po1DU4EU59NLrcZL5CBaKAt2Ew4VegRUARH5vfwFRQ2wrDoVGv0EYyaETvYVfCxsriT/CPiGzuDNBqdj7gkmvkv9lBRteDap4Ftibmvk4QunyHvnv6rw8SM/Qp4xyWhofQBZ73xt/7W/4X/7B8unONzTpS97jiFHplHH5A+keSKuxJZIOae0GNhjZh4Vp1pa/UTkSvCIBQWuZB0p8bKwo5KxXPDWfgVjN/4Z77HSImQB773g++z/r3/hCdfeaFTpdBT4Rx3ruTZuU7C/Zzj1qyDSJ1chXuySZEcQZJg6AKSSD4YUlnD6Q7DjJt0iufZbteEtIVuTLGQGrXNPVhvgmjlWQeLKEmcszund4rNXZbSiQXOrlgKfEwJTomYf87pJKXKy0gssnCXAXmwHMpyKkfuCAeLK4OOu6B2ksaVmgWzIHkmeaK+yrVCbOrYXfiwglXBgvnh9JUoBx7BDeUhpgVUAR2GauDZeXNWDku0MegKt2Y8+WC8ArrQRGoT852lMoYjHdwXkMIyjhm4k4aXG1tVzoDSDLMAGj5ew4x641ycp/skbgaNMtKsB6dGV8gOWx94V7xUkkAZk52PJ4KM6yBKBTE0/TnYJkhR0BGIK0kz5joriDrQKDQZmApHUfbu5PXgh19Xfv/Hg4Un2njFP4cj63v2cSHa9MwYwbn6rNKOQuhBi4Nwm6ugPz+sh+Lb4E9+3vj7/6Vg26Q6fiZOKpXrVvhsHazlxjfXjadNeKewhfMyhKFzleLuiDFDhh6MAtYLSR6wYaRl4cu38JOvlBhCdVBbSF5JYbg/8OVy8E99Z8UskDYfoBFjvoTFya4T162zRZND8Egc6hRXutxwFYovc3RLQhQKjpjPVoTkefMfmV/7pSv1+Ir/4EfTO6KSOTmxMIjCp7Yj0cF8jtI9U5ojllHLSLqjpmiB/klIOuugvRdyQFiD1120xjSRyoh5sVgEMUW6IzIZI7kHdWQ0j0nNHDCSETL/ezlgJAcPVOdBbmObbqDRQWeIVtPOGHPSKbwnoVO+F3MCKzaosSEz+ox7ppSKh3O4z88s+1xx6Fxz9AiSKSMryRIl5roKF5JcOfWkZBg9zyycnAw6Ka5kL8QIqjjdlNGnTjt6m9knOygktg4vOinJi1XCmQ2dmOHCroL1gaoRss82R8y8VLOVka8sktkjeEiZFCt767gPxmhI3enHDfhI0SBSwpdHskFMGDJrWhnliXJZaVER3uMvn4j2zHG7cfrXSP4K0kJeLsj6RKTMUAfbkJTQbnNS6QdNN6Sd6GiYTQNvSpnmK63rrM7HwekzxxdxsiXHvFFPg7HRRyLnwnnAfp58Xh44n1+Iy4WVzH10LBlP14GMwu2rG7/38J7rm+CzdCGsMM+Yy2wd8Zp7GGnK8MKQslOasGtm9cFOEDGz3q1NoeUWM1xrOK0b9+4k7Rx0TlOizRWU+2DRQQzhRRTt2yulNJEkoxHARsgvGH4l4q9KnEkT+9xfWHzjN3/tl0ifX2cSWoMRU2QVoYhMxgMGppm3X3yHr//gp9yHcorznJTiQqDsXCh9YdHKhTu5GSPVGQDEuRcnH4pGYsjC5sI9F1SCz1Njl8qydcpwPj+FoyQOy7zRyl99+ow3v/XLJK+oGH/xB7/Ktx7+Hqd+E85nqh+UduWjvuWgUzwYu7BZRm1H4uRQ4UxCskKMg60k1DM3bkjq5BZoTNOp2ixyPUTgMceeD5GodnIknQ87U7Q1VoIrjRczzIM18vxy5MqjL1ArsswH6OgvPJyC0xEZxFhpJbGMxtln1z2Lc8q8rW5Ho0fGc6AqlNLxXmiecJt/FiYDG0YVQ1LGuJPqgMXx+siwHUnB0gtHKjSpPAYgg55gOx8xKvc82NxZ+jSWRgX1lXYcXJfgWTOaKjKCDylYgBrCFo2hxpmOWUeWSQAgNtSVxsKxNtYGrW/YMMxuSKyMIQgL9KAQHJuQxuNsDuX6CrBasSGEnOQQ1lbgFM48IU2qA2krVic/RKIS9jJf8GFYd7Ib21DECwTsTHx3hE/1dme2CuKCOFz2xD1/ovXCv/8zpiVXX/B2pfgL0d/Qh9DToJd5UL60zybkZ7nNg8ORKKuDNeizCh1y4CqYvuEud0JOlmH0PnjRxlGN8TLoMcgUsu9EKvzy9xu/9ZnzmytopIndHvN2atmxs9Jl3mavOWbuZxjf+fwtv/ezZ3xsPObO6T4V4tIQPfmnfvmbXC8H936Q0pxaZTWGJ8QhtUBsmnojnLsohUSKKbFrrHNC8AqfCzpN1smUCOZLpO6ghljQ+o1f/+WVT3fnv3j+SI5OtAtpGbRQnp8T3YWidVZMmRyHoY5wcEExdt6tgyRztWPpIA9gXOj9AVdY9APNnS8eF/7SN1Y+PTd+enc+dWHnA3U8YTrtvh7QVNl8ILbPimzLXALcHLNgzfOBb0VwM2S0CYoKxQn6+URXR2OnrMLREhJADJoviK5onJTkSN+QNGF3IzLIMymEiAeGfyJJsOjMTUkUXCpEoYkjaWBkGM4ynDpWuh9kXak1syyF3AcmN0qG4/VguGgiwl9vzztlTBz+kBtNjBZT6W4cJIRjKJsnaqozsBrLBIK5IZHABRfDdcPjI8vIeF75is4lNbYBwwNLnX39ROTK+Wmn9pNRX8i64baiSyF4IEzwdEN1gH9G2d7RzsqjnfjtzrjdaPXgvP2YSD8lLW8QVVK5YGvB85VqStjKFgbLinanjsqtDpTOkg/Is/o99GGuZvorO6Y1UhNSNtroeDsJP+aEowU1Cp9dL+hl4zhOUh+8+MllAx8X/OtP/Hz/Y+qb9zxdMt9988jDwxMlwYON1+/OQvBMiVnTfTmEXpWscMad0xe6Tn9TH4ksjR4Hh73FwlBrpJio/Y3pzykFfM+YlmmEFectgxedkMCHfDBO4ZQLWQ7ov+j2R3RKu2BeWc2JvPErY+PXf+P7pMcNb4aljnknsFf3Q5riIQaRV377N3+bv/33/w1eRLnLydu+MERwBnt/4WVJ5H4B2WkoO9ep9CYwn4Kig4OkG0MK5ex885r4r729cl1f+Lhfsdz4kA/GOMky+CKMv/qXvkV5WF414sK3fulX+MabC1/dP+AmHLGS15OVO40ra5/VsaN2JMv8YlMI35H8DGR6FbTvrNlodf5/iJxTqBUfSb1gCp9ycOkzyKq6k4HwxB5Oz8HuSlEnxULWPmVentHxylwvs7JapHFEoi99roSiULXyeDNq6ZBWyjhJ5kQCHYNbfiT1n1BGAY857hVlchZfoVymeARzk9kYdOoabD3j0ij1SkgnSDxo0CkcMlVMpSsjnknLoEeiamaUG6Vd2S4HtSU+LgnZNq4353Bh80G3qSV/ah21xJ6Fqz6QeuD60wnIimkp7ARtDHQYKcFimZe+oNJ4ssxuN9AFu51o6/QwIs98BALO+TpCXcijY6MwUp3hz3wSrzRIDZ845eVVJd+VPISlZ0IWwoVjGGJ9HpRTRVzmdEOMlg4CpbgiHcTf8O/94Sd++GNliUIyJeQAVcb2NXI+stSFIjAeP3EuX00dOAlThUunN6PoQuSP1L4STLoqtfNUBwtCFWPXIElmc2ieeCOJ2G6kuhJD+fjzk3/7xyc/fBv8N75/xfyGJIc62FGarKxDaBLs9c7Tw0Zi8MXFyEU5CMwFlUbKjdaUX3134de/NXg+g1WuHL4jmkk+8LEzZMFLprmQUTxOVJwmneF9Tkl0JTdH/cKuQUjDOAGI3lArRJpdfGIq5KU2fvM7C3/8e5mGkCRwD4q9sO/Kfjrb0oi+kNuC50L3T5gKIp3uF4plhK8YzWZIkE6yiuaTEXPf3PXk6U3mV36psH8Z/JoYNOfr/Qfs98Y//OEzXzUjZ8Nm4gZ05Ung8M5Jwn1j6ZWxnozIjDHXCOHGSFBbJ4XjZYbYl7FitZIjo+oMdbJVUpu5jN7B4+OEufVEuCPjAuy0uHEmnVXKGMRSyXaQ/JVr47BoxkicVFo2okFWn2uZlPHQuTLwzvMCUQ2POYqXJpO+6itn3Fly5ewrD+F0F1oswMIuztDjFQVvmAqqL7jMLJPKTqplhs9dcN5x2MHmg88VmggfeuXxAeL9Rz69/znb2zdc13czAO3Q9470G+Olsct7HtPA8sbuj5g0LCdaGURklsfPkKfPoTv9fqfVnf32/P9j7c9+bNuy+0zsG2M2a629I+Kcc7vMZDYkk62cUlEqNYZgNaWCq2C4ALvskgoGDNmADRjws/8Lv5ZtwAb0IFtlwC5blssqoyzIkqiOJiWqoYptUiSzvcnMe+9pIvbea805xxh+mEE910M+3gPce+NE7FhrzjF+v+/DYifap1yvAymFNZ9Yl3s8LURRjA3JleqBmxN2w9qgpUDzlZKMlBOa18lRaRlVI8WBiKII7fqWdn2LbO9hS2a1hCfBpPDuaSeXRNXETY1xeUdchDfpTF/ewMMn5Ic7Pl8eOC8Zzom7fMeICR3cCOQE1gRJdywiaBbKyGTpwAOuxr0aM9I+ZZLDIImy2gzQZxX8OVStEdwiWEqf00qvbDI4OHCPKcn7YR4qhk6o8kkrtXXOKvz4/Ud8/ic/N/fqKeg+rQD/+l//M+4e4cs/98cIKQzJoMLnv/AF7l9Uvr931KAnx8NpoazLdNS77FjqiGycLGgyMd4ak5OvMdHMu8JDwBfC+B/98T/Ez/65HyUumb01no63XJoQx068c370Z38CXxNJBDxYyx1/6o9+lfLmW7xuG5cUvLWDaxfe9BufWcbzSl/bhPBKYNygK9FOqE95etHMjQPX6Q0olvAyaZe1JCIGpnka5Gg8iODesWw8hKIkemQyK8kCy07IzsnmwcPG3L+9ceiS2EQYMTkKEdDTHY/1IDEPISJKxEYZaVL0cMYIxkTUoQdTfkWaNMdiLJ7psk9+vM8sx5Z89su1ckuvSeOeqs9VpdhAb6w9PVdEK9GnAS9kYGmd6HMypomFoB87hxqg7LkxdGUZiuiYtUVXbHTCVyyt9FwJ7RxpuhbWWKfwMYxwcIVkhUYhRWU5FkZO3IqyHEE1x1DEKjUW9mL0+o51X9AQjpwh7fPhbYliK5FtHgxkvqAXWyi2kDzokuYULl0xMXIIPStTJN/QXvEkc+9bnJacf/R7g3/58QXxe666YNZZPOFlKs73NFDm6DL1Ow5fMWkze2AZpVDyFfcB48yqGeyGywriRHauVM6Rn4FpwcgZpLEbiK2ET/5HTg9UO/j6x40PzoWvfXRi3ztKI8uYXAytqE19exPlMOPuXHhYjdvV5rg4hNHOVOn83FfueWoXEkr4QVJFJU1tNcw9r3e2yOAJl8rKzA4VnldNASMAdvQZnpdMaEnmqHxMEmQ3JUVFbMeAF/fCz35u4V9+txJ5gDe8JCzdeNtgKXcMcbzccDHCBZWMecLF2MpgUWG3GRAdAkqmihDsmFxJBi9Omb5XDu2oOkmFbXVerSvfeTt4fVXUL/SS0DynK3hGks0XdXQ0BjHOkxSpSo5gl4nbF0msIuzuuASHztVaUsNjEKYMSTQxqkzmh2ihtwNzQ6gzQAhUApeg6UG3dboacHJ2iiRmQMPp4XNdOxK3cUFTwWO2p9xXjufMVJhhZNZkuDRizSS/oVoIAzwQNZormRurZa5S8BBKrqQhaDRUQZ4D9C5CjoRIxjiQ+pZsC2d87v2RSU+tmTYCJzh98BJPg3FMaVyNG9tieLkjdB6iwwPpB+6f0k3xG0iqRCk0zaSciKS005l0d8/9qxfYoVR5x74fjOPC09Mj+9MUgKVSSMsdpWyzrZYWRqpIUpyKj05yI6IxYiclWGT+fhSZraLgICJ41xqjzlXSWRJv+iMvTifYBfGNdZkr5e+/vc0sSXzGJRaWXYhPd769XDidEsvD93g8b2zLS15sG0VOrHrDk9Js5n62uHFEpUTCQ1HpSMs4HWHhKhNE5thkqEidhyMpqHc8wEpi9CC00yNzJFjpHM1Y8g85U1Ejc4tgl3myehlnfvInvsTyxReTjifO68eP+f/+g7/HL//yr/LFy+f4Sz8wfuTf/VNEddyD9+8f+MJHJ373B8E5da57Iazi0QidIRTMccm4J1I6gIzr9Gt0q9QMFj7HizX4Nhf+ys//V/wvL1f+0P/8z7LJHa/CQDJDgqXP5Gyoog6hTojw7/87/13+1M98HzOwPWhvP+P1J0/cPn3im9dH/p+//m3+6e1DsoL5mJW8lMgkeul4dIyMRWbzQqNz543mCUmwuHKNCcMJlC4ZehDLJOhpPHP5Yp4SQ68IkyqZQrhwzJeEK0sVzKCTyKYzrJOdbAekAB+IO08EKwcRB0PzFC3FNjvJqUE5qHFP5EADxkjYOhAtQJpBVy+MdrDLTBujhUWNlsZzYPJGqhnpGXxOOIYu7OEsCZYhZN25cUJiZ7VpuczJcV+nUtgM8eCWBpVEklnry2LMz+2BmpO9MFKajg0rWNzwPKVWRQeRJjgpvOD54DyM0zjzuDrtGXFOBCITJy1WCC+0csOqcT6E0hIjO3sZU4EO8zDSKsmWedhIF3Zp82WBgE0ZHQQqOnfKTIrqty47f/dbie9839lKZ9hbWioQTrcJSgp27iho3dn7QdQTi2xoH3jRKQ0bHSOBpnnoao7qRsuN5Ervx/xcO5SY4CwPw2WACuIFF2gyCbILASR++7s7P/5qo+AMPbF6oskjpRT6YZwSaCjdjS0ffFCcN94YqSBjqpK/+p7y3ouG9zQPBprpYog3PBJDlqlrxug6ZVxJhSOCHvPFktQnyEjG84t/g4CmRvaJbg9ZUemT0cBt1jEl0YCf/eieb755w5vrZNLIM5Rs7zuLFmiVlIMIIVywMambipJqQRQIp+YbKOTIjDFpl+u8znGqRpcLgv+bsb2oIg4PGvzA2uzwj8CzYg7hsxorEWgMfuZLrzjsniMObrfGkIyr4yZkgd0MTRmhExKk2HB7gmIoedJlZbItkzIPE3JHym+xfiVJoXcFheSdrCuuU8KGzv7SlME6C476YH/2huTUaeqc8xPYA1mgWeepdqqveBaaB2cDdJKKV5nI92GZUxocBEddSX5lZUL7ZPgzaVaATgslbJlOp+RI6ZSRZoUxH2R2igmjv5o16nTg1tjOiaTM9UpK5DiT+kbWg9YC52BB2MlQ77lnsN9eEw6rDtrjTs/CnoKaFiTfA4myJEot5PEReenAjVNzrAVHe4Nf32KXCzf5BFEhL3eUtSB6Zs/BVjISK87DhDD6zugO6YbZldCMakfT4LALZCP64LP2yLadaC5UXbmTBUvBo3X83SNveGRdM5sUmp5IuWPHzuOeKe8yW2pwfuTFeeHV+sDy0tmWlxRNUzEf8zLaknA33nDVyiVnck+kMHJkWiROIURy1mTo7R1v0sG2rtz1ldfHI49PV4LOOSXq3UtqT5SW+OT2+MM9VOw90VOQR6DrHV/ZlZ/68c/h24Rm/Pp3fpO/9n/9v/D1fy3U9B6/rVc+/i/+Af/jTz7ja//BnyW9WHnv4QO+9mNf4eu/8Vt8ZxQkHFdBZOXROsiGV8VlcOeDLI13urHEleaZXBupTcDPoR0XQfwl/5UL/8k//DX+V6nwk3/pz8BpujgWVyyDij4nj8usGYVzOr3H6SdezdulBsmCFoK0xq/9/q/y17/7m5xvn6M9p/6VwS1nrsM4k6kSbMN4l5Vgcidel0LL7yhm3PLOXT9xjXWCnGiYpudAVpBldtHnFMZJ7cxQoUXnqQySnlELPPkcQZK5SOUO5x7DY26ke+vcitCWQDqMvCI1I60i1hAOxD6g8DQZ8nnaOIXCFp2LJbBOE2PoFM5s4qwm1FSow3m7dKI3Vn0xGxGjkzQxPM2ONB1Lxi7Clp1bS5AMcaNvhTzmSBUxpFX8fqf5VCpbTPdL5EQPR0RQPziSPotzBppupPzAXjOnBpobdq3k0emLktJp1qnSG94SuGdWu5Fim6sKEXIvcw9cdpbU54ppJMKDyIJEkCPPm1QUEo6lg577nFAErK5ky1jMXgoU+ihYwMfN+JXvNX7tuxWis+gD73RlWXa20ea0o+4s7QEoxJGYczDIp0c8V0wc6dPsKdVmQPVYUHVYBqOvLC3DnXPESpFEq0Ydmc3ecqQ7WpxJ6S1nG7zTDe+FVwpHv+PW3/LJVfjskvjcuhMpEWUj3+rMQAATfTRmbsIz501Jbzp9rBQVqt74sQ9P7P3GSYMmQg4laSHGNNwuzzfdjlF8ndkVUWIEWy6oBnsM1jFQmejpYTv4Mu2d4sgSEA23MUOyCjHm7Tgf4KeFr32+8nd/80ouyjJmkOf1kzLeX0mp07ug2dDsNIeaNmpXms4mgFCpDNw3st645AtVXzDEOC/w6s7JtxMpGXtyQgfLCFIR8uLoOtiJKQ3zoOfBe91pauxkXqTEixfw/n3FW2G0gZY73jxdedqdx9b43m0GQfuzrdhZ8LRSQkFuSDlYfUOjcVhGS+M4ErXMFaDRIR8cYtS+EbYytKGyMHxBRiLVqSx2K2gyqmS8F0ZcJ8azK1kFloMXXZGm3KxCOXApXKKxpk5uGzddyNE563Wi4P2GWWZImZTGk+FjkMaKh7L4NkmlbmjSWQm3ArpTMUpPXPgALQ1Nj9Q26F6JNKnH6IoarKkTDEYVdr8nLwfV1udLXaMfN7pfeXVa+cLL9/j+08F4ldj3J7Rf8GPn2p4YYey3jXReoSZybIQrWTPlvHL3cGYfP4KOTr+94Xa9YJdH+lPDUyHXAnnB8om2FDRBlYxtK+onNq3cLNjHZ7NR9/qg70LeMnldSSmzHwPbnfxBsK0L338jlHhLPD6yXxckJ3p+IKRwXjKxnPCUGPaAvkscq/O4fY/bt7/M/f13qKtQ6z3nJfHy/QundKInWPdE0kdaqeCJV115nRJhN0Kcd9/5Ab/4i7/ATT7mq1/5UW5V+aM/8yf57u98h8fzjZ/96Z8iUuaqhvTGp9/7/g/3UKEibNrJAtdQfvL0Ea/+yAd84/u/x3/59/8Of/dv/wse7YtclozsA42Ff7IEb/72r/GXPz74k3/5z5M/fMGPfekr2PLr6PiQbIORV1oP7lMj65V2KJLTpCHaxr3e6FGJqEi/kSVIEly5Z+UzBvDomV+pyv/6F3+T/+njI3/6L/454vMfUJB5aCFQKcwkQCAiz0zxZ6ZGyGwx7G/4+V/+p/zV/+Ln+e1PPuKSBmc1miUOSwSN91NiMbigvNNMN0W0cScNu3ZkVTxBag88ReMUV6Iqg4wPuNMZUr2Gor7MF3pRZN254py9IlKYeqHg2pWtFsTnQ5xlTJqfVS6A1QDKVJrbBIOlgKEHfTFy78T29FwdGnhbMZlBnVseM6mtjsuJLBB20FLm5E7UnUsq5A7kSrFOGnM0f0jQNVDtSK8UCXqCq2VOaaeLE7Jh3ii+0COoeUC64JbJbY4kR9hM2z9XUwfKiHlYySko7bnqS2JrE/supogUojiLB0VuDOu0nNjccbmAF4YUJBmedoYVRAquO7vsLP4wOSGLM/Qde5p5nvUQAuaLLg5MOo6yilIcqhU8Cskql+Qgwbc+u/APvnHwrXdK5MydJmwYq4KPO/aobOy0dOGanxCCrisPY0LGTm/PhN/h6VM0JhnVO4isWEocbZITI18ZTbljw33QtbCF0KMj+j4lGuSO2AQblRFofovLQk9PRN4ZJN7slR+5n//dq1UukjnFIBjPpEfFtbK7IFIZYWg6ONz54Ky8d06UyMi4knLGzacZUW50DtQXrjI14ll8tohwjMZvfPeJb74pvO2G0jktmRenjZ/4SPl8nmuc9gfVNZ8I4kU2+oA1nsfkyTm882Pv3/PFu+DbLUCdEQuf3JSbL6zWiTQx6sQ0OZoNjgrWlPIMi2vlQHonIoG8RHx+BoucKMfGu+3G2is5oMWGLzs5gruq9KNytwien6eWvvBWhHtb5qR1E9ZIRDNuYfQ0OC1PfLRl3rdKkpX47Uce9Y6ffpl5c9t5ewjRdh7tRBPBWsJFaT6R/morRQMfgvcxJXoulFgZGkS8nubigBWn6EK3E4tPOuv027yFcqG1gzx8ysso9MOJNFeap3qdwdmonPN05FB2qil7dtQK6ommFYsZwM5+R/MB4pxEOXynyU62hZIG4jazFc8B0sDoJXOOKzkWblYYpZAsQQocYcSzbyJeYgliHKza8UhIGbNhwz3UhXQIozvfeHslry+BhXq6x/0dub6gyJXob/G20y+P7JfA5TWRFySfqYxJysmTl6Hr+/jdRyA7foXj+i18NC63dyDvkCWT08q1nEEbORk9JQYnSCfUD97tT4heePTM+77MQ6MM3N5S5J67vPE+J651Q8YVJbiNAek1IYPX141cVuqyoOWJFAu5nxm3BOlf8+54Qcg9L7ePGW589q1KOyU+/OCejx7ep8iJxzdvWPOV7z8Jb9684Xe+9asoO4UVe/N7vHt6zT//xu9hOvjk+99lu6z84M1nHOM177/6Ip+7/4jHHzQ++dY/++EeKg49SDKtce/3nbsvBv/l7/xT/s4v/Av++e8+keVDLCrHpaA+CBXSAb9WBv+7X/1V/uO/8shf+B/+eb7yIz/OvS68VuOpKCmurFXABrtsRInJ9afAyOxFyb6yuDGKcy0nGDtVdmLf0AIqjkrwO5L5T3/je/T/+/+P/+Z/70+RfvSjqR+PIFTmIeL5YBjcrm4AAQAASURBVBHM21NyRxy++fvf4P/2d/8Wf/OXPuGT/SPOQI5G7wt33oFMI2Ph7DkoZCwStQ8WmI6BNRApbH+A1c1Tw4sxa3h5joIlzxfXOaAnpZtNb8AzXyEkZqgrDc7Mh0YrCxYbFhfEFvT56xcHTwPxbY4Nu8wwnw9kJNwWpqvbycOQNNilID3AF46siBdS2GyKaEbdIQccC10rWxhiiR1nqLNGIaeOeyM4USI4tFOl4nZDVNHxzKJXQ+SYX0LLiE3HRKRGivyskvbpcdDJnVjT8yom5sHFI8097hbYPtcpSQ4KCdeF2JXYQElEWrDUZyakC+ggNJP3WVs0JjkzGhRk1hUls0XMFkAIPTmj3AgOJGa+IvVAPM84a2qEzu+RI/zIF+74ix8Ev/oD4xe/eXDroHKQtONWMWtckyO2UFuF/EQKsBJ0H2QVymiMts6WQ558EB2KlY4sN/rYWKRieTYOaM5qTtag+5mRrwhtAoykTnqlOT0XakBNU9VMFPaL4C8XymhUGlaEIZDzgtkNl4NEpTpIMm5psFBRg/fXMy/ymZtdOGQlIWhyrnFgIpPw6VMEHdHnOgPnd147//Ljg3evBxYDZEV74siDjz85+Mb3Bj/2vvLTXyp8IBXpzFBrLLg40BlprnI0OeVQUsn82Icr3/3OIy7GIhttBGaNlA33iTtGCxoDSKTRyZpQXQi3eWNnTqqUhkmi9JWHZZCS8tDTRL8zM0OLgQPkEyld2f3KohupwyJKz4HbtBAvNTGYPpbNnYqQ+sItHYQHWTLX3fAPHnn/vcIHx0ZPA7f32ZvzeAjj5vzO2x1r53mYkGNCkVKfv/tjTEuuOITNNaM1SiyUgITRLDhC2WKjx5XDdPJD5KCV8byKcjTm4U90gIGR0WTYEMzviNRma8YHCZ+rubGg3dGAlmPWGzW4EZQ8L12HZuZ3fxpzkY0X5ZFNBkvA8Mq7sZN0oUVh6GCNO3Ikuhi17rg1TJ2UK9kSjmEqaMQUbclAy3tIGZhcQO7wiIn9jvfRLUiutPyCfPcep6MTMmA0bHT22yOhE6NuKdE9seREoTBcyItS1q9glrjZztYu2PGG3nai3RiR0DQBibk03JwUg37ZKaqIxnPDZ6cWw7YXPF4bOVc0ZZZUSamCVLArFjvzZZUx6/TxblaEtUA9IUsh1SD8DcGHfP8o5KSU4uS+8c1PP+P7p+/z4Uev+ORbn/H2u7/G9fH79DefcetXJCWQgXqij+fgdBc+/uV/yXZaaNedb33yLX57MX78j/xJ3l+/yttv/+4P91DxpmzcOYgJj1L4K9/7BPs/fZurr5ziC/zAL/DcmT3sRJNGtrnD/NVF+N9+4w3f+Cv/b/7if/+P81N/6AN+/e99zFg/IMYEuOwUVnN2BLWJxe75wKPgpTNGTPZ6N5IGOZySp0/CYh5knjz4emn8p7/1dZ7+j5/x7//P/gO2L77HH4hI9FnaNF8FGbOBhfELv/JP+M/+1i/wux93Lv0FXZxbnCkWRDGeYqB+EH1haLAOECvYKkgdHDF37GuCsB0085iE8zPP/yJBagNb5i/t1ZR7UerwGWBLhhzTovgmwV1AuExQ0Kr4sc6HYnpkiTw9CuGTk+FKt2UebDCq7FjcM4D1yNxCWXzmEajCbs/gFBXkOIjzHe3w+WDlaY7yUIZCJOPODo7aSVKpJhTtDNnRmL2eZMGRJx/eY+cuzX+3CSxWiQjCYEmDIx0cR2HRQvGdUDg59GxojedKZ+XQqRXXoWje2KNTcpugIA2ESpbTZOTLDV8y+x9AzxiYBNWFEkETY6Ej48SRg77sLH2BqFhyRjnQFKRbnhjeAl4CYmY6wso02TrzgFOCIzWSN0yCQFgs8Or8sS8UPn8HP//rB799VTZNWDVyDlZTIm6oO0+uU20/FPcdPS/sy+A6jtkAODY0vaWV6wxz+YpIAjV8BCk6o8zKq5hCubEMwVIhjYWdRpG5ihgeFBOufU5+1K6Tmi2ZdEqk0mHfuWOj6WQe5EiEGJ4yW8okq2wYLWXuXxSMCdyBho/lWapnDFkwYJFGTQVvgkbiX/3A+Oe/+xna76g5Y94RGUiBIc7CFVriO99ufPYW/vRPZ76w+MyPtEBIiCSqBzsCoaSUuZnx+feUD78Hr32+HPthDJ/ypEShExRXiDKpkZooMiV7EuAURjI0JlMnAUkGdxs8aeflqBgGOc81nWUQY0uGujHyxjGMEVDydNE0HBUhieJlhgZH3BjurJGxmOvPp2PwFPCyJ8wTlo0sD0g8cVcL2yqc38u8O+CbNjjSvGBkDZIpI4SbKz0bMWYHRS1DVIY6eyiHZHK/kfNKQ0ihpDy5I9WnUTpz0EtDrCBDuJM7bvlK1oT0YAX6cuUaK9pmA0pZMatEXNHnernA1LDbE0+a6RrchXOIzZWGXljj4JXvbLKQTvfEzTmLcE/mk3hijOmpwR7JSQhOeGTQwV2W6UbJjWaF7hnFyQXwKXXzEOT5QCEZrG8TrJZ1/g71yUKhzs9QxEpWIfptsjHcib4j1xs36VgoLSq+dGqcqWlqEWR7IK93JA9iHMQY9N7ot3dwe02oc0Rwe3pHw3iRVqIoY+9sObFHR0plPRVMIadM0oKVCcxTFywCT4qZEcMYo1MELvs7QhMoLGujVqOkzFg2tG6k4x2aVh4/27i+/n1e3cFHX/wq+vqLfJOPSZ99i9f2CcbBpufn3FanaZpT6FsHTTyNCwn4wTd+g9f6XR6Pdz/cQ8X7Y44kLQVXr+y7U6Vyw+kaSBR2g5soLV94kIrEIPfO2BMfb8Z/9nrw9/7qP+B61/l+/YD3jhNv9MbFCg/JuFoh9GDkQEelxMEhHTchpTwPFimhnLhk4xw3pBdu6aBKouQ3dFl5U4Rf/t5b/p3f+Jj1ix9gxJRaMW8ZGgmLxujG3/wHf4P//O/8Bp8+fshbCZYjeGXBYytEnfS+pa/UGJTsXCU4IrPplVdmXHSFyCR3doElMsOcHJXknR47SROP52lczbqhOtjsYFcFNVbgwsqt7Gy20uLgjDH6PSPv1Lhxc4GaaceUIpHhiT6lOtZxnOGB+0sgk5NzzZ3jcFZW3IPVBk5M8ZUkSq48tmBJF2woPW9sDLo41jdWa7QSPMnC2Z1EYwlFu9KqsaSDEjvEHT2E8DuaXIkIXvqOcdC905aCWaEcD9xJIOOJ8IURlehBrSA2SO7PuG4jxR+EITMpHilxNymcDFQbQiYUzAwdwTkrchSETCud5alSA9Dg1jbuc0K361yduFAs0eqVwY312Eh7YaRgVIN8Q59roSME5CCyMcqga9DjIEdliQSeCDM2zpgHP7re8R/9oc7f+Gef8e32goUnyD79AZ7xLKRc8H6jK3hf2Wzj1BJmjpWdFsoyzlSDIx1cSnB3qxzyhJaER+I2YEgjaSZJ5qYzpLXlnS2EMLjJIDTRy+C4ngm/wWro6nSg5jpbMiNDqhRv82XsiRZBT0poIWvjyM4yBl++P1HihqFceME9N54ITJQ7U64xiZF17KQCP7hc+bVvG/iC5YNuk7S7iHOUA6MQY+NO4SqNd0fnl35b+TM/feLsQiVzxIFL5/BMVeWGcxSndDgv8P594fLpYOSd7sb1svDig5V6MIFhAiHOmpjTNVHWpaP5BrFSLaPScd2ZfN0Td3njXhumwRDj1BMXDXzZWMfgvsJahHckLA1KdIp1Qk70mBwZZfDSVsICsRXPV3YJukOhcjtuiIzng9wyHSDmmCZu+Yo2ZWjw4fsnfvB2wqmmvVlpYRMbPWzaT2l8lCsvUudTc548k0w4D6ONMzlfKZZRMW4jWFJC0ryQOS+AE6KdsMo7jKUlLAu56KyI7hsldAK02oIVI9Kb53eCcYpBszOaL2icuZOO745RSTrIemF4JsjkcqH3jL29IqWT85m8Ke/bHeX4lEvcMSJTEHI0hiZiMNflEhTPs6acdR6SRuLiJ25xm6u7eKSUBHawZiN05unUE3d6wuWKpwA94wauHa2FxSvJG3kJbulKP64cPlH82q/c2mskz//39ZnWmTXQNc2WSX8g2wNhB9EvHO0tre20I2hxAzVqfYFZIqeFlguaC+4HpQY9rrRjvg9UhdAgF8FdkMjTnu07ooLZQKNgl53r5TNSzmzLPb2eafUFixxouXBI5bO3V9L2HvevTnzpy1/Ajj/Cl7/7Md/9/W9xfPZN3upbNCV8dLLOd+V6Wmm7MGLw+ju/T5bPnn1LP8RDxcCed8nBkh2Lzr2XGcAymTpw+nROOAwNdpbZmliMfKtcufLPlxN8UnlZBpaeuI9E1Rs6lFH9+VYt3OrB4Ewdwoqz8MglTrgMxmLUvjDGOv8Gorg1qt+hJTiOzEeycvczX5ljXZdJYItn4RkBZLpd+e43v8W7x4W3thN75vuSGGlWb8QrsGFLcBmFw6daGBGuFBbTuS/P8/ae8gk/Jhd/qZ9x7ZmkmbUbZeTpP0jOqScecbwmis9aXdqce8v4rpSsXMisS6OMypOuIJ1xBItMylqzga+V0YOzK2o24TjRuQp4ZFZ3yCuH3sgYvRlWMp6mGG3GPxPdZl1XONg9o8LELddKaONhGCWcxsqIlVGuFIKrVgp9ugasINronukjsZcZqM2+UcNwM5wAaSSdbSGPG1WVoQeVQkqZZj5DY14Z5aDHlVQSOgJTp/uZkH26WYrRW5BTwZ9v50MT5mc8Co/Lzq5TO33ofKFVy3NcWh/pxcmjElYgF/ryBk9PlLayjvtp9EOIDJGP2fKwQrUTyRYmtlGwWsl9n2HXcNJ949/74yf+z7/yyNE2Rkz53DqCoTsdexYBLRxL51gaFhvuGSJY4kZLjnhhG4Xugz29IahkT1jaiaxIyhhCPTolF0iNI2R+r6oQvv2bNkvK36PEHW1PvLq7J9uFO7ljdGPPStMBKRhmiASpAclmqj+cq8OLvHI+FY7RMRNWGkMLW0tINjo7SRJEZkSnDeWffd0YeyfqeRJybeAiDDJpKIMZsLwNZcmCuvDx0yP/5NvGn/9qoblBOEmDrja/l5K4OybkbfHEh+fC77x2xAeLCH3M5tJNjKwVGQnVg26JoCIcbGXCtrJ2Ep1IIHECc1p5ItXzzFrhlJEZqvNAaE+MBE95RXKiXG6QjC7Ls/vmQEai0llz4l2aZtGRbOY29CA80/OFa+9cR+c9mRbRGJlgR5nTDUmVvQsfVni1NT7dF5IGR0xUf3KF2Clpkn3v38v8zIcPPLa5shhjTjl2Vd5ewWRC9G6+sxZhT2OaZvVKxPR4pHyjKgzdmFnyedCvJeieyMM59MoQYYmCp6C1yk12Wi3sLMh4AheiOsmD1CcQrRK8vxm5vOB2vZBHQjAODnYp5Oyc0itid54wPCnRCpYPUjmhUebXqTvEQktzmluSoSYzT+VOWKJ4Z0hwzKMdNSDbjb0Gxh33wzASOnd8BJkYDnrj1gRbgj02gkrSQpIPuDsOHi+vcXtHbp0XeeOQafCNNAvmtShLOXOwoPkO68sUgPUrqbzP+fzAu8cnRIP11lhzxfqKy4aNe6Q63RvYIOxA/EbRzKIrnqClhLWFLEBMgKGbAQctDvq775PrCV0rIy8syz1lKOPqtHVFb5VUKqcvf4Uf+/GfgDeN/ZNv8fYHv8Wbt59ybe+I1Lk+viP5bJ+5rnSmpuGHeqgIKkifI2efCNsngl2FxMBtpfJEl0LPQsZRGskSmyceBQ4W6ghcEvuYpsNIiU2gxzPL3KZW6jTqbD6o08LoccdIsx6Ye6AmJF/oNFJK+BCeluADr3zQGn/yj34F/eIDxLwlplCe9yAgEBjLcuYP/fS/zT/8F79EonCrsPaMuUE62LVyeobVeHQSK5srR3bMM64N1QMbf0BTnObPjFNtmUhWHESRZCiGJsFtIpKXmGyJ7oMYIG7I0tgs0WVMXr8JRQLtoHl6MEIeEUkkd4pMcp9QuMiVU+r0dEKbICmzZWGokFt7fpgrZXTUEocOkoyZPNdMGgLPvJGihppOLoM6bplITvcLSRPJnDSCmxayBU3Tc8MlkwYUCxYxLrvSTzI17GkeNpd2z6AR2bEw0Izr3G233AiLiQVGgITEDWyd6ysEepB84TZ2NAopDXadlTuScbYghTJCSS3ILLRQerqyjCBsoS0OcaPaea6yliciCzlezQpiCC4CdWCykyWhQ9BewApDK6YdF5uhrXxAmkrihHL3ovHnfjr4x19/y1OsDH/kls5kD4oFPZ3II1HV5xSuXPFhsxZm52nOTFcOEn1Usi4zDBuQbe6VaxTCO8cpOPkbzBfEFlwH91bZZSA2QDfUNq4MfmRb+ZHaEQRLmeY2XzZMC+wwQJ/tkJFokTAV0mi8/9FgyzeePCNmeN4hTmjy6YmRZTIDYlCXjd/89iPfvBbW7Fg7QIVN4fDnw4EGy/PePGTh8B0wVDZ+9/sXfuyDO37irj5nMCopDaJP9beVyjLgEsH7D5n7fPDWMoTxaYcvegKUFgclKpBoPucQOa8sVaYIUJSrZ4o4JTJNdhYVljog1gnOivtnBHKj+AbWeRnGXXI+k8SSlGQxH7t2h/IEoZB1WkjlIJPpliB1FslkqxxPxpD3EOm4Z0YMigjDQbsD43kqOignnX4VFaq3STCOnQagidoazZXD5g3/bkt4gVdR2LTzr7595tPWEZxSFB+OtBM1yszPkPBwst6hbTZmPAVdBi0HYhlRZ5TGuXVansTbZDurOIedKWXST88pc+2Fg4akOXnOkaj1RkmZPIy2PE7HUF+47u+oS2GUBc2d033h+jhXuyn5hGRFw3DUC1KhN4UQVJUyhMGN0ISIIGpg96gMCGON59xbSZQRVBkcaVpdxY0JVpl5M4+NyD5rz9i0/KpMp1OCrZ+wyAw/OAwOH/h4JI9gH4JVZUhFvDz/XAc3u3HNr3hvvSfTOJeK2YFLo26Zu/mBBr9ht8d5YdBJRA1XmgUtOsJApCD6RJIMVJAEOZFjGreTdujGblOLjuxcNEFZebvDaXtA9I7+9pHL8oAvwf1Xvszdl3+ch/2R9tl32T/9jMvjp7y7/oAX7y8kz7x5/QkmP2SipvDEKIUsxuiw14TjJM8MMzY5uCSlh5DCiZhWSRLsTehSaNlJ5rhmQqbPYq5TlJoXynPtckTCirCrkQnEB7tlSCtVjao7txiIOGdRhrdZbXO4ZOULmvnJP/EVXIIUwXAHDZ7efJ/1/D6aMyKOauXzH35Evsv42zx57gbmSuhGd+GdZHJAckWz0z1mcCcNhgirV1ycFWUUo4pwsoqLceSMxxWrCUbl5LP/3sWpY1oIJRUGC8XmoSI8+CTNhLtGIqvh2SAyayhH3AifGYU9lALsokQkXuzGbdlmI4LOoZnsNyQWblImDMeFJiuNxtkzySB0AT/oUueLNAepx7PDQbiNyhYLJYzhO0nnzatnpY7GkSqWGmkoiydCOsWhJZ9cjlgoTCnV4Z2bKOTBINNlYfMLdyXIHKwB7VlEJQmqZQ5fGQVEjKzXZ0nRmOsHCdQHphAjc82P9L5xj5HW4A5l25WoO1UH6+WOa51gHotE9MIhnSkcGfjYyMd8OLR8kMUwgzzWuSPXeTt0bVASpgdrpBlSNEclYZopzfhvvDrznVdv+M3POlvKXNghCUaQ3UDv6GPBerCMVxz2Flt2ggPtK3ACoOcOWogjk6Lhm+CHsbdGlEC60r2SZaFSGOlgcKV6Zckz2LjXBbld+InPLWzrnI7Jc4XXQrhPld6hm1ERQjO7Cm+8Yxq0FnzpbkEikc1pMicpHkJVZsDVbdY/xZHb4OvfuVFjmVgjdUb4nMqpTm8NmYs3ksqEBcmJ5BdUMt0zv/J7Vz78Iy94CAWTSYqURHeeYUkOKXO3JR4W49PLvJA8XZwJixW2KESaGrNUB9oPhhfuFyU0M6KQFEQVZ2cM51QqWuJZVldm8Fic+gcMlZjtkXW5Mt4oL1Nld0PzQpFBVp9ZkVJAwcb07EhMyJiokzh44zsSz8Rgm1AoHU6Rg6YZ7xDAJcGre+EH7xoXP0+glmQ6FR2Jnq9E1Pli8X02eFyowwhVSqys6UJWZUcRFtQa5MERFzYrBI1cZ96ll1mTVKuEH0jqwDKzJLJgqmQ6phm8UKRxyASJlbbO0KwuwNQEVAWzYEkzD3TbZ80x+o77wZDM5bJztwp5mbX7M8HVoamQolPyweEbwqD6mAFlHGOZ4c+AIgOJinGm1MZgAucwnc9KHfPzTgaeA6868x4ig4WNMQRD6PGOmmRC1HIQeaMcdeq3DyHlGz3JJC2HUFJlxDvCnMMO1KYF9ZqFfd958d7KaO/YxXDf2CVx4JzOBUphVCPaBT9eI2UaeFMF9ETIHUk7XZZZQvcdGw4cE3dQTkieMpRRlymNCWHFJgPKOhodGxuvLx+TaqaUhfX6Hn0Vbu+eSOVMvhNOX/wqH3zlD/P5fuHxs+9xHN/j9tkj2zolZD/UQ4XrAycPmg9cKzGCpjvhQct1Aj1Medl3HtNKT0pNV1Ikbnnh/dH5zAYrGfxGpIRzx6kb1/yEmnPTSlIBm3zzFAt1HHRkBnLCKUMgTqw62w17mhbGsgR3Ldj8iZ9+8WW2n/rSpE5Kwtz5pX/1C/yjv/7/4T/+uT/LF/47/y1S3YDO51694ice4PXbGxeUow5arwwDKQeig24rQZnp8JxZgDqCpygMvbLqIGxB2EjtQLwT4aR84ZQP3E8oFywrqa9IcVSu1LHylJxsV1av9BxIP7HqTG1fPbDcWS1zJEetMhTSMtkSOoJGZhOwJXgnA3yl8JyGZrCTSTFQtanJjeloiKSEwC0GKokixhKdsS+04jSFrLMGFhjdFU1GTgltQZSVjZ2RCyNmAAwPIjkGXMnUlDkdxkiP9JQZw9H8gHtHZaEcQHbUYU9wMKitIkuntcHyDMliqzAGXSpdE/MuNm+iqwnFMrd6g7Xy6986+Fu/fePhdI9uBy+z8wUX8suDh1V4Tw9SvrBo4r0jk0qwLW2GFNs9chR6TtzWp5nfGJ1XR+L6LMfr6xXPg5QO9mf+hblyai9wnEaeNTcJ7jzzp98v/N733nArBY3EPowq0xR55Hc4hVoTHju1LWQXegme1ituyp2tbL5yxA2vM3fCDf78TyV+5lF5vKy8aTcux8a73hlcsXbiyQZSjLdReNEV5ZE//wX4w1+cTIg+ZrvGxfEhHM6EipV5m/ZubPpA352lz8/+9rDQBcSDKmfGuJF00MxZpLCIksQgG7/12cHvX5RlW8htkGTnitIJFoeNQpdGMiV5QsRJ8jQf1H7lTpw3byvf+OzCv/Vq5bCZ20oqmMzJCCWjbiDKq/vg23tDW6XFeLbpBgfjGVylOA8MbhQJFklUnCGDbhmxKzUtbEm5r86dbFR3Qg+6H2AVkTM93wgxkigP9UySTpPrnL66YOlE8UrdgvV8ZcFpoiCTSSIY7sLVJo4/i9Ci0uRg8cyeIGxjROOUhUKju3C/LjxoY4QRcWMMUJ95B6wQckHFId5nEETxKVYzJ+WDPQyThOxOzTvIXBfl7ixroerC8AORlZMtkHd8aazuBPPiJN7mjr/DgZDVUV+56Zh4agfK4GLKQw6kDS4knDekJbFoEP2Jt7bzbt9JAqdUqeuGHQ32A5OMyQXl+V0QA4lE7ysmgfoMIovMn+swYViilDHhb3HFPXOIoNRpKi6Tk2PWpuckjAhjGdBixTRRElzbDDwmu0IvNNlRgcUWbjJ4YmOXR5aHwiofcL0NrnZDPfOEorpQRdGc2OWgtsw4dvzopBh4DC7xAF5Y6gNp/8Fcxg+lVuH06gvo00azJ2J/ZLcOPLLlz2ilUrVCPEwJWp5wt9EbMg5kP/D0A1Q2PN+z1TJXfa2y1cGt7xSbojY/Kkd5w1v9mNPlnq0UZLnnqX2A17eAYesLlocHzvUrvPeh8vjmYz5780PmVJQMN70hR2VzmTrpmGjqGEJoIeg8pg1VUD9mR99BNbjVWUXcRSm9o6JYujB9mOusjcaNRCOkcj8a72THS+FMo4liErR4TkT4HCVFmv987InX28qX+o2vfe19lrsE48Z3f/D7/K1/+I/4u//417htP8L3/95v8j/pG1/7b//bHC8X7u5e8cEXP+LynU/JsjBGorpS6TxqYY1n8ZIOsifGgJEmPbHq9Dr0sUIKdn0i64nIA2Nj5EY5TtOvUe+p/cCKgSrZ7/Cc5t4+KntxPASrFzScSqENoaeFI3WKGbkEL+3KNYKnqNMZIlceZUVjIcvK/Th4N4PBrFaf6ZpOGtNOmWNBUnD1K7iR0gtuGBIK/R4pb8ESiQVRiKJs2gjpQKLmyYdPLrNuGcYmgz3+AFbjiAvLCGS58q5VKkKOgmuncEU8zeZN1fnnc6CFoHStqMzR66HCNjKJ69THA4iT/ETyxJ6vHAjXdYApiy10XbgB+Spcj8y3b4lf1Y69NsptrrHW04VUhSXueE+v3N03bF34nHQ+LDfKnXC6HrxIjoxXPPnGWB/nz8gbKQJtZ+4s0KiMEPJIXJeBcmDP1dtbd977yPljP1B+/jtKKcYmBY8dKGRTzDto0Itx3Q4KGRmVtcORbjR9BKukcQbtuM7b+UevvsAXP/ea8AHjfj4Au3K0M4+jc73d8+mxo2F8/iPnhd9xugtu3dExcwnoPNxkjecH8qwJJ9kwHDt29qPMKdeycKoFbwfzBjqI7PgYs+rq+7P5cWF45Ru/f6PUlRSNo055cfKOyQtU3uHPJs611KkyR4mWkNKfsdQZ1Z3vfKJ89UMhJ6gGPRLhmfq8whwyJUkvT4XTuHGVym13+gFbWWhpKi1FOy9sp+vAQtBVqDnRm6EZRizsQ8mxsCbHUqP5nFCC07WxxSCNmbPxONhKpqjOiYaUKd56Jqae/YEtOa5n8mjgiaFGEchR+LTvvDUmSTcvRF7xbtyJcZOOysFwpYfOkKkW7u5PfOfthcSCasL8huWF4q+Jnhma8NqR48DbyjXNrFAicxmQ2kEtg6sqcUCMgclGSjK/dk8MD0Iu3OxEGQNLSlWoYVgkxi2xx8ESTouMlwtxdW45U1xZrZLlxrUboZklDWh3XMYkeD72QrSVV+rkokgS6IacFp5uF+ru5BQcDnJqiD0wVHC/IV5oXDmZIJEIhCE3Uprsi7ANkSslDQ4KQSHJjrXrBOTFCzy9ZY3GYSsDIadGdliPCbNWn4btSMJuYASHKmrKfWq4Bj7gKpCW4FQzjWAJoe8bLXYgk00YvMOpHLege2fl4G4VzIIiF267MkjUfOZyrWy10Ten6JlxOpOGEe1K269wNA4MTVdCE6lW0qJ4rKBOqgs2TmAN/M2U0pWECjOrwR0WTxOopo3EmfWYIdXbbrSnHa2/D1vlll8Rt8JWdo5lR9cT+eU9H26f/+EeKnoM6tgoyRgcPGC4nDnyQO1AJRiR0Ryk4STJRBysFFrMoGSKRlB4KhsPAo9yIkdjoXNdb3gY6g9oGJKUNRm77lxs5QWNiMHtmaXwNl24T4kyKr7duBtnGFc+WJTP//SPYMn4pX/1i/zNv/NP+PVvBvv4CurBvwij//1f4S99+oY//h/+adJH7/GTX35B/sVfpcuPP3ebA6TzYhckZx6lUyK4DWH4QtbpQjikMMaNUGeTgoxKTgeIsLagrUb4oMTsd3SF7DpZ/DiNZ+R2yqjNl2akHWkLe1H61lntytKeufnqEAX3QCUonigukAWPHS2d0VewleDGkQXtDeclw/Pz0M/RUdhiYRGjhc2DYSn48ggkJNV58zDorpgJWRLDEkc4VYysO4Zi0mmxkW2umIiY2GJRbAQrDbd50ykkjrFPCU9KU+0tjU0qJ4HEoDPAjTUmcCcx0+ougoRzQrjJXH0lNYhZx9MMzoXuF7y9wGqwJSjF8TJJjGtauRUnsyKPwoXBRQS7JmgHvxoQ2SjbTgnlK8sL/ugH8NUv3jAMc6dYYe2ApZmGTjP9fivHBKmJ0xhIKMcClgf/1lczv/T2wqUnshiCUR1CjNYS2U6cDuhDn/kXl3krt41MBhm0ep3a5TEnTN3fYdeMiRA0xBJZM/nUeJDg1cvGj/pKIVFfLDy9eeRos049tKLhswrVhRClhHPw/LD2+TC6Seb1EWwyQJ338kA1aCq4MV0NCboEdWRMdGZCRuPxelDKwhgZtzH9NGIkfz3zMzFJkk/q6BAWcfo6GQnRM4JSEN4+7bx7fOCj7Zj0W2LeiKXgPivlQuNh2eb4uXaiC9fovEggNjMuLnUe0kTY+sYmzl2Bz4aiQ1kkkfI7joD7uweqzIO2JyBgNYc0qZEAEoU1G4XbnABEBwlCG0GwLUatmYqyk6a3I5zwDY2B3SBkyp1SKJvPdcvNFRhkm9OYmmBEYbjywbnwjbcTdT7BLYnkO4wHpoJxkoERJRehihPpitgLlnLw1POEAPqB1BV6nVTOdMN8engiZa59RbIgeWaTZtbHGFrIZnSfAkQzowzhJkrts4prktCYAfribdYhy+AVOnHt3rl/pYy2EWEc/Tr5Gjk9B66Vke64jiceHO7jkb2fsLQ8//QHxookx0dHUybjOAeZjeSZkBmE7mNQFDoO1uba3RIpyjwsikLYlHxRIW4IiUtaWeWRU0z09dCG+cYFaJJYp2ENZ8PpFB9oKHmZNF4JJVygC4wnLu1KV8V74e5+450pB87hoKvOTARClYW+f4bmTtaC5A3KC+LuJTIaRzNkvJ58ktuN2CcnSMpcz2TJeJ4IcXMn7zHV9fH9ObVwZ0vPHhY76MzqvefpT4k9uBwC6TNKueHLwlo+xspLLJ/Z63+948J/7UNF7uAJ3kqmKsjoGI1iiSPfAx1yzFBXOF1W3Cs5GcWCA6PTkKhsNJTCyS+oQArjlguldzoHlUrHETp9ZOpzsnaEQB7UMYikCBlNzgjjJsZHvfLV+4X00Pg//D/+Gv/oFz7h07ZwxELzwPok7/2KOj/45d/lLz8+8e/9pb/Aj3/xy5xz48krT3JlT4nVK7U6t2dA0sjB/Ui8KTc0HE+VEo1jpgO5OJy1IK50EUaGh3bG7YqnhvnKz3nnaz+78P/67Xcc+YwOyBhVnOTKNTlrCpZqXB0WE9SNW6oMhLPOPZ5aZbPZNIhq5HAiNgYT1FMFHllRKZxs4RzzRYdmdBR2nWCgFIlcBhEKTZEcjMRMZbcgKlgqiM+XkWfBQ2me535NjdQ2LBuS5oTCIk2jorTpBymOWEckMUic8t3MQDBYOBizxMqQhZGC2gxXwU2fezpGIc3Wg0FHOcQoEcgQFiqRGrIrkoUbRtVK1p3WgmErt+1GagvJMpYPXA42ObNI5Sid3ITFK60MvDpyLFx68BsX55ufwZ+4vuMvfO1E3xNlX0DLhBxoY6SdkWf7JUVAZM6eCRQZCQ6lbvCTd1d+5fsrWzK6OuuAWwo0N1gTl5SxqGQHs0IqV3SF0Z08hCVWPBpDwDxRdE4BNOaqSlOl6RQIqQStOGNM8FLuK3s/KEUJA/X5wqiSGDJrhkhQXemaMQlMBo97YzSnjzPvr4HrDELKs2+kdyHrfDmgQdKGeuLdJfE0zrjLM19m+m72MpkfxR7JoVRRuneURAoHU6TrFOOps0iijYPv3zofrgvCrND6NHch3nENcHjYBiUH3RXpNy7tDl8cnit54ULYhilcks3bdwpqz1jOGHNacs6PfLisjJgZsKyDbBvIs6BprIQ4moKlBJkd9zM1NSwM0/lQf9jGrDmLo73jUQg/EyPh8oa3LdN9sJqgzQkLsHnA6EUZVvCkU8g1dlIy3rtzPlzg94cjOiurMhQRo4wEMidkSmDe0dg4AxcV8lFJdLo7Z2kMn+vGSCva13kLluDwxpaEiI71eZlIMTh0huFbcmZVJlEJzDKZgcd8US5MUF5L84KkMUO5d7lh+UwqjWY3aq30ABnBAKx11MGSkOwtW1UsBqJpXlDlSpIFizSn4DZZReIDR5A0GGmn2cT9rzhEEKYkhSb7NBFKBSqmB5qYGHMxTJiTEAHyldgr41npsLojZecSheqCZp+fvyiETLaLhZHIeBxYDLKs5LJy+OD2aNxtiZyDYQ1s5o5WXaHu5JpJ523WzluHNlB2cjIkB6HG0BN1y5i9PzNJ3hn9kWhBjAb7uympQ9ClkMvGiEyEkFMmZOaYjJjNEplQ/kjr/MzZIHqf7aLcae0d5XigJ+MoO7m8h23xwz1UlAUkHmlyh5fKUygP1pGyoWMgkujS6EM5UiX7hVVWGjuPVB5UuXDmhS8MrkhcOEUikblqcDduCAthwsjOUYTUTmRp9GjUvM1flBxgTor72dnNhTxOlLJzk8TP71f+yV/7G3z9KSHlfW4WlFiwYdzLwWMuNISLJP6T3/qY3/rf/+f8D/6jn+OL76185/eU7Cc264gmmsDwzl0owzINhyx0K4whnAySQk2DPWUGKzm9YxtKLp0cO9d4SZSD91rjf/HFz/GV//Cn+Kf/m7/Od0dhz4n77oSsXHUwRoJoFAETMFlBlc3TfCBIJlpQIhhFkYDQQusGoYQlTpq4qbONINkVy85RgstwVA6UhVX7fJDFxqXO03henNwz0hTOB5KN1DPlmEyK7AeqlSIr22hT7mROKw3thSMpix9k77S6gmdcB6VvINe5trKDXgY5FEJprNPGGolTCeroXLOSHcLGzKCQCDUKjoZNxfwzdGvPg6RCjkxfEqTE6NMgKyi7JhbduetObs/OFR/UyOzHRjodc+vuGxrMup91hFes2Azvnd/yjz82XqTMn/zShklD8mtuaWZREGO1jbWd2DlIHUSUpkHzyqLOfhV++qPP8/XvPLFbEEvhSQsmA4kbqs4ojq2zjmgOxR7mYSy/JqWNwwNNs12Rwsg6OAaEFIQp61IyUq7EWMg9Y7GT0plNMpoz7cgs6gw5GA7dGiazQirTVkUWcJylKK+/+cQxgj0K7+WVQSNbUGwh0vxZJJt02MOEFIm7UH7n9kRvO0dZZw4nDiIp6iv4lYPTLEfIAe2OXd4SslBiJ4USkTFzDk0QypvHnf7BSrXZdhF3LGVu6PPnQvB84qGceH0D98ybfmFPr3h5dJ6k0ZOxaubBhascSLzg5bbwm7cL1esMvPUHriHUk1KskS0jmunAYDzTa6dAzCQR5cyig94He9GZ1ieRorGWM0rG6424yfPvwSNHXuZBbFzmwSx1vDjIRhdBSqcfdYaC041ik7zZonDTysvTzjcuOzXAxiDkCTgT+TOyn7ljIbSxu9K1sCvkvE+zse1UT/R8x14PehPS4cRWObSQw3gg4e5Ynbd46/O5ozYtz+ZGMRg6Q6ahOoWDXCkqHGmAnLizCwiMVMhHoiwXsEeGBeonLN0oXmZb8OmJ5bRx88a9Zg4TRjs41QnaivREaOY2OsoCBNfI5GoUmyvDGOuU0xEUTUhA1o5SaO7klBiayeEgPtcV4yDSlCKaCnfpgRiDva2MNFDJyJBpqJbgwRIHN4gzFFjiYHOj5eDaB204W1rwlOiSGf2CSOPt/khZF7ot/ODTtyzrzBpRHznLxl0uvJPKuW6UsuE5IAa231BTmhkl7bgOaqqQwKWg6Uy9m6K7No6ZnxkXxrGzP12wRan1PKWdMi+RI52BR0yu0FdqN6hPLCVhaZ35FBu4O84PuPUNaY9IvvB4Kz/cQ8WIjQcx7h3eHtep8NUNy1c0C+eZxebOO48eSHnJ7o0UCy9qJ1lBBV77jtZ7Vh7Jqc3mqynWXkyLpiYM0DFIPFI0o7EicqGMM3kkjmw4g1MI4saelPATeRx8PTLt8XMsWbB9UC2z14bWC80mkbPsmSM7ryPx177X+dt/9ee5xvs0Dq5ZWDxQO9jlxH0OBhlG50hO9Y76ghCMenDuKy2CUzY43uB17nHDZ91JsrKq8pPN+Nqf/RnK+x/x058/s3/7ymt5SU+ZYFAcNCeabogF57hBCx5l5Sl1lmgUW/Fs3GRAZDabkqWRZtL7yQ1SwsfEbnuSaRQUZbNn5F3ulMhTwW3vpmVRXmLDGThbFvax4EBEsD5bMWEDC0wObvVuIsyboiOI7CRfsJwptpOHPX8oE0cItWSyjecXWyB1JY/OILEkqE1AhUjCOgrNLyTNZMloCE/iSA5MgrULa74hKSOipBhc6Cx7gtMGrgx/JDKYr0gpRG6MXunLTrKgtxWvNyQ/kTtUNrw4Vy0UXxnjMl8O1dCjcPbK3/9d+PL7gw8enBsLVQVpCR0vaTK4AOqVKJ2ROz0NdIy5HjyCL37BuPvup7x+2lCp7HJFWMAqS1t4cSm87QrL8WzQvCAh0D8i6IgclLiiGkgEozsq6wx2qpGzo35gkYnSyFFI/gKTQcuD2u9p6cKhjX3Mmu1IiprgHlgXXJmrR+8QK7/12ULOyjY+43PlzJ1XrvLEkTsJI0V5xt8b5ZlT+47g0pWUhDV2NDvFB0+xEDZvsl1m/t7IWL1Q+jLV27HQZTD0OhtGQ6a6fg/E9tlBT8pQwfBnmd0MJdd840VR6hN4zti+kCnspU06q6886k4JUFYqDd0Gec9IzaQOnhprCbK8T/gF10pOs42RPDOFGo0RA49gWTrbduN6M8yfWQPZp2uivDd33f0DJH+XSJBGRW1+7e+a00cFr9xUIR0sXtkdzvN8RzjQB6oFQgg3vvSw8lufXokOFeFCQrSTu3KUnXeykrpQCvOZKULrCVyocUbrjb7fWLRwCuOpdlh23se44YQE16yUYVyqcEqDaoZHIvkxTa4Fcoa+TxjdboLoHYfdkCSYXkgjQawQRkmNFrMufQwYcUVHR/KZ0ERdFrIkSgRqjSZGSmc6N7ZUWaXy5qazDeFGZFhDwG4szwjw4VCYB+SiiVsvSAKiUBKEHpRmZC3cxlzzZMl0nIVC18zFr5SiFJ2tpuQDTUGMOwIl5xsimTU/ywTlTEuQ4w1rnoRP1xuCsXrBS+ZqZ9ptsF8PzvnEsjq5rjyNguUPSDm40xfI/q9Zl4FmxfwA38lLmqtJEth07DwdjySdWS5Jgj/D8FQLpSgmJ6o5mU7cDsaxY/56Nq+KUe0Ol4WUC6JXnrSglsnuZHmNaMJzpligutF3IcYZzQeD44d8qEg3XpvQVNgoE10rynkoXVduLqhepyxKMsqVEHBmB7szyFJIkqhtZ1RlaEZtVtJ6KItXfN05zLiPxNAT4Yk9gY4zkTvFpggMXYh4pDKxt03m6Vo1s42DbhkszWBNBOGVI6ZiWzUzcPY8uPYz7y6JNJySM9mNg2DJwV1c5wSAMcOW7oifGGIkOmiF1FlDuQ1Dl5UwYckGBF1urDJYcL52/xEf/eEv43eVn/rCB/zax2850ThM2cd0JRQdXHWwB6jM0+gmA7WYOYDIZJeJxNY5blR1TJ22OtsuM8iI4zIQD2QUxIQ9KRqdRQsd6J7YQhlS5l4YxWXD88D1QJqQysB97o+DoKaEB0g3hh5kSZgkKgPjikWi42gBe86IVHdkBC6zh0+8JHiiJyZnI4I9z7poeAIG9Vl1P/kJg0UFYcXDOERITNRykgEoojvIC0Ju7EMpuhIB2wHkndqVw/WZrpg5LMjrXPvIuCPohDZqKGtP7LFhS4MwdAfYeJSd33m9897L+RL1lojQyR7RAN0ZOIeCqCNjdsrpGXcoKF++W/j9d2X+/czx9crgxFjgukDvTu1nNDIjGyY7+ixnwxa6gdXGiINV7qA7nqbPpPZCSMXEiJExjXnzl4QPaOnyjGQurNEJzeBXgkTIdPVIgHllqYkfvL3y8bsDlnVqyReZt11PZBkMT5RIuIy5HqSTvM4Mku0MNjScw5zuivusWztnsPnySuIkFjzNFU7KDemJIGFWEb0RXGmtEK6EK54C1yC8Pa+ADA+HqJweDuwNhAfvrka1AzUnZSVovByK0+ahJBIlbajf6F4gOozEBy8GizruK6ghPjBRWkwqpxyFDHQ1qi0saeOI+SIReeQlKxYLD3mnk6i5431CtbIb9gxq2ruTUYZ27qzAXufqMTJdp2ztLjZMFxq36b3QhZaufOGc+dabRsqNMjr0eUBb+0od82fiUVhQhiTyCFzgShBkzklwNw4vKJDEOcIwnM5GF9jCOEXgfePIAxrc2FhKI0ajuzIEYhhFxvSGKOQxuFHmCjieWRAhfHrZqdpYE3SLaTH1xkJhN+MmE26361wrZg9QOLiwiJPzAqp0z5g6dewYp7nuxFALJM40CQ4aJe1US0QMhgoxKpKhRyB15nu0F7JO1g84Xk5Um+weiZ2DRLCRamMpQhuOS6ZpRgJK6lQ9GD2hKDU3lMBDcJ2AuETCrge3tlP8LaeHLyFF2K4ORXHrlHPiGqBpIed1rmlC8DjjfiWJocpkCS33pAhiGG0cRA/CJg/kNnxOacigiTjdk+0eaOTWYARm754bIE4uG0In15WZ9FJUnfCGk0jFGElIJdMRwtsP91DhXjjVg9I6Kc5YMiSMnhsyYJHEURJZoYQh4ehYn8mHFe07NeYI2nVwioWr6XQUeJ9Y2xj4EJZY8FCiBHRYI4E0xnMQ6DRm770HHCqY1MlZSFCHkdQophw0Rl+IVFiSQRscZXaxoye63s+ToMw/d99JSVHAmDXLLjPDAMbmmZCDI0GK2SQgJrvjlCp7Ek7lhvVMTcFLNq4KZ3F+7kffp3x4h2bnJ7/yBT7/z658pxeO0lhFeB1G8sFdB9d4zpA4GgMVmfromEwzl2nrjCgc2iniOBM/PfKJQ+cuUIawkfGY2OuIxOFO6AY0bqVPF4H4Mza543YltzPqGVWn8BmuSrcgQulyUBkzzS6AVyI6ilL8ykUreZRZERbFRFF8ducVSIMUieRBtkGr8LJnTpEgF9iNrgNFGK4kqdD79DRoI6cyMbWAhWIIORU0KYGQfcNTYk8HJKcnwW6zKVPR2WpICykf/+awu4jTaiMdZ4ZVqBeM6f7oz+u2Wm5857LyJ/rCg00Nea9ClJ2Wp6CuOFSft3/ahuggheCSyTf4QnbWw0g5k7jD9iu5O2sXRG6UcsFlo/sM0UYviE4QWSsHSSB64c4XmuxYGZRRKK70tIOv86BXDnxUehiugy5AUorLDDmGsMYMSRmVGjNEuzNwgUONX/n43Ty4awANolIxQqBExdIAv+EhBOv0a3hCutHHjlAwsSmGY65GsoBxoFJxnYr7RMNVMFdgNoDEn+VW4kDi6MERRkkLwUGKufpTPfBIM8fjiXPOiL2Dmri2OQG48wmTcoSWBzrqRDmr8V6tZG4YnUUP5FA+WjdUn1/+AimEEYAIKSrIM3LblSUHeTH6Z7BUMFWe+sJDeSKrIQIuHawzJDNIkDOXp4N3Q7HUSQeYQi+KDAcxsqwYys13VAyRhcptVrH1zEcPB9+77PQjI+70qBOxnQ3VShtM5Ts2L0SVCRSkkw9hiNBSp6R52LPn3821d265kl25Zpn7eIKCgxdMDfWF5jax1BqoKiMyIoFFEJrY4opHnbI+68hze826EfnMmneCPkOSNNQSNSbSf4QilvCjEGEkF1KejKfuz9MpS0Q8kRA8NgYXejIMiOhkcSwnesh8r5hhKBWbhuq0sweUcs/yDEXMeSDagOf2WJ7SxR47JTUiJjNGtc13hM6smUaeQeB8ITq4FYTJHFIXJDqX2xPvwrkjPx8WhKsY5XGgJ9AalLRw+Gk+nxikZCQ5IBTVhIQgroTvEKBZSRo4jmgmuk/ei3e67XhOkBbEFVEh10oUfX5OZ2w45pcpEOw74Kgq5ILkimjBhxDWsdQQVUR+yEHN+5ypPSNlcHOHA1o5sZGoOdMFTjLTszmEW1UKM7h1ksGRlJZ2Nlu4poT7lUUVj8JRCsOEPZziwikJh944W+JdrJMU5o8kKUhZ+ESML4wLnYzng2QHS66M1nko8MYmic3HiWN1ahwcQ1nSSupwiGLZkXASnWVUIslU+MbKEmOyN5dgs85eBmPMml2OYLHxvNuvqCieBwtG3YVa5x62pgP1ykbwMxb8zM9+SFoqEvAjX/yQ+vBPeXz8EmqdVDMPQ2gGSRduapNbr4MnMZCFLQ6uIvSUWT1QvULKiGcIx3TCraoN1qy4CZ4GSRILmdcYVQvFnQsHI+D+yAiOZwer5B1GuqOkKy6dYfc0OYPCLSlrOGc54yMxxFj0LTkP9ggsCtVPZG1kpn1Q44bIRh9TPT29HYbFTotMqWX6WGTMGiZGFp31vEio2txfK1hMzbloMIaTtVIj0JjkPR3geR4aRDt1d7pVbktwQqEYj+5EKzxgNC+0Nk/jhxaSzamC1BtLuWFHpvaFVhO9viNF5t0VjuvzKHALTHdCO0sIet3mSySUIZNWmbQQ0rFo9AjOD8ZaoEeGdKOYEW7IqaP7mbzfQTkYeWcH0jKRw8mUPFZCG706Hk5pjdxXIs/pFHqPROB+I3oi6ZUoisRK8RWx1wwJkIynnUaaQeCiROlk7zAGSVfevgu+85mgaUGHY2qEBi0FZdcJdrLgkgqKI34laZ37cs0sXiaK3dNE6GunMGuztwFrtJnyzwkskBGTEKiOp8Y5rgx3nBe0wXy43ox8utFlTpi6VsTA1akiaByggckklB7NuJqwadCSImGgzIZZl1m13Dp5mfC0wcrQwWkVcszWFiJEWUg+p3PFg1aULg0wbm1wt2SK36B1ttOJsCfYMk2FJTmbJPYwXNfnq4pzNMN6YREjqVDyI1XOWDowD4aMWR2W2YdS6+Q44+L0ITzcddaUuWKEbFQNYlxJY2NEf4Z5zb+rdaHqxkUvWAiVwXVTdK84B/Z86ItxZteF7kbgZFNyCrJAOzKSrujzpGBnepQW61xF0RBMJnk4t0pS5cITVeckIuSek3auR8fZuU+VnWBocA0YzIo6zzdlxJEyrZxCZU/QgE2fJ02RMXtgpAsmOwvKOhTNDUlOHYnWFnpuDC9oyog0xO+QbAxWNBJon6sT6fSeWArcV+NsxptbIknwUhYGQa6G3uYkO+PgjW19QVifQkkrSNqxcJCFQOe6rndGu6FbI8WJ5k5cOm0YZVsZAsu6siTId4kqCZeV8Kk0UBJmeU6IdeZ2RI+5G5OKdUfV5gU88myNpXm4cHvCzBkRmBRyWYmsaJZJodaXJLcZkh6D6DvtdkPyjuQrSdbnMkSZ9GuRH+6h4s/UIJ0PPm7O1w/jdF/I+3PIqw5eeOelKu8E3vlCip2UE49jirvucsZ75sgH9yxUWbiUJxYVfFQWrtwkuPPEVYFYOWSlrJD8hvgDSS8Mv/ERsCdnz8adF1wTLsK+CN0DiURtSk2Z1/E0YTtReIpgQdlkcIupiW3IJFJaQc6F6AFduRGwb+xp8KTKOZQlDo6cCKloD3IS8jroprgmXulcGYxykMcJr51XOD9TX/HB176Ep4544Uc+9z5f+qDyeAjfaIr4oKRAS2X3G9ESp6w8pUr0hTtptP8/a38Wa1uWnWdi3xizWWvtfZobN/oIRnbMTDLZJFtREilKZtGiJIoUJZcMVEE2XIBRhlEFvxjwgx8MuB5ctgEbsAFZsGyVq1RqSz1ZokQVRVESyRRFJttkMpnMvo+M5jbnnL3XWrMZww/zkM/5wHiPe+495+y15hzj/7+PmWyF5CNv4P0AOOSG1mkE5lQ5iVMFLFQOYiRvmEfECy0Iq0YSxqXAopFbhdATXZSUnV43yjSqVxhEXwh2S+6Jpoa0giWIBIrMNGnINo+UPBmj0sJYr0x2ye6CpZ3JFe/T2H3GQIpOK0INwiROmRIXbUXbgqVOl4qp0nBMO81kBBGbkUMa9lN3ahgwIQk6duv7qCJKCLgLi5d7SZpyUR1c2ZeR+xCWQXIkkPeFLsP1sPYjyQsldVo6s9RGlQXpkchOzIVTrqO7XmYaY7oyglCdpgrh0fh+VaEFmPrMRQZd7rjzE9EiPTiio1WzLYniRjQnt4nWIcY6HC2qwIZaZt4rQRyJge5AD+x0ghTUA40DqobWe7HVbDS5RWUmuFPsKSaJMEW28xCzmRmEmeBCkc5HvnLm3Cdu5cRREiUm1n5kbpHdVxpjVZVNB2EXYSPgcaNK52mD5oHmQ5gnHaJCr8KC0BSkF6JkHMG1I8rAXHsmeUJ6GIFb7dQANzqTpZKI4+FpBTQQe6BpQfRAyqAaBta5rqxrQy8CKg3vglkeDRV3ujUOuZNmZT/bGP3HyMPpkiRngk6IhOE2wnnaCuROq5GqQtRR876aKiEUil+TmCix8MK0kuSaLGNqEH0mMXI0ORu1rCQx0IlVdnx/nqnDzj0kzwo5BKrf0v1Iz5G1rkQik4yjyTsvjVM5YwJ9r5SU2cPFUB1ooe8JDwdcx+j8qu98NU70msmlgnVMIllXku10N/beOcaI9U6TA9hjKIknOfFAAnODYAlxoXRnCw3BuZHAi+3AnZypeUC2chn1znMzdBaWMLD3KU3EEJltR8tggVQ9ox7pFqhmKBGvke51CO7CmeslsVVl1XHIC8xEd8RXRIUajMiEi3Ib4dli0DJEUJ+JltjnRmqd2CJ66ORdSNZoMRGWxmJ5tIDixDxX9r2w9THyVzKbbRgzIUws6UCWSxq3IGd27zgTlZ3a78b/404MB8rekFMkHYeSIVljZqbbQMI/e3HAzkeQGxKN6gWzgdvv0nEiGCRfxyrU4zgUOcQwmiiEgPUVv68GS4cgD9FkBN/ovVHqDdJkfEY8kEKio5AiniY8ToT0YODJyx3d7jBrzHYAHxOPP9BDxf/2z/4xXvrgQ37lU7/N//nv/iy3vINj3Piz73iVb/nuV0m207bGetr56nnlI5//Kv/+7RU7XMCubD5IjZfSue7GdRYu8yV3beNx3zirMOtCiidSv0NjRkvnDkNcUAR0I3BJk0DownMq1OAECrsbD9pMS45KJ8eG2coDgRYCtQWijCZBaMIcK14icxqI59Q7pewoRtKIMeFihNgIXahRcRccZTajxfGynrfMK9L48++75pWXrjnvO1vfKU04t8px7Xzraw85vHAgOHSM5x++k3e+8DKP3/giMNHqzG3v3IYCrmyTspoS28rBOgUlhjJubzIRhBGAwslWsQBbGzrtQzA2+T26XOAkwz+QtY0PnxRS7HgtnCVSFLKPDENrMPdEb0axiDaBvNOigdzvsjHocbQgpJNMMamjwWAbmyUmAbfOKQyTXpDIpoWAos3AlBpHTWv1hYWJJSaijsMC4uxqOELSMPr8KiOjo46HQOmd4AOApKZYVfq8s/nOFq8RW4mp05pyIuGyEVXprhgV9Wkk4XXCraIutNRQMWKFqR1o007o4yGOD2dAPRQ0NK5Lx0seeYMAIWyU4PS4DtpjE6aWoQU8GbGPamywzMV6HMQ9UaxU5u1IrBseO0ZA+rhFGTO40i1gckMIY69vJLB8j7XfCUx4C/RQSGpojVS9HWm6AFEW6HdIiAQ5Er3hu2I5MslKb50qgaKNz71lfPHNOMbCSeitou6k2ul5xt3QPhwyKk655yyo7sS+0NQ45g3TA+qFKkbqkU0mNjtzKUKsgY7iffwZEhruRuyBjrBGcASxlVknzMB1RZISynjRZxXO0TBPFFEiO0kgtAs0dKo7j/aNd1/OTE3YfUDnRlbJMHHcZ65l5Q2UpJ3LFDhc7OQoECMPCIhUbnLgq0+dMEeSN2ZNQ8ftiUkbmiJ4Y2UGdi5j5GBKcsdTY4uBFCtalNCEm11Bpvtg7EKcTmwxUbpBOOC+oypIn1HZsL6QgyDmuFRaLEzLjMhOqwOXngzmUOihgylBEsqOpkBpkZMdCQya69mHwyH4DgxiZg1GDqPq3TRgfaOpQ955to2D/0iSdYoYBMctkRtcu7HqHdF2JEzsfWex4YBqnniQGskbORQu52cJUQnibJKwtuJ1oZtgsg6nETBl52xOU2VKC7dVx6Ql7ONZ4yO0K54wV7J0Dl7obmhvtDyPGK84jUYPgewbQTP5aOM5o/PQZ8hwCNXuTGFibTL+PuEG8wU8UxjBctVATpHLq0RvJ8q2s3cdDiZvQ2HfDqh28BNBjLoVynrCl0KaMlfHZ7l7unLXIRFIIeCtcA6FPV5zbo+ICMHGwboLuI/FiEgf6zthQKwEWgtIN6IFNGS6jkp4lzrqz8WY4oHueYDWZKe3QuqdZjtuY42smsgyozKhUwav1LZTrWNWwNsf7KHi4XteIr32Ii/bieVQWStcd3jfxRXf+33fQ7gY3wBrRqs7P/DkTf7Jz/wb/s7Pf3WwzqeNRYR3FuHHXn2R7/zT7+d4sbA14+Of+Tj//Jd+mU+/9QzfdnXN97z3klaNbe3cUHncNuRsPJ1mfu2rGy/oaG+k8x2rzqxe2PRiBL56w6tQY2QLEcU4ADEOJXNzuIsKXHAUx3zDw/BdwJG5FVClWaZp5wqYFe7MmE3oeZAlk0UUZ5XGjcHLZeKHf/gPoxfzqOq5j7R4NXRS9PqAjmMzqoEf+ZM/wPe+7y36+czt7RMe39zx6K5Rbhq/envDT7+RKKacQqSo3x+sRm+9YCNNLgnpCjgBwd0gjMOPeMbFSasSDs4mxlLTwMj2SO1GjhDdxqSgHbhTI6bKdE+IsGT3H+DxgsiSYdvG2Np9dOhh8PN9odvQ9gapNDWyd9yFakC4l6IFqApugak3kuwQJ3rLaFZqWAk29NP0ncUrp64EnzG5Q71jPaBmg7UVneKdEDaaZXqZUSljn9yF5BnP9712QGPBa0JN0XBCR0JwTGr0RG8j9ObRsTAYIGeLRItMi+MKpS2EXnCNaGjUOHbfqRuxTLgIVgJ4gh4GIZSNmCJ5uuO27FiLNAXVA4SE7MPBoaHRteF+GKuTeEtoGW8XiEPuzho3egBvAhJQOmgfKHnrmG40yYTuRB2rITVDo2Nu7F650kgLE9YKnYkolR3jVz9XWDkAG6Hn328+uTwdQVrTUb/0ikim+5gSQcNCI/u4aarpfc24j69rhaMmTl44JGHC2LpR1e9vpgO7jnZSdUyNqpFNBsclWyJ6wNNgMxSZCFao0kmuiEH3jSbDV4N0tlUhVcwVPJKk0+33XqiNlAI5KWepw9mTjBcvAs9g7Np4MDkLhct64LPFUE+IBvBK907rM+TMIpFSnFmE0pw5zjQ50y2j96vh2EdjxIg8vYfZSXByrQQmWlhItXGSSkJp9xVu2oEgjdicoh0PQqxKXpSrPPNWvaPZ8DBVi0S/QGigFdE4DqjmTFK4a4GKMskGMeJ7p3mii5B8WFQbCQz2yQn9SNUTTDtxT+yueGikLrh0ejQmN8yEHSX5cbiFTMf0CUdEmHplShOeL5AAPc5oX5mJ42VpFZOd4JkZIcoAOtV2S9LAZLBLHxeknom60u2EhAtEBTcIKdD2+R753sAMj+MVFxLglWQLpo3iECUi2oYUzWfAaTpWkyk2rBnaL6ALXdaRMcDY2KkS2WuhrpG9yVjbhoh5w7RQpRI0Ii2NTIs1Hq1PaCFgW+VuOjFNmXYSdlY8N+SgxDpzCBt3bHQWBMF9GkI9a+P5iyBRxqrRL2i94KEBgzVzT6IYkDgfQXpLEe/jsxVzHth5z5BBKyPM3R3pFdgp3dA0oZqY5plmnSBHvP0Bcyou3/sshvLqi+/im199ll/91DaYd7IQMN5+8gYf+tc/wzN+yQdeeycvftcH+ZH/4Pv49U/+Pb705UprmZ6FP/ncBT/6P/t+Lt7/PLUUYmq891veyff98e/in/7kPyf/TuJH/uwPEV9YMOsDxcoGBr/6W7/Be378l/kL/9MfJh6M83rCmvL2zet86Nc/w69+6pY/+eq7kHzHzz55nY/fXVJb5F0Bjtzyeiv0diT6xhe5YIsJz0cu2g3z6tTeqTEii7C0jeDzOMFqI4SAh8AlZ7R3zlGwPpgLd3ni//OFr+D/r5/iz/ynP4S89pClQ9cVtRkPAdXBdVAZN+4XXn03L73yTtwK3UC60a2xnW/Y/+U/49/89GPEL2lySyATpJNlhOG2MOh8wWGdhbo6RxGSnDl6xmqmeeAcG8/nylt+ibNhUkeQ0RsXNXNg4w09slohRWeuDYsJb4OoaK4kP5PDCIUWnJ7ySHvXRtMR4FUtuBuHMMKmTSJdAkEDxSEUYZaxk9sscqCOqitHwlSZSiVrY3WQPtPY0Q4ShrK8p0jcxmSiJSVthoUh4/VqxDTqrM5Oymf8PI+MRAArEN2xOeO7E0NnQ9GesKkQeqXVyJ4bi2fcMgdr1Lwjrsg2cSGZLd3yzJI4ekdaBM20NIKQHYMOoR/BRutFPWCxsuenA4O9B4hClo2iM5J3DsG4XQ1ZnqUvhViE2DObBLRnghrVHiJtQw5nWlOKOGILIjsexy461CHpuovbeMFYZpKE6R3IxfCuRCMaI20/MHRc0ji3ickKohO/+vmv8rTM4+drzo6RtWARzjVzChVswtXIYcVqGVbIngaRdY+0uYBcAM7BT4jNgKJhx3vnqEPAdDIhiDC5ELuAGxXDWx6CKotMdmKyRJ8hhYVgdaw3pRPEMRuHgyxKCz7CaQw+QlV4fFrZ/SG9F0JYUUuglW6VhhJduM4w9zZAcpcRUeUQJ1ot5NTuza9wPu9cXzyDz08wJuYaaFLwGLgW52nv9FiZbCLNkeYzNRmzKykNK3AksteVtZ/IOuRjuzZcZi770KZfxcPYb1vAAkyxjqyMwtwrzSeqOsfYeP6oPL4VVHe2JiQ3it8wyYzoeEbs1uiq7JaJDGLp2oXERJCEheG98NaYOFCk4/POC2XhRjvRElNxbnShyYngxiGFcXMtgZMu9Gao3SE4dGGxikgkWMSkj1Ctn5iXI8bOJJEtZCYbOYjgidUDkQomHFRYQ2CRCLpiSTnaNY5wNmULkT5fEEIj9cZBM5veovPFyBuJo6WSQ6ZKxTkM11A4gRouAe2wmI0Gi0GVEx4Yk0UF+gQVxHeiZdSPuK/EMFgNvlf6uhKCEut9Jkw6KkZSJXmk24HIDQ3h5pSY7+FxFxI5tY1CZF2fkpORUx5TGp3RqvRgFOso26DLquBaCTaxNRtNLWmod9yh35Or5Z7xgzlRjpifR11flCke7l1jipOoXfExBkSDEfMlpd4SY8a8UuqGVCeIIJqxr/G48LW3P4DHX/g018+/yPd/57fwm7/9i1wcXiNGwT3xxs0j/vnP/wranud7ti/xl159D/Ny4Llr5ctfVYrsvFov+Kavfx8PXnvI7376U/zd/+6f8d78DH/4e76R57/jfXyeW16dXqQfAlD4wuc/wTRdEOZMjgvSE1GuePDsc+R3POCw3pIk8O70rXzXDwr/8m/+bb7+pVd59w/9Mfwn/iYf+wev88EHF/zvfuBbee8PvJ9/96GfIZw67/j6V/jL/+Jf83NfeJHvDnf8mfe9yosfeJat7vzmF17nZz/5Jje3kW97EJiWxN5X3m7Cbe2w77xFQtcj59CoOZKt8Shn/r+PnnD31/4xf/4//kHk/a9h4QKNjtynlsfegnHLlxEUVQX1Aax56/Zt/puf/Cf8o1/4CqIvUcWJfkFCaFa5lcx8v59u2rFSSWtmVr8vix143CbWvJBt5xldKa2SGVkCLFFDQxTWdOZJcJIkPOyYQJkzF0XpSYjsSOu4Ltg6UsOehKW10YjQieqOqZAUJmtsNtH8QLJOTuOhk7XTUuF8nyGYrLH7MHkuOm5X7saUG7mBxY4x4yFRucE4EtcGoQ33gCnJhRSGyMzjCrJBCyQLrD3hMtOskuMNPSyc4gXqJw4ypCi7zczhPizokRaH6nvvlRYOeD4zSUTXyG3YuNDCRTK+5ZmF2If1soZh7wQj7ldEKTgdUscVqp1GiJMAHXpwcu3kNg1NOMOQetBGbpXedIzDbb/fxRruSrAyqqm7kh0sbOxyJhIIVelypE0Vrxu9PGSRO3pqlL6NdUKqRB+p9DYJ1naKVDKZVSfKtPPVJxu/9qmNL79pyNTZcoVmZCugHesXnEphqZf0eEtsie4H6r2R1L2jdcPjBL3zIO+4VrwrLtPIPJgOJTVG9J3FJ+SeYrmq08PgXqitnKWQfabnyEmMg3eEO7pkRJR2z+qYPdCsU9yZQibaGdeKyjUR43YVag+kECmqbFQmLnCtg3TZnYtLp74Ncb/ghUPidmt8yQeQrpaNkDOnrfG4wYETItD6PacgFGYm9CJj20ZMzmzGHIXUhalf47rS9o4g5Lhzsy70fmSMjwJZIlsKPAoNqXBRhJsgzEkw6ag7qI+woCd6D7SQiVZ5/sr59FsTT3cb4iwCUxwvC7FM0DpyX10JpoOfQEAZL9FileId7YrFhXM4E23CWuZt7VzahknmcRIW7u7Xt0ear7hlPBvdC/t9NsBF6VRWHQ0ItUqK4X4SDNGEFJXYGlPrhN4594mA81zoiFyzS2edz0x1Yas3RLlkmg9sNbNwyywzzvhe7Q6WRsg6TDNhTZyssPRK1dFEiaLs1XAtXIYjajObNtoEd3NCt52KYZYRawTOTDWx9Y3NHJNOC2eW3on9BN3RmihitNk59YozEc3AT3jNmDeaN7reDmuxG2/f/Q41fQDp8zAVx8piivGAQ073QdOFFC4I6jiDNOvS6BbpPeJUMuNn6r2PVaTqfbYKJJyRkBEXDMfjivdBFo1BQCJlUwhCChUrnR4FlwncaBX6vak6qxA00mqjVf/92v0f6KHijbde57d+/F/xx37sx/j2D/5Rvu6Zn6eUSkqOx84rz77C//JH/xynk/JKfAF95prz22/x+NS5IzOFSLw/HXdRDlPke9//dTx6XPjNn/8l0huf49Mffco3XL5GdHh8OvPX/84/RuolyRubTkzXF7ygyzh5b2/zt/7m32RJL/Adz7+Lb/5T38P7/vj38vrP/wrvvln5umce8Ozhk7wYX+DqpWfZjhO/8Tuf4oe/9U/wwgc/yP6vfprv14X/7E9/F6/8wDdSW8UVvlsi3/v5j/Hjf/Wf87/6kz/I9fe+i3Z+xH7XaAVk7/zDX/95/qt/e6bGgbdFGqlX3rLETzzasf/uF/jhP/eHufrge+hZRhXQfaTJB8AZc8OJiEd22fj4536Lv/MT/5xf+pRi4WVkG8rgs90N3bRFZjFqqIwQbhyjSNs5a0TUUW9caiD4ipuyt4BwQNShNiyPXMQigRSMzeP4hXMFjeTe8R4RGfwC4pBMRV2QWIHMmUQUowVHTVjEsZKRBDKAuZRQWKTSVJEecS1EaUw+E0URc/auA69tEdcZwozxFkUyXVekraMvjnKehbnEYUljgxgG1tgTOjl5z+witJ4gNWS9o9qMtQXZlR7PeDHWviChkbSxtcTcnNYHClikkz0NvG9cKe0KCxDjGG3/8YcTr14s7F7Z0h0a+yA81oXQG2SnUCAb1ozkE1pmpCfEGwhsXThLIbQD0W+QVAbPo4+sAhbxXnFx9nAihIjFlSQT1iZ2CwS/4EDh7dLQDIe2MlelWKPOt9Q6MgyIEjTcr3kyi99RTEGEqzZaLq02PvXlzoc+YxScMCfoDU5KiJlQhRIcVaE0Ze+ByS/p0mmykk3vNfTjYjH1QCdycehkc7oryJnYO9hC0IDTsST05njPKJVgoDYPxXRQQgeTTmyF5heEaSbGONYd7qPq6IwqqvxeKl2pRXAmqMoSHlMcznvm2TzAS00M6cM8TMnsuTGHGWlGzzvPTgErcMdYk+2ipBvjpt3x9la5OFXekS5Z/Q7TDe0RkxGqNsmUIix5IU9G23e6TEweiCEP8JMG3jzdIs2RNNZzu2VyUS76wKNXVS6I1KoDvx+UU2/34gIQaWQUITAH4Spk7vpKjp0UjNZkVMxloPHVhOIbVcfv2u6OMJDs3QzxTAsXHMQoTXHpHK2iPtM4sBtMIqg2RGa6b9SakbDjMBxCWumWsN4oLkw6woWtJaJ2NNgAxZFoIUBQShp9r6QCYTiN3Aux7wOGFowzGQ82SKZ2pslEVKWRWOSA9DM1FlY6qSeQQkLYg3M1Z3ZrBImkUHECu2+4JELsHFpmq52dTrTBMTKGxbn3IWHs1JFZUWiinC0z5U7rEZcGLvS1ge2s5Y5uTm93dJExfY5CtYbtifOjjkugroV1coJfwNTwsnI5HbhKC589fYkw7aPpIUJQp1nHZcdEMRLddtwDbkNTMV4GfRxEbMK9/T4fCptxhppCtVP7E9J0OYLtHtDfw3eL09wJqRNQxJRuMjg8QYjB6CY0+wNefyyHhfd9z7chx5lnria++dvewb/7t2dSmHHg+vgc3/G934uGGYvC3dNH/Muf+zm+/PY09psNHrnyuS9+he94csvLX/cuXvuLr7KvlbubW371N3+O0BvRFxR4eP2Q//lf+o/oW6CvT/gv//b/wM35mj9/ORMUmgU+85VHcBN48Trwgf/Rd6Jz5Olbd9RHGx/84B/hlX/6YT5wuOLha8/yyTd+h89+4k2O3/nMuOmcJ/7C+17htf/gA/zmFz7OL/zLX+a6H/i+b/96lnc/pNaVnA7oMnFzo5QQsOvOg7hw9ZnMnL6Kl0iTQA1ODYFlM0458g/fuuX2H/8b/kNvvPid34jLCB8IjuEgDDU6wnm/42d/+V/xkz/3SX77K1fc2ExvoFKZPHO2gIjQQkS9E5vcI4cN8Zm76CQxenQkjNzDUwdL232uZtTWxo9aCQLBt/tdYqbJfZgplNFeSIWgo5/f7z0HNe4Dh4wjGphawuhoHPjsqonqdp8FaEQRVhaCgE2VRGYq0LWyByE3YUIpqvRwJlsk0MYOujnKgZ0GsSMtcWEdkYr3BDJO6KIB7h+1qWWYnNyV73/PQ77tFLGi3LjQ7yKnWDjfzNxKoVqj3ynnaUX3gV8nQtvhXAOez2h1rA5p1iFXvu89B/7oS4kilbvplpA2cpkJO7hPbOkRTEqpjcOemVqmeWQ3x7SyaKehIAUPJ9rs9L7RScjUiIdbZnXuiNQ82kBRZ3xPZD3QpBKItHAGhZut889+bafkCy7zTgyGToFngW9+wYkz7LWzTEIQRTSyx0xzcPS+EZDJcaL1G7bQWCyCT8MfooGpV0RmYkh4v2UvE1txDmm0blxH88YHe3RUD7WTzbheAqJGCMLqwxcTxXDK2PfX0SBwcXoQuhvehOCCWmHMdyLKLZM5F0GYmYZEqncCgqhQfECd1BXxUbNLcq/p1oltrawl0qZB5+R+PZRFCaqYFnJWolToM9EzWy+EcCAYJISTwdNVuN0jj3fjXZF7qZtDdKKfWLKzhIY3Zb5qTDq02S4bZ48g+8jXeOVmbfQ0ETxiJmNiGSoqke4j7OwYMYy8Sl1XjilSJdAtUsJA8neFEJRXHhhvrNtg1JiONh6KdKPhENvgrIgNNoT5AN3FSA1QPKIibNHoJUETTqq4dWZVNHbi7tTkSDtzEWEToXtDfbQlrCo5DcZp65HmdcDwiKwqLGEwG0JwzAa4qbozdGuKe0f6AAzOccLiqI5POhg7k0XWnij5QOkdax3P5wH3s0xIkWyB1m6oHslhHiI4iSNzphsaAtEM78ZeJu66Df8RSumBxpluQEt01tE+KoHfg/53dZobUgot369NShtwNB9NLMfuq/MBlz7YQQxVynq7EfOB3W8hNKZ0zenJV3B3ztKJFwvcGYEAckR0x6yPSqd0ohaaTKhOIxagjtBpDt39/uI6Jmgq3OPM+6jgM6x4KcjIYXkaYEFxghomg8RrPlZkboProZHxu9agU/gaMRVf+6EiZPi6b/0AGjIWM9/7wT/KR3/5J5DgRFE+/pnf5Bf/7k/xoz/0H3P93e/gNz7yi/z4L/waO+/FfdzMn/gd/+zLFf0rP873/Lnv4Nn3PMNxvuDq+ef4/u//M3zp8Vex334bCUIU5b3vejeigdUe0/7Riq+ZY0sDyHJ5xf/+f/2f0W6d+WJBLwKf/d3P8XOfe8R3feVNrt/xLr7jHde8f36G6cVrfvFffAi3h2iKGPCuM7z/h9/LW2Xl7//ML/Irv9NY2fiZz7zB1UWibQ/ofsft3c5/+49+ks988gs0d545vsobunPyI09C5YEVqiVqrZSslG4cYuInzvDKP/gNfvSbvhFZfKjFGS0KfJgTuzX++5/+p/zkL/wOb6wvc8NKt4L0ztkEEyeEIYnxDtore7qgBWOVlSagVsY4kQx7524KtD5xZYyecs6oFVRtcBMIiEzEeMcUxui99FHLbVE4iNFKp8YDuzRyOpNtofcJo92DuSreO2qJM5UpGEWM0PPIVnjnLA2RhdQr6okSMtnu8K6DjqlGaoYxI7ES3TnLRE0b0z3vJJWBqb1ldNGJHQkHevORJu+CNqGIEFTRzXnleubrrmQ8sGSMdveghO2KPp3pNRDqwk2+hZOyloVHqdIeL+xt52nZebJesNjMM9c773zBeeUA655o+RYLMG9H5vMF51io03o/2p2Z2wwtsFslTCtRYXVh9YaFSqlO9J1Ld7osZIvUPVO2C9qVo74ROOPJaVsgTo0ihegjCDvXjAZj7XA6bZzbBTcnxz0SRPhsPBGWmT+8FI7zGS2Jmi44247JY2RZkHPipneuUVptfN2DxvXnlbeiEu1MY1gczQIlDthPbIr5znae8Wcr1jvRAowj5WBfiBDMETkzzTOLKLcW6KGiVVEGxVLVkR7HwZWO9CHsc6mAoVI4WEVbZtfIGgvpCHGCVhNpXOOoOhDdv79X1olHbcflKTmMgLDKJY/WwvPXkD2hPVBjxX0ECLfdiSFwVKWFznGOdFVC2ygKTTMhKue9snvhds94OBEKeEhoE0z3+1XFeOlcTAe03aJ9JsaJ03mj9MgUEt0D63ZGZBsNCxoXfQd/yEoku5DDgHFJHf6P12vjYT5y1DaWRQ1KEDo7USKXD+H4OtxwxvQ5SlCyNIqd6XIg9iPSK7UqnUJIO16U1jKtz5jA0iq0yERlJbPLFSmc2O/tzKfQSKoUDGsF9405XOFWqNOJvR+RBjXsdEY7KIWxDmnidBOqzHQTLjSB7QQVWl+RKJgsuAWEQiVR9ZILb5BPiGfq1Kg9kkMHO8E0c1d3ogs5jFu1aSdrICch1EbskRN9BLG5gFwpqVKohH7kUu64bUIKZzoF6pEg4wDSdmej4iKjfuwFLCO2c+rO0u5wMs0T1gYE0pmodk/Q7J0kB4o/JnglyMb+1BHZmVLiepl58+kj0nTgQjtRdqarzvI4M2cdjqPWcB/1cbcAbVQ6C0KUCRSEDtpQKr3JPaDKBt2VEaIPcolS6K0RkiDRUMB7RX2l9wtcJ8QghtG8Mx/NojF3Bg9nvIWv9ajwtR8q/g//5f+JB9tL/I9feQ/f8b/4U7z27vfy2osT1lZMnTf2O376y094+Wc+yg+85yEf+Kbv5R3PfZjfesN54hMZZ5HEuw8Pmb4+8H/5b/4+l/Gabzos/MiP/hAP/8h7ee9r38Lrv/spzOHtNz/PX/lr/xVHXiJeV2p5hhwNO9yTXZqz2crDr3sZvbjg1z78c/y1f/Kv6PU5vvjJL/L8d7yDH/xj38/RD7x5/hL/7tdf52H4BmrfiX1nLsr0/MKTp4948623ET/SbOIT24KszjfWSFgOLBeJv/Qjf5zTV++IBv/F//DTfPiLzyJhBLBWD8wb1DxuFqlUkjcOJfD8K88TZrk/wepQIzMoaB3HrPGxT3yK2/XAXivBZoqXexPozCk41/3A2YUtwRw7Myccp/SN3JUpTnQiyY0e49Bux8ZqAWFGTgW9PpC3yu5CksbskUOPrC4UcfrUhx+h7pyCkWNG9Bb1iPmBKoUGmEYi42uQDFwQS5wHVYgWYK5CYWiOVTZoiVWNxE6RmS06F1KoBIpHDg6BS4rMzP4U6Y6kxtTbaK+IM9v4YIlWjDPGC6gERAsNxzXjekKmSBQh7k6fb+8DTQn2hLnTXJi5xsLKQRbCIZEfrFxr53JasGPGdEHbJcmUcy7E08RuSliGwvmqTOOgMhX2pRLYkS1imxNioE2NKufxMLHRtpEaiNslt7txtyq1ZKwN46hYJWqAIhw8Ev3AdgccTnSrY7JlTgon6pRRMc5b4CbNXOqbrDqjNiMb5C48vW1sD4XcnsOlEEInWkXbEb0Zu+1ZErNCDZX5kJikkTRyKDJuwH6iSWaiwD4YFpuufHHrvMMDZ3Rg0L2NlLtVivgIEZJICu9+AL/yxsZ1yBQHc2cRQ9rEE5QYdtyF3o1IIDEEVq0fqR5poRN99PMvpoCzQQa3afBTrBClUhu4KzGeKXePsDazxgWopLzypFRMHlLCzrCCh/uQsxBNcJnR+FWmeSEFJ1BHY8aczkpPz/L43Gh75vYUoFygsjPR2YNhpkSdCKaUrEw5sJNHy8DuSHnG94axs+4bp1YRX5i1UoLxRBJNZ0ana7y8OgkLZUwQTpUv+g2vPphoZpACuYNZ5q46WSNXFwtvvT2jXpgscVeFnI5EhofDg2Jhg2rsPWPSR1VeG6kKt9l4piq7BoIKl3omN6WYsUkgqFMtECp4mHBZ6bWT4o7WBdMKbSPXmUrC/URxGVRPaxy6skzjBuwyUYIQPVDDIBUbN1TNZJ8IzcAes8/zvcwt0C1RNIE5EhJHSZCHCuD5y4mk8HivnLaZ7JUwK6FmnpkVO+xjOqLDUh1NwCtbd4pC4QopFToQz+CJXRPVNsQ63SNFYCIMkio7tl/RpeC6j++xOzunoW2ofu+k2Zh0xsqESWA9ZZ6WGx4cX+bNJxvnujNPicvjjNWKxWd42o7M0zaCqvJ7E+0F8TSCzjTACTrqqzSQmNH7KZ6QwBveLoY6QHY8jCqo+oK2sQYyHZZtsSPuinsdCoOueLwdE0VPaADvjtoF6BmX/jWdFfRrPVR85OY1PnR35Bc/8Tb+xg0XhyN/6A99O+G4oQSmPnFS55c/92WefOx1Hl5c8We/79u5Co+5tIbReBASf+J9L/Njf/FH+c//8x/mh/7I1/Ot738/h2efoXrjK199G7Xj2PNk5fp4zSSZJ48Wvuvimvcd75jshhCdt958wl/9v/91vvBTv0ZaV77y5hu8/ubOnV7w8U8+oZ6N1771W3jmW97Fr33sIzy+AdGdFDNiwj5HIiM1f90z8V6JNsXGlZ4IsmI+OOpxuebwyotcvfMlYhiVSTWFkvECJXRyhckjJQXukvJigW/8ntcwvT8z2kBvi8vADJsRSHz9e96FdSGaMtU+AlAhs2jn0AzizoU2Lsyhz6xVSWXhoVygwSmtgUOpjb05WQ7M3klhR6ySUqS2yikUQux0Vx7HwqZOdqGHgDEQuwQhmaMy6GzJlVoU6zNJhNk70nbmVhGRMUILhcUG6vrCCpZ8fD51YH1NZghhPFCqMFcdL0uHY5/ZRXHZiSGwR2cUEi+p4QC6ULwjUQnS6N0Icrw/XJxoDHPnIob6PnwsUjELbDpYGzU3UCGkiorRekXnO8QrsRvKDdM5UEy563BaJ/Y74aYV9l1otoA6Hp+iZcbLgmmm5EKnk9cjU7lAZ8EP67ipu6K+QL9g3q4QDzRVTtYp9oSedvpc8KmgUyFNT+jTW9S8c06N28s7XA/gGbUD6g9oTPQ9oO1eo+UbZ3+O1hfWXuCisafOG28LrU0IO1UN9RlrSovClhLNoVqEcMHF8SWSK68+4xzKid0y1SZ2ZjZh4H8Ze/mpZk63d2w6AxC8clZhE9gUGhG1hogQpfLKixPBMmaDLRJE2UQ5izBLZfLO0jcOJkTt9LDhEUR2QtxJwciyc6Tx8iEykUg9oNJx2eDePUQY6wN85tQTPYD0EU7ca+Z8crI5cw8knwnNCE2o1kkiaNqYpomrBaTBVge0q6iyuoM95fGm1JgpvnJOBYud1hPqmSYLIXWOemaSxouLIV4HdImJwUgf7IhSZ3AhhI1qC61n5iIsvjFbg97x1unmqA30eLGFN95qTL2TLEJRnB31QjCjl8zD64UljkOYYMxJUAmDY0PFfaX1xm4Zt0BqEBi+mh53lt3ZRGhdMRGohc1WRIyjK8ka1IoZ9LrjTXBd2axSraG948FZxZB4QqIglomeyRaZ4oB9BxsHg6ijCXUgMLmSeibIcH4YFXej2ajgZk8E6xwssLmzu7HahFkgaySEyJKcJU1IqFTb2Lpz9TCwDJUQ4g1vRrIF7Q62012R5sTtXlkfKgXY2JHQkSa4RNq91BDOpOBkayB3RBnNMffKTht8GR3OjyEMCmCR6oUgTt1vuT3vxG6gjYt0QF3ZamOaFl6aLvG2Y7HimlAZU1qzUbnt3hk7nQF/C5qY0oyYEMSICjlAiuDpKRbPWBgCsGQJ1zLq9GFF1AlS6TRUnRyUkMbE13TByHQ3rHOPKdgRGTmOr+W/r3lScdcic+/8dor8g3/5i1x+NPD47ilXLdB+8UN85vYpxS/5WCl89GOf4ZteDbzrpZd56eUDX/kiROtU4Eu3b3Hzyc/yrd/y3XzwGxxvIFn49d/6MD/zSx/jhx98G1HghetX+U//k/8ErZ1iQNn48G9/lLd+/isggVof8VEz/u1vfImXvvMb+GPf+yf4hx/6EJ94Y+O3vqL8qc+8ztUfeg9le8JHfufT0B8S6u2oqJpx2yrbp295+Mde4oPf9Dyf+je/y9X6Cn/8Unj3d73Kr/zUJ9H5kqdPnvD3/+E/40uvF8LVNV9+64JApPjogsOR2gYDf5Iy9ttb4n3LzOX7XhqBHRkd4u38BokDuizggRDhW979bv7x9Bme9CN7Cqw+Dh4SC4E0PuQ4uY7Ao6ZOqBMbMHe7F4F1PGVynQaV8F5GNsaMQwI2F6VbomUIXrDWwRIlO6kLIgWTQNSJXBLr3JBemMSQdiDoOqRq6rgMd0S1hMgFVXcWH/ZJlUCIo0Ib2sRZd7I5GmYylRac1hJZz9S8oe1IngRnxWunhkZ2ZbonJjZXjIHAduk02UgowYe0qPfBNJB+gXVFZKwjkkFk3EpgGhK4PhoWVQLmkRZ/L0yaBxhMO4GZlgTmE3q+QCyhodFaJtdMlMZtGlyKqz3hJrTUqXEfhkSbiD3TbDAhajK2sIIW3rxbOQnD52LgGokEJr+AHSx1xFfm4Jid2UMhio6xag9M4kP405VsAqGwm5E8wV5RCzySxuvnifc8KIS64LHikgcO2BiZcjnRPFBWYw4T73wJfuMGTCLHbqyxowaFyB6d2Ebg7a3TTmudWQcPQgHExgSAjCQjd0Ws89JV5Ln5lrdaxIIAAbGMShk3cauIR7LMCB23QmY0OzyM3X/1yMUCD65n0EbDQAOhRRod3HFP91yHzm0tTHoEZNBVU2KvHarSxVECxQ8EKipCbYKq8UxOaDrQg5KqQa/0qCSfaXvnvFWSCKzGzRZ5OIPWfeR82oRG0AhLXrieF853Z1QDSTLF1jG+jsJ2XrnrjgrgK2rDw1G90wUqgeBKam0gxzUQgfNaeLvAxeQcm1NLwxRS7Oy98dxF4EEEiQWnoVyOiq7KaIzYjPgJsXpfn5RRuSaO75UqUJF7f8YWjMM+PmMmRtNADkpzp5rRfULcqZbpupMcug60QDfFqrOLo92Yug04XXpK1YUYbOR37hM2LuNnqq4ogRQblQ1LgVYD4p2IYL6TaxwYf33KuWfSApJWzl3G6L6P7NIcErM2epgovXCqZ67mI9dH43TnPN5HsFl6wKwzhcJqGe/Dj2Rhh9DZSxw01nBvW646/v2hDHCeJ+Qe263uBHEagshY5zngHsfP+HzmrjTO88YimeNyzXm/oW6NOhWWiwnfhD1AjVCL0yQSgkFvFA1MPWHecB024S4QNBBCAA84Bbc+8ld16A7QQRzuDqVEJAyUvUhAfdBl9V7uF+N4R4TQ6R3G0wJwYZiSv7azwteeqSiNW8t8pBu//pHPkn7DONbjCHD8/OucY0Zk4cl0x//1t36Tw69+nHN6wqM6IVW4DZETZ/7yp3c+/Fe/zJ94/wXXX/8cFeVTb3yOX/ztW7btWU6XnS999rfJLzxDSpGUFpJGwsPE/MUT+TrgKXAwqJb4pTdXfuC3vsirf/ob+d/82J/m//Y3/i1fvH2Fx7/+FS6/+928+dZX+PTnn/Kl/jKvWkeiI7Xz2eT8u1/6XX7wu17gR37kL/Bt7/g12pd33vsN34y/+4K3P/kJOhtMM6+9eMVy+4TPra/zhy8Sn6bx7895eB6aMUVDpzusXHBu8DLOt737IfH6iPigt33p7c/wT/7BP+KHrr+Dd/357yUsierCi89/Ha88UF5/KnhJaJhpeaN6ZmnQPHJKToyPSW0hdOEmFroqq2byvWJcAkQpTKHwdAeNmSwJc8bUIaysech2tAVKzFR1gjudCdHG1OAuNiwM77JrRr3Rk3GbYO4wW2PnnopZBTt0QkujwlQzJSvmimyFmIePpJQD6DaCeaJ4rCiZVIW9b4QciQK7TgTriA8qXNWOxI5TSZZIaqwmAyEeR4fcOqPhkt7ilDNZhFgjwkTqxsYY2fXkpCJE6Zxdmb2jITLXh8PjMj0l10AySOlE351YFzwWSjB0PyA9ss37gGJtB9J+QYtnbH5Kp7PUmVATJXRsXkHKyA/4TLTA9uaZUK5pEphMiV0HpOccmVLHLGAhID2iuxB0GVMjKagbp+WEauZ26qyxE3ZHZMI1oPkJtS7o3RWff6PyvuePrPaErBfEtJF7JQzw40COU2GDJvD8def5Y+X1U6dZGzp2hgskErDghLDxpMO6RTxfgfUBPtJAvddbm4ehBQ/CHI586zs2/vUnh1W45gZWSFUGA6UdRxOI26GYtmWgjtOo0qpDi5XnLx9yPUNZhZ6HC0ZExkTElTNGCp29Gue64DIjVkgaqVI4F+epVS5DR9xxyYga0SZCnqn6Bscc0KVR2bmIF9zZqBgH7xRP3G0J18AtmXbuTGysHKg6AsaTT6R0Q34gEM9MgdEEoFBISLpBNbGXSlYlblCko6HSHbJNaIvjMoBT+zQe9C7s+oi1JNZb5cXg1NbYdORX3EEZq4TDxUyRgPXMKRmLOfhxBPl6pbAOaBk7DSX1mQlhVe4tuCOQGPoCeqKLs+p+n1eAy2LMvWP365CpnYjMVB0AtkoHjdSiTFZZdGNvSvQzd+WSzEBKK4HVIrk1onSqjEqpuuOqnEOg9MxSjdxXKpEuDzGWkSXzyGKM5opW1I5kNoqv9BQozZhFOHfo4ZaUC1JnWoAtJG4z7BWOurNRuZiOLLrwxrkxhUHSfLQVTDPEMwdz1j6kbafmbK4kO+BeaH5LYCIrFBkI7u4BH6kF3IfDJUnFznA+n7ALozXFZkHFmY6RvXXqwUghkEgcVXEPCBWxgJkzxUiUTrFO7xOC0XohhSN9d47HjRdS4I1bGQvyVNEa72Xl4/KkJLqPtbL4RJSEM3ACSB9rIlfcI4bhNtqK7g2zwbL4Az1U3NVEEOMuNGJTzr5AUlyUGi7xbnTvlP3I7a5IaHReQlphV+eyy/3LpfBhAr/+22f81z6GxMYpztR4ybE5f+XTn+Ov/b8/QZDAFcqiG7okno/w+KKyP77kV/7y3+A8nfmCXvA0POG//c3f4uXzZ7FeeJyuaL7z0fOXaB/+MG9vT3lUKo/tltiVt+tTLm4TFhp/4wuf5Oofwgd+5Lt437f9Efq3CU/PN/y7D3+IN+8moPLw8Ao/8uf/J6gMQGavt/z1v/dP+Ni/L7AqRTtrh0f7zMTCHB7zggnv/c53YLNQ9ls++rGP8vd+6kN85asLH++f5C88esL3/8U/Ac9fc7y64j3PPcvnvnzmy+lMrFdM287GJU+mSjThWJ2qR0KNMLVxUDDDLA3zoxvWHXbnuAs3CjB2yCFAsEbR0cKJLdMksVtDUyG1w3jx90QIG8/0MIRJ7gTprBFUOksPsFcsAjURDxNRVtIK5yCIdjxGXAOXtdBFOfuGMCZcxJ0QndTGWPCJGxdqw2AbwjAg9p09CKVtpN/X1I9OeAlAkLHrs5Umox42S6TvO6rXLDLCaOKVU1AuxamSWArE0KAnLG3QG12O1HBC63hh9ABTuaADxTK9J/ZjAZ6S2jBm1sPOrieW85Hske34Nrdh58JmDusFRKOnnd/j2kmZUDmwrMLu8IXTNUWNpB2NK3c20CXlAdxcdKRVJhvq6nYwYk+IOeZDwJRPC6KJS3t7CLqmjtQT7jPrdiC4sy83fPJx54/umQt7gFqi7g1TpduQWyd1FjmAOE9cWPSKb5zhrTcb2zSUldofornQ7UwPTtKFVs+8bSe+LvRxO/XhiZAAqwWSKZ7G9Ozcb3nXyxMvffXE62dIZ8XTEetKDxsx39B95kwY4Vm5ny7YTDRoGtDS+fZXInHvECO5G6sO6JUSRv7DnBCF26dwsswslaZ9BE4tIa2xb8Yzl0Jvo6pY3VE7Y30j6jMc0h1dOpMcKLoj6pgZKR148viMsVKTEGvjpuUh3lK7v+UJLo3rnnnh4BwM3nQlSOfS4ZyMx9vC4pk3zydaN27TBCbgAW3gHU7aoTpNdlLKUBw00lF2CXz+tnN1mdC+4HlwEBoj3Ns88exVG0RWhSSBTMDsFtGZ4JVkleoT0tIQUAVhrwdCGzj+GyaWWrB0hxPoGphrwDnTY6fEZaxmfaxTtpRwiwRfOWvG+gjNEndiCxCOCGeWGkncQJ/QZaK2SCpnzr4P+RvLoPLSQQ1MuFQHmzm3fl+H32nN0TzosV0rEjJRF6rsrD1DuyKWW9yEcx7ZnWgNKUes7TTvxHYJ1TCecioVONDE8ck51p0pB7ovnG4ba608++A4soCnO5hgl52t7NyUUdN2g+bCZoEgK4ITwsBb44VgE2ZpHFClcnfzNhfv/iaOeaI3eHraubg6YE0I/UTPOi5iS6btEQkDwIc53RkTLoXeV9QN1Oh+QwjCe154iR/7phf5zMe+wt/9xBtIOmDuTFboEhHvzNFpNVKqobLRfEjrRBPuM+53iIDSSR7Gz8RHWyRqQ1n+YA8VFdj7TAk70SPBhXNzEonVO74nergkSqFJJFpB68ZdgGyDN7+L4DUwWcOywfGCZJlYK4JwaoaGS1QNSZ07r5RwTamdw13m9ad3XGvi05811jDRdOGNZPzdT53Jn35r0PbyBczwX/z2m1z99hdRdR7X51nM+fBsfPkf/wIalS+vB95y+H/84if4ni98jpfe/TLnOfCRL3yRX/30U17eFn72Nz/KxZMvcpUnliykNBN148lpZdsH/OWmQ+ppwFzSDbnBu+I1l6895PbmbX7q536ef/FzH+FL63OgyhtB+FsffZO1/Czf/xf+KId3PMvzLz/P09/6PGW/hFgpEmi9km3nQMIxQnPQzurOJAkRx9LGRiT04e/oUblL4wacKGwtgjSyKl1HRdWis1tFg3Ds0whqhk7syq06FxKx8WtF9YbLhvRMU6GFjOYzgZ1e702IQVma0dRISalt3CKSBpLNEDZ6LigTzTrVlRg3Zr9AOHOwQdyLoVNDJ2oYZD4No1nATjAhmdBgMCpCwCX8fpWKMCpeaKN3ZwnKYd+HLVbv7ZQIiFBCZFoj5guxNqxDjE63Ud0qsmMhMJVpUEPjgdQTDWMPO/RMaomaOxIDk02E8yVFG0hDtSASmfcjWpVdJjwXHvUnvL6vhDQRDTrjZ3Tpkblm8nkjyUzRRsSxOip252i4DUcDlomhsJ0KvczkMGGh0HEyhrWEaeam3/HWesN8cU1ASQHECh4OBGY64wZoOdC3WzaHF16L5NcL4k5kGGPNKhHoBUpsxJr48o3wzkOgu46QZtwHGtycqAnu8ekBpXvnO16Z+ZnfbWzJMbsbvyMWEI/U6iSU5I14X2OuVGqKeG984J0Hrh84e9kxJiYZKu6CgyqhOUEDmPHopoK0wWfQCfeBwkYrT/fGc1eJrisZBev02Ek2MhyH60LUTOwJC0YugaoGMfH6eqI35RgDe4GnayQ9E9G+UmzwCILshEPk8pgpstGkDS9KMOJ+4gE7Vq6pNeDeWdqKuNEYOdgSM90LbpB0rNRcYNIKZ4j2lNM5cbcq88HIxQl9IUnjTnYsKQ+XxKkFigSWtrKnmeSgXji5UNrIulSpNHUOzATbKTKmt4uvuBiTN7onencqZ1Q6rd5/FrXBHikRLqQT2w1bEC5rwc14ohPRInec0T6NlUZwJjqrFiJHytbo/Qkne45j2Kn3UDt1GYK60TGjt5XmK9Qx7yn6LM2GtVc84FLR4yARB3YWKXzFV3qfmfsN5xSgByQoRSqhZ0w3QjfqnpmC4W0f7KAWODcl5kDInTAFqleIQkiR5keuLjJbLDxTI+Guc7ffIZaZQiDH+wad+7gQNBkacd3QMPD77pm7Jyvukbcfn+laUSayzLReeeb6gmdcOeFor0PUaE7ojoaAtz6q4K4EAjsr6b5xQurs7cTH33zEx57uFEnQChICt9IZruxxMGnS6SoIARHFaIOh5CM/ITiYggxgGzIOzshAx/+BHipKm7DkpB44kGhtQwALCZF99HPDuEUkbrB+YM+FYIrZgjfjmHZ6gqKK9oZW5SaM3WhsY//3pHcmh0DEtNJLIPTAOSrJnkF855yU3ZUoO9agpsxiF/Qo7CLM/YySWJuy2zCYqhYe2czTm7Fj2nViQfiYznz8qzvzFz9HVqcm2OySjyv8P3/xy8Rf+SKXwXAaIWQOsvLGPnadxYWVRJsauSrJE70J3/Dywlt3X+K//skP8ZFPCFt/iccqQ0ftB/ag/OVPv8Wb//V/z3/0H/4g7/q6hyzhEzxNC3tTeg+YjIDPWY1cHU+Bvc7DYtccC45J5mCF5soWKkevIIENo5No6cRNVCQqaVdEIXnEbCc7eFX63IkNRCuHprjV0UpgiJcCyoGNYpk1OFsTZpmYulBd2EPBojL1OMbLVtmWAdYJVimaiH2IcOY2QkpiC8ELygDuRJ9IPbN6Hm4PmWmhIC0TTai5Ui2D7TR2shwQSbh3zs24ZKb1FWT4GapkXO7YtaDlCKljOkZ+2p8Q/BJLKzUWsidc2xiRYljuzDUQxdnihvZAN6NOMHfFywV9Mlxu2V2YyhG1TpzPdPWxl+1KRYhzoXImTcpnPr9xus9CdBFaTYgmVvP7RLaDRaLNuBmuBkWYPCE0LIDYTo9y70gZ9EO3RvEhYwt6JmqBDh/9HLz72+6haHoPsvEJpQ5mQAwkDeyrsrnx8jHx9Q+cjzyFJgnG4H68zFPFuqAh8Pojpzw/zKKpN8x3kEzWidYKILgkEpVNMs89a3zza2c+8sVA03SPMR/TmGQNJCFhjFubJqxVtDdeWALf+nJC94EgDi64d1yHydVEEFe6CMUab9w1gk/geVyuvI3VAMZNd4RI0MpeMzEO+y0O1YV5DkwWcauI7zQd7Y0eCrd3F/e5kZ0Y8qBshkQ1Z8JoEtmZ7jXqmf22MmukSqPrYYCbXLhtdWQhCON2bJ0kRnQjKaRmbBhVlNwiqxVaMFp3ajfiVnn7buY9i4BvmJ7BhcVmvDu7LPRkIEqVjHXBTAgSQCIqOgimNvbpRqNEw83xUCh2GIwCn2kUCAu7RJJBMGN3oftCDI2IspkTfawwqzV2wlCfGwQ74h5QvUNE2L2OKWa74/b8mF47Il9mTZGogSiCSRwZKYSkGUuONZCaaSlTzNA6vDwbdfguQqf2yl5hUsi6s4mhYuQmFDckGnNXZipineJhQMBIwIkmSpSFrTcuahx/ToBMuIdxLdyZIR4JdEpQLi6h7DMtbFxeH5njMrgg1thqYtt3YpqwPdP7Tu8nPMw8uXnK2TpznolAipFVxmFtOR6JU+K2VUgJCYJYRJQhTJJG8yFVCyr3ioxINCcZvPXY+ZlHb3GzNUQqWRPahlFbQkc8jIOGVwJhHOD7hgYlKCCdbgwPjwCqWLcR1HS5d6z8AVtKJRb2mLjsjbNBYUJyp1ob45EAaoexI/YFyz6StjJ6uz0cOYRbijiHXXmUEpN3oh8w2YCN23BgZtTJ1rJTU2BLlQsNuG+YXGA2ApG1Z+5MR+BoEqwLjRNdIo/7EfXGta6IHjlJZ5dAcsWtEQJEixSZMVYOTbjThRbPPFhhm5yVcaN06zxpGcw4K8w20cxZtTD3zKGX+zbHTggHzhb5iZvX+Vt/+xN86uaKF+JACVOFJFc8TitVjbVm/vqTM5/8//0Lvvm7HxA1Iq2x9MTJIxKd0oFdadoR2agxMvdEonA24QjD1qfGxXAo4S0hvtEt4T5x1SJPow2Cnqyc5ZIWLmj+FgcrpDaS1wrsujH5kRA2gmXUhc0Tu5yhwxwqO84mis4dW0fi+bo2nobhZJM5IHVDWQg0vDjiCdFCDQFXZccRcY4WkSpoFHooBO9AwLQOcEzoeGAwNHxjQUHSYFqgiCYClSoF620Y/+i4D723Rwdj1GEtcIHwlImKEWmEFkj9yCndkLuwTY0uGd8j29zZpZHqJaKdKE+hTQQ6LTZ2BbWBIy6HQk2JtlWm/ZqUYE8nSlBSq1Amfvd3M2GLwzHWEyGvOMYkhXBQahiAr6b7uC0ieBySMKnp3uVQyTYx3S1EMzQIRTPIhtpE71fE6niC3z013m6N52fH6kL2K0yeouggfsYDLVf6bRtUU4u89pLyO4/rkKmlnVovETW05/EAF7jbC4/XiYeLsIeF1AOSGOwK3dnCjLrTrCGSMZn4jlevqOenfPjNxCE3lm7QL7AwHDAWGqUJMwkXyPmSb35/5kFMmHbCDjU1OpnmlaBGrsN9Y7VzQni6GylAMUGlM8VxeK4k1lvn/GIiIUxxpVoguYAWpE1kCTTZgCu6KYSOWiY2p9W3iTGjOl6c5z2DK7sbQRIeOs06z08zR+C232dI6jj0rKGNrn/v7NqglwEuskwLCbEVWie2RCQivrHrRu3KwWaOTTm0EZB++8lT3n397HCd+IwLrGFjNiN0CBZRP+NxIVJR3SnMWKi472w+EYIwu1LliIUVRGj7TFoayZQkTyjqJO9MzempM9lC7ILoia2Gez7CQtVGZUDOApWZE8NSZUgbptkW4a4Ilz1z152yV2xd2aMxtZljgklHT8XqgmgjLoW0O/up0sVJSbG9QZ9IYYOe8ZQRV/YSqW2jxssha+yPR+W7NbpVZgO3nbt6IE8Lsd0QvdJVmerIZxUF7zcQMs0SFiLVTlx6QGUlYYhuSBByS/S4MV82zk860SGI0bSQ0hGJjd4rczqyLAnFuLlb8Hbi9PSO3jciyuXxgt0K0gwSPNVKSIm0JXJYUHmMimLWBsnSx2Q4ahsVahW670iMNIMnWyXEyNaU4jNZBQ/7uBwiQ9MQdiBh7UDXu2GaJQ8fiOsgfuK4FwKC0UGgy4C0fa1d0a+5UgqVy23DSCPgFzqpCtEXZD9yIYmjnZhkZwtGaju53//jF0HDHVuH1pRHUTiIcI6dte50zXTLZBrSK5spPUXUYapKr4mTHdC4U4Pwpl5wEwsSIGsnufNYInftkmDKkcYyOWe/4tYDNSQWE8TqkHJ1YZUJmiBN2MWR4izrgacSuHPFaVjvsDZaG7yAaTduW+TGhI0xvTgiSFfEAqvs+GL8xtPM52+eI2X4Ugm8ZTNVEnfibGVMfaoZT/eZH9/g//izj/j4zZEO1NBYbJzQF3OOUx8a7L6AGz1v3IZGD1Bt3EKNhbeY2LSgy4kaAx5HEwULXKlickI9EksmaCPq2DVOueCpUDBOId+Lvga50uhIa2xk3ANYxonMKrAOIqJI4VFcmGTBo7L00fro1qniZAJ5OuNEap2IdSZ4Iu8zwcDiGfEINrN5puAk66gb6jb2je4kDkQLeK1UINpO3neOngg2zLEukdwWUp5JXQk9svedEDvqlRYaijFbp4QItmCpMpFpLaHSyM1RdULauGgzs+5Y3keAzWYsF0wLh3rBcp5pQGHlWDuLLZA7Jd4g/YTvZ44986mvCF8sME0F8gqpoN5IFggeOfTAsmXmErhcJ6bzzHGPzPvCXAJdd1psYw8eYD08Hc2SlulFiPWaUMdkqi8rEcNu4MtvrMwpIrrRaEz9ihISG7d847d8gLgJrSg9ntilM4cLvE3EdkFanyUqQ0UeCruNsfO6G5953Eghknsha0elj1wPC9LHQ0k9MIlwtJ3ome//puf4vlc6WqaR74grNZ1oyfA6jRWT7VzME3/66wPvX9KoQvpKTSvBnCg7QRzRzJ4m7uZIUKHcNE4FhMIcFXGjt0GLTB7ZSh2/UxguQ5BkQSgkPFTEEq6ZVW6JMnD3FjqrOOeSMPHBlQkHzjVy541JJmacbsolxtW8c0hQfKOIk9XIaeNQR6um9ZEXqMzQLlAS0TtFO2YTdySKCFhETcbvBsJtLJz1DCHyeDU+vzXUKj1sdNt5UCLukRgqS9zIIRG9ABNVDoSuSInEPqEM30gplYPvXHTDimGpohqpQLNLtD+P1oE17825scSdnNkJkBpdCsQV9YK5s2vBu7LUA8mMRKVrxaKhpXOoK5cLSKuYn+gKW58wV1aJ7Ba5Ozduy4mnduauVSSCpJkeGqwrs49WStNEdyNnZXKlrB2rxjbdcAiGtUu2ODNFZfIjJWWmQyT3E4vejme9GocOiDAhSG9IyLRwiXrixXyLifEkMKBmGuk1UboDhbnA0Y8EZjYbjYuDH7DdUVeofQRidad0mGJi0cB+OiN9BM9bjaxPoVXhdIK7u4nrwxWXeeYQlWQBc6PLdB/Cz6g40iLBFXwi1YT3OPI53fC+gxcWFbycCWrjueiGUmk+YxbuIwoKPQ2SqTdEIKiRrDGLgikpZNQE7SNP+bUeF77mSYV6xGKmGXSLzNLRdCa1gYc9S6BoJKFkK3RxNoVeldQ7MY39oxPICL1nCDMxDorebMrWMmt2LtpAzKagNDo1KqEp5z749UEauR5o2UdwqwlqJyx2VA64FFjBYWh7EZoo1pyWhb0PKueNVGafaX2D2diakplIdYybblURmQjSaN5xVTwWLnel9oVCZZJAkEKPC8F3QunsKuzeCSUw+8ZZRx7g0Cc6B1ovbOKwByRe4smhVu46tL4M0Ek0vCbW4pjN1GiEUKgGIhMEp/Q4XryhEC2g4YpiQ3+d3cnu+GFHZRoeBjKSTiw+ELI2B7xUqhzJWrnyyhaviH4e/PoMSxkhwx4gqKNVEDV6VEKNVB8AJ5eAl3smQVA2D0TvQzLUDqN7HlaiC1Fmgp5oHqErSSCJMreGulLv9/GK4kRSM7o0asx4GDhc8wlJyq6V7jOxn9hVqBEG366gEkkYXRTzRBVILSDRiFbwesl5hmQrc1T2LqR9oUxnaofcZySuuG7s+yUhVNZwZtkP0GdulhMWb1j2C+J+oKUzHs9DBFafQyzyKFf+9ZffJBxH80J9QIXwafTwSfR6ZAk3VBmQqCBgYdgUgwW0BnIbo0eRiO8ZkZUYR7Zk4ky0TmoB8xkLZzgqn30S+PY+kOailaJnqIHeL3nj9S9TgsMcOPSHxNI45E6eCqWApIxIJmGY7ogXHCWGyOce73zwVWEKivWM9JUE2O9j4MHN6dx/bXeqVz7w/gPPPyd8+quRr94ad7sgqRMErjO8cn3BO1/KXE/OuVeu7vftLhGRSmgB88FICHGCeqbIBZ95Wuge6VSKGQuJFkaNuxLZTOhewQI1TDgdzMg6Ap+bbASJLCgaRuVSXNBN2HonaKLZOJzRd0q/RsXp1vGgSL8aToxWiWG+B9utBE0E36nW8e5UUdwiizd2qYNZI4LmSg4b1ocEK9SAWhz21t5Y3ME3vK2UJ+AvPcdhK+yxU6LRrY6nqt9Lrx2CNLwHlIqFRgs2nr8WKNrQMNpANCN5Ze4js7XLjkjjHEZu5lASUW7ZNVLFSTa+TjdHaWg0pqJYOGOeqdJoHka90gOrCQ+XK2K8JPQnTOFZVrnlerCfmTzd48J3aNBKoZ9X9LkX2EPD1w41UrKg0XAzTM8sPASpdNnunRsJCYamSjRFqnLbV1CHvtCYWU1Y5Aa1xk1q9AYXJJpAYAjuTDfcZ57hRGhQdKR4LCw8PRW8Fy6PRk8zEpx079d5cjpRp8jS+1jvxYD3cbnrZoTlgnVV9tK5PioS9yFD1ET3IReTY2N/S0k5czEfCTHQm1BaoW5QJOJxrKSrdywoKKwGBw70rQM7TSo9zLQGeCHFiPlAgFfbSXSkQw4zzXzUer0SxPAwkAtCxE1GzbR2pC1k/QNef+wyRFEHM2YSvQXu9IpFjSI7oQszTtXKGgLPWKH0RvY2RjE2DzWrNHxaaRa4WCO+OLHDFjPVK7M6JkZXg7bQZKi23RtqETWjdcGtDdiLOL1VDiliRM40kihJQUKhVdAOWywkEaTPRDcyJwB6v0YlELeGp8hso9rnIvQ4fBfRBPMDSzuPk7l0QjS2Fthk4qLfewxI9A65DXJfiNs947+xu1B7JrZKiEKKgapgnHGD3mdCMgJlYJfLPZDKMylCMie1mdqdnCuGcZcVR5m3yPjXFxYD84r7TPeddHeHPnhtBNtsRSRQ75GrGme2taG6shMJLUOsbOJkiUQqm42us44ADbOMm2CTkaXIMuhvzQNGwrwQpKNqgBB6p6gxK0Rf2MIIpNUQmDGmEllUxk49B2YfRku04RLR3hFTPO6YV1Q60i+J6Xa8YPtwF6gLcwMXR73eh/6MwNiVq0fQSmyBlhlo6CRk72gNtNCHx0Wdc27M20Qk0CSQa6ag9DRkR90i6BkJG8u+QBdK2mhpo1tE9mcAR6bGRx5/lTdLY6oHdhvrvuidqEZRw6fKaV4J6YT2eVwGRHAEv9eqW+xUFbYGFymNupk6sOPSMIucIqPy1YXWA1km3rjt3HbhGVeSxPHwDBBj4NFbr1NRmrdBjpfOMwflpUvn809AfVRnrSvdJ+YamWJhx3lyO/HZN5VvfDWwnY3F8n2+wVEfVcyqw3Oj92NbJ9Ct8cIzwstXiX0z7janEBAxrpbAJOPzZr0SQmTvRxJtHCItj8JEHJ/P3jqHnriTzlduC52I+IGoRug2iJgCYp0TgZsaeCEb3QwLkck7oTU8zhASjUiIle47akLG+MpWqVbZtSMWiQGkGfvuHGcfbSJRtl5HtqMLgowJnE2IKx6daVWe7I3ITlKntYZKQnzcJG2APgY9tTsxQm07zSI7Nj5X1nG55CtPV157MbDoAaNTdEWDIhW6d4IMwJX3QfHcVRHpRDqNRm+JaKPSTDcSmWQLJTSsO4EFvKBEGuOQvnRjDp1iAfw8dPAmNMkEV9xX9v4MkQZiFA9k7wSDiBJ0opWVlAOzLeDQ43msECURNLH5NsBgnmkmlLaTfGKNnavauEs7sR/wXuhkXBulzfQeqVZIPlH6mdAKzoEqEW8rIQVivp9GWMYksalgDbLF+3lzQNsNcz/gYUy/ehImhp59x5ibktm4Kbfs04EHIkyM1erWA0/XnbKuvKlGMBvmYT9Qy/me/tup5cx5f0pbHnC3Q8gLbRdyzJDrQHvXSrUBH5ymGbIMuq93anOOl5Hc75UPPbGtG0kdsx3TgJkSekP7TohhGFh9BIcNR7vSZVDBmjHcM3SqMdZxgPeG32exdguDdeEN6V+bUOxrXn/EOMA+nZEwP8UOXVEvA6GiiYiQ28KxRqrNdDtAZKRv5cQshYmC1U4T5W5xztq4dcYIXJVzG9zzVCOrFKZ+phZIAbIILWxDDS2V3Z3QlWNutGbcRKOxUczYVVlt9ItXWdjkAPFAwXEV7ixxbonTbDyN40Q6VeFWE2cbfgXpiuwFb0KVwhZGGK8wQElkwzGKRCCCBWIQ1pwp8UjzwFshciszysyaznjaOUXlDpi6k22i2ERXR/uoZqJKtYyGA5pWmhR24C41ZNqwDm0PPFt3rtaAx4ymhoQhOCtq1GkjxCc8ef3tERyKF6xbpLFgjOBW9EA+OMcpE4CcAiIbz9BZ5MS8O7NCskioGeuN2AeaOjbIBs12Ju9gO0VvCFpG+t8b3ZWipwGG6Y1k6yCHsg8Zkc0j35ChaKNZoGsieEA9kzwPRW8w/D5gZZbpYYRIx9m7E5LQ/UCXTOh9jNcZnhPSjIRAIg4boghjYniFhEaTO2Ci5jJAOIw+fm6BlsaNUmsgpKEQTj2Tg7PPndyUWCKSEk+nFWxm3i/JyUjx/8/avy1LlmXnmdg3xjys5e5774jIrBNQAAmRIkA20KTJqDbJdKMbvZseRA8g06W61TJ105pqUU12k2yQBNFEAahzZWUc9nb3tdacc4yhi+nAreqi8irMMs0yInz7WnOO8f/ft/HRfs3/+JcDGeeJ4bYLTTo9G7Z2Vg9yV04D8nihmKL7Qt1PrCNYRiL3C7m9UPbCk2XU4GbGkVZCBzoEdAM/kP6gR+JA4+228JNfZta0YHHM9HbuLGnw/uU99rqzjDPiwdCFg84PPzxNDfxyIpNZh1FcuJWDT3nBxLB08K9+tEEEusBQx9MN6n06PCLjWpAEqjviAx2DNRRtkIfxUp2vnpQfvFv47vtMSnAU5Z6Y7S+b4UCXQY2MpgxxUOxAxEgGehJ++fnO59Zm5TcKOR7TTXFSNvY66GzsfQcZWGQKQo/OkQrNDdxQGsMSIx7hNjlxP4TumWrPrFZYWdl05doBFqI6K8Yig6R9fndTQyasmjQGTsXTTvfArEDM6dsuhmUnDyes0seCjhVJlZ2DexJMMoTQbIKmkgZvzfnV242mB247SwTZ8yOYqvTYoe4z+Jsq7oXdKtexkpj8kVoOYOfuM9QZHiymnDzQ7ogbQ5xhB9mNLQVjXx6XgZW+TG5KckVHQiVz0lfMBR1wGUE1I4eQ8sJYFg4cTZmSjEtMS+YpFZZlobiACgfGHk4NQWUgVbnUipZA9/Rge1QOLaw1k8YBTRlmdAY5F5IqMvp8UYZBg5ozpoL3wW1UWmREG+QrOCyuCGcizjRTGsxpKs5hBh54vhHheBd0g1wOTO8z4CjOHsZmTt0rGWUpZ3R3vrzubH3KGv3WGd6xtnFKg1MuyEl5qkp25fI8V8yaAs8HnvZZG9aFtWSKB6diLMvkW1yWQqzB8nJGJXFZlPdPSl0UaiYkCDMYikdGrUByXBshQviGxcAiUDEYOx6O5CkATBoQgkoh1LDfENP9m8OvLNFl2ghfYmBaGNm5x4LlyvNxQ5dBG4a0eRtQFcwrR6xca+XMFTflYl8jNl/ST0ehZSXFTjSlpCcszXhJuHNIkKswpE15FRdcnJJeUBpvBMXO0xVwOOc0oVLmE46T0sbuC6ufKHHlHMbHcprJ2XJwj8mml76yqZD8ylqYoSwT3ueVzk7xivPCE05TuPppTmGi4Y9+tZPoUVl6Y9edljOn7o+bfCCj8DFnnuJOCefXcqIKqO+EVpzMMZxTCN03hiakg6hzWpzUoOdCykG0xKd8UKWzSuMIozODjaNlqmVu/l3W08L49C31ww/I6cCOL5zrzAK8KizHhQ2lP3USwnq8p2dBNAjtWCh5VKhB0XnjcTk9HioL2Z3h0zqKrlR7UPDCWEWJdKKJzj6KCe9a4p4P9nmNxLWweWE5EqO1uZJRQ2KKdXY6kuafJ9Icp4/opJh3L+kVyY2O4GKMCPbkvNfCsE4emWuG4kJ0xdUnIbILre7ocUKqkKRw6mei7qy9EJLw3MhHYffKka48dcXCObIzDJbjacJh7AurZBjrJHPGlc9F+a//rfH54weqCKkYt7Th0jgPpbWFqylPNIplFtln62BxttQm0IwOPg9cWwwudsaiEnSwTrSKy0E7nuC8cYmBe+eIldIyRz34yWb84bGiFBZ5xzFeAaMfJ6iTKJgLeFxJsfDDr5z3fx384rhzJ1PK3CWvp0w6OloEl8Zrh3/71yv/279baNZmwDXygyMw5o0lIPsy20RS5ji2JvbRSH7gUmijo5JQ6TMzE47ZCdeGpk73ufbDCyOdHmsMn1rpUfl3P/6C9swlGUd+Yz+MohdcjNaVVQcag/26Eh8Cjx0dZ0wL5kKRA6US/UFLqBlvTmfw+jZpobVMx0ixj5xR9r0w3oP3xsJXiB8zj5MyagtDA6uDa17oxxveVn51vNHINDk4KFRTkjSONL0URRQvgyKGjxMiHZcNDWVaHQZn33iyhR9/+sT33r8n3OmaWbsTzEBz+I0xViLPaa7WxHo0ku8TVEUiyTNVn+jxkZF2Qi8cOGURkjXcCyfvvKixh0F7YhTDLFhHYajTcqXaRmhh9E6wMJKhtiL54OYXkOCU3zgd2wyH06lkruugyoWVimcFNWI3ajJWcdKRUASNzvV2YCWR08CtIHSei6NVSSJcngMbL7P6LEKk2WwYAYclDnXerxs1EoWFIleaXDE3kpyR5BjG0MHBzr4P8gL5rFzTzsuDRmnpGbONYTorxHwHjStqCUE4r/Ckwq0daAh9ZNSNhQy9I0udDI3bgb4or9srZTmxeuHND0pzLpcLT7XhclCzcJYTxwFSHFkTfS9Yq0QW0nAOAWRhScJVGyGF57UiI3jJFzyE4QfbtdPdOFXhvgsemYm1WqZEzQcOIIH5oGpCTXHvFJmyMqWi8ptJxX7jQ4VH4ik6Eso93Sl8QK2TerD1AX6h8YbYwp46eQykOvsolDBOY5K7PBl3/UIdTgLuAuaVxkBrAxcSY+KJ0Ykl1o3uK0s8ZCo2U7knmWKde26skWkRvMpMJw89KCQuPVOsEIvT1dljZTEIdfY4zdEeBtw4RFmsogRJBikJ3YyVxK6GJaO1wUKaUCFWGk7KnZJmnXCRjVYEH4W1N4Yk0gMy0sg8NZBUsIcSYKhSY2Uchb206eLoSk+VdQgnWbj7hreOW8WpDN/JD/lRcJlIaAlEM8PbI43vdBPk5UzavzDaDXuu6HYw9kTLj1xMOub++Dr3dFtR6jEPdbijeiDuHH1HNTECPN3IPTNCJ5BG+gSpxIpRIM06Ido4WUWyM6IyUkfVaeUDH2wqnq+hvN6gLYV4rtiYI/qCYDKwmF88kcSQNul7OPjCEJ/1J4eSCupBL4mlFzQ1wic4SxB6NlQTIOypzuCmOpWM6UF0aOXGoY3z9g47dQxnEWUsV04+SHaiarDFIDdBS+eoV8qhpPszvXbIO6/e+X/9z8Zf/fSJ9TLYNM+X9qgkFo5Qih+csqAL+NlpfoD2Wf2UTB55ArRSo5LQlicnoMwKYM3GKSXunucNfcDVnVBAGmWdh+Wff4RffjfxrBl8Iycl8uDjx5/AflCygc0qa5fG00l5/y7z+bUQY2Kdz9mJnsEfQKYw1lT4lz+989WHlb+zZJoEyWb1boQiZqgGXRMenZIGyQ7o8yEsSXGba0q0I66oTxzw0JktyaK4zjCKamcNhdFACikbf/bLg1+PnZxXDg/2ATWfcXFyh6SDvQ6sC5/ZkXhi7Q3RTjZwjrlie0xEMkremOuylHk7jFJntTBkTg42S+ytkkwxXbjFK2ue2Olhjc6OAml0vlOF1xgcKlgzahqPyr2zaMdljs8v4WQZbJMdS5agcgKc7FfWMJqs3BPzy3ELtq3y9bLTRqPlTPRZ6UYqKhXGPgN6BmM41CmmCw2aBTVDS52IxEuGQ8EOqFk55kCP5IURjibFbJBiBTZOXghlujHCKUkYvpOomObHerkjBqkXtjLrx9UMk4lrr2WQk9LFaGE86TP96ER1yqngcSLFgnCjJ9jVWUYwxDircvQFlTtlTfzOMBw4AE1G1IoCSyixOakokgdtOBp3smVGypgcVHmiRrAOY8mF49jpJpxFOY8y679izDDhrNprQMQ8jIoXygLfK8+IXHhuOx/frlyALygWmUUVXGj94NvtNle/p3f4EO4+J8HhG/BGzpkyvoO7c7WNz/eNZRFeToVlLhGxMdjGRPYXMYovnOKE+1xTi8wQMB6IKVsy8J2ny9cwjN0HT+sTX+4bS30EsPcD5AHjc0fThBQqhWCb05NHZOD/3z+/8fpjjDzXCdK5k2lx0LPSklPyzpZvHLGiqc1ELYpYYs2TUT5GZ/EF9fQQo6RHhWjlIkamMSO/nVWn3KfrpN8NO6ER7FnmXhDjLnB3YUcwVprAOippJCT6NCJyMHLjqAdujRazQYAE3TOnMR3yr/GoKEmbgbRHyOyQgUnnloJDZrh0T3OycpRBZEcy+KjcvdDTYI+VZo4leE1KtU6mE554nwcX3abWVzpWHwKsGKS0AQMsaNKRFNxt0LTPsKhnvA5CDmqa7Pc0pvI3ItD5KGP1gvY5Nj2XjtVgry/E6695QilpQas9KkUH7pk9BK1GypnEQZHBKI0LyiUSIx3z83RQTww7MyKzidG6MVqleUbsxhJvaO/UsVP6QbaO7jfS0fE9cewrqTWIA3fHcV7tW+jQw2eILvLUEUemuhIDQnUy6IfTs4IIOVZKKUAlVaeyTueC52k91ELkTJYzeVFOVFxWWpyJrNRxxpYEKNkumFYY77F1oQHSThxUIillFHYRrvWASPSkHEWIcaL582xnZOeXd+H//j8Ff/6rhJyYquIecHuaPJAhrKnha2dPiSyFegjanyjHQm0vlPuZ4pPpgK/oWAmeSP2ERiEfC6mf6CEQRkkbZ70i+Y48HiYRKy0Ft17497+8wrLP8WUEFsL1mDdARKZzYV2xHU5R+b0PJ1K/zxuLKiZGpBl4HeEsUeZDfFf+/Y+CHpCsETEQOiptwn8SNDke7aU2QVWiM5BKJdSRvJMZZCC0P351wrlgo0zewryGc1hm6Imhytse/OlfN7K/JwK2XDApmDniYz5P3Ci9oIexfdnxDocmOhn1+fBVgXBA5p+zE0TNNJxrP+hRkbGQyGxeOTM4Wp94eJsP4R6NnSDLmQtl5nVYiChoErofHC1IQMj0SgwRhp/B51RhY4KcnvoUBGbmocxsMEJQuRNhIJO0+svrgYiSiQfsTkkxyBIk9vlysdmgIypqippR7EQ1J2gckRleadNnjOfGhlLibw7igyIOckezz1qz1NmIkAMPQ9yIcZp1x0eGJrNQH1TRHUAzLo1AcAfJGU2FkRwsWFOiZCGViomQS2bJQV8aS35c4PppNhBcqHrmooaPBetw0On9xOJKos7VWHSMxs5BMiU91uedB4FFArEZnHZJRJr5mDBm3iIZogm3MyoF9Q5hfys5i74TOiBmbVPNwY0cThLhSnBaBk/PyrJeOFyJUI79jsRAkj1WlgdLmXXOy7sTQ2Zeq+oVfIIK39qDv5GdJImxG9frndfXV5pBpCDXgaQNGQPGhNdJClQOxJQklSSz/lzSNAKvS6KuwWmtlBw8LyfWpaKRKGvmckrT+ZHSrOVTfqOzwm8+qagbqxuDzOKFgZKj03MwtLDEAenO3irPIvRlkEzZDTQPPsm8scSRCT2458wHBoc2bnqCtszdK4k9+uzUFp1hF88U20m2IiQWGZju9EggjdqgFngR50tS9qjsRyXlQo8rRZUkzm6DhKBhc1yYZ6hPQrmlTNEzHnMtcPFCNp0BxaEc0VEOds2IKifLMyXNIPIES+lwatoRK7CXWf+TSmJj48YgU9KJohvFjOELyRP35GgZXMKJrtySU6JxljOjzVBfD2E48ydeZjyg2Iq70JNStLP4FNpoPuZawhYGd06nTFhl+/lPWH/4Q/bReDoS0SfEyXTFoiGROQO7d0pTbsXpI1isUgosJrwx6DKbIJiRU+IuQbHMqoNGZ5Q0keCAdKPzxAo8q3BdPxIZ7tuJsVTON8MvhUONpB0sU9bBiIL4BLeo7eS8zf1eV15TIqmCzWZQvb/SoiIKa98xdg6dpsroQS7C2IN7vpIjcxYhMCqKuaKysK870hbWZZ83uThji7H0My0qcf6G2p7oXjCfQLHwKz0y55TR3PnXn1/5Z/9p5e12odZtCsqG4KL00ulFiZhTPbtOVqr5gUpmsOM6yOnKXTZqPqF2TIS6glLYl0TOHU8broUWCjJBbJsviCrp8b3YSrD2lSjBj3/+xj/9ne+j6RXTBYnKsINyrOhLosUdOQrZOymcH36VKLVwEKglRq+gg1We2P2Oi6NN0ZPw048H/+ZX8Mc/rNAHnnTCu+xGEiGPzMppTpU8WCVzSzuqHe2BR6ZHnjhynWTUlURujtVESTei57neKoOjZ3LK/Ju/3PhyKFad1AUdRvIZDhYGVtvjpXFiKcrwPkONMVCt7OWKhJLtBdHxCIgWSlIsNo6jc4wVJZGXL/ReMctYUt7ixsHKmowilSFGFkNyJ9lgLAq+88WOmUEbG+2RnaCseDqIMFLfOSUoMkhM+NvQg1QcGcHZVjwSRxqcPbAYoI4CH28Hn9994FyU3gJNgfg6CSyyk7QxPJE0cffZGtMkkzrqjS4HsDAdFYF6Yw2ZIXnJCJ3cfR4WfHDEirljDLIXcne6NLIpI3XCLlTZUTlQBuL2UIgveIJjZLKcCJn12N1jviQ1470j6bHHlwy1sFhibIOdMptyGCEVZCNqp7SVIm+MtMB4puVG842sRovMoYmTKa825trFNtxXsheKZUg7R1KaBS6NPRnvfKAe7D2Ik+NxIRTacBrOugbPY+KxQ1dG7CQtbA5VMinmIUp04AK5ZN4XmbBCN8jBq9/pZlzu8HxZuKpyZ5IuT/VEc+PWIGTBhuM2sfrFjTNGZ6e7w8jIRMLiIdhINASrmbfbbRYntNB3e6yCpuTNsyAym0CSV1ISlIzIiVGM5IlUDi5roVjl2IzTeUUV+vFbJmourUBZONh5L0JokCWzjkG7A+V52tBU+MIBo2KxUNhJvvC9UHpc2Vfn7Cc+uXBKwZ3MyzG4pgApFD/wWGkqswpqHdJOLXAcO0ealC8fF0g7mpWjJNydVhLiAy8LjEIaO6kwb2ckcspY2nCv1HRQW6HowjkdXD3oOjjXztmYQ3YPTnJiCNSUJs66ragbSTaODEUquzWGwkusRBNagVxv87SOMTxz5swxnCGvmCWEBVewfOPiwt4S3+hCDUe9ED2x5Q0vM6vRLOMxdb7OQWQjDWdNymYFP5RsFTOn9cqhCY2dZ76icWO/fEXbfkH/8a/R7/4AOJAqWKzQnKdcaNHYErgK5x74CM4IoneuPdOLUk2INihVqZ7Z1TkHHGpEhyFnNGzeWMlc5Y6XzGaZT3In9xNVjLEOoifelgZc+D//d3fS/sZiC+WyUfsHlI/kBZYUaG3Umlik8pQaaxKeZOe8FjrGuYLLDRHlKy+EGPcinPYLWt64tBO+gLgg2riPaUjT7c6xdHwfrA7dBst9Ic5fUBsMbkRZyNeFLgf7+cpLf0HHiagTbPXjG/zzn13560/LBHitQvSFWgyNOitb68D1BGFYKzydKtF3fFG+EfiOJiQ5b16p6Zl+23haMnuvZJ3tIu1BkoPuBz0Ha5o3P+Q+HQFxQvyJFw2UHTm/wwi+bcJfvt3543dP6H1wqLPr4No+8VX6inE/kc9n9ja49QtfP2V+sP6a/+Wq5FLoFiQp9LghsSK2kRkcLTPU+NOfdd6/T/zhaaUdguUrS1W+tZVTDnocPEXGxXnVHXWZhNOUHmsI6ElJsrCa0mJHNaMe4AWYgjEZg4sLf/nNzo++3bCc6eMGOc8wMAn3TA+lh/AyFOfGkAsft0prJ55qI3nB7AyibNIRDzKJJjfUF2o687of7OkbzA7u/ULKg8qB8Y57axwxKH2laadxsJhyN9iKUkaQWFAmhvzTXXjLByc9yExfiVhll0yXgySZIjdUTvRs3HZnJXHNB0bnnBOEIu6IZ5ootg325ly0U3LB1KYEMNqs2LOSpCEhLJJRn7dhZOBWGf6Cy0EX4yoL4ZnCHaezi3JJyvDBPc6kMLI0iug8uOXAk6FWcc+UmC6KVgL6gpuSsiIiqDeu2xvfXZWxfaa1g3DB2Mjp69m9yInddjQ5IkZ45jOgDBaC26wk0NlZRKg5c0/K/e3Cx/0G3Hl+V3nRZxb9QlhiZfApH/Te2ZKxpw9oO2h60JbPc+XcoV8Szx5cDiVewDRz+OBmkPMdcSGnQc3v+bhd2aKzpJXuhd6M9ZzZ9p1Pb8God/wwas08xQ5Uxkjzc0HIR1C+7BQZvMUrYt+f06X2Rgq43WBNJ7ZloRQht4MnDfrIOE/c/U6VzOWdUU+NvYH7FLqlksl2Ai+4ZWqquHS+7B0t6zxq34MyKlqEJNNyG0ehpTfWpTESyDizrJUiEBmWtaA1kXOeZM/f5qHCt1cYnSyFPjK3pPzJ1xc+2s69Z3Z2igdVGz1XKp3IG2aJmzm7dJ4ikfYzIxspDHfFtU6ZVNoYZHpMvDOWMeYK8SILx3CKZlQfNbjkdD/hPrGqQxuNxIunmWY/N+JQDipQ8HrM8V9/wqRz1cJdJ+1xMSV7Zzkyo2YOBpYS52hs0aZfQicjPuKKRqZpYD1TdFBjftkP2dB04TImuvjA2SWTipHsRooEcX7Q7WOy1UNQEdZIxEgsqVEIrjk4kdhipWlQ9Q6RUVPG0FmnlBmYFXO8CtfUqFFJOeYYTjvKPsmg3KnnZ6xcsbcfEesLVZ8YGKlWbgiaYKFw9MZWCmLBqsGV+cKrNjBPXOTEiMGehZM7WXaExJ7vPA0n3DjKNN49pWDYbaJ7Pc9g45gHxlWcwTGR257Zt/NMuvfMMjJdC+0qLI+w6ogyxVoaOIk1JeowNluRZdbZciROcpsTpjRHznp5Y42Nc5k3ftWNNYxzVvAz69ONdRTSeYNQquyEHjzdz+jaoX2mbGf68op9XvncB9/EX/PNx+Dn3wq/aK+0ljlRaJ4YtpG1s7094XKwcJBSYGMSMsM6H8f8nPN4Y9hOrgsyTqw6gWOlPHPQiBJTfJWfOfqOpJXvvhPer4M1K1tXkqyzjeTKCGMQpPodhl/Jt0H4ws9/Bn/yPefVr1g7cTov/OrjT/kqTnR/g75TT4W3t28429f8578r/OQ/7CTrk6YXUCzRy4bhkDcWlENXjhb89//qxuUfv+d3XxzaiprznRCOMtHdDcHzAuKIGcOdRCWkzQerO10CZ2H1ytApNEqS2TggAkf41I1/+VefGCNzAk6uDA802wSsEZMuGYmuExKEgdH4bM6zT4qlaiWLoN7pLnh2UpwQBvjGvm/U4WQtGDE5PTbFcnEIMoJSDhICVCRN+i6hlAeXI6UFCaNtQfITh87JzNmDJvO/FYIjBYtXxJXVT+TSuI/00GnDGNPK6mlq6J0z3p2PB1yKUFUncXEUshjucw2i2N8aX1OemTBCcHfuNsNI5xis3ua/t4UhwmLTMzG0clJDLGjxcAKlzqKNPIwR05zpFHoo69HZ9WDXE5c4sHDmse7Ci46J8O8w+p20gOZE3yHVSXzse8yXqc/6f/d9GnIjsw5hJCOlxBIHFeHX+6DtgoYT2cjvGpsE1DvdX8hbZbXOuC6cT/Nzcnua9VumX2pNG1tS9tJ516fq/WiO24klNyzGXIlLn8C0kXgpC8Vsemt05rruttG2xwvVlGf9ilf7SNZguHDbN0Za+LgN7j74anlHpbBbR7Vwa42X9yvn8zv2/i2HP/F2JHa74Ql2vyPqoPc5XaiC9zk1jT5AjkmRtdusu8tMNojG1LCr0DA8g4kDQXK4343QTD0l8kjsckzk/t7wAillRotZ7X8EsH9rh4qv/94fk/WN5Jk2jK8c3szYlyfW78JX7KTwCU0yxxv00TjFwW4bbcw+fIor2eFZHYuddUC3TPI7Is8oPkFTDJI6Zsr2kAONBBoPsFQ6sUYgaVaRkhayZo48ITzFnKrGJk/AIC2z9rolhSiUEM55cDzCUSllfFQW6YhkjqQ86QduY+BZCWnULkSZEKmDBY2dpkbEOiVQwymxzB60KtkgIqjDcfHJdB9wduXKYE+Z5z670sfjpuEjs8uYwidNXOI+HSaswJi39mz0vwn1+UDE0e68pBN3yswnJCHT2WxQyhTx+BB6fWGxBvfBkRu1Om5C5ESio7Gzqc66Iso9lGKBqXMok7nPtBwuA3oCC8FIFCrIFKKJLYR0bCkwCnmkh+G0U0uhueIR7HJiCSGnubHT4liqSHrj5DZ79DnjxUmPNgRADp0AojRYSdwEhATDeFtvWDsThyLlTv426JbINEznZ9LVWcIofsNzR0bGyo60Ss4HmoPkO16EfANdOhEFH4rrlVsWYps5nFKNF1/w7PTSUU/o9kTSWTc7JCEmM5iYGpo/s8SHSSzsCX17xvKkuIoMPM1sT06O+rzho3dkbRQxvvekxPaZ1/LMUGcdU7AVY0NyIYYDv542YZ+ukJ+9fuLt+Pv42MgqVIKSBtLfHmNnp/hCqQvbGPze++/zD7678aN7gjhQnKwHVU7kZZvtGE+sbmQR7kX4r//8I//Hv/+B338O3Dvu82W3jMBpaDKKK4M+BUZsuKyAkuKRmk8bR0rQC1YmYTfZExXn82H8N//xxpeuaBb2pggnVDs7MTkWBDx04A0hjzNDByrKftuQy0Jvc9rX0cm0SWMCi3zQI4ik3Ecl+YqHE/FQQKeEpg2JQuuFsdwhCimCCCNrZpGDzxqslqjd2CW49Y4ytfARHUdIOZDhFE+IOr1mEjvBrJ2eaFhUXAVSBRN8tAn2y44N55vPjR9+eEfztzkVKA/eRe8zByN5/lnoNBQxJWunpoLGgUWbUKR8mqs3D5booMFBRmxyR8wEL85aoFjnzRcWLXMdrgP3QPPO5ulvX8JNJtjLSJB30uHszRm60+LgzJm+X/+2Jq4ibG1HUIYGNQfDhBEL95QYGcSDtZyRYsQwNhvIMldO1hM35gF7cWcZaa5OPbM/YIBr7JSheB4wKrUroPhQknZGGdTXSVkeTKtxEuWcHDXjq0uh1hdWNdwGO3AiZs5BjEVm2DilwWe/sm/Bcbtjkthap66Z/Xpjb3esf6Dbzm4bWZXNlfdLYimVWBJjEdh3iuyYn1AMdEO8IKaP76NPH85IJJlCM2VOKiRmADm8U6IRUWbYNBzVMmmd1jnUSaIMynz+5nnRvh3z8LKuCWxw7IPxmzVKf/NDxVe/8zvc9Iec3DhFw+sc8Z1E6SPxFZW77jgymRa2INK4Z1ha4q0sfN0Pekz65kBIfuc5NcZw+hAWW9nlEbSyA42DbcA9DZINvDvL6MQwDt/Ie1AYHMeVw2Drih1vFLviXTHu1PGF1K/sbmzHjdQzySdga9ONwaAyrYRdQMwoj7rZN8szhM4Aowq7KJFmj/hIwZqNiz7xll8IqZxDOHQj6c4TFVImlfZ4YWeqDW6p0paVwjFzASUQXeauVJywQkInRQ/weGFR4xzBRkcsKFGxNM2a0gepCPcIwhqtVnYvlHhjULhI0EfDrRLa4LjQcrBIIvDpq8gHrS8cKAtQ00b4wmKOieEqLK50YLWBx6BpZZcgc2a3INJOfRzwTGc4lbFybPOL2cTnl9mErex4zEPJJZSeE/RKS53sO10rTRpnC0IGu8+qmqkQHqTUZyffKqorI88x6Y4hohTOdF3I0hDp8zVTEolCEaf3BTxxEoflDRuDISf88XOJOGyFNTnWjO6J3Qf1CEThqI24P/GUEns+OI4PlHRgJR7VWMWzkZMg1hlRCSvk5TphTseHR8tDMDnxX/7FBjVT9DoPV6Wh9sRFFK+zmv2iB+9InMvCDeeQgukX8siMyIjMeuG7IxhW6TYlccUzDeEX9jX/8Zc7f/y9zJADs8SLLnzz+Vuev/5djttBXSoL62wR6I1//Hfhr//0oI/5El90mVC3Uhg9sRRmsFbgqxrQE//yr4K3H1T+8HeeOfvOfRRiETYDEM5qqE81ueucQJgJTiXFQh33GcaWG3mflcOUXvm8Ff75n7/y86tx0YUxCocYLxqPnv2UaN/LY+fdG0sktMgc+7eVT7eCpAJuuFTQK4M5IVTqBEfFQIZzbVeixpwC+gOo5gXVIHtnjJ0Uz1MF7gNJs/GyhRICumb+0R/+CX/xV/+MmxkwHSurp8fu2qaYK+DoJy44KRZszNbL/QES8wHdNnJMYmS4oCOT5aC9fcTuZ57WE/c2QA1JTpp3aCzt4EJeDkJeyeOZFAkJoYpyTcIeQndhITETE2c6b4DNF332ydDp72kPG+1Cooiza0PCKep4S6gkLFZUd0Y0wtNDte64KkOUfQuSnnE37NYwc+wY9G5YxIMVAusQLiy8xQzpr6F4GG4f+fZTZdhC+M5iRlajR8P2O0VO7KJ42ub02hM5+swTiWN5wGiELaR1Tph0BFsIz+JsuaPS0b6Qs3NEetTEoaxlTjG98Xk3DpuaeVH4+nsX1kO525hNjgwW0z4LsyFTRZCtod1gD7ZxJS+JAJ7jIA/lkittC2oebA//sKaJ1NYohMF12+m+M5pQVqXkWfsUdVI+M1Jg7DNgmkC10G3K5JJWXNKkgfrXSN+Q9coiQclwkgVQRirYkdhHImVl9zEbfr/NQ8UgYTnYjxXJC/cQTjHlJj11eu8Mu1DzndGM3TJVd2xkrqrU49dgiZ1KRtAkLN7xmLXSVRLtPMFJFSH717TsrKrgzkkWImadzpPTuIBmTsNYs/Jl7XwnFdYtY9FJstAQRoU4DlJfWOuVbh2PnZMXRg/EjDqCT6OTbdZtrB+k1On3gY4dtZ3SnWYb0TqtdzwO7i7E4XzXhDjeCHvlbMZIDbaDRoZ+o1tmEZ8j4LjRRuasOzUabRxYPTMHFYGXhB1OViWodDqeFdMTSCIy9LWSPVHzmVtNrKo8x0q/JNYbrAHlfOFUjZ+/QteFfhJe7E6KiqVCXhonTlxNGC1PC50OFHjyZ5p1bq1zKmc2nCUZIx43KlckMu/UGG2DU2NtBW1MMuVQLJQSV8pZMGAbB4esPKcFvxvGiUOCZAe2ZIIbZ77l4pm1v3FEcPELnoW73ll04cAY6iwmmA5SLpQ+2FLHpfCSGjerHDFZdyqdGhVhMPSK9cpIjcQTqRzTSmpnhi0sqWNbpdZGZ7By4tNpUPeE6k71D1QOJDuNwkiFL3knW5C00TSx28HZTkQa7HqwWIGYSXhPbxMT7+uDAhvkZcPTnc+tc+1nTpFIttL6E6qDNw+KXqkwg325MajgipbKh9sLG4HLznrAqJ1fpzYnirZQWiGyoanxnAp/9uOPeHzFh3SmFOO0fsUvfv7XXF42Dg3uceN9KVgMDr3xfqn87vsb1185hxWiO0teGLYTnmbqfjeSwn7vHH4mafCrv9j4F7+E/90f/JC/c9lAhWxG9sQmSjyoj9oLWZggnqz4YuAnpK8c+UpxKFb56Sv8f370mU+mvKzvuPlBlRsvJpgX1BP12BgIIokVIbRO9bUOUtoZevB6g7ueOJfrXGu080SQF8P8bfJZYuBH4tobb36euZfSiSHwUNG1cL4cyleyT85BhzOGKHhsrFo5bOM//fwveNsPbkdBklI0qMdtSqsoRHaeVDmZk/OEeu31DuMZZU7hRgjJL7MORydCED5BzpgXfvrtlae/U6jTg8awOflEd/pwqgzGXpA4kYrQXOjSuejgicIroNYovkF+Yo+DYKGagwyW/kSSnU0gyY6K0ehAhziR7YwPwddPLN0IF0ZkSnSSQtadfSS2tYB/O1e6KLEo/d6wobT+ylIr3oMx7rzs77CT82Z3thC6wklWRBbkgDsZG5laDq5xJolTtfOrz50sdyIF+AI9keLOMOHYXjj5Bn6nxYouAe5sJpweGoezr+ymXLnS/Q339/QWSCmIQrc7I4wUC7ejk/NscIyauIxOuSyoLfS3ymVUDr7wFj6x1yKoKPfWJz6hDHJZSM8XjuvBdlbeUXm5KMUbI78hadbuc22UstK2htbC1p1uQeuN59MTR1tBgzUn9mZzRSeCjwT4bClRZvW+Oo5hbdDLwLWBLjR7IpcO6U4Ek+K73bGmfHh+h6tyeP/tHiqyZZ7GnVaDEQsf3LiVRvGF5z558oscHKEzhW6ZXZ5Ij9v/u/oOK4MldGJDR2KkE6o7F3siSsdkss7FHa073Zg1woAeinGQhlAicdZvIQk9CqMFL/eE6I3NnWSBSeUqneKKi5Lp9AZNCs1XuhhZhVEWtuosFCBRs1DcUYQhabL4mUGyxZxCwpNOfbA2soFhtHCqVOoAxzh0Js6/6sYWBRnGpo2LxaxzMbG40mEcdzyMYwS6b2S/0t1Y7sZg52Yb0gzXjbIZPoybvqF9ZbXPlGNlxCfy0YkeWDTWHKx14bv3G/fNie5swFOClJXz4jNAeDi97+BtjoBNuQsQgdidosG56VQS28ZQoaczkeAuFVdFdZ2Ex3CGBGq3Wf0k0U4vCBmpylN5QXNCtLLWAsxVUcordv/I6Ma3+phyJWfToEeQZKWJsESwep6hPnO6Gn2tjFZnILYvLGosMRssQkLyPORsY6VGIJYI2fAmOIHroEbgMcg6H7qoE7FTb0KKhZxu9D440iBFJ7+eqZc3WlfMVmrZENtZxtPkYeROPhbMBRanxSBF4RiVS97m9KRAWGEds155tswi02WSL85l7BCVLhOnXHNnSKGKkAls3LktOyMCk4VmSrLEiYKw0nPD88wmndsL23jl1wE/+bNPSKrUB0adY+Gf/eQLTy8L6s7eT5TSuCRhrQe3bbD4adY/y+AoT7TNyEyYWE2Q6bgninTEBY+F62fln/2bn/JHv3vmD79T+d4yGQGqCUwZeeAoTZXCgo5B3/e5QgvnfMyGxI++HPzLvxrsAjVXTJ1zVEQCYkWjoNyJcSZKZpHZ+hjRKAUSHYsLtV64ygHNMT2Dd0iD2TdTEjM0apaIMdeFSz/mTj/ZbFaMWaE8fGXrhWSNZBVXo5TLDCn2eXtV23l9/cQbgzYGl3SGcaenyrBKaMyRuzdKhfCVW2pk/2rq6i1gTPnUUmGY41FntiSXWTtNN77d7rz6D3iRHQI8DqRkfEC2RFoS1V9JA6zeQZVFhFMUrtKQv4GfuTAt1xnPA+sricbQOwdKZicNxXVWllNaiYDGTtaF8BMm+3wBSqBesK7s6QFYszsjzazVSYzEAgo7nVIvIEIqr6QhvNnGKU7cZGY1sl/obpjOkb/FjVQru6/UGEgX3DIlNdJYuI+NiEHVBUsrewt+sl05a0F4QiRIfrA5vL0t3P2Od+dnsmF+MFy52cENZ+hg+GAZC0TFhvC6H7T+Rs6Q9MQ6HJPE8Mpomc6dLses14aSU2XYJyQZti/sR+Gu8PXpGXElpcTTXqAZUZx0urD07yHeOJ0HS66EDcwGNU4UncwR0aCKPnQOg4Ky+UEJnVV8aYRMGJ2NabZdKIiACVTZIKYscZQ2p26yPg7HQpf0EDHeOV8Kpdff7qHi8/aJ9XCqgKQrr7pQDARDUmPpmaidC4VGw5aEjsb3qPzxd1ZePgj/cTN+/irc+4pVoZgTnDnIkCqrGcfKvInpDDPiQfbpfI9cwJSGskRQXDCUng/6yKQ0OFInyYQlFc+MelCGQC+0JThb8ORzl2SRyBgmMU/iNtABRxyEFCoFtYORIUVh9zlOH0mQCHQkXAeu83Suvj9uSzEVzmLcQjAGVQ28cmQnOKEUUoFxNvAXzg8fwYhCSTHzIn3hlAYXsclXlBlgMk98kMBioppzN3QMRIQcnZs4JYJzE5Y0ceqDzmGDSzs4hpN9UKPzEsoeB8Ma4guLK82vPNUFtJCqkdm43TPeb/jY6NvA+hUffQptbp36eOCGfWL0J/DAxk4y43TcaXdH7K8YsRGhIMpIEx5DXpB+Y3eHSAQzaEYKQs/cRZEo9DzJnJIGSEWkkNzppRJRaCyQ4ZYUsRWvUNOEmS1poWnBVVlSUHByXthYGXLw5Mo9Tw32EQlZZ17i3IV7+oqSNtKx4gWWItxIRE3IDhwrVMfjoIgh3cAWujRGb5Rwhi/U2Gk6qOIkF6IZTqaKcUTH006und2feG0rlURJgXhg43lC2sIZERyyoijqHS2QHnmMJFM0Vz3POHAYu7+S0jx0XbQ+/BmP0OzyDvvya+4l8Hohwrm3lc8Mau9IJGLxiVkPofXOwkBjZhCIgibHmLwLaASwlkG48j//7MqPvyl8/13h97+78p2nzjlnnnT6TboGREdUpq9lDH6xN3725c7Pv+386mpkW5F0TFGW3jDLNEkYV4rO0GREIvodVThwJDrDhVESzRMlHcQOP/9x4+/+vtDDp0smrcTDfMmyYAgOxLmQcQpC+MHITiqZ0DvFFJdgTZlsiqVMOZ15ve0cKCWttONtaqO3xKIZZ5BlgeNGztu0bbbyAM2PmeAnId4YWSCgjQsSBzHm90HEQRoamWGG1sS1H/zyc+fpQ+KQRugFsTsZxRVGzMd8Usd8Xg6SwiHG7h2TQvd5sDMc1fkJRvnC6okThnXBWWk0khRygI+HLIugcibYcRzx+f31ofOF5VAkIwZZK5mB940QJVnhlGOyEHImaZ5rQRpuKyofCDkzdCP5wKXQY6AqhDsiSmTHhpJEMRJJndXT5GH4hGItVEKNlA6GZTQUtTRBiuPA+mBE5vM9CDKSO3a/8KW9MTxoWmjHJ+xuvLYbtCBMGdn5Yp1VM2UoWpzQPjkeJogUhIa5oTJDvnhn+I1kgy5B7g33O7UumATr5TKLBzlRinIpdWoiPNPjjXfljF7SvJC1isjEAdIP4iyUEJxJlE7oRLjLrMB375CeMDvwEEQrSXaQiWOXRYE8SdRxkDBKWsEzFpDSb3n98Vf/j/8bTSBRUTKHDs7pPMcseiWniqaFSCf6oRRd+S/+4e/xT/5w4Uff/IR/8c8+8rot1KREKmjORN7JJRNx4kmDj+PEnhQtSk4LZw/yEuy5csGQtbIRVEtQL3MfKwNkmbTFIZz1iVzaZLJ75tBKWgpFnUWcIzrLKFOZnDJ1pBkSVcMiU2Pur8I7kpWGAZXaBmMVbj73/x/s4AdfPXM9rnxzTywBJxlznCgZHwdDlwdKVxF2shlDpvHt8AHJqcVJHbY010mvGMvUCXK2HR+JngTzR44grURrnFLQyp1xHAwBI2Fy4oyg4jQUTYOtwmoF1wn7entxSk80hdw6DmhNXMSJ0TmSEqL0liYYqDe27MQ7ZdFCI3ESRemoGyTnUCfbnAgF0CwIVTSEEsqzH9zFGBzzFngMErDbQEbj1B9tkXbge+fiX4jmdIOr3amvN4QvjDZP674ZzQy3xqIbX8XHeXvv27y5bE4WZXuDKonRNzaMrXWsO5oBr8RQLl55Owm/ShDphOcLaaSJFvdgS0rEM+n5TrIzljLPeiH0C3lRsO8w9ELkHdWVcmTS6c5bbqi9Y42M1408Vp6HssWZzoZpsK7CEYk2Bu4Lq3TqLkQZ7CVzmHOS4MpKlhvhbQY+UbJC7sI6Eu0ejCIPRXfClp1MJkaAHBPQZgNZB7hSumNp5or2OFHefR9ef4E9ZSjLTN8nOMeCJGVD2COT0p1TzYyRqH3jcml8/BKktjLKRs6dNAQbC8hkUtS+sMfgP/3K+NGvdp7LwWnZ+erpzLLshE6gjnXjy025X+982p2dR/4B2NMkpiYztjFr2sl3VDLCgmifuQOfCGJLgxRG+AltjZx2Tj1jbeHT+MIfre95OYSwzC4zVDpisG4dM+dVQI8rehSgYRl6FrIJ4idyBF+uxrd25qkEkQtfrp9obbBqQtOdt9b59W586RuWnNELqTT8tGL6jpM4qzTuaUFYqPkLbhdaUvQwJBkiQvcbTR+HjgBSoVsh5xsaiSzCl+sX5KuFFIHTCRdEMiI7Ime6X+leiXhD05nhRo8LiNOZArBTqXQ31HcuNrMsIsJolZwLNxuIKMobXYSSLuCZGoLrnZs/scj0oNgQuitNnlnShm2/hNOFZjKzaUchtFFkY7iRPBND2LOQZf7c1qi4Hli6Y6NQ0pnQK2HTaOzWUVZMZ3shpCKtYzo/ryXtJJQWitpEwZvbBOxl2FNlORwtN0RXoE1ZYcypwyZ3rj5Y4ok8lL0J/dihXcGVnCujBV++2fmYC4uBlA3K/P9cb0qMA5FECqVbIXVja8Y+BpoufP72TsmZlCrZZ1vupXxF9UovE/PYGOSs7G+DImV+5nqarQ7f2VtDWbiaT1NxKmhsSFFiUuNw5rRfUZBAk+BHJqVClslYWkmYgaiy6EK2jbUmUhIihG3b8P5b5lQMOZBRSdEZcaeKc+hBIPN2YE7SG9VW/uh7v8M//pPf5VeXxv/lv/tX/PQvfsY6KqjwySaIamEwxhNJN5oLvxKnj0IpgxDYIrP4MRn4VvBcWT2hmhlp0O06/0KWlTQg5ETWlVYF18GSYEkVipPjzPHgYqRlgVpZCGzJDBWqNigvbLzjqb6RZOWSCwedsZ6psjM8s+dMEeFPvj7z977K/Gj8mF/uGaLSygo4iwviwmtdee+FkRuLOos900oHMqpzErEg9BiMkrkYHMmpARKJnTR/jylBzN2qyCC3hmnwKrM2+jcoaxMnuLFhlOjAiuTK0sf8QQqnFSPvB2cS0o17WegJ1mFzR55X3jXjUxlEzkR3hjoHFy6ygc0vnceVqJkRA/xp4pElSO0AXVm4EQJXEyLBlQKHQa5UcazMB//ZT9wJsqQ5es+dpOu8XaVpZV21cpFAtNE58awbh5246yB8cNLgEic2PSh0zgSLLuxpZ6FQZaBJWPsd2b9wHXfSSOh+o4+B2p0cB+X4SOuNzXfWdsHaFZHOEvA5NkbTqUgfN27phHll+/wL9vu/p3Xj2nZsVPbIWHFeAtxXWhg53dnsiY/ZELmQ4wRnZ8svECdOKTHqwhGJocoxTiz6mVISYcZFC7otHGcwLTAmHVFoNLmTz4mIlXN54uofySOTPegGsTzRdFam2U+4KnveOAhSBNgcl3P6Htp/TT+eSUslufBruxKjkHVF5BOf28plCH7cuObB/VMmj+BIG4cf3O/PrDmm5bE9c8hGO70RAcUrVTotgv0WfPNxY6RZM7RyQ9Sp7UTkgVI505HoLJZ50wOJCd5zg6igqVBHnQC3VDhJhug0Y3JeIvE31owYCyYHPb/yF587x78u5BTEUlAJshhPOcg5UAlu3bhv80bdl4RuSg4hcCx1mnSut1lpXCSTj0aWgz2Ccsm0dufdufLlrz7yl69nknyiyoHvSspvlNJRXWiXM6dDeePMeT3NUXk446xYHJyBy7vOuB8wCncCkY3ZlznTRgNRvnxbeP0gfLVkBp2WndYCCSPpK0lB8huLCmGvhD5h8cq7FWQEH7ShY9p+w89ILCTLuG6EJuzBUvRRIJ3nmjMOsgpJFR+Zd/mNiJ3OiufZ6Cpxp99eKeOOrCfUIZlzPp2Rs9Nax/criHH3O2VMu3GTRpMTlhLZK8Y6xXLmSECOzCgrEQvCQXE4/I2WFs7mlEPYy9OcZHidgf3akZE4uzKONqcsqyIU3DprztzbQCtEOJc4kUTYbHDoTq5CuumkkCad7iMeSoHRsWwkH+Q9yH1h4PPgljqltuk3ORpvcuO4vZHCeDpPOvQZYfjM4qWLcu0ru3UiKkRjjMrb24EWw8MmMtsDp5B0it6GNRZfOLxTgtm0RCgomhJ9dJaap958LJR0J/SN80khL9AEKQHSIAuuTklGkcAQdjsw+c0spb/xoaL/4s8oKjQJciy4Dopd6Mk5pcSlZra88i6fORXjX/zZv+TP/+JXxD1xehAnd88T8ZvBpVPsl+x5Bv/ghYVfIR3cT3xQIXIDpkwm2RXXwvDZC15lYfdObAeaMqN1hv6a5TDCB7jMhLwIIZmDRg+hOw+YkJHH9DC4KFUCvPNrcXI60WioBzUgkvJUv+b3vv8Dfv8PCj/+BfxXf/Uf+Mm3zkkrOTGnL6XiJE6hRAp+rAUpg1UcKc+IrmgyXNIj1V7n3q0mek44ynPqRKoU4NtcKZ5AoaVpmBMWqAcLhumJg0TBQDqiiRMLmoJ7dF7DKOFsBdbDyVmxkJmLyLBaZwmdFDhxik9r7CkCHc6QxLpmvqM3bq2ypYlkXu0J9eCWFrIJSzFkTPSuL0q0Cyk13kmh+M6ugebEKCCeZmMhZQrB2WFLjkQgI9NoLGG0KBz5xnLsHK1BSghfeCOw+EjSKa+6I3yJ1/n5mfItRnCdY3UHpBCeqAi2PFH8GZcLWg0vQcuZlGaFLyQhrDzLTssddcWS8T4mI0AlgzaeZOGcKpreSD6gFQ65YePOaTSEYC2B3T/Tu3Mcd/wQGk49DuL4wn4MbrcvfLnfqNlI6R1FKsErmNFsMO6gtnNzZxsJ/ZKJBCHK6E4tinOwvRlHZ0rRIhNLYvPEOT8Th9CtIKpY+oLGih/KEoVROkHnaHeKKiO+JmjsdtDTQYoLbo7ykbEMnv2NMS7ccc4+KFa4MyCUZws8fcFjJbpMEJkm1q2DLHQ6m25TUBcCCwiKjkyKC+adLoH4MuVzKIcVtuRUVYYlXDq5JLJP7P0RSsoTXuXymLAlY9FAQkBmpVA5uJmy8DVhd3708TFylwau2BjEBAyQUybMZgMgrYgf04gbC0UD7YrJVNR//lWQF6fnnSKZsmYkdd6uO5ZP/PTLRstnLp4YMujiCOdZD93v1Ltz81du1xtDP+AMTtagrBBOqZnzaeF1a+iaeHLofiZXcIIizxSF7sbP7s88vSskPUh5h1pnUkQG5WzkZR60pGyUVIk8uB8rnhoDQAUdM7hOfUPNSaG0sNmesZiTFk8s0Qk9MfxAUkM0sdszXTK5FVIY9zQYfcO2b3m/gqU2sdGpztVHecLalVQbSQPvjqhQuoAmrtFxOyNWGDqQbiySGSLE0ZAiRDQsgrCVxFwr9pRwEVY63ZzhdyoHev8+km6oHIQYXQtpBBrvaPqFbQhSTgSdHGOGy6WRklPHrGdaGcSoYIZlaNonSyQJRsHCCClIncrx4MDHQMY8hORk2Khc7UqpBW/Bsp6wFozswIm+XckKmuH1NbjuA2En0rSxfnz9RM4VeXiM3IxwRbwzGOzJaClYSubYB+Y6bcIIeEEBG69YD0ZfqDWBwBuNVU70IXgpnNYFU2McO1KVUiq03/KhYvnwhzOx/AiFqJ8IufKd99/jf/OP/iFP31H+wy/+PX/+777lZ3/+LeFKLt9HXoLukKxQcjxuzZ0RGc8LS9wJWencGRhrCMUaPRzGncHy6C4nSjdcGkk7zRO4MdKBqZB8IWyQSVjsZA9cyt9qXk9dISdcBj6BCRjOiZWhxs4AhDNCI/CReH4+s2bYmvH990GuH/kf/r8/4tffArFxkgsOmAYuQpVKWPCGkL1yyAGc2NIOlMlZsPP000vQtKIhrHngYlg68dEazoKkxDwYniAp6kxcs8yd34lpA33NZyqZRe709KCeiSBWkTzrQObCKSVMBPIgU7AUZFWGvhA4izaIxJGEJJUPl3f84HeeyZ8/8vF28KVV9lgYS+f0SH6TQUowrRqPzzlXQhJHmqn+1SFy0HFSy6BnetoJK2wJqihFnCiZ4kJ1R1mo6rxI5ijgFbLMQN0uGR0HTdLjy+KUJqiAZuUS0wjbkkwhFc6WOgI8PYKxd32lk6nSODnQhU0nK2SJxGGC5FlzTsy62ZYgmbL8Tb8/daIKoyeqG7ecSZw5+xOuC4c2UnwPzYIU+Vu4TH23oxTQA7FBi8RFO+aVkYxVD8RnzsIxLj4YSXG7cSHABc2Jo21cirIiDDba6xf22xXaBAnt422KukLRXGEM5Bgz7JshRqaPjdbA+sHOhvcLZkrwytYbvSd6v9Pvhn3zxuYruSYKF26+gNzpCJoKuxaSBKlXRqpozYw42FnQmKsRk1mt1TSISKCZRSCkMwQi6mTM6KBaR9zYygnzg4gZNiMGKc9syfLQSIkkRBLNZNJ2bU4xet5ABoMGcsb8xuiGpkEqBUwQT5BkJuaZ499grgvFF0SCU2mMCFyVVUG9M3Li5687P20g6VFjzYNqb6itHPJGC6j5lYXC8DMhN1TGhMCpzHyBn/jm7WD0N4oENYSonyh/I+q67mxvG2ghqzOQ+cwbBZWKhBMp+Gb7wu88vfDhWSmtkjxh4vQ0WKqyyvz5siiUULjCoZ1hCpG4iyBVwI0zA0mVcFAZmAVaFtydzMwfCBPIhRVcnRg+0yhpIwESTjpeadbh8XvJKgRjPsdikKqyHIWTFHpJHD5BT6hAnrkvSzNnsrJwFwEOlqR4JDz8MdXsPD3yddNzMRgS4DPls9QT9/0NywvhlcQn1Bszjz7JvzBA72CJFIWs0EdmeMfFUKlEOEmdiDnNEFeSJvoDYFhkmXkXZ3pR1Mi6AAkdRsPIlnhrg94bMmbFvRWjvRZSGvTiyALl+BrRweAbJOwBCFRue0M1YP4tg8/pmkThm+uk1YZDu9+BwFJHY5IwJfmcbMSOWZuB25KwPtiHcyFzjIbrQE/O2GcYu9SZMctVfruHioN3FBmcc6XZK5oL/+Qf/VP+6D97x+unnf/yf/x3vP7qTjehPr+ju3IKJcdGlkQrOj+IPGEdpzRzGR4XoitLEoo0tFf2VdHUyT49GweGjoycO4V5ksWcZIrUhuKYn4k8GDLI5uRR6aqoNpaRaRTO6iTbEUn0OkU/OXSGj/ogZ+GtGy+y8H/6B3/Ad/6z9/zrn/wFf/Fvf8ZffnKOt50xvqY+G7SvKbJgPgVTYjsiOykthGVUBu9LZ29wtMGSD7LfGHKdCXOfCjAJmy0SJklqUyGHTYhPMsQM8cQR66T0yUyNHwLdjMYz6EB41P6qs7Ox+nl2m7NPmJfI7LGT5949gqwV8wyhjPgy09LrmX/69/4R4n/Nv/nzX3F8PGhjPkjQhZQ2lIwlKGGIViIWPB9kAY9BxDsaCRHnnBouCbUJ4ulkUjZWX/AqlJqJFIRWTlroCuQZKDtR8WWhloNaCion9rqQSaQqRKz4CU4p6DqNej1lknRWz3hVDhloWufExzt2cTKFl90Y6cI9EindKCmj7pRwbmmgZEqan1HEMQ842elMe6qMldreJgkV50PLoEGnI3GwdCezMPa/6egbMTI37SRpKDuDymGJV/G5y02BOnPk2DqtKM55rpY8Y8wWz0Uyb3IhqwJG9a/Bf8hxMuQ8XQ1ZVu5pcPGM6iThVvq8BTEDwmcyqxuXrIg6WiEn4R2Ns8/PVuMNj8D7QHyDpth259vbL6cJd0+c85wWhg2unzY+3t+4tob2xr0FvSvXcaO3hdGFYKPZTo/KcUzX7pH7fBHqMyTIaYVS8PGK5DlVUnlP2JjSL828Tx0zuMmJJEqWxqLpYextiAehA/GYXgqcHad6ph9G6IHYRoozYifIQWtvMzRqY3IFROdaygzNO7ushC5kCYaBXp6wGGTb2TcICkkVjcTJYMjAxuS9jHTieVHaMZBqqE0Pw5cviS/3G3TFe0LLMdc2bWDakTrXPl0nUbf6jsfCbsoGZBJw5X/51ZWvtswiNxYNqiRqSrQ2uL0ObNmpmrhZ5nwafPfpA29fvnCE4HGweiZHIhxcDA/FReipk1zQqHgYKQfejRyZmwYf4gAUGRlJg0OV8vaZ1D9BwMrCRVcOHaSROKsy2k46JqN95IfTJNKEdsUkbbyGo95ItrKpUmPMhoU60Ts16UPe5twUUmTC72gpEySHsyTn2qYTQ4fNckFJuAlkJWO4dWQZEx9vY5JI9YSWQR8JqGR1Slnp8YYPCBKiM3cl0kk+3/PuigekEDwuzOy5zdCsJUoo41XofmU9fQVuaDeWsnDdNt4/n3iOwlsxTuWNjw4iaQaJs7LYXD/N58XAZU7zgzNxn+Te0IHtgbuSywWRA9TIBh8/HwgNVNmOHRtK+KAwwN9YtBKHsyrsfad55yQLKpmw33JQ81Tu5FFpbPyD3/sD/ot//Pfw88H/80//HT/5019TdKUWIZUzZTPW087WCkNWFOGSnG1k+gBJQVgndeXIp0dS28iy0HQm2VWCSGM+wGMh24qnO+55MvCLoukg20JTn0IhNbJXEo2dyohpEyQGFx20CG6qnHJnHR2LRE8G5pRUcU/877//9/jjf/L7/Kz8kv/rf/vfsn2zUOoLRymINrRsuD9RkmHSsfKC9Mn474+frCVAJXGVnWUEK2dEbZ6eRak+iW2JoJvSEzMN7lOKtEhBGRxtp5YFc8Pj4BQyb/WeZ3/Z5y35lA9aDISF3K8syTl8weNGimcY26QXegWBzM5C5tpvZBd+/wff43vf/fv82V/+gu32yr/71/+ce/uEJ6XKfCEiyhod4gm3hqYpNhtUInZSZHpaWKwT0h6h3YW3MBbPDBKrOosaNhKvZWG4gSZWERZ3vh2KJ0Gl4eOJPZw97yBK2HtquhFUhhm+QIozOSBlYVchUqGkheeq7CpkVUqdELIhGZUgpYotM1QWquQKfT1zIqgkXksmp5VL7jQ/kxej5hfMb5AKJeAUNlko9Uyi8+oLVnSimxkUdeiTCjs0KOwsoqB9hrYU7lZZPLhE8CU5sXQuG2hkAmNJhXQILRkdnbvOBHXJfLZEy8qT3+g+2Qq9JrzP4N4tZ4rdiMMm+fM4zcAwbe7Z7YR8K9zyK0kqw8YM6cVC705WODO/N9sDGqYsUBsfNPFhFcZX/5CM8qTOU+4gs7H1ki/8fjGUhYsEoQfVnTU6R2n0VjjRkONgaxvWP9PuhrfKbjfa6zcIxu04OK53TITb/c52HPT7JyyM11ujuREyIMEp3qF24NEZvlJUaZLIUfBcyF3YS0IkWBO0ZjNYrlMqKNpwf0U9T7NtGENO3LWgoyHWYRiHFVJ6hW7kWAgaMT4BiuGsOpC40NyJOoji5Ef+xelETrxtkylhrbHrM8ikbK42Mw1aEs6CadBOTrq9cCEYajQJukLoSkmNJcDoeCQWW7i+Gp/fEhZQVHC/EdrILLTTMaebw1nSNptot89YmpC3p37CAInO/miqpSIMmw2ocCf7Z9CJUNe8so+BmHPo/HVOSo9GGZnr/RtQBzZGKTRvuM3vwcKFb3zwaVxZ3NC8kkoiB4zWSWkldQiZ4LyTHtwi4TjghFbycuE4NpY8x/dHGCluDBVE7syjs3IghBWeWGj6iY6x+BMRDn6wBaQSxEiPKQVsASIb51GQdLCLYt04xsHeToRDKndUAizhTP5MzjGV4TroxzHD6jobUWRlSQk7ruy3jyR5QUfmrgNNGYlBuqxIN3Jeeb0WLCrVhZzhcIcO7WF2zavgreOkR67xhogQacFsECmwZCgbaopbxcuGiZOiItIRkzkxyYGo8tp2VIRugt2D+55o3KBtSGTkN1N//OaHCrUzv/Ph+/zDP/o9vvpd509/+ef8T//Nr+ivylLnCTOJ0ttOKYW9VRYH0w3VzEbCopGrEsRcQdTOEhuWCu6Okkl0EgFjmQhZgYKj9ZUela4VFaVaw6Jg+aB40CTxZNDTwCOz6Bs9P1Met4FGmaEZMbyvbLqiYhwj81JW/lfffccf/a9/ly+581/9h3/DT/7yzildOD8NxhgUGWBK8kTQaMj8i95k9o/dKf0EesdQbBQuUtjyHY2dNIL6uJEe+ZgEQRI6BHVFdMxxWDoQ3+kIpMzW2xSIaSZRkJGIYrPCp0Ei88lXshjkQZfvIWnWcD2+QkUgrUh8h+InBjcMyPKev/PhzA9/75kunb/86S+5rz/Ey0BkPvgGwjCd9M/ohGdSagSOhrC7k72AGibz5YZv9DDUn3HurDgqcyzZgR47eoFiylkDQuhy5xCl5O3BBxE03yB0GhTDQH6NjUZOsEanH5mQbxlxgnZjceHQ2Vf/nDpVDjbPvLITlimRMDqqieigNRiW58hblIiVJFdSdtSe+IkkTkshTpnUgy7XiWNPZyR3XJ6RXFhyZc+G6DOaMik5azLysmJRIQkjJe56wjEyhbEEHs8UORi1IJGxAhtBKsro0zVRaoYGizgRE1Ucaqx6pe9KSmcqcNNMakZozAdcc842mxu9Ozlt07kRZzwm2M1deOLMIqCibNkInDISbynT3Xm2O2fJjFg4dGMdOpsce6d8LKTYkOQcR51od9uo8YbLTJ3vwfyOyCweXuq0V3pqSM689A+Qn1iXSiGDDtIPKqsenCKxRGJJg1KFdzJIKKt1ohvqB5LAJZHsztbhvl2p9kbyCiNo9sawO4sWNgbWgm6CNqgedLvSR2KMwKOwjcYx7qgJFnfMYuKMFbwKhwnRIIvT2Qg5Tc+Qv+GyopwYLiQxtCvDnSMpoxaSD5J3JIS9baAb2d/m99qVQSPrMomSuWMxQ3IuXzg4zTWWT7CdPDDjaGGVZfpDBCw7NTNDqD1IFEIu3CV4ioS6UU8LB3fMZki6aEdj2pctCSoFP8asc0tjkRPmDdU7lgs+BtadkhqZSs3HBOZloVugmunbtyw6CFto3lG9MMYKGL04jcCaUkPZpfGiwTtX3vTR1spwHBu6JLqumEymi6rjFqTRZ1gxBodNw2e1iTTPMpAmeB00KVgXTuVg+GfUhRzv2KSxpnlxVWQeJEwwDRaHahP33tXJrVIxut7AByIdzUKgdIu5RJfCqh03I8mKOpxqZffOorPV0XsQ0cGVa3NGUZ7MoINeFobBu9G5pYSuifP9E4vuRFnoekMiIVpQGpIcb4FIRmW+N9UmSHJYQ2L6atzsgfKuhB5Y2ETZ+3xW9CEkmcwf8UGy4LyC2OC23x9V2MHt9UrWRPy2g5r/h//8T/j6D8786ssv+H//9z/i1z8LNBI1CW7P7PlKDAWCmydyhv0IEk/Eg5vgKeY4SJ2hio0FFZsaIF1m/Uc7QxSNY/LKJU+OXRihMoMx5sRMKOCeZ4dbjV4MhnOIklg5RecanbMkhm4zEW4VF2GTzvu48A9+7wf8oz94z7Ue/A8/+hE//tlnojWWuiJJufcVJKg2R0JmmZ7nAWPNTMW4Q8+g3rDINGks+Q2NJ/AZ3jzU2R4oYXUl69+kh5UH8owRgyMlkmSGl6kP1zHDbz4VtZECCydCGQ6SjcL8gRLXiUCWQQpQcVyAkUmROI431pL5/e//gO98f+WzXfmzv/wx12+vRPSJJ5cDd2WEQDg5BPOdkZaZU1FBY0HkTtVBkYxHZeAkhG1JpK50KahWCGE8bmlKIuKYZDztNEDSoMoT3ipWlByNjHME6DiTI4HeOOnB6JMk2feEpU7SgVqg8kwoE3vtaXaybYdILOwQnREncp7cE/eGSqaG0axSfVBKkOsHdBlsb2/kEezeyK9XBkETodoV5wv36ET5gljwOoTKQUqKd1CCNzoIiDIPYKLEeOxhRck56OZ8qpBQxjghWiAbJU2/iecTRpBywkMnk0MSkde5e1XjqmdOaTITSC8MFUhC1eDXciI0s5Y+10L59ED0Oik75ESPjNcn3API1JQmVbU1YincNbFqxuLgRYIjQZLEO5kZWLV5GNNLYnFnSJ1OgghCnCdPSJtGY2JOFjyCdEDvB5/UiPsgX6fTpEfH/P/H2p8F25Zl53nYN8acc6219z7n3CZv3uwzKzOrAaoh2iIIgmCBCAAkQICEYIqm7JD8wDDDQUdYlm092ArJCjvCEQ7L4S5CYVkygyGBNEkrDIsdSIIUgWKhCkA1qAZVheqbzMo+b3PO2XuvteYcY/hh7oJf+VBPGZkPVefes/dac47x/9+3oUl0/HNL1FRBCoM7VYTBKiUKXk74cxU0DRAF55ytPoqoIFrIutBGEMkQ/SA5iCAaCKexbzHUnezOJha2jJgfyTi4U0/78Z4XOXQQkmTcKlkWpBktFEnGpvWr3Gx9irfOC2tdcTcO7UCX2TmJGyxzsDTDWmNVw71rroXELvpzcvVCiLDUa8KClDOIE2RSMpJ2IV/YyU0UhXrcEzlDCAdXNlGRbNgpB3VkRmylDA/7xUUDk9sUDG2KyIrmgsVCVGHN133twdjZPFJYxwXT4DR2pjYY8pEUPeiXD1eEKg3DBFLAUI2VbkqdEDx3LX2SzIZMpF4nrbpS2LBvR8rYCZ3enxTg/YXltjLHSioZDxh0YvAji/dKtUgi1ZmcNqRifWXpIxkQryTJHETYBjgrqynmQaH2aYkAqQctKyNrVOT0jBM99CyOCBklSw/YEwoitLac7DNOUqFZ5yAZQomMRHC4uqbWPRF3WPOMH1eKB4sIg8LtUbmXz/DpAXF5SbaRpkblSJZCMwFrSE6IZRL9GSCuPTMo0ZsoNtJ3MV0K2E4gyM441s4Iktr5GZJoFGLIePRWkUSgf/T96nmm7+mhIr0Dfvvzn+aNbz4kpxGJPdtJWdYtJRY2YRwig5xjfs0YmU1uPTRjlWM+QyJRjC6tYcVa56qv2vBcmKIxiyA2sYYTeYHIiCe8KENbAKOJMqTTrc8GkgcWjaEqnhoaXaqC7zkTRbVb9opL58vXxjtv3+CDP/pu5tH49Je+yXe+/TZ46fvsBFYbEyAJKmA+dmAOQqt9FbK2IFJ/aaTWATeaYNBgtS0lHRGF0QxnpNlKyrWjdxk63EvyaQeXEIJUFadStBJVQAaStg7viYV2+gDnpKy24l4RpXfKJTHKBUMcwRc0bUCvuF4bbjve+8wzPPv8HV67fpMvfvMbHA8zZhmKMPiWxsRiQdKEWr/R4lsG21DjgLOj6H2Qc7ARjxtYNEhHzCHZOUmuSCgSMymGPvbVFfd+gEQMLBHlmiJOsi094rVQmtGis+u1LeBHsoxYKK0JRmWODpHJySgEpq3vNlV7WFecQQwF3EeQCR0v++2unuExsxsmDjTcNmyLM51NoEZb9iz7DeaJi03j2gaIhqcBtSOWYKIwWXTCZAQ1RiwJURtp4/jpIJXTgnlDoiPEi2QwWCVDNDIL4RPBTE7B4muPCduCZGFZ/ASyaVSEVILVj9CsT9sM0GBvPbCm2ji2xujKIStqHSG9BrgvzDqRI9FkpvjQA58puOZEwM0Ziw54ytJrZsfhBg/TxESjpIF1CGS6Qx22UBJ5gCUlXIUpBkLPqO5IVixfsFpjTMfTsyijPnTE+1hwVyLgbKpkW7lOiZwG7LuMAnc0lMkTJspgAnqN1XMSK5EGRBoxNxYzVFeKFA61W48srhhqv90fgbNISA6OWmmWaeG4W1/TuaO6EtFbUC7SQ94oYUGOQAlEtlwH9F6FUQSSw6oJ82AowZC80zkjGLbKmBYQYWtCGgpDqkyicLoZuhjLfMnxuDBkIRXQqJSa8PUSi7VPfA5GduVqvuTe5T3WecWt9pRIbNDSw+cXGlA3rK4I/RBZPBMWHNdrGIQh9QDeNhXqcEHTTlmcwpj1jOZHhsiE77oeXK4Yw3rAPIRhCQpTF7WFgndA2arBsl734KoUmt8nqKclRGI2Y7AJSYllqgSlX/hyAoJkjSM9CNnMSbbgaUerN3omJR/6Z5MCql02h7MBZvHewrBC0iDpBNbR7WHnFJlJsuDuDKJEDOyZ2cWp9ZADrLc+DKF5D8qHLFRS90XVCrkwjhektEWs4X5N6EpDcRmIJU7iwaW/9BtoHHu5wBZSOMtxpnHEbWFiZF4rkYMHhwOPXuxAE0kuuDne5FvxEpEKEXKix0YPxJYuBWuy0q+nmZwVwalhJFVKMlZfOxSMoV+4kp2C0hkvjZDAozOJEh261pri0i3hKgNkaNVI6Xs8qfin/+xz+H5gGCf2i6HThmNUhmgs0ThqYkjK0B52WUwTDppIpz3h1IyqjTYIre4Y2oAPBwLvBk43XDOlJciXfdUQoDYhutACWrvZU9qhvauhM3CA2DCWiSsKFitbF1JxLBdSnagWpNyIVri7veBHfvw5bj55zm9//gt888uv4J4ZdOKQYKiZMS2sZc+iE6v1ilqkhdmVkjoDL7KR/YxUBU9OHZWoPYTqnJG45oFPbOLA0RtZr8hp7A/5WIiYCLpeXBGyGCUm9sM9htixdyGKcO5BlZWZXgdqa3TBTIKcK5lCtIyrsraA9DYN46ATUy3Ies67nrrJu975GPfma/75Zz7L4eHKtM3Uk5hsdOVanJTe5ty2zAZNJxJ7PIxWzkgqJHlIk02f1mAUc0wHzJ1siTrMhGs/LBXFXMlR+02GgoyZ2ZyWG1s/oynkArYqPlY0BtqcWVLjLDt+Ko1aG5glgUwM1RnLwqyJvffdfUERcwIlcuMozuB3UWZEFtb1dsdxpyARPKhOGbbcuXmBi3K9vMV62VcnmjKpwP1oSDLQTJqDMbYIsMfJGbJnjAXSCm7EkLCWyTRMgrUKo/RGROtTzq75difJgjk9fIWiwwQ1IG+ZraBmbMrQ1zUkhpipltC86VU6Fpa2o5xGuEZw5tFbEGGnCZWgq1DH/pAeLRMyUxhJ3nqvPgSJSpiwpkaIEQu0otRlQeo9aJk1Zr4TM7lmXL9E04Q0Ieo1pBGl8jAWil5gpfspRlJveFkXh6XUw9mzHjFGRjbYcM71GGiCbQwsacDSQEqKkbnOhWHaUerMdQpqKhQ5J4p0rLoMpClhLWF6xGUk2hZJlVELy2ZE7UhxpZpyGMBNKNOCLWNfExahrd1UXCPTqnGuU3/w+sygoN6JF5mRwVYmN8yDBhRVQmY0lNnpa4yYe9hRO9xMl3z6+94zSuF+MzSfkdQRE9ALxqS0paEIQ7JejdSnSCk406CNgmomR7BpD0n7hXm/J9mRXQo2SdnsRjYXG5ICywFi4eCF5IVRnGYrdXmb/cGBSy6XwpQqh7dfYVPOuAxF2z10MloRYn2DcRhJcoH15Q5VK8c8UQ1yjKylr1qXQWCpxPGKUTrFV5eElUxLqed5fEHpUsBtbZ2KmoMhgVrg5iQtVD+QYmX0iTVXat53Cm1kvHYOiqDMJDzBIa2o9/ClyAGxkYUJpXaPBQvE0CfVpXH0xuDBRMbomIRmibBzknjXxtvKmpSsExfLEUt7jpK6Bt6uqGHdaVOs1/wdAiVn68iD7aYLuHyHy46UFY0D4wrKOVd15XbpFy6y4jIyDWcseWSctsztknVQkA3ENRqZgQ0rC0lKX2fiWOsNHc21B2vb2A+NZjSCrBtIlWiByZEkCYkzwo1SZqwKeCYPfbUTTZEYUNmT5YD6RPUFcMK/x0HNcTWWzbHfnrUn7Gvb9R8kO9mVRnCQxDBsSd4Z7x49lNnSFnPw1Tv2OSvolhLBJlUOZixrX2VUPyNJIseC6J6F0i2meuiBRlJHmoaATEgCkxlpygZAKtUr63Lev0wYj413eN97H+eJZ5QvvvUd/v6vv8JyWTkbx5OFLtg2Y8nQYkdLBzauqCdm6aTAoQwsVEISaR0JWXGdejDLDh3KoorqnhJKigNFMhYDi8zkJIQpKlsKiSbdj4EoLboTZJxvEaUyiuEW7AHhHG/OVJShHLCA6iuJAYlgGSrhxnbY4rHDYuZm2vH0nQtuP3fBIjMf/YOvsX/9wGaTSNMZ4SuaG7oONIwLuj74QTaKLYgNWDzCkBoWTvUzHGfIe5CGRHQJkh3wU/89RaFY6tIdh8gHTKaT7XSPWmIkMUoFRsIMy5lnH73AjyNWAttdYm3i3nHAIiMuSBZ2LLj1qpdIAqsUHfvJO4xKkKIg2tgSrOma3KDhrDykxNTXQnrBndsXlNhzef0mh+NMZiBnxXNHNzfZgN1kEAcqTaWvTGhEGkhaiHaANDAgp6xLYCodWyxCC6eREJkYSkADkwHxkSV2SNqTrAetzBTNI+r95lWzsmelUFhao+hESv21trZKYmSrC4sqVCFl6+KltpA091GoNUIHvAqCEC3134UecBlJx8BKgjagGrS1MyC8rJ2EWpTmguQtns/IVYjdiiOc1YFlqohcsIZi4oyR+8kprYQHqg2rG2SYCTLhypEKSzrVox+Sjvc7FKhlLg1Elz4RaUaIoQrHBdYcRAJvfcy/5iAojE1BhUiNIQoWwj43NrKhocx5pXBBOwUpU8psgXZqIAHMqRtSRbt+O0fiWgrj0FP7BxeIflNMQ4ZcWJtg2lkzQa+TJ4FBMtUGWhlIFpQa6GYlDwNFGnFaD11wTuSKeBc/KRVfSxctlsI8fzfVfySacw8gtT7693MsVkoayBdnVJ25DOdgI80F7oHmhtnINmckLeSlIGkDqcH0NC0pw9AR0bVkSiy4VqRVDkswULAGVa95MEORHaQ9QmE7jIzjhHg9TTOVvAr7+9fkkrk4K6wxogukuEk14/KQGXMHJM51ZrWgeeA+o55YtZJdWMyo3giEWROFPtleY+r+Cndc+8s06koahakG1ExTR2m0JCy6MkRft6rtOwU6ODE1MmKJysKaBG2JwRdySiw64LTu+zBlG0KSA1cauD0C8kZ3IoWisUIVoq19TSIrJY99Xeb06bg3JA4gCy0GlnDcZmq65nA4kB515rkw7rbY0bnYFXI0bm0nBoPRKmfTDaTtqDhVnCEKIGTtojWtK6KQYgSvpJJ6yL9VIjV6M2SDxeXpTZ6IZKAzSEZyI9pMjcxYNpgK7hXzRmsJwZGUKTIA3+P1h4eRLHqXuWXa2sfZLkfEh058VD3tiJWS9rQoHZ9MofoekjAKrCQwIdtCihG3IJORrGw0iFYJCVYGChUR7ycsr6gndrKwnh4iNTtRAzl1v0WcIpkrC3JzHrt5zjvf+Ti3Htvy8uWbfPKjb/DwwcrWC9NQWBUkgnDjmDIFCD0wVOXIyCg9JNNSQkUYWufl9wxBotFwDTYxsXiXXG2shx2dkaOC6dRzI62ngYWGaLDxhsuAhHTipShNF7L3HZeYUtSQqH0X25TaCp5yzyZ4YZYDFn2HuraF83LB8y88wa0bEw/nmT/85is8fOtBV/yejX28aBXi1CBhYZUtFgvixhTgJDz38E64/P/rrW7kNrBJleW0n4OFQcrpZRm05Awx9oeGVTLaufGa6d3qQGJAPGNNeMcjj/B/+l//MldXl31EulaaBP/n/+rX+IMvd0JniiCygDciK3OuvO/uY/zCT/8x8JX5sOBiXD245O99+LOschMpKz/8wmM888QFc5OOSR8KdWkc90GtA2s7Z21GCzBgsYovRm3Oy29fIqmwrI0nthe88PwdXnrlTV6+NNbxmrJuTkFSpaqAL6xHY8wbLrYVSSOLK1fzzNFWhkn6jaZUsvfdu2uADeQ046agCSV6Dsad2hZIA8bcv1sncFROIBoUo1fVXNHUQ2LiARTIR5o1QkeMmTI1CsJqI56ckhNiHaRl2uVygvbOvnrPJJiAHLFIfUW3FPRElGzR8DaAVJATH0IdYySpsRpEElKHmZDoe1obznBPaNpiATlWtPRLQrDFGXDrDaCcHAbtFtPo06DFF5IIuOKT9wddTKg676uNbzXnzSKktqJeWeKSYo3woKbMIXrqXejMHAtB1FAV3ByhNyBWSX1NfgKvtehwrYhM1d6GchJLMkQG0h8dJHsLoDByLN1MujAS2ic4izhoQdUIdriUjk2WLoZrjAze13sSGQYnGGDN1NSDlbYaZGXVRsrKgNL8yEYTkyXCnZkFDYe1MK9HUp4xMbBM1sb12p85qRqzWG9x1YIX67pu087G+G6GyyYguJqD68Paa46yQVVZ3RiGx/B7X8WuvkVJAjVY6owDhyXx7Lu+j81lcLCZNAl5r9RTZqu1IE0j9dh6801gX48cRTnbwiYHV+vAINDo61MRaPVAMwgJSpT+fKjBlDc078huGIABjZkciWqOE2Tp2TZ3cClkrWitROoVVcGp0t9rlhyPGRNhEUg4SRoRU78Q9E8NyUqvxubaMzyS6WOj3ijKdaHgVJtZQjiTEUs9hzim4NhWYmMMu8QcuU895musXrNIsNFC024cXVkwoV+6RGmxoqKUIp0qmwpJOi0UOVCk4GHkkroLJDaIDHhrDIOByKllp+iJ+yJZT54mR7QRZt/bQ0WLs27BWx21zCYtzKlRlzPG5FhY/7lipuWGLYWsghVl9X6bUea+L4q+y0xmYEdiqkhSdAnmBtvs4Ece1gHXASP1w0lsyEnRUFK6poqSW0LY4tq/NHMMzIeVoZzzwR99lmdeuM03XnuD3/vUpzncWynWX3BHdZIrQ0eS0AJkbSTNVM249GCRIoiVvmZIC8EGjX7yZDvjxxEsc2TpimtNrDExWOtqXFkJUXLboFLJ2o2mtESKiZ30UKSrM0pvlrgIFaeoUhSO/t32hFM2DV2gxEjVuYdrDsp5HnnPO++ye/42L73yOp/54isc9zMindyZEEocOcTQe+1p6SyPKCQ9QhKyTycL48igjTw0tHZHQitGy0Fbh544zoXsgek5rkc2NcgaLAEuZ7RcyZExXcneP8hh3m/S0RXmoSOiGx6/c85uCCQl1ray2SW2Z0FKDXIHhpkH5CMojLHluduP8Yt/+odofugsgjzw9hvf4p999Avcj4of4Md/6Pv5hV94NziIGS0L1laS7MBP/e5oYHbC3jYiD3zxW9/if/Ef/yrkR3jvc0/zv/rrf5Y7d0ZeefM+/8nf/Pt86euJWkYsKkNyfCkMuucv/Mx7+bEPfD+P3LqgTI3LY/DWm2/wyU9/nd/+vZe4fwyGs3xKs08UJhzHYkvkSo49GkqJDYPuePSRDVGD2YJAaM0xCZIk2mpICG4BsbCaMG1GmjZIM96MTZkIEdZFWa66AXScZpZ55tBG8jYzbRpuhtqO1ipZg8h9L5xsJeeCaJCHtX9HOjWeYSi4R8dk96E2o2f2ERjgnpjKghgsckTLgEphcCO7cBmVNRqBkb0j7ktOZI/TVMZOvozWIU6rkMyhbGhA0r7miRgJE+ZQXtGFX1gqf6jXfCZvWfwmGzlieUOJzCjHfiHI0ZkEZCK1Hk70QtIeVG0Godpvhql1FpP1kKFHnNaupwOYZFQU9YWUILVgcoGYmVmo0ZsErVlHTIucModK80uwhaJLP2BZxqKPra0IISOaQXQLaSBl698fOh0zR2JNQtJKRGIdjMU2ILt+K/eBti0sdkB9QF3ZJsWjkvo1jmUp/aCfr7r5tDmuBWzEaqADuF9S045BYI5AdCJ7X/tgM4NVhnzk/r1vIK2xrEdSaez3BxKZZIk2HxmvKmO7JoY9+/uVS66QkghVttMOWw3VxDaP3HvjIXIRlHHg2bvP8dqV8GCZMVW2Uqg6I3YTjQKloq0DyIba0HHCTcmjMcrSD7/5Bmle+yVQnOE4cogZHfe9dSiJaejZr8bICrQ2MurKRoJFjIYzHPfkkpjbkeZHDOv6BBnxlKA5JnTdOd7typrw5rQwCo7PM215G/cX0FAGoJqj44B64oLEJm5QtjMbeYVjCoaSsVoJ74fufGLa4IafGo/B0O27SP9n7pOFbRk7KHJ1tCqzGx4rwUwSxa2zSbQoklaQTD6tX0WUQDH6ped7eqhI+W3UbrDIwpILkVeydYudp0aplbBEswumZDAteO3scomVjSZYzkk5kazS1PE04Or4ukVih6QHmCRqHCh+6vWmQFo7kTWdHEeOpugi+KZSkhL5SJ4rY1LGGHnunS/y4z/yDN9c3uQffORTXL1yYFtGtlpAV8QSS2kg1/h6hicYskGcKPe+RfUKYo9wRtIrVmamluDUjT+rM+1orHqgyEQOY4iMVmeOhVWCdAKnDF6xIToh01dMlNVHHqRKKVfQNljNXTKlI8mODJ5okjkiJA4MJbHUAstIVuNK5767toE/9n1P8OJzt/j6vW/xkd/5PFx1rOqgldF2LJa7djjdIPslGo0F7env7BQKrU2YzIScnAHVaFJZ0hb3yrYK2/BucHUoAqZGChAGZoUxYIgVkT2jBZ56BfaYHHHpkLC4wHlAzp2YKHaJqbPXoFhQPZG90Dz1sKWs5CZoyRx9Ii39C+bad6UhK+G9XXFsA1mEu7tbjI+cc3O7Qyyo0UNdZiCA+YILiKzIKeTksuCR2OSRWxunSuYxveCv/8U/yZO3B+4dlWfvPMb//H/wS/x7/+Hf5LpsGEXwuvL8jXP+43/3r/HMC49xtT5EDkLzlZsXiXc+fYef+okP8Jd/5U1+9b/+b/mtT34dz1uciSRO0hnzHtatnKNqWDPe8/QZ/+n//q9yuH8PEWdpM1Y3nUgYR8yP1CXhLVPXflD9D/4vfwNrG1rODJJZJaBe8sTF4/zsn3sPH3jv42y2Zxzbwpe/cZ/f+vBn+corL8Nmi8aRIoXmmWiQxHjk0S066+khuaFIZb8sQGDrkTbP5PEJPB2xKjRxNC2EC0lGIEC2KHvaPPeJVzRII2Mq5NapuFoOhHck9NKciC2DTJCPVKuU2DFyJG3OmNdrwjogqZ1wxpqVagsvDYV/xchPz2/xTq381qh8R4MSK3uMYYVIOzz6eiZ5Q9uA60zVI+g51YSNGGan9pQ7oV3OlNOK6ojHtr+YtZFPv7uWCqlmVFPXg9eBSYXFOwMgq5JkBROaPQQdevh62OLjHVRu0jZnbDcbUoGhbIncbaCqMCXFPfHQjBuaOTbHfWWiEqEUaQj9JaMsEDsyhdGFdXACoaiyr0eQiXI8UWFNGLQhpphvqXZkxxuEjtQ2YO1IXStJGigMoUgpEJkGZBm4cebsX/o6cbhHHZw0DCyz9NZSdgYK+3rNIe9J1ZBauBd75iashyOaheNh5sZmR3bn2g8cbOGmXVHvJb61/zRPv/AUdSm8NReaHHq1Us56zbMmHpiQNJMIoq24C3KsEMKY90gUFmsneZhQMswyUnRHkdrX9Fn6xD03JlmQmkB64NiWRs4DsV1QOYW1TxCq5EFX6C5YmzsAq/bGhbS1Y+XFSbUXCmptLPdWjs8FUq2D7taGTsFeM9tziBLUvGFNUOsBOcKYtritVJ0xL3gzRLuVNBSaH0mMKABGqwbqHNdMxJEonSJKGjqNuCWGNBGxUC1DFsIHCsbQgrYEIQsePQzffP0eHyrsBn245wzsmV1Iy5ah7FnNsNQFWJIr0GmXpp07PkTpXd8YaX5NiFFOYyNTx/UeVq2jrrVyKZBy4qxBtEpmIPQa8y0tep5Dh8B9y6wrgw3cLHd58rFzXnzPkyzZ+P985pO8/PW3mFDKMFEl4exZEVQbWjOhG1AjWQYfkDgwy5EiiRIL2S+oUvtY2YIIoWlhsEZiYsHYhfcPHTvWcg1ekBgZ3TBZSARtiD4iboUrbkA5oOLcaMFohX1aOKTgTHoCfRHQlNG47nGjlFhqYiqZVo8Qwk0959knbvHUY7d4fb7Pb3z8UxweCiVu47lxbELKpXMzohCRWezAlsIqK+pgESTbIeUhyCU4aAyd2IkjMZDtSAxBRHRMbxvpZuaZUKgpk2vv4YOQYmJOB4qOeBhrSiSHpEERIZfXOgq6bZibMKmQV+9h1ZQIvyb5GVmm/vL3QAdn4SElnVF9y9FmWjRCoVujlTEESuLmk+dcV+Wbr77CW/t34KpwwoeLKhGdKipW++leAxIIuz4ezMGBQjBwcfucO888zjLvmaaReVl5/umnedf3T3z8C0cYJr7v7tP8b/9nv8T5zS33r+6hbSSVmSS9VXBsR67fdm6d3eR/8j/6Fd75Lz/O3/21T3NPZ6KB1A1jDo6xR3XEwvGsqAnXD6+5XowciqeJkKXXm/UmwjmM7WRfrMguIbkQxw0TgrYFUfjFP/Un+HO/8AFu3bhJXYXWKrckeObZR/mZP/kuPvrxz/P3fv1TvPrQe2ZGEzMwGvzf/qO/To0j8/HQPUNZuVoNr4113fPSdx7wjz/8B3ztlWtUC4uMaKxobEkBpjNJD0gLfu4nf4Rnn34MmzPzfI9f/63f4Vo7oTRih6/CC0+c80Pf/wT7w4rg/KtPfIWazohYiLbjLI/88Luf4bE7N1iq8MbbD/n2t17mcj8TaWDyga/qxLoJPnS85t84fJNvlUf4omx5WQutBJWFIomI2lXkccQ8d0R4dLKtS0/DD6cX8UrDc8IiIRxRAUJwU2bpfYHUEo25rz/oa5SwOM1YVxqJlBNl+wjj9CxsduTNBHIXKcEg9IYaMy1OeSPvtOAWynUTild2PvCwpZ4lKYUUXTonqqhoryGfnCAtdQrmaufkoYEJFxqYQL6NJNBaAAEAAElEQVSRqFGZVLB1pqSJ1pShHKntSUIC9Qqy58wL0goRYGFM7Jk88/Sjhc3xdT7x6a+x5IVhe0Fhplo/lE6bTCojj9+5iRxXfC20aaC5IdHXegyJPBSmMhCpcNWMy+vG2bgh55HFGvPc+NpLL/PIjUeYFqfWc7JumWWBPCMGxQvEjEb09VKANOmkWA9WC1wqtNopmtEYfTxpvR0ShGQqrdtOXVG9RnWH+8xh3z0pA9phWw1SGU/5oc6HSbrBxp5J8jIiaYC20LRC6t6YoR6J5SFXNrJBuF8bprmvhGtjUKfIQKnO3O6zmSZWf4TiimYnxUq0LX76jAmZkIRaIwmof/fwDiIFE4CFnCfWpr39kowcUNORSqVoJqvh6xWeCqskqs94buQ09fCmZJJvv7eHiiGES+lrgUJiUxN1WDAd8dZo6InBv+AYYYUqM4No/2JYH7lrrlTLLDoRNLCBESWVSlcxGWObCO0sihD6eIYNkRyJguQJbwuzOWfyCO9/6oJ3vvNJrodrPvGtP+SVr7/OPI+MZderdZY6vjQGNBqDRHeCtIFUFiwvfYwsAxL0HXuc0aQ/YERXcvR+uAY0FiwpYtLJoCJYXNNIqCWSrizR+i8qtkg0wqGK02Rh40oyYUmBNzkphBt4gSJspeFuzASTCFMEponD/IDHbz3C808/Trox8tb9N/j4H7zB2/sFjYSMGWnXJ76B9nWz7lBfyLKSul2FJkMfw9EQvSS0nXgfFcNImhippAiOLkjdQXinsWnDbMAUcm0IQU0zSu2yMslYJPIJVrSRRhMjWZcdRSvASOQjQxtZlzNcN4gf+wMgznDR3pDR1tskOnXXAImQhSyFnVkfh8uE+9rbAK3x9oOHvHk5Y8vQR6OuPWfg9AdAEuraehpc+kg63AgOCFBTYRBl0EokQVNlKbCJHmgdc+apu0/xsc99m7uc8W//8gfZnCfqPLNJwlEXvCniDU8ZjYmUHa9GapVf+ekf4/q1h/zqP/o8+WzDqokslcwZXldy7uG9xfZIymRV1Bqh3qvS0WOHtR5RGboDoRmRM0WdfeqtKDsK/9Zf+jH+/M+8D3fn4YNrIgVJ+kG/LgIS/PiPvpcnH7vD//Vv/CNefnAFZSDHQrhyvRyQ2si6pQ4LK0qeYBwm8sU5j999hOdeeJS/9Wv/gk9/4RXCt+RUMK0068FZV7C28J4XnuSP/9C7OO6dw/EO//xjn0Ji7aFfzsAOvPj04/x3/42f5v7DPZqUj33mZea4grrwzuee51d+/k/xzBO3euwylLU1XnvtbT76u5/ndz/3jV7FDuV1PeOfD1s+tCovHl/n8XzOd4rxqt3hFdnwVoHFJsjgkckEOc3U5kje4G5IdG9MlkR4D5yP0nBrhBY0BdYqYgOK9nWMClYr2g5kLXjZotu75O2GMj5GmgquZ3gBk4RXJeKAurI6uPWK4IFzNn4k0kCLK9Y0kHXE5YRTlkDdOhXSRkROl7OqaG5kr+iaiaJUrSSvqI8cIzFi1DXYq5FSAg9CBpL2l9OKkHNgTTuLgh2mhg6JbEYJ4/Yjhce3Snpwybdff8hx022iQqOUm7T6EEyY8jkmldtnZzyadoQKURRjZS9H3mg923Lnxi3Ohx2Hw8LlceUYwc0n7zIEXVs+nBGSGMg8fnOgtkIz2EiixcAUQljDJSNkFlfMK9MQveJspa+sJTHQKGJcLoKkfa8PE0TLKDOjDrQq5GSEJlp7SI7KyJFDTR3wpwYrhA/9c669MWLmuGTCEy5HIgtiTjm1W+ZVMBbacsnV1Rvsk5LHzJBG8qisbY9qwnbnzGnkWINSdkhR1ujgK6f1nEZ0vpE1IWenWSW0E5Nx70RqdYToBGrPTLmdXCVgpWHWWzRGJY1CiQ34nugzbFQy5mv/nEWQ0vc4U3FUp+BgjcSWEjOrdizrqjuqHvoeNJRNTLhkNPUKEaLMvjBNDZ9HchQiBlLuCtrZB7RmJjoYacA5GjQ5kEtQUyVM2ciMhHKwYF0HfvjpJ/jB9z3JetH45Be+wLe/cx/dpz4p0BGrHX896AwkNBpnqvTmbmHV4OAbJq0M0giCQzrFbizICawFozfUM8fSwEciO+JOEuc6GRvvu9VmmV1Rjs3wLGSBNVbEheSJViqpjrRc8XQkRxdPSeosDhPvxD0tp1/q0Mdl15nHb5zzwg+8i3K24fVXvs4rn73H4drYyMSQAk9KrsaihRbRDR8p09iTZKR6ZjBlHZ0xZjx67RApTHVgDWgUyrBitaA+0IY+gZJYsZTRMJoLUQyRzGorOxnJGAcdEW+M0Udx7kJmAVWajf0mkFO/MRBMDJhUtMwYBdfS1brqWJoJaawtMwwDrdFNsFxDC4Z0g3x+3kNEOqOWsQE8C14XhnKDpUnnRGgfU4Z6D0JmOD/bkTGQAnTsrTkEwnYceeP+m6RVeOtqz8O3jzy5PaPZQhPHZMeYhImV73vmcd7z7qdZayWLsHpmTHB+sUM0mNeF6/lIq8aoIxHC/fnA5176Jnm3Y5UKKWNNOyJbB4jaH6Ra+xfPBdJArs588hksS+uNJd8DAwsrZ37BJrYcIzgejZ/58Q/wSz//I9TrvuIpejos10bG8VwQhePaeOaZx/lr//bP8R/+H36VmkY0DagWpK2QFLcj4uAygDVCKtfsoW24sX2EX/6Fn+bL3/jblCWztAGjszZkXRhy7vv+2jjWPasnVutVPyGjnkj5AMystrJUI+YVHUaG0mCfePziDr/y53+SR27f5tgatCDTYWKPPHabX/qln6AMwm/+/rd5uhx5qyZeK/AP0x1+Ysz8wP5tts15B6+wyjnfWQe+MxZesYnX0ilfVc9JGrS44lwCk8zBnBoJ9y7viuR49GmeOh2xrQ3XtTMKamUYzkm75xku3oHeuOia+2QoO4IVcUWaoGlh0YnczjAqhxxMY2OJMwZxlqaseWS0QjqRZasL87Al5hlNmewN1Zni1qmcAktkZrrCwKSQDEoOzA+o7/pqWQYsBmrrkLyUBpqdGhB0BkpOA0OdIQacgqc9Xg7cvbnjYmnIq2+zxsLDe1dsNVjdMRdqrIgnwldcYF6ch8eZza1NH7m7gwQxJm7LGYRzkSakOe7B7JUWC3gl0o7ZnKIzZ8MZUy7EKJSLideXc8QaN1FWKajOiGVmFs5K7fVURm664tHN1s1AwqktuJ0rrfaQLm5gPUcEA8ZIlkvERlZriPU6ZngmRUBkdkPQ4siQBsIqEl0DMaWeo1vNSHWg48KNprXzQtoRtcr+3n2SK0W6cdZy0KQgTZhsz1kxrvJAskZeHnIASlKsXlN0xEzw0miWMIfigqTldLk/hWul9Km8O9WVUMW9u6+ETBYgICTRGEArQ3mkZ4ii0ZpR1xUtirmj+q93XPjXPlQgC9ISIudYqohvKNbIBME1GSFCKKZYOmII2b47yh+JmtnPxiiVVVvfR0ehLgNnslDFOEJPJLcDZ5vCQ8vYskVwRmlc14FsiadvnfPBH38Pt57Z8jtf/Dxf/PBLrIcLNpvhpNEG14XCHvcNC0rWtR8wLWM5s2Ell5kpFLHEKpkg9aSBVSSPHTueV+5H4dyDJhMjncIo0Q+LOw9Sc+CcVa6YQ2kIyei75aGn80MCscTG+iHi4F1gI1KonoBGmRq6JkotuDTMjuw2O37gg89x9vTIV772Db7y6bcQH8iaOIuJQ4YwSFTMBWFgwokmiGSKZpD+4FulUKsTaSCLn+QzwloTU3Faa8iq/b+lgreK5r6zLCvU3CVhuXUynDJwmZTUNqTc95wuGV8nzIWUx24KjJkklbV20NKgR0IKXjusJWKBOPYUs0H2Hs6d9CFyMqpag5ImHnv6KcbdxJBHTKT7TNKCxha8oYyENyQ1ROn/LkfCC2Oa+NxXP89HP/yHjJszTJ1SCoNOSCgkZ9wIL99/i3phHPZ7/tav/Rb/wb//FxjWwqE13CtvXl0jdcMHXrzJbjt106N38+i333qd3/zNzyIMPP/0XX7g/c9wY3vOsu6RPPC7n/g0X/xq6wHmJpRc+9SEudtqjZ43kkwJYSZoUckp2I4jg56RvFJJCDtClNUaFxthnA5wSDxxfs6/81c+RL2eydLDYuoDYxoYz1ekJg7LFcxAGbg+Hnnfe17kL/78H+PX/vln0M0NDrV2GJc0qvb2RaL2BxkT2c/I4rBUXnzsNn/qfe/h//s7n2YznSFL9DxCGZllZcWpqZtYHSAX9GRmjZj7FDMS0mZgoCVF00BmpFjiB97/bh5/5BFUZnwRXDPrKc8Q3oi04UM/+WN86uNf5sXhij9eZ35nvM3LSfhwvsV9V/7k8ZIkjZr2PO8LL85ORPBa2XDfB14uZ1yrc0DZS8Gs2yBNrXf624rUjl1frVMeB7X++dOCjOcMjz/N9vYL1PGCfqdrWNQTYt/w5uQCZTX8uHKeFgZbaMuRSRoba6QlmOQSX41NgPnKwwSqW7IWDgnKcMaiA2/lzDpMLGnCCZyKhDM2SDrSzCE11uMZJe+Z1VEbmSMhUyWsg542a2POintjWEcWKmt+wCpnZFbSMpHKxPMXK+n+dyhcc+viDt9++cjiBsMZh8NruDu7MoE5tRkqB2jO/cuH3B0ygyX2LTCMYV0RCZooDw9HqgXHurLfXzEvM7upohxwVZamDNlhNHQtbNfGneEeb66JYxoJT7TsiFWCkUWE1bacc+R6nDAvbPSAiyMijDlI0UmtNW/xdmQNkDb1UGUUqu3YpIc4iQfzSGtnyOYKqxswJVLF/Iwg0I2Q/EDSLZtR2crK5T667Kwapmtv3y2ZXA7MunJ5ABsCO3r3hEgwTpkhK3VdERuZdMe0bcRVMEYiLz0b4l67BXV1pignaVmlWoPIaKoIQ68qe88w4Vd4dDu2npg+ReX0/ZFue5XeRBGXTgn1pa/xYsCiV7q/p4eKgwzk3FA9MEVlHTa9by5bmqxQYSiCJcVjJMJYpcu1ijkiRpLEnJXsK1LXPoLXiUsKxR2PCU9HfBzY+8iQVkyvKKkTFZ+49Rjvff4uTz53wddef5l/8A+/zvVVZci3GHaNpcFFyVy3iq6GpnOaVAY3hjTwYKioGVurrNo1tGjjmIXiyhy9HSLcpK7QuKaksY8nSzfmDdZfjAcVJsuMCqtONJ+pohRRhpMuTDRTaq88WeqwWU+lj1dVqdJIkigOWhyWDo7KSbi9Pecdz73I7bsTX3/1FT72Lx5wfQjOy03W7CCN2fesMZJ9x9EPIMImVqpWkKmjuX0lBMrpYJVCcB2oLqSV/qCVlcUL4cGQA9MjudGJhbHgkmAoJ0rlAZcLdtJYYyT52+i4xVsCGXvFqhiI01wYTpje8I7FLiKYJGI1ZCh4UkqM9NRNQrSB9FpjBAypMA2NG2dPU7Ybrq5f4eVvv8GLwwfImrA4UnxLjSB5x+RmuaBaQ6SLEkTAZEHywNe/8U3+9n/zBbg4o60VdIUk4IUUQAtsdM42FwjBv/zSN/nKv/f/4Bc/9IP8pV/6E8zHPS+/dB/dbXn06TuIHwkPCpnqB/7Gr/5TfudzDzqWvBUePzvnZ3/uef7CT/8gh6tr/uFvfB7TQFrtbIV1xaQyematoMm78bBuWDFqXsEyw7jj7/z93+Br33jINBYslJwqwyYo6jRG3tpvWI7Gn/7Qe5i2jl0rtfSg4ZHGv/rI7/GVb77FmBI/+kPv4wfe8zhWhZyU/fUDfvpP/QQf/fgrvLVfKLm3zNpJhpVz4Wsvv8UwwugL5zc2eE7o4GTL/NgH383f/+3PkaRQ0oz9URYqSAIpOma8xrEHllOCbGjQx/nihHT7reGQFCnGsDnwnvfdRfOMty6TevDgipSFzdnIOIyILXzk459nT+aT+YJf5MAv7V/hK+kxPjEGH59u8GbZ8MePD7jbDkikXgWOxgWVx/3Ae+tDqgxc5cqRkWvNeBTmUO5psKSFlI2YJ1a9wrRfHCgz+ebTbG4+ylTOWR98i2Hdk7xybgPJ3iRqY7Agrwv4geJHWCtTUwinMpORzpyRhsTQH/4EmNE0esYhlCYdDd3EWEtGhzPmsuPB5jZX21s83N2g5i2zAiFAYdWVoQWTN5JUFoV1HhhOsqklD6SlrzazwBxC8c5v0Gwsac/zW5j299ltM+P0BG/c3/PSm2/hgC971vmIquKtUGulWUOTYmHYXLluwcXp5tu8keihyAVnbXuyZurhmuVwzd6cKZzZ9jQzcpkwa6gf0dW53u+4ffM2jyfjNQvecmHTRpo6NYKLgGhH7mth12ZmueIYjU1MJFX2aGeVEEib2RistTGUYI9RmxGh7NXJmki+MEslrnuY0emH3xC6fM4ams4YvedrjjS2u4nDElyHEbFjJIiyx2pC5RZtCfZ1Zpu6iVstUY+NliqPP3qLi90jvHn1KpG3rIPSbIGyQZJRWjdENwoLHSEvvqI+INqFk+Z9iiupkShYgMhA5kiMhtBYWyKPW8L7MjyXtTs+moCdOCp1Beu5lN4s+R4eKs4IRArNnRljiIGVILfGpI4geFSqJyQJ6hmX3iMXVUa8M/1NKTqiKdhLZejkcpIEO1k4RgMRJqskNR6G8/jwGD/03icoz068fP8B//i3v8mD1+5hKGU4p1hDfWFUp7VgOKGTicLmlNBta2GXu5zKRVhcu4vANowe3ewHuCjKkQFo5Rr17Yml7hwkY5luqjRwNfamlASizjY6AzE8kZvQysyYjORbBlcGhxYdTZ4tYaq4zaS0oVYh2cgLd27y5DMXyGbi1bdf5g8+9ibXhx4aG6cNiyy4Z4oPVO2BJ1Jj8P4SrVpOGQjttkwJ1jBUhDDIRam+IqGI9CyFaEKohBYOGBekPilxI8sZqzYaa0/uywhhVEB0T5Zd1zVLRaO3ScIFIoMuVBv6mJsFRVndKZEgGetKHwnnBuIgfoLPCNaEaXubixu3aH7Jgwff4eF39ogVPE+40CuNohxiIWeFrBRJXJl3c6q0DvnyRLOBkEYZM3IebC86qloYcY1uHfWMnKRrBH0fLZmrtxs/+q53kIfCF7/8FV5/s5JSYtz0NUH1FbcVxLhxtmHKRywr4yQ8jGv+y1/7KK9+823uPL7lq6/NJFfWlMh++mMX6ZXstbDxxsKKy3JC50Y39YrzrW9/m9/73GvoOPawadeEYMVQjKRw83zLj/6xd1LnBc1CI9G88V/8zX/CRz/3lY5998xHP/0V/s1f+OP8/E//EHZ0zBuP3trwgfc8yb/8+Df6wygJzYIhKfv9kf/s//53sekC8YUXn3+M/+G/9XM0F44NHn/mCcqgtNY9DSntaL4wKEj0NSIh/Q8cAua9zRJOnIR0EUeU46nu6GQxdnnk7sUdmINpM/HRT3yZf/Th3yFNhXc9+xQ/86d/mKzwuT/8Jmncs28DHxnu8NPtNX6ovcYTdeLz08Qf6m3+mzHx7jLx/tq4u+477TcWLAYyMFKJ1bnNNU1BrEOvQvv6rLoRkju5NaJndVSQw570zc8TCdZWiQTqzhJG1kzQd9fuThMQ6cHngyhZMhI9BGqqrOn0MI+CIKyTo2GUEMwCHfq0EVfUgMsH3OCSs3gVsrKME8twkwcXj/Lwxi3eLI+wSmaflJSOiGWy9YzRkjKjGqs1SgRTi/7zRaZgLFFhHXk+H3jKrtjeHpAG128/4M233+SqPiSXLfPVA8QNTYq79f0+nYgbbizA9bExpM5rKCk4LhUz7ewSEebiPLC5T1Pqd2veCiFoC5pds5Et0px1mHnjwT3GZFyc3wKce8365UASx8WJbJhV9qFAXyFehjG21lfR3qj5wBgbjurECkvtoD2VmRQrB98R1SiSySYcdO3ofE/9WeXaMRQo1JWaFK2Ctol9KNNWGdbGKs4iGeWCHAeImcPlwuW8cHc8Y7930rijzsc+bU2J7eaMy9dnxLvDZg1hIAgHi9Snm9oPoqAgCdWMaCd6agaRqZNfpafpuqdrR4bu2MoZzSvRAonEWLYMWlgj0dJKWwMZN7iN/YKWlu/toULiQJBwMm7SpStRQQwhKDpybEZO/fYd0hAbO9LXV0CJEAZfe3iL7uxo0tv6TZQD10gSPDL3KtxJt/nQB97Fk++64NW3X+MPPvpx3r5ykhWKnpNkIYezupFlAx5Yqqga4s5RBFUonhj1gPoZzVdMjpTIKGM/ZGRhwSgB4gkyrKtjfsaoDWlAGxhSI0vuTYjI3fAmV1QPwhNr6uHAwTJzviaFMEdmoBICx5JQO6Akail4nRCO2DLz3J1H+f73P8qajK989TXuvTazrysmG4ouVBrJZtwHUlmpekRbIsWMpIEmQoiRm9O0IaFUmXEJhlNqO0VGXSjWcAoSA2s6ksQQH1EVUhNqclQq6ECt9FulriQ6E2TGUDlSdUOi7/+FwKMSrT8kS6qwDJgqQ1kJU6oqhZXOUFGaKR5biCOpKZYDYURM+dAP/CBPbe6zHvfMS0Yu7rBwAyGxr87TT9w4HWR7VsJxWsyYOiOJohNNtb84RGkydzKpQ1wfOPiW7HuI7h6ovpLWAdcjUpRht6F5YtgLf/W//2O8+IFHWdqRf/67v8+xDYziaE00HGJBtJDign/nL/85nnvHp/nNj36Bl166Yl8Tm80Zv/OHb2Nf+PYptBuMvsG0khy8Ca6BYFyL0ywopWdBPBLOipfGGl3aJdodJiVLtw6KdphSwFO3Ju7evd3T31R2ZeDX/9uP88nPvMa4PSOo5LV7dv/+r3+Wdzz5DO958VGqBXjm+59/lt/+5Lc6/tt6QDFFEAQPlqWvlQw+9rtf4hc+9Kd44bkL1uOR3fkZ55sbXB1Xija8BeZBDcFtIKKD6TSBZqPL5SpOBR27V8IaUTdUc+x0IFYtfY0mlcjCG/fe5M0336DcOuP+7z/gtdfe5NkXnuath/coVjgQvC7wkc1d/uzhDZ6sC7ftinfJns+Wu/zh9hZfT1c8PyjvWw48uxgrGY+FfRbEg6MM3U6aKlMDi0IL7ZMJNcSDFEZL/fkVNlNTD8RZEgoFj+71aUBKgriDQCTFoosRLTkjgtXcm0zeyE0pQJMK0h/21oJFjSz0NSSn74obJQ945E4mtcY0H2E98sTVmzz5ivKO8zt89fEXuLd9jiW2RDQsHxG6K2SlYPSG0aIrocposOpC4cBt9tw5u8/j57e4XBoP793jan/gen8PCaNVp9Xe1pEIrDasnQ4V0S2vtTo1hL01BoKjG6rK0Vq/GNABWGs11ua0yolaGdAamoW1Nqi1BwvbnjIuHNYuLrxxa8sxnKuWT0Hbmd18wVWqiM79khfBKMISnaUziIFtQJxqDR8nfFkprUMXtRh1NTahrN5YdCV5Z+2IbyA76IGgFw5CCrUdUOlh/rXNDG1gzEHM/XnctLKimA9c1y6tS9K1ALkodTWOy8zeZx47z2xC2JfEECvhCdOFwXPXXThdIEkmfO2AKpEOz/NAZCXJiIbToh8ixqzdrYXh9JXHd5Xm7v2ivWKQHKsO6YxmRkqtf15s+N4eKlwmkicGTUhxoq3MpZMI27ohpiOx7nBdsDZSfCF07aNvHRGZe7hJR5IJs1bCb6McOoUsFAPqMnBXd7z/3U/yrg8+zksP3+IffPQj3H9tIbElJeu3WW+4bHqYU4R93aO7C2Q+IjkDmRuiHKJ0Xa0Xqh7or7Oxrz8iqBmmCkPpavYktWcgckNiZK2l5wG2zrR0zK6LcJUaQyQ2PpG1YknJ2lBpVHqlqZWGL1umYqyt9AdGUlapeOzRY+LZJ57mA+9/At+MfPwLX+e1l79DSiMtCakYyRSPTNMNY71iGgqyOgdxWhoZU+Cx4C2RpeCpouaQFpYQpjT+keF0ldrpe6GogicjPPVdYsxcjSseI4PvcGBV6aRGL/0mJUpOx97RiR4gEyoWN1CpmE8nqup1JyCWkeyF1ftLaSS60yCEsUDk2r8cUqh6DUwMuser8it/9oPIL4xss1HXmUlvsMYBBKr1xpHNnXaqkvsXKjo85qEKAwV8wuuAeSWlkWWufPCHP8B/9n98DmXEY8YtcOuHJ+fIdiP8i9/5bf7Obzwkq/LLf+59/JVf/uM8fOstvvTmK3zkEy8j2w3tYLx97y2SPEaSDREAxq3NyH/v53+Kv/Rnf5pvfftVPvaJL/Evfu+zvPTKW/j5OcnPCV0RM4ZI1Nw15OoFL0eiKsE5a9tRbKTUhdCEVeH9zz9BnU8voLhJPcy06PwNT8rLb9/j0TsDm+y4GCaZy3nPxz77Gdat0SxTvJDUEDvjOmY+/qkv867nH8dCme2ap5+5yflO2B8gzMhD+aNwXZKzfktKPai7zEeKXLAHJlFSvsZ9YBb62klHUm79IRjraVyciWhETqAVtYQ2JbyHIC0tyElkJxRCFsxn0nDGvL/mz/3UDyPR+PhnvszDWPjWq/f49qtvYy6QCts4UCX4KoXY3eXP2z2yLDzJnhfaN3npesPvj4/wlXTOF3Zbnh4OvBgHnl2CnUWvC2rlKMKWgUY387o0JOc+KhbtRljpRtbmjRDFpRJRqW4kKWhStHVGhIf2Q6I3UgTJFbOAWLGAVZ10ouZepw25y6sZm2D0teiivXE24v0lYM5aAo+ZZELLvcmQPLESFJTpwWt8/9W3aBdP8rUn38/rw10qhqYDQyvUaJQTUbZqRepE6ETbrzx+7jz9SOPR3RPcv3/J5eWBw/VCNefBteFli80rY8CaEiLaZzIimDtm/c9OrVzPB1Y3xtQHCmtrqHSLpzscm/UqpEknJ4cR7n2qiqDShX9lGoistCqgTp0X9g/hmbPCt+rKuva24WE4UpuytInMCOUtqm3BVgZpOHsShUoBFKySUqNFpoUwtjM2vmdVw2pmtv78ClXI+457W7ekdCSir3on3RHtSOjJ+1ODnLcs+cBqM0qiZCOVI3o0ruZL1nKHLBPzMjOLsJeCa4azTGzPOaN1d0oEbrkrHPyM5E7TempEOh5nrHEkSyZlAZuIdERkQOMItTNYSlwTKaPqTHIkyDQLxpyREIQtRYPKTA0jp95Iwvf95/peHiqIDU1rB/aEsJDwMJQecFs9E3lP9taV1GWHnCqHkmbcnUoPguw0iFbIaUZOXrhoI+e7c9777BO88N67XJeZf/yJT/DK14+Ywka2/UFplaKKpx5WGxgpMhM5Ueo1phNVtJ/WUtfZqjmNGVKieiGrsfPCnAQ147osTGRSG8k5Ie5U74eJdrp1lNpx04fc2LbGzhKmzjIYKVaqGxYT0Y5dLyuJrWVIhxO7HiJW1jCKnPHU7Ud59kceh03lU9/8Ft/5xquUNjINA+LOJgTzoddatae7p3wOsXIsiY3vWKpRB1CHwgIahE8ofeQsOGtrFCmYr2R1Zj+Sc08lNypZByyCKmdsl8YiQSMoOrAJ56jOwsKGAcRQ+gOxKozW+93ql+TSSBo4CbERZE+KA6QzRtb+gRTlTHvq3UPY+cwjmw0GiHRmPTl3sde1sbYDLQmrGJd2SWcTLoyx9pthSvhJh5xrw11RGmfeqNUQZij0naePuB24vbnFYy/cxZIjnrpQS8AsQcCtGzf4+ksv0fYfpjz2OL/+0S/yrne+ix/44Vv8P//eR7h8UCCvVJQvf/NN/swCJk5JiTCnhfDgqpIlePaxR3j3v/khfumXfojf/t1P81//4y/y0r19VzOf/p4TQsraLaeeaFlI0aDNWHHa0FAUW1d++Rd/gv/OXzwHXwnNcHoRuxvXIfy1f/c/4fajT6Ap9z8z8Oqb93jjDSfZBo/7jJxaNjRMla9/59scl0vysCPCuNjt2IwDhytHNFNt7gfpmCly3W9MzXnq0R3PP/soy9LzJIMfaVXw1GHfY4J1XahrAjGS9iVAmKG9xwueUVZUrwHrzYjoCf2kjjVjnWE+Vm5uHbEtXlZ+6Rd/ij/zpz/IV778RT76yS/z9dcvSZZxeUgwMjShqfCVrPyTsx1/5rpSfGYVeKQ95Gfrwj3Z8JVp4mtl5KMy8al0lydtz511z12rTKzoOvdVhgTFFLcV1/47A2ENoWmCMDQqVZUh+m0uIigeHMU6ojk6Zq14f+mm1OFue2lsSiIZeB6IQUjinVkhE8eSucqKJ8VDWGVg1QTJSVIhCV77yzisolSIlbOl9Rp4gogd2zdf5b3Xb3Lrie/jjTvv5rVI3Uob/VNoahS7IOEQr3H7ovHsrvL0cIO3Xrvi4fqA2oy9r1we594Qqo15vU8kwVoXTuWsiMhp4SNYNw5wffWAnJRhGBhQ5rb2Mbx3LfgctVMlPWjqrFbJVZEomPTmQlB7Dq46WR3NA42F1QrH5SFb3XJcKg3pEyM/kGRDjSPLnBh07e+vBLBlNQMctcDYgAgpNTYWEEYehGrdAbOrAxZ9etTNrIkkh277lCDlmbWnkBnUWZyuDc+9ejpq9Ofy2hAZ2Ffj/v6I3FUODy9pDmfn56RWScuRc4E0CykHKTIiK86I1rFXfVNDyTQ//e96JZ/eiEqfWod3F1HIGaoVj4EkE1DxKrR1Ik0KWgmCIVeIxloTLYLFW9dKtImcdvj3Gn5FHOkE/57QH1gpflKlasNbgQSNgdWMHAslHahxRqq7fuKUIDSYpet3F2D0hKaB973wPO998VH2+cDvfeNbfOlrrxKHRsqFHL3ukg3WKCDC0AKXRk6ZKgnNjWP02t7YGmsoejqBG40UIyJrVzGbkJKy8cysFbFN9x2UBY0dRB+JwkhJD0mA2QYVZwjwGHGEQTK0lcaGiMB0YZuVahkL2JMx3fUv+hoU3fGe5x/lzhPnVFv58ivf5vVX78FqlEGxwVg9kUPRqKCJCMEDQhYWHTDfsfoBkSOaldIUFFYdiVgJ9ogUVHs4Ljgpd9UJT/0GD2AFJOHqLHRceeBIaYgXzCotOTlGVBou/YYl0V+ioyQkdWQ0Yr1uJRmvRpTa2xiy0uKa7qwsVDtg0bgxDdx+5BF8dKbpor/QJXCJvmITI7KSiyAmJJnQHIQHoVO/AUnPdRTNeANLqYPGYsWLEumkk4/oSWkcpVci1xpEduy7iM0YIBaMhauDM7eG6o4Uicu257/4O/+CZz6S+OJXrrsUTpU2DHz6y2/w6qvXPPbMhlidpNodGkOletBi4PiwMaQNP/uTf4L3vOM5/sbf+2d85ktvQ9rSvPMFhhBa6rf40XuKvwxBMu+/3+Q0T1xaRtgzaqbWPrVBEuoN04UcwVne4ZKYA7aMHI575tqQHAy144cloiu+XdkfjixHR8sBlUIumXGTetNW28lhkJiGgV/5Sx/qO2OHZ599irItrMeZNEy8dv+S+Wpm3PRDsa1OThNGxcyxFhTp41di7DA56S/poHtokEySLeaVSrfxHmrw7Vff4M7tcwxn8Myyb+i04Qd/9IO88O738Inf/QK/8buf5BgD2oRjbkynm+JX5QaxG/mx+RXumCICMwduaOXHrx/ygXLGa6nw8rDhbdnyze2AiLEz2G4qT108y0Zgmu9zvuzBVjRWxLy7KzTI0T9dosIRo7ChZWHNB7JvaSVwNtS84XqMLmzJhZpG7kchTRc0T9RhpKlieTitO0YqhX0KqgSSSs9iRWZNiaJGEaO1jt22VpnC8dZIvjBQ2e0PDLHnbH+fzfGSO9/5BmeXbzM8/jzf2TyFn5TmYl2QaMxsN86L52fczAuvvXGPtVUkwewrrt4vFsBhPfZLYSjaHQ2oOC36KD7CyTkREUxjoTZjXVaqStcBaOK73hhCiGb46UKUe1oIiJ7VClgrzOGn6m8ixFE5IDVhwznb1HjdBtxSFzmmU9uIHhAXdVoEq2c8VraeMVWKd+mkUHsYlsbqPVdgBseamGLBUsW9r/KSHhDvlXQxAdlQJGGxUD0YTvZmEe9SS1dEBiwlfFho8xVpbiRWcuR+MFuDnDuf4tHbt2gH8J0z4MxhDCqoDQSByYS6oafnKyGU1HNsHhNhC4kN2RYid76F0dk21k6un1Jwln7qs+lELjLGNEDsWd1IKgCdphn/ekeFf+1DRSRFLGNyZCqGtkRLmYMkiq3samOhUnLgPnEkkyIzGrS8J0si2zkS16gaR2tsK7zryXfwAz/yHHNZ+f0vf5Uvf+MB69pPjzEYTmZTo9/c8pYxrSiJITWkldOV3PooXo/9y3zS3B50xmmoFwYzJJzJBqq2rp4mGH0kabCmQNbCGhXR2j8IWvtt1nuQUVNmjJ7EThp9Px6GF8hNyM1oaUNYowwL4nCcF3bpghfe8xSPvesJ3rx/n9//6tfY31tIbogYY3ZowhIbNtkJCTAlI6wCQiKXBav7LlcLx1hQTdC6S0KldEkXrQdfMVZXPAZaahCFLE7QcAsCZ5CJivdRLYEXJ2qBPGMyQ2zINAYb8Gx9z61HdjGyegWGLsUajNWU7F2sROxpMsOpA+9LY1ln7jyy4YWnXsRUeO3+JW+98ZDdzZ4dyNabQyHGYIH1QW6nCmYH6/4QXftDTVJGUApBSysqneApUfBVu4QrgdIJdR79gYfnU02qHzKCpUuKNKGmDGVEzSjJSNbYxQVvztc8/ErH+LobEYE2eG1+k7/1D3+Pf/+v/wyUlTY7qTQWILn2z17qmYL1uvLU3bv81b/y8/xH/8nf5s11IXzbTYBJCb3sTQg7w6XXSLuZ8LsaNmMgcFXchaQjNdbemlAYI/X9ZwZCyNIZISwVCSPagRaFpnP/rrQztFTMgroGZwhZch91ZhCpJNU+PbGKSOEnf+SDfRAffWw6LytC4SyPfOxLX2M2Y/CBakpJQtXrDmXT3nMn7I/yL6KFzMDq8ylnkllMwHrrwQ1CjEMzPv3ZL/HD731nh00NI9kC88phmUlj5sf/5Pt58+F9PvLZryIKuRXOyLzfr/mcGl/VwuX2Wf7E/jXe7QvFbnSmgxpjVJ6vM8+sl0guvIXyetry9mbkjRd/hM/d/SEShWbXRFsoq3He+sHC2soUTnJBXE61vl67lhSsNnUx3xBIKyyyYZ8a4q1TUh2qJJYyQTdgs2qlnGYhJrlnFeSaEk6pyuiG2qGD0mLuLJwlGKXr4g3Bc6UpRCm8PTxNK4qYkUwIn3ns7W9zfnmPW2nLm3pGSjuSGMkS45R5782FR6Nyvb/mcn6badpR1kZeDfPCjRvniB5oJGxW6noNJzNtuPemxomm7OEULYgmSuq11XDD3frL7UTqhQ6nCzrxem3WX2LRSQ+RhGjeD0HWuRPqTlhmtSNHTdzYDTySjTdkB9pV6USgMlOls4Dadw9GHhzpId0GhKzA6XDmgSdh9AGsoh7MSVlRklbwibVt0LJgrcvlsg+9SRYBMUK1fnFxJUVi9ZVQiDr3TNkycv/6qh8UE7QsiGdqu08phWeffpZkGxaDSke9t9Wh7HuI1/v3I4WjHNHYUKX7szwZLgb5kkkmZodgpJijZhzVusvqVHNW8S7DlMTowUEOvX1UM279UBbWhwLf20NFE2o6krywREJdURbOUt8JR9qx+gbxRhJDLVC1Pp6NgYog5YqjO+wzL95+hD/9wy+Qn4BPfu0rfOazXyUdBeUGeehhxuQ7Znce5Gu20gEs0bZUD6puyeMVeKFZoabKzjO7lthHoHpNZkHsJoFxmYwUneC2smHSFaFybJ1CpmthbAXTGdeE+5aNN8IrtXTD4tVaOFNnzguy9tvCThyP3p13CVYRMgVrgRD8see/j3e+9ym+ff0qH/nY77DeM/KQcRmxOJLFTxmPyoGVC9euGo9C1cYkHSojSyLHTVpWcgyEC0cmNNOrYRiVRua8B0Gbd4usG6OARQ+R9YOYk91OFMzaX1a+UJiIlFkNztIRsYWmiVakr2EsoX6bLHvSaerUlhXSjiyOM+NJ+iMxJpLNrIc9d+88xXMvPoINxitff423XrtEx8zaLyCU0nAaod2jIDqRi1PoMreaFjJ0PXwBJCEtCKssCGP0h0SShKZOf0MHmhWM6KuflAkPRISm14QlNHW9t0v/rIZBDcdEWKMySCWlI1UTboWQxGYMzDuGPmviX33qixz/d43/6f/4Z3n00cKDg3Xtcy4k60ZbUt911yXx3NNP8os/94P85/+vzzDujPBeG0R2fV0ljms63fqCUOso8ahghfDT4Un6jtXNKRLUZiemvyAZBjsjmaKlIDJCDBRZSDYypsaSDzgbQBlGIXs5PbAbWpWmR+Y12JQEUftnTgxBMCtIwJkWVhpXtvAvP/z7TJszwhvEyqoTxYYuidFrJFl3iFTrPgEOhCSKBakEbTKSzKBXiKwU3aDq6OD8wZde5p/85qf5iz/3EyzLnmbrSYQ0UDUom5Wf/NCf5BN/8DXW5KjAm63yuGT+8nzJPx1v8Kpmfv38BvfnDT+wPiS1SslKVKdFow2FQyycM3F7uWKcL2mf/ldcnn+eh7dv88rFY1wPN2nDjsN4zp6Ci3CpdvrdBG3YMsclxZTUcsenc85Wr3CBlQnTBd8EsihjNXKe2bZLolYuaER7wO3DNdtW0flAaUe07skutHpN8oWddbGZs6LRqCGEph4YjIDYINoDvsdRSOU2V5tHWcZzHux2vHr3GY76HtRXplbJq7DoJbUMfN/dc54N4X674qruqZGZLHM9L8zVuH91n8vrPdeHGc3KkFMP9YZ346f3g4JIv+GKKKUUVDLVl86iaf3nVE2Y9dBm//fOQXAPlrmRcz7RbrvjIvzEe5AO4hOZIRLL7LgUtkNhU2r3lcgZRRrqoKepRtQ929QvXs0yNQ1EHJlTPzRv14kOnO0B6taciP7/lcSIyIiBe+2TGevm5aR9Des2dp4TB9De3EpG93T4glmjRUeYuwSX1zOrryiFJMFUEh43QRqHvKCjMQwTg2x4sF4xlMTkG65ZsdiTPZFkYFajRWc/aRYEGCRj1ThY52WUlIm89vZlOIs0RkmoBTkpF7sJTUH1IzTFVmBYO50zpF+64nt8qKjT3CcG4agoOUZmcYQRE7DRKXVmDUF8gypUUVJZyNVIWigx8dStW7z/+Wd57B0b/uCtb/LZf/pVLt9YOcs3sWGDeaOc/A6aZkRGpN6gFUeqEzqTdcORIJsCztkJs9rSiuVuTM0xstJ35i2vbNqWlmHIK8R1r1bJhpAVxWipUvOha5ZtosQed6PmTFgmhVKGt1HboEyIrqg6Qus0u+h94xILt6aJp+48yve9eJc3mPntz/wWb7/6kMw52xEWW3vTpBTcVvZmpKGQ24qULlAbdWAV5eDeVco2otJNoE2uiZYY5CFbTURzLBuwwWOh6kKOwtYyVaOfxPH+JVAjtODJOTon5fIAKWhyYGgJk8YaG1pTJO9R2ZA0k60SKVgIiiWkBkOZ+ssIo3llkMzgiZQS57ef5LHHz1mpfOOlV7j/xiWEMW7HnoZvSthAi4LLiFpjdCXyyu999qvcf7AgKff1C0qKDnQxnGcubvLO9zyGNPAhE81pTq+pWUKjktOJ4S9n3ZCaKpeHt3nryhjIOA/xEFTH/lCLxuF4ZNk3kmSKJbwNbBx0UmgNFmFNjiSoEuTtxG9/9Ut89X/zMj/3oe/jJz/wAk/cfaS3OQrkumKhUHpO4Dg7P/XjH+C//Lu/RVufQXXpIdfIfSWhfbdM20A4IrlPvmTiUK+4mmdUjCxdJETAVR++U824vL7CvfsHqlTOLjaMRXm4GiIdPW2tUaSSKUx5Rz6ZKz1lqmdq6zplbZ010CS6DhvDxUlktPRpY4jyG7/5u7z09h7TAn7oymYznC3UA0F06ZvQXxRtBulAnZxWwgtrbSc0/whp7o2kWcghyDDwj3/z43z7ldf5qQ+9n2fvPokL5GlFTPDr4MmLGzx76w5/cP9NBjciZT7nhZh2/NnlAb+fM19LOz6iI98+g/ctR545NqZktJZJa6NoEHqgCawy4e2a7dsP2b31NR5LmTH6ivc4DszDBce0YS4jMQ4cGQgvmFx0Hb1cE7one/SqeV2RGuRmJK9M1TqsyQ+oLxSrZO9NhCSNNQDJhHTsoZHwkhnNMSpVBJPAJff1MA3lDFWntrXnUkhsjgubq9cZeJWiwlMK87CjXjzBKzee4sHZLWaB4CYvXMCzu5V7r9+npaBe7XGHdZw5zP1zFfUAdkDjSFsMX4Us37VXSl8pwmn9EYQ767pSNsPpENEbH93DI390mPijaUV0T1JtjXEasdYDn7tpYu9KrYGW6HAm0xMQtxHrJftZ2I7n3FqOHNOGSDAnI1thtYQPOzpxesZTIUfDozDEGS0WVK/xyHgqJK24ny6yPrOuGyJfkqVnDFQHqu07rTOEQcbu5lHvcSEgTHEyko2opX/+W5z083vW48r1wRmsscjIfLxH3ijXx5l7Bhdl4sG0o2wvuakTYYKUxDkOMnA8BibORb5gFafWK2IakSPsbm64wcDLD42L0alz5SBG2WbkkBhPoeGyU8ZUOL8xkBdjXs8gGvdt35047pgYTm8vfU8PFdI2iO/JpXJsG+a0snHw4FSL67kKSwMlKqbKxoJLHymqPHX7Bu995hnuPDPxtftv8OEPv8Xl2w8oVtgMQk0HJPYMfiq254RLodCYBBqpv1gk96SujlQfSGK9TSFC2IgkB1WsBmNyDqqklkgnTjpSQANzwVNCHIhClP4L93TiswOWC1lW1BKSKiX67VdIEMEYlbBM1YStjdtnj/Lud95i88jEvasD//ILX+bNVy8hC6mMHTjinR0gec8QiUxCS+8fbzxhVTHZ4bLQ3Jk8EdL742tUwgoSE8pMohv0kGvUCxmQ2KIhRBy4yoaI95sljRyNJBuojTjdvrd5oEYnomIDRy9ocpwDXnYMDGhNoNGnK9L/HkQWSMrRE6pGqomCcHF2xp1H7iBTYl72fOmV15kfHPotZOwsjqPDBkAMU4NYyQGSCq0tpJT4r/7Rh/nU546wKQxtD3VDE0dyIFr42e9/gf/lu59H9dBHjJqQ7p7GbcW8AX0Mre742sibDR//9Mf4z3/1E8jZRXdm4IikLi6Tnhm5akbebTh4oGUmR6K6Mrj38bqMqC8nN8DCNA1cLyv/73/wcf7Zh7/I80/c4T3vuM273/k0737hNrtxoK2GygCeuLV7kju3z3jpciVTsfjuZ6PXeiW6Wj6k8P9j7U+Cbduu9DzsG2POudba+5xzq1fjlXh4qJEAEpmiMpnJZJFJiiFRITUomaLDEQ6HSVnhsOwIy6GGZXcsR7hhO9yQwwo5LMu0aVtiFTLJJJkFs2AqUSSYqIHEQ/kKvPK+W5xz9l7FnHMMN8ZG2k020EAD9yEC9+2911xj/uP/v7/3Be2J3fnEf/F3/gFf+MqPSOkcrGCpnTpNwrzscsGDB1dY78FD8cojty549Fbm4d1AYKtmXBMiGVrn6fedM+0T0jNFEsf5AcvSIjGU7fT9JErq8cxQEA3gz5jO+YOvfIV/8lv/PP4e3mgSa42kM84l4kJ1xXuOmKUZRXcMeYS+0E8rKm/CON0MfopBrRrFUNpxjx6Hb/7RD/j+q6/y9BOP8+KLT/GZj77IY4/dwXBk5+wfvyD/6C3KbsDNGFPj26ZQRv5EvcezfePr6Qavc8Hdsue5fOBj88zjslK6o2niWhdK3UNa0BTrCWyKS2l3ujt2uGI4XDOimG10iSoCTKLzo1tE7RPBejBBdIQeK9UsippQ1TEPA6YlOKiS8oRVQ1JBm7Foo6TEZI53D5CbGeYZ1Sjk671idJyKayKnYIJE1DEx52h0bQQcalgWdusP2N/9HvP5BZe3n+XwyFM8+8Qj2OXK5fqA3fgYy+yUfSZVpR0raVLUC+qJYCPA1jsW/WZAKBUi8sdDBchJvfixv6JThkLrke4A+f9TKMLn5N7Z6oL5hKrSaqdlQ5PQfaN2j5Vw0lPqK9OWyuX+wDAOlGTMqTH0fTRsUkgkUl/p2nBvJF8wT1QpZJkZtDH7Llo/bcNcyOphrC0Tly3h2y2aGC4zXY+InCF9AwyVhXClDmgP9kaSNeiWJmiPJF3tyiDC+a09yxrsn5yVTmPzQk4TVpSnnnqSSe9g813u3Eycn40c1oFbO0VaZm6V1w9HRJXbd5x6MB6sA4/fvME9ucd4a8+ZDdypM2U38rBX9mPizvkd3rm+R/XOtE888cieOo+sDyrHsjGkHYtFXPqk6WBAUqX9pJWKaUv0dAbN2aSyswCCrKmx5oaRmEphLxERQjOXdeXOzUf4Ex9/nGefv8Ob997jN774Dd59U7B0jZhiJVNa4biBDBnDKJY4GyqtQtZKswoShTQpraym3DTnygUkZvSugbrWKL/l6EqumYFwp5OEZjHzWx+BjsiMj5DMmQxAqWYky1QU606Ti4BheaJVxel4Wk6HSGeejSceOeNTn/wAjz9+zh+9+Rp/+JUfcn2Y0d7JeU8VY2jh0l2ZmHRGrOBNw0ikSu2FMQl1dNpSKZ4Dl22N3ivZG7siEU1K0aq4VqekytIGhuwnZPoBtRGXHSqNte9iKNI9nYUkSk/x8LbUoh+kFbq2YL6nNSKxOqF9Q+vAoMZRN7oKzkLyXTT6FYNtRg7KI4/e5tln7pCT8Mab93n3jWtsqeQcmQ1XQr4fnNKMwScWOsl7cCQUkkS0UHzAh85uFDyNHO1ImSaMIAJGk2coKlUEzJEkdJcTeEtIruEdkMy6RvsmSVmt8vbVNYPs0UZAwTw4eOaJ6pHAOPNCl473EZMCHHANAqD0zE4zh7bw0pNP8IHn9/zj3/w6u0ef4Pow89XvfYOv/XDP8Nvf5YPPPMH/6K/9EhfnQiP4H7sz4WIPeuVkEdopepckFIfUL/CqpCoMxHqt6crD+1fcvXdACvQ+4sMasqcXHKOr8sY7J+PlAMULw/nET338Wf7oV7/CbnfOWi3MtWWDuvDxj/wJShmC06HOew8uuaxHshc0JYwOKEub+c//xt/nhZc+xF/4pY+BOa2vpKwsJmyqDF7CgEml1YSUWIV5N64vNzQHAfVsP/LsY2f88K2FUjJJjLVXPvqBZ6i9RmrAZ47rJWaZJ+5M/OwnPsM/+sf/DGzklTfe5Yevv8tXv/gt/if/43+bIcNoypgLtHgmvCu9C1nOeKUojcf5ufUu/+byLl/enfPt4Zxv99u8clZ4Hxsv5cd45vJHnC9XONfh50kJ74JLZugbsxq5OUqJaDMGeceA0E6/yU2MJg00kSRh4lgNSJKpR8kdyqaByB8MqkSdgUjjzMJHNpvRCwwkWoV1OEG36golYy4UF6p1TIJK2wha/Lz1UMqkkMRotkbixCUMkCUxWwYx0rFy+/pbvHAHbo3P8r27D9D9nsN8ny0dkbLjMBurNyadorgsgYmhGlg76x0JChSqiVLitSIipJwQCS9S752cc6wpNWG9A/HPe+9/PJDo6ZlurVFywayxnurMuxVyyuCCmYM0RBrNZrwp9BVvjaldImmgiNHtEuEctRJsHM0UATxK/siJngw9KWjCQKpCz5XqypCcXV7pdoH7GpcYGTFCMRQEXMMMLx2sYvETofYcXq4cZY2iQvXGlAbafCSpoDKhTTm7KXhrtNVI48jjN3Z87+4S35lKKCy6Z0x7vD2ktw2ZdhQtHJyoV+9Kni4oVLZ+YD9eUHXDknOREmnd6KmDGefDDXxTemmwNRKcDLPhK1kE4tor4ZVrP2GiJsMaL+wOF0TV9XZeoRoiE7fbOeaXmDSqF25a4qOf+ASf+sT7eHh8j7/7uc/x8JWKi1IGgTbhekR7pUtmMKO0AHssDmyFUVdaG2BSSu8n/vjAroeUunNhFaEg7PvASuBHz7dgMrSS2VkYftZeopPDHVQp2eg0ikUU8FCidMmaUPIR9SmKnrjiOivaBrIGLVMk0Y/Gjf3En/3Fj/PEs2d89dVX+d3f+jrLLIxjlNikNFJrj5bKSWnNgUsaA+4N2QuyOB2n5cZWhfNjDjMQhWorkwizxQ+2d8FlR60NoZKK4/2MnTY2W5HcqQjJIoaYHIrPSC6ot6hhtpXcBvIJLoRvDN7YWkG8IxINdYN1zBKVI54DspJaYF67Jpp39KHw1OOP8/5PP8qRwss/+CEP370XP3yBUmBRg7qQekRddSlsQ+GIkVslbWexLrGFlnIMLrlhvdMt4nE3u9Kk0nEkG10yNy2zO918DSHJhjCTcyNZpzlBvkMYB8H7HDdtH2BK6JAxr6isYLso0JLO4OGX6aZoLhx1RvyA+DnVOpLi5bH0jNTOv/pzH+bf+Ld+lq2+w2///pvY2W2G/CS+bei48tVvfp9vfv1j/Nk/8zzHywUXRdrAtlaql2hDlBhUuhpKx3VmlUIdnFbzafDc0ZNSdSQPgtc1JNZTyqZ6RQu8fu8t7t9/wKNP3KLg1KPwl37lT/H5L73JD994j7ybwjNyrfz0ix/h53/mp1m3A5oVQ/neq68zrzPDJtFpIjGEeMt8+Y9+xLvvwS98/KcYLgquiReffoZnb53xw3cug93gYRyt6YJi0UosxXn77l1Mc3wHBr/yZ36eP/jD/5LVd5g1Xnz6Dp/8xIvMh4domXhwb2XbDox6i/c/+zS//MsfZz885O/+6hdC+vc9D4+NpSuujSNweLAg48DaO94COrVJpXbluykzT3f4N+0eP3/9Hh8qR76663xnfIZXPvAXee/Obb50eMCLP3qNJ+9+l5uH1xmWq2hlTjeRVhkpYbajR2zdC9krm9mpIXMN344GV6KfnqFEYPU3FXaLRDGTGOrGdXFy81MAc+DaGj01sgd2OlkkoWgLxSVARbVTTBkQkgpXbKgFIbcvTiHi0gmnJ9j1zHaSr1USrZ0GWE00mdH9xP6J26z33uVqfo3b6Zx2TKjvKd3wQ2O2yp6RYsLoStUBE4s4aF2xE9CqlIFx3FHreoIExqDQWkNE2LaNfvqzdPJXmHVasz/2YfxYZ1+XBZk8hgw65ht4x30KpoIYbuHnGCQji3K51+jNOW4czlfcJgYRVql06WjzkwF+o4hC9qArN2GUIYyLGmWYCSP7gHjHSjSXtiYc15jeund6T6hEQq55VBkkmWm2IZLwHkk0t5nCDRBBJHgSdV1J2nGr5GEAGVEzUllJcmS3HxExNoPryxkdbiFL42pdqWuYwItv9H5BqhWZMi2t7FDuv9M4L8I2tjhfu1DSnnVzaCOWNsabyrv3KnemcOUNltjvhavrFe/O6JCKUFunWbBwfqJDhfeQPppXkiaukzJcnTMoVIVLechA5ka6w0deuMWHPvEUd+n85le+yB99+w1GduyysiAgFXyi+IjRWG1PGpxZHjL0kTNJtNK57IlddnQL9QHNjL3iUjn0Cc2NlCLSY/lA31IYlHQOx3lXLn1gzBpdjj3MgSKVVhWjcK3ODsUsVhlFN6hKPC6CyxlnrVPVSb0zaGK3f4SPfegJnnp2z3cevMN/80++zMOHG/vdxG4fTZk7nehV0exoXTFXmk9UzsCCpNbXGJRyLwwNenKaFqTHASTiYexhh2iPdkcRGhnRCe0rRa4BQ0zY6o5Rr0m6sMkIfYfKMaBDKnH7zXuOcpeRkdyiyGqURibTHKpmRCpbH9CcOXOlpg1qZ9UD3W5wlpRn7zzGs+97lCs/8pUffpsH74QPYdydYZ6gX8Xt2y5oqpByFIexsauJnh0z6MMVDcUpiAcBNTdBTYEd0pQlxw1Yc2I7URrX5PFQK9A7lYQheM0UnzEZaenEQLGosB9MuZE7L+xvwR7a6KgMiEVqBD1DrXMYK/euV7Jkxi50CiltlFSpNdPyNYOe8dGnH+Xnf/4lHrx74H/27/0VPvGhz/Orv/Fd3ru/sUrFNuWlp8/58IfuYGsnJwF1LpdLHl5XdmlF+8AqxqSZO+cKFC4fXDOagW0MdJp1Rh9IJiAr3ifEYewhTmob0NQYGlwvlT/40o/4y//GkzyYr0jJGNPIf/Qf/GX+L3/z7/PDV6/BlQ9+4nn+3X/nz4MYcyvoVuna+MrXX8PaLTwdcBKpG6JOoSOaefNy5ntvvcZHbryf7gu3b+z46Afu8NbdS64khhPvO1KqdJ+hnoEufPuHb9C3hSTO1dJ43/O3+ff/3b/I57/4MsNe+cVf+GlyHqlLpQwD333te6z1Buc3jU//9IdY58Qv/sIv88wzH+RrX/8+x/maT336g9wcodVErxvvXl1S8wRSGYrRPXpnqoOSeDUl/ubZU/zpfJ/3bUd+8Wrj0/Vt3nrnZV7lCV67/SxfeeFn+KP3/yzDeuDJB6/z9N3vMhwfsp9nxK8YtoqfbvzilUrFU0LEkS26hNQV7UbRBK5U3XBx9h16dqrMJ5k9xWpWjdEtYsglIZ6pCk33zCqQC+SBa3EsDSx5oA/RpbJ5xJvNRkwjQdFSokiC1qjWKe4Uq3hfSHWmWEPrwlAXtA+MTz/CPJxzff9AWx2/WehcxupX9txt90kSNQA+DPR1ZRhGXGDdVtKJcyApMUxTcBLMTpTNjuqA5IT3kPptjYtdt0jPqQqlhGlTJNp0h5wZ8sCYR3rv9C6kNIF1WnXyoHQBRLEeHoZM53ypFE3c264QbmAnmJR6YQPGspK7Yi1YIZmGyZHNBkgwqtLsCskT3pWmK5ZSJC7yRmtCTTFotD6TykhqR8w7Q8m0fqpqqDtsCE7QvkBOZ8zrSpEdJQ0U7Vw/nLleOo8VpYrRt3t43pF0z5t3V7bpmou9cPfuxlsPjzz/jHL30nnn3ZVxbCQrWJqQMajC2Tu0iDbnZswjFEkU6VEMqY1jXfE0U8ZE2hbGbWXOlaEJ9VzZ2lmQk3WkyobYStYoaRzTT5hTMbuSPTGYUETp3mBwFoRp69wcb/GhDzzFB164zSE3fu/bP+AHr75Lv+7kfE4wcIQkldwIOag1XJyJjvcoNhJWnAFfjb2WKOPq8TcddMVQvE+M5RKRAetQzemMJG0BxZLM0AaSVlJP5LqANpLHfrJZCoe5CIiQLWNqHOWabBNJQ9ra5yt6L3QrFHdefPQJ3vf8o8jNibuXr/Plz97j8v5K04H9dEFvRpYt+A+tkPWIueM+QZ9AVgbdUOl0gqNQ5TSXl4g5dlnwVEh0REtEH9OMewqVpUNKG1gnSVSyq3RU5xhKTHAZKNbpErGvwRKOcvC4FQ1yzkrF1BlloiJUVQRlEAjrsqC100pnXWGg8OyNiVuPPkmZBpbDA77y/Te4evgebp1p3GGcJEvpgARTvgSuXC1jCKaC6hXOGW6hLDXxAHFJZhMn54IlYWNG2EUhjhjqM9kjq50t4YShUJKSe0JtCFCUXcRLtksYuQTUnWUVPv0zn+Z/9bGPkjzSDnpau0S1tzCVgS//8GX+F/+b/w/7sydoEmx9dadKxpNSCHn2V/7UR7l185x5u8LmxF/6s3+Kf+kzP8Urr97lwb2FXJSPvfA4tx+5waHHemGfd/zg1R/y8HKH3rAgTxoMDPR0qmkvCUoKcJwGF+PHaGc8ob6SyhnHZhTfqDmhpSN1JBXh1z73Ff7sL3+Ss1zwGjyKUXb8e/+9f52H9ze0G4/evsBbp/aKNOVsusnvfuXLfOe1d2F/hh0WSqpkEg2nWsN7o4ry9W+9ySc/9hKHCqQdH//4J/jdz77OWd6xbdBlRk/yfEsHhD33773LH337FT7y0vOwXNMPAy9++AWe/9CLQbbdGlYjitps4evf/g6UgSeeuMVzzzwBbea4bDz7zBM898wTODO9n27dKfPOW/d4+OAeQx7AOmYCOqBck1IHi7rnuyr8znjGz5TCS9dHLtZ3Gb7727z/tdu8cfMRDree49UbT3F5cYfvPfkBvv/YSwytctaukXrNsMzcWK4ZtgNSj0y1IdZxmxEUUmVXIbmyAKiDFwYMEedYlE0Lxp55iOfOfaDnRFVlTUOQKlF6yliCjR0mCQPKqcuol1h2egtlMXVnsIZ1OykBHRstfEYWviJRoXsja9z+t26cycpz5T12x4X37j2E0qnbkWaONaDGmqxuG+5GIdqNE0pWRayyZoEunO3OTmsNC3aFJoxKSplh2GO9klWCAGzglkg5A07vFtgVUZJUdtMuKKsnnwXEOakIqoms+Y/VoGYtXlIqrKfSq9obgwqLd5orWRZUKu5KlxEXifeKGiIjSTf2THgKBWdzj9iqD2gNqmdFyRqt1Fksno1eUUlYFlJbyZzT08ImK9XOSawkjwBnLQlrB+YGt7SwXB7YfKU1WLozsIvfAw3RxJQK1jOlRNVA8vNQfcvKajDlxl43UkuhsmZhtYWsmW2t3Lx1QbGNFY2k1ZCjowgnlz29jfTa6YujeUK3a2Z7iMlKdqVICQXN4j1iPv5kh4q9Jkyumb2w5InRoS1HBn2cj3zgCT790SeRaeZLP/g+L3/3ivVhI2Vh20UD6VkzJHVkG6M9rW80LagbW14YPNMQNGUWK7SysfMeE6IuGIqtjZYVHTbclWIV8SHAIv7jASGxo2E6R7mW+invvMMkgD6miVZ3TLZQtHFUB0ZuVgE956jx562N9HrBS++7ycc//iQyCF9/5Q1e/fa7tG1mOw7sxoEsQrdG742NQk7Clo6Bad0lHKP1OUyDGlnrLj/eqUZ1dZFMFUGrogNIMzjFHYODL0iawl8hnU1GNisUOQKO+TnFEtpXPA0IhdoXsk6svpJSp8iAc6S2M0SVzBqfuXSkd7oKYx855JXRKwuGWOGZ20/zwvM36VTeeO913nljYdkWVAqDGOQ93aLPodJYJJGYGIvR2QLZLRk8Xo7Wd6g6yQcSZ3QBUwnCojWsL2ANsSHUjtzRFIdKSUpH6GI4INWRNJClI7LhWuiM9L4CjksLGl8fcavs0xnnN2+H8fTEnMiqWG9R3Txc8OhZpq8b7Xygn2AwW9viUGal+MRLT9zml3/xI2y1UtiF0WqDs7NH+NRHbqB4xEn7hvkKYtALaSr87hc/Txt2iEH2yuAT4ivrsWEIizu9NzBnVXBRujk9OWgHG3BR6AV1JQl0y2zJSbpx937n7/3d3+R/+Nf/Eu8+eMjYo2PDNrh5NuHWqFskN6oKQ4YDD/k7/+DXEd2TNkNIbH2O1ZcMYb70wurGN7/9Hdb151BTmm586PmneN/jF3z3nQUbKm7hFVrbRLYNsmOl8Ou/8Vk+8YGXqD4E0XSG3p0V0KykZJiNvPLqO7z8vXfZVLk6NJZ54WKnbHWl9zPq6qRcgmHQDN11fv9L36ShqG7QYg8sZrQ0oCa4C9qMopW5XPAHL/0M8+EhT3/3n3Dz2KDOPHn3NXjjDZ6dFJse4975Ode3nubuxaO8Pd7kcPY4861MsiEqB/pG8hnxGKK1n0BmYqjD0TtNGhf1NubGqsZYwtw4S0FTpZwuGINFF5L7QlOnrBtDz2g7cqO9x1QXhnVB60LuB4ovlK2TqgErQzdyNxIbqRmLKptscSvP0QmRPTGT6TqQU+FYwJ66ie6UN+6+ybwYZ2c75GDRzRWe/4DI1aiAB/74MpaGWIPnNRJC0zSwbTXUxpyBWG+EVCqIZHpvCELKgvUwcZpFvFRKDCTjMIKfCKyneKqZRfT0NEjoKU0EHubmHvObmEVp4PXG3hvORG+G6kgiqL6aBLUjrmd0H1BXSmlUaTRT9FQwV9WoFoNctgnPnbXXeH9Q6CkM4SpOqVCTBNLehxiOvKMubJtR5Qo5RbizLHTd0WtlOQq+h65xodi2htQVfd8t3v/UB/idr34p1p8FxgxYw/2KxMhm8FgOG+qolWYZLOOm1LTSKUgLAy/qVJylB2RvpwVPxvkjsRLpp+dFUsJkxP0SN2F1I3ki6UC13U92qHBgx0hCWQ+d2SY++twz/PxPv49yU/nc97/Dd7/xOv7QaTqQipFNyFsnS3RUFjU6B4w9jnNuxmVSmnV6AbaMp0RFmFyQHl4D1ejAGFxZULzvmfxIPQUMVQPBms0wm1hKoFwFTkpBJtOZkrF0I6Xgv7csqCd2TckOiyiiVwz1grVvvPDYGZ/+1EfZXwiff/llvv/Dd2ElYrS6Q8ZGp5BrAxV6icGpuVFMsGK0Hj+0QWDtUVREj5WLl4UujT0D1lamKcpq+pYRhHG4Zmk3MKmozkhbokWup5DC3aBkUpfoDWADz/RN6XLkZhKO9QFnY2armX4ysOlwjfQAY1mb0WSojHS7ppcF2TK+Oc8+9wyfev9jvHV4wLde/w4P767skOj3sBvs6awizKKc5chvp+pk3agtOBqit1BacDLoaNkQG6giFDWsLWgPDgIGY3e07dFtQlkhxVC2tcqAROJBwdlAneIpirbSgSwanIl8TWqCeToNZxukHXLaqVYaufUwJTk0+zFCOmiTte9IKbgOzTPVnKwrjlCSs8O5f7jijbce8MJLt7haFiZPjDhza3RJdFlpbSMzItJJfUceFr71yjf5rd//IdN4FqobUW39kIG0XVJsJNsY37EXprVyUA+jVBXcMq2A+ZtoyqhfIGljkJVadyQf4Dzxa7/3Ms8/9zV+5c99hPlY2TFiFi82S8H7h8xomWGn/B/+T/9vXrkL0xmIOV63gDC1CdOQgdfayPuN9+7Ba6++x4c/8CzL8S77i8InP/MC3/h7n+PiIhz3rYOI01FcKkUz3/j2Pf7+P/0S/9pf+DSHw4NgdEiOzpplJe83Hlbh7//Gb3O9XqOl8+YbB/7L/+p3+Xf+6r/O7RGOc9BDVZRkhXIGX/3ma3z5a1/DMOoyorLQxRFRvCaUTkGhQE3K/oVfoFzc4uu33s+bd57kU1/7VR67/wa5D6xnG9OaWA+v8eiV88zb32Ah0httOOcw3uHexY5teILLs4HrdBZAVp2oIsxSGDuQjTtWWa3jEuyNm924mI+IHbGWGTp4nxm2B5xtM9oXRpuZFkfqMVZPfca8kTwQaE2CdZBd/9inUbXgGkwdJ0eEOTm7pjQ3LmqhurMkSBiTO5XOfjdgG/T1FvfffJez3Z4ynHE81uBq9Ioxcq/WSA2d1hpjHtjqShGlaAwPOXusO+jkPAZkygxSPJNJiGRPylhviCg5x7DQWigN7tGWq5pwBzuZN1NSUoqBxNMpgSBGTgm3MGwaCTspaaoW8DY/Immky47qlU0GUoJdWzmzTOPk47Ij/eRBEY+LoTaYMjQfQyEpG0uLi3KvCy4Z80jRuU+s0sk9sVokdEYN826TRmMk+57W489KSgxWuF4PXK3vcnH7EeZVmM8mprnQvfDWvUuaG3BGIXErF7I9wLKznx4jt87DWtkKHPyaI50hJ9ZjRSmRSiobNgslJ6a8Z50dZyHnTraVG8MZ1Twu9ssRioY6vRhNhOxQfMO0Ybqyef/JDhW5ddZkWEm89Nhj/MyH38/uyR3fePt7fOvzP+Dum51hOiePGw4YmUmilU70yLWd431PLiurGZLhvm+M6xgHrx5ouTHUqPw1GRENvr1ZZkmCy8QoC1YPWIbBJ7AFYw18dspo7wxt40oHziyT9RhsIVW0DyQbwI+ohJlR0FBQrIMWCokXnrjDhz/6BNOdga986wd89/deR9cRKYKkRrZGttg1bz7jKQxtRaJ4plhhIOiF5hbyuijqM5MmrBjdMmwZzY6kioiT20gTC/d6qtSeMTni4iyW0CLMayHlGU0V9Y2MRuxNohyI1FDp7MTYgHI67KpG8U9N0VEiuiEyMPiO7ke8G0UvGC3xwnOP8+jTN3g4P+Sffe1l3nuwcGdUbo8TD5tTPSHlmkvL5LZj7xtrX0ieGE2xTcmlBDZ8WOk1h6LhHXrI+qM7ohuWo8TM7ApJjUWUNCz4uCKD475SHFIeaX0LKdNA3aJJkox5Z9tGWo9WS1/31H5NTx1JO7zPuLXY7/aMUdncT7cnxcQQCUf7kmYqENJIJuceqofkaIUV2Nh4B+d/95//Jn/tr/wcL33siWCa9AVUEQuhdkgZ6gJiTCnz5oMr/u9/57Pcnc8iI56c0TOFAJ/lfh43MQx3qFnZsmPWINfwInVlSAmVRziwMrNxZgPVCgdWhqSwzuSbI3/j7/5T2rLwi7/0KbakmM7RVNs8DGLi3Fse8Lf+1uf4va+9yW6asGWjMaI2UdKO7gslJ+oy4zmj3Zj7whe+9Ad89FNP42sBO+eX/uQn+K//wedpjWgmzh7SuWRogQAu+41/9Ou/ydKu+bM/+9OcX5RQcdypo/LtVx7yj//h7/O9N99GyoD3AUrnm9/7Hv/J//H/yp/7M/8y73/6WS7OCnPvPDg85Gv/zVv8s9//HIsHrTHrjAxO3ZTRM6ILXWY2nygdbr7082yPPApeqc15MNzk937m3+J9r3+Nj3//n3O2rFR3XBI1DVj0NgZXYbnPneMVj96rVPt68FwksbNOzQVPTvYzLn1DhsSwNZrHLTBLY/R04nc03H8cXe/gA10Tbp2WE0IneQEpbAmMkSyGeIsbskfVvaIUK4y90Em4D8EUMcgR2kETLNJY6aGMdtCe4iV984J+6xbv3b3kel0Z9zvE4Xo5cj7dINWEzzOprdQSao8nZZGOkmNIEKXnRKGTU4IUvB4BchJaNaY0RBHl6R6Uykg7qR6qGpFSidJBxFjXyjBcnJ5PQaLcIi4T5idSJySRIK8idFFME5t1rrfo/1jbypg65gHqGnvDFvC0cuWClQHcGVJiq4roRpcJR0FmHFC9wrxERJugMGeJS123HT2vmIRnrlpjNzitG9vJqO69k7KGF0PisokKlmbStuPBMtPGzF4LqymaFtxgXIxbZ4acb3AcqNlZ5CaP3ap0V+7+6E0SFZFbqJX43EuiaI3kG8KuF442gxZGSbRlI/cR9wM6CteHTNUDClTbo91YjpWcjkEvRUg6od6gGiX9hJUKTRPPPv4YH3nxER55ascfPXibb//2j3jw9oIwcrab44s47Xy7JI6y4F6oJuwtvAHgTFLBY6e2lQ0hMfiA985RQuqPGuuRoRpZB7J3qnbc9mwcSAyUtNJ7/KCaJlJaYkrryoUZm14zxC+S7hcoRywfouzX93Q6qc/MNnEz3+Ljzz7CM8+dIUl4+a03ee2Lb/DwqpNLwcaNnRlt3dO0n5r4jkGwlELWRtuMHQExquny/9eHok7uRpNM60Has9SQHCROKowKPW947/R6i5xg805yELWTuzqdgFv5hK89MQ3Cc8xKJnlDqRxTQvqAjivWK6OOuEPyzkAj6qYW6nFjnBJ3bt/i0SfPOd8N3Lu+5hvfeJnr+5egZ4xTYaZx3XrQRvvG2M7JzGhZ6L2iJJpmqnTSaaVi5qQe65t+ukGJ1NP93PGTXDelHvtGLUGrSwWrTq+dlMeA7pwO1U2IB1z37HYXbDXKtQpGvnLUHpB0oGkiF0hjYpcnhtOO1E1DAiV6QRCnejQmumbOp4lBO/gVymPQZ7KB0NEykvOA6ADM/PDBO/xv/7Pf4C/84of50z//QZ544gbDOOLtSC4TzRKeBx6sGy+//D3+9j/+Il95+S6alKyxydjUon0wNZxgHnQRksP9dx+wtpVaK9fHIw+2uAWZKU0gC2Qb2DDUOgMJ0QDSzbXRdOD/9o9+m6/+4Hv8yZ/5BC88c4dxHFibc3l9yfe+9xa/+8Wv8/03FmSaCKV6DClUnN/8Z3/A6kL1gav5EsvBtpAy8PlvvkP525/F6zVm0T7bx9ibQ6d2QbkgyYrbRkqO+YymxD/6zS/w1S99l+eeueD8LLNuO96+f80P33iFwwxDcVJfwHsYw8eRdx7c4//xt36dO3dusB8z4gPXhwccZsM1EkEukXxiHREi3pfQMDHKBeX9H0EefYHcV8wy6BKxZku8/MzP8s6t9/OJ17/IM29/j7TcDRiogvdEto4pzChWBLWB5DD4jnlYSK3jnqI12Y2+woIxGUFcdGe2immcV2Gkmhh6ookj0hFJTBSqAQkEoVj8s0Y/QaOiil7JmCQ6Rk5b+DmMaE2VU5lVAJ4xlNGC+ljVqKOHAri7YMc5x/d+FNPHMLJVj8+why9gsHJK/f2YlHlSsTSTJZIU4ynFkbSgOWOqaDoVx0nQZMOGZLG6ECHn8Y9jpvFvKqfzTXE15nlmHIdQLlKh1kpKKWi9KQywEKTMbsE6EWvgirUAf9V5Iw2VngS1BLpREFovwVOxDTVC5VBns/PwTLAFnaGdMaZDEGIBsRH17eTRiQuJ9xzzjp8uUs1I2rEWYLKO4VZI6RrbJpoaQ1aQkbXfo1XlsMHmynBo1BRnbBXjkcce44bsuNwlhhWSHOnJmRfhIUqViYE9a11RBZqQUmHtC5REFmPtjZGKe2ZpgsuKp8wwJI6XD5CckSY8rAd2x4LnjSY9IqwSqUOVQm3CYMtPdqj4V37h4+yf2fPmW+/whc++zMN3ZmrvcQiJ4u0mkg5UVUYrkCIm5yhZBsQHzC9j8WUJlX4qZokvxDtILgyRcoyu951SfWSXVlptoHs8VcZTXnxxDwpFK6S8UNeOeCLlSgSuGtLPSS5xFzy52PVkXFz6wple8JkPPsNLLz3Ggzrz1e9+n7fuXtOPkHJDBqW2AgolbzRLJF1oOGJnJIYwNUmn5I4aNKA2pRADQcdYbUA0owSau5nQ+zk5taivJTH1jWvbk/TIYoUsGbVj7AkxvA1YWlCEguKumAQWGUvhBj4x770LKTe69eAw9AEfa+xd3VmWzpBWPvT+x3n8ySdZtpnX3r7ij+4umF+DQJouWNeIaIYUXtmKckZESg+5M2lnrac2Pq+UlOm24p4pyU8HkeHdGbQH+98ju72hiCbevnfkuq5k67R64HgYqGtBuqBpDXKgwSg52CFdeW++4g+/8nJUQEtFmvCDd97gUC9YTSm28Y3vvsH424VaV6Q2jJUmI0dfGE+V6L0G66LVlaEnKMrLr79JHu+wrSvSOiWN7HbnMBrL4rCtrFtF08C7vvA3f/0b/Prv/4AXn73DM8/c4onbmYuzkePivPXuPb712jt85wf3OG49EMOsJPPTxnrCrUcBEoK0hVGFd68u+Z//7/9fQR21jnXjwbqSU8KSsVpFO2CKpQ00o7YivaJSmESxPrMl+Nw33+YPv3WXR873DEP8v17XKw7XFasJTwPJo8Fxaxmy0/PAf/Grv3f6Pe1Ctu0Tmt+jS+Z6E/7Jb30WkYSoxAoTUBcSJy6DbyhCFseaYnni2I2sytv37/POgysaa9x4fQtybIrdu1qcAUiOlw8Tkp37lw95KDmiwbJQNPxUhUAKiw4YRuuFRKN5DIu3n/8Q+dH3c+wrg5+DEWZtc7BG0s7b+5u0D/4C3372Ezz9o2/woTdf5Xx5EySMkpiS1Ek9IuEtwdRXUldcCotsoEb2CbzhGbQ1NsnQE0UaGxX1fFIYQYRgXmjsxtU6GWVzpUtD1UgeLB0nU3sjo6ySUe00capPYafVRsbIpqFmiDF0aL7iZIoLozZWF+TWGcvZBb13Li/vMz1+jveNZXmAJ9hsDSaLCoutNALL70TBV7eGlXzq2Og0TsZpjUEMC2VEBQQ/DfIEX4IY8OVkUo9SQgjNQU6x145qIyWNC5QqCT0h+AVSR1PGtjgbhgQFpW6NvI+0R25QamPjnEWMLNF/MZ78VKMljAbZkN6JDZMiGGMxaA9xnGQ7xhwgM3FDTVhPF6e4HJdQ/rpRxcieiK7eBdcf9zKdMeqCpRr1ed7xIdGPC9Url3PlZprC4yXK0hvH2+HPaLVwg4TVkYdXG0s7kC2jqUJasNq5ORrrcpNNV1Jr7ETRXtDeSWlAPdP7ikkPb0nLrNuRW7sd63pET4WSaHRWScp404joy2mN1X/C6Y/rmwu/+dlv8/DNK86WAVMhyQ63RtcNph1T62gXzCOCUgSGOuB5o3qn9gsG5piEUQp7mh9oStSZ15HGkTQpe4uaZJGKW2bTEXyOlYWVkCMRJG20ZKxUfOhIbwy+Y2WhywVt6Ay14l6YBdwmklW6HviTL77IT33sKe7qgd/58ld56/srstsYfaElDZRrK2yycMFMWs+pvlH9jCQL2jtrOWA+kiwHTjx3uh9Oe1Wnn6ppS9poVDYRxIeo9E0r6o1BNzbb0dgh1v8Ye6ti5ATuCpJodNRugh4wCX+E9RHMybkxsbFVCa6HdVYrWNtTpFFHwS3R6sgo8OHnn+b5l57nenmHr3z7da6uD1G2ZdAlYZ4R3yhJYofqEq2gBr0IqW2MNiDbhnjBvSJeEIHiOYq9tLMxU/rIaAOmle6CyEYvmV4Wvnfvbf7Kv///ZPOHuG+kZYcNjSvd0DLSvVFrI+WRq9pgGMna+ezXv8Pnv/plpI+YJVSUnhcsJ6rPSFH+0ee/zK/+zh8grvgwoHSo0GREreGlYZQTW2Fl7BPNnZYKRW6SS2N85BFk66zLFfXaybbRbUJGAUJZqu68vTbe+Na7tK9XStqhzPR6BtkYh0ZOSkpRd76J05MxtJDkhYZ4BXdaGWjN2dnCuw+ioMjSTEtniFqsQEyZbMLkXhiRa6fnFuhqBsQyEM2EUjND3siaeXD9Ht0TMJw6DgZyMgYPxa9qRyVReqdJoaeJZFv4Ino+KWsXTFLJ2jlqPkGQEqLXAVnjDJdKwPcifmnikCpmRGIpZXKf8LQhfcK9I3LjxLDYyGpY8uj4sFNvhNipeyTc9gnC76IddY9/5hPZNxDh3GdqEhbt7J76AO3JD5GTsK8Di1X6WKMpkwxpD9a5qdGEe//sEa4+9Mt8/4mFD939As+/8x3Gyyu6V6Qk6BVSoqhxwCkJsC2Acq4UcYomxg2OovFi0S3+/Slki2pucBYFNWU6RQE379TsTF1i2BUhWYCsTDMrRjJHe0d7Ym8r6D08ZawXllxpuz0l77nGSPmMJd1gHSqLZJLtaAqPn1fOSuHdh/c4lkhltNlo0tlN59CC0dCqsVqL/hmz+O/AWc6MApUgdcY20QPwZMKgSiZhmk/8CefYV1IR1JVRC4aFidpOqO5WySkFgPDHtExVUkphqhbH6CQKgwxIhSwSLb4qtCwsWyf1hdnj8z6XjaZH1HdRPIhTvWPJSEQNebdM8qB1apIAOlfB00B1R6gYmerG7COzRWNz006RhozC0TqpjUyZSN31KH9PLaocetuoJJSBkkb6ujApXM4zvsKjZ4kx7ViX6KKytvHkrcdZ20jpB3R35L0Hypt3r5GxMno6rZQm6Auueza/YlK46pk6Lays1GSI7OguHO0YxmXNWI926+aZ1hu99aC9eiDzRaEUpbmCxN/JwzL6kxsqfusffou1ZYaSsaHTu5FkYx3WqAEG9GRKcw1w0SZOG4yLstAsU46Nrs4mGvv9PlMRehYagmil6561E5lbcchRVZc2KNtEzZ1NYB1iei8906WBj9D2JD3E7quM5HqJbBOrJ4YijKtxY9rx0ede5PGPPk7LG7/2tW/x/VceMHRIO6X3C+aUSXKA5gidUTPNLpiTcSad7p1FNnQwhjbEj0sbWu5j9RaSEzIZectcSmJQY197RJA0xBqkAw08gxl7qRwZSDmztWj70wnmJR4uwyl6QFoF27P5gubTLa9n5mSoFcwyaTUo0bCaU6KhlHrNLp/zwgvv484zN3h4XPncV77I/QdvRWdJuhF14kWRFihZ54gzsvX4LgcyyhVbvwCUwYM3ASvKLiK9VdA0sskMtkcR0EorhrfgQYgOeA3JtqtT5a34d5cEuyOeoWxOYoUaO0nzjiZj6/cRmfCc6eUCekYRmnZ6L5g0RjO8KpDRvUb5mW8sEuuIm13ou4XNh2jRbQ56DsPKXuBiHFmLsnni6r0rejeygvTEIoFBF4TqBdVK887YjZIGalGKKAOJLXeMRDNn7ommM9IKpd9gSEf6qZsEFbackNaYvLHi9LKQbKLXEfwC2WayJIxMp2My4yiaIpWS5CRRW2PTA85IkR3qzuaduTvmfqLjzUjr5BKdtrmlSK/QGaShGj0oSqbbGCqZrixw6tspIZNjcbtrlUxgo80rtByrJTpVJVZXFOBI9qi63nSOgdCDoCl5ifbVFD0+XQe6H8lpi6pwF4oFjKf1k+nX92HG64kqTtUVGDGMrhlxmG6/RH724zidwwkx3zQzoFQXRi8srIzSmbdEShcMfaX3ymGv/MEHf5kvv/CzPPPg+zz5zps88vBH7I7vQKoMfkZJHT3dxMcyMi4eySLvbJIYU6JL3PAMoadCSYp6Zfjx2kiN6vHiVgxpiZYaoyulOTUbfkqwpKFg+YJjzswFlt0Oz7d5mPb0obCWgYUbSHJchLUPNNkhuuAePIIxOUW/S1J46/Ih2oUzV0Q6yzajA2Aea4vq0absORp32cjWSVLYSLiMTHLGmmeKWUSz3U8+Lglmhsd5kkvG3Kg9vAm4AUY6/fk0TizzTNcwcpacoilX9YT+DnXPTIL4ioDYKZE1BDU0gfeVQYgL7+akNDDmhm2FmgwsUTnH5OQzwVh1YwLQP17O0r0gOpMlBp6JG+R6YPQ1fGy10HOm+saoRi8HGj3WvAgrI+NwivcKDKXRt4ad7SiaaU1Z1wNlELa2P0k8lU0bqR7JLDx1dotXDhfo1vHtHrscSld8bpE46h4rdmMJaB7OPqVouvZCLo3j4UCRK6RnptxIMtFVaP0YKcJcSZ4wEilctTQ/Yl1pYuSTifUnOlRoMfals5hhsjHoxGad0idG78ybBsc/VdyMSZQ4wjZsLYg0UnFGTSweYJSq4BLpheodz8K+O66NxWCUFnRDD8BWLp0usc+kVQo1+jwQSt7Y0hCkO3NSmxG5oKqSrXJzSLzw4od58tmJQ1v54re+wfffvE8+GLtdo0um/tjo5QnhPMiZFoddZwONQibxztQnqq6It2AetCn2nUQOmzUOuqHXeOnbiKbOFh51Bvw0XCj4SPN4wQiNIW80G7B5jRVHCrgVfptOBfyUu7+IKVjjsM8JanFqbxRTbJspU+Z9Nx7liaeeQncTl1cHvvTlr/HgWkhM5PEO6h3rDmyn7hVinZJ2wIiLkzkGJrjsSW3EvbL5gp9IBuJbDEnJ6DbiYgzpGrcdXTJGRqWAX5Fsj1vs/JIKc20MolRpeC9QV4wf0+kyapXmBZcoL4pETWDS6R3VY7xYu5FkxH2jK3jTUFAsMt+FiuhGKx2bB8Sdro0kibIrTKVAbRy8cv3gGE2uZvFyJZHLRulxV6qSgDmMZ5IQCfOdOczWWX1ANCiAKYJtkfun4eWK2jO9C3in4Ay146FZgGzQ9lhPmC/Ro6DOauEvEnOwXTR/NkV7x3IwXII1MgCCe9QyJzreG4kxIG8aEnJrGROlZiPZjqLHOOf9DPeN5hvOgGkjpcZo5SRdR0Oqs0WvigMaqaDujkglJ8BTFEZZOPNdpmhdbY7rEP6PHhI/pogTiRxdwcup8j1k9USNF6UryR1hBXWazaSs0UYJVFtJOiH9yPDIs+w++NN0TagZjZGeGoM5qXbSyW+180J3cElRYCVhphukwzwjknjlzkd45fZPcWu94s78Do9cv8c43+PG4T7TdkTrzAC00lFv8XJNM4aTq8Z3lqLzwmwlp6g7cJ8YNCM+sgJtKogUHgyFNe9YS6wpWhqo+YxjioHrMO7Ay6k6vMcd0o3MBLWx2hFVIZkx2gNMInqcrHGbhWHrkI3tOLOluIMu68qizhk5jJPWTvhsD0aKKeKJrhXDSTKAz9gpshgY+hOIKiWSZFZfICtHB0gBsStRhS4tRZeKOklPNeUp4F9Jw+icXBCXKHrEyZJJKZ/4H46YM6YhOkmIBIn3MOF3t8B3n0WVQSfRDQZ1prYxitBM6SokP6MT5ZLJI1ZpnYBniUW7aqrUzVl8H2NHWmOF4xnzgrSCyVW8L1MMImJOJmjOa3VMM4+L01Kn68j1w5XZV4ZyQa1G3RJeQHzHJpXbA7wrcH1Z6PVUVCZbLE7zeeDhpXNumUMfydnBV3IaWA/X7BKMvTC3gdu3b3Pv/oKSoTWyFEpPPGyOSgY6a9OTUu5E4XMOfDcb/V+s+uNffKhoGM2NhHM2FxbtpASbLBw0R2WL1Jj8pWFDgh4vzu0E0bC80bwiLoFvhfiRCkgSBhqq26lEaGAVpWRhJ463OTDdvkNbJcnKJp2eMskT2pyCMqbMhlJtovSFm/ubfObDH+a5Zx7n1atX+ewfvcZ7by+4HbhtZ6yaSb7Qe0P1JmbX4fBvTkotdmMpSpVuSmGplVlzQHrWMwZZySoch5kBj3hpm2hUNCVyqyCCpxadHyizjmDxQiGt8cpxCSmvZ1pt9KTs0o7rfsBtiuk0NbxXiocJqktlszOyNgbpLB4wGmbQ/cgLLzzDc0/f5LgYr739Om/dPyJroxmUnHHLWIuHIknQGasVhuRoN7JvmC90L+Ajq6Tg0FtlkIZoCWnbUzzAfUBL1BrH7yEULHEj9RnVzNYTEnffE3+EKIdzCdXGCy0b1sBFGLyS2FBXNok22KyOywYGRVc2rSQ9jxujZfJpD90CI8OgcWu2LIjNyBJD6sXZwK3dnk0T1+vM9VWj9Rnte9xG1rKG89w5dQUUegJvRwb2wcqQjjgsfaOkiG2KFaIxPIesLMpqLdC8tSHjCFrZOSfU8YRbCjnYG8UD0GYaN0L6SinK0RJYR0yj4p2QlaMXQBHfEdSH04FgQlWoppgUFEUlIae+CLQyWWLrhqdOsR2btZO6IIE11mBn0GLFJBZwopyUzdJJMjXUR7xKFM0B2jXqcQizcVJltiAmFlXcV7IQcrlEhNAZcZb4O3ohk+i24e4xKMlG6wMugsmGaD010kbLrdQW9c7M+MUj5Jd+lpXCbosY8g1f8O40OYsyOFYYDKsBMtp5og8/JnF2Fq8IsV5ji2f1MA604QXevvlBqlVSn7nTFnK7otQrhjqT28p+6eR2FbhwqWwIPSWspzj/hsxRM1XPWAdFZeJQEo2JmoWqI92VzQVPmUwl9camiXJKP9EMR6PTQ52tGpYNGxeGLQa0LEaWyqyFJhEHOZd7FF9YlsbcVkRDeVtPkUklU7dYI1mHTrBSrKcY2oNgcyoNa3iqJEIZ6u00XKdY+7QUt+a9Tmz19NtyRzzUAMNjVabQt44DJ+RSgLtO6O4cpotIZiXg5GEoEnRMGRJIDBmRELGwf7aG+MDqCT+ZebtnplIpvZMEZoxR5qCieqGZk9JCLoWOwaYBzqoV56SgA64Fr1FCqNlIcsCkIUTb72DOqBv0zFpjJTnqzCyZG57JXVmO10h/wFk6Y7Yz2rpRhsShBo9D9iPTeyMP52sedIs1uClmGkm3+ETo5sx+YEw79iWzk8xb68aNXaY3h96YUiH5ibdThIs80K4NlS0ut3SyrlFW5wlPIx1A4hnO6V9sXPgX51RsGStG8QPzeANrE0teuWiO9Q1NiYMaiRlZLtiysUNYciP3iEnJ6kEHzI3Rx0DcmtHyiug5o3XERq57RIGKJVpvXJcW0b56RkqNVDqZTJWEk+jm7EdjlUuuPdGPEzcn5U9+8sO8/4Mv8v17b/L3Pvd5Lh/OTC2hQNufwzozJNjaxISQ28yVGNuwUXInGxiO9Ymo0mpsOSMmVK8gjSoTAIPHLXKVGRk31BNju6ZDxOlQcj9nM2eXBAM6pwOeyDXjM5Y6JiUeXlsZBsPbQraJ2homjZYLyXeoHzkrl3Qy1y74unLLM5/5yNM8/8L7+O7yHp/71neo9454GtByiFK40Hiw9IDJhIFE7wNdBElhuhOc5ucMKZFtpbui1jFJlBNHP1vseAUhSWEYK66Z5p3eMnZidCQE1w7dEJtoZY3uAdvD1rBcGbqieqpf3wQfMtYqXSuNgqdGcmN0xU7/W/OMS0f9nL6GMpDc8JJpYmypkZrQy8JRGqmOjLlQ7pxzZ3eT5ivvXC5cXx7RwRi10Zuw5QDX3FBoPRDi1ULiHjp0GeOl3CLJ4qkwlj3zFlm+fVHWvrClk79BK2imGmhqZINWM009IltsWDZKU+gEVhgjGUiq0YzYCrvBaG2gpzmMbk0p5jGYiENeSHaiX9iIpRWzuPEPsqIuIJ3NEqIHehNcYVc2mu9pFmd4l4qaMPQdTUMVMl+Q7AycCJB0hiSsXmgSXRUuR6LBN9FYkJOPBojiJFfEG6Iaq8U+kGzCPNqB0SPShmAU6DXZHekeO/NTXinJiJyMbr3Fd97MML2kDGPQQ1Nm/6GfQoaOtM61ZFxqkA1HpzWh+caFKlsNyNwxd866oWKU7tjpxaUK3sKsR2knCJRhesXelZoT7+kt0vgIq25kN8QTs3SKdap5rC28knqhkWgSEnmiBhHXr0iniukw7h7ZmeMpyvaGvoEYhpK60E7PFNLYkqFbZ21nDBkGr/S6UcgEp3YPCbIvVG/sk1LqyrCfeHj/XqyVSyKrsEhjTiC54sykFCu1hEebs0Tn0CQD0zBQtVExUh9ZT6ZYKRmVhNdK2hpaHS+GF6PnTncjeyiOmwtDHmitMqZCTVFL4CV6QSaJwjLJioWQwVCFaQqy4zKvtBxtr5KMMWXQAqnQLS6t6gu7/hBPN1BrdFea32dFmXWP6sJAlL4Nch4+JDWyJVKqoUynHt06uaMIo8HsjbEbngbonWTQtVO3kZyBupCHgVx2eOqM5XBKqXSmlPHiHB++RT4mDj3T15UqC7dvjOBC1xkbjItyzoOHV8hw4InH9tCch5f3OfjGOJyxHVfSGIZO90T2zP7GxLYtGJ3jqAypMadG385ZraBiaBFyS1zWS4xgnyRX9mnjmDLujWwLZ2mkNqWKsObrn+xQkbLRa8H1FtIObLmg1mmqHBjYayVtOzbpqG5Mfo7JxmgTjUb1kZyVbEauCc2dkjquSm4jxsaaF6JwZeDYjTPNaF7YdMCtx16nZxiMrVaanpObIHrNZYdS7/DMxZ4PffIJnvnoo7x5dZ//6nd/n3tvXTGpMeULUl4YEa6OA8dBmVbFZGERkJwZ+h6pxmZGL4HBRjZUG4spapWSKpuODH0AKomVbiO9bdHg2RrZ4bIoQxWyOxtQ84BsV4hVTPfUUkmtMACrZxDItmPzDfENSRWzCSxxTBtsmZ0UkhqNNUrAMuDKE8PI+156kcefvMPbV+/yD//gD9juN3R3jo0DqTniO7T9uI2uMVs0G3peERPEwuviYui4UjenWxAvk8aOTusGKdH6AMkZ6TSTAB6Z0Gpj0M4oilhEo7aeIiWDBxbXjmSZMJsRH1CHNUc7bFePW3WrqCe0J6DQdKUZ7CSxJcMlVi4rI+cdat6ossVELRNbqySNFlBfC48Mj3NxY8c4OdftinffeZWlheK0L4ned3SbSbmS/BrLynVsc+hyJBfF+sCmHbojvZLSCNLQFl0kqoXkyrZuCDuGHCjgoplqFZMhsvY9cuRgKBs0QTSzasOkk7WSfAMZMEu4X1CHmb3NSJ9DFUiFlpyWoPiKGngdaDLTPQrksgy4bmFys5tYqrRqoFEQNGpiIUPtZFkxTYgYxYi4bzLUVyxHjbqeoqxQcFpEe1usx1qKsqdIEeZITDDjFij62o0iBbdKk3oyf3Ukb3QPyiItR2pA9jQ11AWl4QJbCync6WhSJE/UuZCLY6qReBgNayPl/T9H3z2FUOmlMZ2w3d5zSO3WIureG2ncSA20DawqnLWAqmVXaDuumNmfug9KbSBCL41uiaXAriVMG90q02pYMRav7KxjTdknZ5s7VQeabEzuZJ2otoHOBIe2sabMUAue9gw0ltSoHjHR6ob++IIsKWBPWpGeSH2H0Uhpi5gsC6qwSMJQsh1wCsUH8D2PjA/Z95nzfINXr+5z1Eop0ZvTG9wqe/KWqS0ua707zQyVRknCoTnVM7U7uS9RdJiEQQbGnKmtYr3R3YOTIUrJ8b0XaxScMoyBjfZM79GZIW4nv49zcxhDfdNYQ+2nidSj5XXbOVMe0Q6DJ6o1jm0LVROJqvIo4YyURcssfk61ffRYWCLlRxA/gqRQgL2TdePY3qPJBUzKXBfGVhAVimbUBporTVYaGwOn4d+IaohuFN0zqtN1YdpldlONZ5MdVy3TvZJlxy6NmC3UpvS5UVvmsZLp0xm5JPqSmUpnORw4uw1bCyXubFo4bsLcRsQzZ8PEW/euuSg3OFqjHRpys7KiXF4b3jv7tqNWR2ZF+nX4ha4nDhypW6aeLjFWwzdWtwJ6TZaMcIPFO+hG9oQt+5/sUOF2ar9DEB8ZWMN85okbehniVO40GxEJKebcdzRrcRiVyFCPahwFjm1gZ4rpwlYyNAUr7Ay2vJLTSLWZLM6uV44oWQQVo7cETOQWDt8dI0/efowPfOAJbt+54M3lLv/497/Muz96QPLO2bAjS2fuM24ZKUbWhuM0cYZEpDdotEzcrnOiWtwUhHDk56x0PakTbST2DAlsJGWPOE7LUW6lCzfsjKYLRRxFWXNl7ANFRkQqEwlKoGVFopo95c7gndxgsRROeIXsRpI9vax0r9RVmSbn+Uee4daTdximynv33uMLX3iN+5cHch7I50rvM+KGy3DCZRdIkZVPtpIcuhUcQWWlqLC2zCZKxzBWxFK41a2BOpKUJGvs5owwGLUBlY3g0mVW2chaUUBTHA7e43P1PtG9kTJsFuRGTHAvcaMTaBK4Y0kryYxEp2litoZ7GFxTnpkqHBOoxyFl3lh9Prms95zfMKYRrDsPDu+wPmgkE0wuSG7UQNzQdT4h1EeEFpFAFXrW06rKgxfiAEPclkPHwnXF/JzBFrpnRApZWhigUnD0TRTzI2aKacRqs4DpRs8Su9ketwjpGSVhfkrwpwPajVUmulZUHSQ6O8rphdElMuhKxURxnVnajpJBdEXd8DZSEtF86IEWz76CZ+zUAplEcDKGkZJg/Yze1mjW9ESWRjVl0EzDT42aOZocBWAXn5VvJElU0skrQWCVNVwSJtsJKCRkTXETVg/FhfgucKV6qEVZCJCWOe6N1EYGPUbqh1gR2Fq59eyHKI89zmad8RR97ihZnFY23AtGwtNGawmaMWgkLJIlNvV4JgS8N3Y6ICQ8R2KtdSVbmDGzNYJNGWwdMKzHUFW7MprSmlJLRWwjqdBMwDeSW0TF1WKNuGlEy+0unmI9mjzK/dxHTAIxjsx0ySQbSek6VjiyB2qkUzwjegFtjbVommh1wTOMlrmxvsduv6cdjYdzmIzPiZf62lcmH5mtsnCqDmhxi50ctr6xaaOokjx8UglIg9GXNZaNidNAocHFKWPgAU4YahWoVk8MCyWrkJNjInQ6F7uJmxc7jsuCO+yHHTdlokqnlIjKDruBuhqrV7RnagpqKh5D9k4dI9o11ZxBZlrdUdI5m8/sfaFJZ9Aj3pXVNaK4Q1wSbXPOJBD05tB9iTOiFSyFGbzWHpUBfirzSoXWF8jCmBJjFiYKRo1z3cdA8qsgZSPNnW6NNh9R30ATx25Rq7412rbQGNld7Di/MXE1L9Rloa+Gy8aYGsfDNbM7Pq8owgK8+UDIsjCvG53Ow/kubiNuG8djpumIt8p6BJFKt06mkTX8RRRHbUQSqB3oUkLZxIir8U9wqGhkJBnisKWBCyqWDV1TvLBaouYWXHjfGHRHk4UmMFhM6OqwnHZa+IqR6DaRJAw0njqmxt4KVeOVVj1R0gW7esk2lDDayMZWN1idZ594kk9+4jl2j4288vZbfPWrL/P2uwfUB/xUxGK2ci0JSY405yBKKad1XdoxDTO1O3UL1/pWetxeuiMJis6ntkBhniuTK+ILMjyCWGSZ+1YxdmzNyDSaK9IeQgnegnujUanupBTWF5sbWnYRoxtXZC5s44jTGVwo2fDhZIgj4WlmnjuPnu158aNPcOuJ27TDJT9443XeuzdzbEYXmHYj0pTWRpJ0yEdqFYo4g2Q6a/A8PF5w4lEaJaKsRNPi4LHKcCpGIdMoQ8Nc6OZAiryzGZ4VPx3YTkJ0QdmBKd23OFAsxX/c0TRgDuY5ELAIgiP9lIY5GbKar2Bh5mpNsFLRrOQe3JDaRorCTqG1jlmnFLi4cc7Z2Z7ehOvrhXeuNpxK60e6JpAL9nqM27iHL0JPdfH8+BDIFih0Ms6Kt6iwTlpjJZAqay9kH9FeET1iIrhsJI0bpqSFZo76DmmV/VBY2dDusafEkHqG9BYS8el7biTEElBxNYrE3lkIn4l5AVsxE6w46hXpYK6YTCQc14hzQsiim9rpM4acCs41SScyGUszuRdEJrqEJ2OgYtUwGWOQJCEpTLKIUpuEgS31iDx7TA5ua6hPaUV8B/RIgvSRNrRThwiohFqAK+oLMZ0W0gntrRZI6SRRMhi+vEhY1JbjXJCKtozmyrZuXDz3Uc6e+xiLQyEQyVPrwXfQRPOMaBg/CxZpmj5EzLg4BWeVgVVhqpXqmYHoThjEEUmgR3obSNJp3TEy4o2qI54SaYlfs3knqbP5yqydm+Zs0sP70J1UBLcSt2pVXNY4ji3Tk9Nzg6aYJFRXsg4BxeoRjW6l4XZBsplkK+0UvdxOzJyUI/3QEDqGYpynBV0XLi5u8tZbb7H0JQZBjbKy5kbzzjIHpyaYMnZarxkY7EgEhTyi0e3kXUgQ60FNrL1GGgnD2hzAuKShbkgQYYPi5jRVmiqDCWpO18714Tr8aCnRpuhsaftAhLvHBSWh5Jyx1gJnPhVsrYEhKAMWuDBEIPvGlFZIKznDVoege+KxijIYNGFdGaWF4dYF94RZpngmpTinilRqLogJah1hY7MB0UbHmaYUQ1ePeGaAtRT8iGM0hvCaWWPxzm7buFwO3OHAxSN75ssD3TNlf0FfE4+f3eSCM2Y23rr3I3oN0mV14979a9DCsh3IvTNoYT68R/ERTS0ioPWMVR3xRFHBmpIkGBt+8guaJ1QJplEPMJ/UTE4NkQ3RAh5pmJ/oUDFko5JItaKysdFjZ5VD4orsQFAKxzTS2gFhh7oGvEicxQo7E86lciWJmolKXnNKipvh2hVPE8nvk2VPSQt1m9myM/k1yzpxleGZG4/xc5/5KI89I7z8/Vf47V97nftXM+TCpLcoRantiuRh3Bmt48mpYyJbYnl4QHKFfkVPlZXE/vyMRgQkRzbSeAO3hYOPcLVycV758JOPsRsK96/u8713X8f6nt3FnmkTfJj45HMj0xTgmf24w/PEUBL7qZCnzjROvPzKWzx+6zE+8P4LBLi5GxhKY5fOsV1mzJUbZ3s++/U/5H/9f36d/X5knjs3LgZ+4aee55Enz/nuu+/wha9+n/nhNZoDMrZjZLOGlQ2lIdWpvYPfQFJDVWkc6L0wqOMycKw3mMaZwa+wJvTSTymGRM5Qe8FYsRMbQHqnkEFPhiEpMWBRcIuGPaXTe6XTGHPCTwTVJBrdJ1yclAKYWJEOTTe2fA3bjjELfVFyVtbN0d0GOSrhZd3Rh2tULsgM0bLXG+dnOx577DbDlLm8vuLNt95lWR3SQMo92mrbTYa0YhxxH0GE1DteWuz6Pfaz1hLSz+nSSE3BbtBy4JqHmnA1pA5oh6KFSqJzQDSTXU8+jMxgjdniBS+yBJ5e4sVeRsUt6pu7KJ46rZ0ij7LgyREbQYxdHI8ca2caCkiOg1ud1KJ3xjwOeSWh2ukyojWj2VCG4ELokSUbXZ2yRfRyE5hMQSpVO8vJ9NcE1M9QNtRHmjsuishKzo3ucXuBTPMYkvASL14EfCSJU4iypCaV1NoJ9jTSesZFY5ByDZaIVFoPQFhOPV4Qnhl0PBm7H8bvDEHLGas7u2b0Xtk/+T7yiz/N1o1RK5sVpA9kb6eIYydZsKu9pxMAzxk81nNrDrjTuCVGnVkEimS0NlQzrSRyN6xkJAG9I5qgw8CE9yNaCs2NnDom8Vm2NFFYMYepFVZJmDesO0Nb0byQW8HkNFjngrmj646WhJ0ZtcVaUCRR04y7oi3WiZG+WlFPDBCdRuaYjCxkSr9ExTE540zv0Uejl8Lrx7s0bxHVlmD++Mk6GdJovLjaCZ89aKa4YpJJ3vEczahYR1tnkaBlDnngTOLKod657s7gcorNhyp1dIsXx6mZuXhnKCNXzdl648IzmYykTOoJSwVv8dswTQwtjM+bRfgzWoglkiTh54wBRIILk9s567Cn2SVnmrBhY0DozbAUrc7WL6OgLwWnZ+2GaKdk6C1WwkvujOakJMjQoA6Y5TAZmzJlZycJbwtIYSudta24H8laaJLYtgOv3wW9jmSf+8D1smDnmesHD0i10/OI+0MePrzJtSQe+EM2uUdqlZavEBvxXsKs7qdGXs+YrEiKpG5072ynVEpFMdSUInMYoFuYSx05PYdEkuj0efa0IXmMlTan53b6CSsVtSuoYUyn2OfKykj3TJWZwkTaKqlkji1TUon2zjbjeTqlARZc9rzHORcyQ080iQhZyp20FXLuNLkit4SxsfSzKCIzZcyJJ9/3OJ/60B2efPIJvvneD/n8P3iL28X5hZce5WwsbHbNq+8+4Edvdi5tIKeRLXfWJOQ+cm7w0pMDv/CvvsRPf/gOFzfPuToc+cZ3X+Hv/s73eetdUMlsZeCGPaD2cz746CP823/1w/zKn36eWxc3EIWZh3z/hz/kb/yDP+S3vvgWC+e8f3iU//Q//qtwMaPuZB1pHBCNqdx7GMv+/j/9Es/deYpP/9RjNAL+srohapReqNUY9me8/OAHJP0Sd25/lBc+9ji3nrzDq2+8zR/+zre4Oh7xseDjLmJjvkFeKC2zrYkqI8Mu4e2SqVdkq6zs0N01WfXk+D9yM62stUM6wWrWoAaa9MjOy0CRiDGqbKBDJDXoiDRUV5QzjA0kpFFsQsuM2hTcfEIKxRpjEaQd+bEbpaUAF2kr5Hbj9KBA0yXaB0u0cWaR2IHudqzbMciD2tk/uuPRm88i4jx48ID7b1zST7CgUioI9J6pbWYsha0Zkm7gXGFi4RgXA99FAVl1cq4IC8lOHpCiYIaaYz4gDAFBGzZGrul9T+7lFEV0RmlYD2PqIBpeFBlwN0Q3crEY/toOlRhJkhu57ZDiTD5StWEaN/GHOiDNKDmzro7IRpwewW2ovYJuJA2Ik/uCMCDZqV7IDi1d4T0xkOk9Y9qxIuGtIZN9RVB2p24UtwFPgRjGZ6Tv0RwQNqspWBba6T1uudhtJN1DZEMtumXwHMkpUqxEUFRWzDuhAAUtEYkorlsGopYKTxGDVKJKWzvWb1LdqJbILbov5tEZy/u49dzPc5g7bVfCs9KdQ96QNESEuwlbCouyONQi9NbYtJF14EatVDacRCMzWHTCNM1sIoztGhs2pu0cT4nWzym1UpOzuHFhGV0X6lhQnLFHF0smuhxaShGJdqeZMjUhZ2fzjGWn9fCouR3idivK6JXq+4jjEyweNYv0hbUwLwOpT3RxNt3CG6Eg2k5dNWeYNm5w5IY+5M7+FnrP2a5jdadOdNT8MTYiPCpJUiiH1U9tycohOevJrIs7+mN8pjslKaMo5g3E2RTWbWFImUEyyZQmiV6UMxQ3WPsF2MqqB1JJMDemlGmqVBqjwVSVeRKqNbqFp2VnsNZO9U6roZSE9EmowEKYzUXwulDsIZmEZKX1HYs5myyk5OwbdDM0D9SUOfrG5J1JOtlDKe/aya4MfUIE9qliXqijkFwYfKNtG1M+x3uPVEaq0dOkA9qdtbdIFYqxrQuaQLeBdalYH6h0shfG8xs4xvV8wTwfWBaLXdyizD4FoAkHWehbJpVQss2NVh1hOn03EAauqK7I0jFfQ6kzJ0wqkTYTiR6WFDwsvAvWNc4o74S1peD8hLs/+ibsx07LK7adJuXRGJJFDNINTQ3zwpAOiBhdNGJs3ZEcrvRmG3sPibhRSbrR24i0HrcR/zFgJzL1G5UpFz75xBO89OJzTLczr929z+/80y/w8d05/8u//Et89DOPs79ZGGzEcQ7LFV97/Yf817/xdb74tbvMS6FY4pE08Nf+tZ/iL/65Zzh74iZtO411eeNnPvVRfuXPvM5/+rd/nV//nUumfs7mZ/z5Tz/H/+C//S/x9HNnHLZLrreVrqCt8P73fYT/8K+/yAc/8Nv8Z3/nO9xyo1qnz5VmSlvvhRQK5FIgr4Bx1Spba8xzTNxYxHVFEktbuK6NG9KQcouf/vRnePTmk7zy3tt84bPfxh4emUpi3E+0zUCPJBmw020PMlpqVIhvje5nLAQASjxDG0npSLaBSmITx7KCDSxu7AbDrcYe2QeUivQKCFVqGABTwYnonXuOcqBESJN+8iO4Ub2f0gCVnB2zHW0FyQviAT4a7Ah2BrpQtQTtzRIlx22upEiSQMV6gvGaR27eYDc+Rhocq4233vkRh+sNR8nF0LSBFeSEE9Y0UFVjI5gSziVOiUQDO6R5vEhPEVeVFLc7T2SC6rr5DqSj6rgYKc+cSSaRmdIcSR5XxIzuHZER9VhhVFNWlZBQTcMfgyLSAtyGQh8wBbHK5iWaJvUYgyYZz4FCJksohN1Ag26IONpvnKJhxKrilNJIvtHThttId0MVxJwkjVQjlZMQ8Ineo8I68MMdYaSnjWQjRVdcN+AcrNIlIFdIIyVD7BKVhPWMUFFLiDZqHxEXshurWIQF24jmNQYHD3JsEDgzKplOwyyUEbOgIDoGqeMNilbUgjPhqtx6/6e4zufRCbGlQFSnI4M7nNILmJLINLagknoPqV4LOndcG0mh94Z1YTRHTpK45pmqytT3ZEaOraEJmlS6hGekaUQWsc4WkS9KSrgGk2BsxFpNwydhQxRzyaanroVAPKsN5B4XkJr6yeelNDVSXxmZSX1k+XEJlyeadoRgxrh5fN6mDNYwdaTCrWlidOHi5o6rH77D9XofO9WK55xPn3cYi0Wg9063MKy7CINmsnng01P4blaL1QEejaICKBam+jRSCTtSyjkUzt7JPYYeMwsFJ3VGjSLCLhlV5zwNtCLcGHecTVOQH3FSC87PmEeowrUD3thqo0hi3YJA2zCaGYMkttZYWMhB5QKu2TOFZy3DKoIn4vdEQohEWUdZW6Ll0K4bBc0VbAlTuyeS1hisEPKooEvMNgKZHQON5IKpk9NATyvn0rBesHZEs9OscX18jyE9S86KTsK6CtPY0C2xG2GfM33q7PLCYkLWuNCdYCgnlVgYcsY4BHpeNMz0uoJuNDOyljB4+0JzYfR8erbikogFTdSsYqcNg3uLy5aspDT8ZIeKlJzFBhILNQfhbqhCH04wJx8xcYrMlFo4po2dOGsamdvKrocRb7BEZsL9Po0cJSiysaaV3i9QgSE1lrqikvn0s0/zgQ8+Q9obr736Ot/55rvcf9D5pUee5j/+n/4rjI8bfWsMfYfoTLVMzsonX/wgH//rz/Ef/id/ky98ybklA//Rf+dP8/N/6klq7WzrSpn2iDUc5f58xe2zJ/nv/7f+PA/mX+P3PrfxC888y3/w3/2X0UeVZd6Yyk3eePcttjnz1FOPhIlxVf7yr/wir779Nl/9pxv//Jtv0P096pb5+MeeYb/rmDqf+8Nv8uqPjmy18/VX3uUbeuTXPvddvAt/+jPv55OfvEMuA7/3rW/x5a8euPH4Df75K2/z2nsb3/zeH9LX2IyOw40o2OopXg45eiHcBooew63bCpoOFHbhjZCOJcj9ktxDejycDg7JJVQh6Wg+ci1y2mcXqm1oio4F9SGkdRzvCaeRiN1oJ3Zx4kLOhjXBjJOh8CpMmH1EpYE5yTKrOV0S2m6e/B2NlIBeY89nceDZlqB2zs9vcPH4Hcp54TDPXF0dWe6+F4camVSCrkcPsqtqcBx8qyTAxMOS6QOJ/y9t/xqsbXrddWK/ta7ruu/7efbe76H77XNL3S2pdbIkS0I2tvFhANscbAOGDAMDhEwNM8xUkZCahKGSTEFSKUKSgclMKlSqhgEyZgIDJGPjsQ0M2Abjk2TZsnzQ+dgtqVt9ft+99/Pc93VYKx/W0xqST0mVUqr+0iW92u/e+7nv61rr///9rumAqkBppPH6mgdyMrbqlJRJ1PisjQWVEas8T1gfpxvwoDFIujuFNY2Gohq4b00bE5mZirgx6hlT3mgYe3N6jqBxjEEHKcXt0fQ6Dih9f3rxNoYqmjvJ4pBBOjIQkgjdOoOJfKqMOh0fEXqMgFjHzE7Tni3aEkynrEKsJgdQPJGB4TPIgcSKjAmTiTp18oisQEnbCQ4UULthCmyIZYQZkQ3TA26FxhbZBZmQsUUWJkW9FBGG9K/J8uLGFPwKdWh+yh2InwKWFjp6nejSkSrceeqb2O6/n1Q7Zh3VQtPGMGHnmSuPtpTnqCmaJdQWGEEaLXbEEjQpJAHVDUxoGWa9imcWE9o12gdsoJnsMUnzU8hUdQWEPnaQD2COmHAcESIdPQ50cYhSau9kCZKpoEA4O5JLhFVTjKlFDBmViUT3jSExEUs9I1awtDJozEToVVMQS50VU2d2IGcu0iV5diad+crd13CZEHXEGu7O8MgrrLWzK1P4clDEDUYnaTBRBkaRGdcMp/VBzoVjH3QVdqqYhktjtsRRGt031OLzZzbImsgah+uDO152uBfmUpDSmUpmp8J9N86Z5sKkiWuMYsZqldkLOoKyVaWySAIVVhE0afAdHHIu9LrhPaRz8cyMw+5wKL2EMkBqMEHUiWixRRV5y0wGu0lOwfERk09XNDuMDClIqSolJpLR9YbU8AQiQhIoZxsX00TqZ/jYWKtyPVa6DdbN6NtgurGjHp2jGdM00a4vQRPzdM7oF4jcRXSl94RqiqC3G5IHQzqSFqwVioxwQpXO6BogQ8aJI3IMt8epli2SGX44qe0HY9Q4FkijDzm1QJwxDPOvs1AsLTC3IwcB8TNqumKnilSh2Tlr2VjknCEHLEXUa0NwaywqkNaoSbI/nRwnphMQZwxFxLDFYausfc87Hn2Eb33fw8jFzK9+/vN88he/QL0WbLfnznbGn/kjv5VbDwlXx4aWzMeee4Z2gEfv3OHO/TuKOP/tr/8yv/rRK6Q9wr/5O97Nb//Xnual7VVuTIUvrgf+0Q//Js9/6RU+8PTT/N7vfYRqiSfuPMj7v/VJfv5nP8P/+N/4rcwPTdTjwGbnf/k3/ga/8HNHtN/gHU+8ib/w73yAW4+HUfPf+v3fxh/953+fP/sfb8Al5Xg/f+d/d4fzd55Txz1+5Gf/OT/zwTnwwemSXTuDeSO3W7zj5kOU9zxKdjjOmV/4/Ms887Of5LjdI1thACkpamcM7gYqfAhrUujCnsFdr4RiYYFpI3viMJTixpkmKsImlaYOrbCzhOXG8I6nCuYUZtg2yMKZR8h24HTf0X2jnGLxgxyGPjFWaWQ0hG4txpowgc+nSqmQmJB+pKeA8dQ0QDOTREYDLdCDamgCap11C7ztfTcuePPDsd744ssv86XPvIAmjYFIihbEPHa0HOKkrInUBllgszWQvLojs2H9wPCOcYGnymTR5h9jkCdhBEeKSfQU5VOMFdGGeMOKhizIN5LOjJ6pPmEdctY4LDEwP1I8gsHehKMWSh6YGd0U8YU6v8LaL8h9JuuG5gy10wk2v6SKqWPeCFV8Z+qKcQZ5YP0GboPqlUyKlZVHm8c9AYNiRtOGewq+C4k+EjpXrE6Y+MnTIzHtoCECSQyxmAKIFIihyImgWNl8hwP7NAJ/TgTw3AcmNSrIIzN5wifHeiONhvpNTDrZ76K+BMk1TwyONCvspYEk3IgcSu+oQpXBPAKQ1TWQzO6J/VvfwfrAk2gFtwPSz8hpRU1RD7JFSmAjVNwlG3008ARpYGkL6JhItGlEmNyRLkwpY3qB6JErCaV0AxZZUTunj0Qpa6Cj3bnrnSULmZmpLyRvrBhIZmnBSq3EgcFtR9Ee/JIx4TJwCioz3Q7IDF4nXAelVkQKR3eG7igjschrdApN9jRyHJi9k2Ug3ijAkZWiN2l9peyuKf4aN3YLtq1cv3YZ0WgblFSInElDiQZPTsLhsFGmiUoPtYDA1CPA2Ioz9f61KRIo2WHSzNo7w4VZCzIp1kcEFXVE04YZdaUTOILkjg8j2tYBVJx2BZ8L7AtlTqQEN0eEJnNVVBPXh5Vs0Cx0B060xeyECQ8w16D2lZ07xTOOMHxieKVkxc3AjTM7Q7yxSTTrhkWDq3GkjQuGZRY1plZjZpYG6uPk2Qn3TCeagWIWYCozhg60RFU6k4MDkzdMB1TH80C6U4/PY/p2DteNlDJaN1KeeLk3Hr64Qy8FnYU07tHdSaVgo2Iy06VFQB1D6kqywkARyUzakGQ0U9RPF0dTRJXJYn0YDOg90oWCcNS47NFh0sg7Skkk5tc5ZF+/Q0VeB9dyhsg9VrmKytAGtQzyUGY5nGpumUNa0LRGOGtMdDWKLmzbfCLqOV06Xab4a2WDptwxeOyxp3j/Ox9lunXBx7/wCT7ys1/m+iqR8k3KdMVuPfLoAw/zxDse4Gq9RpfCP/ypf85/8tc+jN94nDtl5jve9Ra+5/c9zl/9Wz/N1h7j3Tfu8Ce+/33c3Z6jaOajLzzLn/8rf5cvfe4mupzx4x98iee+/F7+4B9+jP/93/tJ/slPfYkPPPwu3vT++7msl+wW+N/+0N/mx/7ZXfa7czRd8/Of+XX+2l8r/C/+wjdTc+Utd57mfe/K/PQvXXF+oZQOnvaU0TkMpU6Z/WQs6Zrm0HgVsft46L6b7B+5LxgOeebZz/4an/jIp0kXD+K+Y8gWPJC8MPeVQeIwF6QOeldSytxVEG20MZOXDedIF2OvR6CzyhSI3ZMYBl25zglFYJ1JuUZQ0Zyie5olXpONSZ3hsOgVYiGh6UMRtaiHoSxA4wzqwjw2qiyoHJhRhlzjvkeTIclJchbcAyvM2jETmgTBc4yK+gIyk1Phicduc+fWDdrW+PSXv8prVy/EyTzvERnUNJjLDmkFX66ZmqOumAhrMowEfkYrkDmyIpieUxiUfE2vnWpngJ3CTY1OYkjCVVm4Bs90yTiwuZK2Gc9Kkk4e0bRBlDQGK4KqhZkWRc3DcZAOzBpE1olC60BpeF9i5KpHeh4xZi9RW8WJl41viGSSxAP16AXT9VRF7AFYo9DopBT5BteOOPjIeI4XTbL4M10Hngzq7pRciHGm0PE+QRphE1Yj5QNtmyFtYUM8PZSK7MgM2lDWtOJWsCG0lCh0shB2YqlBylw1IoCi5OWS7IOVCdeO2YT3jUmUHZ1u0dTIYvQxM+uedVxTXHGNdUXlBlYrZ4++g9uPfiOvrp2eJtAdFxiWMsPCO+E9oXqNpoSfWkueJgavr7nOuO6N8wTVlM1mjg5lblRZKcO46jv2eSMnYTTBppjIugibzNgmZAZ7TejIWDuCJ+4lSCyRmHPjqIUdGe1XbHKFDiGpkFONr20kIFD3h2Mho+BGnXbkDlMzSu6sNK5lQrJQ5BjNI4HJCzZWXITWF0oOQ6WQebMemOoV5dYbeelLd7nHNSuXkWlBQjlBYAMsGYf1iCellIm0VmQ4XgrH0439VgvXREnCMAu8vhjVO5Ij8DkU1trYi1D6iFyAZq6I58xOMq1vqCoi0LZKq0fUO0u54Hi4Im+duuyBTLYGhDck5RQVyw7HdQQMMkcuTUUYtZMkQtCWCuqK1kS3hsolM4oNZ1GnaeFga2TfbMecdgxTemsUK8xTpyQl47iGujx3JzNHPsaNNadodLEx6cTIjnVBh+Ob0EZl64KdJhe44mMmbTEVO74203vUxbNWxB1dG/syYXbArPHSQWh5IdeBekVHxm0liZxWrSumWzifnNMqc0IlM+kR65BkH+pz66hNWDaGNoSA/SUplH5fYNBLAlaSBDZ+WIWv96TCkzIPA1VSHmwjHktKSFkKhdWDyT57Rd1OLHTDhtFGjl1dCnqiZOitUkbi1nzBk0/ez5NvegA7y3zsS8/xyQ//AtvLhpQ9JVXMrhg5EtB3dMc8FY4Wvoz3v/Mp/p3/kfPs517l2RcP/Itf/0V++MMd5SFuSuI9Tz7A9EDiuioqnf/6H/4UV199kAfvH9TWaMn4r3/hF/nh3zC+8solS7vBt37gQfYT1EPiK3e/xEc+9FX2N5+Aeo+jw3KR+ennv8D/8Jl38+hboUrioTc+Cv/8OZgvqG64Bg1RlTCjroWrDGfn9/PEIwuPP3Qb6zOiHTcNk6EI7AWRzmTRwe8+k5rC6UWy1VhhaBn0tiEe+84yOikdY5fmHQG2tIMUvhBvp4RHVnbuIb9JFiNzVUYPTC4eptTCIMtg9SleWjRIOSyzJqCK9kHWFdOor+W+kbQzsiGuFEbYG0lM6UhKK63folow9pt3pDUulpl5v3B2cYP9Ylxe3uXTn/0Kx9XI6uyyYEwMN9KASQILHVeToAGC4ypIU3IyqsSL/3V1e5JEM6hNSLqjqMXawRzozKwwoi7mso/KJEYSY1I/ESpj3dRyIY2YDnR1MktUO3FEoiqrpuAL1QWRhNhKnhKMmSR7RI+IGTpmqoFSwmdCpLYRQQmRj3Slp8BcB8Migr0ineQDbEPF6ZZIPphKx0YE8Lo4SEYsJhoujcFp/D0sRG4pxhFmV4yRo7GV7lK4CAeCeuCwtUZZTwrF9pCvsVRAKs076orLIBNriCmFV6aZY0MQm3DChaH5FBaTDGnD2o6iG+NUNRw0RHOgzyXMt3Nfme57guXNb+euDQoDSUfUlPXEKzAiRNqKkXsJoqU4B53xceSMzMBobeMs9fizRcmlI8cIzqoIm06czYdAFo8R9ezmDN1QlKmVGH+7AdHM6Ceh2VxrMHUkmDh7s3BEjIxMNVL2dYLTXd/xAKmh7EVoCLMlGBtDQ0Hup3By9ym4J9IQ9qArNQq4CEbVcgKYDaalkes1suyY2LO99CW8R7ahnmrAZnb6Hiu4chwdTRKgM1HUIaNh1B3O3akzjfiak0FtLdaoksjm9Nrou6hgr+4UClljfZOtkXN8j7wLW27sNC4oVONe6xzbs0wyRebn6hiI/O5YSpg1Ss5cXx8wixqkFIFW6FtjyhPaIU+ZOuKA3XSwph4XFh2sw6I0PeL7iWwkDz39yI3VOtZnksyU1GAI1XOE0keEGas0Nu3oSJFfo0dLyuBeG3GoN7i5t8C5T85oiUGG4QwPKN2wynV9HvSSRQu7ZUamwnXtuK+cTzOzJjLH4J+kTmJHSit4wq0DK6YFmEMqeApfZgkHTfNMmmKC42nCbSLJArkivvA6lZrXq8MU8A33itmGjR5036/3oUK8IjI4uCJrZp8FK5XFA+u8JuXQY5+Dwt6jctjSgUUntmrklJh8Al3ZNrit57zzbW/gLW99iK4bv/HM53nmI69QXzviMrMrmSEtwj6ekDHoufHc4RVee2mwPFaw6jx+5xH+2A88yjgOrteV5+/e48O/8ev8vX/yDJd3C089ch9ReJ149d6X+cIXXyXl+9laaHaVzl0avOBc7PdsdXDfA+ccMDTBV155hbs1c9aO3PWwxImDN+fuq0eesguqde6fd2RpiDo7U6ah0eGnYr1zft9NvuGtb+T2+cSzl5f8yuc/x/blm3zno28kSaSp25CoaYlgqeOWmTzG8MNWnD27XFDTQEdbZmihaoyiFxQrA+/CcGEgjLFQamVPZ2hi7XEZRiZq6ZQxn3a50XogTWSPm8EEdHPKad8bTQ6PymMyrM2nl58iY0dnxXVCdcVNSJ4iK6ANbzOmhZQ3auv0ATfOFh6/8xjTbuH6cI9X777Es1+qUYmCwCqPhln04xMFvJPpGAENayPFyDGF3dbUGCqIOYs7TY2MMBEvOHclJSMuaBKETpvJKmATI1fM64njvwNvkR9QxXzCZSJpuFKkT1SpzKe66JDYFU8ScjCjnvgHpxcQUTd2icMirBTbkDRHaHg4SefYv485GiMJtAgTyjiFZp2Iag8EGQtTDkiRy0RmhZYwCi0NAmafGNYROskKVlZGC7OjquGeIhshORx3ZJLmMLJKuHqyDJrncLvIhqWNzTJ5JDLCgmGEh8BSjJ+HBY57ytHqMbETypoIvKE0n4J4mQ/04VSBSa7JI6BPQ6NS677SLu7j1lveg+sOGZmWndITm2R6biRxpnpyRQhYyVhzBiu7KlFb1QJdouooHv6QrFRWNGdmy1xJAKpW27MbR4Ykes/svbHkASP8Dq6C1o4nY3XFrbLzie4z4oMJo2oL3oQEUXLqA2Oi6wrsiauD4RZ5pZQcG5F96XjwZHywoUwC0xjRgtGM5h7MjxGZGHMj5TWovSRu6ZHcjtx3fkG+HlxfXXG0Fph3oryhGhJGdwtPhDl3lht4d3rv0VpJiaHCUOW8Ck0ccUVVKGXCu5/Q406uTp6Va2DJ4YBpHgHS0zH5hCUJFkxmpouw+pE+NlQSQwb3Dg3VzE5mrus1lgX1TEpKq40xIuMx6YRYpw6je42KeZqxyumQllE6BxNcYFILsZ6sJwT9Dk1AuodbCoroAMsHqhdysngeDGf2EwhtpDgMaiDMJcP10cKwK51dbgEyLHssKSKJKcGhVbzHBcjUwCrDKiYa4j0zZodpNlqtmF2yW5RpP3MmwsZA6eCC03BRkBnRyE0gMOSc6gXTgJOZdjIVHws5TaDX2NgCDmdH+pATGNFOduLO2Aa9G5rBrTI86thf10PFZudY2iIpnipWnDoyjlPTSbmdjEKnSmGYIEmZ7QzrlX3ZcdDC8EvOxznf/Oa38rb33OaydH7+E5/gi59/nn6tFGkkLhh6wOqEeGZfIq1qEgG8rx5WfvgffpJ/98++i0u7S681QqMkzvc3eNvunG984xO8472f5C//H3+SaQbRkARdSqOOhOcWISpd2fXY2+2XHRWYfMIMClEx0iWDFa7KzHE7MMuGMXHW4eIm1Dw4l9s8c31N04nd2NPmTk1CkolSNz7wDe/jscdv8/FPfYFf+djzHK4SWx6cp0vKAjXDRCJbjnFU6sFvSHCpG7NBYs/WFqxuZK1sKaqKi+pJsgRtONgWwciSKf0eiLJOO14FJg+w0FYG2pQ8CM9oCgjWJAuuibU7NWUqK8WVroLoYEqObcrWBl0q+XxiXMFeFdFXOabEUGDbgyvkAz7OSWSSd2qL1sXDd27whifuZ5WFV5654rVnP4+etL5iQklRH6s1n1L0PWh8vTOKn/btmdLD09C1k6SQe+YscbqNBOgolL3OtTpZOznDNIDkp7VGQqaQqbk1SATxzyfMg7mgamQJfHpUTwMN3XOK6rBvJFd2ozD8yJoMmDCVOBgygx9jUqKZxY/MI4FkRoLMckqNr7gZTdeTPTER2+Yr4IyUItQnY8btwJQyTSsNZ1hBk+OS6d5RDlx0oU0pbv6mqOTgi7GQspLETqHYEQ9ICVw7QFIPdDk7Mh6IcnPwM1wvoV1QnLDyysBKwazSxf77yZBsuIcjpQ+wNDNpi129KROZ4o00jF6EmnbIKEiHNkM7bDHelQOejfSub+a4O4PemDB6D7hTS8LcTp04KRw12gtZWkxU0xTuBzRaaTmETbMmkg5668xpxnywpob2gviRaRoc2QUrJHWa6skvs9G4xm2HebAzSpvZ6xXXdiClwrDICEjPXEvmbCSqvN6sKnRVRBs6ZrJsYU3NG9oSNsFmISPcpTDKqudYk/hdVGJdkT2jfpOjXlN6ZrSMppXZE6SN2+VI6sqNs1vc+/LdcEI0p2uCHiprkQhhOhLTCjOmMnG1HjmqkXJmb7EurRrT5+ZRQ/Q+sN6ZS/zutTGoOWy5tUEpmZ0WRneOY0CBkgXbKn7C6o2U4+ctQSolKW2L4Khox7PRzCNPIYMsytYHPhw3I4eUF+8jeCQphV21NlwsgpXS8axhAaaBVzQVBju22iiiFDI6lNQ3LD+H6o0Q9ZlSRHCtuATAqrizI1FFWZPTDoN6CsrmSVimHZJDI35DCykZbV1RZoYI19sRzY71ievLQjXYUdnqgqfGzTJh+RZXY0fR29wqr/HCkmjjImR7qdBtoAkkKdsYFCe09DrY+2ASQ+qgmbGZ8dDcyHbNi7aRTfDa8VHBBRsezzqrp2zbIE2KdQ8cvC6Mcfz6HiqWqbLKoFuheIItU2QC65S00U/QFFPl3GaGDjbrJEaYHX3lfjXe8Yanefs7H0anxAc//nF+/eNfogxh0R3kjrWFqSv3spCmS7Tez3UPjpumRq9APvC3fvFXeHlc8/u//2ne+NgesjJbD3TwgFfXA9/0xJv4/t/1DHdfqLEb15XzeWJ/02ivOtmdUhLuiTNZcFa2ZqTc+fxLd8MrPwpP3/c4Tz985OPPbJynTLaF7WB841MP8panHuPQ79LGPT7/sWeZyoP4aNB3lFQY7UjXPZ9+4UX+0T/+ONaOzLvMskxRu5M59N1WkZG47hulh21v644wuOEJk6C/5bydRsydvRQScdotHnvWGMTtsCS0Kki+n3M29qOyqQdZUDLndUJKRXRlHCtDFkQT1zqxjGOgn0fUn4a0SKRvgnugni9KZnSh14l5d42Yxx68Twy9Bh1Rp9UzxFe0waKFh5+aePTm21mPB77y2Rd57u6rWHbONbF5VBpTPPrxUdAkjNRITRGP071ah+TRLhkb5ySOUhAynY1tBLhnpBAAiZ+IrXSGdnCnsaf3GIvbNKJ5MCYsJxZA6dgwzK/pOqPaaQ7MmdJDpGbuJN9iNUViiNBPLA/zQdHQC284WSrNIGWPMJesjBIfvzQGI9+j94vT9XHglsnupFOmY1jQ7GKUn4NV4Qt9dCAHf4MV9R4sDdnRLFEzFDOSHYO4yYJTwSopxe3U7Tx6hN5x6SDtpJwOuBXSmGyHjs61OpKOmEFPjewpKmxTi3aIJbJvVInfqYwjKVTmShzsBxUZUQM0jYPccEXbRFFD2UJ1XY+UuQSgTDO33vmddH0QjhUK4Ik8C0s/sKPx2jwzS8NrYhkdMeFqCDlB6kaloQhnw1llYAu07UiXRCAoB/eXwVVvwdWQC/x4heUDWwpL7rlXxjBGStSxkNKEzq+SW2C5VkByYauD5JlNNhYKdywxPHHtIw7vHhNSd6FbO+HvR0yahkOPdYSOho/OYCHrkaErY5yRpJKHI3mlM3FDBjkPkiZs7DBTzoujh0tu377N0JnL+jx3673w2PQRiOwc2YbR45BgHocMNyOZM51swdsSE9SyBdq+GPQcbYc8lCFCGU5tgfIf3kEGTWEbh1DTi8YLylOQUt2p2qntmskkRHue6MODpinGLOEl6QwYnVHiGXGUDS0xNWt5IF5oGJKEeVJqb6zemTXYKpcVsmjcwl1JGUY9Y6SNfVoxnHUkuhnIGfQZyfG8TZIZDIYJBcUwjuKsveCjI8moPaGpk/yI9n2gtPNpMm8D80OskmRw1QIfoF7JAnXd6HLA022aFuxgoLBIx+YBE6z9NXreMyu4JZJ08ENstteKGHjOIZuzivaKlYUlFd4+NXpt5FrBG61NHMdGpZNSgRxgSDSgf9ozNjq9GknDatplxcry9T1UeC1IiVpPt8ENdTZvXJfM5JAV7PVbB3dRGzRZSJ555OwGT77hfp566j6qDD70uU/xqS88z+Fui9tBMo4jajnmTk9Rh3ImeglO/DyOrLbD1dhUmXmRH/vwJf/4o5/gnW+6wdOPn/PGhx7kTW+8wRNP3qaUHXZYeezR2/zax16A9g2MBvefPcR3ftPb+MLHnyXZwugDW2d+97e+jT/4hx/jH/70L/Fzv/QKn//4CxxeVnJZKfkmf+KPfBf/6V//KF+5ayTZ+MADb+B/8qe+CdtdsRvChz/zET77WXjw/jMefuwmj5w/Sjo3uipqB1768jNM3CIvCVrBtLNIZep7ckpER/9kg0sLamdk9zhFMkAGeyqbbnTfk6TTrEBuVJ8QBmUEhAZil5bycjIqTiBCsXCQWFkZfUYtUfUMnYxiTvfGfMLlejrQUVQb5kHJ86Q0KqtuMM5i10ljrZyoKYmpNNQm2uhAZ16U+27d4r4bt1mK8srxFT7xsc/xynqJa2ZX9iRfaeKobyxyi56g9opmoXhlGfFCHqlEkO+U7RnecDLXI3DkKTewQRdH8sxsCXcDaWypMb3OQugS04F0xE8j/zh0GsWh0bAxcM+o7inST8hrJ9WogM75hNZuF7TUmLxH9coHiCIkhhpJjYLTTlVeWoomgNxgSkEYNY+syyIH8JNTRGfaINLeamQ9R3wg6iiRUkcvwCcmGjJ1Rj9VgaVFjcw7acyYDobnk2/hENAsjXG+ijPlQbMNlxRnC88oC2lUNAUczL2xps4YcZvNCPPYcM006TAmNhdKiuxA8sRgRUYCSXR3RHtMBWwCHRQ4EfyiyFcsuLwjQTJHrZwq34Wzt7wPv+8RdD1wnGD2xOaGdQOJ/+2+V2aEKzoHVSYKOwnAlbkw6cLWD0GntIwfK9VvkN0ii8PKS2aRG/KKm7FOQhkdmrCnoSRaSgE9GsKGs0tO9yVgZbIiNeyaqhV8oidjjCNJE7NV8DOsHGMdYpmaHABxJzXFLeqL8eJQrkrQW6eemdKC+0BQutfgwIzG1meO00qmMtIGOnHf8gr5COc3FurVgcurKw4jZIzZG8ODPxF6c4/MmztzVjrG0TrNB+fznhllGy1qqt1YkyPd8D4YOIxKbUQ1lWChCMqsCy7OlqLSnCVFcLf30+9EXDa8CLlVkgneK1YKSYSksW41G2gOJbc0ZyEjOqFE02SYUzSAcDoEGx0VCYWAxgWlznFZm9KO4Ud8akHLpCBeqHakViWnFms8CaD7wOgeBNau0a45tMbaIsOjAziRSaUKfTTubol1hLIhkzEXNuuYQROlsyOlh7F5cNUT1TIqKzst1KVQe2XtjWydZcrcuy4Uu0S2SzqF3nJEEqwiNMQTfgyT7yZwLsI3LMa75wO/64bxm/0VHvvmNzDfhZ/92Ws+1G/znAaVdG12Elg61hp1HAJb4OBtRU6rj5S/zkRNn6+ZDazvISeOekTHwjkdiHRr1o5IZ7M49T108zbvefNjPPKm+3i5vcYvfvaTPPflV6nXTkHYzxqnQHPSfMrcTSPqLSOTWREu6TrhmtDWmcV4dRTeNd/g3/73383f/vF/zs9/5At88Jf3tHnP+248yF/8s7+DB5420on696ufe57nnjny8JMTW135we/8Fi7GTX7mg59mvb7gW9/2dv71P/AOdrcz//6/+X2cPfCT/N3/8jl+7ude4Lt+7w2u7h34jrf+Nh7984/yzOfvsss3ePNTD3HfrZljPbKOzk/8iy/wXd/47eSHLvjSK8/zhU9/iX54L9zndGuYxoHI+hYvH+1oN8aJICkVtr1jfUMt9q+WYm83eQhjNj9DcZbUGDaREZolZnMsHfBU2PpCEiXnK6R3eloC8uyQUgBhxlCqrgyZkB77NMTIoohu1By30uKNbjOkxEEEsdi3TX7GGJVRjvRxFvs8EUYfrC0U4o/cPOOhhx7Ap8yr91a+8uLLHK8v2XrBkzFNJQ5RDmIJ10QRqOJgPQ5QBk0AdpEZIVL3rhBxZkNSDt0zJdS/eWBjMCzFy1orGQPP0fl3JfkOMaPZ63yJwL/Eq10BPTUjAt+NHPG+o2cnySB73BYcw+VAsvgZi0jgsUeG1KMxYT32lcgpc1FBKsVmtAesbKgj1CACqp8Q0FuEqTTU2WadKcdLxnDEJpIFtKvlFrZEUgjNmgavQAGO+HAg4xI3IDSgO4kJl41qI5gniUA3cwqBdqHZFowSncEgOwyHLifYD6cHvQXevSNB9EsjPDFuKJmcB2M4dUiI2dix9kSSgeZKtoGkGfE5frbEOiTXzPkTb2N+6ElWM4oo8wiktpREQShuiCZq8HuYtLOcdNx1xM910k4fjWlMpA5JNUBH1vFSST0xq3A1Jkwi8+DWmMyYfD6Bypx1WLhdhjDp3ZMl9GvHI6plFhEQxcxwWemWMSn4Ca2+6fEUKThDmyDlOsKsLKhv+GxYVwaJ3dTYj0H3M6oOTDJF47NKEpJFMwWrtLEnnbIRN6fBrV7Z3bdj5EG927laV4Z0BtFQyhIHL5GTPhzAjGGRd/HhcaHJnel1IBnC6I1FMtWcJnKS5Q160lNmqVOtnZDZRrISq0MDl0oHBhGwdgeNX7zwAlmC4XiKyG31QU4pAHCi0SIzOJiRcaapMO12gOKvvnqyAgdcSxCKZJacud4CjOi20Pxk2JErsji1J5ZkpB5Ta21HllIZvpDFT5+HTPEDIor1jNWE9hNYzwOK10fBxNmVTJfCSHNMTHGKKrVOaE5gK7CBC82cfm202hmlUDxkfWODRTMmgykPmIWdL1BfwvwKMyURKHuXuKh42siyMKtyvky8xozvXuHGHeMd33KL7/6zf5Hrj38RPv6X+MwzhWc5slmL1pUbw+Kf0yIMFaGPHtkR74zRv76HirwtHESwxVgGlDRxZRM6Yo+0LJnWBj4SD53teP83vonH3/wQz9275Bc+8es894WXOB4LKZ/TaVzbJdacrEJvkAnbow9FUma+2IdDod8lCbQxM5bBZsrtQ+bP/vHv4du+7UHe885H+KWPfYqP/No9fMAH3vI0d540fAh1yTzz3Gs8c3yZH/rRz/If/c++mavxIntu8IPf/U38oe99f6BOp8zaBTsOvmov8Isf/E3Y7/gbP/ILPPnEt/Omt+65e33koZtP8IZvjhHZsLtkKjIt/OLnn0F2b+D5/iqf/tnfYFwXbtUzdimxyxOaVsQ7IxXUZ0idDPi80K2wP7vg/HbmbL9QTVAThknQJf0AOUBVizS2HlU5aTOtaOBXZ4/0sk1cZOXgE0dLjOxQA1XdHWTU0DHPE9obSVok+XPs7ocZ7apg45I+d5ak3Jgmar/mshZyCVXuZDUImbIjF6c042hGduXhh+/jzU9e4HXh088+z0uvdqpds5sGSWDOxrBM0UynxYtyc+hOTtA2I5UasBpdQDrSLUJFMhg2k3QFcYYtqAafY1jmKAdyBvVyysEfT8PKyCU0D/KElUaSQNAOnEU2TDR2oj369pqF1veYbAwPIRJS6WRcOimEA3ELklhJGMIkTiNuXM0dk0SxIG+K32MCsuxpklA3VBujH1EvqIOkgqsH0IxKdkW8n/a9p/0w5wx3qmyYN9T2NCqiA7WNUN/28HBIGFUDdmNkyukBcqCUTG8LJutJ0uSnPnuJm7A6InsyxvAVobGkOCiYGUWCV1G1IyNkdQ1hJIscSSLWKV4ZQ6LzrhNuAXVSjqjEQcqGIQxEB72BJUWPnfmxNzG/8a0MCmVU0kgM0VBmW2CmUaESL1rTRiPWWNkN0w2xhWZO88ZImSl13A6o7kljpZlhrFylPcU6sxldEzUlihU27UwaDhFoLCK0NLPKjNTM4MCimSJnDA6A4NZpFJqckWyLyrREG6f0OVYbZhwSLG1/Eus1rrQjVpjGiCosQvU92RI7OdD6nmRHSIN1TEwaQdbkC66VhLJPl9ycJpIfuHX+ADTjeHXJdjyytYGXQmsnL4sY2SLKUD2Q6OUsgUcmBTLTdEHiDPUjiNFHZMBWgWFhP73qFXHFejTZRAUVR1I0XFovMWWTmLxKStjw0+EuAswuzvDGcsp1uBspKd1PlhPPTFpoY8V7w5bEyBMusNsViiiJSmrKsTZ6FvZlH5NDgeKDOQ2qxZ+XxgXrttGtctk2WlJUNTD2NVHOKl2P0BPdbuKyR5px6IVWjug0UfQ26lFdHQhOYiNWZOIZtivMnatuSD6gU5ibp1bocpcy7mI9YX6J2X1ovkn3I1NJrHXHcuac37jJ2ZIoN25jLzyPEpwcLXEJcvaIKtluBPUXaPoQL7RX+cL1TX7xE8qbH/k80n+C5XgXP2y84Hc5GvG7H/7DCDZLHO7ikgWaAqVvZnhgb79+h4p1Um71wXXt9KlhY0fOL5FsT+sz7huPTWd8w9OP8/CbH8dofOiXPsSXnrtmGQtP78/Id4w5d/bTxG56I8uS2e8T+zmxP89M6hy21/jsV7/Kr37xkhefg7PpJtcat4SLBleW+L73v5dv/b4HeOnuNTnf5Lu/5Vv5wd8W/PZj23ht60wGz919lR/9mY8j3OAff/jXeOpvZn7wD7+FURreE2sDTQU7DuZd5uV2yX/8N/4lv/aphZEWEs/xv/m//ix/8g+8hw984A7nu8GwRtEFyTf5ytUlP/HzH+Enfu5ZvvCVl5BrQ8/2SG7YtOPXPvcK06uXvHb5Ii+/tKF+A3iVXM9Qz3i6ZPWJv/ajP8Pf+KmV6+t7fOmVCmfnHN0Y2xU3s+N1IK5s08bkNzBpsESDYmLHzla0LIgeSX7BrZ3T+gHzM978FqfYDZY97PcPc1Tj53/li1QJEVQon4P3nw/Gv/cD38YP/L4nqL1zNg3O7rvJ/+m/+hH+3o9+gaK3QARLM0c3UlXUVs5z4emn7rC7b8/1wfmVT7zAvbt3kVQoqkwuDFd6mbC+MSVj9cHUCjelc3e5QlpmtKCi2sg0S3Gj70FajFJMwf1I1UbWjHQ7vfgKZankJkiPqp1rZZDAM8OF3IWc5piojPAqyuk/3SJHMJ+03qZhlRU9ktSQvkNlZRqJ4YWuFVcheeRiuhhNNBTnXoGYnEwicTjyguc1WCReopXjlZRbvMh1j6SODWX0QwBzhKhfGmAFLRKYcSf8D3oEgdkz4o2jN1KOVYOVFJTIYQgVkY5Q4ubBho8J8g2GXqHpHjDRT2hwkUom4E09GT4Cwz50YdgZw7eYlHhDMwxrMQnLjkmMX3Mv0aUnhE+9z4RjJWB4qoHdjgCm0+oWRkgN7XKeG1M9ku5/Et7yLaxAG52bzPSy0pEgfRanWkVGEDqlT9jUWNhwv8bqWfheONJFmWSmjcMpkDaxd+Nlj3B0sgWpcWhYfQLfopZtBS3OlU1MnhHfWK3j5kyuFCKw612p6RJ8sGrC2KgIFz7YLG6bOgqVjSkXJjZqgTYq05yJX8GIxEq6RiRCo9qEopeQw8fTxbAtk9VZrDGROQwwUTJKdWFOws30MosuqCf63QNcrdi6xqCqhVejZ6d7p3jChzE8rJ4zCyYJT1FZ3BXofsWQWNVR0kkrIKGIz5Bj4YMPMIu1hUY/neHRWUhCrCNtnKYgMZUQCTCccwodCgwdLJpYppltrRzdYiXund6MUs7ow+nHlT5lukzkeWYrC6NMLPtbCAWZd7y6TcjktFEZLYc5WjvuV6cDQQukfTZ0KGs+eaLKBZqFkWHRW8xFuOpXlG3CvHKsI3w/fuS8Hjk2I3lclgaD6URoFatcTDPWVsaxUHuj+IbVSl9X6jwxrgt2a2WeHbnX2bbKvIBvCUzI3cArVs4R3WOueK5kS/H7j3FQD15GGcztJZLv+bl15ZdG5ckf3/OZX/37TM82fuV64iqf6MgWTRLcAy0vOS6aQTGMA4YIaDwrv66HCse5lhWTiTT2rL2j3GZvyne89Q183+95gvvvu8V9tyZWP9COK9///u/g4nxhNxfGpJScmWSiIGg2QEFCYy2v650dqgkvvPoiP/nhj/L//Mef4eqFialsXJeZhPOpuy/yT3/yS3zTNz7E/hysd16tQcVbTJgxPv6Vl/hP/u4/5cWvxInuutzjb/7Mh/j4l1/mO7/9TbzpTXvOzwzrjcvLa37ts8/xQz/9QZ759GCaJ9RWRrvHJ+4e+Y/+5nO8/6ce5b3vfoA3vOFB1vWaT335ZX76I5/gi198hQknl4k8R/Oitc4VL/Ln/vrf597YmLpzcz7jZjmw5AmnkaYCajz/2j1+86tH0ldWNt+Rp8Jkzjc9cYs3PDGxpMG8v8Gnv/Qsv/RhwadET0ZWQ6cdb9jdz//qz3wz+wtll5SUhensJv/gH/0k+spt/sz/9Ldz9dpdyrRgVpG985f/8x/mh//JV/B0Hiy6JCQxDn3w9EP38dBTb+D61SvSVpnSOaNH4hqN3S2tc2ufufXwbe67uYNeuD6+wqd+/QtcXTZyLkylnJwLDkVCF83pF5XETjbSlLiLcF3PWLwwypFECG9ycRIFpdMkqsWTbiATw3I8DCwH/p6G9Ynhjp9MnQxlYiaf9qBycpKIODDTGaTkJOvYUmh1xlxQZlK6DAJLS/H/pRswoW4kOVH1ZKPbOYyOlABgcXqYJFGUyAJpg5EM88Roe1JysjSmZFE3lkLJQu05jL9W4oZtDhoIeTv1+L0XRKNRQc9MYngyWjJKDdgRHiS85uG1CWpgcEZEHGyK3a9teJ9O/IcJVSenDW9T4NdP1V31kDsEe68GvEwyLmAetlK3HLW70aOELIZLOoX/9BTazadHUj7V4TLQcUlxSNEQbrmstC3Rbz3O7Xd9SzzsdDDL4KCKjoXkwRcwMzKRMd3UmbyHPE0L+A6KkfOg+oxZR8YKmigtJiUH35hS5mwMVhxPDRmJnhPDhClZBEtNWMQiB9KDSmpmVIWaBhOCZcNEKa4x3WBikngoJxlI3zFOdV0Zie6D5squC1tSZFRGriw4xXYc1VALB4XbjFOxlJC2O+G+N1Sg+hrkRJsYp8r3WVq41S/Z3z5Djp2+wWvrgaNUPMXzEjg1i5zNO1FUjmlVLpwqroOcMstyHpj0EUTaIXEAoRtTNzQXmjveOklC/tUaaMlxkOwLExUZGoiAk1U3jxFfjwgOJNcIfVpn0oRS2IbS5l0g8FNmIGy7CSSTtLBqZm2Kcc64OAc3BomSJ1rvbGmgOGcUNA1EBclC9l1cEBbAhWWeubbBmHNAANPggHMzL+RxYEtfpbaL8DrVl8FgtnEiya50h9SUrFcRghYPJP3acIfKATUjlQnpBEODiVI2qsFX5R6PpEe4++Ily5zYzOg6IUOYk3JZF+hfQVKwmYYZWiMHZjKw0dkBIwniE1sqZDam1imSeS7d4O9+5YK722scSgdvDHcGI/gV7qcrVsgfXzdK2+syGF5vCX0dDxV0GGkiK4zDgbmc8eSDt3nrmx7hu975Fr732x/h7vVK0kGTRPbbiGZ8DMwGk2a8NZo61R3fgrQnEmIhTFAxVIxVlIvlQf7Iv/advPstd/grP/SzfOpzUTd1y3zyuWf4qz/0Ku992wO856kHeeTxPekMehdeeO0uv/6ZZ/mFjz3Ha684spTT15C5l674Z5/+Df7lF7/Afec79lPsu9brK16+vMtLBjfzzMagayK3xKTOw49N2EXjpauNe5/7PHM5cv+u8Ee+682M/iQv3LvkE8+9xOd+8yVePii6W2gyOLcNnTJvffQx/tQfeAfnO5iXhCwTs05cpwP/wf/hb/PSvTfQS2IZB2xaeGA749/7ge/iHR+4EzbOpfChj3+IX/61nybt7zCOHh9E63zjw2/kfe9+mmMPGEq3ik2dL75w4H0XT+MthzrZN/pwpC78oe/5rfzar/8wn38RjBXzgqXOyIVcZspdI22DftpPbn2jrcq+TLzh/j13HnyIUTp3X175ypee59XLwRhHMgUpBSnQRw9qoTZkzEiKGataxntmzcGRmFwp2hEbdIfqmcUd9YZKUDbt9Mhz22HmUUEDcml0T6gkfHjkEfT0QrYAfnVNYcXMYQkcxEusSyJjEQ5uoHKImp7C6OeoHE7016BhjuFIPlWsvJISaF5pCkiwFUJIlPAcK5BsJ2APwbfQkk5hJ8VrvHBMggeSx4z4FWjDPCPZkBQZEB8papkpIXpERwo9sc4Ua2Q2tikQ6olYzyVicoLmUwfdwwLqQLqkYJQ0B7aYE1TfYJMWe/eTgVJdGKMEGytFnRYJaBhdeL3wisWkIBVijG0ltIc9fgc0VeiRY8gqdNlwlKQNULqd2ifD2O9vk59+L5Z2sK10X/A02HujeQbtLDQO20RLStHGbAVLDUmNYku85Lxy7Gensa2hsqP20zRGjGTQh3Alg9kbfcBkicQ1K4b2cmJaDHSywLLrFSbRNlCLQ2zXcWKQRCMo4F7BMZty42ABCWyW0WT4cDYlqum5sdSFQ4rvZbVMMqelerKB5oCXMYLFwmBYNDUqkNN8Wsto4JhlcGduiG9omdhe21g35+p4TWvrSRjlGErRRNaYUiSPUfrmDU856pp9kJLiKURr4kYZTkbYTjRJSqKfDk9OHFxF44ClnFgkutG7hxlTwU0CyaJKSgWTRMMYWbHzPZnMyIWuMxuFoVERbUnYZOCuFBNE4n0XaO7TYRYgJZqCFUXTROGMVGbKdDOw6mpkD8lZP1SGGN03plEp3RiAXU1MuysM54ix1c65O1YbvcWqKuN43+h94P1A8oKlCtZxLdSUgzEihaEXMMH5fmZPZdjGOIDbTBqvMR86y8XCljfKch9aG90KaW7YMkhduacLyhKtSk1M3lBzNjFyWhiWGXqIUK8WqEa3iV4GZwlqvebSLllHyNuy+Cko7l+bQcSly0/ckpOJVoKS+nVff2Tbc5fXOF+FJx5+gPe95x089ujMx557lU9+8nl+4Lc/Sh81vAN6qiNK7K4sQW5Rr+sYqgo+YgSqJ/jOUIxExyjiDD+yNectj72D/+BPC3/mL/wIh/E4Iw2mrny5Pc8zH/4i/+hDM0tXVA+Y7Nl8xfIZQxpnU2NfnX2eyBle6tdcrXA4drof0dKpx41SMmta2BEnt95WSkq8661v56mn7nDrXHn34+e884mHuX0rkdKEJaF2Y4EIKNkVz774LP/Vf/cb/NN/8iyd29T9hldnssI73vo0+cYV2faQoLXOQ7fOecuje157+R55PmMtEwV46L5zHn7iJnVs7MbMtnYee/gRzvaDq6HAjskT47jxze+4GbXQukFKyGpcHe7yzBee4/3f/D46x8guMEPpNKs89cAj/KHf+zb+07/5KaZ8P/AaXXoQDacCpdOPPdwVY2PX4G1veZzH3vQEr7x2xRde/BSvvVLpI5+wzgdKmTET5l7pvWPsce+UdAp8OdQ+yDqDxvfBzTmqBvuERKMwe+WMHVdjsGVBC3ifSL4xUg9XiQhbExZNp+BjoeQgQ1ovEULMM4yKS6BsXSa0d0z89EABSRnNRukrKWeOPfr1yBHVA6Pt4jacE5rXuNkkRQkxnsoJoOXCrC0e816wlkk6Ub2RdGIuTmKl14JtYMORdBUHA+nYSOQSzYrExOgJZIdYJbmc4FWGiNFbYvgS21s5YjLjvmNnFfMclsRRYCYOWlIhDfqoJL2JjwnviaYrLQ+8dSYyphNHN5SZiY56Z7KoFh4MSoqphMnK8Iz5OcJKVwFzMkbO/UQjTZgdTg0Yj+Ws5diR6ykMZgUhUAmaw44oJGxylre9h125g9XGms7w4TROECiTyLucLK1FE5NmqingTHWPUTHL1LKAX5OlgBt5rFxkofeZoyX2HmP7poI1YUpHLAlGwr1zPQk7VqZGwK64oo9E6meIb4FTzjPVGwwnuwUIzQeTGptnejoyrzfZSmcaFT06TV5l8l0k9sUYKYBgKsaEsSns+z6eh+mSyTtYwW1l81gTj2HkvKCjcW0zmjaKzdw3DW5zl3S2MDWoa6Vug8u2UtWDVXJqfBRJJJSVzjY63gaq0f6qPQKdJRVmmdjayiGO45zlwroNyLFy6dcrkk8vHXFEhdY7opnmkNI5yIA0M/LMVXVkmlhScB48FcwEMSF5phKeFdEAHrr2UKGnxNQXmBa0Q8rCUQY5T/gAEUU0AxNbrUwppIGjN5quIQurHcnjFDWbGO1A7ULJEVYMt5XhpUWDbj1QdGI7dtb6Zda+UobQ2z1GcoQdU4GREqtCklukKTNQCoIwCBVjI6vzwJxxKzx/yGQ9cOhRAef6km1ccnZ+zi0tvJaBLmRxrieQXeGpaeFlGtfD46BpR5ZxE00brdwjj3OSFdDOUTamVLEkjJHBWtixLZ/s0p0mynANwB6AG20ECiCp0ntHNRwp/98dJ/5/PFQMH7z1/kf45nc9zkNvuMknXniZD/7Mx/jiZ1/iT3zjt59qax6QWusgMUQVhDaCVGeeI2FvgyLGEEF8YAYkI9eFngwbgmqQ/Eat/JbH3sO/8QO/yn/xd55Hzx6hDPjD7383dx5yLs4mzs4KF2cTyy6x2++Y55l5mThPiTTP7OeFlJ2Xt3u88PLL/NwvfYwf+aef5rnX7iPlHVJjf6okzs4L3/TGp3jTmx7n3r0DT9+c+e5ve5r770wc2mDtDQzk4KSp86puzMcCXnjw9lv4X//b7+D3fNtv8J/9F/+YLz93i5LhKy8f+OKzlae/UfFWSUOZGex84qE3PkL/tReZvHGz71i18djDj3B+e0a9MbKBCA/deohHH535jU9H2PEog7Se8cZ3PcrBNXaqVrhejjz3pVf56ovKLgOSUQSzuO0vWuht8L3f8p38i19+lg/9WuRiNvagiTQLzUaAqmwijcStxx9HnzvwL3/pI1xfXzPNF+QUEh7phZJnNlk5CbdxJPTZCj40uBAat6HiG1WDUJdUKay0Fi/t/RjgMzUNnMZEPDx3rwN3ZJDKDL7RTg/IKZ1jo+EMmhqIsUudHuRkkinNGu4Zl4KyARXJCSzTtsZqc9T5dCWlBi32logHSMccSSWAUiMzp8LmR4oI2oOTLx5+CdVMM2UumTktdIOjHUg1DIiWG6nMeHVkzOFDEQOuyKfPTM5X9LGc6rCACN0tCHwSawk8RFkqsSI5SiLlEaHKZDjChSqrKs2FyaPu3aWG0ZAzfERDpI3AgE/aUC2YzwzXAByNREmdrJHQVz/DiFtrtPYrRK4OtwCBuW/MuWAWErPhrzdTwj4bU4OV4QkmIiMhid4rD779d6L33aEfB4dkTHLkoiVw4VoGngdLhTUVcp4Z/Zphg0FCOdKmjNaFOTlzHwwvmDqpJTYWVowpDRZ1yhgkuUYss02Ba9cxgkyYCmVE02BLTudI8T0iHS+HQNa3mTOJG24neAlqyujl5NLZGMdbqHSEFJTZfYKeWK2h7CiSI3hoSiWzqiDq9LRhDrPNrF0o0qnsKDmaRi3HC3cRY9aGuGBj8MTZXfLauLi4j6vrK64WuD7eCxy8TzQ7xropIrbIWKAJKoktNZa8Y5HCy+3q5ICJpgRtY+fK5tC2TjNjyicvxFxo80DKbUgLMoxZFrZpz5VktDtZJ6o2kuwhHXFXKpV6Mt0mvUfmIjgR5mTdRQ01K1rOmPtZ/G4tOVaCO2OMFIdYN2a5xgf0uiFlRfyA9RIobIeE0TwIpVkSmxMtim1wrsK23YU2sZMreguHiihc94qNThtCzRNSJnwpDH0DOS/Qha6xptJhxPE3I10pc0WtAI0hM1c2MZvDuObAQtJzcr6mX93lld7IJdHb4GocOZgw5JqzU7bjohy4ShnKOaUd4vDGhOVOEo/L6ikj4aJMaWIzI+eopW5bp2/ByIm2X2gz1COA+foUImv62jt/mibMLGzW8PWfVPzu734bD99a+Mrli/y3/+JTfOW5e4zmlHSTVAqoYEAHXAJPreIkUxIztTthz7VIt6viQ0iSAlI7IriUPLIGryNBRQrrofMd3/7b+Dv/zQ8hffBU3vM//5O/E310RfpMP+GH8YwNByKM14O0HkSxZtyQc24/fIt3/uDTfO9v+wx/9e/9DL/+wQOUC+48uPDmRx7hvlt7Xr285lc/8gx/7He+ld/x7U+zlc51PWIOOU8ILRDMIpyNHSSNm9YYXN9rfPOb3sVf+g/P+Yv/2Y/xm5+f2PySL3/uGd733qe5siOUOBFOPfPUE/czlWdo5ZyrvHHeJ97yxE2mVGLSYw2zTCkTD7/5ET70sZfI84wN4a0P7HnTk7ex4wEDfFTO8+Cjn/8Kh0Niv5yfAlACSWMHbkrTQZoW/tQf/e382qf+b9y7fgpLnbPcON+HynxoVBa1GB/92Gf45Meu0WnhbLqNywEfGXxG8iVOIo89IgdcZlRA0npCa2+UlCkUVAqCUUbBRzpBp/bQ1xhhJiX7FebxZ5iGk6TV4Oxnj/DmYCOlCRLUEdha19Mv/JhouWG+YWNCmaNq6iU+PBoExqyC+4bKdFrzXwGKtx2ihXXYKUldojpqCrZEtSoNpC/UHp123HGfmUonFSF1jSphPTCGBFQmeTg1RuzDSx7IiBesWwWLNQNqCHtsTEgJjr8RO2hrHsRDiRtjzsEF0DSRt9O6J2Vi9rNx7SvYGX1IrCUNukx0h8krKcfQc0jDkeBHsEW+6ZR/EVHMhTacgJ0nhIrKFYrF312mqFVKizEpiW4bGDhRtUUIsRz9tOo8D+30Fg4b8c6tp38Lct8TbO2apMZiQeWkVK41oSMyNjUko3heyYDqxNKhjRtMGuKzJk6XAFIxol0wiJH3quG+UAwxYbhjonR3JlHgwDIKpoVm0XK4aErzhE5HqiSSnZE0JhNIVAeld0iCp454Dr+Rd3K7JjEjqXLc7kPFySKIGKO+rvWK1ZVZuGYyM+ZGsY2RKj0puxHru9QzScMQ3IaSSmOQuG/eKGNFbkwhB9s6xTaOlweadZRBPvkyoja7Z2jFdaNvR5ILZyXTS6wfRArLxU0Osqed71mHgAtVF8Y80QmMu0nF7YwDwkgRjFYSzY1CpeTrqFJ2MIuDKzoFG8ackm7DeCOjHE8XTQ1fUpfTz0kwdbrXWLWNjdSPJCyaEyNWAEYEQXUdLNpo/YiNxKSd83zNXvYct43Wrk7Qtw1tPTIgY8LzwOggmbOzC1oXxnQ/nvfgQlJi5eUg2k9+HsNOhxasMuc9Yg2SMbigq7HIjtaP+LjiLN+gt8x5GhQy1RJVE3cvr9iSk3WhiuDjkmU+YxuVZcrs5SZX4wA0Jqm4Kd3jWW4jjoiqkDXAZmyVYhLrS9lwOWAcYwrjJ4T+8P+3nISIfO0fMzvJ3oTe+9f+/df1ULFxl3/6C5/m2Re3OPWKM5fB2Aw5VZKSvJ4QDWBJ/IiEs7KwWxT1gQylqWF1ZegNer0GUc73iav19dRp+DIc+doo7c333+H+B5wXv2q4X3B5NOTVFjU8+mnvs6Ke46GlEdgzOTHNEbo7vW74mnn45pP8h3/yjL95+0NcrQ+yz4Vnv/o8v/rLn+b+LfPn/uT38C0feJRDv8KbkCkkMVYL0Ah5xAvUN5p1JE0nyoGybZ033niSP/dnvo8//5f/G156/haf+cw9NE0MNtSd4jN1Kzz68EPIFJ3nXXZmnXn6iVvk5Bz6kVn3eDdmgw+85Q4/5l+AtKevgzc89gBnNxOv3BXSlBgbpDPj45/6fIQdTyKe5FFT1Yj7kVFkhXe+8S38se//Nv723/8Yb3ziTdzQPRc3ZkbXCPxYfFhqH+i8x9kDMSrL0oGC9QnP18E+OBEUszXaKLhrqLYRkhqG0LCQfSH4yfY3aSikmyWyxk7PR/kaOa6T0F5I+bSzJaPmDOLBMnlmteBwijbcIxaYbINTAHBIVD8hY6cXszBYpkbrE0MKBqRyOMlzCNeHRaBztMgYQMJbIyGUUpjnxLBY4Ig7dTvETVU6KikOLRxf969RTBGr+EklrLqeVM0zpGA+uiieXi/CcnpghKr4dVKhiEco0he8O8oUEig1xqhBz7SoLyfNuCvmzqDFSxfFTcnSyWEpw2xE3kliv5+E0KzHexmjk6THuHRMp2BX0Pg0xTrAPPa9+EQ3i7yLbLiBeAlyqXaGhFMlnWIey1PvZnr0bax+TdKCIjA61QSyMW+JXBJqg9UaGxPFB2SPiYc0ejYKwTcYXQJq5ZWpKNfWUElMzTmo4COazMvpu5wxPGesAnKGqVGGMBNBu6aC2TUyGmVkRDr4Gpj0MZhkA5kRa1SX+F650aRgOsenZkw4B3ZScaaweqoFc0Sj4TUGSJ4YzokKC9pjjN9l0FkpGXzMFAm5nLMhw3jgDHZ0bu9u0e4d6clJ26AerjjYJce+kXwhlz0kZ7fcxOYdYzH2tyY8F8Z0wWtpj5/PJC8cNHEUo2uHYpyJUFHqyFERTz3cFWkiD6M2wSYhS2VhxuV+up2TdEFL1LvbSOQC3hsqmZRj7ex6hfjEaIKWxoRQZGCt4pZOq8YNJ3HsR8IDFA0n24ysG9kyrR+oHONnJZlbZ2fcVGCsXLVLWj/QzFHZM6YdcynkcRZsupIxEnk5ox8PiAXVI/VOdmFoQlgpI6Ei5GxY37GmgZzq2o6DH5HDFor7LCQUTUa3RteMaVTYtwroxPEYFyHZrijTDkuFq6sDLHAjT9xo53zxcEVJiUugWVwdkm0hurO4pI8OnkpUdluNzzYzvV3Se9T6X9fC51wYY5xqtAMR+RriHP77yUTO+WurkK/roeJf/nefoc+FbJlMo+WN4bfYULrEN8kkhC0opz1NIc/Cx7/6PB/+uS9ybxO248bxqnFdGy8fDnHT6srvffdv4ff/wTeyecfcUJlO41/BhrEzJc0XXLuy5gTq0YPvI+pPgLMFIEULrhucwoIgdNET8jhuCAy4rzzIH/zed/OX/9YH+eTnrikt6pd/6g9+K+//wMO8ZhuzF7IJxzRIPXHrYiCWuXd1oHVBzmYuds713Qp5YfiKGhw34213HuPf+tffy1/5v3ya33z2wHqAKRPfoCzItvGG2ze5OOu8+mohU7i/XPDU4zfBKyITwzOeKq06b3vzG1nyLzD5RO+V3/L0Y0juoTgenZaUV7YDv/GplxnyIPO8P528Xz9hRgshET+ffrfzR7/3O3j1euGTn1n54sevQgxERYix+GhCreFVWfKG1R3CTLcrSnEGBXRH6iMATLkh7BCP+pfmQI3nnuhpYDnhXckawCbpncqEiGGeuRZnxtmko2QYe0oabKwcxoR4x1kopnS9YipO3QwYLB6TryoJWHBdGbaDfIm5Iq5hG2WLQ0ByDD+1jxJZOtoLTsH8gJ9YIW0kPDWSGaUUlnKBTDB6p23COhrChMpgNGd+ve9ucbMTO6enhupGoiM+4xqhOfoedT/dDIzsIw6DOVLwro77ghNtGk2Z4R2VgUvDpMZERgWzijooUUeUPHAvqA4YDZGAn7kWGEoaGZGAYjmKl0oecspD+amxEdXbQG3GhEQQ0ArimE2oLNhY6WhMxKxDh5xT3OpwcAObcRZEOkWPjBMJcXnirUwPvTsCZ7ZR3HFzkEEaM51M18zSlOtk1OwsQ2K8LaDSydrpFuHBnjo1AOHsfMZ7kCvJnaNXdpzGugqjR+o9q0Qw2eP3obbEKPdI9RwVoaTGVUlY69yURLPKmBauRyclp9hA/IgPZc7BPZFaMJzkJfDNFpOtIcrmoUTPAlkSdiKaWlJ8GKIDy2FZPXph6S2w/ixIqUzWGGmlyZ6y3UTPrjlbjszLzEblpa1zOTqDG1yeP4EvTzKlGUtCScJuLhxlR28Tkq6xbWJKE8Mc1Y0c337GGKSl0LziAvfaBbN2cnFUM8P3tFzoaaPajNK5mDPrOhimlGz0saPLSpGENKBv0bAYR4QJ/PpEylTEOlk32gH8BL/CBC09ZGMIyRpyvBeOI++YrmFHZQr/jAzmNOHpBpZmrucztgJz7pyfXTAN4dWr+LwNmziqcb6DrXZGV27tJqweYDSSgzDQ7KRpx93qyLhJkkvK4vR1oW4vg27oMGxUsgdvYyMR57cLNl0oIrTWQ9JnYR8u2hhmHK+MSRekG0vKaMpwvKRzzpV2nl+O1NUoqZI08GFqmdFLFCiy4T0aY6pbTL5StHsmU8wzKoVBxSwotP/q4SH+u3ztcPH62uP1f59z2IK/rocKO1s41DXG13lGrbNLr9LsvrhqYIERtgg5iUezYEnCz37sg/yf/+8fJd94AsbAS0WtMqVd3IjGxBc//VEeeeSMb/7O26xrPY1fY1+mybnWK/Syse/G/ZNSPNTrsWceqMQHzi0eaiqCTK/vupUyOs1D2pMkU10R6Ty423P/9DJnbUcn8bve+gjf8Z2Pc+yOF41Fh2eyziiV//JHf50f//kv8MIL96DuecP9D/G7v/Vpfu/vfJzp5pFcT8PMSajXzm//xvfwo+/5BF/61Wd48XMHHnrbTGuDIY4q3Nrd4LHbF7S7B65EefLOk9z3yEy1RpIZG0Hg7DZ4+OGHOLszuLzq7MrM27/hDteHDcsZY3C2LHzw4x/jq1/d2OdBXhpDQn2toqDhGemnHawqoAvvf9eD/OhP/QjTeJxdOQdxsq+oZLo6az3QbaKKYvmapDvc55japFO9LyVGEmAgsjFGIbPgaYtDiiptzEhXkq2cTcqGc8gH3IISeGZXrDJBGojB0oUrPbK32IdOOmM47hsQUCnvQi9K8oXujS4rrgWXu4wWjH+vE1NqQbQcYL5j9B7+AXqsiLLSW6EWx1sipzkS6lbJFPbTjM4FFaceBvfuHckMVCayGM5VCKxKwbxTewcSSTYmmeieIkjmMyILVjOSVlwOSIqDXmvhOTAG4kYbCSQIny5HdsmwkRnjlCgfPcadclpv0DBNKBvaY+c6hqCWSWXDT5r1be3kuTHkLsLFaWzsSI0DicpCcid5w/SISWaQEIvvoYzzQPjmIyYrZitKRs1gxHRRSg1S4wYI5LSi+YCNiTEWug+yV3aPfwNnT74/Knm9om2HZeFajRsjRQanO5daudJB6ULlAnylZSfbhLYDsONixO+O6jU5hVBOqzA0CJ8+MnsK0jqtLPRxDOeGZJSNSWDkiUql5M7kFwzvHMugVmWSylwWrjaYc0I2oxSni3HFnvk0Ak/jDGgcU2MnVwxSrIg8MYaQ6w7VjnCFiVDlGiRgUfQaKzcTihaKV0jxkjDN5A4rg54h2cSBRs6d+7vwpXvGF+7doVc4FuHQ7w967Pk1iYFR2NzRPphbtJImGq11SjmPKaYlmp1jKWOzMHCqG1nPcIw+JSbx2HNLimaRQh7nLLXRtbPaSq5KTw3fBjudqf0K9V2Ek/saPzdxkJVt9bilW/BNul/jp0rz8COLNcbVAfVowVRr8fOUhTTdIslDbGliKsouz1jPVB2MmljKJYvGalB0pnrn2BuJBdI9Mp1ZCkWvWfIFMjvTVHn1ntFlgRzV2mEZ6RNlrMG3sI3sg9ZX8ngNb4LZAU0CMpFFQkLmmdUzWQtFrpkW5foo1HrGzoxtGMOdfuxkC6kf08qh79DpfhKVXR/cLxvb/Ahf8GukT3EgSh1JiUWC2GtZIkuGIhLPENxYdWW1K5QN8xGtq9c1tacIZphq7WuTi9dXHWZ2mmz8/6H9QTtym3LStV7SLWG2JwFTen2nNJCUcVLc/hxEnZyctD/nviJ0PXI0Z0rha6juMGWOco+Xv3wgyS3ENXrr/vpfGJ575ZKXLyvMyhWgutDGIWqpnuImqs5zz9/l5dcqx3HN9b1I1j90+zZvfOMtbtxIiHU60d3FjIvlPt759kf5yG88y+1xhx/8nnczXxjb5sgI02RJwjMvP8df+s9/nF/5xF2cc+bFcD/wm698mi/88At8/vPv4U//6bexn4gPw3DyJOxlxzd9w+P8g1/9Cp/87PO84b1vodVXyB4HgX0qPPjw/Tzz2Y1SG9/09gcpS6IeKy41eB6j0Jtxf7nFWx+9yS9/ZOMNd+7w6FN7jq1GnsUGu6XwK7/ycXycMyelpAm3CFCKn7pXI5GYSG5xGzXlW97yJr7/29/KP/tHryGLIb2Cj9jxjsH1Nsh6RrIIeHlXVArqAh6IZ9doC2C7aGToFlmE0YPXoP2UY4g9wHUXoLPTFbMFbxNr7iAV2smxwCDRaLqglkGuEaL9Yb6QGHTuUryQ6XSBTmbyhPaZoU73jOhATpTHJAbeSVnp3fEkmBawU83QO8Mrs2ZKTkxlh4vRHI7XibbdQ9VJPpCcsFHjsOIJ1QzaGNscdWqN5oX3FU7mW8gRHFRA58AwiMCAiXbKJySwxqwZvKEyYT7RhgBOnjyqurWRdYrcgynFdijxEm0p9PClACOxdgUPFLqWUK+77TDp8dKVROqQNeSAIhnzhI2JlOZYKiQhyTGmaK4BnBozJg7JaRKqZAx05AAtZcdaTFpM1+BTaMfGYHrkG5jf/N4YCVtmlR1LVrqvMUrXQpsabp1iiZwKLRuzrVwnpzQnpxUr4VvQdOCQE16jArtRuWmVpokq8RlZkgXDpG1oB5ME1qk4nieswZQzOmJ/rzI4dsh0PA1qDc17lZWRCpMJizeKdzxJtIO6x2pJlar7mAppCzCZD3K5DL7AmGMc7RUbCTQgQ0lG7MUdmjYEJXkoB4oaUme6NlQGN0XYEF5rBdEdCafJkanfz8KgeyNZPk3jjJ0nrCiVwSyFwR4fCylP9A5jb6S0w8cpAOjxNYtvdJSJyjb01L2ukQfSCuOCSzmSFEp38BVpTiGmjIPO4o7QwAetvczanQlDW0bkbhy6bUOt45rY7W5wbU63xFjOkTmmotkzJRtjBHMGEtk7SQsbITPUtkfTYFPHrLBIVH1VAn+uDtr3TGlCtDPrA6RpMLNxed3Iw5jqgdE7TmNJiqbClQuaEqN1ajunm5D8HqaOsAei0ZXKjlobeSSmUliHs2QYm0JTVK5YPb6NLs7xeMUmhtYdd+9BtXuU+QjD6cy09ABb+SS7XeGVy5h2iSeSO3TBUhwRs8U71yRgearObIlkoWpwLxEV8Pj9cndU9WurjX/14PD6QeP1A8XX/VDhBJYYcapByjPNB66nJoeHDc6+NmoP1LT4zNY7E4kyO7VmRJSDO2XARGa0Tj7sePrttzAD9YrJHksdHcZ8dsbP/9KnuLqbWW55IJZzhZOmWTXR2pG+d/76j/84v/wL91hu3s9bH3+A24/cx/bMFZc/8Wn+3d/9Hp5+357RjpGeZ7Czwp0bFxyt8d1PPsnb332bra2IZYokRjrw6nrFX/3rP8onP+bc2J2xumBDKRLj5uN05Ed/5Td4x48s/A/++Fu53Cz65CNuG+9+7A7/j+nL/NKnXuZ38hQ1JWZLEZijcP+D57T5Jbje8c53PUSVCAGpVl587cDDt2/S6yD7GU888QC/+Esv8OSdC85vLrR2TdZCJnNvXPHhj38ak/to3ShLx/qOoUYZyjTBL3z007z/7W/FZwuuuxVyPuP7vvv9fPyjP4aWmS4N15BLibb45UzjlBhfECb6iB2yS4/dtkUNOPaKEyJXsUMWMI2Qm4sjPuFch6QhJzZKmAhT8BkSCWch2cYmYRg9ps6cWrgyLNPdcFbIRtEJa4mWFMfQ6R7eLqLazEDodBF0RH5ADFwbZntK2sCEPgZmK2necbZcMJ0vdI9x6N2thhlXOq6Ca4zRqYaOciLRDXKeaTIwmYJOKisMxciBUbYD6hqHi83xU/YDQnomLrjGuDx64wXzDJ5w6QzfyOq47fGe6fK6STNueV0MTxNqOVoXmlCpcbj1wZwyXeImgguTefxdGKg7Lg3JGbcc8qaSGFaBzuaO60Tqnc6CJCPZIV52OqEoSRruI9DE7vF1o4gcSICVI8kUsXDJ7h97B7s3v4syFg7UeHlppRL22b11uiyMLqdbq5PsCvdzxJysMa3qnqPayUBshrYhJCYzkhnXeYeMylSFJoMDmXPJHHqNQ64aIoNEpgq4TCS9xIFuUL1SfEcSYSO054kCbUeSGnVPUYY70iPT0CUz/DTd8UDyJ4OOM0/G1gR1J4mzboNpynGgGJVkiZ7ANZG0EHc1p4jSq7KlTE+N2TUosxrB2KyZKrtAyNfbaBY8CWIFYyIJZBF6gpQ66eR7EZ2RlGPtkAPnv24bk1RMVkqPLMyRFn8Pn6KiqHcjT9MzpAnGS2RXRs/AMbII3gKJPRo6Bt0G5kewwSwr2IImxQCTguY9VfdIqtyQiXJ+gR6h55WVYKa4BRKfPnAV1BuiVyyeTpyOCbHGSBGWnuqOnpXNKnAkO1RJZIXdzlhMyZsj917lZmn4lGnjiB2NzpGcBFFF0wXXfg7SGAj4NX003DecfvK6LNgJ7CbdA/4nhfH65doTqSdGD8x9G3uSK0kOrIfXWPvKwh5scC4zapnsnYN39qmx3lsxaxiNpGdY75jAKDBMyeEyZAB5FGYd9JGpY9BdSKfXfQjCInD6/3mY+FcDmmb2tUNFSunrv/7wVKjjyOyJJS0ckDjZtdhHuujp5PN6wCysC+6RtF4v7/LySGy9kkrgblUXNA0eP7/DH//D38pT7znnars87ZameFBJ5u71a/yDH/tVLs4f47opLBlXp+OkNIOdUvFUNjLf+L538OST7+D5e1/h1z//eV584WWOr9zkvTce5Bve9zTVhGEJNDDPaX+G3p35nve+Fd9l2pUiKdLEJSk/9gu/wkc+u6HnC4cahxExAj+rcfK1+cg/+NnP8F2/523M90NtwQwc4tx58GHOzj/KZ7/4CvXlTtnFWidTEBu88eEJl8Zj54/z5qfvZ9Qj+6w8v238i5/7NH/s9307x7Qxaucdb3mENH2Vtz3xCEVXNtnhGkbSTz/7UZ799CVve9M7ecPDD7Hc2YWTwcKeKbd2/MTPfpCl3ebd3/YIfVvJxbFt4+mH3sgf//5vA1tPkreAMrW20rdG0kbrhQoIR+YEMnp4SHSw6BorELewD8qMZZg4J7fBoCGpk6UzLFHVWFzDSijtlPWIF1ryimnccqpMTKMCidY7TUMqpLpipiyS8bJRJaFtge0OJvdAJ7YxoXqP3GcoSrOBTM7swtoOYIZaZr51i7OL26hBPa5cXb3CsU3gRpJMTg1p4QVpKT6gljKNTlJl1JnUEzlZuFhkxFDRcwiizDCLr2vSS5a8Z7OEuZGS4ENobYMkcdN3gkzhAxENgRXzKTAZafvo/Uejx0cc5DwdQIKGh0OzJep0avio4RXxjUlj320IYnN8DTownHbKa6h1Wnd6moFYTWAzqMR6hVBUS/ao9J7GrmYQ2N8g9rkLnga5KV0z2TfOHn6a8vT7UDNes0vyVFhko28SDIxUAgLVM5bukmQDWRgycXRYbHBRIxlTRZlGqNqrX6D5wOQ9kvqutHFEmThmI/nMZBWl8/9i7U9jbU2z+z7st9bzPO+79z7n3KlujV3d1eyZTTbZJNVscdI82JKiOLIBKZIBO4kQO4gQW0FiB4GRGPmQGEG+OFCsxAEcWVMMRANliQwlUZQoimQ32Zx6IHus6uquqq7x3nuGvff7PsNa+bB2lUQgQBig+aUL1cWuc+45+32fZ63///ebZou8kAmZzDyErQ2QI92EnkIDH5QQ5+iJURbUlU5jPhmEV9/AgE6NUPGpoqsZihhVBsU3VDtNonqs1YodSOmIJMFlw7AeSnLiR2vDaceOasDGVnXIjSxgI3NURyyxEWLd553bnLPPHUkxOag6TnmTCbcjSRztibqAlGjHDdY4RA3DfGIyyMkY0slrZqQRSHk/UGyKr01eZSxTtEn0TWw9w60xjwNHM2Q8ZE9m5wnzI0mMRMYl8PA+d7qcB0tGckyLPDMbNO8c9S63pGPJaQz6cNY8MWvn3IRG4kAJM7ELNKfmwmDLd5wtPDoO3ugLzZXHdsb1cWXkgruQXJDszN3hmHiqrJyvr/Bj917mviU+f/MYP7+9y1W75M58xrF2qkXJoMsN7hPqgo7BdrtyWEd8zlOI3IY5aSphSdWM0EieMDWuunJ2O/D5qw0Se/Cowy/7wqHfBJm5nJPzzGG9AQaUDWVzxtUaz5iS51ivumBeSLqiGpOJ7E7pMS4csgFuoHeSOj5OhwKJvr3w2w8Vbx8o3v5rTv/9v3rA+LYeKqIKFNS4JAu5ZtQzx5YwCyIFGjQ1d4+bhSeWuvJd7/sg/+Gf3/Hu2/d5fCqU22dc7AqbszN0qzy2eZxSOo8OTmEbfXYq6kIqzl/62/+AF1/bcUuEbMLZiBeLjEzhNFJNhvQNH//Yx/nNrz3k7//iP+LlN6/YjsJuUmw+sMwHRnKGaJjfNEAfh+s993f3+Z5PPIbVA7MZMWmuXF1d86lfegH1HWOBrPu4cZeES4BWNk1AOq/eXPLCV97ge+/fRi1O0hhsthvm8yOvvn7DWy8deerDyqEP8nBsUp584i5eEx//8BNcPJ548yHknfDi17/BV3/5FaY/saVI5ape8x3vfpbHd5/nvR+8G3pkzWALXuDL31j45A//a+St8uLzD8iHjt5LHPOE9IGvg8u256//nd/gf/PhJyk7jUZEgt47P/yJTwAVbSlydeq04VDjZxljzgCyiMfO2qeGaedoU+ikrcTtjcTKkZwak27o4lQrtHRAyzm5VQIFXU9I6gayxmjOQmGMdHZ+xFxZ1LC5kMdEthpgJzLXk1HWREmClmvWmsgpMXBkOLNO2GZhIlERZC2sKLenRLl9Tp4Kox65eWvPui6szMy2o4uRdIAuLK7MaTBypKzTgFmVYc6wDLOF04KB1ERSoxv0tOKSg7eRGtjMwEAqSXeRL/I4vIrmQIxbtG5iexz/6S5Yd4osMb4VB88kdjEmlwj2IYFf1iEMhERjQ0J7pXGyGeZoRFnPeBrYCAX228+LlKL67d2YskazAEjASFDkhmSDIWcssqI90MydzJCMMmK0+k5gbIfW0+FkDPJTHyR9+JP0taFJyMWRJqyyYYex5n08jA0O2kn97BTU7OxIbHxhJOPAFjAmGiMlxjDUbuBUtRPrHFXZ+YbeOzUnUh8UnWjW8dPns3gi9Qlkj6MsaZBrhrpjlIXh8ZBUqZxfbzjkxOxHii4sDnVsSCTmvkV9ZeQDkwlL6qRUMbuFygFPHgffEdj21eMl17Qxe4qmmjvCQmJL3grNjGS7CKBrrJvcC7k4IwWxVWXHVCNLU+VhTG6Y0HFEB4g43d8ia6bbqZ2Thd5W1JSUnC6cOD2PMNlQl3QisB7IfWEyo7ZCs4dM3jkvSrqYuGqGHG4oN89TbAYhvs7Nhq1eoMmRdBd0G/ZaEaAhfcvkiktlSKYuCrNRZSXrjjPruJ7hXen9hq4hq1OvtDSxilEaNFupnhm6w6Qyc8PVUqjNuJBYnz9X4KVmPLDKDqeliXk0nsqF27nyMRXe99HX+R/9P34X0j/E1/+P/xD5yQM/tz1ndaemRM+DMkFewHKIznwDlYkxGkJcHJIkQnQInDTv4EiCXpVbkzKWI9YmUr+DySXa4tklvZ+yJsK9W1vUZppURhPcleli4v4GbpYJ8QkMkg7M9nifUYUNe5onRil0O6J2wcYJ3gynDKJbcEpOP463VxwA3SKYGYTx336Y+J3WSf//OlT42ISOWyrNFiZNjOQkgSSRZI0jR/xPmnj8Ug34wfd+jB/7yO9iuIN3zAbeK44yHI7thqWeKmwa34io8nB/xV//yV/kx3/6IegtVoOqypLj4YtETRExRpvwefDLv/oL/OKnF+Yyc1s2iMJa4bndbf47P/ocNhayKy4jRsE68/rre57ZXHBxv3DZIswJGSTx6v5bPP/6ykgnIqAobRC1RlGkxQ6tTAWORx5cXpPlNguRrN2OTMHYSeeluvK5r7/FUx97GllvsBRUvXvnd7g3G5/86HO0JmArU7rg01/+Mt98Dfb7I7pbkVV57PwOH3j2jHc9dUYzQ6wjAq1VPv35L/KZr3SWy0ue0CdI0znHUWMXa4MEPKxHvvHS6/z8zz7PH/0T76NWZ5QFPOPaSJPRWmJowF9ahTFS1PbMSFIQayGuiQ0+3oMgN4agkfbDRyL7TJNOtZVJS7Anxg6xjgtBewyUIpYG1lM8BE/ArMGONFZayiSrzN7pMk4j8g1C56xJiJGkIuagA5MLnAF6ZPGoFndXtvMt8uaMeY4663K8Zn3zAUduKEnZ5oxZZRjkwonDEOn80WJ8POLoEBCk1MA8BF9kaoqHSZIAQSWMKp2aFLMVlUZ3RdtEno7AwJ1oiCROqGNnqIEE+U4YuJyaHFqAgtACx27xz6nG+sKJgLRLwmULWqkedcOkBehwylbEBUH+ZTEIRcQDhmPBbXAPh0pKeqqtHTEVhig2BvGbfQRKWFX1Jh6iklHf4uOM7HsGmTKM3bueYfe+T4QtNhE0TplOU8FBJ1PHlmJOGus7h9ehivoZq8TKIHmwCY7ZKB5o9CRGTgfMY+XWZCb5ilORLFyMwdEHa/KoGjvoqEwqmFxTi1JbIo2OJ0X0mq3nAISllYRCWUkeP+ODFqR3NlMNnouCmQCFJSfEN/RFKGlhSYL6hjV3NlJQU7REK6qsd6KSO3d0FPI4R7OxWhyMRz5NfnswW8grqQ56zwzrHPJ1hPJ6fO4uurDHWWlkMdoIE/BoCxLWJVo/xiqww2gg/QDaQipWH5G9I1wxJEb11RaaKEULVTLTtKWULeK3aGlGLyYWOWcqG6CxFI1GkieSRYMCN0h2ytYY7jNG1DSnyUEr0iXgYap0jmgfYIniE6KDxWcmVi5sy6UKWy3UMaEpnkUmmdftQBGBfmTkDV8+TCxDT5eDTulTrAynlTu6572bwsXdhJz/CGX7P+X277viu//xL/HldI/n/ZrkcLYeSTrT5JzklV7XWIGJIidLsnk4M0op4VMiRTMpJzopauwZPE14WplEMU+xQuk7WrvmuFfkCWXtxvF6z2oDmYVNW0ip4tOGM27j/RrBMYsVo0tksJgVTtyeZBPo6/RxjmEMH/F8kcC0p1OWY5wAe8a/bICklCi5ALAsyzvTim97pfSclYMYay4US1QraAsug+Yc1TwHcUHeUadGOKa1xrI25GR/NI0efHbBNf4+AxQ/PUgn3nz0Jv/F3/kp/umnXkf0CW4p7Iewc+HOxRRjIBtoin+3SpDK7qfBDzx3l4vzibPdlmkSnr73JD/0A+/jqfdvWdogudN8Q8LZr9f81lce8Phj38mUCtSM5UYmfqFfffg614dOHkLKgzFmROtpGiPBDFBlNDjkqLC6JYQCWARxPMJUfdt4/qsPGctzoAXXA+IX3N3d5j2PXfA93/0Mx7ZHUuZA4wtffJHj8cM8erDw2M7pZG5N53ziu76D23dK9JB1g6XES6+9zK/+8vNYe5KctpxvNLTiNNwTVR1MaQdnr9f83X/+JT72fc/w5NMaunkdqDi9GYLgImSgLp1R4zbMyQ8wBFKJumA3mE9QnS6VksKt4fmAU8hSSFIxLGh5J5LAhkrXTBNhdkg9XqKq4LJimkneWV3JEgwM95VJVo4IqolxwjaP4ZQyTiKpRKfhTZlT4eJCKPMZaonanHbcc3m9UhtAO3HWztC052ANZwpsdD/tGdVJ7ngRqsSoUtgwegQkXTxspESF1GwwZBBUkMzs7QTAijWgmOEaB9pgDCS6BVEyXDgNvKJoHFgiu0dJyhh6mgJA8hmzHHXHE4jHTMGUWJJU3CuYhW5c4oASNVCheHgv8OCgxk1gnOqjionTOyDlxMQ4MulElZiCuBcSDaUgvon6pxJ7ejFEKn0IXRyRzvbZDzO973s5tolJ96yiqK54P8OIisjwaMvoUDQNJj9yORU2FlVTRcOOSaFoRcUQywxWughmodeOENqgxsmFbJWeQCX4FcMD2z/6yvANw24oA0LIYgy9xnyOp5cIYommYaOdx0AUuieS+Ck7X+iikS9L0TAqBpI7+6wIdykMZp8ZqaCpBckydXxjoYXvMwYMXaL9MRo5HalrBHdnPSC90jyThjHbAcNobWXjM4s70p2eD2SLAF/2RjfFDys6Bm4PGa2SbcHGDaM1NhiMTk8V5wLLAnlCy46iZ4y0IedE5hwXxSyxpMZoQj6ZhK08xiQJKROMmVIHqivmuziAimN2EQZfaUCKwx5Cd6CvTOqskgi6kcS6yYWeDTAySnKlLCt3tjseeADpTBfcBiobyjAsOyZO0h0qRrOK2MAHjGnCx0oecGwzL8jEWDq/+2sL7ed/FnkOxs9/lut8m+NYKENZm2Fpy7CGsODDyH5ajfqCdsNlg8pA4i0YinvT00q+RJX9BIoTerBqgGpRn3cq+w7HeqD3LfvakZI5vNm4yBNrbYgm7GaCyUh5pp8CpCaKWxS9t30CG7QJkiTymE5smnBcuZ+eS6rghmqsQOBfBjZbazENHeOdNcjb7Ipve1DzWAa1ZdJRGWWQfWWUgleJZLJ5jExO8Bk/UeP8JNFBKuUEQIp9c8F8BReGG0PDlDhZHBDu3d7xP/szf4T3vPcz/LW/83UOdce7HrvN93/wXXzXe55jaLzTu4CYktKRWS/4D/6dP4eqU6ZgBKgHs6JTWI8FSxEEwzpC5QsvvciXnr/ix55TWgHfw8RM7wdySqfbR2J1CW8CYabLPhiWcEkxQk2Vqhc8drFhaGOMhHqkj6+PR/ZrIqU9L718Sd0bbCe8dpiNbRE+/tF3ce/pMw7Lt9jkc95861VefPHAJNFouffsLTIrSc744d/9fZydC6IzDsxJ+PzXn+fRWpA0YhUxK+QYWyWLlPsQpR6NXJwvvv46f/v/9XX+4v/qI9RHDcka6yvLOBbBLnLUiMfAM/RseF+YxZBW4uWpnVQK1Qw1i457z1RJ9KTQjeQxeVKbwvJpRs8TeSTEr1GC96+aMMYptOesUiPVzcSwRJNGM2ebMs1uaJJJaSaxQTr0vmB9YneRuPvEY2w2M72tXL9x4KYudD+SJpjc2YlQPaNZGd3pxy0uBSSBLAwVXI4x0tQbrCWSxK6fZIgNkiXEDuEV0YpYj5f22MYBGkV7JqVQhCNKSgttnGNaKVqwt8mv6pg13GOFEUA3j+CXJTpCEgF31BOxE3VED6Emt23cWISoWHs/HQ7n4GXQ45hzgotZVzzFQ8YhWjckMlvGqHQJ94vQ6SOWKa4KNijEyszMEFPcG+YVxWJ6R6DaEXAq6f3fhz79XRQHS5nFNuxsYNIYA6YkjDG41s65dJYi3DZl78LZCOtrTwvJJxYLOJhIPNjHSGQtbKUiHihq6ZmWogY9WeVaB5Nq/M76YKOdvCREEz0faSmyPLM3us/gEyqVVSs+7UhtZpJO8sRhk9haIQ3hqFBcaafAeJbBoR8pOnMsGS2N3JxsG9ay0jwxy4HUQXxBe0VlRMAxK701kiutN1I6koZQ5IrhyqCSOTIdH6fJoBE8gWxC1Y76wqatUMHWPet6pHMJy56igzEMSxM+pSDMTjvk4hZNt4jfxjc7GJ3Zw8fUHYbNzOmItA1DOyOtsTozpaVML4M2ogmWJYBds608ksxO14j9uAaTghU8s7pgaSAlDmtGRSZj1GiSeYoxfa4NfEIswQDPFcrCg3Vh7TecaWaxHT118BnFOJaJyQ7U3lnTGbsh9LQgAlVChJY9ocl5OG54JMIjFV751szxP/wKz+6+ztX1li9tn2LIFa1NgDPoUfEtxugDVWcdJRDw8jobMtUGmk+VcI/DtSaPg4YcKDqzcaEehT0JfCWnmcYEKLavyOIkr9Q0o27cv7PjMG7QMrg1K3hnqQ3JC70Gwym5YNoozDRv8T7qOf7ZsUXlGBkQonrOadL2zoHhtCYSkeCjnCYSIvLbmBX/6prk23aoKH5OlUrbGjs6OuJDKVnQHK0Q9xgBquvpoeo4jTEMZwoPhArFRtjwdGIyRYUw3nk9kf8GaOK83OXf/yN/jOee/hd85peNJ59+L19+6U0++6vf5N/8fe9nsQNJA8Ii45xqK5oKyQZ2AEuJyTpDC1uNX2CnMjwjduQwJ/7Ln/glbi7PmMyjeqkLNrZ4ygx3NiWRSmXYxNQrk00MKl2nd1DkrkcGhSdl4v3PPkHvC5KDQSg68/pbb9CvM7vJeOHqAa++dclT7zoj6wVj7Emc8SM/9F2MaUVHIqXCF194ifbQefz+4LjEpKTmTB/Cux6/RU+QRZHurNX5jc+/gshdkCNFhbNxzkZ2tH7NVCbcO70ujF4RMmwWfvwzv8Lv+Wd3+b7f+zjHm4U2JlQnklZ6r8hcuGoL3RtnWVl7Z/iWpBXNnWzK7Ftaa2xyxzQx+kwVY4ixOf27Rt7iI4KapRi2Ko0asp+6jbG7hCbbBjgxMtUxIVxQNNoGTSe6b6gW3IvbOKt1uhyYdOKZ+89w+9YtlnTkwdU1r7/4LVpbUL3DVBYmN1gza9aTvrvRcfp8TdbE1jrmjo5EdSFzC7FK7RPFG2adLNvAT0vFxBDNjNPOLVzC/AABAABJREFUEjlDU1RMSdd4L9GKIuMjHmzut5ilYST6iIMHGqRLpJJESA6JIMGaK05hDIV0jAOHBPxGUrAvCluaTHQ6ggdVdhSsB41S1Og9gHG1Q8mOpwX3GSRIfxCq8qYHclLmYXRPVCngwlYqR29Mrkz5yPAjw+eo60oLYmue49ZI0DmHChfv/QTTe78TbwfEC9ta2SajWqNPW4bcMEZGVLllHS0rpU0cXRlaEMks/YaSphCRBUc0Di3E710aE5WIvneAaQSkb1T2qTCpklpMZTZD8SK07YG1z0zNOctwyBl8i6QeIdlR2PS7lGw0jXbHnAduRlUDaRTPbNw45MYoGRdldMhpsG2DXAl2gFxxu3eO7mwtwai0UjnaxOyGWcWOyiQGa2OTE82cpXPyw3TMJlKCaTxA2TPWI7QO/XXWJZFs4eixEtpMJdgQ+S7rvftIukfSEiC0tCOVQV8NbEPRTrOruDWL0L0gA1QrQ6+pfoaXeD5PQ9hIYhBkZF0zsxmiMQlNDmzayYVScIuX6ttTUHyheAJz7ChY1vB7jA2z7zC/oQwP0ydLIMRtA6eVW1puUVLFNLHojolo3qAT6gdsNJZe0ORM45IqM5OtVNmxULkzBu47zDpOJifjjsHCLX68zczXE7Z10nalPyi4PYC8IcsZyWDpBbEN5jdM6mQXmhW6HGJaPUJt7mhII8egTI7YFh+C7GAuK7tDcC8WGqmFE6lr483DW3zYjihKOT/H2pG8Joa3EDYyUG1BvE1C0o6ZkuyIqIGXcOrQQXPwYqzDMBgROh8xSz8dHPS3ETTNTmIxYgJXShwPWmvvBDi/rYcK8SNbEXpXVLcYIewxcyxDV8MFhvag0rmGIlgEwSl5wb0EUyILW51YCERw9cxEYtQAc3hqsY+b4LA4f/zjP0pvn+L//Nd+gpuHGz5x/3uRtIA3TKK21eWIcs6ksRMlDyZ3eg7/yIIjZUCf2GbhTXnEf/5Xf44v/WpjbHc8PAY9EkIr7eKYKY8/dp/7tzKvvXEgIbSp03ohuVOm9YSanhjHzO/+3qe59dzMYTmgPiPq4Fc8/423eDQK27XywB/w+rf2PPXeO/R2AFGKTjz7rmfoo5FkYvXG61fX/NAP/CCyueDlqyUSyKaUvDDefnGcxFJv7i/5yjceMHHOdT8nDyOfGbKtiDvdB6qw2MLlcqBIHLD22wP/17/5K/yfPvBHOb9XOOJobydw0AYRYzmuNNnSJeG2RZPStYHvgjvfztDpETIycsJqqxGHrTGRcwdrDDFsFNZVmbKSrdN90E5I7TiQluCT0DGOqDrDnBszkmwZfmSWK6TCMimaMrfOd8xnt5nyxP6m8eLLb1H7TRyKUmZX7kBv9H5CyI9oBXgK/kFSYV4vkOwsRJp8sYGokYa8Q9p0S+TkkA6MBp4ysAlFsCaGHVFtNBtMSehMccpPoatGhDJmLDW8CKkPkp1WPT5RFJRCM0dytD9aJaYVWNRZ5QyshwpdBqLCsM4YC4hF7dfCu0DuAbvSFfMWSXsTSIVqHZFtVHB1ZbRCShNTPgCD7gnyjFln9mgBmVuEHtPg6DNqMcQeZnhSkkxY28SKwG9AMnc++AnSU88xmiDjjIHQ0iCl08+9KVni5ixyxH2KmrIKxeDMK/seh5VBJxkkzTSN8b6ORJLQtdvbF5xu5O5Ycqa8QUzABqMobRiaCmJOl1tMJb72plB6YSTlqHtSPynGZwvIlBhFjjQB7wUklNYyNDwiDqM5Ew2zxLwuLDLi83HYULQGRM8ye4usUhpw5itWK0nAWKOBUfekpkhrzEOo/QbnGreFY4eunW47SAnL57T5vUwXOzxnXDO38xaRW6wymKWRLFTfNm5I7mwWi0aMRg6gDcdVA4etwnCh+DhB08oJiz9I+OmA23Cfmaag2K4j9NkJIyEc24ydpmTiSjbwYvS2QaQhnim65yCFIUKxCW+ZVQ5oWRg+47aLirdsMFYyUzSo0sDZBvp8dLrExHBwzUjCdnSGLNiYTquWSpdblNbJnqlZTlO8wZ0yUa1yM4wJoR0bvjGybZEKRx00j4vllOLgIqOGBVhOOSrN9Az0+WRCjrq2KjRrqG7jECqV7pmtnJHXTh0zppWtOMdBqOs9c3moVIeCcdsbR90yNGPdkLlxtrtNUudNPXCUho9Bk06SLXg+5aPmIBF7w7UyaLi00CjEPjPKFOQT+dpPF5Xgb/TRyWWij86wcZpi6Kl++jsLa/6ODxXLmLC8Z5eUuhTIFcuwX3YnHoUG39xh6OnhNtJJJVy4uT6wjoXDcWFdjXpYeXQcrIcjS808+9jjfPd33kJyPz1kQoySxFiXzvd88Fmq/yxZt0zpAJJOuNMIq02SGaPFSSzgCLQkp3HsOIUEA6T/iy+8yF/7+5/hC5+7IesFgvHozRvafoGSUIscgjs8c+tJvucDT/LT3zrgGmNSgIGDQdFMxXmqbPm3/9QPMPoBGwIpVglH6/zqb71BMoXc2R/h1W884uM/+BjD4nalbpHcdxB3jrbw5ecXPvf1ax5dP0/5wMS//oeewcuIPrntUI0kt2vim699i2+93nF6/HtkYZZC9kS1jE0elaPqrF1I0xGrCzvd8cWrN/l//8QL/Bt/7v2x50yJanpCpG8Yh4p1j0qinh5QZNwj6a/5cKoS++mDHMFLVcEEGkqWEMaZQJqctSeKNFQdGYk+NEhy6hQXOp3VM+rGJLEG6O0qoDWbDffv3UF2W+grx6Px6MFDejsyaiVRmEr8/gxqBHn1tMtURUqju8duN01xgMwB5SlewCfw5WRZrTF69gnRNRgFY8YExBvd4lCYUIyO+UzRCWoPToB3xCYkx03LtYYgrmUmBqYaLxhWmgzyiNXB6CUqkXpaT5hFU2koOQk+cqiitQWADE5I8ozbJh4uWtESlVnXTDMPCVuHxIxxpKQp1nvKadoSQJ3ohwrqM/hplaFymvTBGJ2SMukEMxsWdMzQgRuyvcf8gY/D488yWqw91zLTT7f4NkrcrDjQLX7/k08032Bt4XwYVeGGwhADi5XNmpRkDtnoNlBR1lOuJHklGyAllM5ouIiGMrKD7xBZKUWoY8OUjCqNTSuspNCJe2M2ja93FLwLs95E5sg5waQihofFjjp5vJTxA2vskaJSzWBaE6scAMfGgBH/vLU38bXivUFfoF1FNVIH3p1jmchJsZxJ+Zyhj1GywCSYXGCqJHWybeMzqIr4EWEwWiKxRqvDBsNHYMDThsUTYzuY20zpicGRoeEt8r5ilsimoEeyKyIzQ9eoDHuADl2E7onJEz6cIj2C1GNQ3fAxMFnZ9YT5HhNjeCJrgMQMZzCBZYolRq4MbXEJ64Wue/z0PQ1XTLZ0z7iG1ykRVNk0Kp4cUWW2Aj5CsBUKObJsSCYB+XMYGvCmqLBP3LQ9mjScLqocLaYrZ3nLMKEPp6mgIrh61DVbQCCGndF5kyJnkZ3LC84WN33nYJFdAktuiuuMpYpzzdGEJjCNxJI88N49QpH75RpVAxOu1soyFnaaOA6DFCFsrJBtAn0Ua6KhmFeyhORyeKFrjsONLHCaDAU7hqgwwym/FT6gt/MUjpNz5v5jT3P56MCyXGIW4WvgZBj+Nh4qtr7S1oznRJoS0mdsDUvdJAWQeJ+4M2KAiIizmQp/46d+mp/8qZeptqG3wWF0fEy04XQWaje+75mP8Rf/zA/wwY9tqKMjKUiM4uF1f/e9J/je79zx6Z+9JEk4J8wyOYFZRSR0WefnmZIzJoObqwVriZESjCOSEjd+5L/5p/+c3/itI5riAVq0843rK771wiOe/NiOeixob4yS2LHhv/cHf4Bf/OUf51F7FxcqNK002VIssw7n9pj5X/4PfpjnPghXx0ZJHmAtbfz6N1/hK195FGG57khe+MZrl0hX1AuWOtkNk0G3Tk8bXn34Br/2m1/hrUd3aDrz4OFb9L2QzhOJjluchEUzVgqff+E16l6x3NjmmbEUducpchK1I32Qyo51WaAmdAglbWktUaY9/+2vfoHv//5384GPJdpoaN9QtWFl8PoIoZR4wkcHKxiht5+kkjyolW1Eyn54wgdMb0d1LcBWIlNgY9eZxIwU6OOI9YSWjsvKGMKSAgyVWmJ04eBXbES5//i7uHX7DskLlzePeOvlVxlLjEqHzxQtkJ2GUdiefrVXklZkZJrN0aHXTpH4cEbxIuBHeAUU0yOI4iZRlZaQR4lA98KQI0Mr6hNdd4gHZEnkFODrRrE4RInOkCbcb8huJM2Y5miKiMXtdihFPQ4PUuMwl6OmnQWaxYh3OqUfrIPmleHRAFDelrud1iwp5F1uKRolp2BmLAwMdDmFqTfYiBekWeyBTQkBkgDScCtoGsCRMUK6Bp2SCj6EdUQQeWTlRmZSy+Q8Uz76u5kunqL0I40Ic2cfNAJbnFKYOQdhdO1pZUkz8wA1oWbFswUcTgvkRO3CkBb49gpHDzKjsCCi5JGD4aFB800aEKLNblBPgd7ZM+6dbarUaaEcC1M/sC/KdnREjpA2tHVgFhbccUyYNmYLeZ7pioxKU8d8sOkNMWNlgApTj4fz6A+RtpBuVsT3iF2BHaJqyDnkDFPBdueM/D6ybClFkDQFIp2CS6Z1i0MUho3YdScXSleSdGoyFoPzrtE4yP3UpFpALmhicRDz4GRkKmKJNZUgobIlHTeggSonRfgWF4YdqOOMKY8IRabAXSsLygXISh+DJivNC9kbWo9Mm8zgwLACSZnqhOWKpx30Tu9ncUjXlZSirSAjsO4iK+oTPhxrEy4DTyGWKyKghZE72RIyIv9VfUUOI6LxRempouvEYhM6BbMx7DYzbu3kzLEwIA+ltkzzxi4XSEbtThtxQRramNUoMnOpjebn6LgEptMEziipEPM8ZzOf1AHDGH7AdcsR5yJtOE/KkYXEAXTC+kxKhukByZn1OCA5/Vg5mzaYbtjXlbU6u6RoEa73r+FyFZNBd4YpkjaoNCaL30tkpRPMCvNCPx0cQhYcXVLVWHfmnE4HhshTtN545eUXmTYbUnob0R3102/7+mNhom4Tm/aITmIuRvFM7mecqYahEFDRGL+60jGm0nnz8pv85v6asyL4GMF4Tys5w3c8/hi/67se587d2/zKV1/mve97D7qJ1UNKjg0/NREKH3zyLp/2B2SdUBqeNG4NnhFzqh74yZ/5Gq++0rh8UPnzf+oHuXhcw+KoSqXyWD7nT/7Bj/Mrn/055sOWJpUmzmI3/MIvvsaf/dh3s9ollIGZ0el813s/yP/2P/7j/F/+y3/EN17cIHbOVMBZ+ej92/yFP/vDfPJ3Pc2jw6CkTLOBmrLuCn/l7/8sN/uMbO4y5JLR4IsvP+L6UilnjbBwOaKbSORSePHFN3ntUrjJ19xtwoPjDTdXR+6cbeKhWWqsF1qH1Pi1z73A2jbkUlj8LbbcY9ZMswqa4scswrFdI8kg5xh7ls6NV76yvMnf+ge/wX/wgR8AKaR0QzPlgom2vkRqhZac7srMEW2FVSVYBToobaBJGV7BBUdiDaAD50irG3JRcgLp1yg3rGtCdct2Eyh1HeeYOVMPdHjXlVu3dzz2xHey227YX77Jyy+/ws1hkFgo04B5Q/GZ2Z3VIoQkWiMPMQpuykHDi5FEyNJ4WzSmskVHA0unJkmhSw+DLKcOdxG6VGp3sp2RkwENXOg+USzRdYk9at8hNKx4TO5shtGjLSITRgR7hwTfX4YyWaGUPWpnqD+k2TkugraB01mlh+9kdCw1um8I6UI0DGYFmp2qXo7SYwIjzhjhKelk1ISNOtYF1R1IwX0finqJmpkPyCUzRjqRPjs5GUr8vZw6zTI+4nvJxUhFWFYobRccjVu3uPs9n2DMd0jSmGSQdcOCIt7YpU61gg9ouaA4axayKucjsWrjGJtyzupKVmWxwbwueJdIwOuguZNSwSVokDoqdW7xu96dok52Z11XFhGGEWr7Ycw+WAv4TWbbhYMPSi/UFD6K3gtF+mki2VCr1BrEUwjraekJkYTZMSiwtmUjR+rhVZaHL5GThzY9DdicwXQHpvfi0w5LIVXT7HRx6MrOBmJGNegccBLVJra5YsXQ4djYhUQu3WC+o/UJpJNNmCzQ7GOq0BdqO2OyC4p20hj0lGge/JibsaXkwN+LR+7Fpj3VOpNscb+hMFM0bJopPcDH41g6AkcKkc0ZKVO5wUTZiYSroYLngS6Nlics1VhhFEHHjNZKFWWkI90GVYzSJVY0pnR1bNymcKCkBgWWBkkmig6KLEhdaNdGTYPi+5NCfsYSMJwyZronep7ZeAe9gZRjbWsJyw4yM+yGrIm1L+QEKcUzcvQC6viUSaH8xEahdzB2iIc7aRbFdY9nQ9YMZZByVL5TSqx+IKcO3pkRxhBu6p5FHGQLvZH1SG9gNmFj4XDV2Y+QjZ2dwdkAXytTFqZ8xiSRz2kUrEXlvRalEKCvoUoehklHu9BTAouMorud2ij/ysu/ZFSVPho55xCI5czde3cYvXN1fX0KZwYrQzV9ew8VrRxiNCaZVDdoEpayp1hFNPZMJmAi74xkJYU6ulpht060sbJhw93NxPvf9zjPPP00aR688PIlX/n5z/HR20/wp/7Is6AVtzl4Ft4wkxhFTnfwtGerJdKsvkb4JBm1C2+1B/yVv/eTfOtb9/Ey8+7zZ/nv/9kPMLjEPLO1zmqDH3rvh/j+j36aX/wF4c6UcG+MM/iHn3uBH/vmd3D3iUQ1j1uqQzsOfvQ9H+U7/5P38Jtf/irf+NYB8YkPPvkYH/rQc5yfFy4PCzopvYUqe7dz/urP/AQ//ytHLuYLzsaR+7cmHn/6Wd59/wmOdWVzF8Qj4GVuDFvZdedrL76KHZx5zjxIcH658uYbldvPbuk1kbKBJ5I3XnvwOl99/iEyP8ags2tnLPlIKYmzNGN6jeYtZQrhU6+NaUqMsY+buG2RsednvvJFvv/nn+R7fuhpDg9XejVef23hy5+dcM2MVmm2jbGoVVRXphEq76SJPipZgkPiHgQ6c1DZkhl4FyyBjzNSCnU43rBu9G64K6koZ+cb5u19Li4usHHD5VvXvPDgNdq4ZkrCNBWGT4yecF8i6yFrcB0ESBM6FjzF2iNZigcPjskZpo7ViZQr6mHeC8bDDrcJ187gCvENOmaGhANiTgt9BE64eIxmxRtT39KlIcPIOVoVqRxxOyPL+s7XtjTCiyAj/JmuDPahiJcjqlG1HQ4kPf0ZCt2C55LGhMg4bSYKwjjdtkIjPuSkRB9hPZVkuFqMiR3US/Su1BksiIaQLElB5BiODguc83CJIKkJJkvsWz2CkSlFHa0Pw3yQkkaQ7KmnuPPdP8yQGMkvktjbGcXaaSoRRWITI6kxOtRsyFBaTyzeSQJqmV2qBDpyxicYSZn6oMmWoQOtjSIawTwaGwfrhlrFfWIhiKCC4W3QbMM2OaM7iwC1k8yopogbG26ggTTDuGGhs0ud0Q7UFCspYWUaGU9Kz0ZSJfUtqlOsXFvhbHMf/chzvLkslHJBtorlbbBDRj9NjDL4kbFI8H2Ss+8JSTWQ1e4UN0oaNFcynUGCEibOYTOSbmCzMEbkydJU0brF+0QbU9STPVp4ljT4P10ZkpAhJG1kNcw3SF1wlJ0JkioJZdiRxhwOJt/guaO94TKTNHFcDE9ONydrigzdalSt1GScy4aOh5SPQFNXb1giKJhkCpvwl4ygbabUgRl7e2UpW7p3JDXcTlp4yyR1tlulk8DneFGOwdYLJg1zYaoVyStNM9036DAyHaPHtMLbqY6/Q1TJKVD5WU75L+scazh70hDS7PQMoyq5dIpvyGMwWkO8cShB7Jky4czpTpIZyCTd0VwxDtwaTvXC6oVcMtkXcm705mjutGNj9czsGWk7StrQqFh/A/WJMg027S5z3nOUR6fVaDvxc4Rs8RmfPMe0yhvVaryLT5N8g9hmOO8guH+b2tyd5VBRLQiFlHsoo7qfLhvfxkPFtl9QdQkgSurR0PAticSqcvpiPcJhMjBR0rBTAG9hYuZDT9/m3c89y/37Fzy6qnzuK1/nm2++wdUbR+7qGf/av/5+5nNn8YJJD0+A5gAHJefNq7fwlphSQstADxGa8txiR9uEabNld+b03Pgnv/o8v+dH381jz2VkCG4TSIQh/+y/8Ul+6dP/hOvxDHBkkyovLS/x0//sBf6tf/MDCD32lZJBB1erckfv8UPf8z380MczYsKgYy2zLCuUzOhK9krabfnJX/4F/qu/+uu89+57+MCT97j11AXLOvH61Vt86jee5xPveYIfffYJ6g0whbugj8KqB77y4iMGM30VJi3szXjlzYXvnO6eACuROr515xb/4Kd+jkcPDdkEYrlJCMimrLx1tefB4cB6qLT6Jr/x1ZcRuUut8QJBA4md1bkcb/Jf/N2f4dY/vsV+uaFVo/ng8vCQtD2jjKCcJl2oLVG9IJbosjABgxr1YRXQiW4L3SPQNk03Mc50RwoMN4RE7ytFlFu3b3Hv1kVgp0fj6vqGb7z8KsclfBJTErJkyJXOCr4JWIsUugeuWnG0K2oRGevSyWRUavAETAIAIxoU0p4xrbhGAE1pTLJiHdCLOCj7MRpOI1L9VYTkAyuJZI7bCv0sZFMawCgVJbUNJoPhio9M3qwUz6eVykQ7tTeGXpDSgg5ABmYpft+kh2nXS/x5ykDIcbtM4Ke9vo0Uu9OTw8TxYFy4xvc84nDgamGnTFHPEwauE6LOGB1NOZgBFVKGIs4yOp4s0ManhktMIQUknWrhilCYn30/8/s+wpK26BpVbRWieqiJMoyBBrQsKU4wVDQlBglJTrMSt9p+RFPkz6UZt4bTuhN3pBs0WawbPLPt6TQ2d2Y6tcfzZniP0Ysk0lDmsY/tUHNGGjiV7ELqnTYKE0bLiqrhsrBJc/iI5oKQUHdWEj0rWSZcLL4/jyCnx7Ia74Ke3SMdjnhzespxc/QO7rH+OunpRaOmaz2BdIZlNIU4LbHFbQn9eJoxiTxPJ4Nv0BaURpIz1hkM1A+UZqyWmTiQ0wXVMoKzlEbKnWk4KQ8OnjFXMiGZIinVJNZ4TGQlKqs0inTqCaHvJiyS0GTM3k/wtcY+BSCuSkgMj3KKdgqor5FlwhGLm/xA0d4opVJtg+WEuqIjnWqlxrwrrEeJlpYPEJh0IJZZu6E2EK+M7AxrDDI1zbS0ATNuyYHBDiWjqdIlI25kNzr1NLwd2FhQtZgmauPYG3Vt+LqyijIynKWBeEw8u+2YZEFP3+NoG8o0EHVSGeGRSSPAUsMY2mmU08FJmDxRbMHFaXa6lInT1FnsAeg127OnuKazX16nTBu6n3FoB3IxVM843zQurwouSqEGPZhGIM89yLaiiJ+T7UCrjyIT1UMkCMFfsRNRs7f+28mafcH9iFkEO6Mt4nACOn7bDhVJKzs50qVTykSrws46RkZKwU+9+SxOV2EaQTFsfs3t7T1+5Puf5vZj53zzrVf4zU9/jsu3jpyXHc/MiR/6nsf4Iz/2cX7sB5/D2hEhSJ1vJ99Ngt751ZffwPyCOlXMQ9ZESrHXHpG+tbUh0tgM5aX96/z6r7zAH3n63azJ8alDg7FkPvnuj/F7fvRT/MzPHLi1E459ZtHE3/u5r/L+Z+7wiT9wj5ublZKC2DcJrHqgN49QlRspKWY1Too26FKZN5mf+sVf4id/6ov8/h/+/cznG1741gN+6Uuv8vD1TtIDWhOvfvUBmz/0Lm7kkou8Q3zmbGu83ipf+/qbTHbOJq+4N+qAb37rEWt/hkdXN/TjyqOHlaUd+Ymf/i08n7FRAzMsNdLo/PRvfY5P/6fPc7PusZHp48DqHdcLtHvs5xFGq1hWkhdeefSI126OICvnY88NBS0zZawRnjJheEVzYSLRk8dtwdaA4/iRNpyUQtc8UVFTZBBinr7hYE67Ec7PO+965knu3r4TU5HX3+Dy6nCCh7UQIxl4SQx3shs+BD1ZOZuEwxRAmMm+UFXIAvSKpVtY73gqdHOK+CnrIHRZmEXioZIy5oa3Fdfz0wpE8b6g3vB+8n9IoniNh2V3+lhAM6ST27sE+lrdWXzEQxJwPXH6e7QcVJ3cU4SrNKiaQzLNchwGALeo/5n2wNULRJ5ewcJ5oHrEPdOTYj0onsrbC+REH4brMWyylvFeKbkgsoA4td+Q0yZewKOjegtPlVEM2hzfryynTH8h9YmhK0OD/yI5s+GS6dbjnD3zUXrfMrwF9Ul3SJmZa6cpISxLwtShAAerLLowoUw2aJYpLiS55CYNStsF36Jf0WUXllgbDFmRmk5BPOMyOVNfUFP6MKZWTxPVjAFbDjRgiKFDcI4kTxSZMBXIhfMycURAOs4F5pvo828l2DQalTyRszgo2IRNC2IrMo2QWJHBVlbZMLUMMqBM4InFVmYR2ikHkEfHNKZW5nvMMsVO4CuDLkrWyNGkLrS8wKpsVFmHk7PR+pbRD6gmVBtqRuqd1fdMmnjMDiw20YrGOqLCRgSlhmPH4/M4eo+VkdaACJrELf7tWm0KKua0KKad5A1pjpVCFmMnzuIhi+wYhQm1CGynbEhXwna8YB5BYXcjeaWlyHmQGoxElhnxBVE4tszNesD9DLUJGQ9OFeW79CYoR1Aha8dGYfJCc0UVdgNcUriONDgZK4L5yo6Cpahzapuw+QqxhvlAU+E4CnU1ag3g3UwJnPtwji50ycysTGOlTxu8DeaNMKctUpymFu0s1dPkNuOSmE4X5LVd0eWcUuL31UunjozVAxvLyLplrUfIR87ahuaDIdeUPGHV2ex2+FsvM2SlJyGbkfQYQVxCbp9yRiTjCGMorZ2epxYB+rfXIG+rNBACPsnpgDE6m1sX1FYZh5hsBysnDsXf1kNFlcBX29gwjYmWDNGVojPnKVKuIhJNeStUD3Wu1g1/7JM/xtXHF/COjY/w+O2PcOv8jHmO8WGZNow+uFlvENkwYYGPxbAM26x85dFX+a0v79meP41qoafBkMqg4HTchYNUjm4MYJGVtS/80197gx/+keeYHnOoMyIDzYN6pfzb/90f4/Of+3Hq5buYcHrZ82L7Bv/531r5i/YH+OHfc8ZbckPqczRbBsxpxmhYslBnS1Alp1k47xs+9cUX+PUvLdx73yf47Fe/wfNff4VWV7ZZua3KlTtVJj734lssR6Ed4JXLS167geW48Jkv/xqv3Kz0dIbYTJE4Uf+dn/8Mf/tffIp6rByHszjoGOSdU3xG6kruCz5v6KUz9le8te5DHKWD1pVJEudMEaySI9kmpqnQA7TIKErpC10bV7rBVciroeKMogGiOQV9ZMCUBWUPFJpesfqW2QveG46gCUSVumYGA50WHr+befIDjzNN93h0/ZAvfulL1GWgWsgTVBSRyuwJK5lhUWfca46G0RioLORTijzCRoEGUgsw1KpnYBVKIbtHPSorXRPJLdglMpHZRQCRAyVXXBewHtAd32AqdHOGzAw9UjwyPopiaRNER1GkD9R2p9DkIHuwN1pWFoPkW7RU3BZMDFPBluAPiICroW1LooIfIHWSKMnmYPSp4y34L64VdDBqpM1TPuCq7xhNNS1BwLSGj4mRDNEDOm1Yx6kFkRemWVi8MGxiWxaa9aAW9oWiK8mEMTbILKy+sKQNxcNI2ofR106//V2cf/8PoVOOg41uwBYYzrwcuR4WzAsTWuunoCYkhyJb1t5YTcjFsCFomzmfDiyyR3rGPGPyAD8kUonb7bDQXJt37uvgLRKrFDYykHNhtDj8Ssp4UTaV0DimhJdbdGkMhSbKtiqLNIY62c9JxBqsIsBKH0oRKLKiHKnzzNA9ZTUGd+nJyXKJtsLeC8VWvFZWGpsmp/VXog4lW8HdqSXS/d5mzC8wcSQfSN5JMkUWzW5IZFQbeQhjgqNN9LygOsh+iBZQbvS+YdoOFhPcH4dN47q+EUI2J0zE4xZLGmCV5CkmjH6igZpQ0JguqeLMLHXl7vKId08r5+U1nnhy8I03n+I30rswzhDZ07WwSMFSwiwO2Xndx+1ZPd4BWjDZcCXERcwqqStMwYhJpqxd0CwMv6T5fHKcVHKdmMRPE88ZyYmGkUqFtkU94yfNOTYh6QZLmzjYyoRKZyE8TyTnnA2b0TlawZPg45rULmjNIg+2xsGpYjRgwdiIE/HXFF6adk1qjyjbLdrPGCTKNnw+erLlgtEcbCpYUpq/ncM6J6Vb9FEx28ZEsZ1HfkoFk0T1I9Oyxb1zySMev3efhw+ugcad84lduuByr4w2gJWRtqBP0VKsWsSdXq/x9ZLUD3jf4/V4qo6nk9gwCJnm/4rTQwQzDxJ2Smw2F8zzxBvX3yCpIt4Z3t/hWXzbDhXu5fTFReVxZoOTaa2Q1XAOuDcAZBieLPDDvfDM43d5clbySBSH5kYzZ63R3z8sC7iRU0a80SQ4t+qZYc50Jvzd//pTHC+fZLuZOE+Z1GfUrk/nsym+xppYh9LsNs32nOWFL73yMl/4tQ/yiT90B7HOkKisNmu8795H+OQPv5+f/IkrUj6DcWCWlW/sX+U/+Wv/mD/1/If5w7//3TzzdEInGDpRSIxRSFRqdrIa6+J87Vt7fv5LMRl56bVL3nrz86xrYjcJY8r4GLxFR3xio5d85vUv86f/4xc4LMY4wNUIR4bqoOx2FKsR+BMBBtdtxRj0rMwbOGMgviEDN6OdRo8zZXQ6M9ei6Ih+uXY/0QwldL7mODOrVPYNsipbTRRf0WngowCO+hHngiGJpSolEx6G3snutArqF5hWtG84w7BSqT1G5d1gmhL3nyw8dn6LzdmMHzMvv/k6lw9fpVZAC9vdzBgrdRizNpJtaKKnhovjIwyGmsKDwCgMHRRtpBnSGDRRUsosXZB3lNENU436q8nbG8VI2JvgZog3kvbTB6sillEH5BCq4rerWSPRSGSEQqNryJ7ojpd6ctlAyzVoj6YM7xQqEzUYHygY1J6Y5wNtbOitICzkdKCZ4H4Gbpg3ss4kT+ST7lhSJLmHCJQj4tH+SHSGG+3U/U8+MamjMtPkEN9/UpBApxsKfaFMMXUTAxsaUjY5jz97oKVocyXbIUBVp/QVaYmz++/m7vd+gjl31ha3ZdpMI1YVzWd2sqdTaVZOyPFQRDeVGP37wBmkJSHSOepKPk7MY2UgLBqE3iKNUQuMiZwrmhXTxMEmzmxDU5hxuu6Zyx1IgovT+0VkTeaAqWVXmoQsKSi4htQtJRmWYAzHUo+6LwaJgPGxQTBKleBDeCHrJWOZgZmkK5MNZLNyozO7tsE30FWZCA269IpLQ6XgIyimnvaBpfeBkVAa5oZoCeGbdvANo8W6q6Qt1gB1zIMHMfnC3LfxNZYja3W8H0iT0P1WmEXzVZhApYQgKgndLVoN3hBm6ETlOQnvG9/kL//7v8GzHzJuTZ301H3+q3+v8eXLx2nzgSNOtwS9IUmQZqQBMt/GqCziFFeKg47CSCuOMkSoxWKVNwzTiZJjYlFtIiWndmGiQpk5jk7Olbw6RiOXLXkkhqxRLfVo2vTUSLYjWab7wGwlp8xdSWALqynNR7AdpCBjZdLEQsZGTGDCCGxsmON/G6h+pJSC5C1rS5SyY7cR0hCupLGsKyYSxFxdUNsiKMP3JKsUZnqOn/+kiZJqaCCsYUzMLvgkrF2Y1LB9YxkH8naHTZnZZ8Qqa6v00snbHZuysJggmzt0vcCWI3KspPYKvV5jXhHv8ezzFiC+gG/G+lnefqeE4yOAch4DAzMQ5dVvfTNorcmxPk6Ibvn2cyrcelR5WibnTLJOlUQaoYM2t+i1n8BHmCJeMJzqRzhmjMZKP4XGEgk/depDbOI4roG83Ziy+sp0cc7Pfu7X+cmfe5nbd57Cbw70ElXAbJ1WCuaNQg9KnzfyCE9BH8JDDvzUZ57n+3/PJ8nTyjZv8GSYZooP/uQf+AE+/Zmf4cEjpXVjyMzkyoFH/Nf/4jP8sy+8wPd/4Ek+/L5b3H3sNhfbimhm3k5U4LXXL/mFF1/iN75wyWtvvUq7cYZXJBnbTaONoPkp4KkRQFnh0brwYFmRlNnkxjQbm5FxPAh7Dps4KdF9ZpHM7ILRuSGRe2Y6jcQft8ot4DE/sOsrZ6uxoXJrdDa+su05ZFYn14SReJCNhz7zpl7wrU3iNYealTIM9U45Ic4l3bC4kFMhA+k4hUguCfiR3hKeBpsRIdU+EtM08a77Z5ztdqRUWNeVtx6tXH3rLW4WI0lllomUheFQRz/VlSKA2T0xSWWisfYNXTKWFxynjahDJXfMiNul7xA/MrQh+QypnSoG2kiSmSQBhr39gXI7tR1GBH1bjtVFOmm/1RgDTCwAMXAaj0/x4RzQJUUaXwjAkupJwjVOD6mCDRAvDM6ixoaebpod9wmjI2klEyIvJTTwbgmV+Ix0M4YXICHScA/UsBErR8sLKo6OwmQKdIbc0LWgGinwwH1XEudB5QOanmFjQrwjOaFSsVSxDolQppcOmJO1owqlJVY6t5/9ABcf+BAHjfWfWqYYDDvGiqaD95WRoiffPV6e2gW1CHgGiKcSx3NldU6/3weSThRJrKlSciJ1QGeSKcOMmgpYY5oVbXHPdjpJduEaKVGRbWZYCZtxtxwhQYu1hCJU6VhZmJlidayZrUReY1i8+CWNuF0ilAxnJiya6L5lywnhnJxcIFtipEI+e4jJhA9hcKDKhnnqCCvSznCMkRuqAxvlRBStJMkRhssjDKWSY83qSvYIMooO3Gaax3qhJedGJkwqai0OSosxTRNCp9ocDRU9hRRFSVpPoq/Qug/3aJWlDGPiO28/5GN/GNreGUNYxbgxAhTWNX4mIqdnlXN0p5Sg3I7umEx0bThKTg18pUtjshnVgPaJ7nCDIUvUHX28M6lgwKBRZRNrFW3k7CfaspAT4QHygXlGyawSORVlIoniAgeBLnH5Uiu4rUipZN9hdk1OlcFCHStJNgAMCaCciZN9wvqgpYpooeYtvn037eYRSW+YRsdqQ7eZNE/03oBOM8g2hw+GqPCTVtZ+xEQRnWIFJDNoAyUOkW1m3406weNnd7mplc2uIMsWdcjzW0i5x2RvUS5fpbc36OOK7MdgHmmsT20YWRWYWFvk0v7VKYO7v0PSzOUUVjd/B8nt7mznOSYfowGxLunfbk7FFMoSRp7Arll6ZaP3+NAH7vH0e85hTAhr6LIVcpeQI2k8ECLoF3AOFzvlP04d2HeOGA5eqHbEBty5uMWnX/gKf+n/+XOMfoehwgRsfab1ysiJLYYJbKfC5uj4ehaBuZYY+SEpX/CrX/0mn/30h/nY793wymsPuN4vXF51rh40Xji8iqQj3mFSI9k+oF0iLCnx/OUNX/7US0y/MHhCN7zvQ0/z3g8+zrXDi1//Ji+8PDiuC26NW/3AJle+o668UM94rWT2ZaXUW2SzyHxIpowaITJ3UrnEfXCoO0ZqTNYQ2bJIx/MA27D1wj05ckHnMW+867jniXbN3T542q+ified7CvTqEw9DJlIpXjsl10h907Xwh5ByAyfSDLxsBivTDMvyFN8dn6C39QI9IxpCq0unSk1hg1WVVw6Ns6w5OTcuLnpDFOefvYeTz5xl+124vrRntdev+HR4RKTcEKk7idoTwSATAKkJFKwsUFcwTJilUNJse71DnqEIbgU4nXaWVlxm2jTRG4DSxPW18DYFjuFoQrJCqAMH5gI2cJF0FLUATMdyQswB7yGhElkMcxytD9EkZFCMocjUsmeoE+nX+MdKj1CrGMTKXU5MDu0VOmpxyja4wexSc5YO+Ukw1WB4dtQKcnx1KffkvUSSYawxe1AOB5nCoPmjeE5WCcSTIawj20RVkbfMmxBmU4wOU4mzYZw6vxzoFPoDNwGxWfcF1zXWMuwxApHt2ivFHfuv++j2LPfyTFNpJ5ptoRYyRbWamieKRq0U9E5jIi2kJqzHFba8ZJR3+Dxx+6z7p5G+4blNG8s4uTNHIn3ZWGXzkgqrAS7ZLhyHBuKZmYVep3oZeVsdKpHwr2Lkz3hJ2phlhsmP2N4xWWQSsZbI5+eNSMVVlHyCPleuBviECp0xGeGKeTKMoyjJCaULo0ld6gT5z7QsYLEA30d5yRpNJkY/YxsN2He1HPm0mEkTBNuOcBm0oAcEyQabhKOFhOyLUjZMazF74DssOxknNydIitOoRKVX5HMxhNG56g7bCgZx21Hc9C0smXG+0wXoekC4whTtES8GrfuXyO+4nvBNs7munF9s6HmLd0HszvZNyxiNFG6LcxsMVU0CRsa65iZbOCl0T0uJKsKg4J6ZcvgoPGZ0JaYS6IAXSTgWN1iVRM/EcQT4gNxD+iZE7ZaXRC5YOJtYB9UKQw62UD7BtUbUGMYaB4oC34CWQmxlho2yFMKa2cm1jSSQpA3RgRyTehXV1jfM0+FvUlQNRch932s3gREEiVPpKSs7rESSspONxzHzCqDkSupV5D4uko5i+xQvabIc/hS6RIT7F1R6JU7O0fyEc0D8Uu8WWRqTnJL94hSptNKqo5+EgnyDuDq7UPF24eHd9TmTly4zJimDTGmsxOzZ5xUCt9m94dMG9ZR0WFM8znf86F385H3P0EpO+YSgCpPEWQrYljO7zzMfRjjbTBQcgRhjOjAG28LS4JSqWbc2Z5RdeXvfuoX+Ut/45d4/bBh8kQ256Z0ZDM4200sDzvXq3HcK9c3C7/48ivYamhq1LlSxhnabrjO8J/91X/M5d+8hA7NVjDj2GYGwnZzn924xpioc8N2A1k2XLROTpXd7cf4zvc/wzPfcZfLa+cXf+VlvvqtV0kcmFUoSdgVuDw2+rJlNy/8hcMXKevgC/NdvjatvLY19pzzZu3kecZtRdOMtuAsPFE63Y/c8jPuHK+53/c8oZXzUXm6v869urCzxpZDXJU10sPJDWOLDGckp1F4ZRauyy0OVrieL7gxZ/VzrnJhkRy66FyY/ABlwevEWTcmE57yV/m6PM4hzfS3JWFWOPSJoUZXZZc6rHv6qFxsL3juo+/i3v0L+mHhm994kwePXuVojZzO2eSEeqNbx/OEjoFQTmsGO718nEmWCGd6YahFGLIXtkkonljUSB4qbO+ZM52pIniFbdlzs9xGS0LkCrMNxTckKsMbFUW1MUNwFySB32GwZ0oWN9kxI6kFJrhvESJEmWwmiYIrQxeaQpJdPKjliKfGhsIyJmAiaUNouBrDJ+AcHT0Cj+kKb+cso5G3QYulJ4YJqs6c2ikkCcwHqhfclTlr1HodhhWMTNOTYFkXei94n0gSLZMkW1QGjQWI269oiREv0V2PF+oBY8W74DnTmjMJjN5OQbDMXPdx00zK7mM/QrnzHSy1Mryyc43vlUi73xkVOy5crY/Qw0uUY6cvj1jrQ3I/0NsRHeEeeP2le4x0B6sdGVfgcCNb9PaOi6c+zOb+RzBgrQ1SPOSyBJ/AxWEt+FmFVRDbogq1JkoyEKf4NWKZYrdYBEZ2dkM4rBE0dpsRW5i04gKzFfKYWUok/SctII0+9rhImChLRVsc1rcpDsllXFPlgqowb4111MiDaWL2WMFpjqDbNg0sR+OmnACAZUyodpok3DtmG/x0aK1UBMVGpfuGxBGpB6Y5lkwqmeFn8ZydB1Mz6OGhEb9gtsHQa9x2iBo2VlSgeg8Vtw3QEWH7ZYvkyljh2d1Kmnfh98mJm19pvLZX5P6BMmaKbsGP1JTYemYue7JHk2xljpc3B0aeqXaOSiOiqI2NB+3UcmfTHbeZkTNZGtWNNpb4/WdDlgiUq1W8FzQLKWmEd9NCswnyLbrNtDFQjCQrjDg06gxig+wb2uinrNBEs06ad9T1SKKEqbisGIL0sA03HZQxmIrGFOOY8BJtI7JzwyCTcFtx4Dg4eUJ6/P97fF6TDpTMfj2gOlhT8E6i0HCXXRbubmewDYf+BowNdjxyaZ2z+RbWwItzxJnmu0zLzHW9oq9RpRf2DCZETvVafxutHTF2O5Gr/r/JwN6WhqkIKSV6DWP4+Xkwk+rSonkmoUso6Xe2/pDfKSXrXT/4v/bb9yc+8sRz3Hv/E0zbhRdefoUv/9qB/8Wf+L38/j95n8N+D2mmjAOWN4gZKoXEYJz87HkECdLV4gPLRDOh9pW+CpeXRz7/9Zf4mU9/lU9/7i1yCXvpoEXToAnvfew++Tasbx247keOrVKXSiUxZ8G0R3A0bUjNWFIjZ6G1xGQNzQ1zxzQztZlhC6YddIP0gefB+bThuWef4qPfcQfKGV9/5cAXvvoan3h24t3vVf7+L/wG2d/Dv/snPsjv/oH3IFvh4dUj/m9/42d567Ov8R7PPN4r37V+naeWa4qtYBMtlQDA2A78GtWZok6pg4nKpq9oWVAfaPNobUthUDhmo9oZB00cVLhJM4s8zqPcuc7Kyhk3aWa4sRFhawv3ueGsVTY0zurCRa/sMCY6w2DuYJqostDZsp/AUB7JBa/miS9Nd3khFV5lomfnjC1lq9y9fc5j927BOvPSzUNe/9YbHI4LJXdSmYM7AVQbQZEUw0dmM1oEQGXQBIYr+ZTOziq4TzQbCJCtApFQ95FOSuOCD6cnwS1udqRM6seo8J1yEo2ZYH/GeK+cKI6RSYDAphnTqXvdSLjvwTOaPJDXfsLuSvAsxRdaMtwas10wqTGk0zB8bJkk9rJdR3ShTt6MJE63DSodlU47MVDUlaRC90y3TkkJpGEjn0h28YBQTg0K4VSvE9qI9SLSQRvuSphGBUwpbuG8EAMNZgE2UElRszOodmBO8ee/nND0WYOwOcTZPfEMurtFLoXzs6fQabAcDe03WHsI1w9J64K3hh2vWMabWG8wQiSYmmBZaATgzQk0sKT4d6R1j2ihpfm0wgyUvjqU28+QP/hJ0pMfRDCWkSnAMGOWThWo7mxHMD9WkVgZ9c5gJbuTclAZC53FBFC6QLT5B3kM1hyZkuygjFCcU8inXE2k5At1DGYyW+2sVJaRSR7ERzHF+0NuzWccR+KGlY0FjmwiqqeNk+5bOi4lDhRaSb2fXuzxghVPdLliWKzaxKFownqQIMW2YVqmRUaCE+2ytQgVzo366Gvk7XuDuyLC0BqUWV8oqTKkxeqwZ/AJkwziaL6mLcofPP8F/t0Pr7zyUuaVh2e8vN/ys9v38aBtGCR2mx3jeMNi1xR2WN/jM3SbmYHmCfHT5AZjZqADDuRgjujAvaM+Mc3G8bhGackSXQo6rimcRa7CGs4Vk+TIenmiy4FEQk1IecS4wxVTo2uiWyOZcZ521HGkGcyqJFliDWCZzVSodY/3Q6DkJ0c0WlheO0lrVHQAzTONHH/WXgBjo4nj1SXkhouFxJJCQiN4XQR0DsS/JRgrt3aFG9vS9QxJG2YJKqsf9sj6Fvv2gD/wb/1Rvu99H2azmTmfbuOtcLO+GZfvA/zDf/TPuVpf59UXX+E4juQ4wSKnKSqc+BMnIEX8XjVs2DtSMAFyzvEO9Khhp6TIyRieciZpiD6XZTmh+GOl0nr7/3my+B1PKn70R7+Lp2/f4tHa+a0Xvso3vvkGx0OlXF+wO8tcbBJ5nEX3nQ21wzLAlhv21blaGserxs31wtWhcXlduVne5ObaeXCV2I83ODzovHpVeX3/FmKFPE24VLCJic5RMgXlpYcvUB8q6rHPtDqRSIxOBPsmhWOhrQubjbNVYdl3SrphpJnnbt/nmSfh7Hzi7HzHec58/luv8Ou/ecm73v0enn32FjMX/OlPvp/3fW/if/d//2/51Gdv2Kx3+R//e3+Uu9+nfPpXf5P/yR//w/zA77/HL33meUbf8f3f80Fk8y+4GMr3Hr/FEyu8Wja8srvP3CubbuzkktkaM5ckGWRWRo+X303KLGWmyTkLmTbPXKaZRSYWVQ5ZUYv+e/dMHp0npDF1eP9aObcHnLVrLsZgNzrFF4opbj2Qv9pZUsXSlm6xZz6kREvQZBd7WcIPcY9r7lnjw+s1x7zhG+d3+drFu3jlmWepY+Xm0eDlr71JfXiJqzOSsdsIjLhxDVfCUTq9IzVSbUG9pNNHDlCaGjlXpDmtT4i06Mlb4qgzsRwziqbYwXoFUQbRLFERfDSGF1LfRuffewCaNLgUnqNW6GYnSNuMmUXLyAeuAUATJkygnvTPyYP2qFqDAkliI5xG8gHTGaODF3bTHrFTC8QrdWzxlMjkqIhqfIDp56QpHAuR2ehIF5JtMB8M9KQcb5FLYg5QmUBOheSRRQhHh7PipKGxT5dAX6+9I8VIaSWNwWjhakESboOkhkjUO2MNZUzp9AbzziQdTRN3tNIOb9LXA8f6WeryAOkrmU7vK8OJm7SF0QGCRcIp67NiSDt5YE5/193w4bgkVp2iMUOPOrSmuBBI4nj1TebPvsHufX8Af+67mRAGysY9you+Rog1A00CDKVO0YHaFH/tRtMIAUrqcXu1EB92dbDpBLQ1ugS4aPggWw1gl2a6B6k1yZbGEWSgltl6QlNndf4l3CsZbSRmy7gIzVeqFooLmEdzRYXEQDzyJvb2d2ZQGQxfSDpTTpkFiHZAIKMgaZh1fUQOxkvBWZATdlr7QpFAo49cmXxiaI/fPddww1jULleJC0TWHhOnLmxy559cfpxP/QLMaeLghbo50ZI1nHS9CUnaqeov2MM3yHJBn7eMtZGvX6Lfuwv9HGHhoEr2Rpp33EqNJx+/QPdH5Fbhid05v/zl1+mL/8vMEQ2ZOnUEqCCdpqaSGtpHBBg1XEK9xwEdOSKcow6pGyWBeaeQaBwQTaCD1k8HQQja7MmojCU2KcftXi1Wgn0wTTOawEa811RW0MzaM6k00giluIug0sLzIZtTvqqEQE0ESQOTIOImN+rhDaTuWccNWh+QfQIOLMurFP8IIJRdpt+ATjMcG7vdlrnMzGyYSmHpj3BJIH4ywnp8hiPtAhbPx+G8ozP30+TCIaYUqicRmUQTSZXdbktd6+n3jwh7vt0W+h383++cUzE5P/eFL/DiG2/hR9iWzKRCmRK/9eZrjJ95lTfeOvLaWweurioPDje8fugcrh1ZF1ZvPBpLeOl7Y6CsZLbjJl5oM4yl0dJEPkuMa8WPDZkzqp29JFKtdJlZRamLc8+uSduJO7cytzZb5jPlxdeveHCz8OHHnuLP/LGP88z7tqgkfvWFL/M3f/zXWK6e5M/9wR/i9/3hp8gl9qMLnX0/8Ld+7nO88o2ZF196g69/5TX+ne/6ADpNHPyI6o6zvEGmxOHqEU9unuKTP/AcLz54nl/+/Jf4+gsLf/m/ueHVt95EzmZeKe/m99W3+JGbr/H0wxfZW+FyuuBQtlxNW2xsqD5xvVsY7YLmhWNZyaKk6oziXFSn9M5t2fN4bdxKl9xZBhllSivb1Rkcmd1ipSFOs8SSBpdT5iD3eTQ5V/YYN1k5bIzeb2EjvCOldCZuSMOYRmI3HBkTI13CnALPbMK9x5/lvfdneHnP1cOv8IIPHsqGvQ3SrGz8iOhEPe2H2zhjq9FaCCCWM/qIWp+0oFxqJqXK3hu9Z7wJxwznnKR0brh0hlWynNFGxuVAdsWs4DSEQeoFT4MxD2w8gpGYslOtYpyDXmFWqAZZCzK2+DgiedDGhpxytDtYcd2exHhHGDFG7qwBvOrCyBMrys4nRA5hU9QNc3aajBD5WEbHdNrdTkgPsmPOGSkT6v0Exakhf3LAwzJqXkkau+HRNQKFIlGZ0yUMhgJDYj1RaGRbGZaBHhkml7jN9Uz3wlaEosqkhqRYuSiGSkPdyD7otgagqQ/oHRcnVeXNr32NodFiURlgQorjDt1Cvf7Owyosa6e/5pQPAT2FY5Vo2zhgNuLYcdrXDuydShua6C4xyewLV8//E3ZJ6O/5PvLSqWUweYB/hsA0YpqkflKu60BwNiNGwNkzERF3hkLxijKj3emyoCkzj0rtCSlzCNGkRVV9xMHzKIXZoftMLz2qpjpIJJAVZKaZUDSi6IloDU3i9N5IEgfWLMraC312JnVSqziC+xytBQzjjGyntsNQVjrTmGOaJDdMHp+fqnZCMAvZhJGcrTfq3iAHOTZp1MFbB/WFJJG1EN2dJr+N2QY9QW+Dc8nh7kmPsZ9vaB1q6szqSN1QU2Ma1/TtgbpO+IhDex0PmUaltNv4uGZa3+CY7zKXAx964pz9m84LjzoffHLiO+6fQ+lku89Qobiy05nL0aEYNgaievISKs4hplcWvCBPa8i9UNQTOhzPe8gz0hpphPtG5ky1cDCNE8CuWqFS2Ej0O0QsGlRv4w90jWnm6GGhzY6zpRokddQ7rYfgL6M0TzRJaFZ6SnERFgt+hkW2wpMjsiFbpx4eUg8VG98EW0+B446Y4drwAWN1LAWDaTlWGIOiW9Z0ykfkcya7JJPDf6LCsIpbwN444ScgAqdv4zN/m430BLp6uwni7u/8uYMzxqDWGn/tTk7pFPb+Nh8q/tk/+QxrErZl4iBbervEZXCcO3/p7/08PtYT61xp+YwtzjwdaTKxZbDHSCdMq2ejNqdZZZkTHIRUKzkLvTleM0+cZZ56l/DoeORbDwfbfgfLA0krWpX/9E//Lj7x+55g8gtubSdKFi7lij//H/0VPvHcJ/iP/uc/zNmd24xHBzwbH/vI+/nODzzD//7/8CnO5C47VT79pa9z9fCC5568ywefe5r33Pp1/vJP/Szz+R3mJTHOt0iryCGSzCs16Hr9wJvXjasbeOapJ/kL/8M/xqDx/IOv8J/9pX/MZ78oPL5ZuKqZv/7YR3jfGXzo+BWe23+Tp47AUWFMqAtj3xEC/lPzwrRuQqF9asSYdJIq9ERpcNx2GhmtW27UeS3dZZ8mHk232HOLB6nQy0A1s+mdXRMe8xueGNdsHxn3xpucSSObo31F0hFGRoeEfCgn0tqpqSM5mALtS1/Cvtx5d878HjI13eZRhi/POz5f7vKC3OKBFtRXLG1D4OSdWQ1L1wwrQVlVZwzFGSynF8HqShmZsywUWekDXDQewhSSxmh3yhmYyECbAtXsKbFMsKXiNUiVkxijzzHeloGMCdWK2RzEw7RHy4L0gmkLkNTo6DCcuCWOBCPHesJlomvBi5GY6ZIYA7JMTCM2DkcxprKQ2hwfRHXGcFKBzYVz7meMXjksjTEGfe3YnKNi2QvmS1QVx4SPHjVKjf809jSENhI+bkgyEC8kjzmQ+2DKR1IKh0mSmbubzFwGaiucDgwqRjteIuYMh2VUzJ1mzgh0AuKKmYf3wqKJ5SoUzWgTOqBpOnXcGykHZIgxoi7rb9+E4plhFgyA3qOS5h6OmJATdVT0VI+0081pRUmohuxqASZfWb72T9neuo/efRLrE602pmli551D6lHZJNFMkCIUSzQZmDudQtGGmTJsE6RIXWJdlY3hDWGHqtHGgSKK2MRWBwddSF7IxMpuM2BuwnEs9BTAp9od0T2qzqIXdIk1hbuhbCm6Z5XCLI73G5LfY7aVFQt43EiIrSwpIzKRO3RZSAiH1Ml6oJ0gZtseNciahJ05poPclJaCHKppZVcO1LFQS0VHwvsCRSjVUB24rPTeTxMTgyTkEawSOIJsSG2PyB5Jd9nqYK+O6JGUK6MmNvmCm71ieoWIMC2g9zJPv9t4fL7L57+2wVA+8NxjvP/uXa5vXfHSFx7iqePlHud6QxvO9aGx22Z0JNp8wzw6pspgG+s8BKTgpxcvHmFkt8rwHSIVTRaZgO4caazZyVOiLZ3t7HQMbWfktI+cBBJZhBKyRbX+/6Htz2Nty/L7PuzzW8Pe+5xz731TvVevxp4HVnOyKJGUaWqiFEmWZCeRDNtBYANBJsRIYDhw4MxwEjjOH0Fg2HFswIJiSREsyIMG27RpDaQ4i2Szu8meu6urqrvq1fCme+8Z9t5rrd8vf/z2ufc1Y8j8o3OBQr3pjmevtX7rOxLi6KF6R8eW9OS88twlfYLUFZVMzDOdgAYhAtKdUC1SaPQK3lasnmxpSyz2YWIuT4ndjM4zOp8TwxqkYM2j5UQ6CjNBYToc3EYbzmhpBdNIbY3WRjZdx0mAiQxDxPYj2nwNxeRrF3OaT7UigSu32lGkeXw7DhduF12cH4tDZDqMSyIuHmGudtUT9D0dKmrXuQ+4VII9paVMo6NrexI7ynpYej8i67YnkJnnTEsTuzJw80RYW2W1CXSbxND1bNaJL7/xlP/2j34/d1674P/5H/w2r5SP8S/8k5/mR3/iebrbPaU2vvzmN/iX/62/wfbdDxHo6eeOT774Q7z0/E2+/u3v8J33L3h6eeDLj97hbPVx/if/zE8wdMK/+5f/Nn//HzzgB5//DP/Df/o1vv8j38dP/OTryI0JuhO+/ugJv/XZb/GnfuBjvPZ9K958/C45NDrxNsU87KgSvR43VrJCvxnYW+RBecz/6d/7Rf70H3yB525n7tza8Npzn+a/92ce8ttf+yXeOtwjD4Gf3D3ixhR5o/8Iv7X6OKuy40ZVzspT1laQasTgU2LXbjOuRlpexHQE9iEzhjWHoIx6xr6HZsYUVv5+mrk5F07blpfsnB/aX3LWZjITA4WuTDRwoSBKjUq1wNY8gjyETFmfMq87ZhqPLyB3A7vYKAxoClzWxloyJVVa3XKiK7LNPF/O+fB0TslnvBU6Prc64ZdtTVKvvN9ZoJEIlhhILqINETCyVkSGxfZZOBhLPX1AoqIyYS0RQgcyU9RdGLO5w6hLGZqwYsKso4sTofWAEvIWaQHkQBIh1xmLHk9cEUIZiH6NxmLEQkS7FVUzNc7UNjg/b83rk1vxW3bbczNA0YExVyaUPmc2QCsBCQMSobfM0O/QGpgPhb1dMs1bZlkhSYjDiDQhmBGkIKEyTYPnZQDNLgltg9qOKB3rmEF2DGaEDiwe6KKyiTOQkZTRNmJthlpppTHvJmZVxrlBXRpUMWoVRBOyiCvbApWLLdHMIqQU3dOOIbpoOLAlir05hxsN00ZYrL3N2pX/HXMA1rRRFsQnBB84zBbu15wi8XwAp2VCSGhrTuWEAQue4FjrU+pXf56TH/mz7JngJHExOxK0qgGxmTE2F5N6exg1eDndWitzqkt2yQStR9TdUVXxTd2cYqCuiOlAi25rVuuQGJBmmMEuuq23S0ZtLgrtQkSlYGEka6HHONHMpR3Q0Ii6ZogjoSmzCjpMTK1gpSPGgRklMrOuBcGYYiNpj1jlRCpaby2bvlFDINuExJlRIyFFUksuftZKjcIkgVV3Rt8SgY7RDKaeWRqxFkbp6IJC9QRITy+eqLqmWaVWIXUTrWVm2YNEhikwW8BqYmTi3iZRtxdMegI2k2/fJN26yz9y/z6nQ+biYss726e8cCsjZU+3vkEOPV3K2OVT3niivPxq5o03d3zs1TWEA6rClAa0TogcaKFDY0VKQtTLrEwUaZF1mJntKVUiKRqxTVxoQizTUYgl+7ONUmNE6545zRiZTi69l0RPmWQmdQZ6A5XkA7Y0byplS8UpxT6mxS4/LIiGQZswmwmaWefAKAGTAWohzFtC2VOnS2od/dJI74N4SEiAppG4IBqmGY0QQmI+GIdpJtXGaT5wuokcZgjTmjlXtBsYz7fEZogNLjqNnuhsTd2yuwwNEoRW2xVKcdRUHH//rHgzBDdb5Jzp+o46T+6EAUcRMTar1fd2qAjWmBuE0JjJVIRePQ7o/p2BzenAG48umKdGGo3f+4lX+SM/dYfffPNb/PLfOfCv/Y//CDfvJW5s1tzY9FhWPhif8u//u7/CP/NP/n42Hyr8wmff4U997DP85J/5CH/v17/Kw583fviTH+KDC5gfr0jR2Evj9tChqXKYnvBf/cov8MXPPqbPJxxa4/e8+CqvfKTjZ7/4a/y7f+XvENcvsH/6Df7kWx/n0y/DJ177DKdDx3iY+MOvfYI/8MnKc6cbvvj26/z03/0GQz5DFfqUCGlDtUtCaehjeOHuGcNpz3e2W3Qa+chHCj//q7/IO+9X/vSP/Tgv/rkPc3EOXVU0jHzN1rw1nPJ7wyN+X3uPT28f002Vfd5wkVY8CjcYu0wlkSxjq0tGGxANEAunNtMVtzSdtcY9fY/11DitM1mbt28ykWsjod7DsgQ6R/HN/lLWXHaRKUS2KrwjmW23oju7T7pzj/HODR6GU97dXvDe0ydcSHFhqCiNiGKMISJtEdlJWcSDmdAqHcIqzKxlu2ha1j7dUnwz1gQpMAefgnOc/aZrgjAxSGIMXlijrBwaDRXR4mErNtPF5dZpFSGyAqQowQJEpUYooQOPUiLilJe7kTpmubXErStI9ewQ8cQODJeSmUPOPUq0StBGCLPnT7QIVAorVPE2RBtoMkNuJDnBxDUiUKlTYTcWEF+YzWaydI51lebfe4AU67Xwa2geDZwqwU7pO/XoBC4xNepcSPEA1lPLBHPjUBpza9TZUa1G9UAvAkXxG0xUFEOrkhCsOoKizblVzAeKYEICj+y1SjCXeYUItXrsOCmDqg8aOJ8tIj6gAc+Kvg1dcFiHVA1zvZMtPvkgtFoghMVWyWIJDDQJCCPZvCTOcuDw+Fuszt9Hnn+ZNgWCKDmO1DljEbomS7hYRQU6C3TSMYVAkImkrsrX2NPZRAKqNRLJEUFToq04hEivE6j3XczVRZ2Exsoa2gom4px+g4i6zZEey5my3TPFTCZRzRjDzECkWkdaSN+RuHR3TERNhNiQllDzzBPvEhFGBrf3qpAQYouU0NEWNI/a0DBz/4Zx/tQY6QgRXnv5LqvNCash8vaDA7/17o5AxqvdoDavG0+oF6+FgZlGiJ07LTQTJSHWoI6crAcO2rh/1tFj/PiP3uXzv1T4wvtPUWlMw8t88qUNKURsFl5IDT0Z4CB86eHM991bsxIv7nrrInBeJu412JsxxcRUz0i2RW1yNEKyP2+lgtoSRWXkqB7QVZSA0WKlaoe0mwzxEhTQyExdeMJA0JEORaySrHP0MeYlLry63TIeaC1jGn1NhAQBQugIuqFoXV4vBfM8iGYJOAOg1JFu3tHqI7QdvB1aG6ZCiBkCxLymjk/QGhZ0pWLNhbZHTUNIitWJFDuGUNhsTmilp04H5jKzSZmhy6SuJ+aASqVLwdf3YqkOQRZkUJfhnqu1eVyfx19faSzgig4xjFIr3bCiHkZCjJyertDWGLr+eztUiCldMIoUOl1jsyuWP332Uf63/8sfpbvR+N//O3+J3/xK4NDu8oc/+gP8uT/5ES7/9kO+8HcrP/iRVzms9rz97hM+95WHPHpc+NY7X+cffG3Ly3/1y/yz/4sPE59GPv2Zl9mPe7759lf48m9e8nM//0t85d33SdxmZmIwCCqcZCFY5c/+4d/PP/1He07XHb/9xrt88zffw4bE5976Fs/feoXf82M/zFm/oj+BbD1vf+sdXrp/mxBPsd2ek/VNWjfz//orf5N33j6jzxuqzESrlCeFTT7lT//UD/Dhm+f81I/9CDeem/jsL7/F733pR/hX/kd/lLcv32WcRp47eZ6H5QP+1t/5IlWeQ6IR54FLqfxMf58vxYG765f4/t1jft/223x6/y5nY0PSRGsDJQglNaKuMJv9Fl2aq4iXW2O1A13LeP3TDKzom4dHjSmz7YxzTnk/nfFu3HDRJR50J7xbElsVus1tnn/pPjdfPmEqAw8ePuSdd95hf9jTysgQMqMmWq5EDUSZiHVNyc53Z2vUZm5bSgFLByZ6ns6BLvauTLfEGAt9y1iaSXWCMLgADltoFiMzILUy5gLayApw7orkOgONhpGzoBpcrJvXlOC5C6WvizYgk4iOMIg58kOmWCXUNRIaLVRa82TSLEJiQskkVYIaRTxeNywx3AbeDWnBUxal0AyGNqGhkvvIehOBSJ0mxvkJ2qpHnVMo2mEqRAopBSQFsjS8Bs3oowtO+1BI0iCOiAXCCFFHSoFWGod59J83DVM/pEJ76gE9iKMGeBiQa1AgBUHMXLsSFlicY8hRIyTfVJoZffBbbqWhQRAVBO+gcPRg+RwhMRtQ3MkiRwFXECAuRngfNI66CUGvvPEihi2lWo6ARG8gXghgjxA2nNJ1P3y1mVQjNSfvZgiV8s5vMDz3IS5rI+WJrcFJSogdqFGQ4ja6oQk1KIdYqCXRzWskFRfcVUWCaxJyhOmQ0QydVULb0asxhh4hEKpiVHIX0VoZDJ7GhmnmBGjhQF1i6AdJpKrkOGOoJ0YKxKTUEoliTNIjZSbFQBWvtx9QpwuDYMEIc6bFA1F0STpdwt6CMLaZTz2febLLPNxvqfPAxz+aeXUV+JnHxkoSgx74xAs9J+se1Hjp5Bbffm/kXCJJlZy3WEkeUCUeIy3znhwjaoW+N7pSGU4Da0l8Z+r4R3/gLp/72nu8+OIpL+cThtxzc+0UZSiFEDPPbTa89c45/Y3M609m7r/Ss7284L1L4zO3MgOFVQtczlvyBmyUZd40sJFGWWLZvHiB5XcpFl+P1ai2wfQE4+DwfW2Y7KgSiNJRLWI0QoBYCylB1UANjTaPxHCbUfbMwS80YuJDTOwhLTkXlkBWND1gtSB5pqixOV2hxZCmtHlHKzNtHrHpQLIDhUVThOfghKhoVMyWdUSlVvPSOhNq80j/GmY6cdu6WGHczbQiyFCJ1rO3hmQhEDloou96uq5n0w/LevOOhRAjtThNFKOH8Km2q6ni2QHi2byKZ2kRNaPre1LX09RYn94gpQTm94kYv8fdH1tpnOkEnDKK0cdLoq7ph4GT1V3q8D77VMBW/o0OfkM7x+hSh0XjYr7gz/8Hf4PXvzaSb65ggGla8fEfuce/8dN/i6+/CdY6OgL/3J/4Z+n/+BN2zPz0r32Wf+Pf+zWC3GSskDWRug2tVg7jzJMPLrjc7viFL7/Oc3KX/Tjyj/3Aj/D04Qe88+ACY+TF5yNvl0f89pff5B998fcx3Jz5V/8v/wl//KN/hj/7z9/nD//Bj/ALv/R56AaKGLXB3/zbb/Ev/eAP86d//x/mv/tHZqbLG/zdX/t5/vpPf5U0v8q//e98nh/6/jNCN/Ib7/wGf+Gnf46vPAzk6HB0zltOtRKnwNY6HucVX9qc8jfP7nOrzvzw4ZIPjU/5SL1gw1NW88FtagidBqQrjE2IwWOOa7jPY2Zq7HiSBp50ZzyUnnfjmod5zeMU2XLCFBuH5pXA6zZz5+Xn+ORHb3NndYvvvP2QX/3CAx4/2SM2caPvCaXi+dcjXYIx+GEb6lLzrH5T8LtuQ+La20HbCjUjiNs9Qz6QMEoL1NgRtUCI6NwI2avWq64I7OnTAVKg1UoKmdp1zi0GYRVOaRhUoRJp4oVuVQ5ohSYzEl1d3cqIRU8vVCtITMw0xCrEwLiErnXRXHC5aDq61JjM0CWELLEkbYaC1h5pia4fUbaoJmLsWZ2BkakKu93INLnAMgdvE81BiJLIYWY9KEEPhDYzlxmxRquzp18alKlRtLIrlYbSFtdEVddSCJnavEU1hehx2aY0EVR9oJelcbA0px6CBIcs7fjMsHQPLChT8Pc1awufOtO0LV0AtoSRLUUwi63XMG9olOMNB0dkbCFdpTraYC7w8pK9RgiybFhtEWf6xhfMqK2RYnLHR4WYA4Lb2mopVDMgMqeGterh6CHy5L1v8sK4pY9rQmvcs55zcWFpTybITBXlgFIlo60RcyUcoNeOECd2yai6gjYy1cIQD8yWaQJzzKzjlm52cefcTQQtSO2ZbKYE6GyDLCJblYFS94ToQW5z8qTKJIlRIEhgaOJWYhM6ggdA2UymQ1rGmiACY9wxyAqCoxaBiZIyKXimzs4CL98O/NRnbvEf/+xjog7UOPLKC3epH1wsFsiROo3U04zVFUNT+pXw6p0Vn3+4Q3NPGRMtJmAml8DN542PrFZ87Z0DsVd+6rVX+aXPv8Gd22c8Z4Hp8pKTmLksiU0qHEpkPRUyQk6VuQbC2Z4bPM+3njzlvXdhbyMfXw08eVM57J5wkOfpu45DpyDKJid0TEvTqFsaN0RGCr16FURJgpWOUhs5FR/ww84DBPHI9SQFWvY6evF9qsWASaGKJ8NGvLG2yAkqTmduaiV2PUUSKj3BhBgiTUeMkXAcTEJAgiFJmLcjlImyf0hrM7UeSMmTktuyLjlKGiJEvIjP8INbTbGgYN4sHGOgNSVJ9oNf3e0yt5FdO6eb7rPd7plyoROj3/TE8QLJO9AEMaNx8IsLEdMCzyKGZq6LekaQeRwojsNFSukqBCuEcJRC+TCXvKwR86BGCIx1+t4OFUPrKWSsFVKeoa4ZWZFSok+VVuEjpy9y+2Nw4+YpH/m+E2qdCGXPyiqd9pysE/+r//k/xb0+EzcDr7/3gH/xf/cf8f/4q/8533r6mFM54c//pc/xJ/7oC9x+6YLVkLk5DPx3fuoP8fNf+CK/9HPKMPjBplGZueT//pf+I37tszO3Vqe89PItPvyPvMz8NPDaS6/w/g9+wJObmZ/6fT/IjXuRv/Cf/Dxvfytzetaho/BInvCLX/oOf+CtU378tR/llU/9Nu+88ZS13eCwbvytb3yWx//ae7z2qdtchpFvfOddfvWLX8HslIn3+Nf/s7/N2U+73WqcDeuNs14phxHJyqyBIplDp5gN9HWiY0KnnvdDx3/R99jJhzhhJsnErTEwUBi0YM0IcoC2Yg4wBWMvmT032IeeURuSRqbgXQKBiSQzG5s4JXHvxhnPP3/GjbOB+dD4xjfP+ZUH32Y37+mGnnVXGGPlYkoMcSJqpTEgOgAHSswkaaiNKGsGGzGEKc1EJnp1MdBhyfiP+OaOJVbNaHZJI7OKkVkM5QYhz7S2YYhrqgRCnuhao7TFeilK3xqywMosPL/auCQleuxvE3FuXCavfxbnS7GAVIdGLWTmEhalfwXJNJnIqWLzhtIMlQY0YjCiVcwK09ywMKGhZz8rORZWGaJkdCyoTmCVtSh3T4zAni5mdzzUSlhcGLYrEDJTUWottHmm1pkY/WCfiwfySxBCikT8QBeJiImH9sSlYlyXS53Yd8GYckzLw/8v5puILlSVZ/W7L11wB45a8xS/prCIO1VtsZclt+niCYOugwDUNykR32iOqEJKHvVba70SfhnmnncRavVK5RC8Ev7I4YYQ/MCPkRjiEn633JhkQeaWJkXDaOqG1K4+ZX78HtPzn6JZpdeEipIkUHUC6ajiB4LgAU/NBMmZYg1RIehMTrO3rdYVDdexVPMhddJTggjFhHgITF32CgI8Cl5tIpDR0DiEgNjAyewWR2PFLHWJWl+5C0cVCz1FKn3XYDLPYomJTGJuEykrGw1UM/qUuLRKbCtyAUIkyoRI5VMfue8uMZkZcdH8/T7wzVH91t02dOvEzTbw5dcfUjbGx1++yar3Aftk2NGdBT7zwg2+9sYjanfKT34icyusQR7y9fdHQhdpQdisYC4jmz7DVOlaYRVP+Mrrj1mNG076FWO4oCDc74XxMPFompimAypb+nbGmDKWbiO3GhaUU+14OvbE0w0W9gwxsiprWnyXseIOsrwn2Ii0m2AVRCl1AzpRLSNyyWA+QM8lUOhJEXI90MKKwSZUExIjhtIsgkTECiIjIQ+0EBmlI4VLjxvXGTXxmPJwC60zpoVSZ2Q6YNMWbRfoooCJIdBlR68kBndLqSdZmpnv3VeHtxHSIpLVI9Wn3vgphlZbdEX+PmUcqUXZ2sRt25PnTGuRvQpjf8aNdJN5eovaJmLxC0Cx/bJmHEM0c8rIhwW5ohyfjeE+DjrHNXmM8TZVyjwvS1FAHNlDogurv5dDRZSEtUqJPV1J3rbXKl0Q53dC5H/9z/85Vn2kl8hFFXbjASMTk99xY+l4+M5TvvjoCe8/mfjKg2/yYGrU8QmDnDHNEx/wBn/57/42548LH73xMf4Hf/ZHefl5RQ4e8NOaMYmQwkgV5YWX7vFTJ7dZn53wwcML/tNf/Rzl0Sf5yZ+6yx/5zO9FfgDeePCYv/hXf47/8Gfe4F5+gb//G1/hZ7+65/xd4cvT1/hX//w7tHrB+486F9HYnm5S6jDyX339t/h7X48Em5lygTTQhUicC6u+0GIiysxJlz1itgYsVkQaAy4mFAI571A94EmOfsuLmtEgtJLYE7iMUE0hnmEZEjsE7ywYm6G68lhytgxZCLWih4ZoYXM28OLtF7l1BnlzxmEuPDq/5Lffehe9PEclojHQbTZYVKaaCLWgqbGzjtwSOQi1u0Aa9G1LXGKghXOaBiTM9G1ZONHbPDexg1jB1n4ASaX0EPUEMdgRiDl71DWZnAtFlaYZKYFgSrGJHCZUAxKKe8jNMIXefJNThBn1m2NZIWm/3Mo9WjcvfxdDT9FK0AMZBa2eFmdCo6EVctzRRWNYrRm6E6IYh8NTDuOWk+D8awh7uji5IKtWhEZqxwOxUNvENKrfUkqgaaHrEmdnN1kNa+j8YH56+ZRxcjU15tQCRGLnS09NqdXjhz0mV1CUGGzJ5ViyOKiecBoEL62XpQo+LuE07epG4roIrjY150s9p8PzfNy77jZQrvhYAbQ2718wwGR5X7zJsV3DpWoNU1s2qLi89rZAr3a1cR2jgJFjToW5TXbZwGT5eE0d0Th2Ehw3wBCO8cuBhtEu3mJ4+VWok1ujm3oZkrjaPphDwEJHi5FsO8zzpxlNEDrWs3ovSfBuixjwW6QWtBWEQExQBRqVExFmGrN2SxBZRtvEGR45VOTAsfzb5EAiI3EkWKBZIPbKi6eR3aFyecjklNnZAQszKSeIztFHlNpGVpaggsjMJErRjpVMEITYoJp4GVWLJBkYpx2zCaEqfczkAF95+4Jwu+O1lz0D5JXTnh//1G0mzdy6ETl/8IT1i4FVPKFNW+6eDHz1Ys8UhXXXSKcReVK5e7rh6TkUEaoqDy8rzz9/YLYDQX0oR9dIHkAakiGFDusyUhv9yhgf75BpR9UDc5tYdSvm3UTpKjVsqS0jixsstY4qCZFIWwZ9MzxkqnUEG2jijqYpKjlUMD/omxpzcJdRpCfqhPUnBNkQygVisze8FiWWRJWKefqHFwKWS9pc0bpDdAIrTli69Ag0IjiVp8tzHUIHwfunAr6OPCXClqRruxr4Uf9798uad7uERQzZij/HpYFOdFoZteP07B7z00vm8oguDuQhkBd0i9BheoEs+jm/Yfja96HBrkKvjjbS47DQWiOkeLUurzQVeuz7YNlrDAkK1EVk/z0cKkYdwYRkiWIjyVZMWhBTkkXWFvntr7/DOw+UD9478Id/6CU+8QMn1KlSZGAaGh9M7/Nv/4c/w1vfSqy7EU4yVgZC7LB24LWXPsK/8i/8BFN/yQfv7rkZb/Gxj2343Jtf4bNf3tHSLdpYuf/CTU7P1uxpdJue3/rKt3njswdsV5gZePudc/7Lz59y93Zgqxc8+OCc8+2WtQQejx/w//575x6WoyvG9JjffP2xvxDSkxEmK2gORB2RLlPEGAicaM/BhCqVQKKLI3MxqgpKJKUtykAISlCv33WEumeeXZAZcDgXSSSZiHW6VuJbZhUHWtkTmtCk0OgIUejMI6dDmGmqXEzKJvZ8+KXbfOTVO/Srjg8ulDff+zYXr3/A3AwrMyEmNEZyC6jMWPVeloMeIChGJLcnpM7QOZC0UmWFaqZJT0gzwU4RVpBGFxoFQ+JEnRIWIIYVVQtYI2hgNCVbpVhhCAk1t+RCYtKJnjOaqmcfhJlcMtoWkSOZEirJ/DCrrRAaCxdZEEvE4UDVSizZf8bsqRYg+CGANdcPWE9KPYKwCokgB0QasOMkKZ2MHJ6+gTGRrHC6WCyVCWmFNgasNkptNIue5UD1DUPdwhWj+EajHm0xz48Zui1glFKorZFzvroJHA9WW/QFR0rBD1dZ0AioWlHz8rlmSpLFdnl1kC+Dg9rSbOkHdV0+TwgRwx0mR2JVlg2ktUbOA601t6EBIS59F+4d80N8CYpSPMlSTBZ6BJ71vl//XimlXaEWx80rRt+MVF186lCsXNnY9KgyX342x6HiWHzkf+aBZrp7RK6V2GAyI0a3zKllciqITZRFg5SlEYuB+LpBQVohJFxl0mC2SJggZX9Ga1hg6hbR5tHyNexIDBQOiHp/RY09MJHMa8M7cwoux46gHRr3NJ3ZbDr++Pfd5+WTiXEM/MxvPOGbE1gwYsWpt9I4BC/pmorR54ykyGyVThLSoHWQ4sg8GdvZ04VPTowURobVwIs3Oi4eX7BadezIHELmVh4Ywpr353fRk0Du15yJCz8vNPHpkzVvvPuI0xy5lU65VXakWYjyPLe6yAVGOmmMb1wwp0htlSYHot0j7nd0GFPt6NcDSWa3vc8wDRv6sKbKBXc3Fd3vePDu17h9b02rA0EiczuQY+BQKzPektzqSAmGihL1QCQg0jG3RgorYp7AAlEDczBoK5rCOmzRJph0tHxKjCtPzO0GejLoI6pWWhGPsA8VbQdSKTDvsfmAtku07f35DoGQxNO+aiB4yhsqwYWVFjD1Z1NRTL1YsOEVFHY8jGV5nUMGS8vQHwGhtZkknQdRCXiUfqCU6sjjMDBsena7C5BEn064sAv6LqNdIpQB0Z0LnImk6CiFLvpr52EMlr6O35mcHRcU1FiCsX4HkuHvs3wMXVRS4Xvc/UHrIcJsOzSdcNsmomzIQ6CIcZH2/J///b/Gd75zio0dP3Lnz2G/t2HzxLpLCMraNvzL/9M/yc28oesyb1x+wL/4f/zrPNxGcixkNrz7dXjt07d45ZVb7OaJv/ZLv8hf+Mu/SJ1v80MfvssPfvoOcXPCv/4f/Qq/8qXP8v7jcwJnrBkY84Fme95rK8bzS75+vqNrK8QuadaxzcpAoGpDa6B2SlSjF8Gs8gQPe1prZkqNJhMSZqR1PKXQpZ4wrYlpDyFjdUOIO5qsyBQIyojRt0BmZCIzVCUyuv02QrWRGgZSKEzBqE24IUIg0dqA1pEpiHueY2NlM6FmSu0hCHVec+f2ipc+/hzPP3cDmzNff/M7vP3ttyi7HSlPnhppM8QbhLpDGTEJ7A2i7P0cyCckWXts9nDDa4C7UzQ/JtmG1jLNDl4vLIFkM9aEqgd6MVLtaRKZLNPP4lRN8iEoFRfCxTBQi6AJqk70NtKHHg3vs9KMlUCRRrLMKAdffA1yg4TRpDKnRlTom6FaQGbaOBPaCZMV1imTdWDIQkwzfVCGqESdSHbAwkTRHZmOoJW57plmYawjh9a8jRTfMEUqoSgqCQ2gUkihQxXUvBZaDI8MtkiUBf6PMywBT2WuTLXSZ6c5Qkw0q7TjIdz8SnHM5Tf8NtFMvGNEwtJO6WgA1jw4Khy5jmsEQIJ36HhD8HEY8OFC7bp5kKt0Rt9rJASmeaTrOjC3krXqZUjH5kkJHlLlVxn/mI6CuEvDg/l8aNDFNhpT/C6FuTa9ojdijD7Q1KN+5wgXLy4REe8IWnIufOC5hmoBWu451EookaodTQKNgkao7DE6qmxoGD2RIjM9itExt4Akr1tXaRQRsiY6UapUCJVcBwbt0BpooTGERLVIrCdUMUI6o9OJSS+wlDESbe7dipuM0CptP6DZmHQN4ZKf/IFbvHoi1DmzPun48R9uvPVzDwjrjMqaKY9sS6SjMUklZpiZCS0RLTCGmVVMpNjxHD2SIj/y4Ts82k185mOZNo585mN3Of3Ojp89/wCLhaDG1Cp3b2YuDzvOLzqeP01s6Pn2dx7zjceZ2vfENvL6t87ZPH+DH3vpAKGRC9zpzhlax5zO6GPgjdE4Wxc6qWiLnPbChSXmqrTgEdEN45Da0jx8SY13sNZxb7jJ/un7WImc9B2SG5K3HHTAQkWnClHZVoMkWOuIzdBhR0sVqStynKgKVh1BKyLkZqTQkBSR9BI1DwwhoJbpaqSUS+r4AbU9wSZF2iVdXDOPM+XwhKk+Jc0zIkpIThdoEjT37sTThrWCNV8XiK/VSI9RlwtZ8zwNiXTeYU8zH75FwMri7EhCW4Z3AadaFjSjqbuzggEsLbxFGELwVOE6cTLMMM3c0MgHqRHXDeZEHG4wT5ceC47QSiWG5PbQMi+IxdJ0uwznzw4NGGhbBv0gV0jEs1Smz/viIXZXqovv0VARuh2VTF+cBtkN2ZsLcw9asFqpeWR1esJm3tCdBJAVY0mYnC6e8BVxPOW97ZZxe8kvf+NNtnsjjbDPp/zcgy/zG//mG7xwcoOY9sstpvKp7/sRfuKFgXle8YXXv8PXvv55LneNoW8MYU20PS005hrZWCaJMemOYAXIaMt0SZjGgZIaRRqrMBPUGylnS8wpshoTJL8xdVoROyE0r/QN1mEGXdwS2uxJbWIEM7JsaSFDzQxLOVC1njEENBaCRkcvaIS45iAjzTp681fWgpJb9byCKOQWmWqHFaGkQoqVzc0TTm/c4uzMuxsevrvjm1/+MufnB7IoMWfy0FDriAmSrTjoQM0rsnoUdZDebUu2ZBOEiXGKmHYEK8Swp5UNg0yI7ZiBFlZUKjCRlmTI1oTZMiEcSFxQcyapkKxHWyObJySmUJliQ2qkl4KkBLPQMzMHn+ux2WNka13ETJdYhKCRGrxqOqPoSjmhkNTdF1Ge0FMJ0ciaEJuYygVNM+WglHnLrjbn0lGm6oFUTQsxdkSpoH6QqRhRPHWP5IJPleWA1NmLz8ywoku8sYAUEpVgLmRUdRQjx7RoFHwhUhsmPiQa14Kpao5ixeChUbLwldqqWxbtqITwMrJo2ZEqrg/t1ioSoifx6TORuwu3yqKnFOEKkUBdrxCjDwd6HDxY4rQXNXkMccF8nU4xNaqWZcOUqw3qSLlo836PY8fH8V6krUEQSilLB0ta1vX1+x8329o8HEuXW1NK6Zo+AbraHL6WA/QrpB7oJBO0MtVGTY5+9S0QAoTZcwqCCtICWSZKFFSNoVSkE5rMRFNSMzQ2is0ejFQSmjJz2dNMmEXoNdJij5LomMhtRGUiBQhxBguEQWhSYRS+70NrXju5xVwLKXr6aZLEWdexI1BtwkZICYJ21LZDYuBEIq++OjCo8o1vVy5M+OOfXvF8F9mFiT/0iRU//+WRTedlhrMq56UwzR3P38yEEPgDP3STD5+c8PZ7e84neDkXRrvk19+qPB53fOZjPfu64nHp6KVQokfiP0E5PbvN9jA7iimR96Yt+RTalCAmUm9M80wJAyFMrLo1pURup44P3R34/HuXRFNevttx50bm81//DnFozBaYJLHqTnkybcknK6gRnUdSUFpLxCUILtYTVGc/N+Jz9FT6rrJPmYwhsaOxRoJRDdI80kqA+hZjmxjnDql7QpsI8yOsTExJqXVLEqNn8DDFxeZMC2RLmHnarZkRpaLRA+iDeCcNNiJEYuyuaD2TRdMigSDtiuIzXABNEKrNHh4l7gCBjFggybWds9VGmRt7O7DXiU1TNikzjiMpZqZWWYUNaRo4iWDWyMe9QHVBCqdlaFj0SyLYQm8cEcDj/iEipHhM5dTrDJrgNlXXToVlIJL/P2gq6uLLD5EqvYteJGAKKsr50wtsB8wzY1Z+5ctv8+WLr/Lbv7XlURn53/xbP82Tp+c8PTR288S8P2dX3KevnaEysSqFFoyDNF58/nk+/NJzxKB8cL7jF//Bt3nv/UsmncgUNhultQAt0FKAFlnnCqXiy8OLoCYKkm2B7QvSEusU2EtlpVAtMWAQQBf4veFOgYbXU6sK0XoojRa9U8KjpG9CKaQw0ypoHOgwcoVJhPUMoVsxt0IyoS4Jgn3xsikjEGqkyEiQkWyRsjM0NW6uTrh5a02/voGkjqYw7SfefHNiv91CM1J3g3Ry4hCWRiyOzM1jMNWUnDuaFWrxaLWMF8vU5px9agfmFBCNNIsLDRPZyYxQMBugjuQoaIWqiS6C6MGth4tKP0iB6j/LzMws0S2cVslWvKE2NMIYUJ1oMRFkRiSQ1GPY+24ixEbHAYue5NkZYAULE6BY9Zhp21eazWxrpVWhtOITv3lZkDsZxO144gd1UyPEQAo9Vvxn77zksbvCldzWvD/DbZDNexYWt4PfL6pDlSo0wTeKpoQYl7yDtizuwGq19m4RWzQNxtWsr4uPvKn/3/lYQJSqzr+GuERZm0FQgsoyKbizADnqHSLHj3wUagURJMYFRbimQFwUbgSxK0omxkSrbhcOMYAqrVXXTODCM9WGhEirTpHIgibEZ243x3S+Zz3wclTFm/nNSO3qptYW+9u1/sPpGeetrwAS/35jcO63HAg6M+satYXikQ4VD/4pZGKeSNachtMEOlK6xmxCVqWKMKZEkka0Ajr4OgHMKlFX5KA+YGWhkVirYtYY1XxdYJQwgO49HC0OSBXPV5GemCv3n1sT2PLOuwceXBg/8LFTfuPrT7gQt5t2feCV59f0rfHND5Q2J5oWfuz77/HJOwMxVYYq/MrbO07WkSkJWMdOMpMHTiNpxXtvj1w8qYSyY93fJoTGh291BFXeudj65Srd5HJbOdhEFONklRhroVol0jEhyKxoq6SVst8rZzcSoRS2U+WF9QpQkkwkmwl1xavPBQ67xjQb/W3lIy9sONvcgLdHpsl4+Z7bMB89uaC70TELdIw8fjTwdDcxXlaehEAOQhKYY0KnCaIwSoUuk+KGHNZkUW6kxI0K52Vi1JFWzwl1xqZCtZE27aBsqXUi6QHqjmZelGXmtuyYMsGEWioWkodVHQdjjCZLXLzqYlUNJAnM1Rs8k6Rl7frwH2JaUGZfiybxqqTLdWSuY2rqrqcYPMjsqBlRHLg7SiJqman7A7XrmFYX3NhsKC1T7YJEIKdKYWIclUhibBOyFJ+l6H1CtS5UqxzF3+FqjT7r/nDUxDNsQgyklAkiSxy3L0ARz4RxoPR7TH9sFbq0osie0PZ0xbDQ8+UHb/Mv/d/e453dO5w/vU3WgdZd8Bd/4ZfoxCjN47f/9m8+opdEkZ4ZoSOTZY3azLwfyUPkE6/e4rWPfZj+zoZ3n+74yrfe5+1336HtFeTAynp6gTknahkJ0mMYWUG7AzuNdNYtEFmmY2DkQN8GUiqQG1IrlMQpHV2IPE2VnUKuxiwdSb1UpQCjFVbRA7+0zV48FYzUnLOL8SlFeoiGVCGpC1y8g7744DGPiHkiWzCjm2AKE4W88FhnHJKSJqHvM5/40Au88pEPo5vE00db3ntzy+OLc2ppi2ZgJHUeV63RRWzVClUyshzkooloyqRbMo2UMqbZw41sRrRRbc0uZbf0WcLMc+87aWjd+AEZKhJH5xUlI3nnbaEKFvZIMw/hahmVPTM+1RMSRqSEQIprRCun2cjdRNItORoZV+ijE8jkfHnzro+6nykNxqMi2RplriDxauK+pvPF1fY4t4i1hcrw5gBbDjUx95i7ucAhRxAvClIPtRHzsjCHJlnKeI7woAsZs3gwztTcAy7Y1e26Vg8e0+q38pQCrcJV2dbiqPAFnli+NIf3Ta/oEEEJyZem6VHQ6OmHIsvPf7GNWfvuDH8XNS6/1ms+1b/v5VaGuaJ7UYiX4mrvY2yvNqckjmpyCeLoQfXvw/Saa9Ury+q1D/53RgAfh4YQgiMnUTDzLpCmLrR8Vp1+tMoeZyEfYoQmiah7WpsZc2TIlV2rRPzXwaoPhalSagRRWqiuXVBvwA1FWYcJC0adExZXTAyYZQY1iqxQHL3EBMkJ04K0iImRa6OlS7RkqgaQNVkP9Lkyt4SETGAkB3h+1WNq/NYbF3zzEHhn7Hn38RYNHbllfvJTwmv3NpRqrMOBX/3mBa+80vPa8xmbCgnhky+u+dw770F/B+sTlw93fPv9mbce9rRsPL9/k1/4jV9nlpGyf0rjDxI109pETYWPvnCT3/72Y24HH4o7lJ3OrLvn0H0g1sZJDEg1dgrWes42kbce7Tm5p+y3jUk7BhqlZUpYIX2G9JSPf+iM3dt7vrPd0XeZV59b8f4HM23e8d52zb31Td766pvcuRtI/RlvvHnOhd7iybcu0HzAphVooM8jajNBXeyZ+ptIOmGsEzG5U6vWkXF6jNWGlLoIqHfM0xamPZVLT6w0kCZIzCg92IzXgfvgHjjSAcFpYj2ih7rocIKbnWS5kFgF/PlMIfsFRKLTkSzCSzNk2QOOSKDbrZcH2IywkAe+TljWafPBpikN9c9dPVPDUkFzprWeaB63/7QWZMhYDaQUvY9EBY3epSPy3fSjjw1yRR9e//n1JeD46xhc7CoLzRGC+MXCGunY1hq+x/RHjo2mgRDW1LbUjMeR17fvottIksoqBPbyGG1rYOTCMjEFghXOQuUQhCwjfRzYzXu0GicnG/6x1z7FSx/5KENX+PKbT/jib/42F0+3pCbE/gDZCHLKtipWjSE1LPZEMlAYayGEjlszdGHmQoxqkdO4JRfhIBUxJdeJ0jqmWFnL6Al0TUCqv+hBkZhIbfSDOQz0c6UsVeoqE7UdsObBR2pbaB2xeIT0FBo6j/TmjYJFNqS89wk03WLqEjNCSHdYSWM+dASDe2f3+PjH7vGRV17h8bzlK69f8Na3vokeHhFSRmyFBJgTMGdCa0zS6EKDVsgWmKUQ2JDCHmkTrXasukqWDm0wtokaHFXoYiDWmTQ5NlPTRNZEVHVfQdwT1NAqSJnJeHqfheIOikUNHcQPQuk8DfM0ThSd2TAS2JMwumg02ZNCxVqjlobNsKuV1uxqqm5aPRGyLhQ7i50xQK2VGCBKAQxtiyjq6L++EhzqcTx3yH6Z/83AtHm+wnKAlyUNcmk+vxJQXjX3+QokilxtFhaEUiYXQ8XsH3+hFkqtLoCMXvne9T1RZIFXAxI9wOcI56eoV0Fbrt1yvUYIbi08/rsYo7d6mtMQ2q450RS9++Oob7gSfcryHZnrHGqpC7Qpx52FUspCd+jVgX7cZLgSkPrnafVoOyuLxOL4uYS4xG+rXbs3VL9bD3EtuFTvcWARkh5plMXN8mzZ0bObo3DsJjgw1xWqCaMiozJIT5cbVZ1eSrUSLDFZxyEeWLeBFozASKShoTLH7Da+AF01ctjSTGjSSF1GSiIvLaZlrBQ89rtoIHeeNDkEoaULagDqCQdVZqlkYF8btzYn3BzW6JR4tzxgSoFvv39Jl5WZiZfuCR9+fs1hVrSDj91vfP7Nju9//j7UkW9fwv3NitgZnZzyuc8/5b/1Ax3vP5j42Xcu6WTDzXHis1/8e3zo5RO+8ZVvM88TNzZnPHh0yW+9cclnPnGXeytjGBpzdGdPLj1xEKIppUTm2BjWxkGNEieazPS6Qcd3GeoLfHC4QCzRyZqxbSFD2k/E2DhJPTt6Hk47DjWTVXjr3cfkILz9xo5Hj0Yu3nyDs/U5m+4+55My9Y0cZmgdpTOCJEo4I3QDyA268CLl0edZpw06CtKfU2oh1D20c/bjjNQDtJ1nqWggh0w290S1Je1VzTB1NFQkAXZNp5nTGdp83/fnzEXJgue8+D8KiC0ogEQ4BrstompnNxuYeT39MhwkCdRaCDEBDVXvv3l2+PcBWpbZXJDghWmijVIqJ+vA3bMbWImUGBnHU4ZpR+rXrE9XbOcbjNIRM4QasCCEGCilfJdQ+tl1fFxPwHfbuOG7LyYYYpE+dTQtSHDStbTvMVLhqadbxJRhnaH2WBupps59xY6DBAgn9M042AbLI6F6u99sK6JMmCprHfnwC8/z0Q+/xM17p7R55HPf+CKvv/Ee48WB1EXoFFl8xtY6ou5JJl4L3SaSJiozmjItnpJnocrIJBGTyloa50RiNgZ1UWRgRUwJbUKtmchIjB2dClWNFCe6NtKmRmsRBu98CKpUnciWSOoxy7MF0DWrVXW43BIrucnhJDGiJE200JHDSNREUlgz81QjuXbcWCkvvXKb+6/exs5Oee+DJ/z03/8VHr3/hBiMdVozd2unb5jpW2Y1Oc/VR2VWKE0ItiLbhFX/HltsZF0joYCNzJpxGU8hWcU0MKlQZU9oHRtptGmixsChJbI4kqF6QGJGQqBaIMTmCIMFEiNRIYULkAO5JmqbWYXCrI0QCq0qEw5B1ypYY7kBK6DMi1UsEkkxecaDGNPC38WU/KZbF2qhFi/GinGBGoODcSJewiXBbyQslIRdL5Bl2WBAa9UP6xCf+bvj3/pNvy0uBSR6sLHZFfphwUgpe4SwOJqlcyWnTI6BLgZCCuS+W2iKJdtBFgGogSHe8rkMJLW67fVIdYSF12ytLbxm9Nhi0St3yAK/LBRFoKmLLJ2+cLElAtPBudwrF0UpjqShHKP/nx0ockxULR6KlRIoHvITI6bx6tDv+8FfA13oEP+KaLUylwnDh8HjYHTcxIRrDvgY2HX8s2f/E5Ere6kdN8G4cvfyCDGDRA/fmsRoIh6m1AVvSC3CacsE2TKLEQhki2iemVtAJZJFmUJjpGMdlU5hmp0bH2NltpmQIStI7RZBnCGhYLESpWfeK/dvCM/d6Pn245nx0suX1tHY2pZNH7h1ojz6YMnsaD0dez5xb0O2nvP9nvthw65khhvC3RvK7lz45c++x4/9vvu8eBIINJ62gA7KqMog0MvEJnQ86e7zh/70P8GP/Mh3+NVf/zViN/De08aX3p85eWHH/VdvM1hkHSMyV7ahoQXOcs8H7Cmx5+ZmBY+hHQIxGqVd8qRMaDowXu5oYUu/2hB2sEkjQW5yqVDLxPlW2G1P+PUvHcjWeDSPGMa2wdPHE8KOlZ2yGW7SHQaIPRLXjGkFsqFj59k0NrEdHzC1CFOhTO/6czCO2L5hdQccCOaDQCBiATQWZsbFoXEsIVscUleCZ10uFgviKAu6tuwXumiaxJ65iQcfyI/r1YJ/zBSj7wPqQmjnCo6leLY8y89Yv4PTCken2LXF2i2ltgz+rXleCiaMlyM5Ji6njrIb0dpYDwNPxkuC7Mk5sVHlNCgXREL2ve+YF3Nc0/DdyMRVN88zvz+uy/hM47D61MUxuKu1hoRElO+xpTQYNHqSwjQVViLUaG6JqkYNhVYCpoLkxZpYe5IaB6tYFp67cZsPv3SHl144oYUVH7x/zhf/wVd5+4MLarmgoycPKyY1WplBVqiMDEye5igZbELDqYeJWMMKWJwoKTBbIsgeDUJulYGN34y7RizQ6cgkhb5VpqXMinLJWDNCQYowxUKMPTlMVBkouXcoPJwgkrCSSCGQEhSDGhLJDBE/6LFCjObICJfY7HCjBeHOeuAH797j7t0z1ivj0UXiS2885NEHr3MxbZE40w+e8rZvR+V/Iy+0ilaDbuJQnYsv4vRDiAWLSpqNrDONSrEDsTqSkRYrlIq5WNQCSZw22IsR5z1J1W/KsZJtZpM98lpkgjB7EdU8EmvFbKQCDbe7nTcXNl0u6kBToTYXpWEwt+KBRIIvRMS7EsRQKmOdaM3LxkQcyqtzvUILgjUXQoqLEsWe4eEX6ymLPPDaFsWC/oXrAeNIAyxfzKJQ+K43Ce4EAYiBJVjblqEzEBC0uk2yFUfAuhRIyVPycowk3AnSTBeYk6sbjkOggaT+mZsqVP83V583Rs+UcDUlCDQtV8IpWZTorbUrJcXVAOWiiivU4phVUUq52tBcMHYdeOObDHRdT9clVpsOESGnuNTQGXMrWPUDV4+IyiKulaOyXSD3ic3pmhAC43hgd3nwVsyUroZBntGRf3eYl1yhG8dXVDF3xZgjJSFlSEovAU2Z2CBUoVFREyxAborJRAwNLDliRGBmRKWnavACOgmE1jFUQ3Jiagox0doOUci1J1PJudCtjJdPjYfnRo2BP/bpWzx6tOVnvyr83k+uOK3G2w8VjZFGZLSZgZvILPzER+/xdPeUp3NjEO9QeOl0xe6y8J/+2lN+8kcyr7+5JQ9rToeBL7xx4BEdjw/GR04zXR+QlAkNpuK6qdjtCZKIw23++n/2mzz/0of54X/0z/D86Y43vj3R5UDQQB1nLMysU2K+vMSsskojxUYkKmerys2TyNfePjBphjCx2wqtnFIPgcspoakx5MKh9mzbGQ8/aDx8ovzK/JTLfSHGyge7PdYSM5kubIg2kwbob79CTfDVdgc2N6BFao4MZQJ9zHjYUlrB6iU6T4S6JU4XzHXnKJh6JXgKilmgydF2Xa9CprDshXYc9VEuio9xcVMRr9eEXiNgYVlePoj4PnFMl0Vwa6ixtHS65ZPlY5he92uA5wvp4rJoqqScqKWQLGB2LZQ+CpBdo7TUiWgDU28LprGtO6bDgcZjwtBj1bxrK2dCaaRmPDmMSwfJAcwdarWWa2fYM1TiszqKZ9fZs8maIcZFQyGODpsjLiEEcvALXvxeCzVriUjsCDaRc6ToRLPEpIl1aFiDMXpZSs1QDZgKfY586tXn+dT33eTW2V0+eFL47Nff4d1HT6iPL0A6SoLY+Wbea6GyZiZxokoOA6M1YqzMIVJrYN0aU8leH28TSZVEpIXCMDcqI9iKgQdclkCbenJXGfHJUCR4t0e+Qc+OliOWblIBIWItE0VRSy5KkoJRqNJTkhJkT9SNq/5F2UkFm1jhFcejKbFFcpuo1vOJV2/y6quvkG4mLh895fV3HvH++0+peqCp0dPTBZxmqZmgk1vZTEmdUav7iIOCjh0tHrwgR/c0g8NUSalibcPcdu7wCGtKHDDdItXpGwsTtB2Jgkiki4UcRkJQYjIP51JPswyzUufghwmRaTYaexZFq4vppC46Bg9s8oizAq0i9CjLrVgdmvSwpEUnQV3og0WzYOA2EKNUvyVL8DCYakehYVsCmPwW4ALIpRsEvFHyOKkf8xaOt/pnFlQIAWvXQTDHTcYW7iCE6F/Pctv3f7dsQG3RYiwCrLPOb+xt0WkE8fRIO4bOpHAlZlTzSG01yNHTFoMIMR5pCbm+3eduQWUKYm35d2lxQtjVsADimRwhODWix9vSs+4KV3c3dXtcTh3D0F8hAcefg/9sHEaNKZIRkos+fMDpApfbHV3uaabEKHTZN5yu69AlBZRlkzxZrzlZrTkcDjy9uFzyMXxgac+IxY6b2bNfs139JQt9EmhRFg58QqJymEGSksVft7kOyJIjoMHoQwHNC4oh5NIRYmVMjciAzMYhTTQTUktoMk6k0PeZ7bZwc534g9+/4vH+KR09P/ShW/z1n/kGD/MZL94/Yd7uSLFysoo8+aBwsOCoUY1MpTJPQlsVnrsZ+ce/74T//MvnXNTAc+sNmx6+9PaBpyR+8Wvvc7nr+NirSrLKg7FwCA2JTskcqnKWImjPoWQCB1pbsb615o/9wR/lb3z+O7zzzo7DPPPCD91mOowoxmYtTKVAC0gfOdSeGiciGy6bcv9Ox0/0t1ip8ejpRNEA1jONe0I60NmGJxPkuOLNbx9o28jBMr/6nQckG7h8MnoFuESKNoiVIBt0OCMmQ1rP3ENte1qBUCbMlHH/hNV+JLan6HiAOhPDhLSZ2HaOQ0i+oilEhLrsMGHZS5zY9OHdi+/8oA8S3Ea5oICq3ip6pTcCR5sEqvpaVwmLDmIJulJ/Jlu7dkbpov1pph6uttCAMV6HtwW5DuES83UYY/L4/KqAu5KWHcVFshqoWvxQX2jEeRrZ60w3XXD39BaaOiie+ppiR5QNdVa8ti6jEl3IfYU0XCfXHtfPs3vdtf7paDn3C00IYaFhln4fcZpXm1vMf7dvv/tCsWzMsicsKlrVkZX0RE20NJN1RELC5p48HTi9ccIPfd/HePXjz2OrxLe//T6/8Otf4OLRjijQspCzsouF1AQpPc0OHCxBa5xEY1Y4WEOaEuuOaDtX7oqRSiGoYLjFZ5BMNaUkCOUUk55teg4blCYTIWQsd3SlEFJCx5EYoHKTscDpHEj5ksqKFHYUE6ps6aXDzDP7xS7IlpGw8gj3WchtR5aBkTUW95RiMHVsbide++gneOHl55lm+NbrD/jGr77JoTXPzZe0gGWZg81UE27Yir0avc2ICXtLpP2ewAUNI1gmakB1RWjKBuHQGdqvyU25vTH2h0sSla68TxsnWtuzQumj37xNFEtKKVAizDu8iMaMnc6kOmOSKNqYVUjZH8ok3kkSWEK06AktkUw46EwKwfs21NAQgMNSh730SjjrsdzWvTTKScx0TYtI83AugidLqt9s2/LAH3UFZmDiHR7HKvUj/H7k7wEXKtqRl3fhlcfo+vh4nDW+66asx3u0fRe/3+eOVl21bwKpVm6s14CrukVYNpVM33VYa8TgVV5H/rWpkYJgIszNFij9mvt0FTqU4mJJtWcsqHUmLqdsM99A2iIM9cPYN1UPwlpgoeXjllro+p6T1QkpBvLCLQPLpmhXP1dtHuHtSNFCb6RIjf4z7rvkL6RWUgjEuDSVhEDRRptnVqsVeekOKFY5OV2xWg988MEjpqn4Rr4gEL/z1nQc+pDvTgl1PkVIoWDznlqVUyJNKlYTJXr4WQ7naOootsLaQG8ecQ0rSFA10mbfN1JYcdo1PnV/w+Nx5vW3M7//R5/jB29V/uLff5+zO4nf82LPL/zmCePGyCKUYcPNk4nbajzMZ2zae9wcCl/cNra7gdx5c+08Cm+e77i3XjG1xL17K/5x3fPXfmNi9colJ2FgvmyY9Ly/XZPLQ7ruFp1sidMBmYyV7EktU1uiH6D2M5MFkq3RvKXrGzetobtEXFImQxUO9RHDJnL7xKiPZook1lZ5Zx5JNnEYM/u50Z30vHDjOR4+esqT7Z4+V2o74/y8st0av/DlPU8mIarwzqPAIRQ2odLVjlITQ5iZoyDdDdZJSKn33qS6IhweYbXR7BKpBS1PaHoJ2y1pHDmwJ3oeKZ0mP1AB0kCpl2ARKK7ZitntoqFiBCws69zcmSRBYEEwAxFb9FnE48XiWlTpLKkP7qpypeuJEULyAxW161h5M6y5LT3mQG0slwfx3pJFeCnI8m91+btADh1CuEJDwlF/pF72pUHJ4ghE1UbTigRhnitkYy0r1t3ApAnbzRQLhLgnbhrDPjAMEUYIzXVmPthfayWO+jDXkhz30mM4XqDrEshiKb0SxTvi2aWESGKui9A0XCfh/je9/a6HimQQayLESpMd1q84qJHrnlkbU0jcyifcv3ePT3ziNvdeuMVud+CXv/wm3/nOu1xuRwqFVeyZbaabD4yaYU60NtKFiarCyg5o89rYnC+INtCkYx8rwTaQAhIjoTtz7koghoHLIAx0KBPkAQ3FewFUqS0z08E4sccIDWKEViFloe+UbfNo11wbIxsmnclpTYsFqZUwbxx61URpSuwKuYHKCksjnRk3hhPuvXLGC8/fZxh6nj7a8vd/4dd594NLVBNdnxBmhMzUJmqYiK0nciDKyK4IWEKtYslIrHyB2JoYEtYaXW+EVjAJXn2z8PA3+sad/iuU+UCtiWJ7JCUqjdIq49SotdGq32a1eQeE2sIHLsr8GLullyHRix/K2jxl0pa0OVv6MlShmFMqRzW/4JkMpXkb5THpUfSZiGd1b7lPyvUKrnOKQPyQPhL+QIrxqnBrMRwiBLdQ2dJ2+V/DJR55+6N74fj3qrZYOH8HNChyddtp7Xra11r9WYugTcit8ZHTgW1TLoFJlFXuOO3O6NeBDR0qB24MHV2BSSO78YIRKEE4WFtuPU4tBAWxSFUXX4ak1HmmzT4AG0vV8pJOqbV54p9xpQtpSx5ECMn/flFvx5g4u3GDlCJpoSym2YXFKYZrSmWhiEJKpGMfR4w09b6QaZoxC4vIUryfJQSkKH1MDCn5htz35KGnFm+f9Wh9t+zeunWby8tLDuPk37/q4n23q6AuRzGU6Ekq/mwsvHhAmfqOWw32ktgvOgiVQFRD2aP11BFHdci4WcToWMeZOxt4sG8MXeJP/OCG07nytXcq/9SPvcR/8bk3+Pr7j/nw6R2qRDQZL68DRTMP6gV9vclajLU14lmkdd5GeWNliHTs5h2roJTwiHw4pVjks2/u+djpitubQmmBV56/z53N69ztT1CJXBSIcSK2gPQDZ0NCtOfyAOsusAqn7EplaoVNt0YPMLdGTjOdGCeh54HsqFrpOmE1DFR7yp2TFS+9ELnTDXzh8hFVZjQJW+1B96yT8vBR5SM3ZmJRvvatLTsFWuSXv/AQ1cAU4LCfMAIhJXKoSEjU1JiGDV1MhO6Eng7mHq175p0ifECohWncYu0C9nvKPBKYqXVPiEoTA0ney6HGZJWgTj/UYBgD3szrB3tAl6joRaegSxcOXNEWIp43o8c46eZODh/SKzEsI7kJJgk6IeAOriThCtU4rgdVX6OqtoTCua4ukj1YBFlm60aKRhXPdgjBbai2rJ/aKu1QabUs4nL/uo9IIOK4QIyJUkYCgWkqdJtTdJw4jDCNE2MMxDajwdhEoc89MvS02WscXLRtC0Xj+7CjH25nDyFQm7pObAm6kuT5Oin4ZSiGTNHlIigeed8JxJypKDPleztUjCZINpKA2YAcEhYbVXo+dGfD/ZfucPfWc3Sd8uT8gp/7xX/AWw8eUQ8TK1G6FlEplAIrNU+hk54YJlyDFplzT6Qt0cCZkE49n1yFzIpkE62d0sKMBG+iVMuuuG3G3pQs3mbZSiNLpAjkoIhuOZAJCIlKpFAjFBRryso8/x0GErNXR2tHs5lIJYaRLZlB9jSbmOdA13XcurHi/t37bG4kNmHFBxeXfOlrb/L48fuM+2UDSHsCa0JNtAVqSiRC8Hz5bM7lH8KE2ppGR4wz0Q6IdNAyhDU1eoytlBFqRfTAwEgtWx7NjziP52R6tMxYaf6gmzk6segJMPDKKBcd8SwXqdB0WnhJfPKGpXjGFg/zUWCoy41+SV5b4D7gSoHtv74+nI8pi+E4QPwOtf+znPqzFkVYQqKWz9ieOUyPb8+KkI7w31GceDU8LAH5McQru6U+M7wg/hmuOyeuQ5jUFA2BJsofe37NfjTerWDBRYu3b6wpmogh81Lfc6qFO3Nl05QLnXkQe96RylYjUiJjOBDEO0n8qhOwpDRdHCdB8D336ITw8K4jCtPa9esAR6Tj+muOMdD3a3LqIF67NFLKhBgIIVLLfC3gXF4DVT/US5m99niBSHPq0OPPSxxxaighBZqZw+ziA8c8z8vXA2ERsGnz1+vkdE1MwsXFnmPfCMj18Ln8X5eN8btU6maE2jywKhk0vykGVXdnRcgaCLVxeqZ8/MXK+SP4+nvK7//Ymh999Qb/zt9/i64PvHb3jG+98Zj3xxtclomkgU03sFonohZ6gZsnnqx4ftm4PUxUXLj3MmtWNSNZGW51DNFFf5NOSL3B2BuxzVzuMz/zxS1/6jMDZxvFworNamBlHbUGLqtRVemS0TQSteOiOvQvQWFt7C4roTY2MRK0Mk6VyorWhBUD/TzxsfuZ9w4jMR+Y7IzXPnKfXioXl4UHD2f6U2GtAal7LATGCG++NxGrcJh3vLObiMmp4alBHwtZErXv0NCjcaAmDxFjPpBsS5A17CakXRDaJTYeKOVAGS+Q+RGxjZg2qi015SGToi1DdPTn3eEFv5Cw9NbA1d6A4Zcps+XGv2S6hLA8H/5vj/vJkRbUIxpgy5qPgYqR00KT2kJlqo8mKov92tqC/MUrbcayuWDka02WKjEmJAV3ZrGkwpr6oLG83zwvQv8oz9Albk0OYaGRn9nnjs/5PDbaDKYrpDT2pRD7SBwCVg00M81eGxJiXIK33ELtrG98Bv1bqFyEnBIhHTtADKt6dbGI0ZGUThIse1ANyWsLTOhCItfrff0f9va7Hiq0A5kLo07katwebnLr7pqTO/e5eSPx3v4R3/qN1ykXT5kPI9s4kyVzQkcKxjYELNwmJcWsJxKWH4JRQ481JS/JZHGJg20aaRywpKQRsDUStsSaCRGqddTkN+3BZqLNZJQxJKQP2LwlsqK2uHBrHcSRZgnvwpnoLVJCR4meejbIRMDoJNEQStswtj06j8S2JXQ9z51suPfiHe7duYXSODy65OsPHnK+f8L2MpPjSIhGF4XWEjmuwOaFF/QALAJk6QkasASFNYTZw3jCiaucLdBiROqBOD8mj28j42Pq/MQ3UhkpoRJadrFOCJ7WSXH1sl0no3mK5vJaolfwH8uvj42WukzcVwf9At3HIFcw2fGsd5FUu/rzY7TrcXM4ep6PeQVOQTyzedi1hfPIpT97iFzx7EsC6HGUOAo4ffMB++75wt+X689x1behdlXNfVzkx89zzGcIElxktXzNnqGwaB+a8Ym+4/cNA39lN9Kksokdt5+7w2E/MljlE7HjTw07PnNnz/0XKvKxng92Ew9+5YKffWPNr7XAeR6Q5imNKgKdR3SLFmYa9XhrD+HqMPbwp2VgW8KnWHhPHxYSpRZiDKQcWa/XV3ClmidkBpw7nptbTFtVNEAtDjOX2q4QHVVFxunqNYkx0AT6LtPFRAyBzWpFCoGmbekccT9+06O8VbC6DD0L21VLZRjWCInz84ulAZFrCyrBEZeFxM05+9+bkaJc3eSkBZIqGgyiEVFy65max4B/8k7PH3/tFr/5W3u+9e5Tnju7wzoFVjkgPfQSeXTecbDRFfoi3D055XZXudwOnHaRG6vENDeeHiI3a3S6Le7ZnN5EmzEE4/QkuvupCDF1IFusebruJjYe7rb8zS/u+GPf/xwv30zc6Vak5MLC3i4I4gV4SSFJIebAmA9susCdbubxOHPQQAqRZj3P3e5ZT5nL3QRt5GST+dGPb/i7v/k2Ka+x2DMIzLPyjbef8v6knObIF75x4L1tIWjyngqb+dYTIXBOCGsIFWxFzmdoP7G2NbtgJDFWJTJuD1Qa03SAJ98h3LogHZ4yznvm/QWd7tBaQWf/+DFCaCSLLtwu7mLywLaGe8dBgz8nzSCJ71NukxawcKUVElnEkS52cmnXoklCjKTi+8QR+kfIJjQCdXEoORWqaK3eTsozWgMDP4CXUWUJq2sLBRtCdCdXEOKiU3IkNmBaAc/DELkWg2Le++OusWeG5kXfIYRrC/vVpcgo45Z2eMKl3qUbnpLCCi3etCyxkLsVY5lBZnIXkeYOliAJCdeboe95kJJTx/75jxukh6tLcvrYKdkj2ul276IVC4v2IvZgwz90Rji+/e41FY+/ibYNJ2cDH/7ki5w9d5PtYebB++/xxS++zWWtrPKG3A3Qr0npjK5C1Z4pFJI1ujqBrJisEOKM1AGNe+o8MIQD0aLTCQQvjEoKc2MTM4egjAR6AiGfsxcIc2AYI6OsaFHIMlODEGukTRWNG+LCFXUpEecRa5Uqkbl5zfAuNGIFLUKsHTU0VC6xckE8nHD7tOP0TmV14w7DoDx+3LjcJd5/9xHfeust6jiDC2fpreckjKhkWhvJNZMGo9qKEFeoDmhwEU+LmRgrYQ7AzGQzSE9vgVEnQuxI4/uEJ29y2L6DlKcA1DQQTJDQCC6lYy8zQRuxeZTtPBtGQmRaoDs/eMNyeBq2JD1Cvwjs9NgMKZ4EF2Ok1nq1oQssi/vaZ338P/Bdg0EpxW2iWokpPUMxXCuvJXz3APHsIHEcOo4P//H2EZeP4/kK14LE/59n1XhmcLi+5V7bqJbSoP+a9zWON50lm2HJXJAQiWp8/wa+cLln3xl1HxjOThnxToy7d25wc3vgo2nktT8WkD/0Ivap/xnPcZf7/+V/n/f/Dwe+uttwrrP/fIJ4iJnBMZ8/mmHRf4bLt09rfjOCa54UscVNIZ4AiBKD0HcdOWd3W9TqSXmLFazWRlNvXqxLbLZqo9aCiHvpQwxXKJWq/8xba97mSWQcDxzE//wwTvRdx9B3/rM2d8awDKUSIym6nS5nYXeYFuTKN9v1esV+P5JzvnqW1IzI9e3NzJaocSHGHpoS44TJiKNkkdoS2zwRzLhZI+elsd+PrKfbDGnPqheGTcBi4ywoqyET5sIH+6eY+jBnTNxen7LWDYU9Z+uR9RB5eDmzLQalErJwmhv3hsiTw5aaJj50mtgeGrt5JsiO7XSLVZzdmkmkp/LtfeTNh3tevrWm785ZxUhvPTMrutj46M2bfPPRI6IUOjvjjIFwmujTmm+eH5C0psnM0AX+8R884ec+d8678ZLCXfa5MNQ9B53pLTGfd7zzdMvr7428flkhNM6fRH7zckKIZPEkTksbTJXD+jZruwG5R2NEmxFZ8bTsiTqSDgcuEUxHUtnD9inz4QGHQ0OnHTF5DsTYlBQjJoXWxO3/x5h38f6gK1AOOB797io8cvksA0UDlnZeUxc3yoLELdeFo71bzMCgJRdWhujrhRSuEAOJAQnCVGe3oy7PmR2l+dIh2Qf41tTD6zgKH4/7Bsv+pVfaoxgjAXe6uYPjWBKo5JwWhOZIuV7nucAxbdMR1ONQcbRvNq2I7NCyog53SZwy1D2lRg77SLd5TAoDMd4i8YgWJrrYEUR8LYdlryYSkvdapZSX7/k6w0Ji8gTVHDFdisVSpGpl1pku9qToYWFqldm+x/THT/z4j3Pvxfus15kH2y1f+Oo55++dU4uiqzvcaYldg6lVBhqpjbg2eE8ZD+SwousiTUeSCK1kDiaspCdpQWOkAtEOJKvEWKh1DUGYbCZOENOESYdZT09kFmXOTmfsdaZDkFrp0+w3ZTVm62lySTBlnu9Qw8QQt+TJq43zvAcqsSjIAFW4OSRuv/AKL370wzx35waMxttvv8s333nE+092mI2YFDoOdP2auWbvkkiN2VakBBIyLQ8+zeaRZtmTP2uipJmsjc4mLERq9dQ0CRPJjHV7Snv0ddr5Nwlk1ilR+jXohqTnHOHuYpM3cTZFwwENmalmD3UJQrPZRZCOV3Ps3342Na3UsghxwpXd89h0d6zGbixJk/bdoUxHCuQIWR8ht+u66megvaOg8DhYVL36Op4dIIIcbxQLfBeuJ3g/BI/WU3Ev9VVK5jLotGsblZcAXaMVfkB7UJaILvLOo5DqiLxAncvV92fqm2Uphedy5KXc8YbOrA6JKUZyU1KsvPDKh3nh7ITXvvxrvPqTAfnnblM2n+Qk/h40fprNj/0EH/+xX2H1t6ELmd1CVSRbfjYizMG1FbYkXJodRWRLFLZBCnGhFlwCqq0tG2/g5s2by/fhr3OMvqGPZUar01y1ucam1Xb1el7bcO16Al0+zvH1VFVaxGFWNYop03ZPjBOrvmM99Ax9j+sjuOKixzYSQ6AW16SkLiN4aFDXJ1rrmOdytbk6auFwdM55sa06EnMohT4OhOLFUSruKIpW2JSGMDDNRor+uUtQutgYMqykEXVDnwM3eqHKwOPWqCGjY8cQB16+Ebio73GQgU3fcWctfOnBOaMF9lQmFU7O1szROGwnbnWBHJSLccvBQNlwmg+EsGfWjgjM1ugqzAyIVbbFSMU7MMwCJzcSf+CHN+x/8TGPRzCt/MRnOuKQqbuJtz7YksQt701X7K3jnblRxlO+/XTPD68TX3oDLsfMb3zrEb9sF0xVWYdKiwHqKWU1smIiS88hZZKeUnIkhIEVI1UjsTRkuoTDgSg7hlpo8wGbLknTJfWwZa4HujqSQ6V0CaJgbUToiCYoM8KGwAS2RzV6gBQeoe5uLz90dWn6NFF4lgZDWDpkHYVTF2N7ZoJc07LtupkXUaQYmcVhpt5RdKRlgwWswRDScrnwS4eRMYzaFLXiA3uMjkpytFjaFUqihm+G4tHarVTmWhExUnIENAS56gVxN0W4uow5krtQMsu2/CzVe1xnZa+M9ZSTQbh9cpPt00Y7JLaH9wlpIIY1wyoizZD3elQONKukNBCXy1tIyb9+llybhdqNIV3pylIQGkbCM388i8aIFiB4h5FRkGWg6yT/rmaF3/VQce9Dn+Dt9x/zzc9/jadPDthohGR0QClGiZWcDIqyjcoQBqLu6JqQ+47ZVkxVMJkRaWQCqzBRUVIUuiIcgtIkkLxCCZERtUgta2KomAVgdLhMZkIJpOAZBj112fwbc/Uyl77MXn8cCqkZkh4h6nnr0iVEFasBCWtOb2Wev3uHW3fO6POaQ6l8/b1LfuXLDzhc7BEd6VMmhDV9iMC4VH5HYvaAL2uFtGqE1pFaRw0zoMSW6PBDPiRhsEgXwDQQk1DjiISepnvmy69gF9+kzTss94TQu4VJGzFcUpuh5vkImGBx4piAZrWCxUV3UDgmMdjxXqCKNrf9ibnFyS1F10LGY8GNXtmm8EyLhdu35Qk1tWfS6K4PJzsiCgvV4Jdw49kYKt8+ls1B9Upk6deY70ZAXG4gV19PiEveQRCi2VWU9vFNn6nabs0z7ZHAIgVwiDQeNy0fYByJsGWzuhY+frfeQrhBYKiVM4y5GrZqlBjRbePm3Y6Lw8z5mLj9yTNG6RyW7C5p9T2mTUPXgswCQ74aulg2gShCMqcmgEU4ea3tCEca5hiKZR4HLALD0HNycsLp6Snb7aUnEB5LwNpMXdTurcxX1crPIjfHV+a4qfm3ey2KDQvca+ZdHw3Px+hypmljHCcO48gw9Ayrni5nDBfcqhpzrcsGLVfwclw22xs3znjy5PyZ3hBdDhEfgELy/hIX6jZKUKJ6sdqWxUlFRFQYo9HlkVQ7tlUogOTM7VVmnRTLE6tk3N4I8+HAk/2KGpUtE5ord09vsn1ywAbjzqoj0/HeU0XMsJLQItw9PaWr8PVx5hObgdurgW9855w93jUzULksgbNN4FOvrPn1rz4kxsrJ6oRJKo93mdXZntyt+IFXV+Q+MVRoDOz20IKyzitCjHzpwSWHBi0I337PePk08Phiy/lWCBL57TdGHjyIvD+NSPT13zG7oFw6Itl/fkNPth5BSGJkg1AP1DIxjY3Btug8M5Vz2I/M0yXYgTZu/VC10dHMmJgiWGhYTQgDVRq9QJDE2EaE5PSGeieGals6YgBbhMbmgdm2iHTjcZD0FY+ZEGN21IJrK2hrzQ/HxTV0pDNMbXG2+TObolNyruh0GF+Wrp8r+7cAuiCxit/gY7pak4GIiTewHnsv1Bq1KUGU2GX63GP4sORfYl5cFOHqMmPPRN43OybHht+xx12vPxGhzoXZLtC6pl405nlE4zmyvoWOFyBKsUCXIyEVknlrssXgtP6C5FznShzpnWWP1LacEb7BmwgpJ9/7ZPn6cM2LBJyul7Qkif43v/2uh4qf/Xu/wcV0oK+N05woQ+agB3qtmA1YGzHzOuLeIE0N7RtTW1FbIcoeaQViRxSjhRGxStABC4UpdN4J3wrVErNmghyQOFHFaHVPiAktlVjd3jVZo/WVvgaSNdQSK/GUvQtNnttPxGSkWCZoz7qLjK14ImQa+NCn7vOJl59ndXKDh0+e8sZ7Wz549IAyTbR6IAYjJ5Bwk2Z7sniIVLPKqLfJUsjMiHTMORNqpRLQ1Ois80Q/8+9ZK/TmfN9oDUjUJkTpSfMHdE++wLx7n0glxN6he539QRGlark6HEPwtkc5CiYXyF+XJryFLfRDeLlxh0UodDxM/QG7vhHa8sAh1+fdcs77wuBo6bSrQ1kXBf+zQsl25DqRRQC1fD3C1Z8TWVLkFjfHkYZ8Zjg5LjRbUBWR49Dg2g3VZWAxkHjkVF1IZbjVq9UFPrUlgEautRrHQckP0+vwqGc//xGZCSFRyRzCxB0TCt4IO08TQ8qcHy5J2x131o3HX/yA5/6JFxjDyCSfQ/g8/Ve+wPlvNS6HhCR1kaEdpWC2xG8LonL1tYSrYUq4yvew5t+jGUZjc7pm6AZaazx58sT/rQrT7NkWc6nMZfZb2FFDAoSUfGNZDnO/VS1o0jN9It51IMtmc/0csCBFEYfMVRvjNFNbY7UaWK/Wnq5ZnTvPqVtqzx3WPnZ+9CkxrHoud3sW+a4/P8GzWVqtHsqGIaGjo1EYSRLol59TO1I1sZG0McvEk2BYNCTO3F0raUGBhlVgvUo8nHZozbR0oBTlLPfcWDXefRvuPw93Vh3UwuPtDCFRmlHqyJ3TjifFmMZATAN9Lrz/cKZNcP9u5DBDedTxibsD/9grp+S6YzdFPn5zzfik8c5WON0nqgov3Yusw8BbD7c83DcutHBe4GYW3n/S+MrbW++jscB3zmf+889fUktjskRMjVJmHkyRrAARyZkWA9atGehIzcf+pFtMZ0wbUYtbhseJOl0wHQ7M82OoW6weoDbS4gpA2hKTX5ZNwPsxkiRqq1gYiSEzVyXKSKIjBHPxsWRQfz8JaaGw0qIR8nZQ38fi8jxVlsWHuR0KlrwK02UoCUv8tjl6wMKoBgmoLZToAsoehwd3QTg6ptoQ8wtJOGZS2GKUXy4ex+HXNwyP+NPqNKE7piIiwQXQ4k9sCIncpyvM1S9CnpRba3U9kXl8v8d2O9Xs3SL+bfiw5c/91JT9WDhLxge7p/QxojIQ2wV7qXRB4ABTqZj1CEbOgTJPV6iCLWFc/rncnhBjdLRWK2rBhdQhL8iia+kIi8A6CLYEgfUhU0t9BjX+h7/9roeKi1bpQsNiY1eMlSkSjTkIhB3VMjVCLJFghcYBOaxpMRGjYZMQJWLzyKw9SU6owY+UumQSUIyslWAzOs9Il1CpJJ1J1rHXkZSURMaSEUuC2jFFL++S5vW6mY4zOUO6kVFGmtyij0Zf9ozTmtXt5/j+T9/kkx96icsp8vpbD3j9c99gv98CmZSWQ6f0hN4HhoIQNbswEoefM4/RkBCLqCi0QlcOhD5QJHu4lWVSgGSV2ilTmAiW0JYJcSJKJu3fpD38dfb1wBATkK5upKLXcJ1eDQKGLCVVSEBbvXqYZJk8BZZNnGWheRpcWG63FuI1zfEsDH6EwBd04krjsFADzybZPuuseDZE6ciPtiU29tmMeRaNxrGG91gWdRV7u3yM41vTpdsChyLbMlUdMyzc8lnQhsdKmw85unD8pkot5RpmVMNCoNVrgeizPRXPfv5nA5mqVnZZUI3clEDuhPPaCLEyrAa++cF73O1XTKszwhfeZf3/eZfuJycOn7rH9Llf4N3/646vfuc5JGT2c/EWVQuoRe++kIpKc63LlRPjGpGIIaItXlFDc504PTkhBa9mM/MNWtWYZ3d1HMaRaZqub0XHTApxWgtj2Wj8+zyWp6WlzOzZgZPlGWqqV68ZegwMsysvfJkr2vbUubBecjzMYBwPrDdrWmtU9aCwPneUMtHnxBRdgOm8/DMPyzLkYeaXD0sMU8e+RbpcsENmCpE+XSJtzT6dYmVLt81Mh8BGIvdOGoetsQozp9m4HY1vnxdP3RwzZT5hNey5c9bzja+/SYzPc+dmh1J5uJ2Jcc2hFWqN3Nr0vPf2Q8p4ANugsubB/gPunGz4kz9wi3rY8h//2mM+eS8RS+NHX7lH7Q70beJb71dmm3hwUbgsG26nAdGZL3yzUkjsdyP/2a9+wP2zyNtPAw93HZpn1m2L0rGfDl7gphnLiqUMUdB42+3g/ZoahHAY2deCmDG0kVqV2WZafYRuR9JhpE0PoB3oTGER2aq4C6PVeWFLZbll++Hie9HRObU03VZHo6KYp/Ze2bjrcpgFT8D0DtirRk01z5xo7ZjPIleIRBfzUvLnFlIAgqBLX09cLJ8+lCxBWFacGhS/aCDBs4BcALHsVyw0gD9bsrjjrpGPJYgPR0BqLcsBG4jJD+W2IMSuebJFOAqHpnRdd7Wn9H1PjIEYO0JILqIU1zeo6VJk6AOe2jFF18e2VidUZ8L+gN7I/H9Z+5Mf+bIsvxP7nDu898zc/TfFnBGZGZVVWawsskSKLZJNQiIINLTTRn+B0N2AJGgn9EILrbXWrhe9aKC1EAQJEkCJbDUltUCKzSqpyaoia66cKyIyY/qN7m5m77177zlanPvM/ReVzYoGypDD7xfh5vbsDfee8z3fYZiesCsDEhuNER0iVY1jnYnDiNUZK5Uhx75WWf9+BjF10r4hrRBCouHKzRa6+mgYHFtpXvw0depA1o4S10IM2+znL359/eyPcqQQCIxIXJnt6DeYQV1c7pgbRD36vJ9LYlyo+pKpjp1pHpGopHpAeUUsgUohWGMY1d0G4yVBjTBdoQR3tswzxSJZ91g7URBnwxLIEsgyUXaVWIRdGLjNiWmtNNkh1a2HL3Pilz74kA+/85h0sefF9ZH/zz//CZ89e0EpN6QwkvMOnc0XX2lIUm60EePMWCOnlp1MasIwRE7SiDL7JtUaSRrzOBFqQLNXopP1eOVgtEVgyCCtJ9Il0ul3kes/JVpmypFF3BfCrLk3fV9UN7jPkx6tb/52XvCtM6A2GR64v8O2UXvHfyeh3MiP23s3ngTbg9dRjfPIwzHzvnndeTsE5Ow5f4bTtw3aZxyuQNmIC/3/zt9pO6YzsWHzoegQHu4Y2QFK12NvG6N5gRK6NW5dCzkl1lI2+TodHrnH/n4datxm+feRie34Xgvb0opZZDnteRGUPR7PnhsMTbi1wpeL8X+bjdPNe/yD/+ORv/JnB+LD/5xn/+zA59cXfD5d8vRFoQ0Jm8VZ8qxUKYQUWJs7blbV3sG4I6c2hWaE4IXYWhoXlzumaey8CEgps67r2Y775ubmzylptu8NdFndffLqNvbYLLI5X5ut+HO3wjslDfeuN30GHqKjPofjjBEYx0yTyjBlSl3R5rLWpo1qihU3NpvGoRtueQS955d0R9BzUWuMbSBFEAqxAFkYpZIlcNQTQ3WodjZDpKGi7K8e8uz2lv2DHZf7TJgyL46BUxgQKRz0hveuBoI1/uyl8p068eDBwPNXJ06SQAcOFRZrjNo4HHfMagwhM58ap8PKd37tiidihH3mqgVelsg3IiRrcNrxqij/v4+ec8VDvjgd+Fd/fOLX33nA7338Mz4+wSojOQ9cLytPPxNKCFwOOw42coqZrBFJDcT9RlQuGPbZuQxhwWaDV6/I7cSMMrUjogdOtwc4vSIsJ+J6YG03lOhIQOiwv4SGSqVZgDASaiNqOK8Lrnjw+6FpIZg50bjfT0EgkjDWXp8IZgX6pi5dsWF9LfAO35VIm7eNdFdU2dBNdTJ36+qyqt0obkMce7Gi/WaVrhRpPd6gmUL0sUwQlz2H7mxrALHD+7Ld560fp3UemkeJ3y+6z89PX3ulry9mzuFYlsUdNEPg9vbgo7wYe6GeASMm95IZhx2D7JDQPwNPC56PJ45VWU4HhjcyYQIVoXJEU4NTQzhyeSmEceLVsxvEGjFmUkysrL59Bec+tc6lUgmkcWAtt6QwEnVEW0JCw1b3dHKEwz3DLAeKmKfCVmUaxk7C/otfX9+muxlVIlH9hhRSt+PFT/C6um23GJnGGF+iVYhWWMSrWinOuNcwEIOwNCOGTNNME0UYiOr2pTkuIAk3go4caVwME0ZEoxLL5LrpIWH1SLZECxfctkbRiobKw8sLvvnGO7z5zgMeXD3geFP4vY8/58vPfsyX1zcEUYI5yzqHynWJXASlsVI0OomIbgAVBgY5UckMshJqZCoDbVhJkklaWWVk1ICExtx8gy+yo9SAxgRSuDJhVkG5ZX/4IfX6x1QmxhRYQkUsEJFzd61s+RF3cL5tuB+dIyDhvBFvRMhtJr75HGzjijszqjsi3raxbATL1967bR5sc897v9/A/S5SJzW6navgaZoxeee8oRLAmR8QOtj9+gy/P6/3ixDujUToKpQuWfTFiw6lBjzu061mvfC4fwc7fH/ff2L73O0zttf9wut+kfGqKf+6GmOovIpCtMhcF748rlwOD3mYBhZp/F9b4zefjXz3Hypv1ULaPeAzAv96OfAsFUIdqaF1WVwFVaQKUmo32jrPnM7XOMUMeOz7NI2MgxcUTrZ1RGODW0tXdtz/fl8d6Zx9Q/Te/WFGdwXzhT1shmThtfNyJzPtZN0uK90WYO2z89Pp5HynaexKFV/smvr1kk4QE4GHD69YS2We77wzNj+Cfvmc1NxWFmYGEWyBZTSirphFBo2ssRLNmNtM5RG7YUcKxkfPZpYF3n54gQAvDkazEdOVU5u5SFeU48zTJVHVu8sXh4VDDcQ4A83Tf9MFn56uuWkLKSy8XJTT6cjD8E0Kwmk2Tq3y+x8deGf/gLfywO268Ns/OPL5MZCtEEX4k89f8cNPj9xYIw9CaiekjixpJAcj20oLMOmOGi8JuWHRercekAK23DKvK8KRWCvMJ9p6JB6uqfOB1o6YLoi17m4LFvumSKQF3D3SOnEbcYM78w7ctmJOYIu494GKQ+tbaGUUobTihmzRMHHzwhT6FmH00LmO9/drfvaaEO0buXOLWkdErY9iQwi0zcBK+rq0DQ6NPpoQH1OcEUdvNiBSetjY2VG3j2d14y+JK8JiFN+n0uvj3PPaIMA576N3X9t9Cr1ouUMNoaNuHWk2c1IoFOZldQQkprOzrFhAJCNhYC0LxSIP4yP0VCjLLQ/2j3gRKxpmRCNTviCGZ9Q+0l5KcXVhf34jgZAiTdyrwlohkb2YCwHRBTOfF5kIrScqmylZXZmG+jHSR0Bf5/X1JaVrodiRIMYVygs9ktkjwBCPNAuEJFzITK2XFJvBVkJIxCaEaLRktCCEJjSZSCxIFqy68cqwSzRbKTqySy6PCXkAjTxU8WpaPX++RpBoRI1ELjmuR6wdeDwNvPHe2/zaN9/jwZPE7any009v+YMf/ZxXX94yU0ihMaZIaBlL4vbJMhLSgUUDwQJTqJxK8iS56FHBLWdiLW6lWis6eFreqokqgVGKG5oEyBIxK4gVLO0cio8OkyEB5h8x3/whIV6xGxtLhUHGDg23PuO7i/HF3AjG/9kdYgB33eT25ztG8b1RwnnP7KMOnMhTrd2NKO4//HQY0exctJypVPc34M7ruDMo2ngTeLfB3XHe3UxeeNynbm7IyX1J6f1Nb/sZkZ7A2ZEME/fj2BYgM4FAZ2/fHfNWfG2b6VeLlvvjj/uFxPb3KJG5wg9i5WoMhAY7g0UMVlhs5vlaiaESsvJDlI/XxBgS6TYQJ+PoYTWUdiKbH7v2KPnVlMUqbSud+sx446zErkDJObMbR7/+0Tf3dXWjqlIK8zy/hjLdFYv22kJ5LhBC6HwV6QXk1ie8XnhtSpjXC9DtHN5zS2362ueua8UM9vsdOSdKaefaBbM+3lIm4MGDS07zU8A3j5iSBwv262PVN6xJPTfGYiIhaIwenhUrVEODIi1RinIxLFQZ+OJ04BvtkjenC2o1Xi6FnEfaMaFzpBG4Lonb08IqSrOVL68bK8alGLUahzYw1IXbQ2LOGeLIs1fPOYlwtJmrnPnB9w8cFQ7PhP/L79zyfh54uc5crwtNAhIKqc/FxRpTS0h5TA0ndGjAnjlDCsnJ6sBYjLzCIR5ITWlSKYfiQY7zZ3B7TVmvCeWA6NFJ7BYRc1m3xIxK36BNSJ7Y4TyE1hiGjFEoZfGxRxruoXTbA7u1AT7uCJgbQFkfS6KuzKOPBXCrf0c9I0b0sXHv9Dc35G0tO3f9eEHRtPs3AGJG7vJHoo9EHCzw3xHEiwbdfpEI1keL4NyK2AtkJ3ZWLMh5xOMjlXiWrkovDO7u77s1NMhX5NwdMd2KL5G7Zs1R5T660+YKGOteOaYQeq5G9PNZyurPcy2crk+cHhfi7czleMVcT1xQSLGQdy79X6vy5uPHiDykWGMuM+u6nl2T6zoDCq2iAYquDPkS1YUoCYKiWl1SKyOYEIMLcbU3bLUXTBHI6euVC1+/qKCS84KKsLY9gZGFwNQqUStHG4itkAWC3mAW2Y37zsCeaLbSLDCGiZYNWRXd+yzHmpPEqt0AA4NmjlWJJOIyUMPAEk9EIFhklIS0hmZlXhcWm3nrwZv81e9+i+9+4yGWhD/+6MRv/eb3mV/dgkaCuIPhPkVUR0SPrGGPSmMXGkvNjEOgrIkWHeoOA4RY0FVoNpGWQpPs0B6RUY6s7JAmXIbEKkptiZ00FjwXITUBaxyDgAk7iYTyMfHpT0n2GN4SWk1EW5jNH70titeVEd350ZQo8R7kds+g6t4oYfvn/mN945buPfGVjhN8fOGhlX6ctjGTuT+ieF3dsT1gW8Fwf5Peutf7pi4b1L6NaHx+390iuRtFiHQPen398zZzrtidIGPcEjbFXUFlUw1AqSeackce7Rvs1uFIiGdL6O18AX+uoPhFxUcQeFHdqlejMpHIY2RsnnGhrBAeoOst+zAwDA7bHlBkDpTcaC2icmS1C1pbUXGjn7IqpnfqiLtocF+U1nXGpDEMe6xVhpxZ28paV0JMHI9H1nXrfuLd2KKfw/ve/q+NqtiKVvMiUO7QLuA1lMmzEfx4XnO6ZCNx+j0R72WLVHV7+GXxEDt/uYvtojBMbny3LAsPHjzk5ctXtOb33sbJod+LJSzEesGqRg4nZO+Jo1UrJiOoeyZIWrmm8WzOvHn1JmVdeHXKWDNynDncKseyEC3T0sK6RnK+5Mtj47Zc8nJW3ify5TO3Q28WWdfkyKoMPJs/JdlAZOKLZ4mVHX/y6Yn1lfCnn8+0FBk4cbqt/El2kjZVibJjb5lTWTlKRIcR4g0hKPv8iBQTNZ8o80QojWKF1BqH9ooHMpBOC+vpKfbqBfX0nFlfojUgaSaoINRurDhBW2n51m9azc4563kWNXqwlxAIObHqjKGElDGNnVjoBXx/hNDqkkNPyE39HnNkstXa1xZjC/dzDtAmIW1sW5OdR6IN0buxLdvmSwfLehR3a82dX4NfZ5GIqvN+PLdOHSntpFRCryuiIeYcAl/aGmsrxCDntUTuN13SydC9sfLvsq1pmym4J6VuRbTgxYRLZX3MyoboBDBx9DDFTIyZEBJCxKwSgvr8lM2q3gmtqt6krVVpOXJ7/YKHbxoPp4l5PrHertAi2fa8PHyBrj5aJwoXu0seXg6+npRC1YUQlLouiGXm04mlHKkYq4GqEOMl1RyhCWGlqo+c0ULIiakFT6uOifWeyu7f9vraRUWMicQl1owZ4yoJSzvAmFjTnn1YyG2HsUNsx4VUqhwITSA2hEiqoLL4HD4r0ipLzcQoTME5F9pGxhgoodCsoWEhaSFqRENC44JKRdqOfb7gl7/5kL/6S++ye7Tns2ev+Ke/9yk//+Izbm8L084zBiTg2R91T7CVJSz+oGUIsjpS0gK17iipcGEZ00JkYNbAGoRkSosFaq9iI6g8JrUZ4sJqiazCnBSNhrWFeR2YBmFuxqgDGgMS/ozly99GA3zjyRX7MPCyFYoIY+uwfvBRQ4qR2vwR3MKmtOm9NM6tg3coWYRzZdzX+r4xbQ/8vY2qIwXnIqRDdDEPOHMYH2t1LoL09zhSoOeHLpw7AF+AXpc7Ot8CuFON3JN2+vLiZKFNdordqQtSCOQ8ME65e9v36GyzM1N6GAaGHNmNI5cPdvz4p38GIXE6epx6a9pJmRsyEjuR1We06B26c19Seb+YOD8D5rKymQDBr0tWwUJkDIkBJa63WIRDU2RNhJSJrVClod3qtzIRRClNMBJYpLUFtdIhYe8KRbbFzDf+i4tHBKInnDZjXhpKYJmPZ/OyDVUIMXYlj0O7Hj3eXDffmezne0juVCYShCyeWWBqDCnfK1K9g4whkHNm7TbfG//lDGnfQ808q0SZ55WcB2JHV5SKqqG4FbjP1o2L/Y4Xrw4Ox7baCaCeVTOEkTSAiiLq/KeQEmNVxtawqKQmrKZuYa8nimRuZnh6OrLqW9Q68aocuG4DY60EhQORIMrx1S1t9E2w1sBNU0QGLK5Q4XYZ+dnLSl0iN63xn/yTH7NU4SrD8brxWy9esrcDMVxSQkPjyGRu0rRMLoMvYWLHyFWMzJJZ7ILBDJ1XjnZC6ktMXXbZ1gNSGun4OdenZ+jxGZWF2A0Tgo2ksICN1OBeDVYViZ7lI20PwTBWjJUYc+dGuMlglYYqfaQhoI1AQ2RyzMAqnh3hKIO25uFaPRGT3gS4TXYnSVukNYPBjRi8hvBiQEKgasOzgwRpd6qws6wZJzMGhLp2vpjgqjbfqXv9sW3s3V9HnI+z/V2A2hRhQTBCikw5upy8Nwsp3oV9+VoUus21rxUpJc4H2O3Eeyt1R+bfTLIIEJw0T+e8xZgZB+cdbscWQiB0IqpZIiYhinlKaHIeXljheHjO1TSzlgEdA7UJljPj/oStgSjGkAYO+oovX70kmjq5Mk9dbSPsLkeSRPbjIwiB3dUbYK173DSkFcp6orTCWhrz6r4VKoZaxIrRQqNFA12J/CUXFacBJrKPB4gs+cSpXjAxua0z6sWDGgsz+z4stWgUjcRYyewI7YRiSE5OMEnKEoS6GiF7yExT34giI8c4MzbBVkjZuLoY+cbbD3nvvV/hzUc7DvOJH3x+w09/9xO+fP4pUSfisLAbjSCZgFJkJSgkKpK6eiIYqRrCwKoLMhjVIkkAKhqMucAQJ3Yo2gTRK0wOnlTJQJJ+nFFhXZA0YSrMZWS0SmIl1ZEHzLRolLhgT78PpfDmxRs8enzB6WYhJDffiiHT6tolkdvc8O5/Q8/NCNIZzxL6PLP2AqGzobvme1vswc6FwabMOMua7pMug1e4MW7JdXqu5l2RwJ3NKxvSKM4JkDsehkPgnDfypnqODN+62btMC3/F5J1JHrP7jazdNjsEammU1Q2bnKeh7HYTIUBOzk6+mC4Zc+ZiuiDGyC5NrNowbZSluOlTLf47xFVF0uej26hAu9HOL0KAwAlTkcDSKjnk/rC5dXDQhuZMCtGJYevCHIUpRNagznKvlWCNYI2yPR8KqiuIdvltZ7ybkkKmNZeAjdNw9t9YrfMmzD0i7hcUscvAtu5vSy2tHYreZs1bcbbdF3cFVUeqgoe1bR4gDkP7f7UptsHE0OFdL3aNu0lbjPFs3y0Cx+OBi4u9f7ZEYjCk9WNIgbksxBR7oJmdrwu9mDRtqCa0CcWEJCs7i6hESjQPvIrVdfvlglez8R2BTzkx15FjWZniyNNbozWhBkFD4rYqSxh5cVvBJmoVXl4vPK1wEQxZElUSv/mHhVfriRYzqcFnupI0shsic2hMslLaVYfjR0iw5h2miTQoUSZsXSGvHFWh3SIV1hKh3pDWEywHTvMtnJ5j9RnlNENwzlkKhWQCIeIR8GtXES2ddBmIYfCOG0OknOfl2IjbhWxYQPWNiNBHttF/F0bsks/N4h8xVPAQuFbdE0KNRvIdXyoqnoORooIUqoJJcNO8trmkenEaxPl4EiLSx19gpP77rau8Qi82fBNMjpzg9/AmW4/Bx+61bl6bXVlizpGQzlvYXl99rrdmacs7UtyG2/18Opl0Q1CCYHY3mqWvweBk6s1+HXx0J2cExgsRE3fy9XOTkNYRkeh29KU0hERgZVkjapFp2rHjIUGOHEtEywBW0Szo5YS+ECJKDM7/a+3WkX8RXj7fghBHYhzJeUS0MQwTMe0YpsAw7Rl1JD4caLgQSGyl1Rmo3J5uWFW96NG79frf9vr66g8SoSUknIgEZGnsU6C1AxoDowkmgSbO1j3EwB71h38RYhZO8ZagiSErx3bDZHuyJJoVWl4RyxBnogQWM6K6jbWOkW9+8Aa/8eEHPLh6xMKJT7645o//1U/44uUNVl1NsRdjHVasCYOsnLYbT/esaoRhJaAEG7GWqLF4Vy6V2GCwRAuVIi7fDFJBA4RKTY3cAtncZwJTJFRWmRyq1gqi5HSk6p6iShSoKKEaJRvD8n3k8BGXw0O++81vcLKZW26JUYktcBCjWgV1roZKhFgYrNFUIASs6bmr1LMfwz0jo1/w0Gwuc68pLnxy3z3w+0vknFb5Vc7BFiRmrZOQhA6zdYizSz9TjMTko5+cso+1qmuzW2uUtdApEcQYz5bSQ84M2b3rQ4hc6w1Lc3tYa3cyyE1p4EXRgEQvQhX/2YARery8JUEkczlN/v1T4HBaePnyGrNN+XHfbOt1DsdXRwhq3WxL/TNEYg+/U1IQ7zjVMaAQI6eygghTSJSycqIyt8agG/ntziW01pW7U94XKHX4dBozY07e0XQyGoIXFHpvzHQPcbgbg/XOrqNKrun3RRz8GmzW7X6tvcPcFDZ2r/AA7qTO967HVnZt/hZwx6mIdhYF0poXQdM0knuoW1lXYoqIJLQqQ0rkITAvM0FSv07RO1BZfcsT4cKESQNz2Jj9SmyNOSYuDQ5UvpwhSKaUhVaE61OFybg9zKwoKS3IaeK0JK6fK89eRS4z/IsfrlxilBrBhJVEM+NVaQQdsNhIApd54EAg6p59mjiUW+IwoMOeYH1jsYIuSjkJU1oApZwOyAKyvEDml+htpZaXLOWaVo5EaxgrkN023yrZLw4iRrPS71knJDvCF4DSx5dul22AtODOuPQmwDGwvn75Nhpj7LLMPnZtXlxjA/0iI8EwK4QePOWydnUyewDwe72pP3NaF+/m+yiy2TbKEmqBFAYkeKbHxrFobPkxG4cLbOvw776AO6z2tbAVt51v6s2QIeToEk7FuhppK0r1/LxvJ2T7d46obbEEAI64OCLROgF0G/nGnvLsQYdGPz/q2TuxKz08HVmRuCEe/h2lG0kFsV7Eee6GhIC1SglCPc6c2spDhMN6ZF5napiQ3QVhLlzkC161T7AU3GvCnDsT8EaqYWj3nkGFUk/UcgA1yrqnthtUFoYUQTPjOCJBSHkg5kCOIxfpAfnBQ6Iookr5yy4qpI3UthDUA4WWoL7Yx4GQEvOhEfJKNGMKi1tPp8wDDcxROWklkTnZQFgiVy1hIVDiQm4DJShTgqW5I2ZoypOrh3z3u0/45i9/E4aJjz55yr/6nX/Di+cr6/wKGTIaJiZ8XjYFIZUToyYOWch1R6ACC0kicR0xGik0SrhmtoQwEuWSKgWRRtAGbaLpwjA4Oc6IwMAiJ0qo0HZEWTB2NCuENoAUrtvCaImWBDElyp7FrpG4Z1xvOH3+KY/rFR9+60Pe+fYjvv/jL7CyB26oGWw9oAghKqGfXxYjhhGknhcTEEqt3YjF/T/uey3cJ27WWs86a+0ukSHGP5dOKXCe429FxX1egze5d8iGae8WoqMl4+AmTClFzJSYHA406+OFGAD14xFnas/rSquNKWfGlMghYEHQnuKnrh9jC5fy8Uo9Ewtrrdze3jKlTDKQptSm1NjnmxJ8UYuRkAJpCIQEIVxwmpXTcfbzfWa4O0ejdgXG/URQuCfLNd/cwePDWy+EFMghoAhVYG5KrI0xgEWhYt6NROfNeK5IvVNgmPTDdsOvWguGMU0DQYwYjLm6Y+LxsCDiReGmsrmPOmnP8dhizL1D7CMP5VwQ3C+ihDu+TYjx/DOuodfXCgvPPQhn18y4zZi38Us/lpQS6+q24znnXkBVctgK1w058244BU9RjSFRW/eCDR0TSXtEK0kCNFiGxiEsTJaoQZnFO8JjqJidOLGDMPHqFZSSOJZEDI95dfqCLBO5JErO/OGnlc9+/jMWSwQpfF4XvtDE2HaEUMn5ltQiLUyU4GTzRTzsb5SCXr+gffIHDN/+u2CpR683OB6RqqRhZWyGnG4ox4X64mOkvqTWa2zFJcXhhJMEjZAHVhNMXVEXdEakureNjOD6MF8j8O7ZUS8vRAmrF/p1QkJD4lZEbsFa/l/bDKOCK8wc7VSI47mIELyRiOq2zVszoa11lZU3KFGEto1VTUkhISpnXkZr1p18jZwEzOWnvmYJzrfxUiKESOuFrIhzH9B6XldqKZi5T0Xqz+gwjH2N2NYoSH2Mh0FKvnEHEhu3ZLuXt/FHDKE/e0bKidZVVRIiLpRxHoSaOr8ohLNQdiD72DK4i2mtTliNITqq6QJcYoigXSYe8TgHNcALDVMjh8T1soIGDvXIuB8ZSVS7YUemiTDEHYdrwWwgWqMVg1iwwSgOq2CrkeJADI1qnrSccmShoimQU+Q0L2Rp1OPRC6TW5bFEzAaGEGlxQQbhIu6/Vq3wtYuKlRP7CZZ14CCFUY80eYA2h7/DVGktIjWyJmUnytoiR1xqFHWiNmWMR0oOrDIQ6xFsYBoazIGlNC4uMx9+5yHf++Cv8OStzPND5Hf/4Cf84KcvOc0vyMnYsWPMghFJ68pKo+QAqmgaSdoYmnCKxpXtWaxQw8oqBdFuYCAjoyaCRJQ+y7ZMQQjBUCJrgCYLF+Y3SY4jdX0DjTNzegDtwEUUnzcSaTF7xkEwgo68lMI+GNiJevw+CeXi0bv8jb/z17kuX9JopF0h6I42N5IlgqysVqiqRAxPfl9Rw3X8xtnbvp4JUnevr7L8NzJdrbVX2cGrbO46cevQn3A327zfobsW3R3nts1rGCLDmJl2o6evNnN2swRag2o+4w0SEXHXRTdxyiBGGAP7XWeZ1wYpUs1I6jrx1jqRrI8TMF/4NnRhi/weh8Gtc0NGFY7LynRxgRPK3GJZFWLMrMUzB3bjFbu9cRMDh8Opk0O9I673CKbbuUwpnRGFM7Gsn1MzH9uZCaUZefCF1tSh04ZwMKVYpahCCCzdl6O1cqfw6aMHQiClxLwWQoxMY3aWOoHlNIPB9fU1qn6fxr6AfpWsK+LMjI3jsn3G9ucNbbhfgN6Xmm7dI/3PrxFpt8/YTLCCFyF6ttq2e4s253t1+0xH9hIhCSl7F6uiNAqtFlzM1kjB+SBbONmoiRmYUOaxYGFiarMHSzXIEkitG4vJgBwaDANPT885xcDHz4x/9C//jB+9NKpWkioMSqzKq84RIcC+GYRCySuLRC7KYw4Zoighj+Tm6bVNK8nA9m9x86P/iie7R3DxTcZwS66FQ4nU65nT/DlyfcTaz9wTonoYWsCwJAQVtA1kawTz8KkgDbGEMPhojB3EikkPmlNzCSLdwC0GQvbr0spIlESIS3+uU39+Ot1qK0I2HpRtrqpOJIxWsAqoYCFg1rBQcQKSuJQ0JGAj6AZMk3feVqm6kkMm4h27WSMnobWCdJTRF5ueT9GJip18gHZujt9CrZMrA9IRvRRhHHbQpfYiXtBv962vUdCsOsnS7kK0wJGJlO43X67mADur90TEk4GDK0miBLcTp/axSwaDinMUPH1VEGln5CIE7kik/X4JWxEIREnUohB6k8eG0yTWw8pcToQoPFRl2r/BxTIx376EGIhDJTFj6ZoWDEkQyGhVcuyIUVBEVp8898IvYQQ1JBl1gYEJUEwiGgQNig/1lcAJghFrQ5aRg/4lB4qpJlpdqHEht8RiVxCMhMty1lWQmJAIFo25VqxdYSlR60rM5g+EjOxUWGuhNGXIiobMe7/0Bt98/y3eunzIpI1Pnr7gn//Rc26fzrR6TRawHEkxcioJiZkoB0wCQXZINbfqbpEajYHGTl2iQ6iMBtIG93XTgIWExQOqGVGhMaAxMekNojBporUja3CpjTRf+EJ+hqgRasJqxqKgYQVpjK1X3NUgKaNmhhpRblkPP2OIyn/vl7/HX/mrH/D/+mefsssXxP2RtWSW00KjIGEh5QglY8VICaoWavNNRnSD1eysDDC1nnFxF0F+fzO5LyvdNsf73eRrssN4V8Xfvbw6jykx5oHdbk/qBmFtY5Gj3WmUnnQZSYN3LbYdK3eyUcxjhlMaKTo7Waz7cqSYz+xqJ43auagJncRqvVgwE+a20ILLxgQhiRdOrTWfp0p0CbB4MRZwTXdMkd00Upuyrs5REKQnab7edZ/n+9zJ0LaUT6mwmtHEDa0EoZpzXI5t8a5nWWnmvoKRSGu1Fy4+forxLqynOjuXGIVxdC7F4ebg5jZlYTMLSrGTHO3OBfPsVCry2nW8r2b5c4mw9372vnx3Cxg6KznqxiHqZLd2d3/d17Dfdyqt1c2uNkmsc2QqcZCuB0i9cBHPrzmzMu4M2fxcQZHiJDwbGS1T9UiQRCsjqxjZPODLpFBz4scvK//4d57y/Rcruynw0fMDfyLGKMKYV1LbsdrEyIqYscTEsEkncyKZMGVjFofUozbUTiRrlIabrLHCWpAKpcycXn6GHQ/o6QtsfkErDeQWSRv3YaJJIJrLuUMtmI0u0ogV0QHtluIiRuAa6cFX0BUXogQSphGobmAkBbPkHXysQHY0okuTN4WXK8oMseiweefvuLKhF33NI74ldDl550thnm7ccHSMZoipO8KyPeOBHBOmjWoQqDRbGacRq6BNSGHfZYulF6Ud+UDOa5tvrz62VTUkRmIQcvQ4BzA2Ewh36O3jveC8jG3N2Ga7rTViulsHfc27G4XEzelTfazpzUTs39mLrxACQT13RbgbhwbpqCwexrgpbQIBtcBqzoOzkKnm63TMCdQbFhPxEZ4Iqa+DdVmICXIb3AJcDkg22rgncUuQypgGJD2hUry5tOLGVdUL8hIqzSBYhlAp1kCSuymrMUbnkDStRCKJbjEQHFH0SHdXg0hsaJr/bSXC+fW1i4pgBS2ZcVTmqgzZzVFa9HnLYH5CB60wQxkCklaSVbQFoiraoGngVg/sc+Rb777Lt7/9Nm+/+QZjzPzJ02f8qz/+KS+fPmOeD5yisMelLUVjr5BXSIVQGy1mmhmjzOzrJW10JzYNwkkvGOQGDT6GKLWyS1BaA1ayrEgKtNIIIRNbI+qASWCV1X3aW8T5w5EYJ7IUaDsKlZyEYlDFCDVAiAzBaGHB6g4La/d3iMj8M1I98g7v8D/+H/4dfv/4Ew7zLYmV3fCIZ+0VJaxEa9To6YZRoMbm/czciAQQl05sQVlnbwFeV4V81TJ7W5zDvU3yLuHvnjqkbcYuW/Xu1rrjOJIH5z5MeerhOT47TWLMpZFiDxLqsKTDiC5Pa1V7IBR3ZEGECJSl5woEhz9VfDO9urokDzPrWqil0MyhXtWta+4Oeh2Sba2Q1JURrRQERVAwV0hoByrXtUAz94Po3cnFxY7Liz03hxvmuRAkviYxvb8Zv96J9z/XHk+eInWetwnweXwwDSOnXvgFVbSVvvj5ghniJhX297ROOrvY70GMZVkJaWSeF9a+MaewxcBHDHVuR319Y79/rFvxeCevtdcLiPAVtc5WoEq4t/D2kVkvXJ1n4veTmnfv9wvZkCKtFqwYOQ9nZAecmT+ESJToox2/i/viXgjR0ara02ybubIjRXfKDNUgTCypEmlMMaBWKDKejZJezJV/+VGhhgFpRsswto6qlJGblBltRQOsXJIySCyUIERNtGrE+YA0N0oSW4HVzeyqEpYD5fgF5XCDli9pnx6ZNdNqATsxSCQkhRqhuleD2ErUiCQjNo/+jlRfS2msLtQnWMbiAsVcJooTD5s66ReBagVEiTEjpXbUYATL3tyhbPbYQfz5N6M/Ca0jFx1xIqLNCZsxKqWjl43WC5NGFuckuGrUi4kghlZ3hMUi1kcaSmW3T0z5kovLKy6uHvLll0+5fvmCagXZfILM7vykUFpd0c75iAFy9Hs2xtw5EK2PdDmPRUNwsmIIgrVurS0BMzkbt9W6EmIvpLuoSvrv2IzZvHnoYVrmjpqtVVL0AstoqMOGhNhHPQhNNkcRziOaVmt3RjZHri0QoiuavCipKE7mNLwhQsXHDaGiRZhS4jIO7OPI6bhSgHEYkWNkvwMT3ysmC1ioTmQOQpMA2p1BrNJsRiQS40itRhBF24mSdl7MxIhJ5DSv7pmh2/npIyzzMU/airK/4PXfoqjY06IQTMjpxBo84GRXK4WMySXRZlpYqOGS0hqjmEOGU+Rw7ZXj5X7gv/PtN/jgVz/g6uqSl19c80c/+DE//vhLTkeBVGhE9inzoN1SuWCugqbIFGZiK4QwUWMkmifcFVFqOnq4EQ1qJHGkmILt3QQlzhx07/klcgsxkcolZicKmX1oqB05WsYYsbB4OmdNRKk+Uw74rFMCQStjWFjrRE3uu4AGQlwxQhc7vMJQ6u3HhJj4q9/6Wzz6lXf4k3/0T7ES0Isrltrg9hWRxCnB2MQ77iBMw8CyztTB+lzRFwQ1pZW7jnSDMoO5Prxt0Oa2Uazrls9zB2N3GakAai4tcxc85z6YNnbj6PkNYeuMXUrV1LkO0EcowTfpVr0Q6SUKmDCOe2qrfdPNlKX2guh03vQApPqYpOnKkN3q9mJ3yYMrYZ4Xbg8Hj8jeOBD4RhiBIYa+qHmEcS3KGCd34EPJMVBR1tYwcX17HqLnFphSauHiYs+T8THX84nT81uHfq3LK9lSDe84K2dCoyOmnIuyEKh6lzXSWmNZV0DQ6kx3Ve1lR1/MxEHq7Xc3q0zTQEyRshaEyLKcmOfT+fduRc/GSC+lnEce98ma93kQ94sIAbZKZisU7vNIzIwU4ms+FRtBNJwLGlcObBOh+7weL7YaphAHl7MOw11hsSwz43TphyA+Yw5sYWKZ7qBxbxwjEBotjMyeoe5OkM0t/MUEawOWT8SxMNtI4gLEyLpSw44rCmtTlEBOCRnA8iUNZdSVizJws2SMI6ovXVJnmSk36gx2WplvPqMdX1KX5+h6Q9CVMRygrKx6SUoeABhlwihYlS7ZXBFtNMepOxk708TNzywIkYEkpcMKEdEJSZsPQurcmAGhoazENKDVCK0gHbR2oUFEdfHrLpkglUBFJdNMnHCom2lVxZM2vWkJYfWk6JAJumAozZTaAhIGorjra8gKEv27WaPpipK4uLrk4sHbSExcDpeYwbzMzCejrhBCT3OWiAXQWhBTgtV7Jn+QhkwUIUjnelA7wmBnoym6mZRp50MIPgbymsTRHXH31pizNxZGv88auSNxLld3xC/GhEjqjcqCWSClod+Dnli6uYKmFMmd2XnOD4kRzLkTJu3c+EgwxIwheLEa4oRQWIJ1uwoPLaQpFitqwvWLl8QnF1wfFuYG62nm4qEgSUjhDUT/EBtnYujjQ4HQfTQKDUk7alFi2GIOnOjrx3dFbXCRBkRXTszIRSBohuIIi6t1FJK/v/1lZ3+05RPW+opoR65USPHEujRyfo/1wRMIxm2IXJYrQgjsUmVdA+QTeX7Er3z3Id/5pT3fevINblvgB9//jI8//X2evzigNRHyQpoGrBkDB+Y1oHFP4YTFzNgWmsAaEpMoU6s0iVg0QjNgZJ2VPILESrBMrUoVxWSB0JhKpWql5QHqgJZCzYFBZw6jsFsCuwDGiaYz5mAUlk9IrRx5BHkGjRzaQAZCXsnqdrpGYamPkXDsbOUJmz9mOd3yTn6Hf+fvfMjvfP93aDcnshqxVUqbvfu0yqOQUSrNlJAzhIjEEVZPWWy080a4STi317aJ1LY5S/pGEcWrdV/k79w2+z7G9oyE4DPE2hZyyoy7C4ZhIOfo8kFxNGRZSx8pWPeBcDhU1dhkHVvmRl2rWwXjM9L1VJyB3XwGuY0bDBBRRzpUaaIUre6QiEP7jx4+ZC3VTZ7mxQmh7uNHlAcMegm6sAjkQSh1IREY4uAAjwopJEITVjNKdS+ODfmI4n4LD/cXDDlz/fyVp18ixLMb/Z3p0/0/b+f/NctxuYuTb6rEEJykKXfjgXj2G7kbUXlMdGC323meSW20Vs4hYV/9+e11RhrKHXdmQxS+irrETkZ9vTi5G3t9dfx1f+xjm1z5ftHS59gbMfP+8Wz3Yc75fDyeTwKn48zwKLM0z2zx9ziPxkmdd8fst1Qm1SOjroR0oK4ZCxBzIggcaSSJqFyQMebWCJKxjeg8DKxDwKKR10BcGzorYa1UbRzSMycIMiAV4kFZjj/hcPsz9HSk1hPUI4k+Y48NoWGtIrgLpzbftAm+SY5hZK2uJpOQQUePUreCiWdCiIK24MZTJlh2tMY3GkcZelQxZi67tbbD1RgKuApKu79MECOkTf7oRMfaFDYLZ3OpuEd7Dx2uF0g+CowUkEol0XQlhsguBecABUjZCdDNFtIYeeOttyhqvPX2+4S8A62U25OvCcE9TbQUyrpizZ+FdTkBzX0dzHkT45hJacCj0UHMN2u1DRmj8xW2jA/nR2zyV+kEVBC3OOjIjKEuL7Xgo9nzOK/1TBvObrt02WrM3U+i3hnHbU1Zij6yK6X6qDp0hM0MofvpdMTD1zjDikIaaMEggUihqDI1KNoIKVGoiHTUcSmsIgwGFuHBMHGjjYmR26VgeeE0+zO1BN8zdjK4m2aAqzRgtbAmX7trtwdwb45Kk8I+7FiXEzEHBpuoixKSIKmSqtLECyTddpqvrDn/Ta+vj1ScfsCD6Q0Y3yCkCQtgOnK9fk6qlZofM9SVpT8MV8OO97/5gA/e/xXefvKEkjOff3HDP/v+H/P5F8+ppyOSInkwQipUDcz1yCADyg61A4tdkNqIJqWJzzgFumlKdGvw4p3NPhWK4LN8PWBkhqbkdMBCQFuiSkSiMZoh4QiDzxTnIKArpc/qko5E2Z+1uXXdEWxGUbIaqW9mwVxNYqFRqWRtTEloGhHNnja13JJNeOPNx4Qp8kc//YjlGCjrkWbKvM60pr6gtEaOGdWKNZDoW661SllXJ8KpnhnPbIs7nIsEzmMGQVTPig6Qe12ou0+25m2B7ws+INjv9+x3u/Pm0OsDNomh4A9Tra5ECQga7lz4UOszzYZ1roIX806iChIoZWUjidnmqhlT73qVUpy4FLr7XWvKvMI4Duz3e6ZpAjOHNEPC7JYDg3c8gK1K0wgJsholgAZ/wE8dRehNkaMjzTfvGJzAdTXuGN9KvHj6nNKUFXOvlHuk2G2z/mpx8VpuSP97bdXltXJXcDg35I6Bbp1MJSLkIZ8LhBACx+PJCxDuOBCvyUblTp66PfbOJ4mvHdP94mJz3fRN25np93/2F5E4z+Zp97g4m4nZGc249zP3EZMN8diKHTWhNmMtypBHh4a1kdMmWb2zJt8+f5ETmUSxQFQhh0ANGbFKUGUngdUyTQZ2WXgQR+/DZUYs0NqJUxMenqCKcqqNiI9vl9OCzEfC/CV2OFLXL9F67PLKk0tjN0VTa33EFZ0XYIBUkNAJcjPYgJCoWiEWggyYJsxmV/hswwkNmDqSQAwuI+/DAAnOVXDryG573hrhzD3phm04cChi5/vOORDSxx/iyIevJu6i6wQriiqS/TjFFJGMWHRVW4i9M2+dCNkY08TcGlePH/Lo0UNyjIwps9/teXlzy3w6OuFz6IhYrWhZePbsS5b51smawZ/zMSXCOBBT39DVxwQStjC/nkQsLu3d1ovtPup0DPqTQ58l+AjHvDhlu7/ldVVbzhntRfqZA4R1CWxDiyuzQnDPnpj8WRLTHsGgxOwJwyaQLbCKoCEQmpGakyerdAlvzjQEqY0cAtAY4s5RZ6mEmNhb5CQLEtxaoJiSm7DSmES5yJmlLcTdgIQ91IEh3DLIHm0LGpUaC0NIHK264i0Eqqx+z6mz3yoZBIqdnF/R/Nn3kT+dHdfXfqpLjYnI1ywXvr6k9I2/i0qgSeRosIsHxthYjkYJhs5Hdmnkg3fe5f1vX/H+G2+xhh1fvnrKv/7Bj3j22SvmIxRZoVXGi8CyCpSGsqB2hYRE00JWeKgXLPISk5Fcz0plWoidzQ+1nXrX3Ug1MlskS6GKIChrmkha+okUzG4Zk3myX5fVaZuQWEg2EjWw4oVEC4Wmg29SsaCWSShFJ5oYwVYkFZpOWFvIalgwiiwElLUs7PNMbZ+xE3jzwWPmVqmHl9AqqzWObWFZPEnOxDgBuwZYQBTqvNJaoVmltnqGuM/XpD9ErlO/27B8s3y9m9wWG2yTcN2buZsxjpndbsc47vqZ9llrWetrfgrbn/3zfebY1u6OaM4RcDy8/5zhRKxtwzs7cm4b9Nb9vu4Pcb+T9qIjnBna4zggIZDz6HNWBBXPScwhYQFS8weqWEM23yeBrD4NdsMal3GadjQhRQYVihi7YUIeP+HFzQ16WsghUnvM8f2RwFeJjq/ZewvOXbl3HURe33i9+7z7HSkFJ4+WuzFBrSspZ+DOj2I7T50/d35/+Mri+VXexFcJmR1ocFOj2PX1X+FG3C8s7r/uSJ9uqb2hE/c5HPd/NnbrZenPp5mxLjMpumlcEKPW0ou0dEZU7o7DpY1DTAS9YOnAOHmixMAeDyu7qo16WlkNkIPzEJK4CZ9G5tOJUG+w21eU2y/R+alzq9rCWk6YGEkq2RLFGlEjWCOVijDRKC599p7eAwUtEdKKFHdINQoiiuMLQlBDtRCCS31NBWmCmMtm42Z6Jm7MlVN2VZauhChY8w4zRi82VL2ob5vniAlI68iE9a45dkTEyYHWeUQSwIJvojH0YzB3HpY4Yy1iNbAuMzm5QWGe9ozDBe+++y4//9kz3n7rDXKeSGHgeLolmHurHA+Vtc20ZeV0uGZerlF1lVMMQk7GNE1nJ87OS3SiKua8EX9Uey6NF/3nkac42TT0AjuK/1wpfawa3NhtM+4SXNbpoXxeWDVTQojETVpqjsJpM5Zl8YZMpCMlbpyX0+AkdgyNvmastaBBGcZE44RVRyrSsPPRTFOXkPrcmmrN01FDgpZQreQQSQzMrVFFGST19VxY14VX0XgzZy5X4yYmbk8HQvHC5Ooqoy2RXq1UW1hqIIYdooUUq4+wilAlu9Ek5teJQDEhMKIJ1lYYiQySmLXRKARVJA1OnhYf+W/KwL/o9bWLiqLGGITUZl+g2wVzeYEuygfvDLz/vQ/44P1fZXe5Y7l+xu/++DM++vHnsL5EcwMJnCwRUyMKnNYBi+qHYKNDpBaICjqs7rfP5NajbSSGxnF1ONDk5Ozo6BV7YqW1RDYjihsgaVMalTS4QZNZZjc8ZC03YBENgRwrg1VKacxiyGAEMyARQ2UYIlFXgioWxs7UnkkyEuvgD4QAg3Csip286ry6HPmN7z7ilz/M/OP/w/8bCROP91e8jLfcrpHjOrMuyrpW1vklrTk0hx05WuiiooQ25bSsnO65S96HrNtGFoRzVQ4+ymj9wbN7m5/nhzjE7Gx9LxQuLy+5vLokhkipntFi5gqKeZ5BrBOYOG+QpZTuAOnVe21eWBjehW8SNe5toj53f92oK/SH7tz56ut/3jruZkrrC4c2d4kchoEhZaLMjKE50a0VBsuoGUstJIQVZdiNWC20KD4+CZkYtkJFzkXFWhrWXQDHPPL4UeK0m3n+/Dk55Nc69fvhbds5vuNc9H5R6CTZgKojYfd/ftuntwJgN7kWfFndzn5ZFlJK5GFwJQGcu6otGXR7xRC6ydXdMdyNWuKdW6p459XUuTOx+5ZsxYRv5h6n7JLOxjl07HyP3SEbm/LjPppxHlucr7OPPaZpIueOxNTq7py9iFBVUu73TC8Y1OxcmKWaaKLMP/8jnjz5JdZv/btcrjfkqhxb4ZYTeVaKnJCWsZ3HK0yLcHM40I7PqM+fczh9gay35Kqk2CihAAW10a2+AUx7jHRg7cVkVEFkU/xUl+iF5NbVps7psB4RbwOmBeLWcUOWTDP3TtBQ0QQxDL3J8ewXNJHEwNxempAxC1goCEKUyRsi9VwLzydUYuzEFtmkv32Bj4Ja8Ohw1MehcG6qzm6UMmCtomUlJmV/tePdd7/F5x9fMx8X3vzgTd55603EYNzN5PEBQmMcIlN8zI9++ilLmzndPMdKpZQDiEved/sd2vzZHXJmXVdySpxt0bbvb9BMvUCQrRjvBll9nCHqzcy2hngRerde9Lf5WIOtKXEViYeGRecdiCNEd6quQMyhH0NzErWBtW7cRyE032BrdX+dhhFzhGLEMWGhMS8nihXGafIwQYms5sjDGBPR3GCwSaRFKAoryhg9A6dG+jg9sry8Jb0TeVUWGgE5woNBqKVhw4lTXcjDA2J+Ruv7YK2vSGlCa8ZiplBQfKSdZKAs7r7caEjK7kECaKg+ZQiZoNl/QqJLSqMRzMdUX+f1tYsKE+WogUkH0nDk7ScTH3zr17m9fpe/8d73sEd7/viTn/PRTz7m8OIFt22CoRFHQ9uOWk9MYuTZjWqaVSYy2go1NSBCA+OSojMzxrAqmoVluGFcBs/qUFjjnoZyZTOLwkokhomEeT6HTpDcmMaqkcKIhBMnChYDUQszSlwzmmemGKk1kZZAST5X0jbRmFkkAAOjNVQzYw4I1U1Y7IjpCLPyYDfy/ofv8K133+fxxZ4vDiv/5rf/OXZcGS7eYHjwkMPNLZ999oz5cKTWFV1P6OIeF2oVKxEJStXCsiyIBOqyIqViPRfkzlJaz2OFFCPx3kbi6aK+aLie/o4H0DrVunaHxUcPH3BxcUFrbuhUC6iubE6Nw+jOcmYut6ra+kzcP8POx3EHSWLbeOCuSAgi3UXudWTlfH9tdbA4uTH1Gfu2Ia3ryqZeWJcVVaOulSWuXEzuihj3kRRHKIoG97AnhXPho62RTYh5YlUnoDVT79IAaYqkSJJAwZNok8Df/I3v8Ud/9Id88fT2fAxfJUPeHy3cLzZUXZEU8h3HIEQ/Jt/sEzHeGUSFIMzzTO4hYfcXz9Rlp5sD5mubN5yVQPdfG49BVRmGwUcP/ZoNw2aqFV9DMJwpnnBDotTHVVv/eMfXuX997sPKZz5PvPu92/m6/z7/Xl5cD+Po5GN3PepIj2wfCYDYDClRjp9z+4N/yu7Jr2Jl5hgKZjtGKx7I1yLrvNKePeV0/SW3xy9ZjwcmntKCJ4O26AqMponUAlimhCPBRk+1jBC10LjCqhGjYqHQQkGYPEFUK1hCdSYRnBsgPhYN4eAOrzbhA1NYbfXOmUBq2RdqOXWdUu9QZQbJziPoGil/1Hr3rKDdvTdGO2fqtGZnBAQ6oVsrouoQN9a9L3zW71tJwEol6ELMRr4YePTGt3iyu+LFzTWXF2/yYjwxz0fCkIjTCEUYwo7ji5nWFj568ZzjcYX2CtVTV2/BOAQYJ1LwbIvYx4W11TvCbid6nhE0MfQ82pCzB0/txYJbTjvasJSVcRyJeWDoIzU373JOVwhu6249bDDn9BoHzVRJfcyo2otjgzzuoC1YcEVbqwUxJxwjGRGPpFhbIeZMQ9GqmGRCHtg/mJBaoDbWaBylkUNmkB2mxoKTyVOMRJtBhNGEwYTVqtuwK8zWeHW4hWLoYSY/esTtcYU6uSlcagxyhZZPuJlPnOZrLsJASnsOtZGpHGuhxchkqReZBTUnAscAuroihQRBI8EyRWvn8bh82DWpkarCqncNzL/t9bWLil2IPH4j8f7b7/LeO094+HDH7eEVn/zw+/yXn/4+z9V4dToiCg/jFTnMjMC8RlBjl0bQwpwSjUomsNJIMXKhyixKDZVKQUzIAhJGBoOlrCwtkBIMpmAzrUWquJOls1oXjEZsRpWVgcza9iRRos7UYFhtjDj7elcVnSqpJswGikTPgyiFcmqoZYbLwWGzJqTUOMYTWbN3B7nx5tXbPH77gjfefMCUL6inys8/+ZTf/vyWF8eFfPgDDwQKgY+ff0T6snD76gVLc3e4dVlo1SVZHgrmxCo1J+80Xfry0Hq17otsM98UYoxus91HGBvGb33UoHbnqXCHkztaMI0ju93Ibj/iS5ZSW6O1enbh3DgBpToq4YVHPXsxCBBS6ggIwF2nCncjgRi6nXD32HBYUl7fFMXZxm4B/vrYptZ65nhsM3bpUjCzyrGsfPLFZ+x2EWuGJbBWXV9d1aFq80Wk1OZcEjZvhX5+ETBX7TSMSXocsiqP48Bf+dVf4dnL33dE7b6nRHMZrXE34vGu/q5o8iJpM7fxM2fduKe2XqSpMU7DOXVxrbV3YOG11M/XSJN+JnqOCmjfsPsJujeC8E92R73khVNwsyLU760QQ/cuEBBPc60dvg0xUutyNiXzey9wlzGzfaScx1a/aCQUQnDDthhJKbMW919RnDcT+tzfvU58lBHPG45QLbrcjYAlY4gLN3OkYITDAZufsdy+oL26QcoLWA/U0BxODAtFCsKFKx400EKBcCBZRIhEJkRmasdJiAnTGYuRSvNtvyZ3Jg0rRkUoSLj168mIUVEKwQZ/lnVGwoDRCNHzjMQaJurSv979ei3gskyPph47T2ntMttAawLSnTdloLWC3619dNHjqi10NYKJE1nJhODqCZohuBopJRj3iScPH3Hx8AEWBwbZE2pgGv3+G/cT7eUzpCR+/pPPuX5xpLTGzeGniCzucJoEIuQ8EFBS9sLMOQ/bMFU7iiMEybhDQsUdQbvGEw8voxe6230cYzgvX/TGKmlHIMyo1aXPQbbtzPlam0GXWvV/Z/70ddOOzt3wz0hpSy8OxDiy1kqIkWFIJHGkx3AHT22NIXvuiXthCC02rMvX/f7CuX9aWXWhhMhcV2J0dKhNiVgDGl1av7S+ZjZl0erKGINVC1MBmytD3HFdV1IQJAohC8tpYJQBSxesrdKWGYkeIedZPZ5xIwEkZ2LKBCJFG5KVSPaE5OjGV2pGpq9Vva53ObUy/GXbdP97f//vcfWocjgGvvjsBf/q3/yYw/FLjl/+lBTfRC7e5dIGhMJia/d3qE42CkoMJ5Jlj6NlIsiBJEKzkZMWYjamOrIEo5h7yk9SoSpjaqyxMZl6TGvck8VNdDQN569SzWih0iR71QkUgZaEkC4YREkNas2spaKlIeWAScKmwNtXwrffueCNx2/x6HLgH//zH3CwgSbK9dG92d97PPKtD7/NxRuPsRq4Ptzw0UfXvPziZzyrJ6pGBoyQF4LdUmIi0Ti+eMqxrZzKkdLcfrmUdg7toq1E6aZJ2jv84uOJ1jfhbX7taHDoZjOOVpw7V7rkyuxcRFhfnImRpoVhSDx5/NgfZPWCpJTKvCwuz4re2azF59lrqbRSz52mQ+6Ghc1Rzx/kLVdiy5O4D5fDRsoMZxTlq3N77UTc0N8Pd6qEP6968EVIVVnngpnQWibnhOcgCOoEBt9AzWVqtfXzYs1nyeJPT1N1otxasMHzJJp12BRhHEfeePyQL54/d7Z2Pw4v2iJNfcQheHHkZHDBrJ67LMw3TudLtE43CaQUSSmRop+/WpV59tluzLmXb3/eAfNsdNWLlG204SOMQKl1U7+RQmAcMuM0uqqkeb4M0V0NU/bjyjl53oQ4y1+1kIKQJFJCQKLfA600UvCfFeFMKvXrbK+hEdt1fM2Yq2knLN4rPkXIKTnhrY/vtt/ro7zu1xICbVVuPv4zrq9fEZcD7XiD6TVBamfAN/e3qZDMzdlaM1Ch/2ZCFWIY0e6xk2JFcXKemY+Deqq0KxIseCBcqKj6nDmJIur3VYh+fwvu5iihINGvX1Rw7P5IN+PGrLF5GIh6Q0EIGEPPy+hKErqNtkSQPU0LITV3sZVAkBG12u+RTqizRpSVwEyx1UeGtRHzxP7JY6bdxMPLHRfjjtOrhcvpgqaJwTJ1GphEOByuHTHNAx9/+jFtWdBSETHEXPGSc/S8C4nd78L5VLIhmb30dfXT2gsBLzKCiVtgn5Gy3qp0/owauDOuj0lDH+Fo89FTBDQKop202tefFKWfWyeQp9wj25v1IjlRtY+UJXWFhjdGzRpZsnuZEMiSEKuoVjRkDwKMEWQkmRfXpVWGrqLR1ggxo8E/L0lyTo96XoyI2zKkFp343ZS1eJjakCNNFoI1cjXWtdJSJUw7YppoSRmXQCgJIZCkIcNDhovnzIcZ1EjSyfjdo0KA1laCRt9ntTiXJPp6qG1GREg6slbQBD43iIg0klg35kroxor9C15f36b7eMO/+IOP+PLZgdSOXJMYojEqSFpYZaXFlaHChQ0s5vJICYXICNVZ23OsqEaiJKZmZJs5pIjINZWBWCIxKAklh1uaZYpEGITT0rA40mgMJZJJ1PqCMe7cayEXpO7Zh0wejqzlGpaJtjT0dE1F4UJ45/HA22/sePf9d/mV9x/xjfcuGKYRq4+Zb2c++/ktf/vf/YDf+u1/xqvn3+SNBxf86vce8uE330LiG/zgy2v+9E8+Y3l6TakvaDKQVNklgFu0G2W1+eR1qxaO64mlVKQY0oxKw7S6UZM4OtFiICh91tzuZvPmRmMGvhHe0+7fJ9GdWf3trIFEtbtcCt1EyY2lQhCPr14r19cHZznbQIjuV1Bq7UiAnU2Vts3ivNFzn6/hbpzB/Ka+P6b5KmHvfnHyVULhVzej+86g999//z3br19Xn69O04B0N70Qpc/mfZ68OVkqa1ekJAwhp8iyHkgWnBQXg/srzI0SjKVU0ph5fHXFzc2xFz+BkpwYF0Og1dljh017pkpw0y67czG1TmgzCwxDPnMiPKWw0KqyrAtNlTzk3gl1C/SvfPczGhBeJ1Jum3YKcVuZudhfIgGWUgjRsxBS8tGLSSAEGEdPDqVbmYstaB2Z28KxjgzrTO1eGcQtN+I+CfUOofgqsrId13ZP6ObXEYRWXZETt3m4V2GvfWdwqeRsMEqC+YbDT/4lheKhVpacF+AXHXDuQg5gNjtCZAMxVVoFQkKZSSEgOgEHQjgh5YoqAxIPveA3N0tSRcnEiEPIZExH95los4cubZu6dCvrjoYFaXRHlU4OXgnRUI3OETNDLGE0UB9LNE6ElDFWRBJCRtqBaCPBLmj16JO9nsQbwkS1hZgF2kKoAqZeoITE/irz5ttvcnE58ujiIbbsSLuIzAv2KFHqjtsXr9jtLvn4i485HF6h7RqRlWyCrQ1db0nJUz9T8mI0BHGJubUzD8dJ4XoeQQiOtOQ8EoKwFrfP3pRf5/tanW9A50GoenDYJte0bY0RuVew3PnWmLVOQu3mV72BEBPPwAlClAHBLder+XXaLLcbUEx7UZ3dTIrmnBYiSTr3B2W1xlq8mHBll/vQBIuwrY2hN0lDJIXM1FFSTbHfJwPrcsNaFuZQsCKkqhiFUirL4ZZdTqQSWeyEqvIoJL5cX5HywMMUqfKKg0QGGbFdRpcZXZQlLmgydmnC2ujFrhkhGutSUIvEsGIkTCLWRx6hiXMnZMVd13Iv/oGeHv4Xvb52UfFf/H9/kylEsD0yJK7CyroWjhEu9DFVIy0lclBOJqRUOVHcPY4IcUTtSNadJ3dGJ/cJC6ntCG2PamQJMyrCYBFixHSgqvXO6AqzCnVlDQ0NXrkfRQjrjgc2IzwjambkgveeRK7eML799q/xV97ec/nYGHZvkRi5niPPP7/hR5+84l/815/z8c9nXtw8p9aFLA9468MLfvk73+U3fuOvY2/tefbswD//N1/w4tPfZa2NGiemccG4AGaiRWzJCJFCQMIRleYdryhznVm1UqrPprcNW8w7bjNo7S6rYYOtDT27wqn5RnEfWkbttUX9bsPfIOoKapSyMgyZ7373V5jnk5s+lcLhcOghYL6iV62s63qncLhHrNw2iTv7ZPe937aNs/wPee147r/uEx231/1CYpv53ycgun6ccxFz//1bh7P9vdbK8ajknBmnfCavOfTZzdKa8wZCUErdZv5GyqHzK3zRqtUtyGMcsNMN1Mrl5QWtNq5vXToXFJoEX1CCp7la8I4TDezyyOXFBafTydNYh6HPZ19XR4hs598TETdOyUbsDCLdDZbXNm0/Z9rNfzYb5s5diIE4ZHbTHq2NFCJZApcXe4YoxCEzxMztfKSUxiDJcw1iYDcFHrz5hI9//hlhHnhjWLiWxIPhiuPxRO2eKa36yGVTdmx8m9fIqP07muCeKeKd6qZeqqVRykqepl582RnZuF+cqnmn2VAkOZq5IVxRIyonzApRJu+YbUPnlGbRmfcUCIFgRrSEaYAuAW1tB+kG1MO7wDM6zNwYSnUhWDpLSAWXkIKbb+VoFJ37/RZomgl0lQYNqEj0tTlYJLDF3fv94CFfisSjjz/wvI1S8I05XlG5YRoV1kqQgRKEhpHthhQzut4SdYIY2T2+YlLjRT3x3V//dXJrjA+uuLldkbKy14FSAmEY+NFPf8jx5YFqQmRFxK3LtSprPTFOmf1+T873R5O9mWk+9JGY0BBoVVHpPKUgnZvg/a+a9bC6bdx1p0jydc36eC0RQhfeanOUqIcSGo5mhq6GUtM+yuiIRgi0om7kFxQVH+0GyTQr0CrESmSk6urITn9miE6sHGIjpMDaoFBJQ6DWgtTSAxm9QAkEQnOzwhiyu/UGw4JzQaoFAt3llYjQiE3IMbAws98NXEzZR5h9/SqtknRgPh45nAqSVmQvrIcdizaU7AqlPCGNroRZaRqQXaYNnnQ9yuQjqjBC5/wYKylkrOdc+VjK19xB3BA+RA+HW2vtyj1feeNfNlIxxNFhNypthTULyp6AUKQwVmhtYqGwY8VMUNsxyMogC2sBCZHRjoxE5tXnvC1ckOqCxUBLhRhgp4HSErNVhzyXillCh5cEg5GR3Q6eXAmP9g/ZX0w8usy8/8YleZex3cSlTNgK1yfh2c3M7/7gwM+/OPLFq6c8P9yylAJLcUvuaeFiN/DWrz7ivYfv8Xj/Ft94923sjW/yJz/8lM//4BmvXh1Ri0whEcedRxq3xBJnQnPjqENqZK3kNmKt0paFIUSyeKBP04JGOvytoAEhg3kCpdK17n3zaL0ytObdaEq+oJ3NWOj8Cu6QivPYQV1zLX1EEULg4mLPPJ84zScw+gbQCXSqrOvK2guDrcO9r9TYOpOtHhARLwzFocemrT/4d/9e7hUAX0Ults1xKyBExDsR7hCMLYtErBdZvwD92N67fcZmrhSCMIypw7IwjSOneaG0hjBgurjEb/PttYASEXWipxhd8RGhuZxsMHh4dcVp9aLaYiCKMWXhmx98g9rgtPp4o1XpKZ6eOZKSO0tKkK52uNuQ52VxLk31iX5Obry2dWRV9c997zNnoReZMcbzNYvJF9eL3d4X/xRoCa72l1yN0/mcNgmkONDKwqkUhiaIjPyH/8H/jP/u3/ib/G//4/8Nf/zjn7I0uJoyx8ORq4srTvPM8Xgk95yA+8fzVWQKOKuQztePPtPusfbrUrjc789Tuy0h8jxKwUjWYfJp6Nd0YVcGSuwIG6A60mTBw+hAWvUNSYQQGqhLZ4u2Pnrp3bH06Pk29gNfHT6n9Q7YyW0BBU1+3Mmh6mAGVWjNkBBpWs/3n4eDvV5kh1jAtnThgIliLG5GFdTXOgNhxNolEm4J4Qhth7CntIYSCTUgHIitumlUKEwPnvDWkwdMceDq8jEf//Rzoq0MTNSj8eLmwHA5MC8zP3v6M47HmXW9xSXhJ4KV82gmBpimRI4XEJzcTUhYdSVK6hkSZnQsQtDqUL6RfRMTJ4ebeMHkmz6U4v4HMfkzb727DyJI6o3omQPhv902VlLnMSDbCLAXfihN3Y1SBEw630QyMborpElEmDAzkgyE6GMj8OtrrIzAwAiaMF2cFEtE0tTHxQ01t00383C62E3bmio5jTR1PsWYIslWWmis0jDHu1i1obVQh5EQnbeBNvfraYlWiostzFiXA/vdyMWFcHNcaFqZdCTlgeunR6IIyuT5VCiEPUNYiNUjKErnOQ0pslZHWKPBwZxPNQTHkmpHtU1ANHq6rVRiGHw/+Xo1xX8LoqYuLJKYQyRWr3Amjchq2FjRVKEn6K1SmdZLRllRy8xmNAuUGpFUcSpIZI23vukGOFbBZk/irHUhktGp8NZD+OY3rnjnzQsevnnJNx5PXA0PWULG6kqbE09vCy9f3vDHP1Wubx1xeNmumW8WFgJSIMiBGiZiKK60kMTFxciH7z7ggw+e8PbVE6oKn7+c+f6fPeP6+ZGf/M6/5JMvnxDHRghKyEYoQze/Uqw1xpRYNTPHwhRmQoiUJlBmrK7EtIPg8FLRyhAzVjykx7rJ+iY/tLrNzu824TvDI58rb5yFbbGOKbmjn7xOknPOwoZ2GI8fPQSMw/GWeVl8NBBCd22sPsvvBFLuIQ1ntYO5hDF0SP3cjSqcu+m+eW8Ez61gue/QeL/Lhtd9Hba0UHALXFUnd6ZwL8wrhNeKqvuvTXWx/czSc0XGyclfG2yKWE9q3UK57q5DpTGmTebqHZCkRO3foZkjR1cPLzmeTow582C6JLbKr334IU+fv+TTpy9o6vbxKh6cNY6Z++RVv1Z3G7E2o55zDe4pReR19OoXjUDuI0leILaeILvHWveukEaIkbIslOYSuBrNofIUkWCshxX2O1Js/D//4ff5k9+ELz/yrAqrkTB2y2kJTNOEAct8chn+vYLi/jU/X2vbitS++Vgny4lzUmrd1CV3ani/zzsPRwTNkcRKsAGtGQbQXFGr7pYogpCcOxEKhIbqeC4YrCXQjEV1JQSD/5z4aMORw0COxQl83QRI20ogdE8HQYKCFGJITrS0GYJL9dYmCNmJgarkuFm6uzTRkF68+nPuHgCb8in4qEMKZhXlRAgXmGV3npSC0Qitz/nNsDDxjQ/fZL+bmG9Xri4e8e1vvo/aDT/75Dmv5gP5wrNKnj9/xavDC9YyI1o5ttlRmTKTo48Hc4xoArHsRF5xAYDR3JGT6CTKvmbR0SfpGS2btqSvThieYLwl/XpAmEfcb8+sJ3z6vRAlUE1fLzKCNydOf9KOUIS+TnRFFP0+10CUoa9h1jlczvWwoF5odAKi2ArBfTtq8ZjwzUCvasWiK2fEEvO6MowDQRwBaQrNBJGMdDVXqw1k81ZRYlRqK9DNsjAjSvbz0ow4RKRbhG+OJtbHLpIytbr/REoPGcZL1GBnl4i+ZE7KkitDyBzlQLMTOUZH4HTGdMsZ6WnFuoAObpymYFqYrNJSJuLnHJFu3Bp9ZBfoCbr9WsS/ZKRiZiDS2K2LR/LmRoszRCNKZE0ncgvYuuOYdsQwM7aFJT4iDUqqxiCCth1ZV5Zyw7oYtc7E3Q3vXb3Nm9+At959i1/71kM+fO9t9sMllkcOR+XLp4WPf/aC3/7kJZ8+veH5i5nSjpRaWBFkgFFWSosUg6vkN1DIRhhGjnXEyoFdTbz31hM+/OXHvPveNzATnn56yx/84U/55OVzFq3kZUdb/xqt3bKkJ+yYuNQjrI1gjUWcPz3QfezTkVUatOwPUFBiuaawIuIGWq0qgwQnPJp2s5dAqQ0TJ18SzeXYPWsjNIc9NzfKrXNHOjlPXS71iyR84J1SqSuPHj1g2k0sy8KyLr64mTtMNjWaWteGO9PfCYV9dLFBnKZ3/gf9gTczhmE48wVge7B6F6H6WjT7/c0P7jacr/o9mNnZ/Gn799tGtalAturldU7JNgrp3W6pzoIOm5VzR0RiotXTdlS0Zn3BsC6/jeAcT+9Sc6SKOpcnJHJOjDIQh0QOEbRTtYOy6kqxRmkVs81O2El1W6haSKmz8LunSB9VLKcjrRk5d6Ir0JBezGUnqb12fe/0+vfRoJQj427n8jCJSF35B3/v7/H5s8/50Z/9lFe1cmE7xmnHujR+6YNv8T/9X/37/C//1/8RIVXyuOMnr/5z/vTL/4LCwjAGxpCoa2EaBua5gMGDBw94XhbPJ5E7Ce39sdd9ozA/wO5BYf0v9A6zKaXW830OdGvycL6fUCVmv98sQ9RMMQ8kU5oLJePizY1doHXp1tTqMeEWEGkOsYc9Fmon+UW8W/WgPlQI4omfwQTF3VBphklBTTAbvNO2lVYaebxiVfHZdACr1Ueb6vC99JGIts0wzGgt9uJ/7c91RS1Bc7WI4GOXECrBDC0LMRlVCg+ePOLRkzfY7eDtJ2+zHBY+v/2SNEReHA9Mw2Pee/eSB9M3+KMf/Gt+8OM/4/b2lqDXaFkAQVojROVqt0dp5HH05GgapoUoCdQROjS5qgRXf6l5sVFVaSbEaGjwjbPqnbw1hURQV5WllHxMKJEYMrXnlbTmyKJEztwswUmUYSu6etpqDO6w6bbnnhgao9uYm1aCeHZIrQUJHoJlDQIDSMZit/dvLlFXDAuBmCPWnCisWlkbhDRQl+IqspBpnVAbYiAHVyWm5CfDwqbA85TbiKBFkSTULIgKQwOR5rkcQAi+J8bgbSr4Bm4ycNADyxypBYaLxiDGYkKaVqwKU1t4J0z8WZzIyR1myUpiQFtjDUbLRpKJwgwBlrpSLVNbY5RKSpCTLQkAAQAASURBVKOTYNUYJPh5jo0WugxeIUtCLVFbweQvO/uDyNA7bKYCxdjTOIkiydi3hHIkpMSFXWGhsHKB2C12aCSrXOaBy4cDDy5H3nn/MR++/03eerLn4vKK3ZRZT43Pfl74/JMD//C3r/nhs5/w4uWBY1nRZgwBmCpxVHaSKGMmRmMM1VGOMQLCPp5Y6oQSaafClALfeQhPvvUdvvGNDxj2gZ99svBbv/URX3z5gsVOhNDYRXEWcE3k3EjAZWxUCkcGQmtYrLBppVshmjNlzS4QSq/qAmaFYCMVWGLtQUo+vlAtaPA5JGIk9Wq/mY8QBMGaR4Cv6wriUKPBuXM9L9QdcQgIZS0+ixehiYEWpmnk4uKS+TSjpWEm5LxjWVbW6nbZrZaeZRCo3WVSUuQugthvduiFAT2y14x1Xb2b6wjK2T1TYZuTbPBm1faaLn1DKbb3nT0f7C5pNQTPLjDrnv+qhG6Zi7l3xobmpJTPSIijNUapBT00mCZq77Jt9VwXBNbSA8zUu5+ooE04SSE0IY2Cyi1hOZDVg5dKU6iwi9mdBFJAW0DSyNIayaCoO+eF0NCu4rHghM7YGoRNbicdUQLUGHPqJMVt1twTRO8ZhG2b9zm0rHfV3l0Yl/sJ08bUEbJlhnAMSFnBEilFrufCwMoYEj/52af89v/5v+Jvffev8+PnPyXMgcMJVjkxyMBpDgy7hi4VYyDtAvW0IFV5+OAxqs8916FD/vc9KFT17F1hZmfyWm9/vZvseQ2lNNKWvmsb0hbOVswhJKp2foxU0lg5LQ2RiWCFSATL3RivodWt/DM9pMsqQ4CixflOJbIbJuZlQZISY8FqQmWi2ULEOofJSX0xCVYHRJpvgC2Q7BKJ11RmYrwkaO/Io3N4DDf+c+q5AdXJl9a5Uan5BlSFRnakwFZCdJmxtYlmjTiOPHz7AbYEPnjjfVY58J1f+5CXX3zGw/CIH938hIdvvgs05qc3fPrsSw7zc0IorMdXrNcz0GjihdM4Dd0HI/RNWc7pn80CIex6DLbzkMx6WGEnoG5j0BwSsRdONCWniIqPDjdproS70K4tIK3JelZfhLhDQzgTYr0QTB3Z8t/l90AkkJwMGr1gaxIcqlcjhX2PJUjkobmUtIHkTKlGNl8TVysM0aMbIIJVhEpIk6vAJBMSZKtcDBPV6AqRQstCq0pNiTBNUCsaG1WVnIL/LnPBbJzc8ya4rpeKEePo60pyo60aVqo5GRcVxiFSmUm7PWtbsaDEeeKoRw6s7G3HLu9ounBzsSelS+J6yzHMlLawhgLBHXJDGJmbq6pUMyHAEGEgEZhAKvsweLKsutKNACPhPOqYW6Ol1VNgzxjiX1JRMSSYxQ2vw1qRUjkEkKZYNVrKDOMFj6fEWxNcPHjCtNvz9pOHPLpSdruhOyAOvLpJvLoufPbxc/7rf/2Cnz+9Zb6eeb4sXZt+QoZKi5lhSqRJMHYul2kFtZWDLsRanZUbDB2FWSOhzWCZYQ9vP3yLD55c8ODdHZr3vHpx5Pf+8BM+/vyG+XRDYyanzAMMaYGZQBUYUiPbQAuVRTPCSpQTaxoJJGgzoCSdaERQl25pG5wwK0fqsrjJSR7IwdMAa+t+CKFfQOxsq+w2sS5fjDF6NLd2qI/NFeKOnPfV7hTrfvbqLpS1NcYh8+DBAw6nE1o87RIRyrLQqjvXsTGoo3sISC+Ytt5SzbqtbbgjZ3a/ge2ztoLgPAPvy+nZcKv4e7Yxxi9yXUS7g2LnBoQY3abY7uBw297X7o1P7llK35cs+udsZmGB01z44stn/TMgIt1Ux9+/tNXDnYIgMiFrRRLEuGdg70UtCZoTzwz3CKiqIEOPendzNovu/z/PMzEILfrYRXDpYhPvZMdh12F/OJ1OfeMMr1l7e+cOTe9GIPeRG793Nl8HGIcrVDNRmisVgDwUfvuPf5uW1K16uxOiLYU2KLM95R/93v+dq0dvcLV7QmNmeDLy+ZcLITbGNZJsIu8S8/KSUoVp2rGUFVJl3I2U9c4/5HxPcicJvn+dt9frnibtPHPf0DeRjYPh93yxzdnTqE1ox0CIlZBmJ8hp76TNHAZPhpSZKNFxCPGsDchEa0hYsGqEUHqXmZHgEedi3j3rBvGLux+KSffO8KCoRuvoRETbAunCTcjUofNikWAQzNz6OAw0JifIpdUzIhASRmKhifscREb2jyemFBjyu7zx9kOGmPj0o58zXM2sJ+N4WBh3T3h1KGSbePr5U169nKmnmWrXtDBTyuzpwmMkSWTIo6NZcfMiuFNilVa8IdICwbNLwDca1R7gZdLjssOZvxMk9FGDk7T9uvYRif+H1uhFpys5am1I3HgWwtgRAneeNRAPYbPgxU/EeU62ed7U5ptchAoEqhcZa6XSQBI5e9ZTFIUUPNSLzcU39ZELmGyx72ASiFLYpehFcW+qxBKZyWMcArS1EGL1MZVoz2xqZ36TYaQ8+vPe+jqf0vl+WlGSCallRzb7eTYNSItYKRAq87FhtvBCEo8vLjicII+RZQ1ctUhajiwUWvBk0QRY9ee84Q66UemcN+1KwC7HNWGtBUJEkrjJG349XZ1oPbXaGNJwtsz/i15fH6l4+RJCYHyY+cabA99+820unow8+/mO7374Td779nvo6gl1KoHbV4WXzys3L4789KMTNy+f87ws3JwC63qkqDLoLZVElczFUNntHQ4UDWgYKOrpdiIJwgpBqFJIrVFiIrfE2jsxpHI5POTdX5r41jtv8fjBN5jrytNXhY/+9DN+/uxn2OklOVYWS6RgZJtYCSw2M1h03wwRjBVaw3TnXvlRMIlMNqOSwfZkw6FQZkYCSzBMVlJd8TSKWyRkAhlrQiRTRSjN2bZhu1nBU0A7EZPm80Vk6859Q2rdCjnIvWAwVaz7TJwvaEqUVhnHkQdXl2fSonQPfeujjk3OF+7xFWJO9zbkewqDEM4mNmcSaZ/zh87mv0NO+qy1v+6neN7/+y96Oav+niKiL0C/iADoH2Wvj0TgXJR8tXCJUXj16oZxHBmGdD53ItEXE4ymlRQMi9BYGWxP6i40q8ESSj9f9ELKG26Cso+RZJ4GGHw6gJkSJVNpxI2kKYGGO2n62OruODcFxR0h7e7E3OdSbN/9zEcRX7h208Q4GMaJYdqxLJWHlw+QJw+4+eI5E3ve/PAxTx4/5qMf/owFI0uEEJnN+Ju/8gE/fPYFx1fCBSuhCdcnZRo8qvrBmzve2D3k5c+/4PY0s88XPF9umKYdZa73jMm248ORoV+gIHpd+bLN1t1fIwZhLe216x6iqwo8J8UIwUAG5+DonTW8aSRG7X4fEYuZQCOwkCQgLfV4gEjqHXiQEWXFzDthkYVoAybVG2cuCBSKrQS8sAj0MUeZu2pgQgOgB796IRFMCepFt48VAVak+nhR1DeYYgUq5DwxpcT+SSLaxPu/9D4XaeDV9UKQPRcpk+MLHr3xJvp85ud/ds3pUCnLwvHwlOP6Em0nlz5KY8iRKQ+dHLl9PoB7oSB3JNJai7P7742fYkzUWljLSkziSZedMNladZ5DLyjiZpZnYH29iNtYV7rdujg3Qlvr40hfK9xevpKjv6/YSuyIUxJXOjS86Ix0K+2tyTKPDq8WkBQJI5iNqBUsCsjgJFR1l1QTSJ2YGJorLULMEDLdA9zNoZZGnQsqFYuC5BESxKa06KOXakZpwk4m54WEgVZ8LF1bobSVIWdyTKhUBnV+lXXuQwmNGEdqE7JurqFemOUUYG3EtnKMhYt0wsJEiMY8H0hFmC4vqEujxkQWcVM1XI1mXRzgKK8SY3alXvP8GHpRE0K4awqDINXdrsngMjW/xlUV/bes3fdfX7uo+I/+53+Xtx8/IsaHVGk8/+KWjz55zh99+XOYJ37nTz/n6c0z5sPCXFdEYLUJqIRBUJ0JbWSgcMktL+Mb2JCJdQROqFbKMNHWiOgVajNTUoINQPPKySJ7nRACc11Zbgu7q4n333/Ad753xXsPP6AsjY+efslv/u4PeXr8EpkrSQZ2sWJTw/RIrCMaBp8ptkZIwrEJMTjkpe0RTXdEySSvKVkZiXX0zV+MGtRjgCsUILaRxoxaRuwamyutOpHHE0gN1R4j2zXtEWjdLvscj9295tU2zG9DMrzyV9NOjuQ1625n83cCYBB2u93Zac47fn/iW6t+s8ldp3ifLLl1lptV9hbqVGvtJCt97b7YtOJnNKWbcn1147gvDbzvsHifhCidyOfdzR3y4fPHO3+M7XV/k9r+viks+j/w3+PGBB1pqbR29xC5X0JP9RShSXIicmkQhZihxplWTy4FBLQWP38J757MXTCjCEHhlByOMGBp7mS4uVEOKbCPI01cOini+R7nfJStWKlr58zYa993k91u4yf/HpGYDNOVGPZIzJxOR773175HKxVrhdPLE2Thb333b5D3mWdfvOC0zMzauLjYkwzek8d852//Gv/kn/w/WBLUtnhA07qyWuIf/O2/z/d+49+h2jX/u//sf8/PPvkJ77z9Jq+eX1OngXk+nYul7do0u0tOfQ1ZO38nzt9j+weq3Shsuy/pm5KnaSE0txYWSA2CbpZTlZDVofzmvgLIiVoDjYgMru5xnkRDQvIOW2eC9bRTEVpzs6QgkSaGyhG1QpRMDooV51yINJAG5kRg1JBwgTtiVoeu40ApDZPgpk3WGHHy3LrMtCHx8PEDxnHgrXff5frVDX/jr/0GP/zD73MxBfZtj14oxzoTYuF0LHz26Q0f/fRT1tMNZT0g6RVaFSQyTYEhZIJekLKbObk5Xh+bmT+LTlHpUsIczyhCafXsTNnaQtOeMtyiOzaHQIi+9kQJtNpIQUC6P07weG2tnvsRY2StjWG4s29P2cfAIm677VLk6s6q5iMwbV4K1m5MlVLy7JXzOtXXFWBKkUN3vCS4VFx0RC3QrJKij2tq6wRKycy1IlHIaehk20AMSqxCi5GUV9q60NSLYm0HVgnkEIgEdvioWGNmSZlci4+HQiGIkmNzWXkyVnUFEsnH4slANWLRx8YBX0sGM6iNFgLJhOXUONXCWww8ePAQwgNieYVWIQwByQXbR6pAuXYOSW0NJSF4k+y+YN0HSb1B9rlLdSdajWd0McSARfHjbTDGgaA9O4j/ZoL8V19fu6j4nd9pfPT59/n48yOH5YTwijQE9u1H/OTFS5b0AZexQpx9A6l0bbYSZqjyhMABnRKH9haxQq6VWQIql1SbYTV2qgw2MzehoZToMG5dA60duQgJi5Fff/wW3/jb7/HWW08YwsiPv3jKf/n7f8LNZwde2kIalCFEKo6MPMiBm0VY4o6cMmsz4iik0nyT6XbeIpEYTpQ801ogtgGGwmSNloxkbha0RCVZw9udhNiMKd752QJtJmUjJMM1BQ6XY9rVE518ZkbMTp5xmMY6snA3YqAjFmErZfvC7HOvuzwFJxca0zCyGQipGtZ6zsXZRU58d+R1lYeZsiwnUsqMefAioLoiAbOzu+FrXbLdke7OmzyvFxRm9hp0VvuYIv4C5GGbvbppVziDHtvvuO/FcYdCxNc2snNHbz7XlnuKEVUf+UhXtNRaCVmgRZeiKWgeMRnRWhHJNJlQddKXJHfb1NrIZAbdjlsI/VwMKqzaEIEUEqLGXFYkRapBUCVPmdNpRrlDYraFd1P9bN/djXLste+8XfMYI+u6srvYM+0GisDFboeuxt//3t/j1e0X/NZPf4/LXcRK5uc//Zg33nyHdx88geNKC8Ivvf8+P/nkU37vZ1/y99/6kKkab02PeeODzI8+/hlLhYss7Ovb/Jvf+hHxOvI/+O//j/g//Wf/Mf/B/+J/wn/yn/6nNFWur687pOx+FfdHXl8de/n3uo8+3btfsLMVvPV8FndQVIL4zBy7oGgixIZKcYqGRkKTzmNoYImgI8RI0ALFHRddwSQ0EilW0BHxqaQji3nxblPdwAyCcyVo3ZgpQXfVjAYxKMbRlRxauxV3wKoiVhkFpK2YrbRgIInpasdf/ZVf58c//DF/7Tvf48133sCk8f31pww2kPIDVtnx/NULHl4+4fqLz/n4xVNe3nzJp09/4nyPuDKNhpYdF/sBEyXkwFo8owTc92Qjfov5mCWax6XbuYi1M8Lp/B3fFlJyZY6JB5+JKq2tQHROgCox+jiwNM6jxCRdQSKdaxXk3vWnQ/A9tFDBUFLOHuIlQmtCDEbEbaRNBpouToZsXjS16sUOKTE3JZIwcbMqMbcij8ll2625m6rG5OZUxXlIF6GbVGVfT051hRzdLVQb6XJwR9Q1duMo938wMffjyI1RDCl+bLVWmjoSkGNCwtQJpY6rONdiQEUcLVPh/8/af0dblp7nfeDv/cLeJ9xQuXNCI4MIJECKmaA4YhQVR5ZEc2R7rZHXzNiWRhote0ZrzXjJQbY84wka2bICOZIlipYoiaREiVkkQRIEATSRGkAnoGNVV6664Zyz9/7CO3+837l1uyl5sNbgLjbJruq6de+5Z3/fG57n9xSXibYbZRRFo8NVW9lMvuBqIfbC3aEyT8fE6ND5nNWwIgQI2rGvM65Ij2L25oWPhi/QQvSeTLNAV/t956H2wYqIbEF2DkeqhSrF1r4i1JpRcU0bI2j4Kmsqfvl3nqaLAR/X7MwDXudMSejdBZx0dDGRJnPhaklkP9HVBQXHRiyS3BGJ2SpPGJjEBGVeRpwb8VqZiGxKIIsnFsVHs1Cd2+144NyDnL/vHGf3z0B1XDk84BOffp7XrxyCHoOHbiezyJ77+o77Ht5jTuQtb9njrQ8+Aefu8N/+yK+yvhHwXsyX7U2HIGVCcjROgcwoKJkjxnCJUC0ICKckLVBsCLjd+4GjeLtsdjGka66J0A5OY1NYgRXaqoN6bwyci3UTrmRoqn8RaRhpORFCcsLRv/dnT+sJVJW+7++FOtUKxaYOKjBli9p17WHvYqA2RY49fMUSJLeH+ZYV0ESap4FU2w95U6Fjn8scF1utyGmdw71iqH1P3JtinF67vKHbbUXIaUjWdjrzhn09b5y+bP/dujDfJhU2+u29hQMVsQNVGrBKS6awQbBKvqJIVSbnGrtC2/SnwZNQBskt6EgZNTNt1zLiTBvjgMaNQM1FQnYna6iUs3Ep2hqjtuLkZD/bXC3b1/u0rdZ7z2zW0XcdtVoHgyQuXlqy5iZv/cbzXB48N4eOWwcVt/NWvucH/wgvv/ZZfvzv/iirsub5Z79MiT0v33iZn/2Vaxx45Wh1i3E4Yv/sPrnMSasDfvGXfw6dL3jl9S/xxMtPEAgcP7tm1y050Lt0fWSayht+Hqd/JlsdyOniQpyevK8NcOTxITClgkh9gzSsRUZZ0iMZZA11olG1TMtTo60xXKbUiUoHPhlLoiYq1ZDq6vFuRc22AtPaqIxM1NLh1FDQeKNCeqekYlqKKhHFg0xAwsucrDNEsl1ITtEasLmkUqgs9mac3d3hgfvvYznbQei4dPERjm+MxBgZjgfmO2c4v/8Ar776GsOwJr2WuX71NZ47/gy5mBCvD8LcF2IEcZ3FrsftyqyyGYxZYeeHEJ0hw2tN98TQLtjrauNLc2+4exA7NJsjoUDwvfFytNrZwcyKQWiW+AZ/o+H7K5hiqYn9WjjbFujmfbTguKbd2q5+o5geAO+ZxBqZ6By5tAj5NrkKTlGzc5iV2dmZlgvt7wPVreXUYujRph0TI5hKLeALo1NC9bgykkVxIaA10zlvttIiZDWBohMYik3EgjqqCKHFCiSvBBcshbRY+JxF0ye8i+aWqQ5KJQTBq8fVyFQLribLu8LjtYmSVZiK4dpXecVQE8uacLOZuevqxILI2o0wK0xDxtcWE+fs7K7IyRTcq+Co1OBJdSSop1NHGidC6KnOVkqiiqu56ZasNKi5FfQVwpuawH/Tx1dcVMT5vAmO5oxTQj10DCSX2ABdrgztgQ90uDQjCATJ5F4J2R7AWgOOyOjMriI+EcsEzBn8yDsf3OW9j99Hd7/wpSvXOLrVc/HcY+zuKUd3hNvrgS996Rnm+4VbVy+TDvf43m9+nF/57Gd4YPkEf/D3P8Hf/fFf4we+/sPIfdfYTw9QLq34R3/3U/wf/8z38YG3fZbfvnad2J1DNaLJgsS6IJa1QaKXGZRCmiaEFYKN/mY5MshECYpPleLnTDKypNKVxAxI3pE3CWox66D3jYIgCM5i1NVCf83pYJew1ev3xEzSHvotIZHtRVpys3Ra52GCRnM5ON/i4E8VGu09amPOrkOLPcS+CaKq1nZpm+fbOTkJuCq1nOxht5f46cv6zdwEG6/a96J6r1hw3qymIpyAqIA3pmq27/E04On0ZQS84WLa/vvpicnpwsV5U6zYVGPb3d9jRJieRCg5g3ZmvRQPkhFXQIz85wRy2lCSiV9dY55rgAnDEvuUCUFJknG1Ta5cRmiF4pY7gVIFuq5nGgYLacuZWgsxzu8leObSDkVbLdVmcy0NeWzft0ea9TV2PbnWxk0AUuHM+TP84A/+2zzxvieYJs/wIfj1j36cy1ef4+f/p3+Bi0eMU2G1WXNDCxd3zuIWkcO4YRhGku+p2fPQ2fsYUuby+havHb/Cwl2EMPHlK0/z4IX7+Ocf/wWuHR2iOBOepjWVxv+o9YTvsf04rbEpxbpIC8wS8pTNTeMDMVrmDaQGVgJat60aoZqbwvsZoWZcrW3/rY1y2ZDMbsAi5x3VOZwoohVqIhDNn+8CiL0PVBIimaIZV2cGSGvvP++teEFGVAMikazJRhxaIA8UjB4ZQ8XheeydD7MzWyKdxQqc37/A8XpCaiW4yjStqDzA5St3GNId8uS5fetZxnFo6bBrvK9EH+hDJHg1rVbEJgrVkPonziJvolebTtg54tRCvLyzdUClmmYLNbElVlQZYl8sDgYbqpZqnb/SCKZBcFVO1ikOgzwZ5h9aHqCtqcQgbNZ32N8pKD5gUEPxKJYrI84ca4LDlUxBWpKyXbQOxbeMD5xNsYIzC79Ta2y8syA+8SbKtWTdTPCW5TFhejfvHLFWZrJodGdHpyYIzmrPb2lOv6CO4Cxd1UlswsVWOzk7j4tAKY4YMXs5Hd7NKHU0B4q018Bt840qBIiTIzURqb3enqoOLZWxJHJxDMManSY0FJJMxLokbzZs8kQIHhlCiy9X1GVKrSQ1EibZNeqxgfTECa7FEozVwjWlZIq7J7cR8XTiSQISrKhz3r7+pG98lv9NH19xUUEaGAM47RjUhG6LFDkX7nBXIzkE8FDJZHdEJwvrjp2jiOBzT+yEjXS2hyNRNndxO54xL9DcczF4/uwf/F6O+gLDGf7wd0T+6W88xcsvHvPCczd41xOXePG5Z/nTf+jb2D+7ZHZJ+Fs/9gn+0Ld/M0/f+iQf7N/KB9//GD/3kY/yoW98mL/5Y7/E93zwrXz8M0/x1OuZazcTfT8n4dBSGMVsN0zmca81oqEBn1gg2hFdRcRcG8k5ogIp4b3DscLVOUELqXTUbjL3SC0IGe97s7kVJUogaSZhD7PH7oycMz5Y8uGU8htGhU2vd7JOOK0x2B7M2nDfzjn62eze5VrbmkXeKF70vqmn24pFW2rktvvdxpzn0tS/zfFx+rI/vf7YTg1yztY925jl5PdrNbR4CM7EXZgArDa3x1ZHUJs+5F9XC59AkE5NMt6M8T5daNjqY9u5mOZBxOyOYEVcSpnYBbv81Kr61LgGXQYlUGrB14gjoNlZ7HMfjTuiimjBVWGVB2LYI5dMZsRLYlMqE4JqxhdBxS5LSw4s7eCHlM0GXNtUxKna750Uas66K2lAsLKdWtjI1AcPatOBGCzy+3CauHP7Pj7xU7tsPtfztvqH+IYfeiv54P/FT33hn/LxW7e578GzXFvfxalxNDbrO7zj7R/kzLkln3rqd3AhkFS5fvWWrb1qZMVAn1aWBOuEu6uRMzuCqwknjnnfM4wjKSUrYr1Hyj2dzunV2clEydtFZryObFOxygkrxGzXVlirBpyz6GkvrXgFqgTUF1KtqPZWitUEfoXIEimCaKYwtXdMZ4p/11HqRM4gXixpV8VcW0FQcZQh4PpqE8xQqNmmIa4KMUBiD60J9YHqdzh7foe93cqZnQe4efM29731cfanOQBXrr7CjXSH5W5EJ7h65S6uLnjm2Rc5XN0hT8fEmkl5gwIxeIIPhCDGNCCCE5LY66+5EMXhQmRq4MHte9wC6xpsq+mctkV11WpiyRBQNT1XdP4EJBU0U51SpK1kq9I7m37mau9l63WasNJbxLpvl0/RhPexrV/trepdONFLScuzEQk4Gna9FkvD7BSPPwGkeSxoj2YtpfqW9QJVnEUgSCUWs2OG2rW1u1mBa/TkVAjV0TUbZ1EHXU/J7WdcbQIpqgQRousYmobMB7VgOM100p1MAbyYq0JrQJ1dxjV7sk4U3eC1EkTQFKhNqyDVtIEuOKRkpNvDF48vGWSiUMjA1CyencvU0dhLucIsJnJaIwtPHhNaOs7HHa7KNdysicRzJWSY1JD23gcqts7QXAhEqoPklFQnZt7WHjop835pAtgKUTHgGop3QhWH03vpzP9zH19xUVGdYyYjkwS82I69zgqjeqT2+JqYsLjp6M4w1oDXRBcn/ORIs0QdK52rjL0nHJ3hw9+6x+eeeYVRChcePcO7H3obOw8u+KWPfYrXntnhf7v/OJ//yOf5E9/7YR79uvfyj/7J7/Anv//38ML1V/mJv3aZv/gDP8Dv/8a38aXnbvDh938tD3ZLPveJV/kDv+eDHOSXefpLhe/5pkBOVhT0PqFlMvpeXdNJNBJeFMiZ0Sld9Xhdgr/JpgSmuov6FTNJJD3Cd52FruRIUqusi09mK6qmuK0M1GJvWB8iaRzJzXLntvHE7WK3btgspFsYSwz+XlKp2OVvk4XaBsAAzoQ4bZzczXrzuNfaOmCbDIzTRN/3drm3AsFCpIwxAffCrLY6BGr7R+8JK09zEU4L7raFxen/BszTvu2wtxdJjPZQbh0Pp1kbaONhvKka/l1OlFOrjdNfx9Ylc9q9sv3vTv/3J1ZHubdLNiGbIYWNnNguNK1kyZAzfkxELy3EyV6f2tY7zhUIPVU6tHZUl8H1OBGyDya4xAo278RWYbJN7XSEZgWWduqengZt/28p6aSQcs6mLk6Uvu9IZWLR7zFNk2k2xh64wz/81T/LT/zyWcJwlu/46T/I85vn2aQ1zCtHN1fM+8jhSnHBc/doQxChZxe/s4+vFfGJg+mIaZzoXGDRL5off04ZVsi84GPEBUWqxXeblRgQIdXyBt3Mdjqx/bDAqXvvL05NskpDDG+LScTygixkLCASEPU2hXBKqV3TPwwIhSoQ2KXocctcEIL35FaAiWoDPLXOWTNO7esdi7eppRr4K5uRnzACbBryuUBZIA52L+zgs8Vif//3fA9XrlymC5HXX36Vh889wctfeIbYReoAPgirCYbjyvOXP0Wph+TxDlIney5dZLmY4Rq4yQeLoEdNgY9WonhqtnF+pTKWgeBN/1DVRuBTNrt0LhVqPSnkTZtluwMttiKNsQPUhIwiGIHSVggOsxvmKnixAl3FwghL0/ZU55jFaI2BCoi3vJxil/L2Pe3EU04uZYOR5WKC1s4bz6GUgtdGmpTa1oP2d6JC7yMdcJTW1F6QEPFparopB16QEiytmmiiXtNN20Rq60QCNs6eR6m6DfsGqWzyIV23BJ2RslBDD24klwE7AGydo9XomgKIB61rXGkxAwRTFIYJR8UVGBqR1RfHiMfLur13B6RGa/RkYhZtUpByQXNHpx2dz1Av0Hshl4nd2KNlIHczetklRQOr1Rl27+SRNI5M04DzPVKN7zO0dXBXHVJmxlUKHpkJWRSthdLCAmvOiAvkqVK1MPf9V1QrfMVFhXiBMsMxMKszzp/JHCdFpg1eRqJboiUSqCBH7IbIOg2MUyT4BTJVvv6db+Hrv2HJL/3q53ngLR/gz/+738hvPftJXrpSuXsYWN2ojJvKQ2dGvvP3v5tn1p/hpWsjuzuP8C9/7ad56udu8YP/yQf4F//qN6mXlnzqznXeJY7Pfu5V/sS/+w0888rL/NLPXOb/8ue/n5/8rZ+ipj1WU2Y1KfNF4qnnX+PFK0L2PTkIMTucJGpxqJ8RvFJLwktBt2EzmpCipCrU0plvugp9LXgqJSRqgSAKtTBzSk4rqu+Y+4BoJZVMcY3fMG2FgtKG2/6EmBlOdv5bWFYTIbafgRdHywuFVsmLCCHec2l0XUdpqOeUrKBQ1RZklRtVUhmmJqRrbomTVYmqiTnftFY4bdM8vfp488V9ekLx5vXIaVfJiQCzvrEA2F4+wL/287zZVioitm/l3tfz5sLizUwMkS25TtslZq9lbrvzKpkpJ6J3BCqlZEbNJK1otayTpKaRQTxuikTvSHrExIQ6E/DVOtq4vk1gRGxKU7KtMerWlivuZGRdczkJm7M1khUWhjm+5/QJIRJj6ywFvGRmux3Hx4UxT7zw2l387BZdNELqM8/8CrPdDJOHVAg7geV9l5Dbt5jGiUmUTU5QJ95y31t4+pnP0fV2yO/uLihVmfeOxXzBgd7FuZ6yWlPiwrogqeAsjKxmc2TYiP13r8hOF4hb8a22EbuJT01QuxUPSxN/OoJZPKNHt7okFKmVXq2wLwqIp0g154DuAJbxAt4Q3yoGCKotN6IWnLNnteSKtCKvc5WkE6T2viDg/T6LfaFjxWMPPsngA4889iDlaOK5F58lSs/RwSG4HnG73Hz9Ol/8wot8zfveyevX7zINlzlYH0M5pI9CrErXObrZPgjMu2gNSXvKc1HjHHhOJgHmktjSP7fx56FNH2kNSrD1hxSq1AanswI6lXsChBijrQCdt9TiNFHa+2o7JS21ot7Ewt4LrkDOIxIDnfeE2qjA3psWo7lKgm/ESkCcIe9dKcY2QtDom8DZVsRZIr1aQZ9SsjVts18WtUle0sSmFmLfIUXRnIkxMOVKrgkn3gBqJQCFZPsfQoOsBeyfVKpNQNpUE2kdO44iGScFdKI4m2wGHEF6KK35whgWSdooptJySyYKPVUDNquMbG3QopkuBEhWRPlqgWNFO/DgNaO5UBgZU0VTYBzWVDdRcw9uxVSETCanDYvQIazQMpJ0oEoynFl1iFRydDahDQ63dX9gUympisVBmGsQTHthNViykDaxZ8XEuJBIX1Gt8JUXFdqxyplvfst9fMeH38FO3/Nbz3+Bj3/kJfogrNcFzWsmNyfPHOeq41u/5gkeeKTn0y++yJWXzvMnvu/bePhtwvziJZZ3zrCZMp/7/JqnPn+X60c3uHj0ONOHH+PGzcKVp57j9/2+t/OB33MD0sDLl69Q549RZoHFWxec/fiKb/3mh/nFp3+R516InNVzfPK5f86zrws/88uv8oufep28WPDTv/4pbq6tO/vxX/kYk9vgZY5MheAtj6NtpOxiKooXI7UoCQljQzcruEDUQsmBtct0CFELCc8kzR/PxJg3BJ1AltSScFoJYjz5pM1qhZxcHCJiO3w4QeBuD9pSiu3K5V5nDnJyIAfnCe0Q8N4zDoPBS3ImdpGUEz50rZv35JTaA2uHSM7ZaIgtQOzNIsltF3k6b2R7UZ9MALhn/zy9GoHfvSrZfpTtugI5gVq92TECvOHXThcL25XNNpxqO6U4/TVv/zk9dj8pitrOuVZTnGsbyzq1r2nv7BnIhS7MyAWSihl3ilLVCrJSM9IOl95FyAVPRy25qd7NfloxB0psOSNDGokuWjeOnBxsWu5pUbYFWCnaVjfWOdoBZf//Yr4k5QmnPYd3N1y4OOfsTk9Zzrl7dEgaK1MpluNQBpQFj771Xfi9S9RkF/Ne9zI371xH68ALX3yVxbtnrFcT65SYqrAjjrkG1jWxiJEn3/Ukt+9c4+VnX0FkwYs3ruOdEoMjaSb6QHa5ZVW8cTJxWhuz/f5OF6k5mxRzO5kxSFFjebi2c6bSBXteaeshU+MLWmd2AQcLvELBuQlpbiuDKpmbSp2cCG9VoRZTwPvgcXkgImQdUCrL3R26KIQ+8PjbHmcmO6TVHd72lnfw9Odf5O7NFXUzslieZ3SJqXiO7tzlaMp84TPPcXx0wMd+6yOUusbrgAuRRdcRgtkMvQhR5MSiGaWntnwhKwbkZH2hYrZlj8OrJ6Pgg9knW6CfwZZsredcbTkb9rxKtWlCDNGmqtp4KG0KEUJASzJnSPv1EGz9oLWcaLKCN3FmrQW82WWDa7hzaQLOggV4SWiFMjYBcdgUtCgqSlajB/dNRJ7UFsQ2yTINjK0pFW3Jz85JK8qrTWOCEYkrtT1OhST23LmSCWqkTNVKopCdrTCC2PpHEVwIjRg6IxWLV/C+4qlQEiLesPm5EoNgCJuCUOySdg5lTtVEqhOx3StTyQTnqGb/aBoVjMgs4IuDIoifkaWS6wYJFXplPQ1M45opRLrlhiw7jMkR+zOkPNKHGVMxcFVo1NaiBRFDe8cY8bGjaLa01eqYi7nWxjoYjGurffKe7MTeS9g5Z8kgjpCV9Lt1+v/aj6+4qFA94O3nH+WH/+g38A9++SleeSmwmQ4I7iybWwPf/KH7+GPf+028Ntzhf/ibn+DP/dDvo5xN+Ovn+IH/8Nv4iV99lqOp8PRrt/jxf3mF+eUr/Cdvew+f+tzHufv6DqHzyO6awm2e+p3f4aWn7+P3/t73sptio4FFruVbfOy3Nvz7/4s/wOabJ37x05/kX33sdbr+An/hr/8ML1+/w0rm/K2f/2WUzKyseP3uyrDKsoBamamwqZksHbluCDVQfMeCykFNZgEMU3uoxV7U0lMk4Vwlq7e0t5IYguJqonqllB7xGckgjNToGbe4Wi1ozvYmlXtAp1pN0GYBdaUxKOzP+C19cqs1cI1Sue30xC6f2HUGVsoWWe6aqGixWLAeVsQYjWGfMyVlcproQme72VZgBOeZsq1CtvyDk0ucbaHzxrXEaWeGj/Y28t5R26TltFXVe08uufmkDbbSRi4GvnlTMXG6mz0t7NsWMqeFnNa9v7GIOf13n+6Q7/2Zlm1ipyZabbSKKto6bcmQx4x4x4bEhsTSQ60JH+31jL4jEPFupLiCVwg1M9RERpBqh7m03AKtTT/ge0pOlFKYz+cn39e2iDz9M3hzTPxWG+Kcvd4pY0Q+Tdy4q/jqeOziORKQF5HZYoehDhwdZZ585weY7TzE+Oplrlx9mUXfs+jnLJf3E+tEHhPPX3uNPE7kPOGk47BMlC6wKSN+E3k7F1nv7/Nl/xKOTBiSUUZDQEMHMtrXGbztmt+0uvrXrcukFXXOWcdaKs2hsAW9tbWVm5oaKVo4mAriMiqVMc/s0PeHOOnw6giOexksirlw2sVGLcxiJW2SKRIlUkkMqdLNe5wrvOXhx3jswcdwEji7K3zpxSs88fBbeOlzz1OYOE5rhiHzlof3+fJnb7E5Fl58/g5Pf+51qtxk2hyTjiZcTnTRIV3A+TN0XSS0sDqthVwLdJFNqeAcToc223JNkGsWQ4fDucC4tVOKEhCkCCPFLKDOiifBXC0Biwx3Ik0nZRZPA105lGIoaXcvadjTo8iJ88n7SAyRWiaqmABdtRofxAnaMN/RB5TahLFGrmw+Ocw+2qYVW1Fni5RPJRMdSFWSy0yl4kOHSCBPGyAzi6HpYdWagFLofKRIpfhKqKBOsRq2tkNrIkhPK00pmKVYNKPSsAdVid6DM0utR0ACRSZcGKE4W1lLsQTl5jLy3pxitVRzqfiMVk+gGHVZBe8rWoRKIFelc540ZfCKm5IVIc40JaVMeEkNvtbcKyUx5pEcKyOCrkeWyzl+LExlolOlzJV0aMGJuVRCFZzvwAezDgukkiglWXGGI2tCo0NlRpXSdINNw5dHCs6aHi141PgdOEL8Kq8/gu7xnouPkxaHXH71KW6sLtABC3+GP/3dX8+3/cCT/I2/8wmuvrbiD7/nw7zvO97P//vv/Qzn44z3HzzJEzuf5LOffIkHPnCXF77027zTfYhUlamsSXXOpJ6cHb1b8B3f9G7+d3/4a/ny8DxPffoOj59/npdvTLgq/PhvfoR/8VvCQb7FZgx0fc+gN3nu+kSokbkkfJwYR+G463BpQrTDB1iXibDomKfEWr2NqH3Ga2TlhDMS2YjHs0thIiVBwgL1x4QCQ7Eqe5wqne5Q611GvyBkRWVEhx5hDToguWOu0R4CNUCWQVQMlWrkwNZdtNe4lIzDnSQ2OhHE+3awtAvcmQ9ds9LNOtyWt1Ars37GMAz0fU8uubk5Wp5IKxC6rreJxjiSs9E2cxMLllJO+AIn8/om+NFS3wBc2tYB3huUq2ynDVtNhdw74LaaB9F/jZPjpOO8t744oUoqJzAo4HddTqf/+5NAs1KM9NfWGqd1Fts/ew/+06BgTi1sajs9ksrq4AB1leQzY11T68SoHT54Wy95QTyNPyIsZz2bmhmqb5ktx+SqJmpr6nXE/r7glc1oCm09UeEDmLBKaUwO5+zgqYr3gZQmW73kzP33XQJsxDyNI857SzXMPc9ceR0l0MUCmpjFwCPv/zZCuMgrn/8CIdxi2FzleNMxjYeI61HxdL5jZ7ZhubvD67du0C8WoJWSJhyZ3gmfePbTMJsT6Km+EuYzjjZHoLZj1zZVodgq4eRDTtFYq00Ltis7aQ4d5zyr45WtOFxLG8WZLQ8FCS1DJhFCJYqQCgYbcscoHY4FwoSyQbXDaQWnmMizN2slayrCMBaieLxzZBz3P3SJC2fP03nhyccfYtEt+PQXXuPhRxx3DiuXHnmS2ST4fkHeFC7snsPPr3P1iytee+lL3D66yQsvfIJFn2Ca8B5cF3HLHUL0BPX0LpGqot5skho9Tjp0yszFJgCbNjWsWz1R1uZAsNVB1UwMnk0x9osP3nJesAvECgbTVHU+GCPGOYI402l40zYoQtf0Q1sxNiiTVGIIZolXW10kkuHl8baPx0GAUAQpkD0o5njqO0NCi9b2nrdn3J1yNIkIpWacQi+mt5ic4iXgXDJdGIbyDj6SazKip3N48YBj3XJ/SFZE+TgHDCZVysgs9mQnTFWhGASxDQsIPpDXZrMda0Gdwe6olUgmuoBzO+TJLlV1uRU/DQ7YKJW2mwNRR5W27PH2wtWacZrpGkK/FjnJL6oKoTqmXHChmmGgOBCHNKZE6IRxrEwpsbffcebsQ4SsVHdEGtdIhP3c07NL9SNrl3HeUUOh1Al7lSJSPMUJZCvcpjyR1eGKIzijeZq2yKEamShQLG/L9z2+KqkMhOmr7P4oVJ69esC3XX6S//2f+VO8dOV1fvUTz+A/1/F9f/Dr+Uv/8G9TeQuPfvDtfOe3vpMvXX2aqy8fc/nwWf7kNz7Kp59/hv1b38D5nR2euLjk+MqGue7yfd/3tfzEP34RHTPDNPDbnzogLJ/kpz/yWX71U69Q50v++i98lKwBHwJSDjnQRJZC6CLaYo0jI1kjXpK5S0SRJKALeyjKQAiemAobiVALlUgSk9WUNJDaKBVf0NyjqSPGiVFHBrdDKAAjpUs4Cj5bxY4keu/Y+AGfqsVNu4I6TNhUc/PWG+zEuQDYn5XWhRUcpf2aC7Z3px3SRbOhy+sWlSr4EOi6HmNimBVx3Az2676jqlmLxDukVIbNhhACIQRySrZHbcIvc4i0h70x/atq+30Tk3Lq0od7DgVxNpJXkxfgneBiMCFW4w/MF3PW65XFe6sVSr7W9jlAm6Zjm+ORm4tEnDRB1L3udltc3CtOjNq4LXSkTS2cOEIwAeppG+oJOAtOLK3iPcM0EKO5cBLNACyBuShurPgckYDFHudiXVah8U6E4is1F7w6Sp2IsSeVI4z5bYAztuunWhiH6d7X6oywmFoHWqrpE7avgckHbCcuYrkb5/fPc/nqFbx3BA+iwXzvIVnAk0tMyXPIyPlH30FeJ25e+SyHB1dBB8bqUZ1wocOLUvOEUrl9JCwzzF0wh4U0ZXyIZBe4xZqFAwmO2aQ8+sADfOHlNUphp1swHq8b42BiK9CzC8skxs47yx04hXl33miMIrbakArjNCIYOl0VQuwRiXg2SIgUPLlsEDmDsrKfB9meKRUyDtGEc+AYSGVO5ZhQs9l6vSfOe558x/1sDidu3DzkA+97nEu7F7h7nDk6rMwvRvZ3OoKbMduNjEcjV483HK0Kr72+5tbB0xzceo3P3X7VLgapzLwnOIff3SV2nij281OB0tIvvVR89fS+Qe9EzXpehVw9XrWtR+sJoCrlash4Z5MHgD40fLI0d1AV8BF1BjXa6gQIjuqMJKrFVrDigsVwi7meRJwF41WxSILQ2QXpYMgj0tawVSqoZWqaELIJm9UmW7bRLXTOU6tS2rMXnMdJNHdZraivSHD2zBCQWojOkWqziFJsDe0hxp4pmYjWqZg4spmCcoBBlL4U8jjiQ2xkU1sJ+ZzpfGBqBYCTQJqUMhpwq6olSdPSbsUX1DmmqRI0g1OGnG1yoq35EHtOJbfcI2wKMaoVflGtaUnVAumCsyZrautSLZkQHNHGNWSELEZ2rnnCBcEnJU2Cz5m5g3l1uHViPa7xnbLjd0nTEVPX0c0VyTNWR5613xB0xlz28XUDndKHjr56jvKaiYL09r5Un9EaGQmUOhBToosLYnawWVEjjNOKnRCZysgqvFHP9v93UVHdwPO3X+K/+bE7vOfRfb77Q+/nh3/ofv7x3/4kfS+cv/AIg/ZceeEyn+I83/RDOyx2n+Ub3vphXh1e4qNPHfON5wLn8lv4xg9d5Wf+2TV+4se+wNHMsy6mLbiTbvF3f/lX0Ly2N9cyoGWgqjKTyiD2RvJjJMx7JlUmlFA6W1PImglHyJB1ie9XaBJUOnrxdC4zpmCdiSj5cI10Hgmezs1IFKoonU9IGVA/MLiMr45OErV6XFVGZyFB0mV87nC+idRqReoK38R5GWMb5GrjspwT2sa9UrcQsKbyryb0RO7pD7ZaAyNLCjihakZRYtfTlpTW6VfbKy9nc1LJdF2khRYzrNZE54khMDbL37b7r80Lvh2wn+gfWte+dRyctnCae6NdiFguw2LZM5WRxaKn65dMY6HzgWHYNP2Efb6uizam6+b3HA1qGoRpsv13ydnWQmJ709MWxG23+4bVBtvJBSAYoMYHYssEsQjte4Ct09qLrUgVIASjXVpKoxJDx7zv2NREodLXDpdtXSJOUOdxXY+bRmYSONysqRRmQWBS8/2LtyBEHFWtAHHY9Cieooee/rnbUuaeCwK0TTBs7Pu1730/aOXlV1+1PJkEThOzAFO1wi1KT3CJS/c9ivg91gcvUg4P7KLKEKOyWCzJU0ZV2GzWpDJxtE7QRtypKF7MOTETxzhOzLsZ+XhAMiTvef3mTRbLPebLJYcHh+Ra2gVqmOuTCdH2f7fpk3Ba8GvPgbK1m6aT9+W2w1WFqgmK4rQn1R6pGe9SK947cyNwRJBkroXarL/FNEW752aIUx68uMve7h77Zy7SSYDzgYsXb3Pn1Zvo+cjOpYd5/vlnOH/pAlIdr71wg1WCwztrjlbXmapnHG6QhxHJji5MxH5GcJ7F0kHtyXVsLpgtNt6eJe+l5fVUprzVm7QUIMGonW31sEV/KaCBdqFBbtNDS+9s6w0Exai5rmkgQvDUpIbXVmlobLGmxhv/QbHVlb3vDMEtsRpZUe2Eis0K7Z2nNmqjF0dWoUohBaXL0Yp/5wxE5cPJ2sM5g+HlbLBA32ic0Xkmb/ZHEVth+ArFWVR9bVHjUy2Iq+Ds3Bm1Is52/b4oSyzm2/Q3kz1L1VarowhJYS7G88lUnLMpivMdXiM1tyyZUtrk10SetdjX5QSDpzlhJFOl4EPEFfu5TVKY6sjCRcZaKc6mK5RGE8XEtluKsXczom+NmFoOSefs9U9a6IK3595NpCmAmCZik49IZQNUQjgPEeZLSNernf9aqVOh+IHBKdEp0QWOpwMDiFAMM1CNluqZMVBILuOqo7jAelwRvWO2M8NVi33v+jk5W4z9V/LxFRcVCbhwER64L7I+Kxxsjnm8nuP2zQPcLfiWb3qMp3/7Zd7+OPzkz3+Ss2e/h3//u/80X3zhFf7bH/113PoBfrN+jqf/5mdI+S6Dh5999ilSUmo3g7phGSqjVvqu4tKuiQxlAjJD7Zqq2RPDCAxEXRBzIMmcEjbkWskUigbedfYCf+Tfei9/6a/9HMWfxw9HDCWgHSwXkW6l/Ns//C287fElP/pTv8GXv1TBeYZScD5Tqu0qXQ5snLKUNU4jSSO9K4SYqZMnRoXqyOuJUhO+mxjrwCzMLdujYJV4aYhUsbGuUgz6o3oS7WuBZg6HNvWtNPuSPUzeWcBPcJHgO9NPpEpwM3JK7J3ZY310wO6ZHRMTVuHo8AhRoZ/1jONETtssisY2iNZdbKmN94SR2gKD7q0aTsOotlODvb09zuzNSJMyTor3HXdv3TXoy9LGkeBYLnbMrqSZGCymW1skuosdJSvSBUoe6PuOaUptVeROpiinRZdwurAobR1jvz6b9eayKIWu68yWllJTz7+R7nnaaVJKRbrOvPFSqBWKCFMyvkZxBizSUtBSiQ5qmpipozpYrzfszuaMdcNYN7iiaGjFodaT1z1VozXGYCzjWm1EvxXjajWQ0daR45y3v1OVGHu++X0f4ud/6Rd5/KHHuHzzKkfjZCuqZOmMIcwRCotuxv7+PnlzyM3bh6RpjYZC9B1zdhjubljs9JSSWC6WTCmzGQZKheAx90NJjMV4CXNxDNNAx4yoyugcqcDubM7+fJ/hzhGd8wxTIoZITtVU/yfFXysu6nbd01Y/bS22LTRohWJteQ4nxaUEpPNUZ92FtK5Zi7NO2o+4MuLUM6ZClsz9T5wlauS1L13lWz/03cyDp0yJ/d0djnXGF55+hvsunCcqPPy+t3L48obXn3+By5dfZL1ZcXxYOFjdtAyUsqKku1AD0Y3UVOhlybkzSwtwqrnhos1qWIuyIVlnXSrig4kCWyPgT8S32/UhNvYX2qTPCkunhv9XZ9htL/f0D4qc/HuugKukpLYOKUpuF71NAq3LD21lmNvPxEtogXf2/HiMl+KagqXgQIWenqyFGoWJildzr2itFDeBerwEgrO8JucULTTwViX7RvmtilYhO3u+vbfpXzMhIC02ngKCOduQSs2TTXVsx8Z2GH/PGWR5HvbaZKpkYgWRaKFxdaQPpm3yrjc9iAh4IdexAesEykDnBWFL2oVUBxBbVXXVJiW5ZOPPUMmu2mvtbc1Z60gfHZZO4JGgSO3A2XmenIHTKmpZKOaoJmDTIh87fFqjDAwyUJ1jvZlYntnF380Mq0NkXi2QbMq4smpr9QWCMjEai0fn5gzKgDj6mbFzugjTVOlKJWsmSGCaEiUkuhiY5QBlxjgL+Aly1+G2mJf/Hx9fcVHx/d/57bzjwZ5HH4gc6YzHz57hr/2P/4Dnn/sy/9lf/Sy/9zsf5InFDr/4O5/g5uol/rOfPkA3A647xnd7dOEusxI4QnDs4KeRYT7SS8YXx9pXRk0UiQwacd3GuPoiREmMpeLFQlsGBZEFkjsWoeBkzaABX88SfSJnx8PLx3nHow9xfjbjbU+c58mH38Z3fNe7+Nnf+m3+5U9d4a/8n36Ily5f4W/8yGe4nCamCDV3BpaplckHsyJRWNaJlGforJKKYyZKzBMqx5Qp0C8u8NDjF3jgkfvYXPkUn7qciaGNjr2zlYaYD/uE3YBSt4eouAatKc07bquPqtqQ22axy2VCnNDPHEhhSkPrtgf2z+2zWa3YPXu2ibECR8fHVPXM5wvGcWQ9bE4Khq1ALqVMCKEp7bfkSzvx73ER3Antcft7i8Wi6Rk8N29P1GJ73loz85kj+hnihb6bAaZc77toFqX2EAVvQUbjmJi04gUmAmma8CKEGBnHEecdwYVGwnwjSOlegWGIa0sste7XNCL2/U3T9AbmxpudCGA2ttQFizQmELzt9of1Cs0KTQgXumC2vOBIWun9gmUfidFz82gNODuko3U5xZlSHBRXQMZmk7SjE+DeSuZNupFtvodtzyt9CHzskx/n+o0bPPTAfdSUmfWdAZAqiEwImVIHHnr0/Vy8/xy3DjZsXv4yXW/46Sll1vkArZleOiR6ynpid7mPk2CdmLf8hewqe7v77M53eO32Tfa7fYaQGDOUnPC9Y62F6eguK00cpsEorxhfwZ96rTn1vW7fX6r3CofYxTZtklOvgb0mPgihTGycoy8Trq7IsiE6iMVTfKbqCP0Oe8szvO8Db2W1vsF7n3iScZ34+cOPsL8/Q8eBYarE5R7zmzf5xm95kk9/6gW++MwVvjbv8YXnr7A6uo53gcuXXwK3IeeJkAppSkhfWS46vAidzIgxMNYEJdsTXR1aJxArYMkJIRjiunWmGbMflqYnCSGyJU52XdfgaHYulKqE2JGLnRiGyjYGiDVZkLOdCzjwPpLHAa29rS07E00GDJQnIsTYnBS22zQRZbmna7LEUcNciwjRVbKONsnNxkkJyVIucSZEn7uFRctrbkApy/UIWgneRNrbaHDwuBDNsl8qtdozWkTQ6Ch5ZjoZg8JQayWnqT13ggu23vEO1Nn6xxejXeaaqF7QYPkXvfc4CkM5IIRIUYzLUSbUBaLrmm6iY6yVVbUpn+VuVYKC1EAoHc5Hkg4InpIyRawx9MCeLDmcRiQENCnqPBvvEFfxLhvssFYDmDtHkMBIorpGVabiJBC6CKVQykBwHZIybohMsmH/0j7zbskwP8Z3Ql13zGSD+IDTGbBmciMhF2INFImMosxMctuKS238lwDBogSkRmRKdN6xt3OBizu71NWGywe3Wa8KjmjuKvkqR59fu3qH9ctn2DwxI5XX+Buf/VmuXruG69Z88vZTfOQffQJ0hYSMj0uWbmCcT9SyZNCJriqjeMOFhY0hv1Ow0B48Ls9Jmlk4uyg2OeOCY8yBpOeIkuha6pwXUHfMzO/hkvDo/ZHF2cDzl2/CsODIVYgTyY08uLzA//lP/2H+8Uc+wi/8gxt89x/4JtLNz7DYWfP//Gv/FLnvSWKd4/wxWdd0PiLSIQ5cBeciU02oS8imJ8iG2XzO/NwFLu3tcfHiGfx8RjoqXH75Gq8/exmY4Xxv06bccgeAmhvhsthOznmLndZSGla22VrFkcuE3+7/FdMtqDCb9whGifPeKHez2YKUEsvlAnWKlsRqNTKNE7PZHFVlGiec2Pj0NEzKtcLhdIbGtng4uXDl3gTDOcdsNqPrOnJOjOPApkwslwvrGtuBOeZiPuycT0AxkzNLoHOGBA7eE4IQgid0wdgA1TFNgZJr426YADA1GudpINTWLy5i30MIdkmN43QyldiKUOfz+Uk095snLqeFnLHldeRaCBqI2vIevKcQmIq2Tk9PdBXdYs5sMWPME2POaBYSmaEUom8FmprbpuTSHAm1/XNvUqJNw7J1gWwv1pM8FBH8ouf60S3o4OVrl1mPo4lHy4jLjuAD/WxJcT0/+Md/P6+9fJUb154jznoYJoiB83tLvvF7vpXXXnmNz/3OZ1nMFvb7mvGuUsxLhwvRVnklw9Ex+2GO98IwJtKwAXHEMLeO1gGl4orSN7AXtTa0r7zhNT8tsmVbQ2wFtM4ujdKmc2xXfyL4uIfEntrEfM55A/30HfN5x3u+5v2kowPuu3CRZb/Layt49cvX6HvH448+gpufY2JiffMmL716m9tXrnPmtR2ee/4GYyn89ic+hrpKcQNhXCO1oJqZB4fvIiyEvjPoViliPJOyIrqe7BUthVw3Jo7DgZamf7ALXMWZxXc76XO+TQgbqlytsO1cm8K5Lf12azdvULRU8KHREmsbaTcIE7Wy6BaIRYrisdCsE0x+2HJxWrCaCwbaY6txwTDczoSXDkFTE3p7Q0GLOrxTpFSbsNRMEhPaGi/GE51HawKppPZsqd9qpIppI7QVR2oC0ZMVa2OVCBY9LxLZ5sM41xxyDrOXSkWds+ToMtqEz+Y7eHEmtqai0jPVwgyx0EBmuAxTMT2J4Jj5zmIUmNq0zJldtibL+nBKLYXBC9I5vAYcylAzoiN4JdfR8knaGtb+J1iiqUu2/pSeomPTx5kwX9QEns5B9Yqqg2ous1ESxMru8jxHG3PtrDdK8Ylp7unDnNLdRUXpslF3k0zUIFBN27FtqGLoKNkarr4vuL7DjQWVjMRCZuRobcLyKoUYK8EXKJ6D8lXWVHzuC5/EpSW/8UWh6oiLyiwEhlqZ6SFuFkEKxc+YdGSYMjVHREc6F23fp5PthaujcyOudI3SNnFxPuehx3d5+tlrzDvb4Uwrx3vevs9YX+f5qxU/LHjPo2d5x/vO8dkXX+CVz634fd/2Ph58YId9f4kPfusz/Ojf/gxSz5hgUEe0Ol65eot/8QtPcX/8Fr7hzsQDswt084Ts3eWsP+aBi7t84Fsf5id+4mN09T7bw9UJysSYjXp2brHH3n1zLp67j+WsZxgLB6vCC1++wd2DNeN6Q/YjdX1AJCEURGbARCXj1A5AF/QkilxLtj3l9vJuwsFtmp9snQHOUVKm78I9RoTYPjWXxHze26qo85RUrPsfJubzHueF1fHKLEVstdd2iDvnzM4m9+LKT1s4zQlhlEvBdqq7Ozt0Xcd6vSLlxGI+p190aLVdcUqZlAZ7mMRG2KVax55oXatTajW4lJugixEfo01MxNHFYPrGGBjHiTEl87xvL/4YyTnByQCUN3zNpq6+B4g6nZBqB9MbAVnbP1srDMVsaMEpIUSz+yYIpdJHuziqKj4GVItld7gFJThqta4FL2w2mSi9/fxaR1jJdjgqLcRMTkSo24LizayOkzUN0InH1crdowO8g0lzEyI6go8MqVC9sBru8N5Hvp0/+P4/wn/8k3+eg1svEqWQ+4nZYpfv+Jbv5O2PvJsnLryFZ576Al6hVLOZiQ90eM4td+i8cksTkyqbCrP5grmPHKQDVpoJ6vFjYtH3lGFsyHiDLyUqOVRcbboKZ8sPhTdMmU5/v5v1hhwmvI/ttTkZWth/2wvRz3E4HnnsIqVOXLp0kd29BYLjvnMPsnjwCQ4P73J4tIYo7Jy/xPVXXoc647d/5TPEuMPNg1scrW9T8kTOI+DxNSF1g9aJvk4QBemEzge6YKNymx4CCNGD84GSXRMnVpyzSYTpHSq61YXUah19ydRiRe6WPu68ILrNlYltyoO9T5x16opad14MTV07IVaYFcgKowPV2J5RC+ZyXhmppn/AVqcFC+IyJ+e2qLFi3JxYDRRtlg+7FIuJRsUZVbOTGaKZrMZtUA0s/IJNHdqa1hw6lgbbzo9imG7VghMb96ekZC+Ij7g2laEUgvOU5vwoNeNcbELWSsoj0fXgQiOuBnzZCpgDuYxkrIkxaqdZPRyOKGYnLU2p4lStEGRCcAS3jTiwFXUI0daPpdpqUczUgZRWVFaqUzRXeo0kb8WKq1A9xq1obhV1hsLfRsrXmhrQbI7WQvDxJDbevkZQ8eDMgZHyMbuLJzg6WKEOUirsLD2HhxtczIb7j3M8R0RXSCGidHQ5MdVKdsF+HpobQsRRCxytJ3TcEFQpPnNxb4+ZOqaaWU8TYT43nU21xq+r41dUK3zlQs28JHQGEZklT/KYZ1khi5JyxXUQ10oXAsc1IB4WOpKzMJNAioZ0LfRsxNTE6gvT2vO+C2/l7e8NPPe5K/wHf/y7+LnP/DTHB3v8b/7wN7P7gOPv//xvcvjFyB/6/g/wwueP+Y//9Lv4q//FT/L173+Yn3vqt/ia+/b59m//AD+++wkObhQgMlRP1wljXZk6OkzUTvj8l6/whw4/yH//X/85rty4xXOfvMv51ZIxenLdcG6VmeHw5xZ84F2Pc/+FJa47w42bA9ev3+bZG7cYxltMqdB1xqwIYtCsWjdUMaFUroVaxRTV21Ok4Z2riq0LjB/LFsFdq3Woron4tqJF7wI+2CVleRGR9fqYxx5/jNt3bnNm/xybYYSqrI42zOICHBwdHTNNE6Fhs7eCsO2oXbdAHbftEloxofeYCSIgzrNY7JHKxLQ6xHtPP+8Yi6LjREojZihJuM4U8K4KGm036Qu2Ew0WmmMXqfm3kYIXGKaJ6APL5aIleBZm/ZwQAkf5yEKGcm4kSW1fs7Tpj9ERqyq+TSxqLSeX9mm41puFmicMCy1Ugu1li7AQR6iO1VgotJG0c2SUmkGjksh0DoZxoGhqn0vtMPaRUjf4Fq5lsARaB944m01HQRPdiXBSZDrnWgS46SoKzRkyDVQvlMkyNlLeGNXSKaVESq3c2az4r/7Kz/LSldfZ1AEvHf2s58m3vpV3fv172et3mK4eoyRK9QgzFt0ucEQuif35LqoDO2WH3MHMBXYWM0ORr4/pUkElspkKs86zyQOZiu9CK4L0BOy1FdPeS13Vlhh7Cn7lDD60GUdq3bT3fyOlouAqowa8Ru4/f4YPvec9hD5wPB1zfu8B7t64wa1rt9l/5BLznY7QRzav3sGtOl544RWOxkzFkarlatQ0EjTj8oZaRogQZs6mZsxwLhhWOufGzigNuKT4UO1ycTObPqjBj2JzZTgvljYreiLI3Vo4Y9fZ61KrxYeLpRsjFXFKdB2VSi7ZuldnbUCuyeIFnBDU8k8G7Lc7CSSXzaboe2o16/k8RGpp6z6FzveUxo4IwfQZfd9TtRj9Mgu9zk1o6wUplT44pmJBbS4XnA/UGq2xCWZ33tRMjcZ9iK1YEbaFZKHmRIiBoIFcBiqY2LnaehhsRaw+MJaRSiAgxC6gFVQ9woIpH1PlEESYz3eYUrNcU6gu42YdmlooHdXsxDhCsCDFXCpFM7PFgmkajRvketOAqEOlEFFcmwSLd6izwq2NEHF0pGRJplqqOQZ9oHNQ3URRA4d57dDJzotaMtHH9pxhr6fWk/dTKQIukvJEHwqRwOggYWsjHQoHt1acOW9aqewy/WyJG5TZJuFShMEylbNEQhWCVgatSHQEFYqkJjkL7a7JdFWYlgvSNFKTcvPWXS7OzxD6QI2OHDpqUUJRNI0WjvhVLSpkZHCZLvcczI4J0w5JenCG4Z7ShE+RyRkKdrmzJm16kp9T/EiKjvnQMWpB6oQ6pR9uk2Kl6FmevvEqx59TPvwt7+U7v+XtPPaWP8qv/NZV5t05fuOpX+Pjv3DEf/nnfoBffu7X6OolHlx8iLd/4Ane/pYnETfjmZfu8p//l7/C0XCWMo8sQrG0SSLHDsY6cVAjr754g6fvXOc/+L/+Ak9cXPClu69z7fgIxpGzO/ezf1/Hux97kPsvPcjv/bYf5PgAPv30Za5df87cCS4QuoJqxMXIVDf06ulcYdCIjIOtMrALVqS2LqcR5oy7g3dNY6H1BCx1IkI8ddF0sbMfgNpoO1dLp8s5c//997NZr9jfXeKA6BwHR4fm/Q6Bo2FlI/+t1QObfGwPeKBpEGw6EkJoBwGUlImdWVMJkcViRkkmRu37Di0QvSeGnrAHi9l9vOPxJ7l293U+8/lnCA3X64vDV2c2t9Ci0LN9P9Wbxj2lypQTLkSExHq9Yjab471nGAacE/b39zg8XJ04QGzlYRf4di/vuCcEPD2o215ipymb29f7DV0zQALfVaDD+UKVW6S0Jkgka8EMyGJ20mjagTP9Dlphk4wimXLC954xD3htkwoE10SCKSW6Pp4UDjYxamLYcq97L9UKb1PUZ3yw4K2qFV87Cy/Kldy64d67k877qLzC5678COt62w43HZjNlzxy/4Ps1jM88+nnuHV4F6kLO6hkzWxvn/WNwpm9XR55zzmuvHaAP67s1MzO3jmCVHKE/rDjzlHgwtmIjsq8U6IsOD5a4SoEH5s2CEQKNVv+gsJJMZFLuVdwiKlLdnf2cHvCOKyZcmF1tEFVWscMPhxT3UXue+JBvvD8l3nP+97JpNE61DTiuwUfeeoV9v0e11+/zSvHV5ny04h0OEacDpAcKR/i3AgIs+jpFz2+i8bLKIrD9vSFjO+MsgoWyZ7E1nBatgRLMeFgk6HWWskNQqcEem+FUdKGdS7KLHS4GChq3BvRwXgZ9PjqEC1oK5hjtSLAyJkFdJsqKXgcpbMVaG8vJyqB0VlB0+WMo7PgxM7TCcR2BuRSsK3hBBUrFHwg6UjUzkKuHGxIFCd41yEh4STjY2QcbbReFLwzrQ7BEwi2LpNC0dG+Dx8oWnBiCaKKw0UhqCeV3FxspoOqgHP2fsnJNE1aFWFi3nu87lgYHIEqJnj2RKN9OkUjxFpN9xx7XHCk9UCo0HfCpEKaBkIVaig46cnZ2WQbsZRaBe8mu9P8AocHKWhJVhAhaAyW7FpsalNcR6gdMYMPMNZMmPWUFmaWqwlcnTq8t7UJZUWIjlQKWT0SOpsqTGsmr9QQ0TwydZWDsqancsmfQSVx4/CY5VjIs0r2KwoDXbCAykkV1wVcsulPdZYnlVPFSyV0Qk6K+J4ddRRv05918ryW1uzrnNp1+EFNhFoLPguufpUDxTrJTKOjxDUhz8kyMNeA1mP8CLuzjiqFXB24kWmodFOGqNQaUamcWw489uhFpn6DP9zj+37vh5gubPjrf/MX+aYz38Dv+6Nn+O/+2qe5dbDhL/6df8jxM4/y+OI+nr7+Mrs8xNsef4Ar67fy+mrDX/rL/4SSF7z0wav8i4/8c9LRRfrFESFXtMw4GJRPfPQlrq4HfvKnP8uU9rjhvsSP/cwB2QtXeY6bt2B3d493PvQA5y4tWO7swTqhm55rB7f4uZ/9COLnRM0EjcyiJ1dBUsDjKWwQNydLNmuWHJEZCBIIbsZUj6maoZHwclaopqR3WFLgVukuLarXiWvR5nZ5bHfRXQwm+kuJOF8wX3YsFgsODu6w2N3n7sEhx+s1k07Mlgs2aWJMUwNohd/Vpb+Z2CjeumItW/W9fT39bI6fz8lpw3weKKUj+mgwnRCo1bE5OGZ9OzE/us58b8Zb3/41TASGPNK7Gb0PTHVDLomU16zWG/K6UlcrnFZUfevuEgWzfqlaTkY36xjHgVIqO3tL1uuJPE2AMemh2bKcTQDE3xNebtc55dQe+42Mi3u6ke06JE8jtY9IX2C+x6rsM47X8D7ZdKfZY/tuZod6cYQdx1QHKDYpKRWkONPIed9gnadsk14aWfAed2N7wdqq6d7XakmzJkD1iul7auS+855v/ron+NQXX+PoWDhar5mktgyBgE9wPBwxSkZrYne2x3Ss3Ly+5md+5We4eN8lPvJbv0zxE6vNwLd/w7fztV/3QX7sH/6PfNd3fZDv/r7v5e/8f/4HLp49C6Hjre++n+eee5XN2l63bjlnrJFeB1QiYeFbgJgzi5xvsdC6FQW7kzyb7bpnm7paa6Xroolt8wQK4zg1MiSm6UEo4SydT+zOOu478wg3rt1hFiOXbx3y4ks3GMY1t+4cmO+fkc4pIU+UuraJTM54n1n2zopWEaIz+FVVuyywvheH0ClEiUyl2VaL0Re3GGwn2YSJRQjSI1qpJeM6w+p7p+TURNri8W3K0DXtgYkcKyJzxJkKH99Tq0dqtUlFUGrjb4BHfE9Xbf9uI3nDeRfnLNPB60l2iHiPUNkJEal23tQG3Qs0CFOq5rYqk4mTZYfCkdErqzCTDqfCZqqoU7ITuuro8FRRKzQl0VfPpDQRarTuyQWqZoK3NYGqA8lU1uACWWaoGIjKNUG7rRgCtab2rCgqFW1cHO9neI1oLnSCFdxZQAuBgFNb5agomuySVYHaRbMpiyWGFoEZndlM6xrFNWuy0PlCcAuKzBpCPBDoyWlExBgTE4VaE77aFDFNK0QDDscmZ8tJzYLTiASjeLpqcENDdgmuBluFmgEaR0BTpXNLYp6IasLRfJyJneJDQudKf5SYl8xx2bAIPXtul9Kv2awGe595E62rUyvgsDWQt/0KBXONRKoBKFWofmLphRhmpNDjq/FTtBaiVkpNDcP+VSwqHn3Y8+LVQq4zeukoFXp3xDrCcbcmToIWmO2uGY8S73n8Ab72G+7nqVde5rMfTfx73/XtPP5Bx2tPB779m57k2TvP8As//nn+xB/9MO9+e2B4rTDphut3b7HJkNMBfqGEfYdeDxwzcufaETfXr3Fnclx4X+ajP/caX/ztJ/nw1303N1ZH/PrHPkaRRJyNfOK1T/Obl0eKwrXnJvrqGcohu2fnPHbuPOcuLNhZPgA6MY0brr+euXPwZe6uD7hfL/AdH1wQx1vsnHmcIyZSDkYMVMcsgCsrQoCxHlHwVi1PI6VUuhBRP1GTZRPUqo0C2OiXW+BN0x1YZdzgVu0Q1VpPxIZbQFJKidlsBqrs7e1x/fp1Hn/8UVarYyjKsN4wn8+hwrDZWFCM3Nvbvznd88RZcEpzUNXsZPv7e+3rrozHa86e2aWLws3bB7hZx3I+4+DOXdab0VwSAV44+CL+lnDm0hM8+bVfhy6W1Noj00QaBgZJOCbCoKQ8cPfoMndvX+Hwxi1kFKL3pDYWlmxishCFGDpUJ0qF2SwyYcwPsxpuw2+aiO2URgIxmJfjnj5h+3vbgm37Z2ILkaqurSaaen+sK4pkUAvLU5UTFsNUE+qV3ZmnpA0pm0OmJCjVNbW0NgKgEVO3zILtKmproTz9sf06t8K1rYizOo8rQPAcHI7cfOEQXTm6YtwJ1cj+uR1i9OSNEnc7yuGI9DtoEHLdcPPGZd777ndz40uXOb5zh7jnUe1IRxOf/+RnuX//In/s+/49Hrr/Mb73G1/g1etXufjoJX7w+34///Ln/iEf/fjrHO5mvMyIS2WYIMwCNatpaZwniWGE8UKdrAg7/b1pm97Ueu/n0XWRUhJpnBqjxHIcQvt5lAI9UFS4euUu73jLk3z2My9Q3ciwTmymTEbpdcKVu0RtgXx1InTQdZEY5k3e4m29UhuUq5hmSJoAN5cmOvSuiQiNBhvCjFQGarWOr9Zi06QwA23ywOARMSJsKUoQK1iqmKuilkp2YPszQJu+QsXOhDrRuY7qHVQsZ7MqLna22lMxAFV73bJUnA/0BKpARe2yNdGWiT1dmxK1PBAttpxyTphKZjWZiDt6j2imytwcaAJJCjWY6DbUSqBjTBkfYltxOUIuBN+RSRQZiXaQmHtFMzQRqi14O5vUqqXm2Plml6wWpZZMN+vI6luBrm1NYc0GmoAWaUBAC0aD9ILDsnSqNlKvE7x0NEkDhsu3czd6T3GJaqMRfPBUbdwQdQzjChd6XHVozpaDIUJyQkEhmV5FBJwTpM5swiyVgNGabQKYEYXoZkxjsfPWJYobUTdr+o82INYRyBQXSASGaYNzniFNOK/UMrJaH1KkMu8Dg/RshsymUzoxgFitmeqFsU441Lg7LiAaTVyLvRhalcGZyF2lELIQZx3SBaJWqnjoZ1AgpInKEfe8av/zH19xUfGn/vi389/8rV9gfSMyptvM9gbGQcmD8tDFOW973wXecfE+PvgNj/OZK6/y5PgAdw8z7/4jD/OXP/ezvOvS27i5+iQ/+o8+z3seeJxnj77Ex5+/wnfe3jAPS4K3dLe+BaE8+uCC67cy4SDwH/2J7+e/K/+K//7vfoEP/573Iefu8tGnn+MwHfH3f+vX6T/qWOcRpSdER6wDxzlTU4eXDYtz53j8gQd44pEz6GxB2kQObt3h2edf4NbdxGY4Ro8GyrhCu8TFdz7MKEfU0pvFdOrotNL5TJI14iNjDW0KsSQWUyDnqSJ5om5jgKujZINV2UWWm4rfdqlKaX72CsXEmaWWEwFhPLX7RwzHKwJ9P2cYRh588EE2mw1DyhyuVviuI/Rzjg4OSaW0buPeZbo91E+7HbY2TRF30kFevO8SMQTu3L6LqnJ2d5d57Dg4PqBWz4VL93Pr+tVW5NgKx0lAYiR0mengOqvbG+azfcrRMXWzJtUKmqFuKKUndh0PXnqM2XxBv3OGwxs3yEdHOALTlKm+Il3POEx0MbJY7LDerJvCvHB4uEHEG7aXbbH0xunD9i7zwbepECeHseONgtTtrr8Ute4tFnYcuGRThyoTIr11U86Rsl2aITpmu/vcObiOFsCb/VGHgRgjo94rXKyA2Hrz/cmaRk7WXrYG2Hbv/pQzxzlvwlEEkcThqPz2lWvWxaZAL4ns4UJa8MBsh8+ONzl35ixdCmQyY5mo0vOlL7/InWs3uLu5g1v0+Aq7iwWvH9/m6mtf5vEzl/jkz36Mj63/Fd0ic3aY87aLD1BfHvnGb/gBXr7xy9y6m+iWA7u7S2oa8E45vHsL7+x7mYrlVGwdLFZIvDGUzjtbg2yzPUIXmVI6ESz2Xc8wbE4mfT7OSQgzIi+8+ApfunLdDtsKrq5x44QrAzmMeJeJodLNd+j8jo3IRYjqjMwYQkuktAvGNZBSrUrRVsi4QsYybGoL5bKfixJjaCsOIYSeUuUk1hvZYvFBa255KHIiwo3B9DVasOwKVSTYhMr5QAUGTUQXwMHYXD9WeFQTN4L9vgglJ7YMrd4F0EoWoYrHR48vHWMpFu9eTCjpnSOnQhKzGXbe2Cy5Jpw3gaEPhot2KhTfMWml91b4hM5blDiOrjiLxxZzqwmdCRaDpZqKWPEh3oTM1WUkDFZsJY8PRhVNORmWO7imzRJj7bQ055o9DsujUF/NlSF2vgZX8a43SnITtirSHDrNwhkquQ7mVnE92qYo4i2CXWtqgkQThsZuaeeBGJ68BM9UJzrfkXKhUwd4klpatWQoMVMdRA1I8bhgBWXUAFLRaHecE8GVBVI3OD8jNUjeVAabFKhCsERUqYWaHDEHer9DqZ40TKTOcS52HE+Wqr1JSow7qE7kWog4xGvT4gS8a45BMVE3VchaITs6UWTW42YBLwtSnig6UTfHkDOJiouVWr7KRcV/+p9/FI09b3+o44f/6A/y6P0XeDm/xv/j//4jvCs8xl/5P/wA/9Vf/Wf83I+8zn/4F7+NH/7z/ym766/jP3ri97DPhKdw+cpdhpypXWE9HbWF3IoxV86FSKVyu2Re+OiKP/9D/2v+4t/8cf7GLz7No5/t+fTlI4b8FL/6TyLCwKKz0eQ6rXFiqvdcD4ljR5ZdLl10PPzQPo9ceoDd5YLDuyteeWXFs69cZhzvoOubxLDkzEJ45L4zvOfb7ufRJ8+yv3yQnflZfuU3fp1p1+xETiayX6IZejcnp4TTQCwduAOyy4x0RHcXJ2Jbd5PwNibFNmQLcjVbUvT2/Y4p03nL8JjG0fbu7bDVpq0I3jdKZsd6s+bs2QuklPHiWQ/H5HFCU2Y+m5FXA3kYbccp93IxTjb7p2x92/9/u+dOU+a+SxdYLpdcef0qCJw5s0/wjmEYmMbEcnkGJHD38JA+dkDCazsMWLGRSu3PUmtkuHlAmlZNxRzoyajbkF1P0MQ4OKLucmknspDIrXgVnRRKRXNinAZ6MXYIAjEI01gIQYldIKeMc9bR6Cm1/Wn9RC7FhJ1ySjQo98ic27TTE5ujFPI4UJc96pZsporTYurwFgnsQjgp2IJ3LH3H1Q1MdbLpxrSGYJ0YbfyfczahYnOPbC/bbdFQStmmUZ8UO9sP5xwxBgqZoIJ3u6ArJGfMUbghecuj+EJ5laevFS6ePUceVwysUa3M4g5jPmajay5vjtmZz4hVCQVk6TkajnE6UUPmd178HLfvHiEDpHHD569f5juk5wf/1B/nD3zvGRYXPsnBjZe48fznqbHywGNv4ekvZAg29vYCuUzGaDgFKzs9LXKi4E0jUqpxT6ZpYhgGvE/E2LdQvYqLS7r5WcR51nUiSgerA6QOiB5DStAF5jPHop/TRUctgVIyITu6rmcaR9QHhAYzc9lSQaVdWtVIsS6Y1bnkRAw2EXPizenv0r2O24k5DJwDbx2iU9+EDSA4ujC39Z4znonWZik35S0TSuysQw+YeHTe7ZLr2C5HiNIs2nXE0THLgUknNGaqExJKp96aGkM0osGjuSLZ3lAzcfhUKGr0S+dNNyJFiDLDqVJ1sMJFZpRYKMmKuYFMEOh9BZWWX6G4ah1vcdvsFAhi7BJUyJKoNaMSzflWJuNcFE8k4kKx1ObBBKYuGJQrk6mMOG85Ll5AXDGdhZjTgcIJ7rtr06fCSN+0N6NUqoPOOXyZyLWSRHBFmWHajVQHnBoi3sXKNImliKpHnVIpNrESARmJ9AR2DQdQE0my4bZdwNVAiSa6D1iq6ZQHcnGE2FFZk7KjSoeQCcyIMhq2XEGZGjNmIvrIOisyVbpuYDVNjOPAVAeON3c55+b4+RIZEtSJuQRgj7S6StaBwVuwoctKzVaoogouoW6iqCBqYLMoM4obqLOe2J9jmipRVoxlzVx2yL6SVXA1Wy7K9JXRr77iomK2HHho5zH+7L/z7fyzX/8N/vpvvMxf+FMf4pu+9j0cPb3Dy1cP+Llf+zjvOvPN3Dy4yo3hiOWsBZWIh1nluK7xbqCkCmPFec+NVxJ3rwuHt9d8+Z9e5bB6/ouf/XlmP7PhgEDyz/HqS4lOOjrxlOUKXzqSKk7qSSdx394+y/19zl84y5m9M1TXMR4f8PQXb/H6jS+zo8ecX068+7Elj5y/n3OX3snO7j57fWS9mnPz1l2++BtHvHj1i1y7dZ0Dt6brHsCNgJ9RGYjOeADZ9UgYqeLwqSekfbwvkNZMam6Ogo3+Ssk2HoOm8G/wmSrWaUcTIuXSOPJtJIy2sXzbNcduxjgMnD9/0dItl0sOjo5w3nE8bIh9jzhhNR5TasKi1O914U6kwabMfYKYPsB31oGhlf2zeyx2d7l9+zbOwd6ZM6gKx5t1g1sFZn3Pzt45+tkMl4up/Wukr45YO6qv3P/YfXThmDQGxjwRg/ms1t7GiG4cGdK6vSYF55V5t8OF3Qc4Wt0mTxPeC+OolJIN7JNH5rMlTtdMSZgvFhweHrYzXFsRZj1KbYWDdwGKbTCdtzH6aRfIaTaHiLkMKs46OO+QODBMIxlF6poYe+sSxciERSvLMEO8skqDdY5qanWHgyxG0pMtHbOJY5uzZ7uOyiW3jtk6Lyf3LK/baUXOmS54avCg1nGFOKP4REnCxAYfzYbpXGUzDsRxacmopeJcZjbrmM/nDOuB4qzM7Hf2KC6SDgdT6Efh8q1XObx+B+0jy7NLbk9rrlx7nhc/+TQf/9XP4JYznjjzDl4//CJ/5H/1v+SBRx/h05/5L6xDFKPC1hDIbZW2zWU54W2o4k9Fz9tr4vGzntXquE2ozYYs/Q6h30eqTTJ8PYYy4fyGnc6x6Hpm/Z7tqV0w7HgtKCP9zBMUxrpCe2FCEMlosUJBxHI2RCvbyG7nHC53+NgxlgF10XQiVSg6mQunNQiiwZDzUXGua1MkRx1H00hRGWvGu9jSLW3NmWppHAagenwwpkUIgYnJRKOWG05uDIXgOoLAJNlEz2YTYunmZCx7prTPG7W2vJGWndLQ1n3scFqYxkIfIj1KlkwuDic90uBVLle6Zmn1dKRS0DY56b1nTMnWRBl6CWYHzbaiNZYDqEaoM7wUBENni/a2OqiZnCuTRQqZNkkrHZ65i6ZpERNp2rrDCs+qhSAd6oRRBpAJlRFUkDJjbPTi4EC1kHKleFs1BxYM00RxinPN9OytEKiTNi0Z0Cf6JBQthA6GkvCxJ08Fp8f4MMdrMMOBc/Q+kHI26F8/Z8oDIwk/65iVSM6V6gNeTN9GiRAygzqCVCoZEWs0Z92SPClOEzgQMW1DrZUQFxwlx5lLPX5lXw8zZUyjfd6ZRUgwDDa9DbbKDgScixRNIKE9W5ZHMoyZNKvM+sLSrZiCMGmhK71pblyDLNaJWDPebbHyX6WiIqnn69/6EF+6+wwf/djnOeqe4IWXrhK6jkJlU0cmCYYXXQSkzpi7PZBEEcfNW5lb1w7o+xk/+5FP8PztA+qi8BO/+atMdcNYn2O4uWEeQPxrrGVO13TPwQulHlLqgmnjCVHYi3DhzD5n7ttlp99njmedRu6sNgzHL7LrleVOxze9Z8ls+QgLvyAXOBgG7tzMPPNM4crBC9w+XHG8Mspgr5kyS3QzpZOIlgHvYVRHaCFm4gPIxKI6Jh3IMqfrEi4ek45WuGCXUypTAz3JSTFho3NbMZSq5klv7g8ncrL732KMBVuzqkLN5uE+s7vP3cMjJGbGmpiGgZwqcTFnmgYL0PK++fsFWvcu7XPXWk/ALCcdOko/69jd3+FgtaIk5eLuGVQrh2tzsyBCPz/LQ295Et8vOffQ/RzfvA5JqVqYZp55v8uZCw/R755jHAfcTOm6ntliFxd7tI7U1LHJa3JOpFJImzV5GhhLog8dqYJ3Np7rO+F4c0ycdZb2WTLLeY+kCekW5MXItEk2ltteWighmopN2iFeSznJEDnNpjj9cY/SWSkaIVV637FOAyJq4281a56Bhcyp0YcZJSVyUYIEYxG0QKNMIsqWY2AXjrZdclDXgqBasmv7urbJpLXpM8ASJEPT10TMItZE9bz94bdy+dWrpDSQ8tjQxkZgFLXIp+Iim3HEh4Bzxi+IxREXCxKOcdjgdGRvvqCUiYPNMcdpYn+/o8NT1huOxjU/+ff/Gc/lCT/rSYd3uPbKTbhxjuXeu9jdPEjvPk9SEM14Tag6qpY3WHpPphan/tmZzzmzu4Nzjrt37oIGak7s7u8zlsC0PqILlVmwve/OYkGQHdMN1EJJW7CTIlJOLnyKkQoDnmIGHLTaRQkOUaVzzgLtnE0sihQj96ozIVvJiLfVUy1GvozekFJV64n7QHTrQqos+pnFkzuHSCVnYxRoKzRM7GRrF5uoqZEZfWAazRrtcRSxi7o0DYr9uq1IVCtBlC4UXBG8tve2Qm0FU1UT63UhkLNQ2t896zqk2PsRB4WMSLKsj9pWs40YG4uQEToNlKooJtJWlwkBiwpPI31bU+CCTRM04yg2lhHa57SY8EoE7CwUKh2OqdJ4E4orln+Ss01jlURRPQn18q7SFyHIDMFTfCHlcqIdMWGi5Yw4Z5+zlEKI0kiZNH4KaC2W+YFl6+ScsQFPxQ0QNOBCYCqF7AoyrtrKWBGnZFcMFCcwpRHBETHuRJZMDQ5XsPTQVEy8WmCQxNx1OApaCiKRTCBppnpvDXSzIadhRSkbFrNdyI6xDuA3bI4HvJ8x64VusQurgbFmBLM4i0RcdSQ3NkCYw5WEjhuKBx87znf7RBcoahOhuSxRZ1Prro7UOpGCQO2MnfHVLCpKDcyWe5TuFsPqLrt+5Ml3XuRTv3GDB9zXWtKhVJyL3HzxiJKPeXm8w9/7sS+wzkt+5Bd+krtjYpwJv/T0l2C2oNNj7owj0lW6MRFjRaq96OoztQl4hikj3YLlbsfDZ89ydv8CftYhMeM3G2b+mP3dBR+4sMvu8hxZH2Z17Hj2tYkXXr7DtVu3OV6/yDAdc6SeomvmZKa0C36GD0oXE+uSWDiHq46ROVGPUe3wCgwzkEDpM6JCYcSVGSkUphrpy4y0mcwSBlSnsNX9bB0ebVRfDIiPyL0uTc3uQE257QTbaN6biKhMmQcfeoDD47vEEEhrG2uvVxtmXU8tidVqdfL3qXJy0J2mMgLta3HE3sBQ4h3nLt7HMGzYHB1z4dx5xAVWqyMkCFlgsTzPY0+8D9fvsN4cc+GBR9k/d5Gj20dEr8R5z1x2iNoxpY7uwhlms11EPOloRT04gHrEwcFNNseKcyvUz+hkxs7ujGt3XmdzfMSQC/PYMe8j41SYzXtKLSxnc1QLU1FL/tKJeZwzrO+JTE8cE6qtGLs3bn+DgJM3UkXfTHo0AaFDxDMlE/NZnLHRNSdKs0uC6z2p65FBbYIhcNdnAp7Ot6TJE8ucHW4+BmpbcZ3WfpzGj28Liu3XWVVJKlTnURdYLpcsFp44FhYB7qTEcr4AAuvNSMmZTZnonScxGSslZ/oO9pe75EkpOtFpYu4F2Vkwo2dzPJBrYaie2Zg4rivcsvLlGy9xd7zETr8DjNx4/VnCPPDxZ57in//aF/jsl14luUpORpvM1bgZ/BubG5uqgNL3HbNZh2Csh9XmmNgFZiHQMXLuvgXdMjDTXdI4oWJd+SaNrcO3MKsyTThoyZAm7BvE2QHrADFLn4qQqZb5QKWIEEOkq7YG1GLMDA/4rqOUZuD0FlldsmkgfLQdtVYrRkK04mKrTVAyIMxmPTXbpKqZJu1sa89mjBG02hrEB1uhNqExDW1da6U4+/u979o0Bor6JkY2e6UioMHyUDxUmah1Qmjhak7MmbDVcrlq4r1c8bFDoiLMwQ2Iy02UqmTnqE6ZaibXSodlmWSC8XmSpziLBBeayFQEdWKESy2ENpExYr0yr85E7q5jXsyhUKM5RaJv6PAqRN8bKTM5qrfiuyO2ULOKKyY8LOJQ7/FFcQSzX1NNFFuKRaeHpqbKChS0Qi0VL86oojlZISOGxveipI2tUEIXEUkE386WNsEpJdP1js04tYlitFRWbFdTnJK0Q8VeM82VmThqHS3nC4sdn6YBh9BX06NQJ0LFnHyuMh8yqRPQStfP0eOMU2XXddwuViTMxwW5TqYREbtrYrXskdEV1He4EnC+Ehf7JAJpyoSuJ4hQsxWwqQzkOjLzBjM7mjaEXvhKPr7iouLiwvHaszf54e/6Wv7CXxg43z/Ic68/zUefeoGvf+h9/E//6DZjnfGZu5/nz/zlL9IvLpLzC3zi1Y4aE75sbCRGJkTziI8h4LTAEEgegqskqSAdlIwrHbP9jgu7Z3n44bPs3n+R3T3hXExciLvM++aPPxQuXzvg1377Oq9fX3F3dYd1WTPmRJA5Pnpcd4vglyxSIddI6uaENJJlROpAXxwu7DBiKY0Sj8jTBu/WxLJD7gNON+TS46owiGfuhd4Xah0NVTvZiN07SyZFa6NnNrNa22w4ZxCULZQGkRZxboImj2saDDkJ9eo6011s8sTOzFPzxGbTIoudMGwG0jhZPDw0e1x9w0Vlf7dFFbvgW7hP5f6HH6Z4z927Ky6c22ex03Hn9l0cFle83D3LpcfeY1CWG9eo9KQxE6QQxCh7ZQOTePqz+yyXPeicfO0uw50bXL3xAkmPmAUrYlZ5JEsiekGyZcFUHC507C97xs3AOGZSgVodMRhBdG9vlzu3D3ALJa1HAp6wEKZ1E9y1cfrW7WJn173v+7SdVOVEvnCiXWnNrGkvqprTo8Ub08bNLgZC+5wTidnc43TDkFcm6EIIxVMjRFVq06zY19FQ1NsNV3tfbNc1p0mf7tRqwHuPE6GTxBzT2gSt7Okl3v2ur+HResQqj7z0/POW6LsSA/2kTI3uRNsTJJDHgoSK6yJzN6f2Hk1m/T4e17gY6NQhboOUnlEdsrPP5vox3QNvZXS77G5e5/DGbR547AHurA743HM/z7q8Qh6bZVBbv9jSRrff6+kiTrVpGKQaEXZco6o88fjDjLUy5YyUzGzegwTSKnM0HFPyhHPWwUfvKKWtnAQb3fpAkQZDU3ARNAhSLI57UJsEuFyoBcJsjpPUrLoGLMshoyQk2M89i13oNgYIOKn4oEibqFnX2jdthhLjDMTga4JDxCYipSSqBEo19LhS2pSqnQNIC9fKiI8n2gwRxQWPYjAoV6PBt4NNMbyCLwFxHqKz8CsMEa5VQQIxeFwDQKk4qghJIKi39Dix12UhgeomqoeQlkxWjSAxIdXRqTUluNjojIXqIzGAZENpOCwxWbw3d0X1qCZsG1lR7+11REg1MQZbd4o4ojr6MDdqs0TEC5MOqPOEaIXGkEZwnizCUEwcK77Q49EqJBVC5+mqTXdS8SSa8LkaqZPgKGPFB3Ae+9lUew3GaoeCEyXJQJhBLIJrAmqtUJrwuIyJnCs+2Rqrdh2jZlLNzLs55Ix6T2U7PR6o3tadZslX08KopctKFdZakaC4UJhKZsiFFByHq2OWixlBOhJCtzsnTSPJK+Mmc7zZUNKIhkz0mQXCcZoo4nGbyphHJPR04un7BUiPE1tDOSpeC8U5enVM1XEwJO7UkaARR2S9/iqvP/6tP/lB/t4/+AyH/zflLW8/x0/d+jzPPP8sXVnwzNEVnvqlm+z6niENaF+paQdfAhXDQEvpmZywCEYK02xR0lE3OC2sgMyMvajsn9nlwQcu8ORj57l0YZ9zy4iPPXo8cfvWwOuvDzxz7TavXr/G9Vtrjg7XFIFulph3YjkdtWMx68haEDcyTIJD6cQgMHkcSLGSCYy6CyiTQldHRhfx4xynuwxuwkuPlBW9b9afmijOVkJ5rERx5LqGeBcthS4sKeMxuVrXdDrL4eSjdcfbeG5FKcmEYMobu+talb29XW7cvMH5+86xOjgmVQPO+mDj623eBdrwViIngsA3J3vSGAnjtOHCubMslwtevXKVC2fP8tD9l3j1yquUqvjoif2cBx56G/1yl7t3r6CsqW7DGAaKTuyKpeCVMKNf3k/tK3duHDLc+jyb45tMISG7kZmetdFggGVaWceIjfPHacNYDORUhtG0BbVQqj3omoRu8rz3yUe589DAM5//Er12rETZ21lyZ3NILRnv78FZTKBq3VHO5WTUnHM2F80pm+O2eKvaxs3ZxhBm8236DG/x8DknfOyoCAGYz5dMJVO8mJWzmBUPH5BcMN5Hu1BbISPcc524Nn6XN4G4SvPln4C5vKfKjCoz8jTwx/6dP8mv/uwv8aUvPMOlS+c5EwJn52d5/zvezW9+7ilWw4phGBCphNCzGcwaKwSmvKKOjhQiocyIzjOMaxZBYTRl/rndXcvVUEMHT4uHuLR3lhvHiWvXLpNdYr63y5Vr17l97Q6SCl7NMqhlDTq2Xfmp990b3oumLXIednaW7OzsMgwDJSlL7eg0cFQ3rFcDZUhtemluACfGHCjVXhda8FPXzSz4DivS28Nkl26D8mmtRnEURx8dpaGHg0QqmeCUXFzjbVhxFpyJCxM2sbK8nM6SjLWYcLEVSs63kTo0m2imZqPKdnFB0Wx6BwfQyLO2+LwnqFYrNLW9B2P0pDrhMAvrpNVs3Iq930IEVbwGNKuJGwE0mH5Aq4WPhUDUSFBFm8U9EC1PqTFDBMdYBa/C5Aa8BqZ5RYiI2KUjFUSnBnHyBozKkYg0S7zinTLV1ETUnlywYk6F4ATEqJFdNNuqGNQFqRZV7mWJd9iUpbaCgpGklqejztJIZ3SMFFy2iYH30EXL/KmtKNMqLQS4cX+oVM340NtzXSs5V9yWRuqraS6252hS+4Gpp2iyKHnfowFySdRQyCFYaL3CzEXqlEmbydYosRCouOpwvpqObgpkHYihs0TlVqQIsBSzyotfMHZCv5mYDwnvFninOF/Jm8ROt8uqFuI84hF89NQpI04p6hkzZGcUZl9g4Wd4UeI8kHsI5S5R5/RiBNixOnRKHKU1Y664GBnHY2qd6EKg/2oTNX/0xz/Bar3hd/Sz/PZHM64rSOdxx8nQq/M5m9zAPdm6qclnelVEe3yfbPe+6Ul1QGVD1oHZXuTBi+d5+OFHePzxGQ/t3EeUjrvHE4eHI1/+wlU+en3Frdsrrq43rMaBkibwNu7DKXHP09OZODPbr2cyPley9nRBUOnIbsTVzkaPrhJLR6wQXLLqHcgyQyTjWKM6p5KIvpK0w0liXq1T2qihcUXUOqOU0VJsX1uUjohKecNFcWLtVNobSAwpjQl13MnIvp6I+WLoqNXGrV3s0KSUrEypoFS8Ogux0npqzWE5BHaYc/J7W2dEiJGUMvPQ87a3vp0XX3mZWQw8+siDXL9xyw6F3qNhyX0Pv5sz5y5xd3WA1pE0rHFOCdnhXUf2iszOM58vqOtDysFlbr9+HddBWHrmbheRGWMtTDmjQwLJlAQJpTiLg46+7ftLppZsTo5mzysClMji4H6WFwK/Uz7DsltQBiXIjPliYr1aA3rqIjb2Xc6l/fupS3wLVdLtJKNNCtiuhiwPodTt6+ps5yjSnABQmpVsNvNsspqtrxbbI3vbcRdDFZqmZjspOZ330XQUtdzDUdetP7AVMVsQln25BUpl6R/gkfFb6NynGTniucsv49UTlrtce+Yy45FRV11RpvXAbCcy6+c2fldb63TzJXQOnUamNDLrOjpRchIWZ3c4v3+Bz738Ihf2z5B9z2LnfjYqsLmJqwecvdDTz8/wwvOf4igdompZCzlP2LymJyUT2b454wOg1oILHieeYZi4desuqbl5RCGpFQ1VQZ1HnNLLDqrWaYqJR1DEdvN6avK0BaE5h6+CaywC5z2zGqzRCA2Lrr65shIixsEQb5f6lCZbaQhAIbgAjfao1REswhItWx2UPV/a4sCdE0vjVBNy5mrrAe+wX8+VUiyjRrdGSCf4zrUJmY3wc56oUqlUo6qq5ftU19KNS6F4wVdzGBW1886cGQbSCipoMU2POgy+5hWpBY8B1qpoczB5XKkISvaJuetxbdefi4Ngls8CTFjyrpOEtqCtlLIVWDFagKQEfK9tbVUpvqMWY894AkGFKRdiZ4TRpAmpVpi4YF9zIaPV07kZqL0WUUFcRTCMpTZrfC0QnVDraHHweGbBmpghq1kqtTDWCS2e4Htmc2/idrFiZZgsHVnUBJBTyUhobp9s+pEpJbxvMfVeIbVsDZH/L2t/FitbtqXnYd8Yc861VkTsfbo82WfevppbVawiq4pVNGXIMkFDctkgQRUhv9gwYMuCHgwBBvxgwX7xkw3DBgwbsCwbkCwLciMCJCxTABsV+yJvkVV1q7l9n3mzOSfztHvviFhrdsMPY8U+Oy8N6wq+cZH3ZJ4mTsSKFXOOOcb/fz+9NroOdFNYKpGMpEjohhY/NjYM6Z0UE1YrtTW3pUsnkrAWWVpjapUyDhyD8ooOlDkgITHnRrBEkg0hKWNX+h66BcyEIoJFI7Uj4xiJmpx6mhJDdefTUTKpd88zyTPzfqbojPVC6UYQZQDmQyac6M4/qaLC9kdgRIJh2pmGzLEePVGzCk0nzvSKHjpVd0xSOHbjct+guhBsSjOv3d/yymfu8Etvf57XP/sW926/xLZt+eHDyrfe+Yjf+e57PH7+hIurS3qHRZ4jZSKZsgzPAGG7cVqbHYVRM4ci5LAQrHjKIp0YthzbgGogyR5rSrZ7ND2yrDz51F1hi12ytcLzdo6oh8gUMbZhFT51YeiVGgf2ckVkIJiADF4MpI7wlNggxUiXQk+RYW2f27ohXbezNTLEgdqqY2qBXh2UdI1uPp2eW78O0DrbbjleHlwVvm7EtOzhNgBma0ttHXsIrhK/dj14kcFaaLz26pse9hWUn377sxz2e2o5knTENPHSq5/mzkuv01smtgOpL5QQXEDGzBBHxvM3GHrg2bMHPH7wXV46P+P1++ccjoVjVSQENhP8i3/2i1wcnvM7X/oOo96jLHukLSTpxK6EMTLESFwqh/2esvjCFKKLg4pU/vZX/xH3Xzlj2O0oPRKkMAA2Tez3ezw3ZRUDrgFQN7kVp3yTmwTN0+NHhYQxKm4ebD6LV6VapWv3jSoEJESiJPSY6SgtxFVHMBOleNpgl+sRWGvNNRWqn/j7vFjxky7rr50yWHrv9FrXrkmBMLGEI//+3/p3Gcbn9MNMzjM9BvRY+aP9B+gm0eaFw9EpoMerC0IYGTTw+qt3/dpKIVBgI+QubE2YW2EbIo8fX7JcBnY6cGu7Jd26TbeBp8/2XL73LscnF7z25mf56OopHz5+glFRcXpkbQutC2YVCR4IlXP+hLbndC/23hm3G0SUw9FpgEvvdBpja67TUhcIRlWqOLHSxbK4Q6H5hsiaQxFSXHMzVtuquRslGEhdhYqqVMO7TatwOsiARQdLOYEVTN0BIWsh2q0g5gmkvWe6eCcsBPETMeodMVxw61qIwSFosWPmUd8p7WjNYU0n+qFIIA6B2hbnZkR1rHfJaPScjSgRlUgu/bozoeKCw9EUlUy2StLJOzstIyauv0g3sPDSiRIIRFovTHHg0LqDmMSQVojmWTNjSyyqbHui4uJL0UgX77DE5myKLJ60GRskCRzXjA+VtVuwFvBBHDpGrQwxUsyIOhCig5pMK04YLUCkde8GSPBiCjImQuzBIVeaQCKERjR3G+XgOO4UR9Qa3RrVQIkkicQYKZYZJXreT2+O6VahG25VF/UiQQdqPQGu1rW2hzUJdQ0Mw9BFSDpgyTAaUZQUwJrS+4CYkoN3PHozWEcgPu4qCJ3SCtZWd5gKWRYYlbwEKMrdZAzamUtEBkPsQAFM/V4MKThYDWOMAakLkzU2IdLVzQI9jD5+soWldXZpxKRS5sZyXDj2maiNkj0FGPUsorBJpJXt8xMrKi4wYp/pIbBpjVjGldNwSRiNhNJ6Il8d0HzEYuCl+8obnxr5E5/5PJ/5wlu88sptztJdjtX44APh+99+zF/7/rt874c/pM/PWdrAGApDLJCgVCU2c/YBDZOXkLZQWqWVdaE1cUsXC70aG00cZcPRGhs9Y+ApS09gA2dc0a1zFEjSYXBRUCZw1RKJmckmamhklGIHYoj0JqjOjK1Se0CGTM1bzI70Aap0yhy94h8UiFjN5FpWMV673rh6czRvm4+u6OcknmR1HrgASIKymybmnNlstoTgG05pDiHxdh4cluwLrShd3J54gln5IhJplLXiH9DSqKFwtrnFF3/+T/Cdh+/w0qtvc2c44733PsJkZEqRszsvc//V17m3gUdXM5sIJo2uEPqIbEfC7dswz1w+ueTy8n2maWSRyOXzxwxxS9OAXj3l3/wf/o/4+V/9Bf7Gf/Jb8Mu3uffGjr/7t/4Rhye+2d1JO7a7gfuvnvPh42c0jEk6c17Wk6lQ8iXPOZD2hdobuzRyCJlcZsZxZEiR0ryFeBLFia7R0Cr+PCsC+/RZ3CSMXos01bG5vSlzDfTaSVLXTkdANTAg1F7Zhltsp5FH+0tgZhw21O5CwGaBWjsx2JqxcEqe9cquNA+Ku+aIXI89XLgpJj468xfrLffVTRH6Fcf5HS7njg5C2mxhcSdN3A6MwzkffHSJBNbMBSFwpNeRKIWrNrPZ3ObO2cDh+SVja9RN53Y856On+5XB8Jh7d1+jbm+RNq9jsRCunvLxo++z2wyMd+/x/le/Sa3PCQRqyx5+Jr5ptdXVYOLsB36U6iquuZiGiNU1rdcaUAngSY8aSWYQOtAJlrwtG5zLEIOuxbi7mWpviK15HAiIUtYOhIXTKCtQUIII2irDZktu1e8ZE48TX/kau3GkN0cdN2voCsALIVJbpHRliAPWO/naXeTCxEZnq+toYO1gmo2EwTUuITRHy6sfPFqrSF3F1SJMKaEnjQfuFjMdqAJxgNiUWISuxl4zxdbroQHpBZIxGjRxrVLBIUmiGxRPja4YloSrsvjaQKBZZRyUmitdoEhGJHHohZo822Zqxrh2Krr2tbvT6F3JXQjBuwhRPOsJFY5VCTGh0mgtMwzG1AOQECuIGDXAVgLWZ7DRwwbVEN14EWeFGBIDPmqYpRIUEsbcj6AjOXsnaKcQm2BEuk7kXmG13dIVlWGlnPoJfskzG1GiwFUxFqtsQkCs0Ky4fX67JfSREEdqP4KpIwOk08uemHb0rj6eC5UqQo2dXhekKWXx8cYmrs4jTjTjkRgCSb271Cg08cjzqRsiBQuV/dwoJsiuMy8Hzu+ekS72nI8DY90xyzOCuT4mtSNtDNyyiXnOHJOiY2TIhaCGjZEhd/ZXV4wpYK1S24GoDUrnLIwsNMZhIteK1orpP++a+/+rqNj1TE8+G5skcFhP2LXD66myOSucvXSbz7zyKd54aeTWa6/yyuY2IhP7JfDg6ZGvfnvmvSff4IP3HvF4/4yrqyODZobocbK7YaaqcZUTY0604Zl7pc0pZ6EtHEMDGtq9Cm2yI9hCCyMldWIPSIFRFNOZWSOGUsWALUWO67Yy0+rG7VwIkwSaCKpP0DYyyMRAYi6dppVgCQkFtYmyCBoL3RJijUkqtIN3BLqntjqv30+nn3Bg4C20U/fiJNg8WQDiav9UWd1YQZw0p8KzyyfEMHA8HDxUrBWv4kWvW7+i6hunGBYMVmSsGoTU6FGwGviVX/9lvvhn3qL+7hUpnPHu+99jEqFNkc3ZPe6/9XnOdudc1crdER4vB7opwwjTeBcdR/alcbh4D6SwPdtymCuXVwu79BJ1vkTjJefhVc6/9TY/OHyH73ztu/zpX/6TfOFXXuWr3/wW529/jifvfo+UBz7z+U8RziI6nXH/HJ4cn/HeD9+hV8GykZswjIHHzy9IceOzyNigLK5NGUbqcfHNf72aJ03JzTRMb5jfsDau3YAYV3bEulBWGrVV5tYoTRi7Ma5iWsywpFiMRIkcC0wyIT1xqAdPR4zdF/V+En3e4GHYiwTPk0jz9Fp8PNOvFf+nhyAEZE2V9d9jfS2UtBKGzluvv0a+qDx6/ARNld24YV72zL5OYFQeXxywfiScJ558fIlaZQ6B+2yQvKfkTBwCm+EWn//85znaHeZ4Tm2XXD58wJiU+2+8xgePDrzz+AEZxRGIfp0/waII4Z/TVJyuQ1xphBIjx1YYNKEGvXZy72zTSGguRBSUYy/EaYuqjx+tB1r1DoaPhYwxJGpzMqJ3F2CTRkqt7khYbX0xKFGEFlbhYHY7IjFQaiOpQ5eiKotlIp0WOmjyjW4dzU3jROl1xYkLWjuyiqADSpLgY4bkrImUlNxcF0LzpNseoOG5E0mTkz2tk0tn1EBd4VmIMVin1EYRv09rFJp1NpootBVi5ZA0bQM9BIo2Qp0Zx4FOdOZLPlE38SJYHdrUu0dtLy2gMZJ0JHdzkF4KnkC6kkdVBWmVKC6CzbjWBV1HHzLRmlvz595JvRHMu0AbSZRqXAmEIGyHgSzOi1j6HpMRdKarYHVApBCkYzLQu7JgSBBGJ947jFBk/WyTv691PFRa8a6ZKEmVFP2+8NtxTTilME3BCxKJbKaB0RpNGiLGNCSaGGKBpAay0CzQe2aMvoZbuE2vhkinkx2SFQJ0iF3pvZK0ezYLPpZbrDAkH8XkmukYSRO0RhB3Y2W7opYM9RLbbKmHRorB7/V9pufG0gJPl+SdFhVCa2wHQZpRy5EyBjZxCz2QZSHngtYRrZ1WG4dWKWVGzEf5MTn+nIaHaJ5mxde7zP/vx38BToXw0mC8/srAq/fe5M1XBzqBP/hd4b/0Z34NC8LBQOqGuTQevT/we3lPfv4hHz275MnHhcPyMaUeyVnRPrMLCVGhaKBZZNsOHsKkUBrYck6LGZMjaltfOMBPk3GGklAKiwXMGmqBo5lnNKgLT6TtIDYCz0lWSaVTGFjsjKAwdCgIXZXBZpop2EBqR/pQGERY+kSW4LNMWUBtbclGrGdnvXOgneR75q1AlbCqwG/aF83FO6peEKyf18nKaN0th1MaqK0wbTZrTkUAC5TqhUnvQq14Jb6KA08ZIX19fi9YCkkT0h3xXDTzi2/+FH/xN/7rfPvh17l1+wxk5PDsGeNuyzjc5uzNn2dz74x7m0Y+ClfPKk2FApyf32GzvcUyV8rFQzbDnlhHHh8quWc0RvaHPUEWBhJtvOL/8J/+Hzkfjd39gd/4c7/BD55/lzfPP8tP/6lf4q//v/8K/PCSl8oZr965x9Vd49333+HRB3D71U/x7OljSM9Jhy1JA2kLl4ejR0prpEjHUFIcmNXzQAxb262+mYVVLHsSQp0w2Dfn/NdQrG5Yr8TWSKURm6AhkSSsmglbo9Ebu+itR8ri92TttNypXZHqiv4u3efaIq6NWTM/TkXMTWx6t1Xwx48IOc3n7U3ETYoqvolERYPw8lsv8fOf+yzRlG/+4D3ys8fUmmkhcH5+i3vbiWfPH7EZJ5IKd998lcuLZ8xhYFM9XOrOyy/xve/tSZOwu3WLX/sTb7LIXcTusdMA856vvP91/vQXfprz8zf44fe+QckXTAjLWjz1fsq68TFUa3bN4Pjn15PKOA2cuCzFPB67tEJUoVmhlEZTSCijKq3MKIrVTgiGJNeIlNZd5xNdrNfN6NU3txIDEdbY7Q7r+K7L2t3AaIPPzUfzNFBBSKIQBOte2FiMqIzE1hlRCs57kd7YRMUljnId7KX99J30TcC1DEpkWDtP5rCi3okpUFulWqNRSSFgzVhqIaW1MMEo1hnCSDCHM0nwvCUjkUxI3bCwWk0lk0VITBASpcPGAq0UjwuQRDP1dbPhYnqDkMTzKmpwbZl1H3X0un6fjCxOv7TaGNghoRFxDYOZeS5IbJTeaARSTHTtoN5hLawY7qET1cXyLn5Y8HBxQ3qgG2QrXrSF0UcEFL/ubUXcNxd2NhVCFOYyr99zv+Zd3RKvHaeMdufdmLmIVNpqG67ddRniY5ChK/Mqlj7NjXtT3x8ooJ0QVodWHyjS0OQnQesen071w2MDLOmKXWh0dWuztLWTpoYGXXNiKhqMqJWFBUvG0iP7atwrnawr8l/6GsbY6akiwwGJ0C+McQyUOqO5krcJGUZyLSRVt8rmSlmek7vnqNDdKdTVvwMtd44Y0tfwQwFNgWn4CWsq/qf/5p8j6YbnTzI/fHTk2z94wsXlEx5+tPBH379ieukOm13D5MDFI+OjB095dvkBFxeXmG2Q/hzTivU7hLgwYKAHShsIdYuw+AJhE+jCHQqzNSqADZgemAXGNtJtvThxoeP58dLckiq1QwSTztgnsswE61hLXEZhZHQkaheSzfTkSX9WEmK3sHDExNnyuQ4EyUTqitAJ16hd60JKlVpGus5Ib6hFLLpIqzS3Qd7kI5wKCJ8n+6nuhMjmpIgffPFTUWqp3E4+k67FOxLz8bCKibwKXc9psG5IN0OyXKwWaeagGhUl1ZHf+PO/yUcXlzz8zgN+8y//q/xv/93/PZvdLe6c3ULC69w6u81L0nhpd8bT8RmHpXErbzl75YzzuzvskDg8fZcUnhM6PLk6shwLmzHx8PEDhimxG3d0iVxyRRt+wFOL/PrwC/zef/SHfPnBl3j10X1ee+ku+3d/yGa6zVe+9z2CKffeuEMkcHd6k0998fN874ff4PEffhkZOqU0tmnkec8emDMM9HWzDjHesGXeGCuJ0G6enuWFnuFmQXFy53QNnjYZ4coK8xpvbeK0wOvPS5RhjMgUmXNltMi8hscFcX/7qc9g7QVwaz2vf0JPcZ2quvp+TiORm79WayUmz5cZB2enDCFw/9X7/Jkv/kmOV895/uQZ6WDcHc/Iu4VikTYv3B0T98/vUsLAbRn5N/7iv85//Nf+I/7Cf+sv8e/8P/497t6+x2fvvcG33vkht85v89/+i7/Jk6sLvvluRG5HqI328AKtnYdH48G7F3z85IcATpBdM9Gudcg+s0H1kx0heCFYba1y+/Zd7pztyIsH8UlQprOd604kIMHzb1zg6N22FN1CEzSSl8JSF1LykxvdN4mUfGykQ8J6WW3bp4vvosXaGwUjtMYYB7rCYgUTd3M1UcwCZ3FiNg9eGoGajIP4gWEMI0lc0It1LEQaQujiEeAK0bxI0bVrE1Rpqw2SUOlAT+6aCE0YxbkN7tYQf+5uzhDQTo1KqIZRaAiaRqJEljWVUqiknuhBMFMKsA0brDaaGc3Uf118M3OxSQLzv1fpmPmoQImkNDIvl/SgKIHelBgMslu6xQ50iRid3ivO3hFa8d9fadQYkOaFva2WebQzhETUcQVOdYKkVamw4qQ1YpYxOot5hsUkTrU9lhkNjimvHTY6uvaoQy3ZCxsVIt4VyrWiY/RspdYIvTPGiRKM0RJ9EIpl6AUhoMnBXyZCa51kLuA2DKve8WjVVraIoHSOvaMkYhtAhdyKJykHQUJCiqPhVb27V1WIeNFduiDRU4xMu7OMqqIkppqp+4qlztmtkXbpHJNhgHKMDFK5MyUO1hij0NvCWTQOPbDEM5IMBG2YNSyvqHNtxFZZ1jj3gFFLQ9K43nuBtGbdaPB1tfykMd3/4f/tOzx89kNUtrz65su88dn7vPVTI5csvP2ZN3nwwTO+/u1HfPToIcflghJGhlCoDGAfkgToLwMHUoEogcUCVYwkM5JnTBspQxuEfcyE3DEiMTSwmW29Q1Njss4hTozWSWRmKYQhYXOn67QuFokiI2pH31zZMdQDSmUflDQc6ZaY28CgQrBOkT1BqwuwgtLqGdYm6JcUUao+Jeo9RDoaOtY6cShUU5plpAVKqaRWCU3JfVlFkk6Tu350T0E8rcIanKAoItQV/XdcFjabDTVXb3U2P4G37o6R3Ixqujo9XogSb+oDgkb3nwfQKPQKb919m8028Xf+6u/wP/kf/9tMn7vicz99xtPHZxyWwJtvfJrWhM/cv8urn7rD1WHDl+crDOGVl++z30c+ev4huij39R7vXD4gHy4ZX77F4WLPFz71aeZgzI/3qBbuWaTohmJXfO3hN3jno/exs8rV0w3/2V/7En2K1AQXduD7z77F9w4Dj/d73p5+jf/Ka1/gf/EP/hoxdCSN7NtzLk1cJ7JkT9UjU0rwSONVCHmSE+m1JdQLqtbaSi99wYCAH+kKINAgWKCVSjT/vLpUrAtVQaLPgodpQrogxT2C9eT0CP6lbypr5PN6D1g/KTqui5hTAaHqFkZbaao3OynXJNBSsMEjxkUhdOHy2QW//09+l6UHrvpMXi6xxXh1c59XXrvL+w8/oGvEaNy7lbijO37rP/wtzM75rf/7b3O2bOiy8DuPv8JuGnjr7C0+/oPKh2lif6aE/RUPvvH7PHjwDmd3zolnd/jBt/6YlmemFDjUA/R4/VprrdfJtzfZIDctzb13tsPA2WZiqQumEEJycaUJYxzcDhsD0vxEltTzT8w6S84sy57WhWEcSIN3fTBjSN4GNnnh6mlqNPMuVozuTNPKquPoVHW3kKxqd9JAB6QbEY8rT62xGTZc1JkW3Va6LAemwfHVZq4bCeqMhF470jvWBtagGDrrawhe1IBbLFkg2uC0XoOZBUVWS6pQeqMIK0hsIfRAqW4XnWKj9hkbOtUg1uj9l6AMVLp0luoC5aiRbgNzLx4AaEaywCBKaUdP6g3OLVEdHNndbe0KCBbXLse15VbJnNYs53yIOvq6ZhfparB17AFBkt/7PZOiELpR8zN6DIgmWl28E9gDiZGeC8MQ3CmyPzKGSotCHZRG9t+DMSfjqh4YU/R1VGV1qCxMYYSuxDHRqAxDJIyR1mbMOhuEg+1h35m253QdkbYgITJYXG3mDW3N9SPBKL1xzI04OIxukSNaYdcHugRyhDEGapnp0Q+grTbGsMGq36cxOG7Bmq1ZHOKuRpc9M1nlLESe1SOLzVyOjVc2BseK1ZGr5YJb93aUQdBDQYtDEGuZOarypAlxvMN2EYiVwMBVPZDtiAXWg+/R9ye/6ozTQM3FC8RSWczQ5COcZQ0p+3EeP3ZRceu1wGd/6de4e+eMmhOPnl7x5S9/ncff+zZ/493CVe20aAwxM60s1JKdQEZItD4QraCyYLLlSc+oZKaaSIzMBgc1JquEuuEYI5FCko3DpWwghIWOt3s2eWbuE0UbXbeEUgkEmhqbXsmtMUonSKO0iPWFQGEeAluc938wYeyFJIUeFekbzJTQA1oLcEBDpMpI7Aup3UakY2GmtpFat6g2pD8jtrLmBBiVwKKzK8tNrpXP8cSksFM2Rbie6WtQltltTNM4+akmBI6r+lvMN820aibyMnuLFVkFcp8MCXP2ggCFGCYCSl4av/RLv8Df/b2/xXG/5XJ/5Et/5bf5F8Zf5dW/8AW+/egB2/EeP/joCa+/9jaf+7k3+d2vf4WzPvHa269znIVNPHB1eJ+zs8azjzMf7y/56c98ll/55V/k6dMHvPfwY97/8BkWjdYidZgI1hl2dwih8NGjx/TnB0qLZFkYZOS18y3NhI8eH/ncG+c8ys/4owdf4jvf/yOH4LAlRGUzTCjGuHXx0RgVWzfjE320t5M+RdbNu65wkfUarfbcm2TNU4fDzEjiDvWqnUMuZIPQO8lWFn43onSIwuaWsPQn5OUKS5GpwiHg7dDGjW5JIIZIreX6++T20k8CuU4FBLjl+BTpbuL6kK5CMLDSGLZuNb6aZ57mzGiK1QVTIwxC08rHTy+5desuz59f8FM//TNEqbx6/jJ//O63+eCjj9mdDw59LgOP5ufcyon36rvsN7fYvvIqm+PM0/cesX/4EXDgtc/+Ok/fe5/jxWNEhcNS6OICS2ufjJI/vY+b9/tNW/W02fhp0h2aCIHePKE14lHltXfClBjMsNro4kLargLqp6toHhRlQQBb5+nufOqtEE0R9fTXEYHSKcHFlMGc6mkCvRpRvWCn+iZK7xxsIQDEwExmiAqtYtaQmCAEpBYHcWlH6VAXjPUUGhohKrW5qyzFSK3NY8glYa34moJh1qitkCSurJbu4uMYXWwq0EolDTAOgtboDohkbGRgqYUQHSlepTPXwhqTSTXXHFjoxOikxW0cmDPMKkSdyGZQhGRe4FUapRda7DccSQEroKMn8FpfI9/ZINbRLmio2LAAhd4DMvuIJ7BmoxD9M4+RSZSsE1b8ENR8pQIJmCgqME6BHhWiC3mZK4nEgiP9ty1w2RbPV7FEGjZeDMRVIzAm6pJJ4g6eokIaEz03jq0RiNjo7BJqp3aox0bUwTvLuP7BSnXHV4edbjxhWjvZwKKwWKO3zMiANlvdJV6EiEGpC4OO/g772q2yhITu4xnLBA3cChuu2oJJZZgmDpdw+5gIh8jlZmFMgszGRpQ2JQ7jHVq6z2V+ziEapSVCMAgLc86kqu4SXMFxNResdqpER9yba3Z0FKbB6a61NbqwUkuNrQynNut/7uPHLipee/1t3n/ynB989z0uLq642B9o/UA/HOF2pg6RGIy8JPqQKb0w9ERLgrYRNSXaggyF3meCehiN6kDuDVUjEMgEgi6MXckNjMVnUjaStBCb0tgStbHRI1UG6jrfrGs0qyfJRhZTpvUWLl3oOhCs0oggENXFlItB6L5oNxMmZhoDAajmIBGxQgnRLVpli4VCjJU4GL0szPVAlIb0c5BCaIpGb3UahqmH5qg4ZEk4jUFObW4jpkTvjVoqaRhop/wHc2dIbcXnsafFeZ2nnLDcvoG9IDOWlhlTQsxntme3tmSOfON73+BXP/Mr/ONv/01+53f/GX/m9s+R4zPs7uvs7r7Bv/YXfpVXXn2dx/sLjr/3T/jCpz/LRYbdvZF/9tt/n7dfep1Hz9/j8fyYN2+9zBd+5gtc/jBz2Bc+9fqbPPzhU84/9VkQ5fnHH/PG2R2ms0aywvL0kvcvZqZpw53bL3HInQ8eFSIHjvnA4VtH5tTJllniBbfjhFbjYA2RCDUzpMCejvZG0oHSF06XQ1Y+veFF1bWN8fQ/eeH2+FGBpP+3jyCsd3rO0LtzElKgdj9RiCZCC9ySLfvnndxhmyaWXp12KUYVZ08g4q4GsRtaCa4/O9bWeD9Fcd9wp5xGCOtPOEfDoPVGaY2owm7YoopnKojzDSpwmPdsW2CWmWE3cPHgIaV0vl0eMB+eceflHZ+5/xofXhw5HA/s8kQfA8Nrn2N3/z5LUR784H0uP/4eple88sYvoHv4+OOPqL1cY6Z7vTm6WbkSvV3bd229d09FkoqDxLZnt3xDNNYOQ2CuxVHQan5Kb849wAQNEVU8oCsNpGDkpTgpUdQdJOKuBgFvq1PdYi0OlSqt+ww9JlL3Aiao2zJ7UNaPH1nZCEVWGx5GiwLmbfBBg4sI1UC6C6LNVodIwEu15jCkWCjVICRimADBgjh9cdULNARpQugBTgLe3n3oKoKuwWKJwDAkH000HyVIgNgLIpUUA12MUpTWMilEWgsMZmwkOYdnFVe2Fl2fs46YqAGsUSU7AXPN0el4IY0KVH9tUQdad8tk7YlNiuTsm/piC9aFKBtqL5hBpnOOUrsnxWpQSquuhZKBqI2aMmaKiiHdP2tFydKpYXEBY45U66RhwyLFR92hIS2zk8g2RMz8c8y5IqE72djP3kjLrlfpnVwEkcQujpRe6EHcQhoWX+OrUqyui3Slr3Nrz5nxvWU5iru70sgQjNSq01vxwjcwUmsmBnGkt8jqXPGwuCEKVXx032j0CCNCxv+MNMWoFPY8unzIrd1dwpy4tU2w27K/uiS1kVAqWMNmdcAjmUVAZyHMHuZ2aIWmnpMTmmtiRgI2JrSBqFH6TBa4e3abUhq5zAxxQLux5MLNZvtPpKj4+1/6MrNdkHJExe1NSqL1TMMdFtYXamwuNoxGr0KxyhQMRNn3c4ZVRLoLgZzXyN1VcBdoWBBSL1QimoTQFKF4XG4PLKpEcf+/yAajEDC0BapuiGI0POVvY4luQgn+QY5UkEKS2UVRtsMkO8jIzuh9ZotgoVKiIUWYgKYLQ1SOpk7Ro6GtQDhjM02EjfDqT/8i733rd2nW/MsjndYSXpDK9ajjBLg5bSmnh+Ft+lVL7KRNM+IaDFRb8byIOOASDLmmRHLjBHitum8O6xEJiHRqM97+1Nu88+H3OR4ru5de4uMnj+gifFs+5r3nIxwP/Ly9wl/+V3+ecTMwv7Pn5z79M2w3iW9960OaPeellxv5YDx8esnu/A0OS+H9P3qXi+WSX/+1T/ODR+9y++wl/mv/4n+TL33tS3z4/ndZ8sT8LHC+O+eYCnUZOT/fcP/8Nn/87e/TUsb2nTQGrobI2BpxTSsfa6TfCnBYaFkIYSTPM11ceKUM0AtIQMTDg8waZhWz1bJZ+3p9X4gg4ZO8ipvMCr+OstJYAfqa+OdkvmhA6Gx2I4f5QFJ36DQVR6xb84U4OlvChZqGsOZ8rKefaxfKGmal4RTYI15krF2VEyjNuoF2WhdyqyARCcowBa7mjBT/c2OM/Jf/G7/Kd7/7kMuHB86GiUM+cDAn3o5ibMPLPHzSuXp+QUmVOsDrr73FG5/9KZbjwOHBH/Orf+Il/uE/+gbtlTe4dfd13vvmN1iOF8QUmI8z3TzbxG2wnjuh6um7va+jKHlh2/XCzfHE08Y1R6IDpReKddLgCaAYxDDQ1DsgIW5ddGkZJRDMgVcxCUt1y2gPEWRAevP01nUrQUBq9w5EjMQhAIrEjjS9Po1iYHLKxmgEhCZC7EalkizSxMgYGyJiMNdGXMPeugaSBW/1W0fT6Jk5Ejkyk9bipPe+RnwLJqtleGVaBFFix4tXdXsp6mm7SXwzru3oG0hyPkXUAdWB0iuiLrJrfaG3TjEDDTRVKguqRioRs4AkAzGiRc/ckI4RCOaQwGTQs2+qVXHwVoBWjCm6K2UpnTFtaSQPraJC69CErn79xU7AuNXBp8FDvQDTSG0NzUYJkbQeuNIwEaxSQ2ZoQpkjSxAYA7b3Yt2pCQutG7MqY0oY7rJYjpeo+KGQVn1kEQIqA5qCx9mbY+tHvHjMDc6c6U6X6kkRK+unaWeQRESYy4EmC6purwfFGhwFggTXy9BZaFju7jbBORcqa8idugas5WXtKMf1LLEKfavbjdENYykMTVnKTBg6cynU4vyQvR3Zlz1MFYsd2RmhKnUxtCSnj6qHurUETQdSFUKEpS2ucUTpIRK7kuKEtcZSzB0rTVb3jFFaZ/kxq4of3/0xO/MgJONYhdgKIV2hMSJ4StwgkfOh09sdLBeaCNsQvMVYKrvwdK1+d06BI9BDImLEHhmGK0rPdJnY2sKzMnplqgqxM6/8B7FGtUTXkU2uLGNjjoFNqcw90LqxsU4JhsieEicGrRQKjYSViaaF1DIMbveq7RJTpfTNSt30D/bKGp0z5rkRx0wQIW6M7dld3rxzj+dLJtprjGwpfIXYMlBRnXxRwKl5sgp+braFb25udLu2QHoR4X58kcBSl2sCYRoSV5dXvmT+SK5CWJMsTwt4b+IBPDS2m4Fhinznu+9we3ebJ5cfsjtuuTMGyvwYebhlu2m89ZnXCWNkWTKP33vIz372T/Gt73yFn/vZz/Glf/J3eXt6kz/+4Tc439wBSTx79ICvhY95nVs8/saR549nKgM//GdnPPzhI+JV5/mQGTYv8eE7H/L00cfIIDy6PPLh4ZtIdRJfl4FJb3PVZvLFBa++9hr3375NKJUlKZthQxn3XFwd2JcZaQlhpOriCabgx3j6ejp+MQ46ZW+cMN3AJ67VzfHHusYTQmQ+HmmtE1BKKSvK2EhhZBwHhjTy8OOPaRJdad77egLr6+bqMCT/OwIiDZWwshNuFDY/Qvv0lCO77jaaGR0jqre/6Z0WEzJE9nMmDC8xqhJDo0mAAG/Nv8ox/z5fy39E6CNv33+Zh/sD37888nTOXD14h+1mQ9zAnbOJsHuN13/qT3O87Dz+wTf5uc+8ij28YJO23HntF3nvW1/h6fN32Z2NXF4eMVzfIOpW11Kdw3Gdc2KrZqFXVCPgrezWKrduTwy6LtopMjTD2kKIO7oog3q7XoMxROjsISrndUO2hSOd1h0xPY2CJCOSyM0Tfwc8dyOrYabE6Kr1gMsbRNzm66OSvCK9vTPUS2dMI53OWRy4ykcHNjUIbCi2wAgtHwkhkmTCTLGlIWOEwSA3JAZC61RppOTBV/7ZBoIkQmto8M9aWseiB1rFfkKyO2G3B/CehTFJZKuBQqARiB20NrIYIYoLFZdKHAKaAseeHfTVCo1AFqVp4TwqqZmTF6XQmpJ0oEtlaRcE3dClw+BCRau4KHPujBKIFijS6ZZ5Wmc2OhGkU3tHw0BMhSFuaBVq8WPSEg0pjdg85TVppzUXmmfp7HT0zTpEtBYOvRE6DID0zqF3QnbXz2IVemYpXlBqr5Q+eBdEjNK8lZ9752ycCAhznhEqWlzAuuBahgs5ECwSZWZvE9YKuxh8TdJKQgk9Uoj0EGlx8deTj+iUKN1x/Vsiz5aFcRoZFn/uIpXlsBCikAYPzKsh+35TMpIGNhY5iNFzZitu5W2TuT25wyydKp7TNI5bhmGk5oVjyUy7kXwslCKEOPhEQM4Yh8jUBw55T04FemEISsm2HsALWwLDZFAjz0tn7g3bV84kkMuRI/7d7grFunNjwo9XLvzYRcUkzx1LU40oA5t2h5IXlE6QTEodloleXRzoCX0w5xVGYwPNJhdJ9UahMZlReiKHSOoV6Qr1Ni0Ejn1ho5BCpfVCMSHYGRqVpU5udWmXXI6rQrYJA4XeR2roqC70LpQU2dZIksZsI0onBSM0YQ6BVP00qimRemWJxd8TjZENEpQ4ZDbjSBoHpuEOhIG4BD7+8DmHnsllT5BLdBjgkElxpIqtGQTevmSd+99MDNXVbnfCNp9cCDElTAXWNqGfcFZB54rhluuF0Bdy4Fr8l1JyBX2MbpEMwt079zgcjuwPl3zmtdd4ennBfjCujnuabbi3veDu3YHdncYH7xY+fPebvPv17/Crf+ZTvPnqZ6h6ybTpPA17LurCZ994m69+7buMw4ZAZRmV7/UPyalQ8/v89tf/d1yVPZoim3GgP/82m954EhXtB6plPvvWSzx4f+HIFVUyLTTq3oPghsvC5/vIL/7iF3m6HPjqN79LaYlluyPMlX48oGKEPq/nSjgdOV24Gtaxx4ui62YBcXrc7PCc8N627uu1eqIk6wnbT5nBT7QIxVzxXbohNJZSV7S3UatbsozONPpp3NZC//R53Xw9pzECvLC7ijizoOOt+ia6CuygLoU2Nlrr5GcfcX7vnLl28tJp+8b/6f/1H7C5PZCGxPf3z9GLJ5RaqGUhRTjb7dicb/m3/q1/nb/7D/8+B/kZLp485dl3/5BBLrj4+MD3Lmamz/0aD9/9kMcPHrLdbWgtr8XvqhVaraS6vo9TEN7p373rYp61YC62HMeROTfGCG1p7tsPEJMSQ3LKrBkpJmJwNX8KyoECCkkGb/wFITSjNRjTliSNooXaPTI7yoZBjLzm5GhMtJpdZS+rjXEdkSHqdFxN0LIzNHohJCVVo8eA1YJap9SAhQ3bkBhj4LIuxCFRrdCqdxjHZcYkUkWwJiDRgVvK2l115HVMAUqhNQdVCUYzY7RIVaO2xtCNro2nvREEVFeReAhsdCDVTm5u622hEOJIs+LkVhWEkUAkkCGZO3ZI9HZ0e3SEuR0RCbQwel4HfXWfQBwjvRphTORqlLY46yOO7ErHfR6ChbR2Wt1J0RBCGEiIA5cG7zDPGqFGQiv4+C+Th0BsW0LF8egYS58pqkhUgjV6EGpWgjjCPGj3cck4IDWh0UhENrstR44knaAaxTwDowVFrXuxYkLUDUhGW2RgQqYZ64HFIBKJFikGvRQ0LnTJhLih54UxOfbdcNHvLAvTGNfxo1DXtWSaJkpdqLWS54yOgTFuQDxV92httQzDpS2EeSGY70ASF4ROksjxMJMXhXFgtz2DS0P3hc35Xfrlwj1NPM8R00LLjafBnSfRNjQiyzLTrcCqOUphpMx+cEkGpRVSDBzUfY5W8eK2VWccmads/0SLiqadXhJJgdC40gs23fHCpbjArElglkSQK0Qb0RIbGcEyzRJBL+kUuk0M4UiTLUZhkAWLvkAKmbFNHM1IYSZ3RW0gmZFlcRKZgdVLugyMbaLrQu2ZEiYimSgLBzHOpdF6oFnDZIOwdw6AznSJ3AqZ0gJNJmIsSBW2UQnxFmHs3BoHSNBMyfPEviw8v7piKa4Mt5phDD7frRFk8rYYbY01ftH27d2Rrid1/OnkLMZ1QXEttFRvK2tYMd8rdruLsCzLqrG4EVK1zq1vIqn9R4erdFPGYcfHj564+jkKTx8/ZZpmPzUH5Yo9pdyljo9551vf4A+++iVeGjZ89xtf5+6nvsDX/9Hv8pqe0bfP+Uu/8S/zO1/+NqUdCWMnzJG7MbFJG8ZPn/Hs4WOGiwNFO8PujEcffsCf+pl7PLq4og4jjx8diXHgjc2rvMf3/LTXF1rN0BZMMsGO1Fz4wfcesA0DwzLy1ud+ic/v7vL1b/w+H3znD5FaaH3069zt+rqIvrBwsiqWf5SgeW0N5YW74nQ945rHwjqq6s3b0DG4joDup9hQhHK1uCjMXIcRVP2LW7IrvLutViynNZpBqR4cdzOVVGTNrzAvjk6hW3iX2gvO9adOJ/48zwxD5EkXlsczYzLoRmNhOE9MsTI0GBB6jLS+sBkC22nHeGvD25t7fLr9LP/dv/jzPDo+49//d/7PXD59yqtv3SOfCS9Pn+P77z3g+Xtf5fb5wGGuHqvemrsAzDkOp5nOTaHm6ZqfcmgE71qc37rNOAwk2YJkJHZCX5Nbrbl9tM0OITMja4KUqD2wUdcWNBO6FFISKkpqSu0ZBIJEslZaaGjvFFN3kZgvktqdslrNqLUyDgPSfeberXlYXF/nzcVHWoYQTYnBkd+K50tUgZ4zKSnWimO0LaIaqVYQ/OeqgnTXclivRAl+yVr1IMRRsVIxMVr0TkrDxzFn3YOicivsmreqa/U8BitwCK5xIC8+ilpdHd0CoyR6hJBd0NpMiLLlmCtVFmIs1BqRuKK81aDjkKcY1oOJa2FMKqUaQZLTU9fkXBuMIUaOR4OghN6JfWBhRmULo1F7I1RP7PWI8koEelKCKgOOFb+sl7ikfOWIaFo7kIoEz83oFGTFAqQ4UHv17BVdDwDBXV6eHitY8PV3skbojiJoqqiO0BpFQSWjFinViM0FvV0WEGWSiIVEl8iSKyFkwgDzktEaHKi2knrDCq0zdeR4WA8eKY0oMAyCJe/QdfOOaK6F0IUUHAinMXoaqnVPdaURpNCWK5IW6jwz7SYsVRYqNe8xE8YhofMebZXeDgw2Moi4+LY70r6La5iCJrodOPTOuUVq764pUuWWKtO05cnlHjF3t2h1Vkmzn/D4I6sLhDDn3KfYaN3IQAxXtLZhpzOpNmwAGEAqczgwtJEUnlGt0xkJQchtA3hQEL2jdofCTJRMbRXbGWm/w4JRQiZKZaqjz+WGK2YKoW4JqzfaIkgLNF0QaUjfUDSjPdBppCIQFdUGbXRboh7pdUvaCOdnid3mNtuu7IOSC+yvrmiXSusHcn9MkQ2WDZFMbwNqC30e6b1i4UgIDXS+jgVuva+tVT+d1vaioHCdngssRYRa67VqPmjwGXXvBMxdBNf+/na9AZ5uZsRDcE4ijdPpOySPSt6OA0bj6uqCW2c7llI4HK7ouVFC5e7UGafK7e3b7JePePbNH/Ds4TvEO2+gZeKbT36bb37jS9zdwPN3Rn7jN/88f/vDP2ZQ1w/E3ZZht2U7nvPqpz9Lnb9C3IwcD+JnsluZ9x5ckKLw57/wU/ydMvNoX/nyD75PCYWhCRKEq/mC2iDolvPtbV47v8vT58+4qI17m7e4NX6OW/dv81vf+4/ZhB11iOhxQUOjXrffIyvp2kV0KyL9JifhRSfghivkNHrqxjgkb5FLX+l7rm83cQrjkUzcjsy9sXTXR7RWqaXSm61R5WvuQbiJAu8vXB/thQPlVOScCgm3n4JbItfuy6r+P4k7uxnzcUFRUjRqz1g10m6k5ZGkjVAjx6Hy6qu32S/PWQ6RzfAK26Q0mXjeD/wH/9f/hC+8/Zfh9n2++/UH/MZf/hf5mZ/9eX7r7/wBX//Ot3j+4HucTZlybMzz7BZdDdCrz6bV+RB2Aq7dKGy9oI7XRfJmM3Hnzq01lqXQWiPFiEQPbKsrnCjZ1kc9krEenX8Q1vyIFUMfYkCaETQxaSTXTAsKMnJbJmqbWRKE6id/cXM+w7TxjahWaM0dFavLJohgeXFGRYi0oIxEF7idJJVRsdwY0kQWYzONtHwkdrDklNCGEmuka2eW7K6G7l1eU8hSPO/GApY7khJBIkE8SA3pJBRpRqbzPHSGJpxHQ6RSOizWqUEIkkitIVEYQiSKUMuC4eC9tERqzJQINbtDoWrz9UgacRoQG3xDDQmkUmUmSGCwgDZ3MMxlTc3FCBLQHpirjwKPtbt42TyBmjSy6RtKXZk+ayS5asBoDNYc345rb0YGem2ciVKCUYORutsZl+aiyaEbZpVKo8kVpYHGEUOhzwzDlkjwyPsosCQfIautDqPoe1jvTOqumaKukQJnDGlTGgO5FYo1hrEjsbFQQSNRA6E5CHIzblGD2SpoIGgidmMQdTZHEEbc3RPjgCHOXhFwwmOkSmWMvn5LbxRpBHNHCAGKgEgDyZ73ERPkCxbukGTHXIVxmpnrAcYAvVA10EQZe+SEqjqad/qxiLVMiMrcQGpjr54htSvK0gq2Gbm4uiQEoQenoErCc2/CT7hTsdTCru8QjINEdnWm6xXSOyovMYo5oMqMUEaGtGB9R2gVsQbBqPUWIo3cO3HcUcqeZKsnWi5XmmCj2G02+04fn7O0ETXB+uhDCevsq3A2wtwPzGNnygN3MS763mN/Lfhiq8EFj9Kdqa+JqlumJIzbxKsvnZHO7tDqlnzZebgc+GhfWMoMvbE147IuHm5TFrK691uXHYQjRifKQhwPuJjvzAmLCtYOmKSVO+AzcVsLCd/w9Dpo6rTZncLATl/eflJqV08ftFX0dpOxcHrOtS1yvUk6c8EFgpsUaJapNXO+fZWn+4VeO7PuPTVwPGc7jHzmfMv+ww9558nHyNOZbzz/Br/4mcpv//7vsJmED965JOjb/JW//n/hh9/5GuVcmCyw2ySmXeRnf+WLvPOdd3n5/HWuNguH9y+Y98p4vuGDpx/SHj/l44++w2XtqESW4hknrY+IXhK6wGQMS+PZ1RP+6R8taBxpITPLJfHDR5gYGo4sRblrSpOCEsmlrgl/DhZzwab/c6JXllKuC7MXIWN+TVtra8LkqYhYdRHBsb69daY4IEFZWmWcRi6OB66W7LoCdVZDLdXdB9FBO6fPaxiGlcDnQuYftZOeXuspP8KR7qfxzWp7xU8wzXSNeRdyacRaIRlLDpRDYXt2TuoLi2Xubu/yP/u3/+dcxo/4X/0v/9dsy8tc5ks6nXzo/BG/w5ce/jNiTNz6TGQon+fbf6/xld//Zzzaf8g2DVzOjVY8e0HAqa7GulG3NVcmrN2iT9qa1244rTS2dycvuBBaPzJOZ7RWaXZgiFvy0dAAVSrLmsMwhoRIpHRhobEZE90KtRsSRzZEjt31DEmN2jLHNft7soGDHUjDSAiJVtua8WFIckKtSmCIE7lmiP49DBIIptR1E8lWCWaENBJ789BCzeBZiRAGcqyoVIIFEiBTQOScZIWqhTQJhhedFHV8dqqkKlyVGQ2BIEoumUkG9kEYEDRGNig9dq5Wu3vrjTQIG+n0arRgaHXnT6TRSWymkaU19ik7a2KpjhAHZ28gUG/RqtBN2EUjlyMhJIIFeoe5wzAGSlk87XIYKIeFYXJHQKKRpHgiKANBqkOuSiOLYCkwrhk4TQ21Qu+FqfsoK7MQi5DHTI+KtYAdK8M2crCMlcogkVoOPBEnk8YuKBtiFCQFgjWkR8pSnIkRB6oJKQlLndE+eju/Vc43iawLuS++hmqkobSmwAFkJIZMSsVP9uahcxsd6NZZ+uJ25pBo1QuIWPHI8bVzRauoGQyJ3lxw3EsjhOQptyi5LUSglIJOEyPKURsjCVBqNAKVmhWREZEj5XjgsDxB9ZxSF/bLQo2w04mhT3TNlM0d7lXjuVX25TkXvTC0SLXsh4yQeLZUhhDYyoYethxl5nw7sDGhFONRm6niUekDAdd5dqIo2n7CnIpkgsYZk4HQFvaSmKrPy+hex5sqWgdEInlRQjjNcALNzki4D7dqo9kFm1BpVdm2wHMyMSqlw6iPnYc/b4mpMPajbzzBKAqTLRxrpIkQSoTeubQdSFlRqwHVStWRIMomKWG6xXA+8cpWicmobeLpU+Pyo0ZePuZYZkKrGDPdvF11aAsqlaoT1m4T9Tm9D1g8Ylr9y9kKOW+Y4kLXZW3PhdUdY7TVznbydfTWri2E4CmcJ1BQXT3fpRZiVIctidDEPflm1cOO1sCklgsxrrAfwIJvmHGlRvpJ3RiGxHxx5epkjJYvqdbIWZnSjrkULq5mvvn+U3Z54eLqGfNhZsrnvPvkAx798GPunSXeefAxb33mHl9+55scdxlpQtQtd+LIn/uz/xLTS7f5zte+wUs/9Vk++P4F83LApkSpjbu3znh2vOSiX9Gmxv3tfX7uF7/A7q3AH/zjP+a97xfGYcsgA4fFMdxP2xXIgc04AVdsQyP3zICHLgkTtcMubblshb6+Zw0+x+5r8XBKBxXxEz4/0qG4OaKy3t3Rg1JywTQypAnaQumN0BOxJTZpoFcX/5WubLZbro5PaOZgm9rWtEtYXTou3oqijOrpjKfHzfHXJwtGuX6trK1jM3eNtFJdO9Mrh0Mnpcg0TdSa2V9Wbt26hagyHxq//e895M/++p/k7PFdnpWHiHSKzcx1Jlji/GzD2StfgOFN/vqX/jFXj79DLo8Z1DguR+Zl9g4f8foagWOue+ufKNR+9Jqe4tyn7cT9+y9B68wGk+xoc4FUSbpDSMh4IJfO0AeyZIJEpFYPsQtcW/qQQEoKCrk16FDxhZDgHZ3Uwzpa2DHWhmmnxsogYNXdGnGK5GrUbnRRGALaGg7cFmiNbM07Vz0i3Yu6uN3Q6gGNgdo7QzAg0dVzMNyG2RgVPz3S0ZboMmKtInYkEWhVyZJJY6Bmf39BvGuxi0LuFeuFEe/kYAUZjHLIiG1YmhHMHLOsSgyB42FhOBvZt9X2Wx1XravtFVk7oQ0PX5PKIg2RyTUVrdNsIYTRR9rHmREjjhNLq4S4JVcQGpMoRWd6j2hPSAhIMOZWGGJYrfyLd2SXDmNEQqRaZGMTR5mxSV2HVBNiFUmRy7mQxoFA5ao2SqnE1InFW/Uh1HXUmJyEKo02QjVh192FqEQGcUgWBEyNYz3Quvn+VAstCRuDFALHCkkhqFJbIIURq5kuxqwNs4J0F2v24sX+vlWPYmDA7IoWAl76C6l6Gm62jqRAxztMREXbSLXGNA1YaxzWLoBacHR2MsidlDrSC6Mqh5I59sytFNGojDmS2xU9nBG4YgyRUI/koWGxsu2J/Zw5sGc3Jqop+8OC9UYvmaLdHTq5M8+d6daWy9lzRsIQQJVjW9ZEbc+42m23P9mi4qyd0/sVVSoxQOsLykhXRfSKQQdq6yQ9YqjHgZuQ2kTTRlTIvbkCFyVnwcIZXTOXtmAy0CyAZCqOxW3j7G6NfobFhlYQqzQTdAgMzRnvMXT2rSEyoMm4tRPunW1he5dxmkhty9ICx/0VH3688Px4pB8f0ytr58CzG1qLqAiVBSQwGkhPbKkgB3qJFDKmSlCh1ZFilUGrt6xQqAkZOlGcm+EnzfX/Tta1GwFTp9Oyb4Ce1xFCWE+sq5aidZ/HtlO0t59eHablbADff26cEL1kcUvjOPH86SUxuU9+OXbn1IvSOxyWA9O04eGzR+x0ouYjpXR0GvmDr/wRpRcePLrCamN/8QixyjZtqIsyz5WPHyV49tM8ePA1Pvvqp3nj5U/zT//e32LcbKn1iBVo7TZhPDBy4OnHT0lW+Ly+wnD2Kvu3Zy7ev6JjHHMknG/8QoWIBhfVORxGWboxxkQXZZFM1AqhrQXUWlC4Z/Na2Hp6tDVJUvTFz//oJgjeWVjycg0gamXxU3jFVfZdGTH2R6eo0hsv373H1bNnBK8cCetzCwrr58haXDR8HHDz7z+NtT7hDrohxO2rneumS+W0kZ+eK6VGSol5nnn+/AnTuCFOA3/zm3+Vf/Stv8Fz2dN2nWQJDWecTZ/Cwi06yqOnT3n24T9gPj7xVFWr1LqQcyaECKRPiF3hhdD0Jrzr5ntyHZHjjV9++S6bpNRSCBa8pSpxvT5GzQfiqFCFFEDSiFXzA0JQuniBZikRbBWGslpvgxNVe3V3jeOrXSwXykLTiVDFI6BTAhakdSJbjIqlzNAivQcsFugBJaK2sBk2npHRjSRCMRdPRvPckqKQiaRuRDOaGLNVQvfC4qpnBhkYJdBsdk2aQQ8BDZ4V1KoLDpUBiZ0mBTMPHsy5reMbgR6xGtkMzuPw+0HIdG/jm5CmidGEo3XEOsHcDl1NSGKen5IGD0+MgrSI6EhrQhKPY1ddBd5i1Oi6gFgLYoJIc84QRm0BsUiQwYusEP2ap8G5Q32gyBELLmzu4iFmiNFqIbaAhERexZO6Qr5qSJR8JKYNm6ESJWHVPGrAjCjG3Bqtu8VfRUkhErUTW6FOnpE0WSW1hOjIbAumwfHkUhiDB9Il8delIkj3tG2R5NoSiahWlEitAxKcrok1onrRahiVjI4e0DWEQO6NYpXgMW0YjVH8vS7FD+BDcCqyBj8g7HrjXog8LhdERjJbqkaONpNDpubCViaWpTJXYbOdkKuMFmPRAR0i2gaW4wHtMMUtdXOAOaEF5lbJwjqCUo9aaY0hjlhrXF5cOaAtDqsJorOdzrzwJGI2YrXz4zx+7KLiEJ7RbILgMykpMMtz1DqSM5uprWz4FZmrIChNOtFgaw0LMJeARWMjIyYL0pNrEmKl1xHE55bajbHBAYfhxBZY0pZhnAnHNeK2H6hpYdqe8/bdc+68tuXW9pyh7ThcRB4/O/Lo0QWH+SEXdkk6GNI6x1iQ5rG5EjK1JIopg1ZUitMs+8CsQug4yY+ExkKj06oy5ICGAxYStflGIt2pf5S+Tr5ZYVcvPozTpsZJfNcaQX1R9JyKtgoITwu2XlsTS6lu8eoO0VI55Vq4tuKm8C9ooPbszHZrHOueaXvGkjOtF3pNdKukoWDdb//56oJaZlQac8+Ufebdh+9yZ3eX5xfPqIOynx9x5/Zt3vvgEa1Vzs/uMdwR/tO////k4tn7/Oa//Jf449/7Flf1ggnY7SZ+8OEHWMtstoEHD556INjyEV/9w2/yy599A5nE57w9ouFA0i2gDFEYNEL1QLNsA1WCf+lRQvPTY5NKaX4iOsHFbMWj02+6KV5oJ/RGYXGtUekvTt1l9dQ7b8G1MJlCnTvTZkRT4XB1Re4VwdhfXnA87Ekx+rhqVU7HmJxxEaJfdxyM0+sLDcIpA+bUsTq9rqD+XvoqEjkVGT/qWHGnRWO/PzCOA9Pk0J39/or94Yqn8RG72695oFiPVN2wLJ2NjDx69C6X82N6vyT2QEiVUht5WcPuVrGx26JfFBI3C4qb8LCbo6WwgobOzs7ZjWeU3Dws0DLaDE2Th+EppGHAamY7bN11Iz7SOY2QzOC8B/bNrb1WvQuXQsT0VFgpNNd3FAkUW7iTRgqBnhuigXl1quxGsOXoXQkRhrhxl0AvDDHSm4IE2vp8IRpBRiwLQqeq0K2yVUGqUkOhNs8TGdKEdDhSybKOX+uBUhs6jQQxNs2vXwlCCWseRHOXQ9OA1UaIrjXqokQJSO+eTZHUN9fgF2YTgruNVBi7UOgkcz1DUyMQfWOmIBqordMtYRKx1hgNH601zxkpG9cDxQ6DBUwCc18dOb2RVhBcI9CjYRy9wBPzDZeI1UDurkMJCEkH/1x6A1mzXXwIR9BAFE8GphuDRLqNtFLpw4HNZkLaRGgF64qkSMIdKDln4pRILbGYMfeO1s4okdq96zCEFSJX1DsQNqMiTlcypZinxHYzZi1YFSRWuhhDCEitRBlpXUhA8HAp7xBFH/stuZJCRKyDdTRGd4WJEiWRpYJ4UWldsMWR3MtSmaaRI5VnHRaE3A0ZFLEjm5WdciiBRWC3XHE8TgznW4ZSEcuUHhiYqC0QUqEFpyxPZUPhkn1xXoyuDsLjklEJpKhMQ/BuShC0CRsLSBMamRCgzEJrBQ1QdPrJFhXat8SuVDuQoyFpy8YKXQM2bqkNTBumhd42xABZFoxOMeFKfR4Y1gjZJRY6C2n0E+hgzxmlsCwT9EoYI0fZsEHYm1d8Q81InSEJ999W3nj1bXZ3X2eT7vL8WeLxx5d87wcP2D9/jC6FPDxl6j7TakNmITBqYKRzbFB0y6BCFIihY71A3zHZkS4F04FAoYr/HukLKju6geiMyEIlEMOGzhGLEEMGFWppK6DrxSnuRZaD4FnL6ym0vjilttZ9JiunWX/HTH0u2V+kVqqu8/sVpHXTyeDGNMMajNsN8+IbxXkYWGa3+fnm2yjd0LFz1Maj/BwsMlVjAUqZuZw76MyzUrkzbjk8m3k0X1KXyptf+CJf/OWf5+ryAd/5vW+QW+Zr73+LP/zWH5M2xng1c3t7n89+4W32h4/58N2HlNzZnk8szfju0w/59fnItBvYAqlFjDMkQooTrQee1ZlbgzIa6wmp0KmM21seab2eikqt1y4QT/VctQgq1xwIWG2hMVJr/edO2i6YTGhIDhKqlajpeqOMwfUtrQr7q0v2hyMxBEJUHn70EFNBVwsqQBojtWZEA7ku3j1RPPvhdJL/EW3HzfvkJO5sZWWUhBeam5uZISI+9xYZOByOq6ZDHXWNn+iePfqIRxwRNpg0gjUeUBjCxiFBFsil0nKh0RDpHtxn7pZwmJg7AlJ60bU4PW7++83ckjAMvHTvDoMZkhs2TKtAL5Mw4qRIVXcViDkxVYWkE9aM1mdCciFr0YSVzqww4SCh2TqCMWlEo1FEGEUJNtPjSJcNoSweJmWwa53WI/MCgyaGEFla5hgd3jSWRl8tqUEmpHZqnGlaqb2iKTBoIFZFW6e2StItI0KV4kLG5uOBGIxdNcYQGELkGCOhB2I2joPHj0uuTJKwYhgzaRopFF8felqLgUoy3yxqbyytMIYRLK46iU5MLipe56cQTlkzxhQTVqELlNagBzZJaX0hqlISBJRAJFv39r64hVBVKS3Ta0E1EAdfi8dxoC2uXVKFQynOvTAX9Hc5YrqlBsetS3cwXIhwtIVcD6Q0csJUV5ShRswa+1aYgusUwtUWBmNKwiJbaloINJq5G64HvIinEJvrRVg1fLROiI2mB3QYmOeMY7gMa8oybIilYa0wWGUQcbaGFXpVYhrJ2b9LVReqCabuQkk4xpy65rKo318mvt5MxJXQXFFd0NJBJhqdHCsxDJQsEIxuAwTjQEdjIgCWjSbBR4BmSC7kwyUa73Jr6Jy3mefjQL4KbJi5mCphc2S7ucezq0c8m9+n9pEuRu5ua0/FC57dOBDDSKPybP+M3ThixYghUM33LSXS9pUQlGwNsYCU+ceqFX7soqKSScHQ9Uuj6Qo9BsxNwPQqRO0QCl2FXI0oIyIHj85tI1OtNAu0mBmLYH2i1E5qAdLbHMNTZBCsJ2LJWOj02Lg3Nu7eusv9V95gc37O9uwNntdCfrbwztcuefrkj8mHPa0oFitpcM3DlAeK7RHxzsomum2r1sqojaU5ZrZb90KmCT0WWk+oVqIJc1SwA90S3TaMqUFXSo8gG1TcAx8k0vpA69G7NyJO1vuREJabp77ePwlnOokFb9pCvTABxzx3erMVobueENeTluss1uc/tYdFCaHRe/Yioh1hhZrUVh0QVBqtFKxVxpfucria6UOiCeR9ZkRY8hEpRpyVeX8JO9glZfPunp/5pV/k4qU7/Gfv/z3u3brDl77+hxwOR7Z9x/Y8cPn0Y1KKbNqWw9UlwxhotSNlpqQjVSJ5fyRXw0JhPma2uiW3mS6dlDu6uUUdRjh2JAxIvSKNgUPbc+fsnOfLDB1iSp5CuLpqTtd3lch+wlJ62phDcJ7FC7fCiXzYnO4XIrZisQkbugi1CP/0q99H4oSEyNlmoNRGKT6G6eY8CxHo1kniMc6wpqTGSF1FuTdHHl5UvtAm9LUjRXgRiHZz4z79t4hddzoALi6vGIYBVSGlyBDXnBk9o2oh2ID1TlKBauR5Tya4zRUn/NWysKo6Xug6brzG1tq1sNh/i1zfy8D167lzfs4wjR5epZHSM1uNVFXnTHRv5JdVCNt7h+SsihSUFDbedTK3y25Ead2gNLqIiygb6BDo3f3+TSvYyKjGvnWGQUkY9bgQYyTGRAqBRqGEhWBG6omFkUxn7BmJUCwxxAEJFaO6cC1M1NYIwRNTD0cfjeZenfapynHFx0tvRM2YRGaUZgtZMjok4jpezRglduhOTT3MC2ojnUzTmYaHqldJrmMYIqUXQvBirNZKtUoc/N5vGNNmpMMK3zMuS0EQrBYG9QTTjOvdqP65zWvgmoyBoQQGE7QXSjRaVCYmH2H0Su2d2tfQRQJ9hiiKhUDrBZXJWT/BczqiJuKglHKEDhOB2Eff9MdG6Jnezmn1CrHAnWlLrYUWKxY8fbWIF1rajLbaIiMJU79nSixIW1CNqI4csxGSEmpAGWnLkV0aKcVRYqUtxHqG9g74AbdIIhMJYcBs8AJBC70A4oc1WqOrUsxIK2hOSvXv+WAsPRPVceFznUlBEBuokuk2E9OGUSJL2UN1NskSMyN6vfY0lNkEjZ6iSyxUO7Ivz7kzvc2WHc9bJ6uQYuZw9A5paBvIhTFWjAnpBU2RSODIwjAoWx09h6T7weHOdqA0owBWFtJmRIhY6Txfjmy2IwShWnWR6o/x+PE7FRjFHHEbbYOUStMnVMmoVEhHikw02yI0xHYgB6wPpACDZuYQMUnEmqjjgrBzOylH5v6EqRzQYc/2/A7j/bf42dsTt+/cR4cdz6qSrxqPHj7h6mu/z8fPD6Te/YQaGlEyPQVEBmp2+l0Xo6kyaMZawiySQsaigU0IRuiNpEeqATIRLGIyI2pUmYkVBtvQg1EyaBkYe6CminAk9ME7FzEi4rASl6etIjt1DYScFt5V3CYr6IbVYthX1PEn5tW4W0A1Xlv2vEUerm2I161oTpZD1jm2Ik2YhjO6VYYYSCFR6oIotOxwnCEFci3Mc2c+briyvkYrG/s+M4XAPh9J3QVcV7HTW+Sy7HlWv0P++3+Vi8NHbAch9yPPnj1FasXyE477iRQDGhL7nJnNoBWkOJ11d/8eTJGLJ0dvWytIMIhKMsfpbu6eM8aIWONIhewjhBhHLEPcnLE8u6J3n913cx6I1Rcwq5Mz5qaO5UeDxK4LDXFR4ClMx3khXqDQFkfUI2jarNc+czh4ax1RYkrUui7Q4uheum/qfR1plbJcFzM3X9Npc/4EFGvtRtwES12PuG5AtE7vw50ubs88aXVmOxJiwvM4uuP06e7KItDM4US9QtdCrS7ow6C1eR3XqYObbnR3Tq//ZrFxuidrrbx07y6/8AufYe6d5bgwXx055k4yj4aX2gmDo8Y9tMsIXamheTHewaR7RoWOrqwXIeGn6y5u+fRr4NHgzvtQElCITCJoDzQrNDWIkaqVXYS4RLoO9JChQ+oCanQJBCDKkcEGyN70biHTWvYOQexgyna8RWuFjHrbuckKL6pEARNlxjNDogWSBtdlBAjSSN15D7llYtpgoaLW6GHNF6mNIST8w0gMFlbLumdypOjdsdL9x2CN3god53lElAHzQiQmj5DHVl2KUoLn0gRtWBGERAmFah64hhlWK33tZahEVAZqNwoeFa/i7AmxRAwbtC8YmdoHGCA3tzsHievJ2bAxkahYV5aWSNpI48RxWdCeEW0+zzdPmG65IcNCsA6lgwVqW8jWYQzOk1BPnB20rtomQcLoTiEivS4oYf2+NOhXrkxZk221G9o83DH1BWmRTCdrW7UjPmZLJ3eWCmIePqhBoLs905qPLXfTBimFaj4Mn8Ytcy1EFMt+j4RBGMxHnUudaQI7gSEarS00RiQIUQd66566fRzZnCXyciBMA5YTthTGuKX1xxybUbQTUmKpR8SMMSjnIRLVnZy1dUQSIXnXdhOTgxqD0Wql9EYKSm+VshTOxsm7gz/RokLXAKEOQS65JDIZWEu0vkXDAlYY+ohowNjTxaFTmUjC4TF9uIXannjRyPoA6Y1xlzh/+VXe+tSf4P6dV9jGLU/nzLNHl/zgewceP39Evbqi9EINjdieM6rQLDEMhaVFiiZoXikHNZY2MITMZIXeEyF2B8B09QhhhUglqJC1kXNkEGOqEGWk1kYLGcW9470NSHrmkdaygRrp6+nFgrpwyjqxBdBObp43cFp4Da5V85wMCGsR0Mx5Fp7v0NfxxclK6JkRvTdHRa9izhPS+6ZwTk6CUFn/LNEFfqZs0gZaotWZJi7+Gpp78RkaxRpPrg6Mmy2zFKQLVhoSnaa3rx2pC0NSaoZp8sHrk+U7DOeBnUWPO7aMBuVQKr3sIQrDsKEcZuo8ExKMw4iZ8Ppbn8ak8vDhh9627ImAcTZFjnPiX/lXfpPvf/RlvvO17zLEibN7t5iJLM8+9i/LdkQmuNhfXVMvg0ZKzuiqU2nW3C2xiiVfBIedukYvTv9tJZWKOZa494bic1GNHl8s6nAs39gh6EDN1U/9KHWdX/be0KCYCrm6HU5WHoJKICUjl4ynNnrWS+srnvuG9uPEpjA+KSb9hGPlxj3gYtSVsNobXTq9e5CUaPNORDilcIKoOXSrevHVze2zuhZFGpxW+gIa/gLadT3mWDcVgqfytrXj83M/+1O8du82UpT97cycLzkuhUPrzLUhl5mSF3qFOAwUS0whIJKJQ0KORgxKUj9d9lgR9VFBYUFk9BO+ZB/XdMNESTF6hDqdJs2TRLsQkx8ANoyEZmStaBfolXbSVojzC0yCB5CJCycJEDWhLXhAX22eSiqd7vhBpAvDYOTFsDpiMjsaPAhFCl1BrSHBN0U1v0dL7d5eztUhTjLQW0UMD8nCya0WRmINEBO1zQQtLj7MERX/zIo51TGpEZpSBp/9u6R7BXYVoK8umqjumpMRi8UjDoaR1hbMlDFGwpLXxFUgCLl6TLpI98JPjWoDoypoBAuYRkozxhgobUHInkNiXpAORGr3zkeKGwcwtQZxohi02gnjhNJodiDGCSyuSaeZ3CtVCiHiY/UwUPBogrn7ut5rpTKTgzKFwNKN1N0tGGXjUEF1gXdoEe9pGL15GJyXpeaREqvmLQBLK0zjRGidY6++bqOIKVOLHGN1C3ZtTGvHCgImnj6duqEmNIkERuiVZZk9Gt4KRRYXG8vIMi9M2tkOcDlnlrOFj5envHYWUSZ6z4wxMC+dSGafF6Q1dzJqpzTPcNnsEgQl5wJEevRinQajKUfpJBKtr1RnDN0FymxETVjrq9PlP//xYxcVlAHVTO+VqxaQaaHrgMnMVC9ZbMMyQAqdmLfopgBnWDxnbIryMflglMtHECPnZ3f4zGd+mk+9+dO8/MqOue/4+INLPvj+Qz5877s8uXhKDxDkic+z+4ZJhZlCZyC2QBdoTRGJWD6iOju6WQZCrGh3eylZIEHVPa1GQkrEckXU28xhJrZzRLrPZK3Qu2I9k9aQnW6JwRRjy94CqSVUjEriEGDqs6fQEVgCYB00U+sJZLTCqE6nU07wqnVTM0cSt96uT596EsCJrIXFi8d1oXJDNHdiMdx8NK00cQFZ0IBRqOYLaWhGj5VU/aRYzeBopMGzQqoJFpS5FY9M7kaJwtAHUkiEAcZoLHLkfLjLol7QUSB7wIIXYPXI2XbLBxezRw5vPeRttz3nCz/3Fg/f/y5Pv/8EHRNX9Qkhbhju7nj0wyPzg8/zud1T3m3f4L/z3/sf8P7VYz54uOe7v/tlnj35gLdffpPBoNXitEpYkecr/nwVsN7EdN/UAtzUMZyQ6SElajVSMkIMLgRLA4rSqOtzKq2VdWMVNCi5FMZx9JpOHE0N3mHI7YoYBlSci6AUGhCDXifr5lKuP/dwCorjhdC33ywe/790Cm52OljHN6ovRMKy2pBqb/g5fNVB3HDHnJ5H1w6N2c1r9CJr5iaATVWxJg7BWosJs8ovfPFnuH/H7YctBFKdmGLi3jYS4gSx8Hy54vJyTyud5/s99bhQe2CwhIVISZWslZ1MHkyVNrS6UIMyIWDddRiMlNZIm0ArCzFFanNbaa2ZW3GgSWeJ6m3mJmsC6DpGIvlp0BzSJN6QJfXG0tuaOqqEXpnbAsMETdHijom5BmRYUz6rYqI0OyDaaM3Fe4HkeG1TVAbnxtCJ5pCnFg0JQjoWLAkbi2iKlPnAuJmQXAk8pqSRTT1jb5XSOwPCLIt3M1qnDhGaj7JIHeaZaTe4NgB1JHOa1/vQAX1op1oh4xb1mBVpE02OzC0iIUE0ehei+uxdJNJVr5kwIpVsgVhm74amgYDSWqWvmymlOjmyNZImltYIoQMzIsYQoDbQwVHnUpQmRm9GHwuirouotREGD1ST7uNgseKbWYdmngSryT+TtN4TqRulzMzDCgacIyZCDANSgRBY6uXqKAxQO4YDueiFjQ20GKAJVzl7fg2ZsVdai6AJC8mR5aaImBMtgxdabbli1EwTIw4jbZnp5ZIihsYtg/oBkOiohtYD0yaR4j0sH+C4kIh0UVITCs9RO8NsxxAuCTFSs0BU2lHZ6kAbXPjbu3JYGjEKORdEJ3TOzGNnEwNT7sQ0kGuDBkokIVid0eQJsKUefpxK4b9AUZGukBoxUWI4YwqNpb+DaiMMxtgfMfaJ2jpsGpPdZmkHyO9jOtK3kVfeusv91z/PK6+/wctnr3A1L7zzUeW7/+B9Hjz8mKt6iZU9MilDnJEaaWMk54Ea3HcNwqCwiP96pKEyYzpB9PAu+oBIppsQpWBhoOhI7RumDtRATiPWL7C2pVAR29DrkTEuFBloFtFudJ0hzVB3mAVirwhKaOqtyjZgDDQJ1D4R+mMXN2lcbV5eGJzaEtcnyuq18BDT9SJ9WrBPs+lru+laiMQ1y+P0PKcW+GlzOSnur1vmJlhTrFU8Chw26YxaFzrQpDMEoVpH6dRw5SedpaAExPyk37QTdSRU8YwGNXpVAmcMuhDN1fBx2hIyaPJNN6qR7Bb73OmpkGrHLhZu3b/Hf/Vf+hdISfnS732FNEWuxIjzLf6N//6/xtff/x7f/9Y/5G/87v+GW6NwNrzOt//BY379T/8K9+9/m7/97l/h9m7kzU+9wte/9W3Xjqg7DVp3aNVJiAkvTtQ3uxQ/6gYx826BiLNDHDQmSIjk5jPskDzqO+fOMCREoJVCSGHFflfvXgQ/LZfqKY9DGl5oPOiMceAqH1x82DzFlPUOMTPvKpzuF3B7Hy9e5+n13yyKSimklABeCD9duHP9XKfH6X5an/ITYmKXfqx/h8o6yFt/XH/fzWLm9Jq0g4nRpfP6a6/x6bffwnB4VU2esXGYO5M4q2WxwE7v8torr3JcDtircFgWLi8vmZeZ5/MllEhokeflyDBsCNkQHRgE1xqosiFiVpmiewkkJNRszbwoDFNgbhlLgZmF1GEIDp6LYaRYQ8XzDmotfpCxgd7EKYt4p8GkkqtBE8ZmyEqFlCDE0TzZEg8NjDESbINI5agNacJ2EEJ1se0xF1LcUKwy14W7EplzoQUjqHN+pCuHqxkJgXqsRPVCpqu7LEKM5GW9v+KA9UYbO7GYa8sSZHGWw9XhQNwkrAhJI8o5tSWCORNhKZ1p2DBYIxqEEUpeOFFGQxxZloas4WZGu463j2mkVgj1SGNBdUDHLbkfnGmEW3U304a6HLFo9FhQy0SdPbZAJppVogIFUO9UBYMoA3PPLN0ILIQJUg0ojuI2FBuMQxeGwbs9GxsQAlYrlYqJkrtResOCklZIXgsLKYiPVJp3R2wthLa7yFGdQRMQNuPAca6wdIaopOhJwV1HTHcs9QB4zL2zgSZeunXOccmUDsdVLB+GHTkYZgs5GNM6+guSXTejidtBuR23PC2FEhNknxLUCm2s3NpuQc8ZbEaGQMqFMnSYNmzqwJz3SOrUlpk1c+vsNmnJPJ8zeTORDKzNDOPIUmaurHAnTOSSKSWj00AxJZWBYTSGFLHm6bE/zuPHLipsFSlttdNsz1wP7MS4sMDeztABWBpp/z59eQ53v8jrL7/MvXs77t57ifPtq05GvGw8+P4VX3n0VT66ekA+FOAI2tjKxDEBEik1oNqQokyh0G1AqfQ+sfSFGGFRZRAh9CNHa/TFmBSKLnRTurryWCmMVIoM7ENklEwKA7VGhtXKFNIBy5WlbjzSVp1VoX0ianccdcgOttEDlQ297LA4gFwReyWp0+0w1wR0KWu3YZ3br1HWwFpo+OO0OZzm0c6f+ORiX2v1k/gNvPNpQYcX7o9TpoUXGesMPuL/aKEvsJ0ST2sB11GzJVG7wuhUPwvBMbiiCK7cRiAOiV47hYKokcWJk7dvTUiAR1d7hmNzkVsCbZsVx1/4/FuvMkyB8zu3+OLP/iLb85f5o9//Qx4/viAMQq8Lr23f5pfv/Fn+7m99mRATm80Ri8JVn/nyO3+TDz78Hk/mj9nsAmfDhmk38vHFM8dhr9kNIidXBetG/qLgujn2OBVrP6ptEE6CQ7fsogFdXTziED5KKb4YqvnpE4+/vs516WvgUdDVAuwn5nF0x07UkZSSE/Xkk5qOm8LI02v5UajUzcfNgunE4bgWcOon75ObRYGTTNd75kZQ0M2RCn3Fh+MupKjhE0XN9fNJQwPX98idOy9xdbGwOduyGUc2dCQa060NJTeCCENMHFrhkAule8rrS9M5u/EOSy281Cv74wW1HZkPmVY6Wjq1HnwtkoRoXaOldzh9tNMHozV3OGVVxCKoO6Fuy8SRDEA0pdVMW1kazfp1xDnm2SYe0d2IaYtVoyV9EUO/pmEGlHHcUXKm1sKQvKXviSuOSpbYab0iobNYpgBiPq5IAxSpSBK0Q9xuqMuejhAGH8mllZ5qOpIsU4J3U6NElOjvEbeQLupUzQHPnyg6sAkDUgLNzJNAWyCxp0bQmphMoF7RNDC3wDAbIYKoI9JzmUnDhlqOrumKA9IVKd0j01X5/7T3L0+2ZVt6J/QbYz7WWnu7+3lFxI2bmVeZqUemKKkoSgUlU2EYVWU0eLT4D2jRooFhNGlAB3q0qkWDBmY0wTCZzCgBMkTJUAlUqCSlKlMppZRSPu4rHuccd997rTUfY9CYy094RF5Ut7DbPLMR5xG+/ey9fe01xxzj+36fTZnskVIHtXTShPcRMd+1DgR1UDClHXSHFBOOYB1yHmiBMGW2vpLFhjjdjdCdiRHSRwhDgCpKkFFqmweSO9KFZsMO+aRXC3p0NGpjjglB2VuFatz5hPXOKD3GfdJNwSp7GcVIUCHYIPZadLQ7TmfRSGhGPdg4i0xkOk0HRqH2zuuQkEnoKF/Yxh/3le71yLKaBpdDIdeVrrD2xm1r7FS+WHYCJ7wbLVRSMLZaDp1d5qFd6c2ZdyA2wtW5aQtFJrqeaDygOFOr1LYiQUkhcdkaS8ojZC/AFGfcCt46eylUcbJ15mZc886cAuqZaVnYytf/igrhm/XzEzXjQmyJq11IfYPyblAjreP7xroZKRihv+eFfMq/+9/89+m5st5X3j6+55/+/j9me/8Fl0dodsFkzNTm0LmGDTFl0xXR4TBpupGZB/vdKylshD6xSSHqiDAPvXId7DQkVpKHoxW2s+jNgM/IaEeaTyQ2JLSx+TQj+JkiAnrFLOMH+75bJ3g4Zswd2sCx2mgIYeZEb7ieoRcmGThXl4j4jJk8OUY/aCP6sYGFpyjsp9PjcbP/Rsn/jdf/u5vBd2/m8E3b+1shZU+bkh7Cs3b8bAKU68757lMe952wR0waNQyw0JICdpz6rduYB0ugHJS402nmN/7c5/zeP/0XPHy58+az16hUvvxyI3pnMqhLwltglhOWhqMjlIk/873f4M/9pT9Fusm8/0nh7//Nv8GP/vBHnMPEum3EkAhvZv43/4f/LX/4+/+cKZ258wVLkYf1PXmv/LP7f8TLX1n4fnrJq1e/PLI3ruvIl5ChqRibaj3GEN8YF767OT+9t0+izScnSAhxiOOmTAzKXm20eVtnpIYNR0VrndaOnA9X9n3oOIYVT8fIKaZjg25D9+hKiIpZY5ozrTViDNSjq6LIhw6Dm/3JQuBndFmeioCnIuW7ALQPr/dPPGawM+TJhvukHRE9xDkyCuCj2/Z8jPS0PoyRGFh8d+PzTz9DauOnP/4J55szFjc8R27vZqbosJxHkJQ0kiulNtreyFPmsW30VkkJlqBM9cwUXlBSYaVTfOP9vbDVDXenHO6HJI66E8KEtAONHIzQCgnwpKzbziojGNHbQCI/5exETXQMFyH5CO8SAdGE2iDb9tppwYhAA1wDFQYkTp+E2vHDuLG1jZQNJaMh0b1SbTB7xDtJplGwVMWmSA4JUWEvI4cixITRh221NkSVKSaUhbJ3ehhx141GDCtr2egtcPJMHDUI0vTgQiwoKybgFsgpjDTV3mg+CkHvTkTIAimPsbKqsNvY+BtAnBCMrInShm5MtRP14GnsRo4jPt6D4GIghRQivQ9lkLZKwLEjMwYqqGHM4x7qjbMvuEDT0Q0y5IhNH4cbQwgy494wNgKCWqT2oUHyUMeY0tMQrAbhFIZAVrphKRDN2X3HRDGNA4RFJHunp0TQTHJltx2Jmd4hSiVqGOLNDo1hJ29ixBiOMYMgHdbS+Gf37/DaOcvorKjtJJnIGF03FhJZGxKnIdbdHiEkVlXu8jR0YRZITXgnG74WUj9TLivTK2HJL3m4vOUUT1QiOnfWy5XahOqNXQqdQKQOPcmUuemGWzvE+mUI0adAPSVehkwvFUUxheIREK66jQ6Wpp+rVvj5A8Uu7yg14XT6p3eEmHn30z8mi/Hqe4EffPI5N58s/P3/5F/y/qtH/vE//Gf8/sMPuTxUxAoxH61hdixNXJuxhB31SKz5SIo7DzFjEBILV48kKaQwU7zy2ANJB1Nei+CTs/SVjaHwVmaqQZCdvV8xv2FGUL2y42QiKhesg3NGbdyQmk/0JsS4cJK3dFOar4Oy6QGVSsm3RNkGrIudTReW8H60l3tiEmHrheJtkPJ6p3U+WO+enyBDCB9EmnZ0MODbp8Tn9sLn67snxQ+ZFc82yKd5ewyRtjfmvBxIcUVK5ZP0Cf+1f/ff5K/+zb9B3QuzzMgiaAjMhOM1jFNCs8Gy91b43svP+Ct/6b+Obs4fyxe8ehG4bpWI8cM//ILSA9O8INGptiI90VGqGv/yi7d89pPf5PH3v+Tv/6f/EQ/bIxoWghZ6SEwpctm+5h+8/xImQ7XR0wY9MueZvm/84M/+gH/j3/kN/qP//V/nL/97f4G/+zu/RcZpMjbA72pXeu8/s1X/9OtzOmUIYSRWMk5IyzyP6OAYuK6PhwNkZM+IgkahloY1SIdo8zlzQg6lOG7ErCiR63UjpzxkXaoDxe5Obd9YRr9bSDw916dR13d1IU/ru9fKt6yyHJOQZx2R8Lyj8WzcVks5iqtRLH3gn/wMPcfTcxMCtXU+++wVd/M05u5zptvGl1ulr8ofP8BNCtyc7iAmpnzizd0LOg1ZAqgzx8AehDlmQqx4rtw/VjZXbqLxQl/z5u4N7pWtCo+Pj5THe9Z1pWpj7yvikbYb+pRMag4xcJZEFSN4pmbQ3gkhjrjwXlCXYRHMSiwLjlG8spizt0rSSLE+yI0+gFRMyl4LlXUkx0oCMVKOh735QrnueDA0JKY5gY9OpByxBpe+D6uqVSwIu3amYvRtZVoymgMP0kZGkndyXhhwr4JIPCiWQj7fImUfXTWDnoyehaXJocdJRG+oMCziscKWmHIabgqdxiYdIpd9Z5ry0ITZsNvHI7dmJC1fqX3wTHJ6Sa+Vjg/eQx1hipr6iJfvgakP/UXxSrOdEKE4TAaGYT0QNGJtfF4vcxhWyrqT4zSo1Z7wNCzDrT3S7ZEcE3ikW6Skg6/RheQTMQpIxxV26+xlo8eRrzTVTo6JzZXej8+ZOk1HeNfoVhkdQ0MYo9wwsmKq7shhhS5tR1oer9crPqfxOaYyZR3QqS6Ydrx1TG8p7rycBrUzJLjzGU9Kvxo5LPx0fyTn17hMvFsfSNPExOA7vZXGe3sk18xcKx4rkwbwARBLywuuq2PyiIXM0geR08gErRAU3SLX3piWmS47MWdexOHm8SjUvXDrmYtXggIeuKlCduG+/4KJmudf+jO8+HTi00/f8MnNG0x/yu/9buTN5RN+7S/+eR7ebXzx9kfUS0G3L/ntP/htmioxnOgRTJ19i2iMY1TQAiHesOuK2ESzzBTvUYHEwm6RHA3YKSZUP3Ojb+nxxFaFeRIywx6Zj/x54x6ThPiJGiKilegb1c+Iz5AeqXWmywS+M/hoHbEHpmlC7JHNhRSFaCeaR1waopXsFauJqBtooNlGV0Elc3Vljp0QjXzMeLsLIfyMU92zwuGDuPJQ2bdaP6juP5ywD0vqh37+syX67bb4t3UDTu07c4homg4ISySeTvzxv3zHm+mX+VN/+k+zvn0/FP/uxDbRD66+MtqzTUf4Um3Cb3zyq3z6yYk9V/7iv/2v8eIHb/i//dX/hF++veFfLl+z31+YGcr77gzFvI8I6q/e/4T/89/8a/R6ZYrGHKdhR+sQ8kzkxH5/QWR47V/MieaJ2JUclRpv+Mt/8b/Nb/9nfw+/+5Tv/5nf4Pf/w79G7UpaIqWWDyfrJ47C0/v+3Q15bI6Dl+xP8/dj5GHmoEIIQs6JEIUYbwgE9tq5rOvIH5BMXCa2daOUTpqOzsOR6xJjGpwSFXod46cpD6R3jjNbXYkpYQ7ZEvu+f7AKj8fHDz/L5+ONn9WlAL5VXD6N077VsUCO4DP5VuHyHE3+NHp7soQ+75bBaFqEJ6aGHJuVKnjnk89f8+LVLcqw9W59pHPG7NCNJBMXOvbua7JM1PTI/v4ttmRenO+QGGg5jhNa7yhnrM98dhvoslHahoYZ7wFNnduTcjrfIr/0Gb3vPHz5yLv7B/Yn5LUdQWdpwJk2K4MW2XbEIs0D3n0UFjIKqiBgzYHRCYmaMRmFYffKFBRPwiaO10KoyuKJQALrdNuZp4l9X0laEBGueUd64DxFRMa1IV6obfxMYj4xecTCoIeeQqIinOIIlnMbHa+pjbTUa7nQBKY44b2SWiPoRKjK5kPvVXWwfhZg84FZ793pVEQWmiTMAnm+wXwdTomaxyYcNro4e2sEj6QwEXSMdM1GXkTTOMigvVGtYdqIFkmcca9U7bBDnOOw57qw2nCCLZoIfSdMRqgTKUwDhW/vmbMC0ygEg7D3CSPSgmKhEM0GWTS+oFujm+M2igetsKSIhDYKIck0BJOAmhJyJProeuwpUsyJruQjUbi0Mk7vLCRzdql0FYJHJAjdRyc8MhMtMfeAhInNB9OkSxwjwt4BI6uSurMaqDq/9OkJPNNIJIAQWOuFB4N0X2lTpJaM5hMxjcTdZb5jzg1X5Zxu2MuKJiOnwO3tS1oDbzNbcNbHK54vhNhY0sTDdsFsH0LUOVDdyIBJhQVaLUQf7jQ/HG9bqWxR6Qsjxj0JVHig81XZOIzf/7nr5y4q/sp/+TcJfeftfeePfvgj3n35e9i28kfrH/LP7xsP13ukvKM/VKIy8kHyRuyFaCdq82FpE6P3gMSR/jc0MiuiE7VHApGmDmLYQTRUV1R3ansJtuEK02b0GbpP4I3Ux+lxj0ronaz3qN9Qehyqfb3SfbSwlR1tQ7S0S0Uk0HpC6gDdVCopDPEMvYHn0aHIlXLcINUCsQrrAaVqPgKukK/GXF+HSO4bAuazm/dxgy+lDP2Ec1h2FDCelPaDZvcUOXysIzxMg46/+xPt/TFTHv9eAB8Wqu5DqFkxvrAv+Zv/5G/x4uXtCHFrBQEKA9ntDnRnik6WxN5XNAV+53f+kKQ3/Lnzb/Cn/0u/zu/97m/z67/+mzR1Xj58zR8/rmzWmEkEj5gU9jZCd7psNMCyUYHzPE5GWU54b+z2gNwmrDkzAfICzUe7Wjc++eT7/MGXv8vf+9v/gP/Z/+J/THHn/u0DaUrDbWODHmjPujxP66mYeE4d5di8h5VXydM03DhipGNu27timplyRPvImFnSTPXG2pzL5YEpCdaFUg+sNU6KQyQW4mhpm3dKawQdCZO0iqNoiAdh02n6VDT60Vn49ob+szouz3NNnl9fz9kbT9eeyBH+9azg+K699mk9Hwk9fa27E47vO+yyY9TT3Xjz5jXf+/QN1upgIzhoNSQGkCe2xkrsgSqRysq+wQubqeWBul5ImgkPMxYzMSWW04K3gz1xG0nzMtI6ZXzm3SFmaNfG6fya0/fecH5xT+kXeu2UdeVx73gteCvIXkkxsYc0kjgtEGNk2y885Wi4pG991rLD6nYk0I7MlL52UhK6Ad6p3eDw87tCLZWm83AfUbk5zcwt4U1YaYQcyFGI/bAJ1+ESoK9kPRF9oeYHNhgshrJBmKikIT4UQd0I5qinwenRMW4QIrsZcwTp0NzpVslRkOisHUyuLOEY6chox7egqOyENiifaRr8hYiDV8Q4uruQbfAeujayRpoNO3VMSuxDU2CtoqbgMooZaWhUIhGTiHugboUQDKNhImQ/DaKrFLpXcptIrsforQ3EtA29QveO2tFN0DpAbmZIXWiScamYdEI39EPndozpghnBbIzgah9EaNUxctIZ931YojvHocBBApWO2+gIiAcerR5aIh3PRY5sFengE9EivzxN/HCuTBssZmQRJA5H0FrgjHLfOivO+/sLK8Ld7S1pmrAwcofoM3vbQCvl2rFixBvol0dKzUQNRB/guC4w5RPuK7Pc0nxQfO/Lzm0Y2HCdEzfdxr6XJsw6F9+ITfEOcZk5GewNXsaJG4Gv2AnzRC/t56oVfu6i4h/+3d/icb2w953WYenv6Nc/wvwE1qg62t5BN6TfYX6BNmbPHkcYzewFiGzRCSJIc0T8SC9tbHaDs41M+aZkMbqMwJmZzpAgOaqV3SPaZgKBZpUYO90nRvD0StsUn4aITASQOsRZpqgpLSakbqRorGRSK4N0aEf4TU1IKlTiGIGokfsDk81cbIBl9lgGkdlGVLL7POaIHhHKtxoL37rZM8SbT4JM+MYa+kSDdH+aqT/ZS+EAUIx5qfNsDv7N6XNQJMcNP0kYiOc5MwkIHVOjyKD8XS6PxBDRIGgA9yNgRoSOsPdhQTJxOld+7+G3+aP/10/4129/lfI1/N4XP+bf+M3/Dsuvdv7+//v/idVAVxkkzDSNJETrtGHaI6t8mM82F7xHbL1HQ+Y3v/8r/OBX/xR/4x/9x5zSHWpjlEQA3RJ/9r/y6/zD3/4t3rz4Nf6d/+p/l//5//J/BW6EGNm28mz8c3R3DpfBd0/2HzZQsXGSNRAJ5DTjLiQ1Um/MIdDDsJSm2XDv3J5f0q1yc14Is/L2eubd9YH7yxX78krdOnuB7ok5JZL7Ab45xJDHXNL9sOUhEAeaOOXMthdCjASzbxVFz3U2z23E39XaPM84GXqN+Ce+5mdZUJ+uu+d/96336ukq7SMeaWhHRjjYixe3fPLJK7oZMUWoHE6cEcIlFjGplL4T9MQUFoRA9wudHRFn91GUaVvZUaIHTqdb8jSRPr3lRk5IiEPfJA3NAnlkXISurJd7tEduQ8Zf3WFbp5zeMvUNq8PJUM1Y90q6dFIPPKwb09lIy6BaW9fhFPCG6EwmsfcyFO9WgE6XNkiVTEQ9Ujx9o3pBwnACiWVkGtkZV2skF9Z2xT0Plkk1YAFvtKPFXHolpEg1G5kLPiBUbkMQmnOnHIjkGMf7EwyaNUhghxDUVVCNBFeUnS7OlAOlbHgITDHhDh0hiaLFCanTrdDotDDsjLc+AtTbUSg1MTw4OY6NxVzHv9GFu3Si1UI/mAi1dRCYUsRaIUqgd5iXm8FPCEopGymNzoGj43VLJac43BZHAdN0ZJKUY7yS0kSvw95JvB6jnqGbqLGz9ceRMSJOakNIawwXXk5OsQISiIFhEVcBU4qNLnMrD5g6vToexkhQzWl1PM/BdVCiKkgDg2obaToxEdn3Idh261ys8I9t4wfhFXssbARshTbBVjZ++u4d3UfwZidyzXC7zDhCbQ3tyiRO8ED3zKVc6N15bD5ElK1ymgJfPD6Qwox2pYYbJr/lgUqTlRAi0pwpN9Qct1E4Y50Qz+y1keeMlJ2BJDZirTwKTD74JGUJ3BHxrXHPL3j88dP1d/DyEuEE8UqjsWmk98Qid6S+EQWQiS4XJJ6QDhoecO9Um8lBKVbx+gLVEdRkKdAE5jaReKSporniwbG24xZHqIsHbsID9zWj8YTmjd07qA3Qiy3DITF3KoGQMjE2WlfEZQiTgiFU/FD1S+ps/Y7JKqKdXS+ciBAaj70i2xmZGhnDLFJkpodx8ryhstsIk+lhEAqXMDC0baAJCeGJ3tj57sny6cb+YcPj6XQaeMr98Gf/fdoahoROPmgGnrgW3x2DmDktGkkc6T5SG8UOwufQSgQbY6mgaViB8aOrMc5u1gykk0PESqQVpyw/5R99/Zb/z5eVRU/Y/d/l+ncfiAq/8Rd+mS9//GPOc+bh4RGVSI0j0Ey7kQ7kuGLYdsUa9NlRq/zoqx/zsL2HtfDV/QPTq0ieFx7fb3z6ZuHh3QP/9Pf+gP/h/+C/x1/9P/0N/ub//f9CPp0+ODHGRhjo3nlK7XwSa/LhveVbxYX1MZ5IGcw3VAceN6SZdLrBysbLBU63mTTfDcupLeS4YNvKLy+f88nt93AvXD678tXDlS9++jUP9xfWJlSBkEeglAoDYazjpF8LTNMytBw6jQyJlKlliAS79QE6k2+on89fx9Nr+VmC3u+ORr7rHnkak3y34Hh67Hf1Gs9X1BFARCl873uf8ub1yxFI1YZFNaaMIKQ8sZeGtYZHCDGiAtVXRBpMmXKEgsXWSCiWhnNpB95fv+ZUAl+/u+ecXzKfM+IwnRMy6eA4NOfxsvFQLngQXr78lPUn77i9mxFuuJEb5hfGOZ/RkFml8f6nP+L9w9eEGrneX+mbDDtpH50VJ6O6IWKc0kzbKyXZkINbpCXYeqUeo46mjpiTEUJcCLVC37EOJ5uJe2VdplF0mA576qZIVLo6MR5hTzI6KKoNbUpXpQdF04lWCkmHXqOWMgBgrqDpsCSPILVkiZt0Zt3fU8KE+T6ygzSSSbgf4ttieBJaHvkZ0eYBAYvDJXFf93EPiUJpw3Zp3rEyNCUjr6LRNBD7RqPiPkK2xBUxYe0dVSEHRazjj9dRHGsgpIld6oGWGrBC26GLYKq4GAEnHZrhU5gHjyQq3RXzyF4fkDAowWEytJwpcRxIe1PWtpEkomZsCRqRqBPNCu6d2Y2YJ7xmei+4NoL7KF4ZkfeLRYqN0eKigS06E8rudexTuhFJWNlZpdBRgka6Orkbfin86PpTTjmPyAO5Q9ZCjgHmBQtK2B6xSfj8xUtqbcBMOxw3s565vr/HDwlew3nRduwx0vVETXmM3HXmul15NS38sD0S604tldoLOUVCOvFoDeug/sjpPPOyNao4u1cqhpsQlwVaJ6gQgZ+UQnzs3MYx5tn9F1xUWJuZHfb+iIpjTQj9YdwowjaqUIsjydQ6zRSnQ/sUCZUsxuYVuhDlPe6ZkEfSXu2JJpBbxFzpEqjFRmEQVnqPlBapcUBLkBG7e5YwApPawpXCrJGXbcXKhGWj1wR9x0Mf0JuwDFpadLTdg9wS2dgDTA6xnbkeuNoUJiyNVLzuSqSR5AW1PyCSqPERaNw0Za0jua5XEBvI2V3sA/USRkre87n38/k4DAiNiHyr6zC89t+2nj7nUXw3hOp5kSIiTAxHhDOSCqWPOPoQIoaPlr0MP/4oVpTaGxLC4Gi4ow5RI3sotGYkztznTurKfXvPb73/W2jK/LlPP+dXz7/E75x2Lg9XsIDVxhQElYgE0AbNjGJGlE6UhFUlZmU+39AWo/yw8z/5n/6P+E//+J/wxz/eKL/19/hzv/4Z//Hf/jt87/NPefPp5/wH/8H/Gs2PdIt0Az0ixc2GpsKeosb5ZrN8XtCJyLgBHoS4GCMhKoKSKsQlkW4Cb+JLJlXSaaKUmVky135h3zbSrPgUuYmRtgfIwuvPX/BLr+94e3/P5brz1btH9u1KjGmckA43SMp55EC0Sk4DGjXFRBCjtzr0LTEi/s0o4uk1/P9yAn23i/Gtz+4zUeXTrz9rTPL8+zz/Hk//zqDJOhHn5edv+OzTNyMlVhWJaWTaGEQTAkLsRp+EKDekHLHWxtiBTGHwT3ZvFHc8AKWOGW9oRAu4FVZZeX//Dr1m5iDclZekeeYinXxSZDFIRpgS4XzlhiG0q+5YNdYU8Qxp3zlJYMsLv/aD3yTnyP36yON+5f564fHxkbY7bR8E1tgDJMViJXseILkwDAsxJJIEUnFmQOOR2qlg0zxO1NsV9cZedmJ/ARbo4mhwdC60mpnsjNSK7xVXIyXDWWmmmJShVynGxMDBx5BxH1jvLjZsmepEaexeCFZ5KFfCouDj1J/ijNhg1vRuxBCoRxc1R6VSj/FEwLwhvqGtEPOEhAytkdIMBNZ9G1RY78wxj1A8gRRG8FxPUM0xV6IGWlkp2qlhwP1KM6IZSTLZQbxgNu5jLh1xJ5jRELoO7om6UYDSRxfSe2cJQrBMU+di99xeFqp3Wtm5ujMtM3cxDDy8OIsGWt3G4cYEjZktJfS6ImEHOpTExRJ+XXEf3aOeKhMygjRDRLtj2QhtiK/3xmEvTZTeIQXWXlAf2SinKdNV+GK9DNtpeMcmjVQSn+SXyHnh4oGQd6CREZCCPK5c10e+TldMOzlnwrYh9/e8X3dubs6EG6W2yh2BUpxrXwcefk4okZgjfczQ6HsjR+XVzcL+cCH7SBq/0cQ7q8iUMOBKG26pVvEg3CwT5VJ4a4VsQn22F/2r1s9dVPQeRrtZhKD7APXYmSALvY3IbosFY2Nmxh02G9AYkfuR+eEzMVWKC1033AOhOJHTsAGljrehs9DYQAa33Ql4UowFt8YsyqrDpUAruDoWO/fVCfqCON1jpkifGACXjoeCtE4LhdRO7H6mq5G7MsUVDyNrIOHUMBC5xRYWqQSMNjm1rGioUFbEjvCqJXKaE3d3t2w/veWn7/85UzwdYT/bsakzdBNPN26EqENhX9pBUvwAuXpCcPvRLtfDFy8f3AHPZ+HfdYk8/7WL46VScx6qb+vEFJBdoNvYjAm0OixR440fySUaoNVjQ9NhNe1Aq4Gb3NE40eLCVhtzgsv6wD/6g9/lYX/ksnbawYxQ4kD5+lMQmo4woJBwr0jofPLqJcGNXpzvf/IpP/47jX/zL/5lHr74W4gpv/uPf8hlv/KX/vx/g//wb/xVHusfMuUFs1GcWX+mN3Af2So8uSH9T5z0n3gOSECDcvfi7ugejK7Jr//Sp3zy+oZsE/tuNGOow6eNFAIhL9S9j/FGW+mME9/94wYIc89MeWJ6PbG2K9frTq/DUuootRrTPE7B1g23Ts4J3wtTzpRaP9Arf1Y34enn/l2NxXOn0fMi6mdpMZ4XoM+Ljad/44l38tyiWnoj5cj3Pv+c0zwdYKg4bjXOyLBRw0Ng9U6PRtJEb86+7Wh0NB7iX+vs0pltCHslRfzJro3SvLO7EjvkRQcKunW+evwCWyOzZqbHNMZ6UyYT2IrhplioxLiQF6BvnMxZrXGpK/OUKa0QFV4sL5j1js9fwtYvXLeNx8vGenlku66U7R5lpEhqdyQyiqUDyW/d0TAisaU3Qjhi390HTyFA5M1Q/8fK7J3t4vgyQPxqjWpjI95sYxdHQyDEGQmOW2GSkfvRtdPagLC13ugMkamK0quPcUlmaDVKxXgY446mBJeBCMcPF8LItam9j4yN1pAwDRJonAnnZcTpunAzTwP1bw46YT6ondVHB7jhI4FUR1shYuQ8sdVCTJFgh7ZoRHmSk1KsjSgHCWPG4Y7GRrNC90xw4RyE7p2K0bujMQ09nnZaDywhUr2TdSG44SmhKY04cHP2FFnbhQkltFGkBBKIEF04F+ERpRanloIfwW9B/ENkQpNhM55suN/KJETXwd7pnVnH97viTJ6Ih8i+pUBsgXtpRIdzTMzdKAiv0oRk5cd15VUNyHLmzERfR5Q8bvT5TEoZ7DqmLG0E8G0Cxa6k9JKkDNid71zKO3IYe8Ymgs0z5TEjQanWkN7wHa7dySngG1xQnJ2HsuM6OlghJ9qYg7O1lZM6EkfHVEOG+s1I9l+1fn73hwZaHzT0rd6y1JUpGKspyUYWZx9bFMaGyT4ElEkwT1CFHHdWoJFQM4JMbN5JqRALNHUsRJCCkpA908MRzGRlZHtoZpXOTmVSoXH0yI644i7rOIUSEN3gGCVID+ODEJQeK7kstN7x1JA20c0J6vQOISo9JpIX9mZgFV8zGt9jNze8ernw5uUNL1+8hPCK5EK3yj/94T8cN3xR2iHi+ZbF80h1DDrmza2N4oXninw/lPUcp0nkuNn+SaHec/Hhc/omHMK9zkBw90bWTEggYsQo9CaYC71U8pzx2pjj0MCg4/Ql6pTeIARyUNQaa7/nZb8hdMW8km8M1Zdc48qL5YbXLz/jx5evePhqiKBarfRaQKFhaIhDT+DD638ribIqmz8ONbfe8X/97f8jf/4nv86PLr/PdX/g8eud15/9Ctv1ym//zj8gxRm3SG/biKt/jp1mtAr96X18pjP41hiA0bV59fqOX/nBp6SsbGvhJz/+ilc3L1k8cykd13Hzn1LEumAxUPYrE5Hr9YEiHY+B8ljZdqO1jkZYtweSKlknwpzo0blcLiNoKozrMYUx35Q4IGQSIZMxGwFQH36mP6Pt+F0txFMc+XeTT5+uheejseejjufvz/P1/GufrrPpZub1m5e8fv0C70O9JOgY18lAK09JiSHiBpFhZUxJqWUFInsFVIkBTh7GaJI+0kfVsACZMf5sTakOyY1ggeLjsSkAZcNa57HDdr9isXOTJu7mhd4Cce68Op+Lm/7hAAA2EElEQVR5XyveC2GKPFjhTbplsYmmwv22EuM42c3pljne8OZWKSas2xdIqzxsyvuHr7g8PlCvDUdBRjQAalivIxcJJ3MLQO9XXBt7F5gLsnVCi6wIYepoCziHMj8GvCs5TLTqZBmW1d4UVJklUGwndqEGHeMOMaIyIsPNMAxXI7ZElAlPjlhArA7FZhDikZRb+xB59m6kOOLTYxqhf62t9DAKM3XQJ+GwjZRYFYEQOGlE98Y1+LCF5kT0ANGovSI2cpYCSgoTm49NmuAM/abR60ihFZEBKNR4HEJsWPp1HAu6QzHnpIo0wz0M3UFoZBOaJ9ZQmWlED0MXYoK1yMRMl07bClOKeFSqOs0NesGl4+2IS/BGhNH5DIGMs3klaCSkTDHw7kdezpDTWwRhfG0V8LYTxVHPVITkA+7fI2ya2HplXa98mk+c53l0r2UlpFv2Oiy6pkMLptGxMoD62/6IuSIa8VqwXnlcjZMmvl5XpjAR2nssJCZf2PrKi5w4v3jB+92pl5WH7Uo5QIbVRmHW+84mRncjYtwSB024GiWesGqjy5wj1RrLL7pTsfaKWiZIp4VOT1dKtXFhyzHfskAHqhuzCXjC/IqZQL7jsW7QJ6J2UoTGPcFfoKuxpEgNRrFI9sCNPHIfI9oiKRoWdoQIsbD5CPIKarQ6UW0mqVCiHgFamVmMLSSy3JMsISmz1oy1RNVGzhekLaMDox2TR7K9oIUNuSxsYeUUOjLf8clnE5/fvuCTT36Tnu5Y60R73Lj/4U94/9Uf8ejvMS6Ud39IDie6G/gOPDtN2viAytGEgGd20XEX5wkoIDKwrCID9iIyEghHrsW329XPi5XvbhooIxnTFe0BRYgqeHRWrihDMEivx8l0HzNFc6wNhX/ZG8Ec0thA7Fq4pjJIhtW5lVf8lX/7zyJL4B//3h+QLzP/2q+95h/YH/P+3VteRMWmRBGnFSP1yOVSiTkRk7JjSKtDwNkLZm/ZxfnbP/wJeymEGIinwOtXM7/7L/4zat1Hp4ZCbfVwwByk0kNE8dS9GYLXoasQOcLawlCNu0BIgV/75c/5/qtPWPfAi3Ph1Q9eQG/cPzgSBU2CxhN72/EVRAPbdWWTYUutD53dLtz3YdFSG+JR1+FzNxeijfb++cVCtc7lcqFbJeWJ2JS6DdxuDCNJVEW4YLQ2wGUavgFSfWvE8RTwc7z+54mmT4Lf5+4jszGSMzd6OK6rI42ytDZm6jryEMCQ2vEgmDqv3rzklz5/zSlO0If1z1NAcgYzpq6kNvgN5mGQCqNwVqPvNiBLUZhUKVppVsjzgjfGhqYjHbZ1Y5UEIZDajkdHUVoFolGaIq2T9cTar6TotFKRbnzlFd8Pp0EstLSTTsJer7y4vQULtOBc2srkkagHNAtl3Sp5mZCyk6Iy3X5KEuWlNz7//I7rduFaN77+8Zd8/Wisj4WTQY8dPOJirPVKSDbiDHpCtZCuJzQWPI3r0zRjxQZ5VzLBIU8yAs+y4nGlV8PzOMG37qwmmNQheiURVYkieIfQx0ipstO1U9mZPFB6JxHRHNjrToyO6hifzFOk2YboKEqyRKTuBEnEIHRr6JBXDTtqcigbGgTrhS0M99kSYArOfduY9BavlaqRjU6YhVKcQiD2EQpn3qnVicGQmHAN0AtBQLoxMzI7RIeoMmgg2tBY9F6I5jQtuCq+GzonWtnJJXCNxhRGmmw5wg9DgtAFXRISHK3j/mpp5IkIC3HaaV3oxchJaA3EB5fj3BeadWoco+B8dH/VE3iiV2FhaE9mhQc5guw84VW5aiVpR1wHFCtMBIs8JiNLw/pMlE6zQlIo3sGcSEQ0sveE2SNNd0qcyFrYr4/oLvi2Ul5OfLII2wbX/RWpBub5Cx7eMmirxfil+UTNgS++ci7XDrPhsYEbLQSm5mgaSHSpBhQ2r1RTZh/3uF2VsEJIv2BM94khPEN2blsaamHbMSvsFons9FBRj3Rxqt9DjuyWR0XaL4MlES/ADH2i1YmoK0vMdL9Q2kj4rF55NCVFo8fCLpFYJ2Is0BI3IhSJ7PWE+sqSH7Di3LSMMbHqhRpu8FaoqnQ/YV5IujF7oNYRpiNuH0R9nVs83XO3nHn5/YnTq894/eoVFjLhHsq7jX/y252v7v+Q6+VLzLfjBD9ObCmPlLoQhGoNt8CIFB4pj6bfnmmPgmB408c4Qz8IOrsN0eTT7+PhHHB/alvrsVl+s4HCt0cfAG7DBrhtOyEGpimztQopkJLQaqfWNlTCKDlnSquIHgVEGyCyvRWCRZYpsyzCXg3RwJwS18vKP/1bf8B//7/173H+swv/j7/zn/FqPfOn/8K/xe/83u9S3j8QeoO+U8qVcr1wwSg9czfdjA2Twd2vtZFkGm38aQKJNDNevnnNw2Xl7du3iAgxRErZP2yYzb4JWPP2vEU3Aq6e601abyBKMOdXPvmE73/6fX76xRfE0uA8E1JEo3KOE1utYyN6GCS9a6z4VmjNqc252jaEh+zEIGOTr7CuO+eQ2dWhG1UcwkCen0S4Od9y2RqrN3apMAVqhVNURAxPkckTUoTmQ9Cs8Rv+yJPlWNS/sRV/R4w5rg05kNXf7uKAENpTlsMI10pTHkVXP0KmIiCB83LLJ59+wt3dzaAmyo4H57ZPRIlI9dGR0k5LMjYyM0SdrBPShBpGEqLGodmZcEqMUNqAa9tAUV/XKzElbuaZbd0wH+r+XTqTDt9FSEYKmdIuYAHtiSV2SgpMLXClM7lTtkferhdutxldGtv1yt3NgubE1J1lmrm6cXn4imsPvHr5htyN9TwyXyZdoG3smxNPEy/mzKfziam/4Pu/VGnXna/ff8nD15XrvqNeyG0edFVdkWm4oHp8IDHSTUNLpBhGboSt4JXmw+atkoFICIF9q6QacYSLG3chY8JhCd2oPlFDIFohyAxL46YtNAkU21iCUG0HmblulRDAPVJ7IOdILQ8oEC2h6Qx9hxAJNHozUsq0fRut8l7ABDQSQwSdYDeSd2IziinRItdTx12IHaY4tBi1NwqdkCau+yPNjUkzvVVaaIQ+MTVDcuTRjaBCL0O78jrc8tBW0Eauwx5rOsSoVmHvjV6dbAsPYkyA93H4FXNuYma3Q8MXM4ahqWO1M/cZurFKJ+WFuQXwxKoGoYAp1ZTujgfFvDMFpXbDesTUmPoOKbKpjwxu78ySh/W0XWl5uKRqTWMEk1fOQVlOM05iX0DqA1pH5yTEzOKKWcTF2csj1gp9L/TWadyzPm58XTrfw8iXR2I4EfIdXCu39pa3obFZZ5OVva00u3B32fmir2Q1yrwTfKL0wN3NxKnChf0oeqCJD4FsVHC4k8gXfae938BhD7/g8cfmPtpDKBYMbzNRF2I6gCjWRySwQdCGhQltgQQUNoJlkk30uiChEQU8jLii6uOiCcnw3siquA+f7sTEtVQ2UdRmAhe6zoQOyJhhtz7CvroOOl7WQq6DZBd8RrwTGC2xXd8fVftrbm8z8Va5Pb1iPk0wL8RtRmrh4f7CP/mXb3m4PLDuK+ZX3CPxUDQjiRYuIzHVoFUZz+GprebyTU6HfLOxPW9Fo98Ohfrg5Dg6GAKDc39sJOPk/UzIKd+wBp5SLM0Gq/Ypqr4dzArz4fwwGx70ac6jTXsc8EsdeQdTCqPQsoHtHfCmdqjy7XjtBWtQ1TEaf9ga/7u//tdJS0bjxg9uf5P42cTv/NY/IG4NklJaY687KTIUxtPYZJ60JhoC2gPrXlnmjIhjvXF7viGFyB/9+CeDWaJKb33Y7fgmSfO7NMon6y4y3C5u35zWY4xIEl6+eUPfd25uFu7ON4DzditUi2gZKZJ77Xjb0RVw4cvr/Wih1uHVn2LkJMvo5IlSrVLjYBfQBpGv9s50sB3soPTdzJHsQ7TavNPlwmajhRtUOC0LbmOUp10PHcAYBX4oTp+RWJ+C5p6v53qSbzlBGIUZx/cKB7b7aY4sCfIc+eTNK17fvSSdB2n0Rcqs7Y5eCw9TH7Y3HS1eUqReKwln71fiFAk1sdNGnowYUn2gf1TJUmha0ZhIexui4QyhG7U5mhU5tB+hQ9LIlTYSP81Jqvgc2LZO8IiXjnaHOLI3TAfU7CIbS6t82eB+nTh/lWAKLKeVUz6R8kt0HjNrkrJoxHrFbAeDOSq1dESU677RypVQAnfLJ9wur3n/yZc8blfq3ui18fhwRYuTcEKN1OOkGtJEY8e0Dk4GabBVIjjpiEEXejVCtuNwAtFhD43djJACU5jwBlbLwNDkjuFcsAG4k8ZWM3ggTWNTvFYhhYCx4k2QMFN7x+UyRrvshC4UcXp0Uh92yl4blgbCWqqTvBGXE8kvuBpwYm0PnM8ZazutCSHq4N2gFJQQErVuzNPMyPES2h5IWRCHqmNMeWZCyhiZFtVRjGggNaVagXNCOmRVihqnNFxqm8oAKrYDPe0jj6RJRejIrDy2jeCZKIYH2Np1sEJ8XCurgkzDnXSKmWYN746YYkHIZGKI3PfrEMaiVIxZA9mFTQpbUc6xgjaKCK6JRKSqEU2wstKmM2tchl5wPVF0H9bgVql1JeSAubLtG7UVmq+DaSQJkUoImdCNoDt6Xkgvb1i3Skk7633h5iScgkBQzkGxHnloj1hP7Dg6R3pruETurxtTCMPqLTrGT+5EE6Zp4mbvWIh4F7IZLp2z/ILHH1Eb3UbF1zGiVLo3up+G+IWJ0gtqF3KYcevsokjvI/TGIj2MN332napK1Jm9G7tWso12YELJGth6OwAwR3upRZpFarghdadxJUrEgCydpp3Sb8nixH6mW8DsgvdB67+5PbPc3PDi1Se8fHFDns+jKlx3vrivrD+68P7+Pdd6j7eC950iSgxGRgmh4CFyqQ3NkdgMbROuOvJErGDeiRyBQ27fKhh+1npycYw/fAM9sm5j7DF6HHywlT47jT63GvrTiERHSJS5IYfo5wmIVWsllkgIMmbgRFQCjdEK0xAw73Q/BKAAMpwUAzVo7Juj0zS0GQSsBywaV+20fo9UJbfAj37vK8KP7tm+/BHTcgITQqkj98AgpMSL2ztaPXIB3FnXlb3unG5u6L1S986UM3NK/OTHP6LuO3JEgteDPNqafXjNPrCgH8SZg5Spx2twNB60yQMq8+r1G159/xVqQrtUrnRiGgKsx/3Kg1RCB63OXjaajYJxbZUWjSmOcOCsJ6Q1Uk4f9CiLQ5chSqt1H6OJQzeD67DahoFRt16YQmZOy7gx18peKm6d02mm1iFyhDEH96Ml+d3i4ru6C3lWyD593TcFreE6hMbCUNS7GylFzrcnXr9+xbxMTNPCKcwjkdcMDSdi2AmmhObEJEcWwmjvopFGw0LAPIzWviu79uESE8MHYIGlJuSgHTaBpjaEwAFS27EgiDnmZbASInjPuG9sbdhaba5ITlgTugci4zEtCVF0FJ1mPPSRQhqC8dPLW/IWuT5W7ucLN0tCoqKnEx6cV6cbMgldAnXfmONC0EF5RR+5uztxXSs1wr5feRlek5bXMBshNdqbQKlXLusj7++/plxXMMes4NKARg9D/CshgELSwKTQe6FbGblI3gcNN2RKKZzSsB1bM+rRFEsO1isdcE24BBaBtjsWwhgVIcx0OAoj18YcOm7QVHAKSCQk5WSJIjsqDiHSqjPrQgjwmHZaglIeCG1C50jQwm2YEVfcGjmdhr6DhveRgBxjZvN2hH5BVWE63eLbAx76CCVTZ2VoP0Sd4G0I9HujxEBPE7EJwaFYo6iRNRKPMY/ZgPztvRLmPIBnIhAz5k6iEmy4MoY+2+kMmqSixDbEiJ2GRGVpE3bcN0IIVOlUc95MM13bwPPXztau9NPo8AUZOUo5KScCUgvSnM0jQdooCJZIMth9aCmkQyfQ4hDBUy7kmOkc+0mtBJ9JS6B35SZPtL3SJZCXl1hN4A/cJsUm5WKVnIU7z6z6eBwEp/HziIIVIeTMRKe1TpwyZwtEUZo63oaVvdrEY2tYLJy7s1ujzeHDIeY/t1b4ub4KqO2EshEVNssjZU99+Kmtjcq13mIsdN8JAlM3PCqbJab0yOJC6ZGNmVYdmSKpNxI7Nc+01Ukhcu1OD4mlrrjupDhTUyEd88+gRu6BJreI7HgY7R1fL3QauxhLjnzy+Wte3b3ke28+4cXpln2NfPXY+fLH73j8+h3r9QuK1XF6xHBZaeKIT0jPCDtdVpreHhRNmMXQViltIaTCFB/Zyui+wBhNCEaIw/trdmxwx43+KYl0tO37Nxsgg5vwocj4cOIeowHk2x0KeKbqt0M1LorJcG9g/mHzgaE18dbIcRmaj5BYTmfaw8Nxkmco9+3YfBFSCt/WJmhjL+uIjwoVtNMaRDH20AZhdC38/Ye/BpzJeUYl8lgKHhLVNhxnmRbKuo+EThUulwulVk7nE/nIkZjzwunmji+/+prH647oESde65+glH54gs/ekw8dHLORAcGRfTG+il/53qe8khPvtwemeEejsu+BcnFSUNZ15+qN7p29Xsl5ZvPCtGRCCywcpz0Ke2wjoE4gzQIp4HullIbkzNwCLU/krvi204PQI6h1bqbzeI6p0cKCLDeYVd4/3LPVyjSPiPVpSux7Ydv2Zx2ZA+ONj2v4eF++y6T4dhfnSXw3NlxTZzlnbk8nPn/zCTEHShw2xuQds8IsmRLhwS5Er2CR7umY+TdiWNDeQDp7UqZ+Jhajxo0aRmbG7OHoJEA1G+F9IVLrPhITVUgh4VFo4niXYS/0RlSh7k71YcFVc04S2Taj+YZqJzCRFTYqU4l4AnZBcue2nckhUrySlplenbW/Z78o15qxAkuMvDyf+XF4S8o3zDkzC+STY2nM9ENMpNOZ15NyuV5JAqV1wjaEtV0SU0oEjdy9/ozPvvc9vHd+/OM/Yn28Z1uN7cHZL8ZpyYToBB1WxVqMfiRBR9kYXo0x40cTAcgqUGGTHRMhSBz22x4wGfeee+9UCeQyRKDpbLSSB9+BcfJtzTCNZL85uA3tYHXUD8m7G+MePMK7fIDzWuZWhB4LW+mQFd1Hzs+qypwqboVMoh4dkWZC79Dazpwikyl1ew/zsJp3dQiOFCFHMA2IwMO6cU4THo1cG7PMPEolhM7kldhH9EDKMDcD7+jBDJmO7nBpFfGESsK8oWlhL/uBq894bzRv+GKodfqqWE+0ME7n6oGOkQ82y+isOj2MNFxaQzaBKWNe6B36KiR3ilZenowXfecC2HTDTZjAIpsqgYpEw2sj1HGY8wLbejmsy8bmyilAkI54xnMfwZRduHxVuf30ChUeQyTNmVQMrwtZJvaSmb3w9faW7E5ON0NeQGcKlSwj4r1LYA4TlM5j2YbLbV2xkMhmdDGmKRAT7MOj+osrKnJ6pJVGI5JoBFN2C0xWwQTRSuUeCcbm8VBYj+CfUzDY79hTo1nAtSApENuGSGSXCSlh5GuYs7kyzwYtkTwRa6bnC7u9Q3umkal+xmpBu4zOwXTL57+c+OTNxOn1Z5AnJpTr1/D1H33JP/7RH3C/VnZ/BKmkkEgR1nLiRje6HzfK0KA5ZGXWME5H0uiasQO1GgQ8GHs9HWmUhsgIEnPvOIpbBmkg32YH7LV8MxbRb8YXo8317aJBZJAtRZWnbsV3N83n3YsPNsKh6UPkG0bBU7jW+XSG7kd+hTLnoWFobcwoVy/je8fI3hutN0RGGzP4+H6tKeoKEVwivVaiTwQFz5GmO2KFRW/YW6dJHYmDc+BWbzBGumS3znb/HhG4vb1BBLbLBVFhWe54//49120fr/ewgvbeD9vt0aXo7YPw9ek9e/r16ZTu7vQ27H7dOp9//3v86i/9gLfrlwiRx7pyFuF+2yh25Xp5IMUFMeU0L7gPiyMuWG3kOA/E/DlS68pip/H3olh3HqyjPZM1c9lWVIWTjI5Zi8N3PwcneoLaETXERsZA6w268+bVa7rAddsJuhGMQSGMIxF1gHIM9+HBwByXb7Dc7v4hil10JIjaUVCEoASFm+XM61cvOZ1PnOaFXhvqgde6QHBWrwQNRyJl56wnusygO3NsWHM8ZIqX47k4Z0uIOnsy0EQuwiyJbYq4dGYTJKUxYusVl8qSh31R3KAIxY3gnTlFrjJTuyEp8rLDbhOmBayTgpPEcJvoKoPVcHw2s0+UqQ7kd+q0brQd5hAgOq3NpKDsvrOnHSywXa5MTCyxs50CpRXC/Zfc3N5yd1pQN5Ztp51mNDY0TNT6SJwjiwrNH3BekoLz+HCBBksO/Ornv4mJ8PX6BYGNh+sj9f7K5aGy1UoIAppRj5gVcp+RFNj6StBtnLp7Hh2pkChRYGtgQl06LhlFWE7K99KJt4+dx3WM7+JljF1EC5OPbuTOhuaJrQ8q5JyG80j3wdeJGggVkjpeVy7S0aTsbaN6IEXINGQPeAIJM7oXahv6rNUaOgkwcj5iHONtNdgMfEqDl9Od4IKboPGZHsqNnIyuhWAZZHA5FhITifftwqowSUIJWC+ojqTXKEJpGzUJSSdqG9HkEaV3Zwq3hOBc/ZEhfFbaeyHPEy2vBMY1UH24ESeNtFbH2LiPDs4Sw+g2zIdbRBSi0+vCpAvdLpxR5j5hEhANtJJ4pyOSQntA2pXtYpRkTDoOMR6Vre6kDtMcqOosMZPMhrU2OG2/UqzTr18THp035zvadcdKYqsbpMTbdYC/rl65eXnCd+Fxr4P9YeP+gjrnEAiqrIzO+Dwv5AitdkrtEKBlpZswy8SLkn+xRYV2IchC9uExNzOGGcvpXuh9ZhLBGAmdGjrSdBAqbTguEkOYqYfQsIdMoEMTLBz4X21M3qBlSmw0PxOs0a2Qeh7s+KXz8s757HTm5e0Z5hdEXtK9sF13vvj9d7x7u/JwWWnWMa0QOpaGtiPYLVB4NJjl3ahC5UQiYH1C5IpaobtTZQTAiGyEJjSbhigt1EF+CzZavTJa++gARo3jsdA/WEVH5yCoDponPNNBDGGD+8FYUHnaIXlSVIhwbA6HHuNwhjiMuPdnp9On4sO6D//TsdGW2rhsGyklgo7hymmZedxW1EcGwdMJtuNIjIMz0PuBSDbAMC9sBWIPeNiJOUIv1NrHrN4Bj1zqFTneh5lACoHeQMxYrQy9RwzMUz4cJw1JgdvbW9493vNwPz74UcdrqfYNo8ObH4wH/1Zb7qm4ekKgf+jqHP9vzolf/ZUfUPeK7YpYY99XrhdBm6Ghs0hEOrjqEOExOATnNDH1gOOUANdtJflEpRCystdGjJm41oPrYUdrMdDakSkRlMkMtUT1ggeodRAZz2mi5ch1vWJHUXgzz9zNy7DFtcjtaeay71zWHTFn3VZa61g4OCMHAEw1EuOhq5BICk7IwumUuT2fOZ3viCGxhDFL7W341EUikzmlV+YUScCawlC0x0LYhzhv1ltK6mNzx0ZBIxkXHVAm70ifqSKgMFnENLD3KypO64kkA/JlamCwV+O0nMltBxWKCVNXxjBO2DQiqWO7I55IQWg9ggaidFKaWGRwH6o7d/qSB9uoEuliaDLYdnQOECP3bUcwlnimp4j1RpPGu7JBAy8XzumOdX3Hlh7RlLk5LSyxEOYzN0tmnTNoR0Lg1O/otdLaiduzIP2KpwXTToqB78/fQx1+8PnMdn3L6jtfvb9yf/kp++MV2wtWCrskJotEhkBztoBbYqOhVGgMGmOIWBNiG6PB69cFotAYRVucEqs9YGsgp8weK80Ti2S2Nuy0vTsN5+oJnRKxFSCB+tAm1B1LkDwzx4CZoj6NA1Qc9tDoxqzD4WMmSE1oMELY6KL0oizzDcFHNkbtGxMRzwnRSKsNJKBRsF4p2pnkjPaGhMG5cA8Uv7KjpJCpjCwhWiOqUWnU7nAAxtzBXCENwatKB7sOzYUF3IRkEINS5yFXTi3QXNiiEABF2K0gtZCnhSsjX8ibk+I03Cy9AhuzzpCMyntSTMz7ice9kl4vRINkgzUkRJpnNGzUUBCrdFVa33ETbqYZGPTLBWXb73EyS55IrfFY/IBcFW5undgCve6IGSIbp0nJ2bF2YfKZlKGFzhKNr+6/5nZ5yUSk9ZV62ZinxFULecqEDvtxCB2mLgGLmHV6Xcc95hdZVJTW8RBQ6TQxrA9eePUZGLOwKoPRHkWBC1V0eKHbCI9x37BwonlBbaL3bdzuw7hJBFd2V4J26O+wGiG/4zxH7u5ec37xKS9e3bLEQNDM/dUo7ze++MN3vL/8mL0/oFYBpzZFYyEwIDRZMo9tJkuna4XemezmQKseWGp3VBvmnRAabglzxWWh10eCJnraCDYhtnOORpHRlQgesBYwCVgbHQtEn4GqnsdFjzPjE59iWEUP4WV4QnQf8//eOdQWg62gQ3Nhblg30lPSKaN70Vr7sJnKkXrJk6VQhIfHCzc3N+QUaW7MqpxOE5dLHwFeNh7b2pPA8+n0O6iVUQJTipRaKbVhTSi7ooyETsfZr40YhM06IQyx6X7AvJod3ZOjlT2fZ3o3Si1MeWHKC4+PGw8PF9whxkBrheNFjeLjmaNBkA+Cw6cW/9MI6Smu22VkgXjvvHnzmhyVt4/v6XtlrSvhwNRKSkNLEjL0J12MINbJmohEegwQoHYfbAkR8sEECSnhvRGmgPZR6atlJjdi8CPLYcCzStmQOBGloaETLGNd8FTRDFhhAGiFmCZqDCOTwoQ5L7y4rbgqtTbKXti9YWVYAR1BpBHDhMggIi4xkU6BaZrJMuEGU5iodTiTSP1ARgtrc9wU0TQCqVTQCtcuJA1kCTQrBBpTXGhmdOmjFT9IZzSF4tvYcKNQzNFgo9g20FgwjQQJKE6LQ3+hZQi/xQR8YJ1FjGIF0UJ2Yc4Zuo8ocBWqOTEs1L3ClIit4q2ynypSG1sVclPinMAa1hsWdYj14oSSiO6ju6gVDU6vRowntt5Z205oAVkb+7Ug1xWdE+fbW+a7G27yhKZhVWzSebfvvJ5umNNL0t2MeRufaM/sW4PamKczd/klL/yC/NIPuF7fc9kf2C+Fr9695eFho687rXY8LqhsB+slE60iecZMaNVpNFIKBL1h9StiQ8zqrTLlxJ46D35lkowTcRMClW7OpIOA6QjUwsswc992cox4c2LO9CikHth1FP6EnQ1lDgHpddzvNI7DiDuzMkYOHegrUQreK6YT0RgXXAathV2MFmEKGW8dwZkIhxJACT3hQNgdj6Pr0DCyZFrZmfOM+yh+rVwPQfpAcos1mhfQQLKImNPTcFuIzLS04d5wHA8RmpO6I0dCc7eBT/AEWQKTCx4brRlRR4YUIY/rXw31SrNIaTstVm5efEKr4KGjCmXbkSyI7RQLSA68sTQSRWNBJBAtM5H5ql5pOkT7r9NwKz6GaVhQfeU0v+Yu3XCpnTQlpFfi9UwN9yN7Zj9xnS7c7o3uK45xM99iUejeqC7UWoGZKAtKHFo5W6l0mmeaBjIdazsFWH4+neZ/AUy3HKl1bUTxWg8E3iNBDjbASqvrUJDqhPQZKZU07TRmRDNSytApJMWtEKXivEJbQXxn1Yr0DJPw4vZzfuWzN7z45BM+uZ1I18zXD+/ZfnTPT99d+eJxp3hHbSf4w0EXOw1RCQOWYhIwK3RVahNCX2hhxWMnhYbIT9jtJUoneaTkFa9QfcFaQ92IsY62bdoJfRQrJttwJ7gNWaZW8ALUD40Bd/kwclDVgRk4Nvsn8eDTz0iOMUirzzZLeV6E+IcRCTb0DnZk2z8lnn43gOoJWPScjPj0+73sLGkE71x64TbPeJ5ZpRCafwgl20sjHEWO+RFQZY5XG4FCOVJxJnPW1th7H8rp2qnekXD4s8UHB6GDSkBDYJ6W8cHdjW4wTTdM08Tj4wPruh7uDahtRLEjxxjIv2nxP4VmPRcjPukIWmsfxkCghKCkKfL61Uuulwfa3odTDih02hR4HSJWwXpDk9K9D/2JduY4BLi77+DCLJkpJnY6ses4pXjB0ohqv5TOnBYmayNZUGaQSsGHs0CMrB3rwiQZyZVrM2gBDXlsCmqIMLREWZ8YbygRWwLXXrjLmXg+43bQaEPEp4B64ywzJVSsK0mnkawZFasdnZQYTlRfcQruiu/KlO1D8RSmxP5YaWFHJXFb0kh3lAZSiC3SvbO6U2XQWAUjuAyIk9mxeYNfRjbLxQfuO+HgM0VGrs4LIjuP1KUSdgbEiZUQAg/bznEVsodA1Z2sma43dN1QNqYgbFa5unJtO1M05n6PGoNvMwUmFe5dR6s/FUIxfFdW6czqTHHm7faOJURSjIOIGzLQx0bR2/D6b4V6UaaHQvrRlcmccJfx7LyeJ+L5jkClZqFvGylNiAxXVUiC5onuzsPVyAROHkjTC07zS+psfPbyc7ZYefvwwPsvv+Lt/TvuV2NqAZ07U79lwSi2YcGRlECGzmGKM9YiSzoNxoEbNyExhRmrnWtf2UNmZsGljjwLNxaMLpHNhNBknNK7EVOg4qxtJTBiBLDMpJ1Qd1K6oXijuTDV4VCaUoK+sbZ96AtyQjWRFGocRRVxRquQexmC3CNtNWqldaPIQo2NVCohRswDYvNw9wUjxhnbHa9OjRHxHc+BrJnHvbCoHSCrNLrrHkb3TmFrjaDbOHhqxFSppRFRJE5URnx6DpHmznRauNxfyGFiEiEE4VoKKUzcpUDqgctU0BaZmrMtGZ0mkiqmE85GLZ2kcOkVrYqmibAXqq3cpYleOu/WR64n4WGraI5knwm2cTVDq7GuRpsSG5moZ374fuhftAzYpccz03klSuI6TfD4lh4am4/3KJR9jN/zjHhjnk64RcRXNlvZPHI3Z5rvmDfMOvd7QX1AyB70FyzU7P6CJJ1dGxpgiu/psrP5KChCX5hiZ0fAZ0Q7U1a8Rmq4R20eN1Y2cgkolWIZCffEk3G+u+V7r17x6vYlp/OnxDjz7u3XfPHDK19+9Ud8cfmK5o/Mzdg0YGEmh0iPFbPEI2eCrCRtZB3s8r6dCMGYLVECeHpEmoOvVF0InIhS6J7o3rECIhnw8QHSHW9ClMwkJ65hqPI7meCJwJd0DSMetxegYdaOgmKgr7sf6vzDSaFHSNTzzRHG/veBonkAjFprH5wd+KEreCIgfqfw+G62hbsP8NXQwDPSZMaJveyVe38ckKCg7KUwLTMpJR6uV+hGb33MejmonZ0hkgxhnBTdkNbIMvDfGsMAKQn0BN0LUpVyBJVljRAieZq5mRckdC6PF3rr3NzeEVLk7f3XPN5fSTl/sIIO7cmAKXmv4COr46lQel54Pb2XT8XcU87Kk+jik9evR8KgjXwAgmLbxpv5drTCa2VX6Obc5QXdryDQJWH7IPstMdLioIO6DUGuTQN9PusgY7au3IYFEaVIhFgJsWFdOXWjFMh5GtHKDib+4bXGGMAaay2kOMK5doPJBVWDSZEGp30h9YRnw2ulWCBOaaRUxsQkCa8bKgkPdSQIN6EHRxRSjBR7T/Thwlr7A5pOrB5Gt8McrvfHhz/hKDZvuJ+4mqB12Ks1KakUtDohKappnAR1aDk6ddxIl4Q6zJ6w0Eb3pV7IMmPdWHtBZGIGahau7JQ+0gZCjsyiyKSwBkJ0il4Bx3cn5pn3TUgyk0QpcbyXezl0KBlUdpo5YdJBmywTpT2yLImb0Nlb46FXclpGodmdmBeCJvb9grtisXC1FZ/H2O1xe09IQ2/E40wU5SoTyhe8u7nl9evX+B5Y5o05zQQgupBRXAqFjWsI1KuwXS5YMyxtnD79jBf+ihfnHxC+bzR74KvHt7z/4j33735MsI0vL5Ughc/ySy414HHlFGf20mlp5WrjoLbUSImR2jvmEOaFFDsxGH5J4FB1J/RI80pPmXC3ELaGTBPRHKwMYnEc4Li97iz5FgmRx7LSkhKqUE5CptK2RM+Q0hnzSjSh9+FwcFdMM2EPXLcCaQDu+royzwu7BCQKsW+YVVq8wbYrKShJTzhnulzQfcenhLkQVNjc6ObceAACsRoSI1uvXFVG+nRwIo3sRvDAqo3uxqwLFoaIOGKwj65qD4J0pa/jOnzsG2sPZCmUvfBOH3jfjV/Ob/gkvhxuJIOoibe1IHVjnhxjhn7lqp1cHKh8lgNtd64eoDuf8YI1ddreBzeoCkGNOSb2VkYGSIJrfSD4I3FL5PNpFEfRmU4gP71ni4HQbrDtK7wWHlsnqUPvNBVumiB17NNl7qT9HtUAXdnqlSUbWRJr3YkhwbJgpWMYV/sFW0qTr6isTJqoHTqRVhMeM9hCrw+EXHBx0PGha0d3I9otUQ3zTBLhdK7E0x23p8+5u12Yl0+Hs2B95P4L41/8sz/k3f09l23D+YokcbQpw0yZKlqFYI56QcgUnMk6FjurCNHPhCbDsiR62CYVb+DeQBNmnWaZSD38+UI2RX2I1ZzAprfUAMGNatCZGHroMVsrfh7s+gDSxrzxSf8QwjedChh6iOeJok8bvz7pJp5GFM+w3h/+DCDf5IM8t6o+j8R+/thwRPCOYuSwIJod3wgu28rr8y1JIyuNer1ynhZuzgv7vtOO8VkpA0Ns5riNi6vbIRJ9KlIcooGasPc2bGUyaI0xZDRFUgyEqOME1Fb2y9g0X756SSmV+3fvWbf1YGl8ozHRIAOnfjhSnGGPfXq/ah000KcC4rlg9bnj4XSaWE4TuFN7G/kj3dhd+KKsTBU8BjKC0/G+sfeOSERDgmBsXClmTH1CY6LFSPShHepiw15MoJcyRkG1MecARz5GiNAl0AWCCdUb5KFZSd6IfWz4KExBiU/vhQJTovWEto6p09Tp5ogGulT0PIKPFlFogaaFGgIzTk4LdR+o9mqC4uOHRqCnhsuFFEboFNaJGuieqNJJ0ek90FNFirD5TleY1CkuhF7huN5DVDodj+0YDTHQ056R3Ea2gXaISlsLFjMNJ8jobmBK2cBDZRZ4PX3Cuj1SZOD7b3sY1tM+bpwk6GHFrbOEib0Xgky80Ftq7VyCM2tHyk7XgRH3dIwNCRCMvV6RErGQ0SgE36geQTtdL7Q6BKRigUgk7oGgMzlm2rlDHChstU7zxr10XhXh3bsL7/a3nO9uWNIty3RCEG5uZpr0YdcVWFWx2GiXR/a68r03v4bXiZCN1jfoQoqJz24/49PbX0Yuf5q39hUvLg98/cdf87bt7LbjZWzoSUdQXpdIa4F7CtEG1bVnIVonl0RTR3PH+z6YEr0j2pj7xt4EDuaK9dEhneKZImMkFecrm70j7SdCyCPkS5yGsFvFwgNzh+SBEkahbaGNn3EdPAm1zimNx1gfJ/dKQCygApgSchz5InrYqIOg1YDENbUjndUI7ZGoiSjQeiWGTN3r0PWpEwyC7EQiVgQJid4Ci49RZisrQUF6YGsyoiJ6I5bhklBzNEZaK6TauUojEDh3gcn5Sf+aGaV+VVmXwHQr3IURoNa8Q7+nSaEDSTNt39keHwkUcpz5cn0PAYKOz/PSwcPAGNQjyCvlCFZp5dCQmXJRR9tCKMBlZ2/Xg5La6Fa5jXfk9MjeDOmO3M20bWcvjRI65z0jbSZGJWskEah7G47IIuy64zEQVXHvdK+/2KLCpLNZIMu4we8+LtCFRwiZ1Se2NlLgQugUc7obEp2Y7zi/vuHl7Qte3izcCFx1pl4KX/30yuP19/B947pfIW54j1jfWHKgesR9wDvMO1ozkcAajGg7WZXoneaK7TOe70ccOYZJoNh0wHY6sXdM74hcDu3HgG/hzkRB07iouvYhDbNMph1z2BNiAznuqTJHo9UTJheScIi1vrFy9v7tlvxBWf6W1c+OjoA+hYYdRcbzDfHpVA7jvP1tDPO3A6CeNtOnHIgY4gc7IU9FgI+5Z8e5rFdmz+iUcIey70zLRDwixUut37g1j+cZY2LK0+HhjuQ886//6mf84Q9/xMPDFalDn6Bh3ByWkOgyDDXaBaudDiynO06nhXW/8vb+3UhFRckpDECLDxrpk2vDbcCsnndkPgSDwbe6Fs9zLIZoU/n00zeEGDDG895aAYRmw7XR0gBLGYP70TpIGCJAtxEzH9XxmNGeCM1xUZoJKR4EVFW8NOYwtBkeRvCUS2DvEGUQMqOOkLbQ48hhMEH0RJ/Hiag1Z5oX5EiZPYfAWlZMFU0L3aADeYpMEYpMdAmEAMUzRQuTKHOX4xOuJBlY+0MtOizOZHYbFlpQehwsgEqjdYieR1S32xizzQJ7Y5Lp6P0MsFN3H6yT1nAxzJQQFxzhHI7RiDRGH0KIjAAtdSd5RS2gaaFRoRl5GnyBt49XUspE79AbnYjpGAv1YgQb47SODE1PcmTdgAl144UYhEAxBwnEw+be3TFtRCKg7JZwg9kSra8DFGVj5GcexugiKK6VmIwQAXVCTGgffU1l0G9nzdTcebc3puLYw4WLH63zKbDvM5eHO17cdFpzJAVS2Lm5+5TlrmLz4E/sO0wSUYxWA91lpJ6KE9Mtd2Fm+bNviLnz8PDAfl25/+qe6+UtWykETkwsRIQgCQ/KNGX6vlJCHyAok2HNjA1PjcBEb5B3eJQyhL40ig4QVPYwikBPBA8UaXRrmCv3QXgVA3GfuCg0HxRg6+sQ71oCNWJoBEnsEmheERKtGFMyulWqFzIZ7UMvIn2ABHGl9StmsOQZq43KStaB+k/WSR6oZgQ6kuBadqaYUAabxoJTqAhhgBGtjQiDGHDvx7g70ZpBdUKUwV5iZI+nlDEVTiJo20khc3e+pb+/0rfCOikWhb0Wgs1YHSLkbjaKhlZ5rFcmUd5VJ1dltwdCGIFvk06YF5p2UMcjTGR8bUw9cM+gAZt1lMB8q5z8Fo9X1sug+UpszKnQF+fhXeVl6kxkrr7xqSTIkS/tESXgNNZmnJ4a2THRUFZ28pw4xZlsTt0NyWckrD9XrfBfoFMBuyd29uEn34brw6zhpQ0xWxi+/uaF+cUtn79Y+P7dp9xOr5Cbzvp14esfP/LH7x64v76j90SPb1GrpBCpvCB16LqPk0RLoEKUlVIit1G56k5gGSjgMBgEUXdAeHSIPuF0Jl1p8hq6jVaazGg0Mg/0lgZNLT5StxdMKkh0bN+HWyFV1G9IfkW8HN0OQ4JC6ngbCO4tXMjeaW2BFpCm4+TYOzKsIM9CvkZV8RxKZE/FwqF/eCoonpI0nzQQZobKERR4hPCIjSIkxvhtceazLsjzguO5xiLEyBQjddtZ1yuv5ISEgIlwvVxJOTHNM4gSQqbVEYJlbgOPW3YSkdsw81JuOZWFcjU2c3IcYXEaR9aIx8i276ND4E6Mgc9efcK1OD/98mu2slLLRjo+/NZHGmPO0wjnUj1srd+EwD9Hkz8VXc+DtJ40FSKKqvDmzQuW00SrjdY6p+VE8k7dGx6E05S5WB2P6QFJMw40ryCDx+LiICfoAxE/pUpolVUap9MNcVe8Oy2GDyMrdxnahGZMfdCORYUSAnMbSbDVGzlP2C4sKVN7JcU0oqNbI6izaUFyZ26RGivZhVASKU4IjSUl7IgeHzCtBNqQZKy94abMOsKUVIXanJAqyZW8gpPpMeN16KVy7OzsA4oEhFi57hFTOId4cA5AQqO0OjYtBbeASCR4R9p2xLwFbnTiARnukUel1IEi91IJ+URPYFaoeyXNipbI1iqeG5dSyB5IHtjjRts7Mc6joKMNfUaM0DtmwiUOJwIyTr1ld1qYaFK5dePkC6sI174hXnEyhOtwY9mOtE63K711Uh6dNTvATM0yYQrs2khWieacNfOw7+iycEpCsyHKu5XIWjvrdSOo0+TK9ZJ4ryshveVmvmWWTP4kM4eFpW00G/cPfFgYN1+ZzhN9h0of48oWaT2geuFFviG1mdvTLf5JZP5Tmev1S768f8+Pf/oT1ssK2861O1GMst+jtuAeOQfHemBPG2meMIvYvqKesdDJ1cd42UGqcJaJSwaVhvdO1U4KAa0ZaHTfud+U1BSqYXFYyFtVVCe89gEs8/FcUlCiG7UHpnmh7CNsz3FcA9ZHSKNE40aUBmPvkRnZr6yhcMKZa+biCyEN51qN4LvTg5JjRI7OqZKhKQmhdyGq0WWwRaQHpA2RrUYhEiCnERGPkEyJErn2nYCzhMw5JWTtXL965KuwcXt7QsNpiFarIB7p5YpP4OKkFsiiiBbq+kjzM2/jShTBSmMPxr/1+oZmgX9yuUc32KZMlUKXSjLnnCPr1Xnbdr6nC/n9hcueyMtOXwLSM6EJMd9g9QvIwk+2ylINxFgx0l5h73h07hFySBSD0JVGwZfO3DIBKFpRzwPsJ42zLD9XrSDPky8/ro/r4/q4Pq6P6+P6uP7/Xf9qjvTH9XF9XB/Xx/VxfVwf18+5PhYVH9fH9XF9XB/Xx/Vx/ULWx6Li4/q4Pq6P6+P6uD6uX8j6WFR8XB/Xx/VxfVwf18f1C1kfi4qP6+P6uD6uj+vj+rh+IetjUfFxfVwf18f1cX1cH9cvZH0sKj6uj+vj+rg+ro/r4/qFrI9Fxcf1cX1cH9fH9XF9XL+Q9bGo+Lg+ro/r4/q4Pq6P6xey/r9aeURY+uyrqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "image_to_visualize = 2\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path)" + ] + }, + { + "cell_type": "markdown", + "id": "46d6282a-4601-4cc3-b8a8-187ea6d5f8bc", + "metadata": {}, + "source": [ + "## Exploratory data analysis\n", + "\n", + "This bonus section considers techniques to uncover annotation irregularities through exploratory data analysis. Specifically, we consider anomalies in object sizes, detect images with unusual object counts, and examine the distribution of class labels.\n", + "\n", + "Let's first consider the number of objects per image, and inspect the images with the largest values (which might reveal something off in our dataset):" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:03.232670Z", + "iopub.status.busy": "2024-05-24T23:50:03.232307Z", + "iopub.status.idle": "2024-05-24T23:50:03.235430Z", + "shell.execute_reply": "2024-05-24T23:50:03.234885Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.internal.object_detection_utils import calculate_bounding_box_areas\n", + "from cleanlab.object_detection.summary import (\n", + " bounding_box_size_distribution,\n", + " class_label_distribution,\n", + " object_counts_per_image,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:03.237486Z", + "iopub.status.busy": "2024-05-24T23:50:03.237182Z", + "iopub.status.idle": "2024-05-24T23:50:04.216819Z", + "shell.execute_reply": "2024-05-24T23:50:04.216282Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000430073.jpg | idx 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAGVCAYAAAAbs/w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92Y8tWZbeif3W2nub2Tk+3SFuDBk5V1bWQFJis1hklQCx2SCIBlpCP/SLoCcB0p+mF0EP3RCEFtAS1aSaE8gmq1kssiqHysqhMjMyhjv5cI6Z7WHpYW077lFkA1FPjcryFQhEXL/ux23Ytu1b3/rWt8TMeIzHeIzHeIzHeIzHeIzH+MsY+r/0ATzGYzzGYzzGYzzGYzzGY/wvFY9g+DEe4zEe4zEe4zEe4zH+0sYjGH6Mx3iMx3iMx3iMx3iMv7TxCIYf4zEe4zEe4zEe4zEe4y9tPILhx3iMx3iMx3iMx3iMx/hLG49g+DEe4zEe4zEe4zEe4zH+0sYjGH6Mx3iMx3iMx3iMx3iMv7TxCIYf4zEe4zEe4zEe4zEe4y9tPILhx3iMx3iMx3iMx3iMx/hLG/GLfuObN2/MzJimicPhwDiO5JwRhJAC1YTzYeK/+94/47/9b/5rLn/xVf7mb/89fvt3v8IH37okVuXl/Irv/8HP+KA+p+hrPnn5Cj17StsNhPOJVVYiiuyNn9tHfP/lH/EH/+T/x6vf+w7tT2BeF87GPWmAUeE3ny58cLlyXIy3vzgQ0siQRnI70ObKWhO0TNq9z/7rXyXvC0kGCFCD0IIy5yM//cUrXr9sLDVTq3BcF54vF/z9//yvcRhvoQSUAICIIALQsNYwq5gWRJQ2V1hecfzO99hzRUgra7nD1kZukSqBkXMufv1/jVwJFhQNCZOKmSCqUCuVSGXBKISf/CuerAFLxuH1kUal0ShzJLPj3d/629h+RDRCiiiBFpUGRFUMEBUQo5RGDAFBMAMzQzCaNQSj1IqVgNx8Sv3ou6T5mptSsWNlpRGILAXe+9rfYvdrX4Wy0KZEa4KIYghN9XR96L+ntUarDQWsVErOlNtbDj/9Prc/+AGxJIaLQB1G5rvCe7/1txne/RISGiFkRBOiA0bFRDEzWsM/v4FJgWbQILdKbQVa4fDH36X98E84208sodJK4Pxb/wnD1z8kihBixFQBQUMgiGBAM8NUaK1Ba6gJrVaaNazB0gypDdrK7WcfEX74HfYRDgU++uSWr/5v/zPO3nuXSiDFSIgBCQEDzCDGhFH880VRVUT894kq1RoBQfHfiwilVawaiCD92Kw0Wq2YVWrLlFwpN3esP/hDePsR18stZQ28+F/9Nk++8avENFEjSAio+FpGFB9CKQRRbPvnwWTKWioY5OrXOeeMmFJKoSwz+eff4+7jH3D7qnL15Clf/lu/S326Z9AzTAwNEQ0RA2iNoIHmdxMREAQxv+4A1Roigqrn6tIvXBNowulrsR9iM6PWimgkxIm/+tf/Bq/fvEascXfTePL8DAuVw+2B15+8glJ58/olL957lxdfekEaAss6gwgmgmFoU2bguBaGCmdD4u5wJCQFg9evbxCJXF7s+fSTX/D06RNEjfPLc2ppDDEypsj19RFRIfWfVzPOzic0KDkr+2lC48p8XAkhUKsxjJeUcmBISslGDIFWs997A5t2vHlzw+1nR/YXl1xNQqawe/qUUAXNK3fzgbSbaNr45KNPOLy94enlBfvLM37+2UtujzNnZ1fcvLlGm1/Pw/HAvCx8+5sfcnm5JyQlxEitBVFQg/kwsz/fseaGFaPcHYhU5MUlagGbjbUUxIwqmenqjHE8Yz5WX3Pm74ySjShQB2OYJq52L7j++BVlXDi8fkM4Vmw2zt9/j+H5Jfn6jiFEqjUaGdPGkAbubmbGsKO1mXUuaIQ4BeK4o1gjxEShsZ/OseXIXBqf3H5CTMZwm/jpn/wErs45NCHKDl2VVz9/w8uf/Qhbb4GIBUFFwRRBsbpSyh2iSpGEaSOpYVYRhNYU1YS1gorQaGCNxECTSpZKKwpJaDUTRFGDGAeQRpMCTYhFiEPEoqAGZIEEptAQNEYwIa8FEqQUGS4n3vnwgncvB/YG0zgxnJ1xMweevP+M/fk5JQsxgZgSglJyhhKoVVjr7Ht3w/dEVVprqEKzwm/9zb8vfz6I8RiP8RcjvjAYTimRc6a1RgjBX8ZmpBSprdLMAdfTyyekcSBNkaVF5hWkZQqRN3fG/tk77J9e8PzFu+ira+5er7Qg3MSZT+bX/P5P/z2f/exP+NmffJdP/9V3ufy0ElpiGife2e+JQQjJyE342fXAINcMHNAhsEuREApWAjlFUkpgkTgMjLsz2DWSJJoYRkWCIFb878dGK1Bb5bA06vUtrSTG852/BVBAERxEGIYjMqPRaC0T9pEad5y/f8Y+N6iR+bahgzIVo7RKCDBMEzooLQhNI6oNTKjNaBJRraglMhCuXjC//lNUIjY0rPqvjaHSckP1DFJAQ6IFv50SFe2gPQUHHghIgryspBhQUQcgraJNEIUYlEUhXV1h7RuU1y9ZPvlT9G4mTiNhUAr+4hQClgZAiDEhGhxYdUBpVD8WhGYdtLVGExABffoOu9g4/PxH7EVoI1AL1kaGcU9MCgHGtMdMqSH4y7Z/nog5iFIoAtKgVUNVsCbUAvrsXcabl2hotNuMMjCkgSHuUK1+zCE4KET8ZzvYFjE0KDTxzyYDBWkQWj9/FYb9E9ZxpKaZ5ZgJMRFtIo0DsTU0RCQoov3amIGCWCDEePrdItyDv9b/jDh6FiGKvwR7puHguR+zWKIWIdbG4Upp779Hu7mhrgXVkZj2aByRGIhRCChtA75mPcFTB1t9jTvw92dcRUEgEvyZkUArIEQHjeE5RSsvvr5jf/WEdHFJGCaiKiKh33BPOlBfm9yfCtZAsY56QcwBv4hsp+8/2hxAI4CBbT+PISHQaiWIUWpPTs24fDIQYuWwHBBtnF2d8eqzlzAEzp+eM52N1FoJaWKpnpTW4x3DLmINLuKeUQXVQl5mLs+esSwLSZVpNyGtoWbEpLRWSB1caPB9Jib1tURlCMaQAiqFcdxzOEB6MjIfbwkhkNJACEarB2Loe41WclkBoaFECp98mpkPyjtPn7J7ckZYblkOB6zukDCyLpm4G6nA61e33B1X3vvgA2ISPn35GTkbQzqjLjMXF2eICLe3N6QqPH/2zMF6VHItaPDrKM36OlVKbrRWWUtGBz8u7jLhfKT1fSkF8+SyNGpozMcjZ2c7QghghrSKpkArAamKpIW0N27erMzXd1y9+4zd/hKVwLoeibuEpIgtCy1DICJE0pCw0AgyEtOIqZHVCQNqJkgjpIFDXlHL/OIHH/HTj3/O1def82x4h/35FWnccfPzX7B7MsIu8exL51w9/xZSxZ+rZMTBwaM2f4ZrWyhVWDM0Kin051oCuTZKqbTWyQcTmmUyDZowSKK2xloOQPNkWZQK9EcNbUrShCnIpBgNqUIzobSGIYgGSk9U9wFaKVQqrQbmMPHk6VP2cU81eH6ppGkkr7U/v4HWhFqNlv15qtUQCcQU+94aaKUSggJGkMdC8mP88sYXBsO1+sMtIsR4/2Pb1wJCa5Un51ecX55jn2RKuWPNjVYCDApSoGUO88JzO+diP/ExN/zo8DP+/Y//gB/803/Gq9/7HtOdsr5eeVYmzgdlGCEOnjXvYiDsJootHF/e8fPbiScKAwsxBWSCOAdUi784AaSQolJHJUgiiBDMqAFGrYQoaDDsWKA2hgbLfKRlYxz32Fr9ZdsaGGhn81qrmPnGhGVMCmLnxN3ImSwsq5JCRFGqI0+iDCQdICpEQcKA2YqYMgSliGE2Qw3UEJHzr7N+9pp0mDHE2RUdsJAJuaE2QArOiqXoiCkqiCJWkKCEziRGDUAAjKARa5UY+3lhtFKZIrQ2wLMPsWcvIM/Y6x8xxoAFiFX8M0OkBCEEUBk62HPg4yCrg0o6uBG/XqgSVCEX4v4pT778q4zXfwyqvL0LrG1HHM6IKWDiL1qNiRg3UAraAk0b2hlFM+1AqhGbojijoc+ekd+cs1/uaPs9yzKiF2dIBBUH8KKKaQdnwQFbeADMrIEVQWNnhZoRGwQRagsMu0va869x86d/xLIc2LWRuBtoGhlixNQZfzklCXYCvcDnwLCZ+a/VzgCz6ZgcpDpk9H9OP2tKUyUsOOAqEC5e8Gb/lsvwFEuJ8fwpISWIG2vv988Tue0Z8Wug6gy/ND8ezPoaCmiLzn6JUkUgQDa4+MpXefrhNzk7ExhGdDSSjoj0Z2NjXDvwPp1/ryaAoWao9nOz+2vja9NDRWB73rb7IwABaX1xYJg1aq2UUtjtImueuXn7lmVZyblxXGcIQhoTzYxcCmtuHLOzyzln3sw3jPs9adgxThPHdWW62NNUyK2CCqgxTiNpShznA1fnZ7x9/RpUaVbZnU2cX+zJywxm7MdEzjNhSmhsWAuUkqm2knSPNag1o7EQdIdYgFYoLZOGiXVeeHMrHA4D73/pErUbxgTX1wtRoycIBkhANPHy05fMx8KzZ+8Qd4HPPvmM20NFQ6TkmWmK5PXoQHc5Mg7C1dO970chEjVSG6y5MAyBTCXuR6/s5EzN2a9hLiQ1sIqpMYyJfH1LDcYw7GB1hlSsOWArBUSpzaszUYScZ0QaUZTp6oLdbkcuMxpS3z8hU2hlRUIgTRPFjLQbsX4/ogTevH7NuIuIVrDK3ApqcFwOBBqiiXcuX7BP5xznmeHinN1ux9ff+4Bx2pNFYL8jpcTt8UAU2KVILsZc/BhUA6aNXCrDWtFQGVLEzLAG61qw0vycEUpuzHVBqUiYmIY9udyxy3tUhSElavV1GKKi0YhBsSogwSslCHlZaKrExomAWJfVq09WWUvhbExMkzClxLh/6vscBmGmVcVw8sosEvC9X0iEEGlWEI1oAJFGCIKFQKuNWhvhEQs/xi9xfGEwHELAzFiW5cQO+8NvoMq6FMZx4Go6Z3d+wR1H7m6vyccVa0YQEDIShbpTXknmfzj+Ef/ff/L/4Ef/+PfgBzdcvWw8lUg8C6S9EEQoNM53O4Z3IvPrgiGUnBEd2D0fqKuQbWGsN4RzoaUDCViyonMvbdeFWJWURqIEhxMCIQgMlRYFi6BJUQQdIjXMlFI4T3uqlf79ziKKCRjEDiiqGYLSaiAME218zpuXP2OwO2IyCAa59hd4gdjLXwEkJr/Azcuv2hpNd2CFUQ27ep/yjb/B+vYzrn/6fcLrN6T9FWGaoEAYGjbsMHpZC6V1Vk10cFAl+IYoyjSOLPMRgDSMlFKIKTo7FgPaCi0NUBrFYPjgK+jxLUNemK3S2kRRQaI40xgCzQQJgaDBE5CNOa7Wmb2AiBEsOK2tBbNC1R36lXcI3/0Z427gdj0yXjwh7c+RKISYaJ2hqNKQYA6EoqISURxgDYs5ixmMJkYNDZNIHBPl4ivc/uxfMGvE9u8RxmfENOEJQehAWHAcr2CC6iYRMBpQgxGCM1GtVYI5O5yrs9/hw29w01ba93/O7sVz9ufPsBQ6IRodOOFg7p6JvQd6Iua/GweAaoLpA+DYQY6J0swTF4XO2goVI40jS8iMTTF9jv7NC1ITJBvDkwtiSr1c2xlvcYC+lXEfAmwH6Hr6fAANisQItdDUiLE/Awn2MrDTRCXDbsQwgkVQ61KQjeXdAKwz3oK6vEYaqKHSoX77/LFIP4Zg0Jo9+Bww7Uyd9VSjJxHbzzcTrt8eyEuDDIe3N4zjSAiBadxTK5Ri5FyYhgkJyu3LlY9/8TFf/9Y3YVhpquS80sTI1iitkVtGWyDfzawtE5qTAXldaAZrXsktk64GP47aSDHSJGHiJefaClZhSAqtUgoMg1JqZ+wVGoZIZFkLn336lvPdJe++H2jlmqSRdV3ZjxfMyy0iiZIrGpTr2xsU4b133+X1219wPGaWtZHCjsbMblDWw0ppxm5IPHv6DCsZXRrpciKIspbqOZIppVQkGhIa9ZhppbIcj0RVlrkwPdmxYrScfe9IgTAOrMUIrRCC0PJKzSuKkIaBwyykvRGt0FbFLDDud6yf3XAshZqEMQg1N1QNrZ78qQjz8ZYYExoGYhzBCvOakVJJDNTaiDGw1MZxOSJUNJ6xf37BcDFyNu2Z45EsRjwfuXh6gZnSEM4HaBqYlj1PzkZYF27vFg6rr6FaoSJkaZgKKTZiW2kCucFtW7AIadqB4CC3nKHNOB4r1YxxDISzgTREaEatxk73iEJKgSCQ18o8F2gBUHbnA1VqrwwOhBAZxkRQoS4FxoHdlHi+nzg7S5ylkZozmgRjR2sDS8k09fPcqZE0EILSGuQu2SjFyYB1XU97FjRPuB7jMX5J4wuv7mEYSClRa/0cS5zXFdHIbjdhGKMkhnGinlfGKXEsldWMPULcD/zbuz/ke7/3PX76b/5H9OWfoj+bef5JQ4bI+bOIUTiUQjxPXA6RWozjoZFujd0wsJZGjZk1Z8yUYo19PvLkycA0rmSUxWYSjRackQIjiWJDQgWs1+qrGBIG9mNiVihSQY2yTyyykg8whcRd8rKroh0Md6AAgCFmlIazpUXgxdcpsqe9/jm3rz+Fw8w4ToRhQBdxrWMIhCgQBAhojJ59twTSnD2SzF3JyOVz7OqcZCuHX7xkv1cv2ZkSmmIh0pqhGp0RDQ4IJDjzWXIlpYAT2+b3p1ZUk2/GZohUwChEZMloqgyLIe98wHL8DPn4Z0yi1PUCPX+KxOBMniQ0uASgKQQN0KsEhl9/ESMgmDWkVppEok3kXOH5Nyhnn7K8/DHlqLz45ocM53tqbH4eIq45xeUcmDgbqGBqNKtYFKyYs+a1l3SrEYpy/tVv86Z8Cj/4IedjYroaEQWisyHWAbWzIUIzTxyc1Q5oFFQbZl2noM58R1P/WmpETbz42m8iV7/O2bNz9ucTSyiEMCIa+hr0kM6WO6Z3wLw9S71Aiplg0pmlru02J0XpCtsOsB0ABhWaCEkVaZmmA+d2gQqEkDBpXi7uMhpSQJqD2UYvZ5sD12pdELSx2WY086QgqIImgrlEBTMYXa4RQiDYjpmVpIOzgL2CsoHXUwJtXQKi4sry/oxaP6OTDKInDmxnKoCq/26/UX7/W0MEigmhuTYeM4IYFGMKO8b9iFnl+vUb1BrvvnjfrzNCmvZoLByXmfPdObUVnj97h/1ux1qOvHl7YF4qd/OBdy6fU5ZCXVbmmhmnkVYqOjq5Ls3Xn4iS747Us4zVhlmjFZcaHA9HUgzsRyjrkWorWGZIF+TlCDZSQwE1RI3jIXP39sjl2QXvfrDn7lbQmFA7kGyCWFGvzaHayMsRDYUXLy7ItXA8rBjKbtpjbSWEHW9ev6HklYv9GbsxsZsmclF2+x1g1FKJqtTmfQU0I7SGHRdkLagJ034PQ+Ls7ByzEW0ZMaMFiBoxCaxr4WyfSFEYVMhmpDhQK844NqUVQcfAXZ65uVvZX17w5uOXXD1/yswRmjDtIsd1wcTYpZEYo0twQsBCZH77Go07xic7ahTWBVIckDVTS2F3kdCiiBamy4lAxHIhxojSyOuRFiLjbk/aJW6PC2lIELzycnZ1gSwzAdA4EGKgZK8UToMQmnrVYV65XLP3HjS4PR4Z0kCKnryXlDFrrCRQJ1RMjcUase/Lx6UgqgQCqJFCwFplmhKCUIsz0CqBIRgaBUmJFJUXzy+ZxkClsK4LMXhCPs9KJTPsdhQTcl5dc4zr7XPOXRuu5Gy0KsQQSMNArRlBuT4uXxhYPMZj/EWLPxczDK4d3l7eW8bYnOqgSmEgMO4G6nhLyZ8yh/c42AU/PXzC/+cP/wE/+If/PeWPP2XKZ5yFS9L5BU1WtBbmZaXoxM5WwtIooux2kW9/+Skf396wrIHLd3e8PR6obxaWtdKCEr7yAbftFcf1hmCBbEpqlRgiZdMcIsQh+QsUZ4xUlGKVMEwEMcawR6uhtXF+duWbRRyYgKpdm7ipKg0v2Zp580NQpFYIjbK/YPfBjvr+e/CH/5blkx+xl4jhDQuiQAiu4yU4/ygBTb7ZRRFoFbHEXoyyFNbVOP/wW8S7G3Y3b9FgrGvELBE0EVSxGP1ck+CH6AxAGAKYg1IVByG2ZjIwpIFa1t7w0ZhMWQfzZo0QMMnok6+yXh9YXv2M+Rh5evUOhEhUMBkhOsPYBdUnaQSBE7PowEb9fMVooaGpoeWc5Vu/wfL2DVIST959CoPrJ8FObLDI4Iwm3qjSQsFCpUqFtZKZUYwiBaKhKVCXI+vtK2pYWbNxdfEOYTpDZaHG4OVkHKBC4/4UFGlyAoS1VUQF6yCnAVEcoCdL5GHgnUto7yUkBrDEEFvXUMNW+ff/7WV/2bSzrnMW2UCj/4zYxub3nw3OFt3LBvp97HrOQKDFhjYhDAPVlEGNon5u2gwLiuSGVesNfZsO0F+IQT3BEo1dN+zwVPtxqGeSqARn6FDMChKMQkNNiTbQT4MQ1AG8ALZVCRwgK0o1Q6X1v5cu2dAOixubPHijem1LRHtSJ2JdSO0Nms4Qe2PRMES0gbaVQCXtdhzmW5aycLG/YjofWWxlXhshDlhrhCFBgLvbG4YpsZYDV/tzfvzHP2I24/LygmVZkJ4Il7wQo/D27VvGFCmlMk07FOXucEdMkSRgUcircTgcGYfEEAdarkyDsK6NXCu73UhAqCL4lRCqKTe3hZvrA1eXZ+ymyDx7CT0GoWTXH5fOpltrhL5+Q4gcloXPXt2hcexyroZG4XicMRPO9nveeXaFC+xhON8T9nva8Q5rFQ0OhMUKQqOWRrOAhOSJWsuYeNWg2kJZZ9blyBojU7ricFPQqMzLjBCJ0wjDgMURmrEfQELlfJiQYaLoQqsrx3Lg6cUFdSkM4+hVDfHnZDeMSEyspSEmXb9fkej7ijSjlBWxiBXj9u5AHBLBoLZMUhhCogUY8uRrqhhTGohnO4aYCCFR1gPjaLS2uMzHgksX5D4R1eAJYhj8OoUU2E17htK65l5J00BMru0fhkjQSl0LhxuwUL1KUBulCMuaIQUudU9ZF8ZRoA0E8ya22ipxCIQ4gLncDWlMuwGNkaBeqdEAo0XmVSBFzIQ0CYMGcnUp1vk0EaUiaAfC1fe6bLTqld8UY39uhWZG2KqYj/EYv4TxhcHwJ5+89PJiCl5O752m2l+gXuYUmlQu5Yw23nCIH/OPv/8T/tlHhZ99+jHhj37KB+XIZ5oo+8ibOXOhwvN3rjhPATuulFIIqnz28Q1F4M2rA5dp4sOvPeWPvv8pr392y+GwQnZW83iY+UVeeKN7klV2U2S5W4mvM5eXjV26Z3ND8G7e6KpQRBWtO94ZnhH214Qhsk9XhCSkbwtPvnxBpSJRu9NAZ6U2VgwQ8xJzAJqtXu5ulaYCVTj7yrcIhyPD6hpmMcUJtsGBRYiYKGhwFlG7TrUKYpGgRlNlL7BKJH7wJdrxjbN00wVht4OQ0BidnRUHOo7A1PXNor30bL0ZSUhjoOSMIYQ0dgbSHQosjEQ1ZACpC/bkBaVUyt0dA8LZ+TlhoIOxhMTqAElwuQK9vC/ePOQAsMsnesm/NahRUVngyQfIr/0ul6tw/uFzbFSQfg4BTCoiDepCBYZpx89+8j1+/v1/xxAT6eUbWi2uGy2lawq8oURvFnKNlCroLsAuMIZzsnpSogrYlpCAhExpK6WttFaAypoXYnf6aLWxrkfasqDqLM3bt9dEm/jwG/8J2pPG1gKqsTuFdFQnQJMO5AKNzv72pr/TmqSfgtWuAVVvZqGin3ND9IY/iaBdJx6abEYegBAdxYJCUznpGCsFTE/rITxwSzlJJJp1vW8XUaj1l7CgYp3HTijVIXPb5B5d69iqy460A9zW10B/HjeNsPkXCRJpTWhs7iobi75lE66cdqjc5SbdpaShiDWv/Kh0FjswpYAkRTVwfb2wm3akIVGlUiVQwBtbo7NsoRk3N7cMOfD86SXjuWA1Iyo8ef6U5TBDbUhQpnTO8fZAWSpShTGOpOiJX0gXjMNEClBrY22ZMQVi2K6dgFS/0VUJYSKXwjCMYJmlKG8+u6VW4erqCWc7JdcVrb1fwWAYd4RhT1sa46BYK6xWIQTKYrx585ZlbgwpUutCQ7m7O9KWzNXZnqvLiWk/sBy88WpZFoKKVy96AhIarEtmrSv78z3EQJgSdXGJEAYqDW1+nm9fveHJB+8TopCCuyDUZcUGyHXAWvLqjTSmwZtuCw1bM60pFpUhDozTjuubAzFFSAkRJalCd1CQCkvOpJhYSmO+KYgWmhXCEEEjtcAwDoTkTWxpcI2spkRr7vygQYnD5M9G9LW+ris5L+zGibJWr67QCMmvu/V9G3EXmob1fgajmXjr8Hb9VN39AiOMimntDb+BISmtNlqNhNqYzgLjMHhVYY6+v2CdlBBsngmTdm25YRKIMRIHRapXyfxagRTv8yH4e89qIS8NQ4lxQGtjLgtRAyUv1FJozaV0QQMijWqLJ6l1q9Dc6/cf4zF+2eILg+G4VvJ8y6EWZ6NCB5nqpVgZI2mI7KaB//yv/i5/9PJ/4vDJwnd/7w/4zg9/j2MQ3o0TH/72+7x68wt+/IPPkEOkhIk23bH/8jP08gwdleNceO/dr3J3e4v+8Jbz9Iwgl7z34l3WuwV9AYfjAuq6rcRANGGcBoqspOGnlPmPGFRJQWktcMwLl8MZJS+nEnulITrw4r33ePH0fVKImK7O7glIGFBNiAmmHdBtLU0nZtz8pdYMUqLVRlSlBUOWipx/gH31Y4af/5gwXXB3u6NOEyEmZ3FCBO1soKqX+IMfn7PODQ1QhkpaIvX5N2iv3jB/9Avi/oKw29OGiIZANdg4SBHv5A8hOBAOfX+2hnabLxFhXRamaer60EChMhCRJN4lnyNzMdLzrzDJOVFeM05KTtKZ7tWZVXX9XOtaUAfz3aXAWv+vryVp3lmfq6D7PSFkdr/yTcYh0ZIzj90rAlOXAUhIaDhDwh01HPj0F3/MZ//ij3l/uGQYVoI6hRqkl/PdwwwZB3/RNYO7n1HkS7xpmVxume/uaGtBG1heWNc71rsD5fbIen1NuT4gq5FnT9BabVgJUIS8FC/TWqBVg+mSX/m//C51LxQKMUm/LpFGcyysG9BzCYizmttF2UoY/tIRoScVctLciqrb5G2SZmRTD2OYA2UF1E4MoVgHs1uPofbGPAm0e+2BVyvYNMzSQSunY2pYX6MBmmEUf+mKupa6K48fhobk16BrhDvdjf+mnkx2hvsEojGkeelY1NnfhpeFq1XC6Xy7BZ5triXeKFpL5ng8kHrzaGkFaCzLHQiMu73/tAmRyJQid3Xl7Vq5mhJxWai3K+eXL3j18g3nu3Om3Tkvf/4x11evObs44/buSJXCbpyQRfnq++9y+eQSrHpT1ZCY4kBKA7kcWJdCEPUehX7+OddeGWiICnEYMBZ3R6nKy5fXxHTG+x88ZZ1vEA1oSy5bqStCIE47ryoo1PlIbivDfuI4L7x+dY2qg++8LJSSnYVeZ15cXfLeO89Y80xZMyZCXlzLux6PmMK0G/26BmVZZmISDE8GTdwqrhwKNRf25xN5rbRiPHnyjKvdRLWK7qAtThUMIdKqMY47ap05252xlDvXUVvEKtSlcXt7ZHwSqc1Q69aT6lU8cbuGk2QAFWiNljMiEauZeTkS6sS0H7GUmFJAA9S8+h7dSQeq74OigkrwxFgaYo21NHddSYlWA7k00MY4JkJnUlvX3rtrjj8jW/XIe0sgpEQpGU2RWjJiDSp4McSdmMKYON4truWP4jadQdnvI8fFNd02V8ZpYlWlrQWrjVIbGgeGYWRdVupa2J3tPXEGDocbUCGl4M91U3cwqv4OyKs7Q5kaeS2+f6j3xHgfSO1rtXnDoBmt5S8KFx7jMf7CxRcGw8++9F5/QfcXnkGphdoq9biS14ytM3frypMP3+fv/B//d7x+8ym/W/8uP/vZn/JP/5v/npvba374+iN29lV+dSqk/cTVs+dcffCMWiuDHlhK4Wp3geXKixdXvPc8wpkQ9hMffCgEq8hgzHmh5oq1Ss2ucVQJDGcTVg98+pNLdt/5p8SzZ1y/GhELCAMaGhLN/RVbIbeKjIoM3q1fddddCgTVQJDgpXqNvVy2NYjdOwB4lu5l4RA9c2+tkiQwW2X3zq+QX78kv31Na89Q2aNpdMCtbr21wQgR67rUfplbQ5tr9BCBcSR/+Feo9QXy5AV2NTl9EwJqUGp1O7AOnETEpa70nzcHPl7t8wacxkMZjJ78b0Vc+zeYMq6Zp1+9JP7ab0KqjEFBB2oNuO9XLxV24NfUkFgdJLfSl4z/k1tmMajlSGiGhEzNB+4q1GLu8NDZ95oXlsOB9XjD4fVnrG+PvPrDn5DuBr59dcWL8x1pt79v9FBDo78ASjNUIrNVRCG//Iif/V//79zN17Rjcd/eGlBJqBmtlZOOelTYa2AIg2vFMWp3R9BBsJHOAAUsBN6uvRkvjV6i7SDw9I8Iqhvz2hOrfj8w6/dqS7Kc63SPlg37tg6+NzZ3g5Pdgqv/yTpPyvZzJlsRw1l6a7Qun4F7TS703yviDhjWTtUP/2vXUPv/t5Puwzag35MQMz9yx/Y9MfPD6N8nfC5ar7aI64e3Zdr/cuON+y/zdbH9eWP3mrmdmrXGfroghUC+vSVbYYzafXorcUqEObi8qWSuph2fLCuv58xaR0SEQe54/90vsd/tqLaQRLm8OseAKYwkGQiWqOvM8CSxuzhjGiNx8nteSn/2R7dJqwteau5SFAlCSpGSG6YuSRmnSCUj0W26Xr68I6WR58/PafUW0UrJ/rmtVjQ6aDne3TINhbu3N+R6II073ry+4c2bAyEOLMeje/4SoLpk6cXTpzx/smdZ78hLhtpIu4kxDQQN3MxHpAnrmhmTy2XOrvaEaCy5AhHWFRuFcZ9QSZTljnx0XenF+Y5ymJnXBQmJGJRhOMNqYxwjtJVpGLi9nQnTtraUVt0Osa2NMQzMd0dUE7UUhmFHXjMxBKw219lac6VZgKSRNF6S5yO5Fnb7c8azc+Zc3MGm+SpVUYbkkpiSGzEMXYbVSNFdF3JZybUw7b3hNJdKbbhlXm20Wiilde9dIcXuIqFKrY1lKaRhguYN0+t6cI1zchAdIgSNLK1gFjBrlJq7j29FLKAyeI8AM2rKm1pZQmBoyW3rYiKq728moZMSo6td1Dgc79ilkVazJ+2bNrkDd6ueMzfzKqTGgRgjKUZKKS47aV7pNbp9G+4U8hiP8csaXxgMW7d7un+xOlCKkmCaMPOu8a3UQmuM+3N+/0/+HZdnT/nt/8P/np+//owf/0/fY1x3xN8cmYaADAPjcM50tsO4YZ1X0jCwtkqKFwyKN7OJMWqilUKhMViFNeO5ubAajEOg1ELjkheXf5+Xbz+lffZjoo4M50+BRpiERsAIaFTG/rr1zdKb28S6ZjSEztLiQARn+2yrFqm4nlJPdFdnLgxaQFU4D4FZ95Rv/i3u/viPGewF0/kZltJJT0vv6gdnD63/FxGkNVpVUk6UnXG2ZMo7X6Y++Qo6BHSAFnyog+KuDtbcvstZo+5+sXXln5qSDFNj2u9ozZwtAWdx6aBFhBADUy9NVvWu8GP+jB9891+5RrI2oghGo9YVy0dkXWAtWAveLFUaWiqUililtUyMA2U+0I6NAaXlGbFINXVNcXMwJobbFBkMJTFI4t3pgt075wxnxjg0LCYk3LsViLh2dDRnHZMO1GYEjBcaeTpE7AxiB83WmfRm3kAXkhDF0OBNf9Z1C4GxM5rWO8dbB46gx4DUA9q9Od16zziZ4XJ/bLBpqJ2V3dCfibOc2psQbVtoXW/t9iP3YFI607pJHNpJQOAvWWzjjelrAMeUHaQiG7Pcwaver0ck+Frvx3ACrM01GH6MLi3ZtM5btURtA/WnI/Xjks3Z5FS/OLHGZv4UeuNg6NfDWW03wfBjqwZ1A8n9ujQrrsLZmGJzXW0rXvkIZ+cUCneHO25ev+LFey+wGPxeLcbTEDjfCR8dF36wNt5/fk4chLNhoGpBByMMjTA2Sp0JNJ5dnnN+NroLTYSgmyber7hKOd1zgGFI1NrINZ+aFb2s5jrU2ozlsHBzfcM0XXF5sSeEQl0bSujLqPqAo9Y9qVvl7vYttWRUI3eHzPXtTG0KxYfPKJ5sBTUuzycuzyas+rFJb27Mcx84ErxRupZCyYUhBPK8sCwzJoVhf8Z8XBhCZ6Mx9ruRuhRPJPY7qhklFwRh3A3d71wZpz0huZ48qLIuR/ajy1lqE2ptSBAuLvdMaSA3X5utGWX1QR21OHNbW4VgxGHwJL42WnYrvensjNIMKdnB7bLQrDGmAeDUTOzVMnHJhfjvp0VqbtCMdZ1JKbtdZRF3kOgyn5SSJ5XN12Fr1vX1LtNxdwiXRgyjP4vaJYXgErGURvKaKdLdVoLL2dIwUluj1dVdIMJAvGvcfHwErTzd+fr3bcgoq699VV8XdV6w1sgl92TY5XJO2nTrNN0oCycoQohdyuTSrOb0sTfLl8a6FjR4he4xHuOXNb4wGJaH/33wAqNv/1hnMUX79CFjP+24mQ98/M9/yF/5O79FS5EPvvVrSC1ggRhHnu0HLveXDE+VY7ni5tNbGkJZK5dhx9U7ibfHhbtjIWljzsZAAowWXB6xSkWtESgEGSgcifun8Nv/JR//4/+adKywG2lRCJLQmABFrXUobQTtNk+Id9pvALEzdtsF8BfwBhC6Gbn2F/8GVNQ5NCWxtsq4i2h8l9aesLORdqVeonsAbO679/vnyCaT7Ay1giVjiCNVHDAGgVQDa/LBCCLbvfAX3emzH9BtujF61kvxJi7DMyNGL2W6Zszd31U2H15jaMqiA7YU3vyD3yMcJtJkoNmPESOo9+9FcY0r0ht++vmF4C/HWAzVHXLRJ5PpOWaKNZcGNLpOtDM6PlxDUEaU4jKXYaCJAdWZ8P4PBlp9wEfS6N39A0hUpihoGGnJXL9bHShq17xW84mKaHdwMOlTmPyF0JrSmjMmyRoazBnflAhWnSk+3cd7a7K+eDoG3fx1t3/1fo31c94a6sy8fKnas7LNw8ROD6M/eycOdQOcvjadiL63J0PMp8LJ9jnb17cH/N6azA9FT39tJp9zh9js4JA+bbCvtu0DtuE8npBtn9OlRX2dd0WG3+euhWWTgti2htvpnH3Aj/VEqU9SbNuxNNYlgzVSStwcbhjSyGHNLDkjrSHNp9YEi9zNd+zPI+uhMNbMeaiUChIqKSXS4KxYXQupGtpWn6p2EUm7HU2d7XSQETgcDoQQGIboTHDLiCghBj9muWfiYwyeO6syzyvttrLOCxdnFwy7gFkhr0otzSclWqUZRBFS9GYujYFaKhoSt8eVm+NK7XqYeTkSVYghsi5Hrp6f8+zJOcvhjmUuNDOGYUBiQHKjVG9GDSG4djlFrFRarlgxmgg+ArBB9OehWqO1RKkuN6vWqKUSxoHdMBImt5GLuvMmVO98xAx200CgQKneNDevVKucX7rbS4ju9FJKJuDNl60a0oHgNgii9QmR890B8CZRt/xsUCrageK9n7dgtdFKpgApjNRaiHHP7c3q2lnzJrzhyZ4Uok9bzOINccnXdam+5mt1FxtV8SRFBMVlUEGdDGjmVbha3OqzmZ5KJYI78LTaSENingvHZeVsGhmiEsy4OhdSruyiEqcd0iqGUZpPD3VZw/11SWlHiG6HF2KkVf+7GFOvvG2bzVZB6r0J+AyBWszXfcvktXlVVb3X5TEe45c1vvjQjVz68AAHbqcGFoHaeuG1+xcKUMVITXj+9AX6bsYaTDKShyO5KNICZ7sdV+9NVF1QG7najZy/64Mjns8rwxQ5Dpl4FK6mPU0XFi1QvWwtErBiBNRN1puQK+SiaFgYL55z+Tf/C9Z/9x23PtIAoWtZu0aKjUXbMuU+Scitm6yD1K3DvYPIzoIBbtMGm+7AGYeT5kGJKRBLZhqesH+3EtOA7pylaHLvOSviPhV20mp19rYDEAnKKAVCJUj0sr422hC9ceykuXTG0Dv/O0B5yCZC1wf3Ur6Z27qV1UuP0W3ath9xtsB1dTUFhhohDbx/dcbVxcD+0tn6cGpI656xGnzaXJT+dR+dHASwSov+PQYEiR2YNlrMp43ZXQs2mzE3ifdBcHvXoobFJQn9923yldPtAGduYyCUQgwJ25l3VUtBJGGmXQvn9nlS3dEjCH48YkgUrDpzQ6g0FoTAEAAakR1aFNPgbgAmpNBOzOXp2oti1oeOANI2p4yeqKicqgsOZJ2ZfZgkOGP8ebnByaHi9Ew62yxd0y5eg2WbRAi4AKNjzs9rfTeU3a/j9sY+JVS1+zt7AtFads07HaBvA0z6MW7rWuV+2h0nZut0YXolwn/OBFq7f77MnCVXjFyrd/T3ATjeZb9ZvW0VDfXSc/QmxmXJHG7uqOuRF+++YJxGSq7MS+b8HM5HpcrKzhb2uz15aQwS0Lng/tiN3dlACCN3twdigOv5LeM4Mp1fQoVlcdup1qozs6JYNUquxORNVqWUzg46grcG0kvTx5tb3n/3Rb/HnBwzEB/EsWlISm3sppGcV39+Y+L1qzccDjPWJVfNstvK5YoFeO/9pwyDsOYj83JkHHYY0p/1RpgiLTuTWEpBxaVSrbgoRQPEFAkCUYVqFbq1l1WlWCCJsB5nVAVNg4/Nrn3ska7Ulh00SqC0TEzOQqq4PWctDqTLuiLDDoKwrIUQI0EDISRub267Xnh05t+8YtQM4jSyLEeXkYQuLxIjr2t3oemXXSumgWkcALflCylwPB66n69PCQSX3cXo2umg6lpgK9TWCOJj07cnptSNkOhuFloZptGlckvmOK+Iuk5YUHIpnO2SPzNRySUzzwuIutXdGFgNWqyMQZBdRKIwoNTO+o7qI5R5WAnETn0GMfmEy5yLezvHgSalk1ZO9myTVA0fg26d2Qd/r7u1YiOYfm6XeIzH+GWLL26t1ifsAKfBCg23t/GXsFIwB2YIMUCmMYjx9Nkl6yFzWYQ27ElJiOGMyyduZTQMAw1lGiNlLNS1Mp2dEUJiLCtXzytDDLS4509+UZnvHDhkzVjYwELx5jNpDHqO5MaRSHx6TvwrH5Li5IM/uk6vmduyqQitbU1FytAc1LVQ+/u/A5VtTC++4W0gx/rbe+uI90llzmbm1pjEYNyRaci4YiS3MXsAVFybhb+gpPvOgkszBLZSeogDuSwIm9euks03ZpFw+hxw9s+BzOaAASf7MNsAo2+aIbhudl0XpnGP9C5/7cDC/GAQcbcQnUYYhbNUmUal7n2Dd46Tfl3cgUMjEDaG0tk8sUCLdA/e4mCuhM48OPsZzIFwrbWzEgFtqzNpwQhm0CIpeTe2dWBE9+clQMSb9lYKIQmhNWo0svloZgeetbvcDdSi3RmhoYN/pucmzcGF+ZSzKDsHNaEhWljbQtg7MIwh0bSSO/LXntDchznQU7l3k6BXWh4wuF7i1BPjf08bbw4L9zKKe21u/1mz032gf771+y7ShSGbdAY6tUp3i3iQRJ0AMX2tOjCVLVFphrt+eIOk6v345M0f2Rn73tBI7eta3UFFNm/hvla339qbCe+103IyXNvYb7MHzL562dvMXDNvRoyJ/X5PXqCtFTLc3c2EITKIYPUIptQ1M5szqZfnAzfzG5bjDTpNCM6eLjmznybWZqQhkucVa5XVGm/MK0PL4YbdbkIE5uPKMPgwD1RpuaBBKK2irbnnt/m1u76+ppTC86dXpEB3MDlDY6O04teugdH7M2pzxwF11vjjjz/j9atrhhhJk5LzEbPMLiTEAu9/+C7Xh7d89/s/5te+9S2CRmfs+zoLIlR1UC5rAYRh8MpbzgutZXdTCYFo3hAGEFNC+jjfEAfaklkOdwxDYhFljBGKN3tZ8ApKXo/+vZZJaeyNmD68xvcPpSwr61QwCX0ipEcthSF58hqCuIRpW5OlUnqvhVgjqjPK2mVeqkrNuduFJe91qcY4JiRESsvulKQDtVSmnZKy7yU+ETB5NdAK5E0qZ8QQqeYyiRC0Vz2cFR6mLqnSQErCboq+d4sR4tidLQ6M40DJjWkY2e0CPsfH99/lsDDE6GO9NRBWo8TsCYc4WeO7U2MYNuCbXUsvyjhO5Lz69NVSyXlhSN7sWGtGgrPG1lqXGzbA5RYxBIIapt6roL2B+DEe45c1vrhMQu5fjEUgGsw189HLT3h+fsHldOWbQTAqPm0sWOUq7rh9Eoiy5+KpIiH2l2Y9vei3efUaA1IKcUjdOL/4NLCxs0YxcnG24zi/gTAiRR7wWJFygoILNSS0rYyMtPMrJPVGI3GGTXFwLwZBNjushjjB6LZYnck6eeV2zaSwAc+t7L2BmPujMTNS9M1cFQYTzAbXmZmP9PTj8d/hUmuFaid26BTeAeceqmFHrZ65S+s2SNrZYzo7qq1v3p8reHMqZW/n1FyfGSRiIRAGOBzu2J+dOT5S9y22DkxEViwYtUWmOLpPZUiMMVC6pZpt2uOttGn95UGlExYdEBs0H9Pq8yyc8dPqIK91f7Cm6qOwAR8l2nBhRUS1sTYIOCuj3VJOwO3lGtCMQZyBbn3KmYj7ZbpqYdPsiuuOqxLV2ahiPtJV+zVwAzJPlqrlfqv7eG8aUQdPFNV9ibX6zd+kAKc5b521PtmwmTtBqOGDRProbtHwIJHplRDbGONOrYp5ctccDmtngTdtuBlYn5S1QU411zyfjqPLDVrFdfCbNnjT+D6QLGza+W1ZCsHHBls30Ovg4LRnNAN19xlv5utgXsVfwqroJrnq4Nzt+ZqPMDf6uhYfXijdyioErI//bV3bXKnEMHB5fsbtbfES+zAyXe0hBXJeyXeZOq7sLs6pFMY4UtdKTCPz0YhlR6kzxB2jGOV4JCaXS1ldWNcFQsIwUow+XWwYmcYdrXrn/d3hyOGwEpKyH/YOZEvDauNQCoNNtBa5vb1jCML7z585oKsNNGEUKJv8ozP/otCKg1fz6ZBvb46sqzCmc0R8yE0aR/JcSSHw5NkFb2+v+fTTT3n3yTsEi7TQXMYl0Jqxtsyg7kajAyQRgsJxzjRznTPmVR3ZhusUsOp+25YXDocjZ2FEJWGSWEthF3D1TG/2U0lYM3Jefc8MLpG4KYGwO0Pq7K4WYpAS0SJSXLsbQ8QNYsxtwaK6bhjfK3IuSPXqZUzKWr3vJJjrmJc1dz9tup8uxCmR0kBprv1NKSAYtShlDczzwjhWJE5QvdkRCRD6iPu69WD4zqRaac0YkvYmZvf09eYz1zpbbZg4C6zB7RB9qJ7Ly4zmhEBzgDom9XPbbEsDXbergPfLCLFPzOz7bQfmISi1rmAuA3RWOmFdZtT6PhFjcNF7bUj1HUq34ThV3bs4etNnXh/B8GP88sYXn68o3JcicZ3RnGf+8e/9Y9qrlb/9N/4Wv/6rv0mjEaTSmrN5u+kcqyuteLnNpOIDonwDCNxrI/0lqifASv+ay9UqYsI0DgxpoNTPH96mX4ZuK7YxtSEQ0oBqI3wOtNL1wM5JWG2nz9ksd05l3Qcva92Yrg6CHSh3zSf3IMCMEzg4dcB3oKESTjyedBsw3WzJ1JkzzMtWckIjcnJMkD4owYHFPR+7ORZsOs+H+s/t77dz9HOwU1OHiDKkkZor85oZp4lGL4X2a0n/c9KEpoDiGy9R0bo1IW5lbjqz44BmA2mGg0C14pKSTSqCXzOV0G3ltuPVkx0YtXUwQHf46HZnnXluJqhGZxz7cAr335VuVWs9+egca5ck6Omd1rp2vK+nLlHRjYkX9wNuG9u7sey1dXnMphEOPh64rzdfA/dJ08PRxP5obWth+33W8xjBR1njcokOUjd/72Zu2u/MDafPNHGduIh0f2zHpM0fYuw04MNBsWw+vtrZWmvcO+EJD4ntEwhnWw/363IbQrMNBlHdngv6Gu/OGdu96JKBbp7moLZ/uvXeA/dpbg58NwlSZ52tNy5ZdZeFjSn35iVnq4PCulZSjOz2E2qNId43ctXqQHNUKBjHaJxd7hlUaKUgMTp4KNCOK/ObW8b9OSE6Mx6Dl621V51CjJztzym1ElQo9YgQEYkgFVWjFOM4HznbTVyd7REVSh/gIOYTAT1p9utWO3sX8IrCvKzcHVdydp3/umbSACH6Me/SwPnZjiDVEzVRYnCWvZRMjKGPhPZNqjVY19nZ13HERFlr8aEpwajFCBqZD7PL5WKgbc9YNe8BGQf2466PxW7k1e3kpL8wWneUYQP3zasepRaohbwcmY+Fy6vBn8c+DW0Yh1MFa9pNnhBSwRoxJkoptNLtPmmUdUFSoBTrrgy+1kOInXRopDRQzZt5serezwo1Z0rOtFqZ55VhHHr2Ts8Uuxe8Na+e2eYhrvdyNnwW4OF4oDVhGCf3JLb7qinVWObZJWSTVx1rt1ts1td73w/SkLxBr9ae3K9eJQu4n3SDYkbMXkHJaybsBm88LAVVwd07Y3/v9oKO+pjrGMPp97sWup7evdR2csBxV437PesxHuOXLf4cw8YdRPq7rflmEpRbu+E7f/AdfvCH3+d/8zv/Kb/zu7/N5Tv7XnHdNhDQ2J1jVWildUlDfxV2bZL1STu2vTils5+iqPoY6KhKjMpayqmz/Z75xI3/e6nXPyMS4ojaenqwbWO9uvbZGxyUFNU7rMW/5kBJ2ZwyNiCzAUjY5BMbYO3s6MY0+hH1n92YvM5Gdjwh/ftFpWt/O5uHT5EShdPwhX6t/Bhit/dxrfA98JD7xOVzUJjTn61jiiABeQCIc2ucnZ9zOHgzigOx/hmbA0FrznYOimQ6GHNdrkpv4+oM4/bioHvBbqDK+l570on2Y3L0vTV+bQ1s1fWy4gb9oq4RdsZD2RFZawHt46ERavWGPf9zB079fvuruGdS223ckoggD5cSKkI1n1Z4uny9P+zkvgFoUNfMd+2qyf09sM6YbsnTaTSxyEnp68/BxjRt/P3WuNnZWVFM1b1NW3dmsA1od9cL+9zBu/aztg5w73/Zaczztkr7H/yZ7ZKKrjve5AfW1/rnLtC2vrqjhrT75+N0LA/O2Xqy4M+fr6lm9/ZpRi8dONrtwJrTuW1guJmdzrvZ1qAk5Ny6RaBrRadhwMwYh8ByzOymgTFGxv3AWouPR45uEam1QAzc5CNJC4NOlGBcH4+MIVCLsa6ZYRy5vrklTQO1RT67vubJ1RXjMBBTYFlWhOiAm9ZHDjdS0g744XiX2U97zvcTDEptpa/XcBrAo31rNmtYVWcV89pL/oWcK8tSmI8L0zhiLKzLgf20452rS2pe2HoCrq4uONtP3Ws4M+0mSnVbulrr/T3Bq2NtqSQN1Jopy0zLhbk38i2lsA+Bw9trWjPGcXDwiScGlEaU6Hr7IO4L3ZqX4MVL+qJACr7fV+PycsfhzbV7Y7fG7dtr9vtzlnUmxoG8Zna7XV9XG1lglJxZ5tl9d7uG/fb2AFGJ4w4ZIq2tLmEIvkY9AfLJeLVkHwzTgXJI0Vn7YgzD5BZp4lWsVr0Z2J81cWwsQqmFlDwBXpdKCM781lIZd3tEPJGrxa9visGrK1aQpC476VKbEAJrrqfnUcSdH6w1crcRjUkJUdCmHI+FZcmgwi4O5DwTQqM1f1aWXBiG5I3i5g11tfhcAG86FoS+b/S9W9ROzYAh6bZRd+Liz75PHuMxfnnizwGGPTa2VNT9O/fTGWtb+eQN/MN/+AesPxz5T/9Pv8OwW9ml5Fm+NUL0F0rcxsqKs3z9Q9ne1iEEcnb7obppyUTQkGgtE9RLNiylP6TtBKA31no7Tmv1vhTeQa6qgyoHNlu5vnX28X4krPZxta21bqLeG5PwzzNaZ+s4gd9NG7qBfscN2+hq38Q3QLTZWDn+29iLcGIFQE4dvNU6fdPDP6drkzU6C9aTB/rGdmKH6Ti2f6b/fD+G4Cbs1hnyFJxp2e12zPPMfkpdGxeoVrt/rHlXeRAouBbSWneJcHabgJf9fRxYR10PWFnBx6c+PC9xmcKJJ+1gia6fNmnoPsEqTBZYRCg5U5MxlD2r3SE2Qakk9amBxayDit5A1pofg3qysUk3XAerDxKWziaryzakH1+ldonPA+lMZ1Hp0gXtLNY2nrpt1YUH90L7PdD+uchWQeh3SAIqf6Yk2T9icywYx7GzUVCLl4xP4Ll/rqlAbyzc2G/D/OWu3pgIDiQ3S7/Ne3S7V/0jHczr1sy2yTQ4neP2/D5kvj/3fX/2ROiJ8OZnfHK3+Dzc3v5/G/vbGlA35rlbw5lhtRFCZJomkI1JdntDaRWlkJL7gGNG0sCSV/KykOJAAHIrro+NibIaEBiHCUqhlsJuN+JSHT/HcpgphwO23yOTS6CCCK1m6FKqRgRWSsscl8I8F55cPeXi7IwQ3GO2lIIaPj0wRHLOp+u4NTGJiK/XECmLsSyLV1+0UetCXRcur87YT4Hbm88Yxz1hPCPYSpTmWuc1IwHmZWGahpMtlzX32DbzKXIaA2qGmHKwxjhNxDBwXBZabSxLZpOIoZEYk2uBcTmTIoQ+7r4WZ4hjcq2uiFuTaX/Ga12pdeXdF8/56KPXWIN5mdmNO0SMEOS0RVT82cV8FmheV9Z56SOUndm1VhlCdC/nkhEx0uBNsSVnl+ZEH9BizRPa2uB49Oa1WivSOGmBfQ16r4VK5G4+0oo39GoHtrU6+KwV1nWF7gm+LqsnGVZ9yFIYyBnWPjnPWjnhy1a35NkrDlv1qvZrNg0Ba0Ju/v5RCSiFqML+bIc092TW4LaOpVV2447a/BhqbZQVxvHMdcW1ngieVjI43w4mtFJdpvY5JlgI+ueGC4/xGH9h4ouv7i5D2FicgDJoYrfbIcnIx4rsjMPNgdu7I5/++FO+/O4LN5K3QjDfsHwscAdlHQQa0GvBvVTso55r6S9LoFkgEIjafSKtfg5kmG2eqA5oQlA2KyqViFBplh/4rT7obu8NOG51FE7H424HtWNnB0zg4NH6AADtll73Mg0eMKrOXG/esveShIeAwenGTTt8AjX+m7xESt8AVbulkN8ODU6kbpdUHjRVfN4CiwfH6LozlwI6EyB6f+3XnJnGkSENvaFuh7F1KEfXs4XUNZ8ODmMXA7cu29hkHA5kpdcTNqeD+9Jiz1T8WuObfRPhfpCDsyVbs6DlRkRZ5UCRwp989pb5uOebX6pcjHukrTQJmI6IrJ5sbVpXlQ5CHRluRLTglkkbYAcf0Vo3dhIHe1H7OhLrDSqx32/rU4Y7u9pBdu0E5+fuuetA/N50hv9hc6Lfcf9B7e4gJyzZL+lut+vPQ38S2/3vcP1wv+/NaLXdJ2W2yQacoVTcF2Kzf7OGS06w0/hlr7L4aaq4U4K1Lcm7Z8sfMt4PpTj28M/9a65f1C412Z7dXuERT5BqvddA+bq9l1LxkHluvVRv3hmf1+KSg1KZxhEx6eOFIXUvbn+mCqhP5xKBuh7RJJSysKeh9cjSZlJKzHc3hOiVhmbKsi7M60wIgVoy0zRirTLf3TIOAxUIIWKW+3Xx81mXRq7CsyfP2Z8FYKU1PU0KrN31xHLrjisPEoV+3s0Cn718w3EpINGJgWlHW1eeXF0RBuE43xLVJ4gdjz4yPAZ/PlNyv+1SFm7vjqQ4+jh4a9RaSMPgMoyy9OEWMJ07I7scM3ldGSQShkjeSAL1QRa1GUvLJwvFUgshANpFMOI9IYbrWs0KMQTO9iNKo+TKuvp4+F3c8eqzl5xdXXSv20Ktzrpa2/TOLm+YxoGSC8t6pC5rtzlThMa6HIlpoLXR7cha6wm4X18NSh/EDuJNY86NeOPiRrSogITgOuoqTLsdijdrrqURwuBWalHdntKKT5xTQbtd5TC6BV0IgSmGvie7P//2rmjNiH2CXOu2n7GTBq32ngsAKYgMWCvspkDQSrPkY8XlnrCqNXsC2F1qdLyXvDUzUhJa8wRi2xNBXPMs/fnqEhOX4/zZxPYxHuOXJ/5cYPjEBnhdl2jKbtohXQKxzHfc5DsGDRAvePMy8+Q96RODBKGeHsTSfPTFqZyMZ/5DCG6zU90fshTPjK31CnptDghdAvc5RmqzLfKmD/dfLNkby3yT6qxrn662MXS21Yj7W/8ewPlLZCsnb2X9rfSrW2nzAftlGxiU/ikPwML2Eu+4/8Q2b17CJwbIagfELh2BB4Cnh/99tzPrmuWTTOIEVDa3AE6f8Tn9qnbZCg3tpcRpv8PMO6WXpZLrSkzecCZ4EhJD8u/vJXwv+Qti21hpZ+2kamcj6fpsc3mMuW2T6lZ6f3CM4ppgZ5juT2WberqGI68PM9//yQ2f/KzQZuPjT49846szX3n3grNJaLVgpAdYW082Y9tHOrfU7ll2le7WZad7Z5wIy87+b0kXfUV0rNKZeOvX2/x0Twz3yS+4Vwz82ofT83QCitv6QpwFO60pvFHSNqlHtzPsmZAD4NZZXQeW2l+q2rFUbQ2NgqZIk0ptC6UVSnPbQ5d49OfKrJdy5cRYgZ7Ga/tafABQuV/jQB9GsAHhfhZ9SEHT+2RQzGfsZeOU3G5s3H215/7Zqrapi7tzSG3+zhZnNE18eMLt7Q27cTxVRIYYyf3+t87e11q9sa81osBaV2cRa2Vej+QgpCUw39wRJtetBnEGr6wLVZUY3HkhqHRHuUaKzkoaFbpsYM0+9e/yYo9qPjlghBi8JwKICC27T/Vpz+vPbLZGzYU3b28p1dm9UqtLEXLh/Oyc3U45HO6Yl8rVxdQBsU+fE9wuy6q5d3ApmBUsRn+mm50qJqUUSj6iTci5N3m1QskrorDWhXJ9h0RFY2SYRlarUAthSO6goqH//r7fBvF7Z36uuj0D5hP5kMY6e6McYtQ1u21frVT19ZxLwXpjmKdU7VTRaNaQFhjSHkldpmSRi7Or3kvqcqEhDtRauga3Ybb6ujGYUiTG0JvblF3akWKAvmZBWXPl/GIiaKDm7NK64CPWVaG0XiVqjRB9b2ytokPyaYO9Z8LXtGtwtzV/v3fDsnoilcZExSil9YEjdF9zb6zbGpabRG4Ph65Z93egvyNbJ0u2qltgXQtrKYQUe4tARWLw/UaUda1g7jcs3jdKCJGGUsvKYzzGL2v8uTTD0t/0AaPghvLnFxdYCrQoFBl49fKGlivjzogLNAJYYohCac7WxmCsJft8dVVaqW5Ub4AJIQrrWjCT3hVb3dCdACRSWDEK1ZJPDDMjWuQQCrE7UJRmSDaICi0hsoAm2FwsOlN40jMC4IyVA5n7rveNRd6kvvQy1WYN1czuQUjsKF3EtbW1EYB1k2LUDWYbJUa0+FSgaplEwvRUBe6gTLodnLNEFXdJiEALikklWAfhW2NfdweQB+A79P93ds+N3k0bBFjzghWD3CAOTGNAh0TawXIzM8hAHJS1GboN6BgGB0biXecO2u/ZcLYXVrc7cnmEIb0T33+2YsWBWnCSsgPYQEgO8KqBSUW1kqXypx+/5fvfOzDfJlobMBXuXq/8wbXx42czv/HtK77yzhm6ejlbUSRULAmxgtWZujHRoTft4SyooTTpHdWygWa8YWgrmRq90uADZhQHyk0EYqBC1xi3U9K1vQArPp1tm9DWn6o+tOVeOy9dG2n8Wb0uJ3CoJ+1CXyt2r/s8ySUEzLKXXnVg4cinn/yAJV/DTSDfLWg177Q36dKJfg9SQAcfta2jElPE1Dvjlcjl/gX74Sn/MXnS/XE+0Od3oF+tD+ZpzUepc6/9vR/teP957cE5n25I3yca0JRTI2TUSC5KKaA7/7tWveS7DZnRKEgzaoFcCrSVkAaWtSI1MwSoMoE18nFG0+A+1kPDyB28VnIzGCdIyrEeOOYVZCTUgeftivPgzWFvXx84P7/wRiUqeS2kEN3hoy5IxodngE+js20iXetNb2BVeP3m6E2Fwd0kMAfNF2cD006hCdJAaqPkzHQ5YdVYyh2KWydKCL5XVLdo8ykRjdJWqjR/HhUfCRwErGB1dXuuMVGDMMoZb169QcwZ+GVYCFNlp4mo3rhWovnkzubVphCicw3V5VynhEoqa/H9Ku3PaTfXjFNACOxlRxf5ElOEaqx3R2Rw2zYnWKBW69KOyDBN5GV1L98UKTn3a2iYiltpdsIjSqRKQ8LUk2Kj5kKtjRR6tQ+v8NVcEWnspgExY16WXnHyRu8IHOdCBvbJRzZLH6TRUKJE5rkguANJLdYJh4ppomQjaEXD1NnxzDAOHO8KuTTGnVd0Sp4JAdTc0m1dlZYG7t7c0XLh6iyQQmLJFWFhiEZpPkQlhYE1z9zdroQwMg5OToTRJ/u1LIhG0MaUnHUWhXEakACHu8I0PsokHuOXN774OGbzYQie4fokt0IlaWQYlCwr1JVpSrx6+Rp2OxqZ2iK1OVOHdk1aBwO5FqJFVMynGZWKmJGG/vCXdgICbS3o1DyT7T6KwRaCBnIVKitCo1lFrRKiQa5UGhWjik9VUxKyNQtstmYPQMTJP7gzSe4Y4e4StY99jSEC4XMd0qHbZLlO0AFvtYZLwFpn6WpvkPHyXKnCEAbWJog6k5ltdmZ1G6LROrCtgRqEWJqzL72kVm1zY+DEYrN1cdv9+dzbXSkW+lAUiYQwcHezQnWW6Pr6jjdyw5fff8YQhXB5zt3dzD4kb64ChmEipInqzdiYVu+E79ZLm2Sgc3G4ZMKZYGc5QSk0CUgwogWsQaG4nc/YaFSyGqFVBkt8dnfLD350zU9/blibEPNu/Uyjdc/bNx+v/PPPPuKzX73iW197xtmQoGaCREqxLl9WtI9ildqALiWg6xw33bc6mG+tuSNJl5JY10A7aMWnFQpdRtFtAkM7MZib3MMXVcdzD0YyNzPqVpjwL54Ssc1v+kEp4QQ2t8bJjfD2hCec1qOc4KQDr8aKzMbNdw+8t/sS8elAfH9gGAZ398Dt0Wr36a25kueFWjLLywPXr99wO89gC69vX/OVXzN+5a++y2G964ll6FLr7feeyP776kQH6bW1fr6ObjcW2UvUnvSdmOHtOnVZCQ/lUL1i1JonGaXUbgnY9f5mBKMz2kJrtbcHmI9RzkK1SF4KrcJSGsf5ll8sH8Og7MaBVgO//y//DW+Pt0zDnsPtwu3dyvGQmYYdPrp3Zc4HnrzzhN/8a3+V3/zqN2laEDMuLp+z340cj3eoRGIHyTFEDoeZMU2EJqy1Mk4JrOffwatLx3nh01dvaKbEkHzgQqgo8PTinCEIbS1I9AR/iLHrf5tbtVVPhvO8ojGAVHRUiAmTSi4HtxHbDazHhSCpuzQs1LI6sOssSEo+EGl3cc68ZBRhnRd2aszSh1HEyPGwcHZ+3mU21u0YOysctDPe4TTJ8XC7cHm5d91tqcTYE+PWKKyMU0Iwb0SMk8tKqlFK9spVFGyIhChUorOlqzfHGf6MhhgwFY7HhfHijGJCqO5sFFIgpJHDIaMhkgZnr0OXM4Uu/TDpa8z6IBQgRTd6nJdMGIdelQzOOJdKE6XVwrpkYnQyqFVhGJN3niigLjcrJVNtcTJChPl4YH92zpAgL5lajTi4ZZv06XZvX71lGAP7/UTQlZozeWlELZRWacRT1Sao8eTqjFyg5EyYvGG9tJXSxMdat4IlfMCHDgy64zjfkddCnNL/PEB4jMf4Cx5fGAxn6QCtNbQ5P2QBnuyf+Is4RBfdB+XqakeZEuHo5aLcKloMNBA0IngTxVqyTybqL3Gz3hhi7mXqZab+0ouJmo2cGrchk7nj+viWXI0YBpKM7Im8sQNrmamHwpP0FI2DO0k0xWckay8f3pextZeZzfgPms3uZQdKCOmkb9ReOttYTm+ecmeJVptb+IiwigP0tx99wtkw8fSD98niA0kEI7fszgRmiDbSpl8FTLo6IAjVAk0NyGgYqKI+xS1vEokOoTYS7cQK+3lsjVxbedrZbL+24Twi40SYJuQXE2FOtKAEgWAwDonDmjnb72nWXyC7PXR5h0bpMoH7kjmABXfI0M2mjq4rbt03Ux3YBHX2q2lAw4KwI5fGEApzXfn+x6/50x/OHK4F0RGkdAY5Yrb6tQtd+mID3//ODR99fODbv/qCrz/fE5sP1vBrMCLinqDBwJ1RFkSHk9+uq2OMYtWdRU5uC1s5005QdxsbfXqRd2DKA4mMwEl7C3TNuXnl4M9IDbb/atf3bs4JGCc3jocWbZt93ykh6rEByCABijdHznrkG3/j1zg/O3N7us7EG0ah29kFB7UJZWjntFK5MON5/QpWA1ZmPvv0Y9K0A7MTQ93okyB7uXfT+t9XU7Y1ujXc0S3ZpIP5Tvs+kFo81B9vXzs15nEPlL3vsUKrnJ/tiarMxyMSUr/2htWuwdXNexmsGGLBNb4tQ9zxL/75v+C/+3//Q6bzgSjCsRjlAFH3SOwg3NyOsdZX7McRBJZifPTdH5Ja4q9/6ze5u7nmnafnDElZ5gNmhdrcthGD5biSS0E0EfC1U3J2q6z5gAUHPW/e3Jy6H/OSsVrRWHjy7AlRK1al25gFH9HeJz4Kvnm0Gmh4tS3nBelWYiWvEIR1njs374lGKZW1raTosrNavUl3XQsi9d6hpFu/NbE+qGJySzvzxuZSVp8YqUorhZgStSc6KUZKqRRrrsdPg1/XVvGBhsrxcPDncIxM40SrtY91F9bj4gRDTxqESuiuIKVUUnL5kBpYq4Q4UFcfypSKEAtQGzWv6CaPqD6SehhcVhI1gipbD3DDuvOGdis2YV2z63RVkRiJAe97aO7VLEk5LoaqMU1jH+/t+l8TQaOQa3WNcogcjrfs9pM/98XvZYxuG9jMvPEvKlaFeVkwEc4mZRoVswy10BBqKYgWfz6jyyqWxWVI0yRE84rJfNxkFN4s6A2GxjAYISoSRt4cM+vq/tkP/G8e4zF+6eILg+F/9K//KZfjGSkOvHP2Hl/+8nNCVlpbkNgf5vXA7THDEpnjkWfDBRqMMXl5qZTWH877bnPXbFVCZ3xCfym25v+mkMB5QhTh0/IZ//L3/xXHtzd8/MOPaJ80np2/y/DknHQlLHLg+LO32DJx+Mo3+PAbX8LwyWXGCpvLAV1aIJs205vYXKK2jZ7s7ggbS/uAzXpY0sasz5zvL+itGam7aQjC1dPntLVwPM7EIRGS+5rSJySJDmQ5Egmd4bWuA/VkocqdT4MaCrt6yaBn5LYg4tPfHMT5sT1k56CDK9XT4av5gAfBx2gHCpIPvH35EcP4gqv3n1Lza6J6h/yQoJbMui6kviHLMJx01mIPWErXDWwkYHfEEFqtHYg3B0gqBDGsqSdRWggMiO2odSXFlU8P13z3h0c+/oliNRJjxWShFncEMVu6H62bxmuXK9igvH7b+Je//ykffeWKX//qnvcuBlQjlUqgEQjuqtC8Oc7EnGUP0ZliLSjqjSdsoMtOa0BlS4T85RnU7vUtXcuoXVer/d706v6J4dVNPgAO6PvHV2tUM2emurxAusXfph1/2Bz58D5/Tr8uUKlIMGpZCFSWVplrRdtWxaDfQ+uMvdCyW2Gdkpftdw0NGSIXL56RFx9x0zTifLuv8001/RDYb8D2of2biJf7Nz/d7TxU9T8Awg/B8BatNzeBAxU1yCUzjIkhBqy4lVTrQt9SF2qrDGP3bW0NabBW9y9ueeX2MPO151/mqVxhljguR0qtXglS630L0eUZIhCV2VyPGwkEE8gT128XnkyDl7O7fZf0PaXW6sfd+x3WuiJNiaLkvKJhgBi4vjlwWHw08nJ3IEYhENntRi7Pz7uvdKPQkORAENz71nGly1HG3e7kjCBVoVb35m3uDtCy+SyJ0KddRiWv3lDX6r3DxLIsaOzysCrYUrrsRWiDOwClqG7HVpsz3tGvdbUGUk/e7cuyEES70Uljtzvn7nBDSBHMfYNb8wcvNPcOxrzhsaxH1nUlaDq52CCBPGeqKGUt1LUw7UcsV3d1jI1aV0KaICiZ5tfTdhSKTwoU9wofYkSl0MyHeEgnLSTG3vhaT9p9VW82W1avckU1ahNMlRgby1rQEBlHb1IMYZtWJxiFUuD2kElBmZe5E0P7vuYr+/0O7Q23d3cH4oSP/p4XSoVhN6Ji7jwjRs2QSz01W5TqyVtoSq0QR6NRMJR17fKS4P7/J9KkQp59xPmr46cQR8ZhQqygD/aWx3iMX7b4wmD4//UHH/PE9py9UX4tXPPl//MZeT9ha8Oycb4fWJYj6/HI4dMFhsZc77i4Oseal5Nayz6VqBuWB/HRmjQjqpCLd+aX4qWpViuVDahAscbbt0fm796R5sZlGFmvFvRqRS9vWeqRYznCZUNr5vazl9QPXzDtPCMfUvQmL2DzjHRIbCdQLA+8Zl2iEQihA7qtc73P/vGT8S5g7WVyIWAB0klE2bBaibsd4Tz1BpWCVEPHwEFfcvvpD2lFiGGhHO9Yl5m2rLR1Rc2oOcOcGYtSqnJx8Rt8+Dt/h9A80cibXAN6jdWbp7amKrDTi8i/xU2QNiaf0kghsksRO37GWhPTfuwrJFLbyrSfuL65YUh7dymYXNOnErDeWLUBOj9tgU0sYFvy4S84UaHIitaJIOrskglCRkKjauV7P/+MH32vsr4VYoSiUJsDL9QwKiaBVhKKj28tNLJVSgtoUFYz/vUPbvnXP77mm18Z+d1ffcrXnkyU40izDEHRkE6uFyIdWKk4yO0JQ0Cc9T5peTfQt5X5exLXpz0ZdrIxQzh5MfMA2P3ZxrNmRqCXc6HLJzqoNG/E2b5/+/n7hkv7HBDeXllBA1QjW0XHRFmqj+M1Hw+2DbkQFbR19tq8uU9x4ObWcd7UuU19VPOpgLW1zq7fNwZujK10dvhhdcKP24/QRLtHcAe69qBh8MFLt7XPu0t8nh3mlDQ3c0mUW3G5jGCXEpniVljq8ozts6xPINAIS81YLexD5L2nT3jy5Iqfvr3mdoazs0uCVSTSHVSsl2s8sWvFbbRKZ9en8ZIxTYzjsevpfZLlqeGxX9fQk9Myz4QYCHGAPjXs5eu35CYMaSQvK2qN/TiSQmCaopfru/Qj10yzglXBcmZdj0y74WTvNt/dMEzn7kaggTgElpyJQySYsc6Z6WxyyYI0altprZGXxWU/Grqjiy/kFAaKGkRvFpumgbZmZHR2t5bS7R6NZV3pmRya4v0gHOn+vKrkeeX29mOm3UhuhtTsYHWIzHklLyshJlJKlFZoJfuApO4NPIyT63vzSpkXRCCOyfs0SqEFZzQtwJJnQjVYhWEYiNMZeTl4co0xDIkoylq1Nzl6g5xQaU2Y50JM1isiveHZXAONOmg2Db1CaORciOPAMIyUftwluwWbiHFzXaghMMatObUiodJqpnV7T8FoRcgFn2hqQooDZo2Y+rkV71JuJhxnn4ypweV91QRpwY8vKBoT69IQTUTJmLikRkMgjd5UXNoKS2BMyvnFjuMxE9R8xPxjPMYvaXxhMPy9f/D/5Fcu/xq/9bf/M84/POcwK2mnfO39b/DsnS9x8+otT3YXTAw0qzy7GFmuCyEKyzIzxDOaVdZcGMSbLU4Pl2y2Tb30LO4Cm2KktOq6PMncvS0wD/zGX/0dUl346Wf/nu/+0b/jT374Q0wWzAStibvindwfMvLtvxKR1px1pPgm0+vWD1k26bpeB8sOYrZBPM569pd60wfdufgLOEbfkHspfJMEYBVt7mqhIVBbJUVFLXE8HLnNM2N5RftH/wNxDTRZsCGxi5HY3SWCRGchwoSFCGNg0IHUlDoIS2snv1q3iZMHAOnPNF1tbhJu9NsBTyN0+7nLiyfUi0KZj6BKVdBWEXHwdHZ2wTzPnF2eo3F0T7cmaOispxn3lTR3P9gkBRq6jEJ81K6QkF6etrZiIbAgfPr2lu//6A2vf6oEIkWqTymUAha91CxCZeiWawu5BpouVJRmkSqB29yYS2MJhpXAv/1B5Q9/8il//Vtn/L1vP3UP5WX1Prc4UM2Iycc9b7IY50lrl5z08a+n+7tZffl3h83ZwWu30BvsGvfAbdP+CpxcIfzL21CRDRg7MyqbVtG8QVP4D9nfh56+n7Ps6/ddpBECzsiXSggJQb3DP2cSSmxCIXgzWreOw6xriTenCkHKQjRhtYo110CqGWvO3YbQOuD/fKpwz+zeH2dt937a2+S4TdqxAdbWQeRpyMYDNtifxe5Q0dld61ZyEoQUvYFpLdWbVs0rNjW7RMYI5LJ4ebkPIEhJkKcDZ0/2xNs3CAtooFWD7NZqsWtypUtpXMGQXb5jiXfevcBspjUhayVUYc0+NcwZYr9vS85eim+N2grHWlBN5Lnw9vqGNEzcXt9Ql4X33nnCNPk46WWtSBwQCQ7IaoNaMfNpg9JgXRaMa1S8ryGaT+xseWUcEkRhrSu2HpFgpCH6RLQAzTKtRTRGtLn3eUqJvZx1C75AUDgf924xqI1hN4FUlnllWTKXT86cEa4u6dpNk++VtRJj7NP5ArUKIokYlHldqNUIljkcFs7OL0gp9WReWJaVFAO6SdRaIQ7Jqyi1kZqwHo6kXUKo7rZgihTh7vot09lEmkYC6g20IVCs9OfBXRvC4EN2lsWnuqlWmCDQyLVyOKycX46IdDeKVlHxV2gNRi3Ckith8CRR40ijdX9lnwgXxF2NjoeZEHaYCKWupz241AbF1/4wBYI07q4XalHWVUnJSYzWGnX1xGMzB6/FHUCGMTAf7ghRSftAqzPzUlmWwCG4TG0YfT/JuVFa7j0YgWEMp3dJDIotR9rcYPBq3mM8xi9rfGEwnH70MeWq8O8vhG/kv8Fn+4mv/s43iMM53/z2r/BP/s0/Y/d2hzyBt3d3/MqzL9GujLt2R24r8yI++rXrIDV4qR7zwRISfGLYmgspJvK6dOsv93fJR+M2r0g1dk8nahhJ7Tnvf/M3+eQHkX/9P/4B4yx8cPUuw4fP+M7v/x5vysBv/e7fZbwcyOWAtMoQnBM9gcceXuq3/wBobDybbKyQeokcM1pnTgSB5kzsxo41GkMMXm4TqFZc+9sgm5HOzwhloczG8y89Y9hf+mCBWn0cMYoG4e4wM+wuCZZBvCwKi5d9RUnmwIvTkXpsJfDucnsqy3vjvQHeLawNSm3UbnMgNjKcOTMojgGw3JDQSHEga+bu7o44nAHqdk3bSGUzJNz7VQpKEHfK0Oj33dnIABa8LBgKLRR+8eqaH/3klk8/MeriHr65W58182lV9CEZjrJ8umGrrqWubSSjHGphlsrcCrW7JGjXRtcG//zfv+aP/vTI3/uNHb/2pWecBzBTajMHNV0Xb72sLarU4pq9zdHvXljjTXSbJZu1cvL/vbcVO6lbP2diryInVtTdQvxbNsDroFpOjHLocpwTIH4gQ9ikOv2nT0B9G+ncWrdZi2OXgDRaKT7EAmFu7SRpcf2u9vVO/52BRKRKZbZKTcl18a2yVl/XjebslmdFfuxI9yfeRLoOeLfR40DXpW5gt4MMemL1Zxhiq5uPuFcdtusR1d0+amuMw4CKUeoGov2KlGr3FYyu/8ytYnXu1oCBtRYu9juSCXEY2ANTGpFoVIEYA+uy9IlePvCjGaRh7/c5NELyBKEuFeKOnFfAyHV1JhvXa4r3UpE0+XCGkKn1SGu9GfTVa4YUeXK1B83My0rO1ZPK9ejNeDoQTMnHBQuGaeoWjT4kpFhmOBuZS3ZmURWrhUal5hVrK2lS1nVmGCZyLqz5yJydqQziThA5F2qrFLzR1y1oG8dlQZJXmnZ0YDvAuswMfXqaDJG5FqL5mGmrPkmtmlDw8v2nn7xmmBphGAlaqQ3mdUY0EDX589cKtEpASGN0qcdqWKh+IddKSIEYAndvbpj2564Vrg2ZBtJu7xZ8pTINO5acSUNEQqBlCENEtLFmr0LWUglDl7CZ21dSYT5UxsF10KqCqHF7c0tLwjhMrMeFUSJZjVoFxGgoZa3QCqresHc27RCEz14vpKDEMbHUhdvr1TXJUZF1waS4vVquhKXSOvHSDGq33bQmLrFhhC5riarE4K4TURoSKwQhWPUBWHVFKuRcu4a/QpIuEwGxgpjSJPn7yHiUSTzGL3V8YTC8K5VfS8q7P/kJH16+T/mNDwBoCF/74Gvc/Po1++tn1GcDr8Ibfu+Hf0irmTVXwgJRAjHF0+Su1rpHKEbF7Y7MzEthLZJSYlnnXv5U3t4t7u1oA8UKNGEfL3h21Xj2pQ/J9Y9p88xtiHy4f0arwu3dgXJX0TiipXfgnjir/1jIg8FtG1vVAW5Tb6Rorg91159wenELm1SCe+ZP7FQy2yihoEJs3UppCKTzp6zDgNCIMmJTooSCtMoyv+KjH/yUd7/6La6eXFLagMUFWY9YDURrmOaTNKFZ97KF03/ZSuhwQsvO9EIjO+uMkGTzJW1ApLIgbYAIMQjmlUTG3cjxcKDpRO3IVH1ygG/gUV0/jcsiQgxQ1D04XSzcG7+89Hydj3z/J2/4+U9X8rV7Qm9aPAcOoKF1rOeSDGveoOjNbf5CvbHCm2zM1QgxIWnoshYHhxtYi3Hg+ibz3/6rzO9/cMfvfuuKX3/nkklHytK/bwOFdi8dCCGcmt1c69v9TjfGGPP5WxqQ5qXz6n5hvbnNTs1brTVPojYdcWd9w2la3H+c/dVNniHuuWsP/h7xxk3MO/bp67L/H61VH0Mbkq9zuW9aVe1K35NWt4Pazupvzhgq9/7FMboPsbrRtVd2+jlYP47t+BR3RrBWHzx5Hag+2A+sbbKazwPhbbCGj6iop6PaiCrDR/+maaLkRmsQNVIXH9XrbH+vBG2yIXHnGvdPLegw8OmnL/nw6885v5hYflpY10yMA1ZLn5oWCJrIbdkOrFtelVOVaRomqD7RLS8L67KwWTa21qgtdDZ4pu0VS4OzyHklF7g7zFzfHRlCYNoHajtyOHYmNXvyglZSzKSzgeNhxUpGBHIzglTcx1tdXmVKGibqshDHwGpwPNz5s6kCZIaoSAMrAi0yqBLUXRJM3f0ir5U4RIZx9EY+MQ5rhlIY6+hJusGQXPrWEJa8cv32FU+ePGUMgYQgxZOZ0hqmwtubIx9/+pLzM4OxEatx9eQdynzg/OyCVhtlXdmfjbSS0SlRY6OtwiAJAuRqZIxAwIqwC3vKUklnIzev3rC72FOPC4hQWqXM6izxsKfWRsuVFBSrlRAjIa9oMlK6bzyOCvtRuybXk3INQjWXHk0oqHHVZSxLviWUgWUO3K4r14fMk8uRsZXungTSAmNKIJnCikqlUjBVQgho8EpbmAJPXgihVLR5FaA0ePvqwLhzGU6pM+ejkVLluBy8eZmxNxF6b4gJRFtQXLJiDSwXdz+S4FM7S0aDkELAcN/4IfV9Uf7n3puP8Rh/8eMLg+Ff/fbXuHj9GV+rYD/9B3z3//Z9bsf/irdPZj4+XDP89RfMbyq1LHznzR9y+Ee3DDqwn3d8+yu/wbNvjdTc7bV688fWRwK98xcHH7UUNAVEA2srvL27YzkWb2bqXa1NQWJiHCaevvMMzhKyBCwkLp8/pY6Rels5HGfeYaKysXp2wsIPS8suzfQXP+LZtiDOEJ5eoNp1wpyAjKg4O9o//2Gn/4ZS/+yELtMOEKzBoOgQETOWNkPvRo4cePnZnzL/4sCP3/wx3/ibX2d/9gytCq0AM+6MsAGkzsxyD/WFe03mtpFts0VMOnPYHjCZDUwUTRNpXbBYqNb9Nmtz2UcQ9vsdeRipQZGU0FDvp7B10Bf7AJTSKtYGpK5ULRAiSgFt/PTlR3znj1fefuo6VJMIIqzFDeUbgAS3J9rAkUItBhZoArNVPsuJt/PMgvUGn4XBYh9v7f6+8UEjl6iyCvzkI+Hnn77hN78+83d//Rnv7nesS2f9DNAAUQlSkdaozdnpLcHYWE1pDcUgFwfCDZ/qJGFLSU7J0AYRPwdkecAhy71cANkmHG6A11lbf7lJB6n2gFHuH2z3n719PabEUtbTN0nXwNuDZEn6wJmHrK2I+0DX5rrJTZJxamYT2KZqn7CmAB0cldYn//UGImlykku05gDfxyHeg/stNmnE6ViA1jp4NnXph58NgvTJb8Z+v2e5OyKIS62WlWbicgdxRrt2MFAyxJBcftBg3A2e/FXXg9ZWPOEpkVKX/hxL11MbMXZNcC2ebKSAqbleNRfWY0bD5A2J0ljnoyePQchNkHVFpPL2buHN7ZG1jzweLy8oZaY2f7anKdDCQF0z67xyCEpuR9Y8I7YSVjgeG9L+/+z9SbBkaX7dif2+4Y4+vznixZCZkWPNBVQBKKBAAAQ4NSU125rcyExGaaeNzKSFzLSTSUvtZdrI1DJpoZYaIGVqUCTYHMAigQJRKACVlZWVGZkZ8/BGn93v9A1afNf9vQQgdUoroSy+tMiI58+f+5383fM///M/xzHo92hsSaJD0Wsw2wK9WBeBjTYVUkSY2mIwWEoa22ArQdSBONKUVUNtahbrFVnSobKO9WLBerVGIYlczORygorn2ASUViRxQrebo5sp83VJsSipVzVRrul0OkQyIkJhmprxbI5pEqpSspqtUGbBwaBLIQrwFpfmqDgijSJMWWNE8BPGGHSW4dswlHhtqZxDZyEtL1YaAwgv2Ds4wBCGIJ21SO+IsqyVPoXPQ2NKZBOTJRJhLZFWWBc6Dvi2KMcT5wmqqhHSg7BhaFHGpFnwkJbSkXZSfBW02zqPsI2kqgz9VKNlQ4WhrGuiSNJUwaZtvF7iGxjEfbyWrKqC5WzBeD6l28/odgd4I7FVgcpjtIoRHroiwRSW6XJCJCLEsE+9nCOspcoFlaxJcMRSkMcZlRNY0UaW2CbMJITZUJw3lFXwNxZeUzQWITzR5n7hPBLLq/Vq/ayuLwyGq4OU6Tzhs3lD4Txl8YCPfuefs9hXpE0X16yxZkVdWoywJCJlLTWmcPiRQClD4wROhpuYczaAGhWiTsOQWgAb1jZIL7DtUN18XeKsRPnQjnVt7JQUwUy+1xugOxlu6qmsJMm6iE5Gc1ZTrUOakfEKuXE/uC5/2IAUccVMbVLhhJCfi7dse8hBarABx66994sra6vws8HTk2uPbR00vN8yrRESrxKE9GhjKZsVeMfl7AWXjwuqwjK5XHD/8qd8+xff5viwg/UJ0hq87LAZTttswyacIQAcG8B764YRpAwEQOJNkLYKUBqcMIhIBBY3yrGuRNQrZNRBYsP22jC1riNN0u1RSA0iyB2EjpEETe3GrcM6D1aF1LkoQbgGhGXRFNx/eM6DhwWiTEiEphaCmhLpgi4Y1QYxyNCyDDev0O5WgBeWiwZOasGyqoINkgwFgQKq2hJpgjcqvmWmW9a1nVSvpUM2mh993PDxixf86r0uv3BvRKwkpqJlcIJrQiIjHOHmFdLUzNZFI1RZNiQ0uZCEto1CbmUOW6DnYRPrTbs9wF8aiLNhyuaqsIJrshe2scpb5LvRqV+TT3jvMT6AatVez/La9//KJUR7/q6KxjDRHs7LRk+8Aee+TRmTLZtlbfBM3UgiFAq8IdbgvaDxgaFvKfHATrl2Yp82ZW4DtP9CIcem3+DB2fZ5rW7YWE/dVOhYUVZFOD5S450liRNMYzAYNr0oaypcU4btFJJIKnaHGcatWazWHN7YY7FcMl+UKBmF8y039l1ue16sDWy3au22kjilrBoi21DUDdaWxNZTlpakk1O5iGZV0ukkmCS4SXhnmEwKbAUdHaFzjSksReGRPkgqCuVQcYM0lrqw+BhsMcE7g4wypHTUpQkODiLC1oaisaz8GlU2WASJ0yghKawhQuKEpbAlroJyXaGFIEUxna/wZt7KSwKNsFqEazvLUgZZFweMdvv0RxHnzydcni6ZNWfEecTx0SEXz89Quo8WEb5u6ImMWhp83FAah68lF2dj7t68R9TX7O4eY2YzIq0Zn53idzJmtiIqK/ppB3Qo+qanY4QCERWIRCMRdLIOaTcNg5R4ysgSeYkwHuNByDg4l3hBlGRIpYM8wBZ4FEkSo5QGHE3T4AUhmlqEz5R1DUpFOOsR8aa72RA5gWlUkM1Ig5WwUpamLmhEkFV50yBoKIVlvW6Ynsy4mM4xsSTLMprJktXlkuF+D73rqK1BpRl+BZnq0BEpfZ9RrWC1XjIpL0j2Qxz2dLymoxL6+YDR/g551meOZH7asJ4vqLUn2xnQ70XopgGlaFxFUTkK24CVVKZGK0kcRTjpKaqKXiQRQmNbGVQtDNbWbaDUq/Vq/WyuLwyGX5+9zWjnDj2nKBTYgSLJDnEyJt3bJc9yHGUwIa8Ma1OR6ATwjG6NUHFEU1VhUEFotIrxvgktTLmxEwvZ7c6FXwoNnlVRIQL8wQiP9G3LVLSG5zpilPbIe31mFFRWIk1MnHdo/IKm9VcMJuXNVYtVyu1AWZg+91dAAcE1vcSWbbXWXdmytSES1ge3AbGZttuC6422ke2A0BbYbAYevMDoCCs1ka1ReIRvOHn2kOLpmnIumdcpM6s4u4T/+AdnfOVLAw6ONJ2iJpZhMEaIv3rKV7aJVWEbNgCpBfxKtoIISaRVawfnQRqK2RnWzqnrgn4nJlbBKN5LjzPhpqSiJOgXbXB1UF4Ffa0zrUWYACeCL3WkMU7gI8vl/IIPPphyeenwZPjIsrBVGAiyKjDzUgYNaHucG2u3bgUImDRwYXwriwhx0O1eBrlNC/yMcXjfhEQqyZadD4xxYHCdMKAFZSn513824cNnU37lvV3evTEIYM54Up3Q+OYvxB+3TCMBXoXXt6EdHiqC9rhvug9X52XLxH7u+1d/5GZwjs+D1kDkt0Nk4uq1wiUVwOtGRnH12sFmy7XM+AZgf27orn3uhjX24qq7sO1oSBlctVtXhOuDbBv985Xrg2iZJIH0niyLiWLNfLkOTLraWAe2kpPN3okrn47Pu21cfW25Ys7dpqtB8HJVOqZYN+yOhtAYwGJrtoUFBJa7MQ3OerRMMLWh8Y44kqFlbhw6jrl4ekYnzxgNe1RFhbdQ2mbrHLM5T5vfF8470jTHec9qVRC5mqJakyYRIomoGkN5MSWLUro6xZWOxlWUdUlV1JSLCp3E6H5GpBOO90cUiwUyFtsI64O9XUzRUKwKStuQJz2W8znT9YS410NZgfcRbimoFg1NrBCFJiIUClPXEHc0vU4WtLSVo14qKuNY1lNodf3CR6Rxim6143VRk+mcsnFMqxIvBVnSZXw+ZblYUtSerJvQs4csliX1TDI6PGavN8JJSxxplIVHj5+g8pRe0qeYren0BogY4n5Kup+S7HTb+sdydn7K7GJKNuywTlZonRAR0tqc8OiswS8LYqVp1nWIh649upuT5BlSxAGIW0OxXoH3JFGCrQWL6YK806Eo18RZStbJUSqirBdAGBpsrA1ezFik8CjhMcaH7gMO7w0QUZY1xtXMFhNKCjpZj6SRrJs1srCsl46z81OiyDLMhmib0HUdKARR7bFRl9tv3iEdJNTVGucgzlKWyzkrKnysELKhc9zl4v2C9/+bn9A5TunlOd3ekN3X97FJSICdFGMqWWJzhZA9MiUpLpZUhWA1zEPnCoszkmZdM11VYQanmyCiklQrhPT41AVJmIHxfIXUMbYyWP0qge7V+tldX/jq/o3/8d9BxgqtYxq/pLEO6xVRLBFeEccJCIeM4vYGZ7FWYd2cugoeslqE9C9vg9uDFHJ74xVio8MVWC0pbcN0sWK1rBEkCELbRkkRQiOc39oT9eKU3qDDRK5oAG0jBrtDVvGSYl3ibGspRYOSwYv2unRBSkWb3RXa2y3D5lowISQhkIHNcFhYIedtEy+6uWFvetT+Gmvbsni+Va/KEPgQOYWNdfvzjsIvefLwQxYPHMVKUBnPi1rhswFpVBJ3BE+fz5jOI0a3GyLAiZCwttVYbqUZ7ZftF4IN0ApAREiJd57KGGIZ/CYRDmsliaxZLpf88N//Mb/+rd/E3unjXdiLWMcBfGqN1KrVwl6Bow2zrqRCeI2NaqzweLXm8cuX3P9kzXzsQQd2u3KeBom0EuGCu23Q9rUADo+VAayX1nJaCy6to3YG5SBCB1bfB2mLI4Djrf2W93gMURxYMU97nnxwWfbINi7aIHTE6YXgn/7RgvdeX/Pde12OOimVKZAiDsNy3gedTzt9uIn5DddV+L5xLvgOE2QNm2S2TVjE1RDeFUi+Dk6VUsG1oAWL1712AURrv7bR1l45U2xfrPUzhs1AoBBX4Pi6Hdt1pnirLecKfG42cOMHTPszvgWjLWIPe7T5TLUFppYwGORk3YzL8ZSqCQmMgVVvJRLh4IWf95vCRmBNsHXzLgzWbcB6Ox64BaPB4lCBdURRSF/3rqGoK7SOEMKFGzwOJxx1U7FaFdTNGm9CXK6UUDUVWTc44RhrwMswGOkbOt2EJMqYLpasi/X2eG0YfK2DnVasBU1VYESEdI66cGSxJI0TennGspiQpjH9bh8rPJmSUHV5eDqjOxxx1OuhlUJknuGow3oFs8sVdW2JMkXNkqinw7XsNcNhjj+ruP/DS1QzZrDThUiS9mFvJ8eswUnBaDRANYIX5+d0hjmuNqwbh041wzzl8sWMgeszuVjhI8/ejRAfneYJeSfYguU6Z7WsKeuCSEcUy4JuP8dEKTK3VOUSmSj294cUZUF/tI+XsFys6cVdLpYTdvf36aZdunmXsl9gqOn2EkorUMKRdRNmlxPmiSA5PMCslyT9Xgi6iBJEnJA5yfPnpwgl2ck7lEC9XOONJcs7RKuGSkpkrpAqwTiPSBRKK2rjiSJJ2u9hGkenP8K4pg0CMiitgp1nE6K6hQoDdJYQ7CS9x/mKxlakac5yWbEuStbVmtMnz4l3UlzlWZSeZTMnj3JW45pytULtdpBpBg52hiPKOvg4Z3FEnEWs6zVTMyHLchYvzljNK5JeTqeAar3m6YcvEMrx7tfe4Oj2MYO8x9I1FEVFvVqzmMxQUSAfhFIMDkfIWtNcVCxPLln2VlTLFdluB5XksDakshPuwzUo4ymtQSmJWzlMbSjKiqKqODzsU5qSvcHovwUlvFqv1l/f9YXBsOs4mqbCECIxlQ4ZakVZoHsd6qhCVZ6oFCAdxjsiBc4m2GZNEzVYHWzCYi3wNrQWN61V2/oAeyGI44TlomKxWoVBMbEBpxZnCdWtC24OBkvsHDs7Qy66MyJShIPR3pAqfsl6vW6BoghgyG8NVbdyiA3TtNFmeiG2nqKewELTTkO3A8JbEKOkaF8HwnAPgA8giWjTJd+mvQW1sAcspmVQRSQxdcXl2VPWjwtkk+Gl5uN1jFA5u5GnEQl5liNVzcV0xvNH57zzzj1quyJVYRhLydbmzG80zNcGsa4xiVoECYB3kqoGH6WsippVXSCrhi4lTRQR5zucjxe8drePa6fLQ9fdhTai3hyL1nIM1+pTJd5BI6rQho4qHj074aMP55SrJLC/zga5iA2vYUTwnbae1qg/DAsZL3BKMSkNL2vLsglZZ8FuzdLIkC4oW223a4GSaplSjwiMX9WQxBqt2uER77HSobwjWF2H4T2tDM5JfvLQcnJ2wa99ZZ+v3d7Frit82x4P+CsMSDrCtSG8b/XCIb1KiIYgNfBs3Ce2OuHtvzcOB59ngK8KC7b2akES4FsWWm7PsUK08hTJRr97fWDTebeVzsjtdOemdmorvU3whbouj9gAWz6/7aKVODha6zgHPhRWW69hb5HC0et1SXLNeH7JoqxApUH+ZBu8s6F4ueZ/vVneXVms/UU/5r+0fGBljbPEUUykY5SMUJGjtjVKQFEVaK0wrqaua5rGUJaWqjE01hErwbIsuDu8S1k65pdzulmKjiXrwrAuShprcN5tY9eNCTHFcRyTJDFN09D4hqJYMkgGpHFKEuXoTHB+dkm3mzEY9rGNYzWrmS8XmNhSOyhXlqObMexbfO2QSjJbTMGBzhVxN8Y0NVVp8VkUEgybmk/uPyCRHfaTXU5/esozcUG1bvDpE3buDXjzrTfIUoUSFVYKklxiZMVSVMQyxc0NdiTYudNH15qdqsuyLMJxBy4W54xPxty8fQMSwXhxQdZNuZgu6fc7qG7E5dkZMi555yvv8OzRCcvZlNI1iLFktDsijmB2csliWZDe7dH0BYWqWM5nJIMEmQmSRtPRHS6mlygJGs359BKvHCfLS+6+9zrVZIampEBQFTOkEdRZyotPnpLnCTqJqRwM85y6WbKzm1MWi3bYTzBbzomSlEGa4ownShIq54iTCK0lTV2GBFDdDhIrA5FgXa+J4oTKGZarFbN6ThLBSO8yGU+YTsZB7mM9k9kEOpZq1aD6MYlOMUqQigTtI/YPbrBcTDHOoJKYPJYU64qVhfvvf8iD5UPe/MZ73O0dIb1B9zSnJy+Jopw8j5nNFnSPh8i+4XJ5ju5k7KUxLx9OsZnCVyWdTspofxeztizNnP7bI0brIdViRak6NJGnm3dJhpqdo5ucPH9BkkQoIYiiiLII0qG6qFCx5vbuLWpTMbq9w8Huzl+JDV6tV+tnYX1hMKwlqDjGGEcjarR0eKWJOvC9+7/H6SdrvnPn29y8dwubKlLhkF6Cb0jSBGskQnqsr3AiDDc1zuKaFhBJqEyFFeCIGE9W0Iigb5UW2gQma224IUlDY8Kwk8AyGvRZlo7UGNZFBT5nVq1YTKeADlZBUlArj7Cq1TQGUmnjF4sImsUNZgjT+zIEKujAhsmW/Q0tUnmFEgC2TV4AF9hu0f5bblBFAC/OC4gNiUsopKJaLWmezsmiLgtrqArBKEuI+jlCtilXHQE+Rhsoy4ZYChrXWn+5IAfRup1ElnKbRNS+Mc6HcI6QpmoxNMyqBLksiFVFVgnyGFQSo31ENMhYlTWmCqbsVkhiKWkweCVDWlbVIJMsWB0BIlaYFqhFIqJmwScvnvLxTytsEQaJJBHGGqxpmUER0v8aEybMnRH4SNP4BovhvLQ8XUHTHmNJCwrbhLhrihaED64FVlztt/Jhp007Ee+lwosmgFIhwrCNEGGSxIvAkON5Plf89vfPeTk3/No7O8S1x3iDkEF2IWwAkMLGGFHg6iok+wnXFg2SzUDaBijKDfu6uf7gc3HkG2Z/68271eeKkMi1cSeh1Rt7gn+tlNufv9LBCxQKt9GNB5VHsIoSolXrtN680EYot+yr/wtxyJ62wGu14O31773AyzZMRYSELm8dw/6QOPG8PJ9Tl1Xgw0UTigYbpuEBvG3Z7fZcOG9pTMPncG/bIdj6J3PFpNtNnK0zVA0kecyyMVyOZ6yWU+J8j7PTC1KV4IynblZUbfCNqStMLYgTxeUYRqOGnaMMGeXMxhf094bkucLWNTKNKMoV1jTEcY5MQvGnXEI1r6mdI9URuyLnYDBgbRrSvM9suSDppgz2umQorK7pZB2iSPL0xRmXFw2v3TpCrz0//cMn5HsZx0d7UEHjatblitHhAXMzwyOpx0uq1YI80gz6I+aTNbe+dswbX7uJdQKtc549O2HQS9CiYTItWMYr8jzBK8Xp4zEnFye89totbuwfYpZL1qaijGJUEtHNc4xrGF+umE8aZheWxYun7O4tmF2G+Om4pzm5uGA8WSJqx82DET9Yv49cSqp1Q9JJIBU8PXlA3hsym1Yc7A+JlePH//aP6dzpciO7xfRyTP2moZ8OOJ08pXJrqDw4QZorzKpmcnbOs8aTlA2FdURZzqA/Ynx+wfmzE/aOd6ldQ1wLaiqk7fL8/inPXz5hdDgErRmqlPF8xe7eDqv1JarbJe54+kmHi6JEeU+kJVXT4KuKtWmYj4MjQzVbg3J4I3G1IRIpCM2JOGfQGRDpIdOzcxbnY+x+j3G1YHkx5158lyaHfDdBJwP8QDM7e8HLF6f0Bz2iQlAlAt3RfPK9T/ngg/v0O312h31kXmPrAi1TDm8cg09YnVWovkIsoagMWI9IFjTdYXDPKArWkcFqhzUNk/MlK7VmN9tlxZxKTyAqiEe7KOXxWnG5OMdLw3K+Js4UhdesmoK8m6KEop8MsaLE14a6WnK6eBW68Wr97K4vDIZto5GJRXmLc1BrmFZTpj8+59fe+y7/8vd/F9UveXr5kL34kHgvg3b4AglC1+E26xXeSmpnArPmws3QBxcsKmtYzotgwC5jvAjpXxu2CO+3N8qQ3BRhCsMwT6m1weCYrCu6t/ZotGWxWlM3HqVDxK1sozQ37W3YhFEEvaNs2WLgiunagIJNW3kzNCS2eWNcgc6wNtZVAZwE71FaJtjjt5PvzhssEKcpUit8o1FGYJ1kb5QiB44ki3Ek6NjR1JD4hMZUmNphrSCK2+GxjX7UBaN3pQMLatuoYilEcPDwDi2CNKVer9jvden3ohCzapb4VBHrhNs3+1w8PEf4W9RlhUwitAjenNJqhFQoUSJaPa1xEuENmsAUNhIePH/J/R+vsSan8Q4pFIUtESICKWmsxRGqIYfAWYJ1krFYqXlaOU7Xpg27aBn4lpzcMq5+w/RfHYPPATkCU2pbLXrUulYE6YjcAivnPLGQOOuIZdCuq7TPH3y45NllxW9+ecBxmoSY46YMr2M27KugMU3r8gA62jDQbDWmAQxfyRXwV/KEzbWyuY6uu0xcwfqrBLZwfQZ5gRSbQAex1cFvYn910HbgW19eLVVg4GkDIK5rkj93zK70zJvPm0RinUVHCmNrvA9hAs56lIywNrgWDAYdVGw4vyioTOvd3ALvEM7RpsBtPjueNuHMt1r8wOYLCTiuvJu9x7W65A27LgHfBlAkSnFRrJBzh1tXpNEQMy1IKkV/kFLZFXmS4JKIeulolKKUoISniBu6uYKiIReCr92+Q+VhPJvgGkdHKTr5HoUqqC2UTuFMzeHeiHfeuEPioNvvsfvaLmerBc3aImdTMuGxacrF1BPnmqgRLNw5edxHK8WXv9EnyzSLszl33zjg5GLOo9MT9o4GsHRcXKw4Pf+E2sNyuWK1XnJ85wbJoMPLFxfkwyGn0zFJ4rBGUdWXJL2Yab2gE2VcXqypihVNU4LUSB2jZUq1rLm/fEQ6zKkXK0xtmZfrMJxmY5aLJYNun9fvHNHLOpyfnjLod+jtDjk7mTI5nyG1J0kj1suCVAzod2Ncx7FcrVhPFlQrqNWSrOuoqDg7XZOlKdXZmju/cYvx4wuayyWnswtm8wrV18SpQqM43hly4mNGao+bd46Zz+bsxBFJ3EE4TzdXSOupFjXOe0pR0tvtkmLIVESxkjz70SVOex6bNXG/y3pZkiQpxf0TosQjnaauK7rdLoe7I05OXlKXBlnDctXQ7Q+YLGbYyJKmXWIV0dvPGGU5sUyoTMNidYEcJuT0mCxWNDju3LtFFdVcTqdoHSFjSfFoyaNVxa2vHjMc9YmbPrqCyeyEr37jLf7Gd36V7AiEhqfPTriZDun0clSWsaoLotTRoR8IqdpjqpJiOccqT363RzWWyMLS132q8xJTzijrkpeXc9ayoZekDLIRvvSUYkmiGqywaLoYaVjMFsznFdbXzPoxEknaT5HW0Rvusj4ZYy4u4Nv/LUDh1Xq1/pquLwyGzz494c7Xb1O5Au8kkZek6wV7e32aWvN3//E/ZLGaUCxKZucv6cavEw/SEEFpLTKKABW0p7JlngiSCi/AOI91nqKxLJcluNCu8t6DCtPeV2C4besKifA2RAknMTpOMVaxXMzZK+akKofGIqzAqggwSHHVeoXrAOAv7/P1RK+wNsNF10DDFq34llG7Npi0QW60AMbLFljLloUDpMApjVQatCTuGqwGX0dk/RTR8XipkaKNfY4SvBFIbYkjRdFO41+1sdvhHhH8g5Fq61/LFjSGgUThDDu9mEFHIVXNqqzCcFRhIYHh7gFnn50xPy/pH3SD73PswccBzAqJav1hpRIo1cobPEjleXJ+wWcfrsDkWOFRPqK2Fqk1xobix7XabGODv68XFkSM0Z6TwvByDbWQAbx7f3XsaTXcAq5iLdqksb9wLoOw4kr7GljQ9oxeG2703lPLlvV0nkh7hAhxuc8uHf/iz2f87a/0eG2UgEuCGX2rlw7gNgSt1O2QovUe1bLDW42vuBqQ2wDbkOT1+WLqc2vDnMJ2eO26vZl35nPX6UZ3vDkQUgaf2801YNuBxI0v8ab1v9UFh1dh0/bYSCPC9WzbQTkRpCJuc05CJ6jTiVDaM5kWIZAiioNEyIdQjPB+wUbP4bE2+EVDGG7b+B77VvTsCN0Y377/JnbDt9IURPAodzhW64qPf/o+b9y5ha0rBrkn15Jut4dOBPOFpV7XmLpCxBZfFmRxjhOCnR1FHNdcLlf8xt/7OsIr1kvHfL6mtmu0ismSnDjyNKuaqmyorKdWkt0bA5JuQlEZpk8nIfnLG7I4Q1qLrTzLsymXiymvv3YLfymohhPQhsvLMUII8jThcjpmfhl+5xUnC5bVkt7uLuiM9fkl3jmyOGH64oLJ6YT+/gC/mjM5G1PYgn5vhPOeXi/DG8dsskBYT5qEhEVvPKKoGSQdipXFCZg8f86qqch7PaST1HWNjiSj7oA40RhfsWrARCEQaXk5RzeCRCuyfow1jtmswMcRkoookkSJwjtJfzfHmIYKhS/WuIWh0YLDO3uoTJH0BcN0n6lNyPE8OXlG2XeoFKbrJeupZ3z+HJUYnp6dcPD6PreHN8lXwR9Y5Y44jqnXHm89/TTD1YLujR7F4pK+TLFOouM+l89e4ExN7Dw+yxgOR+haMugfUZuKaT1j53BEnmToboooJS8/PWfsJKNOj4PhDmeTGaVbsUw1h90BLz96yXg9Z76siPo51pf0B0POXrzg4mxCd9BlNZljdM3hzVuURcXTR48wwnCYQq5jfKZIbg9JlKJolszHJQu7Qq4V44sxdd0wLiYcHI9YLRuSTkZlGjqpJFc9nhfn7OiMeBiTDfs0Zh1i6qXjYP8Gi4djinpJvaMpdhOol3TyIcJr/NJxWj6nFh4lFE5YqqIAW/HkoyfEdzpknRh/+pJ7d25hXjT/739HvVqv1l/z9YXB8OTxU15795hUxZBIsk6Criv6x0MuJnN6IqJ/dITpOVaRoTgf0xndIpcpmc45vZiExCflgAitIqxrgqbSBweAom5YrWuaxqGEDBoG0QYs+CvLMOevdLpeSGzj6Pc76Fghq5jlsuDGeEKeCBANeIfSLUjzm5v8X2Rzr9/8w9dbdk5cgSa40hNfB8Ibhm0DiAGuUgHktVcPLNjmOaZ105CooC1GYqVHJR3IMlS8Dl6jKoImQUcJVVUFpseFKFUp9ecA+HUvWN8CyM3UvlIqSBWkRAlJZdXWWSPuxOAC+yeUpNvJibsKjyJSGi8jimJFnKsA3qIoMPtCIbwkUqB8SmEKls2Kp/cn1CbFyAblNLU3hIIo2JUZ70BLvGU7XCZ8sPS5aODpao0TEdqpkI63ZVDDX0F7DF62Y1W+ZWn9NbaVFjhv5AYugEEVqc/57G6vCU+IbPUu+Lp6h8KgRcL5TPC7fzrmH/7yMTdyhasNWlhMyKILRvwCtJRtel4bliGv59ZdtfiBrSPB5vHPuUdcY4evf309Rvyv+pnt49e0xZvr1vm2N+GugO7n2OaNrKMt5MI83KbYuJJfhG1oNce+ASfp93OENEwnayySNspqy0CLjY7btV0XHwJC3EZWIgX4qyhx33aMXFsweNey495jWzbe4/HSY4zDYOkuJcXzGUfHfboCVB4zni45Px1jbE2sOpjKoZQkVglCOl5cXLI76jJ+fsl4UoZ4Y6CqC2RHMT4vMbKk5w2J8GSjHHyKXVekeZeJWdGtBEmUcPetPRJjaaxn7TxSeV6cvmDndp9RmTLcH1IvFlw+n5AOu1ycLukNc04uL1nNHYe3R9w8POLFkxNq61kvahbrS7QFQcpyPKfb61BZQx5VjOdr5pMVeZqyLKaAI248WZKjjMK7hrowxEhcDAc39tEIxudj8ryH8mAvLykWU/r9PlmSIJRGOqgXa1QnpyHECKdxGBy1smTQyUlVhE41fVFSrR1KRsxWE9JuByUkZWlolg2FL4lsimoiOkozezznxd5zyrpi9fI5vWHGzK8RiWf6ckEkc0RSsX+why6OWNxfsDqd8/GzFRfHU770c++S7EjWlwXVCn7y0w/ovbODW1hW45rpszklNbdu3EDOS0ztiZB0fUqiNfOLJQsu6Y1ylkuBXdScnp4Q7/eIlGClSvaHIy4Wa1xpmUUrolowPhkjxg1FY/D7mhcXY2ztWZxPSJYFqllxvi5I44RMd0lqSVMGaaEZVChjufxsgm0aLvIzvvyV95g9nVG4FfV+n/PPZpxcnHFw75A9EaEryfPHJxRmgV1UVLWhXhcYW7F3cwdTCSb1jK/9wjcYmhRjLb39HJE32HmDGdUMxJD+Iuf+/Y959vxjkmFEHHeZj1e4lcQ3JUoJisLT3xsyG5+T94fEnZz0UrF6viDeK5l0Y6Ik5dV6tX5W1xcGw1/9h9+mTgTSa9bFgoWd4YeaSTFFdj1zPUVXgkqXlDVMzYwPf/CMHn3euv0me4cj5sUsxI36IHFwjWnZnuAcUFQ1ZVmHlnnrZ8omCMBtwAXbv733EGnqehHiOKWiaRzLdU1ZpSgiJitDWYNOajSCWMU4ajaD7FsibBuHe9WU3rSzpQyAzTmPvza4fx1Ob4aWvACU3OpC1UbvqQKjtxmxE5KQVCXAq9DmlUoT46ilR0uBICaWDZXRyCQK+kwcOhbYxoDRkOq2Dd3uSQuIdRBhfh4UtsBYybiNZjYkedCUei+Dl6aoiWRE4Nocy6LG+wqphiQyRRhLsVqTdQTEGucVzjVoPcCZEiErLA2fPZlQrBVSgWtSBA2qBb7StHpX0cYzu9bOyHs0kkpJTuYrGqGRviHWAmvllkHcTCVe6UdbCQtt691fAUsp5dbHduvMYILd2+cijVuJgvUKbI3eFiceLyNCDEjNRen47T94wf/wt+7S0w3WJlulgWhZboQAewWCt+C37SpsAKi49v6b9Vf5/7q/rMK5tt1XXQprPy+V2Eh8/LX3cm4zBOb/yvfasM+b7eZzQ5huy+Y677F1g3CeNE3o9ROM94wvCpwPw3zW2ECyt9u1Ad2yLVp8q0O+GpZri07fxnC7q4LOuyuAbJ3d6rBdG3iDc0gJt2/e4HJ5wdm6os4ybsWv4dyMXrfHycsX9HY7yI5iuShoGkOv22Ggc4pFgUw0PrK4zLFaFBBHjGcLlk1BGil2e/vESlIswpDUxfmEbFdhfUWUGvbu7VGuxqwiTaw0ZxenoGB2OUdGKVmccPr8hHwQc/PuDuPpnFt3d7GFIY2GvH4743w643y2QKQCMfWcPDmj28uJ+xEZgmS3A0qQiBiBJ41zdm7uUDYW4yvSTNLtZgyHfbQQiCjGlo7VxRyJwCwdy7okTTtksWalDAc3dhFOEkcqOEwkYD1EUYowgmpdUXlBLUPK4ru7BygtEUq3nxlLbDwXk5rnM4e1EA0deXdAqRYc+BGjgxElMw729inHcPZwTQdHRw9YvSwYdVKaUcTx7gH7B7tMxitOJpd0Rppbt25xd3KXR0+fMT1f8qff+1P2d3tELqKqHNoo6o8qPljfZ+/uHgc7fczCUE3qMOQbC3rHHXZvj4iMRDwXyEEEiQJZkuzH7KRDhIXVzOBLxenTc4xwREmEXCsu52OGowwveixenGFOZvTyHjapiWWfWincuiUVYo3vQOYjKhGxo3OMccgkI5lWNCc1yX6fy6en1LZGnHmWa8HTxy/o5pqnH3yG/PIdJuslhXE0UtKVkm6SEEUpWSelLAyNNRwPR6Rlw6KpuHFwyCc/ecK6LpEWlD6jP+xjDTTFil6UY888ZVWQKUXazaE3AO/ZG0iaomS4dxvlQQ88Fk287uHFivq5Ie7Xf/mX0Kv1av2MrC8Mhn/wZ3+AsQKzDr66WlgKB9pF4A3KS5AD8DVeOXKbkpDinWMZLej3umgV4VwYkvHessGJxlrmZcmqCNGlSiqMawhhqQrVguFwk6eduVJIDwmSoqrQpwv+s3e/zHzVEAnopxVv/MqXiZM+CkPqM6Se42TVhgL8ZSZ4m9YGXMHkAAZUQK/468BkC2Y2TJ29YmfxnwNJbGQd4YkIgn5z7SxeqWApFmuktCSRQKagoihM+DYh3ksKkDq4FAjT0DQ1NmsQIuU687gZ3HPOA24LjtgwdCLsh5AaL+NWQ9ywWo5ROoeyIe7GKJWR6j62arYey3neQUc1q2ZMhafxEbHQGNeAlAi5ZHI2ZXJaQrePWJZob7FaYxsXhvhEhHABnNptkRNs6irpGNceKwWuduExY68Gx+QmVe3Kqiz87MZf+PPSlr9oESacD05cxoRjITdAuOWGhUVGut0XgWosSjpqr4mkIEJyNnf87vc+4z/7ldfQ0iFsa50nxPbaCGIY8G00srMbJnPz/c/rc/+iXnf7dfv/rdTi2uW3+Uz8Vfu7kVNIWhtCrUL8uQ0s32bo8Epec13iw+f+vXld3zpTSMA7S55IOllC2smYrhZcXC4RIgoDOs4j23Ac2qLCtQEZoZL011637WSYlqEW4br1174fDGAcweM1FDfOGLwN189yNWfY67AoZ1ycXVC/tLz+xiHRzRMenn1KWToW0zlrt6ZYLTF4nBM8X58znRtW8zkKjdSevBKY0rGYrlmvDAtnWKsaIwy7+306owFklrdv3+Txk1M6gy6rqOTx7CmR6JMYRdqJUSLDrSr63RHPnz2k7iVksUaeS3p5B+lArGqWxZJBt0e5alg7w/L5A1bCc3Cwz75t6CYZnTxl2OtQV2FYsLQFKo5ZLNZUucQnFevVmsZpnK8o10u8FazqNY236FRjKweNwFQ15bzE1g5TQ+McKlVBpmI8IpbEiSLLYpJEh9Aia2hqj4wV53YKRUgrs96SZykmFrgdgYxhfHGJ9DC3U+JOQnaQUZRnlIXjxfqSwWifu7LPumkomoJESKblmmgoma9mrNYF66Jg5Vb0swEvl5dI1WDSGrOsSKTCNg1KJhA1HNw7At/Qq2NwnvNyQXfYCVr52mFLT2091f0zotZfvR5fspeNKGrFen5BIT27nQPqaUncg734kItyha8Kevspy5cl63WFKAryNGfcrFDPlqzqGt3T9JMhy1VNoyyLWYOKBb3X7qEXBXZRoXodhKwZ3O4jpUbYmuePT5DCM7x5wHx8CWXNebEkko6zj04p65puppC6S+VMsO9MYkQusQ4aX2NtxPlkgkoiZj+9T7WqsGvLWT1jdxFRsMKiyIZdRFyT6YyilDSiodvPmE0nqCjDuJJkTyHKhmVT00t6VGcFDTXDG0PSbof8VQLdq/UzvL4wGK6fB9mCVglxnJDEEZmWKBmhI0hEglOKNNKk3ZSmMTgBWRqTZgnz9ZIkjUOkYxtQIQk+mEbAuijapLFgR6baIAgJLQX7+eS4TQtXqQTdG3IUdbh1I8KqcPM1VU2sw9ey6zBOEAkd3t9dj6C9UjpsfU/Z/JvtezohEEptgYjfpGyx3Z0tQ7vZzK3LQYughWgdh1tNL94xnoxRaw9Co9KYws+CbEKbAO6UwgjXpu/Z9pe5wzclTVWGOFjT2sLJ8PqbQSwdBd/MLRBuhwc3x05IAU2DU6E2SJIMGo/RYS9jNJ1hSmELbGOQcRwiZ7UkVR2EjDA6CUNaokEqqLzh9GSBrBzWleS7O8wuLhGVQSDxToI0CBfa8IG5DZpxJwQLB0ZshiR9G/Mscd4Eln3D+l67Ni2+vU42IRJiK0txzgUPabFxSGhPdsvWC3GlQw46CxuAuJPB9xZJYzyoII2pao81DT95Dq8/mPAL9/o0bsPai9C+l/pKF9zKJFRrfweBwZXba+U6kG3/J646DRsnic2A2YYRvx4acz2w47oEIzCqVzr7zWO0sp9Ncbbtjly7XP1WSSTYWHaI9kGBoJ+n7O91QSsuJ3Mm0wIl4pDS59gea7exYGtnBDZM/SYGHO8R3uHbwVwpFV60zK8jRC47SxOyuZHCt9HdwTVERIrlesV8PUX5mmo5YzVfM1+uUJXnsw/v82w85cnjUyInyXsZVW1QXpOKGOlrKhMkQ1GWMK5mGCW5cbPHzbsHZDJmMl7xwf0X/OD7jyiKNcoLvvbu67x79xb+wnL+cBy0o6sS0ZN88zvvIpdTVqsKV5Q4oZm8WFJOzpFxhNCKtJ8hhUU6xWy+IO/ldHsZ/ShlcjmjlhFzd87gaMDBnT5a1pzWC2arJS9PT4mjBGcV55czrGtIleblizG1gTSL0EJgKoutHZ04xooGpWPSNCWPI6zzxEqGaHgP68LgLSFW2rS/LqRD+hCB7K0L0iLvkTJiuS5wrkEpQtiOcTipUF7gmxDEQ+TY7Q1Jo0/41je/xMsXM+JBTJyfc3Rzh9MnZ9TC8MaNO5z89Dm7r+/hns+Z72b0haZcFRwObvLip6fc+tpt6vEKF+WIaUWucor5mu5eRrMo6Ox1UIWlO+qxGq/Yy3KmpxPyG33K8zXxjSFiUkBHwtijjzqkdY7aVfT397iYLuiOBlyUaw7ffo35eMkwVfRnO5yev+Ttr77F8vmS/t0h0yfnpIOE48MBJw8vyPcHnF/MGO3v8Pzjl/TfGrA3k0yeLtBdTbS29Pt9xvefMHxnn+LRnGXHsz8YcvLyOX2dsjypkCNN78xTp5b9nRHFkzHxzR7qomFmDQdvHbB6sGQ5XzM5OyW5NWC00rx8dsrdL93i7NGU4Zs7dDUc6T7CWy5erOi/NaJ8PkN3FV2dYS9nDG7H+JOCSEoOD/qUT6fIXky6l5E+nKNGHYaFo2pC4V4/vsAfjL4IVHi1Xq2/lusLg+E7t95GKUWcRuTdFB2FuN8NCBStlZfAoyKJkCmu9QCtqorYJUgRtKbWmPZuG2IhZ+uCqjFEMqJ2LfskZHAZaO/UDo/yfpt2FeCeJIpitBpi0+CaIESQJlhrkc5iRQzS4l2JVhFSmlaCwRYFb278WwaVAA63UblcGf2LLcHagpT2GVJKhG9dKjxXLOD1VnTLQIe+t8J6Q2UbZmdj+rsCkcegYpyHWCgm8wWDQYL1FiXBxYHJVEIgpAmA30WI1m2DNq46gI5r27zRf7absWnRCzw0TRhmkhalJLpN1GuqmriT0BnmvHx6yY3j28Q4ECEUOFKKSHiEjjF4MCUygtl8zXxpUFGKM4Z6OibKUypfE1UWLz11+/7SS6xr29xKYrynMB7fgtQgf7BgHV4ohBJb0BsqjQ2YDK4lGyaRtlBRbUGD30Rc0A5nBc2pakNR3MZGzINABcmIlKhwUaBU2M6iNNTGEHuDUAl/dH/Ma/spvSQ4URhjQrtfBpBxnf28/reUV0D4+uPbbWFTtLSXzUZ+sykK/8Jn8/+TF68jDH1e1wEDSKG2Q5zbwnB7jbYWbq222DtwzgR5hQif6TzvEqeap2djFkuLECp89lCbT0tge7Ht51m116BrdyMMGArvwQZXCqUVwbMCGlvihENLjUHgfYPwDTXhMyC9p3YSKRyTx+foKbz7ldeoqoL+nQ7Fas7g4DYXy095/PiU450DNII0j+hkGd1OTpQZdKyoqppnk4rxuODBx09ZV3D/Y4+OJHmWYaoG2zgsEuc0SgmOb+9xcHPIm+/cQgjJ5ekUs9ScPjql+LBECBgMBhwN3iQf5VR3CqQo6Xb6CJHgTB3a1Z0etrbEWoNyOGkpa4UVMBDwH//kPv/l/+X3UYmjLh112dDUTQCfPgwj7h/soLVhuXSY2uFKTZYpur0UmQMiwkuLqy2VUDRlgXE1cdohkp4kCfaMTQM6VeR5SieJUIkjQlM4R1PVRCJCSoWLJSPZR1iLMBIvJThFIxvSWOGqGu1icJbbx3dANty+8xpZNiMb5ERrD0VNbRJmTnB42CV/4y52P6J34wbnyxnvvH6LP//JJ4xu9yhWUwavpfxS/0uMmwrRNERJgls22NRhVpbsuEO0gCbz2MMBvie489ohK10RDw+YZmt2b+zwonrB3ddf5+nkCXdf3+X5+ILhvdvMf1ySDiKyLMFkFcVHj3nEBb/+d34TigWjow5x4ym6BTfeO6C+eMLtnz8m6mh2DnfIPvDEd7r01jH1Dc/Xf/ld/vi/uc/OuwPUy5J51PDm268zTxZ85Ve/ytMPHrFzZ58dr+ke98kWl/h9za2393j8kzNuvtknzno8nk147Ttv8OSHnxENU974+oj5RcHR/g5n5pLjd15H/wC6h33yl4LxYsre119n8ZMJvfeO6MUVZVpz+0s7nD4+Ze+dG8SFpMk9o6910e+fEu9kHB0f8OInT8ju7ZL4jItnZ/S/eYh5UOE7EjUYMSlOebVerZ/V9cXB8Hu7tLdOrLEgQOoYSWg5CwHWBKBknEPL1u4LhVYtII4jokSAtbhIU1rHfF2xXKzBymBmjL2azt9ohFsY53xInQuRtBsNqG1ZqDCsgvftgJ0I0gIZhtQkEV40rRQiBCaILdt2pb8MWGIDHsX2faWSXB+i81tAKZDI7VCTuwZ+ZctuWq7As2iBfGDwBLaB8cWSx6s1Ve3RJDjvsHXwLTU2uD5oHYCNlgLpg97Xmxrhc7wLWyGQ1zx3N/T0lb56A77UBow5C94Sq4jgYeUwgm38sakbsihnPX3G7HJCr3cQvIRRGLNGNguUVThVI6yh8THPTmYIEYOQRFEA/nZdoLOQBhVV4LXANBa8Q0tFZSxoSWNsmBKPoxCi4Rq2KNYHWy0RqKgtdSla6QztQFZgk30rU9gA3PA4bIBjYJI3CYab4xPY/FbbLQLQ2NivVXVF09QgIoIJQ8GzqeaPPprymz93RFWucU2DjmNc0CPg0Fxpb9uzcg0Af44V3lx1m8f8tajidts2GqHrcPevkldsXCa49nrXNcPOuStde/v62wKpBbsOED5cr4lWxHFG3dRUJqinK+N4eTphPi8QIr5i3LfX9hWDDUEmct0SbqPddk4R+PcaoT3WGoyp0B5oHF4LsI7YgbMSoaHxQUa13xtw/ugRv/HNn+PocIf0RodiMUMrOF/3GPV7/Pb/8UNOFmtqt8QpTVaDGlsq61hXFapuOB0b5rM1QgjyKKGTeHAK5TX1okJqCSgi1xAnHZyrGXV7aOewviFKBvRGKeoo4q1vvE0c5VRISjsl6fRJrEYUimYtWdEw6udI1WNZJHTTDtZJGm/bY2LQa4OMFPs3dsjuf8bs5Rmd3T2cAd/GSDttw7AonsvTS5yKkEiSKKKu11gjWZQx2BrlQnGm8FSNIEGHAs/OQdU01qKcolESrT06SkGUOBt+jyRxTlmtkIlAkkFhIZZb2YqOwzC0xeEqz6HqQ6z5rX/wXVYv54xeP0BKQy0aBl1BOoxp5oJbb9xCX06RvZRlck4/T6hrQ9YHb6H2DUkUE6Ua7QSFXVNJi6wb0mGC9ZJsmLNu1pRViVc6JAoqidRxIGm8xGWSWHX5N9/7Hnq35vhbt2lqhYgVzka4skBYkH3FYNjl4uScn/9bv4z/gz9HdzzDd/aIvELmMetiTK5kkJnYGoRHYuj2JTZ2vPbzt3l09gi9J/BxBMqFP7Jm72CXxcmUaF8TD3JsLuneGFFrx1tfvsMnnz4gejsnixQvppd87dbb2OdPWNdneB8zPjvn8PXXkKc1nTd2GP7wBVqXjIYJxfKc/a/f4uI/nLH+isNZmE7HHN3qUzyeEn9lSPxYUrk56ShifXJB8p0hu/1dTh6cMPx2TE9FjO8/4fDuPvqBYb5YcfzmLqc/vuTT6owmKXm1Xq2f1fXFE+halwGtrjxtnQnhBkolATgKi1YRsGHhHMYZaCNRjW3QPsE5g3UwKQpmixXWgBa69RZW7Y25NfTnCnQ679vQi/aGKzZtY99GJvvt0I3wYZrdSxe4Jg+WGk1rXvq5dvr1qfwrMPs5PaVzV8AMtqle+KvEsE3rerN9YtOODz9w9XPetzHDHllb7u4csWNOeFGNmS1maKFp1pK4G7XRuyEVKIkkwhkkgkp4isWcjtwJgHnLAEucCEBQyQCE3TbO9treiSCTUJvUMcDjKGoQKgBFKQWdXsZrbxyT5ilNbRGJQgtwjScSCqUMvl6ho5Rx6SlEnyRxGFdirAtMnvewLtFJSuEahHEBiLYkudaa2gNKkyuFS2PU6mpY40oh0DLg4trw3NYj7foZ49o5uDppW+bz2rlvUSa0fOYmnS78QPDQ9d5TV3VwInE1XmhqNELADx/OOd5N2c89MmpojEVowHq8tFfvvT0/4XwIIT/fcdgUKrQDpRsw2R4A0coL/kog3L7L51wh2i6Ga0/vlbvIFWC+PkC36YqEWkHgrCXWijjS9LpZGIR0MS/Px4CnqBtcZdEqCZ9T//n3hvD+24FGAuvttjIOC3i8Na0e2GMah7EeLVOsdxgFXlRIXVN5hdGCuKoZoTja2WN/f0h9Z0CWdWgomF6cESeSYuXpqA7/+9/5J/zev/yPJLqL8w2mUUjpsE4Qk9ARgrm3xFoyiCKMEigRZFoyFhjfBF29kyih8TrGOs/hcJe7N24Sk7BaF3i7QtoY3QgmRcWQjHVt+Oj+U3b3+tx94zYyVshsj6NBF1NX1E1DmobPg3GOsiohEizcCtlJMb7m2eWM7z/6jNpFmNUc6Tb+5hosJHiMt1itwNQYBXZlsEJhtSItGmIhMdZhtCWSMXv9jF/5ynv84X/8gJlZ86XbN/jSrTfJgD//4AkPlhNSETFdNQipqLxjYeboRFOv1ihXYrRHF8EFJ5MR0cKjO5qv9l9jEq35n/7P/vv84f/z+9zeG/HRixl5Llk3jovFkgPbCwVP19HTKb0qJqokq9mKW28dsXq5Ju7nXF4uwbRJli5CmJTxyQUcJGBBZRFyZqB2LBcloxsD7LhGZm3gkA+Fg7ENaRbz/r/7kJc/esDf+Me/giZGGkftLa4yWONYlg29dkbBSokdOHwMzaKmGheUXc1sPKa/N8TXESrP8LVCCYVNJV4muCYkyxkLtgIrwNSew50RncEQbTuY+451bahKRxJ5siyhqBbERynZgxgB7OQpF6sGcyRQdFg1Ai1hedGweNthCsF8csnOazdZPJ6Q7/c5e/KUve84OnlOOVvQ2etx8eKM4isdvBE0xpL3e9TjmtHNXZbP51wslxy8voP40RmLdUn37h4Xj16iBxmDG/s8/uAl3e/0ePTsnEdPzplEa16tV+tndX1hMLxhGK3z2y61VCq0Ub3HO9tGE9sWdIRWvZYhbllEm7Y2CCVZlyXLdUFdO4QTeBnYV64Bgw1T61q3gS0zK0QIwNrefGXLHm8iD8J7hGGrAGKNC21FqdWWpRItOroOUjbvex0Xfw6w+Kv3hQAyWkffNk44ACAvNnIEdS2mNgCvAOJBOM9o1CdR+2TTCcnuiE+eXxDZwEQtjaF2EV5FSILThBdgAIOjWK1a8N2woYTtBgBeQ71C0B5b8Na1SWQeXAtORGDBhdDEwqIjHQC+gCiJkUlM7S1lbeh2Mpyzwf1CaCo/Q3iJjjWuqLBrg3SeKG79ZYs6MKwWGuuI8gRT1LjGbVlPiQgDkUoTS43VutW10upO3XY//qLOFh9cBbbWbJtrZ7v3bT3iRSvjac8nQdcaks2Cznd7TkU7viUUUofrwliLaosMbwwukkjvmNbwwaMV/+A7dyl12ko6CBUFFiH0dlu3vsD+8wB4g0k3YH0L1DeMtSSIb9v93RYCW3FvYFs3Q3Obq9ZtnnMNkG+s3jYF4PXrGMC7cAAkgjyNGQ46KBWKzbph+xmsG0MUtRryjc0a/tr7i+12BKnFht1uHzMhKMR4EToEQpEKifUGY2ukAoHh7OKMi4sZYu64Odrly1+/x82jAdYbOv1DzsZnrCtDJrtkSYzTNaLr+K9+9/f4vX/6x+Rpn7pxeK/RUYJUDV0p+Qe/8F3+xnf+Dv/V/+13uP/8Y/JOSlf3uCyWjM0KaRUpmr1Bn37WIYtTBr2M48ND3rh7i5vHQ1SW40xFXazxSBZlwfPJGXKUsZqdQQmx7/Dks0ecL+acFwVWWZarFa7yVJVhuVhRFg1FWSN80N7apqSqHLaBuqhJY4l1ITBHSEllmlAAtVWGaghuOkTESY9MaDIPvb0u/51f+zYf/IePmcmKXtTl5t0j3nr3Jjf1DtPlOd23OyznF6wx/Pf+8a/y/OmUr7/7Jp/+yRPUXofp4ymTakUqNR9+9pz9nQ4PHj3nvV94GzMteP3nbnOTfT4tn/HL3/4SH3x8H7UbsxhK8m5CnMQoY5muV8EbPU4pz9ZEuxGpjsj6Md4oFrXB5zFSVORJn+l0QZInxIkI6Z1acb5cc+O1PnbdoFXEkoIsjmnKBicE2kuE1hhbk2qJK0B0NH5q+Pg//ICv/Pw7dDq74QNng1uRE4Y4ypASFosxTRnY58aEsCeVRHS6Ozhv6OY7qMiTipgkDlaKRbWgQwxS46UjjWKwigZPgqd2DXII87NTRsfvooTESUkswE1X5DsD5i/m+L6iF3UoywK9m9FMJnjd0I/7rFYNN798m9l/+JD55JLOIGX66ISj79yj+WlDfJQR1QnOwuDmiOK0QN87RD56QVNbsr0B5WJJ93jA+ZNz3DH0doaMH4zxX9uj1x8y/mTCelBQrNf84E9/zKA/Il/BxaMJR3f2qaeC5clLXq1X62d1fXEw7A1404ZmKLx1WOuRMrTctrdg7xEyWDcprfG2CYlS3m71mk7BYrnClhblFV54jLNIe2W4vwGOG1ZTtgNIfnuPFdDG0AbEdAWMpQyuDl4KsAohDFIJjBV4fQWCNwzhZrtbKmu7rsDJBgRcxS9vgUwrW1AqSC+AcCzaaFo20/PtNobQgDANr7wiTjtY06WZKtI4I+sqorWktgGkVqULQ2eElpvzQd9nRMiP10JSw3Y/Ajfst2lzbDTRBNeEDQMopUQKQRIrilVBFAe3AeNAC0EcRTSNwdaWVMcI6zCmRrkE5yHXESvpKauSfr6H9ZZ6NUPUZaudDlIHpSTSCSpsaNnWjs7ukMnlGFObLRD0ArwIg1F2a7V1fVAusI9ci16++s41pwVx/Uhc4S8ZsH+4sbb4ULaUs2+LH9lKBIKU2qCVIlYhMc0Jh0AS/Bks0hmsUwgND0/X1LXHxSagSSuxOmiO/6Ln8/Vrx7Y3ZCEEUaRRWiM8WG+3LPBGUmCMCfIWrkkqXBsyIgOgZFt0hdCPbdElxLU/bK9/766Ky+1nAPDW0u2ljEYdpPQIHNZ43MbazFqSKAn75EK7Xki13a/PSUDa/Q9WfuBd8A3HgRYw6HSIpUM0S7RdcnjUpylzPnh5xvv3P2V1tuLrh2/ypW+/y+47Q84vH6LzlCTuYLQkyQTaK6I4hnXF+ekTFs2C7knJf3r7a1wuoZOkOCIm6wXT6pxaV/zmP/r7/PJvfpfjL+/zp7/zL7n55Vv0jgc8/PNnnD8YYyJJMkwYHXaJlKWXJWTdmP7RAZ29IcgKGsn8smDn5j6LouGHf/AJu90dYp+wHs/49jff4yDrcPY4Ir90fPa9z/jh6XPqAURWIJzAiHCuEC07L0DjsFJhPXgdsawNUSWRTtNNM4ZpTDfSpHFEaWtUlnD74JDbR3vsHfQZHozQVrCarum9lTMYZMTDDh0dgRbYXUH2Vk7x/Rmf/vF9pqJkWcL+62v2395lcG/Il7sxDDTxt48ZL2eM9g75xosLbhzf5IMf/IQ3vnTA+KKif9SnnFuOZh3KoiIaambPL8gzTRqlNN6go5RPPvsx77z9BqUxLKKSnXTIKqpRBzmRj+n4mGZZIrqKKEsomwk+lkhiOp0uNBKtUiJjqZxFutApbIyhEZ5IakpbErWdOqU1jXA4I/j+935INhB89Te/xaUp8BJqrbDG4WXBdPGS5WyGPtrFyoimXENd49ceZxqSJEX6nGzX0cSOaAlRlkHtiIlIogyTChpVsabErBqK1RLpHcWqQO/tIZ1GdVO81NTOkw46TMsZh7lCNJaGmmjQoV5WaK9pFgVLvyTrd7icvEC+LslVxvisYWe0g/8RTFYFeS+hbip2d0csH884eOcWJ/efI7sNw3xIuWjYGwyYPZ+gvybovezTzAz5UY/TH52xfG/J8KDD9P4KuxvTL1OmTwp6fy9n9MaQBw8fcuvn3+LmuaXSn++8vVqv1s/S+sJgWEcxXiisNSAlzjXtTc7hsUSxRgiBtYEFcoitp2mSxjjraEyNiiRFbSjLCmGDE4IXAhWpEF2wGfbyGwZaIQgDcVcaz6vp+CB68C07LLdMYrBvk0QypjEVAEKolkmEDaq+rtncaJJFi6ACgyi2+tNNkME2Xvb69rYt9o1Vl0dsk72891eRZy2UkUJgpEPrmEaCcg1ZIkCDNw1SRgjV7pMD4wW1lwglMNZjhaNcFtgmTOKDbsMnAju+8WUVLeu7AV1bVju4tRHpmFoavA1T4rIUKK3IOymNbKhoQHmU8uSpIhMakpiEhqKrKa1AWIvRlrIskV6itcDVDcJrMq2DO4MBUXvKpqGcT8k6OY1ZgvMBNEtFnKb4luXfSE42g3RXm37lmLAB9kECe8WYbo55+3REa7226W4gaGUv4drCGjYjmaItEpomaNeNFFgfihjnQxKeUaCtBmmQSjIrPOPJnL3ddiCMUBxKG9yaN2D4etKbFKrtKoRuw8YjeAPkt7684cIFcWUvuHmeEKBk+J4NbZtwzbS6erlJOhTXGeJrYSztEOLmwIUtDwlmo2EHj6FuGpI0JU5ixpNx2C8BxtZoldA0NR6P1mm7LW77PrL9bDjvgqsJV8VAnBuGKZjxQ8rzC8xqDc5z8JV3iRJDeT7lJke8+Ss3+fIv3iHpeh68/4ym9PibMfNqgTINSZYjvEfSYK3lB//mT6gnY968t8s7v/E2nZtfpjvoEO/c4fnzMeMXY/7V9/+E//oH/4Sf1n/Ar/z8d/n7/4t/THFxzrwZ882Dr2Dx2LLGmQZnPf2dISKKqXyNMyuK6SXWONKsS6c/oLGOTx+94OXFnHe+/mXK5ZRb+0PeevsWs2LG68ev8d5vvcMv/Sdf58Pf/ZT/8p//ez6MLmlSj3QSYyzCCWzliFVMLhIGccZhp88wjxnsdHnzxi28bji6c8hot0e/16EoK8bTOSQxKvXU2pJ3UuqqYrS3B16QGpjelKyJES5EXM8/WPPR+x8jBhop9zk08A/+9i+hkpq8m1PWlnFTsCsGnC+W9Pq7NKZBpxpva3zfk3dGnJw+Y5hn/NmPP+L4nSPmFwUHh3vUD6A/6tDUYQh3/GSJaRzHbx5z8eGYxaRgOQcvBPkwxowEN984RqNJ0whhBIuXc0bvjPBWs4pLsl6MTxxRltLrxagoJu/0iCIJzhCLiLm3UBmauuL8rKFeVZw/ueDRRw/4+mu7PH/+CDUaEnlN5mPA4WqFFB1in1FqQaZzlrNzor0BejfBuII4jrBSUZZznk3GvHZ4FzexyFyzrAxZ0VBUJXO5oG96oCN00qGfZJzYmmVdU6xKpHLEQuCrNTs7HU5OTkIyp9KY0lKqhsmi5O7uDToPdlnPanYPu+gfe2qnODg+4JOTJzSvH5L2ezz77JJvvnOL6cmS0b0eT354Rv+4QK4di8kl+28f8OL+Y/h6D61g6Rqy/Zz5dEry+pCdfo/Fp5fk79yl81SzrJe88Ru3Mb+vuXh8zu633qb/cMD8ck76Vo+j1Ssw/Gr97K4vDIa990RR+MWNC+DQCghsqUYQYY1pAYtESYGtQ/tKIdBJxLJcU1aWi1lBYyROCoQiBC3YBmdt8BqtLb3eALNNsAqgwXmHt+2ttvVQ9T7ofw0O2UbQCq22oQfWOXxrt1ab4IvqzSq05tmQweF9ItUOXODBhbS24F7g2khbAf4qUCNEAYdhP4Fio62Q3uO8wQZIvJUwCB+iZyWBfZQOlPC4KAvhFTIl7Svs1JJ5gbAlIlfIWoK1ZFnGql5jnUcoTb1asat7LBNN48B6QSQUWklAIpQjJHqFITNra5AWKUTQZnsQwpMNe1t5SrwfIbwFIYl8RK0bVtqzM8qxAnSSQQbaJwz3NGe+RipH3XichSxJsHWDiiSmCZIZ64IW1kvIYo2xFls1jIYjposZ1gm0jLCRxkhPJkIhEEbQQgqhtwJk0NluBuQgFDje2yCB2UhTuJLYhMFFtqykaK9HiyeOFcYZnJSheIAWfIeiaANCVRKBVBhjcU4ivaARHuGC+0HtHOdLy5EIRZtQIGrw7Uv47fZcWb/JVrqxYXuFB9tYpFZIJdrrLzDr3ov2nNqrdL02xAXvMMKBE0gn8caBopXFi1aO03ZJ2mMRiGERLNBE8PLGhC5Hv6cYdVOcDIWd8Y4HLz7hj37yPtVC8Bs//+v4dUkmYkxbQAlh24HHcKmH86MQhGOLVwhlaKxHi5TJ+AXrR58g+hlJuSaKElSao7xnPV+AKDjc7/Hzv/ZVwDGdzDl/dsnR3QNiNaA0axIsKk6pyhUX6xmmrCkv5vzqL/0mUZGQpilW1Tz5+Jzh4YTueEqmFMcDzy/fvs1HP434s+99zOznG/7WPwJBSWw9Oo4RxiG1x2lHIhWr9WWIlHcSKSK8kiS9BO8sUoA1Bc8fvaCjc+rxEoRk78YOdVMxHAzROqYcL1inNb/wP/8Ob/3dr/C/+9/8n3hZFPTijFG3S6wFt28dcufeHbpdTW/YJ+kK0mGHwpTIKMY6EwgJU9DsWaJGcTQb4WKFMCBdQpykrMs5zjQonaJ6ml73BvtRsE2MY4V5veLnfuUt5hdrTk+n3Hj3AK1THjx5QH9vhCwbkkignMe6JZ3RIWcnE3r9HsuyZGcwonIGowTCCArXcHiwx+WTz7j5xl3eX35EZzdFiwwtJTuDAdGJ5Ky84O1v3ePi4YLalFA5luuSS1WxXp+TLjIOR13ujA7xXpAPEyYXKyIUZt2wLBuE1kS9Gh0nmKTA1yV7R3uU64YsjbH1Ch0LhIup1xWPf/Qpd3sZvQK6RqH1kEp4vG0wBpqmJumFWPFiVdH1HdaLGudKoiamKDW9vsYZR6L73CTm5Cen2E6N9gm7gwGxlyxWFXmS0DscED0/pcYQd6FaFcSRplgZarmmM+pivEN3Uspxw7paYwvHclLgraIz86i3JTeOjzibnDM83KVxiovJGXdfP0A8fsG8WLMzTLl4fMns62GWoYkUu6OM8nLBzuGI589fEn1rQPJpxspWpMOc9dM5nTuHqDNJWazY+9JNHv7ZQ9Z3S0Y3jjj/6CNOj3rsHXWZfzLm6e0Lbv/iEc9/+Izet3c5OI7/fwYar9ar9f/v6wuD4Q1nJYWkaQxpkuJtg3cG6yxSWETLBgdbKIUXgqapQrs2Dgljk/mKcm1wonVF8CFgQTqJxRNJBbHGmAYRX9MJe40SAifCUITzDiUVChlarlIEyzRaWzMVtT/rEK1dlQYGSQaRby3SwoSREIFxlVJQW7dtSSdJ0u61u9JYChko1VYnvdlfKQP4C+1O0bLTVyle7dHDWh8AtfdoBREduv2aJkmJMegsoxENWgiUqajWGY1zeC9QQhFpjVUOox11XZL3cpzwVCbok7VowzlUG5kM4INkwvuktZVrAbzYsK8hZnVDNwoXgJNGkRGTpQndvMNkNcPZBu013nk6eY9ImnB9CBPiobVHXRucwguU9RvaEeuBTYfBNgx3hoznBch4q4NUUhC1shPXymVat7T2WrwCl4EV9+2D1/7p2e7/dsBRBJwoW0HuxlJNtAxqAKuB2bTOUpaGKI5QURSY3PY/G140dA1E6DTM1xVeaGQUByDvguTHtZVT0LxvBgDBbuzcNvtBy97adrDMNWipkV5sLci8UO33bHtdh6AS5SzGO4z0LePswrFzJgQmSA84IimwtMyxC9KPTaSiUopRX9LtZfjUM6+XPHjxjNXjCZ/92XMef/aCp9NLfuub3yWRbVBDHpH6GGd8cJiBsH8OCPUo0oUC1TjaAsyia8G7995ht58h1obpfMr7H39KsYZfO3yPvduH7KUdThbn6E6CijMe/PA5//r3v0+vEyFFhJaa3cM99MpSrgtu7h1ysHvEm994F5sqGm9QSLqnt0ALdKpwpYFY8PPv9nn3osCUf4uyniKLBhVF6DjCiwiZSNarJZ04ByUJuSkCoTymqRG1xRQGnYbhwWIFadTh9S8fo5KSZyfP2BncxguHcp7KFcgI8rrHkx8/QnY1//B/9OvgI+JuQhpH6ETjdISOIowraWpLJWpMqcOMQ1HjnWS41+ef/Yt/z8dnn3HjMOPn3nidw7feJbYDtBZYW5HkXVKd4qSnaRo6cYpSHpc0NLVBximVLeke93FZRp4pnp+8QGtBlnYZzy4Y9PqYShBHQ7ABPA17HS4XK27s3aBYLtjbyZnOCnaHHZwJ2vZYRazcmq/e/SoPP31EL3E43fDiyZjRxxfcfOuAZ8uP2T8+Rs9h/fAJq/MCu1CcP1sx22so33rB6I5g1OlxcjInz6EolnivOH98zsHNG/z5n/wEfWA4UvvojsbUFVUZhrVVpFCV4+knL6jmCw53c8xxyu1vf5PnL04QCTRKIeIU51LqJiSrSieoC0e1Nhg8Wmb8q3/xb8he8/ydb/0nDAZ9fCK52c14cPKAdbTG9zQilhy9dszji8fBgrAyVMsZIhXYsUOkMaJR1FWoFueXK0YHPXKbgtLITFMWBW985Q7PP/BUVU12KPBPJP7IMNAZ56djXnt3n57qcnZ6wet3DlH3JS9enPFG74jyYkbvjSNOP31E9+0h+rFnVYzp3eyyvFjROd7HfrSmuWVI+jGr8xX2Xo/d0QHzZwv27444+GzE5P6Mzr0jshcjzv9syu5vdhiOcsYvLjl+b/+LwoVX69X6a7e+ODNsg9Y2SiKcc9R1HRisFoUY45BKoiIdWqkyaBm10LiqwVpPWRiqdXPVvm1tnoRUSOmp6zVlbRgOhjgbbjxax3gLYDHCBv1mC3rD3wrpQyCCcc22n25NiGc11uCcQThITEQ/GSKTKKAl1z5PKKSSOG9JXGBtVdtu9t5tQZW19soxYuPQ4H1r9yXaAbzNIFIAS9bZK3BiwRgT0si8JE40QiiiSLAeJTRrw6Dfx2Q1vhRIU2DqXZw3GCMw7XS18D5MxdsKIYMnbiJDpLO67jAgQsiBoNUxo/Beb4MYNs4XG8YwlAcigOdWqpDEEc5ZIhVY0OV6xajTwVpPr7PDoCexlUVlnkjFEFmcUNTWoZFID15YFLTBCb6VozjqpsQZQ9zrYXyCscHySwJSBvuzjVzA4VqpRwDvn7MSI7D027TmVoZy3ZFXivaP3ERkuyudLTIMbG2Aq9akSUpVV6xWa4wNdn0bVnozxCZ8OI8q0hRFDZshPOfRym8Bs2qlEME/uGWIldxq0b1zKKW3+nfnDKqVVyilcM7iWxcR0RYGEnBiE1EcgatB+RDDbVUb4ezRkSBqB/AaqTHGoy1AhLcFWZKS5yk7NwaszRkfPv2YH/74Iz75w/tEU8Wv/+2/zXd/7VfZu/sJJ//171FcLtjdHfKyWvHos/uISNDpDdnr7KLq8PmwnuCm0TigRDmJEIqqqUiU5eD2ECkLnlVL3vzabW41N9l77R7dfg910EUqhxQwIKHwnqyf0VlnfC35OQadiO5on0k5QyQNu8MOe6M9RkdD6EisVvgmIpEJIrIMjiOwCiU87BicFag4IztO8ApWixxlDQgZzpSxlE1JV6WIKEZnKetiibKGZl2jhaf2AlyErRw2kQineOveG0Q9zYOPH1JfVHTe6TObVTTFkjiP8XFC3OnSkx3sYk3n9h6LoiTrp+SdDOUkeMNksaRaFvR7Q1QcvNllpILo3UvOHp8gXyjuzd9jIBTx0S4DMSAapERC0yiJwWOKEh95vJdkiaYogr2hpCJNFes6RsuIbuIplzXFuqHbydAFCKlJ8pS1XbK7O6C8LMijLplMub13m9HBiOefLTkY7vP46ZjBjQGiMnQGOetZheolCAcfPXjAN79yj//i//B/55u/8nW+9c5X+fEfvM/zs+/T+7tvsp+8zXvHNxge3kLNb/NHv/87jGf3uf/inM5rGcPsBtZBNujg1opOmtDrDhn2dvnTH7+Pf9Ny8O4+1lnUqkEnCVJqfCJwa8eL9z/lbq9PIgz63h5rVwX2FYFvDMI6fO2obYXFUlQ1WZThlKSTZaxezvjk3z7krb95TPSLUeieOI9NI5qVRDpD5AXr2jDQMY4I0ZIIxtTE2lHOSoxuSEXEcr2iM0iYzifkexF5t0cxm9HpZ5xPlhjp0XnMYjlnZ+8G4uNLKlEwOuzx+MkZi7eXdA5Txi8WiNdiRp0+558uaH4JzMc17q4nFR18Izg4Omb2+JzD27dZ3F/ilCDvDZi9nDA6PMD8eMbyaE3nzoDVT6cUt0p23zli/OefMnutZnS3x+SHS14+mPLal47gjx8wv/WKGX61fnbXFwbDaSTDL2Uh6GcdtNKUZRHs0JDEkUZHmsYZEB4FeC8o45oyh0VTMK5nIGK0d8iyQqjA1iocRliq8Tlu2VAag480IZUtpFLpqAUOOJCBiWqqmsa3bWEc3trtcI5vk8dErLHe4pwnphN0tXGbzCYcUoVDYAm2btrrz2uSpWzb860DgRAgJFKzhVrBiQFU3Npf2SDVEEKiWx/k8ESPNXGQSAiB1BJnDZFOGBykTB6N6aRwoQqs1EilqFaGOImoakdRNTgRBkmMXeFNQ13U6GGEtFfUqZBhWA+/8cndqFg3g2oiWM+x0db67fP8hi314NrI7EhrpIzIOhlNUWLqBCljku6ATl8xeVYSd2PiOMabCqc8lpBWpYDIy8BuOoFwbINBvA/2Rs1ihR+kxDqhrFaoSBJpHUTCm4JDXtN3XwPC2/CQdm18DeCKEdaqZcvxSL9RP2wkA4G13hY4ri3ClCSJY+q6wTZ16Eq07/05mQYgvEEKRRQp8iRGyaAVNsbgffjMCCm2ID2Ia1rXk22XQbQyD0KCnYAkzdBxGs6PdzgvgrODtxjThEFToWhqQ+RCkEaUZcQ6sNN16ijrBct5xWqxYF6tKIVj2BuiG8UwSunvRpyUJ/yT3/6/8vyjMTvxIY9/8Bn/3b/5m7z5P/gSddfww4c/4Z/+y/8Hp88nLJ3jKzcOOfm3f8xv/2//GUu/ROcR/6v/9f+SWDVIH8Iq4jQCmRIRhZAYJHW15oNPf8S6npCsLdZalk+es3/zgOHtI3Zv7sE6+G8HPXlEVc84OXnJt//ON5lfXpDd6OISz6f/9jMe/slD7rz9BiN1xMB1GfT7JJ2UKEmDhrr0TIsz6tJT1zWL+YzVyhC5NS+qC2onyOOEnWyAThJ0lhB5SSJNqJyWICqL1ikdmaF8SppLvLD09of005jLyzHTaE2yE/Pw0ycQRfzab30DIR2jnR2iTBMpRbNagZ2S9jXx3hBpBCOTUHuP7mVUZcX5swukNRzduYPMROvhLYl8jFKKullz++aI4//J3ybb6WBWC4wFrbsYYShnS+I8o65LdBTSHk1c82T+hOVsRekdZbFgvVhR64jx5SVHhwPeOnwHLxQHN2+xnhuGwx6i8QgXEecJy/IlN+7cYffwBlkcM31xweHXXqcTjajWD+kOFc+fvaTX7fL4+VPuvvUG73/wkGTYZzn1/Op7v8CX33ibk5dLpB6yW7/Lsz85o/i5B3z77/5N9qsDhIz41uF3ef6Hd/jT97/PcrLkx+4POTj8MvHoHWbjMVnfcXwwojIFX/nKl/iDj/6U5RslfRUj0hykhdoxiPv869//d1Ct2NvPUP0BNh3hlELGmqo2xFmOUAotQqJkpBWuslhqokRy9viMH/zB73Pnbsx/+ut/C9F4fKQQ1kDTINae2hq0iijrhjhPMJWgMCb474sI70tUI6lNTZJEPH3yjNd6B9B4al/SHebMzqcc3dvn5ME5tfGYsqERFeamotftsZis2TvcRf9YcTabcfj6AS+/d0pRNRzc2+XZBxMuyoLdTofZkzN27h4yn1zSu71L8yMo7zZ0O4MgvduLWT4cU+7W9AY9po+X9N7aJ027XD6ac/e9A/Z/usvJg0t23zpm+GmPhz95zuhWj4PdEaefzb4oXHi1Xq2/dusLg+EzP6YuKpyHSEaYOlhwWdFQ1yVyBSrSVKbCGIMG4ihHCM3F6QWFbTh/cUFGgosVkQgeqEVVIJXECt+2JvvMy0t8WWNMEwb3pEK0LLJvW8bOWZwx7VR9GzQQBItBZ+w92oMVHusUFk9RZJT7HQbdbDtHhrfIwN0h3JU9l231tNsksI1Wk7a1HWjLYFUmQCi5BUpShjG2bU7e1ntYoKLwWlIEr2EvwXtNfzSiOn1O43pY74h1TBcQoy5J5lnMaox12HbyzVmPt5a6qEh28+BxKYM0wgNKyzaKeTNwJbegShBo0o32WcBVfHB7jDea2WbT1q+hN+hxWc5xRqOyiNorOnnKWjcEtwvbspXB+k7JwNgH2ajY6nJVCzq10mAssY4praMz6pJ2UtbrRbiZ++CLqyPdpgvKMCzXJtSFYxrQrWj1uBs2mXB6QnyvCDKajeWJbM+L9w7rBdY6oihq3RgkQjiUCky/NwZ97fx5JE6GVDfpfbAOdA5nJU1Zkccq6NIjj7FgaktV12itieK4vXYdjQ0eIFpFSBWKMwDhBbGQLJdLunmCSnTQ49YWEXkcCmdBW0sUg6OmtA1F5Zku1tj1gtPlBT/84M948tljrO8Qq5QsHXCve4vpJ08Z7Q44/tJdpvtw+uFLRsWQO4tDXn/nPW4cHyO++23S4yEPTp/z0Q/u889/+18xGU/Z29/jX/7hv+Hg7SG/9p//Jk9eXPIHP/2MxWpOJiNG/RznLHGqsb4hjmK0iECFz8SnL2f863/7h+xrRzZIOTwcMR1X5HmfqnjCiw8/5au/+G2skSHAREAzXpLriNPpYy4ulmTLho6X/NKt7/Dt/W+jI5gt5jRLj146Ts8eknUyLi4u2T844Cd/+ucc7RyxXKzZGRyyePECMUjxH8wZdUasihnNnqSRc8p61Q6e5sgsZr1a8OWvvovThvReDwV0O31OX75k8uwlL4sFHz96zA9/8qf8+q/+HKsHl9zc2+ff/Ksn7Bzscv5yxs7+kNV8zdvvvoMQ0M17FOV5cAHwht39XV5+/D5lXSB0Qtbp8fDyMd1uhyjLSU1GUc+ZVwsGOgkysrphdbJESo1AsCwfsqhL3r3xDS6eX3BZnmFxpLrPP/9X/w50RC9LqOslZVHjG3CuIfWS2TxinVfcPj4I4Tm6oD/YZXGxZv/GHon2/PDpZ4zu7jBbPKXJduh0ejx+ep/z/ozDb+yhxw0XFwU3Xu+wqA29aUH9ZMndd/rcPd7j5lt9ls2Ujks5vn0L+bUjzj6dUD5+yMufPmHwlR7Jy4qTy2cMfu2I3/rq32L60QXv/+Gf8vJbP+bW3WNOX5wzvDsMA6kR7N3r8+XlG8xeTBjcPcYbRxQpok7Gk/ef8PynD3lrP6cvPXzpDiuX8einH7NzuIfOjojEBFMbnPVokbG2Y8pCUGcSOdP83v/5d2jEgm//2i/S3T+gWa2pE0PjK9IkIc0082VJxycUzZKVy5CFQecJuwd7zMoVw9GIjjpnOa2oscgyITnuYj89xxhJJ9G8mFT4TJInimWxpNsdUM3XWFUz2h3y6OUjDr6acTDc4dnDE+7+wg0OB3s8/OiEd955jeEnA8ZPJ9z5yltc/PAx4hdHqDOPESWdwwHV6YLu7g7np2M6Xz9keNFnPSvZeW2I/mDNfHpG/lqH+UdzJotz9r6+x/zPF0xvz9h5a8jpH004+/iM/r3XiL4/+f8OXbxar9Zfo/WFwfD3/uU/B4KkAAveiZZldAjnoAl8X+sIi28arIBIZWgRk476CONYFlOcaRDetaJChW31sMpC5QuSboTzDb6pcM4E1Kx0sHTzgZnVKkKKVjPqfdgVEQBcCOEI0/VKgZcaJxxpkyBsjGuTCJQIA3ahP74ZxgugUG1Yx5ZB3fjuhsAHt9VHGxsS3K40rC31yBWDecVXtjIKAR6LlwLpE7wwJMkeu6MOpatJMo8b1yQ+ZVkX+DxCSUekBd4pjPPoJEIoqOqKTHVa4BgAbwhskCCCttR73bptXKXqeWh9ae3nLwgh2hS9Vj4gNCBxxtBLR5xbQVUsSTs3ULLP4UGf6mzGAo/1ddAq45AEAOrbosd5j1AO6WmLBRXsyoRDek+kJctiRZ5n5HmHJElQOgo2ZbZuQf0VG0yr193Yr4mN554U2yMt2+hquWG+N8LjLZG8cfxowfOG/fcOKYL7g25jrUPqYrC+CkOBGzcTgZWKpmn9dE2NtwqRaJI4Io5c6CIIgVJBc++9JAqqD4RSrZ5Yt8VIgxSSTOX4FFS39a9eCYST6FSHFLa6Qgp4eXLB999/n4/uP0RbTbeXc3pyymc/eMCOHtFLPFkcc/utPX7+u29TfvMWk8spfrni5P0Vd157HXFo+Gf//gcULyz/6LV/yI3BHvff/wk/evoJsvK8eXzET72nm/a5/8ef8Dv8LuV//vd5//JjvvrGHX784ZzdnQ5p4lkVBpnotiCLWMwXrMslBsdHf/IAvRqwd9BlX2S4c03aUwzEkLyzQ2fUp5PeYjGfkMYZs2LC6XLOelohl+Hafu+7h2TdGK8F0kc4aclEl0ilSAuHbx8gvONN+SYIyVvfeDvIBYTh7PKS5tM1R/mAX/p7v4COI3Sc4KQnjsKMQW0tdW1J44goCQVSVRU0tgmdo0Zx684tnp5e8OyjJ3z2oxPMM8fLzgnf/cZXubF/k8rW7B7uUfZKOrsJRVnTO9pBCYvTEfkiR0rH7PkJT86fcfr8nOOdYy4mF6RHPR4/eM5r797GuIKbB4d89Gcf4pVHfekOsRbUqkGYgtVizHg9pr44hTji3W9+i6zpsV8ozLjk7HLGveEtDl+7w+JkwmR9STzMyIioveN4f48iXpEOBgyGIybrKTrPMcIjejG9o5TFk3PqtUEgKFZrhqMj8jTjo598xpvv3UN0eqhBh3e+fJN63dDvzti9c8gvDO9ysnzO/u0u/+6/+GMu1mfsvDkk+9brjF5PuXfvFvbikHX5kvnL5+x0XyfTObqp0fsDDvueO5f3+MmP/owPh98jH90hiwTLZknUG5GPYu59421OHj0jVR107nEqxi4b7n//I7JMc6Bi6p2U2VCyWp1wuDcgz7popRhkGVJbhoMhTRH83s8nL0FlVE9OuTydku53OfjyG1BbCl+zK3qUNcS9GI9HuZzl5fT/xd6fxVp25emd2G8NezrzcOd7I+LGzAgySGYyk5lk5VQ5VmbNGqpa6hZUtluyZEBoW/aDDdto9IMNy08GDLUaakkW1FC3qlpDzVVZmVlVOTIzOUWQMTDm6c7jmfe41vLDPvcy1YABllsPVQIXECBABs89d+99z/3Wf33f72Pop5xYiVDSMRgcIBEUOcjIp9luYgrB7PIcd+4/hucUVRmSJAVSlxg9KS21SoN0NKbRqSIOJZPBmHazBZuQMGFueY6H99cZ5WPaK03u3dlFvCSYX6px98k6o4+kBNU6B7tD6p0mw6d95s8vsXtjHTsLAYr+xj6tpTbxw33SuQntpRkOtg6ILkbMzLY5eDjAfqRFd2eeg0d7qLMNup2IrZt7bM1X6T6z+EHlwofrw/UXbn1gMTzeSVFKYFw+nTAqPFQZbBIghEYJVZJYtYeTESo3kAmk51MMBE5qPKlRFVWGzuzUZyslvhcipEJpjfQUeVEArmSpipJtLKY0ASfKsNtRqM3Z91P6zk6rk4UrkVlKTy0DICqCXE+LQoTATCkRcupBFVJN6QtHAS2QqkzdTytDppzgo7avciMgppa+cuAop97OciJcTFmwR0NlppNZh5ym8Et2c65q1DsRs3ZIVIXxEPwipyIVhS0nws4WaCnIXBl8KqwhHkzoiA6IUgwrHFJOURfTieYRGKFsayul4hFmTYn3a3kF02CXnApnqRFCo31Z0joIqFUajAZDmioFXcX3NZ2Ghy3An074j3SpmE52xZSGYC1I5VDCw+YGaQQOH4Ut77dUJKMhCEm9XiUMAuJJjCc1uZnaJX6C7nNcIjEtuJByKmiFKIkb7siewE/4jaclG648DZDqaEJeWhekVAgnjhsGj3BgUspj3/A0QldO20V5P1MLvvLRWpHbDBJLVNUlh1oeTdzLE4fSd16K8BJ9Z1Cq/Lo4gTEFfqPCd177Lj+6dZXLJ07wyz/3V7C55fHuEx5tPELniopfYbk1y4Mf3ycfCyqRor+zS7de48KXP8fZs+fptOskkWRj/ISvv/NN5CZ87PIlZLNNq32Sxqzj3/33v0100OLh9nv8Zvxb/O//d38bnQtu/vZbXDp9jhe6K6yoBbIsw7gu+5uH/Obv/BEb93b52t/9EtXFCpUoZK/3hCROufPGI7Y291labDGjOtjM0u3U+eTl53lxbhVTz1g5MYenfSphgKGcokdRhXGWEjUbjLID3v7Bdc7MnaZ7agY/FMi6R5bY0q9rcqxNcVjGB/vUOrNY4ZXWKC0QLsMUKb5fI07H3H7nOq7nOHn2PI1OhPYUaeFIi4w0jUlNys7eAarwWew0GUWSic65ff0W85U2F85dxApDnFoKK3j6eIcOLc7VF5hdFnzxEy+xeu4Mfj3ADzTWSepzHYTNqYUhJkmRUjFMxgQzIf3dfWZmm9SjOucuXkBYy2l1FoqU1UtLZIVhFE8o/AnLL7YYpxPur19l0ttA+RIvcei8wChb1oMby5P9B5xtn+H1p+9y5YWX0Y+rLCzNk5gJL3zyHJNeRhApst4YG2kyCkaHe7gs5eneLlIpwkpKvd4h7a2TxzmHvQOcJ9jq91AuYLUScu/2fcJujdZil6BSZXCwh9dVGFFQH2mevvM2YbfDoG/oqwkv/KXniIcjnEqYHG5x7cEWnbMLzDcXyXsFDze2mSxFeDMCpRKEgrmTS1S+Os/gf+ix+/YDKh/z2Okb7j5N0N2AuVaLerfFyc92CYMqMtNUcsXtNx4z3OgxOx9QN5LbN0d897XvMn+lyst/61ewYx+jU4KqQtU1arGLrQtGj3t4pkL/YI/x4TaWlGc/+UmKXDJSJct582CXJB8wU2lSadXwpSDNfTI7OZ645wXMturEE4MLHN1KjXEGnZkmvFOgwoBms0Fvd8B8Z45g26MoMnStxv7BGnMrs1SCCpPDgpkTkubjCskwprswT+VahfWNfc6unmLmZpXdjV1mT9eQ9xxr9za4cuksG++sU7nUxj1O6cVDau0Ww+196vNd+mu7FM8pPN9j8HSf9tlVwt2QyeGI9tkug9cOOdjcY+biLOPv9jlY3+PEy8uY73lsv71P9XPVP4u2+HB9uP5CrQ8shqNKF0OKUpY4SygS8MIaUiqkLKe1CodWpYiyUuI1JFp6COkRVOuloDD5MWFBTVFUDokfhNPJr0V6QTmROwp6UbIY3dRTaafpfKaitQyplQi2UgyXgle4gtyVXkxRlJaJrIz3TVmvpUJ9n7k61bPA+5NcyvDbtFhAUrbwWeeQSpRBqONj+fKY/idrgI/9qUyFlZTI6eS2nHg6EBqnI1RYodVoMtNtMtoZI4XG0xn4eorZKluObG6wWY7DwybF1JNZTh3FtMpXTDcoztkpn5bj4NlRCYKbfptTuEJZjCDKiyymU1093aBYaaEw1JsdBvv7ZMkER47WgkY9wMZQjRRFXJYyOCHBE2UVrHXHgb5pGzVIgUJirEIKgdYKM/13uYUiy1hYXKB3cEDvoI8fhJg8P74nR5YOrTVHluyjf6+EwB617LmfuP5uGj5T5aReSokSYtrAN52mT+/+++g5cfw6R+7q0kpTPou5NSA9ckBIDy8IQDhyayjyHN/3ytKZaWX2+zxhN61s1uV9dDAdm2NsQUtJHtx7yB/882/zTmeRj73406zOzZA/OeTW799kiGXhzCzuRcnlF85zYekFbj5+h5prcmA2OchirqUPOXi0xxt//CaTxxlfO/tp/vLf+nl2xC5P373Hs59YgsNN/sZXf45R02PvH+2wubXH1eu3eeHVZ/kvG3+b7skupq6YJBMmyZhA1/jn//Vv8PaPrrOyNEdvf8zB1h7CT3jn6tt8/COf4CNnLxGc0XQaEZXzSwibo1XAaLQPrsUbP3iTG7d3+ejLl9hLxtS8KtWoifMCPBmzOx5w67tv8NK5j+DNRmAKhNTcv3ab+ROn0TVHoBXWKozNaM/MY50oN1rWgiv5yJWgwcbBOm98/y0uzpxm9ZUzoCzCBlghCH1BZgs2+3u4cUHHVfC7DXYHu9x6+xH337nP5156lWfPX8HIEovoREwU1Xn+0ilmO01ev+rTaX6MlZMLIAUFjkmWEIURzlk83ydJEpRW5NaS9mPyYUpVh/idJr7WmNyg/ArJeEijOcN2vMfDvXuk2Yj9rYdsP7hPMRmgUETS0Zit4QV1Yu3j4TAmZOeRYP2f/x5f/pmf4Y2336BX3eXTZz8P/SHvXLvHw+QqUaPJ+ZWLYBQHaxsUrYwz508zejxilIGuS9rVKsnhAZ5TFBNHMjEM9zOe3tug3amzsfYeW5tPqbY19w9uc751kcI5hpOc5kLAmfAyj6+/x0TGOL/H/fd2sXGPSf8AUxiE8aDQPN15zFbHpzmzgpc3uLX9JvNLs0RCU2+2cDqjdmoG1ywDtaZ3wN27O/QHDj/0eFcNsVYT1BzNpUXmz85zdv4U7169RhYZ5kRI6+Iyv/izX+JzGxO8uiYIIvpZHy09shzCIihrjvMRJy+usPX1qzy6c42dw20+9iuf5bmzz7Mx2KIR1rn3oztc+8H3WfzEDKcWT/JofZ2l5SXqYQU3MnhegVKacZHRqjiK3Ry9oqjON3m4+4izJ5cplMdoPMYpQ5Zl1Gc8Ih1x2B/SaXRJtrKSYFOtYEZDNnd6DJop8zJENqDbarP1aJPVk6vMzc7x7u3bzH7xGZaXF9i8sU162VCvhOTjAc3lLjt311l69jT2HhRzCq9apb+2T32xw/7VQ/TsJq0Ls+y8t03cnDB/8QLr9+4xfEHTvThLfGMTc9pw6sV58tczHr27A1/7oIrhw/Xh+ou1PrAYDqpVcgKydMJod592pU1IgF+tYPVUXLoS5wQC3w/BB6k8jJUI7SNUuSs9ykXJ8ry5tHJ6fskHnnp/tfZKfJpQCFHitpwov461JbniSOgIqzDT1i0xFdm2KEW2cFMeMRasIbdli1v5GuV0zk19vkfi8GhS6GBqOSjJGFK8TxMoj+sllqPChvcnlWIqNO00SDh92XKyLEs7hnBgj6hgAiBEqAjPO2CmW+GxOQShSOIUG4ZYk5AXBZ4PnhYYo0i1YNQb4IwtCQTalRNkZ48LTOSUiIEofcaFKb3F5Uj//aKKclDsphsWO0Uj22noS1GYvCxa8ANq1SrpJCMvMrLcoqoedSVpz/rs7YzwdYBxFlMqvFL852ZKiVAIZ1FaYW1ZxiEV+L5HqhRYV9IenOPxw8esrJxEKZ/9wx4C8Dx9LG6llCXhQ5SCWsr3jSDqiBLxE6NkwdEmoZyklR7maajtaCPgBMKp0ud9LKSPZDDHf+z0RMRRsngLa7EC/CgCAbLIsdZQ/KQN5YhEYS2p5wjR5KKEtQWmNJcYTxBIzX6RkpNyYeUUy8vnefPNa3ivfoTm6iIf/cor/Jvf+jq1QY0f/eFV6t05HoaPOdgdsfrZi7z7b67yrW/+kBcvnMfLA16yFyiegS///c+zebjGowe7FC5EF5bOqTNsDrbpbe0QtVosbWl61/eJ5xZ4Whnyr3//jxj3Ytw44eTyIjOdGUTFsfd0g2yc8vTKFq3lRQZDx+XVl+inE4KapF0JOch77NzYRWiFF9WpaQ/ynKXZeWphh/0Hh+zv7LP67EVyneCnKSobIXtjrjz3Inmxjx8n6FqbjILVs5fxqgEiTUmThDxPqVYbFEWMUGV9rhWObJCybyas3brG6Okhrzz3Mq3VOdJkjK8DimmrjpCS/KBg760dBnmf5skai2GbwcGEi+0VfunXvkBwssUoOUTnptzQVSIKmxC0BG/dfpu52VmWz54izww2swSBj/Q0zlh8KUlyh8Ir2ydNgVaOqBYQVuo4qTHpBOE7MikYm5i3rv2A9cfvEQ9j0klMNooRaQLK4VUEUafLwKYMxkOEU4wHHmFnkb7VDPcO+f1vv0a+I/nGf/M9Hr78iFc+8zHakWLnT9d42r/Pe90fc/FrHyfSbca7MUGjz4lzM4j9AVrpko1uDZVGyGQ0xnmaxEj2D/ZBD3nj9afY1GEKQZJn7D19SPfEMmTQexJjlCZrwOGdPbYe3iWLD9FNSaBBSIt1uiy9qIVkmym9w/v4tRkqtQ693gbBzDxaK5T1eXDjDvd2brByqV4OWrKE/T5ERuKF9bKefsdnZ2OP7R8+5r54l/H+hNlqlSAE9UKXpLFN4WImaUKxkeCQOFtDdBrE+Q6FCTjYGeDNwJ133iJORlSWGnzpFz/H+huHEBTE2Yjrf/oj5k50WFm8QG+tYO/JmNmPJ1gnGA76jLyCZqVB76CPiQpMKiiMobe9y3B3wJiMBorh7j7tZoP9gwHOg0bYpH8QM3NW03gvJJ5MaLTa9O4NuXH9Ab1gl5/+zEeIbMb82QWevrvNZm+TExcWCL8esrd1wPLqDHuvDbnz+BFXzl9kcH+XytkmjSd9DrZ2aDTbDJ5s0Lm4Qu/qNmlzyNz5RTauPYFPd6nNRwyfHuCdrtDtNpg8meCd6TK7kfPk6jpLH1+iu9vk6freB5ULH64P11+49WeoYzYl1UFVCYMm1XoTp8CqI/+kQ3mqtD3YaWNcJilcTm4h8AqsLl9Haz2tV5ZoxRTFpiiBnuVrCVVCaUtRJjnqtRJSlt5P8X6drJBlEYKx5t8PuTGdCtspQUGBMW6KQJtODkUZFjsSsf8e9/X4T6ncjbPTxjRxHFQ74tPCkXXi/Wa00n/q3mfeiqkveRpg056Hyx1QVlu7aVNaq6mpR4Jx4lNkOcnYURRQGAiERDpL4Ry5tIwGQ8Sxn3b6S168H4aTUnDkWbZlEwNKq+Pv8yfX0SZDqCPSQgmM9fyIbBiXSDxrqTc77B5sMdeexegawu1TCJ9uO+SOOsTIaNq4NyUvyGmzW3nRp+K8PFEokWblvFVqhSsMCoGvS1Tc/QcPabVbzM7NMuz3KbKcIAiOr/PxVB55POU++o6VECgBzhkkYjo559geIqe7n/fv13Q7JShDeT9hMD5qfTuibxwFKqUUCGfxfF2eFAiHdQZE+ZyUtdJl/badln4YYwiJMLJEBXouw7nSE2wSx2yrxb/83d9m++GYL3/hZ0mGI4LDgt7WAZ502MTx4vxZZGpZvLhId6HJYNinPR9ysLbJl770RUa7I/7u3/07VNs+zsE/+of/jN/5l3/A2UunOXgy5Nkrz6NCj8ebm+xtbFIUKRdm5vnpv/zXmT3V5aC3yejumDt/eodOd4aUjDX2SYYpSijmZlrMz83zjW98h9Zil8N8m6iiiA4En/rEy+hWSN1qXEMilJuyvX209lg+XcNoR6s4weq5E8TZGN+mWJeQu5wwhNxmrN1+ypnz58nSjDiOWZz3GU36qCBiMkyoBj5JPsSkBWGgSyzVeMyN+9dZu/uUs0vn+elPfxlX86btlwpjS4JAQckIb8xEvPqlT7L5YJdb796k1VrEmm2Wnz+DqGp6/R5BEDDJB6TO0Air7O/sMBpMWJ49yexKlyxN0MrHeWpqnTII6SicxWlBXhQk/QF5ltNoNUFLUpNSQYIXEduUSIdsbK9TWfeINho4EYKuIKtjUm+Ezi3j2HD46JDe4YSiCDmx+gwVuUReKHJGpFsDHq73yOsKjxY/+tM1nt4fs3zhBM++colFa/EODY/f3EarQ8Y2I2xYTnS6hF4F6ySjwRBfS8ZmjCtgnAsqUQ076jFyY0JdMsCl0tS8AHeYc5DcxfNgMixIRj1EoKgttjkRnGHn4RMGwwzakmZVoAsPpz2E9tDapzAFw72M3vYDat2QyWhEdt7SnF9l561Nsk3LwUyf2qpidrlKZkKqost797YpFgzkCVm1YKkyRyf2eSQmLFYjRLNCz8YM7zxExLbMWgiJ8i0HgwmT8RZb8R7PrL7Izr1trn7rB8TjITZUhHMz/MG3vke8D1o7Hm68RzUwrH72GRBVCDKavibey1huz1N9WkNMAtKWIO8LvMCjIiTDnT7t5VlmexMO9g5pzDWZDDOWVyvIBwWTvKDSjRjFGanJCJuz5KOEYEYwGhUUqcPPNeN4hKdC2otV6rc6HKwNOf3iCiuLXdaf7LNwpcXSYp3Nd3qkX8tQ+PSHE5pn5nj6+Cmzl32iDUV/75DGYpODO7vUrnRoNNtsf+8+yx9foH5YY+vxGu0z88g7BdnhPs0XGrS+3WD7zj5zz8yzMMw+sFz4cH24/qKtDyyGJ70RMgzwfI/Z+TkkEiMFeWbAgdYaa8EYgVY+EolSgjzLsQaMc3jyyJ9apv/dTwi3I4uBZUoBOB6ZuuOjdXHkbz0+3y+dvKVFVhx7f8vOiCkFwlqO2A5SgjVHFoZpW5ksxfSR7xj+pxPeaSWumyLT+Al279QOcWRFOPo+3LQoAjf9SuL961gSvcTUXqwQ0vx79dAIn1rUoFlzjOMcOQ0IlqYIf8qcFYBCCkcSJ8cTZjstoCiFsMEag/D01MpSXucS9/W+wDv+fqfi1dn3a3RLpq2iWqkw3u/jrEBphxdGOOHIVIta1EEe7uKKnNl6hVroGE6KaUXu9BZOAb+ljeXoPZabBC0lsjBIO63C9hS2KAh8H3B4vsdoOCSOY7qdDs46JpPJT17Sknzhpvdy+nXLKmP3E89WOQE+4g0LpkE+KbBuypOePlr2+Pocie0plm56L9V0c1a6fQQYQ+hrtJIURc5Rn7egnA45U/7/xpjj8o3UFohpIYxVVaTN8DwPX+aIuqbXOySygk+8epHIryLEiLXdA5SnGGUHPPPTF9F5zsbGA+483mJwOMEcCE5fnufEiUV+7e/954QzdSbpmIKEX/ylL/LenTs8fPyY03PPcfJEm4ONLfJ8yMmlFXwCLp2uUV8ICPwEz/NYOblIY6bOyVOneevmu8ycmeGHN28SNTr0sgQ73GVja5vB3h6iH5MeHPJ//Pt/j/MXT5OmBYUZYYoYGYTEWUJYA+PKAGFQZmdxhaUaCfaTbcajhCiLkCJAWsfC0jlULURg2egf8HD7HpeWzjAZDFh7sE57rsPy3CxercJ20eP2tXd48vo9VhZO8FOf/DTdmQbWA2Ed0hUk1uIFHs5afKGx0pGaAuEHLFxYZvHMHDrUNE7WELLkCFc8iSXHExrPQjYeU4wdJ0+eo9aI0GicKukpRgq00vhSYXFkRUHkJLHL8ZohjaBBTI7JE6zL8SqQGkeRTBiMt+hXd2i/fJq5V1Y5XB+w/3iLR09vkIuInnHcfbTLcj0i6zWoLi9y7vQVnv/Ii3z/336TbDjh5Zc+wdMnm1x9dIeRy3CFIN8QLJ1aZqZ6itv3bmDZoFKp011s0jko6L/T44e7P6Z7ap56tUkUlJ/D2kKWQTJKUUqTJx4mLxsplVLIPANvgFMek70hwsQoTyLjAjcZ0dveLG1GbcXyiecYjXpQMQhVKaunkRRxRmEzPD+iLjvkewPGkwkP+++iZJWVTyzSutHl8b171CPNwtws5z/5CZaiZeZ+5wYnnl3k3vcfsCtHzLmcjf4mLc9jJoiIU4/x9zYJO5LwRBUR1lnf28cqGO+nZPuO6ukW46Fi8/ojDvY3SY3FKclkrWDr4dt89tVXePTDx6yEllOvXmD55Am2nhxSqWuee+EcNqiQeTlL5+Y4vLWO8aHVqmFtwvzJJpm2BAScnGuR9nOai3MMtrcwkSIIQ3b3eyx1G4inOVIo6pUKe0lCluXkKTjP0WpWyHdGuGYTWVHMz9Z4sj2kx5CF8y0ev77F7sURs+c7bH5/n43tbc4sLREIQ9CuckrM4gcCb36Gnf0dauc7TNYrDB/2aZ7q0riacfhoQHe1i3fXkm6PqJ6aY7J2wLhl6D7Xpbj2hEFnxNyV1geVCx+uD9dfuPWBxXCOJBIKJfS0GKGs/lVSIqXAD3zCepW4yIknSTmt1BItFZ4ozQJZniMl+L4sW5ytOQ68vX9cXQatrCnDTEejPjkNG8npxPNIyB1PPH9iyuncUYjrJ1UoZQNaUYa6HGVjnrGUQTbkMT/2OOt29FpYMOXfF0Idv6TiiAzhMKb0jJVe0pJTKqaBKyFKsixwXMVcCuypJ0OUQTInQ6QICDzFTDtkc9cgyfCVpJ8ZpCnfo7GiDLbJjCRLyqnilKQxdRiUN1eX9gHnHEVRlB5ZJaZT2+n0V7x/jd4v4ZhOWqc2iSgMgQJX5MhqhHSWSqXK1u4us5UIY3JILF4zotmQjMdlcUVxhL6TEqEdrjAgBIHnkxuLmd4DjUAjMUJjMSilUVM/tivKFkFnDVvbWyzMLzA72+Hg4HB6P0p1KxGlNWIq6qUop7RH36OYwkCUkEjpsMbxk2m8oxMFKcQx5kypqV2CqVB2FoGa7tFcWS4xnVAf2XSyPJuWtIjjv3dUv1wcl8xIpFc+YNIIFCNMAHeLNe6vb/L0W3vce+shr154FgLBQEzwNMRJxkuXXmL02tu8/d23iZo1zKg8+TizeonapToXnj+Dp6FeV4ziMc12SJYJ5ImQ4Zv7TNYs8xdq+JEiqNaZba4gqwKR5WTjglwGxPEBfrXK7/zeN9jK++y89Raj2PDkd3/AfNCgd2eXuUqDSb/HOTnDudWTXDg5z+GLOY/sXXrvrXNq/jxpFjMTaR7u7tBRFd68c42KqLJ4YpaWV2H7YA+vrrmzvcM//if/mq997iucOj3L6mqTbncBd5gTBBEOS3xvTG1gEEsVRGE4/8xlKt0AreF3//iPeOO7b3O2c4rnLz/H4pklGvUIEUpsYaEYYHSAlBLPOYyQZDJGFAonQxAFwgfhK4p4gqpocpMzMCmME4RwDMhw2iFSS7haZSC36VvJJC1wJsMU5eauMIakSHHWkYwnbK9vk2cZo3hCPknI89ISY4zEuIxRluA7j6V2m269w6g15p/+d7+HrYScf+4sJveRPcvdh+ts7g144Rc/gTe0uIWA5155lkf7jwg/HvD5Ux9hubrC0o0OYznG1aosnViAlmZrmPDHv/Wv2Dvs8bHPPsuvnv0s3/6Tb7M/s8bZZ5fpaMno7hP6fo1xkdLpzDLJR1QqPrW5kPONk8RbA7I8ZzDZY3xwgNJjJu6QerNDozrLwcEh/UkfXE6238flDlWdQbY1zcUu9mlEkefYSBF6AaPRkNpME+kHVKOISXxIKJvoGFyS8OQPvg8XnmU9HrK3X2Vjo0q4UmNReRA5Xv35SxA6Vq98hvf+4C327q4x2t3j4688QzRXIx6kNCt13M6A4b1DxrrHYZpxWM35qb/0OVp7Pj0/5+7dG+zt7FMUgpkTTT7+mc+yOLdKreNx6951jA/VdsDDesrdOz9i6dQMuubT+UQdu5WR5DntehVVCxnYrKyONoZEKzxPk7ucEx85ibSadDKhsidID8dEXogZJNBsoDxBUSSEC1Xk05zcWJwnSW1OGFlk4rPzaJe0neLXUrK1CZsb21xaOsdi2CF+klA5N8czl1ZZqnfQnkeS5EyyIdWZVumIW4Kz7iTGShYudIl7GZ4f0PjIKXZv7OCqhrlzp9l7+IRhRaAriuGdLarPzdDpL7B795Dk5doHlQsfrg/XX7j1gcVwU0h8I2lETaQfUq1W0NIidDk9VZ5GVQL2h33G8XjKZw1KgUg5efU9/X7711FoybljG0OJz1IwFYxSiNLDdqTdprpNTsWGPZ7Avo80K22Zbiq2S/ED5ZzTUlY+W8dxnTOutChIWSLE4H3PsJRiGv563+pQis3S6iCnYocpxcDZoizlmE5YSz/ytPRCTieM9n3PMY4SHSbBqhCnfSBF4jE7G6AeTpCZR14UrG1tU4sDWqca5MZii4w8z0nieNrgO53uSoudTlnL61LaQ8q3WkznvQ7J1B87JR1wbGc48nNLjCmn4VIJgoqPyVOc8QmkoN2ZZe1wk9iM8HyBKyxGeFRbmmKtAK3LwKGbBuiOp8NTa8v0PZgpl1gLQS5AKl0SMXKF0nLqNRbH3uC9vT26nRadTofJOCbPy6O78r7b6QmAwk0LQ8R0GixEaZuQotTAakrMQMpymuwcZjrNP/IQH/nHxdEmw/zE9upoeoxEaI8iNzhK4gmyDOA566abj/IkQJJPK6A1phghVAunHVmY8N/+61/nx//2LVZqK5xbvkR3cR49LzAqo1ap8HSjx+HkkLcevsHylVM0Gy3SeIKdAS/ywKXsHjxg+8dP0WEFE+S4DExmUHj4VnPxpc9w6SMWFcDu/ojcJqSTghPVeaSAWFniwZBK0OLe/XeJ3rP82uVfJNCKmaUWTmXUul1MnhDmin4smV9uIVqweXjAD/7wHb71D1/nk598nvD8Ojfv3OSjr3yS/LDHflPQf2OId7nO2s1D3vPXebq9yze++R2e3j7ApZJ/fO1fkGYFnbkmy+eWEGLCK5/+GKdPnmTxpTZCNrEtSx4nOGf5nW/9CQ/fvE1z7PHq5Zc4cfkU1WrE7t4uTw4hPuyxcHaZivKIdMnnFqYAUT6b1ho8XaJihocHDA9H1LttDtbuAYKne4ecWlrm6o0brO+uoaVHkaVkyZgsh3GcE3oCVwRkpiCUGqcs4zTB93xUWta7e7asTkc6fFGWEwklccritQKSkWUSCoajdZI7G/yNT3wZgWY4HDOaDAlmG3z58hdZ29piebnN2v46uQ7oD9Z459/+gLsbOww/d4Enp0fs7g+4e7DOc8unuPn6DxhFkvagQvzokKVWkxv/8h3+yecTdA8e/tE21/QDls93Of3iIrXZOg2vRp4aVF7DZIo0j2l0asyea1MLqxTxWUyWkk16uN6YpJgQnZinHeYMt7ZoNJq0zlYJlc+7Dx/Sc7vkasLnPvUS19+8xyS0uHHMUncBr9LAmjGB9PFsSpru4NclWSXh4k/9FP/2N97jrYdDVs512RwXuEcjYnuTmVMNfNGgaSrka49Ieuvsjdc4dX6Fer3Lk6c7pNaRTDIa3SqduUUaBznRaMzsKcvEHrA7Lrj/o1vs335CKAKMENweDXj03neJ3/5DJocTPqpmeMZr8cfXHvHdP/o2ka/QlYjZMw1OnGmytLxIq93m3IlFmirC63vkMieIfayAFIvvwWjcZ31tl8N6wplLJ9BOc2gn9J/cR6mU8TAlizVn57vUNisMJkMSewCmbCt1GNYeHtBeCWkudzm17bN+a42dTw2Zeb7D1uY2T/fWCZ8RHGjwrGKSFWyuPaKoVvG1IUkzPC1oRTWywqGqBcUuaGWJLs4wGfQ42F3Hn+uiD2NMJaLuNzH3RgSnZ2kOC/o31+Bn/2wC48P14fqLsj6wGF69cLocroaSQmiCYEoZQJCkMc6zjNMRo3iMlgqhKDFpSk8HkSUxoBRlpaooiVjuCC8wtT3YqZDRxJMJQkgqlQrmmCdMKfKmPlSm5IQj4eKmWhssRhYII3HKgDWIvKQMCKfKpjhK37KU5eRPuDIoB+Vk+cgPLITkSFEdF2lwZKU4OnY/ahIrJ5kcs37LN+eYepdd2XRnhABbHE8enQtAVhFG4FyFZrREo/qEtQHkImeylzMRhs5YIlMP7RSeDYmSKk44pPKmjtcCgcK6kiDhXI7NSkydcw5PhSXizJ9WGtspK9fZo33FsfiTQk1b6CTaD8lcTlUKbCbxvAqdmVV277/GyVCDtEirmJ2pcV/u42x4PIAuv3b52oojjJ1AOYmRJRNaCTvd7JQbGj8I8TwQE96ffCPQ2ieepOS5odVqonSdNImJRxOELdCyNCggBFqJ4/uqpZhyqd0x6syTGqOmoU1rMc6hBGUASjiEKMW1+4l76TDHXuGj59oU4GFxQk7n6TnOUpbRKIXEx0qDUw5pwVAgCBCuYP1wna9//Tscvj3ir3/5r9E+U+Xh/jo/+vYjfvzWm7xw+x6rp1fICsODO+uEN6t8/GU40Zml1WoQhRFaSmyREYqQvd4BW2ubbO8cQmH46JUXmF+Yw2DpTw5x0hLpkEYlwlKh3x8zDAZ0Z9pUrSVNc5QoiKzkV//OL1Nv1spgmnEUaYEOVYkukxAVQFEWTq9U6/zyX1vkzDs3aJ5ss3O4Q3t5id/6zjcQnmBvfcjS6RN8/Td+j2atxf7mAePDETVV4eW5WZqtGrk2JKpgp3fA7q1dxuOUh29+g0ozpCCjUg85fXqF0cEhF06dpZ4bvvDMi8ycmENGARWvSuBrwrmAYmQoWjXsAWz29yA3ZJFlfn6WWjVAIMhzh/ImTMZjhoMBC/MncEXGzMoyk/GQS90ZXr99g83tQ8xAEbuYk90ZnvYF9WpIPOjRWm4iR5LMK6ikIT3XY3XlJFs7O3SXujxd26a6WCHeHCKqmjCBp71D5rstRlsJkdBs7u7SmevQqs7wlU99jNZSSO48MmkwQ8OoSHm8vc1QTfjNO7dY7nYwk0PeexLSubBA08u48eA+5/Mct5uj84LDjR1yI9l4usPCKxd54blL+FFIfjChIMDvCKqfv8DLz10kLOoc9nr0b+8waloebF0jqXlUZn0W2lWs7DI0HrujAhEKhMkY6ww977M7OCRI9gjbNahNEFFGWhnSMA26UZ15ZjkcriFmEp55ZZlsa0hOm9MvfJR4b8zu/jrNFU2QzfP4umI322I4nPDj196lf2/Cz7z4Cd55+zri+VnoRTxZ22P8+oB+TyLn+yxWO9y6+YCTVc255VU2Dw9AKWa0hy0E8X5OGqS0222C3LH3+hp3b+zQSwuy/T5C+YyNYz8ruL/VJ765Q0XDZ06f5fLiIuv7A9aSlNmFZSpSlW2CB5aHezH37C2yOKHzQo1f+Ws/w2k1x2QywuRDbGHI8hQRKvafDPje996leakLLzk6fgWjc/pbju4zTTrtkMnTfbbFLv1Rn+3dQ6Kwjh4rbKGI2hHeg4KD/Zhat2D2uQaDd32GO0PCRofR05B7f3yf7f17SD9HhB7p2DLZS8jcBCEgNxAEmlAJpJLoUGAyhacd1necu7TKifpJ6lGV+kqTwNMEqx3S/QGMM6JzHdj+nyM1Plwfrj/f6wOL4fpMk8QkGJdjJznOhuUpvzFoBYUt6PeGpOMMiUL55WRPKFlOLXEUtsDzvLL0ophqWwdKq2Pcl3FlwM1YW4bWTIkKk0KVx+Ic2RfK91USGuTUGwx66h011pR0CmNL79rUFpAbS1YYlFf6jY+CdlaUFIrjANwxrq2cBTohsEe2Xo5wXKJEOjlxLHoR79daWGvK0NbRey+NhQgUCouVEiczlK/JjGMilqGak7iyjOLEiwNcNyHTIRcXXqTbmqe7WKdA4FcCgtBRb53AiQTripJu4QwgSigHFmvMFOdV2lKUJ0BojMmn0/D3gWE/SWkQQpToL1cKfRloTGrwncIoB65gYWmJx5vLpLubKC/BJBM67Rnq0QH9opyEO+NAWKT0AIk1ogy0CTm1wjiULAW5Uh6lw9ug0Me+XqYnB9ZOr6n2EQgG/SFSK6pRRKPRoBgelj7cI4uMs8cedY7DbqXY95RFSceRsdk5yXgUUw19fD217Uyvg5jCtI9tGdNn8GhKrI4KTXJbbr5c+awbW7KgPZ0irEUZjVUaLXKUtfSKmIfXtznBKb74KytMqhP+x29+nQdvPMbva5Zqs2Q3LG9eexflaw6SQ0xesJhHfPwXvkq9G+J0gecBhHQ7Fc7EXZ4+bPL64Cb1+Rq1ExXiMMVmhnZQYTgZoxVUoirjSUGrVsGYMqzTadUxokKWjpGBxZAzHIzQuqw0r0RVbJ5TJAWep/GDCBcohDBgJenY0W7UGN4fUDM1RoN9vjT/SXr7fSrPh4wPh3zlF/5TinjE0slFjITWUpONwQ5Xb9/hte+9zvDJkHqiOHfqAkpKalGNYX9MJaqzu7/B+HbKUmeGZxfn2c92yC5U6NuE5ZU5DA5dUZjE0l7qELsEYR1dOU+cFOjM4/bTBwySIWlmuHT2GX70zg9otLvsDQ8oZgq2t3rsHgzBCEyeYXckvd6A07Mn+NFbb/H82Uv80Xff4qPPXWbr/h4nukvs7a6xl8RcXLjIj67e4vKrAdevvcfqxdPcu/EA/5HHnG7xtLfNL3z0FbKnB4x9wVe/8kXeunWVEUMGcY/W6TZv3LvF1d+/wSvPfpTvfutNLlw4x857W2zs9ynSnLvbuzxuVuhnQ2T4Brk0jAdlqPHm4jatesj60z38R5KaX2Frc5/BxoQCSSbSsibb80kHY8JGRN/Lac5GfP75l+iMuyTJiIkpeHL1ETe/dZ2wZpjrlMHHDEM+GWAyn1atxXI+y8ZoyOWzz/Hg0RucvXIKtTNk0sr5yMUrPNjd4frGQ2w04UFxyOm5BmcvnqZaCTgMHpDOOHqjp9CHfiy4P9nmxtv3uHXvKV/4/Gf4L/6LX2G0FlMrDJMFgar6vPxzn+SFk6d47bff5Or9G7yzscbzy8s8uzjLyHk0RIhXkbSDEDWybA4PSZ1jOM5wNcXs4gwPH93FKofwFXuDEUMEsYMwCNCh5JMLi7w4N8Mgm9DvSJ6ZOc1kLyeXjkrTp59njEcTEBVEaJjcHfFHv/PHfOWznyXYhd52zDgZMy76GBFhY7i8eAV/t+Dw3gg5qxHW0VxYYGd/jO/FFCKjmAxotJvsjcd0L8+z92CXnb0h49Pz1GpN1t95SvMTdWZabVaWVxhuJOy5AU/vP2J9Y52OqpPspzzs7RI2AnThMZn4tGcqhKnkcL+PN1PBGo/B7oTIVzgjCOcjLp17iaZXZWs7Zn9vnZkTLYo4R1dC0tSAMKiZ4M8oLz5cH66/OOsDi+HCWTLPkY5jiiFIG1ANgmkNsWQYj+n3RojCQ2mHJceiUQjEtDmuMBbtgbWCJInL0bC1iEihfUFh8p/AgUHghzigsCWB4qhYA2fLP2JKdLBHns7SB3ocbLKlkJFC4QpAlNO/LDNU9FRWu9JMenQ0LqavZ6z59yqK4f3A1LEgB47NyFOxXfqBS5kkxPv+UihRb0fv15KD1hg7Qaalx3hr7BEFl8lqBbShtmK5/KogLSyisOhqDc+TaOGT5Q5XJBS+A1MAZjr5LP3QzlqMnTa+TY/+C2so8gKlSyRZ+R4FSuipz5WykEROEWRSIJEIWVYg51kZnsltCoXFBZJofpUb96+xqmIqThH6mtPzNd55UGA8haOsUXZTa4pQ5cTZFGbaROfAmWngbfqsTBnQYkp/MNZOJ/alOC7ZwqVv3BaO0WiM73nMdztkowFxnCGEQisPMbXcHBWyHD1fkjLEKUv/C2hxfD2gfB6k0tPJfTH92lNO83QzdDTxLoSFoPQoa6lIbdnGqLwAZ2LyIsEZH19JevEBuSvwKhXWnzyi0VacWGywk21wuJ1Ruyf5X73w83z8M5cIuj5Ga3aebpINCt76zrucPbHClS9dwV/wUMKRTgzjcUIYNVFVha6FXJ6psngm4nf++Ef83g++y9zcLNVmBScdcX9AkqbMLrU5OTOLSjMYNBgnA+ZWZ7l3fwO/gKZqUvGrCOXIbE6W5oRZRhCFWOEjpUYd1WNLDxN61JdCPnKyCSogLQo8V2C0RQgP7UBYQeAJgmrAbjzgrbtX+fpv/5Cr37mH2oFPXHqGr/3iJ5hfmqdSrxJEHsYZ/NBHS8lkJ6PQcLC+SzossLs+evPrzQABAABJREFUb/+rGyXGbO5NensZctYSpR6TSkG8nbA/7NNpNUhywexKm+Ren+7FWa6+exfTkNx76yEzrRbDXp9TcysM9sZ89PwF0iLhU5/9GEFd8+rpywgFHz17CdUo+Hv/2X/C8uIqv/TFnOpcwPbDHWrdOu/dv8vFJ6vc+eYdvvzxl6nkVWZn6vzCr36adJRSuJQXPvMqP/9kne/eucZ3H1zlxz+8xkfOn0f2Jd6mpBl6fObkS5xaOsXZX1ph5dkVNh9v0aq22VrbYrTbo1GZ4/UfvUl3cZk3vncV/1yIZ1J61vGxhbO8dniVz3/6U2w/3cC9pPn42Wf4p1//Q24ebJAnUPQybCjY3zvk67/+PSwp2f8647nVs+iNCYcPRtQJsPuagx3N1oOUCI1y8Fe+8Jcw/Qkv//VPMd/skNmEuZU51h+sUVuI6G0e0JxZQgXw+j9+wp984xaTNOXxtQF//z/9G1z/+j1+98532RDbeJniZ7/0BX7hM7/Aw99/h2t/sk3fd5xaOc1Pf/4LdFZOUFuMubBxgevv3KD7UofMDbi5/h7fuf46xWafr12+QHvZJ9ERNRGSjycMRvsc2AqzlQ6zboYdO2FkM5a9No/iHu9t7ZJ6pXc/Tw251mWdunOcm6vz0fYsvtCMlKSXDlELFU6cnGO8dsB6f8QgTglViK54JEFKlHg8/PY2/+bwu7z65ec5uXgKce2A5eAk86vnmD/doi9G3L95i8NHG2wwJqzVMEPB1qM7gCXUll5qIIzI8pTZyRP2kjFSKH588x26wSyDfp93n7zH0sIc/nKTbG3IzmafelfzUyvP011tke2lfHJ/iPBD1p5scrDfQ857jAcDLjdWke0K29v7qCzn1MmTLC7N0J6dI8ky3r29w5tvX2V9+wGXv3aeVy9/lBnXRkkPlXvHFrcP14frP8Yl/qd4rf9f6+vf+AMXy5T+/h6ir+l05pA1SG2BlYKd/R7puMCzHs4WeIFGKA+kwvf90ospZdm0JaEoChBQZAXVKMIPAqQuJ295XqC1V/qNj6aUUkwnxOLYzyuFJC/ykj9sHMaWQq8UXuKYxGAAlxVAWQG91PZoNwqMzRDCQ6ny+J2pyDkSv2U5gzsuSuCIgIEs7RVTMS1lKSaPKRJHPmZbejbcdNILRxaEclKuVIRzMUVeIJUhjR3ac/jW4dDYApyWpHkKeTkR9RR4gU9hJZ6WGChDjdhjMYwoubcmL6aisqz8LTFfoL0A1DTk5UBNRZ+UGiFc2UInxHSiX75er79NvJewfOECeTZCWo9qrcrDm/+Od//0x1yhx2Lbp7Oi2NnY4bW39hnm1ekmCArnKIzF2lJwm6KkNmRFThpbxpVFxp0ZpPLA5GTS8Cc/uMrB/mTaUljeF9/3qFbLJiSlNEpqHA5b5FRFzuriPHGSc3hwiMKWeDUljzFr2JJk4UkPHYS4WkghLMIJ0qxAi7IYJox8wihke3OXOE7ASZwtTynsVNwb59BKAwWXugF/86/+VVY//zkKZXBGTH3qOUYVJFnK450NBr0ho50JflSlt79DahPysaUbtXh+cZnV0yuItmY8GOCcpBBTS0qrivICjAdFasFYUjNCG4PJLfgVrBljJxNMkbPfP+S963u89b17+Bp2RgfMzMzT2+5TcSGH4x3OPLNC7sFXv/SzDJMDcAmRC1g8vUq1UyHJx5BbhDEoT6GrERQFWk6fJQEoDU6V180V5c+oLYOXRoLQElwGnk+cb/Pu2lO+88a73PvRbUYPJzzbvchPfew5zrywQOtkl9wUOCAMIzgqibE51uSgfaQWVKMKvvDIlCNKHKOsfIYaMmBja5soqrC3tU13YYbB2j5qtkE+GdCXA+49fcQ7N55SizVnGwsEQYflE7NoT3Ly7AoTM+bUmRVsALm22CKnSNOyVVAGHO7sUZ+bo0QmZwziIY9219hY2ySMFW1dZ/n0KZZX5xFFgW40wSYUMTgREBfbfP/Nq/z4D99mvtHh3IXTtOfnaDQ9fAXW92hFNSauoBJq4n5CtVEnLnJCL6LZjBhOJtQiH5M7soOU1mybg+E+QTWkyMDPfILZiI3Hj2gtzfO9b36bd6+tc7axysb2JidWzvDm229RrTVY39thpA1uPEC1LeevnOOTnznPzKCON/C5fX2NIoTnP3KJqOOzeH6ZdBKj6xV2t7aot1sMemNqQtKL+0hfsjh/knvv3ufN33+DH759g2Ie/rf/57/By69+DvdozB/8336fP7pzlbNfOMkv/M0vsNw9gaciRrcfcf1HN9gKBKdemmWxsUC2H3P7R6/jm5TERez1Ux5cv81is8NLpxfIapKNyZhqs05jIsiTjNRYchzV0EMj6Mcpke8x2B7wL3/wQ9bGe1hXUHiaRhjiiZARhvnI43OrZ2mFAYNxTP98i/nOHPvXt5k4eLS5ydgUeDUfZyVxGpNOxiirGJsMRhl6Fs5+7Awvv3yBC89eYjlY5Hv/7g3euvkan/vcK/SfJOwMd1F++TN0uNZHVMcE3SrFU488tWQ2QYkK+xt7+BWLrmhsVGFWeYx2RqQVSaBAhJbFmS5uPqIx02Hz2haJmmDqPmYS4wmNsJD2JnS6AUkuefreGksnZrn8yseoBoqZRof9rQG37m/y3q2nHO4/IRcFlZMVPv3VV7gyc4LI+mUuxVj+8l//O+8nrj9cH67/iNYHr2Me9cmxCCuQvkJKyPOc1BjGccq4nxB4EcqTFDl4MqCgDHJJIcvQlhIlJUBKtC5DTmp6RI9zKOlhj47QbXmE/pOH0nI6HcyLAmkFvvamk9eSEKHU1ENsHdop7FFozR0deUNhckxhy6+BAGtxUk1tFxbrfgKPdsSU5f1wVhnmc++j4eCYSlAi0o7+v1L8WmtKQWwNDjctEyntGbYopsf3ckowsFgTkLkc5QtUEGKsI9SKwk+nJmuJU7rk2jqNcgIrCoSbHlcjQR5tGtRxSM7hpsf9R97skgJyFD6008CikOUEr3QWSLCuDNLZUvg7U3qIhZJYK5jvNrmVDMi9CJOnYBVBvUZUO2Swb8uwElPu7xSvVrijcCEIJ/G0QmtdWleEKG02clqBbO0xwePIuiClnLKtSzuM1gpLmU3c2NykUqlRrVdRtsAVZROcE5SEDxyePDplKO0XEgXCEni6JAK48pmVqgw7yVSWYlgcVX6XhSJmGlj0kFjrAQqnLNYrqQVOZNzdecSN+3e49v3b7O+PeObsGSpSUbMRw/GIUW+MTCWf/8ufYPFsl8wZinGKkxGBEIzHh1htub+/Sz5JSdOcWhQyW6uiM0tqoT8ZYG3OqDfCZDm1sE2lPssXvniWL37+FfLUkPRSomqNuEio1avYoqA502I8GmFCizEdlNQYmVGkBeNhD08qfE8jQg/L+ycuRropLaX82XTCYtU0GyoECh/fV+Ta0R/3uLf2gDfeucZ7bz8i2RyxIOf5+Ss/zaVfvszy2Tl0pFDSYkyKZ8PpxtKWnwVSIpWH9EMEGmsL4jgjEzlIRWwcThTQKjjMJ8xdXCDPM569fIlhFjOaSXjt5rusvfeInQeHrPgtPnf+Bc5cOsPsyhxhPUQFEqUDUlPQcFWGyQSb5mQTg7IKYQ0yCJFSMzfXJSWjPx7x+MkWP/7+dbK9Q06cmqd7eoVWt80oG7C961PxNVncwxch1ml2D+7x9rWrxJs5X3j1FbrdLqomqdYaBEqSFYbI8zBO4wtBnguq1RpeAcbz0MIwHEyQwpLHBlM49FxAb9RDqhrD0Zh6FJL6OWlviPQ9vvPt79Db3uNX/9pXcUXMp6JLdMJZLj5b58SpC1z73lUWLi+TPuqxlvaYq3dZf+shl77yDI25OZZePkdQlYyLDK08Dva2abTb7O4f0q7XySYjQulRaItNBHOdWR4+fcTiqQa/+GtfYPHcLL2aYXXpNOneGDEj+dn/6qssfXuRg0qGLMAUBhP3iD1HNt+g4uWc6M7ixQGFcqx0Flg72EAEgihRXHn2PNUoYlPFjOMckULcT6n4DgKJsh41ZQg8zWGSstxtcrDR59d/+BqPBntHWBmUKz+fWrMtZvKUM5UWm+mYPS9nIASD608Qzwjal7ro4Zjnl87jxpYnbz7hRm8D1yp/z3hSMqMrjBPHcG3C1Z1brF19ytyzd7h8YQV/InjuuWcoYkUqDV4omJubZXJtyI3790i6ltrhmPn5WVTqMdtuU280ee7lZcKKB85H+iFBxTLeT6h4AYoQF0qevPuId167RfXcPlUTsHv/gDD0qKkAT0pGaY6sKOK+oBgWzD83y1y3y9rTmzzz0Ytsbo24ffMx792/x97hPpM4wZiU0d0Rj84+4NRct2Sim4LEfLDB2Yfrw/UXcf0ZSjdKbIwMQzJnELrA8xVxUmDTgkgEZa1uIPC8AE9otCfLxrHpkbfypkULogTRC1EeU1trSupDaRPmiDegpALc8XH5sUvTuuNJbElCAFA4a5DkHO7sMdOepfA0DotxYlrCUFKD82kFtJgWUjiOmubKH/aj43B79HXKCzBFdYnpW5j+XXGcOis91K489nf2CD3wfuGCMeUvdwtIJ1HCkTtLgcVaVQbJlMVSijtpsymTM8eZFKk1UkSUE+wUa1OkCkoP7tF1dgojymuiPEVR5FNqR2krEUJOg2KltaMcusvj/4aYts9NcWRHS6oA60YoY3BCYV1OYSxRpc1i1WHihHEGbaAiBN1qwO5Bfuyzdk4ce8TLrzO9psgplndKs5iWioCbniRolNKlVUbIMqhIaeEwzqCVR1Fkpe1Dlf8tTlPAUfc1nXYLZy29w4PyRAGBtQVCGSR+uTGQAmfLOl/hpl6XI071sX1maqERZTOdVKDV0Xvx2ZwU7GUFJ7IcT/j4rQp3Dh7y//kXv8XO9UNk4ljtzHDGzHHm4glmZ2oY44iER9QIoQ7GZSAEntSMRc6DvU3WHz0i0hplFXE2IazUeDoY03r+eSyGUZ4wHsQcbB0iiohmZ4b2wjwEitTmJVkjdFRXmzhnaeg6qckxFrYnPZQvwKSYvKAwElmUm4UwKkVp6XUvLSACb3qNDdYUpZdcSKwWWOMI8PGaHokYcm/7Ad99/S3eeu1dBo9TFr0WL597jsuvrjJ/ao7m7Azo0jZjXY4TCmN9nCzK8K3QKPSU7FKGFYWSCKvRSkyJBiOEEQjlE9mAaqOJanls9tf53ls/4s0f3GTn1j5zusqzq+f52Z/5KRbPnCRq+aA9nFCgDIWVJOM+FI7MOIzNcNLhCY3VDieC8mfYpPSLjPfu3OD627ep6Yhz8030qTmazRaVdhWpDBW/BgjiSYZUml0GbD9eZ/fBPufmn+HEi8u0mhWEclhlUSrEpSkEGicsJnUooclNitABzkIgQXm6tP1gEFLjKYXKBSrUpIWhFXYoshiJxYiQ69+7zjhP+Nxnv0A/m6BrilpVsz/pcfKF86RFyqWvPU8YavKVOqeic7g846x3Bk848mGC9HwORge0qm2Ggz71Vo3DfkI1FCQ4cuOoeLC+u8HywknWDrZp1SNqrTpULLYTcOpMh2ajU/6yMR5OGyahJWpGhDokGY2pNCJsJimco1qtMhhneDVHkeakZxcYjVLo91EGrMoZxw7lUmySg1CIIqeXhozTIWHDJ/cjNvfXuPDcWaJRnd984wc8zRM836dIcnIF2ggMGVIZlvw2u5MJT/YPmFuZZ/5EkyutVZTV9PYOcFYRNnxWzs7xkStXqP7j73F1+z71c3WefeE0p2dPMn7cY6c/4PDRgBuP1rmxfYsnb9zn0pVTnF8+w+bmXbJBSm2xwcyleWbPnic0Ne5MNmicqGKspT6vyUROVWji93J+sHGdcW3CyBZoZfnSVz/NqaUligcJ929v8/TpJlG3Tsu1KWTOx778EidnFqnkAk/CeDcliR13ek/YGD5m6+Yu1wfvESxKZLvL2s17bNx5QhLHRL7HylKbUGkqlQh/P+XpzTtsqwZFmpPID20SH67/eNefgTMsCClLNIzJSfICqyXDfp+s8AgiTSEUuKlf2OYINCLLIYSiAFv4+EEFIxwmL/C9Uhgaa0qEmhQ4PS1nMAZrc5TWpU1BHf1CFgS+Nx0WFwhP4IkQI6GsuPNphEOk7xNJRSZreDbFkOBcQaAVhbFTqlkp0DzA2QKLR+ipqQ9SkptiWgctjkkLR35lJVVJGHCyJA9QIuLK/gyHla5kGE+tF0KDmPJtpfaRLkfLkrNspUL5oEyB5/mkdoICPOGTy7JG2skCm1o83yMbx3gqKo/NhUHzk7QLW1YNO4tSHh4KgSQXlNxj4SjIkUYgtUfmMgIVll1zQiGUwRVqOh0ucNKClfieT1bEuAxsWCCsxNoEJ3xmajGTLCJPCoRRSE/TakRoUWBkjpNBGWyzdooq80Ca8ggehZSluhR4KCxGgDEWJaFSDSldIAHqiPHsCsrJtsbZAi01TlssDqn0cYgxzQr2dnaIGhHt+S7FOGU8HuMznfzrUugpwMjyOilnEQYiT6PVlHohFNIajJBoLSmsRWlJ6PnTjYbgIEt4OhhzRQvub9zj9p8+5c53rvO8OsHZL77C3HyTlfMLqLbPpHDoLMd5oiRBmBznFEKUhSMm1Kw93KG/NqF/c4To1Ihamndef8iF1VX6h/vstRLCmsLh0W11WFw6i1fxkarcaFpXklI8T+BkOc01hWA8GGPyDOEHKHLsGLSRqKjkoio/QEmJleV9cJQeb+Ecyk3Lx13pA9eipMn4UhPWPPr5Pn/05o/4k2/+gIevbzAnF/jkxXNc/ivPs3JuiWo7RHolk7msWi+5vFaAxk4r133EUYW1kGAEWpds6MzkuKKgGGcIBPVqk6BWxa9GDGyPtzZv8K1/911ufus2tXHI82fP83Nf/RSrV5aptuugAoynUNZQUAYobV6+F0zpaddCorUmlQ6rFDUdIYXjgDEb+zv88E9f5+DeNmfPncAFoESVmWaH0fgAqR0zs22iakiuNAdxn+HOhM37jzm7cIqXf+bjBLWATGXl558OwFmyNMOvBFjK4HC1FpKmGVHQwPcD4iQm8DVYKIwkCFpkRYIIBEZkWOtTbURIawnCEJQmd/Dql19GRpqkd4BMFRtrOzRPLFNrtUknBVJJwsBnNB4RRRUKU+D5AU4qJnFGtR4xGk5YmFniYHeHShgxGVuklgQVn95eQrNW4+mTdRqzS/STCa0oYKG5wIO9p9xbf8JQGp4/uYJVIAqNzXO2t3bo5bDartOqtogHYybjCc4HawxJknH/xiY9m9GqNxgcjhk6kCql1VGIno8pcowPvm4wHO7jN2cpjCZO+uS54Nq1TR4O1rGLAY/ubLPtJ5xYWoYiIUsy9ntDBnlKlsJ4krGjxxS2YLE7x0xYp5HX2VofIF1IklhGZsis6+I6gtkrbf6zf/DLfP7bu7zx1jWCSkR9NqQ2P8+Kt0pLtFj476/znXe+z+yZgJMrZ0gOHZFf5fLLlwlixdaNHbJzluf/9ous/nCRt268ywNzwM0H21x58QInX7nEzCsV6v90lt//kz8ln8t4/gtXULHP9ihl8VKLCzIkezQhmxHMn5ojLHx0I8fvanQ1wpMV7MyAN771Y967ep3BuE9F+7RkRGXS5uF3HoB1LC21qNXm6HSqSAQHOz1SYHCYs//DR2TCkk2S8jTu//IfQHV8uD5cfw7XB/YM/+Y/+0fO1NsoZYmLHIyijyEdjMjSMcHYJ5ydQ0ceqS3wMoUINKqQBCphtL9HrTaP7jawUpBnGb5W5VSvsETVOlG1glMGk5XlBFpqlOcd2xa01lPGb2lbyMnYOnzK5u5TXCHK3buny2mXVWjPYST4MqSqFujOzhFPhnQUnFzSGJthpSyb8axF+BFaiGkwaFqjOxXCFsdRs5gzdtrSdlSDLKdBK1cSHGxRWiMMlPYOh7XFdIAsEVKREjNMEozJMZMciV/WhboYY6fWhSkarGZ9mn6VTreNF0SoMER7dZQXkuYHpJNDcmMRSoGTmKKccjtZoAwYoSiEQVlLnhUI5Zffl3VEyiMvSg+rUgHaD8tJnZ0yioUhy1KMyVl7+pjVuYuYWklGEFJS1Tvs/O7/g437MW3rOPexJUgGHIz6vHbtkEGqMEZR2HI6nBWWoqDkKzsYChCZY1ydwbZnp3N0RZIl3Lu3yeFhSpZn5TSaUuQXuQFZgDAgfKQr/aqBc0RSIHX5fGgh8ZFkNkUoRaPWwIsCkuGIMBMI30O3qjgJhqMThrKlLwo8oshjd29I73BAq1Vj2BshCkVhSwJGQ4d0gwbVSoNWvcuVVy/TuTBHcTChFkS05it4dUuRD8lyiXUam+WE9UrZDGglViqkVKi8KAWop3DCMRmP0MLDcz7VKCJOYuzIEDYrjNMhtUYE0mJMUVrhC4cpCrTvoXyNpyTOOGJrSbKUNCuRe77UBNrDmBQhLMqv4gdVKh5kJofC4ZSksAoFSOlK8oijZEkrgfQjlPDRWpLKCfe3H/H2rXf5/jdfo7if8/zSs3z8E89y7vkF6gsLoKGwWQn4MOV037ny57uQpWVGGSgwGF0GPpU1KO2R4zAmwyRjlPJBa4JKBIGiPxly59Fdvv/DH3H76n2yrZQrM+f4zCc/woXnVpk7sYKJFJnLsJ5GIFCFIbfZ1NmvpoUZBSiNN70nhTNE1QrjZMLtjUf8+NpVbrx+m0ah+cilc3SXu+SZI/QDnOeohjWqtSah9thODnjrzlXsMGPBW+LM8hKnzqwws9xhaJLy2SkUvlTkJscYQxT6pFlWlrFMCTq+55f+emfRuswECO1hpUQWCWiFF3jcvnYPWXEYlyM8TT2qY8djhMrJncNkFlJHmjrmz6zSrFRJD8c4L8APNEkaE1QqJHGG9hRKOYoEwlrAZBJTrVUYjcbTEGpOnKQ0m7McHO5SDSN6h0P8UOHVm/S3drj4/AUiqvy//k//mGLB8uynnueTn3yepurg4TBFwu3rj1g72OW5ly4xW2sjrGB3b4u1xzv0JjEXLq4ixjkHTw+5tb3JzuSAmqoQjwdU04zl7gx169iMJzhr2RpN6H6kSxTWaEqPivY4vHXIaz++wbWde0yKgs5CB6EL5rod0mFKFlsePtqkcDn1Vou5bkhjIeDc2fM0VJONg31Onz5D0/kcPhpz+/4OB9kh4azlxU9d5Mz50ywG8/RuHnL3wX3oKPpxj2dfuIKXOIgNB48Snj58yrbd5uwLK8wsncCalMgLCWyV8fo+6azHzHKD/rf2+NHV96hcabK8OMswm9Ba9Dj77Dn2v73D/cEmZy7M4RcV3DjGBZr6yQZdr8LOjS28hkEENZLdmIcPHpF3Ix4+2ObBm2+SpI5KLaTa9qkHEblOmShFnibESVJaBY1lPE4YZ4YMibKlJS3JkhJLKiGSmrffvfWhZ/jD9R/l+uBotQDGKqMQAboqGI7GyIGgpaqkgWG8NqQ6p8ppTqDxcOhQUiCxNqAy10AXx3qyPNaXEk/7KDGlBwBFbkiTFIHGCyVHYX+EOq7AlaI8QvfRVGWFdGfCk3ubjGVITUoKU4CzaE8h5IRhzzJXfYZf/NUlciHILRTHNgmwhcXTirJLw5bHvhKck9M83NHx0PTvH2HIbBlIk8d10e9/TjhnEUpjjKOEH8spvkyhlCQbZ6w9GVLVdUQsaIYNalEFESni4bAM7UhHrsD4HkF1hvp8hwyH8iKkF4LwsHmO9kOKrGw+E05gZVmRjdWlC8AW+EJipUZ7ZdmAcJDblInNwRlUkaJkOZl02OOiDluU7SVKObzQJ03GhM1GaaFwAicD6lWfht5ifKCYjIbUw5xKJFBkuLhWFoEUJYe3FJx56WUWmkBoBtZh0SDKaXvJABacXGyx1DVYk5Fk5bRTCfCUJMstTvhlgDIvMFqQZhkUObkx2LRAar8khRiNVJJhmiJtjucpTCUgiqKyEMSUfYTOgjICiQe5ohJUWNKKZ0+fZmFuljieMNPpMtOdo95t0ejUaHYqhBWF6Hg4IciTMflKjhGOSa/PYDfFWkklrOCHGhFGaOvjRIH1BEJYijwnw4ABl2RkWV5O7Y3Br0gmyQgVCMKGjykSfGlJhgdgBDIM8b0Qv6JJXVHagAqYxIY8m56oINFWoCSEnkCrAiUCpKfQnsa5jKQoNyflfTVATmIytFBlAYtWBPUqIQWjrMdOPOLu/TXefu0dtu5u0JZVfv6Zz3D2q2dpzDepd2tYDLFMUEW58Sp96OXpBVJgKQOu5aZPlK2VDrBFyfhOUoSU+J6mqFSIiwnD8SE3rz/k9q17PLzxBNF3rLYX+KvnPs/5nz/L0qVldDPECMdYFhiRIIRGKwtZgcnL5kOHRZKB9gn9EH/KQO8XY27cuce7t+7y3jvvke0kNPwGp2eXePGlVWZmFyBLqcxWqTY7IIqyp1ELrl17h9tXHzLXmufln3qBlbNLqEBjjWWcm7KqXgoCT5JnGUpptNZkeYHU3vSzRaB9DztFToqpr18pjSkc1hRI6XHnyQaHeUynVuXf/Pq/pjLboNaq8typU5DHeJWQmowonGUyzhkMRnSW5hkLjV+vgSsoipRqtUKS5/jBUVgZoppHkqRUqyHj0RhrDNqXFJmgVm3R7x9QCWsMRyOUX6He9bl95xbPX7lCEEQEVPjCFz/GRjFkZX6eqtcidIrCFezu7rPXG1Lr1qlVK5RHYpaZWpcndg+v6hG2Q2ZPLuPZiFv31khHCXNn27z06sdZ8ru89uuvcdjYZ7ZR5d79Q9RCi1a/hh3AJCpwczDzXJOFwyUejfsMDjaZTDKG44SdrYRWM2J2vsU5/xTj8YTHm4ds7OzTPPSIaotc31vn4LDP/fUNTj+zwJe/8HnmF+a4ff8hlZUKLRkxOcw4bA7wTgWc1Cc4PBgS1DQ2LVBRQG2mSm2xS2W5ysXgPEpbtg/66IYmrGo8z6ddXyDenbD/4IDW1zr8wmd+msnDMeuDQzzhMdm23J3cpD+xPLy3zvrubbrnWizNLuJ7IcVwROJHZCsFoa/wfIffCjm7chE3dpxtzGGvXMFah0wgTYccDsYkg4ThaMxh1qeXpOzs9TiIx8TGEqdjYhPjRFF+JjnQUoKW9Lz8/1+d8eH6cP25Xx9YDEe6hg4117bvQAG59giFIqw0qPhNVDUi0ylKxwhtGLgMm2TEiWDWO0F3bpZ4b0hgBV6lUtbuSsG/t80UpadTK6+0H7jSmytd6fXFSbRSUxHqQCiiWpeTl14go8VwrIiCUnQ6USAMFHmOCg0ur5Abi0bgjIEps1YojZQaKwQWh7YcH9M6V6LFnHCYkllWBsyOPKSyPFqFaYmIKLFgZegLjDPTYhCAkgHsKTkNcknqrsKC36U126K5uIBq1PCUR5qPIUvJJhm7B7tMBrsUWcJkcoiTHuRgA/BDVXqvnUCqI1YziClfV9vS/yqdZZIPONjdpikDfKFRjVmwHkrFjPKE4c4Wc8srBEHpnbVGYpFIXdo/TAFRJSSbTKjIJpaiPE5XAV5zhtp8n7fvrPPgB33Ov9ikEkAeGcaHCVluyXNFnBnixJE7wyi1JGlOmlm012JudhaHRKqSCiJkiUbLTIEQAYHngbNYQHgaTxs8IXF5gK34TGxKtVbDFgWjSUwRaAI/IDU5ReEwTiByXdpDjCBPwE8dNT+kFkSEfkAU1ehEVdozdepzdWbmO4S1kOpME68WIUWO0KrcjLkS05e7glxBmvaZDA/IDgeIwuIFDQgi/EZAoErvfIrADzS5MjibkEwyXGzxVVDaNLQgCDS2SFBAo10HLXGFRDpDlibY3CGNQqoIr1XBqoJxlpAMYtJRjKf80kNbq6F9gSsyJA5fl02QkvIUw/PKZ15bhzUW6zm0LRCRxhlHPsloVquoSkAv67N/uM799X0e3nrA7uN9+k+HtL0GF0+e4ud++adYPL1I0PDKGuIkK8tHjAEny3CmVBgMUprpVLiCMK6kvyhHbnJEXpJZtFYElYhcGvYmPR5vPOXB/Yc8uPuA9Xs7iEPBameJn7n4Ks9cPsP8qQX8VgUXObSbkmWylEIa+od7HKyPcKEi9iZ89JlnEcOUSqVKoizbBxsk0nL37iPWNvbYf7BH/+EhJzoLfP70yyy+Ok9YCTBBTmOuQ8XXeFoRNavoQNJPJqxtb/Ho+n0aQYWv/tLnmV2aIwpD8jyBRGGL8vNLyXIDHhdpGQx0rvx807q0jSgNlNQUrVUZJlUlBjHNS7wfBez3htx75zGTsccbm++wtZZx+N4dFlc7JMM+lUzhmwpjM+GFi88y3hkys7pAFFUIQ5/cpijpypCzcVSiGmmWladbQjBOUypVnzROsaYgCgKSLCXwNcNBQq3WJUljCpuzsLTIj9/+IZeeWaXZXUC6gLhI6J5rs7+RM9tZwLeKIX0C0WDr/jaDLOZUZwbf85BKYawhHSfkpiBoaCrSwxrN7OpJnnm4S33QQnUDOu0a7cU5vvRrX+V//H/+K66Ge7QvL/DsS5d59vRJ9m/1+O73f8i7dzfIvYxGbRHnBJVqtUwaFJY0T9nLE0bjmKVWm0Gvx8FgB2EV+YHirddv4knFcneOT5y9wuULqwSmoHUqZMnOkmhLb5gwGyXYSgWZSryuz1yjWz5/uQ/aUVjJYX6Im7WMx0NMBpNRzmB7C/miou3XyIUkmqmiex5PXntE+0yH2UuznFqX7GwfMBGCyXCEZxUXzq8y3Btz+No2j7hGHg6p+j5VK0H6WB0ifEPggfQpEYg4onYVjaC90MaLJPWgQdPVmLctGuGLZIMJRZxSGEm/l5IMDOPdEb3egDSJGfdHjJKMPM3oxaP/uXrjw/Xh+nO7PrAYbpw6R6vZYtcb8d1v/SHbB5LeWBLVIoTzkIEjyyRW5pAl2EyQTDLssM6nLzRZ/MunMd0IEdrSxeq8abCuxDCV4rZsrdO6RLFZa6dBOVDOAe/XOCulMJTCrdFos3DSoncSdODhm4zETHDG4akudWMgU8T5hKCiMbklMQWRLDmpZWCn/Gc2TXlp69CuDG4Z7Y7JC8e2CWveL2QQDmMKjrJXUAppPQ3iYZj+8hOIQiCFT6fSZeFincbsHKrqU5icLNnHuZCoVqPIFH6tSnVphmyySjEagh2RJwVBVeHyFOeVaDlpLUqpktiBwlMRFkng+YBhpHLS9Rj9wFDtRshORGAjovlZMjkgSgWZ1sh8gFUxigCpLE7k4DxAY22G73sUkxyMLT3WViCFR64cM602F54N+PFru9y4OmRiUg4cpNaU9dc2Jy8MFvB8jS9KNNx8PYCoivMs0tfTKmONsAK/EWC0JY0znHFkuUVoyOIxofBIyCmUhaElE6XIJhMQK6pENIsqSkrq2qPqhzSbTWa6XSqtGlEjoD3botmp4Dc0XkUhPYXwNTkZuTOkSY7JE+Jil+G+IZARRpWIu9CrIT1BRkx8sEt/YxuPBvXqHEG7gnFJmVgXCs9vgCegSEjSETt7W/QPU0I/5MzJVQSCiq9xeU5hDZVmCy0VSEWa5zgDWuiSsKEsIxKCRoX9g33iwz4md0RhhWpQIaxEPHz8CK/nc2J5hdQU0yCiKD3WAgpjibMxxrdMsjFRp8HO5g6r3SX++b/6V3zxcz/Nxy89x+3Ne3zje9/hzR/f4vHNLdzA53xrgZcuPMPzX3mOmdU29aouv09PY2yO0RJZ9UmSHN8PwOXTym+DlrokcmtBYhOEMJhRRqgi6mEFNyM4dCPuPF7j1g/f49GTp2w83qH3dAx9wan2Al/56Gd5/qMXmDvdxasGIH3SPCe1MTKRjPICLzM4YSmkYWl2keWq4L0bd7j+zh2e7VzE1gTXHt3g7Wt3+N3f+BZhoemYCh87d4Wf/+nPcuIri6iuxySzVCsBUiQkA4NfCQnbsD3ucfvxQ67eucfO5pB4bYdXX/okjYV5goamyBMOxxNqVY+xA2MLwsAjTWM85yGnDB0ryopoO+Wo2ynbvCwmKoty4jg+xh6aIieoBjRMxKdffJ52u8Xv/uaIO2+/yV/6qU9jh5L8MOWX/pOvcri9T24Mq1dOEic5Qnm4wFIkEyJd1g9b61DaZxLH+IGHA+IkoVqvkWcTjDUEfkASp3ieR5YmaE+QFxm9wQELyx2+8/0/watJTp04hRA+SI1JJ+zsxwSNCtWqww9DvvPf/h7r3j6Nc8voTNNoSLRUOAyeVgySnNzmNGpNrC8xnqWiJc+8eprBuxPwJfjlFN1bqvA3/stf440/vcZOtY8XghWa5qkZLtxa5frv3aXx2XnajRl8pTFZQpKXweRmq46WjmatQ6sVkh6kLNU1MlRMJj3qQchXPvNZLl04QW2histK/7QIoNWusbvTw2hBGNYItSAtUtI0I/QV0vroQOFFHuMnY/7f/+Cf0Pn4DKFqEmd9Xvnc88yO6mzf3ca7EjKjqhS2wFZBByEHuwOUJ2ktN2jKNoMba5i6QkeOwCjU+YiBDVh7e4u9QY+XX7rC3OIqIlEMD/rcffSA3ngXZyx1Vafl+6RGQ9sg/Ayb+hR+jh3EBFoTzNWJh0NqzSa+5zFOJ3TnOwRdQfVEBV8LznTPkexOKApDo9v8D60/Plwfrj836wOL4bTmM8Jy7txHuffwHsN0l2u3NxEyx2ApbFGGrlyBLTJcIdGhRsaWzc09ZOCQuUQbr8SKTZvippQtgGk5gyv/mxAIJfCmnmFrjrzCDk8KbJHjcotUGl9U0EFCEhpqYR1fFHg0yNIYQUYgNVmsymP71KJQuMRAUApgpyBXGetbGyz4s4TtCk6JcjKKKD20rsAURUlesO59msS0Xc9Z0Bo85TGN5CHUdDI2FclB6FMUljBqENV98jhjMNxGZxHokGoUATnp+LDk5wqJMCFRUMFVahgT4+JRGWLKB6hxSuh8nMqnqXuHsw7fC0B6pGaIJxQVq+mcO4s7cRLtR+TCYOMRxhNIUScqYmonmyi5SDzcJTd9hLNovKmIKSergReSk5ZEB1k21BVGocMmWm1Qldu8eNJw0PZ5GkfI7YzCZOSmZEUrL8Q4hyksWjhSHEWe4VoBnlZAjio8NIrcgkRRDSoENkQ5w1x3ho7foRZFWK+szB71D6nRoj7bQkhotep4dZ+gWqHWCNA1hfZEeVytBVo6UpEzsTnpJCYdx8TCUowzrFMkaUzNF7hxgrQ+VkjCeo0wamCVw5MWK3P6k3WK/TFqkiBEhZX5Z5C1CGML4iSh7lcwviCXjmE6oBhPSI2AWLPorVJrjTHphDDUTExMTo70FIGuYK0jcwZtDT4OEfokhSUvJvT7Pfo7u7RqTYKgykLzBF7gEdsMIwxplnP25JmySAUP3aijtZiWmhhMUeBcTnIwoDcZ8uT6U7a3+rROtLkzv8P3vv5j3vjxDS5/4qN8+7e/TTOucn7uBJ//yMc4/+w5ls/N4TdUiVk8ws1pSWwc8SSjGvg4cpTvkecpnhJkJsMVZcU6vuLBxjqznQ6R9QgrNZ7EO9y9/wZ3r9/jzvWHbG2OMEOouwpn5mZ45dIVPvHxj3D6hYvIqmNUjLFJThJnGDcpSStKQyqoSEFejwhkSJhn/M73v8XsyjJJPefiVz/G99be41v/9k+JNw65srjEf/Wr/wvOnLuIXQ5oroT4KuTp1jpFNqE112JvckhmC4Ku5t2bb/P9/+4d7t3YZHd/wExQ5+PnzvDZVz+D11Bk8T6+mWUycETViEF/TBiGBJ5HOowJ/RBXlPXjUlF+8DmH1CVztsxEOIqiQAhI0wyl5JS9nuOFkmEeE0VwMNrlD7//DdJ8xP/h//prrF6+DEWK9AKGk4RWt4tEMMwzjF8gSDC5Iwg8ktwCskS0pQlB4OMoSNOUWrVGHI/LDVo1YtAboz0fi0EQEAaKzd0Nlk8u89abN7n+3g3+l3/rV5AyLFGYRUzez+iNB5xYXsDzG8Qm5qd/7uf5g3/4G4zGKZ1n2zRqbZTwkEoinGSclaHG0A+oyCrCKAqTsbW1Sx47/IpCSklgJS5JKHxL3CqwSblpsNKCSLn0+TO8cvAcGxEoPMoIs6JSCUiNwwsdZ04vEoZ1tLa0Gk1mtibceXSfZ58/y9/81V9FG8necBN3EKN1hA59lFS0l5tEocdgMCEbpxyYCfEoIx4nWFJm5peBBG+iuPrG62i/IN5PGRTbaAR3bjym020ROstoTePVFihkgXAp9VlJIJvIXNHfm6BqHieuzJLsSA56fdbzAYc377PxdJ9GrcazH3mGT376JYJxyJOb+9zYWOf62hPCQHH5o2f50i9+hTNFlzu/dYtv/uhNbrFF7GU8c3qBlneWxw/26D94Shh6WCbkgNAK/8Y+WkPgeyiX4VdCkrwgqoQ0PQ3/m/8QsuPD9eH687c+sBhWRUEv22OSW+bmLzEchtQ3YrY3J7j4EJU5CpPAtP1MIclGBSYL2ZFryAll4EcKtJBQHAEQyolmiTczJXVY5MRpH+sEXlEepQmp8WyE7ymcMRSTDCjDJbmEatVDbBdU/IDcGbSz6DDCmkr5vooJemIITVKKlgJ01cdOmcGeUOw8WqNVgVq4gquGZHmGr3ykKUssnDFYWZIkjti3JWZCoJQqUXBTTBkAEgrjsBIC6YNUyDCgEJb+4ZAoqtNszoKnIdAoJ0mTHkWWgbQIz8eICRqLyAFriVSJRitEgHEaFQTYfEASD3HGoTyJF5YbjshVsbbAOkM2HOJ0OaEbD2Oi2hK+F5CkO0g/LGubOSCsRRRxDtkIk4/RXgtBjlAWrTySPEWh3/cl4yN0HS93nF9aIK2P2Bs6Bjd7DGo+hB4e+liolwN+QWEKcgNFXmC0Ry4C5DQsVOQZWkqMAO0papUApQSL55bpztdxGJaXZpDWxw8jnBRUKhVMkiJd2XBYFIaiyElthksLbAzWgi8Uk2zC9XfepdNpEnnlsXegNYH0KUYFYbuKjXz8qI6VFucMuZmQDA/JswSXOgKrqFUa0J1BSIURmtzkaE8TtJqMs5g8TrCFhxKSyGvRqHiIjsYpQ9c4bBGQDPv4yiMXDul7FMYQhh5eEWKEpXDpVKgMcXFKx6+zcnYJv1Kh0DkTUuK4Dwlo5REEFYQSEIQlkq4on7/cOTwh8XyP3V6fsWeZVAXbtZyVj13gd3/wPd76jXdo5hVqqWby2gb/+Wd/kWcun2b2ZAevFSG1xBSWzEqclCgJZmoZkc4RBn5pBxAalxvyIqGwHlpJPC/Eq2jeeXyXf/rP/gdeeumTnDi3wjf/+Js8uPOU4eaYyFaZbTb5xOJ5zn/sJOfPr7K0OkvUCUDD2O3ASGGNKzFrWuBbHx3VQCk8z4M0ZhwfENczrt66zT/4v/96SQBxEJuck0tN/uYvfA3zccNhNiH82Ar/4off4E//m+/R7XY5e3KZN1+/yTjNOXFmhSePHuFlMDfbITuYIEWF0+0FPnfuOU6cniHsegSBpB1W8EKPzESlXzmeUA19CmNBGJTvU0hKKocsud5iasy3tkAIRV7kIFxZ2DINuB4V9lTCgMlozLVb17j94B5mZDm3dJbzn3oBXQ+4/+AuGINVCic8dg+e0m7P0AyaZKMxTmmkEtQqAZkDKX2qvk9YjUqbjDFoXxNnE6Tz8D3JaBITRBUoCrKswKv6DIYDlk4scufWHf7gD77FRz91nmq1ATpEG8loNOHhxjp5IKnNtAmkhzIKtRzx6t/7Ku++c4OwrdAiLDF9DrJxwm7vAOkrojBEW4vzDP9f9v402LLszu7Dfns6w53emC/nyqyseUABBaDQaADdAFpod5PdVrMpWgxZlBUWg1bYEQyJtsMfHGbIIdthh2SFHUEy6JAYCkoyJZHsbrInNtADgAJQqEKhqlBzVVbO8/Dmd4cz7cEf9jn3vUygqXKEPsjl3BFVmfneHc4959y9117/9V/LNxJfS0Sqo5+3MdRakgvD9u0d6ukM1wOhFNJKShVI0sBDT55mduculasoRYnMogXodFKzaSuqIlYODq8u0R+m5Cspf/kzX+eLX/k8o0Gf2VaJloejBWWiyXua2bSilBVyUZL2E65fvcuNzWs8dPIohxaXUWoRKWE8nXD7yjbXb+8hF3Km0zH93gK9rM/tS3e5feUuZiS4vXWb1eU7KJGS6ow81/QHM7IsJZMaVYNfWGJxNWfrxbuce/0sp5/NeW7hFGGUMTp2iFIKhicMx4sl1t9bpFl6imOfP8ZDjxxh+07NpbVNTvyNx/mrXzjOm3/0Lru5Z+3JQ8hUc+TIFudfX+Ltax8wDdsI5aLrEA6pJYlUGK0QWjJIBgy1psof9M49GJ/c8fHjmGVM9dqdNAwYcfTISfJDU5rJHvgEGBOcQbmAIHoI4z02FWzPJrjSQ0+jhMGHKmrhQoVwBqWTtqElpsXZMOPcxVc499E5dCUw2pDpAYfyx/nc17+CzA2iZ9DGU9iAq6MmUiYZ1kcGqmkKQtAYL+kRePKhQxw7tUySTFEIlJaoJJYKCQodND//ua+hAK+i3KCXSggKoXKkbUAbbLDRf7j1nRVCxrAPYp+db23WrLXRNs0FbF1TyinKaPJkiclkgq4D0kf9aagr5CygzQiUwGQZJhsQvIa6QkmHDxVJkoPKEc4hzAjTNt0En6GSPrgGqQWoKDsJ0iO8BNsgBRitqcoKJVOSPENphXYjpIzsCSoH6zDpIkItYutbjHevM+ifxGiPo2Yy28U3VUwLVBVaDAjJECclOhHo1R7psZzHrWXsLDsefGnJEoNU4JzFO4cJGt14VKKZZZKmPW8ej5Sq9YVO0SYCxNpa3nrrLaazGWDoL2oCKb2Rpi4dx08u0zSWh0+fQgbHww+dxnlPanKEkySpQXhBcJaF0SInTp/AVVMOLS3QMynoBIFh5Vgfp2KDFS5gfYl3lmYyg8rTzxYxfUOQAS/T2BGqBV7EzUFha2onGaZZ1AgfStne2eHE2jG2Nm4x0AuEsozNb1Jhhn2EFORGx0CYRHBjd4uFQZ+pnbIx2eP2jTuMN8Z84+c/h5cCPTBYO6Ma1xghUS4jHfYwJiVIB8aDSNnc2WIwzLlw4ypnTj7Cm2+9w0415gcv/YjzH9xgWlsm2zVLC30WpeGvfvrLHF1a4Ymnz3D4sTW8MTG2WgSqxkNVY1QamxI9OBfi99hHL+8I4Gps06BTQ3/QA2Eg8QwXl/m//r3/lO9/53X2Nia899ZvM0z6jOSAJ46e4fEvrvHoE6c5/sgRRqt9klEM+iiLkqKuqIsSGSxp1kcKiQ6KxgdUmpH2DdIoPrz0ASWKf/FHL/H2Tz5ifT16S9P6J490xs5myX/+z7/FeDKjKkt++7deZLI3IzjF+vkxH/7oQtTCY3jn+nsMSXnmqTOcOHKIhWcGJCIhH/UwPYURsLy4iJACrVOyfkZZ7tHLexFYzmqyhZTaNci6weR5bEYNAi8CuZY4F6gJ9JWhKht0Jsl6Kbu7e6SpYTDq44TgwwuX+aM//GPWb2zz+MmHefaFx8lHPdJ8wHg6Zry1g5EJ13bucubow0zPbbG3XPD0qRxkim0cC2aIESm2npKnktSkTHbH9EwPk2ds723SS/r0einT8R6D4YC9qmaqN5BB8a1v/hkPnRlRny35ySsfMW1mrK4uYHQO3lJ6TVVOuX3nLsOjS2RG4nWcS+tiwsad24xdxZHFNfrKEIIAJyk3J4yLKXrYI9Ean2iE0DgaXF3jnSXLchKdIBoHeYJwioBCYdFESRGNA2kQfQ2N5b333md7tkdQnmE+YpQ13NncYXd7Sn+YMtksUF7ywq89ybNPP8Xm+Da3tmqa2rM322NzZ8qd29uMegmHlxdJVE6wggtvn+Pdj66S9jI2r99l7eQR0jyhHhdcO3+X9bszSmtBlhijKXbHTLf3CN6RSNg4XzEeLXBrtMPCkUUWF6KF3iBLETqQqoDuSRZHY0qZMikmbNa7fPb0cYbbijvNhOl0TF1YxtkeS0cW+Or/5st8/kbBzXKLppkSJgU7O1N2FjdYe2SVb/ztr1Net7x/9yJFWXDssQXWjn+BE2eP896b73Jj9wa1KFnSkl6as7K0wLGTR1lbXuDQ0irDQ6ssDPP/vvHHg/Fg/A9mfGwwvDmdMZ7UJD4Dqej3YoPR+RsFpdI4E1khLQOq1QKDxQvBtLDsbNTkD8UGHi80zpY0qmTj1g1OH34Mrx1CSSQOIzJOnniGW1c22LlxC+8aZFazLXZwE4PsCYRqAIVWQHD0ej2E2qJwAY2nGM/IzYAGy1IaePh4BtmMoGoEKlp4WYkgyjAa2yBkLAY6QpQJCGJimVCUIkYKS6mRbRqXc7GJLISAVMl+UAcerQSVAx08CKiaCes7e9zZfQ/hBCuDVZ5dfBZ0XBC0yrCzmkxHCUZdTvFCkw1XkXqEL8eU1iKdw6QpSet3G4g+rUEFlBLRGaFsImtHTGczMkUEQV1bbKNYWFrGC48PEmVyhIh+qV5apC9RVFhX0RuusbP9LrvbDebQGsLPSE2G1wahGpxVNLYglZKgBaCQlUM7y+GFjIVsQmMTgpU0dTxWk8Vr5hofLdBqDyKgUx1lJciowW4s1lmKaoZSCm89zisS08NZKDYbyumMifY4l3Hlg6tUYcKf1D+itlMefuQEHs/TT5/k/IXrfO6LX+TW9TucfvgYr77+Pr5x3Lqxwde++kWSJPDoyVMcPTxiPN4mX+rTNCU9nyGQ1Hh82mDSHt5rnDYIIASLdwlCBsrpjM3ddbZme5y9cBaRDHnlz95Ba810Z8rzn3mEvSqwdDrnoytX+I2/8Bc5++H7PPLYo7z00is895nP8eEHF3Gu4OqFm6wuDihqz8bOGFfXNGPPH/zRDzCZ4Cu/9Hlu37zBr/7Kr3Dx3GWeeOJRbl98H+fBK7h49TapSvmD3/1jHn/iFO//+CzHH17j/IfXYKYROmBlzWwCA90jNIJJv+H0X3iEDz+6zBPPrvDh7i3ODE+xkGcUrmRZDBBGMStm9JI+lXVoBUomOB9IUknTlBSFQwwN7129xN3tXZb7S/zD//c/ozcwvPXtD+jLIc8cP87Tx0/xhU89zdHH1hieWKC/1GdajDFaMytqtncnCEoSoWgAN7OMRc2C9fQWlpgKzyjPuLZ+g3PvXydPhvwn/9F/wW5ZYcsGKgdSE5RordQc3gqkk2wXFqTBNZqxLQhexGY/GRDCYR3Ufsrh1VX+xr/2G/SGEqErmrFneW2ZzCwg8AyXM/b2KhYWeiS55u6Nmzx06nRkoWc1R48dYXJ3ilrM6fcGNEUVw1VkYDlf5INrZ1lcWODE4Ag/ufgujz32CJPtGd9++zW+/sWf40+/+xJvX/yI5z79BG/98Y8JLucLv/Q8n3ryDC+++iprx9dYdkv84Te/x2e/9Bzl1phvvfQyv/mv/yXGKWzsbHDouVN89N55bFPxhS98lrd+/BL5Uo+f++LzfP/736N/bIlffPp53njjNdZFwTee/wK/961vY4eOk8vH+Id/97cpBha7VWJKwS99/gx3Nja4cHnCqUePszhcIZMpPkBZTri2fod1u8uRpWVMiGE2ibBMy5r17RISx2gxR+mc0DgksDuZUtCwpDOMip7WSdCUbsLUWgiCNJcIFZcrh0BLD8HihAShqCmoG4swsLI05Nr7l/jwg7PMKMhNCkzoLSR8+tGHqYopn/vip9i9W/Ph9cu8+Opb/PPf+wE3L9zEhUBdORpbA/DMI4/w9S89i3dTbmzvsNNMWDs84KuLTzGd1BTes3VhkzTTLCz0eOqho5zIp1y/ucmtwuEQ9LKYsNl4BwqOH10iNA1SarZuTSn3aoYjTZHl5N7gs4ypbLiTbfPE6TNMJhOmm7u8/upZXFPT6yd86sznkF5QTWasX/S8cvUtXv/Jm8hleP5LL3AqO0yQILclN7c2+db5b/PGu28zOL7ML3ztq6wxJOQVZz59ktHRIZONdc6cXMXI6OyUrSWkSwPyvIf0Ue4V7UMfjAfjkzk+Nhge7+0xqxoylRG0INEZx5dGPLnmqOQAyhllXUb5r7Wx2SKADR5Zeqq9gr5IqdwUYzSpMexVW9y+e5mwbXj0s09Q2ymegPeGYe8Ijz/7NBcbj5/WuOBoptDUnr40WOuQXmF9A61Z/bSp8D5D48jyJYrQUDeBVSdpEkdPJnifYn0UKgs8ggqpJVJHbZ6wIBEoleKwWBdjPaXRUDmc9wQb0EpjnUe0nfKBGFErEQTrCC6gkVjpcUZQ0aeylr2759m6NeE6t7n8+kd89ku/wqNPHGbmZgz6fWqtMTJBNrGkSgjYpkKnPYStCK6iKqdRaydTjE5RPiNIS1UVCKFIeyPAIfe2wQImxQmDGvTIsh4ej7dTBLHz2fkyNvIIF0MWpITEYeUqy6uf58J7/y+Kmw/jkyXK7T38ZA/RH+BFoA4FodhlEGq8V0hhEDpltCTo9/YYTwOyH7B1YDbzlFPQSmCSBokmKNk6COTYUCKVgHZDJUOAGpSK11kEGRlZFWicRPWTKJmRG+SZot4B2UhS22Pn8i51DS9ffotp6fnTP/gHBAwmDcwqxWJvgPUNb/7ot5kWE06cXGBheUi5M+YXv/Yc596/wuc+/QynHxkga8GjJ08xsRV5luNdFTcPzpEYRyVr9srbrN+ZUMwKHlt+hOKO49/9S/862/UGe9WEjcmMm5ev8uI/+jFK5Pxfvv8PgEDg+ygt+PYfvkmSJAgLg6zHXbtLEAKSGADjmpKbH0W/z7//xu8QnOUPfusNXNnQXxowGe+ggiJNBLPJlIBmkI548ezr9HoZ775yDZ3GJsGmrglNQt3M2KrG3JlsooLmP/ibf5dev8+L33yDO7fX+czPPYfpp/SU5fmvPsVHb57lL/7qr/HBuQ954rEz3L69wfr6JmsrJ/n2917kl//CL/OP/qv/hlTlXD9/h/XbYx569BBLIuG9N7b5a//2b5Irh1rM+eIXnuLi9jq3R1PeunyR937vPF/++S/y0cXLHDqyzONHj5KRsFcIhrkiyTSuyPnxtbNsnj3L7//Bn7J2/Di3zt3k5qW76MyQG83QJDitccJhgwOvkYnAedf2IkQ2FuHpm7bBtdWVemcRQhNEQkrB3nSH8+EuR9UKH37wAV/6yuf4o1dfYWmQ8+wzn+G//me/z2/8pV+lTCSXzp/j6z/3FV5/90MGqWTt8FH+7u/+Fr/4S5+nuFrx3ddf4Ze//DX+q//st7k52eHpx8/w8rffZO3MCou9lDdeO8ep548xuzpjd32X/+zkb3Hr1jahFLx29G1OnTnGhUuX+e5rb7GwtMiFDy6QJHm0aZzVfOsPXkE0jhA0b33/P0aFBJznH/+D36EpFAhFf/S7lHs1SE1/9Z+ys75D1s9ZPTFk48odkCn/4OQ/5vL7d8h0H9IaY3Ok8Txz+gQvfOYhkhRubzpqb3ni0VUWjvZoil1yI2n2dtm4tUGYzPDTknBIIrxnKqHY3KHY3WW4ZsjSAY0AbQIzWzPZLdFWkGYK0VtCaM2knKJKQeM9pZqRmYU4zwaBcI6pdbgAqdeYTJGS45hRNSXnz13lnYsf8LVvfJX189eRa4GvPPkc3/uTH3L46dNkXvGjd89SSMnWjbtsvzNmOikRiURphyEDDC988Umef+YY2lnOXrrF3Z2Kui6ZFFN6OmV3dwqpIE80Ol/gxs4mDQWV9NjDCXJDEhrP9njGeLLHdNwgRcrSkZQnPn2SNbfAzq2CQPQIr0tHpjVFPWFWeKzznHXXmdQFDz91nL27M9794BrP/upjcFyTbQ7YLR0/+eGbfPcH38GGCo2gYsLxv/o/5tjmca5sb/Hid17i9TffQacOc3GKzF7kN/7ir7Gw1WN7e4bKdnnkCz32yjt45+infRqvcVszzu1tkxzqsaYSZMj+ewcgD8aD8T+U8bFDN/7p7/xW2J02ZMkQvdDDy5oP7tzhg9sFTVljXB1NSj0kIkTrtKCxwdEvNF949CkGxw2GlDwXmKC4Nb3K9QsfUlxN+fI3voEeWfCeurZo4dgsrvDOq6/TbMfmIDM7zpf+R7/K8ukeja3RUlO7it2ZJaSab79/kfWdjH6qkcFipKeZWL64NuSXvrCApUYn+3HIWktsY5FKY61AmxyhHTKACBplBLOyBAGuKaMnaFHibCDPox4szzOSLCa4SaViibVpWk/hHCctMz9ha2uP2e6Mjbvn+PD1axxdOIIcCHrjVX71r/0mcrgLtmYwOhSBKYYsX4gd2vgoeyAgpGwjqD3BOqQEofO24xxCcPgQsC5Q15NoX9QuIoTYqR58DDKQWsfuQWoCGiE8jdtCTHaZzmYMskOo4YjNW6+ze/mHTOqEYtrn0YefRA1TUIpgcsSF32bpxiuIICE4vFQ0vuLlN29y6W6P4G3rQBGYFYKmljQ2UIcGg8WtnMGefJygwnxhwEWLuqaxSCnwjcNaj8VRVjVKxuqCbyqUrNge77C+6cn7OUo0GKnxBEyiqH3D2QubEKKPstAJTR2vkSTqN70NVM6zOlrioSM5SkA27GHLkqqwPPtzj3Huwg0++7mn2dzeYLSwxMnjR7h9e4PHHzrKqz94nxc+/ymSfuDmzhaXNu5w9sMrbN2Z4soG4RIm410QEofFiCRKy0XcyHkvKcqaPOsTQgleUzUlLngSmSCFBxVaX2tFimJazJBGE1wDOsX5Bhk0BI8UmhpLcBYvAlIoQtVEKzMEdQOVK1BkNKGilyacOLQQk/vKCplIbOXQQVE0DTPrkMqT9zPqqiLrxWNydWBnXLM3mZGaHGsF4MhyTaI1zjp0P2W8G7vWpfTMJg2nHz7ElfNXSYcjQoDJ5jbDpT7T3YJDR1boHx4wWujzV/7i19jemWL6Pc6+e45//k/+mEQZUq2pK4lIBEkqCba11g6+9SKPPQhSRDcaF0Cq/TAdiZxHbkupcL4N2CFucAMe5x1aSZRJKGYF+cKAyfYOQutogViUDJeHaDSNbTj1xHHOv3eFbGBI8oztq5v0jy7gZo5ib4LOUiazmkwluKYg7w9x1uKbijxfoGqdI0QOTSVQSqJk3JB7LyB4hJNYPCaV6BCDRIRuICQ4a7HCkioTm8q8x9uA1SCdQFmBMwEnPKHyoCQySGxVI/MU7SVV48jyQCM9WmRo5Xj8iaP8+lcexVaS7Y0J33n1CoNjy7zw9Yf46s9/hhO9UyTJiPUbt/j293/CNC34/Jee4oXHP42wfYwKXHzzKq9f+4j+kueZzz/DYyvPYmeWYjLm7R+/y7ad4QYVpx4/zmcOP0dNw9blbd7/8BJ7oqC3pFg5NOSxk4+Ti5TrH9zhvYsXKMWUsZtSqprPvvAIq3sDXvvdt7kVStSqod7eJl1VfPaxz/Deyx+SHO0xu+n55ndfZu3MKsXulPcvfICRkjyNDbBlMWOwnPPpF55G1g3TjZJZ2cRU0dIxbsY0rRVZbDCOQT0uNDS1py4bvGswicJk/ejkIgLGxIjzNDWcOLnMp7/wDMMqZXtzSlFNSdJA1Vi264ayEFSTCWWY4iuFIyCrhEsXz1OnFc9/4xkef+hRzr90jdfeeRuHI60tTuXIpOHJrz3KYyce4/U/eYvLV69hdEZQHmjoZQmf+5VPcWz1JNvXb5IoQVUVHFldZNTrUY4dl69u8d7Za2xMtzj13GFWFxe5e3XGD7/z8gPh8IPxiRwfv4GOQCI1RmpG6YBxqAjS8M7Fy+zcncJ4l+AsylmUKwmhRrX2Y3mZcGg84qsPf5pJNSMEjRCBfjJgeXmNzc0p1aQhX05wdYlWMfCiCRnBKFSqaFzUENazAulyjNLUTRMjTJ3DCE2mNdZ6VBZjobfrmlA7hiqh8h7vBSbRhNbuq7ECIQ0+CGZFReokMgPd2n4hwUiFr2u8CySJwvR6OBddLbJejyRLY8OgjExz8L5tB4xRqS44ysmUMHUsiwVOn/wyj/a36fcT6jRw58Zd1q/f5fTPHWd25zx1sUeaLqCVoCnG6NS0IR+xNC+8wIjWTNIorIueyM6XNLXFyCwCRV+TqgFKxE51IUVrDxdlG0IlgELI1iHDCZyvCfWYarqF9jGMoXFjFg8/R6JXcJe/Q2Ym1LJgIBOsiE1qiUljVLFQ4GpEEKQqYXmUcuWOjTpWr3B4jAGTWZyDaS2xUyhnFuqGYBxKpag2rlngcSo23gmlkcJTjKfUjWVhlCGEQaXRhcJtahaGoFOBtRlFXdDPU6g9SSrp93L2xiXeKaybkSWauomRwz6EqNWWAZ266MkrIR+M8P0Mtz3m5ZcvMasKbtz5Ma62aJ3SG57H2wLz5YpDJ4e8fukcV67f5PrVO0w3SqyHJE8YZjmzespoMCBYyaypUCr6VTtr4z0mwWlITBPtAx0xUtlJkixEXbowxI0ROOHRwqCDRCQ6fgadIVw8XxaP8S5GXCsISmClIkkD1kHjaoJ3NK6iDjUD3ceolGkxxkuDC5L+giTVhnpH0CsaZJJSTSuUymhm0W4w1SngSNMe0gdS7UEp0jRFElDS4sqantHY8QwXwAjBzXOb9NIR9W6JNoaFwQLUluEoY7o7ZW97xk1R8/c+uklReBoL3tX0TIYNnhpQGbjgqWuPtw0oFQEgHiE1uAjMo2sDCNs6wCCxIcRwGSEJ1LFxLXjanHckCmSGrxqsswSlqPZmUR/rJHhHlmbUuw21bgDJ2devoU2g3K4ptx1JltLcLUEEsqSHqxy5lqA8PR0b14w2oDy1LxAZBOHwSIyxeCtwTkaNNoBSSCmQou2uUA6UxlYCowKpjlr11KR4HaOm6wbq2tKIGmcCQiYoX+OUw1lJI2tkGhDW4oRCJg1VEOQ2xeMpippb27tUpsdCorhweZet3T2ube9w/tJZqlDwb/2Fk5Q7d/jw/CV+9NpPuHD5On/2/R/xP/v3f51fOPM5tm/scPPOhNde+Qlvfvgho+MZ/+v/4N/l86vP8P5b77Dual576Q2+9/L3MScS/g//57/J1x7/BVxVUbiaF198iZffeIVkJeff+Zv/E/7tX/4rCFvR2IZvf/clXnn5x5Sh4fm/9CR/89/4Nzj88Cp3bt4mmUxZ0ENqPMNVw/LyiO3JjEkKiw+vIlLJ+u6EKjgUsLWzTdYzFNZityu+9ydvEGyDURKdJxR1hS8dtWvQpITa46UjKIUIFuckWpm4effRdUjUBR5DSUAmDqUUtS05f75iRsGzzz9OJWOD4rSYxurZuKQcT5mUJb51KgraQ62ppEcVhrf+6CzvDs+iZoJekuK1Q8qcxgS0hQvfv84leQUSyfLiAhaBcAGLIZEpl169xkV7hUNry5w5uczKaIE7N6b85M5N7mzssbG5Q+2i3/X5H93mI3U3EioPxoPxCR0fGwx74Qla4mjwtqDXU6wODFk/IegaaTKCLxFCYIONjJsTBOmYOMfmbonDRSuzIHG+ZpD0aRYOs2XOsbezy8LJo9RohIyvkZplen4JaS0aS6+3BN7ghcT6hkQZrFMo4ZDOM0wTtK0wtsHWJaZyZGOPK/Yw2XFmO2O8AakVICkKhzIGoyX9fh+tJIWdsbW5zUPHT+OaCqFAZoIsZLjWz1dJ8CECAWcblBTRCaOxkV2SGh/AOI03NZWT+EZz5ORplo6uka1/xND0KJmikpqkGSPDDN3r00x2KMebkGh0kpHbHr62NHWFSQ2OgEr6KDMEWmsiGW3onKtxzQwvNCaLG4bgbUzXg9gkF0LLHALCAhV1McG5EttMCXVD8AqSAVZ5ZFWiezmDpTUe6v8mN9/9Ds3GmzT6CXR2BnoGKosU0QpOEmN7g05YWc5QchcfFK4FG0IZPBIlFUnqSURAZJpaaaalQ8o6hhP4gE4MWsjWDiygE4WYKsa7OxxePURpPQqL6OWsHJPkmeH69VtIBnivmJUlmUno93JMUkRA4QOpEa32u8HZEN0cfAXOo0XOtPYcObrCrGrY2ppQlYImGEwqkUIiEo8PDbnJSQYDvvWDs2Rpik5TdscF9RSyPMHWllwJEiWYKEfpQOPo93PqpsG5GLTgAW8tSZriPGiRg2zQOqG2M4wZEkSNIuB8QHqPFwojiSEkQqFCAzayV0EZVNOgRU6TNBBUTO3zJZUzaNda8flYSlfeIL2k8UX0xm43sU0ZmNkKV3p8IsmTgPOCEBxpomlqi1ZRge8aD1IRlCV4R88HUuGpg46Jf1ZSY6NDgpQY7bHUkGmkjAw9IiUIh0rjdZJyQFN6pGhIjIxJb6km1B6TZIjgyYRHImgSTUBEe0cBAYvCUzSKgEermHjpfGzo8t7GCHYR56O4gY1R0fFnECgoo5iI1Mf3975BGIn3EhkA5REhxOsgPS5E4XbwJdbH+9wJh2g8XkqE82gPlQxIYWmsRwUTw3pErKYJGZPofJC4tnlWORlBuJaU1nNkNGSlp3A6YKsMIRTCiOiXTuzrnNIwa8ZAZJCD9AgcUiQEIbHYGLPto7bahwqcxgVJESoUHqlSrl7a4ve+9UMee+IxXnv7PTaKKbLRuInin/z972FWF3lh5TF++/f+jDfe/Iha1my+PeE//b/9Y7K/pXGXGv7slXf5wYuv4ETg1pWM/+O//x/xt//D/yWiEHzzT17i+3/2fWoB6Ybgf/s3/0/8x3/vf8dqfYLf/b0/5aXXXkSGlL3tgv/nf/gPIFSclg/zz37/j9icrHPsxBo3rlzlxssTfnzmddbSNYQueeqrT2JvWr790muc3fpnLPVX+PC1K7z5/jlGi0Oms5rpzW2kStkOY4RUzKZFTCE1guXlJZyesbU5wa7XkTjQ8T4a+4pUCpT3OKFQImE06qG1IgRP3TQ0LtAECN6BFzTTBqc9tVAICmav1Xz0zh3SLIs+4s5SBodzHtHUNNKRiDxeW2VRNWRSIzJB0B7V5IgEVGrRUtNIicIhUk0/y1AqEBAgFcUsYMOMowsjFpcW2RnvceqJh1hZyrl19zbff/UO25s1lS9iwSQopM6ofUWqTVxr7YMEugfjkzs+tkziH//Wfx0qa0AlLIyWSHLJ+eld/smL5zh/rcHt7iCcg2oWJROhRliHxyJqyVdXX+Df/Pd+nkZ6Mm3Qmpgk5wN7O1OMTlg6tEwVapxtCM4hfHSJQAi8BRcEQUlMluJDZEQ9nr1ZhXSSy7MxzY09vvzYgEUj0FmKlAqVGESmmVUznKtbn8+EEHRMf/I+Mr/a4JTk5qXrPPboUWyIEcLeC8ASgosuGcR0WSkUWmjA4aVD1oFZPUYNNMZpbKlhWHPr1jZuN+Phh48iNAxTQ1XuUDVTprfHHDv5eLSOW8gRpge2op7u0BRjfHAMl5bxoaaaVLFpKaENw5B4ExAOkBIhY9KZDzFowYfWBo7IQtrWq1miIjvuHCI4VAcCdELhC4yt0dkSTnp8U5IsrCJctJYjXeLWpTdg8hFJfpr+2pPoq79HcvFfoDwob/HCEISlrCzffOk2u1V0arAegg80Nl47GySuaWjMGuVDT4OOGuDCVWADRdkglSY3kpo6SkW84NLFSzx08lT0KCZw7FTGtZuX0WnCzkbF9vqMiQ/kaIbDBNMLXDi/SV1airKhCY487VGUJd7FZMMQk0E4duwwa4cPMSmnlGUDId4fzjUopVtbPdjd3eXo8cMkqaGqSlJjmIxLmnLKrJiS9/tYW6GAQT9nOp0ipKIsK6RK0ErgXFz4QqANmJGEYGOojEyoa4v3ljxPCK39lvO2zXUR0WKslQEQYrWisTVCxqRG70IrkXFRfuIiyNVas7UzpigsEO+XpWGfUyeXUEEiZPTCncwm1DVMp440T+ilKXvjMcYIgjaEmSfPFbe3Z8zKeC1CiBWIfpaQaNEeXwAhqJu4qZEybioQ4HxrxagkSqnWcjx6dwvRbt7wKBEbp0IbfBOglUB0RuWiZXZF28jq2xALEaUHQhBC67LS/ndPfDrgfGhDfqJWH++RSs7tEuebMq3nn6v7bF1okBASbx3W2vh5hMQ5ixARZEspaZr4764h6f452LeSDddWfbTWWGshaKRosAFOHV/i2MqQJtTgA40XNLUD4TEqo7YN43HNdFxTRY0ICBuvCZLprKSsLV3DqhCt7WEbKiSEiBWZdu5orIuSACVRSsc5tJVsOe/Ihz2KSRHlOG7/d6snF1hcXOSDd8+RyhTRXv/GexaPLTDq97l0/hJGZgQfm4CtU6SZYjjssbmxiZQJtrEYpQgBrLekWUJRlvR6GUePHaOfJ9zcusPJ08c4feI4r7z0KntVzdJohRuXb1BMCrRMEQKSRFM3JUpnxGJZrJYpFeVkwTX4AGlvgE49K8MRe7slpa0wQuBV3PQrD0oqVJ6SpJos77HQS8md5ObulLKuCU3NtI7VBYiPjw5GUAtBriF4gQyKoOqYOtjGtYfQkMicoEHqgCKhtjUSiTamdUrx+ESQao0I8ZpJrRgMB1jnmEzG4D3ew9LSIlkCmdagJNdvbXH79jq1deS9GFBUNzXee2RbZaH9nnXflbs3rz2ghx+MT+T42Mxwv2WtrHfYJnb/L6YZw36C0IGgc3woCVIAGu9AiwIRBEJJqqIkEQa0I08NWaYRRLC2srSItR6hJanIsY1CBI8UcdFUUuGCBamonaeycTEhVrfRRjNrPEt5TrZQceRIH99L8LZGCI0yhrKuwYDR0S5qVtUIIUi0ASnZ3tpkYWGBJMk5cuIEFolTBQHP3rhAWc/y0gJFOUNrhQIUkQ0KBIQTFLLCyoa7H93k2PJpzKJk2jQIH1lbFRI2t65Qm4zeYARZwuDQAN3LkUaj8jSmMiUjstEaTTHBl1uUk00QAtNLaRqPt206nPPIqgEM2micCxHAt4uZUiFa/BAne+J6jVRJBF44fHA4FFIrgitoJgXKRGZVSYHyNXK2A5jYlLS5x9pokak9xWznJrX26P5q+9oOr/w8VCPPDAuDwE7hEKoDNjo+rgUcUsp4TELQeIcQDqUDUgmEMjjrqeoCp0Kr81WsHT7MbDrF2gZrLRs3A720z+bOLrM9j0KDK7Ae6jIwGvbpK83iwoBJVrO5N6Gp6uj5KmIinnOtS5rOWd/Yo/E1EAGQUrIFenEDkacpvX5GXZUYI5mOp5RS0MtHaC3j98FaNDG/W2kTQyEgMsEhLk4QouZbCAKt56xrO88bhxAeY1TrNSuh1YzHFBei/CGENrbczZPMOqDWWf7FOOQITrrHWxu12ADOenr9nMEgpxgXSBnoDXMCgiwVpEmNbTx1VTDIB/G8O0uWC3qZbnW4MYkR2ntMipjL0rKv9wDPVqIAAikEtMEStC4tIcTFWEpa4BCf24FH733r5hHmoLP7eTekFGht5u8b2h1D1NKKe16rfUDU+cf0GpSUrTah/TUhggIp5yBcCtH6BHexk8xTKrXSrUVbmB/fvccRQf5BHNx+SrSMQCS+/v4GwOMQSqCCpJcnpKmJzhlKMugpqjJhe3NMSDyNcygtGC72cXtjlBYINIoAot10tBsopVs2PXikUFF3PT+XEQgZrQhBtRbqHu/3NxRSSKbjWQTCgcjAuxiGcfPyBje5S2JMe89HfTbCs359nY2wjlEmVhH9/sapKCqK2RQpYlyzEALbbhKkUJRFhVKKsqz56Nx5+smIop5w+/I6b6j3ccEiVcLu7WskRjIajvAuBjo570mSbP4d7EKfuntBoJHSY+sx5Uwy7A/4hS8+x/jmmPXJlEZ6mmAREqQS5L0crTVprlgeZfRlzsa5mhqPdTVKK5IsReuEJE2QQlAUJXVTYqsGNJw+s8wTC8vcubbD+rRkr65waS86nIR4KyonCNIgaecjrQhKgytpAuRZD+9jk/d4b4JzcaMpU8Uozzi00EMJOHf1BnfWxzEWXRt6SYZzHmub+WaV7v6+5759MB6MT+74+HHMg2U8BY219NKAE4FUJjE1TVucAoXC0EP6BttMESiUgyAkTV2xlC8yy2b0tUGZ6CrQMVvGSKSKzGajBd5HdjO4gNYKVFs6rD2lbQMfQtTpGglIQZ4ZVGppaKiagLY1TsTQCSEFeNpJPIY7SBkXSy0lSsHVq5c4cewYs0lDemgVdPQUlm3iXG0dQagoB5AS6xyJVGADBkmFBScYpEuozOBEQzGrCDZKLajh+ENHuPLue4SqIllYJM/7KA0hNEynFuXHpDpD9TWqt4QeLuC1YXzrIkOZxa54WxBQCOEI3uKkwNvIhEX/Y0nwcp7kF3xkDLTUERlFtIIUCVoCoYmNPAFoArLfR/dSynKMcI6mHCNFjk9zVC6RXjE4dgi9/DjN1hWCTwiDNcL0NkKEaJovU6T0HF3VXLsTECogcVgRvZE7uUYIsbQciAAIoRAtcxyIPsRCCGRw8W4NIIhSGSUFqTZMxg25EARnMLJBJpbUa9LUkBpDPbUcPTTAJBk37u5RuZTZtEQrg60bemlKbR3KJJS2IgRPELEJyxjJZDKJxyISpBI0tUVIwXhjm2Q8QRvF2sIKqpFUriQ1GoykbhzOBryPWkGEINQ12ujIErb1+EjwuKgNFRqQOF/S72eE4FFSYm0MCsBHgOR9ZHp98Hjn59HgEVzLeZQ50HoFx2AYa1sNbbs7UkrigkQqQZJo6BvyvkYJzdgVNFVNliUkwz4b6zsIPGmikAGWhjm9TCJvtc2dYZ9J1FqhpY/yHEnbBBYXX6kESkRQGKKwpgWXscktBDF/vJQyygaCn4Pi7ucdyBRi//P9FOi+ZxHvWGGPEJGhEyIC4xBCa6Uootd1/JK0LC0xaS/I+eMj69zu7yTzc9qxut25F/EA75lLOyAejzv+TLShNNDGvOPb57Ygtc3yETKqm6QIKAnFrMToDC0EwjvSRDEYKSYTQzmrsJSkqUEJFR8DVNZitKasGqRUtKi4Bci+3RDsH3O3iZpXIUS453cQq2TdOY+bttjMm0iFEBm28UgVCKJGIHGNwEgTqwM2IGU8b94HEA2BgJYmSgbac9DpuWmPo2P6tdDUxSRKGBKBCoFUpFGapSJTXdt6vkkUQsQqAOKnQF4IMdkSEStYWipu39jkg9XzfPGrn8K8M+PDC+eZ1lVsvhbxczShpHIeIwzKQREC1nmka5NWpUSIyOgOBwNMlpLmEtNWJp2F5ETOC8+s4fc8ty/scHezoBITtAwElVC4hq2pp6wdwTSxCkBGWXhs45i4IjaDuihVSrSKfsFLS9S+YjqZceXaXSZF3TaTxuXAN5buZhXtnNSdG9Fu+HiAhR+MT/j42GA4H+Z4o9nbrDlxeJXbkz3q2tPvCYQWOJkhm5qmniAbiwguCv99wHnHpC4wXpPlkkQmKBWQMk5uxph5KVq3el7rQCsZJzQCRiURBzQxqjR4UDICvdjw5gkSrFbUDrAVwegYqBwgOI90LmoWgSRJok0PHgUcW1vm8NICUmoyXaJUiA1MQZJISPqKyhYQIJFZDKoIEh8CQius9RiZIbOc7IgEZfF4qkIQQkIjS+5s7PHsY6dYO3qbnZvrMTxgNSNIwbSyaFL6o0PoXop1JW6yhXeCrL+KW4PZZJOF0SJlneCqOrLEMkH7GltXCCVBt+yMEvSHa7HsZesIPL1HychU+eBBNK0GVCB0ihcNdhxIckPTbNFMxwRbx+skLNRTGm+QI4lwJaq/xMLoBabNlLvlNQ6Vf0bWVFhtUd4RrODwUp9E7GGDaJdX32oaA4JWgytFTG9LEoIEIwzeeRIlIAgqH9ORpNQQRHSEkIE0zeJiXJdk+QKps9iqQgXDUGl6PY1rHEamLB3qoTPFzBfsVlOQIVYelECoQJoYysohXUNLrSOVwtoaWzf0h4PYECNFC1oFeE+iDP1+j73tbZaSIb/267/CH/7x75FlOboWBBc9bK1t6PUHrdtBbD4LIbI+QgikE3FTEAR1VaNVdAfZZ0UFoQULnWOCkIKkcw5wsVwdwVjcQFrrYnVcdM1i94IyJeVcQiCFQGlIs8hQ7413GS0mTCeu3UDWZGnUWkdm03P06EKs+JgEWdUtmAutWwOx9KxlBEWJRqBiIiMeoyKjiNxnbkWQEYy2iZA++FYq0DK6bn9FjpHFoi1td4g0HGC/Q8sgR/lJeziRMVZR0w+0PQAyaohDBHC6lcKEFhRG8CqpnW0B7D7rHkKYe41HZrVDtxFBdOE8B0FXnOPia3eSDME+gO4qJrTNuIEod4mBPpGdHg4HWGsZ9IexyuOaWCKXmsZakkST9zyzWhJslDckrWQqno7ArKiipjTqIg5IP/YB+/zayO77G+a4qPtMUdLh59UHyX6VwAeBCBYhLQhN8BqhBFJaXLu5QNJuUA6IZHyYM8HORWKEjil3LYrjgIxFN3jbzm3etz4xjoBrE0yj1h0icx32iwj3fs4WaEskRiU4KRAhcO7NO1z48BY4T9PUJCoFB0IZLKC8wemKwASBQpCgVZQyeOejdERBE2p2dnbi+0lHKnKWjw5YWFjk7E9u8UF6ieVjPY5//jCfFSv0poayqrDjkp1ZYGNrzO31GbtuxtGjS4xUn1kRqP2MjZ0tyiawvLZCkniOnVzm8OElyl34wSvvcmljA0eDlA7vJSGAbhuru8qMawkVOqkQML/yD9jhB+MTPD42GK5SMIMMUcPK0oiQw9bNMbk2kdHRGuViFKgLARUC1ktCkKAUE++YbBeMjieIJrQsTjth+o4ZkoBHm5guBKKV6ymCE9ELmLijFe3vECLOu9IirUTLHKN61H4aGYh2MfUCirpCSx2ZYOcIIi6ySmmK6SzqQZMYz+tookepUaTagKtIpI4azPiSSCSy1dXVQSFQGNHghSOXml1bY5u6DUbyvH32VY4+tMzh44+RiD6hUmjTI8iUxcEIk/WwoaRuYslWGU1T7zLe3CEdLkNYYzweE2gQdUPfJMxshQ0SncYSmWlLrM42THa2SPMMraKe2DaWxkarJiE8wUa2RQDaK2xVkvYGlHWJr2eoOuBdhmgcOstApSAFzWZApBlCpxQqgJqwVadkU08m+4hERRs77xj2MvrpOrtNFllfF2JTYpAEIrvuvKexFiVhZ7qHaTzD4SJeeOpgEYlAWxGbMr1HaYkDvHXUZYloN1P9hYAhZTLuwLJAmOg00FtYoFEzBisKrsPy8oi69JSAMQqhNVVdRlsxqSGADxYtJYk0hBhuhVSR9RQeUi0p9/YIRYGWgeUjx8gWc0pfM9QDmqpAGoXJU5QWFOUspuu1gBJavWKIulAjBEVZobQgSzIaWyOVaoGBm5cwlZJz0BXomDsRy80+WtL5lnUPIeb6uTl7HFpv7gg6JREkmiQhzTS2jmXdxiQsLS2gtSLLerjQUFeW4SghTTNurm8yq2q8a3A+Jk5GMBfBotQRBuqOrRWSqmpoXEOeGpSSc8Ipbonj8wgBLUTUP6HwOkoN4rnqACjYJvqL7wPfGmstxpg5U6y1QRAOaIYP6IVbJjpKFdryuIg2a3NQJmJKYGTJiMBaiFaywoHHyH2GVO4DSmjjfUQE0/HYO5AYHx+EaFlo5r8PjjkjZ1u5hAgeFelWtJYxadIJAhajG9I8ZTKxZCJhd7LDYDAkTSWNFygh0QqEj7OqyQ0ykezszSjrpj0/7Xv7MP98Bxlh8G2E9D4Tf/B8KinazYBs/wTviNpXBATdvnaDb0AITZA2bsRbHYDzTcswi1ZjLduoajGXxrRicYKKc0CoG7SUWCGROgJoqRUulOADSu5/J7rr5L1tG932KyT3DBnfL7h2iyVAGEtS5Vgd5wTvQ2xaDrZlkh3CSbTqt8x1QfygaazVzTdM3X0DkNPYmjtXN9jY3OTkkaPImcI0S1SvW67LTcxxw/LiIuSLrCSBJT/g8SqnLBz9BQ2+oKogEUeYVUfJB32MSZnsTam958K5m/zw9XfZKy2pTlEBUIokSCxxQ00rDRJCoISaz0kPxoPx/0/jY4PhH/6Xv0uV1UxdwvjDR1h+eJWZL0mDINeamQRkgkiGCBXwrkS5BnyDRFFWmp2tKUtqiaZuMHQltrhQKRlZVoglNyX1XIsXQzBi5K1U3cQSWWGlNNLF8rGWgLKgGoSMTVhSQDeLT8dTsiQn7Q9iaU4T7dqcxeQZBDXXLnvvYmxqqJnMHASLFNGfVysdNXgiLnRKGRIdj6EKAS8DMggqZ/FWoTQ4Cio35caHW4wWT9M/coZgHdPxmJ41uNwg/CxKKpQFGbAEgkzRSUpTVZhsid7wEN431KUl+JqeK2hmE4w2RE1rHSfh0BBcQT1rEDrFZANkOmKwOMBZjySWH6fTHbyrqG1A6RytM4pGQjDoUWBrOkM5x2w8Ibc1jAyXb59nIDy3rl5gxSyycmKNsFtTi0NYtY6oS7SO5vhaw8qyYPtmQxAJKoho8yOIMhcpaaxlWpYUBKqqYjqpGAxXEXhwFutBaQU+UBcVjbWYxOCFQKKxTY3SfWSSEJTgxIkRd+/cJNMZeZbgMahUU7uUqt5BIkmUZFqXWOtJkjT2EfnoiqFVLClnWpLnhqIomBUFCQmuttSCKFFwUfcqnEOJgK9mOFchjaBqLGnaA+8wWhKyyODOihoXJLQsYgcsvPdR/yoFWZa32u4IWJ3w0bIpdE1iPrJngSibCLR2Tgf1uQGTmHbDqdA6zMvQZV1Hz+yqiYDLxWPp5RkljsFwAH6XJFFkPYXWnnLiSJKEfCARoiHrZdRNYDgYoPQmBIsiSqJiA14ERe1Bxs2YtVRVTX+QzHWJ83LsQVa03ehGbTHoSG9H6Xt7rvTcSzfMmVtS81PnodOFhrmWvmUjWybSz5lQcQCoHGCr2ypUJ2lQSsxZ4ygxoJ0DRCu7YP7+8fn7AL57XSlFND5mvzGpe792Aowla2R0hxCRnQzt98YLS5AB5wKDUcrRwz2KqUUpz6RoSJusPb8SLSw6jw1vron3rMSTJuYA0O0+e6Bjq7tjiTKVyLwfZAYP6rPjwfs5gPeOSFgIFStSomOKBSFIgvAI4RA+Nhh2Eohoc6eg1b/H+yYQvENKg/MBRIg+8N5FYkIrHGAE8z6E0MR5WUjVVit+Wpriu+fPP1I8Pu9BYqOsQTXxmLxA+pRSxDVFtVvITnGmiCl4UjrwMd1QohEBXAjtJipu/ruNj3MOKUsEGqFjT810PKM3MMhlxfKnDrEie4TCUntLkCAmgRpNvqRZXRxQNjNcPyNMLeuTXbKVnLvlhK3r19jZnHHu0g02dybgJUlm4pzTaroDMRClk0p1kpPYvyAOzCPcIy95MB6MT+r42GD463/lrzBrdrhy/iYLbkTY2OXajbdoti2f7q9xNeRcu6OphEbpgBcjArtxEhBQJ4Lt3RmPhEOIA+UqAIKP5TTRJkEFD0LGoIFWLxYVfFGrOGeDRIMJJb3QoFOPlAKLxdoCrRSNrTBJ0k6SsLa81LLF0SLNO4dsU6h8yxQJYllb+EAQjtp7djYrer1FBIpemmBtQ9k4nHPUZcXudAsMpMHz5KkjNKHC4phOC6Tw1N4RtEfa85STz5Nnq/ikQTpIkj4IT+o043qLYC0KhbQeaxRCaGTw6CCwsw1EfwmdLpAlDcGn+CZB5D0EYIVDhJSq3qOabTEtHA5Ns7PLXn2bw+kSo6URl69eZ5Ap7pbbrH+0yRPH1tizu0yv32Lx8Crfe/kVTg+O8OSnT3Hx9nUOhZy7Ysxw23P8uZN8+O4HPHP4BJtbl5iNhyytBhbLj8gWVqicpzf+CNwiVgZkkKyMNOduO6RzNCJqPyOcA+EhOMeFD8/FxiYRODocUK+sEBLF1nSPc+fOM0j6uAClbdAtiPEerK8JVvPIqRVOPtmHukCnjizv0c9SpG4oi0AQBikDdSnp9QyuibZgtYDG1mR5ipYiNpOlGm8b8kyzvNCjziRT5Vky0et56hp825xntWZWVuAltnZs3NnENwErPSZLkC5WHvBVbJ7RmqZpsDaWJ0MboCJlDG0RRGYmiMisinYR0lG4esAhonMyoLX2AyGjxCHgWh1xmDNS0LKYAnAuaoelmn+3lDakPYXzBiEki4uL+BAYjhaoqhmjYYpwEu8brPUs9nqUxR4y6c0dGHyrSZVCzCVMHZNaV3UEYkJhbSDRsbO+Y3fnANQzd5qAVm7RSkX9PQxuBHGd1Kr7+cE/I2Db33B0o50OEHIfEIiWIJNSooRs76+2YUu1xyMOMsGxCS5KJLrn3v8+LQiaSyHa4xYckFnsg45OuiFaaZgKUdIRos6iBYUqhj80HqMk/UFKNsxxvmQAzGYliZKR+czAOUBHay+lYrKmMZKyqiG0xAJETbyMc3XwrTijvb8iGPL33Ef3A6M5v+qj84f3tP7o7T2OpCMhZeusAaEF0bFCEkFaZCVFqw32wccNk2/vhbgNjMfZ/k4Adi41iT/3LSsfCAcA7/4x74Pwg3KPeExeCISLoDaE0Mo2bLR8FH5ezSC0GD+E1v0hxHtatF7gPoDsjhsQcXMXSR8xl3oEHzBec/vWOkeOLXLjvbu8/N03eOSpU5w4dAitPINUo7zi6s1duOMZJH1u3bjD3b1dqiLEvgYhqOuAq228hkKQpGm8Xq08UEbfvk591bLtBzZtcweRcODeDPvX68F4MD6h42ODYYMlHfQYHVnk8PIpnnjoOKu7z/EvvvM93vjuTzjSW+LMasZ723B5I6B9oKodzlaR0ZkFbl3bRqrHomeqiuDEOQet9o924openxEQSCXAi9g8BBijoy1ViJNuNdvE+Bm9LI1xtplCCjtvvBMQy1Y4rA9Rx9WacUohcbZBqG6itvNdMULiQsPetEKLBR555AxVkjGQGmk8pQ8IF5vCqmnJbjll885N6gR8U+JsRVOXEVwEjbVTcnGZn7z9D+FIweETJ1leOcHK4iFC0xBMoJcOmG1dxIgMOZBIOSQROT7z1OWEpNXdaukYN1N2i+t88Or32b64xWc/8zxXphd57V+8x3MPnaR/apl3X32Hz596jO3RFq+9+C6fPnyGY585zfULV1gc9PnjH77Fzz/xVS4XL2PTHkldsxqO8etPfpn61pilccYZOcLnjttvXuKqDXx/6yLf/ta7PPbcaS5duQa78NRLP+SvP2vRD6WIfAlMhspBqR7CB5aWMrQuo+WatRActDZAXkKSatJQoqwkNZrVPEEbQ60BZZhOKhoC2mRMypKeMQglSXQKQlBMSuq9gmF2CL1kuH3jIoKE3rBH4WdkyuCDJ9GQZwmLC46trYI0ie4cjW1ISRBAlhiaskApSLMhwfnYkKMVIVh0EGAr8jRDNY5CCozWBGvpD4YsL60w7A3oD4Y0dYGUgkF/kXpaQU3UdbeVDyH3y8z4Vu/qPUF0zJyYA2HfsqQRcB1gEeegud04trIX1UoDuobRDhQLIE0SpGjmssDO1kwnkuHCMNoRErDOIo1EGUE1K6Kln9KxzBwCR4+ugImbyijB6BrMxFzbGg9RkRjJ0mJKWTtmsxmpUejWHSpKobrP27JukVo8wNLuA8gO1BxkXuMI95TwDzbUhXAv6Alh39psvwmsI2U7l49uI9E+T87fuiNvOzSBaNGFaD9DbMSS7fVhro0WIs5d3d/3gUYsyQshccFFwBjiT33LrkotcTZgjCLRhjwTmFTFWOJMMsg1Sva5uz6NyvxAtLLs93De0RQ1jSX6OosQ5Seitc4KkbP0gk5+fQ9DTjcvdldA3Nd81ko4RMfQijAHnPHaOhAdLxrulSi0c350xjsIuGJfwVxS1ILz9lcHsW18pQPsvxIH5SrdMTOXrxyA7/e8/tzVRMR+kvmL08lb2uNqHzffJLWHHghxfmvPkeiuc/AgWr/39n0kig4Mh7ZKVjuLQ1JsB177zll+LM7GaoRUUXvso+ODMTo+BxWlDfNNJWil5iQPwSOkau/P9rq096LykZDo5hwf9jfMXaVgX0f9AAg/GJ/s8bHBMDpBqehLubG9iwyOaTZhdPwQX/7Fr7B+fYM0FHx90aNPLxDyIVtkSB8T6YTOGa4ssLGxSZZqQtjvCu/0YbSle+e6TurIukgdS2uEgFJgpCTYtnnCaHKR4IOLjQ0mw/lYBtMmlr2Ujo07wTuC1JFJsBVam2h1JTo3g6jljI1KAq8aJtMZi/lJdqZXmb77BrsuIzEGkw3pDY+zUdzAuxHi8DHyVCDqmiAVtmrwviGVCZVvEGVDmvRYzQve/aP/llcWV8myJV547Bd44RtfRfoERUV/+XG8dFT1JsXsKotqgZ3pLgmBO2GP9eltXn75R/RuOT53/AQ3JzcQM3jpve/y+3/2Gs8feZpbzPjRn/4Eu60YPnacP/jDlxk2GdeTC7z7d/6Y1eEqP//pz5H013jlwo947cMP2NgoEGnDI6dO8LXnn+Kzn30G3ITGWGZ78OVjz/G9l36AvzPh82uPkH1UcDw9yeEjfdbWUpA3sbsTKl8wSTxux9LLDFoGXDZkmFSMd6sYWOIlCI9ShqZpkNJydLFHiiTJFXkmkakiMYq+s5gsxdaKQT6gJjAcDtne3sK7QNZPEE1JM+sRnCVJBSbNaPAoIxhvTBjkC6SZjlpl7aibEp1oQgikWYJOFHmS4vs5C4MRZVlRlEXcTMlYwlTeE6SkKGMEa1Ax6rcuC2IJOTK8aZpGVxQlECayxZPCoU1GY9vHopCK1jrMHShR05aUYyG20wIDBNd6wbJfGenG/SBBiI4vo2Uh9bxcPGck6dwLBDhPYhRaJzQ0SAPKJLgq0FTR31m2EoksT9jZHuNqx2hpwN50FllFtQ9KOyZRqhZEhugU44UnSyUhpOiWbZVtT8D+iAx4ZId9qzdtP9N96/F+abf7d/xTqn2mOAKN+Lr7DOc+0JORZp5vmjsZhhQHQVgERUli7tlUyA70hni+Q8eEBtrrFsGcbxsLaTc5MuyDi4Nsdseiz0FZxyiLtmKFAC3o5YbhwKBCQz9PSJLYXKyCJ88TDh1KKMuSJFXMpoJZranrgEpyrB8DCbaS+HYDoqSIYMlHDblr44UPsr/3//3PLZvPmWDaz7//Ibvz2Fn60THC85tXtq4/3fmK5+DAduSnjucgW71/X+yDuPsf91ONgfc95v7v1b9MGnBQN73/JE8X8y0O3JghtPp8EXcbUki8iNHgcR1UICQ7m1O27l7A1j42evomVi+Ci98j2UN3Mj4Vz5zvmgmluOfzHdwMzp1A2utC8JG5htbGsLtPY2bjzzoPD2QSD8YneXxsMCxtg0wcMgnowrE2WGCUJ5xPrnF7vM5G4ynKQL035pTa5oWnTjMTG/z48h5iJkjUkKNhxAuszeuBXQiAjD12QFeGFLSEMd0iBiqWm51DS4kjIDwoYpNMnuq2+9hEdkbFAAMAQtSb7mszG5SQOCuQRhHEvkm8j0pdgldYWVMVlmyhD3aC2aoZJgIRGnxTUtQVYbemv3KEaVBYAsVsTKom2Lu3UXZEk1c4P8VXFxGqJln0LCeC8Y0f4tMzvFVNmPWmPPLECYbZMon2lEJQFhus332bD7annL99ke3NMXdv7nL9wl02b6zTjA3vffERfvzO+zTbYHWg2Kn4UN6BpCRUHp0YfvzGGzSlR7iGhcVD5IMeH128SnVV8j//W/8OL73yz/m1r36Ni1dvcPPSDcbnb/NfvHOD7/7Jy/zSM5/jU1/5DJM7t/j0c8/xm48sceWNGygjyXsZ6UrO1ZvX+fRTzzHb+CFh6x1K7wiFZ3FgkPmIjfV1Dh/uM+yvs7snaaTAKYP3DcFJpE7QUpNLTWI8Kon2WkIoDIpUQlWVVJUiMzXOt0ENBMaTCWm+iMdF2YWUNKFkMBphlCZNNMeOHmVnYw9lFFJLhktDbtzYRScxEty5qE+cTKZtU1Wgl6fzkmYIgWB9jGgWAYwma7V/ltA6TAR6/R4+eGpbIaRAG40XCtlIHjl8iovr79FIEFIhXWRCo4yhtZNSMoKEwNxmq7tf42LZ3spzYBf1jtG/v/PKjX8oGT24Izu57wIAzF/PCIHWEcAhQeBJ0xydxPhvS7SGco2jqiyVdaRSYJsGKQWml7A3HVPZEC3x2uayeelatJ+RGEqjhJo7YsheQpTbtkBPcA84jOekZY3jx4083oG1OIR7gSSiK++2T6DTIkcw3rlLRLAQ5o+Jrowt205kNaW8FzR3AEPO39vP56mOXe9O8b14Ib6uFAcdGmKYRiRb9wHKfoCIRykxv84I5iwnRKvJJJUM+wYtFWlmCHjSXoZCIGSNMBaEQwlNv5cg05pqBltTj1YZBInRFiNFa1kd5ucwzM/KPgiK4LUDmPvNiN18fT/4nINlmG80uk3LPdeM0PrSd6x6PIGi3XB0jZPd+8D8of9fMZXdY/+7nvMvY0APfsaD5+annxNlFQerF2G/hDBniV3w7Xn2c2lHlEGBtXEz1ri2+dLFjbcSEuebaCvZrW/t+hlayYtS+xWPg82e3RlGxIZaa6M1n2slLPH6do4eob1u4R5lxAMo/GB8ksfHBsMf3n6LWknctmG0eojRUs7Kwogn3Qm+9ZNz3NzxyN1d+spxqWy4/solnj6Tw86Ma9csiinXtg9hfiOhdDO6Tu24Mw6x4erALrbbyXYNHlLErm4lVZuqFrurAypi63ZS8L6JPqZaUldxEtkvg0ZNnNIK72ys1rceUI1tSIyI1jIydjhXtqGcxXJtXWyw8+Y6a1/5EuWSgiS6C/hyk6ZnosYQi2sqEr3F4cH7XH/fc1MOWfjUIv2dD1kdbnL54pinD/0y8vQO59/5IR+9b/jdb/6ALzz3JM88f4axmHD17gUmV6fIdc1nv/QF3nj1Fd77yTaDlUXSbfhXv/qL/KPvv8SLf/wOw2TEQ6sLTIJny++SD0Y0s11CKkA6RgsrlGFCtVsxHI4YjkZUk4p+MuDU6af4O//wP6FeM6wcXeYrn/0MbvciL73zLnsXG3706o85/dhTiMGQGzd2WHt4wOEnjyBwFMEjrOSRx09zd+cWS8de4G5YpD+ZcX1nTL8+xOPPPcq7114h3LzJoA9lqBC1wIRAGQQ+CFTWY2tc4hKJ0NEBAFobsRZYLS8ucOf2mC61K94vBkIZy8o+UNc1MkBTzBBO0OsrlFEgDP26jzGmdTjwaCFJsoTSliSppirrmDbWLhTOerI0pd/v4+s6ai3b3yktwXXWTxGGKqliOh+ilfiIKD3wEq0FL3z+81RvbvLRlfNIlaKkm0sevO8aekLbdNQSgoBQcp7YBfuNWR1gjLrE6IkcgXsMlOiAMP5AyfMASlNKsbg0mH8nYiKaw3kwiaSqa+qypC5rZAhkeULPGMrxGK0kWZYSgKRnaGYuJpKJaIvoXPx+KSUhWAQBpQJgAdN+p+09C3YHGrvjiSVdf2D1jX/xB1fj7gOLDjD/dDPaPoAKbRNcaysmIvscAq2bQ/c2otUQx+PyB0DOQfDjxcG56uDv7wd7B5+3z28qIQkiHvu+2uUAYI9UMF0D4fzzhSgrSjPNYKEHrkIqSFq3EukNRhiCnpL0ergqUMwM1TS07OKEEBS9fsbCUHLhWmidezqDtbZs7tzcHULQgXHR7R84uInprk/HjP+5wFh0DhEHmVSxvxmcn+iOWY2NlH5+j7QShPmluheQ/yxQ/rN+f/+4n1m+n0n+WY//WYz5T1dqxD4rfsA+cC478B5w7Uftfq7mLhWNsyhEGxke5xmPR7VWaITolNF9LqnbSofsgPKBjUzo9MBdk6MG1ZJRxE2I6M5T+6cM7Z3XXfYHrPCD8QkfHxsMn3/5J9wMDQOxwPqxCSGb8viTZ3js+MM8fuYC7964ha765LqiJmFST1kfBwY9RWI8wc+YzUrqCnwaWoAao00PlpoO2vUArb6pZbVCACWQiSQ0gJSkvQwdLAGL0gLvPNZZglCRhROqo8+QKsaAdt9rrTUuBGibduaWMj4ANXXlkSElSSUX3niLY3sDzOmnaXpbjN/+Mc3mOu6cZOEbz3LX7NE064zXz2GzHY6aa2Ab7p5V6MefZsdvcaaskbKhKj5kKO5itGJ3RzK+M+Ht7XMktyvKhYaffHQete340hMnuHPhGv/KL36dzY++ya//2uf4o9/6EcfXTrC8cojBYmBy+yafOnGKN7fHmCrjU2ee5eLGecbr29y8O+Mzzz/M3Wydsy9eZegMUi1RqVs0oU+ejlg8PcDbRd6/cBa1kPD+d97g5DHJz3/hNJc3r/Onf/Cn/I3/xV/i8sZtenePc3ypzyvXrlFXGQ+fGHJp9ywD2efSW+cZ32r4yjOf4fgRzYXrNzh38xab9RB6x1hsbiK9xYkU6yRaBayPvpveOzKjAYv0IEKDEBavNBYYDAZsqQkhWLyzSJnNgZJ3QJBkaYpRhoXBAlIoZsUOSX8R6yXLy6t4GVmVJJWkqWZvb8yw1yMxkQlsSotA0rgYkpHq6ExQu7plCSWdDjJRULgGL9vbxTtklhCITTNKqTY9EQYLffbsjGOPnuDC9YsQBMrI6OghOneIDoqIFtC6/cVZRkC8P7qmn9gcFM9D244oYnhM8JFd8q0dl5Dx/eZyAyHIYg5sPB6l0UZQNw1ORscH3ziyrEeWGpAB5y2JiYz7dFpQ1Q15ljKbFCipY+CBkmgBRqtoT+jahbRtMovM8PwjHFhgxf7/Q4Rm8/Q87+esauDewJA5v3sfkOn+fk/joISDjgiRdadlIPfPyz2vFcIcEIu2QnXQpm2fhT7YbMQ9xxBBY3yM96HViyoCPvoGHwDVofPd7a50yxR3XtRKCIJto7GHPbyV6ESR9XNCaGKougaVGFwj2StmyCRFVTVZFuhnKdWkYbRsCNa1zYpdw1e7sejK+a1jT/fZIewz1GK+A7mHsQ/hgB6azjJO7Edc08lHDp6ne7XI7SvF/0QUFfnws4HsPedqzvrvVz/uB6r3s9n/XRKIP+/ff97rHjx6DkoL/AEYH+7zafYdcO2cSWKjqBSBYF17fmOl0/pW3y+jNzaIOFfQ9Qjs38fd+8fUxLi+zRs0u6qIjIFGXcBNx/xLKefe2d3Pu8rAg/FgfFLHxwbDv/Krf41bkw946zvvs2SXuX71Emc/eg2ravJ0xNOH4NqsYlY1pNIhZEZlK0Qica5GepgUY8TMI5L4hbStB3C3wNzbwdotYrEJJXgX/SNlgzKeEBqauiLNAyY12CZ61cYvsCA0sQyEoNWlKozR2MrSLV7dexRlSS/N2yqSJDhHEJZZ2YDvoyQcWzuDP3SJrSvvoE4eY+GR5winSprPZ4jlnGqzJNCw/vYV7MkjCJEx3dvBySU2di2j4WHGWx8hewk7G9ucPHScl6p17sxyFlaHBKVYPblGcxie2q25LrfY3FxnuG3wxx/h+JOnMbmnCgLb1IRQM1g9TLF+m6YxpCEnG1qckfRX++zdXQdfkKSCxPRBBi7evcap0XKUvIQa7T1Lo0OI3YblpUPcffMux7JFrp2/w6u77/Fvfv0ZvvXOj3nqWw/z/Nee4cLNa4yGz/D555/n7fff5ubuBm987xZPihU+9bnHuXG65IareGplgSw/xisffcjOuqUaefKRo5dJprXDJ9ExRAZLKBqW0h47ER7ghY+F9XKGGYyQSrI7ncXAAwTaKHZ3d0nSpO2Q13ilkIkmyTJq72isZbAywtaOTCUxHjpNMEphckk2MjRWk2YZ1tbUTUPQCm8jMNJJEmU2+MjIRKuHtoM9grXh4iLae8YbWxAEZVURQpRuaNPZfnlEIrl05wpnL7+BkQYZJHXLBNOyg/H+V12+cgsOItTrmulCiJZOghYktWVMEWgdAPz82BCR/e3K/RBafaFso3BjoE0IHhFarasUFFWJDo6qtIQKTN+AyuiPMppqhguWpijRiaQ3XMBowYadxMVZqX1WSUYdqiSeM0HUQ/rg6LTiqrOJmHelxQVXtKy4o2UelYLQWlTNAUmnzW210T/Fwu4/DpgHQggRtbBS0IZIxA1Ih+bmJWL25Q8RUMTz7py7B4DP7eCAzrlDCNF6m7fSB9qNS7sZkChoUzm1ji4gHTEA+1KKud0Yqiu4RwBflSRZQm/Uw9UKLzpnnBg+5IKnrgVZkhDYweEZLGpEmjMbW0YLEuv22NuWCKWj6wS02uoYweu6S+JjM1YI0edaihgDTCvhOEhazF1LWkDf3cLhwDzeVejiBtLPq3b716y7rt0GMT5WitiMuA8+O6B774Zn/1rsX8+DoPd+ffD9zzs47gd+97PPBx93DwMtD1Qd4s6WTj4j29CT7jx3UqDQ1iacsxGMeoFA44Rvdd0xBTURMXVUSI3zTfRHl60/sOo2au1mTcp7wjSUEgi/v4lTQuBtaFNg9QFnpw6sxzv9oAb5wXgwPsnjY4Phy3feh8axcmyRvql57qmf48ixIRt7t/n+hx9xvlfw2YczRB3YuVGwQAXB4JzChorEZpSqYTq2ZCsKXNRahlbC51yDkobIoOyXKkP06Ik6YtGwvXOJvavXSEROIg1KDNEmi2lGLZjA28gYeoETFQSJlAnO1zEoA02Q0fpHCUnPpNHQXrQaSgKF8LjKIbwhIFh4/Fn86AiUE9i9DYMMTxptXmvFhIIrNy4SpoJlq5lNetTms+xd/IATTzekpzKmG2MIPYL2rA0WsRgmBfQz8NWYndkezZVtVhvPzaRieyNjcEpxZ2edTz//HKneRqqC2tcMBwrVMzR1BJBSWQ7pjKKsGSwMMKOcxdspK2srrJeTWK4OMNkdY5RhtJDhjGBo+ggZ092S5T7T9Sv0vWTiK37vrUtIrfmdN17loScOo9f6vHn+LJ/Jn+KxRx7mW99/ia996gX6ywn1AB5eWOPSuYv85INLnD6xypCKYniE2kxZTgYYtY0QAwighMILgfICIaJuTkqDQEUFsJQxqUyCMRkhiulIM01VVAjhSEKgqmoqW1M5j60b8l5KaByJNDhRYJRF9LI2YtdhdIqWgSNrI6aFjaCxhEwZiiI2DVVVQ6UcXkrqssb0F1GjFawPKC2wtmJmS4qioAggnGCYKEJw9NIhEjAm4GzCeDZmfP7N2EyvJSJ4jEsgbVrQ1Opt6ayzIkCK62tbEfGx41whObhGz8v4QbTM0r7WWMpAQMXSt9t3XVAyyj1kq7uPtsWWQdqjb3I2dzcwaULay5iWBVZUoCzCGEJT45wnzTXDYY/K1QSjUVpj2iCI4ALKdCz6flxyEAEpusAaHzvgQ1uEEftld0FkJz2yLd7GeyPa7qkDwLEFAUS2UYiOkYNYUA4g90v8odWe6NaWjnAAwLX67RBCjAz2sgXLbWNkOx8pE6VaogU3xKJSBCF0jGiIITfxCuFajnTudxvp1xgtH/Z1zB3wFiLKIaJ8Y9++QuBBBDKtMZkiG2hsoSOri42vKQLSKDKREWrH6vIKu7sVXjhEH1aP5pTTlL3ZHmUT70epWm9dLbGuPbcybhKUjhUO59zc7k50cgn2gaRrNxVCCILzaGJQipBx0xaIF1oRKwNRly33NxUHAGoXFNON+e/mUfPMw5K6hNPu/rofHP95soj7Kwn3VxF+FhD+qeM58JiD9oXBH5SQtDtV2sZI9o9xfxNw4Lik6Mzg4nzQJQ62rhwej27Pm9K6TV/segq6JLl920HRbbRbOUpQbbWDAE5ghMT5Lvi7BfCtrZ4P0Y7Px5tvfv8+GA/GJ3V8bDC8tX6LQX8BpKOyNc1GRX14SH9llc99ccCf3PHMZimD6haj5RGnBn1YbHjv/B5ptoQXgSIExpOanslwXXRpaL0PZSwj+uD2d+F0PqGAb5AB6nJGlkoGWYbWCaaX45GYJCXYiqZuCF7GEq2Ki14sLclu9owLTTt5+BBdKULbzKRk3G1Xs4qqdGiTkvcztm+dQ90oSFYOkWCZXnuP5q11Bg99Dv21I9zYvM6t93Y4Itdw6ZCwFegVgeNHTpFZT29lkXGu0TMLwZCtLOBsRirAZAlTGkRjOXz4ELPxdfKgqSkRMsGlko8uXuaLnzpCb5iTF4GRSWmsw2YKRIpyezRCUZcz+iONAmSaI7ygZxKEUoyyhMRGw36VJfQHfR575hmu/+gaOukx3ZkhNAyOpGRFIDSB8UwyMRWvvPoeX/6Ln2EmGl5/7W2+/NlP8ZmnTvPBi+f5ted/nQt3rnLnw8s8c+woH23c4tL1XR5ZPsrG5U2S5YcYlYJh5hlPHEITrYKsbYupEuFBCo9QLUAMihAkJjE0dY3zHiub6L2qE1IUMxQh1ITgqGuHyQZYCtKsT2IEJkvBx0aiWdHgvY02aN7RG6YEqShKT5oagpOsbk9ZmjWUZUXTOJq6gaokS3IWDxcMFgY4aylnU1ItKSYzROm4piCg4yImYtyuVO0CHVrGB48x4Brbxo/HErxo3SUQkUU6WLEIIbQLW3RiaJfByGi2sbfd470Pbdl935Yt2rHJfeK1Lav6VnybqDQ+xwiUDiytLlP7qB1OspzEVEyKCdVWxfKiRshoh2ibhkBDsIFekpAlgkJFP94YOClbQLXfPEX3nfYB3bJWoSPHWzDTHmJcxH0LCVqGTXWsNveydIL9xT+O0J73trRLlEdx4Fx1spP79aWiky0IOS9ldzrXqAroktri+yAFKhyoXh1kr2N1nLZPMEbJt2Xr0NLOgX3ZRec4EToWXO6XswWtnEGCVx5tBEpqLBajDNaH/RhoqUDHKHHhBWnRMK1rev08bruqWbxfQgzfgNg0KqREh+hSEOZWXHPBAvspdfcDxhZEhv2mv2jZ1u4YRATBonX48K0co+Xk56Njeg+GeRwEnJFt7q5zV0GUrc80Hfq8b9z/LvvjfsZzruX9lzDCH3fc31DXyXPuf505gD740J+SXoT5PCAEaGlQ0swdOaTUhOCwzpEqNZcXKRnTH2W77onWaWJeQdIKgqCxLt4FAbokWB88KsR52TqP8z664/z5qpIH48H4//nxscHw+vZtes2AxbDAnckuRVGSGpi6ilQHssxwZ7DE3uYNBjOwNKweyRgccjTndwnaUDpHOS2QKseLaBrvfZvcJLudeWwA8CHGz3rnCEIQ0EgvyNWAdNG04ENFW36xz7LEyUtilKTztuxAQEwKsjjXYBKDbbWZgdYDUhC9HIVlMikQJEhpUAa2z77Lobd3aE6fpMgbXLHNYDojG+VMDWyvbyO8ob86IukNsOkCuVjgyBPHSI7VyME6pXX0UcxcQ5EOqNIe42KPpJiwPd5j48Y2J48/xnTgYSPW0OrakRrBXrHH1Q8dx1ZGrCSaEwtDPioDWZKQh8DQSIxO2Z5OOWxWUbXHigrTOJ59ZJnLxySzO4bVkWZjy9GMt7CTipMnFrn4g1c5duoMF/dmbOcJi0ngERP40rMnuXnpEi/vBl69dJnnrj5JcVhSjWsufHCNo2cGfMfd4puvvcxnn30cb1e5fGuPxx46wru3CgYnD7P63e+zqAK9JGN1oLiwWaHp0Vgfzz8K27g2ZQ1EaCIj4Ry2btCZoK4LhBOAoZ8mzGZbCAZIrTl18jTTzS2MNAg0aa+HRuHclCADRicoYQhIglf0rGNhYREbGhAebSRpL2Vxp+Dv/OQs+Z/HgFy7/jN/XAD/01Mn2c1UyxZatNE0rone2V6jpCcESwiKoG3sEcKRGIm18R70RBJJis5ze187rGTcGDjnIohqWSTRMWGB9u/7QCLG17bAY77Axscp2q5zorxCG8nmziZCC4ZLS4gQv5P9UU5/NmD7bsNg2EMaCQ1YuwtIlHL0+ilKKfI8jeyiDeCbuVzCe98yWBGY+LZkPncua4Gl7ACSEHT651hKPsCs+TBvbp03rHUsWsfWtrScnIOJ1p7tACzy90gu2t90G3MZm5g6dk6ICOlFB0qEwMu5wALhW3At9jcuIfi5Q42MtFrb/CcOgOm2QS90oKZ7bvu5OpAXBDK0uk8tscKiE4UxCbWwBEBrQ12V8ThFtKFU2oBz5KMMbROCs+iexqSSpeECN67fROoob3HO0aX7ifaYg4ugSam4UZs3ZNFWzzrfWgQy7H8271snDhE3IbI7Tx0QPGAT0vnagjjw576lXbxn9xnb9icHNgkdUG215B0ubtn3+7/Jvo2Mux/g/nlA92cxwn/e+PMBs/ip97t3hHv+6M4V4t4NR9dop43CGDUPiVI6zjtBhLmThBQxYVB3XsN+X0881w4SHZtCCLjQNuK28hMlo0xDCYkUjqrtb3gwHoxP8vjYYPjY4QWu7F6lkoF+kjO5vs7e5AQyT5B6i4Wkz+0kxWUX2drdQY0VR5oeigmpdtSNpvQ15bgmMyZGKENkEOYM8EHGBkC0NltxBQlSIFINVRU7ZqXCigiJOyCslEJLSXCdh2vc4SIskCKEp6qj/ZU0uk3cEbGc104wlbfUtQVn2sVFoHWKTAYMnnuB/toyRbNHcf5DWEq5uXeX61euMywqqp5lr5zx0HKCT/ts37Yc7RksgmZhyPTyNsMw4L23LnDxUkk2yKmrGsIQL3JOPfEU64O7bL5xndNrp8DmnDy2xrVzb+EmCcPFBTbVhNXDQy7cmJBpgxeBwcIQu12wV1iQlkPaU5oBqVjh1e//KTdvlJTbNaeSBQZSMC5v8c4PfpvitGD80R1+8N4WT37jBX7rm9/hK2dO8MixERtug+SYYjRp2DCev//Pf4f//f/qb7F35Co7zFi/ssVvv/o6k2++wacfP8Nv/PqXCVXFZOMQyw8/jpeXOPJUCm5KGUpWjiSYaxVWpThv23aogNAarzVlgDzYuPgLi9Yp3ketsPACWTaIIKkLB3kNeHTiyEWD8QHXNGgZNXhBSKRS2KZBJXEiNyZFiiZqVpVCaUHVNNhmygqO3Af+9rEjLI/3GPl9to520e7l0XqsrmtGgx69yYRvbO3wl3d3ue4sZw9XVE1NCDEQpLAzEC4GHPjOXktjnUOrHO8sRhElOy6WKyN4vLeJDtGyg50u13tcW9KWMupEu5TFezWzEfgF0YZ5hP3FVoiACLGZsLKB3miBrN9DGIv3Fd7DpByzsz2h319md7zHaGkRoRxapQg0vRwmkwnWebRRsYlOBoLtNqat3ODA8ajOQo5OuyjnTGEHX2JJXt4D+gnM9a3Q6Wk7SBSxWZd4BvvnQcwtKDr9bsdYHmByAy1D3zHFHIg/7s5VmMdnh9ZGLjqHEJk3mOsuuz5cKVvJQwhtA19kCTtg0jHU3u0zlXNmuDuW1sYvekzH9+0PMzwCncaI3RAEJu8TrI2bfqGQAhrbsL27xdLyKqGRNHaGsyU6aKijr7rQChl0R6RHOVIrS5OtT21wXcm9BV4h3OsAgYAQz68KUZIzl0J07DviAKCOT7Fhv2nrfi1uPEfynma4fUC5X/3odLLedyKEA6C5BdjdhkPNI7+ZA/L997tXrtH9e7+x7N77+GfpkbvnHvx3+y2cM+pzJn3+eOY/g5a7CV209/5rd0yw1iJ6lLsQQ6YUWBXz9rQWKAVaaZIkbnZ9EAQp5vaB3Voa46Dj3yXdxqU7hvbY2jS66GChCNbxYDwYn9TxscGwl0MOPXqYc2+/DYnk3Y3znLxwiv7nh5y7/hGrkzuk+VHWc8Po2BIbt+9i5QpmeYg0e/g9SxVKbt/eRdjTNHWBMQkQJ1mpiElzBEKrtOsmg1iGDLjg0VLjiPqnedEsuHZS1POVqHGWgMc7iVChdYsARLTvkkIjpaauqzblLupUBYG6sShpImjRmoBk4ZkvM2vOIm6dZVokCCdh6pguVox3IJeOUO4hWAMvSbRHmhq/5xA2w8llhslx9vwMKVYQ1ZhQwkLfoEzbJqMaptsTsiDI0gHrsy2Wh8d55JFPszO7wZVXPqQeDvlnL7+H1RKZDXly0OOhScVdAZfHluXhKdZvTFHacOxwj8neRR7rL3KjP2TtKIybgiOHTqIF/M7v/j75ymP88m/+dd744R9w7d2LnFjps7434dKWZ/c9hxQO01cIX+Bl4D//b/8bvvqvfY6tbc9Hk3Xu3pWcHBzi7Llb/N3/xz/l4eER/tW//jxrx1Zh7zJOeXY2xgz7mtWeYWAmbJfRj1dLFSsAwlJLzeZeRa+nSYPi2N4UfWcTHzxPTkv2ascz4hC/+tVfptCbvPij73JuusmxrT1y50k2tuhvjnGHhjSNxRiNR2BMEr1MRdTZSWOQxmCMIlgfr6Nkbk10I03IJpINAaWOpUajFc46FkZDhJTMgMVexpJrAKgDjKxFWsesLPFOE5wBH6sTIbh5iTEgoq2RbRAqMmGS1j+UgFBynzw74BcMbSkzBJwLrXwA6LJVBW3XfguMZZc+1/Kaoisvx6SpRAlE6KRChp3dkqqq0UozrjxFUTPeatjZq1CHp2QkMf1MO6SIlk6zomQ8KWOght9v/JNKYEx0cQkdWOwWYtFpGzumcC7JbRPbWiDdgSfYZ/kOyB8iKyzmjJWYg6kWEgVaMBAOAM34OqqNIO70vh2oicfRvX4HHvbnwK45Sc4BD63UQXVQG5Dz0jQdiJoz47Dfnd+VnWXruRxZet8C5w7UyY4JbXWyHkfeT6Jrg4TgQGpD4+qWFWwrCdYxKwryLEclEiclxqb0M4PKU6TRQBnBL761x2utz2SUq0nZso0t2Gx7+wgHWOFu7Ouw4yWSxKDPAPP7IqafgUS2Zwr2wa27BzB6H6/NwevTfYPiud8H2OHANZvLOBDsX8f95r17QOp9ZOe92uUD73MAlN4v3fhZ42f9fP9e2r/3DzLTot3wEg70AnCvnENJidJRJ6yNQmlJCA7TSihiBpXEmAiMYS6qmhNNsbIUtetKS/wceLcNnda3G58491QEhNdxg9qFATwYD8YncHxsMHxnchFXCpppgZcJanMLOwvkIuNIf5msfw52ZlTZFlWxjRANwgZEqpDKkegE5x03N7ehCThryfIFqqZBBQXCzctxB0foSonCo6RCCo1vk+lU+2cXNSnQBOGoyllsugkOF+KCobwHYdrmi3YSsJ7EJK1OuJ14sYQSjErxKvpA1pVluPo0+lefobz5Om7zMtJn9B59ntmpVbY/OodMEtx0j9l4l3QKZarQsx12xg3H7CJ2LDBrJ+HDW1TpArNgWVjos37HAZLEO8rZNDol9BdZPJpw54NNWEmZWsfDZ57Gb0+4tbXFc888y836DncvzrCLD/FuchSjG555ehGWHwe5zpV3PL1ylytvvsW/8oWTXH1cc+3KJkobZslRjunAofQR0mMLzPp7DA8tcfH9m2jZZ1JNSLKEUV7jdIJ1UT+b9ATvrd/i5n/5bf7yL/xljjxxitMri6wdXmK8CUMR+IUvPYEO16mv14zsFU4tFVy81HD4aMVwJBmOAut7NUbLGFgRwHrH5vaU65sOZyRPSvj3fud7pPczEVcuwut/BMAvdD+7fKn9y02ajz7gd/7v/xazleUIfgUoYWmCRemYgmZSg0kMWktqV6O1pj/oocZRS5nmA5TaY+Ytzmi8lFQhbpTsbEre7zP1jlwbmhbFVEJgXaCsKr7/g5dYWT3MaJBQjGtE63kdgse6aFEmlcCKwGR3xmS7IM/69Ic5QTTEpCkic0lsiDuoI4zssiQWVrru/P3F1HuQIbRlT+aYZX+BFtH3VMTSp1CSrZ0xeV/iGstsMuPNNy+xvTGjrkuOHD2CXNWIRCK8x5YBVEUQUZYj2wXaNR7nWuDpo+tClDvtWzyFEDDGzAGMQBBkALdfI46MadsoKLrGqPj3OajqHswBMEubJteW2sUBFrx7VvT27ZSy+6Nj3g7KTKQUbbx0iGA+tCmZIUSutgVtLr5xvAo+gGgDOcI+Y00L3GTYB1QBWhuyMH8tZKsFb6UCAhChbQYktHZa0WfYpAm1twgV7SMTmSB8J6GJJnTDhVHc8CRgBfg8Y7Q2oKkCHodRgkTJFsEeqEIYRd04fLBoKaM9n2tvpgObmXvnad822kXJj9Z6Hp5xP4u6f44P2ueF+65v+JnPaYnN9lrQlvbbJaLD6CFuJrrvxf3NXxEs77/X/ZKJ+9neg+D1Z7HE97/2QRb7fq3w/a/1Mz8j+zr3g++llI79Bi6m04UARunWUSJKWiIzDEaJ9r6TrVWbiA168w2XIRBQKiGEaEnqXAAdr1lnrSalJrTe7rZpfuZnfjAejE/C+Nhg+J33rrHQrLJyfEjTb2BUsa13WQ5rlGnD5qUrrIYjOL3OhZuX6RUjwDBKDcpWuD1P4zXrO1V0cOinLPRHTItZC7YsSggQMpZkAjhT4fyEcTmjvHuXcuxZXBqR9Q2N83jZtugIgXVVy6J0LICAIGmakjRJ8E6jZLRVi2CiQiaBKztbGPokg2hPVImS23fuUlc5oUg4vZahjGOydYNEC+zWNsWL/x/2/jvYtjQ978N+X1hh533yufn2vZ2mu6cnB0xAoBEJQmAAIYggCUk0FBhcZZXpEmSWy7Zsy6RosSDJUjEAjCUCBMkhIeQwIDiDGUzATM90mA63+96+8dyTd1rxC/7jW2ufc3sGcrv8l7vuVzXT9+yzw0pnr+d93ud9ns8xGq8yWZnhut+Ns566qsnmh9TlFvv7nv2RIjraJc5GSBHhxRw1OoMebrB/Z0I3GnJuZY2qKpjP5qyubyE7miqbYJMFVRZuur4sSNWQaLBC3xnWVs4zlwnJvkYlfTY2r3Dmicu8cvAGX/7t3+KPfOQO94ppiEHuObyMMMbR1zXO5+QFPHohJ+kKOskZLn/iKT7/qV9ie2NA5SNsw4Z3vSBJu8xqS6fXZTiOMLYijwzltGQFz8oj5/n1SNAREVMVESvPPLvL1qs3WC0sfZ0x7fZ5/V7B1bEgGljO9g2vuApnIhbOUPuEoo65efeYpLNKvcgZj3skxvK/39pCXToP0lLsFPy7P/GjnH/qHNoJkqTmn//cP+b687uUtmJ9ZvipezsMd2eYwQp1AqoxtRdOEOk4gGEJOrI4F7oAsVZ4E6FU6FLUVYaUEEcKF8eA5z/+hX/N2WeeIe52yQ4O+Nov/TKf+em/BfIEPAnhKKqauZdsqi5KQdxV1LUjUhGVrdFxhK8sioqXXtvj8O4B1ijwh3T7mqfffRnpHcadFIXOBpbUOhtCOWiGyloQ5R241ovVsfRac+G1DrmcQJeyndYPXg1KB1aoyisef+wqprb4Gg7vzphO5xwfH9NLe0yO+mz1I7SUxJ0IITVadcmLjCiWod1uLLEGvEAoQNjGmK4ZMGtBRDPEc/r2r3QAf7bxAxdKBQCjGkeFNsZXCILf84n2NmDmRnLgAyBobeuEFE3aX2AzvWukEBA+R54Mytk28UQIpLAs4+FpUZYD2cghRACPDhq7KgfqpA3tG9nF8vzQSD8a8BbipkE0qLzdBidazSy0corAcrcCAInEBus/D0IqlG1wrGx010t3hXCErQXtJRJHTQ1pTEd7EIo0iojUiXbZeR+GjqVHGLHUEQfAHtxAgiuCbQay2lmNth5Q1LYOjK6WDdiSOOtONNFNBHiwqTsZGG115Q/KDAKjKeWJJVhwDjkp7IQI0o128Dr8ZYTzJptiVTQmQ+2xaaUCLVhv11sBcVtotUXSaWb35O++GXQ91RsQnLDL30pGsQyBesvnn2xDy3o3UqOmixBHOjC7gHGeNInodSOwNUoH9w9rDVqpMDzXDNOZ2iKi4CmsRJBaaSUwxmNEmKtpZxKEbzoRPhBGXtREUURdGzrJ24YLD9fD9f936+1f3ZlnIedsVCOUPea5uzeYftbx0eq9mPML5p2CPLtDZGo+9t4Ps3P9PovMcn485r/5U3+UnoNXdu4yuTfh7q3XSMcpabeHFopBv0+8tkZZ1/iyRnmDjLtk1X1effVFxLQi6nZYXxmiE0tta2rriQChRHO/ibCuBl8jlaQsAvhIO2kYwsNT1wVCSSKlcXHEvck97rxg6Y0iKq+ptSFfaHaPO0yzQ9jv8cT3dUgTw43P/T0G0xnkXTplijkqsGXO4ugIGWnqwvPyvR4TaYiOLKO1Oasi4Q/uLDj46n2eeGyFGy/cQkw38NUu7x8N6G1YxqMVjr76GkZaik7KRJS8+fkXIQPlNdNyyuLwiOFVzep71sivFxzdn7E97tD9wDaVn3Dr/meIs5xnnnqCanfGpa0zvFLdQmvN4F1Dett9ptfe5GiSsZGMkK5iVkxY3KxRlx3SzFkpe0TdPp2OxlUVUSywHrbW1/G6caeoSnqy5mB+yDQt6WHpDHtsX3oP6fob7N++Q1lK6hqEUOhuzHR6wGyvQj+7jeCY/njA67MBr0xqFjUYL1gZ5KS6w/b5be4e7HI8nQIwHY559zwjcXN86fGf/V0mLyVsbl3ERDnn3zigW9RUVU2UFwBc/PI1xnsLrn3kCrIfNJXSE9LcYDmVLaQgieMQfarVUidnawse4iimINyW7r74Al/5F/8cj+eP/KW/wid/8n/N9NZN7v2jn2n+OIJMIa9qkuEq3U4PhA3pXl5SO00UC4xf0O3FHOwV3L1+n26cBvcFFNmi4I3X73Hl8nmktDRWtYhmCMkTJv3F0qvUhn1rAJ0xtpFONANMPshCwo0ttKGXN3LRhFp4jfeO1dVzfPCDHyRO9qmpWFntUDvPojAcHh0zPOpw7vyQNI1RkW1u2BKto2CrFof3EdLirQg2WILGw/hBBtA1IKQFbicAKHilsgQqDTMqWtIyyEOg0X62LGA4+mgpT4VnNGBGnYCN4HAQagWa99XNsTvRbQbNZTBsO3GfCC9opQKNM0W7X601mXQnrOSSZG1BnGzYylYD3YCeNoWvBUBNTN7y97yldS8FUkvStBPUMU0Ig5UN+LaNxESFATutNLZyeFEjtSRBBM37ZEpV10GOIVla9nkH0kuUUpS+Irg1BABlhV2CS9A4F66noDcFCKDXN+mQUawbvW/QpiqlMMaGkKOG9a9Ku9zHE5vbE+b/rdKC5cleFlan2Nv2VnYKULfvt3ytOhm6e6sc4fTzT8szWr/nsOTS/eM0swvtNXqiA38rCD69vpnt/ubnnJb8hJ8drZc1OJJU0klCES61DBphJVEqRinZWFUKnLGNzBCkEmgpUM0xRBHcdZpukXARUjYDlc0fWNepIDmSmjRNv2k7H66H652y3jYYFlHExqUx0/kh42nKldEqSVVz/dprREceXyiODg7pdwVzuU9vJUYwY5Gn9M+v0BvXPHtllXwv4+j2lxF7CTdf/gLCCVZXVlk7s0XUS0nSLjJOEEIxWxziK03SS0l6cWASgmsT5XwBkUOnEUiNkh2cEBhrKMsSZzXG2DAEooIWMeh/oTaWaOi49dXrXN18D9tPPY5QMVYLKlNwPM+5de8mN14ucT1JZTLkvQ7r5z5O/rREJ5r7/+a3GdSbZL0tsqPnwRzzobHjkVXF4NmLqNuf45mnvp1z7HL1zHlG6gauukEtrzKva3yueHTrUb74b79MVFsSSqqDnGuvlyR1h26eQQrjfIZ++RUWOwtmd+4SLw5Rr83prq0Tmww/MThTUsUV08l91sYJUZ5wdueIVEg2t7cQu8c8Fq3xgs1J+oqsqLjyrqvsFoe88K8+w9WNR1Fnx9Qv3UZJjVYalcTkWc7scEJeW6rKMe732RiBiQU//9u/wiM7FxkkG4yLkv7FEdXhMcfCc+v+gvc/NsDLGFd4Pnh5jU40x8aaTi8mqj0XV9aIdJdMOY737qKArAInNLNpDkAvVfSrkjpNKJRk7fxjdM9qjub3qXYOOJIRuyLHRophOxwTRSTTBakQOCVxxoXBSxV8eFtmSClJ5S21q6lMtRx+6vUGJJUll5K6LPDe8Km/9l/QW12lO17lg3/iT7Hx6KM466AZOXE4XNPaN85RlDXdnkaIGB0ZVrIF9uY+dVHhHKyVjg9ahaxqvHAhdU8qqjsHrEvFaNzDeQMNkKXpdhwrxf0kfGYbBEGjsm+ZNeMd+DA86L1v4oVPmC5OdU+09midMhj2uLPzGu9+/xazo4LhqMP1W8c4J8lmFbPDnOOjjLWNXsOesgQTURQhpCftxkgJRVaGFD4Z7PJQbxlco2mLy3b7T5Zs0c8pzSy0bHhgvaUMN/1235fPE+JEIyzCe0nARY2kyvFNgCvgskaO4sOZZHlcxRKInYRABPlHYHh9Y13nsd4iTfO5svWeaDGfaneuedeTBr2QgX09Bf8Qp8DwW1vobQBM63+sozAj4bxFNwWZUAqkwDShFkKA1Jra1EihMc4gUOhINTZqgdUMdhd2eX7AESdJGFq0bmnZ1YKzExa88c31EpoAEKUC8y2VwCu9TPpbHnsRhgRr45bg82Tuo93fby2RWJ7u5nydyAhOP/fk357T4DhcXyfn5qTQ+FbyBk49Z/lu3wJAt89rZQinV7gev1ky8f8JLAcnjwft33SkEUrQ7yX0uwlFkeFwJJ0uWoe9VssiInzHWYJsCi1QkUBYg/BtKE8zOCcDC7x0f4ma70rvkR46SYhfL+vyW+77w/VwvRPW2wbDs+mUzi2BiAHfZb17lu1zZ9j193jj1k3mxzPksabLkMVswkp6Fj3u4Jzk8GAPUwbT/A4deut9PIFBwIOpDeXehPJwSqZUAGOdhLzOMKbCa4WsPTKKcIYwPKclR9MZljG9rsa5CoehNoZFXhI37IWOBUKGL14lQyupthlHtzL6do3OcIXD4xlOeqjBmpK6Y1hMF3RTTS+O8WZGme8ioxjrHArFLK+w3YRaWKwx+P09ui++iL51Bylu4iY36T/9MdJBxP70gDRP6a8nfP76K8RZn8XA0B0NGI46jOMBsjNksb9LYlKkloyinA9h+bNf/jfEX/r0/88n+o8lEXv/3vdy/dWSgY85M+ox61eMt7ch0RS7OySFZGI1ZmFARSxyQ2kcnnCD0xrK3CNUlzRJOLy3T+JjknFJWRiqWcaH3nUZzXGINI4yilqxujpEi2O8cQyHkm6SkJw5Ry4FRVWR3b9NX2t8LEPiVaPxs9Y35zulsznEbaRs/sX/DD9aJep0uXx4wDd+5Vf57H/917F5FXY00Qhvca5G2EYL3t7k2psSzYQazWDWKb2oUJpuf8DCOoS1OOOoreE//9wX6K+tAfC1T32Kr/6zn2N7eeMLLezAXAZG0hkwxrNV1vyX/+x3SO2DN8k/dB0f/6G/yqXkP/zYu9lNY05m50Vw3Ghb4037H0/D3vllHCvLrr1Eigi0p9fbZv9wh8OjfaTYQkSwvjngsUsV3lkms4rKQH+QIppggyjSmDq0qKWURFFrXxg8u50NgE4phcWegIAG9snGx9fLMMS39P1t9rMNZHgQkMhT9ouikQm0Q7QNxBQNsxdMFGk11WGITSwlCS0x5lyrxm1b8qfeW7QexywLJb+UqITH2gCJMMgnlzR2O9LVAqRlU1+0wN6fAG5aQrk5NoilK8Y3t+MD26e0wja+1M47Yq0xpkYJidK6uc5tAKoy7GPaSXGVx/qag8kc6+xS2uG9x7jgJ9sWTVoptG7cJGTD8vtTkoU2NdH7kxh7TgPKk5S4wOqfug6WMpdQZHgfft+GRyBOpdi1R36ZzEfDvp8awmy1v8tXnNKetI80VYwQp680viW4fZBZfuA3f+hrrXNLTffp3z/4igev6bfDGp88HpwktBZ451jMczpJEqQ7yjXnqpGRnHKPUFKFWU7pQudFqqV9oySkwIa0SLDONoPHYRtjHRNrhakNxnp0mnzLbXu4Hq53wnrbYDieG7wsiXoDROSwGwtuz15DVIpL4ir3qhskawPObG6wKA9ITRcTR0xKyWjzEpe3x1gN6bgDUoeWtfCUJsP6mqyY4U2FM4ayLtHSU2qHlh2ETPARGOGQKkZrR7cbcXx4zK3bGWe3zxDHEkOFsZY8rzAoRoP0JMVJeKrS4suK2ufs3/A8duUDLJSgE8UYFaG1Jh4Ifvf1l7k3sZzv9lDWYP2Yze/6IQ72DzEv3EBdfAL5+HvI3RAhoCgrsDHrH3oE9u5h3ryBSSaUxwt6KYDH1jnD9R5OWBZFh+PK0JERKo3puC7v+8hHKPeuUbo5N3d2GbiE+a0JsXP82+/4JBsfeoqIlJu3XiX1juHme7jwsQ8Qr46ItKIsCz71L36W+Uv3MBrizSuk6+t87bUv8Oxezk+88HVGUc4nn3yCjXOG/f1drq6tsL71CC/vv84bd3YgkvjCLwd2IiWpnMfbGucUmXXoBDqjiDgWzA8mnEs2SPYPiaoJnSynGxuuPD6kk0yY14radyirDgiNT464fTTnSEbIylM5iIhxzlJQweyYLF+wpsNNJULTSyLcYEx/uEGqNPmd67zwz3+BYl7z/j/zY3zo3/8POL72Ovf+wc8SjrRHKokWktIF9kxKhT2tNWzYx8DmSqIoxjTA1gkoqgKVdkk6HepSUBYZf+fP/jjjM+f47r/yl3nmh36IV377Nzn6xU+Ft4MACBDLG3Xa6WCIiPd2SK3jp7bOcCfSGFcHL1bnQDi6UUSig56vrHLGmyvEafiztN5jEFRCcX6e8VPPX2NUW/Y6LPfDu0Yn24CCtiXqHUsmOJixNFrFBpAppfHSEcVjiuoWkhRBilYV47UhWoEtct68cci9vRyRimbIVIXPFaKxqpuhI4ldsnz6xE2BwE617KH3p9q/DfBsY2kfjOVl2coOhHLYJyWb1/sWbIajHwBqYJ5F408sGh3sSSDHaRDaPNJYgNGyggSJhXdtANCp4A9oWsnh9bJJVgtyCRWcUdpBrYZZXTa5RXtptHDtwe04LSNZAry3MJIQ0vSMEKRpFNL+qsD+euuaJL/mvUUY2hTOI2TUDKjZoO/1Fu8UUkZYzNK5oz3mLVhTKgrAvmH/bd04gqjGLsK45XPb7VfqRPoi5UnM80lXgmCpaC3GhvmN0NFo9tI3Q1yyGYI8FcEsmw5JiCxtmWm//HcbeNMWOg9A0HYwuxlqFEuWvjknDWj3cMoyLpAoy3PfPnaKHX4A5L5FBx/2p5FSyBN5RXt9y2Y401r/wH6eXBXNtbVkrNvizaGkxjuoCkPSVSgVUhqVbNI7hUBIhXcuSKWsD0FTQiC1XkqrcJAkyZLNVkpiXA0CVlZWqYuCPC9D4Sg1Qj50k3i43rnrbYPhzmPnePrC+9C5Z21lwDX5PPm0QHYctsoYX+mjjgdsr17Gb6xz580JtQYbKxbCUffm5MUx0wPwtiIvshDJW1mEa27O3qJRVMZSuiOUE3RWt+iN0vBlIwW1dQgXope7az3m94/5xqvfIBYJj1y9hEo0SSehXoSWn4qSYNmEI9JgXIGTMM9mpP0V0BbhFeiQlFR5R5JGFPMCn1wi6nbBOPpPfBI+mFBdex5xb8LaEx/nVmmIywW2yuj2HmP1E3+eyfW/Tfm5F0mdwNU50mqmmWA861PFHZJewXQGCyIGE4E0cHx8jxe/+ots14YjrTiKNuhIx55pQNFewfy3/4DowhNsnH+K6vVvMH/j80zyQ0ara9iuRquIH77wJIdO8eYbL3K48xqTjz5Jxga/cevr/ARw/5fu8pH/4/fSX7Vs7c84s77O9pl34/ZW+K2f/jy9eotuBJkCjKUjNEf1nFin1LYm8YK4rPCFYHBmjbX1lCevbmO3+hT7Hn0459U3j9k4N+PobMLOawmxK5hev4caGsyw4B//+owb2SXG/pDu1go+DgB0ni+Y37UYWeFM0P+OVtZQRcasqBitCeLegM//o/+ewx1Bb7xCeXgEV2AjHbLn2hu6bCJENUpFzb+byXJEiDEVmqKq8E6hZUJe58vOahIryjwjd54o7ZBnC7SOufUHX+WmeI5Ia/7c3/nbvPdP/Qi//Yv/CmiFCoFlodGulnVF7R15FvblQl2waoIW1TmL845Ea3rKYbKMurH26y0KZBFArHeWWRzx6TMbS31jmyAl5AkbGjxybQM8GoAg4XQymyf4zwZZqqI2ivWNqyxyT5ZVCBxxpCmkotPrIrvQlWeJ4wE6OiKbFcjNEUKEjosg+NA2nhAEayYN3mKlWPqlhRu4aIBvaL+eRCo3IEY2w3HN/rSoRir5IOA41c5uWbclaAyJJQ16Dg+1soOTLvmDU/00jGfLQi4hUkPyymZIDh+Kl+AwQVPwtG4P7SZ4QhpaQO1L0O/kyZ42LXOkQjSaWy9PtssJlhG8LDf5BEA5F/ShyhjmR/tEaKJON3igt4BZN1/pjT8vQoEArcEbR9pJCUaOQc5hbWMu0qTrOWcCIPWEoeYoFIui2TdPw6q32LQpTqxxQTPcFCVtI6QoquWRbaU81lqsC4A5aFSbN6MdLDu5LTWq5CXyFOJUKunyumhZ2JNzuwSXgQehjXj2+GVBc3I9nZyfdsDttGyifZOls1HblWk9sAHhW+/pcA36BkUH0N5cL8tC7+TnUCiELkv72aHAksvCFSFQOgr/k1Eo8BuPZqk8WofOXYg5Dw4sQvngZKMEXksEoYsjXfiekMFqB++DBMbYGiEc3Z5mMBhhak9RVSGExnuUFBhjeLgernfqettg+PUXrzHfP2btzCojYtJ+weFigd/r8J4nzhOvZux5yzytmbmc490524+eJxMQxSkq7jNwQ3SUQJlRxobaZZDWRChyl7Ff7XA8yYi9YlFZpkdz9J17bK+ssXbpEkQVtnZ0oh5RrOglXYb9EpNbXC6ZHM7QvfBlJCKJxZMKgYpjFkVGtsjpDxP2DjLmWY2KBNpbrA4DQM5atBREFvqdLvmiJhkInMqYvHmNyFs6K5vMHxO8/tKLJPEGZntIWVbYeMrk8Lfh5j6r6ZgqrTHFMWl8hmohsfUhybgAU2KjMZO65GI6pLe2gcwApbg1g872BvPjQ458yvsvPQIvXqNjC9TGFodJymTlHBc+uIK9/irFoEe/16W7OkCoiFhqko0z2FQTfe3riMpy5somi0+Hb//LV84xx3NhOGI47rK5tUUlb7Fz7WV0tQJxn57usZgcEMkIFSmkDPZjUihW0g7dLhxWGcXBEd/x1GM8Fqd0xs/y/OHn2c9qbmeO4+o8u3c9HVvzrnMLWDiKRcTvfSPj5YMz9BKLGWqycsLh3WNIO8SlZ/vMFsbXDHd2AbA6Iq9rCivZnx1x6/A2t17f5c/+/C/TGY0AuP5bn2bvdz/DxbVtuHc33Ky8x2kZIp99+AL3rV0XATTpOKXKHXEUUZpy6VebZxlKCvLFgriT8K7v+iN85E//aW58+csopfjon/9zAOy+8jKnVa9CCkSkMXXJweEO+/slZZ0RT0NRNjCWSarJWibUR8TC4aTExBqLJIpjiBMcYegorgWDyqFr35oShPZ0w/i2oBgX2utBF+0aqURgjQMkC8BLS00tPIPuCpcvvp+oe5Ybt9/kiSfeR5oYjKuQcQQ+x2QlVvbpbw9IDiZU0znebzcAU0EbY44jTmKq0lFV9kRqIEKSVesXe5qtEw34alGqeEAWEVwuWGLawN5+k62VaMEND7bURfP3325HS1L7Bhy32vKGQhSIZfTwUq7RghraoA2JdSJYAYaovGUHQDZDXL7ZfnmyISegUbC89ppPDIBYgDUnRsu22aGml7Vkz0VrIakEUSxwxiCtIen1sAQQLQhDlLphWn3j+xyAlsa7Mvw9C00n7RGKsjZZTGKtWRYXWilqLzBlgZBBW2rbmoOG1xbBzzgUduG8WGtQShHFMR6CllqdANkwSCdxXmNsRXCCUDhnmva+XB4/704zqC0jGYbIHmBrT7HTb7Uxazf4AWa3vW4aarQNt/DenwzBtT/7luU+kT+015M4wcQnHQcfft8WDaF4ehBUnwDiNnwlMLLhOPhGvmMbXfzJ94vWgjSOwAmsrekNYyIVtOB4v9x/1XirLTsrCEQUujNKSqQPA65RpJGRpiorJIJIQLeXkqQd5vM8DKBHEVWTkCmEJ9EPmeGH65273jYYXhn0mN2b0NMD5NRx9sIGZgTXb+xx765H1J5sIViQczzZwxYpOt+g6I550dzla39wje7xKt/zPd9H/0yf4mhKZWqyo5KOGzC+fJ7Xfv859r92n83uEN9NWBzmbK1vEsuYfDKhOxA4UzPLi2AwPkjRSczm2TWygwLpa4RPyEpHlc9JZEQcz6nqGVVZo1LF/vSYw9053gbwWIoSZ6owaIVHqxgpIsqORC0cnY5iYXMOvvxPWdsvcKt97u7fp3huTPyDfx6/lbC/cwNZ1eTf+BLJF+cMP/lhdqObVIcTemcvcagMQqSsdc7h5W1yd5GirqgWU8ajFcS0RuFgyzCJMhZlxpbQrJ/rA9CJIqwSpK7g3vEhUT9l88nHKIoF0doqajTAS934STq23/UB7t54jYN7t+iM58RNW707SplP7rEwiswec+2Lr/PkufPk0zkmjrn4yLuI1jZY2F1UaUmc5oxYI0ki+qlme63HwipmM8MYzWYv5fLmBbpXevj7CfFTWzy/s8ususyF1RprMqhnJJ0xapHRPcpZ2a8D8NrXJJFi1Zc4K+j3Yqq9Q4q8ZGOxAGD96JjVLEM6i6tybh7so7zgF//qX6W/vsYH/+yf49J3fgc3fud30L90DwjMjxIa4cA2LJ2UCrwKIBSBiASUqml5OowpljfMLMvRUcQw7SCSmPz4kM0nHuep7/tepFJMd3b4vb/zt/k3P/23WG/oL++gMobD2ZTD6ZS9W7eaG07EMxtBZ5xIiYgikjiiqizeKtJBSl4X1HWFBRKlkXGCMTVCepzyRDaA+fZ+LJcxzNBaL3kRbnY1NYGr9VgvQl1gbMMWS4yD0hpG400uPPYUNurTWR9SZwtE9QbW1djaUcwrrr2xz5VHEjqJY2OrT14GK6yW/fTCoZRDK4lUQSettMOZhiv2EteEOQSgeBLvK1APAI5w3k5CFsJPrWTgRHvaxlQjTnyLfXPOl+CU9r9Na1nYJXBeShNkYw8mWminGklGC6TEMjxiyd7RdBwIUhPnJSG7q7Grg6VWM+xX0+pvXCa8F8tJfdHICZRqhuGaq++EB3cI1SS1tb+TCmEdOhV0h2MoDTrqYMnw1qKkJNYC4UKEvVIKJyUoH/zVvMA1A3KmrgNh7JrIa+uD1hjfFDoQp4qqlljnAqtsPYggfTAeDBZ8SFeUUlH7oFuPk6QZFnRIJ0gSjXcnAFUKiLWiLGmuVEAEpjIUOe0wY+PC0UoGloi2YcnfIjV5YEDv1HoQHD/QZ6CV2Syf69taqo3seDD4o/20UGScyB4eCPRoCenmMpanJBnhegjDj+22tu+/lGc0kiARLl68NwipibSj30maQCGFx2OsJdIJStQEn+Fo+fcBwQXE1HUoglRg3tuoZeGDDCSKNFoJIhVCqY4mWbBwVBq0ojvshePhBXVR8XA9XO/U9bbB8OZ7Vsmuz3G9BZNMkYuzKMZcfCqins+YHBRELmKS3yTbyZGjHm9eu0b8xLv5yt03MfeeZ1T3ufHPX2I87HHx0lle+MY3uDR4BK9Ldr94THZ9j/MbZ3mzOkTVEWvjNW7fvceZMyukfcmsmJOXFaP+iKrMMHsLcmc5KGYop7l0doM6kpjaQuYgdRhZoZUi9gKrPfmiaqabLbYW6I7GOoFUNcY4Fq5kZ3+Hg/t7nNNd0kQxPcix93usPPltzPYP0JtbxH6P0aPnOCoOcWWJnYHtgXTHODHHa8v83gHdsxXlvMIWEh/PiRJL4fpMzBxrJmytpBxlHfR8xtdfehnZOUfSjSgWBfu3jwFIxgN2LGhhOXzu00zOvZdn/tZfQ6yOEVGMz3P8zTdxX32OyAkmxSFH2YT7R/v8xis3iHdmAIwHPXwv5o07r3N8eExxt+KJC4/TW+2QRBUcvkwyPCLSFdXCQQTvfuYSx3vHpElMZ8Vy+9oEJxRRrIgjhX5ScGf/NUwETz97ltezXW4dGJ55zJMZTzU3DOsj+n//Gt9Ve77r/4uL8y99/Uvf9FglBH+/drwhPMZYfvhv/A2u/NHv59Yv/gpACGRBNMEVLeMo2kCw4Mlrgvaurqtg0+scdRUM5bPFAhcnAUR4uPvCS/y3P/iDaB1T1wXe1HTjuLHrC8t5jzGOqjI4FQWWxzp6ox79JAydqFiQJIFWWu2ucPmZD/Kx//t/TufcGXSSsDg44I3PfJYv/czfZXp0gDVFc2MNMoIW0IX7bjt01AYxOGQk8OaE9XTW4EW4IaI8GEtlHMKDM568svRHinPjbbLJhP2dN5BJSj65x5d+5ytkc4MvSp790KNsba5y/doBdWVJR8GjOdIpkVbLIT2lBErG5K5sgiZYMoYtCF6CBinx1i1v+q02EjhpSxPAg29Y8hBowanfNUEbiCBjaFrlJ33pcOyCbliCfysoatvWcgmkl0NzzXNOOxsE6Ba8yDywzBQWpzSsp2LhfWN71w6cBTc4j2/BnmfJ9p/WDIcVhpxCXdAy4mH/VaRRSYp1FRWgo/QUU38C7Cy+STp0KES4Xq0jSiLyPEfHiqpqgLgOkpA2eKOVcwgZIrARNMlnIV7bC48mMNtaSqwJz4+jGKllAKpehOCNZj9PxypHUYxs5EPftBpdL6eOfZtu+MBA4bJz0ALNByUwb/35W4Nlwel1WsYQnusA9cB7nN62B7anvRwayjj8LL+p69E0chrnhlOsdFNA4RvJkGtSU5u2wmA4xLoaHWlGo6SRtJRECiIdI1Tw2hNCYo3B+aZT5AWCZkhOBNcO3XRClfOMxn2MdSxmOR7QcYSQktoYvBREOsJah6lqdPSQGX643rnrbYPhNz93h2E85MLZPnMx5SB7jcN7hrPnLtO7dA5z8zrOO3QGozN9DucTEu9xpSeKeohFzEh7suM3ee3VmvvP3aC7PeZLtz7P6lbM7M4Uc2BY7B1SVoJsornyLk93I+GLz7/C6tke2xc2yaYTZnsz+uMxaMew36MWjuvXDrjxyh0WdcG54WUeeewsKgaJwjhP7jzFomJ/d5+qMFS1Zj4viNJgJh9HikhGuKpma7CB3UyRhxITeXTUQWtHtjAUzzzN4vAOdlsxj1OMMGH/+mcZv+vDiP4/Z/+rX8JvCYr544hZTV47zEKGtqKQmFhiuimSmOef/xrz21Pe/+STfM8Pvpff/tWXeP8z7yfbfZOd2+HY71WC3V7MVuK4PEroJfvkd95EXXsVrCV+7/vQTz1NvrfD/S//Onevf5Wx6LCy3uWx+RZ35Q4AlSnpdhR3XztGVhVeRPzu73+W+1lN4QRFmXE+iUmiARUZk6lhsZjh1YKDbM71lwrsXokad8jzEjFaJVp5mnTgONZ7DNbh6HPP8ahYoEVNWXs6x+vYeo6oPfV/coHfuGv57K01rmz2iTF87tV71LVGRY5Op8uVs1v4G7f53157nf/u6hM87gwTPMfG8ex3foKPfvf38NTLrzFPU97/Y386HJ9rr1P3GlbEO2ofbPelkBjXaDCFQgqPkgoI5vRShS99IU70cEpFeOexDrLZHKk0Oo6pqgqlJEVhyJ2jEyeoxt3AeYtBgLeBBZOgI8l4bRU1bmh5J5Amotdb472f+Hb0Wpfpnbvc/uKXsVXNI9//3bz3R/80xd4+z3/qX7B3/y6RZxnRW7uTtLlWP6xk0Bkq6TDeNcOiQeMXC00tHMZ7tAsgTCWK2kBvtIbWPQR9ej0BJkJKT3+Q8i9//iuoKmGjt0qxm+NnCp3AYBxT15bFYk6/txJa8rFC6WZqXYlG+xlCPQQ04TZBotEC47Y9D41UItCmzc9iCcRohopaMNDiFvEgfqEl49r0uebRBoyLJdA9kRxAcBM5Nfkv2m1pJRB+yVA775fuJuFtBEhPEKS4UGghlhpQ6RsNagMslRRBKtFIJHAN06yDf3RwUJDL7cCzjNte9uIb/Oa8pdfrU1YWb0HoYF+nVWvY1hxzDJWpieM4DLzZkFRWmZKqrJtrWS1BmWyKK4nAmWbgUgQWt7XgQhI08Q3jrXQ7NKeoyhJnLXEnxatGsiME2FCBSqVotbHe6wDG3Mng2IOs64PWY9/qnLeH6vRqgfa3Wm+VT5y21vum14i2UnnrB58Msi3dTURIdwvHnWXBsmSBRfgOEj54RLtGnyscSBW6BG2EtudEe9FcKcHmTMkQnx7pIFVIDIuFwdYRg5FFagckoRPjHXEzPOwIyZCio5Hao4UMhbMTeAxJErG+OmY2q5nPqyANaqzWECFOXUqNJrDKXp2213u4Hq533nrbYPjqhy8yvbOgLC3DUcJo1EUM9yjyG+R3E/yRJBkP0Nt99u8d0i1TismUzsUSH8d0iogn1x5hMrK8fHSDRHWRLmdjbURk+jxx8SnuX7rH3cUBaRSxe+2AG7u3ubi1jRsYdo7uc2AnrPQHCAHZpMTjuPbmnNWVMeOx5/ELj5GbY25c2+XwuMeOXTCe9umupFTWcu/eFBFHlDbH1J58keEHOrTmqHFWsPAlTgkm8zmPbDyJKDxKr3D2R/9Tov2MhSmIVoaoH3gcoTKcVxRuirn/B9j1d9O5eAH74suouabSc3pdiTUl1nRQKmZ1tUbtSDIdUU8Kti88yevf+GXc8xnnyh5rvT6TeU5aHSHmoa05sxWHvkNn/4C7kwm378z44n/yn7Fyfp3e9iYfGA44+4EP8cbrr1E8/zxpKdHDDgdHh7znmffyrNTwr36V+9Mj6s+9wpUzl1g712FxYNk8v8XK/HVe8Le4cesek+KQogoDM8OVIfv3p0hjmZclysf0xxGTsqBII97M73N8/2sspgv2d6bc++wON9+Y89ijinu5ZXf3Jhv+Cml5CMALrubVr1acsXOqvQkq1TyZZ5SFQ0rNSum4GEvKPPgMX5jPWfeWONa8pDTnshze/W4+8if/JEJrJjs7fOFn/gFf+of/kPVZCOrQQmNkuJGbRtQnGjbPWotFolWK0xZXV3jvSZO4nd1htLKCOTjA64jS1HR7/aW3rXMeIYOhp11qDCFYlTXMmhd4J+gPhxwfzXn13gEAvfEqJq94/F2P4TuC+XzG65/616i0C0lEeTyB8+fo9Hr0BiMODvaxRevrKRD+hD20xjXAQlBVdbiRaUWiPM5Wwe+0DjdmLUF6TWZDomEXRawlh9M7PPv4OUw25WDvNvl0wr3XFtip49zFM7z/257hcP8AqaE0BbPsmGSuWFndxjlBkiqiKAyNRZHEmjCJr7RaJs5Bc3P1IkS6er9MuPLiQUDzrdg8twSlbmnvtQQvpxi+JRksWs/b1hf4lEa0PVOitShrRAg+xKEv0zhaXXKT1heC0xTS+RD/3ryb943rSoObwv7IU632E/AdZr7CdRgBHnmSmKdV46jhAtksIWhpGza60Z0qqQLgTGLKwqC8YpJn9LoxMg4AVgI07L+SIeRCKYVx4EyjCTaQ5xXOGpwNKYVKyxDQYSxKa5wwtH7AgfGXoZhSjVTEtVrkIF1piw1kAHnO2QbgBQB4si+gI9UwlCfe2KevgW/133BaHpQ/nF6+LVKa570VTL/19Se64QcfC0NvNgxrt/ZuyyKqBYJtAdyOzbZSCr+UTpw4QJxc00GveyKtkG/9b5OA4tzJkFpI+AtMrooEo0GfMisxrmoKNIUQOsRrC0uvn4YQKuuJ4ij8W4WaRCuJFMFNJE0jhsM+s0XGZF5Su1C0xZHC2ipYnjYdE2cNjtAZkOphAt3D9c5db/vq7keGaVyRHycko4RFArITYUxEJ06Q51Jqb9HSsbU5pu7X1FWKU47CJ6TDETcWE3qjPp0LKcU0xyaC2ji0irk3v45/VDB785hEpIwvK+y84vb8HqL2OBxzW7BW9Rn2ImazBWnaB28xxwWxGVDvHnLl6pDty4L6uGRtu8+kmHPr9i3qqmZxJBivbZBlC2zVI4pCG6+uF1RVgZAaJ2N8buirDlvbY5wwSK/obZ7BrSuu37hJOavpb/bBV9R4ykVG9dyr1C+/geg7tIspOxq1UTJcLTEvVbiqS7WoiBJB7QVz1wGbs7KyjhWCQ5ny9f2E+WKO2jtkvXZoE9pSevcWGx2JOjfi/q2Knj7DqNPlT/yjf0QyGgLw+q99mlc+9Wm2reXMquZ+VnPx0qOIc0PmL4Yv2NVhQnrhfZx7fJ1e9yxn3j0G47l45oPQvcSnfu6XOVwc4UtLJ+1RO4GUjsKURF4gdWAaL/fHvOeJ8xzu7XLn738DWTiyWcmuByEiIqU51BscqoI3cs/NXc8ngU99qcdZF5HrmoWMWRiJSrcYdwWpAyFz9qqcbm8AwEwIjBd08QjrufuVr8P7388/uHSF4/GYvCiwxrG2tsK8SaBDhPwwJaH2oXVovWqoLolzULsQUVrkZcMOlw+ApSSJyUVguGKtKMoKrYJ+MuhDRQM4m8Ena7FeYJzFCsFgNKI7HpAt5shGftEfjnnXk1cYbJ8FJLGOqY3lo/+nnyLuB2343d//Anc++zl6vQHnL1zi9isvUBtHnpXki7B/pvaURbDECqxrc2N2hlLrMEmuZZjWb9rmHd8CeEfhoTCQ33uN5z5/yLC/grEFx/MJK3bEeGXA7Tu3uVhsc+npTW5cu0FERBT32NzeINIR4IiVI9YJ3ju0boaXDA17dDJ0tGwae7ANU6i1JvCzJ8C3XaGm8NCES9AO4TVv5k89UQrxQAs6rFZL2gBJLzGucTlALIfVApjzeH8CcrynGXg63Sr3CBE0vOCWg11eimbYSzXPawYXxYkW9AQVL4ni5rg0tlrOhAILQRso4lv7uwaItuyplKGAkAqGvSH5oqLbjdBaYExGpGWIqF92EMLzTW2QRFQ2JBYmUQ/nBUVRcnQwBTwqUnR7KZ00CQwlJ3ZoWutwPKRAC4lpGNPWk9g5FzyCG9COd0RaYeswTKmb4qg2vvEXlhjjGw21/l9kdNvj/4euVmIQyPql1Ob0a99aZP1h738ibxBL6cvSru2B1/tmKFKEUIpT0oqlK0kLbptfSCFCAIk7dW08sH0stfFtp+D00J1UkiTSeGdQEjq9Ll44oliEkKQ0WI5GUYQTIaVS6RCwEoqsZmgujUh6fcCzyIpgJyk1tqqJY4EXFd1eD2dV0IhLgdAhuEgIuZT1PFwP1ztxvX3N8NnLHNz/KqLI6HQHKA/FToJINEM7RqzE7N65jY8EPrKUvS7dgaL2lj6C91y8yN7OLSb3b2BUgbAwm1YsFgumK1MSmVLfMMSmC4UjTjqYToEtq+CvKQWFy9jxC+5khjy3JComjSQdFbO5dokqdRwzwEiBiRYYBSIxlMcLdvcmTOcVFSVVmVMf1HgccZyCqKlKT6TgaHZMqh0+0iRdR1FVvLF7gIokO/M5B4cTbtw9YkNv8czjm9jK4KoC7WrsBPxENmk/UClNt+6ikwX1osblGYONFcBj4gifHdORKYOVAc+8+wN8/Eee4ud+7VfYexmG0ZjBLAws+LrAzufcvCeQNmVtbcSgl/DcT/+P3M32+eiP//s88j3fgb9xm8//3P9E3FGIqmAgb4KBwywwjN1zZ8Cl5GKAzyLe84n3421Okib88I+8h/d+8Af4v/2X/wf2rl9jY3PA9duHmFoSqQ7CZFTK0nWSTBm6ccqVOGV05ixyZYv48hr/+qXfZOeLd/mOD2yzr2bolVX+1a0d6ruHfBLYyxO2KMmlYqFAW8Ff/Nc/z9rVK8gkwc5mvPLrv8Jz/+VfB6DCYaRAekjSDtNJYFk7nZS9ukZJycHxAcNuGoAWJ7pRLwjtSVqPVYv1lsoaauOIoxTXAWMMWibEcdD2mroijjVjIYkiTSIFiQ5NbrRkHvqX6Kqm00y5r6c9lNCcGawSO8EwHTM/mJOkMVEn3CxH43WSS2fx3ZTa5mACS/rC3/5Z4kGPi9/7v2L7Qx9k+ytf5dbnfp9eb8BwMOb49de4Yww00bXZvCRzzSCOCzZV5AXnBkOevHIe6UtcVQad31HGQW64IUtqG9qwWVXT7/UYxBvs7O8zOdhj/3DCxpok7XZ54omLfOkzL/LC516iExlir5nen2GrBKU9cRza8sILvFNEcYSKQMiIsjII/DICVorQ4hWicVVohsh8Y0+1dHY4vQQN8ASh5NKGTbTDVlI09nLh6eoUGOEUeAl+wwGQOtOCnvC5SgikbBnE02BHhNhu3w5XSdpoa2gArQhSlMB2ht8J3wbMtYwjSwAs2uf61lJOnLTTpQiMnQyAAx9sBkOZEIB6O4CFEPgQrdeAXhBKYb2jLguKopGeOE8cxxgviJMUvMdUFqUjjK2pbAD0Ukg6cUowyXBUpQHv6PW7DTMqGmY4OFks9as0ARiNP7GzHoRE6MByB96bpVewcy4ctzYgRUgqW+P8yblb6kPan/4XwPEDzxHgWlbaefxbf9+sB6UYJ7//ZucJv5TTnH5NqwEPQ24eLyRKBdmBJLCnSsklw/+Adlk+eK1727DWjctKWzyGIbWTbbPWNvHknkjrxjvb0e12yMuCzkCio7ANuvH/doTYbdm4dAgBSlgSpRj0UmIlyYsFZWXQcYpSHZK0Jo7lskA1Nny+ERDFOmyflFgrHoLhh+sdvd42GO65iDgZ0M02GdkVjJyQnBXszw/J4oyPXLjKrUGPQkzYuX+Tya1dfFXTffcVXK04c2aTSxe28LnAmYzZTk0ycPjtI168vsP920cc1xmWCFN7+jKCRCGkw9WAkdSuoCyC6bgQirLIKWPFIjbsvPEcidK8eOt50lgRx5Auxngsi0WJkJpKZuwdGKTtgDvm8N6M7kYCCqSxJP0uTsC9oyPeuL7HDz37AXIq3jjYo2sTdNrBRzFZ7pEDTRU7yqzE+wFrH/12ROLw5SHl4Q3EQcH8oMv4vqODIkpjZh4ineNTwVyuIOQuSlfMFjUvv3aL3jXF1MwR8RZytMUjHwV+//dRMiKXjr29I7QaILQg7gz4+md+l717d9C15of+n/8Vnfc9ye7/a8K5jYsM7Aof+JG/yr3d32T46OPwm/+WTu8qVz/+Xaxd2UZLR17NEUKS1BY6isff8y5+6v/yf+b/+tf+I3pdx2DVM91zXI06PPL4I9yb7HF4UJOVC/KbBe/5sR+ks9ojLyPM+R7j8lXe+NwtZOSR2T2+sVPzmdeOeX/TXrO2wiGIPagkohPBva99ga/9s59FqpgP/YX/lGd+7MfJr9+A/+J5gOYmIhmN+pTzSXhMhBQuh2O932NuFozFCRh2HpRTCCUQTlAbhVAGYx2OGiFiah8kEqWHSV6wEjUayDRmaiXpbME4jvD5AllVKBXsomLnQsy3qzm7tgHA4088yv72Jn/0ox8m6Y0QpsBRk09yRtfuwDe+Tq+fklEzOdyjOxjgrIHacfz6a+RVRWUc7/+LP8nZb/soO19+jqIoGA3X8YNDLp/b5mzpYW+f0XiFUXdINTug6nV4tD/gx7/jQ4w6m0RSMNAH9G5/gy3ZxXbP8XOf/j3+zr17mCiiLnNsbvk3n/00737yMbKsoposGKxsszbok6Sa4WbFRz7xOMY4qDTDYYeVwRoz43CmIOl4BBWYpHE7MA2jCUpDXQSwF1L4DEJFIelXgJIyuCk0zJoO3G8Dlhom1bkwcOV9I2doWvGERDVJQ49yAngkLHWXS69ZAlg1qCYmOYAf2+innSR8jzQDgI7WzcEFwOtbTWsLhkAJjROhEyBaDekpQN2ynEoGkOhhmcAXaOPAdqsG2ESyYcidW7pXyEZHLZcA0S2H7yId443C1WA9KCxaRIh4hHEWjW0E1ArpHXVd4p3BWEsSx3gLmILaW1CSuKsb9llgjKUsS+qyJk1iBKCERBBmKiyhwNG2Gd4UAqkV1lsiJUmSuAHOATLrRlMcuvmNfMSH9ywCBY/1NKz9stRZAskH7Myac73kZtvComFdl7rw9smcdp84WQ+ywKe0xEsAK/BLxNcOLQbNd/i4AAhbaYRofNaUEkjvgpQFh1BBU916nSwHNbGNp7bH+ubzVagUtY7wSKRsJCbNNe5xdIcxnU6EqQWT+YKqBONqBgOIOgKvIry0ja968FR3okRIj440w0EX5SXz+RypFHE3QggZPIiJQMY4Z4LrjvMgNUI7jLCoSCOFDJKWtyTsPVwP1ztpvW0wXJqa8+fP0dlaYyvZIFMx1+c3QcEiO+Clo9epraCaFZSlJRIxcdwhMY48qlmUY0arfUpZoHXK2rrH5guk3+Kjl9+FueQpZwdM5lOKomC6mDKrFyR9yVzkvLq3w+ywxEvNYKAw5LjCEMWSyhVhCG7YBSwGSV155ouD4McpY+LYM9weMs1yqmKGrvvMFruURRcXKUQcUbiKoswYxF22B1t0eh32J/fp5pKNs2NkT3H46oRzacrmOEbVmqookbqDOfsYyROP0+8NiHXG0Ru/yvxXf5moY5GyZnYwYdMLzq93We0mWK0QSqPFgHOPXeZ4f8a1L9zi9itHVMeOc9/5bg7vvQmAbIBe5QzZYp8nvvNjPP7Hvo/RS19n6/iIb/uJ/xCA219/gVRLjnZ3KQ9uwPO/yMrTH6L77keBv8ejj1zBbMZYCmrjqWcFnaTD1Fh6qksUec5fOcfVd1/l1d/7OkeH0Ck8jz8yJN3y3D/I2Nzo8fqdfaZHM9z6BdRaHIw7do95lzrHV4xFGcm6Lnnp5XtEekxdHQGgjGO9ozDDiFqFtv3n/5u/STpeJR0OOHrzTUYXL1OVQTOcJJJqUdBJO4Gl6HYBWGQZYmWMKwyPbZ0jn02pFuEzAn0hKTF4VANiPCiB8jHCGeJY4EyPWsxwWYGYG7JZkDOIfofPdgdUnQlRf8ThbMH8aJdzZy/hbE42OaYoagye9xDxvcDftTEvZxGLTz9HL05BGToahkLwnmZqvioqsumMosixJsdsbfPuP/oDVHfvsigqHvu+7wfg5vPPsXv/DiurK8Q9TWfQJR4OsbN5uBY6Cd1hn/G4z/39Y4ZrG4xXhkyOJ0RTx0RAWl1GPbKFH3Won30X41qS1xk39g4QCPZee4lEL+j6GpMrfuAH/zximOHtNbo9z/Byl0hqbKowVUWiBVXtUcIj0ARha4S3lrOrK9y/fcSiDp6109m08bvVCB01oDEwlr4BxOFAN76yCBxuqSeGoP9cMqINmFAqDhZhnALBpyyvmlm5ttFNADYnbengPuFQKny2x4eghOYzlDzFfD0g2zhhL9sUtxMwBarpqnvEMvAigLdGUeo8beywQDZesm2ARwP4l0xk8HRViIZZD9vWbpOUBuErnKuI4xjvDcYFYBVHCpzCWwvSU5cFEEBWR0UUWYazhnrhyGuDx6MjSRIHGYQxEmtr8rwIGnqCTjQM0AVNtfcglaA2Hi11GB50QTurdBuhLJYDh8tBRClBg7C+6Ra4hjkWKBHcJ96OE0RbHnwrTfGDbHJzft/yPqdB8DcP6Z1i9Zef1v5LLDsPXrCMBV/+XjYdD+Gbf4fj1UooZFNUnfhtNwWjDMyuRyy7Br4pwqRyDUiPmm6KxRqLMTWDUUSsI2KVNJeHQMqINgBFIIiEREfQ6cZY68mKHKmiQPyo0FmyNhR+UsnQLVAeLxze1yFwxkJdh/MrsQhX83A9XO/U9bbB8Lyo8VHNQf0m+7PrrHZ72LpEOwfesvf6Md1Nyb17Nxn2NzhzcZ1x5wwTPKWzHJgFo2xBXWUYJZnMp1hvGZLQ668gVMxosMZotIHSgkh5cltQ+4KdxX2qGg78ITmO2fGcRCTEZYRwES51WFNjJxmJjrGTBTqS0InByxD9aQTUIsQ/C40ezbmVvUr/sM+gP6SbJtRxw6aYilQL4j5suiFr7xly++CI4tiyubrOMB0TSY3AU9g5VZnh9ITD6W0y00Glfczm++h+5z2y9C7V/gHVxFK+KyLtD1DSUcUDKEt0nqFtSWwtnWzKB9YTZrMFo937+Nu3AOgPV9GxpjyaU1cFe7dvMrx0nsuf/BhSK7K9A7749/4Bv/lf/zS9bsrxrGBl1ONLn/8tPrhyiX60AkBhMzoSjA2G+EopnDWUzqNLS6ymdHzJt73v/bz4ey9RK8m5vmKwIbkzmzIrJamv0IOURV5TZjOqyFAfd7GDMZc//gHqf/FPKfZfZxJP2Tt2iETgygCAOp0EYRdUzpIZg2iGaH7sX/4SnZVVAL72qX/JCz/7D/k4UFYVeZ5DWWF6Q9bSxqasrrDHUxKtyCZHrCrFcRspWnnqVBJ5RWHD7VNKUMrjjEdJA84Se0WhFDpO6A8d5c19APKiYj+2VFIRWUueRBw4SVc4rNJkQmKjiFmWc9j43h7XMUeFRIqKWVGGFENf0RsmSHUCZurK4EUoAmb37zC+cJ7+hz+CkIr86ICv//w/4bf+5t/ksavPgJVEOqGsHK/d3OFcGUD17r073D48oqoVJkq5//pNvJecvXKVrNulHKXkw4rD1LFyPKM3O+Jo94CZKagr1+hAY2ItSXJP3BkxfmSLOztfZtSVKN8JMb44oliBt6goohcpqnKBc+G6UcoxHqY8fukKr776JoUJQlclNE5pvBA4guuCXEJOgm67BagEXWZzP4clkG31mgHeupawFSe/PS2x8C2YahhaPEsHB9VogGXLP3rX8MABpDTCCQKAOokmPsFC7T8C0xfA/AnQdt4hHE0A3oPJZ2F35RJghcSwQJMvnTSEW+pewzYRnEdkYGVP7OJAKE/UVSACkxzU8TbYdVmBaNrkDoXSCbgyMJcuQQhFmgjms5LKhPdth6raUI02YrrlapVWqEgHHbUTJ6lzgqUEAgIzqnRjUYcIw6WEc+AItKoQwZLNCzA2+E8H54sT9lSe5HM0fzIPyiX8qcdPTs+DwPit7O9bAfHp5+Abycfyc5bV0AOfswTCYQdDZ6JhqtshOFTL/MqlFzhNoSPb2O/mvaWUGBMCSqRSOG+bwcMTxtnZGikk0iu0tkTaY4VEKY1Smt6g0wxFhpAapYM0wtoarRydJAR51CXU3gawLDxeEaRAjVQjtFWCJl2o4CLhfJipSFSMQ4LSBI/xh9ZqD9c7d71tMHz9xk18XaGN4dzwDPGqph91Ob6Zc/X8FXQ6IB5I5uU+cUcghiXFwSFSrUE/5e7xDhu+Q6ersWVFnMZI77HWcLw4IHcZdW2QooOXDi0ct/fvUJU182nG0V7FqNtBLjL65Sor/Q3WNzpEPUVv1CVOQoun1xniMcyzSQBTPiczC4z3lHNDYgdM6hLRybg1+wr19Zoz24/R7QsWEbx0dB13FzbURSaLAw6zY6SQpMmAKIV8nuN8o2E2JUVWcP/uG7x04zmGvZTaGqoiJ+6u8Ci7PPlexeHtGYdln/QX+zz+9IhhPGRPdDmY52zpBCqPTxI2Hh+ye6egLzvY3pCd5uz0V/rIxOFrj4wUb371ef6HP/Yj1HaBN5rL56/S0TAvchauprIZG2PNzmHOC793nQ88Hdr5Vb4gnkbYrZK6anwnI48pSnLg4M4bXEg7vOeZb+PxR3+P6dfvIbzkuD8km3jEmQ5SOZKppprl5JO7dB67SMGUutilXhyCgjSe8Bu3J9h4BNLjG5lEVVdkucHrOFiGyaAp/4W/9JMkqxt8/Cf/Y575oX+Hu7/0K/CzP4M1ngxITU21e5+quWl1q5qkMmghWButM1AJnXQIHOLKiqI/xMQSJwTChzASrQSVrEjiFOENGBjGPURiEHqN85sAL5AfZSSr68hujJcRvqgQrma2WCB1RO08eVaEokkHpjLWHqk9dVUTVQXr4yGmzFDOM28Y3azMML7H7sF90m6H22/e4df/8k8yGnUhUhwezdjfW4CL6HS6VLYiForxcEC3mNNr70M+sH5lpXHeM08T7jx+gWigKW1BvSgo7mSMnzzHKF+wmkT43JFLSyTD8KAjwhQ1dV0ilOVXfuWfsb5Ss/nRRymzglipULDVBho4G0WKLPehJS4tK+MR/a6iE1uktI0EwqG1pi4JzK9omdFmAMwHF44WlLhWJ6ka9piT0ApEYBuDUe2Jm8YJo9dodk9h1xNSr3nQh//zPjyvzfNooVQYZVNBp+sDwJPIUy4hDbsYENAJ49lKJARB/9z44PIAdhMtjdkAYre0VXMOrLMBjC/Z7RB44Vvg1cTPQxPcIATGwNrmOnEcrLQECuNKqtoQq+bv2YLQzdCfVMRKkTjJoikB5nn4/vLeo6MoTJ4JgfOmcUI78caVOuhOnQ9AyOOpWxE4BImIp7FZa8sa2RyHcO5Eo8121jb1jqSuG58X2bhziBMdtXN+GZzShqqEQxlkDO31IU6f5+Wfhv+mn08zzS1z2pzstsYIwPbUa1uNMKfdS8IO41vrvPbyag2PRWB0NaCVagqvE4eJdnNbnbrzvlH7eJACLSVFUTegVqDQ4BxxqljfSElTjSsjShMcjIy1SGGRKliueWfRiWAwStFKUWaWyoAXEqEBKZuipS0aJVKf9jkWgGrOC0gtEVKjmqREcGyvrfFwPVzv1PW2wfBqR+NHfd584w6HB2+yWq9Qj0s6suLFb7zKE992hhuTQ2pdsn9tzqXoAmrVoobB0H2rO2RVJIjakDrLYhEsoqyIwBXI2rCopsyO9lEzRSRiNjbOYoxhqx8hYhhECd1Bl/64Szzu0I1TdByGOZosAhzBLFwohVY1RR3KX5tb8iwj7QluFW/yuef/gMnxjDdu/yrHxafIp5a9uyUyN4jpJj/2gz+B7jv2Xr/L0aJCS8V+vEK+d8xq3GMuLOd6Gzy2MeKNccKly4/xyNXzRMYxHAumh1PK7AyL8lU6nTUGvTH3rh+ymuRUxiIH2xRmAzFIsEmMn1ruvNlh7cwzdLdTLn/wY8y/VMLvvMC8mLGXVZiiJB306KddZCQ5OpqiZczO7l3G6/1wrNYuk5ZHzA9us/WhZymTPlEavow3z25yxy7oqhU21obk+Zx5tUBXihLHF778eTaf+CDbT1/m2z7xPl69e5cBki989VUOjityEdPTjr5SPPLEBv/q136eO39nB1Pk4GMGcZ8PzixxkvD5lwWLec5wJJdA5n3v/w7q3/9VpDHUCISw1Mbz6mc+hxcCayV/5n/8H3jyR/80/OzPEA9XObhwiZvXXuXXNzd5BPjxwz2+/uhj3BgMSaOEN0rHdned/t5dvv/uDW5+6Fnm79qmTML0vHcOUyV0+5okLjHG0JFP8e5n30dRZNy6t0M31Xzb+gH8wi/zZ7/3cf7etQMmXiGcY9TpUXS7XL36GNPjXQ6rBcWioNftohuQn8Qw6iRU0vH04+fZXO3x4tdfYJT2WG1Sv7LZjMmwy/2jI/Ibt1lbG3Fn75jD3FCagvnxhPNnH2F7e4gQllh7hPGsjHv0Z8d0fBimHIiIS+ubyHTAymgLV2a89lufwyZ9ku4Av9YnEofYrYK4v0pne4wfA4XEzAQSh3Q13hmc7JLP7vOFT/1TPvr938licgmd1Hg8cRKgYlU5yrpg2O0Tq5REKrZWh3Q6HayrUJFCRxrvLGmastAOIRRaKCpTN2xjK2PwS8Ta+gmHSOeWdWv0t6dCRkSbyyZFGMATLfAMAFIu9aLBhqr1EBY0w2cS8LJhHX0I2GkZQkQYwGra6jSfs+SfGzDlwg+c9sUVgqZ9TSj4mseXbXx/MhgVwFxjM+bFUiqBbDXtYVpfNjIDQZBjSOQSMAovUV4w7naIpWA6neNcgkgkw9VNYr/AW0NdVpRlQaRhZTwgUYJqUWMnFVZK5rO8Yeqb4+qbtEIngja4CW5QsgGETaHSYvtW5xqkHKo5Z6fkB6eO3YODZEEU7Zyjrg1CxdimWGjlFUH769s5tub8A/7k+jnJnWvAeFNMuFNg9q2uEt/Ku7h9vA0DWbqfLMFzQwIvLdXCdRQAdOgOnNinhWsRTnyZvQ+zLe21K32bqNcWEyG5L0iABN4rjCmDJRpumSCptCBOJVVdUxlHVVUMhhEQIpWjOCJNI5JU0+31yLOarDAgNS4KkohIieXwXxxHKCmDpl2FQsc5UGisCZsWyRgpBEY6ZGxJNZxf30SYhxN0D9c7d71tMPzarTuIXkQ9gdEw5c4ru9CP0cpj3JzDX8sYnO1TTCXrvTH2YsULX7/F2c1NxFXP/cNjzg9X2b60iRrErDqBjBpDeJ0iHVSiwlQWaw0Ii8GSSIVxDiEdlas5mB4jqSnKCmErsMHqSUqIdISxLhia1zVZUVPYGrTFVobaCY4XBUeLgoQO2sKa7mGtwM4y0rknUsFXdrzR57Ubd9F+hasXehgRkR0dcOGRDUzp2Yp7PHF5kzfu7aBGHeqjitnigNEwYad2dNf75Pv3EBKGXU0qOsTnnqDqpXR9RKZjOmsXsVlJt5MiBh2G609z6fI2B9kN3nj1izyuwxdsbSBOBozWNGUJeZHjK4hEl2F3jSiG3d27CA+VmZEqw5mtDeLzPa69coODs6Nwsvuaa699jldf7PHt3/5RdKyJk4T5rCCJYl67c49r1XU+/OhlLl19lI7y3NtzZLXBlA5ciY76KK24fx+6dcK3f/zfZZHkdCrJ+Ue69I+mPL9eM6smfOwTn+ALX/o0URw0iNsXruL2L3HtjRuYJOH8Rz7BUz/4x7n+pS8hpOBjP/EfALD34gs8Aly8/DTZhVVeuHGdOo04KgMgvHl8zAvzjALDWtTjg8kaZxo6L0sgF+CNQniLA+q6xlQJHsUgfYIPvPd9DM+doZ7NGK4ZauM5U7wJwPf+Ox9mIyr4G3/r19hZaLqDDvowolgcUVcFeZYTJynO1xgbNHRSCFZSzcIoDqcZhctwA4nvpehu2K7pfM7+fUVZGJLOEOcUUZSwyHLyxYLj/RlPPDYi7fcaaaxG+ook7dMpxtRFkMx84vxVVp55mpl0SGGZvrrLxR/5Y/QHZ9CZBbmgd+s+w3idsrIcXn8DkwviOrSkrXB4L/GqS2nmVNajkw6xsAgq+kmMswLva/BB41vXwaFgmMD57SFpR2GsRMiYSEMaSSIF0zJnkRUBBDlPFExzl2DXNfIGQQsMmtQ1EbSoYRAOXDNW73xDvIl2MKvxcVUQnBwaULrUALfAJaC3kzCD8FBr59VKIqwPhXoA0u3r2v+2cge/BGOC1v6qEXh4ewrwBS1sIB4FeNeAptOMowIn0ErRWph538ZMn9LKylaLy6mUunAE+4OItdWUtXGMsxEyClZ6koRyUeGVQHS7pKkmjoOvrJaK+K7n6GCBFpqyLDAStAokqTMO61zYfsJAYfDZDeDO43DW4duAaO/wSqBc4x9Nu40nYDMEsNC4IgS2OOiJw9CcjNQyRjwwsAEkSt+ywN8sk0CAF2G48PRvnDj93KZ4aUBnwKmngLI8KWhCeqL8ps8JNmfNTOfy5cHvOlxXcinzkSJIcaQUaK3QSxmMWILe1u5QLFMUAeEQQp8a4nuQ1ZZCIXSQwhQZSKnp9j2ILsXCMR6k9AeBhR6ME5Caw4MJUsTNO1TNYKpGaE3SdAnAYY1F63iZFOhcjUASaRUimhsds5A16+Mum6MxRW65vT/j4Xq43qnrbYPhS5sbGB9hNx09IVjbTNk7ztFpjZBjVFkR3zCsro6pd20YkphP2Slvs3n1vRSLfW5XE17aeZWVeshTT12mVjmll2jRI1mJ6WkVghKkos4LqqqijrugBRUFGM/syCB7KQtmlBPJ6uYAtMGYAlvVaJ2A0lgTylylNNaBsSVeeKo6pyhyyqnl0ugiQlScHxccdufspAX3pguMW2FzOOax8+c5jGc44TBYXGHI0Bwd32dxmHBmY0xma8zUMLAxgzRi/2hCR6dMkgkHt2eMn4jRYkY27xMPUqzVDHzG7aLkujeoSDIaX+Zgdp9ON8Irz8ZgzOKoYFqFL8i8MJSFZSXpEw8ijg4OMKVko7tBN+3TG6UU1QGzbEp1tMvCGvKVIWfWznG4toB8F4A3f/vX6Gyu8/p0nc/87nPojqf2ns3eFh/+tmfojzd54+CYp2/d5ImLj/HBZ9/Fc1+5i6o8va4kyw3PXnwvP/j93013JWX/6GX6vQEq6tFzCdNqwhE7HE8OWEhF78yYwgcbK4BBmpBsn+GF169RmZiDe7tsPvEET33f9yO1YnJvh9/57/57vv7/+Ot8GOisdJDdIUm3y3R2TK8O77OYL8jSEBDgcZSmohTBS9kYj4scxloiqfBOEkWOKregt9na/jib5wfUB7fZevQiB2WNywvGt0NoR3YsefYHnmLz7Ke5/SJY5SmLkuPDWaPH1Kg4olqUmGagZFZJdo+mCClInKRTGab3j7g/uUNvGDyTnRIsFjOsreh0uzgdUbsaJRRnNzdZX9kOlGgTWAAhBldrzaXHrzKbTYAdykHMcRIx9zWqtvj1AVFUo/UELQTOFijtGKua6SCiHEqErRDCIVHUIjgJoCVR3MdEhqRn6K30WVnt4UyJlOGmr7XEW483lkcvPsKit6DbCXpzL3QT2KAZDHpwOKMsDVVRIoTFoZZyhjAdHzx023hi36CMMJzTMKINqD09aASngI4PXrWelv1rWGdoABXhp4Zd9C1z2DLPodMegLl1D+h5hQghH661fWsAtMWGoBUvaMXBUoeY2zAU1SBlmiS3JdvYxumaAGibz7GNH3HQYIrQkm7sNlxrGSfC+/hWDiIIyEyBFZZIOmTk6GiwvqaqSo4mR3Q7XaIkReHC0K0XQVcsMoZDze7djDoPiYvCB99nY4LERUiJ9SEuWGvVaGWDnhgEpmGOtQBHcNNoJSDtdgtxwqw6F3yGo0gv2WAJONcALSGDO8ESHAbm+DS7LDgtl/DtIw+GbLT/bn/drlaC88BDYWCslSsEDWxb2Jw4UPhWXtNIZk7Y/kYyIxpW3Nnm1AiiSDeguPUoblfLModH2hjmZYckeOSFY9h4QYSyQ+OsxWKpa0fpDPQca+sdRK2gqpEqIe2lzI9rZvkULyVJIvE2zGNY4fFOI0zQ/SadhLoyIdFSVMgoRumo2V/T2Kh5DDm9boeLq2NiFTHfz9iZzplmbylOHq6H6x203jYY/tB7nmCyd0S5axiwwpVLH2cw6pLbQ+6b6+zeukaniClzw3jrHGfevc6k2OXFa/tUVcHCCfIiQXW7TI8qBmvnKbsZqigwtaAyHuklvVhiKksiBIPNEXtHcyITESVDjMiQnRBjGcWK6VHGeD38oUsfhbAF5TEmp6rmRCREKvhZ1sZTuZp7u7vsHR8QoSjzOSOVcKG3xeozVzh84ojfev4GNypNb2WFUT/BF4as8kTG8snHHmdqcqYdxWEnZ3J4gMkr6tIyWhth45r8cMGoP+R4kbEqFaQZo46h9oKbr7/KhXNP0h12SRfX2C2OMLs30dEZ1tf7LI7f5CDe5/x2F7GhyK5lABwhGcQJnUhj6hLnTNAPCkdfC/AZvdqTxjEREhElHDgw0YLJ/n3cMEQCP/bs09zd7fGB93+AtdEGMp7zG//mszz6vnW0Enzywx/n1udfZ/dwgZje5urjH8St1nzj5Rd442vPs9pbxR3e4jOf+sc8+72fYHxpSP/YoIWj2oR4HnFm/QrudsT5YUJ1f8rKqEd9GPajP+jg45hZVeJtzK3nvsZ/+33fu2yVeufAR2zaAGzDlLNkvLlBdus2Rjd2Qy54xUZSBtBgLVkdtLlVXpIVBdql2ERSViUbwyHOK6q6R1EesX+oWB+ssXdwzO2jivdsVpj9wAzraIO6qrl78z5VsY7MUvCOwoAzJdYbBt0O0ifIRRO64T3HhSCWgl5cMJ/eYxgNufLRp4hfD5nadV6Rxh287sAsB1mgdUy/26VjHatrAyJfEVWBVUREUIei8sz2JUznDQDM8TFbWjIuEpJun9d3d4heu4e5KDmqE3zaJevNuLqZc1RGRJ0+G+sjFtS8WcyRNmgRTV2hxl36nZiyqJllGZ1YMylmCOHQUUJtTQB7ruLCuTNcX7wIWDwKIVzT9g66BofDWSgWOUkvwguHcwItQ0BDIEL9sl3bCnPbgIKAjQNzbG3QqCrZDmm1rfaTdrw9rQ9t9Z9CYJwJcgPZaksb1tGLsM00TKIMbHTAUKIBBMEWaylvQAQd7ymmst388ECQSoT9Yil18C4AK+eba9jT7DeAbzS5bShHA9I4aeO3PskBH4btF0IE6cNKj0g6am/JymPyPKcTd6kWOZ20i4w0sfRYUyOUoKMiDvbmHMymjLZ6zOsJxnuqLMwJVFVF2olIkk647PSJFEWpIC9xLmi+28pDNv7abqk1baUCJ0s2NnptKEfzILPJrDmm7etOdNNLaUXwklue6/YcN4c8PE+22vKTQikAdN+QwmLJCFsbGPzW0zdsyknoR8sEt90K3yYGNhIV22iUhVRNV6P9TJbpc8GO9xQj3Hy2bAYvl5HeSLwLxYRcdgAc1vhlXLNzNlideUXaixh2OzD3TA+nrI0S1kYJ1TymmFucW2Brh6kNaS94REsE1tSNTl5ibYkVDunTRg4RmH2vXDOgFxhj0RQGvX7E2c0BHaG5c2fK/rFBdARyuuDherjeqettg+EbX7rFlYsXWXsqIqKHncc88pGP031E85mvfYrYe86MR5TVglgnZLGFwnDmTIc9OyfuJ4jJgpQUG0dYA71uinMlzgl6yQAVS5yYQzYny3NEV4JxWBVYkbTTpVfk+KzGGYNOBXFXYpUNX2y1RQmF1JK6jom8R/gwEdtVinoxYyNaYW19BdcL1myT/Tlv3j/Gbin0QHF1vE53q8tGv4ctPXlVUmWCtdUxUhjSTkonXqVwuxwvDsmyGVpU3J/tEuUpUqbcP7iHFbC2PsKnmjPnFlx7YYoSAwZxwVjf4orPyZxhffUiNhb4m3c4uB9TmjeQs0tsn1/hYi8kk31xdY3Dq08xmdzlYH8PLc8xGK3SiQccHLxMeVii+mfRa8G5NUkThkf3+Av/5CZXxpK9L34ZgDdeeA1z5k/w4W97iv5Agt5irzykLOfUxvL0k0/zwfd+hPnskE//zz+D3jU8euYR3JWrHL+5yx/5+I/yA3/8I3z1dz/FC7/4q2yfeYbv/vEf47a/xee+/lUmexNGG10G1Rrf/8d/hH/7uS/Q76aU9+4DUCpNUZZUFYjILm82rcYvxB3XDSMW9HrGlaxtbuJu38U1wRrWBc9T6zxJGiGtaF23cIWgyi26U2K9o7IKVztGm6vcfPU++2UGe6vMVteIOl3AMY/OMFx5f/iDOPc+divP4TTh6HAfd7xPpGLGvYQ7B3NMXeONOdGpA0IY4lgz7EZk9ZRBZ53RM0+QbPURpmGsN8Zs9/pUVtJJO2gRgbOUNscpGJQ5xs7pJCsgQUlD7SuKXpfucIU4CQXNhb7mQxct/pmzVC+/hplV+EFMp0gwKsWqhM7WRfZ0TLKW8NTC87872OOnv/EqeypiUcxBpgESiKBrVEpSZBlaNTikMftHBCsyawObiAx6UemC76rzrhnGEkgVkSRRo4eVCDRehWPkvF/2+5cuECfkGAi/HKxTIrSh2+CBcHxPOwK04JGGqW3b3KL5HLFk9oQn2GA1uk7VtPktJ4DO45YDY8K3IQjgXOMtrBTWmkZuEZLEnLUECN0O1TXsX7MdogFILeBfWrsJgW/1yw1AbsG+bLXKDXN9Qpg2OmrnAEVtSo6Pj4g7HZIkIu1oTJWzublKpzfAO48UNsgYEslkMefN+/sYp0iiCK0isrllMTPoRIFXzKcZ9BVaKgSmkZQE5HuaLW3Z4lZyEiQArYtG0BgHptifOndN3DQVzjpaUnRZWHCaRW0KAdXoN5ZFxwl7G97gpBgSXi2DLU6Rxye6bNeC31bne9rhI0hdWn/ocJ5Ucw6aAUbRdhyaBMDGcxd8kIWrUFSF14sTQB00Had27BSwpx3sa1nqwAerxp1GITDSYp1mNIrZ7sdUQCcZs5gY1gYJtcjYvz9jsJaiI4eXMXVVIZxF6RipU6Q34C06UcRRTCQkpqpRKkbEUSjmmsQ67z2xEIwHQ1bXEkxZcetwznzuqBSMkx5337zLw/VwvVPX2wbDT1zdIKWmnoDqLeiuvMjr1+5QXj+gvHcfV69SaEtVCZJxB+1KdD0knmaMEJDGeGcobI0Rnuks48lHLtPZXGHn3g5lXRIj6BhD7gWr47NU1iBlTqIMdenIJga7sKSii5agO5bJ3g5emmBHJKCUGh1H6OaLDGURztNP11npbYZc90jga0+sNaUyGA+urFFYtpXn5m2HXqs4nh1RTaeMRmMcBqEcCugIGMWSO4ucG7euMz9c0HOK1fNDEIraSKzJuH1rymtuQHeseezxjBeuLbh1dEg6EZzdvsD6IwOeWV+jO0y5e+YSu6/ep6p2KOmQ9yxnR2cBmAuH6QqOjyWZVFTzkt5Gl72qwCZrZKpissjpihiTG8apZ2oFB2qVJ3/kWao7e/CbX2SW7fGZFz7L5NcKdCLJfc6NV+7ywx/7GEmkMcZifc1w4yzf+8f/Iz779/8a/a9e43xXsnoWju99iedf7qAeeYz3/vlN/H6JOavYf+UYkQnOrFwkjVPOrZ/n0uMXeHQj5Wf/p3/KvAqAcLpYoGpHhMCeGroRQjSaxAC82pug8SCNo9MfMFhfxd0Pco9ur0scxdQ26CGVEqH9HN4QHGSLEh1DUdXMvGX14gZKaqSJ0HFEOT2k2D+gyj2vH1fo2QEDoH7uS8SHQ/7iuy+zP7YYV/G1m2+yuH2LNeeo6xq5d4DSEZdtA3asYqAdcTbn4rjLxlqXO4OYpy9fJN0/DPt+5Sr3VoYYIRkNVzC14V29iEc6EbfnBSWG7GDC3GmiThcFOOOpVMTW/g5xM0BXkfC1aRf5+wXTA8nwfsFWB8QHLyB3F7j+EHEm4rXjFzjzjSNGZkz5xCPUf/ASz374PVx/7Q3u3rlHrKNG+yiwzqIjEMoipVveHJXUQEld18GWTjUBBYShHyklSijiKMJ7R20rrHUIFM6HgbEgFj2ty3QnQCCMCoUiqAE8AXgHkGCtRWvdtJYtcKKtDaDswSjlADbkcsA/pMc1vK4P15dcNqxPBqC8t+G7QgYJAC600J0N4RlSqGAJ12g+W+mAoPm9FCgVIKxrWN52iCqEVjQAUvhlKuLy82Wwa2tdEto2+tJhggCOnPdESYRzlslhRtoXiFFCtzcCpcizrOkaeZI4YpFXFLOa3YMD8lpwPJsRIziezDHGECeK2hqsCy4WdR2OgWrZTXwD8lgCfSmbQqCxpBMtgStEAzpPXBsCYyrJ84IiL0B44ihubMUsOg2Rv87apiP0YBpga+W7LISaSO02VVAg8K12t+kOCdky7cGNo3UyORl0C+e+JZTb37XvEfTk4QnOnxRarROKbzzM28E370AI11gNigeuqVYz/VZP5KVGGE9d18GPWwQbQinbIUqJlRZwbGwmbK0r5h3L0CRkZZeDYoEeKTYH5/B1ibOGjoxwlOgkAh9RV+HPI05Cep0kdA69cOSlwRtBJDX9NKW2QSqztjpkPEios5LZkaN2KV4XjGJFPSu5d+uhZvjheueutw2Gx4MOla2oS0dtJMJmuP0FzjhGckSucsyhIE41TBYk3Q4rUY+NCwOck5RuRJHNmRYFd9WMW9evc+7MBtEgpq5mcGyx6ZhFFONXukxnhu5KBxkXVDtHyLhDKhTpKGk0Zx3kQFJZh7UarTTWOYQE4yx1VVFZS1nUCAe9TkQUabSKcKWhLCq8kBgc0kliKcjrKZWRTA4ck61DRKdLr5/ibAGVwFjTRLvC6kqPe9U+B/mE3bsHXBl3WV9f4WAywWQGJQWmzHBiBSk0ui6R1jJMh8TSsPvGHUZnnqHQCSRdilWBeWSFVXuG86OE11/5AqvTEDLh7Zwbr72CdY5q4RhunKG7sko+38NUNVoIrMkoJgsSkTJ28P6nn+Ty93yIrY/C7b/7IgAXdMRwEPHyG0foyJNVR9x84R7Td9UICZ20A7XDqhm94Rr9dz3D7Td+iyN/kes791g/B5/5179DTE63M+DCo1f4/HwxzJkAAQAASURBVD/+h7hph6Fz5H1Lb+VZPvHvfSevfOXzjI4dF9ZW+IPMNFdRaP0ZWALedqClZWdwzdATMDs4QnR7SCRrZ7awDRgOmsxw8+voGJkIigZwG99ACCGpS8gXC3ZNxe78BpFZY9Sr6HQy0kjTH6zTH59l48I6+pVfw3VShn/5f8MQ+DNv8+8il5LLayP+yk/+MFl2iyff/S7yyQ4zG5OupBT5eWya8Bd+7p/9oe/x3rf5WYWUDDc3oTMgLw13c4l88kP4jQGL3btIcszxLmI3x82P6Dx9lVkSc3enpIwd/XHC+SuXmM4WYWhGRNAAuChJARG01kIE9WITlBGKJEGsmmSyxrVXBsqS4bBDpDU0kbXOW6yTYdipkRGwBDpiCUaAJfBd2llxcnFoHWyjAkA+ebxxr122wwUBaC611jSsYNv6FkH/2X6waBvCLeCSDavs2ja7D9IOGrs4FVjF5tkNyxsek4Q3aq9ZIRxS+iZKOrTJl7pXceJju9Q0+wBAw241AKpJbPOucccQEqkUSlv6vR5HexmTxT5O9pFxCrWjqi2IiihOOJ7l3Ll3yNFkTplZ6jJimln63YjZAorS4qnRsaQTpRhTU5YGay1pRy93tbUHg1ZWIBC2Ya4bGYH0Yc+VUks2XzTn3RhDXZd0ukkokrzA1JYoihGiYaHbI9ue/0Z64ZeFSqsj9idSmqUMweOtW+rPRZNKd1ov3ALgByzWmuvO+0aO1bDGbZSyWOqPRUNE+1Os8akhzea6VVov2f7Tx+u0nKYt+E8P67UyEikDERFpHcYGjEMicdLRSQPIjjoptnDMDueYypIaTS8qUT78bUjvgid0otA+RhEGFRGeVEM3jeglCqcE3Y7GRxKtNN2+ojICHadhSN0YRKTojxVJLsmSCIejyiymbb89XA/XO3C9bTDc7W0QS4MSEcoLwBKrHtY7dBKzEUniOMKlCl9KhHZUxrKo5lQmY1Y6XGJQ1pEIzfHBLkfTuyxenTMvapIioTNOSNdi9t64SyR67O8dIDoOejFVVuItWFliEAjTTOAqhXcWa0DpCB1p8qKkKoO1VpGVCGsQVUonjbFJYIu9DTfZwhVMJ3OwYbz62MzZP/YMpzv4zgqrK2NE5NFlDUoRqw42ckymc4qiospm4D2zrOD+7lEYpogTLAVTFmRHBWtnVugODFF3wShd532f+BC3j2aMB0NeuHWX+GiLwThmsXPA+vgsPdfh2aufpHtvB4B3n4m5+Mgqv/g7L5GIMS6V7M8mFLlh+8x5Xrn+Gr3ugE6SEsuYw/kM2dPsF7vkv3wXcRgCG4xc4fX9+2x310mTHniNczXTeU5ZK1Ln6PWHVHaBM4b3ffLH2Nm7xdEX73Bsx1y6cIaNoaY8PGiGhzJ01OWRj3yI7npMbUuELXjjd38Rc3CMjM/wXT/8o3zlVz8DQFkVWFOROI9s7IyED+xQAMMSiSJ2JQDV/h563EcZy+bWWe4RIppdMwleO08sFVZ4nA/DbBaBy2OcjMBAKgYcHCzYefmQNC1IotvotMtoMGBlfEi0ukfvesnYHVH8wj9hJVnF5BNuXv8883LCy9fvkU892bQgK2qMsYz7fYrFDGM9nXOX+ON/6ntZfSTB5ucpI0O8OWatKBHM6T89Yud//q+YvnKTy49dprSCrz73Js88+gFKc8x0OmVjfYujyQGdfor3nvl0yvr6mOPJDEREtz/il3/pF0lu1Vxa3eQ4y7g/q3j1619h9aNX6FQ9vrF3gbVRylwqtmb3OCMrOrJiarocLxwqGWAcVMaiowSPxjnVsMAKKTR1WRMrhVRB52sbr1uhFFVlkSoKDg9KB3kEnigW9Icp7dCaQJLEDZtG47dKGzncgsrwPy9OQErbLm7/DS2b1uhXm1CH4CShlsxeC2il8HjXAs8W6IaY4cZQOLTrm89r0bRot8UH8Idv09YaZlY2mlEvQKglWEOETlTYWNekjAmCO8GJ/Zp3J/sQwJVdFoBwilTFNzIhCE4UDRBrPIwFEEnF8cECbySLomaDlMkso6MSUIKy9hzPMw6PJ8xmOc5KFrZExTWb4wHVkcEbMHWJx4bC053omevaECchlMUEs+jwN6k8rsVBorVJE0sAiG81xT745NoAiqWUjMcjhBDUdU1dmsazOGr0xo0zcQP+lx2C0/rh9mM5AZEniXQNw97UMaGWOXltCzxVw1IvGWtxIpdYvr8IWvWwDQH4Sqmwy2jDZn+lWKprZXMtyUby0V6vLcO/lEb4k+upVX9IpR4Azm1x4Z0L0ddCI5SjG8XMpnCwmOEqsK4mFgk+95i6CAEnUtDpyqUGXkqPV4ZuRzJYiRl3InQk8cZjBcG+LQrP7fUU5M21ah1ZXhPFMUlHkAJ17qid5GjnAG8fWqs9XO/c9fZ9hs+eBWHDQIWwCNHHuhqpwKOIY4Ug3FCzboZaFKHd42sWx8fY23OUXKc7HvD01gr9Jy4grOBMb5sjOyGv50x3XqeuVqjymrPbW3RHW9ybv861W9c5fH1GLxnRGXWYFxWUsLW9SmkrnIT79w+IlKbbTwMoNx4fhchRIRK0TPE4ar8I7S8ESjqks+SLHFdrKmc5PtphflTx2ddv41Gsrm+wst2hOxzgE0svXYPekLSXMJsdcnRrh16vD7Fib2/GaJCiuoF7KlPJ/WnGObOBdxVyIUnECpevPEU0uY3Pc6xfYWfnGOHW2bryBBzcJzMCOZsgjwMTevbMJs+e26B+asgXXqiYK4HopzgZsWdzuuMzKO/IbM20XKBUxEGm2dnPeFfRQ2yHc7hTHrHY78OWo3YLXFdiUsGNm7eR8gMUVYF2FRERRsKwu8lTH/+TvPgbP0VUwf3nvsB7nnoft48m3HnxCxwlKZFKKe7cZjtyxKuPkNVvIF+Z0Dm/zQ35NY4fWePcxqOws4+PBXtFTWorUhmhGiss2zAmgWOyjFs7qekEnWfUwxGjs2eY9PtwsN9YWIVWaLfXxQtBe1+rK0+dSWrAG4Pxjo3NdbbObGCJcVWFdRHGWCbTGeJowiKOyPpdROq4dLmPq1N+780BO3dmVJwj05LFOENbgbM1U+ExnT658yir8a/som+nqMqgoxiVOkYywfct0mk2emdw57fJts/yy7/0C9y5O2Vl8W95+r3vYu3qVSaDFdaffIJMzBGyg89zqtVV/CJDU9IdrjLe+wMu/pEuznZRO/s8tdHFP3me8fZ76W9ucHmzgzCG1VRz+fI2m2c28d0p9ZvXeO7ma5is4vWv3aRyNV44Do9qsiK0URfzBXGkSCPojLvMswLjQuu08pYo1tSmRkQa721IEIsijDeUtiQr5lhj0ComjjQqAnAoGeGdWbaFrQmtbiUVFofSCmvDAJNuwgaWQKLRc7ZtbGfdMv2tXQEkNs8FPJZWnvxAylhrCUZD/DbgVwrRDPoFhKJUM1BFiCK2xtLqgFvWr71WhWgCvEQTkCFEE9XMEvgGoBbkHK2bxRIwS4+3p0SunsA6NvrRAJqChAHfSFm0JI41JjKoylNVhm6qKKoFSaqYzir29udEcUyUdDB1ztbKCrff3CWb1PjakpUVHomWga2t8pK4kxJpQdZEh1trsc43Xh2tprlhwqUEqfAuHLvgTHFK3tEcH3UK7AVdtF96TofUN3mijRZNYeRPBiGXMdunAPHpn8NAnGoJ2mBHRyPT9SfuJOqUN3Q7qElbEDVXjmzOcSt/wbe9h6aH0BRPznmk1rRJbEoqItUy1pxioE8BdtHu//LCCIWAC+BbyJAgJwRLkI4U2NoRJ5AqRTYpMcaS6ggVJegu9Icp/W5ElRtsZSFS6CiiLAtkbOmupgwHEYNegsKhVESWFUgV4QnylaSTInVEHEtAY22N9wJJjDMOIwwWyeyoZH5/goweguGH65273jYYLjsOYxwUlkj3cWKOthZpE+h6Dg8O6ZKQixpf5FTzBTpK6IqUzctPcrRZMhBDegONlJ5Dach3C0b9AYOVEdDj6OCYvb2MUbLBmUtPYAcZ40lOfOf/zd6fB1mWnud94O/bznK3vLlU1l5d1Xs3GisBEgAJUBQhUTJJU5QsyZItUotHI0uWRxPhiXBo5BlNzHhmLNkjy9osSpZHG0l7RJEURZoESZAUSRAgsTbQ+1Z7VVaudzvbt80f37lZDUrhwET4jzGiv4juysrKvPfmuSfPeb/3fZ7fc4Niw2Jrx0gqohaEquWkcojQoXpdVKglQQeC6iBmtLMG4QOZkAQZMabEN+kSp1W6qBttmFyZpFFwF/AXrxBl6vqEOhVTbai4f7ziwnRCLe7wIz/1oxzeabl4foxcBqSF8YZGa8eyqhFNZGgsvgvM3IhR/hzfdO3b+ejHd7i3f4+FnTPeKFH5iOZkjw9tb8PFszA01Btj3jp6CXf3JYbXV3wImIgRcvo03/WHrzJ61wv845+6B3nJ8uiYTEeyYkDXBLwPbGQjOicZjTfoloHVR6aEL94E4Nh1WO14cHTIhtokhTvAvfs3uf/gHpMNxWAwwmtD251Q+8D2oOBj3/JBduYbiC1HpyrGW5s8+uh3sv/WW4i4gR9vUw+OufDui7BxgdvTX2LiDO2de4ijEY8/tgNfgW4w4vVv/yg/88aLFBiUMXjX4V3SqQYkbWd5WjX84HzOrw3GbHzwI4ThhHNnxphX3w03rveaPlAh8ObBdcblgGv9ddqJhvGuZO/ulIOTDqMFB8cLurpBhEBRZCipMQOFDAlVNa8cR8eB1954DfMbn8eGjnKQUW7ssGkKXHREGclEGgt3NuCFQMhAsJ5Y1cR2TisFjTCIY8ccgbVJ43hTK0KMfOY3X+LN1w8pMsPtvTlvvfJZysEYnWmK0jCZTpBKg/KUWhC0ocxhe3iO0WDAmccHHOzBtdEWxWiPRpac3z1m5T3d4EPsDhasmkBV3eVo1hH372HrHHccOX9mh87WHK8kSMOqqQixpAuGJgQyF7h0bsr+8Qy76LAuIkKSNfjgCNZBNDi7QmVT6sYhveH5r+7x2a/u03VQFopikBFsROWREDuUhIhGoHDRorUmhIhWqtfGrvWoqcDw0YNPJIPTcqVPxwrRp9cUUjcxdZ8Da5WBkKkw8b1+VSn9sMPoYy+H6DXD/fPZrkOqFI4QQkAScSEVAevCOxW58mGXVj4ce/uYpBB9Tc467jkV6ZooHd7LnhQAMagUNiFTUR58SMdi/bP2XXStNbHfLDqfjlNTB+bHK4QTDIaGum6xzoIfUbkVwmwhsiE+3IMo6aQhhIbhcMz1V28xGOb4kDTZkYgpNMZkeJ+mA1pnCKlS+ELfuadPnhNIUmNQpiQ96KUNvaykNxWmiZH4mvd2XbjatksBD0rj19KGXkITI6f84LUMY71+ezocPOzqxhhxfSGdzINv14VzSlR4+/ee6pylOZXmSClROk0SvPNJG90X1TEmk2UApA+g+zMzOEIE65I0Z22AW3eJk8Qn9mbMuFZwpPOk10kHL7A2XbuDStA66RXWVeSTKZvjksP5grLMyUw/+epa2qMVW+UZZAEhU7gAWoPEILVgOFBoFbG2xSuDJG1gg3IpZrvTKWVOS6RP57+RBb6TBO9Sx1k7NjdLhkqwFyNSvSOTeGd9466vuxg+OTzAL5coO2IyLYljwbJqMN6iHQgbYAjBtNzfP8IeVJjBBttlyUY2IKs6HC1BBkQcsDke0uxdpznapyxHyIlGG4nJMlzbsZjfI8acYjglm5REMadzgfmsQZeCzjva+TGFLPBdYDPP0bqgyAxKp5F7NtpGKIk2BiEiWqXLpJAKFxxaJ83kerfvnMO7Dhcspiy4eeOAyWjEZJzxxb0X2FyOGJ7NuXJ2E3HrhJ1mg+1LO6zqJdtbZygmOfsHh1RdRRSgI9x8a476/Y/D2YxW5wy3z7O1O2ZV7bORLznz2d+ifK1m/71P87kSNjcvcHZX4Mx5zl5KuLDQVCzcfcJbDzizO2Y4PsA1lhA6jo8OGY6nCAbkJseLQCYD56NB2oblS3B59BgA185dQL95ndViTJ5F2lBRNcfc7+b84q/8DN7NuXblGruXL5PrQ+rr13ny4nOcu/w4MSia5pC791b4BydceO+jjMuc4+tfQblDvnj9mF+6/hq2syxOKpr2DZSH4s6C6YOTdA49uMlbdslSD/CyD4FAIrQGIVJhURa0fZhFHA1oS4NXnjuvv8jyTsKUCe/RSlM5y+3ZMeds4OnzW/AyoAwiGs4/9RwbXuBbS/QtwTaoAM5DkIqskDRVi+1agu3S/a3pyIcDtoqc+ckxtfOsWhBBkZuMBmibBQJ5mlyloknTEpnYtcO8QOWGGB1SBLy3BNEiEOSm5Omnn8H7hjIvE6s3BmJoUKJn8MqIUDnGpqKurh2v3rnDlQuP88K9K7TCorWjWTzDvj5iIbdRuaGIxxwuLX61oD57lXYiOT6suL+4zpkzGTLb4I0bM45Xc9pugM43kbJBSodAko0HKCMgWiKmL4I7bBcJQeJ9hxCJ6+ycRUmNMBHfpu53UUJwieTSto6msaRuk8fkgTxXySxE31XtUWTrpLPg1501uW7EnY6d151fEfSpLCKGkAo1H4lKnGK+EpxBA28nGqRubAik4llJpAhEH8l0Ims4AkLpvhtsenJJ7IkCgOC02IG1jnQ9vF//v5eViPXIP0JUvUEudVnXSWnx7azZXuMsTjuW6e+xL8JFn/dQVS2zk47QRZZ1xXg7cPHCNZYzw+GsZuuMoanu09kTpCwQSjOb1yznLWcubrJa1dRtwNqYKCEh4NuOshhTluNExpGpWO06S5avu7trzu+6wH1oAPwajSzJUJg2IOFtml9wLvGWYxAIo1gLHUTfFSaun4OH/gH+9UL47f+FvqBc68DlWi8sEhUk6cXTEX47wm/9WOsUxIfHnV4L3muZ+8mD6HUqInJKG1lLX9Za9jVKLnXF1+zldbhHeFunXLDG0cX+vKQPHll3jqNM3oednSG5VETvyYcF3ncMBhmdUmgJTVOhjUGqDBmSUdz0kgvXOYzSBNZhKen4aKlw1kGQeB9xXiCk6o2JYKNLF8mYyC5C2eQhWNVk5uH5/856Z32jra+7GB6ZIa4QlIMB2hj0huHu8gEyZISoMFlktrjPGy/dZtROufLcZVbBceu1W0zGgqYYMC2HGBOI3YroGza2Byk2EvDOQ5d+WTs89mRBWUJFixMCN+8onSCXlizLGA83KCYZw2yEzg1SBbQuQQmi9ildJ6Sdr+sh+EFKjNYoo+mqis4nVM5kOKG1LV5EvDL4DmSeU9EiVp5CS6Jqee36Wzx59gyPXX6Ei8OLjMsBgzIjy89gRAbC88i5S3RtJLSWLEYuPr3BqHuFcNjRuSF+tMPP/exPcXznFvHghM1DxfZ0wOrWK0wYcf53bqCaOWfzbc6cnQCQ+wUHr18njKaYMxcopw/wdYmTQ9p2yXLvPoPxLroc4TU8Mt2mWjns7Xtsn7vC/dld3gvAAc51hNke+80R1i1pVzXHIuMXfuE+kRbq32CznPK9v+NR2vtf4ebmPfbuvMbJ0ZLF0QmVk9QuED7/BabZBptbitdv3WN/6YiuRLAi5AV1bRmbjGHektukAf7cJ3+W32gSXo+eTIBUaKnT7dZ7bHAp1AA4Or7P9U/9SwajIS++/BJPzGqAFN0sIkpIgoUzl68y2soB6GSkEDlERSk9nZSIckJTRVbHh0jvkHhQGxSlZjzaQClNNiipqwakZmtjm9HWgkDAi0CzWDIoBpDl2LaBINFG4UKHEhlKC+rVnNilgAY9zJkMSw7v7WOdJ7gUjFBON5Jr3zqkMpjCEGVguViAkJgyJ4TIan7CUOuUyiYi093ISWM5fPUNpNII55gvjyhHE44XSwphkGVktVxi7YxXXvtXNO2MECsODjuaBczrwNEDi3SOxeFtrly8iDQKmWmWWLSUdLGmCyts0+BcTnANbW1pa4uzkXKQU7cCLdYyh8Cg0Aj8aUdWmUjXRe7eOSYzG4BjPJUU5bBvi/WYseQ86z+OCOFTx1cq5JoH24+vU7ED0SeJRT/cxllQMk+kCREhJt3uOnkuJcSBEL0EA/qubV9/KEmMiesqiSlEQQBCnRY5CJFkHTGeGtwealY5lYBIEUkIhJA6070UCxkRSbSTHksZvE1EDpPlqTsYOqT0SZ8cUmLb24tAKWVPolAcH63AC9ACawU3bt1mdjJnPDzL4nCPKBbUrUdnHfiG1158gLeGchDpbMeyahhtFPjgaFqPd8k4V1dLpBLkeU7XWZq2JS9KIKCUxrle4993N9fBIg+7v7DeqXytxEHQdR0xgvUBoRRBSHwQp19Pj2Vb631/+/oaI10vd/jt74MSCbEWexPdwwJvHZ39MDVuvZFd65PXmxzv3465W3eXI6eOOpFMacI5dD+ZWAdtvJ1asT4u62Nzql1WimQgdbh+qgCJeiFI2uYYkn8CqdmYpiTVLMvwwaKkYLKZIb3B2w4yic4U0QZ86CAapNLkhcaUKm0IojiVCUkhEzqxl9F7Gwg2Yr0ly4vUkVdJ/lFXHaEP6HBzwVDl7xTD76xv6PX1yyQ2BYfHLfsPbjGs4ZGgkMsZC5uzkUnkaklmBe+PimzDceNwxatdxXwpuZZNuXPzBWbqPI88uUuWCbplxXzW0RSaYtDS1h1aDJHjCjGK3It7cPce+aFkxw6YPv04eW4QOgMlEVEjREdwEes7rI1YOoo8S7v7mNy4tm3omqZPIjNsnNkh6ID2Em89mc6o6gVVW+GCJxcKIwSuXtB2K0qxgasNu9NHOETxq89/mdAJBirnoLvNKJRc//whttZsT6dsTUs2tkdMxgXX3n0NffOQ4xvP07264vh+xpPf/f2cv/oo868+j3igiAx5brxLfW4b/ZFneeyDu7zwy59i9LTEHrwBwHR7ims14cyQ+zePKTEcFQXVIoDK2R1v8f73XuBXv/wWWblDLmGvWvDMtce5euYsq/3UITtz9hm2tz7P3uESWQeqeo5rPHqwTRUiPkrarmN5cp2//g8+j3Vg2y/jRJb0vcFT60AeNSI4LpwDXUWu3z5iazzBhxUmMwQ6qsWCShvOnx3iegSZq1qcFzgRQD688YXgCRGc94QATdub4aTAzpfMDo45mxVokYphGQWhsxAjWmqW3Yp2nvSO4aQi6gmCjKpbEWipjl7l1ltfRIYKJSV37t4nRonJBoQqEDvBaGOLXOfIQiGzjGK0gcpytM7Ispy20UTfJcNZyCjKCaPNTVxfGA/KIXVcofMM0EQ9RG1axlmO6zzOdRSF6osCMCJp97SWmMEI39UU5RgfJfnmGKMGZJkGHAcP7rK7/QgBi/WeTJW0N2+weW6LSWZoGkUjO2zzFou7t5GFpcgGVE1EacNwGJGm4fAYRmrKvXiMZUXuNe6w42K2y0ef/m4m6iphMmOoBF3IUHi6LtC6msaO8Ks3USpDkti7DgHBIaMjy4qU/ihScIDJC77/+/8ob731Im9e/xKmx6/F8JDDm0I21mNxeYpri2spbXq3T69BQkuCCGiduqep2LSpCxtU0rlKUlde9orUuOa59t1IAVKttbAehErFVS+fEFLjbfdQzwo4G9htHRud7cfb/T+s/+ylE70LLL0eUuEgVdroK6GxDlbVDNt6bNNSDoaYTDKZjgBH19VJvSEeMnj7FnlfOHq2bh2QmYxFMeZm9QDvYXtzjBQdbY8TtK2nq6HQkmFhaENGvVoRpcSj2DyzkVBwvkuSBZcKua24RYyernGMhgXGKIQMpII4ddZP46nfJo1I79nDsJFUeKb3KJwixhTWWXxP2JDaYJuqL9TW3GiRPo4P6+S3yyXWx/rthfFaaxwkCQvXx22jeiJF381dd2a9c6cFdQz+lHaynkpA0ksj3vbcMf0v9q9xTTAR/bFYE8cF4pQbnWQuSfe+jqkWQtI0DU3TEELaPK5/TikTyUXSY+WEZ2u3QBtDuaFAB9r5kq5qyDKDMJIYHJoMWeaYPMd1FmMU0vQ6+77bHrqU1qmKJFEKPskzdGnoWksEmqTtwHnLwBQMBgOIgahbmqZL0pi3GQ7fWe+sb7T1dRfDv/WLX0XcXlDEjDud400huGoKHpOebFkzx2OCxGtHvX+djUPJUsKtl0bcH2jOf+sjNLeW3LjxBsoN2N2eMh5OqInsHzYE3ZB7ixOSZu7Y2ZyiM4MMAnd2ye3Xb5LVGe3SMswzMBERJXk2xFtHrgeMN6Z0PvFYdZZTh5qyNIilpF60RCFpuha7amm7FqNzfHSEEMhljvAWU+YQQMuO0QBW+/dYrBR1XdPWGaKR1N0SZ2s2pkPu3D7heNGy/+CY2w/mLGdzZJ4ToyNaiylgY7jFdDJmkGV8+pf/BUHB7uAaO8+OuBQ7vnK0z55/wM0ff4Hfaz/GI+ffhbpg8DaFbjz6nX+GrWuP4SvLc5cH/Oy9/xNv/NYbDIopPko+Nsz4vonjBbHgQZfz2Ru3uZzt8KHfc4HfzK+T8xIfBf7Zz/80TbOJT71RQmYIZITpGBcswQWevPYkbXbC5z758+TGEEVEu4g1HpNJhjFQyoARObr2nN/eYfTYJuUgp2k7qspBGfDB0NQNTXCcLFJy0c50m3OdpaqWKF1gg8U7S4gekCidoUJgMkpIudY2OJuT6wwhNCZLnMsgEu5LGkUQkQdHJ1i9AYDVGh0HhFIyHG3QLu7ypV/7Ja6e20KX27RBEuIYX3m6pmbeHrE6nlPtH9K1DTEEgghUtmO2aOhsKpy0EuxsbiJU0itHKdi9eJWPfvx78JMzyCwnFukmNUAhfU30C17+ym+xrFcgBIUxjMqcTEXQBTovkUqhlSQEgZMtJgBdRSWGhMEAqT2hXSXZkI5oM6QLLVtbORLBwnVEFSiLba582+/k9lcjR3tfoe1aRFsQWLK3aNm/dZ8819jWYaKgC57CaD76rd/GH/mBf49rTz7JsvX4qsBsarRYEW3HwGzR2Bmv3/gij55rKIaJyyukYrlsKYuSMs9oQ9LLbm6OuXF0yHiywXs+9F4ad8iLr3bJdCcjiIdUibVZirjWSKTPx+hSZ1XKvmucOnVOJiXv8LDCnNQUWYmPjtwomknBgzIlhAXfd5yJffBdONWhxj4OOX1lJEbH+LgmXzZJO6ygUJJlbtgvNQTJbtXw3/7SVyj+/8hN3yjJf/J9H+JBNqJbOUo9Yzo1fVe6ZGMrMjuwbG1nnOAxXrCsOrxv0GYCvSpayog0qXsaYkSiyI2mbuo+DXCNVZM9Yzi9b0mGoN7WfZf44E+L5LcbGLVUtJ3Du77zqlLXdo2447cXvHxtd/mUJQxv2yQ9lC9I2bOH5cNUv/X3Ch5KFd4ukUjyjIeotSSx8T3POrGlBfRR2gIhkxmPPrpaCNBSsWa4pQ3V2w10fbQ2DzXOIQTqqqbrLCq5TFm/WO8DbV2nWOcoKUaG4SSjO7FUbccgyzizs8mi6TiZr1AGpjsT8uEQbwM+OkyZJ3ydb8mkwrYOiUL1kdjO2fQziNT0EAOJNBkyRrxNWnlpBG3XMigUAokwBX7ZcLw4pmrfSaB7Z33jrq+7GM5fXzJxGvLIthgwHxZ8RTluzCq+V3m24pLQ5ayC43plee1khcyGPDveYdu0XJxu05CjM4H1gq7N2Tp3BatWKYyDmtm9ijPDs4yeHnJ075gLV57FTywv3rjB7Zduc/nCFZaLimxaUAwybOuR2iB1Sp9zIiB0husaQqzRLiBFGmW1XQvO0waPNIJcJppE29bEKMl0Ri5AdF0C0buO3clFokm75Wm34OB4yd7wMgeLFYf3j7l9s+XgpKNeJW3l3v4ttFfI2hIJFJnBLSzLoz32xSFkEf/Ci8gONnZGjKcjJlpxf7HA1w25GXHjh29wYbzN7lTybCv5QeDGrV+j2dlHxpqDL63Admi9gZcGYxT7fsEvf/o1Sj/CuhmCnDuq5f/+9/4J+/cOeE/n+AHgFz71Iten5zl/7Vm8sMgooYv4VjGZjNnZ2eXMI9t85tf+Od6meKUgHQGLcAqHY7ecYIzC5BnLk4qTdsXkzDlat2LRdCzaGbKLdNZhipLVaobpb2wez7A0zGvBoBiTC8/JyRHOOsaTCSYr8ULB/AAAow3RO2JR0HUtm4O0OYhAlhm64JER7KyiGRYANDag1QRZGKQqsCcNIlryyS5O5+gAw9rRxZbxILCzfTYFSniBDRYXIiJ6Wtuxf9Kxt78CZ7m8u8GgSCPTtulQIrCsO26/8jLv+farRJEzzAzKRHy0PDi6xc/9y5+gOXFoXUD0DHJFaQQqBkIvEwwxwfBDCAgFtfVIAVYIBianLIdkKiJUROkcJQ3KaKSSbF99lrzchJBhNPjWUi8POXxwzBt39pid1DRLR915cHB+Z8BSW6TKyGPB2fNXcFrzS5/5Aj/76X+F1AWlHmGKHKVhqDWPXLzM57/067z41c/zuz72CM994DxKWGyQ6BzG5RCTaeqmQWoLMdDVoMcZL7z2ZY5PjtJkIBqgQ/fO+YTC6ztyrPFS8VSmENZEiPCwyBEEdmvH3/6lFynD1xamjZL82e96HwcDhdRr4xO9lrQP/YikpMKYdOOIwM6q5W/88lcpT1ux/eNJwX/yO57leFhwsekofOBvfeAa+4Mc4ZJW1QuFVeswDsG0bVHLmhAFui/k7dBwXJYczDru7y3JiozJsKBQGiUEymSYomBnd5P9w3vE2PYdPTgVK9On/XmYTgs2bsz4T198kx0nEBeGDEvPoJBsTUdY35GbGhUz6uWSvfsNq0Xg/LkRJ8f7qFgQLUm+EZNuuJf7En3Axoi1XW8YTOw07yLxIS6aJHWRCBEQYs11BrRAhoc64RgfdoaVVMmASCKDBPG2DcppZ/Vtzfa3aYZPMWlirSD/2vo5CkgWxL7DH9LvqYBkmgwhdfTf9tin+l0ePulaAyyQCZUnZJLVrM9DLdFZlrrZwYOSIJKJTvWv7+FrP32lDzvMIWK0RqJ6450//dliTCEcQkAUmrKEPNNI32P28ATl0cpjVGQ4KhMiTSlkUEnfK5KGXqKRIiUOJi6+QxmF8xakRmlDwNNGz0aeo1zAIDk6OSQXJrH6uxXZYEj04GpLEIHJaPhvKg3eWe+sb4j1dRfDO2efQWwpFkoyN5K9/evc3ntAffuYCyvPBpa7u1c4MgOUGfPUtz3GyfA+1SsLzj+3kbSgwmFioNiacO9eRTtf4acNYeGoxCoFYYw8LiyZH++zuXXMIh5x/+4D8BmrVQ3Bo6NGiwJMRxQJOt7hyZcNsVAE3xGqDh0Mrk0X/XE56GWFEpQ+5ZZm2ZA1Fkf2nSllko5xLCShUGjpWLWarbNjDl94nvs37tItA7W1WFenC6YMFNmArvF46/GhY1AYpCwxWhJjQKqAEYYgPMELTo5qbs/nCVgvFV1w7F0/5vVuD6TkgwF+EPihf/A/8NKkZN4uiauMLr+KyreJweKN4udu7fHJ5ZJidA41HBJkRARYrlKKlhQZAEVeYrsZbXWCGpQIn67+WV6wuXORcjyk8SsOr98ikhzVkowoBZMip2sdbbNka2M3uZMLhe8Cd6/foK0rtNTkxrNcekbDHNtZkJHRMEUJz9uarihR6ASglxov0si0MAOchKgT7QAgNxkyy2i7irpzBP8Qkh8RiBAI3pEPDYVZY9oUEoXoBGYzp3MNg2IHk2VIYWidpSgNozxDRA9aEKUkuMAoyt6AE7AxUGw1DCYnXNjaZVwUOOnT+xgFPjqc86yq9J7KQYkkokTGxhnDp37uR6nnlt2rTxO7mkILNkc5WaJB0bmYUvMiaCHougZpNH5WUa88J/MjBrtjMqlREVyVAhjauMT5DoTgeG55+oMfYXM0JhvlED2ha7l30nLvXkWpC4pyiNGecmCYbm+g5hXS7DObtdx46w7VYsHh3h7jYYnSBYPhJsOtKUYpxGTEXfcmR/cOeXBzn8Vim/FgxKJa4a3EKEmRy4QoVJDlJVWzT9VYYjfjkz/z8yjf0rWC/SNHCB5jEslFqESE0DIgRKTIocgFSJ8Ss8S64OpHszEiYs6kXVCGwH/2+ONc/fh38K9+4ed5Qjr+0vXb7C4bapkRhOwxbL63D0mUSHrShojN+66cgHFnKUPklx57lOGZ83z5C1/g8Z2S77h7xHfdeMBRmbHdpPPu2knF+/ZOyFySHVkleXM6xAnJ0AV+36t3ML9N8moF/JNnL/FDUXOTDOFhN8vYmU4ZFTlZWVLqgpOBYkaFdUtcX9A561AqS7+LMeI9TAaax3ZSUTIZSeQZS6Ek5WCMx2K9ZTAY0lQt27tj6s4ynQQ2J3C8b1DaoaRMm7G4NpYl/jFSpI68Uhij+xpR9t1SQQhvK+xYG+T6CGbvgIhUa95yjyKTKk0/YkDOklQloE6nAbHfpIh1SAqyL3R7VF2v9T1N5RMPOdSJZNEHdQhJFMkceVqU9psoKZIk4u2mvnXlm+QO6Txb18tRPuRCK6WIPf8XkQhE6QtD0qcrRQoZeTs7Oh2n0w65EEgEwTu0kJSDnBig9d0pESSxniNgiALyXJF1nsb60x2cV5ANCrLCoEpNkNDWFTLLEEpihEIYkFKjpV6r4/EAIiKFQYhEtsmynNW8Y66PGJUZimTynB8cUQwzltYhlzO2L1ymns2ZjDNs96/rud9Z76xvlPV1F8PLDz/C3f2XefP6TR68eo/ZwZzBXLPTbmCf/hjj95zj/Ejwno0d1GORH//qj/Hiz73CeR5n/Mnn+a4/9QGOTUVcBcpiEz3SOO3QviDLPF55lnHFSXXA4Q3BaHObxp3Q3n2AvX9CsA310iARVCdHNN0JIkasMvjoUNrQFQ5GGUJApjQdAiU1mdboDGLotW++Sf5aldz8IfaYJBGRyhF8pLU11jqizpAy4jqPtws2N4fYGLDe9Vn1BtY59jGka6wSCdYeAogUXqC0QkqN9x1R9L0QASbP0UrRti2SSFmMWHULOmdZ2HR1vnun5votiyMjqo5yMyJ1QAsIXUtmOyopEFRsFhcIqn9tNk+Xwr6gCAGigsXsmGlepjhRaShHY7JiQFSSurNUqw6EwmtJaRJibmc0pvILukYSji2Pnh2zbCOXpxu8uDjiMOS4GDEudcW2ypL9akFuFKJLet77D2bcLSo0GUWkz7WVjMdj9GCj1/YJ1EmSQ0TrGI+nuKYhoHEx0TViiLRtC72u0zee7iSN8KzTdPkQEQVlEChaBsMt5vOC+wcHhBA5e+4sMldEF5FCE4JHZRJUuqkFFxkVBZXd59HHdnoSgkR6ewrc8r3T3B2usK5lpMcpwlWAEh3XX3uLIj/HYlkx0IonHrtEV5+kEWuMZEH1eDGPFJKuy1BlRswyoprz9KVr7OxsI0UkeNdvHhLnFtuBDyxXDnd4wsb5a8mhb1e0TYsiMNCSIs9AShrvObe7y9bWiJPZguD7dMZWMd2YsjUdc+HsOTIzxKOYXLxApjXPPfU4dXvCrb2b5ONxr+lu8d4RQ4p/NfkILQSGHBlahoMJUq9o646t8Sb39u4SlWFR10glaWzScXqRIaREiXQJUr3bP4oIGWQ6kKmAUUmioqRGqkBnkxb3bl7wwQf3eK6ac6HP7v3wnSOePjZIkbBwNsW4JdNdSLXeMjN86uImreopDzE9ntjepXj/B3n1xRfITCqW68xwkhmyPkCxVjCJgUqn8bgJUGtDqxWlrzARfuLMlIvv/QB7tw9pbr7Gv1NVnF92XNkYMvMLtFbE/Rmr2pNPR2RdTYXAnSiage07fZIQHVpLnOsQpAhj5wVKlEiZtPNZJtiYDMlEzrKpmU43mB8vuHc8Z3N7RNtURGdYLlYQI1XtQQdU5gkxIOw6iEITXCJEdK3DeaiqmtFoiJLyVHMbguzH7e6UzrBeQirEqWRC9JuY1GWQqg9M6SUFShms7/riNCkNkuHtYUfVh9Cn0KWN79doeNfPuS6e++8KKUHkoZ64/zx9kEn6nocEDKBH+p0KKE472muKxDqQRCp1er2SffErSV+rlOxjpt1pUbyWdzjnTp/L+WTcC/3xcy69D+tAmmT0EyAcZ3Y30SFghSDPMrqmpl627J7ZZM2sDj7xg6MNmCIxhkMIDMocH0EIgzSG6EHg0NL0mn1QmWFjOCYu57SrGhFlKp7zHKU1zkdWq4rdJrI6XmJjx6rr/o21wTvrnfWNsL7uYvhH/v4/wJ7MiV1AhAHPDN7N7/qmj/Gu73sP6sIRD26+jL/9VX78c6/xyj/ax9eG4XiKHQdWuiSscmQ+4v791yntjHnjefP+Kzzy2NPoYaS2bY99seQhSzc0YHfnCo9/k2d189PsjKegQAuJHmjKYkBAoooiJb/JSKcBKVOHcJ1k1nWnpocYBQRLF5L5zEWH85bgI0UxwnaB4CJaDwixRfg0cg060LWCsiwZTDN8HXG1S05yI6ATSGVAJLaqyXTCumlFtVwhverTj+hlG10KLgietk1Q9Sgkk40RrijoVuBdev1bowHKW+b1ERN5HrV1FiktLijOyByRT9jYGBLHireCpnWBLC8IYpbc2/btFFNB2zZ0bUvnInk2ZDSaUnUtmxtj7u/doa1qytEI4SLCgBKwaGvymLFlcr691HxsMuS3ugX3lhVnBhMuTwoem2S0puFXX7+DHpSwrClNge6jkkPPEm58w0R5AgIVoW46Ns4PiDHQNnNc6mWwrFqO5BGTyYD5bM5s2Zyej2t8kXMQQodQSTNMyJHFADnUKCxXz41Q1Q73DyJPPH6VtgHrehOJFsl0FRMT2HaRIDqU0CyqmqY1dC5i2kikS1GpIZmBnLcoKfFxTJA5WkZaazGDAb4+RgRJmQ8YDBRPPHaZKATDyTYiOFSW0TYdWZ7RtQ1KCEYbA6quZVgUTC4UPHL5PN4lY6gQkqatyPIBbefxtkOrQMwq8jIjSI0Mlro+Zl4vIbZMxgaEpFo1TKdDymE61yKCEBxCuCTtGI8IQmC9IyvSHLxrW6SQrObHzKojnLMIPaRpRBq79iQA6zq0FEgDKijwAWVGqOkF4iAyzzaJwwBhhs506v7JNB7XcGpGS8lwgShSMUWraDpFS9KkEhORQYrAaJnMlbk2xMNjajSz/pw4dJp9mwgdSdMZ0dmArmnRSpF7R163ROeJxhCEoHVrTafgxNbY3LDo49YapWi1oe35qlZqvNQ0Pe0E5/i9f/+H2XnqWUxZwt4DnvyZn8b/yI9yxrVUfSF0ZbHi+6Tkm11F03iEkOjVisFyTlEkY+FSSvS3fpDPH97ifrDE6DFaorTC2UChc05OVkxGJfIwvR7vW4zOaJaepo7cX+0zm1dMJhO8twyHBULMqV1HKcfMFjVmmJ5PoNJGQRk6a5FS0raWa9ceY7GoONg/IHqglwqsMXXrIu+UwBAiPqbu+7qgS8fzYac1hIgWijI3LKzDJf1Czxh+m0YhfUAQEfpiMxWob+MO97qaNXZunV4X31Ynyz4aT7KWbIRTza7vX5Q8JVesDZYPH2Adtb3+eWMMp/jNdYGspUCpr5VrvD3l7uGmIRlCY69pNibDdh22s9hTyoTuTXZ9U0VLJhsDpE9GRCs8g2GBqzzNokbmAu0FwkeUKXCtp4sNWW6o6wrvEzM5RJeY3UIRCSitIcq+KI8Y71CjCbZuMAhWR8dkecnKteSTks3JBuVKYhctlAmN+M56Z32jrq8/jnkhcNmAOvN0BxVcKTl6bsG/fOMfce9n3uLWG/c4WXoMI4YbV9h8dANLxd7d2/zqlzzve+Ii5z44ZDi9SHN4gPIlZzY03aqDbMhUTRleGbGwM+yqIUqNyAwCxaQYsfv4GYaMCMphKIiZoHMWQsR1gVwZrEwX+apeoq1Cz+YUVUOuk4FASYXJdDIqCInOSpp2hfNtb5ozSKmRQaKLjKarKPKEa6uqI7qFJRM1Tx0d8WC/oW4dre9wbZJGdJ1DSkVwqZDPbIPJA7V3+M722fQyueEF6MxABNtapFTEukG36ULpfOTJ/qb8dIxsTka4wUXcufewLxa4o3308Qk/+J7LnH3fc4yGQ+phy3/+z16i9psUoaZuK2Z1x+P9/eYJFzgicF9bpDQIFcjyAUUxQBSK4WSAvTHDEFGk12ryjLaq8U5wiZxHpKYOLT/rDvlc3VF3Nec3R7x68waPnf0wH/nomNuuYrYwjAqNsLA57gtVkW5+eV6mQkonDFbXNdhulW5sSOg5w+9+6hEuXTlPFz2Hz79Ie9Qb6HoGa2J5ht69njTDO9NzhCgQbcDHJVobVq3DxsCyOoIgqOtA01g6LTHFgOMHRxihU7R47zqXSqEzhSQhrLTSBC8Q2hCiwgeHDJ4YDCYvibYFPCbLWR0eszkdcfGRM+gso7GBLNd0QoPUSA9RDVlZD2JAENC2niAU6Mili2cJMbJ19gxN3bKqW3Z2tjiZH2PMAGFNCrSwgihznPcMioLZ4hB8x3QyJs8KlBySDwZMNydUVYVtA2VZIkXEZJo81z2DG4RSqXXaxypblzZp1jmMyZhunqXpqjT6BoT0SFFgTI4pDa4BmWlqW7OqWopyzO23bmAyBeWEpchA5j0GS0BwxOhRgBQeQUgF+pr9SgrAEOs4igjCO5RK3anOtswWgZkPDJSC6ZTf8UP/HVvPvZvR1hbLwwM+9+M/ySf/xt/A2RyEoHSRrRC5fU+xVBCFw6zSBuv4wT1uf7Gls55GSJhO+dj/6++x9e73MNzchL0HPPv/+REe/Fd/FUsqgnyAB6+8yFc/+S+ZdI6P/rt/nGf/4B/i9s//Ag9ef4u2L5Q6pahyjRwOaauKNkTyPKONHjrPps65qASuXaSoe5GYvNZ5grfkeUHXdYzGhtFIYXQqEwfDks47ooi0dY3QHpMVKGUBQ9V6ds4MWdoVRa6J3qNijkYnqoP2iY2rZD86L6ibltnJMcNhifce512SPpCoL6yLva8xygk8vjfECSK+N9ilTUaM8TR2fa2DTh3k1LmPfVH8dp302/Fpp93WnvKQpA8P+cBr7XE4lX2kArl3v6VrRnioPX57dzj008L1c8FDecU6KAMEUciEfBRJaayk6GU/6vS1rkkS3nu01iiV2PVaaZx11HVq+AgpyYuC4Bze+RQARW9gTN0SykwhOoXzDi8deZ4zzofJGyNd0nrLhA2NMRJbixcRIyWZ1kniJnWaUloHeEK0ZKagc5HOWgajIVqmtFaM4OrZJ7G1TSl2I4UyOfXNVdKQlxLh/nWj4zvrnfWNsr7uYvgH//gf5kurN/nip7/IzmjEHfclfv1v/gQ5Ay5s77B7/iKTiWaqx4jpnFdv30Eog0SxmO1x60s3ufYtTxFHZ9jY3MJJTXeyIHhDtimhicSgGGQF87pF+hrpR5AVZDJj5WfURx0i12jV0cmWRdVBF9Bdzs7mDuUkJ89KOlbk+yd8+1/6r1Ht//KjnX/7f/FH/J9f//vX3nz4l6/8xtf+4xtf/Jq//sj/zOP8ncUJFfDtpqSLIo1kRYZWBhc9o9GQ2LR0wpBLwxj4tieu8aW3blGWQ0zbMJFDXmhqost5s5qzMWjQxnASBJ9+6Q3Mpec4f+kq6kHN5vaU8+NNNm4mRJxRGiEMXW1xLWzuDBAaFBEdFd5C5yWINKaebA54ZXFI6yH2RkkAYwwCge1azl84zxOPv5erxRB+85e5fPEajdEEKZh3J3z5N79ELoeILHGBZbRYB/P5imgymqXj9lt3GRYDatfinGNjPEL18gQfoOpCurEQMMMxyBx8SyZhY3wOqUM/ys1QUnJ8vMdkc4qNHc52VF5huiKREZQgVwOETKNSJZNmWugkxRjkJSeNIjMZbhWRKkcMh1RegU6YLys11kkWrWU3H+Ccoxxuc295wmQ8ZLo9pXUBvGJpW6quJcqkVbS2Q0pFlhn0Os62LxCkTKPcGMFay3y+oHJ1SsnqLNZ1DIeJAOKEwBiJpKPQGoKjyAWuOqY+vMdgusGQCEFBHRmYnBAFXQS0xkUFMiPKDCczUBlRDolCIaQhrIseGZLeNDhqucSZdEM+twJll1yMkrNRwsYGW489zq//8I+xPNrnd/+5/y2/6z/6sywPjvm1f/TDiYAgU3daSIOXmhBF0rsAVdVwxBIXBCJq2Biy8egTfPqf/ihmf49P/If/Ie/5k3+ar/5PP8+LX/oykGqtX/nP/nPE1pRrZclHP/IdcO4c1XLO0WKGEal7WnuYeUUjYLCxxeLkBGQKYsiVScEk3vNbJ/d4QEzoSJECRJTOeolEoBxkSBl6aRZ0HZwcL1nWDZPpGBkldR2orcfTkemCxVFDs3TsbBTgFUJrfNq54PtOpBQ9QlkIHuztIQDr2kR9oE+UiyTaRnCIXkP7NZHLcR1A8rBLHGPAO9e/jypt9qRIvyvhob6WPgb5oXnuYWKcEA87w0KJ0+K4Rzakr4v91CuE5AmhnzbE3kQnxOnxTI+71hsnIUX0gdiHv8QY8DEknXH/NackC0TCnslElwjep3Oq1wdrnT5WSqG1xvv0O66lwdmQNjjeEWJP3YiRLNcYZWi79vS46SwynRh8F07lMkoosjzHCYsLAZXphHy0tucHS2zbYUx6b3wMqWD3iZAhZCCSfAdSafI8BXMoA0oEBjJnNZvReo9Uim7esrGVcbh3QhdbZNDYnhf/znpnfSOur7sY/vT/8Lf5/OGKJgqy/CyPPP4Y5XNnCHnD4euHjI2nW6547tEdvusPfJx//hs/x0//0xfZ2brMxvkhd/bucnJ4Dpd5XNNyeO8esrJENSRfbFLokrhYQpkxGJdUy5oiRKRz5CpnsLvJmy/fYzieEJoVo02Nrz3tsmGgJHiPp8VFichBzOeotuOrf/6PEK9eIjQdPqSEINulrpTu3cmJs0libxKRukQPS1Z0HJwcE0KkiYK2aYgOYusodMn2zpDd0Sa2q2kbx/5sziu37/D6zXucHFd0taMoS0J0dF2HcynS2iiFlLCqa8qyPO0Y0492EzxT8ZQN/JX9e/z1J5/itWKXyx/8TrpM0tZL7r74At9z7REuPTOnPWrIVeC+i/zkr99l7gbIQlMdX6c9PuJdCP7a4QF/dbLB/2E+4wyRBzqn8x1FXhB8YDQZkSsDJyvee+4CO9MhmXU8trvDYrVkUcGbOL66POHd5y8w2c4Z3jnCxAxlIxtGw0Dy5s37PH7lEV4+/iJ59Ow+eoWNJlEgVKYYDkYgKr7tI9/CF958E+kFymmUzLG+RUaP6u9at+6dsDc0CB8o+khRSIVaEzrGowF4x4PXP8PLi9Th647uMiy+Cd8FROiYDqZ422Fjh5IKpXJ8DFTB4CvHcn6CNhpPJHrBpe0p57YnSDzedUQhaL1gUbfMa3BS0XYeHSGoyKgcAQEbBDrPiNGxWCxoneZkb4btUvcnHwywFpqqAdUl/FdPUFC9XlIqhdbJvKSNIssUQkaMMmQmR5ZZulnqDCNy8mzM5miTECV5UTJfHDHe2sY6y8nJCbdv3OPe3ft4Fzl75gw722MmkxExBoo8x1nP/PiE7c0pYR25HBQiOIzWiChpFhX1osZXc3xnMaZDCpdGr33nzcgA3oF0WJ/4z0fHR3gtUqBKDEgRybTGqOTGz0QyBaUxctIxSq0JQtJJjRESKRRRGpAGh0KYgn1ZUEnF/+3Gi19zfWqU5q999GMcbj9JlGCGm/yB/+Nf4Ny730Ob/SQieEzUWC9Y+pJOGpQiaYCATa8560BpzUUB3L7NP/qdv5u7Judiu+ATdQ1/+S8zOXcO5Ff631EIUfKf/vwvMtzaBOCl//6/59YXv4QLnqLvMD/5D/8x7/rABxhsb1MdHPCVf/5jPP+3/xZbwwGDwlDEGl+tuBUMTa6ga9BaAwHnPIKMk6Oa7d0N6tWK8WmEsMJ2keF4i+F0A7+0nMwOkaMhw4lC2Mit2wt2z59Dq8TkVUWBLC0qqCSDcCm5LJMJueUAoTUmM6fF4TptmggCnc7Z0zS+pH1VRiFiikMWpCFD8CmZMSJxAVwQBJKJTolUFEuRZgBCPEyeW/+pe/mC46He95RJTN/z7Qvet3d9pZQokeRMaSIokUrjfZJ7xLVR7pRVbHu8cTw1yunMpI7qWvvbyxwE6y4zyQgqHrKFQ0iTF6Uk1lpij5VTQtLWDSlwI+JciuwejUomkw2IUC1XdD5pjicbhtGkoDvwFEOdcGtBUq0WKdpZRKzv46ujQBmdtNI2JlycACWTTEr2QR9r42FnLbZL5sjFqiaMMgotqXxNnhdMMUQpOVl6tFDM7q2IWjDYyXn/049+veXCO+ud9b+69XUXw68th6jhlIHsWOwtqG4eES9YupM5G+cK7l1/HcmIz3c3OfzHHd/5id/Nxp/f5ad/9LcQcQNzISPMBOwoFssleTNAl4Y4hHq2IN8pOWrmGJ8xLaeorMC2LS7WoBWjjRFoi9Kepq0gbKJMi5TpAhecw7YNEofSFt0zLZcbYyYvvcWgavA+dULSjt+TYPImac+0wtGyN19w8+YDjoLiVy5d5I39GW2dih+AshxhVKCqGnLT8v4nnuTa1bOcOzdh9PgGoycHvPbP99hbFkQhyDJN01X43EAuqasWI1PRs/KBjdGQtrUUeZHuItGSa01UkkHVwT48mFyAj/273L18mba5w3JVsTkZsvOhcyzqNzFTxfDcFpczx/1bP89bt0uyHJaDkmZhGPTv4Z5JKW3jwnCsQEvNqqrY2t5CFgLXNfzgd7yPR6cZXemIncEJz/vef4n92QntYc037W7SiZq2k5wfKX7mizdpRCCONjgIHYvX7zKZGlyh8W3Oi7cPec6mTlYkdbrKIvLotQlfvNkipCLPMrzwoGzqEufptFy6DhsziqApVaQs008SYkAbw8bGBkYJTprAfpUMdIPJJsu6Q7uIokWpgPcQQsliaVlUc2Yrx+JoiQ8B5xJbVQTLs1fOcn53RF0vkFrRdpoQwURJmWmsb1n4AELRtS0uOjYmY4iKICPON0hR8tWvvMrBYYXKDUomdi1CoLSjGHqkzPGtw627XM6TaUnwFmcdtmoJwuJDGjtrBcF2SJEjDaysRaiS0WSbx599jkGeIXzH7PiAVSWYHx9ycHTMG2/u4xuPljkLtaQ0ibKgtSEGUFqwqiqmkxGid3QqpbBYrLUsOkk5GaKPMlSWuk/BCZQ0OO9RMaPIhhR5gRCOynVUXYozliEQbRrzRyRegJUeH+ZEEVBComJKClNSIpRAaYXqtf9ICTrhxyQxSSYazX6UfOLaBa50lt+zapirjKrYZhahEwuibVFhxbPf+gEAXvlXv4xbHDEYDhEyIEyGmmziZE6rC67Lhkp8lt+zf/trrnetkOwXZ6mUpvUKvvu7Adi/fhuPAQEeQZA5/+DP/e94dLrBd/+JP8ZT3/M9xH/ywxx/4XmkaGBjg8HTT/OZH/4RTo4e8Ik//xf41j//H/PU+TPEz/4iKEV9d85XvvQFiFDYlqgzfPBpc6wNB4cdVa3IsoLd3QE7y3QxMplkuDGhdoLZSUVnW/SwpBzmKKk4XtYMNg1b4yF+VVM3S7p5yWreURaJd12dzIjOMhpPcD7ig8YpT1mOcMGT5jb+VMYgRPr9O+2WxrSpi/ie0/vQVCbS2KHXqUasjwitkQhcT5/o3W2nPF+EILoUEnEakdxfPGL0SbJxin1Yi4V73fcpaSJh1sT66eE0IERrjQSctwiRIpQfyhxc/7Oke0QgpnNz3Z3u+dhKqeRpEQLfG2CFlGSZARIibS2PyIyBsO57h/7apRkMBkynw2SEc4GyHODrJTEEdKaRQiO1wocV3iZ/CEoQvCbLc5ZNi9CKXCsQScpS6AJTZH23PXWSOxsJMfkbkAKFQfa0lRAtXd0gRjmZyeg6S745JpcS09pEYzpqUVrShpbartX576x31jfe+rqL4XPvusa9o1vcv7FIN1MTGKqCw8UDzuQjLg2mSBHZHCgWoeZXfvlFPvSBZ/iT//4mr75wmwd7R7zw8h5PfMtZVJ6TDTpEFumcSCxD2yHqSDksWM1aNrc30bkhEtD5EBEVzlbU9SgVvrMGKy2ZNygRqJcVSrSEuUMPJD4k84q2nmJVE4ocUWYIYXqMj6T1NVaCtZ792Ypbe3e5d3eOaQNFEMz0gmFRkgWHD4kdbN2KEDQID+TcPZphFyu6g110ZtG7ksFgxGTY4F3EO5+CHGLS3HkfEtheQqY1mUrpQjIIZC6wTqbvcYJ2/TNsP4E8MyVzM6qokV7z5HTMdDrmKOQ0znHvaM6ZkWZzWvLaTYt2Ge/ZPs+ZnTHXGgd79/nmx6/C4QP+wCc+wk82gReuHxMCrLqWzdGQjJbBhmGvXULVByFog5eRN9+4h9tfcGUzwzuHjRnPPPYcFSXDcpOndz2t80SlaK3m6vYAHz11gNuz1LVVZLjOsnV2i1ffvEcuDZUIKGMoFMRY0nUVuKQZLgrDZlniO5+UE6cu8IB3PnXUswwZHK5NxyofjVmJRB4YlVuMB2MO2ppq2dB2Edtk+LZDRMOgNHRBQGd519Vtds8MUgohRSrKdHLIBB+wnWecxSRn9h0tHu9hOBkSlSdKgyQmUkm0lIOcznmC9SACRI/q92BKeGwf2yuFxIjI2c0BUgWCTylt2mwwrxtmqxVCGpTWSAJCGwZFQWclG8UGUigyo+naGU21pD5aYNuWxf0ZMqSbr8k1VdPiPcxmR0ipMFrgg0WqVCCEEJMBLk8oPhcTwSGGlkBAKkHdOGwQ2BgIaBQdQgeyssCImkk5oq4cwmiit+ig8Sr0WDQAgdBZP1qPuJ7har0DB3Suj4/t24uiRSJQKnXlomrJhOKWlJwIw7txzAmsihIfJGpxiNwc8cf/r3+RZ37Hx/nU3/27/OaP/FNC2xDCCgip0NqrGGQGKTQLD//Oo9f4g8dHLHRGpwwIwVIqVv4YIw3f+9f/H/C7fzdf/Bt/h1svvU4wOVEIgnA4M+C1L75IWy357sM95N/9u+xeu8r0c19mInK4fZvnP/xxXr5wgc2dEQdPf5LxD/wgg0evUX91A6ECO09M2b5+m6yrWRaSIAV5luN9oFrmzFc1JpcUQ0c5yOjD7RCZIWQZB/s1UThicCipqBrLdHOMFIrxcIzJCuJKg1e0S08171hlCy6d2+L89CwPDveZndSAprEdx8sa22k2tneShtW2zJcrupgmJQ+lB4mlTHAMSp3CYyJ4L3Eu4n2KgJbCYIMgH24zyoZoXSafBjsIkTS0wXmcs0ma1LWE4LHO4ayFtsHbhhgcUateRhF6yUZi9kpSbHbSo0eCCKcFIHB6zq3LUqXUaSEspcR7+9CoF1JM9TpUJElEcqBHZPa0idQpF4QYyEyGFBLXpUK46yybm5upGleR6eaEbLlM15e8IC9TwltK8AkQJVlucM6R5RG3aiAmmZbJNPm4xHWp+BZaoPuuPkpiMoFUkuDBZDneJaRdFJEQWiKOLFPkJsc7Q56lABUzMFgEbRUJsqU0gvb4hA5BFwNhEbCLBXYQ6A41i4Oj/5+Ki3fWO+t/TevrLoZv3n6AIXL2kR0e3Njj4MEe2eAC58opH/Tn+Mif+QA//tmfo/vCHrtVzcEZx1e+cpuPfNMVrn3PJV55+TVmNw/YezNn+3KBMREvAjKGhAkzAltb8tKg8AgsVVuRM0LkC8ajKefPbdFYgbMFQTqGImdzd4rUmul4SpAVptgm6o5ykbTCcqKwyrJMNGCU8MniIeD+fJ+Tk5bFzNNaT9NJ1GgCskWsGqy1UGToDFaLlrqqyaRmUBQURU7dtJysWsqiYJAb5MCCV5wbjVgaj4uOLC8osozGWlAKuZGYp0iLj5roJRQNoQFdax67+CyN2+f+8T5r0/qhyFn4SFG31K4mVvtMx47GnyGqAXnWkOlIvXJsDCYEeUAXFY9feYSPv2/A9uF1+DTsXLPwWRif2UbevAW2RWXJgGiDhU6krqwsUDrd7NJFNfDse58Dr1kSiTJpB6UyvP+b3oMPqeOeOkYRFyN119KEwJu3T1hH6npnWc07tp+9hlNpExK8Jx8NEzfYe1zXfc0INiJT6psHY3oMFgIpEl4tivQ+q95UpMukoQ1BoFaBD3/Lx3n15k1eeOU6sU+UK0ROUJHgDVoKHnt0h8sXcjpnUSKgMpk0kH0agVCglGc46IhNCuWwq5oLu2cZDUHGmtB1VE2LEZqNIYyKEbNVy8myxTnQIZLpxPx03iIRZFKhReCRS9vk2oM0CfMmkktfZTmrdknnLUpkRJKhT0dBsB2XHjmH1iUbeUY9v0mmYLK5yf2jI7ooMLpE4pESlBJUqxrvYsJ7SYEgjXCN0n0h71OHOCgUic8aoug3Boaq6ViuOhAZ1jvKoiAGkwxCUaFVQXQCJXMIFitCMkiFND6XvdkJuea6PiQICFLhEmNMBsm+O+djxLtEmhBepG5liBB8SjxUkW4QCARElvMX/t5f5clvfi8/9f/8L/jJ/+KvIFEgDV3nUKTCez6rOTEdSmu0MtwC7kvBXEQakeiswXeUxvAn/7u/xxMf/Vb4y3+ZX/vr/w2POItwqWA/953fyR/+I3+U1z/3eYYiEv7YH0MCOzdv8F3zfQCCEDz5xBWufeLj5JMx+Uc/CoC7cR2fGQajDeLRiiefeZo/9fQzfPn+Xb74lee5c3CfOodZt4XKC4KxSctpYdzTLaql4+io487tfc6cG1EWw0T6EIHOO8pJiRGaaATtbIUPEidzqnhE2wQaLxjkJXp4hoM79+j8ksnZ83zo/R/jA0++jztvPOCwuYUyEMJdjuewWDVEegqLSHrjrm0ZTwSFErSdIyCREkxZcOXqNzMozpAVIwaTcxSDEQbJr37qX7J3/wtJZ9vHNwtSH5pco2WGcmn3aF2J69oUte1cMhi7DmNU37FVKGlODXQP9cD0HdAej9an6IUYv0bv7PqI5vUSKgWEaCUQSicSgxSnWMVULzu0EThrEwnIQzRruUQyF3ZdR57niWAhJaONSSKpGEPX2X4akx5QKkHsEu1nMMhQMkWVD4YDlAwIrVEIMgVKK3KyFH6kU/GfZVmSB2mFlOl6ifMoIQkKsixDSYV1SXMeRUQYzUAopG9BG8Y7Y/yqoq18j55UuEyBVtzdX3Fv9U4C3TvrG3d93cWw3G958gNPcBxvcfJSwtaomePbP/AR3ve95/n1F5/n6uAxsu/U3H39eXb3Z8yyjNevlzw53SSfBy5f2WH72g6hrKmdIlpJVBXzvX3ObZ7nLbVEHZxQjA2RSFmMcbHBHntk48h3t+jeqjizuYUXmsE4Y3c8ZpUveO3uLaabGYXvGMkxsS+cjh4c4fYWhPGYtlnRdB0f+r/8V4weeZT35yXV0RFv/sov84v/5X9JcCl5TNY1eQh0nWV+MifSEYJC9Hq3umlQxuCBe/vH2Kmk+vKcD7z7Uag7xuUmV65OGGlBkZdUTcf+8Yy6szjryWK66brOoucWHyd84NEP8O5n38tH/8jHWK6O+Ynf+h95+e/8GAD/1nvfzee2A2/cWaFlzeHBDV6+v8/2lubaB95HYxcsH9zi4sUtuud/Ey0zxirn4OYK+T7J5nOpa9pMEo3hxvNv8tSjF3lZzAiZoAuWrlF4E9C5IpIhVHKcW+cTY7TndoYAQicdISLQhkiQgUwZVAJmoWWkNLCcV7TesW5lbW6MyVYLVnWDd5b5yQplMqTJCUKmEBHryPIUEvJI3WL0ihgiPnim/dj00aZBFobdIqN1C0TnONsjmnxs8HZJE2BuLbPrhwgUTz15GaxjMWtYLCsunduhtRUHxwtUF5HOMsgLHC11XSGUQQSJFpJgPVIFimFHaztypbl45iJPP/Usm5MdbGsZjobMmgYpBI88eo2j+0uGZdI5z9cR4r5llA2wnUd6i84k53Y3GZUCgU+mpkgfSBAoEJzd2uLB0RzXf045yTc9tYUgcubsCOwBwmnaxRFCBMrRADWbJ4yTEuQmoxwYRoMxx0dHFIUhyzRKaaqqItMm0VaIoNOGRhOQ2mAyhZQF2mQoZRLxYlWSlY62a6AYo2JkUmjwNqXWDUp8bDEkTaW1PuHRehd+6hL3JqqYEslSNG5KDyOClg8NS2vO7Lo4FsnRhYoBYS1CRITSaK34iz/+s1x69lme/4Vf4u6rb/LB7/9+5g8OePXXf4O6bVIXOgba2OKLnNClsB4dI03rqUSkUmkikg8H/Pl//hNceOYZ3vyFX+DRl1/m8e/5biZf/jKrGzcQSLrDQ648/RTP/t7fg1SKk/v3aX7sxzAHe+Tf8WF0PqDtEg1ClgOK7/5+8sefoPrNX2f15c/RVksmoymt8BQbBe/7xEf5posXmd24x8u//lv84qd+g0+9OeOeCExljbQZ0SvyPtnjeH/BHeeAhrLcwXYWoxXT6Ygsj1jfUneRrfGU+0c3aF1AZ5sEdx+TqxTFm0WEFjg8UQkG0y3OfvQDfN/3/35e/vIB//Qf/wjKXkdnGTJr0K0ArQldSNhG7zDlkCA8gyzDqJzGRWzXMNra5dv+wB9iMjxHNV+wrDtWyyPa+/fIu/tcGDtshOOlpQr0pjSXuLtCItea4hCQBLyDzBTk+YCurbG2ToEbPW5NK32q4V3rgX0fIS3XhrsoIAqCj19DgRBSn37P2gwYnENlKdtOENExEKJPKYre41qHJKWXtk1L13aJkNJ3nefzOePxmEAKPGrqFZGICz6hzYTBe0eIoc/ySNfVYZmRq4y6W4JoGAyzVJwbjVYhmWgbm4I5coPt0sQxEpJURqcUuSzLUD6QK0WeGYiyf30S0MyqOZvlECMVQWh0ZsjlIP3cBazeWlJVS4wJdFWktu+g1d5Z37jr6z67H/vIRRaLOcQRV951FZNJ6mPJK8f3mP/GkuxwyAfef54H87vYyTVu/foN9NKxd1Rz7v6UjellQmmZzY4YlxOcXOHpEiN1MGS1WnBuY4BsHH5V0QnNvYM9hPI0TY0UnpP7NRvZFucf2UEOBFqO8aKlbVcsjo44OhAoHxl4xdNtGrUfH8/ZUJrORQY7Y6rZMYvbb/Liz/0LVovIh37gB3jvH/rD7L3+Gr/6D/8BbQVDJDE6Ig4hMgTJed+FDpHldLZjtlxR5kVCrwlo1Yg3b1W875nzrMSM5vgOB3NPDCdJU6YkRmRk2hG9x1gYqfN84Ht/L9vXdnjXxR0mF2peOPpN3vj8i8zuPeCa2QRu89x7B5x9+ip//2e+ynI+4uD4Jr9w4wZTk7FRCnaeuMpcZey1C+4fVphsh6PVIR/44Ee4+sxjvPLTP8PTgP/yNvA6T73rMhcf2+JXX32Z+7VDeg9IfLsiBomQBmtDiqyVKt0AEBgdQWqsEDgbcLYlqpR4VLtAFxxBGg4OV8xOlixXdR9Zms6hq9cu8fnrb+K9YNms0CJDEMjyjNZaXLCEGKiLklYr/txnPvdvPBf/m6PD9MHd+1/z+VYblsMBbQudC8gIR4sjus4xHY9RKsMpRbE1ZG8lyOWAYjQEJRkPM5xv2TQDbt2+TVVXSCI2eIpM4l1DmZfUhWS7KDl/6VHOXL5COZ1ijw7SJsrk6GwDsh3QNcZEhhsFJi8wURKdxOQm6fpqycWL2+R57BO0UmiJjJ5MGbCWgGBcaPTOlL39Y1RpOH92zHS35Oi4gfw8ejig2NrmzRc/jYoFRhZc2rlEtDknqxodBZ2rmM+P8a7Fdak4rasWGSWKRBhAqyQ5kZIsTymNTdekLlOAohxQM6WLHQINmWa5injpKQpFJiVBCGSZowqBsi0xdBh0whaqfmzdVy6h7xivo3hP/wyx724mA5SMKVolcVpTJnAEdAQpU8eZKNnY3uTSs88C8J5PfAfv+cR3APDKr32av/p9fzAxVl1iNEedI7JRCpsIAU1ENl1C+4nUoR7vnOPCM88A8OgnPgGf+AS/9/iYB3/xL/LGG9cBy8HnP89P/c7vpBKCzemQ3/cdH+fSZEooC+J4TCiH+JNj4iBn8Ef+fcy1x1l86n/CffaXKZXk/skJw80ZGQHnOrrlDL0H452Sj/7R7+XjP/j9/OkvvsHf/Ov/bz73xh2GkzMcLmsmTeoMuyhorSAfTFHCILNIpGW1PKZrNcFHsmGBsBVHe0vqtmK8OmSgDUYnlFeucogdbRcpypyTvUNe/Imf5X/zyZ9ixCbHD/a4cO08IuYMREZjLCeLJeVgio+BIDNsK9jZXCPfUozzVA7pqoof+4d/k83N85RmSLWwLPdvoap9RqrG52NmVS+FifRmweRliD4kLJtLOLdAinS21iFNxmAwZLXytE2D1gZrHUI81P+uO70xBKRS/bRJ9Hrj2CPleo2xeJisl4xxOklAYiLKCJlQZ8E1xBjpnENGj9GKKAR1VeNikhLpPoBjPB6fotWs9dSrmhhDQrF5SZbleGuJMmJMRozJLKkHktGwpFs1KJIESvU45uBaRIgIJ1Ek2oUNnohM05b+OuiCw2iDDzZ5FWTaAFgbUvGtEut7XI6QxhCETqmpNnkWolQMzYD50T5ZFmnbDiUFg75J8c56Z30jrq+7GH75C7cwBrKypGqXNHXH4shiTM7hS4fEWcfNg/tcvLjJ4Mwu5mxFXCRigmwlG48XdKGFumZxHOhosN6RdyUXLuyy7CrCA0050CgpaI5OWLU11VHN1taI5ckxl/U2YQRHx/cRs47YwLhIWrh3Xb3IK68+4NnLzzDagOx2wpFtbBbYvROcV7TLGhUcn/2hv8KdQ09e7vDk7/oEW9euYV2grl3q0KGR0jAcTGmCI88LskxRdzXGGJRUFEXR58FHlJasQsPdo4pLR2O2dwe4c2e5bh8gYuIOBxfItWZQDJgMCrbGBZ316OotDt66xadeW6BjxdGs4qzRvHd3g8G7duEl+Mwv/wpnd85QHd9hdTIiHh4g8oIf/43nKTLH490SNxkQVi1l3IXQoKXmSwcztr/0EhcGYwDOPX0BPguWlhWSnZ0Njq6LhOHBEpwGVSKkJzMpBSolTyXaa1TgXSCIiCPSRVguO5bNilVjqdqWrvWsU6GMzrEhps4gMJudIKJgPCi4f2uFc5FMK2yzogsgTSCGwPFozF/63u8mr1YQJcSAj56LiyX/0Wc/x9/6lg9yYzAALdk/uYtqPAvneerDv5NRd4SbN+nG5RVSZSipOV4uMVqjtST6gLUCoSRRZtStp+08QmTUucZsXGZjUxCtRwuB94480+T1imzTMi6HCJX0krZZIKSiaiqaVjAda6bnnqBrBdE2SNGwyhumkwl4i7cpStk7y3iSEWJH7J32huT4jyGgjMJIQ9Z5Qghcu3SR3c0BPgRu3Kw4e/k5huMB0TlyLVktD8mLAqTg0WtX0bnhc5/7Ao1NsgPbtkg8ZTFEREnVtCjSiNg6R7SwuH+f+WzB0+9+L9PtITFYhIQiz5iMh2yMLtHZDN21GCtQpsN7QZTQ2Dk6G+BsR+gcbRdOTUZSSbQCbcRpxkJizcp+mt2HH0ixxsL2aQYP07zSlwVidISo0C6ie6qFlJHjW7f505vbiAsfItz/SuoydhVCFyneOygQASn7NDElCSIi8OgokCqNx6WUKGB27x5/9uwVQoxc8Za/eLTHX5vucrVrUlEuVB/cYMiznI9+8MMIJPcPHnBBRKwPhK5BlyPyv/pfo689RvfGK7iDQ9QT7yGuFrg336JpG0wAfCB4S4ie+mCGWa4oN4fsXNrkP/7PfpC/8X+e8dZr91CZYPMkbfQJgix6zp0fs5zPyLKcGGsyY9iY7BCjZD6fU+E4XtVkRuOX95Amw4ec44MZrq3ZOzii6xrKMmd3Z4vdyQbOHnP31qscHx9y8ZEznNT7ySbhLNI7ok1R6wFJlAMsSyrbEL3gzTduIAFTDpEm58hcZzwZoIcbjLY32XrkfegQiMpyPs/IM43wHuECuckTdzoG8iJHSYF3nqPjE1oXeOWtG8zmc+q6wjmbiB6/DfO2ZpBDH8DRc42VVCmgO8aeHMFpelzsO8xSKhA6pbDZJhWBRcao5y4vliuElHif3mMp0kRlVAzxIaHUECJt8Nu270pLTJb1muCuL5ATvcUGT9Mu6NoGkGxslEynA8YmJQcak+KwhU/eA6MybN2lJkKWJaOezNDGELwjhiSmsq3FZGnTqUTG2qhYFAXKaDprKbMSFwCtyLQneoFWOU5H5ict927ep3YVXiuq2JHJtXztnfXO+sZbX3cxPBwNmZqcR65eYr+6T2UhEznSF4xHA+rRkuUq8MatOc/km2xf2ObOC/cJS2iallVVEbuIKQsUlsXRCbZp6dSUymqU9oyH24jC09YrlMzZKhWeCnvcsLm7Szuz4BuUNAyLjNbXdHWkzCQoxc65ElE0dNKTpfqLUuQMixJVFrgs0PrInVtz/vTP/BrDzS0Anv8XP8Fv/egPJ4OSUEgUSkTGk5La1mitGUyGbNgptrJsb51BSBhuDDk5PiQzkqaxeKWp9lqe3d3h0pkhT5RT5vMVNoDKCqKAzBgGmSYbwv35Etc+IBxLbNTMQov2GeXOBm1WUm4mXNPQjDmzvc2TF7dRuUeMP0KHw7YdXhvuH884vnmH3JTMlzV13SIFvP5Sw/d/63sQixMAYo+RMqYgBokeasywQOiUnHe42uNLb7VMRobhQJNnEq0lOksYLeUDghyUJdAm7JFXPDie93AORS4MQQRccLjY4qLqXdhwfDDj/LmLTEYaaz1NZzH5ACUcucx7hFJgOBiwnwtsZiCkxLQokmkO4HqueXM8wUrLzVVkIHJmq4bh0V0uf1UQty6DqZNZq+eICkRiyypD1IkS0UhF1AUxgpeA0kQ3RGU5fbQEPghkXqDKkjZ4cpMhiwJnHSJIbBdQSlMvO6IomK9qrM4pJ1co8gwfGup6SZalsAMQNF1LblJssHVtX+QFuqZFSknT1miRbtTbE5gtFmil8dJhu8DZR66xee4KSEGmM/AdwXUUpmRrsEFTtbS2IbgOEVPstAgw2Rjz1FNP8fLLtxC9W98DR7MTxuMR88NjVoslx/sH7OycJ8tyilLx+quvEoNnZ2uTW/c3+NC7Hudg70uU03N4MWZ78xmu7BqkVvyuD17l8BGFjzXXr3+Zr7z2GlqloBmlUvjCOljhNE5sLYoQ6WMhE2ZOSnXa7YoALrGxQ5QMO0/hFLlQdFIQ8GSZwiVCWMLWyUhIzLZep6zTYyNRqsB5T7OaUQeP7xowDpQi9PIMhEAJgVqjvWSK25Y9hkwEh5HwoW95P5fOb0PVUDcNTVPDAibb2/hRgb72GADZY0+RPfYUAN1brxE/9Yu0XcuYNH1p3IoyjLB2xbJagblI0Y7QheH9H3oXdz7/AD3MWN6dA7AxLbl2ZYqZCoxUZFmGzgzSCLzyDEclMY6YH99hsrXBhz98hdt3HnDt3U9jjxuEDCzqFdNzT1IfLWnrRZKomY5suMWo6pBScHz9Dep6xdHxKuHDhgO65QxvQORDpFScnLQo4VBRYG1Kz5RVSmCbAfvCI6RGGoWQiqxIr3U4HDKZjMnzpD3PsgzTI9SkSjpzZx0nRyecnCw4OJhhraNzLVKJnutrkrchxqQw6iktqTBNpj7nAynYZY1Ie3jOPQzhSIIIKXWKs8800+GAnKTRd8FC9ASXuupFkaGNgujxvRTIe5cMqTGyqiogcYaT5MxiMkXTdgQfCK2jsh2uj0vOshKTZUjtCHjGkxInOpQQVFXFcDLA5DnBBpR3SCnQpBhs17XJxEef3CcTKk70+MJUDAekkrjgCDJi8oKuskSRozNHXmaoAK6rqVeeZraiKAxLp4iq452+8DvrG3l93cVwOS0oc8UrN97i2mNXUWrO3pu3oB0S57s89rFdDk4OuP3GHp97/pj3PHKWrWVLmG4y2tCIPNKczGnrFkmkKAwygo4Ov2pRpeKou0GsNd1yxjAOGU9HDIY5bhVZXF+C8gw3pujRAC8qBoMNzMAgixyrJRfKCYpIYwPYPkLVjGniA1YWVsJx/cEhs1nHP/nTf4atC+f5lj/xJ3jXv/U9vPjJT/L8z/w00SeUU6YUmmTk8M4yO5wxGW5wXO/jQk1uMmZHB2iZCsVMK3x0dJ3j8hPnaIXnTOsIIvFTE8+yjysVEGTgXEw7dx8i0UdW1YrrBzMezB2+XrJ7nCDnVVgxq46ZHe8xv9dh1BChSeO1csBJ16H1BuOzV7n2+DaynKGi5tntp/m27/0DVF8qgb+b4jlJscjjYcn2aMKXljWjLMdQkctA3bTMV0vWYU/OplGb7+GcKhMYrSlzjVaRpgHvwyniyLlE3Ygkna9UcHB8DEAMju3tCa0UlMOSo/szxHQjmeekx1kYlkNkpuh8A1HgfUzw+v7iDmAjNLYBKahmnrLQ1Iua5UFDzFfk7h5+a4TN0834lEIRLLiG0EQkDh+TQQ8RaUNAaoUNIKJEKJ2MOcbghURmBVIX1LalUQYfAr4Zo3TGaLpD6CqCmzOrD8kGI6IwOCWQukC6VFypPMOGgPMKmetk6LEFxEgmFcVI44LFRE+uC6x3CAXFpk1aSJv4wFJLiI7ga3Q+oFkeE1zL05e3uXPvAUvbxxH38iBFBGM4d/E8460JodC4WkNcITLF4nDG1a1tvv3bP8yLr7/Jyp0Qwozxxllaat546WUmky1yn6EuP0E2uMrW5W26qPniV+/wleef5/0f+gSPXXoELzQm03Rdw0//5I9z77/d597efcx2gQqRoD0qiD6AJDFQk1YypfxJKVFRJi2wSDfydVxuKEQ614SjUAFTG3IhWeqMXIEsNDZEikKlgiUzOCRWJN6xpCPluUui0YBKpYMUGAlGB7K++l4XSCFEhO+dTq5DRIcIgYhEy8j3/Z7v4OK1SzRdjWsljZQ96cThnKe7dYf73/bNdN/0btQwR2U5uVG4uksSVi/ocGTepxQx16Ccpzpc4OVtzpy/wrDNefY97+eTn/kMRw8aLo1LAGbziv265MK0ZLwpqBaB5dGMja0pUgS8i8QuJurP3Zu8uXeTweYGtV2iRpqizBmKCTobUTw95ujoEG8rqtmKk+MZ1x59GhUj1fyYL3/5S3Rdx3gyosgyFt2KnBInNE5KVJsYws7FpLVXCieSETM5LdKtJjiPUJFm5ZAryfLwhD0S1mytE4eH3d41c1gKmUg8QiBiSruDxMsN3uGCQ6KIQbwtlVL2SW19jDKBgE9mvR4NF2NqgKRs5dDLKtI1rcgNhZaokNLcZocL2pCmHUVRkOUZvk/LTJF69IE1jqqqGA0nqescIsELYnQ01YrgA97JFAtP0hjjBDqL6CKSiUDnFNF35IOALgsGIaMoc6KAcjpMR0pLjDbJkdHfS4rSUFU1Qii0ygjOET1YEWisQ5FCXvTAUEeByjTSOgZaIoWj6RxCF2Ta4XxHkaXrjlQatQY0v7PeWd+A6+suhl/6za8wmIzZ2i74+V+8w7Pvf5q945q2mXMgZ7gvHjDcKNEmpz5ZsnPccHzhDCcY6naJObSomBEkRO+RVqKDoVl1iY8YDUUmiSpyFDQqGyNEyXhTIbc1MSica7DOcTg/wgdDFJbj2SFt52nqhnrVEbxEiYxLByd8HLh/a87lpScWHicCs4OW4AIv/atfwpiMqq75wR/6Id7z+34/X/6pn0l8zBhpbct8OcNn6eYeo4Bo2d7Z4ujoiLbtODk5RinDzs4OrvNMNsfcOTxkvvLICchB1o/TVYoyFSKRF/qLpoQkAwgBlWvywZRuoHjphbs4J4kkPu/e0U3u/fKnePfZqzywc6rK04aOrnOslic4oQm24/W3PsfVd72H937Te6hWK+z8hF/96s8zvf0q5yHFiULqzlnJ+565xmt37lG1R8zryFNXL5Edv47vIlmWkyHYHpTkGnyw1N4xWzTMli2Hy46oAiKsQfiijwdNhYAQJPxUiBzPE5/SZIZWC3zj2BmPUVcCMct7bbKAYBEObGcJvutpBklz7Jzr41wTeyA3Ga2zHB+ccGbnDETBwlsaI+hWxwhZk0+HCNO/B0ImVq0UiN6oooQi+AAy9npUgVAR23UEl1BLwUq8EMRlJDcpkSvxVyXzE1DasLov8c4SnEXEyFIohM7ReYnUBqKiC4HWCExWYIJEtkN0luEIWAKVVv1rWJ/rNUpJdH8zNVoRC5C5xIeE6YshMJCG2fECgeSLL7yIs5ELjzzBol7SxYhVAURgZT1N7cmDII+ORetQSrM4mbM12SI/e4Gf+63PsDHaYCAH3Ll5E4HAKI0eDHG+QhmLIvCzn/o58lJy7eojvP7V58lnmtuvvZHMliHQzE/YW65Yzub8qR/4t/ni517kCy+8iJMNRqU0sxgFUgpUnzamROxlFa6fYCSN8DqMJoqICI5MGaLQGETqNPYGOyXByIwmih6pBVEKJFnqjnuSSVAKlO67f0ohZMIkCiXTBn2NcOmZtyEE8tbCDIpMkpF0y2WR8cylC3RG0xzcJxsoBgNBeBBxTcdgWBKqFa5uiEBT12RGYrLEnQ0h4bm8dWCSltV7T9e2CCTWaw5eus7NF17gQx//OOce3ebDjz3LZ5av0L2VNPNOQF3VHB4pVkcrvG+4eGUTnamkYW89VgQG45LWWu7fvYPYu8srL36VSbHB2Z1tJoMCIcFrGAyHlFmG1BlbQ43rTrhx+w6+cwwnJcXoCsdHMw6XSxwR164QaoOooA0RY0q8r7EykAuD8qnGBE6lCKdd2D6pLQWvCKy1iYjQSxyMNsQYMdoQ+mMTSQQ+vEdqSfANSmm8lyBDMp8iUSqh0k6ddWIdJ91TJt7GDU6hLzyMlo6CGHxKorOBziraOuENbZQIkWQWVVURguvDSSJN3Sb2uPPkebpuewdaK4hJMuZcwHlPjND2+DiTGZwLfeR1YDQpGI9H6EbQtB1GR5RKIShCRvK8SFHLSmGM6TcHAe8Cbd0kcoxWhJDCiYSQ6bh43wfpKNq2oz5pyEaBjcmArFQIBG1nkVLhIlSrBtt16Eyysmlmp8Q7Mol31jfu+rqL4Ucev0gg0jnPoJC89pVXAEfwkdp4vvLqnHEoGAxGvP/cDhu7E67vz9iebBBlR7e0hNaSGU0xKVFaUxaaycSgTUaeJaYjmaTWlqPDBbevH4AINMFRt3PqhSf08alCGnKV4Z1HCChyST4cgi4QQlPWSyCNv23wtFiOqwUXP/hh3vc9v4/XPvNpiIKP/wf/AQB3vvoCYY3TAXwItG2DFTlt26AzTWZyjMnQOqPtOjamW8QYmS+WaGWQOiMOYLlS7JzNU+eHflx1GhPaj1z7fxExggzpAh0C22aTZy5Hmq5jw9cAXFlUVG++wfkLYx7Nc0IuiGS4kNErCxIs35dUD17D3nuVMYG2tdx58bNUB+nm+dbdOd8MvLU/4yjbZzY74crmJk89e447h3tMZMQZRb1/gNElyxiYLWaMhhkQQUkaEZiuasqmIoqACCk0IggBUjy8qYSQRo0xMuoDUB7rOmZ39nDOcYZA5S2r42NMMSEiWDVL7GLJhdgh+1H3WlMqheDiMh0PJdLFO/Y3NylSR7F2jqAEPnSYqNg/vIssCnSWwkaIgrxIYShNW6OkhihRfcyr0TnaKHz0KSktAoQUW6xU4o4CRq3RYAHnHL7HkGmTOjHWWvA2FQv9GNdHT+ssWV5gZIaNAbXmGMeQcEwh6QAzU+CBIAUhyyFKrMwwQmKlSmg7wEbHyQx8e4zOCnYuPIYUyXCqpEGQIaPDR4db1ZybbHHx0jlC6Lg8GZHnJVmhKCeSl7/8GTaKMZsbW+xMRujRmMlowJmdM1w4d5n9O7fZ3N4mdg2LGw+oRwPshYLHH/sQnesQGajOU/sKIRSLk2MaMyB77INcet+/xxv/7H/kwS/9EFIZREw6e8HDbn8UKoWT9AQBIZKBClIoSjqZAJKMYa0FLYgU3mK8JReC4FuGIWAjBCQuJpaJCpGMPsREq2TS0lly1ouEvhpKwf+XvT8Ntiw7zzOxZ017ONM9d8y5KrNGFIACWJhBAARBQCQlUSPbUsttq1utaHc4TEV4kK3wEKGww+GwW1Y4QpJtubt/SLKG7maTsiiRalFsSiRFEiApAAQKqEKNWVU53bzzGfawRv9Y+94sdofdQOgXEbUQhcrMm3XvGfZZ+1vf977PWyr5Lt1yLqgnw55TmYzc2isUj1++TIWkPX6IqAT7L58gx4Yb8z1WTYec1TlsorOEcZXf75Qy+5mE8z73NnN8GjElgnX4vqVUJVIJVIzoIvHyi1/n6Q9+jA9/4uN86xdeoa6r/PCEoyoV7rhhddxz5foeIOjafFBIMWGKrB9NKdMFhIBxPWVve48bj19jYzShKuv8WmiT35O+52y55OjBMdPJFlIZjk+XnByd4JzFupY82A8YclhPWh4RdE3ED9e0zF10xIWB9ly+kFLG+Lmh62uMwRgDCIwpUCoXyl3XZZKElIQYUMpw4/FbnB2dcnZ6mq+elEAEpBg+nwMJIsskcvpd9iyId11b59KIR9IcmSCSI5xDzJOt3gWOzpb5YCwGKsWgOQ4hsG4CxjnCgISMMU8yiiIbq/uux8ZAWRY0zYqu69BG0veWECLG5Gs6poRWKiPTKgEpXphFJRJjDElIEi5v9qSsIxY5YCP6eEHh8M6jywIpoLMOpQyoQWtsA8lnqVe37BB4nLOkpPL+JSUu5Mhou7aImHAp0YX82oV0Llp6b723vv/Wd10Mb+9MOHp4Smh7xkWJntSApel7jDPI3nH56haTeswT2xOOXYcpZjx5dYfxnsKLlKkQUaNLhdHZGRwT9DFyeLSmdx1nqyWLwyUxaOTI0HQ9tlUUXrI926TvVkiV6PqITApT5E28nmps02ddsoaJyafzvc0Zm4tj+mnJvbOHrB8ecOmZZ3nuR38UqRRnDx7wS3/9r/OLf/WvZqSMkvhztI/SaFOwXq6QSuNFNvBoYyirEq01Xd/ircX3PV27Zt0GFmeeXUYD2VjkrvD5SudO58xcTQPA/XxzLg1cu7IBAoqxwZcFf/QXfuXf+I12hUFOcyzy4rDjsGiQQbE9GbG3rYi6wDlYdIZiNkUN078gBYtVxnolErtNw//6v/hZSu+/58fwv/zWS/Ctl/67/+Lt1/7/fnmz73k9RqqqRkpNH3JRulqusCtLXZbcOT4mFp6NkcbHiLUe6zyyUbjgWZ2uIClSBGM0XdtBzExhIRRaKLTWKJPjULUuGE/HbM3njEZj+q5DyKwnTV5kzvEgO1RCUBcGFwIJTRICrYshEjYQfU+SIOM59H8YFcSAa3tca4kiIkXWEkehMKbGxUgU0IcsmxAJiAmtI2U5IpDQhWF3tkk9nvA7X/sdmsbhfWS9WHGwPObO6QGPPfY8P/LZj3N4csirb7xBrTQrBdbD8qShHlVsG8mk0iATn/nYRzh+4hJPPPkEo6rmuQ89Q+gcS29Znt1Fq5p2uWayucF8pHnZlXx7/EFeDZLVOy3u9Z9mljxnbWSqSzK9LIJI2dAmUja3kTWiShoSasCqJeKQKqaAmHKMc9CaVSGZusjce4ro0CGhUsM4upwaB1gRCSmhUiQgOJYSLw0MDnwpwaI4korHEoz9gIEbXt+Y4kX8cS0c/WOPoXY28bs7HFUlp5/+KKkUnDxY8LP/6Of5w5/eY++1y2ze2CNScdasKEpF0VtocucuxYQKksI7Su8RzkOC4AOu69ClZFxLbFVyf3XIY7tXEMD7fvA5bn3lEstlZhgLnxA+UBaSy9crxpuaolKkUOD7gFctG+MRMda5+6glKYI0BWZaM93ZZFzP0LJCqJKkNMZIRigm2z0bTYsLieVqDcqiTYGUEaRDRsnGbMLuY4/hreHw5bvYdoESCRMzpSGqhBgOF+eUh3Mtr9Y5phtgPt9gsVgihKSqcpyxEAyEiDjIrRSXL19ha7bBxrjksFYcHZ5l4omOCLL5kZSvkXN5jVb5wPnuMu6cHBFjQspzQ12mlgghQGmCd0gpcd7lKUKKSOSFMe8cn2Z7d9HpzhHaKRf2KVFVJcZovD+Pk86oQWstRVmiFbgQB0JKnlrV9TkVIqK1wOgix25HT1WUaDlMqsiYwRQCWuWfW9d17p67gDEFVaUzb13n10bLhK4LvMuddxETXetJMjKdlJgi76VGG+K6J5GwSNoQLpjS76331vfr+q6L4cnWnCvjK8weK3n1rYfsTnZBW965d8DTYZv3/9hTvPztbzG9L1kqQRfgyuUtRjfGuNjQR4tbnJHWijTVnHQNDw5PWXaOxmeAvjEl/doho+C4XXH34IDVfkflNnjqsU+y8d/7AnrP07/1beb7x9SlppyO2NicUk4LTo+PqXVNNaqZ3c+Pe3O7YHo6Z7RVMYlHfP1XvsJf+dKXiNFnmH8mnmKMudisaqXQSrK9ucWdpmEym0HKXYWiKAjBZ51wYTg8PESfw9x9T+Mtr752myeffwGPyy7nC2xPesRLhdyZlDklLKVBIydlLqikod3b41f+6v+GarmEkG8sITmUUITgkSKjoWIAoYY+W8yO+UhEUpB8ICWPm0/YPsvGmx/40FXu7m1ydNJx0ra8+J3XOTs75vDhIZuzOVVd4HRPaTQpRpLSeC8RKTDpTym95x988fM8HFUZ7n6OMxpaaiHP8QHoiVw5PuXP//ZX+X999AUebsz4kW7CzagpkiTgWcnILzYP+Wro6J1nMhpR1UXuPMvBEAK88PCA/8F3XqPquvw8haCoqmH8mggEhFFQKNplYGM0QUtFECKnrqncoc+FliGE7CBXuiKEPOL0bU6ectbnsTpDp1tIRIoYU/D+9z3HrZs3sX2bn/UQOBJTRJWK4CJv3buX9a86F8NS5eJaS4FWikJXgw46gswjTxUV3gec8zkYw3mS82hZ4u2aPoHU+Rrw3lMWJTIpSqWxnaUYjzldHPP6m6/w1lvvsH//kNKUWKF4+oPvw8XAyWlL/aEf4p+vS1I1Jb7/A7RqzNp6UlwyHtdUQVGcldgTgSskxKsUxVXq1yPL5hhvTyj8EhWg8VNK1WG0oFk9ZPuJ5zm49jTHJ1/jwc//PZqXfpPZ1hZbH/1h+nVAlSBlgFYCKtekIqFkjoc2ImFUwpSCwkSMzL3gFBMBiRTZ1NgnyS/tbqGC5o56P/P+FWQBR+IWO+2KlasRrqUpdrAhoVYHBN/Rp4Ax5RDwkQ8inVD8zHSLJ3cU2qhBTnNusoo8tW75U/eO+a3HLvOJP/Pvsy8cbj4iFAlVGEyMXHt2wqc//Vl+6Xd+lz88rthOkmhbKkC0lthl9rIislquUaZiGgJ12yCUwI1rbMpmz8WyYb5Zs3/nmN/82m9x6T+8jlQBLeFHvvTj/Po/eDvvbXXB8Uixt7uH6yOt99jeM9IJpSOSRJKwdp7FuiWRDxtaGUbFmFpNKE1FYarMmS0rjDHEmFBGUyhDaFp06VBGEogUpiQmh/CK2XST3dkcqaZc3vgJ3n7zKyyP72OXqyxDKrLlSpAupA5aayaTCePxGIhYa4kxUFUF1mZ5VQj+kU44RUJIbO5ss72zzZ133kKpyGw8Y+eJXW6//RbohHWOlARVXSKlGKKhz81jj1BrcehK5/Q5xbA1D2zibK6LiSHVbkhySxElsuYXxIWO+SIuWsghWCP7DZRSVFWeRjnnsNZi7VBc9y7LHozJiXohH45MleUUhUlD40EyGlfk8cRAaveBGC2yyH4GrXP6no8RU1b42Of0Si2HvUvkx6GhNAWt74kikkSeQDnbI8yIYCO+ivS2xyeDDInurKVPkXVj6VIiJniUEvLeem99/63vuhge3bvDbVewt9RcPljitxP9SCKWC476lru/csIVKrpdw5F3jNOUiTrlziv3EKGkCy0xSqIooNG4JHFii9lYM7WWaqsiqsjJ6QF2Faid5iNPPc70M3sUt66hZxXIBUYoysevUD+xzbpZD+Y0R4djfnkPiUIqTdzPG7FWY6IEH2FrNqcyELqYN5KQx0pCKEjZBSxERGg1sFib3LUbzEhaSZaL02F8Lzg9XaJlwcbWFHzi6OQA7yNvvP0Wdv1hQu1RKo+9zlPYzt3MJIgMkcLnZg5SHp8NZikpHP3mjHZjA63FoJ91REceoSlDFDY//ghCSnyKWVOGIAY3FO/58c4Wud3bR4lXhmJmqGLLol+yUZTMrz9OiJ6oQCWNyDFGoASFiDkWWOXnsbtYM+l7hIv482o1N0iyDnew0RFhY0guut50bI9vsTfe5LSM1HKEDp6uO+Lj+jovr+7xa6t9bl67nNPNREQocQHfv75uAFAqA+I3d7ZRRmfKw6gkaZBaIHRgsjFBKYVzOUBCDqzamHLkccZjZZmFUgNtQKaLdDRlDDIlSGp4v1PWIvrAt779EqTIjetXCM4SPcNI1rF/eMLvfvPbtJ0nBlAClFHD6F2gTS7AYoLCFCilMEpjtKYsNApFNRojjSSlntlkTB88oqzYqreyDCUESmXyzRGPi5prj+3x1p27fPUb3yaiOD7pmc528/vZdWxszNjZ2cIuW9bW8faLv0VlT1gn8DHxpU99gPEk8Mu//g7PPbWHDR6XNKkeUYy2iC5y97Tj+WduUpSeQ59QsuGFp+ekGLi/v+QbYYP7fsLR3/4r2F/7u0RRoU1FshGEAeFQtiHYLJVHqUyHkBqPJDkxGJ1ANGoo3KDQCaOg0iBNwhiNQZGKyNopFqpEJ40oKk4ZUfqKs6jRSbLUI2zy2eiqDTEkagVBDAgtmXXpDYq1MZgqx2pDPuMJoLPDFKSa8dbZKbdubNDVNYUCa5ccr1fcOTzgO8dv89Lxkmc+/lHktWusmpbRqGJxusS6lvd/4AmqvSuc3jvk4PSE+eYG5c4cGy3rLtK6RJmypl8KWDYNtSj57d/8KvNqiytzx7Vnd3lseyfvbXWB7DIqUepIv17j1x27N6Y8eHBKFJreOnznaVqHVgaVMoFkPKqZTafosiTEfDhUqsRUJQzkmHVjiQGSzyFL2uTPogBG0xHWOQ7uvUE52UGUcy5dfyZPWNZrhAIZszn1XB8uhMRaS9/3nJwcZ7mKVjlqXEiM0UOjIXEe93xexOZDbGS+uUXXdfTtkt255Pnn5kQhuX/oOT5ZDOY5TV2PUMrQdj193xNizPt7jBfd3Sw3SKRhHz4nT8gUUCKRBhY2g249n/wfGfweyS3ikG6Xd/HlcoXzmRiTosB1Nnsc+h5rHaNRhZTgPDAc8LLKTDGfTqhMhQsWUxb4kB/vuCrxIQcCGWqkSdC31OUIlXKXW+kCwjmj2xNCxHmLFIkoDVVVseraLIdXCSUMQkp6a1ktWsxslqcwfeTk4IxlDNhY0Id+oLtccBHfW++t77v1XRfDOpUUFtJswu6H9tjoPaUMqPpxRDmlqy33k+N43SDPPE8/sYUZO9xCs06CejxDqxpRFoyKjKrSVYmWUBYK67t8g/SPkVyiGI2xMZsN8ql9Cb0jBgmmpC8VVb2NSGIoagZWpMxmiHMHeCJA9BAElzZ3uXZtzp3bCxC5uLWWHHssGDR9gRAELgbWqwV6awsfLM55zHTKaDLi8OEBJIlUJbPNTepxSeg6tre3uXPvLicnx3SNoxrJIUTgvAOd8TZ5y4yDkSZD4Rn0akJmvXKKAaUGTRwqd1sROUZXnuviyJG2Wa5Lih4RMxs3kUhKc9Z2RCRNb1kdnwLw+t1Tbvc5+tdEg1caLRzeO6ISiCiQSWTj0UWErkaIxPYQofvc9E2+I3Z4oPeGTkwkpoQc6A0p5fF08omyzMXEfNkwngROzZq4SojCsSVLjCxZhRP+yGjGvz59yMGDh4ynFds7exhTQPSZ8DB0oEVGZrI4O+Xy3i7EgFgtKLRBaahHNROd5TjW9RfECDHIQwUapbLuLqSI1oayLOhxF47wjGlKSCVRUtJ1FhdyQVwYze03b3NpZ4dsy8v/cz7y2qtv4XrBdLKZU6HSYJiMjzSTMXlc7+nbdtA+51EwMuXO8WC6qbTkiRtX6Zzn9oMD6nrCpb09bj7+RC7ghccHD0nTd5EYJc8++xyLZs1iscCHLOGINkDvKAAvYTw3CJH15FU9QSnDUxtbzOaJn/nmb1LtvJ8qrbFtDjiIEQolefjafaR4HIrAdNWxVQr+gz/1k4w2xvzWl1/l7puKqD+COjtGmCnEbEYVPmJUpBiNs0lKt6QoicKTkgUPKQ3vUYIg8uEkCUUvJJ3IkgklDFEllAEtsuYyJomdaXoXQCgoSnxSRGR+j6VByhxx7UXWaEoFSEGMAiMlMilCEplEMXT3zv+eSI+6i/N6Cs7RLdec9S2uWXB09z5fffF1Xjk8IWnJZFITZ1OWdY0sCtbOcSwU9XxGsbeNnY6YPn6Du7ZDbs9JG2NsM0T4dmuctWzUYwqlqSrFpccvsze/wf7tu4yfnbG9MePS7i4AO7sbLHcnCG/xPjKbzPGhJyQJoqSuR6QYWJ/0xIHgEWJCaEk1HrFYnqH7EbPNXaQqkUbgYodJIkdyq0xuMDrL2oJzxODyfqBBG0XTHJMKjSZSmprxaMaJVIMZMnc4Y0pEHy60wEpJpBIZBaay+dRofWFmQ0hMoREpM4Z9CJRGo2WCUtLbiI+BxjqiT5ycrlm0dugoQ9/7HP9dGaRSxBQvTHPnEjXIjHiEQg2SAy8SNy5fZnW44iwsc6dXSqQqSN5lRN/QbU4pDLpdOfg9GIgOid46TFHgRMLbPgc2uYzdM1qhtByaIDpzxgkDTjB/XrqmoTAVNmSttzYGHz11PUJqRyB3k33ytKnFWocuKkQyF57BNHS1s3nU0cYWIQtSDAitAIMgR7GPZEG0idXKIYqE6QyrlcMJwbr3JCnzfUC+l0D33vr+Xd/11V3cvs8HtnZ4Y7HgOyJRjWtGZoQuBEZY+kVLJLAtKjZ2J5hygjSS2WOGLWGQpkJVeZOMIW8iPmRsV+dD7tIIhag0sZb04ZGWVmmQokCUj2Ja04Bbkki89/TeIocN2zYNLHP0cAwg0ai+QzSGjz3zNDP3OidnPatWILoOFQECz8+2uPnYjG/dvkeUBlUk2t6z6hvwkbPVEm1UHn01luncsDGf0TRLgu2pqorNzU3Skce2PfWA4Mr7Uy7a45CAFIcORnasM4wFFXk4FxAyu6elHKJr4zCmi+f0SEjRIUUixYQYRmaNtZytLE2TaDqH9Z6QJDEJLp1ZAKTQVMbgQh4niggh5YJDpkQM+fGJLKskJYGJ8NHXl3zu9n7+HipRb3rsQUKbGp8cUkhcDCiyeScKiIXD2mx82256vrJ4nePTRJc8lZZ8SszZnU6YtZZCS764vc1CKkyl0H0Hts9HiBS50nX5YkwZjh9t4PHLlzlbLzEBdrd3iCKiygIdcnAFMReb2hjsoHOWWiKlyzcgrVCmIISIUjIbbgauXBoMfNYHXMwjXkQk6UTnHCdnp+xszAjRZRZzECA0k8kcHxxiMBNJJXHRDZ1ORUyapBMxZAlIkhKNzB2bgYMrhWBjMmY2qnBnZzgf8MsVq9WSxemCT37ykzjbIWPMCLwQKMoCh8OIIpv0vCNEhxQQlESUBre0VCOJUIZqNEKVE7xPNNYz1gYhDb2L2YBnDD4lOptYukhVj3j7bstkGsFGbjy2gbUJ10hEoen7Hh812pQIBWOt8CJk171SGIYAAUxmyGpBChEtNL3zQMQoTe9clgUNnXykIiFQwpCcJDpNj8IrDdrgx4GzVUJNCjoROV04vKkInYdNnQ9nIeRDFBElh2mDysWxGNCAfR/Z3tBIYyEaUsynJznwuUNIvPyNr6Pe9wTTwnN1b5NnP/Up3nrrkMJZlK4QxjGdbuQDRIKjxZpV0zPbnBNDIomIJ1KPRozGVYYQhjxNSSLRNi0b8ykCQ78IHDw8ZPrUZa49dR0RE0koqtEMAJcSohAUcZMku8xzFhVJGzZ2tokuEpOjWwScizjXo8qKYHtSUrz8ndcoKs3HPvFpbJ9obaQoJaaqM+4RGJVj2jbgUyJ5WPcdUmm61iPbJaYwNEFjxpEgl6xXZ4jhvfPDc5JCDDrgdEE5NKYc/kwgTYlSvxefVhY5fKntOqQXdOsVx3i6tqftOqz1LAY9fDbk5T3JmCxx67vM740wTPyGxkTKUxw5YBO9S/jYA5LH3/cYf/yLP85X/smX+Z03X8LLmBMahcyHiEGKdi6POJdMIIbYaPKvfYgsVyum4/GQBBfonUNqgTH5JH/e5BFSYGSWTQgTmUxriDJrvAU5JIgwJMWR9c8hF/Y2WJzsKUyZMW9O0HcdPkSKSkIc9nIbwQRi6EjRU45HWRcdHYWIaKVJpmTVrCiMhLWlWa4xarhXJwkp4Oz37hN5b723fr+s77oY/tALn2at1ywXDS41XNUbTHYv4U3HRFVMx1OoK1JsUXUkRINKikIbgo7ZIBIEEQGqwCiBUo6k8g14aMehpc7pUCrlRKaQT+DhXcUxgwPYD+SCJLIWTpAwSlFNJszmcwBEWWCnI4rVinhi2ZMlu+97jja2fOU3vsrMaNY+oJDY5Qp9UPCRm7v8Vy+9zYNG0vVndF5hbU9dVkghMIVhY3sTrRV33rqNiIK9vS1AorRhMi0pRzkO9dyMk4MVHjkQLsxzQ9crDWP0rCfO1IJz1mo2ceSNOUY9OJ49SWQjh1aBLgTuHS65f7gmeIkIXIwMs6E7cQ7Gca7PHUXyY0siGwYLU2CthcE5LdTQdQ4C253w9bMXEXGfnwRWB57NS5t8avcuv/XwKj/+f/sbbD75JLqq6E5PefvXf53f/pv/T6IP+KrGAe87fsD7jn9vhPJ/c33ku7gW26q8MLCkmJAetJCIBOPxGBsso3GFJyB85jxLISm1wSZHDPl1USojmjpn6ZynNBqJJqRATDmGNQYPIqGNJMVAiJA6LnBQMXkkObY1CVClJsqEjioXPwl8Slk7HOJArdAEP6RXxfOiL+BjIKV8DbjgSIxyB3OYKyiZO2r7hwd861vf5sb1PWRKFHWBdQ6tS4oEpuyHae5w85aSZbPmtdfe4N7bd9n+2C7JO2QKaBHpbEPynhQiJJs7eJIharanaQK2cYzrKTIF7LrnsStbPPXYBnLtkZWg0Iroe5RUGe80TBQkghQ8Mni0KRAiv2dCCvABkRSddzz37BO0bcubb97LQQaD5kYNV633kRgWaGWILgIaHwSimqG3A7Fd4MpNROlw1pKUp+l6quRxInOM8ZnmoCREKXFJEYPEmAlJVZy5hD3WFCpRqUChIlrnpEWA1cmaoEvePrjDl77wMZ66eYOHxy33fU+QkUDL3FRE61CFRiTHat0iZSYleBdwfaDre4zOMbnBJpwdUvZi5OTomL3HtvF0fPk732Lj0oTlq0u+cvo1PvuFz9CGjkuXbwC50CuLGV0X0OUoX1tF3j/H0xwMY0TFO+5BTlvTJX0XCH7Bt77xLTa3N9jd2KBrWoTOr2lVatYpEFyLa9e4LnJ8fI+T/dsc3H2HajTiiZuP4ZYOpSRd7Hn97VfRpsZaN5B4OohF1mQzyBJSNoZJJYkx4awb4r9zMmGIYWAA5wmBCw4QDI1XDg6OODzIkxVtDN6HoYnwiEPtQ+aaTydjrLWZMYxESpOvOZWL8r7vgUTsQzZJkpjP5uA8b771Kk8+/yQvPnidpmtJMv93eRoVLzTGwIWc43zfZpC3BOJAt8gTo67tiSlijKEsy2GvD4SQmxNal4CmqFt2dueYJiGlQZqIUgKj80Ghbxpm0xmrpqcPgboeE4KlWS5AaWazHfrWYl2HKQxVVdK3jpASJiq0qmj9ipgSKiakKnI6qsw0k9Vyxc50BxsivtK0EeaPX0LpGhUEvum/i935vfXe+v25vuti+OAMrn/xg3y20njlocwsQ8kGWuXOQexWlOOMhSplRKuaJAO1rOhtQOmMj0k+67OkUoSU8MGhQoQo6GQmL8SUnebnIRVKqkFeQP7/FIZicXAoKzXQbvNNxfm80VgpOPn0CwjbZb2rlKQgUaUgvX+Hb/7GN3n9zZazVcOGLPmxrR1++JOXceOO+FLH6dpTV9mI4G1gUo+4du06utIsz045OTliPt9FFyUBmEymzIoKU+VRmhpAm+emuRhzV1cJnbubUQyb+fB3hhF9PA+bGExkgZoAICxKgBlSjpx3nPaBt+6fctYklBwjlAMdEEmTIsMoPlwY3HIUaS5IzlVgPvhsAEu5wE4MPN2YCxpRjzl4/9O8/LCCF++SbGInvsGbZ5e5uTVh8eYbvPkrv4xI8Nyf+Eme++N/nOU7b/Otn/85ulHNP3z2KeT+Q/afvsnNqzuYDcUr91dcv2N5JozwI8l6s+Ir88DRKiCEJkmPjDmdKwJXFkt+6iu/w0lRDiaXfLPRWtF2LcvFkr7tKXVBIXQO1i5rhCxASdq2pXUxm+aEyqlzMv95WZZE64gxoo3OLnQgJk1I+YaeZYORGHMYifduSIESOVxluCmr81F7OtevpAy/H2QSaoj9DSGPR0MIIHMHyw8acq0U2hQgNVGoXLyLjJgKCfYPHnLzsctEa0kxPxakyuPnQiHVIC9CoLThwf4+lclA/j1nUSlrwGPyOYbVFNg+d9acs4gyYX0kSUNZ1TjboGsJKmsZLz+2y1nT0lrLiMC4qtHiMMuWYqI0+TB4zpUVwSJlntyE4EleYbK6iRATu7tTNBu89NLrTIrphUM/A9IERkukHuESKJ3H/VKpQVbkEP0ZUgq8bYluhSxqjIK4ukcSkd6uwFrGI5Vjc0loIfDeI+IaoSM2KGJMLFUxFDoaHUpGgyjetx3KKQ7vOf6Lv/WrnHYN3zx+yHy2S6VHuNRQBk9hFFJLTo8jMSmEVlRlQVVWeBdpVg3jUZV51xiU0jiXpQJaaqz1vHpnwb9+85hbIvCxTz3F9uwaD27f49qzBSORD7KVKek6i9YSpWOmCCiDD55V22TKgEycrU/Z2N5AaIMPgnZ9xnJ5RNOecPDwDt/4+jcoyprxdIZUEtl2NM5CTPQxEZoloaj4H/6lv8gnPvLjvPXmAdNpyWLV8s4r79D//N+lbW8jZ5qQPKcLWC6WaJWpIPlgPyixz/W6QuC7Dq0UZTIXe86AEscPZJ8YAz5k/q0cJjUpCZQagoxSAAJKlSipUUqxXK6YzqYURclytSaG/L0ydzeHBnkf0DLlKHqlIQqaY8fdOwfs330RHy1aKrwQ+OhRUuQua4wXRfC5bjg/nfMqOVEWBbPplBgcq9UK58MQJgPW+Qu5hpQSQkKp/JyKkUGogC4rUsz7QVGoHBaU8oTl9PQh6ApTjIhJ0a4DUtZ0TUe7vo9WJSnCet1mOlFVE31AGgjRQ9AUZYmLEaM1rk34kNAYpuUGy4eWk9snWBExusY4mfc6wMt3UZHeW++t77P1XRfD4uhN+N0x8geuYS7N8TFQELDCcbhcIo4PSCFgQ0mhK1y7RBnBWO6ye/NpdJ0QyZGCIxaS0gWsgOB6ihBJqsADIsWMjEo5sQ1k1hdyTkw4pzIMp/KYNyg5dGDPN8iLJmzyxEpTzuY4l1PHhBD4ZLj5Ax/jreUp99v77N/uubm1Tdoac9IkPvzUZV57cJ9fdX3mSnqfQyBi5OT4ZGCieurJGFEoVv0aKXJikkSidO4IXriYh2Lq/PcISRIyI7QGokVuGeQuSkYQGRI+d9Fwg3MYVi7Q2JZVY1l3DmezIUvLmDWYSRJj7jjHFIcI3HfjU+XwmN7VuR4eI3F43YfiPMVIEjkAYTbaoSrzhngUx0jX8E5zhx2/R/uP/g59NKxUxfozn2Xj8cdzSluMiKbjtHOksuRFCsxokyuPbzBevcPmRGDHI466lrC1xQv/zuf5+7/wCzQrg1YCGyQxWhS5+M/PIxKGCNQYAzb2oGE0qnORHwRbky0WqafrT5CioChGTMbbHB8fsVwuKEqN8J7eOQql0UYQRS6U8uErJzWBIQw3vxTdwB4WOOvQWg1/B0gSLRWFLrAhG7a8yt0iIRKYAi+ySx6ZTZTnnfpcLAwmmjQYh4KnsZ794wVnyy6TTrwHCUYX2KFwLwuDPkcnmZxgt1qtiD5399NgYkwyDbplSWgbjPI4JyiMoqwSr71+wmgjJ01FVC6KVGJ1tqIsijwyH1UM6F/+9dfeYR7XfPbzP5DJJSkwrTRHwwGhc34IxIAUPCpmWYo6v64FeVoSBUVZUo9GGKEGzBQ58XCQuEiRr1iHAKkyv/Yc9aQzDk+ZCooJCkFRjInRI1RFf/oQPaqJMaClwLnIydkaZpaiHhGTwzfLjG0ToEuT0VJKIJShQIPLBtDZ5pTb/oxk4fhsSdQj6mKPw1aiyAmKzz3+JDIJiI7FySnWA8IDiaqsWC1WxBgpiipPfAYTVt/3OB+oJyM2RlNeeu2bJB8p0Hzt177NR354xPNPPknle/ZP32EXqEYlV7fmLBcnCDXGiLzHuLZBK0kKHVVZszGuuLo3R0rD6WLF1a1LCKmpTImQGZu4WuYQF+8d9cgw8hLXWdYe5GyD0cYGD998i1/e/zvIBGW5ycK1XN3d5WMf/yD/9S+9wXRUI6NnXJPlGiHgfCY3nBN4zg/9MljOA81alTnS5+xoEhcFdEh+2DvFQIfIRajWGVP4yMQWLmhARmtOTxeMpxO2d7ZYnJ5lXa2WwyROIVXMWDaZGySrvmermnF0eEbTd3zggx9k/+4+7+w/RAhN8HkffncRrFSWM+WUuRyoobXO5t+UWDctfW8vOjp9b0mpwBjNuXcEkQ18pEA9GiOEzEEXiwalDd45lIiUVUX0Ch8VQldEoSBEqroe9pBECIKs+1EoKXG9R4lAcIEoI0pIXNNz2DRUmxMCit5JbIDQ9gSX6NqWh4dHeBkxuqRbrQkhXshR3lvvre/X9V0Xw/F9Y05e+22K/SNGf+ADLPQZCs2qaVgcHqPcip2w4obyTFxPPclBDXH1ADXqsXvbdF2Pq2seHiyYjcasosU2gm2zSb09IkpLEcnauEH+kAtIhl/km3scCgZB9sykQRuVDREMI/4BcSCzGalru4HkYNBIvPSkTvPMM8/wzjsH3H1QMK436GTieNlRbGo2tiWj05LeAz6SZA70bJo1SkuqukYZQdMssRbadc90MqPc2sYUFTatETFdjNYedbbzTT6l3N2KMRMClHzEmMxaU0FKWQvce8ey7VgsO1ob8UHgfMzjQgQakAg8MY9Ek0Zoh4tdjikdNGrn356YZRRpuDmdV8rvxsBJBGg5vO5Aqs7Ldpze4M1mCzXuOThZ4BeSH/rb/xA9zXrGe7/yX3P6L36By1rT1SXLaYF1aw7bJU3quPfSgvjamoUYU9UgNNT1lK15yY996QV+9me+TBQzQvRIYQjeZi3v8EK6rst4OZlvkjZ4Tk5OCFd2CVEwrafM9y5z7+iQ4BO3bjzJ9tY2TbPi/oO7vPLyy3S9RymFUGCUIpqs7wvB50mEyNeWHHTe5yYcKQW60AglUUYTXA6fkUYym0xZinV+D2IudwsxUEJ8uPg+Ga0Us1ZZ6oEwkhAyZqG7KFk0lnWzxjtHkuXFzz+/Trz3mEJjtMFIgTKStk8cPjwiDWlZeSSatedSDEaY2DMq9QV6Smk4OGy5Pp3kYjim3HFUNWYIyRiPC1JIKC2oxxlLt763wPURJWBUGkTsCT5k2oPW2ZkvswwHb/Oh6uJzHUl4EJFxPWF7aw+DRsGQEigGnX3+HIcUhxS6hEj5xh4GXbtNPZgCUSiksznQwR5AVBQiIZxFKY2UEZ8iMmlEdwahp1SJVBSIFEhSZcKL70nWopLGJUFKeTz8+t37rK5dwS/WLE5OUHVDKRTrviWKhE6KazszSgmrZcc6RKTWCJUPEiIl1us143FNElkaYIqUXfpDB3I8HaFjQNuGMi0RcpvNvT1e/sZtjFI8dekSi/YUgNIIRhODUFu0PUgd0TKxOdvJ2K4YIMDefMTZmcPoAhMNm/Mx2ii0DExmJUZpTk4CUhmSCIxmIzQlR8enrBeJpY+0vuOlX/9XyFIjjGBUjagLwzu2JSTN+95/C+8tZV2hRO5uV4UhxmwIXiwXtF2Ld34gNzCYVzWjuqZZN5RlhdFZe358fMbpYj2EdCiCP6f9PNIpnBfCGZOWpykppYtOrFCSnZ1LTCdzFmeL3BmWOcxjOKcSfEBHaLoVcaNiebyk85Y333yTs6NFTiRMuRgPpIvDC4BSkulknDvNAz/4PEFvvV5nVJw8P/IO8ifnh2J+kHcQKYoxKSTKkaLrA3UhqEc1dakwMpKix3tPPZ4QoqELEecCWoAxKmuVUz68p8F7UhYG5zu89/jWE2ykKAXzjTFt1yK8onGOZh1Z2xYtCkQULJYdQpdMtmYgKnRIOWildxd3r/fWe+v7cX3XxfDYTJE7xxy/+nWKX+sxOwCRZ3TBVC6YxGPK1YJKStJIk44iojCIuCB84zaVUESlseOaybrgDTniO68ecPPq06xKw9alXcZjTZQgczuJJIbSMTcsuUCQDezZ8yIu17+DriuDchjfzdrU6s6DrDVOedzaTsZ023Oc1CipqMuaK+Mpx/OWdr1EX66xUnC2H9HJMK977p1ZzIDbShLKquTy7h6t7ThdnCGiBySFhOXpGWdqifUBUQw6j6EFcj4eE0OgR8Z4xayjTrm7kZCoYQPNmjNBClBSUE0KtqYz2uBYdY6zs5bVsiU5QZS506x8HFzOjuQlhRhl7ZxggLOTtadC/Z6T/rsRQefGkPx9Uh6/I/HYAbcG6JLDdo5TBXHiWB53/PL/9n+OGu/w8T//57ny2R+m+/qXWf32rzPSJa8z4u3lKasQefW1h3xaVuhouLx3hVY0hCay84Eb3Hn722xUFY9fGnH7TqQwAdt6onDEzCIiOo8IAUV2a0skwUU624PIkddN17JTb3Fpd5v799c4G3jyyWe4evUSJ6eHvPjMy7z6yst859vfwuihox9BRYa4U9AmnxqkEPmGYC0xDka7ODCEUxqQTdl5PtuY0gdL21si2YCSBkmHUhJS1mcHkeh8QKRsEpPDNMQ5ixAgpMEnkUUCymTZhcid1cIUBGdzdywFUkhUxiBM5mCnmFOrQoh5vBwiPjh0OSHEQEqOypRMRiVCJ9q1QOl8ABNC0DYd842S4AbQv1KM6gqbLN4bhA7U5QQ1yrinrlszqkoYInCV1lnbKwRKCbyNSCLVqMLajsIYRAhEURCiYz4ZcfnSFW5cvkyl04X2P8U8wk0iS3pUivgEQmt8FIQUkX1Euay/Tt7i12tSc4aRjpgUSckcTCAVUnpkSlmH7FbE2CKiHyQoCkeOhRZRIMUInxyp0tDmz+/hYsX96pQ6RLwUBO+olWCzqDhYrFAqUlWJlDyLVY9HIH2gKgtm0xwmsbW5iVT5sB5iz7pbE2wWeJmiYDwbk1Li0tVNalXgThecPbxDCprf+JW7dC+8wNag968qwwGW0AvGk9ylLIxkXJU4b3HWsVo21BPD9vaYZt0wGWvKMqKMYDItmc1GtOuOYuyZHjdsCkXRtjQWZjHQt5YH+0sWnaOsasrgsF1iZQ/wmxu4WYUxCZEkwVksQ+BDWaCUwyCoyprCTEhpmgMsYvZ7CJ2pEYpMpqjrir7v6ZqWvb1d3n7nAXcf3Bs+O0M097nUKz369/lEMIQ8DTHKoJTAhcTxYoVtHG1nUSJBOJc2pEGbDr7rCdGy6FbQJYSCo8MTtMxxx9F7jNR0oad4VzFelEU2mBmFEpnwY52DIPA+5DhxhgCSGDlPrUwp4lyWSRSFGCaAHbOtmo3ZNrHx1FWBkQkR+uEpZ6M1Mh8Iy0KTrENLRR9ybHXTeaRIFFVuRMkh5j4onydC0RELwWw2YblQqKbHeIGwZLKLD1SVoLi0gU81yxaCMoykIPQC4d/jDL+3vn/Xd10M/9t/8x9QnI+Ev/bNf6MfegX4xMXvvvxv9L3+u9ZH/sbf+T2/92XBb/yV/x3pyhYiZOd7qAS3Lu2yPG3pQiKWifm8ZHJc8/xOgU0LXDR411KaKpvSDIS249L2hIXzuDZQFZFke/Y2LuUOYswBAzHmMVaMIRtJhuQgQk4ay4WwyAiflONaUwp4d87DlQQdaLqO05MVx6ct3guC0HnkRyR4dzFaRGkiOZY4b4qZa+x9fv98jARCllCIjGqTQiJF1hiHlFO4pMrBA8NkH1xCyyHamFwoR5lvVJiK/dfuYPtvg4Iv/h//z1Qf+xwv//zP4ZPl9HiJUQVKwctHSz515RaP35QcHhwx+9RNuHyJ5RMSv2jQ3ZTPfOBJzt78GiexRCZBF9MjHXjXYbXAx0TXLwhWUghJYSSlEKQ6sX/ygPtf3mf32lXknub0wUO+87Wv4fsn8LMJOzeucLQ6Rr3xCppM11AqO8Kjz7rg6OOg5ZTIakz0jrbvsN4jZKJSCpkSUhgwmYRw89bT+HXkab3mMycrLrtI41q+omt+VwuOpEXGmlGlkMrQ2w4VNaiEjIkgMpM6+TBEA+ePaCQRfI6bDd5hjCKEzDB2NhMuRqOSk9MVKcYhCCWRs6kSQilsShA6RCyQKetJZSrQJpCioA0ObYYAEK1QqiKmLv+6CBgnMTiubm6z8p5WBwSwWCzZHNXszEe87hZZv6lBREmKjuRVDiPQEq01ZVmDcMhU4rCMqwmmsDzz1C6P37jCO63FkBDuPCQl9+VCUEgsoCFG5pOCP/KTP8HP//OXuLc+ZZIMITTI1JLUhOQ8YojnjTESB013EhFiO5hME1Llg4BOCTEYKJMIKKMzXu+8Iybg7OwUNZkwGY2QAlRZsTg+QSkwZUEpYdl0HB3n1MqUAtPaIJNj2TSIZAjBEp2jbXrUoBEOKTKZTCiUwowV5c42RVXRNj1HhwuCD5TbkpU5Y7PKn4P1MuAbyXTLUI8ghezHiMFRGpVNwc5xetYSTEM9q3FhiakKvG9wPuFjgR4VXDtt+Yv/9Lcpv4eCp7sr+Z98/tMcbUARc5RySBLneqb1UJAlT1GAXfbM5iUyRlatQ4gOoSRdI0hhQlI9x4uGEHLIxo3tPc4OT3iAJAqZNfGCYZqRp4O5QAyDZCFz5XPnNg2oOsvd228Ovo0cvKOLAm9zaI0fZCpSC2o5xi56pJQYqairkuDBWouUKQf3hIgny29EjNimoxGK1arNsietYdAyM1A0cvHLQJkYfC5p8LmkRNIlWntOmpbLN7fZmI1Zxy7LObSnsWukEMzqEcHl18AIg1CKPlg8ltpULFc93lm0zDQLo3JsuS5qJnqUQ5xDwC8Vi6M1VAV6PCK5DhUSC9ciNjre9/QeB6+fsliv2d4c47s1SE8bx2gv/n9fDO+t99bv8/Xdo9VC4J/8oS+yurzN0dEhRaeZzyIitdTRMDWaYlwR6ShFwIQWERN9scEDqTj2kuRLqlqjjMHIgvl0RlFV6MoMRoish0icbyDkzmgCOfB0E5lMIXN01SMN19AVjjEzbqf3HvL8X//bfOMv/Ls0166SEkzu3uP5v/G30es1+A2kFEzMnO29Xe7dO2BzY0bjVrTNlLKE6aZAJcMTKF6536CkRuKJUXFw94BSCCZyi+tlxeTSFltbkdhWPPHMY+ja55AHVyCSBxlRusjSg8Sgac6bi5Tnt1txoaMTQmKExMcsTNBCsTEas1FPuLrrCTGP3n2I9F0YAkQCzidCzH/uY05Gst5hvWMQvOY4I5lQ5NE8OTyJjN0MJPJ4PaZESLmTTDqPwh0MjkhSkigEl1/4GLd+5EfY/9aLSBLv+2M/CcC9l1/m9tGK4BxFD1MlGW9vsCo9/+zkdVL9OHemkpvXx3zoIzdJGNRWyf7bpyyWLe9ziZd94M20QkVFHNA+bd9x7FIeA4aYGaSmGJ5/YFJtIMm4pvXxkrKo0ePIW/df4vU7L6NiTZAeKRNPXbtBCiCGVD+SRCIxWrO9vcnTTz7JrVs30TLzho+Pj3nnzh0WZwuuX7vM4uyY2+/cY7U8IFrFjZ1LlE/c4cd+8y5XbY/1EWUjH1aW1wvBPylqvhwTUo4ZVYFKV3SuwduIMiUjpem9xcs8YodMZgAIg7TCaM2oKtBGZ0258Ix1Ra01O9tTZrOaxWqZTUYqIJVko5iycmtEYXKca5XH1FIJJDrLKpJGCoHtwNYSrUDpgpgENgY2xxOef36T69cmfPnFA5Sq6TuFSoo2BbxdIQeclosgYkSUiuQC3kcKU9OJJT5aZEr41CKFwPueu3fv8+Zbr/DCc09z9OVvoesRqRCokPXIIXpCVCRlSFaQ8IynE0Z14PqO4PDtQCpEjrkuNEIEVJFjdJWSQwx2GCgkuRP7yGPwSNuvVDbRvXsvOdeFp5j/u6PFglFh0EqxPD4mpCynuXpph/FozGrZEn1ECIc2hul4A9cFlmFBVY4gOBanR1jnKMYTrE+MRyMg6/sLNUKKBi3GFCPL6apjNiv5/I99ivHlKerbGVWoZcDIyOp0TbQVVQVgadueosjpkE3bEINARIVMglKXNOvc8VeDtMTIxDxA6SP/2ec/wP2RBDNma+99bF66iUdh1x3W9bTWMdqs+IKouP5/+d+zu17RmJqApwvZX1AUGqTDBZhuFMw3p6zDWTas+choqkAWlLrm7Ljj9HhNMZL4YDNXXHiarsG6XFSmFBDkmO7SZBrFQDQbNq4IQl3IJoBBkpBDhnJBq1BDHHpKmYdeFAXaSMajEVpJ1uuGts0kBu88rW0HE5/Dx0EDL8tMFg8OCo1MjkR5IYX7bxvq4JwndxFnPFwvSSVEBGsDpqgo8BRJsuoS0Xh0aZhONvOsU0DSGhfz8xcETFFnPKlRGJNIcgIyEVxHQlOPpgQJtleoQqHK3JUuTMRHwHYkH/B4lEnoruT4oKP3cHKYGO8ItqsRWmrMRoVaS95b763v1/U9UbS/IRQ733yN6bojBehV1nI1QnCiEgWKuhBc2tpCTqYQHEYldiclfPKTiMkYORYYI0gCuhCxKesDo1R5HHpeDZKGmOKBvhBlph8MqWFaZEYvMmvvlJJDQZ03GiXyCGx15RLLx6/mDurFhpVQgz5QpYJbN5/g7W/fBZcRPCdNQzku2ZhtoPrAB64prF/yzuGKqqi5Ki7x3PUneP4jz/PUh55j8/oms+0t6krRCzjt93nt27+OdAaKHhkUgmJgUoKPFqTIccyIHE6RhpH8xU0636iN0kOUaTb4KJEwWuQOKCp3/WaDHjTkzknWoiZCyqP9tnd0NjJrMnt5rDUjZUhkoH0QDK91Ik8aB3NIjKTgkIPOszCDhhiQkQHvpnGrU7Zu3uLxH/wsQimaw0O+8Q/+Ll//z/4eVBVFOaKuPbpZM9sc8/bqhP1S8vLlOWliCOuObt3S2CX1vGK+MUEHy2rHIBcJ0edRam9zR6zpWnz5iNMZY0QncCEQUn7vM9ookrTCekeFIBEw0iCFw4WI6y1SSnY2dri0dxkFTDc32bm0x8bmBvWkyiPHgf5QasP29Us8+wPPo6QmEfHRsjxdcXjwkLDqqWZjxp/8GKvtX+HOP/45xqEnbm/gu5YbtuPPSZg6wX8Vz/BdZu1a22c9tM+j3sxQSLiQzUAgKYzJmsWcrkI1qnKKog+QMl0hCYEpoS4VtShJos/xxeuOk9WasHaEboFbnZBCC85SqCwtOT5bYXRiW825XF1mpA2rfkFjO5QxTOuKK/MJ0/keVvZok3nVwfV0RE6WS6xbE4Jnd2tOsbmJ9Q5VGjrRoWzP9e1tHrgeLxK4QO9bREg0tmNxsuLw5Iwf+/Ef4969jhffeB0nI1JGXPJU1QQlFEZ4gganNJvzSxw/2Gc2ThipKYTHEVC6RguVjU/JDZ95QRomHTLJQYss+G9qUPM6Nwul3/P1lHKggtYFp+su7ydSDOk3gWuX9tDKsOg7lDZI6dnYGDGqq4ExbHEETo5OgcRoPB7CQiRKC1K0aGlou46z1TFHSXLvbs/H3i/5zB/+ENMrE05WHaNV3udGIwPB0Z1ZkksoUVJUZFOp7TG6oqol2kQ26grXRUQlOTxeU+gxZWUG5J8dWLuws1ox8yWbV99P4Qr6116HvsXGRHKO1vdc8ldZvnYHgM8fH/FwZejrkl/c22IZekajGu+hdwllPaerFTt7M84OTjg9XVFtlIxGNVIr5ptzjo/2cU5iKp1RhTJxtjzL+yKZqoDKshgX8yGFJNFKD0Zj3lUIPzrchAFlmFK8+DNre87fUSEloodmtRz2PIV3cYh2Ttl3IvJ17r3PB8MAsCYSCQ6MkEQdB2Peo8PVo5Q73nXYigPxcEjkUxIts1naGKgYsf/mfaTWg/6ZgcdtcM6TZO5wK5XJNUoVCK/xMVJUNaHtcdGidYEudJ6AJJ3xcSmgNcgKdJC4PmurAXRlKIsR3alldQZtK7n3+orujQNGtWRcjZltTeiW7rstFd5b763fd+t7KobTIjDtAr0xMFYkVRJThrlb78EHkhU8vL9ka2OTneu7zCvYTJ7FWBJnAinK7BR3FgV4hsxaEiKcl4PZsHDut0+JHGs8xNiKYTOJwwg0F8KPNh8xpB5BHptJkbvN551YpRQuCoRRCDyXNq5w/bkrvPKbtylUxb11hxCRzbrCINmcFHz0ccUVMeV9l36Ez/+pH+OJTzzNeHcDU4shKQmUMVRYJmmKVWd86zd+g5GaIkU2eEQkhZRIVRGIOeo0DdihlKHx3nuM0qRzqsCwmUupSYKhS5VRXikNr4fML2GMHmLM0gYFwkdGdcG4LhAJ5m02tz1zY87u4zt453Jcq8iUCu9yEd22HZ11+Cjovcb7gYgUDHF1HlwhKI3ECTh85Q1+4S/8jwkhgQ84pSFYCiSjqoDUYleZ7TmRY+ZbltRWFHs7HB7dZ779GB09p+sDmlPJ1tZjXP3Qc5yy4qW//2tUepPGRbSZAlDIHOCiUZgg6GyPVpKoBMFbSiVzkEVZkSjyeNwGiiRJWpK6yGwy4Qc++gPU0wl7l68ipaSqSqRROO+I0RODp+s9RhvQhsa7QbNbIgcUlFCajfkm8+0NQCNDwuKY/fu3OP7gcyz+73+N8dIRnvwQqze/zdSe8e+OZzy+cZlfvb6H7zTrriW0+wSRmagxZB2w6y1t3xPIeD0Ts3xFa8nlvV36vkMLSIXGhx7XJnYnIz70xBV2xiO+/rXv8GD+PsSnv4Akkk5WsDqj2ZrgVmeoaxKrLevTEx4vNvhzf/rf5taz72fz0hYkzf69Oxw9uMPXv/plVs1buOhI8ZSwbpBdREuPpKRrGo5WxwQ0RcypawdNQwgVql2RbEdnF+wfHnLv4IDC1JiQ8Eowm9b0UfDgzgEHNx7nD/7RH+b/8OGP87Vf/02a4yMuX7vMy99+lb/z93+W5VhgLZAUO1c3uXJ1i+VZlyU4ZYVa3EG3xznNDEHGZGdjkVLnjPKhcIILMxPk6cy5Qct7f6HtFALMIFUxxrC5scl4OmO1XLJenmVZUwIkbEzHtL0jIFFGUVYSqQPOdcjRiBgsDw5OmEzmmHKUpzveURiYFJoUeiqtWO0f8cbtI5Zdy3qxxE0nnLUrTl9yyFHNEzrvi7bzjCpDsZkPDMFL+jYynU7ouw6REtY2VOMi+w+8J5rExqymCy1FOc4sM11Q1Fn+VMXI6OkX0LNbtLbn4GAfVUiK8Zi+iWw/fp3xaI+vv/krPAfEqSElwTz2bNaJ8aSkrmvuvtMSZUSLmuTyJGI0m9E2glFtGJc1k90xy+MWU6isr42S9WpNiJZSjLCuz91cGxEKNucj9nZ2kDLryrUuWK16bB/ofCClgHOOtusynz5kyZkcJoj5IJkPCzEGktcX+M5sjE1IkbXLZuj8x5hYrZYYY5Ay4/WKaptiY5OuXZJaT9MsiContV1MKs/vRQKSPN/nHxXMDEa34B3BK9RIsD5bU+xtMJ5MQMO6XWfGsAtorUhElFRZIhXz6LQsarzPBKGqMthVhzQVPniUIn899fSdo6gqiqpEOoNvO46Pz1g5TxDgFwlkhY6Zfa11QkfJYh3oQsft+w/p+vc4w++t79/1PRXD27MZ27Gnqws6FFEFlJDYtSD1wwlYwUm3Zt0cce+25fJkzFOzEZKClASkzPhEa1x0iCjQQaGkymg1KeACOjVM9gUg8k3nnJEbhq5O1o6li6IyDqNMNURHXoR0DGN/AOfTgJDKAQDRaj704Y/wzssP6Y971iHQnDgu+8C8HLNhxlytbvDjf/IP8ol/78dhZrApZU1nSCQZkUWit0tkUhhd8vS1z5A+InntG19jJHJMJ0rSh4hMj5Bmj8Z6kGLmvWaMzaOvZ3SVQ6acTydEJkzksl/kKaEQWaOZ8msliFnDlvd/ogB3nqSls9O6kiVVabIbGYFIudOBmGWJR4z0zhNIRAtnC8ut+fvhZ0HLxKws0NWYJC1FmSH/XdMi3HKQiUCwgWXnOVut0V6ysTNCdScYV1KPCrr9XPzvXd5meXyPsxPHlesa7TUff/6HeOtLZ/zcT3+Vvb33cet9V+CrX2b7yhbzIDCqIElPZXsIuavqnEMJwb2HD9g/3mc+26aoSuZbmwgtkFZyaesaH/vC55hvbnB8fMzJ2TGzyQRwKJe79TFkSL4uCpzN6XpaDeQGZYgeEJlkIZPFeoeUJUorjNLIILj8qU8xeuwm4RsvoqylevMJ2q9/mfVyzWfEkkurKV+7cp22nCDVFVwIqJAnBdLo/G8hCCHStw3OWnrbZ815CkTvcYOZcFLWVCrSh8Cl7St8+65C/YG/THnrk+hZBXViJwQ6oWg6GBkoU2RTOX581PO5jUOUPMH2ij6sKI3m5rOXefZDT/L5H/9R7r11h3/1tW9xKCRJNJxtvYNu97hn9zg8OuLhw55V2oFk2dzcRM3mNG0g2jHOCHQMXBlPcPWCwhhWviG2nq6L1GVGRdXzG3z9268im2OeeP46Qt3A+8Cf/sKnefqDz/GVX/1t3ry3jygl480Rp92CQmpOT1cUZY1sDxgpR4wCpVVOPkuSqLJcKPOcM8klhkjweaIkh5hvHwIxZCmFVAqBHg7ZuYMmZd5fbNeTQmA6GRN8wAbP1nzKY1evE2yiqGqUiGjtmZSGUifa5Slt1zAazxDK4GKi7x192zEqJxw8vI/rW6qq4gx46+5d2rYh2DUTrnDw1hoztzz/1OP4+y8BUNSCeqqhighhWDeWmCA4R10ULE5X2NYzHk/obYOQCl0oCu8Z78wYTSrwgqgEAyuScrpN2rpFGyXrvmX/8C2uPP0kVpeMNkdcv/wU//Dv/ZdcGucuoZwUCBeQLmC0YOPSBrYPlKVibddoI7h8ZYeYaqwGsacoSoFrHPfunjAuKpwNbGyVBBeZTiqkqOhWnu3dOTZZ+nWisw3jac10Y8JkXEKKLBYrikojlALrOT5eUhSa3Z1NzlFmXd/hfRg4xUNwTsqFc3BpIFHoQR6TWb5t19LbBqN19ofkDExCCoy3N7iye4Nld8a17evcu/+Azq5xwWVZ0AVxZoiOF7mLe06CyQexQfKXPDEZhFSYQjLbrrh+8zp33+5JAqoxKJOvtRQkMWpMkdGbtuuRMuFRGJOnVFIqZtM5XdfSdhZhPdV2hdGCFCTNao0vPKUyrDpLYxOOiCB7VYSKBK9oziw+SaJUVFIRk2Iy2sDQfi/lwnvrvfX7an1PxfB8UjPvCphPOBOJo9MVX/yP/grzdyWP3f5Xv8av/rW/hl+3IHpOF5Y7yyXu0DLZGmOTRYaIjAI15P0mIfFpQIlx7hQe3MIXnZxs9DqPNT532MKAv5JyYA/ngjCc831z+QzksRgASmddaPIECiKGkdjjc3/gc/ziz/1T3Gli7QVpLUh9Yqwu88KX/igf+clPEisJESqyntYDi/U+64N9FscPGHvJ+KyjiQZdT7mymY1ayQVMTPgUiCSU0L/neUqZDSHBn+sZ82NNMIRjZN1uSsPmes6vFflxCM4PEjLHdiLRKUPrIaGlRMehMz4g1XzwyIwuyGzXGAkyDElpIKQiDa7+ID31RNAf38vXQl2i5zXJSKJ1BNcwloFx2VGVijNdclxsMW/3Gc8Ud+85Rq4khkShBWWpCMJTlJKzkyUnR4E3Xn+LzdETEGF1FhhdKfgzf/BzdKuWt1+esloc5/fRJ5RIhGCHGN9cyCMVnfUIJUlS8OKL38G1ElPkKNNCjPn8Z36YH/zch1itzhAi0HctGxtzjDHAYF6MAyFC5hskIpFEQJoCZCTgMzYsA84IAoIUpBAIq5YkBcqUiBioL+8Rrv4BptbTdktC+4eYtoJk1zx1/4iCnrOu5+zkmOPFGccnJ7Tr1cXNEymQKieyKRJGyzzREAXeWpzIRjqPZdkJnJtyu3qelz/5DO10jvEQFgG/itTGMomOw05glOKDc8+P1PtcDQ85PmpINjGvNgijGq8F69bjXIPSHZduXueP3bzJ755o/tUD6J/WCCK/tErsb0dOH3MsVz1RjzlTn0A99xPI5UNo18jlGccRYm+xT59mnXK/YMcHlPSsXvoyoRhRTEcc3b7H9ramWay5/fZdIoqzk55nPvUBfugPfoFvvvgdfu7nfpa+jcgTx2l3xnq1RHqFJyCTICQN3uFQyGgRSg3qnvy5CiEgVC503s3YludBQDEOXNy894Rh6BS8Z7U8o2tbtMoYQwYE397OFrUuiC5SjiQieipjmJYlsW0IwTKuxzzcPyGIBda6LIUSid3Lm2xM99jd2uXsaMH1y7c4vff/AaUQWlDNC5752OPM5jVCeOoid3EzFlASrMqkiNmE1XKBUUWWCaVECpGQZFZzGE0kMhoXqBqEFighCC5edMhHk8usnEcowXL/dT787/1Znv8Tf4bx3h5CSv71X/6PaO0h5bzKn0Ui9bggHq1xwbJeO/reUY01wkzYubTL7pUpvil5+PCIooqU4zGgKe2S+cwgtWNzu+Bof4HRAq0Svk3U9ZjJxuMsj3vOVmukihydLLlz9yFaGpz3Q9y9wNuO0ahiNKoIA++3KMZIJXAusLW1nRGFREbjmslkhExwfHxC11q0KZEyYV2H9QEtJWVRsDhb0bcOZRRJJTYuX6KabrF6y3N7/y5B9OxdvcTRwWGeGhWDkU/KnILnfWbnDwi4NEg/8ustEaWEGJlMKuqNKSftAqUl1rscgiQLELBYNLiQmE2qrH+WFdrkJNJzYmOMYPtAQjCdzCgKRbNcs1x6EIYoPJ2ONN0JzkqiTBg0LmiQntj2qFDhvGXdnpCMoq5nSJmTBBmb76VceG+9t35fre+tGB5XTNoZerKVzWVGsLr9Bnf+5b8kCXjmT/4kH/gTf5L1/ft882d+BukDxlq6ruGVF9/kwxtz1N55kpzkHBurREKmbK6IIt8glFIgzqm2aciVH9qc6TzjPhu9znm5MCS5kS6wbEhNGjiu58WwEjklTImcAAcRrObK3g1e+NwP8C9/4SvoWNPEns7O2H3y41z/wedIKQxFq2TpGw7eeIWH3/xt9IN3iAcWEyeY+Q4mRUZac691rGvJ/Ikt1oUl+kAhDM73hNBl9qsyOZnrwhSiiDHr5qQ0xCSymz5lfFRUIcsmhBwIFQktJFGCUAYJqPM44ZRNJzm1LD6iRCaRu8zSEFO86JxLIQneDa+VGF7nRNs1SCGplKY0+ZKpTESFJUIplPQk6dFS0quStk1s6zlbyjCabPCgOcMuWnoNq7MVBQqhPGdnx5ytG1RRsl6uCEGwf+cOL3zyE/Qq0juHCSP+8I/+CP/YfIf41dcBKIuKos7FZ5XGdK5jYkZMJyWzUYk2FZe2drh0aYeHRyucFSTn2N3e4Qs/9iOswynqVFBVFbPZjLKqUFqjBsRaFFkvGFIetcohIXDdLim0ph6NgIT3AaUloJBeZ5btSOKCxfme6C3SSSKCpu1pXYMPDl8a9GyE2dvk8cLkQtzmmOjFcsnZwRGr+/ucvvI6av8A9h8SF2eoEPGTmle2Rpxd20MpQ4rLnFCoNb97f8qD+fs4La/SEPHHDaEUeFNx48Gv8kz7Druzmqev3qDcmWP6Q+LylKNYMJpNKTYUwQd8tJhoKEfTQTcZCckRY8vHNgquG8N//lrHQyqiUrTWEEvDVE9pfKKNJXI2Q2w/Q0oepQRNghQlIyXRZLybsA6VOsT8KT54TfDxF97P3rgGFQhIRrPLLI9POT454mtf+V12rs45ePsh77z1DmXwxHIHe/mLFNsnxL5HuJ7geypT4ZdnpHWL6E+J3RrsmoAbvKOe5Htc6JE6HzJlzElgIeXuvJISrSJeKMqhUNQCjPSgNCEJjDAg8+e279v8uVQqB1cYybguSKGnHpVc2rnBaDQC+Q7LxmONJfQdx8enJB+oyynW9lBUCL/Gdw3OOJLwbG9tMKsnBDdg8c4nPFEOI22FNiXRhZy8mCLeRtpVjzYVUlu8VBQIWDtCDNR1leVlSlOHgPcdALONOUEp+qbFLo+ox2MefuMbPPbJT6A35ty59w6xELg46EeDzBK2gbvuo6SoDWVRs9hv0CoNQRgwrgqWpy1BeFxUbG6NGRtDVRlms4qH91aYsWGzVrjVGq0FrQ80bQMhS8OicMgIxsTMqm8di6alaXqKImaKRPQIBKUpsdYiJMTgOTw4oLc909kYt7VBWZaUoxJjCu7evU/TNVRlZkvfevIGzz52g4f3j/jmi2/gY2ZsT65u8kf/2L/D+h3Dz/30P+Peg19iuWwZjUYX6DNVyByNXmYZYQoJkRLROZzrcwhJhCDJ8i4fMWVEBwfBUc4NRcz7sUw5/EQYzXReUEhDcDySY4gyS7p8QhSKQpd0S4tzntG4pq4KThcL+t4PjRiHdzkyOpGR5j64HGUdITmLdRGpTNbfyWxaD0kQwqOJ7XvrvfX9tr6nYrgnsmwb1KpgPN9hYzbnjb//t3HCkMqKa5/5QWY3bqBIVEYjjGFSlVSVZp16Xnz5DZ6rblBOsiHh3IIbkrgoVi8kBEOYAkNK2vm8/3zkdK5+IEZCzCrjXCAKpOSC1StFxqedp9ZBdrnHFPLPHApxoRLJap699UG+/cTrfOe37jPTJa7e5tLzz2ImCjEqWTb73PsXP0/41W9Su12eeO4ZJs9/GH3lEnJjA2UKpJYEBVsuj1ClkfgsuiU4T7M+ZXn2kIP9u5wcHyCAStcYobAyRxGTIIWIxCNFRIhHJqmU/HAoUGhV5Dw5GTOnOEEKnoQnJIlWRcazxXd3mxORcPH6J5E7SMSEkAapBpC9SGgS8/GYECNKKQqf07iqUWKqPMqAF4L1Cs6ajqXtOT2xFNMCNXHUfsnR4QkTUbAuDUfLNYu+5VJdk47v07/2APHh99M5wd7OFeIscvuVlyhnhsrf5bHn/hhFslyaLHj14TsAHB4e0G1P8c5RlgntE5//oY/y1BOXMOMCKoMIPVt7iX/4j/8VB/caSIaP/OAnaIvI6t4JN69fY2drB2k0dV1jjEGg8MEORsdHnRznLX3X0bQL5pMZdVmByJSNNEhUtFI5UjZJSq1JOhCCHigcCWMMZaiwfU/XNfiuw9NjrR7kPQklJNV0zNbeJfQHn8d+9jOo3mLvPaB56w6r199kcnbG9Yen/NMTwaKQhK6j1C1H6/fxz9P7qZ3BnVl6vyS2CZt6rk1KvtC/xgsf3KO8dINV2+IOXyGZgrKeUdYjiqLIo10TsX2XjZXBURfj4bqRKCStEFyawZ/7gOI/f3HFt8MYCUyjoIk9MgZEABsNKmUElkTgBxOPwWNlolaBZr3C4Pipf+uH+AOPB0ZFydnylL51TKcbPPX0M6xPT/DuFnce7POtb7zI9pUNPv6xF7jz8j2++pH/EfbZj7DhA9I4YoTFiePsZEHy+bAtWo9r1tC3yBQQKtH3DdgO5R04m1MxbYMIa1JzilifkGJP17WoZp+4PgIeIkbXURro9knCEAkEX4DoWKx7ltYyr0v2rmxRERljuXblEro0bO7u4UPi+mM30Sob+4SRrFcN3nZ0awfjitlkhJQlIhaYPk8DdnfnOJevyaZrqQYjqUHhlo6Vs5SzCn3/hOLhgmo2wnWW7WVD7DwT6+mCh5hwTX4NykNBsciIRXpBOlgAMF+s6fUB7cE9potD7v+n/wnyyWfh2WdgY86sPeKx2HHJ5r1UH50yixWicdw4PSM0HcW0olu2zJqWxx6eUTcWw4rRoqU8WHEgTljOZ2ztTCBqTAnHhytcsNy4PGFnXNIsA0enFlUbHr95FW/PtdgFRakoNKQ+sVisOV4esixGON/TuzW97dDKUJoakQTOelbLBmsjMQhWy5bxaJy78yQm1ZjN+SbNA4ttIz4GRDhFchVCQwi5ix/KyMmrd/n7/+VPs1lfoeUBjkD0HePNKbNynGObU8xoaqEoUQijkEDfNvRty2KZUXmjuqQ0Gzg8ohaMZhCtpmsdCocZj4imQKGhsaQuIetIUStiSDgvcAhkMiiZuc0hCQIQo+DwdE27tHQOfAp4HwguN0eSDviQDdMheFKUg5fH0TYtvXVIYzApMRlPCC4iu/fQau+t79/1PRXDh8sVZrVAlpr9N3qmVc24HvOxv/43KWbZnPXGL/4it//JP6NQGlLEW0vwgfnlDRoFZwee7apASJ1dwsTspJdqCCQYpAFx+Ic8jo7pXF+bOZKQR00J9Ug+wbt1uPLi90ppfHAX+KTIoB8O8UKTnMh191hu8W/9xJ/l4MN3SU2Fkpe4enUDJSO/8kt/D/uPfpMPXf84V/7MT2GefxKUIomBHYzLG4pQKDQihsxLjbwrEU+wmS6TeJZnU6BZHvPO7Vd5cP82bbMg+YhWQ9Rs0qSohyLeI43IgRBao4RADqQNo0uMiHRdCzFzUSM5vcQHO5jzdIaww6CHzF1QJNmsqBUpBAQ5MUvEgSKRwPfZuGXjiv2T+wC8cmuPg72add/zxtsnmdtZVvhKs1SGk8tXeauPfCCWbJUFr8QpMcFjsw1OTxu2y4L37005uvMWozozjstRhdmdYaLg8nyMPvkmspsz2fg0T966ycnWKwDMZlMmk3HuAvkAEh6cPmD/xbsIoyhVxe5sg729KU1qaZqGWzc/xI1b1+lev8Putes8/wMfJsSYI1Dfde0g8s3Cucwi7boum5FEYnX2EOV66rpEm5qqrEEq8qD2kTkmX4MKKcw5VWm4JiN1lZhM3EWqlHWOrm9zaAQB3zcct8s8IvcQvae6eYnyg48ziz+E0gU7SXNjccbdB/e4/9bbrBcPcFZx851XOH7jASO7YnNzkw995KO88PiYG5sClT7GwckJ+2++joya0URTVCPq8ZTpbGMY4/oc7awFbbumLAu8Nihl0FqTlKQQnuQt86LkJ55R/NavnbJkgi4KVkKBUJk9DagQ8+SAfAANSpGEQ9oOKSJPb0/5s5fP+Mjugs7B2VnDolmhjWK9bgHJfPcSbbvm6a0t6nLEr/3Lf8YTTz7G7KN/il+49zTiAQQvCKkgiIj0ArswpK4hpR6PJClJGOfYWoJAlFvZa6AzYUQLiU6KNgSSBKEKREwoEehFRXfnd+E//knWP/qXqK5cp/npv0g6vYM2EZMSvVJ0TQMusn1rl6eubmP6nsn2hBgl43GNNILVouX+vYdYu6auRigjETIyHY8Zj6aUdY0xiT4YTrseZy2mEKhaIcuKw4cPmNUVlS6GHTmSSjBSMDk55Yv/i/83uvffy5b+31rTn//HTIGnLv7kbfi134H/8Kfg8Zt84c49ePXuxVe/9J39R7/+9r3v6mf0SvKX//uf4/QU1tHz/A9c4q1XFkxmhlGtaV2PKQ3rpsE1a8K04NLuDrPNKalzKBfwsWUlA6OxRsQJlQpEKsrRHsYYVqsG11l6VxISWZc8n9J3LdZ1ONfla12BVJ6rV7bZ3t1ifbqm7xMpOu7vn6DqKR/40OMcnbSEdU/sJerOq9xZvMJxd4BRhno0o5CanctbXL52ic35lB1ZcLJ/wpsHR9w/OQESVgaiiGxszimKgtX6jKLIYUaj0S6KbZqzHu8S9UTQtj3UCi0SRSkwMqKKAqnChSsvS2EUIgrOTpZEaUAaQkx0XU9EEkXWTCev6dY9olCDxMSRg86zdjr0HbiEszmivnOW1SLSNA3GFJlc8956b32fru+pGO6aBhEitu9pfEtwAe0NX/sr/1eKrTk3/8hPcPOLX+T+r3+F4xe/msd+SqGEpnctLsDp8Rk716ZIo3J3NhNnQECUAkU2xMGAnxEyazOFGDTBjxBIOXL0fPg/aIwTj9KIAOccXdv8XkSSECBUNp+d84nJ+mQfA0ZIHn/saZIsUPWY++F1fuE//jVecDf43E/9nyie28vO4SBw0iFIqCgQQmcd9Dm795xyoeV5En0uYGPIJjehGE13ed+HdnjyuRc4OT3ibP8uZ2cPWSxO6NcdIoKSAi1LEgFkQAiVwxhEIoSeYEHKCOdouSFcAEIubJPmPNYW8vczw4g0+PBIpy0UQqYLkH2MuWOslCRJA0rRyawV/OWvv8lbGzVKKopyhPOe6NpcZISSK7pkNkrMfEd7FunLgOwSoetQ5MSm8WRC0ILRbJOFW1CPpkRn0cUO9aTk9I6l+Ppvol94nt35JtVk4O4WKqeYCY1zPQ6H7QPXd+Y0nUUHwYP9fYyZUcqCa9u7/NhnP8enPvECGztTdi7dIEZLMUwZ5PDaeO/xwZNSzIWqtbRtS9911HWRI4C9QwqIeFywCBRaFwjOEU6DrluqfAN6V8pfDgwQGFMhBJQkRiliXT+433N8q7MW1/UUtaazEPuO0K5JyoDSqLJATiqeePIWt556ghQF3q74ERc5Oz0mug6tK1xsWbVLFkcnrJctqDFaJjY2x5R1RV2PKMvygqKQyGiS8XhGXZZ0XYdEUo7GWBtRKRKlRCWBE5qdkeHz01f5f/zrU9xograJqCAVBVKXRF2StMKEfFAoleDJSeIJecRHLpV86GpAuxWna4OI+TNpxiPGRYUuS2JKnK1yF8+Fnp0bV/hjf+JP8tqLL3KjdtwqW95hhDIRHyMmSCgr5HgEPqCCy10vn/AuDrzaAMFT1IYYI76zeOforCUFS2wtwgdUsHQxBxLE01zkFftfp1p9h941oCIxGpKKVNYz25hQVIZ7+/f4wAeuszXeywf5JFG1JhjBxk5FaWruvHMH6z2bWxtIFUmmpJhNEDLBaMzIj3nmyh7f3H8nF2yFInae+XRKOTKUh3k64xEkrwBJcXiM7j1f+Q++yNnujNDazI7Fc/edjiRbXCtwvqWcbFDVOieodZajs5bujSX/0699m39x+RK3y5IoJfVY8fQL7+fpy09S7exQAf/y1mWOTh/nEpbP/u59fvnZy7A9wz5c8NIHr6JnUxYry3LVMb9UcuPaLkKV0Efa1jF/cMhP/sxvMmst+22JV2v26injcWaQb21u8fCdNU27j/Nr+gCtKVh3EX+2RMTArJBMRoaZmnDnwYK1lBQVLJY9D98+wZiKqs4pfOeSCakSGxs1fS0IwbC7t8t0OmE0Ltiez9BFybqxqCQpjUEmi+88T17e5e07p3RPajg+43B5yq3nrvLKV49p3lzjpae1DYGCu7fvcPvNN9m9POPjTz5Gc9pxdrTg7OSM3llscBmjFgXONkhVE4NFScmk8mjlmVzawnU9wXtKU5IiJJFNpm2zoJQpa5hVhVAS2QeklvgUqIqa1nl622ZJYcjNJYFgbSPWZlyjVgkZTJ4QhjBIOSCE3Lhxzg9cZ0lRlvgYcM7yrq3svfXe+r5b31MxnBPRBB4PRYETEecdD77xTepxScDxsf/ZX+KJP/SjHH/rd5BVgQgBrQtG862sE5YC3wfGdY1NbcamDSaUoYrIBe65NEJkM9yjE2wcdMFcFHGCAbeWORX5wz0Un1pnF/GjOM/z7ysYLAz5b8YhMShJcAFBgw8dBZa3X3vIZ9//JT76hz+PqvLjlBGidBl5lsv04eaXMt9R55+TBvybQJIEuJgy6WLYWc4jl00xZnenZmvnBsn3NKtTzo7uc/et73B6/BCiQSJRqAGplmkRKpVZL5xyxzcMCJ8cVf3I3UwMF2D4GB7h12IaolRjDmcghaxvi4MZUSSEloBDWsfO1i4AZ62lH40xMuFjR/QgQ0KWht4JLk1qNqa5myrRFLbi7rFjicU1lp3LI5bLU0Zug1sfepbf/MavslNNqMYTytmYByew9cSXcIcHjDb2qFWiT3k8fHJ6xkH0CFR2hQdY1i2bH7vF0Rt3+MCTT3J88g6dXbM3mfMDH/kSP/Gn/xDzq7tgBNJnQsY5OssOBXCIAZvZXTjn6Pv+4p/CKMbjKaUucjKfzpIKKRShz7i781OdQCJklk0wGGbOr4JHLNLzaNms6xZIlDI5Nltriio75qXSRJF5Bq5rCalHtRbRrlj6iFIFRhR42RBCQtUGKxxNt2CxXuG6HpsSo/E2QkkEhtlkmoMpBkZrSomyLLOJMngQmqIeY4oC5yLeZTSTEIJCGqIxVEWWGf3BD1/mzX/xz/j5f/w7LILliR/8cezZA26/+RZ7e7ts713j1q1nePqJx3j6kuSZHcFIG2QK4C1eVTm+VhpqU1OoTHpRWhFdNkh1fZ+nQSGycfUaH9AFqkj8BbnP/+pXLf18j2CXCJdQ1QRRZN19Ikeqx8IQVaJQWd8t9CSbx6TEuYAiH1p9zKxqETqUc0QXSbZFx2zcNHd+B33lBgIPMhuQpPc4JOPxRibrvP2Af/p3fpqtK5e49cwTPP2hZ9mbzvEtBNEz3jTcGj2F7zqapqftWx67dhlIVNUIGSVyVPC5F97PS2++yteWd6jKkkpLXBCsmobJoGE+efM+p6cdRTWiubcC4Fgl5q++g2myVpbkKdYC5zuCF7jgqCYBYQqK0rA6OOHOm6eMQjZHHQD3dUHQRb6urePZJ56hT1ABJ4XicDZmSu5Ot5sjmklFf9ry9ryg2Kk5UJJjJPNphb80YzSeEFaRdt1fgIK0VGiZGE8qvK/Z3StovQWyrGE6qYn+AGNKtBYcHB6xvTOjOWv52r19NucFWxtTjk7XHK16JkWRGyfG0PQdvbO0XZtjkVNOqlNKDb6AgO0PKMoTZptjZicLamu5MZ9TKUXXO2aFxDmJ6h03FaQzIDie35ng7pwwGQs++eGr0CS+884BjW+g93TecrXUXL5/SN9BXK7YjQEvQFXVBYO4bRuEAiUy8eeZY03/q69y+fHrTMoN3LrH9ktc6DGlwAjJpgjokw6/zg0AWZSEJiLLTLBp1z0IifcR1wfa1hFk9izYEIleEtqOsMyR9ilmypFzPQhFcA7fOzbWjpSgd5bTGLlfFsSYKIvzicR76731/be+p2K4HFWkZeYuqvkWmx94jie+9CWOXnqJsih46if+CACnt9/EuvxhNUoidAAkpja4NrA4XjKalggtc3dYDNVcyifVnDo0JM9JeZEIdV7MnbvsVZ5xkeIQVsFQIAt5IUuIFwD28KhLN1AcYmLo2GYagRpiib1U+Ab25te4+vzTPP8Rw2x7jhmCPiIim6xEDgwRKWWjwUXzOesVFcPX3jU+12KgYYjzAn8gIaSh650EqIKN+S7T2Q57155g/+EbvPKtb9IulpQyZdNFCMSYf6hIGVgcIwilUcoQvSekgEQilBiCO4b0uCRZ2kTncqd/UtUYZUhEnBUgIqbQhOixPnB6tORgsebsdMXWWw/4UUBX25x0HTWZpYoGQwlrj5Eltlfs+xYn9xiPx0wnnp3pKcvlkhRbNo1ChjWjcUGrHMl5RtOK0XxEMZ6xPrW44n3UT3wcmzr6sBpIG3B4csKbp0eIVCAVeCeYesnq9DqHb+9zj5rNTUNA84EXPoKOltXpPtOdDbQssTHgfGZmnut1Y8zxrDFmY5w/d36nTBYIMYCSGQHoI0YPATExH6z6rsW5fggByDKJoihyF5/hwhQKPeCaUgwD/UNcPA4pZT40xUTCIowApRHBUyQQusDEbDCNUqNji08dXgY62yJdhXdL2vWaID2jaoZXlvGgLa5UiTYKaTRCCkJIGR0VExJBWRQ0jR/QUJqIpNKSGD0heHzr8MZh9JTU99SmYGO6wV/4qT/H5z78HPt3bmN3n6IOc4rPPcNTN59hfqlAlyVGZY6rTaCHwBI1ntM3LdFFRmWBqiK1MFgGyZQUdNYSgss83loiQqDe3cGvFnz0KclH/9bf4tdvP6Cs5oh6RK8UlFtEFKLQ+GILX09wGOzQfY5VhVcKIQuSrDJdRgaE76ilxKmWlP6/7P15sCVZft+Hfc6S613fXvvWe8/0Mitmx2AhZjhAACBACqJNkZRCNEnbpCSINqk/TJGyAhG2Q6bDskRTNEmTkEmIAIHBEMRgIQbAYDBLT/dM711dXV379urtd83Ms/mPk/dVDTCQ2QzQJBB1Irqr6r377subefLk73x/3yUlzTrY+R028mgpNb1zlfyRJxFCI4JGO48OBXNp6Qx7iPkcnSUo3WP3zg7XLr/N619/nvd+50d530c/hmo0zGtkrjioLCZ4QupIckWWFzS1I08CTsHaueN0VIrONb1M4VQUc2aNxFatN/LeBF0GxHwLsX8Q59nWFun2BK8SaiUJWIROKLIyXscQaVDWzGhcysvXRuxXliUX74fubM6gqamAXqeLrlPGWrJcxo7Q49/xcU6eOIH9uX8CgLWGpoqOKjpN47rmLP1cst7LKNKE3p0R8u4EayxLe7FoPzauSHOFqCzVnQNWegN290b4a3scnc7BBszUkpaashqTJCXNnS3m44rB3GImU8StXdYdrDYBkri2K60JCNIkw6CobRPt1Fykj7i208UUlNKs393hv93eJv/9hD1vAN98hz9z5crv3+//fRxzKfnTH3gPu50eWr2jcuHBeDD+QI13NLu9b7AIer0he82MyZ1NVs89zJmPfSJmpe/ucuGf/Qznf+qnSEWGRpMkCcHWyNowm00ZiAHlkS5aJ5hgInrmA97EyGJCRNFE6w6xoEv41sNRtp69zlu8l1HpjzgsdNvI+igaiz+NlLItBO8VwwvLshg1LAjWIzwE4chtl9MPP8ux95xCqTSip4BT0W9StZxcj4rhU2FB2yC23dvXRD7zoU4tvkDEgxRElX6gRW+jDwQB01p6yRhsIfucOvU0x48/xLW3X+Gt156nMTVSdNpz4sAHrLEIpdEqwbYOCFqlMULZ+4gSt8D41t4BN9Ius+mU1MLKkmW5PyDrlmSDAh+mXLv6JkrB5t09xnNP1RjmDrrz+NCsmoZxHditZijlkYkgDxaZpwyXc1JZ8egTD3NpvMPepkEnEtKMouPpH5OknYSRNyBnvPX813AmxQjB8vpZbObZ3rlIwjLz2ZSDWzdoUsl4v03QKwoKAoiM6WxMU8949unvYTBY4sMf/iCJDozH21Qh4dbVTZ48lZIkmul0RKZ6ZCiMifxYa5vIl3M28so9GOMONy+xowBNXZGrgjTL0NF2ACUV08k0xrqKgAse1zTtxsMzlwqpVTtvZSvkzCN/m8UciHQUrTXWOlABISEJEmEDmdBYKXB4kqIk2JgYJ4Ji7hO0D9jaUIqEIKPxf5p36GiNCQ6T6DivipIs8VgRyFSBlwHSuKEUQtA0BqEWyLXDE4uKgKAsu6Q6YeJHUTQ2n2PLHDc/wKYpvU7Od//oZ2LIgzNgLFVVUzf1PQ/moosUgtw0OBEgSOzMYmpJmaXkZYp3kkYqgrXIRFE3c+azGVVdRyusOsNngiLPMKmgLAd84OF1Xv31n8NnmmAduRcYX8cIWa1pvI8BOzJSgBAK0hKZFfig8GkXkXVxMoE0o2o8WX8JrwpmRYLtPszs4tcByISg1suAxCqBEgmeilymFMIxnR/QyXKSpECRkeiEva0xP/MP/yfeuvAqP/hjP0a3v8L+tTvcvnyHmzcv8eLrX+Xj3/dH+PhHP0mwFpeVJC5QLg0xAYqiQNOgRQo6QQjF1psvxhtZQSFTrLC4dpFJOl389oRaeUwiCCLnPT/xD+ieexSVFTT7O+z89q9x5e//X3jr4g6XppbCew68ZQZ8ZjS6t+Dv7sN/9X+EP/tnD7/0xH/0F+Jf/vr/GSsFRaeMNKFSs56mTKwmRVHLmnyYUOyN+DP/9edIm2/lMv+pzz//Th49/1ZHA/zTp55gNsjYWF7CVTCf1lhRI9MMXRQo6cmSHKViwJNSKTrNKJMkPl98ILjAdFYzm86oq4b5eMZoPmLiPIN+QqgDt03DTp6iUsmwO6A/KOj0cgZ5D6kUSdKhMygZdoZUVcN+vctT734c4TXSQFVN2dq7w/b2LqPphAMzwtSeelyTm5qN4YCb05rKBqq6wvkm6gGEjBqfyjEZ1aRZwrnG8ldefJVTRck0zZjNqn/bl+LBeDD+jY13VAyb2uOaiKTmRYdm6y5f+M//k/ggdZJOt4gZ7loj0kiHyDKNnzbc2brGrMrYWNsgKzN8mETeUqjw0gMKiYo8YAFCq0iZOEySi4VyIKYCCRmFa877KJVr3SIWvrkL38yAbR1iorgHQKrorykQ0VM3/iTSJ6wMT3DyiUcZHIm+moEQBXpCtJK8GNEpQoiIbmv+uyiegvctJ3nRBo9jIf6L/1h8VbJ418gSCQh0a3Pm7+NDgxQdzj72IbLhBm+88MswFzjhUYC3ra2aFHhbxQ1De5w+KJKg8MLH9wY2Vof0HjrC+TfPc/boYwzOlcxCxn4S2Ky3MG+8gtzawbuaQiX0C4UqAlsTS273AHj47OOUx07TKUtUltApSgbLG+hOTjW+hZ7sUYUZ9vYbLBdPMKkndHPJyOZkhSdkgdnmlNUjJ9mZjhl2V0nTLmk5ZD65RjUZs3Jkhfn+Nj054EDukaXxXHVzzfFiGZsqhOjR0TnJIOetty+SiiEfeN8ZGn/A5Yt3WMoK3vuR78R1EyazSTSTzyXG3FNSx2J44VEd25iynXtKSrRWbYs1JWgVfZylIghFUfZARs9mkXiEkAjvEET+sTQOKWQUgHqwISB0TNxqE1IgSKTIY1Kijyi0FDFFzwuP8x5EjOZurMI7T2SMWjwOoWMXRWlNLjqkurUC8wEXolBGpqCLkqQVmGoExpi4WZMBT+TWShnwzmMbS5KkQKCqKpJEMVxapjIN3nm0lLEAcxanNW42jjZWgpZvXdPtdgkhQbdOJHVdo5IcnMc0FdZ7sjxBpxlKZygVO0MGizWRQlTPJ1y8eIXh8hLHj58AZWNEtRccTHc4sT7koZU+okipXYZpZlTSkiQlo3mDqw3YGLaBAukcMhjc3JIYC2qT4D0qSJwS5E2NV4rU1hyceD/m+38U99WfbFdLjctLhDMkCQRjEDpDIBiP5uyrCtup6OYlRVZAUdJNClTW48Uvv8ntW/8d3/U938fbr17k7tVLTMY7rB1b5/jGOq6ekaqCZla3fOSaQKDs5rjZlCoL0Ci2z9+gX83axdthQ41tvbYBnKmQXiOFBqnQOmd66SK3f+1ziACn/vif4fgP/y+Z3rzMl77x39IEKKzjQCj+/eVl/j08VZYzbztVyX/5XzL5K/8pH3/6OIWIIltvPXz0MepUkHdyejZ6GK+ahr4OnFjOmMw86tYBw92KtLF8/lNPs7/SZbg3449+/kW++MFzbHdykizHWEONQqqUIuuR5x06ZZfgIe/24yawNRby1tPUhvl8zvhgws7uHqODEXvjfTYrxy3ZoPKUpf4S1XTMrJqhE0WRlYf3tJQS2xiq6Zjj1Yz/+84u//u1FU41DUOlWCszvvvGJgtX3RT4U6+88U4elf/aYy4lf/FD72Ery7grA2oyxY3GOLGF0JpuUeLeNohewunV07zyxkXSt28y7PXROkVlGShNooekawO8WWU+rjFij+PLCfXKKj2Ts3N7m4N6grENlW2wyoEVmGCYZvvUPtC0ncTxwZiJdWRF5/8v5+DBeDD+bYx3hgzjMa7GVxlKFkgp0GmC0hJTWRDRFMJ6g6uhmVuCtWhTM9sZIX1Or9xluN1hnoPQbdgDILWMyVFJcrjwBe8OEeFYkMbjkFLGhxsQoprpsOUcwzcWgQgQ6RAxmWkR2exCtBfDSYLwBOPI0yEnH32aY6ePkvQ6MVShjW9tS5ZvGfcL8u7/9+/8+u81FsXz/f++791+1+uEEFhXs756mtHZJ7hy/jWUTaPoUHLorKCTyI0OxA2BTgRBeFSike3qXogexfIS4kTJ89U2D++UNBrOX3oFu7nHCa/YKDvYNMOjcLMpnUFGbWr6ZdxQPHVug42zSxzcvsjYKaRYZjLfYf/uNoXOWesPcWaH7uga1y5cJz/2EEm/TzUbczrL6WiBcYpspcvm5j4D2WGye43rr17AqCWKjmLv1g2K3hqua7n2yluYaeQMH1saUp44wdgYVofL3JmOuXrjFp2+xE5nrA80Qnv6/TWeOPc0G8eOs2/2aOo5UqVopakqg5DRhq+u65a7rtsY3oBzMfnNGMN83sbp+igeTbKcrFX0S6VbxrhDC4WQniBFa7SvCa1oTkoZucZSIoiiUh98GxUMzjWHPHdjTXywKR0pQpH7E3mw3sd5SdtxEHGOLwSQSZbSNAatVbSOagMVFiK5JInxxMG1HYOWSxlC9HVe8OudNSRJ9ECu6wpfG4q8i07SGMwSAqptm0ol22OKFolJEtpAC433zWFyW3SPicWyUJpExXOe6uTeaxIdNxYyWrnt7u1y+/Yd5nVNpjNCWKJbdNi/u8XN/T3u7O2SFJJOFghuxmBlSN4rcBquXbuNkh3m3jGvDLVzzB1Y49BSxZjuLG83z1GZn6V5tBqsU0JvhURKpG9b7CJHJlHNn2mNJCMISW3nBGeYz6ZUlaE8XuCFJwSJ1h6VBoqyw9XzN/nsjX9KJ9U0dc3ykXXWTpwm75Z4KTHe4Y1hrGvmTjFziiLNqA6mzKpdwoHC7U/JdNvi0RnWehAWaH1/vYoNtbYjZaspF/72TyB7XZLegLVPfB+dUw/hnWBmPNIZXLAEIdlUCTfsnBlg0hTXJvVVQvDMUg+RZMync7yt8c7gbEOY1LgmUBqHrKbRFhJFR0lc06BmUey3cnuHwd6YwUGknHziuUv/SuvkOxk2zfivv/8v8EuXX+Zy2GdsGpwUSB8YZhllp8N0MqHX6ZBojXcruGtXYGeXK0KyliRMkpSJbUiAfzYYkOSKH9zc5dInPk526iTdsiTRCVolYAzSGsKnP40tezjiJtIQqXbTWUXT1Ozf3mJysM/e9IDK7FH0Mpy1pFqQ1JLZpOJgekBx9S5/+su/xYZX7ApBmiS4psHWHmMDtu08JaKktnNuNXeZTipu7455y16C1npOIlla7pMMNI8/+zjvfvJdHFleZaXfo1N0SEXGaGfC7vaYrds3ufzm27y5+RZzFe3rZJKTCYE0cU6FEJNa69nk9/2aPRgPxr8r4x0Vw01j0EqwN2voZp3oCGEDaZHQNBZTN6i2WHK1Q2KpplPkaIZLAu8/tsZjx7sslwW352PMkiK4gBSx5eyFaEMg4jPe3Pdw9m0IRKQsCIRfIMaCe+EcbdRqCPFhT2QmhCC+RdkvWo9epEA3OUfXH2b98XMMNpajqwS0ZuOtwE4E/ufGoUjt9xi/1/d+Z0F8//tF8Z0/LKRCCMiQIYVjsHwUJ8+TK8XcViiVIASH1mnWxYebtoYmJNimwjvD17/wBT4M3Lq6yfKTp1nXBSfLI7gw4ZUvfYnNi5c5snqa0NcczOdkhURSUxYaaQRDp1gZRHSgun2R0ewuKxvv4aHjqwxPHiHpp2xtXeXy5fNc37zMuujzgQ89xauf/RUONo8wvzOjV67x7sfew7R5nanPyNKazjRw7MwSbnyBweVfIn3iz3HZCpqZYdRcZWnvDc52e+QfeDd85SKPPHSaq90OHz77GO//3u/kS9/4Cv/47/0DPvbwe9m+sY9yDpX22Di6TNLtUjuDThLq2kBweK+ijZmxbQKXwXqHFAprHVonWGuZV1V77tt54KNXZzWbI2VCmkWKgSBSUuxikxUvLtJ50ItNnIj0CJUilY5qbdXSgJTACxeLRIgdgeAPueSLzkMsQGOoA8LH+FjnWsGkjSEuUpHlbWGZKhKngRYNsxal1GFbNHLx483mfQwsCCHSiera4ENgMBhEq6rxKNI50vSwixEIKB2L+oV93yI+HKEIiDYKVxzOd+fucTuVVJEj354viCJQnSQ0TYVWgqaqmE8mdMuSWTMnO3+HcPMmbnObf/G3/hv+2JGTrJJwTVoSLSlSQX2wRz2bcFQluFBh8RTdnOBtRHdFTFU0Hg6mnr3JlHnd4Gg55DLA3LE/nnAw3jvchOu0pJpPCMpjQkALR5JpdJIyamo++OyzbL99mb3pnEGni3UOK+PaNBwOscDuwYS802E4HNBdO8ZwdQ1fe7RUNEbgbI0iZR4C43pOM224en6XY1lGkUiyfkG631IZvCMVeRRnZWU8xnwAjBGomEInJUlZ8oG//3mS/gCAzV//PFd+4aep6ib6uiuJCALnPY1x1LLGColpGqz1pJlEaRlpJsTIYh9s2/yKvGTnPcZYjAqoJLQiUgEirsOZc1S6nRvAxZNL7Kx06K6f4uTZJ8mLksWiKxbWl1VNMA3m05/Cdzo0CCg7ECIlSRANdJzx6Mvn2fhLf5lTq8vM35wzrfdwjSMtUjyerEjodku0lmSJRguYTxo6ZVzPAg5jLVMlyER8LO4eXeIzq0dg86ucyXK8MYiD0b0AVNMQplP8C88TihJFTJMT/T7+R3+EblkgtGRDasI8cOfWHc6//BbXLpxn5m/SP7NEWtXMasmxE48zfOsafPm3+PBH3s+Tj5yjKFMUMVhlPKrZ2t7j7s1Nrl6/TWUOuLK/ifGC/tIS070pk9mMpjFkqWZnb4dh0eHsuZMc3zhCt+gjRUpeDqLmYaXPiUGXk2eHPPz4Y6z8ykt86Zu/QlU6VNYhTyCZV+00i97L0j+wVnsw/vCOdxa6YQzWR1GRbQKd5ZJpPUfMPZnWzK1FVIb5rAKZgDeImaXjJEdQPLneZz7bp3Gr3Lg7YqOzjmw5kmbBASY+NKWAPM8P6Q7i/oKyVcp5H1PWInTb+gu3+rQFMiyVRoQEFkgvoNEIL+ioZc48+RRrj50kyCiqUzKq91WI4jcvw30o87eOw+L62xS0i+Ll/nH/674dsnx/cfw7C2UhPMpLQjD0++t0+h3C7phUKnzLdY0/F9OWPDFh7tjqOq6x2Fpy9hN/Ej7/dd71oWd50womtywq3aMsc5549L0orbj55tvcuNLw1LkznO2WdJczrt3exYuMRAh8Gv2kx01NPvgoz/zxP0ZRKEji+X/8qe/kE94yme2xc3eb9YHmkTuKnc2EkDruvH6Vu7Nz7AbJ8dPLbO9Neebdz7J/5XnS0UVeuTBB3fh1mpOPsX72NH21g7n9OkuP/4esPVMBn+WD3/8+3v7qVyiGKVUz4Rf+xa9yd3POiy9dQzrNydMalWiWOj2W1lejkFBqyk4H21jmHoyvMPU91HI2n7WobXQWmFcVVd2Q6iSipk1NmsRoZGUMpp7HWZHlSJmgEk0QAqE01hryNhY2ul14jGni66VAKklTz9Fao1qKQ6RKRKs7rdNo8u8cAX+4KbImOn4oLWkaA0SucbCBLElQKgZ4LKJfhYxJXfe4z+JQRJmmKbIt+q2LKKY1rY1e+/um0zlpmtPrdiEobF2hdOTfOmsI3gO+DZQR5Fl+6OyiZBR5hkCbrBjae1mQpCkIEe8123Z/nMAFC8Fi6zlNXZH1MmQI7NzdpKom2IsX+aP//d8hqRuOAX8L4JUL3/be/H0ZVy4x+8rn+PEzzwCgFUyvXaZMsug0gaFqLHmSo8m4PRrxAz/8g3z+n/4z9vtdlpY6hFpQ9qJ3cy0lneU1NpaGJFJCKsmykiKPjhrBGYxx5EXKzbevs1dP6IuSrd2M7aYhSz1JmnBmP256x5Vl3Fh0IvF1vK5CNkjtEdIjgsS6CjeteeW/+sukSyuc+tH/kLVP/BGOf/FXyF+4yq4JWEfku/uYgqgbE8EC1yCNoZenyPkc4yTaerBxExUDfjza+5ZuI9BS4J1tufBEigqAhEaDbdPzEusYUHCiXKbY2cez39LgorDZ+YCbzxDVnOkXf5uQ55hun4PP/ABVIrGESANJMnSS0XU1G8AXfuM3qf1dVMgweor3nrxM6XRykkRQlkN6nQLbVHTSgmXbrtE2xrHbRhw25v79f/Y5uifPQJYhRiPkSy8R/ulPY+ZVG9ntQWpmKsXLmKwqG4u6s8l0d0QQUZQcpIZgKTeW+cQPfRd7l57ly5/7LbauvYjpB0y9z81b+7hRFEFu19tc34S0SMjTnDQtSHsdUlVS5id47NQ5Zm6MCg4ah7eaxnhm0xneWkajMVMzodcvGd2ZcKu5jRB79AcZO/s5YepxVY1MHJlOSXoZ7/vBx3jkXWf4+Z/+51yfXIK+Qqdxg5V3Srq9EjM1/+butQfjwfi3PN5RMSxViKKrXKB9Q7O3Tyqjn6GPDXVMUxEqS6ITpJAk3iGl5Gy2ztq5I1y5cZG7+9d4/c4e+9vw+IfOUFuD0BJFi4q1SRjOud+NugbiQ1gsxD6HmjTaJ3H8Uy0Yvm37loAKbQKb16x2T3PmXU9QHFmi8Z5ERI5t8B61+J2yDba4tz7+z47Dwv13HPP9FIr7v/d7US0OP+phQdy6aciACAVloVlaXeb23gGpVy39o6WJKEmqEoIPSKHZne+wfWuLo0cfYWkttva9Tnn2fR/j1KMP0VfL9DbWyXPBnbtv8rlf/DkuvniZa3c2CW7OSb9Gv7dOVVUELzF2H4Crm3fw646lfsp8PkdjCF7RTDOktnSKgt65c1g/58/9xZ/gi1/7Fb7yW1/kiaNnKLjL9PotytPLiLFn3Eyo3BJmXjJKH+L42vs5fu40g7UNBsWTNMe+h3LtIczzXwXgzW+8wXJxlNHeXV7+6m/zsafO8T1PvRtjZ9R1Qz3dIlUJINje2yFNNJnMW7qLwyMJzkfnkpZD6KyjqqZorWnqhtm8bkUlgkRFT+y6qWIxrBTWNC3lwNImrhxeQ+c8WifoRLWFpQNUjGuW6pCKUVUVWZqBkDgf+xBJmhyiuBFxvWeJt3CqaPd+sXMCsW2rU2jt3JqmafnOmjSNP6e1br9Xxd/fWglqpXAiBtMYE/nKRZpBEGjt8DZSM3q9HtPJLs4aUAHbNORZjG9eHKCzrROFiLQJ60KMQA9tlDoSpaLtXOxktGEvtFxl43E2eqOqlvbUKTskOsE2NcXBnKRu+Mb/9j+mOXaMI6dOk9zcYfaVr1PMZtxsxrxY7TFpuySNE5TdNCbgyYDulbGAAIILoCVSKVKtSVTsUtXOEYLEzyv2m9P81V/+Rzw2iJ8vSzRp0nBufcCk8cxsTWIVlTMkqWRrc5/eqQ0+8wOf4jd/9QuI0NDvrmGSGofCN9EtoluUmCZQ5AkH0x2KwZMEJWgmc7I0w3vJK19/nZFzDGTKtStbJDJFYrFI6pYu9MLlObcPUnQIPDoP/ADw8qVdzh001DkEFdcMiWTva19FSUHjBe/9P/w3rP+RH4L/xz+MXa8Q/dbnzrMbYNV5Ejtr1x1P1wbSWUPqJd5YZEvpWUgmQFMXEq9zHDHGfFEcS9HacQWJlClKxGOXXnD2//1PSR9+BLIMORphvv4c9p/8FHgbOfM60uGS9RV8EKTVHF9k5J0u1hrmdcN0OmFWbRNGkY6xc3ARUwSCl4g0xbt2M9o0dIoO08kU08w4cmQF1UlhcxuAspMyQJGUKfkoIqLp7h7hl38N8dqr8Df+BvJ7vgdz9w7u175ACBJJhrAW1e+hijK60ogxvqqYTSdMhSPRWQx16abMpp7NO1uojuKDf+aTvPELkks7L6H7BdIqJtPW4SYI0iTeN/vjMdV8p+3UxACkunKUKyVelyAFXteoIiXPJYKMbD1nPWyQSAgz2DnYBSeoljSy1Kz1j6CqCls7Gubk85SZcPSfOsp/sPGn+bt/429zc/cGe1UszifjKTMNiuzbPvcejAfjD8N4R8Ww7uXUo4JuNSeZS+zYRL/IJMUHTy+TNLYhqT1hNseL2LadyxTdz5mabYQ1jNQ+O1fvcOzUURpvsalAuoAKcQEVhyjnfQIyHwveBZIX6QNJXHiJ9mVCyYWejUNBSXBRRBcCwcevrW2cY+M7PoDMBbaJ/EwtVUSmDqkaEXEOQiBCG0jAvSL2/mO7n9e7+P79f3678Xt/b4G6LJDlxe+J0dEekEJx7MTjXL1ykdQmrZdxDCixxrUFlCSEisYE+t2S0d5V/OUbPAFceeub1OzjpKduUnRa0usXPHr2Uf70n/xLvPDsy7zxjS+z9dobvHHpBkfXlxkO+ozkAZNpXCA3jnT56rXnuPrqh9Crijwv0VLQ7RUkaR9UggiSJMlQIvDJj/wgw7Lg+nPP401Fd9Bhslux0R1ivMeGHp0TH2b9seOcOXOCAxq29xvu7u5jVWD25ut0LrzNSSAxmqNnTmJ9hRCS4yc2SH2OSEPLrfbsVQl10zAez5gWc4TSoD3KO5y1aBldRhY0BC3jtmk2naKTjLq2OA8useTDPkoGnHeMp5E3l6WaYA1OxgI30iXiSLQiOI+xvm0Vx2I0hqQ4iOHh5Fl6KNgDUEoeFryR8iAxJraDvY/M5Gi7Fm8GJVT7PbDWkSiNs/G9hQgtcgtJkhxSbUTLMTZ1FXnEUiJCtOsri5zJdIJzkU6RZRrn4iag2+1RN1m76RStgFXgrEMlcePhXLQ4pKUGaKVw1kbaUitKXNyXC9pJtJOLHGvZ0qAi9znDOcFgaZWl1TWqZkw4iOdeXrlKvrXPwWtvcuTIGjoVHJy/xMPOcqaBAxE4SALTylIHh9CasRS8fHwd34mx0zpITG1BwzYNtley0ikZdkrmNjCf7LNjjgNwcr0b71mdcGxQ8uGjx9nZmyA6GYnIGI/H7I1qmjrn7bfe4Md+5NMo53jumy/QZCN8AK1T8jxDp4LG1jihUTkM+jlSqXbd8oQk5/Llm9yZz1BKkqQpe7Oa5V7g4bMb7GzuouoooGumFX59CWcaDsbx3BxMYXsvME0suqs5/ZFPcvp7/yhbr34DKTWnf+xPAnD15VeZuch1VwJCsDTk/LNCUYZILUMFBJ5uJ6N86iwdMurpGOkbEt1ucnx8DysDXiSoINE6YHyDDBFgjmtkdLQJi8VdCsLNG7iXX4kbqE99mvRTnyZZXkFcvEj9jW/iblzHhsC47R6oyYjbt68QegNCkDgEXgn6y330hfZRFiwupNS+QtSWhJymtuzvHSBJaEyMqs/LhELnaOLmSGqB1oqjx9bpdCu4fQf1+V+C82/CN79J/ef+V+QnTiCXlsk//BFEUSCmU0a/9muMRvv4poo2hdUc3VRRX9HdwFmHc467m7sIAaXucOfqDjO1xdmPP8P2zx6wPbqAVDMKG7npjW2orcU0AWPA+5jWGgJ46whhjLcG42qUV9RNBe19iw9gHLPJjJWjG+wfgHQ6dgcpUZVEBsGgLNBewLyCJKCFZLR5g5NHnuahx5/i7uv7+HA3znsfqKuKUNe/5/PswXgw/qCPd1YMlyVvvO9ZzGhEPR9TjxyDzhJ5L0dksNxJGdmK/b0Jto4oi/KBJZPzAw+tcHu2h59ayHM6asjD73+IkBj0wgM4xILEh3uiozg8vrVciwWiJATRxgmLaGcmZItWRPeH0HLTggjgJYEKH6JX5tKpVXzSppg5CzgQCVomsaUrF1HPoi20v5Xu8O04wN+uIL6/mI285Xs84G834uujswZE5MzYGq1ShJT4YA59aFeHZzlz+kkuvf4cXb2MdQZtQaU51kceq1KCjNhql0qSd+PnL/OCkCoQEkmDNXNuXR5z+8pFVNLn2KkTPP3EsxRPP00SHC989Sts3XibUszZa31CZWXY6N7lxS9/kfd+73cynm2SyxTf60CvgFDTVAekWY41FTDnkceeYa2zxvNf/Dne+8E/yvF3r3HhwhvUd6/QZ4wsHsNIx5uX36JxhkRqnLEEAmmak+p4/DrLsL5BSE1wgaryWFGh0G1BmaB1hgmaqrbsT2boPCfNop+1Mw6dJNEuD8B7kiRheThkNpthnKNqYujGbObplQU6UxjrqE1NmWdU8xolU1LVILxuw05Eq1aPoQ/W1JHqIFTrI6zQWqIUSK1wLYq6aGYsON/O2Tj3fZyBC3oEcrFJAud9/AwCgg2HIlNr48+KAMbG6G4BrUguEEKKDwZFLMxTndDYhqquybKM1CZYaw6R5MXm01pDp9tnNp0iUCSpjF7iUuKdwbeFrRcKjUJpjTEm8vydQ+uFONGDh6BkG/jSCgJbu8Mky/A2EEwNIbA07NHpFlAr6tnVeJ/s7hGWl9mpLLKxDJ98jKu3b/Lm5Ysc9Ql94xl6z5qQKKkRc4PA83CYYnNLEIJEaYIIqFxShZRfGO2xvQ7Oa5TOsD6jabmjb16KEeSjJgULk6om73fZ3d2lEVPOHFtl2PNcujXnxtXbkEg++plP4jS88PIbdJa6ZEnKdN7QzVo3DWWYVoKV4UPU431CVjKdWL728itUEx8t3pKczVsHnFhdoZNopgcW4wNJm8Q4rWpMAtOq4XQ3FuxPft+nef/OmD2n+fXnnuONNy/wkb/yX/DI930fQklm29t84x/+JM//g/8PZXeFg70tEDVRdedpnKRSAYUCIQhacezYCl97YxsvM7y3pJkiSwU6BDQClWboVJNJRy5l24lJ0RpUFte/RCWkSpEs3HO0xP7j/xG9cZx5Hcje9z7UxjqurtCAdQ6EJMtyhoMBLgSUEKiTZzFlHy8Cpm7YG89IpWR8ULVraEMwUbiKdATlMMbhm5L90QFNZZHac/WKYHlYUNbx55raMalr9q/fZbXdREohEX//78NgQA5Mf/s3yV96GQeotbW44UtTer0hPs1xweF9IMkKyjyL1LZM0nM5X/jsl9n3r/PMx78LKVfZvzvmwuwax9/7KLd/8zq+PyNki+vaMJ42OC/wfqFJiM5JSJBpgjUSKQPzaho7AKkg8ylNFXU6s909+r0+uztTwJP2S/zuHOkD0/0Rk/UBx1Y3EM4yPXBkpaIcZszDiIceO8uXX/1Sa/cJSa5JZIZ/AAw/GH+Ixzsqhg9299g0jrSTIzpd5maCSAWhm7Ozc5eqKQgdxV5T0zSWlbRPdzjk0XwJuQR3Lu4zMCV3D2YUWpF0FJVvCAKUF/ehVwveLESlPIf0h0PSw0LEIEJbKEdlvvfRY3eBtsmgEEqifId+N7bsgvAYv8P+pmF5aZ0sLWL73EdUbpFWZG0bCNKSlO8l2NEeX/g9UWK4Vxwt7HwWiPXic/1umsS9zwwCISKS572Lxa2MYigfwDnHww89y/WrrxEaR5alIHxblEW0zYXoxyxkRNQXm4sogIqongASLVhZGhCCYjY/4MorN7FTgc56PPKeJ3n2e/8YzXRCMhsxWn4RvvA6TzzzaYarfW4d7PGP/l//N77vu/4E7/rgY4isYLT9Jroa0xRwcOki/XKF3fkBX/mXv8j2xT3WN05xbfYN9vaX8DIhS44hw5jGzMBHnqkIgsZGjlqW5BjjaOqInBjnIjIZAh5BkZcIAsYF8Au7tKTdQMBkOqPbLVE6AxWvRWOjyFAQrcuEECRpQiFK7GRKURZMZxXeO2bVjKLo0zSW6bQiTysyHSOoldPUpolzSLTIbXA4Z2hMg3MBnYjDQlccXmjXtjqixZo/dE6hncOxM3G4KWx5v66ldkTxXRsmQ0B4fyjAg0AQkKYxSnUxzxZoM20xrZRCSEGWZdR1g7UWrXREc71vRadRkNoYQ56XJEmGcyYG3iSRquGcORT3CRELfKVip2JhD2gXFAopD33DQwhYT0xHJOaXaATO2SjWU/GalGWJkyl5N3IY59MK7yxjX2P3D0hX13j4kx/jJWXZVIKtvQmitmSJws1rkqahsJ43N1Jc7fHTGXpuGM4SfDLi3NMf4I/pVf6naps77oCy0yVTEkR8+veyaMMihUflnlk9w1aeyaimCrCTzvEOEpmwfXOHf/7zv8h3f+ITfPeP/FE6sscrV97CS8lob49O0sfZlCQt2FhZYmN1QJrmuFpw7a2bVDNH5SxSCfq9giPHexTGkwrP7v4B+7VmqYpzadZUqLzDo+uPcM6O4De+wtULN3i4SHnl8jW29m7x6U/8AK/8xN/i87/8WT7w8Q/z9NMfphobnvneH+bWW1fZ+fxPI5WLVDfhMNK3m6cClXuefuQhutYwqy0+uOiyYgwmUXgDVWNxRAGeUIYgFKRdpLCkUvPQ1PCjwO1J4FYG1dTzJFCZSFNRf/Nv0m8L+e3P/SzpxbfpHz0RLSqdYzwesX3jVqRcjA64ffFt6qKPTOKzIi37pDJlPN5rZ75l5ucxgt46NAGfwHQ2RTYC7wKDpZLgLZ1+h6NVXGNs08RUwgRkFdcZERyjH/+rDMa7HPy1v0b/Oz6KeeUN7AvPI3p9ZBLvlbqa4qVDCYlwDQRL4yypj/P9wmvXuXXtNUL3gC9+8Rd59v2fIkkT9qdzBoOcFM3eWDKbt17MXuJtiOsSEqEls3kFQlBXDuMcKQolPfv7B6wdWcE6h5kbXG042N5Ch8D+1l3mB1PSVNBVGySDVRKVkmYFwTpUDpO7liArjE+YiIoTDyUMl5eRIZC24tammkPQ32L1+WA8GH/YxjsqhkMiOBjNyWYC1REYJ2m8Y3t/D2Ngz8wpVQeJZNDrMeytMSwyjg8G2GzCjZ0r+OYcaysnWP3uo4TUoYIgCBXjJnxcUO4xdFserGzpCvi2Tgws4t7uF5wpoSIn8T5UWQaBFApCSWfQto1Vgsp62GaP27euMRyusjRcjrZY4d77LYDp38v1YTHuP4b7X78ofr2PPqALcdOiUP/2oy1YBYcFRmw/O5xbFBkBHyx5vsTj7/oO3nzhyxFF1UmbeheV4VJCotKWCeBb9wBaF4JA9HaOdlhtLge9bpelpQHOOYyx3Lr+Crvf2KXTWeXxx9/D2SefBmBAoJrCJ9/7Cd460uWrv/yTlFfezY3b5+kRKPs5CI13FeODOQfTMake8P6N42hXEUSOuLsfdTpCIIKkKwS4MYHIHRVyUVzGc9G/u9sef4uYyJg0aG30mhatS8CCshCIBV1VV0xmY/IyFpVZGoNUnIuB3EoJTFv8ZbliMp+jBWRZEn1vTYMxEf2czQyEEWVRIFSk56RZtEvTOiarOWdpFuEbPoD1COFJU4kQHte4aEslNFpHRPTQQnDhi6Ii3UDKGBvufbR500q1rg+L+wNUa6enpIxx5W3Ru4jYXgjZ4oiiN2NMnGTWkqZZdGxZFKjWADGoJkl0DMRp53WaZjRtt1Rr0aLGlliYRwGe8z7aTimFUgkg2w3mvfsybjZjgUzb1VkUyY1pWHRIpIxhJW7q6a6sA9BUFeOdPbLBMjs7uzz2w+/m5Ce/h0f+xk8gpOSFv/FfsP36iwQfKSnSOkLdID/2fmZCYqs5OoB94RrDF85z47U3OHf0FNlSg0Az2dvGJBrXj0Xno2eOwIuQJ5rh+jKnBoKDqaOT5yyvr9ItCqq65sKbB6ig+amf/Byf/6Xf4L0fepaPftdHeHcpeO3t6zRG0jSWVEkqP2NvPMalBdXco7Rn/cwyo/Nb7M0a3vfBc3zQrfL6W5cwexOSvMeNLUsTDLNZtCdr6sBoa4yoriEP9gGwo32++KWXMMsDfvRP/Bi3L99HpcZJAAEAAElEQVTi61//Lb77B/4IH/vQd4Iz5MmYWzf3me3dptfL8OO6pbWkpG3svdQ13//HfpgPnHqcL3z+Z0k7kmo6RZc5RSqReEgTQu5iZ95YcpFSNQ5LTPIb11O2R/FY7+5XXKoCWROR2NpE2lr93/33nL90h5N//k+x/JkfZPzZz0I7zx3QKTv41TXwhuAddbdklufU1jCp5gSr8SFhYXTgvUAh8BhsgMRbXO2ZBkMn73DmzCk6acJambKUa/xk3i67goBD5xnDbg8u38I6qL76AoPXn+fGcIl3/Q9/h/DBDyBeeJ5Fx88aw3Q6jlx6BGEyRu0fUNUNyjvEBL7+my9wbfs6oTIUdcqtzQusF48gXKSRqM4yvt7BmfghrPPRei1NWwpU7NRY50kThUAwHVWUaYmbwZXz19jc3mKyN6JXZqx3O+R5wmRnh2oyg46imXcxwyWyPMP6mBdwd3ubTp6hZUnRKRA9j5Qpb7/5GpWb4lW7aGQDRH/jvk7tg/Fg/OEb76gYns4MtRLY2QhMIA8ZoXFYB1mQkXIwrVlN+20xPORkv8f6QFM1DcXqkMnbcFQMqI91qdycJEi8i2jmwmVpYUUVMeBIeRBSxAJ4waW9XywXYjt5gSzHn27jmIXHO8lw6ShSbsavATrkDAfrhHCHnd2bKOXQMqPsDQ7R4AW/8v4C+Z2MWMRFDq/3IqYT3Se0+t2vv4ciRyFWaFPjPCHYttDJsHaOEAHjHEePPsL1wauYfYPXsXUZqR4KcO0CptqCpS20ZLS2cj7gQjgUICapxlMT7SU1WmmWh0NWV45Suzm3ty6xfXeLk1nKI3/9/8Qj7XG/t/0Pfv4dnZ9/nWHThLC01G6GJMa6qGD3gcY0WGfRStJoQdAapRUueCaTEWkW6JUl3jToPG+pA5C2frpSxtZ9nmZMplPKImM2mRC8x1iDddFuzXvBfD5Da0iS6MqgFwituOcicq/g9kjpcLZNHARMPUeqDIfCtkWolDKiS0LgZZzTxlqcbUV6cOg7rKTCeRcRfu9REoJr478X07Sdf85ZrA2HVAkAFwLBGrLWPSKm8cVUvgXdZxHhnaQRGY11q0QnCaZpaJlI7f0SRZyCiGhb59BCtC4bIIP8XZvL+zeGkZIRUX1rGgIuunTIhCRNEaKi21qDBRfY39+nV3aZzyvmpmH61psUDz9KtrKKDY5qXpHrBONAGk9ae8Z3dqnLnOl8QlJ2KD/wEP7CZdYnM8xsj9OPP4TrJ7iZQSvNJRtpOVUdxVnWB/IyR6cpuRd0yxJPw2w2Q2lJp6OYTg0qKdjdqfjpn/pVfv2LX+L7v/dTFEpQ1Q2NyUmlQHq4c2WTF7/+Mk8+cg6qhvWVHvqc4/bXNrl6+xr79Q5bdyvWs0DZAXcrMBz2mVzaAkDKQDWZcPVgj6QtOt9+7WXenUi++7u+l8uvXuDl15/je37w0zz9zPu5e/M2Vy9e4fbmTfa2d5ke7DHIU4ToUzaGx04coRh2mY1q+qcy/uP/6M/y4ue+TtFJSVKPoodQjs6wjDzS2pLbBKkFQqTMG4mZztC6Il3uMqwzOk08riIV5CnkKmmvdxQr+zcusPWFr2AZs/J3/i7FM8/A888jVNwgNW3RK3Fo76l1iuh0yLxHd7o0PlCKHm984zyfIU5DLx3aOJzUGO9jt0IKlodLrAz67G5tMRz2qe7OcAfx2mZZCWaCqQ3z2sOnPoX4Ez9KnnVh832c+fEfB2B04Q06wR6u33mRsbK0gs872AAyz5BSY7McJSU7t0dcv32VedPgRxWNqdk/2GW91Ghi9HYtEnxak+q2eyQUxjiktPhFN5Ho6+2Fw8xrJuMJ29M9bt26xXQ6ojEVtqnp52tIGajnc+ppFNLWdYMa7VMOBzE0hpJAgm9A9AsKpUjKHFk0JE3G9Qs3qXwdUxmBJhRszyxFP//XXrcfjAfj3/Xxzorh/Rmml1C5QFF0ECHayeQ6ITUO10QC/3DYZSXtsdItOLkuSOQM6Tus9nqY9Qw5LNCNxWoZvUhDIJOSPIlWS87ds5NCxPa+dY4QPHLBHRYcBnGEhSVPW1REe7FFwIZHkJJ3B8z3r7afJFA3Y8qiR7+/TFVPaewulgw3Dgz6y7QuUIcF8aKQ/J1OEN+OFrEYi5Z3pHI0aKFam6nf7Rqx+DOiyPIwBjh+PRZDdTPBhw5C1DgrSJIuSTLk6MmHuTI5HwsZ65HSt4WSa0VU99rwQIu+xdjn6AfrkKoV4fkU55u2rS9pXEVwka6hlEQc3+DL/9e/jh4dRPEUDqkCyCIi+METvELqWJx5AiHUrZLGgYsLupDgg2t5aT6iunjwCzHgPWeGxQ4ieEHVLanXVxA2wpOp1m0BZQhBkuoUhANnsKFCJxopPI2pmU48Klh6ZQ9vGmQSLb5CiBZlshXR2Sxlb38XKRRZmtA0DXXTYKyjqisEgnnVkKaaJDVIbbBORZ7l4joGOBQ9eh95tTLa3gXrETJaCfomcodFS2PxIYD3eERrc9aiwDEFpqXMBKSKHr33c9Bd8CgRi1vnQnSjaDnX989brTVWG5qmOSyQU52gZUQFo1jHt0itQ7g4Hxf3gVIagzm83yJHGpRK4gauFbQuPJcXgR8xYdEfniPXagWSJEGIAMHjbIOxNRBIE4VUEclP0wQ3ishZp9ulntVUOzvMjedrf+/v8sRT7+Y9/9lfBaA7bVitDdIGagXSNUjbILsJSmt6uk9wAt3p4Vd7mL19aGp6qaK/vES5mmEdXLkVr2eeRrpEkpaU/T7zyU2KchgTBb1DhTh30jxlf2qQOkP6mkJn3Nm2/MJn/wUf+cD7GSwN2asbAiJ6eKuE6zduc+ToCv0yw7hA0Ss5vlpS5kfYHyeslnOmN25wZO0In3noCC5oimEB/+PbIFK2dibMDqashejS4KVnZTDk8muv8tbVy5x896OcPXmOF3/rq9y5ucl0OsYAzWQe47+1pkgVnRmcWB5w8r1nOLN2iqbjOXLiCMoaOrLDtB4jEGgnmR0cgNZ4E1M7hdAYV9PM5zhbU/SXmG07usdXOe66wCtUM8Od0ZizrW6h+13fTf7n/wJcvMK5U6fY+A9+LB7/diz0jbNxY+UCZl4TgiGd1Rzc2Wa0d8CsqugMB6wfP87Vyze5/No3489bcInAJglJMNgm3kcy01R1zd3tLfbv3OHoI8vc9WNcEndouqMZuAGhM6AvBGxvI44cofe/+09BSeSdO7z9//zb7PzMP+KJ048e7jen0yl3Nm/jihyPRM8m5NMaKx2FSrjw6ltsT2+RZA1SpARlqWdTnLDYVBGsp5CefSdYuPhKGZ1n6tqQFTnGebRSNI2lGhl27+5RzWqaqsFMx2Q6kOgck0p6ZQ4udv5kG+SCA4wlVFNcMyUbDnAIpExBgMo01luOrR1j98KYyzevEHKHtfHcTMYzZtIw3b/Lg/Fg/GEd78xazSp6IiPB0Jsb1nPJcplR5hlnB2s8/sgZsiJgE8OcGls3ON8wqxpUknJq/Qx+oJnKOQW92O5V0cqosTXeikPESMqFDZk/jMqVCKSIdAMX3dkP0WQgCulaxbpordW0SvBOYZuGpTJ+XCUBLWnMFCVzlpc2qOoJaSIY7d+iyFN00mkFb996Du7nAS/+/Tu/f9/hIGV0N7DWkugUIdS3xP1+K9ocrZCcjx6yoo10jsWMRWuJFA1NM0cR/W0RjrWjj3Dz5mXs/hwtM6TyBCcO28+w4GouhHmyTR6LDgdCSkKItIgQbCzCPIBAKjDeIVzk0FkC42EHhkW0HkMgdUD6BE8UROEVInEIpzDMEApEleCEx4uGlBSpQEhNYwIoRwgKaypUK5q5n2MaRVg+tkKVQihFojOciVxVjUAmCUlSEBahACRYF3Cujp/B1FRzR7A1vaKMMYQqul1oKSO/2sWNQ5pndLsdppMZRVkwmUyYzmqm0yqGcTBnMp2T5SW6tujMIeqaNE2jm4W1rQ/pvQRFYwzeGIJtkEFiQg0yRyUCoRISfY9CE0JALGggyDZe20Nwh/PbWotbCNeI0eU+eHz7GiUhtBxicVhI3/McThLNbDrBpymp1sj23nHOgvM4D1mW0zQVC367MQatE5RSpGlKXc8P0+u8DyiZAC7aqREit1glh7M7CvvaeY895LFrrXCmjlxva5AiChqbpkYJjRCegCNrubuPv+tRDqY1V7d3cN5gZoHJ7t5hgTJ8+zblq9cRLqC1JNGKTp4zv7rHa2dXsDLF2wZXTZB5B5tqxs4zsRVKKKbzCUKluGoMQJoujl/T7SyRznOcqdAiI9MJzgqUytDJHC9j2MncOESicbMpK4+dJl/qkvmSYW+I299l/+4NiiJDKM3589c4e2KF9ESPN16/jlUlvQ3or68wfe0GU3kLnwrGo11wKSeP9gBwokYEUMIi209/7vhRwp07bI0OWD56knPr5/jaT/8i26M9dJ4T8GQ6o8g0NWl006kail5Blmdsvb1F5nIeeeo4081NVo8v83T6FBvnzjHbG3Nz8y6zrZtkR5dRY8mlt19mPJ8h8gwvDCbVfOIHfpjhbsGmH7P68otxZfMC0Ki2PWC3d5AnTqLe/0HOCIHZ2WHz536W3p07MFyC5SXSIBCzOavrqzgCOjng5KOPU/ULgrXc3dqj0CW//uu/ichvArBCBGQyMrSXWBE3ZgmCvTvbTO7cRcvAaG+Ts0fXuHA7XuMPf+S9nLl2iwNZEkYjeO6r3PmJv4n81ec4+tbLvHDsGPNBj5PveQJ19DgyTcF7+sdPkn3yu6muXcEGEJMpYWuXiXAIJ7h08QpCz9E9hQgK4SGVCqUd86pG2g43L9zgptikM4suIXVTIdNlgo0x7gQRUzJdYL4/JZWa3rDDnTubHF07QmXn2OAROqCQcbMdBAqYzMb0yhSsoZpNSbozjJmS5zmmMUjVYFXC6mDIWrLBP/zHv8gdeQOVK+w40qNsaGPmXcqD8WD8YR3vqBj+0ImTpE8+yfLyEdaOnkQO+1RaY4nBFjelpFMWoGDnYEyXilxtIbdvUO/eQpLgc4czNTMZEV58FM1Idb/ALAZ7LMZ9VrstU6JFPhdtWhZFcIixqvcJ3YKN8K7WHt8arDezmun+NlrmDPqaLB0SQopWDVofMNq/y8raaRbCufsFdL8zGONbRXT3kOp43FHAFt/DYZ05fBgcHl/wsb1O/Lmop3Kx/a+yQzFcVOSnWDvHNoY0yyMX1FvyvM/yxhG2RpdjepprU7+Ein6fIoq0tFoI6CRZG7dKaP1hiUIrHxRKl7jgcNYgvCYJCueiKCuiyCnBBIRwSBEQ1gPmEMn2QoEjosYiw9QO4UyM7W2vo/EB374XvkYEhxYJUsVCz/uIZpumuefN60GK1t1DOILwhzHUiYx83RBiAIAKgUQR48MRWFsxHntcFsWew+EQKcEKgbEGpVJoAzd0Kik7BVVVUyYJxhpGoynORJTTWcd0VtHtWqSak6QafNoin637gg8YG7mY3jZI6UhkQ7CRXlDZmiST6LR7KNqs2+I18nzBuyjkXAhCfXDRD7udW4vCWLV84cX8X3RGQtsRCNAi562yP0la7rFnPpu2QTeQpTECOkkzZuMJxsRI5qqqWzcM2sS7KGyr6yoq7qU6jK72BBStvRwyejFbh/MOrSL6v0jtS9OUEDymqSNi7qPwUApQAkbjA/Awn84x9YxuLxbDaZHz4fd9gJVLV7h47RI7+2Oq1j8Z4HoW2BWWpExxjSUdTTgxq3hqs2Fvw3J5OSFLclItYa1HeEUijaOYS5JMoazCC009jsWJE237WjqKVMe4aa3BJgRSBBVCNTFIw2sQSYx6TuDY6goffPZdUNdk1iJEQvf4IySdVUZ3rzLbGzP2jvFkxts3d7l05TbdLLB8ahU1Uzz3/Gs8tu7Y297l7kQxuruFyOIc6BQlS50OO/U+y50Cbt+lTCEMOqwlK6BzxO0t5pt3WO13cXVDkArMBK0SNjopaX+AbRrG0nL0yCo66bJz+zYSQ737qwSdc+bJxzmycY6tfBtVbmDKI5z5jvfxm5/9VRoleOYDz5CPenzzjZdI3ITXf/6XoVNQzyvOjmNaXrfMKI3A+3jszUvfZOvH/xJaprzxzfM8/KPfz7H3vi8WwkD33MOwPmH86mtsbW7igORgxLU3z+PWlvHW0usPCFXD1uUr4CJ6v9IdgJ2DDhgKMm8QEnSaUCQ5wzyha2b0i4xtkzJu0c9bly6z0Tjm2uHmkdphQ3MYxR2EBAWrjzxJ+di740I3mZAeP076ie9k52+/Se0dumpInSdPM3Y3D7i7v0PSSciyPkpU1HNAary3ZM5CEIxmlrmYkyd5e3+mWOtRImF0MCZJNC54umUXl02wBKSGpaMbbWAOaOlRWGZ3N3GzKT5EH/F+ryCRgWo+w+1LDAHXzFhZXabfW8Y1KZ2jCafPnuaNX7jOi+dfwWQNicmw1SJkQ0ROteXBeDD+0I53VAwvH/sAk8e+j510mRPvWmZwvMRgkMR2pnWOTClUruhOPIX3dPoJo/Fdbr/9JXZf+Qrsa1R/hU6S0rgK6QVKBryjTYGLBWJLPGARMhC8hSAPecKhNT6Lnqqi5UfeC6nwbaUccKSJIhtIzK34OYyp6HYHbG1fo5lOWN44gtAKLRV5p8vk7jZNb4OkKGjfJKJfcPj+8TgX6DBtER5dGhZ+rt631A6ZIKTBuQYls3vUjkMu8mGDjGhOr3A+oupKFkiZ4oPFujnjyR6hCnSyPkFbXG3QKmF97SE2L18kuLoVk8Q43+CBEFXJC+hMiUhPWcTkIlT72UClKc7fF54Q1YsI5REElMxjZLWGEGQsQGkRYtG6HWA5bJL7gMKDlu2JVFjhIUiUFEhhMTZGt0YP24gAh/sEkkJE9DAKw+I8i/29hDRLCGbh3xu5qUJpUiFpahPFYC6QSLAWjIv8Ya0kfRUfcnNTI2VGIlLSROF9RD7LskPwhjpL2W7GSKEPpZ3z2Yx5NUMoT9EU97yGZYwg9oFII2mLTkL0BTX1lGAcQicRqW9pDd5FOkUU0MU5HT9nQhAqevWGyJbAh1b0GBEbqXV0DREyWgwG8IQWoW4DDLylqWsQMhaeIgZORF6zjQJKETdJWVHAeBK7GUkBLAJwFtzgOJV0S2uSrdDROHNIu5BSYRqDVy3dwi2EpAGpNKlKqZsa723k1Du7ICWjlGJ78zbGNUiVcLC3hxSWlWFMP7TOo3XK4888Raef8+rrF6JVWkuNUo+eYXTrClkvZzKekx7M2Lx0naM3LnPkaMobCSAL6jww6GaEyMlB7G/j3Sl8UzExAeMiR/nS5WitJnWH7e1tqq0DyHLytKHMeiRZAK+YTiuCjxt7oRO0EfSPrJAIhTHgtIz3AoGsv8agyKl395iO7/LSnZtkgwGDXs7q0RLpcpLE84FHT7G3fQEvFHmpOfrEOZrXIt1rMp1wp57wIz/4SU7cnMBrl2jywHMrD6HXHwHrOZLBW2ZOluYtDSuKb4P3dDo5R9fWWBl2SYqUDaVIE83x48tcu3SL85PzHDmywmBY0Fx4FTXM8fMd5IrATx1pL+H0uSc51zvCxa2LnH10nboZUNeBRiYEqZF1LKjWT65xsnYkW1EEm2fR77koOnTzHm/83Gd56ed+Dp0mTKcz3v3+p1jPl0nTlOHSUlzHfGBpdZmmv0ZVV3gJ+7szUmeReXyUuY4inWqCsSgJ3WEPnSTkAQaDDkcSOKtThAisnFuhezCFCzCvArX31N6xYMbWdUPWbrBMY1AKLv/LX6S+cIF+WmCnFWEyYjSZYosMERzBG1wwJFnBjVc3mUy3cGVgNreUuURqSHSBch60op7NGGxk5MUZku3oiOG9BCtp6gZX2dZi0tEEixQ5pg3Vsd7h6ppmMmMy3qNfpmhvMM60oAFkOonOHF7SjGqCO8BPZ4iqwg/mKDnh+GMr7F8b8bmf/k3G/S3UPLBralYWm8DQ3vXq9xaRPxgPxh/08Y6K4ZX3fJgjn3gKKSQPH7OoUoLIESZgnMeJDEEg0dDVCpyk6EiWOqusrn2Gl3LNW5/7Dc4udQi1j+1zLbHeR+N5/D0+JLLlcy5M2uP/QmhRMRUPfSGzi04JbREcBAtvYIGjmxbUQElcmJvK05U9jp44x80bb7Bzy7J+5AiuyCnyJfaSW+zevcORkw/hRKQHEN+de04X7e/zPhYSIRy6RSyqTucsQnikSJEixbo5AY+SOhbAC/Gfd7G9LSTeR4RSCoHzFcILlEqRqmQ+2eT2zZdY655G6FNokSFShRSalZUT6G6B3a2jJZYISFT78Ivn9V4hE1HsiB63Dh2hjSL2Hm/tIXrnvEMiUFrgXYxsDe1Zp+WixoI/OjnQ/tsFB7b10dWRA+eCw1gb6SN4rI18SxEE3rooCvQBgW43OJHfChG99ta33FUiJUZJgnWHaGgs/APeGZyI/rdKCJwzZFlG8BbdeufWVcVsIslircfBaI8y7yAo0YkmyzK6PcF0OqFqDM57PKa1tRbUTcN0MiVJNPNqimqFZ5HSEBHZOAd8W+RLoulC9G+tbCAXisbYaHkmwqE4zjtFy2iJ6L9oxW8tQiyIYQcLm7L7uxZK6TjrnYkbBO8xzpCoex7GtBuPyPE1Lae5ac+5J0lTkiRGNS84xsaYw2JfBE9wgbTIqWZzrHMIociy5JAH7EMgzdLWHirOM9+ibGqB4nuHNRZcwLsQqSJBcPHCeb72ta+xduQovf4as+mE0w+dZlC0XRUBs/mItFhi4/hJ1LHT+LIk6UX6wPEPfZSlUye59eu/wqBXogc9rt66y0v7E75P5Jw8dhxjJLNqgslL0izFE+iMLZMbO0hhSDsqWv0B2kc+rk1zvvDVF0lvv8ig0DiRcXp9SG+lDzal9jkqz/Dz/Uj/KHOkkfiQkPe7qMmYpjH0ewl5maFVyq35lO94/IN8/aU30L0epYZQ7VPnjo2VFcKRIbs7NQ+dOU3jS7ydkq1FtDUtND/4yY8zLLtMNy8CsNdI1PEV9rVCW89bd25jypzGx3kptaLfG9ApS2QQ3Kkr9g/GLIs+g0xRJAn9bsJ73/skV89fxu3WuPUdnNLUjeTu1Ss8+eGHEX6LYTnn6OoT3Lp4h4N6SpoWyKRgdjDhzvYdVKIZ7MVjHVdT8u6A3jgCDFLnNNaSOpg2BpUVZBq01NGpog2NqauKg/EIhCSpK2be0riaRCpkmvDW25fwxZyHTgzhFVjq9znpPXsyw9BQaMG5YxucTLsc6XfoJJKdO5t86ZUb+OYCf+bRFfglSCrNdDJmnNQkLl7vqmkO7cUQbXy4B+8bfMgjlU8p8jzF5fnhGuSnE5SQ3Lx+Gxvi5t6bhnmAPM/J0xLqgEihmtVUZorRBmcWRB9J3Rh8cOgyBa3IZcru9ogrb99ibg5IspzQeBJhwYFtambe00ljF9E41zoKVWRC4ITGBIGYz+mXOnqL7x/w9p5Fhprbb2veai7iQo0LKqbCti4yzls0kqqZfLuy4MF4MP5QjHdUDJ97sk84nnDtdsOkknR03E27AE44zNyinUZoOGgEKYF1FaM7RaJ56IlPsLU/otpvSLXFOI8MMvIKg4vAoReEIJACPBZEQCpw9j6f1LYdLsOiJF0UBgnOu2jm3x5zolOyYU41MSx14kLcGeRs3nyLk+eeZOPkOTYvnmfrumX57MPkaUIxHHDlxW+yduQoOtMY34BMWfgbH9KCWy5jbP3dzy8WgI+FiwwtCpsQ7BTnGoTQhKBi4eljUSxCWzyjibayPhbhwkGweGZMpnsUIaPfHdL4GblXWJOQak+iczrDFcbbl1GiE7lmwMJmLvjopwvRY3YRgOCFI/g2+SsolAxIQhti0joK+Ghd5rCHyCXtBiSEgJY6cnqDjZHRApQQoGLMcLDmPrQ5cmGDNe37R46rbj1qFwgvIc6DRYt98TkWrXDnXFuAg9ICKRK8EAihUCLSVbSXWA++RbiVlNE7OotRJFVdRXRb+BhxawOpUORZRnABJSN6OpnXcZPlPbQIMAHqpmE+r8ny5DDsItHx78bUke7g42sdLgoRUQQESVYQlI6fzQVCi+zGzx0R1iRdhF4sENUEZy1KCqyzh4WwUpo0zQ656JFf76nbLZBsr5WSCmMt9WxGQKOVROsEpCbTCmNMpFYET5alOOdae7XI37W2ac+jIwiJEtGBw9QNSqtDMWKappFO0l4j7wwhWIIzEQ33MR7XWoOtG7SWON/gK8Obr73Miy+8QJAJN67dJEn3EEGyvtJFTKft3PDMplPqRJNlJcc+9nHKZ95zuE4d+8wPAfD2L/4ivuXNZ1qzZxrsbMzu9u3IW5eWMAgkwSIqQe4h3Ug5Nlxn60ChXCy+V/ttAl2AD53o8+99/3u4sXOKf/Szv8DLb1wGJVAi493v/yhCKpRUFHkR0WEpeO3N6/RzBV6SLC3TW+py/MgaK52SJx4+RidNubF7gDE1TipCWhOs4/bdMePKEVRBkBpBhUpyjh47CsCZY0c5udrla1/5GqeaeN+kustECVIXMLbCVnOccUil6Hb7dDsl3loOdvcJIWCcZTwRzKYz7MoKrjHMXcrGiuL0Mw8h85Q8u4OwfSrT8D3ftY5tFL/+3NdQmWV690UarRmuLUVer05YWVnjkcfO4FxN78oN+AosdXM6D52gqyVcvYwWAiE1BEnZy2l0E6kzUhLqCamPWgmlFHmS4azDG8d0tE9TxY7b8MhJ7l69gV6dsHH0DHz+yzzy5Hu4cOEaqtliqLucWy1ZKTqUWU6v7DBcXqJQHfad4MrFPX71whv8ceBDH9ug/IYmsZZO1bqHjEfIdj3S3tKMZyibQlMhRM7sYESo52xvb2OzIj6HZnP6zpEEzd3bO8hUxiRKPF5pgpaoNEU4QZ4WVDtzajcjkbKl1EFTNYiiQAtJVuQ4L1BpQd7TdLoHKN9w4vgpFCneV3gU8zt7bN++RhMEAYHqpvTXlzhy6jRHlldI0gKVZJBAVkj6nYx+v2RjcILXf+06L3ztC9Q9i/aO0aTGIvE6rrU6SJypSMT4nZQLD8aD8QdqvKNieDSZ4ac1deO4u+XIjGdeS6qqxkvPdOaggeEgp7KO6WTGjbxDoT3zeoYICadPfJyD9HXM/g6JFrFQamqEikifFCqGQQgdeaCtVVWiiO16ojDMew8tOhYErS2URkmFkvcQReEVPlXMJjNyGQUATWNYWutzsHuHweoG8uxjXL74ElxNOPrQaVbyo1zvvMS1S29y9rHHCWEOXrVex5EesECAo3XaQi0vDgtl3/r8+lbxL0XrVGBrtCqj8wKtQIL7kvP8FOskUmq8yxEIKruL9WPAsNJbpyhXUVmPualRUkTqgoAzZ5/hK+dfp686RNHcfQX6/Sh7K9SSqrW4UgIZIhKMdwQpgShYBIEXC/S35S+3SHgs1BxNU6O1RrfK7IXvrFACrRcbhYhGL8z0lVaH6UrexyheoQRaaYzxxEjpSLaQgkNOuWgRf90Wpf5wY9I6cYSAVCIWslJga4sJ0JhAkJqm9jgv0YlCpwk60cznU1xTM2ts9BfOs/h+REu1+Sx6o3IoeBSHzhnWR4HnbDbDOY9L/SH9xNpoDxaCixSitMBbEz+DzLA2IISnaQwiBPI8gXYuR1uzBS1n8ftaJL7dpNwrfj1VNYu836xoU90Caaqp57YVxrU0EimZTyZUlaUoSrrd8jCWWSnV8nbbUJsQwzayNCVJ0nifeg8+2rU1Pm5IIXZnqjauNTqhtGLYVnwnBThCK7Zz0d1jPEYridCa+WyfXAWuXHyTpcEyu6N5VN3bKadOnaCTw/nnXudIe2+VZYGVAu8N05/5Ga79pf8Nl48OOdibUk2moGDQKfH4VkinqUzNaFIhdmaQpYiqptzbZW1pmW5Ssl8Hyt8+z/qHnma5GvBNG5Hhs0+dg1//OsFVPPvBR1k/nrB6c4f0yaf4pWZOryeojUQVmvHOCBFk7ACEhKAVr7zwGsZUfPg7P46dViwNevQHJTpTnDp7iusXbtHtLnFifYW3r9xkf/cWZaGxhWZ/f49MR7/Z3vaIUEHRttPXN3e59vkv8syJJdZkXO+eKhV3Rpb96ibN+IBQzdBKRTu86SbTyQTlYS1PKbs5qg3zSVygtJt0OjnZSJBsx2K5XCpYSeDL3/gq2XuOMDrzOKMXX6N35y7jouTgSI+VQR8lVVzLhKKuGhQBleR0iriRSJKSyWhG4u452simQSeO9eUSdIqrPM3cUIkUYSDQxHmZpKhEorqGI2snYW2Jyd6I0XzG8SMDCnqcOBs3CE++61m+dtuxLgUbww3KJNoQdnQJQjIfTykHHb7nox/DVZbpCy8DF7mxucP710u2L9wiaeJ1D/sjdNsV7EhFmBucaZDTGdJl9LIcNxwgj5+ENI0hQeMxdmeHujJs3tnlzs4mdb2PzAR52UGMDzj37FN4JcgHXW5+7Qabt28wzAbUbefO1A21cRR5jm2gNh6ZOmoCSdYlNQ35zKC0pbNR8OQH30eXdV7/xmu8fuEVrDbkgw5SKYxKYWONpf6QxAYSrVCJIu+UdDoJxVKHD3zqWTpHh7z5+qt86YsvM6vvQiHxtl3HwgRkxsbps/9KdcKD8WD8QRzvrBjenyFGDSK17MwCnXmGClDqkrKfMS4FzhqOrySkCkZmiDUGg6ascrCRa5r0PogY7eGbPfZ3bmImY4JzuNpiojAeIT02BIJrrWagLcoCqm1PRUrTPQsnIcShKGxhrSZlQlKW0NT4UXzdfDxnkA3ZC7tMJyMG3XUee/R9vHX+RdLNhLWjx1k9scaVL7/EidOP4hTIYGMQwiJMI0SrKR88wtvo7IBrC+UFXm2A5LD9HItQg3M1itjOjvZV0ZdVChGTk3AYG9uLIuRolYNwJCJBZp6QePASJTKSJKbS4QLL3eP0ltcwkzmZyhEs7KtigbKo1AUheh7DIY84nr8QET95j6Ma6R+RA4qUeHef5RY+8n5T/S2hDfG9Fu4IoeWFLoqihYeyO6SW+LbAw8cWvEDgW5GklLToYohcTKHw3rXIqDwsFr0zrQDQYowjUyVZmiJrhyJhNq/RaUqQgso0uLlEhNDav3ka22Aah04l+bTAuhRdJEwn02iG7xcR4QpCLE5d8BhjaZqI6iaJp2katFYR1XYxXMM5G3nwQiJFAlKgRUTTRbvRiOfcx8vR8uKta7scLUqvwoJ+sYhWXhTD8apG2o5FIrEu8kJVotuug2vdMqCua6wNh1/zPmB9PIamieEByPg7F5z9JElwpiGISJexbQhJluVorajrmiRRh/Orrqr4MHdN2765x+dvmjoi5wREsBzs79PUU9ZWl3n6ySd4/sXX2T84oEhTOmXO8nIfEQw3rl0BYH93l/HN2/SPbZAUebQIqy3ZeMbAW06kOeXemGR3Hy0EwRv2K8PcOsy45tkXLkcxprWImUHKBG8blnLNo1f2KG5+hRPdAT+QDwG4eXWLpwFBxnPPXSI/vkHHdel/5L0ce/VrNM2YkCTMq5pQVVG8pKLLik77PPnEw0ynu3QHqwTX5+23r9LvFvQ7a1irGC6v0elss3z8FKsrG/y1/+Tv0dkoKHJNAawWkiu/9Rx/81eeI2kWoib4z96M54OX7t3Df+Jzv/EOVvR/9fEYwD//1q+ZRPM//PkfpuoukaeCRGUkWYlXkMsEFOT9Fs3v9xhkOaqKFITEGBiNEI0g7O7ilEEKRS9J6fZL1KxCaKiBg+1tchWw0wk725t4N+dgWpMWS9y4fJW0NyVVkU++eeUyZ4506GUPI1SCDBaNQCgd7zUVAz/8qCIvEx59+AR8Ad7Ve5jrgwHne0fojkd8/8VLXHjiMfLpVY7deJs76xtsJyWNmrH+1LvIO+scjKY4Afbu3XYJ9sj5LNISTIiJmVqifMpgbYki6xBk7JyY4OklXV679BYzGXA3p5wtF2BFhg8p45ljOh4zG03IMg0YkmqK9o6dO7eolOXM8BFe++YFxnsvM54eMPNT7KyhMjP6y8ukaojbmzEPGtUtSXsdsjQjERIZNE1doTrwgT/yCN/3Ix/gh168xef/yW/zC1/9l0gVr52vpxx95ATnTj/6b2RuPRgPxr8L4x0Vw+tLJWKloKkUVdngrSUNkCaKNIfMeyQKLQTOO5QLmOBbRW6KTxxJppnNMsqiQ7F2hnTtYarZAfPxAX42ws12qeZTvLSkiQRvY7vPaaTUUZi2ELCxiCq+X8zW8hoXhV9a4pWizPVh3RdUYHd7xMqxFQ4O9pg3OVm6zqmzD/P2+dcpdMry8lEu5m/RjPZIljv3UNUgW07ywrYsUiViylbrJLHwlvUGJQtiNHIrEAoe5wxCRo6ocxYpY1EUub01wScIkRBCg3UVWkRRW6E0LvVUzYQ09NBpgQs1s8kOhSpQScmJc09w/vmvkGU9kK1NWkuZkK0TQdRg2UMJIrQCwRAiktmi70IEwiJdzAdEK8BJEn1Y4DtnY2tYRZRYiIVPbau68K6NkQYhBVonCKmoq3l0DpCLwjhGpeJ89NxtOcpNY9Eybe264il0zkUxnYq0B/xCaBfpJVLG1CYvPd5ZtM7xLZUDFMJ7UpFijUVLTe0MM1NTVw2MPYlOaZoU1Si2t3fRUtGYOtr1tQJJ7wNN0wAVidJtylukF4SQIqRC6ySKyFpLM+viJklJgSS0NmgQXPQVNtZGygyRL61aO7xoPRw/V/Ae3/J4nWs3Aq2X9KH9mVRx89UWzPeaA/F6J2mCqStCK4qz1pEk6WJLSTWfo9I0hge0SVhSykgRkTL+5xVSK1xwRCA8MJ/NyLKsdZyQzOcVUriWIx/pOdEqMQaRJFoymx7gXMPScAmF5sjaEcryIvNqQjOHoqOpqilKDTl1IqJ/m1tbXJ5MeaJIWeuegCxBNpazF7dQ1pIEAb7Ge40PhtRbgnEYKWhGM5ZNoHINwXmc1HhrmIWGIDXHh6uUZYE0c7L5AUAbfQ1Ke4a9Ppvb15hhyW7f5uTGgCYZcGdzxHQ32ufN6hoySIRkNh6zdnzA8RMrSK1QK8vMxmNee+0iQsLa2pMsn+7x8e6Q337+ZdYzy9mzfbpHhxSiw+a1O6Az5OYmSWN4/i//RWZ7NZ/4yb/P53/gU/zqi+cRSxlPFSV/9rkXufGf/6/53Ft3OZiOcQdbzOZVpK6UBS6JTjPeeZRWaClwDqz1DIc9hv2SYbeMKZch0M9yDu5OuHL3Op0jRzGJZW1liFaSpe0Jn/qpn2fFK7a1RoUE4SIqnEiFbSpUpqMmAXjroZOMj25wOggeffE17q6vUjz6CDIdcG3WkC4JilSTFSWmgc7qGqQlSiuO6BLvDPOTa2ycOMU004ybCYlM8NPAfFxz9eo3eQ8w37xJb30FXweUsNggEYlGBRutzYJGJRJpZrgqY1JH54igFVlvyJO9Dto08Flw3WXCSvx+GgKpi57qmQuIpqafRtqSW1gpeg9S0PSXqANYG5BpgpIZS6tHqSZzlHcoqSJoQmB3MmZwZJ0w8syr6LFcdIaUvRUqZyjJKETKdOsmwkwJwTGZW/brCflGH6ckF148z2g2JijP0uqQ048+wrETJ1lbO0K304tuE0ISnIMmUJmaRgZs0KRJj1KFNu55n9XHB/zIX/401Y7l5pv/Mn72ssuRk8fpLw3eSbnwYDwYf6DGOyqGo6OpJ8sCvTQFoWmsQAmFTAW1I3J8M4kSDq8ylE8x3lJbQR5SZKqY4qgniqVSItIheTEk7zVYGz15S19x6fplpne36NoJS1lK1oGm2QEbC0olM/BNTCoKgqS92b0U2NbKC8A0DW4+ZzIZMR5POQJk/YK7W7dZHi7T6Qyoqh2kqOnlq/TWE25dusTZ/hpkHcbjCctLRQvsLuy7Wt9fpZBEpX6QCh9aJ4XgcTYgpELKlhPcIsqxCK3wvjgs4ENo3RhkQIYML0PLf1YxfSwItCiZCUWmYHvrBXS9xNrZp9nfvUm3dwKXCEJzwMnjj/DW61+lbmYkQmNNRBLjAtxyClxE3INwoKILhEC3/NaI7iNCKwCMbg7GmOguEaPOolDNR8Q4JkU1EYEWGikkDhuTx1QUzy04ysaYyNUMvqWCQJrk0XaudSKIRZtG6wKrmmg3533k43oX7eOsAyGj0KwNnogJcOrQyQNvETZQOYtOozhL4HFSkhQKjMe5ManWmKqinhmkgQOxTdJVuJlmfzQHl0bHDe9R0iNUtGPTIdDUM+YSoGypORH5StM0djKEpzYNiUqI4SIe4wGvSNKEpmkjiaVAuBiFLKUgTbPWvcG1GwaPknEDZp3HehNT6FxoOegBb9pzqOND2bLwaZZI6bCuojGGPO1gsmhvZ60n0RlN05BlChQ0lUXOA2WR4IzFO0eiNYmOxySVIl3EnWsRHSuUiHQQW8c0O7fgebc+wd5FSpSzIDTaw7hqQEmKPCctc6ra0Ygp3eESTz/7NE8//gif/dmf56U7O1y7cpVjW7FYsJUDUfPib36FJ84dZ3l3Rmd/TOYtKB2Lbk+k3viAc4I0SIKQjHAMCMiQYKWgSjJksCSqZqPIyFVA1zOuqA7/fPVJfpDfONwwIgOnH1qHG3O6ZR+H5WA0JRxM8VMBXiGLhGGnh8BhrWNcz+h3l1nq5djuEXbGDe/9jvcw2t/FNIJmXpMUXbq9QBYMN7d2WT95jKJM6aUZB7dAF/DomePw5Rd5++d/lnc/ESPRl/ZHfObMcd66fIUT/biUJzfucO7WDnc2r+GFIU0StNaMplN+c32DOeJQUyGFIM1yNpaHzErNaN5wzTkee+gMctJwe95wx4z46t6ItaMbPP3EGbJuH1E5hG8dNmSGDIpqXiF8pDToHMhAJoomxllyUNeYQRfbiV4Ntx4/Tf6/+CFc9gjnl36WkE8oiw4+UTRK8swnvhc9kezsbBOkILhASBNkNWc8bkh8wtc++xU2b7zMahaYmkgdietTghfRbxgR/b6j6WGIa48TWClQlWU2j8dXzQxNU1MgGLY0iaK3yuTjD8Mv/wxvv/c7uLmyhtNz3v1jP4RO+hgnaFwM0nHCYrxAOGgSKJKS3dEu62eWcU3J7s27pN4T1hRaaZRwYDx229I7lpEcT+Ct+BnmkwmzQYlWHfrLXbZv7DIb70aHiCCYNXOm8wnD7hGSwYCzTy2jipRzZ0+wtLKOVBphAgSJ9SZyfoPBY0laTYRSAukc82rhHe44GB9QZiW9lS6f+TMf42d//HkAVo4NkYNVpCjeSbnwYDwYf6DGOyqGl3opoZMzGju2x4K50Ziqoa8dRUdgqgBGMBYaqRXjZo6zCuMCtVWkeHTmOag9TDyFFjiRMGsclYG6gapxdMsOGyefYdIbUR3c5sXr1zm4sMP6YJmjS4blskI4QdAK7xRKSFyoEDqis0It3E6hsTVdFEsrA/z1aOvTyXN6RxKuX3+DYycfQ2Ul470duv01+v3jXE2/yfXbDfV8j9ndEYOTQwK6RSCjvb2UEf0WhzzIBRfOQeulSojosLWxWFBKYW3AOotzc7RO0Doq8KWQ1E2DwEBogzEEBGwsvLSizHvs7LxCETLytT6j7Uv0Vt5FkXWpbIVKukiRsLp6gumt3fhwUvLQ6WHxUF+EImidRNcJ0Rb1EoxpBY/E0IUFVUKKWOxH5wFF5P+GQ66p880hz1aEFpmX0fXAOddaf0Vk1NoAtAl7MgaNSB+PTkiFsSZSRvAtV9ghRGzv06L+i/hkJwTCy9Z1IZ5jQcC3IRNaOubW4FwCIZCqhKqa01SBTq4xdcB4j04ghIZq5gFL1mRUJlDPHVI0kQIg0sONjZQSYxoSHZ0l0iyjqmsSpw5FZL6NMZStNdki/tk6S5Ae2/IRDykmYiFuFEjpUWpBMwn30VCImwARNwiLDkhMOmyZMKK91i1aFXz0u/beUVUVdSPI8yKKG9sNmWx54kpppFRUswopBLkosDZrC+GY5hXZDtHSTQhIk8j1t85CACFUDDLxHu/aKGtTMZ+PSbJIJ8IFikLiXYZynkJ0mfoddncnBJmwv73D1770NQZLXYRIEEEz2olFyn5d0Q2eh0zgyFdfpbS+FdKCqCO/W1iwoiI4RZBAnkYED43uFTQu2s4lOJZEykZW0ktTxgJuzbb54sNPczt/tL1f4vonhSBtPGPbYOw+0qekhUJ1VjkwUxSKTi/F+YiMCuehmmGsobGeRCb0ugNu3bzDux97iERZ5tZS+ihKHZR9nnv+m+zVgk6iOJhNafC4puLKtbgROLuywvPPP8+7gHET2F3vceo9TzO7eg2AaePYFoZxKtC6oCaQe0/XeZSxGLmIqZdIJNPZlM2dLYQS5EWBmFfcbaZ8+iPvpTN3XHrlCmORMXr9InduXuHUQyc4deIUZYhF5Hg0Zae/H8N+sCjpmO3OybOSLFV0TZyfJ48f526RUabxkTO1FlmWhDxHL/ehzNgdzZjM9gllSefIceyuYWUwxAVHYw0q+BhUMRe88Eu/zYWv/AorQzDkh3x17xwiOJQgOq4ogfDRhkyJ+HyQXkSHFiGo2vmyP5pQT+ZkWqO343NiXo3Rx0/GZ8bR4wzPncXLCXptHWML7mztYHzA2QpbOYJWWOvorg3Bec49+wT5UZhNp4z2drHjfVxuyZKcnCIWxZlj69ptysGA1UMziWhRGoLi4Pxlqs0riFTS+Jq6MThr6HT7bBw7SZbmnHn4EXr9ZRIZkzx9y3+TArSKyZhJksWwKQJKQJJItBYoIahrg0oEvSKPYllvOfnUcQbdLmzD0bUNNhtBcPP/30XCg/Fg/AEd7yyO2QioLEo4lkvQSiCEptSSNHWsWAgN9IrIzVrzGd6BDY7aClQAlUuGlUJVjvUlQeMFMyOomoRJ5ZnNNUoE9gIo3+Hcicc5ee4k1ze3uXb1Js9dvY07mHCkV/Cuh3t003nkMgZFcK1bQYgxwxDt0MzEUB7NkIsAnUZybPUoV8UNtjdvsXHiFPQb9vev0+l36a31ePvt3+L6yzc5+eizYAxCtUlw6Oh2oTUhWDwRJXULpTwioqYhKogjh1hjXQyl0ElsrUkZcC1vc1FcaZ0S2odMaCkVITiUFDFRLs3od9aRMqexiu7SKdKiQ3BzEhUQoiAgWT32EKOtbTQSESIH23rHgiAcCIeCtOCjCM0HC8KjE9mik623V5uAFGgts7xHSQ5txBYs5BiMEVuGSi2+GrmvSkuEixxr0f6MD9EVZOGUIIi2bB7X0iyIaKKPR+x8bO9KZGsZJPFtip83kecqlSS0xVd0X1B0ipTJqImWYz6idSEYJgcNmeiSaiCJQi/vwYUaM6+YNRXOS4LQoB3GRhGY1hpCQAmFF5FaYp2nNhapohpcKsdsXqGkRGtNkqTUdU1jTGy5y8jDdS4GhIggMC4WvFLGbsAi8EIIQWipQO7QI8UhhcYHjxIBs0CEBVhnDuk6zpnD82ddgzENxliEzAiIltscC2lNtI1yrdjM4xhNRshEkzQNiU5aMn9LTRLq3hxpr5lWSeR6W4MkEIzB4KmrGdPJAWmqESIjICnyLD54pxOEFqSZ5h/83Z+kTHo4V1NE4B/vPKl0pKlkdXUIwBudnMnMcTztkqRdtAdhDA2eTEhKD6mAmatphKIKgl3v2Rrvs0PDY8trTO8eoE1AUFOsr1HkktnOFm/NZ/zWaI8bj0mUWwQuLFbAOjoclCVaQJA++kmbBuckk/EMIQx5Z0DwgtHoAGtqdCaBjKqacuTUOerphPFonxMn11BJGmkLMnB0Y43tu/vcHe/BDnhrSOqa4aBLI2KoxGg2R+URXRX9kv27U7Z7go88/hC88jrX7txgSkolJcJ5dJIgRUBVDY31yDxFac32zh57owNWVko0gqViiSQRSKWZjca8cv4l1rMNtoMnLaC2Od4Grl3aZPf2/qEX73g25vpbB0znDmMMSytLjMZzyk7B0fUlqqtXAXjtlTfY29nHvXGJj7X3v0gLvBOMJxVKGbyQdLo5LPVQAma+wTQxvVQkGqElmR7ylX/yy7zx1V8iKxuq0GGlyHCt08j/l70/D7Ytu+86wc+a9nCGO983v8z3clZqsiRkGQs8gLGgGV1UF4SbLkMHUBCNGdrN0AS4baKD6iA6yuEmoMM0QbiNLVcHhqrAjdoWtuQBbGtIp6RUzsPLNw93PNMe1th/rH1vCnCBsprCsskVkcrUveees88+Z6/9Xb/1/X2+KfphRygQhcTbMNi7Iu6EPiTyPKRkYjJUrl30zJuWQinqoVoc/ApZ5g8/KIlIivFkHSkNRVlw+dJFbEwZ+xgVNnR45+lDICwt7fExx25JNJFpPUJoA+uJshjnxM4O5HTC5ScvEFtLscy0BllXFGZE00Xa+R5R5R3HZeNwzjLZKNl58mG2z55le/MCvfWEg2PqkaI0FVIpQshV4JgiQUBIGWlZKA1K4jtLUoGRLjBG4W3AqYBW2fpXbigevnoR3oR6so6pN3Ix4jfBeOaZZ6bAeQZg6zvjN+0IwPUPfehD9qt58NsSw7tTgVxTxKBxEVrn6Z0neoX0hoPGI21CS0nSns4nvJMED50XmJRQIbHXJGgcpqzoQ6TpA10v6QeSWFUrJsagWs+ZaSKNKkx1kQvblzh+15K7h3t88fnn+dxPv8EHz2/wde+q0GZJDDUp5SSokIYKUcqesrOPXaDTeWJztoOu4PKZx9i7f53DezfZvXyZMGloFj3nt59mc32TV1/9R9y/d51H+idJZchCJsXsF06ehMfaPnN4FTBs52dxHAaLQcjNNCLhBm6jEDkeWMqMnhJSAfqUVJD/LrNXvfcIo5EBSjkmyprOWSbTyxTlCE7a9EQWTj4Kds4+yo21FwmzNjN8I7lCPfAzU8qpZMQcFqL0yXaih4FNLKUg+KESiTylR2SiBG+JeJGrskKlIcZ5YBmnvKXnh6atE5uI90M1VL4VFZ0PJYv//PxvNYed+mFhaNDKqLIUh8cIgTIqV0BJmX81ECeM0jnuOK7wfbZKxBiIIdC3gZVsqEaRuhgznU64fy83cp0wjvPzCaSqKYsRqEhhSk7yS7TWOSwjRLq2G0qTFUVZDp+bwVp72lgoh2qp9Y7KFJnLPFyFWud0NikFSom3PNgMYlhwGuwRQrZbCCIhRVBZ2LrgM9JOiGyvEdl2keJbaX0pCZRWp9HRuRqfF2+SjFpLKWGM4XBxgNKGqqpzc1+ENFSGT6gQJyl4+T2GzHj2HT44bNsynx+RUkRrgRRjurZlNJpSj8fI3tH2S16+sc8rx/f41PFlLm6toVOiKgNreIgLhPJ09EyGe7Ft4cjDvWaWF5fCEZyilQZJj7Ytygl8kjSiofeSECVzHEf9ilVo2Xcr6CMpOfZuXeOpp67yxZHgV28coEuDTTqLf3KbAEBhl5iwxCHRTuFkT2GmdN2C/QfHdE3AmIQoAu284fDBA1JoGNfvInkNwtN1hxSqxJTZd2+kzPjAZNm5vMlYG4RPOBJSlHg6eicJNh/E4XGLqPIi5PnnvsTV3/MxLv/Wb+Gxj30b/Pf/I98iJbM/+efY/9mfpK7M4CP3mOCzF98Yrt+6iQ2eq1cvc2l9jf0Hh9w93OPq5R0u7E7Y2XiMLlheeO06Vz/6ML997cP8q8++yIP925ikaFeea0cHAHzp5evYKxfpbcvZszvcvz/HVBU3bt7NyMNVnof3Z0d06zWdy6J1f7HHZpno5o47945o9h5AEGyfXeeRx59CdhIdBH3b080XoDy9jVx/4ZBnfuafsTZZ0jWRkRKMRhucLMuatmPVrKilxg7FBq3k6XUjlR7+LbB24FwP81PnWnxQuGEOk33LCS5FAH3bMdquqYuao70lx7MZq77PiM1U4GNLEpLp5jZKCjbObxHqCdG1NMsV7WzG+tY2oEja0IaIspq9+/so2XNmoElQlkRvsDfvU0VHX2iSFGxuGDbOjdh+5F1U22dZH08J1g2L+IBLnmk5QRcVqhDYbkiElI5cwQAbOpCJotSMTU1UeYcn+UjXOxCZAOSnPeevbACwPtlkVk3pGf/7BcLX+HjmmWck8NeVUv+1EMLAaXXhnfGbc6QY494zzzzzHR/60Idu/4ce/LbEsI+Jtvcs20jwAu/yNmhpBGYCDZms0EdFcIpZH4lDOpjzuQlBSUHbKkQn6axg5RKt9TibE7tiJwhRciQ7jg9XyDBltGlwXY90gqleQ08nnP/YVb780Auk23doxIx1oSF6tBSI+JZ3U2jJfLkidIp6lOsZ1ntEapBz2NjYppkvmO0fsr59hgfdy7R7Hdub20y3xqxutVinMBXZBpAcAoUPb2G+ErkyfIqQStluoJUmMDRFKTGI5yHcQEDvcpyt1gVReNRJwMRAllCD3zYl6OQxptjh3p05ld5iulFk666KIEp8AoVFi8ikmLC1dY4Hhy8jT8tab133QpwcdcrJbiLb67IAi5zEHwvUKbcWMqlh+I6dCk4/xCz74E/pFSElEKCVyRVFATlQRXLCeovEjFkbVPnJdr3tLUoN1ovhnHISRjHYUYwpSYKhSi2JAkw6SWQT6KoaRG9+/umkZtFFUlQgIdiUE/REQqsJhZ4wnXRUlaCfZ1h9cC3L1RznPaacsLN7HmlqnC5RRU6cU0YToyOvKjx91yKHink9qgd6RK76S5VtBAkoivKUTpFSOkXRpZQ/D61zAE0YvLqovHA4eX9pSDsUAqIPef0bNZJBVIeT86SJ0mFdRrU5F/E+EvFoHQcrztBkNzQGysH2oocFxnK1Yn3dkpJDUORwEB8wZZVtQMETgsd7jxKJ5WpO8j1tsyB4S2UUUmuMKeltYjxZpyxrRqN1Xn79Jf7+P/gRbtizHAfPxMBLh3N8b3GmIpgRQleUQkE54spC8ieALmgEuQm1FY57rSNFC7QInRifv8B0Y4tCWGpdUuqALgRtSoznK3TKC6U+tfShpXv8Cq987L3cfnmf2Quvc0EbVrZDTvN3crHMUiuKgiAFXhjCyCNCPr++Kqk2tlkbBQoZWaxaQkx43/PIlbPUyjBvsyf26qXLKBFYdPO8ZS+z5artLWvra0zrkr5PqEoiIowKc9rkCHB1a53FsHskQ+SXf+pnefoP/xH6Lz3HNAFXrmBtm9nhwuRkvxAyCYbEtRvXcTFx9cpDHB7fQVWJj33LR/nSM8/y4o07rJVTXvnyZ7h0+Sx3j+bU9+9z+bFH+at/9c/T2gV6Znn9lVdofvH/C69eYyconp0dMDv0XLt+iA8WLyTz5YLrd+/zvmHB9/qNPa7dX7DeDFaXoxWFqjl4cMRLX3ie9atw9OCY51/tufo7vhGvJGpasLNxjuAjIXms0/zCJ5/DFUestEE7Sbd0ONtT6jy3393bJ0wnpGhJyuQFoB4sRmQbV4gB6xJlVQ2WLei7Hh8C3lkam1ddsu9ou/Z0XorBUY+3IQYm62M2Nqf0MTcght5ju5aVt/iU8FYwXqvpC8GoWGM0afmll99gOY78FiOQ0oG0LA9m6LM9j73//Vy5NYOf+udMfIldHnD+suTNRYGIjnJzne1J4tz730WMU0ZphHWRQmsKoelWPT62THXJ3dsH7FzcplYlts/hO3YI7sn3mETX50XyZH2CiRIdc6HC2h6hDK3t2H5obZirJbKSlJivVip8rY6/boz5s+fOnbPj8bgRJzfwd8ZvyhFjFLdu3XqoaZq/9cwzz/ypD33oQ/Hf9/i3JYbbThC9ItmAQNI5mwWZF/Qx0DYRYQPHOmNxfB9wPuBToPUaGQQiFsyWK4yzHC5GrNxwsw4aH/O2buE9fZswPqKKwOGypZl1JJPogmTiS6ZxwkNn3sP6pUdJ88/AocUIDcKBiAiy2T+IgBWO1WHLhXKUTxIOYSOugOZoQXb+HhH7MbtbV9njNY7mLzOqC/TIEdwxOkzwQ/3hK68hIWTG05wkowEhnlgKEkrlMI1cMc3UiFzZy1VW7z2JhNEmx/QO1b8sDjMOTShJEQy26TCm53O/+N9xpniIye5lNi89zfbWFYrpFkKVJGEQwrK5dY4H4uWM7IogZd6uzwc9JNRJTvm1Ukic8wO9QAxBHDl0QWs9MJOzyNJK545zIQghEaMbGqgESplTkfWWfUSenjepGLbmw+BBNUPTXBy8wBrb97ih6zpXLk8E+SAIFchTG0x25Z5EAAskzvrT11XKUGlBk3xOhyKiixoXGnQxYjSeUJQVfcjxrUUt8FYgGbE2lUSRxXBV1gP+LXOShVKniwrbNVBWKJ3fV4iRvu+JMVtcchOhHFLdAsE6ksg/H8qsgDhF92XxE1EqYkwOC8kItly5V1piCoNIERvcafhJNWyfd657q+orBo/ykGQYcYTgqE586WRmcPaWi+EzEZRlQT0asVr2rFYrilJghCYGjVYFyueqdSQMTaGe4Cy+bREESlNQTqdDGpZD6YqNyRpFWefPT0/4u/+PH+KlV25y5Yplef01rF7jiStXOVjtkSQor4hGkaSgKDc4u8gNRmPX0QhFEJo9EgvVEp2jQNJGyf2NqyzHl4lhhY4CpSMjH5muGarFTWS3h06eVkUWWw/x2hMfpL4ZaJe5klo5DV5iRBagn7tf84eBfv8ar13fwISAqj2GESPtaX1EVmOMdHTNDFVoXAgUteG9732UQiS00piiolI5Ont7YwchJMWoIHWBFCUayWg6oSgUKIe0AaU9LjokQ/hDpXDHg3dTaTa3N/h//vk/z3/xga9j5y//Vbhyhc4uKOuK6Dw+BmQMhJi4ff8eh01LNR5z/cYdLmxu8fwX3uD67bv8if/Vt/DYxQus5IwL08d4fa/h67/1gxRS8uXnr/PlF27ywYdqzowTu1Q0G2cA+H1/4Pfw9ec3WCrLpJzi+47lquPB/j6djZzdO4I3b3Fld4tmVGCuZ6HZLR0pCvoQOTxsuCsWxC4SdyW75y5Bn0NuQsiNuTZY5oct7f4xIyEgFnjXMlMBF/ICDWC+6rHLlt2yzN5ZKfHeYpTKeMPAqd2r7docpkMuQCih0aUhzjPWEtflxSjZRrHsFlTjS6SY8AF8b/FS5KhzkYhSg0ooBEdHC9qmYTzWiORYH5f8rt/9rdxvDxBeo02N6gT1WCIjqJnn4Oat/B4ObrEcGfpVy3jDcGGyw9yUFNMdVscaJTscliLUeU6faFzvUUW2LjXLhlU7ohrpoYE2z0vOerz1KC1QhaDHoZYr5LimMgUygSDibcC35EAe4PDujPvpPmnZvQ218LU1nnnmmTWl1H997tw5e+bMmYNf7+N5Z/ynGWfPnp1fv379m0MI28Dev++xb88zbANd02PbDtB0rSWmhNP5iUrhMIWHWOBSog+W6AWjQmI09E1g0zjO7CiiL9AmJ48tcJSFxCnBfA6V1sz9Id4qVn1FG3pcAN95PJLjoGlXLdFbbJIEuQVyH+OXiJTFheCkUSTgU8/h3hEXhu1ObRSLZsa6OcvumXXmi7vMD1ccyT021Fm21h+n2H2C4y/+EiZ0uMYjRzlgQOmhSnSy9S1AaU3w/pTnG1PAB0uMCW3MKcAspmxLEAwhCIJMWggRF11mBsfsJz1BxOXJLJKUhqbj/M77+eBvF4TVks4e4A5f58Fqn7WdhxmvnSUM1diy0gQCtazwghwaEk+apTgNzIguDojaNAjMbHVQw81DDvHFp9v8weNDbvI7IT9AQqThPZ38XJ4EQOdEu1z5BERu6hPxhDR3EiSRh0iJsiyyt3cQv2qoqp40iznnUDqL5JRybGsYkFFFUQwVEIWQghhAEgjRIVNGjvnkUWiWK0dVtQgTcNbSu4iuK5CWVEgmxQQELFuHl5JCqWxjkIkYPELq4bMCyN7BtslCJZaGlEwWwRS8Fc+cTqu2uQsue5szrzrXz7Pwz/YQ7y3GFKd2mpO0QGdzU5+UEmLEe4c2Gu8tznUoqeith+jouo7lqqUa5XAE504EsBj83dlOQYoUJmPsBIqiqLgzv4+1S1aLMaOiZLI2oiwnTKZb2U6jRK4iB4+3LVoJtC7zZyAlXgZkUVEWNUrXKKNQ2nD/5nVeefk5NtYvsWpbolco5TmyfebAkjGMxID2gej2EKvsqdS+x5sqk1ouPEx1fIC7fZtkoCwlv+1qiSjnNKHDe0G37LApEW3EpYa0tYE4WiFEh5SCF165SeN6ZG95n1xHS8s0aWZhWOC29wBIdsGLb9xDRzskS5YYJajHNesbU4qyoFmdMJ0tk8mU+bLHLgMuSlTfsrE15njfUhYVRakJSSLwKFHQtZbQLbl0fpTnlC6w3LtHXWqqaV7IH68C++0gjBVsbdWMCslzzz7LR4ZryNvIqms5YTurAE3XsVKaQE5E831Hv2H50NMP8+WXH/DjP/2LfPjph1mTisP7C8594FGeevgJXrn+Ao+862GuP3eTFz+zh33iCrONKWK0AcBBu8/+IjD3HWJHo6KirBSPPXqFCOxu5HP3uz/2Tbz77DaPfe45ePk1vuGDT7M1mrJ2yfP7f/83stRzJvWYRWXZLqYo4SmMQSSRA3MsKBMZVRUxSWRqM6XIWQ7mC4TKwq1tMzFllfLcihBIoxApDRH3wxwlBlF8KoYjfdcTtEbEYfHe+5MNMIQMmLqmqsd554t8HQof8UEQRCKSaTo2BprecuvWPXZMzca4Al0hkuCRh65QKk2MnvUz53j/e9/DMQe8+aUvc/lB9lfvH99jLja5+MSjTMtNusWK9UogyhIRFa7pqdZLVoslcjpivRhzbB3GlNhVh3WRJD2JiEjZHkVkYLxnyxw2T/vWJsrCELXB9Q4VJdpAHPWowRg+u3efw9URxn5V1suv1XFOCGHG43Hz630g74z/dKMoCiuEmACb/McUwzJGjABTG5wFqorNtYqAoG8D57Y0hQJnNZ30uKqibRKbY0VbCO49cExGsL5umDWW2RJ6K1muJKosSEVN21oubBo2L69zVHvkSFLEmpVsaLrIfL9Fx4Q0idliRW8mRHWGC5sN7t6X0cIghYCT0I2oqOqSlT9kvrRsAPW4Qq5VWDvHmE02Ny5SlIfs7d1DHRomm1MO+1vc+fLzXNr8vSz9Au1qtBllgRfCaWWzdzn8Iaahk3kQsEIqpJCnIk6IhB8CMPK2dMqP1wZjSmLIFgqjiyzkxFvBIXBiaugJcczW9uOUu2OkMcSosh+4b2ncEToYhN9mtLaLHo+ITQShhq36ryAPpIxUQ4lTYS8kKG0QYmhqG9i9MQacGygZMGDVhuNKaTjWlCOMB/F8csxa6UH1ZsxabhzLN/O3aAi5ipzgK2KGyY2KQ8OZSJmpq5REoQYixhDdPTSqnbCgYzxZlGRv7Xg8JhzNSFFSFCWqMGghqQtJ1/foDg4ODhHSIJFgGCrkCW1KKio2t3bRhWa1bCBGhIwEL9FK4AfSQ078i3Rdm8+VTMSUq9tKaTz+tHFOK4Egh5sE7wefYsJojSANaYqSGBx9cIPIl8MCKi9Ugkt5C9nnoI3eWZaLGdF7JuMpAlitVhwcHhGSJCk7VP3FqZe5qs0QGx2yQIg59MSYglFVcf78GZbHh7TLBap2lJXEmJpmtUDIjMcjVfi+QwycZTX4jgHKukSgMAKi7tGhRhaSX33283StZzTpCSuLLnMD0nJ2H5lkbvzyHkIiCoHDn1oFRBKYpNF1IpSQclY7MUWqynDuzBrOtVQhMjIVtvToQlCOKtIYugeHCKkIbWTzyYLv+MhFfOdpbeT1a89RqREmOsxwvYxEN3xf8wItiEwIScHTRYFddpRjNyxgDfgOpQWrDp790jXUYJv5unOPowrJ2nTC3b09tjcfIgWJlFDXJfPZjPFI8f6HHiM6x3ze8Nydm0zXR+z0+XzOFkeshv82RrE+nrA67mib1elccen8FV5Z/CLltMQGj4wJbT19lZisb1DHEitajg/nyJDY2CmZ95afe+YNPnTlKvvzA37rQx8l+I61yZTFcsXWpTPY85bX/RLV9WyKrClcSohywppWeOuxyVKPx7ROsJwfoQ6PATg6nrMoDcvVMh/kYL06+/A5fsu3f5SmWXJ8dICtDOfXLyICGJ3nUKE0/f19ZN/hOj/0N0QCEescdw5nLIZdP5EiK9cyhdxAHCOahEt5940EISZCEujSIE0W0WpofvbO07tcvS66iF9lMR+XFi9azHSDqpog+4RTefEZtUB5izJAF+mWK6SRXL5yhV4ds3+0xBSejXGBdZYkJElr+q7npRdexk3vMb//gO2Uz01ymiA0xXQNJdfQfaIsBSFBay0hecoQ6fqe0XqZrXnRoVTB0YMlPjqkjANeUkPo81z5FYhPHyLKB5xIrJolSgvqqsSphHMtqhVM6zyPV+ubhO4IuTz+n1AGvyGGBMQ71oj/vMZJAY2volnybYnhczsCu6lIoaS1gqPjHqESNgmOlpGNWuPKwHHT07iGrjHMZ4mDSrHUktt3I/Op5Mx5wVHjWDQWHyKzpWcWe+JEc/vejNAozpwpWNhA0yxwTmCiZuvyOjbNKHDcnb3Jgwcjzk3XOHNlE8F9RPRoXeQkIDV4U1NCaEW9UTPbyxObkiXOS0RoWTb36N0Ok+lZzl0UHD84ILUtX7z3CdpbM+TU0i2W9PUGRT0ihXiKUjuxM/R9f9p45FwOKdAqo7WC98N2eOQkQjfGXM3MiLVIMjnh6yurdEpplNIEn6sXWhqChkV/H4PCVIEQK1QSpD6AC0zHuwg1IvjA2Bimu2c4fu0GZTFCyEAcvhgpCmRSg50jInXGqqlhS/Eruwr8cPxZoMrTyfRELA/92YPXVZ56T09QcyHlREAlZW7IIyHUEPSsMjlBnIRIxAGJlxLa6FMuckrhdMtOiLe+4N5nOoRIJwl7DII/+3C1yYI2BEfwHlMqjNIUpmA0qqiLRLNsmR0vuH/3AKHKjF8rSto+73oUlaE0kvn+MS46SB4jJ9QjidCBGDKfOSaftyxzojW9zdVNAbiiYDQakQWyyiLZBwIuNxgOleXMi4golUW2tR5jFCEEus5RDN5brc1ga7G5sixz86LRmlKXRBSFMkTpafqe+aJjbWM7fx7B0TSW0nsm0wl9FwlaUBpDIGHJiXchBIzRbK6tszUdk7wlxh4pClKQJJXQOtEuF/jeMh5XGDXCuYAfkvWq0hCFzKmLSVOKgqig6QO//Iu/xKVzV7GiBal4/OIljJDM5gvmTUvoIwmNSAmPB5WZyAAiRmKwiGJCnzzRtmgFPik6NJ/54ktM1qcYpTDaDXHDUHpH4SOyt5RaI2JElhIzpO3dv72H0xUKQRUtq8GaUIi3mkBzk2kciCaG/b19OhtY27pIXdaURY1MHucSShUgLC4kxqakaXuWzYpL5y/Q2o7j/QMevvwQzkmkEVx75Qafff45io2KcWXQIaCLMQdzwdTlqdo6j9LFcDyKpvPMlg3rvLVwvvqBJ3n68+/mxWsvYIyi9xZDYHdzh/OXLnJmVHNv75jZsmdLj5h3C648dJYHd/ZZzG/y1CPnOHzlJq40KDWhcT2dXyB7Qdc7nBKERa4S3rp7yP1kWNuomThQImK9x9q8WDjpEfXOoYREi/w+Yky8ce0Wk6d2efi9H8AUGhkdNmRyTGFKSAqRwPeOC7tb9FPH5toUTUEQDkXepTpqO46H16m1wXpHFxXCQ23yrp06WdynPH85F1i1DZvtW6EbRVWjpWTKCXu44Na1FwF4+upV5EZNacG5mMlAZUkxnqCjY9T7HKJUC2RRUI8Ub964wXK+oC5r9mfHJBvQGyWrtkFVmrrawM57jv0h566e5bK4Cs88z+75x3kwVtx54TXOn79CNZniRCD2eUdOGVg2LVprikLlxbdKCBs4PJphNnVOKyWjGlGJ5CMi5uJBCJFIwrtAKhPJB7xzTDbGbO2sMaonFLKiFLk0HEPH5qhg1v7GtUm8M94Z/6Hx9jzDFg6OA23jsVFweNiiZ2NmJO7f6jFRU27AcRNwfUlSgWAUelywMZa0NrG7ntjeSpTTirV2TN8H6rJjLA1yp6aNmo1JYnpWMNtPtIctXRPAJ46u9RzuwW951zZbuxXN/ACpWqQNpGIDPVpD9wF0jrEFMm/WBpJTqDqLKLty7G5ewNlApMXHjq47yuQLU3Lv9utcWXuMyx98nHmzYCdalqs5pi5A5+rkSXVTDsxea/tTwea9z9W7GAYUVeQkrCPGmEkDgwBMKf9tjCF3+ZsyNynFjAw7oTd4kRCpRATPvLnHjede5dy5D1PubGHjHBGhWSwoqjWUSKh+RD1Z417XUMgSTyCckhyyIBt26XNlO6Qc4CCzfzVr3CFjbxD+GaUVhgAInVMG1YBUC4GMWBOnHlYpTzxr+bwrLTIui0jyjsE58JZHerBXSJEbB0EMzWXylO4gxMk2dPZlK6VRQyiIUDJvBw4xzW+RFHJzYHCepAPR9USfaGPPg/37HB4sgAI1YPK6rkUXBYVW3HjtDe7euM3+vX2M0qytTVnf2GSyscbWmbNM1zbBVMQY6fsW6RXaGFKKeG8pCkNKAUQODTFGI5XCpQQUxFyuQUowpcaobPM4+U6kVKD1iT1Dnvq8EbkdaCD5EULA28xnjinS9ysQkft72bs5TbnhT2lJDIKma9Em30xJikJJQjrxqmc+8moxQwhFVZhhQWMyt1SJHPHcO2y/ohjn6r9znoRmNJlQGoXtlwTbk5KgqEt86ElBcevmm2xsGt77/oe4ceMmlSmJbUfnPRNTUk0L5k3Dqrf4gdZBivRuEC4EiroglmPmraUMQ7hIHwko3rx/gLh3AC6zrc2oxkjBeFSyHiK/Q2scOT7aHvR8+cWbHK1aDpqGic5NiZUCYYdq60nD2kDnOOEnCxE5OjpmsVxw9/Y1nnjifVCOCMFSlp7FfIkNLUYXhAgiCu7cvseF3TOcP3uGrlvSdQsQGuEjL3zxZQ6XM3TquOMsIjgerjRHh4fYu5l9a8oCN6C/pJQczuY8+tGPcvncWdjdBeCBht/2PX8G93/9v/PyzVeopKAsSq7snEOpwO5YsjW9zL/61Zc5TksmGwXvOl/yTe/+OtbXzuL8iuUyMDuY4XzPAR6hwLsspIJPqAf5ePb3Z9xG88bdwMak4uqlXcYRZJRoI0gynh5rURQD9jDvet2Z73PRNRiXsIsVaxs1W5ONHO00WJ/8YNVqug6jDdvndxEoEo6QApGMNTwMuaq6PZrwRucIVUkfHFopiHHY08qJk3mPabBf+dwUPFssOTDHlFqxtsxV74P7t+i3zgLw7t/6Pr7ugx/G+0C7snQ+8uB4gdaG2miMemtRW40MRan4Xd/2jcyXB8QkELrI/TPkSHYfPb0qSOM1phsTNs+X7B7m4tWde68xO7fLI489xKQoEcLTB0uQgItEkejajs2NCbODGeMzBaPRmLB0HC8OuHD+IjJJXO8QRIQ0KB2xbZd3zYxEygQiIJNEJYlfdczaBrdYsbEzwVw5y/E8nxu/WBFHiVKWX71YeGe8M36Djbclhhed4mgl8Q6C8HgpmVQKWSnCynFmNzHaMBRziWsEbexpY6AgIY2i1I7kLNIaRN/jG0dwkWgDzpeokSK5Jd08IacTpsZQbBkW5SFtA2qt5MG85WBuCY1ge3cLKT2LRc9DD63TTie47ghSjrsEEMogoiJFR3D5Z81qgd/fY317i95FVs0xq/l9uuUh1jWkXrOht6imaygxpevnCFEynk5RaGI8wUtlQRJS3sK1zlFVFSEGDCZ7VmNEDDaEt5yxnKZknYQkxBiJNpFibiLLYjoODVkO6W0mISCR9YhFOefel36SrekFNnYfZ+vcFUY7GyQRaZdztPHE3uao4BhJwSOGBUJKEZ8ccqgBB+9ytTcJVJF9qdneK1EMdIuTxDF5Uv1laOzKHtecyvcWEk1rnRmsX9EsGAdfLSS0ECgtCSGdeo+FEChjToM6TqwKAk69sieotXwsKlMnfEJpQ0zZhqKH7nGtsi83IihKQwgCJXJioHcRpSMuJHQxQsoCRMRbR1FU2L7lzTdvMNs/4N1PPEnx1GO88NobNIueqk7IFJgd7BF9YLyxlV8fht2AhI+ZqBGDyb5xkSu/IQyeacAHm9P/pEIbTYyKpOLQbClOz3dekeSwlt5ZfIwYrU8pFFpJgnesrCU6i+0bjNF0rmc2W4Go6a1FdZlWHGO2Yyzmc8pSU9clchAHRisSAWJkdnRADDAZj6gLw8bWJiH2ONdhTE0KkbqsMtbNWbyPFGU5NFBmrJ71gdoYlITFqse1jp/+2V/ABkM1yVintY0KnWqk0pkrK+AcNUIpFk3PzZv3ERQYl6uRAYUpFQepJ/iAHnoECgVUilQqcJCEQkR/KqjDytL3Ld32NloZBJJ27njp+l1CSoiqREmVA3JERPdZFPkTXKCPJB9w3hF8oGk6uq6D6Hn5+V9lurbB+fNXCK6iXS6I1mK9JbhIWk8YNAf7B4gUaZs55bgmkj9Lu+q59vq1vINiHTophLTIFEhBnyLAlDLENCASEfgYec93fAfv/y/+y9O55Rv/+J8C4O6nfx6tJC+/8iXq6YQoerRQNAh08Lzrylnu2iM+8IFHOD/ZYpQKRAzEHsoA67pg7nrWpGEZElFEfHAEmaO4AaILrOYNQkmuHx+iSnjswnmkDzSdZdRmy4GLnrbvTi1QUkj6xtJ3nlGqefHam1x47Bx1scEou4HQhcT5gIuBhCIk2D5/Hi0NXWqJIvPeXW+ZDwg0qRRF9PiUWNqesjQo3rKcSf1WJL2SQ9Pq8IOua+lT4nCWhf50fczU58f/3K98nt1LV3hy+wzjDc3Ewdp4zLxtWLUNTZJ4BMGCFZ6u7WnaQJ80wveE6Ag+N7AWdQ60KauaP/An/9e89KVf4vjgTd58/XUAtnbHxKuXmFTr9L0jqMwILr2kS4noE9F5Cgnzwxa/4TFSc+ONB8QUOdx7wNZWiTFrdG2PMoLoe6zriSGhk0KXElFogkoURjKqaowWGKOI3tPeXxIPHuTPWEeSiKeLwnfGO+M343hbYnh9IoibGmdzoo8JikJldBhB0KwsSWhW8xXJJVofWDUW0WWKwKK1lD4y6Qr6KLAx4qInSfDCkZIn4HFBEvoIvkH6CiEl3WzJGTXi4siwu1Ewx4MxzI97ZvfgypkJo8kFmoMZ6iuStZKIJJm3z/UQJWVqzaI9wO011OMaiWZj4yJq4xKpKCjViCP/Js/9yBf45sfP07YtKazomhWlnJBEwAxb8MRsYwgDkqy3NocJODd0MKfTf3ywg284V1/TECN8wnkVQuaktmGrUEuF1gUyyuzxKgQjYWg7xfmz72KubrKyK27PvsSDw2tos8vlR9/FxtYaTb/PYm+PUTEiCAHozKAlx4fmPpJE9B4xhD0IKQeBLk+rtSGc3ITfei8nQ0gxeI2zcFcDjSCRhZAgo8VytTkTNcTQNOdTOOUWnwi/HAuqsL7L9pH0VlVaiFwdzglo6RQBJ1A5/GAoMyfyQiNzkAeohUjZfxtzhbgeG0aj3Mg1m/done00IfQYoznc2+f6a68jfGJcjLn68BXOXtjmyDa0C8sHP/Bu7t3Zp+lXBNewWkBVjTH1mBgzQk+IjApsnUUoQddpjNGMRqOh6S1QFIayKAFJjBohqhyx7Hz2DKt8/uJAr3A+I9Kk7XNISMipckoUONsTnIOUk7aKouTB4RHBg9QJ63rSKotnKSRS6FwZtT1tu8SOR0zHE/S4JgaHEgKjBK3rEVRILWiaFUonTKEH64oihIh3AWUMSuTwEtt1Oe5W5iY8ZcBHg5GJX3npGi/cOOKM36PvWrwruXGnI3nLdGRQIrCxuYlOkWmVK7rlwzsYbTh7XMLnwBOojaARgQKDjJlqgZCookInRcQjS4WmymaHFElS0lnPikgKmdbSR0/bWhQabz1BSHzKaWfS5mpjHPb6x3XFva7LwiZk+433biDrBb7wuX9N+9Scc2cuAonWNfjoiCFiCkNhDA/29ggpMBqVeAHCGISWHO7PuHH3FiEGemcp4hipLa7UNI2jjkM4hMtpjvm4Ii5E/sXf+Ov8yl/8C/w3N+/wjx69yptJ4NqWydlNvuN3/0Hoexa33yB0PZRTmlXPncUBm1tTnn78KmujKc467u0dcGcxZznrkDFx4cIGhYgc2R5X10Sb49txATEsEFwItNbm1DdtON6fs18Y6qJk5SxnBhHadT2ts9ihEpsSjHXF/MEBL75xnzfu3mR0cY2m67EiUVUF+ERpqkzZEREjJZPJGid7FySBQdOHjtbl6//6fJ+wvUlvHa1z2BAyy9l5BDkG+SS6nRROjYRaKeq6wmjFRnwrGbK5nwkme7de4+YXn6P+wPt5ZGedWo14/fZ1ti9scHltC+fgaD4nJkF/3FLFwKrvEVLgbYPtO6wviCRiUaOlwoeG+tyUb7z6+wkrz+1/9I+An2Fj+yxNPaFddfjOIiuNrip6b5Hk9MlCF7SLFV3bsmo6QmM5PNgjFbBqD1jbMowvjglRYDRs7+wQXKJZdjjnSMlmj/1owmQyZVxNKXRBDJ4Ue5Zty9nL2Y6zJh12c5ODw9nbkQvvjHfGrzm+/uu//snPfe5zkw9/+MPLz372sy//eh/PyXh7NonWcny8xPuEjS3zWWBkpqRxxPaWZaso1w2qELQxokhoHdFKYbShUAkVA0WhcF6ihARhkMGRXKKSiqqocX1EVhVV9LCKjEVFt6kJqiGWiVkT0YXALlaUlaI6b3j5xh7vfnwTW0rqzqJjrlyY0YioekIoWA6d/tYJ6sk6MjiE15zZejizFIUmpQYnVvz0J3+Y1TXHnfoOF4oA64rFfDzcvHQOpRhA9vleKYft6kiKA/nAZC9nOA3iiKfNaiFEiDksQWSsAkVRDiihIdENg7M+b5MrRd/1iOgISpBEzfp4h7Vpxf2DB4yrMVUVeOXln2c8OY9cDyyP95kwJqqcnBdO4n+1xlARkkcqifUWbfIWfArpNFThFFQvwdoeJdVQ3RanW/NKyqEBK6PNpJCElN+3SCfpaenULkJMKKlPK8EnkcW5ohqxA+MzpogfFha5QgwSkbenZToVyDHEoQo9LCQGEZ9JHxpSTt5TSmFdYtUsiMownWwMVIWh0U4JlFAcHRzz+muvUgmNKQxVUVNP12k6z29593uJPlEUNfXDJZ6eZeOZL3r6bkUEpCqz/1qfnDtJ9BF0ttMs53Mm45rgLdEpRPCYsiD5RLCK1mevLkSkMkOlXeSY7JQoy5IUAr63mfMbPUEkCqPpvMPZQFmUxCg5PFgRgyAJx3Ixp+t7lFKsra3laOFC0/cdQsDhwQGu7ymLsxmjFzznz53FeU/btnjvECIxmqyhdcXa2pT57JAYBUVVUZaa6PIiIC+uctOgCB4RA10/QyfJa5/9FJfLwMZmiWRCoCe47I++fe8QL0tev3kXLRV1VTMel0yqCVNTsF2fWJNy6uXDT12mOVzQ7e3jgiIpgZkYhIv0UrJcdIwqnT3qMdJbS0miFwGtE1Fk9JgWKl//WmO1IPlEJRPC5srwUHRECiCGzMcexODOzjbtqsHagEiOezdfJTQrZqsVXWgptMQFR0iRsqpp3JwH+3s8dHaXZWuJWkOK7N0/Yt4ucdGRSLRpRe0Vcel539V1dJerwTFG6vEIjucgsg+fgakN4LxHm5o+JOZ37vPf/5Mf473v+Tr65TE39ub45ZLd0Zg+diQZGBnDvTdXXL/1Cp2P7B2u2Gt7CiN56v6YR7e3EfUGwtRElxevheJU1C66hqULGF1wb3+PnbNjHn/yEkokzo3XOL5+BxhoDb2lHXynvbW0zYJXX36RvXlHiB7XLTm4exPX9jk5UShsCEw2pmxsrzOm5M3XXsd6i5ceGSQaxTJ53GCZvtPNcXGKkbkg0fUWXVU4P/DLY54vksgdNaddNSl/rtYFVsPnLoTADFl7qelZ3rzG7InL2EnNS1+8zc88+wy/9WPv47c8/iTrJWyt7xATiM9fR7ZzPjCdZIRQDcEbGhfZO2iY3V+iVUEX99lIgoP7M9TI80iZbQjn7u2BjbjkICbqegxC4vuernPoUhCsROGoVzN2ROT47hEPdQsSCWVA/+orcHfGWNSE1GPHI9bWNjlbb6CkwiiQQZH2GvyD+cCFV0ynY9YmY6bTdSZyE4D/7Tf/DtLjF1n63/Cc4d+Q40Q8Xrhwwd6+ffu5X+/j+c063l7oBln4kDwqaColKLRG1BXVWo9AYhSMtMKb3AnvPVhvKZMB5QmAVoGSgkI7XIqUtaGLkkIoijLhFj3J5ecTRqJiwBSCzXKKkB4lJUoFJlPP/CDx8E7Nvh+xagXT0ZjQO5D5rWlZIbRkuZqhTrBXvmc1v8/ieJ/QJCb1GttnzzPd3MHJBXcOPgeLJetba3TeMj9uKIolR8dzqtEGxTjlJoqUhV/KIEdCiiSZs+HlYCGLMXscE/GU00vMcb5ogY8+WxhQeBcxhSKp/IfKZOFsnUd4kApa15ICtKHliy98ifedfTf1+pRbt27Tr2B37Rx2echib45dWGYiV6LLqiSe+JyFJBAy01ZqRqbAO0ccIgCzts+8YaHyzdp5RxDZ2qFM9gtLIen7zM0tdIFLmY2rtSKehJIoyGI3oXQWwT6ELGQjJOTgERxIASrTMU6ICtl7PAhpOXCIXY8QmhTBSJPP++A5jsO/tczWAaEkQgqqQnG4mGFSfn67uUFre3wSCK2QJBrbcOfWm5ikUEiUMeye36UeC7rlCmMEQUZsyAvCoh5xdkeyveZwARaNZd72+KiwVmTiRQiEGPBLx8bGBkpI5sdLxrUhJsdi3lKPclNcciX1aAyyIIlEdIIupNOGupAS3vUoIYmpw4eA1DJ/1W2kbVeAoDYT7u4dcHh0jHc9CMVq1eJcz2g8wdmASAFdaNbWR0xGNWUxZX19naLQaClP/cneO4zWaF2wtXmWWAiU0OAytq4aVZRVhRQJYUCbKl97KeHsioggCENRFfzE//vjHM/nTOsx80WgGBccHnasVh2FMWxubYMQrK9PiJ1ntWo5OFxxo7MYaWjcQEUSCV8JfKF58vJlvvzyDeLKcmFnnYe+/ilS13G0mHF8bEFKdFGyai2+60lBZwRW1SNUgRpi1mPMlXybIAqDsg3l0EgVh0a6rNBSJg/EHOqVgMlkQt93NK3j4GDJwf5LoCPT9U1IEkVEqjIzf9G0TYtAoWNAB0m5VvPaq6/R22M676iMwfaOpgyoqqRxsGzeWiSKAfmWkwnzLp02+Wc+BqRKSC1wXnG4f8RnPv1zPLa1zfT8OVaVYnzpLB964lHO7Z7j3JkdkhpRjUZsb28TXMdivhrSA4958OLr3L92k9tHM5IWyEKyaB1moEKIBOONKYcP9jlaHFBvCm7cfsDEjMAvuDKIyXZhaY9Xp1YtYzTL+YouWOx8RT0ZcXjtFm1yUBpGcspP//hP8uILL6CnmvXtLTa2tpjd3SMqh+gcjoCVESMNyWaRrYLgqPMo43Ep0HtPPfQ2eB/Q0iADaJXnpJPeDx+y/UDJRKGzKPWdQ1dZAH7h2We58N6LTKPnxrW7fPb5L2O04HB/j+OzWzROk0JE3L7O5d/17cihMe8rxwQ481XcZ//kp3/2q3jUf7rxrv/2+wDopIQ//ccfIqUbv75H9M54Z/zHH29LDJeFpCokAkkfBELF3MkuAlpqvE15souC6BIISVmWSJu7iLWKpD6hkJQGCpN5i2Ul8V2gLiSbaxVNA7IUBJebtY4PZ9hGshpVLKVDrjzj9TGVURybJcnXPHRmzK3XLTvFGgXHeJVLBYujY9jaYn1zysZWXumGPjA1U0bnRyQJtllwOHuDvcNrjEfrFGrEztkrvFjsMVnbIKjAvNljq5jQzxukWUPojMeKIkGIQ/JY5nieVk1Fyl4rkUVaSgkXPMTM3s1eUkkIApESQgScT5Qy465OIo8TCZF0Zr+aiigitRqxWBzzzI3PsL51gfXzUxo549UbL7E93qIUIpMFYsYPBfcWmmq5ammaLm+5Dyi0MGDf8qvl6uuJNUIASeQGK6M0IYHQORykUBo5eIYz6SHjvlLMOLn0FV3uEklMWf5CxrapocHuxOMtpSCQCRRiqCafNNNIKfN2/2A5Mdrgk0fIzHEeIBfkZYjElEM8tJR0LkDIIsEYQ9/0NG33FrkieFarFd466vGYlCJVXbN7ZidvK0pJIAvncV2SksQNzOUoNaVRVFXBqO3Yn61Y9gGfctNb7kcUHB4eorVBa81s2VAWBiUlzbJBKUknG1ZNQz2eUFUVqczYPuccRVlQ6AKhFQg1JMo5Ypfoezd8FwXBB27dvcuNW3do2hbvAkUlh+bPvK2dup7JtGZjY43xpGYyqlFSUBhDWZZ5sSnlILYUVV2xsb6VK72Fyji1mJiOp0hTIKUhRYfzlqIshqa+mBc9MhC95H/4H/4//MIvfBYfE4EmV7XTYbanxEDwLZL5gNaTqJRtOFFKfIrYfsVsljnDI6GZ9YZfee4GdVlQOMejpebJc7u8fO+YqppSmjFXz68hakW/6nBjw2KWCIwItoMmVzllJXj47CbBBu4fHaMUp9Xa5AfElsxCU5ea6WSEFgpnPb232OTpvWdUjKnrEctlCxKKQqFJIHIDZVGMkLoEfE5PxFPUBbIusQvPm6++jkwZIxhiQsmAIWGj5rlrM3bsWzjCEypMiPHURpN4C5vofKbUeJ8pLEXKlf873lGc26Vbddy9e8DeQcetm/epxhtUkxFbm3sUMnF82DLrViTn8eMxT33r76T63HN89uVfRdQCIRS9zQuF+XLJjbZFCcHW9jalGROs5fJD53CNZTrs9HSh4bBRLAYE3KrzxFSQbKSPgalyvPirv8D50YT+2HH9xh6vvXYdoiXMGx4czbjpX6MsNWNtBrRdRCOGhczgoxaC474lCYEj0gRLGQtKIdEkYvR4EUlCosNb9zZJrvzHFIlDk5808lS8FynhpKdrGl788h2aEHCppfSOo2u3WLUdZSWYvPo6D7ct1//Pf4PuwvmBrS6odMXewYLr944I0RNlvk/6ILl37Q2Ws7tcsEv+m898hh/6pm/lwe4uMQS6VUO9NkaXBdFGmuUKU6gc4e08B/v7RBwuOaajEWVVocoCXWgKI6iUxLvc3CqMxBQFZ89tcubMeTamZ/HLxMHdY66/cZ39g9sslofZ5qXgsrX8tRde5v/29JPIJPg/vPgSwA7wjhj+GhohBP723/7bZ37kR35k98aNG2VZlvGjH/3o/Ad+4AduPfXUU6dw6L29PfXH//gff/hTn/rU+sbGhv+Lf/Ev3vun//Sfbv3bloWv5vkuXrz43jt37hR/5s/8mXur1Ur983/+z7eklOkP/sE/ePgP/sE/uGkGZOHe3p76ru/6roc//elPr29sbPi/9Jf+0r1fl5P0VYy3JYbF8L8pSZJQJKkQSTAqDIWJaBEpTYBRQeN6TCyRMUASjEtJVYFwntLktC7TCUIyuD6gFagoMrfV5wqkVALftixmMxRreB+IWjBihIyeURnZGBvuHs5QhwccH0fWL22h9D3ikB7lG9jcPQOioRsm4hB7WmvZ3ToHUcBkm4ClbxqOZ/sYNR0wOxpTjymnit41LJdHjMwaamKQSWL0lBiysO2tRaoSRPYCxxAy6WAI2kikfPNSmiFdAessSulMaUhkfy3iNJCjMMWpKI4pDHaK7MdVesTFi48SaJEKlvsWHQ0bZoxOEpcswSeCDxRFiQueEAbCRnYO5Ma3mBuEIpySK5QcOLEpUyWkFMihkqKExIfhxpPSkGqW040gV6+VlEBm4cYUThvotDY470+MvMBXNN0pSfAB5zJaLA14tMxkZkACpZxiJwTxpBlRpFMbhiD7l09CQmLKmYEuKboAWprBh5zoGod3ectUCIWPPba1FLpAqQJtDOOqZnN9LXOlRUJLTVEUeWt6aDhDJGSCFBxSJdYnBVVVcLTo2Ds8xvUBqTWJQeiERPA94LF9TriS5MYVUyhM8pAs0lf4lciiGEHTQisNZVUh5Eml19G1HdElptMJo+mEo+Mj9vcOWCxbirIiRFjMZjzx1CMsV0tms4atrQ2qsqIociCM9z4nb8VIUVR5keEcpiyQSiFE9pN3rsckQzWuUFqQfAb9CykJziGFgaRROqdJKgkHhwt+8p9/gue+8BxKGYIIEDLhBZE/65gCxkhkFJA0IQpcjKQQ8SGj/kRMqDBsaqvESkhccrz7wjbxaJ9LvqSsNMtuwf3DI1x0CFWihGRaSaa1oaoiG1sV6nafva7JsXbmHGd2p8TOUpclPTPaBwfsNAecMSfd8/l1ldIEFxjXmjNnJpSFIAnJbNFy+9YRZlIxrjLub1RPaNoGnyIxCEajGuc8o1FN17a4kDC6oi5qPvHP/gWf+dXPkHRAp7zjgiwpcGiZUzzNacCloBy++0WMTGW2WRVDrLBxjkLpHNntA0rCaIiJt23Hg+s3uXXjerZBIXn3o1e5t3dE0ILJeMRDZ7a5eX2PRcrJmK5pKSZTvuWbvxlRGSDmxbDKt46+9zTCs7u7xmiyNlxfktVqwdZoyqjMjzu7NqGdTpgOKYlSSCKe5COVNsTjFdc+/yLX0RwuHb7p6VzHqlkhC43DUwqBSRU2JoTREP2wY8VpOIYLka7tmYgCqcBbRygDshhChmJEiYTIN5ih2p+jrZOPCC2IQ5poDDKnmgIuBnyS3L5+xP7xMS44CtNzfOOQn/+X/5Jrxy9w/uEN3tML3gdc+9lP4csSpGY0LRmrMat5x+RkMR8jJEsMEr2aIfCUNr+J2+tjbm9vopKiKReYkaGPnrLUdEbleTME1qdbXAeOZgds7+xyWGpMUWJUQV1MIAm6boUTK9YvTfnwN76fx6+8n/lNxSvPXePma2+yWNxFqhXTi4bdr3uMC9WY0Afm+w32yy8DL3N3sjYEjbwzvhbHd33Xdz30Yz/2Y7sAjz32WLe/v69/6qd+avPzn//85Atf+MILFy9e9AB/7I/9sSuf/OQnNwCqqorf//3ff+n/n+cD+If/8B+eHY/HsSzL+ODBA/PDP/zDZ97znve03/M937P/a73m933f9/2ar/m1MN6WGB4VGl+Z3NilQKZEkSJl6ShqgQq5KQcdKTpYNdCHQLP0hPsFdxZL2geWQkpS5Tg47mltZNla2uOe23dXHBWaw2sN9I6D9j4uBq7feIA6nvGRj14gqTn12LCxUXBn2bO3iKycoEIxmRrqyVlS8yYi5QntYH6XvZducvU95+jJYlgXJU3fsTycMZpunPTt0ybB/vwOqU3M+jl9F5FRMKo26UcFTdNy2OyhmppaTjIZQWqigN45VITCjDIbmEjfO6pSImXeohNS4p3NPk/nBzGZq3GkhA8OKTUhgE5vRewKIXJFFJWFJZqi2GZUbxFGPaRIwCJLSfQVMpUIBLoUWOEJ5Cr9SVc8A6Q9xycP/t2Ym+W0KRhP6hyJbB1G58kXIlpCij1Gy0yCOAl80CBEQJt8s8z+1pxudoI5CyHkiOKQBmxaFtkxJZxzWZTKE3+myI18iNPKdRbXmWl8ErWcz59CkI/DGP1v+JBzlbGgT4oQskNQmUxvaDuLkBqjNI6c4OZdoDIjtM6+8I3plFFliEkQvUMCfZcrXXqIaZUCREokpQeyiECKyJn1MbWRHBzNOZ4vSSKLYbQ6XXSkBNZnzvOqbdClRqSAiIlSy9PK8Xi6Rgh5odDaPkP7k2C1XBJ8RAuTsX4K5kOUbFHWJBxCGUK7RLuGsZE0WuOCxQRDCJKUFEIpxuMxpSnyeUZidInzHQeHB4zHI6QUjMYTosu7FaYaoUn4kEhJEdEkYYlYNHkL/+d+9uf45c98gePZHFWNsCHbfYwQIMe44BDyRI8IohSAwwjwJMQQ0iJSvp5iylvhlTQ0IjKqS45v77GOoK008dwu77kwQftIbx2mrGmT5/hgQWcTvRPcuHHAjvecMxKFwMfAyEAxKbn40AaHoxzKodcFl6Z5ZtieZlEcfMAlx2HneLBYEH1iVBmMUehJRec7Ll7cZt3U0ANxHTOtWTYdYxNJvsE5Q2N7rLOMi4pufsDPf+pfsvQzpNL0vceIgBcFhdF4mRcGflB7K62ZDv7gsfOEVYsOicnQ6LoWItIY2s7ihp2VEAIHgC8l47rCB4cPntFoTDWacH/vNcrpmIOjGdPxJBMHlIRCYduOsGh48eWX2F5fZzGfwdAYCXDp0mWWkzEiKUJqSQmWq4BXBVSKssxNWClFJlsTksjHWWgJaOYH+7Q33+TG8T12eoc4eoDpGnCJ42bFeszX3aSeUMuC1HdImXnhzmbPt42eK0NT4cPBIrxk3DYIkekRY9uxpjVjZaiL3CRXGEMisbPK1ptzixW4RBCBbZstDpMH99GD3e6qD5Sv3sXufZFzS8+qnXN2c8rnf/wnef3a8wjR8eDLE+7KXChQb7zBdVNyvF5RHq8x35vT+Bk+CaQIbO5scu7MJUIHnakpfMuGz9du9qQHvM9zqXRQGMlyfoQ2Cu8cwQVuLxaEaOm7lvlCslVs0a86Wrtiz95F1Iozl3b54Hvfyweeeh+LmwU/9Q8+z/7ha6zt9GyeH3H50Q1GxQXW10eURhE6x6SuCVcTG1UNv/gLWOdI8lT/vDO+hsZLL71UfPzjH98F+Lt/9++++ef+3J87mM1m8sknn3zP/fv3zd/5O3/nzA/+4A/eef7558sTUfqn//Sfvv9DP/RDt5599tnqwx/+8NP/c57v5PFnz551X/ziF1+o6zpeuXLlvXt7e+bTn/702vd8z/fsf+Vr/tk/+2fv/f2///dvf/GLXyw/9KEPvfs/1fl5O+NtiWElPGUR8T7RuIi3iRQEaeWZ9Z7Ffo8patpkuf+gZe4Sy+WS5VFgZwl7OI73LdtbgpEusVLhRIeZGKwXiKqiXFfIw5bJ5gi1s8XdvX3q7cTtgzv8zM9/np1L5zjYiZS3JHrNoGTJ+bOJ44N91tfP8OBgn12lYZh0H37iMq+YBn8vcPXSw0D+ValLbLRIvyTFjr396xw+2KMKJZPNEb/88i1c13Jv7wG6XGP78hbHzFk0C+rZEiErjOoxtcwMSwXz+THjGsqiwoWE0gLncmiFkiZHNIeI9xHvPDE5dMzbXXVdUxRVFuYDg1hrOTTc5QaVkxAGbSSIkLFhyaGUpJA1iYAQFnRAYEjeows92CMSygwftwKlJVJkkS4RaC1zNHTKCDpBoKxUbgD0mdWLgGDDIKbjkNokCcljirwtEoaGNjhh4qpTdBoMcdYJToILhACt5RBpfBKm4dGqwBQaN6RBCSGGBr6IJNMhfBxihYVEKj1g3AZ2soBKV/RJsbAJIQpkESnHFd7abAXxAaLDk1gu5/RNP1TqJSZJzp/ZRcpEjPIUdadVXpAkcuUyJrCdxRQFUpvh88oWj3FRUJ3bZWNtwp1791iumgGHJijLasDXZf6vUJK+6yiLipgSi85zvGzRWrEWsw3E9y2d7SEJ+i5XmERK2BAJ3uGCyw2ZUtF0xyhT4IOgQhLaGaKcUJUVVVVS1yPW1iZY22KtxbnAuC6ARFEW1GXBjet7uWJtDImA63Jq3VhpNIKWREwBLXL6XfQJQsKFhv/xJ36Cl57/MiLWGCWxMWRxJyCFfL0IrQgpUckCksz87cIQ4xBUQw5Vz53/glJlYWWMYOfCBttXdnGzY4w5hxaa41FB6i3ICj2qEDi21Jiti2MckhQdiZ7Rq0fIucfJgI+Jw0NP7x1BLLGHKy4V0AnJcDWytTMB4NL5MQeqpOslUYMfEF5dFxAhYii5dXPOLTmjUIL1uqIMlrIwBNdhRKAUBrdcsJodslrss7V5hgsPPcLGmy/x7qcf5mB+l1oWUJQc3ttHiMRkvEYxeFuf2d1C+8B/9eA+n15b59pkRF1XPDSf8V/ee8DnLl7kzvmLzB8ccnhwn7bvSTHSpkQwGrzPSEKZq7O3bt1kbW3KrGtw3rN3dEhUARsDFaO8EDeC44NjttY2SFHgvKMf7A9N0+DKAoE/DQ1qWsuzz93g4Us71KePWxKcY1znczmabhCsZXH9TY5vvYJe7fEDL75CHf8nKpBH86/qHvV3F0tg+VU99ivHH3nli//Oz/6rF9/qVfrrL7wCL7zy7zzmf/Nv/L/j0//67Xfu8RHgh7/u3XS64IP/+z/F1/3h72Dr4StIKfnp7/0/8dqnPo9IDofHKUka3rsPjuAtRlZIKZkvZjjvqLVhtpxTGsPde/dY9R3GGLa21ih0yfJojioVxbTmofNXuXBmm0cuXmZ+2/GJH/0FXDhmsqZ4+uoGRijKsUJEydgUVBhKKSknkqosIGl8kxefRcYxve1z+s74X3780i/90viE8PTd3/3dV777u7/7ylf+/nOf+9wY4Atf+EJ18rPv/M7vPAT4wAc+0D355JPtCy+8MHq7z3cyvv3bv/14e3s7AFy+fLnf29sze3t7+t9+zT/yR/7IEcD73//+/t9+za+V8bbE8P4cDu53HM87ZsueVRuQtmLSjrjbeNj3TCagppJkKgqdGMlAjJ6trSmmTOjVkskI1qYJogfX4CKUwmGiY10WHCtBtJ5qU7I+GdEuDPFMyc1bh8jjkoZEvdR80+9+mLmfM58fIJqOvupQqibqDRi2VEtVc+HKJRbzBf1hXvE74ZFGk8gTT7taoOOIp69+GDWpWLq7PPflN9hKm1jfcfvGGxTqCepL68y6PVazGcZMMvZM12AyOk4ZcLZDSQ0CbPAooXIFXWuQGeeVgyzy6t65gNE11uY0sbIshyppjpcVcYh/Tn7g7CqkTPjTJLyARuFTj5CaKCQKj0wSoSV973JjWYin/rcQXE6fI1c4ow9En6kP2mRhKgfbQQoBOeDSUshIHyFz4toJsVPok+pPrvrm3AZxikbLGLSTSi6ZmfoVqZhv+Y0zYaIoNCRJiFnwC/IWZ7YkJJQStG1DZ3uccyiV/Zo5Cjsfu7MuezuLki4EpNSIwoASKF1kr7GXWNvhU8T1fSYslDUieDanm0ynU1zsQGSBLLQkRQGCzMNVGX2ni5oU8hbsCWUgCoU0CpEcmxtjquoiTdPSdZZm1dL1Pc5anOtwXa7coxQ2NSSRY6jTwBDu2xV1WeGdR3oYVQXbowlFWQyECYMSJ1YFclNngt5ZWutYHC+5eecGk53L6PIMfWNRomNrexMhspUlDGEwxiiUjBwe7HHr9o3MMI73OLN7nu01ga4rSALb9blxS0pkiogU6JoFR/tzbrz5OqGZ8Z7HHsYjsTbQWU/vA4vW0rQ+h2qsOkJIGJHtGEYYXHBYnzBSkMLQPJkScYg4BzDTgu0r55njKdfXSGWJCRGbenRUeKGQfSRpSTcguUJIiKQwpkKVFUlo+gC7D2/yDY8/Qr+yrJYNy0st+qmHUHXJaJl3ksZDFfTKmbOUZzZZtkuO5h1Hs55F43BS4oPLaEJb5vjy6NhftFRdRIsOxwGjco+N7TUKs8ni6IDppOLgzVv80i//ApN1Q6U9u5MJUhtGlWG1lwhCIQjIAZdg1mqGHAt8VXAQA2fWRqd0BzuacKBKwmSd2eyQZd8jdU7y01IOkei5YbC3kaNuzsWLD9PcvoUyEmFUxkJGReo9o+kYkaB3K3rbslwuiQKsy77a3vYsl0uEShhZZFyZUfhQcOPWjN0wLGYp8DYNwT3QtC3uqMHO9rl1dJ+dg33qmPjvrl7hC4sWLxIb9YRKFwTnafoGYQbBGCOVUkxGY46bFbO25ZEY+b/Mjvh7Fx/C12sYBH3yzKzFW48MDhsjbXCklLIPPEXOec//cTXjr03WuVXXbGjDJe/5a3t3+X89/AjrpuIPvfYCP/neD8C73wXTHaypmUXHxkbNtede5Lg9ynN1odk9nPEXPvd5nt3d5gN7B4ySZPvpx3nkfR9g+cZdRtMNRjtb+JXH9iuS6wjRIkU6nTtkyrHQgYZIoCxLrO2ZHR0jteDgeMFsvqAaj1hbX0chsdEz2V7j8sMX2dnaZaQn9LOW5//1qwS/YrwuWd9aZ1yVqKTRIidxKiFIUTI7bnOwTdNhXQdJo197k28FgnSn194742t3PPXUU21RFPErf3b58mX7P/X4/xjPt7Gxceq8V4O9KJ1Ex/4GG28PreagkwavI3qkUTJzWXd2x7SNJImW8+cKKCXQ06xaouhRsaE7miDWBU1zzOxuB7rg8OCQ1bIjRc9q5Vj5FaXdZD4/5j6RsfCsjlfoULJ7bovXr93izPRJ/HbNpnFsjhOzg5bkImubE5xzyFFNU24yGUIiqhIe3L3OujnLKuabm7cO5QKoSLKgYs3Zs+dJhSJIx407r3Bwa8ZGsUOha2IRuHXzFle2n2C0tsby8JiiWUOWhkigqCqCAaErjKxPG8ASiSSzIb2LntJopFBIEdFmlL25Q2OYkpKUIr3rQeYJEXGSzhbxLuZQCBdJqsJ7R1FMcHqRBXZMOZUshiHwIUDKe9ACgTEFUgxiQuXjUFIDmRsrxCCug8OnjIIDhnCIkDutjclNR8jB55xySpojV1AHHBtkSoSICTnYArTKVVMlJUkPISPRDxzh/N6BIekuVwnxb/mCtcol3xQ8nbWQAkYJ6mrE7GjB4fKYEDKNY3Nzk661BKEJYZQbCScVXXNI6BWyIHNHUxyiSQOutUMwSEBEwaXL57LH1SfAIZIczueJaNdkwIVCqBw77YMlRY9EkkJOIYwp3+SMNmxvjRApR8I6Ab3tsLbDti3BBZIQ9DbgvKWqyuFmlUkSMQXWd3ZzrCwMZI4sDoxRRCLKKFIUaJUjnEfTCVsC3JldmqbheLlkc3QOFyKr1YrlYklhFEWhkQO3OIUCGRXPfP7zvPH6q9SmZPf8Oc6fOY8uDEnAfHaQ/0YZMAbvO6698iI337yG7xv6vqOsKlKKlFJRlRXTRLbRSGi7Hhs8B0cL9vYXzGY9nc3h1UJo6kIhZe4bSDHhrKWsDFsDTaJan9KMR6jYoVxubPRYEJooJSn0aCloW4cpxzgZkAkqUxBlgSglXiucFAg5IgqBkZLdnXUmvoIgKGVB1WeBWY6yTUKXiqquqeuazU3LbLVEUNA2noPjObP5kmXwmShDQWcti9Ziu47DpeX69dv0rmcyHVEbzfqkom2WUPRsbm1y7+iQ5BReWiojmTU9m1tTNpJC7+frqi5rNsZZnE+Kir5f4ELEmPx7Z3t8CPTkeUcLkT83IqU2RB9zIpoUdF2TbQ2LGWWdm22DC6ihjyBYz8Zok/XphAd7+zgbmC+WuOBoB/qLtZZWSHzwVGWJNoJaj4Z0y8BqQMK9fHOPGxY27+3lS1or9m7tc3fvPotVz3QQ15vzJU80K0pTMhEdUnY4azOyLGSfsYy5v6KIHpxHC8G5YcFyx3leCjNSEixtz1IltqqSUV3l3a2YMNKghz6GslnBasYbteH52rAlCu4P4S6/3C2o5jP+EPCpu7e5d3Sf9fEGu7sbPHb+EZI6z71W8IvzGYu+o1CKd/f5b5sBkzbeHrO9dZEv/8gnCXafb/1v/3oWw11E+h6fQm6IDG+J4YAnBp/7R3yLMprJaMzeynN8cEBv+xwUpCXHiwXjtTGPP/ooWztnqKjp7s04WN2E5KknsLs2ZTzaBBKxj/Rth00Sl1q07BkVJeuba4xHUK1vobHsbGzz8s9fz9//eueUVvLO+PUbKSWapvk3hOZHPvKR5gQn+p3f+Z37f/Nv/s0HkItQn/zkJyebm5sB4AMf+MAp3uSf/JN/svnN3/zNzbPPPlu9/PLL9Vc+3zd8wzesvprn+2rG+9///tP87pPX/NKXvlT+26/5tTLelhieGIUYGSry1qBOjt5asCs0kcPFkgd3x9TTyLJpaOYNrW3o+4aDuWZUTwnC0dsaZIE0migUITSYGmgcSiRGo4IQInVR0ZoGypq2NOADG1N44Fa0seTgIDFVFbJWWG3pjnqwCqlq7NBAV/kJj7x/jTd+9U0qv57fiPIEtyImTSlKzu5cwFeClCx9v0KpyO7uFFaBtm1Ym27hpeP263e5/ORFVkVD08yRyiCqdexqQbVW0SyWrELD5uZ2DvoYOp4zaULl0IehOuOTJ4mEKU2uwKZIRGKGTvWyKhEi0fd9tkEUJTF5fNdjXYsuJFoXWNdjRDFQCyJi2KqPKW/hC5EFWfQZBwcDuD+kHNUpxNCVPgRqSIZtfoUxeuAhgyklSusMjU85117KLMpiyJi2jLxTdJ3NzY/BE6xHK4MbGMBCJARZSGudObon8cpaZy+GGAy1uSKd+cExZfuE73rKogBpqIsRMUS2tnJjXN9bING2LWU1QdVrTHYucP/okMYX0B6h0ZhK07ZL+t6RBNje0XcWIcA7y+Vzl5iu1fRdi9IGBHkxMrCUTyrdmassyH5mT1HUkOLAQw545/Axe4JjDHStI4ZAqU0+vwqkNlRjRV1V2BiHCkxCkqvbJIlRipg8LsTcNZ8S1tpsqxHZY4jIW9ZaF8NOhMJZR/CepASFKdHNir5rqdfWsH2H9xaSYFRPiMnT247RZMze7IBffe7znDlzhlE1ZrI5xQZL0+cmzeAWRDVlYnYI7YpnP/+vuH39jZxGpwSiKklDLHSpC7re5u+Nt8PnH6ik4tLOOlcvbmOdZzZvODhuuXHrHgtrCUKRhCZJRTKJIAVtmxdH1VgRdKIWFVprvAbXgh4WaNZahDaURQW2JyoJKtASEIzpi4p+omjXoMcTvSMEnyvYbceorvF4xAkJZRApWoARYG1ESKi0Yn0yodg2PHJhStt7ZqvIg+OW/fmKebPEtLny3nQrVstlDi4xmouXztOFmvF0yqUzF7i0PUHrxOp4zoOjBlJgY71mc62g2B5h5pmksVYYZkc5CMKFbLOZHc5ww2KyqKvcaOgi1iUYyC1aGXwMpBiYjKb4lLnxQhUsVi1SZJtUs7LUpWaxWCKEZD6fU1aakHLAS9N1eV6yJwUiMdyku2E+qLh27U2mkwmTyYjD4XHL5Yp7lNy+fwxAKxSTtQnIQGM7drfXYbGkdBanJfvdinUlGY9qekFuItTFQH9RuGBZj7Bbr1E0S/xxft7eeWRpCFpiyhGbQiCIuV9CK4zOzd/O9uhxjSjyLfDyZIO+HiF1wVkhYP8+H6mmWPIC7CowtoFoD+n29/niF19gNB3xvvMP8W1nLjGfjDgQns3DA3jxZXaHosCVNGH5wg3mb7zO5rpD9Fkf7DrP4niGFxEhBdpZxgOOzVuPt7k4YZ0juo4He4e4kJ9zbXPM2voGVaG5fP4KZTHG+Y6w17J/dC1HkI9LyvWSc+Nd2rbh7sEdZCkpyil1XaLLyJZUrJaBal2ysV1SeEW3bLjykYfYWV7hVfUlAKwsMPXpjvc749dp3L17txiPxx/8yp99//d//80/+kf/6P6P//iP73zv937v5R/6oR86OxqNwt27d4vlcql+8Ad/8M2PfOQj7dNPP22//du//fiTn/zkxt/7e3/v3Cc+8YmNe/fuFcaYFEI4FdhPP/20/Wqe76s53ve85z39t33btx3/zM/8zL/xmmoo1nytjbdXGe562rZhsVyxXFlWncPOIyNdkApP43qOjhVKJ7wNmGJEJRUxKnzI4s2MS+aN55IuKEYC3UiSq+najkrqDF/3FnRFqUsQiiAUR8sl1WQNKUsefnibwztzjudzds/VjClJbsGFM5s0fQAjkEUWvvdu3eLxb/1D2Pf3vP7PXuRdZBbnrD+k21uSmsiD9V2mm5tMdzZY9gdIX7BzZpu4b4YQDEWxNiL1S9rjjvHGNmGxyhXfziNFwM9t5nsy8G2rgujTKeEgpSxxfExIrSkr8DZXVGTKyWjGGEgCKfI2mVKSqqohgRu293xMWN+ShGE0miB0fqxQ6bSqGnwmMVgfcoc/nDKGAYw2GF2cprulkKGpUspBDGdR2vXZayyVQShynHLw2Ver1ECNAKUEKUZCgKR4q9I9eF2FPHn94TzElEX6IKKlVKcWiROcHCK/3mninZTUdQ1FmW0VSkGSQ8OcG4gIFZDAZF8zQrO5PiHoxO0DS1lo4qpHqZKqNLS9JQVomhZTlvhgqYTm/O42XbdEykxaSAS0LnDOYfuc4FRVFQKBDZaQQo69djYj6siIJq30IGTzdr9WGhFzwIqQDHQMgTYFncuCPyafvzOCHOObBM6HIRRFoE2ZU60iOGeznYC8UJnU49NAl37V5YVGysQQrQST0ZikNXVVk2LICXcygRi80DJ/B5/5lX+FtBbtPcH23L5+k9XeHFVf57d98++k7wLEigd33uSlL/4y89mM0aim77pTHJ4QmUnuU8x2ioEZHUMcUHwekiQ6yVq1zqQYsbvecPnMCBsNq6ZnvmhYdR1t61gue3qVvwsPlo5nvnw7JzJWhul0zLgeoUxJ8I5iXJJExKeIMOCsQCVB8B4dElFqYlVgpcQlQe8zm0TFxNpoQjQi006GrWE3VC19iLgY0KXGes/GxiZGFYQgcFQUI8mG6jm7s4ELPb1bcf8ocevmLWLIr+F8YH9/n+Aj7aIhxo4Ds2R7cp4qVUwnm5h6zGQ6RQjo2wVGF5wTBv7157l8YYPEBvzi5+lDC1LQux43ECZ2djbpj2dUI01RVSyaFm8dRuVEQ6UE45HBO89RIbHeIaQhBE9KHusizSrla0tGQvB0XZetH87R9y1SSro+2x8W8zn7In8X+37Fzs4O1npihK5ztF2+b043plQC9BDpq3WJmVSsr5/hidpwZRThzduEFNi9/BBhNme5aiAJgtHMnUc7S6klSsBmPaWKkf3lEdI6rhgJDigNXmUrmAyJo74nFZJNXTHvGtZNCToibM94XCKGebFUUM2XeBLe9vRC8Ceuv3E6Z/75/Qf/7g1xcQx37vy7PweeuHkbgA98+mcA+O0nvxgaXL/xlS/yjW++/u/8XSsEdxYL5iex9kaysbXOlUeuMl3fYlyOSTHQrTp825I87N+9T6JF9C2ogsl4RO+W2P2GxaKn85bdrQmPXrlEXDn8MqCqMSOjmS0tk4dKxkZCCuw8vY26OeFHfuRnWcX7+X7hJeo35s73fxbjH//jf3z9qaeean/0R3905/r161VRFOrChQv2m77pm+Yf+9jHFieP+9Ef/dE3TzBnq9VK/Y2/8TduffzjH995/vnnR1VVxbf7fF/NOHnNn/u5n9tYLpfqr/yVv3LnE5/4xMbnPve5yX/Mc/AfY7wtMex8vokLJTBlhsbbQiBlwea0Zm+Sq5tKSGTqma8sRVFQ6ISTAZzEFCV21mO8ZlzUtMYhjCTEEpykrkvUsmGxakhpnbKucUkg2ogRDQ/u30F3DjfuefbZa1zZraAWND5SJE1ZTxnv1EST/dmrbsFrz97j6jc+yau7uUnC2QCtYGO6RXVmglYFo0nNUbPPcvaA+VHDeLwFsaCI1SDqAqo0rJojKjEGJZitDtgqDGu72+hSsXJL+lXPiOmQvJYxXkqKHHAhhi60BCnkcAMjM4eUYcteiUiGtUHycgidUFkchYRUGpkcfddS1BVJZu6z8/0gpLM/MpGb8EjiNE5Wq5O8pcHekBIpCfQQTCFOYL2DQNVDRVMIcjpdiviYst8W0EVxmlJ3Yh8YkqZxziFSFgA5XjiLcikENnqSyAl1fAWHOA5COMZ0Wn0VQiBVAQj6PntiTZE5pwKJEiarbXJzXowD/zkG7t69jkuacnMTpQIES1lk7mYMgSRhtWiwraWsC2RSrJuSuiqIoXvrfZN90HVd5fPBCB8yQgsh0DJhDHgb86IhZZh/SJCGJmwhJVEElCCHkiiNGKK53SAetcr80Bzl7Ikxo+RCCvg+V4sVebGSEiAFzmUygNYmH08ErQx9Y0EkzKjKUdZDEmAIPot6a7HWUhZq6FyHyaTG2443Xn6excE+tp0jTUk5mnKkRzzx7qeZTDa5f+dN9u69wPG9OyjlqesxIXqUVhRFOXxX4xBq8JZ1RgznAaAPuWlTCuijG3zxBZNpCdGzPqp46PwuvW2z8LeJ6tUC/tVnWHviMk9MpoSYmPWBo6OOg+MWnzJholCSkcnxx2WhKJXKfvgkSVLj/RKfBEmUqFhgRAlaELxj1ndMzRghJfLkOzsQBc7NG+pyMXj3A6Zo8+I3JmJ0SJkjs0kqe9OV5FEJ4dLZ0++yC4H+4i5d37O/f8h4fY2iLimWEFKLSpbOdbC3RBvNOpFS9WwczADYOlqgT3RJCPQuIo1kfX0NgNFYc2W0w717B2xtrZNUwLUt5LZTrHOMqyltbFiulkhjiM6RQiDvyqjhGvQkn/35i/mSmCJd3xLDiSge+MG2pyNlr3qIHB0dQ4Ku7SCRexaAKxd3GJ/d4l2FhzdvIGJHkoqiLvHLlnk/hO4Ixb0H9xHjMboqsX3Pt/6Fv8AHvvOPsn31KlJKfuwPfQf7v/RZDpoVUibWlBwIMvm66WOkHKLig0iMdAE2X+9SCJINGGMQPiKHuVF0HeNgYFqyTIG/dvlh6pXlsVryv7t1i793/gzFt/8eXv/5X2G8NqK5czeH3cSEj4LkPTvTiqfWN/kDX36OVx97jMdfe43Pf/TbWIymzO8esrf/Kr/fGM4CP3V+l6Mnn8RogwD6+YxxCnzq4nkWlWF7OqKuRoxGY5AKbQX90QqrO7p5Qz/vmM/2wMB4veLqey/wxNnL3HjmJq8/eIAXGpUipgisrY0RNvHCs69x4fFdqpEgBoEraybnRhTj3P+yPh4ze9Hzoz/2CW7EBU/JrHtS8qzm79Akfr3GVxNZ/L3f+70Pvvd7v/fXWLG9NWazmfyJn/iJa6PRKAE8//zz5d/6W3/rMsB73/ve5uRxSqn/4PP9Wkl4v9Zxnj17NvzUT/3UG1/5s+/7vu+7/x96P78e422JYbyg1iWt7PEyUiqFLRKd71mT61TjktD0ICWTuqTte0QMaC3RRaBUmsm0pDlylCLSIVmbbuOrlsquWBx4NiYTVjHSNUtEhFFVZuF11LNaHnGvS1wcFYR+hesS02qL3UdH3FscMzt07C9n3D06Yj3lhUcxcnzppc9TTr6Fi1fOAZA6xXiyjSwU0hiKsmDZzWkWezTNCr8MVHIdUVcYNKYqUDJRmimqcMxXR8RgUGKe0+5CYuv8GZJSmdnrA9oIQspbYEmkITb3hOWb+cykREohJ65lvUwKhkgathyz3zcNkcIgsNaBeCu+OElF29vMJoXsFyangEry80upUKo4FSL5uRJaZ7GdvqJ5I8FAaogD0SJHGseYubpVqd6KMB0CIRhuhCeiPTOFc4OKtZl2EUnZ/+n7U7tEjJ4QPVrrU9xarizm93BSFRbDgWlVDL/PmLq82BjiqwcBHELIzVhas7ZWYXsoQkEhZsztCucdySe6rqPrLcfHxxghSSERUqIYVQPyTQ4Ei+zjlSrS9wEpcnWz73PDlBCZBx1cwHYOUxSUxqBU/uxlkUMUpM40Cu86rO0RKccrJ7LiDuLk/Q5VyYGjEEIgiaEx0ecAkRiHSnXwpNM0v2zHsd5ju8Bq1TIe17imQUpJXRgSnr5dUk83MuEgBApTUZUVTbNECsHh4QFHs2NG62tMNqZMJ2PqtXVs6zl3/hIvfulZrr/6TGYz+xysIVX+zIqiGpK+PFJqvLcIIaiqcqBsRCQ6+5kH3qyQ2ecslSLisCEghSIkMMqQaDFGUpaSzbN5t6eejDl/bguhCs7GAM4SY+JgtiCJkuWq52DW0fsGYmJtUlDXkrEwJB0piOiJoq8DDT1KRBCatnMErXE5uI44BMGktTVcYfjmj/+LtzVd/i8xfu8/+5cA9EpxP0EILY88cpEnN3fgX8PGGH7n1z1N1wpefu1Nbt/ZYz5b0veWpu+wzrJyK1Z2ybmzm2hTn8aqC2VAmIzzEnGwMimWqyZfEzEwGo9ypPIghk8IIFrJoRrcU1cl2ii6riUOTPK9gzmvuMjOcb7n5nluxc6VC7z+6pfYeXQbgPNnd2jGExYh4JUg9QFZGF746Z/mfb/v97H50EMYIdhbzhFKoAV0UbIcqBUOwVjrHAAjNCoJxkic7zCFzBOj9SipcYs270KSF2kK6NuGUmmOCsPCKcqhkr3c3mbuDfe2dlG1ZKlnJN1joiEIsKbnedfTHu7xB4C0tQO8xnIy5nC6ibr8EOd3vwGzswPAxsd+L+rp9/HLP/yPmR/PKPGcLQ0vdS1tDKx6z9rUcXg0y70wSmfyiilx1tJ0ltYuqCcjlr5g8cVj7k73Ob+9y6Viizt390lJ0syWqHHk0YevkG733Ls3Q53fJHlHpUesTaeoTrDoGsyZml/5+GfZu/Ecuu443UxcHsPoa66Q9854m+PjH//45g/8wA+cf/e7390IIXjmmWcmfd+L7e1t/5f/8l/+9wrp/xzG24tjDgIRJUIahAwIpZEi0FtHqQrWJhWFFmyc0XRtycIGbOMQRiHKiIiRydqII7Gi7QXF1pTbe/dZzh2mKHOH+eu3uW974n5gcmOPJi2w1rHoE6N6nemZs+zvHfPY4+/l7oWea7OC0WKTSV1TXKjY0g13rt0iLHIDQyENatvx05/6Wf7o1TwRHc72iHsPMAVs72zSR8ni+JDj2R4yQbCO1EmqukZIRVGVlPWIUalRoyl28f9j789jtl3Tsl7wd0338Azv/I1rrqpVtWpgdAI2le5WSLcCRcdKjEoLVdE0Mph0Q+gmUBDQqE1CbwmkoyEBiaGFDhTbRqt3t6BslJItSglS1LTm4Zu/d3qGe7jG/uO833cVblHWloAb1pVUan3fet9nPcP9XPd5nedx/I4zdBdxqqGLa+4/eI2iCnuP7zMUQMLOiFFMVEklJjgWFDN1lSqJc45gndAYUookBmLMKGUI0aJ1wdoKY4U1WXKZmLkj6+2GhCMFuVkFH6U7rJUEGijpQqdpdN4MF5gyg9EX/F6QesygjYwgS1HoiS+cgnTtUs7YIt2uNFEsVJbiVRnpbl/Q0ZSeClYl43ulpXhXWk8BE46UA1ornKovE/uUUlNqlsEaMz13YQiXXDDaTgW9GAMLMt7vhxFr5bVUrianTBg9Vmm2ocP6jjyesaih2l2y6gJKLThb32McBqqmnTTLlkXbopi0wSVJLLY2KF0oWZNzIHiP1QbnKjCin+az+MjjMMjrmegWuShUspMswYAthG1PPUk+8sTUjcFjjcOZihKTmCuNXB85KYoW3nRVCXWh6zp2FnNSueiqw3zRkpKiXchjm8nAGIbNRPQQLXM7ryBHKmtF95wz2hZuvfoK3WpA1zWPPXbElZ0lvkTameP2i5+B7KmVJhRDM3MojOiDc5m62fK5A/TDQNs00o1TYLRlHPw0dbBT+qJg01ISNrQ1NRSHMiPDsCGnKQQmQg6yXRVloJKJjak0utaEwbPcaVk0c9SVpZgwc2LYeI43W+5vN9zbrDk/XnGYI3/6cz+Hxw9vcstvGboBbEMsmca1aO0mIoIcEM9qx//r//wBFkPAVW6SL/Q4LVKEMYxy/Wsl77ey8l1OQlJRwOAD1ji5fosiZdkTEtOBIoGtnUikYkIZkXrIdRCYv3aH933kF/jwV7yXzfXH+Je/+SL3R08+3fA5z7yVnX6asPSJl197iavXHuM9zzzD3t4+ymoWyzlNZbFacXZ6xrZbUzU1IRROHpxirGU7RF567R7rzUiKIonTyjB0A82spqoqFos5WhualGD9+sT0Ys9aLOY4qydznqJdzoEHfO7Tb+HGzUOeiCP8W1BZE33g+luv8sG3fZD6k/8e+BXaueOpxw+IWnOy7UibxL/4v30fYym89Y//CfYff5yb73yK5//NLg8fnjOvNGuTuTpv4SwwlIQLBpxGF03WhRbFWfbMSyvnTKNpjOVW7CQECSiDR+/vsWMteTWwSoXKhAkfCU3IvPSx32Dn6oLVg1NmxXDiA5hpqkPF3JhLHBlr0XXnHBi3Wz7v//BnefdXf8Xl+/VFH/gAAB/9+z9BUoBWDMHz4u173PMjBwd77HVbUhA9u60sVe1oqdFWMcREUAFnNAbN+iwzdud8+uVXuX5tn/3KEkLBuIbhJHFn94y3P3WVkxfW1NRU88LiyoLm1HF+ekKaW/qzzPnxXd6+11LliqMiko7DVUeK//VpPN9cb2x93ud9Xv/YY4+Nv/7rvz7v+14fHR3Fr/iKrzj9m3/zb95+8sknw+/38/v9Xm+oGNY6M6s0iZqEaFq1qhhXA1Z52qqiXxVGL10ttGEzdPgehm1gdXyfYW64dbzlX/3rwvV3LTjtTlmtIn5rsNqxnO1SSk9XNgyqpU8DPhaW9S4P246Zm3F0cJXdqy1uvo86Gbh+zaHmcLZa8drt2+R+LeNKoDKaJ67t0PUn/Mtf+ne8DTDLhiGMWNfy6iv38NueqlG4yhEGjx9HKu04OtxnM0oqWds2tLNdkg3U7ZbRC2Ys+J5hPOf+3UjQHbVtGNRAM1/iqhat1CXkXSmFUVa6ZAqRThgpFJq6wjkr2sIcpqJrZLM9Y3N6Thgi2lrms12MrkBlnLHUdcsmrilKKAXaSLGtSpbDyoR5Q6nL7msIErObUkabKeBCKaZ6ROKJp060tpIoVmkluLOp02OsJRfp9pHldy4kFXEKAMgpTVi0PBnN5FEl+nmSAWiNmYqEPFEXChLEIVxfi9EwpoAfe0pRVFUtYIeShOCAmOC0Ft5tVdU45TDa0OXEydkD9HDM3BUWi5ZUPH2Y0XUddV2zs7NDJJMzNE1ziZ0TiUkiAyonShKDVtu0pJgZhwFbS7h0UYrZohGJR4g4a4kpCVdZGVIWHfCFntjMZ8QsqVcAKXicMcQwUlIENG3TkIt03I2rSUlufjJtkO+fD4I9quoGZxTn5+eCfKscRl+EqhTcfIGymvWZmKgaN6MgmuGS5O+cVrz40vO4doZtaylalcSiK1so4znFVAxklB4xZU5MkFQkjCPVREtRStEPHYvlHKsF66UmzF7TtnLQkFSKiaJSyKGglCYEj1Je/h4FqiKjSIyoSXOyeOUuJQrn11ihDPhxZN8alF1jjJ602RB05DFboxYzmLXEgyWbriOcPETbil2dWdw/B1YcGQVn5yjrKCgWd+9P35dAd7DLYCtSLlROcIlWaUIKcuArkqbXjSN1PSMXObiqksi5sN6sado5JYtZ1jgr3x2l0MZSQsKrhHWW7rxH25qiEkZpFPFSTLS6dsidwwV3TSbmnsOjJQf7B8TNMQBDTrT1Drfu3OWFFx5wut7yuZ/7LtJqw0v37xO3G5L3bMYttrWoZDg9OaeqGvpQWK8HtoOn5AAlMwyB+axl3Xd47y/DZoZBij5rLxBdBm0Mo/eMgyD6tNbMduVgtB02DPmAZr6UvcEPlCTUlaf+mz/GrV95DoDT846XXrpPcjVN02BHBWPG1lyiIV994WV8LpKEOK/Yq2raTQ+sWJNItZmmXRImRJLk0tZYuhRx2pBjIhaIk+TEakOOMIQBZw2zpsHFYeKCAzmx3p6w/8gM3W/JzrPwDlM7bN3Sn52RraFMFIntPdES52xYH5/xT/6v38aH/0/fyOzaAY8++na6TebWy7dIRlHNa4wfqdA0quFwscP1m4eChhy8hAAZhakcFJlsGTTtXCLV9/aWGDTZFa6P+9z99GvYm3uoqSGSh8jJnfs8W3re9tZnyEmT8pY4RJLP3H2wxiw03XOZV+/fZraXcVjmE1VjqQt6Sm99c/0vd331V3/1+qu/+qs/9fv9PP5rXW9MJqE05Eg2kbGDzXbgpB/o14nOO+5nxb3b53RnB1RXCsfrjgdnW+I2oKymzjtYZjQHirxW7O8s0c116joSNj1jn9lfVjilOelGrhy0zMLA2clAYxXd9pTXugHnztj6c44euwFOcf+1hDvM3D8+JgXH7v4+5vQEgFQ0Oje84/Fd7jwrhoX1nRVnB2e8fPsVxvMNRzt7HFzZZb3dME8WHzMlOypjsTaQQ5aoZQq1rtlpj9iUFeO6w2lHrqDowPr4hDTbwe23FN9StTPhmlpLIZGLEAlUkYNFmeQQKXq26w0x9qy6c3LoUFM3tKiMdpnN8BA/KE5pRCurW2aLPRa7O/Qnx+SQsUZPHV2RYhhlScL/kqJowuNo6wT5hXSB80RuUEWRVCYMAwaRCBgHBQlYUcpORbOM95U2MEkMSpYQj6JEP6g0mGkqeXETy0kiqUW7NxWCKhOSECqU0cLrJU8a5QIxkCbUi6sqYdHGkRT8xDWUbrZ2gpczrsiIFyncKyx9Vty69RJVjDz59op2dpXTscOPPSYqAhnrLDoqmsZhlMGHUZisSuQeJSlKiVhbUTBoW3AUlErT+2jx0VBZwEbGELFVAyRSDFDUFAgiDGA74eS0laJIKU1RYtrK6AlzJxpwsiKEnpI9qcAwjnJIQEuHXylMyeRQaOtaSBfGTAmJCa0VSjkxLBqFKuCMAa1oZlOHVdUMY+R0taHdOaSeNxgFvkSYWMI+gZ4CMaxu8DEQY5gOe5acBO2XchaZhI9gpGjMITGGQDXTQivhIjZbosv1xJ2uK3cBb0Ar0FZNvOUav7MkVo73/sOf/S/Z897QCs4yzBcUXYE2qBxIPk4dRun6kxKajNaFFEZK1ZCiyIJyEhlPXc8kvKaIYZGs2PYDlavRRkyVRmvSkCEVchHEYtJQWXOp958vlpRsWW0GhnHLF37OU9ikqSbGZ1sZttvC6aln22eeeOwm8fiUj7/0AufjlllVcbi7A1bjh4L3AzQzNl0gpUJMnrY17O7tUZImBc/YjfT3PJqEqx2jq6kmtnhdV5cSrRBHtFFUVpjfhcJeLeP1Ow8ect9pbjx4ML2zGmUjs3qGtSOP3pAi+dr+jKGtWTcLzjcbYifyMpMTF/6CEDLeD5S6ZoyZTepJE7ViTJkxFxqVySmTlCKQKDFTGkXw0BpIWggbOkjHMykYxij89HmLUZCqhvk0HSjW0rQVapNwo8jXshJ2e7ucUcLI2DbY7SQf6aXRlqNnvXpIyRldOw6vXEMpx3xmaE1FIrOsluiNw+QeawzNvKKaNVgMVlkJG9KTOTk3RJuoHOzszNhdLtHFEVKi+Mh8d4ZtGrZ9x+7cABWzqwuObjQ0paWkTO0sOTkqZYUy1I+EUbP3+GMs3/Uoa70F73lwVwrgW5tzrHrTQPfm+oO93lAx/Owra5Yvn7Mh8PDegM+BMSSG1YQnWjYkpRg8HNQLbK1ZLlvWx+eMPoLXLHYdnRrx5xtUHNF5y/nJXfw2EgeDSZ7BOsZVz3jeS8xzjGwYOFu9xk33BI+/a0FmIKYtD04GONnhnYeHXNk/4nTd0/XjZRBEiAmTNIqatzx2FYBb91/itu2plOVob4fage+20vExlhSkezoMI7YyUAzOVlRVQ6HQNEtc3XLOKSWly+Q4QV1pEongB9l4mgmfpgEl3UdjRC6gFFRVTdQKP4rO8sr+dRSFum5wrsVUjlRGXrr9cc5u32XcbOnywHCemJ/s0+4t0K7BmkKZzErGaHQpZBTWWTB66tLKhpZzJl9QHLRClTwRD5SEdlRWfjJLSpwY8kAp6QJniuihJ02lBDeUSw6vpiLHTCJJL1hJ9zSXNBnpEmgt3cKYpOi2BqMVMWeUKpOeeirYp+4ZSjNMwRLWVlMSnKSUxSDaZJQiTQEIxkIZtqTsJbAiFcKYaWaG6DtOTx+ytAvy2JJKptJy4IlJDDbSpYQc49Th1SLpnaQAUsgqjKtgMj8KPUSMotoaoo/YyqEn81KaYmOzCigjn4dWlhyFHKFUQRtNTkx68XIZiGGLdJWrqkErjXXSa08pYhUY6+QmnhLOihQh+UjXbamqmURRl0zOgVwSRlusrYijxzWW7XZDiQpjHct2xpWjXcLmHOMkthovRkmt5CY/9j2z+UxMnsZM2Dcl9k+lpsOK8K9D9NOhTE/kkUwmv66TRgtxQhVcJcZAQQOKHjmnzNlizs/8X/6PLMP0u5cIuigd6lykOOo8PibCGFG1w06aeGWcMLen9DVjNM5OUyy4/P+SMmUyYA1tw/lsQdVHKVpTobaGMA40TX35fdJG0yDmzBQ9lXMiG8FgrFByUlbElIkZKqXRY8Roh6sdKStyVqSsULW55ItLmEq6xLtpZbh155jzoWe50/B573oXYdWRp675zv51nt1kbt05oW4daoi8cuc1rt844undxwn9wHJ/j6w1p/fOOV1FeuV49eVPc3L6kBAj7c6CRx57FN8HsrNc2b8i0qoqcfPRm9wyD1EPpagdhpFcN4Ac6HIojHS07UKCdbTsw9ErahryNAmJOWFMEZxgCNy+LZ1tYw3V3PL2px5hczrwmd94BVUytpTJcAt105KVJqfAbN6yrFpcmqKMlaInY2SrkgRMNCiJ306qUDtLN0W65+kzt0VxNnZUtSWOW1wvpJI0FcObsxWza09Qzgd0SeQUmdmKMCbCekO3dDz9vq/g2osdvPT/oA9TCEo/kNNIip7FtX3adolWFrKi94GqqmjnNRRN4xVGKRbLBW3VotFERHpkrMJYiy4KnSLWCvoyxESaXrcyUDeOet6S9QZta3LMmFI4uHqdQzenrBVBF/b2FxzN9/n1X/kk9ZNzzNwxn82oZjPMYoFdWOq9Jbz6Avnpx8gxwoPX3ki58OZ6c/0var0xmkSpcO0ehzOFrk7YDAN9B20F+4sl9qilUYXdZFnWmRxGhuTRxdOt7zGuLUo9QsgD6+2WB3dWLI4aducLHnYnWGtxVQXtjI0dKWTGGFCVZdbUPPLEu3i8vcniWsPJ8ZaT45fZ+MwLmzssFm/j4KjlYLlkb2HgFdmMlK4ltldl5lm6FO94y2M0e0c4Vdjd36OqK8gBnRVBJzHxGEMIGVfVmKpB2wqpPmR0X1czdnb3JfzCVNRtg3WO6CNnJ2ekJF0PRSJH2eSVVSgrBYxwfMWtXtczYZtOEZyusti6QmkIeWR9dsrB4gZXnr6JtoaRkVuvPM+tT75AuTdSt0s0Cm0kFKEYQCvhrl5waCeTGQgKTRspjVO+cHGLqc6kQomJiBAujKvRtkbEwFJ0lqQlbQs9BXlIOt6UU0fGT4XKVHBbDRlCipBG+ZkkI0xnGtnMs2JCgVKyBFAY54TZWyTCOsWANWoyHUqqXM5TQlnKorG1ggfr+g40qKzoNyO7+1fBS2BJ0QYdAzolVptznDLs3TiSm2PKYBUxFpw1gslDgh+Me52LLFpCKeKU91gVGGOA7LBuLnHDqkyf8QUdQ+GqGblkoUBkualSpKhTCpHqhETf99OIXNjN1hiskgND+qyAklwyRjusE1c6zqGNdIbHYUSjmM0XjDGjSROJIJFKJPmCVo52Zui7yGazJUTPzUcP+d992Z+kO73Hp3/tBO1mhJCJQegw1hh5LUZTWUeccHKLtqXre5GHTHtGTIGiRLahrCGlCEl04CnK4UgbM0l0lJw3JpOkFJRilrRGoxpLqmrOiujPU4nUtmKz3aKsJYZMKobNuudsvWUMGWMrjJZI8wiMg2jJXdWQKKTghdftI00tEplMRBtNCFE6eluP7uW/ZZUhhA7vB+q6p2jIyPWicsKoQjn2ElqRE7ZoZnWN0wqrCnVtWCxbrFW0C4d1FdpYMZOGgTxNXVKRw6s2Cl00ZDl45pi4f/8YnOLocJ9a1ewcLEgPJYI4JMOrd19FWUfTOEpa8SXvfQ/7ezuE3nPv/n2KzixmC6orlpTPGVceXTRx+gyaWYV1FpVhPXqSSezvLRlLT9u2XL92g+1nXrzcN4ahxxiFs7WYg3WaDomGhxP/d+09z758m2tTrHLKCdsodpYH2Gw5fijF8Pn5wANfuNu/xP7eVVLOvOVLv5hrb38b7RXxfDzyJf8N5uoRL/x/P4JRmiobhl46sijFtmTmyuCng1a82IeUkKOtMpz7jllVXyLpUkx0RGpTE0rCJkvnvQT8ACGI9GP98JRYBvZchcMw5sxZ6Dj4X30x9eIq9eE0kaxbiGu681MgkFPAzWUvtbpms11Tz+YM/Za7d+6z5yzzkjm4cgV1dY/aVegk+nGsaMlVzBSrqGqh+FDEPyGyLsfO3BKHyDB0HFypMXqGciN13XD7ky9x8Mw7UHVFXQJ+W3j2Ey9wvDrj4W+c8Y7/7edz/9lbvHb/lLzTMouOai7ZCO3Vq5dR0W+uN9cf1PWGiuGqSWgVaIxmXiX6zjNszxm7THf8kHY949bZllvnisEckUmMWVPUjCtXH+G8GnGuYuksYUcRBqjtTCgF7YyzbU/0GmaGrIR2YOYNJ6sz4vGAUYnVmWfvxi5zU3jsrU+T9ha8+uJ9rtxYktKKs9PEbFnRGik0iw7EaEjao4psbI2peOrmAWSIWRETkB259GAz/TCSMPRjIqiR2jisqdHWog3UdY2Z0GO6bkil0A8DYbuhW3cUXzCNZsuauq5pZjPAUiLoyRxWciGGOHWVpVO8XMywphJdKRBDYhwzeZSAibZd0IdAymtSURRt0WVGipGYhP5QNdXU1RWulySgpct0OZBigyy6VKOEiAASwlGQok26ktJhVjFLUhIS7lAmg5yk52UM5tIIlnOmHz25JIahMPpCBpyzNJWjsppZ4zAmYK2WQuqCpFEysZhJyypVkU/TjVU7SoqipzXCQ04gcc0pgxKpRUmFGBPGOEBRWYVOgdneIxwdHKGdAwMzZ7l55Qrn5wNVXWErR0JNMd3Src5TOqC1lhDjpG0VDFUiYmxFSYXTYUvKhlQ0xkCjPDOlUaOi9yMUqNsapQ3eJ5EJ6KlzWpRwh0uWQtfL488qITCEEPFRJCHFGUpROOtIXiK1c0mgLd0wUE0sX2sNIQTRfk9yDNtUNFbTpoQyQgGpK/mOGGuZ7yzYrDe890u/mD/yRX+U2mieP36NrJgOJg3NxPQaxhHnHHaipxQkiSxNuDrrjBA3LkgipWAuDhoTONBqzRA6lALjNFZrlBGsjzy3drqO1SQtUAz9VggnWiQelW3EKDkdonUtUpx5Pedwr2bTD2y3W4ao8blCBYmNds0CiOgSMU6kX40zxDCI6dBZ0cErzRA9zXwhko4MiUTb1jiTmM9qqkpMnaooKq2mqYEQZOTLBtuuZxgCxTpOfeDWrQ5Q1NbRVol5Y2gbJ90/ZcgxM/iIdRKqU0q5VA1vh8Rq6Dk4POCJJx7FKsvYjzB1Ih+ebaCypG3g+tEOj129RutaupXwga9efZToB4pKtPsLHnnkiFdeOuG53/g4Vju248DBwR46SiiHNRXBFzKGVBzb7YBSzfT9kr3w2u4uxhqscig0Xb+iHwYWzQ6LZg7A1f2GtLfH/ijFsB8DdcycvPgCt9jw6FNL+AXY35/z+NUrnCSHnxjiX/iX/hKf/5e+5vI+9KXf9I0A/N9/7r/Hagse/KRvNVoTlGLImbFInHlCcIYF6ZKqkhhL5oo1hItilyLfyTxhISshCF0mcWrN2clDUuppnOZGM2e12bAlUA72uPn5X0p+CGX6HK6+5a3wG79G2W6oW5mmNCmjuh7jFHUJXD9YcHLvjFJAjx19LozbATd67GxOcYpGa9LguYBQ5lzIJeIqR93OmLctRiu8z+To2W631I1j2SzJyVEqw9W3XqVdK15+/g7z67sc7bWYteG11UNmnzdj8ULN3efu0h5bZrszzM4S7SOb9UP5vvfD9N19c725/uCuN1QMd90IDzp2k2LwEYKhdZbkRvI2s1PPONxVdGNgp5ox5C3b7Zo4BqIfCN6ibWE2r1k1IzkFtKmp25o2FfpVpHhPiTWztqVSBtNY9vd26QZNfu0W2+GU7WaPZXuTxfyA2XVLDld55KhhcbjPw9MN/ThQ9HQzqjRWJaw2lwYcpQrDOEzmFgu6xhgFypFTjw8J42qKdvg4orOnNg2ztkXVMq4zyhBDZEwjY/CknATX1Q3UppIurzPE5AneoLXFTAlKOUWsEaJDCgFlLMpW0uU0AVBTITSicmTetjRVxRADQxq4detl7t86xpQZIYpWUSvpGIYQsEqhShGt7TSK1kZdxjGrycmVc8IYJeNoLZNYP04uOqXIkxluHEdCnDik01Q5ZeHs5pJJyCZdsoyqu0GK7lKkV6wneYFGQYliFqwMDmgri7WKppJ0KIqndk6aHkokB0rSKKi1IyvEvU+RxmwpaOtExjHxfUU+Mb3OnNDA+WZgvoS5c7haYw1c29thvR0IRUxrWWuhWbiCjwGrhecbgnQKS5Gbo+J1CcDEgpjMfLDqB9J5Yda0LGcNlTU0jQNTZNxrJGY45DgdOERHnqJ0O0MMFITlnHNhPp+jlMKHqds+dfuNNdiiQVnRNaMuk/yMnrB9KZOUGPdizqRY0AW6YcTWDbNaE/3IcrELSoyXTVXR2JZttxZ5jFYUlcnFo5TGOQvT+7wZx0v8Xj1rWa83YvpLE85PG7QVI5k19pLNrDS4umLGTPTH1k0HqXTJys4pUVe1YFmm1++qC8qIXLMX3arGVcjbGCWmV8txcrY7Z5xrTreZB6eeMUWMVSR6cpq6+kW0pVoX4akxvU8KYojUVSNoPDTozBA9QwSlLN06o7UcksiJyioqJ4dLZzRuku1kbbG1oqkrlrqFLPvHMEZuPTjltRMvh2tlaG1NyJ5hHNHWkaZgnOG+FJEv3T5FNw4VPFpXnKwGVI40UpuyWQ0UC/MWruwtMKWmREVdLUiTRCSmiKmsFIBESt+jlciklFF8wRe8havVIQ9PT9iMHj94tjHJREVpztdrcpTvuPeB1fkKWzlIZQqpAa0TO4s5psgTu3e64naueNvEE85+QCu4f+cVHjx4gXcNsjcPXhjYyjXoaMh95Ge/8Rv4J9/4jVAyOMuIJpvM3tEhtJZIEJmWfKKT/j7jc2JhLKlkauOIKVBNiZxoi0MRp8lY1JrKGdk39MQ6VxmdX6co5K5D2cLB0VXCuieqRCyZ6vCAqhiCH2AyGIeLOOYc2MuWIWbcwzPmZgdjRyocartmtwRqo7GuZWU11XKH8wfnxJDYv36NZlYLxzhl+pxJUSYXhcL5+TlD17G3t4M2luV8xmqzZv9wxmK25ORsy7xx+HPPlb0DGqOZ7c04unKNB689RPvAth947HMfx5Wal1+7jdqfoYImZEOZ5jsx+ktJ15vrzfUHdb2hYriQiNlQNy3FRXwyKGZgNP1YwDVYq4gPV4we7ExhR8FC6TKSY2DoO+zcYJ0mhYKhoamX+KjZP8gs7RI/n7F60FG5BtdoXLVm+3ADww6Pv+VtNFfgtVuf5uGdXR5fPc4GxSkKNbdsBs1q4xmOzwCIuQadKUVfJkopBdpacpkSwbInB0UBQk6kIDrQrMAPPYXC3VfucF1fJ6hexrnFigZXZ4lJDl7wVCWR40iygkZTBhmBRj9pWkWTSrE416K1FBjGiF40eGH6FgopBlJBdIQ+MdqBX/jn/z+G11bsLmYUEyEVUtGTwUaTYyaogprGrcboCVlWiEluGLFcSBDVZIRTJGC1WXP7YS83fz11LaelppF9IZFKmq4HeTNzSegJLUbOlxzipPLUdRbDiQSPaDZ9R+oLuijcpFs2WgIYSoHKOKxV2MpR1Y7ayI2LLOP9MI20rVMoIrYUtJKEtspaMR5qeYYlj9R1zbaPnJ+tcMrQtA3Waea1Jeae2s4RILElxMCsrqBoKUqDYP/iRN5QRQtXt4hWFwXLRYXVTrBqMbDynvv3t9y9t6KpK3bmNW2jmTeOpnLCBp6CVYS2EXFWY8jS/QVSzlTGYazwWkspVNbh6oYYI4mCsfaCMiefRymXEH8/DlKwX4ReaJCUgIKtHLkotNGcn52wu7cU1B+F9eqcOIxoY+k3HSnlSWZTsM6RUySlSE6ZunKCH1NatKazVgpaRO9cVRUJKbL0ZILUlQNEi+6qWrr5pUiXOwuKTKPJCnLSQBIjVBwxdSVd9IlQEr1QJxSZkqXLa7QmjUIiUUWmQNd3NSpn7udAKBUqg9EZVxkUluAzISRykvd0zKPsC2RCylSuIeZAihNiEIU2hRA8WWsp5rXi4fmKdjYDDCV6TClStOsyUUR6Ss74YaQyEnaStaWa5BkhFXzoGb0gv1QRPJvE8k6d35NT/BxCLJysI+fbc0rouL4n3OaiPLWZsdhtqXWD9hFsZJ3XVO2MuW5YhUwzr3E4KJZuHUlak0uirire8Y4bLNeWo70Ka1uOT05ZnXZ84pVXCXFk9Fsc8fKaizHjfS8pi1aTs+WdzzzFX/5LH+SFn/r/ANBtE6cE/FRb5hjlIJ4qKJZVJ/KCEAvdmPGukIaR2A1kFQFHyAqnNLXWxFKIY2S2rKaDmuJiR9OT3CMrsFoRfWBWN8TgqVU9SVC0nH0mH8UQPcVWbHOgkFnkwmnq5bGQfSnpzI0//i52bnv0vQ1jDGjjuHvvFP/RX6LJNdbLoeXZ3QM+H/jXjxzycjNnTJGQIzduHHL1+hMs9h/h3/+LXyMd7rBeP6CuK3ylcarhSlnw4OFDnDmjmjWgFTEOmFwwrkLbSRalpICnFIzNaGPo+p6b13eIQ6aeaWazmtIFztsV168cQcmcvLLm2ZdfZbbjePk3HhI+v+Hzn3wnv37nGLucYV2SvW4ybSoUKr4pk3hz/cFeb4wmYWG7Gdj0NaiWZZsZG0ccT+hPocRI21i0bdE5MKsaQgsroNgFS5VwoWJWz9nsZ9S6wlEzn7WcnZ9x/yxw4s/o6xMe3l6xqxzLoeXu+g53XrvNnTs93fmMd+mnuP74Y9x9cJ+XXnuNszSnM3t8/t4RXYr0oWGxEH1wKQUfMlSaYi50d1CyISfRBBolXN5CRqlEW9VsR4urHU21T7/ZMmzP2axbik0TvxKGoaN2lpAUVlsWixl15fDDSM6K6HshERRx82s8s7oiZIOdzyjOUJkaox3JZDRT5yqKg9r7JMlJxnIc1nz4//3j/Iuf+HX+7P/mvbidzIAlacgpEIuBKIVviZnKWiqnSUW6Hwox5wCkEMRYaBtKAVMSzsCVvT2qZsad+yds+kgx9cSgDdhcCGFgjB5lpOOX8xR7XIRooLVGTbG+lDIZ8ya98sQ0zqXg6hqHdJHQQheIJZN8wEcxr6EVpZMiuaTX46Tl0AC5dBM2TFEbh55S/OrK4Zxi1ko88mK+JGfPcjajnTcEAqq0zG2F3l9KN9HNKRSK1nRDZDFrKNpiKFS1mRBpmhJElmDrihSzFJVKGMO9H9FoZlWFIbL3+Izjdc/dk8CrJwPjGGmswiDJenF667TSGC2u/Fnb0NaaeWuZzyoqVSgpsKgrcirkypFVwdSO0BdsVePDIJgupoTBJAePylaC7bJROtsBQslkY/G+YE1huTPj7PSE7eYhh/sHlBxoF3PO1+c0znLnzh3qqppMeYqU4iVey1bVFMSiydETfJBEwolkIbIZ0WIqawkp41wlB4ipmL0o1lFiBso50vc9bTsDFDGXaSxcMHUlhW7O00RDZBdKSfw4uaAv4oODl0KoKqgixcSN3ch+rfnEK8dskqa1DXuzOW2t8MOIUjVjShyfPaRJGYyjaDOFmHjBFiqJtc4xkqMk7GlrGYdOphgIpk7oIxkvLw0/ekrOVE4OTE3VEnOmj5G6MgybTrTftpLIelcLdSVmmaag0VOXLueA9xpjHTEGfOowJM5XU3hEFpTbMFp+6d99hv3dmTDYjeLmkUUtDap40rajms9xIbM93zBOiMKdo5Z5vWB8uELVFc5plo1mmGRr1mZUjiLPQdRYTAXoxRRKlcITT92gOz/lqWuSBPq2R69xu/OYKK/jqFuRXniZ9UsvwaxmZyNhHE3XsaxqbB9JpwNXw5qQChBJCUzWU2pcgdWaWVXRn55zyOsHfSvWYUry4IRlbZVilQp7ttD7gjHSRZ6swowFGhw+ZxZVRQyB6vLICsZYBpPZe8vTuJdeYEWHqRtiBr/xfOJ//B8ZQuZhEO3ya8evAhDqlrWzdFEQfC/fuoXXFTfqOeumo64bhjQnGEvVKIiZttnhEMO2W9O0Ndt1j1MGtaxw1pJjpPSJ7bDGLBXKLUi6xt+JUAeWs4azjWfv5oKbO1fxm469a7ss1YKHZw/Q5yPr8T5Ne0Q4C7z46Rd54sYjUDek0DN6T13X2GnPlsCfNznDb64/2OuNcYZryxiB7ImlY7MacHbBYn6EuRmoS8VsbjnfMyTlmM0LXawom0gJgXEc2KwGRjfj/npFuJdQOqOXnnUnXQPrGjwjW1847yJlm7DVHmb3lFpb/sQfeQv9bMvxy5m33HgnV5/c4a7PDC+dsFuPqLCi2MzOUsZURSn8OIHvh2kkFiVBDK0EjZYzIXqMtTi9YDYTPI8tjqqekZoGv4Yh9TR1g+897e6C6Eb6fqQuBmMsq2FNUREL0tXVFS4DEYwHW+3QY2iqllrVExYLYh7xIRNiwecRkzWBJKNrBQ/Xr/Df/eOf4V/94vMYfcTgF9SzlhI2OK0JuRLJwsTzLUoTpnjVMhVfaioiQcaAyhpBQSWPRnG89az7NcUofJTEulIilkQKiTEm0dwZhbLCM9bKUpIClS6L3RACU8sTPZn4ymVTQXBLOUnRorRohnOekHMU2rZBa0OaOoZqOqgYq6ab/Iie9LYxeYyxxJyke5kzZRzphy3WgM4GZzdoa3jr25+ZEuMUKWe6WHDtPrP5HmfnZ7i9JW0zJ8SMMQ4/dGgNyljRZEdFXQkVYPSjpKTFTC4Jpy22KKw1+CFAqQFD9Jm+PyPFjNSp0mnMKeHampIylEQOkXU/oFZr+WwoVFazs5jhrKauHFXlWPgB6wwpZymGQkIVhYpirBr9gL4w2BUllZi2Yv5TIsXASRKes5H5vKZy18i5Z7U6Z9sNdN3I02/NvPTSs5ydnnG4syvXkFEUZXBVfflZplJomoah75ktFsQY8TFgimDTNtuNfJZTOmEpI8YYvPcYJWSFUsQ0OH1ZaWs5oOlJQ26dnQx2gi1TxVBZc5nKKIqfKenxAltnK4xxlFTIjKSsaNsKlRNf8PYnWXcD98/PuHP/LoM3FJVYzAxz52iU5VQHMb5OpqmUguwjqWCyKPyFmqEhTBIhLeSH6ANFSGkUFE6VCQNoiSEK31tlYgxAJgVPCCM5p9clSWm8PEBqbaHAMEqxm2Mgm4q2rSAXDnb2aGvHyXMTNrIbyItGKD9B8dr9E7RyWF3x4u0Vi4XD6MhyHtjzhf224aQb5MDSDRxdvU7uE2AwRTMMA1VV4b08x2uH10mD4nT6TpeSCTHg6orKOUxpqRtDdluef/bTPDrxaed1xR9/8gbXbwm7+X//q78Kv/qr/5N7zB997lXg1d/+JjT+B38+Obn8xw64l7LotqdodoXg6eqiSUpJvHTOzIwmFdmjAGzRVM4Sg6fVFp8HlsZQpg54SJFF1VJ98g7x+IyYRB5WtCUXOdBqA6m/kHv08i1RSg5VuVBXcnh/7dYrnKxWWFeTJ164UgqFpq7EtNvutDinGbcjNx67htOazdlIDluc0qjrDctqh5lraNsGt408//Jdbrx1gfEWoyIHh7vMGse4saQxMahzdu0OL756mzQoaCK6mnF6+5gXXr1PrAutakRj7/2lDEkp/brs8M315voDut5QMdzMKjYVLOo5qnHUleHBww3bewZnLNY1hBw5jxuG5xIju5yMZ5yfnjN0I52PlE3FjtoQjWI7BtabzNHuDgf7DVqvmOmWua0Jq569Q8NimVn7jv7hLeKZIQ+Fq4/N6dev8uJnVhj/NHHfMHbnDKca11S4qsdvZBMefWIIacJvTd2DDDkpjDaTXlajjSMiaCxjDUn3jClSK0ujHWmeCVFRZ5EjxBCp3S7VLJFjoqSMzZlx2NIHj9MVw9BhjcFbx+AaUsws9q5Q2Ym5ECNDej3S1qpEyoHTceDOg7u8+qnPcPu5l1iNns+82pGHSkbkSUbgLlkKmkySP1tDSRlt5bVddNIkFetiICiGKess5Cy6WGDTDTxce9BmilaNGDQpIV1QJzQNKT6KdIZURJkM2ZKiBEwYJfICYCr2pABOF0YUJf89MY5J5z5P4RpKCV4ql3z5ZFNKpBAmjbBolo0xEtihBNN1GW5QCspYqmomBwAFeSqUlFZY64hhxNiKZ2/fRnsHukXpEe89TU5sfcCHglEVRSWyNjTzpXQCVcDahuijxF0rkcqUSXIyjCMxRro+cL4dOD4fGKJIY5jibY1tqNqGmD0hB5EGRDlMaISznFJiCJo+qAlBJlSKylggYxXUVYUzCmsU88pgdLlMvDPWTMafiLbgmgarC1oXhljw2zXuYIlRCjtrcMbw4nMvcnZ2wnrVcfzwAXdvv8buzhLnKjlgEUUiYK18prlgtCFGIUnkKcHPOin6jNIs5gtSfp2kUdfSGbbWSKGapZM4Dp0kG6Yk4+2sqCq5fr335IJ0S9PUFVZibrRadNtKMyXaCYbOYMhJoHt6QgiGJDQJowK7M83h8irbK4H75xvOu0BCY+qapHuuNDMpfrN0szfbbipuL7Tdcl0VM/GxraIEGP1IXTWo6ctWcpZD6qShjln00mUir7hJtmWtna57KexjCFRVLUl340DJQnEB6PuBemcHZxx+jJzGc8ZZg+knzm7fcbB7ld225bTpWG8V2jq8L2z6gdX9rTTjdYdR95k1hvMkenSnC7uzBettR+OsTCYo1FXD8dmGmCLZj8zbGccXYRRKAoPqqhIEYghcud7ytmtHPD7fZ1fLzyWT8MnyUi/7wD/7uq+jO6jZDitK8lTPvcT7//nH+PV3PMZxtWCdLf7BKWWzIiEINm+ypAMqTS4ZqzSRwqxyZB/5fzrDA6U5qhw+JazWmAzKKFwxFEkzpy+FK8bQhUCYNEazynE/RWonKX3aVcyVxtgJhVgiu7t7bO6f4MuWjdJoI4dyP/HgxQcwvS1Tka2NUHHa5UIOa1oMzZvNKfV8zrxqqeuKrhuZzWakNKWW5kLdVjSLitXJmrgdaA9aFotdtHJoCqWPDJuBcTsQznuqHdjf2aPvBxb7FcO6w5ua2Z5mZ2Y5aBc8+PTA7eP7bMyWHA9YXDXsdQvOnnvIdkwMVmEngs0FaShP4TBvrv861yOPPPI5X//1X3/vu7/7u3/fIpU//elPV88888znfPSjH/3El3zJl/S/k995//vf/+T5+bn5+Z//+ef/5/53/8k/+SfLr/qqr3r7gwcPfu3o6Oi/aHzxhophaxs2Q+HunRVmPnCyHjhfDZx3I12/oQ5XuP6WRzH1kl6d4pPBtAvmWVE1PS73pNawN7fM544HY8CaSGMyxSZyOGO17dmYTBxHfLfmvESKGfFFMdtp6NHUveZt73iKV3bu8uyrn2bZX8MyA2doZpXA4y8cJdbSx4DNGe9lY4sxCZ+xFIyawhBUJivpXYYx0B33zA4XbCaBrY6J4kQDm1SgDHN2bMXx2Wso1dA2DdVsQbOzwGqFwxDcpGPL0mUKKdCdn08YNI2PnsQI2XPy8CHPfvo5PvOJ57h/54R7dx6S/chTb38LL52OHK8DJhqUrmhnLU4ZcIkxFZySIAWD8DslBrlgDQhfDIxWODdFFhuHtQajK8GUxcz1q4fU7Za7J2vCkFHFoCuFchqcIyVFjkEQbKp8FmpHk72fNJFyYzFm4qROhppcylSQ6ktd6MXPXJrRLvdaRU6TvEJJWtcFTcAYC5/FU2ZCWsWScGYyC8aI0lYikIsSZFvJnB2fc3TtimzwBiKF9XlHTprKVlL0+0zUgXvHx9Q5YyqLbWA+c4I+w07BBPJafEh4H+hT4XzT4UOm7zxd10tEclFoXZBnqsmTMXIYt8JwngqKMo19i5L3RoxdmhQiaip4cwkMXsgbWmnO+/Xr72kS2YDILmRMrZV0LjWKqjbszOc4k5jtzNBWkaInhMDBYgcfPEO/5u7dOyhluXPrFkw3wlREOygc51rkKkWegzWaYRzloyvyPSlT4tcwDNR1I59lTkLpSImxn7TMSglrevrU88UUALB6Sm8zwvBNGUoJGGOpazNRK+QTUVqRQpwOWGUKtogYY6cCW6FLvgyfkQ9SHmPmNE9eWZKLoY+as83IecyMKTN0AykXYqWJcQqmcUK8UChIavp/CdK4iFk2zk6focRPxwDa1cL1tmYqhKVQHodReNlGSaBHmsyVIUxdYTNp7Sc8IrDc2RXGtbFToZ0JKXJwsUfrjDMNe03L8pqh29ZYJySFwc85Xw1sh8Dx6YZVP/LweERl4Xg37ZzTk55/8a9epHGKo2XN/sGS7qznlz/2SZ7+vKeF6zyMcnABnLUS9x0CBY2zlve+5xGuM6fzkZt7QpN49MZNdh9/jHYy3r3WrukOl8R8QGsrdCzAx+Cxm/hVoF97fIxoAzFrBjJlOSf7jEU06kYLqWQzevzBPqt5w7wbqRE9v1NK4t+ZWNCJyyj5WmnWIV5SP3TJEgM/dY+bdkYzeuyU2pliYnd3j4YF2/sPSFnLtEVlohUpF59VLxr7WWZlCtZaRu+FE6yFttIPW2ZzR91WbLe91JtKcHqpRBQaqysOrs4Z11tefvFVchiod1pM62hdzd7OEpMtEcPuXgOjXBv7hwuaLGzwqtLgNWpRICqGEbJVDHrgHZ//Ft5yN/PvfvHf4w9rEpqcJ0/PReDI1LD4Q72efbbi3r3fvl66di3y9NP+9/AZXa5/82/+zSeXy+Uf8g/ov3y9oWL49r0TXqgXdGctRzdb+lKRjWK2U+FmmnBSICsOFnsMh4rHH1mw0Yp7twbG5PDdOaP3bMZEHCznqzPs1mNtT7WwzJs5ySqKUpzVWxZ7SyI9YyyYpubhg8zSNZS85ewuPHH0OP3umodd5u7LG7qTJYEtqcDCilYtYYlZOK75ottYoPeyKVtjxEZmpqlygcWO5f6zr/Lg9orH3/Y4zY6FIZGNo3lkB7eoWJ124GbsXp1zfOeU4eE5Vw5usHt0BKaASqggmKkx92AVXbfm/PyYh+e3MVpz/PAhL75ym099/DlefPZVzldbmnmLq1vmh1eI1REfe97j8dSVIXuHXRb+7cc/w7Xr76KqDJYyYYOKvBZVTaaWhLEyRs4p4YzD6YuPW5KTvA8iZbAWnUZu7FUctDvcerDmdMx0SX7OloJRGqMFt1ay6CdFZhGmsARRRxQl/0sxkuMF3UCUdynGSfagCClip0Q7rbV0eqfC/aLQFdyaAN9KKqQcZOwZBV+llEGhca6WQJDChJCLknpXpGBJMTEOPRcJVjmJ0UzoA5bzzUhlLEb3mNku97aRzdka52p8iigCs6bCYi67JKMfiCkTYp7oGgWlLbWtSBhMrSkxoBAMmFYSSFJURqmMNe71G+2lHlp+Vgq8BJnpvUkywTDq8jWWErHKiea9KGojXdeLzlKeXm1WhTEW+pUn+Y7ZZmT36AhjLPfvvYAqW86Oz/j1j30a1zbcfOw67bwljR3eZ6rasR0GNFoSxpSWA8wUKJKnyUMMkRQjbdtOhajBOodDIq2994z9IAV+AWWnw9D0+Y9TUV0KWC0oLKWkW1w37SSzyFOUd8ZYi/dRCB12Sh+0U6rf1DGGgs+RKidISSKDQ6AoS7EG21QEHzE6M3eeRWu5cbBHTBXHq1O2KdKFSOkUKQorexz8FCEuyYR6Km5TzjRVRfKBTJHJhJxcJoqLwlhNjEHCFFIkxYxzejKxFim+YxS5wZTsmGO+pIQAjN6znQ6dWmvq2mFVpq6k+GrmC37107e5t7fg8KDlYDEjh54YI62rqXZqHrvaEG/WDKPlzoMzbt/fkGPLWLWMyXJ++oBT47h3XBGfv8crz79MUgU3s2il6bcdbdPCtptoK0GQZvRcX85512HDtXqHZ3vFa3fOL3YcMpG6lWv+6u4Bd62jGMENnqwk3vljVx/jk4ea07un5PWI9oZ1ypxTyNf3CauRavQ0TYsPIknJPnA2BuY3r7JXB+Yn5/Ro5vMWkwoL1RAVQqlRmkZZ0WAbg7sI8tBgrKaeTL06gCZLUiNy+Ntr54wbMX5ra9F2QmCmyEVv4MJzbCeGvBS+CZRGKbmGjTaEmPAp0HUDuzszqqYCJYdYYY9nYsnMFwtwmuuPXOOpJ5/i3mu3ufvgNucPVyTTQ/ZUtuLq4hBbzxjo8OeZ4gZ2lzXX9ufcPDzisFoSfeb43h3un99GH2jCg8Q//u9+jtVqzexgxmz3iFwarFEQy2VzQyl1GcP9h3I9+2zFe97zHrz/7dvjVVX4+Mc//vtREN+8eTP+Xv83/yCuN3SF7yx2Odg7YMe13Ly+YON7un5N33fUUbGxG05OniWuas7uR5phl2tvbygERr9FxyBmLZ1Z7C7pfaLylrapCGWiAVSOqDSac7lZak3yhaPlDu4Zw+m44mYzZ9AbTu723Ny7wts+d8b/MLyATpEbB3ucDg9ZbyctmXaMaYRc8FP0Zu8jXRSNX8gSBatRggKLBWMSv/nCb/LSv91w5VcOmM9n7FzZ5fHDJ/jc/vN5yxc+Rt3C+YNT9vYPeOTJfZIfuX//Ps/9u08QBo9DYbKhqitizmhnUE4xRM8nP/kcn/74Czy4e87+1WscP7zHzu4Bh49dRVcLyIZ+8Jyd3GXpWnRK+KbCaEu7sHz6+Vf54ne/lafevZhG0maSEKgJ9KWpaoVSgqoqk8nlMglB7tESvoEijZK0hlZoXfOWR2vWw4ZNN3Kyjmx70SGXJLIIPelfS5LugZ5Mehg9SRgyymgqayfDlGyoF+EMORfR3E4c34sOcc6CFwMuCx9A/htTlydPCXUSXKKIKVIXMWKVLB3rVDJGFdDlkmZgnHQSc5Jo36aZE9KKWVMzBgjJY4eeputo5jMwmVSimEhUxaYTE5QUtZIIlVKiZLBKkXIUQ1Pf4bSdpCVuQq5FlKsksW9ClyYD1ropmltG6EWL2adELnKshWiBpNWV7DG6IhcwlSOkjNIV1mjGEDBWOsMxdZRSWMwX6GIJORLDltpZDJl+veJuCaRgWB8/5MXnX+Te3TPe9u53c3jlCNdWxKQYQqY/PaWqJLrVWpmoyCHKiJ5X20kUk9HWEHIixEBVV5IEiBTw2phJwmwx2qKMurw2Ygg4K49TCnIQ8IApOFdRciZkCVpRU5e0ZEXtGuFLRyE9CHUDKidjZq0MMQ/oXBijdG11Djg7JSIGSaorxaBVCxeSDhs42JlzdTKJFpXx0RO94vhhYggZZS1dHxgz+BRF467kNWltpAgqYOPAMEya3DARVTBQQOlCmfjYcjgdMUrhjMih4oQzjDEKgg8I4yjXVYhEMst5Q1Vb0iQLy0Oh91te6La8cCtSW8XbnrzOld2W6D0KjQ+ZojVtW/PudzzGM++I9KPnwfGG04cd98du0vEnuvNTNucntNeWuEq6+f0w0G1lEur9SHIaHWtss8eV5S6/+ewp/7a9xd7OnCeVFLmL7cgmRYqWIrGLHaU5RGVD21ak2S4Azz3ccGt3F60LPgSs0pyUwLBoSE3L2GfK2LOvEraq2cZEdmLg29y6z9W9Q4yPVPOKmaooqadyDT55TO1IGlqnyNrgrMUl2RSNUjhnqXxmb9aSVoH5vKHtRKTc1I555Rgt2OWMcbtF40AJleJiH5iwOlR2mkyKZZaYC1VVEcJIUYp6MUPHxNCNGLWhrh0hRZG3KUMZE7EEAiM3Dh8DH8ku8NbPeYa3+ndw54VbvPrgHtXM0OhMu9OQbeG9/+v3sG+WNE1hphb0Z2vWZ/Avf+15nr91zAu3XkPtRPZcQxcLD++uybORdrak1i3bMVOaTFHTgQ/kgHah6//DuO7ds//JQhjAe8W9e/Z3uxg+PT3VX/d1X/fEz/3cz+0tFov0zd/8zXc/8pGP7L/nPe/pfvRHf/RV+K0yia/6qq96KuesPvKRj7xw8RjjOKrr169/7t/4G3/jtW/+5m8+TinxoQ996Po/+Af/4Mrx8bF74oknhm//9m+/88EPfvAUXpce/KN/9I8+853f+Z2PPv/8880zzzzT/9iP/diLn/d5n/cfqvb/oyvGyF/8i3/xiY9+9KM7x8fH7vr16/4v/+W/fP+7vuu7/idSjm/91m+98aM/+qNXQwj6fe973/GP/uiPvto0TQFpFP2nnuvv5npDxXBrMk0d2Jxs8evC4Nd02xV+jISwJvpErRdS2FQj623N0TBnd+cKi9mS9ZnjxGwJp4UqZVxTE4ZRjDTWQVLUzQxdG/Z39jk6XJBtxf3TLSfHC97xrqfZ2kzoMjv1An1DM44ev9rhXU++haM9g10o0nmhcRID2s5m5K4na6ECAPiU8CFJQai1ROAWQEMMHq09737s7bz1sPA//PInOL5zjn/5OT5uP8XP/ct/Qd1oKp0o2ZFtTVGBuoa2tixmM9p2jlKWoAJ9F8g+X3aUNsPIettLaEC7y5NvfYZ294h17+kyqMGT/RZnK9rFLsVYcvTE7JnNZvg+cbi/YH9/xiTJlWS0nKUrKwJO0qTTvKA8XDByQSQTxij0xGpV1oKCVCQiNUfYbfbZnxUOdnp6nwgJtt1I13t8yKRSSEw63Vyw2pIKBB+mQInXx2woJdrRwqWuFeQGEmO81ACXpNE2T0l55VJ7bCY6gb7ExOWJdRtBKfphO3XqmBiiTIWluMpDyqzXHe35iqqynJ2cUFmHntjKs/mMoe8ZvKfvOxbLhbB9/UAOBWOEb6yMSB2UMozjODGHNSEjN49KoYqk56UouC+rNVYJTzqGJNprrUhJzIsToG7qkBZ5b4qg9Zi65ReBL7EUnHHonIl+EBPj9JlWTUXbKJqqprG7zJqGppbud8iR6MukfFD4WNh2Kw7DFc7PH7CYV7ztHY9TcqCyDYv5knvqAavNSD2rCb0nmkwzMYALmmH0zGxFjKI7l1Q66exb64QAYTREmU6EGGX0bwwhBVQCfUF3SUkSyayddNWiCSUVXOXk0ASXHVnpqFaki2IxJdHJU4nxzDZoFCEmdDH4FGlm++wdXuUTH/8VZm1N27QYFD4GKldRdCIlib1WXov0pprieKdpRVs5lvOGPeswThjAuRT8MGKQdLML3q1Ck1MBu8fxySnaVWwGzxgT3TbIAdkYcknTRCVPfGgxFmYUeno/VFaXHcednSXLRSvXFxJJbNBi3AS6zRbXGFzt2J3tSKBv8Ize0toGXaxQOIgU0xOjxjrN7nzOwWKOe1Jz9mDFcdfzyp0VDwaPrRosFpU0IWbW20EKP2DWzrlxuEcpim7oefFkwwvn8JZ9z7sOLHcmrvD9sy3nW4vrZU/YW14nuCMJdlDnXNmTYmvmokwhtgOUTJgO+KU2MnCzGjVvKT6zmFlm1tL3sC6BHCLxbIVRIu2yWROBogpD9CjriBmcFp8FKVy+jjFFlns76PvnGO9RY6CqLa/jdQt9P0BxLGZzfHfM3FTcD4FticICLgnrpuL6dfUw2jh0jsQcXj/MKWhcSyGwPl9hncXWltnePtlnUo6UlOmOO+65W9x45AYuOTYnJ5zdPkY18I6nn+TevQcslg0UxTw2/POf/Tj1XHPt6g6HswPGzZpSNdzutpyM58z2KiKKMhZqU5M1aGehruiUp3IyvVC2/izjcyaGN5uPvx/rG77hGx771V/91cVP/uRPPnfz5s3wnd/5nY984hOfmL3nPe/p/mM//zVf8zUnH/zgB99yfn6ud3d3M8DP/MzP7AzDoL/ma77mFOA7vuM7rv/UT/3U4Q/+4A++/M53vnP4+Z//+eVf/at/9amrV6+Gr/iKr9hcPNZ3f/d3P/J93/d9r16/fj1+/dd//RMf/OAHn/rYxz72qd/J804pqUceeST8xE/8xPNXr16Nv/ALv7D4lm/5lidu3LgR/spf+SuXhewv//Iv7zRNU37u537u088991z9jd/4jU9+27d9W/qhH/qhW2/kuf5urDdUDPfna8adjriNbDeB3FiyUVjliMZQVRZnGmbLHVbhjNRFxvXA2I0UNFW1z+GVls6OzFvFVhn6oaGqKoqD7KXjVipxmJesGUdFDI5Xb58ynnU0Tyy4c9yxqC3LuqVtCn2MPLh9ztXU4ppMLgqybEo+dCiKFNzTxpcv4mBJjOX1gktPI2q/1nzBu/4Iv/LpX8eHRFtbbLXAOMvoO7bno5AgjCZnMKbGWcvKKR5sIsZtJcY3j+RiprFtkuQ5aua7e2StQSteu3dGLBByQcUi0cduQSyJyjrG0dPMGnbqBaELhFh416OPs9xvKNlT21rG5jJsxU0yBTMVlFAutamUC325SAlKETkCSm44wKRHBB/C9HgVdSN63P22ElyWgmFMdH1g23vWnSeEKRK5ZLQyUxfVXoYhFDJaZUqS7qyrnSTLGSMpZFpPOtAiN4uSL7vMIOEUedKuyfhcGL8SsiGPOQzDZac5qEl2gMgY+r7H+wFja7p+i1bS4Rbnf8QZ4Xb2oycmJN2s3wi1IkcwUKJ0no3RYnhKCY3EQisFJV3EbFcYJbQDlKIkRUrgqlqIFlNRPwzDpU7WWDuZAi/KY32pzU4lk32gcQ2pBHnNKI4Od9htLD7K5EMrjVWatq5oG0PB41SFtY5N6KWDmBXOFPoU8Ulz9cYuxw8zm02DVZrKaJq2QteK7RjRrpFQEBUZ+khVWWKSIn8Yg5jrjHTdS4jTwSuJ3jcVSgg4Z1GI+SnnIpzXoifDZL4M8zBTMl7JEkxjrGUcB6wVH0CmkGJh6Dy2SlSVxDWnkrBOg9KkLN1TORSCraUb1282DNuBWVtPhAt5X6VLKyEYPnsyAaXkkK2MQWPw40jMkeQKIU57U5LUQKcNrm0pOeJTRGsrnORcMLWmNZrQVrTtjINlTQb6PrId5Luz7TxDDKAUrq4AQxw3WKToj1EKpwvqgciQrISpaFC2wkfZ3wB89jh7iI+Zvk+4kthmy7DuWc4Ti8biKjEblhxJ8x4dJh55Lizalj5suXpll3Hl+c3B01Ya5wpGOfo+EIpmf28X+i17e/s8aGtm8xn7B4folNFU+KJ52Tj0KEX6JwfLah1YJOkoP7x7j/vKCz/bGLZeOshPXNvnoTnizqdeQCvNWEST7WtLlSUMRTUzQtjgSuaqrhhrTV/NeWV7giuFZDRl66EStGSNoAybSU7G5EMIxEv2vNOaKnpMjCxGzSYEVBQ5F4AtlnGMpCyNFkuFm6ZTcpjTZCKmvsCRvd5JLaWgjMYqyEFQOzFGfPJYA05pus2GKjdwoNCVoR4tXUpsuxF/e4upFM88/XbymSZcP2RnZrj9mTvMZ47GWVLROAxn2wGU4YVn7/OJ9IDQD4Qxc9z1DGHL3GkaVwkqr2ppD+akucZVLVbVZFPQWFKS9EtZ033izfV7uk5PT/WHP/zhwx/+4R9+8au/+qvXAD/xEz/x0qOPPvq5v93vvP/97z//hm/4hvzjP/7je9/0Td90AvAP/+E/PPhTf+pPne/v7+e+79UP/uAP3vjH//gff+bLvuzLtgDvete7jj/60Y8u/t7f+3tXPrvA/Ot//a/fuvjzt33bt93983/+z7+t6zo1m83+s2iRuq7L3/k7f+f2xZ+feeaZk1/+5V9e/PRP//T+ZxfDzrnyEz/xEy8tl8v8R//oHx1eeeWV29/7vd/76A/8wA/c8t7/jp/r78Z6YwY6ZVkudzg7XzOkSF1pTJDQBTM6SqXxQ6EtjsVshzB2qMriXGZ1usHYlqpa0rQ1jxxdZek8n/H3aduKqnX0o4yZvXdszwLPjmdsOWEYt3RDD6bindeOCItTXvj0bdaxYbatuBcG7t0dsevIYTRsh5HFRm4Oq9Ua2gqly6Vm+MLtHeNnaTWB4ONk3FEMMfHsC6+yu3NICQN+6BgnZ3tVt+Rcpi6fRllBgaUUsNuEaRpSFj2jtk6S51QWjuqwJsc1zlbMFzv46NFG09iWpMVUpxT0mw7TzNidz6lax7YLZB1xZsGVgwN0DRFNToN0K0uhcCExENmHcXrSnObXMWXAxTw6Z6hchXTXwmRwS/gQRA85mYJiyGgrqW0xRlQq7DjNXl1T9lqCDWy7wLaLbLpA1yeGMRNKmiQNopMDRyoeDPhRTE9KS9iIVnJDLlnwWGoKEFGSFjFRKgShZoyRbvHUOw7eQ5lkB0q64FIcyGNL6tlIXbfCJa5blmWJMRo/eoxzxDjSVo44ek5O5LsqMcJCgpDutKYgLnZ5bRptDU4bxuCJKWGdw0/JbBLhmydNpSS1xRglJbCWDrExkuqFVtPndEEbmEIqJiqGRqFLFP18gYOdBW+5cYRjA8qhtKHrOkKU2G2foKoaNJZu7KibCq0sw1SctDsHlHrJjcce5+YjmV/86CfISjOOgRgyzrlJqyyIO0m/q4mhULImW43xGWfl+Q2jkDHatiFEwc3lmGmbVjpN2uCng4vS0tFOyaOtxRonh47op+AL4RUrrfAhorTosXWRjvvoI1jRZJvyuuFO4s1rhlFQZiF4ilcMw4gxhRjANQY/XqrHySEzjBE3hRgoBFOolIQFyXdGo5Uhk7G1xKWrIhMKpRVV1ZCGRIwKX+SgnbMUPRsFMSpsSjhncapQzTPLtiIsa4YAq+1AP3rW3YZ21vD2w5soV9BVZtNvKFlz9Zbcf95y7YC+mbMZBlIJLBcNm1V/2cGMZJRTaJ+JY0dP4jyMpAxu46itkemDku/ObltzbXdJaw1aZ3I2ZK0Zek8KgZnRFOuwVQMpEIKnjx1uMigbYBgHjo6WvPupp3jr9SuCC6wF1TZ/UTBpf+Rm4eQosNddmGwzKgxyfekWU7UALOaGelTE1YbKyKE3VMIv9zGiizQzfG2ZYdktjqF4rDY8Vs1JObPVUGeFK3AWAwvXEEukRdGXhJ4wfMY61AVNQmnMZmQkYnWNqoxM3CY5SHSKWaPJQZF6uSYvDug6IRKbylG3k2l6SvssWVNVLVFllFF4BnISZB9FpGdoMM5irGjtUwFsTaMUaexJIXHnxTvszGYc7TyCczAO4FxDPbMoLWEkcat49vkzBr1FWY9t5jhTgVHYZUPda9LYU+qMz4VgM3tXDulMAGUYukHuI9p+lu5+2vPVm5zh3+v1qU99qo4xqi/90i/dXvzd4eFheuqpp4bf7necc3zlV37l6U/+5E8eftM3fdPJarXSP//zP7/3Iz/yIy8A/OZv/mY9DIN+3/ve9/bP/r0QgnrnO9/5W7rNf+yP/bFLKsSjjz7qAW7duuWe/h1KQf723/7bV378x3/86Pbt29U4jjqEoJ555pnfQpp45plnus82/733ve/ddF2nn3/++Wq1Wunf6XP93VhvqBhOMcmY1BpytjSmhmbBNneQLbEEyI66cixqjQ81TbOgWgRU9pxvtiKr6DWv9g31TdFyffwz5yzmmiEE/Laga8Pu8oDrN4+IM8eLzz3Lrilw7WU++nN3+RNf9C6eePQawRsO213slYbOH3Pt+g5711vq1YzDR8VfXdc1ioImTQXZFMY1mU9AiiXpMAoRIYWMT5Gz9UC3DiznNaqZkYsYWFTRTHNeMcsEKUNd1WDaGa6dSdcoG2wzx05FWMmRNo6MQ08eenHy+UQq4sTucqG1NVVlafZm0q1oLKt1zzgU3Ez0v916jQ87BMJEplCTDCK93mXNERCpSJkKmgsWMFOnSSs98VoB8mTMylinpwS6TM6TpjVlStZoLGiJd75w8Dejo6lqDptCPIjEnOjGxDAGui6y3kZ6H8jIqDuGRGUN2kriW0oJ7STNLPpRZDaCELgcJ5c8sWRzxnuPczI+H8dxKmTkvdFao7TB2MlMl8VgpbVmu90ymzeEEGiriqZ2wtMskFNE44jZY8wOp2drnHHEAHmSBkDCKsMFA0FrCRgJIVwynkXGES/DB0pBDIMlkaPHKDmgjF6kVxHEUKfsVBBGUko468C8HmOtrGNMBa0tV+c1T9/Yo8QNQy5TIESidg11Jc/Lh4wfE1ZJIqDKiVwi0itXqHoOpsFVS3y3JcfIdhilgCyaw8OraPPJS0Z1iOMUQFBQWjTq2pqpWNWE6Knqmqw0pqqlcHS1YP+cw1pHSkW6/SVSYsDHSGNrCorBBypbEcMoUgOl0Uaz2FkyjvHSgKgry+GVQ4pWpOTJXsgGIUYxchbRiKcUQGW8H7GuoqAxU1Ry08jEYhj9ZFJU9MNILpPUKGfQhkRClTARZwSnqLUcaMiFjGa17uiGc0KAPgX8pG8vOWO1lcAdIul0TV1VLGYt85mldgpXKaq6sJi1kFty3OP8fMutkxOMsyyWM3YWV6gN7J/J3r9cON76yAExJ843Ha/dOqYbAlUje1tVWUmgrB26GObZkXQEK8W5IL0VJWSyjzzwkXurDmMdKUQqZzE+YpTi7OEpI9DMGqqmku+Yqjg7WXE+8YP7OLK4cpV2fsAv/vo9lteeZI+Oqi80puJgsSfbS3EMITJMco7aOayZkUrHunvI/tQZPlsl1ptztI9EnRlzpCwbZssFwyCvw2SFcTWHqWVRFLEonB+Z1Y7NdoMDZhiyjxy5GpsCu85RaZkezWYzhnGktg0lyfdQOYdKGqxjnRNu1hIUuFqS/UJj2FeaXAzblOmVJCz2YUvU4FAEVXjssUfg46+IVh4x4WkVscZSlJI0ywBtVdGPCXTBGo0y0rH33UDKQpwwrmauFX2niKPm+U88z/HRLZ567EkqtU9aLFCVQ6mCUoVN7vF6oDhHKY4SDUolkpJo8LpZiHQoB4yyxLEXKZUSGoYzTiR5JDye5KeaJ6fLDvqb67/+9bVf+7XHf/pP/+l33Lp1y/7sz/7sTtM0+f3vf/8KYLVaGYCf+qmfevaJJ54In/17TdP8FiJFVVWXHeCLRtrvlCrywz/8w/vf+73f+9j3fM/3vPre9753s7u7m//W3/pb1z/2sY/Nf6ev440819+N9YaK4ZwSTmtUrfE+sahbrE6EUDAZKD3BAzgygbP1mupWYH6gWa87Ts89/TAw9CNV2LAbH2XrKw53D3niKcX91UP8KgEalbZszgp5POHhqy/DyYyrf2LBx567xd3TKzyymDFfzFjUmZJ69mqDTh02JEzpWa0eAOJnUFq6eRe4KK0V1jBFwIpO0xjJItqmUUbYqYciaUdd15GzopnNMVZKIUO+7F5JClbAR4/tLSUqlLWMZSQU4Q9rbQV7pTXazbD1HpZMLiM59JiSqFTBao+zNco19NuO7XAKpqJuakAxbjsWMwtFT6zfhpKKmP+KRMym5C8JBMbYy0KfC8dzzkCRn8lpGm1HmFzwpQgfVRuNDxeYKjOZ1qbxNkX0lGWidMQIJFL0xJhpdUPtFLsHjuv7itFHNltP3wdiBduY6EeJ/bVTEAPKoE1FjlEKrsmDXkgoI6CwkGVselGAWmuFHzwdaMbRy2NaK859ZbDW4X1gHEd29xYMw0AfNszamtPTLXXV4oeB9XaLUZbV2Yr9/QNizGzXG6zRBC/FUlKGpA0xTZ3tokmDxzqLmsb8IBxerbSMuI0GUT4KaaMIGs5NjvOcJ60qEL106JW9aODLQYaYUKWQjOLeqmcYBx69scP+TLrVuShKluS+GCLkRGWE/CAs5AsCB2AKSQs+iqJFr6syi8WcUhLnZ2dcu36NxaLGaA1F07iGHHsqV12GlyglWuWUAkrLQSRGoYsopKseYrw8uOSsyFm0mDFJIldRCpS+TNHTTvB1uSS0rsmqTFHjgoMbxxHXtOSosc5htSTCxQlxNnpPUVA5R9YaZRJKN1DMFEEuncHgRephnBWZUClkJemPWiliycQk+C6NdMdKDKTspVAxBqxhjIHt0JOTISn5vJy1KCthMynJYUrpmpA190+3mFVh0da0tROlcU5UzjJrG649csjO0YzBB7ousFlvOY+JegoMurgD1LpGhZFuO7D2nsXBHgDPPHIFt1zSjYEhRjZ9YAiaXBw5B1SR68haQzurmLU13dARo1BHwjiy8p7NNrDeDISYsJ3n8Rv77B8ccPpwS20b5gsDZ2dcu3KNvHfI5viYuA78wn//r3jqiatYVzGrKtK5FM1eFVR6nbKgrMZUBZcbjvYOqc6lg3z3xHN2viFnTyqBgYTemWG1YVE7Ap5uHDBkZk1F6r2QGsi0ywU9mUUEDOhScCGRVeFIGXqV2G/mpImJHXO8jA8fSuI0RkFWpoxVkRQV/kJGlxWz1cBwGmiCZ5bBZAhFDkVCxyu4qUVvJz18VWuODhaMMRMSdGNGG8c4eEBPrPs8SYQSab3FOoPRTjrOSnP1aI88Zg4ev8a73/lWdsuCl1/ZEpuIUYVQMsY5CAMqaJQJJCJnHdSuQpPZdB1aGVozRbYnPWEPM1EllDGEkrjguVfGvo7PzJlp6Pjm+j1czzzzzGitLR/96EdnF93Y4+Nj89JLLzVf9EVf9NtKBL78y798e/369fBjP/ZjB//0n/7TnT/zZ/7MaV3XBeALvuAL+qqqyksvvVT9bssMPnt99KMfXXzBF3zB5tu//dsfXPzdSy+9VP+HP/epT31qttls1GKxKAC/9Eu/NJ/NZvmtb32rv3LlSvy9eK4X643JJIxlb2cHrx3ptEfpRNGZkcx6vWa12bJZZbbrimGZOB88FoPeqYlGoxtNU1msi5TTjioNzAyoMbBjdqkPjzgtD1ivBvq44d7ZKc3hDNVcY3k0pz3Y46mb8PZ3HXH37B7uZMuolty4ccijj1eEsWc7bjg5OaY5l05KZWfoqqf4dPl9NkbSxCgTEaCIcz/nTFMb2rrlwdk97rx2mzkHpCyd123fiZGmadFKE7Nwh5vKknWBpKhqN3UnISbQOmNNIpeMH7wEMCTZcEzrMA4xyYWEw1F0nLpUCo1lPhOXcQg9hEKlLAeHcwHIZ0VQSUxb0w3Oj2FCuFox8JSL1/d6pHGZUGD5gsN7WRQDSQ4ISk/juiltq5QkXeSJ8CGdTy4NIWjQSmFNBVWhYCgYgo/kCMa07Cwq5q2nkOm84mzTSbJdFlmAj4GC+S0cY6ONaGxRos3VU/GXEnGIk+xA0F3nq3O23VZOsdNjLhc7HBwekUuZOrbgvad1Fct5S5nMlN5HSki0lYOsWcx3qNuaV8aRMA4SXDKFt4YUociYuUTRtqaJfay16JxTiPiU0BPvNk+yk4QUpXpKyBLNrJqQZVN4xISrkp+RacxFV19rj1GW021m++ID3vHYAfOZwthK2MpZ9H1GW0KIKINoYk0lZbEWw6Ou5HlJ0kOmcYaz0aNVBaWisg1XjvY5ebChaRpCGCRlS0/67VyksCnSwW8aQappLWlcRiuC70lZinlr5AavtCbFSN8PNG1LjglUmYruwmzWkqfvW84iPSokjIGUPFUtwSN6Cvxw1hDyiKtkCuKMFBfWCDorDlsxQCbNBc5aqcyYPEbL36Ek9lsZS84WVRIxixzDXaCxpCkujzv5BbTR7C/nzJqWdeeJObMdBmJMVJXo6xXCqlVaEhTruiX4SD9kumEQ7fs0tbGuY3d/xrVFw7JpyYtCClHSzzpBlA0hsRoy2Xsenq7pQyCWxJVDiZ+fzRquHu5PyZCZs9XA/ZP7VAtDTJq+T4SQ6X3gfIgMKdG6CqcTy/2GpjWUOLLZFh6crVlvt3RnG9pZK5jDJFgwqdRgVgbqzTFtXXMwg0Wt0JuO83TGsalo1lIM39OWV4AyypQ0e80QFLkPvPLaA85/5TO8H7j/8D5jFykqUFIkWUu9sxSDma0YR0/IkX1jyMHTR0/OEK2CvQXr/Za8DujVhnkpRFOwiGxiN2mqAlo5shGk3cE0gK4zk9m4oLQjG0mOC1G6o4OP0FQoG0FpckAmWROkx2iDABcuOsLTvcbJ51AZhR9HDKJVl6TEydg8aY/N5LXwQ4YU0SoTTeTxGzdY6gX6oBVd9nmFNgFbGzIJnTVGW5mYNQZcxmqDUoUc/JTeKbInjBW+fBzJCvT0HU5IWl+mkFOg0U68EsAQPOpN/9zv+drf38/vf//7jz/0oQ89dnh4mG7cuBE+9KEP3bzwxfyn1p/9s3/2+O///b9/5aWXXqo/8pGPfOazH/Prv/7r737oQx96LOes/uSf/JOb09NT84u/+IuLnZ2d9Nf+2l87/t147k8//fT4Mz/zM4cf/vCHd55++unxR37kRw5/4zd+Y/bII4/8FolFCEH9hb/wF578nu/5njvPPfdc/X3f932PfOADH7hvjPk9e64X6w0Vw35MnB5vOeszxy9uCCO4ReJ4GHHZouqWepFxpqY9sBA7dmzLzaM9Mg3r8zXDuKJrBu5vRgZ/F9+P3HttQI+H7F9V+KzIUTObz1nWc+zeDncfbnj80eugK3Z293hib87O/k1ihNXpOWnY0CyXdJs5R1fnHB4t2Z69DMC160/wyvAyVsVL97qrLNU0Wqe4iQMpxVfKFZWx1JXhYO8AvxJZgCHSj+O0WQWqqqGezbFVhWkrcujJPoC94CBEWtvgmpZmZwEF4hipaocxms3Y01SWMo40s5Zb9+5jiqJgEXRtpjIFpTL9eoOyBlMK83bGclkRo6ckCCbQWDHsxJgmo43G+zixIdVlARMvQh4KxCia4TIVYxdkB6szKUIqUbSbSk0kANkolYLKGChp6qjLaL9kyFk0ukYZGb3lIgl3djLySS+VUjTzSlMf7EoxXAqpwLrrWG0HxuAFcaeFz5pyFh0zYpg7PnlAzpnNekOKEWMcMSVh7FpB9EUfSCFx+uCEYRh55NFHSSmxXq1IOXLerRh9R0pR3itjCaEwjgP1rAYSp6ennJ6cUVuHwmAdYlM0MrJn4jcLPcxQJkNYnrSxlasnhFyUeOEokoGUEiFntHmd8lFywRqLUWqiDLwOvAdh0Co0JChGYZsGrQPGOYy2lKyxVoyaeYrIRUsaYEoFnfVE5FCM0eMmU490uCX2uNsMrDYbrl2/QddtOdjfYX3SoymCC3MykVAK6RZNOvTa1fL5K0nXUrpQVZZuGGhnc3kNuZByxNUG72U6NJ8vRSMOjH0PFPpuK9cdEnGuJslPjEHGx1a6xOLSnyK5rZWIaSdSDKslJCXFiMLgbE0xIl9IUTTR8/lsev8njacWUogfI1ZNITGVxWlDGMFWmnRJw0jSUc4ZB1SNZTHToB3dOGezGvA508eMD2L6E3R2JIQBZxtBFZKpKycG16xJER7c37Jdj+zOKo6WFc4W2taxv7sDwI2jfewj1xjGLfOdyM5hxcuv3mfZiua2bS310hI9ZGXYyZ6S5lJEaTVNwzLDEBjGwKofWA+BVR852Y6gYK9xtHXLWx9fUOnM5mQg1I7+fM3p6TlyxcjY/JUHGz5hRx47vEbQlrWxxNCz1ga1mPPo1Fz8lS7wibXiq87kzx/56K/y/KM3UScdebPl8V7+xeb4IcErKqtIsWCaCtPUKKUZ+pE+B2KOHKmGKhUGrUm5MNvZ5dg5DA15R7FVilW/xiVDVoWr167Qak0ePXYI1LFQkdiZeu2Hizk0c5TNJOuIOTNU0vAAOIkDWyJzZcjTflaAoIqQa9BoXS5vqUZNt1YNMSSCl4lDLhLuJB6BMB2gBREp96OCRUnUc7bkANvtwI1HHuG896hSY3QthlndyEGKAVOU7IdooQOVSO0MKMdYEtYatJZpjQQRaUpkCvaRhk4/eHTJ5AI+ymEcQDsjh9Y/rOvatUhVlf8sZ/jatd/1I8Pf/bt/99Wv+7qve+LP/bk/97YLtNrt27er/5xM4AMf+MDJD/3QD924efOm//Iv//Lf0lX9gR/4gdtXrlyJ/+1/LRrWKQABAABJREFU+99e/5Zv+ZZ6uVymd7/73d13fMd33Pndet7f+q3f+uDXfu3XZh/4wAfeopTife9738nXfu3XPvhn/+yf7X72z33xF3/x6m1ve9v4ZV/2Ze/w3uv3ve99J9///d9/abz7vXiuF+sNFcMv37nH+oUHbOcVvcoUXbHYqbCVJSlFZCRszsn9KTN1yFnT050OnD3UZLthsz0nDolETbsLy8U1OOzowzHz2YI+renGiEqOEEZUgBuzFlvNeHA78oUHj/LK/im3Twz7+y3n3TG+N5jWUWJgGw2mVFw7WvLcxHt85TO/TtqrMcZJMAMQh0AcBNwu2kcZ71KS3PhN5mjZEMLImBK1suweHLBIme12g+86Qn/OsF1RNXPy7h7aGpSpSViMqylas00FmzXjcPEdcoy5IgVPvw0QO1K3ZmexQGVDlzJE0chaq9ls1nRFgPYxidlqXjmszowxU/NbjTzWCdAnpoI2DmWtJIdpLokTIHHUqRjp5DqNzxG0RWdDJoJDRuvoCRIvhkNnKjHWFdGlFgUJ0LoiRC8SV6VJOZBKJiV5bnEyEhYUCQnaCD6JqUSJQQ9gWbU0riKmxLYb8F5SAsM48ulP/SbeB6p5ix97SpANHq0YRw8okU4M0kk1yjJ0G+q6kedSMqcnDwjDirZxnJw8QKeGRes49watHanaEH3k4GDOwSIxbu/z5GMz6mZJiop7d8+lO22k6DWVQPwl6EJTouCQ7EXMrnOAwtmanMqkSwaDmJIUWcxGOVH0hMibJBQm69ejjoswsUvJYKQYbQk8ef2QpioMOWFUwXcdtbWMUbjGWhsp2KqaiaxLJqJDYXdvB61bupSYuYK2CR0zJ6ennJ7fZ3/vJlZD1QglxBknV4+ayiAzcZTVFPmtzdQtT5dpW/P5AaaWoAFr7AQu0VTVgrbZJU5dN6sN7e4uwzDiQ5DkOgV+GNBZNPDGOtwU1BFjYPQdrnJ4P06SGrkOJKxCitV+lOmQH3u0dcQL3bwxokvOoi+XIiRRmUIzr0hROLGpBIhRkvcIhJCwRlNlJ5MVwE2JeMMYsbWh1TDfr4S7rTQn24QuFj9muhGCcZOe9AI5V8SYORn2q6rFqIzTFqOsHKKSYtiKprZ+6QE7XnHoDM5CvdzBfc4u9iWRGTz17C0OH6xkZKMVpMJ2vcU8PKfzUZRiGUKOcm0qhbGKMXhSFvnRcJ7YbjagLSXJYe7wyh7juOHz2pY//fg+uydnALxLJayyxIfH4Bp0lXGm4gmXicevcDXJffjGv/4Y42KH9KpMTVfrDcf37tGiaS3UE3/YakVNQZXMoB24mjJ41jFTuhFt4cnHb3LjJBOHkWQ0iRG309ArCQNqXAHm9CXjCZAL58qQrxxKoyFGShDSSVms4DOf4oWDA+5evYbTFad37nGuBp58/AmO9nv4xMfRVUv0kURAK6jNjHM29KoASSaD0XD8UMy3EamLnLY0TYMqnehulUb5QFRQlCGGIOQRbVFFor2JhaQhZ4+ziW1KRDsSR9EGKyN7jDMa7wcJkCkt/eixRrhCGSPTOldRx4CiYHWF1SIbVLkQ/IgnTBO2yTCNoa4MvfeXKFKnNOkPM0zi6ac9H//4x38/Euj29/fzz/7sz7548efVaqW///u//+YHP/jBhxd/d+vWrd/4D3/vC7/wC4dSyq/+xx5Ta813fdd3/UeZvwBf+ZVfuf4Pf/dLvuRL+t/u8QDe8Y53+M/+923blp/+6Z9+6T/yo7cu/uHDH/7w5b//bPLEf+lz/Z+73lAxPN9tsYdL5ruO3gWciSzmLVZLR6fkRCxI8lbXYwv0IZJ9xDgwusLUBVUSlIgtmYPFkrA74qxlcbCPOl3jNz1RBWKyxD7R1AuWT+yxPZER8a3VA16915HtAKHF2jnb48iDF7ZcN3uscuaV127zRUB38hC1ewOMdCwBKVy1ph8HIQJoJW55GcYjcbiGfujRLAkxMPQeUxmKLjTLJQoZlXrvyWlAacE/lSQxq0VpSq5Y7i5xZkFRoCqDbgx+ff7/Z+9PY21L87NO8PeOa609nOGOcWPIiIzI2XNhl4E0pkqNQVWlws72ByyEC4HUUGrZarlFC6NuLOgPDBbCGD50GyEBNmChNiIbyeDGTdFguwbPJj3lEFNGxL0RdzrDHtZa79gf/u8+EVRRzowqypgkVigzI+859+yz9157rf/wPL+nTWShWy6YSxCjxhjkxqzaTlYd0tQ03koa1VM3j1kuHJJLl+jwgu9SooFWVV1NWksQmYRuz/ugGaaWVogddKly0VNUdLspSZRxQakD3kwoBVIk19ZE2EZ+qPjOU3NuwRmG2ljA3lh002aDFDZhjihT0bUyx0ScA67rKK3ItmjWK0suEj/8i7/0IjlL+tk07pnGiVW/IIaM7wasKmw3e66fXCPEmSnOhJzphzXXT69xdHQCRYxQpQYuN3v8sGBlPHZYcP/sHhRLKYqjYcCkzLyPPPPk+7l2esL+8oz9bodzR4QgCXQpy8QvxNTWx7IUN0bieIuCmlvca4jy4heRDygLViUx1SmoVqNEdIuqUpjYpmFXtFjpNuHPWQyK3bBmv4+kWOmdpWhJapvnWdBwxgKClqJkaXJUpqCZskz0V0cO0kSu4DtPCI+IsbLbjty9+xa1GElvNBqrbUtVq8hvU7nYbFgs11hlqLngvKQflpQpKaFt1xIIFSkFaRjQpCrUFpEnWAqFEBPjODMMC5nW1spisaSWLBNorVHott0QvfWBoZ1rwXUyLatNBzkHmZD3Lb3uIO2pRdIJc/MKpJya8bFirWO/32H90DTfFTRYb0ml0PlFO4+NNDdFZEP7/UznLL7rsEAKM8Z5tLZcUxmrZWKdpTalFM3lduL8UvjYMTYZRjNj7qeZECsPzibQmmIq/Tbwzdbyzf/4x3/Da/Rv/2/+h3dzSf/ijxf/zX/8f3/l81/UX/8Ln/r01b/vleJByJRd5NLDZk48sW/yiUN0YrXEMrOdRtzc88Sz76NMmeP1ir44zGsvkVUiVk0xiknBPgT8cklVFdd56mJgCgrI5CBNIDWjsGASWjkOo7wHj8550y1YDyvm6pi2e1576R66kWXmorismYUT3nGuFW0doQSy03htyMrJkAPpRUCuZ533DL0nhIyzFcXIGIN8vnVpPHbVUJ0VYw2d0sRY8E1Ct9/uwPTin9Bw2I4IAaU2SZRmsVqSdBSmcdXCkneHYBzZ3EDjdWdplGNVoA/eEdWCa9zVfaM0mdN/0McHPxj+XaTL/dRP/dTwy7/8y8M3fMM37M7Ozsyf+TN/5g7At33bt53/Zv8uX+rHu9MM64nL8ZxoLeNmZpM9y5VCucg8joRcxGVdRaR/MngejXtKLQy9xZcl83ZDrJkpeFwK9OsO7Zd4v+Cpm0uWvSaOpwQT2W0zcZdI20jIkVvXT7h20klREE7Zu0i9qNy4viIVzXCh6E96tmpPEsErnRc9YEmJ1BYLtR5CIKSrJx8KQdFm5gJGd6zWA+Gy3USjgPJVcaTmzPe+o/M9ShtSrSyWa9G4opimEaUSOT0mbLYshwGSIm4reU7EMOO9QTtDnGbKPOGtlVhabSjaoFSRQtMoht6hyoKnb14jqkRJEiEdqZimj021YKowa20LqhCrX7sUXumMpAFQSNDGYX1XlaCscs6yolZiBDNatWS45khvtXpN5UrDq7Whao1Wmpgi8xwx1qGtad8nE7SUE6VNJrSqOINgsor8liXJ6l1+qhAZPvyhD/L8c89yfnbJg7NHXF5ekGJimifSlPDeo51iN22xSuFU5eR4zdPPPM3J6TXByOWA0Yrt5ZZ+scD7nuWiZ3lqeHLbE/aFN17b8mg703eG09MbODUw7SOrozWlRIYxcbwSyYuwrBS5wD6IjEMp4S2EEJhDIKZMzpWYAtZ5MQFqI1SMWnFKceNUmhtvZBJUamNOV0WulTkkdlNgGJasB8/55QUXlzvuX1zy4FIm451XrPqOG0eKhbcS8asqsSUvSjCKvFcxR3KsjLs9p6c3iCESS4Tq2Y+B+w8fcnJtzXa3I4eZ09Mb7C63aARdJjIYKdKtcdI8NiMpRqGqkQAJ68mqXjUJslyo7PZbnPOgJfwh5YKzjv1uTwgJ7yVDsdRMikF06VfnWDP7GS2EEKUZ9xP9YmjkDcFl5SzacKM1KCeipVKoNeOV4AsrGm36RkyRxm2eAzEmjAcQA2RujYSqlb5fsNvtcE6DFamRoqBVZhhWuM6jcsU7I8aqVFgMx5QshIt5mhjnRC6KEBQnJ9fY7vf4FpMuRspIJRCiJmcl24IM8eQaf/YPfIKjIK9JyRKEUHLFO0csiespsogRVQuqiv7cWwmOqCozl0qcE3NMwgtPQhrRRqb79YBgRLW0yRa9rbWEmihwRsyR2hrGzrMZBnKWvzPH0KachnG/B6W4c7nhv/7pn+f/+Tu+ns94z9nlJa/v9rxYEunsDO0Mzlgm265NQfTouUA0laoV427PerUgWbl2p/MJFyr0Is0aFp5t15FTZG5pac4Zivd0SlGqoNDISdjtqWCNDBAOMcO2H3jr0WMe2QuOzUDfeR4+fsRpFNpE1bDJM7cXR3QJrLOkNBOLmFeTqniVub5YyBVWHwrJQJh3dFpjcyXMEW+E6jHPEV2aNr7Kc82lUI3QTIyVbcs0zswhYoZeDNxKY40jz/vmT6ls55FC43s36ZuYpgVcfhjz1CpJncLCVo0rL4ExEhctBbPWBmffEVn6BTSq7x3/2x1/9a/+1dvf9V3f1Tvn6pd92Zft/tk/+2efvnPnznsq7n/Lx7sqhmOJbLcbFn6F62B/OTNvC2ZtSVicyVSVGHPl8rKyfvKIBzaRq5bCY2mZl5qgEteyZTX3LO4s6K6tcOdw6/Yx3WrFvYePePj6A15/4yEXd7c889RT2KGitonT6z3jZeSijKTzmbo1RG9ZO0vuZ9yq47Of+TRuI4aTeojupcoVDQTqX9++YB3MYCVL8k/MlcXRiqefucOv/ezrLJarqxWv0UamWUmwTCEGvFVQFWO8JKWEM5bed6jOkufMOAUWbk0qgct5JOUsaWTWkZNMq3abc9arY5xS7Kcdmg6vRRc5eI+qBqU7/MIzR5n2llpEZ9wYtdbadrNC9KAtWa+WVmA2ELzSCqUbhkqJDlc3Pq92Goy+Sq1TpkUlNykA7eeVUqkqM/SeVCUFCwqlSojC0A8oIzHD1juZIBuNV53oWEMQVB+yZg2ptDCJeqW51VWmEkvfU/zAydGaO0/dEGrAPLHbjrz18CHjOLPdjQ1jBbeOb/Dkzdv0iwX9ICzRkiQdz2tLmSPDqcX3Ygr64Pue5a3XXuX0w0/w4NGe7eWWN15/TWLGhx7nFX1vqAiqSylDmgvODyhtWXWJ2mu0PnycBiqSOrjdTqRc2E+BXDMlV1S1VCqmFubdjrVdsFx5lusBow0pQ9c5UhQ+byyV2IrAG+tjxps9IRU2u5kQMilbQoJX7j2QFW7nOVqt6Jxl0TmshpS2qAohZEqWCXuY9jx68Ba3ri3wfYe1cP+tN5jGHTeuX+f27RucLFcobTi7/5Cu62UvkJOkyNE0qFWimFOKLYJbCteiizRiWc6jkmUbIhNVizK2GRjleVoruvdSRTOvqOQURabRdS3V7hCSYNjuR2LO6DmhjMFqTaql6YBFflBqi+c2wttGi3RntV5LypsyGG9F6wwMizUxg1aSbqetrJbDXNjtRnybGitV8c6SkzBjnVU0S4KoUHNpDYB4FSKiz9/tRkLxKGPJMaKM6DG1VjgtCCzbeahghBVIChGtNGerYx6j8NZCyYQwC0qs/f/XOt+KFk0MUXo2pzBFCqOTa0tunR4zjzPbKXDvwVvEBNYNxBjx3koYjzKoUqkaam7hOUoii42zXJydsej65gHQUmwCxZvG/K6Y1TGxFHYtge5F63l1fYy6eQN9ueH2dsNuO7HdbUhFNgPQDLlVgllmlTnbbbl+fIt5tydMSiLFL84pSjZFThl6D/e1RZnCHGZ812GsputFU5u1JesRZUXD3XWWNEcxi7UByepoya2hZ9xtOT8/p8wz1So2szjsKghZovf4JKKjiiOldo6jKMayGxtGtWn+092JZadJgybpLKEuWqG7igmVXBMU4anHmFvjZ66upVrJpnKz37MeFnJ9FViiFLFZUVIh5Yzvuubck89JjmIw1voQ6HPYOoLgXxD6kGrR7odtFjLUOrw4whn/t06yeu/4Io6Pf/zj46/8yq/82r/r3+M/hONdFcOqaqyxHB9fhzyRNaxPe1a3IJYVNVRKHjm5qYmT4amblmH9JOYy8tQTPdvtjoejYXqc2aaJV998jHl1yVZpNvcjbz2YcH1gm84wjCxXe8JS02O4/tQxn797yVPLzOVuS6mJh48f8vD+jHnDUjeeW9dOuXd9y+u/eo9vvP00ACVGMc6pjG3u2FoESVNrluhgLbGnIRxYwxmKY33co410z1hPNlBzxmpPP6wIMVLUSMgRZwzUQGVmjoWcFGrqMM7TdQOX2/u4TnSI1rqWQY8U1TlS4szm/DHLoyMslRImWS1Xmcjtx8xzt9dcu33CXPYwz2AyNVa6ocMYf4Vy0hpKShQFWV0JP97R3YuzvbSLnj3g17RcIA8FR86CW0utENPaEGOSqYEzbTobsEYzBSFlWGtaqpzcgI2xhBBFs1oLSjfTXov2zaqSiySZWSWXXO/M1bU4F33VtOSa6BRkVenXPSfH13jiiTs4OrbjxGa/l6jjlIhzIm4j2/05Whf6ToIdut6z220wRRHSyOc+fZe6z9w8Gjg6PubWyRMywZz2FCDGkWkXCd7JuQCUHFBUwhwoVdE5B0qR1SxUAGuhZnoH65trjLXsppmUKzFnxmlmGjMhVS7mwNndEYtm2XWs1z3KQDd4vNL0RmGtol/2mJJJIXPsBuyy48aqCUCRKWUup1zuRi72I4/Pz5jniLMdnbecnq7oewsD7C93nFRFZUeuE/cfjrje8dST18jhBndff5Ot2fLM+56hPzoiAskaei0r1KltD5TWggusEPcjWVXmLE2ZUgrbWXGvNzTaNAf6YcEcIjVFDutaUCgtyW6gMcjjVER2o62VohdDKoWYCuMsRYRWlpJBlcI2TFgnzvpxmuk6CVsoJRMjaFWZi8b2CwqaqgRPqKuiVnHyG+tEU6kkna6UxJyFWGKsb7ph034/SRq7du1GM1ppnNbMOWKcxhbD5vJS8H9esbyx4vio4/HFlseXW0p2ood27moiB2AQYkZWjbTRWygaXSKaKh4AVfHecbO7QUURrTTElILOBae0FLZodpsLXOd5627i8b0N69WCa9dXvP/2LTbjxGJ5zIMHZ8RcoZlRjZZpunNCs9HW4o1gDLWxZC00hjwHyhyptl5FwOdYiDkwpcQY5Jp7ttnwZpyx3rPoem5dv8Flv2exHNhtNtA0yCombIVQEuunbnPjzpM4J8l3RvfUWHH7HcllyBpqwiyOmbRr7PJMjIKqs054+DFFbj9xwrO3n+FTn7rLpGZ0saSaSVlkDVpDP1j6/oTVyTG7yy0XDx/RyZqA/RjBdcR5JhaDAYLWVK0wgKqFSOZsP7dLrFyzXthm7r52yagLG1sZbqx443KDG5YUW2Vbpwsxi9kYBakkDAZtFCFEKIVIQTkjHMvSKMbS96CrYQ6zfH50aeY6hTMdtXaUnGUcVEUiWGMSepISxJ0qMPiBWjR954k5Cn97L5p7Y8xVDf3e8d7xpXq8O5lEt2DZDRwxYE4cZ9Oe8TxwdOTRJbLbJOY6EefMfJ5gvM6uU7z14mMePOjRrvBo/5h5u2Uf9qisONU3WKx6tnZLZw1HxxVzqdG5I7meizSzPl1Tuz2vv37JcHZEnS/Z3t/z/ief5fnnNA+2O1559QGvPbzL+s0jStakIMaNk/UxdegpNTIM8nTXq5646khN4xpTIKdCzkmiX2slzpFh8NSSiTGRyoSxmhgDoU4sFnB8ep1iTthcPiTtRjEEKYVSVhTIxlG1JVep7FSoWDyCFg0UBD9lKW1VmdntN1hjSaVCW1dVY+h7y0ffd4dUd8whYVXGNE1oiBlbFaVJI4wWraPSMtWlTVoOjmCRnAnfFcQ0WGoRYkFpXNpar3jEWilSqcxxxmgpnENKV9HHtcrUHGpLKxJlcRZQgsgUONA6miu5FHLJaKOEOxtlgiYSUak0tJHfXVHIRQoUqw1GicwlZ9G5pRoI0wadIr7zTCRmRMtb50zME5uNwmqDrrBadYzjjnkunB6dsL6zYLCKMEfmmOi8YbVYkmk4typ68lBa/HMpYqhKUTYKSigDKAkiCVnSB43WpFKpKdEZzbIX02JeDzKlzYk5RkISTfVus+PR5Sjr7FwxWFzTEg6rBccLx/HSs1Cyqk4x4K2laE3MMxrNqjOsuiX1ZCDkxL2Hl8xT5t6bUohbb8gl8exznovLLdOc+Myvfpqv++2/kxwsi24AawglcXZ5wfJ4ybjfYxAuWQgR6zqUkcamKFmZe9ujKUzjJBzgWhnDhDXCDi65kpKYKkuVCFvbwmJyKi0oZBYDnJItg6QHSgCEsl7CboB0YCZrTUlZ9O9KComCNHHKGpIqrTERTXMMgUymaEUKosvOjVutlWLajXT9Qhi4CH0CY/DOsN/NEhVP2yTJw1EVjNMMRjjiNWcpsI0hh9jkVAtKEaPgUefornmOBikW91NiO86k0pq/XMl5xFlLyUIfAeG/amUpNROrfJ81llg0VilMBJR+u+AxGqU8OcxgjazYncVguIyJ8zcf46xEjY9lQz90sJe1v6qFFDL7ONN1HuMcc2xbjTlglSbPUXCDupJqFNqKtbLpqlz5Hg4myZhmxjmj5onN+QVFG5y1GK3pXYdviXY+J7KyzCajT68R+oEYIr3pyCUzx4pJkoiZk8Z1mnx8g1A01gn8NwZhvi8WC3qnWQ+Wp55cscKytIZRC62hpNr0t2ItVdrKRJTC6viY1XLBjQcP4Y3P4wdPSjNUTSTjjOZinkhGoZ3w0Z0y6KH9wDYZ3ulIsJXsjQStWEvfWT6/eYxSGaUMSllCkGuhNiJZIxUwSjZZ6u3rcSmKmkV+VGsWRk8xTNNEUYJ4610HqpJjlk2lFjlVjHI/KerA25dwItt0+VmWISJ7URp15TVpA6H3jveOL+HjXRXDRlUSic3FhtMba7Yrze4yUeuaYvbsY2CzmZnDxG5bmEKPPV2QrcP3a5770JonwhHzLjBuz9icbzHVMOmAynuYB/bbzG7zSAw1acJoxxwqq+D5yEePefW117jeaY5urHhtd8n0uuLGtTX/2e/8GPfOH7J9/IjTJxT1JTEfKl/xFtAe2y64zhmcaTfTKsVGNhXjDBUF2aJsZrHoUF4oDoO3MgUwPSVHNhePyLlw/dZTXL/+DBv3iN3Dh6iSwSiMcRglaWRZgbEdc4xY7ySBq8j6d95sqd4RY2hmtSxGmxY1W2wiVzjy17jx5DEXlxcY1YOQnUg1UHCUUnFW1qoZ0M2EpHVtLOB85Z/LtbR0tEItmblEcspUpcQYqJRESQMp5zZZl5V4ylkujih0i1Eu+rBOk/hlY8W8lWq9SqzRrWim0QBqTiglMdZUhTUGrSpFK+Z5xhuJKNYKoOK16HFjyGAMNWbRgtcCxnF6/ZQ0i/Si7wZOj0VnOk0jsfTsx8D5+ZYwJ5IGpTO3bt1isVqDqvhes5s2OO+EuNmeI7kIOk0rlG3r9liE82zMVRKZqqLlq0q0d9SCaizTg8S45ixTdmvJFRZdx7LzOGeZ5gmOl2hriLmw2Y2cb0a2u8AUC+P5jst95a1Lw6pbcHt9xI2TAWNGiV62nloUVWVQEjaztJb3P+nIWjPHxH4MbDYTl7uRh2fnmPMZQuDibOKVl+/x2ZfvobRmN+7pu4R//QH7izMWvefm8S2is+iyJU0zGimqtdVkldDaM88VbEdxlloLnV0KO7VKFK2hTS8P0h0jkqN92EoseK0yqdNGis3ydjhJVRpyIbU47hJSC8oQJKBGXRlB8wEblzJkicO21gpXVRtUzlIcCMwDigRsTCHiB0WOmVAT1IQumVlDLoopiivfWyFCCLIws93t8d1A3wsJpZIxFaZ5JNW3J9C5SHGSa6bzCu88g7WcLHr2ITIlkVSNY4ufxhxA3k2ypNFVUg4FJ1ebsl5TcxBsV62UFgMu/WluUesGpQwxBqw1qCJmRqs9+11g0hKTXVQl5CJ0hHaN1FrhkOCWWkArIaooCUjEDEMzR0LMM8qJqasz/or/7F2Hc7IxyrmSwsx2HyhRmpHUJsi5AjpT3YK0PmFE4wvoGqEm/FSx1ZDyhDE92lY2RmFNh9EJyiTNXEwMSuM7T+cVWUkgRt8bHm32uN6Kll5mrDy13UrETy4i0EkRVOVO4yJ/1ChW2w3XXUWHit3tuTXteH+aMFGBnVmy5ANZiv+Ty0sAzuMZF3NgoXqWxrNKkdMFfMQa5gDznJjnwDgnQilNgtbY8EakYsoarqvE9QzHxy/hxyXX3njIUEdyEm16fnifOQWqls9/vUIf6sag18QiJvK425NzZFUysQUnKaMlIKZmYoykkHjfbt+u6+WKLPHe8d7xpXq8q2J4WDr6I0+aodMDRQfeeHhJqp7ab4CK8R3LwWFXsKorljcGnPLUkLFTxMRImkdS63wVnuOjNZsbBTd4Fn3EmiOc8rz46C6LtYcuMW1mTm4a7LDl/OEJi6MTLqd7bB7P3LYd7AdOhzscPf0ET7/vBn4vnOlOKcKhQGzloNUGbx06Z1IuaCOFvjGKmLMwP0vi9s3rmA7SlBhrwHlPSgXXD1y7fcqDh4/YvfpZbt95geW158j9kv3Dz5N2E1pJXnxVBZVkGpWvtMmBOO+YNltyzlA6cd9rYVaiK6UknPZAwSjDyfE1/FFPrluUQigBSjBbFSVxyTWStfyZBDlUrGkYpyqTMYCcC/M8N81ckilGlRtsoUUuVlm35RbRXOBKz2mUFMyxJXSpwwRXy2QjzAHdJh40JFhp0c5Ktf1ym2IdbkYANUtxPfhO1oWIs/qgJTbG4YzcxKxS5ApaO+FiRmEFWyN4Oec8KUUWThNz4vrxmuNVz91793ntjZfJN95HDI+5fkvhvCVly3J9RNjuJdWM2ri9yJnTpi45ZXKKWGcE15UyBXtV7EuUsNhVaqmgZVImBi6ZFucq5p1ShWgQWuKe0UbYzVSGo57TlSNpzYOHF8y7zH4WLNRlmNheBB6fO564ccTpssfZStWFWLK4040lRdDFQ80stGY1eE4XR3z+wX0ent2jw5KnHXPccuP2kvyZidc/f8Y0bXBGt9iUE7y1jHNEux7je+ZxIqeMspqUFIZC3I8oNK7vBO1WwaGJqmKdIZSMRjPPiVQEMacUzPOE9w6tpNFxTgxvVDGPHbYDKUcpvLT8/2ka6fueQ2CGUZoUKzFEphDohx5lDWFOaGPE3JULNWWscRSV0M6ikPSyFANKywal5kIRpllLQ1RUq8lZEHfqHbi3abcnxcpiJeZX28xopQp2UBlLDEEiuGOkNr50SpEwCylGa8PR4FkqRT054vHDR2QUIUszmhEJFMhmxRjToqGlyQxRpEq6ykpbG8M8TcQU0FS6fmCaJpzrEMvw2/rPOM9AJbVpPVW1zUu5osOEkK/kMKVW0RS3z7qxFpVMu7LKczs0H6ZK+iNA1w+crJctJEc2OClGcpyJWaPHVnhRSMoyzpnLu/dQvWDq/GIhW6iQUFVkGzknFn7BK2cPyMtT3LInY3DO0hnT4kcznenQQZFcpcQWmrEPaGc4t5bJGP7Pv/BLv+G97//28iv/kz/71t/g+/+Ln/kFAP5Pv/aZ3+C7fusfkzGUa6esxunf9a/y3vHe8b/p8a6K4cd399xTjxh3l1yMBk4NbnXE8c0FTz59nSnMTCFQsyLlC/bnW0GNqUse3b3g9vH7SSuJ7R26Jct+CbFjeXqd3b5yPPQ88bTj7v37XJ4/YH9WORquk6rDLRRMllPreS2+xc/80gM2Z1s++NQJ5/sH/OK/2nB0OnD/keGDH7jNE+//3wH/V2Kp0Fl0DpiDvrJF+epS8SgyhaaqIlPRxlKy4ambN3nm6Zu8/tKOUoRXaoxl3k84t+Sp9z3FdrfltTc+zeLsiKPrT/Pks1/NuLnP5vyBBELUhLMdOSdi2FPKnu12y7S5hFJZr9fUkqg1UXLBuE7Wj6anpspuP9P7nuvXj64K31izpNsVSdqqIWEblqe2SY5Ssk7OSnSZWr8NkE8lE5MYn6hVJnaIu7xqRc0yMc4pSTFaJfChVktMmbnkhihCyAVJdHeVglGyvi2qUuJMreLGr7Witej4aivwrTXUnAX8rrU0AkihobRojI1z5HRI1Wtxx1Vh26SYqohhEqOJ06L3pJJDxFVwvhdMXwncPlnxxLUVX/bBp7n75n3ifMGjByMnpzfIwRGNxreJV+99u/HLPlybNiUGVqsVuSRyFrOWs5JkmFNuti+JEL5abypBktGwRSkmdKlgxVjmvaVQmcKEdR6rDKpWOmsZrOH0uSfpXE9KE9O0Yw6au/c37NPEZx9E7CPPndMFR1640c5Z5jnjak+qM9ooqhbKR9Wa9dGSz774OmFMfORDz/D7//f/OR/52Ie4cfs6P/Uvf46L8w0PH77FbnfBvbcy2/3M9rTgL3ecHC1F3lMyrso02lhLrjNaGUnqSi1sBU1GUYMkzHWuEU6ME52l1ozTHmN0O5daWmcpaNNwUFoau77FNOtaKCWzWHq0szhlxexVK9Z2aNXRJd8mWVVY0BSsslRbmUrFd5ZxngXxZ4VRHtNM1w1S9HlDSWKwSgZiimhl6fpOpmQUCVookW3YYbxhN4/EEBm6TnTQBazpWsOQCXPEWUs1ilQl4dG65vFX0rDlArVGvC34bkluUdmlSnx0KplUYIxCs7FatMVd58khy/XDvs24ts5Sc2FYHJFzacE8qU2bwRjd0GIK33kp4BsSsbNOIjRLBdMatyrUA60U0zQJh7lNeq0xWGcxxsqkXllB8h1oDdbSdQPGxBaVnkhKU51nKrAapVHXKIK17OKey7ufp1sODDevkUaFUQ4zzjIBRigKUSt2eUbnDfOY8N2CmgrrruP0aEUMkXuvvE70lReO16gwYkMi6AJB8aAb+D/+7t/FujUFSilSAatEc/PUdsf/5VO/xJ//wEcxHj60OELtIhdxw6/pwptGBgioivWG5+bIn/61z/Erv/8b+bJ/9C/5nude4JW1xxnHcug4WnpOVwOdd2grg5YaC6nAZg6McyRlRSpZmmcrzaGymfd/8Bk+8PzTLKY1b755zlQjZMU4jrz56CHowjyPjTChW+y7NIqlSPNnlCXtJ2Kc6JY9znshCBUxQ2qthFmvDSUnLp3nfLngOMR3Uyq8d7x3/Ht3vKtieDPvGMNM1qBS4dbqlMdmZt6MDGkgkAj7kTKNxDKTRoW1HYv1krDSFFfo/EBJkooV50COkUWJdMuOOFZ63XHt9JQ6RPLLexZHazZlZP94x9JrYt7ju4eke2e4ybB9DJdDRZ1ljrenLNe3uPvGJSc7gbv7LPIrtKceNFDOglbUdNBeVWipU04ZKeaTocdxdGxIJbCwvaT7eINLivHiMSmvWZ0co1Ll4uGbPL54TLr1HHa1YHVyAxN25GmkWEsC4i6wv9yy24uzf+iHf02+oJWCnAkzdL2j2kLnpWl44vYJot81VxNhisR6lob4QitZI1eRdigr4QCyRq2kKs9/PwXmtp40KEqbsqb6doGs1UGGIcaYkhNUmRi1OC1qFS3v1fRWQWnsVqMkXMIaT2mIqlyKYOw0OK3IMZDCjNYKbztSKRIKoN5261eqyCUAKHROzFkpiI4yhkjvLNULOi63qV2mRU+T8Z3GFt/0qYneOj783POANEapZKwGqytaeSlUjDi6KzQ9qkg4tHfynI0RLJEylCIJbdaLazvlJNJD5P2Zo3C04UAH1ZJsVkRUnUrAOyf4NaXIVMGPlYLCEgKkEskhon2Ht5YPPHckscG1cjZuOTu/5PX7ov1bDYbBGY6XIgfRKMEdOkvIiaEzfOTDT/HKS28wzomC4ZWX7rE/z3z0wx/kzfv3eP/zt8gJ5lFkIvvxAipc1IBxQmDIpQpRJWSqMrJFSBJ3HmJGWZEWlCoJdylGNEqaTQWb7QWLRYe43y0pC8av6zrmkFBWEFQKQeyVkoVooEB3jlQL3mqMMjLJrLLRWC0GaQSzaDJLEhLKbrdjWHi0sSwOa/1aSOogZinMo6QSWskXx/c9fuipubBYrlktJfbY+w7feV6OL+GtxXUdKUV0rYR5bit4idUuuaKNoAdrkfN/DgGjJaBnDhG0QlXBkvlujcSgZyiZ7eZCin2jSTGwWh4Lgz3KY8whkksStmxWzUgrYS5KaXJD1GltWK1WpFzY7XZN1qSY5gnbuRaLLosb56Wor1fEHfm8mSQmOYJseJyzWCfa7ZyyyDZKk3I0POPhyC3qXWuLtQqUIeXC9eMnWU3NJAvsxpnhiev4zjOsFtjOs3I9S+Wx00NMnZvMRqGWDkVH73u2m4nxcqKWxIM4YaxjP+6Yp8Dt6yc8ZqJ2jg5DrYLQLKXycLHgzU7Ow1pl4q1zoWQhEQG8ebTCDIbrq1OSnjjfZ15bee4ajzKGqCteG/zmHIDx+g0A7p8cce9oTa4i69FzpSsJ76BfWga/AFfx1osvY47MIUniphIOkvUi2+vv3ODmC88SNyvu14F9nYhTYLvxvLLfo2zFrAdKqfiuIxaRAzkctSSyruiqSc5R6oJhNch9sCjZQJSCdR2oIs1sBiGTzFeJmO8d7x1fqse7KoZv3Oy5WCamccejhxOVpxm9YbuBp47W6FuJ5WAw9phsFfMQWLoF/Ullnh0YzfFCMc+VsY7kHGGaKOeVEBUvv/QW2zdnzs/v8eDBK5y/tuf684+JfeYsefx4C31d0SnNnWuasTvnjRd/jvHC8cwTT/F4eYv1BzuWw47p7OevnmHMBe2dWIaBw45WWZmYirZK/mMqJFXolETBvv+FJ/nUL73FlHYY7VGzxTmHcpnN+WNKDFy7dsy6f4JH5+ecPfws6kHBIB12qoblYknXdbjFEa5zlBxJMYsLPySUbUYzXdBW/jxF0ega1XN0dMTp8UCOgawk7tao5uSHFrghuDijDwVpRuRjitr0Xoekt1I1uYrhLWdBmuXa1qdV9IYHrS5KiqGSD7IJ0cqqdtcspVCzlHgKkYLYpsVWSqZgIK57Y6WoTCkSsqyUfScFoJTsEtLkvZOfWwV11zkvxrMiCLgYE0qJwckve1CanCfQkItDa0d1mVyjyBhKoXMdKWWs8TKFVsJi9b7DqSoa33JgNFtqSU3qITdECY+QKF6lJPo450zVijkktHNX62ViM8E086H2QkygGQpLQ9bVXBrvWYuOcg54azBaMaeEsxpjRDM6h4JVBqaMrkam3cxoq1gPniPfUWPi/vljzveB++cZ/XAvBYVzeK1YDh5jpBhddIbT01tUpXn8eMfW7fiVf/XLXL/1BP1wzLTf0XeO3hpCCHTWYtwgMgJETlRCxDlHSfL+SVy3JkcpWhMiybFOCudaRDetjZy3VM12jKK9LVFSIhG03jxH+tUClGnGyiySBq2Z50DnBwZrqenQsAgvWDUjUErxKo7cegeIWarrOtEkI0YhA1TroMuULCYxqpUpfxGz5LwLknY3BmY903cDNSkud1tO1tfJKTH0AyHOUDPLxYL9bst+u6OYZqqcpkaqkM9FTAW3lAbdWKGmKLKEgVh3xWe2znF8fCJm0SIosIXzFKcJKjTUlkzVXdTSaFTeseUS3fo8Tgy9JcS5NUZaul3TjIeHz6kSQ2hVoulWSpMrGKsbf1bMrs45Smj69wzWm6vPrO50K4LrVTGsWkBKSkkMjopmiK14LDXJ4wcKSWtU3+HdQJll63LJJVFrTuJMth2lJnptKN6xvb/j3v1HpFKJOaJrxluL1qLF973jre0lJTtWpz2L5ZJUDXUnLOlSJGWzNB+FrvKcqObKRKYO03QFE5K4qLwH41Ba88Txkvc/teSJex5+BkqRv/fhZ66hj9bspvlKFz6HyDbMXOw12u4AuWYuuk6UHdqIHltJ1HRMSfCdRaRktObQaE1SRVLoapGNpxZ2fKkF13eg1JUU7qDfBxlwZCoGeSynLDpLGJNz8nkRlKGTEJADMu6947fc8dRTT33F3bt3/Xd913fd+8t/+S//G5Pc3ju+8PGuiuF5TIRwQU07Nvtz4psVd3JEvOx4+eWJD56ecuM2zPtCmAvkHXHuuGYNlytL2FQWdwZuHQ/sh8gmzNx7/TXO736OX3np15l+5b/lzXSfo3lmd5H54J2v4QOnp+zTY4y1zG++SnmcOS0ztiq25owz8yrTg46v/boPc/z+wp5fo14khiR8SKOUJN6VgxkLrNLy71rLBE+3IAEtulBjAx4N0fDkU7dwPeQd5BxxdqBqgzaWQSnGccvrr12yWp3Sn97h6H1HeBRpviBtt4QIi36NGxYEWyEL3zWcnTdcFNQoEyFUFZxZzoQgmkBjB46WS5yvLUjAUBpdodYkk2Db4PhGt2lL0xa2lSZZAhfmtuoKc2E/JQqyXi5ZxrWCZ5XHUQ2DpjRXCWiic5WCTmBZ8u9ea2LKcgPVtYURSOSrsQqracEDBuccxmjhuDZ9s1YaimgzBcPVilOtZfI4R4xWOCfrVWO09DVKNLe1VIz3pBxwXtbrIYpcQyZqVrSeFbQypJzA2VbnV6oWiQpVpoVCqWgFutbkFEFLgQCIrKEU+q4jhkT1TqZDuUAuOCPNQK5vT5Y1ulEyalsTy1rYaCs3PyuM2ZorKUEpSWD8KaEtIqXRmZgKKSWKcygyPhpQYtZTWnHr9IhbNwznm8TD8z3n+8hmmglBQkcc4Cu43jEcLcAUHp5vOVoe8bGv+lpygYcPLzk5fYpHD+5itQQgKO3k+Vdhm0qjptnvtyik0UVXccdXhXKGy+22TXxFbqPQQoKoEh9eixBRdJGpZSmV1WJgs7lAKYMOGdskKNZavBM5j+kGtLbkKJPwGEess3S+4+zxOavVSvTaFZH6dPI7+M7TLweoMmGtRUycJYsxVGQM8lSsd6QQoSLUDu/QKpCnzH7e0nUD23EUSVGFHEamMImWVsvGIcZI7xcy3bNOQliKaNG19cRYgCThGVXOOWNEwlFrS9fLmRRFNmKcwRjhOxuUTMWdoS+KWsRsV1CkWIWUg1wjrPWc1wNZo1BKYj/Noi1v56Po2S015StjXC2FKUg6Zq2twW7BDIchQm2MXGuMyIKUJqfUZBnqykALtEm1FHPGmKv3PYz3wYgmNS866AZiqbgQMcqJ4VZl6jyzKjCbTjT9SvP62YbLzZ49gaIrpWbWvqezmjnsqaaw284UrahlwB31HK16nvID9VSx3094N7DZTGy2EwXFNG7JSagdU5Ai8BAprmuh856ge7qTFatYiGFmcz7y8hiwm1Y0ilSak9MFT9+6Dkha6TzPOKsZp4ntFBlDYjdFttuROEdSayCMEsZ8blunt0NWhM1eSyYmEbkctiDGS1CTwRBTJO0S3jmUsYIrpA1P2nVJGyebqJivkJDTJO/DsOglzrup6vXh5vne8d7xJXq8q2J4mmb2F+fMD97k3r3X2D5KZBxKGT6Vj7j2yTvYY7jYPyBsRmqtOH3E6Y3rZO1Q84weEpf7Rzy++wbj5pLNdIFVlpN1z//hd9zhQ89/gIv9nl/6bOQD77/DymUWwynOS4RzTYEpB/Komc4mVKq8Oht+8lf3fMtzp1h3gRkMapKrUTKa4iHNW6ZRCuQwzhL4oI18yA8f9Nq4pkY0nqFA5y39oiNsIelCMhLra6qnGsvi5IRaYDftqPcuUK/fBe/xiwUlJ66tj9HLI9T6mHhxH5U0/fqU3eWlFKoNQ6Z0m7KmiFZiPKkKrLYsVwuhBGgtk9p2f1GN0UqBqmrj8mZiTmL4AmoWZBlFMbdI5FAk2Swjmlit5IJXixjltBK952E9nXNunjctN6FGhdBaCBC1hSEopRq0vxWzTcoRs8TNWmVIcyDGQN87XN+TS8V7cMZJbG+coRas9VTAaiFNGK0k2cwYnPeiI9YI29SB0Q5VIZckK+cWbSyTzRlUZehEP2qSrAXlWUNOStiupf09rcRUqY1g95QIJkyViXAMgpUaxz0K4dqieUeqnpOCtRQhXxTB3B3etxQTumm5a6kUJZNf5w1VVUxnZLpqjEzilcEYjdeaOU90vZO0KS2x4cpYUpyIc0JbR86Ro4Vm6RfcnCZy0ZxvDJf7md1+Zhcz+3uXHN/ac/32TXLRVG14eJ5YLnq00Tx4+IiT02M2l+fgJF3MRU9KGWO6pkuUqdLQDxKckMWkJki5zHYaWa3XYoZMidJQfLnIFNcZobfkUkk1M/Q9m/2WaZ5ZLY4Ic6JkjXXCxZ5DEk27hjJFDBVtpHDtO8+jR2cMw0JMXUq3wAHRmSsjn/NpnJA4ZZlISxNWiWEWaVCtgFAXnLXM2x2lpZqZlkQ3z5PomqskkSkUqELnpfgLMUlTbcR0J02RTIiFv60YhgUaTQoF2zlKiYzz1JZXcl7Ka+yutgwhT1RTqKqiqXjfka9Y6dI06CryImMNOUagYDUsvMM6+VmqatZDL5K3LJ/llIV0UQ9GX6QIS3GSRrzIBmMOEiNcc8E74aWDFO0557barxJeFOY2iaQZYLW89qVgjCcrBSWiiLilXK9XTz3L8TCwC3ucqsyloqtDJc1ApTeFahQZR7GGV883PJ73QKRqmaRfjjse6MDTH73D137wBR5+6h6fOXvI1/32r2B/d8v2kWFfN1SlMNrgFoXr11Zcu7ag5MhuZ5hCZDcHlpdScJY8Y31PcZqiMnuVWFxb8bweUDmw34/sY2D76AKAhxfyv/O+EkNBkbFacTntKJ2jX3iOj1YShFQN4z7w6huvk50hV8M8BUK7F6QwX0lfcpqh9iIbyu0epryYe3PEWESWZA9BMlWMirViipgLtREyizVNumXV1TV8sVxIIZ2E1nMVUMV7xfB7x5f28a6K4X/13/9/+Nm4Zbp8TJr2DbclH3RjNJ95pRKjwmpL33mKjux3iVqt6CGtRlkwyuGWA76XCwLDQCnwj371Eb8jd0z7Dev0DOvjNTnvAQ+6yNo1wbiDEM54tHvA5+8WNih++dFj3v+5Iz72AU9RheLeTivUGJzrcd0ACNzfekdJSZSCSZimWkliVUkFhUerPSrINMQtO+o8YatBFUUqEet6rO5QzuCHNUYXDIkwzTjXk90xuCWxKuJuh9Y9w/qUMEshXLMUS0Yd4pFbgaRFTmCdww4LlsOA0VIAHaI0K5VSZYRTClIQl3xFKVCtwMVY4e1SZVqGTGgStRW0siasrfA9qCMO7nCUTK1rlQmsLg2pVOVrtTF/tapvO/uNQlXVCncp6qQ4Fval7x1KV2qJol0sA8r7xpe1pBLljabivcU17XDVBqNskzTIlKnre2KcSTm0UAxHzpXOC0NZTICtCKuRUioo0y7tkuJVq2mTQdNoBVCzIibR3Fnby/Sl1va8KiUjkcNJsFymaEwLHSg1EWu6Qoflmq6ag9y02toPVCWs0JzFCFlCkW1FEbPQgQ+tk7xP57s9KLAutymfalPnJLrrheeABpRGB7zz7HcTT968xh0sD84veHh2RimJl156mcvLLe9733PstoHFYkUucHxyk3H7Km++9YDFeknNGYMEixhrQGVQit32EucsuRRiSvI7aQlzyTUzLBaUXCRGo93MnTGtYTGUIoSXqiQkYJomdFXkYpizrP9LFvyTtQcWaqVzQoPIKmOqUDjGPDPNkeWRF7mPKiIxUYK6U4BTWnjiLYmuVrBKmnzjHNZ1osnXlZAjqlR8P6C6ToxdsxBbjFVoUyih8vjsnOVqSSmxFeGyCbFOo3WHtlKwpiJJe7VAirpN2nJrPi1ZaUmla7hDa6VwlQmelS0ImpX3AnppfgHBDxp0VczjjLGGSBRNbSnkmgi5UHMklSRS5Foloa3T1KpRQTZDs7FkI9uW3EJOcrKULNezgiTQFVWZY0EV06RSSTB7zRugtBa5SWOWy5VEzhlrNUrJZkVRmhdAU6JIuRZ2zUKvKK4CgSoxeDivWOWE3WeCyYJWXHpscizpqMqzT5GkNE4Xrj9zi+H0mLfOHhJsZSoF3RueeeGUoXRAZkqay4sNu/3I5eVMaGElxjpOOstx7zhtbPZ137NVlWAq2sKCgbuv3ScPSzpnGbyh7zqevnETgLfuPgJgLon9FFroEGi75HK3wxeN1watM2hBmt164rrIpQpMQyAEic6e5kihkIpIwRTS+FQvRe1us2/nSqUkuXYnMsYaRH0i77c2moJCGS9ywBBEmqRE9payDBKsc28jMZEp9eGO8N7xm3+UUvje7/3em3/7b//tmy+//HJvjKnPP//89AM/8AOv/M7f+Tv/J/qVP/tn/+ytH/7hH75x7949v9vt9Hq9zl/3dV+3/Ut/6S+9/pVf+ZXz4fv+/t//+8d//s//+Tsvvvhin1JSN2/ejF/xFV+x/1t/62+9evPmzfyFvp5z5s/9uT936wd/8Advfv7zn++6risf//jHL7/v+77v9Y985CPhi32c36zX8Qsd76oYfnTvc1xaT2c8fvBiqFAyLaRmrFfoorDacXJ6jFt57t9/QCoK61Ysltew3RLbW9GgKUWt4mh21nKWJn7q1Us+6K7z5V/9DLg9qhZymSizETdcrPhc2OaJz72145WHgeIdq6Hw8oNz7lw/5viWEzQSYuIqQZb6Rrc4YoCUUUlW8c0/h7YyWZUgtkxOckN1nWLcZIb1CeQiCWR1poa2Tq8G4zuGhZhrqi04vyCnzBgii8WSfrFiGoXvqHRjpeZDBKlAzY2xZLnaiaTAe0oKOCM801RywzTJOpVD8aqEHpHzAaYu+KncZBAgl7LcpjQVWnCAuvq6an9PKdN0dGJ2UVTQLda5Ssyu0Y2SUCs1t3AOK8EGSumW6JXFoEO9KvRVm4bmLEENWhvW6yNJCEsR3Xmc9egqMgij5FaaS6EiaC4xGglCqtZMigl1aA8OISFaptyoilG2GbHETS9pe6UFKGh0dYDBVEeYJ3JL3ToEOzjt2mRFGKC5iFZZVtjiwJYCWX6n1KgSxhhBWVWgFTX1gJ9TIt8o7VwTmYt8XcMVEktwbkI7maa5SWFkAl9LudJ5ZtpKNRVJpNKe1NLHjLV0C0OqghA8vXbE+mjJFEbuPHHEOAbG/Rnjfst+s+Po9IQYt/SDYxwvSLOjs5ZSFZXSnvehoJTJaCoRY4Bm2qIZ9lRrgsSJ05BdWYxY3hkMcp4ac9BIVkDRm+HqXEulCB5QKcI8SbRsLdRSyCVilKx4ayl0XUeYA97LUjjlKI2GtfIZV1oSE61FKycGxfae+a4j5yIufkA7mWAqpel9LzIbr5DGvDbpUJIm38g1T4Jh5HEUMnWsVJFfRPBWk6JAHkOYr9bgigN6UK4L8zShBimeqlZXuuBa61UiHC2cpNYqGnrESKuUwXWdfMY0aCV8Y13U1Wcj5oi2nq5foI2hjBOPHj2gXy8oBNFc54Im46xcWxaDpSpLjEnMhF7Ot5ILMWRm1UnQjFItwKKV+qpd47Rt0dYGVwq1RGKW1zGVNrkHttuHPM6XmM6iKliVSWQWi56jMeFqJFSFL5qpKIrR+GFgjBN9MRQjXo18GQiXmXDtCP2+Ez5w7ZT728hGK645y0lvWVvN8XBd7kNKExrqbTfPxDkxhcpuJ7XGPkey6QlaSaLlnTV3gEkZ9nlmOwuz+LxRMUKR57ObMxezMONFD4ywpGOiHyTNMBcZcljt0ChyLigUfb/EuYhzUqhb21G1RSkZTsQpCImkJGJJ1NYUo4SdT5PZUIRCJI2abL4O7O8r/4wSdGbNIpuRLeDbXpD6XujGv7Pjj/yRP/LMD/7gD94CODk5STdu3Eif/vSnhxdffLH7NxXDP/ETP7H+/Oc/3925cyfcvn27vvTSS8OP//iPn/ze3/t7ly+99NKnFotFvXv3rv32b//2F2KM6s6dO2G9Xud79+75f/yP//Hp48ePX48xqt/o6zdv3sx/+A//4ff93b/7d28CfOADH5gePnxof+zHfuz0Z3/2Z1e/+Iu/+KtPPfVU+kKP8+9tMWxWN1iuTqlJDFuCwc2YXMUMJ4ZstDXY5Smm9xzfXIHqKMZivacAKmtS0czjjloiViUeT5fYeUZnxfNf8TGurT2dM8xxouhEKVBjIceRHYEX91t+4cULzi4sJzcLJ0eKx/uR1+5Zrt84wRyCzpK0ylrbq+Y21wJGblilVnBGuu1S2jSkUGpCKcf1o9usj1ZcvH7JNAeG02OGbo3Po7iXY6Dud3TDijiNKOOp2tP5Fce3rzHvA/Nmx/jWfXRnceuBoE3Ty7aiQelGMGgOfUAMVwprLH3XCYgdSV4S4EO9MqWUFk5Am25rIxPufPhzEEJEMxBW2vS4ff1Q4EqinGC9jFEo47iK7QSMEklASbnB3CVUxFmDseaqAK5KnO/OdaQcpehrBbZSMtWubQqvQAI32kVcbqRS9OnmOJvnGd/J9GKaxoYLahd8mkmw3ei1NihtGec9TT8iWsgisgelFMpY5rCXJDVloOlGnZeoWdHJydo4lbmly4k+2lnRMKYkrNOS22t1eM/QaIswlqtMNmt7j7WRlTJVye9jZLWZWwCFbs/Jqw5ajHAVfQoxQ9+7ZvCT4rnUCqUwzeEq0EJVhRGVH9oIf1oZJyETKV1N+NfDEUPTs2KksI8xYrwkMU4p0nW96K4PlyslDN1cBMLfDYPccEtugWOVmgvjOOL7Hl0BJGnQGgstZU4bg4YW24xMtEppDF4pjG1rGChSVB6WtNYapjBhtMZafyU10lrO/XG/o2YroRT1kBQnMgCtDYvFgpyTUERipjgxmCltJSXOGEKM7Lc7OuukyZyD8KurvMbOO5wxKAOu88ISnqNo+q1q5jeZ3FaysLCz6H5byoc0AdZR2/WJwlVxOYfQzjl9+JLEmNfKOEsKZCkHPJvDWt/i1Ss1g0pF9MBJzK+5iOyovVRyjamGcR8xruJUa7xrxfmOOJem1W5GuZLIKVCVopSMs5rOdc0QWplD4NF2Rwkt/CQ3qZWy9MMSgOPFwLqHmCozlaI0qhhqTlhsa2QhqUpRIkk6RGIr3TFPETMnCjCRWRkFR5brdcBQ2esjtg8veetiw5QK/W5m3r3J7ugcdf2Ip27cwIZMUnAWz1gv75CyQqWCroJFWw9L1HrJaZ2kyVaOo6bL/aqPPMWnH19IM2cy6ZblerfAFE+pmSDp4JzUNnhrg4eLyy2Xix4jESpC3+gWV0bGXIAq50Gs4iFJVRI+ZYJf8N5SE5QsE/dSJNGvFOHKY8D3VqRiShFb855yvtoG1lIpY6SYgreGOc0MLIXY0245wyAkilq5MnrK64CcOO8dv+nHpz/9af9DP/RDtwC+6Zu+6fwf/aN/9FLf9/Xu3bt2HMd/45vyF//iX3zjy7/8y1/quq4CfPKTn1x/4hOf+NBbb73lfvzHf3z1zd/8zZsXX3zRxxjVcrksn/nMZ355tVrVUgo/8RM/sbhz5076pV/6pf43+vqv//qv+7/39/7eTYC/9tf+2ivf8R3f8eji4kJ/+MMf/vK33nrLfe/3fu+t7//+77/7hR7nN++V/MLHuyqGe71Adz3BZzQLIKBzQlmNrgfygHSSYyy4uiVFmeT4RYfGQkmMZYsZE3GepROuhTWG9ekR/9HxkmeeOcEdeQoJUzJaWcYyEadEDnsexC3/4uff4M2zwHq55vi05+U33sL0t7Cx5wNPRhbpoPVKlDyRUmWcdu2ZNGNHqe33lc+6MooUkrjMtdzMnOo4PvLcdZD2j7m4+4hqFyyu3ebo2inWNuZmrqyWJ9K5G8duP8FLLxNSplsvGW4ekVGkzZ4uKzaHmFnVEGU5EUrTgVlL1VZWtjhiAqsdhSiFs1UtAEKMX7pNFq2yIkkAVJtg5lII8yxGnHAwbWlJmWv/q5VqhYxMk6zRYhZRSugBGpkoIFGgrhM9Wq3Q+U6KG8l4lomtjCJQQGc7SamrtfFHhSesmhOvptx0v45aFblKcZ1ilKlJTlI0FtqU0EvRrCQ+2mjbNKgVo8WQFlJEGzGpOdMwabUyThO+8+Qc6JwT7nKFHEMrpGVbkVJuk2XVJrjSSFitCLGtw7XQOUSnnQAlz63KFAZdZdrdXreSs9wtmzvJWtmoGOORGb68fjlJg+K9JyuZHFUqi7XonYuCKWU6L8X2OAWUtRSj2vkCMYarYikDtiH2aEtrq1sKIAptLSGmtsL2kAumZNFtO9E+a2Nx3knEbwFtK4eQYAmW0GilUVnkD65kbCc3Zq89ISeZqrfNxWG6HaPovq0xWK1FM5uzFK+qheM40ZLHKO8pWugQupEltJaGrFZhEGstuK5SM67r6Kxhs9njfY92ThphpaQQR2O0xnlNSNK0lGZQ7YeBzljOzs7QnSMniffuuoEQZXW5323xQ0fMoKzFNlOZVlXQWFpLcVMyxjpCLFfEl5QTHHjnzUh6+Oyujo+oh+k6iG6/TQ9DiHhvxMiaDoZKec2mcZRgoHHPIdymtCmjViKjctZA08ujYLvZYIuYs5x1lCwuWWs9xgp5RbZZCmqh95oa5bWAQsoTi2XHyc3bEAvjbubx+SVjLIxTZN5LEtvzuwturrWwjVWVc94oxpCYQ+a2k3Pjq82ek6K5PNtiO99SBh19LVzbj6SamfaJZ/sFU0zc9AaDhCaNRwP3w8w+FfbjxPhoS74f4HOV2necPnPKk7eOWQ1H+P3n0VmaK2MNVJF2KSo1K7RVKF24vZfituuPUQ6K87hNwiyWHC/XkKRAVXliDDPXjnsAbl47BuBo1XPjZM00z5RcCI3zrFwnk30lw5eKsIBpmD91RZmRBMFYpMlIU+LRgwfspi3GG1KIKJPwxmC0bBOslqY1lkzRVbafIaNjIuz3PNpviTVx69lbaGvIueCtk8CbRn1RQMypbdLye4rhf0fHT/3UTy0P29s/8Sf+xJt931eAJ5988n+2kHzxxRf9H/tjf+zZT3/604v9fq8Pfx/g9ddfdwC/7bf9tvHpp5+eX3/99e727dtf/eyzz04f+chHxm/91m89+92/+3fvv9DXf+RHfuTq9/rO7/zO577zO7/zuXf+Dj/zMz+z/GIe59/uq/W/7nhXxbDTe5hP6NzQ9Gf6yi2uGkorF1nL9EPHsuugBC52l2I6AUFiAcU7hr7HD47V0rDMe65NMx9+4kmOr9/Ae8M0nYmmsmhyjMQcOJ9m/tVnX+fN12aGYcnRjWtkAyHD4CNv7i7ZTacNpwTGWbreX6WlgUQVm6oal7QhnyjklEglgPHotuIcjOXDz9/hV37682jnJKY0T2zeeon9I4f2PcqKgSHsRuywxDhLjDNuOOVkdQO0oZaJ/fl9hm4gIMgc1TitcNB5yZRCK4eqCu+XeLcmpIY5SqlphFuxqVTTycqhjRH5RWmxwa2IE8ZtxV9u5LHaFE7W9i2dT6mWYlWhJHKVFaQxRiafB9mYrhhdm0lOwP2FlgyGyBsO+KWDQ7nmQgoBbbQEimhNClHWt6bpCpWsg23VkhqmdVu5y/MUCUabYiiQLaRC1/Y7KpFmhHCYtILREgV7mOSa5srWWjdftWhWlYGiKjG3SbnVlNQWhIdCpFb204wympIiyraQkHYzkxdI4qHrIe66VA5EioNMQ+Kx2yRbSXCDTObb1LqK1lvwcRJuUQ+Of93S/IpoZ2spxFTwRibEFSnetdFSrBdpGPLcKABJeLc5iw5RQhkCBZl655SxzQSpnZWkvCvNp2jpjbFXU1zaurVWKLqIbnUesd5LcWxMY5fKZNQpTdd5kTqjmhxImggDOG2w3okECCFBpBjlNW4BBEUhG4kKdU741lTUZiK1zuE7S5gjpWhSrsSmnzUpcXDU5ywhFTElMEJhsMZS2mctlUyaI/McWS2XDYOnmWIipYR3VprbZkAzWlFSZppGrLXs96NsyKyVtE0VxHCIbAuU0i20peEOcxF5QimCY6u1TZilwSrIpsRZSZErDbMmZBUtr6/3EphQW0S1VnTek3Mix5l5nohGkiE32y3GeawTbXqYZ2ia/JoLobR4di0m3Vrenp6nZtQ1WjCNKRVcknCH47Xl6GhoRVame3DG/JM/zX/1L/77L+oe81//d5/6or7vf9Hxyhv/i/5adJatDRhnSRZcjpAjWpVG4EngHKvlAr+TGqVr4Sc3TlfEkwHvT8kZYkrs9yO7/cQUZxK5vZfCazfGC20lJbnuKMG0iUExkENhnhP7eWTwC3bTTMhi8oW2m2reDW00xjv5w75CyNSc6Vc92zBRGg/6QC2ptaKavEMkFaZ5SUT6897xW//41V/9Vf+H/tAf+sBhGvuxj31sn3NWv/7rvz4A5CxnymKxqL/wC7/waz/wAz9w/ad/+qeXn/3sZ/tPfvKT1//hP/yH1+d5fumP/tE/evYbff2dj/mRj3xk9N7/ayDqZ555Jnyxj/Ob9dp8oeNdFcMffX7Ni+cTDy5i03xKQEAtta0h26QzFVQRI1GlubtUwHtP53q63uKGjoVxKApKBex2z5fdeYpbT65Qw4yZDCpIUZarOPMv48Sv3n+TX7kXOH7iFpqOVC1pr1gsjqglsd9vGEeD9gdJgKI0k80hGpRWzJVmIjONylBKpvc9RVtqslADec688L73cXTjU2zPhDuqrcZ2HbYb0LaTG0ZVaL9kOLmB6QdSjuhS2I9nlJSw3mIXKxIF00nRqtpEsZZmlFGaomUdu1itQGtCSoQomC2ZjskFqiD6vNoufIcjtwjVd/I9ZRH9NkC+8vYUSjUdp8gHNE5rUo3yc9+BA1NaiBfaKlQ5OMTFQGOwkDPGCgpNAU7bqzWbVlIUm1Yc5ZLENOg0yopmLgWJ8BVt24FTqho/WQoQU6TpKqo2jNA79ZRyszBaGKFVVXm/tW7zy4NMQcw8w3LBuJ2wnUWbKuEQSrTMpkkpQoikNqmtpeK8mMiqFv2sFPBQmzlmTiIVMrpJFlrjciAImPa8tNakXMSI1t6DNohGlSLEDve2JEEidyMlC2pMcIEwz7NEODcdS2k4uqoFQaatwR5SxHIW+Ywq0vBpiSlOubT3sTLvd+xzYegHcFIgatUkGW0TEFv4ilaamlrKm9KoUggxEGPCGCdhDVnMlimL+Y2DEZPa5BGysrcILs6odzZXGue9nK36oDu3V1Ihim5ueiUINCW+gJAy4zyj0JRimKuka0nBfNBOCf8YZFuhqjzXrBpDJVWU0UINcR1zEL24tdJcVCXPSWlJX6uqtmZLeNooheu6Rn/RaCuT4hJFw1zbhsDYcvWZlZfHSlpdSNKMl0rJoksWM6VoWIfloqVK1qsiRRmFReQTtIhnaZzbOW07lJXPlrMd1vvWaMhL1/VeUGztv2ma9hRmnDUtOlwT5A0UwosS7OA8jRjfY5BtgVYVrzQL16Hu3Obvfsd/RTeNpKyZUmCcZ8ZdYtoHXO9YDY5nd1s+8aP/nB/95t/D/dMTpjxR5ijSFa05e3DO7sFWGMWm8uzpms+lykRFJa6aWF8r1SiG5cCiG+h7Q6+EVgIOaxWKAlbjsCgnjf6y79lvt1hrBc+YJNDGWs3UrymnK8KjV0k1kyislwuil4CezW7kfLzk2q3btEsM2sr1d7Va0TuPtRrbGSqW9WDh+ooQK9MUmUJkmhNziMKC14BpGzttqa2ILTUxjYFwvuP+4zPWOYJ22M6jlQQymbbpSzFRFHgvA4FcC6bvMCi6XDjWmlKbL6TdK3JKCIxHicEZxAR8mJ6/d/ymHx//+Md3B2/P933f993+xm/8xpf7vq9vvvmm2e12+oUXXvjXogF/+qd/ehFjVACf/OQnP/N7fs/v2f31v/7XT//4H//jz7/z+x4/fqx/8Rd/sf9Tf+pP3T/IJ3/X7/pdH/zJn/zJo3/xL/7F6lu+5VsufqOv/8k/+SffOvxef/AP/sGHf/pP/+n7IPe7f/pP/+nq9PQ0fzGP8+9tMfzsszd47uaGi596SDE9Jg9k02OVxPLmMmG0JZWMzjMlCfB71XkWwxq36jFaNKF5LoQ4y9Smjnz56ZqnnrzB0VrjLIQUyUFuYtpkYrrkfFf53BsJ011DG892n0gh0g0DM5kybXF5II8zxbaI4FTQNZOx7YbZjGYaqm5FoRaXufYdLcSKkEY670Ebnrt2hxc+do1f+P/dB1Wo9OSakV5IpuO1yoWns5YYA7vtBcRM1y/pFj3WW2Is1DzKBO+whs9ZdHFKLvqu8/T9CUUpNvsH2HpNiA0hYsjULIEQpQJGt3U7b1/QWodvjOiglZYCM2fBU4Ho/HIzBx2KSYxM2JKMREWTaQ4TTdVMYYCV1XRtBIQcpSDSCkqQC2iS6rRpoRXKtMdMsv6LIUoBZQ05piYbkN+3yLCelCuQSaVFNSNTFQn2UBIVy8GwpBpDGOY8QjNf5RShCgNYbOtCYUg5w35EG4OznnmaoIgMQjf9cG3T9WbGlkmdKmhtUbVFG9dKTkFW30ZjrCYfjGvGiCmKLOQJpTHNICacVpkOG2NlZVwTtQhn2FtLiNJE6iYpMK3gziWDqZRZaBWq4btk5lglLESLuVIbi3IGohhjUKqZZxqWK4mZDQXGGoajRZv+GimIyiEiWF4HqxQxChXAOSnqQ5ypWjYteQ54Z6VYbczsVESWkUNiLEF0wVrMlM47rFEo05EqLBZLadS0FkkVWXjUKJzyZJ3xrqNSpYhXIhWoBTnHkGABrIOCNDK64q8IDHKuqqYfBxhTQlUtmwZVsMYJ9zsV9vs9UwwsUHjfEWMi5dJeC40zhimFtpERCkjOBask3UzUQod/RM8OitqwiaWKyU9rTZwTKrXieJ4w/SDXByrTPFIUGAO5BFKyGN9TUsWowpzElKuaFOawjdBViVxCyeScoun8gpozvkViYxtW0Sps2+6oUrEoYopMIaHbUMP5BbYKsq7kTFIt/ll55phYWCef3ZqpRJFnpcLWGrob16AqFn3PoutxKaEvtpyNIw9i5nyz5RPAZ/ol81NPcLw6Jux2jOM51mjejJqHe8OYJ066yM2PPQelQ+fEbrtjiplxnhinmaK1bIxC5LS3XB8GLJVuuZBrXanYZQ86QU54K4zqcroixsh6uSSOkThPWO8Zlj3WGVy1ktLZdxiliEU0/kfXT0hvBsbdFt/JwKVriZP94Dg9Gq5wggC2l+bCWhi8olbZLE4hkVJh2ge2+8DFNDLNiRwycwiMo2YsScKGtOV83tPZXq5piKRKtX90lTMhpxYe1GQgaNEta22ISYm5Exr60VCMcLWrXE3QVSLnU/4tJe/8D+b48Ic/HL7927/9/g/+4A/e+rEf+7HTO3furG/evBlfffXV/m/8jb/x0gsvvHD+zu//qq/6qkm8KJlPfOITH7xz50548OCB+x//3Lt377pv+qZv+sjR0VG+fft2iDGqV155pQf4yq/8yvELff1jH/tY+LZv+7aHP/zDP3zje77ne575gR/4gduLxSLfu3fPb7db8/3f//2vfP3Xf/0X/Dm/CS/hF328q2I4KcsbLz/ifBxZzCN5HTldruj6jqQSyizJOVJyZDWc4FXGhx05RJTek2JmNwUKDqKjO1pijzRfNla+/kNPcnp7zWLZEcaRTmdy7wj7kTFVHgXNz336FR7tIGokXrKC7TxuGDCLAe884+OZB5cTuZfi0DmhF6Q6Xa0krbZozNW6tiTR40kRIMgu7xtoXGlMUXz5R17gZ//lXXRxxCzYmtKCLRS6udILu82WRGExDPTX1rIiJcnEb5ZULFWN6FpTJNWKUw6yxpiErZVSJlktU3nhQ3f44AePUSpQs2iLtZIiStiSSTBGikaGqC0VqpnWqkyx3r4ZS/dWaoWaZe3dHFKlVCKNB1ogT0EKF2cw1jf4PRhqW+EXrDOApcQISAFcmykqx3jFFtVaPqAlZawTvatsE8RQFrNg7oQ6IVP6XDK+88zzoYgSfZvVoneMuUjUrtY450T3mWXKVbNwaQF01SgtyKccokxscyWrzGZz1tB2BtNStMphkmnMlZGkKaaFOBCl0VJIQSgsi9KMjlZuOihCnJtxTKY1RonW86AFlfejEg9pZ1iMscScCXGm7zto2lHaXF+3884181Rp+kslrzLee8ZxlM6gSuEn+mEJxhinSagaKJFJII3HgUwhBZjcHEtLyJMoXohFZFDWOcZpwphDSIpmjonl6qiZ9GSSrrURiUpuWnil6RZLwcclIYiEVDg7vxCjluJKPytNiSRv1VpQylG1yG2MUhhnxFikqqR9GeFi0wqBfNCkl0KmXBmDRANesLq0wAzZIDhjJckxy4Q954wfBnQn2k7Rl8tnqDTTWNSHoJqCzs30qQ2xnXcS8y7bg1KkONG6Ye/aP9Y6QogYZ6/ILCW3Qt45XOckGrjKzHZ9dApocpXPvLa6TQQ143ZPDIF+MUCFaZ5xXoJuqgKhnYm3Qysw1hFLRhlNry2uSd6CBltAO8vQHxH2E6lk+r5vjaGTkAelqTmRsmwZDrg3a73IN2olTDtqhX4hYTeXux16v8N3FtcXrg8Dy6NTrnsL/+Sfk+OeT7/2Gla9ybXViuOVo+8HSn4ACG3n9HTN4rhnOStO7AJ144iUYE4zl9sd4xQZx0Clso+VzdnMYCx9nBks6Dxz5KUZUwVygLkE+q4jzIkNW3rfsRpWlAr7aU/HQmgkNVEtLC1UrUlFPsfLkxN2054cRQ54vBF/yvUHjyAnrGnc+0OscVuNaFTbQCW0PWy7MmowBN8x7UcmnTmLE7uXPwuPH7FkyfVHD6G3LLpemnvT4q8Rs9zh3NNKXxEqZEvVyDYIAlVbTWmUGK0NVovsK9e2EasVKDxxdv5uSoX3jn+Lx9/8m3/ztY9+9KPTAa32+uuv6w996EPjCy+8MP+Pv/drvuZrpr/yV/7KK3/hL/yFJx8+fOhOT0/T937v9772iU984kPv/L7bt2+nb/3Wb3308z//88s33nijK6Xw/ve/f/oDf+APPPqu7/quh48ePTK/0dcBfuiHfujVj3zkI+Pf+Tt/58arr77ae+/Nk08+Gb7xG7/x8vf9vt+3+WIe5zfnFfzijndVDP/yZ14j73v+k+dO+OhXP82vvnWXz3zmPpv9guJ6AXvnCV0rl9sHrNZLtttJkpa0pjqL61co41mcOEoKHJ2PfPn7rnPzxjHGWkoOeAObcSLmmf0ceRwn/ttff5PPPRwp/SkhV0pKwkv0Hu0sVhtWJ8fo+phfee0h37iW9VCcZymmlBSSIJ1vCFGmBE3babWGIsEeVIRRWgopyRT1w88+iz/9SeYHoMgobQkp0fksqUK+x3mBlru+p6pKiJIURElgjWjyvMfXNf1qjQlJprvGYVwv6VhKDEGlBlbL22xG+Of/3Ut87EN3uH4i5jQB48vEtjaGqgKUltXmwaiUihiLqoyOZQoL7cIoBe08z7IWq5JWl1CYUmUd34q1ECJa5atCN2W5mSqa+7sUNFV0w+qQwFXRDWU3x4zWRVbuDRVVmpxCzE+afJhoSfqI4J8UnJ9fopWTMkeJYXAuSW5kxiJ9gCIVca9Xo5hiARTG94A0Q6oqVIEQIn0nDUA8SEqMvjLUVa0wrZk43AxSzqiixP3f+Moo+d2FbCE61jhLkIO2immSyXPnOymei/BYjXVC4yhCziiI9lajr1jRU5jxnacq0Sun2PSgConxRhFrJeeAdlLs5BQb6SJRUfgWP62VwvqeXMW8o61FBdEjo5UY1FqkcQjIhLFNtVUzwxqjybUwT3MroEUSczBGqgrWeJnma3OlB5Z1ukwSQ8r4zjE185Y10uwZVenXDqs0oRSZzrdxfKmgvaDtlFY464WA0hqtmuIVRQVKw67J57Uq0KoyzwmVKqWWt6OKtcEow37aoKyBWKGZLkGhnEZlYVarirxHIO/bocloNBjrHMpqwhzIsWmJc22bFI+xCA4Q3XBwIpGQ6F84bCtyrlevuTYWZZ2YOZtIXimFrmKSEnKPrLBKkd9JY+j7QQoa565wcZXCHKKYYlGk7QZbopyLQ48bBtF2z5l5ntDe4I3GtDRBlMIuevbThGlBNMZYUkgipVCCxcyqNoqJ0CtykEbK+p5x2hOKvD8GWdDNOeGb32G8vIQkDeazT91hePY2KWQevPWAs8uJB2db9r1i+cw16plica3DDBYV9/SDBQXeGvriWXaGUiUiPZZEyJEQC9NUGGNknCrjuIeLkZVbsVx4FoOl7w2xBvp+ScmJOGVSyBhvAYNScj+pJTOqSiiZQRuMdtQCbinXnl0pRGf5bf/kXwLwn/y9H303t9jf0sdsLV1Kv6UKmP8QDq013/3d3/3gu7/7ux/8m77+xhtv/GtC++/4ju949B3f8R2P3vlntdafe+f/v3nzZv6RH/mRV/7nHvMLfR1kq/493/M997/ne77n/v+an/Nb5XhXxXCpgf/4yRf4bV/7UdQQOb3mubG+x8986h73LzUZiy6yugspcXZ2JhdUPN1qibcDXb/AWIfveoo942Nm4ENPPYHpFlgva1FFZZ9H5suRiynyC2885JdfPWfWPbY6ca/rijJSwHS1olJms92Rwp7P3j3n8ok7AISUmpzQtYmdTOZyTnLTbVO72m7ASjVebov7rbUSx8DxasHzH77Np968izPiujVWWKXWW7zv0MYyz7M47JVGqUoY93jvUMqRSpQ0JdMxLI4Zxwd461iujjHGE0omzxFtREqy2ZyxmyK+P8G+7PgdX/MMteypTb5VS6IaCQGRqdjbxiYJQ6Ghxt422cmzlOmwmDISfdc16Yj8YGEaJ5SqOCNNgkaeY40S1yra0UNKloZSxaleq8Q/K01FXPoCla+ocghOEOpAS2YFqsDhVcMp6SrFZS7k3Mx1QFVCAKlFSYHTIqBzVagsnE9J65JCVpfatMSykjTaUKohxDZNNQrjZfo6zrIaVFdFHlBKw1qJ6a80ecOBMmFd02tWqU1axY4xYpzSuk24k8h5+r5vBrjSyEtafgdtGk9CpCzWuTblaWlgLQlKGyl6FApSaag8KUirErlMboSU0uKIdWPRamtxRqNSpnNde50AJOGPpouWs4irSFfa6n2ehMGsi3l7clubVCYVxnlqzZOsjp0TaYpQJGSqbxpejQqpVBSGUrMkD5bayBBZ0GGNcpoy5NrkK7WFVdQicty2gdDeyetMK4S1SBhULexDI6coSaXLKaILzCpTlMIZD6hWwEokOJrDGLXpfuvbBkil5NzVb+vvYyOM1NzII8ZQBfhMOhTS7ziPpv3YGp4O76UQ1sKTkyQ8LfKGIh9Gadjl7WS/n1G1kGpGoyjGyYRSy+dBG4mKtwqRMikrpl+tsL1BZY3JUGNG5wi1u4r+HWPEWi/YtCwGvKoqymoJwkEasZoilMwhUkMMpgWsa3SMwyZIDIIxBUJ8e13vOkfOhVAtXku882GanrOEmTilefr2Lab9iDaadPOIUmG7PWLwmWp7Fr3onwWjp8lR0StPzoXOO8ZpZK29SOaPFVMQbfZ2a7m82FDsxGZOnO21kEtspe8tK+dYeI82FVcrhkqte1DC/w5Wk7RM54sqYAwWcH1HOBr4B3/qj3Lnc2/wu//ej/Iv/9B/yebOTVJMhBCggO+8mE+zfLZAXyWHOmfadUQm+7Y1aCmI1GbOiRRgTolYC7FUGeIcUJUt+EQ3CRxNPnYgzWTEOKq0pqQ2oLDq6jrR9l2iqb/6jMkgZNt3/Pm/8/c//0UXDO8d7x3/Hh3vqhj+pq/9T0nvvwHGo6aMV5Vlv+LO6ZKzzcT9h4Wzx5NMo1zGaovtPA+3ex5cXDJuZqZpheo9K6Pxuwe88MGPcvuJI5KdUEcDcZuZ0ohKiSnPfO7+Y37+tZHaXWfoOoq2opVUEl4QUoIUMd4yTTPOKoJKvPrGBQBKyVpSFdNwQLSLtWjjjNFNYiAa3pwqzRtFTJJOZqjYaPiPvvwD/KuffAmUv9J9Ugu6mfFKSrj+kN6j6VYOUxzKeEDjraFMI6UEVidHbO6/jo6ZiwtYLlYUp8myn8SZBV4pbNfRr5bsxsLl5cy1tWeM7YbZJjO22saPFR3tIddJXqdmJKxcGcisk1Q3WcPTIuyksBW9sYYr1VgrtHIhjaPQHw46XXkUckwoZBWO0lIktru30uKUL6m0yWe5usCK2U0utKrFFlclbvs0C+4s5Yp2IgeJOaDQpBiZZim6hEsrhdnbzGXRMtaUKeWANqvoLFSFKSasNdRcyVLNSCBEFeqA1kCWbYYytul/qxRuRqNbhPLhRp5TK87eIQfRjfygsjQJqojZK6SItY4phMZtNvKelSITVufkZtSKVa3EMKiUGOasFVOZa2lnaK7QcqqhDb33bV1toTSpA6UFeIi+u7117f3QxBhIURKprJUwCG+dTDNzFj1vM6Ll1CbvWgp2pQo5R6yXtENrtNz4VYGqmefAYrGU1XqRhiXESK0S+Sq0E4lZRtMKKpk4zjG12OmKLbKarqViWtMaSxR2q3Fobak6UXOT4uRMPwyyKm7bD9kGiaHI9R0KadTkebYpvRKvAUokMOVQkDZpjjFWzrkiWDNtzZW+F4SCkqsSqVEVnNlBoiSbk0NSY9ODGyFG6CKT8EwilUZjMVbMf2ihpcRZcGANc0cuwv/Nb5sxD5pPsjSCSivhuWmF8x5nPKoMqKzJVszFzkEOmV4LM9q7jlQjWYkWebkQ051CrpG1obx022SdnZ3hh55c5LN21R2qKnSdFOna+TFNQYp9lSRiXSmRoSAGPOHoypZlLhK6ovseb+DmapANSdYsFgMHhnfJWSb+1qCNomtNF1qjvCPmQOczMUSWbs1aa4ID40VedXmxJwY4O8/cz3uoGecUi85wvBhYDHKPcEax3wXmMeNqQdmEtkpY7Npgq2Z//QYXeynut0/c5NEzT0Kp5BgkUMUINYXSUJTNC3BotksSXnuqBdN5MUQWzTQGdilRJjFs7lNmGwtUIX+I9EGQm7XJu3LNbZHVMIQ5SdGstZBDqlyrDiZyMXjSjJUiA4spyDX7HYiu9473ji+1410Vw5tffMD6+vMwiExg1d/Au8yxuYN/ouC/QoMO1DTR6xW6zFQK2xp4eLZlv0/ECm+cPcZSeRw0n37l83zt5QfpnzxlTntyzWz2E3NVfO58x0+/vGXUJ/TDGm0Nc4myxs2FkmdqSShj6b1ukyjYx8d89lXRbhVlCFFhTaG0Yji19fih61YomX40ZnLLsMS4DqoizYm4q3zs2ac5ublgeiyJXCkG+mFBqRlNpfOOOQZIAko33uNzYZ4q6oAUm0aZNpkO4zuZFLYbh/WW9XATZTzzvEVVR1U9BUMsctNUNOc5GmpkngPGDa0oV20VLNPFwwSzjb2vtMGmFb0SuSqFu3PubYRX05uhFCVFmRqYljinFCGHlsJmCSHhnSYGeW8LBTU3GoD1GCeFVc4ZVXVjWCpqYwcXpckpk+cgxUEz7Skj2mylHbumPVbGSuxvLwlbISbyPGFdxhgnmKyacc6Q2mocDsWwSEYODM8SZQpcc4YsyW/GGNEmV6CITlirRhpomKMcZdrinZNio1EojPGN6SpFmrBL2wa/Kkznr3iwpRR8uxmqLJHMVhnZNND0tu0vKwWdt8Q5YK2XBLIQSSRUUeQgKLUUA7rvBI+npWGQeGAta99ZuLcqt3ASVa8oBoWMVjAMTROq3oFbQlG1ba1RwmpH1QmJcFWkJDf4vu9FtqRtY1xXqoEUE8NiwSGxEJ1EKoAkw8UYqCi6rieXRIkFasIYMd8qZSSOuwpHuhYlmvRS0FW40+agR8+xNeIOrw27zQ43LFsRLPrg/kBNaBQVWaTIFFO3BiSHVpg0dFYuGUlmFO1HqUVkEEqjrRQzSRhrIjpWMolX2omxsYg+OVeZWIqkxWKtyJCUajg7WkR7LVgl51zJRQpFbcTE1XucdZi+p8QiDZ9GJA4KKIWQ4tvNqJEQHYumhkRGkY0mlkI1Gm8Uzjg5R62lxIxSE8kYdG8wzhP3Aec8fd/LVsNIg0TTlLvOsjMG5zSddeSYxDRaC0oN+L6Xa5Jp6YG1yoIgV1IOTCldaWnnOTDu9hjbAxbvNLvtGcv1kpCKsHaRUA6jGxVEazGYGtXY3xKbrbURbTUKrT3ohO0MqWYWdsUiK2ItDF5zNCwB8XJstoE333rIPMF+t+eNzz8klMrz1xc8/6H3MSyWXE6Zqtpr0JJIe2OITUa1aMXwHAspy3ZNKYfrDhp4hXGuvf+yhfBaptrGiXbbtetQyY1zbh1rZ5hIUDR6N9Mlxdw0/aWUZnht1xCr5frT9oaHECaNXJMyTUZ3uN4pA7kZUV1jh7egpXemlb53vHd8KR7vqhhePX/E4/iYRbV0gyEnRTaZoBOGBQUJi6iqZ06BfB4gaUJRrNOSJ2zHsh/4hqe+Bn8SOD9/xM/d+Cw/+t/8FP/5f/kN1Bua3XZLKoVXd+f83MtbtnVN13dUZcFovNcyEZ5mKhFroGrYzyNRa1KagMAYReNVSitQSr4qBiVBSyZkuchkx6oqZASV0UhhJVxcS79YkObI9f6YO09f46XHe6w+RFTWhp+SBbNSYJwhxAm3t+Qopi7lFa53TGPT/tkF/bDGoanGUzHEAGl8iHULtKtYv8R6TyXQdT3OaaqudI3j2sijxDHIBU5J6ltjIFwZtaqMAN8mTrSoYdUS60BWvUCbpshUgSq4HklCkumiFMwdKebGkoU5Jlm1AwoJ61BArpX5EABAIz5oKYJjaCZEJe8fyI2rZlkHyu+u2oRW1seHwiG1WORDsYeqhJaA6JylIgV2raJfLhyibsWcRWP3aiUFn20797lJaqyRiGVZ3aY2rZXXRSY5hRQPBjoJ4NAtZlnATbJ2LVludMq0YAgkTldrLcVTk0ykFj5B40QLOk9IIFopcoqEOOO7tZAgumaUuSruDX3nqU0vXitoa8kpyXS3mfesdWRd2g0SjBMj1Ny0tzlLUlxKTSVbJcBDGUNVRqQKpeCcb5rgimRLOJyT8IlcBAMl7vQqK3clGmKhTwSw0PuhTWMTxgpyT2mLVrkFukizYy3o0iQ3ucVig8h32uPEZHAH6UIVznlMMiE2pcj5VwXRZ51vIXC5sanfTuWzpp3rTjFlMTQZbzhIdJXW6GY+VU2iklNBWXntJLhBdNdh2mNcL+dFbc1Ww6WBnC+ySWnnzgERh5zXxkmjXgrYWsjtc3uV5DdHabraBsI7h2q6Y8uBIiBXJWM03jvmKu95LJVQEqYE5n2gzHMrijQ5VryX55iTnF/WObztSHOSIsmKR0N72pTbsFzs0Qq6zpEVlFSkYTIiiSitGTIObDFkCto7VLHU9jrK9UeDKaQ6SUJcKRjn2O+zaKlrpRoxnWYVKUVwes7aVgzK66eVwWtNygHX6TbtbCYxZUBbUhAjqnRXVTB/Fu7c6DjpFZtdQFvNOAfeePCIsrDo1Yrbqxuc78+Z54JKsvnRxjCmLNfOXGTDCIwxM05BtkMVVDVX7O/iNcaodm5IQ6swJCQqWReayVOuYb4zxJDRTmgZS2VRBAyWWAoxRimcjb7SuWttmgzwIIN6m21tGtUF5HES0kClnClknBcc5CHlUan38GrvHV+6x7sqhvfn54zHAxHNcl7gNNQcIVSiDYTzCiaLpmzcsTl/zP23Nowh0bsFg1lwfdGjqygCb1w74ev/46/gJ1b/A//gH/wz/rPf/w3sa+F8jnzu7o639uJ4Llb0hta1tK8Y6ZSRFZptgPwA3WIgqU27YcuHfJ627M/P0NZyNEvBp4uCkglB5l06J7kQKLGiFbIY6GqRwslkcBqS4YPP3eRzv/RZrO4oiFmDOIOxEHoMBuUN1lWISXBTvmPRec7Oz0jjiDcdZiE3hDRlulUHneTSu65nubqOsp45BqY00akO1WdSrNSVQ4UiTNRaqKqK47z9I7rfZqpp5rKDrEG3YlhTqVn0kRkwxqJb3GuuRV4fpN7hIJtsU/fSNKRGmQaLz4cgP8Qdf2hCKvLTobQACWNlQjRFSTWryEow14ppv1vJYioEMSxpxZXGrRYpKiUdWUJFUOKKlgm7BGekluRnlLyHjeJMzmCM6D8l+aVFVGtFOKCDiri5mzRYJAtNzypQ4dZQNa0rFWoWqY02h1hsdUUfULUKJ9dZ0LIS1hQw8uc1VaxxonetUkjGKEmDORec61BK4fslzrm2rmzTx8b3rUUCM7xWFKSwTCXijW6a6YJzTooBhayujRTLWiu6hlfKpr3WqmGYVKWWAMq2+Gw5ryqpcXctuST6oUcpjaOSUivsqcI61bUZzkSXqqqi5japapIDOe+yoL4aGUVpgzbCWiZKQRvIOO+pqeCtJpaI0RanrUy9raIUSXXbz5MUBW0KrbUSxF6tWCUx1fawrWm4NFUPDU4UjblzlCpJeKXKZJcsooWqDTEK2aXqFk5R7ZU8wBrdXP1S35XaYjNaUV3bRiqlJCS4WqgaVJXXVFINdaNgVCmQtWaOMznktzFtOQG1Bek0UoazOOdbxHFjKzc5V83C3LbGUkrAe3c1tTZaKB3aihTNtIKfqkghME57+qMlzog3pCpF1hpVC8OiYx+D8KhzumpOis7YKnHYxUkocY6iFz80Sd5Lwh/AtcdnTX51ZShoU0k5Z2qToNWSW4MOMWaUE2lLSocGQ6Mb/cRoA1Y+55SKqg1TiGD1lDZSkNdGkSkiMdrvdhijsN7wVTeOJfHyxdeoVfGE0leyskNwjLVGPABKcfxA/EuxVubUlONFmherLSlEMegp+X6jDbVqOVeal0O327Ocm/I8rOswZcImkfpoC3VsiZktbAiFyIhqa8Ca2VLkKO21aYWwOmiFW0hTVhnrmo57jigv1zMxZR9y2d873ju+9I53h1argX2YWXUDak5UndA54kphFydqiHRBM0+XbC42JFMxR5lrdsAtHNPlGfejYqE7btx6hqOPPYFbHvENH/84/48X/1/8k//3T/C7/ouv5mF4zEuvj2TVi6mqFlKcRP+pmq6TSmdocaFigFFKs1yu2XQ9hFbQqUzKIzkUNufnAFKEqiJBBCiKNljfCU4mVoyBgqwacyzorPHWk6bIh154mv9v/+tM20CnDWZxhETvBnTdtJe0opTDXl8AkTjvuXg4Mk97nPfkmLDAMHTs96OknWnFanVK8YXd/hxVK947FqtjilqynzKffukhX/tVT1HLCDWR0Bg9oE26MgHKVqx18rRi+BA7fSiGtW6mKYC3pwNQD6AEVBGNbG16StXQPVrrq59zKGZyLNSGaAptIiX/MaAM6AOmR0ILtJEo6FprK4qymFCaEe8wgVZV1uzKyAQa6pXO8u3JtZiuStN8H6QhoqfVV2xiJWNWUjwktUlimhRD+arwP/zc3KbiVN2KD4VpTYFCpiqi0zXvmO4Zas2NeZtbYdwK0pKlEEQ0lKppPOcshIacIq4Z2ZxzgBbklnFoo5te+GDkEk2tMZp5jm3NnQkUnHX4pgOtOYmsxMo6tpbU7DFt4tYkINpaUkp0XpLialWUqkW2kKTQDClilBHjTSmtWBPZgagHJBRAt/hXCsQqyCjXIl9DyBjrMbajlESMgaEfZJVdudKrH86vmg5mytx8fEokLUqxmwOGpoUvVZjSchqJWc1LbHcsQuooGWwnCDZTZR1RkSAVrzQxJmKMktZWJTq7XrGkGyqtaXOVkSLRGJHWlGawU0jBOY+TaFetE41mg2cXbYWDjG5GP4NuciAqVwVuiaFN3zUxytRW6YpBikJjTZNtyGZDJusBaiWlQ2qcvmJYHwgYxti3HydlnJXIbNNZjHISwqAUyjqsE2bwwZtQU8QqIc1IeIdM3zXy2e76Ad93ralq5k5V2/ZGtj0pBXzfo5XouXUzkTnvCEcD0Vm+5ZP/9N3ckn5LH8FaHqHZzxGTauNnSxN9KKRDKcK9bq+Z1QbjOpF9RZFmCTO+EML/n70/i7UuP8/7wN9/XGvvfc75hqpiFas4iJREyRpiK+1RRgNNx4AAJ3CjkVwEQdpCDDiOEyuApAsjNxZkEBEkD3eGZRuQGwJsBwY8AAbkCFHa8CDb6Y4iRTbVkkiJFKcav+kMe6/1n96+eN+1v1IQJ6hus9smawkCivV9dc4e1vAOz/N7VjR23pGCNgEpwIiAi9S124bH4uGNKa7SG3DBE73y5PU+vhmmxTTv9hqiRdz3botC91w+9/7x/vE1erynYnjfZl65fIkUYT8aHbg73vHG49c5LpHTaaU/W0i18eonPszFwxdIZvaQ4HAfLASZmfYHri7vsX/pilt5RHyz8Dv+7Y/zf/vZf8DFP7vkM/kd3j5WDocLLe7iTAiCoJpRnDBNiXURvdGY3nVdTyQGed4Rbbo5X1zw8AMPOS5HLm40N76MyrPrIxl3LkCWmzukFko/guwUsSOBaY6E1IhZXdofuP8yL726481fXfXvrjMPXvwQ+WrHcJXbmzucVA7zBburCx6/9Yjbm8dcXt7n4mrmuBRqc/gRGH4i7IS0j4TJs7Rb5HYl7O+zf/FliF4jOE/vICPylUedZ4/vSKkiNEIOzNOk0yqbaoVkRRrG8cUmAe55kcGwB7yDEPP5Jqe6TAuLsICC4APDb8Wv3myHmbK2xEFM/6eSRQ2KiOH55HZbmbdW6QgxZZrIGUS/6dGUehBYSzmv5sQpwoxmBaitqMfYaAqadqcAgHF+bc47cGYec2aLdt6KfTlPizeusa7KbYq40TrEFMcbSQL9O9EMU02htKSshqqyVmJSvqrzwlpWYpwBOTM8N7xWTpllWXTzgSOmTHTedNKB1jvzbg/o+48xqinNvqdpmtSIhP7Mbb2J92R0Yj0sGCWmQCmFnGd6qSoZMgFNSqoxdymB6Camdw0jqHVht8vEmHA+slZNQZTgicPwYDyfriuT2QgW589JJ8qtNSCx1kGXTu/Kew4h0Fs38sY4x1mP2ohBiRyATd61uUmbScjoGGPotNfzXCPvneo/c9oaIp3gSq3KIe66Tk9Bt0TewzRFhqhZVHwzDbrSNqK39DUwJrYQnBoUuxOLC1djY0wa5KPNgUlHDJtXRkNEtcih2zLK2lYBul0j3vBw0zSfG7ZaK2nameFqY42r9CelGemD4+maadamtddOrSvTNGmD19QrMc9JJ80Otkh6rJmMaWJ0p+Yta2I8urnpVWk3LgQ83ljow6RDQrDrMF5MrGXVc8LY7XMIlOMdPgameccsQisrHW2ejy8+5K983/+Vy9oJaJy7mCRmm6APGQybVgfv2fZXtRbWemTeX6qmvA+CExrd6CQBGXpNOKdIQ2+Jam0t3N3ecHF1ibe4d5UmafNYWjFcogZVDIdNUy3y2sxvjuc0h+2ee7ff8TjvcHcLMSbmacKJEhxUmSXPtxdjEH0gDkXUBe8ZJlFTuZXTqGanAwqMWpK3wroOdn5n15k1aWPYMEPO9KDt/uHiUEmgU8On9+ZJeVfscky/OathSy19/3j/+Fo83lMx/D9/5nO8fHGfe/dmqqtMqMM6RuF49xZvPLqDZcd3//Z/m1c+9IA7ecLNswW3RA6HS7zsCHlm2j8gHiaun7zDcn3L3emOOBIf+NCBv/Pz/5R2uMf88GUu0sSIHpkdy6myrmoAcc5xt3bEJbqzdLSYQCp9XZA6CMYf633QOxx2F0xpB8AkkRev7rP0E72uXD96Bz8GwQeyz9R6y119Qsdxd9yzP1zQ9idkeILvfPzD93nzM+/QZWW5fczjtXA4vsK9lz/MB158kbWou/f6zTfop8Jud4/eg+o7WyPjOMyJ67LSS2F1A18bKRyYr14gTTuSCHUtiPdM+xeI3rN2uLl5zKuv7sEFi2d9h3k6KF3Am7lo0+dtEzYzyw2Lox0M8/oM+ih2o9WJ61ILwdBOwetENmyRE1b86M8fIBql7EIEpxrZnDKjdZbTQgyRGL1NBVe8j0p5QDnD5zQvmzo0GRr0EDRWVNDYVy+6AowW5xxskrlNu4cIXrzKQsY4Y4W6YCt7hYX1Xs8O+A1MX1szCYHWA8pXHVbIi8opTFOIcVdr64SgRWAX0QlOVwMjQ8gpAgM/6VTVh8S6rpSu2MCcE6dTUdZy2GKiddU6xWQhDc4CWzZzlpYFzV5vKUX51iZ/iDGpntQJpXWG82a+adSNrsCwAk0f5nULe0A3LNjKN/hE9x3vJjUZOqf646ATROzVVHvw9qEEAI9eiy7oa3YiuDhpo2Tfvc9m8OkOP/R7cHAO/XAOYkisratEYuh5N1TArEW5RTdvDRuCIsyaEBxEp9caIhQKOWqR1qrydoNzNpVVfTnOjEVONZ2DQHSemJ0SIbpuNFJQrjdOkXzBRW0cpDO8vt61VdMFC+IHo2nF6y3EpPdObSveB13Xo8xwb7+/j35OFOz9edGM0zAL5z1rLQzn0Nm8Q1onknQ1jj9PrlOKpHww6YJuVTajqcigezX3JTeIMrRB7Up2GRZ3HVJUk2ATa8gqI0WGC9qoOChDGxd9r55jOdFGJ6VEcKppjyEwrq910+b0c4k+kncqq0p5pl1e8dg5o2B04z7b9qdWrm9uyBcX1uz6cyGHCI/eeYvLew/xUfGPoxYainV03iHNKUrMx9+EnnQIx7tbridFY2pvIFgiEyJNEZQydMPijNoQpnOB2WpRzbI9J8/IORENJBmqMbstR20QRYvgGA1NaU3hUguhB4Lo97g1md6DF/Be7Hp1itVkWIqh6YNFG9GcJ6ZpZpomnj17hksqvSilqEdhdNpS2e32miznVN4WvKc3287450Wx955lWdkSTN8/3j++Fo/3VAz/T29+iRd/6cB3feQjXB0SZIeL8PLVB8n7HR94EfY85KWXH7CejvS14UbneOu42GUOu8B8OeN2K4+efIF3nhw53RaWZ89IyfHyvUt+bXrM3dNnfHB3n/nlAzflyO31LWUVfMgQbErShDTP5DkziqhRqi3sZseTWkjhAoBRT5TllmPvTMcbAE7HI8enN/ioZrcXX3mF482NOq6J7A4ZF4VpN+mDwDXacqI3GBk+/OpDfn7/NpRZJwi+c/vkDW5u3ubq4pJaGvniAWF3YL9/gMNT2sKx3FHK4DBfGDIqMu8TLgam+ZIcrxhejVW9LBb+MOhO16+1Qogv8eD+FadScW7AodJOXSd566bN1cK2yyBY8lHv/Tw1GBhOaluZY8Uecp72qo5NDUGbfEBQbeOmKVNpqE0TPGCF6bDV6RANLdEEtIgLEXEb4k4svlinjd47lU8Er2s9m0APsJWrPqTGGEhrtKE0giHPdcuIaAHmHAHVkg+bmIulbiGDtRRcyM+n0Sb9cGcjpOLCMC0hpvDsNv3TB6KlgHln089h60/H9c0th8Me1VZ7emvn+F9nE2WRoWg4Q4W11pEQSDmynE6IeJXUdNWHLstRGbDThIiwLMvZjCcIfdjvsAahmVh1jG5a06ravzEY0il9sN8fCCnhbKIew/ag1YfrNE/UMWy6L/jRNeFuWdlMmSJC8kn1tDHSbMLrnNMCyXVS0mCEPoRg69pm08ghar5sJoNIXjnGPSVt0OzneZtyDfs2hgjRaQRybV0th07oQGmF0Qe73V7PjTK0QDYdeO9Nwza2a0LGJl/VLQpOp8gyNDKcTUvswegOSm7QiX8wDX1SISouTYqgY+BCpg9NaBNR7rSc6lmi4FxA6nO9fh+DWgc+alM4uqgO+l2ym2FX7vY9CagGVSzkR4Quzf6WXmMOjPOsmDptiDrUxnp9zXAdHyNLqVxcXKjWNkZKrQwJKADQaxHeNJQHFaqoVr92xCb8zuK4S6mkqN+ZamOVgRucNs2O5xHF6j/QJltpC17vE6JowTlPXMs1TjoxTufwFL3tDK7uP8Djkda1uEwR6Q4XdA/UpFJqJQRrdL3T6G0RdrsDpRVcsAh5B2KIPOc9gQFd74nO6XXfWgELGQle73/J7tfR4tBlDJI1Qdv2rVtBGbxiL8d2T0FMmqSNUbBtmUpjDHst6PYpRIWWOA8MRcqhhJP1dMRHNS0ua7H3Y1PxELQY7x531qXLOR1PaROqNT7rxgRD5bmz8fb94/3ja/F4T8VwHcI//vIXabXzO77hVa6uIvt5otbAvD7g4b1L5vuJJ4/eYpLKozfeIuWXkCzQV1Z2rMdb3PXCzfqYN15/i/Gk8fD+FY++9BVeu77Pb331wD//yiMev/0m4eoeKR9YKwjJ9Gc2DeyDXlYtFppOJQ4PEr0ctQhMlg2/v+Di3n3WVoizhudMFwGmRm2Vdmw2+Qx08bQqXF7OpOxIzpHcrCzXq0tGW5FW+W3f/An+8Uc/x6PPwJIawcNwnaXe8ujR24QWON4+Ikz3OVw9ZH/5UA0c40QSIdJY2sKy3lDvFnzyuNMTdvE+05zYH64YbkeQSA6BWgtLqfh4waNHBelmdOmDjifNWhC54e2hq5MAzZxSE49z7jd1+91CGbbUNwdqLgoRxyDZanhLYCPohCUb91T/vuqIR9t0pjr180RCEnrfDESBgdeEODQQwmpnYvSspYILtNbpA4I4CxZRTTGme2sIbQg5Rnsw6fTUBZ3gOYAh+vAxGQSgEx9pbHHVOSWGkRGU7GBMV+9ZajWOqz5wxGHrd51Ob7rWOpqtuDXqOGrGAmsrDBy1mQHIufPUs/dhgTGOaTdRSnk+te+aMldKo9bGPO/PD1HnnRqi7GF0e3OrSXDbhN7pZ91rZ9BIWSN6vVO8VzfT37IuRFRnOs07LdjEXpPjXEh7H+1Z6GyDYFO+oROtRWPZ2E87TU4b3dzrz01FKSXogxA1EtoRGK2ZQfPcYen5aVrFIWLT06pGUB8sFjZYQ2TjeywAW7QQEBn6HTldiTftgKiIaYO1AJYx6JJYTyemKamUBsg56yTPmhbpFYwQspQju/32XcBulylttYm2hRrY9mBbweu/09d7xrFZoMk0TbS2ElJAUG3vbGEVg0EYgRgscMMkACkEK7Qq63KiC+Q8qR59iBY4fqi5NCohQ899bcC2lXm3ZlGcplMyOl4GZT3hfCOGHcMJfVRAkxWdD2AbGYnJPGjKPW616+agNTUxCixrYQqTegNAqT+W5jl643S74lMgR21wq0mANtyYFqhbbHEwY6BqZ2OItLXpVD0ktsXAQMh5RxAt/IlOJ9NVCRPiBzn7M8dbNyxD7x36I/A+mvykKWFHhjG4ddPT0UbDR/0u1tYZ5gHIWa8xEbFJ7XN+drOCGtBzxoyV2sApZ3wMla90hsZlSyfHSELj24PJhcTu2zKaJmqahn30ZgmiavzuvZu0q59j0cXkZRtW0Yk2Y6s11SFojLiITcy9M/Tou5I24/Pnx/vH+8fX2vGeiuEYAj0O/tnbv8F1W/ldL77E1aUn5sDl/Vd44cEHuE5PeeudN3i13CNcRb746V/l49/x2+izZ7Rb1ptrnrx5zZO3nnL37E2m+Yqf+40vMF1Hftc3f5TPP/kip3JE4oF3PvcZHr72MSQEzW03XacLnpQjp9sjKQS6X7VAksSpCE6mMxFBuiOMSHIF71UzPE2XXN1/URPfRLtf6YX1dM1+igxWSofb44kcJ9zwTNOOFk/M8z0OMfK7fvc38zc+8wtEdhyP17gwcXnvPkOE5ANxeCRUHr/1OY53d1w+fEBdG8lZulYb7Pb3yP5CuaFxIqTEYf8C+RAIKfDs+o69P9hqLeATPF6O9BWmfaFGR2iBHsDJIIgms4WQ6EmRTmsNeNPlia24o8tM8wRVkWzOD/rQuNzoRTPrgdYrITiCV7xZmrJqcw3030rD12oJRgkzcuN7Aem2KnQMSeChSSP4bCaOpoWz90zJ0UfV6WtZaMBgOss3WmtqaAJSzjpdg+dBE+O5cVC8o1ednrhgxYlN1QT/Lv3vc/IDNvVuY+CDTu+07hoMM+IFp7p3bwWjDMeQpsZBZzKSRVmxMWS6xV3r5ngL7mgKsaidtaxWADbT9qkp7XhaydNMbdWmnQGas2CPwLpW8jw/1wQ6DatQWUCBWlnWhnhPiIFWGrt5z5ySfs+905rKOQJAHfiu0hJxTuUZtZLnyHDClCeSaXmH6AR7ShPPnt3QamXazXin5/yQgTSxNb2HoLHXPgR6rUzZ08RxOqm8Y+i4ShPcgk7ztKHx5+8muIh0RWAp7q0zRKeVdAe0M+4kWRBG7UKaZoYLYK+nS2eedwidMGdLGgyU2vSzUD4eIUUKnWhynxAdj588YbebCD5zuxSqdOj9bEQazQgTvekUPFqAQe2IRRhL66TokV71HHHR3v+2ldGiNcSAhGbpmpDmmW4a+pSyIrtqxT4phoelrmjN6pHV4QxFJ97RekWMIDCGwGimD3VKrCkLNU4QM/PlfXLp+DjbxkElJyEEmgh1NHJI7KZs56OFqzAY0ZEQ6rLimk5zg/OEXcZ3JU/M9+4z9YFvsNZVm7gxdFU/BtF5TvUO8kRAZTwuZfAR+mCed1yfbgkyqSm4VruGlCTCAKmDWiqY/tVtrtcxdJrdBYKj+8H+sCcENap2MfNZ62q4FL3eZAi1NqY8MbZExtGYvaeiBBCRTg6O0ivZ/CubQZfaca7hXdQJK1gDh22IvGl6xXT3HlynjWFFtQ49RIQcs74mp2OCLQ58CKxrBfHkGKldbFNQiSlT2+m8VQshKH2wCyEKKapXoK7F4ubdeVs2hn6/DktmlPdpEu8fX7vHe6NJIIwAlcHPv/kFjv3EN7UX+PgLH+DeKxd88Y0vcPfsbcpp4Re/8hbzbs8L3/gN7F+5j9t5nt5+mV/+7K/z5q++zYfdge/87Z/gnzz9Ff77f/EFLv0DPvelTNw5Lg87bopjpfDmlz/PxcVLhAcv0yMaSZu8IY4ajcHhoJGiN8+ecHd3x5D4PC61N+q6KPnC3oeaHYyz2ET1ZacjFykTdjPOR/rozHOmlUovnbvjNXihXb+DsPKdL32If/jK/4u7Zwe8b5xuK7JUUp5JIdPpxOkBVw/3qq2tFSeeMO3oCLVUpjyxlFumKRPjTguxXlgXT3aqAXROH5C9KeqmxshaBnkXaGWQCASvN/Mt2UpEGavnh61X1JiqDFFjmfOkabL1qa7PnDdRQO06jUoZQbmtAYdbqpIXcibkyO7ejloq1agcEbHpqYYMSB+kkHT1phs9nVaw8YRRI5XJEABSnnTaPHTUu+nyxLSDWjgFLYbZTHQa+etsrbfJFtxAp8pwnnxvD/ktNhY2U40+1EbvTJPqGDfNrnO6+t3W0oA5tVVvC5bQZ0WbB9wQfQZX5VWLQCmqLVTN7Hbx6WuN08zxbsFb8Z9SZAynoSo2tdrIHj6E8xYT1Mg1pCEEfPSEPGmICo7qC20MjstCiJgkJRKkU5aVKU9I1cxCjXBWI02tqsnuzZ8Ni9lr8TRkaJqiExy6jhcZyHBMkzYC3XTOKrvQeG0fA910zhtmzZlJyNl3q8ExwcJjxvkhXlEZyjA6g8axW3qXNJ08D+y8scKPjqfTmjrk11LNR+kpDWJ0ysEdOl2MIXBzWkz+0c+R2FeXD02fvFm2wnmN3wwviE2nT3eLyp6mGY82Fk7xIud4YhkbQcVrqI33ZggzfbTto6OKmI3YNnSS7ANh0sZsDJ3ynmO++yBNk53vYpIJPW90uufMSKmSjVoXvSelzOOnb2nqYNoxfDC9r2MphXEcTFM2rX6nL938ds7O02G/R1f6QyCmbPN7nUQiKqtIKeHGoLbKcA4JFgduSL+6Vt1eyFCjnvPUoTQWDKu2roWUVfHbatUfPRSZWdeCj4ExqsoszpIJlV70UQlRC/zaGs5nNY0W3WKFkFTf3ariEAfkadIGcZppdn74zRAXo/K9W0dKIzh/9m6MjqZxukyv/XwfEDMWd9N+b82JhuyYXEv884CSMwYtULsGlqjiS7cV+EDMmi7nnSMFwUVBqibZgfoyulFLQghqFh1morbi3Nl101unSyMGQXrVyXqczhuur/fjzTffDH/v7/29y8vLy/EH/+AfvE7/C6Phv87Hsixunuf3v8j/leM9FcN4Rx2NGDw3vfBLTx/x9M7xoYuPk5PjzXHD+njhm77543xm9znkWeLBB15BZHAqR770ua/QH98Q3eCF/Ye43L9EWL/EPkbGED53fcMH9/e4uHdJvR6szZF8pMotaT1wuHjACBCdAI1woclJjMbN8Y5n108IBKTvdNoAeGfxumbKAui10JdFjQloklzKGecdS62MUc1QpmuvkCM5RzYck/OJOXe++7t/Cz/907/O/vCAUW853j3FrxPTfEHwE2k/4byusBAhTwd8TCzLESeOFBNPjneUpbHbKSIpT4NAIk8TIdh63nl88oTg6VJ558kjgghdvGLZpkTeTzbdCArz70L3kHKiVYX1n4MxDOHjMGg/qolsa0F6Y87Ksw3RWKlAMr2hH0qCEBGOd3eoFCBqwhvoBNc0fyphNfyaYKY8nS4yxBBQWPFhyCdbzQcjNuhdGisQtUjdHhhaBHdNWnJeV9U4hlezYB/dkvK8PTjEpjG6mkfc+aH+nFqg1Itgpp/eB2BFqbFen+PNvBagRqRQfn+gDX1QBW8GGRGboLlzUpmIBTY4CD5RixqwtAB4TtfYHNwbOSNauECr+iBzwTFqU+OaxyZLntqE3hs5p7Mu2QedmKrzX8Ac8vqDBCedWgveJUYdlKZRyDHq+bD0oTHZ0ZNzpo5qBUSwIl6LHo8RSWUoTk6skSmF3hsp78DkO/DcpZ6cFhHnIIAhZ6rIQIjesFG2jg7R0enngroPDfHoQ2B0pjzTalVjWm8qz/EaWOB9IMaZu+PR0FV6nq2lEb2nejU/bWYn8CYRcIAWwtsTJYSIE5UWdQsCEVE2diSa1ED55b0bbsxrRHPwQqmFUTvzNCvxwQ/cKGx+pRCdTZiVZSuGrwuYhCUE+tBzXykRqneVsUmVtCDSdyFIaxDD+TrdXxxw4SVtiLrQhoMmPLvTRj0ET6mastl7BRQp6HGsZSUl1Xb7qAWzFnARU9Oovj8Yq3kIyenU2sfNtBl0Q4cnhESTwRQj3jTi3go+EcfsD8i2nfFylqL4EOilnxMD8SphKKVBaxZ4oRSdIEmNaQhj1WaldUzH78w8p3zx0TsyVPLSu1IfxFmzpDcjXEjEmImhn8/x7VoMXiU+8zRTSqGUepYS4aNd1+fV1lkX753SUxyaO8QY9L7SuhBz0LRAkXNxPWTgo8rqSms4hvKrhynHzQuyyds2nJoPzwvglLINIvR9t7oio5CTRsCbOO7r+vgrf+WvPPjDf/gPf3z73x/84AfLT//0T//qd37nd65frd/Ze+eHfuiHXv7Jn/zJl9544438wgsv1D/0h/7Q2z/6oz/6xh/7Y3/stb/39/7egzfffDO98MIL7d//9//9Rz/2Yz/2+jRNAvADP/ADr/7UT/3U/f/0P/1P3/qzf/bPfvD111/PY4yf+2q91n+Tj/dUDItdEMGr27o1R5PAvXsPqdcr/a5zePEhX/ri6/QbSFcX3D295rY4Hj97C/clz7d/y3fyP95+mr/593+Oh3e/zhfLkVIjc054Bqfbwgdeuc87j1+HEohXE8yZx6//OqfjS0yvvExyndBO3B5PuOogOWprHHYT5WYhOq/rSiDGRMqZJuv54ZWjZwoBcaqZjLuJNqANR+vq9G5dQeYpRV1Z6zgRGWos6zXyW7/1W/i5X36du7cvuXi453h6m1Y7p+VIGFUf2EkIcU+cJtXp0ei1Qm980yc+Qq8nnj6+ZYwV12fW9YirCR+SIrYQRlUtbUqBtS5cH2devNQoZC+OWnTlHKLjtiwE55n3MzLgdHfUh5CX5zHTxjt1otRZ4ExESD6Ys1i5ude3R+ZporbB8PaQM52basqGFnK9gXcMdZSg01I1bW3u7Og0UCAAw5mZSCx6GHc2r2yoNYdq/HwIyj3t26R2w8Q5YnS0oZo2MbNJiAFvej6H12JmeHuQqZnHm8axLMXQUAD6np3ThDidjNtD0KlRS6en757W6OfXe1e+rRNVoJu8YqBUEKUV+PNk2tmDbi0LOWrBOs0zvVuS1AhWpOtDuVqE7zYp1e9xawLU+DgwXWAIuuL3ijbr5wZAJ3keLXy9KH9XhqIKl1I1QtsrG1b5wJ1WKjEFWq90pxHZIQYSz/Fqm6Fr0FV/HbwlrLnzVHJdV+KUzWD37u/RGhKgjY1YogWUjA2Ppzp4RZ0l0xk73NDPVTXrDXFO0WZoIVBbt4lyPePb1FDUOB2VB2xyaUbvrGshXhzOQTJDhCDCPM/UUuz80lQ/Ed26tFa12DJzWwqBJrqpcOi02hl5hGDnHhaogSUgZg9DKQj6d5wytp0Wp5qCqEbaQSdGf+Z5S2820Q+m8VbpB2b6a63ZZ6lGw+AVXeZ90FROFxQl2TXdrAyhMtTwansbNcE625rpz0sp4xB6K6xrQfpgeJ1ot2qGTq+NtrPEPdeFET0xBZUwDdT05jVJL3h3Nkl26Zp0F7zpnaNumJxT85fVZq3qPdWHaNPrSvSRziBPWfXOoiE+ii1UE50Tr826zya5UmmGR6PAc9aERnHBGjFFEsaYlKAjjrE2CAEJxnUOHSfdJNvBfBT6s0PQ8xAzohbRlEmxpiGEdDbadvuuvDVN6piwJlYGMnRDEnCmSMqaGjgGOUZgGwZBb+PsG1HfhAa04N35tYkMluWEd8mQejowiEHv9ZNLyjP/Oj6ePHni/+gf/aMfe/e/e/311/N/9p/9Zx/52Z/92c98tX7vH//jf/y1v/bX/tpLn/rUp774+37f77v90pe+lD796U/PAJeXl+Mv/+W//LmPfOQj9ed+7ud2/+V/+V9+w+XlZf/Upz715vbff+ELX5j+zt/5Ow/+xt/4G5+N8b3NP7+ejvemGY4BFxOlNyRAl8rOwzRnpuS4ioGxTzwbnVE88QCP6pe5/cqJd956g/Z2o0jlje757HpLfOtIb46c9kwP9iy1Uatwulm5uBd5/KjS10EKkatXX6LewTguLMuRm9snjGniwf4ea10UdRQKbVnw+ZItObKUTqv1bPABDd2QaHD6oatxnUpk3KROWxHhVAq1VUPzaBJViBlQNNM0hN/yLa/wD37jy9y/9wppzviQuH36mHq8I7hKDLPqN5Mn+sT10ydMeaKswu3NwsXVzM31iTxFpmmv+uCQmGZN9RpO9bpeAlkiBeFUM9PhPukSPJ2yNDqKdCp1oZTK0zvO7ucQEz4Ip9snADx59g6PpkSOkauLK9OzGscywOm4aNw0aixpTQs871RrJ9JwIVBHVSmGrUc9ziQdXeNYfTwnFwWfNZa1qiJYV3TRjB3PJ8I6zdKJ7nOSz/OiQid7W/EpxBSIXqckG1+4tU0XqXIYDdVw51QtLRCqYcCCaU5tGjugdy16xij6kHZWRME5anpjeLoQdPKPMXO7SjZ81GSzbsarELyu1Gtlt9vRpdOaur1PpZIn5fkKqlnsQwuD3oedg/4cTqGa5aGhHFb4eecMr2fF78ZvHlUnTM7jJWhhuzUrYxA9xBRYl5M59B2LxQLnPJHzjNARN4heVIvvPKdyOqfjjdYQ0z4rt1plM7V1xKn8oNYKTiUFLjyPdt2K002ykoM2N9K16WhNm6wQPafjCceG/hLF+pl2OwQtGgSdEg5rGnKYEYSYE2O0swRFexXP6I1ucqLgt8mkavC9yW56r88xcmYm9PbPHsx4aDrQ1vR36bvT6WPvOFHdsk6NDUJi/yf2dzGiSpoyKU2k2o3RXOm1qUnUmMbSmm5ohqh+N2TonXVdrOBxbOli3ntqU4kOgHhHStP5fhhCsvO5amFvMqUQo01aNbo+eEUp6rkDtQ1SDORpp2ZCIPlEjNHOU0W8xajn2n63Q2rl+tkTLh/eJ0hQ9OIYmuInSvB5fHcLSaUMus0SfAcxtvAmD9g+yykmM7hBTJHRKsGKTLHrvo9BtM1S750mavqVIbShBtrWGyKd43FhnmbVLNsmqA6NVSdnHSygYUajqylRPxYllqQUIag0aDMxgp5vl5d7va/3TppUPtMGavyTqo3gcPRe8d7Mqd3jgyNnbRgQDSQKzmRtbjyPbR7KVh5NQzN60/vrENHrTzbzs6ZWBmvQN7pIHxU5RzoHldjVyvH2jpTaeykXvuaOv/pX/+qDWqsD+Jmf+Zlf/m//2//26s/8mT/z6j/5J//k6vOf/3z6hm/4hvqv+nc+efLE/8RP/MTLP/IjP/KF7/u+73sE8O3f/u3r93zP99wC/NiP/djr29/9lm/5lvLLv/zLb/ytv/W3Hr67GK61uv/mv/lvPvfqq69+fX+B/zvHe2wThBQ0JMBFRz+t3MmJ9fqIf3UiHh7SlsE3vPRNnC4j97/tZT5/+6vc/ONf4jt3H2X65BV/89O/wM9/+k0KAzc8PQh+nhh4XIHr0zOGDF597QHHu6fUMnCnld18AfPC8c1fxeHY7Q4ALOWOOF+SdxPl+DatDw7TrEgodOJZl4q4cZ6CIh7pnlo1zhiBHLxOM0y7tRzvcKIBEdsUr6wLpa6EMOvqrgsfvXyB3j7Nozcd9x+8wDRdEV7Y0R8UluNKzlogp+B4evNYV04S8D6RpwdcPVz4tc9+xXSSJ/A7+gAXVVspTleSEgSiQ4i8c71we+ykXUJG09foAjjh/nRgiFBGgyImrXCECDE8BeAbv/lbePvmKXd3z9QJnjPzbkI8lNpU+wbkedKCDodzkTwnfPIc725JQ+UYw6vrXNBVmxs67fFiK3zR6VerHXwk5sgYldi9/tyha8mNgaw6TTPfjW0qqXzPGKNNs01+4O1hJ6o5DjZBjDGcmZhnioY4o2Y8n0Ruq/rWjMPrHT5kxHmc6TFxKo3B/rnZWhq0yB5N1+pjNKZp1vejVTOl1rP8o1txsDUYw3nW08phtydExRr1oia14J5HQHeTcSAbYQC8OJ0iRZ2iDlF2qDRwooxWF72uz+uJVrUoDy6TYtAAmZRJXbm8MFhHY5p3OBw+CCLB0G+OLlqshhCoteuqO0a8Vw2zToEHuzkzBKpRRKKCVC0iV9jtZoZNcYN/XrB2GUod2KQn0s9TdxeUZyu2asdHmpEXZHQiqmPdtORbiMf2+5t9HjFG1YCLwxHYeNlpyqqPRifJedqfE+EYzbTXwb6DTQKkK/AtatthTGfbdMB2CnidEp7POv33QwfESrdAwxPGUE11XZZz+EoXNS66EAmiU2oXIrMVtWN0XNKYem/ouFpW/dxMLqOBLQHv9bqYmTmdTkzTbEZRzxgVrCgfTqUUPth3tDV9ltLnnG7h8pwQVD4hYkV19M/18E6pHmLT5j5UshCNYtNax/sJfMD7wXDD7iGDIILvoqbbVrRgI5ybiNOy4jzEPFNr08Y7CDjPlBNtPdHKQtzPeu7ikSpmwNZ7hXee5lTP7E3WEjwEl2hBz5dBP0urctZGUwvrZg2x3RfCu4gzdvML3oN5Cja115QjIWSV/ogY+lGju8n6g0QVPoQ2LJgmnGVErVaTlqj+fOMtu+2cb2aQczrZDuIgDPMbcGbQg5w/B90kGI4uBESUm+19JCTVTzegl8JyOr23cuFr7PjVX/3VCWCaJvnkJz95JyL8mT/zZ14F+OVf/uXpq1EM/8Iv/MJcSnF/4A/8gev/tT//y3/5Lz/4C3/hL7z8hS98YToej7737g6Hw29yOr766qvl/UL4f/94zzPzDTEVXaT7xpN2y699+Su89OqrvPXlt9ifdrz6iQ9COPLWL3+OZ+VN3npy4vG1FrqfeeuGnCNxOG5v74jzjvX2jlKO1DIYeCYuubnt5DhzOt2y3D1hucucyjWun9QgNCrlWHHznosH6l4uS7GiMFBE07rKWjmuJ42uXVTWc7w7sdyewHudXCVvUyZsrVxorZLTrCav0TVAIWRCU6rBWlZ6hf18yf0HM2988ZrHbyxc3FtxeSakxO5wQXSO0+0d5dRV7yfC6JU076AKL71wqQ7yOijxqBSCkOlpIiYtQqZpprSOmMbwejnx6MkN+xvw08D7hPe2No8e8Z5B1N/Xq679+yBaotk7b73NvddeYj3tkKZTkqXqKr+PQhjKE66nTpPMh7/xW3jhxZc5HHbgKz//8/+EdWmWNIaFWSgmSsx0pqapDlbC+bDp7lTX571Huk52XBCNqd20dHZsMgGxiaiw4Y50/X/mbJrkYjO8KV85qIveZAwaxKEPg95VG6vVrhbtjUaSZBIEKwzMBIfTdeZo/UyT0IJMzkU1OErTe5ADaKJcXa/RyFqg6krz9nQ8m2VKK2fJR2/dHmbgPJRWtQhMutYeremKe1hqmFeNslXqOv0RlZZ0UXmAyjwcKc1EH4lBQ1BqPxnr1CHS2e934DS0Q1eqGnYiQ0xX7qAN/Z6CLrKxolhEUx19UPe5YA9pFQBrYRCSvlevhik3dGPjvYYEFNdwxLMWfEinNtVSapLaQmuVw0HjqUvV73uELYzl+XmzSUkslVYL+q4JZiFqYyLGT16Kor22Y6lFGbRWTA4rGsZGp8Hrd98WYopKLTH9cIiOiZ1O4YfghsqHRDaT0lAXv9ukGe6sm/ZOtd+YftMHDRoZ6FbGea/TUVQG4X3A+WzXdj3LLdxQNFqaZpwL7HdZzbXiTYMe2e0OujGy9DMRK6xcQNBNmQ/bVsfSKr3yv52oCbacFmKMqic2ikzven55B3iDG3pNABxW2CtL2bGeVqY5sTRFA/qoZjmCcLi40OZOz6TzKt/Zzw0R1qWohAqsQK3gLHEuqMnONy0mXfDkoLIJnEaR97qZ3RTx5hw4i7o+HHac1gUX/Hk6rVsmQUzz72KwxtFDgGDMZSyMJJg0SzcVmsxYSlGdrvc4GTg32X2mW3qjIt+GF2KKuEk3Z7WKbW2iDm/sMwlxYkszdF4lH+KUkx2zR3q3ABPRIQWqwR9D9PsdGmOvAwPbfnmVzm3nZTeJU55nRn5+jX09Ho8ePYoA+/2+e+958ODBueh8++23vyr6g8Ph8C/90H/mZ37m8Mf+2B/7+A/+4A9++d/9d//d6wcPHvSf/MmffPjjP/7jL7/77+12u/Ev+xnvH8+P96gZ1oc3XXAuQghcu8I/+NLP8cunX+LJaeUl7vFvlWtenCOHD848eXbDP/yNL3B9KtQvN/xIeJzigGJkVGGRW1LI7C9fhODIIfDsyTVDFpwM9peXHD74Iru7e7zzpS/imyCu4vNgtCPHx68j5R6lrZrCJMbeBCR4JEW6+LMBoCMso+C7Fn2nU9d0IfFMu4zIIGfFB3HWDxd6HUQXdYKBxn7mHHj5lfu89fpbtPXE9fWbeD8xTXumfeZuaBLafrdDRIkDPmTS7sAuDV77wEMu7iVy2yFJV2zOZ2XduoAzbeuonUZnjoGFwrPjynThuT3eELrfVAYwdJKXpj2HywvmKbMxJofpyEYdtBoQnyGD683IABAlIj5AgmVt7OJ9PvaBbwc8lM5pfUo/Dk63K/fv39fCI+lKMDhd40nXBD4IxJDoGO1B1HE+hkH4g7dJvOKVelE+qgA+BuNK68TemWTgvPI33Si8e/rlWUs5x47q+g9G1weBOOWaDmzyBODUAtdqQ4YSU3SNvxXi+qDcdLeq99RJeIhRp3u9qY7VpshDlF29mVGWonpVRH928InWV4RBqfpwjV4nPohplC1AwdkUSN/IoBkGbKCpYsNvZkLMeKdkCG/r3dIhxomYMjK6mZmwqZJpYm1Nrsl7nbI28F21997RqkDMqqFlUHsl5aRygeE00AOniXbOihqnnNPgI3ioroJThqxj0FtFejMCRLeEOk0y3BLcYlKEnTjPFHdk2YMVlNFF4hTB6UrfjaFbECvuQLW8Yo2Gw4y0ItShBBMZEJIWlDKa0i6GUhianc+tmwTDeWrp5yku3qkZDh276T1hEKYMXY27DDU1Ba+EgURkLash5Nw5LntYc+O8wwtaxJjBS6Ui1e5PTs1vgbOsZww1ow6xKA7vzwUZzjFQpCBB1/opeoqlA7JNC4d5xhwkF1lbIaVEt3OqoA0vJiPSxrRTWtPP2wm7KeNFaNUhvSo1ImpcdbRwmWCUCKIyvHW6qVPjqFJWxaSJFdJWXyL2HnAwBtM0c7w7KT/beeUzO08XpSk0a1JdF+KsW5jold+sEqxAOR0hePym/zbSh8pJEuOkTcw0H3DizrKl2ixCfmjTnXMi+mjyhq0wjfYdbI28yhOmnO38bSqTcYo37E6bPieO7B3Dw/G0Ms0TzgdS9Awsktoi17tTPbwzDXDwUVGGRkbR8JhuUfQovWe4swF3dDk3gWrStsJe0Hu96cSxRgmnONOv5+OFF15oAMfjMYwxePLkyVkD89JLL31VJq/f8R3fsczzPH7qp37q6lu/9Vvfefef/aN/9I8uPvjBD64/+qM/+sb2777whS/kr8br+Ho43tPZvbn9RRQqHrxn1MIXb9/k8zeRMEV+zb3Nv3j0Ff4v3/pb+Zb7iV/74ld4erxjjEQSzyrKfg3R4Yjs5gvmw4SfJvx0n1YWbo637CJabOVL8oPXEFaePXrGclxIOTFPkS6OJoO2nliuGy2Ajxc47MYD1A5rdwS8aSFtjrdFloZoHXnj9uYGHw4MqWws2dYHw3mdYqETQbX6Rp2cObh/76Dlsa3p8y6yP8xKJUgzV5dX0CvHm2cQZi7vvUjpwn4OXO4O3HsQefsLt6S+Y4xK75VWGm1Xmfd79rs9zBrHHJJnSnvIE5cPM3lEfUA21TISA2vt9LXRR+X2Tt3AZamsywLAejpy8/SGNCV8UNxS8BYQ4JPyZKvqAaUd+Wf/+KeQCMd2YjndMB8gpx3Hu6ekGDiuC1POuKiBHU4GMSRKM3RP3LBR20RTk97G6Do1QTje3oJ45sMF0zRRmmLckEbvg+Symd5UK1qbOr91/WvfoSjPdIuW1pVu1ekiWtDqxMYmUZuwsAs5zISkhchGMNCyTacpLobnk1CbFjrTZfqUlAwRnrvjz8U0ncmS5JyJ9dZVv4cQEr1Ve09qlun9eSG3qUm9CClODHs9Io1WFjaChV6XwyZcOn2fc6LUYtgljZv2ZhbzwYPXKenoWiAHr9PMEAJ+v9OHI6JIwOgJKRCDJzqs+dL/vzve0Vpnt5t1OuY8IjY9HcLoC8uy4ryi/IZooZ5iwveKD0G3Hm7jP7vzpGxDrikqS6drOtD159WzmIlsraarHibRSNkaCZVJDNNaxxSt2NLCyAmMXlmXo34/QQun1jo+TGrcG4qoElGNZTXzmYyma2jAB6dIsKEJYs57lVA403+bjnczP+IwvbdNDnHI6Bwu92fNbjfjXZiMZOOE0hTRqKhjlUHJMDKKFyOd6DksJkXTlb1WvtI1pr0bS9vJUC2xc2qmwxNDtw2K0k2Ug24gQOdpFhZjwlOGg+Y8bgymmKhFGK6p+c3uu90iwZNdI60W8NoUhBDo0im9G9XFEYOnro3gFRkW0qzXQ+/kaToTXUIOWug5fW29D3a7Aylmnl0/JQrsr+7jxdFF6xXnnF6T0tjtZm2YbJughAZht1f6w7Isagj1ARmb5Eqoo7PLeq8stRLRayxGI0C0QZNuYRi27XCNecoQEyLdYt0Dvlvand0fgnPcvzxwPJ5MRpL0s4yJIvp3Ygw0a0LXpeAnd56e56RNnUNlQtXJ2SsRLNWwSzdUmtiWwIgsTXCqJ9FzhudNl3df38XwN3/zN68A67q6v//3//7hp3/6p6+2P/vWb/3WrwpNYr/fy3/+n//nb/zwD//wh3LO8slPfvL2jTfeiL/4i7+4+8QnPrG8/vrr+S/9pb/04Pf+3t97/Nt/+2/f++mf/ukHX43X8fVwvKez2zldBlVbdznnkRhpVGQ0Wh1MIXDjOn/1M/8P0mc8x/VEGxrLKjimILSa+be+89/mm3/bK/z3f/+fcLrx+FGpt28QayXkTDo8ZOmJu7cec3Fzx1qvuXnnbZLTpKVWhxaGMagurxq3VhRRlZIGbJTaWErXOGNbY/cBdaDrsqEPgVYbMc2sS9MbrIhFj6q5Q6cuz3E2Iapxq/vAw/v3medMmHaI8+qyDpHD4Z4+hPtgPTWaZC7uv8SIgbbeInJAFnj1lRd48uY7pKRw+928V/7raLR1oZuRYzfNpADL7ZGlBTXx+T1x9rpQFaG0Rp4SIwwQlX/cHm/J00RtKh053t1w3CXcKZB3O53eNoHgqW6QLBLZeceT5Q12+z3eB64uLrj/wgF8JbiEDEepC1f7B6ahq8o6jTM5ZkLv1N6o9cjomqwmeGKa8D4SkxZurXfu3bvC+0QtjVELXrRAa30QgwPptgpUOkRrzVaLZqwz9q5OYyw6VGz9bEWVFs2qnWw2CXI4Rgi4EGh9VV0oFsu80Q6cSlCGdNNkBptiWmEmTU1CWDSr6UH9lpyG2BR8M60on1YlCFrIl1LwHroI4gSfkk4IEVoXxiiIj4rb6zoTn5KuwtXkNChrJflI9Bomsa6FvNtboamTeV2T2sRvrWeShhJOOrv9nhDMjIdjEdNxe9WkA+S8U1NXH6Q86YbGodO5qkVcKRXxwuS1APKG8iqlkJI2Ng6v5sdgMpH+nCIxLC5WNeHeimCVGwxUguLNvNi7XvMBdKLqFJ0mIkTvlUQiz6O3e2s4NMRCo8eFKVsKmtdp/xY9u03bx+hnHW/wZjALkdarate7A/EapuGg0XFBJ7HK0dWJsyY8wrbK0ZZcpTZVGi64s2bX+8DoQ+87Jl3KOdOHNr4izc4vnTIvZWF4zZVY1lXfm+jkuXXVP5dlJc1ZJQPo9YXrZ13qEDmjIIOK8s/4QcxUi6EKGYILSaebFgfn7Cf31iGKCXg8034245oW5d58HU6EUrXo1WvYNj1OBy1OT1rC0G2GF8EtlTztOJ0WDnbdb8X6vMu0LngXefhQo7TV7KiyrpD1mp4v9txeX6ucy+s9JBni03u9hw8Zpqkdakoz496UZp3sdlFtrtcAldF0S+Srnu9q6vQ6tUXIyVPrCh7yLhPQmO5tw6QbDR3WeOe42O+4vbkj7TOlKS1jSmoEFQbzHGlVkDmrnMqrNnyI7gOyNUouOJauU/xhRCTvdEC0ORF61Sm7TouHnfeYnn6L7/76lkn8x//xf/zkB3/wBz9aa3W///f//m/d/v3v+T2/5/qroRfejh/7sR97PcYoP/IjP/Lq93//96eXXnqpfu/3fu/b3//93//OP/pH/+itP/En/sRHSin+k5/85LMf+IEf+Mqf/tN/+tWv1mv5Wj7eUzGssatikxJVVmbvkTizLEdkVFoLECtV4NQ6QcBFj2saGNWa8NEPfAO/53f8TtaLR6RLz5N3njGxJ8REuLjHtNsRpwSuMe5OPLl5jPiApKDRx7WynFZ2fkeMZiDxjrIuEAQnjmoYrt4HpTSNMzWT1loay0kFhdGCJmoXxfqIozVbd/duRY/giQjeWLLeJA+AwP2LK2JyRCbW0qmlERPEMHN7+xQcFCK7+w8YAsebZ0TneXbTYEReevgCITzSB3qIxBQ1IQ7HcV053t0q3J3K4bBHunB926j1QPSVhmMYh3ZDPFWn06F5Toyc1aUedVq+Pxy4urpHF/DRWypZo5QBVQjZE6eJETLTdIGsndoKt8vC4fKAT4l1VHqDnCPBpnlTnHB5bz9PJQ3JRSuslAxQh3KTpW7rPdVjDhn0Vui1KA6proh3igkSZRM7FDc3+jgXKbJN29yGUtO1X2/PPQSKQXPn0IxeOjHNOGln7WivVcMvcPoABi0Igk53GWLMWpVeAOfXMYYGWShpwpkRLJyLr9GHyjhAGaBWJDvvNFiBTR5jlIve2bjCYsVoGx03un6OVYsBccrHdRIITtmpYwyWWikoJaLWppi4GDQIBH3QejSyvLduU6NEiJmuInlydNwdj7gQ8S6objSqHrEVnbZ7H3EBtqhrwSkD1jtcHKTkkTqY5lkLpCHs9/uzYY0hapxDr6lgn5lKUnT1PURXw8E9j59WFjOMquv8taw68UeUyGE/QzXwVkWjTexGr3D24SrXtZ/PA7HrJyVlwD4PGnAqVTkXbejP9cpYRhqnZWE/79BPVz0IvSm6zBQa9NaZpsk03V617Pa9zpO+9px18tnaoNh3psg+beBT0Ol2sPM6BB1U4MWkSkklB73RWyPNE9Fp5LR44Xg6Mu20kfJOY5VFtLnAJEE+qh569GGBH5vEySRIbvuuvZFWvDUHOj0vZSXPznCD/myqVE2qTsTFNgE4bWabTdXZrlfEuoWNMKIfYvXdJBsaRKRc6GHJbA4t8lWK4AGpGrikpEFPR0hzZlrnM2ViS7t0Zqj2NinGqVzGB528C5awKBC84/bmpM+gGCA+v2Y33bpz/oz36+IgJJwTytrPPgrv1azXm36nMXgQTczr00QrhWiG1WI0HsWuZWJSWkYrdv+KQbXQrauWPagZc4oB33Wz2UbXZE1r9oMRaEwjoYbi4BDTmW9Iti5f39LTBw8ejL/4F//i5/6XnOG/+Bf/4he+mr83hMCP/uiPvvFuOcR2/PiP//iXfvzHf/xL7/53f/JP/sm3tn/+c3/uz33lz/25P/eVr+br+1o53uNk2Fmnb1ID53FhmF40UKWx9EYUp1o+p8YN1Q0G/Ggc9vf4P/zObyfkhaVWxMIfPJmQLtg9eAmXHKfbp4zrx+yix10+pLaGLIUx1BBQZMUFx857fNZiK0VF/4xSjOmraN0h6mg3zC4DRx1Cs2lcDOGcauSDp5dmN6VI6+r69V6nioyB8zq961XZrw/v3ePe/cyjN486sQ6R9bSwnxe9IU6ZOe/xznH37KlOv/IOSTNTytw/7HGu0SXp9E5336ScidLx0VH7SiknQtIAkGMdLIvj/pWyLEfVybCMocYqnBmA9Hsaphvm/L1lvPSzPvdiyrRWGd3T+0ItK+vxSApD+ZxOUTuxBJKoYaU3z2iFtp5Mp53IeW9cYCU4iKBr3SEEl1WK4MCnLSoZkiI7qV05sSlFFByg5rNWKzEM1qrTZecNIu/VJBcMaRRsejHsobKtq7fJsLNkqdEG3lWqF3IOxFpVjxuiFXlevXXiLCxi4JyQU9biwCZnzwvTYIbBcdbvYhpC79VQ5J1wsoAH7zTC3AGjVXpvyiiVQfSe4IzXfI5G1eLBucFouqJXH49JUvxzpjIh6HRuPJ9w9wF01Q3G4EjecSqNJGpma6iJrHbRolwGj++eMHBMu6QrUoRemn2fjhA0natLM0Nk2DbxCJCnGZFGRYu3shZa7+ziTLAI2JyzbnlaY0tMG5bu5QjGy7UULa8/vJm2WcU1cpbbaGQ5JgFQ2clWsDq75re/J9uq2eQIIjpZdy4Ygs304IhKagwG26WBYObabFsDm+06T85JGcBhC2IBN5xOfIHkPdWwjdKb4gyzEj4A3QKZVCCnbFNknXLWrg0Z3indxkeCV4PjcHYPs9RARNmwwQV8VgZurZ2ckhZ+ZSHEjHMJP0BGOUuYFEOX9XMWo0yIKPXCabzxMBa2Fmg6aU8hnBvxYEbKTap0jj23xjVYmM2W/DhMF68x8Dqt7ENMUhM1ua2jRaLT0JAQvGHzdBIOHYe3hL2dFvZj0O162TjXzmmi3CiN/TxzVxaQRo4BJ4YjM6649qkdMRKN0jw25jFs5r6yroQcAeVDx3Pz/fye0LGocnToos11gxhJU0KDMYJuv7xutnqt5BTp/aRbpiDsQjpv0/paAZNW2fQ+BL13ZR+RrgSK6DhLwlQGoU2JP7OTVcqmEh5r3J0yyGNI4OSMa/x6P/6T/+Q/efLv/Xv/3i/81E/91OXFxcW/cQl07x//8uM9aoY9wQ1G1OhThgr/hxP8HIh1oi5Fp4Jp4CUw/IyLnbV3PjA/5N/57v8TL3/0BWoVCJE5z0RfSHNk+MLdo89TlyM5T8yX90jTzHK6Y6y3zAfPO8dbTd9pFY4DqZX9/XvEEJliYFk7tKqrdeB4Wrg7nkhROa8AwwW6KHu01UoZDRc9S1fjEy6oq3doETWGs8jhTT84rGjQm9Z+zrz22gO+9LnPk/MOJ45WFp4+e5sRAvt5R2iNZ08ekXaZ3X5Pb4GlrJS+sps88xy4vhVyCMoY9lG5sjhyjmSf8MGCQ9xgLZW3H9/w4P5Ok7/GgK7yFS0y3dkxHKMiwbrdzIZziBvnyYBO0CClPUwVXKZVYdRMH5VpP3O4uKQPB66z9hMxWbEhjRQ8pVYtDKM64KsUXDRTj3gw01zMdsPXckFxbGIYKu8Yk8Lj590eH/RmHSVQihZBW1BcLY0hkPKsK/WmLnhdNWq7pkYuxzTPhBiJMeNToi4npKxMVwcYjfrsCSyF/OIHcNOsoSFmOgnOIyGykSyC10nMsHCNHCbaKHQrJDfj2hAlSbSmBqzWGltsbQe8V002Mkxi0jgtKzJEqQ856wM56n+r/jtdc6aUcXECQEZVbWXw4HX6OobFr7JNexSJlqKh8ZajLsnNvCVdQ12GNEoN5OB0u5Enau0mERlsBlSdAMOyHpmmrO+5GWM3Tro+d8KyFkXVeU/ICZpOE3GikhlRE09Az1NxWkwrLUMLPud0whadBx9ISdfomi4YOB1P+h5t2rUsy3naJWOwrqtKLUwmsxXM2/QY03R6l0jTRNUKzLTZFuCCOxdViNDLqit+5+kDRUNaelmIwSRLdg36QPSZNip4x8XFhRblPhAcpI0eAqR5z7ocleducp7Ro25SnBbTyXfWqoa6pQp5SrReFQsXrIAXjWvu0jTAokF2CZp+jnF4Rmn4KWuj45U7rQRCbRIiKi/q1nxqtaUFoHOq491Gr3nOuDp0EGGmq5gSrTWmaUczQ12zploEK7aDbhZQdFoztrSGS2gqXS2V/eWFFtS9M0ZTMsLG1B7d4pWV/BFStJAXzgVsjLrpm41DPVo1CUgnRWVx11ZwAiloyM+w6I9aq2H7opo5qzCZbMwJXF1e8OTpE+J+JudsWna7UmwyjflJaluZp0nTQUvFBxi1UVjUQOfd+bwbvXOYJmotuk0ZTdF1qMwphUgc2uhK7zy7u1Vzbjw8v/8TSCkwgFqKToed59QaiwWTKO5b6RWtNVpXCVGXQe96beTJ7mub6fjr/HjppZf6937v9z79//freP/4V3u8p2K4tUHzChofXVmwQ7ZiJmkG/NDErV47BEdKFZpj6pEXX/sY9z/4EqUsuNGJyfPgwQWPLo7kXeJ0c6SUyuHyHvOcqWXh5tktr37wY/wf/8D/mfai8Obnfx0/Fn7qb/5dZIFlQH96zf3798hxj7Ay2jOiKF2krI1laVQfuDvqtPj2bmEtqpNLMYNoOICuxgSkw4DiAqUXW2lr/KY3HJfijaD2Qb5L/Nbf8iH+5198g+wu6Dii0zjlnDO9nLhZFqbDnsP+nk4WIxzvFr741uAjr11wuHQ8erKyS1mnIFkjXOf5AnGqt7yY7nGsN4jMeO/4/DPhG44RlwoSvRZoXYtP1e0VxZ9pFum7vkmnaU5RpwnSdJo1EJwkRCIhCimbdjgmm6pbQp0/4Bx0rxPFUSqzGLy/NTO1ZTyqY20iHC5m+99NDSO+n7W/3jkYioYaXQwPpDpLhyNYIEUYGkLSWmP2nl4b5bhwd/vMpl4J55W93EpR1jGO20dP8ETydMF8sSfmRNglxYA5z+6VV22qrjGmDEOIOeWcbtMS5xJCA9dx47kxxvnILiUz4WhqGC7YNN4BOhmcpkmnXLZ617AKzsXm3gyQguC9sJ4KwyVryAq9rEY/EFpZzsWsS06nVcM2Nl6d4NF7ZFjDY+LPu7sTrRfmaU+tuvIWAT/0ERpk0JuDmAGPq83MUSBRz5UpOWpZGEOodMaoWnKHQB3FzjAop8a8n2hFJ5YpZ7t3mFHOXPYjeI3WxUFXGoaYzKCuW1iExQibgSlr1iySJlK0z0jETEg2qfaevXec6mpaf5NMJZ1Mq1PeM0QjdYds6/8BXbcKfSn0FOg0onfULvhpQk1SFUKkO9VojgYSkqpm9RKndDWZpaiaa8FpYpltb2pT+UOOAenNQhBMhjE685To2/XZtWnfpZkuntSDxqoLtKGaz9o1OMH7oGSLoYSW1SLG2xC6CyqrMJ1vioE6dELI1vj7beIdsNP8bGBMITJoStaxqbokjbl2m7yADSOpuLj1tAAa5hC8SnbWu2t8TvikUiiGMGLEi3oXEBQ1tzZwgegi3kgxWqRrQmGTyhDVoG9Nj8jAjU5yHlonzJkhnRTS+foIwZG7cqMHgxCUdERXM6zydSu318/YXR3wKTDWznFZcW7SAJccOexmRiu4nPECXnQw0ZzTprarZCEGbZRiCgQmBgXvNTTGO6eRzhZ9TO+UWs7ot5x2qu/HQXNm5u6MUUgBdgdPSJEp6zVfivoBXPC00oghUkunlZXkA03s+eCjyh/HsA2N+gNiyuRJNwqtCdJXgnu/GH7/+No93htaTYaZBPSGNHrb3BUmlDKzzaS7Uo2HNK0YauJYS1VHrWvQA/eu7pOmJyynQm+rrgZj5O54x+n6KS+/+FG+8RO/jS8/fpN3/vlv8NZX3uCtt7/Ig8OLLHHl9u4aQbi5uePBg0CIidE7T6+f6osOgWF6wtq1GC6lc3fsxDAIXpjmrEYCkbNRxxtWSad85joHdmnWFbmogULXt/Dyww+y28NyoxO4EBwyPGM4Ut7x4osPNQ2t2QOBQfOe5VjZ7y74wAfv8euf/QrsL20dJZRSWKtwb7rHsi6c1hMuC14UWbauC3d1zyE5MwVhsaZm5DJkkqJ0LIYWK5a8GmhEOil6AqLreiIuqqwkRJ3GDTHgu3MU05Z5r4V0bZWyHgkuMHyl1cY0ZcooiKzc3d5xmK9oq2OaIqe7W8NoJVKK5KQPrtYKt3d3ZtTwhKiFY0oJ55TcMaRCV/wTok2Xl8ZLL72MwrMcYkXo7kJQiN4glD2jdejQ+kmNIWOwrCvBR6J0Xb0PQewh3jfiha2eRQI+JXJK28ZXtca9o0tObAhrKV1Bv3uGTmbOdARUa782fUAF0/mO5/m/bD8qp6whF33oeRYCApRaqU3OU/0cdSW8lsY8784aWb0GrZAPjlJXlnVRne1aNBDGb2YzlTsNgeqUoHFze8NunnGihqLeOtE51t5ZyqrfczcD0RBa0dAabwE2Q4Ra9IGvISS21reoYAGkmQ7TOb2XCGxm0CnPlLVsH7ai4IzPrEla2wpeJ4TeqwFINcZ6rg9n2m6LvN7QUpveFjHzlwUYbNN3Z1zhYDSIMQbdNMVddHocc2KI6Yq7Gpg06ct+t03IRYTWtPjaTFJxyqaJ1UYI79V4NwbRuMWlaKpkzhrUUGXgYlDNt6jWVKzhEgKBQM6Jp9fX5GRyD6/BJ1m1Imgt7k1rrp9sCIG1FJ1qi36PKWfdjsimpRbcuSoGgrNEPYtLHqrR9s5r0WgJfhtfWDDcpdPpZ5oy62k5M3LFtiatd+hF9cjSECe0uhJC1M/fJtRj6PAi5Qjmj/ADfFfpTgi2eULlV/OIJO+Io9NrR4aGPcWkMqBk57BzDozT7cZgDoGTOOpamaeJPEVS3jGGJU06R7ofKUNpGdK7GtOcEk1wgeAitVZOy8ruMNFEJ7GJdCY0bdd87+1dWvBogU/qmWi9qXF7soY5eHbzDhkd33TD4PH4qGmnw4y2btLGxnuNiT6thSkFqtGSarU4bIQUjcJTC3jB21BAxJ09N+8f7x9fi8d7Y6UYCP35of/sbI14RiFZWlWIUW+G3VPLyrPra27vVuZ7Or0Lkrm6uI/zpkXyEz5EnFS8RF566Zt47UOv8su/+g9588u/Qfad2+OJ1jsPL6+4fnrNqA4XO6fTER87F5cv4mPl7bff1p/pnOp7EQOW6yqw9JVlVa3mqXSCD4pd8hqh6t2G8Kp6Y3WOlCeaMWV98ETnQBrSOxN7Pvjqff7F//SM/dTpWXWLYcwMg3gupZDzREga9TkkcHcUdumSD7x8hZMvIEMfHrU1Si+IaJrafn/JcSzkyeFGxLuIxMSbTwof3884dL01hppOnAxNCny3bo/nN11vyV7qLm7U0UkhaiLXaMSohps+hmK1JEDXhxqmoRQD3IeY8KLGsW1tLl7wYeLiKpN9htEp64nhC+tyw366JMW9kg28I06B2U/IEJZTYZcvlBk8BhldgZZaESes60qrzZargfVWwxtiirgwVI7hHd4rQzT6bOtw1WBq77YwXewtXWpi1JXgdPuxkR+W05F5jqxrZTQYPZH8gZCSaZEHPjqSC0ZC2HR7WgAPtJhIwVNNK6m8T5inSU1pgj6YQ2A4xWVFpxPfGCLRzJq9NbytSWUImlL73ETVWjsTL7xd1rVZIV8HMXpu726s2chnvaCYdlGcY4uzDqarjWkGn1SDWxviBsOrI945C3hog+iNrCCNMbwGvXhPmOYz27g3Bf2rREYJLhrAYliv1ul10WbDNOG3t7eq/YTnsoZgk1yBGJNuFZDzfUnRUd3W8Krb1nTC8K7rQO8L3cx0eMXgretqNAor1HtX+Y5zFrwQCKL64NE7tVdADbtlWVUzb4VQikHvO13lO90pdmubWtauOnQv2MRZDXO1Q6gaf+xMM755ATTRT6fzMvQ86YD4QbImDqepgjlEXZf7QHd6rrTR7H4WLPrbJFL9OU0CYMqJ2io+Rqt7nWmorYV5F1VAJ5sa5qHUBtU2O+Nqn6VZFraxUQm66HfVupwZxKCbAoykQReEYdPubhSNTI5JjWJ41noiBkhhoq4Low/yxV5pR+g1V0uxiagGEgXvCVHv364PwiZnsOZxoDHrDJ0aXxz2PL69YdrtzOOiI/LDbqf369EJFlOdcka6EhiG8zgXiS6QfKAsJ66fPuPq/hUEGBU0wlnZ6m50pHWG05TLZVlIU1ZWdbCGddhn5B3O0uhCSOxioJRu1/UWca6facLMjtsGxiv6zXVNcWz6pDAN9Lu/18ZaV5VTOKfc6PeP94+v0eM9xzHLUDer3vQ23eg4cx91pavFXOyqN5unS3bTrIYOr924lD2t3lHrCeeTPmz2TvFetdDqkeX4Nl/58s8rpNwnXnz4MiEL69OnvP7WI8U5Ba/xmAGOR0cIJ/aHmXK7kU5sStO6/ZMWKK0XxRWNSu9ClwJHLTJi1Ildipr+5p1D2gq9IXoXp9RK917pFmUQivCRD7/Mp3/+9vzAy/Pm1hdS8ky7C1JOnE6FNirzdMEbz048fdq5uNzhpOsEUxy73R7XPSIR7yM5T7jLibXd6oNt1Rz7Nx9XXnkhkuLQafbAUGQ6oRoWYBBCOMcIe2yKIqLBCd7bZ+xpTpQkUat+Bl6JBDEGJAwz5Sl2rQ/VKseUcDiiaSpj9Kb/FJwbpDThxkCkcIgXPHjhAaOoi7tWndoNAnmKhOiZJmFdCvuLA12fUOSgtIQ2OpN3+NAV3N8G6/EJrWjSXso7Wh/kGAlOTZDTftbvxFWdZpZCyjMBNNhBhJGD8pBtSiXoVCp4z25/oJTGaJXoB1Nw+OSpbdCls54WdvOMiDZegrCf99TRlSncO2lA8JECqkmvjTlpFHCKkSaGYos63dEpWbWhkcP5qAjAoelg2pRpOlaXznAwT9mKqqIPV1EpBjKodZvsqRlPp2A6iWxGu1iWlRAjs+nVlWMrGsltTn/xGsoRc4Y6bEJW9UZiEbzgGRYmsiWbDQYiYRtY03o1YyCmt/Ugiqhqa1EJi8DhcLBrVqi94om0PvBmHOpDJQQb8aBSDAEmhJQ4XR/PGmJnjQXOfueZ2CG/+d41NNXOAU0GQbz9N5tJU1FePvhz1PM2Fe42Ea2l2UDAnQuk0/HI4XDAh0At1bBbWtyI8V9rG6QmNOn4AMkSA89NU/LklJAGIgHp+nq3mGjvHPt51s/EYsB1KhvZiCrhXUaw6KN9t5w3fioj6OcI5GGFeGtNG7AQSEG3CJ7nCXEIxBAt9neY3Eebh+2/30gprTWdHPfOqP1cuKagBf5wDu8y0Tu9vzs1cJVatZglUrvqXqUrSSHPk/4elCwxnN6L8lDizSZHYujmoVWdtOakWzbvI+Kxxk21yM47dvFAPh6pN0fS1ZUaOmUgrZ63PTEEDRtq0Ecj56Tobws/iSnx4oMHrGUi5IgL8azJBaXL+BDp9aQSPHQQMdZGGMI8T4wOZdFrfSCI03u+G3r9zPPMGMohd06lUzE60wLrvUMMWSlOm+0RHCOaamh7xku3oKJOsnMhxHRO83z/eP/4Wjzeo0zCXOqjI30rLm0V9q5ieHPbb/iYuj7lsL9gqY/5+//g/85rH/pmPv6xV3j4EkiLSFd0k897ZDSKmDShNdIISFC8GbLyDd/0Mm19wKlW3vzKm7R1nKMkhwxubp4x+mDav6CveQzVnupdHVCpQgw7bIOoN1sZtNpozVFqwTstivfTxJSzGg+OOrnqQ6d0ziaBmPnr9tktMWgk8px2pN2OVge7/QXBR5a1sK4NEUeeJhDhydr5wpePzC/t8RFqXailqglGNEK41k5tNxa60JjTRHCB03Jk6Znr28q9y4GTTmmajOQl4A2mr5PE51pVBxoe0bX49pPHZw0pSIAborG9S9HvYQitB4sV9Ta1gq6lKsHNugr1WGywJ+Dw2TNNiTln42hmMoMQHN2viOjqW+i6EkSn1YI+KBFhmpKmQw0hOoe0QIwzMVr6FsL+aqIuK8EHjstKdI7ooa4Lt+std6tpGXtjN+057C+od7dMuxlJOjHc73Y4NIxDJ+cT+92suuFamXImBs80zWxhG+JEpT9xBdMrigxCVgazi5HoNfmtnArrcsLHRJPOHAKtrkqnADUjjc5oQ1O4nCcm5e3q7kWd3RtXOAR9UMtorKUwTTtq1QAE3eKbyQnTJI9BzrMZ/FSv6lFO87yb2TBkIWpxtEmGbm+PJgfQCd66qJmotWYaU5VD1VHP0oTtseqDBqHodedMk4htazz4eKZzDOfARyVI+MA87+09aAZxtYId50kWBHG8u4PNtDa0MF2Lovn02tdVdjRUGQhTimoWRCkxmwwypUhrEFwwxKFOvod3Zl5EJ6Xi9LpB+a3eB7ptE/StOSsQB2LN6Oh6f6mtaTE3dEszhkB0RKeyJJ3ke1rXJjVEMxv2rg3SEMq6IDkDgbJqaImSJIpSApw/p9p5H/SasUIomExEAzxU8yyipJzRVf/v0JS7EDcJhuLkeu82pbdptxlEt3usj0pU8WY+3E6Dbozms0TrXeZFfY40/X/jXbfWNeDGJvDOGnXnAjkrhq6L6PZBPDlmbVSHNuq9V5LJSuI80UtRgovJclyM2py0LXY6EGKgLCvLcsfu6pJkW8HRBtVpk3//3iVPHj3BuQs8OoTRqONqhalTxnQv+OCeI/xGh6AT8uS8mrCrcpS9CK2sDNEwGJ9MNoFKiaZ5Zi1K0OmtKr2l6znhgspTxCRHvQ00GEbO/6/fldJSUjA0oRd67aoFd3rexhGMN63x894FCEE1RqKcfW0Uvyoha+8f7x//WhzvsRi29c8YaIPdz9MU2G50usJT53EwB+rK7Z3gXGdZjzy6fsznf/0+3/iR13jw8R3dNUJIrMudreAcjqRhF37gxPPhVz7Mt3/nd3L5gQNf/uIXCb6z20U+99kv0W+HrcR1QhHdBR//2EfgV/6pGnRspbjdo7do3N7Vbx/M1OEnNeXgdVokrXO8OzLqYJ4TMU2GoBFdMQmI6EOw9cp60tjdJoJbCy4lxoBSFmLsLMuJEDO7iytaLVQ6dXi+/OYdv+XFHSEFRmscjycOa8VPibo00uSVTerVfU3vjNoITujDcSrwMGWdXGZPCEIYUYvioFGjZ60fKCfTkHJDTBcogic8n56h6U50lbSlZMpY0ehX55wWAyHgumN4NfyFoWzg5BWg7y29bysU9QEBytrdQjJUqoFT7e0ueSY/053q1HoppJBVAymD0VcYGgyxSW39rGEU805NI9Ibeb/jAPS1KEaur9RaWfoNwQWWY2POmVYq7e6kk7ysEpg0Zaas+uAQtHkgBkbrmqKFhWbgyTnzfNoa1JHtEq4LU0iMGInTRC6Duqz06yNuvuDm+lqnNWhxm/MErdFqo4vqI1Vz6UACed6R5xmd9GuU9fH2SIhZI6vRSdNwyrONFiWujYauQhFFV7mghBHvNPCjlMLl5aUWSRitNQZyDBZk04kuaHStU93sOVUQzoXThtQCXa/jtnARXYQP05xLiPQmSO+kpFgq/LsCUxBa15hmAGmrcmaDmCxLG/Pdfq+EiqBYKdecbVeELhYL7NVQGreJpFcdsVZH+jm3WlWCImIMay3ivTWNmE7ZrG06ycampl6/c/Fe7x8mrdAGXYtdlYIHFGAxdM2tHSViEGLnPSknpA1q0+htZzrl6DUFzbnIWhsuqJxgKZqcF9N83tAJel3hdMu2hTBs+vDR9efmoEiogVIUem8M463LUH2y9qT2OjY5inOEpAMCAVJWU5rfAmFEiRRCV/NWTGc5xXauhBgR51ha0eRIo9045/BDjAfc6Q09h2yjgLftjb1m/Qoj9I7f6XctFrnc6fgYiGHW+2XUcB0lJ4zza2itk1PmdDxp9HVOzCGrjGnoOeu84+L+hX73zuT9XTejKWgYk0eorRpGMkHHUvgUAbn2qur3oA1GTh4/NB1RUCZ0CJ5pyvTecMMRoxbmdEVcSjCZ0ag2TAgqtRB9nUrswIpkPb+9cYSD9/aajS0/Ks7pVlZEU/xwdl6qAYXoE60bm/jrnDP8/vG1fbw3moQ5/V1dtWnsBpQPSTExIojoheZF9Yc+RnvYdGN2dhwnntaVX/n1p3zEf4JpRG6WW0bXyaDXIQjiNHjjgx94mQ9//Bv5/Jc/y+v/z0fcP0zce/kVPvrCx7i8us//+LO/pP+dm4jzBdPFB5j3G/tvIHS66E0DeP5gizpBOa+AEZuE6jS11krwkS6em6UhMjjMid2UccPhvJyduKEn7h8OFHmHLAnxg7IsmoRn95B53plJwhqGsjJc453bhJMd086z3kKpN/S2cP/BS9T2hNKOhLSn106Ykz4cbXJYZXBzLJRVrFjpWqDb5DqmaBxmyEm/7gD6kMORDX00ekdcp7muU1kriLSISOqT9BCTUhiGaAqWd0HX105h7zlPBBx9KZTemfc78OqgzimaoSrhSIBqL4WqjYAMRu2GNlJMk3TVxG1pYskHugzqFk7hEqXoZNaj69sughAVDxYTLszkFDWxqSys66qBEN0mLrGzyold3lPaQr1b6K0SfWLOO3ZTIl3uGVU15BIz0zSRYmA4awjt+VFrQbzFJAv0slJqVwRca0Cn9xO1eg6HTBud4+nEuqw28YyUstJGw6VEyntizDx5/JjHbz/lwb0X2M2zFn4yaKUy+aRzL69a0+Pd0YIbtChq0nFmeARHcIkmC85FmzQ3YlaaiNhq1/mN6Wt4MCtOg51D+rz052YGMH5s18/cOTRNrIJoTO8wz4FGXAMiavQSRdF5ESJaaLehOlb9a2oiEys+nNMGcytIz4EZaBGlenlsAm2eRDGtpOh7xKvcwFlzr2mBQYN7wKbYg4RXA1aedZru1CA4RDXQIakEyy4pxculrJKUbmZA56gWnet8oDMUyziE0nTKmnNWqUpVvwJDCKJXotIiVp3cWgqcs8lsSJnWK9VwYs5puE1KAenV4q2dBcLo59Db86KsDzVOeqeT2CYNxmCMiusa7OCdNsnOGuHt42yiqLRkxrHW9X87p+eOGGIwBT1PsCn/ZuoV53TT4p7fk52opGNtjeAhOihlJU0ZiZo42FrV5MEEPmZiyPR6wpvOuVfVi4fsz+t/Z0WkH0IYEPNEGZ3hlG8dkifmyLIs7JwmjjprCDTUojBPM+IdyWKkm+/4ZImFQBggIXBTFvb7HS5YKl3tJgkZuolsFY82zl6U8dtGg2FotajF8xbqE1OkO+jB46TbJtQkGPadYtfudl2N0RThl9Nz46bX7c80qQmTrlN23fqggUZ2I9sa3hCUn53Q8+r94/3ja/V4b5rheeDWwLB4yZgycZqZ9wdcUE6pjH5OqNpWdUMafdzpBbzNF4awtIXP/8bnmXcJZw8ObCqjjnLPNO35wAdegfKEtXS+6bd8nJAGn/7nn6ffFgjV1mmBGHdMhwfsLu+dH5QuBEPwPDd9aFTvYDR96IvDWJ3Dwg90GpOmCSdeNWyWS397OjH6YJcTjk6I+tDvtXLYTbR+Sznp1DSn+ay7C0lXkQNHGwsOFWrNh8iTZeVL7+wZ8R7CqnG2S0NqwDVBZGU9RnLMyAJhyqS9w/tLjs+ecDoWYthDdwQvZvDQh6qcTUc6cQcrimyF6WzC5tAJgnJdu8H89SbbWlGDjE3+ZChn2aMT9bALyHAMKqWszGEm5UR02WQHOpEoo5BT0oemiJI2UmI5NdJhIobIUqwAC4GM0JoiMcTBcT3h8OwPe2JS3fZpLXgf8D6pu9vrmroCwWedhjAYAutaWY5HLg8Hpmk2bFqn1sV0iA5SI/pAb3r+NjlyaoG7R7dMeY+Pws3NEy4PV4SQqWPYKj4xTRO7rA/3UtWo9Gg5ISNAhI6nh8h0/wGldmrVKN95nnS6WApVKnmamaJnrU1X/bVwsZ/wbnC6u6YcjwiNi3sHOpVlOWoRXVdyzozWeHx9w27eE1Nkv9srRcDS+8BMgl7Red47cNESwLxNb7FrQSeBvQ1tHk1fq9e3nicOmKbM7e0ty7qyCxqW0ls7R2jr5+FtamkiRVRmshEYuhECQAvcYRpXDUxR3a6yY1WmMM97mpmFtCDmHMIivSmib+usMbpN7yp9CJHROrWp8a2jeDnvNEo3TQklS+h7UHSdptU52VbTWhyMrvKHPGVFgfUOvVuAhxISaq0qHauVkNRs5nDUodpl1WVrMZiSJpDV1kgxqQwhjHOhO3onR224e1OZQ7fQieCiUjfGhjjz2qRY0+6DTiSX00oIWSkNrVOqargV/df1PEJMq920EbVY6d4aaZpMCxvPNJQQtJhS/4AWxNi0fZtYbyPeTVLjTY6hbGAjeuAsDU+LNDEJXvRJByUNaIN1WSlO0ZdBOmGKiok0ykapKzSN3ZbeObUTKQRqVelESlmnoSY32B8OPLu+VrmXdJ3Q2uYp7WbaUpT9jAXEoEVjykmLylJJU4L1qMErXlnPON3CbVHtpawa623Nns3yScGQmLWxmdkcFosdAjlozHptmk4nogx55zy9KV5P+zxPjnp/68O4zSGztqLx7zJ0I+oCiJJUxGuj3IdhU6Oaxlst1FXOJtP3j399jl/5lV/J3/qt3/qdP/uzP/tL3/3d3336//Tn/M7f+Tu/5Tu+4zuOP/ETP/HFf5Wv79+04z0Vw9/4za/yz3/9bUZNmpAUM2GecCkDAy/JjBCmM0UvNuc0Reoki+4EnSOLhxhwfpB3ieVugSnaCv45L7T2wZffeJPLi0vmy49y7zDz8//8n/L4nTfAKa8xxkye90zzfaaLK+KUzwl02jErIUL3rOD8INjFLuJorarhJUZqM8bs5phx6ApU1HDmnOfJzQ2nmHhwdYnr4L1Q1sY3fuzDfOM3/Bpv/kbV1dxoGok6dDJXzbWd0qxTpTlyXK7x7oJf+uxj0vQCkp7QWuHZ9WN2lxf4HFjLYHYOuqP7gUuBdXTazRNOj5/RH75A72Chb0TdoKrkYQjOb3EJ50+EYQWuGuciGv7goWkqXzNW6jxPihfj+bpUiQBmzuqqs005MfBcXx+Je41NDkEnzDno9GSgumyRQfKKrWplZZoSvTX6hqrzKFhfnMod8oQgTHPAoQikIcqrVTSbBqVoxafTOdGdOt6ZBhiVA4DnVAprF6YQCS4Q/cTF5d5c2jpjLmvV1bw0vDh6F1zyjFGIwXN7c02tws1p4aWXPkCKmdunzwgOpnnm8ZN36OKY9xfsLg74kKgyWFslxplpp5HC9M5alM6wsUFBH5DjThPJomGs9vOMp+j0Nmau7t8nrQt9aaSQyCny+OkTZKisI00ZFzgnXOGh+6LmtQrdVV2LinJnRT8o5fai+m/vvGLD4nZt6nc6RM4aUcf2gFedo65ldarlO2BmrVaVPqJSnA0zZwEZto4PztF6JaTtwasyn/O0sXfmXSY7KK2egzT0/NSzWzcFji6VKU3bHxtaLdlk2qQcqDRD22/svXWoqLTEKd5vK6S9yY2CjyZNUd9BTGrii6YlXVvj5ninWnTTDtdSiCLM3lNtIDCsGN4K+rxNRa1xqBbacloL2YyrMWX6gF43PvigixblyVu8rwydekpjS+5DHAOVpaQu4DcqCvhN7zs0bKF3k++kqGQWnPKi0aJXp4+VU11MBmGrdjMmxhA0SdHoEsM+t9GVH51T1PO62+sMaiLT0BUtjEcf9BgJUYvZ3hrDqCB5p3H1mPwj9EYpavgcrDoN9RopHFBd+aid29PCvfv36B6kqtkyGiEiBseUJmopatzsQjDjosjz+PJem9J4jBrTuprtmBIBz5wyd4+ecPHgChd1syJDGdPbdSkOpCi+rbRN67vJW55r/kcfrE15w1s64ZSekz82Y7i31+9M9uHsu6MPelODXQqeUhZCiKTkaFXva1gj0/tg2PkitdGGNsDJ6z209ffRal+Lx9/9u3/3szln+d//m1/bx3sqhr/pQx/iE5d7fu3nv4jURDCHsjvrBrUocT7qBY2yZb1Xh7svneB15e1HpIXOg3sP+eA3vsj/9M4vMqNgdL2xmvmuFV5/+02+/Oht/PgNfmEU6JV0dcnkd3SnN9G8uyTlC4w5dZ48uDHwTh8y0W4imgk/OC3lrG+LFprgTUMrfdC66sda6zAc+8OePtTgcyyV/vgpD64uyVE1mb55fssnPsxXvvgZein6IB5q4EkpkXKilIYbjbU8xbnEbreHCG0I8zRxW+6Y0oxUoZbB/nCFuELXsRjTnKFXbh69TV3utCHJCuEPrmNL1LN8Q0SITr/mMZ4b6DThdzPBiE3kMR2gaIGM3aBD1Im/pRMZbdTCDlQXnH1g+MHVYWeUEU/wqkWWMc6u+9Y1bCU4xYzlKdOl0YeYY1knTxqnajg8r7q54HXdPEa3YjvSRekbfYtJNs3jpitsNNqoeK/Nm593ujIcnTo6x1I4zDPrqg8iZ9il4DvDJyDRW1UySO+kvFdNYBTmy4DcXdN64fpmoZxOZlJx+BTpfVCeXXN3c6vQewUOK2EkqDGzVjXgTIcZYtJJ1Risa8OHTJ7ief1N70y7qgmPwVOroHQ2TxNFzoWgjvilVA4hsJsn1vWEjI4LgTTt8CExZNW1/HrSaWZpeO/Y7eezFnIUuz5yJueJ0ttzrbiXMyZr9MbpuDDPO0vR4jxF0g24FjbigNYRr4zbZoWMDE0O885RWjUTpZbKKSXEdYrRTsYYlLUoH7aq1vl5KpqlRLaqprMYKPIcpxbMdLRNitfTyf4dds3YVsJ5C5pw56lkR/T+sOEIRZmtKo0odFEuNAIuOOaQ8SOwxQ+nnIkpnZF25xvwu3BV1XSdXStdaq3spj0Zd77OemuUoaE24pT5rEW7alcRtGhEvQ/DQbBiVgDpwrIsjCbEkNnMoJuu2gX1VjgRnKG8NkSX81o8eVDz29msNWiD8/0mmN5aN1Cb9jqc9ajOCa4/nwYPK/L0726YPG0QdNujeDRHI04qwSmrXgMxBp2om5yntU6MolPlkDWAaKhpN8XE6e6oqYrJjKSt07BEOtPi91o53dwRnSLNaqs4mwgPrQqJXtGAOKdhOph8ZnTuXV7x9ttvU0phPhyg22fDsMRN/V3e6Webc8CPgKvDZEsdGTo0CF63eN4S9sqymFbY22fpcTbh7aMTJ93GIRtrXoBBXU+E5AiKjif6QPZOmzg8pXaWteL6pqfXa2b0TjUNtwvvHql8fR69dz796U9PP/dzP7df19X9B//Bf/DsxRdf/De6S3j55Zf/N1//sixunuev+WL5PRXDB3/gt33LC7zzaOGdX7umno64VeHiKU84rzpQZ3QF50Qf1GOAz+CUmxscSIxkH/joqx/i5Y884Fd//bPUJ0PXl1Y8OQQXIiFEpuDIcWIdCcSR5j37GKkCnYjPB1yadSU/huleYc6R3ZzxOJtUqnN8SklXlRbZuWmHXWtId+izRKdS0bRUZV3PwR0OTx3Cs9sTc0rcu7qk18KrL73Mxf0v8uydSpHOfu/OJrI0Ke/WEYi7hCczZIPjF/JuhwTh6fVbZL/njS+cuHr2kDxfsbt6gbzTFfjd7WO8dHaH+/R5QmJGXDTc2FC+pRfY3Mvq9Duvdek6wRrGmYz2mYeY9L3DufCoretk1+mNs9dOiBGNulcToXNOC4ukU+CymVUscCClSAiqlQsMfRCidITaGj46w4UNdVpbfLEPHoJj7eVcUHnnCEmNSNpwWZaACMk0cQqHd2Z0GTSn4P0QkrmuB26o63w+HMAFlqKIM2mNkQBXkQ61CnmecNEhzTNwhLxFWHcu7t8nCpyOJzIza23Muz27iwtqq9SyQhsah92bhn4NuDnekEIi+sDd8Y50m/FRJ1NTnjk+u+G0rNy790CbBB8ZDkrVyVuKEyIwZw9Z16n7w16lF85xWjVxTLfAnrWtHG+vuX8/gk9M88zd3TNub++Y8kyvUNaFsswcLq+ISb+/dV0V6ydyNuT57cFok/RWusWf68M52OS3VtOCm0lQ63ylCGQr5jYOLVVxVKN1XExnLWZvHemD4BMuWPKj/fyUkl2L5k/oGrRADPTTHSnGs64Zpw8ypS6o4bPUys6QXz5E26R0xlC9vdjUVgtoe52ymbms8IsWGIG+lxgj3YJaRm+kpLHZeKdGK+MLK35RtzR99HOB7mNkuM407fHrwvF0olaNpS7LqrzzeWJIs7hqdXO5YXpcjYokZMX1aU2jn0EfQ9fkFsHb+/OGefvzYfpTZxri2rtNLPWcF2fXW38elqIyDw2SENFpZbeBggzBBaeUEJOaqAZa5TExRmQ0Rn9eaA03mPKMtymwxm7f4lzAtaEGZWevwUg5S+8Ep4W6vmZh8hmPnO/f3idCzJxOK6mrXMfrSoKGBcaAJVl6alcKRAdS0u2XdBi1Uo+Lmpq70h7WdTHPDOynmXk3c3t3xMVEEGeFqYYUaVmsA5opJvKUkVopywkYxOxJMdProlsuBmU5MuWZi8OO2gZrqdzc3BJ8ZD1VylK4PR05XF6Ssl4Xh/1BpTvd0dZOjjuUU64GyOyGBruIqD47edKwKO9mgxCnhlYRobd/o2u+/6+PWisf+tCH/q233nprMyTx5ptvfvGHfuiH3vpq/t7eOz/0Qz/08k/+5E++9MYbb+QXXnih/qE/9Ife/sN/+A8/BvjMZz4zff/3f/+Hf/EXf/HwkY98ZP3zf/7P/8bv//2//w7gjTfeCH/kj/yRj/wP/8P/cHlzcxM+/OEPrz/4gz/4xh/9o3/08fbz/5cyiddee+07/6P/6D9657Of/ez03/13/92D7/me73nyN//m3/z8V/M9/utwvKdiuNRBOWYaO/xU6G6hl5XWF1rvpDQTUiblqPpE08i5ELi4vK+r6mVF2mD0xsPLV/johz6I85WPfuMH+fz//CbOJ2pd8E65qs6rKWveTQyJ7PoCRByZ6oHzZCPiXETcYF0KJ1PQ9N4ZxrccFj/b14q0rusf0WQk7yKn9cTSik0/jEqAJv1EHDiFmw2BlCZCUE7rbWnUp085XB2Ypz33HszcPK7WDAg+OKa9xmnSRF3awVFOleEa0e1wYzAk8IEPf4g3v/gFZO2cjk9o9ZoYJ/zb93jhhdd4+WOvUeQeoyjrcj/do+EpdXDvEKkMfVrZBEzgHJ3drZDHOU2ccp4pJ+XExshoq6YYWXHMkDNXFacTLzd04qf4rUFKntIKiGOf9cY+5ZkYPcMmVIr5GUxToiwr6/FE3u0ZrbHf77g73Z2TlpxTwL9qGHVFv9/vWUvBEZGgvNkQshYfwVEd+KER2tKqTkHTRHBa1CTtevQ9mGlrbaoDD0DphRg9jUF3OmmlOgsS6UjV2FzBc1wKMWsjEVwgJs9dWcEF9vcuuQgRpfkNnV6nTEiBJLA3vF2MkXzzhOPdkcurS65euEdZV8ZolFK5vbtljEZrJ54+qfoQD5n9xY5RF9ZaaEl5ylOODGM/a+rYIOXMLs+qlQG8nwi7Pfurh5yOd9Tljjk9YDkW2toRWVQH6x13pxMuBGqOPHr0thacwbNjj3OOKZuDH53Yt7bipLKbshbK4k0a5UjBc3d3Q++D3W5nyDK9Xrto0MdAjWSjd9ZWdZWOUNcFEchRU/80bli1pMqHVRZ4s/9Glxuqjx1VSCmfC8UNRSeg2D3jgGsokE69tIFWakNvauIUYFkX/V3BkvowLbXD3P9BGcHo76lb+JDJQFqpGgbj3PnPGEIpykEfW4InctYWi7OmI0YOF5emudVQlVYL0U5nNS46C+dQ7NygsqwriQkXEkKnV6WxiDiqBeW0XtXk6X7zpFrvV8FkLEMDYNDvxKGEEYac48iXspqUTOzcVh444vDREbKmpfVS1EBnZ48LXlFhMs6m3GC/t9bGzekpF5dXGgYTHPNuTykFb4z7YGa6UpptciK73USpC204YpyMuQtlbIQMh08TtayKEEuO7CNIYJxpITYF3ZjDo9NbpZcV1xu76UCKmepXSlP9d++dOGecyUvuip4zDk9dVoYPDBdA7NwI2ryty8pduQWvqX3JKQdZmieGHcEHSl/BjXMCaPTTebChjYRjLZW1NI7HhZu7o+LnejP54MRut1dCTVUJXJpm0rSjMbh37x4p6HvYxazc6TY4jXJOQsUGHl/vnOFlWfy7C2GAWutXfVz+x//4H3/tr/21v/bSpz71qS/+vt/3+26/9KUvpU9/+tPz9uc//MM//Np//V//11/6tm/7tuVP/Ik/8dr3fu/3fvzzn//8P08pcTqd/Hd913cd/6v/6r964/79+/1v/+2/ff+/+C/+i4994hOfWD75yU8e/2W/88d//Mdf/oEf+IHXP/WpT73+1X5//7oc76kYrn3w5Ucn6rVjOlyxYKEXrVNqo/Ujqdt6JwR8mPTG0QtrW2llpS5HkEiMnlcefJirexcUd8drH3yJNz77mOW46Xo90vTmOu0v7WZcbe0XCFHoLsLQh6KziF7QtJ0tkaq1bm7yDTFmstQtjMLrDWvtjZA8+4uZslRG1zQyzLTgu8YVx5zIOZ3d652BBEf0kafXt+Q8eOnhPb7wmce01tkfDvTROR3vmOaZ2gqjrsSc8B3iHGl10RCGew8I+TVe+fAe1xZub55RWiGnHYjj0ZPfYETP1Ysv07MQPchYGU7dx9F55v2e03Gli0WU4mlezkYoQB3RKesED2OvihqpJJoIoitr2Dld/fmoD9JNX9ftgdh7J9iErslg51VXt6wL0SnCKIdASBHpg7LUs3zkbjlxWo5Mk07/t4jdsq7klBl9kJymftE15cqlTUdpO2oZpOjAa6EdAsRp4riulALJJ+I8UXtFRFfqbSi3tTM0WlcG0gYJp6lUogiukCN5jqxLIcXEaNrYiaikJkXP8fopEjL7wwW1DcTCBMTORTcCGMpIlQ6NVjvJJ5xLLGUQUyTsL4gOQq+01kki+Ftd0Y42qHXl2ZM7nH2XtRZKaRyDI8SJGBJ319cqKwBLoQpc3bvE+WgGNsfFvKO6wVtvfAXvEjEkri4vcU5YlsYQx9X9eyxl4QOvvmI6XKdGyNY4Hm8RGeRpwnudOqeozNLd/C7EnPcaaJCvtNDx4cypDcFrzDSaytbWoo3SulrBuSHFhha7FgM7bHXbhwYeODNaqeHWmQRBU/F6E2J+bvpRXrGcSRc4mPc7jfR2juBVCjSMoYtDdaFD0/BANdTVim9Fh2kk+HI8Mc87jYr2ZipFY98HioHbJsjK7eWsmfamtfDGBsbr/alV/T2tqVxM47wh5JlGx/dOssIUcTT0Z6rB0NGNdhOc4hNra9rAOg1BKeWOeWc4taHnIKJBFK0P3BgEJ4rusqN3Y6THpPdXXThZOMu7zJVsyESdejtEJ7BezXmyabaT/jdzyhxPR3QGC1POJPs8B0KpnWAm2kbHJ2cBLHr/bq1TeuV0vCZlj4+ZeloIiG4UnFJaRm8Ep3SQ0EF8Uw62vmCVGzgtsutatVD3ZjStg14Ky9D7Uc47nt08ZXKzkntMsuG7bTNEOFxcUluxz109KtgmsrdGEEf0iY6lTYZgPhNhsUTDaZ4J0XE4HOh90NaG84H9/sCyHnn69Bp8p1OJcyA7b9IplRo1KdwuHSlNBx9jIMuJ5bhQBjx95+lzjnaI5N2O1pumkOaZGCK9aqJjjL+pDvy6Oy4vL8dP/MRP/HrvnT/yR/7Ix/9/8TufPHnif+InfuLlH/mRH/nC933f9z0C+PZv//b1e77ne25/5Vd+JQN83/d935v/4X/4Hz4D+NSnPvWV3/7bf/u3/4t/8S/m7/qu71o+9rGP1T/1p/7Um9vP+7Zv+7a3fuZnfubqr//1v/7wf6sY/t2/+3ff/PAP//Cb/7I//1o83ttkeAjPbp8R0kRtK85HQkyE2ZHGUL1tb/Ra6bXQ5ZZWVnXte4HuiCHi3YRDeOudN3jy+BV294VdyDBHjSJNOl3zWS9QUlJdcvcwlByg5iiPBK/rLoXWIl4xV9tNWWUUnpwjLptmOHl6VB6lM5ZkctG0w8IUPMtSYTRdNZoeTJnCATEdWkpB8TtuC6AI3C6Fy/19pstEfdZZjiv3Hh7U2BYSLRbqaVGk0KSruBCEPO3Vud4gTwf8PBPSzPWTp6q93s9c3Z/po3D37A0ckZaScjMPM1I9sw+UeiQmi+DUOQchaPxtsPc/+qBUlUrEiCUToWtICTZBdhapOhT+LzDFaAzcM5eCYMEe0QvRoWlSNl0Wp/q76Gcr6Dr5sAM0ue9ynmyNaglbDUYbOC8syx29atKY8w1CtJALTUNqXd3z3kVGUyqB855gjux5NzPS+H+z92+xtq5pXS/6e4/f11rrvY/TnDVnFUWVIItFQhkXZdQbgykUTYgXXnmhkAom3JSAISQaEiUhSsriRkL0Tt1BExNvttEgyQ7smGg0a7HFYAkr4gKF4lDzNOYYo/feWvu+9/Tsi+f52piQ7WEuLd1Uza9CJmPOPnpv/Tu9z/s8///vr55J1y0UwWsxOoYy5Xsnuoh3nlJWRtdo6eB0pFq7jQld0vsweHzfAiw8dXTcNJNjZl0XXTjG1l3WgnTTaYvOby86SkV5RWRArwNEmbDOEtucg6sHjy9hEdI7p5N2WWNIaqZpld4r0hv3xzOtVvpQAkUr2qWNHkJSs1lOE3XRMAyJyuWu68r9C08MummI3tFKJYdsBe9WDAkuDnCdIRUfNBJ89GbTAzFclGd4bDOqKY6jq65zTtmSxwIpAq3hpBOTsPaTdtFDpsoghqByBzNy1bWQcraYFy2uHChfVYUS9D70Hh3DJBTOWOimmDW9tiKpbMQfoxbppm1vpgP1KCZPr5dT/m7SlMINY6YyKr1Xllr0/eQcOebtjJkxrlPOC4KYWU+L35TTZZPubDPrvcdyVnR8vRnLTL7Qezd9r9Br1a7e0I1vM2nXEB3Hu15ozoosEZp+CzNcThd/gPOKstuSJZOPDAt6SN5fEGybNhsjiOCh9spumk0DY4tKUO2u2hwsUMkHcBoRvcnTotfUti3hboyuG0MfELFQGO9xqIlRhjVdpOk19F43LC5AEkbz1HUlu4GLOhUoXdF+wdv94jwyoFQhOUFoWHqSmliHXi/vNahjJKPqiNP7uOimdk6Z4NQDEqNJEYY+x6om0CCZgQZGbVMKREOUfEysfRBFON0fmXuj5kTAdN294aJnt5t0496F0bWbfn+61ectBR7cXNF6I8fMW0/fNeRapHbtomPoOPGDsvlJaiP4SMCzlEU3nVU9Bc9fPNNJSkrkfWe/3xOdo7cV5z/gDH/nd37ns9vbW/9d3/Vd/0N+3s/93M/NpRT3bd/2bbf/qa/55Cc/eSlqP/axj1WAN954I4KayX/gB37gw//oH/2jR2+++WautbpSitvtdv/Zi/nJT37y+N/rd/idcryvYnipjmcvIr1GAitp3tP6SqkrgWCasMF6uqOVEyKNtLtif3VDmGZyjJxvX7Acz7R64nbsuXtx4uGrB+Yx44a6blNWpI04M3QQEKfkCRcchMjApBGES8cTb9B8H7VrAiCamjVCuOhhNc4Vhb2PQYpqrHFBgf0ez2GaOMwzS+3cHk/UAnmaKG3F+Y4Pah6LIbHFWI2haLmbwxVPHtzwxt271pG0iMtW6K2ozqwU4jSTwsuUpS7KCPaTRzTvgun6Ic5FXPS0viLliA+O2geUTJoO1DCR054YNAkpmdmmmos74FRHbJ2XmILhw7RTIiFoh3SIGsfM9INhrLIPygNuaohzFn87pLO2FWqleqeu8hB1lJwDrkPwE23T6Xp3GXuKdahSjNSmncPuGmmODJripXylFWFp2tFKSQsTjVVVE17r7RKbOkzzuIU2eO+sULCuFi///aY5HWNcEEmlVaJAE13QfQyMrvrwVgf4Ad0wUcGzrivrWthfJXXzj00SYppidIqx1nphN2/GlOYGPiRCyojht7SY1wS0CwpQFSakOHFzrZ2dlDIOtOABBoPlvHB/d0upKyKiyVxro/pqXVpBXKN2LZanNFOLmuju7285ryu7/Z7dYYf0QZbA4eYBwdLcsgsEL8TsERcJPhFCpDpP79qVlWaFpEMLKOvGei9mjFyopXCslZR3Snbog95gmvY4Aj4mvFQtGGNWTeMYpN2Osa6X4sepmIXWKj4GehkajNLUhOaMxtBx1pEzXWxXIoJz/j1FJkqImDK9FDbrn8P0kjonVg100IhvDapRA9yWujacMYfHQLxXrKPTe8FVFYt75ymtczzdE9bEbr9X2sJQMUJvBecmDbOxzrDYPS1ODCNon1vGReLQbPPvcEhwFk4BbmiX2RkDGm+s5BQvIReCu6TK2anQVL+uRtaOGm2dGea25MdRDbHXxTbMQ81Xw1jGzsyUzpGTYgijj/SqenZzhppfIeJFz1cbihPzogE9Mt4jEwiBPtB4+DF0grcF9liYzxjgusOFpEmarVNrM6mEkKaZ1jvnshJtozRQbrR0XWMmH7i9vydlNV53owxpCIawdnSz3zq+OFanm/HtmRWnxXxIk5r0elfPiujfw3lCDgQRfEq8e3vHw8cPmFMmpUAQ5be/RBnqlMPvMtdzoI+ihKJa8cMR48wYE/ftzDQnkEieMw8OD9R8jRkMl87p/sz5tHJezxxuDpRaWM+F81KYp0TOM7UIty/uON2tTDEz73fK/f/g+B96HA6H/6JxLaV0+ZrNLNy7Fjs/+IM/+Prf+lt/60M//MM//Gvf9E3fdL6+vh7f8z3f89WllP+svONwOHzF7XzeVzH87//dv+fpGlmPJxidIY3oOm1ZjAhgWsE4szs8ID14QIw7NJjDc757yvH+Gb1BSKobPJ8L0V8riq02gp/VAo1q+zbtXmuDELJ2pDxAQBH9anDZuhbbqHCTSXiPxv/KUO4kuvNezwrXj5a4FrxC98VHolf3fkye2Cp9rCxBuwg5a7dVzWVNu4Fd9a21FAQtJL/2Y1/F22+9S2/C8XQkJl2cglMcmKYB6W68t0IXDy4a+BwYgySOu2dvIx2ur58wXd0wvf5RRSu1qmP6dVHQPIXuNQRDGaYeorJLBxpYEcMWn9r19wu64JdWtBMfEnH4izN/CyPpTZFoeZouprk0ZYZEXUi6jn/bcARjyrKaJjlletAo3mCdviEq1XDiqKOSkhpcUkrUUdkY0314fFQYvqDRoq1Vpqhc3j5eEg22xC/ngzrZBVppism6dOi0mN/41713TqcTu91O/yx612gYi1x001sgwagN77SIaMvZRouBpTbt2Opw4rI5ak1ZuRtaKdjGp3cLgQmOLvbzzBE4BP0dtoCCrsW/GzCc3vvrJX52e/k5dodrrm8egBPOy5Hj7ZFXXrGFcGhRmvOkXVsReqn0lhEG82Hhpndqb4peGo5zPbO+feZwc02IgYYnp0zvGv0bQmLKE4gnGfHiIs3xUc1PUTuUyUWyaSuv9jvFrPVKqYVaFloprKuyUHGe3bxTIo3XoijkyLqutLZyyHt7F0SbzkRDUDXWWjgej8SYuHpwQ+vK6a21WhBFJKVEqUVlC1b8Re8vrOOteBWjVuz3e0PKeUNsqVa3937RWg4R1WeLkC1cpLWmne3WmKes8gwjUMwxWPRxsOutPFfvwMvLuO3WKuu6aoqZV6lKrQVQ3bLHMdywzeHG5/aGjt0SEU1nbcbSECJbqp1iF1WS5h100+n77Rnyan7W2G9dA9Q0GC7xzNOkhXs1/KK7+AzUa9Fqo41GbwWfEohX9q00gp1r74NF0WuRLEMDIsa2EbBOvXdbuI27RAaPbcojev/FqHprN9BCG7QTPBre+NrOOWKeEa+4TO1Uq455oJIB54NOiZImUvbeOC8LlE6aZoZAcJGlLNRh78NeCbbBc96R3UQ3b8GQfpmaOSuihxdaH+R5Tz8eLZzHE4MnxRmqTumi18howSkC1AdCmFX/G3f2PRO76ZpjO5PndFnPwlC50TAzILPj4f4xfcDt8V1urve0Vnnx4p6nT5/jY+TZu/fcv1gQByv3HI+d/hxLv/zg+B95fOITn1jmeR4/+ZM/efMN3/AN77zfv/+//+//+9W3fuu3Pv/MZz7zLqiH6j/+x/84f93Xfd3/bS7xl+vxvorhd5/e0oMnemHYzl3E4w8HvPfspz0hzkzTNTFP2pXpK73c8eLpOyzHewIaeesCiDgIjtZX5SfuEufuGJaG43O0nbEZPKRfsEuK/IFNo6itk41k4WlNC99WG60Oc0brt2mlE6yQC167WqUURSqZHtgjOFEu5JPHj3DJczqv3N2ttKqfr8ugD8U71dqIwVm3ER7eXPNVX/0hfvVXniIoVsw5SCmzLPeMfiZOMwztCM7TRBM1yNTuyCnhW+NwuOL+/p7n90/ZjcJSOvPDV9g/eECXpilR68rjwyP2U2RdFhxy6Ux40+KqrMDEDS7gZNjoUpSiAFaAavSmai11TNl6Z+06eg/BE8VzPpXLohfiBFG5or2pkctbwEMbjbZUXZCLjqzpDpe0wPNoqIRSXpU3KkOJAfOc6F1NUsFvJrFZMUtmbklTJgQopVoUsNeY1aEdYDf0c8SUqEPvH8dLB33Oky74m/mHoaYpr6ZKEbGipzEQlrJYXKrQhqaN9a4j5I3RqtNQlUgM77QjhU4kcGMjSCHWcVuWFcy4VMd4uWkxF/fQBpxKjVA+c0r62XpX3XNZOn7SQmrO15wp1DKI80RvZpRqxi92jpxucF5DR/L84DKWr+WEdO3G9lrxIgiFkSKnuuIK2iXzjnpSRu007ZjmmTyp7nTURjkvpJTxZm5iQMSradEpA3WKM4+uH1NrpXcNd2i9U0tHWqOuVUMOmkPWM62cOY2GDMc07XXOMVTO46JqvQ831wwZNOlaoI5K8k6DEbomHLoOa11I82RF76qSmZSJaIIhiI3uTW7VVW+OURU2osXWXd2mKaU2kg/kKbL2SozJgkl0EqLFs9Ju1ISo9A1EqQqlFku40+JSiRjqzRhdyRp4R6+qd/Xe0Zy+d5w98+t5YbfbadHFwEXF1kWHhXSYvtgbmxssMGOw4dKc/bu1rqQ023PlraBWzJhzznwFjhAsNtvOnXTVT+dpoi6bdhiTUFl8sL37RMSkbfpO13elpre5LRxGTCJiHf11XS985hACHiFNE71XeitMU2Zj9+rhVB8s2gVPTk2RYzi2ZERnD13vG6PYUddGNya9fv/BILDWTq+r6txjI5Sim8bTiZQUo9dORxBHWQujV6acwQsxKEEoZWN7R8fV9UOevvMU7xMtauqb9x4hUHpnlMI8z2rYq50UjOwT9Bl0oRD3kZt2Q7e3aRBHk6aTQfRcuuTU5wJc+Znzes9+t+P1D7/CkydPqLXxVR/uvPn2M37t17/I3VkjmRGo5b/YpPzg+O987Pd7+cxnPvPGD/3QD3005yyf+tSn7t944434+c9/fvefk05sx9d+7dcu/+Sf/JNHP/VTP3V48uRJ/5Ef+ZHXnj59Gr/u677uf8TH/x11vK9ieH91w1V+qPGUpsXDEtwgqK5ydGQU1uUZtK60ibKwmzWZq9Vi3Q9nujkPTk0i0xxZ7p2aHrwniEZi0rtKG+KkRWgX01UaKBwdkYqIJvtEf0mg600oZZhTXxe281JYzpX9XsMcuminJXjtQnmniKaAZ4xmMHO43u2YYmZZGue1sKzaLXCW8hSTauVa6/gEv+t3fRVvvnGrRbdBzYONVVtdNaxi3l0KuNEh50gbUNrKen9L8ELY7Qkj8vhDH2G6ueF4Xnj+1hfoy5Hl/o7Xdg95OH0UWiWGTAxQTPcmwwxnKFwetFOekqZPKeRnGOJK9XHKW9XlurdxkasMEUXOmRxDzWfQ6iCJEgZkCGlWPWKtK9ag0es4gD50MUT1jSF66/pq/HJw2TrbOvpUtnEiuMigMpoWGGupym11UFYNWXBOiwPvnUbKeo03baWqw90GQ1t3OwSPa6o1TdadFSwa2DSom2t/NCFmjbb2OIb3TGnWa20L8iYL0J+xqWZFyR1BFz5Bu3JYEVF704CEMZhMrjPMGFRWTdeqrVkXVMMwRKBKvZjDvAtqcFwrdvKYJ+ugWjdSu6fKZ3bOs44FLY2Ve+pQKUGMqh1WFJSGXPS+IdIq0gQtuTq1rDqCHgv1vJLKVuQMylrZ7w8XfvC6rOQ8a2F2CU7I1KaJWoKDDskFDjcHTa9zlgzZBT/NhBQ439/TauN0OuJiJk8zo3cO+5ln7z7j+vqa5D2jrFoouHAZlbMVeTEA+rmcaVFFhHVdcM5ripjTyNvNeLrpdx1Cqyp9IihP/b1ECNWymi7YBQ18cPrnaqY/kz0jCD76SxiPOmJFY3ktGdA5byY3Qw3KwMlLUxvAWspL45o9pxsJYBinVppKG2KMSpnpnTaUpDP64Lws5ClfCkyHZQ6JFuHJsIoWdG1FqempBUT6S4MuzjjlzgrmSKka/hCTN2RdwFsUd6uqAd6kLdh7xMeg70XTKLshVNN8e+OI96aGbe2ORryPBJRhLk6LvugCKU/aIhbB+WFmTn0nlK7v7DAGSAfRqYQm6w2CJNWbOFSe1zV0JeWI89HM3U6Nhz4wnFIygtNzENPEu/d3uOh1TZFGb7r58y5QV9VMXx8esi6Nnhylqa53S/4ThLVreJR3GosNSjvR3y2AOJw0HEI0CWHwAWmV5DMbDnAMJRz5fMD7pImFXd8lMQSQwSuPn+Bd4Nn9kdKE+9PK7f1/0m/1FXP8wT/4B7/+Z37mZ663P//wD//wRz/72c9+9J//83/+35QC9587fuRHfuSLMUb57Gc/+5Hv+77vS6+++mr99L4/bKEAAQAASURBVKc//fZ/zd/94R/+4S/+yq/8yvQn/+Sf/Pp5nse3f/u3v/2t3/qtz29vb8N/+W9/ZR3vqxj+mq99yC/eBU6nQEqT4oTG0KQhzEEvTie8zUFXPd9u9wAXPSkmfKmwrOCijn+8KJQ9BHb7Hc/cqmaJzSHu1CEuiBY0PtlbWruWWwfX+5fOcuedjcdhXCIrg7FQVV+31Ma4H7jkmA+T6l2ds25xwA2HIxD1TYFrKmeIrrObhi3whSlGRRiJp3eNBk4pMViJyfHxj32UX/uCTjfGGLQmxJysIOs2Uq2Eaa9dkurI0dFk5Ytv/jJjOTPvHrK7fpXbp+8SjmcOjx7ir69Ir95wPl3z+tUNzMIItlhYYlizTspmFhqWyqfGLlvgjR7hbAGrY1XOppnkqukGsWshoiaWTXPbxzATmp7btSiebRhnNMXta3RDMVzXQrk3/X7NMVrBB2VUt1KIXjtiQ/Sa6qhYmcnOoqU3TeVmIIs5E2MwV/uwSYH+M+UIHgI6iu2jg1hH1nmLTg2Mph2qEJKeRzzznJE2iFk7MuDoKsnU2FSn9v+BpgzqyFh1utFG1XrOuxVYlqTW9PxtiXOgBcYwQ+awYnrTU0bnKKVqAlnY4q+3bpourt46lK11gg/EGDQ+27jf2oe3Er11glcd/JBBL+NiyhHxambEQwjEOBHF0d2KS0Gf4yDUuhBzprWV0QsOKKXQS0N8p/aFXrVzXVvn7v4WwXN9dU0MibWcITjEeWLIl0kHMdLbymAQk4UIuMAuBnLIPH/6Dj10Bo2cNeinucHuZk8dHXpTjbgTegtMU75ETOfJCm8XLqa4PjohJ/UZWPNrI0q4YIUp2P20odmMo2yR1a1UzqMx5clirtXPr+ajZltOC0LYil9gmFQA99JYF7ySe7QTal3qpBuN2jSdL0aV6/jgiESGadKHdA2yMamQG54+qsVbc9FNO0B6o6Gd4GDyHTUMWnqgfbYtvCE4thDPy31kgqxLWMewruM2sWtDo6NP57OGE5nkSAmQ+tXOO0u10+8oTbnGaZqUu2w65FEa0DXMYp4v/oPWKsmFy/oTLJrdBevkB3/RDG+fvY+BxslHUvKIqwh9g5ZT6kr0jmIhGTHrpmmIfk2OSRs03q4D6oPoDOiDUTrBJCw+qEb7/nxmnmd0tTRvQFcd9Rgo5x2V2ESnf68NjE1tHgSHNTXMmNk653ok7SbyMM9BqThX6VE/V3cqE5ShdAzR3QudTorqebn8jP5y0/T40UPm/Z67ZeHqZvBovXk/5cKX5fFLv/RLu9/+78YY/OZv/mYCviTFcAiBz33uc2987nOfe+O3/zcR+dn3/vmVV17p7/13r732Wv/pn/7pX/7Pff+f+Zmf+cX3/vk3fuM3/u1/62f+nXi8vwS6j3yEb3TC/+dn3qGWzkC1pkq+arihD1eIEUkzIUfVEiNEouptY6c4YZwGMhqTD4SQmWLn4c3MW1FjdFs/6yI+TLsaIn047ZTG8J5icgAd5/IFJ+VTUkMHEFPUjjVoMQ10Gs1X2hDySIQSiC4xHXaIrIp6Cpk+ilkrujFnGzmoC3l3lbm6fpV3X5x49rwADh9mZFScb7geyD3xoVcPvPHmW9RqHFynn7u3xloae6eufGmDKk1HaV2Ihx3z1Z7mhXm/J3pdiYaHMO85HK7YzRM31wuHqOxcqYXgHLVp5G5w79H0OodHF+DodeznbfRqZSZdhoYeOJNSOAjRayfFa1dKu0Xa2VNI/2BQub8v2hgKXtFxZpBpQ4vK1nUEOkQYreJTIiXH3e0LcIndbrJuGax1MERd2IIoS3dU6wTpxilGlXRoWEDAV8ghqa6uNdWU+vYSdWYbqJQS0UdK69rjcmpO6qbFlAHiB89ePGOermhVaOd7chZ2+x0uRkKO1NqZ8qQ0CFEm6ybNCFG17KAdM904aoc5RI9rjdIqw7q1vXc1Eq4rzeQ60zzrRkKGdpkUCqtYpm2U7VVTvXXr29DgkDYGhI16EKAPjcuWbQyuI9OUEuW8EEIgx6jRVE5NY4r6Uh1r8Jp8JiR88jTXqaeF0QaTizg/E9KOFAPTrM+j2Oi510EdhVgX5XsPwUXtdMuqKY+DdpEThDBTQ7AF2+HCoJSVECO7eMXqOvvrHbEEylo5vnhBSJmHj58wQmfKO7qoHKWPQukNaYKXjIzBaTnpNfSKgeuLfs5GJaesm0M38KJMWhmWmGY68u09kuyd0kdlnjK1C9miwpuFjATrEq7Lwv7qgIuO4SBVDY9YS2FETWGb8kwH6mj0Ku9JD+MycVuXVZsPKCHAoVkgmtipzGHQjeQWqEEUqgx8NA2xqFHM2UZxBKOXiHaJN+kHTkNDal2Vo5snQlKp16i6odWAG6UHxdlkEqimN+eMK52NqOGN6cxQrbIWq5jOX4vV3hopRG2ujMGyrOSsyZy9VWpQwxxNi8gR9FmLKI9cMAmAM+TjAI9ONMYQqojyf3WgyTgVVlnAOtKtN1IKGjHvVFvunOq5t2TKrXHQmj7vyan3YYimFIYY9ZzQUe4z0DSY6u7FC03BTKoFDrb5FWm03pCmG6KUHLV3omm4g9dooWi/45wc0eu5G14pNNIq+MAcAhI8pVV2XkNsdBPkrLkdSCnQREOFWBqSIyNGZFWJzzqGNnZiIjZh8gOhIu+rWvjyPP7hP/yH/9fP//zP/xbx9G63kz/xJ/7E3f+sz/TB8d/neF+3d+uV58cT+Eat2gHwvRD9gFYZrbB2Hc/jI+FwpWzD1rSI2caHMdLc2UY3yg/t1fH44QNCuNNu3+ACmvc+4uNECOnCGg0hmcFIO4xdW3ra1ZKXiU5jCKWsIEI10L1DuzsxbjD8Tu8nSmvc7GYtLIPQWlFW5VAUlkuKdvJe9dLRCY+v96SUePfdW2obOCKjO1LWyOl5Sjx8eMW77y54grqsvXb7Wm3spkxtwrqeuH70WPXHRUMgPvShr+KLX/gVunhidOTDNTePPsrjJ69BLNwfj3hxHPaB3guNhm+6UM8uUuHSPXLWRdFDEVlN1ASkBkI1u+Sso3/EXSQp0WQjgiKgQgi02s3IEWmjEI060GxcWsz4Id1GszhaHebGDzT0EuV5x3lt1NE18MCigHtXZVuyCG2NRI200QmA96KYo5B0YZZBWV+a0MYYNKcoKy9qChpYMTk2/fTW3dKuLE7TvJ2HeReRsXJ79wInBfEBFsfVgwcWXBAvBsNgP9NHNSSKadhF1PWuqXAmM0G7bzllm3oMoiHvtshqh+N0OhFy0thh06VuiCznnDFbtWgKQXFoDihr0cAHr+bQYi78dTnrb2tdyHmXVTph5jocildyyg0ejgvdQrXfwuSj6fcHh8M163mlN2GaTcM6VCcdo8f5rMmFQbjKXtt9Y7CcFtbWmPKsJtS6cjrfIw7yNHM6GoKsa0z6uqgTf5omdHYgzLOluuEYdWWaMgFHrY3huxE5hBgm5jDTE3SEJo1HNzvWc2GMl7gyHxzrunBelNMc/KTTqNEu+ndESFGLurKuYLHhzqRCziYtOeo16+0lqsw7z/n5PQ5HiIFFlK7ivSdIpJbK7emW2hrTbqfsduvOit3LagQOF4lFtyhjnHvZxXbO4tU3jbkD8ZcOb0r6OyuZgQv1QjvwKp8YslE39DkOabpohOkqCYpWbAuWLmn3LkZ0AceyLAS0UGztZcz1Jj1AsI23MxmcRr2P2lR65cS00RVpjXm3I4VEmAKlDdsManc1hUhti25GQyRmZVz3oWvUMJ2yh4sMhCHEKVPPZ4KoTjna79lNauBDVO700P+jbcl8Kj0ZvVMsPrqZvhmnm5eLORLVJHs8PkaOpzPzTqeAxdau0ptOHzaMXlXFyVqKyuqiIhJr1/PWeyd6h3ODGD3z4aDn1TlOx5UQFdtYqn5/LAUwTcnCmqxD3htP33nOqa/snjzgKu71vAZ06mfnZb93ilrbxiZfwcc3f/M3n775m7/5A73Il+HxvophlcVFxig6Jp+vcE67KZFhBg8tFHzU0Y/0qiMg95Lk0YcgZngLWSUGXjy7mEhBR75TnpCmrnMXNmA/Fyf06ELOWaURW1PEB5BESujIC52We1HpQzJo+G63V/5lVwPdEJOz1kZnYV89++gJQUd4EjzVCb4PnZR6h3io0vHB8eR6z34KPHtRuL0r+KCdhUFRrrICmCmt4C0IYTmvuKIu95xnTmtlPR1ZykpbGqEF5jyh7vo9+5tX2F9f46fG6aSgdNZ71tMLyjrhH76CRDWgNdPKji46Vg3eOiK2kYjWHRjanamLInycSQ9UW6m6woAGd/TWweno1SPkFDidzoQQCHPGDe3IZEsexIeXo1ZbrMWp0c1NniodGR6GZ5r39N5pvRKdhaOYy713NbfVNohBVFc4MFwb1FLpTowjbObKbVDrjEOKR8TRW0U5r846kcNS7FQv7IMDH+mj8uDBQ4539+TrAynfkJPHkWhDrENog2nnLkXPFmKinSfjllqa2Uvdpj5I3QoR1fC9pBhodypqV9/0z2NosMAwBz82um6l4uKWXKZJXN6QXq0W666Oi/zCe2/pWtp5rRs9wJ4vsQJnbU1DHUJgLSqt8UExdpujv5v+2CMXvFfvSnmQ4Y0vq9dhPVVC1LCGmB3iK7vDXjcIo/P41VdorSht4krDDe5ubym1cHV1Q55nJSssZ2VNj8E0zapvHlE7xHe3nE5HxqGSp50xnB3NazcvmAhWHEzzjtb6BZsmAtfXD7XICIHRGhI1TALn6JvkqgJF0yyLTY08GsWtPG8lIfRVN9/BOUZZWduiXVWBaRdBmpkQvQZNuK7kjIhOtIZuqMTixTfj2bbRw3mCsXFH1zTP7dkd0q2Q1a+TIRf5RytVpz3eI62prthi0mPMxhu3gjjoRm040Zp6iF3/bWNsP1+Gyi6MTON8NCmuIe1k8yCo4XWI4uUIqiWWPjRyWIwQUlVHawJ7ZWHXhmO19wrEKbMsZ3JOlw1CSIluuu7RNSDCi+qmuXwWPa9DXpodN631JuXWDYU2CGRsYS7bJqKZnEzfo7oxtS76ENbzvd7X/rIgafddtGDO08z5fFZST63EFF7SMqJ6CroMRcOJycpa11jvqM8aQ+jBM6WIQ83OUcQ25zqN6OKse6/v8pjVQtfM6NtaR5xOwFxKSF+p5UwRDWLy3vCVw8JiHLrh387VB8cHx5fh8f6KYaA1QaTqaKgJIUdwCe/1xeBMxoAPuK6pR8Fvo6+mL5cw4UJjCntCUjvOoDNHz4MHmfUt5fEi/vLSvRQQoh2D4Pzl5RqIsOGFxOGdKMYIKGXRFKsolySry+JvZZMu7CiEvHbKunAvjWlO5JiY4kT2DhdVDlJpJCIxqlxgFCH5iVceZ8Z4zovbhSreOoATU8qEsJLjxHk5cz4vpBgtMauBgeHX85E2mnUbI9O8I2bPup5ItdDWlX1OeE44t3CInsUX1u64L41d0GLNyaDZhiH6ZLKSl13QGJPKLtACMXiPH2IkCeWdOmf80GBeZOnGY1atWsqZIZVRG/OkcaopbclskSbmHtcVBkRTloILxpathKTFPn1oAaIeKjVhtXYJ9NACzFGKah1j1G6pOC6Lft9G2GyGnmFF36D2bpMG7ci74LWbZwWooJ/ROW/phQGGYzcfQFROooZM1do5p+YXTYwSkhWoG/ZKwzcaOMWQZdOV+o0j3DtNRHFz72HRem+/Z6t4Hy86140qAS/1pb13cs70UqmjaaiHt06hdcTEiRYbw1BgSfX2zkD8IbwMPXCmY33JB+aiIdViwPTjpidc1pXgE6LMNxAttOsYBPOB0TspKO6PIZyXQh/NJDd68WQ4RlMcY/QDlx3u0InJ8/Y7T2m9kx0WK7vjeDoxhcSUZ87LGdeE44tbGgvOdc7rC87LHc4lylqZ5x0ueObDTB+VtlZy3BOzSld670YH0dCgVorKe6wz6kxvrc+kSk+Cj7r5Q8yUqAziVhu1FkZX3rjqQRPH+yNX11ekaaJ1Yco7fNTnTOUDM89vX1BbI41GDDNiJsNk0dHQIXiiy/isKY8O6xY73ZRFv5kytwmJ0jO6sZi1QNUQC+ciGwJwQylaKxNEWe0CbCi0zRMgMjR0xyuS0tsmoNRVO6LeXxLzlGCjj7+PW8Szdq/HUCaxQ6VLvquptqvgSGUpoue2jUZf9dkN6ITEh6DPD0pXaU2T2VSvrfrYTRsdvHLWlerhVUplm0ecY11XJnTaMDCWs7GAnRc15KFNkOij6bt1k+C8rlFzSLx48Yw8Zead4gO3zzGkX9B3Gv2tk8aNQNL7YO1dqSKoJliM6ONEddVjdLK9K86lUntnSgFpWgzHgEmpNjOs3hfdJj9jKEUmoOa8aTfjU+La7TmMG7orUPWdI6ODqIkd0Y1VSgHHB56rD44v3+N9yiSEWgptrUSyOvuTxzlDDA0xpiEwhBQ8PiVFvfSOTXlIeUIqPDxcs99rulxvKykmnrzyiLffeZPRhS3WGR+N+6qdHSe64GefbLS22UcwN3Dman8A4HCY2e2zfvauXa77u1uO80SOypD0XqM09SUPtTaWWljGIEhlioObObE/ZK3LrTg0+pHhnwYudp48mRhj5fb2yBCPtECrioPyWV9mtVarq3Rkn7xnUJnizJwzx7ujOqmnRM6e9faW6mCpL4jlwM3DG26ub9jlibvSOfvOm7d3fNTd4HeRYFreELTbsxEcLqzQ1ilLwRuCrFXlsV7QUV5ZmS8d1bb5EOuqeK+83ykTY6SUlZyTFbAJ6tCx4jZqN6SWasuVFeyNYRq8ptSJqM61DGFOSdMBnZ6jZVGMkneB2lbA+MxjqIbarr0GW2xGP2AM7ZaYXtE5R11XdXu3xvCemEyqM7YUrKYGIq9SnPN5NWOm3mG1NitSsqKKnLt0YIOPhODsc3ZqLaqdNB4y1rW78G3NiLWZqcRwdzFkVtMrXrSfVkSIkQJSSuqYFyGmrMEjGG4uJqQU1rVfvl5xcsobbV0Rc9M0afHiN+1ix/loBj3tbDrLanVOkKjYuzEEHxVd5S3gZZhJR7uS2p8P2ZNT5P72jhgjh+sDbdMhb2lw1rEcxlPGOULMHA43vHhxYp4PBJ9x3rGWhYePHlKLpkbOKat86PXXWM4nlS6MwboWaq0crjLTpNOgOatO+CwnluOZ4+kW8bDfH7h7cbYwi4jgOJ9PGkwzZ3TyrZMFTaPUUXtM0TBlWviladLAhq1T6vR61mVwOh559vRd+hi88soT6nklush+v+fm5pqlVtroLKcFOQ/2Dz27/ayMW6cYsSGQsiae9TEM8eatcHVsFJNgJuLhlGYhpi3tvZJSNs2/3kvretLPnqLuQm2iJIHLtd2KMr1BsfuByzPjTMu+bS6By4ZsIx6IyXw2NnTv+j1zzNRVi2ifrFgXxd5NeccGoBt92Du/a9cclLbgQJqAj4pF7INyXo2DHYjW4Wyt6QYY7cTHONG7votiSob26xa88XJzOsx0hveWdAhVxmWDv01cVKoB+8OO5XzGp/ByEmcR7UoOicyzhhAFo2EMa0JsDRlr/iKtsdZGnJKG/9SBT9FoMI5aNTW0rmf2+x0ua1DTMOOkrmmRJtBrJ+eoxb1z+JRZSiXHie4Uvxm9yjjW09moR+jaiJAcdEE3CB8cHxxfpsf7KoaHOMqoOJ9IcUcZCkZ3UnjpLtaFDueQURWqb3GcznuCcxaSMXh4c8U0aUKSxI6XRGtCbw4XsgLRY8SFyTprxo20QlKh8h6HdmRintRkViFn1bjPs3avxEOeVdeasmp5AVorJr0YqjmUQQ6BHDVhbq2N2s+cy8K+zeyiZ4qBlATioEonjso8J1rRYuT1114B95TnzxZinGhdpR9ucoTkNYxBhAfXD7k/nYg5oXYex/m82sgz4kNCRiOMQsqQdpmUdZGUCCUUiJW4du6eNdrVFa41GuCCw4+m+sPRVG5i10eDOJStHKJGavuw6XEjw1K8QMhZE5+GjJcLkChLN4ek6DUzZUXDk6kueMNEqWBlDG9jfAt/QKh90Gohm86uCRZ77ch50hHj6JeOZx0dfGDY+NWZM7+JaDKV6TRTsnCQgWmauUgVfIjknCh10fCHVqldjUXD5CFtdNLhmmU9E1MiBEctlZQjOWuk8Ohdi8sx2M0HpFeCB4ZcdNPivHVi3ct/WqdFddQvi5dttH2JonWqe9Rnx3hpjkshHZxnaQtrWZnCzKg6bs4p02pT/u88q/Rh6MTmUpTjKa1Q60r00a6nsXD7QPFyDp8StRRS3LBwAe8zvTVN4wOdwFhBLgjTlM2nqpSZZd1iiIXF+NBDOqf1SAqZYHjF4D2j6aZi1IbQmJLjfLxFxoHdYeLmSgMCGCoz6H3w6JUnOG8a66iouuW8cnd3z243a7FzrpT7I60VjR2Onuhgf7Xn+uqK4/GkZsJSub+7x+FZl4Wl3L8MTHHq4J92e7obuK7d8laLMX71GuYYzbegTPH5CtqHn3BajpR15cXpGeIDZT2xk5XffPYWg8FHvvoj3LxyTV1WXjx9m3XZkfPM4XDNFBO9q7zBGWmn2cbJsRnS1Mimn6Opxl1vGaY8XRi9MoRRK7UUZc92NbnZQ67kBdP7e6fGyZy1IGtbEIxRNbxXjayaTp2tAE7lMYY127qS3r+UAmFJbLoZ0mIXNrpNJHad3Mhw1u0NpKCSKY+n0U1mo2E+AzX+etP9Tzt990enk7dhaEwtplWPrlMQNRLmaVJdr9OusRoIdc3zXiPah2i66obh237WGCrBGx32uwN39daMiuim2rTcozdGE+MHK3scr8SfGDQMxtk58YDEeAne8SY5c+6lrGJL8Aw+sZ5NbrebSDESxDFaY8hmNlf85TRN1NIuso/lpDHOwSdaL4gT4j7jySxLUfpEDCxLtYlVeT/lwgfHB8fvqON9FsOaQuPcEe8C0xz1pTqEmKLqGofqbB1eO8IGmvVelWbOkFFTynzk9VfIKVJGoSxqvnvjzee0LqQguBDBWRoYyovUl4G/cFtbrYxeueRuOKG1TjemcIqe6+uZ87mqsQ4tkFJQvJlP2v0Sge4gR+3+tl61KAweb52Q2+OZe+eYU+RqP3HYBdVY4SirmsMYkbEKj672nM+F29Mto49Lh9MFXTJCiNReNVq5NQth8Ey7A947bp+f2V/v1TQYz7jQaXWlnBLNB5ZzQfqZNk48ur7hlccfxmelQ3SH4npEI5Rbb5dCFdT4MUzf57z2VcXmmS/H4v3iL1OGqOcw7dSMOLT4GaLf1wU1MAYXGK4rxcAwZ3UtoOIYNRgGEGxkiGPKUY08NjrsQ+hOKLXr/eKdmiWdw6O/i3RFTWmXFXyKlMUIFqI68+1+ZSjaywXtfPRaLyYhXZwFgnWQbFT51ttPef78jocPHmjbGV2UW7PQFxnEoBMPlYYM7R52o26gqWRTnmzCoUV9jFHPSdfuqnbQNr1v1IXd+YuZZhi32Fun1nlHb53ow0WWcuEHbzriVkwrOsBSzJyN+HHa7Y4xGjd4XEbneq03Ioaex+idxTHrvTuk4UENppgZSdBRrqhuVYtm1X37kFnKctEqI1galy7MoJvHbaLkRFTOwiA4ePXJK/zmG28DWiCMWpli1M1Qctze31HKiRAiU55IMZFGY7TBbjdxdbjCDcfueo9cXbOUM6fTiWVdcC7S1sEbt+/gXSBFYZp2ZC/cPIyU3lhbIU8T2e6baptdZZkncsqM6mhrNR1u10jbecIBp9t7ECuQfSCQebo+5/d+yx/l61/9ev7F//v/xRef/zqvf/h1DlfXpOCZHj1iFL1/dNPV6AxaXTmWijgtss/rCqJmNhwaahKVgS2yXW/Fx9XVnge7Lz1Q6pkmnTkn1bmrqBrnPSlkvGjGy3CO5XTGT+micxab+gQL64kxQg/vsVeZyXi7vs4kWf1l2MgwtJnYOH904/g61bSOteJCtIa36W4HdKfehJQzrWohqZs3/claXAviheGCsX9VnqAyPt0QrGXFR73nnP38kLRB4m1a0lqldVHpGVoAbwErWzHfjdmbQ0IGxpCvOjUazjTGGlTUZdBK0cAeEeUDm1a5NzUCquxCyQ9T0qhp9SH4i2RM1zCV+eHNlA0sZdXHuOmkNM8ztVbzRAzai1sNGUKQ3nA+U6VSrZnhokq1UkzknTHUfSAmENFz+MHxwfHleryvYrjUBnhS0heFoMizGKJ2hkJDajOz6ja2S3jRF9EYQ+OPceymxG72LMuJ0hd66bw4nTkdRXWGVjBpI1guHZotHUnGsJ+vRZ1G3WrhLF7dt6Ac+0OOTN5z2OIkRbsn4DE1AGGDm5u+c1uAN03YtpALnfty4ryeOZ0P7HNmt1NcT0PRWcMwag+u99wtb+OTauZi8GpoI2qCV61q6uiV4LN2wV2gtqbEjbXx+lf9bu5u3+T84hb6icl7nr59yyElftfHPsTj117l+uqhyg2kWhdBubfeDDbeOTNGWBDJ6GwoJn2xC72+REiJaYalDWMTawfVywALrGi903sjT8q1TGEyk00lTumi29UgEsF53QSVqlbpGDY9b1XtqaiZMcRI75ZIJxqa4gwp5oPDh0StTd3b2KhShup1ndfutpvQKtZdCu02lAHNRdbgTL/oN6/OZaF+8PBKdci94kQXfB8j0oQxmk2FNSq410r3lkLWTYfiVTojQ7XKYsl3cnHSW+EnyuX13pLORNFb3jBeOSaaVOuCO9NLa6est8aynBUd6NVgt8lKsPGuRpd7k3UkqmkNxeQPMSUFi4CxiV92ny8INqfFQIiZ6Duj6lQDk8yIaSGT18JFQ3DU+BNcJbrAaTmzPxwIQ1hOZ5MVRKaUVFLlLE2yNRSOZabNqvdXniMxucu42olA8FzfXOOdkIJyxddzp7VC8poAKRJxzptR0JFjxu8jD28e08ag1ErKK8+ePaf2ytpWeq+0FhjiuD8tTBM8eXRgDjtwZ3ISJAh9CMvpnrgVc6ykObGWRumDFDwhduvQVnwOiB/8wf/tD/LJ3/Mpfvb/+X9Q7s60deXZW8/gOLi+uaJfa4R58I44Z0C7kTlmZTp3DVHZkSmlIqNqcEddqWo9oPXBNO9JOes7dAu6CQ7pnSklAvD8/haXIhGHuIELES+eJt3soVwMmaCPkzMd7bDnaphRuVl0sjh0o9WMMNIaPmog07osSqbxjrKuKjWKGR+cNYuN/xv1/REdjKERzbV3M9RW7XZaQSpsISoDJ8p3bsuCnyLiIzJgOZ2Yr/bKN2/2jszaiWVowIcM0fhn2+zW0k0qIZcmzrLqvas6b5Mk6DiIZsEn0zxTW0GKEmTEnr9NZ47bUPliJmfr8IsD5y36WRsBKQbquWgSZIqUNkgm4xAzPKcpEHNQf4DodCiKviebOFwMdGCKibYWNcXNmb5shm6nkx83rHj39GL+gWHx1M7joiPnDzTDHxxfvsf7KoY1OUi7aYOu8lxRrVKXQcqZPE0vU4HMfSrWKRhd+ZB0YZ4i0y7gYye6CKNR6oo0T047Oh0fdZyOdRGxwAEwTZthhPDY12mx6pwtnpjer+uY7eagMokYB0s5URvkdGCKmV4ra1kJu8JojuCyFletswV2CI3aFi1ih6c0zwtXCC/gKmceXR+gCaWtDDPsvfLwEfel8ubbb7Kfr2n3yuU+He8oZZDihPOV5laaNObphpyuNW43eMpIXD36alr/De6ffpHoFnZp5sHVnqs5QRPa2olzoNRKzk4Zmn285MY6LBXJaAZe40a30aSasjA380tTDUGxcyEncogaiBG1wBDM6CHKVVCbh5CmzJBOrV270121yzpSFaboab1dCrwx3EUK0HuntrNqYi0RkKDUiwsGr1ZFO4nSMryHUQZ52l06387utRCzFZueEPRzOzPMxKh6v2jjcYctgr1p16l1fIzkpKbE3hrR9OUyUIMo2xhV9aOCWNpWeekS56Wu+LLYOw0vGV0L3i1hy5tmU41IambazJ6lrDinBh7vPCFPuvEzoXsIuvlISX/naOSUHDXWtZlefut6DWka6xqz6aVVOxmTykly0ulLrQvKwVWmcgs6RVGdsYav6PMuXKJxnSPmjHhnBjNvBp7BZN0wRT55u2aCeJQL63WMHJ3n6bNn3NzcsNtNOpEw+ZVPhrVLFmARPetp4e7uyJMnr2jRJGqOE2OrAiynVSUz1h2MPjBi5OGjRzgf2O1mSl1p5cz5vBKbsNQX/Pqbt1q4rzDvMjErNusw7bm/vddCcAhdCvv9Dj/UxyANHj1+QOln3j0JpWS++tVv5Tf/w8qvPv0/GfuFD+Vr6tJ5863f4PZ04Kvzx9UIF+NFXpLzxGhqOMt5IiTPiJ39rJ3DEBx9nsFpIdzsOYBKHxob72onDI+0ynlZKMvK8Zd+ExeeMv+vH0UCxv628AzpyjB2yi3fpRkXVTaRYlTfB3B1fcXpfGIjuGBTF4yGMe/miyyoOXjx7BmgTOPl2RFi4nB9TZiSbUqFkCL3d7c83D9iw63V0ckhayFr6aIqt9P7MOSsUgnvkKqegM302s2oGkK8TGBemvl00+Vt89ft/uA970Hd6CoL/LwsTE5T2mLaeM4dcYHWCzFFRjOCUdTu7TaZUhycbVidbry39+lGaPFB5WSymZkd9FU7v10EsQS+kJJOS71XUorFXwfjw8sAWtcNfNDnKaUdp/sT+5AIeSYItKYhRBu6r9aqmu2YbXqok0NtBH1wfHB8+R7vjybhPVE6vRccuogjjlHVuoRoUVxbA4aia1olBU+esxm4HMGpHvd8vme2gmu329F5RifShgcPCe0iiHfWSfNmHBFbfAAD/eA15nVL5ynGFJaOGshELjSJxw+v+fCjB9zerdQ+qG0BgWm3U8MZoq734JnmbIuqmY7ixJQmhjhaEwtBGDy9e8Z5ueXRwxvlrAqa6b5UXn/8Kr88f5HWGmm35+7uVguK4FjWI3EKPHz4kPN6Jk4T51PjwaMHiCzc3p0Bz+H6NaScod3xyqNXeeXxlYZ7jEmTpKrHJ+XKphg1lMIc+0MGUhtr04JoIGZiCTivZq/gtDOuJsXBcj6pjCHN2tVZV5WPjE5K3njJ7qLL3Y4UIqUK9IJPWbv13cbfItrNjwEM9eW9Z3iga7dJu2xiZqWAFzN8haiBAyFoDG5tFx1icI7WKz5ESwRTB7mDC60BG80CJlfQEXOphbIueB+JNv6PUe8hh0blDjPIidNAEB8DoQ/WspINj7SNMgeiG0IzqW0cX+/ixVTkQiQGTZvSP+tnqk3TunrXUBYXdYQ9xmC/273sPAPn8/miN65V5TY5J5pdY7dptkU0Fc5MSynG37LQbwzjTR6jqX/Ogrg6MQXWpZh5xl9MfyJi/7/2BoMPl4I75KwdNZNMxKxBPNVYyCFGylIgmwPegQw1ncXoWWthbY15l5kmVdPnnKm1E5Lpp82kKyhHupWGd0ItK85nY62qJGfTv3K4YqnVNKEe8Vg3seAF+nlVZFW6Yrd7wM2DxrouiNNkt/WuUmuhLcrvljEofaHUQjPD79PnbzHvJmQMzqcjd8cXTNd71lLgdMc//cn/B6993f/Ck6854EZmOd5zXo/4oojD47MXZB/wYxCy0ldkEZx4pZI41MBsVBaqIAmcJN04RdhP3jaamjrXelfjqCUTdmmElPjwa68zd8cbz54r+m3OhNTxU9RNmtN7pq0r51YZzjHv9iznM9O0w3uvGmuvz9LW8Oi9k3IizxPNGMJiuv6rw16jyD1c7a9YSuHu/jlrzeQ84Y00kSxJDdPbBzOrxhjAdePL60SwtYAfotOEMbi+uSaEwHldcVEL7FoWuoXypKTsex3SaOcdYzs7w9CFkBhDDa8e7RAnizLfKBDS+uWeH2hEt1hUd60VcJcCso9xMTLjtQkhvak/IAYu6ZAXLrt+7hgT5XRGspD3M76KeSd0Q7AWDVqKRglp1mTwQOgQgrKeS60Inlo69y/uyTczQVR2EVNWeVnrOi1KWaUaopKP0TrSOrV8oBn+4PjyPd43Z1jHZDr2kqqGJN2hBjDjV85ZcSytI61qIelgOMukJ3A+r7TuCC7qi5hBnjPTjSZaDen0tRqhIJixansRWXrasDCF0XVUJtoV7YY2Al1cY9BkOoZ2i6PA9TyTY+C0rBzPhWXt1B7wPhFCN6mAjd/F4UbH+0QzF7L34IPimJzzxDTTe+d2WXQM6Tw+CqNXAoOPf/iGX/3Nznx4nXR4oMxKGdzf3lKHsJZB8HuGeObdjPee42nFu8h6LsjVFbvDY16Z9jx6dFCklXcQND+rD5AWras5WJaiprTeLaRAKQdwqZFYSyGmbF1RS4VyaiCLOWth1oaaoMwoskkdWq+GOBNN45JhqDgd96eYrRPaAe0Miqj+1wE4dcU77xRDhi56Pm3XWG/N2trFgb51JMXCWMbQf+dM8tFMQuMxA6e87OxcjCdWyGGYrNP5rIl2KbOl9KkpUzcMtVbmebZu2TCNpnaRc06GLusX3qkGSdhGDOWPqllH789skpBWFYcmQyOnB4CNj71TJu/2O2xyl274s940/a6LSlxy8DinoSlcuk3YpkBlAsnCO7oZ6sTJ5aHeKAB+C1ewm0RRdNohbq2TLIFsK6J1c2EhDZdOHDqqjepeZ+sKD5WFrOsKpRBj0ILea4pezlpk39/fkefEbm+xxsO0mj5AV7NYCJ6cJ8q6GFdWCRpXhwNjqKRntM6gq6my2zwdx5wtCQ1FWkkI0AbnZWE3z9RSqL3Ri0b1zmmn3cIQmR9XlfAMfVYASl/50KsfwsfAui6XDU9vDe8fs6wnhM6Dm2tuRdjtE3k8JeAQPxGuIoebK0QapTSO9ydKP3EqjZ3siEbMOd6fTG7maKPixF+wZjMTrSoNQWzDups1LKOj+n4/zfSoBjKVIgTkkQYSPRyd3getdpZRSOuwAI4BIXJ12NNKofZOW1dqKRxf3JLnGR88KWemeVYtdTBjYeto1ImAGXCD6AZzbKawFNhPgTRroqMWqEWneTLotSHoBpvhFN+GSSdCoLWzvmtSwoNu6mNEJBKTXnOH1wmWRaoP0Uj2jTyzGXODTbuQTSakBeBwKH6wdZzXZ0sbA0ascSpvmLLp5YeajzXcR6UXMQS8OFxIlyncYCBOjZq7eLDnRp/vVuqF8uJjBCMdJR9pommnw+KmveEjC4OEvTudhuYoAqPjROi1UQbsDnvt5C8LU57BaSiKvn4CY1jKnlN8XJwyI2pI0S6n91MufFkerTX+xb/4F/tf/MVfnF5//fX2qU996nh9ff0BgPnL4HhfxXAtjYEWvIJmpztb6Lu5W9M8qyFgdC0qvWe0agULNi5tuC60AlPIjFHodPb7Pd6dGM7YFLait9agDbzTNCjnQBzEkIhRnbDDXmC9DZIbpKAPrnaiAiGphAMwcDwk4GrO7OfM/VK4O54VtC+OGLNxjQ2XZOi4Tbe4zaK6aXKdV01jHVDPjTll7eo4kC7cXD9gSvfcPr1l/2BPSFeE5NmFK/15eVbkkVM4+t3xThFnfpD3e7o4IpFXHz9h2kFwUXE3QZFWbgx80C7HuhaVB6TIbrcznq1/CU0XHcVPMdFEdFG1sV1rzeS2ntr19w5BJSqtD+Z5ZllPFt7g8Wg3VMQW0KLFb0iRWtX8Ebx2YMCSAsURw0t9qsZCa4E2KqQ42blVdqhqareG5ns7mSqbkNZJ80QThcNfRoxs4RfOzsF2J4uGRbRKTkmRUzYSJiYdX4aIUv2CSh/Ws3YTLZwjBAP4A14siKL1S9hGjMF09dBM365wJsys5omGmsLc3SpnGKaBxGgpikbr0i9u8iHjMuIdBqDqfZjxzl1QaSlEmgW7aLyy6fZDoA79rGZ713/v1Qw4+tbVBWkWLRyifR6V3ehtZH8vRPBixstx6YyNoXzhwdD46drwXpnBw+KEW9fgipRVMqPXQTtl3SRVmmjniUGRYbUW0jSrsa13Wl/1ujBZMWaSHZ9JrtO8cnc1aEMIDOpaKaVQemVZK7V1lnXlcDjg26rTiKhTExcjA6UxeJIZRzVBcp532hV1kTAZKi+Fyzm9lifIcKQgyh9uMIqjjkYIyhwW0SS7kBrxoefq4SOloNROK5XgHbtDZrk/8/zZcyu2B1NSqcIjHlCXhdo7x/OJJnB9c83jx4/p62AkIe+Vt+w8RBGKGQFj9PQQSGgxRx9qvsNS5USYLDEt2iagt4Z3g9FXShm8ePGM3W6Hd4HD/nBheQ+nG0FxXMzVIjpyn6bJKB0q5alpUEslDCUwrK1aYqY9awJx0o10zjukD5almm5+opVCG7qZCCmw3+9xPhBDYt4fWJYTkz1jo4lpjo3XnbJuDodo08RrAJNPUYtsQ2GeT2fSlLXZYtOVzbhdq77nvA+KezPPxJBBq0ZnMf31FlriU8S3SO8mMdzeA87bz3AU6RAjy1oQd9TiPmop36ptbEVlRl0EN4CssrWGsqdzCEQCLTp6CoQWqLVoUEkfBL/xrN3FBLwl5w2HdrKBdQsN+go9fvZnf3b+o3/0j/6vz58/v9RNjx49av/gH/yDX/rWb/3W4//Mz/bB8d9+vC97qCoNBHFqPBNnL5MQ1RjXhdGEXgbSHV3QMbNoV1AuGmLtGLx4fkdwnhxhN0V28wS1qgmvKSWiD42M9Tha1fQn7W7pi3lZVsq6cjqfdBQ0BjlF5knvV9VlTbqAiMUxe7HFMjH7iSkkHlzNfPi1Bzx6PBOiUEpjNE1I8yEQ55nGoLumW4gAIewIfrp08BChtkYdjdvlzLvPbjktnbeenviFX/gN3vrib7Dc/Tpf/A//jqdf+BXkVNjHmTlOuFaRdjItrY4Zd4dHXD96hd3NA0ovRB/IMTBNgThldvsrXXhi0g4Cqm2bpsj1gysOVzsUtVSp60Ity+VallK1M2ZauVaLpQca/7LLpaO2jTm3js9LHNgW7qAv+QH4mCEkhtNIXhlBMVijUttqmm50FRnuwt113uGCamLFuogxhkv8K2wdTG/3gE0cPCCDUvTze+uQqgRDJTWqh/M43a9ogdkaUivReU1X6roYawfZ0g69dkWdh5wzOSdSSiQf9HzWokETravG2OJUAWPNGju3mz7RBR05Gqmkt07wWrA660iFpDrvrUvrU6SNpjpkuMgaWquI2/TeOj7e7WalW2CFqui12rrCIao5s23PJJvh7qXkwaNpkdHkFK00NXkKtkAOmyC4S0HgnLdNqrOCZ7CuK8uyWGIfLMuCjxab3dRc5EyH6Jzi9FxIxDRTVwv3GcowLstKXStjKE2EqLKYYQzceZc4XGWePn1Hu+fmLXBoxHAMgRADMUZ2u0kxem7g5kCYoyYn5sxumvACOWSST7gBKQSicypdwKvZc3gYjhgyh8MVwWsEezcPRS2d2gTBE/vAE+mSWNbBWjq1riztzP3xjmfP3uL587d48823eP7OPaEmjs8W2hmomSgzh3TN7Gc8jmmOhOhIU9D0yLbyzrtv8+LFC0pZjVsL7757yxe+8Js8e/qM22fP9XqcF05391AHaTgyOoGYTLYzxYk8TYQUmfc7pnki5kTMmd3VNfPhisPhwOMnD9lf7/ARplk72ylHvIe6LprA1ytSVqLTDR0IKUeurq80OU48rkI9rdBhmnZcHW64OlyRd4n99Y40xQvH3keHj55gFJkugjjBR6W3uKzBKjePr8ELa1ko68K6KM3keDwyemc5LzAGx+cvuH/2guPtraYdLoW7F7ecXhwZbVzMh6013XCbNv7+eH/5v2Y4zlobtVROxzPL8YxzjjxlI0CoPAwHa2mcl5XzulJ7U7SlTe82HfPWVQ5RDX4+qtlvfzgwOTXzttbptWnx7k06aFHQ67qwnM8m3YLT+cTz5y+4uz3S2uBcCmHKKmsaiqXrotOsZV1oXWVE3RomwXu8OMJwJJusfqUen//853fvLYQBnj17Fv/0n/7Tv3tL4fxSHL13/tJf+kuvfexjH/tEzvmTH/7wh3/PX/yLf/H1n/iJn7h2zv2+d95559Lm+Zf/8l/unHO/7xd/8RczwI/92I89ub6+/t/+3t/7ew8//vGPf2Kapk/+oT/0h/6XX/qlX/qgzf/bjvfVGfbAzS7D2LoHAxGvXcgYNQWrrbrIDcGZtgsZiowCPI1A5345cn4xE3GMNNHGwpAzsDBqwEXB+Zlo5isXIGLpanWlrQ2R80Vmsd9dk0JWfaePLJYGlkLUrot3xj9VRNuUo5rKquBHIMogec9uOvDotcSL44m3n94xJOMkI/VkcgLHoBm/VjFv3imbcoxBq9aJA8R77p+vfPH5C57d3uJwnMsdMgZ3d/eU9Zab64c6GjN92uQDXTzT1SN6Xjie75mDZ5pmBnv2+0SaPa14QpqJ4SXxortBR5E+fnhc0IQr+iDliTzvAMVX+gFeGtI7rUFMkdIrNA3X8FHRczEEallJ3pNioLNQVo0M1q5gUpMV4J2O9kP09qL3OD+02z48MWinBkRRVb0QLf0rWIyrBIeIVz5y78DAi5pUIOCs29R7M55xAtv4bAEILnhGbfTRiGkLtoiUVeOw9XxXqo3g166SEy8gtauW1GQSW4hEcF5H6m5Yx9fhYqSKdka9iBpWzERWetfF2zt6W/FO1JSV9bOWVkhxoiwro3d1yyfdEIyhfN6YohXcOgoeqsMgejUVlvV8kSMES61y4lAtjyb8ORE8g7zfsZwLKWWgM8Vs90KHENQ4afxV6YO1FDU/1WAGOwfStRPmHK1qEIqErHIl5+l15Xh8oYEg4gnOQl26SoyWKsSoXfhT025tDNrNXxeVh2iX2YGLNn3pIJVWFlLK7LJXrXWDde2E0EguYdJN7UZ6RfS5odzdUqtKuEwf3wViSuQUOS1nDld7Usz4jbksev2zBbL0boEtAlPwHI/3iPcQEjdxTz0VKhhbe9BqI+9mnIvGwNZ3Q06RvPPk3cTNfG1TFw2fabVzOh65ayekCLf37yJDKKXy4PCAFBKlFtJu5uaVV4BBXyvHe51Y9LHaZCLgW7NJzsrzeiQsnrv753gC67pydXXQeypOBD/hQ2KMMyF70hRIPrI2DXnYOu3bHNi5yDRfMeU9ZTlTRiMfJryoTOj+fFQtqgdnki1xjihCWxdOIuymHadn95zLSi0rzWLqc9oT/IS4yuFKGdmtF6ZJi3TvbI1x2p3O9m4bqxCyyo/EOW6uH5oZTjepHeHh48e0ovK5FcHtEtOsKLo+OqN0lrt7mtzx6u7Dakz0SrWYpklDhq72pFYIDk7ne+KUlaLUxKLp1dxZSsV1ncaEmPHZU0tl2sULelREdCrilVAjBH1PEohhorUVH9Co7S31Lnv2KHGmj0Zy3qgU2/rsmbzWOGN0XPLMhyuojfP5RDsf2c0zjUTtwLGonj8Ehvckr9HmIXQkOH23Hith0ucg8pVdDH/Lt3zL/Xd8x3e8/Wf+zJ9594/8kT9y/xf+wl/4yF//63/9w++880765V/+5fz1X//1XxJR9Xd/93d/1d//+3//1b/6V//qr33Lt3zL/a//+q+nX/iFX5j/a//+siz+c5/73If/9t/+2/9xmib5c3/uz33sT/2pP/W7//W//tf/7kvxeX+nHu+rGN44qcDFOCBD8TDZxsNqammmOTKkj2w55woDX8pq+fEB58eloNvPEwTVN4XhQDROc4yh4Qq9W4e3kUIix4ng1bUu3tHd4FxWgkvQ9Vfboj01geslLiiYqQobhQuqSeuixrKb6x0hOu6PjXWtlLa5ad2lGPNONcEa6qDx0Hghmu5VRmdZKqejxi/vppl+2wg+cF4KZb3j3XLEOePKDuG5b2Sfmestu+uH7OcrQtpBTiSnDmYnjt2UwXW6OMIwJA/DjE0BsXjcYdzY3sW0knp0weDzCSIaBxoC0rW77bpqgL2LeB9Vn2rFfwyz8aI7bawX8+TmrvZWECpDtxKjsmr1f4pk6kMIcVK2sJj5RJyGMgyNI950r7qwKYtXzHjXm2qbSS+HG5uWdZoyrVR83BaGAa6aztrTpRlrWPXuOpq0F713ZnBBi2ArksfoSBcb7aumug91c4+uelnltXpqL6Y/FEZzgHZetg5ZG4153mOCZ0CIOVFbNWOWaCKUM6mAx/BSKofpQ0xrm7QAdlq8KbpNO6HepCkaU6vaUNBYVc2VUolCMIYxovIP5/RcC8MYxdpJ3/6pg2NH7aIb2TFs+jA4Lyv73QNAXfOtN9almWxDP9MFvbbJK8ykM+Ws3NZaLrSIFJORJyxhbEArRkFBmOZs0o3E8+fvMM17RFTOM4am2yk3WSVFzjlzzgfOy4LrHTocdlfGcLZJB3IxXnrnVMvaB1ECp9ORtS246HF0nr5YSckKCgtbmQ+qlw9uEOesZsThOFxdUdvKcKLpYjEhBGL0eDr7JweVfTAYvdNqVX42qosW59nvrshpUmNxHHg/m+lRda21NmqvRlF5mTI4Wlcu7xRYy6qftR412AJNp9zvdnB0tDJwKXLz8AFTyloI7ibiZEQRY9+m3YzUldEGrZ6RIUw56/soZSQEQmtqdttNuGAsbx/xU2JuM2M07o63LMvC7fkZ61KgDPw7gZQnlfskJbfkpHKUw9WB2hrzfscQ4Xg68iA/IJlshi4miRkEURPlPCk/vosZOJvG3m+NjDB59nHHf/jVL1BqUY658fO3ieZAcC7ivf4OtVS8S8QQ2R9mnZqMrkZR28Dq+RLV5vtgaDRYlzOqPvP4NFGLxquLySo2Lb++M5zp7SsjmH9mwDAiUAyKwxxDySPn9QRN37Hdd530TJN+nWBpnIGxMflNGtFoMIYmpw6obUDr1ONRfUD+K7sY/vjHP17/7t/9u18AfX/9/M///A60nnjllVfal+JnPnv2zP+dv/N3XvvsZz/7he/5nu95CvCN3/iN6x//43/8/id+4ieu/2u+R2vN/diP/dgXvuVbvuUI8OM//uO/8slPfvIb/+k//af7T33qU6cvxef+nXi8r2JYHwaLSTbDQVdYIzF4A6OrtnFIB98vetA0TfR6pLWVIcK835GSRr+2seKlkyNEv1LOi2pKu0e8jhu9T8RpYt4dGJaWxQi6mEyqWSzL2brACYYW7T5EUlDKQjSDzxbNG72j02Ho2DiGxLCxuh+O613ieu9ZysqL45HjfafWBC4QgiXnieJp3NAxPCI2wh30JhyPC05UQ3q8e86Dq2vW0ok3E8t54Xw6Ms+z4ccy+8ePOBxuKK0iIRGmG6bdNd4PHsUzLgDDGaJHM+Q1yjioxAB3YfxuEg+/sXTfI1kV5y5fW0dXEfbQuGElDmiCmLzH/JSyFh911bS1kDxtVCLBooz1B6he1AoSM5thzuhlOSvxQaFjJtXQunAD6OuoX7tLY+g9l5LX/5YjAWjizJyFvcwtYYrNgD7wFtSsRY3hx4aO8J1PhJgMLK/3rmq/NSzGe4fH8G+1si4LELVDFRK1DpWoyFYQa3e5lELOSRmpfeBdMKe9AfWdakmb9EvXDSe0WsxoNl5uJrYNigykC8lrITpaJ6RNkrEhBk3P7lUbO+XMGA2XVOYBDnKC0TUWu5tJURTp5vCEIByPR2JIJOsKjvHy3I6h8oYtEau1rtcjOs5Vdbb7qIXakMouR2Lsl00KbN9Hu8IhaJEwREM9Uky28dX7bYxKd0JOyUJduk4YvGIOg/cX3aPgyHlmXQopJ3XWj6pSC0PiKfpNUWGjCw+uDvShGn1E5T7Dut/bk+JdMIb3IHnH8+XIgyePLGRosK5NNd+9a1plrcw71bQ6nGlX9T2XDwdKCRyXI/urHV00Cnc9L3jnWCwgIeWExEROE/t5z2hD0Y+3K8HrvaeWhU5MkwU/RGKEvHMMK4ZPy5Fpr8jBME36XAwxX4T6OkpZaLUCQu8LvXaGeOLILKd7esxMecaPgO+6YQ8k8BqW40IEhDIFyqJTwdEbjqqFlL0/9rMWtg41bAnCYXfAeZVIlLIweud8PvHs7VuO5xP72ZOnzOjC6e5EK4XgNS77dF4U4+hgd9ixo+vk0agTKWQcUC2QYvOsMITRveI0x8ukzV4ru3li3k3c3j7nyStPbKOnptltc6tpJN68MVtsc78QJmJ+mRIXnKesqxaY3tFHpUlDWidgIRbOq7a/LWa2NV2+6e+987Yx5xJXPoZK2Dr6zhKVP6s5EdRsKqIBTE3NpT4oaWKIvAwHchYZjaWSigayjKbGZvGQpglniZvuAwPd5fj+7//+j/zUT/3UQ4Bv//Zvf+vx48dfEhPdz/3cz82lFPdt3/Ztt/93v0cIQf7wH/7DF03zN33TNy3X19f953/+53cfFMMvj/dnoFvPargSNYN4H3QkLY7Sqo1Ahz54Q1OknPfEFHBucDqfCMCcd0gTYs6EbAap2kgOvGvatRVhjM0kZA7fDr3B8F61VEawwA2krPTTkRCUSXpetfB1dKCRo6bFgZIvVOeoZi5xakhrohxHNfckglhaVuy8cnPNLq+cF+F4KpQyWNfCbr8jeE11K6VpAYJ20nrvLKUy2uB0vCd60c54a6T9gUcfuuGwnLi7e0GTylgqh/YYhyPla+LuBr+bSPs9Uym8vut0WdgfbnBjkOZAXTXuONiGobaXiUWbvmzTd3ojNAzZzFyedV2VAqDNQcOlDXJSs8q6rpq2ZWgr3MD5bprhhFi0qOo5+2WkqB3qhGVsGDBfNd9DYDdd0Udli9QeA3PDO+vKYV1tb18zkNEoqybNecV5qLHROijDusYbg1qGLhQ+eryPgE4VMEf7sKCKzVgWnKNVYZ4mtriXcj6rsH5oJ1J0LTQZyWbE4TJO90GDJIRO2PTNo7HbZTMMqq55Wc7M86w9TtM8a3Gqbv8RHL3r+UgpkcxUV9pi8biGpbNnA/Tcl7Uq9WEjhBimCtC0rW3xN9TaZhtIKXJ/94xWywVf5RRYrTQXwLlJx7JDi8RoBbn0zjxNLOeV83LLfn8FAqPrtEiLUOM6x4A3MybOM9DN0no+IWPw8OFD7UyLkGO++AAUqQjzTju2u3zgeH9PiKLGt+sdta/gNdFRk/WiBkj0AU2Lf+89tWoTp1ga2JZI2HojpEgMzj5rNHSgvmtar+TdROnabfYI82zmQbJ27JyjLEpfacvK3e0LUpqIMdn9pUbCFCJuCHUtRMP89aZa89BfDqRbG9RWWMuqhYl3eJMAdHtOpQ26s8ROAZHAeWl0IrjEbn9FqRqLrZ9RmFKml85uPtDaovQEAIG1VHKauL8/cj4didF01k14/Ogx4oKGZqTAsihecDEzapwT09We06K6VZyQpkA9nwxRp6z5dV1ppXC1vyL5ROsVqUK5b+SdpwzH7d0t19wQnAbN4AfD6ZPpk1cTWI6s7cz98zst+v1mFDYdPIHD4ZrDbse6nmnF3s8Zws7j+iD5QMpKFbm+OvD0xXOCj3avBhQxaeZVBn5sRtkNXSkwsvHS3SU4wztPzlnXyhQ10KhDFe1ej94ZXTXHqsWvhKAoQV0CHZtbXDeYOrlwogZfEWUY48bl6yuisplaCUnNi0NvCqZs0qgxNAobNd1tgUy9N8R+JyeKLyyt40NiOZ/wF2XqV/bxAz/wA6//6I/+6IcBPvnJT97/zb/5N3/9S/WzDoeD/Kf+WwjB9mgvv6TW+pXdvv9vON5XMdxbR+K4jMW3NLgQdAwXJtWNueBtpKWRm2OoZkmkG1pLi52wBSm0jh9Kprh6cMPxrCN6GQnnHbXD2EbIreNTwg1nLFFPXY+U+ztonTAn6mgQlBwhjpdoJbtnxmiWSqaa0BTzxQDXaiP6nb7Q5EyvjdG1wDvkK6awcrX3PL89kpMWn62tgIYj5BQZo1Pqwloa4gZ1PeGc6kcF4dUnj3nx/I67c+WV1z7Mgycf4bisPHtxi7jEuU/E3Q2NwHU4MMeE3D/j5qGOxsbQSN5a1HEcpxlxjta30b91Q21hUISZtyJYCRuKM7PuuVGGZECOnvP5fPk6a3dzPp+otbM7zKQc0EZfJCVz6eMvmsyNMgDYCFmDLkIIl3Sx1ttlFH35eusS1lI1eMBpMRCjGqGCcyy1kXYJMSe4GrCcaXvVvb11z3KarNYTarXPJRBioluxqGxUlXO4nPHOM4zVixNSyPRSmdJEKdrxXsqZm5sHZiQLOIHOIFgk61qLaXkHDPA+smyGRTpzSvidhn2kpNfgcNjjnLcoacGLY2kLLgTaueJ3O6URjKGhJmvVsepQ+YqPjlpXOoPop0sxNecJF3RjFoMaEVurF6MdaLFXioZrXF1d4UO6nNcYtRjYzIAyVBctQaUMG0m1tcajx9csy4JQNQGrdtNsK0lk23iIXQOHdtW890zzjIhyW4MPF9ORM/KFfq+MnBsjagLfm28+59Hjhwyv43cbzFyOpS4XuU7wkVoX5nlmDGWKD/v+Yjri1rtRSPTd8t5nRgQIgQfXDzivlWWpzLuZ0QtSBwRl5DpRY22aAjVMDFHSiXSVf714cc/Nw2vWVog+Ev32HjU5gBMrmlVqdvfiBU0a1zfXuhnrOqpvvZC9Fr8uBVx0iFO5g3TU4BcT+/nA6IPdtHXBG9McON2diEAb2sn2IYB4nAtcXSmjutbBNAu7fTaqiGfQWM9HTstCOzdi9NwdG6M5phRZ+5nr+UBZK33t+LXQr2eYAxGdVE1XB2KInMrKuZyIPnBczpyOR2qrTPsdT3Z7LV57Y3/Y8frXfBXPXzznuCwMgfU+EFygtAoxEmJgt98ZYz2Y+a2zrgun83OO9+/inGM5nS5rV97d4NqA4NlfHQgCU5pIIfHs7afsr6+JMWsRKSZpCA6ieWKEixStvWfsJl2fSTEJnnoPlO6im4OJgBp9W1dN85QS5/PZjL9KYfFO6F2pESEGfUYQjXs22Y94veGDNQHEabHsvfomfIqm4RcNDMmZZGl0W2dbnEkqhkDQzWkQJUr0teFSREJiPa7vp1z4sjx+8Ad/8LW/9tf+2lcB/J7f83uOP/3TP/1/XV1d/ScL1v/W4xOf+MQyz/P4yZ/8yZtv+IZveOe9/+21115rAF/4whfSq6++2gH+1b/6V/vf/j167+6f/bN/dpFE/Jt/82+mu7u78IlPfOL8pfrcvxOP9yeTCGrw6aKRrKMNggTTeTrqWkh5B84QWt7pItAq0TvCNCvWRoI6vpPqkEbXbm10nYeHmTf7C5Y6dBRPwBOJU1YNkwxy8JfuZl0X2vmo8t9pR5z3zGFPjDoyFxxtgLMXPWhxsi32wbBdA2gyyGlWHM7Gx+2O1hYtysvAOU/2kSfXV5SdUDqc1sC6NtZzsxCPykALJXFD40tlEOOO119/nbv1jpw6L247b33xHfbXD4jzzBR3TPMMSQuHR48e02vl7sWRV65mQrzXbsHoiqEKkTxp91qGs7G7jvYxJ/Q8z8YFbjbqN/Wu2wIWEt6LjeIcjMJuNwPKru1V409HLxz2M+K0669a4oCjaJeVcZkMgMUR26KjY139ebv9wXYoWzc0XPTStRWIukhIVGNi8KopRTo5GJLJtLlblDIMxlBJh2KtVJ/XxzCDYLUOq3JG+xC6kRawblW2MTI2vqymudTNmLCbZqbkcAzmOSIoPaJ1vU97qdpt8d4KTe14941BzJZsZWNOGcy7TO+iaYMyqHUhBO0ArUVT8rz3ePvvqrv3ak6y0X2wrngInvvTPdO0u5yf5LIt2qIovq7XQRdBfxkDv2QvK9ZsQxqqkcz+J+gCbx1dgnKrNUpc5Uin08mKWtNYuwZmMFVZRLxEIwfNtNau7DBE1fDUtTGSFk3nZdECArSzmvR94Ai88/QdTvVEf+G4vrlBRmfDxonNlZ3h2UYfJucyCY+8LF4czqZM3nTfaKBOb9zfn/T3GIJWNp7ghMygJxAvpLjDD+z7OYs+t9AF05trYeMIOXLY7UlB5UwYoWBKakruotenStPitgmtqYFyP2saZ4wJN4Q0zXQGpTSVGOFVLiFa4Dw47Hh2fM7d8xdcXV0TfCSnQO2a2Xxzc6Wa2N5VT9660YAGLidjVzsIjphmSls0wc0F8k5DOdZe8dFpjHQPvPPFL3I63tOWhV46692JmzdW4le9whenhV2MBOeZ9gfiUO2+uEgLHVyHAPfrGVLkZr7CoTKDugx+/QvvEFNidA3WiDFQzws+Bq4fXjOnSbvuoobgQCC6yHx9g7hxQTq2mxt6LwxptKJNgQ7c3q/M00SOiddee1WnHKcTLazUU2T0rjSRnCFo4R98MBlaIEa9zs6kIIrajEaWiJyXE5N1mbs1K5LzOOkEexcNScbV1r6NC56A4EO2Z0o7z5guOU0ZNiP7EKPLWEIlyk8efRhWMhCDFuZtLaqBt7TH4TCT5GAQLhMlfdI8IznlVN99ZddO//gf/+Prv/JX/spHtz//23/7bw+PHz/+pqurq/75z3/+F77ma76m/vf+mfv9Xj7zmc+88UM/9EMfzTnLpz71qfs33ngjfv7zn9995jOfefr666+Xv/yX//JHPve5z/3GL/zCL8x/42/8jdd++/eIMcqf//N//mM/+qM/+mspJfme7/mej/3e3/t7jx9IJH7r8f4NdDnhYmBURVt1QZ3YLqorOGbCiBaOoFGPCsUPiMu6QHrd7dbacEMd5KN1/PA8vknEUKh9oreFXj0ikTSpgcY7oa0rvTdqcaQQSXGmB0fcTYjTruEYZvATjzg1zL303YInMIYSJhQno93JLppqZUJLjb6MarLoXcMhlH6guuE5e5w4rrOj7Sq3x3vul8FpXUAiEU/0kf0002rj9u6FmhqmyM3Difu7hRfvLrighcjZBWIfsBSeHwtpvuLJRx7z+Gqh9jvmOZlRUUfbYm36DbHlfdARam9EM6P1jcNsv/sQp2YlxiUswptGjB50RIaZu1RBQZ4m1Y0RiHFHaxXQQiOmSSNpZei4VQYQL+Nt76OmEjoh+0BvYgENZuiwrxMH0jpTjtqB7LpYDgfBR1wIBDcs0ljH/RjLUzVwqjVWrZ266Z3Twgqnrm1vSU+qWxbondE1LUrh/Tb+dDpOdGKYMzvPAqQ8q2PcB5J3QGeadaFTdqlOBJpo0blNIIJFOA+bgujEQi4d1g1PBiA+ME8zbthQw3tiFi2sto6lDPABFz3Lsmiq3VAtqFgohHO6IUWsyY+OWHsrxhnWonHK8yXBKwTZnItaeBjrOefIugo+BItfj/QWSEmNZa0WlZg4jXtWY6xpty0NUTF5QnTKYY4haEEQgsaF+0DHKboRZxMBcGMwiqOHQa2dIoObR4+oXSi1k20jWAyt1qtqRcWeiU1W09ogxci6FatBJwEyhgYJOWca33jZcI2qKC8nwnI+8eLujgdPniDoBltJN3rPqkuwsZbCNM9MMSuyqjWCj+z3GpjjLCLXD6W1eK8btRQD2kD0rF11sVcPrhlOdDLnNMjBd70/vShCMDhPCFrEh11gmicepBvunx9prfPklVcQL0SnqYpixbkbgZiTdo1LgagmwBADSyk8ePAAL4HdfKA0ff8ti8oqJiOZ1HNnSp6HV9e6yczasb1+ck1+ZbB/fM2yPKfXSmuVysJSCq5BawshRcpozFc7nkwPYATW89mKR01VXNuJPuLlmol48m7PeV25f37iwesPlLXu9RzePr9lOZ45PLhimndEQ2Cm/cTAJj9ro+8reKVgiGn5E5FpytwdnysFKUSQzlIaoU0M4M46KDHpeojTKUyOalYWwEdHyErYcQPaUkl5JicNfPFRA6ja0HfjNFt4iqhpdJNaRNsQ9lEZ4sjTdPF95Mnes02nXtL7JXglxsiyaiPHuj9EFyi1qVxqDJbtOXBo0p5NCREzyo+Oqx4XHPn68H7KhS+749d+7df+f4qm7+/vwxtvvBG/FMUwwI/8yI98McYon/3sZz/yfd/3fenVV1+tn/70p9+epkl+/Md//D9893d/98d//+///d/4iU984viDP/iDv/ln/+yf/dr3/v15nsf3f//3v/HpT3/6a9566638+37f77v78R//8V/9UnzW38nH+4xj1l1wTplerAhB9ZFqrHO0qilMKWecBxec0pFEdYbDj0vnCrAdrL7oCZ4PvXLD48fPePNtT8yBsnaWslLuT/piiMkW5oxWb0KYd2YiUCyYjEGKxns1fuOQwcYCHGh3UAsoC4zwGj+pWezedFxNXeZdO+HLWrQb4ANrVYC+Fs6O3grBCY8eHNjtMrXteffFLae1cvQrLurPu7u7xzlNEMveMc8NF2ZCnHHeMc0T8+EKP82clsb1wx2HeXD3zm/y6MleU5yiJ+cZhpr7vO34nRPEtwsb1yGsZdVwDh9eFvjizamvkcVihAIXUJ1t77jgjDebqLUyJe0ED+lAvBjjNl3ylhin7m8FuKtGM9hYPNB60bhcZ7QL95LucV5XSinsZ9XrlrLivWOOky5COWoYi2yGMdhEjqWsTNNOg0AcnM9HYkyknDSpyev4ubUCCDknyqrJhudlBW8mqda1o9zbJYI65cxojdrapVOrAPxgKVagGmQLx7AujEOlG3r/b4ujjVe9jqFlDLwChm2tsmciZCugwXfRMbsFD6zLgutbQR8IIbKuZ8YQUlZDYIqqT96S4Jx9ThlKAOmlaJfVa7Lc2CQemG67NqaogTalVdiki2OYoSyCVJBGjCpDaK3y+NFDZDjzDYTLMzcQomEPR2v46Dkeb0GEq5srpFnKXgy6oJvm3rHpxe38DI2Kvr2/Q0RlATF7eu2somzuEG33JkItGrUdU4KQCMGoD0Of5ZgSzqmm24u3TvUgYBuUZHINzFQLahhMqkUdHUZX8oBHTbIpRnpwiprUnR51rewO+0u6Ya0Lzgm1N6L31LIC+p5aWmd/dSD5QC8rwcM0q3xnmnT6gXUPayk40STFVhXRN8YgHnZI7+x3e8KA+6Ni+hx6HbvpXAMqlPIxUVojTTPSCqXC7fHIcMLwg+6UxOOiFvx5P7Gcj4TomeY9p2Wht05pTaeErSE48n5HfDQxXODV3ay6fQe1nEkRTuVEayqFCqLpi3OaiSEwkmiUe624FohnJWwMVLucouqnxQnLsvBrv/oF5mnPbndAkuNq/4ApOdIU6a1xWgprrfjsuXlwzdXVDZJWnj1fmcLMowd7gg/c397rVC/Chz/yOnXYJKQ7eimkpMEwAvSqsp6lqCHzhUnnetWpUamN3W5PTInldMS6DuR50veYbQ5jVmrKEGGaMqNDr2qaJWBT1EDvKu1KMRFz4v7+DufUROi8J1uUdbGExzG0aTNGp5uUdDhNk9PpoKby1d5Y14LUTtplfLQEQDPyuVpxEiC8r1iCL7vjO77jO57nnP/Db9flXl9fjz/wB/7Al6xtHkLgc5/73Buf+9zn3vjt/+2P/bE/dvz3//7f/5/v/Xff+Z3f+bO//es+/elPP//0pz/9/Ev1Gb8cjvdVDEvrBHGEmAlBKQyAFkgiOCptHeAK9Jm8m8BZ0dkbnZd60ujipYMJYpgbiBJJXsMjvNsz7yIhLbqIlJVeC9IbvQkhZIZhv2LeqW7ytJBiIidzyfZGqx2f48VA1sbQBC484jqYxsx56EUZqwiqpaoW5xoccZ6UXoB295Q5rGi54DwEtNgbwuwzrz54QM6J6fCCd5/fc74rLOuZ3gbHu+fE6MjzgRwjwzlSvsJN0TLF4Mlr1+zzmeMXf4V9doxx0HMnkbZWRDTKdhgiqw8h4HGium4XnCYPFR3feyu2xNvI3r0MThjDDCe+I6LFmnPaBUppAhcQS0NrTV+2pRRO5yM5Tex2VzjnORyuKWUBBjiNvu0XhJiOlp1obprYOHE4yCkw572OLY0hvCWZRStmsQ5w39BZKB3g6urGdHmNeZfo941R1DAV/KYftNSwpvKX3TxTu+LaBrqgOoHhg6bntY5PkbUWJUaATRyMuSpyCQzRQSVmsIEUtfAImJbVTIGbmREZOEMTDrHivKi+D3RqoiE2Q4tbMuflrESCPFvKar/opkPwOuqu1om29Cpl/zbbM6h8JpqJLER/efaCS9zePsd5x+HqAEP9AYCFcGiHtJrJzyFEr9SAYSEqh921yjZ8YEvRkj6YQqKNodHIop3N4B0hgXOB9XzCo0mC+6srnIs4Z3zYpvdkNxlHMqrF1eHA8xfvcntXuH74AJ+VJS5eO8oO8Hkih0QKXosgB2tZFM+od55250vVdD0R0y+HlwZMFAmZQ+DZi6dqLJtnrh7c6EbLzv+GcGuj6VRFtAGgo2b1LKznwjTN9LJQ1zPTYWfovG5mRp1C+aCR1NeHmZwco8D9sxfsr66VMjHkghfczXvKWrg6HGiiRX0fg+W8aPd/LZxPR9PRmvFxwM1+x/3xyDAW+Ho+ktKMB9alUO7OPHh4w8Pra8Q7DaEI2v20gE4mDrpByYHsJlKcSL0xTRrysqyF2gfLiyPB63QMrz6FSEJw7ObJnik19C3nI8+fvcvNzQMIEZ+1m9tKod3fcr4/4oLTyOzWCCmD0+aB1MEbX/w1llWnlDFMrItuVGJM7Hc7Tsc7xnHw7O2nPHrwCO8dx+MJHz2HwxVX1wcO+4l1XTTdrXcOO6V+DIHmUSlLUPFe8MLsHPsrAa/XZV0Wleo4XR/O5/PlfdlHo0uh9cHhsGdU0andUpQ2EwKLoeEYupY0B9IqTJP6QIJHmiJHe2ss54VpN1GWhRfHI48fPWaatpAifZe13s28q1MuHSwqkWKg6/PhcODu+T21NJLLKJBCJ2eMgZjH4yv5uLm5Gd/1Xd/17H/25/jg+NIc768zjCcnZcbiI8MHsFFOCAG8dvzUYdtAkun4dJHSLp3X4q+rLrKUAqHTRqeOjguD66sdp/ObrHUwzwdiDgwCMSlTcRiVQBikKFAbbRSiS+YmbiyrbtS2Rb3WqqNR0DGgGYB0GqzyiFKaJYE5LeBER1HDUs1616KylApo4IPIsM6VWon6UH2lRuAmHj94xLyb+dDjBxzv73nrnXc4Hgu9Zc6nld1uVr1yXQCHaw0m2E/X3PjAOB55cJjIObOWxsPDQUf+TggRiigTtg8dbwqCd5EpT0Cn1GYFynuvo0kAvLuktWnh2X5rd9MNclZ+ZjPelLrei75YvefqcP1yMjBEdclOTV5OlGfZewPHSxmAFZJbZxgRcopWBGs3InrVyfWm/Mze2kUzW0qltcGcJ6UR0NiS2XrrGoVc9fNuBAsdz+tvP8ZgSKO0QkzarQoenDhG1/PgklczitfR4mboE9MCr6UwxmA3T/b3NN5Wo4cbijR2xi02h7toN9Z1PRfb4rKuGi+8dduzmbc66u4utajWcprx3rGcz5cCW0SIKSEM1qUyTSajwWnYRXCUteGcpqk16RcKhHeZgcoGQlAp0hjqLh8oJzhlBe6P/rJQdAzu7+4NGacLrnPgusMFHRev62rPqqHZ0FjlGKN12CIOT3SKgVKN+UCo+mfnSEmpHx2dSuEGtXXmaebqcMOL++cMUZmHF6GVvilnCDHSuxIpot13+2nGh8DxeE+tHReU06x4vYDi2DTWXePA9XrUrsahq5uH6nEQdLPkdQJSWiN51WqWUii1MGSQcmJZVqaUmQ97lQplxz6rma2jWu80KZc4pcTojeSUWgDw8OFj7o5H7u/uePjooVIvqnZxm73PtDh2FOdgSlzvd8ShMtzRK1U6ITlohuISlSI1e4ceDnu8j/TzyiiN7gt5l5A4kbMWkd7be8EmefvDtZkhVfOOF/IhWSfec9jt8SHD6LS60J0GaPQmnIvACuHszegbOZ4WfNA44FNbmQUo2miQUXGtc5iz6tZ3+uwUGbhFyFMkPdjz+PXHXO/3rOeFu/tbai+0MijnytoXhvlIonO8+/wdDk+u2b8yczreU+Sed1+cyGmHGypfWE5H1lPj+uENu92O1S2IF0prmrTX1NgWc6BXlSSlmFVnLppamVJSQkPbvCRCiCrb68btdqJkCRcCMXhdg/ogT5vO/2XToltKpveew35HGwMnME2ZnKIN//R93vtvTcXUWGXVpTtBPUDoJmmTiS3rWXnx3r3nHaOF9weYgg+OL+fj/RnoRM0wQzrionZmx6oFJZoutnX8xET5G/5poC89RRd5RlM27hgD3Z9a4REdIcI8ZzVr1YL30IqitUSt0logUaE31SlnGNZ9HM4RLHABS+kJ/uVYvnXVK/cx8EG7hr3ri9dbGlcfFhAh0EX1rV0UYC5eR6rNzDUBLAwETfNqqgfrA2iOODw3ecf1o8zV1YEyKsvSeOvN57Q6CH7GL4U2FqaQmCdhCoVxOjHlieE8S2mk6MnTBF6ZDJdc+m4gMK+xwg6hrCoJUB2x2yRjekqwYlS8mbrEjFW/FW+2FVubKU/jrxeioYM2tqY3YyIO61Rq4TO6IFRSdAzxmo5lMoTgTc+KddVa04UgBUp5GcKxvcyHETEEvaemKem16QMMgxWCNxmGY54ntrAIEW+fVVFHxfBKKSqs3rtA286JdVPEyUs6gH3mMTbjoZIvfPCUWnDD6YLn9HcalgQnQ+9JN5RSkmK0ZEa0GMNzOp20+I8bN1S7nwH9pzMpy+aOBz0PYdM2oxuFbtSNLV57DA1BGTLIc9audIwEb4xqG7mKwFobKU2qox5GdIhR9dw2UndYnLrT0b9Yspv3ipqKMdrf03MVYzBds5gJUWUMTsCFyPl8AhdwQSdCIepCPqy73Kp1/j0vi9Su1+i+Hqm16DRicHHRezSS1lk3c4hQRM13MjRa2ns1iaWYuKjo7R1B74h32Heye86xnJXSIW3gzFjmGGDeAbSRpya4LSIcCx/yStT2QMyBhp73IIFg+swpBPwAYdAYhAi1aaJja5gGe9XfTSCnpLQJ+17O+O9T0II8u8jpfMTHyOHqCqKzzUdnClnv6dEITScDXYQYHGmXkesDL965ZV1OdM4Uf09yOg2QruQF1ZxrIR6CSox88kzTgTUF6mmBoEZj52DazcbgrrjZa5S6GxpfPUCasJwUR9c7lNqZp4hUnQClEDkvR9wwnbwI4roG1ZxX9lfX3Fw9REaDEdjPN8zztT2fK2VdwA9e3N0q7eW48Pzpu9TW+OgrX83uqz+OQzux9/f3tHOlrUUnFKXy7KnKILz3zPu9rmdVZRs6kdD3aCuNnCeGBASdKuJR/rdz5OmgXVpbV0CvbYweklymYjElQrSNrjP5ztDf27ug7310+jLl6dLdFXtPKOdYr42Lmiioz4ajDS2QxSLZnS5tOIHdfkfvlXVZOdxcsfHBndvWifdVLXxw/P/B8b3f+71Pv/d7v/fp/+zP8TvheH/FsO0N5zlxXjamaqPVgvQKG/x/09F23QUPy5KPIeJ8QqQrL9KhZo5eIXgkeEaDF88WYtjZItDVMFfOCouPkWnakXzAO03cad2pHtQpUi2kbIgqXhqzBJZVOzy1ddZa1Qzl1WAnrpsm1lmHtduI32kQhQ9KS5Bhmk/VjDnQtqJ1hL0LuBiJPoAr9uLyGpGLamDnMHM1KYf2jTducT6Qc2R2Bw7Xe1JKHObI9X6Pw3F3vGO0wu6VV7CcOe24DrkYfYYMmgxi9EhVfWwICUQISbuEG3heI0G1EEw5U05nM80kCNrRcGYodE7wyVuR4klBu37eOgci7mKQcn4zK6HpTN5f0voQHSN7r51CRBgDfNBQilYXBkIrlRAjiDP5x8tbNISgKKLe2e1m43oGw/Apkk1HrjM+KOJuS+B7KQfpVkCYbER0YWql4ULEx0BrTc+B+cia6c6j18J9ALU27cKiunG/YcOMVOGcVzlB9Ibv09CNPhRRhXPU3pjmibu7e2SIbXReIshcCPighjwnIMYx3bB5y3JmnjKnk1JCwiUh0nE+H/FOO8k4D9ETgzeN8lDJQ0xWvA5SVHxgCEHZ0SFyPJ/IfiI41dI3gRgGa1nYHfasq15jByxlJcdEKYrQSykZBoyLdIKmxrKcMr0WnA/EeadabRHdRJp2WycuSn5hiEaxO3XMqx6zE2PW8273dTO+rDJpHUHrdsToDrWoUVJJL1xYse+dmijiTz+zF90A1D5wKVFrJ4le3y1iXNGBagrs6PcMMWsKYR+QAslnvTeDw2evOt+1ECZNtZzzhO+KvIuTbixFGiFO6hEoMMcJuuiUzHB62+cdY5BzVuRW64TgKOeFq1ceMfmZmPVZiHjWs3b+dJoAjk4QjKzicNHx6MkTdoe9Yg5r0+tWO7VV7d4irKuGRFztrzjsD8SRGU6Y047Dg5l33nqbkLwSXADpgRR3LOczMUdccgS2TcpK7FW71UM9J9WwiSNAl4bP8/+XvT+NtW5Nz/LQ6+1GM+daX7O76uyqgsKAsSmXqxRbmPDHPgQIYAE2SuwjEA4R+YEQSiOFE/EHIhFCBMGAUTpBZGJFAmz5kJLOwSHHikJM5HIpOXTBThm7MNXvvb9mrTnnGOPtzo/7GfMrgw9kI1cSF3tKW/be9TVrdmM87/3c93XjapZvOBf7LHvGcebJm89odSDZZ9zhmOYZZ0PemCa2uvLo4cvQPfGx4/HNQz7/uc/xyR//KV555R28+uo7SC7xYB4p4x3eNe7u7olhpNbK6e5EyZm7+9dFG8mFlBLzcMCnxHI6X5sPt3WHq0NI4tuPaWa5nKX+mq0HY6MvJRNjIEaxUoQc1CGwmu/XmW2sFW17dmtRssP5ljdSCEKBtqZtg5X1gFkjqpUIlSr/e9QhZ7eR1V453hx4fn9Ha5V5PlCqmhJbbVdS0NuPtx9fjo+3NAxLqWrc3Bx489kJ5+MVI0XXxVyalfXZpyTvo2vgNGi2pgG5t0ZunVwtvY5W97lmljVrRcmq4EGrxJQYb24JwwEfVcudt1Vr8TS+UC8cFih54YVdtqICWrvp5dpYDZxec6P3xnZZWNYVHwdSGl+E7rrUzlYqPobrwFeyqmq1Uu7GYDV4f5Mq1Yuj4SBMeK8VZXKNVlT7/M6XHxJi52c+9QVaS0zzRF4XQoWtbXzu6cZ6OfFgirz7K9/Nu97xmFpX8VZl5WJII0uWf24eFKbKRWvoXrrW9L3jXdvzc+YX5qouqxDBkD7dfMI+MI0jW9noTSxY5zy5wTROZhnRMHFZxN8d0gBByo5a30SmUOWyXvxgq7n9ZudCsJ8hUEtmGkYNGmioKLWYQuitXSrRLRGvAFgBqllW1JJXa8FHBZ90GIFhSKgeupqKoptCNCRYjAMhJbrTl6LmincoyIStCZ2zWlzHbMxPR1c9cwwMMYCP5CJ4fs0Z3zT0l5aJw0Dpwr1NadDhIkZSioxjkk8ahJhDAbnc9NlqtSng2I3123Qz610pdDV7yQe/rCvjmGQ9qEXquUO+RsReHdOIB7ayEWLUOXbTel54qkIMqpyGxmnLOngkR4jRDiIa6mNKxGGwUKBe85yFmvN7k573wohZcNM7mI+TcYx3b3K0MKZjr7ZVg6VU4mGIuMGx5sw4DaQUpSA70UmcqWl7gYp3Hk+w4szO4TCr0MQ1WuWqrKqgRRuQYNuqnWHdesPHCCGa7Wdv7A44J0pKqfK1B6t5DkFBOucCxRVK6yyXlXFKxBQ5358Z5wkfnA1Pqp9vuUCQtWu8OdDpTEPi/q4xjiM07CDqrwVCKSVS0rDtonILz+5OlNb0WQ5J2L9a6LUzD7M2XF7iw05X6cgLfDjO9JPq2Odh5BAmI9E0XNw/nyvrNlJrk3L65uv4NkJypHHgwWFS6CtoIGyt4p3sNeMQbD3vSE3e9jENhBm2XBjmG+bDQYdOCxjSIc6JbdkPsY7LcsFX0Ttubh/QWWg9smS4nDfa0zt5lZ0nRU8aIj4NqDq8cHN8yPRVD3jy5E0+/fl/SB0yjx49xkWP50av1a2QrVNw3D58SRjPJovWkzefsOViW8/OfDPq4NbhcJyun4Pz6cS2VVbO5NJoTiHMcRyECwwBH4U9o3SVcbSOi4GYEt62jx1xjp2RXnqXELQf5DzuaglMKel6vW9lDb3pvb47vTWGkLjcy5oSoieEyPF4hN5IY2LJK8WKtbRVi3j/tjT89uPL9/EWbRKN2DqHcSIOG8Epj9yao7UVrNWstmorWnQSdwMhmcposezgOxnPs3PmwW2D7gkNwhAgKgRWayWOgSE+0krVBeiBXkSycE43QDce8SlRL2cNTQj5BgojVVP9NhuQc2nkrOCTbgXya4VxoFfHVis1V4LzrKZ06eZqbUO9EzRNXhmxtbRrcMi7Tq5ZamoIhrDSkJzCIGpEnKisfMW73smjhw/47Ode5+7untAj+DOVzsPHNzx636u8+vKrDMPMVjMuJlwXFiykQGuF3gu9ObZlo1aIw2iDutb/PTRcrnRTxndVLMZIbZkeVD9ctqwwYdf6ToEv2SC6vbulyZriXCcaR7N7IYawJrrmkE2iV2r3lLa3wmmlvW0bPkjF6V2IsnGauayN1Vix3iw5vSuEFpzHdR1CUpQvtjVtJ2IQfkkVxfo9NRd5SZ1wTAKJSLVureK7yl4uW+H46IH4s1thK4VhSKQxsa0rtVXOi4gEvtrhwcujutfLuqDtw1orkQjdQo3R8EgxEFyntQo2gG+b1KCtbPgkdJH3qoLupkxuxcJvUYOdaowNI4eqXHHoO9Acg3Fcj4eJJV9ormjws+FJNhkhtbop087g/OuW8S6a9aRa8K9q0LLQYPCeWB1tRWUhHpxVHfcu+5F3Yl87GptTfbCa+nSjrjS2daGHiA9q53LdwmZB78/VP2ubiZjUJrdXyfbarEGtsFdpO+cMhafP/c5I9l4KWrYgYYhBapmTIh6AWrIRRxxUrZqrEkdqV+yV7X5lOt7Q8LQqxKP9YlEPeidgxJKQ1BDWGi131nJPLguTv2V5/oy784Xj41soheQim1cA2ZsqPwToW+O8nViHiBsSPur19saG1arANhdVaC5cU9gXeUvvX3+DswukNMoj7j0tqvVszZmYBhUqoLZQcLgQqcD9ndRBiR2R4CLgcb0wkEjTTGnQho34ANZ8IddKo3C6ewbNQ49X/rmUUPnDvXfUVinY9oTOk8+/yXyYGZJKhUsp0BrBq7Lax8gwQl1XSsukIWqDt2206rmZbxmGAyF5Xnqpc/980WFUpY5cLmfqc/ncU4rc3T3DxcAwjxx8YrlfKDeVMQJI8fdVBzG7YRHmgCsbvRW8H7l5eGQ6jqQUxVK31zgvK9M00npjvp1fhGm3xutvvMl6v7Bt2pBOxyMhDMTuiF42Kn3fGiEGwzF6u8bo+uGA4pya8ExYYh+YsQ1V1fXcBc8wJv3vzTYXKV2Z4Tk3sgP8xuJVvJPSQHKR5aJ/j2nAR/fCe/z24+3Hl+HjrSnDMkFynBJjdHSCmfQjnWLkmGDrcSXqWy0KIjl37UFXzXJgHDvbmjk7z3yrL2tvDmKnhc48PaJ7hw8jrhVVQtaGC4nSHG44MB8PNlys7Eqg89GQSPDS66+bnzDw+M03AXjtzTctjVuvzT2td7ULOaxwQ4qWc1xXVcI+6QbqLDDnTHntL4Rn87hW80k7A6k788p6U2qV6O+2sv0Vx1v6fCR6XaxxEKKg6vVz94R4MvROkuKrtB4gD3O1ten+M4kU4C3wU6BU3nGnevLaO64U0SfCCwTahtaPIQxXH2Zte01x4XCYcU41tinKQx2DAPwqoLAwXtVaOnkNZ60WqXxOwUQVZ2il6H2kVcdyybgw4L1W3Y1Gqc18uxYIK/LtJr97ljvB6zAif3MzrdZS0/t75GQTkXKi0FLJ+lz6GFiXizXfbbZybNfhtYPWmvuQGgI5y9OMeeoIL6wLOKwcoO2nDlN1FCYbBjUjxqghba903YqKFrZc2DnSwQUVbrSuwS0KdbeZ0jcMyV7vQmtOnn2nMM4e7qRpoNs9f3vByHpp5NIYx4gPjryuDMkCS/aaAVccoW7M2vi46DlvK4fjUT7Z0qyAo1MpV0WvlEYP5apSDVGf6w5E8zp756/16KUW8+PudemAE6rv+bM7DvPRiAtSKL01GHpkdYjml/T74G9DMr0zTxNbLbK8WMGL96qdLca5ptt31Udh9IKnV8/tfMPnT5+l1RHvbf1s3/VaG97rueTeGI6z1FC6DnUWRqJlCp2lZM6btlChdJrfzWeyc3Q7uDw/PYcgJTQZx7YhVTO6aDxsHUZwjpa7WsPs9RnmxHQYSN543FRqzVxOC7WV60EyJNX/HibRLRqNKXluX3uFp0+fMA6RhiPXDaq2OCkZbz4XiIleM9M0EUujeYcPjWd3dyzbhZhGfHfgpKEGZ+rpNNOIbOtCXWVpc16DWHcwzqPdK6w0ommLFMeZ1gpl2cCpua32xvNnTxnGjXEeCJatKIAfbKOEo3htsOIYKa5Ar+SlMU0Hnj1/xiuvvQI1UHu+WgwkGLwornAu4FuF4rh98Bg/RpVctk1f9xhwA1ai0kl9lB+8d4bkedl77u7vuL094nGc8yZqUe+kQTuShCfnFR90fW5F9q/WK3mrQusl3eNSHGTbKVmbx5joueIaJOfYLpltrRzGSSQXE2dq20jjqANslL1R3301syoYKCW9t0ornVLetkm8/fjyfbw1tFpvuO45jp7bw8T9Ai1GeVFbUYDBbkCdTjVskYu6IPduqkoMSvF7AcbvT5kweJKvlI513t8T6q6KeJgOUvNyhupI0w3T8SFxiFAzZdtwLdvp1fEkDmwx8p0/9P/5x57Hd/6//tufp5fvF95jS5HzOEFTyMr1QBq19tbgaj33Dqm3KUGXKp5zvvpfk2HKqgWV6Kao1d2PKeW2e42nQ/RK3m8b292JmBzjKP9xipMOJgSzbDRKWa0Su+NiUhjPfLWtVZZlkdoZtXYspZDzBsOgMKAlBuU9tVT0NeiVuSwXxmEiDInWC7VUhkmHACyYeCWH2DDZe8P3fg2q1d5VWGDEiv3v3bcfzqtNzjtvVoFg6qdn24zHbXSWa7WqDbOlVvn+WiPnwmw3pvP5IkRXzddDV/SBbASVlGRXiPYzu6jDQWtFSmBXOA0nNV4IPM98OGqIdo5A0Jq92/q17rYXHRq3nAkh0RqErjBsGOR7X5aFGOOVnuEMhZfsvxUrrklR5BdvTXh7ILHpxGnED1kmdi/4HnjbVc5uHsbdsqPXQ0ODZuGOt0KSNAzyWW8bY0pMk16ntlW8fX5L0XWkpy7Vsno1UlJJSZ9NWcE6Pkj1H4xFnCa9VyElCympjGc/OCfjNqeQOI4TT58+5dHNA3rZq+crrWT8NNC7inPU7NkILlk4WfmDvVbc79sGr2IZcdgjbawchgOdjPeJHcl1iIFSNlKcab1wWU+s64XoRpa7lVybtjx+4DhDJDCFga0XNS3GSCs6wLeetVFzqvC+vz9RS2ZtlTkkDjcHihNpIsbIlherNdaWpuZGbRu9dn1mXWNZzpSuvEW20HNKiUBnMuxgjx3axJAGZU8ougZw4LOff53aC8ebA87L/hUNnehCwA+IbtFka4o+ApHBRd68e4Pz+TluekAISdmFPa/QxQSWsBCYDgeGdM/9k+eMh4nkFQoneHz3QuwRSEHVyrU1uh2Kb+eR6ebA82dP8U2NnD4GyqZmRBfUMhiHyGW50EthjLpGlJpxQ5BdJ3gRKrYsJry3P8MFlsuF0+lMGgZS1BbqSZG9K466dh+Ok+g0rdI32ZmC1im6FlWng0tw2tYUNdK9/Xj78eX6eGtoNScfl3eeR8eRp3f3Uu6Gkdqb+byqpZ6jKT5cV+nOed0seqWUleUC6xiIsXG5NIabRIyN4AIRx7rcUVeY60MOL7+Th6+8RO0KFaQkheZyuYdtgapbxT6YvfngEX/sd3wn8+leazrneeWNJ/zf/+p/y/f9S/83vvDyS6b4epzHvKdi47L7rYwL64JnK5utUcWADT5YW52paEpSWTBMDWjsfkkbxLw3q0WzVHCXXznsgP7gScGbYhbFpqwiPQyDJyZvzXuW5HZCT6nIQZ6xvWpZaXkNvLXaYOPgfDzy9MGN+SKLAlu1kTcFLzxCPXnnDDdlBxBrddt9ormo5aw040xfB0ZhsmopRB+4Pz3X4GHM1m4/iPNRwcSUjMMZaW0jN3elXrTa6E4Xf4+a1SgaEGIcFNzMG61uFFvpBhvCL5cVHxzTPOlz2Zv+9+iorXBzc0vHKWjp2tVXir1eMQ5SQ+s+8Faz3far0oy95WkYbJ0qZTJXBe7EEMD85eZ7tlVjR94+wfE11NTa5D/2gcMof2vHcZgn22RkYoxkQ8X1rhKOYUgM00hr8hqnIUERMiwktYSVkul9x4h5jvNELqusCF2V6GWT+ozbBxQntnjQe5e3zXzXhfk4sm6VZGUUy7pYO5jwTSr/0Ot2mGbO5/OVPpJismFxV1Z1WJaia9XQ5ouMUQHBcTjQ+4twYf2ihj3Agot2iAHDJnbIcDweuVwuuKhmtpobITcNME4bjh4cIU706KVqZ31Gn5+fkfNq6+JIWfaSm3YND/reyZdFIdQQGC0rsdyfOJ3vOR4O1+/4NE2kIXHpnUvOzCEY8UTs5t7031t3HKZJDWDOsW6V4KHYezYMg4QAC0ThvDHAi12PtKFZ6pnb21sh4YMjdLU0xhB5eDNT5070npplP/CjJ2+Z+/MXoHqWpVOqBZXzpuDakBiGRHSYRQ4O44HT8xM3twcRPrzsEfJSqyW0m3UlBsfltOjg1zveDifHm4NRO7ptgSol61B6ev6MaNeK3oQZFDLcMR0GtmdNA3Yxv3fL5GVhbAM+JkKK+HEQ4aHug13nclpZ68Y73v1uhnmk2WYreNlClmUz33rD185WNkiySLzx+hegFu5KVUjSvm+Ho/BuaRjoIROHQK+eOCRcg5vxlnAMfPpTP8PDYWQ+3lJjEWINFb6UWrl98ICybJzvzjrUe0heod0UomrQe2MYJ3yFi79Q8kZIiek4cskXWo80X9l65ni45Xw682RZeJQfcvOwXzdVwQ4brRvzv0khbrXJax0czb09DL/9+PJ9vEVlWCpTDJGXH0U+//TElj0+DlQbBNp6wVlIyA+R1h2+e1PNNGCloOKF82WlP56odNbcaE31ytRKConpwQMu24VtXSmf+hzT4QFhOhDHkZIvlLLQ2kbfNg2CoTPZybn1yuvHI+5w0M2czsU8s599/Jh/8NLLV+9dCGJveu9oLah1iG7Kjoa/SgVDdQUcrhld1zmcYQe8Jn5bpzmK3dCdXWCceYy3NRNsFdt60XAzTMJh2c2Rhm7WvVNbZRyEmWu9X4MXteumMViavZQqtmvvQlG1SjHlNvhw9bA6uwHhu2wCRgJowrReqQ15WXXTt5/DWWAtRKmb1YGLzhBtOyZPvvBAZC/aCEHewIZ4mNVUpm62ihAsxU+n1MI4jobte7GO3i0JGqY1VE7zgZIztWUFtVrjfDmR4kC01V9et+uQ3FvHsSuzVTfJEEhBPM9tK0LLgQVg9hIMq2/tjTSO4sWiYbb1zrau8qdaQ5PIFQpHdRtc1ssiysT1dXLsuDRnoU8n1wvdDnW7D7aWrppV9oOH17q4igOt51kZ0qjq6d7EPO4qYQFkySmWugxe30+QRSIXKbXBA1YbHaOxRV8wTnVwkYcQdtJFplk4tBuPWocmbYdiiNzd3+sGntJ1eN29rb19UUpdjhFDOun556zSnHGcaG0jBtmIaq3X1bU8wZlhGK5MaR++KEwXI9M8c1kXIrJ7NOfYOmZ56LbR8HiXIOh1a61xOM6UolIUWmOyv8OZFUPXFlFcSi7kdcU5KHTolQevPsbLuyRmcssQIsdhpJfGcr7nMMxq8iyVcZzJ+cTlsjIdD/b6q93Oe6c68yayQ22FlERA6aVdLTcdBWtdCGylUct+mPO4pspm7xRmLaVASpxPK+M0EHri5tFDxrTy5MkzYho5HBPLcmGegogvOVOqNigODUlTUCBzvVyYp5noo6xbvbHmhRAHZR6cgp9azTdKLrTeOdweaGg4c5OeI2YLqaUyz0fRI+oEiGjSkUf6+dMz7VI4ne7oqXK4HRlShBJZz2cpotMEIbIsK67LHuO953Q68eC1l5iPGvZ33GTOoiuUsl+PgrYxpZAVjWGaR+bDgREIXYPyZVu4XxZKzmxNr0Fvev8P80ENjl0HFwfc3d0z3z5gmo6slxN0GOJAqwu9NaZpZIhCEYboqFvn6ZtPCVNiigOkQM+eXgxQ6mS5GuaZ8WZmWc/07hkOE/ki8cF5x/1yYtkW5vlIdFHV70GbreAd4zAoNL6zib02HW8/3n58uT7e0jAc4mgVpoEpNW5vAm+80fA+kUYHFAWyzFtUexPeCA1H+8Xae0fPkMtCbjekmGiukQuE5uilcL5shOPM8aXHtG2hXBZKO7Pe3TPmGR+0GnZeFa/RRWqQH3ZZL9BvwUezA3SKNQeBPMGlWWuc5hZLhztrZ3OUTcqmjMyQotZfYN7goDVSdx3nmi5wpiT3rp+jOyMa2ModVF1McNQuJqZH6B2qrcpbsRutu6oBIXgIjrxWddc3T0r7KlXBPOe0kt82edVi1GnetY3k9XM2J6azfLZYgG0vYVDRg5S/LHIIaobrrlO2F4cVH4MB+xV06kiN98GxLobbchqUhnHA+8hyvuhA1KoS/TSil21CPFUNRdOcrJFLimmMiVzKtXLah0ivUgZdSqoIDxqSNRyqrENhe+HZWtVzGqzFqTel7J21wrUqb22KCe8aofmrT9cHlTpcEWxFN2/Mn9r30FbYV/QvlM7dwtCvfmXYllULBO8gSA0EHXimYRKL1VLfO8FDq2V9PkIKUhYvZ8Y47oQt+Uo71FxIQ6R5f/VMt1pxXpXnMQT7ADsLMnWr7+7gZUuoteFq1eve9Wd3Gz51uMPQUZ4wJPG/2bnHmhRK2YhjpNXK+XRinmeKea3DXoBiSqEGVtkpQvBfpBZbnXNvbOtKGoIKUZxZVoIh1FKwVbiCjbvvcf87Sims60pIUe9RLXRk22hlZZgG1XA3HU5GIi50fACH6CXzlMyL382fLmXROWMk7xdJ7xhHtak5a6QMOCmNTcLAEAdRdHAMcbiGfb33LKUQoudwPLAsK9N8IG+G1AuRLVdChDhq86NllAMLhtI1nNZtITkFkmtZwXm2dWXYf9YO67IKWxawpjZZn5698YSQRm5vb4U+HD1jCOQtE1xiGKYroSKkyNYyW3ZMKfHG/VNSCDQXyLmztQUI4Bs+BVwwBF2UL3xOk4bzJAxkqZ3gtIXSIboxxUH5kwZhkO88DgmH2LzrupLmgfN2oIXGPCdcFZfaBzVc1vVCHCbGoLKo2hq16XByd3oOPCCi1wDXGMZEbeFKoXFOFhI3DkIG+shwc6C0TvKBEAMteW4Oo4Kxy0bOxchDRYUbrrIVY6i3zjCNnLaV0/n+uknz5l0fomgd61p2IBC1QRoHjg+PMESGEOjOrEaucb6cFYwekranIfDg5pFqqxuc6j01Fw4PDrToiV6s+Zob5/VO1x7n7ECZ6KVQc2EYJnz0yPTzz/fjzTff9D/yIz9y/NSnPpXe8Y535G/+5m8+PXjw4G0z9ZfB4y0Nw2UrlCw1JkR4+fHM3f2ZZkpdbIk2HKntTOwy4Yfgjd1rNx86oXYaKz6MhojRt/2cN1oZ2GqjlYX17oy3C8344IgPkXVZaEVhEGdr7V4LpStsVdiItYg20dQi1pzdKE25a7UyJKkty5ppTXibbdmMcWvNUCnKq2pWBHnMLAzohAeq+/DTEac26ELrAG88Xx+tlW8Hp6OEemn7sAXOd1L0lvi1jX1/Aeyn2cDVOz6BC0oDR59oVsNaWsN7NXsp/a/Q4jXA1TvBUvq9CUflfbzWN9euPwfkd40pyrdrvGhZRjSA9KrByjtH6WqnijHinLdiDimuW86sa8FFeXlrLXgr3KhddoMU5JX1QYlzR2PbspV5GCPZO1EZrJ2td/Gig4WntlwUktpkA6itmgLlVFXb1bb1/NkzofMc0BQYvCzZcFkqTFDQ8QX43gfZCPCBECJ5vdA7HG+OnM9nuu9WMKHPic1JBEv+51pwwTNO8kgTVErreqduG957hiACQrIDW0pKm6eggdWneL2Jliy1KZciX6KT9QNnXGZTVSVsS6mPSWow1ga3lVVJfkMD5u2izUgBlevAMATqktmWQhwHfQgN2t1rASd8mI64OswE8+w7Q3+dFvmYgwvX9zGYMt7M1iCTcDQluNpnSvaM4CPRN549f87Dlx/qe4W+JKUUyBpOo/GVvYU/Qeq477Dlja1kxuCvjPCOCAwhWd1zrTgUJI0hXS0k0RoRr4erJovSle1bNoYUNczZ9qJVcYh9iCqKCKKx+OjoOZOrTmsNcLHTmsgivYmyMKbEoXuWNbOeL6Rxko2mmPJrw7N81JWUFCikO/Fjx4Qrhbs3nzI9vOHmVqiwUvMLC5dzVAdxmq85j+A8X3jynAePD/jQmdIgzKENXMdpUoVvK1RXCfOIT5FQshF8MkNSkYrIJpVc9jhsJpdKWQvOLfYZrcQwyPpTKvOQmEPiyd0zjrc3dJxeW++MQ12sFKZKqZ4nxjSJBBQ6x1sFLKcw0byjHEa8HyGoHtvFxLptBNQqmZcMKRLGxFpWzueNcdQB0/tgQWaV2DjEh3Yp4lQvyRCOtJyp68bpsnLz+IEoED5wmEf61MklM4y6pnoP96cLKQ6UXIiHkctnF5bzHYfjRC/itovL3rSxjDr4hUGM+0onxpnoBynzQQzwMalQqBmNZ72cWS8XhhDwcVQYLneWbcWnyDSMxIMd8HLhcn9mLoVt26i1kWvBj4HhGAlpvyaf3sq48GX3+Omf/un0i37RL/rgF/+34/FY/9Jf+kuf+A2/4Tfc/5/1c72Vx26j+ue9WvvnerwlVkqpG1BpdaNtG7dD5MHBSjRKp5ROmkbCEFlz4XK5sK7y2/kY6NGx1Uw1L1K3+lt5OjtrLjy7O7Gsqpit2x3b5Sl1WdkuG+vlInXJOKCtVrVv2ZC9t5V5Kx/oTl/+fdW+r2hjFAd0WTdAQ2bOWbWy0gFxtbNdFqvd1KA3pIEhDXhbudcuhmzeGltRCKhawxCuXb2vWtfWK4Fgp23EYbBgj4bLZsl8lQ9A7y865WuDEAZuDgeSeZChs23rNXQk2+sLCsDeEqdqTikhCmmEaz1xa83oBPr5ovOkEEhpYF0zebO1uRdWTt5WNYyJDSx+qffyGioYFawMIdO7qA2CX9SrTzYmvUfjMOI8jNPAMKQr23KnjzQ68zwL9zOM9jN0e36FbVtxziwTrdMcrJv83blkU5mdaq+7eNdrzld/6bZlDVJOCDfvVbMdLfC0H4RAQ/FWtqt94vndM2rTAZGu97lbGE5e3M7lciaXwjCP8l4DQxyvn8FhGnFBHu+8bWxm5anmQW5GN7A3S+9zh5QG0Q68imta310GTkSJVqglG2lDA2AIQcGvBqJqvKhqTWl4YWNwGtBoVfaWXqllle+YpoCQ7/RWyNumUJcL5FqovbHmlUYltwK1MR5nIf6q6meLbQZq1eC7N/ztAU0TroWn86JMdNdsmNNzbU1WoN37XiwgpBYvbTXiXirg/bVN0aFgaLheK/aKcOy9kw3Kd+HsNKs7faXR1sjZr9PgMVBqp+SGI1Ky+Xa9J8bEOE7EmPAhmogQjZ29e6KD3lf7jIFZZrzjwe2R1pRlaF2f9f0z21rHYcSO3tUeSOf+/p4tbwzTRBonvE80U7xDUJnNkvU+zYeRcRzoTuUwedu4nE/EeCClid5tW9ID0c/QA9M4EYN8uvNhVuWwT7TkGG5nxsMBPyZIATcn4jBSmwgr8zwyjQMPbm84HGeGcb4qkWKGN54/vzMSjqw9rbcvGv4Vqowh8PDBI8ZhojfH8ycn7k8rL7/znbz86mt071l6wQ8BfKJvHqqnbo3oB1zzlEtmIDLGgVg9c5w4jDPOBZXqlMK6rYZf3Hjy9BnP7u54/uwZ5/sT23lhPV2opXBzc0MpmeVysXuS7m/BeYaYGNLA4XAkxlFZjp0UEwLjPJk4IRteyRu9ZIU6q/jOcUgM88gwjsQgpNy2ZE6nM/d391wuF/JWWc4FSGwZfJyZj49obqB5p/KX40H40BA4nS48e+M5d2/esZzErj/e3PLo8Us8ePSAw3HicJx45bVXee2d7+Jd7/lK3vf+X/JWxoUvu8fz58//sXnpdDqF7/qu7/rFX6q/8xu+4Rt+2e/8nb/zvb/zd/7O997e3n7o8ePHX/f7f//vf/duLbtcLu73/J7f8xWvvfbaB+d5/voPfvCDv/yjH/3o7f77/9Sf+lMv397efuj7vu/7Hn7gAx/4mmmaPvKJT3xi+OhHP3r7K3/lr/zqeZ6//vb29kMf/vCHf/lP/MRPDPvv+w//w//w1a/8yq/82pTSh9///vd/7fd8z/e89MU/l3PuI3/iT/yJV37tr/21H5jn+evf9773fe33fd/3PfxSvQ7/Rzze0jDsg1LPtays5zPb6cw0dGpZCH4ghkEooPnAMB1lwr+srKcz+XQm4Rl8wHd5y3prliCv5jdsLGtlWbtZFzbqdqLlhbZt1HVTWKQZtihIdfVJCCPA+KjO2uOyQi/Vig9sVQ2OZdusKSuSc6aUzGVZWNbFKoXDtUnLu07OK6Vs5LxqbWY3VJwzDFS42hu8w1Lk9rftSrK14VWr8w3esy2rfGJpoGzl2mTnOlceZ4cry3Wv8XVNw41u+Frb+mDJcbcfCIwN6vy1RnjdMtuWyTVbm5fHhUCuSll3OqVktmURf/Z8YbsslC3j/Qs/9I48yjkLeVqbrTIV9PG+6wael6udY7cWLNvGXqrQzU9draEPVN0bgmwgrTVyyeSy6eac9H2tNrgO00j3gVy0DWitieTg5NktpVBzMzuEDgLNrBLeKVFeiigo0zhpRTmIy3o5X9hLGZz3bCWb+vcCyeeQB7LZYLdTJ5xD1ooqykU220OMkWDDV6naDmylUM1ycnM44r3nfL6Qt8yyLGKkFn1HgvPsrObupFrKxdGuN9juHD5G+e8tkLMuq5EuAuM4keww1L0jDcPVpwud4KVQL8uiwWqIlLJZVbd8tvf3d+yM69aLBjwfGMeRaZqt4RDWbWW9XLTyToGtVUrfPbovQpfg9F0L8ufnXNhy4dnT5zx99oT5RkU7tTVq7dTucSEqpOqgOlkjuoPgpHZtl4sGmrwJgWgD7B7Qc22vstaBKXhHq5lWXrTVwf6ZlwLv1KeG3w/N6LPvrYBoHAa8i7juuJwvtFKunxVtWAZiGnFOm5PgAvM0k2Ky64DCaZ3O3f1z0hhJg5d9pWVqVQlOq6pS9s5dG+2GNF491JdlEU8Wx3K+yHvdKs02PiFGanHU0lVA4hMpDkxx5O75E7blwvn+nuV0T9kutJrpDpYtm41Kh73kVLs8xMhLjx7z0qPHUiBPF3xQRfM4HnWwzrJWnE4nMXmjEG3DPHE43jBMM8PhyLqu2vZtUt0HC5n6EAyTJnvSbm+6nE/cPX3O5bIwOOUbUgiMPhCjY5wSaZDnV7YwlXCQ4HCYKDlzf3/Hsi6sZaO5DgFyqzTXicOgf9JwbbpczheWy4Xnz57z+S98gZIzT568aUFaK2qq8jTX0rg/nWk4jjcPOB6O9AqXZePxq6/x6qvvEGO4i6Dho2drldybKt2rUGleH1u0LdtISaKD3qs7eq+cTidy1jX+sq60DqU0LqeL3dciQ0g8eviYWCG5wDwfwHme3d1dleWXHj3i0cOX2JbCdt5YL5UU5rcyLnzZPT74wQ+uH/3oR3/8p3/6p/9m7/3j3/Vd3/V5gM997nPp/v7+S2ao/v7v//6XY4z9r//1v/6//pE/8kd+5j/7z/6zd/zH//F//ArAd33Xd733x37sx26+93u/9+//2I/92N/9Lb/ltzz5tm/7tq/6W3/rb43771+Wxf/xP/7H3/Wf/Cf/yU9//OMf/9uvvvpq+Y7v+I4PfNM3fdPdj/3Yj/3d//6//+//3nd913d9YRcLv/d7v/fRH/yDf/Arf+/v/b2f+/jHP/53ftfv+l1f+P2///f/ov/mv/lvbr/45/pjf+yPvfvbv/3bn3zsYx/7u9/8zd/87Pf8nt/ziz/3uc/9gpWc35pn2BQ05zvBqTxiqBvL/XPSNBFCorbMMM6EPpLHM85FWvda9wR0si0FH5xxUpEKta8vi254PijkEI072VuRStc7zWmAw8kXGZxVDJuSETsK8fV2XXlRuwJKYBEpKzmwm3KMEbo8VPvNDzSQ7s+92zqR60Cy2gXaqcnp6hc1jc4Za5Z9uywVPFhIyDvPkBKtVIW3aidEW8uaB3PvhZdftWJkYgWkmhmeu/yqKSkY5HBiz3YvDmVrIhoEzziOaqPqzZLgUhu9V3fpfjF33ludqqgd3i7UrRQ9PVPlsPWlQx5kDTjy7Ho83uu1dZa877TriqZ3+Uv317XWdvVWdyd7xx6IUrBMq/HgPUR5BpvxPHWhF2c1ON349rX93iqGE6otpoGeqywLXQqikLz69bUWctEKXRSBxLrkKw1ijMnWTfbFcFrjsr/zzslLboNH3z3ddJIXI1Y/d7NgotBYAudr2JrmSbaZ6liWjRD0mrTecTY4tlxoxeGj8HWtOnpo4FXC0Q1i26qUw9YKeVvp3jNFMUb3sgtnIS+xjAPbsogsMo1AY5pmTFDGx0DLnpazrCTouZWSmcZRVAik9h5ub1jPC8F7znljHOdrm2PrWsc6s2osJesvwL6DDVyC+XAwT29lZxDv9pngsGZC83DLCWLfTVmdZJqwz1S119x84M4Gyl5UYDDExOVykec4BHrP5q8PtiXgGobtVOH8HPQulTbEyHI5k1JkSIG8bcRhEGLSbEEhRuNDW1pfKBOiqc6tdeZpZBwTuer7lmIiWe26SBpdZIcYjUOrP2dZFm5vHsvvjTZOuYiIoAEqMYyDvMc+arNVHePeZuY88/hAHPQ0ULYF7yqlZR06ciF5h7NDSasKeM6HCdbK0AMPpyP56RN87Ra4jUxM1F5ty6EhvJsqXO1gmtKASwO84bhcFg43B3nVkTocvVT12grRkF8AL73ykH/4D/8B/pwI2wrBEeNIuayE4wHVsTvmaSbbxsx7TwmQ/MjtNLCcL5yfn2jNM86ztRc6q2nXvan2KqZ7ebEdS9OI653DcMPT529yuZw5HlSUsWXVRyssiIQDPFMaScNIPmeci4QolrBPSd/lHugu67MRoyw6HYKPVDLTQZalXivjEBmak3c+whQT65ZJQ8KHyQbyhu/eKBuNsmZy0/ZsWVeqh/Oy2OexE3Y7nPNQda+hVla3vpVx4cvy8et+3a+7/+qv/uqv+ft//+9Puzr7S37JL7nc3Nz0f8pv/Wd+vPOd79z+i//iv/gZ7z1f93Vft/6tv/W35j/7Z//sO771W7/1+V/+y3/5lU984hN/8/3vf38G+MN/+A9/7q/9tb/28D/9T//TV/7Mn/kznwIopbjv+Z7v+eSv+lW/6gLwuc99Ltzf34dv/dZvffo1X/M1K8CHP/zhZf/7/uSf/JPv/PZv//Y3/sAf+ANfAPjgBz/4uR/90R89/vE//sff8Zt/82++23/dv/Kv/Cuv/xv/xr/xJsB3f/d3f+q//C//y9f+h//hfzh++7d/+/Mv1WvxpXy8JWXY5iZbe4sOMaRAcp37J2/QcyH5gVYDLgy4+YZ0vOH48AHz7Q0AZfe2mo/OObEksWFxXTd5M8dEQ0nqBtdAlVTCrJsQlqC2UM+QRoY4aFArSnYHoOeiNiJ7Ho4X7FTQoDuNqrTFaWB3eJV3oAtDsNYzZ/45bwPx7ivzXunqdVkpubLlokSyrbuDqZC7pzKXwrJt1CZubUxRKX8bJFUEsJdLKHWtwJ63pid7Ls6p3nMatMIusqHsw+DuEUkWLOu12c8fzD+olqNoSnixNXUuIivkmqWW9EazwgKsIvhKECjF0F2GxVJkiLxVvEu66drKO8XINE1X5b21elWb98NC2wkD2ktbpW9nMb/4XmLSmkWIWmcaRoI3bJd78f4OwyiPbM6idvjItm5XhJEGckwVlxJ/vpxZt1WBwt7lC+5Wh9o1DEl9iqZqy6rTmz6nQtntwTRvJISG747oA1upVkTjr2rXuq62oSgWygqUmi202ahd73nulWyWgt4aec3mOXec141tzbRSFI6qqhHvltCK3humrhuOz9shAx1qapV/tndOpzPR79zfQIwjQzKEXG/c3twypCT+Ku3KGF8vF8qa1SDYPYfpgB8iPXoeHI9StxxstYIPlK5wazcmM3to0DmKhS3TICU1xlEHP70Z+KCWy1ad/LZW471tG5fLxWgAsgHtauaOKsOGTkszXu1aKaqRTYOLY1nUQriVzJarbZm6VVZnMY29ozRZD5ZlAQ8xqWFxK/mK4dvpIcXCiM3et/2wtm+aDtOEc1iRQlfNdxMCLXnPmCIpOAKd6DXqe6+q8GW56LNpqnBphTSIFKLhsbLljdoLW13F846wtszWMj11PvWpz7BsVU16w8hyWViWjXUtTPPMOB0YhklCQ9Qh63xZuFtOPD895/50r+cVE+OkenTn1KoopV3tZjXLvyiP68L9sztKqTx8+Ji7u5NqqafRtnN7+Fp/Rned0lW7Hnwl3SQevvqIeJypTkSgrRbunz3n/ukzlrs7Lnf3XJ7fsd6fqNuK757kR0INTH7mONzABnnNUqcbKhDaCiXbtmBvPY0BbDOng2aztjjHebmwFG0eHY6aq4kb2oLen+4JQyA6x5tfeJ28ittdShGppsPoIodpxO/XqeAozsQW7zjcHrh9+EAD7flMr1XXow5DSLbFkDfcp6hm1+SJ88B0nBluZoZput5LjscDwxANnelZi4QkWVE627pwf/8Lcsb5eX2UUtwnPvGJ6yAMcHNz8yUN0H34wx8+fXH73zd90zedPvnJT44f//jH51orv+JX/IqvPRwOX7//86M/+qM3P/VTP3VVhlNK/Ru/8Rsv+7+/4x3vqN/2bd/2xm/7bb/tl37zN3/zL/n3//1//7VPfvKTaf/ff/Inf3L6pm/6pp/lgf5Vv+pX3X/iE5/4WauBr/u6r7v+mQ8ePGg3Nzf1s5/9bOIX6OMtNtDpn+DFyW1lw/eNIVTW83PWCFN4REGrt+kwUbfK2rYrvmyIkR4j2xZYc6W2Tq5OqopzQhKFIyGt1PXEtq2k0ZOGWQ1WWVXNzYgDtVVKbcQ4UjsspxM3wVvwobOuy9UfWNvOhpVXTypmML6nAjG5NXJrBvBv19BdudboSqVTbWWyet5w9SK2XvFRqrYL8p/VL7oZ7paA0qqGE++MJ9s1ADVRJlxHqp9Tkt81rfiDV1K7myrbSqU4rf+2XOgFxnEkes+2bTicNQp5C4Rpna6BIEpt2dRD303FbabGliLPcjJuaq/mlez1isMKIYo2QKMaW3bbNoIHWjAklCeyo7VsNb0P6WNSYYr3V/W8VqlJHcc8TZQsNWxfN4f9MIPUZ+c6vVRi8JRSOBwOzNNsSrTjsi04Y97G2pjjwKUseKcbTSAxjKMUbl8IXkgvVXGrSOLxw4cUO5ioTjrYWt4Rx5FoqXGpXwqgLas2BzEmatlsaFIhQymyTezs4GkYzTvYcC4oNBcG1cmy4pyUScfubd2DXVJhS4cwzcTgaduFum2sSZxrHwYSkeTNY1qbqBzBs1YN1a51XFRYxjt4+PCG+/szRBjSRC2Oxob3QQeM1iCYxz4E2rYyz9FIMkr5hyh0VbBwmz5PjiElozzIkjAMsr5I3Uz07sitsOVVTO8w0JoFzly4Wkx2lrPb0/a25Tmdz6zbRumVaZyl1q4rPhTGcTA7TTfbBHjfcDHQfWDZCmEa6Hnj/u6OmwePVIsdbYtCs9pptZF1ZMESK3oPkerf7+/u8FHKtPIFxXB8KljoXSSCq+83ym5w//SZ3mcnOgQInZWGgY6n9kaKdiC3QNwwjrgON8eZnBd6DiS7vNdaGceBGEfbCIldvh8GA1bDTefRy495+GDhC29+lpdfflV/QlCB0uF4K5UQXZdqKzQaRI/3iTCILjL4xJNnd5YFqURnAeWccTa4ey/+dnKRVgpl3ai2dTocjrwcPOf1Qr9zpBithbKrza47ardNSUPDam34FknjwJB0sHKHG3rTAbNtOgQ4Iw5dljvy6cTgEzlX1svK6fkdfhp4+eXXZMuo+zav0RHLeUf+iWYhWs16f4YhGru8Q1DGYtlWCwrKj93XxjBNarT0nuGQiOuqFr5eCC7JMxzQgTJIeY62KWwdotN3VIFdz3R8oLxDXti2jWmc6DRSEM8ftIGrteNTIA6BfNG2Y5gG5j6zbivTYeL20UOWyybLmFl3em8cbo/ayPa3oQnTNPW/8lf+yk/81E/91PCDP/iDj3/4h3/44f/yv/wvx7/5N//m+MEPfvD/UOn87u7OhxD4G3/jb/zdfzQQ9+DBg90TyjiO7R+t0v7Lf/kv//T/+D/+j5/76Ec/+vAHfuAHXvqjf/SPvuev/JW/8hPf8i3f8r87JZlS+sfU8C8+JPxCe7xFznChNbU07WpQSI7Hjw48e3bmcr6jucDh0UMDdiv841zThbN3hQOsSal1OJ8WereLi3OUDt2PakVbFF5rpVBrYz4cSeNMq4WyacVdcsUHDTN+CIwxMgX9OcfxSGu6yMYh/CywuNbKBboztUcJ3uq0spO/Vf/Iv6zXYF/Fb1umlUq0tWOzBPA+RNfe8YTrANzsYlKzhthhVKlBzqIJ7EqrH5KVEahoQiUmUn2iIbtyqVd1OiQpc84HEuCTBqRS7O8AfDUf654od1Iv4zBqwNUtnbY1I4DYKjoaLqs3mq2la2sMBvuvuRBClPe3iaG7q3PyKZu1pUjl3VeLWkF22h40s0ICoeQ8nnCtwF7Pq9axXYGa4FT4QVeSOobA6f7+yp913UvV7VJ5Q4wcDjcsy0JfV3GZU9KhrFX5Kp0Xr7hWgtfnbH1+Z0Nn53A4XLnD3lyj+8agtYrrUtK3bRPc35vK7VST7WuzGxo29AQoL5K93lmA8+rH7oSQRPNwULIOSykFtmW9+oR9DHirEG504hSpeaWXwuE4Sb3qqlGNFhIttVFbIw6ReLWaVCL6DAYnpNk0TWxbYWsysOe86rPmoDatx8FdB34H4mcHbUpab4wxsq6V0SVaaaytKJiIqtDp+4Cnf48+EvCsW8ZFG/CQ6utdMN9vt/AYsqdgPmBse5QVLH346CFET886EGGKYt4y3XtiGix0a4OGkRno4GgcD0feeOMJY96k4iMbkRovnQ0nIn30fbVsa+d5nslZZIKQkvHMAYRhpDULZ3arN07yNQOX00lqaJTVp1qD4YuhrOOaBtruGvTGlCKlZW3qhpHj8UZqo/cEAqfziVq1Ou+1kdJonnaVB7VqeMoY6A0eP3jIs7sz58uFm/lIiDODG8i5Gl3DvrfeKQjZGp5G7PKo39/fUdaVOAzQdbgS41ubpG1biMlDC0LeWTnR/emeNCbu789M08AQbYtlgdpeJIKkIdEC+iyUynS44WEpfP5nPs2jR6+oejg4Ygq0HugBlalEoTaH5JluVO6xnM7EaSDOkTQ63rx/Rq6Z6JK44GhzWNFz6Oa77V3bJm9h7oiwfzGJWV6rSCYidQjR2VojL6uuOb6ShsB8nMALXxi6I00jhSruu23dzMNFq40NCT1pHM0m6InjRMur5ROUacl1JY76HNGgbNqG4WEeEtva2NYNOhwOMzEpLDyMgw76peCafb+2zbIpXzJb7C+Ix2c/+9nwAz/wAw9/+2//7c9+42/8jXeXy8X/8A//8EOAZ8+efcm8sv/z//w/H7/43//G3/gbx/e9733rN37jN55rrXzmM59Jv/7X//q3TLP41b/6V19+9a/+1Zf/4D/4Dz77oQ996Jf/hb/wF176lm/5ltMHPvCB5Ud+5Eduft/v+31vfNHfefNVX/VVl3/Sn/cL/fGWhuG6bbjeGOYjuRSxWl3CtTtCrNTuWc73Gkytwao53fxd7UaByLSmCslSV7YKU3WUtVK7I6/C2OA8MY20dqbUjbCc2LyHMWlFmiL5clEFaZpxcaT5zs3xiDs/4TOfeU6KrzLPgTQI90P4Yh9wY72sdPRnSWVW/axzXL2zdHBOuKpaFZzrDlzQc3LdUbZsvld525ytx3yQx7Y74cf2pL7UI3ctDpjHUStDnEJRMhUbgUKrVELU0EixoUqiURxHtot9Rru81KV3nLGApTBhvmBHNMRdHIJ8ld7jvN2g/fDizbawUYoJ3zCKh9zWpTYi3jzXqvCtX+SDjTGSe5N/2QZe8Ys7NWgYrvTr4LfbIrQC7FY0If5px1QNa1xbrmG3ZDYPCCkwxCgvNKjspDWCF/2hnkxZtqGt1GxlCdpIsKvaKeH8wGUpxBBVVNGNetI73qgNWuFriPR0aslUNGAGH67kkNa7lag4XHxRPVxtCN7pDV8cJLsGALssEDFqFbttK3RPDJFqAb1aCz4MQuZFYbzkAY74OF0re6dJddDDNBG7HYhKppXG6LXt6ZIv6a0Qh0RvnpIb8zSq6IMCTZaXvG62ru6ihpTMOI20baM1NGg2DZ7Drh47GAf511ureNdltbLPvJb9TjaKUhmGSRW2O2vb64C1FbFQXZfH21tL49Wi47oxvoUpxHup94OsB71o1V3s0BaiGh9zzsSg1sy9fTGNyUKj+jlL1/dd3wGxr3E22NZGDFqp53wxj7A1xNViB1pjsqeE707kAle1HQiBFALndWO6uaGaFSRacM8nkTHE5UY+VgctdzwNvzVcTIQ0krd2pSJA5Xij7WaInrIVtnWhFH23q2VAfHQqjymOi4O2NLoXJSPOA50FV4EeuFwyaZSX1eGJYdIAZ6HEtWTSqFKfbs+9NtVw++B1mA9eJRYhmC3OUe4a63rBxwG/OVoptNLkWzVLhQ+enjPJR4krOFqARy+/xFY27p8/JW+Jw8PH9BKgiw8UXTdsn35GhyNNR8Y0stXCUgo3ceT5aR/kPdGbGOLF+m5e/G1qVxakO7r3tOhY10VWqqJh0jmFUEPQ9iBYeJbuTICA0h3jfNBmpjpylzK+h7BFGxHecq8ib1V2NdfEDl/zQi2d+2cnppuZ+cFIsSxEK43oI83BMI7gnX6970QX2XLBj5GYhLdTcQvXam8613bTkotZVf75fXzv937vS//uv/vvvvf3/t7f+7P++4MHD+pHPvKRL9mg+JnPfGb41//1f/0rft/v+31f+J/+p//p+Of//J9/7Q/9oT/0Mx/84AfXb/3Wb33zd//u3/2L/sgf+SM/843f+I3nz3zmM/GHfuiHHnzd133d5V/9V//VZz/Xn/f3/t7fG/70n/7Tr/7W3/pbn773ve/Nf/tv/+3pk5/85Pgd3/EdbwD8m//mv/nZf+1f+9d+8Yc+9KHzv/wv/8vPv//7v//RD/3QDz3+wR/8wZ/4Uj3H/ys83tIwPI0z4zCxtkaIgu1/5rOf5vnT59yMI/fdseTGcrrn5uaRGugoXC4npiHowlgbrqslLqbEOI/EoeGoBCK+RA1BvRKHkVxWgvlJc14JTgq1QmAwTjNumAQfJ2hV2c/UtvDZz77B+9/7GiE5asnXJrHWGz4k0uApNkh01CC3EwFyLtfWnZqzPL9BylUpmeA8cZSHsndRIkrrSoKbr3RHqTknVJP8cv4FL9h7YcN8xDs10SUfrsSJUur1AnS1S3glpfd1ca/NKBl7VbJeZ2ew4mqr9+gVdMIpSR2DJwSpYSHIEpGSWuiC+XQrXe10PmlIjx5KITonNvGu7I4R3z0tV3nMuoaXraukofZiSDd/9eruwbrTSVsZqTZqc0vjQPADzmgNoYtB7Pb6XENXbetCbYFxHMST3bJ4vA6rv5XSXUolRA1W3prASm2kGAnBGW1A9ItlWXB45lnIt+gDl/NCCtEYwo01F9Lo8Diid7TQDZck2oray6RA7wi7auxrlYNUK69xfPH6ag/rlZzpTkGfWrgym6ndPLpqPQOtoV2HsmVCjObPzkZjyAxp1EFkK1J/AEe0jUJlnq3BbmuiQ3ih53rrKjBpna1oKN+3GLvXv9lQ7uzQMo4D67rRSxEvue84L2Mv7wOlfSeSWYRE4tAzO5/u2NZN9pCgtsve9Fy7C8Qgu8W+st1Vc7qwejENuJhYtkwa1ETYQO1ZrhOuqqiGi2IoRB1MZEGouVDqgryp+6/d67SFOZSNSAfT4MUIDgEl/GOELoZ3s9Y1EMEEnNB/DUZ7bwhcrSRicavVUtuOQLEDQHedOMqyJO+23qO8rvSSmQ8BnzpbXXBNw3jdT83O23ssKkN0MMwDtVSGQazxdVk5Pb3nfDdwdz5zO07kUqingk+6ntVSyTWz3C9M80AMgcvlwniYuSyrQqKj2vVy1XVn2zb58e0Ak8ZEzsXq6huuFgYLSi+lMCdZ3lwYiEOiAD3CelmIQYz2Z+eiADae0HW/mA8T4dbx5tM3mR8/onaRh1yTnaY38eN70XU5REcGAoEpBJ6tT3n8ymu4qOwB5snH8gfROXpwllswzJ5zCkRaiUv3TjSTWm37aUKAkXFEq5kYB12nSq8KmbdOLpsG6Cgl2rlw3Vg4C++GoE1jTBIih1Hf0b5eWKz8Jg4TKQRy0c/gLHjunScNk2zyRSVMrXUS+6Hcs54X4hiJQ7ziNveA8j/vj/e///3/mA3ipZdeKv/Vf/Vf/eThcPiSBeh+22/7bW9cLhf/L/6L/+JXe+/53b/7d3/+3/63/+3XAf7iX/yLP/0H/sAfeNe/9+/9e1/5+c9/Pj1+/Lh86EMfOv3W3/pbf85BGOB4PLaf+ImfmL7zO7/zA0+fPo2vvvpq/l2/63d94d/5d/6dLwD8jt/xO55++tOf/pk/82f+zDv+4B/8g1/5nve8Z/vu7/7un/pNv+k33f3/+zO/HB5ur1r9p/9K1//Qb/5WPvnKqypZoPP82VOeP33GOB14/mzlybmQ3ci6VUY/Mt48YDgcKHTWZcG1AhRchylFHs6R27kzjc4Uz8gXnjXeWCOlb1Ayl9NTXO0EP4BTU1oI8sP6GElphjAyTQdcGJmOhXn5h5xPzxnKxC/9Je9lnj3dV77i81/g//H9/0/+6Lf/Fj71jte0egJbbetmvK/FzstC8NFWYhoQXWtShky9rS2bZ88ueq4zjWoOwtb/ed0sPKKgYMnyC47TxLII7C94f2HNGw+nG6GynNb8Q5RStS6btQB1+zm9WMyt2NpS3rRSiqmoWqH21sy32GlVjW7dyBvdlN2c5Y2NUW1L0yBVv3ZbqTspE9WUMU8nryvTYUZLZTF4a5GKm6LW+8380dFYc20/EDhH6+WaRu9GSIg+iJJhKsgQFQjZLJGuqIepzVVeyXFI0FWwsa4ruVXSOCpAYsix3p0Ns+2K1moWp2ytkYJnmgYulwtLrkzTrF/bi8gE6yZLgRUlbMadDjYMK6ylw92ucHdT9uTN1I0kmBIendOQgoaqGIX3c8FfQzitZ6Lz3N3fXV+jvQ3KBU+akgXkmpTFNIJzHOfpipAax4lSHN5LUZymgzW8bbgemA+J6EWBKKURgugFYve2a6K+2Sq/25+zP7899EgwC8iWuZwW5uPxqqi2XMw6VMkWzgwpknw077hWwTElhpg4ne7F3jaCiHNSBYuVsHjvdahqqhLvSC1zOIoTOcMDd3fPxcCdR0PjhavPXEEuQ1Zdo6jyDzsgBmUEtpxNNVMmpCFVjv076GRJyttGioEhDbzx5lMOx1sblIyZzG436nivGmTXnQYu1Ao5psHCUBc68snudpvWqwbYJJtQQO2Bperz2XLmfLln8I6beSakSG6O02Vl6zBNR1qDdbNmSa9D+96kOM8j27IQSmc9XbhfMv/g0/+Q97zvKxjH0XjY01UtlFgg8keMgXVZCTFBrhrYp4GeGy2IxiAmu6PUdrWLYdaxmqsVOUVdT+lq6+tSv8M4yIOLIzlH2ZZrDXptFW9ixXa+qEbbwdPnz3jlK94jHzPeBuJ2vfY6D67pYETw9K3yyU/+A1565zvsmiWlvrVG2fLVhuOkxBCcDjq1a4BtV8+9v4ogqkryFlyUBz5XKd3NronrtjEdjuaTB4c2Tc4FKp40hCvOcmfhD+NwDRe33vEdIo7ldOFcN443R70mvRPTyLZk6J1tueh9P07yK4ekcOHpjtvHD0kuEsNA3jYh7abh+jrvn8FSK3/iT37PL0h5+OMf//gvjzH+v7/qq77q/nA4LP/03/FzPz772c+Gv/7X//rxyZMn4X3ve9/2a37NrznP8/wlG4S/4Ru+4Zd97dd+7fnP/bk/9zNfqr/jy/lxPp+n/+1/+99uSim//iMf+cjf+yf92rfWQFcq67YqAV4bl/OFGD13T95k2yDFkWFKHG8PPH9yz3Y56wIxDoyzyhhimugUwraxnt/kJs5UJ4W2OXh2t9HHB3RU+xunW8rlcvX5qk6323o/EocRP0zUWjRUnp+z3D0hjQPnp/dcTmc1YIWdZ8qVNhF9Mi6n1JkYvK30NKA6G5hUtVtUiNDcNVHsgwoDul3cYwi2ct5vgVY7yu6XK8Touawb67oxpsRWpFbHIRGHxJblta6tCAvlopSkYLzgquBVbwpC7TxdKUrZbrqyX+wws25BL3dd06tMgW7FBG60QoAAPV69rTWXL6rO7UZR4OoX3NYN8LTgGLyqkbFCAQVkCrUIGq+SBDGSvYXqFLTba5Zl8UgETuezvJFdaKjamhoGg78OYsES9r2pVCJblegwjoL11yq1zgty35sYzSFoNe2dFTHUagET/d+9xWk/cLRWr+E6b765KUYCQrHkTSxrhfesvc/JZK5SCQjWvEewQ0KvdrCTXUetZs2oBtXYsdBd5+Z4YNtEJIijJ/nAtmW2izYdySdiSgp3LoX7ImVnSBqE96FtHKWI9taIIdKqo+ZGbgrwtaayDK1m7bOGRrU9nFFrNS/xdh36rx5n5zlfNKg45Ct1nitfuvZGSuYvxwai4PA9MKRoQTJZippD/nvnr1SQcR5l4zBveWuV7Sz1dlewa9Mg4b1GkRhkgag0YpI3G+cM1Wg+dCvW6L2Rt2LBUs+ybqRhYMuFYRjFq+6qC2616s9PnrysOgjWxv16r1BgK9TWGaxYRvYXHYZiVFW1fOKbClFcZ82btk0pmZWnyjbiA3Qpz2VT0G8zDydBB63SGj1NXLbC3et31LIxTolhSqQ4sm0XWgs2yCrs2konuAAe1iUT/UBuG+ct01LnpXe/wvHB0UgknrLK7hDt7w8x6iPb3YvvJQpEn88XEsHaDE2VxBGD6EC9Oba8aUvlAz7s3HAFordtxfXO8eaWsmWc1/bDjQOESGkY3UdB4pA8D16WT7vXjWmeqTkzzKOuIQHA2uOa7GytV6iFfWxt28ZWNlyKRCcefungkg6I1T7v3kPbqg6UP6u8SGzsYofJcZgoNRNbwkdRgubDQduCUuk1y6LTFQAPISqL0xrTfDRaTqM1BUOj3b+Wy2YHQm2RKJ27p8/pvTDfzmylMDiJOM4pB+Do+Hkye1TDBVjryny8Zb07UXNhHCWsjLcz6RKuhUU6uOg+cb0X/HP8eOc731l/oaLD3n78kx9v7dPtXqgap9O96l1bFVPWd3o+yx84TNwcE7U6vG+MQ6B3T+id0B2XtXB+8xkzG8NLD6QY1421ZLbicIOXf7VDGLTmK6cTuEp00Xy0ARcSPSSq3eCcy4R8oZ1PTHHg7CqtF0IQzH8nQ8QYLNEuzJnUOU/0njUXdrLDbpEqJQOVYUzm++w6EJSCnHDyh4YQUCfE7vmVorauKzFauYjrttpSqjklVZEOaSCXch0UxnGyNq0XKkow75cUDjFa05AURmv75reb1zReV/AdHR5aqbQmvrPzndoyMRm71ul5OC+A/87UFRLMhhCUkvfeE4y1S29ara+rrBjdvLSm2sagmmxtiptxloVdYhS1YVea1m1jSoMCMua5lSJmARo7pKjV0LzUdLYl288UxMfsGmRdF9LORz0Pl6C5Ti8d7zrsKnFrbJtU516b4ZICtatWV4USatDzIRFDIDo9z9Lr9bVQyATZU+giF+wsWVPES1N41O2BKvs7aY2SjVsdtTbttlZu3YoxfCeFQcp1bzoAtM5SM7jCMMBlW+g1EuKMb3pv2b2ALuDpWrXiqTLjspVKtl8T7bVSWYu7IvhkAeEaeEopkVcNxcHrUDFOs3nqraJ7U0lIM5tEKcUOsf7KXsZztSa1WhkMuzVOk5i8IQhH2PsVUaYiFMc4DsZO1UBBl9//fL6n10zvkZp1IMJX+YfZPfQ6RNbaXhwKvQ57ay64mChdSMLamg6StVBqZUhJPmMb3rv5f2tZmA+JUlfAcbdccMFzmA/sfPJih99Si5oa8TRrnMRpaBzHZK17nmK1vLpSCQHXKjTPi0FlmHC9wjTj55laNs6np9St4mtnnI505GdOaYTuiCHRcrWDNdA9d/dn3DgwJc/44EakjuBxzUFtIo/0aOVLjeAj67LiaMQ0ki1TMQ4TdZE1QtuqTS2GvV0/78vlwnQ4aOjzYj532654B+tllfrrZItwTuSV4OQB3pb1+j2pW6ZWT0yBMR3JW6bmShvs7+tCb7oQxGK3hju3e3mHwCuvvcSz8zNuHj7E4ynbymrf6TFG25LJjuacg9b05+ye4CA1uzn3gtUePIUKdo3zvl7txrV2NQRWYUZz3nRYLJWtiE1tUWThK6sOan23VXVZsnwXUaPVRiy6CZRWwFVczARTiRuyt1D2EhkI08AwzyrpCBEfEpMLECI9F9Ztwwd3/c69/Xj78eX8eItHPakipVbO93e0WlmXC7U1tlJJRMrlxOX+TB8nkuv0S2BZobdCXZ9zOb3J5fQMv1546QNfwVZPUhfw5NxUFMFejZtI44EUhbHKpdrQGendaa1bKr44hjFS+sohVIYHB87rhfkwEJJ8Vs78XSCEkA+eWnb/onF1vW5qzvUr+3NbV+ZxJJdu/qlKtxs4pvoFC9CUUmi5CsWEw/nONE36u7pu2j56uuvsJPWrvxipIz0XxnmWMueEfSvVaAytUU1VislS+K2RQpQvt2IhsWbpc/a5nJozdEhpFFotBhWcVAg+kYwsUEqxauBMHBRSEeMUzpcLHU88DEaGSIacM8tBVYDQ+2SKXrNqVS8/q4uqt97EcN1rlWOK+B5MDexK0Htv6p2t64N8zGI7p+uAVnI2zJVV5zYFhTpKn/faqOzWBSlC3hTSXDK1iSl7e3srhd3U5tr1c+SSr8O4I7yo/KaxbNt1I7A/BvNQDtMkjBpcQzS73QGnQwXe7REyXN9DYs7aq7oGli9q7wskatamYqvZmva6IP5pYFukNI7jRC3WWNEbuQgpVkplGhKtFqKAKYBnKZneYExBn5Or51qqVLraPxRWU+ug8Iq1CF21K8rdeQpdnnI0MNVWTUXW9ywET9kyNWduHtyyH0JSiOA7JWcdVGoHAt3368AMNlRbGY2z7yHmua2boe1MdaPLsyy7khNhw+28Wg3/NRdKUfVuCAq9Oe+JKV7JMNRudJIgv7bvojEEr0a4Lqb4zfGhsZozNzcjpWPvpQ6EOW+2xRo1XFVIZiORL1iNcq2Bi3t5i8xIKhvxjPNoWLRu3wFtQbr51IebmZorwzwQ0O8PTp7nZj7QYteIvXCkUjXcd4hxxlWP6zrY6Ixgn1vbRu0Xlp3ZXkomJM/z+3smf8M0jix503c5DS8sW87RXWWeJl3PurzFqlrusFlOwntlIby3TYYIMt6q0F1zLKfFKDze6pwLzvy1aZyorZufWILCHo4GUSFcEjmldEhz5BgGDvNIz0La1bUqn1K6Kb9ZyRbjhaekBr2tFFptDDHRw4vPzBA9y2WR1agUCvIp74HVhgW7TawAlElplUa1zZSuc+IGy2NM1yF1vSjfEEJiOd/TAgzjJJZ6WXWdD7qf7Rax5Ad6tcDkdiHcjhyZWFrjfFmop0yPnnFMar0L7mot2++fbz/+j3v86I/+6I//n/0z/PPyeGs0iVwpuVJ9Ycln8imzrcVWqRqmel2IrZOfP+NpXoWCao0UA25IzA9vONzecnN4F8ebW6kVUf5YTzf1uLK1jcvpxGF+zDDf4I6e7ckXyOuCn27waaIHYXuGQfQJl4VuW5fM87uFd7zyDvOydqLPpiTKY6UVkuwIqq/1Nh0o7NbWgkvyym5FyfFq+LToLSATLFEd/DWY5L3jMIk1mrOt/EwtGIfRblq6MZ1OZ47TfLUThOBVR5oz0Xd8b+R1VYikq0lqTqP8dbqaqo60rKzrSooDe33w1cdsa2apn5myyZIwjCOliVea1zPEQexZ1GAWh6SyipLlt7W2rmKIPEw1dkGWAO8CJW8457ksi4ZWBnpRP1lrmyJfpeI7XMqqFTG6wQ6DwjwuBvq6kgZPc8LIadA19d8KP0KQlzQNI83LOhOTWSeKlP2+q5xdQ3NInjEZA/QiekBbMoebG7ZSlKpPkZASvVRGHzlMM+u2kGtmHJIROAK5FfqWCVFlJ9FaolqvGp5bxZWVED0wUTyE0GhlU/0tqH7beQUAx8DpfE+Qc+JaCa5SFzSIuK5yilaZ4kBrmWWtKlxpsG6bFHdT8nyqZlcYqB3iOECM1GzkhtLJZSHnlZhGeg+kMFgwTkzkXc30QG6dIXkprM3RXaO4SgiJtmVKdvimJqytFIYYyUUe8GKBvxCClY8MLE6MWB8DKWhdvVxWkQ7GwDRFug2hnUDdTf1DFI0k7C1ulZQmculs5ULvhegDNJEKStMBfh5HWRxSBKRoNzrdB8qyCj+VHA3POOo9xneaVy2vLE/OLDgaYIOl/T36NVteGNKESwcuuSioFlUg5DwM8UAtG8nroLPlFYZZxIS2EF3kbskU84qmQYU4vWbzRxfSPNIL0HZFeiMFbbi2vnG+OxEaBAYCjW0rIp0ko+ngyOcLrncum2OeZ2ov7CzdssiG0bw44SEEtqaq6Na7wrYxXG0wJXdC1vXr+OiGuydPqdOBECd8N292QJshPPhAGgYwekJszsqWHJXGdt54+vwp73p0kOe4QM2reaHlbS9NB4zuGrlnfA8qyADiPEM0cs6O97TNVnCRQsdPiUgm5wa1MR8f4sIgDKVXk+cUg4gSaCsx2gaurSs9F6Y5UMpGXxe2pXKKXjmTWhnwrHjcEA3Q74FI03wvi0RTvXtvjdD19xAcQxDdqFEJwUFVc2b3Yqz31ule3PZcMtkV4jExHSfWLUtF7rKGde/UYti6+OBV7Xm9emiOYzooLN4bDw8TT77wVALB7cQ8zwqFW8B6t/S9/Xj78eX4eGvDcKs0XqyWT8tFq77g8KELXzVpxZxaI/WJ5sS+vDnccHPzkO5gXU+0XNSwRKNVQ1c5z5A61MI0qJXr6ev/gKE1OvdqkYsjuYwcb17GpREfzENYNiafoWWe3Z0Y0sxLrzxWEn9ICp/sWUjjZO6Dor/WTDtbrUtJ3moxddKsASEQnJqdnBUzjMkaluDakqT6W88wDAzDyLatardKCuKoUjSTkm4owXBtaInLNI8qzLAQ1mpeYO8TtXVKtZIKW/8loxbsTPTem5LJMdFNgY4xKQhkCsG2bRBgK86UPaWlvXfkbaMVMXiD/f7mOnFIBr3vX2Ql0WtZjP95OS92E5fN5epT7hoccimMSXi8/EXMzlqUtr5cMoeDUFBSMIP55zQ4VmDbVCvrQrBWuWQMZ/0ZIQTaamqwvaZ7C1etmeVy0QYiRMZRRT3Z1tY4WQHMQKMCEO/pJHpVuUBH2LY4JCqdWhqX8z0Pbx9c15nCnQl71tqGi8E+44E4KDA3JM+6XHjy5A0ePX6JVg0w5hzTNOv1M0WbrgCXWhBFvuh0pnmmd6n2BH8NfErVb+Yb57qe711DxLZmnNUJdydEU+uVmqve86DkOaaQ1y4udC4ma3VHDJ7oArRMb5nzcuFw+4jgAsEP9KYVrlWfyT/trdrWdcbDpFAanWLItdNyZpgncWj97nFWAM512S9AXmZ6J3hHL53L/b1yB11G1WEY2GqDpvazIcpq4bqVthT5ekNKQGddLzx79pw4jMSQWO5hGAbmw6SDQwjs5JUUEsgyq8Y8L6pFHBSevbs853hzK0XPyx8bwkCT8UD+3FXtcipJ8IRRjOwxjbz5+hv4cWAIAy0X1myfQduYXM7bVRnfNg1UaRy43N+ReyU5z+FG116amuwaan4LMSqMaOjFRocU6KVzPB7Nx623eM2Zta344rXtGGa7Durwv3+mFC51rLkwxIF3vvZuPveF1xl9I+yfwAbRa5PU92tYd3QvPJraLwuNyqPjLU9f/wL1vOJ9wnnHOEyAyDkuGrIOW9071S3XUiilMvrJimWkJLuuvEvw0EohBafvbRd7vhfZKaJL3D+7J6SRkPRarYYUk4rrib6TDqOoRg5CbIzDgUpjyQVy4/50z7lk0nSQ6DJoo9KKbaUc123frrV6r/tdGoRmayZq5FwUAoQXwWG/WzE8KSZaCOTccC4yT7rHBOft9RQto7RCbtnwlf4aZLw7na6Kudo1O3eXE0yiB8UQuaw6XLq3nRJvP76MH29pGPZRqtRWN+b5AD0RnCqZo3GFMUWpda09H7/8MiGpjndbpJIexwPrsrGeF/K20oLXzc5B7Jnnz98gPbrl+FAtYjE3XHxAHGZ8ekB1Mz1ElTqUTXQEV/DlnmdP3sCFxHu/8isIqXOcB4ZRnq8pGke3yy/qvbA4wjtppSsFUf7dmAJulMdutwu4pJP5Xi5RbO0LNrCZd5gO62pBFxxDGsw/lwG5JIYhSfVyCIhPB4+l+6Vc7hirnKXQtq7wT3Rar6H73YtwR9PgNE0DOduQmpLZDaSAu66hKdesIJqt730M9KIaaa31i0JeTXYMvLcbqn7WXTHZMVWqVrZgmvkDscR6MD9xTJHSGzlL8XU9UHJVuKvrcLJt2UJNNsimIDXE1KDaipBAKVKqfMgqubD3ZvcYNhUJwF7yoER5igNrKVe/a86FcUhKyDsPXWGe1nYSQsP1ZgqwUQGCI4VAy5kUR6ZHL1GLMFo+qu56rw4WpqtdaRqlrFKr0HOY5slW++mL7o6qFU4uGhlDam+I/hqSzFuWXz9GpsNEzjvyCWMV63mLaRwpucjeECMtODZruXLdUWvmMA/EqEpv7xzbRT5GH6QCU9UWGaN8nL04vJfKWnJm2TbGboZW9LrvjFRZdxq5tBeDXC3GctZBOMbE8eaGNGm46nUf5jvrtlCr+e0dRglQSUsAlrzhomcYjbKBLADBcH4lm8XKe2rZpBLGBOZxX8vKo5fUMliqth/nvHH/xnMdOBo48/jP84EOREO3iZ3ccSExhcC5nlguJ5X8dH1fnFnMZAdo9FyJAdbzhvcDaYh410gOhnmEGNViifzC/Roe1Peie21tdDnrbNtKK500TRyGkS2LHBH2VknMTeK8DZPCqzUPzXe6tTGmIGtZLlLQ9X2WfSOGdMXcafOl64PDkYs8wtuSGUaFVmvOLzZILuKaIxCpTiFKXbj2Zj/z1G+NJ8/eJDhPvmy40GhspCFer3Vt267X1FIbW8l4H8lZ32m3Kty2XO7xznM8HGi1WI5AtekhBHLXd8l5HQAO04FWGvf3d9zdbTx69SUr3pBCnos85rXrsCXtQ2E23zPTNOCTYz7MvP65L2hrYMUY+KrvkBFmnA/sbV3OBWJKrOum6/zus++YbU+NlqUW1YVbXqU7R4oD3nnG8UCtOlA6HN1DNu9y9FFIwma+Y6sQV3V9sINhodfGMA+UpxslZ8Z5ptOuLalv2yTefnw5P95aA12r5LLasOIIKVK3wrYW7p5fSDHyyiuvkg7JQmADsQbqaSFfzuRaKL5zujy3VbEFvHq1RL3DFU++FO7Xys1LD7m9fVWFGs3hh0Ax35nLlbZmWlkJqRPahfPd5+l1493v+QrmKXJzOzPPid4rPqgZCCCmyDgl+cKqbhjeO/O3vgim7Sd357y8pF2+LSWfNThr4FM4RlXN1jjVO4MhmXwcwPXrujYk+Ru9cSSd9yqWCJ6aN/0arHWqq8nuMM3X1rdmN8YQw5UBud/svLXUtQ6XVWn7mER68EGruVory7qZbUTcSx8CS87gOmGILOcLbi8Z6ZUYE8lHcM7S5LpIb+tG2lPGDq1cqwWCmqgjGCJqD1AJxaWhSIGsaAeKXe3a8F7V1zc3B4VKtk0caic1pLTGljcNW+aPlrdNynhKwVRZDWGud1qVJ9d1EQjqZgzY3uht96BC9FabXeU/3RvCett5zg6hnaXWy4sb6V5e1NJVruBwdAspYQcQqOSmVPc++N7c3KACCqX9S5UPdxgGO5zZa9+glsY4JZbzwjjN8rIDw96uWEQJcV2KajFShutOKmpvLMuCj52783OmcSKmgRRHlRJ4U0GrAmoOR6dqsOoO18WG7Q5ya9omNGjNMc3HK8JsbxPMVjeth97j3h2la5VrDndy3tiKmvq2RYn5MSYdUs1aUYwv7kMwJqv41lsRLiTnzDwlUpyMeCJPs3eegLYP+r4nKdZVtpLWu2p8xxFfxcr23irccyFEFdSQ5Wd++uxNKeNJif35cJDH2GsbdDqdmA7T9f291uGadUnXCWtGq1IAg5Plq1aoTs+dLmuaC878z86yDN2GpRfhq0DANamAedPzFE9cr++2VdsAwRgTa16uh/Zqm6911bV9nmeuHPNmAB1UBx7MYqLvgdrheq+4EKhFfuSnT59wf3/Ha+98Ta9bE96vVV1bi201gtf24rIs3I5HljWznU8spXD70kNgt8hoIxGDyi+6KZk1Z2Lw+DToO9YyrqvQJ3kvVnVrdpAS435IidEUfK6qvad0ef/HOTFPj/n0Zz9NyRdrF622UXF0Ky1qCKeGs0ERhWNb1qAZgiqTQ7CKcnuNW6u6xoZoAgDmX5cK+/TZE6bjHtTzDEO83vNaLeQum8hg4pOCqRnnZN3Twb2/CCsC3Rr8onOUvMleFiM3NwdOpwseK3XxDmrntdde5e50T90yGHZ0Wzf9nW8/3n58mT7eWoAuGDTdmKvLdsf5cmY7L0r04zjfnRiHkS2vbEUX4OTglccPmI8DfuCqSATzuDonfM+2rQSfOc6JfHdHfr3R5wzTzBhGiu/0JNZkvSxSykJj8AGXn5OXO9712qu8/OiWx7cHpuPENETGeWTZyhURNRjD03dL6zosWBPZltWCaap1dd6xbqulvAdjkwJdF2e1amXWLROHREoDNFM7erNT/YuCghClkqeU2FYpK9dhwVL48zQrEQ0aNGu3IgZbmwN7g1kvhVoK26oWMICQBtZtMRTOi+CRVClVyHr/wiPtcCyXlePtDc/vn9JdJE52se3Qt05was3bK4QVBtNK3WHBr94orZG3TRfxrFDO4B3jqMBQTJGzBcxUKW3BF2eHDrcrRY15nu3zEbg5PiCvG3sTkzdFad02q6lWkhtUUoERB0KInE53HObD9YbkLHgXQ5ASY1XgrTfV6A6DKdcvnm+MkZQ8eVlwOO5OJ+bD0Qb8SM6rikGcE0uUel2t0/V6xajgSl6KHDE4hmlkXQ2thlVIh93rLCWz5EyvWgoP48jlogYx7wt+X32XQvKeMEtpx8gi3gFBWwPCzpUW73s+zFxOF2YXVYvc9bne0WjrttLRwWanTGj74YhjoNA1TPTOumVuHur16K3LK+2draizfQ6Fpss5E2LnZpw4n+5kfQieKCQMvarsxQ/oQJULPegAs5VM30sovIYlFzzHhw9Y83K1K8U4sJbt2gIYY6T4TM5iMIcgdGLwgRAcpQ6UkjnMRy6mAIYYRPpwnsc3j2UlaeIY0/cNjiqKq20nLqu8rUQNQ7UUfBfAq9hhiuBYy8aSC8d5xHvH5XzRtXVQcciyamDRJkSvj+vo+XeREHCwbYtCuqXz/O4Z2OcZp01JaQ5ckLLaUZOb1+dCaEZPzY3uHC89fpllXfn0z3yad7zzXSpfoXA8Hq4DeLAAYq4Z76LoGoPEDzXgJXwa+NTnPk22RsgQw3Uz06niapfNBjaJLJfzmfP9iRg9L736kqrOjUOucKEukd0q5UstpKDXZ5wG6LJCnc9nUhzp3bYIxlVMIYFt9O4vC8EnglfQMTdwLnK5nEljYPaJUjrrUkhplic9DDoQo8rl/kXfk9qtTS4MnJ4+o42O4eZApTJ6Tw5Y7iFc2fK9ZXmwndo9XZflKZ7umGeRVFxXKNgFrlShUjqtiX28h487ssJ4H0lBTZR528DDeJgpTWJEigl35c9X3nz9dVIcTZVeZZFpGs5jUIgaIIwj0zS9sKW8/Xj78WX4eEvDcIyBw2FiWxU8cDRC6KSEgdI9p+XEabnHRaAXrSLxnNczcY5ElO7eEWmAqlO76llDbBzmxlY7tWe27Qlsb1LdSJhmSEntdaGQJsfNzYG+PmNbn/LqKy/x3q98Lw8OiZuDEF1xiNSsAJCLL4ZC+/9wmojpNasyuUNMWp171AJVgxNiqygBH3yi1mwr0kLvlWFUWKiUQskabFIMDEM0j7UNCKaI1p1OkY2hGTCFatKFzwa6XJWIjjEaL9PhBw1Xp/OFkBTqmaYJ0JBcart60lJKVyUKK+dIaaAbAN/7YDf0wP3dHS56Qf2bY1nkdQ0pifW7bGBBomAes+SVWN629Yqum+bJBiK95lKQV4aQyFthPhxptV2btWLSqm5P8h9ujrTWrgSAEJINnUE3+d5I5n0LzuPcvnLUWnyw4bCUjg+Nw+FgpRM6LCzreh0491Vl611oKHRzEgWhXdXhVqUo+x64P51JcWLbFHKLIUKv1xWlgoWGdvOBkgsxOpzbWJeNFGaak3pfctOQ6HiBZ3OOra5ks2v02q+NcJfLhXXbuDmM+LCzWyF0L3rH3o7lbNBPatKrxp6Wvxx6SEQf8V3hGBFUvK11FeZJoylZuxl9CORlpW8OesKHJh9m7oyztal1b9SCTnbapujAJRuN9+CjWRO2lXXNhDHKf71uqrt1MB9metHBYCcnNPMC41RKEX3gyZtPtY6OkehHelFdbnWyC1FhrVnUAeAwTOSuNX03VNp4GLi9vWE5nznd35MOB3o3pT4EIcTWDHiSbSKcd8Jf2TVs8FbZXKpYuKVZQYICs/o8GD0liAtNy2qT7I4lZ205mip/nQ/KQeLk+28N57RFckafEdXEQqZN6LvPf/5zvPf976M5WUciKnWpOSs8tRXosjapmc8rVGte7uPNgWkcuLu7Y5gGnHecV6uXboiggmxIKejJ11Zxdl2/nC/yLB+PUpxd5HIxL6wXN9x3FMqS54sxJoKLxDFy2S5wUVNi29V3782OFiCq4r6ZUNFaM5uV1HPXYTsvuGmmtm7oyUix3EUcIhQFm0vOzHPCGSUjDSN5W+g0hnFmWzNbEiavBh2KnamxinPoNUvDBHnD09jWCz5NJKeW0Fb3IIeDpoF0b6LcCQ3B0re1ZsZxvOImo0+yEoUX5R1EDAmY2ekk+mx5tu1CdCpm6UUe4TRESlXLZvGZGHTgxELHy3YhNjVi0jv3z+6EUxuiDiSodGhv2nv78fbjy/Xh38ovvq7hzXs6Hkbmm4lxnhimgTg4xjkwHwdCdAxx0kU0RZytWEJXS5s35EtrlWpqUm+d1hI5N/kuh8B4nLh5dMPw0kOG48Q8R24fDTx6fOB4M7KennL/xmc4jAPvede7GJJnGpO8lV6INgeqgW66eMe9MCNao53X//UgHxVSF8dxwuGJMSiJ3ivjYaQ5+eZqrWo9y8U64yvdUGPeO0rJbNumkoJaTInBfJ5IdQsC2ZctK7GfN9a8KaxoYQm8SAKtqRHOeRUT7NXGzYJ2OEcujfP5LF+cD1dkkzM8D3QLvlhIsGRh68yrFquUteqg0qziN5mK5q9Ktz4QWsFerR5N2sGyrlJUvTe/WaV7qd69d6hWwWuc4Lytuhg7xLzcNgXnTKGQd04qbWvdqBn6RKY0mN88GB7OWtFQYKa3eg3Bae2ril8fVGnso/3c5i/1IZrpVn7lELyNcgbWN99nSoEYIEWFR1tvOALeR+ZpVgoc3exS9IyDo5YVj2caDwzjyDCMpvT369CNg1yyBQQj1VoSnXe4ADkvGkBt4HXBsHNOQ1VgJwCoFKJ7ozh4FT60XgkOYg+0LL/pfohRZbW88Pp+yrHqfSTFEUIkjYk0BsAqqJEnN5qtyHuVW+zbg9akoL2wrAgrN6SJ87JQury82yqubjBvaG0VgqNHBXmc399/eRdrlRXAeXkha9MhwIlDdq2tTUNiDNFsTojz3KEV+a1j9PTaGX3iOB9JKcrelSKlySLRnH5f7eC9MaDx1zKXNRe2HZuH4Rad8HE0BWRLqQpxJXGqg5fdp5tfOw1RVdJh94v2a9mMQnrC+ml7AL3Ll+1dxOEpFGqUr/S0XOgOfErgvR22vKwYdLbLieV8T9kWynYmb8punE4nat6Y4kSwBkHvvKrWG3S/19UHwyLqMHk5XShWatMqXHLm5sFDbWFiYGtVNAQcpTS2dSNvG77vkUJj3wYF2vDggmrpL+ui97oVK3vpRO85zge1NTpPvSIiI8M4c7y5IS8r6+XCuqx6v5yTlQM1xYUUCEO0Vj7tZWoTY9wnz6uvvcxxHmm9MM4BF/ZIjB1yDbHYWqfXRrDDfTpOGkTPC76DMrni8fe288aNm71vfIr+t30bUWrhfF64nE/0WshZz7sUqeS1FaE6bbCtVYq7o4JvsqH4Rikb27YSnWOyAHFr/UVwPEX7DDZRj3DkRQSoOAy6d3fZwpxXTuDtxy/sx93dnf91v+7XfeDm5ubrnXMfef3118PP9d/e8573/Mo//If/8Gv/rH+Pc+4jf+Ev/IVHAD/+4z8+OOc+8iM/8iPz/97f/6f+1J96+fb29kP/rH//P8vjLR31ggtEH0mx41OgXjK9etykBiisX733TqxC8sQYCM4zxMQ4JobkaC7SyFoPeV3EnPN4LzJDd5GyQuiB4XADY8JvmR4ECu+uUS8X1jfegHzm5Ue3fOVXvIfoOocpyQ/slLze8kZzEL234IXVidr6e9sq03QgehjiQC7VWpbytfihtQoIfl+6LjitdqY044Mjt0zAsdVNwZMYpShFT2nF1vYYPF5DUqvV4rvyVYagC2RwDh+Tfr4uX3V3nW3LBohPFhZ7keKuzUo4stLd4zBe60qhE+Mgn3HV0DAZQcEFz939PTFEQgfnk9X7NkKKHG5uLFyhwSNGheO8ESJwCmk4C+ftbW8AYxrAO5Ztuf56b6zV4DyZTKt72YFCSzEqZOMcXC4XolOZA0HP22X94bVVWqmkZNaNWo34oOGudfAhXYkbvVet35uz4TSR6yr+NFqR1qKGtKWspBgVuHG8YFrHRF4WencM0wEQbUABrf19lSI6jsHUrMZy2RiTrBO9yLu+XhZwnYZjGgaWdaWibUkx1m2x4pJ9MEo+Qldob1lWUkjkVe8vyNi586pxnZgcMSYNS70btk5+79Y7fauczitpEqkhJStvQaoR7M1Xicuy4FygO08MA61n899rKFb4U2pZLcbldbvlodEDaqDDq5K3dnpZ2cyP23H47hlSskbBeLXBuBismaszDoO1GO7eeDgeD9zd3bGdFw7TAYJu2s31K6ElJQt0xiiMYrMhzDthE0ulF3lXh3k276UwktcWSgs1rctG7pXQYUQWlq1V8ip7zbWcpltwsDcViwR9PnbvPHQ7aAonFpxjy4UYPCpcduwB1J1D3azOupZGd9HS/+Jz9xA5PHrAa8lzd3pOmmarZa/WoNbBvK+9FG3C8qrSCBfxUQfevBUd6hNseSXiSC6w0SCJaNKdwrA9VAse6zr7/MlTpmkijEmFE6UQYudwnPAEWi0Mo1XDN5EeevfE5K8Hvug8PsluFk1VHWJiXReRKDrUvMkS1bV56JYB8F78dHrnwfHIm/fPyF7osnjNgOg731FouRUdLlzQQU4hQb1OwSea10E+ejWeArbFyTQvIaN38MNEqYX59sDds+ds64VG5fDgqOtjTNRFeLwQvDz+3erZrQFy5z7rvjmw3p0JaHPUeqHmRho8aYxExJ9vTRulHpzsFaXggmOYR6Z54rIskGyIdSiUaTYxor6/wTshG13n5uaGN568jjtFUhy0kbSf622TxIvHG2+8Ef7SX/pLD4dh6N/xHd/x9EtVyfzzXcf8Z//sn335Yx/72M0P//AP/6/veMc7yksvvVT/o//oP3r1H/1vH/vYx/7X29vb9vPxd37gAx/YPvnJT/5/3/Wud/28svm+7du+7f3Pnj0Lf+2v/bWf/Pn4897i3kPK0TgkGgXPyCFF8lxZlkwrlbHtFx2Pt/ak1hpjGi1oJUXw9sFROJ1SuCwruTSxE20NVe8vtur3xDJRiUzds3zhTZzLJF8oy1MePjzy6muvEHzj1ZcecDxGesu44Nm2BR+DbtzRc3NzCwizU7JO4Q9uHtCKqVet0J1UUvm6pIwOUezZy/meiKci1XrJG7EHYoosy4XpOKsgwUIRl23VkFqkZo1Ra0dnGflgCppqe701W4FL7me1chVLP/+sCmajBKhGWWpaSHqu8iZiARlPzXYT7M3SyI1h1M3vMM66MTnHZV2Jw0i31at3jrJlUorinUY1Y10zxR2mUYN3q1W0jeDxLpoVQRiqvZAh56JB2IodhmFgGifKkFiWhdYaN4cD54v8k86GZ/WlqhAjJrF+x3FQS1zN+Niu4RS1xXlDUamSN8bE5bJopei8fSYLydbfcl94ehE4/3K5cDzOUv5zpnfPdn9mGpJKN0JgGkdO5xOuVNUB94yPukHX1jT8djgcBlyvbOvCNIvlu64r9/f3HI+3TCmy08q8g5vjgXGeeeONN6hZRQ5D0muYt415GlmWMykFKxtwhgjTpiWbxcM51chOwdMNUVdpopog28Sy3jHfPNL7va0UvA6Hh5G9na3URm6FwY8aaErj9PzMmCaIUuScl80E51SwAKrRrvV6IMGCcvJfB86nCzFqg5OC1FbnsDY2rZT13ShmP4Fa5WFsTb7TVirBB8Y0si2Laq+b1ud4xzBF6rbJYhNUdbxum62nAe8ZhyBldds4n0/yWJaiito0kItwVHEcFP4yW01vXaxp+17t3O7eGt4Gq93HTe/XQWLngNe8sfaNm/HIkzdeJ40TzTZXtTYGC+gOw2AUHvlCwzXQuUALDDFxOp8ZD0cC8NLLL1HeUEivZoiDwxWFKQlCMK7IxkMrdB+YJtlC8roJ1RYqLiVIkkOdjwzOkW0YRfZjNtv01GW5fmZab/RSCElbJFeN8ELH76SKvDEMUml1TpUfep4m3ri/47QWHj56iHzmsqwNw8g07W1yo0LDTVuwUgr9XDi1jEuyxd0OE2arvhJLdC1LuA5jGoUydA4fYNsxjl5Zh2XbVMEcAnXTQDyEIDSlU4iarjAwiPtbsrjAafAcDrec1oVcMuM0i3U/DhQTWVL0bKtlPYbJLG1qam11w3U4HA48v7/jwXGmt0aaIhgvHhORdB7t5FpYtiwLXBcPeYgj57ZQysZ0PChY2RohDgRDL+a8SpEPGoxvHt1wutxBEYP//v5em9F5ln/+7QetNX7Db/gNH/jYxz52CzBN0ye+8zu/89n/mT9PNWrUP+3xkz/5k+MHPvCB5V/4F/6F5Z/039797nf/vA2uMUbe+973/l8eUv2WbBLBy4/kOiQXmdPEcT4yzwcO08w0DdzcTIxDZIhBdbxRpQKCrisAFKOtmENjniIPbo9M0yBVxEW8T0xDZDs/4f6Nn+H553+K52/8fZ69/vfI9z/N+vwfcP/kU0yHyMuvvEz0jldefsjtzUS01aesD7pxzoeZYRw4L2c9j+A53syk6Cl55TOf/YeczvdiwBr3dg9zxRBpRWn3IQT6lTvZiYOStiVX0jAT0mA0A637YwgMKTKkRApWCJEbvglbtnt5oynJW2lSydDFqVcNpM4alna7w/579nXbroiqnS3ac1RYMJeV7mAcB+ZxUNinrFwuZ06ns0gNl40tF1z05LrSmnidzpLnwXmzQmhw37K1eYGaxEqmblkKnv0cpVZwgW1Tcrz2RhwTuamSdBhm4zqJIXpzc4t3Uj2xsEcpGgaBa8Xpti4MhkHLpehm5uRyHdPAmCIxqgq6mzK+bSspecYxMgwe59Wm1unEQduLJmosKSUePnxor7XneLzhcDwwzhPTPJl3b1fznfn/ZNfwTlXXrWlo8EiVWpeLJfT1c8YIj196iPeN++dPoG30mtm2C8vlzN2zZ8zDwBAjh2nSwch5UrJCDC+1UHzmRl73lizMG9vF5O4aDr35VX2FwUXGmOg43vWud3GYD8QQGZLWotMw4FpniJF5GpnGkeM84+hsy4W8bba2zpS60dEmwfV9fd+N5KDhEzCVGLNINHKtlLoRovFlm5rDutEipAxH84mbxcd7a+arbMvCelnwduChy0vcelf1timp1H04NR52ecGtFlWkU/JGN+TUMI56fjsiz4swUEuh1HIthgkh2Hq6siwLy7JYME8s8egDoTsOSdc0rEVO31sdqOKQ8Fa8E63BMnivshDvhcXyXkUqITBMA2kYrgMzzoJkrcoH20QguZwzrnqSDwzJKTTXGutWWGthqYWeEkwH+nxLG0aq82KLryv1fOb09HV8zUymFpfW6UHD7U64kBdWGxMXk/yxXbzrWhuXs/zxZcvXhr3eKtu2aENVVAThutFPnFr/Hr/yMjfzDLUzBJWxYErybo3R51zK5e3DBzx65RGPXn3EzYMbQnCM08DpcuLu/jlb1uFnHAeGNNALrBcJN61CsUNr8BISlsvKuugzLgZ1oLdAa7J/bdtGKRoq9+tTLhpEWzc6iJN3/Pb2ISV31iVf7UhpUpZlsxbOlCJbXmk1Xy1i+5+xrhuX88JyusgbXbTZ7N3IHNlEjxgYr/celZ9spcjrbZSIq8ADbIaQjDFp42Z2Qn1OVqbDjHdwPM7c3ByZ54kUA+EtTQtfvo/v/u7vfmUfhAFyzu6f9Ov/WR/f9m3f9v6PfexjN3/+z//515xzH3HOfeTHf/zHh49+9KO3zrmP/MW/+BcffM3XfM1Xj+P44b/6V//q7d/5O39n/JZv+ZYPvPzyy193OBy+/mu/9mu/+gd/8AevP+c3fMM3/LL//D//z9/xYz/2YzfOuY98wzd8wy/7uf4bwD9qk3j99dfDd37nd77v5Zdf/rpxHD/8VV/1VV/zX//X//XD/z3P4+eySXzf933fw/e9731fO47jh7/xG7/xl/7pP/2nX94tGl/8e7//+7//wS/+xb/4aw6Hw9f/ml/za77qk5/8ZAL4t/6tf+vdP/ADP/Dyf/ff/XeP9tfmox/96O0/+ne/lcdbU4Zdt0Ca+VS7hrYxRTye1qS6LZeL1FHUaOac6nhjeIH66e1F4UIMncM8AJ2tFzF8faGWE6123CaOb0F2hTiOPH70Eu95tzzCjx7eMqXEtq46HTkLqgWv8gfvOF8uPDJ9ppSNnDedBFzjwYMD0xx14XQoae48l/PKumXm+UAYPJfTPSHKnRVjNK+WqV61UTClqMmyEKP4kQ4skaz1Z23Fnr95H1uTj9U7MBDAvm6VkmYsVquIDvtJ3jl8EBB/R5LNsz5vvSucErwCGmteSPZepeEgn2NR8901Hm+huBA8zne1KxUNEz6pKKK3TnBq/oqGD9rDPKXIc3e5v2cyO0scpESHmAxJJCXtclp0AyqNXFaGcWDbsuqJzW/t6LKMZHmcg3d4K69oYJzZSDAsklbsUku35SJvuIUGe1cD2M5Nxpl/Nijg5r3HhSj+cs7XG64DtTfFQK6bMETOFCon3BK9mb3BXVV22UgctMYwpCuPVYEgyDbUjrMU7tGNlFap1TigDlLytq614CCwmr9a/uuG71hdbcO5wBAjbg+IeYWKmhENokuiGmwZ74RnqlUqVbPthU96vnUv6bDDV6uF4DvLujCOCe900HJd616PynacDS5YSc1ue2hNhQPNCXtVkudyOeu7FXZPYiMkWYQwLFUp1bzjgdBVkCG/vjyarTQu68I4TfhgnO3WcV4lB7125AFy1wpxZ37PvGXKmim+yB6VhqvfWbhDhZd6V5jS5aJq9lasqMexrAtrbwzTiG/tSgbwwDQMMOjzKoNB1nPKWd8J+5xfD1hWRLQZuzx6fc9zLfRsAOkU6MGRgiqZc31BPfn/sfd3obat2Vk/+rT3q/c+xpxr7V2fqZhUkiOlpYIJlCDRS70QFSGQixyURCOKJRpCQIORQpCjJKJCEhBiosSDBMSrJCLnIiCSK6OJ5OOiYvlPICaxKpXae6815xij9/ejtXPxtN7njmiyKx8mVVkditp77bnmHHOM3t+3va09z+/h1Gbg/ry4ZKVDDYfRLOXCzyGycPXoHHQle7rLCiTD+X3vAkrGCAAjvQUQGuREeRDbWkWexFP5AvowSEiHRGQoA2auW4NsAyERATdc/pWTHTzu0To71Y71e/35czxer+Rd+3sDZ4eby3jU6QriTQKI4P7ZHebBw2OdM7bPfJoyvRCZ5BkydBj6oKY3pRNEQLlOjghKQ7P2gbVXIEWUaToOVjGxo8No6qdoa77/6kEcgjItuN1WPLz5QErLUHQ/KJmbKHMunGzEpy2YUdVcM8TNwDkn9N5oUDWae0MMh0cD8ChvA4IZWtsAKWhjw935Huu6ArJjJ+VoAvTu5ld//QcRaCjKNKO2l6h1xTQTQ2fqE5vf5dfP/uzP5m/6pm/6kv8bP+uf//N//j9+5md+Zv7whz98+7Zv+7ZfANix/cQnPjEBwMc+9rEv+tZv/daf/32/7/dt73nPe/rP/MzPlD/1p/7Ui2/91m/9hXme7Xu+53ve/TVf8zUf+smf/Mmf+tCHPlR/8Ad/8L9/4zd+4xd9/OMfX77/+7//v0/TZADwv/uzt19jDPzJP/knP3S5XOL3fM/3/Ozv//2/f/3xH//xJcb465KGfPzjHy9/8S/+xd/79V//9b/01//6X//0f/pP/+n0sY997Iv/169b1zX8k3/yT97/vd/7vT8bQsDXfd3Xfdnf/Jt/84t+4Ad+4Gf/3t/7e5/86Z/+6fnh4SH+63/9r38WAN73vvf9hkTtn51mOCXnI3pHqg4I1PFgEWYJIbALaZ0xmIz45caYggDoiABjd8GRYBBgzrTivNSKqh2nc8Gz1094640X2KoiWsA0Bzx77Rlee9d7sUwnlJzwgfe9hvPCTZIJUAN7zO+UJ3ah1Fme7obNhWlso1ECcLo7wRDQKseuEqg7kxCPTbo+rjAILEVYB4ICpUwMgHD0WfaO5TAeGkqZnO3pzFelhjDEgBQEtQ2P0E2MoxYadGrbuMgCgBpS4cldBwut1jguDing8njlZhWpETUzLMvirF6yK7vSnNWHx3v2PeQgwUDd5h4OIsqRG5FEw81I0fWf1FN7O+7QP1M+Q6NWrRWn00yUExg8AgB1I30jpcRCS8gLTTFC9oCGEJACUFulqbB17yJyLJ5cZmIA5nk+fscIdl1aba6/G26sCxjGzk9KTA4cozuXmWEx5B4LRMhQ7oNjyJJZ8FkfdGeD1IZpmiCmB+9WgqBuFettwzLPCAikY4gd3b4QnTIA/3mqwAAxfL6xRjfPwZwEAmCMzu6ou3dKify9Blm9JWcIkzW4MaqgNUMEudDdEXUhwokqATaAbgNlnlB7RQQLZInizFsanWDejTVg7LB+rciZRqw+GkNpHP9kgzpYqLC76QeCAHH6S+TXmMFEcXc+sTM3PKQG6iNnjsyhxgOlc04ZlJA5tRjOh/aDVUp8j83H1ZzmeNfMaSfsFpsbWNmp3rnXJkAojCMfHq5hozPooDeUacIYhm1dGYAhhuLFW+0dd8/vsSwTciyoG59d7R3NDH1tMLDTl2JCFPUJGCdXpSRisMxQckJdV8h+gJR8PGeqQMwCQQLPWbuZjlr+UBIS+PxYN1wuV5CZo4fPAPCC1cQLXCHmUju6DfSYMM0LUmABL54fJyJAByQmND80p7wwUCYAwwQYA2tjGJMaMWHBWG5f1xvOeXYDMM2s21hhjevT3jgwIVkmFnoBLtcL5mWitEF2cycOXOAYw19fRLeBLBE5MdVRJOB9730fEBJSoPZ+21b0IZjngj6YggcFedhrRRYBWuehHwbVjq0ao7NN0QanfdqM61OnvjrEABN20GOIGGqYT2dMqeGXf/mXUZYZeZkoYYrkcMPXjj20aQw2HWprAOj3WJYJKQc8Xi487MaMEAFyv2lObS4r2mX6+5RMALx88QLLaUHrHSGwecVuvADB120v7oOId+jJjr67f4a13vxgKod/4nfzpar4uq/7uv8rhTAAvPvd7x45Z1uWRf93MoOPfexjv/hVX/VVL/d/f//733/7yq/8ytv+79/+7d/+i//+3//71//tv/23z7/lW77l0+9///vHsiyac7a3f7//3Z+9/fr+7//+Zz/5kz95/q//9b/+1B/+w394A4A/+Af/YP31/l7f8R3f8d4v+7IvW7/ru77r5wHgy7/8y7ef+qmfWr7zO7/zA2//ut67fPd3f/fP/aE/9Ic2APgrf+Wv/NI//sf/+AsB4Pnz5zrPs27bJr9ZEozPsjMcEHNGX1dIAKZ5ggQmKqkayjQDNpACof0xRojnw0MEBFHwYQ2REZUi49DD5Si4X06IseGtywXv+8B78P4vfD8u1w0lZExpgmhCkIS7uwlf8qXP0a6PyOm140FmkhMf8Lp1ILGzYHjS7ekwmAaUcoJAEYOhDWBZZtS60XQ3Ou7unjMu1hQpRDTooaUV8801CFIQpMjCJqXE0V5gwpcZM+HNizKYoI8dE0b+Zs4Rvd9wPs/ojZ1lCYGFcGYksKlnvvmGoKro6u+nROelRqz1RmYkgBx3qYhTETzRbowOsQ6EcBQb20aCw5wW6Ni7NuHofAzvTPfemd7n4+OcMrFQQu5xCAITdhDNF2zGQBtabfzvyi5Paw0BJAK0jaO7MRSneUbTjiTE/SQ3aHUdmFLhSFf3RCTBMBa4FkhigCd3pZggUGzb6h1n+MGFxWDyMAdVT0ITwW1dD4723s0sOaG1G2LM2NYNOUVPw6PubkoJcdk3JAY1sIEVXC8dsd4atZng5ppC8tfMokQMEB2Y58nlHxx50jxjyKWgrY2UFPN5pbGLnEpAa4qtV8Lz1XC9rYh5QsmC2p3OIRG1d3RRJBkIwaBdsW4E7+dcYE4TTTlhrdsR1mJerMVU6Hq3BO0dvXoCoRgiXBeexYsJPCV/pYQpUyYDU4Yj9OZF3U6fIJWjlD2MxqPCA2UcOlioJ9e9mw7GUrtMoiv//gC79kHEu+OKkBJyiH6Aimid4Q/n8xlr71gKE/zaIDf5iSbCZzTEhDIlbJcrR8tieHl5iXW94tm7ntEoGNiNjzFBEqcKJRCXZj4xqJXyjiABQ4zj50gucl1XlCgw18oHEfTWvYNPiUCICSlkHm4kYi4zhjUgGmIoGAOczElECNQOJ6Xkh1r7yK5gzkB64mjXOtjMiDMut+bSE0BSYBQ3KA4Xo6QoeeiOICAIeb3Pnt3j8XrBqZyxblfEvbC6e+ZTKkNymcC2Vcp7lGbs5vr4PhKsAeu64XZbcf/sHmoDJRXElFBbJ1t5mgHsEikgxYwASgvMEYjLacLltqINFpghRKYouqaZVzzWVIDvR2sVkoBcJgC8F00NEj3W2adTMCYsjtpxHRvuzmcaPGPEdbvhlAvOpwXXdYUEQVlm90tw3dp5xab7fdYxTdOBfLzerkejaTibeE6B8rNtY/Mgcfoa9lh7P+ynmHF7eIG5zGS8D4O5yRYS0bVhvC1f2Y4DKPGHMUXkwmRMNcqvhv6Ol33+ll7f9V3f9a4f/uEffg4Af/tv/+1f+Ef/6B/9nt/O1/PH//gfv7z931+8eBH+1t/6W1/4Qz/0Q88//elP5zGGbNsWfu7nfm76jfycH/uxH1ve//73170Q/o1en/jEJ+Yv//Ivv779z/7oH/2jl+/8zu/8FV83z7PuhTAAfOEXfmF74403fstOZJ/VNxbQHR7dwUw8UEJIgJwWDKO79XarbqRiJyYmeUISjb3TaAiTsMs1OnoAJGWcErljl6p4+MwDJEREC9BkQBK8/p47vP78Djka9FZxd3qO+Xzn+i31LpJhva2IacaU2fFTH6nxCty8JHDcBQDCuN08s4N4fdjw+PgWJHCsvRc2OebD5d07O5dBOLZC2EMdABgTfyQy090UvkgFSAxorjmjaa5hns+4bQ0leje3M+zAQKakbdyARgQ7OonmHglwF5Ngaw3TVI7PqlVqe0tKGG7AOp8niAjWVTHlDBNjQ04StkuFKGOxzQRrU8zzzO51YDdbgwF5Tz5SoNJUVMrMYt0pHgaPEUY/0Ejk5FIeEUOChQFEQ92GF6UN+bTw8wgRsAEdhhTYRe2joW6e3uXd9tEqUu7s6scIgNKUXit6Z4e5xIApZ9zWG/IUEKZ0aNOvlxcQo3wFyRCDYbQVIRaEzPu0o8OkI8V8dEfUgM2T8oKqd48V2lcnBzBRLCbB7XbB+fyM3GPhIcqkuenNN1szhJwhKSBHRgovaTlkNFtr0MB7KXo6GTukATYopUnCzpsJ0yEDFBiC0QxxIj1BzDCFCNlTFKWjlOTFvyIgQqLxWYj+fDjJ4fp4gfnPFGPMqxQhGhEc+SME9NEApTQqOM80iPN+RdC2iq7Atq04P6fMy4zpeRJoLA15wnD0FMTQrSIStM2pkwDD9fnlNKObIoJd6d1AikBDpyhwJEWaIAZqZHvruEVPkawdyQQaMoCB4F1njo8dyzeoPa1tRc4Bd/dnXB5f4vrWW5hefy+6UPOMo1CKCAhY24ZcPOFL46H7DTFi3Zx0Yh232w2neUavlFMMMcRU/Hmg7TYJ15fgBZIo9dq6KTBuHmwTAZlYZA31tERjEdUa8lSg2hEaU+uC8ID64sVL9N5RXdozBjFitpMO9mlQzlDwcwJoxgwpIyHg3fPMtVGBbdugrTKwQcBiWiJGF5jyn2OOMDFISohqEFUMdCznCdftEQoaYoMHd1ByVxhyogYYPRxJJgwM2GhICAjLDMSIkos/p+Slm1SX0lBuMpoiqCCZQIIingrgUdex8cDdulN5JCAlrq/bWhlz70zxc5qOEBOMgTkXtl8CaRd6FNC8J4cNSDUEyY7NbPxax8qFThbzpa5Iy4SpTGi3BhUW9SIBk5ufKXXjuts3xYBimjLOd2ce8sGfG8BGhZj7VqKbXwexbjlE5CQQU0RJWJXPHu9/RbDf3TKJj33sY1+0//N3fMd3HF3Mv/yX//L/a9u2n/2rf/Wvvvl/8/X8r7SHj370o1/0wz/8w8/+wT/4Bz//4Q9/eDudTvrVX/3Vv7fW+hv64H6rSBm/1pVS+hU/9+3Tod+Sn/fZfDGxLwE5RY4hvVvIPVMwTyx2lkXoeDW63EOIGAMsoFM8Ri5DWDwjBkwyIWbGr55SwL3eIJrQu0AbcD6dcLfMKFrRH1+iLCecnj2HmeD62J6c6EWRE1FcIRV013tBwI4bcBi8DDgg9oBTLBoTpUpZIKAui5GgngCWEzueZnThCg7Hc3LTGqUfgR0E8GfRhB7QmkEiYzFTZvcoeWyzwE/oLjtQ3U1HYMRoeQK2a+uQwY7vAGUQ53k6dNM69OhI7+xXKq8jzqcZNh5hvSGXQqyZRIRppvtf2FmbUoF6F3/XyeaYIJmawDRljDiOg9FeFI1O/WqtG/aEvR0plXMm0aIrLOwEX3OzVfRDBke7UQJap063bivxXImQ/LlMh6YT5h3w4TpbdYaxmJMiBLVtrtkbgAYYOroppsIkwFpvyBJRckSzga2uCFqQp0xJQ5yP+yQl6icRSRUYgUVTjhk5zghiR2fztl4d/Zacadw9DjagtobWG409QoZxr9Q9YygoQsRhzGqdU4OdT6se+NK745rcdCgggzpF77BKAIybOpOwFK0pIIxMbxs1rDnxUGDKjuI0LWhtIBeGriynBbfb7Yh+ZjeroYqRupC4PqhR+9hG5cjd5RqmBikZCIJtu3GzjrtEJqJjQzQixgR8XqfMzzsGjux11+NnBm2UnHykT73p8MjzvXu/yz1MKeui41qYiCbUuWe/P3OZ0G6rH+QZfws8JY3FUsAUNeqZUxJ88IMfxCd/8Rfx5os38dq730XNujhjeTDCmiRgLuYxeZyyciJiSuxj7wMpTdTAC1yr7MUV9oAGyjZy8r3NfQUv3nqBPBVMKXvhmDCgCMGQw+SSq+iTBCNzPZAeABG03nDbVuRSMIyFMHwapDpIBuksOiVERDjZRhg8AgBaeYDYaoVqxzBQZua8YI7f0yGfMfNIYg4VoMLXCzdkppixTDOlO5FGXTPAxA3HBoScnnjlxs9cIai3DSVGbKMSq5ZYFO+HpN2MyShpP6BG8PmIkfrvRg8GPIrehNHyMXA93J37hn1CxCbHfkmES+cSxlsdqQ+or6Pwpg278pTNIXAvUlVaqCWhzBEhR1gMgAIBO4kjHDINuF6a0BLz4teZ7gKstaE4eScGpvrVjRHXu3xr1w03N6hGCai9QYOxz9KBEqenAJHfpde6rvFt/3x82GMM+emf/un5t+Jn5px1N5H/Wtd/+S//5e5rvuZrPvO1X/u1bwHsFP/CL/zCbzhD+yu+4iuun/rUp8pP/MRPTL8Z3eEPfehD6w/90A/9CvPdj/zIj5w/2+9TSjFV/U07oX12CXRREIyc0Bi8tPIQBuqIuxMkokPJdy2pkJ9bJrS6gSMrFppBImLkwhJiQhcGUbzr9Xs8u1/w+HDDaIL5fsJSMs5TwanMMBUgR6gFbI1JTtO0oPYNGgMkF2yVxW/KXPj3m6oPhfiIW3xhbm1gnmeMPjC6HY5z7P/vI7nR+2E2YH0b3MjhSWB0JZAm4SP9/b8jGNQGTBlPvBeX+6K283jNaPSKkfid0dl57arsJiqlDiUljvSCMGQggOYrJEw5oQ0GDUjg68mpYC4TemuYcuZC2Kn9jJKw1c1d74HdED/sZNfhHjHBg3IQMpApG9nq5sinyu6pKeZpQuvtcIAPT1jrrQFDMc2MS11Oy5OjXAKssXuTU4JMBYCg1w2p5MMgBdf06hjOXC6EzRs/kmGD3ZS2QVtHShPMxPXTcL0ru0vzVFCrQ+uHuDwlE/q/bljKhCS7jtIT6ryIM/9MW2Xn2BCYJFUy1m1DShnn84la8u74sDE8Hc8PGS75yG7QgeLACgY3Z5ZpZlqid2Rba94hYodeu2F4Ec7DTyTqaxgkZnSlnCe6LhceD9625gxpHkRSjqhbR4o014XAonJdV7zrted0sXcmZR268SCYzwusdmcTC7beyQWu/TC0QeiIjzG4RtQ8/S5gCI2zIQla64dOtnZPjwQnL+u6oUyTF3F+GAqc1PBxZdqbSYAKAxrGGOzaRUGtG4YCvVO+M5Rcagi5ujDFaOoR1jTRme0Fl2AqxX0FXtiOhtP5hMutuvGUgRsqbq4CsYJHaMxgETjMDlNtgBBpWKgRLh6OYLYTBMSJM7x3xmiuCsVTXDcMs6dXWh9ksRujwlmAE8e4F6QAiydVRVPXawvfIx5E2uEXiC75EKpVocrivm0kK4ScIYOJdzSwRtxuV7KLQ0D0MbvaE0eX8gAgHkc3NgNaG6i9cd0pxX82nxF4AT96R3K9/d4tShkQ4YHuWhtS7+jWXBUboK7VD0aGequUrswl82AEmpiHGwtjiohpwRu//BlEBDx/z7u49u9pqfbEcefanY7p3+Qx0KqK83JCjhf0tSJOfM2nVNBhsMSObe2c4O2x8rvkb/SGPph4SvJFh+QnolAfzt4e421s5OQGPzZKtq2hbs0bATTRqVBuFLwI3lM0dQxY59OmUIxOAkXogtpuNOP9Lr6+7/u+77//t//23yYA+Lmf+7mya1z//J//85/+xm/8xk//VvzMD37wg/XHfuzH7n76p3+6PHv2TN/3vvf9H7UqX/qlX7r9u3/3717/qq/6qrdEBH/37/7d32P2G2/n/5k/82ce/8gf+SMPX/3VX/17v+3bvu3n/8Af+APrT/zET8whBHz1V3/1y1/7O/zK6xu+4Rs+/d3f/d3v/+hHP/p7PvrRj/7yj/zIj5z+zb/5N+8B4LXWO7u+5Eu+ZPuP//E/PvvxH//x6X3ve99417veNf53BsB3en1WxfD7P/MGemuMEvUiMQrH531wzNM7zV0pkurQWnXzUMBwJusQpWx/sHsWHWbOBaYdC7JEQZOMfJ5QZIY0QVsHdFxgZjjNGxeC4ONRL1J2V+4xfhZBEOALXjwC4BvOMANlmAEEObM7E4SEBm4IT6EGe+TvUH0q3DwqVM3cgAZAucE/PDxiSjONMCkiFR4a8kxN2N6V2Dt/u3u/OLif2CgWLFP2UBMzqAxsXqDFGGHCg0TJmUYI/3vmXSAJ5pQDQToiiA2lLNi2FyhTomyjbgiJ5p7WNkBJgKi3FWVajg5dCoGbgDEdatfEZtc2lzKhN77uddvYZbKApitOy4kkhW1DKZQxhVTIUvV0KfOxZxBBdRxQyeyIr+uKlIj/6r0jBho7mJKWMc8F27Zi13perytMgbu7uwMLl8BUvt7Z8dqRRHtn5XqrmKcZsWR0Ncy5IAVuHGMo8pTRO7Xgm8c6xwiUeUZCgqlhmibUvlEnGGj+gQEpC/UyBog0GNh5DJIOXWoIgtarFx/sYk2eBrVeLpjn5X9ZMOgQ37bNu2/cUEOMuN1uiEEAo0RpXW8o3tGapgkGjtTpLu8cRW/r0UEie5tTh3me0W8d2tQ7YX67QzBPCyCKik6ovxMuylQQLcAiu9N1OFOhNXZ0nYzy9jGuKgCh7lZ7PTrdMUTkEHG5PFJCcjphyjPGaBiNxteBga1VIDJGdqdbsGhiWEs3GlFrrVhOd+yuDo662cF+0uXv/5wSA122bUWrnDykkhF7RIp8n1LOXFNaQ0xMmQsp4bbeKKESTiiWafZDGA/kNjpqr9i2juRhLUs+Q62zU++dVABODOHzjV3PHwXLMuF6veB2iTATJiCmiGvbKMNy0ogYJWGqQIB5l5sHwrv7e6Zfbhukd/RaMfrAvMxQG1ivV8TAMIfmXe00T5SgqKFVGnElALfrxqS1xPWxtcEOvGtkw04aEVI36uZa2THw+OIR59eecU2dJj6HrSHGwjOPDrAsV2qVoTSsGjv9JjyYlWUGOg2CKSbU1nzdMmxX0ndUgLUOTyc0n2KQ1w4DECPe8573YrtunFp642RvqtA0bt5BbofJt9XhB9wC1YA8FTyuF5xTgthTBLxIgARgzgm1NobEhIDemCKXgqA1pTclBsSS0cbqzzrXs1wizcqNnd3qmuSYAlIo6JGHjVqb0ymy7xGOmHQnTXA2uwbKuwyK++dntNpgTXG7XXFefkPS08/568/9uT/3AOABAP7zf/7P814M/+k//adffPEXf/FviaD67/ydv/PJr/3ar/2yr/iKr/hD67qGj3/84z/5f/ra7/zO7/wfX/d1X/elf+JP/IkPv/baa/0bvuEbPvn4+Bj/T1//2Vw/8AM/8P/8jb/xN77467/+67/sdrvFD37wg+vf//t//xd+Pd/rwx/+cP3e7/3e/+dbvuVbvvhf/st/+f6v+IqvePymb/qm//nN3/zNH1yW5R2PH77hG77hl3/4h3/4/o/9sT/2B6/Xa/jBH/zB//Zn/+yfffj1vCYAkHeqwdhytql/7gvoa074J1//tfjMsiDnzPG+yyiO7HmnBewY5hAMXv9BYkL3MW6eKCOIYUdb0ZltYIcjCsfnXOgEpczYtoZSMqYpHQsrjTHsBgVh4bFtKxdbNWinS9lAk1itlUUcaHQrIaPrYHyshxzMZaa2MABbq24m8y6ZmetAuUnb3j3Twe5PHyA7dzoMNhIoMJtKxvV6RdvfMw8Q2X/v2jpymog0G+PoLFEnDrz55huYpwXBmAQnSThVGKQtDOsInpJEDTKOMfeOltu7fVPOgA6o0pQ4LzN11OLdUWRop8EsJuo+UyK7deckR2HXu7UbrpcNqSxeTAT00V26M5BDhAUedGIQzPNMVNToeH4+odaG3qhjjjlAtXNzHTtzmUaYIxJ7VDdEUkObgscvj0FDnxd0OIJZKNSh+WvAEBzvNw7TT/bAi6GKaeIUZmhDnk7eseW4WSSQyzv6gYYLQYBILW1J3uXSAZFdmlGwvlxZBOaIkJg6llNmhGzvxIqBhXjrTD4rztC9rRtiyfup4wglIaXDjoPrPM/UoHpy2G7I5ecuWNeVKYrLCWLikqBBY6EIbtsNeZqQct4N83D8AroZ6mhIEtFqw/W6Yc4L9ayJpJG2NdeFm6P5XEblk4EdmyfelVeteHx4AYkF87zwML7/3OAHlVphyq5uisHNnAkpJTy+fIlSCkQUZaZMIeczhlZ2MoM/YxIOUg4nU8RixRDQt4quDX3QtEgZBDuAOREXB5d8xciAHtIDWFSvzg0vJaFuG976zFtYlhMnLh6Tvq3rEUKExGc6IcD6QE4JYxi6DUfCCT75yU/h9PzZgSYLMXgXMhxTFfjB3ADeYyHikz//i7h/z2se0ML1N3l3OAZxCQnvh50OAmGwBmJARMBbv/wmzs9fg44OHewymxn6RvqM6kAuBeug10BUPJiFqEeLTCm0HJEs4vZwRbqfAceT7ahL2yVrbo4M4JQwua/k8njlwW/OlK14gmcSYTR2ZpqjOjYuxkwDXCeqUbxr7mdpTPMJgGG93TB6x+rGvOAYvtEUioBS3JjnyZn0TiS0baOsMVMaJ6b+mSRvKnj3WUjnmaaM3ngAVnRIAr7j27/nc1I4/KM/+qMfTin9/z70oQ89nk6n33CLW1Xxfd/3fa/VWuW3MoHud8v1zd/8zV/wr/7Vv3rfJz/5yZ/4zfy+1+t1/sQnPnHXe/9TH/nIRz7+q33tO+4Mf9vX/r+xXC6u/+XJuKTEDkziaBnKyGG6vqmbYoFHIH+INNeMrtS3wYAA1D5gSpOaxIgAIIeATQcCgLDH45o77EGc01BBnjJiDtjWzceXOFiw6iPocChTgct5wRvLwk5UCKQH5Ew9o8RD72nqeipVpCROy2BXpCtTwdTh6/DFkQlCnrQVGQkcJGBKHs7Rh7NQB1p9QlapUS7CRe0pkneMwfAEYdeXHeiMxUexAHDbrkgTI0FLZte594auiilFR5PG43OL0ceKQRjAoQPagTEMJWWUOdKR7eezMk3UTBsXgJcPj8ilIKAzgCD4GwsgxUi9pxeagqf3MMwTaq3IaTr002sbRNT561ftGC4viSGg6UBIuwFLDpSaiutARdCGHp3I1jsXf6VcQm346LVBQkbvilrF9ckDJkyLgxi2viHPk3OqlWadGFzakVEbeXoxJMCT3gBqeWur/Bnmm2R3FvEYgMtDylQoEfDCoYSMtW3UM3qstgnRZuSpercqEtUUAyVKY1SSOwplQNzMBKqUKhlPdaiNKLuxrujbBoQIA82lIQbU1p0V3AEobAA5FIREEgILnAaxjiAJjy8uqP5cCATBBKd5waiNMdPAU3RrCAhBMYeCmCMnGct0fF7U03pK22CqmsBozFWiu0wVOUdoB3bH/ZsvH3C6W3gQFMD8e623zaVZe8jJSsmHF7ApZkbXelFy3siDAABeFklEQVQ7TDEvMy4PF3TdEKdyoK2WheELlEdwjFxrwzw7B9wYeED5iGLOE3Q+oXshRFKNHYVwq41OP5BdfLmtOC0FUzRoWyFQLFNxdKI5k5lrEb+lHXi9YYC2/XDAMBv4gQgxIyfqQD23EXV0J1JQotNqd/NqdEkH18hD8jMM6/WGOjruMicgu540zRPM9aQQQTSheS+wmGZ0dmA8MxJSyqSJ6B4+Y0fEk/p0DUqpS3DMphrXkMvlinlZGGMt/vyHpzWFEdBknO+abhtezUVOgh4vj5hzQU7UqKtSHjFaY6c5COackZHQOyeUJsIDiQK2VjR/rS/fegv3M8OdaLyNh3dj5wHvB1MY0LShpILeG9a2IpzYjS05w3xqycOm+YQ1HIU/Gw+UK6l/ZixOmbaZ88xJzKQe/+2c+EBGcK0N3bvUNPTxUMeTdcR6qzjH5PtXw1abr8dA9HAOg7kJU1BCYdohvGn06gLABs1f+At/4a3f7tfxuXp967d+63u/8iu/8vLe9763/4f/8B/u/tk/+2df8Jf+0l/6pd/O1/SOi+GH11/HG3d32Gkssm8MbuzqraIkmjRa28HuFSQ32CHkHzYQAQ9JAFIpqLsO1793zNTCDjXSBGJGCEZdakrIMWGrDQgRZZmw1RXRNyPxYjaFxMU77Qu9HqOx3hvmPKHW5qxGbhIwhYLFbHUGKQBIYqyr7rrjICw2M80uCk8zagMS4Fo9jnwlslDz/gemmZ0stXEwc3PmwqlqGFbJqk0JwzoUipKDyy86CQd9AKIHPL+ZHkWfmWGeJnagUkTtu1TBG2THWIz4uxQSQnQpBYCtKlpnQaO9Y5oSYkjoo7sOzfV+xrQ29Q02xARJEZRzUl/ZlZq9kifUusEgdNWDJsMYyBLWGFHrIDqpG0IcEGHxpr0DQSCB98BhmoPgciFZZnID4uiD0HrvwtatUpOeIosw5aFr5/sGv49vtw2CjHk5HWzjkrNrK586PxLigRg63d+hbzdYa6jrhpTLk6zA3dcmBnUjU0wRwSIDPayh94wcMw+LKcO6MizDSBAwGDs5ZgxmECBNmTGpraHemNRG9Qy71cEPBClH3K4bEILLOzrmQs5pHwqT4RIlcm4Bjv57Y+fQNKJXRyQapTF1W3E6P+MzPDjqjSFChRzSPfK2tQaYYsozDHzP13WlvAPMvwgiqKNBB1BSPMysIQcolKEuoMM9JkpIEHgA7n1AfVoQLcBEMS3sXhrYCVWXFDVrPADsWk/H/IkY2tp5cM2gYx40BdNc250xHp0mo0cXvDZ21jNIdNl6RfcEQgijfUnFoCyMDQLqN1OOCKEgBDYG1ssVYQzq7iP42g00lgqj1Kn/VhpWBTR2IkCVxd8Yhq6KQVIiSo6oxs61aUAsCWnOHu7hGvHWoGPHJSakPGG0gQ5130Ag1SCR2jIqQzN2koqpom1Mioxu6u1akRuNli+lcgpghrptmMoExj0Te5gii19xA2CtG+aJNIaQKdsyM7R146QlMFWwC+gjAKCOFQuRYTriz7KpYZoTYpyYDngzlHk6yC05RfQQKZNCgwgPxuqHITMgScAGBn2UXJBKwePDW3j9Xe8meUF3DrhPoAK539GbHzCu9XfPT5CrT14kcu1ymQK79YI+KPUQGCww0Eiirz2ZchDGIBsuj484nX0/0YAgGd0q4BPFFBPinDHU965EaU1vNOVBgDfe+jRifi+WcEYICTk/pTvyIB0QfEo6jFhRmOLx8RHz/emdlguvrlfXr3p94hOfmP/pP/2nH3jx4kX6wAc+UP/aX/trn/qH//Af/s/fztf0jovhvdsX9vQfJYsUQsMLRKAQDw+gzjAFx9CMijknjrAjNZDaqaUdg1KCADylCrkOch/TxkBTTEoZ87I435bF1xiUBuSQnPrA1yghQHQ3RajH+9IUMk0zbuuK0bqbKRqgFRGCeVm82+3hDc64zRMlA5Qn8PXR0MJFXY3ygmkqCJELUs6UT/RB41hOmdpEdxKTw8x/ZmCGMrteFX0MhEIuJosKGtK22iDqQSdBjtF4TBxrPT4+8usHoDKoG6t7aEXC9XoDQP2wAEjGjs3wUX63jqnM1PJp9TS9hlQKrFWc5gVrq4x9VoMKpQchRVxuN44ftw0hRL53Sh1byoxsbb0ixMiDEwCzgHVd/V7oDE8IhmaD0gDrvjkGN0gBOSasK39GSOHoMImD+NXY2YUBbVRki+yOS0DIge70xsJt16PC41jNp8f7hrd/TjFGQEkBUQCPL18iwFAgMO+a7J+nwSUWgZ2mrW4wUdTKokdUcbtRcsAgFBbz1HR3bNcblvMJ0zQ7LYO6VnjRFUNyXatg6w2i5uY+o1EVoDGoNYwBlGU/cOKQmUyZhsl1rSgloZTZO3aCWjvOU4F2mtrWdsU0UTqyc3qhOMJfSGVhehcPn4reNkxLgTbvbo4GEcF22zDNE6aJxBMEQZJIPm8i/5daeprG6tZQJj7b82k59OzTNDEcJvoUyMfVy3KGiKfzBXaBe69876aC9XpBjBEPLx+xthXvenZGVzcmxoTb7QJTw3KekXMh3xWAGINLmLrIePZaiRKc55mTFNe6D7DrHiUg5uTGo92At7g8iqE+ah2PtwtiTMQGpoI8effVO7YSgk87aLhLMaJ26qTXdUUqhV4O1xgP5f0y5engxpoFjsMnHL6GJBEaAqo2p3UELNMMgElxZWY89bptyJqRC2UTKWU0I+KwdrLDc0xoDxtiKexqCguwrozuViUarVpFD5TpUJZL+giZ45wMSo7+cxKSRAaRuBl7qxs9K8MDgURIlogRwVhkBpezPL9/hofHi3dbGSqTYoJGRd+aRz33Q0c/PE0TqghJ3EAMLHcLLLJ5IUOfzKsIh1n8dt0wz7M3UHYiRsKz+zsMP9DKrpVWLmQh8CCvGrk37Q0Lj742nwQ2JS0pJX6fUgqGkWlN5rhBVQ4CSYqe1Chc28wUdVsRY8D73/8F2LYN0+z8b3mKO0+7nA2KoQ2jD7TUEKeI+mYFHt9ptfDqenX96te/+Bf/4n8A+B+/3a/j7dc7LoZbrZ7cBX9IfUP2Ua66b7cpO3w0yXBcN880cURkhJhho7MLWNt+JobBk6PczKOesY4d9QVBmQqu6w1wSLl2Nx0A6OpxpJFjp7ZuWGJmB1l46g7CTksbneameWKKmDBrKYBImbWtSDkhu76RWe/cfJIEDGVRobZr+tiRLhNH7K1WGIBrv7pTN7OD0zvKnA99JDtsnoJlTx3bEMgndhQEttqIXzKOJVNKTMdSRdeBcz5BTNFbx/3dPekUQ3C70t09TRm364064PIUyRokoPWGFARjNASJWCamCG61wrwgTckDFlqH6RUxs0NmYyAFppf13pFDINotJhoYPcGOKWEJm9MGcs5O1SCJQSI75rfbDSkHJxsIkAQx8PWO0ZBTQkkZ2tjptMjP8rZVFglOv6ChLjiXVFAiQwtKoTTnenmEajhwcaVkrNcr8kSCBEywXlfkwiSzXIp/P35WOZBTjRRwXTdIjJ58xyLMBiDCaYCqoJSCbbvBjCamqcxoawU8Evp2u+HZ/T1UFLCAmAhI2GoDLB+6SnSFBu9gKWBq/N3E0EaF4EmnHMSwaUWZFwyPYc2H/lVQt+2gBTCQodLMKYIpT7g8Xg4tuwC4u3+Ord7c/CPuWt9NrwPWDDFmxOAa4GEoKeDF44Zn9/euxxz8/EwZSCN7ER84Tjc343YjLlASwsSgBTHDUIGEhNZZiJU8AYFhLNQeB6xr5eHMR74q7PT13mCV/FUaYRtOp8WfTxqVggieP3+O6+WK3rrjzlwy0ju6snCiiZgHVZEAbfz5Evnz4aZgEVJQStqLcpcQCSPDFYbl/owGhvDEIDDtaG66q0YZDoIcMel9dNxWhjEMo84YCDidF9weH1Gmwk502iUoCbXS6Ck+JSEPWtxwRtmMDeO0bK148eIFXosRMZM/fX9/z8ZEIE1HmWfOgwtYWBP3phhjQIxSpBADknKLoSaXk7Y9FChGaloFJOrMc0KeJ6ydh2ftA9frlfqJrjSKia+NPFtwSjX8FQ2DSEIH10JRrukC+FQgkYTjxsrk+nvVekRDKwamUhCaojag1pUdfdfhppQct0lM5O75mBd2/G+3K1KMNHT3xhCOwACgoWxScH2jjIvyBUPOhea7jXgzPoyUDrLpBFjnga+3jpwnfgaNsrsUsweXMJHxaOSoIOeEmHj4j4ge5FSRIg1xNHTvmu7oWn7ur5R9KJ699hre/OQv/3pqjFfXq+tz4nrnnWHbNb1PRURrjTSJzEKna2cykBD5kmLAHhrBibN3JLy7EnZsDthpCcJNlEub4610N6ZxASafkgVsq+TkigSm3BkL0yABiEZneeA4sUxuTjI4/kicF8ziBT6aIzcyswCjswNJEuCaLtNdo0YgUJgiTPuT4Qc45BW1DXY7p3gUvNvq74WfyFX10CzvZgxJNPD4O89NCXIwj+HhA/MyY04BWhvH/2nCtnlHTCsNdyK43m50EUeO73PMgBIlFXLwzp74hhxwuV6JzjKmCppxA9uNLFAlbzlyk17bxtG2OsrKFCmXg0WdYvQuLBdm/vqC4Cgxl/5hKjNu64Zt2w7yxBgc+2+Dutwci9MYqMGunSET5u9Ybx1dx0EoEQhap7HNDFi3G7Q3xMKY0tEHdYtuYFQB5qmwU90HJCTUNmDm3Gx5Strr3VANmAJjiwGOTdd1RfaNpvcBCA8FKdFZb971DCki8VNCSILrdcMyT4DtZJGM0dXNk08Gl9EVcCe79QZ1SQl2qskARq9IOaIpi9WcAOtPh5MQqVFXM7Q+DuPlvonfrlfM0+xoLrJ/Q8yUTkBcs08MYs4Zhu6jX3aop5wAVdyuNzybZ3Yec4TphhCzh6h0BjOA+urW6tEVRghYTjOW5YRf+p+fgqj4QbCg9UptbgLfC/FY7yj8Hp14N+opPb0L1PLuBIs8ZUzzzOINpM301lBbxbZuSH4Aqvt974VCjAn18YK4LDxYutzHjEENLOpmZ26TBMOOuzpOcngYUcL1tkEDk8hao+wrBjfYCUkd27Z5USquJRbEtLN6idBT55pT6mEu+aLptGt3/e6AmWKtFfNygqIf9JwSI1pvTK4DzaHispTWG3JM/jx0NwpHR7Sx6LO3xbt3v1NvN+p+BU8c9Vp5iMiZ61vrjEVPPhlpvbN7v2148eZbmKcZ2XWxIntyJmOPc46HfEltjxHnJGmouuFQqLlVw5IZEz1GR5TAZ9ybFPRsUG/dXCoTBXh46yXO988wLTMPAwhHQQ84hcS7qjsxfcdPDuM+EIwIt94VsUxvIxwFBGRIZEGvRq8H0ZksTE33QJudGR6QfDJ5IEsjQ2YC5OjsEgWYIBqP723m98cgPtAsHVSjEHY+Pie6ah697BOTECNiiZiX3xKU7qvr1fU74nrHxfBwhzJADRzg2lBhoRRDRJlP7lQGAKMRwczT1MR5xIK1bjifzqiVSXUEoyfveHWXYwRyD99e/A52anRwnDWVCUPVQeTFndLerRZBFeopc87oo2O9rXSaTywuTHY2cEIMEXXdgAjnmFKyUEo5NgYMRW0bxjAMCPKhxTXXbu7GNP5O0TuG5u9ZmTyfPnGctY/g1TuYjNjkRtE92Y7OdYGF4LHXijwvTF1K2d9nxbZ2pHiirnI0iBny3lUDa3kxJsF9+tO/hLvTPSRFdnFOE4aam7wYbc6mPzfg3t/WvVYSDUg2CBAzYNfOlYg+1As2H8OFJ35y63Sbh/SEeOuNUHsdrs0NGddLg2DDPCWnYHD8nDz5aowBlYG1VsTC98XEMIwb7/VhQ850nxsMlljA3daN984wjLp5451/f8oTzIht2pF6/FlkFG/O6twawzpO08TOPh8Ed/ZH2Bg+HiZiixGoCTGSCGGuqe+tIo4ExIAcBRgdOdLstL9fJEtwVLptK3SQvRwiQfy1bW4So6ZURCFDuclrQIozgkWY4w0TXGdqjLy+rZuPa11n7Xilh4cXUGUHsA2SK8w6TqcZARyNszTnex6jx/QqMOVMVvGqGGaImVxeeMEZQyRj153sZZqghoNywv6iojXDG5/+DEJ4AV9OeEDdxkET6L1TfhNc3g3Gl+ug7lsEqCulTTFl12sK1q0ixIytdj/0cdw+PMK5zLOvb77GgebA3ju1tVtHRUVPw70PDOIwNcylEJModPnfVkp2Uo40ODpBo/eO5XRG0w7UDu2KXqjXvF6vkBCREtce+D3P1+IosTFcIgbYENwqx9pTmVEH5Rx751T1iY87zQu22ignSwHSOmzrqLcVXUmX2It/M8NUZlIZPA6+OxHDgIOsYWqQTGRhmReIH4SPACDdi0Yeuhm9Te+F+O8GmIc6CE7TgmGGdb0i5UREW9qbEdTsJkt8H4ciBj5bCHACTOAkYutYlhm37eK4xoCO7uE/CXuQSYoJYoKggjEAFR7mxqboM3XDAQnJ7wfqaN3QHGn6NKUsJEig9jcxgROd61CrnRKPMh1mzaFusgUN18JMdlAdwxjsnBNEgWkqmJxGFJ2BLQC64phacb/xgCvA+dl87rQn3C4XTHPw+4qHRDaZGEByJHwZ3ODKP+uOlJvvPutchN9Jlw+1f5fH6P0uu95GS/s13Z/vuBjei7ph7E4GN8KYkCfJbioNM+qRwbKfmI1mAWFFhnme0DayHqlHzTztjsEEMbMnLbJvHOIxpH3Qub7/jpQoROSY8Xh9RN7NZmpIU4HiKcEpuMZMx2BSk2v6CEtXTDOL4GFPnQ4JJDJY7xyxNsAwoCbIhW7x3bGuoOwhe1TqNBUnSNDxvwcP7ElQJRFTRqJAwjxNqBu7gjxnBN/UDLkkbFtl8eAd6FYrC6Hmpqn1JSQlJ2gAOUekoD7CN8Scae6bI+a7heZEdx0nyVivG8pEI9a6VUzTjMvjlQeN7HoyNbQxvCvWoaMjehERAlFLp9OJ43MzXB4ecXc6Ya2NJjsR3G433xz5/gmE/FdVcj8FiNEA6eg9clweOCpca0WQBG3jCDaZpozHhwuFLnFCThnJecvBA1e2trFjmxjDPEZ9my4vuRSDyVmP15e4v7/39z+j1uqOfo/uVkNvLPhjZjhFEppoejVIZEACpx0RvSuk7QmCHraRaH5MINGj1g1iPCguy+KFMNOptrqxY313ggw68Ycxkre1zmIuBOgQrNsNIVUeMIyR3Cmxa4qhaL2j28BaySMNrt3uSsLCtt4wOu+r63ZDiAlzmZCDoK7+fZsfXgNjfJkCBqgKauP93v2A9Py1O9RGtJOpeWw1n9/WBsSJJ3soBSdQGSUDKbLg2KHGl4crJBjun9+jezcUSqJEnDy4J4RDO1lbhQm7uUwz7Eh5gsSMu2lBdRJJhCEGxWXdoCYe0MICLiUGeHQv6LZ1gwylLKk2tBigbS9QInoLKGWGeMfz5ctHpEBdLGDodcPd+ewyK6beSe3IJWKIIKSCeQm43lb0umGaZ+AohHn1NpBiQRCm3A2lMXLbKmKJSNOMkBOsO91HgeGaVRgnURK53paUcL1ccbndcH52jzE6g4C2dpgkiXikBn9P8JMDM0iB2VBDbR1VL5hDxPl0R+32vkoLED3FsbeGMXh4HLpPFLgXhBFgNtgNTQnrtuGcEqBsWph4ITrcaClwiV1BdtN2HwMhcq0NQjrRuq4oeWIX1ADVxnCXEHZFAgRkmD+uK+6XBeflhLfefBPvu5txns4YtxsnEYPivrRTiAC0dUOZykFDOQKbgschi2FyGZZAUDLTWuEylSACzw3HHv8NE5RpAdoKVUGQDNjAyxcPEDHnp1MIYoFTI/PERREaBruH1sQkOC8L+tiQl8KDj7pUJUYmxkKcBBO86PemiNM2ZP4Nh5n9dl6fNLN2uVxO5/P59tv9Yl5d/3euWmsxsw7gzV/ra99xMaxjkKlbEtFM60ZNmOs71Y+j0YsQvhBuEjEXiCkXD9cZD4+HNGOs8D76pkY3Uw7gnaS+n54lOFvybZGegZGsrVUs04Su5EqKy06DeIew05nOgAtFzhx5bduGneOZArtKEG7UwUfKm7up121lJ0PYDRudqKF9ZF8KNWR9EOk1XOIxTYUaTbCD0DzsgTrWws4cWDylVADZAftK/mwS9EajINuZHCXXVrnplsIoUu0wAbZbhyDi8viIqUzUZYbgSUWC19/1HpgxErc1muSW5czNeZ7RHq7UE9dGjA9Y/AGKXlkIU5/WME3ZOyqK2hvm0+nQTKeYMM8zbi7T2Jm5sqf01YoQuCADESEWpNy94z1Q6w3BCrFgZtCAt0WWcgJRN96HpTClqbbNCQQNpXC8u20VAsWyzFAFtq2y65wydn6rPziovWNZloMJq4P66hQjbFC3WEoG+sBoHdu6YVpmbEYyR8kZ63rBcqLWk6QSRuR2p5vQwDKRPiIBOWXXpBpO5zuYcKS/T2Ikkl6gOhDBe9/nJ0i5oLcbbpcrUppRCmOfqWWlWU7VDWw+oo0xYqsbzaLeHdqjm1ttuL+/Z/fL2dLWG8wEdRs+xdiT8UjdGDrQVUkm8cKWkoWOeY5ASI7HYshAlIBWB0YEcslMOwuCCB6Kt8GUwQQenkekUW4qmWhGN90CoPRqdKC5jtlooNz1pfM8IcaM6yO7jKR6BayNnbTROmKiLj+EgJwnmMphaL1tG8PZhFOO1jYEYThNkIBQIsLCqNp622AwPLx8gaGGaZpRJkEMBh3UmM5lxrauSCGyCWDmenxFuZvx8PiAhB3/tmCtG+ZcjunVVgdladsKgXh6Iu/BUiaOzH3kvsvGIAEqbhb1509Hx+TSoTjN2PRNnMSoj964fmkfiCUeEpN9QrZHCfOeGSjTDASu71unUZLyE0VwrGT0CQxjr4sf1uwwcDX3dkQn5HAN9BRMCMR2Dg7vr9Y7hpAaIwgwBW7r6tMkIDjJYm0dIQkWN0OKm9lCpDafyWzAaETyLS7vg1HqN/WM0SuGZEpZ/HezAKhTkCDUchcUyiSwy6NwNGFyntBHoxQiAG+98RbKUo4DuRq8OcGZ1OgGKKkXYyjr5MgDRI4ZsE7PRkoIpTgb3n0p7guhjGRPuaRG/o3PrDAZkKjIsbh8bT/4UZaoBxc9OT6Th47PZbDaRz7ykZc/+qM/+v/95Cc/+VEA7z6fz1eRnV/16vp8vFRVPvWpTz1T1X8H4DO/1te/82IY1AyP1iHR9UNdMSpHlTAcoQBUFOjBl2yD3MPa+ThF4QimKTeuyUeQu8saqh49nPzki2PktutxhxpKLj52owkHBho2hEWTDY9V9lN2dIOemUCN1AoW88EJDt3HrcG5lg6FV0PbaH4ZnmAVc4Q1nuTVFavq5sEjYhfwv6+IIaDu3RaKoAFjcdK6I3yyd6QgKHli+k9gHKY695ZMTkMdPhZzveG+SQ0zSGKEsg3+fuvtBpqU2I1qtwYItaHzPNHwOAZiyti2BkEggqh3qO656Fyw2TUAzPmV5vHcpoIcM8yjbw3AwKB5I++BAdThQljYIgSi8nLC0A61vWvoi79RFhGyACqOpKOpqPdOw6JrTEUEIRraxpS66GlsUYCgxJV1p3Asp8kPdzS8qCrmMgMSMJeJMHoTqFbex67RDgEIQoNQbRXdBqYzNY0GwdY3dt5TZLGVAgvKlLh5DsWoDHUYvT8h01LEOiqCfx3NpsEPXA0J0acrSgqBJGzrBh0D59MC7UBeJqQyQY1pg9QXcxwuKZL0ABoyqUFMx3hFhAafy+OF41NEqAkiyN2OU2FnL+0RK8LPSxUtkjlM3FODiqDWgBIjsgif7bayuw9PRRRBSILi2lHBfhh24kKMqHCDXfN4dEtIJWCOZ/iUGt0GzucTtAp1jSFiXRt1+kGgXVGKQUclp3yaMXxtsjG8oK9oIKkmITJCOxSodz5tUBdtAFJgQtyA4eHxAgXwnve9F2009GaQGFFyQCpcX9gToJnVGg/VZkCJ6dDTz9OEN25XzOcTYIalcPqkIR6H2GFE0rXWYRBcbxufz9qgCYhChnYAD/TJBN3xlq0NAMOlD7v3Qj1+vbFDebkgGmOc16ZY24a5FEeNDaQ8H/eSGrviAhwNkK7EQebzgnET1NvVUxwLeldYEAyQIpP2yPG4vxY/PBV5wmAaJWNt27CtK6YyQYJznkUPmRaEn2UJhbxsVbShmEJCe7gSW5jdbOcc/KE85IUYkacCDBb9KUaEwqI8ZafTFGDRAmkDbdwocQCxgQe+zMiWDimRi/72rqoCY/B5706XiOax75FytoTsUj1K1rojJocpgg3UjfdVCIIxNj7bSWAmGDKAviEGHuqjc/r3YtbMJUede0rOGSkBokzru7xY8cYbb+LdX/Aaljtfx9zUDKejvB0RmT/3BQb/sLWGX/zFX/xaETkB+Nz/jV5dv9plqvpzZvb3PvKRj/zmySTgDEd2YwHrSt2jEam2m1jUHcUKQ0RgIermKu2ND3Zk54PYH+pMadboXLQiAO8GjOoFUJyQgjt5hyJIQmsdKUUkTxeDF64KQ1ADsHcR92LJDRB9eFfRMVEwH9M25MxY5+TINRFqPiU43cId5ENZsKQY0ap3I7VjDGLZzIMSSmbX79D4+e9eb1c6roWpSVoV221FObODGpwbG2L2YISAWhtkdEyZhpiSme5FTSoXzLqt7MookAtZk2niJrTVSlSbMW0uiCBYwGgcKw4MhEjjUHPnOwILILUBMUPMNBPmHNH6ht5oDEqOkaNBxDWgjpWblhl1I1aspEiGc4yujXMjZoqodUPJHJ3WW6VRJyXAAmSPjjWndZg5t5UFY3d397TMRwhHTPycWqfR0ppSmpCSv0bq2UvJMDEsJ6b2vXjrAafTmSNU135frxfv5iv6aGi1I5cJQASEyX25BDfwMVa7dQ/N8INMDAHbVpGmAomGDBYb19sGgMXAPvFQABiO4BLv1Cn8ng9urjO0dkMfA/d3r+G6rgiBFIs9aAbmeuuYji436QTitAgWIGqKF48vcX93h6DBpxUcR4vtGsXoiYvBU9+S66aFWtIUoY2HP3O9PkBSQykZtXdkR0txSksd6jLPDLpwHN5oA1Nk13QdHRgdwwa6GiNkIwkRAa5FdgNQa81d9N6NjMklBQkmRo21JQRl4ahbY4d2H517SEqafFmUgJiIpStlQlPF6dkzIAlevPUCMSTcbpy4RtdgAhElJ2weRR7zgmCATpSQtV4Boxxk21b0tvFZax2pkI075czOoh88QxQ0bWiurw/JgzPK02doXoAFCGPSARQh4WB0Qw7EpAFk1+6ouyicOp3Pd5iXBT0bkAPgiZajGfqgMTbmhCkm1z3b4YvotaEjIU8FOSlyDFi3K045uO4UTwZkI/oyRmL0eF/r4YfgeivIKdEUuRvUnFJixjWG43w+L7Wx0ysxYHPWuiqlFjBO7bbYEQPlVqNVrGvDtDjfG8DD4wXLMkNKPDwx59OM1jZOCwdgMQEBSAKM2lGWBV2pgy7D5XhDgUhmfZAASdllH0AfTyEhuUT00aAearNPCfsgyz74dMXsyVg9WmPKXsJBguAjrseUiVjSXeIwXC6BQzaUS8H1esXd+RlENrz//B7qlSMLcTZu+PWjt1/RJErpnZcLvxMvL4j+Pz/6oz/67QA+gCMG5tX1eXp1AD/3kY98pL6TL37Hd/e2bVjKhAhu+Ap2PSVGN9kYkhss+mjIOR0brbm5bD+9Ep1mx5/rzmglpwwh0umqw417rim73XyDCZFaq5Cg2jG2CiA625gb364RU6N2FkqUGY18xC4x5Y2BCNGZk715EEfdAybgxTxP8601mm6UhozoRQ47Z4lRmq17VzIgGDf+nMrBqw0+pu690v08BqwD80KWqxo5w1vtsELMWU4RKWX0UWnWkoBeubht64bhh4IAFtFMQ0u43RqxPsOQ4oT5bsblusK0YdQBmFInKopnrz3z0SSL2ehINYW5Y5trx7reEEf2aFWGDzQPMAGAWjv1vJkEgdttpTRFEm7bCnHdbGe8GKbMceFpnhHiQG2KslCHbhBAG+UUSAhBPcRh9kS7RMybGebZU/tMidMaLMJoZLogJlIMRmskGdxYHJQyYVtXyhlCQB/UP5ZScLleYaCRZd023N1N2NaKMhWUeUFdNxTv6Pc+oKAcJSHiervi/m6hRnzQVR6ctgEf9fdGpNm8LCwIQcNkdoQXCW6Cbg0dAbdtxRI8njqw+1jKjLp5UqEXCnvhawNAN09Rm3y6Yai1IpV8GNGmqeB8f4fHh0e8dv+c933cTZM+6TFFjEy3CwImmvk9vSwnrLeVxf9QDFRECXjx8hHTsnDE7d0qxvYm9FoRhBOnrt2nKZwABAC3282lCzxALstM1FUsrlFPx30mARw5STpG7ww3oLFvOfE1mDLEYFtvbgobKFNh/Ox84vjd6FGIKSGYoYTJpV98Ns93d+4f5BoQfKSs6+BzN1hgkRveUbeKecqQxEOSmEEMmOaC2+WKkBjWsfUNqTDAZhLBVivNYXH4BOqpoNnNTltrvHdcW928kIouJ4pRsLrBWYcjHd2EVhLxZXMusASkklGWglzLUcANJT+6rxu2xwtqoDktp4xhilgyUprQbjT8LsvipjBq4Ut+kkM8YSYZ1W0gCWQnfBx4SZEjZXLXxa4bWdGmXGthgnXdKJ3pHdCA0zR7sawwibitV6S5YIBmbhEqzFqjvGF09X1hYGsVoSSclhm9Vt8fIp49u0erjVMC7cjCyWOaE9rgzx3NoKJPshcPqxAAMUWYcW9bVzZbIJ6mJ4ahnXg7RGwei73HbgOuAwYwlwJRQzll6BDAtcrDnKjiLPqDZjHUZUP7Ws57tyw0WK7rDdOceeB2XBtDPNiYSjk5ji4iDsbdt97eabnwO/r6yEc+8gDg4bf7dby6fmdd77gYzq6f5EITIDmy8xs9SrM3NA/JyDHBhmHrhM3nXA69ro634Z3CkyM9+II5YDQ31I5pml2PNdxM0wGLB05nDOqboux59+aoKB/pKdCNQQ4wgteHI472KE2BMRhiVJdbsAOeU/SULvER7k4WSK4fpBmlj3EwNQ2GIXte/cAYbhB0NmVKBSkFD1pImKaM1jdsm2KIQibB48MDYkrIZcYXfuEH8OlP/zI1cq1hioUxparkL4/hBQk73uab4PAwg94VdRvIJw8kMcX14kVAiLA4cNMLUIDTdEZMLs2AG5oGZRK741q9a1CmCVutKGlGzgz64CJOE8/5dPYWkI/CzfnJAggiUoRHTlN3HQK7pzERh7Sj40KMqLUeUPzbbUMM3HB3XBVfW6b2b/D7B1B/HR3pNk8ztroezvYQiTy6uzuh1u7d7YzeAbOOu2f3TG0KCblMND+KIE0BkXsZpuXM97cNNxN1lCkiByAhQMeGkhNGY/FVB3XKJU/oh4tbEFM5Dm2QCPOx6rZt2NbGzV6pQ0cBphNNSNCAGBKa61trba7TbXwmArXIiMJUMSPRRJ1SkvJT0ThNBdu2IeeElDMeHx9wd3+HKUQvDqk9RCChQJLQPGmGYJwKXa4X6nxT9MMhk8Gs2tNGqgY9UszMD2kNt9vqhxCm6qUScb3cMHQgZsp1YoqoY8M8L0ROKTWbe1KdKLulsuPdvFiGCa6XR6SSIEEQd0JLBKYpQUI6AgwUA2tdcSqBmk2nqczzxGK7U/qlXRERYYGFfPRu/DQxcjxG5zrnjNYqTqfiuvSMiHwc4nJOaAm43R4w393znvf3PCfq7WG+BgVBWqjVX283yDRDhiKE5MEWTrwY/dB7NjdJnk4n9M6OaowBkgISFHWlFCEkyr9aa0hGM1wwAXy6U6aM5UQUnlEZxsTNdcW2sjM+hqI+3hBjxHlZKPtCOjq9DG0S7wzHw1ei9kQL2p9XAEdHFMJAj5ze9mdgNzl7UqOaQcxw2zF4ZphKBhoj3adScN2u/D4u1WCRSr66wvDau16nV6R3pJjZ8e7V48sjSoxeQJs3aMhsH00RYOhgcbt3t6lPd+O2Pw+5JCdw0HC6m0p1GDW5jjajSdEOFJ+A3Oh6rSijIIeM3inhMguHYS/n5OE/bliHUHoFhQSfmg7gtJzQR6XhMkzIHv6SQgJ0QEdFF8qrkvCwG/2zfHW9uj5fr3ceutE7tVEhIWaq6XkyJZg/FzppKcg3d+2yq2uA81X1V5x4c3Z0kBqaj4RpOmMQwr6IGAYQaEQzT9sKkcgXEg64EIlvqGRxZqK8cqTYc+wGPT1wVfsiEYIgCrVWt/WGKIVubDHs8c6llENhVGtznE/HTkXgiJQb/zQ5Y3YbpFUI0GpDTAnX6/r0OyFBJCElYJo48r17/gw6iCH7pV/6JF2+AsypIMgTYik4mSNlRtHGnEg4cId8iGyDSFMgANo9EMIPBQaauqxzTA0w1a3k7AlMLCqV8252GNQQfAS+F3Pr5YapTOijs+PYK+RGJ31I4dAIR3HDUQhovbLzaCwgGMRRMEbDsIBt6+z8AYhSUNs49IFpL2glHN3hEPhn27aStjEa5mkCZ9/mhXPwkBNzZ3tCTtx8h1aQ9BRZ0OYEHRu2beUkwUe91KEOvP7au4DEg8wyz85NHdSZC8WCMVDqEGNEN2OBHxP6IIJpqCInVta3dcNQQ84TTYDKzmsu2UNpElJJ6KMCQkkCZUqkZazrxg04BFiKQIzsSsWABz+ohMTDWoyc7PCZGF6wNXYTU+JGHMkardW5o0Oh0olbisCOLyzTDAwf0QLeFR6QyELwrRdvOSnGdd5uUuOUITpD3A2BO/4LO7GGnbkxKBGCEVs3xCkGu/nrYFUbf8fmpAr/XdWG36+cZHWju14itb85ZgTYMSV6/vx1IBjMGgtYYVxwShloAzkXH7XfsJxmIETqc4UHvyVO1CwjQlUAMDqXgQcMmhFzfAEirreK1hR7SEtrimWm2Wsf1+tGU+/uxzCwO9+2DSVlTNG5xkpdanBiA9RQ185nAka/gyqK+DOUE3ptiDlDBjyJk/ITTsIC+cJqGBuNoPtnnFJEuDu7/IrRzCLkfN9uV2y3DWVRFKW0Q2IEAo2cKVGvThQZ18zgyLWdbtM775WdRc7itB8G0H1v6KM9mTbZ2gBCIBs8sOiNKWOO5CR3I2kHSpnUGMSsbXVzORGNpEGMUhqwGOYUQaEB0M5DUL1sHLQHyrhEwcK4Ows+BD+cPcn0oHYQLljrkxZEwpGHH0W3hxolSfAD33xa8PjiJebT6UCjsdHDgrpqO0KNWLiSXgKoM+IDelVoZ1hUTkwF7aN580edUR1RWwN0QHI5+OGfywa6V9er69e63nEx3I1zpuBuWRmDiCHugu4UxtNiJcGd2yBX1HFfZAcD2g0NnrTjIzFTwxQDx0eDMap5yk51eIKVE9fmWkFzjRQA2Sv0wFCMMqW3ac0M5pIIyiUCcgoYo7qGlhsUdamG23VDCIIyBWqSVSDJyQO2x/R6cdf2E31kZ8aMQQ4pwoTmquBdj+oYppyCb+oJ0HiQFjjOIouYXTc79FsmhrAjzoa6GQowDBbeMTtxgovkUHJXbyud5MvpDHhUrW4VTRUpzRjKrm1J6RhRB49B662zQwTnMXtk7vl8hnZ2qWaZSR+AckyqRoJGV++Cc0MAgN5ZmIZgQAC2VhGNhU0ppEBMUwKGYrTKqNmukADkXHC73bAsC4kObui7Xm+YpgmlZMZMx4QYyAC+Xlac5zOQqauU6L+fdxFjCJDACFJKdWj6q41u8h1iv2vxxtoYuCJez5ji4eFKhnR1jB4SO4nG9zrljBF4T1hX7+hW5HzyZK4IGx1jdMcJshMEoQY1hIB1a8SSBXiHnkXqVokfpEFzBY2czjwOgSl6Y3BUbA7/N3eG+3MhkOPvjN4xFadsdMUQ8n1LSVAzrFt1aQyjkrUN9DZQcoSmgFISmqqPmQtYCPDzjzFRJxp4/3LS9DaGtQgLV3fFwzpiyqhVkURx6x1394XsVeHhmUjoPcXODVlO0GC4CE1qIgl1DOLbYkBJxU2QoNyic30YqkhzclnTYOiJUHY0omIA2C43qEtPTDqLY+XaM3yaksvsSZUVIZJqMfwQZzKw1RUqHbEo3vuB92CrVwRnC7fR/NAWGArRFadl4eclgBXKRNQPxuv1BvNib7jUJzsjNgVyzPeu4154Gdg8mE4nmHXkNGHUhtvjBXGZkDzqV/wQq4MpiM21sOoIMWqyM0RYLAYRzHdnvGVvAXDqBsR15PJ0IGNePBspKR+61Jwi8Xyu+R7DMGQcneOdv30gwCDeGfX72ferYb4+CtNR1ddL6peB6vQFmD0xnI2aXxuG9bahtRWn072vP5Qv9DYgIULS06RMvKs+dtMZAidpEiD2FK60x0JTYzj83ttDUoirk904OwaN1iFiGDX9IUZOceqGMi9O14HrEOEaaj47O688+Hu+rpw4BcvYQ7NScg585Pq3rc1JPhElCZ+X1gB4jHR4BV94dX3+Xu+4GA7iKCqwszOUp8sYAtrg2JCFZwBCpnZYqR0TocGEOmCDRGFCmeLgnJooujaIRYSgGIPEg7qqx90+IdtEwPhZIU6MY6W9u8IIzlyCb3Dq3NHhmlfhghNo4GqVLupSChAF53hm91Qi+Z0wtDqgHUhJIJGj4D6Ui5mPKgcMbW1IeSL0XCOWQrB/w6AbNybkHF1rzIIvS0RMdmzgw0fFrTaOU0vA3d0Zl4eXaK3ifjlj2Di6c3XdEDO1cgMNJoFsWcsce0/p2GhaX1kMRRrTkmtYe28omZ10Q8AyFbTGjpVbMryTwa78NM9ccM1wev0OvTfqENuAqALDUOuG21ZxOp8Zd1sbVo+ZjSl5B5XBKbtuvPXhHOWBASX2LgUAxAvlacJpWRAUaFdKVm7XC5D3cA8fvwY3J42BUhb0MXjs8v+Wcqb1ygRLWZDnjNvq3WETjI2fi7YG1e46PIOOhFgWbMNQIiBKrvTZR8jimxiDOBK21iG9o+SIEqhxvFxXLPMZUgytbiwkvEsVk6CcCg16rdEEFwwhTHz9CtI5gmG0jjIVSB8w4ai0udYx54xSJsfDRUgpNG22hmGAxAjZTTquBR5DcbuQ1RwDHe4a4dxUBpEMGGobOOcFQEBvFToG1u2ClM9QZYreNM8sfCQgWmAh2fn8De9qU1QLvk4lWUGFjbZRG/IyH7KJ08RwhVD5O1pXWBQgRUgn0mw536EF0m3G6CjzhNo74kiHhtpGx+yHqKbkitda0RrHxzwIsvDpOlDmCRIHDZg5QwanCT0SIxiweyA2dACT+XIaArW7xjS3MQYQKe2acsJbDw+IOWFowDTN6Kbs3PaBGAwpFjSQN55z4sHLqS7aWYAdmvBAqY0Ija69NYgNmpIh1JvXjqaG5ImG9boCIphPC3IKgGVy1ssCNHZqJWRoGz5RoIZ/DEYc80DrjY/EwzfDMMxTLjkppGTE/DAZILC9RX9wdqOkJ223s5CtVhZ5wQ4ZW3RUHoT7CHRHr1Fyo2ylHnHLGoA0UZ5St4qpFNQ+kEr2tWxDBCeSikipy6A+N0QBYkQqM4ZxotluDSbAEB7kBcQkttZRUkaKQB1Eb4oprHUITtCwm1kFOWVsN96/QQK6oylNgJh5j+aYEN33MfxeSkKraO8NaZ4gY6D36tI17/Z7cFEI4gdwSibWuqHEBOsDGo0Tl0CZn3VDTEpjnwhyZncYwgNlMh6gNdB2meRz20D36np1/WrXO767Sy40lvmClZyesDWiuEKM3ipzeD4EKTiDtA2m8gQaXfpQ101FQAVPKUkC1Q41pXYwFm4q3gEQx0Ktnm1vUBaxRr3qkM6uo9BUYNa9YAaI1icVgaO+6kYKFgfMkCeHdAyDhI5c3haDGg2KgV4rT9jBNWSqgO2pWAMR6Qjr2LYNhoBSPMxDOWq0YbCuqGtFmMEOoBqxWNBjxD3PE+YpI4hBQqSRaFCTzOKZhVdbN+QSMGrD3fmM3qNr+8jfLClj3VaO5XwhpIaYJ/3doNh7Q/e4TsoU6equu2O+MF2s14qXLx8ZHiEnrBtHsUid6jnx8JESoaNhn8qXRPRbyQmtcwxuh4GLRXGtG7FwUDx/7R4hRLx8uWKeF77u1llkz2cMMyznM5onsAH7+H1gOt0hdQYO1EpX9TRNmOcJj4+PNKsgIuXo77mhlIiHlzcspaDkgsvtEafTGTQDNWLG/PtfLheaRBHdrMLfTd0VrjawzAxREUu43m4wAOfn97hcLljy4gclSnaomR1YbzeyjFM+uoOtNoiRgxz8PgsuG2md8cYifAaXnD1EhJpQ0lk6JAWYimsld0QeC5WhNMK9fPmA08LYWokMUGH4QTy6T/PMeO7WqB81AKGQBV21kwwBl+GAr3XbR/gpAh6CE0SgMGwbA1hiptZTu0K3huk0YZombNvG9lcKuCsLrBlQOKl6+fjA5rkJXj6+gZACljLDdDAFDobRG+AhMnvsbqssbFoT3N/d4823XiDlQulTG6RgmLv3ETE6AFUIFHEpUOPIep5PGK1jKkzHrBvv3TEGUhSUlJDKhMfrBaN6DL2bhaeSkVw6sm0VuWRMOfm0iQbQ4fjFEPj6GZnO1393PuN6uSCGjL61Q5oSYsToT1KSWtnJTDt5QqgPXm9MH+xbPaLae++UXtzN2AEQUQTNX4d4WFCKgtEUrW0YGpCdMtHHhpzKIR/b7zVOC1kSBhguj48IMXHtBnC9XhjdLHI0PB4fHrHc38FgmKf5MNnFyIP5cOkW5WB755X31uFRCMRqCoDr9cb3uw/Kk4zEizYUSQ2l+Pdwjfa0TMQyuhRMMrXG2klXUADTNB+yLfMufMBwaYIBY0MMEyCJ3e9OohAN1hEICgWDeQyURGy3KyRSu5/cKwEojJ0ndCVnWmLA5Xrl/SEBddjBoZfgce/hyZcTTPzg12j+jQXBMurWiXPUjuKcaB3EQkoMSNhjvYdTjV5dr67Pz+udxzErNxIJnhEvxmAMUJ9b2+DC46MgkYDeGsqUPVQBjs9heltwjuZoDTkFXyzNAxZA/NKOFwsCcQf8ni9fpom6U5UjAS7EhNZIE4gxIhgLZq6v7EqJa9uCCEf0KZGPSxgxiQCOKOrdF3ERTEsGkNCd8UjTlexTMXYweseAICh/V0hkwASYnGeDjFpTIAYaZHrvhxRCPOSALN0EgJuDDiClCapsCO/4smmesVWOYQE9inMBu4hq7Nyv68oktNGQZ0ZCB/+M9hjcy4Xml5gohdijsHezYHAKxrquGHXnIrPzEkPBtlWYDixTgUa+z0mSFx/V7xNq5rZ1RXS9Gs1GT/HUggk6IoIU1G2g9Q05LyRyxIBuhPZ3VRajJSG4Y7+U4pGuwOjUqfeu0CGIiePVWisxRvMCM3FTiWJeCru8d8X1eg2nOUNkUPMb+L5fr1dME/FzMQTXuPsI1zWNOz+4D/hYXHCtDee7M2qvCDkBkhCTYPRB6UxOHG1GhofcnCDCQjW7CYl4PSLYDDHs7nscr2EoO+pmhnlZUCv1pl13ffte0NCcKHC9eW2Y54IyZQxnY49ByYiJAeqSHiOXFaDu1ozdx5ePj3j99dfRfJLKrpUh7FpzYWQuDZnsNg5lgQiD88uJsuutoV8My90Z08Q0PqIKAY00tpWY8CzeoddKnXygHKS2G5Zp4aHau9pEmjUWSwKEBGLvJB0kjaGU4pQpe0c6oG43xBSdRtOAkLDWFVvdcM537Dhm8lkx2I1VN+wqiEarGzvIe5HXe/fQlRnb2tBqQ8kzci5OiRGMZnzPjdrR1iuCG8gU8Of1AlPD7XpDyRkSA+q23zPqa4dwPQFYzAfxA1xCLpQJ5eiIL8qj0UdFCSeXGwyo8fXXlbryIDQqxyQ4lRm1dWy1Yj5lRDFst0dOf0oiw9fXIL4E6nNTiugK1FYRQ8T5fKJ8wwk9JsByOmE3QvZG/TD1SS6J6Q0mlEjshsE9zhkKR6vBZQs8vMGN17scortsBaAXYyi10MMoh5oyiREiAWnmHhF0YB+Y0PeSaTg+yEkBIRkwGhnhKUKMuE4zds4lCaeVAv67AADXwZQS1tqpgoO4jEG8KR6RJR6/03I6oa6royY70W8AAiIkwSehpPaI66+TT2l7Z5ffvNETgrj0T2Cg0TzCpSiu0TZ9pRp+dX3+Xp/V3KO2dqR1qYojzshD1KY+InIzmrkpqitSYRGVMg0N2SHh3bs3tIQ86YIZVDHw9Ny73tI3WgnBYyaj0xqe4kV37ibHQDRoqHcqzQRTnmF9AEFRPAUMEtB7Rch2GBIYs8mucs4B18cr6rZhmguCM2y7dpqcVD3gw4kTJXO07LKB4UQGETJNLQLX9QbxRLUgLEJTirDG6GAVjiD34ll8PKd+gudBhMxVapi5m23rhmU+UY4SBFtdMVrH7PrX4e+RGI0bIbDzOE0Lx8naOCauHSUXPLx4iWWZEQMjUdvafAGNCCkwcQoB242Fg4SEJMm7EBxzx1KIgcuFRaU1Lzaocd1d8LlM0H0EOzieJEKLSVGjkxlbnf8MCN58403c392xCGiVsaZ+L6kqat2gCkyhuJ6OheMw9UJiQlRqzPcktl4bau2IiMDguLVqdzNdcgOfHIa8nJMb+biZpcSkRFI7iMzatX9AQBRKUlhsegE6mOKmDudPrq8l27sdesCcXV+dM4bzk8V4WBmeSLVrIIcNSDQ3K9IAyNQ9uv9LmQ9E22V9xP39MxYVnYEapRS60M1Ig0E4ZDzkj3L837eK1iou1yvJMTFiW1fACyEabQFVkgJSjDSvCg9/wTt7PD9GzOcTXrx8QFmIpROJKO562pGOMHbxQgiYlxOPgmrQRvIEVLE9PGCeFzzebti2hrv7O+eSC2LmMzucYRwTi0NRY7GjHecT5UcxBepxQT3z6XQi5rDrUYCudUPKE0LKvL8DO9+PtytKzpjmGTFFXNcV8/mENgYwgKnMeLxceHAGw1zKTMzY6IrNu4jDzY7rSi9DH4PfMyfcbivmxCnHUEbNx8hCx9x0O00eqmDgQSzQaBZTOmgVUQS9rqi1kWWd0+FraLeG6KZmBk5QbiQxQBobBqM1+jRiQp5mrqkW/PXTX6JKWU8I0aUNwB69LEKqUJoK0DtiSpS6+GFNEL0g472nRjNvDERnAk98870ADzupIvCezNN0IBSX09nDdZSNBgFiooxijM5pUzdcHm+4rG/g3e99D7SzA53cL9L700Rzj1FWBISQkajIcUY62b+58LC1tc152PH4HiHQeFwSZUF9q9w3UoAVdotFDfCpQYCgpAwZiqmwydEaD+Tmhkvs7w8YUmXxiWSjWgEosZcTEXV7oEkpNM6Zd+BV9y7zq+vV9fl5veNieF3JLeb4CdiTpMx1YOxOcQEGAFMu5Bz7sUBgB5APFjueAzHuJ9JwOIr5gzimY4HGoqAU5yB2cmzZdA24rlfg2nA6ncn51YGgDWzOMFGnlAxVjvfEDRc7xYChEaRL0IGukBzZTe0DvSkwBHNZXP+cYACmwrHmjs4y4Ri5G125qeQjnGI3/A1nQS53CxgdC9cws3ukSixQ8q6gCnmdNIwIhjUGZuxSBx0IIfmCB4yd4SzEi/XeMc+T0yAU2umcj/6Z1M6YzlY7BPzzo4sy9mLU2alqHistmEtGt455mVFvTAdcltk7LAobx2SdUhUE6vMUiKkg5QARcjmvV5dBUMWHy+WK8/mEFIj1ua43TCWh0i3FcbMJzAaWZWbIgW4w7ZCUALAbXqaMhWcbut9j8C5TRIiC892CXju22mDWMc+FnTlTT/jqUGVX1ULAdF4QIBi9H4e5zSU7KfGeSCFgq+SfxsklDebdW2UQTVclud+nGmutHGtGatmZtCWIufjP4jMyhkI63fi994O1C8URiDOGokwTzWGjIWd2b6NlbDtvVp8c+QMD23rDspwcbeXdYgGy/xwYPNSBLOWUAhAoHwpgl+sL3v8FqK1TutEai1UR1OqTmBBg2Iv0CpGAKSdOWXYvQYDTH2j+vF5X3D17xjjv4NHHkjCMZJuYM9O3EJEkQa27bwGQYLh/dv8rUHYxJ06DJPAAb+x+Dz/k5zxhbDTATfOEbRuYpxmXhyu0G8rZO5GcYaGUCdfLI2rbGFE+GkbtOJ8Wrpm1HVxxCV50ucSi9Y48cXr1rnc/w9Ybet2gNnC7RoTEAnguBRTXB4w6sOSMtW6eDscQmbu7M27XK1I6sfvoLHWAh5BSOG7f0WZMvEyIidOI1hqm04IQE8fxRp46vIu/T6+6a2rfXliTMMGfp70hTInTiMhDLRsBpLHEmHhAC1zcE2iug0/9djlYKQm9VazrFXkiSjCVDLcZ8NCaeVgMzuQe7clUV2tFb26MS5GIOiErX5yLXVdSfe7OdzhQmKbY2iAZQhiiA0T09gCDUM7in6XhCaPGDuzwjipgCHwf9zh1oaFu3bbjXsglI4AoxNH3qdiGOU/79ofWKj9L7+7GTs5xjAklFxbtCBhbw9Y2L/AXjE4U497NfcK7AeIsfKIsccSO17pBje9zViZ7qg4SZEKAvkoufnV9nl/vnDOc8+HmfXL04iiIacYl0YBO1YSUDKkk1LbBsDvEOVY1w9EROpA6e+cChqXMZGpWR1aZoilc20vzhw5u6hMytpvhdn2EhIiQMkwClkI3e4wnnvJlwMBIU/OI2zEMvVZMc2L3rila7yglYvOgArPmKWVwmkQAjJ1fBEVr1NSeT2c0JT1BAtBrw1AuuiIJW+1IkQig/YytHr6QQkBvG0pkUW6mx8I9lKf3lDMGBK2xi8oUtOBINXaOpmmC2mB3JyZM0+LQe2r7IIo9BOJ2Wx0jpp6ypFB3DS/zgr5WzGVmJ04HtDP9bK0dkIC2dYw2oEp9LNsr3DxzYIeImxCT/ratIieas/rovplS66hmCODrnGaO9/fx+LPnz3G9bGitYVnIal7XCggwzRNePj6ilMxEqEb9q+DJdd5aR84LMWOBZq6iC2LkBp1OTGWK2SCxQ6IixYz5fGaAyOiY5oLRK9pQ5DQR8+SsXAkBtdPQ1xrf99YawggMNZgKkPgehxihYgjAwSINwg1cdRzSGb5Phtoba6FpQoksAgyGy+UR87QgwiPSw85l3hy3J4gxO/yfXTJ2yAJCEmzXjVOGUpDc0a9GE1d2Uyu82N01mcMd6pRdOAnGFCElXNYNpnA3ukuVxJFupgwoME/gkg5Rdt1LYarfVve4db7ObavQkBC2DbGko8AbhoMKsBdApgNmnhIW6CvIKaMEj6Y1Y1e4sCPPRENGle/SoK4NIuoa8khpQRDUtnmYSHapGFASXzNkeMDCQJREbWvvsDagw6DCjrKZom3mn2HCGJz4r31gKTwQnE5nbBIgHixWe8PQAdV4xMFn756WkjyZkZ8nlL8vCxx2YWtrRH2lxAS6Eg4jITXlhjjMzccAuuK2XQ9pRnIe746k42GNZwGi+CJNsIFd17g/17WhLGfHKLr5z4gYxN6tDJ4q6fQJQYB1psipUVt+Pu3hQAPICTkkxzRyf5DAKZ9gb67wIJhSxHw6YQ+T2YvW3tuBoTT3GuzSu+h+FB3KA3iILqMbiIhYzifcXrwJCTTqRe+kD+JCnAsd0ZToSmLMDA8PD3j2/BmlKm5mhRpKygcmzoYil8x7cOMaUGtFyomHP+fXm/J/FQNoA3FrfrDsiFPBXPjsDz8ojKo0YOd8TMmICnSpSxAEY2G8bavLMZy/7+ZWGZy2wAwkpb6SSby6Pn+vd1wMi0sAdp3UPi4WMeqMjIzhkONh1IDs4QcBvekB8DZ5SkcaCqYA9eH4GG7Mt/WK9bbhfHdPCQQSAGrq4B2OXYdnYphOC6CMde3OX7xcH73o5rwqxogykwRx21bMy4y+NUw5A46kCcJFV+POQO3caBH3NidqZRpSqw1hKYCR93tolSMRa0EEZVp8PMgSPLneczR2xQWuh16vNI7JngDHsXHvHYiCaAHr7YYyJWgQ1E7tKNE97AbpGNChMB+Hmxlut5Ujr0CZi4DpfAJyUfeRM8CunCgX7HbbEEOi/tW7lUNICDnf3wMQlMTO2N3zs08HAtZKGcUwBi2UeUIIHJGnSOd5qwOKveM8UCZSNwyURDTvRMUE6DC0vmJrN5QyQ01wuW6IkZKRbe0o80wdqyokkg0qISImfn+aXAy5ZIgktHZDratr1TmenKfC96NXqEZoTGCDPGGeJnZWUkeXhmHEKHHkOQDr1IybIB4HGGpVY6JbvqSAzWOkEShZYCrc7DIRmr4YJpDcwCQo03QYg3KkbEGE8cocdfLeC0GwNoYOBNkLWE4BTGlaBBgR3tuG1jaczwvG6DAd0BGQSwZ29JInXMFwGOqyZU+O5L1MPGBDDNQZN++kx8QJEBPUIoJ3+EUijkjdQSJDN0bAtlbRKiUA5qlc8zIBpkiBhssgNIb22rzbvGtG4T4ABkboIE84ZkGrG0SA0+lEs1QKjtkS5MiUP2oqBSUXNPXERu2Y54xaN1joON+f2WV1HnZKie8XiDwboPkTo0M1wBCQpuJaez7jZkz6MgBmgnm+48F13UA6B9egeZoRgyAGRYzAgGLKGdttJUNYB5LAzcLsqqsfNIJ7FIgOdKRlCE9ygMF1l/pvwbZWPzTSb8Bgmu7YL+9uqqG2hjlNfown5zjnhBIztm3FMB4GVZz/PsiGN3jQS8iUfMG84wyfhATX97IRIqC8B0FwPvMz21qHRK6hIYhTIvSQJQjYHYYphTSyG0Q9jc0MZZow1tsxdRmqiN7U6C5l64Nc+JzKoW1vqiinGa/F19BqxTQXdKcnMYKbB7LqunUB3MMS3CNjh9n17cmIO/M+xYi2VafsBPL04+SovqfDhg5OFWIIbob1z2dQ43u93Dj9FOC2VQ+M+pVs9R3vaeIGVqMsA7YhR4a3qCPnGJLkchunCNmrWvjV9Xl8veNieC88KVvgKVPVeajYR/mEoLOjNzCdZ+8aByz3dwCA2wN5mlwmiTpTVYeb8/RpgGOkMudF3j2AKMTDOcwdw3xtNJYMd9pm44YwnxcWzYMpYKM39AqYcz9zjEAkg3PnUQYMzPPE19U7kAoE7BSMYzPhz40pIyZBSAsAQvKTCAuIscPadyNaxM6bhJvz9vjMMRoT/nSg1o6UXCaxGy72pDZPLEqFiCcC/GksW2/j0HPWteJ0yrjeqmPNNjAKNaH2BsNw0oeirx2LO6dFHOrfzAv9QD7utmFK0SOKZzfwdYgQVWRqSB4+AHi6k9IQFZMjmYSBDa015DK7sZGftQzC4MVc2w1zU6EhZUZvp0S5DBRIMSBlw+XxgpRmhMTNYqhiWiZ2Q42655Qi8VKt+uiRI/f5NGG9rXj58hEf+MDv4fu93vzQlLGtDQALJBg3CYUhzxO2bcU0zzQgoiMJwyG6dvKogaOD1TtlLWIDNLELYpxgIM83OpWklIwRI02oZritF7rf2yCNBHuqmuB2uzL2WQ2CDrVAfbMwzIUmJ+oz4ZrdPtpRpF6vF4gkNxSps8PNTWpP3OXhG6NEFp0xRQTbjbP8FZM72OHGzTY6kxZjOkyYw9niIi5X8bEyHxUFgiJmoK4r1suKtjXMdycsJxZfjPqmYS+IIGcWlhAWHtE1tSknWO/QwVRB9Y5xygVQZhOqKNIUkcGwnhgDxBPHtq2i94YsnCyUFFHXiKmcAQmeXtdh5rxZKLQPos3AsIzLpbnpNmBogwijpOfCyPIYKZsi1pxdY5gykMSZvuxo+j3nIySRgFwmQAfm80QMok/GxqiYpokmXS98FIPeBi6QbGZ4gh6UPGfq7Cn5GK5FlRCRxZDKBBXivNRZ2YL9WRacTrMfjBjokMK+o0SEJMBoQIhQo155tIFtrSSnRIOiwyT48yBIBkRvcgxvpJCEyCmWwjueTicSEdgwAAE2xGO5w6/gyqcQIUZvR0wZIVbykqPziF1bbwImK0Ye7laX+GSfcnZVlDJRY94qu+VBIekpTCOFjOgywV1COC0nxmdbotkPzsT3A8pojRJB1x7HxElaLhkFlEbtz2XOTHD1hYXdbuUhNcQAqdxzBsz9BZzU7gl3akpKjceB2+AhYYyGUhLWdXWZm1e8plA3HCrMZU6vrlfX5+/1WRTDT7GZNL5RKwhRmKgXLBy5l5Rwt5wgMdAEBBaJrdKRDGNXgAJ/RfMHMIUAGYbmhR+Um+jo6p0gcFOOgjGA0c1P4tSnpRghyi+M7tIl7YCmNZWGW604lxNSirhcL0iyb4rkLLKLwVHjNBXXMkfU9ebJQUyQEgeVryvTqUopPHUbHD1HoxLE0KprvyR5cdCxx/rSKUwTHtx0CBHvsAygK6wZ1seK1569htY3mve27qY68o+nOaE1OM+VYRkpJuRMEyGLB4UIu00hPJEzhpknV0V03RAndow7gO5du3XjCL8NhqekUo5FXZtgHTRH5WlBnhIu15fIsWBdGYgBkUPOEQYT1vZDzsPDA5ZpQbABE3WpnTuaI+Ovx6AkI6WC+/szartylCgAPN4Urhe83W54/f7diGXCMCKkdtxVDgmIdsRT393xkPapT34Kd/OEkBg+QrrDwFo3nJaJG6sbgEpKR/GZQ8LWO+b5hOxd7/2QYoeZxdBbw2mZCXELwJwXPD5eyXItjPhtrSGF5EiniGAB55nv834/1W1DCgllyZDo8btM0PBEvhVbW5FCxuVywfPnzxBTZtyqBNdHDwji4dJX5QQn78ZTGKVNzhyNsdCAdL2ysMR+2HN81gDeevGIu7s7TKUA7glIHtKiaox+9dQ49bHtU2EcEFQQToJcJjw+PKJM8zGmhjC9zEzdhAjXzLJDPQYPm2oKg6Fpx+l0Ru2dWm0QSZUjx9dkfBu2vqHWDcvpjjrhKR0GxSlmp7+QkEIsJA+speRDm5sSO+67QN66opwyvxY04dbtBktsCtCEyOjgEAocYvO29cMwL3yWgQKiAoG2NQwz5/DyQB2FmMYMhpjkGNHGQJkY2yyiTsXpLm/zNbo3RI3HdMF0X4eeupC3W8XpNBMfZx21k5ShOnhgyOz4mxk9FKEDMjAvJ0AojTFPQ4MBrTcMU4gNBKOso9eOW90O+UTbGu7P98jnjIFOE1gSlEHNqkEPWUzyhooaIIkFfRBDFB7adZAOwsh3rmHRg0h0+CGRuAkG+sSE5shCJoyzQ61g40UUXsiyWxsipSyAQashGVMf1YOdgqMxTXnoT8GpHn6oNT8kvHzxEpNLlWhQI1EjJXZqd6nukzbZO+SOpQxi0N6xtYo5R/49KCcLkQcxUf6O1xunj1Ei5YTa0DsTZJdl9nuEk0nECJCNhGD0OyRvAr26Xl2fj9dnEbrhiwgA2OBIX2msEbhr3IApZ0xlQogBIwBxzqjrhu3xiuvLR0zTjCHUjAUfjSXJnr7DU2wqCU07Ys4AgncM7TDYGYiaSTHy52o4WKj7Kbb17mGaQKfQEBICzndnxzl5h9cEZSowcU2VCXp3HJs5EsqUm5CbBAGXFLjWmUahzaUJcPkICQ85R+oxlUWHDuoSGccs6N07ZH7Y0OFJTbvRxNitmyamr0kUWBvudgaWeTo2u8N7GAQxUVPZm+N9xIH8AOZp5mZtnZuKEXMUQkAKnjYEBqucz2e8ta2YTycAgiQC64pWK7vxY2DKE8QnANfbFbFFapyTEHemiuv1irlMON2d0RrZqiJcvO+e3buellrKGGniyymDuHmiukoqmOcZqgOtDaRcSGPIEXVjul8f1MGaDbQ+kJcF63rBfH92HJ7ixQvydMvkLNu2Ik8RZeFYfNs2DBhKpjxiOAxfXLseY8G2dtRtw7Pnd3i4rijZI5K3CkkRQUh+GF09kW/yMSkjvsdQnE4Mr+CYtWHK5eBIp5TcqAQ8Pj5gWSYmCiZulLe1IRcKMmlwwiHTySkDJjidFk5FxJACDZGmA6fzCfXmh1uXsIRAM2VwXnGZCtb16geqjNoa74m9cwRyigHKj2Y3OvHwGUDYibnBcC8a2YFUo+52d6fv8el9VEgwLGeDpMIDr681Ekl6AOxwuO8kCnZD3Yw0KLfo8+xcXk6AzGVQKSV28kGM1P39HYYCKe+SD2dgS6FZcr1hef4cBmISadKiZGyfTIUQkP2g9OzZc7x8+RLTNJOGsFGXP7oj5XxKNJeJlAHjs7+uNzfyRty2Fb0O5FQ8Enggp8CDXAClH/CunQ5s64pnr73G9SJQBjLnQupKCgxdCAIR9YQ8A4xpfCYGtY6SF+jouN0ecT6f0caGbV3Jwc7sbNbush7nr/fOjn1O7O6ez3e4XG64u3tGT8NgF7X2TilP5AFMhVxbyxHTfIfWG0wZhbyOirSy8BUD6rqxq3kmZ5waIwDDEZKjA5E6eFPDnhAaYoAF4Ha5QsfAlDlBEohPNRUpTYdJDaa+To/jngZIt2BSHdGXPIYIQso0dfrXZQTngPOZqK2SBuQd4Vornw9fXzllAebTjG1dMacZQ9UpMZ2m0cLpHdM2+ewF7IgzMuB7qzA1LP78qe3UDsUYAhPKl1JOWJaFBy7wIBsQEQPXjRQiZADZjdk+tgHDrNiMMBvvtFx4db26Pueuz6Iz7JGVAHZMGXZ6hAhKzh4zadTFVcOIgLbO8bQB+TSjbRUGRa2UCOQyE9U0xpH2IxYZgQrXK3lg1RgDajTApFQYXmEeW+nBCzG5Bk07Sp5w2zbqJo1FooDhBRLYjalbRRsdpSTf7IEQk48A2fBptSGmp0jRXSe2b/AcRQGAHVBzg6cBKWH1AcC6bigpIkrA1vgeUnbAjigTzLzj69rT7kaa/ec3HYg9IsWMaSpYtxt1gzpwOi8Y4+aGKcNpmSgtwP67CAvyNrzLATfkZBgiO/cIjOUsGSUxYEPAzaG2QSJCCIgC6GiQYBjSfITM0ezow+Uirt8cHaflBIH4+83RMkwQfBTZRjve975VL4jNQyii0wOIlOqje+pWRN06tpXFQZkmTHHC9XLB48MLlDyjtwoEw+3hhj4GTuc7nE4Lciy4Xh7djJgxLzMQlVguj1DdMX8lZzRVRIkoeaJecpr8oKV4dneH0RqmQoPO2irJJm2jDj3tAH061cdolAcgHGPW0TsMlJXUumGaMmIMJCrc37lhrENixFBGKEc/FGoQdnp2vncfBPsLOaVqHPlfHy4ABNvaYBr9+eKYu5REHrSx4BydhszeOnS9MbEwFw8MIEEgp+RmzY6pFDfLeQxyIC97j4Qlf5yaXrjjnrUtC1mFAcbi0RAw5QkWqKdsg5g7JrRxIlUbDVE69JBkpJDw+PIFcYd9wARIiIe+NfvhuiuOe19V0apimhm7PZSowzE68kSW9vV6w/n+7jCimhELp2q43TZqZwsPbgyJmDh5aDgKmT24wHwd6647FglQG1AV180aC1pT3punjNY4DYrRGesZR7ESUoGGRsSd85/HGCgxYSkMCJFI1nV0TriDy9nudERjGxuCiB/UG+aJZBnrHdppkrw/3yGXgtv1Eb3zGe19oNvAaAOn+YQ0LXjrrQcUichzQsx+EPfJEcN1uI4RQ4cjQW/0ihwiWnWjVxAAAdttRXQiTvBpXzCXuLgsQqJ3QjvFbmwIRKzXC6eWjru0/YPvyhCamNlY8Ilg7+rd4XAwiCnxEV+PWVzCiSStdcqSoiIU7gcxRuSR2ajxez+OeDRp9kJ7ODauhMkRcaR56OAzuct/dAzkRI4zNByHzl4bC+TgJlp/gwyC0Q2tVw+lIp+8lMw9XNjoOIgwgfI4BA810b3jT5rSfoDrr0I3Xl2fx9dnwRl+wp7tnUz4Q0IgOiUPxGq5KWbtMCcrlJiAEDCSIKpAtw1bWx3DJAy/KByrQijYj0ex4B2wvTPtOuOSKVWw3oGYEaIbNGBIvvDA4J2j6K7jARFznZyPbEdHKtExNo7O8oKSkzQGRUzT7MYUjrKGLw78KppSxhiui82H+UgHuxwBODLuQ2BACNfmhNFWHihSfuombF6Eh3CMzqQSDaV9YPSKkjPd7DmhdUXKhaY8BOrjvFNONJfzI2M4nNc5JRq3BoH2bXRIFPRej9FviAVqATY6Wu84n04QMbROZ3TICbZzP43g+pJ4uLjVDdM0QwexXPviKx6dLALcbjdPwLKn9DNQr0ieL814IQX0uh3vTwwBo2/UF6sxMdAE59OCa78iJ4Ea8WemAtUA5IY5uRkx8DVEiI8cA4LLI0xJCZiXgtaZvrSUiVxP5+OK66FTyog5AaY8nER2bEZl6IwisohvG5ZlojK9D0TXRQ5tfP8QSXbIiYaplRxmCLW4gGvpUwYyUW5qNESeznfOGN6nKMERdDQwxTyh1g0lzchlBkaC+Qg9JU8CbIMmQzMY2EkW2TduxqNDcOhctfOgc7uuOJ3OUB3uXsdByTAveEm1MKdRiOt9gYgd5VUPTWSK7Iird5kPnSXgpih2K0UCu526M6nJuQ4hYV1v7Hid3TSEgUkyWqP+dUqMqIYfBmM0JA2IUohos4Q2gLvnJ2zrSk1vejIw7jxXTl34nqjSFJlTQTSSVWLkOrKtPJz0wfUnpQRIOA4tyUW3QztDfyKDJba6Uuvt617JM7Zt9XVJAA0o0+lJhzoGNeLWnb3rb7SP2UtOkByPqVdVEnNioW4aw6CDCWptNBZYYKBQWwF4IZocY5aW5IQPYSEaAt71+ut48Zk3gWackkTKYABKyExdayt7gBAL1BTSYfZqY2DJE8rphLfeeAO5LoglQ11rvocviX9PdAOSPB0IW4cYGKwS3J+ReM/HEBGSHcz8XDKKsCscY+SBtXOisk8Ddr1+tASRjlorikuYgnO37X9R1QqY4GfA8T2iT9/MDCFnGBKi7kUv5VvBw1CY1snDlLi0CHtTJ8RDI96VsfG6KdJU/JndzdxsUohxPc0lYSdGDG9eaOd/T+69gJtR9/U6usFXXskkXl2fx1f4tb+EFwtH8dQf6vgU7A4DdORuraKD0csawHz3EJG8GBitIXWDoSPPCffPz5iX4uMkd5kDAPdKmA6XAFAWkGJy4L856o1jMm4WA7VtjNb1btMePSwxkrvbh5/U/df20/40zxx/xggJNG2FSMNXjIJSEuYyQ9SwXW9otaLVyihYNccPCXQAMRTAR/thL+pGJ2Q/0KyxG/GmPL/t9yEGLjnonkVB4veMnkyn8Ohd8WSjgZjZqeLCziS+MQBBxPW6AZaOzkbOlAH0VhETpRRmnV3JYQjCMWzXdjBYa+0wKRy5mbwNA6YuRzD0zWDK+yClhDRRl7tV6k6v1xt4WIhYlhOlFWVnT3OqMKUZdeXYeJonDKUhhiqOgWnOmOfZpSDsTpOlyk176GASkw7fyAKkRJzedUZeEtJMPNf18QEv33wDfbtC24q2rqi3FVOa0G4dvbs5U8hWpsyERSZM0LcGbYrq1AwGoFDr3ZXpY2XKsNYhbpDc41PLRPKIDcUUGQzR64oIQ0kRU4xIMaIkhp+s1ytEuKHuCK3dpBMo/ObPLsULIfXNmXrO1jrWrfpofcVoFQ8vH2EWcb3dcLlcsLO/R6dRT5QHybqusCFuxGESI0Jwk48hBG6o27pRn+5Tkr1o2JPudhmAOC6wNkbCHtG5Alyvj170gsUaaNIlOaEeMqzdvGv+cw7/ghhicf20BPRhCCnx/U7AfDchRBpBoR31esN22yC2T7rcPBiTT6ESEHhfQSLu7p9BR3MqSocakYZlSpjnjGnOntK164opsxoeyqGDSMJpnhBEMM0F57szhpon3z0ltIkXVEM7ypTcwGaAOKM8U9oCU/doGuRtBWrOGSEFlLkgTAG50CiZnGoSgiDHiGUhxQTG19sHsZgxFZRE+VHKGbEklClDwoD1jn6r2B6v/OdtQwSoNRcePOmPIC5xq6ub0nh/5JwRQOauxAQRpihS9881S2JCKAFxos4VUCwzqScAYI5LhBve9vc7Cw/kAFwXS4ZxlgBtHXXdULeNMqaukKEY1nza1A4jKQ9GiWtuCBggQZicbR56YmQqYW8VOfMwlCQiqByMX4hAYiTj2nYG+JOhdC+MxZzVnBI/I1AaN/rg5MdlcjQMKoZ1554Dy3lBniPyzMlWmYvr+AP+/+3d0Q3CMAxF0eAiEPsv20pt4cOegnfOErlxEuX9ec3D1/5mfnvWqplkr2+tfe/v1O+r7xRfx9nDqznZvWcNra2vhtSsQfCvHj2NAQCAPLZ6AADEEsMAAMQSwwAAxBLDAADEEsMAAMQSwwAAxBLDAADEEsMAAMQSwwAAxPoBLcukHGhOCk4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000183709.jpg | idx 102\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAGVCAYAAACB5pQcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WbNk15XnB/7W3vscd79TzBFAYB5IAgSnHEimMpM5qaoya1KpNHVJ3damlpke+qE/gB5a1u/dL2ozWZv1S/dDST2qWqqsqixlDVnJHIpkkkwSIEjMEYgAAog57uDTOXuv1Q9rH78XIEhekkEyM+GLBALh16/78XOO77XXWv9BzIx1rGMd61jHOj4sEX7WB7COdaxjHetYx08z1olvHetYxzrW8aGKdeJbxzrWsY51fKhinfjWsY51rGMdH6pYJ751rGMd61jHhyrWiW8d61jHOtbxoYp14lvHOtaxjnV8qGKd+NaxjnWsYx0fqlgnvnWsYx3rWMeHKtJxn7h/92V7/dV3mOVbPP2Rn+fs2ceQ+jMR+b6/u46fXKgqIoKZsVwu+doL32LZjhnHyGeeeorJeISIq/Osr9NPN1wVafjH/+hz4dVLb3Dp5rvMZ3NyKRQtqBmmiqqSVSmlEEKEADl35NyxORqxMR6xNKMr0Ggh0ZGlkLNwcLDPZKNla2sbTJCcSdogIWGxB1Oo31qzgmFoUZIYIQgQQJSimRAEpaFrT6OTC6QT58kISTOtCZmCWMAULIKhxKJkE4gRMFQVRYkqiAXUFiznd5CDW+j+DTaCYZJR7cgEivjn7RYHLBdTmnaDVhKNJYwx/+V//r9b38DruC9x7MQ33jzDo0/t8PY7sLlxAlNFwrpg/FnHkMzM6kKjBWoiVNOf8dGtA8AwrBgSIvf29rh24zqL5YKcM6UUTHwDY6qYGWaGiCBBUFNUjRCCJyfN9H3HeLJFmS4wyVgIqApmYKaYKahgpihGRDEUQfEmjz8XhvvniGyhmqdGw++fIWerYfWphhAs+utg/r5HXsfUVu9hJqgZoT6G1cfVAEWkYMHqZwcKWDakRNAAwcAysPzJX6h1fGji2ImPuMn2icgzJz4NNqk7xHX8rGLQWF0tkkOyUwUzinkSXBd5P+vwSsrwBHb57beYdx1N09AtO0TkPRWf1T8lBGKMWPHE4tcYiJHECDOhqBHbBIo/T0EIoP7fqKKS8SzWI2FIPPXewVbdAE9aiqe1ITmBZzv/HalJUxH/3yrRCmr19RBPjkEQAgH1RCqCmBARCp4kzQpIplhBJYKqJz0NBE2gERWlWHlPbl7HOn7cOHbii9IAYNIitBjFb/J1/IWIIfGJ4LtkVW9nDY+t42cXBmrGnb1dbty9g6aIafEqb9isDE81Q82IQBhKLwCEEAIpRcYxMZ0uaFNCpPdEpQYqBCIQwRQFYvDOow3VGIoahwkKA7FV52BIfWZACJgIEgJCWH3fFbAAogWlQE2EVp9jppSSMTEC/tmDGcEKphnVHkMpMrxfJBAxM09y9WgNUAl+5BJ/opdoHR+uOHavUgxEQCSBsU55f2GitjrxBbMvBVQRgRDikeu0vmI/jRhalUddTwxf/C9fvULBCCGyXC6PbFYCqkd+78hs0JOiV/QpRtpgNPS01nNyoyFah1dP9XlEn73Z0DZV1HqvrobnfYAjy+EjXtEVwVvmMlR35muA+bOLFYooJgXB26NmUhMkBDGEAhREvLITjBAgRJAYUBEyQ5UKmBFj8FUpGERvr3ryW49V1nH/4vitztraFJLflPVGXAMmftYh+KqhZBVUWhKKitJD3Zqvq76fRRy2FJXZdMq7d26ToxAWHVZ6zASIaCk+Q6szNREhBCFGwUpBxEgh0MQGMSUvMm3TIsHI6hWcV0oZtCcQKRSflwUHmHgy9FanSMCsUMybjjHUKs0gECgoaoaYETR58i0dIKA9IAQJBDO8fCy1bQnFOlSVEMXnzWa1AZEpYiyXHbEm+RxALIH65/cuvaK6JBuMbEh34u+1jnXcpzh+4vseMcyY1vGzCEUIvrMHZrMFKTWoQoqR6XSfU5Mt1uPYn14c/T6s5q5FeePNywQRRI2+62qiey/yc5ijBSCmCEEIMSAGIfjr9bkwW/acPLED0hHEgSKlZE+cQVFqFSiCDchLBIY5nVTgkxlIOFKd1sHe0B6vHdjFbI52ClaIufPn68ifbgqidNqjGCEFMAh44hMCUXzGGIKR85KIJ0KpdZzZkTY9daaopQ4Zk//9p3cJ1/EhiGMnPqvfgtXNafXPdfzMwsEJ3n4qqhwcHBBjpFgGicxmM5CKlkOG/9dYX7ufRBxF2YKjNff29rlx964/oRRUzMEgtsJB1jGC1JGCtxdLKU53KD3jJgKZg9mc0cYWxEAp2X+vJjWCX2DFE5vZMB8LXvkfbWgOX2GDo3Ngb1OCDm1OiTRtC01LFCVpwIoAI4o5MMfIlGVhnBJpPPJjUU/4ghBNMY0QzFNYnuOInOEzS509evJXhmMN9ewYyuEcdB3r+HHj+InPBr4Y+E0pqxt3HT+bEBxSjgiqSp87wLlgWpT5vKOokuJRyLq878913O8Ykt7w3Xjz6lssrVAw+r6j17Jq4ZkWSimA1ukYTl0w6EqGoEiBtkksuzm9ZmJNcEWNkq0mL8AgF0hFavO7Hk+tKD3B2Orri0EphpgiUQa2gVMoJPhzg5CaEZoaVHuIDRKamvACaPLj7gJNjKSmcURxMUSUiH8WLT5vFimr8xQERL2lOtyeSm15SsIkYmKYqCNS17GO+xTHTnxa4ctB/IsdZN1++AsR5guWz4QCat7y0mI+31HD4pFKpK5662Xk/oa9fwZlUEphb2+Pm7dukdpEzh3FHLBR1OH8Pgdz4IkjF42A1TlfA3ROJs+ZXo12NGZ/b4/2xAaNgEjEinP3DBAJiCS0KLW+8nldbTseHqbW6s5biwNv0PTwDsniBIYQIjEkLNTKTCMSQNSrtQAEhRgiIUbUxNcJOUJ1sKGlGWrL1Y/BAa0KUmeBZpXjFzGJKBnEZ5TrWMf9imMnvqvX73L7xjUuXjjL6VOnadJoPTv6WYbD6CrMzuqCd7hL97lQwPf9ayj4TysGJR3wudrrly/TmwNN+q4nl/Ie9OaAthQ8WWhUmhSJKdKVQu4KTSV4x9AwnS6hKKm2KE0qTNK8wvKNqW98AEyiV1RkjMKqfVgrRKtDjILfSmqKVBAMQQhixGBIwOeBw+zPAlKO0CLMCfoSIlFBUbRSIYa2pWRP8qUUVCpxIkayFYIpQcWJ7maU0mNljAVIQRBrf6rXcR1/tePYie/Lf/oV2rRktn+DZ5/5BDs7Z2nTsKAe3e2us+FPPw7BFGqCophoBQe8/5nr6/OTjAHQYsDNvXtcuXODmBJ97tHiLc5SCrkqsjiNLhEFApkgSmoDnWb6LtOmEYlMEKcCRGBn5xSTNjBbzClFvYVqRpRIWDXAvToz1ap+MhDMD3l6A38wiPk80PxnAVA1JIiTy/slMii3UOpztaIwIeSMaY8Vpe8c1SnqUzkrxRutRRFTdOCWmt+J6oRBDCg40hRRUoiIeBWrGhDLP/VruY6/unHsxBe6O2yMIou9Kdff2uDkszsYrbdPgMMldb2w/nTjqLKGc7DUvM2kVurCso6fagjkXLh05U2yZzT6kuuIINCbOXgEw8wTlZoRIjQpQvTkOGkbsgElE4PRtIm8O+eXf+PzvPj8V4giWAGLsOx7RjFSSzMEq1Wd8/kCuiKFGz5RXNV6cpj0vAqt8z4zcin0+/soCRVz4QoNpCj0xShqJCvoYs6+BfqZV5zRvGHqlaehWvz9tKMphWRSN2oDaE789cUIVHk2y5QSar24lixbx/2L4yu3xHtMD5TTp8/zxJNPEOL7E9wwMV/HTzeOQOGDJz2tMlRmur4iP4MwNXbv7XL79m1im+g6r/bEqNX44SYxiCHmXD1SIEZXS4kh0oaG3dk+owhaMlYKD5w9z/nTZ3mh7+t87lB705A6QxxaqVBLPU86tRWuwyxNaq1VFVQGjl+snYMQIDWRJBNMWooYWCZoIARozGeVoTioKrYjUvKWreRcgTSRAGTtKZbJ2WDhRPeqxebJtnYp1MwRqKZgPSITPAuXDz7Z61jHjxDHTnxPPvsYt24v+NQnf4l3rt/hwYsbTCbNCiUmRFgjPH/KMQgaVyRgiJScsWhkgiPzBrrWSuEFHMzwszzuv4pRW5xV3/LNq1dQK6BG6TsHn6gnChnUWcy1MgUlRKNtExEhSAsi9Ms5o5EQFUJMYMbZMw8A4sjJECrpXYkS/RqLrap8EfOqUgALBAZFFz9eYajslCDOl8N8EmhaMB0hEgipqd2dqsYpPreLwd0cgikWEhKFGNNKO1ZMXWgaiKKVtxfoa7IFb79afVwsIVboS0cgkCT5RNIKtt7CreM+xrET392bt3jo4U9StMEQsvb1J2t4/M8sKgfKUXFCStHnNlEoBnnFpfKqYB0/2RgUUXb39nj35k2kDZS+R4aKhlhRlkoZrktwKkoMDUaDRrDS0yQwMm1MdLOyqoTSaEIuHWqFvlaKnuA8kQXE0ZY4PsXEBpwomGBSsZ66yjyu7BNwlKllb5dKJEhD0fo6q0TpkmKCJziyE+WLQdMmRCIKDnIxwUolyKsT27W4Vqd/bm+rGkLuFdFB1towIlETIfjxmazBLeu4f3HsxDdXY1mMq1ff5tyZk0wmIw7rh6Pk2PUC+1ON4XQPKE6xKvzrDg2EsFbX+QmHozT9vwvGG29dIYvSxEQ/7xAduHae/hzRKJV8DiEkzAIaGiQWsB6zTAgVoCQFFUHxqr7vFpTSI0lcqcWgZIWYoKgzXMTFo/34HHlZhFpZ4cm4zoUlClJpBVLTjqknyyjpsJMjwz3mCjSIEZOQK2+wQFVyca0VCRyhISg5+yZNta8Vb23V1jkkOrQ6nc7gL1CqQcSazrCO+xfHTnzNqXO8fPl1Nhlx463XOX/ub2CjQQJpIEiv53w/mxgWlEOjUVVzvUY+gGO2jvseg7jD/sEB715/l5AS0/mcUEnq7sLg3nSEQUBcvUVNhBhILeRuwUYz4e6dGakJtGNXRxGJWIik1JBiXCFH3Uw2Y1Yc2iRDUlOnOhy59CvXhVWr1edqYtEfryrUQxVmami/xCRBTdaIzwqjuT6nAf2yp+sz0vfOPxQwy/RFQb0yLCWTyxIrGVOlqDo3UAqqtW1qoH3nq0io74XPRkXXlJx13L84duK78dq7nDxxgumdd9gabWFl4I/BSgZiHT/1sGFOJAPAoT4OdH1fVUH8Mg9Q+3XcvzjqxqBqvPXmm+45Z5VPp1rRkwIW3JanDl5DEJq2ZTlfsDXZglxIkljMF0wPZpw8fQIqJaFpG4zAZDRmMHOt9SJiiktkFgh2RP3ECMEToItPSDWorQkO19kUUp2hhZr06mubUfoeLTNPciaYFK/UdIk7LwSKOlBldjBz2oUoooWiBtYQQhXF1iXBsmMCqkaoWvY2sDkSVVZgF/dtEDJBI6LNz+gKr+OvYhw78V08cZJzH3mUxe0t3nntHTKB1oZdmEOSzdagiZ9a1Pwlwkptw1CyFqIlr/tiYJF7NmX83l89kvzWLdAfPUolq4tBMeP63Ttcvn0dC5BzRjJQICNOVBc3Bo4SgZ42NbSN0C8hRoPSEZNxZ2+OEpEkiDVEesDosyu9qCoSG0+u6sjdoplCwCR4pWaCSaAhOXFBvIUJVF7f4d9NFCMTBGJVfem1R5oAzQaSRn7MDv3EgoCNVpy8BhjVhDmck6GVaeD2RQqhF0R7OgEsOzhHQYLP9QauoGqhqXnONKKkNf90Hfc1jp34kvS8del1HjhxmjMnTzNKLeu25s865AgkvM6QVAmlkAWKBNTKBya39dzvx48wVNA1+V2++iadens5l+zIy0GerGidZYHESGxAktMbQjQ0L9kYCXfu7rKYKpPNiVc+6m3raIeXOuclIRhWCmiBHkJ9TrSqfnL0u1n/OozURMCKUeoGKJiBFK/M1MEvQdw73SRhwed8IuaPhQqeKVUOzaS2JnGi+iC2rU5KN1fgJqrLmWkpLrBQxbhNlVCrQBkcKqrQtcVK1wjrGd867l8cO/E984nPceXaNZ597ln6+ZKmHciy6/hZxvunqqESgQGKllpdrON+xnsqZkBLYe/ggDt37hCCsFwuUTMyRn+ktVmtz12BJQW3HqrzL5FCKcZ0lknjzfpUB40NHE3M7X6WiwWQV+1KJbp5bM2MpYJtnManVXHF54uudKer9mysBHvTKnOmA3Eg1Q5OIEhwnIlEotRpvqnPJtWP0yRgQZFQXRcKnpwr0AULSAVamWo1iT/0IMTEk3ExYmjdwsmMoFTi/LpFv477F8dOfFtnH+K5kw8RGmE02qSY+pfgfUr0x50hrauN+xh1kYghMni6GW5rE8M68d3PeP/9rWb0Wvj2q6+gtcXpAMXiyUSrRZAaot7SjAIjSS5CHSIiQtMIu7u7mDSYKZvjhoDiSJghiQkhRkzyiqguIVCic+NigBKdwmLFVrw+D6/Shr8OIvOm/h5GqOLSKy8HECNQSII/Z4ChipCLEqUKo1PFsGtWD1arRrdPp1SOI1qr1ErjWxn1mnMPgzg6tDf1JIsDZQKHogzrWMf9iGMnvsvXX2Z27YCnPvZxRpubjCytPLIGwurReP8c6YP+vk5+P35IRdSaQYwR04CYL6aHgsleF/5VxrW8fwP2k3r9w78DFbZy72Cfm3duo01Aa7t5qM580YYVfUHc8XwSRhQSffFZ2Hw2Z7a/Twg7nDq5TSNLJm1i3hWnF5gRYiDERDE3fc2mKAHNnljDcM3r8QoOYsG8pZjM9TltkAkrVcdTBCSiElHNqCpFQHNGFzM0+7yw1KQYRCgYot66LeCmt35mvEVbCg2BIEIeXBiWC/KyX5nwVmgOFtweSVEKSraChDEi3irF8krabB3ruB9x7MRXZrA73+Wdd98lticwMg+dO02fO3a2toBICC6PO8yaVJWU0koM92isk979CIOqxiFBfYdMpGiPlcBOM3I9R46S2P8KZ7+fUqyoZhIopef11y8RUqSYUkpZoTnL0GZUIUWhdIXQRELSCtgwsCUxKsuuJ7RjcjaWBwt+7hc+w7Ubl1h09xhobEU7AkbJPbl0WHRLInWUC0FiBZTkWis6j7NoLdQoPodzlrx7CQ2ejlXFpQTDLDJbBHLIlOYuEvcpKr6pqmhMs3ovySCV52T1LJWqbz47FC1EE3KAnDt0OYccsBLZHIEjgAARumD00WvHpkCMlZcqBQtrkep13L/4IdwZ/pCnn32at2+/ydtv3aQJwosx8tGPfoytjz6DFfGZQJ1FDBXHnTt32NzcJKVECOEDq8N1/PAxnMIB8ABSYeNOX6e2j95bqVSu5Xflv8N22F/G+GlSNLxT4bNtd1ff4/ad21gTV/f90c1fMa+wQoyEpiFGaBovxIoWmiahJdFboRk19Nn4wq9+gYtnT3PpyksrBwfME6epUTQTU6JTrceihOqd5152MEhhlqIECxX9Wy2JKjndyNW6ymd2fuyRZZfZ35+ztBk5QpDDOZyYYVrARoCSS18l0YQQxM2PVAlmriKDQTEWZIpkohixy8goMEmbxBgJwWkNWHWTWN2g3qk47FqsYx33J46d+DZCz85kxOVr13jw7IRuuqQZj9k5scnBYsrN63d5+OHHGI/a1fKZmoZlv+Sbf/oNfvGzv8jW5ta6zXkfY1jvHWxgVe0++xxHoYjb3xx5ljfnBnjf6vfeD5H5ix7DZ3l//OQ/w7AIa00wly5fhhhQU7qucwBLPRQRIeI/U60VGU5nUOtJbWTZL/ApWaFtG6b7CzZGY2+ZFq2ctkFxxVuHXd8RxXVZwZMb5rNDwarxa63KtPI7RavNT5Uwq5uiIN6CVVW0eKIKpSP0+8Qy+OpVcYRiK3++oO6OLrlb8fIgIYMzgzmRPtWbdCSFvikQhRhg1G6QomtwltqCFVVXniEQohDiYF3kHMh1rON+xbET3yOPPsDF8w/wkSef4fqNG8z2O5rxhOe/8zLPfepTbGxv8cf/9k94/JHHeOrxJxARulIoRfnoxz7C5uZGJarCqrWyjvsWpupAB8skC4gGLLwfFFAzIr6zH3bRQwr5y8eVOkwyrO6rn8K7mkt33d3d5cbtW9BGuvkCKbYirBdzuoCYCzDnooRgjOIYTFHrwWB/f48TWxuut5mhDa7MImJYVERtVd3HEGhSYlGlvUpxuTJTrZQA80qyOKgmSnJqgAAoItWMttoQ6YD+NHdAd73rwqQVmjMTTIS+6Aps4tQDf42ogCjFhlYpiJSqTuMnSSwSygjwSrFPhT4ZjQijEJHB269+wCRCMJdwQwJW9URXuqDrWMd9imMnvuv37nJxntk5MeH02Yf40y//C371V36NG7e+wfzr32Bnc5ubt64zPThg794un/rUp7l+8wZtm9jamDiqbUCF/aVbYP/ixdHunqP3HGEXogsVW91FH/Xjq+vRCljgPCpd5Q/jvZX4cYnuA9CjvuSRzc2RxFSP01/z/a91lB5wCJL4rgbXex6w9/3mgBQcjuH+gV3e30oVga7refWN17AUyKWAGcGcwF2q952IEMX1NbXvMYvE2FDynPG4Ye/ggOVyQTq5hanSNmNmZVo/phKSoMtCtXwgCqRUKQ56iIg0QIuiJbtTh0RXT6nuHMOJ8fbmIA7thD6zw/ZtCIHqmlf3EUaMATEXj/Z6MmFEkoJZcV+/ygtE2lUlOaQsxaWzGzViSIgoaejDWoX/VNAPpbY6q1OE38N+MGvm1DruZxw78f2Nv/6/5mC2x6uvvsl8uUBD4ctffp5bN26xuZHYnc/R/i735rtMD/a4cfsOe/sHTOe7fO6zP89Hn3yaNjW+E6w38brl+ePGIWIzSKJpAgWlDQELghV14rQqxJasPV1xR4cYlCABF8iIdaH+8ecohw3Io3Ma/+PQ863+fJUD7chvezvQ1Fb5cUgivigeeeXaxhteY2jb/SRmfp7b3UIoF2V/PufajXdpxy3W+YJdyBRRykqui2r349knBLzFGYVcevZv7zPZmtDnTJAGA3IZPpDQ9dmrMjUInrTa2ND3vcuRGahU2kGIQKxtS1xEOlagifhmSImebMTTW4AqZh1RDVgwpKbtUEFpQcRpCauoOqGSXYBa3Cg2BXd+0HqN6qV2srtBTwYNtJooFDoRGgYb64Ec6FVeTGA5V3Hq6NuIv8qQ5HX81OPYie8rf/4CZ041TGe7PHLxI5zYucD/93f/KRcfPkFqhVEynn7qM5w6cZ4//MN/w2QESTZ4/NEH+OpX/oxT2yd44MIDxNjUmcBP8mN9SMMgqJCrKHKyWCH07nTtAAjj+e98B2ki58+c5eGzp3Cx5O/N9/vhNieHs0Q5mqXq4iWrrbtVu5uhOqgk5RW5GgQnPaPVYSIkJ4ZroWQl50zXd6gWkginTp7iMIne51BXGtEqD/fy668Sm0QuStf19H3vszADVPxcB0OkEGJDP1vQjsaYKU2TuHnjNiG2iEY2RlssZ3cpqozGo+o+DiUXpLYESwHVQGxaig2tage25OJwfwmuinJ0+2EcaWlqWI0brEqWBYkMdAnUH5MKjHr/LBhsVSEGqbzA+mXWep1X256hytdQc1bw+acBEupc02eIpTj9QdRWnL6ihRCd4G/rBWMd9zmOb0t071W2zz/Hkx//Bf70K1/nqcefohm3bGxtkrMxm+2C3uaBC4/z1FNP8plPf5p/+S/+DVfevISS+erXvsLjjz/Bxz/+KZqh8lsDXX7seO/582SnUlCUJA1BVhpVIL6gvPXOO4x2Nrm3u8f5U59mnD5YAPh7cTPf2w59/wG9r+qzIa0N/67Wo+avszpyBadmUBc+I1uhaEYLTKdTlosF837JbLngYD4nxkTTJFIUzp44wamTp1atzvt+Tw09XAns7u9y8+4tYtswP5j78QJaBmBJnZslJTWBGEKtxHradsR8NmO56Alhg2effo6bN6/4Ai9Uq6EBQKMrCbAQIkXdvX3edRjBk3AxzylU53UcRapmVTEGrKKpLQ89xZpMhmtlRyyMhuQnnvSGZLm6noeX2Y9LBB3M1MHndfX61SdVKk2pKi713WtL1Cr9AQaOob93jNGd6gWCBH+9dazjPsWxE9/nPv8rdFPl1u6MG7t3kSsv8bGPP8S3nv86n/vcvwNygXv3bvPK5dd4+iPPcP3mLl/4td/ArOPOvRvcvXeXa+9c5bFHH+fkidN1vrBOevcrvBVo0Bt9W2clFr0SkAjmLTg9Urn0DEr5cKTv+IFxtH34/VqJhjsDePv18PVUCxKkLpD+P1WhL4VF1zOdz1h2PdODBVmNg9mMWdfT5eJSXH3H5qRhsjnBotFJoZst2JhsMG6b71oY7/e9pfVEmRpXrr6FmouBD+czJaciiBU3vlMHtTSNiwrEGEgpkMuSvb27tO2YrA2b403e7Ya2HvS5c+J2yfRdT0wJ1R6jIBFmyz1eu/QyzTh54lMjF11pcIYQKmikXs/a9lYDQqlZebAYqlsRGbL1oO5i9doFry6HqqueV58rqs8J8V9VXC/UT1PwFqZIvfek1vWZQeNlGCTq0BUIsmqMSyXIh9q1SBKIawL7Ou5jHDvxffPSghe/+gc8/tQT3Lh5g9neu2ycjpw+c4rnv/UCamNEZrxz7R1eef0SFy88xhOPPMzpnTEPP/wIRGFra4d3r13j5M6p+qVYJ70fNb6X8LSWvCI0q2Ws6EqzM0rk1u3bUOHsDEID5jD1HwQ6Oqz4jlR6lch8CFwKdXGLbpCqhflizmLZATCdTZnNZiyXSxZZWZRCwVzqKkawRLHA7XsHFKOCK7QCRSBSsKLVYkeZ7u0Tt7cqoEfvaxfhvZqcQlZjfjDjyptXGG2PmM4XGC5CvZpVDm1d/NhDiEjwll0IwsHBPlqUokvOnr/oGwXLqGWCjNxxvJ7PFJJTFSioFULT8OWvf6m2VBWqALkObcGhUhycF4Lzag2vQAfoilLcFUFqK7m2HT0B+u+WKlY9/Hv4TIfn1WeLg50RVONZpVZqwVuneogZdj/Asvp9E89/xcRp9PW1nf5hxJhWfOC1ndY67mccO/H92+e/xMXTE26/8xZntjZ59+YlvvBbf5NXXr7J7vQe1992UruFwkG3xyuXXuXtK5d44OwJfuu3fotuLuzuznn2Y48ycJzgJ9CS+hDG0YVeUaT39lOpO2uR4IuHwKgd0S87bAy67Lnx7g0ee+KxY47GpO74h/lMIKuiua8JQJnNl+wfHLDIPbP5gmXuyarkAjE19Hnp/Kyg7iqepC6UbtiaLdOXwFIzKUQsL0GNHAKdKDY7IC96NABdxoIwW8yrU4LPKn8Sa6QgoIU3r1whNQ1ajJJLpRSo2wWV4ujH4DJcEgMptXRdXok/NzHSTjYoXeGRCxcoOZPzkkiPWSEEWf2Tc4bGUMnkTklty8uvv8TF82cQAkpP0YBlW1V/jvZ0ncxgIKViOc1wgmf16quu7FL5fiIBrDop1Ba1Ye6/V8uz9yCJTShSnGOnsZrPGpjbIwmBoMXblF4f+jGbYpYwgyyFwRzXqrqTWqCRRBR3nlAJ9GaU9TKxjvsYx058jz0SyHdnZOs4e2KbWzcji32YzTtOntjg7Tf3ufjow1ho2J/ukfOMzY0tcl5wcDDl6ac+QtM2pBhYk1HvXwxJ71DBf0ABOvy8qMtUSQgc7N3j3u3bNMHnTSKwt7tPzkYbf/A1GRCTZnD91k1u3ttl1vVMlzOH7GsFOiBkhJSiqy+KIgkymU47tBgpJaIFCGGlwxiHGqNWR207gpxYdH1drAN9zqCFGN0NQAWacXPftRy/S5tTlcV8waV33iKME9185lQQnJPnLU9HSgZp0JCITYIYiKKIFZrgYKOYEs14hySCaCYSgIZCZDRuiTFRyoIQjWVZsrTI6c0TvP3GFU5uJEZt3eAE58BZ1prTHOlJNpevUyNKIVANcSWtZqs2zF5r29OrvGphNciRDZ9PDzdWK/qDGUalM5g6Ili0Pq4gBaRftUm90st1wptwA11AhdY8GS/U6Ai02hDS8N5OA5G12Po67mMcO/Ed3FwS2efUuVM88sgjLKdTrr9zHQIs5nMee+RJ0thRd2XZ04TMmVM7fO6zX2Bz8xQpppVMUwx1V7mO+xoD2MAwQgje8hRvv5WS2djc4NGHH+I7r7yMEclZefKpJ33n/0O8h6py8/Yd9pcdC1VyqlWWeGutFONgNkW1MGoaX+wj5H5J1/Wk2DKfLShqbG5uEarcl1YSvput9iATmtEY0ohF58/fmIxJE4HSsz+fsnVixxfyn9A5HWZaiPDG5UsUU3LfO1+vDHSDKksmnkKaJtIVR2/mWrl2yyU72y1aXMEltGN3WIhCFxq2zz1IiRN0ugBxq6KSC6FpEYlcv34X08LJnS1SEpZ9IecewthFqgcUJYKoUCrgZWhB+2eo1Vud/3mudJqFV12GxCEpWm1lHr05ZLXJMnF9ThkeG9qhqxFGAamCFea/61XmAGg6CnpyIe8+4nqdVkjqyi1qQ5W6nvGt4/7FsUuvg4N3eOqpj3Pj9px7+7s89OCD/MKnP8/NW/e4dvUtHnvoEYoq+/f2aaVlc7TFyRPnmUxO8MIL3+L2rTsVyr5Oej+JWKHhgrh/mnjLLdQqUIIL/sbo5z4lt7+JSYjph7seZkYphcWi487tu8zmM58NaUFzpvRLuvmUJgil79nb22P/YJ/96QEGdH1H3/eUPns7b4BCAqaCFiPnzMF0n/l8xrKb10XeKEHoMe7u7TIaj2iaFgpovn8L41G7nCGm0wPeeecd2pAoXU8pZdVeHO5nkUCI0LTi1Y8YIShdl71iqdJmhoB5xTMaTTj74GPs55a9JcyWxXl6uUNEyL23/BbzXc49eJI4SuR86ACRuw6rTueSHMgi1epo4Pa5RudACh9QlqEmvfdpdQqIeDvbBrDKIfb2SIeB6vSOt0WV+vzhfAwE9HIE0VvTbVFMfa5pUiiW0dIjuSNoB7ZENaCaVlzN9YxvHfczjp34miZw9eoNDu7t87WvfIllp3z7lcs8eOEiITRcunKJFCZ85CPPEUPg7t17vPDtbzOdz+ly5lsvP8+161cwLZi5rJKtoN8fAItfx7FiQGQ6BDytUHFWeXtmh2CPMKiIGJS+kEJcSWMcy+hzALfEgBVlupwholjJ9H32eZ8Zfe6RoEg0urKkyx1dzqRRSzal4PB/CaEmXQfiFBzBGRSSCZp7un5O0SWxMWIKWDEsFzbHGzTNmPmiZ7aYc3RIeb/mxoInBDN48623WZQeKORuSZ8zXcl0uaDF5cbEjBDx5CNGtJ6Isr8/I5BoUISIitDGxHIxBxVe+c7rPP/1b/DSC8/z8osv0nddzR3m2pel44FzJ4hJIQhZYRCMTm1ApXIhzehVyeIOeUGUoEawWGeUAhYxCxWS4l+8YW47cC49ybiQ9XB3gDhhfZj7BUXSofP6IM4tlpxqERJIi1Undx3Maqku7BTUekxL7QgkkiVGJjTBVm11rYIHcY0FWMd9jGO3Orvbe2yfehQ5/QDvvvs2r77xCg88Fvn2t14kpp5lt0Cv3+TypUtsJOPzn/sVnn/xRa7dfJur717G8hItcy698Rqf+fTn2NzYrje38h6k2Dp+uPDVGfAdvgoVkABYFSOusPUwIPRCclTfMKsZKsIf+F6+Mhouj0Yb0C4zn/ZsnRg7gRogRozAdDojpcRkPCJGIaUEKRAlkVKDW1kNUMBDCa3GAic2NugoDviIipaObnfqRqalEAksQoQmuVGqHHLD7kfiU1WCq2mxP51y+epVmsmY2WwfgnllWhNGsDqlC3XzIcEXdFPu3L5HKS3RAlujlr7rUaAZJZbLJX2fufzGa2ycO4XpgqYJpJjQcpjKowijKvcllV7gGqDVuw6f7TW4RJlSfE5numpF+gx0qDatImX93gkhoOIVs1P/hvZlGX6jmsvKMA2kBE+LUgJmpaZIryLVXKtUCJhFXA9GiHEA/rrAtRmImt+zVJ6iub5skN43xMGBMj+5ZvY6Poxx7MQ3CYVnPvpxZn3LJz71aQ72r/OtVy4xGQVyVozMxqbPjTqN7HcdvfT8+bf/hLIofPKpT7O9tcOin3FwsM/W5vYRo9R13K/QIzv4rA6DFxEUVzqZzRZ0XcfGziZaKQY/TPhc6FDcOITAKCa0ZKI0dVEObIy3GbQeQQmxQt6rfuSgD5mL0ueOPvdeieYMXXUdiI5IbCIkxSvUtsGkJWZHiY42NyBnxu3oxz5379UmtVVn4tKlyxRzR/WsChJA88pkdgD9pxRJTU3uTWK57JjNM0EDzz37Sab7lwnBkbCmipZC2ySaaFiZM9nY4uNPP8f29g57ewuKQa+ZFV1gwJuA4yTrdZAy1GewItXVlqKjXCspQWwY+a4S4OHnldU1ORwYejU3UCQd1IJz88TFuEVWCqBe3Q2cQFWKVm6fAOJ1voQqO2cJMN/UmK4OZWizHs4KB0WfH/vyrmMdqzh24vutv/Of88aVK7zy+ut86pln0R42J2PKckqzscXGiTF39+9iIdFr5vmXv8HGRJnN77EZT9CklpM7Z3j39oKdHV8UhUPe0WDZso4fL6y2o1bWNKu5jKsixhDZ2dkhtJEyX1YOX/ihKqXhaW07YhQbMrHWBj7zElh5A+YuM8hjmenKOcDNWjlUG8Fbnyk2NOPkIAsZKoJAkugyYE2iyz0Hs3vE0JDahqRKG+/f/TMkQFVjsey48vZVQhM5WMwpAIdjPZCABVecSamhaRp3VdfiNAsCarnOVoVSipPNrYpJR2Fzo+X8xXM07Razgymqxu7BvvPqRJ3rxjBbG5CkAxk9sOx7JiPXwAyDPMAKgWurc3vkE66QmEMrfDXXpCb24XUIld/nn9lWSXhInIfgGbOCBq/OklUZs3qqAlLb6lrnn9U5AkMzFW0aCMEfV3Wn90EJZt0NWsf9jGMnvqtvv87bl67y6LkH+dKX/oyCkYIxGWUmozMs50rQFsvuqSUqaA7s7GwRLbFz8iQXHnqYsw9ccEpDRYtZXXjXcT9CgKpvqAoSHcxQUXcxRlIyZrMZKTVsjto6B7TDbPb9wg4Rfl3nGpnaZ3rNZDJ9LpTeZbaMXBF9rt4RowMpQgi0TXMImxeQUBO0ikt25Z6smRATFGhHDRml10xblGjKxtaE5WzJdH+X7bYlhfu3MA6nwky4dPlNTISuX1aH9Vp6VJShhYSrKjsCM5iQgjuukwRJLQfTJRJg2S29glLFCsTYECUxaUeIFpaLJVs7pyhqvPbaq7RtJGdq1WUuSK2ltnVdF1Q1UEKki6ApeAVqTmfRIC5WXs+zllA/X0FEK6/vvRuGgldg4SjlSIY5H06fICAFzJyH5/JonnSLQFQHsfh8UAmhIZhgJddEBu68nqsGqVCyodkTeYwNVAAOA290nffWcR/j2InvU899nMcvPsxDDz3NQw8/xj/+J/+Yjc3A5uZJ7t65y+apsygN0+U9JpMNNmLClh2UwFMf+RiPP/oEWCHFanxZodDg6vDr+OHisC13dEUwQmhRmznAoNQRYOX1iTjAQGKEYpQ6Uwscb0dt4HMjVZbdgnuzPWKn9LGpclnKeJQwa5FQKz9xMWVBfHEMh+7lg3YjSp3jCFbRkjEmtChd3xGaiOaelCL9YoaW4m3cnFl2c8bsVBRj+KFb5+/XHx0q31xgvlhw5epbSEiUvnPHA6vtZKW2At2YVcz5eVRD1SBKbATrhVYiOShjbdmjQ0ogpsD03gIE0miEpECgIYTAS6++xOuXX+XshU3EXHrO+Y5W04GABFR93ufOimV1XYMZQY3kz6zXLQJ1cDggO6sQweo54EovpWBE0AbTjAttA/Q13zc4ZdNl51SEQiSq1bfw5OZzxIyUUhOwYcXfTaR38IoKVnwl6KzUJCs0EunBXdutIHrspWod6/iBcey76ezpR1nObvIvv/h1ts7s8PgzT3P19W/z0EOP8PDDgbev32RZes4++ABvvfUWzVZge2vCjXt3aa5e42MfmbK9fYLFYkGTIkLCKLSN60l+P3eAdfygGFpgVnf3wyzGE0yUQQsfZrM5TdMSk5EkOEncs98Pfpdhs27Qti3baYe2h8VAUtYOAuReHMCAUkpxEE2tLAc+ltXq0TEYw9Qp1LYo5K5nNpv571SQiVphejCl65akGBmlxu8bEXcrr/GjAFyOzveG2fPlN9+kyz2dGF3xmZxlP99Uqa9RihBg3I4oOSMSuHvnDhtbDTFFSs9KpLp0SsZIlmhjQ9cIS82EtkWtCjEH419/8V9x7tyYPveYerKLIRCrd2KuZP1DF4ceU1fOkSI+WwveQFbLiLkdkZ/nUEFPR0kKh4k/IGCFnD1JGQKSQHOlxAiahdKDxOQITYWiuY4v3DewDhKJwduofZUqS4N8GxV0NZxKqnOEGqX6CmqIRBESslJ2Wcc67kccO/H9t//wf+Tu7i362V3OnTjF/u4MDYGvfO3rnNzehhjocmF6cECDQZlRcmF7a8JbVy/xxT/6FzzzsU/xxBNP8ZWvfIkL5y/SNA0PXjzHaDT+SX7GD02YQS6Z0FSRKS3M5jMkHO7wZ/MZZoWiSsYReCnEYcjyA96g7vKBRiINsSIIq7pHCuTSQRzRF2U+3WdzMkEG5GMI70kwplpnfJ70gg2WNEruBwHtQFs1G4MIJ0+c8FmlBO7ducP29nZNsj9aHK30Ds+jMV92XHn7LUowutyRBwBGnU8WjJSgEUgxYrkQxw2z6YzcZ9o4Yb5YgrgPIlrozCkkWQ3NSjblzv4usU1YCUwmE+7ceZet7YZ2nPA0uWLduf+eHU1XVapMIiEeVm69+EwvBCHYQCao3oV15msKBG9ThmEWPNxExegrxqjgGqCl8t6juON6l/uVc4RUhW2zts7j3DXC54cuMl3IoEu2WqNtvM9jqiseoCu5DFy/unlRp2OIeTt0Heu4X3F8B/bX/pS4/SC56+j6O0x1j6cf/yhvX73KvFuyuTkmmvKJZz/J8y/8GUkjG+MtFh00ofDW1Zd45MFH+fOv/RmnT29z4cJZxuNNmja8Byzw3W7X6xv+2FFnMarqUDyhzqXcGSGESikAT1ZDtdBEJB7nVvAKwxA0K7P9A1LTMJ0tIDWY9KQA89kuRmAxnRHVmM8XbG/tMB6PVxXf0JZUUYfM12MWcXBE245JqWW5WDKS1ueJVgjJ/eNu3bnN5njCeLIBXf8jJz6/3d5/jwUuX73CIncUcfFl7TKmdVZW59MxCKNRg5mRs6Nob9+9y9ZoghWfXfel0I7GRIRcK9dsBWkjcZER7QlSaNIm1nfMDm7zwIWT/j69JxUVpWiuKbAChxg0Qs3dH/DKqCJJqpSYYz0HV/uBa6daGPRWzQ5FtgcpMkFI7QQbn0Dr7yZxyoYVp5g0jOnx865qRMuESqMZvrNFjYLzBmPomYSOMr3lLe6BX4q5go0pFE++WoBQ27q1Hd+vK7513Mc4duLbau6wLJs0qqSSaaQnKGguWBJChL7M2Z/e45Of+DRnd87w0Y99im+8+C0uv/lN2hQ4dfYsBwcdqen49ne+yc//3OdZCeRyNOkdZsIPSoSrx44MJ9YJEgaErJmLA5u6eLJUaLiq0jYti8WcNgqWS23rDYZqxzmHskKHdvMFsR1RcmG5yGRd0gbIi56NjQ1GCHnekZcZNlkdx6rlKUOlcYgkXH2Syi8bjVp6zb5IxkCuiX08mrCxsekmptl5Yz/yWTvSijWD+XLBq5cvIW2kX8zJfUdQRTWQQ0AJtGI0KRDb4JJhxbh19w5NM2IynrC9MeHm7RmpmRAIRKLPuYqiUSkJ8nJBWArWL8hxg/27d3j0kdOYdWgWxJzbFqKg4kLNwapbwVEqkDUrbU6r15/cIim6wMAwcwv1e6WDrdCA0hzuHm9zmkEYjRhtnASJqAqBxis7LQgZzYE+dGhwi6tQHdaH76OD1nzOKxkSS5oqUEDV6rSaVkVwYJPVGa3EOnusTn4SKMfQkl3HOo4bx058/9E/+C/53d/9n1n0+yTZ4slHn+blV75D045Z5p6b9+bsnNji0ltXuHjhEd64cpU7OXPj+m32FsrJUxv8sz/4p7Rs8slPPo0EYdkvCGmLlZecOWk2BDANDGDP9xqfrgk93ysEoVgGjaj1ROywjeQIEk6c2GJjNGFhC2IulIq0E46T9JxIJmKUUAiKu4+XjISWUTshz/cxUbJmJEaa1CIE2hico1erEidUF4oGQmiJQTA6zJIDSLQ4QIdIpwUtivXVRqkosRi3FgeIJELfsZwvvwuocrwwoNTqyGdYV65eWdk1DTB7JKBkVHtCM0JMaCTRhMhSA1pmUDpmB4Vf+rlf5O0rrxAEupyR0KCloCXjZG8Yjya8u7xK0Q3aYEz3bnHm7Ja7VhQIMZJzTzBPBGh1HRJBNZKLVIWcEZkpIiOXEFMHtkioVTS6AkiKFozeNyAhUCwT6y3iFaGBBEJ08eueiIStqv9aQOs9JS1ER68WyzQGaFMl2Sr1QpUoQjFIljHryFmZaMBKRoMikepdWGXJan2qCk0EKz19cMBL1HXiW8f9i2MnvunBNhcfeZR2dIZPfuKzPP+ddyBewcRIMbglzXTGZHKCd29ep2jPn3/ja6i0EIz5zTtsjzc4fXLMbDalbVouX36D8+cf5OzZswQJqAX6viPnJZPJFqKHWoIfHEfxaB+u+ODNgIFlr/bwnbgODqcMwlO+gA7EY/8t4VjLikhtqPUuLdYEFssFzSih0pAaaNKmS2k1rbcGEVIZIylUwWEqqtCAFrFA1yloj5WOLi/IXU8umWJgRJRQofv+AZIENoIjEGN0Me6+73+Mk8nqNprOprz2xmu0oxH39nYZ6GoOjG1ocF8+BFITKaXDASOFcTsiTIRHHnqYa1dfRU1Z5iVbGxNUCyV3EL0daBpIo5ZZzpQgjDYa2rbxNmNI9NktirIWvJFZtyZVkcVUXfCG4hsGHLU5PM/ZHQP9pH6AWl8XrX57QgWkUAUJqmXRgDryT+Z0k+CI1lACKgFKWGnDRqsUmorkFdM6kxOiCaIFKVZbrPWeq2AXo7a7rWDSVw++DiXWzcZAm1jHOu5fHN+P70//mCeffYitzYssZg2vvnyJM2fPM5vuobqkbcf02U1HY3RYNqaUMqdtWhLGbO828eQOl16/ya/+6m/w5S99lS984TcJ586ipsxmc77x/Nd5990r/M5v/y02JydW7/+BSL0PefX3XqURPzfCisPgiDurC1yt6LSqeoQgh61HqWi/H/R+1CSQlT5nNk/skHKht0JP4wCLFEBdi9ME+j4jElkujNJ71VNKoZTCsjN6PdqeLcDEgS5h7KAKjrTGKhIxNInNjYa+X7jMVXH6w4967uryjpbC5SuXKSjd7AARo89+vEIkSCKGSLFCbBMScG3OridGnI6QEluTDR8BBEjjlnbUEsUtiJBMvzSEiAa4ev1d4niMVtcSR3EOs1RdCY0HwcEfxduRrsXZkLNXkSEoEpQyoE5rGzmEKjNmkCt53pG/gRCrk4cI0ZzU0mOoBVdnqQTzgKDBZegGq/iYXI9U1RuSXltmBs+/EnyOJ5XIHvGE6IprcjhTFCdjqLlCTYgBCa4CIyGiuF2SxfUoYx33L45vSzR/ixu3G15+ueNv/Y3n+PSnPsUX/+SLtGNh2fWoJroe0khJTU+QhlGTGMUOFgek2PLpT/0c21sbbG2e4qGHHuEXfiEwHo9ZLpaklBiPRuzv7nLm9EkW8z1yFrY2t0hNYvANG3r/slJ04JizqQ9DCDFU01nzuZkNPnWrNiC+c/e174c8dYaJ6z/2udAZlAxLjHnX05ee3C2xXsmlUAx3F0BAo+s6is8ULURX3her3dghEY1BBxShuZcfvgT7tS9ov2De9Wxvjem6zGKm7tLwI8SQzN1UtvDG5TewAKXPqBVUvTLRkgmhCmX3wyLdMJ/vMzuYsrkxomRogrsgDAa1EoTZcgGY0x2CuzKkELi3d5MuByZRiRUdW4Gjlb5hWPA/K22cTtW1Qj1loZod5GKlonWdW4cNz5MB74IOyi8Sq7OCeeuyil7bwK0VQUKDhaaCjfxnilRha7y6M59DDolWbJgpVlEKq+a2was+zP0TsSpxpkqhiqZroJTg5HfxCtPPhet8GmtwyzruXxw78c1VePK5j3Hpjev83r/5fcwyUYR7d++xsbVJKQGhoZQeohLESKXQRgevPPn4U5w6c4F79+4y2YAvfenLnDxx1rUEAVDMhIP9Pe7tHnD37g1+69/9+8wWC0IHQmA0GuFK7b4IrhPee0PqbnqQIROMUoEhVBDBys2BQ3uZAbBy7LOphf39A24ulvRLZU5h2btqSBQQFazEOh9rMMSFlykUcpVTE2JIFAagRZUiNiUSfOEMVuH27s4eRRgnJYRc54iwsblB3j+S4H9AvJ+2AFQJNeON11+n73s0UUEi5sCSbF7JSM9otME8101EiOztTmma6lpQFVPAyezS4ZqVlolBKH0hNA1t03Ll7UvsTu+ytXmeQPFSvN7bVKTjAOs3V47mYH8fk4YwEYq6G4YBMUYGhZwQBOsUS0MbW6szfK34K3VBHY7pK0ClDIS6USrmfnsmvjuyuuHxW6XqftYbTgYkqZmDU8wI5i4gJlLnhs7Ds5Ldqb1CarQClawmTvfvs9WGzCrCNISw0gtdxzruRxw78d07mPK7//T3ubO74LGHT9PtLvhP/6P/mFvTe/zzf/VPWMx2Gbc7zOdLUomkCSyXQmwS4xZMer705a+QrOfembN89nNf4OpbN7j2zrv84R/9G/7u3/27NDHxO7/zN/nDP/p9eua8/vYbfOnPXmBnu+XE5lnOnj3Bk488xqmtLcaTMW6vEj7E+c+XD/+nIhRKoUSpWolC7r36k+D7frMOLFIUh4+LtxCBH5j53OTU0GBoVyg0FDKm1TkARwlmVSKJ6HUMJhlCR9sGYo6UvrCzvcH+/oKclRgCaEFlhIZcEYF9HTw17raOt/y2tic0TW19BbfHQfJ77oHjENiPeu4d7B/w59/4c969+S7jjQ36bkERrzG0ODQopOTzueC6oa3A7r1bdMvMqE1ezRBJyeelour8Qu1owgSzjLTQo2xubnL12ss8dPFBdu/1TpdQF/BU3KZnSDqqhUhkPuuhJD7zmc/w59/+c4IkkI6sgVJ6TLf8Neh9JlcTKOYVdUHqvDeA5do1ccFw9ysurETGSvTjF630jVC5mMXrLglEq+cnaE1+hkoBapWqjuA0gBzcLb7PhKBk68mAmdtiWXHyfa0VSeZO8Yph0iNWCPrji5CvYx1DHBsqtZzdZb53kxPjhjvXrvHEo4/zxa9+jXfeueHtnaD0OmfcJJrazhFxNYo2nefk9lPMpguee+7jPPnER3no4mM8+vDjhJi4d7DHfN5zcLAgpglnzz/Mm1eu82//5E9RLczmB9zdvc1Lb7zMP/69f8ytO7coKwWQD28L5LCCWz3iih2W6XtX3yhDdTLA9bEKkY/kXHymJMfDdA5YCUMoxT3UMGhjYtQkTu5sMm6FyQRGY295nzg1YrwhjDcSG+PExiQyamEyDsQIGkbMmdCFcZVQk9UsyYoj/JbW0YXCwgp3Z3Nu7e5x794umhsWcyOXH74cGCgVqsobl17nYHZAahuWuVtxH322hydekZUbepSIZaNfzEkBRs3Ia+jgVaABfe5c6cWMQEugpRQhNS23bl3n/NkdkhhaieDec/2uKwwWiGHE3bsznnj8OR648DDdcglopaJQ57XUdqWtEJpmBTU3fNVa+bu7faU8WJUOlFg3RsUru0opUHEaxSB0ftT2ySvCWrUN7Wqo9fuR8yyKBXUQTumw2vL0VrBV2op5i9QcYqrFzYht6FaYeVW8jnXcpzh2xZeI9LMlm40w7wofe/pZ/vv/6R/x8AMXGI0TjzzxFK+/doWEkRrX2YPAYpnpN+Z8+Rv/DOKSBx96kqcefwazwLlzF+is0G6M+c4r32F78wTjyYTrN29y7sx57t2d0eU5uZ9jI0Nab4fcuPkuiHDu7AWa1PzETs5fxhhGn2JA9WeD+tgRlRIXWw41IRaOvQcaeJQmTCYTLBckJiwElrlnMk4UhRQTi70ZKZXKLzOatmWxt09sAlkLoyaii0wmIgESmWLuOTfgcQz3ghuAicsuE8icOrFF6YXpYon15YfaAA0cwVIKy+WSN69eIaRI1kLWvCKou8KJITGSYvKRVRBKVpoA46bBgvDwg49w5e03KaXQWaYUB3mEIDQhOVmbQJ+V2f4em5sTxq2QRi2aDwghHpLIqSAWXPhZKRTriSmS0phuuaRNkV471y6d9wyqK6qHrdFSXLas3ggV3OnVv1NFYp2ThwHr6T+jAkdxKgIDqX0ApdQt0kCBKGqr1w5WZdKo0nk2VLC11b76x1V41FyGTkzJufPNRohU6Ws0OtXGO7LrxLeO+xfHrvjMxoTQMp0vmfUdf/TlPyaUjhs3r/Prv/lbXHzgIVIQjJ6NjTGxabg3nTJfLlkuO576yGf4hc/9La7v3uNb33me27duEGLghW+/yKuXL/Gv/ugPmOcFs37mi4YJH3/m4ywXC6xfsji4RzfbZ2ujZX/3HmdPnyHE+APoDh+yEKr/ms+ttCh9n1ctTNVaWYgvwlKBMD/M61MhJoYSk9GOAOkJCfYPDrz9HBIxtk7bDi2j0RaEDfbnEEZbhHaLe9OeXGdK0XpC6T2z2eotDlGnxdzxoe7+U0oEEfYP7mHWOzXjmP3uoWIZPvdbb72FlkLfLTEtqBld17FYLCpisrrXh0AMgSBCn5eE6BVv227SLdxZAlPaUazzMCXnQskBYkbJSBRSNLY3G4IESlZEotM8jn5e6vXTOu8KAxVByX3ntAhTloulI5Qq4ARwwFBFSw5WVC5adkT4ob7acD6HjcwAZGHVEhVYJdNDykwphVLRrtRZZGVG1HPMgHc5vHZaFVpq+1Xw9mfl1qw2ZqHqmlpQLHYUUbqsdH0+/n26jnX8gDh2xbc03IokdIy3R1y78Rbbkwm7iwX/+J/+z5w/dZq+E4TCdLFg1hVMIGdl2k/55ovfJI02OH2qpemMczsP89lf+gK7s3uEUUIk8j9/8V/SNi0ffexxPvOZX2Bn5zQvvvwdzpw5wZOPP8PXnv8Sp05s41qKC3baiROC5cOq3D4sRrL6d5CIaOcanBX15zw0b9/tz2bMuwVEY7lccvPWbXZOnnzPFuh7EsGt/qtyvvqcvc0Vha4vnDx5ltliQS6ZNghoy62be3SABJcfS2GoOAsizgkLpo7alIjYAnANTxGnsBPUK8Lo87WUAn3umWyMaBogjt4Hfhgq2+/GPx1VaFksFlx+8zIxBbrS1wqmOPKyVHWZ5E4KhlYjWCfnm7SVC+cuCVpnlRuTMTFEgjgSdbro2NgRvv3atxiNW4yOYOoISYkO4pFDdR2poJqBjuCcR68IY2rplwtSjMy6JU3T0s+Wld9YISdH+JlaK02rFWyoOpugtTzU1XV3qbsjuqlE/7xOFqzoV617k9pWGFrf6olNasV3NL3WYq/WcN5CHe6fofXum7T6eqHSa4JfPJGAREeHrmMd9yuOnTEW0jHpI5ujSN872TSXQpOA3HPjrXd54KmneOWllyhhSUojEpnNE4kcCtkStlxy73bHZz7+OKc3TvKnX/rXbJwck1iymB/QbI7Z7/f5xsu3eeW1b7E5PkXuO2aLwMtvXmdy5hyPffQJbGE8/+1v8cuf/VVi+rDDvYaVvS5uZkgpaDSiKd18ChLolkuuvnuF2wdz4kaiW+wTxNg9ODhMaO+rCt4fVttvvpol5jNhf6pY0zCfzjCW9D5gIlhP1ISIa1NmW1aJu4yFniaCSCKFQhNHoJEUjRBH9A3EqIzECAHUWicxWwcZItG1MftCUcOWHbP57Mj5+N4YVU8qgRDg8uXLLMuSPvT0WtuUOhxXolgmxEwaQ98VSlF2p3NUFCvFSeLRE0IMwryrCMZi9PMZJUMYj9id3uPu3l3ObG0RzVVIcjC0+OytZEdIC4NPZUSkoLYAnaF9wmwTIZC7JUEjgRFYj+qCvm8qYnbhnDd80+AGsgP1B0RbsOJ0eOkrR8/vm2xWffVcWNoTVQUYqVQjW3nPTC8MzH6oAJr6HwyJzV3XixaSCMWEYrGClzJSxb5LdJ/GVBSJQhbzjVDZIKiQwgC8Wcc67k8cO/GNraMpiVMnzvHu7m26XBg31e85Ktsbm7RNYHtnTOnnjFJDFGExmyFNi8REitC0mXNnH+f05AzTg0y72XBu5xRnnjjPd156kUkbkCCcPneC6d4e5x54gJwLfX/AbLbg337lzzgZA7/8C3+HGHzjeh/Nt//SxfsTlR4B/VgIZM2+OMXIuQcucCGMeOONK3RaSBjbJ3ZwPGJcvd77vemGEBkg7/4+s5k7cPR9IYkj8WI1SY0a3Z4mGk0DGhzl2YQWSb7gigVPDqFxwrcZfVZyp3TaM8/Z7Wh0jNETohHVK6vNnU1KmZIXI2yRGI0G1N9A2P/g9udA95hPZ1y5coWUEtPFrM6ehlkYhOB+gDE17g2YlMV0l/ncrYe0FCeXA4tuSbbi6MfgMmUmARPY3jrB1TdfZmtj4lSDbO4/GIdzfKi5qWaUSvh3qTNwiTi/Fim1mC4ZRm0Fw4JA8BovxEhnfUXqupvDinRuh4AeG+a/NrQlB9d2r7BLfdyLukOjaKuzvoiT0sVf5kjjwWkSVvceXnEntGRiSJ6Ej7yuiv9T6gxYihKKoUlAC2bZxbYD2Ie2q7OOn0Qc+27qOiMQefvGXboUEUlkKYwmG5gEHn38ce6WBW0bMGloQiC0Ix565BFev/ymVyIoIoUvP/81nnjgMR5+8BFOnDlHMz7FK6++yCOPPMre3l00CT2GROjKks3Nk9y4+S7taAPtC4899iTnz593Tc/jjyn/ysUHCXinlLDeKFZAXGVkWChT01JybTPGhODk8qHl9IOwnXY4SmI0GjPWQEw94whREpr9mpmoo/JydK1NU0qR6rXWscxLTA2zQB5cwYMRGBE0U+pMK5hD6Rtx3c7ceTUUJCJibG+2dNPAIkObWg6P7uh5+eDPNBqNOHfuHFffveqw/IqARBx40xJBfJ6IeeUZozBqG7a2dtgZB+7du+vAlVLo+w61BAz+c0o7nnDvzi0oRhTfhLTJ1Ui8ZDqcbQmGak+Mgdl0zmSz4WAx9+q5zrFHo5Yy17rxyM6nU/PWap0/HmazYZZmNaWDE9xzPT92eA9pWLVXh3987HhUwPoQuVkngEdfBcydQHToHDAgQF0s3eXMdJV8CU6dCKvXWr0SgzqMC7yIC3N/3ztzHev44eLYiW9j5wzloLDMBUmBpmkp0rN7MGdraxuKcOv6TXbv7XJqe4vJaMTd3X1u3rpDLkaxOUkCMTcsprt857UXeefaDc4+8AgvvvQNfumzn+OrX/8qzz33cV565WUO9u8ybhPxxAjM9fsSwkPnH+TTn/gVYhsdmfaTPDt/iWKozkajETb3WYlS6PKSTh2W34RIJ4X5QCSuJqcirioSY/N9QSIDlSGEhOAqMUuFZd9hpVDU25rFekoxJCf3ehOhUxDNJJQiStCIhUwKE28phkzfBUIRNBgxVBxghF6rc3swLCjZOuYLYdKMmUwUneY65zKfSb3niL/7PJk5wfzxxx/n6rtXSdk5iG4d5BqRITq6MkaXJeu6jib4VmFra5NusUebklcpBFKIXr2qYap0/ZIuZ9rUMG4nXtVIJhBQ8U1GjAPx3XNVIyNu3bjNJz/xaa5df5NAAg2oumzXeNJwb7duGnIhqhGyIerHbqW46bDiTgrmgBiRIam4m/pAg0BSRV9KTVhaFXSGc1ito0wp5vQFAaQ4d6/gn3XIl35THdIe1LTaHBU0d/66okidG4KQLCClsFSlq/PJUApKbdHWBPohZi2t4ycQx058k42W8bhl7+A2nQakzMkSSCnRdx0vvPACC4HJ5AR7d/eY7s4JTcvBQUQRGlFyUe7uZXLfMY4Nn//FX+XP/uzrNI1y5851RiNhNr9HmyI74xNM85w333qHJt5h1HZQ5hzc2yCmsS+CHyLn9g+avR3KTuOzJTWK9q4lqQYB5trTaWGSGkyUvhQsOok5RidIB9wpYyRVccMciv9diaNWFFqU3f0DlnHkJq0opRPUIhmhL+IVv0KU4tVcbAkhQb9k0rTE2DIaKYslFAtsbI+5eyvTa6rIQlsJREtIZDPaJJw6tUnbClEyDUYbhWXkEEpoR475A3L4UF2ZKadPn+R3/sZv082mXHv7LV555VWmfUZiZY0FtwRaLJcs5nM2Rg6smS0WkBeIBVdNESNaAlFSbBxQVIRihZ3tCbdv9IxDQ5scrRhSQEzIxdVXSvbjunXzgGc++imee+bnefPqFdAWCclnb6WnaVJF6QqlpqqgRhIhinhlaQOYxWdy3kqtCMuV2IFLrg0nabiLDKC6UgxoTb8UVS6u8j3VoZ7u2hCCyygUN7tFopv2qr+qa4oOrctKmxkq05qg3XnBNzlDxScxYaIESUhfJd3WsY77FMdOfPvTfcwSH/3YI3zz+RtonpHaCcWMTjOj1JI7ZVkSnbY0QRjFlnv7MzY2Wt89Nw2lN5569COcPHuSf/Un/5pGEn1WXnrtZTY3E2+99RrRNph3C2SS2Nga083nlM4YbW1w8eLj3Nu7w+nTZ1Y72Q+rF9/wqVUrqMIMzc6Fa7NBK2zubHP99g0eOfegIyRV3RMuKH3u2Tmx40hAGajH8bvfoMawlIFbr43byFKUpAG1zNakoVdltoQTJ1pCdjh8HAt3dpdsn9yizDONBKazGWlrg/nelI2tBolawRDuRGC1WqkfDREnzU9nnXs6hiXnTmyw6BqWS69ahxbZ4Wzyg2d8AVwj1GDUtDQ7iac3t3nokcf5gz/6IvfmMywkB32Uwv7ePqNm7MckrkPaikEJhDZiDnf2jVhKvPDiN2hHE6JAapM7DiD0fYcQ6PtCEzxpWIXyzxcLTCM///O/SO6Uon1116ASyo0mJq/mYiC7pzmlanQOLUbNVikC/vEDgSBDFTYgPz0JqrpBsX99PCmKuvJKrwVZuBGv4ddx5a4xVKnV9ijGeGR2KPWVDEwJRemWHZOY0cLKjFeqo7rP96BU7qbUa9eXQmoCXZ9ppaGUxY/3ZVnHOo7E8SfG2nDQzXnq6Sfp+g2uvPkqfS70y44YW/anB7STMQfdLtCg1hBDS4oF1GjaEU1oMCtsjM9gVcl+uegxfD509uyDnDl5ildfucT5C+e5/M5VTu5sM2qFVCJPPfExfu7nP88obf7AedSHIaxWLiKh7uq99bSxucWF02c4c/4MW00DuGlNlMB8b4pmRUYObnAbmEDbjCpy7/tw4uq6Z6bEaDSbiT43SB6z199jc1PpM6Q0olvM0AyjkS+8IRaX72qjK/0sOlQDXbfk9GQDoadtG3IekmuorhFOwwgVfjKbLjB6Tp2ImAT2pwu0HNtY6T1UDTfgpZ6HwGg0JqVEjJFOlZQSpVtiJRNHUtGIbtorMdCbkopLihGUFCL7s7tceeNVHjh/lmU3YxzGnmBHDcUSmLcil2WO2ahy3ZQYRuzNCkhCpEf7nhgG1wIh1GpcrSDVVSEXJdcNQqXcrbhyrjXqmqciwaXlGPRZq/9dbUMOMzrPVdUtQ5V+6aAdP3FSpc38+qsafe4JUTgKhhogQl49FpKB9T2MHPkKLmwtQ1vUU3BFlDq1gWju5df31Q2jW7szrOO+xvET39LRYpcvv82tG9eYTMb0d24i2b8xGxstqTUkF2ZZITm+uQk+2Nde6ZZL8rxw6dXXKK0R27oQBaGEwGTnNC9depNmPGHWzxilwGIxpY1C0yQQ4Utf+Sq//LlfZdTEuhD4l+TDEu8nE/sm23fIs77jsY88zeM7W5S+MM0Lrl+/xTOPP+mE6b5j2S2ITQIp5FINXs2qZJWvf0Hkg4qlw/dcCThHKIFiSywVpFGiGLEYPUJMIwdKUIgYUVoW8wWMGyabO0iYcPJkZDpbuqaojsEcNTm8V8Dtd4LWEZ4YoQ2MJi27B1NKiVh+r1bnMc/k6r8GlGaM7lpg6pTvJjgicnO8QZQI0teWnZOxi0HbNvTdHA3KqBlx9a3XOH3mJH1ZEKPPv0opSMjeigwto1FDlzMxjil5l67viDIha1nN+5yTOVzvaskkXokNXDuRQJdBkmBh4Ni9ByaCiVtE6ZDovGfp55LB9f6IJ58KEiNt0xBDohkSmQrZqhShFtSEFCMhCQOHUEvVjMW9IE0DoX4/RQ+82xCEojrAX7zyDnV+KAkJCWKl8ZWAiDLrZjz73Cd/2Au8jnV8zzh24pP5FBlv8vWvvMDPfebj7M3nPLi9xcOPPsVs2fGN73yLRbcAC4zHDYgynx0wbpK39UNC1IhqbE4gbG6Q2hG3btwghEJC+M6LLzFqW5b9HpQlpUxpwoT5ovDRTz5BCR2X33iH86fP8ewzH0MIlZT74Qw1YbZYcLBccrCYM+87FlHYv3GTftZxEDKbFtm7d8D57VOEFDnopsRxYrnsSUN7VF0vEawamDL0Nd8T3k50+H3JkGfG7nRJ0yRie4LZQhAr9F1mPNqiWwYWi45Gjdy13LuV6bOxf+Ccu1L2UBNyTeRROqINjhFenUgISO5J+CIYG8OicTD1mdLGZINoRwEZP0TMZrBY+mKPkfsO7t5loj0jK6TgcltdBomZEJb0fWS0dZqiS0owUptYzgvWRHYP7jEeCeM2up6m9YgKOS9RjJR8Blm04ALUXpFNxi25F2IYkM9G1kyx4vM/apUp7rrulk1u+5OzQBpMXW2lAjOUcKWCfrT+XKh2QhIQcePboeoLGMUCZokUGgdI1TZz1kiw6K1INaTg2qpFiW3jG9Doup+eYJ2qkEsmRneMEJO6qTq8yRSlqJKLz5UHqoOpEiWx7KY8+9xHOPfA+R/++q5jHd8jjp34HnnsAjfvGXMtPProQ7zwze/w8NNP89d+5++Qu57TD1zgd//572ES6XSOSKRNiVKMHDqQzINnHmG+t8/Tzz7Gc5/6LP/P/9f/m5R8iBOsEFWwBTQhcHLrBHumzJYdbTvitZdf4e/9rb/HZnOBkydPrMAcLuf04aj41HyxVzPu7O9ye2/Kzdu3GW1uEkcNN27foisd1mUkuHda1p7bd+/w5MOPEAxObp9wUIJV0IKI2/+Ik4wPQeryAcmv7tPVKJpYLjLdLNE13rbMSyWII/l0/4CiQoiB6bQnMsb95lzpRMTNY8VctktipJVAij0ivbduQ8RCS6MQzRDJSOOQ+agNMdYqJvAeB/bvxUM8+jNmM+z//N/CtWuOiDQjqfLclTfJ2h9JHkJWJcQAFGZpxO6v/zpdXLCYGjsn91gu94nLGeNuycntTeT6LsvlAsSYbEy5eO06O4sGUSVIZGNzk4P9JadOn2Vx6W12ThZK37I1L4RvfAPtMydffxMVJS0OGI9nxDtKev4bbL36Emf27hL29+iLUK4fYLHjTJ6yPdqgm7st2Kht3ZuxzghLTVhowY1sIcURISZC0FX7MvdKTlPS3R4LFWASQGnRkECz67MWWHRziIkQkwNXKmZlmAeqZp8aZ2XU30EXt4ipevRRKprUk95y0SNEUttAghZBO+Xs+ZOcvr7L29e+CZ//ez+Jr9U6PoRx7MR35/Y+s/mSQuEf/aPf5fTJk7y5tcl/9b//rwhF+Py/88vM9xds7Wyt9t5RAo89/hiX33yVrEacJPZv7fH8yy/z4qV3SZOG/b27pLCBFW9htclV2efTGX/zb/wd/j//v/+BNA6EYlgRtje3uXjxYtUxdM1I4cNR9YXakrtz9w4vvPEq26dPEyYJGpguD5gtDpi0EwqF7Z0dJAjj0PDgydOVj9a7k0DljsUmMptNgW1y7pAo7gLO0TbYe8PMUXlFM4v+LjEJWXukCFFqRVDRkG0K9fmbpJCIoZLrSd4CFUOKkTEK3iJVVdQyZurmpBqI6kamIoqJklJku4FpP0fCmNTN2djY/OFATq+/Af/1/wGpCXPgpj15nN/9H3/v+O/zA+I33//A//G/AeDf/6An/zf/Defu2zv/5Yplk+B/+1//rA9jHX9F4vh+fHfnxPGUc2cf4OLFj/DaG98mbow4c+4U/+Hf/g+4c3ufB09fZDa/x0MXznNn94C8LLx7/QYaoGknXL/9NmlTuLM7IzZKtCXjBJI72mYbVV8wwZPfzRu3+fzP/xLzxQF7t2/z+uuX+NVf/etQOVA+HvxwENhX4soYt+/dowQ4WEzZPzjg1OlTSAhMJiMm4w02zpyp4G+hn87pF3N3DEB58ZVXWCyXaOmQJnDrzk0efeRCdUMHgnzPpAdeA6k5GX4yVkIW1EZoiWhx+LyRGVJcUehKZrFcEugdwZejk53FCFpbdFKt9QRXdUFcgYRI0UIQIYaIWaAJLeNJw3gjMZ1ndG5H5oLHjNu3kb7H/ov/AnvyCfyeg729e7x97U0kWXUP8HlViBGZz5HdKXu//TvsMiNnGI3HzGb3aGOkaQOpgl8W3RI1Y3N7k9dee5fT5zdd57OHrheeeORJun7G5UvvMtmeEmSLxdT4T/7+v0e/XPLFP/nndNYzX06ZbJzi9m3l7/y13+SF5/+I/fmUW3f3MBnx7o0DUmucPrPNRpNYLpZoFJqmIYVY25qHczoHlCwBI6WRi0CItxbN/Nr2YZs+nUQtVpK9U1V8FpgRAy2FZXbKEox87FAJ6gPQyDU8fe47ll10edcBLtZ79W/B25y6ZDbraZoJIURiSmxttnz6mc/w9rV3iJde5W//X//7H/o7s451fK84/oxvMqYZ99y6eZN339mj3Yx8+c++zva44U//+Iv8g//F/4YnnniG//b/8n/i9ImTvH3tJm0zYTqb004ilgOqHV1ZMpJNymLKU089wrtvXeNTH/8000Xm6luXMcskEWZ7e7z4woucP3eO7c0tzj95ngsXHnSEXwUdyIfImWFQ7QdhOptxb2+XB7Ye5uSJUy4FFhtGJ89gqWG57NidHnD9+g3mt24z+uRznNg5ydbGhL3dfShGzh3atFy7/i6f7J5lNJ44gOP7tI09+XpKXXZCp5HF0q1ncpcrLL3Ql4wJpBAq8hBMIoIDHVQDRQSVwa/OW65BIBdPOHGYBYmDTwgFlYxU14N79/Y598AOG6FhNj0K+Pkh48EH4PEnACX8u3+dk6dOcSJG8nSfO9/6Bm/8439E6TtiSMh8CqHh4OmnuZvvksYTrty5yanHz7K77BhNEpPUoFk5mM/8vJw5ydtT4MnTzGYHSGnZ3zcuPPMxpvM9ri2Fk+fnaN5isSfYz32afjrlztvfZEHPbL7L5sY5bp6K5E8/x3R5lbv7e9y8cZfeEldsREo9iwtn2RglFssDNLWMxhPakIiVoG7mmxAB1JaIGG07ISZHcepAdzChb0/RN2cpmoBIMUM1YpaBzmd1wLLMkJTIZeT8FjJWKsqYai7c52pA/A6hizQxgXY+U7ZE1kLXz5hOF4Q4YWNjB0z523/zt7n67h2uR2Ezz77PBVzHOn74OHbi29U5J23EaAxjDRSByWSb3B9w+tQJ/vnv/XOefOYT/NIXfpU7+zcIMbLss1dkfaZ0DTl2NG3yyqIpfOaTH+etEw+Q2hO8+o1/y4mTE6S48PCZk2eIbcPunbssD5Z84jd+jgsPPugD8GqVEsKHg8M32MdQCcSbkwmnT5wkiSNl241Nlgf7TKczrt3e5c7dO8z6BVGESQi88fab3Lu7y6effY5TWye4ev0WceRztel8Sc4wwZPegBj8HkcCOGBhOp0imy39UuvCWAnneHWkgJXCKARGMTAvhlpwqLwVLFL1HmU1VlQzYiV3h0q4dgRpi0kmJeXk9gajmGijISEz2RizjD/6fXA0Xdrdu3SvvMTb167y0G/9dR74ld9kev067/zJHw7sRa9ggoAVpnv32N5sSEHocd84OMRumECIQs4O4Oi0ZxRGK9PXphFK6WtFO5DEQUtPKT3ZFC0J0USME0RGlF7QLIQQccNzJQpujqtOdO9MiCG5G3xoHFACXjGrMnj2eTK0FUrVdFAsDUhMBGkdmSlagSeRQkItIL3W6qwBqTQNA5I54EwBFSf4x0Lf9YwG6OhKkUUPtWVxfuJ0us/v/PW/xtvXrjO9t8+t2++y8SPuadaxju8Vx/fjG8PSlEXf0+UZzz37Uba2WlIbuHHtGk8+8QQvv32ZN668zbe/+S2wAilhoafvwbopW5s75KIkg2ee+wRxYwdCw/Mv/AmffO7jmC2JCk3pefLhx/n7/95/yG/8+m9z4uRZzp0/RwjRlRzEFTM+BDnvsJIxYWBzj8YtSY2mN2TRMb11m5044mMPP8HtN6+QF3Os6xBT0taI/dkeL732CnsH+yQzsnUUK66tSYWxc5TC8L0QkkIgIQRiA5PtwM6JgDSFcxc3aSYLdk6N2NhqOX1qm42NMSdPRc6d3iCUglTEoCIus1VBLjI0yqJVMEUhSvGbUwIhaEWb+u2ai7JcFrQPLLsRffa23o8SgzoJAnz9q/SXLrH7yiss7t6tP/esbEGhWvyMmgYr7iC/vbHhoCDtkVC97yoqNVb1lGKZUCKNtN7eNVyqK7Re+ZREsd496Exd6qtS+f31AvNaUedixCCoFp+15o4QRsSUiBFiSLRNQwgJMyPnOX1ekEtP1g4lo+a+jSK28tATXBPUoCa7iNUNhZjL00mISBghsXXwlDSYCSm6TmiIkRiS/644RamPLjIdFXdoqBbVh6a5QO/brbLM/MJnP0szgoODXV69dBk14+rlyz/StV3HOr5XHJ/HtzBKVYLQILz0xmvENnBqY5t3bt3iH/4P/x1zMcZROLlhLHdnpFFLKUqgQcqS5z72ab70lT/j1JlTXL16hWLCrbfu8Ztf+E12786IssHGuCF3c2JquHP7Ng9dfIK2bQmxqruHw2z3Yaj2ViFUGSijW3TQ9Wxsj3nwkbOcOXOathlx/cYt5suOmEbk3DNqfXELoQXp2dzc5sypJTkXmrFfei2lthN9PvfeGui7D0IrF0yC0baulbohSmyU1AaakZFa6JdzTDpim8h0tOOW+cLVVYJUI1uk+rWJVwchuNi1ujNBJBIVihiIVxr39jNYYWdD2IgT7t7bdbi9fXe783j3x6EUggGb/8k/4OcnEwBufv3LXP/yHzsKNfj5CTFy+dqb6IkRqUlICBgFMaOR6AjRECpJQDiY9Wxv7PDg2Qe5dOUN4nhEL0ZI4onflFiEIlqVXKrOpQha6oUXw3Bx6a53x/VSE2QI4vw3nOsHiSQNbUqkKFBc57MvPVaqNqhmhISaEsVnf06D6Ck4ErdXQ4ORgvsGEkEqL8+KVq/NQpMCKYh7EobKD6wzRVHBckeM1f9PXABAshARSu6JphQVcl/4xMc+wpNPPMGlV/+cK5euc+fulLY5RchrubJ13N84duKL0zmjjQ1SiizLgulizlbY5D/+j/4zvvqNF/jjr32ZPi9IGyOm3Yznnn6WK9f26OggCrGNXLv2JkLDrZvXOHnhBCc3T/Dm7lskRnz+s5/kd3773+eL/+afcfv2t3n6Y8/w0KNPgbU88shj5JI/1G7rhqNYSy488ehjPPHoY8TQEIJV3pdy884tNEYkBE6fPs14lGjHI1oZM2VGTJE0GruAdOXwIa4K4kVK7TlWPcvvJvKxojiIWF0ge19gibTtVt3ouHRa0zbIYBLbKqVzfze35HHfuhC8bWe4uohaR0g40qW4MHmUhMtpJ4oZ43HDyR1h/95d2jKpPLQj5+oDaAzHPcuz3/893r59i4f++m9z9tO/yO0Xvsmt578JOPctpcjdvdtMTpz14z7C+ogGUdwuqKiy6CFutOxsTdhqWkJfsJgxhEYCpcqFFQELgZS8AlbcqLYomLiZsJPse7q+Q4OtrkUphaIdRXqSeGVsYlCFCQxFYiDFAAW6zlur1nuCTWmESFsZ470LWJvQdR0luEA1Er2VbUqwAFnJFLqSkSxYXiCWKMGpLAGnGqGGdXMsQs5L2mRAIBevjGNoyP0USYkT2yf4lc9/jq9+53nK/l3u3bjN6XMPMO/mnBq3P8K1XMc6vnccH9wiC7qlEsOEoEoqwv7dGf+3/+6/4z/9T/9X3JvOuHH3XeZ7d/jUs5/gV7/w1/j9f/lnvPzKV9icnMQIvHvrKsvOOH96m1//5V/nD/7gT/mtX/81Pv/5X2Iy2qJI4td/429y9+5HOH3mYed3VdHkGMJKs/HDGM6TElKT6oKnXm2Yi3/3Juwuei5cvMhoewPBCBVo0psSmoiJsljMiU2zIq7LSrzDVtrB3/c4htYfsD/vuLu34MRkwu69hTtsq2K5YNnNXm/PZnRaILSkYEBBpHidFdymyv2+EyEaQRPkQgyBVHlkSeaIeZtbQyGi2F7PhglNVHIqpPT9TXS/f8gq8fdvv8XN77xAHCWe/l/+F5z/7C9x85vfdOK3BPquY3Nr01uwBNBKtMdb0WWVcFzSq2lHjMYjSvZ598b2DkWUOJr455y0ZHpUYRRbQNHSY1bIzl5HpGEyHoO5w0Epbi1l5oAhpbgVFMXtlXLGVk4bwc1jFYIFYkwEcdWVWLsoRZfk4m3WTMC6HqWnhMoBLK7ZWUyJFojmJrWqymK5QFSI0pBDQDS7aLV6xaeD00JwIWsNEJpELsqi9MgosZgu+c/+43/AV7/0Jb72+ot8/LEHufzqq3zyobMu7fYjXtV1rON7xbETXx75LrZfdARgMzS0TcPtxR3+x//p/8GN67dpT+0QSselK29w8Pv/jEef+AU+/+88zauvXeXffvFrpBFcuPgAT1y4iC6Vv/k3fpuA8Pql1/n4M59ByEzGO4weeAZCRPChucjQgvuLS1b/fovuqrpa/X31X+97/PDv7/+UIkIxt8BRMyxEupLpu56rb7/N629dY3exYGt7m3npQX33vegLyUWryGXJwf6eVxmlQPIF1KWm/F0HD7QPOs/OdnAQRs5KXmSyJmYHhaUuUNwWh15AEym5Fua4bSi5ZyMOfnXqMnaxEIKSEBogUEhpzgiIWpAm0W5tst2eJoWG8ail3QhIgo3NHUbthCY2hAhb2xsfeE2OvVF68CI89jjtlcs8cPoUD/3mXwNgeu0tB+NYIOfezXXVCBYI6jCgAlUfexBo9iQUkzslF4tIGPPMx3+edPIEL7x0iW5zk9wpWydP0U/fJeJJSdTou4WTzIO7HJQcSKElRAjRIDt4pctGKRlXYm3cuscasIasPSEk4pCgEU+KpTopiJASxMZIoRBLoevcKLdbLJHRtif16OjclIJvYKp0XCISYkuxXHU3A4iLbmOG4J2HENxEWOuN75KbLkIQUmLa7fObv/ZrXL/2Nl/9ypc58eTDLJY9/aIQGqEsMqrN8a7hOtZxzDh24ttE3CfLEtpM6Hqj7TMbbeLdW28z2dpiebDHyUnD6ZPb/OKvfY7Z/pg3r1zmgfNP8vf+/kVOnd9getDy2re/RgiJz3zmlyjF2N27jVohhRYEIhuVmC4MDtQ/zDjyL3YMie77L8jvd0KnLl+Ysrt7wFs3bvHqm2/yzq0bTDY2GI/GLC1TeqNkFzm2KHR9T2jHpDThO998hXPnL8BsiqaEyhIdFPsZSOsV6MIHVNfmzuuK0ooQFoET8YBmLmwFBSlgGYlC04xICVITCFFp2xHjtiXFCW2TGE8aUgq8evkSO9tbfOJjHydEOHFih/Fo7Ek2Rtq2XW0UXFi6/vfKNkm+/1jyGNfDzGCxQE6eYuPhR3gC6Pd2eetf/x5Xf/+fEGLymWP0+ZfqkqhG1OTwk+TWT6URSjdnHBtUA30xmj4Q5oHHnv0k18oIQs/m6B3evXWb8akTaDCaRph3iZ0t/3uIg2u6kExAMtYvMRr63jmPJRtaGooIJEW0A1F6Ke7GoA5SMYmU6oNnokgoBJQmtaSKwtUSfX4XDEmBdjJhifsAUjogQBdJYpAMoiJMCH3j2qU16TfiSFwpESviSjEmxOydhzJSoBALNKFhuSx8+mMf5+Spln/6u/+S9sRpPvrQY/zZn/4hOw+e58GLF8jfukWv8x/nAq9jHd8Vx84mmnewMkeaSJedgKoKmoXR9pizF85w/fptnnn2E5w51fJHf/Qdbl7f5ZMff5pF9yYPnX+Am1dvcfHCE3z8mZ/j2Wc/RSmBtm05e/oBkLCC67vc4LD4Uv/8i1fpfVCV993VnXzg4x/0e+97wGvcI4LUIsJ0tuAP/vhPmRavLU6dOknX9Rzs72LJvdBi8PZWlMDGxoRRk5hO98kI0rRkC5US4jNDrDhgIQxI2Qo5X0HPDyMgJISPPvoATTuh3VA2mhEiMNkYs7W1QZNamljBHzh5TIKbvwap8ybJLJfKiy+9zMWPXuSppx4HUUIIR87FMFT8HudrALy+7/z9cPdKfe6dO9g/+2fs7t3jxe98k7SxgdngFK8+rzIc+WgKklGJQKRkA4ks5sa5Uxd58Oxprn3ty4QYsb5gRQg0zPcXxAmktiHlAy69coX5/l0mLIkCwSJtbBzoI9FFBiQ5qb+2+YuWCp5xYJIr9nk3RLVQrCBW3CxYBnunUmkknuiGZrVTGPwUBINgWq9wJKUJGxIQ7apmaO+i5qouIh0CKfmxZjWI0WeRZqQoTvy3nqI9SUAskDR6a73OAk+fOskDFy7wJ3/6FZa5cO6BsxTtiWnMgw+f48TODq/3mdSuZ3zruL9x7MRn5nqbaoGNrVNYr/TTKcFGLA6W7N7bI+eOF196gdn0Fp/69N9m/+Aqf/jH/4K2NZ564ime/egv0bXwmU/+Cndu3Wb/4B0effRRqErzNe3VtfZHT3TDV/u9r/LB7Tv/bEcWV3nfQmvHPRY78t7D38MHJLv6jPe/zZHnqWol6dvq7Yd8FIKQUbSJlK7nYG/GqGkpOUPwn7dtA6Nm1Rk2K0gT2D5zkgXGibPnOFjukdWdGAbTUMR5dlJ3H+9PKA7AFDa2Nvmd3/61ygXrkOTvNUBi/JCtwu8zGHS5kFUZN9E5YSSCKFubO4xGY4Ba6VDz7pHk9/5r8p6QH3tztMqhbk+wev+cXdOyzz0bkzG5WH0/bxuGAKUYRiSXzGJ3xi//wm+w2L/tguxNRBWKKa9+55v8T1/8ChtnNzm3OeZTj10k9MpylhmPghvSFsUqiCb3fXV1iP6n4Aa3ll0Grh6HYGgpqznj4Rnwim1Vw4th9TlWW+xqVSGnOlKgICGS6ww5pkAQR9da62o7WevIIy8oeem0hOht7eDuTN5tUCEGP3c5F0yFoAFTtzJqxw2f/ORzfOelF9nbPeDU6bNs7Wxx6c1L7M+WfP7XPs2VS2+yXGa2T5/6ka7rOtbxveLYie/8+Q1uvjtla+sMt3cPaARSEFdz0J7TJ08xO9hnY9Sws/UA0913mB/cY7IFD148BTHy4uUXefXmZV749jd5+OxFTp88wwMPnGU02uRQb/NwjvcjV3mmrLzH6kPH8+87TJjvje/9u4f+bv77hzO6o4aoRxKbfP80OiAttcLzhSMJRR2+Pp/vs2xbQoDR5gjJymRjhI0aYlVL6fqebrmkX3akJJw7e4Yr776DNC1p3KIzRTOUOl2zEAdnNhoRt+b5LhRt1dcUQS272gotA79ewVVWzJyCAEhM3L23y//9H/5Dulz4wmd/iV/+/Oc8yUlP07TEVGkB6rOnQX5MTSv5+nucsSHh/RibpCHpVV/2KlOmaMlEcfPYyWiEYMQAmJFiu/K9Q1ztJCToptnbi+atxd4KvSV6U0p3l6cujtFJYBQiozjipe+8xiMXzlFsCaFQpEcpdH2H51jfiIAxmYwpmglSPfhEUBFyMDdxlejAIqs1+REJNwkBxLDevTEdjBKcyoALCTjIJdCpkGMH8YAUGmKBJP6ZihWnPVTXsaH13fUz5rMDUhOxbs4oTGjSxIn5ObsbhSWvFsU3Z48//ijLbsG9O3c5e+YMWztnWHaZaZf57b/7t7l7b5f5bM75By6S9tbKLeu4v3H8iq8ERs0Opg0pzLE8hxAYjUdI7njz8qt0i8zHf/GXefPqG9y4doWHH7iAbMx5+qO/wMsvfZsLD2xz+c3nuSMtv/iZ5/jDf/VvOHfuLI8/+dyq2oPDLtsHJo5VVTgsdpUEy5G/MyDztSa/w5999+u973Niq9y3Sjh2BP7PkOSOtC5rC0mrGgZUT7ta8R091vce7/Behz9XNd586wq37tzm0Yce4tyZc6vfHI5PMELIFAv0faaVSIyR+WJOXnbunh0To6Zlo53QNIFcjGyFYJllt+CB8+d56qnHmV6/y817e9yazelLZnvU8PCF89iRszaESN2e1EXZTBzEIIcbDXAFlkSDibffgsGy79g8ucON2zdqBaee1KVKz6kgK/CLPz5YTn2POv0DH/1hY0WiXrV3h2tYKm8vOEilzslKKUh0NVHFZcD6rqeJrFqSaEGiYRLIkuizUroFk9Cxv+yJ401CE1mWjEVDc0+xJeNJS5+XWDAkRspyuTo/o3ZMrCT9Umdmi1zorDDBwSW5qJsvxMPPptUuwdBqVOw0A0ej1vuvIoNns8ydbkEeBeJoQQoB6QIRsFAcPQo4n3bkibPUylGUkhX6zO50StHIZNzQBGW/m2LLA+IGbE4i29tbXLz4IK+89AZPP/UUoY0s+8DBdJ/P//Kvslwu6EvPdHqAdoXm1t59udbrWMcQx058l6++S9vuEMseF85v8fjDH2Vn+ywZ5Tsvvsje9B5L6/nkc5/mkcefYnc65fLVy9y4fY0vfvFfcebEBe5dv01cKBcfPc+f/NmX2Vvss3fvViXeUnfP3z1aem+SstVjVnlncojJBxSxgJaMkf//7P1prG3peeeH/d5prbWHM9255iqSzZnFQSRFjS1ZUk9xd6cHJbbRiWMjyIA4HccOEARB4DQC2x8SGAi6O4MRww4SZEJstKN0q1tzS6RIkRQpikMVa666Q93xDHtca73Dkw/Pu0+VWnLrUl3oD/F9gYNbdc++++yz9trv8z7/5z+opVIx5x41fwBSfBccet41lF3XVaGidz13KVkzynL9mdXAeEdfPzs7Y7la0jaBixcv4pzTsFZBN1G7gz5NLe6aRuBdOP97EBbLFUPsWW8WXDy6wL0HD0hDZLo3h9DgwgyRSMmJHBO9RIyzOO8JbUfnrcbFGIvNOreJMdeCZAjW8tGPfwac5969M/6/v/1bfPzTn+fCwR4XJq1eQ/tHlxttWbWov1PP6/tmQIrquJQiYymyxRqdkY0pExGwTjuQUshjJhsViBcx2kmYf3Im+k++Fvkj/u5PtqTfwnrF+X21XuH6Xl8zRd1vBJCMGaKmrjtLnxPbYWDWzsnjBscIpdOOJgf9YGXtBIUeZErOI7gZzSRwcnoPxaYHrG0IpiW4Dm93InOHLZniLbFk0rZgiiVFPWxghOIEKx6LVQi07EyioxanCi8YhLyDaS1AtY1Du1WKShU2/YKzByuSOaYYhzEKdSIqqyhVZqIf0ICIJWePWIP1I0UigQlkR8yZRY6EnBkQbACTPc53fPTjH2e96Tk8OkSK48HZGbfv3ef9H/gAN29cxxT4xtd/l+3Y080amger9+S9frQerd166ML3qc9+AWs6vvGNrzCZXODlV17hL//FH+bF66+zGDPve+5DLJf3+D//v/6P3H+w4qf/7F/glVtv8dyTj9Ovl7gmcev+A55+8jlunyzJp0uIhW9/+9t86tM/+a6C8E8Xqb/TdeljRXQ2Ys43SwMUrAOMo0j+A5v47nSvj81Y48/hRan+gmKcPtA6UlEDX2cNwxhZrVYMaeRsueTk5JjNesvQD3in8GAIgRgj3nu8azg8OmR/T5mKbdcwm0yYTCoMZDWIdOdZqB2TcOnyBeyyUGzmK1/7CsOgzz8MA8W3nG3XjE6z+bx1dE2L9U7Lfsnq+lGELImShTH2mnptDXEcKQKr9Zq7p8csVsfk1jCUQr9N5EmHdqoFRS1r8dls4NVX4cED/qhuy9TOyZ4XLIOEBj8JuMWSK9ffotvf4/BsCd/4unaIfeTglVdorCDLBfbyZXj66Xee878Q6n4Pil6ohIlhxJwc13tDMKentOstTUnkFMEI7dgAQj9GhvmM0TqgcHKy4APPf4JXXzlGgqtQryHmWMkdozJAnSHlUWXpxuCtJcaBEPR5RDJjikixBNcQx7E6wgjOOT0cBcgkxEJMSQtXEkgalitkrDfYKDW5HQ2ArvZzZgexGyFTiNW6zFtfZ7eFrnNc2jNQBhIqn0k5kpM+zji1OLMGUjmjYMkSSBEkDRSTMcWryL2kqis02GhoTIuMDc89+yGapmWxWHJyesZ6OfDF3/kqP/yjP8JLL77E/bffpl8sefvWTVzTUJixWCz/2d/vR+vRetd66MJ3+85dSrbs7++x3fa8733v58u/81XKtONssWEy22d/f8KVyxc4PVnz8vdeYFid8dZrPZbIZjimnTsenN0lDo6LF49YLE/xYa5dE0W7q9rx7Vxa3t2haYHS7qyUXee3+6669rsKl5UiYKQWx/rYcyKg+iVaLDkljHH0sSemQp8iy9WGWBL9OHLv3j2MNfT9lu1mzaRtdJ4zDlhjcdbSzlu85TzaxbtQ8+8MJ4tTTs5OVLybEwDOOdqm5fDwkPl8xtXLV5lMJ+ScWG82LFcLJrMJ4zCwHgcuXDhgvTqlmwRGGwizCVKSsjdjYhgjAcCpK74UJQgN/Ugc1f3E1u8579mcrfjFX/gHuNbw5JOX6fuecYxsy0A5mJ33a7sOVNZr+Nt/B/Pv/C/P8+v+yfVPK0WHwH/vj/j7APyFd/2/TKfw3e/AM0//EY9+j9dECTXmr/4V5Pnnz//67M3XePG3f4v9yzOGfoOxwnQ6QSSxWg8sksU2AcrAEKv+UQpiQ2UjgzBQxJIlQY7ajZGrYbW612TJxDji7Bw1iVaHFUQh1pR3HRmkIpiggvixZHLOOOMIltrZKTRr6gz2/D6vbE9qNJGUKmuokKUYUbi2ohHzvSnTzmKyQrjZiLrpJAdYTC44qc/jenINJBYc4rrqGLMj0ESyZKzpsNHQhgm2C3zusz/E9etvcnZ2xvHxCXfePqGb7DGOI7du3oAR+k1P1wRSgTjkc8j70Xq03qv18Hl8D+5x7dpTxMGyONvw7fsvsBkLF64+zqyd8vVvfIO9gw7/giFt4VOf/BQ/9PzneP31V7n59uskH/GNwZnEfD7jycuHfPBHvsDnPvszjOOW0DTo3KycG+z+4RO/fpDV0F3TBEopDMOWm7feYhi25Fy4fPkaly9fVqjG7uAeFRrnymCzdUN5cHrC8ckxr19/g1QK675QJGtH5iwxaobcbNLRNo71uIZRaHyoHVFBJJFSUo1bAWcDpRSySZWtKrhgabuuFhRhzJE7x3e5dTfz2huvcXh4SN8PrNdrLl69yLydkwoMKVFE2OTI1LfElEgCYz/QNA0paT6a8U7nirvOmZ3mTp0yrLd473H1dU8aRy4REyMT15DGkQikHCvUvDuECNL3mFu3MDFS/vV/XaN83jV1RHazPUilsNn0lNWCzsLtH/lJvvTyi6zyBu8MbS584Nn38cQTT3Fh/5AvfvErPPexj/Dh7Rr73/hXkfv3/vkUvt3a38NcOEJqdE96sM84mzHOOmKjFmJx2iGS2IqwXkQueM8wRsRqtJIxmSSuysQzhYFUwFg9xTlvGdNIkQRSCNbV6CVPjhlSBmtogkFkZL1aYKxVg+qsV7ppA99+4buE0CFpS4mFcVBhvUO/Yo6aYejU3cfs2JzwDhwt6ptpjFMvTbuDTlWiYX2DsQ5yQQ3Es1rMid5TakdWKMWp4YDs7Oa0Q3Qu1MLnda5IwLWOnAo/9OnnuXf3Dpv1lrEfiGNiudpw7dI1bt+6wXa7ZdZe4OjKVVbXF+RtQcZC7v/ow9aj9Wj9SdfDq8Ilcuutt4BC2znAM5lZbBqwWWNVNsPAhb0jfuon/jTPPfk+VutTDj9xwCsvv8q8m+MoNFhO7t9ifXwbS+T6rQf0mxV/6v0f4XOf/TEm3VSp4u865Ump8zijrv7GGBarFTeu3+DB/fvcunWLy1cuYF1kvd7y1vWbhLZj/+CAp555llyE9WbDarvl+OSEk5MTtssN2cJ6WGODoesC3lUPkaIEkjJGglXneVJETKFtHILCSUao86xCLklngHh1zsdQnFIgDGpGHFM+p4xYa9Xh3jq895wuFrVLhePTU0wXlNaeM/cePABv6GMkEUg5YbDklM8p61IZdrZiWoLgQ8A3Dd473eic1qiYE/24RUhY47DWk/LIMAp937/r0KHFLeeMLZqWsLh8Efe+5wjeE3zgHdlC4eTslBdefpm79x7w9HzGB44O+Xtv3mJ8+nH84g6Hx2c0Ai9877v8/vdeZP9DH+BkPuXahz9MXq/rGPa9md39sbez7I4geoOVooUhl4JxFequsUiYQimaSbfeLPnMJz/NCy9+E1FXUrAFKR6pnwMRdTdyWIK3pJgR6iEsG6z3EKGI3ifOeYZcsE4Yx0Gju3IhZfA2cLh3ieVixXff+D5XruwDieBCNYS2eKp5fFFRnpha4M6Nq0HvCM3cQyymGCyGfD46sOggvIBYLAFnCpak6RKu/owa6mdMhylREZVaEp1TmzLlzPjqOGqxznFwMOfK5Uvcvn2X5WKJc4H1esu2H2j6DcvlCV3TsU2JyVFH7iONbylY2qb953JPPFr/5VkPXfgyULK6tQ+jzpF+9id+lF/+B/+QS4dXif2Wz37m09y5e49f/41f4dez53/0N//7XLh4xGI98Bu//RuMcY0w8thjT/EzP/Uz9MOag6On+fLv/BqLxV28t8QkeE9lihkkF0oln22GkbOzBd9/6QXevn+bkgrBGHIxnK22pHJCCFOMDSzXC876Na/cusVYhPVqRcoZ7z1t15Gd4HJiNm0Qm/GSaTGIBawKiE1oMCI1AslhXdVOuUqFKap3GsYBixadgp7qnTXErPBtsLtNBepRnFKhryyZ1A9Y056fysdx4K23ruOtQ3Jks42MeUTIZD9hu9oyDpEQnIrEnaZjW2PftemB97pRlaQbfd8vEEaWZ6fn1mTjmBhkZNMvaboDxjG9Mw8SfR+KFE6PT7gCfOP3f5/N2QmCYdJM+NBf++s89ZM/gQO++T/7n7JcLbBtw3oc2dvbx5ZAN5zy0XHLR595jL3GYZuWV27f5ds3XyfML2PG4V0BWe8NW/OhV2Xkgkb1pKLmy1iPZKnmzSrSztmTktD6jpg2GFrNwJOEkSlGoh5IZMQDRRzew3y6Ty4bchGC83jv6NeRUjKxJKRknFcnmyZMFHosRZm57YQHd+7x+muv8dz7ruG8J0tfc/o0AwIRDfsFnBTIiUwhSwfFYuw7BzNV7nn904hCqyhSIFLTMrAYG8BGhTV3KItFZRMIxhtMqSzTQj3wARS9ZpVFagukbc8nv/AF7t25S9/3BN9w6+ZtHtw7IafEkAaa0DJpZ3gs1gvOeMJkguumHLaPCt+j9d6uh09nMB2h84gUhhLZDj2/8Zu/irWeftvjTeE7v/cNfupf+Dnado///O/9I37p136TL/zI53Eh8IEPfoDvff8b+OmMN9+6xXe/+xJf+OEf5YmnPsRv/uNfI6aek5MTLl18mpIT3u/Ykhri+dXf+RovvPIyy22PdVC8JaeCFxX9Hq9O8U3BuUiwLdPZlL6PnK5WWBcwkumCUtO9zbTe0eGwwWAc5yfgZLIGdu4GJTWLzFXySBbBFKun9awdnoh2TRoRoySZsttQDWr0KwqxOqQig4ZcoSdX+8YkmYwaODfGIqkw8Q02tGzGLWMayBW+aicN08mUcRw4DxXNBet0Eyu5MIwj/XaLisIs3cQzm045lRPV6RlDHCN9GklxJPuxdqv6+jDarXrXcOvt21wB+hIZjFCM5fBDH+SJH/tR0jjim4beGfocaYrn5OQU9wEYyornxfCjf+UnCI/vQ+rxm8iHvu158JsPuHl6xvr2bexFFSmLeUjF5Q/igvPHrH67pWm6c5YtCDhLBpxtGJIlpcqcFJRUUgTJuRYGc96tG7N77wtDhCFvscaTDERnGdY9th+JI1imdVbt6fstkhPGdYzjqGL1PLJa3OP0eM3HPvoc3qu4PuVApmhQbTUv1/mixxj10xSjELzOuHnnfq6nGmPVNMJSKJWNi9GiqI/JiNUIKFMt1HZMaqksUF/n8LkU5N3EMqMHBimFVAzP/an3c7o8Y+h7xpR4660bnD5YYpKl9JlJ1ymxxwcmIXDjrVfpZgdMDg6ZzCf0r772A72fj9aj9cethy5869XA3p5jMpmyPj3l4GCPphFM22BzYW824aknn+a1l2/wZ//FP8/8aMJ3X/oW33rhS3zy+efxjWe+N2N/fo3JLONCw2IRCXfv8vN/7a8zDA84OpwAG4zLpFwwptWN0EIIlsO9Odt+Q06JVAzONhjvESNkY9Q0t+hAvl8sGcZRWXQOvHU4796xfTKQJVBiJvWRlDQmxbeF7EztBAAM5JHUb4kpAYYxCSKJYA1GHMZKlRM49XO0ajjsjaZvDzJq/A4GJ1nnbs4q305EBcJkSoWjDAZnTHVwUdit8R7IiA10E2Gz2ZCiFknnLTlnxrEnxpFxHBERptMpk8kE13ic9UpqsJZcDHlM2OC0oyuFlEZSGtW8utaNHds1l8x2o36JQ79lGNd0+xf47N/4G3z7H/wC7/+RH2N+6TIx9pQ81k3RURCm48jHn3iS8KeOCC5QisccKcT7/rPM2//4e4xDj9kRkOQP6wf/uPVupu/5czxk8ROB1WrF4WHAuaCHCFSblguUWOjHLSE4dkx+hZR1BpqTMmeLEVLJZEmsttualtCQiVg3YaxyEinQhYbTbEA6CluyFGIeqnSgoU8Z56FsRoJvePrpy1iTq6NOxtmWYtZIJVeJCN42pBIpqeCcRj/t8vYUkLeU3Sy29rjKDzPKyK16VxWoF0UuiCqUL+ruYkRz9IxVAoutULwYAVewtbiWnU7QBQqGi5euslov2DvY5zvf+Q5d23K477h1/WXEWC4eHJBKJsaB7eIESYkwn9PuT1mvl1z+54N+P1r/JVoPXfhCCPTjkn5YI7GQ+ozkwLTtcKGAMbz0/dcZS8//4z895s//xT/HL/7C3+fZZ97Ht775TX78T/8E3nmOji7z3Rde4O1br3Jyb+TO/Rv89b/6c7z/A8/hnFBkpbMLG0i5P4dmPvrRD/L4k4/xS7/xKyxWSslHEt60IBFrLDnqgH6II8aG6kDvMGRiGtkOGU3R1kiW0ReMjWgCmscZT4xC3PY1vDMxjlGhQ1H5gDWBbCyuEYKiStXmS3Vt1mknZa1lQkMTGtXzWfWoFMn1wlcSgECxgnM14FOKyihqEcw50vhAyeCdJ1dtlfdqZRVjz7DcklKmaSbM51P29vaq3EN3jCxCipnQaKadKQZbCpKtElIkk1KkpFTnTu8U/ZwSD+7fox+08IkIaTvww//D/zaLt9/mG//P/zvv+8KP6k0yFkpSXV7OekiQxRo7dSQX8XjlwtuAefwShx82jP/w98hNw85c6wd1YfknWb8/aLdnDFy4eAFrVTYgIjsOlbJ0DYxDxLuWIkm/X+dYRkWf6nJmwTlbr7tTCDsJY9bIH+cEWxmRNjj67VqhRZ9IKVOMitZfeu0633/19epkozC783poKkUoOdZiO5BHp3Y5aGJ6KWCNw4iG0+4QE51VVrlPlc/ITnZSirrxWEep2j9nAathuDkafW+M6jPN7jqLzg9zKojTOacVDRKW7AHDMGSee9/7KcXSNlNef/1NNusN+9MDbt66SSbxpz70IUyOIBr51K/PONjbg8kBB5cPufnmGc4/YnU+Wu/tenjnlhK10LQN1lhaA9t1z3Ic2Z85ju+dAB0Xr815663vc+Xiz3N0eMR/9S/+Fb7821+iHyLPPPkUd27fYm9SeN9HvsBrL1/n8z/8CU5OVsxnT2CweF/FttIgWVhte37vO9/glRde5Oz+CW4+IUw906BEFBGLjArtjTkiRLAOyRCsIw8jpUSMFdUsSU2xNpYhn2F9hpIwBDKOkgBjdZ5nLaVEvOUc1tF8O4FcasdncNbRBt0IdLyWSCMs4rJSzQXvPdZ5NZHG0TYB797Rfk3boE4YIvpzpdQ5p/o42ixIGclN4P6De4wx423LZDLh8PCChr4ai+Rcu7Sim6y1pDGRcyElZQ2WHaQqQE5ITDpLRdgMPbmAtVp4fTU7xujcMKXEk5/7Ua599GP84r/3twgHh+fWZt3+Acu7bxPHhCrfoO83pPtLJqc9pgyU/YbcBYVDl2uOjfCpq4+DqNTDvLvbhErU4Q9bqIrOfq21O3tNLZ1FoTtTO+U/XAd3lBY5/39nayK81Q07xpHt1tfibcmlkFJSAX5UI+YUS9XqqSwhO3U/MRb6fmQYRvAN235k0nhSTqS+x7BHMSqPSblXun4qeNtw/fZ9vvzVr9G0kb0GYkx4n7W4GCFloZREij0WweSIFSGlxDAOjEOvxgtGM/OcU9ZpSrmOlh1FoppJl6ChxUahSmsL2TgkFgKFKD2rfk0/GpxzdPX+dLYSWEoAWxjLqKSgqBaG/eaE1169jjENe7M9fuxHf4KTk3tYZ7l96y5PPH6Vl154mWHbE4JlKFvSxtC4Pfa6GRvbgvO4tkHywLTzNOFRLNGj9d6uhw+iLZoALqXgQ0DGjCWQ0c5It5LMZrPiYNbxv/s7f5uSHX/3f/+/5ad/5mf4pV/5NT7/+c/ykQ9e4Xu//2X+m3/jXyPHgPcJF2ZAQ0YoMXPn7n2uv3Wb1159nfurE2gse7MZV7s5xVmyjTqXkFBJB+pB6FsHxiNG539Ss8dwliiJTd9TckGMxTinZBdnaFzAGvWstCbhnK8wI7gQMKXgDDjrMdafz+a8BckRStKNyDWUWjCssVjb4h3aFaAQUzAOSwMixDQS62xl6NeQc+0O1f/K7Yg4eTd70q8LFy4wxELXdBhjSDEiBS1mBnLVeqWcq51WYBg0acAHTywjmYItQhx6pOj1SyVBvXa+seSqC5vtz/nwRz4E3/ous2nD7MIhLjT8i//Ov/sH7pG/9Lf+V/z9f/dv8fZXvsaYIhbLcUl89Vvf5+rzj2GemKujTEpsHmz50le+xnD5kFRhXb1UUgvWrgLq9eOfsIwrksF67h6fsN5s6SZTJt5zNJ+hZIxcxfR/PASaUsQ7FXLHqL22/sl5qkEWJXiI2fEjNY3Ae68WZrkoq9dYtuuIMYHNZoPQcXjk2Z5EKJb1SlmzMUYcCdIUWwqXL13ihRd+j9X6lPc/+4R6dBY1NtiRjHJ9/iFH+j4Ro4rQxapZgWoDE5Mw0fu/Og/tCCk5ZT1B1FndzjQhF6FkIdtMFkOqs2nfTZi1LbYI3qkRd0yCwyJZZTopG7xtGfrErfsnNE547InnGIbMn/3pn8JRuHRhnxu37vDcc+/j7r3bdNMDNpvCpLFs1hsa32JswkliiJkuzHDGkfqe5ckpKf1zJjw9Wv9/vx668HljyFkH4yklXK7Uf3GMw0jrAwVoJ5aPffwzvPDCDVKCJAveuPEKR0cXuP7mde6Ywoc/9iHevP4G1658kPnkIuuYOTs94/qNt3jhxRc4OV1grWfaTWn252RJDKWQXO26ojCkTN9vGeIIOVNSxnaBlEaKUyiqkWr27NWA2FoD3unmLoJzlpgizjqMrQa6phB8IYRW5xjOYihYA8F5DEp8EYTWe5xJiEScczX7rJJDxFKS/luKavGoYnqVc2UEFSK7NmCTECVWAX5VhGVhs9nWeQrAiJEW6wPL0wUheI3Ak9olG0sxiTiOrFaruscJYWpx1mC9pes6zozBiRbimNN51JS1jhwVNpas/o6xZIo3zPYPAPjcZz7Lql/z7f/T3+Hs5IzNuucn/s1/i8nhEf/4//B3uPvCi0hKpJwoUli1nu+kwv7/+7f5zE98gu6ZSyz6Bb/9K1/mpXsLNvNrrMee4/UpV6k1Tt5JhnjHmu6dpZBf4frN6xyvlmADw4P7TL3n8CMfqZabGWN9JXa8Mz+EP9wFxjjUrs9XPaY+XhmtepAopRoh1Kg8fYxlqKkTWWoEbRFW6xW5FLxr2W4y86caTh4oimGsoZjEmHsaZ0mD4KzjlRe+w6VLE65dvkpwQh6HihYoGxNjyUV/1hAzxXgtylhwpqawa0ENuRBcAZR0ZUBdaNADm0LkkNBZa9bBHMlCLNpVClENwws4EYYknByf4Z2n6yYIhlQGCpnVeqAfhNPTBQezKX4b+fSnP8mlywdslmckM+IbR9tMuNY+SzfbcnTlGiluOFtsMMXSuKBzSyLbIdLMIm+8/gazdsJ2dfKw29Sj9Wg91HrowmebRImBcRwxpua3qbyVaIVpG7Am89iTV5jMJ7z+xqtcuXYV1yTe//5neXDv27zyyosc7LcsN/f53W+/xuNX/xTv/8BHuXWy4uzsLogwm89p9zo2m577qzNWZaQxhmGzJlmorZ6eUtFOoLEOyYLLFqwO63Mp9FKwzuNwmJxVp2dVV2SN6p2KtJiYmLQTshGcbwgh4H3AGo/3oUbQCCEEGt/gq91VcI42gLURG5UoMsREyZDzQCYgJWEk16y0UgkRQhr19MyOSm70ZxjzDtxXqvmzNcow9MYy9gN91QmmGHHGsdls2ZtrYbICpIIXQ/AKU3rvqyTDnM+hVGCv17BpGpy1DMOgui6jUToPTk5ZrJasT+9ycb1hH9gmWD04xbnCE13Di6+8Rex7JsAbX/8amwfHSoocRxabLUPK3D3c5x8+uM83/q//iKu+Y1kMd+aB8dIl+pzZpp5N0hlikaK6xFJdUc4dR0yVgSi0t92sOVsv8I1HLMzbKZf29/Wgg0KgKaXz2d0fdgJ6h0QTgubEGXZ5e3Le2RnsORxtDJW0ove+c2oOLhWSbqcTjDNMpy12kxRuDx3rzQLfBMoYyWiqgviA5BVtY1kdL3juiYs0nRKfRIqSU4gY0+r7JfpexRSVtOJaIJ7PjVMZMWR8sDgreKcdYBJRQkqFqneuPrv7QozBo0i2KnkSOAOmwYrBJEEkU5xw7fKRwrlBI5s65ylYfHBYO+HalT29XsbyUz/9Oe5cf404GpabU5bbgc0Yca7h4Ogae3tPMPRLrm0jQz+yWQ2slmcMY4/1LUU6Gj8hD0L7KI/v0XqP10MXvl4W5HxINpa2ywSrJ8di/LmvoPGem28f00wO6OaHxCKMW+EX/vNf4eLRJX7mZ3+Or339d1j2GRfWvH77e7zwxkvsX3sfwWqXcff+qQZsWkd2gdwY2phpnWMMgKAkASPgNIUgjgqr9ds1TeOY+xYJnuwhuEBHTXZvHNlA8F7ZbsbgnWdzsuDC0RF4h28CzqkYeByFcVBYEBGKVYKI905hQ+toggrfCTo/GTbqllIk66ZlPcFYrNX4HZzFiiGnnjEmYnKs+g253zKbTwm+A1FGXq4BokbUjJgsOKPJ1scPHlBipGs7xmFkNlMavjGCbTxdmCtlHaBo0R6Gge1qhYBCnmlkHCPtdIJkLQ5ZCmerJbfv3eZsfcqk8ZihR0btGG7dvcOxZAQh+Ia1dPxH/9q/RClC5zvVeyJaSNOI8ZbeOVI759QIL0lWC6wBuL/AtzOKyWzTCMCDk2PyvbuM40Cs9mjb7ZZ+HOtsVpPZg/e4xlW4MFOs4eRkJC43YD3dpKX1HoOhbVudsVpbC6Cck2iMoZIndnQeLbDqkalWXS4XvPeMMeOC53RxhvcBbwwxDYQm0I8Qx4wRh3MNzjsCAQisNz1jHkmM7B1eZdVnTle2ogiZg3nL4aSl+ILYhjElMpmmDXRtw6TrGFNBnMF5x2a7JY2GkjIlJ4KfMJt0bOJIcIa21fm0Nw3YBidAnf2mrLIM710tfLUIZu2ss9XCXozXey4KIg5nGyWPOShW47GKKJIxm3gMDcZ6EM/Hnv8Mb735Mqe3rtOYA968/irrfqCPI30aeOYDz3Pr7cDlS0f0y1Nu3rhB4+YM/QrnA/uHc7y3zOeHTENLPn3pn3Wfe7QerT+wHn7GFxucRIITzCikUoANiMc0liQWUwLZzDhZRlb9FttamtThXcO9e/c5vDVjtVww9Xus3RZ32NLtH5GGLVsjlRUJztWTqQWTVBgbTcYhuKDMNec8vumIsSBGXfS7Zs5YEu7wACeBJniCB4/BW48L+tWPg5IPrNBOJ2z7nm5vjnpZBjCJ48WKfpvJ/Ug/bpnMG4YUcV1H6z0BpzCm0VmQQQXH22HNZjNibEYkVlJQpgkNoYHQeI7251irFm25GPY2LacPElcuXSZnYUxq/yRSdC7DSCwJRyDGzOZ0zYWjOQeXLpL7qAzDUmXYvorYjTDGREqRsV9RNlswhmIc3YUD+n6NFcuWyL4xSsUvCQnwvTdeofWByWxOCJYJjps3b/EMcP2N17mXt/qzoiHiMNMpNte0myEjZahFemRsDN4VtssVwUaKSeqOkjtKGRjHxHazpd/2ANy6/zbb2xfwYeciogXLtI62cxpqKkIiUdJIQSONrHUkC2d5rYzFTcFKnXNZx9npKavlgieefIrD/QNmJw+4hIqvszSY7HAOhrgiZ+04bSlkrLJsk4a9piLcW94DbylJuHN8SjQBTGRk5PrpTcY4YEaHmJ5797e4ztM5j2/mNNMJ3/zyV1klg6HDuwLBEIOrWYQJJ46YG/q+0E0d4gSXe5xkstiqubMkk0m2gDWUogYHxXRgGpxHiV+V2Wm8xgZZBwWL+ADe19T1jDjNzKNMEBkrCgHlPJ2kgPdVxJ4RMXjjKBU18JJJqXDpyh7TMHL77btKxLGnHBxNMItI6KEthtN7byB5wt1XX+L0+JSjS5cZzYLp3gWeee4JmsmETc48ccGTNz3drdl7uOU9Wo/WDyJnsA3FKOEjJQGjxAdnDNYZtkNP7kdONqfcuH6PLhwgqSe4FpFIkpEbN26wt7ePiGc+aQjTPaxtyWOieNVQNd7hDHgsxnkyDiuWrvW4Tm23rLW0oQWBsN8RvEGy+iUuhy37+/sMayHlRDv1HM33IFfLJmvYbBPrzRJjLU1ozmHIdpckbiD4hnuLO5AyYxxoOs84DBwdWYWdnM7dxOk/cDjEQBNa7q5PCAHSOJDzQEyJowtXWPcr9vem58J2AOcMIThWmzVPT59RiHbRs+2H89+zm0xoWzWkhsA23eV4nUhDJhiP82CKCv2XZwuWmyUxJ5omMJ1MODo45MJjTxK6jjdvvY0JqrHLsdDMGjbbLZODi2qsbYSx9Ejc0o8KeZrTBeuTBwCkmCo7sOCd+jQiHhxISnXWqY4289kclgPDasmQB2Vd1lSNIvqeDcPAnbfv8MFOmXvG6r8fxkH1kUbwJqhtmt2xKCPGGLpOZ3Jx0Kgg19TnReFRodC0U/WcnDY0TFmPW4bjkf3TYy4Bx6sz3n7jTVo3YRLg7Tu3VMpgdsG0VQqwmxWKdvOlFLquox8HdB7b41vH/bP74A05ZSQk+iEiZJDM8uyYe2+8wYcef4x0UthuDTEu6VynnpmmSiiKyliKQMx6yLRkxJTzmZ06pKAuQk7lIGI0I7AUna9yLk0pdR64m5nq90oxWBGUFqXkHBG1I/S7GC+Dzo5FNP3BKmPYmog3QV2cEjz11DN88lMf49oTl1n3S9733FPEYWCIPavNQEyFFBPWGYZk+coXv8GNV15nvem5fbrgo598nsmFI0I70UO1ZFb9hmG74bnDg3/Wfe7RerT+wHrowhdjxDrBuhZTVLeTi8U7T2gabBHG9ajcESl0BeJpRPYL0sq57syZFulaUhL8sicZyyiB/at7Om8Kgc4aAgYbWmzTMGk6vA9sc2RMhZTUBHjWdMzn+zgv5BQR41mul3QEHpzeI7mM62ZImak3ijMV7oksFwtm05mKaZ96isY4Si6VvabzkHHomU8mTGYTurZlc7xh6hq8rUxBY6oDBlAUHjPV1sxax7xJxGIYXMAYw3K15mBvSvABayojD4PxjqeefhqcwVjPZuhZbTZQY5OOmDOd7DGZdUgJBHvKtO3I6xXr9ZqSMn0cSAiz/QscXrzIdNrpIcJZSjbEJMQhsd707M8n2FjwxpFjwQfHxAf25/u03QTShpQGgrWUFGkQfc8BP4w0m5FiDZQBI+BLUeOAFGm8EjhSykixtLllM/RQFGoLrbJiYxxUb2Ytt27ewn/w/Xqfpcg4jqQ00HaBkhNDGeucUoX6UgqhadQuLBVKzoizlAJjyioHSYkoiWw9p2dnLE/PKDVN/drVq8ydlo+bx3e5NQ80dATGalem1nVZasgqWpRKzucsS3UvUYJV43QuGbwn5qj2YFUQfnR0yMm9e3SHAc/AB5+7wtHc89b9NSLhHQJOSeB2UGsCiXivRuwiYJzDFqnemvp+SMxQmZXqLGPVhsxESlEGa8mqTXRePTUlZ0DTao0ULXwGsiirdSdb0QBbte7D7MKdMwanB75UsAE+9fzHef75T7LfTVhuTjlbHDOkgXEcGYbEGAXXzDnbLHj5pTd5/bXXefmV1zm+c8J+07DZ9my955u//y0+8Ynn6doZ681I1zVMZi2ElhIezfgerfd2PbxJNU41cqhnJXbAJiALTWhYrbYE2+EYmc4Maej5l3/+b3Dzzl2++PVfI3SeWAolO/pc8MXRNnpKB8uFoz2KsQyDzmysMRwdXUIcNN6TsyX2mWHMbPu+dkCZvf0jSimEpiPFwlOPP84wFPrthkjk4oUZ1gQ0eFPDW4wLtE3HpYuXVOTudGZnncU4FQNjMtZbxGawqhck747BKE0cA9XE2FgN37RV6IsIk2BJfaLrJhhEE62rbgwxOKM55JO2YxICxlq1HTOQ00jJ2imIzGmaQEmCtTD2S8b1A/b3Z+x3Mx48OEV84OjgENvs6XwKLXY5qeF3n1TPVcrIerllnmHrPCMww+DJ2JzV/d85fDujMdCWTMpnLGuHOht60vEpCYOxlcGa87mfqncDyIDNhuFgn/XNE8ZVj6k+pCklZQ5iMWIYonB4dFGLI9pRxqgzxFJENWjs8hOVgl+kkLPm11ljCR4MQklq16WJHIYGB0nh6jSMlBTZlMx6u2Z/1J+3XC04Xc25dDDB+ECxSiAxRXS2ajTRTotfdTkpOvNNOdH6DkpEsrCNPcvFkrGPiFguX7rCKy89YLM549rhRaZdy7QJSA25FWv1nswJa8GIwrbOJKREZfOiQcZ6gWtavBgVi6NMT5OpGXhVNVqvNWgMUs4FLwEokGLN61MCGCVrZy0NzgqFqNZjtrq1ZHWBsUZwzrPZrDg8POBzP/bjPPf000gQhtRzf3lKTIVh7Ek54axn3I5cv3mPr33967x1/QZnJyvSmFhuetKYWMeRISY2y4zLwu/+5m8xjInp9JCDw31ssOxfuMTTP6ApwaP1aP1x6+EF7BlySTgrhG6KdYWmZFLpib1aIxUrSFNYjYKzga9++3c5PV5ydHiJ09P7NKEjx4JG5hVWmxVPXn6KVizTyYRsW85OHzAstxy0LRcuu5oYbbFOAy+3m5HT1RlHR3NSGrDWITVdoG20wIyigvWZC3QuIHjNrnMKBVkb8K5RFtu55ZPOMhKai5aNaIdYdXkpC2JdZT0anSsZq7l+oglnpjImmxCgJCZtYLFJeGcIDk0Xr3DZzlllR993ztdYFyVudE1LzomxTzRV4mC9+s588vkP8tnmowxD4jvf+T6L0xVudoCxU5BEyZrWLUWUKGENJRuSJKSMWCccuICdBlabBRcvXiKlnn61IKdr5NKQijB66Kae6f4Bb33mk/Diq3z92gXevPoY0s0QMyq5xBnG5EhZ8MbjzJrtpuULf+0vcO9b/wFHzlcNnBDHTDEOKWrQLQaeff/7yHduAGrl5r0nF5UGeO//gKTBVUNuU6+hcxXqNYUiUdmJthZOMYxJ08NjyYxxpDWOzXqlxZGaR5AL2+2W7BIxRT0kjQlSQWwhx0K22vntjAGcszijzF9TMlLUsWXYaCebRuH7L7xMv2q4cPlQ/102BNvinAHWgHZyvqgZu3GhivJdhT3VIMEWIOvvXLIgeh6iRDU7CAiNMYzFkjCqZS2lSkJUFyoFLKlqJK12xVW+g+j9Yo3Cw7kowcei74Xkkc12zTNPP8XP/tRP8vRTTyNmZLPdMKTMNkXymDDFI6Zltdjya7/8S7z+8uscn5wwjgMH+wf4fmTYbOl8g5s1eCOIi+zvzckx0vcbGutZHd/j3s23mO7NaN++y0X7yLnl0Xpv10MXvpRAvNCnkby1TGYO8YbWtDrzMZm2g1wMfTYY57l1+21i2jKf7iNjw5gcBbXF8q6l5Mx6vWDv4IhUMmIUSolDYdtEXLCVa+fA2ipvE6ZhSiCQGShOT7jehtp9VW9Cr16KpliwQizqQmJz1kwxAVMcJgm2eYe+XonqWDGUnMilBQRrYj2FW1xRCr1UhqYVoTg1bi5ogkUeDVEcxjb0Y8RawYkgObKL8rHWKrnA6EndWYdDMCXRmCmjfYA1DUZC7TYAiYAQBxhjBh8ITUe/7bl3/y6+Ccy7CdYIw7bHY0gZWqMkJIbMh9//Ya7f+QaXrj7H7VdfwLSRYOe68RlhG0dkLLTB0k4d98+W/Om/8Jfh//af8aEf/XHujQtu3biLHTKPXZzS2sLdaNmagNgCxTCGjvWeo6lCfdd4xpi0i3CiekdvmE0PqsVWlS+wMzrWzttUGQNwbh3nLJhicBSsqP+oiMGYgHca5IozSMps4wjWkkftZGLMGGvYbDTVOzQe+pF1usdKFDIsRQ0BSimqnROn/qwUUiyI8cSsc6hh2DK3MJTC3v4FTK8BrOt+xVNXr/I2pzgvlBLwtsGWgk2ekgzF9pQBJFiCAdA09ZINJIfJA1aUNZRNQ5KoxuPjgESvnrMUTQkpI+IKkjRVwohBvNomFGPI1hJEZ+Y+GKwUAmr4UHLCyFjN1416kiLkuCWanieuPc0XfvjPc/nqEbGMLPszzRcsMEY1blhvBm68/Aq/+au/yivf/x6huQK+B5eY7hv2DlssU/YuzFj1mX6zYTJp2d8/ZHE2MKaMN4aSIzZbujZQUs+4yRT/KJ3h0Xpv1w/g1WkQF8B6UipsNlUjZQqzSYeIwTZeBbbjgDHCdrtl0gY26xXFFbZjpLUBSQ1jsrTesVieMp1fRIaEnUwx4mjaDush67EXZ1B4ByUZBN/i8JQ0aD5ftQ4rRWnnzgREHMaIOlhAPfVWM96SkZKIMdJk1SCVWoCMKZQslc6uIuWTk2MuX75CzllhKaenZdVz6b5sROoGbumHnmAcqzHSxwzekZIaTuus1FYI7x1XkXeWqRt+JgTPdp0QSRp6mw3OaD5gEQPW4ptAziNODLFfM+8uEdc9Ce0efWiYTDzWOwiOs8Uxt964xVmBn/nhz/HWdXW+dyXTtupvaq1llKzMyZzUxLvWpQ9+4nk++PlP8fbN29x9/Trf/soX6UoibrbkYIk+6/uF+jkaEbwPjDFC0aJkUUmC6xqMcaSdwP8PXI8dXFdp9qilmTX10CA1O88KFJ2Fmeo+Y6wBNHliGHr6PmoRSzpHW67W6ugDnJ2cMdoG42o3lxLeaBLHzozZFIU8hxix1b0oZ3VV6aYTSJHpZMJ2s+bu3Ts8+fQFJjNP16qFnCsFUzSdTsNr1dbMzJpqim3r76v6VBFHLtULUwrJ6GzvZLFh3PbE7QakU5/XIowURiNEKWRjGEumNYaUkxJbrGdL4dg2mMYyc4n9PNCIJoSosYIhyS4TcIsIfPiDH+Fzn/whDi/OSblntT0ll8IwJHK2eNvSr7Z86cu/xRe//CXu375O2VKDbjd0jfAv/OyP03SGO28/gMctX/+9r5OBS5ePGPvIcnHGZp0I1d7NGMNs5qE4YuyZdx0h7w5Fj9aj9d6sh+/4ck9wDYhTm7DR4BtHihFrBnwXcE1H17SM4wM2qyXeQjZW08EbhQhTn5DiEFPjVLIjDSPD8ozWBrrG0wtYr0XUmV3XJ+oTWB1QUiqaO52VqYm1SBadxYk2fwR1aNGZHKSSMd6rjyPKRJ0fTGvlshV6LDhra5FVuHC9XnHt2mMVnqybFGr3ZFTUoCQI0aE/GJbbFfPZIVGMdlvGaT6fC5rO7fQ6qtdkxtmdSbMa/Ro7KMPRComohUEA47QBEqn+xJZUMnvTOa6rpthtgOARb3C50DpHb5T2nsXw03/mz3Nje8bk4kWGbc/0whGtn3Dp8kWs0Y51RMjiSKOhsVOcnwJQujlnpcMcPc6Hrz3LcjvypV/6+2xp8M4R04D1Vv8sHt94JVzkRKo+j9r1UfWfOz3dO39ajG7GpdR4HVONwHkntsjuJAc7VxstlBYlUW23PevNiu04sO0TBhVsp5zo+5HFQqHGg9mcfOVxMI6bb79RzQYqm5Wdi4nF4HDGEccR0ENSQY2picK9O7cI7Yynn3wCMWusTYQgBAMNqDRCNKHBWF9NrkX9NItK5RHBGkesszxT7/3VMLJYrbDiOJjNSZsN/WB1ltZ6vXfFIqOmplsx5wkMxlpiKayKcNx6UoFL2bBvHaYkjcSqioV+6Gmt5XOf+hyf/PTzTLqGOAws1mdghGGIGLE4abl/75hf/kd/j6999RucLpa005aSLGM0TLrAU8/O+KHPfoL50R42FA4uHLJZ9hxe/Wlisbzy4g2+860XoFTdrOjhITQBMWtA6IqllCX+kYD90XqP18NbljVKc06jUp+d90q2QAkafcwM25FWtKjMZ1PiOCDGEoeEawM+GFLuSTLQTVuaJnCwt0+OkdPj12njCjFH2u2J6vWsqfqwKo0mR4oxjEXorLLUbAjaHdRPsDVqNSYVuoNdMnmVEVhHjsJGNuRySJZagETnKtZX02KnTvbeO2IcaZqGnFSgLjVZ3VpfNy1l+nmjydN9GpiKQbIQtwOTdu/c7NhaW+n5VUxdyRj1iRW2s4Xlak1KQec07OaduuGKFVqjCQ9Hly6RUyFMpvreuCqIrM4v2+2W037DsOkZxsK4PyfMOnKB28fHmMmM0HZIpafGYcAZwSm3Fu8DN964DsAv/vKv8uYrN8AZ2jyQlyv6wwvKnPeeJjbknPCtJdDqYNMGrCTSGJWNmBJxjIw519BRw7BRskm/3bDdbnEugCm1qNna9SnJxViLq8QPEVedcjJpHBnitjJDE+O4YT1s2QwZ0k57CptSWK3UKWazXDGZ7pESbDcbCn3Vrkkl0RT9mIitMzehVDu2gwtzVstT5iJMJ46rVw9wJTJWONoZS4kjwXXsAs6tdXjrFL4sEWuDMntNACIxF1LKDLknlp6y9WxXkUk3ZdYaGqPXwQaH8RUWtkb9ZLNqYYNYitPCajGYLDTOsTo7ZghTbOp5ak+7XEQoJTLtWj7/2R/mYx/7KIJhzCOL5Rk5RcYCGE9OgeuvX+fXfuU3+P1vfUdJYKUwaQJ5HJDRUBLsH+3xgY9cIbTC62+8wfxgQkqWi4dXaLopL333FV55+S26dg8pSuhabx4wne0znU44ONrnsacucXgwZW9vn/lLN+CL3/8TbnGP1qP1h9fDJ7AXoc7BMVYNc73RofOm7zFtQy6R1bpn1hhSHFWAXROeTVRY1ASrWjCjJtHjuEHKQBDBTTy4jpgMjuk72ikn57l85ARBHVByThRTVEou5dyCCqObVoxKVLBm58Npqr5JfUeNyYxVEybnp2xXKeBZE7GbwMVLl8g5M5lOSSnVmZzqocToFmyrADDGSFCaISLCpGkZa0KE1I1vHBPOVSivEl52/1mrGz5YUsyU0lBNp9SOTESPAAYlRFRRtbGeKFBsZrM+Y73uWa2XxM2KPBQ++8Of58Of/yi2nXKaE9Z42mSIOSPG6xzMgCtC7LcMfU9oOho/I8fE177yW/w8cHbvDg9mB0QjhNJjY8ZN9zCpMMaB4i2pgC2RW7duM+aIs571ekPOGV8ZsSJCHEbiOrFZLjk7UT/G1WrF/QcPkGKBynY0GutEdW1xIRB8Q7CGZF3NIoxITmCVbRljJMVETpmSIpLNuZ2ZeptWjVuVCBjbsH90xNli0FilUig5nVudFYGUUZJUyQzjhuM3T7h4tIeIMJ81OBtxBiSmWhQMlIxzRg3A2XX4RqOKjKcUHRnkpAblfb/lwckxMW3IJdO4Q6y0xFEwPiEWhZ2rJVvrHdYrmmCqM02WokXaOs3rK4ngPG61pnQ1qsi0DOPI1cuP8UM/9CmefvJphMI4LoklEjOkqI5BURKvvvYyv/gLv8grL76CZCH4TntKyXinEIsxgrSe+f6UVBLf+uaL+BCIw8jh4RXeeOU63/r2t/DNlNl0zmqxYRi3INB2lguX5xweXOKZZ6/RTAzjsOb1V1/jwo0Hf/Id7tF6tP6I9dCFr0jAgcJWUsgSsdJounSxkATLADkxpIKhOl3EpGR5U0kHFLrW0m9GOuNYbh/Q7nv29y4Q2il+csTZZgEp62yrnrZN7eKKMeRc1OwXdZYPaJ6YlAwm4byWwJydFjIEb5ySUKSoq37naL0npkQuoto80Fw1oz9zb2+PUp0/QvBM2j2mk1klwFALH9VU2QAZ30T29hpWi7nCa92EyXQGGC5cvISRwnY7Mp9Pa4KAXlMN/lQn/WiE5XqjDa6UOpPMOguydZZIte4KjjJElsen0Fhev3mdOPSUDG3T0HVwbe8CH/vgh3CXLpF60KRuoxE7znJ2dsJ+c5WcMsYLcbthXG0o7cBx2rJaLBm2SgaR5QrsgBGPJEPfWHXXIVFy5GA+Z3u2YrNZ88ad10AsKQ4q00ATJwyZNCZstDBmXnvpJS4377oVxVJKwtmCw1dBs876UkrIOCCiRttGCka0IKkxgFQpRKaIMi+DFwiO1EeGnFRHmNUObSyFWAom98xmM+7fT0rxryeRkjNjLJhpQJqWmPQQM25XPPXYE0x9w3qxUCs18RSjzjJGsiIGxp0jCSqKL4hYBjIz20JJOJewNpFzQ8yJvf0ZOTo22wExOp/19T4RqXZhO7ShaAakFEuOgB8R4ykpgYdoLdlDHHrsao1/cI/oCk9//Of4kU9+liefeIJU1vTDGRRhiANDHmnaCc5ZvvPN7/CPfvU3+P4LL9O5lsa0JJsYx+GccGWsEEJLcQ5PwJqBu7fu8eDtMy5ducpi7PnGV36b9VoN5H2zoXUN1gneW1KMBDehHxLL9X2++Y23CKElSSLnRHM2/rPuc4/Wo/UH1g8w43NgkqYY4DCi0T3FahBlieotGYLDBk9O1D6oYE1GjOajOePwxjNm0cw702LsBOcuMt9/nNUQyKOQXGJEo39cpa+nlFRTpJb7OOdINVSz5Lo5VncP7yzOe8bYV/2XfmE0mqdpG5wthBDOTYCNCGSh2EI76bjUNKzXK3IZ8c4zn83p2k6H95VAsYt2MShLc39/n/39C9y9/YrOcEx1VcmFtm0pUjg+ucdkco2mUUcSUx2S9XkEYzI5jbRdwBPU+kzecXvRpblxqjUrXLp8yDMfeJYHN26zimsKBp8jrqgWMWUNUTUuMKZCCJaSM6EYbr11i6cuXkVKIRLZDivM2NP30J9pPE6/3QCQZYQ06CHGqEMJacRkhQBjX+ialvVqgbdqmDxu1+eFuybkIKVgUGnLnXt3ME88pr+VFO3cROjHkVJGurY999kstdMuOWKM0/R6lbCh8KSaAmQc1gpt0O7Z+cCaLcO2IAVSTWA4XS548NarxD5BWQF60IBCzpCL13xHrHa16y0mZebTlknw2LybPapcQ/+jDs1Mrgc/qeQnFZhnsyTlEaHFGBhHw4PjnvV2ATZxuDeFrBCzmlYLxleGq0IXKto3FXHYoRn1sVIyxVpKUqJRyOgc/dZtfu6nfpq/8pf+Eo9fOWCMa842D8hloEhmGEaCa5Bo+d1vfoN/+A9+mTdef4umndJY/bxLLkog2nXtKWHIWKsWd6vVltOTtbJVi+POrXvcvbem6/Y1N9GotjSWUQ9+rn4+EI5PjlksKyHKNjSTVhNUHtW9R+s9Xg+v4zNKjzYmYYrDlgBmJJdYgz8hGAhNqEGweiptvHYl/TBqdFCCgOAQQvC00wbbTrHuCMyMcRQNBM2JUbJCKJgagmkJTcBmZSy2rdeuD6oWz+l+U4SDvRmlFNrW451XHV4B4wyTruXgaB9rYDLt3gWRWmWLGtWThWDwwdZUdYuVps4MgWqNlYr6H9oqyDbGYp2nH0c+8YEPUPpB51HW4Nu27lsK0+pBYJdrXWoXmWkbTxMq489ZmsbjqpZpt/nt3EQoiQ+8/znSWGg7x9Q3xBBYx0E9GRHGNKijv1iGccRN1DZtHEdcEe7dvUdWt2LVceWRQMEUCN7SV5YuoPD02ZokDVhPZgSTtUOPkbEYUlGCisUheSSnXue1mHNRvv4yKh+ZHx5URxKgyidzyeqRWTRQWCRDKZqFiEokjGvI9QAiBqisXY2dyqSieYveNgoleyUCjTEzJGWJDnHk9PQ+03bOZNpwdnqmWtBxq7IWEwhtIOeB5emS+bTFG2gseKOyC/XIFHAWSYmcdrFFmRgzzgdi1ueLSfAhk7NgDdXhREjREropXSiARYpXl5VADSZWyU0umSIZMXW6bpyyZa1qT42tBumx0BhLXGyZtA0/9eM/yr/xr/63uHp5zjCuOVvfJkqEVGFdge1Q+MrXvsqv/9Kvc+/efUQM0+6QXCLGGsYx6z1bta/GGpq2oWs9OQ6cnZ7qPTII62I0TzAPtG1LLpm2dfU1Bi3ORVnSyk4F64wiKjETk9BvIsZY1ptHle/Rem/XD1D4Ejgh5UJOQw1aVaYlRinqTjxxCwQUliuZlERjfYLFOUPe9rTdFBl7cIILLfgG51qdVXnLZNrQ2jp3008EBpjNZoQQWC9XeO85ODykmagUIXiPpKyUEwOXL11QmKTVBG1jvDpmFCF4x/7BHhhDqLM4YwBR7RbWVsG1up6UghZgjwrQKVrojH6JSUiNSwLtOJxzhBCIMdG4oLqoGo6aUeYo5R1HEtCiJkXYm89pnFe4zhUmQfPPzLsidUAPAm0IlDHjO4tvwAdHKrrZjqN2L+P6DqvlhgtXDG3TKBu0unqkMbMeE/fXK468w/dbuq5jsTrFGS0Ys+mE5z/xUfitL0NJrO7doWsPEWcJrqBpUIZh6Bmt1RgojSFks17SOnO+sYHO1STrKV9cw/TwiM3yrP5mRQtiitjQ4JtA4wPjGOuVtVjf4MXgfdDNVUrNJVTnnSzKYBXv6VMiVNPpnTAeMecs2pz1njBWSTMpJXVDsZ40JrabDS5kuqnhYN+zWiV9/63T4NmSyVKZn1VDKlKjiqzmJIooiznlRDYdw7ClSKgSF4NrAlEc0XjmDTifiVLOJR6y4zULSMpVLqCQvYhXRMRAElFdqGTiqufStcf5sZ/9OT7x/IfIbFmNxyy2kWHU+KzgPcFazs7O+PVf/01++0tf4cG9E/bnBzjbknKkjyNCqjC71UQS58g5aUizs8R+ozrJqIkNy5RYe48RS7AF6zKh9QxRRfwlqS1cSsLQj5RiCK3DO8dmsVQTgNCci/m32+2fYGt7tB6t/+L18Hl8VrPtxAjkgqXgHBi7K3oOZzzDkEljxjYObwpGMsY1OOMIDQyjYxgL1rekMjDZP8C0R+r6IUITDHSeztVsOTif7zjvmPop88kE7736IYomqqeUquGuwpZtCCRn8c5owRH1zxTJ1bCXc8JEqcnnqtqrJ+Aqn8j1OXU8GTXPzqp8we5gtyK4mg8otm7sABLU01R0/mi9zgGdUy/JnYi9+lCRs1L3fWi0kJNViJ/knXw6qPNEZapeuXyJdJQZxoHJ/lSrDYIUNc4ORgXJMUWc0aQBEJIUYh4Z40heW27eukNJidY3kEe2OSNFPRMlRp544nEAfuInf4z9puXmjTvcvXOLrmuwzR5ni7Pa0RWMaIiuOo3kypp15zAcIjjvsd7TTPbQ3I135AyFKr0oBRvqjGx3ravjTXEB6xvysEVypuAoWW3LEpn53hw7bTk5OSOmouxf0QBbwZyHzVqDur9Yy9D3OBuwVv02lbFouHTpgOXmAbYLQCYbIRWNztIbo855q05RStGfUwopZqwLxO1AzHDn/oLNuMbYicoOZNT3pmmwjQFfEBlJZa1WafXwZyqasbuGxnqNkhKUdTxGnQcbzQ/8y3/5v8InPvkJxhI57U9JozJ6Mep1KmPixRde4Utf/CLf+/aLjENm0k3Ym82IqVeHGARbiWUp68kwxhGJpmZERuIm0tgdgxR1OjKWcdB7OYrgJ5koAyIW70KdWasptnNeDZJQFyTJmUkTGI3qJYN3TKfTH3hje7QerX/aenhyy5gZBbAOZz0m1SBXKzgTyFHAZXxrIGbdUerMw2SD9QISGUtC+lEh0cYyYrDicRikWJwxHB3t4asjSzHqz+iNIRnB4hGrsKKts7Ud+mhMfbwxOLFkZ1UiYJNuxqVUE18hDYVcBtrgaILHGgulho5SIAknqxXb7YZxHLDO0VnHbG/G/uFRdRpR3aDBUKoua7FasdpEYhx54/p1Yo50LtBg6KYT2qAQrfpJ7k7zpSYW6NwTQbshAx6nUKvWRi3MtRPwzmvOn8uEiWfSTUhEkhVK0dcjFop1arnlHGOB1Pestyt+/2tfppsEGmPxfU/cLMluhnUj33/jDYYkfPojH8ZgGcuuMLU8+eSzPPX0s+SS+Z3f+R1OT5bVd1RhaRU2AkU7cSMqvzCiUByChv62mgo/9iMGhXIVIISEZUwJk5esTYP3NXmAjMjAoAROLFm7dTR9vojBOq/3n+iGGkIgSiE0OmPMY2So+YLGaeErMaqpwRgZ4oY9s4e10IaAE4eJE1wTkOw1tggt4NqdZlwXMJQK2421g+zIAqvVllLnWsv1grPFijFNCcWRQbsmUwgUSvHnCRXFCL52+saIyiG8WqxZ4xVlKEKSjK860ojwc3/2z/HBD7yP0+EeYiBuCjbpzPS119/g97/xu7z44gscn57hxdE1E6xE0qg5gFIlRFIEXwDRSCxlxOqsVsTQ91s1ezDKwE3FId5iJeOKoYhDpDBmQ2c1f9AAznpy3lLyqFrIegA1WBrn8b6hCZ5uMsUai7t1/Cfd3x6tR+uPXA9d+NrgNETVN+rYsB5VkJvrKTxbEmCCpXUqPC4u4MTiTCaNK3o2ZGOZTjq8F0xowLQ43yFFSDlj24Zsg5IZjK1uK7WTK1CsocSoydLGEEKgHobJVidL2Rhu3bvPOg7MfODC5YuqbSvqbbhcLbh16x4gHB3sc+3qFdKIdiNeJ2M5C2fHC+Kw5XR9RtO2zJuWbtKiKNmOGm9UNG8VwkxFWK+3DGPkzt27xDzSiGHiG7rpFI/w9NOPn/t6aveYMKJ+nCkVxjHS9wPWerw3zGYGXzfyXCn5GChFpRXW+Cp+7ijeUfTojFpgOcJkwne/+3t859U3OV1ueOull5AxcfFowuyg47CxPHnyNvv3buD9HOssZ6/fQErhQtfSz/ewx6cANPcXzLt7RCcMkwnPXnqMO5stWdUcnB2fkY1j7TyrszWf+OinuXnzdRbLY0wxpMHy2OOP8dgzV4kMvP7qTczQk6pp9LYYNtmoxELAO0c/ZGY+IFmLXCmJYGAcFX7v+5HGdnhjddYmsNxskM1GI4xcULnApKVrO/rN6XnaRIlCiQPJWBoP5MT+dIIvnpQj1jcILTDQGY/EBEVw1mGcICkCCYzXn20MxkEUuH+6pi+FMVsET9M4yipiosdKTVgQVYRKZfRqZ6sHRqmOMaYeeAxAUYF6dS9ArKWIzjS9GEosvPjSSyyOT1n3JyxXKxbHC+7evMX3X3mNVYIQ4OqFfT7xqU9CSmxWp2zXW5bLnmEbiTEpXCzvEMLEKEqirFSDkHCumkoUtSokBC3QyWoPb4t6xKbMKIXgLc55rFiM1T9zSUgtdi44vFhcCGRJPHhwQhwK89UjqPPRem/XwwvYa1fjcJRscaHFNQMxJ2WxebDeEaZT3GatlHJ2ac8JFzzFHLEZEylnQtswnR9RmNCPicaq6XUcB45PlwTnuHjpQDsGo7O3zdBzvFgjeVCvQec5Ojjk6PCAnYEwxhEL3D8+4Wyz4Ggy5/DiRYpRDVUqEUE4PTslDSOzrkOyDuyLEcQqFd4Yx9npAmuEfqNao9UQOTw6OH89ItoFFWVW6L83lvWmZ7PZcu3yjLvHp3TdlPVqy2bTM5u0xJhwrjl3itkx5HYsm8ViwYP7x8Qx0jQdBxemPHb1Eq4SRHYswpgzy+WKvh+xtuHgAIxvFDbcDS0dzGYN4+aEuO0hC3szsFOjCRti+Klvvshf/I3fxr/LGuov1z8zcOPJJ/C1y/zCf/qfEbuGHDzHj10lGUNpPMN0grOWN966ydJbfv3Zp/hHf///Q+oTRQZs64gR2tDxvve9n2wHyFv2Jw4ZFmxXyhq9ffsOt1wgWI8VaJugLOFtwlCwTrWY1hqysWQKxjmWqw2ttVr0naGeTrBAPyacdazXA0eHF4hjZDLpABiHVE3CDeSMqZKbUgZlK7oG3xiKxKrLqy4DRg8hFocUB9KqHGEcyVLY9iOLTU/MWWeGuHOxuFQrN8zOGcZUraY9f+5SFPouWS30cq6zYFGz7BizxmcZoBTVY9ai+OrLb/DCd15gsbxPGhPeWtrGcXjlMWQ78vi1C1w9mmBKpvGB+Z4hpz22feH0wYrtcstitWCzURhZSql1VtQUoZh6AEtYtANOxhBFod5GGpwRYKv60JSw6AwPIyTR9Iu26TBpxFglb+UsDCUT+8QQE+OYdTZf7A++sz1aj9Y/ZT104XNqbgRZGY+2sWTX04QWSqs5dMHimpayydVAVxMLpFiGDXTTOV27xbop3WRG0x7g/T4DhRgzGEhx5MG9OwQX2Nvv8N7qh00MJQur5Zr1+gQpkb3ZHtPZXGc21XVeiQuOzWrJ8ckD5lebc1gxl2rkZAxjjHgrKnCv/otgKiSqRVLDVu05iy0E7Rxi0jN6NrvDAFAlF94GvA2UlLh0OGV9ZpjPWu71S6zp6Dd6zawx58L1XcVTGzRAMiVtWC7uA4GmewpNHaU+TmeMfYo8ODtTJqLxLNcbrAtqCZdRggIwGssHn3yax5/+IF//vW9z/95d8hCxbYASOVys8LnwjZ/5KV7abmisIfUDT50u+JFXXuOZGzfP74NrN9/572dffBmAZC2/9ud+mmHacfWpJ3kyRvqPf4TNbMbqdMV3vvciSSwuGErekMYTpnsTGuv5yPvfhxHDLGvH15meqeu1shtLihs8U5abpcJqwWM1EJFsHTZAFzqGzZZNHNUk2xlcaHR+REUGfKfuPzExxsxsbw7A3sEeZ8bWnL2iEHGBMSWCBesLoNq9QtDMRKNkGWfUS7Nk2GwGNtuknw9fcCYQc1LyS+7x5z6tBmMVxTA7J6HMuUzDGBVjqF7P1rpWtDgbS6yoBeJgB/cnxX0HSbjSsDnpibawXRUO54dcONrHNpnff+VVcvZ0RuFIbMEQgA4otJ3l8tUp+cLIbNGxPFuwWfVsVxvGpAcCFU1UNMZYneMKCA7ra5jtLh7JJLxraAgYsTX1weIbQxqVERvqZ6/kRN9vcdmQxFIIGGtwLlFKfPgd7dF6tB5iPXwQrXgsHZmMo1DSjv7ukESlfmsoq9/rMGPGxRGfqR/UzLbfYt0G0+yzHhzNrKUkZahRMilGshiG9YbtmDHPPKGGwEZ1cyKF7WqlobMlk9JILqMKwEU3B6utEF03Y39aU7/LO+QQ4x0ihkkTFOIaNXFht9GUDDrBKfjGqlN9UXG5a4wKn3fGwmKxIpoQUM2TNUEbTDXJjnGAYKF1+OAJVb+W045so69LXCUT1HP/4XxCYzu2vXY+xkjVQelsVbsNhbzGbUJYMwyDFv9sFVaUAWcDBqEfLN/67mvcunEHm2eYbIkZdd+pG8vNLnBj7xJmGGkvX+VJext4jZcuXWQ1m/KZN6/zzWefJU6nTGLk9lOPcSWOfPK3vsLUF8rBFNsn2tWao/mMyV7L1YM9zk5OuPngjMl8wtF+y+OPzcgxY2XGGIXJdEpzT6v6xWmD7CubdMyZUTzkTOscFohS3WpyIeVIHLass2BHNUvIojCd85WIMkZs8Spz8FYJT8Zy59ZtAE5OT9juzWlDQ+NhHDOtQ9FLI5ga5SQiGvnjVKcn2bEdhWEYySazWgxsU2Q+mbHvwFVrs1QEsupKDR5TdP5rzFR9bNNO46eBujlnslVDbRGFz3NRslBKmhUYk3ZhRhSW71zgdHumsGc2GBm1MFvLvbv3ufP2Ldop7O9P2Z8eMWsCqR+w3pBNQbIWUmMdPjhC4zjqHNP9OdvFhs1yw9npGZv1kpJ07hirA1KpmkgRJbtplqWmozjjNb6rWHKBlKI+f/AK3FrIUT/3FoNNhZxEB5lGcDZDieTySM7waL236+FZna4l0VJsBFsgG0zqEAwej29airXklBGTlM4vLV1j6YcV+IxtDcHMmOwdUNo5Yj3kgqSMuGohJYbWd4zbDTYXSsxk3glwbZuANZq+PW0bLJmU4nmuHmQslmw9zjTnJIudoXTMgncNrbMsVkNl3+nErkimTtkB7RBDaFRPFmMlVmgsTi5qDGyzhsNGAayewL23WOcYU0ayqVE2BmsLOUb0RfkKeSkkWSSfQ1zWWoL3OIm0zVSP1OrQSBFDLvp/3jicWGbNlG7iuXfWg69z0ZxwQZi2hqb0dDbg54es5/d4a30MBtrgISYmuZJlTo/JsxnOCKn3vO/f/p/Af+3n+SDw1T/7Z+DN65Aieb3k2o//OJ/4238Xjo7gwx/m4mrFpPHYvtCsNly9eZtxPsFg+dCmZ77acKGZcM127L15C49FimMYM13Xcnj/FIBJmDHzUwp6IInZIS20gKfgpSjZps/MG8+QoDghWUsKgcPDKwjC2XLBmHqKA1fUkk2CIRYYN7HOyGAcRsaUcd5gStSuhKwdZ3XKwQrGecR4kiTiOLLdJJbDAusStiSc81AKYneBucouHUVwriGlLc6Br/O5IgkXOkIUIqmG03plhdb7wmLUBMBoEKypJgwKjWqWnoimwjsy3uo8zTqdgbaNw0wbmjBhOnfgDKHOf41VJyOREWs9Rf30lImaM7hAO/O0oWU2ndG0gcWpZ3W6Ig2qJaRYJQ95KMVQUlFzAsna7TpDSoU4FkLo8M5QkppMWNSc3VqnM/oU8Tid4VtXGcgGxNO2k3+WPe7RerT+0Hr4wmeUZq2Qoho559xgnUbl5JTJGFxwpCGTks71egMSPI0ofV/8lCiFrlErsVzUbqzIQCnKVgu+YWRDEbXsKkUFwgWdafjQMm4jKaI6KahEE6mbj544pTr+W1HGobNedWL66TyPGcJoxIxBGX4KIXkQjzWBXExlK+7obrvNTVRYXGE52W1KotZpm6Q+la4oUFwAciblrOSIem2NtRijRIcduaHkCrsZ+04nKajgXcx5moF6kg7M92p4qYfp/hxyRvKGYAxTb1me3GWxXrC8d4xHcDj8qCSkbQVc+7MFLY6NF579iZ/kyl/9K7DdwmSihQX49I2b8PGPw0c/rt87OgLgI7/2tT9wv3zsN778A9+MsW0Y5lOsd5RUcK5h2IyEFnzraRxq7pwN4tCMRd/gHJTs2WxHpCSMtXRNYG8+V+lKSRgsRRyzgwNef+MtnQejkHGq6fSWSB2aIUYo1pNNoNiOoayJmw3bYSDKSBK4e/eUo8OGSVPh51Ih1TKQq5lBMAYTdMPf5fsZh2bmZfWR1XQCfb/r6O98lleymqSH1oCNlWSi966cm71WPamMKJc34Iwwm06ZtlWy4bUQq+OQvhYoauZu9WfnkiAldUOqKSXeWFzXYi9fYLI3o5mdsjhZwmZDjAkrel/u5AwFcKFCt5WZm7KyPptQD8Zh97qrz60pGGdUyoOj4IlJkKKv0/lHM75H671dDy9nIGK8wVTmobcJ8RbfBUwpbNYbfDOHApIjwQeGMiLJMvUBhhHrGmIJiJLxsCK4evR2Vu2/xFbz6aJCYmcKpbITVXRc1ODXa/p1jrkWzh0Djcp/MyTJOiswpjrzF4y3512etVBKPv8NDZZcFDZ1Tj/IOccqcNcPZs5ZLbUINQxCVD+Fmm4j+pzWZoYYGZPo8H9M+JDf0adVfYJQqvhdfT8xCmemlPV07yClvJP68c5UsEKrkjVI1Gh+4Hw6IzzWcPbgPuTEpcN9TBqAxDw0jM2EVb+k1Igiax2bJgDQX9hH/IRuOuPP/1v/Njf/k/+Ep372Z+HZZxmC45effYbHrlzl4//Kv8L6d79Gt16xiwh98c/8abYXD3GbDX615o3PfJy0N2UYCq/evM/pJnGwf8ATVw7YbwutNRSxrLY9k67Fe8t2tk+6vIfzjlwKeYTtNpGNwUxarFPtZMrCehjYrNY8/eRljCRlRpbMdrMmhEAbAsF31d814o1hWI+c3rtLqsnvuux5MbDV8No5pzZxBvpkGJY9GDg+WTBESxb9EvEYFxAGSs40vqV1AeJG71djIaq1mlRbOpwjS9LO3ntSTY1w1iqxpuSKLOghKJfIZN7ig77PxRSKjrI1qR2rxavofW1twrtJVburIYRzDkykpOoxi7JFrVH9ZMy5uuiUeh0sxe0GyhZjNS6pnU+40DRM5vucHT9gfbYg9SMx6usyeJxT/amUyHYbialgTQf1UOycfjVOt55YMi5FcgbjnEqKkh5CjVE3Gu8fJbA/Wu/tevh0BpPAWqydIKkgOUI2xDKQBBrnsc4xm3TYrmG92mJcINmI7xpMaBikID7gmhkxGYITilHoTz+UKnL2jSM0munWGK9EBtHuzjpNiUhjhqIWWOVd4m5Tha+2ZufFkogV2pEqrHY2IEULba4elkDVL1UpRolgEmnMmFp4s6hIXWFJe154FL1S0swuDLdIUUgLg2auGxrj6FOPMZw7thijNlS2xsikKn7PuQanmlJFzFrQVcydK8NO6e/OG01GKMK42vD6629Cjjz1+IXKpJtig8dLg/OWKFukCJ1v2ZYBU6FO5nNGO+Ov/c//F5y9fYvr/9F/qIUPwEDcn/P4X/qLrBYLXv72d/kInBe+W7Zh4Rsee3wff++Y+08/Rtqfs1hEbpsJtxcbDvYOsY9fJu5BazKpGNbbgdlsirdQiqNDDxrOqRWY856cd96QGjIrBhIFnCZddEEz+bxVI/Paf7HYrCjWsenXTFvH1FJNCcr5e+6cA3IlUKiwvWRHHAYImf5EX4t3WS33ygzJjWrSXCGVwrSxOqMqjlRGshnJ3jOmamqAoVT0NBYhih4go7GMxoLx2AKtU2OIXQlCCkEyrS1QIqaG3+ai97yiIYVcEqU4nGlwwaqtIAFr9eOtLjIWTzg3ukacfgaoEhCUsYk1FKNfVO9bTc/S+7XtWrqmw7eOpgmsTxesVisdF5QKtZqIpIw3HtdaDA0+KBGpaTzBh8pqLVhTyNEQR0MTGmXRFoPxI7FkjHM4E/4ke9uj9Wj9F66HxhCKzTUMVbVnxgqegok663I2YIthHDb0cYtYw5iSaq+soZvPaaczpnt7uMbi8diyc1IRdUt518C+SNbEgqIEmupBrVTqVDAl0WSHGSv6qDQycspYsQSrhsp9GvV5rYrbRRTmE7Hn7h0576KJ1NnC4lW861VnZHYsdqPBtuqPqBZkCVNhKSX4KAXCaadoHU4M29S/a8ZYKjdOExcoRnVNaENgxJKTEBHGkqBEhFFLpzoh1xmPIQkYAmIyY9Zi7EOHtYZYIqMVonOsk+BcYG8yIRZD8IKVqC4eUudOwHC25aM//pM8+5nP8KX/y39M9/jj4HXzbK5e4ZlP/xAXn36Gl37rH9dg2NoVPP00tukYhoh3oY5VdYPtY4+YXXK8EkZclWPsOIJU/1EnIGp8WqN6CjrNzEr0NxaxjmDVe1XhMHAOPQiIwYnHW6vXII9Kjy+iUohgtRiU3TxXu+keSCT6vtAPkWHINL7BYhljJlVXHus6hR9rMcOj3WIpZArbYdAYLiMkRkXGrSWlSMkGktrnxZzJGawYeloEYW8WmE4crfPn8LYtnmDApAGXBS8BJwFvgl5fa8nWUGphMqLxTeLUY9VaV784f79Mjb0y1mJs0MOs0a1AgLLT66mTG9nqQUv9agu2sqa76YSDKxc5evwyR1eO2JtPsRiipDoOUSKZ85bQQtsaus4riSi0GB/Aad4mVvWapVCdeYQQHC7UYGV/3p4/Wo/We7IeXs7gGlIOlKT6qYJTOzJjSdXeCjFMg6dpWprg6DdbYhy4dHQRP5my2vT044jYjJUEWY2vMY4Q1PtzlEgsmjsWc6YIDGOia0LthAzBerbDhsF7GqOJB9rh6elWs9563eysI6WsDDFrMEVnBwh03RRbaeZNYyq5RAf0VMePUhKTyQRjPD54nHfEmPA2VDnCjlQjUNmhuWR88Iwx0njPduhpbGCMmr02xkRwTint9frKrnhTafzJELMmDATR1+UqBV79PjX6xpQCZaQJU2K/pGkCkrXbvHnzDvcenDDrply8cJmcI3uzA95e3tCiZQzBeWXdAtuTM/YvXsA3DT//7/9v/sD7/2P/4X/M9b/7d3He8/mf/6/D8TFcvKTf/KVf4pn/4H9Nc+stSq96PK2J6sySS2SzXjOfzXQTzqmmNFR4uwjFgNt1ybngXaiWZ4lM1C6+0QPHTvxhrME6tc8yViUmUgreaaJCrqnnkgsS1f5NilLxXYXashGSydpdZM1g3BXlqkfXjgmLJAEGCj1Z86v0VpEqbbEQmoZ+WzDFQFbWo/eWMmpa+2w65UBm3L6zosiGwoB3gbaBHLfYUrBWIUdj3pU8r+NrnZGJfnRLMTivhBRTrdyk3j9SoftdZ2upz2XrHWeoxhA1n68o7FmKeqVqTsgOxtfnbozHGk9fEs57WqsG6l3TsmkWtNKTTk8ocVsTJNVBKHghNI4maAiv9406MeWBISUN0g2GMSp7tvWOXLTAWm9Jm/XDblOP1qP1UOsHmPFpQkIRDUKNRXU4znqsMYhVVxeMZb3aqM2TwOWDi7ShZZuzRsekgg0GGLR7yQ7jYBhHptVcOEoiW+1+SlboM8vOOQJcLkwmDdI5kud8BgfUDV2hSm8NoaaoG6idmc4BrfPMmn3AnoeNSj0VK3KqsUfe66nUB6cMO+d0N6wb+65wFSlAqh1IpmunpGEEa/DW442l6zp8QDPdaHF1rqKddHmHoCOwHYQxNgqdttUdxlAfV+c3VcC9HjKyyeAchqhRQeIgAdlRjDCdTLnkL3D3wSkWT5FIzhpfs0M6J/szXvjSr3L7tZcI7YyP9SMf+h//m3DlCt/59/89Hnzxy5xe2GNmhHY7cPlf/pdojo7gb/5Nbt6/w1txw/uvXKwsWg2kTcWw3W7ZrFdIuaxJAyTt7ihKRpKMOoAbpfVLjQ2qTF1b3XhCReOwDlN22kvON3sMqskUIVQdHz4w9lsMluCUbFWqd6jeMMLBwSE+ZspmWzWdOuNyxuKqVZukgsRKsbeRJCqstqjIP4rgO7U1o1coswkqzPbeE61BjLDebDg5iZXEBMb0eNsq29Ki0qCaKShmN3WjnozqjNdYcnHkpB6xiBp1ixhM0ah367XwYNUFpxSjJB+jOY6merhi9d7Sf3seqYxxqLCm6CyYJDRqHsq5zl7QIjbXz0UTImbasTg7pl8tMVGLr/eO6bTVhBLX6LZjDF0IeugR9UW1ZH2NvsGUtt7uGc7n8I/Wo/XerIcvfMbgEYxEnDUkm4kRitid7zElJXwMpJiqrq7QTS9gjccUPXl774mi5I+CxRRf5w515iaCtYZJN6EMmWCU4We07aENOutpmoBrPU3X6EyksuAUsszszWcgkTp6003eFNWBG890b04pPT74yj7LKi6u43/vA1euXKbfrthOOooIs/m+GuZWI2Bb1JB557pSJDKZzLj2mOHB/SWzicWFhkEMEyyzi3O65oi2a5XRmkc15zW2eh2bKmwuepoPc5yzSpKo0JM1cj4jjMUwFsE0czaj4eLVxzk9e+18Y9dcQhXU52FAiArLFT3Ju5yVfl/f42Z/xo3bt7j7+ptMJ4dcOz6D/+5/B4A7X/oSm1df5+y2ZeYa5gkOhpEG4Jd+ifHZJ7EHU6yz2o0aELEcHF5m/zTDzROC1w2viCir0dSMuR2TsYBx+hixgVgGsoDdbb6iRsZRLGksqALEUYplO4w8WG64dNhqV5iVqSlWasp8ndEWoe97hkG1i5Iyp3fPmPmGiatSBtNSSHhUoG3U26ASl5Rxa0CT1nNT33uNbOrHQdPdRbujnDL9MFCqpnNMEcTgjcMUT5sNV4+Pufj2iWpBE1gSLm05OziiNY6WdzSb003PcoycpKTQY6lemaIHAFsPEM5oMaRC7FqAAqCuNzuUGqh63B1crxpRU80VJO9Yy2bX/lbRemWd1iioMO2w3ZToLbnN+Jlle7olDpmuc3RtwLoG9WRVIX5MCesC3reUGiE1psQ4DCrncJaU07uOl4/Wo/XerIcufH3yTNEUdr3zwXhRokV1MJGY8JOWoRQK6qxeLGz7QU/jBVajRo4Ydro1nZEImlYdvGfStHhnaF3AZHBeN3/vDY9fuchqu8QA08mM/YPDynSsOxOGUjL7+zPa1lX4R5UIO+NfRLh45RKIzt5yKTRNW23ICqCRM947ZvMZs2mHMRbjvM73eAdSPSfG1IKdU8EFAMtjj12mMYEklolYYqPaO+OcQpeuEggqLV0DaQ1t1zCbz0jJ421mPmmxJtQNaAfpgTdC47UzaSczNusFQ47a7I0R32jx60JLjiNv3HqVbd/rid14hbJSqt0qxHVE2pbGtQoJS4HnnuN3r1zi7OJFde9Jltj3bMaRv/dv/A/42Nzx6e9/H/O+p7RLKeWckWt8yzgYhl4IvqVyUTVE1VYma01r2G3PuYg6d2TD4888x/3vvYQV1dfFoWBtIISW+WSP4/6YFAvJWFbbzFmfODSO9fKUaYEYE6vtmcJ3zmq+o9NTWonVDSQmfMpIHmCSSHmBmKCuJBWuMxUpSCmDNBgJen1x5wcz7zty1LxDlRsUTs/OKmrgGfpNRQlUjuJKS1hb/vS3Xucv/OZX8WV3/NCVrOE3fvhjxPmctvH1PoGh77kn8AuPXQGXKJma6qGJHFLUBNqYuGvMzuffu/sUdocnW2FMqfCmwqox1SmmMTXlA4qDZIAh672xi6g35zbrFJs5urDP/oUpw3bJdnrGsE060/ceY7xuOVZZzrt65mrShslRf59YsDZjEbytIdOP1qP1Hq6HZ3XmQjQjKWkkisXWoblQzplfoid012Ak452nMZqnth0HDdZ0kNEPpatFxIinhB6xG0qZcrh/iUBiMpnhorIXhhRpraOzATc7RGyhCa1G0aC6LpcE5xWKbWrxNNbigoplaxgRBhRmMWBM1pNlfOeDbn014s1J5y1WDaVLpYHnqq1ip+XLVN8ybS8tDSVrXEywlpAtQpVjiCZxwy4CSfPdMO48f61pJzz5VM10y4Lf5TPV78ecEWcZNytIA09cO+LO7ds8fe0am1XPd7LF40gmI/3IatNz9+yMkCBbT8FhC4gVkonYuunGswWyNyUaMEEz9uCdI4XNA+2mUGzgwnxC88Ql5OxMX5sxUEzt3Ap521PmQl8KtpswPTwiyUjfn9G2gskGnJBz0kDWEqtwudAnRzSZWbCaP9d40jiwTUKYd9iuxe615ONCKp6UPG8/OOFkcUYTDDYYNpsVxjXcuP4WFw/niEy5dzpyePEyJTpcNZqzacTFDXStMghdi8GSYk8MLbkUvDMkEXKAYrWTmkw6nasFxxhBhsJ2vaWbGBXnS6kSk6wG0tYRszCd7bFY9PSpkNcr/P1TfBG+8vnnWR7uQ04cnS347Ne/RzaWzXRKChVUz4Y4bJluI9PsOC5Ao8XL+l1qhGD9gFHrGf1dRI0PitVZuGCxtjIlrd6PtjoCiWSct+czWrEaE6UMUKmWarp0tq5wtDKdd52jZdJNmV6E7bpHXAMSKMYRc1H0ISVMMpQckawuNdiGtjEaYRQtMSY1As/pYbepR+vReqj18AJ2yVgDodHUc4ynyKizhWwwuHfMflHnim2fuH98nyNzAec1eshlnRsYdmOLndFuRnImlkFhI8mkVEhNq95+wSmRoQg+BFKJVb+np1hlc5oqiPeUUigm4K0lbEZcHMkUiqt+nsbXaUbGmAFnPaUojGODJboGM50g1ZWjFHWjKaVgrWeXgF4qzKksUaWRKxtRIDqStzin3aTJghiHTk9USqGOM/Vi1A3GWKedhknYEACl4NtafI2zbLZbjk9PkDJy7fASR7NnaWcHvH79LsFpjFM0IL7BSiGXSEqFTSmIhTSOeGNwJZ9rKZ/OEb9e6PvrE5PtAPXVuizMDFxqGk6jsDeZcEIiuN2cjXP9oc5MFQLeQYqhbTHO0seBedcw5EROCeMNsRSwgWyUvTsmWOeelBMpjbjGE1Nhsx6ZdHNaIAs43xCLUPqB48WSxWYgxXuErmHot8ynczbLJZcvzFhvVxyfbCiiXfC6pkEgkIcNzhlKbpWRmsGKq2xJBTgE/n/s/Xm0ZfdV34t+fs1qdnfaqjrVqlqVVOpsybLkHtvCGGywwSZAwPASCE0AkwR8L5DcC4TcwMu7CQkmQGgSwDgB04Nb3MiWJXfq+65Uqr7q1Ol3u5pfd//4rXNKHiH3Wu/qjTveGDU1NEo6tdc+a6+91m/+5pzfBpEIskwTQqyKJoVF6+gt6Ah4GQioSBVA0um0mjkm8RmRCdaAdVDWEzrdbGs2/azPuWQyXF1w69wsAKXS1GkKaYjPjJLUaYosLLgQPfF0iALsmxQZBEEIREMBCKJpFIbNtihoKZsuTexwRBGGTS1YsWXzFSu6aIsU5+SiGW83Ppjes6kiExoFIiEi2EaRkOZdUp1TWE/wmnFhsMbjjGtoSJtzdZoZrY6bD61ia1vEefCVgu9KvNTxNSe+FCBELT0pk+if17g/B0D4CHTxtkYrQVFZ8ryFcZZRMUai4y5fKJTWYKNBqVA+koWtohhYKmeoig0SmdCZ6zGyFVOpJFdtAp7C1JTDGqUCSWJJkpS8mwONioqLD/W4qFkfbpCXBW+7/yGmNvpbBHEfoCyjU4GUkrzVCFkTZ0heQd3ucvzYjQzqmsp6grAkiaLVbtHtdNENFDtLBFo3ElLSEaxmNB6x/fwyZriCTXWE4AvIVJz7tHKNkpsgBhrZMhHbqIE40ZEO76u4kEqNlgLhN1F5gjAesfb8CaYltM+ej6oXczvYeX6ZQ2trdFVg7CvarR7JGLZhmGovMKgczy4tgquRzrIjTWnXFVYIvuGp43/nd9+TkrnRiMwZfJbQRiOGipn+gKw/AKCz0We6KukFT+iPmTp3iWq9hhKSQcV0VTBnO0wZiVgsaKUaayzBQpa3SfMODoVwltonzHjDvK05tLoCazXtVBO8Iq88ab9PvrpOa2mF2apkvLHBno0VpicTcrmpHxIIfome98wL6PU6tAuPPbfBPgWzg3jec5eWwVU4B525aeSgz1RnQiKIcz6dUM90WJpOmVSuAXZoyspTWQdSU1QO61NavRzrajACZwWFqTHO0O+PUA4KbxmUInoJSoVKwbq4uRgPx1SJotdJoh7s+9/PO9/7XgA++s/+EcNzZ0mUpnKBzMu4uQpQN5uv0MiZCaGbuZuKiiyxAY0goBwgPMF5nIyI6SgA30iNuSjULaRsZu5RIQbhGwSzaFRa4KsslISMbVZhcA1hMWu3SZzFUVO4CmMNtjaNW1Yj6ebCZdSqiPZKwRHFATQNbciAuiJSfSVe2viaE1/ccUaZMXycDbkIj4w3LlHwVkShd2Zn5rHG02q3CISothI0NnjSRgdRECW4QjA4kxBqiRYVQnmcjdJeNjh61tISCus8SyurjPpDtPRkeZtWu8dCth2dqAg6UBqH4MLSMsVwxOG1ZV71oT9F+xe/bXwFf/Kij/l/Ol4DvOclfs8ji4sc+bv+4vGntv7z9i/e+1V/deNnX7xk2f8T8Y8+9dn/y9fUScK//en3sq5nKQYF3kZSvUqjKXJVe5ROKUpL7UtaUlEVlomx5O08dhp8hPYb49Eqw8kaa8xWxdeZypE75xBuxOy1N8GP/Ai2KtFZjnWBunbIzOMakKN1IFSGli18HXl3Ymtj11BriB2VKOXXgFdEw9fzsXMQq7qmirM0urA07gs0en9RtcgLGf86vj3QcGGbeajSMUdpnZDoCMgqyhrrHcaamDwb8QvvbWPnpaLUn4/VcvMjNiHccf54RbLsSry08TUnPmvFlkO4NQbpJWJT1oj4QMnGCFYnGVNTs1SlQUioXImtHVoEvJIoH9XqAfA0grREJJods2OmRzGCjZV1ZLdN8BGZZyUMB0OK0Rhfl+StimJcsbB7O/hNMS+Jc46WSli5tIo/fxbtPY+9+Y30dyxEOH1wrCwvU4zGZGmbhV1zJKkCn6ClwFUTsrLiS4eOcHEwpq5qvKuZm5tBCMGRI4fJ0qyBeweyLCXgUGqCKWBldZ3nT59harrLuD9CIUALZuZmCDawb/d2ZuemYqtHCKLui4ytHR9YXd9gY30daQQCTZILdu6co91uMRyPKMYj1lYXEWtDdH/C3unZCE7opJwta/o6RQG1H9Fu5yzM9Zib2cbJUwW1Vdz3+P0E4cl8IEm6LMzk3Pay6xhMAovDisJXpDLw8qri9l/7TR4+dowzxRjtodYenbQ4tH8PaXeKvD9k72c+yyM3Xseo1WJ++xxjJTh9/VEuDWoKq5lU0QaolWsSbajLDVINWud4D512Dy3TSOaXhtHYsbaxhqAm2BB1JoPHWYlqMP/BOkaTippoCjvEgBXIOiKQTfCoVNPKWoREYpVGu5yqdLzmFdex8rk7+eGPf5Rff8vrWe7OUU4Cr7zjDtKZHplIwXlqWzJ34QKv+aVf4NbDt7Bjfi8f+9PfpZ+NGNaWKtQIDOVkgjMBJyBQEtKMugokrRypJaPJGF9aHJI8naEYOawvGAxcbDECVem4cH6F6bkOL//pn4df+iXKH/xHdHfvoSwK+sMRRVHiJwXaBlyQCJXhK8EwjEmTlIYciVJRes15T9CbWE2JCZakoeKERuzbh6hjK7cyJ1gb1YycEDhvGuBWElu2AWrjUCKgdZTnix0KjXORv5ikmtpUJA3PtawrTG1xVkRRem8bFxNJVGsSL1BPEg1wpjnrRvzgSlyJlzK+5sQXhCUEjTNxRiBEiO4DmwkMSZbkCBdI2ileeoSM6iauqhEIqmBJVQ4hYC3Efp9HBocPKhJxfWChE9X5z5+7SM4c9dxsNBh1Hh+iWWhwvpkTRP8vC9GHDUeCQgmNrdnawY5mpxns3E4I8Kof/wm6O3ehs4yi32fl8cc48fEPR+AOkFZd7GjCpb1XcXzpQtyNWsdgdhofLJ0Du+l0pghWkCeaREftTSEFk0nB+U6L58Yj9uzbycriGmmo8EYz2b2DxfNLtI/uJ8zORa6dsITgqMqADwqdevqjHZx8/nlWzl/Eh4JDC3vpXnuYPoGVpTVcr0Nn/zb6T50ktMasjsZ0EsFM8Iw6GW5mH0sabDqm1U4p2i1aOw7w7EN/hUlbnNi1G2xFjkOIwLf8+Hs5t3iR9ZFj0fVYSzO6dsS2tbPcDvzt7TfzxcE6cuRo792G7ua86fab2dW7iqmzp9n7mc9y9tvewvreg5xJMzYm62xMLJOeZGIUXmR0Du5npVgnmDVGfWi3NZlsIbMuavtuOirH4GhpEEVNPh4yWFtlMqkJ2qHzDFfWaBzGVkz6Y/ojR7+cYPB42cU7SSoSslYblymCUtGSyELtPE5BMbK8/nWv4eSDDwJwpjvNxZkZth25ivUb3oAVBTJtk4RAXVeUoQ3AelEwLONGotUV1JMEZxQz09P0XYVqT1MbQ5K2aCvNSNfITodBP4n3ipxQ1wqjogB2knjanZwQGpSwLWhlOd/+r36Zyflz5L/4i4gf+kEAWq02namc6V6XjapAW48PCmsUSgqSNEEqhTENJ1QGHALvBdI3xHUVNWMVARWi4wONdFsIkeohAKEUztVYo6hqy7hYYzgZctXeq7lw6SLz22Y5c3aZqVaHmRmJ1hlnz15gYdcsOpNMSklLSyrnUCGCcYKL1kreV0iqmD2tjHzSBnIWRGxRNxR8EA1ewNOMIa7ElXjp4mtOfHs3JmyvDNYaIKBFJO1a76Mag1RIIWh32mTdnKyVMaoqkl4PhWQwGuOVQBJJ4QEFQqGVQAtP6QKq14XJiPbE4KTgyMY6oqrZk7dI+iO0ECSrGxTjEXVVoiaKTrvL3PHnSPIcMCgBiBy1OsGvbzC/ug5Aa20Dk6RIISmfPc6ZD3+YujIc+/vfxYE3vglOn+TiJz8FUpJUNWo8Yde585iNNQC8sczUlrVUYuqAywACSIfSFuEVzgequkJIgdaaJEupvWPXwgLLFwZIUkTQWOPwjV4jDa9p8eIF7n/wId729jdRFiWJ1rjg6c1OMbIlpTUIBMVkQifLee65JzEXlnBrEzo6xXckZtInn+uhVE0eEpb7nl57ltpLLq5vUPf72NyCnEF4gRfQmerw/MVzTMYDLpxdJJk/SCJm6Y9qFs+sAHBmMGGYtskyT10FhPbsvPZ66oGkbsXEkO/cD/O7WF5bZ2ltiDMWdBcXJCrXDMuS/voG3cyTZS3SRKGEQsiYlFQj4eaEJM1SrInfVVXVeNoc2nktqRS0kprjzz1K7TxVXZGmKalSrPdj9Z52OnihCMZjaxvnV42Nk9JRzsw6yyaW3toSi6c/7lNV6/SmugTpo5RWkpLlabx/EAhhsViQUTGlpTRSRH1Nj2Nhz04mw2VcWVPXdcNV8+Aa9KMPjEcjgm0hakEqJUJEcnar3eGWd347e172cu796X/Kqw8ejKLNQHfbdgZL5zHGNNO6gHMGnecgTJznhUhWF0LgTGhmyBLXzNFCiF5/SsTnzziDDBYVNDIECJFT6xoB7EtLF7HGoaRmqjuDTiRlWeDsLJ12j0lR06pz+utDEpnjKsXaSp/5+RlSFSjrGh+iq7o3l+2KnHfR7SQqxENwDd8QhNgEuvim9bmJsrlS8V2Jlza+tsQnRPsPaAAu/38aL//sXZf/548+xJ7ZWZiZgZe/DPbv58BX7ufAf/vjrzrm5o997L97nypJ+MChQ4yFIgiFtwmucihhcXiqqkI2WpGNcjJWBoLSIDOUzBE0btyNeoYxhl279tJuHafVahE2RtHOSEp0mmIRVMYx2+txYP9BHrr3Qc6cvoRYH5EaQY2nsmBGQzIp6GVDKpFy6tnjaC85dfJ57njDq1FBUuMxBFohIcsSZCL50gN3c/VV+8hlSRidZzbRrBlDUUeqwt6ZHhtJYBhGVJOK2akZQOG1apIIOCFpT0+xur4StSq9J5EKgWZ1sM7qYMB0O8EmAW8dfhLl3KQRlK2ayhraEkbjionztLIMKRWVcczs3M3Utqt4+tFHEW6dNJ/CihFeOWpT4WqDlklsw7moeBJMFEiQOrb2JFEbUwnBk08+i7Ux8WmV0MpSbDHhwa98iqJvmJ6bJWkLRnXFkaV1vgU4/tC9PLV9B142MzMhsM4hiFB+6wzLq0tgxnR1GoHKHlxjr6OaFrto5m3BerSIykQAZWFJelOoJOXVv/Ib8CvQbu65N//cL/PpX/rnLD1yP8AWfSAaMBto3EkCEuejnqwXodG1jVxZqRQBF/0ovcCjoyuE9zGtBBrD2+g0sn3nDjKlWbkwQSdQ2ZpOp0NZGCbjCUmeMCkrqrLEm0DwbWpnOHbdYYaLywSZNejShlzvwpaQdUA0CjsRhOQbJ4poGdb8K+SWvq280uq8Ei9xfK0VX5YCfzMzzaW8RUDGSg8ut0xEIzElJEpLtHMkBD43O0s6NUNnepqJKZDeopMElSaINAHVkGhdgtctZJAM11aiA7rwhDRhYd9VZGlOcI7K1Kz31/HOkkhJjmDn/kOYRJLUY8ZDi7WQtXPOnj/LkUtn+YkvfJn7X/caBjt3bqlvvOH3fo90ehqAi5/7HM+uL+O//V0IIUmrkmRS8uhNL+PUxmrkQlWGI8WY7/+LvyBZX2NtZgYXJN5oSGm4Xr6hO0SdSC00UkkmpsSqgFURum+8pb+xgWzU8oUCERwLCwv0B32ctY0bvKOTdZkYQ20E/Y0xF88s8ujDT2PsBGECefBslENSoclUi7VLIxbEJXrT89x0ww2MiiGHDuxkx/QsF3WLRAjmgsOlguAMthBMLcwz1ZlhvD7C1RMmZ59jPKxI6oh8vDWVvOm1t6Mqzz2fuptpBLMPPoKzCvVsBLhMVtewC32O7tlBsXiaoq4R9YhSZAQR6E5FInZtNlAhoBJNmuTkaY+p3iwyBNzKClnqaU116c3OcfHiJZzQyFaLIjgOHTuGMBPuf+BLlL6FSATjyTAiDUNKosDVbku5Riq1JWEmUHgjSDTcd9+9XNNIlqVpGs2DZSBLSgpb4StF5auIYi5ixe+qPtUgI0lSvAmU44pBXXLVwvQmvRJr7FYiscZCpps2XXROdwhQMqqeZCn2sjcSipoL997NZzcW6QyH3PbU85S/9Vvk8/M88J9/g+XjT29Zb0mxqTDUgFQQW0IMk7rGeWj3IqViNDFkSR5Vl/BYX1GUJZVPsAh6bYXysRo0KHAWnEMlGuMsxaTCWsNc2ibPW8iQMjPdpT3VppqUzE/PMx6PsM4yNzvFnl07+fjnH2D3kYPU4xWsrfHWYqqminOb1Ae/hRaVUYI1IlB9I+YQ4hxyc/Z3Ja7ESxlfO6oTuJDnnG61sC7ww3/8R+y+7hhpq8VodZXHP/FxPvyvfxGcQ2pFYgNT1vG4ThAqJXEBqxJSrUizhLSVk7RzRCvFS4GoJWl7jrH19FOHrgxKSIwQTLYvMDM7S/CWwbigPzXFZDCkozUdJTG79xBaGZkZsbZsSHRK0k44LwTZeAhAMTfHcGFHbP/YwJ3v/484JXnFu9/Nwutfz8Xnn+XiI48CAm8sdqPPpf1XcTpPkEiqoqA7iU7QQkg63S4uePIEui2BKQN16RrAgEfrFIkiTXOElDgK0CFWCUqhFHSz1pYJjbcJ/f6Aup6PKhdEr7y6tuRZh+efPc1gbYUTzz5PXRicjRxK6SvSBHTQtPMpyqJmY30AImdcK9KO4siRfYxF4LQOzGybInMSbSy+FrggGa/VfGXlSbyNQAWHZC5vkZaWOkl4y3/6A/hPfwDAK/+O+8IKwb4PfwI+/0W0FEyP+hilGeo2g6zNPceuJ09TismQdktQFaaB1SfUdUlhzpMnitngUUIwHg3YGA7xAmrv6U7nbN8+xefvvJvTz52M0mdBUlvQaYtiMokzVhtIlUBKjSPqxHgXtrzwBBCkIckVfhArVYlgXFWRA2cmGCyDwtHJcmxZsbp2CYDSFThTo1OQyKiP6aITgdKaujLkrR7B1xjb0B6I/Drf6I4KDWYcFYtKJ1jbGLBJmjvaEoxPP0N59mnC0jo8/Bz2V38VgIuPPMh4ZYU0i9qtPgRcCCCjiHn0ahcoGagCVBbaUiGkZFJ60rzFcDIkmBFTbYGUjnGpGJeOTp6R6QykZ2NYEmzJTDvDecfS0hJO5kidsrY2QHmFloAQDAcTsIFhXeC8I01Tvv2d7+CTH/0w48EEX5UM15fxIYlTOy+aak820mdNe/OrirmoGyrEJtI00p3klYLvSrzE8aISn7W20eEMnHvicR78m78G5/i6H/xBXvcPv5+lE8f50h98gBAgixL32NpSj8ek3qAyTakE0koYTfDGkoceKs2jUK2z5LpDvwJRG2Q7J5cKPKwPRmgddQRjm0gRrMcmmtW1EWCYn5JMT2cgwYQSxOVZjilrJpMicpS8YPjMM6ysriIIvO2f/3N2vuI2Tt57H3ioi4q8qqIVUgOUkbJGNjOX2jtW++topTFaMlivsYWLO1sMSbfL3v2HSfOUbfOaNCgWx4+BDOgQsNaipaByBVIlOCuoi4rVpSXwh7B1FZVyAKlTVpf7XDpxmnIyZFQUWGNxddQxDSLBudiiKushQjmWN2oqPyYwod3OwMH0bE175yGcDiTrK3hn6eY562vrpHOz1IWhI9uMpaSSNbKeUJQFH/ixH+XSeMjuVsp1X/gyr3jo0f+OGqJD4NavfDWdwUjBR1/7GnIPbQeDtXW0sPhMkbWn0DIlybq0O704F5aSlYuLDMZD9uzfw8LuBda+dC8Iz+lnH6MjYPH8GZJ2ii0rpGxQ9aqF1rB7bYM500cnSdTWjHkBh8ZJBcozbrW41Gqh8XQaArupPV4leO3QBtIsMDETMHWE9zda1sY5vIKkEWl2oUKFEu+jY7mUhv7qgFYbRGYxyiOCI1MqgjhEwIci2nfpgE4EnW4L32lhpeB1Dzz1VdevFoL/+q3fjNo5RZpmBAfSAS4Ke9vgqYIlMRZPiyQEEhlwSjOYCKTLULlB6ozC1KAF26fnaauAFRCMwouE/sSxWo5ptbt42qgsxYohGselS+s4p3HCEXyU3Qt2FSMTvA7IUBNMRlGv8pZveCNPPvUw/X6fkKfIoNC0mdQl1io2Lf88ouGqAkLgmtljfE4bW6VGJ1RIFxOjupL5rsRLGy8q8UUtRUcA/uoX/yWdmRlavR43fdPbWLj6aggKqaIZZoRtRu3KqigwpkTnmqSVIrwhRyFrx7i20OkgpcDWQ5K2QAePN5agFEFEzzYZFKpBVwrr8dZSY+llXXSSQpDRNDNVoBXCBIKwIBu5IxkVSHZefxP7b7+NxaefYddoyM3veAcAgwvnIwdKBpSiccR28ZkTnqKYNG2Y6OyAjE7SeEt/eQkp23RaLSpTU5uaRGU4I5EixTtHlrZQMsE7h0BgakNwEodBheibdvDwvgbirbHW0ulMc/7MMpcWN7DDPnU1wDtHVVZINDYEtIrmuuDiXK0BxWxsDAh4RmPN+nBA1r7I3qv2Mj8/Q3+wRFlUKKfoZV3mU8mF06c4Oa6oWpI0b+PTafZcfTX3nl3lbFmxrRywp6rQ3vPJm25gNU0ZbwxJlSTLFarVBp0SBMyPJ7z5wYcRzoEGUxtsltBqJWQ6QyWSqrKM1/qcPbvIxsYYaoH2ihtvmOfS6jqXLi1FayYPYTBk2N9Aas+4mKCbzYtrnBx2D4f82sc+TPp/0RYzQvA3L7uVcaqZmzT2SaZkONyAXCKVQHnF3vUBs0tjgoEdDTjq2rUBebGI9RM67YwFIxmN1tgfJPODdSZeMrYpZq7FZGEKgiMEFz+79QglsNYihMbamtldM6R6RJFmfPLNryVUFVIrgnRUVc2liWXUyplms5UZhdQbLfOmhSqiqXLjzOAJpEmClpbBZEBL5ug0o6wrZmc1wtcIDzrVmLqg25unOy1YLcZoHcEnWvpI6TGBmdlteK8pjUGnrbjh8TVWSrw3qGAIvs32Tpcd83OsnTpPK83xwmJChU5AVOBdBPAEovC0dw3YxW8aLMf2plQKU3tCAKXEltWSuFLyXYmXOF5U4gvBY2qDkJGz97Ofu4vu3BwA9//FX/DlP/kQQsYHSEiPVAGZK2rjEM5TVzWZcgSXQJBIHZUiglQIoVBUVKGPFh4vJFIHJsWIJPFYX+ItYB15miMIZGkzAJcG72tqI6lCQNQZxlhaWZdOpwPEh8+amslGn+k9e9h7880IKRmvrfLER/6Gx/76r2h8YfGlRZU1deXI8w7W1LTyNmEcfcEmZcXS8irdbptenuCkoK4LUq0pyxrvHCsrZ7lqYQ8X11ZRzkOoyKoxeTEmHxWRkhFMnEMRaR37Z6aQwwI5qhg8f45Jv8/Kxjpja3GTCdZU2Ma/rqxqUp1GDUXrUAo8Emck1pkGZAOiUsjKoauK2taYejeHDxxhbWWVlZUht776lbzqVdczvfse8naXC2fOc+r5ZfqiR+e1ryT87b2kJ/qIpGZ6agoAM9tjnKVcKiu+53f/M7uuO4bOW0w21jn9pS/y4L/6hfg6YwmJx1hDt9thx8wUctznqS/dy8zsNF4opIMdSYJMJXUx4cjOa9i9YwfSOr5w71foVGOqqmTPju3c9/BDJIki1Ibg4gzPEZirDGkIfObQEZanplDQ6E06pEyoq8DceMgdx59GuUAto4MBQFoUtLN4P/qi4mBp+Jd//Yn/Dsj1PZ+8+2t6Riqt+YUfejcbJLGF3fBKEx0XcaWiP+GB/cdILz4KwTNKJVWnhwgKkSpGwwF9M0H4y23M4D3IqPzjfUVVVXhvwesG8xjhIamW5KlEKk1dWvK0zaBfIebyqKUpJUFKskxTlGPWQ6Az1SXgSBQIYhK1TtKdnmd1dYOiNuRpj227dlKVA0g1xcYGxdoyQsPBPbspNjZwlSFRChksJTWksXJzwTStTseWDcfWmgI0SNVIczKIxi9RyrgZ+SoniStxJV6CeFGJzzkPOkKnrXf8zg/8ALMLC7zpR36Ym9/xDh79xCd44hOfQIrGecE5kjylLPskRO+wGoNu9fBJRuEMoXRIJKnKUbnDuCLykAQkJgpHGFNibHy0a+vwProkCB9i63U8pN3qUFcOaxy1KaNjgU7IdcTGOePwpmb5+JP8zc/+LM5CXZVIHcjyFKUzEBoXiA+wsRhTo7IMYzzTU3MkZQ1ANZxQhKjMn0mN1DndVoo3UULNKkmW5mgqem1JKlPk0HLdPV/itrNLdI8/2nTQRHTAlmqrktZSMUbRXVunKiesBsendm6j8rHK8c5HQm+SRJFra7G+RmvZmK8Gon+7x8vG2d3aaEVkai54RS/rsG/vVQS1gmhlLE/GtLfP0VEpSgQuXDzL1I6DyPE6ZbFMYIyrJ1Q2ymvVpmIcHPuvPky1vMT9v3MXQimue9ff44Z3fCvDxx6D+x+Ji6jw1HXB9oXt7N8+z5HPPMaxpx6n7R1CaaSK0mVpqkmShHDyKerpKSSBl9c1R4qSMk04+8QT1JOSXAr2bgxJ1gcYAkIn7FteBqCUsNjKyXWCNRXGVkz3Zqllzf7VJQBuXL3EYB06Vfwu73j2BDekKVWeUeYpe0cTUuC5qSkuakX36iPc/JX7ePaON/LkxgZBWKSWeAPWxIRuxwOUDZybneeH7vkyndEEm3ebiiXqxgoRfRyrIho299c36AlB8IEWEltVJCqDWpDUjtxFf/rcWDJf4cqaJJVgPVExJQqle2dj2gg0GqkeLQOpyhgON5jqtVBGYkuHzWOb03uPc4Zuu4cLDu8Nxld08hZlUUOQoNrILGNuZ06vqiCfQXamSLMcmaRYl6JEipc5Mm+xeOEck5VR5D4SmJ1rU+MI0kdbFhF1Ql2j+xl1ekVjthuTu/eOPE+33ELEVsa7kvmuxEsbLyrxQSRp++AhCE585QvRochbvv+3f5fb/9538OQnPhkV6RF4K2i3pkhHNco6rKkQoaZ0Y1QnQvW996iqRmqoS02dSEwQEdrsQDhBORnjSbEhELRGqNC4bgucscxMTyNURtLpUpUbtDJHt5MjnKN76UJz6g4pPNYBQqOEQGqF0lG5XjSQ62hKBEoKvK8pa4FUGamOWqQA1WgQARZVh2R2HuMLNu26rTEonZO3OlhraCUZeE87T5ldWefV99yDdv/nxppGCJ689hgl0KsMWRWYSBn95bxoWGMB50UU97ZmC7KuZQYixBnYpgUN4OsIiNhY2+DZZ08wKsccOnI13VYbHVLWF0fc98STHLz6AAeuuYrMOlYf+xLzSQULXY5tP8BV6Rm492Gmd+zkhsNH8EFx/p670abGJgmT1VVm9l0VwRw0IuQhkGUZl1YuoYbr7Hvqab75iWdI/gdtSSMl5/7xjzHJU/qDDYpz59ipBe19ezh7aZlXf+nLfNsXv/R3Hv/W555jvqqotebGb/5mOvPz6CTBFCXmzGn4oz/i8IWzX3XM687F+6MG/vDm6xk2XbWy1yFIzWh2Hu68k4O33srhPGeyscbJL97NXb/x69RVSZ5Fg9XWpOBkngHRmDZ6QNZUpkSg4z0mIsI0zXIWT5+iM2cZtdp0K0MneCQFxcjQweDLiiRVdMpAqhyUBm1jRTRMcowSTKWRR0jwWBfVf5LgSbRDC8XCthmUlExPRT/Goa+ppMJ6jxQKESztrM1gOKTXTnDe4RHULhLK01YHZw2hsnSmp7AiRaGZOIfP2mgktfWs98eI8RAzHuArQ1kYxtumaLUSxqEksigbNGrj9eca9GYM0VR58fpIAVo17iQBtgatV+JKvETx4hJf49F27ZvfzCvf/W6ev+9eEII3fv8PAHD+8SexxmK9RQVJK0BVG7I0I0kl/UnABUcwlvGkoKcThIicNiWgripsSLECEiHIdEo5KZnKWhjfRkkwvqauCpIkI1WC6W27uPGW17NRGAprmckdu+a7XLVnB2fOnabT8MySTOODI0174BPqugAiz0pqhfGeYX/E7NQMSmvGq0NEEAidUlc12ktss9ZKX5OFilzFmWfeyqjrCZ3WFF5IVJ4yLAxJmpCpnDr4qCpTGbRz/OWBg4y370KlrcYsVqAkdNs56aWLvPnBh/GVYaAkM8Hhnd+UAicgsN7iG7PaTTsZfEBKj/P1C3b/EILF+bJxHHcQLMOR5OKiwFmHtzWHD+7n1KmzXLi0Qn8y4fDVRyg2VjDaIBINdc72q27g7Oce5QCQdufpBx1RenXgrf/qX5M2LeXn7/ocz/3ZX/BaIvoVoij5mTMn6e7YQRgNSULg7pcf43hVkwuNzFOyrM1CZXjNgw9y5q5PM0w1OsvpBce8zrjw8U+yf2WNgxfOk4TAZ7fNczrNecUtr6D/xBO87uQJNBE8MVEpa5OS02ceIdGSA9dfT/e66+B7v5fTH/sbBnPzVOcucutgwN03HGNQ17z92RNkUkArInfrxmJnefESPPwwT3z5i4zaCdd969/jpnd+OyvPn+T+P/8QY+toORBCb82iytKQTEUeJp0cL2BUFKATprZNce7CBnnlsVnKXYf3sm/HTqgdZ54/QcgypmYTVodD0vYUO3dldPM2i+cHdDs5K6uLVCGjWh0SXEBnmkSlgNmyB8tzQbQlChjvSNtRVMFahZeSRKcU/TGZMtTjDdpZVFtx1iGkoK4cSE+ioSoCYSIoBwX5XBvnHEJ4sjQlINHU4CxOJAQVGIz71ENDWdR0Wz0QAinARHvi5p9GmDpc5lISokWXbEj4EGfy3tFoel6JK/HSxYub8TUtlcHqKruvPcbLvultSKXoLy7yyfe/n4/97/8O52yEqsu4izPFhF4nxwdDR+aMh7FesZVBjkuyPEMIKMsoRtvJM7pCoKxDb6ww7z312dMoPYVUnoXds9zwyptJ0hbOelYuXIL+WYrRhP76mAMvO4qphtRlG2fGFKMITpif7cGeBc6cWSJvTZPmGZqscXk2oDXBTcAHUp2w3h+wtHiR+RtfwVjX5Jmk1cz4kBlOZ6gkwVmLbloztTGkaUoQgrqqkJ0cled453EmD38rygABAABJREFU+gsCDOdnKQ/sYceRY9z697+DnUePYKuaE5//PPf87M/wZsB5i2+4Zh6iW7UUhGAxvkQogSNaHAklGzBFQCmPdwn4BITH+yq+gQoR5SoEVSnpr3pylTDc6HPi2eNIKVnrDwi6xfOnV0hdTdKa55Xf9C3Mzu/ho3/2h+yvIhJyY73PIGtH5RkhuOe3fpu80+GGb3orB177Os686Y3w6CNxP99YRk1N9xDCkei4e1hJUlZ1RqgM3/Xb/5mdR6+NSiSXLvH6v/xL5PveB3W9de/deM9Xi16/fmWVbGEXgyee5GUf+H24/nrodHjF6ioX77yLR/71v0EpjUolC0eO0mnY4LY3jV1Y4Oi7/x5IxWt/9EcpCfChPyH/0z/ADSLoxboQzYudg5/8Sdbe/U4GO7YxuLTI3P6D+OCj2S4RaBmL+Pg4zV/aoF0LvJWkWUK9NCbLMwywa+8M00cPocqCxbNPMxiWzJPw/PmL7Kgrep0UxmPSUUEnSWhtlHQzqDZGtKoJYdgHlyJWh0wT6LUFM0UR52iJIB9NwEceaSC6R1SVYyPVrHZbaASJ0uxe2IlEUJkChCSRHp1IglRgPV5EbV7jJFneo6492nqkTuikLZTwuNpQVzVUAZH2CKqPCqC1pOgPCbNdlFRIqUF4nPcoGRoXCACJEAopEpyP2qFaKWhEvWnufnUl712JlzheJLgFgvecefBBfumON6GUisRg16jMBwnCIRtCtkDiqgqTCowwtFpdqknAmDHBe8oyynC120kEZDhBr5zw9lPn2eE9M/Pbmer1aBUWJSekicQcP4995iwhKKSQZGkCPIib7jH5ujuwgwEiEehn+xxxFTON2e3cyhKZEky5mtQlVFaytr7GaDBg21SP4CXp2pCp4Yi2FtRlycbSKnuTlMnY4K3A2WiP0pvfzURJtvXmqa2l126zsrRB0m2RpSlWBKqyxCUdJpWhcJJZkbPVsgkOYya88cd/iO627Xzlgx9g59FruP6b30519jT86I9FnzQnMNZhrMNKH01ZvUU3Mvwh+EYFg4jKAZxzeCejY7wMDTDAN7Y1PiJIgwAbWF1cZrixwcrSJWbn5uh1OgxGFSbU3Hj1AcYqsFgE1s6u4Y2mUdfCFgXFcIBONMLDhfsfxwZDquHWH/ghjnzrO+FXfxXRgBiMMYSg6W+sb6lwlLVDdqeYX5hh9cRzrN3zWWYGBQe+/TuQ730vK+fPcfaP/hupFtjRmKdbbVTS4qa1dY6uraCBpN1mGRg9/gS9P/iDCI746Z/hwPd8F2tPH+e6/bvIOx0YjSjuuovWhz7E9M2vYPvR68hrC3f+Lc9qxe73vAfe+14OVUOe++AH44ORtXC1QWUxY772d3+fbGYGgOc++zmWH3yYVrvHqD+MiEprcY3V0T+968svdobw//MoteZffO+30p+bQuOpihEeSNsJSiR4Y/DCUzuHlJEor5KUmR0dUplg8RgJxntUIMqkYRFKUTuJqQVpq0N7ZobJpKIqyoh8lhJnQQqNCw04K/im9bvpzhJVaJSURL8IgdACa+Jmz7krtkRX4qWNF/d8Nj13LeJMTDgakdtNi5OYHL0TiBB79NIKjPHUClTwpKnCmWi+6ipL7R2tlMiJ84b59XV+4JlnGq7YMy/u0/zGb/wP/2rfZ778ot6qFoLPXnsdxjrOnjzL2tIinXbchVYodu7bT20sWZpgqopxUbB9285o+eIcM9MznF5ZQdJlMjCUdc1wIy6MSiXsvO5GZnbv4fjdd/H0X/8VD1aWH/3IR7j+Pd8bE5/3jXNDwOEQUhGcQyLQIokLkwzN9IQt7hNBoXT0BowzlNgAlDJBSE/D2UA0bVKsY315lVQEdu/YxumlAqFSShN44ze9kRDmGVeagzv2R4AGEIzFW8vCzTdx5DWvYfmZ57HBcPU3fhMAa08/w15oFjiPtQZfJ7R1i7qO13DPwSMs9UesDcY88aEPMC89pl9z4JW3w7FjFEpzUeVMpZBOKc6lKULl7JP9re9oUFZUec7Jn/95dpkaZmYovvs9dK4+QvCOL37wj2n1Ohy75Ramr78evvEbMYsrXLq0TufxZzjw+OOcXdjD9Ne/hakDBzE2iqUTrxi9qWkmOj4iX/jZ/5Vy315e8e5v49DrX8fTn7+L0XDAxuoGjtimw8UKVQMfP3AVq3knojlVFCkRqWZufo6bj11Hp62xxhBEiqorzjxzjt8Z1RSdLl4pIrQlmi5HJxMTOyU20M27kVOqBTiDDIEsTWjlKdaMUBhSAU4EQh1YuLDEP/j0XewdDpFT7ej6IyUhaCbrY4KzZDhIIEsUA2OZ+DY6yEj2Fx7pAr6qAIV0gqASZGjMj7zDGE+atJjdvZfcWdywRMqUVtaimFgsPnIbECAUQkTZMimjOwQhukrIQGODFPEEwfsrrkRX4iWPFw1uoQG2CIg3bQgQNqsPmv9W2EBc9LzFWoWxAZ1WpKnAVQqhGv4RlqIsUUlC3mrRHo/Q3vPRa67nXGceawxTU12qMkofdbptbnzFK3nu+Gk2VtfirrEYsT1xPPiym/H5FMJmLG2sMrdzG2+Y7fDmf/k+Hv+5n6P3suvY3uuCNZw8fZoH73+UJ048y97Dh6lEG5nO0l+6wBFf8J6/+BAzeYsgNYmQCGmbgXxDyneRURxKixSGHdvmowmnDDhvKSZj6jSweOo0jCXj8ZCyiK3SQ9ccZe5Vr45XdDShHJb019eZrK/T274dduxoPNWaxOcsQWokjSFtAOENSkbgitvsCr1AqNh7Fys8JZtZWwwh5BboxDqHTjKwjnK0znR3BuUHhLrizPlTZEmXpUdOoQ5fzcKBg0zPzwKx7YqQTPoDZvbtY/8rX4mQivH6Ko/9+Z/x4Pvfz01EsFA1KaL6jEoJBMoGGXv+1BmKRLJvz046vQ53vP+3SKeihBwf/CDnPvCH1ChccBz95ndy4/veR9pqYX/t1+C55+BP/zSamVoTYfLPPgvbtrENOP0Xf8XJP/pjvKmBQFKW3Pr1b4bv/m6KX/q3KA8rlxY58L738ZZ/9s9gdhY++EGe+OM/QjeO8VpIRuWExmeX8/fex8Vnn8Rbwzf/3P/C1W96M6e+8AXa7S5+1Cd4uyUjBrDYaXOpPU2SB4IMKBGpF/tvvwW/cy9iOkU6w2hY8fSDz/LQU6d55tpXM5yZojPTQaYpKE2rFSsjFyqClLg6ZSnY+Gw5iQwOJ2om/T523dFpzbKw3TPTFqSm5lVffJw9i4sAvPaxZyieO930HaJ0GiK2PoXzCB15sJeKikf2HKFer9CthHa7w2q3y2J3imADk/VVZNZBJYrJYAONIW0pUtUm7bYRwZPOK9JWgsRCGDQdoGYH0GzkJDI6xzekdYmAEE1qvaRBIlt8M6e/ElfipYoXlfhaPtDahFn4AFiiEVAAF2JrrdHYS31AywDS4n2KlJHPIxGkrRxjQ2yRSo0VIcr2GYduFo9+q83K7AxJomntv4q3/PA/ZPd11+CNZeXpE/zVz/6/odUFoK0S0BXPbd9Jmc+gtWK1C7t27+FCkgNw9tCr6e8+wo4ZyVULKXve8moO/MN/yKtOX+LOu+/hwadPUYs2G/MjinFs0XlnWLm0SCtX7LtqgbRxagi2pq4npFnkg4UQEImK3LpUo3RKnrcoyiEzrahgL10d5Z6Aypgt3fm6MgwGA2prtvzQIO4vNlFvAoVodsFBxOVVSYHb5EN54mZEyghx9/4ywCU06dNF8d9Ea6RUWGsBR5JG+Lh3Hu9rUlUzKTcIPuG5Z59n7eGnue2ao9z75LPs7cfEbV1MNisnTvCXP/3TaC2wRU1lC7ZNT+Gaysdbi8paUanGBdCOTDeOA3XN7Owsk3pI0a948Fd+kW0jw5HveA9813cxc8/nKT75OUJlGC5d4r7f/E1C8LwO4M1vhtVV/MOPEIKL86B3vQt27qT/Mz/LVe/8FvLhgLMf/ghCSK5++U3xOj3+OLUpMeUoIpP/8A/51PlFbvonP87Cd30Xe7/8hejQAVRVRUgke26/HX76f+LQ6bNs7+Tc+m3vBmDx6afp94fsWNjGxmTw3+lK1tZgnAfrmTtwFW/5yZ9m300vIxjD+sMPwamnCMFgnOKL9z7G9FSLMre4Kc1A1HjjmOrMUWRVFGgQEVgSjKIYjXCANZI0VbTmc3IRW5FlVTCqDFpbDiyv8c67v4RuNmy3PXPqa37Wv/mhr1aSMUrx29/9HdTzM+SpwIUaYTUmsThnqBNBsB4xLhgMh2RZSj6WlLJmLddUkzrO6jbFuomKNlpJ0NFEWvqA57LcW6SBhBc+FlfiSrwk8bUmvhbAq+ua65o5V8x+oqkgGti8ZEtkVgNOCJ7IMlaUBS0QOspsaZlHJ+lIekAEhxYJShmuarhiMxvL7G+3ETblHf/L+2hv3869v/5bHHn17ex59W287Tu+iUd/54MEF0hMyawyHFxewrUrlPRsX19ithwz18xoOqeexqlAgedMUlP0NPM9R3vieX1Xsm0msLxygQ1RsDCJ2/xrq4L1i6cBkMqxMIq6n7uWz6FkCUKgEKT45krqWF2JQBgW9Mo1ymGFFhktUTHdyGRJnTBejpY/2cwMwRhUK6M9PU01GJAtLRF27cZ7i/MeXxtc1iTYxrYFHELQtB9D03IWl1vPAqIprwcZ6Q0CgbWeVkuTtVKqYoQxhqJwJElG0q6Znk1YPbnCbL6Hi+fOMcZzZlyy7hw2NEM+CVILfAAlUkRwUR/TB4IUJGmE9XvnohpKqhlVJQtT08x042Zl3sElaxgODflMl/UTTxAePcmRM4vwJ3/Cznd9O4sf/TjGeZ6787M8f/A0erpHffhwdC0IAbzFuYaMfnckmJ+amuFlv/vbzL7utcx5h5CScnGR4d330PvEx+nPL3C6fJ7rt22HB+7hzOc+j++0eOv7f5Wj7/p2LvztpwG2qAeT9XW48UZe+e53I7RmtLzMF37vD/jsr/8GxnsuLa8y3W7ji8nWTBMiutTLyKj89n/z75laWOCBP/5Dth28msOv/zrcVIfyK5/hwceOU4UEi0UlGp2kdDotyklNKjVKB/CRr2mKgsFSCY0bulABEyS7d8ywXE0IuULpHk44nJzQLiu0DzxwaC+veP4cn7/xGuaXV7h2cfVFEwQS5/ixP/yjF3kU1InmZ9/1dZxLk4a719A90EgZSepIFR3ZMQQRDXG3Nnc+RDnDK3ElXsJ4URXfy+yLvwFff3HxRR8D8LZTp+DUKXjb22DvHvjzP+fVP/UT0G7Dxga3fsc7uPWHvu+rjvmWh//Hc7w3/MI/+x/+3R7gur/j5z/8kQ//na//f/3JH/+dP/+aY2WV8w88zNG3L3Hw1bdz23u+h23XHkUlCQ/85m9yG4B3OC8jA8H72O6kcR0gVtVKNi1noXDCY5yPUlIKNgV/o/VoRCAGEUEGtXV4GRGeIoCxjtI45HhMnmckUpCrlOF4g9n5Xdz5p5/DTlaoGlSnD9GBQskEESRS6Gh748CbWMUCVHXJZGMdCVTGYr1A6wQAbT1uUnLg9a/l2re/HXPhJPbgefjO7wZg8sSTWO9xwaOA7/3QH9OemYHf/m348pfhs59FzE6z801v4ug7vgXuvBOE4PA/jd/z8Y9+nMf/P/+OQKDrLa/YWKPXzEh3HT3KwvVXg6q59vVv5Nof+kcArD399FZ1EfAIIVh56im45Rb+8MabWOx04rVvDIu9dVRliehmICXGv/D5iHSIw7e9mrl9V3H883fx7Cf+kqdsm4OveR3i6PUUn/k4zz57iizvQDUiqA4h7aA6LYS3eO3xSiKCRglNvTHE2YpM53gfCKJGAYnQWAcyUZjgmdSC+aRDUcVKb5jHzd9oaoojR46ifuyfEF4bZdLM3Z9j8vu/iXSei4t9Bitj3EYfe8vLmN4zA+M+M4urXPX5L/HM//YvKA4ewNjAaNRndWWN9Y0Bzz33HEevvw6dpUgdP7eSgm3nz/HW3/ggs0FwXmuEdYggoEEDCyEIIs6aZbyRcchIc3AWSXRuCV8tDXslrsT/7fhaE18B8Mkk5dFURRWGkDak7csKC5HYHiuLVEA7BD7R7TBSMnrT4RAkKJVdtmfxllSBIsN7wQ1mzM+fO8tH9uxkdWaWG7/+rdwCnGtN8fx3/gAkileNJ6Qz0zzwEz9DPRqQ1iXpZMizb3gjvjPHTG86OsTXFfmzz/Lmf/Uz3Pnz/47BVYcjOV0JpAxIINEO8/gjPPD5z7DvtS9jeiZn9vwar/uPv89dP/kTjPfsw3kDIjB97gJv+A+/zl3/5Mfp790VkZNBIDE46ZEya5STA55NaxWHEhJd11zzX/+M/Y8+xvDseU57wZ//7M/wdT/8w3zdT7wXM5nwhQ98gAf+/a9wGw1YpVFzaTCcuOBxDT5Fieg84IXHCwWoy4CAhtoQ7XgkHhAyIuUQkrKu0d6Rqjjv80T/vKoWpIkmkRlKSKba06yfO49Z7oOto7ksgJBolRGkRhB95QTxfMvJiDSJFd+mHmMiBQmCcjxkU67Ke4cVno3FJeb3H2b2dW+MM7Jz5+CXf5kT7/81imZqloTAR//nn6a1ew9vFNC97TZ47DH8iRNUa2t0rjsWN0haIxcXeeLX/iNP/Mr7CdHopkEc0/xeQz0ZkM/NwNvfzu0/+IOMqhp++Zf5ygf+gFbzukTJeP0bRGEItqHzBExdR+i9UFAbTC3IhKAyL0h8AfCe2d174wO0tkZQDlfWVIMBrdlZljcKisEQGaKQeDAT6nJCUQSC91GvVbeRIqVcH2BHJbYaYScTJAqZGlLVZfH0JXwp0ZnEUzKpLKbWOB/rOtMkjjRrsfD+X4dt21n5nd+id+sryL/5nVglUMdPcPXsNuz6Biv338epqZy1NJC1NGF1wFXA5xbPcV470rzDwo4Fdl57LQfyFgvWsDEecOnSEnVdo4QkTzOmk7jJkUKh00YWzoXo4dggk6WSW3No7yS2DlgLIkiCdY2W5xUC+5V4aeNFVXxLSvKc1iAk/+xvPsy+G28kbbcZLi/z6Mc+xp///M9jqooQAnkIbAvwVJIxTGTTwshAKKRMQGtQAuFqEm9J82g82u3HVueyFFwUjt3NQjkUgvGu3fgkxzcuCSvbF6iynLSc0NIZF7cfZigFD997DwCvv+OtdKdXAbg4v8Dywj5SrRHK46Uhswq9cYmVxx5lLbdcSjVTSc7V0zmvA4p9exgcPgjCEIIji88x1aG9lEeObA3jEX5LaNcFQRBxyU2URoQIyTaDCaYheRejMRsrSwxXL/H73/8Pqa3B+4C1jr1l1VztOAWRwUZV++AjCjNEyanQ7CV88NGM1EdVjOAhDlOSqM4hPEF6vNRYIrJWN2ou1gcUDhkU3oOpAyaxSBG1TktjGE/WMe0xuZERvAO0kFSlAWlAOFIR7aamvGMh1WQzsZ3Z1TmFNVhrmHjLnqOH0I8/AUTlLWcdG6dP8F//0fexsG+B8NBzfM+TTwLgd+6kkprUWwiBcw8/Dk+e5LrZNt3rr4M3vAF56iTLjzzCg298E29Yi/PXu7fvYD3JmxbwphLIC/QevWPt/Bke/O3f4w3nTvDAVx7k7ocf5H0XzsLVV0PzGY2tI5fNbZYbUf6NRu4rCI0nIIJnMpwwk7XIXrA+6yxF6xcICRA3i4PReGuWawcrbNcZpnQEDG48xi4tsbYckyxCIdMc5xWqLKmrMcVolVSlKJ1gfMFwTZGcWyTrzCKzBC8sQULKHDvavfi7G6Tq0W95G2rvPvjzP6f+6z9j6eEvsO+Vr6J9xzcSVj7EyS/eR5op9l1/PfLYNYTFU6RVSVoH4PO85o13cHZhjvXVDVbXVnn6mafodqepfE1rusuhQ0fo5in9lTUuXbpA0qwuIhgS1cWrqMMpkyR6EyJIpIocVBc1QqNZbQAfmtG1ijYbV+JKvITxoukMCon3gXOPPcZ9f/ZnEAJf/2M/ztf94A9y4fhx7vrPv8Pm9joE0fiH+cYctJHP8tGyKHjIlALnsLZGqZTQQBS9j27ml56JQ/aQalYuLtLeto203aKeFGycO4cIAVOMkWVJf3mVvvS4sqDd7tJfWcOtRQL7Rn+ZteEcWiRo75HOEtodyqdP8Pp3fxPrzzzJX7uCybqAZoyZSolWHqFUrHKaJ1kniizdFAf2BNFw44hahH5r5uYJwWFdQNoa2Xiv7du3i2frEmcMFksIAed8bAM1FYeI9PCGQiKaOaoneB0dHILASRNVW4Jo+E+RfxWduWOLUGsQTSUeXCAEG6tRKfAINALhBN5F650yqTDeMZgMWS42GAQ49Mqvp392QHHmPPAYMz6wMdpANvJ1aZKSpQkzZcXUaEzetMS7acrxABNbk6qcs6fPsbIY/e0qQEtNa6rDoKgYD4e0zGXCuvUOZMKOq6/mwKFD+J17QKXsdFFxhzNnondbkDRoiPidBUh99HoLm5qP1kQ7dEB5jzIVNG3A7lRvUyk5vktz7sIapJDkDZ0hNZasqvDWkdqYmOKME7QPFL5ET7W3zqOuajbKkovPnQCgPbcN6RWXLq6Qdbu4ssCeWyWpY1vVe0vemYZ2DyEj1208HGGrCUpkaCc4cPAoB4/u4c5P34nWCalLUEqTkDKxgbydIZ1AuUA4s8JCGlVobB03U2r7wta183jKwQA/HqGmZxiur/HcF+9jtpey5+3fyMJtt3Pxb05gXY0gbgbyXperjh7iGp1x73338+iDj3P8mVN8wze8kbX1Szy/8QydJOXI/sNcc/VRLn74L+PvFaAasW3nA1IL0iRFCom3Fm8D3oG1HuebTYrcvF83cQNX4kq8dPHiEp9KCCHOjD70L36W7swsnalpbn7HO9h5zVHiKqyjKj4OcARRE4SOC2/jSJAkEmNNFPB1nkxkGG/QkmYGAM4JKh947vOfZf3sWY6+/jWMzi8yd/AqpFI89cnPUPTXEQKSukQVJf3+GlUnZ+/hwwgkZ8+f45oGCj3d7lF3ewzHQ5ZXl0ilQNYjVs+eZHXXPu6/+27atx5h39EF5vtxlqWUjir/splpNbQAGS3Taeykm3ahbvTxoxlcpBREtQrvXeQlNgtsezTgxrk5zp09hzUG71x0ngiwvW6yrg9boCEg0kSaxBmBFwITHARQQW39biEi9ykEHwEWLipfNFKi8TM0bdAgYgtUSRkrRRHBMB5PbQp0IqHV47nzQ0SdcN/+Y7zngU/z2HU3cu7gbhASaQU2Vcy0M1aeeZKbrtrL8qc+zW3A33ameWiuQ5oIugrSTmz9AowlqCxBJpLUpxSjEZ0X3muNc3k9Luhs384bfuLHohvDr74fPv5x+Ou/RswtxAr4BYfl3tN2riGZCryztHx0RgfIAnScj8kReOCJp6HhJ2pvubqI3/2+wYBaaWYbMevrV1fYP0gbgedNn8fmXhXwfLdNXVdb5yEdtDsdzjzwIOvnznHw9ldx5sHXc913/gBSay587jMsn7lI1pshzwR51UZiI01FCZRK6JuAswYdahyapeVLXNq4ADrBOo9Cg02wIZB2W+w/eIjpNOPZRx4DnbK2vhHv4wZOPOiP2NOcX1FVlEXCJkmuGkVrIldNCNaishyR5djRANVcYecttq7oD8bc/bl7mIxq3nTHW7j5tlsITLi4vMbi2UXOnD3Fvfc9zL5LEQwmQhSoTxKN0pukxoZH2tBrvIsb4tBQeEKw+Kb6vgLqvBIvdbyoxKfbHWztI2lVSn7x/gfozs8D8JU/+RPu+cAfEltCEbsVW34O72PbSUkVF11jSXWG9SE6onuPF44g/NbuzhN5gc45PvQT7+Vt/8vPc8t3vQtbVjz6kY/zxT/8r1GfEsBbjJlQlQOGdkKSxIXhyOEjhOXzAHzkT/+c9cNHOHbD1dx8282cOHuaDV+y6823Mrt/O9/w8+9jxY4QqSZ5NBLnbbBAnPX44PGbBqwBZNh8cEGi8JuqNQLioyrRSoBMMMbQsqC6sSK48ZHHufH/5DpXCMZabTlRO0DIFCk9Eh9nT42PmQyggkSIACJez0BMaASi43tkBQNRHSO2SwNB0pDk40wxVtkGKRSp1kinaWcpFzfW6SEReay2Tl1a5HQukGlKL+mgZIdiMibZtodDr76Do1kXPvcFfLfN2As6wTFNwexgjGzK6YGsqbRHKuh0uozXS5I8v3wRGgTg+tIS9/+3D/HgRz4JQvL6pQvcvh4RsbGdKPHucqX4ZG+aC2kK0hOcYKY3Rbqxwp6qYLsxnJ2d54F2zt7a86q1RfT0dnrOwoXTCAfdZp+xq6xwVIymkub6bIoExH/iHkSgvSMjMJBQvCADJ2lCu93Ges+HfuqneOtP/RRv+Mc/hpkUPPChD2G+8gWWijEz118LvqZXjFm9cJyi1UNmCbVRFGqefUeuo2WWSZKE/nhCcJ5Orxs3EB6KMUzWF0nxPHbfvaTes3/3HrZdfYDsXOyWZI14dv/55+PJ7d/PZFzA7Ayy04G6plxbR+HZtWNu6zOYsgYTttq99aREOsGnPnkn3aRHaBUcu/kGVqsh3pfk7R4HD3dZ7V3k4vKAjVHzvTTzfakEQmqCs3E+jsQJhxQyas4i8CF2f0Kw+BDBSJsJ8EpciZcqXlziy1p0tKIer4P3/Kf3vIeZnQt8/Y+/l1vf9S4e+uiHeeQjHwPicJogCSGJIJZGly9423DSPFJHOHPwHimibxlNReC9i2oRwbNy4iQf/MEfQWctau+gadPJZkCe+5pOUXD8icew7R55u8Ox62/gcx//OPLee/hJwJXLLD0/4vkHPscz917He37oH3P83CIrLvDM0gimUy6dXuPI9n1UG3GBF9bG2YOI7cNNnpZ3Hte0FCNhrqnLQsNDAjaTTNQnjNw614oL+/FveA3V3AKf/9wXSJTAeg9ObLV1CqUohSB1FhcCjmZOE4jJVTq8cKjNBNxQS0IDwaf5U4QG2CGjowM+4KVHNLjy0MieOQdCNa1ZL0hVhnHgSEjbPdJJhTSGa264FoCVc6e5MBoxsjWpj3B0kYIvJV/6zFd482zKG5q7S1tBq6zZK2uOmRF58/2mLUmiAtpYpjKJKQ3ZFrsRUiCXMs5kGwNW+VW1Xbx5M6Xo5pfd84J3OFeBs3gnSdMZAg6/KXzsiW3PpozQtScNserJQiBpNl5ns5x9Vcn53jTXDzZ4Ym6eS3kLFxzWlGDAW0/mLVPC87fb5jnsLyfg+fk5Tg82sNbBqef43X/wfXjjmJ7awWvecDNf/ORd7FI5qydOE8KYYTFEp12cABdyWt0dpNuOcMPXvY3DsxtkWnD+zBJTvTZCSUbFiDRvcf5cn0/98e8ym0zhnSARAh8qRK4hiZVsljSdipPHMWfOkLztbexdPEd63fWxjf/006TdDnkrYXpuCqk1rioJxQhbV2jbVF5KsXhpheeeO001snzb338Xxo7JpEIYjUwTCIG1wTqtXndL1B0hSdOEoANOSKTRMek5H58vPMHHjaX3jhBMQ8lpJK39V3/vV+JK/N+NF9fqtIGpnbtZPDtG+5Lnv/wFQBOC5Ad//7/w2r//PTz5N5/A+gjIkHik92ivCTJQe4uRkgSFECHu/oVB6YCgjQ2OLVU+K8AFvHLUrkILCQZ0lqF0Gk0qZUApjTYJ3USw6+AsZdbG1SkPPfwgTz3zMG/Y1oMT8IpX3sLszm185ctf5tSFs/yX97+f173trQw3Kh4QgVSW1INV+hc3uGYQWzRBBEyw6Aapuvkkh+BiS1BCwEb7JJEAHoWKMz5p8E5Hh4fgCQnU7QYd0+pAt0upE4yQGGFiYm14cIjAlItsp4HWVGikAS89RsUK022CLQAh4sJgLbH9hUVpi5eBoCU1IKRDIfChRgvASwIBVzt0Fp3hlQ4QJDqVFOOYuNeHfXp5i8HKCudPxt8nlSDNEzpWkCoBFhKdQCY5dsN1FI8+AsD03Ax+zZDKEduKFWZsBXk81ykhoHYkypC6PtNBMPUCAnjLWUwSk/FYSapm7jV5Qd+rZT01FV15+bhesEybSOYXeIoL58mUYNSATNLgmLWOjoktzWy8QShHzfuV6GbGZ7IMqpJKAXfeyXfdcgu63Wa8tsZTn/pbPvyvfwlDwNlA4sGrHP2C8++vLWONx0vBcFxgnWVmagbrSk6fOMn6YEhoGTrjIcIVSGdR23VENGpDNQmopcd5/KNjnutYWt02dd+iZE3W62CFotWd4uLFZVoqoM0AKVN87dg4t8FTFx4nX44ehM7E81q6uMTZH/lhDr3vf2LuB34YVxSc+q8fZFt/wLZDh8neUJFkCUJKRo8/BA0m2DfXxJshn/3MszjTo9czLFw1S209xpvo/VgNqcYVzzx2mvn5o4xtvK4iJAThGtGLCpBoDwSPE4ZJiBWexCJVk/xsQsBj/AuUia7ElXiJ4kUlPh8CVW141be9i2Nv+TpOfOlLIARv+qEfAuDcY4/jhGsAF/EYQVRqIAi8jzJnsYMnoiJ7AKlkVJIXYWseARBEVGyXSuKdjZWPAhccQur4emHIraOuS8brQ6rUgVFcOnWKTpaysC26hk/Nddm95wC33dbj8Qfu58LSOU6efAqVtwjB09aWxJWkUy1Uq6kOUo1OEgQiKp80pybkJjAvbInq+kYr04eosSikiFqJPqqV6OkOo9e9Cv74w6y/+XWsH76GP73vIVppRlUWUaYpRMBEQNMUaBgBpdCoWJ8hbIhE6STO6nwISBENX5QQCGkj9F40I9cG/EIzPwli81zD1mfwziGkJ5Gy0eVxcWOBADMmTRzSDzj5dGwbS50ipCfLMxKpmLgxSga8N0zPdNh2VZwk7d21gL1wnNBLKIxEW83F3TvgwdPcf/gqzu1aoD01S6YUe+Z2sHTX3bzx8QbVedMxnlwaI/McZy2qmuBC4PRUD9Ziq/Pk9A7OUjEyky0e5me2z3M8a6FVjnOO2hqyVLKuEm4ZjXhwx34+PT/DgfVFvuP0aT6/92qC2eA7Tz7LvQf2Mnd6maODDZZnd3Bo0I/a3w8/zH2f/RTDVHHb9/wDbn/P97F29iSf/q3fIwuNyLKKhsObURsT0cuNrF+qU+qqYm52lmeeO47PE0YSautIXEBaKCuL8RXBFFhVkWyMWb14FtGWVBq8k6hgkUGihKYwNV5rMjNheTKKMzTpabUUiA5G6K1zATC1Yfj4Y3DHHdxz1V4u+djy3nft1Rx54x1sO3YdYThg8syTrJpVTKJJgkfG/j2rK+ucOXWKjWXDj/+TH6AqJ0BOHUqEUrSyLl++/15uOHY9zz+31ujtxiqc5n4TwkfQSoO09S7gLBAkzgucCxCiALZzHkLCFT++K/FSx4tKfCpJqZ3DFDX7briRl7/tbUit6F+8yN/++1/hw//ml/DCNZktzvNQEi9c40YtEB6cs7FS07HNaZxF62hO6WzT1pARqp9IFc1WfaNZ6T1ojUUglGqElg1pXTNZHjJJajSSxDlCUHQ6EVo/mjiGkwqZQLvbZmM158Szz3Jg/wFsVTAo+whjeO13fxsvkxL4L1x77CY2rj7E2toa42F/C1Ztg0fmKd1Om14vp9eeJqDw1lKVFf1Bn1GxAbWJiUZKZDvHz8QkXLWnqKbmKHsz1NbilIktLmKyCz66dTsCBN3UdhYhA9LH9uomDIBGzFiJBqQiqmb2uMnEjnO/zZlK8B6/udmQcR4YgtvaVUshYutWOELw2EmfvFNy9cEFJktRxSZTKVhHkme0W23KuiQogVSCu+/5HL/w9rcDsHPHPHXxMGQLDDqznApjuk37rcxSbEsxEDDd7lL3cnYdOwIf/iQAbaXQzpE4iUSToXAKprPLc0AdStrSby3sAKVOWROBNPE4r3BSUmlBmcSkZDtzFJ15qipWI+OkxdR0nIHphQXkUpRlczoiIpW08JM/yeo3vJLxwhzF2jfBwcP0ei22792FqgMzxrLv0CF6yxe2ziNxjo7OSDJNXVu8c5iqIOm2kZMJLdFGpQleSLyW1MIhsjapilqVwhucKalNQIUWVZM0rA2kIsHVLsq1pVB6RyI0phQNiT1llNXsaBLPeBQ/66A/YDiMqkTD0YhCavK8xfriJb70gT/ABsee7fPs7XWw87difJxlJk17+uGHHwE0U9OaqYWcSbUWaTQi4GvH6to5jLe0pyRJMuGqA7vitQyuuf88Sii8jNQdaxzeBrAxAXsfN37e2DijhWY0faXkuxIvbby4xJfl6CzjmXsf5Oz3/SDri2eoxn0UFikVIQikbhZTH2H9PvjYIQweFWScR22J0foItW+4DfIFfB1tLK0sQdYeHSIcXQHSWeqJI0sSgoiuDomtqWvDYP0iQ6XxoaYsfFTabxB7QiQ4YyjGG+StFCkV5WDEc489ynjQ5+d+4V9w4NB+sjRl496vAPDFL36JC6eeI00zZqenOdiNvKjrj92IeOXtWGtYW7/E0uo6G2sbjMdDgg1keYvOVM6ebfuY3j5L0skRSuI3YsvIIai9wwZPskn9EKK5bh5nbSTBi4aXR6RCOCDogPQC6TzexzmdICA2Z47CIVWUhxIhNDibEEntIkL/N3UlfQjNRkKhhCD4gFABi8MnYL1h5/w29u3fjayg2n0RiPPXqjRc9/JjnDz1PDIosiSj1clYXrnA0lKkLORZircVAxc415ql3LadnauxWgtBUouU2mQwFLzq1gNMl8XW9//g4YN8PFmAfAYtFaYcYqXhVqn4tobi8vTNN/DZxdMc2Uj4jnPRWd0aS9AptbOx/SwFKNFUsiBUikeRZTHZGS+omlZe8C62JABk4623fQpOnueb/uRvSadnATj35c9w8SufozPdQ5QBORyyMRwxW18msHedZ15AO00pa0vtPYUxVBcuMIXDm5KZXg/RllgBY52iptpQDVFovHXILMNaR+VSvAwoJkitG36hiOhiLEKrCLCyAuc023YdJt02zc5Ll+Dh+zAN2lQmik0ZlFbaRjrL7NwcxpWkiUB6zWg04cTyMmc7LQ7deCM9PGlD4n/+5FlWZ7bz9re/neVyHcoR0iuC8nSyNo898iivuOUVjPvn6OQFK4unt66HswEShXcW7xXW1NSVwdYOZy3eRgS0EAIRREyIwTVryBVwy5V4aePFzfiEotXuMqkNk9Kwbec+zp2aRGkh5wnIiFSmWW8FUZpIaqy1yEAksEoZUZveR/fxBnaPktRNoZIGmHYBgUMHgxQCbyuOXruPzvQUUukokhLN6ChbbfJX34rNUhwVadLls5/5MosnTgFw4ezznKkrUplx9uRppChwlaGcjDly5AC1Lbj34QfAS3acPcPtgMCSJQoZPMV4zEqjr/nYw4+y1h9RVNEAVKkUISVSBLRO0Ykmz9sMjWX9wiK1ralGE7JHnuAg0N9YpRr1SRtHdC8itSA0WBkCUZw3QlYRIfoWxs1xIBFiyxtPNNXdpkO7YJMLKCL6Vgh8iIuNFBKEbuajETEamuJQIpCNy4bHk3aiO/x4MuHOz34eHTT7l5bjL1UKkWTk0z2uffkN3Pu3X0S2FUondNodho2mqZCKNE9xSrMhW1iZkSdxEQ4u58SaYNdVh1BJSpp0aKfJ1q320InnKaYPE7IcIdp4lVC5gtC9THrYd+w6KCcM1y9evkWFhdAha02TJxlLlxbpZt0tYJK1Ub8zbdQIgtR0p2M1uG/nbvITy837NICQJN6Qj/ziT1Hu3cf17/xudr/yjRx8/UOsffSzpBpaWc7Cwi6me5fP7e5dO7m4ew9JplEWimLC8yfPsLBnG5cWz5HIGUSSIGuY+IALAjcZk+aKEBKSVkrAkwLW5TgdeRsZCVJqQlAoAlp4kCmqIYNXAUozplx0jNdjdeeaym9u2zzdwQAasfE0z5mZnuHAod2MB2usrK0zWh8ipWRjbcSX7rmPGw/uZrppNXqnOXX2En/5kU/y1vY3cGjnLJPBBmkXvB1jhhEFmgnJ8089xr5i1BznkVJT2QqHwFYeaz3BR4BQVASKow/nHSI4vAsEbLx3r7gzXImXOF5U4pNIEC3ancBosooLgt70Nsr1laaisI2fWezRg8eGGksWOXve4oVAoOP8CUcQKYEEGuf2SsaH9JNTXU5PTSE1pHmCVppiMuHq6R42zajxZCpHelA6oFWKffwZRJ6QphKtM/YfOszJ+yLQwvQL+uEii4uX0CEgXYURjpfdcgvf+Na3MCkK0kRDSBFN5SmlJEvyrWRgGy1G7wwuGJJURZ3ERkU+hOhcMBj2Wd9Yw4boqSekQAvJwmbVIaGalBjjSbQiNC1IESJHMCjXkLMFCIej4fBFVDhuU0iggYLHUV2I/x/AygZVa6NmohQygmGEZDMvCiFpFMziz7zAecjzDOsEWdqinbUpuhULu3tkMmXe9ePnt67Z4Dg+d9fn2daZJVOa2157Gx/+kz+m2ySnsrK8+vWvZHllQFlZICXPtwEwKnJaM7vYvvsIk+VL1FVF2GxzA6+89XaM6PLU84uojgSvEaWnesEaODM7w8GjR5Dr462f7dq9k8eWKxYWFtixbZ6zZ89w7Npj+OdONvdwpHikmyo0aZvduyPNJM2yxgGcrVax0vHP9cceZbi8TNZqc9uP/DT7X3MHz37+XrQKpCIwPTtH9wU2AoXMKFstbCLIeimrxYQwv5ts9yzF8iqVbqbDiW7kugzUlsp6gqyohhYhGm1TOyYKJdSY4JEkCJFgnCFgGtECQRqitqVNUrRULK5F1SK5KQox7JM0PNlisMHMvn2M1ldx5QwzWcbM7l2M2m0Gy6tM5bA4mPDAV+4HJbmK2AYvzIiT58/wG7/6X5htt3jFzTfwjW/7ep549HH27T9AWY84f+Yso2KAUI1kmQzU9ZigY1fIWY9zAWstIUSUsWtQ3MFFuo4j4IMA59BXxDqvxEscLw7c4gxpluBEC1G1GE4Mnel5zGSMrUzD3wOCiwCQENCykZptIPYRwOGRSiCFjnB6YZEyVjWugU7v9o6yKtFO0lIKXE1Zl/TW1kl6s3gJ3laxilSRSO6cwwSLD4HaCyqvuLUbW1q7h5dwsss1XU0qNQQNiUQuXeThP/h9Zman6PQ6dFo9upNJ/Bjeg2iEoZWIvDxANaCXZgqBFiLSMjYVQKSMBHa3OdsEAmSN8kue5fSHGwQ8dQ1CNUmuAZ8EEWJLykfuHQ14ZQsz1FAXIhGPOPuT8XytVEihwUUPOO/isVKqaAlD5PgJJaNrg5ZIreKCLxo7IwQLC3soK8Mdb3o911+9m/FwwvTx0/Dhj1GbErIeMhX85D99L//hf/t1diwcYM/uXXQ7HWYbp/LxeMyhQ/tZ33iCJGRUIaFsACBBzdDuLOBCC5V2ObO8QjKabN1rs9MzTFmNJgGdI7QDobHm8rznvoceoNoxx7Frr4a77wSgMz1NWFmiKCecOTMiS1NGkwl7W5uzwYASngYIi06a6xW/OcRmq7NZbKdvey18///M7vXzjDszHHvbNwMwPH+GunJo5BYQyb5gFmWb+xyg9pJOOsXMgTmm51Pa4gylLOJ5BAdBIjQ4nSBCnGNnUsVReYhkbiECQnlCUFgbIBi0AqTY6hIoF53NtXAgKnyTtBPXUIRWN7CjuEmYFgpZ1fiyoDq/iEwkSkq6SUJ73x5effQQSxsDLjx/nOJUnF2Oxo5WPo3MU/Kpad7+lrewvHyRL3z5QVqp5upt26nqdapqSHd2Crlum+chRHm7oBtRhwrnJKZqFIa8x1eWYOLGLQSBVHHmZ73HvoDmciWuxEsRLyrxhXEfMdqgl3dod6dYWV9FlJZtvRnWJn1ks5pIIci5LDckhCf4GqkEBIXDNInQxeSgQckUKQTrQjIRgn974eLffRJPnfz/6oP+8/sefFGvN1mKnZ2DRkBXiMszdhca8WM2q6dIst0E8GzKlenGXiUCSi4vhN28jRkP6eYZo9JgbdUAVuL7+QYtGn8WeU5eSGTYJAxertoI4JvFUmxqhTbeZlJIXIiVejSvDXgVmtdF7mQ0AY3zPCUVKkDwJYPli5jEYIuaXKdkMxmoiOpMkCgh+PynP43pj1Aq4dzFC/z1R/6KH/3xH+FIEflsN1x/jGtuvomHHn4aKRyEGiliNahUTqgt0jpG/XV23biNzuDS1vW3lKg8UlxkqPCiBmmwl3EsHLpqH2F+hnZ1dutnnV4PwiVamQYfYgs6keg03ure1eAryknRnEegbFqzwTnkpsNCc51Nfw1uvJFrr3k3KE25scbJT/0lz3/8r7B1zbi0uKJgONgg7a9vnUeaJnR6HWw1oioniCSQ9nKqetK8t4rPh4v3kg0CK0B5h/QO4SMVgqYNDh7hfEPyjhJ1m/J0OBNVd0JU9LGuBldSNPfbfVNTvGMw4M7ZKV4ZAi8bDLg43WPUbpO3WqwExXUHD6MjvIogNXllODjVYc8NN3DKCTh+Fu9Kpmd7lKbAFIa/+NM/Ymp6O0IkSOv49Ec+wxvffCsvv/4qNtaGCNXYcKm4ubK1j4AW73Emnr8LNppVR1OiuNncer4ESqjLQK0rcSVeovhaE18FkHhLZ7xBO0p/kOc56+urdFOJ0BnBFjTQFgiwIRWVB6UjEtI3IBfShtdgia8VPqp/CcVFrfiGA/uZa5CK3kOSanbt2cmlS+e48aZjbFu4Ci8EidZxYy4BHedW0ge8ElHi2Qm2Ly3xLf/lD/nr7/9uNvbtRIS4wxciVnNKKkSIeoJSSgIaJRVFr8twfi5ON4JHBIn3jTqnY2sQD1FdJlZlMdFvkm9DrAfiAifFlkrK8Uef4CP3fhmhO9FZQUVZMW8bmTHiQTpsXp8G2ALIEP8VACo05F8XtUJFrD4cDhE8Nkiciko6Knh0I1+mtG6o4BGAZJ1FEEhkgraGb3nr67jpNW/mB378f2XxpgOsHNgJQtEpGmK/lOyc385tr/tG7r/3frIkp6oHfO/3vYdDuxaQTx0HIEkUMk2w1iF1gk6Ic03AektRDPBmDKbi2sNH6VWXW5ZHrz3COJ/ms/ecpuNtrBJsSfkCPc9WpplqZ+zcfllt5NojR5APHWd+dhprojTWq157G8dUgAcewlcV+JpJ4424Y3aaN73xavgPcMebb2f27Hl4+PKNP3rySbjlFs79k3/McOcOlpdOgZlgrWb79lkyA+2i4NjRg8ysdLeOUwq0lmhSWkowzDytqQyzMaAWASEU3kYTXY+iCvF+FN4hXOxaBCGbRAf4CGbx+K1NUiTia6QTBNUkPiIFNvER+AJQZPEx38hyPrtD8Z5zF7nn0FWc2raTPOtireXV113PTcf2IYMhOBlRvaomyTvsuOVlcOeXefe7voGzu2cZj8c8cN9jPPrQMyyuFKi0hfJQTNapTcKkzihrUJeZpiB0RGZbH8XQbYXzNc5ZSmuwvtFqkg3gzTeefELyQmf7K3ElXor42hJfCBOE4IvtKT49s5vO9Dzbt2+HtMX58+cpR0u4Xpv+4ilSYWJlJBRepNTYRqJI4L3YElJ2HoSXSL05B2g0JBGcEoJTSqBsIM1TkiznrHWYmR67D+1lkPdI8zZKxZaeFwInY7JNGti7lppEqIZDBEsL21jeuxstUggCrUBJEEKhpEQJ38h45WiREMU8XCNXFhenzYaLJ3KzRKPTuclzYjPpAyGEploRDYpyqxHMUw89gioqXCtHqJgYcAJvfXzY4fIszsddsJcyVoGxCNhUNIwcsqaV6ZxAJpETKRoBaYTANuR4GQIaETmTm0owjWyckKBCQFQln/nwX3Ho4D7eecdtrK0uc27xIt56eufPcjtQeRAq48DVh5iam+X3/sMf0Z3r4Kzl6RPHOdJA5qMMmiPRKYNxRTvT7N29I954rRQvIhVhUo1BehSXwS0KzZGrDpGJHI2ktpHuEuxlhJ9O5WWgzuZ3Yy11XdHrdTh75gLdbhepJJNys43afJPNnV8XBSdPnOblwNramHRSMk1sXwM0XUI6vSmSuTmEKzl75gRZq82Bw4fon7+AuVjQzjSd7PLjtLq6ynNPOySeHM16qDlw9cs4d/o0Ximk8HEGHAJOwqapsVIqipmH+J35AMFGH0WCA+Xw2ChAniRkeRtfVlTG4VzAS4ENDmU1IcRNws5mwzJzaW1zW8V8UVGNRoR+HyEzzn3hHq7LbiUloFQC3iJUoHQwORtBXXv37iY7tMDG2iqDi0MeuvthjJlQy/WoEoTiueNn8KaCEqTcnM0prHE4Z/HWEZyFUAMmorkbZDLCIhskc/BNT0VcfqauxJV4qeJFtTonIWW59IyyghAMmZom37mf5fMlrbZguLJE6id4LE4GEjwaiQ8RY6hkhpAu9vCDjIAWLREkQASMeGTUvQyKYCweG90NpGR6Pqc2FpHWhEqiVUIiFTrRaK2RPh4rZJxXgN+CQjtncMZFBZOGehHPK+6eU5nE5AdbMzUpRVPVyVitbRLY2bS6ifMV2bg3iGAguMZKJRAdheK5e+FJdYOOm4xIfKAsa0QOISic8Y0rhEUJhxcq6sAIiRTRuWHTVi4081OaeYgIkfpAaIAnMhCdaALC+0gxkXEmGKTAhUBKQGwmEUmkNChHKCo0hhNfuYtbrr6Ze85O2LV9B6aq6cxFXdZts9t46OIlEgndVgrOoEWHbtZhFCrKKi60RVlhiwm2KklVirAe10DrU+VJEfjasXv3DqRMqarL1VxtDTpJ6LZbsSqtI3pWU269xhmDVpq6vnzcYDAAKZieneaJJ55ifm4WiW6UdWK128l6pDrOGrM8Ich4/JmLF1AbfXYD2ahBsDbzP+fitc6znGguIuj0erT2LuCVZHVhO8XKZR4fHgYbI+546zcyP9tjtb+M0JLheBxFHILCuJrgHLUrUFkCJlb2xjk2/ReD1CASrC9RMnYXlE4iSloIykkRk0WoIQh8kHhT40OLDZ0ykZL3XYgt5F89c2br9H7ugYf++wf8Lz/ydz/4QKUVpwvLcK1kx7ZdfMt3HuMNX38Hjz/8MA89dB/bty3wsb/5DAeu2sUTDz7MK29+GaHaAMAYi0tjhRtsjfAW6WwEudSO4AJKgMNG+TyfNhu7Rs7sCrjlSrzE8SKVWyS2MhT9PivSM7tNs31+H2HXYRbPPcm27ftYO/MMUgWUSKK4cnDgHLJpuQUHidza48XZVDPEdi6KPMtGF9MHiWqqNi08ykp85Ug7SeMALtE6wSNiGdbkps3HJHLd44LXSjI6aU6iM6SI/oBWBpTQUQ5NbLZWLivLCDRC6Ih8DMTXQfy9SkZQipBYH3fnmxUgTStYN/JlUklq67ZanZgSYQOSgPaSwlgwPlq3CIlr2sJbyU0GZJOotxwY8BGkAo2mYUNtoAHFBCJgRkIIFZAQhI4qGVo1rTSHCoHgLdamyKyDlCM6QbL+7PPks3vpdWZpJSmJUHQ6Ef14zdGD3PXg/ezesZ26N4XWgtWlRZ589HEOX7sP1xDKrSkpywnOW5AZWif0WhFsZCfLpFlOR41IleTSUsmCvzzAU1pgq5KyHNLNO6RCUDcblc0IHtpZSqovV3y2rvnWd34TU+2MPJNI6amKgmIYKz5XFwyHI8omf5pinTSJdj3GBHxDqbjpwmmsUphGOLuuDOWkoComDdpS45zDO0+iEw4cOszwBTM+EcAbx8L8DnQG21t7GI4syyvraJnibU2rlSOFI+9M8fXf+I2YyiClpDYG6ywaTV2WVPUYYyoGa0MeeuTBqGRDCsKTtgJlUVG5Euc03qToJEFKWMxS3n7d9dxalvzvzx3n37/lraRK8WOf+Bg/d+N11FcfxhYOa0tEApOiQEnJrp272b1zOxfOncPo6Ov42KlzhLvvx8jA/OwU07Ntjh6+hptfcxs3v+ZGzp05x/rGiB0LKQ8UIxYWtmGPN2LvxuO9oK4s1kQqg226Pt6DcDJ6TLroxyeFRDYqRkiBCldanVfipY0XR2AXiqSpFOyoYCRWmMrm6HWmKOb2EJIOy2dPkyiPdQ23TMZkEJ3PFS40qSlE8rV3UZQ2Vl5yCx0ZhCeg8SaQ5RJTlbg6xVYV1tRkOt2q1oSUBBkaE1GHRG/Z+mwqu3tjMWVJUB6lG63QPIuk+CAaF+jIeVNbsmpcni8IvzVj1w3iDhzOe4yNYrsKt+WdFzDIBs7tnCcisxuUWwhI79Desq3XYzzux6QmQvTzC5IgZONh1nAfAQIYPF6IKGEWxBbaUxBnfNH2Z1PKTIGP5rNehDgT9AHhI49SyShXBp5JaTi8ay/1xiq5TJCFx5YTett28eTjj9Fqddi2FLUfD7kxP/Kam+nfdRfSB370dS8jSTK4cJ4ZKlrPx8piPBlTFSNAoFSksDgTq8FXtwyHpyrMxYcRQnPqT55gSl2e8Q2/9GXOPv4sr82GqKqgkjWVrLkqjLZeM3f+IrlWzDTnBbB3OCDLU8L5Pt95cD8+aHjqaVpnIzBnx7aMI0d3cn05DV+6k+Wl4xx/MprYPvSVe8nWVrgZ+NIrXsFw1wxJFSvUM888znhtkVQ6uknGZHWDB89+Hj8aIUvDF41g28YSr2vOY6rbZnue8cmPfQytFC5JmJ+ZwRtFrhIqaubn55meamFMxRc+fw8BBQQ67Q5Zq4XymkRITCgiECwI8qxL9X+w9+dxu2VnXSf8vdZae+97eKbznHmqqtSQqlRqoBKSgEASCASF1ojYLY0KfFrbV/zIR2heaT++GEFbW2xfkVaRIIINGJSp1dcXMUHDYJgqRZLKUGNS45nPM9/T3mt6/7jWvp9TQEMOVr8KnpVPKqlznuce9r3vda3rd/2GmXpZ3n3vvZy7fYOUEweTXebzwMsvXGPr2rYydo3jojFcO3oUnn2GJ32HKazY297xDj5wcJW1289z210neezRXyGGmkU342NbB+Sr12nqGrdakVNHt7aCv3qZjRMniMGwd23Bzzzz8zz58Se46+4znDl1mv/2q/4owUz5xEeewbhAH5qRUqZrPSn18UOZEBMhqiOTRKN+t7HcyUYRIlNEwU5uWZbdWq/uuqnCJwpEkkLGzzxW5uxev8yqPcra+knM6Chm5TGybzFJc/lS8qUzgpgi2Rh6m60iQCsRLwbrpPh2apfkgiui7gTZEaNq9obDGttojritrJI1TMSV03c9GC4Zbu5ayVpzQk4RnxdgKp1peXDNCCvQdR1daAmpg6Skl6auGQyGNE1ToNpDH1GVTwTVGmFKDJDGxzpjy6Aua+kygksJZw7JMHVlkcowmeyTQtacvOJGj1ENk2RDyomYi4g9C4hS1sul0y6v995cFj8V/2IyJidIBnF9Dp/6pmbU9d5HZZ8ikSMrNXs5YIJnf5o4Vgn33HsXKSYkWyrfEQYNX/pP/o/f9l6Jg4ZwZIPKVVhXYUzFoHHkzXXCoOG//ZF//pv/XlOTgTd9x/fwJuCP/BbP8SXf809+w5+983t/69f2OXee4Y67TzF64WUA/rvX3bU8kHz+F34epx79CDzxFDvtjJc/dcCp0r0OuxaZz7l++TLXtvc5euIYx48dJQyGLDaPc/L8OTblUGT4ls99M2eOb+KjMJ9O2Y2JS59+mi51+G5GNolr29fYuh7JPqmMFWXgXvGenCD6oGCfzWoJZzS+x8kA42ouXdxiZ3eLQd3QjBSVbQaWlFqIDTHpAS8GLd7XLr1ELC4so/GIe07dzi/90vN8wR94OzEmHv2FDyMpMmgaKjtAYqSdz6nqmoGrsWRm0wmT/QOGYhkMR+zsTZgtAleu7ZLCNbp2zl1330nI++SZFlnvPZ1DiS2+I6ZIJC4dhExhL1unuZLq2GIRDOSknp231q31Kq6bc24xjiiOnDrSwpPDBIOFJjM6dorh+jFe++CbefLRf4tLCxpbEcQSsxaTbExxandkKey0XIyrjWCMK0a2Otw/d/YMly5dJif1+psv5tSNYfXIEGsaUnTEpJ2lKTBgSp6cHcY4NcUuh0VjLM6ZomHTLLrQzpktWkCIoj6H1lqyibjKMB4Pqat62XX1LE6gSBZ0xieUYNeEvi9RjaKg7DwkEZJXyyi0wxwMLCm0LBYdJiUQ7WCNUVZeyV/HJ43kcag20kpf9LS7y1mtxowoYcKY3s7a0KfPSqq0s0XF9JTOFASSJUtmOKzYufYi63WGhdD5wOap4+qhSoOETHvqJD/3g99Ns7enTi/GQYqkqtioGbsU0y/W1/EnjjJ2NWIrxFmsqYhnTvPBH/4HyPaOMm97+21JWHG0a7qDN9tTUg5EOqX0Z4XAUoLh7h7kRHtks0DcQr21TRZhvrGGsQUiTqYcBBLNzjZv+ev/G5/1nh94xS39eX/nfwcgNA2z48e5+MaHeMNP/GvCV3455tQp2mc+DX/3u/n0mx7hypnTfPzDn2SyP+f07ae47767yCFAM2TsajYmq8vHvWN2wEo70IBhJ8xI+HMnmZ88XowSDN53GDFMJjO2tnbwvl3qKL3vNJ08qaNRLtC0VkQpEoY9XDSY2RzTZkbDIYP1NeLr71XSlrNghPMHKtf47Dd/Fl2I8OwLfPLJj/HB2ZSnn7jC93/fDzDeGLPIgco4bIpYkwkpUolBfCKESDLg25bKOnxMhOmUjsBzL17k+NGjHNtc58r2NeLCMKuusRL0fvfeE0v4dM6x5El6ettCMGUPKMFTKUPqzRbyLW7LrfWqr5sqfDFBEotYBynRxSl5Fsm7Hhk1JFOxcfYOxs/fzmzrRdrQYZwgwYFYcla6fbaJjH65rDgwOnNTKF9z9lIKHEwmDEcjJpNdcgK/8Jw7fyenzp7lwQffSIiOlITBoAKTCaHF5qSRNGJJKTPYVKr7Q488yF333g0ZuhxVN3SwICw6UowsQse0ndMtOnxsSdGzv79LCgFnLU0zYOR7KK4DWmJUB3kVrguVs9R1RVX1fBFXIoqEZuQY7GoxC8YQTMZVwkqAmVXPyEwmm3L6jRmbhWyEkKUw33QGoqM/3Q30oFD0XoTS7bHM5ssCiYhJgKnISRALYstjGYvgaazQ7l5HiPgEtgs0o1Xa4KnsiEoywWbimTNMz55GREoxBS8akmRugGQxFpsiPVKcDPgIzlrymXN0Z04jGHIuPFZRVp+UDnp2xmpHoJlPS3MAEDog5767spCFGeUAolTVckipCps2ssiRD/zTf0R9sI8YYeWFC7zhf/nf+LW//C0c3H6GxfoIe/wswwLFnuw8g9CyWr4hp9qOxnfc8eC91Maw8J64s0stDpm2QGJjR2d8oa54x3v+6c18tf5vX23lSMeOcGSh3Z+VyMUXr1IZeO4TT3H67jtYW9kgtR3WZSWaOU2SR8A6S5KM5ESKivpgMu2e58n9PZ4xwvETJ0m55d4772a6k7BTnat2ncc7Q4jq1JJyKpZk+t1IPVwvSsaKWSVQ6v4USO6WV+et9equm7Mscxlj1Q0kmg5MR5JMOzdMdrfAVnjnuP/NX8Ljv/R+/P6LmLQohczgMzQugYnFf89oERVHlk79KtEZgLEVW5MDckg4a+lSoqlqnn7mRbZbz8GBp6lXoBAN6kGFtVAbhUt7espmmf9Mpgd07RxntYMzYtg8dpzG2TI/8bS+0xO6wGw2YTGb49tW4ZlQkucB52A0sIxNjbV2yfw0Ji/ngMs0CjmkY5jimbi1WMBgDW8SQxEqijE0iVjE7yTdHIxxuFIcBMFkpfVTnhMK4YVcCC+awiA9ISBnxKicRIwrh4JSbAyYbKisZSSZjWyJMWAqx2IeSc2Y0WiFnAwuJ41gElGpR0nNFgGby2uTQwg2SSEqGGXHUqlTjhs4bGURscVnlVKccvnMbJlTaroGuS4+psXMnFTmr82hXjLn5eFDly2En1q1jRLIBNJdZwicQzCEWkk23T13EF93L5UJrOea5twJ4qDhLf/rd73i3v+C//d3f0bfkTBo+ODf/jZy7crLkeJ7nYlRCVwhBLXlCkE/K6P/DTERgi9FoHyyKRG8Gj7EEAnRE4POxhZtq16rKRTRtxCigt5qhYdKiIxlOhzQHl3nyEs6f60EcueV7IVl7/IOwzMjkgkMawexSHlML52RAj3q/Vw5dUoiqdjck3npwjXa+YzbTh2DuWW20E4z+ECMlWZYLsNn9SAd++8NakKv8DxE8ZA8pqAgt9at9Wqum3NuyRFEM8aDaOhq8B2SK+ZyQOUahmvHWKSG07fdz3OPX6AiIjmr5ZehiK1VQK0uDTrrExFCCIg4nLMMhyMe+dzP482f/Rb8/IAnn36K5597Di+WjMNmS5rNwFo6Y+kWM51Bin6pxGpBlB31K7zw8iV26waHwboKrMVaw2BQYUwmE0sygs77EBhUDmsMTT3EDt0y4sgah7Wa0ye9p2a/6fahqMUEMxcHFb1++lf3P/QQP/PxJzErNQu/oBaLt4k2FvFwVrTHOqPsy1ycYXIhukivxipqvpRU4iBFMwhFrqEsT+NKUSlV2WCw2WjhI7NaWcYSGC0y0TryYEgaHWXj7O3Mol4nIZcAYUhGtBgl1TP2kbgiffErW2WmkIYgpEhMCr8ak3F1Q4q56LT0vWiuYT+jVPIOWZAi5AZZXsNDi7h8aO5Nz2wtrwezPHiICOIUYkxJsAUDt7bAbGLIGLpTx/nlH/1eqt0DMpnhcy/x0F/923zsr/4lpnfcTpKOHCIiDowlFlmBFNPvbn2N+anjyj4VZQDnkmknop6sBLXn8l1X5l6+GB+gAnUyVV0tiUsxxvJ+oTKWyc421jmGgyHNcMTAZWLyLNoFKWdm0ynz6ZS2bQmhyGlyZsUKq8VH9dSpk1jzKZK1uPGY219zJ5cuX+TomWO0foHEUFzmFV1ISf2EciGl9YgNOROTTv9zClQus7u9h4u71MVsIKdeu5vVMLuwjll2+8p6SVJufASiwVAjOWFvmVTfWq/yurkZH+UL7FS3RlCnFBshTWe0ezuM146BqxhtHuPehx7h04/9AjUZn1qSGJxUEJSubARV5yaFP6qqUesyY+gWHb/6C7/IYx/8NR586D7e8Y638bV//E9iho5LO1vs7OzQzueIyTS1JSYPCM5W5BS00+h9MoHa1YybAU0xIV74lhwNbYq42iEmF/ZkZtCMSmJBxBpKV6fzNSiCdekt2QoWVDqenKKy1bKoS4pVpqqzjljguS/68t/P3t138fM/+f9hMKxos5pNOzEYDDEX6UeK5XCgs8mcSsdjlPQiKfW8z7LhZw3ylFw6MtUbGly51mUj08wiNWCOkWZQYUNH1QY6E8krI77uL38z88pRl+4pCZikOkAphUKF9JrSrY9ZulwyKSYVYxvt5tQhJ1O50ilisLa/jrmkcxcINhtyPhSzU+BPLegA+YZ5a28nV44CIstkhdyzXgvhhyzFpccs/TmtMVhbevlkEHHEc2fxZ3MJFNbHau+8nfm99xAk4kQPGyElfIhYqwehnAUjUPUzX4rpsjXapWf1lBWEqq4wlSWEQNWqxk0dgMpsTjRJIhW4N+ZEjEL2kUtXrhBS4tS58yx2JyymM5DEysqQykDyvowARhgjxBj0fjZZTR+AI5sbnL/9DJ+6sM09n/UAd9x2nq3pdTaPbXD7mTN0k32eefZZptOFHiDLQUYKMUqsOg2JiJLLEtiYtUtHWLSJtuhEQwg650slXT1FbDLKD8AWcovoZy9aWCli/GTMK+LKbq1b69VYN6fjSxafigF10c3lnFl0E5pqiJ8Ie9evsHpGWJBZOfkAR+6ec/1TT2BkgdSGFAySRDtGZ3BYiMXOy2ZEAlBhXY1raqwIzz79NE8/+QSjlTGnz5zhbW99K/c/8HrGR9a5tHUFn1pcpe4Qk70pllQKlmc4UEhrdWVAGDqEhO861CXCEENksZgXqCngQ4szVkNEhwNkOCLERIodg6IzW7QtKekJP0vWdPgYsVGWMg1XOf2SZz04B++pC5V8spjzhV/xZRw9fYJ//v0/SGUNLrZMY9JkBaNffJNqYnJ6sg5RC6uoRMOQVXaRDRlLimCsFKJNUEYtFWSHyWoZJgaiZIxNGJPI2TAaVKwbYewN163jni/4fXzZn/zvOZDCtjMRMOogI5QNUAocm0mAcT2phbJRg4ilytol5jTC2IDJDVYMVhqF+pK6y2jRKoUvHnbHpXfVP5cbijaHbjl9w7js7pYdpPpYKknIoYJGFEPMvYpUf/Nw1hjISRmuZD0w9JBxJpIJ2AwpqcsPWQ8rWlgpfqx6IBLRWKiUFdqT7MrjhNKZWyQLtavAVqSY8CHQtS1d1xFSYT2mhE9RiSFRCVRHNzeYL2bsX79MiBGCjiAO2inWCMPBAOsqmrpW1KBAoZLVIB3AVo43/b57efJHf5Xzd99N13k2jxzjQ7/4y3y0GfK6u+7iofsf4hd/7oMMN4ZEIj6qjV4CQlTdqrrMBLXMS5ahGzC7vq/3aem8U0zEEPWei74Qs0wBtouVocIC2kmLeqhmEUjqcHNr3Vqv5rpJAXvPZkzawYRICAlrBbHqytHt7dGOG0brR8i54d6H3sb21gRpr2H8hIRRZxGBJH1Sg84UUkhk0blWRuhyBKOn+6ZyxBS5eOElfuD7vx/jKs7ddhtv+8K38wVv/XzECvvTGedPjliEBbu718h+tuxyQjvHGZ2zVFVFVdfEGHHJUNcGH5UY0lFmRilB0iIngJi01ARaq+ny+toNVV3hsvpyqixBjXVzmen1XY8r6QxVBVN/wMOf9wjrmyv8+I/8EJ//yOtoNjdIJpOTYbLd8divfpxPP3eZNnjqrB2pT6nk9Cl0rN2c0/mddUju6DtzsiGn3iPUakSSKMznk2dlaDg5tFR+Qa4zj3zx2/ncP/qHuR4iA9vonIdcaOdKPijIdElqP2S5lhGdMi8lqy4rq2FBjBZrtbmXMvuT/rqkflZ5CNsunwS937TI5d8wN+1fx2FxKo9xAw1Q66R2kfozUfWd9PBZBrQL1eJmESk24aU46To0IBcxWFM6U8rJpsw3Y9GPkrPey5ZDAg+HObcFCX3FY9auwTqn87qcSSFqOkGKdMGTgnaMXdsW8XuZZ4cCBJfONSX9TuWcsU6h3JSizstNbxFoefCh13Pi564g4rj99tOMxfPErz3Koss89cQzPP/000x2Jxw/fpR6MGbeeiazlrYL5foYQiGg6CHQ0cbA5WtbrB1dUTcItFc3OUGMWFFrvb6L19dS5EBJikORsnxTLKxvuTXku7Ve3XVThU9PkA4fVQJgjSOJCtJD6HRwzx5mv2bl6FFEHNf2Z9z3li/gk7/00zSLKdEEQo5ko2fxTMLYhJPEynhFN3ev20RMmWASzlYkEl3X6objDFHg6pUtfuiH/hk/8uM/ypvf+Aa+7Eu/lPVTIzoRXnPbPcwP9umeeh7QuVyK6GOVjcaYqpApoM41w+GQUV7BxEidjQa/przUAPbNRAiB6WyKqywSi0QCUWG7MYhkko7Xbpj1HMYaVc5RNzXzdsHK8aO85uHP4iB6nv/0BRaLBTF4iMKJ88cZHT2OXyzw+3usjEZUgyHGOXwITPfn7O/uMp9PiMzoklf2bAzkLmJxNFVDKoQEgzJyTRaq2pHNDCc1X/eNf5oT99xFlyyTRWTgBqQYNI5JjM5nYvp1RJLD7ktyX5QKZJi129JU+VKUUm8m0P++ajUR3UCl2OOIi6V8acfX/4ecl8UOymxRjLJV+8bwMLyiFB/1SL1BhYJGOZUf1ldPusFw/BAqNa/43R6yPlyF6JEhSSm3OZd5Yb/h6+OLsZDs8tXnoqeUfg5cJnsAxhksVh2IKjU0CCliO0vXdqQQGY1GS/hWRJC6HMqK64Lq3gzee3znEatXtKoqTFUgZKlIKXP8xAZGEi889xzbFy5S24rgM3VjObKxxtrqEZ5/8QUGg4bx6gYr43UGTWLe7hECeF+umwGRlqoxRCdEsh5oAWtFYe2sDFxxOjMU079//QDFSoFSsyaKKP/q1133W+vW+k9fN0luUb1YVTm6zqvpsbWEHAjB40QIcc58NuPqlascP3OSZAJ1M+DcHffy0se3SWmCtQ3ZWEwRqKYUtcPrgpIOxOkMK8LAVeQukMl0OeNcha1qBMNisYChZd9P+dBHPsQLn/4U6ytr/KEv/8Ns3P86QhCOnDwDQDU6yrQVnFNKfSj5NoIWtJwTPnq6HKiAxcKz8JHRxnoJZq2xlfo7OlfjbKVONCmRo87SUtZAzYRKM3rSR0KQJPgStDqfebpF4rEPf5SPf/xjxDQnh5YkDX6RWEwX+LBg0V1F3BgTYW1gqesMriPQEXJgOK5YWTlCXa+zfnTI6sYqxq7iF57YeiZ7e0wnB/g4J6RATBFrM85m1lfHvOaOO/miz/1c4orwzO5l1oYnaVINbQankUb0DNKisTJlU08pLQufQrA3VJcUMabSIiQGIZFSwFItZ4FkJW1ktDM1JoNE5BXlTYHIvpr1ZA/VSRaYsyAHfUxUf58WSkb53+UjIdKLMG6shnH528vJoclLZPQ3Wykl7aYpsUGqK6HPoqQQc/T9lTeQOTRfLkQRPUz0Bu25vBp9vL7ZdJXea5VRON+HWIhg+pQp6twh9Y9funMRIaZM8nqEaLtAXeQM88WCRedphhVVJVzf3+PylesIFSksmE2mGBOpxyvUwxGZzPbODjt7BzSDISurgnWVQskRGge1SdhKOHrsLJPJnMaqnGHz6CZjgUWnIwFJQRMYRNNI1EA9FtZofxXyMhCa/4vP4Na6tX6n6+bkDAacc7Sh1YF38mDAidN4FR+wNhJmnm4yI7X7OGPZu7LPyWN3snPyIrOtp7FZCMkWuEfIJpOxhGIErKFwUTeK+YLKWXWwdxafIc07nLGYpqHznioJ27vb2M6AGfLtf/2vc/r0cb7knV/EHzp/GwCrR07y2vsf4JOf/CjiPXVlFIorX7MQAleuXsY0hpVmwEAcw1GDsQbrFEbMS2jGMRqtknLCLWdK6jkq6Nwn3nCKB6M6xFhg16hkj0cf/RVC5yF4cpoRMiRfxOAhUEmg8/vgMwezyP6+4IYV4gzGGgauXkKtIXRcuXyFkK6Rg6g36bjh5JnTrG3AaGXE+sYK6+ur1EPLqHbIAibtVey+xaYad8KSx6foUo1LFiGqBlDUNSSlG97RDadwRTYVphTRDDUjjmxiub4RY1hqEVViIcVUtTffDuTsdRbWI2EAOWMLm7X867KQpDJvylK6rHzD45Xid8ga7etnwVnpfUEjy1TaAnMjib6BusH59RUs0p7QBAppp8ImRpRkVZys0YLUYUVdiGJShqakHnotj5VzgbCV+Rh1WKxSD9Fu3cgAayI+t4gk2naGiGph9bm1uxRBUYNCPMnp8HDpY084ycRosGZIDJnxuGF1veZK7vApQY74kAizOWLBWSWZxByZzg44mGjqxupowJE1x7DybDZDqnHNaLVhz2aqq8UgPiTssNGOj4jiOUW6g8G5jMmBkri0PEip+YO5AR++tW6tV2fdVOELIakjvoEkhiAVYhOSWzJqw0QwyHzCYlfYHmWOHjnDpJtzsZtx14Nv5OM//xwpBIiZqnhmWtNoVyRKu5ZUdGkGOpSp6ALUAQ0WtY4QPDFHbFVhY2TVNlx96RLdouPUmdPsT/b54R/5MZ4Rw/cDddTT5YMPv5krl17mYPcChgQmY02FtYbbzp0ll43COUfKQucj0+mM0WhI1x2SW3b29hBxVJV+mSUrIw9jcc4tYShICntidEYDiHNIPeD48bM8+dGPEdqFZuwJuMYSJCkLMOmsU3IgYQg+sfAd2UDVVARJDAaORdsStwXEIYOaQVMxrhKDUSBbT6ZmPj8A6RATMBOYGMvaaMyoqRkOVxlVY7oclCwjFjEZa4SYrc6bStFToxRZAoWkw/y0ZA2GhMRISh0xB5JdIUsmR08WIeAJucVlV+DBuhSbsiEXH1cjpV/OeZlP+OtXymqcDn13VIJUc+KGGv2K1dtkLR3/5dDPdfkzsddjeiWxoPBh3+XmApVmCswpqUCX5XUW4kvGkjLEaMDqfM6IKV20Fuc+YkoyKuouDWJMCvfRXwPVESDGMhg0II56YPF+QY4VAvjQIr1bewGMvfdQumObjA5aUeg2ZkjWU0mF+A7navzcYzGkHNidTBgPK4YrA4yx+G5ezCYEE2usybTTbTZOneTEkXUWk32cqTnYmTCZ7LFmVc7g2xmxSVhbs5h7Lf5i6Lqsn1NlsQxwBk2izwD6PUQg3mr5bq1Xed2cnCHNMXmOUCGpIuZANo3Of7LF9bTxFPHzGfN9wY+PU4/WoBLmixlWhhgz0yJRYCHdW0whIKSi31JAqCeSdDGSSTibsDljHGSJpFIMo4VqWLF1/SrDpmJY1/i2ZT5TuOV7v+ef8LZv+Z84d/ttrK5sglh2t17C5JboAwHDvG1xi0jKkdl8UQqdYX9/FyOZO7d2AZjNW0KEpnY3zGlEZxpGDaZFlNKfU1JPz5QZBd10KmtZ+MBwMGJrd5vxsCZFIXSJNPOF1m2LvEF1fGT1sPShIyK0rWWRIrMqYx3YuqZpGiprccMRlobpJDDbnvBSt4Wrhbo2DEeOjbVVThzdJG0EuqFhOpuyOj7GYGWIIyGY4pzfkXJcbvY5ZxaLBSEEjh09iu86UoqkOEc3qkp1lEV471Mi0y5hSGsslatou44gJV0ia4ciRf/YszJzTsvC10PGh4cJWHZby4KonaXqGHsyzm/WKbxy5hd7W7D+b8tf9o48y4Jf0kOWc01YwrvSP33OkEuyOlrMc//6l3Dn4Xw0p/SKeh7zIXysBBx1vumfRdmkej8ZC3VVU7uKFHU+ar0cCuSJTKdTZvM5rnJYox2nK16dUSIhBVJsSb7j6U88QTtvqYzgk2brde2CN7/pPl54/lPETrBSgalYtIEVG1kfW8ZDR+p22Lm+w7Ejx8kkpt2MYTNgfXUNgJXxmJg6MBHnLKENLLoFwUPXJRbGqeORVT3kovWE3JXPPTOdHqZ23Fq31quxbqrw+RBoQ4cTW+YnQsRizAArkeznhOhxLmIJ5HaG39tn7chJfG2pXMP49GuYvPwkFaIFK3qs610hepKAnrpNIVQkIBvBk/E+4LAMjMNZy9xHokPnQxWYNnPh4gVec8+dVLFhtr8HwO7BhO//x/+It77t8/m8t/9+fHaY1eO89MzHqFNmOm9JomDmkh0XM5Wt2NjY1M50Ty3LFq1nMm3pfFQdmNHwV+s0OUGBW93Y1FjY4CqnRtGArSoG4xXe8Llv5u5772Kyu8tzn3qZF5+/yNUrWyQf6UKiQ3BJ5zU+eI33ERVPG9E4Jt9FMhFMwDmvcJnZpnGGunJIUzFqVmgGBlcltrfmXLFbvNzssrYinD+3zonTJ8i5oRkfI6cpSRwZh5QiJErnJeWMtRbvPfsHB9pNkBBp8YtAwNJUNY1xJBKLboobUjodgZS5fv06jc1srB9hOBzSsyWh1IR+cMehFyo30NkPi58sWyWNsiktc5kZlmGgvv5S6KR8NrlnXqLTvmUx+00Geod/d5gcQv+by6KlhUdfrC2/p92nIWseYlY2a4xK8JFfTxAqjx1jVN0oLOUMNxb5mCLGWoxADGoMkXIsBVpNG4wxmJjx3hGio2sD826GFWE01xnfdGeb+YkVYjsh+Y5xPWDnpSukHPSbnWpEhNc/cA+b6462zXzsY0/jF57hcESTO46MBowGhlEtECMDZ4g5kvyMlGoWk7bsG4lOkrqxGAdG55HGWWwJ241GMxiNMSy6Dpuhi5mYhfZW3bu1XuV1c3IGLCFovMxoxZBEoEsF72mIErGVWg4RA4uDGVe750kIK0dPIK7i1OvexLNblwnTfUzOWFeVIuoL7Tsf0sSDx5I1+0xygZ0swWfm0TMYGaxxhBiworoyW9XM2pYXL1zk+OlTSDGG3t66xsW646knn+C5ly7xNX/qf8SsnmX3+haXn3+RoWtw4smm2IcVIg9kglfheE9O8THRhk4dLsrPCeh7MboJmqJiyjkzGo3xISwJNe97/8/w9K99mPseeD2716/x8Y98nGefeQ7BEruACZmAI4jFhUh0xY4sCc7WpJhJLNBeQrEykzMhe2IWjBXwiW6eyQ66WkkMzdBRNWssFnMWk8zO9cD+/h6RdQZNplu0NKOWkPaJuSGLwySwxSsUI0hV0TQNKScGw4FmB8aGYSNa9DNqsSYWXKIejbQWpQxGGI9X2Fhp1KxALEvHz9IlL6tJRhl+iXJ/cEOBLNBoIYeI7VmcQk52SY44JIz0xTIXGDQtOy+1WjOFyHLIWn3lHA9uqHJLqFSlGOW70RfnnAqtJqBmA5TnsyxT73PWDrfM/JK6mxNjfkWXqUSftHTv6Qk4QVNxqawtLMhECIU4UtrPjKOpRxhxTNI+3TywaAPziXqRVgjdfMHauObCCy9AynTTVmeLxmAE1lZW2N85wErF6rjmjW94kO2da3TtlDtPn2W6u0Oct2BqRsMBi3aXqhrg246UEm0JPVy0gTwosH2RQcRoMEYYDIeEEInJ46PHJos1Al0mhkgytiBCt9at9eqtmyO35IBJFoLBtx1GnIZEJoOpRxgrRB/IRf/l2zmLnIl7l8FVnKiPE5ojnLvr9bz08cc0OTxpwrpzoCLk4iWZhRQ6ckpU9HRyKVTtTPCeyaRjsLKmeV3BI2LUcit2+FnLbO+ApjAxReDy5es8d/QyG2st3/kdf4tv/bZv422/7wv4+fRBkj/AMifEyN70oDAO0USBlEtc0o0bXS4Sh8L+ywLEMu/R/9ZNxXzeUjcj3A0dyNbVbS7uzfnV//go3aIlo/ZXIbQ0Vhg0DdQjZjFjQmawUmkh9RrmKQScCxBN8W1Um1/pO2a0Q7Gi8gpyx2zecTCPVAPHaNAwdiuECBcu7HDp6uP8Sv0Rjm8e5fydd/DIWz6PI8fPkk3fqRTrZ9Ein4o/Yyxdhkiz9KM01uCMIZGpbV3muHrCTzFRWUddN4g43eCTfp5SdAlWMkvT1iJHyORXdGPLrq10U9DPyxy9Xq8vcr0zTC7iQWVj9oUNYoh473V2XLquJfQpLMlPMWpCgZTPsbfh6p/70Dc0lFeY6F0eciyfD7bAobl8R7SriylCEkL5Ocrr1fCuVA4FJTy4dM+5REpFMYTUFrcgfd8xBjqfSDFqvqQYRqMhu36i6QzA9t4eO3sDmtryicefoJvOtOtMFnIixI5zx89w/eoufjFhvpgjNnL82IhTJ84xMB3P783p2gVdBVWljE6XazY3jzFvI2xpdmJIGUyl94FPWFfT1EYLeH/wyBpElKNqP71AMNo/1zezSd1at9ZnsG4uiDZDih6xEJPRGVY2iLEqJHYNIVSENCUTScnisMwPdpg0A2IIDE+dYfPcvTz39JNUocOkTFPXRNS6LKdEFksqzg4xR1LocNTUVUWKnigdtqroQmAy2efY0TW8Mcy6jBWhrmpiO2e2tQ2DEgZroKpHPPGJT/DFX/olbO3v8pf+n9/EX/qL38pDDzzI089+jAEDQo6sbayxiJGda7vEVhl7qbiMAATf4VuPqyxVpSdUk6FpKmzlAIuzA4wTjh+ziAFXGWbPPAvAhUtXeNFaJEKNo2rG2NVVBuMhNgdmezNaHxmPGioGtHmKKW7Bda2kCWMc2VnqRru+2hpSCNgy5wpFxK780kA9OsLqygohTpgtOib7+6yMHE29hk+Ovck+adGyde1xXnrxOb7+G/9nDhaddvUUzWVMJCq1klpKGczy+pIhxUiIgZiFKEBYkEVw9ZjcBcQEUnSoPXEq8Lbqu7KkYl3Wi8AF3fr6WV4PgxqdDxf6p87LMpmg7IjiUfrKLg21gBN5RRENwWtRzCwJMcsCmMOSBJOTkJMrxeqwmPZ/37NchcJtWRJT4FDRpzCnESHkIqNJCtViipdMKmzmG1DX3sWl/8OYMqbAzx1Zs+363jYlQsy00WtActIYoxRhMBrSDLSMrF66zu605UwS6A7Y2dsjRLXdCzEgYlm7coV04QVqI6wOK4xJjK8bhtdqGpu4aw5bOzPGXWB4kBkMGxwd2CFtFDZavTa2Ur9QsiEb1bQOhg1d53VmmaIawccAYkoos9OU+ZzB3mJ13lqv7ro5cktOmDwjeUekYTBaIUfBe88iJ0T0KxhzQpw+eogdTsDP1al9dj0zOnuas3fezYWnHmUASFhgxPbnZCCXRHUhJKMWXbEDHFZqfJ5BDohxdD6wu7vL2uoaKbaao2KUJNB2HQt6FlufpW556qlnWN1YZWM45n/96+/mO77zOzl3/naef/7TjGxi0XmSwNr6OuJ1kzfGsHZ9H4C11TXaI+sqNhaDFYUX67peOpMYHGJ1BpMROp+ojW46i0VLGI1xVcXG5ibZWlw1JHWB2cGUbrrANTV+MSelDjewJDoSnrjcAB05R01qN5ZkDFSOytWkrC7/gaxG1E5jdOxszvr6CuubY4yt2br2Mte3dxmvNaxtnKDCsLoSOXK8IeUZpEanlUuavBaU3o9TheWpQJl6ixhEBe2lKyIJ+1tbxDgiBfAdxEHEFUcTJbjoZ07fPUvxPV1CnaKC+MMb8XDWF/MNNmWyLGL9DLrPSlwWzVwKV/9oIhirhJSU8hJt0CJiyDcQPm+USciyg+9nb2n52lSUr8VPzwNqmJBiYnJwwHQ6JUjppFNCXAUCzlkdExTtpD5M1I4pC6ZIG9xSonAovO/1gkkNUg47337sKYJxlnjsKF1V8Wfe9x9v6qv/O10La9hvVIdoil4zpUwXtJjHkjah6LOaAsSUiVJCaquKcAOkfGvdWq/GusnCFxDTIQLdImKsMBiN6JLHB6/ZdSLYpiFLp6y0nDHB0E13sU3F4mCb61fh7B23c+H5TxJ8osqeHLWQiRjtsMg465CcMAIpRBaLlpXRGFcZfLdArKFylsVsTmUqhqNVppMDjKgLRIxRw0gBV7myRxsuX7jM5tEjvPzyy2ysrvIP/t538j//1b+GuJrLL3yC0WjAPLTa7QgItpgu62WoK4erdUhvit1VJDHvOt1qYybnOZXR5PNsDILjwrPPAVBVA1bXNxiurOqQ3xqmkwMW+1NsSNRVTTCZlCPOqYQhxjkptDrHwWFMXWTYQrBKYjDG4MwAUznq2mFFGaQYwdiKKgu+DZgq0pjE7efP0R6NXLl6kctXr7O5volUmQdOn2M2myFoIb9BCqdM2gxZ8rJgGWNLB1gKS9noFe0LbF+5xMF0wGw6YzZ7G0fWk0LapvfPzKWoHLI0l9O+Yk92+Kf6v5m8DMLQMaeUbq4Xs//G2ZzCaqWQlr83xmqBLp1tDL3UIRd3lBu8Q9Mhw/U3uNjc8Nqkf/2pl8YbWt9px4nCrbvTGb7r+gkkGEPtLMRI8IVpaiBJoq4HrI5XST4yX8yxlaOqa6qqIqWkkHZxnBGxS7jZ2OJ7kyw2qNlCe/Yc3/NXv5nmYEqMicn+AVvXr7OYa8RRih2hC0UknwkhErzHEBnXNQMb2dyw1FVisT8nBMFaS+0MthKaakA0hkjGd5Er0bA1rKmSGlmHmIkpEIPCnEmzq0hBg4x9SIhxjOtKpS/kAoneWrfWq7duTseXVb8XyXShg0WHqzSTyy8WGJx2e6jNUrIBkUp9OBcZv2ipmwG7Fy+zOTzHsVPnuPz8EyQCDepInwRScbGPlJOqqOA1+JbZPNAMaoypCNGTk2DFMDmYsNaMqWtHDJ260CfwRXs3OThgcOQ4YeaZTeeELjLvOpqceO75F/k3P/ETvO0PfAlXhmsc3VjB2EyKkeneAV3X0fmOaqCboM+eLgZyVBKiyQaRXuOlm6uxQu686uKysDE+xq9+8FG96M2Qqhnqlz/ra8NHol9QDwZEAvN5S8gtbe6IuUFSgeoIGKPaRlucLkQ6fGFH5skM4wzitDszRhCrMU9VMZdeiYJdF1JlGA1G3HPXXbRhyrPPPMd0uuCDH/wob33blzOfeWyxl0qpp4mULb5vmLJKAjKHcF+OmWQTCYtxlhQ6bGrI0SM0aAQUS0szW7o78isJLCkphNknJByWQzmcv+WerdkXzUNJwI0r953eIXdG/9dox5d6yBFbvEFLcS5Q7o2Ez/41Lt1rpLdX6y8I9PBm7OHGXFiYIozHY+YpLY0Bsggh55Je4WiaQhoqhVKMwcdEVTeMrMWHThmRVYWJcflcvdav72hTSekQqTEYckzYyjA/VTM5kUrWX4TJlP1rV7myfZnGOWKn88LJZE4M+vk7IsZ3nDwyZjpYUFeB+thRtq7uksVRGQMuUNUDpKnwMRIWAe8t1gopmNKlBjrf4aMm8EVRgk/OCeMcVoQUBd95ams1/cTfiiW6tV7ddXOsTlGKsboxJXy7YIbG5tSm1vFEzhrHY0p8iSm6phRYTA5oYk0OLRdfeIHVIxtcH6+Q575oATUKRvPNkt70yRKzTkysScTYEbzBVg2kQGhb7chy5mB/j/HqCJwjdC0xq78nQIpBnVbqms53bF29Rj0cceHKFg/cdQ8/+/738drX3cPxU6/h737H3+K2syc5feYkd99+Oyvrq6weaRhfV7j2xOnTpJPHOTiYEnzAYojdgsMpjv7DWkMkMhiM+OVf+EUmBzrsx5Y0ah+YT2dIF0nRE3JgN0yRBCZbEp6U9PXHXJELikaOkDKCUxKEEi7VESRmYsiILYxAEQLCZHeH2liwjss7e1TOcurEGutrR2iamtVVy9mzJ7l84SovPH+dv/d3/jHf8Bf+HLP5HlVd48Oh/2aiN92SMgMsK7O0cIuo9MSbBkT1as6pniwV02uKLKYXKOcYC/TYk5y4wQj7htlc6bQSqCygNzw2Un6uxDNxKH3oC5/++mGnxhK+7E2oyxu5oc/89c/fE2D6otdbsAGlgKr1mubvHVpwqRmzfo6bRzb1cBejzrUo5KFlN6msTkHwJZWcbHA50naGVJx0TOk8U08SKv2mzs4SsdwrKaTiUZs1ANdAjgkjhsFwyNlzZxmu1exubTNLLb7zGt/kMl3QAjlylrabY1zHaNhAgGYwIEXRkarJiNX30oVQ5r2ZFLM6NSWdAXch0Cad4fdwtzGC9x1VXVM3NSn0TkBQ1TeZnnZr3Vq/zbp5qDMHhc+ksNJSRKxO57I4jBSoKGWMqSCVKUfy2G5OyDuK8fuIGw85cuw82y/uEeHQAUQEMSopUK5XSanWozV+NqcbGJrK4CTjMfgUyPMJnYOqblTLZByiNhBUCO18gXUNxlh2rm5z9t478de3eOmlF3j49ffxL370R/hz3/QtvONtX8qP/fN/wSfrp/nZ+hdpakc1qHhDhM8HPvgLH+boyiYrqyscObXBeDzCL+b4do7vWrxPzNsOYmQmE5rBiJ//uf/Isd4aK3v2t7eIbSTFiCw81kB0CV8iXpyxIJmULSQNBRWxSnFPXuGtnJc+lQASEyYp7CcSMTZDtrjir2pRZxSJnuw9l19asDfc48jmBt2soa4b1jeOMp8HPvqRp3jvD/84f/JrvoKDxZQsDVZPMEsQMZXC0rMNBSEGjZnJ3hCDpxOHcZlsLCkZBE/rM1U1IIZOZ4dGC3g2YMka55O0vBrTpxf0GzsoRFbKibAkmUg6LF49rZ/y8z2jti94PXPz0DxbSTRyw7wwpcNEjhu9SW9MiDgUvxdJBMpQTDktH6sX8PcSCTGOyhpC8FROI5NCzIhEvR6lkwVKNJQlWC0c0heblEqHl8FYFbZkTTInFxtBCcoyRlm+/YlMrCuOSZYYS1huhKObx0idx/uIWMewGdO1LVUMxK4h+5ZmJKyNa5qcaNuO6cGELBX1YETtGkzVgLXQJbqUEbG0i67INiAEUXPrlKhygqAXxlQOG4Wu80iIOByJjE8JH39jB/+Zrscee2wVOM2hK/mt9XtzJeDSG9/4xoPP5IdvqvA5MlVsMZKo8PShk1HzZnSWVFjcgsWKI1GpBVnOagVlvQp6sexe22dzc51u9QQHu1c0Nw6FLlMq1lkZ7XAMGKduMSkmZOGV+VU3dJ3BOpAQ8PMpjavAWJJkbIHJTM7EdkFlaypT0c5bkled4HRywO5kHzuoef+P/SRf+6f/NFcuv0yaTNjvDphMJnS+Y7Gv1/TCS5f4qf/jx7EVjEY1o1HNsaPHOHFkg1PHj3PkxFFaILbC5tlzHBsfo12EpbRi//oOvmqQpHBu7QzEhEmOoa0pwjwSunmKiOoDpX8vael7acRRXLZ1e3dKgjAljoZU4UyFd5GcI1US6pwhRXJ0eN+ytbjMQV1z4vQpXFNRNY5hPsL73/cLvOGRh7njtbfhU5nXljLbW3+pMsuonV3O+AJRWnEs2sDCz5i2C7xo53owmTBYGzFPC2qnUVMhBpx1JQ0i0wvCc5G76P9X5x4pnU+vcuvJMIfNYDokvhT9YB+r1HeANzrA5HRYzHqiyo3F8dC5JS/JJMv0BaMSBWWAspwb3pj0AEBMh68TMNYqSQnKa8nFom1pY1RikhQaTFDgUiX9qEzFIuX1pRs8T/XaRIy68ZGslENjRqLVA0IuSRhGUKs1V8J4K87fdhubx44ymbYcXN/jICUqY/FimYWWqh7i8PjdHbq2xVqDt4aFTaRsidlgaTDWkfKU2XROSkJIZeaZDCk7JUDlPsqpHApSKc7JqCtU1utt/i/s536r9dhjjxngL1trv0ZEKg4FmbfW782Vc87+scce+0Hgb77xjW/8Le+am8zjE1IydG3AVlZNa6NKCDRHzgPu8HSZIBIIKeF6PVjs9AseLDbNWcwdRzZv4+Bgj5xm5bQfda4jlAdJulGIgFQk65EYCG0EaUAsMQWNcuk6FtMpg+G4HwXpihFTodCktfg2M59N1VDaR65d22Lj5FH+3X94P3e/7m5+/zu+iF/+6Ie4a2DooqZHb376RQBee995utGQvYMJvovMZws+tf0yz/MyxEg1GuBWRtx97k7mT0/ZaNbY2d4jlo4vhUgWNSt2lZ7W66ommxIBlGJhrvfFTYjq66WJ3hxu+7YPQi1vVAQqV2FMLJtxBcYg1kDx3RQTsY1FpKLtWkLsyIvAtcvXWT++Tt0MODg4oKoG/KN/+P383X/4HXTtPr0jijIle3hPVHfVRrqcSEbTxmPXUVUD9qYT/ps/8hU4t8apzSM0jdAuItEkvPdYq3o+L5aqaqicbtKptG25SBPUxDpq4GkRvffkl3Lf8wqKSc/uzKLwY0ah2hvgTspvKJszvRLZXK7Dx3+Fxg9K8GxvbZZLh3rYWNzIugTUseSG37e2d3npP+m+KywFW4Ayx01lTmgLyKzQqaIhWuAPu1NZmrzd+DZM6QJVG5iySiCsdaXzM8TkISXqakhlI7s72+zt7LMyHlEPBnQLy+7ehHqtpg2RtvVYa2nqmi4Js+mUOJ1TVyNIDt96shgiAWONzvZCxFUNxgnig8YXYYucMy4PG0YiMWkH3Hvc3uT6y1VVff2pU6e68Xg8E5Hf9NO9tX5vrJyzTKfT0eXLl79eHaX4X36rn7+5whcTMaqPJEaZjpKtxhNFQ0yiMIe2BBrUajJIwmSjVGsiKQqVQLfYY3d7zh23PcDG5mm2r35arc6ywTnN4BMSxlIif3T+4xuDWQA+KL17OCBlh/EBorI/sZWmKpRok5CS+i+aSHHAZH9/gmRDaANtG9iftXTO8He/42/x97/n+zmytkGYb5cTfdGJAZubq9x7+21EMXSdJ847FvMFre+YzqfMZ3Nm0zkf++iH2Qv7mM6w8B3e6Rd4/ehRTq6uKrFlMcMmwEd81EyHmGMR6ivQS1KpRxZbYExbrLbKhpkVBMzGIC5hrBZLgwVbYxzY2iGiriYpBMR3hNBia8hpQPSe1nfs7k5YW9/AFHXY9vY+H/rQr/HAI68lt4W3kWVJpADAJ1JMtF1gMl+wfzBRKDMZZn5BNAYITGc7+C7CXkXTWMZ1TVVZum6BtZaNjQ1MYZKy7KwKmaX0ln1WXkr9Z3K4buy0FAUs6d657+bSbyh8Uv5cN9786zq6wyJ2o1/pIavz8PF66LUvdj002msC+04zxHjD6+wf+wbSUOnetdCCFrm0LOT9ey5nDr0qxh5eh1RSIkwqUkZDxkFUzaKyKDNZ9PuQopBsMYYQQbLm9DXNgNe/7nXsbu9yZfs604MpK4MRpJZZzuTRKnUzgM6z6BLiGppqhI+ZGMD7jnbh8Zni3VrIPAhd1NxIsUIUs5yJagJErchBKBdoeQ985uuxxx5bs9Z+zalTp7oTJ05s3dQv31q/a9d4PJ4DRy9evPg1jz322Hf9VrDnTRU+EUO2TkkJKSGlAELGZoVpYi5u6iaDWJyEIkvKWIprhrWk3JHjHHxi79plzr/mLhaLfeLBJZx0RJ9LIom+REPWbkeEytVILeSFUq8xc6q6IuZM9EqvDr7DVra3TiykjAgpIKYCC8HHMmsJbF/fZpQ849GInIXve8/38ue/6S/wE+//16zUDSHG5WsRcVhxCBlbO0xtObKhJtJJjmONQ1KmDTCZTbn+8jWe+vDj+MJO29ubcWG2IOMRydRJvRUjatysGXZl4yt6LicJLTsFEhONc1r2f0Y1XjkkujjHSAJxCg8mhblc1VAPRjSjFYbW4sOU/d0d2kXEVFY35VlLa6bYnPDBs7aywk/86P/JI296N1u71xmYNTCJRG/9ZdARmaMZKPQ8Go7pfGTetdhmgGt14zeF+uPEYqkAhzUVq6sNdaPeqz2Dszc7N73kYZmhd1jceiLHjfCk6uWKBrCHHZZL00BYFsP+8FBE8hwSV/pC9YpNt0gGcjqcm9mSSu+slCJ6o2tLebyoDFGWhS5psVoWUt3fk6TS4UqPai/nghZHzKrpE+kLpZSuXh2EdNygB89UfstmnR9ikupKMyUwy+IqQxQljBmjySiLTkOmU7RgMuvHjzM4ukFoPe1kSrc44Nr1C5qVaRt8CHQpkf2cxhjqasii05T2uQckQsx4r3pP/Y6Cjx4kK/kmJIVBC7yp/7UYW+l9XlIebmKdEpFqPB7PbvYXb63f3at09yN0rvvqFL4MBCxIBTngTCRKJGFUXFvmL9lEhIhJGWsCQYTOZayoq0RKHVmU0WZyx97WyzRHLcdO3cXL+/tYdqlMIuOIMZevaYHYYsIktZeSqsaHFt+2VCZDBXQQo8Ji4g83m5iELJngW8Tpltl2HlPpCX8+O2A23WWvqtk4epRf/KX/yNvf8XbOnbmdq5cv4SpHvwmG4JWaX7w89QStYmvJKri3ziA1rFdrtLOWL/yyd/A5roH3/GPuvP0uXlxMOJhtQwwaFGo4zFVD/7+tHIIQQgBU2yVoJxz6mZ7JUET0yzmJUW0UolR56yAlT7vwtO2cCTV1VTMe12wcO05Kkd3dPWb7E6JvCW2lBKMM3nuuXpzwxOPPcP6uU2RfhOnlUJJLUnlVKbxmfcQZSz1IDHJFCJ6V1mBtjZWKyjms0TxBa6x2pyaV93JjJ8bSyacE7imkV8pZH1C7pKIUMov+ehHb56WfCX3H2HeCOfeShF7wnV5hWdZ3aT00GWMiBu2Kcu+lKT3zsje7TqU/oxBbyj1hDNwg17iRJHOjnRoZUirFvViW9aJ6ayxJDKm/VpSYXaOOPZR5GAUiz1YPZi4ZQm5JtBjrMDjIiZxqRLpyMCzXKOZCiILK1cSsEiZrVD7kmgFreY1mVHHt4mXa+RwfNJhZJGGKL6kzBmvUOFwTJtTCLqTIYuHJsWRbGtQGLpnlaCOmrkC7EUlSoNKbHs8Zvby34M3/2pb0X7zfhsx0c0wnibiUdKYHRLRryWo4Rq4qUpXBqTiVmJDQQe7wEggGsjhS1i+BGCXEdKHl+pWrjDeOsXLsDF22epotJ2hbTIQTOv8KoSPEDmNBrCXExKJtFVp1ooUh6gxiabsolpyMOsSUzSWkSExF64ZAUq3g/mQP01i+57v/Aa+77TW4pqFZWaGpBwDUdYV16kZhjcVZh3M1uczaxIDkxEgajFi251NO33MHNNp+Hjt1gnPn7+Dc+deweewMzcYmZmUVBiOoh4hryGLpQkfr54TU6dwsqlzgcK6khAFJUGEYGItxuumF7OiiwcfMIgS6nMhGsM5iK0cUy8G85fruHp7EqbOnOH3+NIFEGztiCnp9YsTg+MDP/BzHN08jgxZbZarslCZPoKoytROczQwaR+0sTdMwaAY0zYDRcIVBPaSpB1SuwjmLtWrj5lwpaFnDgH3nCd4TYyRFFUGnEIlBRc8xRFJMaosW47IwiVEv1Z7WDyyLSir6sRDVFuvG38v5kLEZi33WkjF6o+yB3ufzhg6yZ1Xqg5RC3TNcTSm0uThuJiJR9XnkZcxR/1pSTBALa7XAyD1ZJqekms9irr0k8OS8DG1d2ptCGRFoYTXWaNpDgQz7Y8ONCfD934som7iyFZV1VK7ShA+UIZ0yhCzUwzXWjx6hGTdUTYX3idnMs3uwYH/qmc51a7FWA30XradtA6G4IEU6fJjjfVeimVKZZatpecwGzdrSgsmN1/zWurVehXWTUKfFmESWDkOAkg6QRWnHzkaiCXr6kwExAmmOEaiMICFhs9UO0EftopJCMO1+y861y/yhr/gS9i6+hp99/y/QthOcrbDWEYIy54wRUoqE4KltQ1VZUrLa5QXBmQpsLmbZaen6oKf5BMaSs/5+Ekeyyji1zhGzJ8ZMHTM+Bq5ev8rP/bt/xx1veJgrO1dpnLIyK1dRN3WZOUHKXpmsxhC1lmNJzCdTruzscGRtjRBhPldn/Jgy9XBInQMiDWYwIvpA17bEzoP35NRBn78WlBzkxIIUeEtsMZEuuX8mIla1g2I1RNf2obgEMJnKVVR1g3VDrK2pa8fa+oi1jRHjQYUTw9r6Ok9+/AkGgyHJJFIQBnXDSy9c4NjmKTaOj8nBENtM27VgM9PZnBgCoVNDgcl0xvrRY1R1zbydEzvNLyQJOWn3aqxoiLGoRCUVfE5hxoykgEEPKRqVkw/nftKzIdWVJmc0SH05/4tLRqC6r8SirzuEH2/M8evnZctw2lfc8zdAq8b02Gh5nMPCubzHSsxOD7EDhampPyylX0v5RsZoPysUsBRpj7I/Lap9yykVScuhxVsucK8xRotmKYoRLTi2aCCtddiqUb1dLgG0LEfx9F6nAjjryDpph5LKMWgquuBxVDqfHzo2KwM5sZhOWF9bZW/vgOk8EqTD0BB9JEZPTgpfp6R6Po1SUr1fTOqwlHwiLhYa2CzKIYgxYy1YZ4uBxa11a7166+bSGYhkow6ENlckrLq/O0MwCsO5VJNEI3Oyy/hkyclhkmCzJ+cAOVOJIEndUawRcp4wvX6day9e5k/9D1/Fn/jaP8bP/vsP8B8/8Es89/xL5eRaLd1LhIj3Ct9U1iEJwsLj6lpnL0ZP+SSdqwkURw61AjNGv+yx8xgrhODpUsIaBwF8F6gHA/7Vv/yXfPsXfD5Xdq7qPBGF/0KMGPIS7jJiiZW2e3Pfce3yVQ4OFpAMYbej85l4XfP89vcPmORMGwIpZi0IWfVdxmRwFpJDstNrVQkUGUcWzXlLyQBl1poiPiRSiNpV24gYh7WRFDxGHGKhjYEuQD0wjEe1dq2uZtCMGa/UHN3c4A2f/UaufP5V/vl7f5Sum+GsJebIlWvX+Tvf+V2MmhFuNGB1Y43V0Zi18ZhqWLO2tsZwMObKtWss5h1d3GZlbYXxyoBIxAGD4VBTCXIgi4qqBZBwQwdm+uKWiAmFcW0unU4+jNrL/T96IglF+tEzTqXM1cwrZmn9TDCWA1EsSSLkw4IoRZDeszXLbxV3lryc5fU4ay4wc8p5mZBB0kIsojo5ctTf78cBN8wOl04wUoyxy7wthYiJPTFGlozevrfLWZEWI2qSrvM7vQYUqUIJ0ABU+pL770EuFm/ZLifH+v4jCYc63ZUKGaESh1SGFA3BB4yssHnsFLlbsHP1CuNRQ1PVbO1dJ8SESRWkSp8na3guxWXJlJl0Eu1Ojc2YrB6vIesc32CWCSmHzN1b69Z6ddZNWiIIJgKxBRFMZYhluF9lozduqgg5YiUq1GMiJIMUZyWRCNlqx9Lnh5VZRzvf5uMf+QSPPno3D7zxPF/2ri/kD/3hP8Czz17kX/3kT/KhX/kYPngG2RFxxCI+dk6oqprgNWKmcrWezr3HllO8j3NsMyIBIQZMzlRqJbEMAc0YchGOZ7EsfMbkBR/55Q/y+je+mf2PPw2wLN4C5BQQp7DiLCzYnc2ZzlpSm7BuTDdv2d3ZZ3/SwbYWvvmio6sCfZo2MUHw5K4rvpFlA8uaLIHR+ZR1UbscqRSuLX8vJCRGrCQ95WeHMQ5bQcoBZ4ZUdQWVhcrQ1A2jwZCqqbHOlS5A4a+ubXnNa27nz/65/5F/8L//fdp5VBllTjzzqedYXz+hcivJ1MYxqGo6ifhFh6SMszXnbzuPSCZ0LcNhxWh1xPqRdU6eOMFo2LC6MqRuamIIDJoBOWe6riOEoBuhUdlG8AHvAyGFUpAKwUUM1unrNaLpICGEQjrRxJCcBCkRUSKQ4o2ZfHHZ3WWgN4XWTkxLS5GRL1dOfQL7jWzMvkj2c8lDFmr/6KpXU/cU03uRipqLm15LKEZJK0aDa3V8aUqXmZYjzuUcfUnwSdicyVLSHyUhWaiyIg86LlDGqil6Qyk6QOMSeRmTJFAQETXP6btqhzM6G3dZY4R86VhtSOR6TDNawdXXmWzvY6ox48GY7Z25GrsDKSo6YUUtBp0Irm7wPiDZUoXS0YuOPoSkDjZ9+HG6ZVf2u329+c1vvvfRRx9dedOb3jT51V/91af+c78euMnCF42BKhN9RwgwcDWuEmIXsSUtAGvKDR+WAa1EvYmj5N64vrDQIhlPzOpQUleZrZ0dfuqnf4FYfQ7nz445cWSNUyeP8i3/r2/i4otX+N7v/n4+8isfRWytw60cCQU2bZyl861G5GCK2LknMURCF5SVarLOp7JGIUmudJMIypCLJiMxkTC4puHf/puf4g+86yt53BXoqLEMBgMGdsxsvs/2wS57+3MWnSdQ4T1M9g+4cmGL+WxC8JGYLeszJZntTw/YjUWqgaa1S4zYrPNGjCGRyoaGFuJkCpuvTH5EEGrdsyzYOuGkJxMWy69ayKbCSIWzFmqDqS2OEnrqO2Se1TUmDbBYhs2Iyk0wVeJP/amv43v+wQ8wnc4YDR1+5nn4ix5ge2+HGBOLgxnRB9oQGI4G7G3vkKrEE08/gUGfR0SIFJhahNXxiMoJqytjRitjNo9tsr6mRXF1dZXxao114Byk2NG2CySssbO7i289MXa4uiIUyYZQCBW2AVS0n5NVlmtOy8T4nrhiComi19CZwypWhrM3+F7esPoZmMghAceUDD/hBvZm+WzUHDph+s5Qeg1kAini7QJFpjIykN4jNOtnmGFplN7/SQ+VZgHJgjWCT/19of+eizGCiNF7PcYlmSfGqCbRUY0BVHNb2K6icL0YtaXLQWfKZI08rq0rJBQpzNDM+uZx5ge7bF3dp13MyL6jDZEuBz1UJotzDdk4WqOzW7+zg1QOYu+a4zAYhk2DzeBI6vqEynpyvGlW5+/q1ReKM2fOdBcuXPjYf+7X83tx3VzhS4GUu5JSUBFCxjhXsH9bxLERYw9ZgUYahV1CIKRC9c4OwSps12enZU/XGZpmzIVLWzz++Esc7I2YnBiweWTB3sxRDyr+0rd+Iz//73+F97znBwheT7gxAjGWeXgmdAtcM8K4CrqeqCAF3urF9oFMxlhHTDoTk8JOtQih89ja4BcdF7e3+bUP/QqvOXcGgHvvfS3Xz7+Gqxf32Tu4yu7+lMl8wXTm2b6+YG9vSogz/KLVTiRn2naOb7Xwha4jijpvxFxsygoFIhvBZNXr5f70L0mDeMVqZp2IskejI+W4pK7HDHWZ+ySBnA2YiiwVMSdMEogKJyr0ZYgxMJtPSSEyn7Ts7+5x772vYWW1YTAe8D/9xW9gfbTOz/3sB3j2uU/xwP23sYinyAguQQqZQEXtKq5dv6YzRmOY7k3ZurbNxQtX2NrZpwtBBdd5hpA52JuSDKRnPl0Kht4vTdNgneH4iaOcOH6cE8ePc+TIgM2jRzh+YkyOXqFF15BiYD6bEjqv7iAhkrzOlSgQY+c17SLlhLE6IyWlZYHTBPeitQNcn8YOZSbYw2wlQqkE5eYsHGY86N8bawsSUJIjBHVHuTFCXARE5T+95MLSw7Fa9PS5C8HFaLtnCoFmKXfIvbBFCgyrjFLJvelBL3ov7F9uYMDSM0r13xX61OfOhQnsyERTAN6SDC/GYDFU1hKMilOMa3CDNarhOu3OlK6Nes87B2JwrqZtA9QVr3n9/Zw6f4bVZsjmeJUQAruLKXs7+1x5+RIXX3qZ+WymyR8mE9qOGJIK62+tW+tVXDcHdYbirWcc6oihg+nGWIVqCvREKp6dKZGyho5KmbukpKfeiEAymGRxIqQUMMbRtguiGJ577hKOY8y297nzzgEn6xViO2C+8zxv/tyHyNX/wHf9vX9EZStlIIaAS3Fp2puTMt5iv+lkML0ZcCqQkgJKao6cDU4srhySQ4xKOMkJJ5Z/+WM/zv/j970FgKee/BSffOE6sbPMFnO29nfZn3Us5i1+GiHkpY1UzpnO+8LMU9jGxAShI0UtiilH1biVOVDRCpBRVp5aj5mSr1fYd9np70jU7g6F95IkRJk2hfRhSQgWo91DtojJ5DgnJ5UTpFYINlJVA6azGdu7v8Znf/YDLCYd050dvvIrvpLF576FP/7f/xHO3n2GetwQkrIMkw/Mu3I15c4yb9P3mhO0beTgYMrBZMp0OsW33XJD3p8e0HUeI5Yrl69oakaYoj6jgeee+zSPPfZR9WrMiWFTs76+gjEwXhtrUdw8wrGjmxzdPEZsAlVlGAxWWCzm+KAb5+7uXoEnRYke1hQTa2WSxiVL8lCnJ7b37iw2cUZTBnook2x1Ppt74kshuhCXOXsqp4AlzLH83WI6IMs/Ua8VpQMv5SL6ivXPJUeFj4vhd/94KUvReSvFV0u1lkNKUkqRht4An6JSgZyxVsp3Vl9QmSBjEZK1BKOSAgr0aEUUIjVJPUNN4sTp88CQa8+/zIUXDxgNRnTZMm/nDNbX+Py3fQ5m0GBHDZ989glemL4Is8B4tEqzusrm0XXe/iX3E2Pk2vUtXr56mY31VSQFukXHsWefhcsXbmqr+r28Yoz8zb/5N0/84A/+4PEXX3yxaZomfd7nfd7+d37nd7583333Ldvja9eu2a/7uq+7/T/8h/+wvrGxEb7xG7/x8k/8xE9s/nrY8TN5vLNnzz548eLF+s/+2T97eTqd2n/9r//1pjEmv+td79r+3u/93peqqlo+59d+7dfe/oEPfGB9Y2MjfNM3fdPl/ywX6bdZN1f4IqTckESIJumpMHt8VJNZrMFkA1Tk7DEkojiwYEvCds6ZZDo9xUZBooDPOFuRgjqPpLTg0sULbI7HLPZq2vg8pjrOifEd1I1nZ+cib3jLA3zFH/0jvPcHf5R62KgsQXJxh9BkgMbVS2abDu8LhCU6qHGoF2gqugARSxYV2TaDMbPWs7+Ycfb8GUYbq1zb3gHgwstbbB+1TPanTGZzFtEya/Vkn8IC7yMxK/nGRz0Bh7YQWYCQE132RPQeFVCf0hyh+ErmbIqcQ42bc9I4qGy1MyU7tXczGZMsKVc4M8AbLaCVLbZeUYuqztwASWRjMC4SvKGua0xVKZU/dlSDhrb1PP3Ui7T7nksvfIrP//wv5Pt+4Ic4MrTcfscd3P/Q/Tz0WQ9y1123MRgNcWbGwXyBSEXTNPqeRK/1KrC5uUJOiUW7oG072k7h7enBhHbhSSHx2rvvVNlKEep3viUlQUytWs4QVP9HYj6fE0Pi2tYWF166wDPPfAofA+O1MVVlCSExGg4Yj0Y09YDZfM5gMMB3HQcHU5IP3LO7C0BV1QxGI+3cks7Rgvc3ZJqXWz+ojCZGr/rFZEmhD6TVNyzFRKDvsrjBeaTvu5QUaktRVMKMkCmxdCBCIKrNXGFrHs70cpk/Q+84Qz/HK4VRzQ3KgW7pWJOLQuKQvOOcKw8bsZJLIHAJu0WwPdMWyE6KN6xCuiaphZzEDIOGGCOjjSMcOdWRjOf6zj57u3Pe8SV/ADsY88LVy3zyQ0/TuIpz589w2x33QNvyxMce58rHf40UEuPxKqfOnOHht7yJz33728lOqK3BRrjtzjvh/T97U1vV7+X1tV/7tbf9s3/2z44D3H333Yvr16+7n/7pnz7yoQ99aOUjH/nIJ8+ePRsA/sSf+BN3vO9979sAGAwG6du//dvP/ac8HsD3fd/3nRyPx6lpmnT16tXqn/7Tf3rigQcemH/zN3/z9d/sOb/t277tN33O/9zrpgqftRS4xekAvHw5xWecEZIz+BgL5JIx1uhwWjIhZRIdySy0+CRllGlUi+3Z3vpljRG/2OfK1h4nj5wiXdymsR3cvsLx4yOyZPb2r/FlX/FFXLz4Er/887+KVHqS1lSI3qYs0hu7GwDR10YQJBZzZ6OgIiJYSbggzJ0wdpEHXncvD73xjWwcP0Lbtlz6yBMAXLq0z6VFRY4635qHjoVP5LAgdZ2SbFJLlxYkn0k+I1EZrKBhnCZryKk3AUkdErPCl7lXWkXtjCPEMoMREWxQnxEj6oNIEV9nEwhprrIKZzRGKLUY6RDjSNaBsYi1JAcqbs7gA13KWJdxFYQuk7Lh4uVdmMPLV3d5/uoVQlXz8pUZ1y4/yUcef4Ef+8n3c/edp7jtzDEeeOQR7r7vdkzt2d+fMZnMsULRPar8xFV6zzgxVIMRxhjGVa36ywTtvKNtO8gRIxW1FaTqvS5VphBDBLEMhmuA5djJoxhbwkvL7C0VGUOM6jzjQ6Sqa1KMrAyGnD99BiOG4Sf0s2x9x/7BPkSwWQNc1UXF0D/z8l4KRn0o0ZkatUKEfQSQ74JmSUrRqyVV1Bn0cJKzFnZLRKgIyau+L2ZsOaSJ0ddtTCHuiCWJR3Ii+kASy4nTJ5UAlZOaVYvgg1eNYgiY8j3qu+8+misWeU/MCoNaY8jL4F6DjTp2yGXO5zK4HEkU5ESEkCPGCDEZcgr4tiN4nec5AY9j48QZ3vrOz+bJJ5/iuec/xEIcb3/nl3Hm1Fkaa9jauc6infHOu+7iYOcqH/nlR7l+ZYsLL17gxZcvcNvdr+GNX/AW1taO4ySzP/+MDPf/q1hPPvlk/d73vvc4wN//+3//+T//5//81t7enrn33nsfuHLlSvW3//bfPvFd3/VdFz/xiU80fQH6M3/mz1x5z3ve8/KHP/zhwZve9Kb7fyeP1//8yZMn/Uc/+tFPDofDdMcddzx47dq16gMf+MDaN3/zN1+/8Tm//uu//vJ3f/d3X/joRz/avPGNb3z9/7+uz2e6bjroKtNB0C8cBow4jM10wWOiCmDVm8+oVRaAlDToqHq+EAckzZNRgokU38USQYPXn926conV4QauabhwYZtRdYFmcBI3aKANBB/4iq/8Uq5evMSnn3kRJ7XSwbNaRPVnaihU9RgRKzipFK4tOWXGaucTfIuXxANv+Gzuf/B+Wu+5cHmHJ56/QNsueO0V7fgODubsmhk5RkJMdCnRxZYUW6KPBA+JoGSakCDoqV56nVhWuxCTk34APfQF6k6asxYwydgsSn9PeXmdRDStIqUyqyFrJyeQU8Rmp3PPDLVzkEtqO0Y7iyQquheLJJZzxpgCJlqMaTAOduYHHPgF//b97+OtX/yFpE64duEyly5f4dq1qzz24Sd54mPC+3/mYxw9MeC1993Gfffdy+vuf4Dd/V0uTy8jYogB6FPClxMn1T8aI6SYix2ckFIHxEIc0bmc3OCzkBPasRq1msto8YmpF0EX1qEx2HpAVZXZXsrkoPB1FGFQPov5YspsdkAOikBYY7HOgjE4a1WrCLx84SL59ElWV8fklNWWDoXEU4pL2UMvBk8CxEAMHTlXKOHIlm6tkGuKEbVVLwBSTtRWn18TypUQo8SsjoOdHa5t7/HLjz1OCJGVlRXqZqA5h84yGA5YW1ll2NRYowfAuq4YjdZwzqpZAIKpKj0chEjKKtonQ/KJrtMIIclC9J4UfTGS1g7QiJqK5xgR55AYWdBhbYW4EbfdeR9uvMq/+fc/i6sHPPz5b+eL/+AfohqMiG0gLBYcPXeW6XzK8889TWpGfO4XfRHPP/Usly9eZrGY8fKzzzA/2OfhN30em6ePszeZ3+w29Xt2/eIv/uK4J1d9wzd8wx3f8A3fcMeNf//oo4+OAT7ykY8M+j/76q/+6m2ARx55ZHHvvffOP/nJT45u9vH69c53vnP36NGjEeD8+fPttWvXqmvXrrlf/5x/7I/9sR2Ahx9+uP31z/lfwrq5BPaYyHmBlUGh01tyTLSlwJkQEFdpqKwxOtOyvaGxCsXxGVtiWDJRfR6TIYovuielMrss5G7OlesXGK7dQZrP2N7eZjgWNjY2yZKY7m5jBjX/zVd8CT/4Pf+C2b4nFgmFUtZZFj7tBotnYj/fM9rx2cqwCDNuu+s23vrOdyDVCtvXtjjYm7CzP8NHTUvo5jpkny8WzBr1CQ0+4GMkppacPd5nvNdZT53UJzPHnslXXEYIWNGEeHX30OKUi2wqUTrmLJishIKlJ6ckJa5Amd0oxT/FnrofdX6VtRuPuTiKIKqBk0xA5344S2WtHkoEDfmNATEZ8RnjPatZeOaXP8wzv/YJTp4+y21338H9D97HYPgGJgd7PP/pT3Pt8gGffmmL5168yAc/+DhvedNz/PGv+yom02e0UJsKI44QuqVg2hglecSgMJxCiCo+FzGF7aefk7W9r2Wv19O5lrWWWFxeYkq4qsKU+24pMDCinXYuuXNJ5RLWKSrgKqGuij1csgQfCDGSUyAGwZe5bN00eKsF2Dmd2eWUqSpHLEHImiJQZtsUET2ZlD05eRKGEDpszoxXVulCS+cDVVVTVRUiauXmnCM57cJSSrjsSK7CZGhjphmvUNcD5osW7yPz+aIkH5R8vxQLkUrZuykLMSWswHw2Zz5fEFEj6kHlcLVjMBwwHK+wurLKoG4YD0dUzpEIDEYNw7HCwdY5RqMRsZszn00ZNjU+ZyatZ3T0NNcPDhjVQ/7CX343J06dwSfY25+QFhEnDnENhEhdG+6777N49ulPsL97jdvvu5e1I5tcv3iRlaaim0ee+ujjvEYe5Fh7y7nlN1v33XffvK7rV1yc8+fP/44psJ/J421sbCyjMg7TRfpsmN896+ZYnTkUPVT5QseItTXRijq5RB3KG+vo09cpbDS1T1LbMPUZ9DrzM9rR9FEqJqM6Iww+LJgcXGHr2hpH14ds7c8Ybk0ZNCtYk/Hek6ctMWW+/F1fzE/+2E8RvRZoRKnafYC3nmqK00kOJfAzgIUzt9/Gu/67r8TUjk+9eIXLL7zIYueA7L3GBBHJRvC+QEaLOQun6es+REL06q4hQb0Wo9F5XfJKWE2RbFhqkqxIIdr085deeqHFK8kNrLuSJ6c0xSJORl1LchFMi7FaykR9ESns2RAzPkaqkmsoZJxLJGMJSfApU1cVlUELIOotmVNSW7jsqVfGxFBjGsfFq5e4cuVFjKvZOHqc2+++k9tfeyf3f9Yq8/mMrWtbXHz5Is9dusrl7R0G4yMImfFgwHhlhC32Wb2NGCgTMyeNKNKCWOk9FTuMSaSk7jPOOYXOi4jbWRVZ63ws0gWF5FKxdPOhCP4VyNb5YXFAiTGxurICwPraBn5lhaYa4KQmRI33ySgasHJNzf2N0zSBtluQg7KRrXHgBF8KshPVsqq3ptMDhLGYnhNjLTFYXMpkidSDhqpuyvvWH+m6TsNYRf09vS9kIAExjiNHjmhsVRbGowEZIUbN7DNG5RnJB2IsB0lTkzHaEWd1NCLDrO0IKWi8V+zYPdjjyrXLXLx8GYnlvRghmURVW1JKzBdzus6Tc+LYkXU21jdw9YA2ZJrRGufveS2/787XUA3HLLrA7mSGMRWVsaSo7OMcYVCNGNTCYjHl/te/gatXXub5T3+Ken2Tk071fnUT2J1P+NRTT/FZt53/ne9wv4tXzpnZbPaKovKWt7xl1nu8fvVXf/X1v/JX/spVUJ7C+973vpUjR45EgEceeWTZJv/Yj/3Ykbe97W2zD3/4w4OnnnpqeOPjfc7nfM70M3m8z2Q9/PDDi1//nI8//njz65/zv4R1czM+EXLW1Oaq7nVNVoNlg36hWu+xTbM81UtMajBttCvRQ3ythcj20oieoNF3aUowSSZh4pyda1c5snE3Mw9b1ydsHFlnOKjJyeGnAVxk88QKb/3it/Dv/r8/i3O1ip5VmAfl8RQWK2w6oxv8u77ij+CN8OmLl1nd2CBKA2aAMQt8aOmCJxqIorM5gG6xwMsEHzMhZ2LqVISbO1ISbLLYHNXVJh+SanqyhP57iRGyUk7SKqbPUdT02vQWVMXxSnQWqVR5hUYTFPaqUtIzGvRpy3wqFgZgzMXZo8hNSPqYPmbVWmVRpxjJS12aFaEyllmIuMEQcYaN1QpyJHSR6fVdHrv4S+AMoyOrnDx9httvv523fMGbGY5qHn/iSeYHC86ePMH5s0cJccHa2hGGwyHD4QDn7LJ7izEWiFDvDe3UPMZkrO3JMvrl7L0tpXRz04P94p3qiEjptvS6GTFlBhiQDM4Yhe+AeqpmAseOH2d0/vaSaK8aNVeVmaJP5Ou7ADz08MPMX/9aJQ4ZiwRhtliwiB0+J/b299nf2cUkvYYxZWWL9rBuyuDUULqKEF0AemG33qdGZOmqIqZSGzh/eODOQNd6fIHnrbPE6JUokxLZ6ozYClCYq+pWZKichdzSVArx26YhpBorKhrfPHFE9aPZYrNTSU/0RBNLFy5UVbU0EoghM5nM6JJw7+vu5/T522lWxrS+Y9a25bsuhBzIyRfLtYqQkx520DnqwncM149x531jXvz0M+Sc2Txzlpeff556WLGYz7l84crNbFO/Z9alS5fq8Xj8hhv/7Nu//dtf+qqv+qrrP/IjP3Ls3e9+9/n3vOc9J0ejUbx06VI9mUzsd33Xdz3/lre8ZX7//fd373znO3ff9773bfzDf/gPT/3UT/3UxuXLl+uqqnKMcVlM77///u4zebzP5PU+8MAD7Rd/8Rfv/szP/MwrntNau3RK+i9l3dyMT2TZQcUYccaBTdgUFJYRwRJxIRGtzgSsCDlkTWm3giRLSh5sBWJ1zlO0VUKh9/c2VckRO8dB2OPK9WucOXOCWZiyu7VHdXKdFA2Cmvt2kykPPnAPVy5t86FfeZyqMkvaPBSYawl9CieOHeH1b36A8cl1fvVDTyJe2FxtGG6coBmNCAsDHXgPOSRCCockgS7iTUfOURl6aJGNqD7QRk2Hz1k0JZtISkIu3KiUPDl0KlmIRjVaKANQnCAFIuuhT5FMNhq067J6M0Y5VGcJfURUgyRLJGKsntpDiJqEIdoFSup01pdBTEXykUUEV6nBd20dNgqxhKbGFBnWVlUspi5MvowFRmlElEicz3nxqSd5/pNPkq1l7egmm+tr3H72PCtuwJWLF4kEBoMBt912ljNnTqn5sTWcOnlShdHl/hLS0sTcZsHgEVeXrlffg3N6CPAhsegCo5UVFr7FYGhnc+rxSCOOyIjN1E45idnreySXFAKgrmvyoCmeqFF9TskYElIJ43UdccxnE2xlaaoaky2py6w0DStO2ZXHjx5le32bZ596qhR0q+JvI6RQOrJYIQiTRUvMntrVIAEfAtkU4o9VX8ssXokqUrw/y/2htgeaeuBDVBQhej0ARU1m9xkkOf1exUwbZ/qeot7Drfd0XlGYlfGYq5cvq6NP01CbCqjU4EAyw3Eh4aREbRvEOrqQOHbsOLedew1n7rgbTIXvPJODhWZnhqDz8wQiiv5oWHRvdwhdTkSTSVh8FrKFzePnuPzis+Sq5sjpE2xf2kJiYufy9u9ga/u9u37oh37ohfvuu2/+wz/8w8deeOGFQV3X9syZM91b3/rW/S/90i9dMoF++Id/+PleWjCdTu23fuu3vvze97732Cc+8YnRYDBIN/t4n8nqn/Nnf/ZnNyaTif2Wb/mWiz/1Uz+18eijj668mtfgP3XdVOFzWXApgWmR5JFiKKzszgpTGBeSk7q2iEWSgDhSavEBqmJ0HWNS6rok7TzK/ISkJ18xmToJyYOYzNbLFzm6uo4ZRuaL4vZifHGJUceTrp3yOZ/zCBdeusiVy1epq4oUtPtOErHOYaUiiuHBNz1CvXqEbuGIC2XkXWpnrLbQrG5iaRAaclKnC++DhqiiDD/PDMnKcM3Z03t29m4xuf9Pmcepj2OZPGWWBVtMfyovHWFGr2NOSyZ7LoxFJb9AjiU4VXFOYhHfg1HzZ1OrF2bWAtjT0DWOBnCJuqqWr1WywftIGbspAaaI5B0Wm1XbVXZ0rBEasRAMAYMbQW3GmGwIKWGcGgL4mPjk088SoxImrDUs2kDOwnBUk1LiyU8+yetf9zpGoyExJ2weaJRSbUnBI2hXbY2hclo4JOtnUNU1vou8fOESx44eIybhyac+xUOPvEH9ScucjSIPMeIwVW9zp7oja2p1fbGZLnu6YjhgSuGvSse1vrFOW1XM5nOmkxnj4QqDwagU5IQPC9Y3VnjdA/fz+OMfJ3UlSzAquSaT8SnQdYHpZEbsIjlN9XsAVIMBrnY4gdippjXGABKwVUUIkbbTxHMpH1QKkcoKxjlyhqr3uAwByZGQI9knkkSSZKBCrCsz9ASoa0sMmd39PZw1jOoGg0Osox40iE3YymHdgNYLxzbP8trXPcDq6iptSPhkiJ2aUoBXl6KY1DKv9wTNqp+MZcadRNQoO+s9W+VIZSAMxmyeu43nX+7Is5b1jaMs/PXliOG/lvWZ2Hq9+93vvvrud7/76m/1M3t7e+bHf/zHnxuNRhngE5/4RPPX/tpfOw/w4IMPLrMKrbW/7eP9Zg4yv9nrPHnyZPzpn/7pT9/4Z9/2bd/2X1zLftOsTiSVvLeIixZyUHKGKSG1WWENyaaoCzTKJUkmierflb8HZZ9fEjQkFSFvVoxZk/4clUmk5Hn55cu89t4zbO/MOHfHaQYD6GZziJnKWWLoGI9G/ME/+KX8+I/9S/Z2D5bO7sZqMQohc+frX8ukWzBoAznPaWpD2y6YLTq87xgvWobDdTJQ14b5oo8D0sIVU8THjC3sSyUqlnlbcbRXQk8J2jQ6Y+rTwXLR64moLo3U9zJ6LVyho/dBsxk1KNbrJctZaO7D7kWDYZ0YkkEf11ggksRjUyqCc50XhpQxOVNbwbkaUzUkSYS8wMegrFeMSk5iJneBZLToi7UKtSqfXj/b4qBvgGEzIFcaVbO3P9HZnTGsroxZH66waOHli9c4dnyd0WDEbBH45BNPcGRzg9l8znNPX9AZscn4tqWpa0xllgcCZ90SRhRBU7xDUCh2fZ29vT2eeelFVodjZcVahSjUXlVTPEIIbD73Al8DfOADH2Tr088jRkrED4Bu1Bk48eIFXgv82q99lKtb17DOMplMOThYcOLYCU6dOo51mRBa9R4drTIar3H96lbRviWyBAIZU1WElGmGA6TO+C6wmC8IKeFjoOs8jTEMqlpZlQlaH/FzDYctynMESl5dUseaBNbpNffdQg9Y2ROSmsqLVSlDl9W/dGmuEDOz6Yy1jSOsHT+GpEwtmn7XatAebQ7EZDm6eYQz5+7kyLHTODdi5hMpm6UZevCdFjtrqSq1j0tRoWkRjcfqvPqxLrqosLQEchIqcWo2P1rBxsip03fx7KV9nM242mne4K110+u9733vke/8zu88/frXv34mIjz22GMrbdvK0aNHw1/8i3/xtyyav9fXTQfRKuX8BveTmEheExNU/0PJ7KOY3WYwOumwRo2pU9m+lV+pkyujzZ8WPdENPzjBJCGlKdY5DiYHHOy1jDfGXL865eSZVZx1dL4jpcxg0ECKVFXmi97xBfyr//On6YV8EhMYx0Nv/myOnz3Dy1cuMZ0JGxsbhLAAAtlnprMD4qQjbgj1oCKnjhC9wprLVO1enZWW4mAllSQkqb1UllhYm6VYZSjompIvcsBRCr4YdarPasFGIQaZ3gGFuLz6qQxBrWjyeZZUZouRnCy2asomrqf2nMFElTsQEzl6dbppPVIZsnG4XNG4ikFt8DHRzaN2syUxIYZIMolImQmScTYq5IeQgrIG+y40doGmcUwmB6r/sjXDMbimpguJ3YMZrrbsbE8gBXLseP0D93PpyhUGAxWUJ4HKbCA3yAQy4OqKGCKLrsXHUBzIMrNZy97uBUUfak/qwFntgGvrirxFSFHnoD4UpMcYFcpnwTgNFlZSiH41Qr/pZgghMZvNyRnGwzEXL1zm6aeexvt5iakq4m9TEXzJclgaIwi2soToIUWCV/JNjJGrW9tEEq4yjJqGHCLj4RrNoGFldYWV1RVyIQKFGPTgI1LMuT0+ZXLXYYHGObX6MhCSdmsS0Hmf6GcXo0Z26Sw8ElIkSQQf8EnTM+p6yKLzHD13lrPn7+To8TNgK1KytEHT0wWDSYrONMNGmd6i90vbKvGr9Z6DSct8PifngI8di6iFWkyGpFFiTVMj2TAariHJcu6uB3jpmY9Rj0cM6vpmtqlbq6yHH354fv78+fajH/3oeD6fm2PHjoUv//Iv3/kbf+NvXLzjjjv+q/aBu7nCl6J2AWKRLCSLDtZzn8pdjJWzRuWkQuwQEYh6wpQSFBpTwpBUUpAzMQkStVAkkwklh85kzW+TZEAil16+wrH1O9k7mDPcM2ysNjSDAV3X0nWBpm6wFo4dW+Guu19D/Niz5bXDyTNnuOf+h3j6U5/iYPeAo0fX2N+bYqsBYV+1XDEIi3ZOSnusbK5Q2RL2mYNuWkBOOrw3ZfaS0NllYZtol0sgJ1NifZLavd2Q99azDYXSFWt0hcKZqff5MMVcWX/DANKHnZoSV4N2kErqCCQiytRXAbR1rhgPJ5KNpAA5GFKMtCHQpinWR8xopLo+Y6lqQ8iBlEp8UEqEHNWWTjSeqrMJyU7d+lMRxudELuG8ufO0uUNcxerqkNWVMeTE/sEBbm7p/IL93QPuvP0ci3bOCy+/xPbWHjF7BsOKNnRYV6yyAlo0UiARwCSqxlFRcttcpR1FFxkMVsjWMJsHxqOBxkdVGu1knQMTGNQNq2tKNBuNHatra3qASUm1jM7q+46RqtGviLFC0zSMR0NyNoQuUtma4WhEiB2LxUITsFJk0XbKDs1qyh580MNZDgwbtUxTIf6QlBIbQZGB6XRCaCMrozFRM5lKYY9Lk+9iZFccY8qYQYTKOnKMxBjUkk00+UOy1VlzNsv0it5M24jeO0kSGCWppVbIybLwwp2ve4Dj5++gGqzgNe5BCWuFaGSMLabVmS4GYquykrbraGcdrc9szabMpy2+9QS/YOE7fHlNVrIyuDPE4Dl6/CjNaIg3NW60ztqJE+w/c01NAW6tm17vete7Dt71rnc9+Z/7dfyXuG4uiNbY8m0pnn9ZGWWSVGMkuSPnocb8pI4ognHq6WgRhUZdV+jXRUuWooZtikNocFnF3yIJL4JUGmwZgsWZwHx6wHPXLnDXxnlmbWA8tBjrcNWAmOf4pBq5xfQCd9x9lq2PaZTQcG2Dz3rz53D56h5ta7GmYjaf6JcXwVJhbItJhuCn5NkVTDNlOBpDrvSEnYqxMQGbayRVSsiQWCjsAlaU/Zkd2SSCBLxRkkXUSqneiK7SrjmXjD2pFcbL2t9Z1D6rdk43rNABCWOUvBIFJcHkUkJFmaJBAlkHKBgzBOewdYOTpJtcqPBtROaemFu66Ml+xiREqtFAA3Irg4QI0au4uiQGGFHwzvY+rSkoYcFVCr1VmRCgdkNySIizDOoBTe3wsynbe7v4nKlHQxZ+xGT3gJ2NPa7v7rN59iR7W/vcc9drOHnqOBubR+miJ6bMoG4UAfABiRHJGVc3GFOVbjvjg+dTzz1H5cYMmgEvX3yRuq45dvQYlXXKBoVl7t/GRGf2J4+fojl3QjupmOhaTxDBVQ7vPePtXQBWV1aIR9YKhKzQa0Rog2c6m7G/OyEsAiG01FH1dDFGhsMhIQTatsU5RwiBruuwVUVVKalmZW3M2toq169fJ/rAkfVNhuMxs3kLJmFdojY1OQQGtS1yHdUnGlcxENV5ZudIJdXcFD9XQZm/PfoiJTHFOoX+q7rW+a2FZjDGm4yrLPe+/nWMjpxm1wvrOLJvSSkwGA7IWQg+ElDrwSx6YGjn2vlnNB9yNk9M5i1t2zGftUz3Z8zaBSknXM7U1mJMLqGzlnnnceMxzeoao2HNaPMItj5BqJ//T9jibq1b6zeumyp8KZdUZRUokCVibCKxICaDyQ71jhKSGDKmCMm1Uyz8Ct08rSVF3UDVbiphnTqUdFlPuJIjOQnR2BLSuaBKDVcu7XHu3N1sS2R1lFgf62wmtD2kY3DWMB43bBWI8J4HH+DxHU+KMO8OODiY4xYtddWwMlpRCneOiImEqqJLnv3phCDgZJU6O1yvjYDC2CxOKlbF4fQG2fTApCWljoyH3HduhagS09JiK5uESWXukfX6LD0gleeiOsCYyMWvUQrc2ou9M7l4LapO0adWHU7QcE/nLJWtsU5wRoi2w3sgQO4C3rd0U+1MVkYjKiO0BWQ1ywIrZVa5dJjU9xwz2SppJBlhHubYCI1rMGRmuwdcn+6rHVeG0coK0wPV9W1t7TFfwN7uhPlin9l8zt7+hJXVdU6dOoWrirVc0WBKzNrRpKgWYIj6onYdj6yuc+3qNnu7E97yxjfx0Y89zl133clo1OAqNdKOXUQy1IVie8/dd9A9/ACLblHSzsGDavSA0VANJx56+EG6hx6ijzbKPRRswIfI88+/jGT1Mn30sUc5fvw4p8+cYXtrixeef569vX1SSrSLhUo4UiwElqhU75w4dnSTFDJ7exNlXdYWZ3PxW4WQMzhHXdV47+kF5ToTDyrfqJtyXyaqSqMeFWlRP10RR4ralcUisRFjyFELWD0acu/9D1LVY5577gorm5vsdxHfzkEicXuHph5QGUvImc6rY5CrKhCNrkrRA46UM6PRKoIaogefNLrLBybzObHtMIIyuAsLXFzNkWMnmY6GuGaDo3c/RHf5Eze1qd1at9Zvt26S3BIVl1egpDC5gOXETqndpid6LB1GTEkNKH9AKoxIQS2YE0aSOlyAWpeJzv16V5KkTRLkBd0ic+nCZVbvOcVs7jmyNsTHDmv1yxZywFWWtpsxGA/gYIJPmbaNtLM5YT5HYkIGFt95WjpqWxNNok1qx5ZSRzdvMWIY1BXGmqVTf5FNq0YpZi30MRZGZR9Vk4lJOyRBoZ3eN1R1VyVNXLQ45RT1UCDqX0rZlPpiKWIQpzPSmBLOHNp4IUV4nlVDmHIm5Q7fCZZERdJ/GoNQYV1FbWtGzYAmdnTzBYt2TsgBv2hZZLCDSuG+UmStsRD/f+z9ebhtWVnfj35GM5vV7O70XbWn+iooigILEAxRULHBIPkZY683N8SIf6jxRo0/HtF7E/WXJ3a5T6K/eE3UiEYEbKM0CgLSCFhQfd+eU6fdzdqrmXOO7v7xjrnOwUTgKGKMNaCeqnP22nvPNdda4x3v9/02QvOPKRJC/ztBmSSFPUO93jUURU1ZWBazKd5B61qUlS6wa1t8JyG059I22o6Zzxtc17Iz3WE4HvDwgw+SkufoZYeXhB6rrZhp5/sn2jexprPWYAvDwSP72NrZZG3PGs997q184uMf50UveYG4CGUjafkZmaGbAk07JyRhI1pTkJIQXbRRF+a6pBwc7D6p+MVOpApHDh9gsjvnF3/pv3D4yBHuuusuvuiVr2B1dZXn3Horjzz8MPfdex9G9wcVYSvbbFGWkviCBhJr62vMpgt2t7cZjAuq3MlpC6HrZF6Z0hJy7FfKFGBJZlBZFiLenaQk88rkiUls4mKMKCti+Bgt6wc2OHrldWDHtB5JWNdyCCurIUoFNrc2abtAZQyt9wQEPUkLj08dJlUQIz50JFOilKWuB1TlgLIsiVqxuTMhuY4wE+KO0o6QOkLsSCkxO32Ceu0Ag/U9jPccYM/+v5sC9mfXX9+6pMJ3ZYzcGhqZs2AxROgUZF9FfELpgUQS4TMUIjozEbgncTNJDSmWUhh0RCUvj0kxd0s5Ey1lcgyJqDV4JUkD2mMeupcDtmHfpGatmVJVEDxEFwgkFFPM5i7zDG0dPL/JVXbBYtaRfIsLU7q5wiaDZYd6MCApxcw1xGZO8B0uOMrOU5QBXRmudDLjk1g7SY+PWjaZ3KdltTky61NzdC7u8jyky+hndlkAgUoGoXYGlu2iEm1Tn2Stc9FNRme5hMwde8F/H2OkIrlPiygvM7LoHMEX2c+ywGhHGYX0YQtDsTai8iVN2zCfL2i6hWyQOvbhAtK59wnoCFNW0gwgGo9WJSpCmSTM1ShFM5/SdYEQhPVrbUlhxTOUkIhBMZ8tqEcV29sTut0Z63tbZrOW2pbcdeddjMdD1tf2Y/tZUOhEGtB5nOuoakmXL8sCaw2d8Rw9dISPfvij3PGCF/HBs5vix0qiMCW9BbjVImeY787wQZi3NpOBAGJwQijJWXCdW+DDIstClCTGx17wn+jajrIyjIYDXvzCz+PW5zyXP3jnO3jJ57+EA4cOcOPNN/LgQw8w351SD2oWbYfrZpRlyXg8lo9GFANptKKsDANf0kwaZrZjfa1iYBQ+ePHFVSK3kM9EPihqgTV1zqgMBpQtcG0L3uUDXVw65GgMtixog+PYZddy5LJDTBaRpx57ksuvPMpkNqesalSAsjS0bUNdDxiNRsybBS50KGOYLxYorwgp0fQ2bMBgYIm1RxuDKS3VYJ2VjVXWd3bZPr/JTn2exfYEt5jjO9kHYjuj63ahbVmcP8t0us3+i7xan13Prs/GuqTC968WM/7VYvbXdS2Xvk49/Bk/9A0f+dPPyq+ca81mYeV4HpMIjMkFOsgcrVf5G+tI3kgnpBJBySbaC9RDyibUkPUdOdc6pSzD0Jm0IscMjSaZlOFNkTjELItA9TEyJkNdgRg8Kka0lyw/rzTGylyxc4F55/EmUA0qyqJiNBoxGA7YnezQdY7oPdZonNB45fciJsyGvtMwJDpSLAVy88K0nEefPTQVSg8oigpVFBLdIzwoFAYXPKulYntzh+nWNisbe6ntjH1rJUqVfOADHyF6jWsd1li0Fbeb4WAkMz+l6D3BUoiZ9ah55sQZ1oZrHDx0lI/+6V3s27uORjPI88I95yccAdwiMNttUFYxrMWDVrrCgHOR2MphJcYkAndl0LrAahHgm6LApkhpPPfd/wCPPfQYP/wnP8xwZcxoZYX3vPuP+bpv+Foinpe97PP5w7f/IefPb1IOa+btgnnbkIx0/UWKmKJg4VrKumLIUEhMpeVP3vNBBqViff9e1tb34vxCIFxbUBY1aEVdlqioCS4Ik1pr6uGAJvUMU4HNfRBru0gkOcPBw8e46rqb2G1nzJpd9u49wGS2iyMwn81YrcfM54amaRiPB0y2Z+wspgxXh9iiwHVzppMZzSIwDwVBWTaGlWge546qKKnqCmPkPbw+HFIXBcPhgK3xJr7x7Gxvsbt9DmLCdxNoZpiy4cyJbSYXB/k+u55dn4V1SYXvn4zGPKItSRX4pDA6iqZLZ/NZJSyvpGrR9xBIGb70yQPC0tQxn27JUKhQDZFqIrBP71+I9ki2tBXWKAHFAIWmsopjlx3jquvW2L93lfF4yHw+x3tFUI6zp7cYPHqK7/vIXfy/bryR+1SEaCEooppSmA3m8wlWCQMvFTlNPjmCl40/hYDWhsIOicayU2qesQoTJfA1qkjSMn9JPmBUlOQJQIUim3mT4alcEBG/05RAJXMhxw1EIhGz4DhZkg8kI5pIqbUX7J6U1lmzleekZH0bfYybpGdHEtEpUmpQJZhhCVn87dqOrm0oygptNHVds7q6ims7trbPE3JBFW9veb6lstKhgyR2pyhM1JzkHZKj8wmURtlKSBelkUJhND568AHtvXRUybN9fkrbdpw6cZbaDrFFxXhcYIxiPt1ldzInBGFWomDT7IqRt5YZn49Q2Er0jijmjedd7343IeX8ZL+gtJq2dYxWV7nm7CY3AO9/34c5ffIUScelZZ6JYv3VJDh88iQ3An/8R+/j6fseoqxGaGVZTKfoskRbS200zXxB6zwHDx6RcNjKMF80hDPn+a23/g4rGwNiK23Y7mRO4Rp8FKLYdDoXXWfX0XUd5cqYSENsPc4vWJydUUXL9mSHp0+f48D+Ixy94gCdc3IoaBb0EbSlreg6CdcVqcYMohdHFReW0LsPAZ88h/Yf5fhVN/LOd74PpRWXX34lq+s19WBF4pB0YnNzi/k0MhqNmUx3CUFhi4IUDbu7LT4oVvfuwU5mPHr/oxw4dIy2jQwHBZ2LzCc7lIOatdURKiWispT1gEOHDrM6XmUy20WPK+zKgHZrk1Zb5ru7NIstklZ03bOF79n12V2XVPgeMpb7ypqYLG2AwrKE8pIps9WYRZkSbYpM2C+W8zAVhcRB8CQkWywmjXIdqA6x/zJ5dhQxNhCUGBWTCpE+WIjBQtSURnPv5i6fpw9x+cqIwwf3QdK4RizFJusbnDgpJsOP16s8oBXdosWU0AYgOHxVYpOWTSQaKlOiigJnW7wXdxqbNNaUpMJiTJJuJ+cRikg/GyQrtQy21WhU1JlsIoSUPigiIH/uu72Uk7972xSlkti6qYjRIqT2vX2V1G2JszH2Qjp2Lox4maUqI9AniNYvBSezUg+xqClXayoSad7iOk+3EDu+ZjanKEvKi7VTCpKSoiZFt5dsCOmEBDF1OUUCfPAEFFZbjClI2qIUhM5J4kHy6KokaY/V8lov5g0+RGabDWeGE4rxCEzJaq1ZXV1BYVgsXI7B0iRLhj6F2FOVhejUjMozsxIfNTEanE8kxgQfKCqPKoxkAQHWFChlkWDDQF0VaKVpHagukFtxmtYTIyyaBUYXlFW5zK1rmlYYz0pe3X0H9lOPBtxz3/0YXXDX3XdRDixVMaBIpWg0dUGZw4JLWzKbTtFRETzsbG0zHI2wKEJQrIzW6I4a1swa2+c2mWzvsL1ZMK8LTHYXQsHO9i5VLTFFRDmQaCOvTVnK58rk2DCfEskqlC34T//3r/DAo1tYazl+/ARnN89RVyV79q5z043XcsU1V7N+eMhsukvXBprWsbo2xHeJ2TRQVhVNG7BVxQ03Xk3berppx4nzW9R7VhgORzS+4/TpswzrEl3UtD5SlhVKKdbXNihGY8qVNbqVDWZmBOoMs50pcbGF7zWXz65n12dpXbJzS8zkApX1ehI8lmQ+lTcdlad0SecEARUw9Hoi6RXUkv0iGqOgLiS19cHVKXqSlsfplCB6ggeDXVpK7ezs8uQT59i7Z0yzGhhYQ4odSnUMR5owlA08eI8L4BcLWtXiaKTwaEvColMm0USxqErEnEptxO0+CrkgRaRDQzLXUp496ajEHDgG8SkkopPNQZ99HJGsBk9Lh1GWiKZIfRhRf7IVcoto5hI+E4KiYunVqJIYAWitBQIlEhMYnTIrNL+0mTlKipLk7mE62WRYROrhihBLdhOpi/hOnntoGhZtgypyClvWf5FfG1I/K4p53qhJOGIqIBoSCqtLtCqz/ZWmMIoyKAplcCSSiswXU9ZWxnSupXUdWhfEqJlOG7a3p5R2hPKK4dBiyoIK6Zq1MSSdKLLjj4+Bpm1pnbiEmBQxtZAuCjOgaT1t14CPdLtePCxtjhiqheyDUuB8dgwKKKMZDA3DgcwC67rClKU43WiD71p5z2eSUoygjaEoCnQwuM6zOl7FdYGyGJCUFM96MKQqLW2S1IzOOdrFAq0lC9BqRTvbpbSWQVFSaoMqS+qNDTa3znLNVVdy390P8dgTj9G5Fk3BsB5QlhXD8ZjVtRVW1lYY1kPahcMUltXxGotmhjIFMQoZp6hGDFbWaBrNyvo+XvU1r+Tq66+j2T3PbHeXGCMf/vAHeetv/3fqeoXjV17GtddcxeVXXI0tK85MzvH0kyew5ZCiDWxtblIPSg4fOYgtHM1sIuHMuzP0EExh0UXBYjbHpYakCqwtGY0qDIqp95iyYrhaUDhDVQ85HafMmx3axeRSt6ln17PrU65LKnz9iDmAxLHnOBYga8lS5g/qbMPVB29K7xFjkm4t+5mIpkoCOmXmADqlZfHr2XzSXAmFMGZ+fw8baqM48eQZDuxfYf/6PqpRoLSamRNT573rewBomxkdmuAWONUSNaTQYkrR3fXaJ5D9TGu1FAqnLLBNTnR60WqB+LIfqQ5e/kkiOo8qW69loXlSHsgBskjHRoromIhKoEtS/2wNRGEUgkTkkJmL+WHoJJZjIdtrQc+izW44S+stmf0JSzEh3pWJ2HUstkTIPFpfQduCZnsmXSoJgiMERwxa7nd26VFZtGzRxAsG75LsoFsxNibDstFitJU4oBRRzosnaISoIzbIHC0C86bBJxGEJ52I3jPZ3MUQ6YaWkUsMhzVRR174gjsoq1ICYoPM3brgGVQjKlNniUgg4nBdS/DiJNL5lsF4jcceeYxd12B2tvMnQFENSowuMKqS1A4Qun8IqJAJSdlTUxIMIsYaMTbIh4+YoNKl5AsaIGgOHjzE2dOCOLQ4NvZvUAFVpShTIvrEeDzGuQYfHNYYkksM44CYLcOSFnZvUJ71lTUWswW3Pv82vvhVr2R35zynnznFiafPMByuMB6tMFgZYGvLfLpLUQyx1tB2GcpWJQlP5yKD1b2s7DnCcG0Pt6wfY9IlFn6CLhL7Du9ja2fK81/8Im697bl86IOf4J6HHuHEyRNY9VGec+tzufzm67ji+JjdyYSdrSlVOWRlZY3z52ecPnuO0XiNQ5cfI7YLzm1uUo9FIlMVJX7R0TnHInRMJzsMqpqgNKqUgFtdGIrRgGK8l0G7i9p9NoH94nX06NHnvO51rzv96bw6/zrXAw88UN5www3Pef/733/vS17yks8oveG1r33tlTs7O+ad73znI3/Z3/s7v/M7K1/5lV953dmzZ+/ct2/fX9rZ4BJ1fEnYY0n8KsFmVxPRCZGS0KSVkqw0hXQeyZMUOJ0otAGXQBtMkenwQWZrXsbtABgUURXoqIkqEbTMrvqoHqXJkSqaeeN5+OFTXHbsKmwJtvCYJBvTaLySLz4IaUHJ5hx8okQRWkdpLNoomtCisOLAoUAXJssILN51xK5FFwWBCMaKObQWvaLkDWpIAR0l1Txl2LNvZVNmZhbJomJBRIswXvVUdFAxYJRMMn3UaExmEpLJM/J0NFrSIJTc797pBQoinYhLsqem1oVAlIi/o0Lhm4WktCvNeGUFu7bKfDbFNQ1lUZPa7DSTdZHyAyQpIOpATDIvSgmiFvcWSYAHpQvxbMym0jEEsRmL+bpVIHhFVBHnHbQQgyKZRNd0YBboUlPsRFQcEUKicYGN1TFVqdm/fw1bSHxOSEqibQYDCmWwOWw3JoePCq1KQhISTEiK/Qf3UNQV48uOwP/nx7nttuey+kVfKIHBXnSMPkacl8zA6hN3Az/Ni+64g50bricic1WdtZOt71BGZ41ei3Ne5CQRFo3jzP7zTHenVCsVjz3yBFcfvxpddnIA8EnMpxeWtm3FRzXBykpFXdbE4BgUlq7z4CH4SFCwO92iLCI6OdbGA9pDB1HK4L1nZ3eHOtT4GCi1pSoKTKHoosegcNFg6ppivMr9jz3F828/zPbOKfYcPoxyczZWxtz74KPM2sSgskzOnaEaj/nW1/xTBjry1OOn+cCHPsKdD97PLddewzW33cTe9b2cO7PJ9u4um9sTBiurDFfHqBQZ6AGD1RGT2ZyREVMHpSSxwruA8wtSjBTVgHYyETJXCGjtqYsB9WAPuvobCO9+6KGS06f/4v3x4EHPtdf+pUNf/yrrT//0T+9bWVl5Fv/9K6xL9OoU4oZWiqQjBJP1SAARnSExOaVGIayoQsTrQaymYiEmzCppCbZNAYXFZFNrr7MZc4QUJYE86ZANnI24hqQM7YVISBZT1exO5jz++AkGw8Ns7CsxKdJ2LfVAnqLRlrIc5pnMLAdyKpQB13YolVDGkJRAdUklUpQppVUShppiJDpHjBpTCLmE4PMs80LR7t2kwjJAtM/Kk/eq5FjITE8c7JGiEqLAuXgcCq8y9T8nOcQU8Bn6DcqKJ6fO8GNfXXOAqFWKFHLHl8Fn6OeIRqDSzrN97jxd07K+scb6xhrbW4n5dCrzMGNJUcgtKaW+H8zG2SkX2v69oZfPXZLEFTGJj2uMgUgQC7WoJCsxaKpRDSHSLVp8MMQoFmHRGZiLNRoq4eKQgVLUVcfdd93F/oMbHNp/gKOHr8BoxbAuSMrTRYfS4oCqraGgIAaB0mOS4OLRSCzUVB5hrq+vYIqMVRpDORgSiWLXlqDcI5vu2saY4tB+lDJy4IoiGYlJyEMoMTQI+b9jhKIoOXduk9JWnNk8y+bZ89x+++1sHBzRdYGuleghBXzwgx9iZ2eHQV2zWLQ03WKpIcVK0gUGClNSFpbJZJvtc+cY1gOsHTNfNMxnMwajIT4mCizOeUKYoq1YvrnO0TpYO3gAXRR83ovu4PTp83iXMCZRFyWPPPIYk8mUWRtZGMXO+V2uuOwqmsWC4Yrl+PVHueG263n6yae47yN38pZf/w2ed9NzuO666xlu1KxsDGibxPkz22gMa2uWQ4cPsLeD6faEzbOnaDrH6uoBogkYVQiUnrWpnfcQJA6rGFQMuhGj6nOcY/rQQyW33HILXaf+wseUZeLuu+/+myh+R44ceda1+6+4Lk0go5K4dIQoFheId2LMAafBd5n2DiAJ5CF6UAYbDVWyODzeZDguJvq08Jj/W2UDbJc8JvZ8j7T8cMg4TDQ/4NEaYhBm4oMPPMTuzkKE6gmhviMSAgn7NGhVUpUDhoMhdT2mrAdS8KIiBXCuWxJMkvd4JyfT/hqid8TO4ZqO6MRgWfkWHb2kTMeYkxyCwKn5+mOSWRAAKaCiB+/o2gXzZkHbdjjvJUUBjTYlxhis0VijRKBtDMaIa04kdwCdI3YtoWvxncM5h3eyoaYcI5RUzPCnJmkt16ElyzAGz2y6y/lzZ1nMpwwGNWtr6yRliVGL2DmJn2gW9AnrVF6uLJJ2WVYhEK3RYmQQQieOIlpnvZtkLurkMd5hYiK4TmaLwaGCJ0QvAvMgLh/TRUcXhKXqOsdi0fH0U6f59V95Kz/9E/9fzp/eEtu30JGCw7kO5zxdF3Ctk2ijECVhovV88L3vBxeXjv8pRKxWGKMwlQYbwSaUKTG2QmW9nzYlxma9qg70b05xxDE5U1EOPhK6GZjPd6jKxGRyjqaZ8uqv/FI+8IH3cuKpUwQPpSmoqwKjE5/3ebexZ32F4Bvq2rC6sUo1qNHKYmyBLUrKekhdDSAkRoMx+w4dRVUDOSQGGI9XWFlZZTQaU2mLMYpoI8NBSYUihMh0ETl6+bVszxZMZhO2dydoa1kZDtjc3mZ7t2VnuyEFaNuOYrDGnj1rpNgynU85s3mWE2dOsL53nS/+yi/jVa96Ffd+9E7e/F9/jROPnaNUmr3rJetrmsEKlEOL9o646FBY9h88zNrKmLabMV6pWVlZobYl0XlRpcRI1zQstqdsLea4rsH6zzGr8/Rp+ymLHkDXqU/ZEf4l19bWln71q1991WAwuG3//v3PfeMb33jg8z7v867/tm/7tqWK/+jRo8/54R/+4QMAX/mVX3nVl3/5l1998c9o21ZtbGzc+u///b/fC/J+/P7v//5DR48efU5d18+//vrrb/qFX/iFjf7xv/M7v7OilLr9N3/zN1duueWWGweDwW233XbbDR//+Merz/S6vfd8zdd8zRX977jyyitv+ZEf+ZED/7PHfs/3fM/hjY2NW8fj8W1f93Vfd3nTNMt7/emu9bO1Ls2rM29cKhnRY6t+/qSERYaSAqISESekFJ0JJF6jQyTZSMqBtCbmbkZdoH8oKYP0vpQpR/aQlpPBrAAPwqRLEaOkC+0WLffd+zBHr/h8idhpF8QcHqtsQFup1wZFYUusKnB+DkZRmpKEpg0dITXiNakVRkm2HUQh6Rgh6PgQCLqDkLAqu2jkS1t2RzlgN4WYk9bl9XWuy51BTobXJpMbVNb89Xc8ZQ9QS+4rckcl3Z0xkvSuM5U9IgeKfLnyemiZqSUsShXZMECBl0NDYTRdjCzmC2LwlGUlbDtj5KCRQpYpqGV6RG+rlpL8ThG666XpcYjC9jRa5Ckxyjwv+FagXK0xuhDGay7QKuf/gaQHdI1o/dCWsvMMY6JrHY8/8hQf/tCfsnn6HCEpHnviBD/+f72RolYS/ht66FdB8lgFKQRM0gTfMRiscubMNgejFLTtnQnThx7m8isuA6MkA4+EVlHe21nATvJoL3NjpeQw4LwUOKNNZrbKqxS8PMdSF0Sj2Tx/nn0HD7O6OubA/j2cO7PJoYNHULmrtJXF2MTttz+Pd73zD0kp4b3DlAWxE5hYPlupZxeRlGI0GlENhsyn3fJ9RdaI5o8TWit2d2eUpqJNmuuf+wLOzwKmHDJbTNmdT7n6ymvxbcfp05tMZhHvDcZaIpF6ZcBgCIOhpWs9PlbYNGB32rCbFozW1vgnr3sdjz71JO9+93sIbsEdL34x+w8dZnM6Y2vzDCpqUhjgg2Lf3hX2XX0557e2OXvmHFZZSJrFYgauWBLciBrfdWgnUWF/V9a3f/u3X/bRj350/Ku/+qsPHzlyxP2rf/Wvjt57773DW265Zf4/e/zXf/3Xb37rt37r1Ts7O3ptbS0CvOUtb1ltmkZ//dd//RbAD/zADxz69V//9b0//dM//cSNN97YvPOd71z5Z//sn1114MAB9+Vf/uXT/me94Q1vOPpjP/ZjTx06dMi/7nWvu+Jbv/Vbr/rYxz72GZlchxDU0aNH3Zve9KZHDhw44P/oj/5o/N3f/d1XHD582P2Tf/JPtvrHfeADH1it6zq94x3veODhhx+u/vk//+dXfu/3fm/4mZ/5mROXcq1/1XXJMz60R6VSZjqmAywhKkyySMqyIoWAoqMsNNoauighpzpGCoSNGVPKUgiZySSTSRBwUepBT/zsmaPiVamSzNLEq1fyugKRGAoef+wpnnziNMevu4KmaShzHt/e/atsnzyDxWITtJ2X3DArBtIpnyq1stkGS35+UhEpshfl4AWZb/mQJFU+gc6+or0OUemULb5ko/R5dpF/CZDnm0pni7GUc9IERFTZKko2AWGQRp1ndlLh5PWIEZUhwUwVynNDSfIOQXR1ErUDWiWM0mgjsUdRJ4xSRA+uE1uvzrlM5HAE5wAjtnMxCrElisA+IcQZVH94ER2hSP5k8yZptCrzJiwF3lpDUdUUZYHzrUBzxpKiJMbrrkPHSEATqsB8MSedW3Bya5N7PnY3zkNlLBv7DjCddrz3fR9gfWOF4CWbL8RAPRyCCpL9GBPnt3aYdZ5qMODtf/Qujp44yT8ChlXFBz9+F7uTGfsO7GNjfUMyAI2YB9gse9C5iBiV0NqSlBUD7+hFxhHEk9ZqQ2mkkxR3lcDxK6/j7M4Os+kuz33uLZw4tc14PKCbzWgWHh87imHNynrNl3zJl/DWt/wWqiwJqhMzAhdy1yws0OAdLrZCpErC4B2vDJnNEltb51iNawyrAaltiF3A2pqFS+w9cpRUjfn43Q9w++0389ij94NWrK3v5czTDzObeRYtMhf18rk9ds0eTCnza1NY6tGYkBJdo3AxMdneYdKcp1gb8dX/+P/g3j/9M976K2/m8uuu4UUvfykrBw9x+twmGMtKtUI9rNlpJzgE+j9/4hTr+/agjUGVwq4ulWHqIyNXEpQm2b8bzi1bW1v6N37jN/b+3M/93GNf9VVftQvwpje96fFjx4499y/6nte+9rU73/7t3x5/+Zd/ef07vuM7NgF+5Vd+Zc8XfdEX7WxsbMTFYqF++qd/+vBv//ZvP/iKV7xiBnDTTTedf//73z/+j//xP+6/uJj88A//8In+z9/7vd976mu/9muvmc/nqg+y/VSrqqr0Ez/xEyf7P99www2bH/jAB8ZvfvObNy4ufEVRpDe96U2Pr6ysxBe84AXNk08+efKNb3zjsZ/8yZ880XXdZ3ytf9V1aaxOZUUUrR0xmUy517KRprz56kRKGjEXKwkpFwIjm3GREl1qIJRoVaPYJWGEFq8UOikKpQgKvEqoGETrhRZXjeSItsOEESRNUhJ6q7WQbNoO7vrEw+w/fBjTn5KBK665nPDEKbQqWCRHcokQHaUqUSriCdhkUHk2laJ0MCiPIhDzn72R5xiDFNQUPV5DGSMqqBywKbCSTr2LvhTIZSxRfq5Z0SfC/57lmqQ7BHLHYYhKkbTMO3WUaaKPXmQMScKIcqWSeajKHXmSzkMpLSbYIUgShI5COlIF/XTOZEa/VmppmpxSFN9QJcVDxUQyUcycCYTs9i+FMEoyRZ5jamVzoZN/SzcrnV1E0sjLFOVAgKINAZ8MvvDYKDNZpwLKtYQdOLd9inPPPElVlqytjcRpZXXE4aOXM501nN88B1hhDqeItQUG8M7hvMOUJUVRsTudYaxmPhcHov/+jj/g5MHLeeyJU5RlmQ86sL6+wfraiOreh/gG4J3v+EM2H38SbTVlNcCoghgSzneSMpAiXkV0Kd2fjpL913WOohyjikhZGebTBQcPHOT0MydJrhPbORKLrkNpTWUqxisrbE52GYyGxOTFEjfJ4SDERNQSQ1XWhYTyhkjrFujsaNPMGrxrKKsCXZSgDKsrq6zuO8Aff+xjlPWYWdPQODiw7yBdM+Hk2QldmxFcUxKNYWPfQepBjbEe13ZYU9M0jZhEBGh95Pz5GSklRouG6b7A4Ztv4B8ePsS5k0/zB299G7e95A72HN5PwhBmE3YnU07vzjl58hwHN9bZuKyimU+xthTTgKYF5yi0YaYSCwMHPzXo+L/Nuv/++yvvvXrpS1+6tMfau3dvuOqqq5q/6HuKouArvuIrtn71V39173d8x3dsTiYT/c53vnP953/+5x8FSV1vmka/+tWvvu7i73POqRtvvPGTusgXvvCFS3bmsWPHOoATJ04U136Gc8x/82/+zf5f/uVf3nfy5MmybVvtnFM33HDDJzE+b7jhhvnFxJyXvexl0/l8rh955JFyMpnoz/Ra/6rr0jBqpXBkTZ0SLVbq/SWVpAOoENHa5ny6nNAQZcYmQawJoyGa3v1fY6OwLb0SE2SNeGAqLXBjikkU21HCN7OSjYQYDhu1dI9EG8ujjzzBvo/v4Y7nX7s0ht5YG3PwwF7OP7OdBeId0US800SjiCmgQ5dNfwMKiW9JKkhBzozMkEJW3GWdQ/IZhu1nYeL7KMPKgA/SzWldsrzK7O2ps9VW1FLgc/CCpJ5HjzIGo0wmD5WC8CYpMoUVh5eUjNiDpl4iItCcVkqgRg0ojc1xUoLJRVzsMLqEwmaNpIigU4jZUk1+ZorZ3TIlDFpyFgGvIRh5L6iYQPdkHkVRllhTyv2JiRhbevPklOFAZQtCAIWFGIVxqiWuKqUCHxTGRpyfsbW1iZvvsP/AfupygLYVprScOnOWF1/+QrQR2LUoROzfNC0uiK4xodBlgS0rnIuQLDEohsM1APbu3c9i7/qy4CulcM6TYsgFpffqDMxnjUDHu3NCJ+kYxhohGAWPT4FoDKWRmVWMgbZt8SEwXeyyaAKr4zWeePwJvOuoqxKrJe085e4wJTBFCSrRtW2WTEj6gfOetnUUhbCBXdstDw7B9dIgzerqOk07Y3e3ZdZ4jl11HYeuuJb3fvheFnPFno0VdjbPs2haNvYe4elnnmJnEem8oTCS4aiVpioLknMUgwKCvNcmsxkJw6JrmC1aGu9F0zqboq2ClTGj9RUO7LuVne0d/vB3/4ArrryCW++4AzNa5dFHHsUWA44cPUKlYH1tlTOnT3Hm1Cm6Lsp73hqGpmJl7x7MLGBOFZe0Tf1dW9/0Td90/lWvetX1J06csL/1W7+1Wtd1fO1rXzsBmEwmBuDXf/3XH7riiis+KXy2rutPYoaWZbns7FSWdvUxXp9u/dzP/dzGG9/4xst+6Id+6KmXvexl07W1tfiv//W/PvSxj31s9Jk+j0u51r/qujSoU4nEgCT636Qz/EgePeRaIJTvTEtWJUZp6RTxokFTGmcCjgTJYgIYrSR6KEpnFGMQWFHJTMkolTcHTcJIuoMWrWDIBZUkXVNd19x/70NcffQwhwthhBkcN918nHc//SGx+VLS1XhfoLRsNL1dmMoxOEsdXXZIUSlH8Vw0QzFKYVJaziKNCvgU8clTJJ2tvuTm2CwqlwzAHG2jhAkbUsRcFO0UlRi6aZvBz6jRyqC0/H1cmooYCfnNc1GlghBpYn4KSXSSUaf856xPJAqDToHVkiIhWrXeSK6fKOY4pTzbs1nHlpYQdPbd1AplDNoatDG44ET/p/LcNirpHhGTZGPEtBoXILbSfNqQEzAsMWi6tqXZPsvW1pzV8RBTDYjG4FPELea88CUv4Mrjx/jDt7+dF73wRbRNSz2osYXA7yE6jFW44Em+wdgCnQqc6/B5bpRSAh3Q1jIcDWgWHd7DZHuHZ04+w6GtcwBMFy2TyQxTFgIT53l0iCLiL/JrG4OmCxGrQOlINbSYLpD0UJimxQBrg8gVYqTzEk/kvc9FVJ5fb5gtwnhBNOa+lcNVCPLeyZpXWwrT07We4BLnzp4FnUjaUo83OHLljdz36FNMthfMO8+etRU2z51kXK8QnGc6bfBBi6OMFVZwYUUaUheG0pZYbZlMO1zSNK1ja3tC0pp6PKC0Jd7PwSea2RzlPd56No5dwcHzc3ZPPcO73vK7XHfb8/i8F93BU8+cZmt3l9H6OsF5irKW+KK0YGVjHacVRYBUQNvuYvXfjQT2G264obXWpve///3Dvss6f/68efzxx+sXvehFfyHM98pXvnJ26NAh95//83/e8/a3v331y77sy7aqqkoAt91226Isy/T444+Xn02o8M+v97///ePbbrtt+n3f931n+797/PHH/wdyzP333z+cTqdqPB4ngPe9732j4XAYjx8/3u3fv99/Lq4VLrXwxYRREiqrFMQgnh3Cpheyhuh0splVzqxTMiAheTlB+JjhM/oCEyRLTgn7zyQ5wQefvTCVEi0WGkk7V2g8YnEm0oaUQhZ9a1rX0jUdn7jzUW654QgArplx9fWX84H3KuLC4mKUIF0CWiVCUiQMWsdM1uFC9h3C+ExRTvnahCzF0MtOVzpA0X5FlWd/9HM1sqfmhXvZb/AkhQp5h0u9skG6X5UiXXDEJN4sRmuU1SglMb6SZVhI54ewbFOfcpENtFOMGK1JSrLyNKLDVFqCgH0SMobOZJuUHWNSz7JRkrgtZBGW80ipFxEdpFslZKu14EnG0+sSsz+3/LdSJEK2eXOYQhGDOJYoW6AKLV1oAh86Fosd5pMtQquYK83JcI6NfXu46qorufqqq5nPZ9z18btZW12jWTS5u3LSBSkL3pNwtL6jrocYHYhhgXOORbZoa9uWLluTNbGVzMOQGAyH1KMVhvMdALQqCD6xaBtccAzrSgwPjMj+rdIkrXAhUBclIQVsoWhdh4marmuYzRec2T3L6mjA+toq1pZ0IWB1IoSADwFTyN8ZYzEIq7d1C7oYMdaiNMTgid7L+0FrQvQ0XYeKol1dHY+ZTeecnkx52Zf+PU6ePc+ZZ86SYstoVJIILNrAVVccpt3dZTGZEzxYa4ihI1FQ2gJbGKrSolAsFg3zuaNrHW3nsLZCW9GxjgcDNBqj5TO9aBYsVEQNVnj5q7+CA1XBJ973Xt73B29n88mTvOzLX0VVaiY7W8Su4ImnTrN33wZDUzBdzNFFgVaWFBVVPaYejP+y+9vfqrWxsRFf+9rXnv/BH/zBy/bu3RsOHz7sfvAHf/CI1nrZgf1F66u/+qvP/8Iv/ML+xx9/vPrd3/3dBy/+ma973etO/eAP/uBlMUb1hV/4hdOtrS3znve8Z7y6uhq+8zu/8/xn49qvvfba9i1vecve3/iN31i99tpr25//+Z/fe9dddw2PHj36STCpc07943/8j6/8oR/6oWcefvjh6sd+7MeOfsu3fMsZY8zn7FrhUqHOGClVh0oGH3I/8OdaYqMVOsQMecZsXZYDVJcdhMGQJNIGjTaRkC6QNwhCGLFo2hDACsRoNMJOjAqilyBQlbu/6DK3UTpDkywP3vcEj+bDokqJqBfcctt1fPSPHwBbCaSnIyhPiqIP7EXZvTOMQHVe3E+SlueXN/CexSesxQtsOikSBpLGOwcWlAqZMZiLi2CQUvDJjjVCAoV8b+ReZGBVXwjyRSPdn4ooZXJhgpQhWvmObCcWe2NrYTuSoVGFdGlyAFH0obhK/iK/nlljqJQoD3NqQcwOAgYwXqBajSY5cYbBZHhYW0BcTVR2n0kpghaoOYSGGMBqQ0KjdEEKFp86OjejnW+jIxSmoqpGHL7sGIeO7se5ho9/7GOYLPm4+qojON8BaikJUUajoyH4SIols11PUWiUSlnuIO/XxTwQU8FkMqOuDCpqZvMGjKIqhwxyEK1CYPZCF2hr8d5x/vxZRiuraK1pZwswBmtLtpzYosWMWLjZjJmf0BFYG+9jZ2tHCkVRSHeKJ7hWXgMfAIMqrERjxQgqYqsCtGK+mEMKqDyH1doQrSAhoWlQMVKVBcNijb37N3Cm5oknHsPNHCGUrIzX2dndpRqOGK6u8MyjT6NMhQst2gqLdVAb6qqkqmQG7FzHYrEQeUsIWDRFNQQTqaoBw7KgUJqkvDjqoJm1juFwRNHucHbhOHrDNbxqbT+/+5bf4vfe8jbu+KIXU1rF9k7DyngNUw5YWa0odid0swWltURjsFXElp/jju/gQU9Zpk+r4zt48LOup/sP/+E/PPXN3/zNV3zN13zNNePxOLz+9a8/dfLkyfLTQX3f8i3fsvkzP/Mzh48cOdK98pWv/KRu6Sd/8idP7t+/3/+7f/fvDn33d393tbKyEm6++eb5D/zADzzz2bru7/me7zl75513Dr/lW77laqUUr371qze/6Zu+6ey73vWutYsf9+IXv3hyzTXXtK94xSuu77pOv/rVr978t//23y5JMZ+LawVQFwdZfupHqvTS8Qr3FQV42cR8dk/RSqOTUOeTgkKXxGSJ2qLqkTAnVcR7hQ8SalqgCdERVcKEIJq0JEG3KsjcLuSNOEWhvCfRZ2O8EGiClXmawQIJDyRbQLIUWqGD5qUDy28+fg//9v/xZTx5ZIVmVvGbv/5H+G6B9g5vQOsRNmqSbiUjsM++w0uKgoI+7bx3MXEh4pM8L5sCOsmHM6qQGZgaGyI25qQEa7nVe951/hyvPHiYe2yZ9X6RpDwpenRyEA0qiDg9KpFgCAlUo0wlGLPRpFTmgqPABUqViL4ToXaUg4TOLjuaIFCnKVBUQgZSLUk5QrRYW2LLgkXbEII4fOjQS1Vilr4ryOGtUQmJhx7wM9J7q77kxkx6MhooAXFlSb2VnfKMV1YZrWzgmk6KQFlKWmGMxDhjsZiy6BLVcMTqxh5WxkM2NlbQBUwm29B0GFVRGEs1sHz5V7yKF7/kxSxCQyQym8wpTSnhxDFijKFpWnZ3d9DWsPHI47z0m/6fvOvn/wO7N16PAprFgrZppAM1BSEE1h9+mK/8zu/m1/6v/zdbx69GY5hPZygt89S2adjZmvD002eBAV3bAhFtBe5tuxZb1IS4zaAcUap1ppMZukhUlcUWUFUlRVXmjk7uadd0y6R0rSSPsSwKTpw/x3g8pkweU0I0BUaJuYJSEZ3AdR1dMebWl3whn3joSU4/vcNsS97rx44fQCnN3r17qVfmnH3YM517ZrGjHhRoFPXKkPGo5tB4wPqwZLedM5s3pFTSuETQiuRhPBLzdqMrutCgIvgkc9G6rgmdYzyoiQqM1uzMZ7jQ8ae/9x62T53lC7/2VdTVmHMnd4jjFeq6YNg1PPzQI8x9y+rqARZuylVPfpxf/O1fuOg0+qnXRz/60Rustb9/7bXXTofD4V9IDPmU638R55bJZKKPHj363B/+4R9++ru+67vO/XX/vr/taz6f1w899NDYe/+lt99++18oxbhEHZ90aGSPwqTV0i4r9PBYku4MZZBNsEUn2QBlRtVmZ3/5MMvsr+8FEVkf9OoFmb0ltexqRCAvXV3SWf8V9VLnFmPKvp6SN7Y7zT5/aUiKlpW1IZdfeZQH73sEm3VoRKGLB1jKAJYp26jls1cI/EhK6JS9PZUSr9EAfchp0sIjEYmEzobcLPV5MfWTtJzukK3XEvI8sdmbszcKzWSiGKNwaVJEPD0TyojAue82DU6StZMI/nvii4qStB2MzjrMSDQiqu9SxPuWoipIjcw5tdWEEJddvWj0dP7dF6904e8S+XVKyHw05hlj774jsghNvj7v0ApxmYmermuJXYcPM7x3WFVSqoSNjtAEdjbnXHvTcWxhOH/iaVJw+C4QFnPe+mu/QV2V/L0vfDmtaziwuhdrRbzf38cEOL8XYwyVk/3w2quO4G8+ns2+Fc47uq5DmYKyKCjHQqy44wXPo3verXjnBcoMHdHDffc+xB+8/Y+ohyt80zd+A8omvO945JFHaNqOKy6/guQCk9k27//QR5h3iefdfj06eObzKfP5FKW1sBm1IWQZSEqJwhbyHs1+rTvTOfv37OXYkWOcPfUUbZjhXEM0K5TWUFhJd6jqdcxwwPb2jFNPnyO0oPBU9ZjxcA9GLbjsyH4ef/pButQQojBebaEptKUqK6rKUlaGmAIhRmxZ44PFAl3XsjoaUhYINJwiRhnxLkpQliWFLRhVtUhmZOOgUJad3W2OXn6Ic48/zLv+25u57Uu+hGJlDZoFs90Jk7bBO4XvPN1ijjGK4P/Slox/+XXttd3fhCvL+9///sHdd989eOlLXzrb2toyP/RDP3QY4Gu/9mu3P9fX8r/zuqTCZ5NChX6TztEmgM8yO0XK5IcknZuWLkGlnlFo0dpJfpsXNqiyIotXWn8yuzAJBBbJ7NFcdklBYNE8EFMpiTNKrpyis3NEXQi7NJsp7+5E1OERzjXcdMtx7r/nQTnVRy8zuygFNsQgmqLMphMxeiZB9HOwXFiErKFBGZEJ5PvRE0HIieVCPQmkeHECu8yHZP6VMfzos8BBTMG04JREougCkydFnXWC8rNT0jmmSGzJtCoorCWmQOc60IkQEzbInDAg9z8Rc+EUQ2sXstNLn+cXeqMAOciknoWaMqO2N/RO+d6oC1orhWj+khLbOmM0Mfls2aawOqGiJwSHToqua2hdi0/isBL8QpLIU2DhW5JrGQwCyVY8cO+DvPyLXsz5Pes8ePcDUiCNsDl/9U2/ynNueQ4be9epSktMoks0xuZrhLoeEELAGrnegS1oyO+jFLGArSrpTlNCBynqlRbz8XJQ0i3mVMawu5jz4Q9+iP0H9/PyL3o51ShhS4X3hquvOcqhg4eIMfHI/Q/y5ONP8vznPo8Xv/RFRO3QSWZzxhicExF8SEKWSVHmxq7t2N3dpSik+H7wgx/i3o/fzZmTT6ONsFiFeayxNpBiiw+axhkOX3GYc+cmFKrCxxYUDEZDSluxb6Ni69wZFjNFsglTGkxRUBQiw9BKUWhJXV/M5riQ8FFJqLDRrK2vUmkwytD6lq5rMwktSvhtXeE6x3Q2J0XP7u6UbtZQDQa0sxmh0gyv2M/5R09w1/s+xA0v+jxWB2tsn9vmzM42K9UGlYLp9g7aKrr53y2Hrp/+6Z8++F3f9V11URTp5ptvnr3rXe964PDhw3+3bsJf87pkAbuT9CGUyjAbmZChUhaeJ0I+0esUUckK1qfDEkKMKcl8SEnRi0lKg8qszJ4N0csfLm4Dl0nSSX4HKntCKtmoZW5nCF6SD2T2Aw/c+zj7jx8jqgVrayVXX3WIJx47A9qCkk1YUWNUWs7vUH3OuAKVlprE2Efx5MIgd0KCdlUUR0udUtaUQVCRFCUwFch2a/GiQimOnBibEwtingDm2pM7bBWjdIcqkfCkpHEZVtRaYax0n3IGyC7hWh4b8v1SISyNvlOOK1Jai8wwS05iuGBCDT3zUeU5Hfnas+sOSpx2hH6ai2L/zpDZaYiBpCSjkJDw0TOfz1FdQEWyBjTQuBYTeiMDQQyUc7h5g2JKYE7X7vD7v/l7/P1XvJTnPe9W7rvnPnwIJK0YjIZ85KMf4Su+7FW43NEppZfJFSlBcPLampDlKRExCOhfi3znDRIQrLMEJSVQMXtIGoubdfzC//2LXHvzLbzopS/C0VFaObG1Xcfqynj5OrnkOXbZZbzw+bfh2wka0S0qLQHG4hlriMnnCCkhVxkiG+sDeX+nyN//ohdzx+3P4f/3n36Jg0eO4LyiBGaNz0kVCZc0ZjQiqSEnn3mKiMYFz2h9L+sbGwxHCWMUk/PbTKYJW1YMR0PEfyJS6ZrCKKpC5tOdj6Sk8ZnYs7o2ZmVY0LmWEAw+xozwFCIF8Y7p+Smhc8x3d9na2hSdaEgsZjOC0ti1MWtXXstgeIjJ009x17vfw8u/4iuo12tWGTMoV+h2FU41RO/Quhcr/e+/Pv/zP39xzz333Pc3fR3/u69LskQIFmKhRMOl0hKe7OE/VHZ3gcxglE4vRoVWEWNkZqeV2G313ZMxks6tC9HwGGvRhQEl0gKlybO2DCYaLT6WSmDEqIUwYbSikL0erQupV1kMvn1+mzMnzws1OnY89znXyAZoZT6oTU44yO4mSvUFWP6ttUEbYZUGBUHnTi/pZXFSS3mDEiNulZmhyEHhAjErZpamQluFthaUXhJVLqp4fdmX4rf8UoLocwET8k0MLdF3uNAIjb8wmEKuzZiSoK1sOghpSCkt3p+AjmmJxKbg0TFlG20l4nNr8mt7kQ23Iqs0EtoI21QXFl1YlLFgLMqWKGtJRoa/JioxO1Di0NI2Ld53xCBp9zpFsefKHaTK/2gMzWJGjA0pOHbObfEHb/1dZps73HrLc9izsUFZSfjxx+78BIvZQq5esHFi6HCukfgf18r7NeaIqCDQpvMdTTNntpixaBa0zQLvO0mPoO/8RRuZguJ9f/wBSAUveclLmTZTNjc3ue/u+zl78izr43XqosZ14t96y023YJRiupgQlMOlC05ASiW0ERZrCCFDwSxdfs6eOcPmufNsnd/k5NMn2NrZ5PqbruWJp54ghJTJQZbSDijNCqgBew4dZXOnAW3ofEs5GqLKIVVdUtWR3dmMnekcZTVNEwnJY61kZFZVwXBQMRpWNG1DiIq2cWilWFsdUZhE9A0udDRdhw+BLjh2ZzPm8wW7u7tMJrtMdiacPXuWyfY28+ku2+dOM5/tiERl1zMu9nDVDc/j6HXX4qdzPvSe92BMZHVYQ/JENPVwQNfJ+/nZ9ez6bK5Lc27JLipR584jRfGKVBAQJxCVBKa50CEoNDY3B53o1JLC4dBlns95Afc0gJbOKCkwSqNSpuITsVEKjzi8RHESsQm0QwWbWYu5LzSdBJbmz0x0Lfd84h42DryQoijZc3CDg0cPcObUeZTRQurIc8qEynP0XiwnXaBk7mSTYqVJscysxyiRQynIHDBK0RZ6jJh2q35WJw8n+kgqI0FDUAaNxmLQvodMe7g0ZjanRmtIyUEgRyC1eFUJjJocMZYShmsTyYuOwhZGHGWiFhZtivQE25QNsZUSaYNKAa1iZpcallIOyPmD0tmbKIQbpyWjzwRIKhKNdHsS+y1i7KTEuFtFnVm4AtNGlcTgnMyISoro5OdoZXLnDT5rDtHiEOOczAXbNvKed7+PY5dfzvNf+AJC9Jw8f5ozky3u/NhHeclLP48uiTQhIXZj3juMNdlMQZCj2WwuHWNoid7T+UCIBoOirC11IyYa58+c49GP3cl4XBMU7D92kJuV5RMf/zNuecHNbGyscvTgYR596CFOnTrJZZddKehvgNY77rn/HlY3huzZu04Mcgjy3tN1HcYYYoo43xFdpGk6Fk3DomswxrK+uk5hCwZVjYsdL7zjdq664jgf/MAHWbRTUDXTpiGkwDRYNnTB7myXeZtoveD/9QhskaisZauJdLHA+20SBUlXhKCwpSHSUZdDMZlQisZ5lAGtA6XpSCnQNYbposV1M0iKLgQ65/HzlpA8TePxXUvTLiA6Fjs7mCz07ZoFVbWKtRWDomBl9SDrl1/DM48/yIEnnmD1iiuY706YzRa4bo42jhSXRibPrmfXZ2VdmpxBFxnKQtz9fVjCX30un7j0a0hR5mdaYZBA0hA8RPFzDMQlLKeMMDBlI5b5YEwBr6RzSvSFAxSFzH+ipPfhs3VXMGLDpT0xdSTvSKnIqQIQiJw5t8PDD53ixpuP4sIONz73Os6cfLe49xeWJnrqPKvoSS1SkGWOmHKHJdpBnYf68m+dfRNT1uOhQybn5MK5/F4prjE6CDmaSIlPTOrnbCi5P4hnJ3nuorPMIpH6NjBLI5TIGGJOyYhCdze2kI5WwcgUJO9xKucYJUmRUErE5IVReB/yrDBm0pHC5xQDdBbjxwyTxjyIzeze4BM6CQtWgXhM5o699z7t5RIqO/Do3J2HHCgLBlQnSR2AMoWQbBDXdpPJRDHJHDiEkscfe4aHH/t1jl5xiBtuvYnjR67kkScf5opTh1AYiVcqCrSxFGVJbLJcY9HmN7ViNtklRUcInqZp8Z7soGLYMxe93/bONpfd+lwO7N9D0opzp84xKIZ85ON/xtFzh6gHFSujFa648hhPP/00d911J6N6xGMPP0Y1HvAPX/MambDGLs9zI4pIXQ1omkbeB9bKfXLgdaKoK+qqohzWy2R4YyzOdQxHFXe85IX88fveTQyKwXAovqtmRMDQdQmwQlgZDhmtjxkOLM4F5o3DFGO6uacsSmJQcpgNimKosKUE8cZ8QIspkSxstzNicmhV0QWP0Zb5vMlaUo33kc53LOZCVBmXmulsgYtOPstofIxYFZnt7oDvUMOCY8+5EWzk3nse4I4jx1jbu0apLStrh9BqwWj65CVtU8+uZ9enW5eWxxezj2WvSAZ6JxCNOK/0GQT9eC6liA+eFI2QObAUKmCTJUVJHTBaZmYxQ6Y9ZBiUlrQB1RPqTc7iS/nSlZhDJ/EtsUlo9krnYiUeMnKdWhGj5e67HuHYZQcYrBTs2b/G6mpFt9vShpwjmMjCdInvUbmzhF5jrpcicPKsE6RQpzwXhL406uyoL+zT5Uw0peVMUwUwWp5dSLlL7l1iMtEhJpUL4oXohp4gI/CxzqbhEe+9aAO9J/lALAo0hqKfmWVdHfGC+4rpf2rK4HVamrIBSPFFDAtANJZ9ILFKilRosacLYpjda/WTkXujYi7UOeWhd7lRGRoXolN+nXV+42Q+VMzwrjFGSEZRHGq64NGpICUZOj/2yJM88tiT7N+zh5e/+A7+OP4Jg0HFfDFDW3nvtV1Yvm8OPvU01wAf+MCHmG5t0bYNiURVVpAUs0WDj4GVBx7kNuDhRx/lGS9RVK13THenXH3ZlVx99VU8c+IZqrrC2LNYk3BdR2FK2sZx7PIrmC6m/N7v/h63POcWNvauUxQ1VVFSlwNSSqyMVkkpUhSaECMuC9h1RjCazknIbTPHR0fXOazReNfwgttv5977nmAy2SIqxerho0xmHZ1DunxrWV1boao042HF7s42nYt0PjGqN7I6JrN+faSyGq0Ss3mLa8UHNGbGsktKiGXeobTAz8ZoFvM5rgPfSUfoW0dtC6JrGVQVfuEgJaJ3YEpiaAnzxMJ5yn0bFMMR+y+/ksnWFg984m5e8JKXwrzDdwuC32Gdz6pb1bPr2XWprE5NqRAZQ2bo5dHeMnFguWMpLTIEsn9lntWQN3USJK8gCvElZxKIV2MQMoKOTmBDo0nKEDHEZDPVP1trJZP1gx7lhVCSjJKw0JQLFOC9UPdVUHzizvt56ctvI5YLbr71Bj783o+iTYmKDaiS3nczoZYzO5VlCSmxnP8l4rIAZSk7KJvvQUZGtRSTFIMEzUL+Po8KWlxotHTMSpeZCJOy/q6n4kv8kjjJCIFFDhYJrTw6WTk4qCzcDgJHphCkO9YFne7ZomRejchRVKbQai+aw56gIk4uKd/rXmyf8n1Q+eXOdm1J2KVSSeV1SfSwccovVf7vlOOHen18CnL4MQatkjCE0eLyksQxp7AK8Y6WohdVBAph4GoNyaDMgOGgZmBXuOeeh3ng3gdIyXHo2AFuuPlGhuMV0JbBYEyMCVvUAFT1kCkWnySxYrZwRB/YnS3QxrKvEteQmDRRWabTKaYs2LP3ALvzBZ+46y5a54SRmcDghY3sA6as2Z3PSSlQ6Jr3vfdPCMEzHq6hrMg9UkwUZSE2ZNFTlCVKQWksrnPM5g2D8Zi27YhtQzkoJdWi68QTtSpZWR1hbKRLMFrd4LFHd3BBdJNyLS3DakyhNaGDwhicj4LaG0NVlcTYMahrxvWA0DZ0bWK+8ETnGNiarutoUkfE4x2UaoCxBU07w3UR3yZC19C0C5RP1KbCRUcsSwZpRDObEn0i+AbVzIihRdcWs4AmdpSjVS678mruvfNjPP3gg6yv7md76zSL6RnWd3YvZZt6dj27Pu26NB1flAw3gf0CSRlxUVFqyWZPknIqjiEK0EG8OqMmKElwUFoLUSXl+VEuFCLeJRdLnzdaRQx9J6Dy/3PHmf0KA4mkk5gFJ4MkDIVsfdZfl6Rqd23kxFOnuO/ux7ji+GEOHTvCcO0BFtOWgiQBrnmeJTIDpDsi/8qUSMpjjFxPL9bu3TKF/Zdyp9r3vvkx5gKXSLwWkVw6ecZSVJJ0VIWSfIuQ+65+0kim3Uscjcxde52jzsVZZaINCfHfjAGXHWp0MsuuKQVIOuFxclDIz6d/fZXJbFLBmukdXkKKS8KNSeTfK/dM2LbpgiwjQ7J9xU0xs4LJ14bYqvkY0DoRNVmbqZbzwBQk01BEfz29RgsqEAKqqqjGA1ZWhlRFybnN88xnE0gdDz/xGPfc/xAvf/kXcvU11+FjYrGY02XSinOe6XyO856d6TZd27GxuspoPKbzSca8wImTp9hdWcMkYXz6LuCjwPWDQUXjHKPBgOBadIykIoExbAwHBBcwGImzWhKJtMDISoELAklrw+5iATFRmYLgHSEpJjszrLWgLL4LLKYNCsWMhWAadS1QaVGzOZkzXzic88RkKJVYn60MK3wnGk8XOlJSVHYo9z85Ip7BsKIwGtcmmqZjsjtjPByhlCKGgClk1GFIdI0D53FOrATb+QJFh1EJZXvfVyNJIcowKGta5UjRE2YzLDXgaLdmmD1jTFGwvm8flx09xs7TJ9i4bpV2dxe3aHHN3508vmfX52ZdEqsT40nG4VWXo21CtvyKWeuVobCevqgiqICOYKOi0BqrhDggVl0JrRMp58MpVM/yl5mWtsJ/DAaCJuJBRfGgVDHPj0BmaKKaSIi1mAVQYSmuVgaUDoTQ4X3kwQefJC4sg3qFY1dehicQyDl1Wjqa/KNJJHwMWWrgJWhXicVZylTLTKGgb5D6sFKQvU2pdCGVKM8JY8zzrRjExSZlL1AtxtkJhVNCMujxY0mqkJmn/GoxDU8qYk2B1VqcR5TJjMhM1Q9BCnhCum6tMuFA7neMYsgtLFpFUuYigk3/bsnFOxsIKKVIWmfVoQQMC6kpAl5kGyku/T37gixl0ROjIwUvBgA9OKxF5G5NBoZTzEGyGW7ubyjS/dZ1TT0esLo6RoXI6dPPsL29g6eAoqYcjJnstLzv3R/gwQce5KEHH2B3ssN0OgFga3OLc5vnOXP6BJAo6pqua9md7dI4R2hlFliPRhSFwZSWorSioytLjC6kKzUlvgvZc07E56W1WOT1sNZQlYXcPyMFVyBYRSDRtC3Oe2IKxMgy1QMkqT0FCSz2MaBVQaLEFgOKYkDXeubzjrJeZ9HJOKGqS4wVS7FBMcCQmM/mNO0clyJRadquQwFdKwkM4xVNQtIkUoKVleEytcJaS/SR0Cm8UygLJinCAqY7jUg0fMu8mZGUF6aoKTFRvEWNFthVlQUxQWEKidNSkcpaVIzYsuLI5cc4e+oEk+3TJJNQVYWunk1nuHgdPXr0OUqp27/7u7/7yN/0tfxtXZfU8YUUCakXZWuBKVXIAvN+UpSW7v0qm9YK5icf6JBalGpJyS5hwZQJMUprlCoIXe4SlTicSERR/nXIhg9CKydpbAIXwSPBqjpqdLQiss75ajoJoUMb0ZFtb8+4986HeMFLrue664/z4P0P4do8awTpYvtNPxcDlXQucjEXIJlPXujrkgjZc0+KUTlwVx6rLtL9SRx8IoYkJdf08UO5q9Np2QkHhOEqbE/5uhBZFMnItaYYSC6JMDvPJ2PKUCcs4dOliwyaPgsuBw8K6QM5rdO/mkoA0pCNr4VGI9cS8wEletkoQ5REctsnXKSESmE5I1VkFCB3xTKHFYsupfo0goDWeZacO8zUA8kp4pN0ttYYojYUY0lj6CbbzHanVFXNvgOHKMYjCutomhntvKULnvsefIg77riDtlvQ5IJ28pmTTNfW2FhfJ2lLSobFdMJ02mLqIZNsZu1CoGlbCmtpO/FmLYoSlRQ+eKwtKJXBlgO6tpG5swuUdYVrHY5AYS3ayByvf/20FbnIopvTuRalA1UxwrUB7704CqmIixGjCkpl8THQ+pa6KLCmEmatHhBZYbFwkkFIYDAYUQ9LxisVpIjzkTYkiYNKhkDEJ4dVllE5xBJomynzeUCliqIEUgfB0HYtMQZ8C02j0KpDtY7FPLNinUcZhUmaZjrDUkimomsI3qOzw4S1BjXSuKLEliVBR9p2TmkUDk81GGGHJbvTXQZr64SpdNLPrmfXZ3NdYh5fidaVhI1GMMgGZzJxI2ViScxFUMgPvdDZk7Bom7BRNnWvpEOQNIGAT+LggspzPpswOc2aFPPv6PtKkCsQ8oRSGfJUUWaJUQmmRu4UQiDlTScpMFbzyImTHDq9nwP7hhw9eJgTj58laIEBpeMzIqpPniQVRqBIcleqc9eTQoavMnRHT8Dph/J5Lqbzn5V4GkoRUYTcCsYASlk5HWtI2mI9tEgRM0ZsymLMrjG6d5cRlqNKCaJdpgaEPMsTqzWNSoFAIKExRCE0KE/AkvTFnauYZscMq/Z6OqWzaF8qlMwIlcgUerNuSHgvkLaEuub3gcrdPJndmueJKhsGoC0hBxhribOQ79cSQJyESYTWpXi9lhZMQVSwWMzwbcPq6gr1aJXB6gqHLjvCgf0rKALPPH2CE088xbnNczShY7yxRr0lMWEHjx3FDVdIUdxrjBGt3mi4gq0rVjfW5DVL4EOgrCrCUuyesJUYZackhw5dWOnstMrdH1iTxwGGrFPMbGClsUWJ1hIJVBqN0Vm8ryLaCMvTIwSeorDE1jFdzEk2EVpHcAt0rRms7MMpcfGxRUKZmrIeEqJnz55VXDsnYolaoqC6pmU0HjIaWwpjKK2imy8EjdGGUstn1YWINpoSS+oirmvxzlJaOUwF71Fa0XYtmih+6gwAAQAASURBVECKgUJbYelmMb7SBue9HCqjYrS2Qqs0qTT5QOfl86o1th5z5IojnH3iGTY29jJrHCwZuM+uZ9dnZ10a1BmSQC5JkbQhKIsDXH86jx4fFhKomQNFVSpkfpTZ7wGHCR4bwkX0fQmcVYXBafDWEowhaEXsXcH6jR2EaZnnP7IpZ8akyt1lhtKIMc+zQJmYi4GRyBPf4UPDx++8j9k8cOU116AKmzd/T0oiCg9BIMgY+w+y3IosP87yhfyX0sqAluLac1EVuVPMkKEnCEEjE2QE3oqE4PHeiSBd9QnnGlUYkjE9hrp8OVKUDimmPoqoJ0xASiI+txm6vdCVZmPslGd3USzNQoz4FPPhAdmo+4lrSuADyWc4O8V8zJHrN9rkzVv0hQLnyb/VEoqOuXu7cPfkLRUJSlLGVXFBtN7nCyaAzMrUxlKYksLUkCzKQ+ykax2sjjHDGjscUdQ1plCMRiMOHT7ES156B1/6pV/IlVce5fz502Id18OItmJ9Y4PReIzWirK0HDy4j5XxABU8ppCPyMbKGnv27MGWBdWgpq5rkUfEPLdW4lDjfZD52GSX6XROt1iIDCVGfBalG60prBTwFBJdl9M/dEEM0DYNIQSSBltYUAnftrjZgq7tsFVJMSgECtSarlPYckwbEp0PFLZCWemQV9fGkknYBpxPmHrAymiF0aDCFIrCKlZXK1ZXawpTo82A4XDAcFigdUCbAm0iZWGEHVwU6CLQdY7FvJHU9K4hELLoXtN18pnxweO8kH4kWkzISO2iY2BLamNQOjEaDGkWc5yPhGi54rrr6JoZMTh0gsn5nUvapv62rxgjP/qjP7r/xhtvvKmu6+ePRqPbnvOc59z4J3/yJ//T1veNb3zjgRtuuOGmtbW151lrn7+xsXHrF3/xFx//xCc+8Ul5eL/2a7+29rznPe+GlZWV5w0Gg9suv/zyW778y7/86rNnz5rP5OshBH7kR37kwLXXXntzVVXPX11dfd6rXvWqq++///7yUn7P/wrr0sgtRgm9PFtoBRQRi9LSIVltKLTCe7F2Is+5gk5YJV6RikjUOtscZdanVsQuZJJI3u6MMCJVEIcTlUymf0jszpIzrwXa0wkRtStQqp835gKIdBoxOqypSV5hTcB7x3RSct99j3Djzdcw3Fhh59xp+hIBkjyRcseSckfUZ9OpvJFrpZcOLfQEGMBkHV8kF6l8H7VME5fPnSgHCoxFESCCR+zRKlsQtcLHAhU8hBarNCHk50/fdUqYrYS6h9xhypzUqyhRQUHlMqyWekBFkK48k2ogLrWEIjlQkquIXH9IImJPefapjKKwJSmIyBmjSNYSgpdOTgWiF51jMheMCoQIk7LVqUYbhbYFyUkau7YSiYNWlFWFyTZe6ESKDt95qqqiKCqSMdTjIUpbsJpqWIvIfTGjKxVWlQxXal54+/N45plzNPM5XSNdhDUFxmici9RViVaJtmuphiWNmwsFH6iqGqMLtidTIdHYCq3zrC4fgLRSqCDp7UYJWqAxQiByDcFLjFBhShZtJ/fRpQzJK1znszG6dPcyN4fCGgrALTpal2Qe3bbUgypD1QOSrtndmeN9oBoOAEehLfv2bjCfz3E+CdEk82lGqwOKyjKsCsoCrEmYQYXzoGlBJXQo0Al8aJnPGyYTj4+GsjTM5jt4cqBwujCHDt7L50X32YsRKIlxRgiO5DTDeiARVkpQg+3JRNx+KJg2M/btrRitDNmdbmO0xv1NmFT/Da5v/dZvvewXf/EXDwCsr6/7ffv2+QceeGDwyCOPVC95yUsWf/7x733ve1eefPLJ6vDhw93BgwfTo48+OnjHO96x/sVf/MWjRx999K7hcJhOnjxpv/Ebv/G4c04dPny4W1lZCc8880z5e7/3exubm5tPO+fUp/r6/v37wzd/8zdf/l//63/dD3DNNdc0586ds7//+7+/8ZGPfGR855133nv06FH/6X7P/v37/5d4MS9Nx5e7K5nbBfHhxORzf8CHDEtisDrIJpV6jV4ix0czN4ZoQIeA8VrIL0oTfaRUF2y6guwH8jOynk3rgGjFUrYwyzl4KTMBY3ZRySG1fWpBinrJLNRYYWOWlhDgxIlTHDm2n+PHj/ORMycprFnCmSnn7CXITv/SASw7qEyqoZ9rChVRri8m0JHehFtF+V6tCgpVSI6fApV3o5g7Sp1S3iTF5SaEkDsxBbGf9ZGjcXptXyYVJYEdFTLrVDkRQYoOy7YzpUBMmSuavLxmPZmFvuzLEkG5WnaBkZRHggJbhhjluqJYjoVkpBPSAUPK2XiK5Ts+CowqhVl6xxgFPjVWDhEhxjz3FDZkjPJayAEmopUFLZFEti5Ba8q6YjgaU1c1oQ1snd+ma1o29qyiteeej99DDJaXfsHLuGm4AsBVx69k5erLiTFQVpb5bMrOzjYpWk48cxLv5KrbToqlUQKzWlMxXeziY8LmgNiiqqRLCZJs0blOOn+d6KKTbsc52i4yn3cYm2VB2lDYAu87gUvzfDkGcSryzmPQdEGDhegDi6kjBY0PC+r1VZQeMJ3u4rpEUFAUlsKI3KV1nnnraTFyUEhizF6XhrqwVKUheHmc9xFb5AOrd6gU8CGxO13gnBTnbu7xXSMz8a6jrg0habROYjWYNN47KZ7GQSwwRU2goHMR33RoU6MLIyJ5JYnzqISpFEEpiqpkMZ8yLEYo+79Mo/DXvh544IHyl37plw4AvPKVr9z+rd/6rUfruk4nT560i8VC/c++58d+7MdO3HLLLY/2qetve9vbVl7zmtdcd/r06eId73jH+Ku+6qt2H3nkkdI5p0ajUXzwwQfvHo/HKcbIe9/73uHhw4f9xz/+8fpTff3+++8vf+VXfmU/wM/8zM88/vrXv/78zs6Ovv766285ffp08eM//uMHfuqnfurkp/s9n7s7+anXpc34ABUDWvkMrRXZsSU79yNWVxJOGyC6/CtKAlHcKnwkFdLNkKEx6AXaedeNERVjX7ukwMQsBscBaUnbD0kRLmIMqiyniFFnfZl8aFQyaFUSo2xEJEPnElELQ/W+ex/iObc8h9XVNRbTqdiwxbAkePQwYS9gT1nbJx6OGdBMLMX2CVA5PV46xLicn5EsBCNFOR8OslcyvTBSZeF7k7wYvKgkXa8eCoXfBMkBzOSbfvSWUiaWYEjK5DmakaJpbU538PK4GHPae8QqhYT6anrGZFJBilR+7ZOS0FzihfsdvZfk8KRR/WsTC7SCSK89lGSDnqxD6qUfEVG49HPRgCoVZVlKsoREtWeNW0Lhhc2LXGLTzLALzcCO8DEwne4y2Z5QlyPWV1cZDi1t40hKs2/vmLIe8tD9jzEerXLrNdcDcPTIPg7ffB1FXWEKzXQ6JQZPVQ8ZjwccfFwyMr/0S/8+95dr/M4fvJ2bbrme49dcz2AkHWAv+SjLMvts9nNo6U5dzkmcTecEnyiKmhTJPpQhz75gsrvN7u4Os9053kVKZUFrYj1gNp9jRyW2iMRZZM/wEDF4lOpYP3AET0GioB5WBCKF1uzdGNF2cxatY945Fr5hNFjJgbweks8oQI7E0hZjvXiWTheUxZAYE7u7HVrV+HaOjprZbAJESjMiKA8+oryCQlx6vBNj6xQTrmshCRSulaE0hcSUefDOE42mHBQZmdFYU9CPgF3XURcFIf3lIvX+Nq73v//9o97h6V/8i39xqq7rBHDkyJG/sGg88sgj5T/9p//0igceeGA4n8/1xRmrTz/9dAFw++23L44dO9Y+/fTT1cGDB593xRVXNDfccMPita997dbf+3t/b/7pvv7mN795eV3f+Z3feeV3fud3XnnxNfzpn/7p6DP5PZ/du/WXX5fW8WVLMq1FRpC0CIkTeqlPSkqGWRJjozMTUk6QPQmmcuC8RxlNUpaWKLo1LRl6AoGJq34kZiaizj+74AJo2DPbJTNMp4RJMUciZTeQ1L9fAikISUQ+5lYKrxZx++bmlPPnJxy5/Dj3f+LPUEvTar3sNAgC1Yq0XIZ4fUCtQjbnED2oXo/YMxYzOSMvg8JohY9BNnst3W4gp9JHiD6hCkU0OhNTskBeW0giAzHpwp2IXLA7S3nOGaOQT7QS6Fhew+zKoi4UIa1NZob2cGcGnP8cG7OXW/TvBZWyOYHJEobklgxNkhEmbX6sHHSkkNEfVDJZh6gyOcYTokNR5g4oLjtBnVLuNaU7DiFBgK1zLefOngatMNpS2AFVvYLvPMOBZWPPOqYoGA5L9h88yGy24Nf+269y2Rf8fY7J3ULFQLdYkJpEO1/w4AP3c/jYIa47fpRT9z4AwNnNM/z3T3yAQ0eOce7cOdrWccP1V1CQcJ2jaVv0eMRksotShnpQA4nONWhl8D6ws7PDYDBksXsO71xmwYLzkfHKOgcPHWB9fSRXFcUubjQeCWxupHik1MkM1xdZz9lwbj7gI594jM4J3F0Na6zxrK4NaOctbSc2fsNqiNWa0Dl0nUTykLItnUp4L9ZzwZVopWlbT9cFUpB4Ips0zWJBCh7feSmUGul4lSVqL9Z1OpO/VEVwjpgMEAgpYoohppAUEoKnHozz5zlgUsA1Pst+Et45UlAE96yA/S9a9957b/kN3/AN1/Rd1k033TQPIaj7779/ABCC5LINh8P0Z3/2Z/f97M/+7N4Pf/jDo4ceeqh+29vetvetb33r3rZtH/22b/u2rU/19Yt/5w033LAoy/KT7HQuu+yy7jP9PZ+re/Op1qXN+JRQkgNCU099FFAUVw8UJAMhisMHUWCbC71cni9FsUkyKUOGSWZ0JBn8J6VziKmSdPI+oeEiQfqyO0wWUiGzKuWJOOkYVSZ19GI6pMuxBlLyqFhIwrkhdxYFDz/8BDfefD31cBW32JWOpL/qlJPI81zKKwnhlTmgPEdl0nJOJg2bFE0JuL1wClNk2DPpJV2/F4P0D5OmOZK0xsSETkoIMcZLYU8Ce+psTaOSvUDCQWBT1QvVETcbEMKNFC1x0umd0JQxKFVI1VUedJRCn51ZLqy0fL5aC8t16abTT/BUJTpGIkQvJ/z8+kqobe4A+1uS8vNRoINAYapMwu5NMuwXsb8S5mivIRQ8DqvE01QZQAWInrZrsLZiOpnivKesYf++Pdz43Ot56rGnefSxxwF5r7o8w9XKMBqvcfllV7Nz/jxnds8yMjK3H443eMWXfQm///t/yO3Pfw4WzdlnTlOWNWvra5TjmrIqqfZUtK0jZHi40Iq2W1BVNZddtor3HYuFIvgapRWj4Ziz57fy84PRaIBzDYv5HKUSPsOLxpj8/D1aGxaLjhBFLzjZFaan0gNihKIcMBzJQSh6DSFirSN1Dd6ztI4LCUqVkzeiwzlH8NC04LpETB1N61nMOwiebt7hOoetDO18QdAd2sLCdVg7RmFy2oWT90NyJBXQNiMtdoAuKpIVR6KiMGgdaduO8UjmiQRoZ46N9TUWzzxDWCxQ/u9Ox/f5n//5M5nZJ37iJ37i4Bd8wRc8Vtd1OnXqlJnNZvr48eOfFFXx4Q9/eOicUwBve9vbHnzFK14x+7mf+7mN173udVdf/LjNzU1955131t///d9/RnJE4WUve9m173vf+1bf8573jP/BP/gHO5/q6//yX/7L0/11fd3Xfd25//P//D/PgHw23/72t483NjbCZ/J7/lYWvqCgsQoVFGUSfVFSLWgRjauoJbtIs5xzSR6dIioNqUPFlqALki5QKWCYo+0I5cSBRDD/3O3EiEolyXsgkLTP0sFA0vKB1bETNxJEBxeSJ3mN1q1Q9pebKwKV9WiqbjAxoTqTITiNbxY8+MjDHLjuZk587M8olaPVYsul8vPpnVSiitIxkqRbUykXlJQ3Zk3S0iUak7WB/ffi6NRFBJhM+RS4MAvfU7bn8h0B2auUMZB6s+qYoVwlhBgVySr9DHmKYTVEQlAkJ6xIhcxSVP4a5MBYbcXoW4aZMj/Nmr8UUq7EankoUQmUsSijcVE6MRVrtE4ovSCFMmsnTb5fyLzOe/FTzZ1wjD1ZyGOCg1TiQiJ4hy0UyYhkJSKzxt7Zxqg+DsrkubPQ5pUxAi1OtvFzQzscYHdLnGupipqNNcVlR/YQnpHNtB6UmEoRg+TUaaXYs2eN1dUBTz3a8cADfwxAVSnWxxXRB8qy4vCBPRilmM0aSltJer0OoDUjUxMD+BjR5YB1u0b0QQ4MoWBc13IY0nIIOVIdICRFVVZ454hhxOoo0nYtTbOgGlaMhgO2d7bZnEwxWIZlCRqCtjy9OafRA1xUjAYlcbHD6p49xE6YpC4mPBWdD5TaM6hKxmWBiYlkIkWKOK/FyScGfBdpQiQk8Al805K8YrpYMBoVLNoFRaFJsc3zbUUKDT4bcIuG0+N8Q1GIkYJ3BmNKMUZQimgEig+uZVhYOm+IIVAbRRsLir2H0GdOMW8bGvV3Z8Z3/fXXd9/4jd945hd/8RcP/P7v//7G4cOHV/bv3++eeOKJ+j/9p//06PHjx7cvfvytt97aGGMIIfCa17zm2sOHD3dnz579HxT/J0+eLF75ylfesLq6Gg4ePNg559Tjjz9eAzz3uc9dfLqv33TTTd3Xfu3XnnvTm9607w1veMNlP/uzP3twOByGZ555ppxOp+anfuqnHr/jjjs+7c/5HNzCz2hdUuEziMN6HmaJHySSQqCSkeKndE5oyPxHCbgDK3T7pKyQGfrNPXmSKoSR15M0hDJJUglDkdPGxSdQNHEmf4ACzgS8AhM0FulyRPMl8Ini4g+NwGriOiJaKnqeY4oQC7a25wz3wWD/UeZbp0hpvmQwSvE0S/cRUk/X6LP08nNi2eDIbI60NOAGUBm+zWM8KZhKs3Q0yzDi0i6s1wWmTPDI3RvJZMF6hiFTypuOgmR7r2mU7n1FoxwWsLnDlmtA9Xc9Lbt6jRZnjXShW+8ty5Q4E4BSaGMyDBfRsZDbnmURCpYHoN73M/UFNAn5hiVRJtNmVJdnqioTZCxKSyca+tlv7vgE3tQX5o0piZTGB0IKhErR+ZaqGKBQPH7iFOPBEQZlSWGE1akiEsCrrVitBYeW1p6jxy7nkUI+IjrBuWdOsTocsrG2jjaKPXvWOXK0JEZhgroYJeNQF0sWbxdc7mYNhbV0oUNrTVlVIquApUWe7zqqsqCwox7PwHUdBGGM2rJkbf8eQutx8wVN6NhpPckaiqoWlmiMlNawf+8+JpNdXOekw3YJW5SUpqAo5P1vrc1RXEnkE8hc21hQIeKcw7cehaRnGAW+a9AR8c1VmcGpNM51OQml9+dNErcUpEtV2oJOhNhhdIFSBW0bGQ0jeI9XiqJU+OCIlFilMSmKgfklqq7+tq9f+IVfeOrGG29s/st/+S/7H3vssfrpp5/W11133eL48eP/g6Dxtttua37yJ3/y8R/90R89cu7cuWJjY8P/+I//+FOvec1rrrv4cQcPHvSvfe1rz3/sYx8bnThxoooxctVVVzX/6B/9o/Pf9V3fde78+fPmU30d4Jd+6ZeeuOGGGxa//Mu/vO+JJ56oy7I0R44c6b7gC75g8iVf8iW7n8nv+dzcwU+/Lo3cEhJlSgQjsJtN/f6XmX5EtHJ5EzVCWOiJLvQQXEVK1ZLOnqIGnwglvefYUvNni1KG5sTlqT56ckqEIhtFLr0iZdZmciaczgLsP/cccjd28YcpJemKYgrYqmDyzNOM9x1mOt9Gd7sC38UESaOMyRRtxNMSgVVjzFIKoB8Ch5T9QmPW2eVr0RmGTSnPRHM80FJKkIuXwHzZwSaKUD5p6fTQGhuTbPy5e5L4H7n/xEIIPiQSTSaE5NT6zJIF8uFEYL6lR0rKMGefpK6gNw5IGdrVmYIfUwKTZ4QEiCWkGui4OIopqguHBNkszZItGlO2oUOKtMlEKZUiMWVbM8wSSgfECUXbHrslBIntScqQvWXwUaOTwSTFbOppT55n38Yqlx9eBS3+j107p13MiAFCVAwHQxZNI5GCKXHkyCEAFrsth668kltvTvzmb7yFv/9FL2Wx2KXNbi4b63vEhUX3kVuiYayt0PFd15KiwQVPWVWUhcxBneuIRMxFhgQ+SPG3uoAkiIH3HqUUhbKAxwxqUiiZT6aSNp+ioBbec2DPHkKKzGZzOufQyWIj2NJSGMVgUFJWibLSWGVRSWGJ6AbarmXRepom4tqWxUzkMykFjIm4bkHy4HyiqqolUUoY1EZml0EOhdoIu9V1HlMobK2oq4rOdXgfWFlZBybMFx3l0BJcg9GWYaFROxPCYkY7m6H8n/8Q/++9tNZ83/d939nv+77vO/s/+/qJEyfuuvjPr3/968+//vWvP3/x36WUPnrxn/fv3x/e/OY3P/4X/c5P93WQOfMb3vCGM294wxvO/FV+zv8K69IKX8qn+NTLi8n6KpXH01GIG5mOndD0Vl06xNxweUIocwSQRnQNWU+mRdogmX+K4BMmCRtMKS+QG+LGLyxARxETuFwwiwtzNxJZSrEk5ed/enhQusKUtVIKS4oB1QYWTaQyc9ZW1zh/6pxoEKNAgzF6+iSKPvlhmd6nMtkkXkRlycVNibs3kEXbse82M4Eme1qSC+RyNqml5IRUoCPCxgvCno0xiQOMCiidkASMQk4OWovJdOq7bIixL3iBQAfaSweYNXKpT4BIwiBVOovUU2/SnehlFzLDjcIwXV67R0ez7AwB+rmA7rtiLcQGrRQ+pJxekZ1nIBdlm0k0/QBSOiM5UGkhTSmxVvN9arnW8n7KhVnl7t4UFaiSFBRx7nj44SdYX72WG1bWALjvgXuYpgVal6Qg/pVaa2IUp6HKCTrziT+7h3nXQYADe/fxzDPPcOa8pV10DAc1T9tTlGVFiI7RaMxgMJB7Fz3aaLSVeWXTtaysrnKuPYfVBltYAoGVtTHTyZyqqmjajtW1NeazGbPdKVvnN2naBl0UhCCfsabpmMWCrXbE7sQRhFCLNXDw4DqL6YwYo9iGdXKPSHI9xljqQUFZydjCuUTnW5yLxGTFN9QlQgRtS5wL+KyasUY0pDommvmUhOQdyiFJujthmwobV5GwthSYOwlcXVQDFAU+G9FHrXHeU5QWYwyFbplONjOJpkP3JrfPrmfXZ2ldUuGLSiThwt9I+KRRMSelG3E9cWQXiiQwn1Yp+/ZqSIGkW9noTQIsMRiSdlLgsKSUI2mED3+B1afjkhxhTLGUMQQCqHwy7h3BlgWpL4QgKeWZcdoL3FOQLk0rEb3HBBRoNWZ2fpc9R/ayPTpAnG1htUIjiemRDLdBhgt782f6uyMwqlZSyLX6JAuroJJ8DQNZUqC12KzFJJ2GVkLETEruo0geEjb1kKuwPH30wtoMORbHSqzNku/Zw7Mm6xyzi4xfZidqVDDLrhGdC28ypOh74if9M+vNuH0IZNNHTHTL2WFQDo1ZFrz+H4UCn11LCkNMXU6nl26iZ34qdSH5vT+2qFzMiKJv0bkLVkZeT5Dvs9qSNBiTDQ2MGJsHDYQWNfPMwgp3fuAejl9xlbwvXGAxnzEYyj0wWjSIru2YTCfsdRkSVQU7sznKd+xsbaKKyMb+vdSDITE62qbDuQ5jCxZNiylKYvBMtjaJQD0YMJ/PGQwG7O7MmU4yBBmDEHV1xAXHsB4QY2JjbYO19TXaVjrTlGAymRCipypKFq0nViM2J4GuU3gvDNuNfWOqOrG706CSJiaHUpqiKIk6MhpWGBNJoSMFS0qKznlccHSdZ7HwxFigtcYFB9riE3QBiIHkHSoZKmto25aAx7U+J65EGYZo0Fq6v57tbMsSoy2LLjKsLKhIFxpSDJS2ApXQqkABlZpycvOceJqmtDQReHY9uz5b65IKn85zFRLoZPMGKjliRmmwCmlxOoIqsQqSioS+8zICCyJ8QjQFURsiDhccwVqMNRA9PjqglEdGTySJNVaUWV9C5W6wJsqgAp0MCk3QQeTYMZGSfGjEP9SgokfpSOw7CmWyvyighRlpEUPfyc6U/XsPc65rcW5KpaUrisqwTIuXwV7uciQI12idBzwQVJTbnDJTFfK1yvf1qQVCBEqZ8UCGNcUVJERDwmNSjufJHR3Iw0ULloCW4HNG3RLKle5bhYjP8g0VxTLNRJ1BQSE2KCMkFa0MBi8Hi8ymNVHnOVpPXgj05Yk+WcJYEp6owyfBuj2Mq7XMs+bBc2jfPkajMY88+ghKWZKWhHWHF5YwkjmoAgStMrkmP69kUDqIzlArVMydkLXEVOIjVCmScCQTiMGTYqSLAdt5XFPxgZMfBOCxx56iWR0znHXUxQDXRcrK4nzAR0fTCgmmaVqazhG6loOH9vDMqdMUtqI0NWWR0EWiTeIS053fpXUeE6PAzUbCZNfX14kh0rYtVxw7SDWoxO4rwebWNivFGjFGxuMRK+MVovd08wVd26K0GBl4FyF2xGRxoebczjmiA6ULChM4cmAPk9mctpNQYjHMNhgr0gNdyKEyJkUMhs41tM4xn3mahaPrGjqvaOfQtRDiDLqEVfI6hAREJ6bT2SCdkIhe2MZOewwDUpeypMEgsPeYZLJkSUxkKW2BKYYC/5YVptToUBK6TbZ2dgnJEVxYplQ8u55dn611aR1fZkv0cTYoiMaI+Va2kTQqYbgQ2bMkRujMCEwRk0FRYbBHyt7dJWfHaQWmkLR1pTXG2qwTS8LcS9mTJaplmrfWfdBpZhH2pJGLCkDfrwi8yNKEWWeKfEoJpSMpOJRSNIsZth4w3HuI2bkniG6emZW9B2dvV6Yv5BKmfnZG1h/2xtoXhvQy/BfiTU/5FdLIEk2U71MIuJciyfazu561KTIPEQZnBm0UJqdsFGHZDelMfulfD60EehRYUV470U92kKLID9SFzjmzeZbdLAqU1Rk+yx1lJjYtZ5PZNk3l2Z7JhxNlE1dfcyXf8A3/B7s7c37jv72Zp598YkkgSkplUoTMtkKMF362zocXrdFG45OTzVVn2+0UgAUpgQ8CwfuQYdKMFkQWBN8yb+RA9KGP3s3BwwdZHw9ZG0Oz6EBJEQ8pZGM5aNo588WcGBw2JaJRnNvaYmCHDCpLoCOZkqhmGOdIM0OFmE+30TOoaxbThUDDSrG73YCKtK7B5263LC1FUTKZ7DAajUg+QEjsTCdUg1pQjTy7LsoR5yYNTeswyuBpGVaK4dhyemsbdMminUsEkDVAkrmi0HbJShd8l0TEngyubQkeiJG2mzGohyzmSoJEoiMFR38GkaSWkH1dU36dsqsOHo3B2oKUOuqiBJNJYWLBg9EG7x0hQDWos+ZXNMK7WzNSUviuFaTGLgcHz65n12dlXWI6A0v4iSD2XVrGKviYNWd9EGoyGTLTKJvp/Vh86khKLLKShiJFrJeolJiZmGgJ+0xJHFDIIm7vBUpJ2dQaBSHIxp1UJARhkqKswInE5RxOyAYG8Hkflw0AJRIKyZATWEUSAgwpJnZ2dtl79BDGz5idPwF5tiVOKipfY9+RsCS4gHRQJAv0iQSfTKhJZKMwpTA6z+Dop5FyUFBJ3DBCciKaT2Wu3JmkktPu5X+RqFwusj1x5QLZBjS6J5nELCXo53Vymrhwff0/fZFXZP1eyrKRJPo5le3o+uePyjNOldmdIbNdDXVZUwwKjl19iJ1ui6DhH37dP+T3fuu3ueuuu6ltiTZWbLO0xqeIKQr5edpId9eTmFRCYQTwzdBujB4dWqJWtK4AZSTSKsO4RhlicgxthckUeR8sjzx2gqsvP4xRJXU1wDnpnL332YUIFs2U3d0Jg9GAc1vbDFZXUMoKaqEMzjticETlGWjDZLrLQBcMqhERzdbWNPv5CCnEtZEQPWVVSs5jEjZlCGIc4L14tmqFMEGNsKZDivgEq/trJnOwtqDrIsnCVVdfhvfSvQWnWTQOled+SiWs1RRaDhZVaWmbjrbx+BiZ7M6Zt46kCmazLcpSsbt7nkJVeN9RFsLgDVkH2CYxEkgxkYJ080vtbfK4GNAUWWEjXqw+BclbNPmNFSO2LuWzEA3GKghetJraYLXGrtSoNLukberZ9ez6dOvSBOxkfnzuTmI/v5EWRLoHshtHlgoIeSIKBVpZjCpQRvouFUR0HjKtXmVBtBaeBFZyjYTtFm324IyAB51EPmFFKC1kDCF6kCQo1qCxse+ocjdFhisTxNypCTNTwjL7YKGUAnhQ3rFz5hyrqxvMplNCt0Arn2HUDPXl7rGf+fXdGsqTcuGTgnhBWqGzhkuIH3KfjEbS5hMZQhWmqYpKCCoqkVSQexSFNBMiJJUoMwod6WdyvXdnLsb9fA8p+qq/pr6R0oZEIXOcJPdBmSyk6GctSHGu6hrh7Rq5Nl1kElOQepyyEXXq2b2AtuiyxMXA8euOM20bVqoV5rOGV3/1V3P5Vdfw3ne/l8VijtVZ8C5D3Ysi27OvaMqHAqXFIoyETymn1ktEUNJaNJcKJOrJopSmsnWWs0gnWJc1k0VkZ2eKTorxSmQwqAmdoyjEQQagrgvqQYmLkel8wWhlTFVXNDPP+XObBN+yd88GtiiF1agNtqiYzxtMVWG0pbQGYxRt10gYbEykTog93nt0uODRmpLIRNpugUuB6B2VHUg6iilIdiBzPhWxtsIODAf27uHsiZMsZonkOqwuiSS6IMSwUbJCTNEGqw1dAp8S09mcWdcSbEHsPFVRLy3jom/RyRPaSHQO0PjYkUgYpYku4DvR2Sqj0VokEgBJFxhjcCFhtXT8RWVF6xnk/RS8o3UB7JCqEDu9rg1Ug1UWk9MURUZOnl3Prs/iusTCBz0zkqUdWcrbec/SJBfGDEkRM0wJKsq8J5kg2qSUUCagjDARlTGycUYgJvGI0VpgSzQg7M6ejUkie4QqSWlHkfBSoJUifZL850LB7okpWhkpuEqhc3afyrM3pcRst0iRMJ+xqCzDjcPsnjshG3ymXfSuJin/XQ91yvPpH0P++3wHY8w8FyOu/kYvOYxKK9HCRcDkFHQSZNsnVMg1wSCUnawF0zp3ZdmNWvUejJGUBHpSiJMMStib0sxoIftk4k9vTCrszgw/xpBnkgprLNaWAgMmMcAWUyQHXmQrfep9yq+b0II0ISX27tvLxvpedpsJi0WDRjNbLLjx5lu4/IqrufvOO7n74x9nOtnFFoUUXRVBG3TPDs26y55JqHoHHKVRVALHlVaeszZobbHaYoxFmwJTWcogbM19G2vs2JrZdEGKicYHNtQehmWNUtB1mVyixFS71CX79x1gujMRaL8oGYxGbG8t2N7epqwHWK1JtcwJY4oQPCEEjCqZzedorbCFoQ0xoxbZXg+dYV5omg5jAmS0RKOJMVFXA6Yu4aJh0TUE57DGcmDvOu1il+jFPN51HUVRClpSQlVLCrwtLFVl8d7jvNimKS2sWNebgIeEdzCoRrjZhK5ZUNpCjOJ7nSxy4DX/f/b+PNa27K7vRT+jmc1auzl9nTpV5epslwt34KIPXCdl7BAB4SV5KDc3hGeBHgqdEwFKLCSERGRi2YmILlIUOySOQl5IIPcG8kKcEJzLu4+Ach1MiMEPG2xsV5WrO3Wavfdq5pxjjN/v/fEbc+1DcoGcSxnHcEappHP22XuvueZaa/zG7/v7NngyFszbttFm5pKrnMjhXQtzd50zvimor9aFXUNG2T84JG8zm/WKvu1QHP1iScliJK55Nn5n3Vkv0rpNVmedGeEpdYbnBIOgooNql+ViwKultRcFp6lCS8b2Q4xm7zHHFxUjwMzuKI5qpRS8CWWr/ZYngBaKz6AFJy3qWnAJJWFzLZtP+WKb+aTzE43gbf7lJOCdkr2aNRcG+6lUUbszNmnAEiZElXF9wuHZu9k/c4XVzaeImnDeMWmhEduUb9UbGmwacH6snVe3mxexm3xWI2knoLbJu6D4TpEiOKmQK4WkmdOCbIxO0+2ZXtA2JF+t3WoyhStAJouaZKQeSiwtw6qr94Kfi2rV1c0nbJ2hYl+1dzhihLLZgDPRcdGW7H0lPEy74oRW5x1vhxMvnpwyr33stUzbgVYUQjT9oAjqE20vfMEbvpgv/WNfzC//hw/wS7/4S6xvnkDwhGg2ec5bMQPdyRogVoasHXu6tiH0xhJUPItuny720Clt29Euei5uzP9xTJmj1RHd4EhaWKWM0tJcbmnUIHiAgmecBkJO+NAiBI6ur1gsl6gK589fZHOyIU+KtNBh8GcXHPtnWtbrzDhOtZhm0na0IofNmVPKRI14DO6MITCNEwfLffr9A1abDWUUyjjRHV7iJDua2NMVwCdecvdZ1psjRhp8AyHWPEevaMnshx7nQ81mNmh1ShPTIIgEondoygxFOB42hGyB0QAEz1QmY3RKhmIEJHFCrlFLoYm4AuoyyQlNbGi9wZyx6cma2FscMk5bpkmIoadvPV2MjNuBxoM2S6ap4MUSI0LfQJn+kMnX76zfj3V7rE6oEN+cOmBETpU5LcHqjjB7PNZCqEZUEbI5/IszVqhXJgQJ0Rw51ETTvv4O83v21Z4q30JKqWkIPtYiamw/7y0KyKnDE8kqlVU2w39GswZPKRlyIfhQOxtD1bwH0Vyjb6zIeA85Tdy8eZUrV+4mpw3jjatEnWijoi4Q1J8+CMaElFnKUe/HrXdyzsND5+6vVE0bzCYvKlrTyE+hT2tc6/cVzCjYNbYRVZmDx2qYAdPu9GfdXHC1urxYMfPqdsNJ3V2r2nxS4bQFLZQc7QJ9si5O4m52tSMSVaarn4NoteBoONjb4zWvfTXDNDEMEzkLrfNM44iWif3FEknCdhj40je8nocffTn/r3f/A4IEylTwwSE64Z0SXKgenYHGB3xoQSs7VRWy0raB/cMDgu+IoUPawjBsObp2jeeOjwG4fv0GW93H9w25Wpddzy9wz+W7CbE62wDON4SuR7UwpZG26dhuNqhzdMveiFbBoaXQxJbtZlON3APl6ATosMOI2xGRnPPIVNgOEyVnlp1JNHywg6QW2I4DBGh8R84j0+Ro4x65hgLH2HHufEcTLe3A0yLjwDgNtP0CB3RNV7WNDucLbdeyOspMY2QYMrkoU1LyYJFeMQYohTRNlJLZZUdqQrKAKOJLlTpk8y+gQuka6utvRgLBm1NTiGaqHXxTi/ssVVGCi/Rdh4ow5C0EOxD3IZrJ953Sd2e9yOv2oE61wuFdrCkNVMG5bd7OixU4ncXdtcdR8+sDy4BTb2GyTux3uEJlZhqcqVpsniVWGIxIYv6QKvMM5NS1JIuvtmYmhDdVgBH15xC4ef42h8mqh8ZZARIxBmGInizmeznP5OaPsEihTCtu3niBM2cv8cJqTfDKKKO5ocykn/leOYNBTw2eZ7oIVed2WiRqGTOqd+2sPI5cWaHOeyMT6TxLnH9ntXDTmbhjQz6DPLV26HNHaY+hNT3dVx9Tr7fAhTNrc5ecV82gmecs9XGcwzmzmFNnZuM6/3x1YPEh1NeuPjdnd2izXbMdR/YWPettomRl0S/oDxZozsgoZO9Jmrlw5SJ/9A3/A/+fn/73FqgrBnOXKSM+QhHTj/mAa0Y7xNQaHVxkzAmHcObMBcbNyrq9JjAilGl2bhnZrD2RnsVeR5ERGYXrV69z9uJeJc6AFCGlQvQVwhaz8fIh2HtGHT56tsMaN9lL4UJD7Dq242AHoSI4n5EsBrt6E/W0rcc14LUKv7UgosTWOsLVycZGBRoR39J0ezCaabc65crl86Q0MSVhfbLBC/TLJSFGfHA00aQ9w7Cl71tyymw2IyLRINjYULZrcoJMoetahnFliSCzNra6y7gQSVnRkEjJCGmuJJrQGVTqmjrLNmg9p2JB0s6RUqIJLQ5H0wamaSCPsL9/tpohZFxwRmhqepaLlrQxR5o76856MddtFb5cLPbEIZYEUINTXe0WnNQNVSy5Dh/qFm7mydSNXBSir24opRBoKGFWhc0uMDVF3AmhwjVz2VANFa7J1oxgZJKiVF2a2W6F4OGWFCtXLbZEpeqisnU1WNdXKjxKJZ4UkSpoFpsB+kQa1uS45Mp9D/LxT/wasVsQsgmw5+cHNsebY4lO17yL2EFBKncDNVanWR2GysL0dRO0Kd9cIG91RLEWzdw4pNqoWSqF7uQRznmy2N9nGYqr7izU+20pEfOUEWbKO26+5/Wx8IhMoA3eN7gg+FBJQH6eKZb5spgzFudDhxMlhsA4DnRtS8qF/bajawJ5mpiGAY/NktarE7xXXvV5n8P//jP/vjasFrFkWYIFKQl1jgmhjAnzX4275+NxhFVks96yvzhkNd3gwsW7ODhzlm5rwvS+i7Rtj6ozFmSEBsennvoEh5deAdEOAd4py2ZJyRO+i2QKbWzJUyY0VvS7rsW7JTlPdN3Ccve8J8aOkkyCoSqEatzsnGMYbRa3XCwo08B23NQDkLGjRYTgTIcX24b9wwuMrWdzNNA2C5ZLz/7BkuevPc92LIaGaMZ5s0cLeNrojSEZGryLbDYDpWSb74WCSGEaN5TsK4EpIznhnaNprdNEhFRzEWO3gFgoxdNGC6OVSSmuEGOP9w1STO7gG5vxKUoTDR0I3ubT3lXGsJr1e5HJDq2hMRSocZQ07t6Wd9ad9WKt25Mz1ERsJxB8oPg6q3NABbo8vorWzffRioo3O7BomyPZwlJDUIg2VD+1tjKRq9nz1XgX1co8bMyzkupLKZN1Vb4BF1G8jfgkoZrsQ+VPPzW+skItEd3cVUpxOPGVUi02iNdTCjwYjTtXqFWmiZObN+iv3MXBpbtZHV2n0QEouxkotQuep33sXExq4ROpGXZV/KigKpRKSlGMsRiCWUCpWhTQLJansjZVoxE5vP6WoqiVWTp7mKpXm2HWjs/ugC2dxYPVwLqCnRXinOqTaYDGHtpnvIbqISoWO+MriWX+XVC7Iqvm5swibIctR8fHzMG7TYwWXFoKSeyxhmmipEQaEgTlV3/5P5swvdrASTGak/euFnbLNjRyjzd2LwHnalSSg5Pjm0gqxKXnuWef4b77X8r5uy4CsFj0tN2C4JWinoiniHLtxrUqObHnM2w3NgPbbOn391kuO5jsemNsiW3DsB2t082Otu04PDwk5cI0JsZihgcQatq4vedi9DgnbLcr+rZhdwur5jLU9AlcoahnNW7w3QHLxT6b1YaXXL6HaRwZp8I4ZiR7Sh6J3R446/ZijKhCbEIlrpj5gCC0refo6KZB/E5wYmkMXdsimim5ksBcqoxnj5Y6b1Uj3eAatCihsfen1plE8DajdiGAF2KAaRjRUCyPzyux7ZmmDU1s6JrIQCE0Ad9GqC46uM9sx/fcc8+Ff/2v//XBwcGBfO3Xfu1x0/xX4Qf/Xa5hGNwcZHtn/dZ1W+8oRW+xLZs1c/a3OqLbfV/wEGY5gisoVoiq1KdKF05p9fZht+4FrV6RtXsRN5FIJK8UX1mIZOPhuxoUmyFiMEuuEJxR3+vFOysINgOshUYFdXW256TadWndqO1ELChZEkWh5IAvDlLi2gtXOTh7nrbdr3ZtajO9WuBMXld1Z/XxZ9gMamPoqOzE+X5WyHRusGrpjK6G8s43uUpHzO2lMinrz6raCV6KUMRc9x23HE7qPQObQyrVn9Nn1KUKi5qgWior1B7zFs2cS+Ayoh6kqa+45TPOxcgHqdq7Bldz5JYHexyeOU/XLNisB7abNavVMavNlmFKiECZhFysoKh6nG+ZUoYilDShQRFvhm3FCUntYBDUEWgIobfuyNXcP7HYpdW4IpeJVCY++eQTldwDy8N99g/3aff2CE1fjyrCZr3h5tVjnHaA6eW0TMQQUVH6rmWx6PHqGTcjebAOaZoy2yExDBPPPfc8x0dHrNYniJowPouQxoFh2BCCo2kaUs7knBmHqULjjnHMlEkRilmuOWW7nRjzHilFhm3CxcK5sws2qw3DplCSzXcXewf19TUI3wfzSDXC0UQpZhJdkiMNiWm7ZbPe4gMUTeQkpCmZD6y3sYWZtAR7T8lIzqBlhFLIGZImkGh3z9X3iQcXPbkkSklIyfRtYxZvaUvsGlQLWTJjyqizrM/RTRSfUe2ZTRE+U+sf/IN/cO7uu+/+vG/8xm986dd93de9/IEHHnjNr/zKr3SfrscrpfC93/u9l++///5Xt2372JUrV17z1re+9W6Ab/3Wb733wQcffPVisXjdfffd95q//Jf/8j3jOO5uznd913fd8+ijj77yB3/wBy/ee++9r1kul499uq7zs33dJrll3mgduGDmxKj9OURjHzrFibe4HASRybpEODU39vYGF6kG0b6F6uvp0Coadkgxo+XZtQWqUN7JTvNnHpzZuijxeLUPOszEhJmhaJ2i09qFSdWKOayIkq2UV69IUAvLc+YmYmdbxYsjONhutmyGLZdech/PfOyYhYvVxsyZR6SvIN/sUuZ2l4Lz80zS/l0lWyKBXRgzCcKGdfa4zkHOBRcCudLgQ4VFpc6YnFnnVJKQVt2fq5ISj4pRzHEGQYuz6wrUgl/v0YxsGmxocKliXTrO4nt2bjTObNoENRKLQqxwow/Vqi1ncIHFYsnTn/oU4zDVzRi0Ebw2bMaBPgQ2q8LhuTPsLTqUzP0PvYQPfeBDyJBtruiqfbUUshM0eHxRfKkMRj/Z4NkFgos00dtEUx1pGtg7OIOLHetxA8DeQc/e3p5BfzkzbbegBU/ghas3SMsee1Uc2zHV1waOVidoUhZ7e6w3J5SczVuy2Pxus9kQQqjp5rDZbmj6jthEcyQRi/2JsSGPdkhwTQPOING2s/eHEUoKBIjLJWfP383NQdFYOH++hWmkFE+WQBYlho5UTYJiG+m6Bs2Jbrmgax3jOOAxmD+lKtIP5m9aioXCxsZcXLwaYiLVMzc6by4uJZGztxlnxPR79fCHK4BpJqWOIHxoasEVmjYiKE3XUNJE13QUF5iS0ixbwBH8Etnu4WJnIbbplnnF7+O6ceOG/4t/8S8+dOvXnnnmmfZbvuVb7v/5n//53/h0POZ3fMd33PujP/qjl972trc9+YY3vGH11FNPNR/60Id6gIODA/nhH/7hj99///3pAx/4wOIv/aW/9ODBwUF529ve9tz880888UT3kz/5k+d+/Md//KMx3h6g94dp3eadKeg8r9sBeeZcUlyNNlUhqMNlrWMkMzI2g+G5lanZaq5S8is5xPLfCsEZBOaxDxe+diyqlvDujDHpBYqzIuMrnFh2syVXO5p5uV1x8DqHmNbipA60q2QU20B9wBw0NBlr01etnQjFeQjK6toNzi8OObe8wPr4aXCVLclp9zt3bqfUFvsdUmoxFvAYiUB3cOZc6KvJ8y2TNu/NgLmUUwu5U4JMlfCpwWqCkWsC5s7vagHX+QDjPeKdaSpn7d/u/Kg1z6+xx3HZpBc7U+g6K3Ra8+RM72edQb3PIVZI1MyQH/uCz+dP/en/G5uTLSlnjk6OaXzkyaee5t4HXsLhYsHqZOCZ558jdJ7f/PhHcTHw59/8P/HjP/JjyJTJau+R6L0dfrwnqOJLQNXy3JBEMdASshjztemQLEwnGy7ddY4wGquz9Y79/QVpGJlUkOAsCNc3xO6A8xfPALBYHrLN0LaBlBLTMBEF2rYhkRgm4cyZc3QC69WG559/jn7RcvHiRbbbieBbpHhGKQQNZJmqI02kqFoMVHU5GYeBlCbatmVMW7xfgEaahWc9rtgMikjgniv3c3x9w8nJ2mALZ4xkPIRo7EnNieigaz2Spxo2a0hKCLBdT6xOtoTQUopB4t4JfdeThwmnZg6QcyFQUClIscOmD2ppK95GFUVW+GLFyvkFPrTV7aUYU1SF9WZDaDyhDXbYKBYuvdzfg6I0vqFre266htD0KM4M0T8D6x//4398bk43f9/73vfhf/Nv/s3h3/ybf/OeX/iFXzj8xCc+0Tz44IMvqnv2jRs3/Hve857Lb3/72594y1vecg3gVa961fiVX/mVK4B3vvOdz8zf+4pXvGL68Ic//Ow//+f//PythS+l5P7pP/2nH7/nnns+M6eFz5J1W4XPRktGWdYaIe18JAsmpA6mgwsaQSpb0I8G/WlNXlDMNstJnb/ZfElDA34mmCgR6/SsxrpKafYEAqVCfr6SUsyxZdrBbUG8CdF9qAJ3CASTRVQmpBWdaPZpt0B0xtepJBdnNlHgTMZRW8SM+RK2Atev3uDSvfexGq4heUtEa07fqR7OzX/W0xs5jx6DnhajXa2cmZT1f6jepD4YK9O5HVdo91214Htf2ZS1fytSubXB8vykMi29M7Ni70zbNVu27VpUauKEtnbg8GJzM1eqTMHtrlmpkK26nZdj8NTOpWP0Vihe+bmv4j/+p/eTh4J3gSZ2rI5WFIXf+MivM65POHNmn80w8cBLX8r1a9dJ04g/A/c9cB+/9uGPIu70kNPUmCU3vy9dTVegGDF1hs9VGdOEb4HjE67lpxg6u9s3r11n6Pbt/iYjWahT2j6AZr7o818LwJc+9vk88MA9iCbagyVXn73Kg1fupQmBMU38H7/4i/zGb36SC+cucc/d9/DAA/fzy//5P1FK4Z4rd9OElrjoee7qcwQV9g/u4tnnnjeUoXE89NBD+BhZnRyx6DuefPJJ9g/2OWzOcPOFgfXJmouHZymaLAMw7NEE5WYyq77j1Ql9f4bgzMQheE/bNXgyfRuITpmKosUzbC1/crOZWJ0kSnE0TWBK9t4oYiSh4CNaEuINxqcYI8vgcjNeGKeCEG2EIUozz169IJrxyTScbduwHQdSMtmOpoKPke040vVmQ7gdB2LXI0nwvqFp+yrIv51d6sVbv/7rv94BdF2njz/++FpV+Zt/82/eA/DhD3+4e7EL3y//8i/30zS5r/qqrzr+P/v3H/7hHz73d/7O37n8xBNPdJvNxpdS3N7e3m85Fdxzzz3TnaL3u6/blDMYbGadiHUmdroXIxtoMMjJFZuTScRh7L86uiCqGrTmHMWJ+feR0OxxTbUlc7WQuYCZD3sGLRXyrGxPjTjLmzFyRwEw6EvF3GSkQnhQi5lNqVDCLqTWCos5/RsL06QSdZhV+R6lPmfrynztckSFk81N/Kbn3N33c/VTH67dV4PqBkdjT9q56jcyL/ubF+rAs3aaUOd2lUhTpQPeBYJWj8xss0m82xU+K9JG+NCiuxkdfmbJOpzYpu5mRFXVWK1OoTjzWLUbxamWD+vobChbJ8JaNZw130Ixp3+oAbVWuKNr8OrwrdJ3e6iP3Fgfc/7Kea4dXaVtA3lKHByeY5q2xNY605ITmjP/+7/7WWLXcddL7sZPA6/+3M/h13/jN/EukmXEoZZDPENqQWtBDHg6XDA3EZzFPQVvFnloYXNyzLVj27M+9anneGr0HOzvEZpgc18RgmSef+Yp/t37/i2vBX7mp9/LjVe+FJHM+QvnCeJYP/Ms23Hg4OxZzh0c8Ce+4o/xkV//KKITsVH+yB/5It7//v/I2YMziC+89vM/lwen+zl/9gxNEH79Y7/O6qTw5JPPsFgErly5B9VL9H3Hwf4eiiM0gUdfts/5s4fc2Ez80q89S3KO+19ygeMbJ9w82hBjz8Few5S1knxsFjeOA12jdH1PLomcMrlkNuNIqkBM23W42BtpqM5+vbcw3MZ7S17QDNEkRZIyk2STHmlNZu9a89YVRxtj9XSdAMWHhr73jOOA00jf9EzDim6vQbInhj0InuIF78zizPuO0HeoV4IYi/wzsa5duxYBlstl8d5z7ty5XZG5evXqi44j7u3t/bYl/n3ve9/et37rtz783d/93Z/66q/+6uNz586VH/mRHzn/rne96/Kt37dYLO7Y3Pw3rNuMJfJEZzM29Tb1tu4hQw2VdXP3EDDoj8aIIs4Mcx22OYl68I4QjCLtyhy5YzZmNi9aYF64AaJDG1+7GV9P+C2oudx7F+vHI1C8fUjxUu20DGysfZgVaRGyL+a4or5m8dnGjavG06pQZ1vOURPDtbISewQheli98AJ7d99N11+hjDcprHbekFoLyWwFBrWvmkXouzHgLQN8Mdd7y/FroG7ifu5uq8O/SSAqBZ05R++0C/O1s1Q3yxsU6rzLOaww1iR4wTxSqZ0clWmLUxNU+wac1CaqyjfUmKteAuKlCtnt8UoCFwqb7cDewTkOzyx5+OGXsS1rXnLlPvbPnOXp559hdXzCtWvXLEXBB87stzz59JPcc+99vPax1xFi4Jd/7t9Tpi0Xzh5y9YUVIXq7b2KFPeNwKgRXiK615+DN6kzEWcyRau3z6+Ginok3q4Fr+hyr445uuSBE23yjd8RGaPb2Abjngfto7r7CyckKLQGP5+bRmqkUTrZXKZq4dv15bh6dcHR8wmq1Zm+5z4Vzl/nkE0+zt7fk5/6/P8f9D90PUmjdBCSOTlY4F3nh+ee4ee0ql+++gA+e5557Du86lss9jtw1nn46szx3L7k4+oM9+v2G7fNrQlhwsl4jztF03Q5Z8EHxXjk43CMER54KKSXGPCJOKTU8OOeRnI1YFHxDjIGcqquMFkpJBFdoggdxlMYhvkdkQsfEYtFQXAbNBq+6U/WrOktgSWVrtnxquYp93xvZRxu6fmHWbEWJweGSzQ1j1zKVyZLOPkPclgsXLmSAzWYTRIQbN27szHYvXbr0ondVr371q4e+7+W9733v4aOPPvrCrf/2cz/3c/tXrlwZ3/GOdzw7f+2JJ55oX+xr+MOybg/qrKx30cRs0KwzM1BnBZ4VtgIGO9Z0cEMsbZ5W6u/yYpuRFEtkEKc7b2tRLLXdBTRYkS2l0GIf2lyqEF4zgflk7/ESEQ9FRxNNz3BjJXSYl2Qt2N4ze1K5Oms8hRylskfneWYl1FRij1adnVPBJeHGteucv/BSnnnqQ8R4hM/NvM3a/+qZhbhSOZi7eVqVKTjqpuWq4FstIgmpfpi1Q40VzixVguBwBCKiSg2r2An+w9ytOfNYFFchUcdvKcxOawfpd26stUJLvQelpsLn3XsBAO+M5FKZsvb8ChOJMQ1oEk7SDV7/+q/g817zWjbpBnmb+djHnyR2kUdf+yj3P/AgfbuAlLh5cpWf/d/+HS9/6KWcXzT84vt/kZ/5tz/Nous5unmzMjWN9GOaUOuYgwuWV+grnV4NhTBPWXuPFkKF4OygYM9DkZIZBmNchtiA95aO3i+55977AOj6ji603Pc5r+Tk+Jg+tkxjoqi5rUxpy3LRctd9gY9/4pN0N455yb0Pce3qEeIcJ8dHPHD2Jdx98aIdTnwA19C2kYcfvoyUgTKObLYbzl84z8WLF7h5Y0MRYX9/n2EY0BJxsXDX2XMsaSgh1iDm6jgk2fxEmxZlpGns8DVOE5oSbQwMo3W0pSSGYayHUHNMyiVRsgXXeueRnMwk3aAJigqp2JzVRTWDeBVCDGg2Xa13kVKjxWIbzZR7m+naCC7jo6NkJYSAukzRLUGjEaKK6W/VGZoQgydPIzvX69/n9fKXv3wEGMfR/ezP/uzeT//0Tx/O//boo4+OL/bjLZdL/bZv+7Znv//7v/++tm318ccfXz377LPxgx/84OKRRx4Znnnmmfbv/t2/e+7LvuzLNj/xEz9x5qd/+qfPvdjX8Idl3Z5Xp9gH1nk7TfoKxZkDf6gaqorx19idIrmKVqtLCpYw4B14LZAzgWhkl1okZO42vEecwSBSzZst5UGqfi0TnNmTMXcnougcb+T0ltOiZfrZfm2sz1OHEnYFxOj7oMxOJh4hWlZY7ZxA0ZBtw1Al+oayyaS9I648cB/PP7XBcuGiMQ1Vd3NEeygjf+yoPo6d9t2ZbgEtGeeKCcVrEoFd1RwIq4gP1cx7/r2zDVR9IDulMAvhBcEAXW8embAL+fQ1Akm0GliHOeioai+Zf9cpecWKqNsVT53HmKXOfF2h0YhME4990Wv5zx/8RXycOHv2Anffe4HPufAq9vZadJrQYcW/+sl/hms7zi16nvj1X2O9f5Gf/Mf/K0d5yzPP3EBEGCUTY29dnPd4byxbJxa8qqFGVs1zZXRm/OzkFlLkdG5U4Trn6uxJzTS9XyxIQ+HM/lkALl28QLjrLvpFz97eEknZhPbDgA+eveVFHIVhGvnc1z7KYrHkJ//5e7ly6SW8+rWPcvPGDdYnK7Yna2IIHF464Kye59yZSzVXUrn63PNcOHOOwzNnuHihJ03CdrNhs1lx8eJdPHU903YNl86eoYwjw5QRdcaWjA2CSUEs5R6WyyUpFfomolHYbrdMqbAdUjVnt8PbNJqMIkaD5lWN3YkknCayVns0Bw0espBUaGgRhTQJTYgWKTVmk35gxg9JtrTdEikbVCdKVsZR6EKLhkwbGsaUGUumbRZ4lCmPeB/o+p6ma6r5+e//+gt/4S/c+O7v/u4HUkrujW9846Pz17/0S7/0+MWe783rne985zMxRn37299+z3d+53c2ly5dSm9+85uvfud3fucLP/dzP/f8W9/61vunafKPP/740Xd913c9/Tf+xt+459NxHX/Q120VvuBradJaXHR26zCnDKexdg2TzYBcY3uOtxOlFBNTe+ewFibU4tmaxi+bZZELtbPKpYpYMwHwWlO5qaxLJhrfoOIoFEIA23UzvoZjzizEombhpQRUZmZIqV2oZaAZB2T2/twZe9nvJFXShm1SooKPnqAezQqYtu/Svfdy/sJDHD/zSfAmkzBPtnJKVNl1ZVSSDsyMF3VaO0sM8iwwi8P9rlSqHfF9BMlW4CgoFpzqXQ3lRVA/V1vTFEatko4K28YQLVV7prnOHaoLiNhkVKtFV6zfpnVuWHB15ulRL3atatZr+3t7ZBnxyXN44RDCiEsrXnbfw2TxXLv+LNkLz3zyKifXTvixH/8pLj94mYuHl/jAf/ggL334ZfyzH/2XHB2tGHJGpcGRCKqQ7SBRxNiCobJRc7AThIj5sEqwjjAiEATxis760PpqODGBtjqtkoSM14KWQ7x6Gm9oUpHCOG1gcrRtY51VH+mW+4TQEEOgpInDvQOL7fGwXLRspy133X2eBx64gpfI//Zvf5aXv+wRzt51yKLtCMHmbNO2cP4VDzHlLU0T6fslq+MtlIZxC88++yyjP8eZ8wc4Jwy5kLwxTF0lNoXoQO1ri77F05AkkUtB8sSmTGTnCLFje7IhKNap7i2ZBpO8+GhSBylaSVRCk3OdE9snQYLDi0HuwTd26Klp8yH0OBft58lIWYM2lsQCjMNAbHpjs8pECA251LlqiIzTRGyAEGi6ntC05GlzO9vUi7bOnTsn7373uz/+Td/0TQ/PX7ty5cr07ne/+4lP12OGEHjHO97x7K2Q5rze9a53PfWud73rqVu/9n3f933Pz3/+wR/8wad/8Ad/8OlP17X9QVq3SW4xnZsP3uYn2YTfsyekfQBNfiAIaMZrg2LzBIqJtM28tkbJYPoynQ0ONSDZfA/VGXQT1XEa4qo1i45aXAuFxsyAXSYKhN0sx9c4Haomr7EC5KuLikr9Ple5LDYrMnPtGn/jMLhWza3C8nej6e6kkEo13nUNQTI3nr/OxbvuRZdb8vg8zpm8I3iHzP5pt5An5w5ZARMYW3CrXXbttNyA1xatnep8+CgidQM3g27RQpGMTVmMKVdcrt2luZpYh26dr/cWgmusWyE7ez1d7XgdpzCwoZ1af7YWYAcueiSrzROrBjIE0zQulnvkMXN8cszff/ffIzbKyx96GZ1f8OV/9It4+onfZFpv+bf/6mf5+JPPsNXEtf4629XIP/ux/zfTVChJkawEb4/b+hapxbWUUm3noPGe4CuM7s00PDhn4m8Fakdrhdtg7Pk9nbMQgqspEQbDrU9WPPYlX4DHDvaqmcOzhzz7/HN0TUPXNKy9Bx+IMdK1HScnx3hMK6cK991zP//x/f+Z+x+8h0t3nePw4JB77r+Xj3zsN2jOOPZ7m88Nw4SPPW3fcu3Gc5w9e4a9xUhKBRmU1itJFQktXfRM48Bqs6VUhmXsOzNvT5nQRpom0MZ2Z/clYikU4wCrtTCWgVwGSrFDY56M6BSiJyWzjQtEUlrbAS17HKMFeBSHhkL0ARkSGhXXWTJDnhQNQr8IBN8gJdfD05bYRqYx0/UtU64SHheZJiEAaTYokIwnkrPS9Iek1hE2pzmWv9/rG7/xG298zdd8zS+/973vPdjf3/+scm65s377ddsJ7DYTkR20RSVTmCGxCbiF1v7dqc1UPDTqqzDdRM8i9vMxOhyFohnvGssFK45clGaGLDn1+5wLRVV+I6UgLlCcErxt1+qs9Pm6fQO72Z3OxA7MGi2okUOKKEW1ygzUoLFaIIoWi1OteXUyI6jG20adkP1EcIGUR26sb/Cy13wev/mhDzCML+CdRSbt5kr1ZmqFIOcIADfDrdXRZmaEGqGmVJsuVzWQVe5R55hzfd8J37W61ziDl73O/VwlEHm/ez1d7ep2gnc5ZYyal0C9Fn/qk29fMe9T9XYYiTVJwwe/e3+MeaIJAU2e5OCDv/JhXvuK1/C//i//krPn9vnob3yCYXAMW+EXf+GD9F1ExZNSjQRSh/daCUxhx+9TUXwMFElmwRUNZlfv6ji1Hhp2M9tQIWBFySb6x4QtlqhVPUa9JxdHHrd84Zd9AXm4AUATGkqMPPjAg3RtS0mJtu2MiVwL8ZmzZ0CV1ckJTWy5554HuPviFX7pV/8Tj7z8jeQy8erXfA7rzZqcMs1By/XNNVQcy72eru+4fNfd4JScLOF8f3+fzabQ73k0LDjY63jh6k1Symy3E7k0ZrAeTGYkovSLlq5tKDKBwDiOTNNEmhTvOzQNlut3lAxKp5DYWoRQgDxkoossup40bJk02+eiVDG7ChqMuLJjzyrEtpKqghHITKsacEEZhg19H62zqy4yzjVIcfR7kb1mj/VmYx18aMhS6Bb71l3OqMVnaF26dKm8+c1vvvkZvYg760VdtznjKxBsgzC7SdsgzStS8V6qzCFWR5diszAiSjQySIUXxUWk2IbjfTa/RzF2GS5aoxNmZiW7mCAjaBiDUOdZnICL1kaZOXRXtzjrdsAKgnkO1vZKHaUkrKiYuN6p7gqNSTWqf+XMlFMrvsXN26mrxsOKZ4S0IIbCcHKVmy+c4/KVl/Pxj5+gbgMqle1mczytNmUmV3DcuknPH/O5Joo6gjNJxazxA2em006tk9Qqhq8xTFLnmY44jz+Zmx+tBcu7spsfKs4iZlStROyIPhWart/nxFf/RNvsyIq4Yl78zmZuqkIuigwD4zBSvHl7jicTwXt+6QMfwgTxiaZdsknKsE0sm4aS7bXOeXZqYSfIB9ONRmpahmZDBoInZSHUPCfxxvr0Oh8aMOJE7WItI9DucamECudc3cwd+MDBXefYO7vHcx/8NQCef+4qNz75SbIoi8WCYb3l7NlDppw4OT6m6zoUSFOiaRpu3LxBmhLDkBinkU9+8gm0Eqvuve8yzz33LB//6Me5eOEiUuDS5QXOC2f390ELpRZ/J0q32KeXTNFYkycs2SCVAsxhvdC0kVLnl6v1itAo3kU7NKG0vZLWI4FAShbYbF67BU/BqQUONx7T7+VibNkYzK4v2mfU48hp3EHyXgDMJzd480l13mQNXiZyTiAZKcYMRdWIM64ltAEfYJg2xOgpWchJcK0n9h2Eqtu9s+6sF3HddseHn1l+gJqXpRS3E0ELYkSO2kmYuUeNHvDJCo5QWZVGxLfuzdcZonWNRU2Tpjrn1FkMDt6RndCIswKpajOZShgRqDM6quTdyoh39QNZi5o6Ifj2VGxeHUCMmTh3iQZN+kqHr7QW+/lZ51cZdREL39VsBJTVtaucvecBLl25jxvPrispxLoM89P0u0xDnTtYZ13lbOJs6KuDGlYrokZmnLu1uonMGkljrlJJLHVVtmXQ045Xq3H1HFE0i/VNTG/PVSRXqznFyezOahFIczeMmim50f9tLpq1kKXgY/2aOtt8k93nKVUCkwoheqYpm7NHUHIZdwek2e7Oe5PIqKoxGKX6n1aCTcnZinsNKaa6/xjgXQ8S1rbac6OaANQW2c8V0JvlFwTaEHn0ta/g6vVrxBpftBm2XL9+nabruXHjCMnCycmKto1M04jDsdlumVKmaav/phRSmbj2wlWef/Yq/aJjmkaGcWCYRp761LMcrUYODw6ZPvoxDg8XRJdp20jKgSElVicv0C8uUBbnaJYHbNYT6yGzncSQjpTBK95HUrI0kViFG0ZqynX+CM4XckmE0HKyOa5WdyA1c6+MGVXLZyw5VdvWQskTEJimrcmPipLTiIZIkz2eBo3Gso2xQ9WMvn0MBA0UNdg7TYkYGjODkIRiCR1Frbh1TWQcB3Iu4CKNCk1sdwfBO+vOerHW7c34fGCOtHHeQ/WInJd1EoBLlW3ZEIoni0MZUT8h9ECLCc+TwRhymvkmkir7bt7M5oJgGjx1FvjpNNgJWDNRa84fQKj6IanpCPX6zG/QMde1uu3ZKdwZTX82ej717vaWGVjmAjTPFqnFQRCSpUnQEGUymybXM04nXLv5LK945GXcfO5J0yiqbaIOarfmqq1YPSyc/mu9n3PXZg9srENzhvEh4GmMOFOhWTBZwpwwNHeG1afGNH3qUResS9wldDtckSpAt9Bfu55gBxi5ZTYG1XZG6sGihgKrEUDmErnsehbLPTarASmCt9A+RAo+tkzjhkykIxKzHW6SFnJqaJoG77OFrYptqFpZqc7l+voEdrwduyi7LslolnoA8DvZw9zB+l1WnN1jy8Sjwr6ONrZIVl76igeqfZf5EU95YBwmVpsB5yNarFvMudC2LdttwrtICDO0aMzE69ePuOvSXQzDwGq1JaVEiIFuf0l/cEh2zjw6vWezHsnDMZv1mqY/y1gG+sXAtSPH+cO72GzXDENgkoBvLMYoBI8nW7ZdUS6eO4/kTJKMC9g9T8KwmVgNE1Iim9WEdy0p3yQ20RiyYjO4tmspMlh6QvF1Ri3kZGSVIiuTGoUGifa+9OIsTcVX2jXJ0hyKEMRQmVwga4NkONxrGMaBGFua/QU4O+CkmmCRy0jvO1wG5PTwemfdWS/Wuj0dnxSkzK4lAY/R9RtnmjXrj1qcJoOaBKJ4SjBoz+dICTCRCVKp0VTYEzEfxsp4lCxEH9DQkMW6SacTrkDjHBI7SlYal8ElI25oY91ItCBPX2yDPF1mBmwQYsIV3RUTMCjUoxR11tlgOj6zRMNcQeZCU2d0VEadcxkJ5vxBWlsxvHnC008+x9mLD3L0zCewPi5ZwXAWKxR2OoaadoDNDG1GaWVQtFAw1qTDIGCbr86RP8UaRqJZi81p8MZ7qRq9U2E7GMM2uspQFcGJqzlpM3Vl9lCldsV2OBAa0z762iViXNIpCwGlaT39wYLlYp/jm5s6Ey2MWoOanIXM+tDaLE4L6jxJrOvwwUhRUvWVUmUUc4k9jfutDNbQ7Q4DEHC+hxqDFJyrHqS1T1epLOP5zkJ2kJ2vWY4RLcrnvO5z+dIv/GJunhyx3DcBe/QdXd8RxHF45iwnR0ecOThDSgOlFHKauyAlpUJKmVy25Fzo+p6Ucw11rZKRrBz2+9y8eUzpRrYpEwPEELh05UFublf0rSeWRPEtvj8gHk9sx8xqmxBJ7PdQdA+dNuQp03YdoQkEBCcBis0eV8MJkwSGrVKy5R6WojTdHiojbQysh4JrPClt65zZV/H6CM4jZESrfAIhF1jEthKDbAIiOVAciC9oGUAyxfXEtmE7JnyIuKZhVCHu7VNU6PpAzh4Vsx+MTUHdiGzXDIEqiL+z7qwXd/nf/VtOl/nxma1X8A3Oi3VMO9G5EU7mLnBmH87th5odCTP1XlCKKFmoMTvzxmaMyixSY2VMKGsAm8GoiO46GVylXrsqDq+Zc6Lmlg+V2KHFzJmd4oOJ5XfwZY0HEues96ubZUHq1dbrr5uX1i5jftydHZqKBXlKwWfh5tF1XH8W19xFFvsIJ8S6G02UGiOkte3QSq5xu8dwu0Lk6n+ozcFEErPBt84dqAiz/ZnBzPXe127Z9vtaVmtsT223a1Wtf67QsfPzfG+uolXqUbu3YkM5nDeR98H+PiE23Di6aSLlXdGsxUeUXEwDZxT4OcTXirWKVDu52W3U7a5pNvWen7PU2KVSyu79ocxQqJ3pRO2ezDFEFkR8izOqqjnYFKWNEQI89qWfz8c//jGOj47mkwKI5dg55+jbjn7RM04DzkHTGCS8XC7oupbzFy5weHgGKULbNuzv75Fz4v7772O5XJBzZhonPMq4XTGNGwwpdKyHiSef/BQn159nfeM5nnvhOqHtEWBMhdV6vSPTSC4g5mtZiklTzADeuk/vaohy7WqncQtS6NvGYoeStVRTmmha89K1GduEyIDKVCOKDGZXCRa0myLult+di+JCIAbTjHo8fdynJJsLi0DbtIQQaKKlvhexz+wwDKSUdrPpnDNd36MJdMpEDTv96511Z71Y67YKXwiB4FscsRa3YvlozCdpt4PsVD0FR/ZGEgku4GJD8IHgMTcIX3+NzqxN01iBxwVP8YGyKyymKSsiFociQoPtW1ktr86r7AqQaf2cJadDnYEVQhTTALo6Z6eWWYeRCtSZKW81vMY5xDlzg3H1tF6kwpXeZkRuzhXUqlkE25i3DNMRk2bueehlaDBNmKI00RGDw2NBrt6bqNwRKtmldpW18M15etbd2EunWCcagoWNhuDnp2q/w7zIED3dv21jUkIlf0QXaaoODVflANV83Lm5iHibM3rzUvXO5Bk++OoHWgjRXrNpKtw8OmG5v8/+/oFJBPSU4ev8KXEoAIgldehc9Cq7Vrw7nSkye67O3qn/RZGfr2d+HWpAqneBOYFiDgnevZdmBXtNeNhfLgDhy7/i9Xz04x/jqU88wdnDM1y6ZIG1XdcTQkMgcP36dY5u3uT6zeuE6NlbLrj33iuoE/pFz2azYb3ZmvAjOFKeuHDhHKv1MSF6Dg8PaBpjXi4WLcO4JpWJ1WpFEWXvYMkD916gj8r1E+Huex6m5MIqF3xs6Bc9PkSasMBJoRRlb2+fs2cPcAi5JMZxMhKyKrkI41RoYkRSwanjYP8Q5yw2KWuqM+VomYZecW5CdazYvlSJknWygYY2BqSUHbydSkbKaLmWqlA8bVhWspkdGKcxWSSV83RNX7V+EGPLdrNl2g5oEcYh4ZueJsK4zUy3Gk3cWXfWi7BuM52hFhGtm1dF34soXg3ysAgiV5n/jkzBSxWw1w9AmM/b1QPTYTpspxCi37lKFEwo62s+2o4FieBE6lyGOmcQ8DbPEmdFwWjQddJVOykpGXG1sGab+ZhBc6oSC8VHVwkQWt1LDN4leHY5fjq7qTiD1ubbQp3dqVLcCNqyPv4UZy979s5ehJPnCS6YJCQXy0GrKfOzA4qfuxNXe7zZn3Tumufn48Sy/ZjdU25hv1VhvFSmqjrMv1TtAGDXWwv33MFVy7NQH8v707miyEwestgaawqDUeC9MklmOxRK8cT9nnMXzjMejbuuMUtB/EyeqS9Lmd9Tvt62qimkJlHIXPx1R1CZPVdPIU9brob1aiXz2Puqdpm7b61kogr/gnVrbdMwTSOX7r+Xl7/qEW5ce57jF67xH9//fm7cPOb1wLUXXuBG2yHFIOQxD7Rdx8c/8Un22s60qAEW+z3TKFy9+gIuCMu9A1JOrNbHHB4cME1bnO9IKSE50QZPThkRR9v1iBam6YTnbw58/JOf5Oz9X0qSHskjw2QsXKkmC1oUV2wW2jTBcg+NDm0p5h5KUcy0oWG7BSc1Ry84Qog411N0YMoZ71piEEpZo8UYnd4bEWyaxnm4bQSuGM3eTgXfUEloLVkywUESS1IPobP9oZKGtBihpmTBE0nTRNM2dG1HHgdiiEya0OhpmCiTUD5DlmV31h/cdVsd37zczn+zsV1F6hyoDqddLQwWW+TAmfbPHBrmtGxXCTCO4ARXkxhQj4juRMpGeDQihcGbjsabhRiopW37aHSHat/l5w1UbjkpamV2+sqErDoiNMIcbzRT/ufHUzUYj5nYUuNZakcmYjpCZhsznTuTykoMAc0R0prjo6c5vHA3YMYj6gOEWfZRuxk3d30zMGib/Q4yduyK7SzeFik72zFXSSDz//PX5pfZar9U4k+9TzLPx6xj994OBWD6LJFKsHH2bz5YQbR77BBx5DxRJCMoTdty9sw5zp4/x7Xr1+2aKtRo11p2UOVMWJpfZ3uOys7ereb9+UpQ4ZZiNz+/U5jXdH9mJC51rjf/hx2KgnWrMzwNkHJiu95y17338MY/+VVcv3mdg77n4YcepI3RqPhgBs+TQcspzaJ2e7yjoxOObhwzTYkbN25w9dpVci4s9/YRlM1mw+pkxZNPPclmu2G9PjFm5zBwcrQiJWG1Grh54yY3bzzPyeoaT19/nhubxH0Pv4aTVWaz2lY0xJGSkUGoTFbnHP1igaiQsxKjdZLOw5QmttuR7ZARackSzVhALAdPJSIEYmyrnNTGA5KpMOVIygnvYzU3DzSxRcRGBTEGcAXfAK7F+UAhUxgoOpJLMUMDNWSlazu8g5ILTYiEEEjF7mnbxPoZssNxWd8kZPm/tkn9AVsf+chHWufc5//CL/zC4vfye77oi77oFd/0Td/0khfruj5b1207t4AznVQpFFUaNQOr7EzPZvR6486VWgjVaGBmvDwXIwUnMwu0YKVQrPXDURR8sZNkqIJs22whiTEQjfVpZcKLt43ae4jOzKpFKTJzJSM7Q208WsATEHFIyDiKFUGnxGI5A+LngjdvuNm+lk264FyCOncTZ5Ci01ognBXGedM/OdmyccbqnKOTomtqcKiANtU6VCnqca4Y0aN2RKJzEZ+fj3XRNkOr98+ZgHu2KK1Nbj002PxVcdVYGqhFQOsc0Kui1TnGe09Rta7CAV7JYsSZ4gWPabKKAMEjRWm7yGKv4fLFM9x47ionN4+qpVwhBrfr+HEgVT5S1EJszTS7ofhKTFLzD8U58i2pH66C0zgoLuGp7FY1WNORoRgsTnC4LDRNJKur4ut6eKi3c5wSj3zpY/wPX/lGjp9/gcO+Q6Pj5lQT06vcYTuOVoC94+67r1A08cLzVwlNj/c9jUIqidV2w3q95uLFi5SpkFUq+asn5ZGiI1o2dP2SUmC5f4aTk2OWuRCahtX6hOhPeOHkJhfufw2x2ScfbblxtGFMdr9iuw++JaUVBGVvb4+ua2iiYxrUGM8l1S4e+kXDME6ELpCSsF0dm0a19Wj2SLL3tgOG8cgkBtLSt1umbM48lsJhM0QXHFIckq1jRkyy4n0PJaGSmNJI1zhiFxjGNX27j6q3pAhnh66IMOEoKNF7kzjohDgjaQ3DirVsq07wznox1r/8l//yo23b6u/+nX+w1+0VPrHODR8qtKR1jOQq7OVqqoAZUvvaBTnvqgyidnbOILhSxGZ4AYKmW6zEzCEk+Erxdw5x5nwyZ4ZZbJCxzOZiqrAjTThmsWAtWt5XXZrplERL9edUK6raEG65tqST6aMiUAqSaufhPaFmkZ2mo/tbTqXmYeiDY6GOrBPOQZ4S25MTu4+uRWXc2ZI5rR4z86XuyCQGXzp/S7mbU+Kdh1K7T48lWwCNC7W7snKIdwQRdgwkZ8zR06nf3GmZlKGRuaie5vyZSN6+34y5Z0KQPbwIoBHnWkKIDNsNT/7mJ+lC3BFXBHbau7l3m4k8Wpy5v1TNntNTopNzDhd8JbXUbtpVq1fnqaCtAeGumKrBxUpiEdqmOe2dBZrgkeARC9bmC7789XRv/HJuHl/n/IUzpPWaPBba0BKbhq61A3bT92RNDOuR/HyNgHKOLJORP5zHNeYJ60ODFOugDw4OSUNmGoVF35HyZKkiNRl+O66JnSWVC+DbzDZtef7ayJe84Y+wPh7QoVA2QvHGiE7jSIww5QQiHLTQd/bZCVHpe1PyDaOSRs84TOQpIWSa6FgNJ8QIzieasEC8UiSj4urc1LS0Wmxe6pBKPFLzj61jheBjhdIjWRwN1Y0p9Djx1iUWS23PJdE2HaUkshgRSDxMKRG6jrZpkVRAA10bCQ6u33gBRzo1FP8MrFIKH/rQh7oPfOADy3Ec3dd93dcdXbx48bN26Hj58uXf8dqHYXB93/+BL4y3hSI0Ao0ooShBjGafRczkmFuYe3oKW4k3OyyLxbHiNQNQ4jzZQXIFcYlSpqrVosbqzOy9UqG0XCORZPd4FcMkO2dpBdWZn3nzrht2KQUjwRl5xs87ocsmpRBHVtkRR4w8oqhmtGQ85ospuRgTEhPXlxnelNoRS0Ylgyhakn1wsaI/TSsAHMaGK9JQtEE1nCa/1/w/W/UxisXDiJSd1daOuWl/qVE79ucZztNKHpq7Q+fifzUbmyFDUanBrfZ1ycXs4Gr8kRT7f4YVpeiOLaniaRojfzRNw1NPPolmMRH0LaBtrVm7a8bNHqLUwmaHppngBDPL1bq0ueMyMNOYhM6bdVbRQiaTNDM52aky7R1XEyYEgmuQopw7dwaA+x++zGp7Qt8GhmmF7wJ7yz2ij8ZwrMkAPkZccCz3F0xp4tlnnuf5565ydHJEQZhy4sbxEakUmrZlmiZUlXEYTwu8CMvFkr5foOpZbba4JnB49gCcMJUV6+kFrt68Tr93FwdnrlCSkKdMKYEhCakI6/WG45tHbNYbfGxonIMiDMNgLFkRI/sQcDSU7Bi3CUnKsJrYPzhH0/R0LqBpxInFa5U8IiUTvBKDmL6zuhqJVC2oc7ecmew5zablUxpOD0yhodTPUYzmLlMko6h5qObMKJnQRCLV4CI4xAXaJkLasj25CSK798Dv90opcc8997z2cz/3c1/9Td/0TQ9/67d+60N/+2//7QufzscspfC93/u9l++///5Xt2372JUrV17z1re+9e7533/jN36j++Iv/uJHFovF617xile88n3ve9/e/G/PPvts+JN/8k8+dNddd712sVi87pFHHnnlu9/97vO3/v7/Euq89957X/NX/spfufKn//SffnB/f/91X//1X//Ap/P5/feybo/c4uQWuycH4pGgdf5jJs5ODc9X53DRSBG4UjuXQEHJauE4eF+LRyE6X5MErCh5Z5tbcLEWqTpfQ4DIrHKzTdRR3MzgLLdQ+Gs3CqifB3ihitgzzmVcLKAN4jyQ67zL40JjeXzOHChm+Z4PwU6/ZNRr1ceZK4z3DnW5FgytnbDBv+IKSSzCa/ZlkVlmWBRT696i3ptnVMque67t764z3M3srGlFsRmWzeLs9ahDUn6LnvEWcgfUTkzsgDI5iKLEtPPUYTZTm2ePVixPDdC863Cu0PXKanVU89Yi4ucDil23v6Xbo3aNWmntPoSatWdi9lLmimfFec4PNLBadhAkODM8zwUnIMHuU4zBAnxzAgQfWsSD9B1f+IWfxxvvvgi/8VFUBroQaB2kMlFUIeeKLKgJuTHCTxt7VDOhDXRtx3LZ0vaBJi6RLGSvtH1LxLM+PmG9XtHmDh8iwXXkKduc0HmmlCAGDg72aSikYQS3Zr3ecPOG8Ef/+OOsT7Y4J6zzlkEdTbfAV3OBcZzMUHr/gHEcyduMbxq8gyZ6pikxpELxBRecsbGTMKxH0rKlqBXLkuw1MO3dZOiJMw9Prw0lTyY1os5ea8J70oTL0MRoiE6MeAKxbWsen0lPpHhi06Dq7RDhhb5f4LA0Da/gcoYg+OBxNKxPTlhqZtxsUPW3kJN+f9cwDP7555//LY7UKaVP69V8x3d8x70/+qM/eultb3vbk294wxtWTz31VPOhD32on//9+7//++/963/9rz/1yle+cnjrW99675vf/OaHP/GJT/xK0zRst1v/ute9bvM93/M9z549e7b8xE/8xNlv//Zvf+iRRx4ZHn/88d824uJd73rX5e/6ru965m1ve9szn87n9t/Tuq3Cl4MnebUCiLfNqgZHGvRVMMeVKjzmNFzVHs3VYz2Vn2cOJt55nATTJs3kh1CJLpW+bxlxVdtWWZNmHWbzQw2O5JVQhFMZ9ulyM0miGvlCqB1fNWdW6+mop2crKsbi1Np57Fib9d983ftFjNk6FwdXBYIOt4NdAxCkOreoeUkSEuoyuJqDtvt5296Zi0J1zDm1U5v/XK+nFhQL8Qy7TcrXbtRuWbXpcuB9ZKebw6BL782DtFSmbVsddXZZfPMhA6hl2CBY72hCR2gT69UxhoJF6/Sjr/E21c90hy+Y9MBkFgJVo2gklPl7rPuc3XrsAY204qjvmZnRWubu0ZkoX8VeOrHuSwTwnkdf+0q+7E88TgnK+qMfA6AJS8pks9sYI1kgpwKuUHU3u9tcanxOkULbRvb29sliwa3Bw7Jf4oLNqxZ7i10XmyWB86Q0ERoz4e6XezRdCyqsT1Y0obA6foHVzcKyfwkve9nn8cILR4gogxY0NjX+yvxAVQpta7M755TYBMiJRRcRSaxWE9tpYDsOlGxhvHmaWPQ9kxjKkYaBJvbEpqPkAdWED1jQcx5ppEWKGLklGjnI7XR70Q5YMe5m4M47kiS885Rqc9c1Hc7BNA7E6On6JXMAshHbQHMCZwaBwTdoiaiODOsNzreoflqi737XdXBwIO95z3t+s5TCN3/zNz/86X68Gzdu+Pe85z2X3/72tz/xlre85RrAq171qvErv/IrVx/5yEdagLe85S3P/bk/9+eOAN72trc9/QVf8AWv+tVf/dX+da973fDQQw+lv/bX/tpz8+975Stf+fz73ve+w3/yT/7J+d+p8H3Jl3zJyfd///c/99v9+x/EdVuFr1TJuEl1PMUbfdqpmFuUONRniEabD8UoK8ZpCGhRvGbElV2B8a4QNEDuIBRaX6oMwpFF6Hwk+tp51O7HUtkVgqAZcI7SOFQLfS4Wc4Kzmd68kYrp1swOTVD1oC0Uy7PzqggtOKVjMFjUBTyCuIy63mZKOtoHVht8MZDHI+DNNk1UiVVyoZKMCWdpPUSZnVBAQ8BJZjadFtehdZ7hZBZv10DeeW4q83yzGoVrYbYzmyuGEXzcrjtUcWTvcFpoZnlA1xF8Q0oTORccajo8BZ8Lznum4BCaajqs9bCRoZgfJF6hMXWHyASDIMXjowexlO6MhxBqVJRBwRkBtTBjqrZPnaNU15oqqDTTcrWOOroIaI2p8uBaCy6tIm47x3ii97gcIAQmrzRtpG0aQhP48i/7Izz44P3kaUvJ06lkJCe8COIDaT2iYkG9qMGbTWcH/uDh+PgmZ8+eRyRzcFeH4tEhAIVURiNiaUBjQ9P1SPZ4Ag3W6Yfg64ExEtsW/IbgenLsic2a5576FEfrjjf8j1/NtdWaYbPi2jqTpSEibNaDHVrwNMsOSGgbkADDaMSwZbvg+HjDNBjrc1xtCNrb2yEqGkFToe86Ri8UMYJUGzxCIumIqiXaKxmJYiC/dxRJNssP5jjkXCQJtG0LBGL04ApBHLgWbQXNA9PU0C06vFfymAltS2gcOphrTJKJcQS/MOceHTzbPOFLqr/vdnapF3d94zd+443j42P/zd/8zZ/2x/rlX/7lfpom91Vf9VXHv933PPbYY7sCdv/99yeAZ599NoKJ/7/ne77nyr/4F//i3HPPPdemlNw0TW6xWPyOd/Cxxx5bv1jP4bNl3WY6g2XvhWizp3l4MxMvXM2Emwf/Fp8zi5ANIjuVExgkNcsG1BmkMpsgZx1R11DmQTvzXMe6DRWzzRKCMSmTEL1BnllKJXPc8np7RWQySFPnAmLpDDPl38JZzR7sVN+GdZ7Fug0wn9I54cBY9q6yIW0OpU5Jkiqhx+zCnHeIzDR4qcbSs6nyro88hTONDWL3HZhp6/YNYTcUc95XWr09Vx9CdT6Zf5+viRS1mDjIZaJRS1hwQWpXZb8vxkreqTKHXZfpqvdpjNbpVSamvRYmezCChtQ5kP1/K6wpdmcrFYUdGWXXwTmPsUJmYk+dGssExIoaCzgzuDZxtCcGT9bCmDPRmy2Wa6BrW+6+9wqveuxVXDh/SM4bcC3mRGO3Z0qJkjIOJTYNpWC6uGjQdRqtaN28eYRe7ig5E7wxIUPjCE7JKdE0HS4Gxu3WkAuElEacelKe6Drz/CxixXvarIhR8G7kMHqOTjash0h2Cy5evsK1G0d4VWLTMZ6s0JQhRlIpqHeknDnY7+mWS/K4xnthub9HbAPDVJjywMl6wzQpUjaM42Dv+Gmos1lX3VIc3k2kYcW4GcA7pjzR+R5RZeOFEkz43hAIzghCiO58a70W6wadp6iYGXXTWJeZEk1rnrhdd8ioE55MnpS268iqqHfkUmjEjLKDmvl8TgmYw6D/4K+9vb3fdZrZNM3ue2YCXCnFAXzf933f3X/v7/29u37gB37gyde97nXbg4MDectb3vKSaZp+xxu4t7f3h443e3vpDBiTy/lSOST1x3cEBK2Uc9ugBarThxU+J3U4ToMlCRi0JyXgXMZUeIE5My6EgJ/rDRVqLCCu4LwQnMEsqoorQsiQYjBKf20Rd4ggWiOEKiHeBZM6zJgdzq7YFSRkojOifBZX6fJ1I543aGyOOaOf3pmsIEvCt4H+YEkZJjQZ2cXGbadzq3lbrzfu9MvzV93p/zuI0c3QY70XLtZrsS7WzV1eZeA5NYjLOyCY04av2krvrTg66uszR8z4gKdmEFY9nxU6g4FtDitmBJDq9M85fJW6qFQ4ctdqe7u9tRIHFyhEROs1h7m42/V7PYXGTT/pa+zVHKJbKqHCI+KIsUUjXL58L1/4pV8GMdAtIsLAXows9w/YlIwSKAIiCXFiszwgxEiIFtNTdELU0TQ9yUGehh2ZSJxjsehp6sxRC6Q82RxVPWnKkBXnGqYp4aPZczUx0pRI27bknBnHkRAtmUNcw1QK+73n1/6PD1FK5GWPvJqDfp+1TxQKKY20Xc82neCbyHYaKDjapjHkVywKLMRI03g22y3Hqy1atqSZ0DU5kIiGidh6IJJzpmBdqORMKiPiIKtSnNkFBlG6GJkqc9jV94uI4JrIMCVi0zOVQuMjmgvqIDYt3jnGcUPrlRAGoGGzXdvrWEwPKMUzThlthNj3VT9aiE3P9vqIqElobmHT/IFer371q4e+7+W9733v4aOPPvrC7f78f/gP/2H/TW96081v+7Zvuw5GlPn4xz/ev+xlL9u++Ff72b1uT86AQzVQUqkuKVj3VGc1lgdncxEToVatlzsVVJdipA9fNXXOuxrxUyBYJzl7emqutPE6x7JSWRMDtJiDhCrFOdQLmuwDTrD4Ic2nHxoV0x5pFW2LM92e2kVjtlhCEE8Ovvowm0OG1wCVVIDuXB53naIgFFdomsi5w3Ocu3SevcM9PvKff42UM00l8cwFLKghhSrGHJ3zBetN3rneOK3enDKnCswsx0o50aaSQGaWKeaSU/kxYPCiLyC+HjzibIFmRd95e/1Ea+dYDwIWeluHmN7tGKVSsAKkjlAJM+Ixgglm4+aQyvatP69YbBVWIJ2I3X/M5k2dsS+dtblGglFnqQE7f9dQoc46X3YLfNPiu8jhpUO++mu/mqJKdgquULYj6/UKHxuzGgue0PWImiB7LsQzEYs609xf7JOzkHKha4JpSIF+saTrOpyYa9Ci69lmRbKvHaOjX3aGdNQZbqydkZsLo1NitNilECJFIu0iMOUjVuPEyRT4gi9/A9thw94iMtT75hH295cUgc3oib4mWDiQKTGMicWiYZxGNusRzYHjVSFNGa+eNE5oEsRnmqY1g4YCOU/4RiEpaVvTFJBZ4WOK1wxRCiXbZ37QjG8iriSqMSCuGtZLKRQHbdOYfVyyezuNdY7rHU1n4vUuBiQlglOm6hcrNQVlVt7gqUjEZ6164LbWcrnUb/u2b3v2+7//++9r21Yff/zx1bPPPhs/+MEPLn4n+HNeDz/88PCv/tW/OvczP/MzexcuXCjvfOc7L1+7di2+7GUv+/24/M+qdVtyBmPWaU0xcCgZNOPcLCh31oVwy87LadHbuX/UbD1j6Zk/pQuB6Mxz0Vz/G4JGfO1qPODUYE284ojVa7JUMCSirgFtcRKNXbrL97NN16klhIcQ6gcrWMRM1cZZAGuPKx1Ih9OeUGd7PnhCiOxCY53pnYRC0zZcvnKZR1/1Ch586H4Wyx5F2dvfNxYodhiYjZKtbwsVaoqYHQo1qNaZT2U9QOx6PDf7ZoJ1eFqF8vZ/8IEQzELM7mrYdb1OlCCV3i4BVxyUShoS0KKUnClFaofld3ZvIgXJ6RatpFQ3G4+qGQBkMZGKzeNstiTeSDnB2czNicOrDWudg6bayxl6LDtPz4KivhJXagHEB8R5fOggNoQ+slzu4WLkoZe/lK/+2q9hGI8p6Rgk0RBYhJ6zhxfREpFJoBTGtCEXI1LMmZKiSiqpHoiobjgZlxIkIW8G6jey2WzYDBvatmWvjRx0HeAIzRylhDka1QR6c0Yxf9kpGQmmjQ0Ui49qQsd2vWWzGTk5Sdzz0Cs5f/k+YnQ4nysw7HEqHCz30FRouwWhet62Tct2HEgiiPoaXpuIDvLUgrRILizaQBOEZVwQCpCEUJQOh44jMk600lCmiahSTSm0juEzHpPzxCbivYJmJE+0jRlhew1oMoJUjNH8e1XwGhBp0NLSdwe0XU/Omdg4UtmSZQJXaL3gczF0Jxd0tMBiUZsZ7pCSz8D64i/+4kfOnDnzuvnvP/ADP3BfCOH37KDy2613vvOdz3zLt3zLs29/+9vv+bzP+7xXfcM3fMPDzz///H9Tg/IDP/ADz7zqVa/a/Kk/9aceedOb3vSKy5cvpze96U03Px3X+dm+bhPqzPaG9qcuLbjZJss6N1cJGbcWu1v/PruEnOrVPOIE0UKs3o3FC04KzgXTCLpcy6g5mogHXyKWID7htCU7b0nlGojZyB/Z+Z3wei4aWiykVZyxUG0mZuQL7wKS7UQtzrR93jtE6yzQSuPu2hd9w2Kxz97+Ht1ewElBEjQhUJKyt1yy8keUJLvwWGC3IVrAuN/5UqrIjlnp6+01z1BuYXVSZSBaoafaxWKFyogw9RCCdVO+tpHGZlVi8DXB3FneYIUm1TmKmJ+p02wHDWr0EQ71fjZNsYOPmqG0rxZgoc71tB6Lojle2/ORAMGjwcg2lELXNEwpE9vW7qqK8VtUEQEX5gOW0jQNKRf6fkmWLb7LfMEXfhEPP/IgyIDHMgpTcdw4OmK/dah4sjq6vsEHT54SJSeapq/JBNDGQBusWMe2ZRxHe5+osJoSB3V2moZk1P8QOF4XNicrS+Fomyqzccho780YI2mcILbklJmKELx5cs4C/rFk0C3OK/3+edp4nv/7n/lTXLv2Ak4z66ORZ68OnKxHfPSsbo6cHK3QrmHv3KHNs7OF/nZ7CxyOzXpLycVYkpLNGal4pjQyTgNdawL12ESGYcA7C5XKOqEy4Zxn0lzlJJkgSnGTMX2JuJRoo0C2KCpETCaEOf4EOzdR0pbgGpp2yThtCR6m6YS27/F4gou2b4SmnglH0/dW4/KgjqZ4QgqVT3yb29SLuD760Y/+VwVORHj66acb4EWHEEMIvOMd73j2He94x7P/5b+p6gdu/fvFixfLrV+7fPlyed/73vex3+n3v//97//IrX//1Kc+9Su/12v+bFy3B3XeSpF0Nq+BW0TRfiaKwA5i1NNODyoJwyigp2QXVwje7RiOOGN/oooLDcEb47CIabi8tARxBF8IzuYvky/ECE0Bs8aOUAJO4+5qyi2elMFVZqI36DOpiZ4bZ56SvkY4lJJrx1dhxjrc75rIwV5H20ZCKORpJGmmjR14+2AvF3u75y/U4sdp5zxzMZU5Xsnhdn+eR39V4M3sQ+mYqf++EoTEXhzbRGRmyugtBxSj9jtHhTDNCxWxGZpQtYAoWnK9ruqXWmHNHRqop928846gnuykdjbVN9MZlNqFiIivpt+m5fTeZr8h2v3tos2ICOaaE3TElYyPbTUlsEcracSHSL/Y4zWv/QI+/0u+kOs3V2QZmMZk99abVOXwzCELL6xOtrRti/eOIpmmDQTfIOKJoasfgEAfe0QxFnHfsd1u0QwbErSWqLFZbbh+7Yhu2XOimegdi0Uw7ZsadOm8t6zKIuiYWG8GhpIhRPYWS0uLdw4tghIRGdGYubl2vOFr/xyTLjm+cZ31+oTVUebmkcN3HZIyqjaXjM46el9dkhaLBb6J6JRxAsG1DNsNeRxpm4btsCV6I7KUUgjBnH1mNxxzZRnRUGhcT9bBDB20xoYpNtf1zhi5RdCiNHEBGolEXNW2QsYXY4k2BwumooQmUNJEKZlSMs5F2rahbVvG0SKpcjGJlM/VhFuV1jl8LjSfSUon8BM/8RO/8au/+qv9rV9bLBb6NV/zNSefqWu6s37v6//CUcoG0wZRWSGRutnOQnNbpx3frUiFd64aPRsbUJ3HR2MpKs48P1GCFLwW6tTBfCQrjdRmX+YJKJhQ2RilJlae41hmBxO7HCu4c5F2Yhv07P+oMaBqlP3ZE9SYft7MtVWZzY37PtJGZ92nKJqE2DoQMXq8F2LTog3EYB2eadbmwZtBYlbNFK9lx5ALbmajmsjfV4KHafrmOV8xgbGftX9VYFxhYHu6VeheC9psQG0PaffRimAwWLUyMC0JAnAB8b66gHq8t/vn1U7hRSE4JQRn9mHMBAir2C5ESlF8C+fuOs/xtTXD0QkeIbSR2DT0sePm0Qm+7xCU6CNIITYB17aEvmfv4ICzZ87y6KOPcnB4wMVLF9msVxytTlit13S9IzpPmswmzmHzyNVmQ4zNTh4hxZxpxm1CxLojgOvXj3kim89mv+xouo5hmCB5XG+elwBnz53lrrsvmr1eu7DXPU/E6Gmblr2m58bJMdsp1TlgZj1siX1H00ZySXY/mg7nDeaOITBIZlR48IGHuH7jiHE9ce3GimFsSNqw8KZ13Ww2xCbQt60dllyN3So2o+3bDi1KmjJSIlFhWK9wCNttom87RMQ8PJ110+CQnHFimZrROXK2w1hJiezNCKBiBzjnSaVg8UURJ94IxmZ8i9aOue87iiYjyDhH09jhFRypCEUTadwQQ0vOIxo6FGe+n0VRX8AXmtbboYjPXPF7/etfv3n961//22rg7qzPznWbcgZQgkkIHAQVys47ktq+/Nd4/ExQZP7nKlpHbdBt8zW1JPYaSGl5avb7syhRjb0GERcKqmNlfLWoDzVfziPOZgPWOSbcLsvLGJve2wzSKyS1yJ+ZeCEONMKYEtG11X0i473ZdIXgabqIC9lSw+vJ3auHrMQ620CNAOE87O933LxxYtZaVYAsamGrFjWkdor27Eg9Vozrh72G186ieGsMgx0EqiuMQ6sTi5IptSf0Fn/kZlqsEURMzA3O5VokMN2fga7MEkB1FdoUI8A47xCdrPt1Vmjn6Cat3aFTV0ODa1H3woWX3M0f/x//NPlYee6JZ/nNj/0ag2Qe+8LP454Ll3j/+z/As1evcv2FG4yrLbHbY9EvicueSw/ex0sfeYTWR0qZyD7xyac/gU2JjdE7TQWaQN/sMW4miA39wZKT1QnTNOGivcWLFJPXQCU52WsxqbA4OOTcoiWVkVKEwzNniK4lNo5z26P6SZmlKoUiE0WxNIEsrMctOWTaxR4xCOM0on3Hmb0F4zgSvUUBiSibcURETGPoF4g4Lt97BW1he7xFkmM7wYQjtJE8TZTtlnG7JSwXsDDCEs5y9prYWYq8KN5HfHQUHVl0LdOwoaTEol/WWCljovpoU+AiBU0G4SZVkC2NVyQrrfcMXnAhoONE9E0lmwRwLQVvxJ9KQFHvKKMnNgu6RcewPiZmJdMQ28Y+994TYqxaXIPb2zYyloYkBdVcczgT2Qea5SHbk+3/2ZZyZ91Zv6d1ex3fbl5nMyrvFVeTFYzJeWoXZt1FZU8AEBCzKzG4U2yTDVXzRLHZljoh+oDSkGXESTbphLMPnaoZ8Frz41Ff53g1IVppjHlZrNDtIFfvjTmodcM3tLUaQAdC1UpkLZYrWDJaw029msO9j1ZaTDeneOfJauw9dQWJ1m0aK3AidB1N1xi0VDxRZ6jY6PB2fyqsWTteB0ZKqYVvTnzAzSniddPS+o218PlKRkiuQsu1M6x8W7Myq2QZKBSnBKnepD5aw1YhzbkjDVKLLB5HqtpMjwvGKlWp2sroKsvXCDgRhwv25+effp7p5hHe99z30pdw78su4xvPerViksLnfv7n8ro2cHx0wuHeIc88d5Pee86c2yceLtgMW/P9TC17fc+y7St816PevFSnqTBMx6RcGAVWw4Yzi4bD/fPEzoyzj4+PGceRUgpTnpCalLG/PKTve6aS0AJdbHBADIE0bpHBvs87y68by1Sdb2DYbgjF03VLfPCkPJKLQaYilvixv7+k1YZJCtM01fkYgDNiisKFi1c43g6MBa5t1oR2j1ggEAgS0W2hb311fRXGYUsaM8u+IYQOxFPyxDRNbDcTTd8wrdU0t00kBs+YS00MyeQc8NogKSNpssOLSJ0zg6ZMDA4NgSyFiNI4LIvQByTUoN8aF6Va0OwIsaFpPdtNIpRISQPNckkuQgiBLBnvIzE0BLdgezIQDxaIGhN0HDf0bWezy9JAXOJ1sUMx7qw768Vat1X4jD0pO/G5+rzbMKmECgcUTUaMcLEO/m0epMn6Chd0HhiZN22MhCpsLk5BEiLByI7VdFd93DEkVUeKGBnFuwpFYk4SFp1kMJAJouerD9X6y8yaQWlS2en6VATvzAWUqg90WvChEH0gBGNy2njT4B9RNRaqQvCRnM2Y2gfboMqU6PqFFRw1KBSMODGzCqESXdDdoWIOO2U376v/U+UeUjV4njrtqzE8qlUIrlU8X+FT74khWqGfXw91+GCi8MLcqVZhhKo91yLgLK9t9hK1x0/2u0uokLVBpwpQLBEc75iKzaX+f//xP/HH3vg4R+stIdrGugjRWIRtRMrE3l4P3nHXpbMsY2DMW0pa0Xil3bdNctwO9IuW/b0l6hrWw4qmMW/X7TgSY+DgzCHNokOngXFKjLkQo68m3EpsO/aWHZeqSbVzEGooa7+3wBeLvaKxCJ+hAgZTSuRSXYWKEGOgaRpKMTPvk9UxLkJY9DWOKtPEBkrg+OQIaQLDMNLiaWJrUGHbIKGlbc/Adg2uoV0u0OSIxRABmQqjJkIX6PoI0QhaqWRcbBlyMqs9ClPKlFLsNfKRpu9xUqoFmzFWu7ZlnQQtQhMCE37nrUnwpJyYpoGma2naDs0TIpA1VzJVY59zV1m7IUKBlAquLbh6oCy+ISy9uf3Uw7CZUycyZnm26JYm6SmJdtnhfWuuOSXQNwvaRY/3Yp+HO+vOehHX7XV8KibYrcwLrew3J3OX5ypJxTbqIg510cyeRSo93SJQLAE61O7RBLM+VN0XBR8LztkHVufHU0F1MAswApZCXekelQAjNYcsxLZ2OXbpdkmzQB7QQqzzr4zudHOxOJKPiA80DLQBYotdSy1YnkAI5tZi6QkT5OpZ6GdIzApfE7rTWeitmE11U7E/3pKiroCGUw3d3O3KLAtxuyJJnXrW/ssy/upzkWAd2C5s1llUkQDB1ww7caCFULtFlF0XV7SAFAKpzhapsVHFumF1eDXWpasFXdDarZpeM/rAou34zY98lD/+pseJmnASKaJ0rsEvHaE1Z5k0CSqO/b0OnUb6g31KhNXqhGmzwrtAv7dANVvETWzZa1q8V4Y0oRT29w/o9yK+i3TL8wzrAbwy5YFUCou9AxQhajFaPyBOGGVEnSMl0CTW1WgiNi15frmCZygZF02S0Ebzk2wWZiHWs0BcwfJhPUiPJEGxA1zWwnK5JIoRplQmTiRz/0sfgdCgSdFUaGKDesdmGOmbhtUw4ZYNtJ7YBKIzx5NpKmYdp5Yi4FUoU6FxkWFcMw4TUqyTy9ler+AdpQh9t7TQ2vUJOWeCcybzICMUXGuGBjpWqVKM9bNbQ4mzQ1qD2i2s2A6LoXVIGiE7SoxMpdCqyV9EMi407Pd7bMcBUceya1AKXfSkYUu/aJiGXJPkC82io/ihZlDdWXfWi7duG+r0wWBCM/dvMHFptM1RrCsIwfLXREqdtVk3EUJDcJ5URd+i1S5Lb01uNz2YQ2sUCjhfOz0xmy0VXyn8BnX5EKvAG2aWjcc+9HOXZZR+08ah5jDifaiRdtW1hcp0C7ZJhDpwN5mdVkmAr2J4OWVJQp0Bmj5RRGpxdpSUCM5XE+v5Nt7i/qImnHeuRr84rQcAatG38ibzz1GLuLPst1nf11T/TK8W7CmV4DM3jJakrvUAUeeJzowAvNgjiFQ+p7fuu1pRn77+6vFqzEWHdfoeqtWbFdwZKw0VBrMi63nqqacpwRNih/MRySMuCMuDPfb3D9msV3SxYTtOpO1EI44kmZIUH5Su76pBcqYNDS4lYlbWmxVE2D844PDsWZou0iwXeIGShaZv6KSj65esTka8g+noZmWnwnJ/n365wDlHHxqCBjLKXRcucnx8xJV77wGgj5HFckHXt/TNAlcyNzYnhLYHrSSoOjNGlUVrOXfOOfb2D7i5GfCupwViNObosj/g/OW72Qwj6oSu6yhJGDaJLraMQ2K9GvBdQ9t0NNHhagbfhXPnKIy44sglU6ZMWU00viGdnJCTzRGnUkxiIBbQ63FQqLNrIZctvo4EUk4oCR8bchG8GqztvKEpSKxjjXpQAjPedg3LvicVk4sEWmOPJmUaJ7oYmLMUt+sBqTmXuWS61j5fCaEUMSlImZA0EruOonprrsiddWe9KOv2yC0KWVydSVWoUsXYjVqAXHP6LErEB0vs9s6Sm0075tFYBeAzDcPP6QKnHYOxFU3YLTrbadncsCKr9gSCwS6lmHVU0Jq2UMklwc++nJV946q3JzZTrB4o1WHeQYwEnwheabyniR1QKJJMMO/nkNO62UtlEjpBsOeHK6hOeG/dXhPM35LyW1PUZ22jD7oT6euc74cVZGb3GKsjBpCKGvvTzW4pbgc/6VwqPfX1sa8779CS7R4HC6mVSioKdT43yyW8D6hn19HN5dfIOBEz+dYdgTfUjtzV9lorpNp2rRkch56PP/kMj7zmc1htRiRbOOl+33PzaM12UqYhcZLXtAc90zRQhoG+ayFnlAShw0XYDgN7ez0uKmUU1psJOk/XtNw4OSGuOvLVm3idcG3HybUNZ8/s8dRTT9O4Pfb3FmyHxGowtmYaJ3ISDg/26V1gdXxEcfCpT32SpmnZjEbocyq4ksmjgmtJaWCx6Egp00RLgNhb7LFeHdG3HTknKDZXG4YtsVkQXIuXQtER1+5x7uw9pMEzToLGyPZkxZQdORWa2FPSZKJxUXo1MDkHhzaB7Oc4ISCYP+2UMsM0ktKEK8q0MQ2gi4GUhzoKsHSFGDyTJppWkDGRklhwrEyIJHKORMxAOkZBfESlrdhwqjZ+hmvGqERv5DPfRrwGUk4EUXxsGKaBZb+gbRbkomRNxBiNZTvlSsgpNr0Opvf0WVDfEOIe5DukyjvrxV232fHNgT/BOIBqA3jvigV/OsjF3ZKLJggBX8QYoK76cJaq36MK211BiOAUXwub+AAFE7KLdX26a4TqLGz2BdWCAJWWgNmLlZ0GDaji72CdjBa8ejKpwoEtRdTmCShOIq0fCQhFm0ogaRCMeWZQaY1EQk3E64KJuVUgGjQmxcJrQ9uwXU/MRJudzMLXLtCFOrBT0GyCcm/F2NESqgRkVxD9HOHjzQdUghV/G6KCBILY7MrV0lWqJEOdqyJ58DV4dgZQTwutg0y1raoz3CqSdw4owViRHryYUUAIYhAttUgHm/W2fkETejajR9wBvol0jaNpA50P7O05NtuJw4Oe5XLJ8bBhf/8M29WGw/1DVicn9HsN/cEeMTaU9Rmee+pZjrcnvPKVn8Pe3Xfz0le8nL1lw5nDA/q+Z7U6IYYGnMGqOY+8cPUaTex5/vmrDGnivv0lAGfPn+euy/ewOT7mKA2MOLbrDctuCcExro3cMmYhj0rIwqasWSx6pmlEK0M3hMg0TPTdgpIz4Gi6ju16g9OermuYpongW9qmJ0nD2bOXmbaZMU81lLlhvV1bh6ZbNuMJ22mk9S1dCgQfIXhCE8gIbbuA0Q434pTQG9Er0BIdrDZrkgo+T8wyn1KEEOx9lHMhkwheCAqIx3uLU2qDo5SRGCLeRzuIhmJQv2tN0kS29A4fWQ8j6iaatqOLDs1V/6rColsikhmGNT50xBBoNOCDI2dBsyPnxN6ZfaRkmuiRjSErjY91on5n3Vkv3rqtwhdUaTWQvVHdQ7H5nm2oxrr03tRnNlOSOmMrFLSGuxpL0izEXA1OxeaBc7yOmgWT1Qat9lneOp9adJ2yg2hyNTs2txMzYlaVajw5szoz6sxUWH2mhEwu0NTBmtPKavQRNBGjq2zSKgSvSfOh4ozGyjQcUWoeYVDzZSwF8EoQi+lpmo4QCn6OFaoIove+wpve3GOqlZpD8MGSMLR6aFL1dTtHdlWKsyKInBYl532N1jGfRxHrTi3gtRpUO0dQJTgj5YiUyuS0RPOqragJEvU2UusyYnB37S69d4g/desJdVhoxc9Xb0r4f7z5G7h47300beSjH/sId999FzePrnHx4iWGYUJEuHDhPLHzLDsLKu3bBSpCKmNlJ0Y6jTzxsSf5X37iX/A//Zmv5ShtWG021nmEgEjh4sEh2+1I27W0XUPOHXefP4MIPPzgPWzyyNlfM03yq1/zCA++9nNZNq2FxAZP33Rcu3mTEDwXP/ab8O6/x6sfex0vecUrGIYtm+2WaUocHd/kxrUb4Dx5zPRtT7/XcuPGdVSV2DgWB3t4Apv1lmEUmv2G7bDhzP0PkaLn6OQE8ZFhELxvgQGRkTFtGcYNY8nsLZeUPFn31Td416ClEGJDzoU0VUJVEFxjVmg+mxNLG1vKNNG4BheDpYygiCRzSJk8IhnfNgyi1dvVLPokmPGC5hofFqz4ekIlV9UQ4Gjm5k4a1HuyFBPbNwE/JGK7x2aY6JfekhtCSwhm9xfbljwlQxOyIqWQxg0lT2zGwcJr5zfgnXVnvUjrtgpfwgb/TtXgtmJ5fFq7BXGgrmb2OY/TFieOgsyBbFBPl5Y5R2V8ORyZOomjZvLY1yvxQ9SZFikGgyWlEGoXl6nJ405tvua0QqLmkgF1vIeJxcULKQiqEcQCW03fB+Iizg+VGYl1ebWFcZX96GaSinMQHFJd5QUobjZYjkiu/paVSeqdUSXczFhx7pRlWV1rnAu1Vt8yj6t3xtXH1Pn7a6FD6/N0t8Tv1j/sNJac/r3kRHDV9FsVCNa1zjNWTGqSZ0jZzQcVm+epn42EfSUwVY/NakwQfHVcccYY/Zqv/RN8/he/lkESXdfx4EP/A1NKiD5Q3yvBEsOHDW00n1BVZTMco0VYLBZM48CUha0oTz/7FC9cu8lmu2JKa1yBaRzxfVcZtKax65pIzgmVjPORkkyd3QdPN0PgkvBNoTDS9AEfGoJTzl1Y4r2jedLu24MP3cvq5feZQwuekoUisN0OpHFExaKMNustfd8Rmsgzzz6NczBOE4vFGaZJ2KzXnKyP8OdfwvNXb1C0sF1n1iux+1jmCCuhW/a0VXc6Ry+JFNIwEJyyTUKeTAtbNJEkoXhiDKT1QB87UEs/t9cQM/kOkFPGO/PTzAU02OdHs5KnTGwiLhohy0t9bb1W0wNH9LWzj4HiiqEvwTx301QoRRDNLEM1C4iBSSbwDd57xrQ2SzofrMiqZ9jaiCGniW3aMmnNXyyfOQF7zpmf//mfX37kIx/p7r777vz444+vDw4OPrN2MnfW73ndXhBtUBIFJzMLsXZjfmb8SaXVzzCdeVvm4Cge6xA17wiN1abYwNOZrIGiJJRiGqWZoIFt+FO113JOaKEWiVAlArbDiwi5yi7yTkfoqw6wpkEo5i4/zylDnWJ58HFOCjAXlbngeBdMhlHmxPlbSCO7rkcIEogSEMZ6T6Q6t8xYrbfr2bmkYLCnqXwx82e7nlnqMPvWzKnsuFqI6iHEkugFKaePY/+kO3u4euOYU9ktU9By9JrQVBq+7izM7Cm63abpwDZHnR1m7IUUKqwq5uWJd8TY4b1w75W7+X/+xTdTwkAXILiRNI04oKnM3OqIxd7BfiXYWKQKvmGcJoKL9NE6ixAdDzz6MvK/+Bk+8uGP8vCjL0NIHC66U52j9zTRE/sOL9GE2iI0vcFmRUo104b9/TOwWNCqw4dgtnal4Cgg0FQ9TOsgSjYrNxGi80ie6KPipdAtFkwlca7bN+mIU15y/z2IKlMacL6tvKuLrFeFX3vyBiXZbHMaBDSyHQabFxZIkxXWZhktiLcouWRCzemKMZBTYRgz4zbhWsc0JgINq+MNbkx4Arkkur0F27Q1E2iUnBPDuCENayv8weGkEIodOHP1ARXJxM7gVee8FTbvTYju7HVTrUbqChoCRYTGmbF2DMHQky6QJFv4sYB6g4ZVCyVtiMEIT94HRIyA5LzNnnU3T//9Xx/4wAf6N77xja+4efPmbp88d+5c/rEf+7GPvulNb/pDF976B2ndVjpDh6Oo1KLm0GAUfqnbsvM2Pwh+1pEZpldwJDktYFDnVPX/giI5oiUCAe+ayuSsCQhSatq4wYk7qsVOt5coklGKuaw4SzcQ7ytphco4LWZTVk1wY3UhcSjizHDZZoFTZYzCTmNgCFHVMt1yAxVcUZzYQExLRsYJhoQTs1VThKyy85DZtXH18KBSzEoKe55ZIGusDFJjlP5WZqfJQoIovkg1mq66RWfwk7FEBSmldsGz36Zt8IRQm06TZUguZuAtxrbVW4rdrhOsLNvgsfijIiZyxxGcdSW+FmSKY9yMPPLyl7J30NpzmJRQPK2L6JjJaQItlojusdmYWEpG9LWLByQnckqkNJJ84sLdZ/njb/hy/ucf/FsMq4FF1xKimUPHGC2xwnvyOOC04CSjJdMET2w8TRt3XXDTRBrfGDxf7bu8Kp7TlA/A0uV9h6oneHMiiY2RlhZ9RxRhj0DjBDSBJKJ3xOBZhJZlCPRBaBGuP3OdYdoyjIkxCWNJiM+IFDbrNcMwsV4PDNuJNBZyEqYibKaJ0LT1vGEEriknVAPTkEEhD4myzaSpkLPgYyCT7fcX8/ycA3xtHJDMbBszii9iWkUfArM3nSioN0THbP6s24vBU1LBFU9DUzMgsUSIrkNKYSoZFwTRiXFI7O8fksn40JCTktOAuGLHSx/xIdp4AXNUAk4/w7/P64Mf/ODi1qIHcOPGjfjn//yff2nZEdVe3FVK4Xu/93sv33///a9u2/axK1euvOatb33r3T/1Uz914Jz7/BdeeGFHcv2FX/iFhXPu8z/ykY+0AD/0Qz904eDg4PP+0T/6R2cfeOCBV3dd99iXf/mXv/yjH/1o82m52M/idXsCdlHaEFFqd1bhulid2qk6oV1Yq5prSCOepjo8SKZm9lm3Ms+GCqMN0Ss70oslA3jXYoJyxflsJ0lp8C7gfMG5TKuBooHRJaI4pImg0IgN0QECkdY3lJQRZzMqr42Bq756Y3pPKRtCmMwM27fEEFEK0Vk3U8TKgQueSYqJwguE4ixP0NnsbUKgNASESIFySwZcnTtS5QMWdmokH++lMlE9UmZI1OOdgka0BLPNClsQT3DmoI8LNmPFoToQfTDSDuC8bXwxmsO+p4HQ1Me9xdLMeQJz5ykUFy3DD0t/Fx8obqq9t8MTUR/oVIhTxvtCdp4skTQdkyVz70P389zNazx3/YiFDxwf3eSZp57mta99FYuDfVLZoApd1xOCeWN6zy5RvkgG35njikykq1vGmyccv/AcB5fu5sff+5P8mT/zNTQ+0ISe7Wa0bhhlu90yTRMHB/scH5+wXq85Xp1w6dIl7rp5BMAH/9MH2UzC+QuHhOg5un7C8c0VD3/OK7hw9izB256hKmixdHgTiSt4TxPs2qgHwFmbGlwglWz5gyGCn3Ah8vwNeG4sHG0dU7HPS1DPsMmkdaH1nlSmqndN5GEyqYQ49vYugkYaIm7YEDBIchKYXtiQV8c0bUsZJ+Iiol4peaCbGppSaU71gGPWaY5l7CiaWW8EF82rFucRH1Bp0eSJobHZd9Ngzkj97sDpwxYflVIiMdtnK2pHnrbEXkDPUJqCc5E+N7itst/vM242eNcS+5ZJRlrfIJMieEqOeAksSJwwMn2GOr43vOENq2/4hm+4+vVf//XXv+IrvmL1V//qX73nb/2tv3XlhRdeaD72sY+1jzzyyPRiP+Z3fMd33PujP/qjl972trc9+YY3vGH11FNPNR/60If63/0nbQ3D4N/xjndc+ft//+9/vOs6/fZv//b7/+yf/bMv/aVf+qUPv9jX+tm8bqvwzUJvnUkOsxYNI2YkEQM3nbeIH2/xMru5UTWqnWOGzEnEg5s9H9nNt3RnTSLgTaqANJZyoAbrTQ5cbCB7KwIFo89rrPlursKKAB4tuktNdy4gFXYVtTGCD44QresL0ZvaUMbTzY+5u7ViUcmPlWCC2bDVOYh6wRXrqkSsW53DZkUE9dkgTDVpRzX8MssodAe1uhlCrRCw6Gj3UKu0o+oxTjWFVpRUdKeTNPJO9Xipr8HsCCMqu4OISqnQreAo+DLPFau/qLOgV6cWAOxVajxuYfLm0OHVPBw1GhFptR4YhsRisWTZBto+cuHiXYTgK+PSHPmHYWA2NJ/SRN/3JvRWCFOxqKToWbZ7HK2u8Su/8iFUlAvnzrPo+xrBY/FFqhV6dZ69vX1ElKbpuHRpn3vvu4+nn3maYRyhvm+DU4L3nDk4ZFqPXHz4QRa9YnF7JnsoMpFruoL33kJpvfXiaUqkya4559Pvk1Jo24ainti1JI088amPkwVW641pSH20z5KHxiekJDarFRKhiRFfhCkPFIW47PHOM8lEbJTNak1JymZtsUJzynvbmPdlkYn9poMymfjczRFbmWCANkWFXDIxNkx5sEDn+vmMTWPZjU7w3sTqeI9zDdk5pmSuSyV7oEGDnQI9mTxlyDUBJRe62JFFcCRCNRzouo6ihSZ2uKI0jTBMY0198eQhkYZE9J8ZJd8DDzyQfuRHfuQJsM/sr/7qry7ASGkXL17Mv/NP3/66ceOGf8973nP57W9/+xNvectbrgG86lWvGr/yK79y9VM/9VMH/y2/I+fsfuiHfuiJN7zhDWuAf/gP/+EnHnvssVf97M/+7PLxxx+/owup6/ZiiaowXVWqmbEwy8PLLDbHnc6WZlizbhaiszelOZ7gfBV6g4qvWnNzYQnOZnFFE5BwdKgGXIi4qGQxl3mb1QmNdzRaZ4DZ4WoK9jwf8DimnHDBmTOHiDnKYHTs4KnzBKEJPWnMBI9ZYomYXaAPdfPAvEoLNFWGYZ2qaeNcsWF/IxGiM3NkD5rmMFdjnyqlkk8qqQdfXVKsmoVg322s2Qofu8lKqDbziM2Kptqc1KBaR/CxJtubpELwiJi+MuCqNRs7+zPVQpbJvEERK2xixBnxVRfo7Rr//+z9ebBt+VnXj7+ez7DW2nufc+7U3be7k3SGpiGQJp3hRyIgX0tAEUspISkFSggBiQoCCpYgRbCAEhIEIUwlQwkylFUEKAgpqoRYlIKgGUzIgBk66XR3On2773jO2cNan/H3x/NZ5zYxKle7acH+dN3k3nP22XudtfZez+d5P++hVjUXUGqrMv6y0YI4NG1gMQZwTNuJveWKXcnsNkcMQ4fvB6BinW2bEEMIGu+TUiKEoDqvnDk8PMR6S+87Ft0KsY53/7f3kTK88AUv5M992kupmbapKljrSEkLuDEW5zR77uDggPV6zW5M9H2vbEFguVwynD2NMYZ77/0gD9z3ALfcfAt2sIQQuOvaMc9FL0kpKrD2XmN1QgxK/pgjtWpVDaTaCTWIGTqn0OHlKyPHxyOxqn1cyhBzYRwjedLNpBjRGaGpLUYrN2MEKCUiohvQqQTGPFG2E4LBDw6XoOwqznWavm7Vacg7R04KpSOFnCdKiidRXzFFrHhM1VBh/XAXcol0Vr1OQwyYJhHCVIo9QKSnVrVJyyVget0E1Zrpe882KWnNiyZ8RCkEIkyBYTmAMQxDTwiJNCU6l3HWAQuYrpKmEdOE9E/2+qZv+qbbf+u3fus0wN/+23/70bNnzz7uBJd3vOMdQwhB/jhp6/+jZa2tf+Ev/IWT+eMLX/jCcX9/P7/73e9ePFX4rq8bK3wz4tDkAzS7IvXX02H0XPj0cZyQQGqbjVXQG7KAaOwkygwtjdpPI28o3MZMwS86Ayl0hGIwxtHVTE2Z6jqSVHw7FnXlmI2U9QZXasH1HRkVcRvrtdjm2gbpVW/g6EzFmw6MIeQJ12ZNzRdbi20GMjhTqTVqiCqto9VqTG6ellPJzQ1F5tPS/tc0Vqc8Zo7RrKplPuHNQLiiNySa3s+k1n2r4Fz+SKcsiLEqY5DWkYrKQVSbJ1p0aSbWpYJphZjmgdoKW0G0M2nmAlYes5mZ2Z6Apmm0VHlx7XGF48MrLHvDuA7UXOk7TwzaYcwbImNs69TU9WcYerzvqLVq3pxzxGliypFhseDpdzyD97/vQY7XG86eO8tmPMaKbXNGOYFMVVZRGRYdOSWsBes1Osf71sWXwqOXLrNc7dEvVqz2T7HZTewvzxFL4aZbbtXHVe0Ou66jaxl9c6FOSbvdGCNd17VNgXZ9u3HLarFknCr3fuhhxuQ43Oy0aBhlO+c6qVTGe/IUEO+xRvDesFgsEdsRU6brlXHqvGO93WGNoVsuCbtIjSpgL6WSS9ANpa2kmpXRajoshVQCU07qiSuGmAo5K+FFEIa+J1MJMeKtxxgljZWSqClROqvymeDouo5cEmIrQtRRRtCIoySVWjs6L2r4HQJD1xPCpLImhClG7OAoJuN615jbFeeAuqOEDZ2zlPTkQJ3z+qf/9J/e+oM/+IO3AbzoRS9a/+iP/uhHnojXWa1W/8Nf1DbxZa3XHxJjfHKGn38G1o1tpRqRQUQoVd/gKvkqSkZgJkTISdGbPSdz0TmILu05EHsCM5bW6amRdIPnjN7wS1ZHTTEjhUmH7FUwOTNgkWKJxRCrwjDzUTQCGkCDJxuMZxTWo1qs7XSmliZq2iB1h3Pa+aWSqc4QjCFYQzKGbCrZCtV5MCokrlKuk3lKbSQX7QIThSnGxsjWgzFtg8CsWzRWI2XM7M855zTMhaxBjRlqVZ2doF2ljhyvn28955qknopS5OcUer0y5kQKgag8BNNCYI0WTDXxbrKR5vI2s1xMqZii7Fzm4mnAFsFVtTpLlaarcxxevUpnhNWiZ7XY0w4yZ2W0Cs3o2NL3/cmfvb0V1up7IafKtNnRu569Ycm03vLcT3guY4xcPrxGRU3KpxDIOesNXDTo1jlDyoEYR8TA/sEeB/sqch8GDaLt+h7rdRb66MXLrHc7usUS2/UMe3vK5AFs+/8YI+M4Mo6jGlSXfEIkqlXniqUUqIKxBt91VCwXr2y4tiusk+M4qpFCiIkQA6lmQo6EUghFZ4LGOoz1qNqtYL2j7z1UTS/pxKskSBS2V0lIolT1WfV9BhvwA2rU4CzOdEqYapB9zAXB0vULNIXDYovBFYMXq05CJEoNDL3H4DAsMKLM1VpmaY/O+r0Ret+33127bQtMcaLvO5ziK3i/JGf9mXEaEZvBJWKOmE4QN5HCmhxH/ew+SeQWgG//9m8//5rXvOZpAJ/6qZ+6edOb3vSBvb29J6QS33333eMwDOU3fuM3Dj72e+fPn08ADzzwwAlR5a1vfevyYx+Xc5b/+B//48nX/+AP/qA/Pj62d9999+OeFv+ned2gc0vT82Aa1R1sldlHC9eSvSueTKQU06AwYU5W1ppoGsPzOtMzCxgpzTGzzaPEYlHRbbUKsdlq6EylSiY1aNHWgq+WYqy6kZR6MnerJ+LX1OAe1RoZ0SKRzYQlASNiA6DxMlIHXFWYU+HI2VlGyR6lGIpxar9UahM+aDGt1QIJpOCNb7NGuT5unOeXbaswYybzPE3txSq1pVnXklXbNZNKGjFICT9VX0rmOYheHyPgBFKt7cYoqp+s0lxh5sBetDjOm4bcuvLGJS01UmtqBdGrCF7UUG7WPJRqsFXp/3RzEoXB9J77Hryfa5eP2eaJYXkaYw2uU/aadx1dp8ng0CzpirIT503W0PfU4jFOUxyWiwXveu97OTw84mh3zDhGOtsjbp6Fqn5MUAaytZrKnnNmGAYq5qRzAxiWA2dvOktMkU/8pE/g6GjNdrslpcRNZ8/irl7Us3rirVpPjpeZFVuV1KJnv2CNQ8QQ045UhJw7HnzgUaAjxh05V6awpZbCZr2hIrjFAFVaV52ap6ZlGiPVTCyWe4DFOs/xeiKMCcFQYsRVTTWpVpCshc9ZT92pZZjJCZFAjpkuQWrhrgaVIUi1eGvIcU0MAeN6NWIouhHSQbils5ZaKlmyugnlmbXcEjzMQF8ji0XH0S5huiUpB6wt5LIl5ULXrdhNyuItJmG7DpFKypYins5UTIiE3YRzA5t0hMiN7c8fr/WGN7xh/7u+67uePv/7Xe961+rs2bMv3Nvby+985zvf8+xnPzs+nq+3XC7r13zN11z4ju/4jqd3XVf/4l/8i+sLFy64d77znYuv+ZqvuXzrrbeGV7/61be/9rWvfeg973nP8CM/8iPnP/Y5nHP1G77hG+74wR/8wQe99/Xrvu7r7rjnnns2T8Gcf3Td2DtKWocy93YNmihZQKx2Nc2Oy4gSNE42a3J91nfSNc4G0kalBbMribSII2XPNRZoNVC0D7JUvYljQJzetOc5ixhlNOp3Tzo+FQ+a68cvGqYrLlDNGswIkltSuaPWQkqRnAuminqApohpsgox2rmZ1gkpyDp3ssp2NBaMmeUdmdq8/uc0d2NUczZrIrUJu94J1jp3ykohgaKv2YqQa6bR0sguFAsytKI6J1dfv1ZqoqlfFxS21PkUlGop1bXXvd49aufs1JpKZt2juX4uxVLwVOu10kqhmkrxBnGOw8NjPvrIRXXuMZUcIiUVSi6EMLHbbtWtI2qqhhFLDkkF+VlnwmIdoUF5Vw+PuPOuu3jGM57GbU+7DXEg7vqMrbm/anc8uwq1YqV/EqvViuVqBUDJhWkcKSnzgQ+8H+eE/f0Fe0vPxYce4PjKZb1mzURW55tFnyu1yJ82/6tVyTXOWjpnWfQ9zlguXr3K8S6SkicGhf5cQzc632ExdMZhS8ZJoXMGSiblrInqqWKwlASCI0cwxSHZYbNFcmHaaSHNVIp1hF3Cmx7b3udQSFmRCVMLhICkESqkkJRdKxMhTUwxniSNFJxa4InHuQGDb6kP8wZFoAacndR4HMN2F+j7nloyxjoN/i2CMQoDD0OHcVBIpDLp2KCxh/vOEaZArAMJC0YlTU/GevDBBz+uDGC9XtsLFy7cWNPwx1zf+73f+/Df+3t/78L3fM/33P6CF7zgeV/2ZV/2nEcffdT1fV//zb/5Nx+69957h0/7tE973vd93/fd+u3f/u0f/difH4ahfNM3fdOFV7ziFc/+3M/93Ocul8v8+te//kNPxLH+aV43JmDPzadFLTx0RieikExjUZ4kB5QM6Ie7hZI3gkZpo7vrIuucK6VR5qm1kTc0CWK+qWs35BCqmi2jPEljfNsptxmVuMYMLSfkkZMXglasWxda0LlFCVhqK7ACeMQok00zMPP1LLsT5r8WQ2sMRjwmN8Znbd1wQUX9JVFzpBaFhtpBqP2XaeekzT9nVqOG/KrOSpMQdK5nTuZ4GkZrTyQSrUhV/V5prFD9jqKvXlrtb7FS82vNE0e9Wk3rh+r9Sp1nsdcJMCAtGHeex1ZqVePuVBJWkhbq6onTiMnC+97zXj7/i/4q22kEBO8cJavAOYRAqhXfe6CQSjqZp5VaGactvlPPzVxGSg088JFHOd4ccsedzzqBTKnXw3ZnnaR1ls1mTd/3eK9emaDXP04Ko61WS6aDPQDG6QzeW46ONtRUGfzAo/d/uF0y7SS141YYWsTiRE0ApM1jU5vHqg9mRvyKR65eJJsFu22mFp1BhjwRo9rrrYaecR0pKSHNfUi7Mq+JJk4F5ViLuECOW2pypF0lrBPi26bSCtMu4Hyvwce2I05J33ftOGsZ9fxWyCmA+Nbi62t3LT0DhFwFKaKxRK6nGp3DSdVsP4PgnZJ5ao0qehed24/TDt+vyK0+5qzz22mKLA+WdN6T2rw9RZCSWS46ctqyOV5jbEdI6iX7ZHl1ftmXfdm1rus+9LGztP39/fKSl7zkCYEOrbW89rWvvfDa1772wsd+7y//5b+8ef/73/+Hj/3aK1/5yrd97ONe8YpXXHvFK15x7Yk4vj8r68bILeKwOIoEquQ2y2s5edS2u9Pdte/mWRuN9m1aB5GV3VlmeK6RPBrl4vp8S07mB0rF166uimBmOYGTZp1G6y4rRhwGpzMx4CTuod34pVH4wdCLOpXkYhFLE8lr4TSmzRgRhQUrSqueC0Kro9Z47bRcQWrB5FaoRY13jTMn6QVzooQ6p2QdB1bw1s/faEQg1XCVRpDIVaHU2fGGucNrNyvtRubNCKiTjaNIothMpbnqN4G8iOBRbaQWS9U1aqah7lIqVg0G6jy1ra0otqzAtrkQGkO0wdNFVfLkGuhNT+c63vGOd/IX/9pfJOWIKZYUlVpvpOKsFtdrh1fJOXOwt48R4dqVqxhr2N/fRwFEDUGmJu5933shq9j8vns/wNOfdjudNwrZFnXXtsafyBtErneESngRJaSgUhPn4Ph4zcHeHmGKrA83bDeRUuGMVwlVmgLjOOrzOXWDsTMxqWbNL5SCRNXwhTCB9xwej1w+TGwnWO92IMK0DRr7IwbjO/a6JXlzTMgQwpbFyuO7nt2kkUDWKoJhrRDDSJhGDD2b8ZhhcBztgn6CcqKkQOd7TKe/v4ghJ/UNFRKxjsScCLEiJej5L3o9S3EtGBqMqyohMepCk1DfVwScM1jrcFLxBkKwlGpZdBBD0igvKZQUyEWYwsRquWI3jljj1Jpub4XzC2otxHGHNxVjAtNujXeWiGp2TTFPUtmDg4OD8tVf/dVXn6SXf2o9geuGCt9sdTXPopoPF6FEnDFIrljjEWvJaVQ9jm07QlRaINLo3w1y1O6GhuOXmd/Jib2XWpcA6qxS0MfTilZNgpdeBd7MTMRMbrOreTBuaD9zMj8MlBSoTKjRtBJoXO1a19q6otbtzJR17ZaUOWoEnLPUrISN3HosS9PtWd8IAvqzc0SSGNrMktZJtCqataOqrctUraTTDqMV2zlxfb4WtGshaOcjtVCrWrNhpekEdd41byCooqw+Spu3tnPXujuZg2tt+/1BXVuExgy1bXPSjLNropqZyKSvXYxex1wSD3zk/pbsPTGtA5vtyNWr11j2nsVyYBcm9k+dZlj1vOcd/5W91R7DsGSz2fJgCkypcPamm0kp8pH7H+S++x5guVxy+tQBp/b3mXY7jHR4bzheb/Cup/NKyw8xknPGGGFYDAx9T8mFrtfNhjWGvYMFMU1sN1MLSbaEaUOkcunwGgBHVw+5dOUKZ0+fJkwTXdfhhx7brO5SBGs7rj56iR7DhYsX6fbPcXnnWO8qGaOWcjUzjjswhjFWrBS2U+bq5ctECvunV3RLTwiV1f5AqYmuc3TW4wysN5Xe77GbNsS6pXce8VrkjDgWw0AMIySLsw32rjBtJ0qNJ9dFRLDWIzVrioix1GKIjclrrRApJ8EhRQrVWGVzywyPJ0JIUBy9X1BkS7fqybngTU+OGSuG5XJgM21ZLQ4gF6yvOKuM4irK6PUmQdoxbY4Zhp7dYQCSEm543CVzT63/x9eNdXymsQQrGkhKwYoDb5t9VSFLJIkOy6Wq3s4apbnXPHcsai6tH7hGz2+dX5U5YLWiwGYC0VG8Qm9WJ1dicHPyQOs+a6PQq9FlK3qtzSpl3u039iIZakYkQrWkqhTQWfumZipVC6o4MK0sZxDbte5RJRPOwZzzV0UwpZBbF2Qbxb9gW3o9gOrcSlafx4IWEydtc1FN6xCFmloBb76nlYxIbRo/4cTrFGnFSWeDYhQuzcWedJiCA3QHj1XRtClOMxRJrav1WMlk4cTn1IicOPGrU752ejpXrdQTCNCjPqPNS3KKLBcLrh0e8eEHHuDapUucWp4hpMzBckXfeVIJUCGnynve/W4uPfxRDD1TqGx3O3X4d5azV66xv3+A4On7BZeuXqHrPClFSik89NCD7O0t+NAHH+D06TNYa5nixDAsCCEQY6AfOlII7O3t8dxDRaouXbzMQ+/5QxbdwKJfYkVwXrj7nrtIMdKjkOgjFx/l/TZzbv8Uly48SsiJzWZUgkce2VscEHYquZBc2TjPnXe9GIZzhALjFAkhk3JU550UCdGy6CzXrl7WWCHr6FcLYk1aaETZnN53at4tmRQKiCGnCe88MaDv5WKR6nFOKCYBllpEDbrbrD2HTCoVSlQ7sOrIOZJzRIpVtqiHWGEKEeus+q+KQMoUA84NeGsxpiiRC8AYvY4OkgkIlnGb2/NZYo0a8ZQje8OyyZMyhURIhq7r6H0lHE0M9HS+o+s77GCpa08enyIk/nHW13/911/++q//+stP9nH8aVg3rOMrorIAJDe3q4xN6mAyiVLdwTZPv9o6nqzzv5Obst7CrZjrc6diNEdnzqUTgSxtbqgkEGdUgK2dXiPpN3FhLu1nKtgaMQ36nNMPjBFMLTqUL1CZqHmk+kTB4YrTeQ0W6kyUUJsyaf9RWlRPE4lTZ8anafl2ekKzCKMBSYV90yNRZ2ixoa4VWsq8lvtZ65hPksybu0qB2RYOmX1Ec9s86GPmZlHh5DaLNO1Zm2OM9iTl5FxphlzW68kJatnkEbpRSDljnJwYEZxAhXWe8c4OPkrcoS6gdq2zzpRY6HzHlCoH3ZL3feA+FsbwkQ9+VDtoINVMtYJ1PWfP3YL1wuLgDONOvUO7hWe1WmKt4eZbboFaWC33GT76Ubqt4eLFR4gpcHi4ZrvdcebMPpXMLbec5+DgJq4dXuaWW27i8uXLXL58mbPuDDkJH33oUQ6OVeO73Y0cX9txlDeM649gnSPWwtvf/Qec2zvN7Q8qf+DCIxcZnn47Q7fg1Jkz3P/AAyAd1jkwjimC6xa44kk4VudvxZ05z+ZINzLr9YZUIjEr3JlKBuNAIBlhsb+HYDVtoVY65zX8GJX8GNsTp4mQQiMWCd4OlKngSmbcBZzv2O02pBRxrqPvPEWaV24OKiMJem1MLaQY1Su3zZNFKjVXvNXwZWcMpoKtpuVuWqQWctghXsOXjbekVLBYpnFkMEtIiVwzxRklNMVA3zsNPDbqTqTEbsE6oessMUzspoKJQokTU6hYZwii/rpPrafW47lurPChkJoFHEI2FilKk8cYilV5g6mOLIVaC9bornAWp1vbBlVScVZvnCkpCcVicEZaOjhKnGmGw/nkBq4ZcqboDK5UOTHOVdZhKw7CCQEGOOmYZCZDiFqUVbG6W8Ygs3dlm2fJY/+bbWKM+nSaCrWYxhqd50da0E1jqxhr8L5BlYUTyruIPqczBieeVIWMaeeqkGhszwJS1fZJ0OKtQnROiClG5vNbGtw71/+ih9sS6RUtbufdzMdSqVnvKk70HBdBsw2N1Q1KIwLNa9YaykmX3opik46IVZcONf9WN569U2dYj4HD7Y5OPN3QIRQGY+iGgd0u4f2CCxfux+91hJLYP7PPzTed58EHHmAKgfd/4DJ959jtdmy2a7zvCEFZt9733HbbWUIYmcKWP3zv+zg+egf7+yuO18fstjuMOB76yAUEy9HhETc1y7IP3vshHi2JNEV886ENOZHFcvHSEftXlQVupOPaI1d58IMP4DqvYLatlJpwvWXwS6ZpS06VKo7T526jVEMc18SQtNMylu16ZPCeFCPeLyi5sFyuuHY4sr/ax9AkORWGweMHj6HgvMKp/bBgs9nq+y1VajRQJlwzKPB+Scmbdq0T0CHiqTZhJOFy6/pEbekKTh2JaibXpIzqauh7T2lOLV3XQa2qJxTBOSgxUJwh0hjNtdKZHiJIKSyXC5Kp7HZbnc1X/R1Kae42UlQXWAslbEjThPVLvLOMx5cZp8qi7znO6URK8tR6aj1e6wY7vqIOHblishCtp5hCh8oLStYgSVsd0alrBkUoxSrvUPTDOIevisypDtDi1lX/VY2mfreoo1I1osU4oGrRaTRDKpXcaNrWgLQ094ojF8hZPzQnDiRzYaQlRJcG2xohmQJ5nuXBdSkACvGZVpBzUTap1BbsqRSPQiKiiQO2Vrw4ck1UL0iS2fYRaF1r1TleaQJ+lR4WUikYsaqRZE5waOnqJwUHhWZnAtFc9Kx22DRBR0UZr0phbTPO2TxZo75RSFY3EPkxbjG0WSe0wtrMs5XF1xSXok4eKpOYqMU16zaDa4Sh02f2CSHSmY4YMlPesX+wIqTA5vAqlI77PngfxkZFDqaJ7dGW7dEx3ntiq/TrzZZaKqvlPtN4zPp4x8FB5KabznJ8fExKkRSVrNP3nmmaePCBBxmGgXGc6LoFqbm2jNeu6Tm0wm6KmArLYVCpQgAb1KggtZY6hont0THGGkLrlMxs5FAs05RIUcimY7E8xelT51lf3oKFEEbdvIne9ClQp4iQGxQJB/v7LIaeaUpNuyknIb7U6zKW6840hTDuIDhyDbjugBC0WFgr1BqJcUfFqKyGSmaHKUmZs5LwFihZWcJiVebQPse2oQnFQCpBQ5q9UzSh6uc8S1XtbIYaCh7PmBN93xFTJNasn+OiTxRTZOFWgJDiiDcWKYE4rTk83nHTzc+gtz3T7irDsEfZFYWSnzR6y1Prz+q6MXILUCQhFjI9mJ4qkVAjbpZht2gcU3WmVaog+BN4VIwGuqoYXmNoRDyYSUkZRTVjMxSiL9wIMU2ULlKpTeaVH0PsUBgwklmRpZGg243bStUbf4nNJss3yFElA9UopaaTctI9ihSFELP6JtrmcFJnh5Y6W0+bxkttbEVgaJq3WALGC5Ie25FZLSKlNJmEQp+1FfIZRqag5wlO6q+hzVyk0UtyS1af55lSmiVca2vnv5YWFEyDaZ0yBUtLeI9FJSLGuFZcm35wxmONtOsx69lmI+jW7UpWokfRnTwtfPfZd97B3/u6V3Hp0Y9y5cJVLjz8KF3fs1lvEKM+kYt+oGt6szQWSjT0C8+42+F8R82ZYbHk1lvPcOGjFwhT5Myp01w9vMRme8wYjogxM+4SIh6LpV86xjBiq2MKgRg1jWDwPdVqVwswxYjpPJISR7tjUikMtsM6qzZd7ZqVmjG2o5iCFUM1KoRf+A6qIUel/pdquOm2Z3Pt6pqUlNSSbUUcpJhZrPYxMeCMYWkNYy6EnOmGjs3uEO+U6WisR4yQs3pdmoY4hGnU7gpLLkIIAelaty2oeN10mu7g9P1Rs877TM1kAtFEsiRsNSdzdhFFNVTbqnY9ttNUhln6cuIVbTW4uJZKLwfEHEhljSmWbtjDmJ6UNnQtxw8jTEXnwOIMXpx+FsNEGNdsN4cthzAwnN7neF1ZrRwX7tvgjW2s4afWU+vxWzem42sPrxYyHbled/2fg181rRytSC0gViRqOjqzVZVrIzLVNWmBUq9HaTSyk3QBoXWLKjaWYtQhpZFdOtcBwhiDOr1Y24rrrOFrXp15Ais6j5LcikyD6lCvRQUqtQA1K0MoGREN4KxNukGpZJKmObRk+NKgXfU15KRbqkDfdcRRM88A1TzmjFT9HWub9FFBjFVPSWC2FzOm0HzadE4KzBVNJRw06FOdck6cRZWOSa4FU4Q6q0eqNAu1Gbyu1+d3+fpMr1QlD2l4gznRcKmptjron8wY2yEY08zGDfTLnvNPu4Xf+b3fxUwTYRcZp0jPUp8zVcouYGwhp4p1NCutxPZww2rRc7zeMm13iPF8+P6HoFSGboBcWA4LHv7oBW4+fxN7iwFLZBMSy+VpxmlDKZWYNBInhKBOKXWHWzQ/TcAaS0kRl7JCwiLUmNmGqcVm6Xs+lUIsOt+OLX5HEohZYErF2Y7l6dOM2eEWK44vHlIbqaWWQu86jtYj3juOrm0wdiBlIcSM6TVVwVnDGCZ839MPPTllrBVOn9pjc7zm6tVDEo5QCykmbO+xSdm7OSmCkVM+eVcb5ykpa3ByKtSkvC87fz5TbmSten3+iyIiJVXU1kVjiZy1undNhSwV73WzklPF2Z4sgZxGvE2KYJSAFcHiEO/BdlRr2vsdVv2SxDFHmw0xVZa9Z5xGLl67yPG05sBrSoWhpaw8tZ5aj+O6MfcB0+yoUoYaGjmlnszRMvqhOIEwUQNaa9RCytRGgG906FotxlgMnpylOXDMMKClNh2b2nW1OZnYxtRslOqs6dpKROnaBDIhKIRk7LxjTwgOY5ThWGf6fjVI1Q91FVEz6aqaNtcIHFkqnbUqtagF10S/pUSoc6BQwUlRn0oMqZntWqvhqNStsu9Q55lmCKalVq5TUGaJQ5XSXGE4IelUSkN4pdWsBoM2/R/ArCEE7UwbYjmfsgbeimJYYho2mrWMVYU0aXINTGPHNmafdsE64yvtNbX5tOoTU5p5ixVkYXn6s28n1cDh1TXhcM1qf0kVGMet+jgWTXJfHx/juwWhTOSccf1ADllv/tWwWq1YH2+wviPGADUgJbI+XrPbRh5+6AoL69k/vWKUwvbqRfYXjq7z1OKYpoCxVsNPM0wxMwalyIfdjmmtFmWxZrrFklILtirBJxV93BgDIQY6210/l8YxjZHB9sSU2MYdtz/neTx88ZDj9ZbeO2JMSIGYAoPvVb9nBiYctggYRywZaxwWi3XQ9b4JxDWVXkzleHNMmJREVoxhSgnJmSyRTjyVjLUWb3sswjgmtS2qEUqmpEQUo45CyUHMSAYvllzb5wg1cRDJiGSsdDpjb65EtSqKgRRihr63eBeYIuRq8csFIe7IOeGMBkvnlKDrkL7HUvHG46xBpLDbbhBjWOyfIlXtxqecscsOu75GSmuMGPTd+dR6aj1+6wbJLcrYRDKYQE2meTi2nb8YvZcaFbRrgEEzRkZmLYPGtZyQQgqVqLMP6nUxfGN/VdGCRHN/UZq33oC1C9MiV4slZXCua0w0QAqmzoO1rN3Y7HTSIM1W/3RVhYoKOmdUOYN2ISFGnFPorzRmqP6u6kyfSmqjwJbYJ0oMSamoPI/HzA4rbU7WHFGYk+LVa3Kua/pQLXbSnFL0GzO7RU5gKpoN2rwhmIk/pqAswCaEh4pTzJNqZ9h0nlNKY2w2w7IZY50PGk3SNsY02KsqUcI6aksbTzmyWvQsbjnDdtqyKnsghv3TZwhhh22eqwJMNWO8xiVpNyrsLVesR2WExhARazXh3A2MMUNLTx9jYEqRlDKnz+5BFjbbhD1YUPOOysgUbHOj0eSQWitd7xnHHbtRZQpxihyujznoemItjNs1SzrcoMG4UyPBxBgpRYgxEnLA9R1TbLMvI4Ri8Qf75G7J7tohznbUUkkFvHjCuKVYx7gLGOtx3jIdj1ib1W9VDFYGTUsn6zzdOlIKXD3cKiNYHF6M+lgmJZRY6xBxLFeOGAthUqegUjOFSCk7JEVqLUypmXhn7bqi6BS4ZI340veSQ9/cGWMWSFHiVa4G5xylBIxUvDOUHEESBcF3exgrEFMjQwm2G6jGshsTpqoo3hmBanAUttOOZA3DYoGESpwyY92yOuO59qGHMK62jeRThe+p9fiuGyx8ghUPRp3fFQqyraCoCFbV6JnqCkXUM7GIYE/0X/ohV9eXeZbUMn5O4LOIuIIVT6bl9s0C8kbwSFVdSGwpeGMw1jaIL1OzMguFjKRZO5coVXDiWqeUm2zBnNClixRyzVTjlBBQDLU0Vw5jICsBxZgm2aiOUjJZtghOo4Ba54gIrrnY5KS6Opkty2ZhfcMHS+u+VJ6vxT8XvUHUUim20LeCRGNLqqMMnLiStL9rJS/zeO8kukjUdqURlNSxpIoBO5s6g2hwjbrWSNauG9PGpAUktS5vbi/1d8mmYDqP9Z5l17G/WkFvGKdEzOB6x/HVI811G0cO9vepqVJMoRqFfvvOIwauXTskVc9iMZDDBuMsoRa2U8D6gTBOiLXgLDefv5krly/jFoLvOoah15idsmBzfMSwdFgveO/bzdgx7Uacqyczvq7v2VsuKeOE944zp08xXtsQUmQYehbDAqB1Qvo+jzmRxqx6RbG4zrGZCp/0nE9kW0Q3AjEQY9KsPduMyA1gCoPvyakQQ6RfOPxqIEyFFDXXsDOCE0tOge0YiSVTpCPUwL63bHdbalI3FeksJCg50nUDY0wakSWJXBNIJJQd4OhyPTFtL0ZnjyVXcsqaM2gdKTcpjxRiUrjAiRa9mbdsEHIqGPGIgLOGLIZxd0RNWQN0rTCVgBvO0OdCPzgCW7IokeiRi5eIuXJw821Y4wlhg+RCDDuWw5KPXHgYjFUk6EZuUo/zunLlivm93/u91UMPPeTPnz8fP/uzP3tzcHBQ/tc/+dT6v3nd2IzPZJKddJeYmg+n6K5PaOGndTaKNhhRykvOhSLqAkEVilhs6SBPiE1KhkD1S8YZjHSUUtRJqXpKUlaaM5ClECm4ZmQNhdmfsiJtTmiIjFjZIVV39lLBmfYTYpjzFGSe94mQUCNdqiA1NZhLEAseMEXIoVI0MAyIZCkEBGcyTsufxtVUSy6Bwe+xa4GaMovpq9q2FaPsU9sEvVCos2RBlEwitrFeiyO347RNwlDnczAzL6t2oNoeK71d4wjV3sw1ekw26otpjACxkXJonYbOEgsNKau6WTmpqQI5qYTA2JYO0C+wXh04pPPQ9Ziq0HAqiZwC+2dOYTLkaKk5Y5xn0WmSuaNn3E2EpCkQJWTEGWy/Im4nktgmvNbctpgVR+gXHXavR7qeaRcoKXFqtU9yhboayI2cchzUzSdsd3Smw2Ho2+wOYylZ8MtTbKYt4eoxHRr/Q004p/c42w3EWlh6w97egpwNEgWJlSodZ267lc6u2G5GpJlu5yyI6bl2vMF3nhwTy36BGSM+FuzSk4xgU4WwYyyGbCxDUEQi54y1HSkVwm6iD9rhUh0igZgmCNpx5liRZi7tVpYSwQahpoDFkPJErRGfTQvBnRBfKGSc77E4LbwoMc1lT6me6CviAp1VZXspFbyhktDkeKez5zphigPrwXuVfITSXIAixmR63SJz7dq1xozusKbTzYkxTFPgYG9JuXxMmiK19FgKhsc1BOGPvT784Q/7Zz/72c9/7NdWq1V+/etff+/nf/7nr5+Ug7rBlZKOi2Yp1VNL1w0JZMREBDV0dtJhcDTVlv4nohIEQMRhsHg34F2nej9RCnidKYvSdHRitfsQ9besjc5vqNi2o7TNtkxEsM2I2DQ9mjQm5UxcMSYhprEXmwbI2XZ882xMYBZj6x+LqRZbaityWZ/fKbFlhgKNOJ2jVe2epFmBSVUTaQMKQVW0S7WGKQYtLjMTpBWremIhNv+cQrQOg5OWi9eg5IKhWk8VdUaRBmnOwvZ6IlBX95QZWp3NwKnNb5N5nqgMHGv0HM9QqkLSM5BaMMwemRlKOZmn2kbLt6bRcBr0nAqkCp3v6LuO48NDbBV26zUpBP09naHob0TejeTNDomZXhzOeayx7MaRzW5LyZWQEv3QUtut0A8eby277ZbVckVYj5Qp4sRwfHREjKHF6czCbJUGGO8wxjJ0HdY1fac1VO8p3rM6vc9iNVBMaWkRmtChp0/INbHbbdhstux2US2/nCVSufUZz2A3Tkxj0KSGNrvtnKPmSgiJcQwM3UBKhZQncNAth8azrVhTkFLIMbLdbNSoOxaVnORCyZkwjhjJuK7ivdDZBWJF/TRj1Plw0ngsb3vdfNZKTGoeXmoCm9v8NmNtxXlFTEo1eD8g+FZcUXJUDlAi3mpM2GzwENNIiBMlJ5wB53tc11OtpVpH1/dAQgykEJUBOwWm3YQf9jl99jzjeksJQe0IO8fBmQMu3Xc/JWY1dGgd55Oxjo6O/rsX3mw29pWvfOVznqjXfMlLXvJJX/7lX37Hl3/5l9+xv7//gjNnztzzDd/wDbfPSTa73U5e9apXPf2WW255/mKxeOHzn//8577xjW/cn3/+h37oh87t7++/4Bd+4RdO3Xnnnc8bhuHF9957b/fGN75x/1M/9VM/ebFYvHB/f/8FL3rRi577/ve/v5t/7rWvfe3Nz3jGM+723r/oWc961t0/+qM/evaxxyUiL/6X//Jf3vSX/tJfunOxWLzwmc985t2/8Au/cOqJOg9P9Lqhd5SlYrLBJI+pC4SOWnxLHpjjbJpZr6BzC+fouwErQk36RrZURAJIIWUhRtWulao3Q+edenjmDDkiNVBrboSKqky2UlvquSj5olYtOKVgyogpiZqF2uYDGp+kN49SEnO6AMxWZ0Zt0EylpqRFGiEFdZWJuTLlrO77syVaKZAKLldMLMo8yGgRJCucZoVc8kmgqK5GHa8g5fq8jkYAsrkiZZ75GWq16q5hBJp+7ATWpDRNXeN6VqdpEY17XmphlkRo3Z0h0xYb1aSKpdm/zcG3xugGZba70kLbuvxaiTGTklLhrTPtGFqBgCYh0Fy19bU1vhEtdruthrNKIYVIjplYEjEFdruRXEoLMG0hT87hrD2ZZXbO462jWGGqCg/2nYbXrlYLlnsLxHqgV69U61h0Pd4YTh/sc8tNZzAWYtaCVij0w0IDeaVSJdD1sFwsGYZBiUloEO2w6HBOWA6n8HbQ+CRjuOn8raz6FVIMKVemVHD9AhEhjCODdYRpYujU2cYMHrvwxKLzsZy105dSkJiIMeA6rykWIVKz+mlOMTKFHSltKHmrGrxkWuq6FuuSCjUk0hioRcOKU4nEFLWjq4FCQEylJCjBUZKmtmPUTq1WJQK5zuCd6PnOSUN3jaAm4Pr+yjlpvNRuVM1tKYSgc+CUA67XznnZLwmbHZujY3o/YNyCYbmPFyFvNqS4o185loOweeQBRR4MJxKmJ2M9//nPn974xje+78Mf/vA7a61ve+UrX/kowCOPPOLX6/UThsD+8i//8jnnXP3d3/3d//bd3/3dD/7ET/zE+R/4gR+4CeCVr3zlHW9961v3fvZnf/ZDb33rW//wb/yNv3H1ZS972V3vete7+vnnx3E03//933/bv/pX/+rDb3vb29598803py/5ki+58zM+4zOO3/rWt/7hf/gP/+G9r3zlKy/OnIOf/dmfPf1t3/Ztz/jar/3aR972tre95yu+4isufsM3fMOzf/3Xf33/scf1vd/7vbe//OUvv/qWt7zlDz/7sz/78FWvetVzHnnkkT+VreSNsTqLx4hXF3eU+aishHpC1jAnGrOqjhMVHYoPA2GaqKliLGpsLJpELVYLmGndSykZ4z02FxJqfwRNApEzLgnFepLMImuUxj+zOyW3zvMxXVadVYFFOybrkNJ0ai27rhal7BtjKblJHKpQshbcKmCrZsnVx5BMrIiK7lECyWzjJVhi81ZkfjgzSUh/5iTHl9YBzjZrMxeosSfVZab5cTaSznVfGU5Ylrl5eSrkyQnpRbXJ+nUtaK3Ytuw/aVT+E97MfEzz11pHb53OW5311FpJOSIxsRh6Tu3tM1XBWsduu9WEhFLJIbO4aUktiZIrKZb284acExiwi07ZjyXSS6+FyVj2hiW7caJf9IiIPq9zSCcs9vepU8LhEKlsthuOj9d4etziFNkISSoLY8lhIshEtJ5+uTh5X9gi2FLouo6YlalpcPiuw5jrobMxKrRHztSkG5cYJ/rViuWZc1y9csx6C1cOjxj2lmqRUJRMYkToh57OOeJuRyYTyqS/RzXkAlL0PeWNIet0Wjd/1ugGsLRNW65NaqAwf047fc9g6TqrDi45qVF6KVAiUrNCjjlhjXqY1logg7EdOWUVtPeWSsa5BdYaClFlNBh1d2lG5DEkaPrREEZCSOytTpNjplCxvSPHpF1qiBpgmyfGKbLdJc6dvwm/0PeDtUIcM9M4sji7ouQtdVrrhs+ouP7J9Cz7vM/7vPUnf/InP+9DH/rQMHddn/AJn7B7olLYAW699dbwUz/1Uw8aY7jnnnumd73rXYsf+7EfO/8FX/AFR7/0S79007333vvOZz3rWRHgO7/zOx9505vedOrHf/zHb/qRH/mRhwBSSvKjP/qj93/6p3/6DuCRRx6x6/XafsEXfMG15z3veRPAi170onF+vR/8wR+89eUvf/nlb/mWb7kI8PznP/+RN7/5zavv//7vP//X//pfP54f97f+1t+69Hf/7t+9AvC6173uoZ/5mZ+55Xd+53dWL3/5y4+eqHPxRK0b6vgMDmuNzgZsIzpUwRmHd07tjMTSGYs3ht47ltbQWUO/v8KvVljxSho5gecMxipdg1KwVsg1E0ohlhmQa2R/ESyZAYs3CqUaKWBGxOwQs8PIdF1bJum6aFzbGoW9jGkcGc0Oq2j1UWOSDkQDWU3zBzXojaaa2jLZynXIFJrYvDbCiW4IrBWc7Zh2AalzSK1+gFXqqHCvETWTxhhlWTrtElVpoMbQnTGYUjFF+1epFWkifNVKqiRDkxxa5NFJcry0Q22MT+Z/K5FIQ0LV5UWazMRYFWcXMRSxVOMQ1+GGJcZ39IsltutwfY+xajsVx5ESE6ZlLdkqLPuBxbCgFDg4fapJWRwlVuKYmLYjNek1Nw1OLkW7hs5rx7Pb7Zim8aSDHLqe3ljMlPBiWJqODs34S6Vy6swZnHNMmx3O6rx22ow44+hsx+HxMUebNSmqTKGvhkEqZTtSQ6ZGw+Zo5OjoiPVm03IlwTtP3/fsH+xTMnjrOHXTWWRvj7xYcGU3cnk7YmyHEY2vyrUgVrWh4oXeO8i5/T4jQz9QUpurGstUMs51LVlEZ16lFTx1cyl0bsDUAbJuFFyXWmq7wsTG6rjBmUzKW2LYUGPE5ERJI6ZaanJ44+kcWDMhksi5EoMlZ+32UylMYcJgFfa0vqW8g/GCtZ1GGFlH3y2xtqP3nuUw0BlHjhEvRmfbecdmc431bsL2B4SYMERq3JJLYVcM/f45/OIU6zEyGtH3XksgMXJj+/PHc6WU5N577z0pegB7e3tPaA/6ohe9aHMyogA+4zM+Y3P//ff3b3vb2xY5Zz7lUz7l7uVy+cL5z5vf/Oa9++6776Tj897Xl770pSfO3ufPn88ve9nLLn/RF33RJ372Z3/2J3zXd33XLffff/9JyO4HP/jB4TM+4zP+yMzy0z/909f33nvv4rFfu+eee06e8+DgoOzt7eULFy583LDe/9vXDVuWUQzVNpF30ZuzGh5f9+KcYSkj2hBWyfTeMpglmxE2cYOU5vPpCp3xhDJRilc49ETAVpWggIbN2pIRAzuXqAVcTRijqQJmvsnXSpSsH0pl0wAqSSgyN1AKu5YalY6SwOWq6j9b1MbMqIo854BK2trsyxh1emkG0LVWitgmgYiIDBgbKLUyDD3XrhzhxZHqDM3O7mczWzI3CMkrOQXX2JMFNXpT8o7SP5sTjtEiXqqmNdBIPZDU9aMlM5RWn5XEY9D5X6FIwmKoxVKNp0qgksnVIkU9U6kFcZ36dmK1E/JqpN2VShJLqJnewCZM9Mt91scTtgdvLAu7ZDftOHXmLJcuXeH8uKbzHokQs7BarqjJMtVIyJEQdnRGnflzTlgcZB3Kr5aemBOu07zHGCKlgAmVKSSkZrphwbC3xOEwS08lqp+OF3pvqTEScsJbSz902E7vE7u85cruEGc6rAHXOfYOBkqFUCOgY5BcJo63W/YHp++PruPR4yOe9wnP4/BYGBMcbtecOzinCeVkaktR32ToKCR2xJwZd1v84ChppAajyVuDxzcZCdZhO0/ZrQkhM02ZcdSEddNS5UUMOXekKWA7ZT8aiaQ6cYzQ9WoOIKWcREpZ69RdzjjiFDBGw5vVOUklCws6nEmMpgILNA7X6WuaTEpJyW3GUlLBe0eyhiSVriTcckUJAWcqtqukkFkf75ToMqzoDhY4BxcefoSnPf00KR+Ry8DZs6fZbHctycRQJGOzpROjm9snaQ3DUN/whje8/7777ut+9Vd/9cxv//Zvn3rHO96xeuc739k///nPn/4kj+X4+NhYa/n93//9P/xYssrBwcFJTH3f9+WxhRPgl37plz78n/7Tf3rkjW9846lf+ZVfOfua17zmaW94wxve/zmf8zmbP+7re+//uy73sRuCP03rhjq+efevN0uDmk+m1rU08TmACMZ4nO+Umemba0hvWJzZwzh73Xg2J1IKUBtBohFd5rgdnSuJ+nCaSinNsNpWMJmquT1oVSoUdE4hjWST6/VrVdvcERpxRErzSqya9v4YScAsDDcIvlRsmbA14JuYV3mm85RNMNa1FHr9qvdqy5TLDNXO8CKUDBWLMR4NFFLb71wNqRhynuemLUUeQUQ5o8Y4jPFtjqedpVqHtRR7rgf5ziJFOSmyjZVXG629zQZFZpK6dtelVJzVDqlzHuc9xmowrXGGmDXmh5Y27volvhtwncc51XKGkEgFhqXmw937gfczDJ26s9RMjIExbBEpOGdwTjWAsRYSBeMdKWfizErT7Cf10mzzYMTQ9wNdN5BiIUchpUI1OrMKYUutmSnuwID3Du97Yoy6+wCc86wWe3jXYYwjxcJqdYrl3im9vq3jy9NESZUYND9xs9tx9qbbsWafOBnCtjLYJbtdYpwSKYMxzdYveUzt2O0yUyikBK4a4pTISS3zBMfS9+zGHX2nmYHVqAvQNAZSUOJKSBty3ZGZQBLOW2LKxDAy7TaEaaSEESkw5cgkRYtdcwlKKbT3on5O27haBf5GFKKd0cUCxIKIJaVKSpCSISUloVlrsGKwxpBixHWGKWxwriCmEOLINO2YpglnOvaXB3jpyQFWi4GLFy6wWW842F/hnWez3in6IB5jEkYi1hSdyT8J68KFC/bHfuzHzv65P/fntv/gH/yDy5/3eZ93OH/v8PDwCZttvf3tb1899t+///u/v3rmM585vfSlL93mnHn44Yf93XffPT32zx133PG/PEmf+Zmfufue7/meC29/+9vfe9ddd+1+7ud+7izAnXfeOf7e7/3e3se85t5dd931ZzYP6oY6PluSdgStkzK2OTmUqhR9UesmY5zOL4xT9p4xiLMUBLfvGeKKzWZNDgGL3gjFeCWj1BYwizTh9mwkNvuA+WZenSgS9QPc7LdqczdRdqPan52IxmUuAm1mgYArVFHPQ6FQrVWornEf57lZmTVsYnWG9xgB/kwrkZKx1qhZmDUMw5LdLmCsEm8QmiH0DN3Yli+IagqJOoszehPUMvRYf1Np0gu1a5sDdalJi6c47Py1Rp7hJMZhTlTQ37/gtPOrCTG5zfVacTR6tg26o9fzJO0Y1O6qOoOrzcLMaT6e1tM5B7BgbMfq1D7VZKQYcoKUdIYmkompstmNLMyCEgMpVTo3gFUY/HB9zLTZauq92WO2guucoe877fSMkGNh3GzpVgvEGGUgAou9gZgj6/U14hiwVRhWe7iuA3RmBhCmRNglUi4Mi47Ndsvx4cPYRYft52ujDicOx24T8b2niOHg9C1cubZmDEW7VOOpFELYUoJm4sWoTj/LhWd9dFVTyClISkwhkEvH6vQZYpgouZByZqjK3pSaSE1LJ7WSW8K6MVWvh7HkWPG+x5dInFTzOohBsvrAavEs1JjIKVFrxZqeXCE1Czzr3IlgoDqjUVFYbLZQEpWE85BzxEjz7sylqXJFg32dw3eWadxqtp/17MaRw8MjBr+k6xfqAmMruWZWywUf/eghYlfs7x9wdO0anetxpqicKYtmfWJPrP7+pNfP/uzPnv3mb/7mO772a7/2j3z94OAgv/jFL37CisLDDz/c/Z2/83ee/nVf93UX//N//s+rn/7pn77lO77jOx58/vOfP33BF3zBla/6qq969nd/93c/+NKXvnT78MMPu9/8zd88uOeee3Zf/MVffPjxnu+9731v98M//MM3f+EXfuG1O+64I7773e8e7r///v5LvuRLLgP8o3/0jy585Vd+5XNe8IIXbP/qX/2rR7/8y798+jd/8zfP/Oqv/ur7n6jf8cleN1T4HBVD07ZpL3Ti0lBNAluoVh9Rm2OINwYvCqslCsVkVgenSNayvnoVVyvV0Ab0YKpghQbjqVyAmY1oVDsntWqH2EgZWer1GRUZa5SQUnO+XgoaS5Mm4AYag1GaHZMWTM3x09lfacdWANvcYmqpJz6EcxdFM7MuJeG7BSKW5eKARx+5v+noWsr8POOzzQGmQZDWqj2YklLacVWVMKhTjko/aN6jqqFq0GUjqOhzW0RO7G4+buE7gUULyjwVKHVOcqgndly1ySrmglNLpuakZBzrcKajFIsY3QjNaQUxRvCFoVsScmE9blmwoq4n1psN42YN0rMclpw6dY6YE0dXj9jbPyDljC+Gg9WeUvf7Xue+3rFeTxgM3loomVP7+8QqHB0e0vWDZstJmxtjsLbDmnYGnSNsRvplZQqRzouSl4BxDGw3I9UY/NKTqQzLgVwzKYXmugO2OsjQ+xVjmjh9660s987w8KNH7KbCcn/J8WaipMy4O6brrF6fImAym3GkkHCi3XSKzbMWGLcbIJMC+KGjxozkSsiRnBIl6YZTquoCRXSjadVEle12x+Ay1lmmbOisJ+dJi9PsxylGw4Fj0Pe4t1jpSaGQc8X4BmeLQKp4a9V9xgiJCVNr22QBLRezFLUopELvHCVHrBRqjIzbiSlkjFth+xWm7wh5JGyPOHPqNBcfvchqdQt7Z28hl0nZrwdncG6i7z1prRvoInJ99PEnvJ71rGf9d1Dm2bNn08///M9/cLlcPmHkli/6oi+6vNvtzJ//83/+k40xfNVXfdWj3/RN33QJ4Bd/8Rc//C3f8i23feu3fuszHn30UX/mzJn0ghe8YPOFX/iFH7foAaxWq/L+979/+NIv/dI7r1275m6++eb4FV/xFRf/8T/+xxcBvuzLvuzaRz/60Qd/5Ed+5Py3fdu3PeNpT3taeN3rXnffX/trf+34f/Scf9rXDZpUG7I0t5NiVOg6C8GtwTRYTWd8ak1FqsrqTK3rq5Uk0C2XLFOm7nZkW8klqq1UUGc+vQm3fqrtzkUqNPaoao3m8NXSdIOAWChFi5yI6s+Ama4ozYS3VjChgNGkaDAtoSc1Wr898e7U2qlQ0AxlGrRT1eLpyDnTdUIuEW8c281InJJ2Qqj915xrp7ZmpiVQQGlG3VLRGQ6JIrYxZi3VZCi+/Xue2xliqXPvep3QY2aYU7tJUS+5Bt3OijFzffZHwYhuaVTw3Rx42nNI6zYav0ejeE7uQ4ZqKjY3ZWZJmIXHWsNu2lDtHmCYxkDshFIn+oWllsoU10zTlq5fKswZd6QyMQZHjSpd0bwM2Gy3DIt9Ot9T44QVYXt8zCNXD1ksVkybNcv9AamZlLImTqAw7enTZyhF2JhjhZgdjLuR3U5JbXurfRbLPaQz7MIa44UQR2KY2Duz12DoFm/VXHnEOp52xzM53iWmACFV6IRUoabKuEnUpJBsrgOut1SSwqybQkkVMQMpRYbFijFssaZgfU+1BikFL5ZQK6VkSlYCS0qVki3eW4wrGKubEmMSMeww3lNNRy5CShmToAT1so0544xiBbUkYstOdM3kPaNzbW9M02rWBn2qji6FCW9MM/e+HltFBecsOUViSeQ0IrWy20aqW9IvDhiGATGGGNdkm9lsIik5huXAsLJcuXwFsrJRIwHrW5yW8drtPUmF72/+zb959P/9f//fO373d393dfXqVfvMZz4zfNZnfdZ2sVg8YUUPdJb2r//1v34QeOBjv9f3ff2BH/iBj/7AD/zARz/ez368FPZnPOMZ6bd+67c++D97zW/+5m+++M3f/M0X/0ffr7W+7WO/dnx8/I7/2XP+37xuqPAlgUgHzXuziiGbiBWhsx1FYrPiaka3GIqtTHlHTR1UT+0qziS6ZOgWCyZXee6Lnke3XFIT/OF/ejubK4dkm3GSOdErlKI3AKNi+Uohi1G9lyg8R41o92lUNlGvGz3nohZZ3nqgJT9YpbWn+TVqQXKlmEi1uRUf0UijEzmRUcJHC9cLIojpMCWTS8HajLFLLl19tHWQKmKvuVDz3H1aFaJXNQPWDmpBzlV36s3lRqQoVFwrUiOlODB6EzFSyCFgrNM5Zzs21ecpAcYUlaAzd8+zJ2cj2eAEYzM5NTsqKczGb9hKEsEbp1orKqERmPzQkaNgcqJrET21FJ3dpsj22kSVnh6FO/OiY9hbEFOhTAEjBtstWO3tEYLqPkPZgRSW/oBlt8cUJsY0kWrGiGMaJ3JILLwlpUg/9Nx8803ELHTe4owQiwWJ5JyRmthsAjVCzQVXYFgsMFbwyyXnb9Fz1nmhXzgymTPL01y+fJkzp08jsVJMwM1IeQ9+EDbrDRtxDPunuHDtEjGrBjXvRmoIhKlQS8dmPbFYeYyJiDhyjg2S9lAilQnvB5x1LAZHjFtCtgx2haEw7rZ0w0DapuY6NCAmkatu0Ioo89faTD9UTFlqUkQ1xLQjTREbIU66KS21kFPBWXVFsmIoVZm7uTYyURViLogrOgZoUGhJiWo6MA6XEkl5qngBawtJMjFmmEachWmckK6j39vD+yU1bTGyh3EdRiYODy+zWt3GLbed4eKlj0Ay+NUelB2mX1DNiuoeJRerhhcNvn4y1q233pr/NNL1n1r/83VDha/QHP1pRAojVKNswNCE1LVZXokUzZgrDrEWY9VtPgXIhNZJeCRXemtwxuP2B+74lE/knf/pLbhiKHZCmscHonOmuejSZlSIUI0joHwX23RuShzJJ+QEg1L+yQ1KNFAkN4/Rxxg9m+5EB6jGZiqMByjSooykMKcoKODaQlqruuyHENltd1g080+brqZ7bEuoDS5VcTpSNPvNaNeslagVzhmxrLXJFLQTVuamsjqtNc2HcdZCzgG9OiuUP8Jj0g40Re3M9TkyRpTNmXOmmoQZfOu5OEmdt8wm41bT300l1nwiF8khkXKmuorIxHZ0nL3lrEJdxeLcAmc8OSppYbFY4PsOzIjG4VhiCjhnsAmWy1VzHtFIqylH9lcLasjEkLDDoMxikqbdG0eMQaFlY9jGEWsdORd26yMG3+NWK6agKNZm2pFTpJTM8XaHE8/lS1eouTCFkdVa0R7bT1hbWCwXPOeuuzk+2gGW9WbDlHUW2Ikn1IDpQZIlx0w/LEkpYWslxx3Gd0TbEaZDuq5iO0sJiRATeIsQiCnq/LzN5IoICaBzOCwpJ4wRps2G3tgTr82Us/qRmwIlUBskH2LReCCjnXQIqpG01lDjqC42pVKkgPNqk1bBe6E6IW4n3ZglxTpU36evKVUNHySqyP7aWpmZ/WJJzgXfT+AcR8eHHBwMrCfB+tMsz3q28ZDNceTMuXPgLGmqUCZsV6lWOIkPkye0wXpq/T+4bqjwGWOb51tub8bSCCX6wW+RqXTisJKhJjL6Ya01klPQGUXRWZQVRycLrj16lb2bO/aXSxY3H7A4d0C4eKTOJ7M5c2N4ilhomV4zCzHVQm6doBUht52sEYV5gJN4lVJqo/wLqcS2q7XMFiYKcSo700ptNBPtClMjzhijMKQUMNVgi6Y4GOvw1nP16jFW1MotN6gRkRNWpwhYoySbKtJyyrImRhhRSl0j9SjEaFVjOAObQttk1CZj0OJaSm0MT5jZmuq0gm5ImtnACXtVrBIySkR3BLq5qKhwulKaYWdjUaISkVQLznlqyIQpYPsBg9489bdyarJtNCrnypUr3Lw6j3OWg+VKZ1hAEUfFYkVA1BVFhgGLJU0RZ/Qc55rZ21sRxh0h7tiMa7rakWsmp0AIBSswDD1Uy7gL7B/0LPYOsDt9nNvvuPLoFTY7FcDPdga5VO1QBHrvwViMJCDSLzrkso5OduPElBL9cJpz52/noYtXuXptTYiaIJBixA09xgqxZLrOa3ZkVsOGGqsSw7yQ6bBlhfWiWr1sQHqcE/K41XPTtKFSC9Z7rPXkrAW6pIitsBgGSlAINWd1CjJGbeaKq0zblhpSahPKx5Nuv1a1LHNGma3FODIF8Q5jBqiV7IqiJMOAr57tqJ8CkUjvOiwQ4qRzyDESUyICe3t7eLdglxPGFNa7wP5yYHO8JnUdt912Bz5e4PDSEd6fJgtYyUg1WJldgyrWqoPRx1Lz/yyvN7/5ze97so/h/4V1Q++oWjM1heYGUTjxQ64KhVUpkBM1Jg25rGhHIFUhmizEGEgRUlL391qEzgqrvRXWwOr0gk/5tOeTrUGK08F8sypLOZFqfoxsQGcuRZQU46oWxlKl6eZyIztAIRFr0PmaNNJ/NVijEE/NKl/QWCJAmui8FYwqHjFeu84KNTeyQWOClJoxxnB8rAGoMxll3qzOobR60E2WX5XEk7POOGttXouPkSPUklVz2JIeVOB9vfO7vhlocpJmDHCStM48l5Q/8ke7y0KRqN3tjAnrqSblpLqLRseU9sdldS9R0kSms5ojJ7UlEHiLW/SIE0LZsLe/Iu5GSgic3t/HWUffdaQ0EVMglcLp0zexWBxQS0cKUR1eaqbrHLlE1ps1OQU1Ga+F1XJgKhPiYbM5bhmNju0mstms8Z123ZtNYNqptOB43HHTzec4e/NZxBmuHmpB864nZCV4HB+vlYBrRSFriRzsK8tbI4MMbrnP1eMdlw83XLl2jHUdpRhcN1AR8hQxBWKIanFnDEIiJBgTjNMGySOLxQLBM46V3ZQxzuJKxU6BcbNuUhqwVjczuSSMJIxkLWwpqiuMUzPylJs0pWZMmYhJo4bKzHOiavhsRhMlRAlNpTb3JLFqFWcMJQq2WGLJxJyJ0TJuA5AoXcV2HXNmZIyBFCYohSlmhr0DjO905m0t0yawsB1VMsF4+tU5rL3K0dU1cbR0fSUnyGGLL468i7hiMcXoPH5W3Ty1nlqP47rBrVTBSNFkZaOFwYoywRoVgto8/dSaKpFzJJVAyEVnCrVQraZ+GzJSI85VusGTUiCGiVufcRu33/lMahFqFqQ4ZR3W2WdT3UXMnGJQCy5rYgNVIS71vK4nhBKg0fWrBts2hYER2xiqtekFdT5WRchFyEnI1UCx6gmahZrnD2PzzTQqtJ7CpDBS1c7IWo9xeq7qLIuA1p6pXEJDQAuUx1JOmgVZKSdxONJmd2qHpjCnklqa6LldkzmmCJET78160rGZ9nytuy2BUiZoM5vaiqlpDFhTFMaqOSmMXJs9WkhIrXjr1HAg6szIe484oUjGDRbrDTln4jRx+aOPsvALpikoRR+jWXvLBY9evMjmeGLc6fPEmIgxMoXAbtzhvCOGSI6JEhPjbqTWzGLhOHf2AOccnR1Y9CusNfS9I8bM5nikFEtKmcViIISJrvN0veX8LTcD0Hc9+3v7LJYLVvv7HB4fkVJib7Fib29ARCHRg1P7WL/kac++i2vrLamC8wOI4DvL3t4emOb3Kg6xDtt3SO+xXhEIbEfne0xJCLExajW5JJeEiYWw3jG7zZWSG4MzUUpkmnbkacIZCFOk1kyumvlnvNXPRkqk3cQ47jSqyprmOKSmDqYhCVaMJiu4jtTUHUbUvL2zjk57eGqumOrJuZDyjlxHCpkqEEIg5QgorO76nlSEEBM5BkqMdMVSdiOHR9cYzpzh7NlT7I6PuBoinD4NYlh6R297LJaaCzlCZwecUTTgyQ0memr9WVw3ZlJtLW2ER0lqpcQfSSbQ6JyxTAoLUlU/FCfCNBJ2mZgKU5mIqSgUlBLGdJSY2BxP1CDEbeCO5zyH7IVusaCieh7jjTK85qTWos9hq1LzldmvmXpSS4Mb1XnD1h5Dp4XyBHIUSsvnEykqG0CLWqnNwbOZNec6QUkwzwqrIReVBhhniTkxhahuMKLOMjFXYo1KLEFOMuD05njCx9Q5YgGyRiNlaRmBcj1NYT5ejRPKJ+dcpJBJZFJDVK8bUleK/jJSyaJek6XUJqOQpnO0rSOgSTJUK2iqYHN7Dh2pkjFsphHvOyqFWDK5GFJOxBQpqL7M+Y7FcmBveZrNZoKc2V46IuQJszSEaVQKfDewWx9jpbK/2muItiMVcH1Ht+ipwKmDAxbLJW5Y0K/2W66iwdRCqROYCC5jrEoFYkx4Z9nfG8g5IRnODUuWbsDjSLstcTMbViSczZpLaDMHpw4wCEdHO46PxxNI9JELlxC/orgFCctul4jZMI4ji95S4oil0vc9mYJbeGxvwGSOxwmxmd4bUlCUQ6jkHLDO4pylcz0lC7RoL+8d4zgxbbYQA6RCiUm7tRYYW0oiJ0UJxCp5yWBIsdI7Rw5BPTOram7VBWLWpzpi0A1TbdZgYlXOQessKQVJ6kIjXj/nPmRMCuRppMZMjpFUMrZb0HcdYcysj7fkmghxy+b4EuPxxGr/Zs6eWRJ31/jI/VdZDGegF4o1TNNIyZ5YE9JbxHcaeSVg7CzDeWo9tR6/dYMdn2mzonbDN6r9EqO7slqqJlKXSoyBECI5R2rJGKk4B6Z6uqKem0kyxasfpEywlAW+OqiVW552K3d9yt1spkk1ggZq7YGOLEY/lDVjam0RPiouLyeTv0bwaE3W3Am1Zghp7hS5qnWFaaSQaCErcqhuNFYoNlPMpNZeWeFL57TDMUZTumPI1DLH84jq25wgZs7uy9Q8w66KOhkKjoIT3YGLVVGyWDUpzmJPkiNS1fBdrWgZKwlM0ZkLqmssRQk084xv1lhqPJJVur1Ri7nZt7RiKWWmqet6LEmmVqXM5/Z9cbbZXhls1yms5S3JANZgnMf6Du96Ft2CsIuUVJl2E5cuXKBQsAvP0PVMx1tqzJw+2Gdvf8GwsHqd27WxnWP/9D7r9SG7aaf9clUIfBwjJTlKVLOEXTjCuMy5c6dZDgv6vkeksL+3YDUMXL10lbANXHj4YQRNFQDYjSM333wz+3t7WGvZ7baAEJIj147trrE/h1M87VmfzOFRJEwgeFKIdNbgasWUTNgcUQHnO7x3WKtSA2nXMaZEmHakcUtJmRLVSFoajB2AWFWKYzPYJPjq1LYrZQarpt/TFBh8j7cdOYIxFWu0gIqoE5IvFZsyLhV8MdhccVYjgmKpTEUay7LiOgfOMLaw6FwmktXPhQ2VzfaIMY9QKy7DkIQuVTbX1upk4xx2NWClxxpPNwyEmCnWsTGJ1a03c/r0Wdgc8vCHP0C/3Mf2C3o/cHCw3z6tFdd7Eolu1VFqxjmjiSbu/50Z31PrT2bdGKuz6A3JtDT0ivpPSoNJTLM/wrZ9srTcuqLzwZxHQnYYn7E95Bqh3ZBDCojtsAK7uGVXEuduux33nj+kq0mjW4rVxG4n13U+s8Jc5oSC2vxCrSYSzLPAWq53QXNxFNP0b62LQ8jSxOYVpM3SilWmpZoBS9MrapxMjEEjZWRmhs6aQw3NVc2jMlrNrAlDSEWZnbMY/8SJpZlXK7RryHXC1LkrFb3x65CxQZa1qbC0d0xtNlJLhmqUfCTtdxUlCsybl1rmXYBey9qumWbtVaqt6vcpDmc92Jb03nSa1nnEObB6zBXonEfEtjxF26aNhuXBAY8+8ggMBkuHjAFjhWGx5NKlS5irl6lU9k6dokY974dHh3Rdx2Kx1E4w6eZB5RqecRtZ7C3JJdP1PSFNbC8eq/ZOAFPwzmien++YtpHV3j7eC8Ni0d4X8MEPfojV/oopjOwfrOjcwBQz290xi9UAwN7+AXm5YnMtkWJSSUXv8d6qTm7UwlBSJVdBQlG2ZFXoMKRGarIeUiCEgBoONMQEhaadMfTOUnYBk4Vi1blEzZLUtk0kqfFDrXjbkUqiJEMtAfJIKZPmCRa1pks5Y0U3WKFknPfENBOHWzfoHNV6JdjEwFgyhkrnvCIkDmoRQgmEsMNsg3rt2gGcJ9TEWMAtByQF4i4ismB5cBOnbzHYcMQD73+Avltiup6zp04hEkm7nd4bGloRKHSn9qhWqNaSJRHKiQ3lU+up9bisGya3NF69/mluJq2OYKuabVk4gSdKLjoTywVqxBlHNlbLT85Iyaz2l9jeKZ0+wcot2V/u0Z/d59xtdxCDVmhfMn3TkpUKsTpis3LGCMZanacVJYPU2o5Nj171b9ackEDmyBmNx7GU7JCUkZQxKWNK07Vlg0kDti6xRhmpOWctxlUe8/facv+0YORaVEzdurTauiadbhpojExllCr0aWvGlYCXNvMzsz2adpoiltqE7bRQUE1Ibwzb2mOkQ5Mr2nQkF3JuBb+W5t6mqQ7qOKeeoJzUbT3HczE8Kcoi+ObA78WSo+6EVt0SWyvWgHc6j3POsVguwQjFGVh4drsNC+OwgO87xFmSVIbVAu87nPXKTqS2WCgt4NqcGYxzzRZO2Ns7YG9/YBjUHisXwxQSRiydc/R9j7ctNcRYsIZY1F/Sdx1dM6n2zrO3t6fzXau+sF1nMVYhvxRUr7kaVpoIUgw5VlKqiDOIN+xiZIqVUgVrC50rLDrLwnu6ahlsR46FMKmC3nst1gWd1Z7IaaQyLD3FFfBCqo2VXDPOeXJST9ih7zRmabclxYgVD6XH4ElpxIi+BylAUjKMt6YRxbS791bwVmfdOSclUZVMCBPVtk1ZToQaqQ2R6LoOK6YJ4BPGdfR+D1IljyM57ChlQmxVuYQZOLvYh/GQCx/8EDV7TDdQTaRIoMQdcdriKfiSsClhMriq6RFSYHA9pv6pjHx7av1fvG4MQzDgvG0SBmV8JbSIGAqYSpHG/Gj0+toE1CJCrpFct1STmGJpQF8m24rrPNY5nDXkGEjbiEjl1LlzOL+iiqW3YIjYWnHZIsU09mU9Ib7Ugn5Q5nTzufIJgLpmlKIdoTOerpk8Yx0YM4cUKYzoCsVq/gHF4E0H1ahZbyPuYA3WeC2QtUG91bT2uLSC4NTRZp4t1uYeQ3MoKSj5Ad39SymYqtq6bC2lyStyg4SqiMoMDMyBukbU6k2fxbQuTou6iMFTcLO8o6rrjog+h2maRaRoKpNRmUZJEckJyRMp7sghQiwQC8agz5cnNsdXcVZTBrbbLdTC0bVDYkjs7R2wWC2IaSKtN3gc1vQMy4Gbzt+sGwaxrKeIc72W81JY2p5Twz4UQ04JamKzvkqIkxbTksg1cvnyZS5dvERNWfV6YrDea/EscLTeMOXA8foIY5V9uj0aOV5vAVgsBoVdxy05JrbrkQ/f9wBODHtuICWFOg9ufhqX1humnJjGgBOvcgsqcQrUWjVjsKhBs/OFWifGOHK8O8Yai62GNAVA2F/uaSGthpwK425HkUTtLREhSsUvXZvZGgoavUTOxFKJZJzr6b2n6zplG9vKNG0phaaNLRQmqIEUtkis1KQbnyqFECdqFox0WGPpLNhcqAFSbIzoOmFdAacetCZE/DogWegGT7cwHOyfJedIb6Fc3RDGwOKWA25/9k0MNfGR/3aBsBEW+3swCHSZa4eX2G42xLoj14myXVN3G/oYkVjonYeQsQXcY4zmn1o3to6Pj83nfd7n3bm3t/dCEXnxpUuX7Mf72tOe9rRP/c7v/M5b/ndfR0Re/HM/93OnAd73vvd1IvLi3/u931v8L37sZM3J8f+7r3+j6waDaJP6NqJzCLG93oCLMtRydcSsforGCNWo3VCZZ2imgk2ax2d6sJacJ9SPPzOmCesL/TCw20x47+h9T8kWsR0lH5OlYLLHlUohUq2jGqM3DYGKOxF8KxNSa3s9EX8LRpwy5lBXiNpE8lUakw3IojvySgUPkjUlvFZPrV6daaSSqlLETUXF9nUuPBUpprmlNO/ROV6lOWW0FELl6dCy/LAYmXusQqpa2I3YBoXOOe7NXBo94NJ8PJ1pYvLZQ7VaJSXMzL5mLk3boJQmk5zZgyK+wb9NVFEyRhIZyLkyRk3y9r3q+wwd1UFM6pjjnEbehKkg9hL7B/uEMVBy5uqFSzz44AM87dmfwDSNuM5wan/FeoocnD7N0lo6nzmMO2yJqEs/UCs57FgNnnFMCiUKLLxjNJa9xUILlPUnHX0uCWsdy2Eg5IkyKjtxXI+sVgu6XklPh+s1JVfOnDnD1eM1OVvEey5duYDLldPtExKKsBsjlw+3FCuNCFWZtoFKJZaM2KrhxqUQ0kScItug7NcUNRW9GzzVG+Juwholkzjn1IXFB4WPg5BDptREsuD8gjFmjMmYWChGwGlOSDEQ8w6qpZYdKUVysrgciERKV6mi7i+a3gHWqC0ezmGdurqUnFj1hhArWd/JFDJd1Q3uehw5GJZQEmMMiN0nlcL68BKrvds4d+YceUo8uj7kVLdk0RVCuMK1Bx8ihZ5u7xTFtiSHErChKJmrC+SaGaLaH+ZpZApbnfXmQmqJK0/2unz5sn39619/quu6+iVf8iXXnijbspe85CWfdPfdd2+bZdn/8fqxH/uxc295y1v2fvu3f/u/nT9/Pp09ezb/i3/xL27+2K+95S1v+W/7+/uPi3DkzjvvDPfff/8f3HbbbY9rrMbLXvayZx0eHto3velN/1P7tT/OujEBe0VZmE7NoVUO0GYETVBtjc6jcvMZNE1bp3dR9TnB9eBQi7NccGi0iusNGIPm7yVSmkilgO0oLlNKk04YC0wYyaRaiNWol7MRSgnq0qJtW3M50XgiHYkpi80Y2zrSlklmDMY6bFU7qNRu/rXJ13OZILeuTARRozNAySwnsz3T/DWlzCRRruvndFVtBptDSytytZxMHw3Xi7XJXJdePFbfB02GISeBnQpQVWpRCAtpnqC1JURUTbzIVIxUuqrxOKmhYlSh5EYA8hXJtmk0U0uchyRVqeoibYOj5yDFxLC3IEcVMo8xsMKxixtC0OfN08hDDz/Abc++DessuWTtTGoh7DZE55k2Eznp+2K116mWsFRyTUrozZUzN53jytXL1JRZOE8sluQMOMPC94yHh2RTWCw0LSHH1Gzu1D7OdoL1enEWqxXbznO4uYbpHDVbDoZThO0h3jmc103rtJ2YfGC7G7EtjSKHSIoRsR6/6NQ0oVY6r7E6MwsTGpPSWVznKSUzbUesT7hhUOccA12/YBy3LIc9DjfXdANWisofpBJzwNeKrY7crkWVgjiLq5WwidjqKMYwTSp2l06IRZ2FEipDkVoQZd7oLC0XahZiUCZzdTo/tM7Qew17jilRdxtiSrhzN1GTZTNuSXHEl2MWYtnGwsEdN+MlYuOOhz7yINNRZHH2aaR+wdD3eJuxaYcZrxJ3mdFbUm+RqAhOJJCS/skl4ZoBw5O5Sil8/ud//p1vectb9gGGYbj3S7/0Sw+fzOPJOeP9/zoD9oMf/GB/5513jp/2aZ82/s++dvvttz9uRco5xx8nJunJXDcEdRrReYo1qn3TucB1IXatGXET4hJiwViPMx7fHEKccTjrKNYRbCU7g/iBbjHg/EC37NlNU7ODUvJF33msb9IC69SlJWVCzVRb8QK9CL1YetHgShEwzetybouM9Y0Qo5CNrtJmOzpfgYKUgJBbknkhpUwMag7sbI+zrkkfFIpEMiKpjem008qiKQfSiEBzEvq8lHwjjQlUEVuwpuBNxQpN46fH54sAejPTWlxOjKdz1d35zLg0jc3ZOD6I6NyKkxlJCyQVUflJVZs3VzmRaMjc7VmDuAFsT3Ud4p1qwh4rxJemiS6ZVCIpTE0rZjm1v8KWRMqBftEjVUNJLz9ymb6zjOPIdrdlHEfVj5XM8fEROVnGqfLQhYustxNWeiqV5WqJ77pGZOnwzhFiwfdLrHMMnaUzlpwzxlpCCBwdH7LdbJCmDZzSRHHCLo1MKVw/Z0ZO2L3eenbHW0zw5NDhu1MAXDvecRQz1nV66acCEciGPCYOhiU9hr7vMd5DgjxFyIVdmEgG+uXAtNlipkTKlVQivhNKM2gvubIcVlhxLJfXdYFS2/vDqZtO3I3kEAmlqGYuZ1KaGlxbyWE6IU6VmOnEYovQYXFVmh+tJ7ueWlVv2nVLctak9YaAU5uA3ZqCJ5B2a6iGvTO34k8t8EuH0QkBl65cZKqJW/YWnD3Vc+XSBXaHa/zBAcFmhj2LtQlTAmFzlaNrFzi8eoHd8RFxF5liYh0D692OcbtThCirScKT7dzyute97qa56AHEGJ8QgcXLXvayZ73lLW/Z++mf/ulbROTFIvLi973vfd0b3/jGfRF58S/+4i8ePO95z/vkvu9f9O/+3b/bf8973tN/zud8zp3nzp27Z7lcvvDuu+/+5F/91V89Oc6XvOQln/STP/mT59/61rfuiciLX/KSl3zSx/sawMdCnZcuXbJf+qVf+sxz587d0/f9i+66667n/dt/+29P/XF+j48Hdf7CL/zCqWc+85l3933/ope+9KWf+MM//MPnZpj1sT/7y7/8ywfPec5znrdcLl/4WZ/1WXfNSfHf+I3fePuv/MqvnPv3//7fn57PzRvf+Mb9j33tP+66oY6vIhjjyCmqRZdSItTmqyisZjA6uK9zUrMn4ylGA0KtgC9gCuRkqVHNpFOo+MGyf3DAdFQ5e3CGzXbk3DnHB0SjiMR4jNNOJEkh1YxDYadaRV3vmcXbpQGJLUi0avGb/Tu1OIp6Iqq6XEkuxVKwJKEJ7hXaLdmqO4bdtt5N9VYFd/J8c6JEoc3NmtxwZpb+UXKaJlrraK9Qc9KbXFE5QbWmpTVAtqLhrFJxLUa+kkkCrt0U9EY3p7Vrfh8npBVDqbO1sLI0SzVsJYHRc1jLbGemnWyqnlJd03Vpgc81q21dk0zEqk4h0uaDMUal1RvHwdCzW18jWstwYJgOJyRVNtcmLJ69/Y6pZqYpMvQdq9WK7DpiKqzOnKLrHOMYqKGyd3bJYjmw2WwZ9lZcunwJK4VNFWICSyVtjjHOUfpeTb/Fs1wuyaKSG9MJoarzTzIG64Z23mA3rZXBKI48FRgLw8GKxMDZ02cBSAilVPb8gsOjNTjPcZgYuh7fNG6DNexKZrVcEnc7SoBYIqYWrOmoFtzQIwgmdbiukOIOcgSxxFywfacdoHM431OLWuelGNpupqoO1HqiMZAKNhtiCsp+rEAYKa6QqcScsMk0+N3jirKgJfRU0+E6ZXEaUf2cdVa9QhtSUATGayPjNmBzZLn02BJYrFZIha7r2R5ZVmduZhgMaTwkXXmU3cVrpMUZFrZnr4NuuoSrwnZzzOX1BRXw5w4XBbOL6pjkKqXs6NLILozknHDOnqApT8a67777/Dd+4zc+80/itX7iJ37iwQ996EPDc5/73N1rX/vah0A7sQ984AM9wKtf/eqnv+Y1r/nIJ37iJ0433XRT+tCHPtT9lb/yVw5f85rXPDQMQ/2pn/qpc1/8xV9817ve9a5333XXXeHXf/3X7/2H//AfPv29733v4td+7dfu7fu+Any8rz125Zz53M/93Ls2m439qZ/6qfs+6ZM+afyDP/iDhbX2f6v3fu9739t9xVd8xZ1f+ZVf+ejXfM3XXPwv/+W/LF/96lc/42MfN46j+f7v//7zP/MzP3OfMYZXvOIVz/66r/u6p7/hDW+475/9s3924X3ve99wfHxsf/7VqnEMAABRR0lEQVTnf/4+gFtuueV/m+57Y0G0NN9HY0k0b8raxN+2aR1Eb0QWHcwba1WQbSoiHhHBUUjFY/GQN8oEHAWZAsthQTaRo+PLDHv75NKib4xHxqQ6NAsGj+CRKkqsaRIKyZDxRArZJERHORhJlOY0Y72jpIgxOk+rRou1b50VjTmpZTQ1k+raduD2hNcKBlOUuFKJKt+wzVFeKlJS+3sDKkW7/9paMrHmuoygqTJ0R2HAWUwuuIo6b4hAzTozzbNeT6FLYwG9IkqwQB9qjcZAiSvUqonu0hikRTQeysgs8QCprnW+EakG7yq5BgTBlgX4jDOCzXrzxVmMFXYh4UsklMyZs2dZ9R3H1x5VGDzDwneM1rCtiTwZNus1pvdU6VjtHxB3kZIS1kLnFRVwq31KXDOFyPo4EsaRvl/iF726iIRMrkIIW7yBrvfkWtR3tEI/9HjvSVNiu9vhO4OzRhPdrZCT/s4x7dgcXyOnSu0dJWss0Rg6/P4B3bAE9NpUKUjMujnJBQkJrKOKYTvt1MbPZmyqHI87chVqUlSkHwxTDiz2OuI2YPse3xctAFT6zrPZbdnVwOAttSRc5xCzoMZIbxUI3zRzbSuCzQVxXgN5cyCXqrCnq8Ss/q/WCKZq169XtuKsBZKGzbpBdZzJULxgKyy7jqnohLvkSf1Si1CWC4oxXLn4IHbvDH3niBlsbzi1t6S6NdsrV7jy0MPQn6Mzp+g7287RyJivce3iIxgPYhzGWCRPMCmRJoZIIBC3h2Qy4nSO/1i05E9ylVJ4xSte8SdS9ADOnTuXvfd1sViUjwcVvvrVr/7oF37hF54kRZw/f3736Z/+6SeBuK973es++hu/8RtnXv/615/61m/91ovnz5/Pi8WieO/rY5/v433tsevXfu3XDt71rnet3v72t7/7+c9//gTwKZ/yKf/bERk/9EM/dPOzn/3s8cd//Mc/AnDPPfdM7373uxc//MM/fNtjH5dSkp/8yZ984HnPe94E8NVf/dWPft/3fd/tAKdOnSrDMJRpmuTxgFFvUM7QzKGNWjCduEq2e7Xm5RWM5MYw9M1yrGByUblDFWy12OJw1eCdYQyBrusRLDkVhsUCu/BMJXF1fUzBkhuEhhhyqdQEZBVtI56KA3EgHcYOGNuD8WC0tptGtRdrqZQGARZNvW6+oSkVYlbRPbniq+CKQkYitdmjqS/krIWzYk5mnRYwtSqTkybqn305yyxypOnxgHqdn0IrQAW1Fws5kXJSNw5J2KoMUQNKgbe2QUBzAK8+b8qBWuMJg5TGIG0mZHoNW5aaoHCnFmLaEauesZIIcUMuO41FKhVJkZr1Zqpm5WrOLKViSuFgsaQzhmuXrxBjJSUhTZlxN5Kqdog5QQqFvltysH+gxIpacMZycHBK44dyYX2kEOX5W27h1NlTiO0JSbh85RpX14ccbjf0C8+5m8+wd3of1y+00FRl31px5AydX7C3POBg7xTLbsmyWyFZY6v0tAunz5yl6xZY21EMnL3tPEmEbrlPbAWyNLr/ZtzgO8807lgOg0pUqt4krTV4gfXhEeMYFK7OhRgC43ZNDjsoEdKEs4aSC2G7w5SCxMj+coW1gjWFEkdKzg2ed+SYqfN82gliMpaJrp8RBkOpkRjUZCFPgTCqgbTBkLMycautJJMIdQcmKvGsGxBrdUMRMyUoCmCqkENgihkxHd3qLDH15Kljd7ilTAlvDOdv3sOWHXm95sqFyyS3ItqOoeuIaUuaIr1zHF27wLQ9Znd4xHj1mHB8xHR4henwMuHoCvH4GnFzRBh3jOOkIwIKpTw5Hd+P//iPn/2d3/mdUwD/5J/8k4eelIN4zPrMz/zMzWP/fXh4aF71qlc9/TnPec7z9vf3X7BcLl/4oQ99aHjggQf6/5PX+a//9b8uzp8/H+ai93+6PvCBDwz33HPP9rFfe+lLX7r52McNw1Dmogdw++23xytXrtwYAfOPuW4siLaJlzHSbpgtkaHSpAO27c5UrWtEXVhKSVTJSiTMBus14kaM6gJN32G7gWEYGMPImCN+6Dl1cJYr144Bh7XqAwpWIcSqXUcGUrXUlFsBUkJGKoaKVT0TQHVQO2YTMDFVo1uqenKKdOSqPBBrBFtaxFGpZAPVNJ5lbenz8xytFUUeI3qv0my+MDBbt510fo9ZVeHQ2fatlIK0mze0GKSSFVIqTr8nVY2Ha9HXxCItQd0gVKvC9pqr7uQrSGmdZntNDfPVXY+1VqHhpsXUw7HElgloshKGrLH0ppkaF5hi0FDirHCr6z2UytUrV6kVHHo+BztQss4AjVUZyDROnOsGhZGrUmJjiqwPNTmh6zt2dsu0nQhx4uLVR1kNZ8kxsr9agcmEkCBFbNGbr9tb4TpPypWFOMbNlvVujbU9B/sHUANh2rFY7FNRtidATponub9cEKaEdcJ22lDsglue/iw273w3AClpuniyaBZiLVRTsM7jO08MCXLGOM80TaRmrl6AEhMxbqkZjtMxBPCnPL13bNYJSYqWuJLYTWuk6xTitB0hFGrKuK4jTKnNYhXCNlZnYCkum4F5oKSCywI1segHphDJZHzXq7YVC7ZFPYshxIRbViwVV1ryiFOC07TVWWISw+mD0yTjyQJDvyLUwNHlDU+74zydDYT1IUcXPkJKhro30C87vI+IE7qa6TJsH3mUMrkmYUnUuoOSKWQCBttBNZkS6gmaoQEhT07H9+pXv/rp899/6Id+6KQ7+aqv+qrnTNN036te9aqrf5LH87Gsy7//9//+03/nd37n4J//83/+kec+97nTcrksL3/5y+8MIfwfnbAnOmj3f7Scc3/kdUVmg/0n4LVu6NGihaA2OrnMZaS28FcxLa9NI4CMM0r7bpx52yj2WSqiny+c7XjRi/9/VDnDwx/5CKfOnuam8zcRcsEPPVMM/EH9LwhCqAVKRtPX1YeyzqSPpmCrYsko89NUc2L8rGGgloIaUeecwfSteimZhZI0XLdkKBFbLaZkLTSNuMJM/zdAVvG3NYaCUfeaKu3DXCjVUxuDzmI0tQIUEpW2cch6TnQm11ieWc2pi4FUK6YI0tz3q5HrgvaWwK7XozFOoRlT6/MaMaoVFGU12qb5ox0vFbWAM1Bz1KIpntwquy9eCTeutkJ/HZ611usbUyqxJvJuRyoO2/WNRCqkMWA7oeRArZOyfslcvnaZ1eo0XdeT0pY77riDw8uH1Kzmx0Uqw/6C4mDhl3TWslwtSSWTS8V2AzmOlN2I75dcuXyZbm8BxhFrJUqmSMF7g6gRDW5wZBLOygwwM6yWNAEKvTNsN2uSCOdufxZJPLtmWSZOZ8kTWXVmQwdWcEYhRe88tQRCLKSEMmvL/L40WOdIdWLa7Vi6Jb7zZMlIv0BMVkP03Q6RQgojISSm9Ya9vTPs8lbZqU3Mn2tBTMUbRxgD5EoeEw5PlKAuSIAUwWObO1A8kbIYcZScdbTY62dUpNAByWi4sjd6zOMOTp0+hY+FGLeYzjB0jrgN7O3vk3MglS1XHnmYabNB/AG293Q9pLBWXWvnyTURN1ukLBQuF0vNCZGMRe8RZcpUE8DsAYW+HxAKNTw5QbTjONrH/P0EHcs5y/ve977hiXhN732ZjTX+V+utb33r3hd/8Rdf/vIv//JroB3gQw891P2fHsMLXvCC7SOPPNK9853v7B+Pru+uu+4a3/SmN/0RYsyb3/zm1Y0+T9d1tZTyuOyCbgjqFNEbhOSi0FebVVURirGtOFSoLW0d1YbVVqSU1g3BJMY6kkvEiPDIhUfYP3vAGCauXr3MhYceZHt8jc3xJf78Z76E3iltvqDibqFq6KgzVFOoNWNoRI/6mIzAIiduKcoUSU1/B1hDoSfmNvivCStFZ4oiOjezKsq3qNi71Pb7iOaSYSvGqS1XxlDFNvG6FkCFFptIerH8mHNpTmzPUjEK06Hmw1Zs66hbIS9WE+Qpeg4aacaUOpNRlcAiQs4C1WKtO9EwqkbQUY2nitO0CZpsIreCZkQDTGvRRAM1K8XiybkylUaeKNdNjTHqBmJj851MBaLqA6cyUu3/v70/jbVty/I6sd8cc8611t77NLd5fbx4L140VUEWpIOKTKTMpLCrUDUCCgsJfykQCKySwIIQxpZT8MUSsrOQUkK2kCjLlYnATcpgLEwmVbJlqVIqCjBFBVR2EEFERkbz4jW3P83ee6015xzDH8Y8N0CYzBeRD6eTOCP09OLde+65++xmzTXG+P9/fxhTZABPeCASSMQ4sjbIw4ZhnEg58eTpI7DGNI5M2y0qgbibqCkwnZxxPV9weXhM1ZWrw8Kixumdc+69+BJLU6bNCWWBi4uF4wprGNidvUApgcfPDlwfG5a2FA2sLfDs4J/nq73y4GLhugB5y/bkHifnL3J2fpe1Gof+dUUrDSVvxw5sgJyMebmklpl1XVxmrk7JGcati4hUCGmEmPx90kfeUioUZTudIrIhhpEkiSElhpiY8kCSwLIcQJRqBaSRR5ABSOqsWRVSAKtGK4I2CLE54afCJo4kgzZfQ9uDebxQzg67vrFbSFCnBglgFV0Xyn7mZDojkDleHTnuLyH6mNRy4+zeOSkKj95/j/3FnhC3TNMZQxqoc6WtHuJcAdmMHe6gWCueDBIaGoymldZ5sFEii3q4dIjJ4TP8mjQg/MRP/MSXf/RHf/RrP/qjP/q1P/7H//i7N7/++37f73v4J/7En3j4L+PvfOONN9Z/8A/+wckXv/jF4d13302/3CH4sY99bPmbf/Nv3v07f+fvbP7u3/27m9/ze37Px83sV30w/M7f+Tuvv+/7vu/q9/7e3/uJv/7X//rZF77wheGv/tW/evbX/tpfO/tOvt/nPve5h7/0S780/dE/+kc/8rM/+7Pjj/3Yj939K3/lr7wAfFv72zfffHP5whe+sPmZn/mZ8d13303LsnzHP+u31fF9sirBCkE6/FkTIuoJ2e2IYSQTko3I0KDWPmpsGLXT9wMyQ4gLppF/482X+EyDt//zn+KTacvZ3S0fOTnh6dMDX/ylf0x5/31+0zqjWilagIjqwUUfKtTgj8FHjp7Fp211VmcLfKqDoT9ejGZuWxHxTuWV1z7CulaePXzESiBrQy25jkWdktKkZ801ex4MGqx1c3wBZjf1WyTHbmcgEEoAKTRThuORYJG3ug9Xm49PAxCT9HuCm/FOw8T9eaF3tEGNFm/ILp36YrjCT4qzHC269kW8M6lakZCx5vEz+jwYEMdxtdAZnoEoCasNxamfSiWFwCZkmjQf77YEUrFYSDVAisSUeipEIKyBvBkJ0T1kMmSGJMSceHp1TV2VgR0WK3IycHJ+F7GJ/eVTsMZaE0MOTCdbPvmxT3G1v+RQjhyuZzabLWV5hSwREF546WUOZeb9b7zdweCBN9/6GK+99gYhDqRx4OnhGZcXz7BinJ+fs9aVPI7MxwOH44HvffV1+LEf57f/O/823/zIa0geWI5HD23NE+9fXvHg8uC8TSDMkWxbqiqaE22u7PJIWasTVfBRciueTG49C9K0cX6y47BeoxoZ0h3ncu4PzFrJuy1DTh5ga0bQBlIRMU6mkblWUkysa2A5Lv0m0BPaa6k+srcDqY9LRQ01JyJpWAl9cywSILnAiwCSogMbogOxJUy0sAKFbY3Ml3tIysnJCUri2q4ZZMMiSpLA+ckdmlzw8P2vsn92xZhPaCk5vFyTM3g5YhIpzVgAHQOs4fnESPodXFDxm2YxCpWUR2QaWHGYuvzanHv87t/9u6+AK4C///f//nQjxvgdv+N3XHz0ox/9l+JT+1N/6k+99wf+wB946zOf+cy/Mc+zfOELX/i5f9HX/vk//+e/8Qf/4B/82G//7b/903fu3Kmf+9zn3ru+vv5Q+G4/+ZM/+Yt/7I/9sY/+4T/8h986Ho/xjTfemP/Mn/kz39Ge89Of/vT6l/7SX/rFP/2n//RH/+Jf/Isvf+Yzn7n+k3/yT777wz/8w29sNpsPvMD93Oc+9+hv/a2/dfqDP/iD33M4HOSnfuqn/snv+l2/6+o7eUzhg85Q9yHYt92b3tY/V3vg+7YnfCP6LtRHnt6ZRnHA9A2wWG/EKwrmBj/Q2seFPSk9hN45A+Y5gC247ChY9gzBUFBpmCUigRjMiS4hOHNxyND8TlwloEFIY2Aw8XFYp3arrYglBhOYRmoMDCoc15XtNDGMA0rg+vrA6WbDbtoQJPDo2RMqxmAjuzs7/qf/6z/J+4+e8MbLr/P02TuMeeDJowP3773E+at3GGXg4aMHVCrXz/Z87I23eP+9b/Lk0fvMy8xrH/0om90JTx894dGDB+x2J3z842+hqixL5ezOOXmTuLzcey6i+MV+2EzsTnws+qlHj/mh/+h/zN/7q3+Jr7/yEmszDtfXbDdbDjXy7rPCu89W7nzhy/wn/5s/xZ/+Y/8JX379LYoqdSnUuTAN2VMjDMq6spsmdC0egoxx2M+MMtIWB0e7xzERrBLmFR0TcbtBwuhj41ShHqAunbUaOc6H7kP00aQqrHV2aLglYMXqnvp0z2U5EsrCsl4TUdSK73qLkpIRs085WhgZpg2pk25sjEjMZFPmciSWRJtXwmliHDdIyhwe7WnAMa6cn55ysjWO+/d5/+1vEMpIki0hRciOMpuGqUMPDM07Xnhl4p/89N9AFqE2Q0ImxuSKYlVUAxYrJgXsjN3ZHVpQ6vyM791f8V8+ewYfsJv5/Oc//+mU0v/jU5/61PV2u51/5T/xK5eq8hM/8RN31nUN/zLJLd8t9cM//MOv/OW//Jdfeu+99372w/y+h8Nh+tKXvnRSa/0PPvvZz37hX/R1H7jj+60nJ9zrtHnUaCGg4plogtGaL8YDvn8gB6iZoNml/rIiOSIyksRQjRQb+I3fc8Zv/KF/l28+fMzJySmvvPQiJ9uJEAbee/cRcRz4z/+z/yvX80OWcugfdhfHaPBAzGje3ZkF39vF5qNRhU+VlR/bP+E/PnuJrwyJVhuGY9V25/BDv/vf42z7Eg/ee5vP//T/m2dPn6E6e9hni+4dtNq95u2fmg071gn4VmCsVk7OzrEhU60yhIS2lfl4pBbvfh8F4e2bENn+3W5ikkL4VmKCJ9wHWvOvs9AIosQY+14VAqMHzAZFohMdPUleCZL8e5kLYVLvRm+I/Rb0OZrsueMdJXaRTOg7QrNKaH10HGJnrirJ3D/WrEEaGE/PXC2qjWkzkqJQa+H6sKeqIjFhBnkaubrec77b0Oqexw8esd1t+2NeOR6uePTsyDBkdrsNuzzxS1/9iu/lJDEXePzskml/zac++Ule/8graGvEJORpS7u85uzOKY8evs+6rKxLZbfdstluaerCGm2N4+wis0ePHpA++ipxSpyeTjx9esXlfqGWDfvra067OCrm5Kkah4JVZTNNGJ2IUt3feLjeMwSQJCzFf23a7lgFdFasdQXmILCvDJKotVIkIsMEWUlxQ5BE0EgrlTGOrOuB4+UlY94hIbLdbCnF0KaMQ2A1aLoguC8zRIjBOvEmeChuFISEyICQ/DDMkWjGSoUg5KpcHVdKDWzHHWkUSqtAhSETbeTF80SOleXya1w+fBeZlXHaoTF3yNmM6EJdCm5cHLHRsBgYx1Pacu03aCkikihlhUC/4UoQhCQBqpGiR2rl/z9gVIsIv//3//5nv9aP49dr/dk/+2df/IEf+IH9iy++WH/6p3/65C/8hb/wyh/6Q3/owa/V4/nAB9+DLHzDl2M+elGjiDCIEmldQOD7sZgFHQxKJi1dUDFFLAZC2PjBiFFtS0gj3/ObP8O9mLjeX/Hzj57w0v0X0BgYX3mZvDvn5/6PP8XTZpQwkFp2BWJrtC44yeoZduooZj/4oisOu8KAL0rk56I4moyBGAIvnIy8upuoMbH5732S0Tb8d3/jbxDiSApQJVAD0DqAmm7yxk+q2veWbuZXpiCcxgybE446Y81IacvVUlisErPbIG7CZUOIdCbN832cewt5TsP51ql4k67g+Yf0w6+pYV1R6krNm9zBgCTpeW2e04Y17CZ9/QaRJv76tA7FFsM9DnT/FQUoCIEoGYm+u2xrIcUEEsmbkavjTNBGDEZOQqFyfT2731CC3yKEypufeJPP/Obv58n7b9OKUnXiwaNrNjvh8dVjPnr/LU5PM5dXV4RBONnsmFfvjEkTr775MjFFNrny3/3czxEJlOPC933/b0FDIk8b3n/8mM321MftYc/p3btcXF5x9/Qea2nszu5g7/uK5vTsLu9UdV8njXG7o11es8xu6k7JsVDWlLYUogwc64EYtUPX3dx+enLK/skTDO/cCZXNdgOYq5Vb7T7DRkrBo3zWFUluS6mmjuNL2eN++oFqnb6TouMialWGAST5eD+JcV0X1uWIhYbV+pzbqtqwEJGUMDzPUawhKdFEKGaIdg+lBGz17MwYIyEmyvWRSiNmtxBtNxNnA6zHC64ePeF4XcnxjJi2bDaZaoXFGqrlW5mPMnoivU1Mu1d5cvkl6Dl7wfwG1W+rFAsZa6CiaHF/4w0H+LZ+fdeXvvSl6c/9uT/36sXFRXr11VfXP/JH/sj7P/IjP/Lur/wn/+XUB9/xtUYcEs0tYJ63ZsnvMs09TFo9KFUZXcZNcaNzaFRzNaYQiCSQA0kibU68eO8ej+cFLTNnr72GxIQmI64LQzCSOdOxrLV3Il1cEhIibplwgYZBUFrQjlCjyy/99xwibL1DS2iLvP7Jt3j0jZnrB+/xG37Tb+C//Js/har4HWtqNCukG22oWVc0+sHRbkQmYo5YMeE4zwybrQs/grGuFW2ugFS7AUsb/if7wUb/NXO1oXZVaghCDE7mxzqKLThDsZbGjYciSOyevA6ddrIzURxp7Rl6PfOv2rdCZztA3PrNgfULJuagbw0BE/++TpQJtB6sO+VMNuGwLNhm6+nyPZooWGNZKq1VMhkxQyNYMGTK/Owv/AJ6vGQYRl796Ju8+957FDtydTQurvZsZMe42XF295QYhLfe/NcZBmFtB15+/WViShyu9rzw0is8eu8B+ycXaGmspXBxecHZ+Tm77Yb9Yc+d8xMunz7h5GTHfH3FOI6cbndM2cVvpvjPkjPH/SXzsrIcZ1SzRxtl/4hoVaIK+3XteYqNZZmRcfAdMEYeBqyu7I8z87oSZaBRPH1DBIYIxVjmA4MIkjzPspXFY4eaMg1DH6ooMUcOa6PVlThESlFUE+tSaCxMeSLHTK2NmCLrsvZ0iIjW4jdG5p9EwYEJDnwW8jBRrJKtYWWlVljmQtpkTjcnlFVZro+MU+bi0SUnd+8zpEooV1w9eYfrfSVu75M2d5CYO3zeGGViXfz9I+KQC2mG6MjZ3Td59OhttMyuJMV3mZh6WkoesZbReqCUhZz8fa2/huSW2/pw6sd//Me/AXwo4O0Poz64qjNkj7LBxRVohVy5QSsX9WV+6OnoQ00MlmihdCHEQIvNdyTmSsMYjf31wi9+9RcZU+Bst0MGIW0zClxcXlKvn2GiaBCGELt3LaDinZIrSwJiGQmVIAtm1ceIYXh+8FVd0boSRLHoUTjLUlgvD7zysVcIaWC3i+Q0EDt3M7b+4Q0eNSTiO7SUJ2/EQvO09iRUjGOIXJtSbEE5dieH+lgR6/Ds4EQbcXOuC2bcOG7g56HrMF1kY4ZQyTSXugel1doF+B4wGkOg1sZa1V/SbuMwvelGwTT54QhAJER5ntf3/LKiwSEAN6QarUQTaOJJ8mGklAi1sbSFMiWGsy0hZ8IUyClS55WqlbWsSM6YBM/ps0DMI//Wv/0/4N1vvM1mu+Hqek/IMN05YXP6IrWNnJ/dZ9xN3H/hHvfu3iVPwnQSsFSQDOvximfvf5NsK9dPnnL97JrDvLCfF/I4cXZ+h3un56Tgo7TjPJNy4uzklLKubKaRlOT5T92sQnS/Z2kzl/tGNWEpx+6b68i7G7uMNc53pzQTQhrYWORuytT9tXfbMTHPC0lcNam497SZMgz+a40Ome6q5oQwAcNakVoxDcRh6KIUQ6IDC4IIaRC0Ca1OVDWO9ZpQKuRE6jSfGALtxpepPqpsBFBYQkGzJz0Mwd+3Mkbq5cp8EO6c3mMYIiuKbRJrrQyy4/xkg7Qjzx5/gyfvPyPFc8bxRcbtGTYKrSswVStiESPRIqz4qLzMjd1LL3N672MQG9GaB9yGiqSMPGf5RsZ8SkNZ5sUtGPpry+q8rX/16gN3fNVGQmmk6H+qBO+4Su+2UoxIjC71jqDmd/zepfhuUFvyIMtanKU5CruzLR/92Js8u96zyRNtWRCMbJmlCI3A9eFA1YDpwA3iKUvyrq5L+ZFGa36XrQjaXM9mwS9cowmD+ohljSuWIkEHnjy54Etff8JwkvjGs6esoSGyErIh6pgv1UAO6fkIsZlfmJq1fmiZH1wCxIqGmWRCHKqT793PjlIxleffx1WcblgX6SBrc9GKhtpTF7yrc2+ei1b+6a26mhJah0/n+PzromSqGhZBrPI89BZXQd742GK/oGpTQuePGopYJYeMhuiRRZin0wchdVFCWVZiEKQcqbKSYiIH4XC1p7d+nv6tjWma2Jyf8cYbr1NCY7M75ez8nErghZfvcn5+x83KWhELzjVtDSGw2Q7UKkybM64vL3n88BkP6mPee/cBy7zywv37qDkh5fzszBW9Eji5e8rdF86JQCuVe3fPyDH6jUPvtKdxw2VTllJZW+Byv3K9VvYlUFe9Qb0ScqTkwBAnWlGk0eOwhBQjOSttbeQojMNA6tl5OURKVUTcFhLSgGlDxgRakRhopVLWI2mKzPOeadwAK6ozao1ajLIqVRvnJwP740yU0QNnVahrQdfV8wi1oq0h1dmerrJ2W80ahJgyIhNmkVVgzJFUG8cUSWngYr1mmpTtJjIXJxqcv3SXaHuW+Zs8fnBEw4bt5gQNSqsHchIokErlGBYqQmAiMcIYUS3YspJ2W+698irr/E306TXBoIi/fyXF5wg/iZEcR9b5wFobv3qB/m3d1j9bH/jga6E6kisILTh/s9aVHJOnjROcjm+lJxMYN3l4LusWJE1OGQmFHAe/gIaGAfv9kSVUdtMprTaWslAI/MIXv0RpCjH3IeDqBJPmEK6m0ELBoqsRaT4C9Pgiuvwf97GFgdB3cjEI+8sDP/RbfpDHh8qT41NefPEVXnvjdR587UvdxC6+4zEj4KbfGAOt+Z166GKP5+nq0mHVNRLYYulAjpkcN7S29jGpd8jfUtPemM9bPwj7QXfjSTRncIab0WgXo1hPaAjPR6d+jY4SEKKvNiXQtHULhhNaQpAb1nEfifYuMMjzcaQFH3kG9cG0Et0vGV32bm32TWdM/rO0goRCMfPnXrx7bard8+9d6naauLq65NXXXiWngGllO45Mm4lWVnIaCNZoVXn65Bn37t9HglBbxVDefvubBAucnd7jn3zhi8yHmRDg9OyE0irJlMvLS4aY2JydsBwOpCgkgyFlnj55zDhObLdbdh7rztXVJfura5CIycTl8chclaKRGIfnO+JaGzS/qWtUNMN2t8OWwrpWagORxLI4icl6ioatlVoDm7MtZZlppoy7HXq1J+bBR5pRaGUmhMR0Et2HZxBobvK2RCkLko1lvUa1kpJ/7pIkamnUtRAxtLbOlu25i0RQVwsj1V/PptS20G4M+NcLJW0Im8xxv0caxCasRZlOtuSgDOued957mxLeJN07YdyMVGu0eqQVIdbsCtKcCINQS0RrIFolxIG2zqxDYjq7x3j6AvPeSTEt4hYihKVVJCT35ObEWpw81GG03065QehD8LTd1q+v6q/5jbv5X1gfeIYgCTQbJUMJnm239VtpEEMFNzgH6Wiu4PzA1hAxYkqYRu9Q+n/XVtlsBqZpYhwmomTGYWKY/EB85Y0X2Z2f0YgdWguSsistg/8zxEhM6gcxo4eEiu81fOfnh4KJuarRXAYuJkirXB8uyJPwkVdf4ZUXX+TVj3zEPb7kDlKpz7mUAE0dXSWtIdqZH8EpUBlhssggye0HFlFtnJ+fMG0mchrIeSB2zqZ3ffRMu9QPvYJa8Y7VcLOzdSJLH3/e7OVU1Y9D64rQ7tnCfKzVrfk4fzN5N2k8P3QDYGqdhdiZlPTXz9Ef/pwF6XgxP/zyNDCMfiNSaD6KprJQOGrvLk0orT3fYYokdien/Guf/tc5Pz+lLDOmxt07d5nSyLKfWY8rT55c8PTiGcM0eLJAzEzTREqZs9Nzzs7uMI4Td+/d48UX7jMOma+//U1WVWQYEBGiRMriRJNogRSEWgqtNYYhkZPfxICzRsdpYnt6wvWhcXFZXKFswfd7PVSxHleCGa2uGCshFGo9EMXFRhaFOHlsFiI0U9ayOntUXFgyjCMpJdZ18RxKCQzJd6ZRAlqL20a0OkRbA636zVbOkSCR/dXe1b5aUXOKDVEISTz/shm5mXtcNVKIrMHQ6H+HqfnzgjFIoMwrlhInJydYW0nN0MPKfNwTopBGIaY9Tx6+TW07ti/cZTzJxFzACkkyoQXqslKCK42tgrGQspFUadIgQ9WGxZF8/hJ2cheV0YVmMmAhsGhzRm1VlqUQ8G76hr70bdR7Zlb2+/32V/7S2/pXqfb7/dbMCvDLCmc+cMenNVKkEaKSEtha/QMUAvpPdyuIh7mqiz1iClRraFmxmJDYukctduCyd2Anmw0pjT4ejcYL989YkzHm0XmC0dyLVhVrHgLWAKwQrNJColkihpWgFVVxOX8fVYkWp5zJgCG0qKg1hu3IFZV1Wbhb7zgCqiZXlolHAfkAphGzd1DcjOKCX7Sa+QGR1BhSIKZKkwqrp10fjo/7yNItBO7ds5575rQbb0x95xGCuIin49d8hur+vt7n9bR2v8FQ+xYA28Rz+hKCFodcB0lg4qZm1ZsTz5MbAn5AdwA5IfpjtZ76Lj2oVA2oWFyYy9EpOa5eIOABwTcGf2uOR/OO08fARaHl3LmRkSEndrst8+FAa76nzDmy2e48DXy7YT/P0CKmSl0rdS1sNhtaqVxeXnDn/JSrwzXzXNicnjBuJ5LxrZRyM3QpaEo8ffqUlEbWtbCuF+z67i7lRGkuILm4Wohp4mr/BFGhxeKHN1DKzNV6ICeweSUGYy3GvPhzNpxuASOkhK7VV61VsWoMZ5llnYlDRpKSAv66BDehmyVUjc2Unx/Iy/URK5WgUFmICSfBDBMhZrTBOLrp/mYWQB+fa6mE5Dcz1ndp1l9nV/k6rCDEyH4tpDFzJsJgxhFjqQckC6ebU5IeeXD1Dvv5gvH8DaatEtUnEaLau9HV9+qyUOeFIYv//bUSlglLytoKYx6JKZK3Z4TdJXZYiGHwa4H4xUiLUVrrU4T2HKD+7dRnP/vZy89//vP/h/fee++PAvd3u90hhPBtfpfb+vVUZhb2+/32vffeG1prP/7Zz372lzW2f/CDTxpjGpBWEQ3MLdGiIQZJW4+3ySTzu0llYNXGsPELZwgZkeJ+NBuxcYKqXB+veHb5AFt9zNas+cFVEw+fPOPrX/k6Ibpa7MAVodWe0gCWtZu08b2fOeUhI31HhoszAB/BBQYRakuEAlkEijBMAcKW+Tjz0U9+nJ//23+fNMCMsdEMWnxcS3AptvUD1JKrRKXnsVsjS/bDI3jCgUjsHrae8NBvEsCVpc7t9N7JUN9XGtC9VSbdhM5N9mCgaffgxeAHXQskYAjKag0NI0X9BiTh6d8Bc5EKgSBdmxoNKERGIGGtAYGC37SEFlFziHC86QjX4qrQZETzTu5Iw+oN+1O9220uww8CQQZqygxnO66Ol9S6cn5+TtTI8ThzenrCcV0wC6SUWGrpknz6vlJ4+uyCIY0cr665ur5EkiCbDS+99Safee01WlNSEE+xyJG5rNRaIbi5vKkxbnfPGakS/a0fo6Cm1GPhyZOFQgI2aFSqLiyli1uCkaJy3C8kc08ftZDUSTHaFiASQ2acInM9YlFJ24jqwpSE+XCJ5IAERTZCzJm6rKylMuTRn7egzNczuUXqcQUrLrQCTyUPiSwbxpCIqgwSiEVRdTapRkOHRhEI4vtya4nQJjQ2YgRh8fzJdUskoSHx7PIZZ8PItDvl6uBQgE0eOM6Pefj4khjvMt7fYPPCYYEhJULZQ/EUhZIqthaCNqxuMB1oVknByIeKhIZuGlL2TDkxbhKaPc+yhkgOmUzAUqPZ6ti3CEkG5DtLXfuRUgrvvPPOHwghOJD1tv5VLjOz0lr7ceBHfqUv/sAHX7JKrE7+WKlock+b75n8Tt9R/YG1LmADVSA1j9NpbSUSkZBJaaCViq6NISTKcuD07GXKrIwx8XS/58HjBzx78oTv/f5/k//i//aT6PFIqN2crZWoSjZnZK5B+7zQQKMv3dVQ/daP57LoSmtCShvq6oIBCUKZZ85Od5g1PvkbPsEqrlode1q1BSGQoYmPmUKh4d1uDB6NpKZEogsNDn4g2ez4qtb8wlRrAdT5jSH20a/n5om4T0u1PR+vmfrNQBQHDd90dm4m76+2+qit1YZEiE2fj0SDOJYKpVswfFzqwbmOYquhEpIRV4PaUysEB1MHj53yA81/xmChJwQEYszUorTgNpZIT3YPoNL/bb7ryzliS2W+OhCzcFwOfiMVYL8/QBIC/rjGaev7qz4OX0sjiFBbY7vbkIbEo4dPmA8HXnj5JS6ePOXFF190Jae2noHYX3Vz+8pLL7+EBiilcnV5Re1xQ601BOP6AMUmSoIaV7Zp5OpQKD2+aDOekSRT1wPb3QnWnE9aykJLgi6NsC6kkKEVJgvMRWEcqa26+EMT87Mjw2ZAZWWp1Q+16LmGQSClTtQplVIKRqUZbIYth7mQ8gZpiZQDtcy0OlN0ptravZwenRWooD6Cb7YSEVJNlGRgFZozRTdnL6DbDfuLPW1JLPPKtBnZ7CZsXnn8zgOGcWJ7/gJzU6iFOlc0JoLNaJspNRJSZmhQY2VtM1H9JmBZCk0Dm6ES10bTQgiNzTRxTA5uTyGQ4tDFTM56JQh6owD/DtwMn/3sZxX4X33+85//3wKv8m1yiW/r110p8O6v1Ond1Ac++MwCFgfnNkYXG2QdERoxNJI0iq0QBh+34OIJx2cplnCkkQyIJAxIBDbjhnt37/MLX/gKqQlRKxeXFzQGLq+u+Jmf+xnO7p1z/c5Mlswq2dOitXo0EfQLXfZ8Oo0u0oguSLGbBHaqj6GCAh5Cm3Pi+vqa6e6OISZqVe7fuUsW714i4tDh5BenVv2KLsmIVKfWhEAKkdUM1C+s2OJdXA3Uon5YB/Ck+ugKzBg9gb2BEZ9HOIWgz29NRZwcg/r3APruLfwzt6+Ch/VKhCS5H6gRxA8y1Upr/nqkGCEYrVZaix1cPTEnZ6vmfoBlBYk35BffI0pwQZGFCBKp6heoACSJROs3GHpzeLoFRFL07Lra2IwjS3Xwc0qJPGWq+g62aEVIHiBbSk9/CNS1cO+F+9SlknLidDzl+7//+/iv/s5/zf0X7nOy2xFDcK+aODEmhEDKkf1+jzXl6vpAHBJaK8fj0V8nf2ez2Z7yjXefsdSAZqfMYCNgPcnCA2vXw8qYJtbZO6lalBSzX6CbMLSI6QymDBJZCUhKxAbrfk+OA5sw0Y5G2Pmkoqylq6L9tdVWSdFH8YjfsIiGnoMYGUZD5EgUoa0rYpFxTDAHavP9rwti1dWsrSFJ0FZ8fNtCH7n36YKC6cpuJ9jhioZy5+wU0cL1xVPW1Tg7v8MmjMTWkOXQAQX+fgzBzfbWpwvQ/Ma4BnLcoDIAxrIsHlydEoRGTgNls6WWxT2HyfUBoX8uUzQXyinPFcjfSfUL4XfEc7ytf3XrAx980yisAdZqxNYYrPmdfvemraqeEh48niiYEM1FES00JBkSfQwWJHhng/D44VP+8T/+MmPYsqxHvv7O13j4+CHjdM6+VF7+yBlnmw0XzSkWUn0cSvRxnzU/jMxAgvr+zgIhus/vOVZMEmuLpGHj3VabQQr7wyX3P/YydVW0KqXiYpIYqfQYJhrNzCXt1jqd3z1d2gIxiQt5unnY6OkV4SbARxynZvJ8v6fqd95GN9/juyz3Qt50WKBBSb3z6u46r+CKzniDIQNMFR9W+mNWcx+aBHMxjcTnulINASG7jUKij0JjdA+W9SgmfEV6Y+tDjYYLVqr5xVNCDy0N9MPZd5Puv/KDo2ohCFxdPmMcMyH7mBqhE0sS02bkuOy9AxL8uYrRR3F9BHvv3j2Oy9Ff92C89MpLHOcDp2cntFqJeaS2wv54IKVETIHdyYZ1rqy1sRwXkhgvvfQS9t4jfxolcLUvPH56IIQRLQtDiKhWjsdrSvWA61pmhMA4jSzH2bv3IWBWYFWsRRZbyRRiSGhKpGHAVIkaCBpIMbKUlSCCLcYwjozbibkcXN1sCWu+857rzGE9kIdMTpH5eIAotJ4coloIQSnHBWtGjiPLYUaDUMUnFW56jWiA1RqDNsQCIokWIG1OfBS8v2TKkdoW4m4HQVmvL3j/m99kOH2ZGDfEGc/Vs8i1rSA+tVCy3xXpTLWKrpUUEmaVqkdSitSyMgyZ+XhANls0BoxITQlDUC1UrSAjnispRC3etYoQv21R523d1i9fH7zjq8W9bRixrESprBmMCYmZJhkh9gu83+1DxkKlxUYaIiMZ64q3/l05LN6Zff2rX+fsdMfJC+ccc+OFOy/z7MmB2gpl77aAYtXvKkVZdaEhhDCBJVJIpOAJ6iGK01+0Pe/4REbMIjBRW8O5HcoL9+9TWmFZBCmVkzvnDLJlZqaGRki+0xSMSnVDtkqfNSrWqlM5UheCVMNqj2IS6daDgITBd3UyI3EghNQfT+vihNBVp/3EuQmXVSB5N4ne+O/MbzD8dtgPWfGxogXHp9GzFsz0+aGLBVStqzYjISQ3EEtlaN8S2LhpxIjWPHg23GQNCpr7TqytnhCgRpaNi1rwhAwzIZC4sXlIDC6KmhKlFa6uL7lzdrdL/gMpJJbjwrwc2J5s3Q4RhcPxCCKspTDtth03B9vthlorn/rkp1BgyLnjsWBdK3kaCQFaW13lmYQpZjQIIVT2+2tOu0Q+xsRxNUqDccys8x4hs7QDOX1LUWgVUOM4L4zjCNpYy0xKypiCj+kG3PZSjLquPt1Qfz8EjLUufbeq5BhoZSUFYRighdDVyh51JGJsT7YsqwMBWlCGcaJqpFYf/6UYqesBbZF1OSLRY7OC+G5bSyOkRNGCN5SGLD6mt+1EHgfKXGilcjwW1AJnr+wo5cD1wydspx1hu4XsNx/SjIqQppGijUh24ZOtmChrbYQq5OjisyABrQspO35tGDKtrSCZFEckO6jCaKx17tmIEdYGFd8XB7q95rZu68Orb8PHl6jm+6GchdrHEtb3PSGClB6sKr4HLDNErdikPmLRgOwGUN+hrRQuDo02H7n74l2unz2ljYFxc8bT95/y0suvcP8TH+Vn/1//NQClFLIKiCPJnLzl3aXUioauKlSlaegKfR/tm0KIRtPi/6E9WshT6chxJEe4c+9FX4xYRIt3QShoa1hK3pk1V0RKD961Ct5rJkKouIAs9WR354a6iT/0QFj6Y/c7X4e1+IHnKkvHlEkwMsbac/dCj3NBbr6Hgamr4QhdEBIIaHcRuKfP54+e3O2TUhe7NPWRtdW+ixMHKccwIEEJUaD2zEAxskVKc/xVCt1nKIKRCJS+CxTAx7h+qCcIMIyJqo15WRETWvGw3u0wsR698zYptDKyrtU5pv2MH8cNpVQOHCjzkYiy3x+5PM4c68o0Dty7e06yRBShrCtgzMtCLYX7915kLdWTLJoxbkZMb5zpA4+fXBDzhqoOG1jaymFZuH5WEPUDUtVHvDfipEhECpTDTFNPGwhElmBMw0Q7zrRaSAHKvCcO4grLtiApMy+rj4wtIFMgjhskCMf9jKmb8bU1ckosy+Lvr2Z9yhIpLdBiZK7K0nwpKxRSM39Pmu+miZlIJAZXxWZxYU4eMqEtbpUgczwe2J1tmYLy+OFj5stCHs8Zxg0WjGM9IipozETxMSpWPVPPKlr7XtkCRR1VmMgQGlqKd5Mhs2jHDkYXm4UopGJYq6CNGhN5Gmgtw+Kczltk2W192PXBF76xga1Yqqy5uZcv5k4EcWl96B6xRYwSQbIwxMgmZlJXjzUNtFYhQcs+/vy5/+a/4Wtf/TLDdiAMmSgDzx5d8cUvf4l5f+Tq6oqKuiItKkhAYiQGcf9TKKgcIfoHGXzPdAOEBh9pDcPgFoJBaElpwXj67BkByDlRWkVpvPSJVyAWJEYkTISw4QZ/JihJlJz8jtsjgsTHrdqIN/Ev0jsqpI82K9pjiEL3yIWeuEDUrupsfaHmXrogtV9k/ALZZSs+9jQ/tEOQPnbyceM/u/3ro9GbEafPVP0ArX4hjbinMiTx7D1pPbvPH6hEIfW8uBaa/3LPCxSEJPH543LqjHRbRPFRrznXta4Nm1eSRIZhoKlS1sq8rBzXmaqNy6sr9ocjx+PMsixukWn+WNZ15TDPaAg8fPqMxxcXvPvgfV544T6b3YacXTl7429c15VaXE1canW7hlW/mUgD0nP2jotxeV2QNLA2z7kjeOe4rKWbwAHJHJaVsh4QKgUgJgLinrvgnbGqsr++phqQI0181G9BqXVGQqWWAxpa38G6WnPMkTEn3xfPfmBDh41LZJg2IKGPlx2eYCKU6ErOkBIh+GdHLGCrZ2BWM8wyOWSgsdTVjedamOcrWj1Sm8EwsdlNhOM17cmRKZ0zbe8gMtCas3aPtdEkEWT0/bdBC4JIZgyRbInUO+lGQ3GkYQiBQTxEurRAbeYA7j7aF1WSFkwrMU9oEuqU0ShE9YP8tm7rw6wPfPBFYDRFdKVp9Rie0DPkumE9qI84Q4+48fAEI1RFKp304WqJeVn9Aq+BtjZMnAh/dXHN1eWe3e6Mtz7xaU43d7i6XB31pX3ih4BFF1yYOh2r+wWbNpL4IUDwXR1ACh5lhBlrrWj0rurR48dOo9FGpfHoySN+w2/+TWDdm9i0w5q7mEMVtKK1eMTR85PI/+XaRGN11YA/ydLpNfgFWNX9VdoTEcxa54uqX0xQCM05kerdRsP/HjXHgLmoIHr8kEjfFfZBaBekePC9x9d49+cqR2vmXbI1TD0stzUfOgUxLDSKNhf21Ia2Rm3FrSZUMDfZe3J2657C2O3ydBO9EMJATjty2pLTyLCZPILIny5HcxlOXRkHzs/vkceRPGQk0i/yPrJrtVDKiiJ85Wtv87W3v8nLL7/Cuiy01QUSYupA7NKwomzHqY86I2uZidF/xuM8+04JuLhcKZZoIdCscVxmjscCxfeu67r6z6SVYUhsp4laqnv/AhSMIpHVArNWTCuBBsH6iG+mNTfPW+ss1eBqRlP3gJpBKQvleEBrQ6uRYnLDeQMJ6Xl2XpYER0WqQG3kpITkE4hWzUePrUHILjwzI7aErf01kci43SIhcNzvqYuxzEqcNgiBw8PHhCoQT4njhvU4E5p6cG0SLLo9ZxwnkmSX7ypObTEhhOT2ndAH7qaeF1kPBF3812qlrauvT4I/j9UqWldSgc2qnugSHcp+a0S4rQ+7PvDBV0w6cT2CJGLIiK5E3D+VY3KlZBBGE7Li9gYgEhmTR9qgBQtuKWANRDIPnjyjSOLhgye0uXDn7IyPfuJNmhi6Vso8kzAGhBgHQhgJIZNjIgku9W8JCyMmQhRzkzBg3RoQcBVpNB+NGpFVhdc/+jGWZaa2FUS5urjk+/6t30YMo3sUQ/NuN7pnLSAOqk6JGGJHclVg9Ttt865WRT0ZHse2BXHQcJTsz2Fnqnxr7um7t9bHaRLWjh6LVLPnYhNC8I7rRkhkfbfXf8rw/Pt2Hqj0cZr585R6z6hBkCjEGIgx+eiu+fCVoJ5kge8PpfsA3WScOxB8ABmo2rFS3Py1BZN6A2zpisfixJfdBlLyPaQItayYNVJ2lWgIidJ9c2ZGLYVpGP2QqJUcheP+yKc//T289urrBAs8fPc9Lp8+4cmjhxz2e772S1/l0YNHSBDOTk8YshATDGNkWY6utlUjRn/rP3pyTVHfDS91YS2N1gK69Lusvl/KYpxtJk5256wFtHgqibp9E2tGmVdyBqiYVebjHi1Hcm7U9QqsIBHmspBDJnSs2DBtCCHRakGr8i00gUOIgga03tx0BQIOjG9lpbUDKSkidIiE+U1KyOQgTC2Q1TtnBwvk5/g/kUgtyunpxDiBznv2l8+wYSJszyBHcmhYKQQzxmkgD0JKDsGWkBjIJLz7bEEoJijJ/zHpj6lh9RrVAyFUhIZoIbRKCo5dkxBIBllhEwOjKkMwJIcbtNFt3daHVt/Gji9SupIrNEVNyWqQDZWAVSUj7klqgYHg6jJJNGvkoERWrAqrKiFHdFXimNlOZ/yWH/wB3vknX+Hu9oxFG2f3T8i1er5Xqw72BVRcPEHrXjjMLwIIIYOoQluR5Ebhb5mAjCbelU4hYzIwDQFJnmlXlgMqFcF45aOv8vInP8nDL/wiB6nEVmmId1Y97qhWh2Vrq5C0bwr9rtckIqnREH884I+5P5QbPqn2jL8o3gk8bx7F1aSKUbN3ptHACS/dSK763GJgPbfP1aBG63gYuRlJBoeHK37Rd65oonoqGmj1vWBnJvr0NDkVX5oLI8LIjYlfEUQFxDWiUQP0CCSNve8zRWgEWR1eLkIeN1zsr50rucloKVhUpu2GEDzjb60rh+ORPHhMz+FwYLfZUnqmnNaVMsOLL92n1ZWf/YdfZztt+I3f+z3kPPLCCy9Qi3fEFxcX7M52XO2vuL6+glbJeSLn7XMMnZEYpi1rNcpSiBrRUrGlsrkRFwGI+c1RUEKIxDhizZMfXPmyEIOx389kCSQpiDbKUmmy+HslmCdoaGVzco/rdUWJqGQHPYuAes6hGrTiWXmSh841UDQ00jTSJDEU6Qg1QXUFivNiLRDaiIVMVrDWqMFYmpI37jNMOdLihDUYh0aVCy4uLrg6CrsXd8joGZS1KWYFDYYERbUCg4dQh9ltTGSI6jvi6gHFEU9UxwyiUaMR2kxYM/T3Vmn6/H1s1VcQYo2iRygr4Gi28J0Y+W7rtn6Z+jZ2fEKNULsJWvvYyMqCdLWdYhD9zrOpOd5LjCBKQIlaGUUZLNMWzy9rVpBaeP3FU55cvEuxwsNHD1nXmd1ux4P3L1AbWFtAU0Zj9+kZtOp36oiSByHEjmlSx6eFIN/aOVhAJbpIpRbPDiTw9PIph8MRCZDSwPnpDmPl3/kd/z61rG4qFoCKWu34p0BMw3OBikhEpH9IxYHGWs2TK25u3UPnZAbtBvXWI5Xca6VNCd3sL+pdnG8FG0mN2Hprh5vYg2N4Ab8g3oxLpUcqIX0sqs0tGDnQslAFWoQWjRKMSh/jttpN9Q6mxpITYsIKodLVNajNVFmpsRJCJYWujOnfx4KPoLGK2UrTmVoXWi3cOzsnD4Or/oBps0Fy6ike3SpBf/80D0R98uQJz549RbUx5MzZySnzccaactxfk4eJq/2ChURTY7fd4b6xmffeeY+f//lf4J2332XMI/fO7vrrFWBdfNRZWmVpjcPxQGiQEK4vL6hNGToIGmAYRpZl5eLpE7SsaKssZfHnSBpzOQDGkLdd5OTj6igQWsSKsM7NvaBVWNYZQiEl8Sinw56gM02PfRcspJS+FeTbgd9BDLXCakcCSgojagnVgES3sdzAyNcglBhcYKINic7EnA8HynFxos8QaazEeU9ZV6a7LyHDSG171vnK31MRxmlExLFyjgo0Ai7cIkWIEYuKxoaESqQAtT/e1gHmQF1oxz3leMBa69Oam4BkI1D8EK+NVn2PfbO3v63b+rDqA3d8Ykq2vmYOhiUPZM0rUApFHGTtH5QONQ4Ozh1SAPXIm6aFoIExCs0aljIP3n7Az/ztv80bb7zKV995h/t3XyXFCbFGbNA0ErdjHykKmCeFRzVCFlowWuuHEvjoxaIbdPELnAfcRB8jhUY0JQ3CKy+/zGoNU4gaGPLI1ZNnfPbf/Cz/9zt3uZ6fUXs8DH0f02qnuQQnrpR1QTJIjLRWSZK74CN2T50LU/zwKESJaOvnof+OA6XNx5RqgsXs8S5NGVT8+5mDhkMQ7EbhZ25rCB3MTXBT/w3L025WJOaexoD1xPWCp/Ylsg3UenSiS0oumLHoxvnO5Lzx5dGBx4YRqyEa0OBioqbuzbsZuTUzv7DRoDZOxpGgnkZgZpRaXcYf3aReSyPnxCiBWgvbaYOd4KM1bVwf9jx58oxnzy4YUmYcRj75qX+Nr33tmy6qsR7tBNRaOb1zh/ub0Ue+KK16iryZOdwZeOGb30DzyPFwYJ2dfnL6+AnYQAqRV54+AOCNx+/6DUpZsWbM6+I2g7KS8J+zaSCmkc0YWevB/56jv/NMlRQjrTSCBML1I2LuuXstsJsSbT5wrBUlu1+1FufU5thvZPwVHOLAGlbCcuReN5lnGrpeE+ldGpUSZ6JAXA2thZg2gFLXA7YoxEw62bCdQZ8843JRwuZIniGGgs5HJAkxR6QkqoZuOfALR5sXluNMqX4zt6qnSWRzhaZ2c7sGtyXEVRENJIm+aqh7KLOLvCUw2BFZCmW9RI6FkBNE5eOl/Gqucbd1W/9cfeCDLyoEFTKRFpSVhiHEmIkpezdkfuGkeRdyg+IKQTyLTBKqiWILOSQ/RDQzH4Uv//wX+dT3fy+vvv46u/E+ZVkZT5V6/YwhaQ+0bL6DUu3UFJz6gasrm1UP49TeZvXdGjiFJDRXxGnw8M+75ztyEi4urjnfbam1cn19YHN+wsX+wP3X3+DZF64JJFeWiWE97FUkUqvvNyXeBPS6GTz6l2LmiDO11u0KNwb1RDDpnZ/2PZ/bQG7+16yn/KnbyD2bz1MDpKcnhOeHEoj0bD+9yesLvTNUUodoh9T3f9q7kRAJKrRD8YR1OoCchmnthJ0uWlDBmvg+0Drzs7dDQdwYjThBJhJoNroZuwOyy9L4xMff4sagn4fsqs9aaa2RciJPI6UpV5ce6prJpNgTPlICVcbNxKdfe422zCDKbrfl5HRHrQVLmZSS8z6XBWJkWdYOS/BooqrKtBHa/RdZhoE/9H/6Cx/o/f8//6n/7IN+VH6d11d/rR/A/9c6hMBt1MJtfVj1wQ3sMblHD+mkj4owUJ/P8gzVxtxal/gbSUCiH4oiDQ1C04TlAQxSCJACpVWuLy/IwTBd2I7CYS6cnbzMxeN/hARXrGXNxJxQMR+5djWmmEIriLg3z/O9MorSunqP0BCtEAKrBnbDhldefYnTsxOWpmhTtFYunz4ljI2C8N//H/77fPXLX4ImtLrHdO2CFqPW0vdgCgFqNYZxQKQHnQJoIPlACD8uA2IJqxHtpnMwD+ftmlANfmAGc9N8wlijK/IkuBdPVYl0Cgzmvj+1TkrJ/uNiBGvd9tBfwz6SlOApGjeq17kUogip2yzouzzHk3XPIm5it2ZdNdu5njF09WrfM5pzNaP4a+OCX2NZjnziU58gDslB3gjRGsM0uD2l/5nS4GSzpc1rt3Y4t5IQUFZOz09ourKUI4gxDWfsdlsfNbfGokaMkXGaiGMmDplaK/O8EMZMrEYpC+vrr/Nn/mf/S6a1ggWWnql32C+0quSQKa3w5uGC/8VP/u/5s7/zD/Kl6QUmRoLNXB2ve0ZfIUUjxgHJO//ZgyLJuLi+JLUex6Pd+1b7PjgO5G1waLUMhCDsr49YbViDaRBKbUx5x3G5RK1CHFwYFhJFFsK659njhyxtcNJJOfi+lUiQggnoevAsvzT6DjclEi4c0jww7UbW62ccj8o0vUBMG0KqpLiCNTRmzISIkIcRE7+Bam3FDhXKijJT5j2hDqw4Ug1taN0QkxHSCmS/Smhxb6kalYIV35lajpCVVhakBkYL1CQ0M7LC02D8ve/4Mndbt/XP1gc++EJQhp0QlkoOLq+3BiFsUW0soZL7hTm0Dl4OTk5REST6zifkTEgB1UySS9/nDCNXV3vmtZLChofvvsMrr7/Kfn/J04fPKO1IVF/4k5QihViVVZQixnlPnq6tYaijxiz5wdpVnTSFoaLqysdq8Im33iBLYEonzO3ItNtwoo3WlDE2fuC3/hZ+4b/9rfzD/+d/5QiqMBOWTO2eOUFRK318mNFmtHr0LteEWQoBv4CuYmQiKTS3RUQhWnAvXXRSSnPvAmqe7C3SPB4pCNgMdew7nwVTH9n58BJAuzG97+PMLyiIIEFcSm+4DaXvXgkNxDFripKCumFdBJPZR5WaiawEWTGLRMu+m0kua2+6YM99fRmIhOCRT2rSWarGMCY2Zzvm6z2rJDZxwNSIN/F9BqUEyk2WYIpduKOEmGgtMIpQ28w4JrLsqNXTBj7y2ouYuphmWQvzWt1Ko8rTJ0947fXXkbintca4jTBPRFt5Z3yJ+NLEXFbKXBCLPDzObGsGU/brTNo74+crZy/xj3evMKUNo8CxXHB9ODKmiK4LQRq1jey2ZzQWSjvShi169EMvJOe+Wq0kIA4JJDDtBoLsUFGWrSGHhWiNypGqwnY4R/UMpNDIEISmkTQlri++xvW6stgJoa3YfEEWoa5Glj3BVma26HifmAKtzJh2xeg0EjYD4zRw+XTPOu3Ynd4jhYGUFdNrQobASNBI3g5IHMlxgiTMywXkynq4cNBDE0JM7MPKSIU1sQ47YlRiHpG2EEzQ5CIpKDRttJAJsmGaAsVmjqrEGNiZryuOrRA3jtK7rdv6sOrb2PFltFVyCpRmINmBsyy0KjTNZGrnSgZMbmTuzjQp1UBWgpiP+sLkxmoDs0hhx9fefcpbb71JK1ckUWLMXF5ekLPbGtzK4KrBm49BFkX1SKtKyJmWxt5tAS36SBH4VCkEVUKKNA3Y1ZHfWBbiP/iH7ObEeQqstXIiwrrMTJuEfe1d/uPf/L38X/7bL/LOw6+TgKzFl/sd7wXmHimRnuRQ+m7N0JCI3cbbAsSubrUQnCTTTehWXXFpTZ03auJeOPWLpIbmo1Rt7hcM1c82eK6yDH235ym6N/pQnJYjPdfNfKco5inrCcXqQtWMaiPiCd2t81bNKkIgWO0CJVepmlVaW53sEtSjquyGEGrE5B1gCAO6HBmngZfOd5z/4pe42j8hp4FWmz/6lCjrTE4JkUSSiSQRwf1ftRY22xO0Na6urnn84CGf+uSnMHNv3LKuxOTwYwmBpRT27z3k9OyMs7MTrr7yS9w/LIzX1ww5u+BqFUiVV7/xHvLY+Z4BaKVyVgublmkr5HHkpQfv9Pd/YsxK02tKS5gUZExUFd9FoQ4biEZZHUM3pIEihdoFJ4gSU3CMmTXEvDuvpUJ06DqhOOmuuijkcLwiJSUGR78pholSy+IAh2BMwWjdF5jowbgaaAtIGMnDFrWVGnra+9qIQ2IzJNbrQgqRdJIIY7nRMDGkDRqEdW0Mg1LtSAzGmAZMGrlCWSoWAjoIrQphVTRUVyXHgFjBWqU9F79pBwm4UluCsUkDLSZqmSnr4rvQYaCFgtCYxI3483PPzG3d1q++PvjBF7YErghRfSHfE941raBbKBG1QkwjJpmqnlSdQiOQaRYBp0cMFt1cnQYMyGEgTxt+4Lf9NkoZaFcrKax85Zce8ZUvfxlYSWkAc0Nu7vs9U8AiVQwZEkPM7FvvKk2wBs8kcQiB/92z9//5H+rH/8/w47/yz/4/+kDP0PxBn8pfRa3/1P//dbbwf+dd+Hv/vx9W/bu/zO/9ex/wexzTwOV4ypCERqMcG5eHPSdnL7IcFrDQvaqRtlz7KFgy61yIkgjjQNNCVB//h+bTCYcye6yXtZWgjSC1+9+EacxOcamN0grDJvVJgJFCoDRQbbS276Z1t5TU1lha9ZFyFAoz2tbu+ZwBYcgJaXt0Ls4+HSKaIjE0wjJjbUsp6q7QoFRtDHGLoZRaeB5CbD7+jil2WlJl1UYSIVnBtLAW8ZFuxHXK5oP/6LN6qq605YioC+ikGmEAzEjNHIMWb718t/Xh1QcPog3GLmYsVkKOUBvRBooNRAvk1IjWY24kosllyEmqUx3YQBhpqkgUGsGjVVsloYTlEQ+++SUujgNxueTycsP9+x+nrA469jQDY4pKUM9ciJpgVUoyTBojlW2orIx997jydjJ+6KVXOUeINrgvLRqT7Pj4J8/5D/+j/5DHT4t/6MaBMCaCGe+/8z4vvnifqpWSJp68e+Cv/af/KYGFWq2rJ7X7+gSVrq6kRyURgOpxSDYAQksrsblEPnQhCwGU0n1vLj4xC1hI+GZFu8y/PVeIhj5YdJiT7xjFwGqDdJPXJ55Cb5Cid5lBXT+q8aZPdNO4Gqg1soBV8ddFXEBkoWJADBlTh1aH4Gi4SvIeMWVyW3EZTt9dWuoKysKd8zuM9+/wR/7E/4T90yfkOGAxsLZCq5XdZsc/+rl/xEde/SjTvdEN/r4+I8aEsfDuO+9w994ddtude0l9btt7WzfoNxqSIk+eHoiSEDOW+cA0TqgZwzQypkipK5ca+YUvPXOM2+J+xv1+oeTIuDTWcvDnRuHpdMq7ecKOCzIGSknsprtMMmIsuNg1EfFRbNBAM6N1pSohU5snlnumoT5/DVvxTr6uM0EGYoz+PBd1n6PVnmvYKOVISCMpiu8gF0WGEZuVFtyu06zSpFLVnaHD6MKm4yx9L6zkcWKYBo7LA46twXDCEEaqCibN1clrAYkedRUTkkZSmAiayFFYo9NvYvePWqvMpSKhYJivQdoRpBBk8n189wPexFqF6FOSWla0LgR1ha8GI6nSQva9cYUmt6PO2/rw6gMffIhCcwpJrQubnFjnhHFC5JoQjxiNwpFmAUKiaaKVBM3l+DG6qlKCUPCBXDQlWWNYr2G54iOv/CYefxMeP9oj4+oXBgSRnm5gK9QVq4EUBmRdkNg4RiimnqOTBlc5hgNk4+2c+VockbIhSiUmZbQdxzzwWz/+Ma7nTBTznVVsrIcD8/1X2b/4AvPhgmvJPJ4KvzCe0GxBQ8bMRTPWAmoZx2lGqF14giHJ1ZjDGmkWWbMiYQPWnFcajNgtIBHfZxkJQqDh/jgxQ2NBQvRRZhCCTtCCA+ypRHGYdbBIiYYKmESafwEx+QhyaB7QusRG0IDoSAwZkgOTxz5ibSF61FKpEJSqEIKQc2ANmUhBMFYN1DzS0sCmGVEdPC0imHna+TSOnIwTwzDy/usf4XK3IQ8jaUzcIMJrHtHxlAd5w/bOhloWznY7coqspigZe+0tnga4Goyz0wmtDYvRYQHdGqm2oBJYlkiUEYnG5bOnXKpyducOSxRqKFSUrz4sfKPdZz5ewaViDFzmlTkldgVWe0aU5GPLnNFZfTdNZZkb201mmY9OuImRugaO1W/iIkJZFgQYBlhaRVpzDBcB6YzPmAckNgJCacYQd6zrJTF7juGyOqS5afX3SSgIA1k6FrDvgqMZgYgKlFY8laIOxGDEVj0NRE6p9QlEv5lophzKAR3PSdt75GS0dkBbRuIJKoUYA6UsTENkTMnfg913KqUxdHXxvqzOqb0hx2ggVCG0gg4LhguMYEYEomWCjIgKVtzjKaHjyQQsNcQqa4AmgUETIvnDvfLd1nd1BbPb2flt3dZt3dZtfffU7eD8tm7rtm7rtr6r6vbgu63buq3buq3vqro9+G7rtm7rtm7ru6puD77buq3buq3b+q6q24Pvtm7rtm7rtr6r6vbgu63buq3buq3vqro9+G7rtm7rtm7ru6puD77buq3buq3b+q6q24Pvtm7rtm7rtr6r6v8DUCq6UXxBk8oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000189475.jpg | idx 101\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGVCAYAAAAytAOyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WY9t2Xbfif3GmM1aazfRnCbb25C895IURdIllaoMG+WmYLtQEMouwPCT4Yf6AH4pv/jBb/4GhuF3fwN/AxuWUSiVy5RYpKjLRuTt8ubJzJPnnGh2s9aac47hh7lP0gYMVIqSVVdCDCCQgTwRO/Zee+05x/yPfyPuzlM91VM91VM91VM91VM91a9K6X/TT+Cpnuqpnuqpnuqpnuqpnur/s54a1Kd6qqd6qqd6qqd6qqf6laqnBvWpnuqpnuqpnuqpnuqpfqXqqUF9qqd6qqd6qqd6qqd6ql+pempQn+qpnuqpnuqpnuqpnupXqp4a1Kd6qqd6qqd6qqd6qqf6laqnBvWpnuqpnuqpnuqpnuqpfqXqqUF9qqd6qqd6qqd6qqd6ql+pempQn+qpnuqpnuqpnuqpnupXquK3/cG//3/8v/qwyTRpkARx8LUSPUA1Zj8T40RzQUWIFAIr58M9rVRy3hLSwFwK5kYMETdYl4qZM8XMJiTSfofvN+w2W65C5vH0yPHhLaNUOB1Zz4UaI2/mI1UD0+Y5m3RD3meeP3vJyw8+pqbG+EHgcDrz43/0E242O77/0XfYTIpo4/HuxJc/e8e8QNgm2DvPXk5cP4tMw5Z3bytfv3vg9vmGm9sNrTVqqbQWOFew7Ax7ZXsVGGPjCuXWBGXFxJg9cFKF0qghEFtgVUfEaa4QnEwhEFldWbwxH5R3n53RMjE7oI1NjkgCxXGBVleurgcezwvH143jTx85Pz7gOHmfCVeZlhOiASkz0maYG/ZQmA/vuL//kjIvOIKOEckbNO5BFG/3lPMjrTi1FI4PX0F5QOaVKQYkZyRtCGHAQ+BoheSFWB2xRrHG47wQRPjdH/4QLYW//NlfMhfDLbE8zsQQSFc7GDItCBVDl5VQK9IWrFY0JOIwEeIAmmiiaFDsfGJZDjQ3MkorhqJIThAz4/aWBee/83u/xv/87/0WO3+E0bGqhCIs9kAeRs5H4S9+8kuGa/jkwxtyTlQTHt8dCGbkmNAQIUH0hATHpJKJHB6OfP7FZ/zsiy949eWJr76cKbMRfSH4GWelamW1SmvONOzY77cwNWZdOD4Y4bBl0C0MkVlWpjyQ4gYnMgS40sashTpEkjkbhCKNh7aQpg1VFTEnSEYM1GdyaGAVGABl8CN4gxoRGXBNGAJUTFdcHJqRQsD1hGO4X7OsI+hKSIXj4z33b1bOj8J5PlHaA9WP/PCHn/CdT38N1RFRkARmFRxEIuJGEIXWQJyKU91QccQh+0RrTq0ODu793iYozQ1vgrsRxUAajIbqSmiF0RWtgkjAY0TGRItCa41BMyEoIQmVhoszBGVjRnADFZpcczwdafWEt5WynqlFKDVwOju+HpmPJ5ZlwapzOC4sRVgrvHs4caqNZT3S6oHWFkKMmEQII8UTxMioK0MohGjkcSSlRCBgWpjXxPmQmR9O1NMbvK64bPnw+x/y0YeRjQojIzIkZozqhdYaxIBaJksgmWC1MWxHTrZwLEfilBGBSSKpRrQqy3HhtBxxBQuNQz3T6GtQakYy7/ePBjREXI1qC+bGasJpUWiZ+rjycH7Hx7/2nP/4P/qf8OsffRcr8NXDHYfzkSRKq4Zg5EHQGDgvhThuyeOAmdHaPSFCUsWKIz4iHkAKeAUbcRQEqhkNowHu0LyhGFEUFcHFaO64OI4jnlBJqBvuDcERhOCCXFISxcGrk4ZMsQLScDVEHWPDvML9m0e0OdfXOywUynJgUKHVBa/O48OJdV1RhZATy7KwlEJ1ZRwC15sN2oQUJ5BIaQYBzBoigaQjSgAE84qI46HRrOEOZo4AYhCD4NZYXfpnTAK1OKKVWgu1Vmo7E8bI43nmp5+94qc/+5y/+MN/Iv/SO4Sneqr/ButbN6gpJXCIIRBD6E2bCiEkLBiUSnNImgjaF4UUAnWoVDv1pkgjMeg3DWpIgSCFslYM4dQauRmbOBB0JITM7bMN189fENrK7XaL1crd4Yi+/pKv7++pOM1XWhNKdcoKIQcw4+MPJ87f/5j/8h/8F9z98kt+9MPf4ObZnsP9gdN8JA4TNy82fPCDa7a3ME4Q3HnxPLP7/Iq/+skjyxk++WQkeuR4huiKijEFWA9njqURp4EXm0QgcxYQgWuclowVY9SA1UaSAA5rhRgyWeDRDfeA7SG9SCyvG4NFikdmMTYBYgQdYZoGhgxDHZA20x4USYG6OoITW2CbryBGahgQm0hZIRdCVnyoHN6+pZ0LSRKgNGs0b4wxs9nuOR7OTCEw+hX1DGECccFMWQkcTchDZiMJs4Z5IXgjK9wMI2WeYRWSDAwycZgPlLoSCaRxIqSEpUiMEW+VNARUV9rSMO+NjptjzXA3dMggMGx3xM1AaQWbF2JwEpEwZFYETZkpBcyMIIkxbTjYI2ZOzCNR9pyb8ebxnlevv2I6Tnzy4nu0pRHUuNlc4UshJ6H4goQRiZXD8cTj3cpPf/olv/jiS774+i1v747MKwgRd8HaQrSFKQkhZZCBgFHP8PVxIewGdi9eEPyB+/mO0O4ZyBQx1vNEaI/gjf0UOM8rMQhtjJRlZRRhvL2i2cry+Miw2aAqOIExZaJEqMLSgBxAhLooEUEE1ButOlUMpyHqqDrqsLSVEB0XobaCtUitFakzrVXMF+ayMi8n8sbZb7eM44BjiDRwYT0uiDXSOOFmLKUCzpAyKoJ5fz8EaLWy1IKIUGtjXVfeBy37ZV3IKRNiIEhABTQEJAXUEmoQkuJIb7KjEwIMIRKBGHoTE2iYwKgRO585Ho+spVDlzOl0Yp0XyjqznmdqcU4zzHN/7oeHR07HR9Z1pZkBsLaV87oSp2fgK9YqOQhDUggCoVId4jQwxoEpJ0IOhJQIGlEC5oWyLHhd+oHTGwikMROSEnIiSKKtIKaIBlQECQII1YRhmkgu1LCyrCtE2I5bJEW81t70AaIC6r05pWGtMEikeqNfPQjqBBFySIgL7kLxxGldqRXcAut5pcwr1h8U10BxiCkzbbd4hCj9PqvLwjD2NcW8cjyeCZrJQyLrDWYrboa5IJ4vBxpHguIERPrrDKL9kEM/vFjT/llXxcx7w6oOQTD6gUYdVJTLQ2Bm4KASUA0IRqMiwXszLhFrYA2iKPsp41crX/3yFUu9I06JIWXW48IQAzEkrq8zZo1aV6o3QghMBIo72IqIEFP65u+bNIIEYoiIRFQjoKh2cEfUMBzDwEBVAAU1XJTm/XFyiAgJSUYpC0GVoANZAmVeiUVJ1eE8/4t3A0/1VL9i9a0b1BCElCIizpQm4qQ8nmfWWrEYUB1oq4M7kUTOCQ1OAxqBZIpKJoWOeIg5SiAJfZESwYJyKI31cWYKe9Kww1TwaLQEx5DJo5DSSHw8k+dCa5WqM1PacjicGNKJZ/sNWON0avzGb96S2t/i7ss7joevWNsDxYwXn95y/ewZw3UmjIYFZfXKoMakyq99kml15LNX97RVud6NDDjLIixL4P6nlYdHpemB+NHK1UdXtPPKu7WSNyPf22aG2BedESdGZURICrXB0YwkwqcCbxU+Q9DbxMP5kbzumXFOacXGiE9C2AYkOEFAonD14UAroF9Gju9O/XpWwc+NsBmIaULJaHFcBqYk2Gis60ptBxKAOkOODOMG8QVflTAF5tMRk0SMW07rStBIM8VDQqeER1Bz1tabDYIzmLCNkWV9wOfK7BWrTlsNXEnDREwjBcFRYkyMw0CbZxAYh0Q4Z9a10lywS+fSzJEYCSEgIRJ1xOIA84q60kQZt1eM17foELi+fd6R2KwkTTSFUh2TSIxCafDu/i3Prn7EJl7htlDbO9Rrb4rTSBPl/nHml199wS9+9oo3Xz7w6ss7HksjjXsKI2z6fbm2xjIrPhvnUpDZiJq4mbZcTRtWBJlGbDXmg+NkCJnTeaXUhURl0EiOMB+Mbd6QTVjn2tEtgfPxRKVi9YLkiyNU1grKxDQ9p0jgfDzhsTFIIOBEqYg2mgdQcAUvhlhBRAlBaCiiUOZKawseDLwxTAPPw8Bm06j1inGjjJuIqlNbpVQnoYyitGb4XDAi7oqZUaSjR7UZQqOtBSu1rwYh9OeiTsypb+4xIdJPthoTWZUogkao2nCpEMF7u0RQRyKoQCKgVbClUM1wdR7Oj7y6e8DPFanKYZ5ZGixLoSyV9bwwn1fWuXA4zsznytGd3iQFmgnihscCzKTJabqSRFACmzGzmRI5R/KQMVU8ZZLY5bkpTRWReGm2lWlwllT7gR7vh6060yislvoBS8CtH0AcRVVBhBSFdXVqKwxD4rK0EHJCQqCtC4ihIaBBINHXAzfcDK2NoEIKkeCGecG8QXMyAQ+B0gRaAlPw2A/+Bilnch5IeURypnkkDhltJ1T6BzUOEaMfZnfTlvNhZj4c2eZnNI9g/eSuKK6J5gUwVBUDFCF6JOAghgPtgrBHaYj7hY8m4I4ZCIJekNLedAckCA0D934/IaCKB1goGNI/gzIQNRPqkYBjdSGklatnN4RhYIw7dCOIa7/WbcVtZS1nSutgjGhkNaOVSI4BdaFWuxy6HKT/56+/8cvhqt/HZpcpglxwX1HchQpUBy5NbWuGVcOskUPCPFGWgFTYhsintx/xk/bP/ib7/1M91a90fesGVaSjLjSDtRLDRFRlRpAU8OqMY0CLI+Z4E5ZmSJrY7BPl7hE3CJrBDHEj6uXIWypzLaweYMyMeUMksy5GThskw2rOwZyNBsK0ZX91w+lwoEqD4KzzmWHY4So8PJ55+WwkjNAi/M6/810y38dXKAaPZzg+FkqLHFphKpCDUkVJrgR3Bp350Xcz47DjfDhTk7CdMutp5s2rM6aZm/3E9YuXTNdCGZ1xjNysxv2x8uW7E7/+bOJKlGQzVyRigCyNJQRO1lANbEw5yUoomeZw9WJDeduI1hg2EHZOGgKDQjZh9IZ7IU+Z+PHAWxfWVilHAx3AA0EhThek6TKGjS0SW2V7Wzkj1MMD4v344KoEmSAkxuRUiYSYsPXMfDpACGg2ajXUGsEDDSeEQFNhNYMqqDuaU286VKheseBUMxZvNCuYJ1JKaEgEUeIYqcu5j5mzg6y4RlwDaRhJmz2b3TVtrRzPj4SsjHmDjpXz/QH3SDXlXCoijfP5jJt3ZNMM1b7Rd0RF+PD2lr/9ox/w0YsXiJ8JUXHJtFK5Lwuvv77j8zeP/PztPW/eVsqq1FnxYWSb4Wp7zXkufL2uzGmgbSIyTvghsi4zoSnVhK/PlTAIV9cTh3Lk7t07ygrqW+ZTIg7X5LASwyMvbiaCRtbV2Oz3UKGejpcxoPJ4PiE5klPkvBakVaYxYNI4PD7w7l2hNGhpJk0whBERiAlCTDR60xLeozduCEqIAaT2Q0ZzMOkolVQUwV0ZxwENI6K1j+g1cz4XsAIaiBrxZqScOJSFlY78PD4+UlplGAaiC27GmDPujkZFk4AKOWdaq8Qol2bF0CAkjWSNSBBUDQQCjVZnoCOnzRvzXDjOM77A8Xjm8fGO0goILKcFPxvLUnk4r8ylUNbGel5pxS7j54J7xVtlEfphKuT+dyWQsiOakOi0KEzTRJItu3EiBcFb7SNoBRUjh4BowEJHQZFE8AC2kFXJwVmloQqqjtFoFJo4TSBqwAxce8Mil7GwaG/IRPrjxhhIWdEYgABDxmwlJLBWWaksNmNeUYFplzmvBW8VE8fU0Sx46+PlKrB6YG6B4sppKRyPM9FgCInrq1tiHGkSERE0BVCnWKPVSggRcUHMgMY4JNZ1YUyB41zBL9SMoKgGzA33eKEd0F8Dil+aTZFLWxcM97/u80TpTe5llK+iSO/96PPtjlK62+UXBA3SEXyh00lEUBVCCMRFSdLR+d1ux/NnL/CUqGt/TtEjguPuYPVyUFbWajSTPgl0J+UE3t9NRfsf8v5+qSiienkNBt6bTYAQEorQzEGV/kwVJSLNsNbb92oFd6eUhjJhHohJWOpMa439fv8v0gc81VP9Sta3b1BxxI2cRmJIF2RESUGp1kf2WRN4QZswjBNZoFBZ5lMftUggxozQEGtEBfe+wFsruDqhVdbHRzzuGHfXSAxIhqjC4byQsiLVSFHZTom7u3Pnvml/fst6Zop75vPCdj9w9gVx4yqO2GA0EfKkzEE53ResZVqDZW3o4IwaEDcmzaSgfPos8rqduPvqgZgHzCO3z/ZIiuS9sbt1dIQmhtF4Nka2KfP1yXllMCVnxBmtIyEPwGur/OXxTBTlWR55qPDTtz/n1TGy2zznw+uBgcAwgsSGUxlMuCWwNWeMgRUhbg0+SYjsefPZTFkDhuINtJSOMA2RQG9Q1a8IXlnmI95WlEQYO+d1CFNHa6KTdGA+PGAhkWPgeL5HojEmaOeZIW9Zo5JS4NwKrTklKr5WNpuEj5GQFN1GApFa+mhOpHPe+kYmpBjRHEGUGCGMI34+Uc0IMSNpxFLCUuZqd0s4jb15aoXNJHgVltVI48S43XNcDxznBdPQObviRJSskdoq3oyraeK3vv9r5F1mqQtzc756c+TVF1/z5euveXcu3BfnnoDk54RxhO0VO78jnx/J5ZFhDCxjZNaRFjJB+8lnKQFpToyRwolzhik4XgTNG2iVciiEANO4JeTEOCWefbjj8d09pQV+8XDm3XkmtYaXAi6c6oKrogGwwqYJwwQ3NxMe4Xh4Q5lX8gC1OtUcc8d0wELCBHIaGHMmSB+zxhDIKRK0N+5m1lGuEDEKVhxrQtDMMKT++Q9KrZDiSK0LS10IgzMfT5zWtxQHHUdiTjQrpBQZcm9aBEgJXCIpRTR2pCtkIZAIEi4IUuiIuUSE/j6qCGDYWmnzyrLOlLqy1sLjw4n5aNQZzmWlloXT6ZHzcmadV2w2TnND8kA1x1ujnBdUBdMGtjBk0FiYMpgpUZ1h2JLTyJADwwDNK21MpDjgVcAjRqciBBFydFIsqCtrg1qgaadDKbGP9BH0wkUXUWLKSI69JYmC4715NBARQgyIK4YjMfTJQAwQA3kcWGthLcY4RELq0wGC07z2KUeOnVYkxrksOP1wEGOkam96rTqLC8fVODgsGlkW47wsrHUhauLZ9Q3f/853maYNTZQQFK2w3UyczidCHDBzVDNShbrMDFmopXE63xHyhDQBBWudZhLoh0gXQVxQD+CCAxdgEZP+5XQ6wnuuZm8wFTfvyOr7bhYuyKkgqujlf0q/wAR1XKU3iXamtYUxdlpQzhMaI9YiS6sInevtdOqAiNAubbFqYBgCzZy1NhoNuCDduaO2ak4t1htOBZfL9++7aQcMRPvjV2u9ydbeYIfYUfdW1wuP1fuBB8VawLRSxWkRwnbk+ccf/svoB57qqX6l6ttzUIN0NCRmVPspOGvf2MQakjL1PCPNiDFTLmKoNCTytGU1Z1k6EjIMibZW1nLC64K1ggZIQdFmJGmIFUqdUVEGjTjOmAJlrag6V7dXnB7esR13mAjrMiNxoZSZum4oC32D3SZElZNBVGW98NNkdOpjo9XGskAqgRChCCDKSKeX5UG4/e6Gw4cbFndagseTcVgMGYQ5OeorY2toiCQ3diEwb5Q3a2XSwKojVaC583lZuF8XNnHLyyGTFPY5cLP5iK/WxB/9sxNfLoXv/fqOZoZc0IBRch9nScQr3B8q/+yX7zjXkcF2bIfMTGWh0yoCiaggqTJEYyLBMBHDc2qtHDQxPx4o5pASlgYkJDQKkhSxCrESSyPbkVJmUh4Ia+vXejsRg5JDpNZ+5u+bqnJ2o53OkCKaM2OKqEVUQt+UVkOBPGQkRBgD45C60EeVZV1pDg0hXMZcOW/QkDmvB7I2Uq3sroXJlN31Dftnz7g/3XN1kzhhlNCRUW8BXNGQIEBrgZJHvnoovH54w8+/fODnX67cvV2xFshXA3WrmIyoKefV0TbxbMiMweHwhmHKDFUIpoAShw1j2rLmmeXhiJWFcQgMm8v4mw3TZo/4HTGcuNo5IZ6onpimHcuyUmzlcS68mSN33rjx/vgNBxko5hd0po9o58eFWla22Xh+G1CPrKXzsI/zI+d1YS5nTCIehBQHkirNuhAtx0COXP4bqHVBRElxRALElAgyIlFwjFK7AK5p41gfqWVGg3FMkeZGSANDHtCUL6PnTM4Z9YaqstmMqAKaAdDQ9+oYIuCoBoLq5b2KBI99RBsE1cZ6PHF4/QX1fGJZZ5a6YA739ysPj43TGe4fHvBWWOvCMp+xVhk0c1wWlvOZnAeCOB47JzuG9+tRPzBtdlOnVcTMkAfM+309pIy7YQFCUAqdJ90H0wkzZVkLvhZiHNAwkFOfLjhgpR/mY8zkYSVERSV800zllIgX7mWOmRYVUugIN9JpC1IYd1PnRq4rkvr1rbViIl2Q1MClgVTCMJIuB39BGPOuT8DM+7VvhUajJseIFAlIyMgJluMdazmjVJ7fPuN3fvgDPrq+YYgRxGnWCA5jypRl/UbgFEKmtUIIXSyVWyTm2N/D0D8rjYJKvQy9/UILuDST3zSaArFf3T4Z79fx/Si/t3hCuDShivR1kk4J4j3/WhW3irtcDkBgLl1M5Q2RSgubyzNR1nNjt+8UgpSVHBSvdMEhgnjCa8PcCSESVWhtoXqfNhDAvXXBk0Y0Olh/dNdKgAuy6ohLv9e9H0y0v0C8Gk1WzCGFhIn3fVD7+iqS+t4qhbWd8GiQFQ9PhjxP9W9efXsOqoBcRjrWGjkLgcAUMmMwFodhM1HXhVprV5aHRBIFb2w2G2o709pKTgMWDF9WzBaIihIIoiSHbI63zjnTASrGkCPNK2aKpgRTYPvslvN5ps1nEk6kUOZ7luPI7bNnhAsJHgNp3lETAk2MNEQ2U+DchCgwPzhDEGroLzZYZaONgDK7UFRoqrTg6FZII8wNKhDpTXSWQHZjj/F9DYxSWB8XfmHOL2ncbEZCinx3m/hUEom+oA7agMyH0dn/+pY/+Owdp8OR233nMFZJvJtXvnicyUSmKjyeGq8fK8vjwr5FtjowqtCotLrS1kjKMG3g9iYSF+H1L1YODyvCwDRcoQs8LKWPfjUThwyx0VojbgOuCSzwYv+C+fG+Cym2A21Z2OYNIURyEPKyUJbaN+AYKbVRVyHJ2A8dmpEiYF30EJA+Hq2QxqGPOmtFHbZ5S5TEWiqukSiBJJmkQ6d+REHa+bKpJ9K0JeeBMUbSzTVhqBS5NBE6ABkncSoHvn645/OvjzycVx5sw6mNvK2Zr8PMMR/JraJRWGmksMGCEQWSjXh2TssRRiOlTAjCjY9dbBYD2Z3kgbA6QWGXK1ehEsRptRHDhusXt+Swo63vMNfeAIpQy8rNfmSuMMeMLQPh/hFpK46hmhljxDQRvaH1SPDMWOH5VeOjDxP3hwM/+WzmuIwUlFojrTgiDavCcT5QWkdpch5JCtiJpIGkimjpqGrYEGIk5ZEYGnAiJwdbsNbYTFcIncdKjHgSJI1ISMQ8Yq2jTOOQyTkSvPPXY840rDsy1AYSu+AydoGMqhI0YM1QUm/gVCALKTh+LHA+0E6PSC1oW8CV9XDg81+85d1D6SKjWojqoEYWR1mZhkDMisqKemVIQKxoCEybLducCWaksANtmFaQyjeqGzcCiVx7k4QXTASzQrWCePrGKaC2Llg0tQtbtguTkD76DzEQYyRqoNRKcGHKA1MayBbIHiFmWuxoWxoTzZ3zeiJkkCDkuAUN/WAQE+M09DVX4+U6OsPGSCliZe4vo0EyAO/NuUBpK2eMopnMxLwI58PX1PmIlBNXm4nf/uH3+eH3vss2D4QO7dIu9KwkkSEOvL1/JKTMWmfm0wltBVqhWEXXkc1mQrxTE5LWrqI3w1GC6+USdxTSL5qEoJdG9HJIwAzRgF84q+6dgqHBL/SdiwsE7xtbv/S6/f4KOIG+l7grSTOKYKlPDSTAWk/gO8asQMPqehFtQtB4EUEJtVZaNVozVAJCFzUlif0wYY4GJeXYhaQXBFQVvNqFqhFAQ0dV3RAJqCrVG9W9j/1bA2nE97u0C94caYUcCiHDeSncv3tDKeVfsBV4qqf61atv3aCu64qLkMYdIQSqdeX3OI7QGjEI1VYeH0+cjmdokAm8vH3Gs5trzI1ancPpjFnnYIUktNpol8VK3EgamIaMeeO4ntiQGeKEKIxDZi1QvZ/Qp+tbeP2IH89Mw0BrZ1yViOJnKA8V2cAwBnLsXKYknfiOQE7CoRZKMYYdmHV+UaUiJAZxgjsigRIqZzeqKyZOlUYh0kRAEweDbXWehd5kXxXjxZCYx4E3zWhSeKmJUZRbh31rvA2QtJCAYMqNKc/Gyne/c8WPf/rA3bDw/NkVcYqURYjTFSELEefq2vid7+2ZXzuPfzmzfP2IpIHtfmRNlZgqt1cDaddo7czxsfH2zcKbr2ZOj29JfmKKkUiglsb5eCYmJY3K1c2G9WRcTTecvDGtkKNzKIU59dHc+VTY7DKZxDZEihYUaKWCKCntCRvFdUFDws+NVhq1tY70FMNKpdVKnEZCjGirYF0M1C4iK18qnirrvHT3gM2W6JkkDdsKS+kcyiFngiopKS1GLAjFnXfvDty/fuSXd5/zxeGBhxLwYYfsPkCH52xvr1j2X7HonyFzI+SRQcA9UH1DToGrIRBs5jQ+w2TEojKFiK4dnSl5JJkzbAJ7zehRuVIj+wMyNNKmK9yDJJbZmJcNy5IwSdzeKN/55ENCWVjKgcf7tSOI0keJD7U7Jbh1lfp+SOgoyKzcDiMf7eEmn7lvZ+ZinHygBkV1ADmBNcyh0jBVIFENxBtqRllL5xDLgpkROfQpSUgIA5hxezux30XChcs3pkQeM5bgpMKw3xDjiK2NKY1IDOSUAMgxklJvply6Cj+oEy/IeEAIMV5QMSNoQj0iKFWMapWglRycTVZkcap3CXYTZ4iG1SOC4k2QVolBAWNMSgzd6cKnjIaKmLOZIqUVKso0DATrXEy3CQmVkFYqM6KGW6WZkGNmbJFqKyZOGGDFqDaTU4DWXQmsNQgGHtCsBLV+SIsbzq1hKp2vSFelZwnQnCmNhCrYClw41K59nWtm7LYbYsxYdWLKaEz9YOGgQZk2I0ZDxChzt3SzNiBtJGpgjFtGE6ytVC+otb4m7ybYbHl8KPzkr15xejheDqCJv/2jH/K7v/UjXl5dsb/ZEPJAiaFbsa1CkkYIlfPphF8kSBFhiKG/58vK24cHhvG2u01c+JVcvhME0dgFkeqdswmA9ebRvSO+cJmkcKEKCa7hQij1jjxeHlX0whelC6xE9IJ2GyIQLtxqJSMmWDJKmTFxttsJqOD9MdwFrHXRWugCpqAXZV4AldZFnBIx62Is9U5l64BLRELnVftFuOW8f8rSX4f5hY/6HhfuDgYhBKr3a6BB8GbkMGAutFT7e1fOeCuoG+V0+pvs/0/1VL/S9a0b1K/fvuaTlx+xC4qHwNwaro5deFZlvePVl19yf39PWQtDiJzKgp2+YrRPeHHzjBobbRww2RB125Wv0pBi5FVImtCcmQGP0LJyZZGpdHFO2nYOTjEYMpzWxHjzgnJ/gnom5syaNjyUwr45G4sMtaDWBRlyQVnxgYoz7WG3JN6skJvjx8qSKocx8yjwDNijqDuCUgSK9BO4SMakK8RzA1PjbTB2InzSApYgiPAM+ECVjrM6g0NyWKVbATU6Ry+JkENlp8J3psD5JvD2fmE9HrnKVzy/zp2LRqM5HFN/PsMLwDMWKnevH6lv7hlTJG4H5ph4fPAuRpHEy5cbNuPC6y9X3r154O3j18R0jcZr0Ik07cha2Y17JH3A269+xvmhcJ5XtK2MY2JQ4W0t1KQcWmMMkRQUBqWU1i1SCGyGDQ4MrW/QiyptEVj6IYQQKOJ4pI88Q+rikNaFCACtFJSVamfmNjKkPRq3aB44cSCFRqyNusKBkVEjITnvygZ7C+cl8ItX93x5f+bRtrxdI0uI5GHPfvOSTR643g1M+SVjWXn36hfc5kCslVN1wvVAja2PK+NzVheW1nBOEAKeAmPNbMOeHCJ3fs+cjF3aYIvjJM6i4AO6VKrAu6VyaBnTDae5UufE99kz5ErcKOu85RADm2nG7wfKm0rMRvFA1sAHt8KzeMNPH77i83PD7/YcTg2JzyHPnJaKh4kU71E3rEZKMSw4LVdaiphnfJ0JLiCJqspaO7I5EIk1djMiO3N1M8AmU3JgnEaYtpToFKkMKXI7bFGP0BSyErMQXdik3oBKoDfGElHvvZteGsigfaoR1BBRWu0ol0vFLy4Dpt1LlRRZhpG2DKxSOTVhkMQQI2OEOTVWEdalEKJyvZ1I0shDIGQBXSleCTlCGICBRMIscLaFkIUjldyMdA5o2GHSBUzjJBhnzgitgkui1ouoh0bBoFViFWrtHFJNA2LdpWTAaYsgLeFpoIQzTbvIrObMIxvOyzWbnGCsiBgEZRgHamlMw8QUOpIqY8IlkNNEyP0zE4dMywVFGENEtlDPdqE6GmVZ2egVQY2ynlAWQhLy1Qt8t+FxPvPm7nPe3n3Gw7kShsQPfvQJ//6/9+/wm598j9vrG3a3e14fjryeGx4HLM3MrPgOdjc3HWVW4PL5TXlgaMJPP/uMt4+v+fDFx2CQwkAgs5QFC2AiNIukHHAvBFXMhLVURAUZRmaPSGuoV4TaEWnXDihIb+r62LwSvRMHLEjnHLshklDPWOuHDhBWXy7T9t4STtMz3pwMPztXaQviFC7i4BRpCHhDzbvFYjVqc0qFWiMxJoIPiBTc+mFdMFy8r22to6uijua+h5k3NEAgoCi1+sVH3GnFgIv4TIXmjUqltpUYI61BswEVZ1RHlsd/SS3BUz3Vr0596wZ1cOPtF6+Y7x7YbK8I08SMUjWynM4s7chV3LB9NhFDYDdOZBXW4yOHx0fevX6FThNXz79DpRHTSNMNbT3RworGRk7Gdur8rPO6Ut8+sBbh2feek7dKi4KXFdVIW43dLnHabThtMnU5si5nps01SSrreqZaZqhGFcCcpNDlR5A5oxKYY2ZaG1YVC33Bqm6UC3l/FKjSOHjDcKILW7rmdA6NYvQT+eVUXKWrRQdRFCM5vRG9kPybWPcVvZzSkQLSPQ+DJ3bu3AC/9fEV88ewdE0A9bIAJ1WaCKt34XULzvAssF0GDnd33L16wzuBzcsdL7bP2T/fMu0npDm+SDfnz5+Sc+Lt5+niBbgwaCYtZ64314yq/PKzn/Hm1ZfU04LN54vGtuBZGIeRc4XqieaBmAMhKPgM3rratC0MUcjTQG1GDMJqS0dwTAkhYtpR62wjmidCaDTOhLjBXVjnc/dCNWNZV84XVXjaTATrRuzRhFVOlFaIKpiOvD4KX53OeMy8G18wl8iU4HadeXs8M8RrMs5m7H6V+6s9qi+p53ck0T4KDRkfRzQYoiMhDgxXA60E2vErQqlshpE0jJQ4sjYIYUdahGLGyQqhGkMc+rHIjrQoXXCUEqc6IaycmvHHr97wybNEjVdsRlhmwcPH2PaMlrfUUhDdQGzkaULCDOeB5Sj85NU9X4QHbIi8ky0lK6oNNGDe7ZI0BLDGKB2pFGlIkt5kV0eroaX0BjL00XLDIDqWhJADw5jZ5EigEoLS1CAYrl11H6OiQbCLOlpjAFE0avfl9I6Cib63Durfq2qfbISEimOtIqrf+OAKfvG4TARV5lJopRBVL58jUEmYVUyNODSQlWLOuN0QhtjRa91BOyISL6bniSEP3e+Vjuglq0jrn8/gAQ+xK/ILrN66/ZEoSn8NuKGi1KXiXmnvOewR0hTxlCjA0nqjKBnUIyHG7tpgC3Vd2IyZEFckK82cNEzklBFxrEKIgUWVYcygznY3ISTqaux314gmsuwRN4YhMoYIrSOGu93I7c2eD1/ckoZIKyuf//IXvDucSVcf8bgsvPtn/5Sf/tVfcP/ma4IL3/34U/4H/93/Hr//u7/DR1dbnt3ecv3iOae//Anv/EgLUNdu/bQZNtj1Dcv51AWvQfsBMwg5CPv9hvv7e148/+Cvw1laQ6ISVGnQKQ/x4q3d+voRYxdPusvl0CLfcFGh+4YK3j1HvXvy+kVkJEEufqRc7g/t/qvWtRN+8bCLQbuyv4JqROnew6fDTEwRa4pq9+8ty8p6PhHpQlwRYS2GSiaE2P1bu0S1W6h5p8LZxV4g6AUdNscvY/vq7QKcBoT3dBe7oLcVXDsVQi78XO/IarN68YhW/OQcT43avvVW/lRP9a9Nfeu7+te/8wlf/OIVP/+LP6N5IO+vCHng9uY5+2nL7e1LYk69iYsJ90aOkQ8++Bj1yi9//k/54ovPCSHz7OX3seiMcWLbnnM63JND4Wozol549dnn3B8bIU/cjRteTL/Lp7tbzLodzdJWYhohwGY/sLm54vHtgVZmKAWthVYbtQixJDbAFDo5vpowSFfhNlm42kZsCZxMkAbaGs1Wjios3kdxUZWdBNaLzZaJEEQ44Zy1s54ifXFZcBaFGyC4kbx7WVa0b/p28b0TUPFuqA605kSBvcBc1m4zY8YqiqdAAEYJZLqh+WC9iX4MwjIYu48iW/2YT58952TAVWL/PKFbWK1Rm0MMeBKijly1D7Al8ObzX9CWt6zLA7E+4915oZaZ+XTPlEamq4hNO2qpHM9vWcuRMEyI7BnSBpOGKWynDZKU8/0jh8ORECKbbSRPG9ZSqaWQBsUlsBanUJE49RF5Fax1odQQA9YKURLH5pTl1BHaEDAXVnP240BOqfOKS7+G6/qIBmg6cbCJvNv1azdcEfOGUYw0n2l2R0xbppj6eC00fFCef3zNlH7A4c07givqkRoyra2gG3S8YjveEsKG5WshrneoGBpaR9qmkUkySTMndWYxhiMMLeAIKU/kMeLrmbqurOpUUWaDnz/M+OaamzHj7TVTjJjcYjkjPFDfGBonjAVhwuoRWxwlYWlkkcRxqax5g0cQzqDd/F3MMe/8vWYNql3Ec2P3LdUFsYXghnon/jWFRk+AOqwrsxtXMRFiZBq0I0CaOldwiKSYSdpHlha6sIeYuptB601L1vcijj7cDTGhEns6kFnn40nr41J3JHSVeYiRFIXlcKbOBbWOsqKdv+jvxXQh9wOUNCoLp8UYNxNDEEwSpSZCnAC6vVnM0HtOxpgxKmIVNb9wHgW3gGrqUnKcEksnJWjivVmlmBCNrrLPTqjWeeqhG9pjgbUZIRU0Ogknb0Y0dC6qqDIEZRoFgiPDBuJEHAeiV9LUKVWmiTjk3vy5MsbEcB3Z7bbsr/Z8dP0BN9d7rvZbttPAZpoYhkBMSgxwMRtFcH7rt7/Hz78+8os3lcPP/4rPfvZT7l6/JraV51db/r1/+9/ld3/zd7jeX7HdJrZXE6IO0nozKImksTdMkslxoGq3QfLmmDesNkJKpOBI7Nx4q0a8uHgogXYRQIkGSim4t28M6/3SjHofAF1EQgETQ703gtV6kxxCAAk0jxgNl8tnktp59Cqohc6Fp3NA3Y0YQ9c6hIg0Z7/Zc54f+eqLL1FVxmEiD5G6GrUuuFXSkBmzdk2FtR5q4L1Zhi4QcxfMO4Ya6Ugp5p0q4J2G0FOsrAcG2OUnvTfcAKL9GtVaOwVOu60WQbFaQI3oyuKRdVHKnP/mXcBTPdWvaH3rBtVRPnj5Ei/GeS3UGJj213z44QfcXt/StCsOz/PM2e1iyyFQjHHIfPQbv83SnFc/+4y2wO2HnzJOU48HTFuknqmnI4/HRwqN3fUNu6sXbKctX7295+Rnvj48cPXhR1y/fMZiTk7CdKVs9nvevA0QMq2sSC2Ueeb0Vrly4cNNZNrALJk77akiO8m4BXIOlBGORzjOSjoraUg8qPMauBLv1k7upKCMQTk5PNItjLqXIX1TdeGM8YjzMcLG6b6hMdKA1d/79/ENH+o9I0sUMv2LmMgYQ4DSjOLd3H5osNOLCADDauMmRx5UuBtheRYZQiRUutgreUdsh27V01rDkmJNkG1ic/sMryuPr35KeXzgbH2jFxHGccuihrGStjuSA2fFDoXz+ch+e4N7Yy0L43bDEAPzqVGWFdDLOFxQDNXuACFVwLSraKWjbEajrUcsKJq3RM2YKCFGalqodabUQtSKtgYXzjIxIknQwaGAHlda8c4lVEgXA/phCrhu8Hll2o+81MTh+IC49ANVDvgAwxTJ4y0tOMeHM1hGNRFMkbChpc552334gt3YKF81vNwxDsouZw4pE8OIbG+4WyLLO7+MvhvujZhHJAlXQSnmxDAyeIPzGUk7DuvAVYh8uNvxeD5xz9LFWsMIWViqs5bG6XFhtwsM8ZLUFJRqAxK3nefXCklHdjmymSpLOHA4zCymWBi75ZGky5jb+sYdQGM3dPeQupLdOw+wrnA+GutG8e2IxwBJSEGJaSDHqTd00u9hTRG9cLk1RlScEJwQO8mlXXiBPYSgC1gkKIL3dFTt6uwYUn8+6j06FcVNCZIJUnpUpXeLu1IKpQhN6GhiiJg5D/cnWqtM0xalfaOoVpEeIlHtYuUE3hrhgtap9M9za33SI9JFO+WiOu+th3e0ziClDFFo9BhKLwWLZxqxCwV1hORYWIlpYJg3+EUYlnPsIhlXmgfScI1q98bcDENP6coD2/GK3W7HRx9/yDRmbvZbPv7oJbc3e6bdQNb3rT+X9K6+br/nL4trR6fdSZrY7PYcP3/FP/2zP+Gf/pM/5HD3lt/50Q/4D/6H/31+/3d+h80QqHXltDT87QPjplGbXO7HgdNy7tzWtGUJ526bpQkPAZfuHhBjYMiJaRy6j6v3ZCxHuvk8gRAjSKSsK+aNvmIA3kfjKYRuTUU/AOkFqXTrTaq9X1ElXIxTOydVsIv4s6c4qXTFfytLfx4XEZJZX08F4fpqSysnvLbO9Q9Cit1pQiWxGSJZYT4fCFG6ziIGyuqUWi5BE/LXHFjo4RTiF7eBPlUwb9S6gPbDkBA6H7Z5f13SrciAi7OFUaxHvOqlSW1lxpsh1qc0Vt9jy0/1VP/m1LdvUHWiBWX/7DkfbDe0HGgaGDYTK421Sl8jcuy5yCLM9ZKAESMM13z8/d/k/s0jP/nLv+Lx/sDu+qovqGsniHuqNA2E7cBud8vLZx+y219zvR/7OPF05o//yZ/x/d/4IR9/5zmDCCE7V9uJ3W5PCzPn+zvm0x2nVck68MtslNef8nf/3neYa6NEI21B3YhdVsl+I9yfhMc74/ggDGPkvHVeS+Ea57uq7A0wY0Y5Ss+G3rlwuCCptXVktIpw8L74jtpts/Du49e1oX2T5OLfp54vm15X/1Kdbexm73KxCDoBxZ2Ms3UYtJuuh4tX32vtqOqXAyy3gpwcnxu1deuumJWKYcGQ6H2MLYHgIym8ZBsd1gViIkx75iacj2fCFBmyU2vhfDoTxx038Tnt/CXnd2/RKEy7LbqcezZ2NZ69+JjVIAwTmZV6vudw/w4NEyleIWnA2pGYQl9wfSaLYauwzoFhd9XRGZyYAjU01nXp4/y1EEvFS8UkEIbuVaRDJodrzg8zpVQ0LF3Bbw1NQsrCQlfBb4eEZuFYlLU61pzFjEWF7VVkWidmc9bHjuRMcYQ44FPEtBEJxHBFrrfEs5NaFzc1N/J2Q40Do+4IrSIWKceHrnyOyu12IttA3mwoJxiiUWvlsVRYjDwKt9sd26wEc1gSZR4JqWJtwWWlrBXXTBy3xFapYrS1H3oiTjQh6sTtNnKzKay58TWFN0fHwwa3SCPgtSOV2bsyPORA9XNPDOsRPuQw4BUe7ypDLoy7iIzxknwVGfNICrmjiaqkQTF1tpsd3rpqecgDSAM3ppwx6Xe7Xf7dLzZUIkBQinu3HsN78mPo9kAaEi4R0UzwwmJdNBdzBGmI9nhdt4vZeVuYW8FwVCLbsdMBRAShC/R6DGWglIpcVPbAxY+1T0oQR0K/vnoR8bRSCEjniqpiKlg1mlWCQdRIRvHWcAoSYtfzaGCctvgCrgHRxjCObHYT02aP5i3nBlOOvLja8GK/4YMXz3j54Qd874OPefnhC3b72K8HgLWubL8o1s3axX7pr5skoaf/oRe00QNLga9f3/HHf/TH/Fd/+I85PNzxd/9bv8P/9n/zv+bf/Tu/DwaH+0ce7t5yPjzw9uFIu+tJXHgihUSrrdN0mjMME8fHE60aElN/v+nK9BQSQ+riN3PrB/mLUj9JT6iDnizn9Gto5gQNlzG+gdfeSEoPRnC6r67GPq5v3t0VLr1pp5TQY6VbdaD1tfZyCAravXZdFiIRNyEmoZSZw+Edz59fc3W1Q0PApeDW09FiCNRl7kixdSS21UJtftElXMImvhFDXRpnHAh9Pb/Eyjrdd1gJhEvSlmCIWKd2+CUYJfZrVdaCuVOakZL2e9aFijHtNuTNE4L6VP/m1bcnrsQJJTJcxlnjZuJsPSLUNJK0x/I1GuU8d64boaMWrpgNjNMNP/qd32cz/pzTw4Hj3X0nucdEHEfSMKEYOQ4XbtdKGRpL61GYf+tv/Tbmf8bnf/nnxPIJz5/f8OLlxH4YGJLy+usH7r78GcEraXjJh9/7LZ7dTvhm4tXjmS/fGZ/fH/jt333O1b6xQ9nTocuvhzM1NUrJnO+Nt4fCG2vIJnO96+P5o0KNioozeGMwGFS7P6o74gF35Uhl1i6sigoXjwLixYdv9e6/mOi2IX2yaj3aMQgZMFG08Q2y2kTIUZgcJiBLIKjhtZE0YkEp6nwdulG7XqIF5ZJooqoXu5ILP6sZoYBbQtoz7Lh2zl8K5DzgdF9F85UYE/v9Bq8jtggfPAs8vHug2hlfTqRhz9W0I8mE69DtY3J/T9KQmEvl8LiwC7EbXHvrwQbem8+2nimysq6GoozDQM6JlEdy23enBHOoM7ac8PUKr5E0ha7aDUJgQmaHWlCvnE6ODkorjm4HwpBYlq7Qle1EWgMFQWo/THgAGZXbD6/QMHHylbpUgihNAlUFnwIR2KQrAh9R30J5+znr/VvGnTLeDizDjl3LtDixtNhTkULlajuxNycsJ4KO+HbPm4cTixTs/p7QTpQCS4igGygHIomYr2FbWNY7XAt5TH26LBlPgbqcuu9oKwRWYlTCdiTliHthGia2Y+WwGK1FWpOO3IjjBk0Ul4imERfD185vwxriAfFEmZ3D48rhWBh2A6IZ0T5aHyQQh0hInYscozMNA96MINLHqAhiflGzdz5gC10g1Wp/LqqCRCHZJfGHAN5V0H3cH/DLl3kErzSUSjefD5ELd68L7bCGBqG2xul4ZFAlD4neB3eD+GbeA9npJugGF4V4/5yIgNG5uW6QNBCiUqxzA5o13KEuhjnEEAiXdLyOhAkpR2IQPGVyVGKeOlUgJCQreZq4ur1lur7hfJ75O7/32/xbv/u3+f5HH3C737DdDAAEqQjdKcX9/cReAb8kcWUgXkbkncPYfTP7CLmTNoxC4tXbB/6f/+iP+K/+8B/xs5/8hJfPbvlf/i/+Z/y7f+f3wAoO7G537G72SHOODw988dVXPLx5Swy9mVSF1iqqkXHYktKhrzuqoN4t+VZnOVbGcSJrZqlrt5SCC3reEXSnB3ggCXcIsb8PzSrvle3g3X1F3yv0u8AK7QlWcBHXh/6YZu9pU7F77F44nCrdd9Sto+TQiCLkLLx9uKPZwrPnH9HD1aw/Ht2/2WqjWEd2RbvrDCZ0QwEBD5cggffiLQGJtOrYZXrmXroLRMgooU98Gt0Dmp6GJ6qdbtZPIYg0UgQ3pTWIITEOG6otUFbGrbO5lb/J/v9UT/UrXf8cI/7cT7XJCLFzuEJrtCqkIfYRmjeCOEMKXdHtQG3YvPaT/KBsr2757q8PLIdzV6SzslI4W2NdGsm6+pJa8XVlLYWlWrew8YHf/ds/YD6848//+MdsNyPPnl2zvfqQv/zxX3B8uOfZGPn4+TPG6RO2H3zA/uNrbp/D5qXw8Qtn/sz42WfvuPn+Mz4YhFvtY/r7q8SbNXP/2cqbn3zN6+UBHTL2yS3DpwNRFo5RyNOOfU5sXWjqHFxYDc7u3XhcYAVODit9U4Yu+IhcFJodQyXTrWqCBNy6qr+fnhtbCQzqDHRB1OrdtH8Adv6e2yQ0DVzhvHTj2IzqwmOOzK1R14qugXzxVBSnq0ojHUUGiiYezqUjufOMFCfkwDRN1MVoniB0/lRZIkLkdrxhs33LUk8MEtiMW9YCMY+czPEQWcwwg+204+bFJxznz3k8HxgiFC/MZaWIgWQEZRh2xGHgvJxZ1plpu2E77rm5fd4FFKczMQjijcO7O4qPjLpjHHuiD6qkKePFWI4reCIME6t1ZHGzEYZB0Sq0sqGEhixGDj00oqxOyZFgfcx7vRPeHh9pxdndbJhjjymPevFojBs8XaObE3lZGKYNnjecxg2ZHa4buMQRTjqzuxrhq7eYVa6GHcQN6dMrDjcB++VKOZ15d34EfcYa4DALTSLDoCTdcNUK63lm3G94nE+cLFHSBh8DKVUoM74eSEmZtgOrFWhG9MCpJEwdGqgXwsV3UUKkiVP0wnlTxb0g1roBfDOSRlqrnA5H3r2J7LeJ/TSSh0SMQkgwDamHLuCMm8gQEupCcCeGjkRHDVhtuEg33ZGOkBqXpB4ulkIq1IvqH9ceGRqFMGR0yNSzdEuf2Bv1pZSOmFnFxQix4W2lA3OCYZzmQmJkb8aQM1zStKxVzIWQ+s8hFySX3gC6GGZLDyZxx+qA4IRLs4c0qhu1Fao5xZRRB5IOuPWxcUhKSIKGRJGEkIDYYzJjRGImTRvIGT+f+N7Hz/nbv/Ex17sd6RLSYWadvy5KRwZ7mpO7dRpCjJdnTP+72sVCbl3+1b02E43C64eZ//xP/or/7A/+X/z4T/8QaSf+o//wP+bv/wf/o+41SodnnT6BiRrYPb/hhy9uePyTH3N8+45arYviuiQIlYCZUIoTtefRr2vnii6Hwmaz66hr6GtYLWuP1wWCBN5PpzvoK5d/c9xbb/il/55K5/sbfhGzXn6eAN4uHOZu2t+Ry4Bd/FdNeoqYpu4SIPhFmGWIGrXNHE8PhCjknGgG3ozW+oEthNQFXAQkpH6fmCORyyGnW9N1PnWHZ5oZbt0lQFQQCi5rX/0ldW9YAPWLOKpifnHWDhEESl1wLxfI/GJbZYpKYghO0TNrO5HT+s+x7T/VU/3rUd+6Qc0xdfGIjt1MeDXGYctSnOXUGLddMCCixKisZQH6xifvowoBYkQ3E9r6KCoPgeBn2ukRa2tPXbn4j5pXlnJGl4ln2w3zauyvlN//t36Xnwy/5O7dHescWMo7NnnixcdXjDozTZHtVefFvp1Xwqyklrga4Pe+v+fVZ41f/uQLXvzaC3bjwDNgdzbKl488/vLIjsbvfvc5Lz655tdvRn40OZMNvFoKXyyNexFyiuxRPuiENN7R/fXa6tw355WsvBgzQeC+FKo1bvPAKF381Hl19JxocVz6Bk0ANyOHfs3G2lOtauhK4khHRI0+ShJVohu3Aqsqq8GSrCdCe8INvHTUqIbLWNW8b5rbnr1+9eGW9k4o74S2lG57kiKI9ahSnGZGTJnloMz1QNzfsK0jrEazQB66Kj8gtHZBpmKkiBDHHcN2x92717S1Ytab0zANjMMVuU0MYSCOA+M4UEul1D7q2087ksLRjbo01sMjh6/u4Qvh8etrtvuRPCVefvIh0zZhNXM4Frw2fF3wGInmPVAgdNSvoZgoqFHWSvXCOAVKarA6bz97xXA6sj48EkImxw97mKE4IXYeXLrZQ8rMsXNyq2YkZkiJIMqYBkIEWx8IVijrwvPdhnpyNsMWtjesXrhK1wif8Pkvfs5ST71ZHBM53dJMWOYHCJlnH3xMO53w2FhiYZYtMwNx3KJWsOM7Uqtsx4DYGbNAmjbMc+DRVs7SMC2ozIgVpCYkTLhGmsa+eWOoelcOWSOERExKq1DawvHxgcO7gee3W/aba9KgpJS60XxOBIyYE1PKaDMCToqhb/Ci1CCU0n1ZTeiiR+lrBoBpt6ASuajkQ0CHAQ8wDJkQ+2MIglcjpYGch8vnoDcAhBW0e+gaPQfdmvLwWFCMEEaCG80rmhOqRvPuCRpCQyRdxq2CGtAaOgRU6YKVZoTQRS5DysRLVnqwglMRNyR08VZZV2KOpLEn8C2tdsW29wQ+057e5DKgecPNs8gf//Efk73wWz/8Ifv9nnEcmMaJKMNFwW4XqyTrHqhI99eU0g8Y/DXPHe3CUKyvTQ9L4w//9C/5v//D/4I//bM/4fTwBb//2z/g7/+H/2OGoXN+NfRRvAuoOqWuHObCWgulrTiNnPt1F1FcnRgyIjDPZ0Lr0bo9CSmyv77p6KN16oSGSxxwyrQCZe3pcRouDFrhMsDv9A4VaBej+/dK9s7Zv/ibSh/vi/XfcTMu3g8QOm+5vx8Vw4gXv227oLI9+elCPVBIw4CETAjOup7QGCjNLyp9+mN651Kb+8Xh9JJ0JdrXci7CKN6Lu/TSlPqFJ9sPAF0AFtAIQWJX/bd2eYmXBj4qSKC6EyWQhxGrxtoKuW1IrVHmgszhn2fff6qn+teivnWD2tYzaUh9YVkXrDhDirgrxQyRBdEdQRPOIzHPtEb/cCE8irPViXGEEI9oXShz94iMaWBKAU2PVDuz1kJDmH0hlEfkFDkPAx4iasZ4teE3fvhD7t+cGXYDGp3D27ecHg88HN5yEusb2NqYWmadA3enym5Qtji//ekNf/Rnj/z09Yn2XJnEOL09kNuRX//Rnpcvrtg8i1xl4VOBD3FuVHkZR3Ym/MIqa1u5CYntpWF8XJ23Dwvvvm4sNI7bletPblgl8KfLidfzyo/2ym/mgY03gkSK9dG90zBtBHOqByQEvApzDLyWxsaFK1EG7+r/zmjqDYCZEwQGV6o7X4XaKQEhUBLUMzCDBcGiXQj7F1lAhLDtDQOrMKwj5aI6N3XC4L2Rc0Es0EojTAOhOl4Vo+LalfkevOeqN8jq1OaYQ+nqGG6ef8S43eFrj1CsoVKjgwVaEao4HpyoMF7t4DxzOBw6V5iGnRvnxzNlCQSZiGHCysBxjbx6e4+FLR9974rpNvLumDi/WbCHE0NVzkUY/IaalDpXsgbGnPEEy9IoJ2MdMjIGOB7RNw/chIrXM4tVaCuRCXXvSuuNIpMTtwMtf8y6OKWNbKeJTTbG2EgWCDXC1TPs0Ah2YtxHRAZq2BFvXvLcGu0wYpst2xcQ5ecMufs/3qsy+0SOL5nPmVBPDDlzLCs23jCOL5nnFVdnNSeGwJ4Nqc3YaWYzRCTCSSOntMPCzGBOboG2dn/UYAOuY5eaBOkhFsWp65mAkocBQiOmjpahzmmeafPKLmT2m5G8HTEzxtB9WtUDEwLeSCrUsvRDEo6tpW/S1oVzYnYRxXRUKqaIKwRvhAAtCDV1Md1mzGyHSEud6zc6BKsE782DhkYpldWckAdM1x700MA94TFwnBPQ2IxCSg5t7o2CFVQdlQEJ1hEqhq7YF8WbUjBW6TGlIXX/UaM7GYyT0ljwcKDViHn3+U2xe0SHEBiCkot3RfhccYHiUAm0lqmronHgWFf+wT/+E/7LP/lzvvvpd/jg5Us++uADPrm5ZhoHximR0sUs3rvgUL0jpM5lffBu9t7ef29wt6z84z//Kf+Pf/iP+Gd/9Mccv/iMfQ786Dd/kxcffac/l7Wx1pnVGm0tHB4euHu44+3jA8fzic1mwzBsiJ4QNtRWybnTknb7LfPyQNBESAMSFHxls0989dVreLxnf3NDKQ5hoppe4kjpSKbNuFQk6mVl0745eesTnOZA7FH21mlRIdBV7+KEmC5cTr+EQnRaSBbpUdw4gW63Fi92aKtXcrg0rA6NSHGhhYy0hai9/YyausAsdvFZ7z27h7d57TQUc4TShV7Sra1EQ+c9075JwjIf+wFCL0EE3qcI0BtZIeJiXTNgjaCdS0uF6APqmea1u12srdOAGLHlKer0qf7Nq2/doFZLOAPVCsO4pZ3PLMuZzfYGlhVKIA+dQxQl9WxyumrbcCwKFoQUEpsUWGfh/nxEKp3TFCY8FdRAUM5rpa2tc81CZZ5X4tQ3QPVGHJS0y6DdSuX5xx9S1GntjJWVZoVUV7SM8NhoV4Zdd1FNFuHf/q3vsZxmrqIwuPB7H13z/U9vOafAvRpvvHBH4KopJxEmMTLOd7SP1r5YV14dC0kj7yzw+Zdnvngzs0kD3/9oyw9utwzaU5++t91TwszPjyduEX4jjx1NFu9RkEQeEA7u3FfjJikfNDiEwh+1BzIbfssmvq9Ks5WoSnSlirKokwxCq+QQSR7J0nooQuwbVClKrpHswnpJMAnS+Z4hR8jGPDWkCm01hhagXTYOaeQorN5tkRoJ80q9IHDaTSEpzQhkcnKWUkiSccldtKRC2uyROEEtRDUqK4flgdYKMVw4kV66n59GtrsbHh/uuX84Ia1Q14qpQO6K+5AHYp7Y72+Zhh02V053R66ebbjZJsrX95znCnkkp8Cwq7g7x8cTj6vz4fUHXA/Cw+J9MmBwfCykNfDse9/l0+0GXr/j7lDZXu04B+PeewKaqtATTo0xbZlOH3B+XbqoYnNBa1ojbiMhPqfqRD3fsciZYTRKMaY8EEPm2JTkiVv/HjMjdjhwat3rN0mmxQCDsYZAdSNFoagSB+WDcWA+HrGQ+e4Kz+4f0LpSz5VqKy0YuTZelMYmRvYRBh2YcQ7rTNMG7YS7k9TY5MCKc6y18yybMwx9FHq1GdhvIjdb4fn6wIdf/ILpbkBT6txld/QyIo7SKTqiEC/elp202ohAyhmnj66Vy4FMOvoX4ntRVMQlU+MAMbA/HYhfvuF4d8+yHKhl7tzCr+8IpzNLaRQT5qWSh8iQNjSrzEtlrTNxEKQdCGcYo3K16/dF84rgnMeRz7cTSqZWx6XbZ4n6RdHvhJj75KPphVsfCJqJIWM64WmHJUWkx2LmYSDnEYkZ89hTqZrRakG89ea9nAg9mPfydwPjMGES+PmrR37yi3eMw8/55Nkt19d7Xry44YMXN+x3Y6dWZGHMmSipI41cUFVV1AwT5e184A9+/BP+4R/8U/7sD/6I13/xp2hsXH/yPaZnn/JnP/+c62nk/uGxN6PzmXI4cby/53Q6UdaFaRr4zd/6Ibtdj+90q/3wKCDaCNHZbAe4JEPV901hUFBlWWeu6Ob1Q06UteE0Yg4XIKM3rOGCiPplH8C5eOYK0rpITbRbTLkqUS9wrfVUJnG/KPa5oK32jUDN3Lt7RFDWNne/XlNo3tdUIrU0gnURX9T417Gj7qSQqW1BQr/WPebUqa0n33X3hYzRE6fs8no7wt0u9loX74GLWt+lN6nuF7s16fSM1lpfT1S6O0nodI9iZ5pAkYbklVYW7pa33K9v/2X2BU/1VL8S9a0b1JAHTJSUMhKcPGZOxwX3SooKHjrCpBA0d15Q6AKh4hV8oHVnDlQT43bL4VRY1kr0gZwmaipY7RGMITilXRrc0vrYd2nYIoSdEvdKqMJ8WJE0oqMQrjfossMPJ6xW3GZKmdAxU9bMsgg2OoqxC4FpO3Alwt472reqcO/wy+YUdx6ic0/j4MKNRrI3dg6fSua+Nn7+7owAsznjufCDjyZevBjJ227v1ETZu/OJR26mPT/WM28p5BZQF0Z1BhW8KZ/Xyi/NeV3O/E7I3A5AK9ws8Fdl5ZQDbRP4SCKhKYZgarg35svI9O258O5UeKhGiT2VCzXWUmHt2c2S+4g7SHcyyAhpFPxamXFGGwgPRluE3IDQhS9Q0BCpkphLI2bwFvA2A46t1qkEgxJjxAxq7VYzQbvNv44BSsBrAw8MwVnqEZGeIOOX5tlcyHng6vo5y+mEl5UYM+f5iFmlxBWPJ8x2TBVu97e4H1lPC496wszRUbna7dns92yfJa6ujGkjvHw+8fN/9haTwpAj11Pi1ITjuzOP94XdGHixH3lVG4/TFvaJ+TnEFNidE3VeGUyIk1ImiOrcfpTxuVK8N2CNvglKEnQCQuLxy4WNQOCMy5lYjywIsttye7XD3gzktON1+TkP53sSCU0R30ysEtGQGBKEeqIsKxOV6yGxMnD98Mj/4f/8v2csTzy0v2mdVflPfu/v8WaXEQuXUW7nIb4PDBD8YsPh5JgJkggkoifaxSYqR0Fi53nH2C2OzALVYF5X5tJwrwRtmHcPWq0zUpdvPGGrKx4DeRhIw4iJ8sv7ez5/eCS/+oLtdsPNfuLqauL2es/V1Y7bcSLmzNU0IXR6VF0rd8cjf/Lzn/Of/8M/46d/+jN+8Rc/obWFvN/xvV/7EfvrF/z4L35KLY3VjOM600olVoO1YRZprZE9gnePW2uN1rqAyUpjaSvLcsJVukvDxZVBCZ1fmS5rgBniDdraFesqIBWaErTTAELv/Wl0277WhJDCNzZ57p2nrBcz/p4BceHO9u78YgMGuGHN+g+hmCYE6b7Al2bRoNNQiiIe2W0mLl0i7fJIGgLpgtx7FaxYt5ALfY6lMvM+brXzYQPu3XxWL4BGd8YQ5IKaAp13qhfurb/nPfdgC7nQBwCKX3jv2g83Jl3XsJaFSuV+PnFo9V/dh+WpnupfUX3rBlUjEIw8Jc6nBzQoaRDWeiamgbYYHtfOM3pv5CyN1c8kd3SpiFZaSJQAacrk2y2Hrx/QWtgMAyGmnnlsisQ+zulcrsJ8PjNuRtoCbXDiaExb6fGZCqtVttdbtqfK6WxIO1LshNsG8ch5hdPinLPzLAQGb4w0xLtBcnBjdMU9cPTA3oWjwaM4r3CeAzvrViXXIvzmNPHhRyPVhKbwOZkvsrIofOUzSSJbhE9xrsS5NuPjnLkn8KenxpdvTowS+fAq4dvEl+2EBvhkyjy/KP9fhpHr/cS0wh8cz/xni/N3N5lPgL13JO8E/LIZXzxUXr1e+eXdwt0pUr1w9Wzl6tlARtDjJVJvr9TY860Hr1xpt12ZzytLCUhybLB+cp+7B1/IkKSP+BXIlqnHiDMj0mh16Xw3+qYeY7p4Xa5UusF2iIJqRWIjrE6rinrGtfS0F7feoBrUUmipMU4TKUTaUqhlpAKlnKhqqIBQOJ5PbMfMbrsj7QcsL8gCN3ZFswghslbvcaBZuL2NfPhre04PlebONGSWg1OORtwkxikSdoE4GuEgvD0vnEPl5X5iCorViCxdDGLutFrJi7NpHa2Okml0JXiN3sMdriN+jpwfZ8L5HqsH2mGHbZzpww8wUTbsWYMgt8+6gfeykmJExpHS+vg3lcboxvMpI1YIa2G/2fDy3ReMZeX/9D/9X/HZ/obT44mHpbL4SJwi45TImljmI6fDPVp7g7vJwjiOxCHhFObzHQ+PM+Ldn3M3Tex2W26vtmyGQFQnyHs+byBKoNUeU2HeKOtKqWdoTqsFbwV3o5oRUhcHubyPOoUhDRfD+kQYuldmTxWKBE1onmDcQows85n7r75mPR2wNrOuM+bGX/30F/zil1+xlMZiQl0bU0xMKRIDrK1yfziwVsPS1BugVsgBxqxMOfG3auV/9xd/xYt15V2pPbBAwa11kZQYMXRq7vvGJkftIpfmBO3+q0gicrGPUwiNfmiXSmkVs0rTSqln3FdEjLouKDBauzRpjdA637Fd6DwxRnzqdllVRo6rcX5z4Mu3B2K6I+fEbgxs91te7PfEoJRaOT0c+eXXX/Pjzz7jp3/8S37xJ3/Oei7Mw44PvvMDvv/d38Rn5fFcqO490KMKUpR1qT0hK0BZCnlIAFjt3MplXoghQhZKtS5K0oDGzmuPMSDW0Is3qHERzJl0tb12rm51J8WONAbCxX4vIEEuKCIgF16mtgtfv9uTdbs+ULELz7PTk75J9rvQnyQETARVwVpvWkVCtwGTnsinIuQhYyKs7bImxfjXjaMbSbpINChYNdwAAl4LELp1WuiTgE4hvYhT8W/Ed3JJFJQLT1hDv15m3uHji22WfpMYJT2ggNr9o4PhVmhWEQ08zGe+vp+ZGf7GTcBTPdWvan3rBvXu7V+x204EGckp8uzr14SvXgPd0FzoZtyiSowTTqSWlVJOF8ZjhHEkTVOPwEzwzIwXD2fa3IghUm3mPB8oZaVWo6zeVbYhIymzv7rm9mbD/kYZtp1LeXqEuTY0OjFHbu5m3n3xFlsesKToeM00bJiuMuMvIuM+MGXYtm5HRJi6Zcsl2UMddq58YE4DFlGqOEeBW3ci3T7m1mEnnZBvKFPrPqevBQZxMkJ2WHBWESYzvh8CdzQ2ZyfenVmbkXaJ3fXEFYVJ4MYDtxLI3jAxJpQfEbAGn5XG53Tl/8ugXGngvhmfHRfenQpjFX7LIvNZePfmkdPhkd3Nhpvbqz4uSpFwo+imL6Q7aWwd7t8sfPWTI8McyVm43W+ohY4qBCFsFcZuu1IXqGelzVDrwhCNUo6X98rRFLqrgyprXTGPiEZEGs5CMEMXo64dmZrr0k2rm4F3QQAxMWy2jOOGgNLWiltjXmaO5weqr4gMEBIxb7jdv2C3zexeOvHKKKuyHpyHuxXzRByFYQ/j1pl2wq9n5/i2sLyrbHRiPys3p0baRLZHI70Wxr3xXITnhzP1i8r1dkuqgXYP9Wh4aYy1UFbDZufZw8p4syE/H3FxmsAcFQvGLig8rNirV/jbV/jyyM3tGz748FOWaeHdJ98j1oC0kaG8ZGiV9nBHayvRnc24IdXG6Gd2GNf1gWVeKK7oODGGruA+fPych5uXfPW48OZxYWkDm5uB/fWew8l483BP2TwjlYXbtrAXx1VpQ0aysw47wovAzXbHuB8Z9wN5iDBGFmks3nPQxRoBIZK6xVKDsi7Mywnz0PmZrfXQDG+dypJHJCS8OWnImBk5jZ2jmRIhD/3eSZGU+9g8Dht0u0Omkfl85uvNyOnxgVpP1LYAgZ/PK39+XFmqM9fKcpzZ5cz1ZiKl7g163GTu7x+Zdex0PleSKllhCvFi0UQ/QMlFYS6VoJGoPRMdr3jrPEZ16RMDIuqZGCpIRLwgHoj02ExpBqEQQs+EbzbTqJT1RG2lm7drpJTak5eU7gmlhUbDvPSGx0NX9JOoF4G6R+0iRHfKWjitBT2sfP75G2IMnJczx4cjd4cDP3v1il/85Mc8Pn6JD5nNy0/4zg9+j2G6Yjk1CpVFOhVDqxOr04qzNKPUhpVCc7s0TT2es1o3k09ppMwV0e5w0FGFQqsFxdHQ14KgCipddNe6BVjzehmz+yVEoScwiXS+s3uFi+Cpp4txMfq/cDffm9pfmj1zwTwhki7pToZLoXoF6TSS5k5Ppuh2Z3jBWyNLt8Q7LWdM+gG91O67qupYayAwn1ekQSsVNPTY6aX15xnDxUarXTxRe5Mt0lA1sNDFT9+Y+XfhV+MS9KK9QbeLY0sISi318is9eKSZUdtKwDAPPNwfePPuQP3ncIx8qqf616W+9V39Z3/0f2O/27Hb7vhvP3vOf/qf/ifk+fz/z+f2r7wCkIAN8PF/zc8F+P86s94AP/qvefz95eu7/xzPB+DF5ev/V70AfvNbPt5T/epVmTb8X/7Bj7kbn7MPW0rN3Jpz8Mp895Z8mglTxoOS80BKBoczVo3qRiyViY5qPRsa9/lEk8o+NSwvpNQox4XyYNzUgCCMAa4kkFvjNPdkLs0jm2cfc3s9cD1l9lnZJmGMQtSuMsYTIpV2iRK21ljPK7UUSlko9YyosZZuP4cbUbuufF1m0IJKvCjmI00abt23NyKoR8z+WuCiXvA6ExoEKilC0G5RFWOPIU1pIMSBAGxCoxzPCF1w1zBiUm72O2Rt3J8DS6sXk3yhtcq6VMoF3VptZiWhcYAgmK+EIIjbN7Ga3XJTqbWgQXCpNCtAxXXFCZgMqG54r2g0a916yFasFdb53JGy6qxrpRSjto6sKXQbphAgOqXVjipbH09LKP21VSAKElIX4tQOHFSc+bRwOD4yzwv3r9/y6k//nLu7v2KNZ4b9S773a9/l+ub/zd6fxuqWpfd92O9Zwx7e6cx3rLGrqqu7emBzaJKiSJESKUtRLFGyTCkDICRAggBGDAcBAn0I4MSJAxhOgAQIjCROADtKpBhJFEWMGUqipkhNsjk0p+6uqu6a73zP+J532nuvMR/WvsUvCdCyAoRu3AUUcHHq3oP3vOfdaz3ref7/3/+A9W6DlUxSQp8DyUeqVCgcnRvYhYGYIxILUUMQtNE4H0u0K0LTNnShI0Uh+ITvOoxAt9tibUUwhugd8/39MfWppIOlcQKUcwZl0NoyhB5tTJEKRF/+nDJgy2hc8uiGTyhRRbecykW3VIZjF1VMcdJTXPM+hmJuyoVvoLXGp0gWg9YjVzVl2rbCx57V8oqqqok+4/ot2pbudkg9vk8kV2JdkcLlDcGjtRolC7FodLNGU0gofOr1H28XUmJZ0tiejc9elwhohYzGL8l51PhTEBdJjfi2QIqBTMRnT8iRpJ67+J+v77/1vXdQ791naw2JzB2rqfqOv/Vv/DssP/MDJAxpovGxBzRtcziOJsaNO0d8CAxD4chN65qjRcWirRh85mq9xfni8O26HbtdR/CRmCAkECzWGJSpmcz2OTqZcHIC9ei43bhI9pGqaYgIZ0/XXJw/wvsdWTXUZsZifw87rTg6NHxuX/OyZNoEUaWS6Q0YVTAlXRYeK8V3U+QiQ6OEvQyvIdzVgiaX+RuQVBmXe4SPSXyA4lpiSVaKhgmeL6B4TTSZSC8JvFArg+iIyn8YrZgRhpQpvSFhpjQmw0BkLZmznLm/U3x4uqMVzSQGNiEQQkXtE9qtSX5H6AZ2ywuG9SWpX0H2BIHV4PBZYScLsm7ResLx4QmHR4eYpiLoikDD8nqL6yPN4hAxGlsr2n1NVTmsVoRO88mHVwz9wNBfY7RnNm1JUqOrOcZaxGREV+VgTwXwkpRBh4D2juQ7QhiIKjP4geBK8ZKTImSFaEvd1EyaBqMUOWRyigx9z2ZzTfCOoDSmrmlsy3S2x+SoodnPNJNi8uq7xOY6kdFIK5hJopkJzUyVcfUgxE0ieKEbAiEYos7QZuzCUDcZyQkVhLBO+KXHJg2hjHrFCnpPUdVCvui5erJEVQ2LvTmioPOebrdh1tQMK8fm43s0/gpjIvu3X+dGd8mf/Lf/W8w2Zyxu38EMmmGnkXyA21xhdx26T2TtkdZS2YYYA6HLSBVotKGShHGlQLVKMdOZH7j3Ls22ZJLHHOldZPBC1jWSEio6FJGcEy6CrirywR7f/rEfpJ1ZJkZojVDpolUeoT0YpQhRw8jf9IPHDY7oHMF3OL8lS2LwmZgNVitSjGgpGB9lDEky0ZfwhxAy1lQoU4okzYjo6R05Fx2g0gJOSvxkCtQqj+NfRtA+5JCRpNmfzfCrbdEZpoQypRBQaCZ2gg8BHwfIiZwNKReE1lBmtfSS6HMcY0NlfO1STDKpiAWVUmhtS4yzKm7zQkB6xkUNo2FshNDH8hqTRAiuoPRikcr4WLSJMSZ8yARC6diqMVEojhgkMlHrwovLQs6BHEPZG8eAAbwnICijWK1X7Lotq+2GRx9+zPL+PYa4Q+aWgxducHjzmJQyu9BTWxlfQ4aYiBG8D3R+wBPIsTy/MaVRY6lGuVdJr1turul8h4+OzXaN73fUSuEGhxnd+K7rqY4tooTBR6qqIsfymRUgS00SEJOKzFWN2Kis0KVtChStac5pVAMnZAyLltEH/0xiFHMcv+aLRGnk2JIyVnQJqMh8Ov0qQRElaKbfbdl1AweLIywjTD/58neyUFdSDEsCYSyMTWWKqUsyORXDm1BSrtQYRCCUcAhGk9QY1jYWtQrRz4IDEkoVKGMsCQukFJFsUbng4CyJLAElHgvolPGj9OL5er6+n9b3XKBOnCYNCVHwdPkAgH/85BHzH/kTLA5u4uYLQk70AzT1jLoqEXeVTvTdmieP7vH440d4H6ms5o494EsvvUIzO+DaedZ9D8DQ96yurhm6gYhikLLxtFmjTE21OGZ7e8HR6xXHE3g4OLpNYrcV7KwmKMfqUnP54JTV8hNIllq3XB/s0RwfspwKB7dr7k5BpTLK+XSElEvWdpKSXbLzmQufUDqxrAwiwkSE4/zs/puJIx+vSsJMytjmPAtOAUloJLHIiSNlOCIzyZmVT3hlWJiSmy0wcvYSkiK9z1wZIWrNXtbYHGnQdBJwyWAeJx4/3NCv1yiBKmbC1QXDxuFCR0ieLvb0bkNyW5J4htiz3OzonKBWG3xUpAyLiwPaR3u00wXV4oDFnZfRN/dw3iHNMegZYgxHN1tu3azY39OkpLCf7Qke6usdq+sr7l89ZbMbePHFLzKfHeJ1LHnvJhCHge1qx9V6i3c9C53Zb0wxDbQNXQzs+r50S1JJbVHKINrQTOe0bQM+gBsIQ2Cz3bLbbUZph0Vbw+L4mMOjOYsjTXukiU0BDq6ewm4J1Jl6ApO5MD0EpyOtGNIuIAG6bWa3NXQ+o6pEcwSzfU2UhBVFNYC6DqRecL0iZogRtmnA6sjBoeayfcJl11PPDpm3Ld16yYW75vDomNlLNRd1w0EYECL9wQs0/Wl5uFRi0mr8LlEFz+X1E2o/YI1GvMO7nlxr9KQiOOjTjoXN2FqVTst4WXKpJaSWuU/46YxBJ7x3JJOQlIlook/kZBBVAiNCSMyNsB969gAxlspoKi0Yw5h8E4kUTV/xuERc7xl6RwyRHAtLkvHQ1VpBeBa/mVGqoKB0Vp+C+gfnibqMLMULJtXYVIwkIaaRm1lRMJCZ5AMSIxowUhLEQkiItRhTY9G8eucl4m7FerNBK41WCiMagkdITKeWoBWEEv6h1YSQNT6UvadPikBDJW1JopJyuc6qRpkayTvsSFcAXfixWaHFoFQm61iSzSSRCKgcSTmOTu0iCxA0mgqSGbt6gu93+H5Aq4yoUKgWWWNEysVdR3yVIVUFazQ2DFUqLqGcDC5uETxBZ3abnn7b8eEnH3D24B6u30Iz4+jkLjduvYY2Nd47KinJRGEMVZFUEvFCDIQYSERyikVrqSyiDCFmkFKAdt2W999/h+tuw3w2Y1LXzJoKTURXRRrVNhNQNVfX18z3pkWrHAyaChFfEgOzwsdYPAjZQ4joUk+OvFNBVP4Ugzr2csmiUJLQKUJ6VgRmMh6IoCOSKKzdJBgZo1FTojIKlyLJj44lrej7gaHzHMz22GunGAzRGGKuMUYRcyKGQM6lc1sLqGRwIdF3RYdbvlshWAiCyoqcDZlULhej3jQnRRGCyfg5CKO2NI6ILkCkaJclY2zxZqSCPKAyDSlkZrpmhiaP5+fz9Xx9P63vuUA123WBw2uhGW+/D977Fuq3v8ZXv/jD1N0tJvWEJiSk2zBpNa67Yrm+ZHnxiIcff8D66QUulE7p9WzO5UefYe/oBrOXX2N6dBerW3JTU7WQ4qqMlhSIyei+J/iBbhV5ms4JJye8sndIpYSPvSE5xW4YUFPPYn/G5nIPtz2g361BR/oh4naJ1FScd55hWhEloaICKWGk5KKr0pTEIq2kdD+8MGg4lchSKY4UJTkrgQkliQqVOcrwshLOEJZp7L6J4jJHnqbIvjLYTMlSHgucRsqm6nMpUguPsWzKOxWZClRZYTNE0Vx1A+uLnt3Ta4xNNCjc6ownH7/L5ek9ctiShx2539BdneOGDR4glxGqTYrYrTExkVKg65Zc+4xSLclMyIvfZ3ZyxPHJMVSPqabHTOeHLO68zKsHE27MhGsjqIOadSfIesLexR5VXfPed95je3VJa2qkLnzBPg5cXZyzOb1iu+0IORAU5LouGelHJ0wWe4hu6IeO6D0qRyqtxlFgMTK0TUXMHoWmShN6H1DsEAn4FFj3W5rrCbOmIk4Ddp7QraCiJfRCnxMxZsIgdJ1QL1QJFphplCsZ9sXAUTpJeZ2JtULakkxj60x1IKROM2wS0SXiTrN6tGZ7cYG+ecJisaDzgegTq5wRVXP79gnt3gJZ1FTDZ5DrjqrbwNYju3KodLvI6qFj/XRH3Kxhc8UsBjKe9XBOxYRa1cQo1GaCnR1jtgqM4Bx0oYRihNiQ5KCwVuuKoApnV0ws6KEoRDMm2+jiUJdcgjGq5Kh1A7YtiV0EYCyupJh3ehfILuGGAe+GQmNIkUxxdFfGEIBKC8kUrmhOGsGVcJ0s5WAeO0UhBbLPiCjSCOzPCXRlUaLxISG+6CGzj4V/KUVxKLmMVLVtsKah1Q0v3LzF+dMP2W3WGDQ6JYwtznKlI42qyU2DDolNn/CxjI+fQdV3Hfi2QjUtih7ElXGyTsQEVhR1Lig3RBOVJaTixFao0g6UolV81pErlKESp+tjwRbFVBHi2MkTgw+eHAaUBkmh/JyewouNobjFUyjcYwExaiRFFE1oCokhBHwecCqR+sjVkwuefHSPod9ijGUy3+P46C6TekEMEWEAMaRUDGsFWB/JqQQXhJxKop8qpqA8Fq4lbjORYmS9vuby8px3P/mELJqXbr/Ii7duMPRrni5PCWRODm8S+kC9gTemr5bUJl/s+rY2EHShJYwRt1rG5CsRRJcLQOHRJjIRchoL0cJLZTRHkfJosEqf8kvTiG1KMsKdpAD6E7EkqVE01SAkBetuR7YVeycnKFWKZrJCUo2pKiQ7kmRSKBcOLYJWGp9ToQuMsaqSy1ifnMZOsAClOM3EERKgCw5LgYyXgPKIjCELY7FtjSaJIhFLGhxC6A0kTVBQLWYc3Frgz7b/EmXA8/V8/dFc33OBOpeO3ke8T+hhDcCeSTx45xsc/97XOJovSgKHMaRcEnd2mzXr6wtuuYHPDj0qQSKCgk1d8/fPH/OtLBx/9kv8wE/8HMc3X0XMlHq+j/MO47a0FYjbcX3xhIurLX1Q9KZnd89w/Kd/iuZ4Snc9Z1pNibEAxe0ssHdg2Sz3GOwWExVhiITOMfSaJ6drTvWEw4MGJBPHCL1YzmIMUvBLkpCQGLqS206VuTaRYAWbGTfPEUAjkTZnXsDwOEPvMy5nlIU1mtOceRGYq0wZEErBtgioT/Eqgsq6YLtCZheFjUkcjsXrJGeGVc9207GoLCp1pH7H5YP3efrR26i8o64zAce2X7Nxa3rX46PCpgabNcRMig6VQxmQJYVGCL4ju8BqfcH16T12+3vYekG7d5Mv/siP84U7n+fNI2GSE5UY1irilGapM+tBaG/d5eYWnnz0EU/PHnI4nzPbX+CtITnHpKlprCVr0DERB8+m64mrFS8cHlPXLVut6fsNxI4Utmy3nuHqAj8/oD06GhNgwDQVqm/Q2RHTFhD63UCvE3GAKiamEkuRMI3UC4PbCDFAPwhurWjmY5qLJJIqMbxWMlELbqMRL6ReMHXE6FTGtUbhanC+HHyNEmaVwSfN5EA4OF7gjUVUTWcNjimLqSIibERg/wQYSlpMXNKtlgDsLjIbevxqg6kCN4/vYIeeq7P7ROkhRdJOI/WU6WyO2rtFRNP7wJBXHOSCl8qpQdgnW4PSmQpDZStC7vmZf/t/yOGrr5Q42esVH//m7/Kb/9HfIoWBNgWMo0TiasGqjBk7alAKrBAjvutJQyQER/SuFPKxFKmiivvalLMYq+2IJVKl65QikUI9SCMaKI16UKNtyTlXrqQYqYy1trjocyQmjxCLPAAZzS2CoMBH0uCQuiqJVrYqF8yUUGS0lJG51mApJjypKpSJXK26ohkd9zjvFdvtQG06po0qGCmlEJUh90iqR4d2SagyMrr9pSS6qVFjmCjGl5wyGoMWxUAJLOl8wGUhSRE0iKkRbTAyfKo9jCmVGM0cSpcwJbQ3ZDYEQNctIZf40103kEXhg8ZrSEpYXyx5ev8T3PUVWUAvDjm5dZPJfFbGy8EjMqbKiSVLwo3ShzR2w5OU1DWRctHMEkqRKCXmVWtFtxv4zMuv8/6Dcz58+ISrtfD4bEMKHWfXD9kMK+7cvcNLx3e5e3TMol3g/ZakCjorxoAVM+KoFBCAIu8pUoZShFZGk7Mj59I8UEoXY1GKeEqqlFa5xGPnMlaHwt1NI7aqlLexJOimcjkvlwldErlyKkY1Y1Btg4uBLjlqMtaUJCirKkIKkAprVnKhAoBGqyI20OPkLMc0JnIVJJRIQlTZ96VEpZWqPBcdbs4KEVt0qFK6xSqVS2igMH4TFUkpkoaEJ6qA1MLeyYz18FyD+nx9/63vuUB9/ZUDltcbds5zY9IA8MbLx0yaKQfvPaI3Hb2xZLE4XzRqzjmGbQ8pYbJFpUgUqJxn2q+x8w5B8eTt36c1mvClHZOTl7DVjFYSKXniZsP54094/OEHrLeBISpSk1i/t+ZvPHpEN+tw6TZ/8ud+gb27NwixpNTsnxiuries45Tse6aywV2tOH2w43F3zeNq4M/96JvcPZ6xy8ILxzeZaj0Oj4S5aNpUMuiHocgAlNJsdKZDqCkmkKAzGYVNASQzR/MZEZ7GyJUYXBS2SvFEElfAJEWsChhRpAhBaXTKaPWMkZcwGdDCFQGPYiaKOkeOEdoukXtPqytIieXVGbuz+0yTY9pokjjWLhG7TAiKIRpiFAiZ5B0SMjG6MfYxkXyH0sV5HZRGgkdH6M+vGaRlfXbOe5Xi7kszPnPy4zSt5lAyLhm22qEmhnAodKI4fOk23ekZDx5+gvGR+XzGzeN9EIMfIl0IdL58fxMzzbAlDj3r86fM9g6wKdMNPd36kvX6ooD2ZYIOkWtKxndWFfVkwWw6QdPT7bZoa3CS2W6vOH2y5O6d2+wbw8aBroTZIbgQcetMTiUFaHOVmcwzdS2j682h20hjLJIMocuobaKqFFqngsVRGuoSCZp7hfWZ/ZszzKRB7hqGqaA2Na0yKANdEJatwtQZv80oq6j2J4RdS7Ir3NPSQRWnqeua9saCjswQLXU7pfEbjmQgXq/ZXV4zO6mYtjUhGXz0hHWPnUIzLS70vvOALZ2xzJh4Uwq08/c/4Ft/758jquKH/sp/gS/+uZ/FnZ7y/j/8B1S9pwqZ1kJWAS2FViHjIRu8J3qP7waSS8ToIHokxlIExEhWmcJiKoWa0obgcjmMdSnGiq/EIDmSfAG5kwpaVLQi+bLXFHNM6YAVA0w5sEUlkniihGJuCblEskqmd1u6bkdOCY1C52LuMlrKPdCAD1uSDiiTqVSmyYnedcQwxg5LxvuB61VEqQnzaYVSmhQjlbblvc26xAgri1UabQ0plAQhm8vPEQx4PEb02H0MEDWSnr1vATNyM02OWAFJjhj9OLYu2KPoXXG5U1zkPg94FCkWVuqmC/QuY2oFUqFMzep6zb2P32N9+RCDw5ia6eEBk/1j0KXjKyoUlzlF2x0/BeMDKZFTcY4bXRKPMqE8IwZ6t2O92rBZb7BKuLF/zGK2R4pPuby4pt8MHB1OaNs5Cc9nX3mFW/Pb+N2GWltytGRV4bOUTmcovFRj5NPxO0CWYkUtXvzEmJY9FnbjxYlEGLv8VoMagwokF5mQljFdC4oDnhIIgtKFty2lE61FkTEYU9OKLhB9BVYX+YxWGpUpoSqppOop0UWbLOXzp7SQZMSKjZcnrStiBnKJwC0N0DQC/BmL1WeygE/BU5ASWumSduUHslJo1RCdIoSAloDojhRLKl+tW0ya/Qsc+8/X8/Wfj/U9F6ivvXbMg8cRz5Tbm8LEO9izcDjj6HzKMG3JkykuRIYQChweix8su81AjorgBlJ05ChYl5i10M73SFmIT+7xRCvawwdYOyF0Hb5bc7085Wp5TrdcEgJ4FFWjqWLi43e+y5W54vHFrxH7lj//C/8VmsOKulXM9jP5xSnXlw3ab2n7FZfvvcv9hxdcR8Xb9PzBN3+Hl06mBCw/9xM/xs//9E9gcjlQGsnsKUVtFNucYUikHLl/2XG0Z2j3JtRK6ClcP5vLQUuGW6K4oxVbJ5zHhLKKjYaz6LiFwSYK/1ODR5dkIjI5OQTBKoEc2EimJ3MTqCQyiYb9KITVGtXu01aWTy7usVs9oZFiFOv7HevLQL/VJN8WsHTw+BDIoTh0iyMXBAcSkSSElECbYihAUDFCshjX8cF3v82Tv3XGarfjz/7ZH+WN/QXHKbI0BRnDouZq66gmihfefJ1mtkAp4eDwkMODfQC2u0DoAk4FJCTwnrk1RKNZnj7h9MEDsjbjKDPSSk0zaREzYzbdw9qGmBxhCFQN7M/m9Eq4Tp7t0JHclsfr+5ypjhv7GtcfcRG2HL1+wHQmpJ1wtc5kXy4DYROop4Z2ZFZKBVoSwUTqrLl2kdxD3mkGK5gGKqH8/Urwz8Z1C6jmFW6uoII4iyWWsA5orwkRWg25AeczTjROVSi9j1SFA5GCIjU11dyQXWTXa3AaJodMsqbbPGRaa24eHdFMp/QpkQmYQZhoRdPslffYD+xixzhnR5QZ8UaWr/2v/rdENWVycIs3fuZHOXzxNlqgraDyiVolahXIuhhL1JjKo1OBscfOkXeOHCmFaQqlczoWNCmVMTB6BJhHxgz2hFhDSCVSV4mUEXMuHWzGSMc0xJK6pBQ5RqILRBOJIRVGZCpmokwaR+H50w54NpkQPWeX52y226InH5/LT/tnKjPoDVkMUlVYrZkogT6hXSmKROKIQQrsuh3GQtvW5GQR1VA3mhwKVqtgfxTWGKIWsndlxGwEZRUhU5jOSkhJECJGPBqHRIfJqVRNIZCHgHdlvJ2VEFMiqSI3El32lJA1gcx13zPEQCSz3jhsPSengkgb/BWP7n2X06f3EAnMas1i/5DF4T5a1+Qo4IspU6lS6BZslJTClFjSjUiE4EmpdM5T7FgtM6enj7k8e8Lp6VNETJn8ENj0a6LbEV2k7zcM9R63Xzjmcy/f5qX5ERPdMDSw7R1D9ExmGpNKlznkTKNUmRKkYnYS0aRcqAaIEFJEFQhtCY2KYwSzkoKAKnqIYq4SQ86ZlKTEjT47wITR3JfG7rcdXUq2dKCzKtg6bchJsMogqkalYmQ1AoSIyuNFa5S+gJBj0VqX2lSPXelS0ceUyEnGC5P+NERAAagSpRtSceSXdCmBZFCqZlSxlkmGCCp3GPEYowihJqZMbSyTCiQ+jzp9vr7/1vdcoN44OaLrHeshMB8f+267o7cbXNfhYijdR6X4s//Ov8v+q69imoZ+ueTer3+Nr/+H/yGhF0LQ6BCYOcPrn7nF9PYL7E8PUVWNU+DywBC2nHanuOUldr1kvt0wwbONkV2M+JTZ2QIwl5S5ORG+9et/l4VJvPWVH6PdV9z+zILhYuDs/W9jwzVPz8+4+uRxMbioimg8D1crLp8kloPw/kdPeOnmHX78zZdJRKoMJyj2JHGVPe7ygrPHT3j3/iXf1h1ffnnC0f6US7Hcvf0CX7l1xKIyJBRNjrxpNU9d4DKW2D0ninOVWGtFlStS3GG0YQk4lalzoFaCxNItSjERdEWX4CwLIglPxO86cr+DdsJmdcXV9Smbbo1PAUmRzXbD1dqTxsI0+3FkFyMxSdEzqYJsebb5pRhAKaqqRDnmkfGXc8TlDXkXuP645z/5P/xN/uCT9/lrf/Ev8MXP3uIA8LkY55qZ4Tpk5PaCeRasKy7+IUTq1tDMLA0KHzNJ6wKlDoKtaxZ7e+w2G3oXaNo5B3t7INC5QFIV9XyPZjplcSCsL67Iw4p6so+1hnUIbC7O2Q2arAbqvZr1MtAazdWqx6ULXnrriMM9g1tGuk6wOeOuM5dDR2gNk0mFF4FJzaQW1DThB89wBesOTK2YVIqZZFoUUYR1LWxtBvH4pUMPNXULvdaEoFAmYoZEXAltEA5msFOK4Bw7FwhU2FwK1G0/MJjAfKGxQ0msUUlRVfv4PjKZzZnsT5hMZ2AnSEqYqaBXA34YcLQAuEqzyQNiKmwzMj+TAm+ZToW/8h//b2j2FgB89LXf4uHXfoPaKNpWUQdNLZogxVwmkj8tBGOIJaTBl3ZnCiXqkhG9pJGSnJUVMRUXdYoDjAB/CYEQE2T9aWdUyahpzM8OejVq8gwxRBwOpT3YgK4TKkeCK7rvT6uOIhEnZBgiPL664HK7Zohx1HaX0W5WBXyujCElg+SaCksSR9Uqptui31NZUCM6qHOBuNmQtKKxc7KqwRR2Z0ipbJwxI1lhq7ZoCpMrBsusEFWDakm6QnRC8oCoDaIMiCFkhcYgqiKNeCSUJqYyujbyzLUu5JDpfWbrHNd9xMVCaMgJgtsgtiYMifOnn3B1+jE5DlDVpHrG9PAGTdViYkT7gNUW8QkXXbmsjpcGI5TvKZEQ+7FADex2G9yuY3V2RugcV8tznpw/xTY13g9MmprLzRYXVmQfSC6wvna8/OpNvvyFL3P/7fd47M555c03+a133sW2mS9/YVbkD1owphk7xKEwc0dUaBkBlDOlONwLqksQJBdnv6jxs5dBkkcyILZ06SWPxr1n/1G0oTkXnasSQijEhjiizXyOGGUwpoGUUVHQ0iMxgFaE5D+9FEX0yPg1o9H2GWeVUZ+sStH6zLkvZuSZZsgjToxiVM3ASMRCUGWPzgpJQi0VPjpS7tG6L3ITamKsywVPRcQIge8v5OPz9XzBv0CBujc7YDHrqVtFGy4AOFgcE9sFra0JtozHEsLlB+/z4T/+h5ATn/vXfoHP/fm/xPLePd75u38bY8vIqgqJ1hhMjOC31HViViuUEQKZiTKs2wb2D+h3DZ33bAfPZujZhogX8NvIkT3i5KWb6EZI6bs8+Y4na8P9b1kuVhs+/u53SLEjbhJqmJBSQ1YdWTY0lWBMhYqRDz94yC/9vX/Cj332v16STHLiAGHfeS4e3uPxO7/J43fexy0bnA/8qn5MM/WE5oj54V3+az//r/Jn3nqFqS6bzw2VeaXOPOoG2LaopPgoe/zmmj99fEyjWz453fLN62veev0u+8qgU8KOxgqjLN4L6yy8u+npj2pSCGxiIiTHNi5ZXz1itbwq+ku3JUTHru/oQ8lRxxe4uIwYq5RVgVDrkmmdMEgSYk6kmPG9o8LQmgolQiLi0lBg0z4gTyLf+eXf5n/27hl//C/9cf7cz/0E+3XNkCLdXDOQUCox2a8Y1hHvNJvdQD1VzKZFm+eGRB8pRinRWDthftxyfKughIyt0cqy6XrctifFTBQBq2gmFZWacfHgARdn5/jBc35+Ro6BiVYs5neYH9wA9pi2iRfbQ54ul/RXgZs3DNzSfPLhjrN7a666jn7b8eLJDW4cH7IaHCwML36mop0kDmaWp51nExJtJ/TBEVViPqsJBHoSTVVjGwNB0T1IWGDqDcELra44qjMX/ZqLJ2fcXjhO1Jz+yuN3G/ZPjrFmRJWF8dBNiboWFhtBuw7w6ErDtMWIo/cDNVDXM6IYtLmk20WclAKVpiJqBZVFqoYYO1yMKKswIvzqv//vomf7fOEv/1Ve/mM/xNUffJvlt34dHUvaj0hFzmU6onRGp0TOZSStfMDEiBsCMl6GKCpKRBVdaB4xPilHfHKjmz2VyYBkJJe0Ha0UMXpSioTRoGTEEqMnRo8OloAm+IAKsXTpcwHmP3PWF+yVxmhDTJbBB85Wa1bOYVRFUpo04t5QCjEKnRpyVJANJlVMtEUby8yWmEgRS4wyUmUVYUionUPNArbJZGVQtSaqoh2ULKioUdmgK0tOhjgWlYYWckNMZqQkJSJjJCphpGgoWl0RtSEpRcxS9KFQolaBLkRSEpZXa5ZdgGrKkEqyVV1DP6wY/ITVxYYn9z8kuB1WG1A1zf4RZnaAVS0SSwWkQyaHQBd2dG7Ax4BkqKzFthZUxvmOnD05ebbbJd3GM3SO63WPqjSXa8/Or0EFKqupxDOftQTV0buisd7uevqQeXS5ZNl7tvWH/OY3vs5sYblxckijJ8wmFW01KVB/ldBSwkBiLj+/kVHHmVX5/CghRAguorRC2WKgIupPXfxkS86GUq0WzYhQgPvPTE2Z8n0TuchGUkSp8pn/VJculDCEkT/qc9FAj71OlIy/Z6MLnzSCVgYIRZM8vvZnXVyhdNNzKt+nfMQyORUZjOiCKyu3royPvnRxJZJ8XyYmtibEXPBk2ZGqnpA6HAO6rf4Fjv3n6/n6z8f6ngtUXQlVWxGHRNOUzs8rL7/IC3df5NbZOYtpha8acoJ7v/iLVNMJuqlxV1fw0su0dcP+fAEpkHYddcjUIvSrFf3lFbHKRBWoa4PRFb1PCAYcGCpmdUtlHPNJOVTqSnF9veNw+gKf+cwBr75+DCzoOk1IER8099WOyQsTLi8dOyWkIGy2awI9zq+RrkIx58DAQVPzwbfe5hu/+x2+8ANvoCRzeXnFb/2jX+N3f/MP6J6e0q1WtPYAURVDDqQ+ItLx9tvv8h8tEy/+m3+Vr7xyk8onjHa8bC2PfcWHa8eDe2tOP/kOv/TN3+GfHhgmRvF4lVinli/9wBv8hZ/5Ki/PLNNRm1VlaIJwts3setDKU+VELS3+6ppLd4V0S1K/ol+vkTgQUqLvAjFkCKmMYnOJ9CxcWlNMIYkSQWhUwfxojbWamBJD32NV2TAziWAVOjqyCDrW1FdXPHFL/tF//ITdgwv+1M//DLM7R1hgNlUMKeByNUYKaiRGYh/IFtqJYuoseZ3ISeHHpB9RQts2NCMLMCuFtQotiWE34MJAFSt8VBzsTajyTbrViu2mZ2/PkuJADluirYjOss5LrrsD7rwwI+zmLJ/2TGXGdhV4+tEFm9M1u6Zmb7LP0V7D0X5gLhX3zrcsn3oOX52w1wDHFf1pYPVgS7/p6BvL5czz+MkTNll47Ut3uHmrpTmG0497Nu8HiJH5fsOhaqHOTCc1V2cdwwdvM1Geea7JseXkzqvw6AiAibFcDMJ2rZA6M+kcYXWKpIF2uiCwz3Z5xuDXVIsJKs0wqgYyfeigKoeTqWpqZcnBEcKESBl3irZkCTx8+yNCCIiZ89P/vX+TF37yR7j61m8RU4uVTNaWkBQippiScjFB5RRI0ZOeaU9THA1MpUNU8sfLwWqUIYz/zudQaAE4rKnIORWDSyh56qM7Zcxc95ikSdEXU1S2I1g9j65/UFhiLFICpROCw2hH03q62LF2GieCrRswZnRtF2xcIGNUXT7XwZB8otKWGBJ2jF4Va8lG4b2DbKhp6DtQbDBW0HqOrepyifSRSiwKhaRivIrGQPQlFS2WoipTIj2zNmjdkHP/KaopZxld/ekPzUApk8fOsk+R7eDo+0C/XZPCpLjQxTHfm3NwYAhRs9oMrM5PCd0OiFjTMJlNmC0WRK0JUZPGC4J3EYhEt2O3umC9XSEC1aRl4mdgDX0/kLzH9z3DZouthKZWdLs1bpVY7ba42NNODFbVqByZ7s3pXGTIHUTFg/tP+Qf/5J9zcX5Kk/c52N8xMxF3veKf/ZNfZTY94tadBa9/5g2O5oefaktzzIRUXqNSaexS66IkHWkS3mW00VilUBLHTmsCKfbTEEZ9Z1aIsiglhNCjckIrgwsDUSm0Nc9oTlgyC2vodh27qzO0qdDWEFQJngrOITkxjKEFRlSJ9CXQDx7vMk3VljjV8YpTnpEyERElJKVHKH8qmlUKp1hJeX5SGoW2UiYYQRdDV6DIHor+NWBVQWnlRAm8MBUnewf/kqXA8/V8/dFb33OBmqXC1Jrot4gpN9MbJyeou7fZP9xjujigNwW/gghv/vW/jplMAFj+3u/AB+/zyquvFkfoZou6XtO98TorpUkp0fmBrdsWJIsvnZiYDC5GYuxJLlApTXKZ1mZuHBwwUSVbfXO15Du/u2I+30Nlg6kq6nbGzZmBwzkHRrHa7vAx45Jl23lyOoBoyUFzcnzI7ds3eOutzzGb15yfPiXrzAcP77O8/22a64cweHQS4mY5ivQdUQtGNuwlw+/886/xd1884KW/9vPc3p8gorkphoOt5/1f/wbvfOt3icuPGDY7Vs2USmVqM0F8w6+89yGbywv+wp/7WW7Pp8wrRVDAuketEpenpwTx2M2K7uyai3vfJSXHzCTi9RIZxmxycjFslFO8jGCl6KciqhSiuvzKJWtSDvjRue6jw4hC6cwQBxQabTWNsuRUEhhjvCKbhr1QE+7d51f/9i9x+ugeP/Wv/0Ve/MpraANrq+mmgpsL+AG1New2mqyFWStMqoqNCXjnC8cyCVYb+gFUo0tcrlGYLLTVjBQyLu7w3Y4+a0LdsHeyTzWbMuky04OBq6tTViuFiwmVO3zMPLpas3djxq1jw/Jx5sknHSlY9rKlvXWDPJ1hZhbVZMw0sH/QwGTC5XpLfyXYiWdKwl1tuPjglOOqZfrWi7T7cMQxy4cbPvhww7StmO8ljm5XfPA7p1x88h5f/Oxtbt18g3UfiBEOT+6Q2DGcvYvK91jYmia8gqmLSaqZlUzy8PQJB+6MuNuBnlHvt/hcM7RzLpZrPn74bQYCN44XzGcVcTpht5rSVmVEPTczYm5RvUdVPcym2GbO0efe4OUf+SJP3n2fLIkv/tk/CcD1vQdjPSUkhD4mojNoibjkicmhQiJ68GNaVIHEp6IhjamggbQaOUGxANBViQZVkoipXIzCENDaYE0qDufisUdG97MSKf9fF022qRRZOZAesEV/mvQYPSlEApAg9DQmUSnHxiXc4GhVhKxJUWMaIfqC4fLZoLRQqfLaQxjwokYHOcxmDTk6BnqMmeG0wafSPd7stiAte1XpVuu6oLBSzBhUCW4QO6oGM5IyJicqa8iS6FOJDQ0xUKHok8XnQAw7yA7JpkSAmgxKcL3QOdjsejqXIFRoa9m4JXsHU166c8LJgeX84jH33nvIcLkkDYm6bWjbBXvzAxqxSB/xKtJUFhcGusGXIjDs8G5N9JekHEmxJfiOZDTOOcLOkwaPczsOjhfM9+b0bsnueoXNmnkzQ5FZmCluMOwud0TvMbZiGCKr0xVnVx3VpOHuPHHz4ITXfvpP8fTsHt965x4PH5/RzN/CE4g4iha5dHmVhhAL6soYg8q5SJY8KLEYOyZzUXwBMiZT5fwM7ZQJoVAUxESaylAG6UV3631E1xVKG/B90VEzUCmFtQYftpAHQrRgM7Er2vcEDIPDCARVfpc+Z4beM5suUDqTAuRsGbotm/WmkFmMQVUVuqqxtoIUsDmP7vyIyWrUtkYCAdEKrSpCTOQUESIhemwzIbiMH3qMLixVFzNWa7S2/9kqgOfr+fojvL7nAnUgoBuLvy4OdIBJM0Hv7SNVRVVZVFOjK0MCLn7x72DnC2Y//CPsffkrvHT/Id1330VIyGZHbi7Jb76Fm7alU5cCvXM470mhJIkMPuBCYBg8ru9Jvuf07CGD3zKfzfHOs78358mDJ1yebzh7eo5StvD7tEHXmsF7FAlJHVZA24zVgmSD1TWSNYf7mpsnlhfuNJwcCbOpImuhqo7IP/UlXjua8fCTMy7OVmw3Q3GER0039ATfsb/XcvfGCW51zvvffZ/d8YzF/BDRe/yTv/0P+Po//1WCf8RMX6PTjJwUdWVphx3tZGAmgQff/Aa/frzHWz/8x6iNoFzPxcMnbM+XxNMnLLsVQ7fhernBXV7gu54udOxW10Q3FFwJGaMFZSFGj+iMxQKKnEaguQVyT04DIUZ6PFnrgk7yJemrsP80PkbMOMrUWkB7+jygeo2WCnrh7V/7VR4+vuJnf+HP84Wf/BFmRhP9wHxq8b0hDAmfFb4bUU0ZJrUhR2GNI/nCgHU5Y8hYKTQDXWvqXOFSRXSOlMC5wK4baCc19bwmkmi1wnHIEGuG3YYkDlEVy+WWi9Mte8cTjm6BXSek1hwtjtgOcO0UnWgu+4AdDAbYPxB80jx6tMQFz95kwszPcLOBm/sts0PD5Dhx62jGyY0p754Hzl2gVYb2SDh8ueH0/Z77v/ldbqaG3ETi7pLD+R6TW4d01atsTzPdcIm79y7Ty0cAiDvloH/I9Op32OtPibPXsIevI7OGlQM1bZm4I+Rhw+Z0y17ziP3ZDY4ODvA7Tz6/Gr9PQPqOFFOJgDQ1ajLHBdh/+QVe/OqXUUqxu7rmnf/0H/LB3/klVMxIABMyzkPMAcQj+IIe2/W4bkt0XeFA5jC6vQtSR0SRc0TUiI7KsTzDCtCFs6mVLYab4EtnPY8cSFWX4ghQYkqGerELknPJ+RFSccHnTEqhHOQIKWmU1CgmkCo0llYSQxLC4HBVh7WFFapjNeo2S7JRFBljRMsYlhE01bSGPW0YrrpPf86UFQOZ0PUk5bCTQFMbRCdcLngpYwuXU2WFrQySXEFopYHkMsZWGBQ5OSAgOWBVIueI1ZFKl+jQEEvnbPCOfhvpup7BJ2KqSMbi0sDe4ZSXX7lD0wp+6Pn4nY+5/PApsUtY09JWc+azGzTVguQEbQWpFUPa0Q9bdts103ZS0GkqjRQCcNHj+i1eQe960hAwaLyKLLsNuRY2rsMRaKuGqm4I0bPtHfuzGev1ktV2S11bfOzxSTCq4fN2wk/emsOD73Dj4Jjb/YRj09Dlgde7wO2HZ6h8XnBoQ0RrTYwBDMTsi24zjUinVBBfMWdSLPtJiI6cQ5kIjeSmMeuv7HsUf7waDU5KhBADoqVIP0aOr1IysnMDIXRkQ5lASDHwJZ8JGUJMBfwvEFIuuK8QqDfXNLYtQRYeNqsNsxjpnefy+pqkDXY2g8rSGEujDKhIVqmEEKSCa9OVKeN+EcqXItE7QgqYypJEyMGTvSePkbvnkvj402Ds5+v5+v5Z33OBqmohbYux5hk4UNsKVdeYqsa2LXk2AZ0JMZIvT/EXlwxVS/WnbzP90pfh4WOKNLzgjG6+9AJuPiP5oUSMuoAPRTUehoEQHNqW7p1Win67oflAODs/pW1naL2hqSccHB/x2mc/S20nuBAx2nKxvMInR4yRvl9xrA4JIdDvShyjc57gPCk5XBf45IMLTh99p3TEZhOM0VRNg/ORfL1mpnvUIrE/0YQkJLGgJuQEB/MDPvvZN3nry19kOm2RELi8OOdqe4+96jE/+kbL2ZOWtE5snCbGHWIyTdsy1RFjNDkqHn/rW9S5pdIt2+UZ15f32Vw8RW9XEB2patluE+x2+OWazm/pvXvWG0CLUOmKJAYxFc1EUUnpNEgWagPGpOKMjonBJ4YK0Iquh6Q1ORr6IRLiQB/KKEqJoAFVCZEEyWGITKXGDw3uw3v84//9f0K47vjST/8ME2vxJqIOyii03+7Aa7pBYxuDrTKVhwkWlxMpQO9BGSndU0XJaTeZpm2K2dmVn2PTd5hdZn/RUrUKNbVEmdP3NTvfs3MboszQuuZ6ueN6VXH3pqLSmmWO6JmiXnryY0d0Db7SnK2gmWVevAFGWp6kxETBYW1oW7CzA6baMqRE9p6TBl67YUhtw3urzPv3I/MZqP0505N9Hn/0O/zTf/QOd1885NXbbxBSZldtsNWSo8OB8ydrhrN3SVePARju/2NuTT8iXTxkW73A7LVX0M0hl5sr9OGEXYZu0vDyW19CXTvCZoPfNsQ4UOmOqiojRV0LgziSTjgCPmastizP1vzf/72/iY++dIq8Z+J3mBywSiFJlTSc3kMFohwqDUgYiMOW7HdoGdC4ZywijLHEWJiYZI0bkUiRiCpJsww+4gNoHdEKTKXxoUNlOxYOqugGBZS2ZK3JqnAucx7pAMGTgx/HpLFgepIgqi1FKlO0TBAGGHZUSTMxFW1lmTQGkYRSDahY9JdKCCJEo4gqk1wkhzIRakzieN4gasb1OuLDAMoWB31IrHZrTKMRPS9mpxSprZDwSNYYGiQ7tE4oFfEuEgNYZdFaMZm25Npy5Xo2eQc5Uuk51oKKRaO49TvWg6P3kfVmTVXNUXlGh1DViRdeOOFgv0GlwDvffJcn9y6gj6hc0bYNpp6g6xZMVWDyukxKQurIKhCVwwNVY4tB0qtiNEsl4SyLoE2hDSSfRlpAx2wxYTZf4F3RS/e7jhA8mUCli6M+poRPiZAGlGju9o7/y6/8Bm36/xbD+Q/+xU6r5+v/4xqM4b/9Z/7k/79fxvP1fP3/fH3vI/4U0aIJruQ1A8QYmE6naGtJaJSy1C+/jPnMa/gnj0EMky9/ufz7q0u0MYAC05WDRkW0tWiliTFSazAjniZUDq0zxoB5xgJ0My7OH3F5eYZRekxpgYODQz775hc4OrmJc0VTuVoticnjhoHtboMShRsGJEcUGecGBudRGLpthw89g+9x/ZbdOuGGHueuRrSNIjyDO6tEygPGKPYP9rGqZtG0DFePefQ+7B/foGmnaJuomjU/9pUj9urAadNw8fiMdefwjQfZgV+hvEVVNW1VoVcXrH77nyKD5arfcp2vCLEnhdLRCH2NkhbnewbpSKakUemcaDW0VpdbuNJYXVNZmLQgElAkaqPRyhC8IgbN4CPrfkdWgq81bgikCH0Dm65HhxadhZyE5DKCLZ1UBJ0y8WJFPdGkuCI8WvH1v/03cdstb/z0z9AsJgw5k+uK3DtiDgxDJCJMas1kYdisIpsh0o/asxQFSSChFDmihKqpaLRlEEfveobes+kMbeNpJhVWK3LSxL7CDQ05bUgkTK64vN7R3o+8fOMG9QKWq4zYzGyvprsAvROuJRF3isvHPS8dN8zrRD4xeGDWgA2ebmkJG8vmOlFH4c0blhcMSJ253zt+5+1LZibz1hv7vPr6G3B2yvLD3+D8kzP2pCbtHVGlFY2cMtGPOZkGHjyG66sVAM3Vu2zfO+W33znn+s6MH/7cEYvNOaYaUPUeKmtmhxOyPSbGc4YnZ5w/WlNVgtGWpi0TDXuyj5iGULUMpsVlQwgJXSusaUYNn6M2oJImeE1MGYkJkzOJwnMsjueMHjud2lqESAy+0BcoKToFC1S0yjlFki5dVBgz5JOgdUFHxexRSQhxQKuiUQ2x6I1Fa7J4Qg4oLIZnmpIEoUgCxBi01mU6kjJ6xAFpZbC6wqiaPm3JSYo8JUlx5Wf5dHSsi2UdL0U7q6z51OwFUHnHJFdMDveoZMfZssfFiFCVzl3f063WTI2lVTMqY5koW9K4EsRYEP26LrrGXL4IMSFamEwbjGSGzYpLlYjO4YYeRGOS4Xq75To4li4Rcsa3VbmwO0fImrsvHLA3LVzgi9NHfOft9/Cb0m3TU011MCFaQ08gK48WQ9KJlLoxKjRTNZbNbkUfElUtYCPRObQKxDQQXdH3GhsIweGiwg8JjbBYHLC77khdIPpACgO7foMPK6ypiuEtJqzJKCLHO0ebIn/9c1/g6c1DXnj5hB/96g/idpHTJ5esNxuMUXzpzc8iSpBcOoYhxoIqkxHKFEoctIjCh0hW5TMYQyzIqTF6mhyIyZFiiVA12qBUBQgmJVQWsvcQQwmACL6QLkJBhOVQnP8pDwRSMUZFiH3ESI22FqUNTV0znbaghKRjYSRLQitFt3N4l7m4WPHxvQd0vcPtHAkhqIypDUZVNNJSSYNqGlKtMGMnfb5oME2FqWp0CCgMkhWD71FVLmYppcguEQIcnT3lv/zLf5/5dvMvXQw8X8/XH7X1vZukBmh1XWIJC2CQmDOSQVJCtEXEELc9zdEJ9WdeLwfTdkv3+7+D+73fRpsKktAPO9L2iu35JzRaaOcHRGNJ/VA0N6awFLW2GG0xBBqjcLlgbSpdTCG1NVRGg644OrnBya27xKQZXM/B8RGuH3DDgIsBnRUpJRprqGwZh+QsVKYmpcTghlLQuqHo7YZAt+0Z+oHt0LHrt/S+I4SBi6tTNpslTWPRYrFTw+XpOU+fnBHRBBMwDdQ6ozmi3wQ0HYvZioN9IZua5GaoIYGZsPWeqrUM/YonT75DWme6qFjJllAJWVvwNXHdY81ALxuy9TRisSO2qiUxNUJbWayOaO0QwFY1QgXZYnWD1pBM0eQNHibW4qIr+dtW6Lqe2gSmrWYYMrveMXiDDwYZBHRFyoJX5eKQ8oAiMskWd/5dvvaf/s+57h/wxZ/4ywxUNHFOY2uW64FU1/TbwEQn5nNNnQVcIA8Oj0IlS6Vr2ipjRONLLDcZha4t1sDGC0Ov2PaKZlqYQ9NJQg6FYbdHcB2DU1RRsY3w5NGG5eu3ePXFTHCZtXhybZjMhbzuuNpkQqpYDfDwQeTzLysa67jqI32AVMN8r2W5hYsLT3iy4XPNAe0xvFIHvngAZ5PE+vyaetdyfHyE/9xbHObAxXe+zh98+59xcuOYm9Uek9TR2J5JKwRfol4Bzi93fP1B4F4/5eYLE64ffIxx59z+/OfwM0PrA5Om5mxjuThdkldPMEZw2lC1e9S2oKOS3md6/CJUe3TB4vqANR2VKGqxKFVSyg0GsQVgnl1HCsWpT04kDEkUViqeZSJliYVBSULSgLUNbnAoVdA5PkaqquBwlOiSSmTAakg5oLQpEo2hR5TAM4aoEmIeCzkpOKiQS/GsRZBcUqFIEIbSkczPOJTJo7TGmoDgMSSMUWNsasFlxZRLUlEaaChpSGSFhIjOBltXUNdovSv7We8Q56m04qSxpNpxselgDBhRWdOtV6wlY1Nkun+ESRqFJWdNVkXznZKgTU1dV4ShIJ2SMmijMZLIKpINqGRJVERp2Ua47j1Ll4i6pQs7fEwFg2R6DvcPuHFyRKOF4fqaD37/u/i1Z3AaXWeaRYNuNdlooiScH9BEJBa+aoqeIB2927HZbdE602ZTzDY64UPC+wGfIolAbTLiE2nIEDSPHz+mba/xzqFjIrgdqEA7yWRxeF+6pkoUk7Yhh4iMyQvv5hnvx5rf+OQDHr26h/cNTy+v+VM/+ceBzEeLKfPpBJ1zCSvIwno3oKqGpp6wurhktVpxcHiIrevyuR2TznIC7wN+6InJoySPBarQ1g22qkkhkaNHpURyA2qMQfXDgEpFkxpDIDqP90VyMiRHYKD3mWpiSEOJu53vz5m1DW3bYtuGqm1I0SEqFv9EAp8zy8Mrlk3m7OyCftUTfCCqRJSMypmFsbR2ijcV164nDY5JlWk2O9TgqSewmE6ppUJLjZosaOcGVECji+wAhR/KXu62/X/2KuD5er7+iK7vuUCVHsgJ57tPowGV1kgCoxRRFfxROnvK7u/8X3GuZ729pqo1ohSJcnPMweGWj5DVI67v/wHb1RXTGy+hJi1934FWTBeH2GpCIKONoVY1KfVYa7G2GrEzpVfjXI+d1jSTKZVtGHxGm4rK6jE2tMWEjrpqaKoaJVK0aWrULGXK4ZjSp/DlnEcMXywFeAiBwXUMrsc5xwcfvM97771DToEhBerJMTfvnLDXTjFWWIcVLiTUoNnsHIfzim44BzRut2Hde6ppg5oGYlJkBy5fc3F5StxuSZvEzic6G8idKRibLFht6YZLunDOflOx30yZ1A0qeKYWrERqA1VdYYwq3YVYkoVyKkWq5IgxglIJqzKVViUjPEb6botJgamydMGj6UgCpmrZdQmcIWeDM5pAYlMZVHJUbmCaJmTTwfUlH/yTXyHed+yf3GRAc/Olt1hzQJgdYdqSEmREITqyP7XoBBerLW7XYfYOmDU14sAqYVAQsmCsQltNVC29F3adYj8KExNQ2qEXLcPRnM1uDQmcv8YozXbjeffb5/zoS8fcnim+0wdOfeD4RYtBOH+kWGeF0TUPnzjePKl5Y6LZ6cwHTjhNibpOtPsZ/6AnrzVPLyJXe5a7leUHpsL1nuYTN2HqpoSnK/bdKS8eBS5uTfjWxw/5+DsfsVwc09gKmwaqOrM3uebWGFH69OmKj/Uhb3z153jh6ITF069h2j2+c/+YycENTo6Kyz04T7i85MbhhH5w7NaOutLoXAqBubXFjBE8VbfGpQhbi90/pDUtohROitkkuYTyATVsqYZNib5NCRchZiFEhYoayYac7ZgjHsghEkWISSFS+JIppTHesTxPWjXorOjTaH4JAyIWq5pxDFy641pXfxivSUJZQckI5JeCrQohlktMzgRfYP8iidJqdyAdWvUo7cnJ4VMgCHgldARMyqgQqEj0SgpJIEQkZeq6Qpsaa+txN2xRqsEmjZaE2V+gjWKnQE9qJES2q47lekmOikpNYG4wKmNN+YymTHlvcol9VgT80BVdpS7Ofh8cMScwFUk3XHeZYRq5zIk+ChIiRjRCS4yBveOWF15Y0E4qtqs19975iMcfnxGGjBihamom7RSFRWKRTahU9ouij0pE2dHHa0IKxT3uIW8cKTuCc6ggpKhR2pbYUBcI2468jUyamtwHNrtrcoxo71FElIloowu+rtw0SFHoMlhVEeOoi8yJbrtktb7m13/ptzlctHTbLerNN/nS57/I0veYLhOHAaNgt9nw9u9+g+NbN/ncm2/y5PKcb/z+77N/cMDLr77CycmNoosfgyCidzjXE0LEGoPGkrwfObkJ7wa0gn7YkWOAlEjBldjdviD2zBggkUJGbIU1gjUaXWVsVFAl1psNy6sn9BtD3U5Iotjfv0tlSxKWNppEMQ7Wk5YXXrzDbD6j33S4zjGEga7r6FY9RhKq8qTcEcI1vu8xocb3QlQwnXUc7R1xcbHi8vQ+870Z0/mUuqmprGBzTVKBSSjvcd+Hf+li4Pl6vv6ore+5QLViSCbT9StyVWLVhiEVYLIIymZ0Y5CcydHT9xuuzh9T1xrnA+tNgCwYiUz9islmw+rsvOgyNz12NsX1PV3f0+wdcvOl15gd3BxzoA1aWZzboo3Fx1RGfUqRtaKqDDGWQ7qqBKUtITgmkwkhZJqkEdFYa0s+u4KQfClSRyG9UqpAxHNClGJMaEQhmMrQTufkPCdnYbPZce/jewz9FtAYveDo1jFvffZV9g9bMIL34HYely/oVj1XS8dquWZYLTm9eshG79i6NbJJ4DPbizP8akN3DaHzpEqx2UViVDTRl3SlmabSPbPKctS0NBamWqibikpHtBiMtsSoUKmiqapCqlRCYkxnkYhGF9Ze9hg7ase8p1EV03pK5x3aOYyKNFXGJ6hxBFuMA7GkurIbPITAvFF0MdGoffSmJuxWXKx/jfp4zmWl+Pa3/l8sXv9jvPjDP0fyM3brjDewtzAsakXcbPjOx+9yenXB9qU7fPb1l5k2U0w1AVGEJDSNorYWVInRjYNDdsILr1QkH7nuhHAoLJcVftsRlcPalpm0PHqwYn1+xFeONT5WhKjQ04y6IzzeDPQrQw6K3isePNrw1ddm3BKN0jC4hGoUehK5dbOis5bLPvDwsuflm3NuV4mfeOOQG0eZTR8Ip6fM1p+wcN/l8NYGMUd8/VuP+PYnjzCzBfutp1lv2DMwcyUy+KhtWcSGw/aQg2mLWgYeXgbOU89ryaHqllZpVOyYzRWvvPYZ3v7md9mutsyaLT4sy8Ocrkl5Q2+Eo7xl7gPDdabyA3UzRzctla7oOkfYbkh+A8M1Lna42YTBDSRjCAjiEuIjKhXHe4qxFI5Zses8WRWXNLl0NZMbRhNcQNEQoyWHhB25oTFEEhU6WwKB+GmOuUKULglz5AL0T4kh+pI+h6LRBmPKZTiFNGJ8MglftJM6FrJIo0hbSAQQh1XjuN/WEDzaKmKIGD1aaGLGGk2ligM664ogNU7A5x4zaThqLFUYqCYN0WbspGZz2dENOy5Wl+hK09YNFCheMd6oCheBnLC2KoVL35O9I6mASCZKIPgMbuB8tUJCRExFMIHkBxopzvXFbM7dm3OO9y10jvsf3OeT+/fZpYxYTTOrmc/nWNOQqdGxSDSUUWgzhm2kAS8DfXTs3I7Bl8CDoQ/EENFJqCgTKxGF0pYUIsGDTh02G2ISnHOoXPBcegxlUGKo2gVhKGQOsqHbRAad8blM2vq44vJ6YJErfv7xioPHZ8QY+Mwv/0NuvvcJc+dom5ocSvG4Xl8jDx6w2Fvw4scP2POBX92teOf0MVkyB/t7WGUhK1QOxNQRgiOEgixTukjJUhJUhBhKylQ3dCQ/MHQd0UeC8/htj0JTGQU5EpKmlQapWqxNKDw6ZExVzrjtrux9vXf0MbHtHrKYTWlqzXQ6Lc+F1dT1BFGWykzoZx1DP/Jhr7echjOqqqadt2S3pY0RCY4QHEkqkqmYqBpFRXKRy4tz1tsNumqYTOe07YTGNEwXNYfje4x5zkF9vr7/1vdcoEKJADUWUhjGr6ixQNW44Lh8+og4OIiR9fWSq4vTwk7M4IaESIUWA0ZjXE3oW3oimyePqW2FQugGj+8iN09eYHpSkcUQpRSRWYSqafAxlPQY7xlCpPIDTVOPLuJSXBpjPk3nsMqixPAstKbwGCnuYxFyHotU1Jhel8kpMEqdytgwx/I3lEFpW2QI1lAri+DY39PsH+/RTGeoMTEk7mUUR8TjHnt6CdUlnSRcWIHTpN6yky3ueou72LK93rKNNakRLpfnuFgjVcZJZmagyY4DK7RWM2mgrWGqM5OqIgy5mDFMQ9SjAUWN3SYjaK2QZ4blpEg+QTaFmaqEyiiSGLQyJAQxhiYowuDwwVFX4BvDxmW6kAFTXMKThj7vyF6wKdHYgFGeYXvG09aTVQv9JVfv/hov3/kMi9s/gI+RAU9rM2enT/jWb/0a73zzHa53Wz5+J/P7v95w9+U3+KEf/2mObr9IF4Wd80yM0LSGwUVOHz3h6brjJ159hel+w/sdyF7C354Trh1pd0DKMKtqnnRbvvbOY37wp27xWVthreLjANVBxUsvBPp3OtxQM+TI06Vnudrwyl7FnUrYJmHZO/ZrDS9aPjTCpav4IGleiZG7Wri7X6FM5H1vGV58k/jNzJNvK44OLG+9dYdXf9rye9/9Dr/493+Z9elAU9esZMIdVdz3BzdvY8/hbPWIH/+5/waXF18lnV5yeGOP269NCDbTbQPXbsPdL7yGDw1nlzv25w0xPObp4w/L4ygVnbnJN//YfxG7uUTqGee7jnW/hmpKe3hMNV0wrANxu0TFNao/Q1aPqZRnEnvMoAsCavDgPDp1eL8lDh3ZF4OjjwmfA9YWvFSOJSLUaCHlARcUWVXkbAg5lpRxo8kuFs2rLlQIHyKkRGVM0YmWBHNCSBAcRCEiqMoWbm5XitZIMfllFfAhsHVb+rijUxE/utNrCdSUz3kWUzLsPwW+FxOWdwXvVMjwQNQkZdiphK8MzaS47w9CjfOOnpp2YrEqc/boEavtlqpSmKOXwRuUeca3zKRcfpasLYJBq1jwXdERY6Drt2g9Q9calwO1BxBMUzHogSF56smMG8e32JsktNtyfr/jg3e+y/VuSbCGejphsphhdUNAMNpQaVuoKDHQ+QExnsDAdjewGTq2bo0xUt7fkFCpwvmMVLZIsiQRgkMlg6oaYtyx8z0JQ5CRL5oywfVUbU1WFaQepTPGFLd7uTwIyhazgo/XKLNPlRKzfstQWTaq5tsXF/THN1lMK05mDaHvOH18igDzl1+ine6xixmzXvHay3fZJ3F8cjCGPqQSO4sHScQU8L4g0aKK1EYTQxgbD5n1ds0w7EjB0W+25JAZOkeKG0iCkxJxG2KFCw3KWqpBge5QIWEFkhJ8jHify1RqjF9edQMuCEk6JtM5KpVY2RwKqF9bgwqe2XRKrWtiSAQSSZWGyGK+z9FsRgiOAcOq1ySZ0i178pAwGeIw4IJj1/fs7x+wf3dWCmw/dk7Ts7nm8/V8ff+s77lAXQ9bzFyIfkdiWr6YPSnsCLHj9P6S+1dLdqttibzzvhiSciKP5R8SSBLZ6UwVB5arK7bripgVzbRh2s4ITmjVBDNZ0GmQ7DESCSkRMaQYUbGYfpSuMLomjWN4ySXLWYkQKLnWaEUWXYDcRo29l3J4KIkICZXVaO2AEqxcQOI5l3FZzhmyKX8GtC2sV6MqYvQoSTSTFm1U0ezlopskK7ICqVoqq2nrzNYEklak3qP7gX4TuLhYMWwTymfSsKXTlqiaAtTPGmsdlYm0FqYTzcQaGl3RWA0ScT5gR2g4KaGNISOE6As+JVtUMp9Cy2MKiJJSUKRISKMhhgh6oKqENs9AWbasGWwCCqg9+4yeTtgMoCOk3KFxaANdLF1c8BgN682SGYkX9g65clvu/9avsLz9MWY2Y/2g4amB3/2tX+ftd96mme4VN3Dacvp4yaMnH7A4WHB884TF3oShz9RGk7Lj7PEHPHjvu/zG/Q+Jwxe5dXTA6bLirR98ixs3GlbbQ1YfXNElRatWzPY03/2g5+JLkZv7wmFKXNXCOmnevK3I15lvfwRGNVxeG75xf+DFPcU0Gl7ViY9MzZAzn60VsvB86yJwPtQ82cHJvKcS4WBSMfOKrYmsbt3hyb2e7f6C19+8y1f2a378R77Cz/z4T/E/+Z/+r/nko69z80bgYFGeo5ODPb74wkvw4h2+/EM131lOOfvunN4qhg0cHCXOtgPBb3nhpbd479vv4hb7TD73eXx/SVyuAfDSkvf3qCZfJbk1IUf87pqnT+5zerZkslpz3E6ZHMywew1pW6G3mcpA7JZ0ux4zdBgUveuwcUclPTluy+HpeqqgkboGZfG5PDtGVZAju96jdC6mPFlRNUKyGZdiYU9qjdYK50pcY8oGtKJPBS1ncpHdiJSOl0YVyH0MhCx415FSkfborAkhsF06QohEVQqVTE+WGq0KQs5oTQia6Cu8GkoCkWQIjIlWHYxaSW0KlzL4hK0N4hOVLZGpXSj6xqqqmR8dIZJ5+vCU0+vHhCycHN6injZkcUTvIVs0gnSpRJ2SiNlQJUuTYGIzPSVieF5P8Gqgcwpj9sh6BjJwcDBjfhCJsuXx01Puf3if9fYxTgWcFuaTGcpogokMfRxlPQmtLfN2ws73eHr60LEZNuy6gK4s84mHXWTYZlwayq42JHwu0ooheAwV1mRC3JClQuoWyZk0eCKWpKd0Axw0LUoCSe2wjSIqU1BeeUByKZ6sKlG7tQdWiW3O+Mpy4Ty7e/eYNvCDky/Sas3FrmMynXB0cEA2FZfLK7qrc2Zfep2X3nizgOuTJ6NRSuMpBJDt4Nh1PSpnpsZi6hl9Ajd4wtARY0cOPWnw6E6RgqPSnp2D4DuGHNHa0nVbumFAmRlCPfJWe6YTwZhA3w+EbNi5AKKo65amNlRak2IosoFsx+65RQHDkD+9+Ntpw97JAd0wkBK0doISCNnTVIXA8tHjC9brDRdaMfRLUt6itMIh+DTQzk4+jaN1zxi/4XmB+nx9/63vuUCNylPZCeiGPDZQNY7G9PSbC84//JDdrseIRqFIPo5EmlwcsBRjRCaSVaYn8uTijKFqiTEjK0M72UOZltN0SvfxB9xMA7du3mBuZpjKjsw70FrIMVJXNQohOF8E+kqR0pgKk4vOLcWM6AgSiV4gRCR6QhgIoaNua7A1umoo/n5BoynPe0EsqZF7Ry69Aa0SQuEcPktAgREFrfToGi7/LpPZ7XbE5NluV2y3G/zg6LZbltdXXJ6es71eoqKQssXnItjPLmGzZd4mKmBuG/ZazawWWmswoqnGzGmVwWih0oYshiR6LMJHh3XIZJ3K6xNBaY2PfiwuBJFQYiMxRJkQgicOiVwlJtpic6a2ihSEqkrsPEjeMa0sV9t1ORStwTQGp1wZEcdI6A2tiSjjeXFxQGbLcP5N4nXFg27LO9eXbK623J41DD4SOoe2GaMXXG963v/G7/Li8Uu89Prr7NZbzro1T88f8vXf+gYXj5+iMvyN/93vk0NG2pv8l/7av87P/NwPc/fFhvXSklcDUiWmNvPJw4/4P/7SQ/67/9WfYq5gc3HNMN9jVrV87tXM6XbN+6cd9mDGt849X7qqeXMvMO0z+42wypkbEtjfz7gsvLcKfNAb7kwtxwRmEtkncn8jNIsF5sZNPlpt6NZwvBBeV5qvvP4q/+P/wb/Fv/+/eMyrk8RR8eYgTeSP/eSfQt76Qe6nyMGJwTz0nF2vmG+OOWoq9IVj5mCaDWwDn/+hL2Nvv8rj+1vywTkA6xQJC4XZm7NzDdvriNrsM40VVXhKkoyup2BrogNtJmg7J+sBpwO7FGicp5ECm48p4lKPhAGdHUqKVnToAn6cnBgiRoOxCVNpUopjzrpGELrOlQteKvrEKGqcXiSC7yBYjKmQrIghEWPGWIUoYUieEAUVPUY0MUvp4Ikvz55kqsYwaed4p+i6VSEAhAHvBqKZUNkalB5lAYksCVtZpAKJjhwGeBZu2mSMLRdd8ZGYNDEX5mfbgviORilIwsnJbQTL+dNLerdk27c0fspMa6xJiApo6UhREV0eXegQkiBpRstNgs/kIWJNSVNzaFwQtMzZm87ZnwuzVnN12fHRB495ev98xElNaNqK2eKYabXA9Y55tUW8x9YV8/mEeloxCYknl0v6bkPfl1H28eKQxvasrrboUDS63kcGKirRo/nIoWwoaU3zhpg07XxKDB4nHosieAU5Y3XCtA3D4Ikxg9KILmSIySid2J/uUxmoJbO/P8OYipUvEcb/zf/gf8mdz79JM5niNxte++3f5A/+5t/AhR4VHUO3GtO5PDZnjLLEEOl9T+c8V9crdruB9WrDannNYlpR3zgi2jK5S4D3HdFv2fRXpCGTBsF3A9hCLSkaao8fAylCukTYovQC50bObUpElhAzKbdoVTG4nuwDeaioFjNyWzB9SpmCY8xpvHCBKNDGIGJopoKdNIiBMHh26w7lhHm9X8gU4Qw37LhWQtNoDu7u47o1E21wThG6a/KswlhFUxcN6rOA3ufr+fp+Wt9zgboZttTsofSijPYoLvW2UWwbTeN2HLoOI5pCbhFiyCW+TSCmDAqqtqJtKja2odcTqukelsDT03POVgPzvRs0qubtb77N49NHvPrKC7x452VObtyB5NBGSkwikHwgukgzqRn6gRz59CAYgY0YLVw9uU8MgbMHj7Exsl9XPH1yH1U57rx4A2NndCFSzfeYHd3ENPsYqUs2dgJRGSVqhHrnwnRUmZBdGf8HX0xWWcZJiyKNuCdS5np5wemTB2yWV+SY2e16Ls7P6XZrki9GmeVqYDeEgjeJHqsUs6lhkgcqFAdVxbwyNFrTmGImMUrKhcAWomQilQ6wFDeziKBFl9cYR+eXSqQYKAIzM3a7PFYlTDbkkDAoJk3N4CPWKjwV1JlhGGiqTNt7LMKyX5GahPaWLqSS9mJS0dKh0apmudxgcs1idsT+xNAcaGyjEHOETweEnebJ0xXbPrNebXBpg8+Zw7Ym7c75xj/+O9x75zYpCg8ffMLD00/Y9lu01Gg75ahukcrw0aNHfPPrv83P/NQP8MJxjbx5zDd/731ijlx88DZnH3+b/+AfXPCbv/L/pK5nvOuEv/rf+Tf46pf3WLQdn3/FcLUZGDrBzyb88nsfc/TV19hvBBkiZ1eO2ycNn7GBMDVsriP3rgc+mdYcNhYV4W6VuBgGrtEon3Fd5NpHnpB5SYPddbx5+4T//r/11/na3/0/Mb/3AQCTpkKqQy5dzZMPN/zYW4bFcMa93/4mc/VjnMhNLh+vmIjhwb33MU3gz/zsa7x9mTm/yChTtKxVa5nua3Jr0LMKFxPR9Zwc3EZnQ7dZotxAW1fouiLEijBYtG2wocWaAZPMaBZU+GSJPkPvqCnmot57OpfJqgFlsBS2rgqRRiqUtAUZFqR07INBlMaIIoREVpqsHSG58Qm15MgfJp+hyvgzCSJCXVdkJaScC2A9JdABEYcoQ1MZmnpCUDXZCUwjtaowWCTXiFQgHthhTUlrSmIwSkCKHhRKpy/kgNYZmwSVNCopxEM2FVbV6BzJQyIb0LZlf+82/Q76zYrLqzNEz2iP9qmrFkkFXaRzwqTE1gU8ujBju0TqhBqLGgS/89jJBJ0SMTumswkney3Hs568WfHwu/c4v7cEr5jOp6ipQaYTlNT0vaJpDpCQIEIIEa1hPm+JvSNoxZDBTusCvFfCbu0YtgkbDSbpcb/UxAEkKhprIPVkrVF1i/YGnVSJ25zURb+Ox+gaXbU0dWkeXG/XGNHM25b+eo3f7cZ9Gkxj8b5DtKaqKuKwJRF5/M63+d1f+kXu3r7DV/61v8yrP/evsD075YNf+XtAZtpO0HtH1M0BvUtoEv22Y7db8/T8lIvza7o+slp3rDbX3Lm1YH9PU+tAo1pyErIf2K6XbLfXBJ9J24K0IkDwu5KORiQGV2D8vjjylY4kFiUoJjjqWhG8Q1LHpBFapUgJTNYl2MSB4KmzxZaMX0RKMprKxbAVY6TzJT2rsQpbK9iVy1mlWzbdln63Q5vIbL+m0gGbK2JTE4bAyjuEwDD0VNUf6k6bMeHs+Xq+vp/W9w7qTxmioGL7hzkdSiGTOcNf/FdZf+Y1Htz/BL/ty5g/KrouopQhpgBqw3RvxsHNY7JEHp9fk9SMk70X0JPI1TCgdxmThMolguu4Wq2IZxec3njCl3/wh7hz+zbWGoIvB1iMGa0t3kdAijMWUFmVxmaKPHz8iCf3Pub86UMefvwRr96+Sf3qCzy+/ACttsymW4aN5umjh6AUxy+9wo1X3mR29CLt/AZKLFDcojnnT/Wt1mi8KoduCAPRj50iSrdVixDTwNXlBZcXj7k4vc9m03F1umF5dT2+PwO7bY+Pic57fMwkiSjlMUbwbktrZuxP5xzMGtrG0Ji2JM/Qo1NGGU1ldWHJjto3eRbpLCWPWokunV+dS/eKhFWKkBw+9cTkiGLRUriRkg0q15ixYyZEqARJBWGj6wpNhbQG2QyEVYLSS0NUBWIw2ZK0kDKc73r8+Tm+hpuzKRGHVltUztRU3D5M9D7i9hVRKlRjMNWUqp4RU8a5M/qNJ9Yr5seZwcF629F3O0xskWy4UUdOv/Ntfucf/iqvff4V+uhxT77JN//gffqn99jmFdP6Bu9+8JQgS95dblD/57/PV37gF7BYXju2+Fcqfv8Prji79x5fv/db/Nr/bcNn7x7y8b0N9StfRP7Sn+BP3FG8PBV+4Kblt54Kj64zn7PCRCIzYD4IyyTIdMKsj7xhFMu158OF4ZXJlFmA1+98iSdvfBt9+QkAs7rnw/v/jE+eLvlXfvZHeRHhr3z1VfLTa+5fe847OLs653becHZ2xkuvv8nnDSz2Pe5FTf92eYyvOsH3kcrkUqTMwA+KFCzzeg9cJsQdwSVsU2PaaUnZ0UCKsBtIOTJ4h2KMJHVCHIScI4RAJBFH/TYxl89YFBAhDIAErGiSj6QsBeiPlJQkFJLDyJ/0mKoCMskXtFAJ5C2SoJwUYgyCLlnlwZNjGeOLUOJJRREDJXtdNEKDVXNqU8xYknQZt6c1Rq+QuAfJINQoLCmmMiodm08qV1gatCSUFGES0aCjprIt7cSy8QMuK/pdRFUtxyd3uETYrDsuLy5ptEEf7NOoCp0zhtJNDXUxG4ov7yspILrsobVdoGXCRG2xrNkzwl4jKD9w9skjukdLqhDwWqgmwuJgwsYNRLdmCMUApZQtznOdmR0doSc1Dx7cY5ctZu+EWmXcbsX1Zsew6tCpIsZEyhqjW1Qq6UzGVFht0ZVG2SKNcCky7AJKZ0Ls0Dqyd3JEbfeRXrPbXpMpF6XWTDiazhiSpxqd5W7rMPMJKSl6NxR0ntKk5Pl//Hv/I+q9Q1avvsZrf/wnmdy8Sd85XBAqazG1omnAqimPH1+xXq1xu4HUrxk2K4btjm4ojGUhIZUQ0sDgNEYpiJBdT9z1hG3Rj4adRyuFzkJMW6BG0OOfNVpNyBm83xGVR9ly3uAPyNEieUu/WyPZFs0wHj14VOURXbL7RBuUAVLG6NLFRxQxRXIaDVGqpPsZKnYpsQmRq35HlszefEItHeJ7FA6JgW6zY1ItaKcTdn3PEDODK+/x/5u9P4u1NEvT87Bnjf+whzPFnFNlVdbQ1dXVRZEiaRsUGqIsGDAE0gIE6cK+MyADAnRlwAZs6MLwlQD70qYJ+MLyAEMALUOGRIogQBsUySaLRXZ3dVdldVVWZlZkjCfOsKd/WNPni7UjK5tsG8kWDFOFWEAgTpwTe5+9z9n7X9/6vvd9XmsXf6IC4M16s/5FXl+6QPVKaJTGHKPdAEIqzMWhz97m9JuFedUgceTq5Us213vUMCOiaVzHqjtBt4Y9icOwJxhh2Tic1dxst8xzxhTIaSQOYI2l8R61E67iJR+6n7DsllA0TdejjSVLZc411rMfDtzV1cHKMR/81eYVH336U0DY6kxcep6lPZsXn3IZB5ZE+qstm6d7uL3ibNGx+eSn/Pyjj5DFPb7753+Lh+98FX/sUNWlMcrjjWdWhiQZjaqpOiKf/1E6cXX1lCePf8Zu84qry0+5udqzvZ0ZDpkwDxXZkwaubjdsRod2nqJGKAO9XbLoFixVz3rZ4p3gjaGxDZqEMQWjpHakAFEcqQRUcLUuONVUU0nKYOp4FF0jAnMszCmirKNtu6onjRVBU00k4N0CQQjMNZKvURRnMA5Qc+2iyQYpE2aAMdbOmWAQo0hKyKXgjOZmf4M8K7Ttu5ycOYQRMysO0w1ZzRQl5Dnjm6qv1RpMrhGaCyew8jzo7xFCyxh27A6JHDXTVGi6BecXD2iXj9g+e8yPNr9gs3nJD/7h3yHtDEY8Jml89xzfaWY9866Bn/29v84P/8GfJbx1h7dWjlWY+fgf/md89Pu/R25mng8T//gf/RAXE9OPn3N654zv/dv/MncovOsmnnjNk8vI33z1im+ewP76Of/l7z/G3n0PYz2/8f4pf+ZByw9l5qMceGQUeQLbK/r1XaKqr6tl03G4/SE/+vQf82/82bdYXTwAU/gf/qXv8Z/8eOL7Ty9ppwOL6RljuOWDr/2ruBK54zz3TyyfHZOkRMNuO3B/6Vi3BpaapvU8K4lpqlrkuFccxhGVM6umQWzLXCwJDUaDKUgcsTniSvw8HlKJgFVM81iLQZVw1tAahzMWb9qK/nGlGu5MTRUqOlWShBQMmTSHqgMVVaN1VaiHKdGklClaobWr4HRVD52lsqzIJaENmOOEQBtNpo6os3VMM8QgLAxonVFqJGdB8oiTTCFUvWVpqjzB9AgBUZUhqZPBSgMSKi0iRWBCjQaPwjQe5zJzjscgAei6hvO79yjliv3tlqevLLZbcmfV05ZIigWDQyQxx5lRhGgAk1GSiHliQvDKslyucNawXik6n3jx+Dk//+mnzDcTeIfuG0ZlMHOmzFWHb41Ajgw54hsQb7icr4hD4XK7Bd/UdCivuXtxxnB74PaQ0N6BGitL1nnSYSKHCas0/fqEfn3B7vqa6eZALKZG19oEGs7u3Oetd79KyZrnn/yCcZzo2ob7/ZLWdiy8Y33vgtMk8NlnYDxiGrrlCUw1IAUUulhUMvxP/8bfYnF2BsBP/9bf5vv/8X9CzKFqUZ0l7w98/Ic/47PDjsM80S8WPLp3hjfCftiibGTpWsBx6ltAk5RiSglHYRoPlKwo2RLmgNKKKe5xVWuCHGVo9U1U6oFNVYmJ2LEmjtES5h2dX1ESjDFjVIMztnocJIMp4Gt3WSVbjVqqgKlUFUrG60JESFGwbYdVDVoVlIabecdsMierHpMj+eaWpCN22RGjQs2KlfPoUtBLyyQZ7FF7qt5gpt6sX731pQvUFA90rcaYiDlqLucUmTCods3F2/eYy4Y4G5Ynhv3uwItnl+wOex7cu0trO4Z5wOaZfmGRMyGMgdvrTxgjrJsluqGamkTqGz6nmuedFJfPXnB9dVN1rEqhjKFQx87WWtq2RWuIoaJrjAFnLS+fPcO1DqUt17uR51c7hlRoO8t7J3d5/iLjN8LXT97jfGF5NR94cbXhyWcfcTsbfuPPBr7z9V/DuebY5TlKFqgJNVppjjvs0fFfGaO7/TVXV58xjq+4unxMnHaUeKghAClRJBHTzLi/QhmN7ns244GmmTltHTIJVnv68xbfKERi1TbZiORcuztaV10TQjpmOXMEodcAlkA5dre0MqBVRWhhsLZFW0+U+lxEK1wbsTbUrnAYMao52sIKmUBRBXRBW491hiYp1m1N8jFlJqeZ3STotiC6Q5uqR5ZxT2Mt5aaw9Y5373+dr3/j66ztCfthy3a6IqTItMsctgNoTRHDsI2M444QJ7SxKF0IaQO6YI1FcmK5amg7Q+ci986hO12ibeaZ9vy5P/UNdk+3TAfNuJ/J+TMuQ0Krhq+fLeh7w3/xH/0V/ro2fPXeI8ZZ+OTD36dPCTXNzM4SFiu8mnmxv+bv/Z2/y9/79lv8a7/+iLuuox9e8P/6m9/n97//D9h99ju8f8fx3rtfZ3X+CXfO1nz3X/4eaznlg7bhhwfYG8PpMnGIkcP+Mae+avSmYcT6C/7Cd7/N7e0zCg9REZwOfO/dlp99NnN4eY3XW8abLVk6frQP/JMf/Q6//QefcPLjPwBAffp9kuy5eXaOeXiHfr3mrLuA9RKvGjbXukYIHw4cpgM0Ee8U2Vi073CLE7weyezQ04RnRNtwfE1bnHP0orGmdqcaZ3FKoxIYGnJWZKnMUhRYpTikQD4i26Y4Ym1BcKSkEFXZwxpANFkSSQRbhFI02iq0KhSj0faYLJQ55qgLumptKEaTqHB+UXU061ymOQZy5OQp2VJMpqhCCplMpnUN2nqUrtczlTJaMqIKxgvFZnJIlBjIZman26q1zqE65eNIVh1t23F2sSLEFxymAy+vthgNZ0vBqsQ0w2ab2OvC3AmhieATXgyzhn0KnJ5rXO84bT2tyly/vOFnP/2Yq+2+6sZ9z+refZLKbMYtXbY0Wugag/EaLwNjPjCmwvP9DdBgmkicBk7XS+48WGGy4maA5HzVXpIIJSI6YLtaWJkucXr/hPOzC4arLXkcMNmDMejW0J7c4+Tsa7QnXyGFHaP8FEFoBFZaYSWTy0xSwnykvUQPgxP61sFGIbo68GMCrx1/7X/yP+fhu+/y3X/zL/O13/oL/O7f+Jv84D//f2C8Yd+1rIfAJyHxKgWwmeQG7i4X6FPDwq9YFUWcC0scb927YF9GDuFA2xpiyIxxYp4mprlSX5yp4RMhJXRpyXFCG4VSphpL7bYe6FWp8qiiybkQ8y3uaM6NUdN5yzgH2s4hCoJErCQ0mURFtCklmOOBu8QRkYIFjEBKgraaIkLRhZAGOm/QCuabDSFM5KUhtz3L/oxTN5G3A603tA/P2MURN1YSiJjDf5U64M16s/6FXF+6QC2KasRXtVsIEIsQUdh+hUmOd752ws2rx7x89hmHJGyD59UmU8yeVTPhm5aLOw9oneGw23ArG26GAzm2dH3VtiZVat57EBAYJGCk5e6Dh5ydn7PfFcbpwCKdVEi5qqP3OAc0CmePXcRcM7ZPTxY8+eTnfHb5it0Q8fqMO6fn3H/rDs18i5n3lLDF+xaDoQHeWvXotvDR06f8wQ9/l3fuvcWdO/eOXqjKFa2KorrBilSOaMVWFeYwcnX9jMP+klcvX3Dz8po8JvbXI9OYGKfIfntgHmd2B9inmTHvIBUa5/HJYlXLsl/gnKBVpPWWrtH4ZqzwcjHkow3KGoNI1b0qrWvYQKlMKec9RtvPUVpCpuSCNhp3vI0IWLEobckUlI04Z0EKCkWDxYomhIAUavdHgU8GpmqAWS8bIJNlZJYIxaNzwRtNUREVZloLu5snfPyR8M1vvc+7X3sXMYpD2pByYLweePHZUzb7G4Y50ljP24/eoVu2zDFyGHbABSHOTEFQxXKYRoZxT9hf8cMfPGZ1cVL1uC7CDPfP15QTRwwjmcKj/gTdnLFuEu/fu8vjccfVMFPiE5wS/sKfepfD9UsOTwLPpxuup8hhzKyaNTef/i7/m7+64we/+T6PTu/yn/7tv8NPPnzKmsL52nOn6VmOlvR85Pmrwo/aX/Ct9+/w3sM7/P7tzP/x//l79OMThsc/4o4e+LVt3VQubzMvLPy7/+6/hW7OebkZuXPSQxbudlB+9jvw8jM+2nzEq7jn//wf/VU+fvkpP//5hzxcn/Ptq2sA9Gd/QJlGfvGx4hPXsro4RzenrO9/DVmc0RTDvX7JGCdSmjC5dp+XZ2tMI5gtWL1H6WouaxK4rPG6RRNpWo0c31/kIx81piqtEYVFM6eWIoWiItZqWoRZUtVjpoDzjikGKKni2sQd5TMJh6CKQJwBjfIOZwzeO4oSlNUoAamOEzANRQ8kVYsrIVYcXCnorNBSkVbaeVLRhLKrkZQuYPRIijPKFMzxOTlf0DqSCaCgaesUQOmMVomBA51a1FjiMBIlE+eRlA1N33LnrRO2LxO76+dYZlx7h75rOQxbbqfE6DTRzMxpIoomS+3SrYiIzGSVEaOJh8Llz54xXG4oEimLnv5uCytN27SUQ0TCnmgS2m/IxxFw52AbZjbjFtf0NLajXTqWq4aSEq8+e87hasDqDt9bQjCkWGU+beNZtmuM12gDMQRiTLXgJ2K1pu072uUKQXO72ZLmiRwcehowVipWSteD+zgfGKcNAL6ZcT6RYoIirE+WRBkI00RMmZ/83d/msx/8Dvvtjv/ef/i/5Dv/3f8Of///9tcoY4KbW5puge09jIHloqdvPZcvrii9o2tbzpsFakrYVCjGYLLDxZn9fF3DJkohTwMl5Bo9Kxl3RI0ZwFpBSUaJP3byAzELKWvCpHB+gaGQODDNe3yzZiaTS+HEdWhrUMaBmKqd1gpjjvulNjUxrgiCJ0vBuULXabLUcb+xQqOrgbU3mkMKzGFgmg7053dou4azk3PaE83hasv67gm50cQUKzuWmtj2Zr1Zv2rrSxeoUXl2Y0S5lrStWBsphpwAJ7h2Td936MazPLvHxe2WxcUzTi9fMh9ukPmWgmEYEmOJaCzL9SnD5DhsC5ISxnms1mgB02hiEhrvePjWe/zat7/N2Z1z5vG2fh9TBfMlzGTTHfWfR8bpUaB+fnrKr3/zWyyNcLndMs6eb3z1W3zve3+WR+/dYffqQz7+3d/mdjY8jrf87PkNXnc0/hQ3Z86MR8aZ/e7AnYtq45ejZk9ZKj5GKay1DNOBmCI5J54+e8yzZ4/ZbJ6zux159eJA2AfmkBmmTCyKaRQO20xy95imJ6iSOG8Wx/GdoT1ZUGyk9Q5jUsVplZmYR5T1aLUEqRdZkaqn0uo1TxKMtiijju5lhTI1KUUpQevK/FMlU0mTgqBAPMb0FB1Bct3sBVRRONuisJUVGEe0JJJLtLSEGGi0YBg5WbTcjoppzNimjmbRmSiFm3nDuu15+uIFv/39D3n46Ds8evcrtG4mly1b+4LdYcOsR6ZtRozl3sO3ePDgAShDipHGG0iKMR1Ic2DKA4dxg+wzYY7s08zuZiLzguJ7xFiubiLROXT7VbQKeO25GQvNkwPFOE4aQ+4OqEajd1v8SrP8jTt02fPuCC6uOV+seOvtd9Ary+X1Nb/3/R/jdy/5YB3ZDQemfeDVZEnzJSfdHm8tP/mDG/6Lc8V73/gWv/NP/gFP//B32Q/POPEtm7xm/izxW8DPnhx4+XbhydXI195RXB0mfvvHP+TRew/5e3/zP+Pq+x+ySomrw3Mu8y/I4x+yNCf82bd64v6axVwL3Zf7S36uMjkusNYzPP+EpMbq+D45he6UfvUWC91jp5nGGBg1SSKOiE8jpIRSDdq2eCs0WdHoSJ4ThETJBoXDaVtd96kaQOqhSZNSxGhFjpVVnEUdQzQKTjliqFpHpSosvhSpFA8RjBZ8ESiVlayKwimDpqa7Iam+TnFVR6o7UAcwYGzB+IzR9UhVTfuK1+2qoiK5tChmnC0YHZGisNridDWbFDIpBYQIStH1HeVoPsqSCZLRwbG0Lb1dEMpMTgVVNAlHuz5BTxuudlfstpGXNz3LtCbPlgMJrKBLTWSLZVklDDnhy4ZOPaBtZ0K+5vb5nsuPn+JSpjBxeu8u64uHiGnrxMiv0MuObAI3h5c0RHQWKIZ5yHR9BbkHMs3qlENyPP1oJA+axnisqUEGkkekBBbLU9568BVSFmKaWbZLDpuRaQwkrZF+RNlCu1rRnILvd2xeXbJ5tqM5KHrVYoHSKZQWfIG+aVmvqoTlXhvZeCHdFnSABQ17Zt7/i7/F9/7SX+Zn3/8+J+tT/sy//W8B8OTHHxLmCYPCaqF30HeCmgun3QobFJfPRnYETh6d4E4UPhjscoG1a3wMLNPIMO0oJeJSplOqRqFSaLSipILCEtQGTY1N1aoeqLVqqqGvCEatCUOuB30KQmI/3FKUoE0PquVwGCjKYL0n5xq9amwEA7oKUSmSKDkzh0QWME5ji6Ak0RghW43KBUKk5EjWibO7a87vntC0Fu81ZrGgXywIpRAPE3lSmFKnMK/pNW/Wm/WrtL78iJ+E0pqVX0CqBWop0HULDnOqOcRWs+hP8M6xWp1y/8FbjMPMzc0N0+GWedgTxpEYI9ZVHNOp26MXt6SccM6jtCOFgtaOi/UJD99+i69885ucn5+TcyIrRUixblYpIMbRdoqUKstQKQVK0LZyTN956wOWywUBx2fPNnzvu/8SX/nq23g/c/k88yoZcC1PhwPTGDnrlzTasG0UJxd3ePTB1zg/P6/4FQSlpRpLqGYsfRyba+MJJXF9+5LL54+5fPaE2+0Vu+s98xwYx0TJCqcsw7QnhImQA0Oe0G6FxImitzjnsWJpm8S66+msom1brHYoPE75I08WjGvwVNOIVgawmGNXtMixm6QUMU/obNBYclRVY4rB6IgXhdNU8b5ESgJtNEJEF7B0KBR53NQ0H6muarOYkEkQYzhZtWg1UciUcU9TMkEi0TRY60AgS8Dqnlwa0qz58MOf83ce/UP+0v27nCxWFQS+DLTtCrvdYXWAxqHaDtstaJsGpR3auMpDTZGKu44gCqM7pnFkHnfEtGe7u+bF1RUff/qUmCeGw0zZD4wl4bqGOAcO2rJQDu0s0tf8cDsLtukpOnHavk13Z8ViuYCSaE8bLu6e8c5bd/nO+2/z2acv+PlHH3N5ecVwmKBo2i7TdcK7791lfbLgkx/9Hv/w7/9dZjezOjWs1ndRo7C9PTAdR8svt5bbYclf+0//Fv/e/+h/wHYb+Cv/2/8Lz548506Z+QsfnGPThjJvuLN4xGFZMIzk3Ya+OHp3W9+j8zVbE5lDw8XZ26hi2F9t2JeRS/Nz7HJBv77Puj/nrFtgjEflhFMFnQJhnli4Y2JXUUiqaTyiajTonKoJRAOTZCSXGv6AQC7MMZJLJImqFI95RltDowpTToiCGGaQgFEalCMAojIlCzmC0fmIdQvYJrNYN3TLjnBIBEc1alqNdqrqZXU5ck0TgUzWdbJTvMdpSGHkUBLStBgsJItVoFLEqoIRjVV1kzclosqIUgWLJ48KzwLTtkxTru5+LFFg0bcgit5mQk6VmWzXdPd6UlTsNzPjZoukymE2XYvrFFIUzjeICohYGtfhu451H/HJMNxaPvvFLTsp0Hia07c4fe8r2O6E4bBFciYkx9p1tE4I2z0HrijGE2Nkjol+q1DFIiaDjqR9YP/yFYvO06zW2M4y54mkDf0s3Fs/4uLsIa82rxiHmVYvuDrckubI0nRkUQSlatTspDi7c4H2t+huwOvCCR24gKFFaWHtFe/dvct95+H3PuGsX7Bwinbd01zCIRywTiiHax588wO+86//tzHWsru85G//lf8d//n/+n/1eSc2iDDFxO56Q8kZwoQJBZkOFOuxcorRlpGBtWTaEsnxwBj3KFcDWfQM3ii8lWqynWdgxjcOZ6i/OwGvLSU7YvYoBGcTSjKHMpNzQmtDzpbWLlBek8jso2BywocZMQ3WtzhrUViUsYgDYqlMXK3xja+hAmEil4QxtcFhnWFSiaKFxcUajHB2f8Xy/Ix9TLUjIhpRVZOtvcMlcE117wtvkqTerF+99aULVKMqJN84/bm2SJPZ7zc0yzWellwiYQ5YtyCVgNXQdx19f0ZWCUmRFCameSLlRClCDJkSZ1KqTl6tHN54Fv2a5fKE5XqNX1iKJFIKtUgyhimM2MairEJKJJeZXCLquNmI1K6L1pqLs3v8K//Kb/Hyck/bnJLCxMuXT3j16prl8gTjLGkaWZ1nThZn+O6EC9/x4CvvcO/tt/BtV5l21HjHmqai8LZFSSLFSM6Zm5tbwjSy2w3sD4Hb25HLF5eoWCUBOSVSjgyHDdO8p0hGH/OrQxGsKbQms+waTpeek8Yds8o1SrVY47FGkdlXHI4ulHTk7BmAo0mrxg/UbrJIjYcUMNSulMJiTHXxCxljBGM0tVWkj/nq1RiRC1ilEeMpRzOBs45Ups/jYHMB33hWThFNYNaH2t0ZMiqf0LQrrNeQNYd9wrUe2R/48Pd+xK9/45t891/6LsooWle5lUrVTb2kaqSwukO0R3U9y/UZDphCJpeIUYKm1A6c71msz5nnAb9a8emrG15uNry8ukTlqsOdc6ActbUJxyHNpFkRpwMqKPRUQyVEFdpFoF9GpuWMt5q4Dzz/xStinJGcGLY7ZN6wciPNIpFF0/Sek5Xmzqmia2cenF3wp0+/zsevPuNmeMV+c8NmHjgwsaN2PpO1HOKeH/7BD/n3//3/gKQy5bBllQsPT5Z4FziMN5S+Z9b3qinIXPLwTPPBxQPuvFgAP6RVqXa5Z8E1ln7ZMY6auB9RaSBvd6Q8U9KeLCdk16GniKSM1gqHIoSZqBRGWRptQAoxK0o0iPQIilyOMhEEoZBzIKWqPRVdmOeE0Q5jLalUvbQSQSTTKCEdX1OFimUr2qFs7fYLkHINjnDe47zHWkuxFuMcyhu09eRS3f85ZyRVLBBFVeoDMCtFUjUf3aTCIU54twIpZBGcrnODUlJFswFGNKoomnZRKSAxYewCoxu8zTSlpmgZbylFYa3B5ogGmgjTzUBpFaf3TrBmw3h7wxQyenWPdu1RDJX2MUdUyljnOD874fRsTWsy82bk8R98xu7lLUpp2vUZzd1zim6xPtNFYAj4xtE3BilCqzxlMkQJWDJJCVMMqAjGKYa0JWXDyWpNQRhiwdtcw7OKx2CZ9nD9dMvuMLLf73gSf0EYDjROkXMBOnQsdLnBBc3tyxt847h7cYbaDpRYzWjjtiKypphR4jhrqrP8YnGGw2K0wSnPFDLGKbYffcj/6d/5N8jiaJwnz4X9MGJKwalCUtV4OuwTh32Lcp4yTJgIC8lMMlFypPU9ZQ710D8pvCSsb6qkIE1IinivWOCZQ8KYDmOWhFiwSEVBIVhVatPdOrRONEXYzxPeKuZUqLAYUyVuoVTOtio02pOB/TgjzoI4FtYi2HqAk6rjVzqjrVAKqFKvh4UaxapNTSizFnKcubN6wOpkiXKORQPGNlAU3ta9YoqRWGLFNx7fM2/Wm/Wrtr50gdqqBiWaOdbUIACjFb1rCCFSbK7sTRwlCYoW7TTWm6MbN6B8Qa9OWUoGbYgp1SJSwJvXWdC1iDJa1+6bNqQyQtY0TYsxNSPdeMs4HfCmo0g66j+h0hdN7aSiASEXcKbj0f3FUaspOHeP9apHATqXiq8pBZShX5zSdT1ofRzqH3Omqj8KrQzWOFQRlIC1hmkYuL2+IYaZ25sNw35kt9lhiiLGxDgNlCgM08R2uyWlWthlUaRYi4DkaizeatnSOwtB0azX+MbQeI9RDus0WhqUzkf7kqnsV/SxsNPVsIVG0nEDPg5GOT6PHFIV8dtjpzkLol4X3/X2SleTihSHKI1Ei5DRGJBYzSq4arJJBaMVXmta37BSM9Yl5mTIySO5HiowquKpxCIx8+rJc/7uf/n3ufPoEe+++4iCo/M9xlhEFEo5nG9xrsFY+/lorPWeqEZSELrWU3IgjHt865kDiO+5vhKevtjx/PKmdjIkYxtFa1oiARkih7hFURPBdKo/byeVYGCtYjwciHPD/vaWpmnp+h7XN6AV8xQwYmnXp/TrBimJOWRc03Kx6An7K8arfc2bb3pC78gqkPLMZt4w5cJQKgM36D0Ji5LCYchoMo/OGwZjuXveo9d7wjySJ2hU4dyd0p45vvOW5iunJ+hcR6mHy8B2lei7E+a0Z94dKKbgfUIdE2dscNjUEPYJbTxmypSUMc5hvEMboSQIYajpTRQazJExrGsYRkqULIgRoBYRRmmU1cQy10MkGmtsjSRVdYRqEIxVlapgPSJHqUm2oCGTQDt802BaS9Mu6boVXbciT+HIVK46VRGpfkARJGe0EkyRCvwvNZTCKIPBoJlp3DHm1CqMgNWakqROZY4H7tb36KLJc0LZ+o4JsbI8jbGoqZBLoZTEHMEpRe89EiBGQRnLTKK4zOrUUvYDQxjJcUbNCaMnSpwrCJ+BZe+5uOPpl1DmgZefPGe6HrAoupXj0Xt3MadrRiJ23rF7dcXSdDx6cMF+3PHk8opp2KNKxlGjXxe9xxeHZsaWgoQd1nYEB3Mo2GJpEkjIxENCFUuYZ66nK2KaCePIy8MNpsxoIGtDSRolFkeDCort5YZ21SBhxqbAfoiUuaDajilb9Dzwzbd7vFQNahiFqzzRKc2cIqPNFOdoravBJhFMUZx0HWfeM0tklkSUgo2RdgpYEVrlkGwxvmWlLYc0ILnU31ubagqe1eijvENlQ9+cIMWTy4ATA3lGcj2kCBmJUFSNZs25oLPGaUOvDFkpdF8YQpVGOakHlGEKYDRN15DCzKwVyjrULNg5M7qMK3LcXKs0TOkaXiFZjvQKwGpEFDFV2kMsCeUMpXHo5QK3XrHfj6BqhC06VypAAoVBtCG/lra9CZJ6s34F15fvoIowDQPOGVKpguw8J3LKtF2HohpoatY9aGMQkQqsNwqnNJLryEWhSTnTNk0dz+KxxqN1TZkpcgRo60IsM+oIuE4h4pzDmArAp9TxXkW5VF5iBXzXx6yOLEOjG0opFfCvKmh/bVcsFwtAYeQYE6WOWszX5Vx5/aE+Pq+q50TV7olSkGLtBJsQmMaBeR4ZDntuLl8y3G5RqRBiqLpVNPMmMk8F0S1aO+K4g2xpdU+LoLLgtKG1Pa1f10QoW1BNqGBx5/F4RCBlRdaCVhmjqZs3gNSiExTavB75Z5CafFWoiBqTa7GI9mA9Wala06twvIAbtKlSjCQaa3RNVEkJrRSkWrAYLThlsMqw8AuUAUl71m3LYVCUBNa1KBLWWHIM5BAYSuKjn/4hP/j+91mvf4tGMsM4MYeINpYpwyFnstPcOV2zWq4q7sZEJN2wu7niJk70naVvqvbQNz227dldD3zys0+hQJKAcZqkA1Oa2M97XPREU+i6loaESgHbabquI8ZIHgPLruP0ZEFMiah2zLLnybMNWRm6xTlt0zBphbeGxrXYpOh9w2K5Qo7Z9RJHhv2eMRlmA7vNnhwCOVj2u1qgoiOaCVUip0uHEsjpwMnKsVw72uWK/rDAxgPvPNjx7a9e0N+5iypXLO2O21CTpKw4Hl2ssQtNdJckNNpGlEs1BpeGrCybXcA7QXpwSpjyTJBApxps8YCq49QUmKYRkzMGXQsBZQGp6Tux6ouVkc+NeTFGlK6HshBmjLGgFEbX7nuMRx2r0fVQdOykJhJFFYzxiLEY32ObBUo1SLZQPBRX44xNfZ1ao/AOlC6fJ755pXEZTBYsGikKlQptY+pIFTk6q+tzLJLIx6jTqQjd6pRx2lVqhiSKUI1CroNci11xVNqIbmm7nmIqTxUl5BzJRDrvObt3wnx5YD+/RLsVtrX1/adnmmXm7lue0zMhTC949enIs88uMRVcwundFXfv96QycK/1PH9yidsf8CvLvK2d+P12y24eWPaa5XpF2xo6rfE3B06TgxBIBoJO3OQZSYqmWeNIlByIcSRJBJ9ROFSjaLynhIm8myihEFWDEsE3LaEEylSYxpl5jkxpxvYe0Sc4azmI47RZYAsMiWPsMWymwt5YcorEFCniGWIhJI0WUw8WubA0mvNlS2Em5omiQEdNygmvIRpLdj2lP6Fj5lxaUuPI04E8zxSXmENBh0ApBqeqLAqn62ORiZQKYRoQndC2VE29HCOsRWGVxWBwytQ9SwO6AvXnXGNRrY6Iroc4lZf1auoTJnc4WrRuKcoRi6kd1KLr4VqBiDsCXwRUZL8/MO0mjPZoV5Ooiu3IrgXtyblSapRSZMlkSaAVYjVO1SCCupF/6a38zXqz/muzvvSrWlHwHpSZmec9AMYqFq0DK3hfM+ul1D4dVERHzhmFqheixhFiwBpofFPD2VRNQ6pFVaGIrqgkrY7Q+opNSjHXPOMilJgqaBzDYbNnsT6jFP1LDBS1sjyitqkdVV2LWpWBI8gfqW92qMV0ro/cmNqBNZrj/R0NUvK6owohR6KaMW0hzDOHUWgPjt1my4snjxk3B3oabodr4lF/F6aZadqjlBBKIOUMYmsOuVG0Ylha6DwUM5P1jHVLsKE6dY0jUVDKkaMmZig2Iqp2skwpmFJQAjrnapBSAqogShCtMcZixWKUwioPmIrMQtcMdFXqqFUyFPNH3KFaV9wVqmCUozE1+UaViFEOKYreepwxBC2MpjDJgRQNokGZWPFfzpK1kCVwe/WC3/2dH/DNb33AV996cDyk1Jz1WArZFBanK9ZnJxilSAo244HLm2u2+y1GIk9+8RiZtpydnHB28Rban/Dzn39ImLcYM+E85DxjvKWRgm0quqxvWzSGRbE8OrvH2++9y50H96Fo5k3m4nzJ2dmCw3DL0+dP+OzFc8rjLde3G/Y3G0bjEV1AZZxraP2SRV83rLfv3uft976KThOX2xt+8Ic/5mbaV81khs40mOPmMk8ZkmfRnFTTW4qQBZJhv4nYkiG1nK8yD+9MfOdrmmIPbLY7Usyk8ByA8zsdp2shLwas2laUk5jKaXQdobjatUwzKUwoFWhah26PKTcy43PdqI0ptM7UVLBxIM4jKiUa2x45qEKRgpJqJimApONbhYI2pV4HtCEf5TyFTNGOjGaKkSSZJFDQFBPRpqBrQj0awxQH2jjhc6KIHA1NGrDEeSCliZICmny0AhZMSXXcbOHKZ7xJ5CKo7YBuO6pqIR15q4DXyLFbOklhUsJcBGOrJUZrTUggWgBDUSAyoZJF6Z44C9452j7APCG5YTcp5kbhlpq1BNRmIE8K0UtEg1g4vb/i4v4J3lk2NzsOr64p8YacC+3yDNUtCMXQuwYTEl12BOWJYeDV5S273Y6iIOtMiAp9eorzjnj9irNp5N4kuASjLYQ24uZISYYxz8wasomUFqQExNUITqxCjMPYHp0iYxiQImgTa1LU7RbnFmg8xnQos2QzBBrAOkeymugDLiYo8+fX35upUI5RqUoElTIihkRl7GZV9aa7eWLZGgwZr6tESYpCmxoiEksgMhKzR4iIFkqZuX31jDQGstfIssWUQimBRhI5j+QSUCWjQyHFgsKRs2I4HEjaVs2yqfgppwoRaJ3D6oTNpT4/DZRIcglyIEgilYwSg1UWJxkfC74YrG5QuiVlORqtHE7ZCquWTMkDKc1McySM4XOToLU1AAUrxGIZp4wx9piAVsglE3MGbVEGTDZ1ogWYrL7sVv5mvVn/tVlffsTfe1bLhuXW0616AA7zjt3+msVqRUShtcb7llJKHYnp4wYpCq08xmhacaCPJaRyVY8jGqvriBqlyGLJyLG4lVpMNYp5DHTOsVosmQ4DSjRSpBZ5+QjIfw1cBup3qVxVdZzPixxNRdodS1ghqzqiNKoiQpBCkTqa1OijEYTjfRxNRlqOhdzEMO/RcWJnNNvbLbubW1wGmTNxnigqo4xiDAO3uxtC0RTTMkkhxI4iQms9rdG0uqDURGYCb+gX57VDUyI6VaC6MpoiHCUIusKmynEjxmI4PpdSUSZohdYGTcX6qFIZKEXrqiEkIcyIJLRULaJgKdpUR6qxeGvQKoJKGF+7or4xzKmGKmSBXBKWgjaGdbeomqu8Z3sITGPCNBlREWUbRApZFPEw8ukf/ojf+8E/4OH5v4q1GpFMLBHXLLh/7w6n6xUFYXMYCRSyFLJR6M4yDgcub15y+/RTTEy8/9VvkGl4/OmHnJ1ZgnKkMrNenWG142S9YL+9ZdSJoi29O+XX3v4m3/7qd1jdu4frV1hlSaWwaD1Lb7EGbjc3PHvxjGcvnvPi6RNePH7MsydP2eyvSRIoBaYAr65vubq6RRnF+197HyeF2HbwySdsr68wOuOMRuuqiwMoWWOM4RBGplDoUKRsSdlwfTjwdJ45b8/I6pynu8InN5ZH93qMFiTPLPuKmXJtYb/Zo5RHG4spMwqIRlF0fe2SI75VrKxncUQKFRSmKGxWKGrBqUoGo3HWoPAkJaSUcTYhOb1Wi9TZYpEje9dglCekAaUyylZpTypgta9d2SNRQpvarbJakaQcub4JKQFlDWIiomsghbUFCKQ4o5VFOUHrUos9CkUyseSjPruQlDC6RJTMAsW6bWlVYT5C2YtERBw4hyRF5NhBRXi+3SAx0nlHSVU2lPKM95rF8oy20YQQq4omRiRMqFVHv2ixupAuFXknjOuMdZnupKFDc7OJiAQQxfrkDuenS1p/wuZqw+VnB8bbDc5EWFjsqif6U8zybZwTPvvop6TkWZ4teLV7ScqBZb9mjAdKmPHSMh8S+9sRfbPnPEAOit632N6wKVM1ppoadyoidWTvPEqVmt+lLdoaNBmUw/UrYoUko51gJKMSOK9Ae1IWNJ5OO0oekQKttUiesTKzNBmRIwfVKLRvcTHgnKWNkRwLSlswmkK9/lOEFCa8LmgyRSDNiZQKOUayytXsGWu+XbKKaT+RwgYtBt23TM7SmKrPDQTyGNG6YCm4nFEq1tcyBe875pBrVzcXso1gaipfUR6swxSNtYYkBWMUjTdsg7CbA1bXiZ0j43SCNBLHLXlfg0qMUwgFbxowVepGEVKCmDQpQuNbnBZCzJSU0NGS5SgvKYLK9RBilAHVooggoEVIMaKPs31n3hSob9av3vrSBerb73+daZzQSTNP9YK+Oj3l1atLtttbjFWklOm7RY1AtaaO/LXGaIdrWrwzx4TC2rW0pqHxXe3MUTdqrWwtppSisTUZSqTgjcI1jl2pzsqm8ZSc6JsGZy3WGLS2n8eN1mWOf5eji0jVrm7JGOWOvdFKBwVTx5RyVGwep/5y1A8BdVxYy1Qa36CNYhoSYSx4V3jx9Cm311coArlE5vmAUqHGR46ROdbkJls6ovGEeUI5jaSxiuXF4pqWrnP4NtN2HuPq86UYKAatdC3aTc2TzrnqVqVUV3UhgwhapD7nUv+fUqqSFiSjRaOUIoZQo0td/T1ZVR3aGo1kEG3AJJymdst0RnSN/dNoUgCjO2zbEoMQ9UBMGSHjjaYzgdNFDTO4zgVlhKIFORpi1JxorUemLb/3j36bdx6cc+dsjUVhC4gyrBZLtAgf//SnvHx1yfriBN87YtywH6755OOf8eKzTzHjSFssn338lP2YOPWexdmK4mdO755z/+G7nK0vuPzsBT//w5+QfWIKwqP3vs5/88//Re6dPuQqBhKCz4rOBRqVmA47RBLLbsG3Pvg1vv313+TyxUt+7wf/iLj/AfvrkRgzrregC61KUPYcDjcM00TftJzef8T9h1/ls5c3qDIeMUsFd9SiWMmUMDNOO6KFMWi0b6DrSUDKUIonho7NZeDy+0/5zW/e4b3TBToZsq9mlEO6obu4g2o64jigJKGt0C5PCAL7aTzKU6rOOOYZVzSN81hjcRqc0jiqFpeUkCJ1s20cyhoKhUTVXhvR9W0ilQ2sFaSijozeAAKpgNIdrlvSKUOOgTGPhJiYUqq8XnXklVqNcQ0oh/cdq/UJbd9jnQGdKSoREMg1FQqlSKVgjKPRDdNhWwviXFBTxomuqB/n0bYhi66FbbEkqkbxMGZ2h/r+3uwndlnhtKIcE/NyqR0upsDNBOuVRZEwqo6lu0aTlcE0S0qr2OYNt8NwlBsIulN4o+nXriYIZcu98/us+pYwTLx8esWrF9foFHj7vbd59MH7PLk6YLqesRheXj7n6e6SVgt3y4ocNVqdYNyCdtlyp28xTwuHn12TmHAoPpsU5uKEeO5pe8OL5yM3tiU3LabRGDKlNFhpMVqYZGQuQ5UwFAjDTJTMrA1ZIqfrFVYV4jgScqjg+WKJ84GiDf2yQ0eQ4YDzgrMRWwaE1wldEy4ONLYweuimiI0Roxt0pawiKdIpTaOFtTOUGEgUpixstMYDnViKKLZhJuOYi0OywhWNNcdULSlMc4YcKVroqKbPHDMqREoJRB3JZKyD1kyYVMgqYcg0rqW3HW3rsLZeh3zjSTkxhrFSy4zB6pYp59olJYENYBQha2QAZaQya5UmyMygtqicP9e/BjJaBJtUvWYahYEqP/Ce3jUg7hj8q6v0paiqPT0yjEUycpSnVJPrm/Vm/WqtL12g/vn/xl9kHke+++0D5dHvwF/9v/LBB7/G/O77qJzJUmq+cCmklJmHgLOOnAPCDIcdWtVizxqN0gYweNtivMV6j6lzYLS1KA1OqzqaUb6O3+WoIQOs8wwyUxQ4b3He81pcUJfm9Zhfq7oBlSJoreoIX47mSo7c1PLLcX+d/L9+w1cxPbzurh7jVAVSiMRJo0pLnGCaAilUvmCYt+QykXPNHN+PkWkMlNKQsycUD8pT2KEsaK/BOrRpawdMMgaPyIxS4Eztbhhdn1nKkHIdL1lM5U0WOXIla+dZqardRQvKFhT5qNUDTcErhSiL1q6OLlU5oqmq9koroTkC+3OMVbenaqe6VrWglAd6ChGjQXzt6jmfWRlH2/ZYV5jDzO04EWboTyyuseiSUCnhlOXy+VN+55/8gD/9ve+iS8GJJhfFdrPlR5sf8skf/JB5v4UG3NpzdveUwzzwyU9+Qh5mFuK53sy8iAHXLVhYT7oZkb5w8cEDvvrer3Nxeo/ePOH25ciwf8U8jSz8GSfrewSR2gklMu4OqOsbBnbM6Tlj2NCvThHWxLDg+YsdH370KdupIH5VIzFjpujAutfcfXDBnYsTUo7cbhMfPHyXX/vWb/J7f/AhMhdSnFAZ0pQ/fxO6ZNF+ySbeovoli1XLPA7YYvD9AokZaTQjjp8+e8nNYc+fe/+Cu0vLeF07VV/56tdovvENnr74OTJZJIEyGtU0hOJx2jNP+fOYUFVSNQwVfTQwaaxodP7l6F5Rx685JUqOaNFQFEbqCFaJIKVU5JsoMg1t75hlqAk5UigxEsMBqy0mTcwykVWum20BrQqaOmnBeKxdYN0C63q872l8RWLNOdRRqHf1gFM0JUvV+CWpEPTWwThDjDSmwQoc0kTx0PoVRhcUhpQh5MxmFzgd63UjBiEaQXSiXXX0ywW3m5uKM1OKMQl59pwsG5SCkGbmccNhDowCJ4/OCXcjN5tXdDuhGR1y5tmf66qbniPOdSz8gjLOvHz6GdvNS7SOKN+zuvMO3/nT/y3Sj3/Mq83Ii1eP2eyeMptbctLo24lxM7NcPsK0d1nfnbH7FwxPXrIcG3TfspsDk1uzv/OA9qHmerhi2zgSnlkrij3qbpXGZ8Hp2kW3akBiQYKCOZONxa+XNZTD+Xo97hzhMJCGmQZbmwrGouwKUwwXbYeoHTHu8Y3GxHrdfeAtt1pwS8M/bBdIbrh5GdDmBLteMSmNM5aV0bzfeh7Zgo4D2xQYEG7nADd7VPaEzrM3hiSmYu6GmaQy3mZOWoNWQigJFSOq0TROYZXGuQ6lLNtxQllF11s0ATd7clZoLWiVaNwCZ9c4uzhSSnKVYlGpLSkmihh626JNJjOhfMtiuaJbtDSrE0x/St+tscaTRRPiTC4zYYqM48iUMlMqWAE1Z3LJ2Kam/+WcMA5SCMQI2pSaVIUhJTkeIixaAlghHQ1+89EE+Wa9Wb9K60sXqE1zTtPA+hS4qhrU05MHcP+r9T98gXIhUlOMXn9cSkZyjfcMYSLGgNYG77sKl5eaylRz7OvIUErVhIkUJE+1SMqRUDRf/fpvsN1sefHyJ3gy77z3PsvVCiSjlPkltJ/jaP/YSdW6fvx63F+d/hVL9brZquDYSZXjP+p9VPlArWqdNTRek5KiiCZnTdgPpDCTgyFkRc6acdIo3VV3qHZ1PK4toShSmtG6Pu/WGrzSeK3oVx2u65Ay4owGKXUcqYSiEiiNlh4bFCYnohlrQIAESrRYZVHkiocyBmMMUQSJ+WjQMGCXSKm/Mg2QC8rUrHNjLShXkVK6XjCh4JyHEijFVQRUUWALc4JcRoqOddylHqDVBHaD7TU29cR8zZ0TQ5aWl7uRYQKXPL21xBxJGUjChz/5iNN+ycNHF0Qp5Dixu3nJOEw8fvaK25cvGeY9NPDg4T20M5RB03UnbG+3bG6usLNwfy0cyoyoRNd7Hvufs2rvcf6tOzjrj25xiBliargZMksXUM8+Ir16AVMgj7ekdGAXb5lz5Da+YJoVn11teXJ1zYvNjmwcxgqnbeZ0fcrZ/YdsppEwRSg9UzQMmxtuX1ziVMMH7/86rSm8fPExTx8/Jqtqkjq/uMMrN7MfrvF6gSWiNxkTA4uTNb3T5DDj4hblPP2dC25vnvGP//CK73396+jrepj6zff/FA+++QHnZydcv3zKuL2hSGFSBmdbTroT5u1QjU9K43yHVx5TFBJmpAgxZVJOpBzQokBq4lAMGkkKZSIEg5dqaMwy4r1BiaEEEEnEmJizkFWDbRtiusXkTAga65cYHLbU7qZYi866Rhgb+TyS17ce4yzG1rQg5wzGKnROWAkUBXP0lFlqUaUdKjbVEGUNSWdCyhQx5FKd/sYGJCU6awmpcHu7o9Acda3QOqGzM1oiK+tZdj2NXnA73pJVRFJDmbf4dsXp6pSxaMKcMSay3VxxAPoHdzh/N/HqkyeUkumCpssrXOuYw4iEQmFgc/WEzeUn6CmxwmNOzjHWEqeZX//mr/M7f/C77PbPWfo9xJllv0RyYQzCgZExT7zX3KWbhcvylJP1Oe6ip50Gpt2ObmVw6zU344RddbS9Jmxe4sXjujMO8RbUhuzsUStpsFajkkaLYmEc1rfMVmEoqBIwUrjTrJijwpklUwgECWS9pW1afLNiN/saIeuEMteiqWktxk1oL5i+ZbPfs1852rajqEoHySqjlz17Z3hWIpaG4jxDiGStCHJDlg1u0GhpsV2NJt1Pkd2wo29KjQ11LcYo+s7S9Z7OdzQ64xUUbyklYFSuRWAUxEdUaZBUsMckLKs6JCia3pBjQZJmToJrWjIzCqFzDpsLk/LoVmP7Dt2f47o1y8WK1eIcEVM78b4jhJGoNH3nGMLIYZ4hClkiYY6UDEELFgVTYB8GxmmDdhbFOYvWEaSgJIEkslVME1hdt3B5PSx8s96sX6H15aNOS/niPzBQeXA5H8fH6nNIPlCNFFodXbcGnAeEpltSSyP1hT+vl/wRvSgiFZCvNLnUJI6T87tc3H3IsD9wdv6A/eHAN771LU5OTxFRlJzq94Maefl5kcrxcf3zanWOSlVFjRI9dlSlBKTMpDgTQyCEA/Ncx7cURcmakjWN69iNO8ZYyBimVAu5ximmOGMlIFGhXVM1StaQRLFqF/VnaCy62szIpYLQjR6I1S5FSS0pK9AF18xAIMw9qTh280xMgjLgrKCPjmTnM40xNMZW5qmKSCoUpSAJRhc0qhYoWiPFkErt9mkLWQoxCKm0jHNmisIwDITJ07WFohPKCzo3NEZouyUXtkOYCMmynROhzAgG6y1GgTYQ5plXl1ecn6/JIhQDQRJTmjlM+5p45B1JZYJWvPPwAV/5yle4vd3ww1c/JCfFg9WKlc5HpKtGpsSLT14Q1I9ZL+/TdopOJ4oFpwWnCo7MzdNf8PxH/4Th+WPKHOjPLF4l9jc3bA4ztlnR+AWd7DjxB0Y/MeaJxWJJs1yyWK5ZLZdsDjueP33CMCam3UCKgSe/eMw+WVIRfu03vkmvZoarDfnVJQDvf+NdLg8buAm8/e677Ic9JUSuXt6wFsup1QSVaJqOWWWaxZI0r7ja7vnk2YYPSsVM5d1AkyIfvPMew8MH3NzecH19y37MoB0Nwt684nabKUnw1qGykI/pTzFmVC4YScQwk6ZQXcXJULKQwozyCpOrjrvRdRKRUp2gYCw5Z4rMFd8lDhUFr8B1UDJIKuRU9d0pFdClos1QGOswjaNZLzm5OOfs4i4n5+f0/apq9YxCKcEqwxSFNNVJTUkZ2xqMysxhqlOCtnb9JEdiSRgLKWisro8jzxEKGCu0vl6zWhU5aRu8cfV9GbYsvcYUy5QyLCw5VEKAzoXeWlTKQGSOM1dPAkkXHt49o2x27F9cM+803i+qwVPqoW8z3XB9eEnxia7xdO0p/s4dApGPH3/KV77yDdb9ipJuYIj0Tlj3LV1/wvX1YzSCjgkZC2cn98hokhYenD3iwhmurj7Drpb0p3c5pcPe1dzePGGOBqsty+UarSPDOCFKyFlTglTzpLYUdyQspILJGu003jlUKix9z8ouMfaE7bwnqplRrvHKcXe/5+0x4VPh4snAybYaLO9e73nLGcptQVnhjAV3p4xJM5YRskFJYTFMeK3RpU7ZDIr+aHRqRXEIEZV22FYgWUQKuxR5TOSVMmymifnmhmXrObs4Z7k8Y9V1WIk0VuNXjtYtGHfXOOpYfJpHSjaIVuQyAjDPc01JjAVjHVPIiFaEqYbVKFWbJUoZOttXfbdtMYsVdnmGajxTEZwx2OPeZawG05JjpjGVNBL2NbIZEbSrEeJ5zsSQGeYN2+3Aan3C2EykacLYinabYiaiKCVz6ute1/g3GtQ361dvfekCVWv9xX8AVYsjx4+VPhao8sspeF3qcwqnHAXdSunjeF3VUbrIFwpHOZavr7ucVeOmtcccheDeL1it7nD/4TvH21Qz1LGa/SNFqEb9CYrSX65juV1LaX1UoErGe4fzCm0SuUxM855pOnx+ai5F4XyHYMnFECIkDNroinBKEa8yU5yqiL4EtPZ45498U03TLtG2uvBzrKggrQ1zDMwpYk1LSANFVfNFmloO+8j+MLCfZqYYmFNGEBoLjdP4dkHfFZZtw7pd0Bgwuhx/rUf+qOg6rs8FUeXo8neVBiADMRbmyTBn2O4LV9cH9nNNdFJ6x5w2YPfkJJyvW9aNpfcNq9Zy3hfGy1tiLhTbV7OZZCQKIcGrl1fcuX9OaTxGKZxzLNdLVudrhEQska73fOPXf427Fxd0ztO+uuGjj59y8+KGJIJ10GAJpnCYAvvbA5/+kx/Rry747m+8TcfEWZMxPnHORJv3PHnxC3a7VxQ3cz3e4sYFK+2YNoXb6xm/8izbgksDJyKI90RjcV2HNh1ox+7qGj9PvLXqGTbP+eTxz8B1jHjsYsFq1fDZz3dsr28gBMpxxH+68rx7dhfFyK998wOGwxYtMx/Gwv7lllPfY5rElLacnJ0x5UCcJkJxXN5seXeuhcCLX/w+2/OR1YOv0l08pHvrHncfCTlDDkKeBh5/8hP2h4EpTIQUIGXKHKo+LiRKjFgp+KMUphSquUk0znRMKQCFLIkYwi9H7bqC4Ys68klVQbGvGBwRRFpEoKSIEoU5soTL0bgoUlAITdewODtjcXaHZn1aQ0BcC8cRp4RIojrrc9SVBScJjaou6zRjtUMfrymxJJIEQkkMIeK6hjkHplxo2oZYBEXt9KXxgDtd4bStOl0pWDTn63OmeWbIBbvokaiQUCkli7ZFtJDyhJ1mbp4/pshA3xvUaYctjqZkVDjiichERprTlvbsLiUbvFuTGsi68PzVK8ZBM00jGU1jViQbKCIsbc8iQNdndJq4fvqM1btv8fWvfY08ZmS0WDrefvsdHrxzwRA1/bLFmsCUPN1tg44dtrScnT3gzlsXTCFz9eqWeb9FpmoetU4zTpUx6k2DdtCsDa7pQSz96oz9XhiGyMWDU4aba+7PA//xP/oB3fEgy49/eQ39937/h3/i6++XWYNW/KXvfIuN9+RSsMrSuQWNXYFofNtCzswp07QdrpySpz0SIvEwoEuHMoacI6kklAarDBIzs2TmOWC8w1qLUaZ2+4tiCgmnHNZ1ZN2Stae4lmganGtR1pBSJBtLVkJIGWU7XM4VreUs2UmNpdaKYRqZ9hHRsVJM0gCqwbQJrQsOCKkQU2EuihwK41h/3q3r/n/6M36z3qz/f6x/DnjaF5Mqyhf+PhadRzF6/fiLcKaj2wh1zCXml/8JjqP0/+8dTqUU5bVkoFQ8TCl1ZJ9zwZijU1+pyl38fCT/JytOX0sEjt8QUbUArsUp+Kbl0dvvsT/cMk0fkfJEKDOpxDrSKRXTpLQmZyEXTYm6wqylpvMICuM8Ngc619Eoh87CbrNlvbxL23eItVirGMZbKBmrG+Y5kQsYtyQmy27aMU2B4RAZd4YwZURPRAJZGWapyK2QC/sxYoaJrhuYlwtKSiy8xTvBWoXTNU4vlIzRFbFTg/UMIpaSIlky85yZ9orNtGccNfNYiQwhTQgRjGI8QCmKF2FibHtOeqFt4XS1JgbF5e01adpTjMEZh64iWLbbPS8uX3H64B6kglaaR2+9ReM9j3/xcx4//QV4fcy1nklF2M4jSRfak57dfqDsAj4LqoH9fsegOi53tzx99hm/+Rv3OV0Y1vOE6QU/XTHvrtmPe/YU3GrBIDOWBUo5RhvYmwkfJ+aww8bq3j3RDbbryNYylAR5xmfF+cLS3Ttn2GpeMLAJhdg1SBMp8Yqw27LulxxcwB0TjBYWHlws2N70mOJ46+I+0/gCwgGbIgsVyXHHOCRoMsb2NGmur8k8gtoCMIen3L4QtjczF29lTt56D9M1tIsFy7NTVC7sb/Y8f3ZJdoUcR6RErK2YsmIqEN0Zi1FVj1rIODSk47iztDiTMTpSUgSpHFM5AuxrYIRBCGD2CBZJJ8RxWQ+ieUKZSCkzohvAoZXFOYMYg7KOxeqMbnVGvz5juT5n1fScrM/p2lOmpNFKjj87hfWWPA2UdLxGaDBeISZV0IAqWFspCdlQ4yRDRJSpbNNUcK4esgNCVI5Ff1K1tSoS0MTi0H6FiweUcpW3rPRRBmMRBbNKSFew3rId94hR6IVBi0JURNKAqEIqUlOc3IIkpUpuTMt4GKu5tCQOVxkpmsSI9YooS0iC8pr7uuF8YTGnjpeHwPblUx6se/p7HU8fH1i0DRenpyxsi8qGMU/4XnN2coabFGkPY0wsulMu3rpgniNx+BmHKZBsIJWImGpsbTCYENFZgzGU3jPGaqqcYmAcRsLYs2rPWd9s6Ermf/zVP8OLheXPvX/G27sNf/lv/z3+Z1/9gJ+drCp1IUe87SilEkIoER0LOUwcLZ5EwFmNKYLXgrKVmmB0LRBd43HLmgb34OUt/8FPPuZdBz9rDEU5bNPhfY/NmlI0UTRGBFsgzCMpxkq3kIRRiikcSLmAE1KJGKvqNVYLcxwrr1tnnD6aS2NNLLTOoF3t14zzhBxGliuN8Q3atmQRsoZsFeOYiKnuA41yOFEM05YQC1pbHIYSZ6YxUXSm6Ax6xvjA4sLincfsM01U2EbYHfYMJZFDlQlZ+ybq9M361Vt/wgL1l+uLnc9/+v+8LvSO0/o//vaU+rWjKenz2/yRwjJXfp6qgv4aYVq/Z+2qvuaU/vJ2r/+WP9Kd/edbnxe5qM87voLgfMf5xVuc37nixfPnGO9QzqCzpaRK3qmPUwghMw0zEhUWT4ixJm65llEiKRu81izblt41dK5htVhgG0NSgkkV2RVzJMQZMBTRDIeJ6+uR210ipkwMIymO+GPnR+mqwBWpHFmhoFRASMwxsj0MOJ1BdWQ0nW6gpKNZpRwPFqkW50dagBKNwaNzoiSI04AWi7MzSELsjNIOikGZ2klLKqFUZIwJ7cAYx+nZCfu049V8QwoNtq2bvohmCoHb7S2Lu+d441DKsVicsFwsWS0bFouW569ecPPqEu8ssxz4+ccfsdte0nrFdg5M0dAYyHEiDgf8SctX3nvAr3/rK5yd9Hz2aWAMEbGWfZgZYkDalm1IrJTizK3J+xljEtkcyM1QNY+lUFzN7S5lRI+ZosAbh1bp6HofiBHUOHNqFLaBF8MVRhYs1if0xnP/7l2m2x07qYXlz37+ETfhnJISL55eoU+WDPtrTAw4HRn2N7Qq4g2YPHJ2sabNS15cXqN1wNrq5FWmI0+asLtmE35C3m/IyxV0pyxWdzg7PeXunbtc3XnAi8uBbG2NXAzHF6wBiYISVQ1SCpRK9VVfmU40UkkPIIjVaCrfMedSk9XIKCylaLKyKNMguCMPsiKKlJ5BQvUlYmthZgzGt5ycXdCvT3HNkqY/oV2c4K0H5TC6Y7l2KFMoOTJOgXJ9W6NSVUuSAazFNo5sK4LKiEaZDm8tWF9xba6ihPKx6GlVlUiozmOXLeJsxVEVmFOuDnCtsdKCqgV4Tpl0xFaFrBiyJzmDYBnHSDwGglgJbPOI10JKwpwUaEsWQ0oFDZQ0YKnFmwg4E5kTRJmJKqKsxveO9uKEs4szvvO9t7EnDTc7YdgHLDMPH57TuWuMqx3v3cs9xXuwkWEXUKPh/OQu7iTz/PIlbaNp7Zo4Ttjc4JRDmsghD0g25AySMk4CxlrmbUHNINpzOb8iFyGmyIvnl9x9cIa1tYv/6bLlszV88+4FfqhehZed8LSpZjunNL1TxAT7SVHEM1MQp5kQUqOwVB6pE8EZhfErLApVCt4YlNPgHMZo3Kq+9s8aw8prJu0xvgPRpGmq5l2tMaXQKGHc7wlhQutqfZVcCCVX1FksZApWInAsUk0NV1AUtC6kNGGMqlznAnhLTDMqZ1xK2FAwVcZPFmGeE9M8sx8DU4iEceK072EauXz5ClEJ7yEZxRT3JKpMTKQQ50BltnrGommVQVtBpQlvC+JreApAMm8K1DfrV2996QL1jyscv1hzflHn+for8toST9WOvR7xf3Eppf+ZovKfXfX2f7QI/mIBWjeNLz7W/ypj/S8ukdcihao3KKUW1MvlOV95/5s8efxzFE9JqRCzkCOEOWJM1SvFoIghUYqu6UvH+xQ0c8q0ricmqZnXCrq2wRlD4zyQkRTQ2qJMNS6lnNhvDuz3Nf/69KRBuUKMQpgSYQqEuSK3asaBq91a6mEAU45O5kLOIzFWYH+yFqUCWHvkwbpjRzhVm5l2VdObXS1gVULbzHjYYGxCmxrt1zgLMWN6T2s8Uc1064r4iUEoomlWmmZqkKIZU8aEjDKgdIGS2W43nB4OLO9o0BbJmsYZHl484Kxf8fjJY17dXHPYjsRSaJTh/skZPgl9aRm2AaTgTcv9uxdcvPMOd959n+9+51ukfM12nJlHzYBh2Z/gFiu60zXZgC+JO9qxObxCNcKsDswmVCyZr6k6ORVIhXHYU2KhaVq8rVrOJDP7cURmhTc9q6ZwO+4JBw1mDc0CGTVOCanU0fKnTx8zdDMEy+bZhzwOmbunBXXYkbdbhuxwiw5nHY2zdESUGiltoRiNHusmNU0deWyxJNR0ze75llEvGUtHwvL+17/GN77zbab332E3viDEguREKnPt2MUjpk2oY3NV5RKGUt+/1kI0ZKomD0ztsseCohabqZJ6kdIipaVG8WSK3FajIC1ZckXJFVVToEyNPDa6Uj0a1+Ndg7GuFoQYtGlQxtUEN1M+7/RnDWIcWRwxV34vytXwCikorUHX25diMbpBUVBGff6+zrl2spvlEvGGXZpr51OEYYqVOawSKQlGO0QUIccqf1GaeEwKEskVj5SEohWzVJxYlcskYir18R3JIqoUCDNkISuNNhlIRGaUdTX9rCQkWnzpGVOieXDKna/dxzfwtl6xudphbMZ6he2WXF7uefkscz1kTh5d0C9PeHU5UUZLNpH75y13z9Zsp5HHX33Q6gABAABJREFUP3/Mze3McDtiAKMKyEgRQ1KOKUQoIypolPK4KdF3q2r4KZmEYsqRbpNRphb5Ynb4FPnWhzMPXt4A8K+/uuW7mwmtHDpnFDWHYo5CzJliDCjhVsNfPz/BeU2vNZ2rEh+No1EGpTJGF5LKRK0wWLrjVK43hqWxWO1Z2AaVS00K48i/TYEhjsf44qMBVAL5MKALWOOJIaKtIgHOOqRoDLam7eVCDlVLap1lCDXR6TU8P+vC0nsapY/4NVWRarsdV5tbrm43bIcJaw1d0zLutrx8+QLfOVyrMToxDVtCqdpWkoLsGPaaaeNoupYxz2gm5hwZYiTGhE+1QJ/zLwNV3qw361dlffkkqT9u9M4x+13+6QL2iGv6/Cbyha8fPy/q83v54wrKf/r+4AsdVnXcRFGfu/a/2DF9/Xc1bf3JC1WlXlNSq4mjamWPj100N9e3XL68IsYMoihZQdFocVAqYieHynoUjmxFVchSjRpGNOSC955IZioB29uaTpQSFsiq1KQhGqZpZns7UDKsl2uWS4c1I7EExlkIc888tMRZE2NlUM6iiVlQkrHGoj0oY+q4ikRJATG26k1NQSSBcXVTzvVnrVTdaKVQYz9LJKsJfKI1rtIMyHTOVBMKsG7XNG2PmICyQ93w245xTgwl0DctS3/KbgrkWRFsxHZQyGy3e7Y3tzx4O+MxeO1prEE7R9cs8G7B/fsD4zxyOBx4cHpBemckzBPTPjAeJrQyeCfcPV1x8vYD+vUprbc8/vQatCeYQiwa6y3T7TVp3qJ8QOJIPCQO04acDbmAlxZlNM5bJEaKyrwObMBCzBM6R4wAJQBCzEJJE5ICJ17Y7DeM14XeP0RO1pjc4lTllz68f4f87jmf/uSS3fUWH4V7foHdbenCnqY9Y9wFlucLchK2z59TxgOLtkP3DXazAaqjt/ctqAPWC/tpZJgCyjRoES4/jty9f87p+Rl37jzk8roQwgbTKjCGnEwF/BuLKgmVB9rW0JSMKZo8K9JsCUfsTkoBTe1UCooIRDFI0ehi0EWqDMBEIB6TpBSqQMkWhQMiqBntGrQrKKmRpcYYrNE0jadxHcY3KGWrdKb2HeuI3YK4TA4TVmm06zC6I5ZUKR5WHWkBrpJEjCPFakTMuqC1Zn9E9SR6Xh1yPVKLhgxpEvI8Y4zmkCNa+fq114c9pxFjKDmRw4xKoAPVCKYNOHfsVEuNHi0zBUXXNTROkWNCpJCMpdgaNoCAaxxFa7wYCpZ21aMawzxPXL664p0H56yXHlvaOnIPga4sWa0N0+6Gm/0ty8VDWt/i9JaDJMbdiJdCZx2Hqxd8ev0LtrOgc+SiF84XPSerxO32wK0KBFPlCFIyqJlYco2jFVevX9ZhnGUYAlvqqNloT4uimSbisWcwq47JLxCtyWFCipBRjBLJphpDu5K4UJlTp3GrFUtraBuhbwwmKYwcWZ86MQMTFq1a2nEAQIvDF4d3njNn8VKnGxlFmCNOqzrVMkIqgUY7tILSOHIMKBLmWBCnWIgxY7WpqDZdi1JFqfHX2eJsh4iQc92bTs/PsccYcCv19xrLzHa6YQx79sOW282ORw8f4Z3ikEZKmZlDYcpVM50mR6E+zzJHBlF0CsKYsCWjrCZkOAwTQTJzKvTH2HHU/k+8z71Zb9a/qOufY8SvvlAYvl41og0EUa8R9vXzv3Tqv77t5z3PX7rz+adSn+R16pP88m4+v19FkXw0Yr2+X/1PiwrqY3pdlH6OmzoWm3+sfOD/8xIRjiGOn4PuaydXkXPkydPPuLy8JM6haiijUGI5dko1ORXmOTKHXBEoGkJJte5TYEQoSQgS0T5jmwZtVTWS2JqSlSQAhmnI3FztUMpycX7OolVYEwjDhASPzgqVKycWU2NjRWpspXIWrWq3C1V1V601WF1/AxX+z5EFWFN9pBRKPiovrFTGbSrkoupPxFSurNUtKQdSjpSU0U4AQ4iFaOrF2hZNa6GxCm8MJmnm1HOYMnkWSs7EOCEerNaElNndbIj7PaYktNR4QmstUFidePrVGg3M00AskZATISVqk76gs8F7S+c90jdcvnjJRx99zP7qmsb3hJKRMTDeXvHx/kD0AZtmJI3shwN7U4hiK2FBKmqHPKNygBTQOKSpGmNKBe0bAaMTOSmsUlXfqTTrrsHaxPXmljg65sMCh2WpayLb2jrWd+9w+ZNLynJB2e2ZdzsaDM5Xp/0cC8MQmaYJlwesgc4rGqOxR1Ja0xW6pSJL1Q5nVY+KvRWcEzabS54+fsxbq2/TLU6wuxuEGW0VeVY1ZjE5jD4yd5OhKTMmjFitMaKYw4yQUaJQr09aNZGjkhdEkQp4JbUjn6ejTKYeJIsOWKXQ2aCUqa+dEmrxqQTfdSwWC05WK1b9guWip3MN3lmscSAKfbxWaGVoGo+bApILrW/rlcJaVKloNmUUYmun2dpMioExCUEcswhaC7sjQvJ2k7hKlY/hrEdlTRkTJkekzIwm4UyPUQ5rFN5Ct6jYtf0wo5pYpwBKVdJHBkWL1gZnDB5DKAkxgu/qtdS0BrRGd5aIgLMY5QFbJRDWUwokL/jWcP3ylh/97g2tfMDZao22YAw0TccQOt5+dJ/TtmfOM5IiYRggzuzHDdN2R9kZ3jo/ReaJsHuJ9W3V6CZNmy2L7gQzCwMDgwjgqgyrwqAYwoRTghaPxELrLE3jGLeb42W8RUuHyJZ4jJBNzhK9oxghGkPKmZAKU+1lY3S9/iwFnDO0bUfXerpGWPeWXkwlfegEthC0sI0OSY7mUAtUaxqsdix9x0IDKhKLAhqsa3GuoKVUbX2FR6AwZGUoxtcWRBJElZqAlupekiXjNHXChcI4S84a3XSYotC2YBuPa/o65QJCmdFRM8cB1xn60mOut3hrWTQeKxlHYdm3BGUIQTHPQkmuBtsgxDATBJKGYbpl3m/AGpTNhGmgqEKZPVrqFq6/SNl5s96sX5H15TFTUr5Qbr4u/I5cNnX87OedTKkups87mJpfpjp9sTh8PWarHdZqRqr8UX3MZ379faDKAficT1oLZnX8txxVk7X2fF22viZ9/vHd2Xqf6p/53C9ve3zOStVNGFW1eAj7acMhbGkXDfubV8Rhh0qKkiNJJ1LMxKkwxEwsYIpizpFDnDDW0wBe101JCZSYsApMKRgEkVwLjOwJ08R2u6FtDWdnaxYNpDgwjTNzUMxBE6IlRE2MCclSM9pzIBbI2qOdxhRDo8GrjNdVI2e0AmrnVFENKKXU8aUxqj4GU0MVSszklMlRkbPDoplDqmlBypBSQjlLUpm57CEHmlIRLpIFmoA1itYblivHKlqGKddEFhpiMVgcSORwGJnGCaUi1kSca3DOYrRCHbu0RsFi2dQCtWSUqd07ClUPTB29phh58dkl18+fc3/dQiqYpiNMM/NwyxwqHFvvdhRJzKPgdFO7a3mPkYDHkmOh5FA3OQNKG7xYbEzARMkRpTWajC2Zxje0yxXRmJqs0AkxKebhFSbD/VWtLIenG/JPd+ghYspI11RQt0hTdXKpIrjGqw3Ru9rhNHCqCl1nQFUHb0EIqqC1qlGxriZ9eddR8sA4D0zzRIqBnGYsBqWXGNsxk1FZozLYIkiMqKyYJ8FJQ07VtZ/zREmgskNnTSnV1a8ko7G0R94vWpMkIqYcTY2pHnwylCy0xpJKJmfBuCWqWVNcj10tadcLmkWL9w6lhJBGJE1YqZpodZSd9G6Jp0OFiTzoOkZXFaxepdc1MUsyZAVeOUraM4eJedagepIU0pHXGcbATE2nykbQRSNlwrJD2xnfLGvkrxScA99oSkmUYrHZIeFQU6+8wy1qTGfJNYGtJkxYVAkkncnGEQWMN7RGYVWhSIOoFp3V57HL2WiUZFKp15ZQClEZnr14ysO374H1qAxiO6zPdL1GYs+9O/e5GhI321fME4zbgXw4MEvgYEeYRxaYqqUkUebCzTwTek9KDVaBJR8DOyrLOsuRVa2pGl2gFE0JhRKPBVKsQRCqVKc7gPeF//7/4X/PvW99E9d27K+v+OHf+Ov83/8X/yExBBwOrwQj0LimHphF0EVRogLrcNZi7PFNrxULo5Co6dwBAGctjTd01pDDQNAB55Zoc9xPEBrbknNmZqikFan60ilWOYvOE1570CuUq0ElQiaUsUp8iiOTUF4hZUS0R1uHXfQY77FNi9jCPt7WQ3nTsFg84DbvuTY73MrjtCZMMzmBiMZpsK6wnw7EWPFsohTjYULhUAdBLWsITgLaHrwqjJsAB0Hm1+bhNy7+N+tXb315zBQc05b0L3ujUnVooGpBejxpI1UTWuSX+lPIn9/TL0H6hdcwfRF9LGg53sfxbqVe8F53UuVzMxSfd1grdf5YoqrXhql6v69L01LKl+qcirzuwr6+qzrOfw2/qt+ysN3dUnJguWx5KZEpzLUDpWtko1YFghy5rFCMMM4jOIV1BovB5AqdMcrgrKV1LY1xOFOTtEQgZ2EcZpx13Ll7greZEisCZhoiuUBIMCXFYYpQMl5lnJ6wpuC0qsk94jHijweCSCnHi6Ouhf4xKgEBjAakkAy8joZVQBFFyIkkwhxnIoo5RRSK1jcY7Vh0DdnN1TgjAYUiRdDFEJVCvEe7ht52nHaGWzczxUhFVCtyyBitiXMizDPeOZrW452rZhpqx9cohTGgsDg87fHVVHI1iVjniSUR4oRrYNkbTr7yNmcLzdPHP0ETUE1ASsDOI/PtBpsHcqmvUSsJQqIpGRFHLg7NkcKAQpsGp3zV5cqANAlTqrGiSMJ7y7Jd0rQ9uxRBEq6thqQ4JoiBpT52mK5HPv3Bh8Q8kshI1ugATEAxFJvRJUESbKMoymEKxDlxc5joj4k9VltQQrCC5DpKV5JRLtP0LXeaFXcu7tXRZUwQC6Isoi2iZ+YwYOdMihmVa5cpDkKrDSolwpzIKVJiZVpoVScnWQpZVE0iI1UpjGiE9Pl7UQRyUVgtVbt3TCXTVHyVUg2IQuVCLIltGCizI+/qpGGcNxQJR8xyQZSiZJg2M9tXe4b5/83en8balqb3fdjveYc17Omcc+d7a+7uqu5mt5rs5iyJ1jxQCiXLEBRZiSVLCBgECGAkiD8ohuUPiaHYSRTBkZFIFkAPtCNYlgMNlKVooEiJmtlsNtlD9VBjV9Wdz7CHtdY7PfnwrnOrSElOKQkMsHHf7lv33HvOPXufvdfwvM/z///+NY4ylUQqtUA1jcV7i7M1sjIZqpayKaQS8Y0lRlOZqIC1E95ZiKnKW7SGXhirLBYt7XqD1crPNVIIMTCNgZQTUsDEWsSVJuL7hq4zpKDkOFGCgeLmmVEml0jSAliK85ioGGMp2cAcXGCkoDlTwgEbbxH2wrXNdb7rM8+Tdg8YLwaWR45pGIg24PyKOOwh7bl5ZFmuet774jfYj0IZd3Qmsm4yrRuhU47XLdk5xrE626dsCSGSEVRa2lbqa6GxSnxSNcx5MYgzJGpQwzQGmkvKSpwwXVfPkfnq2xrLo69+lVd/4i8RUuT7/vD/jF/7b/4R7n/jDX76x358nlAIjYFeMimPCAuSWoYIzbxZyIE6tjdKEsWlXCdGQN84TjYLGgP7YSCWiGv7KpcSU+8hZLw3eFspBFYsahRDoehI4wIGc6kmw9pIDUqJYAxFa6PGGUdMGd85uralWXT45QLjLIcUSWLYrI9Y9itKtnRt4urVI3KpYSj74UCiyiViiNSAwogS6vV8ioRUKRRhP7LsV7ijQnGGzMgUIzFGhn1kPFR2q7ft/8d729P1dP1KWx9+xC/mA13US1PT/DnVGdTva5FR70GzMaruQkUyUDmbl83Vy0JQudSVSq15n6Q2zRc95JL/f/lXH5C3KuUDzc/aD6wfqYL9wGj/n7d++ecupQCXrn1U5rL0snwz5JS5+95dzs/O2G0v2F6cE1OkzBGSRavZIRPQUjvMmUih0LQeq/XCX0JBS2JKgc51oIr3jpwjtlSw9ziOqConx0d4a8jxUKMjp0tXcGa73zGmmo606By9dTQsEFGigSFHpqhomosYHQkxYLA4O/eYZU7Y0jLju3L9iYsh5XqzyQViKhymkd3hQJE64l52Hc38fYxGvDcYqdieolpZlDmRhoAvfR1do6x8YtEI28FUuYdm0qRY54mScBiuXrnKydHxjCgzWOtqN+6DGwk1WKnAeNEMBRJ7Li5O2e1OWS16To49q7Zhd36PQ7ggTbuankViLFtyPGflQMQRSiHFPeSMUyGaFjUFQWhMh6qlcS2dOFJJZGNplxs0K4dxQF1Pf3SNbrGhpIIeDoRxzzAlNFvMFLApYHLt3NkpwYUCAbW1cDHB0ZoOgyPHEe9AmgxmJPmJtV0wKVwcBq7NHNSkiWIUdR7jPNZCzIbJZIpxXL15i9u3nyF5i6G61HENbd+T9ZxcztA0QQZNAklIMZMpmJwpCcKUKJnZeQ9Za3RmKbNcJNdz3ghoSXWIK1VzmAWyRqxbkNFa+ABpr5Ayrp/YPnyAfaejHfc1+33Y0Fphd3HGOO5x1oGBRGGaCuPuwP7sgkdjJVVoTjXS2FtsciQHnTFYMeybWd9tM93SYC24rqPT6oBerS2b3hAmy+rhBdeLwxjFN8pVt2BloTGFZe+YDpEH2wvOtoFi2xrOMY4UoxSJ0Aj9colVD6OSYgBjyWUimkB2QkSw6mmp5qFANXltbceDpgWXKSmQxx02n0EqNHbi1rWesjqhcQXinrvv3ef+9iG3nnuZK8fHOAKtBBabFSZvCcOBVVPorWHVGlYboUlKcqYmwQUorkdNR8izothVNFOjs4lMC85Ug6Uzcb4X2BqTSsNq4earbkRpKTrjtOaL9t//D/53uM0as1hx8dt+mOsfexmH0juHk0KTI46IZyClTAoC2oP3TKkSA0JWrPU47yiSKCmhaTa42YbWeZwIjfeE+ZmImSVXIhhjaU3HctmjOVatr2mwC0cudeNR0mXnA1RHqrSs6sw1V1xZChHrW8wsqWqMwYlhHCNZHcfXrtO1a3IScir0i55bt65zfnHOw0ePCMOBMI4khSklpmlfJVSaSblwCCO5CGINIUwcDgPOGRptyFHY7xKHQ+Dx9pSbUs/945PFv/Ae93Q9Xb9S14cuUL91/2uUecy9OHub68DDs9fJj1b1dC6Cb5aIcfPXJbwXDNWh7myHlZaithZ9ojW60FxKRW3d6Zpa3DzRol4WkFrLRPOBTmr9/+WIWt938s8qgJpFfxlxWj9xSRaoYQFzp/VJtVs/MMZWp/1cBCEKczdDxPD40X3eeu01zh484uzBKeMhogVSqTD9rJGYx3oRKqaOaQ20xkFxFZoeC1bfN5MZKxirFCKKIWVDKqBaWK8XLPqGnCI5WuKUGIeJYZrYjRNFM20Ly2VH5xpsFog1azzGjCJ1TEfNVI8pIrZqejEVON45h8kWY7WGCRCRHJEKAiInJcVCmDLDMBFCJIlUBq3UWEnNmZQNzrnaeZ3xQeIteQqkOFBswcZC54TO7tgsMqeHTMlSZQYqqHpSrJ34xrc475905d9n3V6+d+8zcI3keiz4QiyFadiRwsQ+jzgTOTs/Z7+9YLm+wk4Ni6bhfBjYScDZCS2RqLAVIarHqgOjsPTgLF48y6anpLpV8Y0nHBIiVf8WY9VzSrPEnNzhykdeJo0T+d17HMojtBwq0N0omRHj5laNBnq3QCNkPCIRXEF1rKNIW2j7pua5S6KxhUYN1ncUoJlzDhVIWvB2ibEN4g2LbsEhB87OH7O0jrbpiTmS1ZDVYOk4Wl5n3S8xY2KXH5JjIgyh8nx9rgipnGomvZm976ZuLKsVqZ4vRgWPrwofZiYqpTJF53OwinhqShAoNgolgi2gZeTB22+wH85ZXr/O2fKI1fEVloueiwenhMNIFDfLSKrmufVK4zKZA6qCFcUZsLM20xpoEHxW9qEeq7hA03k01bzzy+FO01h8I9wJyp9/6+ssPrh5/fqHvVL+/74GY/jXPvXdPGg7ohZcMRwvTjEa8CaAniN2IubE7qLw6jdf5ytv3uP5M8NHX3yGO2sPU0JTpEwGTbDolkhRQkxcDA5si28MqpnWepJ3pORQImIjtig2JZgNksZBMYVSAkkKxrQ4Y0ADYixJa6E0hgNjaNiHkRBqZzqUCMbxB//q36Q/uQLAl//yX+Rrf/kvcmW1oDVClwybbLm6XnPwDSIdzjVYZzCmHkPeGHrvaNuOUAJSwM7XfGfnCUzJdTOER1yLeI8RgxNLYw1eC+sNlKiMw4Bg8cQqWRGhxmXX0JGUase9SIacIIOhFqNGHI0TGq2pXhITDsuV5YZluyKOuQZZSJ2giRXGMBDiQAyBx/dPGeMEbia4aKbkQJgqTxtbNdcaJu7dfY82dSzaFaYYYvKM0WAXDbdvXoFf+Dx37tz6H+4Afbqerv+B1ocuUP/i3/iLNckIw51vvcvvAv7+P/wpLh6+iZtdGs+/8DHGUHj37jt4r7Re6BuPqODsAmf7OsKaI1G7rsKOS8nEVChY2q6jsbZeiLwjx4iYFjH1hlY9UoIRi7W1U2QuR/nGIFI7bc5YVqs13ne8H1T8vnlL52K7jv0vBea/XI9ai9Na09bCeb895Wtf/lke33ub6XzPxeMdMWRyUqQIXgwqiiadZaumKnDVYVSIAfKUa9fXQFKlcx7fVo1lKRGRto6TiqFpHZvVor4OKqTkmKbIGDL7cCBbx6rf0PoGI4YclP1Q2O8npqQUMdVNLBZTLJSESu2khmIwsVT9mwN1Zr5Z12QTUoIiOHHkEokhM4wTh6EW0VbaWdBfCDERQwYMxtSiJVvBt4Z1X9FZVV9VDVcYT+Ms60XHwg/ElKqmuAEnSinCW2+9x6OHpzz3wosf1HTM3NxLDcalLKRq0wRboy7dgju3X4KiGJO4uLjHNK65cfN52nbB6cPHWOsZcubsYsubP/dPOHzrm4xN4r7NWLfEzWNW64UbN2/yws3n2XQLxv2Bw/aApsDAXWw4oLuRuBvp+jXBLBm0pbn+DCtrUNPh3Joz84DD6UNSGUlIfV+AbCay1I4keAwGNdXx7RwY05CcJybFaqYdHeIc3hkWRlk29fxrjWfhF4j0JNuS1OC6Y/rGMBQhu5aQlaSWpJ6iLSa1NKxYHp3QqOM9HGfnj6s5LgwkM6FpnmhI7WCVCBSZjSO2slBFISmFen4XLVhxs42xslUFaKShpDpG1QI5S03myUoYRzSeEXZbtu/ep/gWu1yzWK2QlCnThLEN6hTxEVsSvS2sOmGTlKkOOrDWslj3tF2DEViI4GKhQ8klgDVY1zCOnsf3tgylFlIXZ5ltgJfGzEKV/83tl3i97Tg+WfE93/2r+PjNG3ibOX14j+3uwNde+xav373HvkRCAXKDapo18zUgoO8XqDSM2VR5VA4UUqWf4HHZ40xDyQemPPC53vG//8pXeG5R0KsdSR05NBx1K7b7gCmG00eBYbxgHA7ce7jjrfdGHm2XDK+fs90VhmeOWUrHYbhgHNpqKssbUsqMw8Q2GMS6ShxJkTzWLmrKBSWS4g7NCcmCLYKSMFLItoCZHQECzjuccXixMFUXP9ZQrONiCJipjp+3MRDtkr/8b/0vWV69wef+8B/hEz/8O3n9J/8Ob/zkT7MwDcvGsUqWq8sjNuvlE5qDEUU6waiSo9KYjLMJKzUK2cyjNS0FjBBiZDsOXKiw7BcsjcU6T2MbWu+QGLFYmkVkGDOUTA5hTiXrUA14U9Bi0NiitkdMouSAlAyp4IxHErhskFTIhxFr22rscuDSHo2BFAaUTLENMUbQTN94yn5kf7Fnd9jjOlOnIyWiYUTihDcF6wxLq/SkKtlSqRtmcWAzfnHMrVvPcXO+V63XJx/2Vv50PV2/YtaHLlB/+u98ASlV7/exhw/5XcA//Qff5Fvf3HF0fMztO9dQTvnK177GN197nfVyAXFi2Vi8B9MIQlPZcs4gptA01ZUbU2S73xFCZrPZcLRasWwdR6uezjm6bsli2dP1nqJlNlcIMQkhZeIUiSFV4HKS6iROyg//8O/khRdemvWncFmgvt89vYxwrUlRv6RjSqFojU6cxoEYInE68No3fpFf/Pl/yGF3YHs+sd/uSbFGmxoxKIaSDTlZUnAY5Uk0bMpgSk1DUSnEMpFLQNXibYOofWIicdbUsY609WeOmVJgGCpkPpRMsVJF+u0S1ZaLbWK3mzjfB852e0KqGB3jCq039FbwtuCaamAomtAyVFd/Y/AKFvdEO2yNr9zXUrujRTOp1I2EsZ6iwjAFxqkWwylbYiqkMlbJh4OuiewWLW0Li9aw0GouCtbjjWXpC+umsN8P4E11JYuQU8ubb73H17/+Jp/49KdpWj8THC7Hb8zbkvnPckmGgFqxVqi/ZhCrNG1fZSfWQ3Fcu14wzqEYci4cccT/6/X3iG3kNG1Z2oauX6FZee7Oc3z/D/4r3Lx2B28deZyIYyBMB3YX94jbu6TT++wfnzMk4bQ43LVnMH5J01pObt2kbRc1QtGOnD3Y40uHlXoDxzqyq+Y7o4Jki4rFOosXQ1TLmECkoxFLClCWK1bHPQuvNI8qYqYxntZ4Iga1hpSVwzDS+g2b45tge3ZhQtoWMQ7U1s2jcfim4+q1O4ChGMt+f8YwClkSJpeqkTNA8nOYfUFyqQp0A8zHSZHaYS0l1w3DLB0RBFOq8cWIklKFkSOObAoxj5Q8YlPCJkhDRP1IGkbC6WO8s3hjEdOivsW1QElIVgxCKzVOMlEw3rFYrVgs+opxA0yrNDkzRcVaR86WcUqUYXpyDE17YcyZOBesby89rzq4s+n5kd/4G7hxdIuH995i6hacPXzE3Uc7vnF6xqOQGY2h2EpAsK5FiqEjs2w7Jt+xLa5OMOJUJwXGz8gqhxdHCYVQCtfXVUtoTL2WaDJIsjhzgpgtdx884itfvcd2OCMMkd2+sI0O260ZJ8u9+yCHA42O7IYd2xDBDoxjROLMUjZVClJSwZeqVU557nrbEdEJI9B0fZV2zWdayYUyb2zU9BhX05xaqelIAE3fkaxlzIqdZ/whCwnDO5//OUouJDX87j/5J/jk7/rdvPG3/uacEpgQTXgizmRUFSuKtwYxtsqVKDgSxngakaopnjFLKQVCCFVYlQun2wm73NAvqkHXOodvGtSCGqVfr4ipsL+4IKmANMRcpWT+A+6FnMGJgWKqudILKSTaTig5k0LENQ2aIl4zvoxITHSSaH0iYUklU3Khy/XecLofiHGi5MB0yBQneDJOlYWz9EdrlicbXLJ4t6ZZ9FjXcnR0halkGm249exzPPPcNW49eAiAN/7D3sqfrqfrV8z60AXq/vycMhm8Ljh9UG+Ip/cH3pkuKGnN0cbw9376H/G1118lJUvv1piUaCRgbcb23Ww6MNVZScY5T0pwdXvKajjQGcN6tWKzXtA7Q983bJYLlosli2VH17f4tmYhx2IYDondMHKx2xO3e7ZnZ2wPI/tD4Ox8y0cuItd/6Idq16n1IJBSxFqLueS3ioFrJ/Dci/NPqqhGhvGCR4/v8u47b/POW2+Qwo4c9tx/710ePzglBmE4JEKK1aWOkEpFmEBTu6pZMDpWDeqcKuVMO5vG6vheyHhnqns9O/IEbmHxImRqNyiGSCnK4VCZp2pSNQpoLdgOIbO72HH/wY6LXeAQE6EkQgo4a1mtetrWUmRiigfGYcS5Bu8dQRKTU0Y1tAjeKBbFGoMag4iScsXnGGcoIhRjyMWQyoGL/cDpxZ5Mh5oFUy4kzfjG4lOsN5aLiayBVd9w0rYcL5aIGBaAFUPnLKZkitpZ4mFxbc/FYeTLX3mVH/i1P8Azz91+ciyKCJT3dchiBOUS78Vcb8zj8/m1FtNXbqnOnVdHZb5So3KffeXjjOslQ3rEgtq9X26WPP/sK3zPZ341H/3Ix8haEPM+HK1oHQkSD+h0wXS4YD/s2E+KX1yjWx+DTuSrJ0wpcfW521y8fcI3fv4XePzG2zRStY/O9ah19QadoUgFglNqiIV3puqpcXXDsnJ0z93i+MYVvDe4/CYAuWRCHCjOkwgUMmmKyN5SxHFIO9rFY9pVh5YJQyDlzKR7Wqrm8GhzhXGa/z5Fmq5AmipOCyGLRZNi5gIk5zSnLuUaQeoLGUOJihoPYus5L6ZuFK2SS9WyC6YamhgRQyWCGEOSgoriVOjEQUmUkAkomR78AhcghsDFPjBGR44Kmqqcp1jipIw5UWJiEiWEiGgBmSp/ckyEqWC7XKszwLtC12W6XAvU9arQppFXbr7Ep64dkx/uKA8eI+dnuN1jlnHLUT6gKZLF4K2SNDGFjJSOVgXnhUksooqVguZCmZOJsAUkzUaejGpiHOsxHKbC+enIOExIKpysA9klLsYLvvlGYCqJEhwxGvYSSVJIuSPuLOF0i7OJkD3qEmLPKVnoZYHHIpqqhtgJFMGaupFWY1CxFO0r9gtHoiKRbLZocJAgakMsdYOTKHQU7GwEMNZyMQailtpZBZ7/9b+Vj/y+38t7X/g5oPBdf+APAvDg1VdRzSQiWasm2RPJswQFBFGLM6Ya6sQh0qLqKPl9LCFU7mxKkMViTEfOinMLvF9gTdWfihN86wkSaU3HxkDIE4f9jgLEkiu/NzuMKFkTWSeIWhsNxVb9tatGPmdnLJWBxjc443AYjELb1KmY2JoatncZc8i8ez6SQsD4guZYN3LO46xn4RqsKVy/c4OTm1eI2aJNRwyFq+ubPP/Sy0x5ou0c66NrHJ9seKZ9A6hzjKfr6fp2Wx+6QH3u2pIwVTCxnI0AFBdRn9jHC157/ZR37r9NloizLUVTBSuTKUjNa58ZlWoCWROqAzeHwP/xp36KLuf/vof//279zD/4Z/7qg4FwlwVO7jq+8F//GPKRj5JLZrt9zP377/LOm2/y7tvvsTu/YNEaWmsgKXFqmKbMMGViELK6ms+M1Gg+HEUtxVxmOFlCLiSFUioIvJT6uqipHR0rFosjF4eKoFQIeikCRkmMxLyfk3syh7GQtCOO8OjhGY8fHTi9GBlzzX8WA2iibRpuXDnmxs0eLWecP9wTD7XAMxiMlQqvFiUZJZCrxopaHBlbb7Ko4iTRd8qQ4XwfiFNFLnlXs9jFJYqpTt++syydZ2E9MQRO9wdOpwHpN3i6OqYz4JqGznd0fuBQwKmjdRUP1Dp44+vf4MG7d3nuuduoZi6xZVVj/ISYC1pmp26Nd5XL+tRUZNclwaFo7Sq/34ktGLF0657FyRV2989YLzZ0/YqPvPAKP/RrfivXr9yajW9VlzGzKeqfxSLNCmkWdOtrdGSuUpN3VG0tYLlezUu3J6bnnmW5OeZn019HHz4G5pQuV7XSZZyIJlFEwEZSTrTNCmhJERbrnmc/9TGO75xQvMW2De2js3ocO8d2TCQZuXZyjRAHDmHCloBSi57Tx/dph5YyjYhmck48fHivOviNQ1QIsSBi8cZjXEOMCesakJodX1CSDhiTIeYKM/f1fbF27pRSY0+NmJogJK6aqWxNMdMSKVTHOKpVT0hBtepZxZhKnCgVd4YxxGSIeSLEiZRgmGA3KkMQRgo5pSfHwP5sYi+RooESI1qERW8xNtepyHSglEK7aDCHeu0pJiKuoe9XAKzXa54tym8/3dP8+J/jcLbl6rTnaNrzbJp4YbfjV+127MbIom85soUxTDzabRmK4+Adf2d9CzEdJtdxsps3lkUUsaWOsE2ueu9S32+oLM1hUKZxpOTMw9NH6CJi2o5dcGhpiBMMMZKaDHaEMuv2XcI2QlMUtYViLY3p6U2HzJp0dYKxs3a5VJNrlef0GOmh2CqbsYVFY3ElVkOQ60EW2GZJt+rwLRx74cVH5/DzX8AWgynVHHppXh0fn3H9lY/zym/+LYi17O7d5e//3/8MP/On/q9YLRijJK19VKxHpEGKQXBVvK9VimXUkLMhlcJuHMkpsAj19dqWQrBLUlYm3WJ9rixfLfXfO8H7BmchlYxpK05suenYn1umMCFjxNCRzdzVJ9RiGaExVaOakuJdQxFLIiMl1+P9cqKQKgnLW4dFcVYQb+mOOlrfslz2bI56rl3d8Po7b/B4u0UpSGPJKoxh5Fgd6tcc37jG0dXrrLoNt689w7PPPI9pDM4bjGmYhsjq7qN67MrTDurT9e23PnSB+sy1a4QS2U473P3qPjaLguuVUHaE3Z6u9yxWa/q+InkaYzAlIeJJuqaEiuBRIyStF5rnzwNdzvzF3/3r0Jde4MaVq1y/foXjkyO884gYrDFY6YCCll1NP6ID0zCmgdPdljEm9mNivx95/PiU+/dPuf/glFCUJAZnMpCre8I1eOtYe8ML52f8j//aT/FX/pM/zd1nnycD290Zu/05YcoYbdgsl+hyQfEOyTAOgZhqpn1IhaRaWaCaaSmkXN3h2cTaOdIK3MkGYgn1Qqeh8jznsbSTBBIwdkEWxUvi0iOW5jhKY5Q4Jg6HiTAVxqycnu85XAxMUwEHti0YyYgWemO4urac9I5GDUMAKw7XLBAUK56u9XgnlFKlEVmFmGtnwMhsZjM1McyLsuosQWFMBaWhdQ1N48jFYBpHUhhiRqSwEENHIXvBrntiBrIyDgeWHZTeU5iZko1jty+UaFCbULOjaeDR/bf56pe+yMuf/AirzQqt2IeZ/lD1yJehD1pqh7NIweC4ZOPWLzYfkAVITZEp8sRYZ8VwcnzCo8cNvl/Q9Ws+8fJ3cu3KLXLJGDM/hsJl9TsDJ2ajm0HxKLVj+ERkOW9QrIIaS3/c8PLnepDE19+8W7+PRPrGMR4GjFN8jkxkWl+jQDEJQ8tm0/Pp7/0En/zuT4OdOEsDEWiv17HwMx//GO6Z53j1jbd55vmPEaY9777zLs+/+DGeff4VxggpK+fn57z22msc/EApgelwqM/YWKaQCNNATpG+62q4hBrURXJKqDXQCNlnbCrEXSCNFRdVC03BGfAkKpZNZllIBldNXFaEXJSiGessYmvZX39lvBWcE5wtWAkzPsuhCrFESsjsD7APhl0ojDEQiTUut4DkClhXV8Blkih2DnowBloPfWtIKYI4mniJmbKkoqRyuXV1nPQdV9Tw7sOHnE9bFm1Dt+mR0uC8YMOAbyLL9Yp1Z2hGz6O8J4yBhSiYhLUZr6k+p/mYwYJ4arGuBZUJ1Yk8V3UpH0gSwWQQZTud421H0Q7bLCgJihmwi/q8EfDW0xmDsbUD2LamYsBMixHwFLw0WGtwncc2lqZpsOLwrqVrG1pvcFbofY+3DW1raVrHarlgvVlVl7s03Lhxi6PjFdYmTtZL4t/7p/Dn/iukFEQjRSOzqJqHX/xF/qs/8AeQtKekwDTlubsuFFNH6JmafDcc6lTLGo9YwxQTmWq2TPPrF1NiHEYO40B7qPei0zHz6FA7rmPMND5jdUTzCDhav8bbauBr/YacpiozKdA0HcVHCIlx3NO0hhAGMgfEZpxApqNoizNNjUIVmMKId44yjRzOzjAbw6jQNg2ptKiXmsKVEmoTYoTVukP8TVzbYpuet+7e5XR/StaRKSrXbz3HCx/5BLee/wi3n73NM3ee4WRzwvWrV+i7DoxF1fDe3Qds40SaX+NkP9h6ebqerm+P9S8B6m8wjeJMQdxcoKrSiMFqYZJaNfRtw/WTY6xRGjcHIKrUjlJOdUxiLAmHWMMzj2fV4He8wOI7P8XJtZtcuXaN5XqN61pM68G2dfwdJ9LwmOH8lMeP9hzGhOuPuFg7zvcDw5SIJ2sOJyvKtSukew85PbtgGwZKmFBjOJTCxIRNE+so7Hc1ieTuG+/wtccjSU3tukjE+Ja+a5lCZnAjNRo0kVKk5ExOU71pq+DmC0UpgZgmSglIShRraqwiBXVV2xTjRJYwd9cKzhfaNtQbs10guLnzWj3PKZaqOyy2FkvUlKIH9x8wjnWY3fbQdZbia/yi5EJbhKUtlOHAIQayFnqzxnYzmN9KBd8riColgfo54XQeZatqfZ+NoNaSsSxa4Xip7BcGDTMqxijGFdQ0TKUQC/hgWPnq9p2kJ6tBo1QDhq2omlwmrI14pzU5qwihFMQGTGPZnh/44i9+gR/89b+W1WZTQfwyUxzQGiOr4GztbGadQPR98w2CFXepVK1ygJLrSFkEEWrnzQjrzRG+XWCbHu+X3LxZNZmX5rxSdE5Fqt/rfZPd+3ICmQ15NXBMQXI1h2lFloHH9Se8/Nlfj3zh6/BjfwmRQCNKIIJrcdJTUsBlS9NYBgrOC5/63lf47G/+TtZrR4kD6wghFtjUZ/TSJz7Fi9//m7j62mvEcGBhC1HWrK7c4ROf+ixTKMQEh2FgsVrz7rtvcnF+hoihbZdogd1ux26vqBqWfUcYB8JhrDSCFNGsSAmQVsTDxFQCU47kMWKohjpNkVJCjWw0UAgUDagUUim40qLqK31Ba9qZnVFQIkLrhdZbGl83GSULKZV6fGYlB8NhHLgIgfM0McREFgtkvFhSHkFzNVOaQts6SlRihK7zNK2rQM2udmy7ULXATeMQlClUw0+MhX7T06kwOEe3vkLbOLwI425HGQJdt8I10PYNKoW2azFtYYgJZwq5RFpNNUUJqdrdUrCNwXlFyiX9IqGaKfMkKaaJYqtnUUXZpwP91BNCQcyBXIRsRiAh2WM1szaZphiwHrWWfunplg2uqYzRRluWbsnR0QlXblyj6VuWyyXrxRF9u6BrDV2b6VtL5xdV/4qiFo5OrrI5PuH00RmocuPOHdpFDwitc5y+9s58p0gkqRuRcgmpKBk30wCwhiTAbGYUKVV3DZVisa9YJ22F6Cob1BdXkVumopeygrMNlECY5Rln+5EHjx+xaltEEpv1ktWioXGKKQkTI9lUnb9VSx4KJhhkcnTNCl1AQgnxnJgvCOMFTZMxJqICRWPd4FpTTUrGYE1DTnvCEOlIaHRMeUQWC6xdUNQTk0GNp5jCPkR2Y+BiyjzaHni8CwwB8Au8a1k2HZ/5ru/iu7/7u3nhpVc4OlmxWS1prMP7GioQYmF3sWfYjuzOt3B6DsA4Th/2Vv50PV2/YtaHLlAHWQARrFJmjZZTVxE3OYMVpFi89CzcAmMS1kaMtVVo7mqKhhQlq62aIg/LQx3RtE2H8w497MkPLXGImEWLdB6jHo1CHke2p/d4/PABDx+esx0CtvVMnbC3vhaXVLB8t2i4eeuE1arl9OwxufSogUkLu3Fgvz2gSdjPDv7kGvalZh3XkTs4HKKGkpSUA1kDRSfUZErKlDJVx676imOyFjGZrCMpjkgxGNdRjJBTrGJ/CykGrFNiCBVSbRJNk2l8wRohx3oxtrNzXS4NS7PmsbI+J/pWWS1q6ov1QnFKthZjLZIbbDYscPQOxMbKsxTQVLsVmAyacOJYdZ6+cfXCK9WoVAUaBpn5txaD0xqvuegLBCHl2u2wdgQTEWtZuLZ2XJNhYVuMFaIkrG1oXM80TYzhgDUFCFgptE6xpNpmFqFQMGLw3vONb7zGl774VW7eeIbFaglolZI+UTIWKBNp2nF6fsq1m7cQM+PDSsUh1Yl+mR3/l0xenceitVB/9tln+Oo3v0QshZu3nmG9OaJkxbq6WagF7QdIu7U9O58h8oGPa+/wg39Vn+vceVXB99f4yGe+p55HvaN1tkLT1TAaU00PBYztaEncee4G3/dD38XmVkse70K+qMB468DV57PenGCvPs8r7QlfefVLFA288Mot7t+7z4PzC+7fe4QW4eWXX+b5l57n+KRlHPaEKSBao3nHcWS73ZJSJMXI9tThoiUlwzBD52NMpBCJY0Go4Q9GwGqF8edwuR0opJwoRDCFFKfZzOapYpt5gyHyZFLivKXxlq5xWGsJMRBTqdGYQZiiIWvBNFr1pDLUtNVoEKNgK05N1NQEKZPx1lRSCNCoJ2cwaunajlK0opuArim0FvRQr2+aC6987CN0r7+F71qufuR5Dtsdh+2WT/57/yHLlz6C7XrGx4+593d/km/8qT9Zo3mznWkSikjGEmlt3ZBrVnwWxFZahRilZAXxKJ7L8GZnqrksp4iKwRllPAxM24nFuqVbNBQShojJmYVGnj9uWXUtseu5UMvmyoor14/o2habW9Ih0PsF167d4OrNmzT9Au8bFm1H11iaRln0mb4BbxvCIZFiQazjyvGC5brnsH1EyYHeT1jrqwkoTOQU5tcszubTulGBCtqvahfBuQ48ZCzWVGqApW6oNYOmQggBIYEWjKvGQWuF5WqBb5eoelbrK9y4dYfx8z8LX/g51psNi7Xl2ZvH9N012oWvGK157F7CSGTWdYeMxIRJNb3KzRtN51uaxYr9fodzfSV4qOKNxapD/YJiKhIQCl0jeBMxovSuxeu+IqpKJobIFB3F9KhRgmZ2cWI3jZwPE6cXB872e84PA+rgeLni6vWrPPv8C7z04ovcvHaN1dHiyTUqx3oNLjEzHgZyHEnTwKMHdQqz25592Fv50/V0/YpZH76D2tYRWwkZM7szG2txvmBcqekjo8UkTysLhP1MAqpIHONaRCbQjDMdBYPRjNO681Msw/kF/MOfYRwipWmJzpM10ZiaR11yIY0j7nDgZIz0qcLkp+M1j7/vs8Sup1iIGIwHo56eHi1LYqnu/45Cmg5c5Mg+CWez5mvCMCIEEYSMLQkvDmcMzrqqLZWqQxQtpDSieaogdWoXxPg5KabMejNxCI6SwVOB0yFXwxNas+6dqcWgaGH2m9Yba66jvQ/isFQrB7ZtHSvTcHT1Jq23OFGckeqFVUsqllIEjZlWHUYNMY8MeSKGiCYFozhnWC4a+sbRe6G10FhAM14cqFQKgLFIBmsc1jR4Iq0p2CRo22PEkSgkDVU7WcA5S+NANZJyQWymcwZvE7YVmrZFNRJjIMZCI0prYkUplY4Ya1HZ2Ib9xY6//1M/zarvePbFZ/Cdq4VM0+OA3cV9wnifEM65uNhT0idZLJ5BjGd9dGUeNRpUq3a1ygKqAayO6Wc6p6VyYY3l5s2bdXyXL3mrl8Up8799vxhlPoKfFKXMqLJZevCkMJX3vy5nQ7OqaJhudcJWIt5X/WeQyNK1lCJk17HsLZ/57s9w8sI1Jj3Hu5Y8WqQYSKBzkpTYlozHu56uXTFMB45ObnDv4SPO91tOt4/xppslD0JRg4jHGUhhIoWRlEamac80Bg67kbCd2J9vifsD0zBQ0sgwVv2mMQ5TFNsY+qYnHPYM00jT2IqQmqNJqWBUvDiSphr8VgSMxZiqhTTGIALeWlrXYsWSYmKKEFSJplAag20aGhxrcZTcEvc7QtlBqoWRFq2EAnfZ46byi9WAJBBHCJm+acmxkHMghGr6LGmL9wuYN+Ct9XzkmWdJX/0aoUQ8Fooy7AcuvvE1vvXXfoIYAh/7n/whXvq9v5/4ztvc/fN/ns63tIcRpxEvSnZUcgZSJRKlsoatsThjwSbC1IAEfBXq0zcNra3JTkrBFIU8EPc7Pvf9v4521fC1V1+ls0IrgaOS+PTtJbduXCes7vCN85HN9SMWy0psmAbLkPYolkPIyMWecrElp4hBsVZoG4s1gdZD63qmQ2I8DPRdy/f9wILFcknOgXvvvcujh49IxvHoYoebAje/9QbXqa56pzUG2Wo9GdqmwbRdxVVRE5lSpmrXc8Eb/+RGNJaJbciQLT61+NYjC0vjO9abIzbHV9icXOfWcx/hI5/8Dt7T2kF9+WMfwxytuHGyQkuNL1VVpCR6Z7EoUkZyzKT9iCtCmgZKGqBMWE0sfEPxBemUzrWEacSZGkmNKr6vnVBrW7zJtN7TOrBqaQScZNQmChPDlCjSkA0MJXE+Jc6HHftxx2EcCDGTwg4pe8gejR3eebb7PW+8+TZxyjwjL9EvW5yFnGN9Do1jtVoyHAYWFsYZ4rt4KkF9ur4N14cuUJ3bIymAtbR9zf1dbQwnNx3NsiEclOGi0PqZXWdlzsNusLaZHav1plhVerVDYJhZkFFIg8L5gUPr2aOYGGvWtVbBfU6lRvEpZOsYVbApYh9dEC4mhlxxPcXk2k0pIN7j+gUpBBwFcq7jQDWkkCBecvSERj0WpTwZyyoxJ1r1iLrapUk95ArBpkTsrAmqI3HFFsFmg6NBxVOSkidFouCNRyUy5ZrIVJKhW3T0foE3HaKuxhx6nc09kWEI+K4HFGPAO0PbdfTi8J0gEqm9F0ihELMhqjDNhY6WQk6OmASRnr5d4BcFNRPOKstlS9+2eCzO1FF+UcXkWftVhZ6zicLjrKM1sW42YqHgKWKZSoezNWihqMU5j+SAtx5jCklHjGQcCd82FGcJQREaiIa+CSxb5WI/IrmlaTxaFG8FKYV733qdn/wbfwVpMmPec3L1mNu3nsGo0vqIkx3jcI7S8OYbr/HgUWSKhc3JVcDSL9a0fUfbtlhrabvqnO26ntY3qGTeePPr3Lx+Fes9V66czIaqX94hfb9YvQx6uMQUXdIZ3hfJzhG+l9xWqlu7aATTwXzsrze3eRy2SLnAMNEGg1GLaWtH5/jqiudeeQmWDhs95qBk3WBtizolyoP6qNKRRXDW0PmO/W6PFUtOifOzh2y3j+i7I7bbC0KInJ/u2J/v5vc4Mx62PDy9z26/I0yJaR/QCcoUiVMihYwxgnMNuWhNdXIF6wQnsJ9G1I9k7IwOqq8Vs/xb1QKekh1UbG3tvBqwtlTTnOaZIlG1iK1rscbQmMIkhYghh0IaBC0dpAjxgJPK9y0is06vq7OHEkmasUYxjVbjYq7fe4ojbStcubIG4Ma1Ex52HVdND7yBM5Z3332P67sdoXU8OjuDXCU+X/lTfxLbtphFz/ibfwvrlz4CJYCZOF637EaPTBPESPGG5aqr1xNxtUA0Fie1+5/JJM0V/F7qJdlgaBrHojSEFPEImEQYtnziYx8jpMiX/9FX6ZY9xwvDVVu40xzx7OYW61c+x/j6e7SbdQXBi6CMhEkx2lHsijHZar4sgRQDRj2yM+Q0YWzBMDHuAw8fPqS1wsc+8V1cvwXG9Lz59ilf/IUvYZqGMY2sXeA39fU1TDHQuA6jwmI+vpsYsSnNiXUFMUosNTIVsVhNeGrCVzQjyXhEekoUpghDyagXNtljmwX9ekN/sqE9WtIulwD0fsPFowOn9y/wTYOzjs2iZd0I4hSRRM6zNCuPVTaVIrmMWFdYtjUARVqHF48YpXEdrddqGNOM9QlrPaItjXd4JzReaGxL4zsUU70VuR6HamDMExehGkC1LXRNQ7OE6TCwXq155aO3QTpisXSLnov9jrfuPUBNh2mPWa0XrDcLussGUarXIhGhE53Nm7DuPnwo5NP1dP1KWR/6qF44Jasg9BwdHQNwctISb/Y4b4iNMPpcIcY+YbwjFp50RooWdAZ6p1I7V1ZN1RRSR25aLFqE3PRI35JSIUXLi/+rf4fFCy9h25bp7Iy7/+Bn+MX/5P9G1EyjwiJGpnFiEqoDwlWtkFWLUQHToVLHf1iLb5ZYGfGpYn2AOXu70GAwxYBxGFN3wGoSRQ0pKiYbyA5KV8f/IiSvtUtsK7YlZUcSS7IeV6TmbseCXziKFVQG1Pgao+hWdM0R3lkaa6tOSwDy/JxtNZRQKmLLgbWKOI+4UptTcSSkRE7KNAVSqoWTMwlxFpEO286pKgqWiPWGrnU4Z2kbjykOkTpW9TI7eGOuyMtYZjGcx1H1YE3jyFKj+QqCzR2YFoySVXGuwUmPFoPxuapqU6adneHJVINd8oZGCsrIZooMw1DjC13t+rZNhzcwDRfsL1rGssf2cHzSsd09mjE5wqJtWC1fYrW8gpge39aCpV+tCDFUBuKsJW07X/FM1uN9R9ctadqWX/MDz2OsJ+fMtStHGJmxVLyfOKZ6WYjO2uknUbqXxanMRq4Pjvvf18wKWpN3SuYyPsIvjhAHnkwn+Ynete9bjtYrmq6pUPxtQidlO2ZEb+BvfwqhoX14FfgTGLdGyIj33Lx5k6ZtKCmTwsj9u+8wjgd25+d8s7XcuH5M2xZSq6RJCePENI71vU5CPATSmMhTQZNSxGKbDmWkcQ0xZsSY2nEvgTDuwJU5OS5U976xFUOVC2JcdfvT1pG+BbEFMQWLxVlLY6FxvmqjW4PzDaY4yAKiGEmkkhh0Yh8nhqEQDiOaCzO4iTmUB7BY02Jcg5qRbKFfdbTO03ct1443nJ/d5/aNK/yqZQc/8wt8//d9Dy88c4srbz2Af/hzfMenX2bsDNI1JCucH07pnasyH4n8K3/uJ2iOahf8vb/2l3nnv/1zaEosvOP6yjEmWADatZxsFqgUJrXoxYhvexrvKGlkHAPBSzVnzcxkcQ1iW9q+oRXFS2HYT0QJSFPQKWFSweaALZHO9fRuQ2OXHJ9cZ/8Lb5BNi3hBmoYwVQyTaMEjqHEYa/BmgbcVhC+4ehnUyhqNObM6XhHDgaABFSULBGCvmYVVbl69incTbapHc9d0BCwX1nN9rNredgrodkBywBiDr8MhbADJ4EzV5u+sJ0uDkQVFO3L2ZJTOCLbvCM6wyxk57FlN1VOQZg7qgwfvcn+/x3jl6MqGvl2yEMHnurFULYz7fd0wGakRxSVQBBpnayzwNNF3lkygZOgWC7xYSrHVJFkirTQY09MtelyniEyIbcjimUo9T4JYUjHEWMjOII2jtUJrW4wxpJg5uAEBjo/XLLoN1vckkynWkrJw7/GWkL/Mrds3GeIxR5sjWr9EUyCngSmcEckMsU4gx3kS+HQ9Xd9O60MXqN63GGNJ04H10XUAVn3LYFtMsYweuuPqGlUpZGwdOQoYUzBaKKk6mnWOJvWmoW1qN/bK8YphvaTvWvx6weLKMUYsUyzIowc8/PnPE0Pk2m/5YV76kX+Vszde5+t/6S9AzDQ5EMdtjdE0pWaMG4cYj6jB0xBsYpIAWBrT4IvFWc8lJ7NYQ/BgU6bJmVYsIg2Iq9xWCRWqX+afQy3OrBmJJAlg5q5PUFKyFSXjO8qsu3O+RsBOoXahU4n18YtHi0dzNYo4B+LyDNGvPeaqj/IYrTnTxhQKZXbaG6KTylEU8CL0KjgjYDNZMhRbXbJaqQSNtrStxbmMNRW7VNTWgsBZco6oCkZLNZMARS1WWsDjTUKckI8KZjxgxFKmhpgiWav5y1KQXMHg2dRAgbZxNHiKMTVZykB2Fd9lfUtQw/kOdqFgS7XpxxhoXAul8NydZ/ncD36W8/ExD08f8fjsDN90XLl6m+/6zA9w88azON+CUEMPVHHOVX6pzKP8OSe+zvMFK5W9aq1U9ijMr7nOHb/L0fwlmUqf/O8yOEAumVaXa65Vf0k4xC/RqhpESu1CAifP3KG8e8BMjkYzmMiwsJje0azWXHjHzp+wsTcZfCSGQNPdQhcfQxH8osK61TQoGSOW9XrDarVitzvl6vEJ5+cP8cYQS+Devbv0nZmjHQ1hikyjMu4hjRD2iXE7oVnRbOYNj6k6wjJLFpzFmvpzlBIJscbnkisLU1Opx7CtcH5yZVFGSuWgzqYZUYtRjy2+dvSkRh4bAetqcloqDbEokcwUR8YYSUU47PeMhy25ZCYNNN2KVd/iXQOpEMKBkCNZwPkFsRjIhTTsuHZjw5AGnv3IczzX1xzzF158lue/61O0q28C8Jnv/TjlmTts3nmHw8UFF9stbrmuDXJj+dl/79+m2Vzho7//D3LzN/8w9/723+Le3/4bqGQWrpqzbvZruuMrXLt1TDTK+VgYQqbpWxZ9V01u1rE1kEXqJg8opgO3opF6XGoIxDiAXTNEJUWHlhoV7axDbO3Cbq4e83h7n1AuuLI6pll2BFEWyxWrRQ1JWR152v5Sf7vCaqaEyMXFgSkp165fp2kXPHxwStcu+Na7r7O5tqHpG0JJRFuQ1nDlxgk3To7QNrO+qAe9Nw0HMfyFk2M+aw1/6Owhf2PVUG7foOwnYlIe7w9I61i0DS3CsjlC2KHmUK/hJZHKQLMoLDc9J3eusjhe06063KahWS/oFksa1zKG2mE4HA60raNbexZLx7q1+CkhtlBK1f6WQzVJBsmEkjFaJ3yYutHv12vG8UDbeYxYNFuMGqw3dXKgQoelaxW7mND2Uj9cO/O+7wmNwfkWKQ7Rhmwa1CTUZFJWQhRSElJpODtc8O7je7hyF2eFZgmL9Ya+ObBZjey2yvnunDt37nA4jHTNkmXTUsJImAr7aSLPG5phjpV9up6ub6f1oQtUqw2t78H0LJrZVOBPWHbX681XA6k6b4BqjLLezfIzrSiUuTAtVPQSknBuZhASaJqCc2CdzjnaWp28f++vVJ1Ss8DsLoBnON6s6J1DUsDY+m+MjVXzKp5cFC+K0fTEdZ1jxl0yR11T03EuMR25kGKklIKfXeK2THQl47PQ4mC+qKkxZFuYNJA1YzFYNcik2ElwucFmIFqSRoIcEN+TMWRVNFnKaGpHcuFoXaAzilWLFo9RC9lU+HI7g+svTTMK3hpyDuSSMCbhpY7ZrRHaxmClxhMWagEg1uNEandY+2rVF4M1uSKpxNZps2kRUy+ApVRHcclAsRjnyVqIZcA4i7VddbR6Sy6FYmOFkccq9bOaMTngTVMPs1LARoJkKC1GmyoDkIi0FSskpuEwZqZ7pxQF4xylCBGhYLj54sf5Vd/z6/j661/mm2/9NM8++3FefuWTPP/sRzjaXMNZVzcnzKYkozPqyVSJwmVcqlTId+V2muoU1zQXlNWklTRVjewUKorHWErROXlM5iJUP6BLvRzz18+pZopo1Q/KZdSnoLNRwwJ5Hs+tjk9ozzumITARMd7SmQarGWlgfeUW1176IbRrWSqUozkZTS1O3tfWGkzliEJ10Ktltb7GKx//HN/4+i9w7+5rrJc9ZOH03in77ZaL0y0UQwqFi7Mtu+3I2dmOonUk6wSQQtZYc9HVkJPMfjOlkC7njqhebjw8SetYWhSmMhEkULyhqENjqMYTU68RtmkQ1+KcQTzQLwjeErKSc0POllAmRp1IOSEJwnbPNJzjmsiiEW5fvcFyecTJ1RusVseMu4EH9+/z8NFjHp8O2NDizYAIHF/ZcNR43trtOd5sWLZ1k7w8WtHdvsHirJI9nnvueZqXX0Zv/1Pies2DB6ekAHGssp2Hn/9CDSnIhu/99/8P3PmR38M7f/tv1fCBUjvIz9884eoz17h58wala/nK/fvcu9jh2oau8fR+RWOVbXvOMF1GLoOJlUJRWkXyCG6BUVsDAOy6ynGsZdUbltbQktl0wo1nNvDcbX77zRtce+7ZyjPGVbQXVfLjXYNt2tkN3+LFMQ47vvDzn+fe6SnPf+ITXD25wde/9Dqrq8fQeVarq1jfsTm6ymaxYuUyK+9pmyPUDhhXC6QI4C2mCIOt58bewnmeQCwXcWJHglJY5MLCW1ZMeAedbVg0njEWnFGObq24+cwJm6MjpGloN0uOrlxhc3SN5eaY+w/OefONe3wOeHB2wXa1rvITU4ixpu2JSWDrRldVITs0V6RZMQbNQhKHaxvU5TnRrKVzljwlxHq8AydCKw1eFN/MvoDcgzE4v2aiIZkOmhbbtXRdNXRhHTEn9rsth/2eGA7sd4HdIXB6dsaDR3c5Pz+lbRtWy57FYk3fPOLqlcdsjj2rVc/Du3d59rkXOT6+zp3bz2JViaq4ZkGz2dQbuXsqQn26vv3Wv0QH1cyMSYPOgGd8h9q23hDF1S5eASOVw+dcg1DByOIqfF61dngKlT152W2KcSDsLgjjwHgmDDHUBJFcMULP//t/GreqOqezf/R3efB3/jq+MeSoOAXvFOk8WaBpa0KVdw5JipaEsxZfLCmlygxsPWZ0XE74LfUiJKbmhGcBN5sHxJhqOip1/JJLHWPbkmtX7jJnXqmIpVxQFbwaggh4wzhNNeowR3JQOrvCmgaMoUhBLPjGYR3UlzdXJ721kIUSEpqoSTulahuNOKTUlBMpBSlKbXoW0JrGU0HpZuZ91g53JYLVjhYCmYz1laMXQqjjaI3USqvM4+kMWfHe432LSENE6LxnmPZoCRitj6cyu+PFzkXh3DUsc4KAGFRd7f61FlzN1O4XcPXKhtPtgYspoOprdCo1+nUfFEzL0fENfs2v/a28+PwLHB2d0PiWnKmdUKkGM7G2Dn2fcFIvx6dzIWnq8xqGgYvdBSGN5JwIscLeUwq1KE2Fa1evcvXKtRo/qbUb+s94pD6w6u2rJsowQ9mLmFqk5lobXyYzAXTdipgUMYa2X2FKJqtHosNpy7gvdO2mTrq/9Q3k/jnG1K5mwWBe/RoWSF/9CkYqCF+oEZZWDJsSeOHRGfLOPVKMoAbvLL1Glvs9YZwIY6LZjvizA82wp9oeoXUdghBCwHmLSK5doyg03qJ5osSROE5QoGSHGCWnjJRICROpZBJCEkEbT2OlYocwmBxxacRrQadC1kx8fI46T4sHdZQsZJ0IJVCkYI2DzRo52WAc4Cxt3yGmwdNwuLdl+/jAyUXimZ2SxWLZs5S6oTg2hWdUOW56vk8bXom1C/XcOfT3EtyvQSQn9wbEPkYvIi91RzA+5OLRXW5/7nNc/a2/nfOf+zwg3PkD/9N67nzlqxxNkZgjEhNHTcNmvaQdt/T3M9Kv0NNz8tk53RqaUDWRKcFiN7IbRz61rJfkj46nyLYQg4F0oOQdMRmO4wXPPnybs+hYHwvdOrBqG654x/pqz9njx3zssz/EySsvUKybU6Jk7voaKuwqoWIqgUGrzjyvj7hy7U3uXTzGNx394pjl0TFHmw3Xrl7HNz2K4fr1G7z43G325ze5cmWJbQu+3dCOWwCM9WAcTeNxuV5TZLHmYIXiYCuF4E0NWoiQF22dJBkHOlKisFj0XL11g+OrR5xcv0bbrxDf0SyOWfTXSanljdfv8/DBV3n761+v94TzU/zxFZbtgqV3eMkYTTiZ6sxOA0khxECKBtO0eO+Rtm7ogkZCjjT9gt32nMMUaWZ6gqFgRel8T+cMSiapIUcL4hiz5XSEi3wgmD3JZhabBVeuXcO3C0oppFQIETQJw37k7nsPeOfeuzzePmJKgdVqgXce4p7BTIQw8fCxYb1aYJzlwcMzPvmp72S9PmazWrJcHbNsI8wSk0XzlIP6dH37rQ9doKrPc/ezUOb6NAlEZxAxSMm4xlJiTeah5iRhjK3dogLGOkQMhVpIWbEYU59C164wzQJrfB0nploYximyPwS+8X/5D/HHV7j5O/5HHH3Pr6b9+F8n/92/jRVqaklJ4GoRbf3leLWQTXUG5wwtBmeE7B1N2+CaCoOGmv7Rmtplm2sojPM1waaAiUCxJCoo2qO0Cl4r5D7FQiyGqSjTrLl1mmuPqUSysU+SVewMfLeNhaYQTaB4j+8bvGuesDW9meHkKRLH2s3s277+rCVjXcXzlKKUnJGskGvXDikY6s9izFwVCUCs42xraiXlZJY5lGpIK9VdG3Oqcg1bNZdi4qxNUzQ35KyI7XHWEXNNeSm5Qv2lrYVc1vmNkEofMGKx4jDGY0yDt2BsoZgMAq1zXL1qeHy+Y3/vMbkIKpaEMo2Ri/1EyPDCi6+A1njBalQyc1FfR+8VC1UL0MqT1SfP48lXlYwYj2riwYN7PD5/zHK9ZLPe4LxjuVzQ+mq2WHT9E12oMf/8SMFf6urXWWYw/xs75yppxhpLlPocL5N8piFgaDB2SZKEVYugLBZLzh7exd/sSPst9vE58unPYQ+HJ49kP/Co/t/4N37Jc7If+P3W/Ovp+mXrJ//Jkw83/4t/+5d8yv2hH33/Y+BTl3+YMvyRH+XGr/+N4By88w788T/Os3/sj/Fs+mVawFff/iV//NyHfFr/2y9/41/8yf/oPyJ4z1e/+xMsFguWjXDkHdZEyjjwN/+7v85Hf80P89FXvqM2B6RuukvJWFslRZcBIoUqUTF4utUav6iEld04YRpL37Ss10dY36I0OGu5fesWRj/KcrWoJJHFkv6f1Odrm45uuaaxlkZrod9eOUaPjph2gXGcGKKy2GxIBziPBesDg0JnLZ0z3Lh6i+XRDZaba6xW12iXHuM6XFcRU48fPubBg/s8evSAzlQN5suvfITd8y9x1LY0RMpwihdwFHIayTGQY0GTAzw5CVMMHErCeYeYwhRHoFBydfS7GX3WNLYiEm0mm1m7ag2pRGJqOY0TZ9mzGwpnhz3nhx1iLZvVEd1iw2LZ0TQGLVX+dBhOefT4DXa7U1QT7aKl73t639GbBnF1g6wU9vtM0/W8+9672NbhrPL8s8+z6Vc4cTSX3f+5efN0PV3fTutfyvr3gWYYQNWk2blAzXV8ryhiKzoJrW50K7WbY0yN1iyAL1XTU0rtYU4xkMqc/SMWjCMWrR+r4/EXv1QjU+PId/yv/yi3f+Nv41t/52/Opo5qXhLjabuWrAlDJhdL0y0ApURDzBk/My2dc2ANxs1OUwfeFopK7XRqvaALDmcrIF+1MhZV6scxx5rMpA7q06ipUZJQClmF2nksWDw5KTkUchZgRKypY2wSBQfUYtfEytrTosS8B7U0vo6eRROaci0yxVUDSi6YVLumQtVaCnLp78EKc5FkandPcqUSFEuMI+oSpSmgDrCEVB21lVFZgIxm8GbG+KSEnyMvcwgQa3hAyrkeD66OwW0BFZ31hrmO/cXipco3MDOAHYdxHmuUrrccbdbcvX9Kyoa28Rx0JGflvXfvMRwOXLl2BfvEpMQv6WZejtprfXppTqrD9fkr5s9bSsn0fc/LL79cO4SNm2kMZt5kvd+BBrn0r9Twgn9BoVofOtcnIAY1Qi6VCmGNICQaVdI4cPf1b/AM8PpXfwFjlZwdzi4Z4gy2j1tOx4FPXPsEb731NXb/6Bf4zsOB8p//58gnP8GTpKwvfxn5Q3+Y8uM/TvnEK/VdVnkSLLDdnXN+dg8tO7756le4/959xjHgrGfVb7B4pnFif7Fjf5jqdMCbeurlTCl14zEfPCDV7NVIoUwjeZooIWH0skMOY5yYQqRtZqOhAM6QrMJsuIlFSHhKcaRQgy+0gBpLLha0QTTX7rw1VRtoC2Jlfk8cra9aRFFIsaA54yxIHjFlz6KRGdOTGadMv1xxmAJDSti25eT6TV7Ihd/6X/4FfvpH/3UOz93mxvmOz/2f/gxf/Xf/LfxLL3H8t/8e9mRDbJS0PzDtLzj/oz/KuN1CLJhc5RV89mVKSTTecdy3dDlx9l3Psbi2pumvsg2exwHubs/Z5T0hToTUMIyef/yPP88rr1zlD//gp3j+j/5ZfvGP/mvsPvL9ZHcH6YQvfv4X+X/++H9Djjv+nR/5bfyGH/vPOB6VxmzoTcEZS1Mcq/UaOYv8tb/6E/ye1TXu3L5dD0Wom9mUEespZW4giKvXDVEWTc9Rv2btOtatI6wNnUssFrYmfs0TkaPjDi0rTk6u061uYYyH2U2fEJp+QUkJMxdP0nYEsWTX4deKFIvGTOBATpGzAAu/pFuccHztCm7dMcpEIJEtdL2nW7SoKEPcMkyP2O4fYFu4/fxtAI6vrkgLIO3r9IPENO4RM9Mj1M6JXRnfeMQbbC7k2M6aeUPb95yePqzxpYDzHt81eFdRfWocxVqytEQRdjFyCMp7aWCbJ8ZdYrvfs48T1nvE7tnlAXsQKInG1VCD3W5PTlM16pqMN46j1rPpOlb9qpobDZVTjcG3Pa61GI0cDo95/KBF14Vl32Lnrkf57xvpPF1P16/Q9aEL1M5UTEqWUnmAQOPc7DwXxDlSSoitjly11c1cVBEMndSvLyUSU42ss7zf1QohMh4GhmFkzJkyTuSU2Xz6s9z+wX+Fx7/4ZYoIz/2uHwFg+/o3yQlsNAgtKVumIdA5Q9MafN+TUmU0OsDlFogcDpGcE75r6bsONxeoQsFqxBiLGoMxBmfBSsGKwXcWzZkwDsQ4EtRgraWZk4VEwKaC5ETOI8UoyVZda2cc42RgghSUkCJto2i6oDV3aIzF2wYjPULFdFlTYx8lV1yPFQfeYCWjpuJ5SgxQCraqemsXUWsik7H1ZpIv4fSlOu517iwaMQiFkguUQpw3E9X0kmgbwbrKciU7JELjWoYp1DQcCq5TctJqpCpSndqqpJiw3tI2MwuTjJY0kxtqyECRgmZLNgbRDswCsQULrJYLNouedJ6JOc9FOTy6e5dpf8Aj5Dq3r3pbze9zOY39gKv+/Yu2zg76+Q/1N9XaMbYNtnP1OC6VEVu06qZrwT9/h1/GQ738HvBBNz/oXD6XVDdlWINqRseBN776Vd5582vcf+dtmi9/hWeA87uvMW025MNYJSOSsaqMu5HGtrz5pa/z9msPWLzxNt8J/JUvfoH11at8/FPfwfXbd3CXvdJPfAL97Oee4K6M1ue30sz06Fu89+43GMjcK8owTMRRsXRcPbpBjoUH+oDRHTDeYpwgRjFOSDFiqAk8MWsd35o6wmc6YEsmj4GcMzF4pjwhTaropL7jMAWSaI3djBlMi/OWiGU7KuN4iX9qGQ+7mi+v4C04NzM6uxbnO8RVEkgumRgSOhxYLQyt89h5w9k1hkXbsmhWTLYgWoM1QlHOjCGzZrufUN9x2vSUXe3Cve0Kpz7zcP+IzwE/f/GQ4b7w8fP7TOmC9uoVmkZYrK5gjpakB6dMZ1uaXK8RGMOy9xxtemwcKcOA//QLdC8+Q86e4cFA2gub60d0OnBWIrvgeet+4GfXLea5I/TTL9b38lOfJn/X97O88kl823E6rPnH7idwdmR48VkAlt0apMeUgUKpZimBK1fX2PGUn/ypv8oPfM/3c+f5Z1h0i2r4FF+PX6kElaKXGzhP3x1zvLxGCJH9/hRnEt5bGlM106r1GF+sGpw/omnWxNJiZYEx63p+Nw2+91gVmvn2UhJY00OjaBZWjePR/btInujaBmthGBPT0oFfkIywWFi0y0wcMGYJqqQQOexGDtuAMUuapqfpqvZ1se7peiHvRmLco4cDPmcKbT0fra0a7ZwRp3XK1jiWUmViKY70voFFh5RII8K68xjrKBjEVKqCGl+TBXPmYkjcnbbcHSNn+0K4iOQQ2ecR29QNXufaek9sqlwrpMQ4BZxzHG/WLPsOaxqkCDkMmNUCMQnJGW9afNsTC0zDxPmjxzxwjmvL6zgR0hRIszmqxPf1y0/X0/Xtsj68BlU869NT7MWWk3uPALh69yFOLjFRcS6AanGQZ2C2IlgsnfU4YzgMNcUpJaVtGzb7Oq68ebYnirDe7+iCRxuPlgLvfov1M89x/ft/ELGO6cF93vov/izf+tP/Mash4ZPSFuXqew+J2wvw0PZtZeF5j3EOa5SUMschcXZxoBR4tOlYLFp8cykxsDg3G2jEUAV1qYLai1KSommEPOGtkhCC1IxoUa2cxxyRkqqDXaid0aQ4cbTGM+VcY/+sYEhoCvgScShGm0oICBZpBGPmPpxxs6PZUnINBFARjG0oqjUpxRqMqT8nmsmlAvbFeuwsy0gqc2EptUtFIaaMWEGyrdGstmKpjKvaRmyP8T22WNRnvPdk74iaUCaSGNyiAW/IweGMR+PAOOzojMf69yNCuexMzl3lXAq4pjpeXcWLFRFEhUXTsVmsuLg4Q5xgfY9uE8P2nIvH5+RUC2Dl/eLQWls5gaVSCXROe3of93TZQYX3wfkVFC9SJQrzromUImY2+Cnvj+9/+e8fXE+KU33/ccTVFnbYnfHqF3+Or33h8+xPH2HDgQ7B7s8ACLuHTC5jkiFlpfGJcBjo2xURz3R6gdvtWIRTAPZv/yJf/om7fP5vdGzWx3yuO+G7Abk4xZydzoV3qa9JqZuZq6Yl2CX3dpkuO/bpUNPObOIwWOJY6o1d9qAGJx2IxRoPl1rG4tCSaKyv/N+iKAYvoM4QNaAeMInFyZqkhV1I7FKi6RqMraxh0UwcYu0uj4mwr/D+FCZyCEwxUyRjewVbiRbjFChTomiVwFhvQQs5DpTdgd772oVrWkIRpnMl+AVXjxaI2dOtFA3KMI4YYNF1TEkZL845bOs1KAzw7jun7L/1GICvfPUtCMoz+6lqovcjfg7jsAKkwPHxBp8KZcocrY442XQII0YSrrRIvyYnz1v3HnN2esAGi02Z46Xl6vGa6+2K7fZtFsB6dQ3r5k6kNBwcqAnY0HG2u0Bd1fa6mXkpzmCaDudg4TNGDT2GxilXFoZGtvzMP/hvuPW1NdevXqNdrjg6vsbx5hqro5tgVgieSzHIput46c6zuJVn2N2jHQZytiyKpcHhpCKoIONcS0ng/KrqMENkQSUvWFH6tqOZxvlsa1k0S4YwkcuIjpl1uyKzoXGOlAbO9hP3wp7D/h1u3j7i5q1jbpsN61XHOAngOT/dc//hBRf7iWS04rbmU3G1WjFs1kTNqDNMWkjhAkWriZMawOGMkBXGYSQjmFAnG6VEhu0e1wh917JwtXOaC4g4jHcUsZUIYBvEZjwFbSIiARsH1B7Yjzt200TT98TYsXItTSs0jcFowTceb1egEyFaVosNR/2KRbeYi/sWY7Q2DZJiG4+3ht1hZL8/45139niBh/ffYb25yp2zx/PF5oNin6fr6fr2WB+6QF09OuP3/Lt/Aj/nVAP8pj/zX///7Yl8+k/+p//iT/7HP/bkwx54fv71wfV9v/jlD/1YwTv++L/5e9k6cLZKDJwz1aBE1axSZge2STVKUQXJBs225sVLLeK8URJQciKRkFJocGQVSlIQTyRSbCSXCSkTrWtAhc622HJBwxJRRykFxCLqSDqPhE2FRte4SKFp2orswRAziK8YKqEgVgGDKQXEUdQQVUFq18m6UnPNcybnoTIPc42I9I1gbQaNMxuxQfwatLpQtUAMgaKJpIGshXJQ2h7EeJzvKepIMSJiyCnB5DBOMNbPOjeLnUfncywWFig5kEWrljaNuKJ4aylSZRRqBCOZB/fv8fprr/Md3/kpetdgROauDk86m5dRpHMp+UvKUqgPW/9NwlpL1szpoy2vv/4Wy8WCj37sIzTe1w6o/rNdCRF5vwhW/WXfewb3lwymjrlf/eIX+No//oewO8PogY4BMYpTi+jc/cgTMQ5YbD2GtIHGcBEuKK7FGltd+bEWUi4bbovhY1/+En4csee1EHjnT/6feeZX/1BFQZX8ZBJQX+rCMyXh3nsX/603+ZnbxxRSdRhnJSUl6oj4+tytq6QLRJDW4Iwjx0JvLM7xpFMfJuWggZgnIhG7KCy6nmbRc36642yXUOkRcZQc0LIjh8zhMKLWVDmKKWgx5FS5lGJn7qSNpDwRxoDzHc57pilS1NG1Pa4Rus5jKThvwQlRIsZkJh0Y92e49joiiaEYGrvAekueRiRnTJo4DHua2QGdywWxNDw6rcEH33rvgtyOfC607BWKZMoB4hBJYc+d6yueffl5tg8eQ1O4ce0E0REtgqWSPEQdZ492pNOAH6jTFUkIHUei3Ok9q1tr/m4OhAcDJdRCYzx/jEk74vCA5dEG0oHOWGLucKbqDQuCkYaUIpM4enOEtxtCjFxdXeMTn/0cX3v3Vfb3vsXyimNxOOPR5/8Bu22ivXKTK5/5XjYvfAbpepALzO4eRzja/ojTuw8pb79De3RCf9Jhtg/J2mP6nhDP2W3fZrW5iZZEa28xjY9ZAKIJKZkS7GUgF1qUw34khYLBE+NA362Jrppgh+ExahKHcIoZF5xvM00vZDU4u0CM54i2os2coV80qBdc72l31RyUk5CTI2eP0VK1mc2I5IiTecgzhzejs4nVNeRG69dbg6rHGDDe49pFNXpqlXtNBQ7TRFLB+Q1DzuxzJkwTxJG+c6RlIe52WFFWqxVOIuQtXbeh7z1WHetuQ+M6TjZXuff4MdMUUecwbUOhNlJ811ZjoWaKFpquZdlsMJpI48Cb33qTeCcy5sgmVtasmyUWT9fT9e20PnSB2h9GfAj81I/+fgB+3Z/5c/z0j/7rnN2+Sc6FKaW5i1XQrMSYAcsUEruLLWmcGHYD4z6hxdEultjGcu30Lv/zv/dT/Nhv+C30L97mc298E3u0RF3NURYVxnFgHMdaIJVACIlULOJbTCqsJPPWd36UySu+68imRW2Pc47GCSYnYqnmre6td/nh/8df5jgH7vUNbTM7qduGthUcloXrEC3EIhRbI1JNtFj1JBWi6OyTrl08NVqNY8bUDHnsE72elolIYYwTxRWaXCBEnO8w0mJKpQyQ8+wcr2Yj4wyNcZTi6J1FjEM00bVtzcdOFm0szIDmGlk4G7vKzK2kRrXmUiiliu6VaqxCU3WXF8VSu8BWCou+oek6irbEaSBOgTBGWt8RQwAMsRhKthiX2Q0XiOvp+gU5QixQrGc3DnTR0izbSnMw1fEqYkC0dh9QSoqoLVhb6s0gjYiCEUsskSEUrO3ACsN+4CtffZUf2v06uuWVudMtv0QPWvmll2NLeL9IrQ5+VSrc31nOzk/5L378v+Ttt99BaRimkRs3rvM7fsdv47s/8xmMMZUI8IHkqPoY8s8Up5dLtU4Oxilw961vsbv7ED9FbMk4KQwpcMiFGBQ3G2oydZReQqAwkULA5Gk2Ebb1nDoE/MykbUpiChG7nWivXuGFZ6/Cz7/KOw8fsnvrTT7+Xd+DmXWFT/BaClDohoFrd9/l+uaEx2FCQ8UkpRSwzmG9x7sWKw2oxTYW54QYAomMN/W8LDnXyYEqORWwQtP3+OUJxWTODwfOD/uaRiaG/X7AmdqlJVYhe86ZmCdyrvrbUlNAabsV4kB1R5jibGazHA5nhJAwbGhtg5j3CSHjkDjoFusblssl/XLFo3vvER68x/Gmw0ywbCOd9zhRVAqisR7vc0e905Y21dQ4AOLINJ5jbGAhyqFAGibsmHjmyhV+1YvP0Q8jYdhhSuHwYM9y4el6j1DIIozDyHYOQsgpoHmk7Rt6Z6jN5shHn7/F7bUShy2vffP1uvk+P2P32qtE/w7NzT06vEUvA40Rlk1lpTZNJrPDeiUshWgn9MThS0MzLrjzymdZP/sK3/zyL7J5/ha3jjbc2nyS6ZvfZNSI5ES4eIPWbEgmsds+oOlv07cbGrPARWjLHhHl/P59/LSC/pjV5gSdOnZnieLOadZLwqG6+PMU6H1TCRYlzMf3xJgm+uaIMexqEqEkrIOUAn0+ou8E7wyGRLcwrNcd168dY2whmUQ2AfGK7w1ODRf7wP7xyHK3B+DifMeZ7Sm7gNNIZwzWOUjxiY4850Tt+StIrEZJ6+ZToxaC1noa2xILpJAIOjAVhywsY2OYSsI1iZAT0gurgyck2MaC6z1H105obcdRv6ZxHcvFkqXrWLQdR+sjOr+ALHS+o9us2U4HNBecaUhDJCdBoidLSwKmISIlVp7zFDlanXC0XmL8gn7R0R5qgfp0xP90fTuuD12gmnkUvn/xOUquXcezOzd45+ZNtuc7hmQ4OTri0f1HqBEmlN1hYpqUfc5shwOHQ8bSYKTFZwd54sW5i/SqtQx75WjMmLXF9msoER0juQOcJ8cRS8MURmJqoVvgZARVHr1wB3dlw2QUaVuMa8FbYhnQ2BBzIklmWeoJ3fiaKORmvNLRlRNuX12QdaxJNNnCZElTQBMUY8ih8h9bEYrJFBOry9M5YkoE6s2yCGAcDjDZEw9Kzj1opNhA1BE1EY9HTU/RDcPkuHLSojrirMXhkQhOWvIIXd/hpKBR8XiyOKwHdYGUYnX0m0pGEKkGplJm3aRmar9XULUVGJ0mYhpxTY8zLYuuZbFY05iW8Xwi5AvSJBzGkVwm9vkBLlsafwxiiUzEXUFEaFo47A+oUUIKlBzxpqEYrTphsYjzOOcqH59LM9ql1T2jWo1lWqYaKygjIpc4HMU6pVnAl7/6RR4/OuPWrRtzJ/MSpv/+2F2kbhBm+8D8a/6vGLBw994p/8Ef/2OcbFp+y2/4AZ594WXu3nvIG2++wV//7/5b3n7z5/mR3/mv4myFuF/qT+vHv9SYdalPhVkuIMI3vvRFrp5s+MRnvpNrR0c8euMb3H/3DcQ6mM6Jek6SeuxbNWgGazq0KCnvZlNSohwe0fUtxllkZgarThQmUFjeep7+1o16DC83PHzwLkf33+H6ix8FLXUUPxfnRQvmaMXRyQkvfPSj8PARjx88RqeK1qIoWgxaBPXV7CbeVTGrJByRZAyNOmScyDESTSA1mdXxMYtFz93zWDWnKSPZ0KgQwkRIgckqKVXzVi6ZhXWs7QKfItsSa6BF14HJjHEk5xFwFHGkkhkjGDUs2xHxA8W2SDaEoZCLwTrP/qBc7AZu3DD0R2vG8y3eroj5wJQnrl7bsDs/gxJpOk/btnSHqkHVnFn2Hd1JLQBXneHB7pxzb1mlRLfNnEjho8/e5IVbNyhx4O67b+HiwLC7wB5tWC2fQabMNGUGazjdbjmkwhRLDdpoGjrnaIzQGvAxsLlzg+/+7Gf5yZ//Gq997Wv8euD88WPe+NIvYIqyu/J1zt5+jUYfkKQWpgCdOKxrMTLRSyKZAfFrjtcLHrz6CN0+YHl0le/43K8BUSZTaD6+YfHR78DniOkMEi6IesD6luPNc4i9gqNlvWwofcHkgh2UpV1yCEu69YsY/wJHRy9z//7rPHrwFnnjGO7VAvWZKzd5LA1t33BlvrYfrzoWnafkgnQtwzTNWvdCzErrmopgkypH6btFnWJI4dbta1y/fQMJyrA7EPLE6bjjfLejhMJ0cVHP+TEwnZ5jxpFFY/EGxliw2SM2o07BWkrKNM7QmIYh1k1K6xdYs8H5tvosciTlzD6NTO26NkIWnn7R0pmOrruKtQ7vq8b/0fkp5/uBh6cPOBweIzlBbvBmRd/2rPoNXbtCgydFh7VgjNA6JVMY4oGz7ZbxYiRu90gpVSvsW3bDlu1hwLdH+GbF2dJz+9nr+G5J646wZk7rap+O+J+ub7/1oQvUNI87M8plcI65ODCM7xL2E1GW3L+34/VvvEHKhW65Zhwjh2FiHAcO4ymrriJMBgkUGyjjQMp1PEl/QWh6tmGA/RLjCtaY6pK3ipZCFDjkSKRgvMWbhl5aFjmybm6Q/DFZt1ztLd4I22GH7z2TVlOWBkFSLVsaZ1n1nvWq3oyOjo+4dv2IVAYoSgqF7VlhFw/V2a3KlAOpMOOBMs5ojcILkThFcqY698XUmzpCKBCKkrWQCqSUSTFW7a4oMQkxFEpTR+jIhGsapnHCmrmoc9XlrBRs62uEpBSM8Yh2aDE419E6U4tpBaQgkihxJKVIyanWgokamzl3E+MYsTgGE1AVHu5HpghJlXHa1UawKbhS8FqY8iOmXBBf3f4W4fRiZD8O9MsFbevr4zS2jtySQLaoF7RkbDHIJflBqnlIRCqGKRdKUkQNxrakLEyp0DQOYzJiCw9PH/LVb7zKSx99rjrEc8RaSynvj/jT3M2v61KpOh+zc/fzP/tP/yxt5/l9v+/38fFPfgJMy8dfsfzqH/zVpBj42Z/7J3zpS1/j05/6TkT0fQaq/PMYqB8sjoXDfsu9e9/iwWtb1u2Sj3/f97JaNFzcv8tuv69a4JJnt3/NMMg6grHkEsiJ/zd7fx6sWbqddWK/9Q577284U06VNde90h0lNHB1dTU0zaRGDAZEgCEsaAaB6Y7G3YHD/IHndhiIsFHjDttgK7Ab4UbddGPUgBqEECAhoXm8uvMt1a25KsczfcMe3mH5j7VPliTURBHRjmjdyDciKzMr8+Q55/v2fvd613qe30OhEmOkXS4fPchrsNt1dIVU7Hs8fXCf/f27fAWwbANf+R//JZYvfAmubWEc4PXX0Z/9eQuZANKU2fUDuyGxWB2wHjKn+4ekKeGDJ7gG7wNXN3nVq4ONohScDuRiJrBSB2IDN27eoATHxXbHw/NEyr2Z/MSkL2kYGXMil0SJULOyjCZVKbVQixib1XvGoZCqdWsNHxYo1Vk8soCQSUkZhh4fqmHVsmmvhzJQibTdgs2+crxec+fhGxxdv0ZsW3zrcF3HteYWm/MzyjiYEe5RWpqFUBwf2+u8iFB8wz+99iRtEJ5o9/y+b/4NvP/5J9ienvLZz3ye+mRDPruLkyNOvuqrCbefod+MPHxwytluYDsWprHM+Drj+UYPXRuI3lLUXJ74qvc9z0/+7Of4wqdeA2DYdXz6lTe4/uQhbz64ZHfnASvXsRVFYmdf36JDxNMWx0FtuUXLqhQe9onp7Jyf+Af/mI/89t9Gd/PpWYsdgUB1gdZjEbHd0tizKsRnKwEl93eRYUMD3Htwj/4i8ublOenghPd/1RN0qws+9+Kn+PSnf4G37rzFUTjihdOe9wLDlBmmylgy+40VqBeXOxId4qPpxGnwRJwrRM0sOqEJK+pUid5xcHBk8cOxtcnSZBG/9+6ecdH3NIuGk25NE4TDt+z5cXxzwfZoQdoUYgVJCd1bNGvTNFQPmibaGM1DkDONczjW+BDxPlLTxFQLlykxlsBuJ9QshHVLHANuSjSLlkxPjIEFyn7aGQ2k7bh5+CR73zH1l4z7ytRX7m/uc+/BHWtY+COkLiBXutYRFyNJ92wuL6n7RFMSMZ8RQ2KqRnbp1BElMu33TJfC5YWjqRtuH5ww9juq2hTG/2uoIo/X4/Vrdb3rArWZQcClToRxPhn/4I/xofURqGc7Zfa7PU9d7s1hjZs7N5ZFD5bUs/EdP3D7BXAtThpkjpMcRqEfodQIu8RQLumaBm0qlUxQaFwkyoJJGqYsTH1iqA1NPOBieJqUjlms4DRPNG6kWfQk3VJkZwau6mi86c2CerpmxfHBNQDaGOkWHUWh5Eyto6GiinWCXDXdJ1KpUnFO8MUA84InukDWKwaiknMiREcu2R7Aho2fLWSOrAZvFt/aWB4oKRN8wZU8bzympSwpWySqBCYF5tCEUmfeabSUpyFXHMFSYvJELgmxdrBpBhVyzozDxFQHcs3EOSa1HyZOH57y1p0Nmx76XKiuEJvAatGyDIGVhxhtSFZGYTPseXjnHvvdhtVqwZNP3TbDFmqGFklm0sHjxbi5isPRgThqyeBm7axUa9QpTMk6YqqRPGXSUHGt4qNnu9vx4z/+E3z9xz7GU0/e5qo7evXKWjrUO11VnROc4GrYXw1tlkdeePYZvvT9X4L4QC4QfKRtGprY8rGPfiNvv30X739lQss7ndKr318VrlddVFJmJYU3336FSx9xaq78ZtHhNkKpE1AtahRwbgEaKEUoCZbLjqpKShPd4oj9ODBOo2kRgewWrA4OgTfQOpBmo+E0jgwvv8ydH/5hrj/zHCf/1m9APvBB6vk5+vnPMvR7zs8uGMfEZrPjIiX22z1VhDjf377pCG0LqNEAVKnF5COEgFcLkBj2I+2q4/jGEX7VcO/8lLcf3qfWQ7quIw97xn6g5kxOEyUXhpSAwKJdgDr6acIC4h3OL5hyIQ0jU01UAZVAKZ5cK1U8wS2s85YToyqFHs0gVdDaU31AvNBoZT+MiBRc2/HGnXs8+9wT9Lnh4WXm2tGaw+OOYbdFS7mi5jEVT60NzlnXfNEuaYPnjXtvcnztkG/7/b+Dr/jA07B/ALUnOmEQCOuWZ59/jhvPPMVQ4H4/cjooQw44AtEJSKKUkZyFxeEJi1lqEB0wDbzvmWe57pcMd+8BsD68gb7eczmsaRaOPDxgnAKVQGzWAPTjljXHtHHGdwlkUW697ytols9z+fLr/Mw//8d8zW/5baS2xfkVbbuy/WZWfbgCMuPktGx5+ZXP84VffJEwVA7kkDfe3nM+nDE6ZTrb8Yk3/hlpvye/+HkWm548CHp8zDB3Mo8fvM3tsWezG5DZwHP45tvceLixABcXKXhC9LRe7KC2BceeRbsiOlhrojt9yNHhiuZiZB/fYNz3dLlwsFjQHa7AC10TOO7tWXT7ckuMgZwL2g/k7Y7h7IJYRsMEqqEBF6HBS4NWw0gV9iSUqgW0MKngilL9gpu0XNw/Zf/2fTOt9j2XtSCLhsWqZazTrJ2uoB0LbWhrT8078mhg/qyZwhYcuLBCa4cv0LiEjxMiCR0nOvWsQ4MPziZr3oyjigPXkLwyyMCuDLh7iWsu0A4X+P3Wnl9vvgYiz6H6Go/X4/VFst51gRqKFQKNc+TBRmIXQ+bhMtL3I5vNhnE0g4yKzhDoGQrvhKqOtijHdcRrZiody9US39vDIIzXSdOKrWtZ7/eE/Q6CN+i7VAgRsBN2FzqyQlYTxr/ZXON++15c9yx6fEBgZCgXLNstuTwknb+FuAHne1Rn6oBriGFhKSZAEyJtaElFgBFKJkhHE5aUmilJLU1KhCKF1jkiDqlKSiMlqSU+pVmPFz0lJzQnLG4z4KgU78w5K44pJca0p0hgyJkxVYI4SpqB+JpJeg4SCXGNdy2lVtuEnZI14WKlZBAVi2idNcBVM9REqYlSsxXDVWYG61UUZppxSEKdKmlMtFHYTwPjZstu7PEh4K7dZLG6xqQF5ytahbPzntNdj5aO48M161UwJFWqSGMs0KwJcsHPhpconlwDXs30o9Vy3E1HK/N4rVAVcsmGptJKTQnnQaXShIZ7b9/l/Oyc20/cohRjwl51OFXnGELR+b2WX9rftFCHkjhYRp5/7hlC02E61mBQfRG02Cj2iSduk3MxZi7vjPjlKjL1V1iwrv48uMLN9YJx3bLve1781M/Q+Gij+TziFIo66lWMGRkXFkTX0rWRa0cdpRQePHyICy2NBrJE0+ICi3ZFwVtHsU6sZlRaiJ7Xv/M7qAfH5Lfe5uSrfz0cHTGNPZcP77K72DDsdwRxrNoFk/f0m53FQFalW3YQAtU5i56lgmZ0qriiODxBFqZbXjhWJyd0J4c8OH/Ag/NLilZgJA+Voe9Jw0TNhX5KJC2Ih+AELZXNsEdzpfENzjdMU2W7S2bsy5mqSmgMW+alEn1AayUnS60TSZQ8oOppY0cuPZ6EaKZOAxnP+dbwZqoL7t87J7aH4Bao9jx5/YSQK3WYGJKNp2tqqeWAabRiK3aBg4UyXZ7ym7/hK/n173uGy/t3ufv6q7Q+WIa7ZG4+fZvrTz2J5sL56Tm73Yg4Qdys3c2J6jLBO7q2pY0RL46AEjRTxp7rTzzFk7cO+cTPfwqAcT/x5hfu0fdbajPSn23YlkAbD2nm60C8kQ5SzTRtg7uxYH+w4OTGl7C8Jtx67nnufP4n+NT3fy99KoztkpPnnuPZ972PuFpzdv+MNz75WU7fehV1E9kHHu73nI+VSVZ4OhZ1ZTIar9QipDGzOt3zp77z79KkfzX//X/5iZ/7V/7ff/KL/5rQgf+e1m/8jv/s/++f439Y66d/2e8+9pf/AsBnEPnQ4yL18fpiWe++QJ3bDF1sefvUNvAcOjbFcTFUsgvkYKP4UqZHujUfwM+Gpxg9MUOIiYGeVAR1cwesJmoY+dHnbkLqCb5h0R2Qy4QHlocnuC6AeLrQEhy0zQFOn2AbbjO2N4nNE+R4yCIkbh29QIhw2W9YteeU9AbD5nOU5i0ANBiG6qoRpgVKUkoW8ijUhHVONVLUxs8pZ7R1ZuCQihOHxxBPtRjDsokWX4oaY1TKQFTTGo0128jcG5Q/ZWXfXzJkT+eh4HFuhZ/flqIj4nYEvyDlSioN0bXUWoiN0AQYSjJHqvMGk86ZlPPMNM2P0rxEbJx6Nd4XKiGYzjFPMG0LUpVWEtdWQnCOXO1BeHQgrLqM5pGae1JWSkos2pblwcIQY9MleZpo25Y2tjjvyKJImSiyp2jFaYcTjxN7/ZRM1TRjVYSSMlMewUfG1DOlPU48ojYCdjg633L24JxXXnmF9773BWKMMKdHPHovfynqSYRaAerMf7QUrdu3bvKB979v1pMGnBgSTedAiUpmsWh5J4/pqih9Z73zeX7pzF+4/+BtHp7dI19soN/bdTie4fcjPomNzGWJyDkALuxmLFghxpbLbWaaJlLOXG43pkcrcHpq7vKVV87H3l5LWkpvXRTXCEVGvuo//WvEwyO7hr7wEuMnP8449kxpgJypOTPudmSp5qynWriCgywTCgQXLcVdA1MZLftXQQmIr9x85gYaAg/2ex6cbdlu9gQvVBm43GwpxUIndmNCvdioXgshF/bTJUUcBM8gQpkSQ59RiTBzk4WCd5UQBKUgDKSaLAQkRHxIRBnJpSHpQCoDUgvrxZI87Uij4n1AxLMOx9TScu/ePfr9Jc8+8ySOzI2TA4REdWbmkdSTtmcM+wvb83yidRMfevoav+vrfj37i3PS4Q0eHibuvvyLtJtzbnaew+PrXFxOBJ0QYLn0ZBJ5HJg0QVBiDBytVyyayDBMrGJLiMEIG2o0jtu3r/HxadYUysDF/dfZNje5GM8JAZplQyTSBet2r5sOjyDi6SrE/chK7JpVUXyILLoF3eEC+oFyeca9n7vLqz/+I4ybzH47MMqALAI1rtjHJRoapHqkJtQXXAOLRhiHDTpmfFX86R2alPiu3/tNvNouePr4Jk88POe3/93v5i9/9Gt48fgmy+UJL1xe8md/4L/lL37NR3mtaxiGgVKEpJ5SKtFVglgssZfONMs+cOPkkA99+HluP3GNw4MV1w6PyVPhp3/mk7z4yuuE9QHSNUgIPPnwAX/ie76bv/0tf4g3Dw7pd5eQetZkmpxog9DFliAWjoJWnG9R8QzZnkHbqgyzBnw7TJxPO3b9hpAT3rXkqZCqp2CGqs6YgkCh5jOmnMkaSSVQakUpNgmUDoIQYqFKgsZYuetmxc2DQ5YS8EyEMBAlEbRF3AqpQguU0oNm/LzPpFLY1QLtEaujJzi8/Qxfkid+41//a7zxH/xHPPPX/q9L4AbwuEB9vL4o1rsvUBem1dxu9mw2tonmMbEpWytKZeRPfNff4PYHP0Sz6Eyj9c++n+//y/8n8jjQeCAnqEJwQgiGVIrRvoTQTjRNpgiMbYfgmNwMc0/KkGHp12gVdv0AOrE8bLn2RMuqqRwsMz4WYqp4PDWZ7MoVYdIDcIdId512fd2+Id+imDsYoGi1KLzi8NLQhExuCsFXUk6UVC2ZpypOk0Hu1aOaGcaeYUiGltICKG1scDJ3AcWMQqSKRbB7A8xXZcyJ3bBj2bT0aWIRF/gQ0JLAB6RepYSIJbZIpBaYBsAXsqtEF6nJsEahWrFV82w0qT2WmiSggncBaaBInmHdUEboGqFMGd9kDlu4fevQ0mZEcHhEHLkI02RShYPlkj5jSKsKTpYsVh2hs9g+UPo6oVrIdYAJSvVEDeag1QK1UEVnWoPnypFfRBimxJiTnYykUHMlNB21VHYPH/JjP/pDfPSjX8nNm7cecT+vxuzm6rdxvuqcqHXV8ZwxRl/zkY/w1DPPIBIo1fSSAuDt46gmLRHewVjBOw5+++3VcPiXFq7KZrPhwb176NRTy0jJiUYSKgUXIikp0DySD4RgxdyUKtMwAcmCBULFu0ITW3KWR8SGqCCqNMGTMQ4uwDAM1LjgC//JX2D51LPc+t2/n+aFF9genbB563X2my11uyEMe8Z+y14LU5pwwXTBVUwj6eNsXsOud6rixZmsJQiH10/ojlbcuX+Ps/Mt0zjQOmGaBqYxm0vaeVIqVKe4xqNSrZs6ZtNIe0+uyph7UlIKllZEqsS2ITQV502nncfCOI4UJiR6m0vXQhcjg7TsexCWNE2mPnovPGNWVgcrinhiXBHcjvv3H/Ls089wvt0RgmfdBoP/AyuXafJEM7v4l37Jgav8Ox/5WtYFLpsneOojv5nmQwm+7+9x/hPfx/NPP8GiWbBNicXBglwz027PlEdynQjRivOmaXAI4zDQieBCwLlg+4lz0KxYrRZ0jYcd9Jf3ENmy8teYEERH+mEPjSfMh/qgnrU7IGjFu0woDl+Fz/3cT/Dy534Rzk8ZdnfZlgmfK2ghi9KPiVoi2jqKyVIR31qU82XP2jvcNBCPOz7wwfdx9uCULihPPnuD09M9p5+1+NY3u2u8cnhAOl6R5qnaS92Sn1LH+Rt3+HXbnj8L/FwvvLY4gOXa9NSqqCaCTESfSKWlJsdysWTVNrzZKJd55Ld+4P18ya/7So6Or/Hma69z784D7o8jxXmKC3SrQ9bR9u+HTx1y78YJkg84aAIpJfrLDXWzYRUjiwDeWargUGCXKhf7yuCWXGTlMgmbi0Q/FgaNuNDQeqVtVlRfKK6l94G+33KooDmzTxMxtEwukMQxZaO7FA2k6hHn5+ZAREKLa5RCoqVynISj1ZpmEfGSWMZC9AoEuhpZJqXQ0DSJzlU0gWrDKJE9gdvPvod87UluTLO856ln3sVT/PF6vH5trXddoF4J87/w0msMp4b22G737FoltgFc5t7nP8un/9E/pKTC13/bt/GxP/zvcvrya/zM3/7bCAnEIiC9RNqwMFPGbFqquTLtE9JFrJ9hWfZOG1y7YCogmz0uFyg79uOG04uH3N884NmnP8JhcayaEfHCbjcg5RYvPPNB1n7NZXyTxq8ZdzeJ0RiCqp6S32H1TTkxpIzgcSghQuxgMXlqr+bQRygp4VUITXzklhcfcVGZUqbOKCfNyfio2INfBePcVUXEoyIECTg8VQNFLFkni7mWnSEA8NJRK1R1eDEuHxW8F3Ndu8pYRkuSmhmcQqZqodZCqUothVr9nBpliCXnHLFdIQiTs2QtVyvQgU/EbkHJ0PgGqHPBsmbM7+hsp6mQpkSt1bRS3uFjQ4gLpmlk4Q+pbrKurQa0BjR7qkvm5BIrHkvJaLGceucCSWHMkGpA1KgIqsUA/QqrruVTn/pp/s7f/S7+yLf+cQ4Ojx5Fk5opKs81o3U9jbL0TuwpOJ586imswIy4R/xU+/gpT3gEHyKlzKlcXKmIZbbxv9OxtevpnV878Xgf0GVE/YTfVtIwUYApWxKX99E6w4DmBikd1IDUlhp6vKt2SBEotadUQKwwmYqNy7VOUD2lWnFQSoUiXHz6E+Q7b3D9ueeRp34vN77260gvv0gZM1PT0LQtoW3I+y1FKyKeECLdssM3ccbFKU6FUuxa8g7iomG1jnQHHQ/vn3F275w07YmqeNey2+05O9+xWKyp4iBa8ZzKyDRNODyTCl49w3YkaUW9UFygemFMOzo8sXGEVqgUUlamYkzMJiwJsbHAh5LR5Kg5WjCFNOAne93I5ASxbck5M0x7tM4yDTznFztWy47XXn/A+7/kuUdw/FIdyAIvtgNpCTz/1JN89Nd/FQ/vvc3Bh78W9Qs0DezvndO6hsNbT9Acr1ig9P2We3fP2GwnUhJjeAp4b8XhfjfSBM/B9euEEM04phVfA671SFPpB3uPz88n2uMVYaWc7+7TcECfRxYHxjMGZomIJw0TcRWQkzWDU175uR/n7suvsbq+ZBi2rJYLShMt1YhKmhLqG3xcWqCFq1Tf0mc4u9gTmkhJcPPWEU/evE7XRT70wQ9w/eiEz33yJX70R34UgPe/8DS6XrMsULY2mfLbkVux42SZeX4upG8Ex/08su970jTRhQaNMHiLMK6lIzgzTI5lz7Dpef0t5WPf8Ju49cRtVOH0fEOfe5QeJiFNivaJjG3goWk5PDmh7gfKvme3t0lAExxJB5rqCb5hGDIX+8QUOrIseON+z8PtlqFUhgzGjw44XVBdYCoDQR1j6tlX8BS2uWcae5CGMS+YspIoINnuSwTnodaRMnhrSERnEdG+EmJh2vc8yAJ9hxfhsPO0jVAodOo4UcfB4gjHZOi9AtDQdh0pVwJCCB3MB4N/w9Tyx+vx+jWx3vVVfX7fxl7np5eUrTknCxXXOGpQorT8s//ztxO7Je1yyYe/+Zu5+aVfQvSe5bIhl4rXQBQ4Pjmg71Zs95dM8w0WJOCLZxpGZNEQ2oZhM5EvKs26o3HCkPcEKYQwgkvUnHj45n3G84ccHD3L9ZtP4dvK0bUWF5/m7O6G9cHTLBc9AcHHNXFxApi1Zhx3pGwPo6SJKU14iYY3qiMqiRAzTdzTdo4yKkKmCYZt0jm9o1YrXJQrpqW3oeSYyc5TUiZTGFMmI/jZ2NRKYByVlAPDWCgLT1XHlAtddNSSSDoS24acB0CJwZHHiZorsfHUWQemYkVkqglVT6VQciKlZKB21wJX7nkr1nLJhODplgGy0nmDfjvvwEWIxbiBYsVZViGGFSJCP1wQxRNbb7pYUbLCmAaqE2IIxLqgeo93hZIjWgI1i2lnfUaCJX2JOMBRs5LITFoZhkoukdB6UsmzA9riWEve0zjPSy99nh/8oX/KBz/w5aAecXB4eMD169fxrpnfZ/1lKlSrUe1zyayDtQ6zCUKdU2KIdoHoLy1Cr8xQOtMH5or0l5mlrMPqQ4NrG9oUGScYnENiR0yVJNmiap179LG1CGJuH5MbALUmvBOURKqK85Gi9jX2ZUdRO0ilUihzI3f1kY9x65t/J5ef+wzd0ZruY99o//7pKaLB0ppqRnKiCEgIVGx60PgAOFxRG9Wr4AVStujb7JXGN3RHLZttz+n9S3x2+GJThItt4vI0kWtD0xygAmN/wZQHVMCLIw+F5DrGYcLhCAqlKsVZZ69ZNnTq8b6Sy0DWTD86SvU4aS1YYnSW5FQq0zQySiY0C5xzhutKhUiDiCdNZlSk7NlPe6Jrcb7w9r03ePrJZ5BauH/vIU+bBoSB+aA4mx1dTHzZV3+Q5eGKl79wyfazP8XpxWt4rfTnL3HrqUPis0+Qa+b8/gPeeONVLi93UBpqimjxOFdxMiBS6ZqGk5NjmqZht9+RhoGj5ZIYA7V6FgcnZBeBkV1W4skB+ELXRWr273Tco73h6itJJpq1ABk3TITs+PCHvpT3PHebh7t7SL5B45VFOAACZ+OefRk4aNd0ssSv1xzffpL14XUkBC4uNzw4PeXB3busFtFeQ39IaG4g3THdwQXDNB9SowenfPknXiR+4WUAftd+w1kYia5ybU6S+ncu3+Qrp46cIc+4rXPv+Z6jI+qyZbE01F1wDkpmfXjItRvXeenll7l58wmkJPaXp+w3l6yWHdthIJeRvo7cPbPP8crLp9wZV/hxxI97lp2yXAeObz9D3p6zHXqyNmyycl4SmzHx+t0N22lkmgayZJIWKkJwnlwLRZRGlD4NKAGdHFkquVQKEc2eMfcgHUWN40qp5FSoFJRC8EtCbAGh5oqrwlSsc+00Mw0X5jeYAiEKyQVcrqQQiayIneJxNC4yTZUyTETfUlLheNnRTdYsGqerQvXxery+eNa7LlDfePFtADwtKrYphOBBzJQDhaLCn/0n/5jliRWBn/gH/4Bf+O6/g2qmlswiONrgaTuhtMqiBMJcPDgguBbXLZhatcjNtsGvHVMpuFpYLhVJA8O4gQbyVonDmvt3Npw1r3F3cZfDk8AL732BAznhzQcvEhavsF4vOLlxk4vzPetTkycsY4unUucWakkjXitelFIchRZCpsQdo7tk0IkaGnDRyJoqKJmigawtWQ2Lo3VCXUaKJw8KMVBiIAO5JBqNeHXUqgyusKiR/b5yuF5RiBSpSKyUAsG3QCFX6zzXmkhFkQB1ykx9oY1mHlNN5JqBFpWZexkzGqpFmZaA6MK62KGANtbZ9Q1FHeoTUxwJnUOLWq62Gq/PWpgBLzCkCVdhuTpg3PUW56lCSpnGN0RvzFnfWNSrOMFJJFUotVixq5mgii+ZmkdUCiqmL7YQL2GoA7txxzIeEbsFVQdyzgS/oFbh8qwwDnD/rbc5WTZo51gfrEllhSyVG6uncQIg9EXovNj0XhOIcHZ6hxs3T1C3ppRM9AUI5OzMFOUsPaa4TCzOzGvO8ErhqhE7L2vWyqM2atd2syEMhqTUsRBEGKSSqiJeQCxsAsAFhwsjVIdoorqWoNbx7nykaRqmnGlnM1TjleyUTKWIEq9wVZfndM+/h+OPfSPiA2V7yfkP/XNe+0d/n/2uZxhGGHqkJKZ+IKWMSMQ1DvU2ESjBNL1t9JRxos8F8StCGzhcnyC6ZBzeIKdzluGQXA6YxonN5QUlZdrloaV1oaTJ0e8UpNAETxNbQoINCwYtRMnWlc5KVKETY9amacK5ijhB80ieFCfGT64+kqtSyohUM/uZ2WiglB6VhlocpSQa72iqR4eRMQ1MtWexPqSUwunpKTcOD9lsLqGdCQZOqJJBrAA7OljyzNNPc/rwnJwdn/6ZH+KpZ5/m2ds3uf1Ey5Mv3EIPIhevnPLGS3e4uBzpx0JRY9Q2LhARxAcWUbl+44jlasHmcsv+7NKA9jdXqHi8KpcXmXbVwA5+9MXPUp5cm9HSLZCwIAcLAXGzLtr5BpWWmCpVd0i3JC0ysR5TKqx8xZXCchlZ0LEbCzcOTig50Y97ZLHm6Q98OSdPPv/oUXD4hPKcKG++/DIXp3fYp63p6ZkxVeUdScQolWbc0e7us8NGzefA2/uGKSWesK2W87pkI4e4tpLcnib1nOSRk+XTbFeH1LqlH3q8z4Sm5WJYUR5u+Z7v+x6+6iu/HKnC2f1Tuy+7Y87DObRKHHgUBnD/1Ye8dulZH0e6pZI1kLcQfWUdDxl72CRwq0NOzy959Y0HZF2yq4lUBlQSVTMxWrFfq5JGIRehVseYjSwy5YIXR9t4ipoJOJdLECWwJuQIUsjtyD5MFHrKlJEidMGj1THlBBVK2TFotdjq2tCNlYmR7IXsTohDIabIwjeURphqRbKyOrpGt1oby3ouTM8e3HtXz/HH6/H6tbTedYG639umuBsKmuYTtKsURpoY8Hiojr/zH/3PWd+8wdf98T/Gl/3O38lLP/SDfPr7/uFs2nFGPMpC1koaB8CKXfGK65TqMtF5Si4gilt4/DRSamFKSuMzVTI6CJ3zhDU4yWTdMZWBza7jzr1Tsus4unmDsU5MRdkMd3C+QSb7fOpAYjBzCNbBNYC84l2wOLzaINKRqpBrBWe58mNSCy5wRitA/IyTUlrXQC7spj05FNJYCG3HNI00IVKTCezNvBSgOtLkSJN10vphoAtKbBY41+FknEfTBXHOCqwqxBgRjUgqiDPovWbAqRUHNVNqwkuhVmc6Uefn2MwJ5yPqMy6YMajkijobXVeR2ajV4UNDzZlpHA2MP18y05ipoaWKdQpwxl31Eqi5oqniGo8EO4JIroizRBdjnmYzS9VsI3ln5heNjjpMqDhc7KgukGcMDlqhDnhtSbuRh/fvcOftDscpzWFDCA2HqxPun77FsjvmYH2Np575UpYLk3WMaUvbLHn5jfu8/cYbHB0uWCAkadlPibZxhJBNK+3NNOFQoreCP2gB9aj7V0Cov2y1nZnBxiFRS3lEGPDicK1jSpN1aOrc/aZaLClmvAuSQStFCpoLhUwMkTiziEX8I02sc/JICdt//jN85s/9B1TvOLl9m3B0g82UGIeeWiuLRQd5QnZ7e329x0cM/xNtzC6qeCzONSWLuHUBDo6OcK3jcrfjcnvBxIB3nu3YM/SJPZlJ7LB0dNCx3V1wOZuNFm1nQuc6MWU7AHmCdbB1QtOA1mLTBZ2VvcX4pyRvUZRRiI1HxVFJ1GBnAucKwoRqRrxSarIHuQtkUfZpQjHTpnphSD2Hx9dJeSJJxaH08xTFiacJLYvW9PYHXcflwzNGYNgXDpaHvPfJp7i88zrP3Dzm2rVrvP6FV7n74hvUiwEJ0HSBlNXkNIyA0nWeG8drFrHl4Z17pGFk4RtOTo5YHKyYqPjOcznumLIdNjaD58Gl0PiAc2uElloG2rC0TiMQPDSh0jpl3TU4LTOmbWI3bPAhIyq4ZsXkD7j+zBOsD6+RU+L+3bdJKhzdfIaMMxmHCFUVUfAxEmJLI4W2a2nDzDeeJw4ATexg6pkKpGASsMup8vu+8//Gkx/8AO1yAffu8dF/+v38nf/Lt0Oe7+PoaEohlz3jvpKlWOHrYOhHguuJHl783Kf5vn/8j/iNX/9vsz0756nrtyktHHLEdhgYLvcczjG/sEPo0WKGK1WlRrgcR2hbJC6oGV558w3eeOttlFlqVEZ7BtWJRjxSHOM4UWs1aouPDDkxTB5xLRocRQqTFKomGl+JARQ/X4MQTMxF0GoSBGdFreDREnDVoTUhQzFMYZyorqHMenlZduRlYMgF9Y7RQyXhghJaYciX6NlbZJc5mpOk4BES5PF6vL5o1rsuUJO3v7odtrRqGzq50mmkUSFppVTllZ//GcBRgf/xX/l2vux3/x4++0+/jxi8JWyofZyTaokqs8hdgkMDeBHKVKkp47wj6Uh34KiTGY60EVx0BA2sukgXK23TcL5NSGmZxob9vuHh/T1TPufw2nVQ2O9HFqvI0Zw8VGejyyO+ca2gindXNM2Ad625LH2HMszZzN40hi6gjJQ6aw5jS0p1HpsL3itlshQmUcuYL9ke+J6IUqhVoTQ48cTgGMeB48UardYlqaUYIxRFa5ozw+2LFi/UDME11JqoKoCHKjauLjZKE7GiA4qNG/2MXhJDPaU0Gcc1NqQ0UKTStQegwV7PqYCC9/P3UIppFKtQxbpcEHBSKRVUM4VC1QFya5nnrsFJBF/ROpHzhMybuMc2aRVHcW7WAEeCWNfSvvZs6Kwk1KCmN1VBJ8f1azc4OVnRrBwhWnrX+b07vHj5Mq+//Drf+j/5E7z/fV9GSYV2frDeuX+PcTsy9hcs6havx4QQqRTqdE6Ikak2FC00uaCNPTxRO9iYyszWI//VOz/hfaBWmCbT2opg+KxqpAQthVrzjMSCWiZjodaKE8WLICHOamgF5wghIrMW1rt3CtRH7FWAUmampSP4yPUb1zkUYbPdsR8GtFbGaSI5Ty1KLWqsRW+S4FSVKPM3WTDTYFVijIQ24JqGB2+9zOX+koNrh1ycXXB/8xCtLfs04bpA6Dzt0nP3/iniE127pM7X3jj1jNlRcqTSUCrUOkEphABSDOXlHWitSBYiQgyeGBpUYUx7UrUkLRctJlgrFKngMad18Dj1ZIRcrMsVmw6tBh3TKRNDYLfbsTg+4uGF8TpD7AguUEZ72D97+0lO795nERrevvOAsT3kcrLc85vXbnD69n0uTs+ICsULuzqSi5EynFaiFw5WLSdHCw6alsuzS/qLS9aLJcfrJQGYdlvakwOIlYeX94yYAIw1MLoFy66jDj3iTPqx7JpH/FyvdmCupRKkEub3rqhjorJoPFoaeiKLxRFHT72ACx2+Vm4tjxjGEUJLFZ0vIYeTWZntG5xrSNMOH64ubjMjTvPr4zCtdRsOuRhs1LxcHHP52mu8+iP/nOV+x9f9gW/lK/74n+Dl177Aj33Xfz5Hjha0VjTb3qO+Z7E8oZRK27Y4FQ7XHc8+ecwrv/g5jlXoLzaQHRI8Wiql70j76ZHD/fbNJZvjSNN4blw75uBwiXfKftzy4PSUvBvZDxOvPbjDJm2JzlPzFueEUCdyyTgnaC6kabSvqwZyEbRE4zt7bw0NKYjLuJqQeuWYcKQCHuvoS7HX0VQZBanFeNZJiRJQyaBKEKGWkZomBJtAlVwg9ciiJbtC8ooGiFpJqZI0c3J4jRgLJVuBntL+v/vh/Xg9Xr9G17suUDe9dUOISp41SEXr7ErOPPt1X8+X/+7fw+sf/zjeez72rd8KwL3PfZ7oF1CEnGdgfEoE3+Dx+NkoUqlMtRCch1wIipmo2oYgBeeMiVioiJtoW8e6cXQNODeR8gWnmwtC8zTO95zvTnHLE2KvVLlGQdjue9Y7O3GO+0paeqg23hMfrMMXvKWdKFAdFSH6lqiRlEGc0MTGNhb1pFwYxp4xFYo4JidmbsmFrihVhGm/p62CZkVrmL/3QBc6dDRm5zhtqV1HmkDajpQLISScihXzTSA4c/ObBtKRpNIHM005Il4DoiC54FUo2szxnop4Rf2Eumjds7kIiRKtyMmVII2Vjdk6eXkaTXdJhppJ42AdFB8tyjJ4U3i6Bq+RVMy1rb5QqYiZrXFiTnUnpltG1MxjWkzr6ZwREappZKtGpEYkCS5kYmOs12nKSDsQomdMMO0TeYInk+epPjCdj2w359xwkWv7nsXpGfXHfpjdW2+xXB6iLjJVx+anf4EP3Fwx/uTPk169T1zftM5oGXABHu4zL7/2EIfwwlPXOT5c46rlt1dxJn+4Kgp/yWj/KgPVP7zP+pU38Pfuo8mMISlnckloUesIV7h+aXioo4db8ipyFh3OmfvcR0E12AHAORKBPCceWa0wBxDoo/9jelrAu0A/TOy2WzZpYt/vSUXJU0L7PeRCnpIlWKVC8Qo+4INhcKTKbKhTghNLLHLKdnfBZn+fbtEiruXBg7copUUkkMqWtgm00jBtd+RpYNEsUGzcW0SY6gQVohhFIlFxLtN5h/eQ1KIpcs2QQUqk8UIlzUW97R2QqVGs24/DGZqBXEdKzaCRgsOpoDQEVxEiZRzomoaoHsmmXLm83NohDOjzRFIe6Zf7TU86WLA9P8MHoeTK1HieePJ5+l3PdF5h5+jHYh3ZYjB4hzGJ14uWG8fHLFph3Pb0l1ucQX4pw4jvWqIXxFVKrQSx1wag+szklRoskjmNEzXtcL7QNKZFddVTa7DOZxA0RlyIRDqaxYIuKsUFJudYLNpHKWqqggsNCx9mycpMqNBCVTvgeOdYdks2+63pxJ2ZCKszRjEYhi84T6072nZ+JtSR7/mLf4VmteQZD1/30W+ED32I4FY04QCoaNkhXggeusYR5JDcK0WFXKEJSkmZi4sLXh4G3JgJrqNqgxBYH6w5PGpZvtBy+/oxfPd38xUf/WqObl5je7lFs7Dbbnjt9Tc4PbvPsN2xcIFMZaLgOktnKyVBuuqZDEzTBNpQcsBH801MY8UFuz6pIy4z4/ssnTDQUEXs2lUzvxr4wqQBWgJuTg2sak2QpAXVieQK6Wov10hxQuMdLcKqQpCRUUdidnaxCoTQ4KpQMoRcH434f5nO/vF6vL5I1rsuUMetwaxVeWTKqAEGEkUzw9klT37gg3zZb/tmnPds7t/jx//Gf8YP/9W/hhRBXMRVg3CPY6W6ivMQZ+G/j4pvAhTFicHUxynRdceIRMIMuB9KplsWrnWVVU1EF1l1C6YpUYG4XOOWgS6sOTo5YrVcIwtBSuRy07Pv7YbOdYHICcjD+fO3+KZFZS4Ai21gqtlOvsXhireRvs9WTKkYlsfPI23v8L4jJ3Mg+9DSjkLtB5wEoutsbFOFJga60CAHgjJRiuJdNP7lNBFnI41WpTql8X524yvOW3iBBM9YEzE666oU49CKVBtDV29eH1HEG3HAOSU4j1LIqdpIvkLVjPMV5wXNmakOyNz9qzWhKVHShBbIwYoDqiPXYuMniWixJ6xWR3FK5yO4iEiDzgWe9zbaFedxXpBkaCAXOiR0pln12cxq6kCV6Jx1eEpFS6GEHd1ixTTtufvTP8tHvvt7ib8KNNzW3/plv+uAb/7v+JtXmVE35x+/2vrVEq/lV/x8BHztf8fH/2rrt/3AZ0jB8V9+y9fQH3R2r2D58+I84oJ1ReNs/Crll32+qzCtKy2sIuRc6ceBXd+Trc1vmk4V8pjJU6aKR4vpRaWarEPmQwK1UHPBR0fXePI08PDhAw6P1sSw4Bc//wr7TeHJW0+yudjS0FCGCRqjaCzbA8bBsR/MGb/fX1qKjhNjHpdh1igr4hrrWKkyYYliWiKBjiAFmCh5R6kRqdZNRgRVb0W5eiMRuJlyIQFHxPlIcEL0sxwgQOM7VB1jmlg2LcOUKPO7+uDyIdOt67NRCc7Ot5y10C4D3cECvXMXX58il8jdhxt29wcuhsQ+Y/dayojY17derDhaH9LFljIOnG12XPZm/Fqslrg24BpvO7AT/OsXPPdwZGo6YOADeaTZnnOw380hCfBEKbxnGPAvvQTAjYsd8vCMg5xZZ0999S1c+RQrd4zrt6wbzzgWStuyuraHe2fzteXsXq4F6Tqjr+mMYJubqXJ2get3dJenxKbF7TbkGNHPvsTzM3f3iQcPGIYth7s97K2Durp4wJF3/Okf+FkW1yyl79W/+9288Z//f3gyjSahSol1Sjx3tuXNkHgrHJOzoXarblktI4eLNcGtuX7jCYprqM7h24BfdoRVS9cKrkzss138WVZUd0DWgZdf/jz37jzg/GxLI5HV4hgB8rhlLEKfHW1cIJpJuaBuIlWbAAqBan17JgZcbGaCiT0LYE4ULNalFwn4EAgoJTpKrYwlUSWCBlzujDqteY5rZg6xUZIfKM7hdUF1LWMMSHQsQuAkLlnHjAuJIEpThOKwqZKPTE7JlwPDMO97+tjF/3h98a13z0HFOo9SKqHah0Vx+AxeA/c+8xm+41u+xbR7TQSUxkcrhhSu/NS5OsZio5SD1tO0c8xnTlQyTRCaxjPNBYeritQALuJCRyuVVVdpuwmZhCBLSoKj5dMcHHeMnDC6BSwbki4YSkvqHVOGVDqm2ZiSUSbJFHel3XHEZmG6O50N1lLmCEBFqnWXKtXc1GKJOLkmkibLDk+KnxSvoC6yqaPt9k1DzhUflVRHkIncFnal57g7wvuIlwXkBu8VdALX4ENH8GoZ9k6ozuEU8A2qnuCvCnrTN6pTSlZKLYa1mkeAMkcMmrvfWSSr7q3zpJagJCgpJcqYEBdBzcneNJEpZTQVGr8kl0LOQrdaM7KnlEJOE9GL8USzN+2wOKbk8FgR71ydzWUg7h1HMk4oNaNVCEXnBK0JDT20e0r0EJe4EubXX8h4ZOaNDtNITInv+Oqv4jOlUMVRSmW1OuCJW9c5OF7QNi1Tv+fi7JJtdrA85n1f8gy/5Wvfx1HM3LtzD11f49kPfRU5t/zwz73Kzz7c85GPvo+vu7lgNUf3UkG9zryGKy4qj9KrbNou1DTy+Z/+MR6+/GnysGHqe1IxPSqpmJbXCev7Z/yWH/g4P/W17+OjP/kiq1Hp1x6Xi/3rJSO1mqufitYrxBdQKrWCHzOS5pFrqtR+IDtYr5Wj2BLF0fcj+6FHxoJOheqwAhQTK4h42wqKdYBULEY310z0Hh+Fu/ce4EXoukMePthyfrblxsl1KJnNxSU1e+sEuYEQFF/cI3xYLVDGCXFG/Kgyoi7NY9OGooFaAlodWXtEHKbEUVSUYj4qS0eTan+uwWR3Cuqqafc0EpQ5DEIs3nKOi/TqcC5SvbBJPSqKqxPrZcdwaYfvzTSw7ffcnqUgl7uRzdCSfMWtFqyfPOHe6Rmvvvw67eggVSqJMfeEmmgl0HUtXRNZLVe03YK+Hzk/fcj5dktGWa0PoFuQfSB7Dz5Q750T/+j/ij/QD4/e3v/09fvw+q+yEd/7OfjT/z4Av/UHfhh+4F/9K9d+9S380RKg/RW/v1pXB7Dj+ceTv+JjPzT/APjYX/2rfOxX/PkffHv+or/lW+D2bfhzf47nf+/v4d/7L74Lvvu7f9nf/SP37rMX4fe878PcXR3jfSQ2C47WC27cuM6tW0+x6FZkKrnC5uyS89fvsZsGtO7pfMsL9y/5fcDnP/kKr17bcX76Fq+9+iI1JxZNx6oLiFP2aWDUiXGaQCNTzWjOaC1ojdR6fAX4QONEUkHpyK6h1AHnKkiiaEGKQhWTGtWAl0h20VjRVdHswcd5OBQoyRoHzjtccNYEcQ2hdrjioUTUOzQCneKbQtOa5lkZ8bWydEIviVqzhZ8wobUlOHsnS+bxery+6Na7LlB1ppNC+wht5Gqlk4AXR40KGYpaJ6Yya7G8swdIKaY7dBi4O1Z846i9jScdLd4Hgscg9zES8HhpqJNYURPN7apa2e4LnQacU0QTxycrSmy5mBxjqUxkcpm4PL9PyitCOKRbrGmcifmD8wbRjvN41rnZRGQFjnNiMahqUG2ikFIhe48LQuPN4JNzJqVEnjLeNdahKhX14H1kEsPB6Dgy1BHXONsEfaLUQl8a1v6QaVRqFohKiM5E+nhECjhHFo9gfFTBU0oxdE3boCXhnQdnhZtWS11ShZyzaQor1v7WSqoj6gbQQvQL6wbjCKGjFk+ZBO87Ukpsdnt8iERt2Wx6Wt/QLtY8ON8zlQ2lZqZxZ+iTosb3jN54mi2IJlrsMAOCVhuOO9X5YSC4aoijKHVOD0rgRzRM4FZUaZEgqNcZOdTRBJCaqLOp5M3mgDvNkof7ntYpTx49RV00vNFfsL9/DrtM2e2RZcdm9zqfvPsGb6W7/LE/9Nt56tmnKde/lPrC+2gRvv6rP8rmlTPkWsPq+gpKRkNj/H4P/pcUqIZafQczBvbn4+6Ms/GUaddaJn3NpHHEpQpigQS12kdcruyaTBnGMdGExrrsrnlkrrLPMY/wsQNWahvCOBFGux/9NBH6EXHgN3vq6SmpHxh3AyVNNvJOmXGxIAc/jw0d6tzsvLdDWK6VVDMaDP005Z6UBq6d3KCIcufOfZw6mijstpdULUzFrteomZIL+32iVsE5YczJzCVVyNOAOMV7j3cdiKMvhZImpJjzSaLDeaXqSK6Voo6iDSpmOBEHUpUwM3LFFRwFR2sSCwkwY36ccwTfElDSNJBdofpqJs0q5KLkavq9oRQeXFwwij3092NiN1ak6dgMgbBesXswkfYKaaSMewIjXTBJxpUZTrxjyiOvvvGA8wen1Fw4OrhG27Q00lJGk/6Y1jwSdhukH/ih3/kb+cEf/Tn+d+eX/PnnbvDWrTVllwm0RFrefv0tPvjhD/Ht/97/FPmT38Y/+6ZvQF844ppWnlo6br7nPdSDZ9i3B+QouLiir4H2eMWyW9F1a3DBqB1VLW5YsaJf9RF9QVV5+MabfP4TH+f+w7vsNhum/UCZMiFEntjt+B997/fxPb/rd7A7OeJDL75O2u34mk/+PN/34S/nTtcyXpxx885b/L5v/3b4r/9rXvkzf4bv/fjHKVWJOXFQC19Yd/xvPvcFnl41nB5E4zILhMa0rmcPL+kvR7SMPLjc8spbd3nz7gNC23B8dMwTN57g9n6msOy3TMFR056j4zXTsKEL0DSVs3HLab+llkyZCrVcHXQyQQXViOiBSUjcziQlWnF0TGLFoPNulgJUvG1gVFGKZmQ2vYpWqmaTTJWGJFB1j1Ol9XNBmz3i7fCWsyX6OTfig9C2kWXrWETwTSWEFh8ayjDQZ9NKqWRDIl5esD5Z4oPtQ1cIusfr8fpiWu+6QK3eNu3NPtPMcP2CUkM2A0xwuIo5xiUQXKDWRFGLdHI+4J3gJRMXFVk4QiOPIOhNWOGlQWuyfwOHl8CiaVGBjKCaaILSNgFqpBFB00jbtuRaCX5FqsJuErrVCeJaak54p1w7OmDZHrDeLAHoQscyrGjncV4TG0TMtKWukutAFSucCJa+NKWBQofUQJSCE8utib4hi1JUqcHZiGdMdMHG6uM04mtDTpmuack54bNj0TW4pmWYRhZtpMwa1alX/Noxpr11FaJFQD4qIsCSf7CC03lvTmwcITQ0KFqg1jliMis5J0Cp6qk1W8LJPKoXHxH1FvNahGmEy4sNWUeGwfBOHo/Ls3HGPUSDuc1zyQxDJQa1r6HrIApx1XDQOZyDRKHkQnQQvCc403B6B0nAiRDEEdXiWX1IOBRXGlxY4nUBMiI6MmVw2UbYXXRW1QF5GpiAkEZ+89kZt7b3KTUxTiOqQiMNAchUaCKlJvS/eYkf+eGf5Tf+5t/EyQfvkP7gs7CIxDbyG77kOg0KTKiHLIrzllL2S8mq7wD6FXmUWuXQWTNaqmnSBGcpXjJ3ql1Grgx7878gIeDbxgINxBNiJOUJ54Nhfua/rxVKDLzx5e9Ba2V994L3/8zneP0D7+Hh9ev0JXL7ve/n7nO3ePXuHabBCjVRT+0Hzi8fMk6TSW/UUVUoBbuvvDCVkVQysfEsDjt22wsOjtZUrex2OxzC4dER4zSS0og663Q2i4ZYG/a7DWPvqcWZUUkKichUlNafQDTXfSlKqYbWwVeieAIOJwFxjRnhSsLk4BWL8LRtK5QGpw0iGWSyN8IJWtS6S6KorzShIbgEubJuAiWacUqkUFOhhHd0fBVhN47cn8fVLjYokSE52toxXhjLWZLSD5kyCr4K2SnhIHJwEGmaSM4Td96+z8P7D6AoJ8fHRB/ppMUnoWsblqGjlUiQgMza4vMnDnits/f4jXXH5xeBrl0ayYCW17uG4yefQj/wAQTY3rpBfuoEN+04eeoI/YpfB8cfQJoDsvacnY0cP/k+Tl540qKIibimAxw5ZYpCE23aZeMBS7d78NZb/NxnPsebU6YXx9R1NKsjylTolkvcHMd6eu2Y08MjboRXcZ3tS91v+rf4yt/22/n8T/4ExwjMXoSXX3yRV2ODcx7XT1xH+UJzBHyBqazZ7yJ5P1JSTz40Fug2bLm2PqSMPW/ee8iun4DMNE6ksWMcN49MZYu1sDhUSuc5L4nQBkRgHAaSKvtUcFXw2lBSpll4IOFKY4ccAYqguQHX4d2ExD2l7qyIlJZSsMO/n+NkMUSclgpeKDqhDIiHIhNZhUy1hCgXoETIZoB1Dpwb8B6aDto2cNAF1iGycA1BWpquY9GZhjj1e6SYdl9cpA0tuYykbAV61cct1Mfri2+9e5PUrHUREcPGYAxCHxt70BYHFJoQ8ME6eVY7eMBZOodMBFeJMaNNC86KFQCJI0hDCELrCpILKlfRcQ2hWheuaVbEJqL9ns57Bp3IyR7x2gWSi7x2/yE3/RGLrkFCpGjF6451FI7XdtJsjyrtUSXcmzu4UWhbj+QZtUJlYKK6RJWBUqc5cQikGnunFMwNPVVIaoVGAA2mz/Tq8VpwKuRaaAiE7JDSEJpo2rl+IvpInvaMqaFPLYsaCdXMWKU6ongzXqnOLnyD5yuFWoTqPIlq8gt1oB0+BDM9lMkwTmSqZjOVeIfHE9QSjEqOjNPAdrfl7GLHbpetuNVCnnZ00dHnisRA01giylJboDcSQJjYjpcIHS4fUZwQ1ZOJHCyXSBNogjO3lKuI98YCBRt3UamaKAGENOtPPWRL9PJSQMwFn6rCtMXHjhodddagleAZXKEMG5a55+EAu2wUgyKV1hUiEJx1L/yiwzctXzjdk3/iZ/hdh9dZTIW6iHgSR17MSFMV5wNRlXeq0vk/bo5BhZlKYLrIKpjjV5x9PpRSZnSUzrIRUZJeJRbN90BokG5FnoRERmMlM+JFQT356mBYHbk4BleowdE2dj9OwTHGhrxYsnrvM5y87/1sj6+R93t2+z06ZcbzS8ru3BzzRebPLWh0JAEfHI6GUnu6JppTPKsZhKYLplRpFh1jGtgPPX0aGPpM5xd0wTOOex4+3OO1JXYNU7pgzD25OnAtLrQEJ+RsqVq5TqivhBBQ52bSwUDnPS60bMtEycnYnxJQBKd2HeU6EqUgpaAqRIxxW1GKzJMMKuO0pRPHar3ist/SUUkOpnFkDDJH45oMYdz3XG7tfSkuktXhsrC73LFcHJJLYepH6mSGt7HC5KDTlrGYQSztz9hdnBKkEruOtumQxkM7m21CJYeMawQ6oZAIQD8OFvcKLKrnel1QhsTJwQnTVLgz7TmqwIwW0nGgGxxhUthHSEvKcx/kYH2Cnr3F2as/y833RHKaePPNe1Aczz3/Hs4u7vC5z30a54Sv/MqP4F3Eiyc0Hffu3+df/ot/yd1PfxK/uSDv9miuVF9IpXLr5i1uHhwBcLA4oJ8nCnLV3d9e8syHPsSHv+mbrPnwxhv85F/9q/y3//f/B7lUJFVWpVJSYZiv/80+0fvCVCsqCXd4jG8WrJZrGgeDZhYS2OYdopWTm8c89fQhN44WPDFa4+Q973me9VPPcv/yIYvVkt3FA87O77MfKuN+Ik6ZlMNsvM0zEmqJ+oLmhlqCkVcqaGmpzoFkxDXEMOFqtqQ3bRAXqaqUXAiqFGe60lIUSjD0mwhes8mvnCBOwRWc3yOuEqUQMIOUL0LLkqWsWIWG42XLqvG0CsvY0a4c+ykz7ZJFgzeesd/QNK0Zr4B2tXy3j/LH6/H6NbPedYHatHYjdItAnE9tCwJhZrmVmm3cj+Cz4J0jV6GWbDdhjCzF0fjIqltSFktaInEGPLcSWLYdXROJdQbPl0qdMlK9FadOaJ0ViRnQnGzkj9pIsCa6uMAjXDy8YON2NN2SRhz72NB1sMuz2auZCGvh4KZttjeeukZ64hhXAnkc2Wxhd3FB20Ym1xBcRyOJUipNKEiqaIFY/dy1CeZMr0KQSAmO/ZQM3i9h3vA8lWAjHxdYuICGiYNFRxkqtUBOypRhJYGSoW0aUIe4ikhBXLEce2fGBqctuRhj1okzob8T1HlL3mkjeEGkta5qMfB+KYWxJEoqTENgc9lzubtkSjuKZmLoiI3j8KCjDQbmr2L60BYhznGTyVV6iZzvsxUd44YpVUiecR9oZCLKEh+WBGdpT0XV4irFTFCCGbmqWCtDgGXX0sVIKVYAhlDxYcKLAdXNvAV5NgylnKgu4IJQtbApyiCB4AMhBCYVslSkJhRHO2H4pqMTPv/666x/+F/yNX/027h2/QhXEpeT0F/uuX3z0DSjXrBeZ52jU5WqlsplbT03G3cAKqFzVF8YdSJTUSlkHXEUxIt9v/WqMrWfYogml9FC0cw0mb5YBKom0yZjcptcRvCCd80jDupsEqaK4mPEO0d03tKm0oCmQp56RCvezyWFWrFcnRpCa/5+HIE2BoZJqdKw2W7JuaJa2GwvkAjVV/bTnkkT69UKkcLmfEKdJ0kBb2zgkhJRoiWBlZ6ae5wogRmyOvORg2+IAbxWRCz8QfFzx0pmDaDxeKNrCS7QeMULlGpO/ayeKp6xTmisaFMpOXFwcoujRWDSgTKOSFJCdYQc0JlHm4cJbRSdpRfjNFLSwmQ7CkVapmli7Hs7MFJtMuQ9SR1vnp+h+w23li03D59gv9nRDxOhRpoQzYQYKiEGfOvRKNSxpwwbAhC7BXlWgX7d+Z7tds8yLvjAzed58Y0v8NUp8cFXX0K+5+8D8N6X3kLOLlnJxMEr92Df0X7s96LSsbz2LO//KmF5sLLR8qS8/tpLLKXy4id/gbffeovqIytd4RdL1tcPefLJp9hcXjL1A7UUtPQIO1QzQ4qE9pDiPPdPzwEoQ53RbhU/X4T55Zf4wT/7P+P8sqd9sOHf/dzH+Yn3fCmu7YzQAjSNI4qwWtoHrRaFG4dLplqIccnRYkEnlTJu0CbCMKE548Rz++YTPPXeJ7l1+4CjwwUnD2w/FweXw5azzYY8CuMG0tYz9Jk8VlwRQq1ILVSyHZZzZlIQSZSaEWlwrkVltPu9enxtkJJxLuN8plRFc0VqtetX5yaBOuMcez9PuoTgG2plNns6xIMEQy2aGTGCNHj1tHnBWhccBKELyqpVfDCZynK1whXlbN8zlYQUR+xWdIuWSJ5f0yuL5+P1eH3xrHddoOZsp3Y7ZdrGEius+mQOcqcE79GScTPDVKt1vRCH10xQ2Dct1TeGSEmVOsyO5DESywpSYBwTQVsESP1A0wo+KF4zUgt5yvT9HrSy8EJlQiQQ8Zyslrzn9nXefrDByxqfDxjyntffvuRiyFybUTzHB0fc+NL389yhFagf/cjXkX7dl1PHyu7ygvOLe7z+5kvceesN7ru75LEwjRkphZAzUh21CGmsjFMhY850XxTEoP4Jw3ChSiWby7cqESWKp/Fmfmk8ZK+ojiiOUjPjlFismll3ZKldTmYy5pWO00F1BrFMxbSNEpgLH50xUJ6UJ6oXS55JyjRkarbvZ5oSeXJkhcUyctCuEFdpmxWLmOga0/stl0ucb9GaiXjKUOlYMYaek0Y4GCecbxhTNUesegPtl4q1JSaQBgh4F8F5LEhV8c6j3tkfKwRRlt2C6GetLbMmOATSzO40zacZwsBGXAUIM6zd9JQAlT/6Xf8Vtz78IZrFgt3DB3z+n3wfP/KX/op1w4aBawcrPv2JT/ALf/O/4s/8+T9L55R+HOEKuzTreY09eoXksTwfg+9cOXNtTOzV0Vi/nEk9QpyNVAkXDNNTKb8kLnWWbagxa6MXkwtoIjTeuLI1wzzGy2r60OIVnHUJwVirWSuhCQzTwEsvvcide/cpY49qoTELsY0YZ8SQfU/GLb4qtmuuSDWt81QTuzExVsXTcHlxRi4CUiklsB+qPRydcrnZMgwOHzyjDoypp2aD1UcsNrK6ypQSWiYQIUq0B7UGvHoal2kipmvNFdX5vdaCODPfefFE54kqxCAEbwiooVZSwrA/RWljg6bCjWsH3L51iOs3tK4yIAQCQTyRFuYuPMlQXGVOlxumgVKLSW9y4nLmN2udEKeGUvMB33RMWem3CVcCkzvg4GBNG3rybkdtD/FxwWIZWLQdq+A5XCzwEpi2e7RacdGPnqz26+VUOGsXrF54gaP3vpftq29yLp5+uUYPD21vbFfIckWRSFws8ClTp5G0NgDStSeeAnVUCTzxzHPsH9zn8z/5Y5xdnPLMc8/y/Pu/jPW124wV2kXL5cUl9+/eY9pP1FQhJ5wmYlSmUhjTyGtvvEnd2rNg2O6ZMCMc877axEDbNnRdeRQjHZzQBNsGCgqponM6Htj+Mk6VXAuuCFUcPsD6UGjaSr/t0WbPoomsjpcsvKPsPdvk2D60Ef8rr73Cp+68xnbqybtM3SZKiibLqpUo4KSCz2S10BBRoVSHD3Z/efF4t7CsrmBTA02eWjJZe5SdnZMe7QGZmsCHQFWMVIKZBdEw84oLJixSEp5aO7wqETONFhGqeMRD00C3CrStpwkdbWvoN+cD66MDpvGS3W6DbyLL9ZrQdMhoDZ4rLvLj9Xh9Ma13r0GdJS5lyrgZ2v/jt5/gxa4DBB8KwbUoht1wwVlSjqh1sVxEc7LzXlJ06KHPPDkzVUNJpO2e0Xu8i6RsHEbvIw4zikQRotqoqVJItdC6gAcaJ5RpYHXkefbGCV7NaS7Nmswxl/sBvOPp68cAfP1XfyPtV381/uc+DsCN9ZNw8pxtPbcztb6H973veX7xxc/yqfgpHp6d8+D0Pl4EKuRcmdTGe0MoTNXGsL4YlzH4QBsa+lpn9mcBHS1XWRzeQdGB1nvqOOAFch7ZTSNdFdRFvI+UKgT1huGhmoFr7j6KYIirrEjJ1JoQ51CtCIbWkioEUeoMY9egZkLwzsxPrYA6QvS0nadpHKpC8B2BDSJlDg2IIJFanaVJOc+ER3FIcKydGaMWkiheGHNFiyUSlakSxIoiL40xbatxHapWnPNUxLISikIRBDPfBV9xkkCwqMtSkOooueKdWjcZwFVctAeQuorUbGWbC9z79Kf51N/7+1RX+dif/FN8zR/7Ezz8xVf46b/1XXgJ5Gnk5OCA7/x7f5+PfvO/zTd+7CtZLgJBLFBBVeYELEtxsNd3JveL2s/2SpgMpNoEofGOJEqtEzVPZqpDH5EhrgSsbnaNV+N9IVporKlIVE/NlfpLKFqFgnrrOuea5yhcO+yMZaSLcHhyiFdHf7Amt5E8juiY6MeJMdmPpFBcIFcDi+ccyB5qSWhNdsjQzH68pCikcWQce6iFoc+mbaVDtDCOPSlnPAug4ikWIVkKwUW8b/DBM+UBC2mthNAg4qkFgjPQ/DIKMcKQ0mzq83OKWEazw/uG4K/uBzHJi7PEnjRmfNNStaBF0SIcr1d82XO3WcjIrldau9KoauzgUpUyd0xrzVQSwww/36c9xVlB03q7FkotaE344Aje42Jj9e1UCXWJRs+wusnFwRK3rsiUoVuQlp7iKyl2NBIpJTCe78nJcbAwqNl2HCjO9lZxjuMnb3L9hae5qBM9lb2CrNbQLuzr9R4XPEX9TIS3JL5KZaFYg8A3TLnSrDre99Vfzub6gpommps3iSc3qQQO8NSqfP6ll3j9xRcp/ZboKlnEjhal4tTuR9VCdFaMDvsNo1swpYqT+VHiHe2i41rXcn73AQCaJ+pkh8laq+ncU2G3m0f8F3tOB0dceGLb0MQFxwcdB0eJaerRziRkq8UBB+sljSh+LHgqZX5+XG5OOQ+FpIVpP5D6ie00MahaQAmCYqlVWUeESNBoPoqcbTLFxFTM5KsKKU92fc5Tq1wdKoZhUwGhwbkMLgKRUiuIm8k1gtY5dEIqSiEVkyhFxcJJAiRne3OOkGOlthVtBaQQW4id4eaaxrE6OmA/7cmzhKWNwQy82OH08Xq8vtjWuy5QO7cGoPGW1gFQl5G8MnezhoZpLiyatsE5JRUlNh7ayJgHxl2yh8xuYOwnls6zaKx75NlCgZQcxAXTYNDobtGik7exn/ekMpFUiR68N0h6DA0xKs71TLt7HB08hR4v0TDSnuxo2luc7ZSMENUePmXo0VTRK45eytQxoZgTs5SJXV8YJhhSIWsmLjxpPxlOp2QmqUwOUiikXClZZ+ODN4yPerxOeDJJ8xyLKoSghJDwvhqGpBZQQ5SkBKtaHmnoGtfOxZHB8kXsY0R0htoH0EJwkNJEKgmnEFxA6jww1BmpogXvBb9wliJUoNU5hzyovYZWXuMcdPEIJSESqGoO5VSrGa48Bq2XJbkKXhYUEdRPOKkIiaQTITZ476gZcnGmz3JW3OV6JeDUR6Nlwc+8TmssOgVLwTJXt42wG1IyTBGPvPNKiIKLSnDWtXFzh/Z7/+P/Pe3xCe3xIR/47b+Dm1/6PnJV8mwKSbUi4jn0C77zO/4GH/jw/5HbRzetGNYrzqb9W6Y9nazjqGY8QgJOrsIdrGhdHh3gu27WTM5dUYmkZGEVou9oTx/lUsncjy3JNMZacVWo1duhZIYDSXGQlVKSfV1XEaiYzKVdtRyeHKJDZrnouEwTVTHNtAgSPKJ2SLgy3ZVSmNJIcEoTFb9wIIl+uER1jxOYcmEat4xpRCWipXCwWDOOl+QpQck0vqNooXMCxZEQXOwQ58nOU9SiMl0w8HitlVrUyBjBE12D1IymjCMQgsXzCt4OyWJX6BUP1QVHLiNTVcS1JknwStc5rh80vP/5W1zrPHVvB6c2eIJPJj0KmeQSU5nTeChoUKaZWLIZ9ngSXgudM1i6VpM/BLHXL4+VKe/RjHXglms4uMGusa89HjgG8ZwvIlUKHs+knvNkH7twK9PlA2cXF8Slvcfr9YKDp28hktltzvjWv/H/5sb7P0C7XiN9D8eH+P/vf2kYovmwQplwamlGWgr4MAdgZsbNJfvNGRoCWit33n6bi9ffIClEI+By7807dGSKTEz0FM3UOh9OMfmW+ELuL+frdiITAHl0yEKd0Vhi5NatJ+yZEQJdcEwlU7yzA0stNCv7Xrsjz3rtWSzgxhqOVgPLw8r6wDOViMRAd+OIuLhu4Q/jQJomcs0UsffOibN7JVVSVjbTjh0DhMboFWos0qJQakHUWNCIkRy61qKuS5pwLpBzpuQBH4tNxBAqwSRbWqlV8a5B5pjTUoSqYoQJp2jJ1Frx7mqPqiDVyDFqe516TxVHcA3BL/GuwUsgNp523jdDDGgR1Dna9ZJu23G5m2wvCvHR9CVNj01Sj9cX33r3HdR5rO+9YyZb4BxE7whdwzjaaNmpjYZCA94lGm83564MTLWgWZDdRMiVJ66fcH3uXpzceZv3jEeU0DKlC4ap4GOweEcxnVkbHJ331llrIt5BFKFxgaapaIBdfsjRtT3Pd0dM+8rSRcS/gYrjst9x8PAOAPd/9F+wHC5ZvPwy14GHD++yf+tlqipZlM3ukoen99mcnzHmkbbraNsFY2/9IcKCkiwhqFYzJEGyOE9RhIJDaMdCLjbOTXhGPL4qLleCFvbjHict4yioazmMB+yzJxeLU40h4ZzOHdiED6YtZCYdaHEECRRJFDF+pmpFVN4pTq/E+jhMDjWPSoPiiGidC2B1IBHvLLq0aov4FkWIoSXlEadqGfHicRoQLFKyzoV2kA50onVAMJC1ixENgTxMs+vUUC1VsyG4CIh6pFrBWFFjtfrZxCOVEIqN2FwAH0i50tTwqAuZc0KrYcIQRbTF1YAhtiv/i3/xg6xmcPjH/5u/y89+199Eqo34kloq2pFf8fCl+7z6C2/y1DfeMv3YPNY3M4IdXNJ0ipeEl8aMP36B+mDdVhLgWKxBIrPxw7qSVcFpoOSCd54wP1yu+KZFk6GRZI7wLIksQqkBlYDOMG4pajnertoD8mpEbWAyfGy53G559Y07PDy9INWMqwJTZUjQZ2/6cBWbeDjBi4XMlpzIvhJamOpASSOr1pPJ7PNAzZ48emLX0DVKyROUQC7F3utQLYkKjyuCwxNjpFbPOCW0LFB6XCwURvv8vps75sbkzVWZkqdqxE5CZY4ItoQjUyVYd6rmwjRNlFwY8RRVFt5x+2TJU9caGgYu9xm0swOV6/C+IG6EaAa6zDsPd2M126/HXAi50DplnHpa1yDzASQX61yX+V23zSjSrpdojKh4qotMCEMVxtLgwgKvkb4qVQbGMtIk4fx8z9cC241neWjd0Zu3rrNbrEiqiKvc/cyn+KG/+Z28//0f5KN/5A/Df/gfcmPccv/Hvgd1zpp4w4DWjGDUCfKE9D3j6V3uvv4q9+7dZdrtGMaByzyy0UpR4WCxpG0jITsYevJ+g9aRpBNDqmhpLNbUKS4l8jy6F6mUOoEW3EzTiFnJQ4apsopWgIZxoPMNoVbUt7R4XHCPjJLiQHyippFx6EmLQkoHuHqDhsiklWmqXG723BkumIaRccr4ZkGb7GvJyVFUGQYYhsCUOooEojfaSq2K4mb5iuVAVSqqkwWgBM8MwjPDo2ZDGGag1tmEFyAISScqCWhQnSeIksGNiBRKNY60F2cphwxUnQjSEKXDiTOJj7O0s4UTViGwdB1tbWhZ0jQrRFu0LggxIGS6NnDt5nUS9wkxUerVPQJTeoQTebwery+a9a4L1Cun6xxWCTBD2+182OeR6CNVbdy2bBeIsxDnnCs6BmqulCnhhsRJ23BjZV2RyTv+8M999r/v7+1fu97/v/0/PPp16TpOI9R+YxqjYB2xGCJtu6ZrTnB5TSuZJmyN6ygzOmjuuGrNhHnw60RtpI0ja4GrTdxb/N1uKAyjdR2ytZFso/FCaSrrJBS1xJJaeixIacaqz9F4tRhg3c3DK4cQojOweVJKqYhWnGZEdI6K9RYVi/FpG7G+nIg3XadYV1q04l0gY7xY5zw5KXm6ytA2PVmcC+UoDi2WChRpbNTrAg1Kzo48p3PVuadZyTgqTvKcbT8HVlZHrZmJSpFKFSumxenceQ3ggmnUxMEsMQCM51kqMdgosqTZMOaV6iv/xZ/+UxzdusE3/Ol/ny//3b+XT//Df8iL/+SfWgcUUCpT2qCh4Rc/+Sk+9o1fZc7bWXogznBRaUqcPriLL5cEsW5ts1gQ2s5SrqYR7xx6eU7IG1SThab7CqVYoZrVtGXzQU/nPlepEwXrkteaEE3ULEayEMf0SG+rUKuNXEVIcwc1FQUJHJ88Qd9P5DHTxDBrwB2pTIy1kAXUmabZqzeVAjrrKyt9GYx4IJUuNARRLnYbxn5kHBtSaugWDc5PbPZ7alHSJFQRos9UEcZJyBoRJ3P2ukKpSFbEOUP6iEXcOo1UjYwp09c9pSi5Ovs6Re31qdVQWVjD3SGQlVzNTR8kIL4SWzg5aLjWCR2OcVu5TIWpCDUL+95TUoPmimsihYBeZYipA/XGIwZKFlxyEJScJyT21u32zorxRUC8kvJA8I7l4Zqwjkw10cg8VFalSpi1iYFSIkWgz3sutjukCvF0M1/DQruaNaiLloucIFrh9H1/6S/yYDNy8jsznF/AjZvznYyFhJCtRZ73bO68hnpheHAHd7rjcnvGdrMlOsGFSKiV7JUR5dat53jh2ed56+03+MInP8f49il1e8mUJnZTMlLDHgSjETSd41ivaBKVEgJ9GzneWiczbPf4cEFoIgdz84GLnjDZiEH9QBLlvo+c7e3P97vM6BpjYbsFXTxi2d5AhgMuznecno1c7hMXfc92HNkNRpAQH1nPQSubix37APupZxgyJdkh3M3RrTWbQVSyJZWVWqli6DIngTIp9UrKownRieAclsnS4uajrvPepjrVIqAlmz+gonNDQKlakBpNulRtD6tgHfjsyCoU73BUvGRarwRXaWKk82tiWUDq8KGFavuvE8F54WB9g91+YsrJ/B5XRf6/+SPw8Xq8/ge//g0K1BnlxGQ3DrOLukKeJnzMdF1LmgrqhBIMs1Mr1JxZZKjTCCnR+crRKtA0hbMF/L9+z9eS7p9aWlSzYEiOPgUbtAXQxtzfx8slxy6ykDnXXS3pZp/VHL8ucDkUdsPIhz70Pp5/7/MsDw9pFh04Zxy7F7/Al//Fv8jP/vn/Nfl9X2ojl1vXcc8+TRPEuHYo4zgS1JH3he1ZZdgEct+geaZpaprjQQGtSFE8Hi/R4M8ZtJjb3Ak4GfGYOaAU2FcB39joNVcWiw7vhc1+y2bXsN8v2W564kGY3fvO8rBVqGR7UF4B+WsCZ1F6hQTePocqeC2UUkx/6gJOGpubzwgvJzKblGyM7aVQS0VctE65FrQUpmE00wSVNCZSUkrjkByILmDdY9NpllwtXzwVUyMKj5it3gtIJmsCsc5y1fAIdu3EBt517mpacS2Ax4WlFa1zznpOlmFuFyNQjKvrXZiZpUKqhSLwiz/2IzTOQVX+4P/zr/OVf/AP8dnv+/55RA5ZE7Xbkp3wwz/yvXzDN389zz/39JypbbGwJRX2+55xbw3tYfeQ/eUDnBpezUD41o0s/UTeK14bUjHgvPdm/qjZCsFHDNVH91YxvaoAYrGI1jnPVoBzpTU1cJiN9xxX6rOhFPZT4uzhBXfOd1RxHN+6xunmgpqMOVo1o67MByyxWNFqHX8zo11pOzHmaynkXBh2EykJ45SRGZuz2Z6y21/iXEfBkXOhqqLqSUURH0Eq0zTNHX3BNQURmKqD2lKSn+H2E7WOiEyoWOgEav3JqsbFNbOaWDdV1KxdtRKcp+0aFm1ltYoslhFRYegTmiP9WBimzCbl+bUPqC7QYt34UmwbrOpQInnuRkkO1CQUCmhlKjrzh43Y0LYtvguEYlHMzbqlRqG4THURieDUmXTFAWLXPE6Ythumy611EotxV5eLzPrG8fweV0pNSGkQDcCCv/CJn2J947q92X/rb/Hg738P7onG5D7zPjBu7/HqZ14lHhxQzk5p1VFig28D7eExTbeAklltNzy7PuK5L/0wq9URn/vcF/iFj3+aZl84EE9sHNOknG32XGwnnF/QdYmOyNHOTFKlKJM0/MIL7+Fss+NrPvFJPvnCC9y7eZODkwO+zC14//f/Y/4BB7y+eMamAT6T3JbUJt4/2ZW7WC44WBxyFBfcvnnAtYOO9aKj7vfk8ZRp2lGKomRCVBh3lLqB4pnm8+mUBkZVxmnHlCuiGU+G5FGZjUuY+dCrdcnVC0UhBjFJRLbNOvtEqRO+Cs5BM9MHir0rUByB1sAdteL1Su8P+GTpVJptsF8c6pc4samJxZ4aaaXWRBMCMSgxemLb0rQNTXR4yTa9EUNzOBeptSH6BYvFSN5v6Raebj6gd93jEvXx+uJb775AlfnhmBM66xZzSnhn+h/1K4JrTH/WRGqZDVLicJJwPhN0oIuZ4zZw2AGlR2Nhd73hoa4ht4gPDFW4HLyFq7aJbtUR44KpWXGRK0fLSGgqw7QnOsf5rnJ2mtHiOR8T2Qf8YsXq9rMcHR/TdK0VAUGJo+VI75+/Tf/hFzg4PAD1kDJ3H54j3qZ1035ge3bJ6Z37XJzdZbu/zzDtqWmCWmfBezYzEmqnbRWkBJwEMpWkxTAkqoaiStO8idmIpzjHlBI+elLZE0PA1cLu4pSzZcf1wxMOaNC8R5uK12hJRH6wFJjJxvBg5qJaMiqTPdQdoB5XFTxznxUruIp1FlWwTVOFQp7xTaYBLSqQbBBW8ggpo6na+HWYqE7oh0rEipHgDP3lc51jYhNV7WGegVI9XgRxZhiQuasQCohE9Co1C7Wu+pDIyQpzsC6gCw58Ajy1WGfuUeugqKGMnLm3WwrJw3u/4TfzFX/g9/PKT/0EToRv+LY/CcBbn/oEaRrxPpmygYqmLcFFXn3p0/zNv/4dfNNv/Saa6Mk1MY2V3Xai322oZYOXHSVfMu4HygSlmH5ZpCESEITSJ2IRnKgpE5yg2UwRRTN1vqeuDA7OYQYiVRufoqgmaqlGY6pXCW42zB9V8Brwc3yvVOj7kZ//qZ9lPwnLa9d46kue5mK7wUlEklJH6zZmmV3oMnN2Ve2AEhyNDzSx0v//2PuzX8uybL0P+40x51xr7eacE222lVmV1d17eS95SVqgKEMESYmCcSXDzYMt0nqyn/zgv8OCDBiGJcPNgy3I8AMBuW8eDAESJFpUZ5qNyNtUc6sqK5vIaE+zm7VmN/ww1omiYUBO6+0WchYKkRmREXHO3mvPOeYY3/f77k6czyeCZOZSOB5PnGdhsx8458LhnDFNGEbp2QvTtXhE3MBWWvUo29ZQOuMYAEOsQgtESYSoCJkQ/GswVUIHK8WLZ2lE6R5bb4KS2CZlCG6U2U2JqwcTuzEwjYnehNO5cu4LhYWuDd0GwuwGs7I05+POCxIbskosTAKldedZAilGlnzGQqPJgraBoF5csHbHpDtMfxxHwjDRdMA0Icm7x0GCRxN3pfaKqqIhOWnAoM5nQvILysU0oZOP+MvSOJwqMS+Acs6F/8m/+C/xl3/vn+Uv/o2/gfz1v86Df/SPuPvD/wgxj341GoHM04sNOZy5eO8RFgZgw/ToCdv3PkSnkZoXTjd3bC4ekjZbvvjl5/zsR3/Es89/zl63xIuHaK20pbJUv0w4k7pRcufu6HvofJqZd52jKvu12LxZCs+PR/KoHDcrnWIMlNTpYixaSdstOhzYiDvwzUAsMA6JGDvbKGg/c1peMcaZy0sj5s5gwqlWhp0iL5XzsbOJ3nH2vcveRgBrSEgv1LqgmpAVpA/Q+krckMACmAijVgZd9aSSqOuFWiS62cwWWvSpjLWMaPAJ1qrpFfEmTreGmEeosvoEdNVOkwINwbR5EEDIK4y/cXWR2AxKkE6IHY3OukYjumLuGgERIY6Jbbxg2lwR841//29hc9+sb9avz/raBWpcMRaqkXmNVmwmBE2kkCgtQFYmmRgNpLu4PISKDkarZ8a0sI+Bi1HQUJhLY5MCZSnkc0Vlw5hGNgNUClI7CGwlukS/etevR6WmjqlxPN2y5MxSTnQ2pM3ID7//PT58/ynXb74iz7f0Liz5hMTO42fuLP3q2TOe/3hLGAIWhNPdgZvXr9luN4xDoi2Zds7k0x2n+QWSXqLDEcvQ+wa1iOL56tLMnd6a6K1RFYK4tu9k7W0BpPiYsltBuhsaREC7O0Pr3N8ihu7OM3e58aAYQ3B9ZogKdHpfVr2nm4ysK6368WQakeDcUGdtAri2s7VK7z5iVRxV5WBq7+ihSlc3p2FgudOaY3esN6x6wZq7x/l11A1GK2LJ1q/FrNH7jEaPVewWMEveeVKI0WUFap4zT3MXbBeP7Fty5TQXcgGNQmtGqV6Miq5F2prpFGRtQ4aKRCVFZYyR3SC03Mk3r3n/N3+T3/m930ND4ObZl/w7/9r/mH/7f/Q/8M7cquUVlEGhtoLawN/723+bN7/8nM0mMgwB0YGyOJw7hAp2B5KJYSLoHq/nj4j6YRI1sAsTj6fEKBCD+ovdXeJgYvcOMN4SYsyd/bJ27Lz49teqtf4rbioRbclRY6L3DVhonbJknr+8prLhlOHmcGKpmf3mgu04kUIijCNopWklKKum2fXEKUbSAL0dOB1vqPOZ/W7A6JzmA0tNbELiNJ9o1hhSpOTih76541hiIIzGkjO5ZzR0OplulVEm98NZxzrEKAyDO+K3k3ffaxNqg9A8jjPGQOx1vYAkduOW/SYyxcp2ggeXI5st0KBW45AXoipjGqFBKGeGIVIo5PMJcE1ubYUgI7oWSiLegZP13wfNNGZoTpKIcXams20IJMpSmc9nNtvEJmzobfAo3jDQm8t3xuQX19wquVeGmBjCwCZtubx4QOlnNmcvMnIuvP7sBQDXb+54Nnf/zNAQKj/69/49fvhoi337Y+S/8S/y+Pf+eQ6//x8TVXn7Pw1sdltCzE5ACAmTkc2Td5HtBU09Cnb3aEDDQKmdz774lDevvuDxgw1aIY4F2kKeDyRpjGPAJK4Gs84w3MtqHKxm0tnuvGmRT2eOzcg3t7zYeLH90ePA3XigUMkBdNwy04hrwVjOZ0o8oVcT240yBaHPC+e7hd4hysR2ighGXQ4Ua1xcbolamWw1+VHWEIzmMqCu0CdMMk0q1u/1soUuSmOgS0Y0UlohaqcKzhWWsLKC3fBlNEoV3yvVnZvGSnNAiBJ9stUzRnYdugomDSOg6vg4lwV4UmGXxjbCfoKLnXBxqUwb8ejSEXoofhFaeYL+z82pHTXT1SkCrIiy3r4pUL9Zv37r6xeo64+tr8UCUKpwe8pspwi9MQUH8UstHiuXItIbtpo/duPAVYpsk9Ja84ztHsg5UOtISBum/UOanhnMWZYxbUhhAPUujyLQhF6EoFuKGaPBlIylj+wvHvPBBx8TNwNLPdLnE6ebG55/8RW9wke3q6j+5gSHE2k/QYoM2x3f++BbXF09BIy721uOt7e8fvklt3e/ZBiVklk7Qx4LGIHSG9qdZydqxJC8s4LfzAsNgh+0vSWqBHKvLOtINciI5AFlDwFabJx6R44HDscjy3YgbAKhq0dH1g4hgno4gugZiHTraxHqXZ2QnJ9ZLPv4Coefx5RQTajIqp319BSpPlYs4mlHagJL9/eJe7d19RG9us7Ksueki3OoAdDe6L1QWyZUQAfA9ZYavJvY1+LEOYHriFnNxcyi5Fo5nmdKVYYYaSauK2uGw5c8Xz1UVnMa98JEd7ZbZTNGqgqvfv8f8D/7L/01PGzMYfQ9CNoaKuLvZYtAwLLHx2oYncd7ODCgxLRlGieKGLVkSjl5Ed7EtZdBCOtIXLuRRJHmbnwLEYKbxWpfqKsmzovPXzFVAYIpoQveCDI0BB87S3KTh63aSBOqBXcDN3krFSjWuTufyUumB2WUxu5iItbg0cNmLLWRokEM6EpPEPXCRukOv49weyzkpTDohDJSy8EDFgaj1EypzQ1L5gamVpVmjnxCnA0pWghBaNaxKARJpE1CunI6d6dvxM52rOw33vFqMhEv99Su3N0d2e52pCC00wlrxpAmLrYbLjaRy93A5W5gtwmInFly4dwKh1YoFZY6ketAkcjxrhCnkQ8/+jZ//Is/ZqmZKo0U0ooKg4oynxfuU5GmBE0Mqa6HruqSFNUCobiqpBm1NE/bKj427q2Tc8GCo5VqO9PF0Xu2jm3HcYKrx5zrgWntpJ8Ot1wv3s093By5WyrZOj/4K3+Zv/xf/a/x//q//1t858/9LvKX/woAxx/9kWPgtBHCBsNHwaUuaNp6hK2MECcsDnTCKuvxz6JIRGiM48iTdx4Tyxnpnd20obx+TboTppAIDKgOpGFgGoQnuN40DZ04GDoEYvFnMy9njnMjReWzl88BePedDbfbREGpkjjnRLYLHiz+ul9OW9558oB33r3k8kLRtjDfncinypwrPUC6GLy7v9mg24GHT57Qi/Hg2Sv/e/OJE45xMlFaX+UV4pem1gFJSIBaofUBLPn5hEEQ9wuYX7ijRhRHeBlCk4Fm/llzyUD1PXD9DIV7DN1bq5WHc3QJq27a0JBXLb1HUG/HHRebDRfbDdspkGJHpdFbpBHJEqgZQhQkBKektErpleNc2D5WSKs8Rb4pUL9Zv37r6xeoo4+SS+scs3exzrVxyhUJhXEoLD3Su6BNGOOIEL0IEkFkxxSFizFBn90hmyK1BXqbON4txCnwzvDA05qGvI4+la5eOIRujjNZDGogDhv2umUJJ87xQEojadhQMrx+ds3d4YbtFLHTLYfrk4+DZt9c90EYL/Y8ef8pV4/e4dE77/DO03ffQpd7bxwOt3z2+c8IunC4PlDOCZGD23xaRZoR8eSfsrIX05RoODi89u43XdWV2wi5RWYLVFFUGgNhddF3LAl1qORkxFp48/KaN5MQ4hVSvOvZS0daJAxCa+JHjnmUqSIr0WSAMoKt8agSVi1sJAaX+/feVrC0c0epjWZGXs1JCedT1gqm4o/KOp5XFbQHUnDjVVejS6OZ3+S7+AZrdQXCa0REXDNozc0Ja+ypmtKsoy6zxIJyOC0c50xbjVUdWQ0sfmh4H8I7iNL8QHeWKtRa6dYZVJhSZBkHCo1WoVt3Lqt1eveOKQatecJXLoEaFWmJPht3d7fs9zuQilgljYpppVHdAV8DHSWm9XuR4O+B+PtZWmeulTFFMH+Gu8oqW4A1WP6+kYp0L1J7FzfCde8ESRjWyMRVWmNQRUCcjeudLCjAy+OJpSldF773nXf4i3/1L/HV61e8eXXLy2evefXqhiiFi2HLmJxJqxIIAYRGCIpqIoSRwERg4nhXOJ8F65FxCutINhJDpyxneo4oA7lWwqiu01wDAVLc0ItHGg9jQkeFOhBCwlolRuH9dx9xtd9w8/qaXJWH736A6QBfPmfabJjGxByukd7YbbYMqmgS5h4IeaLLABY4LpXnt5nrs9DFE61sCCxL5eX1gd/75/4Zvv29T/jxv/6/oGggDBHTQFpNUjl3LAXGVWM/xUjWsJIkAqUFQnQ5SjNDAwxRSLF5yEZRL0SSo8VKKdzenam9s90/ZIojTSD3DBUqgd6FYfC/j7ag4V6PXBiGgbwUztevePc3foO/8df+GsM4Ynd3yL/8L/PZ/+n/yObDYdWkz9jK5yzVmKqsKCRZTXW2Mpwdcabikp8UA08fP+H9dz8gns/sdiOtFF7dvma327hOsgrT4PzZFDvTSpTS2Ghyopbg3GpgPh9guCLGkfm4FrJTYrPdEa3RLNJyY0yJbVhjp3Vgv9n5JU8a1MJyOlFzZskFHY0xbJj2O8ZpZNiNbDYbrBib2fWwS1loIQDeyGjrlCeGAWmuZw5uGKC1DOaR08EqQQPamv/e7obPEAYER/81g0bwz7wFv4z3BjS6KKUrtTmhw9GHgvXFC1qHijgSLzTQiuCBAEO4Yj9ecjHtGJkIzfeouXQ6kRv1MyEG4aFG0jiQ80xejOVc6WKU5g2Xcz593aP8m/XN+hOzvj4H9cEOgCr9bdIK1hniWigEJfdKrp3UnRlYW0WCEWInhcR2GlFt5HNejTIL0YRxgP0ucConltOZOCZKF8QaKpVg6a0Ls0elVIgGUJgkIZcT7zyZkClx++KOfPeGeSl8/ulnbIbENkwkBnZDZLfxDe3hkwumTz7i3Q++xcPHT5n2e0C9oDMlaOTh1UNCED79xff44x/9nHysiJxAqqdmdUcDAau+UtwQs7rMmxq98Tb5SNYCJvQ1nahVElBiZ+EIoTFKZZs2JIvcnm+5OY48uLiiViOFTlLXMZXW0R6o5nnvQYKPnpp5etMKk49s0LB2KOkYrm8MwZE6rbm2DPHRfjdbdVaNt0mcEhxdtRqqgrl5JoaBakrFHbCyurK7KY2KBofSq/q4TLTTQ4coSPQizeMzvaALJOal8+r1meMp03qkE9cZuHqClkXoStc1InUt7pQR6cP6E9F5vDEwDh6o0K2TsxuU+toFETVSUL9QABnI2gnq2sacjWVOzCnR2h3jNBBDpKcNxSoSGlGcIWv3RaW4X0tE6K1x7JWdRkYT0vrzzfpKXvgVwxWAvhIWJKyeYDd3SA+rUUz/P/97YYUceXGwlMqb25kmI6ad3ePHvP/J9zmocp0Ly0u4bTMpV1JJTMOWTdoSo5vKkIIGSMEYkseLnk5n5vPC8XhGQmAcIi0HN4ggK93BD+Bx7IQRNhshn4/OCW0j2JXj2NQHoNoMCwPWhO3mgneffswmCRTlXCAXv+Sk9JhaGjUK1YSrzZ4P3n2fVmdyPvHy5TVfLgd205YxGrfzmc/fZGQ3sdnv2F9cEYaRV7/4Y2IK/O6f/V2+evUVm3GiF+G9977F6TQjyxt/FnNmmLZs1wI1ipsaOxBigu7pQxHvXqv5qDf2hT4fkGiEYSBod0YulXK6ZakFNKDhAUmjw+rPHWuFcr5l83CFrfcTYY2sHEZjuxmYe+PLf/j3+Z//1/8r/PRHX/A3/qX/Jn/l2++x++//K/R/4s+jbNarryLB/ylMAWsLrVTn+Gpy86H5/9c8Jx9YiJBC5GK4ZB4vkFa5eXNLnStjGJlLRVpnq0oQo5dMnZf1M2fAgoYN5bT+nFW0LtgS3pqLkmyJtkV6Y84FbX7R7Wtkdq+edR9MGTRR5iMtV39+akMDzOdKl8wYL7C+IS+RfC60Q1n3qDUpqht0N1yKBMfx9QStuZu/+bmlwXFu0pVkAWmCBkPN0WVRHHXXOtwTkNfkD0wdRqXie1MzN+u5kc/3VSMQDGf6ioBGmo6YGIMGttOOy2nD1bhnHy4JVahWyVY5lUbukbkKVSv77Y5mgavLAVsCd9czYQjkw5H54Aa75fRNgfrN+vVbX7tAHS+2/hsCTCuof1Rj0I61TMsjrWekuTFoDOq56aESgjLFDSkGeitodL1UXeM5p53y8XcvuL5rwDWUCLkTqiGpI0tF1m5SUyi9owm/JWulJ+HynUf0Dufnd8g5czUmvvV0z3ZSUtwRa0AtM66O3R/89m+x+TN/jml74ZB1eGu4iSpY75RSeHN9y83hTIjJR92ycg9XfaCZ0NbCTUOgrLpKw3V2ztdf0SPiYKRofTWQLGtnLZCD+GFRArEKMUGVM2+u73h08YgwjEQtJI3rhiloDFhbuzkEeNtNa3RmzJwvauLMQk/k+VU0pmr0Q1aaO4+leXelrTTAdfQZEYKwvm8dqULUSKsuY3AYkzLGgWJKtYpaotiRqK6vVYwYBU2RrEYxI5oQ+cc6uiSubxe+enngnJs/bNootSDVv7YkgxsYqBCdEAEQLZJkAGmU7g5sGQNj8mhQeoUi1Oaj6KYgrRO0gxjNjGbNHfRhIYpiBM6nStDKVgohCpEJs5FushozwGpFLKJEXNTRQV0zeq4wjwObtCZT9TXSMfxjrttVhNqdzOgPot2/y27WcG3v+r51Hxlaa6CNvpqsbm9n7u4KceuA9mfPX/F3//4f8pNf/Jxnz77g5bOXLHPj6vKK4zET+xmxyHYXCSExDMk5plSaGUs5gnWWcmLOR1AlaaJZIQaoJdB7AhU0ZC53A6IVa7PD3PsINWLilwKfbs/EEBnGQBxGNmHkfF0oUilnNxZe375kLpHAQO+FfGqMsRGBej6DVVpeyQpVvIvJQuSAsCDBGIYLrl/N5FpYjsbjac9PfvwT/vCPfp9dmijzQsqdLcIurftZgF2MTKtsxEf9DUKAqAxuy0ZbJcVAkJUDHXFkWpvRUoni+vmujV0/IfUMh0gMExc2IHVhzhmxTF+OXE4PATicT1y+9zEAFw/2fPDhB7z56WeYFcIaTavrmNe/PnE5DwHtE8ZASBsuH22Yb56jtk4LDDqNIH7JZEXKeTnlWu3lrnC+LZyPtzx/9op+zAwi5LxSLkLB4mp8W0fzVkGbj7n7CoqfIkSboQqPH1wBMFhkIiIpYLXR08CZ7GENwNVFpO0DD7cjYxCOS6cWl0wEErXC3d2ZcmqkRRiOPqU4HU48vfbCuJXqhI/il0U1jydu1lbyQ1/1zY3WF1IUsPJ26mHNC9FufYXX9XVPMkxtTdGC1hZa82lIkuAoO5xT3XpFuqMGoyYGgdAzS2wUURqeqLgbIo+nkae7xD6BtcpigWpwKoXbc6F2Ya7KubkuegjGmCZYC/cxRbRk4npZlbf69G/WN+vXZ339AjX4Jn4xDZzXDXKIBlqgr/nd+MhuJLBJkWnV5sUUGMIEXTFLBN0SLFBKp54jNmzY7Eee7hqnw5o41QCLPmLueDF2v9HkSg1uxjlj1KicjjORyEXao3MjDpHvfPQul5fKfC7Uw0JbhLB4F+rJux9gu0uH7vfGSiBC5FcZ76+vr/nZp7/g5evX1KqULLQW3nathO750hJI4tozES/oinUvgFaHdVeli9FLdxOSur7NR7XOmZVVHqF9i5rz706nzLOvXhGHRySdqGoOq+/qaJ/u/b9AR2WVE4jf5QVPvjFc3yn3BZX5eL+rrhgn/1qgE7oQxfVOiuta45rkFKLSanVki/jfTRTMbH09IK4qA1RYVsB8N8eNNfNDoPnE0ckG3WNZTYxzOfPs1Ute3FxTzdzVra757S17J9pWqYB6wdxXyJKuka4SO6VXUs4McSAKDCJsgnCOwhCMc+2ce2cEUvWUoN6MmgXdjIBRDKiVc27oubK93JPG0d/v3rxjbUovjdwqQYQUV6C+k0vpGEvt3J0aVxcDETCrIMUPPrv/+Pkz6QGhAXAiAOZjfVs7rv2+cJK1Q7sizNraRn5zc+Q0wxQL3TrPnz/jR3/wB/zxLz7jFz//lNuXd4SwYXkK8lSR6vKJ0jvDEtlvB+KoxKCU0kiDEmLneFoIUShNKEuns6xmv4TIhjAsDKPRbablwPGmIHnDGAOXm06IJ1QDQQKb4IB98OKplQNvXrumO+fZWcBmLOc7Bk1sx5Fkwj5OTEEpy4FWKzfHI73BxcWep48uCK0A4jntCNTC4fqGwwIXm8CkA//Jf/TvczqfMFdk8PyLL/kn/8m/wJ9pDf7OP+BiM7FNA+OqsXcWgysxqnXiyvMVDOsNoZBiJEaPMVa8INHFCKHTtSC2MISC9IFH82s+3Aa224nDeCIOiswjV+4lQsLAw3ffA2C7v4DHjwm//Iqa+9r5DC6NuNcuawBcA35/3eko4+UFZbmlCIQwsqwdQEHWzu5q2BFHYNXSeP3mNV989ZxyOnA6zOTTsnYdjRACx3MmRUe+lex7Ws1Q50qVI32Vfe23iYfTRGNk2m3Wr7OQUqVLIWgjDRtMJsJqRttMI5uUeLi7hOXG0WFRSanTpJB7RZlIMTl3OmdqN5b5TGv3IRcda87XXYX4gFGb+cj9Xnoj2bWj3YH5Er2r6tHRAVvTuFppmHhUs5lTSsL94EL4VUFbPUrVkXkV6y7nUlE3Sml02UKHKMblGHg4Ja7GwCZ5WEoLC3MTTnNjLkZZHBsWQmM7KmlYGIbKMDg6LQVhHJVp1Ld0ndPx7use5d+sb9afmPX/R4Hq+rfdduvoIlhv4x7nNsaFGIVNigyi7IOSVgPGOAghzISuaC1oLwQpWCscD53OSEgTwwQmM7XPXv5Z9LF4GnzMFoxOYcmZNReJRSBopMVbLjYXKJ3T3Ws2cskwTbBJtDpT5kzsSjkv63fkYnZ3S/vmf5+4CQ0Upmni6uoBQRO5KiI7oh5RXeM+W6dboamPcMwa0QJqPiry+3fD1GNFuwjdpZTOim0+HkfunduAJec0VnFIeofbmwOvt4Gkhow7UlJEKrX6waXasNA9BlWCuzuJiCREPbGpS19TeFyDJrpmwuMC/IRhHWerBk8OMvU4R1hjVam+iUunNhf8N4oX2CJuhuv29jVNYUJCQonQu0sH+moms+bd21b9tSDy5vqOL796zjHPlKBI7wwSSRYprTmYWlaD1moakzVisfUFDYWuxt0oPGkLU4HUXWZRTZkVRq0cxdiZY4uiKdqNaxUWjLAa3JY205NyfTpRLHHVg79O2im5gSUwoZXOvGRCAovJsTTWPLnJAks+crRM3e6IErBwQihYNe9kgfOlgN79EuaHGyv6ydNuMMHuDWFqiFRUPDq0rxrU13cnzral1UqMSiudw80d16+uuX114nzXaP3E6fyCu9szD692PH70gAcPCpvtSClbj1kcoVdhiBN1OdLygtRCa5Fzb8gQ1rCIjmhBhoUehPOpcXurjD3xdLfjnYvAo0fCGAvKgLTI1CdPpeqFQ2lkAhKVJXeSRKYxMlohqRGls99ExpgYVdlE58gu3ZDWiSbskrIZGsEKmzNsCdRq7INSLyLTkNltBjYhUvoLhrCwFGEISggj3/3wh7z75haASScS6pph3prUkXXyING13BKcyWnNCDKQEFqrBOkMGgnWSOYXWNdmd0ROPNXEJ9Oey60xj0K42qG2ZXtwHeHHn3xC2PikClMWy4SwYuEkICue7VcFqhenTfuKb+t0ZnobEYRps6XHiBxOzG/e+FRqs6ErqCaiOmAe7eR25u70it00cLm54OZVZT4U1z2L0RWqA4PfcndrVcoSWKxRV3PXbrNhu7uAdEFYn0uLHWSmtexadCvUEmB1nk9h5NFuz1aEU64osN16N99O1f/s0Bm2I8PlHh131N7o9QDdkVfBFFpETJDu35fLiPyfm9WVcmDEGBCEEIKbQa36hbBH1AK91/VoML9w9kapHr7SMWeaonRTQvALcze/kCKKykDvRhaIacQsMxG4DCMXQ+JqE7naRLZDpLXCXBdyV85VfSIhwqCBzahYMoZtJI3GlBrZZs7zgb0FL4DX6cnp9E2B+s369Vtfu0C9dxCHkEhrhB0dNmlkTJFpPLEZI5HOqMJAZ9SwdgcLyEyU6B9uKZAqqpnjcWYpSkgjl+YaQgmNECMDAyElLAUfi67i9CaF3n1j7WYEg5YzjO7Y7FYo+cDNyzNiD6jWmI8LijCuN/3T4ZrRKkgC78mtGfD3A2vh4mLH4wcPSDpSFqAnhLg62yshuI7MPTxGQEjW19DztYgPSi0Lczt79rwGd4fi2eyN7gd9gzFtwNQdwKorkNxDCm7uXhFCRh8JG0DamRC9ixcEsADmN3dFVuD96lDF9aWemuSdVdH7lBvcdS3BN2QTv70TQQcfm9mqUW0NRenWabUQdVw7s77x9148chSQGJEekegJRUHutVuG9oZ0lxJ0E2pXbk6ZT5+95OXNLblXjx5Uj9+kCdbd4BBCpxbAbE148gK1sNCl0CL8rQ8ecYHyeH/BplViWai1cLs0fvHmyItjZe5CMJjiQACyCjlkxtZWI7prY5ciDEOjts7xeCSKof2e1GD02qhLwTqk2Jy/KAHBDzaasbSZ85wZNkIYC33x8IR7t/i92FcMYk9vzU9GcUqBCeh9ehZrt8bHk7UYeeV2HpZMmXaUXhnayPPXZ14dv+Czz15yd6qAUKWwLHfML868fnPDl1+8ZreZ2F1MPHz8gN1uz2YDG5mdm1o7eZ6xpfuzb6B9g9MUbpFwpgGnk3A+eOzvg6stHzzd8uGjwHZaSDpCm5A+ETMsthA5E1uFOEEcybkhKCrKXIzdMBJ0YEqjJ7T15va4DlMSrrYTeW48mIRtKgjGbqs82sEine1QSQ8iS3bvekozj/qO0iO3p8arpbLdbJjnM6/fvAZgGwO7Qd/CzxVIEvwZk+ifDbn/Z+jmnz8xj1/2u1kjJCUFWUkZXrQgkQkjtDNJjWG3Qy6SFzVn35O2mz35H4u/Decj47xg1ZmaOxqbnulH1x2m3tBa/MJWR4IY87xw++Y5exp1LcymeuTulz/lPO7Q7URLgct33kf2T10rGQQNjWmKPHx8wWleiMfEZI1asxd2IvTqRVhbC8+5dM6LUroXqwBLVV4dKu99/IiL9ZhgLaQDwmYzIEvg3GBcjbcXFxuuHl3R51ssN9Q8qCGqsR3AqFQNDC6c93MoCiqOegLfcnPzS38314b2ZrQubwt53/fUpTnmlwx3sVY3aq5EBjFPwnPecifGuGLk1MNZojcVSnOxURD3AUT1mGi60AeBhMdP906Kid02sd9N7HYjm2l0oVLpHqqCowKXuqANxjggfUCaMspEtEjohTE6si5ppJbm3zg4q/qb9c36NVtfu0Ata8G15EJf03v2m4mHF1t2m5FNgBQN6dU7U0BS726WZrQ2eOsQ7/4ELYxpYImFWmE5nJljX1FN+NhdxHVKsbvWRjqtVJoWTPqaoW4MFtGlUOMdpYEMW8fohMTpMNDs5OPEXngobkJ48eyXPDy8YH/5AYKC+QGJeIEGcJ7v+PLZZ7y5fsM8n1mWhba6VWV1awbz7qCs2CIJHgFrQJRICeZFt3bqvBBlg5l3h5VA0cpgiuQ1GUeFEgptcu0eIaDJmEvh5tCYhhGzQEqVQT1ctRVFayCG8V7oB1LdMarqhZCZSyzUK1JD36Y1YV54mnmUpHXBWlojUJ2dquIFeCvNuZDqJjFRtwX0VtdMeXurS23Wic3RQ7Jq3sxWF3EPSINW4NyFZ69v+ezlNbc5U9UYNJLU40uriLtpufdLCcJAD+mtYa9rx7SSDEqA265EgZoSUwrUPDNLpoxKLp1j88JnxiHfKoayArYx0jBRaoZ7/a41ytwwhCluke4oGRXn0+ayYGdlGDbEoF7UmBLjSFuOHM4HttOAhIJIRtSQNaZR7V7rG9a4V38P739dzDs+97xUofnz3zrFAqX7x7gSaZqAwlyFL1/e0WzmcKp0hBgdMt4FGolzrizzzO2tEF4In3/xDIkbhig8vYx89O6Gi51/GvbDgJTIWQL0iGlF4oy0TCkj89Fd/lcPJrYXgYsrYbsztFdEPIBDwkAj0ApEVbZhRqMhMWPJpSnSIzkNlCmuGCRB2n3PEHqvBFX2YyCMA5dbiG2md2OKwqMrKAyMm5GqRu/jKpUQtksg90SUzsvXb4jDlmcvXsCrLwGYgnE5Rab7rHm1NTzBLw/WzacgpLe666VUB6q/jW2FaEbtxr3QRtdRfKuNu+ORzVViM/lUqHRj3LgB9R/+vR/x0T/1u77fDiPpXLhaKrtmVMs8xrjMC1z71zcumXEJRKnIdoIHW0o3Ts/vGFLn0IrbJKfKfL6hHQ5wm7Bt4mU9s3248ODhB9TcKbOQdMfprvLlV6853WaigWojDn6B7bAmhfnzWgzOXREidQ07OGQ47zZcfvAJTybfR+Puisv3npDLiRfP31B7J6XIZo11vdxNlGQcDmesFvAtxhPhtDFEJSbn955apZyPaxe7v9Vy14ZPsfp6YV5RU2LFKRkSUVFnCYufJd2KtyLEJzm+3zXvSjfH+aVoiEA1jzr2DbIRxBw31X1aZGRUKlhzj0JIhBRIKkzaeTAmHuwTlxcbLvZbRo3U4t1iq0JuxrmcOOYjoUEIOzbpAVOYGG0kZsGWhd0U6Zd7pK+627VAvS9Uv1nfrF+n9bUL1NPZRykqhq5inIeXA/UisdtuCItvBkhGurnbW4K7G2XEdOPidYXeFmpthJjYbgLLWZFS0RoII1gw3/C00FUItsA6WApqpOTaym6CaeBwzjzYDCyHwmk2VHa0BQZgPh3o6chmMijGfXb7y6++Yv705zx+KsRxQxp9LBNDYJlnrq9f8uWXv+T3f/SHfP78M+6OrznNd7S2eDGHSx4CjWCeFW4KTYWmeJFRlUoDicRhh+aAtLSihDznvmghqpBMaHmhSfIkE+uEMIJ43rgGoTW4vj1gfWK3VUrO7sDWSAgNz2wCxJ2vXl2tWebmYyg17wy0Kp4wpeaMzdXwJWr03mjN9WbW3aF6P+8s2cf4MSQ6HkvZzT3BYU3T8j8roiE4GB6H03czehP//qvjcEqLfPXmwB9//pqXp0JZkUfDmqDisYFKM8+kV/OudGmR3OPbjlMNndYXJgJJ4bg08qlweXGBakd7JzVjE5SdCCX6KH1ZPDbWSQjRCQv3eDBRjyRtFVr3rr4kZMV7dWleREY3SKg2MsUL/dZRlKhOWjgtjWIQu9FtWXW866j2/mMoUHv24lQyyOLdYxyVY/eJR1YRgblWKpFz9oLFZADdIbJQS6UsJ/o9gaEbYp1oXuCC65BBCWEAU+bTTJUZ1Ug7Bx5dTIzJf+/7Dy+5PRlfHhaqGKU3ahtpVWjVn9Fp3LC/vPTXRAbXm9tI1AFWPFiX4p2wbgwtEKTSa8aIhJTo2ghJGMzNcwaQXDvp8hE3CcUQ2Q2RKTQsL0hPSFHGcGTQkSg7LDSIHSiIJbTP7IaRHIU0zBwPlZ//7JekO3fxixjjFEnLW6gvTZzhLPQ1McgoxWUwvRksnRAGQog+jRGl9e66ZIMhegDCNAnTgBch54lJItIDlhusE6lnz17y4MYvXH/3ybu8fPSQHz/3feW2VP7u51/wF/65v8QjFR78b/4mn/7gu1z+xpZJMu989yPGP/V9dBPJ84FzSMjVnkAkbYXAgdCVZZ7p5cybFy842S/YP/yA189ek08nFDjcXnO+uyUvULowBqVaJ41uBO3N3gZGVIRFPJ3rtD6bN+eZ4cOnPPnoN4m3Pna23YdsP/wBjybh0P+AN599Se+Z2lbk31a5thNlvoVWPJRClCKFFqobnrRRe6aFRO2NISUuLvcMq2HXU/RWTca6n9GFGFZyia34J/M9JQZQ1JsL6gllQfxiGQf1BLTmsinwcBOvfgudSmQgyb2MqrNQMMmIJtQCQSLROhcpcJlGnmw3PNpvubjYsNmO0IWMx1wvvXFaCrnNWPVwgj5uSFtjv41MUgntTFsam/0I+4nj8YidR5YVm1iWbzqo36xfv/W1C9TLyQuySYRhRaFcTcocu0P1a3TBugnDOBDTfcJFJQUQ5rcGg06ma8ZiR0djMGWI6ixG7e6OtfvM4u4aIWtOEBKHt5fqRU7tLnAvpQORvDRuTzcERqZR0GnmcoioCuM6NgJ4/frAi5/+gps3Bd1OTJsLcnWt2Xy64XD7hucvvuLF8+fk84GSD/R+9DFyr56aU4XQhMESioPvc6tUZGV4BoxI67KCowcEL9yrFWIQEoL1TEhhBftXBzRboHZlt42Ulumts/SCtbOPk+KOoEYtRgiVGBoMhSHI2vUJNHMygHcAvdC8N4J5F9ULFRUl6EhrDcOTo1oQestubglg7R5orQ70NyOo60pRWbVYAtVZoz0YKQ3+871SaXSpYNCq0wfmKry6OfKTXz7n81d3nFE0Dh4JilB6I5rD1C2Kg8a1Ofy8VsfGrM9nRVmysR+UYRpYlkYpHQkjJt6ZFxqDJCbJXCR/f+pSMeNtMamrhNaquBxDIYi75utSGIdIiN4drjVTy0xvlSEExuhOa3pfTWZeULcuHJbKXJXdkPzwFMVkxQutl6amXmgjR3R9b5BIIBF0RNfuPy3QWiPXymyB5cY1lF0CTnN081iX6tIVayjRiQmrKa9bQ4KhNLr5qFNE0WD+XLVCs0KjMER45+EeljfchMysMC/GfPLEJAsLEhckFDROa8d+60YUvBsusZPLCdGzX6iaIjrQcvHuI4oUKNS1lF010iLrr3s8b4pKL27mC1Jo7QRtgbZBSExDYGmdfKrECRA3uQwx0WSgS2La79B44M3twbmdae1Uh0pUN7uAU0JqKyCud0crrTmaTUgYjmur5gaYEDoxBaYUGTWh3b/3oJFpiOy2A9o7dcn01oitI7nSU8fvk8qnP38GwO//4hk//vIam4Xdwz0HbnlBhUcPqCdH5el+oiRlGxNyMcFmRy0Lv3zxGZ88+k0+/lO/5e8rwvBwoV6/5PnPfoRZ5SIklsORm+Vz5uNpNbIdmIbKw8vENUfmU6H3id4DtThhwvPo/WKVe2ZpCzIoZU2FWjp89P3fQvdPOa4O+3D1Ec/bFd9950O+Nzzl0/D3ub35ivjycz9TpsQ8n6jVAz6adRpK006hQAssVsknwbaXpM2ezXbDcuze6cQpLLXVtavK6mLyS3Pn3ih1Lyp2z0GvuuZ7+NjfsdtCF9f0huZnjrH+aIbeQ4vhrf7T1g66aiSqEDHG2NlE4ckm8c7ONbb73RVxMxKiehe6B09lDAsSK9thYDP617LbTkxb2Gw6Q5sZSB41XSJDGjjpgXNeWOa8nrOdb9Y369dtfe0C9d1Hj/zHq0dMacWDbCcO40jN7iaOaYC+xsOJo03SGBxyLp77vSyZbgXUs9urKjJGLCk5VNQaookpJXod6NYpzQ90ETeWSNDVydxoJWNRKRa9YzNEtBbmLHQRLi4iMgzU2kkoKfkGc3cqXD+/Yc4KQwIGqk/UafXA+XTL7c0dFGPHwE0XFmuYNggdq41i7qrqRO/sdbewd+1UDdQkqHl8IGUhSCWsG5w2T3BSFLVOodKiegoKYBKZCzxMic0AVrwzLZKZZx/5xgiblEiD8w8tN3owxuiyAJ/lrsVoXxOHpJGSognvqjZDRSAoGo1uXpFpEPqaWS4ivgmboCnRpdObo1w65gVpr54qpDiPUQuYazObdLoUeiv++lgg18DL14U//PkXfHF9omrAYiBbJRCoOHZpDOIdOzpNPAGntk6SxbWxK6gai5Q+kM3h8uO2Mp8WCgYry7B1vAsbIxugamAOShN/LVWrUwWiIOp63pQivRZqntnuN6DNOz8N8pL9ghRHLEaqBEwCoQvaFY0emdgFjjlzN2fGFBC2/h5zXj9d6+EiAsk7nt0g+FGHyogzUdduEVtK7XRbOM1GW4HofrieKT1jUle7sXNuYxSkuT7bc9VBJNBXNqSokwJEyltXuA6VLgu7/ZZNnAi58ngTeJkz+XSmLgNmAdHoPGTtBJQUg0fgqmCtrLIO71oFAkEGevcJgY3eJ83F8XT+jK6ua3NtdxdDQvDAAo2uwS1G77OPaDX5lELNQyGakptPEXozegUkozbSC2wuB/a7xFcv3vDgYsug/gyl2FAKlteM+MXoi3dxq3QIlUbGgtJzow1GlMR8dnMkMTt8P07EccsggUGCY9q6EGTgaj8wJkP7QjkXWjOGYe/vq3XyCp6/Ob/hq6Mw9UcMtsc0UAz2F0+o117YWa+MaU+yGWTE4kPurmdeHWb+7Ec/YLh4x+VKXel6R/3iF6R2po6By8cPuXj4Hp8+v+Xl/NovM2rU3KhzppUZCbailpSydhNNhb7uYb0XsIx0eVsgPf3guzz81g+4yY382mOlN9sr7g6dphc8+egxY9rx+sWnpD9cC91mzEWYs9KrrIxdo+WKkpi7UYDzXOmWudwkNsOe45sDdfa/t5l3c32877p798Hej77VL9jimv/e1SOigz/sGgI5eyxvxDFqMQRSCJTW6MWAgWABxDmrTRo1NEQjwSJjDyQzYjC2Y+fBLvB4LzzeJS43E2mcQBOYm0qHobLbVUwL0xgJ4w4jrNG1jTGNJHXJSFJnupZzAwmkNBGKvpW+xBi+xin+zfpm/claX7tAff9bnwDwp//8X0T6DPxv+eCTH8DTd7i+PsP5TJ694/b+Rx9SrHE835DPd7R8plePCVwWzxNuXShdfHTbKlUcuzPogFrEeoIeEVtAko+bV4anw+irj3J6IehERbGgpDFhrfHmtCBlw8vXgfcvN+xTYxuMw+Jjp1w7h7uFeX5NnCJdIjENhNB9021GjN4ZlWJI80LMxDcuaY0kDfCIPCN52JH6lmHSqOZfX++NYIZax0yovbvZohnSAmmMlHomt04aXVdqolSFJS/sJyMkNxn0e4ZqbbTWCSaUVgjVE0eGKLTBi7EYo2fNm9AbbiwTfx8iODy6rV1W3GiikjwNBUOGSq+rpkoCzZq/X931qtX8UG1daLX4gTmtaUHWVyOQMyRzhVY60nzc/dX1HT//9A2fvbkjh8G1fXbfBdDVaGRuPDB1Dur9a68DEhbMylsNlrQALbFUxc6NzS4SQqaVTBShlQy9MkRhHBTLDeseIGA45qp4qgLjMHqX2ZSUHJVzOJ7Z77dYEm7PJw6leidUA1FGkiaku05U1Dsk1QpimWaNuXeujzOX04ZNGKFWxyHhlzuAgOOyeg+uGRZ/FtBG60Zdtd9LM5YCJonD6eS6YIBkpOQBCx7W4G57s+52uTXKUcWfr74WqBrcJW50xPxSMk4TYVSyGSnlvC4AAQAASURBVFsZsKYkSTwcC3fnguUzKfiz1VokygRtIfZKkkDvCyltGaI4G9WMECKDRnpT746qv+4qDbWKWWVgXDWORoju8Hf+sBDSKufAaK0QBycNxIAXvbplyZXUIZTqUgqt6BAQnYltR+6ZIRZ2qXC1Ea52yuA5uEQVgnWPqQWsKTVHL+JhTVIzJN7zkDtF15ShmDAzCsopGBo7OkWnBWhgqwPTkNgNI8PQYcnk2ukPr5C1k44ZWnzEX2wmExgnsNBp+T5sY/KwCqBbRiXR25nOgPVIO3b+/F/8Kzz+1nehKblVohivv/qMX/7sJzAfWIbIBx/sePLJd/nl4Uccly/ZPfnQmafzc2JyA6Z1Q80T4vBGNoVGWcf5Kn3lYHvABsBvbfdc/+KPef7m75G+/AUADz//Cd/bPOTxz0bikHgcjfc1uIQJ2H/2FQ+HyMW8UOcT1gu1d5bqUcq5OWu6hgBDZ2vKxWlm//olnNYOYjfnIq/JWa2Y86xbW7/4eK8IBjKiMMTEqS2U7p3WFoyQHNgfgCQQcmbaRHZj8NjcEtYI04LpQosNBKIoW1WmoMSk7DeRx5db3rncsw/Bk6TUP+xhpd9YM7YpMurkMcFpS2cgxYHeM1EjwYQxuddBViRYO830FJhCZIhvQ8i/7lH+zfpm/YlZX7tA1d0lAPv3vkXLrkd99MkP4JPv8zQrQz5zOsxMw5bLR0845pmlnqjzLfPpyDx35tMt6fY1+XTDfHvNfHdkPmZadeF9L52mgVq92BCic1ZZ89v9K/GZSusECcRgDGFgacI0RZoYpXfe5DOnJTGN71HN+Nb7I7sHQl8ds4Mq+3FHnPZY6hBk7SwZ0jytqpZGbYXSzyx19q6eKZRCrG3FiwjNlJqUjFEwj2g1IVSjhApWiV0wJqopOTenIahhTSlL9u6QGZYDOkbPfEo+ikoRYu8OvVcl10irzq+0tngi0ihogByVpSTGJOymkSm5NENXY4CJGwDa3CAIIiMhRHLLiBlj2BJs652TcnZDFw0R8zGf+XvQmjvda2urBnYk18aSO0PyLrpUTwSq1ZgXpS0By8LnL2758RfPeX6aWWKiqru0k0EIkYnA0D0nO2TX505NKWYk9S7vbF7k64poCj2gDU+RyYUWHXdmORNUqOcz0QpThBKMqm6wixpXtqnRqjvVp+0Os0avQu2RlBLnuXN7LHRVlu4paJ5q5YWkFcXUiNE7/a1nalmcfapGl8jtoXA3jmwf4HGxa4Fq97ipWgm9OqDefJDabKGFunaUvTBYKMxLYM7CqzeFYSVTeJc6EsqqtxN1rTZuvBIJBAKsBi+0IXLfOfVuq2ssC2x3nObObjNxnhd4MBJTZEydyzGwT0pGWZbmB+mwpVRo8xGJe6QnajVIrlFWHdaM9IxohMGNMM1cOx0GD7rofQWndx/VmtqKaQrOFl2DQKbNyDSNzswMun7mBpAAzAiRMY2IzLQiWE8M2pyt249cbozHFwO72NAVPde7UqvQ6sr5bMLSzbFwYgzddbGtVDQKNWdOtTHIyBJAx5E4TcRhogksXRDrhCEwboVxaC4x0kA5OcFgfPIOcrOaiQzPqwVKqeiUqD0jsThWLHRU9e1YV2N3bTfFkUpWefLofTYf/zY9DQRzVNdyuObzX/4xVSO7px+ze/wOT77zm4Rhw+bJEy7fPXG6u2L57AVdISY3h4kpUe9Nec7dLb07jQRPzxtVuT410kffIf/sp/zzf/N/+f91dvzev/6v/meeLf/C/+3f+s/89f9f6yTCtXTECr0KiiLd3OAZ/cLYu9Kqdxp1NT3Oy9HB/CKEFAlpIKZKNCHUwiA+GQjqXc4xJUpQluryBlPxJLxYkACalM20Y7vZcbndcjVuGGVgwBFVtVeoRgxeeHqktlAkMIToutWwgRhpDFC7Q/nHLZQMfYFaOJVC2Ax+MV5fgxC/9lH+zfpm/YlZX/upTvcfgG6wZoIXixAnhypfDDx9/AGRLVWEYbtj0Eu0PaKXTu2Rms/U84E6H8nHO25fveLlV894/tVXHI93XoS2SjBze/eqG4rBs5Ub5hGDIUFUQhceponF5fq0Xpmz52ubCBIH2rglp0BNW+LVlov1ANg/eYC+/xSRHT06HzINDbFIy8pJZ3pdMBpLqZR77ZJBE6GtBqIahKyVZgGVwED19JvSUAZiLFgo3hGziDVB1kQWN+Y05mwkVaKVFQCtLGWm5kRPnVIjKbhGN0QFSSzdzRgm0Y1UrUAzz8VWqDHQysI8dIaUiGE116ito9SGJYjBR6IqQm5nqlZS3KAIzSqtLrSeUfECbl4qKpFSKykMdDyMwbuNA51CrZkYB4d6l8zcKnNtnLPw7MWBn392zasDlLDHzBmWQQvBs1ZAJkpbmALE0Ak6oSFRc8eqEWR13LaK1HsdWFu1cQaD61cvxgR2pjWjdS9CJDTgBJI4rW5+T0fMgJJiXJE5gZrPdDuAbKgWmJfMFB2hFksl4SnopUO3M9IaiwVC84IbMRYTNA1MtVHOZ57fCNtpZAgdWcePZe3YVauUbIQh0GmUUgjBXfM5V+byK7zPISRen0+8WGaein8ea+kOF6oBNUXFMW9FIk2gm+C8XwMWH9lioF54KdA10Cgc85kXr47okyvaXHizVOKk7IaBB9uBq1G4XTpFRlpMSC9skxtTzucTm1AR2fnzOU6rFhZMRu/URkVM0Tgi3YsEL6oFwujO916xnj2uU9bC0Aa28YpO4PZ6XnW8gRQ2EIzzvHjRERSsIBZIoliLEBuiFWzmYhqY4uzkjJXMYbVRl4V70qdrLCMqCYkRw8ezQkaISHeD2N3dmXyuTAl2pbuDe9zQUyJbZYmJ0iK9RE5W6cfCcPGAzYfvIZePkVsfhQ9J2K/6/lRg2nbE7uj9AhmMgcBOhHr2WEtpAj2g4ZJheIflrjK9NyLm8aQvn7/icPMVfb4ln+G0e0S7fMDTxx/yelZ+8kc/5tNPPycvwmefHzm3DXGaqIeMtkyoiTCNxJWx6t3YzhjX57ZXjhJ49P2Pufj+n+F/+l/4p8kvXvH81RuePnnI71D5F/5X/yr/+7/+3+Hmg29zcfWING7o+cwgC/uf/AP+8r/xv+b/8lf/KZ4NiZwLZ6vMNmPdaFUpJVAEGCLTfkKHCcLAkBJfPXvGLz/7ks/zzOdB0S7klj10RAXrzWOrrdHq7F1KwhpLHYHmMqjQaGSiTQRziUAaImnYoLWQqxFGJQ2FLkZoxmiNATdMEZQUIGhgSp2rjXKxSYwaSWGgSaNbJtGRmrDq8gC6oeaaVaMRQiHGhajifOzQCZrWuFQo0lhspudK6oYMPoUDkG8K1G/Wr+H62k/1bh3HDNoo64Y+yIR0YRyDj4CrOaxd1g99X9wFbmCtE8NA2F8y7S6QR+9x8e63ufrojgcvfs7zL3/O9avnlNMdZguiGauNIQz0lnystB6yMUTSGFd+aGUIUFrjfLjm4uIJp8WTfXabAMMRMTgeOj//ZWG/dh+e33zFfP2MpFeYGLWeGMburs+q3F6fePXyK16/eMbp9hoR8zxuF0K6iUg60pXQxMlOrRFX9qioG2nmevSo0+Ybeu0gwV2lakqISjRB1UhjIBc3ZjhmJazjtEgMSnS3DhIKMVU3lYmuRhDcBNWhSoBanWFZF4ZhIMWAiJtMMMc+aQiYKHOuiBVnu0ZnfirQ5oM7x1dAvHWh9UZXL4Ri8O9RnWCJqaJrgTMvB6QUjqWRNfDqdObTL1/y+ctbDkugx5HSG0PrDLIac3qh0okrKL0LFCl0E2aNLNHQ6J3b1ANRFLW1+4WiK6+w0gjRqAGonYAgw0jHNbcMkfO5MvdAscGpM+YA9FahLJmgYLW48U0aaonaBmoUxhjYxiukN4bYybKQa/G7mwR6W7FQCinizNJgWDQO8x23S2U3Re5WvWFeR6bHVnmznNjF4DxZC4Q+0ZbAUoS0GnVfvuw838JdEbps3ha6amsmlQq1VJpVuiohqCdPmdA7DOhqlHNdnkpYU4WgW2FMgd4ax2Nh3hlW4c3hlo8fbqh3L0hRSMHoyy2beEkJnbmcuNhtECpllSCIQhqid06bo+I0uAyiNg+JCMFxcLryd2NPtO5aRIdLKQHD1oN4CCNlafzi0885LmcePHmEBmcAL7O/brvdwNVVIkgGW9CQCUkoPSJxoJow58Iwbeh2QMLKHrX71PXVCCNGTDi1xCowoqHRtSLiEg9RD/worZJL5nY+8fz1K56++4T33n+H7TRAjbyWkZu5Em1mF4QHY0fuzkw3J/IXzxiBxw+u0Mm7t48v91xfTphEhqjQJ/7U977Pq88/I37pGtTXN2duXhzZqNJ/+iVld2R7nvi3/83/K3fz7NKO+UA+n9hcPWT37oc8fS9y5IbP/t4f8p/+0R8wjBPLqXH98sAHV08weUMNgbDZUE7GbDODdWouHpmsSl33/5Y2vPO93+DdT36TYw/82AKvhz27j6948PG3eP3yCwBePH2P19/6Dte7PZvtnk1S+ukVxxef+vex3/HlGDjNwpHIjLvoaxZyjiwW6FNid3FB2G7QcYJe+Nlr47PYmbP5yFzeSjzpxS+ApXtsrxEJw+SpeaU43SAFUi3QnfW6HUaCVUKoDEnRfgYRJDimrxVBu7EfE2mTyEsm9YiNAZHmEP5pw34YuBwGxhhcg+0sKUx8X2VF+wUElch96rH0SmgLyQIpKBb9c9lao/RMzgvn0wnpEFJa/5z7z8XwdY/yb9Y360/M+toFaljHkGU5wqqZ6lnZj1uqnOkotS3OPYyOQKq1eIFgAVqk9OIInRjoFuhhYHz4hPcvRx6//w43r17z/LOf8+b5z+ina0QqyzIT4wiaKK04/00aMQRiVGovJEYCDVsWNg+V+fSGu7s7ButI/IrjXLl5tqG3QCvueP73/x//Lj/9B3+fwI5BNvS+EGIhxcJ22pJ0wpp5N6LOiDUHP1c3HvWuVBPUXNUkVDxCcIXQi7vdo0DT4LpN+som7YSuLhtqigTX5cYYQRbvdNlEJ5DihhBHYhTiWpB2FiwU7/OIj9+lN3RlkjpkvpFrZq6VkBMxJFJ085mKuX6wNDR1mrmDvGCEaqidSALafLQqwaNAPXVKyK3SpFLrGUiUqtCS60NNWOYzpc9InjiZcNuFnz57zs++eslcFeLeu2gCtIZ0Iw4BGRKmndZnNwkNiaYRk0rTRgudrk4pSE5jQlZzhq2RhKU7+HroeLiDCRoiotGLSBpdR+Z28rAEOtTi7595zKeKABmRQlTvwKn5hSQ9uCJd7GnNE8MGzUi5RecF6QGpjdO5+YHImhBGZy6Z3X7LX/pr/zTRjhzeXHNREvB3ePTuU+APCLuJi/ceYEtn2Diov7SMBsGWE2HrZqjp4Zk4RvRcGVokHL3rJl389dDoBpdWnSWMYgS6enTnfRTDr/zIYZU5uGs+iPi43Yybuzue7CKv8y2Pdc8uTUwE3n8cmO++ZNpHTlTyOGAdtglaU0IVtLruOqDUew32PbvSOpisz/N68SSu2eje2fUspuSXst5QMq3eMs8L203l4eMrLGVKq5QCpS4YQkyXpHhBDErvEbNI716oW4BaO8tiSI9u8lrle33Fbtl9fYpD2NVsDedwLqdZo+MTEw2BEDsEH9f21ihz4XB34nBZQDcwTHx+2/jjH/+E4/ENWzXGANkKthm4evaK/y5w+eiRT6WAR5cPeLFJzvLEECrf/da7/J//d3+Td7/8kr8G/PTZV3x2c0MKkeX/+Q/p04YlRBZcp1uamxkfv/s+f/Y3/yzf/uGfptTAs1e3fPnVC0JI5Ayff/WKB5ePkM2G55838jJRS6daxRrMZaaUmRCUXI2L2c+Cb/3G73L44e9yLJ3n13fcHTKbYeJyv2dQpa+F7Ha74zCNnOYzEmATJ8p8pK0XNHqmF6WVxbdEaVhrPpa3Tu6g5meA6MgwbLDSCa0SzENAmvkEopLpXbCmjMkDRFT831HXxdOcbhE0ggXogTEFyCdi6gzqB2MIEe2B6BZ+lMQ07lA1xgSyj9wcTxRtEBIX04bNMDCIkMxIZr6PqRAkrqQ+o9XMEO5pKoZqRAO/CldpmRCSp32lxGleuL254Xg6+IQxwN3RmHbj28uClW9c/N+sX7/19UH966bdY0DX25oMI7k3x3D0ssYfK7XBUrLzMatQm2NjQuw+Umt9NeXgPNQwsL34FvuLD3n//e/x8tnP+fQnv8/rLz9jycdVgC+07qke0ow8N3SaaKUhYWA+F+Y5cXNdsR6YpkQc3CCw3+/I85mL3Z4Lr0+5GvckjM2kbOOOGC4QnTG7ZTMq0YxzWeilYiV74Y0hprTi7mB0WJmVC9wXXBjVXNSftVMIdIv0Ht8WK2aVpTUH1edKD5XeO7l1Opkoyc1U1SMIc+ks2kk6ktKGoEZpC6UIzdzdqRLWpCGjW6G22TtmJrRiLLmhUlliJakwxsjWZsKQKaIsg5HBTQTFkNaYQiQgxBTfGnEajfN8dlB8X4iqlHamlYU0DIgValkwKjUvnE355fWRL17eUoiQEqU1gorrp1TI3ShLIQydMSrDmkAWxbFPap3UO703pAaSDgT1jsP98vxsT14KcUCboBKYoqOHLFd3s9tItM6gRpERJ5pmogmdjvYKDaoU0iR+YMXOEJWS4fnzTHt1pFdFuyLWWLInaKkVal6IWplCQs2jJ6Mo5VD5nT/zMb/zp3+Xw90L7IPG5fAY+D/wznvvAvCtjz/h4qMHDBqpfeG8nFlKQ6Pw1YvP2a2O5XEXMFtoYXbT4QqWtx7obcDInnajnSCrE1siMURy7ZyrG7M8cUwJGleMjhM0WuuusaQyNyPsrxh3AweB7eYSXSoPRuP77z7i4dNH5ABfvHzN3WkhjIl5xkeoUWlqmDZMuxeZzoVjbVqyWvVBnFxhFhAgKqhGcpN1ZO/JTLUpcae8c3FBTAGJjaaNnCvLw4g1GKMwhBkQZ6v2SG2u+S3ljLROzx1mJYUR8q/2uRAGYvTnKmgiSnIqkTW6eDa9SER1QsNAjEaavGNfCtQKw+We3dUFMQ3kBn3utNp5dj7z7ObOjXopUFtluTny7ZvV6LMNa6cWJFbimJwHPCQiCTGh2AFbR+x9v+F8MTGLIOYa4SkIV+OOrgO3p8773/oBf+G/+Jf58Ie/wfOXr3j57Au0V+a7O2yuvHjxmpozx+UVP355Q765ox0Fbd45rg2QkRI6d6cDEjf85tMP4A9+zqP3vs+zOvLixVdcX9+w319xud9z8fARNm7J7f5N9hJ7Oc9sYuR2PhDnO6x4gTovZzL61owpPdB79058bTRxZnDOla7ZXfBlZswwNqE4OsR12t3oLaI2OOQvCGqBshbsGC6nigEzSAyMo9KWG4bQuZyUzQi7tKcsg+u012lPtcDFbiQNjuNDAg90x22ZSSlxsdm93bOkZowKA9Rm7nlMA8MQ18d9Ncqu+461hqnTU0SFFEe6CUupnE5nbg9HsM4wjP61d+M8Z/Kyfva/KVC/Wb+G62sXqOe6GjFItLUuaJY5HO6IsRNrhLVzZ4pzN1XeunXDmnDUW8ZaI2pgUHe+5w7uUTc07Xj34z/F/up9Pv/5T/jR7/8D6t010spqKmk0GtKMtgR6F07WKATOJXJ+UZglEGOk107vI2kwBu3Ucs0UV+d0SVzudwhKXTqbix3jONCaeTKLecxm71CWQume/pNYIcwy0CRS6nHVpeG6qd5pOJam0bwMt4BYIJqHnObeyOYmnVorGhzf5LxK58D23qhN6Zb8tRHeRmiKBKIGHARwn0o1uW4vVGCmlxlrithI791Hqq1RSiWh5BiQQVlYKARqF3J3BzfNaHXhbh2rjiFhrQNK75XznNEoNCIizekGqAPT38Z3KrXAy8OJYzZEJ5hnwjrmamWhiKLDAJK8i9q6dyu7eia8RFgcyBQVemtY9TCFqAMmzvwEvFhcuwmhRVQTVCMMjiQz8Uha1QhtYLLVCd87YsomBSyqjzHFMA3OO20LJGUcItTGq0+/5LTAWAakCdmEJXQ0VWJ0/ulmgjgJSUd6EcZpw+/++e/zwUfv8NOf/TFLy5yuz3xyO/NdQFb5zO7iAeHp+2DKm9s3BN0yDsrN3R1NnxJGvxhu4jtsgjK3G26XG+8K4SafbgNIAXFJgZm4nMQZAR60kczxTN3Tq6J5oEbrghA9Aa51WqvE7cT+YsfDx4l2uOa2TDzcXLJcf8nj7SVPLh+Qe2F8aLziDa+WTGudQZTtMDBGpaxdVE/r8phcDQkVcYmIKCEkvxzVjFhZC+bo0ZTWsZaxGohtYGCzYneMYInehRgacTCPGl3pCYYzlJ05K+TaQIVlriynhSATwUlxvhlKIt6TE4CoA4HJ9yU1WuiYNEIMxDQQ40gYOmnKq+xB6SKM2wtCGrk7zJgVLh4kSMLlh+9i7z9E45o4pQk08sHza/gP/pDH3/0IjcDf+k95/5NvEz/8gJAGQows7YzlzsVmyzufvYC/9Xd493vfprz/hGEz0pbGblJSNIJMiD4ic8mT9z6B7RUv3xy4u7tzPWmphBY4vLpjPh0YNonXL77i8OoVV2nHaU4sd5lx6KQwUVqmYOyfPCFMFwx6AcCb65nXyx3H6zOJke24h6BcPH7I6XDmPv/r5s0bzk9OSBdih3I4oO2AFdfS5l6pMtCD0ppQO7S2kkcAgpJLJt8WLiJMu5F2NvIMViLanImsGggkVCeSXpDEmyGt+N4n0TD1EI77aUEUoXYhhMR+n9ikwtPLPYNsqCGRG+R+BvoaO5rYb7bkfqLUhiRjazAOGzZhIlkjdOP+kAwpkVJ0s2IRSvO4XkRR8S6q2Rqf2wPWA60qtSsSEq0bS1uTyXSA4MXyvMzUesvj2V/DXxFQvlnfrF+f9fU7qMVvavPJOYkAeT5g1pyDWsN6EKw4Z3PoPeJwdzN7O1YJmrAuLM1AdDU0zKsjFbpFtg8f84OrC9J+5Md/9z/m5vmXiDRqyYQQ2aTEnNcbuGaaRm7OZ47zTBUXvSMD3RJSrmmWsRB4uHahvvj8wC+vMyklJC5cX98xbYQUC7spEAm03OkNQhzRukAv9L6OTcOANQjFvyejU2t964QOdKqVdcP0UZMUL+QGGVhEmKXDEOlrNCjMKBHDWZvuKN7T2+DjW5sIukXDwBC3tFjI85nKiLFxo0sQVCpJErUYvTRn1GrwuNBWMXMt6bGOfpOnkbRhbQaFnoylHyklQIekwaM9uyIq5LxKFMwzrnvPiP+nGK6ttRY55UqRiIgQaCQq1l3lF4LQkncxtHWSCaMF1MRH1Bag3EcOiif14EV9NtZYVnnrgO/FR9cRsCY0lBIa1aBIpUfvYlgz7xD2DtVNcVFkfU8VBiElNzKVVsmLMA0j22lg2o7sL4yKdx9DN5ZeybExpkaS7jGY8crxVK1zOgQePXjKP/PP/lXeff8Bw4OBn33xgs+XL3n6/kMA3v/oewCMu0eEy4+Ys7LjIb1Xbg8n6sF454MnbLtr+vaXT3gwTBxqY1oKUX/FQW1BENt5IdgLzZwDGyQSWfE2FGSNVVVZI4lFCdG7lUkcT7aUjp2Vp5ePGeMtcy/88uWRZRP49nvfY6DS5iNWCg/TJft3toQXr+gXwjgO7FMkEIh4oINkZ1za+p4S1Dvk6tpda14wa1CcomxEnINazZBa0O662dILGtVRX3H0/6YWaslEGkHNKQA9UNbCvegtcTPw4svXnM+F3cZcX7g+WykOjpVbXervHecV0+YdvB49njYOSkoNjTN2BrmrjMPAEDcU67S7W0ROtGzQld3+ju3DPQ+mxDKOPllqjf20o0tgg491PrGJsF4Kn3z4PeSjj716Vjf9DQKhL+zu/P1+8OQJ5/c/QjS4Xj8WhEbviTQ+5Yff/3O8vj3x/M1LnigMMfDszQ3lXHh9feRwmgmDsr/aEcPA8rpxPM4QR3K4cFpAq1xcXfLRtz5Ap8T1ceHLL54DcL450HPi+GbmnW9/yMvDgW8//ZgxRA6nI2HtBnca1htjSmjvjGJQMnWlT1gY6DFRciG3yrJkv+ibYhJo3UibiWE7sLm8ZLi64lSNOSQsjoTmdIHe1n1BAyG69agvBWsCIrReKS0T6VjwX19aZUwToU1c6I7N5QjBmDZbMpXeR5azoUmYgkKBUAc2mghkCic0bkgWGBskcelPq40okbYEpLrRMeqIRP88qBnWM+BBJBJdbmAZD+GgwiiYChKi+zZMSMNAM3+fxyiwrCapeyDqN+ub9Wu0vnaB2tcboUhFVh6jquNyBHG9keA4EhMfnbbOfURm64ZocMNsW4HawdNYzNwdGsSLiGETMVXokd/47d9GJfPsFw+Y7w68efWGViu5NFrL6BjYbrdcXx+5Pd9xdDgn2xCwAIs2Eq/RFKg6sLTVaRIPxM0W0Qza6dapzbu489lI0j0pyQpNOkP0LuKSO6UXrMqqa4MhRWr1m3lQJw50lEEmn9h1T1cy6z4u1ITVjlRIQSgM5Lq4UUQGrDpkvK7fZ66F0gLNCt1mAokYB6J0EhOLRFpTqjXvUmkgsKWbeQCACQQ3SS29rZ3bRkue6qWlE60xiCCSKNk4rZotrGFavatrRmSDDr5x0jyL3qjexYuBzhrhqZGaM6U2cnaH9Oqxd7i/QWvVJQSinhMfKrlXhE7UiaZKF5AQQCNdvVMgCk0qUSuEtXso2WHuSWhkQo+eU2CuFQ7DQJDq3aPUSZPrqh2/lKhWGWJgu9+w3w9cXVwwjhuCRu+iSmN/tXETmCmlOYS9WKFpdXxRE2pNLLVT6pmmBcbOzfmGv/0f/rt8/PH7bK8e8NNPP2catryYO58AP/vpl/wu8PL5iTfphqVkn0C0yMtXM6c5EnTPzWv/3L18bnwZZp6/OnCTD0xr1GkXWVFoM9I8iaqad1EH8WhToa5at5Vha5WypgRV9c90M6NboDUPVdjsLhC7Yxg23C3X3FzfcDwe+eF3PuJqUGIJ1F44nTNXT9/h6r0tjQJjojTx6NxeMTHSqreT1QCiaydplfnR6oCE6BODVrHeVsRcoic41Uy3hRBxZjEHaqneKdeto896pVt32Uv07qeETgiJUitv3pyIolif/YFcb9xBlaDKKQWyKv+tP/zxf+6N9T/P+i//G/8mAGUYWK4uWVohjQOaAlebx2xSJNQT+gs3Sf3G93+Ll+WMWWDYbVjyiePxRJq2fO+Hv824e8DrX3zOZkhIq/zyZ59yvD1zd3vg7ngkjgPbhzt0iCxvXrK52HK0E1nOTO9MzEfjcHPk8aMPGK6ecDidmUtlWScV5/mOz6/vePDue2h0zfG7j57QlsLFNHKenTk9bickwTQEqDNBG7U66QSg10jJHhhh6w7RWl6xfZGmA0kD47gn6EQpcJ4L57lQqmuVzdbrcXCtf6kLtXd6dfIK0Sg0cvfn39Y0PdHFm50WefXmlqcP3yOMSmsFJ/RVht0WaPRWaOcDNBxPR0WSa1RHIqP6Bd6CUe9JAlZIIqSY6AalzHTLjEGJ+IifLkh1jJytf4Z0T5ErvaBJePjkIdJc41wlMVxNyLwQT28AMP2V3Omb9c36dVlfv0Bd9X55OazibofIV3Hn6xAXz2E3wzrEOHjqSK90aw67ttVpLOrj+t5oVLp0qgnTMK0QcTfC9C5YVb77m7/DRx9+Qp8bb17d8vrVK7742Y85n16jY2Wzu+R4qDx+csUuAEthVwM9wWHMpOUCoqEh8f4Q4Ofw9MmeuycTc5k9AjV4ipSaElEGAkGMnDOl+QFba6ObYBpoweMzCZWqnaWsWimNlGaUIsQwkIBijSIdC4qsqJp7g1MpZyTtgYaI66ZqW5DUPNM7V4+TXHOku2WMAdUVYdUb1qEEF9fH0BGEELa+SXJCqsEar9da99fVwNpC0EiPQi6V3uN6qUio7LBeUTzdy2j0XuhhDagy1wXTISYfZeXuPyeqLOeZYtV1iFZYltk1Zkmp3Tut0Wx1nXdqaNjgue+DdXRwDWPNC2aV1FeZhKyOe82gCxLWfHrNVKmrpisztIRqpFehBWWIsnYOGx6FnWA5k9tCksQQIw+fPOVb336PJ08fUEW53Ox59OABcznz8uY5uVeW2rBWoXSKKaIjKoGldPKiSB/ordLM2bk9KLe3t/zRj/+IN6+es7t8SgqJLgs/+/wZfwH48rMX/C7w/IvXPM9XoK5pHTRx/fKG69Md12/e8OjFKwCeXX/FMyK3p8y5uuwG8M9SyG6ssYqIp1jJkDwZqzV6d8SNSHQOrvnvLNaoJkh3VS49gw5cPH7AXO8L5oFGY+nCf/CPfsIf//JL/urv/JAx30JMPLub2Ty+IO22SD9S6T6yFI82njYTZXEWZTdWPupaH4quI9jMYpUoimjHavaoyjTRm3myF3j37Wz0NTa0S6TqARXn1oq6hMDjcCtmnRhGXj9/BaWwGSYGGj034v3rVxtijdsp8T/8J36TffEUJZPorulYPK5ZnVoSUlyNjQpR6esFOyBIrfRqNIRTrYwPHvDRb/0mV+89peYzsWTojWl/yfTFC/7Mv/Kv8bf/e/9t3rz7Hvreu5wA8hmJ/nc9enDJxWag3CVsugLgnQePOf7oH/HO+0/YPbri1cvGuB35+Du/TWPkeDwTGSjHwi+++Bl3b24IKVFrZhgDm80V8eKKz188xyTy3kcf8OqV8eZ24erBRJCHXL/YMVxcctsKbw5HTueFb288vOL57Uv61RPe/fgpr188552rh1zGwOl0olijzff58J1mmXGzJSyNvu4FfU1GCwyekmfe8AhBwJp3GVFmayQC2ECwiXZsnF7foksmmJDNXB8MqKrj8daUsThEailOk0pr4lL36GwRxTRAmMjZ5TyfPvuK8K2nXA6Ji2HDlhNxmsitshlHytlYzoVinWETKYunCobgdJlGpw6BLobjiH0u6NOAyqgNrJJ7R2SAFlE8aQ29j/YVjExbOlU7FoQYV9lJjKisuNzoIjLWPfSb9c36dVtf38W/ooaCDCtaBYheDJh1so6IGUGTc09XWL0138BD9JF/NwdAe0fVx8JxiIxRSapUFXq8T9qoLKwRlToQN5En33nKo4+/w4P3n/L5z/6QFy++YCmdBx9cYQ+88NWuxLXwms3RLlE3aBp58tVX8J/Aex+/w/Logjmfudg+pLVKLQtancPaa6fkRqyJkGHuM0X8IERcL2e4Vq6VgVbMC6/uP/YonKyTiJiscofesVYQnTwpyhSVgWwHz/nuhSFFek20onSLyOiayVYDrSmlK0nXLa8lJBghNIyFgL+2IglIDGsiVAkL99nso0Jraw51GDATgjU0FmqdIYwEKopQmQkxoARyrc5I7BURQ0WJo5G6+shMF2IY6DJQitF1dTbXzrll8np4W/VOB+IaK7N1hB/VjQIkGHZYnFhypZZEGBPG1rvteqbToLm++D7HHiq1J6Zhi5nSrWLR5Q2DCkImpuYQ8iDsBuFJC3Cbub078uCDj/j+b/0WH337XS4fbJiXjhC4evwOj6IwvLzgxYuvkHYmi1G6m+eGaU/tgdP5mroc6XVGEKpGTC9QPZM5c3fupDcjS37JpBNSYXx1A8DdjXMwl7sb5vFzehuouXBohePNtXf1i3I+XgNwXt5QpkhWWPrmrWlGbEQtOTxKA1XuTXlQs38exQZUcSSYCHTzkbMKhBW11FfXcRQ2gxGrEtlxthfEqJwmo14IP37xjC//ndfsh5F3333AB+9ecnmRaUtmSiNBoYTijuq4pc2ZKKNrPMWlMClEMA/qEDHXAdtCD6DdCOqHctWMFUhlgxwKb14duT4viCWUyT+DQ0CmGx4+2CFhw9IXpCg9dIyZqoFnh5lzN4Jk13xrZF7jcg2jNGOMkdv9npvmn4MYIxoTZVz1vOoaaJGIhEAIkR5cAgBgZSHWitVGlsBJlOHpu0zf+Tavhkhix6ZnvvvJtwnbPfyjtVP7wx8Sf/BDbg53lNcvvHuqkRgmlqXCckKbcSFe2N3dHnnvnY95sEt0uWT/aOI7H37C4Rz52afP+ORb3+L29Rvubs4+rYiR69trcm6Mux3Tfsvd3S3L9Yn9fs/jB5e0duTiwY5xTIgZjy8Wbu8Wbq7P5KWThg2blYvUa+O73/4ufXYj4PvvPiUko8fK9c0bLu/Ne2Zst5eEOHJ68wKOr7Hlhr5Os+aaKbuRnD2E4DR3KnvCduKH3/sBt3bJm5cHah2Z7zK//MWP+Or5l9ACxTwGuYhQraz7C3ibM9IQamrrfrkeeK1R8T1sGLfUMhPEsVPXS+Onr8589509u3GCrizzjCXjwZMnHI9nTi+v/TPVCxY7GqH2TI6KElxPr+oTCwkIgUoBcXNoCJHeG7kVD6TorqvXHgm6Q2ygtkpdTa5E/3zmktxEFTs9r4zfwfXr+g0H9Zv1a7i+/lO9jvVdEmXrbw7E1YQDmaCJmmdSTD62cHCep/SUgphzDD120003OqQVO+P4lx6FvDjfzWrnnGfOywyloyaYnFBVHj5+yuV2hD8UTuc7TmXhcvSIyoHoBUwwdlGop9lNNUG4uHCB/7TZcrF/xF4MtYCGTrczVmbaOZNnIxdBU3Djxurm9QO8OZanCRLuTTjm6B6LBCLFKktbaJYROkP05JVcOr0tK3uyw6BYL+6EN2PUiAwe89qInIpwap2ddQqJaAO9rZpWdcPGZhuZl0KrzioNwTusvS0MUQkkT+wRWHrzhCH1Aribj3573awHeaH3E0ttiAmtNOI4shknSs1ubku+gUYgSCBo94JbBLG129wWrDszt9bZHa0akZVtKSi9N1aM5Bpf2z0mdMUe5d6p9+MvqytgftUDisdN3g+2NGxQnVY2Zaf2E4SIhcDcGmOfGVNkMyrLsqBh4nKvLNUQBj75+Nt89+Pv8/DJjnFnXDEynwu9NlLY8IPv/jYPLt7lRz/+Y66//JLeK1aE6+sT59ZpnEhxZlkOzKfOsHlAmiYijTFG2mHmWA7EntDYkdqoiyeyaXNNYa23zAdhie76pgrHOmM9UE25uDcqlkgLgb4YUj3FCsCaYnWFNNm9JtghU6xINBHvojvGyTPBZZ1YqApYJaoHSmw2Wz7+zkcMg6DFu1MlwGk5IirUacuXZSSfG0sxvvXkkotdYoyR0Du9udlwkMggibZqRvs6dendcUiCyzgMpVlGdUOQAFSXtWSlEjgvjWevrrl9cUsuBRkCpd+hoSMxItngFMnnE5cPE3E3EMZAt8KgG27uOm+uDyxkv1iGEWlKXc08a3gpXSNBnRXrkhwBtbfYpN5XE10Qf3YRTJUKCA2V5rpsAQnCvMwEKbA6tzfDlqlX3nn6IT/67BeU58/508B22nMMCQ2J/X5Psca021KbUVoltMLVNP2/2fuzmN3SLM8P+q1n2Pt9328+QwwZGTlVZmVWZlV1VXV39VR2Y5kGYRBuLNQSF40sxgskLgBbDTLcwIVv7Bskg3wFd3BlXwAWEjJ2u+fq7pqrcogcIiPiRJzxG95p72dYi4u1v5ONQDgaWYJOnSd1FEeR34nzffvdez/rWev///356pe/AsD19Qsefuub/r1b4v133mG4eMBPPvwhL58+4wsPH3B7d8319Y7Tkw1LXcuwypyfn6MY+/2OFIyzzZqgmdhOePudtwhZePrZh/RavAteOptxxfrkhHjj9+u3v/Mtnj244MlnTzwta53ZT0v6XJfloOwa/iiBzz5+guy3XKUT5n+iQFUO9AbzrJQaIVwgceDRW1/m61//TTZvvcs//u1/zPf/6I84Hq959uwT5jK5TEyCdy17o5m+jtRFgk+W+gwhIjHBEo3sEqmEiKFLEYk4RUCJbCflyYs981A4yYHVaUKa8vWLd3n4zprnr/4RvTckQqMRuhGSJxGaevw06oZJyQORiJ/Xg5t7g08JLVTIdSECBHrLpL4m9oikgakWOubpYcfZD+8djtsjMULf7TlfmtSm8XNv5W/Wm/XPyvrcBaq97lTdF5e4llTFTQR0T3oBaI5jEty9iPlLPUn0MXkXdy2amzcCzkXsqvRqPlLv3nEsc/c0jdTpvS5sxMB2NzHEyHtf/jKfPP2U+bDjfDXSW2MVEqJGswIBJtsgZoRBWK28a7UeN5ycXII4cqTWO1Qrh1YJozAwMBdBi3cca2lLwtAygjE/OTsStmPJY0+RQCAQTUjmSTjaGkPMztkUqIhvyKHTasXET9BR7WfauegvtX3dcWyZSQOpjE4E0EBeKcQZJbpmKUDKGe0JIXq+e7CfabPw9JSQA5AwDdRavUhMvuGqCV06tSsWwXSgq/n3EpJHYJrnQof7oAERYuj04PnVSYQh3CelFGqZqa2y5DX434GzScNCIgiCZ8CbkCSTxU109tphvaC8zPzeIWAxLYD6xSRgbkSoc3e4eugcqnNMr842DNmRUMFgk0fyeMZmGEGNIcCXv/SYtx5dkVbJCw8C+XTNarVCVRiHNV/76jfI8ZS7mwPPPntCmSrHWtHBGFdueqj1wFSUqQjDPHG2VlJvRBNiN8puh2xGhM6kvtHPdQ/AVA5MfcD6hPUINjoZohtKR9ryDFrHqhBViGavTT3yOo/bpRdiblqEe/6pN/IbC71g+Vo1v9YdWVBTiSiZq6srTk8y2AG0UWfluKuUo9K7MptRU8Ji4m6eOUyNICeLREQwLUTBpQa90ltBUvaM9zwQ0vJZqmuSFUDW9C6LWUSYpspuf2C3LWzvDuwOE5ITV4/POLtYsS8viGvX1m4/u2N+eUmrd/Q4s0nnbNYnaPFQkbvnr9jvJhgbE4bZSLKILeDTTkVJdHNdtMTlexP1f4J3/pfRrZkiTWg2+8HAEhIaWmakOXavto7EyPnFOcN6IA8brs4fMvbGVAyTfB8GBBZYjRv209ERcRgnpxtqV3bXdwwxgnWGceHeJuixUfuG9977EsfW2F7vme52Hi7SveTaTXdcPNw4HD4HxjywOTnh1fUram2M48BmNXLcHUgycnHykFfbl8wHJYfMEIzL83OGYaC2ii3TtLPTM757c021xqNHb5E3q4UY0tnvj5y1e69Cwlpnf3vDgwShVY7ba4bqGlXtM9pXIIN7GGLm5PIRX/zat3jw9vtMWolBmadbdtsbD50QmOuMBS9QLcaFTOF8XYfZOhM6hsSQR7/Xa/Rnqwm1z+Tk+1O3BsGlRa0VbrZ3aEo8F+W8rcg0fuf3vsf5+oSXL3ZsNmvnE+dhmQx65LUsaW0QCckRbsnE41PN32Udo0cgrYjSMZlpdKoZ3WY3VUmkGsylwaTUrsRoDOsVLAf/IY2v9+X+T+zPb9ab9fOyPr8G9d4lKGEpeu6NDQ6nD4uJJsRIK8Uh2L173OLSjejYUsQmYvbCEOQ1bBjcGNRVKbXS+z0rTokhMAwjDUEYPN99OnByesHJ8ciuNSR54aQIMUGwSKczbtasxzUEQ67dgZpXa9Ynp5xfXTLmRErvsr17zrPPAtN+okyVuVbPvbeNm3PEO4baA00KpEpKnd5dU1rFMPHNVhRGiyTWNApo8M0vCXOHhjIjPl5MgZzWiMCsFZPKegiMMbJqByQnekwUCps0uOYtLIDzbq6JXDq5MSR/SWr1ayADupi06A7A7F0xVVLEhVkYRnEUla6IAik0FCPGDLh+eBhOiGZEjaS8guzwdTUc7yP3ZVBAJVLCQO+Tj2+T43tsCSdwAoC8LkARcSh+DATp9NagH4lUL3yTF6O9DJgOYKPjpvAiL0ghMhCbMKTR9YvaqC0yz5lA9JjSJASt7q7VgUFXbFLl7cen5FVb5BsrhjEvaC8IsVP6nmjwtW98kXfe+y/zh7//x/zu7/wjdPuUsFHyEEi2QsIlphNC5vzBmvNTmJ9P1IPSVLG2hf1MDBGri/HwvvCsQDHUun8tQtNKVcO9f0vHqW+p5iBvrJHiAvKUgt0fTnxe70WULLIKAhKj46+W4l7MlsmAf3YxjgQG1uOazTqjbUe3LRFhdzdzd31kX4zboxv+NnFPDpFYOlkGWjilsXJKAwJS/O+JBkSCRu9Aul+eYPhFjtHv54UnrOIj0H0v7A47jtsDoTbWgxA2kfOTgfNxJPVzpEG0yG7buX1RWZ8ETh4JcVRq29OB9bjm2dNbxJIHBoTKVI6cBp+2ACxEZ09SE10KCo81sODuak+PXe571dfuLpOANsOGhuWAhAG6cJw6j976At/4xW9hw8hqtSKGwN31ltvdDauHl5xdPATgME1uBIxCWg3kOBAkIHTaceZ6LqxU2R07bwOkyFQKVw+/QSfzk5/8lPXqlKuzUz6tlbvbWzeYBY/FbKVjUYjjwHa/Z3eYkZi4vLxkXI+8evWChw8uSXnmsH9JECWHAUuV1eWKk7Mz7rZ7HvVHAGz3MzsbOT19wPnFA3IaMTOuX90y1yOE5cAUlefPPiOLcXk+YHcvSHkmLUi6HBMhJmgCQ6Sq8ej9d3j0pbf40Sff43d+93f49Kc/pU8TmDqdRAMWlBmDmD2shM4QE6EZ0huqM6RAEHfNB/FIX9MVRiKmTKCyZMgtxjtH7Y3RGEdldbJC+gTdeP7JZ1xrYpVX/o4f8aARU2L2jixx6aRirktFyCH4M6hOuCGYy5/EjVF+NFTiKhOkY6FSrfBqd6CUThyF1fqUtEoMq8wwXnIsE7KfPPYbnwi+WW/Wz9v63AVqu+eshbQYK8DuOacoWF7y2huGm2haV3IGZ5eCtkYIP0uwySktxVOliY8yoggpQA8e8ZaCm6qSOMQ4SiDnNSlv2N4Z1zcvOVmfMuY9VT27XLsuovWBMQtt7wWUpMDJqY/4x/Wa1dkaSSAx8ODBY4RIDqfMU+H61R13258w394w14ZnmCu1d49vxTsoXTumbgzyF5NHf5ofyx2jFBItBqoJPWRmK7TXiBGPP7UakLAmWFgwVZDoJDPKrnMgkTYZWwdHLfVADgPjEJHQHOOlnRA6MURUFvfz60x285GldE9Xid4N1r4Y2whEMQID1oQohdSBEFGE1jubdcYWlFYQB9x31Lt7RKIGv6FMqZrRFmhl6VCJj3BDCo6tCk5MYBlH2/I/rHkHUSOB5KanrrRuIEbFfOOzmSjZie744UjwFKUQE2PKBDqBTG8BTRHySJAAeqQ333SsJ9arNY8evMVmc+bmKUnEsCSfWfUiWtyIcSxbNqdn/Oaf/7NcPTrnP/n7/xHPbz5BxHOzx9UK65EhjYRgtNoWPFdgqko0JWlDo7x2Q2v38VxXpbUDPXaKQLPOFCbmRR7R8lLQhqWLZ1783XdRzDykIbEUg4SlO6iYeMK8aVgc9d1ZqQuP1wAsohohBlqtjNkYU4Np5uWLA599dse+dvYaqWRyaIzWGIOwSoljVbolmjoUXxfkD2YOTR/8M+3TkiJlzpz1g593DJtVqs0UKchJ4uLkhPOzjF5l9DBTemBC0P0du+stdEe+1cm4ileM73XyxSnrq8BqMEovjJsVT+9uePLqOXkQlyeaIX2GuKIvhJLeQCyhXahmqATSchj0VEkPcTAU6x73G0NaZBKQrXuAhRU3SvbE2eO3+Op3fpn1xRX71pjLzIvtls9+8mPOrs45z5FH5qf/RuVY9oAyZO9G9iJEi1ydj/z+3/sdPkvCN77z6/evYt59/JjT8wv+we/8Hp988pQvf+nLrFNGe+XVixfEGNls1gzjmn317vhcCgTPOQsxMazW7OeZSmM8TWwPz4EjpycjF+sLJF6wPdy5pEYrmxMvhg7TnuHilLOTDUFgtVoxzzOHeWaq1Y1lQDkUnr685Ze+9A7SG9vdjt6UUpbwj6b0PjO1xsSah29/mTic8B/9rb/N7/3B71EOR1YpY9WYjoVuaWkENEBdQ5rcnNY1LBzbSDfnO3PPtY3Le8YUonNRa/MD8DhEwuDvoyzGJidyDoyiDKsE1diENdEGj5Cu1eVqRd1dKyMhsox8lphedfqwZECgo4t+378j0+bvLRkRyc7VTStIK6wHshWXLCgk7YQ6cywHSvL0wBQUWQ6nKd3vqm/Wm/Xzs/6pldW2RBSCv6hV3Yih3Y0PqiCSfFSdIlWL//vF4Z9SdC5mwHFM2sE6TSvRIqtl7Cop+C+1hVPpm2lOA0NI5EEI55dsDz5uqQ+N3byl9sp+u3ONj4J1YbMZ2OQTDnVG8GJAMTYnp2zONnz8k4857CcuTx8gIZCHztnZQEhPiANQi/MzUWqdfUQZMllOPJiARvLBKbbA9at1epyhFzQaE0qVADQQJdhEko7JkdYC0iLrtMZkQLoS50oSwWRDnQI1b7DhhN6SY3RyhjSAGkEyRiOG4FgeFAlCIEPIfgiw6l1sVU9bQRFPZYcgiJySEaARU2NoCeuJ1pUu3mXLcRkTS3RnNYYFjwiNmgjmAQNUo1ejFCgNmgnNFME8F34Z6weR1znUaq6F1AUx00moRLCEWsDaGguVpg2LSpBCCoYukURNElX8wNREuRyyD7Y7Hl8aoJSCWXAEZzZCCqQDrM4eMazfIsQzQvLCr7ZCTELrHpBQqnnsbsz0fuT8/IzvfPvXuHz4Bf7x7/9Dfvrhn5BiQXVLaYUhDKhGzAZyMno4OEfTRqoZJvo6wKgukpmJiRYVs5HelGZGrY3aKwToi9Y02gVDNKa2dTd+y6+voXVzdiIBUe++mfi/67JEuy6jxvtjAa+H/d4NFFN6nbk8XXMyRA67zvXNlu3BC2tpnZMU6IdGt0BaX3J6dcL2eERrgeT3QYqAZbQHJxvgqVISQAgOyXfhx4KiMnrHJ6TiIRkoJALjyZqYhDJBrtAlE5LzihEhnQ20umcvN0zJCOnU8Xe1EOIZn14/5aYe2MQVEcixMwSY+pHpnlDS1JFsy0FZgsdOdAWWmNb7brOpj89VlBCjh5OEzmjKKN5dHU4v+Oov/xLjOw9oMSEdXr58QZwnvvKVLxKGzAcffsjjfALAMCZezjvSOLq+ce5cnlxyd33DW48f8/Ltt/jtv/t3eOe/8F8B4PLyMa/iKaqd29sD89QwC5RSCCFwc7Ol9U5rnVaV+dgYh8xuv+X0/JyYIqdnJ6zWA8dj59HDt8hxzXY3g0VOTzZsxo0zWFdLsb/acBH9HVrKRB6Vq4drTk8yKQq308S0n6jHzsNL77QeDkc268zbD8+5+/QTpjnS6pooq/tdhWM5IimzWW2Iec0f/v73+fHHTzAZWC8RylOZCWEF0qFVb1aghCw8evsBaRh59eKOw77RQvSpjXjc7az3gREdSQ21I6XsiTEzhEATwByDNuRTxryGUKEbq9UGiebhLSHR5+ZM1VBA3ZhYdPAZhbZlv3L+cw8+HbJFbpUkvH42DW8mwACWaFUwaYRYCMPI2xcnHHdHp5zMFT1syXEkj8YwZPqqk5dDwJsB/5v187g+d4Ga7r+0t4Vtiud+N++O3eOkRO41qkII4qNaUwcVR9egphR9PFPLwsL0zmOTthQszq0chog0Q6SToj/E3YxefXONacXF1bvMhy05rRi0U9otZkYOAymAiHASNwSNjGFczBeQw0BlYL8r3N4d6CWQ5EidGzc31+z3d5yebuj9nKaF3uYFgeKdqiCBKIluEa1uapHuAG5VT+FBGhJtMR5V1ADzDrTqgWaTm4pCJNDooS7i+UBTH8HGKIxpRTFl6h5tmbJrALUNFE2kJKTgOfJ9GbnHOEJMPn63hql3G2L04kiMhbUHIUZYCk60kdQ1k0p5zbGV0Ai9LLnRbghJpMWYoEQiNM+ZLq0yt04z764SnG4A5qOu+3FyWNBXuHQCCYtOslH14H9HDAw5E+JAN0OCc1Ajw9InlOX+zEQ2BDHvpGCsh4TOlVp8RJ1TRmVwvStL4pcpp1dnaGgUK7iNSx1F06HOM+v1GTkukO0lVWt/2DEk5b13v8w4nnJ1csIPfvB7zIc9MZ2iKkv0bKLORi2uNdYO53c7VjQeHL1Evdy7WerhzZ5Q64LJcV3ZVDq1epH5xaXj9IXtluOQ2dVK0cb7zbsnXy8HVDOvYubT4KlTLvRePm9/aj3JS/vPdjW771/7Z32cKlfrDZmATsbhdmaePZ0qaiK2PeMQmEOltsxhblyodxt7qcgoNJ0IkhHLCHEpSp1s6dIEf08EnCIgydzM0oXebTF3BfKSeU8Q+uDfazJbhvEJQqZXYz8pWMJWpz5qbUaVxmozUErl048/BUvU6gYxp0go1o26TIdq79QlZCQEN9sF9ZhnU4jBC0BZpBNNhS7gxr2M5xj5pGi12vDVb32b83fe5TgkovjPddhPbMT49T/7m3z3u3/C/vaOp8VB/drVqRNJuD0emQ6Vq4srWlO+9bXf5PbDl1y/u+Xs9D0AfvzBK170O77xG19nSInjcWa3O3Cyiaw2Gw6HCbXAkFcMMnJ1esWrV08QKwTr7LY3nJ+dE6RTDlsuTs+ZDxPzsbLZnBEkUHqjlEYtjZvtLadnp6yHxfwkwuOHD7h6dMGQR2qbOez23N1sOT895fHVOQCHw5aH732FUu441ms6M0UrkpfIbFmzGp1sMlnnxz/5E5483xLCGgjUeWIula59MXopKZq/c9Q4P1vzzluPCCnRijLPW8rRI1GHMaMi1FJoWkGEITvzVi14sAnQeyUEYcgnrNNIDok4wGmMdO0k8dmYSiOOhtRK6ZVxdFnK7FA10oJ9GsSnP00FrT7xwAwNaUEMeryv5OaTDBQNBtKRNCPDTIzKEAvdOn0W2pRdc6vQW6btZvrsT3Xob1z8b9bP3/rcd7W83t4a97lHQYHuZijEDRHdvAUSQkS1E1OgN9eQhiBM8+zj8O5pRrXN0Bo5ZQxjXzrDMPgGkbIbfygcp0YiITERgkdfSsycXlz5ybVX4qJ3NJGlSxQZ0uBxiFUZh+G+tmYY1rw6dsKYee+99ynHmel4pNTqXTgt1DYTQqDMSqkzptVHuTkTCPR28G20d6w7JFpSx6YZ00YKeZE8eIc1hORxixgmnWqVZMNrXW+3CcPblNHVSvQwEGNiUuFwVM5zIOU10jNN8bHUAjzX5vq9IY3EuEZipGnxE7u4KUrUFiNMJErFFI9hCn3Ru43QM1YKFgo5CrIM8kNgSSjqmGSCxEXO4OYAY3GEp0RcOTapm3qBKt65zUtJeV8wNXV5AjF5zGTAE540uSZVOlk6oSvWvJsqRFIKhO6RlgDJAqkP5GCeAmZKiAMh+aEpJy9cWTSPzbIzUjVwcbUhrSYsQdNMsEwKQmuVnAJGA/MNrPeJNPjm09ue7bbx4PKcv/jnfpPz9Yq/+bd/h3l+ydRuOFl7d00lklPEdOLhfOB/9Ud/zHhvNAT+6sc/BuC//90PPtez+D/79P/91/1v71xfvRfhtx7+Ah8vMgysLaPNgEhyScC9mSQ4ikwwUKNqIVni4vyE0/Up9ECWwVN+tFIrhCGST0BDhxk6R168rKzSBbfbc8ZBiDITk/iIP0COrr+T1pCQYCn6DHOJQce1eblDX0DBvaFaMTrdOqWLd1Wto0w0bZQCtMBcEjIkgibG3JCx03SPxcyL53vurg8Mtka6uaxHIrV5zOrrSj26GEnpiPoI3LobhUSMKB20o91cwmROrnAgu9H3iiR48PCKh299gdOrt2iWkLBmGNYkjcQ4MObI9vqOz548ZUiJ9fJuDQhDChwOO8wcr+X67chqlcjB+MZXvsTNs6dcAZ89fc7d5R3Pbj/j8uySafqATz59whfefUBIkemwp3bj6tEDzs8uePrJE14+e8577z9GrLEZEo8eXDIdDmRgjJHb3TWmxSU1cXBzUamU+ciYE++/90UOP/L7NVrk/S+8jyQ37WC4N2C/46vvfwEtfvBqZeLRgwv2+ycQ9hResCt37rAHeh1pdYOmztOXn/Hi7iV5GJnmO1pP6KzU3ghDIo/eeSxTR0ik4ZS02jBVpU87VjlydboiWWeuhdRcox5jRPH3f2wgQdjIKa1PZAExJVkii2L1SLOJvEq0ZgxDgCDklHzqhXCSM4epUtueIANdojP3qah1uvmEIKeB2J2eETRgMqKSEblnm3qzRbUT4hpVfydZCaCFMGxo5UBaB+Ig3N09pZYjFxcXnGxOyPPCQdXj53p3vFlv1j9L63MXqP2efReDFzTgHDcCtbu2JmaotWLWCNFoy8lTRKC6Mz+nzDBkmnWPbAt4LF1tiEAzN4lIr6RhTRg3JNlAnOlM5DRgJCZVpDckBU4vzilhz+FFYZON9WZDOTY2J6c0UebqgOaCslk5ZLotncVBIpvTC+Zx5uXLp/Q+oWXP9tVL9oc9d7e3lOOOLA45t7roJ1NHwpE6GbUGOs4pzSEQg5CWl3ayDDlTrS4aWU8JERJJN170aCSGU7R50Klq97SmQTxFanbqQQrK1BpFMzrNjONAwjWixSIhZFQb0SJZ3clOFOKin4whoCF7QJRbkhd9qpJyWJz2GbNA1U4cVksXVGhSfTwlgWRCqQVLIylFRyIhWIXACN3Hk6aJZiOWElFnVCotuGJyCIZZ9YJzyUBf7Fh0ByCR48pRMM17ac4XNPKYCC4GRBcfRtM9Ej0uMcaRmBO9bUiSEbkjB9BaaLWgKRPWglpBY+fy0WPaAgF3bVint0TtCsGISRjCADbQrTk+KTQsZMQOHLZ78pj5xi99i+ubmb//27/Nrg5ezDHT5xukOZh9UyujKv/rr3+RY4d//ccf8++++3X+e59+wL/1p36F7YNHkIy5Fg77A1orOndizLy1vebf+PBj/udffI/vBwEZUBXen7b828+f8T948AgT+HdevuCBVD5KgmgkWFp0b65Jvk9tYpHBiARCCGCun16v1qzXA6UeuTsae21IzkifyCGTJbEJyrha8bJDyCccj42XNxMfXc+cnhvn40yrIymNpCB02wERlcpo3qHvCUptTvewTu+OfDNmdzc7j24B+ePTiKFRbaYejyhHR2PlDSYDw2aFjZUejGwQ0xmkMz568kdE7Z6Elg2z4iSMcOoXYqlPJbjBJS1abe1umGn4obnN+XUKHhZoahSEuUJTAxk4Hjr54TmX4zmtG6LKfJw51gKTcr65ZAid733/+zw4u+Tdd9+n/MHvAS5lTHFF3zsB4Ox0Q6CTgnE4PuOdd0+4ff4Bv/+P/m/8ZTzC9+XxFeNPPyLHzCpm2n5iuj0gtrA5S2eVR6bpwNMnT9gMK9abE3bHA6frDTkG7vrMuPYIzd6VYInYAzklkE4TaAqrcc3pesPx6Pnv55cXDKsN+/kVMQZ6axwmpZB5+O7bHL7vfN88bLDY6W1i3u5gV4m1Yzi9osROCSNPXjxjuy2MXDBNM108BKUHGMfIMCQIjeOxYLYCMr3DtD/SpgORAYIX9Wk0LGZ6q1gzBrwJUDFCih4eo0qOjkELlkg5sEoDm7BhCIFpe2B9dQkpMo4e1xww3O+UGBmdPNPUD2O4NE3Nu60xDpgkWvQAkrzECyNCSUbTmbQgHMwSvQzEeApxDaMAE6bGMJ7SmOm2ZyNGYuPRy2eZfOfylPwG1P9m/Ryuz4+ZWkbjpSkp+O/DkClWF4NNomn3+M+QaaURokfGWetEGVBTNuO4pDI1H3vhBUFavrb1Bj1grbEiITgqSmJkHCK1FExnwGkB42ogJuVqsyY+eIvntaKhOGooQ5LBmZCLazwNPlYqpSBBWJ+uGFNkdzwyHfZM2z37253/2m/pUyH3QGsN6d4tdFF/hegvTxmFpAEpkVYCfRlTiuEbYHOdXyI7Tko2mHXKYg6zJWLUo0y79yR1IOmaTe7MxU1CJQa2pXFSK5sx0suEhQ2pCmOC1VqIaUQYnbQilajqnFlJCEZKiTw6uqhXL7pVvZtL8E26i8detq7L4CpgnuPqnXQ3XaNMhJQWuQEo0ckH1pEh0UP2kXyDgBfCHYMlCjD0jIpzIy0KujhgWQqFRkDaCiFhqSFhB9IxHZciti4uWJDosbQkRZKR03qBFhiJ4WdYMAylAitqF64evsPZ5WPmCQLGZn2KWaNOR2JKjKvMkAO1zeQcGNISZ2huZAuhU/vE8dBZjZd8+9tf5+bmhh/88HuYHBGdaEtikrM1fUP66eaErXpl9OTqMXz6AeVP/wUe/cXfAtnSGxx2E/u7LXevntPqxPThT+DDj7n+0rvcXFzSSmR/2DNuIzx/xsfnF+wn7xgZtuDHkssmzJZDWQBzjA34ZES8xY1a90CNINxsj/zop09563LFZpVJKXB6EmhHOHRhz8j5xQWXq8b17YzkyE1plAoxnZBipLdK1T1hYdOWVryww41cYZGlBBOkg/VCl06Ii1t+FFCht+qMXIMUhTBmVvmMYBuiBGwxZqlGLAY6ggQlr0/54KOXfPLpDmwguEh6kZUoeYQU4kKfgDEJQxDWOZHFTZo5Zdcgt05rnrRlDWpTpq7UFGkBTw1KiaKnvNyf87A9ZD8lpN0ynp8wrF1ulFYDbW7U2vnmt79O3Gz45IPvAbA+OWVenbI/VEwiF5cPEBPqzZY/+eFzdDvwrT/1L/Cj//N/AEArRj0Wnnz4Ce++9Q6SYTrueHVbGfKABKP0idJmXvzkmjJNPHx8Rs6Rtp25PD+l1JlpmsjjhrvDHRLgdLP294KoU1VaAVXefvw2x/1Mu/UC9eL8gmIV0RWicDqs2L18waOzM1bD6Ac84K2HD9lOjbKfyQ1iWNF0v5icoFnh6cvP2B5mRFa01jxhKSr0yioNpJiIMXhUc1BCdpZwNIEa0O687dYnJBZiUNQaOQyEISKWaOIpcKrVfQAR0hBJEhmz02ZiSOQkiBlnJxtEm5t0SS45kUCIioVGFqM1pcW47DGO04uyQkLCRGjdFpTiwmfV6DpnC2iAJt3Tr7SDzsRFShSC6+c98aox5ISEh9R0CSjDerWor8blOX4z4n+zfv7W5y9Q+32SVHz9e5rzDYWIMaDd40TvYez3sP2YErUpMUZiSmgpRIQhDago3WbP4yaSgjMZ57ly0ANxboxhYH2y8ozuIPTeMStM0wGRkXBsDKsNVyePkCtF0szN7hW7qZKHNU0VF4sZw5K4cTzsOOzuOFtnjnGize7qPu4mdjdb2lQpU3O9q5k7rFUwl9nTgSCRHju1VnqtIAPkkS7B0Vn6sw5zM0WiFwdCxEJ284+f6d1iFc01lNFlE1oDg3lm/PFQEeuscmLXK5gxRCPLRI4rkOZsyzi4EUwUs5m+MCYdYC9ITyQRUjDIzv9rUji2JYqUiaJGxyNAHScorvcyeY3bQoxxnVEzRyYFAVGadJo1tvOeHh0vFJorHy1l/xhCIIp3Ghx36+zbJBCjOB1CwzKBNroUkhSg+D3VE5J06a4uDmzpaKrElAjrRB4ibT6QU2ZzsnKTS+sQC6jR9UDrhbPNQ05P1pQlyABR5nJERCi9ky0Rl4QYr/od45Tu3V3mxXdtlWIHVqsVv/wrv0RtB569+AgrHXJEWyGokReDiVh2YgDu0AVod4Xjqy1vPRoZV6f0HNHTyvHyAdoPbJbi9ptf/Qp6dcVWBw67Oy4/9mtwenHKvFwPpaC4rMYQT9dSdz6HsPysLspYtLKG0ojRwfWvDluO5cjdrfDNr73N5nxFD0fmXtGeaS0RZeThCMiOEgOzRa4PlbtZyMDpesB6ZzpsF8RPJOYVTTpdjGSdaJHaZnr3mb9EI5gj6lS683hJTvNQ7+CHVSAlTzoSoHWnYjTzIAxrRhPlZrvl97/3Ew4aGFMk05FFApJCJIVAjoGc7nXpxumQGSQiFsiS0O7Yo26JLurXsysm+GE3uWRiMrijgK3oxXg4F85UGOYt9uo5t6ExNSMNF8QwMl5eYDFxu9tx+eDKP7MOw7Aip5Hd8UiZO+M4AoE/+eATvvPVX6CmFU+ufTRea+W43dLnmae1s04Dc99TptkTwrRjrbG9vWY+VlQbZ2cn1OL/f04rjtNMkkyKmUM7kqIwzxMhBnf374/s724R4OTklLvbPcn8YHVxdclH88TxOHO2OaW1zt32jm/84jcQNaadc04HUdpxC3UitorNhbNxRZ7cJLUrRyZbodFDJLoFagM0ECwSQ/fEvVrYTYXehRwbY6huug0DWAYJDKNLco6lkVIkW0TwQ3SISog+uXGbbEM1Ewfvnor5YSWEhvSOMLBaDcQItRbnNK8GUowYjRDMp1ItMLdGl0aw6LG7JqQkrIbkUby90ylLsEkki1v5i3asVswiMQhBj2gpBBOG4BKA3gRiIspAjCNNoepAq5XWV8u98AbU/2b9/K3Pr0FdUCxjGGjd9S5BldMUMRH2ZV4e2vsixvwkLC7+Vw2sV47oQPHOBIH0GtZu5CQcpoMbp2L0JKJ68M3WCqFmhjGTsyOMVsOJ+6+qcZyV1UpYjeecnDnvrrUbUgxkgbm69jMtkxCdZp59+FN2n33GeHpCSgM6KYe7I4ftRK1KLcbcCtUOTNroPWKSEFkBI9qF1ublpTpD6rTQqAQ0zgx0evdUqW7d3fLqcG6TSAu+UauaF4pWCTQGMoP1xVBkjuPqldKU/axc7wrIyMV6IFpjnRujQLSK1O78GTIpZUJyfqP2Tm8+NhVz8L5JBRopKikYAUVDI1ojZENac6YgkRD98KC6uN/z4KEJ1iBA625k0FiJgxKaOgNVnWVrCCaDG2KaLLrUunREBesZE++oIvPyvQkWFxNB9AJTQmKB7hJSek1lCBJIOZMWY9hctyRR8rhhGDNlalRtJIE0ZGrZklLi7PyUcfRRebDGfNxRe+VkdYIJdK1s9zOb8ZQcRswCrTb6gh6DQIgnDGmNameaZh49uuRXf/U7fO+7hVfPGsfgKCVew/FBLTIsgPg/8/ITAL79O/8I/eRjHjy8IueBFPNCr2iYNVYvXGP6p3/yhAfXO/72L34buzhnde3otCGPS0EDRvHnUJdu6YIau8eNhcW0IQuP1DDnz5YZlUjMG9osiGWeX9/y8MGKMGTG1IjDmmOLpKacjkK+WvPs1Z6mxrbecZgvuVwNzKVDKyRx86DEjJZOS+LSEzOqdlovLkGIga4RkcF1p7hQOYVEVCOF6AlpKrTJaL3QdV6iW6OPhNtMCJE8XPAHf/gnPL85kIcR02kx64kb74aBVU5kgdVyaNikzCokgjlWihBRXQgTgISC4PeEWw7VD1wpkYZMzgNzF64Pdzx5Fnn38jGbeGT79CM+vXtOiRGJl7z7hV/kvfe/xKSNthTp4JOkMh8xjNPNiTNs8efXkvH73/0T7m7uOFk8APO8Yz08xqxwuL1xTB6dPk3sDntaddPjYX/NcSqMp2vWp6e8ePmUyAgaKMfK+eacgPnUa0iMJwMpRaeFtA4WePDwEhHY7u94vFrQbmLc7XcMOZJPMjfXO5qA5IG721vyYv4TqZR5JgXPm+8pcChC9GY/t4dCXa9poTPVA13DEhCSGHJGxX0Lraqzi8NIpJDSxJA7ywcLFjCriHQ2acQWJb8xY9GQKAwhojLStSxG0QQopUyMYU0IigTjdDMAwqyVzZAJSUiihFip1lErRFl03dE13MGiT5OYvcFAoGslBxBrxOAUG5WI9uoYuODm0bDgFM0UNC4H4sHfnQpafE+R7CmGUylgnbJo8LvOn3crf7PerH9m1ucuUO/ppb3OP+OgmqJa6KrEZezpI2B/oWtwFuLxMHG6uSSGkVKax3ySWTjYxOiAI4mQ80BYJAStNaRW0Mphmolt4HCMXF08IDFwsjqllIKmTplnpmnGUGy9YT28zeXJyFQLTSZYOkVWl2++NfY3NxxVCcOazeoMVeFwNzHPldqU2qH0zLGuaa0t0ZCQQnVzUO+kLmQGGo2pV6q2JVEGT9SShc9pzd371sEqEgZkcGOBLMlTvSS6+jUz8XQcH7t7QoqaMk3KAeFkiMwS6WFAY4aUiUn8hbzoeKem9Nbdl64d7YUY3LWvNDc70UmDa6+QQFvSliT6y14XpiD4+F9iIg6JECNT83Hp8bj3z3UI3gGv6s3OuUDzjUYX89SAkFonq1LFuacR/3NRBqR3L5KDEZN3yFB5nSzFYqpJZKIF4jImFLJ7vkMiSWZImfUAY/JNKiYYJaKtoU2JdspU4fLyfZBTcgIsUKaZFBK9daZSqfVIykYdC+uhEiSSc1xwactorvn10sUkgh15++0rbm8e8/yTn9DNi5wkAVvGnk3dbAYuVAC4tcyhJXYH2KyEcWWkGCAMCCMnyfmT1RJnUyPXhvVIDCevH+dxSRlKwbXCGEvYQHD3sHnKGyz/HnktRYkE7zCJm4BqU7baeXZ9pHXh4YPH/Na/8Et87Zd+lZOzB9Tbl1i5Y6oTP/rJh/zoJz/mbjoyrJR5PpBSwDHIHdQ4Hq+RGOg5ITGTw4puCb3v3kqkmqDGctCVJcMhuOa4d//8FtmOIMtoNdJbYOoT2ACs+fCne77/w1tMRnpXhnGk24wBOSwHrhTYRGFV7xO6Am3uhCDIwotVcYNMrZUglZwTKUVCg0JEg8c165i9A9xmbK7cPFFergcev7/h4vSMu+kp1o+EkLg4jWgvPH58xVQKt8WLjP3+4Bry4KEOrcLpo4dO8hjhxcs7J3Ck++/XM9+7BQxjOh4B5Tgfaa1RC8y1ETMca+Xq8TvspsJuO/PuO++SY8TakZPVhu1u4nA4kodzch6IUZj3E3WuqBmnZxdM7ch2uuWLJy6TmlvzYtISElb0viMNXpzaek06ulehWacV0Fm4vp6ZjsahK19ccop7SBxKY+7ujK/NCJIYxhELRmVgLtALDDGRYyJFIcZAlOqFIs71DRTQgoG/v62hYp7cpwu9gQzm75y0GB87Ss5KbZVjNXJWkjgXW6yDFUJwWkkQD4MRiWgS5xEHHOumnd62zjYOa9/TBKIoKcNggahKREhq5JyJ0XXhWqG3TlTX0WpYEKvB8EhDx1g1F467t2MpUL0r/Ga9WT9f6/N3UJcJwqyNMfsfs+j8OAuQs6COAvXxdghgUEqFEAkx05qh3bVxrTVSThDcoGHLhp3GkYRHgAYRR1MVRYu5Q78r25tbhjwS48AwrAiD+UZoSq+w3ykhrFjnRwTbckfxzSaF18xJUiAPkTAVeqkc6pZSlf20Y3c8cJwLpRmlR+o8YJYQ8U5jkoZYx0wxja5Ls0y2SBOhmkCF3oQQ7zdSQ/qC5hKBrAzhHtK+SCLSCu3OiFWt1H6kRFgliMmwqjTtzCUwF2hD4tgiuS6xmERCrlhoKAdQT5JylpQ7SZVG7QXIpDgiwQ8UKaQlTahjUjENpCRoCpgKZTEMvc6t7or1grYJCUYeAq0atShahV4TmdFRPvk+fczNMdYnFIUoSPfNIpoSOQIB6ycEljx3jpgVVAVsIIa8dFAD1hNwr8HKxJCJ4uNbdGSd1pyuRyJGsQOl3iEowzByuC2cXzziF7/za/SYmObJv3Y90lpnv98zl864CqxXyU1WesAkYDXRdUBkWrSeEemOU4pxwHRmyCve+8L7fPTDH/Hi6Qs0dEYRsvj0IaVAWfBQdWG51jRw3ROHXeNMAuugSBRMHPTfF7D/UQN1bkxHpWikuCTQE3b6PXZrJJNem6BEMkv0mDv2F6C4As4/8w3PunN2Q8SDF+Kap8+2RFnxN/61/xG/8Ru/wnh+4XzJaY9pZZqOtH7k5voZH370A+rtLZ/+4AfU40RoDe2VnCJD6GznLXoUoo6kQdCwQsnewY5GD50WJnIOHoeL44wIoL2h6klPrXcIjY7fy52MEVECu6Py937ve1QLiHTyMrZOITHmTEgD93HFIvG1fs+HHANBRopVFEdSqScKYE2w6GSCmAKJTFuSsXJTLqKiw0zIxuOzKy5POtDI6xMePrjgUlwzLn3i1cvnPPn0E956+y3a7N2vw3Qk4QeEcRw4Pb0kpczhMHM8NqapuslteYdlMod992AFC1jcYClgtVJ7ZLs7eicyGRIGQl5zc3ckpoH1euRwuGNcQUyd3e4OMyFIZrfzrHfrRi+dMW9YrdZsD7eEHLkYL/yZW1jGpiueP72j7gqpFj78wQ959Na7XB79/r69PvCpFV7+9EO2d9cwjJxeXXBcInpt4TLfp8xpV8iCxkYXhbB2Csu4JqeG2ESOmSgr1yYnI6QOogwhoK1Ty0yUwCijG9jCYgzsgRAHhORytTYxlc44LPeALAWzBk7GFVKEAcgJVkHIpgQSik+hwjjQ8KhndPAo69ApRVEzzBKH1hBThg61NZIEchyI4jr/GJdpUAxO2LBA7IlpPhBCJWUjhEhgQEugaiUNrm2V5Z0Q2+fdyd+sN+ufnfW5C9TS7k9oRlnG/S4T8g5bU08T0m4eCajmI9kG4zCgGKVVF4tLpDV3tKckmDpjUaIr4Xpz88s4JrT7JhNSpnffRGuZmNWjOTdnZwxhQOgMORHFKK1gXQjSGVIix4GqM31qtPsOFh0kUuvEPE3MDY5zZz8d2R/3tB7omuil0evRN/norucugjNZHUgu2hd9ojjXsTWaBmJco1JopswaXXcbE9EC9AgpspaI6kxrE2oZtcX5KYUkjZATzQraOwHxsX3OHArYbibKRIyRQFmMOI7O6ebQZ6Fh3aA311YFXRymGYkerSd0giS6KsGWQ0EXVNIy4vRBmSyJOWbOj0wdytSxBthA7QULcYn460y1cKzdNxkxwtLdDCl6PKslgo1+Pe7NS5bA1mjNVJshFEKYgEyUTArDokNuy/fkJ6cUPZ5TxJ3X3SqlRErIrNPAEEd6ws13aSRfbTh75xEP3rngZm4MqUJoBFXmecdhv2N9cs7FxTkxduf/Lkx7N47oMi6HGIeFc9gRcW5nb8LZ2SO++c0/xbPnt7w8fILO81IM+qGO+4H/0tQX6fz5v/5f5Tf+a/8lHrz/BSQE/r3/8b/Bkz/4E0yU1eSu5+M8sRdhv+0cCRwP3kXx5M17HFxE1MfVC8lmYQyryyiCj9lVZeH6imutCcQwYs1exws/efaUf/Wv/3X+7J/7Tdpxz+7mFo22KM8jppn1emA1Zt754heYb65pv/IbfPrJx7z45Ck3z57x6vozGtH11dsjzJWpbP2aSyaESBOlSiEMipLIumaQvMhgFhyZLHxd89jcpqBaqBSQjMY1/8k//Ed8cvOSvF6Te/eAgxQxHf1QY5neO1UaRYS6SOrpzq1tPVCbLYVfxRbaRc4nrommvZ4WjcEjWqUbFzGwuYicX41cnq/YrJqHS4TMMJ7ReqOY0VVYnV7xH//93+aLX3yXxwsqaFidkTbnaEjcbXcMY+Plq1tu7w5c3zVKSdR24Lz6O8xUKLPSY6ct7NXWFOmJXhvzsZFjRIuyOhs4HO7QVnnr6pxhFbnZzqQY2e4O3G63yKKLr9VlWK00sMDpyamPmTXw+OE7nFUvqIeUWY+Z67s9ty+vORsyq/XAxx89Yb+vjEf/uh999wOeXaxo5ciDh6doHCha2B99xt9nJeVE77Nr+UnenRTxXL7eGJMxLMB+67jZiYkhVtZjJm/E/Qhq5CDEsGYujVYipTfm3jnORmmza+oNx/xhxOGELp39NHEMidBGYlJOB+HhmKE1LHTyOpJSQtKAhEgnUea2HJyFroKJa2JjEtDoQQnWPdCl6SJTEFLuDMPo7+sGsXdHFFqF4+yIvZAJcZFmhZkYK4pAbHgpO0C4H+2/qVDfrJ+/9bkL1Humd86O8oHlREpCtdO6MKRM65UURqx1gikn65G5d5oYWPcYRhFMG73ZwplU1Do5+uitxQzFC5oQDAnupJ2nRm+VcYx0bQTpHKdbSluTxBhOTshDxkKj98487elWGYeBHCKlHJkXl/Pu7o4yrgjdGaBNC8c2U7rzHjH/Oae5+ogxJtda0hDpztJU7yJ716/S+uQn6RToOjA3x2Z5nkEgSSYzYBKcXUpiwOHRNShCx3rFnTeKBeevBomcrzbQhTYXaogMMTEV2O2ODBbYRDwxqIP2DSIbNB4g+OjUghBjIkRzxqMNS8cPUvBxFV2p+MtUuxLSit6Vqt1fjOZdp7gYWtqhE1k5hspkcY27WUCiEXIg0tCwjOHNx2MhZj8o2AJDRwghgQ0LomUmxImY1LtVYbWMdydag6gDIQYH/S/welUj58XQFAyxyXWvOtLVuaZJhJCEGNzF/c777xDWA71OEJWUEnWu3O2uXfawjiCO3nE3V3CJBuYfUYhLAlb3Tl+MDIMw5DXT5MzML77/C/zab8z8w/3fpL548ZqAUTAs+uN3r0v1ESn84G/+Xb71L/5zXH7hHeZSOZajGz9m777OpVBCYn+o7FpjWgqc1j3AwR/O+wLadZyGLfexHwYkBoiyKD2Xz18VFVlSw3zEXucjKQf+wl/4M1w/+5RhDOSzU09OUvWuW4rM84yJMldhHC5YjWd87cHbfOUXG9dPX/DyxROePP2I7fU1Jb9kvtmy3x+YywE0kqNrizUqYpVSKtGEdQwMeQHiLylXLr/zzqWF6N3e0ZhL5h/89nf54KcvCOen1F7IMqCWCJKIYY1oR5s5c9WvxP2ZgZQHeoEu6h1nFjmSBHrHNbGBhTTh8csx+gRiiJnT1QknJ4FxCNC8eDQLrOIJ4+oRVhrTrvDuO+/zS7/+Z6g/WLGfJ97ZuIb4wdvvEB49RoD60494dbvl2dMbXl0fePZygjaRU+dw9Ptge7dl3lxSMBKduR8J1hlEWTGxiZUonbXA2cmpGwQznJxkf88YlBrordB6cxJL6x55bGHRrjdWqwEELi4uOTu/ZPXkI792Xem1sN299M9ePVBic7rm+uW1636By/M1w1ffIfUTertjf+h88nz7+rrnuGaQRMOIYv4OFceoxcVCKrEtHfTAENeMEU7GPWdD5HQ1sDo/IYUzxrBhTB2zg2vRW+dYJw5l5m5XuLmpbI8HiglNG4QVq9NTanWCTDChzoYUOO721ME4XQUenWS6rPzP9ftQkejygrAkufXiLnzzJMWuPjUidLpWrDWPLCW4EZTk+urgIRHamzdCLJCIhHF0qZcKtRbC0InZD3lG8s7tcg37/UvkzXqzfo7W5y5Qp8UY1TFCWh5IgOBjixgStToOBknMk+u1tLl2MsWEqBJQWnOt6DRVUszLSDYgmnxcqu7yJvgoOSTXzY2rAJqp7bhAvF2fWdUj6fbTEQlGMGUMkYJxRCnblxynGw53W+4Wo8mqKEN24FBXOPbKthw4zEbXSC9KmYu71CVh99raEAjasa6EFl/zRJsILSYKSpdMl8DUm2tiu/noyoSigVXKzjoV0L4U+wxECZ5q0gopC7VCY2bII3NTBpTTFbRDZS4zYRUpmiixUQalSGMYvINnQSEo0l3h57zT7IiVrmQRkgpZB6J2zxk3j03tIoToEbQpRYIJh3KklETkxDvg05ZkG6oVdDEhZPENvxflUGaKAeqFYRPv8KkKCR+PFhSVRhfHo8u9OSUGQoYYOlHEE7sCtNBAJnehp0QIA7QlMFQapR45HTI5C71MPrpNRpdKMmW0gZgyrBKr0yu+8q3vEIYV601nDIE2F66vt8xNOT29YrU+cTd0V0eiaaPW9hqdKcE3KjNH0fSeUM3OZhWorZLGga9/+ztcX7/iu3/n770eJ4cQQf+fHz/rnb/5v/l3kbDhvV/9NpdfeIdajGk/EyK0pRiv1eNRy25iNnldoPY+E5ZUpJj9QKWLJhmSX1+SF6zimLdgboLLYYWJoNoQa6h0JAvFKuvzNft6YNeOrDYbHq0HRjUv9Lrr31T9uRetVBG6ZOpxZjOsuPzCu5y985hHX/kq037H/m7H9bOXvPj0M14+fcrh5prD7Q1aC1WLK2DygJgxR49MjakhoXpXTZJLYTSQolBLZ72+4KPrHT95cYueXFAtEHNi3yrrmJAaGQd1ZE8wMoURwSPM/frVRRftlrGGUMG6Z7+TFoqF/6wxLhlmqsQUWK8jqxWYRUrNYJlkkSEkmAVNp8TwkByPPDh/i+O05f0vf5Fj6Vy0HwFwaHfcvHjCF97+BlXO+N4HP+Dls1fUKcHcITaObXLJAdCplPmGk/GM1Rg5P1txcTJSpx3lDPbnLicahoHNmVBSZ18aZxHG1hnbzM6Eu8NM105cNcwm0IwEH7Wn3EmDp9cNq5H1Kvv0AxBtxARDEGrwbPhMJ0alsWdY+/d5fhE5fTByvIFDjewOW451gsV5HoiUaUvXAiHSxDytKQl0fx+nBszdXf1D4HwU3rs4563LwVGDeQW6RlogB0HCGU2NlmcOWrlaZd4eA0+D8cmLxstDI8Hy83ogQeWMNs0MC22jNuG6HNgfO3PNzKdrHq5WXJlAiJ4iiKPKWi0EgzEnJ1QsNJMqRqVTeqNbA/xAN6wzeZOJg0+z6qxoOYJNjOPIakhI9KlNHlyDntajU0pECK371EP3y9vjjYv/zfr5W58/6nRwwL2ouMMQfyRKLRAhimdApxCZpuPSWfBxf4iCtLqMmd01XNUjMqf5QI5rUhho1cd2IQwLOgTGIYK5azrHgIVOGiOUQFClGawsYnNZcB6NMQWPh6QzH4/sbm6YtneU/Y6y9wd6fzjyqldKn9keC3eHmcMs3ilpBWu2MFrFXwT9NTwLkCXP3n/vKyxjfrDgwCYJjVYqvTbWeWCw4FrGVjxru3uaj6RFN2jCiYiHFdDRZL4ZaKRXxxUBhCg0m5m6IdVIJZIODULiPCVS7DiYNHg8J4EYoPfi6V6SwWzpVrq5wIsTly+ICUGCdxSC0lp3PStQ60TrQiQ5pkVc0xgFB/G3ibk2jvW+8yjLIQQImaAR6bhTNQbnmIYZYgAyyIBJRGvGEqShejekF4K4XEMcxYqId9EBzGaUmWGVWa0GigxePIRKioL1ypDWkAeGzQVf+VPf5v2vfoupBabY0Qzb6x3zoZFlZAiRQQKlV4YQF36ip1Hpot3UZrRaEJHFWMKSKa+kxfjXSyVvNvzyr/wqn/zwA+YXTwHor22HP7uHnOO4mOOW1XunFQ8L6PemkuLmnVomLEck+DX4+rx/jd361iJJaK0s4/uAWFqmHuC6gnsSgkHbvzbTxQBd/c93PNb1+f/1/8K6/xUev/M249PnrvObC712pCvjIrsYMrTmUPy1OG3B1DvM5xiX+H33hdUa/dIXOT64ZPvqJdefPeP2+QtePn/Gfn+3hAk4ozX6wAEJQoyZJBEsEkJwtm0KXDLyC2+9xea9d/nux0+5mwvaOlmMNO2JErm0zhiNEwnEuXKqI5HOlxb10qwTlk78udCKWqH5SIKcF0OWNkzU5UcEZ5tmgaFQByWFU3eaq5L0SOzdJ0q2oseBlAK3uz37Z8+xMdF7JL1wt/uTDz/ldnVGP0RefPqKdlT6JPTSsHLrEpgFxuDv5EDrE1/52i9wGgLW73j7gUDJHLYdPbtERZjrzLa+YJgDfW+UQyecPaYfnSJgtZBiZkgJi4pkQ00x6QynA8M4EImshpXfS8udG8TQWpamBLQ2kbJxnPx7lej68GFzxiQnrIKxnwLT4ehm23uGca9YculYQ8kSCaZoq/RmoMETtrtwkoT3Ljd86e0NV6fCOnfGHJE0ElgRekJ6AelMzbvwaUgecxoy6TIzBOV023h5u2XbKv04EVJgzCMp+0FVzBhCYCtKs4oeCzLtODtfowSfAJoxBqc6ZFFS9shv1EfwKQvBG/EgiS4RkjEMAxcXGy6uHjNsRjREuiWO8x7rR9bDijFGzFzWFQlITBAjqopVn3q0Wv+J/edNC/XN+vlbn9/Fv4wxgqXXj0LER4Edo04TOUSsLsVRiNRaiTkiwfx02DoyDAQRIkI1o9ZGsIpEcRdscsBxCJEYEyIBQiJYW6Zy7oYkeO58NXdEyjAuzk4o0wGlEQgMkjk7uyKngTIVH68Dxy5MIbOdJl7uC2WKzHPwOFNc06WaiTJglrHuWBx3yDcazXNFbKQvQGWTQDDDincko4nzElN0xieGlsmTs0SoWgl5RcflDYkIrZNCwFJAllFjYBm/tkCNvjFpm5l6RS3S9pFGQlOiS+d8fWQ9RBDHTZkZphWf6rrhyx2t5kxXgaJKWTpDSKDO84ILWzRQ3ejq8ZKO6lmRkneVkriDuZt6kWodDR6IG0IikhBrGNULck1+96gASyqT9cWM4oWamTN3exfCArr2FCQ3EYQCKbt2CyCLEVRJkjjdnLHrkKouyS8zrTU2J1dUWfOFr/4yv/YX/goiJ8zbO8aYuJkPvLp+Ru8zZ+s1Z+sN7TiTUmAcEtOhYr37fRky2/1xcXa7o9/vF2f+Rrygsq5oM0qtPHr7Xa7efpu7P/pDwJOHbHHT3486heBQfzq2FAG6ONdD8E42eCKU4F3F2vfcpMYxBP7Nn/zg9fP6b3328T/Vi+A/df3v/vf+6//P17/8/+Wfm0NgPlk5CaMD2umtMMZACIq12eMFrBAHaDqBdIZh7Y+ZQuqRIUQnUciERqVah55eBxOsxg132y3HacLSSDkKbz25BWD3cst0c+DJ7sf89Mcf8+Snz5gPhelY0OVdcXb1ADMv/JCB9ckGQuOzp09JHDgJl9TtjsPtxDicLtr/Qj8e0Gmi3M3ctOes31bm1UNHXWlz9FZKSE6QoNUjKjPIGtRI2d/H81zcBAv0GthdF0QHohlalSgrhrBmPYbXDvMQRnoTymHmxYtrprnSQ/BUQmCKhVmaG7owsngggjajqtGsEYOwWsPDi8gX30289SAyjMIYR3IYUBK9B1SUEAztjbQOpDCiCqUI2iOrDA8vAiHNCJ3y4pppOtCSEHzk4MbR6Mzc0H3a0axxt5/YHQunKbEOsI4BrTOqS3x1wCOxzfx9hS0sZz8EhhSJQ2K9HsnjimD4NGlzQt5cYsnIyXm29XjkeDhgrVOnGQVPweuKqDpZALwpAj9jk79Zb9bP0frcBWpbUCgmnb7sqLV73GQvhUDw7lHrpBTovYD4w15qYQl/ozUhuhsKmtFoRGaCGIQI2og2YHihEkJGQ0ByJqojN4IoYwy07jpXghGHZVypnc1mg7aGHQunq0SNJ5xfPeD08gHr7J3g1cNHlN64nm64PSjUhBZbnO++SYkspi2a47O0o9ZYbBJ08Y5KU/WX1AKdt65EgRACWWVxDHvJEbLrAJtVd+qnFXNt2JB8LJvcPYuBqKdO5RDp2ultZlYlrAc0NlptGI1eC2GeiIewuLY7YzplPZxjkjBrqDRCCo5saveueqWpoaoUmsPq1Ui4RlObAt4R7NrpfU8e7/WonS4rrCUyCe3Qu9Fqo7YZRQhpIEsihugaLFs0fTkR1Qu4IJEga+9LWkdYEFsyOSu2JZKMYMmxZgSCJEycCBEXhuWw2hDCihBPQU5ZpYD0SnbRhBteYmZz9ZBf/vN/DlYn3L7asz/sCDLx6uUz5vmAlsb66gI1jy9cnayopTAXNyPEJGx3d8yzd51CWIxyYotEQhwLQ6dbI0R354YYefD4HQ5L1K6pb6LAMoIHVaX3thyiFo2kFYRC0OydTvyedHf/BKHwdBT+2q/9KueHA187Fv6XH/6E/8lb7/HDvObx40d8/etf5hu/8GUePTp3lqizy+gdRCKrcc24GqnzkdZcEvLy5TN+8MPv8Qd//Ef8tb/23+A3fv03KEcPccjZDX+m3Q+QuHGu905MziDu3Ju1lpxSlgQnc+RUxH/Gfj8uNk/y6rVR55nd7o7t9hXQCClznCptmnn17DM++fGPYJ7ZpMgwBoazC673jZPzK77y9V9ktsh/8B/+h3zy6adYb1ycnHBxds7mLHO2OWEzrjg/PSFinKxW1HJk3qz44tUDpsNEmyvzccfNq2fsbq4d/RMAqeTsWmtTQaKgdARFeyYUl0+0UDEqliKhJ0IYl5mT3yPlsOP53Z6b3Uyta17+8KcAfPbTT5EHj/nk44+4u7llv90xHycO+0InYXFDPSpvNZ8C1cPMxXvvUHZ3vP14zSgb5t2RF5/c0It/CvvjAWLgdL3m4cVbDHKH7gopKU1mBgyz6JSPCCm50bJIJQwDWU7ARkRW7I+VrsbZonOeppkmiSSB2pzfSU9cnD+khx1t99w/2zbR9cDN9IJXxxcUCcw2c1g0qnsKM55QKNVICCEFajdoHcwYBuGty4GvvX/B48uVkzVyxlqkM4BE+nKg1uBdz5y8wWFNSOkEk5GWjE3olN5598EF1pQXdztu54mjOo4qpoBFo1Mc40WnVUWPhe1+5nItpBSQVvEktgh0am+0Raes5lM30+yyJTPCkMmrNSFlajEOvVBqJxdjVUc252vAof/HQ6Eci+u81Rsgasv+ozNoQzTTur+X7pF1b9ab9fO0/qlNUhr8RAuexUGHRIKgtNoYcsZUKbV6Idb1dbGacqJbpzclhUTA4xB77My9gC5JU2pIaIxpQJOPQ2MKy4jbMPURsycjdZpERywJRGnUuqUH9ZN38jGLSiTHc17tvdD+3gcf84fHuhQEIK0SF6ezEL2TIkJrk7NMxTl6ol5odgs0AvSKmDvnlQDqRZditN5Ym3MuK+oGgmHtqTlixIWjGSWiRFoIpM2aXgu9zEQyOYykAJIOHgWLUgxMFGKkmyFRmdqB3aSMKTPOlUNOjOnUHegByAkVLy5jCgRRx1hrB3H2YhKj1ZluHiggOLkAcbnEKmbymKheaS+dzo5Y+pmRTIKPoRRgcKOb4OYbQKIBDcMI1jBxPq0selXCwuaMQHDzXFN17qX4SFUWvYFGpd/PrHMkjCdMmpFJOcuZfqw0FYZhjYlx9c6X+NW/8FtsHj5kfzzw8tULBoybm5cc9zO0zBBG0IHaGyfnG4oWdscdkoRxNfLq5obdbsdmWDEkWbonwZPQTEkpshozTRdEToKQE4fDkcvzS+5OL/3Z6UpbtKOvzfzW+cqf+XUef/WrnFz5133zn//zPPrSu/zBv/9/WvLGcEmGuUQm4dOG63HF3bBiJZ7e8/LhI77wW3+Rf+lf+i/yy9/5Fhcnp4tOttJaodRKV6jFOB5naq9oqwRRQlDeS3B1/Et84/qGb37nV2l5ze2LV2ynA3mIrFcjm816oSgYXRuyHEP78s8UB3e7m18bgjhYn0hbjHG9u35XW2eeC1obpc4ctjfMxxuGMXByfsFZWiMdTl6+5NO/87d48oMf8CAFTobATR74YHpFUHhljT/167/Cr719wekHP+L84pKHVw95cPUI2wzklFivVs7SFGVIQik7QgBY0WtDW6Mcttxdv+TJj3/Ik48+4u76GtE70nACmkHzMlVSujQqSpEVzZzwEVmjNdE1gbUlEcsPvv245/jiU55/9orZTqgvvJA7y5Gp3XE5wngSiPOWyfZEbexno/c9uxd37Bco++OzNafvv0/UA0G23L68oW73iFWGDPvDjhcvXpBXG0pdk4ZIXm94fH5OTwVpn4ImQh/o45owQIgujZiKEMIaNT/MVDVqLVjwSQqA2pE8rNyoaB5BLdIZxoTs42vnThDl5f4VH909404nUl6hZQapyyakxKas4gA5YyaoP1AMIZKacREaX310whcfn7FZj4xpdDC+dkfOKd55FaFXyGFY5CWK9LBIlIRVEmJvXK1H+jiiLXiHVfccesdixCIUio/uY6L0iklwr0JR9tkbECiskoc9gJNuwpK2h+Ga7xpcMhXwIJEQoBlBk6f8UYFCtskP/muhoUgF63UxTgm9uZ+B5blHDO0zXRcPg77hoL5ZP3/r8wf4Lp0S1Z+NHwFqacQQqLW4EYpAXwTctVas3xd69zijiJaGZNc5Ive6O2cOxmYLKigiA1gSSB3TsGg1He+SRAhRSKZI2HiB2r0z1RQm6xy0M+aBcljzow8/5Y+++0MOf+/v8t8GPvropxw3Z6QQsSGSgmGtLhspdPMiQE0RWxiisuBCzOhqdIPUHWXfJLk2MfhYtlqhUMmWFlxNX2DpnSG6YYqlC5Wjj+FrK4RxREOntJkcI+u4ccOSKJ3uztQ+kSQS4oh118t16ZRmzLVTBuFQK/l4x2aVGdbDa8xTDG48EFk2BlNPxKF7UpT4y76bEEMgJCcmaGnkfEoIgVYqKY6YTAvKCi+yTFED7RDUCOpFaRQhxOSSCInU1lFT17OJeFIS/kssIHEAWblkgMld+Tj1wGzpoofoMP/lsLTfbWlnl1hv1HnimD0hqyisxgvefetdfvFXfoPH775Pl8SLz55z+2rH5cmau7sdWhVU2JycoAjjeoUC290WCcJ6dcJ+v2e72zGOIzmPbgxCXiOaYoxu2EiBWnzEF5N3fm+vbzg7OeHB5ZU/OKaI3XdJ758n4zf/63+VP/Ov/NXXz9dv/bf+mwD83r/373uyGAt/EiOYkCWSxXveEdcOAvzn/8p/jj/73/3v8PjRQ1DlsJ8os4czqHVKKcyl0JrRm6LdtcQi1UkP4nD7r3zpaxx2R2rsxJRYjyuO0555OtJaYVytWa/XpOgEDy/WxSkQuB41hIDiSVCmznQlRiwk0hJ9PKZE3x/Y397w4uULbu9ukKhszlaYRVKqLi1Zb/jGd34VnTt6/ZIUlbk3tKtrn+eZm5trfumb3+Q73/5lQhwotdG70kKimiIxUlql4dGo3QIRoXWBkMmbFePJKe+/8wXe+fJXeesnH/Lj73+f/fXH3N5svdgJoIvUwrrQxJjtQLJGsBHp0SH2mF+XBkZC6YTYeXw6EN854/m2UuYXAJyebtjOR9BKKwdy7LRQGGJBT1giMSvjwe/5L7x9wbZO/MHv/CHQ2IwDm40wno/ARA4z548gJWXe3fDiOVxdPWaTI1kK53l2cDwzc3S5giJMxdAy0nOkDXuqjTC74SrHRL83zPYZW5KwBPV0peDPs6iHaQCcfPwMqbecXD/llEhk4j1tfLV6UfX1/REluuHWw+xfC21NIYrxVkr8ghYebQ+kooTQPBCkdbSbS7AEbziogYl361nMqNrQfgsLtcFMmEvlsjTey/BiCNwcZ+rckOZSAQvKIBNzb0iPWJ041Zc8PoycrhOnkhlDcOS3dqZeaMtUytSTpVSd9lIxhjow5ETozrA1FEIn5YFV3pFfJIa1a/MlREq/pXdHGPZuSydW6a04TaRV3t36Z/FGgfpm/Tyuz12gmi0gY3OjCPysq+qT/ujj+G4kF4nSbfYiQ402G2WeWK3WCwNTyTlRekE1sIobN0+VSg6ertFK89Nn9xCAFtUxOQLDkIhtwXhoojUhyYo6dSwMVIEDyg9//Cl/8oc/5A/+4Md8+uQVvzS53ivEhoUDXRJiwzKKrN4hQKl2rxEMrocy9fGKNUz7AssWT7xRY1ZFRV0KsPBHk9TF1S80jHGJrhR8FNy6a1JbbqSc3YDWlHUU4ibSdYnNE3VGnirIQNdGlO5moeD6UtVAK7DHOxGroRLClpAzqW+IloghIRFUOiHHJct8SbrS7vGyJP9vpeCax+BkgWYLpiqMzucTI0uihwkWBExps3dZujGQGS2y1KBIHOgGzSIqnspyn5mgGEGCj07NZQVIRa0jFAh2n26KkRzIHzzQICyclWjC9uaGVgpf+vKX6AFiDqQ08vhLX+Drv/QrPHj0FjEnnj57yoc/+ICriwdcX7+izEe0VVKAlAN5jKSQmeeZIQ6M44rDfuLmest6dcJ6XPnBywUHS4FpxCESsxv0WnXyRFCjzxN1OjLmwOO3Hvj36wBVf35eF6rK/+Fv/E/5P/7rfwMI7vSX4PrkILAUqNEqkUi2xskwUKe9d6PpnF+4PvFf/Ct/mdXjxxy2R2qptFbp3acXbsZq9KU7E1zijCzdv159VD9PSi0HggRCPDLkAZHAavSOdOuKToWukMeRmLKP9k0I0QMoYohLx0eXAICMhOSkCV2KCoNpf8enn3zIxz/9KccykcaBYT36aF93jEPx/17KXFxe8s1f+mU+/cF36dMNfXfHdnfHelhzsl5jqtTmZkDV5ilqWtHqLmqNzQ9IISzEhYHmrkZKqUyTo+X2AqerM778i7/K21/8BW4++5jv/dEf8pMPvk9ESehy2LsPs3Ce8xAATWgIlJABYeie7oWAaWM9GFenmdI71+Yd0e3+wO40ufnMjLmCkUkDhDKx3gykELlYircnn3yfHz37iOefvOLk/IyTs7fQBKvLE0xXzKo8HFaMeeSGG5ee2I7j/sD6ZEUIwiCN0ziTWkf2I51Mq8aA819RpbVKUje4Jknke1lHcwTSPdDfzM11IsYwwn4dmGLkX/2P/+//H/eWf/OzF//pG9AnwJ/8Z6yr/jlZJQbaMP7/+tt4s96s/8zX5++gLst6cOc3rreUZfShQCmNHDyfXLW9Hou3ZphlSp0RmYlivmkEPNrO1DOgJbvJqNeFKi6UZq4jDK7tSoP/npjRMhNDQMKW2AeqVlqZuWszP3j2jN/94w/47nd/yIunL5gPRsgjsfmp3nRxrZtHXyqRpF701e5Z2yFkN7Dcj9TFRyyY4WV6pNFpoj60Ds7xS2oM5hGAc4LSGl3AdCbEZQMPjsgxvFMbBCIN6xMpOs9zXxTrMxKXEVGKPmpqy8dmLBxRQxau32HuDJOw2iRyVqbWSMX8ABCjmwCieLdbvGuNGWExB3TzUXOIAemd2ipEW/RPFdG4xE4a8d60FBpKo/RCac1L3sV5bQZJHHnUm3ejo0Q6LHrepUQWT5TyzmJArIH05fobhqOxPLM9QnCt4/3BKQyBHhr7cuTF3QvGzcj5+pS3Hr/DxeN3uT0eOKPy2bNP+ePv/oCojcCG3eEa7bNnY4fkGrQ8UEuj9c765IReG7vtlvU4koaMmmAmxHCPHvLkpZQjIXlnpi1Mw1o6rRV0MQWePbgEYFb7f+l6mIEtB4b7CE8h+JiVf6LTao0YhSF6NOSYFFUlpMBf+o0/B3//dxlXA7v9jjJXJ0n0Tmt9kV440cFprH4fRXFTmpgbtWqprlk2dTxOM7pWL1ZD8AOVJMSE41SYa2NcrxnHlf8M92N9FpJH9pNKVXXD0AJU11q5fv6cH/7guzx/9hldG8MqE+KSQV99tqLWSdGDI2LOPH73PaRXPvvoA3YvXrLfHzl9BMOQiSmi4lxcMf87JChJncNr4ozXFFwahAitd4YhEIkcpomuSjNFamOdV+STK778rUuGkzNeXl9z8/xTQhQ/cIq91uWn5YVxL5+ZTWmpYyFi0UjDSF+oBmLQ5sLV+QXgxisJp9R+YJr2aFNCGNAMYxU2cXTs0HLjbG+ek95+l3feOqXYge3+CSFfcHNb2d/s6aWxGVeojMgwEkOlc01goJYIlkEqo3RCE47zMyysiCEyiKB1JPZzNFVPlwuR2qDOSzBEr2gttNrobQIK87wjBjhdNe5E+R/+1p9lePWC2+0dnUiXFb0L52crvnK843/xo4/51959yI9ONuwOBekwRsfhdRoSlYena770+BFffPSQ9bhaRgiG9LbIiZaDRq/c97XVwhKW5rrnEDwGWoKg3fcfrNPaRNXGdjpyu5vZ7ZS7fWOqnTQmf47HAQiU4u/pi/MN6wSbIFyth2UnkCVYAAiJeVbUIofSePLimt1UeHB5yTuPrxijElolanepVQiEvPJD2RBZrTaEEJHkSvT5OPl7sCumnVYmD1hZzvLTsOKy/Wyq+Wa9WT8v63MXqPraJeibFuAbTu1IyKCuN5UA3frS7YJuXgR1841qe7dnHD1mcwHdUNuRuQRSWpNws0ipBauLEz0NEANzmRlUSENgto5WI/eARiXqEWsTHz/5mD/+4GP+wR98yI+evESjJ1Wl3GntmmbeQa2t0fqwAOKzpyXpPe4noG7nxDDfqHCUlkhYXoAJtYFIxed3igbv+qGKWAY2GJ7TPAhkGpEjMUVaFYaQkSy0IFirNJlgaEQbGW3FyOCFRHONaxZPzjHWaFe6QA5GEke+oEYV4VCU3bE7KinAJB1SY8QIi1a3dcgxL85xcbSXdYJWqA0YUFOPnNWEaCDkgC7O3Iin8Yi5gxYRZ7ragAZlolJCcBxQGpDoHNGujkjR+84Ti56KsBRk0Q0lvWOysAZV8XRdWTq8iZCCdyHbIj1hJmwSSOTF9hVpGrkbGuQr+ifPePzOI9b7O558/Ck3N7d86QtvUevBncZLIWWoZ52HRLfGuFrTO9ze7chpIASW4sWL7kCkVc/3XW9WPh1A2B+OqAbGcUTDwFw7jYShnI5ukppxsgPw+nlyDXMg3KOsDBB1Q1GQ11/nZiklBx/rSzBqV37zT/8l/vl/7i/Dv/3vMO0b03GiTDO1NlhMbEuMN0Zz/ZuBmd/XQvVrKmAiHvxAw8SNKtrv9cCBWLLri2Mk5khTpZQ7+qYRY2Q9jD4RWegG0l2nG1xmjGrjcJh4/uwJH334Y25uXjGs/F4acmZIA0Q31DkFQ4hLPOnUC3GIPHjvHVQL3//hh9SuHKbJgzXS4F3a4OYfJdKb0rpTIsS8sysIafAOp8RGNiUPCe2N/XTAVNFe0DRQquu/H73/Rb7xK9/mt//WM0ekOZsNSQlhRE2pvSDLM9E69NoJQ8C0L963gPaESGKe75zeAVgrZBHm/cTu1c4/m2wU60hNVIkMMWALSkxbpE6dsyFxmtZ+3DDYX++4e7mlzZ19LoQUGHJnHBdzjwi9dg9ZiEYISu4HzCJzLz51iUpvgWSFeHdk3r8gpMwhZTZ3LwGYjq/o04i2RtbuBXbfsk4D4xAoXXg6CtshcL1eYWlgqs4HPh+Uumw/3z8Z+aNVZgZoQmIgMNL7xDgKh4tz1o/eIl5cMo4DpGVKZRVRpetSdC7mUsSNfiJOAFHpWDCUDD04ns5mWp0JYU3pncO0Z3d+5G6nfPzsyPW+oMkTzXRcoSGgY6XXysVmzcUqswmN8yysQnTN66KRx4SySsw98+mLG37cjCKZKwLvp8jlJpJ7cw61ZAaJSA6kVWI1rhnympBHhsEnOt3OOEzFkwu7UY53bgA1P6AHy2xudp93K3+z3qx/ZtbnL1Dvk1eseJ48YI42JWRBF2h9aR2xhgRo3TtJBj6mtu6xoseJcVBOzwdiHog6YXOlSaYbS+QmHgknia6OXWq9IyH66CkYdCVZpWjg+auX/PAnH/APf+d3+eSTa47HRAqBykRpe39xaGU546IC3QairelSaR20C0kWUbvzjnxDVR/Rtw6CeHykiY+gDWJIBFG6VedMWsAsohZRyc6JjIF1VIa8nLSrEQisxsyhegeMELFutLR0d1LEmtG0LEk4CbUMIXkknhbEFsG+qZu9JFI63O2VQWAMmYTHqwYxcrSFP6qYJLq69i6GRFBx+kEPxJA4toZqcsEdCczFHUN2LWhMIyEq+/2eUqA3QRjQPmM90FWRsKSIaaRbpy2HAMKiQTaWw4DrwhbfHYG8fA54q8nf+35giYNHisYAwYPoewN6JkTvOvau7A8HPvjRBzz57Dnf+OY3eXWzR3vn4uwMQzjOR7pW1+OGxLHMXgRKd5mKCcftgXb0MfFcJ9fqDgNdAofjjlo8qex8OCOlkbvdnvlojKsVMQygUGcPppDg1xUgjyv0sMQU3l8SIsHx4QvOzAtRjbrcU//E11nAWiLkSK1HvvaVb/Av/9V/hXHvmrRWG9P+QGvVNcVNMZXlv9EXgD9L19q13Sr+OSDBu6fLtbe+dHQ1eFEj0Y0s3ei9Umpb0m2Mu+bs39OTEy7PLzyGN4iD7UPwFK9SefH8BS+efsr1q2eIKI/feUiQ4GQQdSSThATRC82cIimxqKUVpTGMkS985X3e+fGX+N6PP2K7m7i7OyAMmCZaM/KYSHlAAo6e8+p8KdQXcoQEhhBI4gk/wxCpzYkjvRo9ViQIrbmR8Ctf/QZ//Lu/x+H6JWMKfmoELCpVFA2CBEVwTmVs3VPXdKT3QE6jv2vSytm8S4d8Pm65fv6UmxcvmadKB3prVGZGO3ndua+1LY9QQpsRVyuuLh5T+szd8Zb9dkvrE7UXpnIgjSMhrcg90xWI0DkiEkljQHsh904mYsuPMwqe3GYHKD4Va3lgNqi3N/4OPbzETlekbrB0JU9zJktk6sbNrnFzC2WOdFs5aqofqX1PUyMEv/GjBkI3os+QaKIE66RgnOTM+WrFwECfzSNtraO4IUles3adjesHLm99SDTMJj/XqceDuPzEo35DjAziB3MZIzmvSHli6oEqymEuHLzNQgyRPGTm1um10YdED5F97Wh0tY6E4IjA7mSXu2nmxd2BwyxYSBxm43Y/M44DMXuYg/Xg8cLi10J7o1FJ5nrlphCH5Ki7di/zEkorxDCgzfF+yy34Zr1ZP1fr8ydJzV4ItFq4z1ebp06QFdOxLmNJHz+k5cUj4ozMppWQHLHUxdjv94RjhThwfnZKskw9TqSgdAm0bgwpklzmSW8NNYjZuyhiQlej1pndcc8fffgp3//hZ3zw42e8vNkTQ4ChUfrE3CZCD2Ajoa9gGYVITP4960wVIxokhKY+dI7RR88mShcvrFQDUb3DF6K/AKV7XnWUAZW1o1p6I3bFukf/eWTjwDoIOURajFQpCJkUzohMFK0YXtjOTbDk0ZlhyPRuqCRiHAmaCRpQWWIqVRcU3hLBKQ6Arxo41sBhDsQQXQrRDek+GgoEWmuL4caRKKqABUQbvVfQAKjDsonL/w85R0crkRxY3X38perdTsE7ck27hyssFIClr+HyCPGCS7hnBi4uZwHkHtAuS/aBm7pCjMSYiXGAMLimLvp9aS1CGwgkYjJaaKTg0ZjX19f8vb//O5xsznj08Ipvf+ubXJ4lVF1DnGOiFu8oqXibrxvcvnzF/nbr9yBumsgpMqTIYTqyP2xJMTGuTlmtV+z2B16+vCXGYWl4Vmqv1HogiNBDdqg5sFmv2R7cDZ0XREzujVWrHjPJEq2psIqBVYdhyWDPav8P9v4s1rYsS8/DvjHmnGvtvU9zu2gyMrKrYjEri8UqskSWWKIEkTAkAkWqoSRAhg0Zkq0Hw5YE2C82BOlBgAzBgG0+yQb85B4wYMiCKVgUrKZEShBZZBWTpWKxWNlFRkZGd2/c7jR7r7XmnGP4Ycxzk3yhogQLcCXuDARuNOeeu8/ea6055hj///0sSbGWIE3kkvjlP/Nn+cpXfx+nX/81HhBj2NYbrVWsxc8WeeqjHhYJcL+FlKZbD4hCcu4ocHfyj9DDBi0AjxF/oLVk4LLiUzXreIfldOL2KgqlBw/uc3Z2hghsy8KyHnny+DGfPf6Uup0os3I4nL1i6s5IvOaYlYIkRILuMU0gqWCipJKwbuzmM/7wL/4i3/vwEz765DFb79wcj5zVHhD/ZmhOlGlGS4nX2yyIHB465ngOOEiJ60yUuUzgNSQW1lAS1Zxja5xfvMFbb32Nv/3xU6azCaeOE6/iKeKNl95Iwxhm1aJj2UHnRJqcuPKd+xcTsh880NMtzx4vtNMyXOjgPUFXVqk0nejr6dUUw9hYfWWVPZ++eMbN7RWn9RpvW4z3pz3V4XS7Mu8OnB0AP+J0epvoviOpkjVFJ75tERF9bHhTkjZqvjtEJeyoqCfk+dDx357g5hbz0FsXUVJ3rm9e8OSzl3z84oYXtwu2nNgsI9M+dPZm7PIZuyFCn0zZWUi0eryNJDcOpbArmZLiYNVqB+2Irrh2zPTVQXZcsK86mAQdO8b6WDzzpA34fWiRYUfyIDG4ZHIpuMDbjwT3zuNnFsY5j4NjSYpkJ3dH2/AopExzBckI4cxXEs2Em9OR69OCa0HSRO3Czalzryf2u0RrRpKCyhRJf8RBVD0hlvGRwijqpJwiFrx3khiuHtHRI4BD/Xet1nu9Xq//v1+f+6quS2yi2zoeAoBTw8nZna6ZXgPivPQFN+Mwx1g0Y/TAlZJLCb3q6cj10+ccyKQsLKdOykbZTa/MGubO1hzLW2CmTCgy0yp8+uwl3//oIz784Q/4rW9/n+WYqTWxz3vW/pKt3rLVJZzPeY7Tte4Qjw5TmhKUGL8V2SMaG5NYD9d4CnSODempuCHWSS6hu8UZ9BKyQ3Kl9NC8ZSLdR4uRfYGklFwoCMkyXQS3RpUwieSc2Cx0r9EBDWLA2ZTAEtYnalc0FUpOWL170CpGppmTU4wUVWNs3w1u142SQHO85nArGQ7MZUJyOFCxMTT22DTNLXi0xIGit0bKKboPosRfMoqvGrnuojRzTtsW5i6LPwcpowTtSIqEFevRtVOXERcaOkO4g9b7KGh1jOkCRZXIqKeI19ROd8XsLuIvBxO3G8gcxTxCSs5u7tQOxxvjO5+94Pnja77+9Z/kJ772Nl948xJvp+j8pwxaWKtz9fIZ280NZpVcEtOcSXmmlIltWVlubskkHlw+5NGjN6m18/GnT1jWjbOzM7ol1BLrcqK3jVTmV6YdgEf3H/HiyXMAprFRn9fGMQVT2CU4wIiyl4iTPBuxrpMZ12nC5z3LtvELf/QP8Uf+/l9iqe1VJ6ZbGwluTvdwNvdxhsEJHbGH2zg04xaAcp1eJU6Z99AEi7/S8wl3936kh2kKQYIi0d3xTpaQHVy9+IzT7UsuLy9xd47HW5Zl4fr6mnnKnD24jOSqfHeNBC0jTQW1MFfijiZIGTRlcsmYQCoJnYRWjbe//C5/9I/9Er/6134Vl85pPbHVIAxYdyQpIok5z7TWRgY7QbS4U0FL6BhDS5qBFklJXhGJiFxpC0rolB+99eZgIQemTSUc2yLKw9PCRV1QInNPhnREkzKVwmG3I5eJzYQvv/E2+wdhnHv49CWcT7RlY92OmExomZh3l+QEexIpJ94a6WlfWW/BN+z5M8gTOyClTGIiTQcu9ufIPvH85Usu8sxcLQI4thNiiW4FzxFEkFqjL5Wpw64rvUeRViW6zvH5gpA5W+IZuv/4U7Qlnk2ZSSemtGPpC58+/YSPPnvM9eq0XjitHUka1JBcyPmSnM6wgavqkqldoCXwTip35A9FS6ZLjiCR3vBaSdrQbCED8g4k3NPA0I0YbmkxLQvGHcIIuJAeIDSPQlaSkpPSarzGPZ10Vsh+QLYd/erE1oLYwlQQjaSr3FM0PlKP52hSAtznqESoAb6yboakHZDobWNZTix1wtMUwSkdxBJCDqrHHT2GbZhEgd6QJEx5IjMhNeNL3MOS4/pK+qP0udfr9fpxWZ8f1L/GQ/G0EhnBhKj/ePOCrAc22jBeNJblhLhjdUHF2E8jjcmio5Cz0qjcXL1k58rlG5d4ErZtoZSwFG9rj3E7gbaaZIdq4smzF7z//kf81vfe5wePP+PZiyva2jifJqwdaetG9zVOpW6U5LQyg0UnRuXuR84BUe5D82jhWBdxRMNxvFkf8ZbKpGHqUR/mH5VIORmPPnVDbENFySnjzHiDWZTuJ9w2JAklRxdRxGnWaH5DyUL2xtZaFLDoj1KspKNpdH6sU7KjacNbcGZrT1QnDCs43p2khtLYTDiZMnUlt8DNZPNg/0lkOouPAnzo9bol0BQbbt9IajTpQQCQREmFrDnSZ4rhWxvIHmNrFet9QP07KiVGrZuCGDqSvgbOjyQauDAJnW/F6ESbL7iUPQp+zRTJkZteKy4hG/ChHQYi/rJHp13YoXpAc0P8xJyNuTgnOm0RPvroCU8eP+V733nAL/39f5Avf/lNNE/sDpE68/SzF9RtYVcK06EMU56Sy0RdO7c3RxKJ+/cfcv/+G1hTPv30CTfHG8pUYtwnTt02euuI69A8MgpCeOfRQ7713Siu//L5A/7xF8/4/9x/xG8f9tE5JtE7JE2c72bOM/zMzTP+6Q/f56+8+QW+ffmQmgvaGv/wn/yT7Pc7bm6vkNGNFfGItvU+jCLx3kRXrg+j492mFkYs9YKYvoLvM+Qwd4Vsdx9OcAEMVRn2ECWloc/uLdBkEp2kZV149nSNCMnaEJS33nxj0C86rW9DvqBh0hodXPMxHeiQkgSRoUyolji8jOkKCMdt5Rt/8Bt8+OkP+PZ3vs2XvvplVDo5CyLRS7PWEYsxsqQwet4RJpo12jhc0zPiOWJ6CaNeHLLG17ZK78r+fEfZZZoHlL+Myc+j2yP/s//015j7737m+j/+5u/8rr7+n/svfvt3/Wf8/3L9D37tN1n0t/if/uIf5sX+jF06sNTKzXFh6TVkSWZMOaGTkact0pTIuMFyivdoc6GakLQwG3HISUpJmTLtUT2jdaGOa44tITZS/zwOEu7g6pA09NN45LFZC061h9Y40uviGa/iaI5njwvkVJjZkSWK1PVCaT3z/OaG6w7VoEuiWmernVSmmDyYs7UeMdECnoR79845LJ2kMe1zaUhyWmucjie2CziblUIYa1U1GiQS0D+zhTSl0MV3RWtCDBI7zsoDUlGW7QRj0mT69/igXq/X6/fo+vwj/uMVAOt6S/Pg1y3LQl0bvS+scoWq0/rGtm4kyyw14jX73PBU2CwYns0qZFi2xscvnrIV2J9PrNsSBYwqW60UTUwl8tc3g+9/8CG/9V/+LR4//pTnpxtaUlbCGb/5ka0tMUpDkFLI6iArqQeP0VOLlCZAN0jJ49RqG8HZjO6p+0brES/XRehA9gDrhw7U8VqZU+Q10y3wSjkx6RTVV4sRKkxkNSbdmHeg0qlLHzn1md43pjxRipHMkSaoFEreoTWTqPEQ7Y1e1ygshzHGAe+hysODY6rqJFVcgkzQbCScpMBa1e4kTWivbJIj3lBG2o/I2EBSvH6LVK1SglGYUopiGUaSU8O8sdWN1i1CX0b4gHugoYatFU1ldPeiV9qs4QrqkTUdmssxnnOJbgcdcSeZxUPcE2pjk+qKKOR0F3U6kS2H7EEWautknXBT5jTTDKxVUp4oBW6XE7/525/x4ccf84t/9Of4pb//D7HfZZbTCWuNs3ki5RTUBXVySmxr4+rFFW7O/QcPefDgDdal8enjp9ycbph2ExcXZ+zmXWzAx3XIJITT7UZLG/thcHn4cM80xQZ9HF3J2wleprHJuZHuInI1EqyWoQs9JaHlxOl0wy/+sV/kF/7Qz/H82RNevnzK/tlTvky49INt+qP3VLDobncLVuU4NOAje70b3dcxRVBUnawyRqUe90OP4AfRSBgTn4BISkspo4CW9Ep7vtcgOJSSmOc5piMI27aFy7/K2JgjjcwJRm5KSi4p4mLdhyFrIudCGsY6CHZwt87+fM83fuYbfPe97yHinJ3N8SwZhALzMEsiQZFQAvK+bpV1W+JwZZ2z3X2mXBAvLFtokyMhryE6YVRcEvvDBfP+QF9vEJ/oTVDpHJaNuRv/1z/80zy9fxmaeXeyWRTIOaPTRD6c0fLEF3/i9/EH5h0/8W/+W/yFf/IfoX7pId1gvnyTn/wDv8C7X/kauPG9v/FNvvW3fxtvJ+4/+YQ/9e/9Rf79f+wf4PqLb4Y2XPfsDudI3vONn/sF3v7il/iV//RXePToEZqEJokkmfV0zenFZ5yeP+P26prWNtDEF975Kvvdjt/+5l/n+ZNPOW6V1ToJG6EecLxeODu/xx99603+7H/8K/yfvvQm//wPnzDfXPFxa5xkoXmmeyLnKeQ9LlxMAgmmXYzdWzewFavLeBZ30i6mNTkrTqOIcCgT+zRTJLqLIVNReov7wy2mMHc87VHCwgiPUAcGus6oMfcRAZnGgykMdK3V8fjLpAQqK0ydy3OBdIaw4ovxctwDzcIEWnYXkdjcN2gbRiOrMu/2HO7tON8WDueJemyvfBOtC6cj9G2HTNH1TUlfmeeEFA7+1OO6H3InekwLpjRzKDvyvlDrZ3SD1geN4vV6vX7M1ucuULc1HiZtOwZ2BthOG8vphNSFxmdIEmrr9KbUHsXg2jbWRUjzzFY7y3bktN3gkpFyYHF48uKKB37GPAnmt+zPDqFnbY0pOU7mW995j//813+bZ8+vWLcbTBe8hYFDbGKzSqXj0kgk+lpRjfhF1402oNl9FAjZiAJ26Dg16Yhu7IGD8ggbiFhPxuhF6RraVEWYLFBbZkITaOJsGLUbqUGWgmRlnibm5Kh1lt65WRqtZyYrSNsgNaYMUzJ63ZiyMonh9UhOjZQMZaP2jndBUhn80yg2IQxaOqDRosNQI0prnboJPhXMja1tQS4gzC6SQtoQHYeOaCeYU04q0/CTpwglmCfwKEa06NCmxlR9XVu4pd0xi45clCKhT3QTeh1aRu8jjAEgUqTU4ohwh5VKFvB0EUN7aElTiu57GmifLEYaXcDkSpEMvrGst6xbIvl9MpnqimkIaI2F5o3VVrrAk6e3/Mqv/FW2ZeUf/KU/xJSVy4tDhE8Akgsiynp75OrFFarCvUePOL+44Or2mk8+fsxy2ph3O84OB/bzfnSQG3Wt4JlUCm4NEuEsBKZdOOljjc1lpJC1HhGHOvSw9IbaxF3UqdLZ1lvuX17yT/4Tfxqh8ulHH3Bze8W9F+Gwvr26pi419Mdj064DrSMautGA+sf1M952rDXwREqJQkD1h2ogtN0O7kGt6C0+15hK3JleIk1MU2K3D3JBbRUnYmplyBlUE+4wlYmUUkQEi9As5CDx55WQf3jAt7o56kZOgWkLRz4s28LpdOQrX/saX//6T3N2dsZ+N+MDTZUkQifMavzcY8S7bY3j6YS7M097LEUaVk6OlozKHrO4nyNetuAt0F77sz3nF5c8vbmOhC43dKrh1Ac+Puz46OwQ5jBRtFtEvKYZzXuY9/gu8+infpLHL5/yE8D67pucvvwWkmbOvvwNPr33Ft/8/nt8+MF7fPL936GeNmZVvrg2/hTwXWs8ridyLmQXJs/keUfXlffXK55+6S1OuwPTPLHlmU5C5U0KX0NrZT4u1NsrjuvK9btf5eXW+OFnz3gx73lxe8vteqIeX9LaCVS495Nf5U/9I38GPv4I/uNf4eM82JsW5rbNNjpCF2GXJnJyTI2cAC3MZaJ3Y+0rp+1E25ZX15V5HKRVOrN2LtLEmWT2CFNfmMqO5BZmP/HBoQZ1HQfzkX43SBcqFtMnGAbS0Jk6ZWDbLJB6LQyQ824ODboRF5VW9ufB21Y/oDed08sT3YypZDDh1FpEEbRGSYKkxDzveHD/nJKceVb2Zztebgu4jI6usG5CbRknOrBCJamDhCIfs2GyC0lN7ysRcmPRCEiJvDMue+J4PLK2hvjt593KX6/X6/fM+vzK6nHjt7q8ch1bc5b1Ntz0aIyhB7PScaRA60eub06U5YIsgq23+HbkuFUsLUz7h9RqPH9+xf6QOTub2O0K4oZ1uL2t/M57n/A3v/tDPn5yxbG2wIlYx1od8/aMpuCX4k4aYHC3jW4bMh1IGdxPQDwUxeMhUL3hKbqnYh76UM0E7qjH6F6jWOq9R2dLE2Ro/W7smYINiSADdyLEplzyRCkCmlgbdJuQXqB3TMOwYdOQPhAu5axGlpUkBr4yy0wuMUqVYdQK43u8XjrkaQ43amtRdAKqgcCpp06fGjon3IzWK0kDF+QeD2pSAYJBK274q7FRjOSkC5oGkme4pTaJUWxzY/NKY2I5zvR+JGOYRvSs94p5sCe7B8s0p+iCmIURSjzG/WFriM5ZuLl7FN0yIVpICpM4nUoaU9j4PJ3sgWaq68axZ/q2sJ/OmLVDNmoS1r6x+Ynq0JiYyp5TveUv/9Vfo7cT/9Q/9qfZTZmtN6Zpopvw8uqG9bixm2YuH55R9hNPXzzj04+fUNfOfnfgsN+z3+1pW+W4nAChtkrWCrYOM0QePRhwEjbmcjISd+6yzGNeWRH1+Ew9tM13pMOcCut64hf/gV/knXff4smnH9HWU2CrPAqk9bRyvL5hmqboyPDqth33c2zGIj5oCED3V6k7tTdkymQtsVGqcjfdj23zrutuodWucX1EcIGGiUMzIh5JHt2oa8O2DX3VtWd0uHwkhIULOt6nwL5F8AXgTmt9/BQaoRcptMy5x4jeDX7/13+a87MDKho8VIuRfCk5ZCMpc3V1zfG4Mk87ck6UHJxLoyB03DYQo+Q5HPNeR/EdYRVr20jTxOHikg9/8AEpZ0SCPtLGaL851G5o6xQfB2Eg9Y42oy633OOS9NlHHD/+AIDzUyXdwk19wW9+8J/x0VXleH1La9eIX1PkgHuhbwMzdWrUm1sqld4g5xkk8/yH71HOLtntDyzznouLe5T7b6EX95D9DApadsyHA6es3Dz+lE+/+11OVzfIPPHoJ77Cmymxts6Tzz7l8ZOP+eIX3+Uf/ON/krns+fX/8D/izwJtoAebNixP4RsYrM4U2cXkPbAKoqFRX9aV03KiDu0zhJ64W6e1SsIou8x+yszFUFmYFLIIjNCXrhI8U7fRc5wRmaOb7wmTBlLjeh0ECklOYwtUoA1qicToXXOODrlYGBT7HqGwLxuNlfv3JlbdeHazUdeVlHe4zizLiu8LU0m4RBDLxf6cfU7oesu97NzfZT7rKxsJk9Brb+uJ25sT7XyCITVISSjJKOoIDXoNSZQIaj0MHArNNxoJ+kaZjdmhHSvO+rm38tfr9fq9sj53gTrCS+i2cfdg6USsHTSqRHRb88FsVKVbxVOwFNfjFUwFaCQxkjfWm2v6IkzTjGen1k7vE8LKXPZc3yx897vv850PHvP0euNohWXdyBrj7H4H8W6NaR4Pu5wQr7R+G32hlFDpUWCao0Oz2L1hophXSFA7gXvpBfFEkkDKiMhdRDyYYh5d2To6PjJiLrEYKeOh8dssxj0lPP+DnxqGgDCZehSoltmaMs8hwHfd0NSZC8wZfB0gfpmCg9qi/JcUEZqKkV2jG3uHDGpGp6EFPIO5sSyVbUrs513oPl91hUOYb6wjLCCBJJr2VxaPpAFIL5Kxuxz4YYLaajidJWWWrbO1FG57VZo2xCNDWiQHNkii+yVj1MzQi4nEkCrYqPG5NrfQqqJkdMSbRilBSqSkr5KkgmJgqJQompuwtcaynZgYBWoRllZprVF7uMWrO/MMJ3P+0q9+k3fe+TJ/4k/8cbKDmHF7e8Xx5orDbseDew9Z28IPf/gJz59fAYmz8wumaaLMU1Albl4S9vEcLGCFtS1MCZLJ0DaC90xO0999k/WYCCgKmkIcrEqXRCciRCFGjKkk/sgv/n3cHK9Y1hOlhDaz5Ch2NQVFoZ6CIFCmaUSOjjLVFWxITZT4DFXGwWewSlunOqgKOceB5Q4zJUNHfVeYuY9RqhP55ykOrJKg5IyUSG3YWgMLCxxDbxz5a4XgSKZhTrIoXG3oXoeJ0buHJjplpnEN7GbQ3Y7r6xu++Pbb7A87et0QNW6vr1At3J5AfOP2eOT585e4wcM33mKez0KaaMH+DU3iRtZwR4sG2QCczF0EJUhOXNx/QO3QNKYzdGO7myp0YN34hU+fcjEKDMcRi1H1fn/g/vGS3YtPmV+EK/6nfvVvcPvNv8XteuS+VezRW/Q0j3HvCfEjGLx1CrPcm9fXwIaIY97GBAHQp3ENoogrW9mhD97i8MbbnL/5iHk/szs/p5F45MbvO7/AzjLt/ALbjlwcJs7252xdubr5GtfHGx49eMDzH37CX/pP/lPyt78FwINjmKW+cHNkWTtJlmGi6+QSnfbaNrJmtBq1LZy2ytY7iPKTQ4+9bpWKxDQsj8S6pEgyNEfHv/cNvzPlCXGtugEZ80CAifShRW1x/XqmaCM4yxW8x6co0yCI9KH3dPBxaCaFK14TCKg2tCQuzmYeXe44Ha/Zl5mtR1xwOpyxK8Hp3aWJ/bxHXVHr7F14WApnIzWvEvdzw7hdV7p7eApooCWwZ+KDnhGTO28hc0LvDHxKa4JXpQtIOaPs5ph6vV6v14/Z+twFqg63dKTJxzLrkS7jG93H5lkNkejYtBrZ6hdnF9iBV/GIM3v0MOPPV443t2xtg70ivXFdr1lvj8zljPc/+IT3P/ghz5bO9Wo0LxTX6JC60VvDDYqeqFuwL6VoaJ/MIzlJdnjvSBOkxigZIvN564r7HDGRLXSTrhVxMFVcEyoaBapFdzM6O9E1cgm9Z8j8JGDOHgk0d5ScU++kaiNhBjZrnGhI1tD22cRWlcwh3Mv9lpwzu1LY50Rb96zVUJmYkuCsNBqUjAG+jQ5jdzLRmaq9honLHe8rZUp0KdSe2XkZtZxGwdFzYMH6gqiTpQwfgZBHodR7FInRcgvXsrWFzVoQGaqzLsKyrBiN/T5HN8o28PAlmHtsBg6MItiH9tGkkVP8e0i1IoUn8IpCdshm4C3iUMXJc0JxtMb7mlK4/c2UVpVlMypbjMZ8A+14LlSXkGR4pGSJ5oilzFF0/Xv/yX/GvS+8zS/83M/x7KOP2E5HLi8u2O0mrm+v+PTxpyzrwm6a2c2R+DJNmZSE2+uXtLax25VRyEXBYK1RPQ4dr0aTCc72OwC8xdg/zD8ryUNTV3tHUmFDqESkLsCL58/5uX/0v8W7X32Xq5sXSIqCPuU8IkZBUhwU1mWNqMremec5ilwRJIVhxK2P0ITont4xgF2iYNhaj0Qm0ijU0kg2C8A72OBNEv889KhiQfswa+SSSEnoVjk7O8MsNOGtt0EKkFfSjhht6tDmRZysi4XMwGIyY03ZfMNMmKYobM07U8pMcyZPiarG4yeP+d73348IX4nnRqDVErnMIEYuglkNE5SGrdqtB26MFD9RMsxWpDcUG4EBzsX9+2gpbC54E9wT1e7ia4VkcFYbNWe2AiaGbRv7sz2XD+8hhwOLQus7mgpf+1vf+bueub/Mh3/PZ/J/99e+8/f8//9NrH/87/jnf+npCwD+9fc/+a/9/Y4ifFg3WsqICKVMcYBXRVN00ps13ISSCq4R3uIWkzPREhrMviGyBj5Q7zjCOQ7D4pgvodPsO4oqKcUYP2Q/LWJ8KViVkLBGvxvTPZIS+0k4KwvnU+HtB/e4OXX8dE22ziEfSO7s5x337t0P2ktdQBr3D2eczYXbtb4KjsAT6wrLYshuaFA1YSibdVyFnHasoUEIHbgrtY+D5xZa1O5GThNaoPtrUP/r9eO3Pj+of4wOMUdHJrhYmC1cIvpSNfLbI9Iy2HjztGc+FCixiZzWW1rbInUkO4dDQRGUhkgPwPgGH798wfc++ITr44k1BTbHvaEpgzesrTH+1ITrMrBGmd59ZJfv8VTovQS7qDW8nugj9zpgI1Nw9KyTfANpkCquhmuOos5SgKBx2ugyFYViGq7xgJngolGE2WhipIQJbG3jRBg1ypRHdncdGJLQayIZs0KeZvZdyepk9qFhnZWbegSUvQopCZWGZ4Ek45DgMerKU+B6coKkmFQ6ncU71ESqHc1hNJlKoKLEjOIRWyqiAUrpitoONNM9NK/FA0VkauABQPf1SPVGU+XF6cRqjfMHB84Ohb4px+MprAgaY982uH5ZS0ROutH6Cjky2vHoygphivKe6JKja4WR2xKdrZJIxPdIoyDLIxHHe5i2Tmtj8YKkQsbGpmV0Dx1lxwf3E5a2QdqRcuLZ7Yk//x/8J1yc3eeN8x2X987Rknj67DOeP/uM5iv78z1z2cVnKBlUuLq+ZV0a+/05mmbMBS2Zra50j+L3uK0cRsd3Nyfu3zsbd1fcW71VdD9iSD1QU60LnieqZ9Y+xuJZ+aN/7I8C0f1sreEilDwzld34ntHdTDnSjOq20Htj3s0RQjAiSz0I/Jj0gV7KERrhMUIVD511a40sOrpK4TYOdmjggO76rm4pIhndce90C82zEZD5nAOvI2oky0PmMQrWFvITuesWJ8XvRjd3AgcPgYH1CLvowYDDh7HLJbSwIsKLqxes24lUCvM8U/KO/Vlht9sxTTOHs3NyzpxOFRlFuxGopmYSz7CU8EYUED2ICEh03qZdoWvIKcSi1BnnpZAOEbKZlhTPMSnYP7zk4vKcs0f3cDPW1ri5nPlL//DP058fWdcVtZVdrfzNt9+glj0mSvOGyIL7wls3K//iNx/zf/wj7/L48pKkM6IdseANu3bIwdm07tCVrGdYm5inM3YXe3YPLnj4xXf5wpe+xv78PpL3nB3OOT/bcXG24/rlNc+eveB0OvL+e9/ht3/zN7m9uiZhvHPznP/hX/sb/Ds/+zX+md/6Pv/7P/4zfHLvAu9pIAIrRR31Ss4AE9dXC08+u+a4GiuwtEo357EZ7xPynmkQQkJSkkPzi9HcQ7MsCbeQxsT1BE36ODR0RLbQevZOc2HKmd6HJCk5GmLYsY1Fk8OtxbPGLUx7ZJyGWSWlgqZ9JP7Rya68ff8+b927ZFdW6nFjdeF8vkDE2e0LuSi3L27IbWG/y8wHJRWj3i7YdIZ1J7mznRo3LyvbxUxKwwDmGoxTjOp9yIDi2GfVMIyShO7RDU6kENNpoNRer9frx2197gLVczx5g9d2919rnFRRJIcuKOVIDHKBkmfyHGk33gndTC+0daUeF4oK88UukFRW2XroIV9c3/LDz57zop44pk63hphTkmDJ6a2SemXyRFMwMiYr6EL3jd7m6PgwR269NsgrahveokB1dToNNMb+JorrFBuu9NBDWsOs0dxoRFErBIIp6YxqQLp738bIKAX0ukehZdYhVSrGIkpO0Q3csaE6xph5IqlBr+Q+kTWhFvw7FyFdKroqa61Ic1SJBBkPHWpS6KnTkPGQilIabbitiDrNC7e146cNkx1lN7GbEy63RHG0Azujt0SXHoeRlKgmSNohktk2Y552mCyj3jesn+isvFg3XtQbprOZ8wfCwTveYGNmM0O0xEiYSNpy0hgbd1pfw1jhIDJYq5opGNVCMdwGDkCtk0ecrm6ZeSpMY6SNNFLayHRSWkFH8U9wYdUV74EKE3q8t5KZ8o7WVqwtiApC5gfvf8Rf+pW/xn/nn/1l1uUxTz96zHZsTHnP2dl9mKBXi4OBwnZcOS0ru/lAmnehY3ahm7GZIyWx2sraOpd3pi5V3n7zUbz0O3FoEkydhpPUyRIbfpjUlK4hCXj0xpu8++6XQJSUEqd2ouymoEzkH93SeeiIsxq1VmpfQTrOIXBLqnHv3Y3TiS5fY5yy4gyEY/TuoIKJh04WiK0zEFrhpFbMIyjBWOMa1jC+9RbPjs1D9xqi2BiZpyxxvWodZIjotFtPQ+saMpRo/gZv1YdxCndyju75Zs5SN0hKd+f83j3ezWFE2U17vGcQY5omdrv9KIwHIUBTBEq4IDKPw1LwkNUyoQy0KIIbmBnTvpCmxOnmZsgbKmuP8fvaF5ZmNKthyulwvtvxs//C/4iv/Jl/ivmtdxBVfu1f/5f4+Jt/hWs6fa/0pCRTDjXxg4cTrQSwf+0TbgVNM841AJ+cHfjwwUV81tJidE0P9QYOqkHG6I7WCbEpnqOyUbYrpmfw1bceMvcdP/jgE26PzjRNZG08f/qEqxfX9NZZrq9RL5y98YgpO/dejinUWw/gt77P+oU3qO88RAiTk1BxTfQa6XK3Hb5XP+KHc2MRaD3T0oG1K7drQ2WhpJldnsGMnEscaCvsd/sgeKQ7JEjFZYt/Ht32SOLqQ2cd14wir7BmkgSVXaCm3Oi2IDYOtNIhE4lyHg568xpFrwomkWqYVHjj4QFN5+RdyA/qeuDZsWNe2R327M6mwAlaxWiYQN4JZR74QoIt63R6P7L1A64Trp3atjCDpk5KRk5K76cwmUb6Q6DcWqdg0DZ0ChOfd2Eqf5fC/PV6vX4s1u8i6nR0eYhNDYhuSgo+ZkTQR/7xNOdwAZdgSJoLvQnLsdK2LRJgpgN6lgNLhGJ9xmrn6vYFP3jyhMfPr9mAxRyaMZmQBRYLVI52XjnWjTm4hjQY7v/IOd9QNxarTMmQSQcWh7HxbRgbzQx0h1mI7F0UJBJHDA/mJkpy0H4Xv5noCt0jUUc0oPvSfDwena46ClVn68JaYTJhZor8bYVjhykps3fm8b3IUHKnlI7tlb0IvbdhyIoutW1RHBUUy4nmBgOqbb1BXUlqlDSTdKJ353a9ZtuMbeuctgOPzgoXeRdJJ8WRKVzY1pROjD9hw7FItJKIhcy5cLUeufXM9SJ89vgp93aPuH/vkrPUKUz00pl1Dm2fzvGO1wFFR18RB0pWTJxqfRQ6MWKOyNnOOsavPQldNHK3m+JWMJ9o/c4lNZNSIbMy5UxOYZIIO1eCu+4SDaiYJ/SuOyOO+obidCs0z3zzm3+Tr3zpAT/xE4/YqnH/8k1UCot0BOf8oBzmHdY7T5cn5GzsSsPbFW10HQUlNcOsIsR7py1uubY6bzx8E2BEM8aBZO0tYkadVzG2rVZ8sBYB3nr7i7z5xts0W7m5XciaKHkmaRRmcGeSi+8RdIAo7nrbWCxc63ncu3rnfjahSxRmDFOKO4hHylnvcagTLSDjs5IheSGIC4JCikMUUkmese54C126WcSAjm8cGB0BScG7VYTWR2SwxWjTxj0vA/eFR8Hs3SFZTEEi3o1ujVNt1LqiUrh3/0CvnbYZnpR5N1NyjH7btg02c2gS3TtJFOtpGLXaK9xXa4FGm3IeEwHn7OzAu198m995/jw0j+bUQQnZtsaSEm0zTr4xTzPT2Y79vfvYe99my4X5jbcwh21tLEukzyUVsoV2lNFJtr6x392nbju6B7oPwJkwU0Q71Zb4uSSMNa15aJ5b6GGFTvIV6yv0HX2pvDjecHO7oIczPv3sMe+9/zE3Nye8C7t8xtl+5vw8c//enjcf3uPiMJHEuRjDtLNdXMsPdnv6vKe2W7ptgaPzmdaVugrXVwtX187SjeoV+sacD4gqp2pgG4dyQVHFenzmbpAlk0QpOcgf1oMlHVQ8J2nIUMUi8EPQMfr3KFbd42t7xon0PbEGFpO3hKJlF/QWhJxTfObm5JyiODSL9zspD+/fwyWmPvnsgDJRbirME/uzPSUn1psF6YrqHrNEMThL5+zpnFqOWG3pLKxcLbdcH3PwerWgJvQaMrmWDLMNkRyyBgvZzLatzLOQclBnzAxaxPS+Xq/Xj9v63AVqGo5jHwUnQNeES8Q6BrLGKUnJOaIJkyptGAeW2lnNaNYHgmYfniTrNFOqCJ9+dst7P3jCk0+fx3gxCdmCHVckM+uEqnP0NnRiTirKthxBnCmdkyRhW8OpQEe00E1pnlDZRfEJZA+ItKvFz6YGvoEXVFJEqaqGkYmRZGSg1lHvIJ1qRvdt6P48ok1bjNuR4UAmI12xTVgjKopJduxTCceyLeQEZ/sc8PIaLMC5OPup4RoSCHdlE8NFYDOk91cJSzlBVkbXOJKZXEHUmfMc3zc1zCttu+Lpi2tePk88PbvPW5cPefPBjvMHmYyBRQJL0o7YGi75NNPShKeM105vTk0TH904nz4+clku+cLlWxFPmzsp7zjqxsXasFtjowcOJnJVSRpFKJ4pacfmjVdcc7UhIYku62SxYaiGRgxPYIJS6DWxbnEtus10JlrvmOXh3u7YcMliUVjiFdTIqpE13m6Ypx3uPagDZQ+eualH/tqv/wZf+eovc//hJcWc/Vz42tvv8uCNexyvXnJ7dUU9HtFDptVOs1tq36K4ltAYd5ytrZgbZToj18FtTcLlWRyWch4dKe9InmJEbi3QRRoBCDlPrGugZL7+jZ9hKnv67YY0JctETuUVsxXAaPRWiUbaOER6kC5q30InLsqUMshdByleRxr3iNugZQBoFNKSJtw9HNeD8cmwtWkqJG0RnjAMU4x7Zy4xXjW7O6QMmZAPL9iQHKAFTTk+uxZFs6qMCUUYt8yD+uDi1N6wzcJkmDQMWK0xT3t6i+KTrLQUB7x5nmKyQSCuAlXXyamEXIAoVKNAZ5AkBMWZUsh6EhLBEHnmS+98mW//1rfY1oV12zgdQ098c1O57Yl1bVSDi7Mz0mGH/81f5fE3/zIP/vl/mfmNt2ib0RqoJ7yPlDXKeHIUTGc2UWo3JM3YJtQ66A8a0gqzgsgZxjB0WURPYxaGn2FipG2IOtUrviWMxPrilnzaeOs88eBn73F7a6jv2ac32JUdu50huTPlTpKGtU4aaWi2xq/Li8ptqbTubDWmE60dQ/9vhU+fLayrBMM2GZSNklZ2SSBtLCdlUkcG4zgCXzJzmV8RMLLeRTk75hEl2mpMF5JkrPm4X0CS0VocOE2m0FcTh77RMiC7on3oXH0iJRnXVx3FreJmZAnySZg1M62t0GGeZph37OfEqTe2dWO7dWidSeOAkyhM2rkoMwfJdFNqLuFXoNBsZt0yW+2oVPCEeqb3RKsN93NSLnSJRDzROLC6Eof1pQE5Dm2/CyDP6/V6/V5Zn9/F/6PQGSzFb/O0Q1MA8WUKTmPWcG8anW2rLMs2wMoJBXLJTJOQSwJ3Eg5946MPPuaH3/uUq2c3WD0hk7FZC0h+OjDlGW1OWhu6rqg0ujS8r0iawYRWU5ygeydPvBpF5yljeERjjh9jUqcQD7spHWh0lgEvnyQSdbQ5EREe6KykimbFaowYVQvlDrNjjjhMpQRcfLjQZbjLxZS1djzlMEOJMokz7QWkcXEBa9243U5MEsXrlI2iM3PY23lmHg7insg9OgVdjYQwp4mI71NKnkEmaj+S6GTJGJFHLvuGWKOuK9c3zvHqhscfT7z59lu89YUH3D8rTKkjZmQm6J3eYZsV10L2ma9/46f5d/6jv8AP3v+Ye/v7fPlLD8mbMBeN0a43JHWmB2csdWVbNhwhiw39YETITgoimVrDfVubE/HWCVclZ9gLaA99ohtYEtAYI89ZXpne1rZRe8Svbm1FmeKA4KN4Gha3cTXHJi4LecTdogXPJagEqbOfz3nvB5/y/vd/yB/7pW+wLk8p+8rptvHJ4/fYn1/y1v2H5Isz7p0fuHr5gqubK7xKaNcEvK+4dEruMZZMQi7hfO79ijtdZfdl3FuJ5kKpUZDlLHRbaQZlUmTwh7/0la8Gk7caYsK026Ep0azRa4yYO44PZm/vjltsxmEgXKmtopqZUg7+45hIZHIYA62PlK7o0kT6kg+NecNV0RQTE/eI5hWTVxbKksugQICKkFWp2/pKaxy84cCcmWg49RFQIWuJ4jcHEaNbH3r3uE50dMZ86BC6G92N5GFaTMNwN08zbsGAyNOEaXwPGFG8d4WH5Ogwa6bWJaYYJpEyl4KmkLNFiEaaaL0SsZaZN954i/OzC3749FlIF+44nCpjwgMPHt7j8vycR/cfIlvng/ff5/4wy7W10pfgH+vo8hlxyM8JbvtGTyW6122JgneL6+bq+jnP+kbJl+zSGT1vsG9xwLM4QIuMiZAysuhrdPi94NWYUGyrLNvK7tz50hv3URfq6QbpK3aq9JbZehwYVYTT82Pcc9fx63b7GdfpipRHKpfHJELSJc9enHh6/ZzqKyU1zs5nStlRSmHKZxyPZ3zy6Q3rbTCDSSMWWaC2I2e7iSQ9mKo0aq2gOSJNVUMHjkVSWHxs4VXQYKV2+hivg9U43KSAP2PWsFMiDZpGsyUkVJqxBmUKHS+Edl4lMU8ZWYOTnX14nnylbxticUD0ZCAZTXtSWUjpBvGXZA7DsxAH7FYL66L0M6PpMbrPfRdSK9tIXtjpFHQXq/TeKCWFNt8ymmps4TLR+vHzbuWv1+v1e2Z9/gJVfoSxsLuHcFJK2bFLGS9hesGMunTWurGcFtwtHMUZsidyOmBUHMdFcWY++eAx3/nWD/nsWKkkXDIrC5sakxUghZsYMCz0bq4D3bghmvGIJRpIjk5Kivfh2uyZTcPYoEMk3+xE1x1qF7Ezj9xjSdDliPhG7gWpOYxBOXiMGx3LYSZRB+lGEcFEwQJa37kDLUfUXZWIZpyyBCXACmfTnu7PKdPELjfuTRsn79R0i7FnKveZk7ETWEYaCj0etKdkQKdYjEZRpyYoMiOtBRLIIroyubDLCZIw7SZ2ybmcElNSbpaF58+OXD+/4cP3X/DJhxP7yz0X5wcOOvHo/JI87aiaOd5kNl95991HvPXlr/Fw94CHvfBTX3yTs4uJ9XhNckWZWbcTZ0Xpmnh4f0KuF17eBOnBUNxbFPP7iW4bWwTP4y06qWsNFzqakJzIkuktKAqWlCobnYZPC2LxYHapbDaFSUUaTRvTlKgWmCvXgvZgyAqNCmjegQeVwN3pK7SRxZqtUnH+87/yV/lDX3+H7Dd89OQj3njnJ/n73v1J3pwOXD19yQ++/R2un31KPd1yyIn7+0LKUZgZMuJGQ/vZ6hWXT58BcP+jj18dln7fSNT56eNLijqpzRTZYNtG9G5i3ho/PfSrX/zsY+pv/HV8qeS+kSYlF2FZT/De+wCcffAhaoJXo9VO72H4UQ2NcpRpsNvNZE20uoGNyFgUM1gvzjk+uoc45Jim07wNExJhHPKYFIgQrVCiS177CU2JsLwYLgmZnDwSqNxCt9rCvh+/jyhIU1SfIINGoCA9CuVm4foPJYMPqkZHmrHLgvuGpjmwQ5rovYEYOkd6Wm09zidmiAvzvBtGsD46qxJjVXe6VZAUWt5BUIiXlUN/bp1Hj97gi+++yycff0DJzm4wbQPQHweLi4uZs92Ow7znkx/8kNOL6zFdgV4b1C3iEqShWcghtaR22MSpp2vWbixr58WLI18YDYI46G2s9Yp2OnHcbuhsnB127MsZu3LOXAqpbLR2oqth+U6HLWh2TG7pCt6VmxfCdpo5Oz8jibKcTvS1k8SQHtr7TqNu0cn3FoctWiP3EnKeZGBKSYXPbq95/+VTNpyke84u7lPKylsPHuC9kTOU5Fg953k7Utc6MF2dtjrlIEyaSdqhVrAWGEHNoQNukK0jKvE8wLEeummNGj0OxNlZe2UWp6SJ5sLROvs8IQobWyTaiY67ogFGa6HfNSwkXCmR1JmmRKtOYhicrLH5ibUnnImmmS6RxObqWC70vENkZsbioCYV1411UWxxdpNSfeXYF6yF5lSSQD0x5cycCu6w9dCni3Sw0LaS68A/vl6v14/X+vxzgaFBDQ1YPKwnVQ7TFEYLKZGeUxun04r1LeD1uYSZQTJixpQz6ETzTjPn2YsXvP/hFS9OM8c+OkjTjuZXLL7Qm3LIjV6UhtCOLYIBUoIUGkfvjZIOMbJqzjTt2XBa7+Qk1O0EO5gy6BhLVS30NKEtuimiUDK4BhfPyZAT4rEJh4tSImo0DfOBB49UxFEPHJVJbKLSHS2JSqd3iTdaosPZXDhtnWk3kdPKPAklZWqKiEBJBWuJJGeQa+h/k+F0VKeRIS3IttK9U1Cm5ODr2LAzXpWJiVlTRIpLR01Jes5hvmS/77xx78hXHl1ydXXN6bTy9Krz+MWJ5zeO12t6fklKMy6Zbp2XV5/xL/zz/20+fvKUN95+yM/0n+DevT3OLXOKTmSSxP584ub2GneYS+Nyn7Eu9LWzjc5VxK0GaHs/XN6tOce+0aSxWsTM5inhOeECvVtE1kpms05xQYYp6Mtbpd/esGwLD2vnzSU6ps0FxMK4YRGVmLPSXUmjo259JCxJw/sJ3zaKXVN2E/kHV/zw//0r/MLP/iQ/85V3+Yre5/Bn/il0W9kDb//XvPH++P/5//Hqn//lx58B8G9/8hHw0X/l7337X/tX/yu/5uf/3P/2v+Yr+9Fq88xf+l/+W2xvP4pyKoLGR3Gl8X6mMJZAp7VOLjYifjMjugLHfpQU9Xdm1Et0GdG7gjM6j8IwQxFIsWShX+2Mzi4e2jtGypV7hGhYDuLAZqQ80XoYbu66vJSI7221j9aX0nuPkAxVqoBqGKEinF24c4SKhHQmkFwarz2HlOMLX3qb6TcTuW/BtASSdlrfOJxNnF/OpCLc3N5ye1xA9JXu2DyiXJEW1AYCUYU5dancaBiCQuKQyTmT91Hc3n9wzhv39xgd3FgfN063xtwP3GyFl9uR3U65uDeRykQwcDuujcQK3WkWhkvvIbk5bob1I/fuHyi7QKQ1jwOuuSFiWIrX3kbTYtHMUdJg9mpMIlrho6trruwMtQNJE++cP4D+kswlOTmuG+eHPclWdIPjtfH85jqYrmlIk8xG919JaWIZIRJFCimHV8BH991NhqnQEWmoVmrNQX5JPgxKyjzPEarQKlrGgUR0OPvl1aGqt0pO+0h5irQQnBZd22jVgq4c9oneC+1WWGvCm5Lngucd1RJa7kFeOW0Enm0cnLe24jYNlvDGUjeOa0S4zjk02WF2C/lCN5jSLqQ2ONxppw2Gnub1er1+rNbn56CW0RWqW4xXAKkNb426rSxSsFbpQ/snEFrUlOjd8F4puTBNhe5G3ZxaG0+fXvPZixsW6zRCJ7bzxMEzvhk7HOmNNgkbmW7ODg0cjgtqTrGFJBlnpmEDD2Vk31DfyBp523eOTABPB7pmEkvgntzoHl0a94S7xtiSjjDMJGNzvssMT0lDF2Y9XOkyNtpm1F4pKbGJUaSgmqitIVuMkK9y492HDznoc+6dz8zzjo5x6JeUfIm0jNqOzY4sbWEburnguyrORusLIpnihWyOls7WAQKxoj30teoS495eYjyuM/MEk+zIqXL+5gU+C2/XjS9dn3j5YuF4W7k+hkN7Wxvb+pLzR8qOI7/1G38Fk5X7bz3ikDPazyIlKDtOJRfjcJh5eXvE2CiS6a2ySGXbaqS2eKNuG/vdnnMJXeMmjb45S3OqOZs4rBXJjklGLJNMmWwiUzme4FMKiyr/k2/9N8iE/Avfgb/w39y3B+gl8x/8s/8Mv/n4M377vQ95cd3QskeycLbPnO0Sbzx+wv/iw+9z9ef+1zy+/4Dah5ygBPt2OZ1I3/42P//n/hy/8a/8K6xf/goxde60XgNPI4qPUI3ujnkfaUoliqZuKInzDz/g5//t/x3TzRXb2w+jsYSMYtSJhn6M6rmjTOEjM92GuSeKwAi78Bjfmr1KkboLiQAGoNzQkbvO6Mr66DRGh1aikNABwocIDfB4PXH4mFHJZJ1p2zIOkIFjMxU0F6QTBqx4yaMYDs1sZJu3GO2PwrndpRGFKCh+Pk1hZkuJL375be49uMfLjz9l3Ka03ji73HOZZ/KUMO9spyPnX/9Zzr78Ncq9ewC88w/9CfZf+jLf+X/934P+gGId6lZprZD2EXKwx1mnmS6ZzGBeipLyRNZKLnum68ZsC/ffPGdf7nPz8ilXV8+5/lSQnLg83GO/3+F6ZMpQcsJrPM/EO1ARhXXLPH9h3Ds/Yz4IV9dHHEXzBG7UHnvBJhF1esS4GYi9rXdqg5vjyuPTQit7luuVw7SPiUhvSD9FIakZ88L5DuQSJl9ZTlf0DPcuz9jt90DIR1KOIlO7Q4PaJCQk4QRETEbsbpjG4tooSJlfHUI7HjrvO72aGeIbUKFPwX9GgojiBbhj7EacdWihFetbFKhiYEckhTF4rgqb4qQITajgHv/ezFhaREmrbEhWqhQ2ObBpplnneumsW2Y3T3j26NjmApJpd0Vz2BFxj+ADs0bqylZfj/hfrx+/9flH/HN8ac4T9KH7O67c3t5irXK0BYgkjKwhiBcY8aCdUhLTpJFJDogorRovrq+5Ob0IPEdf2OWJvcy09YTQyMOfb1ZCX3rHR3QHk4iQnKBXAe9ogm24j2MktQb8PEUetw8dn7ZCShlnwVQwEXrPsaGmBDLSbtyI3k3E0UVsZLiKTYKViHuYPCQ23ZyEZgGnlwhgD2i+wV5msmZuto3HL46c3T8fUPLK5VlmLpcYlxyvb1nqLZpnlrXS+sLhcGBdY0BbLVBVYp3WF9YWcP/4DCKK0dfQMU45sVm4Vne7jZyvSHoBaYruBJlugorxzsOZd+4Jzn2WDa5uNub5Pmu9x/OX1/zaX/9VLh7e4/f/9E/y7PkntO5cTAfOp3gIN1mB42CcCrQYIVev9LlhN1dcH4+c1mOwEltiLoWpOCl3LAnaZk41WJTdguMooogLWzeOVtFkoJkf5h3//Z/6ee61Ey6NrXeOp8ZNb7Qe+4gWQJzWNNz7uUAXmlfMPUbRKYEp3iwg89rREh2zr7z5Bn/ij/0sYs84//hD/un/8Jv8+7/8J3n59gW9N4T4/SI6eIaj69F7cII9NJS9GvceX/Fn/+Kv8ef/5D8EbvwTf/G/4M//iT/Ck5/4EvKVR3z97/v9TM+u+cu//lt8+wdPWTljnpWHDyaOywv4EG6/8lWuv/DF+HOn+MyX9cjx9pbdEmPX2y9+kduvfQWIWWezSrcGGiEKiIfJqDVwYZ7n0H2aRSjDqziOCGc10SBZaBvMSIJBTBS5KkouIJajWEwe4RdipBRO/Ejn0YiY9DGgV7hjLSCBR9LRFfUfVb4xkhZBUwrmaEQGDUPiCMionWmahi5R2e0O489VVJRTXWL0rhokkFE4VwJjFwbK+PPMgvcaQ/1gPCOK2EjOeuWhcnZnB9585x0+/eETmkbx3Q3efPQmh3UbWtl4z979U3+Gd/+RP/3qufoH/rl/EYC//e/83/CU6SinbSMb6DQx73c0q1BPJBGmbD/6aCwhNoeZqhbO54fAc6a5st8fKXNlPsvcXu24vYbrl0eOx42zyz1ZZ6qd6JyCo+mCasM9YbbndDSsb5yfZXaHC55dnbg9rhgT+5toUDx9GYeLT18mPmIOPJgKN7cLz29WrnuEtdTTUw5nbzAfVtJ6omhFmlDSOV0n+u3CnDq+Nx49yLQkHPaOaEUQyhRTqmo96kLNdFKkFpIittptcLF1fI4JLAyv1gPIX6aI7TVrKMqcC9bX6CwnHQeSYDYLGk2PwWZG8kjqI0gwYoNAUcJrkBLzPtOHAbDkja3eogJFV1SXMGuOPSga+FdsPnPa9lg9sa1C0h1z2aEeoRAimeYhM3Exqp1CXuI/wkrdTR9er9frx2197gK1/R2TuT7QPmaNbdvGJu/knDEPPV9EPVrEMqpQko4ISqOb0Fx59vKGDx8/ofWK2ob0ipQpxvMmbFJYxTjMEzud8C4cU2NLYXZIDpJmTho6tb7dEvVgIaVDPHCS4msmSYwim8ZJM9VKlkxlnMy1kDTTN8A2NN3FZo4Ts0cuuvdwKYvo6OB2EsHUk9FpyTr0pmJMeab3xtI3Sk5MaSaJcttPfPy8ca+8xeFyx7muiG3kOeOy4bZxfXvFYX4rsCbFODsET/R4aigz+3mit5WtV3Le0X3C2krXSnXIk5J2gmjFljDK7CZhKluwVk0pJUwgUkDajsSeXAJsnXY3lLMJY8KP59xP93l59Zxv/MzP8PVv/DR/5b+8ZXLH15Vup9DQqZE1sd4KWTu7faCLzoiM7G1z1q1y3FZMd0BEnjYzNME8TegUGqzalbYYvYbxI+WElcbqJ3xz1l6YJ+ckQ3ainVYSlR3VJ07bGg/0HOEDzQrdoguXpg0n02uleyeLUvYFH3Gk2iKQokwT371ufO+33+OX/vBX+dkvRHXw7GLiyYNzcnO0Qi4pxp8eBoms416wFlOFWvHmlGNoxT67l1+lSj25yPxg+4z6Ox/x6NEjDg++zC//gz/Lz/30NX/9tz7gw8+eU1IJQyGgWVn6Sk5TdMF6J6eBg+rB+TUqnk5Ap0unWYwIBYYhieHRCuNI62E4UY30njtDWcPuykdQRcYIW1zIKiSVGIdHWgVQYBzoIhMdnEzkAUQXqrvFiFICNeaDm4xEwRcj9ruN1yM9bHz/pDlSrjwSsO4oArhjtbG5UyaYpsQ871mWCPForZFGsleSwP3cqUqrjyK63TE4ZRwuflScpqShX8XH6FlGClljt7/k6z/7czy7OrJ7/Bi+BxcPznnzrfvMnzxllXCV1+r85v/m3+TX/1f/Bje3N7Q7N3wbbF+Bvi6cjrfspwkOjqcTc6tMGdw3cll+lGrp4G2luaKlRfBGE9RSZLgXww+OmrMvlZubjcdPT1wdL7h3/oD7F5eU3Z7GNc4W3UELAaxqmDbXF8aDhw+xnPjOB5+y+oGpRRH+ssb28bwVntTdmCTBTXNeuHNyqBuUekHvgupK4sQ+PyLniSoV9ESZEl5Xdjvn7cOB1VZSDpxWznOwSbu/en3ukLJGuIPFJCsR3XxzwQjWsboiJiQPS5v1FuzrlMmqdDdsTUjOqGQ6nS6NojqILmB9JuVgQZs38ERJZSDpGsNliWsUubk0el/oYqQSRi3rR1IKTbwL4BmTCmxAZ12MtjRK2jOXRO6NMqZxtW3oFMlZLoFva95J7nhv3EVoN6ufdyt/vV6v3zPr83NQh1s6IivjCZnnguTozIluID3wJkJkzbd4uOeUx8l0sCwlcX278J33PuTJi1skz3jzGCdTqG08QKrQi7LJTPHpFVB/1cbMSEBiyMS8k72TXahtZZdnSk7UJvh84LisbK3Th0lK6eANGyDwSCkpA4OzId4wSYjOqCS8t9At9YqZU0qODqxHJ8oGsxEESWkAhhTt0Dy6LoJw2zekNywDeeaTF8rF/Xs8vCxM+SVJHcM5Pz9QK9TlRNbM/vAQYQ591FbRvMca9LbQfKVxycxMkmuSNvIuChpLHaPhdMyVJGcU3SEWcXo+YlsDVxKQbqehUpiZ0dRZemI378l0lhO88fCC9XRDmc853V5jkthPypRnrFXacoyHNYqmwlo39rtM2zr3d+fcbivX1QO1IvG3O9hWyWqkuXF5pmiCvgjbjVO3FRC6Bsm0lPPIt7Z4v4SMd1iBrQd3F5nIyWhtwaqQOJBSYrXb2DBFEMuIdcyNzbdwqwt4UVLXkCMU4fGzI++995xv3BsGFRbyuvKN3/mI/TZSaTA0DRajMNzqYeLxob08v4kD0heev6SOLsj9p9fUOgez8epT+nu3yO6cn3/0kK9/9U2+nRtPnt1y7yoKGv+d32a+vMfl5T2mUri9ukFa5WxZyT/4aLw+idQsoI9OdDdQz5RX2Kkw2zV3bAv1ZM6hA71LDzBXjBL3AkRX00cQwQZSIhxA/C6lJ43fajCKwLhHojurmgEZer9w3ZvDXbxpGKrG77lDUQ1ne8z8RyUbMIcwNnl0VpFATKkkmGZqXVnXU2g7W6OkjMhw2IvieDCMzWDwWBmv90dryANeddIY/NeEuJJ0ppSZN9/+Mvv777FfolD48td+gouHb2IfPaNVx1KIFTQr7bSOKF97VXhnzdROjKlVEYWeokAuIsAZKisiE9wZYozxHnrA5D0hNpFsh9iE9cykQj7MyLwDq3z2zLhdKsv6hNMpc/lgx3yYKClhfSEPjlHrHUnKablhOSYuLh4wT4kX153bgRysHqP+qhuLLpg3bG1s3TA6tS6UvANXcjqQ5IJ595CSD9CE5IJ6RrWMuOCO5hj1gwxUU6Zv0QUXBoJuBLtAD8mHlUGfSKGndUKaNQgrMg6Cm0VKYFzFEXFbdIrUMkLGWX2kIBLQPh3a09CAWujWPcV1cyf3EsEaCIm5TKw99K1lKuQM3a7Y2lAnSxzm3AVPB1bfcb1NqN8nl4meMlXC0CieQ8esylYd8QOH+RyvJyStRGBDHNJeHTpfr9frx2h9/gJ1jPXzrMOtGw76Th8n3HCHppG77TKQMaWQUzjeOyNSThKPn73gh48f05OMKLuMU3CdyCmR6sqcMicarcZ4rcfsEDehZSG7Qe/MPTRGIkqmIH0jbSfSvKc3WLXHZpfCaAPQSqcXo92hVu7GhhImDyEMNSJCShOtBZZECPxRQM8tRvjjtaloRIw6dFK8B2MTzFoDDl4KuFNEyXrg6W0nfXTEbebdt89447DH2hGRzhuXlzx5/in7ckGZz1m2ENM3qySRMb7eMZEG0KfS2Wi1QjXmktG0C5ZkcqY5RsKiM0IGcTaP/Gptu7GBVroZu3IPayX0WlJRaWynaw7nM7vzC54tG198523a8oh7uwMffP89luMN52d7CrCdboAzsiv7EsENto+kof1xYZ+daonaHS8Th/OJtt1Qb6+hJnIR5lk4e3iOXArL7YnTaaF2oQ3jWscoyRBLYXihjAOS0KxHxyMFbUI9HN4uA7Qerb1IEUozxri+mlBU0b6RPUwYW1u5XjqfPLvm5jySe5wNemVeNzYV6nTXfRzaRrnbBsEsuqXeO5RME+FP/6Vvvrq3/pm//Ld+VzftF/7n/zpf+Hv8/zbPbBcPwXdRhI4iRlLED4uXwEX19qrDZOb0tVM0R0dqjKoZTFf1O9+5MqSqiDlIMEMlBR/DvYJAHZ2uCEuwEYcaNAuIwjIKwYwRkp9X2tTu8dmN/+4oLik6hhAnUtXxHodZCmwUHfF1tdbBVQ1pj0h0RZWIQVUZ8hEIznCP4tlsmCYljRG/0cfzJaIyQ8KhEu+D9ZDuTGlP0h2nZTBW5z3T7jxeOxphICJRBDULPabd1duJ1hu1GSlN7A6K1hWtTpoKzSIOVtKBnBQZSVLmBZhxGt6jy9a7xIFNDXw3QhCM3pWtV1ZXvBQc56Z22vXKOTsO+8ykU7yfpqgU1nVhyhPr7S2TFy6mxHPp3KVe33XtzBpGC5h88+A0NyObMnWnaWM7NW5vNZLY1HGpCJm6afCjZSKVSPMqTNHRbHEtqK6AYu3ODBUHEVFIxOdobqhOEMdy4l1IbD0MqyVnPGW0hHQrorsFL/1V898UjMRminimpEJOJbBc+ODOJqwrRnTd07h/isJdQp5OEzdLjetGM8gZ3SbqVilzIqV94NV84mZtwMb5dGAltKgtxZxiP4gQvRd6haQTRkY8R/R3m6ODasYk6Xf1DHm9Xq/fC+vzu/jHxpJHqgpA3iXmXaFuPrArdzrP0J2mnJjmCa+drVaqdyiFZy+e8q3vfYsX18/DCKMZaaCp0Cl0a8xiSHHIkcbhxAldvQdTP3IPyV7pppgKXaCiTPOO03bLKkZOZ0jv9L4iaejggBvdOEkahajhkkEaok6i4BKGAKPRe8gXZDwwzCu9r6FDStGtig0xIZJjdCSQcmbdCESJK+u20Q9R9Jz1jrrh2Xhy84zT+7c8vy38ga/9JG/c25P8FmTj7FB4edvZuhGb+UbnJZpWpkOitWukG7mUENDnIBB4gzJP5DzRFmi9UoqQpxpxpXIALJiR2lBdyGmi2Q6TwtI7+yL02un1yKzG7XrN1979KfpSQx8s99ifF07bwmfPjxyKsixxmDGZkSywdXYJaluR3JFU2e/gbFOOWwkJhhvlULl8pGwvJk7PlfYy4zeJfKFcnBUO9xN2saNXY1udzQMun5JiW3QHN2u0deF2qZiehZ3AO0bFpCHa8BTRl6pHnBK6U8kgUbRJB3VD0hgfa8DDrTnPH9/w6TQGw7IDDrgLNQtbjmnB7/tn/3t8+R/9xzi88y6iyq/+q/8Kj//Gr0cBrUI9zPzVn/99fO+Lb3B5PPFP/MXf4N/9h36Kz84Dap5kx7FuuIQ22Mw5nO+4eHDB5YsbfvnP/wof/Gv/Bi/ffZfzywuOyy0qRt0WTqcjy7Zy3M3YW/dI6vQ+4OTSMVa6K9KjMlI1UgqtbG1Dj8slU5pIevdoiMkHI6HolTZbwFVpXml1Rb1Q8oyakzUPSWkmDFUSFAYPjmXOPzJJ3ZWIeHSekwrDXRJj77txPyPK16Oj6XJnn/KBhwq9dxr39+m4cHZxERIICU5qLnMU7OIcDgdqrWzLOgpredW5lbuOmt1xU4fsIP64EDbjzGVmtTh0n5+d8YU33+D0/reBkBiIhnQhjseGkFm3RjeP96438DBFZQdNdzlrDq2SR0KXlwmsgoRGvnsUhvH+Kp2KSx9lWYvDQsp4C/OhUXHNVMmcWgSsRHDCxvVxYWmVh3bJ5eEMt4r4SimVaZIIvRDhuGzB0O1H1hEU0FO8T5XE0mA7VfLaub09sSWhlMx6XEg2c/Wigu0BoflKLiU6rPMOlcy6xsGm1e2Vec1baI8Dwp3QJEgPHXDyEglhhM65eUVLQyQkWzKwfAyUFCmFsZSK18qUw2BYzcgpk8sU3X7tgU/rSu1xwqrj+iUN415SFI0i2wysMU0lpou9sp/BJXGsldPtynZcSZ7IGpe2pjDN5l4pdsXEzKSFohCRjBJFvIK4sq2jta+3rPUlRSNRKpNRD/pCydPn3spfr9fr98r63AXqNGDGEdMehZojeFHMKsmVImnoyNLobkAPch6SOtac9faGb33rb/H973+P1TI2SZyaPeMt0dUprYZzvyi2GaZGdmO2jaQV6wtWCQSIFaQUeu8xo8kaXdfJKFSy9hjXeyZJQRinfjqaDe2OE0klosFMbAa9JbBpaHwaTSKGNI9tIb2Kb4r88JDHd0Q6d7xuYcIl8uZNwbIydcAymg/UvuG6Iblz6kfe+3hj2p1D/iIX80RPN+RdgdMSqS2SaO3IoTSSrnRTYEOloE0DqyKdks4pZQoHKIXWGmqZ8+mCi+k+RSt9u4FsTFlfdb6FNlKNJLSGWtDU2E9hSjsc9nzvu99iPr9Ps8zL9Slvvvkujz99EiYLoLdwgWdJ0ELJmKfEQTS6v7vOA8+cTk7r4Spf+8b1M+Pewx1vnF+yJWPZOtcneHld2bbCF+5d8OZBkKnR94lK5dnxOZINPXPWm8bpCKskUulQlZKMzkalQd6BnMXnIivGWRhxrCPeyWWk8ih0KSSLTq0OtI6rc9UqP3z8Ylz7O3w9QVth3o1Oo5NK5tO/+p/zhT/+Jzm8/U6wG2lUi/ciJWGZE5+9eUZ9GSe9Z/cPfHr/HKewVUNSoW7xKaQcaMmd7HhnH/fd8SffZf2pP4geZm5Oz0hkXr58wbac6K2xtW0wcqPARiJ5LY1EJNii6ZiVrW1hZCrKdtw4bQtkZTfwSm6BdHN3qlWmEl3q6JgNIUuKIjIKRWPtmVLOw6ndIxHORpnmOKQRfUu43bOGbtVbpaeB0IHR1hpdszHyFxHyKOTc+tCphpvbagcPjeguT9i6QVJSKcxTHsWnkiTwUmKdnKOIk24jIc8GO3UUqh7pV1Oe2cazQ2Xgl+odki4kPA8fXvLy4hyAORtZjmAreYvo3t43ZGtMrSK9k4doonnHqjAnA1uZvDPNhW3Z6GmHamib3V+Cba8CG5AFG3SRSSe21NHkrEulHs4ABdnQFHD4rcH1qbI6HHYTh+JIKqwufPz0JcvtgbceHshpZusNJZP6jEhFUuJszhx2R1hCprIsN+PXhRuPoJLNHaYES8U77KZCa7D2E48/e8F5uWDaG82vkQTVNrIVVGp0kAUif16QVPC+UFKiDxqFe3Q8u2ZOm7BaZZ6im77VhZSj4GydmCtZo3vEBatKIMXKTHPD2sI8n0EyajshUlBPdBPKoEP02kjJA7VVc4z5pxOoYa5sGgQX7ysZp0ujueKaA6XnEVMsEhI28R25J2gbOjdKgak0lBe4XSBljumAZioFSUYhiAAzMOkOZANfSXlDLbPLmVLvnHOv1+v147M+d4Fat+hM9Foo0w6AlOdw7WehyMQ8F7a6sm0bOebggz0prLWzNeP7P/iQ3/6d77KsTtoFRqRuGwkhZWe1E84aZifJaJ4xOmvrKBMmE3WLzcpzodLjFKk5Rk3mkILXqj5MGVtjLikSoUb7dy4pujViFE3RYWorvYUeMyVBUiOoUQ171euRH5lo3aF3isb3jo5q8PamlOjtlmQaG7RIxC42JxnB6csCfk3dKvu8Q7ngvfefst7A1959m7PdgeK3aAclihY7du4fzpEkVIfNJoplDrJnbTeIG2XesyvCnARvxnKEs/2Os3MFWXArTNMlORXMwuTmW6eUyINOKQET29pBElPZ0dvKXGbunTm/8df+Mvcfvc3lm29x8+wT+vqCi72zS0rqmSSZlCeWdkvzbYxWE/t9cF27O+eHHcdTxbrRe2G9SdTzh5w/OjA/uGJbTzy/akwvEvWkPPv0JcdSeXD/kjIHhP3++QM8GddXL+jb9spVrTh1atx5p6wrvTPg8DO5nGOy4bWNbk2N2MAUBWb3RmNFrDKlSCISnem9cHNaxmc/DXA3YDHK9g7f+r/8HxDg4Td+jsPb7yANbBlSAgFvC2JOToSrd6zOKNamTGsbKcNaT7TunM8PuFmuePE8rt3uYQzpfYtiySruFZdK9xY+Ynek3yUu/Ui7GTGeHjam1kaBJ2zN6C4sS2Waw5gEYaiqbcVTGYVCBF5IKqzriiRFzNnniAfmbhwqnUSK98XvUryCw1nbChLRkaHx+xExIPUwwIBiPTqYoh6RrPxIGhC4quiCRcqUIyVQWe4jArWHLtPuOrVj3O+iwb61UKBbN2ptbG5x3yvcuflFo/Ay6aShfY1i2XGxkAQBU1Hu37ug7+Mgv58Nnxt1r6Sbxt46rYFsjewRY2sWgSV1c9wS2XygtZyXYmwGk8yYLWOMH53vO0HPnWzEgFNdgvuaJCgI5mAWRiw1WlWWZixduVk7a13wc2WeI2UtS2FZKy9e3nDvcopUqF4xjymVqlI0RdxpDw2styjYa1s5WaNoQcjYFn1gAdq2RiCGwpOXT7l3T5gn5TwVpG5k4MQtbgLkQUmpqDVScSwpayeKeMBywpIP01/Ht5EWqKNB0ghNtQuunV0pIYfqRq0b1hwpEyXtERNqXcEyIhNTKuShc0c3JEXXGzUyDcYkQnUY8wAZcnPxsBaiBr0FbKYkpkMGbeAVIVH7hlHidZUFlwVDMcnDdBjvW29RGOPgkinpgBM/d2vr0CjfMucdeb+n1Ncj/tfrx299/hH/AA+2BinfIS4CxB+xhjtcPU66IrhGLGJdK611ekvcXC/87d95j+cvTky7eygxVi2SmVXR7BzE8GT42vE2IdMBl4qTovh0Z5fPY8TnQs57ltWYpohHTESWuNOgdXQgZCZNrGavNKjeobmhXV8hlsSdJDGmj8J0AXFyyeGaNBsOWh/jQEamfJhh3A3vYdzqFno3N0PnKTiQzckdDmWHqHPaTvQtMZcd3hO1Q7XOD59+xrGe+MqX3uHdexdocY5XGy+fvSR7FJ7zPOOaeX59ZFLjfJ9gncEaJTf2xcne2RrMOXNxmCkp0nuy7nCbaa0i6q+y2lVzCPjJ8cMNo8K2riQyF7tz9nnHlAvXt8+5+mRlf7bncEjsDwVpER0b72+jaEJzCoarKrPuI6Shbrx974C0ypNnR9R3NNnz2TPjMFe++sVz3riYuLxYeOtB5/rFwtPHlWVLPHm2kkrB7ZZUFJ2VbTGaObU7m4Xuq2t07WqvQENLJN24QxVDqVGQIsgdU1Cc6tFtokxhwhFFZCLpjANLjY3p5XUjXwSpAgNvgR+r1unVXyUPnU4b29KRnBB1dqJh6NoU/O72m0j5ECid3rCeEB2aSIEujrHhOrr/3RHJrNsJSaHJQ0Kv2S0oGXfF6VCGhrlHZWitQUmxwUPoTy2wTuvaqVsfBW2YpqCiqSAp09otzTzGrKmEwUmU1qMkUQl3vncbu/cwNdEHjzRYqaI60uk6rVVyzqgKyRLq+sqMFHpCwa0CNopRxusbY/fxXKihZsXv/hoIOLH42ySiRCGKO7HQklo3eq1ISVHQO8PNDqUEOSN8X2F8dBvGFGSM/jtJ4MH9S7bDGQBnZc8Vyve+8S7bmmmu3J4aV1cnGivNN2o/Yb2yLERnTYMGYrawmFNlR7lz1ouNCN0ZIQpEDcUFZlCmPdaXQIptlbbcoimef+aGobw8XnO7dtBztl55dr1w0eH8LJNyxrtzc7MgAofzTCpArmQC4zSVxOVuzyzrq+c/hISplBIqhN6j2HQNjbMKpAbuPLt+zvsfbpzNX+BwOUPbSEnRvOMufCFMYwUfCWxmissBp8R9IA1Phnoc9NdaWdceXoCRlKYqg8GtQTMgkTWhiSBtVKJDLAkhkqmyCGGksJD1pBKAf+JAF1dxJLvpMArW7qShwUY1dNmqSHIycWLdTRNvPLzkjZsj9erESsVSIqXMlGc8B5rLdaJ7wrb66sDQWkKTRzJibmx9Q2h0W8il09sZ83wPLQ/x9jpJ6vX68Vufu0D1NOLt/IY68CKYkTQwIN4yrW4RsanxEDc36lqxJvQufO+7P+TJ4yv2h/thRLoT1SfYbMNqhdJwCTOSumIN5vkepgut39D7SqKzNed4K/i8Y8jOUMZDUZzwCofezk2ILwrDAoBYJqcduQxpgXXwMs79ObouTjycWg+n56AGpKR4SsPZ7LhXpPtgYCrqGcxRyXgxttZR8TilzwELcomxz34q4KFt0gJbN2o3lucLV6fPeP7GGZMK/VSxBPcf3UN1QSKRk4Iwzzmmplui6MSkTlGl1ZXj8ozdtGN/eETRPWpziPkJ81DKU8DWhTARDVqDjihXa2FM662xO8Q49M1H97h3/8C2dTQLZXLUKm6J3RQb9NY3dBLEMy7R6XAv7BC6ZvJupp4bL19WNsJ9e33qfPq0cXn+NofdQ87PFu7tb3lwdsOD+weOpx3PX5zYFmNZ4fa0kVpBdEJyOO4bQvVpmPo6iYaLBePRjmwYZp1JQwcWKV/CVA6c2sZWfUSKFYp4xLM2Q0rwTLfhoH5xvXBRpxjxGhxvK70bkg1J+U6yzdYbN+vCctWorXEQ5w2Ep89OTH6ndZxZT4GVyXk32L2VVA7QE7WlgOkPmZmmCdNCW04ULWHgkUOYVMxICqIlRpZhfYvOqcfm2t1QMkUTa19prY4aNsaQfnftM0xKDr1vkQWeFHXHEfI0sW1b6BxbR7LQnCgiLaInI/bVBoIozI64kl65/cFHR1EdGoqMw53KCAaQhvVAVpncCQU08FPDOJMkUFQmEWRhxGu2HtzLKGJ/1GG9IwSklKLIU4nXPCD0STQObSRa7xFoIDa6w1HUSJzmhmc0pib3L+7HgzXd57A/52Z5wtqOtJQ4dec0Rxpd607vys3NFaaOFgmphHW6eUDoN2VZa2DiZAUc9Qlrdw0CBg9T2FbBa9z/+2kXBSeV2pcIaRDH1F5ZylDj1Cp2q2g6J8uBlG5wveG4XqPlkn05Cw5nX0kYbh4khEGHoI9naStozvS+MVKwxxEBdtPE1tZXvOgnT57zyTzxaPclSj7j1Fd022O20bihk0h+SWYPGp32wGZpTMh8vOdiFGAuSsWpW3BwkwpFhdR7cJZlJgFFg5eqRTHbUA25TWjQje5L3D8CWSZ0GNDWtsSflQIzqG5xgNKYHFjX8CdYQrxF8tmIItW1M5H5qXfe4TCd8xvvvc8Prm45eh9owwNmytacxA6jkKQGairlkDnkhsuJkx3xvpFHy9bMKbsLtByQNP9d05jX6/X6cVmfu0C9yxcvkyLp7uGuQz9WMFFKLuRcMFvo9YSbk1VpKfPy6pb3PviIxUZXQgRvdZyaHZJQyoxr4rTFOGtOUDTGj61Hl0JyjGqQTNrNoVNKjdW2aNR4dG4RJWfntG24pqEp0zt1W2BZJMX4M4Vu0nsfZomBotI8RngDCO4xvq/joB11r5DTFIWpCuoJq0ZOoXNrFoaP7IJMkRRz8kb22LDVFmptUPaYKBG+E2axZ8eV5aMb7p/NXM6Z88sdshPO9heIKfW2s1djOmQWWzmtK4dywaHsUQ3gt+Nc3iucHyBLJzMe9r6iMvKnFUQ7Ij4K+TBBuU+YG7vdDqyEqUMlOHyTMusoFMIxg8qEI2z1lsYpkrY8nMjajbZBJnGWJ3YpoQ8nrpYjt0+vydLBMy+unO9/dE3KM2/d23FIhf18ydl5p3XhjYf3ON1sLLVyWjfWrbOuC2trXMsaWCSbonOOgmXMEq6KSEaHDcVsGDBIuEwB65eZbVsig1sM0TBdJBJmK+5htgL47OVzJntAbc7VcsuzE1zcu8fDRxeQf3S/3H/zAfLVL/LJJ8/4+MPHJC30HXz28gbZAqr/8uYGOz9DBbYt4hdBMbnrAsaG1Grcd9OcaUQohSL0kUjgjSBPDHOFeBpKz4gMFQ0mZozIo4RQD81n3DqBy1rX2x9Fkvb4DLuFiSr5jlorIolWx+BeYSqFpOGUhxIBEh7Ycnk1FleQ4Ky2FuazknOknOFs1kA9pAEkkitpaBvR+Bk6gbwbA1Y0xU+Ih2Siead76F3bYDLb6IFK7dEtJaJORYIgIhJJa9rbCB3IYUgSj05tj2vcNX5eJwpDG655Gdgt6cr5WWhQD4cH5PNHXD97SZITmhPKGt3R7USrCfUdthSmErxZCKzdHe8WjZ9TkpLzhLVAD0m+M2vGJCfnibrE+9TNqGZorTTvlOlAkhZFkCayKNYXKi+p1nDZc2rKQRL788zFfgILwkgpe1Co/YhmIQmUohH9Ca9ihpMXpAmTCi6NtW+gCZfCsVZa75S7Q5s73//gCW/df8g7j86xuzALnJwiBpueWbvh6I9CG8xGcyHjvWIGqWeyG9WNak5tRi4TB3YR6+wF131EVifH24qPyQli1OrM5SzcA97I7pEGiGOtcdwclx0pO5YaKsF63jDEMqiS/Cy6t0gU6RI81uQJVYMehqqvvPkG0zQj3/4WHzx7weSZWQoqE90aSzWydvZTUEY6GZFbYEVUaKsP/fhM0YJqYd43StnIek1Krzmor9eP3/rcBepud3/8ehGuDWCaZtxjJrZtG3MORE33SOBZTktokoCPPvuUpzdXWM6sbmSFNFmMbLqQ0ky3AGCrhLloqyti18i0ITnQMevWaG5Ao9otq60xnhFjyjskRaJRR7AM1R36hvVKF8XuFKR9o9dTbFDAXDIoMfaWFpuWGb13zNMQvIe+zjzQOeYxkrQeo3D1yNGONOiO+xIcPtKQL7VgbeaEiEeWvCTmaaKZUreO54A4my+UKXBJ18dbLs/eoswTh/3M2X7CF0NkRXYVcueq3iCpMk2ZKQ/ElRhn830O0xn7ObHbrWhX8JmkfeCCNNyldFKCVn3gWsKQsN/vaC20crv9FFOwfoe9iXF1RFrKMLe00R0YY95RIIkEAEYGcN9bZVcSX3j0Ji9uNxY3rBjHY+fF1TUffFToyzlvP7rg/nkGryQ6l3vlIDPdrmkmXN8uPH8Ro0HbNpajw5RxVhyn91FYAUkDPoP4UER2RBLmW0z2EpS509ZwyLZto5QdmmIMHOPf6F69uLmhPLvFJKMTTBYF1P0/+HNcfPkrzPceAPDGH/ljnH/xy5z+/P+Tbb3gQjJvne/5/V//Kv7BDwH45OmnfOI33DtccnF2Se+7oCvYisgymJsTbYzxVBtbvSHlMM/0umF1w72jAs2MV4Y9ic+WO6C9ACPj3OgkEeacaa1hYrS+0Zb2KozjbkQvEgfSugYqqtYVIwIKDvMOJGQNIR+wwVntQwJwxx6Nf4kCLwrv3u8ORlGUN6KLpePrXpWEHgF2PnSg1kPzVyRhAtZbdD1HkR3d81HgDQSPwDhwDi2p+AgN0B91a/8O6UBvjqfQuooI1cdr8h5GSgttbZI0DraZMo3fW2958cJZ1jU4rNaofSMlmOdM0QPLMZHlgLAifaM3J+cd+I5uS5hHE6GnHPiskBLFM6z3HocFEp2Ga4+AAYHumd6NVBN4R3plO76ktxWKYH6M9yDtObWFzsS9Bxc8PNvhq9LaTJoU14Xb00LbDE2hRdXx/DeP69G6kaaIga39FDp8hNo3ahemlPGkHNcFSwXbGt/9/ieU/gXevr/nxBPwjLQYy7tsVFa6V/JINxPJuIRZs7sMQ5uSmNmlGSlG90ZHWWui12gwpAKtb1jZMG4D6E8CP4vJ0P+XvX+N1XXL6jux3xhzzud537XWvu999j6nzqkqiqKqKAqXy7QBxTFWp23cmA+o86HtIAvkL1aIYqUly/7QsRG2Y0dGreDEcXciOR2njVEk2x2lpVg0igydxCYYCiigcBVFURfOfZ99XZf3fZ455xj5MOa79gHR+OB2TFF9pnSkfc7Za72X53nmHOM//pfeY3QlEUcbo/IV19jnPXc0JSw18DXQ9i6IBC0KGcE1wkCte9gRuqEp0V2ofQFvvHjrhDl/LZ/6l7/Km2+d05OhOZEydNtBN7odU1uY8U/ZsTVAA/egK4gnVIS5OHM2jredI11Jp+9Gnb67vvrWO4861TL+MIWfI4HWADjGlDtJNTjidRiTW4z4nj56whe/+HnwxlqjGC1JoniwRpJ5CJ1ScJa80Wh4cqasaGokTZyvcVBtyoZOZ10XhDb4cICFotUCIGH1DlOm73bRFdsQtYwPnn3w5YgOvrsFz0d6ZNmrjiPOENdnaJC1MQqPg7W1TtLLc5GcFPcVTZ2Na/AKh0/qLBlxIw3bHvdEd6NZDyjKYJqm+HmpYTS/rjx++pS+wHaz4RhhmkC3ypITK43smaNNZirxAdtqJODKduZ4nmLUXRfQEJ51d3IO1Ne84lbxarhFMIFqJk8z+/0ezfG513qB9UClDpGRbhpoGET0qgMWxtU5FaIsdbIaNlcOF0ckks3vXLvKerfzpTdeo6aVcjJzflp5+MYpvouDQNMRmzyT3RC7QHRl0kq2zppWsjYiI7yyutH9ApNK0oxOc4xg3Wl9H2h2dlI5itx080vT9DInNllJmwmrRpWwAkoS/FJ3uRTLPd6tpPMFUmYqwuQVlcqL/6M/xkt/7N+/fG6+5j/4nwDw+n/z/2B7/By7t55gNK7fvMGRZ+An+cg3fJiLesqbr7/Fw6dnHB3f5WhTmGeJcSF9RKmOX+rKfr+y3ZQQZkgUayPMZqCmoYYOT88OB5GHgkint7BqskFRVY05QSDqBxN/RiypgSVcc4xGRdmvlZSVlBLTNF0KFF0kfDL1bQWoA0rk1ycf9NaIR8VqFJ2uMY3AI5kNH76oIfhq474K26ngDccnjNFxx6MAToJYTDLCPgowpVsnC5H4g+Man2tgXyFgkzy4uoGau7ewbxom/T646VEpNlIa9TuBbpskjga6+eC1L/Jgt8XcWdVZe2etfVgXCft1z5tvnnPleEOelIKyGvhacKa4rqxUD3/pbAcRTMPaMq7vcD9uSzS2wxt439fY4UTp3UODZo74grGnpoKnQvLgnF8sO853G1yOyKnTWKOo9fBsFi3U9YJJO2XKzPMo+Mf9uLYLamuYXQQdQEvwXi3G3wWJGFSvtK5sysyrD56SEao/x7Ub4TtNg1p3qLZornqk35kLWSGSpOK+RaNwV0lMLnGPF2HxztIW1hVQ5coUYMCuR5q99pEQx0ryQm1hX+YqiDXUGtkLomHVtdg53TPeHJWVkjZI3yAckzRRfR97H4J7G4I/gxGv6wg5eRTzbrx465jtx76On/v0l/jiwwdYyrjn8CgWobXC0pWsQtEZIzjmYWvVgQgzOcrKyVQ4mQpblCIHUtG769311bPecYG6X8NSpNYahuZAaw4ehHXJwfPqzTg7expKQ0mYwf033+Dh/dfwDhObME1vPTadYeWihOq/0dnvd3QqZXOEeSW34A1JrcwhS0Z6eHiKGPSVJAn6npzDwgYS+2XBtIWRtm4C5Rhj1UyhkOkeCIuQLv0ekVAPK8Og3IeFlURUnaYDqiR0X2Mz7j3sngYncMohdFmXNfirk1LbnnlEqhYprLWT9QihYr4jmFuCSqH1UODmSUjTzJPTPW3NbB8/5eTkClNuSNmTpWHdKZKfHb6uWGsclYnrVya2c2fOmZy2KHO8RiqXBepa12HMLqRcwuzbQJMzbzeDnN9hFNatVSKtJUblipJVIwq2VZIoKW0R8eDqGaSpXSb6KAnpmwg62C88dyVzdj5z/2xlno7JG2V3fsZuOee1N09xu8t77t5BUibLNjwCSdS60qyx9sb50mii5KPMnvCubD7EPBKG2+IRd4h1vC0kmUCUVCYQp3nDmrMtG1ZrJJ1ZlhWjUYoOND2as9qFtx49oeXOdLJhptPryqf+k/81//L/8LcwEbyHw4V7Zd5MgfCogAn7XWXjUcwcXbnG19y6y42bz/GLP/s5zs5f4/qVaxwfF46PhsWbbajj3hUttArMOQ5bdVbqSGky8HGIeyi6UyKaDgHzzn7tEUubUiCpPZonI4RNqhoWYDAQR8O94F7YLxccGrPuzpwStUVUcC6J1hcu3U0lOOGGR7oTimrDbPiSaom/KcNCypXs6QCmEmbmUaqhKRTOHtQMyTlszYaNkBYNxNMHZNsd6w6kMd1ImFR8jP8DUB4xpgGohojKDO/P6AE5JwKBDlRSVIZYKr5j1xD3VOuX1AqAdrHDjxJNHJs2rL0N5C+RU+Js94jX779Onu6Rt5mEkgdSaq6kaaLbOdYXcp6Y8pbW9jBQ8mffb9yTLiU8UyWx9Iq0PUUgVP+QPMSTlleqZpAJqTmKefVAO2vwdKEOl4ngVJayDa/WUnAr5EH6v/TKTY3VOkmckmdAWRdDJSJXqQtizkkK385WOylPfPnJE55K5f31KjeuZE42idyNooZqYQ1LfcRAWh3vNVD1bpEfN6UIPFBCvCvd2FmlZ+iSWLozaSZpiZF8smjurUM7I3EFUjSpxopJBCrgE60945d239MlgA/3TvYar6cFVcgyrAuH1iF5cFRLMnTQEJyVWiubTeLF9z3PqQtPzna4QtJOzg7WWNYFG0l8LitgQ2fhzHnD0bTlymbLJinaC2aG+vxOj/J317vr98x65wXqeYwQen3GdWn1IhSlEpGTbb+jLp39fmWaMt2d0/Mz/uXnfoW+LpRyFdEoBrwtgwcXXLueQD0h3Zh0Q5MJW4P3hQjWKlOKEWJvxm7fkKmjM2Ed1R3IYWmUE7u2R5PSG0xLopSZXApHh93dAplZvVJckex0W+jiTNMGcUe7kcn0ni9tbWJar8N4u8bB1nsAg6lTklNKsPqaFUzCqqmvQiqKFEUy7HcL1gXPYVsUqVXKRjPaDffgo4nBWiFtC3uMV996zMmxMV8veKu02qBvOdFAEVK+Qm+FbancvOmcnBibCTIT6scIE3gnJSelKIancoL7DrcF6sKcxshLY2Q6pxjhWwtLnXme4yBvGS3QfGFfG8fbEyQ5y37HxkNcohpFbfcYlUnesqx7wqWww0bZAPeu32E9e8R+XTi+WsiTsV8Wnp4tNOtcLMZzN25y+9pM0Yb7Bs1KyoKLsWfhSW+sqVC9x8g3ET6R1kiykLVQe4z/a+3M8wYtG8wHl7jVaMBIbHMh9GGK2IqtCynrpSBvWRdefe0hD64rt64VZLLI3W490D0BhliQLvSagUTRHDzZJDhDDa2Z7ck1Wk0cnRzTm7Jbd+zXc87Ptty5ccxmA6mNxrAauVgovrtSR2qWHUzLBaChXskSNJxmMsbDB2W/DN/S4OaaDWU94K0j/aB2z8HJLZ1ez6EHz7PRmaaZlGdSmgfN52CUDtUb9LB/yjIxlZnmLZwJvAZCaZHM4yMAINiwIapSN1QyIiWK3L6GowE6AjESrTsiBafSupNyH5ntCXIO1Kk3ICx7xBZSzrQePHPN8VxDmK27zQN9DjqHdYvXbxoobu6Dw+wRORwGDjhC0oTViD0G2N64xvnVLdIbZZ65eOAUj5jmTjRVD9eFbYOjlJnFMZ9YrYdrSQd0hhKfGVuRkrhYlhDxEWKeIsfsu8OaIXW8LOQMiYpgdI0ACxNnd76QLZM8uLOJY1x2II3aYV87pIlSZuriWKuYpIjx7Bv6zilFR9FOjMYhpkmmdG8hNnMo0yZ+rhmzg1tiNcNTeE3v/YK8OeL13cLuCzs+/IHbIJVtFvAjshSMPWYVsUji6t2QpEHHYqFJQzShfeTR4zQaJXeSd5a2p9UNm7RlShPZBKkzyaH7RRSbaSVZH82rY7nEs7J2TDrSelwHLSAbmnu8fushBJWC0IbdXKO5IElovUbhqoI0IWFhmYXQs3LvhavsMD77Ky9zfnqGrE7bCqqNiS1HvoV1h5YLwpx54viqcbKp3DyZOdrkaCI8o7q5BI1+r65PfvKTV4DnubTmeHd9lS4DXvumb/qm03fyl99xgbrUJwDs2zmH2N+L8z2PH56HzczIGLa1ggqrVXRKfO5zv8JrD15Fi7KzPU2NnGaEaWz1iriEEITIyE4a3nN9WB2RE5oztV1QlyUCQrYZSTPNVyRNUJQm07iWAAEAAElEQVScMktbIhJvCv6pZYGtUj0Myfuw6lm90SUiOFu34U05413x2vCUcE2sFmEDgZk6h+hCd8d7jClLmi5tUkyFRkQamgg2H5E1UQ5iMAIZ8gyWGiYTdCPPW3T4RmbJgWh6p7JDp8TaAtXAOm8+PmMzXWV2JeWElkKSQqJTCnT2XD3ZcPVkIuWFnA3vK60/JcmGxAb3HIiT2ii2w6YrMtEDRAiP0kbKAykiaAjK0I+MiEwdvMZ1dxFQAoZZWM8MNgg5F1yN3hwlh4gMR1nIR4p7Y7fC62+d03YzU9lQXVjXM87XR/THsL/Y8eThhutXZo62Qutwegqne+WiRtnQzIdKPZFM2JoGeuiGi5PFx3i7sezP0BQcNFWNBJ5ScCUsiyTG194afeQhXo6+c+J8rTx6UtneukI6nsCDbxianhiVq4d3pY8ITTePtB5Z6B5NXzLDV2ezucLRtVs8fuNVkgb/+WwV7NETrhx1psELDR/RSESywXkLrmUUb7QKbrgyRvyB9gfqH1MHkR73oXv4jfZoPqL5kuj3xvLwXWLtRt/tsWHsP5cTpqKIBNLlNOQQoeqGopQ8kzTRazhFrOfx3lQF1XDHEFEu+QkpgY7mxkOV3XrDMDSHG4FZcJmdoAmFV2qwR+KgDlGTKvigK8T3EKP8MKoYBTgHlnQa/zbS1QgOYa2Di4tEgp1HQZs0+LzeBXVFxfDS8WHBp2XD7Xv3aG3P04szzJ6wrCuoULtw/9Ges4uJN99auHV1w3bjIMHv1ax0bXQPlTiswdt2gq84jPpXq8OLwMnqtLqj2zkumaSbgbCGlZz7nm3ZIBhLd0gLZXwmZKKvRt0b3sL2T7OztBW3lcpEFcXXHUWM7SjC1xoNViKTx1EiFp+hd8M9AxnTRrUVL3E9jIyQWG0BN3pN/OKv/Tr3blzh9vUNN69lCkYpc4iDkqMpxuBAnAsuJM+0LPTJqOtKtTXCVuiXHshL29F3HeQIlxQ0HwqbNGEtUuxEhoNGQM6YdJwdglJrI02hsu9rABnoEs22FJChOOgh5DUJTnII9w4pdZFsJYdQEAme9Yfu3sZ3zs989gs82u05TpkNTplg743W9myl0Wvj5DhRirLdFHIRlMY0bePsRLg8lH+PrU9+8pMK/Mcppe8RkcLhwXx3fbUud/f6yU9+8r8A/sY3fdM3/bad1TvnoB6Ax7rn0v+uN3xdIzIuQJCIyNaMpMTj81Nevf+APjKSTRpkxxMYCTMZBscNLBJ7MoxxjAwxjrN3pXtsmOYVTYkp5+CEWcFyGJQvbR1k+hBAtKFK35mjZhQT2hg/VpwukEXZ47jHGDAShDqugskw4E8eHonoGG1bmHarXo4SY+Tk7NcWh5goZZqwPFEPRL9Bxut1ibhUOqxrHKclDKrphvVGGdF7q8SB1VobfEN463THdnuVm0czm9SYpkCakitpWjjawPE2PPqKTIOptpKyUZKSy4acN7QaB1DscXlwzkaxopGJve9xqGoCT1G+4InW4qDuLQ6DWZRmFe8aRZ21odSegJF93qBIju/FDZFGty2qws3rkKZTpqnzyiuV3bpyvN2QNPiHKRm79Qy3cH54elZxN3b7ztk+s18y7kISZ6uF3itqMGz2wxZmiBq8Fg7BK7WtIbaZZsJ1sw6/xECHcs50y3jMDLFRsKgmpqPC2ek5bzw84/ntLZJU2tqwFiKfSJvp4G3Ei+pBT07OGkbc8VDhdSGVK3zTt/wP+OzP/395+dUvsPSVeXvEUp2zBw+5lWOM19Y9SQOta22ESBzYKXJIIw/upwxKgnkUryo6+M8WRYN7CJJ0jHvFw63hUISsC71X6hpKaW81rMVyYZ6UpEFvgQ7aaI3w/h0jfTOhNqO1lXmaArEUR1M8e5oCwYVA4izm9ghCc6O3oNBEyFPYuCFcWmEdggaC2hK81LB+64MvPLi2EoIw82eCPjcLOw4/MIuDKxl2Q4dzUi7Tohh8V4Eo/t0JAFYQlI6hI3LyfG2s53tSalRv5OLkEtzEXV14utvT/IhHp8riJ6S04L4MOkWi2Rp+vD7hGE2C35/e1iSt5vTxXHVbkeyUpDTv1G6oJ1pTNCcudp39BfQqkAToIZTyDGzCMUIYcbJtuDFoCLDM6MNmq7UlzO0B74dUvrgXdXw/mjRcIDSU/uYzvXXMKk1seFhDdo1+NlXOdxt+vcKjswuunT/lzp0NV4+vomlmk6PxsLpCD4cXcYID2pXuAWqobGhUal9C6Fo6qp11XbEdbEphW8LSrvtM1g0iQQHrbYUSHqqiIxBC+mh2W8ASJqTmmO7QkkE6zVaUoDWEJ240ejmVmJSMxk+VaNokwiAgRFhf9/577ErhZz/7Wc53Z1Amet+hxdmmwtn+jOMpMU3KjetX2eTEds4kOmm6wJtgtmC6e2cH+Vfe+o9LKd9379699fj4+ELkXb+sr+bl7nJ+fn70+uuvf1+Nafz/6rf7+++4QC0S6VFW++WYcy7CJjmqjXPqJUqEKK0pX/jyfV5+7YxcbtF3C6kEb6f38BtUF1Q6Imvwv7yFybgn0IlEQSWEECYObMMw3J1uQh/m28FjhV5Xjo5io6g9NmvEqRKcVLeEj9FlLhNZM94ayYJsbyMXW1UQ80vFb9hOBbIUB+Iz1a8kodY4oEUO6n0ha0Zjxhx2MCnSQiQXvE1hQ2KKjFQWkRoH+OTsL85J+SiMuVMZxaCG6bxC6oXdoviVIyQlUskkjKOS2UzKZgtTzmx0DsSuaiCKZcRSYlHAqVwKlsIDdotIxW1H/C+hkEdK1sgjHzZFWXREknfoFkjYQMBzzrQ1Rsaq8Z0r+ZJviIdbAC7D109ANhxt7vDie5yj7Tlf+PIbnF6szHrErFPQBHRh3iQkr6AdXDGdqMYY50UCUhJBCIuw1TtdlImCpomWjJqOsfM9UiIu00ZToIDpHvPOUicyBclzcB/TRGh/hoK6tUB4u3D24JTlZOa4CLa/QC4KOh2ELhXvPQ5QnaAF/9Gr0ls0elmNaTKeLKfcuf0Sf/jbv5PPfOaTfOpTP0uvwfXd7ypXXrgTr90Jj12HZlGIiQ7DfjqiFjnmEojfIUc+irooOpSEt2gAk4a3Ze/RANlAmyEQKKdT60q34CxP08T2aGbKMUJ3s0urqNoPcaDhl7quldYGeqwt7hOVsJ9TxkxizMrFY1wrgazGfhLCqPBjPajs/ZJHKiQ0hWOAu5PG/Wx2iAe14SKgyPD4FeIePAg5BwMV16FON4sse/e4f72HbZcQ4iqNwX6Yyse1AMPXiHMGaB0en56zmYiRMTOwsrYLTs+esq87asrsa+fJufLSyUwp58xzY6kTQjTiocFKeA3BpqCX/qOrK2sPq7zm8YxWr4CT+oQSAQE06HrEXp8ieWVOW9a2obvjKZGzstlmJAsrDU09fFN9xqWQ7SL4weWEpTWo4Ymto/VtZlST0WgETaNaI6mTbA1v03RMbwtJg/5hbWGjG0pVRCrTttD7OadL4uGrldceda4cN25du8q1aWYqSk5K0Qa+DCAjxRzOjdY6+96pZtQmdIR1WPn5iEWt1fBNigJc1hCPWolr50rdd3ROI5pUsN4QjSar0+M1aXhvdO0kjO5KV8GJPQoPAaKUhFmm9QgJSFIQDzQ7SaK1TgVS6Xz9e2/S11v80q8+4OnFBblco1BCPNyE7dUtt69fY1KlpIhvDeu/CIYJIdnvvcn4Jz/5yasppe+5d+/e+txzzz343X4/765/O+v4+HgH3Hr11Ve/55Of/OT/9rcb97/jAvUQRniwgQHwBE0CgUgJrFfyiBKsTXj99Ue0Rclppknw4/Ae4zaG+bgI3QINSxoMtOJh5SKErUpiePz5RDcdRaDRvQY/tQcHLA8rqNQ9Di6NzrubkVOh6EwePD7MUKsodRyCC0gQ3t3T+MACEgdDb4HOhF3OUPPHYPUSbTnEMKYxb2y7hU2ecVXcIibSW4+DF6d3H5tNFEFr35OLMh0r3SrLutLShtbD69AlihnvzunTM+7jnMiW7Unmvc9fYTt1jqdCzmlw5QLpE49Y15Qbog1nxayThudpGJmHYfUhrSv6/h7Fptqlet9bR02ZyobmHR1NSbe4Xu5CNzCULJm6hgVU3syk5PQeVjj00YiIgjq1zSAzU6k899yWeZ555bWHnJ521t6orSPZMF1YxJhQak+cr/B4d855W2lqaNK4Lj2Mza1VqkHLR0hvNOmQEtN2Q7U6CuZGbUtEJapTa1ifafK4N8h0j4boUiEvSlXliSbmtcHTHZuTCXeYzs/I6zQK+4Z7o8hEzlEUXQxknWEKH+lmxmZzzFSOSdMVPvEH/od85pd/haenp1zZzjxcH/GBD34I/uk/Db2eFtw0ooSHMMiDVYC0gQr6iDzlN4ISqkENSW0IgERGocZQRze6HURSUeSWnGhLw0mUzcx2c4yURF+Hd7BDXRveBk/caiBRNf7fNJcYImRGjDDgFii7hDG/aHwXSSWssjy2qG42YmU9rqmHCA5ANHT4PgihQnBtxXxYTnFpddXTSGUaYkKBYbl1KFJBZDgFSHjPHigSaNALDuPgaJqBFBSlZMoE6Bi/ow3zPd0S8WFL+MZ6pa4RemC6p5rw+oPHfODGNY43nZxX6ko4fFDDwo4JtRRJcC7IeA33zCGwwKRRa8SjzlOh9aAgkYSb+wvm3X16f8x1MVqF6oB0khhzh6stce/xKS+UzPEseBP2e6dVxdaV1hvNndPzPVeeBG/+pREb/fW1kwM/ZuTE0ptQqKhX6mj0jY57DsDAhDPpvFFCdLbvF+FoMprCJxeNp+enPHq858iVo23h6Liw3UCRxpyVzVxIvVG8QzZagp4LUiYyG8xmujm9w/lpY7nYc7417lzfohtnV3ckiGnGmD547+OMC7QTVYygWG29gTdMcqDwHsKoCGHtl36/o6uIBvWA8sso4N1o1WkWMa6JzhErv+9r7rE/e8wvf+mtEHfVlVWdK1NiOwvbYhxvJpIK3vdxT9WCVY+DuP/eK1CBeyJSjo+P3/XI+u/ZGmj5EcE7/jdQoI5NscPhbGBvsHeNg9A6mSk28QSvvfEa9++/wfHmmGVpiHaMhrVGq9FpWnVW6ST1ESuXUHHUe1g5qUd0HeFJSDtELAZSmanBbewZNyelGWkNPJI4WBqq/VCqDe5dvHdrDSnClOJwW/0C0hxl2RpRkpIiOUnERv4y4Vhw4O6JxyjroByWTFZFMdwqc1Y010CpTJmk0GzPrnYsKzJlLB1zXnvYaWlCUkbMuNgtlLwJHp+mQC5F8Orgleo7Hj6o3N89RlKnpBd5z0deYh4IZc6GSsWtk3J8jyHYCsQbkcvMc/E0RnQh6DIKFGdpjSQlbhN3Aq8InqFYqNQDgY2hMinQ7qVW3AbX0yNqsPc2okajGMs5gaXh2eloLohmWr/AzLl58w4nJyc8fnrG04s9ZxeV091CbRVPjngEOpxV4dwra9pTDxYvBkpnEoBKRaiUUFq7ccxxRIQqrD04mGKGmOJWwnc0xwi6ew20bsR6HobBCdhj/JfHV8m98uFpy+9/7102CTbbY66cXEGy0NNKt5VJNhxtrvPw8WNMoahzZPFMNZRqiZQ3nEzH9J75p//0/83Zg4VNOsEqpDTxvve/7/IZNNFnLEo7ZNM7nuRyPB/PZdBVI0LTh49vkBlUE705vcWYEyHsxrxzGGqnlKitkbSMQA2lTBvKHKNsI5KPeu3s940pDHdwG0WkBepzNEWAQJ5yoEzWEZQsKQSJBM81OLUS96ERCD2BiKlUVIPDq5dSfxsj+5gyhL9qPJNJhDZG4mYOJZqnwfR4Vnwepootmsyw+wn0zawhmkdjHX6yrlHQpsG99tFgTBkO+iF8R+8rTTK5bEjFEe0kn5jkGLHHQEPyyqPT+5zXY7bbCQjPzGRKdY90JvdQznehVYV2sBEjilirwa13IzlkC+5zs8qtZeFv/dRn2BwakNi5f+tN/uX/9v3/t1p/+ewhAH/36Ru/sx8c61yEj9055mXPFN2QM9S6R/wMLUqSQuuds7Vzvip6Gki6ulA0UTSRDOYM83GHjWOpRlqeRdz0+XrGxUVn3UNd4GhKIIVUZjwZiRBxWa/MU1Ag4ynpcc744GVbBEBEITqBxPNg1rEyQj38QKPOAcYQ/H8ZzhjqQX8xN3IayYbVcDE2mvnY136Ydb/h86+9SU3Guhrved89Xrq9pdiCWibnie08E84SegmWPIsf/z21FJB3x/r//Vvjmo9N/L99vfMkqfF7EvmyQO198DQ9usOSoa0XrHXlM5/9DOuysJm2eFuAhUmhe4wXQwEa49icIumnWXDqxBzvRprCFgQgq8Z7cCePcXyikCwjKVSemIyzJuE2xowC2zxx0Yy1L/hIAiq5oBpqdNEGveJ9QRg2KpLo6iHOQEbqU8dtiEuESJ9J8XmGNCKslHoYOrsaS+/hjSqJnCUUn8mIRJ2C9EzWEp9N0ggKELQUugssK6UM6ywJxCSljvnK0sCygiu//voDXrhxzAdeuENJQk4dTQckWYEJswkk1PQhO400HFyGbeV6mQbVxGlJMJGw/nElewtEOXGJJEJwZBnx7aI5zM9VwIySpzE+Do1tzuHNmITwUfWGqYJnhILKli6O+8o8T9y6ccKVq1tqTzw+3XG+38UYuQltX4MT6hXUyCkKpRB6KdBJRVCdg19rFmk4JlitSBKSJ9DwyBQc9UzKG7qvUfR4pwO5zEgSdFBEkPBT3KlS88TLXXmhF+4czXiGkoVUMos6HaF6xnPiYjNBCxsgdIieTFl74XiauHj6kE/97C/zSz/zKbabGU1HnO8W7j7/PM8999x4agN1Dm9dH2jpKAjd4/r0wNC7EXQVDvGlce+KECNk7fiw4BVxvMYU4LBvpBT88bpGIXp8soncdRmHLdD7YRrwbNLiRDOYZ2WaFFLE4nZZ4pmz8Nc8RHV2OTR+hpNIaQRjjHtJ3ME6g60w7KZ8NJAaHFAZY/hBA1AJGy5zGf5AxD0wfkegywfaTqCvfaDPRqDxCIOq4ejh93NwRBhl/KAqNNdAswgLpvAo6HjfY1wEdWhJFDZs04zagtPZr+fcPz3j5s0TklXKVNnvOyaRQqR4PM+i8f2OD5BxilZaDgcOpwQqP5pPk8p2v2Njzt/42pf4ucV5dNbwlEEbKYVgp2ihyMz1K1e4d/c6c1kxa/F5qeS5kMvM+dnCw/uPuX264y//2sv8rRdu8x+9+hb/0fM3+LUy4YOOsbYRfEFm3TfIK9XrM9qAz3y9Of/nx/e57fBKSnR2kf4k0FpCdKJSUcb5QMIpeEuoFLJFYyDdSVT0bMG0QgqxaK0LjZWeVmp3kh6Ry4Zdd159cMbaKreuh+ASE7JBbgd+7rBri44tJk6AeSaRqUHDp/Q8xFDR3LsFipyGywvEM3bgMatL0IZEQHPY8uHU3rG6cC0XPvTCbXb7p7x+9pB7z93k9s1j5lw5KRuSzmSd6DU4rmsdjZIq3X5PIqjvrnfXb7vecYG6lRBobNMzS4uMUEQxsVDLWmOeZ9544wGvv/kG8+Y6bb/irVKkM+eJ7sbSPARC+bDR9+BDwUAiib1B4hDuzXCfw5+xdehKkgw4sgpoY0p5cDXj0KutcXQUaR/WAjIxFQ6SMfNMt03wIX0YX9tQypfMak71JYpQpjD5HmOfJB48Ww3RRbcYJR7ypzUnUplp9RzriawlEq6kU72jKX5mPd+x8S2bzSb4m0lZ20ibSplWGxsyWRTR8PXEYjzaLUZKTTtmiTcenfLpX/0y145mnr9znYh2HXQMF4QN6hknDKNVwybHexpj0R6esodxnIQQJCanQuqEshoPhwEJX8R2SCc4GL6n4H/qwX9RldCdRNRiKWGcHX6dC2Ia700FWFA3xCTEGR0m3bIpSvdI1bnRN6wtxnX7s5V1f05bYvSmJKwn1DOGsbgjxcgSlkbaAkXfW+VYM96FXBTPmbacDX/L4BwnjcLeZehoZPA8D82+jHEzDSNzvhh7K3QSrS4Rx6jBbdQUo/jWe0Q7GoBgY0RqKCaJs/On/OR/8//h9S8/4MrxFZpnLi465+c7PviRryNvArXMWakJqH1cu4Gl+iHNaYz8XQP1NUc1uNXBQ32GNr5dAGQ9kp+eCY9AJCzaTi/OcHOmzYyWg+1Pp/fwKo33laltoKMSdmtlm5nmPHwmw9BeVQa9RMbPRqEtEqbyIvF9iaThlTxsuxAiz2J8DnQI42KC0r0NKuuIbx1JVvigutQVb4cCVUayGcMVQOiSSCkKiJx0NOLxVKdDQADjVj8o+sfPugiuBT+o2ZnAeoierIPV4NNXZ9bCleMt83lltaAPvPLWA1564QbXyzE6nXJ+sdCtkHIgz7t6SilHkI7GMwe1XgQ9R9cQaboiOgM5LPTaKM6Bh89fYz3ecryuYIEGp6R0c9YGzY9Y2fCwxb6uoiMTviFzoW+OqekK6/wc+vAx/NrLPL5xDV59i4f37vD45g3mlBHgwePHnO4WOhOtQ9GnmHYu9ue01fBamQeIO/UNk27DO9niiw16Q9inVTeWtmc43+G+knUXzKDcoB1EeqNq7IlGuMpYgS5B+Vk9LLOSJs6WRn9UadaRVLDNxIluWauRLdIGy5RZraHm1LpHKbhNkBLd9oil0Eh4igYwjRttNIkBusg4EQZFzISUdNw/nZSVVjvS4SgnujVunAh3b86k7VVeuHeLoymzyRE8QS+QtrjDuo/XFMoQdL5boL67vvrWO0dQ0xAXpRBXAGANbIfirC4c6Yx44tXX3+K0No5zj5G9Dj6PV1J3ZlPWZFgKDpy1Hsp+SYgr5p0uFZHAJpMnqjvNGjrQn+aOW2MrYWUSjB8j5SmU6f0C9w3CJnLLNdN6/BxAS1AJvqmmLb0FEcDUWPopHY0Ru4SZfzcQlzHqr6MwTdEpXxaqTiJiXhvQZSZlpRPFSU5Kl0KtIRaZchpI0tjEag8UsVsoqTFWH6irphgn+YK3GH+51ciYL86udn7t4SOmz7/M72fDvdszs64kF8pAc6Kc2eBtF6N6TYjMuGdMVlT2IPsolg02hxGmC10sCpO2sOxXpjTTS6StBE93CUGBpMH5i9FWH4bnkatdaD0Uz+6dZh2XhMt+qOwhHBIYeeuBsmsWelspqoQ5qXC6NJ7sz3myrlSdmVRHgbWJwtA7UgqNcBPItjCTMAtPy9pXJG0imTVBmY5Ya5jWY0ZK4ZzQenh39jUsj3TEZnaDppluDe+Vs2o8Plu4e3UTgou+xpBAnd7iphWFvrZA8S0Hegusbc9iC76rPHzwCjIlVlmpqzPlwrrfc+vOcxwMjzIxQVjrEPtYFJKXKnYJSx4f9IXQBuVRSIWAJ6xt9TLZ0zwsntwqtTcOBILejf1a6cQokqQ4KfLnu7HWcAvordFaG4wDp2xmjk+OULdRiCd6imYnxuo6kN1oYmwoxcffIKGX71fe1hx0ANOBkkfjWQ+eWM5oIPxQXqPm0fyqBVqYhxn/4I/7iGfFDEsdzVw6BADDomsUo+NnEMUVxMMOz/tApVManFhIOgetyVZMOzll1Hck60ySSbqCP0XZYOUqD8879x/uuXlvQiellMJ+ieKqmUGPZhkR9i2qu+pG7UbJmUmN1QykYqqsvdNV0E2IW7VMbEviW778Jid1IZoDZW3G2nrY62mInLIIR1MKkanDI8386C3jac9AYToLyuDjx/E+dqfwqF1QitC7s6/KRU1YqmyvzWSucOU4cy/dYn++p8jM3fun8OAR2SKoVXqo6zUZeNwvbqEj0EmpEhOYErpXbDRYSoSOOI5aoptTWekpeNRVDHIajhYNayE+WwxefnDKasq927dgO3NkC9pW0hQeVRE6krBqJC2svSK5Aiu9Gl0GJ5gU1Jk85IejUA7c4sCxiUa1emgeRAo2mrlA6gvQyGrcvrJhMxee20wcU0jMODHeF2J/zXOOM0kTkodN27vr3fVVtt5xgdrG8egpREcAJiudPTkLJQvalHWv/MqvfJnp6BqtKHU9G+bDEikdKaxkOkYXJ6fg7NgQWrgONMJinI/HuKTTqd4QUezAmVQJnp8NFEQz1WIsm6bYrOKAmTFSjI6lXX4iKRVxo7Y+MrcV16GyJoY8hzz5GC2OlCYyXY02xFpJM0kkErKM6Oibh6hh8KhEMw2LQyAJkjLWIgHo7YdhkhC6lIFk1aK0FAegqWOmo6hLkAIV634BRdj1zK++ekpdX+VD77/J+16Yub7R4FQNDz5NCe/jqNXg1rYWkY6djlullDBLl5YRWpiaJyOlKLwDqVEoDR8+lsmm+P5IMarFMQkuYViwy0AUGBDd8OIUxjheB1WihHegLuEo4E43UJ2wHgfrbrfj4rxxel7ZuXCRFdOGqpO0UQRaUwrBIzUMV6epRxSqBUqbtI4RtUUBkRMqnYbRLSOEfY2jtK6I6+DkjnE4UZyoJPa98fRiT7frrH1l7c4mHQVK44B3WluGN2fYpjU7NHqQEPoQ6NS+w1bFOY7v0YUXX3pfhDIA05zoKUZ7DR2WNjKeD0FzRgZVRtNBtNIheUwExrhbiEI1UMy4RpgiFubsEMXvslRclHnakHOOYs7CSEG7U1tjXSPVazPPHG2PyKUMPnlQZAzIEmlTZi2cEQgEt3UL7udAVp3wHtZhyzXGE5fPSMSdOn04BgTFSIeQyUHsMKDFJLDSMPQP0VPoHWN0bDitV8yh8AxNPjyTBDs2EHgdSPr48lziuXKNfUASwfOOH6NZI2njsKGEv2okbd28dYUb+x3rk86yVla5xuPThf1zhaOSIQu26qAv7VC9AWml2/klWNZ9prMhG6y20q1htkZ8sRlWMvPmKL636Rgc5rVyLrCXgvlExVhlxbINp4M4FKrAVp1Nc67WSsJZk+G6UqdDwEQURc06rYfH7/kasatkI1mjPWl4Trx1dsGdO7e5cfMeCNzOJ/ArXyZNDrlTW0XEg3YhQf1xaSCNUlrwPRHwHBx5nwnNQjxACQ9OvQ9DXHFEOkXiv4kUvAcYUH2hAmvtpLOYesjN6+RtoriTVVn2O7w0krRA1Qd2bh7uDaJtFNIbmhnSiPtVEw0ZfUweYSEXwBLPnWXMEhACUY2OKLxqu9DbBH3L8SRsdMOk4UajmtHUcS6C+uWKpBmXFg1ofhag8+56d/3rrG/+5m/+8E//9E+f/ME/+AfP/sW/+Bef/d1+P/A7KFAP4pBmPiI1QXNGs5AyGI1pKvzqZ7/Ikydn+MmGui4xZqPTUorizwifPknBHZPg/IhLoDYyEA+XyGKWsCvCKi5roHKD3ZU07D/cne6CJ6H3FdiFcfYQb0URawyTSADcG9UuaOYgfokQI5HQAxFR6U1JOoVgAg/lt1dIYYQeAqJhSSIjaCBJFB1BACSZoUXCEqj3y8NZ1JmyIBq51Sg0txBm0BF1NBuuSxyYPUQn4oKkEGYogojRzUEK563xuZdf5cnTtzg/vcVH3neH29e3zBL2Q2FYLxjDw9ATmjbDpmTwmbqBKZkIMqi9032lD35jylvEM+KjsbA+TPd7bOAeRWcf82IRiWuowelCBTnE2xLRhchh7Dw4vl1CbKCdtRpiCfEtdVlYl8Lji8yjC2HxTJdMZY3UK3LYW5U4qJIF8tklcrq7OeRA/0x3w/cyYx6WYaKEITuNSWIMXc2wYczOULdnEeZS8K40F/Z95dH5jt3SySly14tdHxZIDat7TMP/s3sUeIcs9eQZNaW2RjMLHrA7zsraT9kcCy++9x716cNx8xrWgidY6zoEST14qOIw0piQYSjfDW9xfxxQydF+BQ+1teDPOVhv2NtSaWpbx7UxJAtTLsE9XcNeqi3rZfxxLoW8KWw3c1hJiVM0aAlLAyyFGA5HSTRbhjtGcGBTTiECt+D4iA7P0cE1PRTVB+TzYL5/EECaeThRiCPY8FgezdiIxjSG0bvEjuZitBTCp3wZpDFej0As3Ubhq238vsEN1SgyTFM8/71y2EZMG133w482oVriu06w1gvu3L7OfPMOv/Qrr3H//p59TTx5csF+vcp2I6Cg4uGGIJnmG4ROYxmxIdHkhzXeGI+L4LLgtlLKEXuDMgU1S49qRBdvMhdirGR6TTSdcN0E2tsbVi2e5dmjS146myZ4vsA8wQTaA0HNKRBUTSvTdoO4UrKyZ49LJzlcmU/oXTk/b3zj7/sWehM+/elfoIwUKtZKtoR5g9KHIHXCWtC/8IZXJ4uM69jClzXF/RxHUaNLRK3iMs6qQQsRjwQ8a9Ekj7wpJbOZCkutvPbWWyCNqVzjZBL6UtkmZ7ZoXmVmkJ57PBvm4dmLkXOIZUUghTkuXdrgP8ctFJZ9w91FU0yEqKjMuOXgk8sCyWm14t2Zt2XEU18wzxlMuVgv4rxNx2OiNEfstjjN3i1Q/22vQ0H3wgsvrK+88sov/m6/n6/G9Y4L1CmPDcXlsrCAjFjGmyHzxIryi5/7LE4n9wat0/aEh2RhpOzEmC6JkFzQOlAI14H2BD9K/eClGJ2rmA4uplBbD6RREuaVomH2XTGmMjan8XeSgOSwUzE0ikYGCCGOy0qSHuIvEzoergLieG3D1ipI86oHrpPhWJhmD29F9dhEw09TKZ5QE7ovIY6SwfP0RtGJ1tbxHQzKghKRrw4mQhqRkBmLqE73MLq3PEbNGgVIzHlAM4sZ5js8JZ6crvzSv9yxnld+39e/xJ3rUxi49z4EMkOV7zly44ePaUoZqmK9oCWKPXod1js+fDOV1kF9GwUPC4mG6OBejWCC7hKuDgyEa1QYKnE9zWOk7jiabFhgGWF/k1AidpDe6K1T647dsufp+Y6Xn5zztMVnz30BX4eSPdGbXqIxybhMVOrmJBvUitSCWuAdZBt55iMMISUl4WEZZEZWoafAAUXiIBB6FMAMd8qcOVsWltW4dSVBX2jLgmYJM3I1hEb3SqudJvMBFIRK8GOH4sbahObwvd37nuvXr3Pj9lWWN0NmnTgIEx3zFbOwCuvWxvWwUaD1IS4aSnfT4RgeHE5hUL4leKkhgI8GLOV4d90X0EavlTwfhcitRqPVaw2+rRllKmyPt2w2cxSxxEg9Rv4hJkx5DgsqoNaV1lYY3GtNQ1o/aA8yuOjDd+By74FAB8dFGHxUo/dhNK/xXbsfyrhY1iPEQdRJDiYxlwmGqcWG0POhJh0F6kCWD7zjMeaP5mGQtEPGg/oY6R4uqjYkh6Va8YxKx6mDSLmFfswLd++x2dzis7/6BX791aesO+Xi6XXuHJ2wnZ6y3y0IYcgvDqlnhBOEs3g7LLhvg2e+RtytHDSs3UmeOBq2AmePTjnDaQt4msLuK1c2Jyf8B3/jf8MLH/0Gjm7c5PzhW3zq//5/4yf+079Jz4aTSQrHx5mbaSYX5eZwAbh2FFDudpO4fesamiYePX3A7I7nzDRv2Mwn+Fmgkut+z/03HyHdgq4DzKtywhX2XFB1T2VFvSO+iQbOZ3KPZsWJ8b9gUdBpGyP2Pmy9AgBRCqoZZ2Id05PkRpLgw2edkB5IuKVOU+X1x2/R7JT3373FsQjbOUOL+FlJmbU3lEo20KSkNJMkU/tueKSmiGcV6Orj2YxY7qQOXugEwhpTkX08g36EELxXpIKsqHY2RclJEG0YFbMyOM8jJc1yRAE7dK/Y26Pf3l3vrq+S9Y6Z1Tnrsx8YSIN0SJLD864c8+tvvMWX7z8gbbbQxvOmE5ZnVhfW6lFwaA7lqCupauR+d0d7Dxun8ZoHAUg38D7GyJZIFolP+RJPyfGAWhS+hQn1Ca+xIfUexeTkShlnW6TphKdp6PAz6gXtcdioRQGdRQeiusO5IKmTZUuRE2Y/ojCTPKL+iiQKwoQyaRpInGHeaNZwl4h57cHVigPZw77HAZMobtPMpBsKG5IXEhNZpujQe1htqYezgroPy6cwztaUAklOmfOW+dVXHvPJX/4yn3/5KWf7mdWh+Q4s43UbDYbHxihCHGwSUXpuDasVtcYkQnZBqqO1M2Fkj9FfkUyRiSKFKO0O70dI8S5DGDBU2lEshrBsZAXE2NR7cEcZiu4+OKHeaXbO0p5ysV7w6oPHvPb0AYsvKJ3UGlMzSheSOVINrYSAQQPljTjb0DJoYwhechxm5EBEWrxm6jB7ZpZCkRKira4hVPCDxY9itUWEp8f9tOwrZxdLCHzMUfNIkAq/JPpQtgsCnuKzQTgR1I73Tm/GsjqnF5Xald3iXL1xj6PjW7iNJpFCkhTXSxoy7LWicQE8ghOCduLxvNqz+0wGncYOHNCUw6VCJCYZIs+eQYFWK0mV61ev0daFdVnYrwtLXTHpTJvE8fHMyfER2zLHdR/2YsG9TbgIa2+0Vmm1sqznhM8u0RAMIZl1ObhERQDAKAqFGJHnHCiwDZGWDVeNuCZBqVEJyzIkDZR6bHPOM/HeIJSox3tNBzJuON8MpbVccghVHfUJ8WkIVsCbRXNugwspUawCqG4QtoQzxXCVkOCo5jTRFkOacPf2Xb7xo1/PBz7wHN06bz1cWW1DyhuONhvEO0WNjexIzdiyoXAQxSnWhJRSNE4yuJmS6EQSXx7F/UmByTu2GH2Ftgi9CZvtCbe/5gP8zP/1/8J//Tf+Em7Ot/1P/+f8O3/ye1lXp/ZAkLMXtp4pqyJLGZ8x6ANz3uI20atie+Gkb9jshLIm9hcV3RkbMj/3U/+CL3zul9lOhrdIPspkVGdS2gwvayWbUCyRm5Ith2l9z6QeeoSkadxjTjEnd5CWoE/RNNsEFtdeHQowJyd5I7lSZKakiQyIG7kkusODR0/58itv8tajC04X5ck+sW/K2jK1Kt4T3hWsQMt4h6V11loHX/2wr4RdmY09TiyhPoNvAjFFo7iUPp7dMO/HO04fQ6YjjBl0S++RuljSBK70tTOnOQCSZliNM+Hd9ZW1eu/8tb/21577uq/7um+Y5/kPXL169fd/x3d8xwc+85nPTG//e/fv30/f+Z3f+YHtdvuJ559//hv/5t/8m3e++Zu/+cMi8k3f/M3f/OHfye97z3ve840i8k3f933f957v+Z7vee/169d//82bNz/+Z/7Mn3lpJDddvuaf+BN/4vI1f/AHf/DOv5Uv5Xe43jGCmkt04pr80ig6FSWXTPcYW7/8yqugCZFM7wugeEp0VbAcogiPzpIcxYsPMU32+L0iRDKH+dhwxwgYJY3IvLBzNrJkVutDPWsDHBJUJlQl9DQk1tZJkikIeVDEYswYwg/vBXwzzI4txF8Hf8Ux8xW1wdHLYHMUsR5xgF0cJ8IGMoGKItAErGRWq0RqUmFOM3VZw89RHKYontydnENZLhaIg2ihjiGnqOOyx7ThKTiokbYTNkamgfSGcMOponTNtF559Gtf5NfffMDHPvhBvualY25fSUiNghJpuKz0MaYtCpKMskn0GrSLPDz2QmGdhlCt0rjAfIP0SPyCUPcrhALeo7RIAz21AwLFsAMTHwXqsPNx4v0DaKdbHcKwRu+N/aK88kbly2+G/y6aEdMQR3AowpSsA+W34NYCTCnTLexeqjvShcwmDpPBGdMh0kudcBfI8V3SetiZefhixv0jA61MwbUFrBpPzncst2akO7RGydOIihSKjcx24zd6qqawRXPr1Gac7XdILuQ0cf/RE/69938Dlo7pRGHgA5Xs/cCJDjQ6+p3gkoqm4fYQIjvkWVFqLoNTF/e3DseC7kHUyBpCQxg0O4MrV6+xKVsuzi5Ya2OpDdQp08T2eGYzb5hzgfEdh7BuWDmlQGxbXUINj6ECpeTLlCv84GE6vteBYKocCr94v4fx++EfG7GqlwXgKDDDF+htkKZEQefuQ2AThUMaEZ0CwX0/NBESlB73w7g4gc2DJHCgCETu+0EARz8UuXByfI85X9Au3go6ThdK3oYvs1eEMhqcxpUr1/jaD36QR2+uvP7oKe+7uMnJdIWpKHb+BFUla8KqDweEuA/MCrXH96Kz0Zf4bDEFCr7k+S7QziQheIp9xDBRMHj86pf53/2xPzyaKNB0xHd8/1/h7oc+hq1DEd+NZb+yaKV14+IinoFdjWd1t1cePt5R1wbVKZMiFq4qlhraJ7x3NiXicadikYhEBAacp05XxTRQ09QTSSaaRFvnwxctqCl9IKljytYt3DFSQvMMQyyJV1QhrUYyZ1MKXZwmSu2BwiaNsIW6NsQyCeHpoz2yFoQLbh4fcaxC7ikQ2JRRIhbbJZDZXqINd810L9BjGiEKDJ54HCUxuTCCphUNTOxxQfcSVEoEb1CQfA3N4Q3uHj7FmjJzUbznoES08RqHpvfd9RW1vvd7v/e9/+Af/IM7AB/84Af3b731Vv7RH/3RGz/zMz9z8vM///O//J73vKcB/Ok//aff/2M/9mPXATabjf2Vv/JXXvzv8vsA/u7f/bt3j4+PbZ5ne/PNN8vf+3t/77mPfexjuz//5//8W7/Va/7AD/zAb/mav9vrHSOokkbXnHIc3IAkjZquZNq68uZrr5N6cC7nFDnL4S8HkxYmyUyaSRIoWxeJRJ1cUFWKakQVqoegSh1Tp+sK4mSZEJsoOlN0CnsZMjtrWE50Ot2M2p3VMqSZKk6TiqpRrJEGV0dTJAWJgEsQ5TsFlwnXKXhlQ+UcOs0TlGvAdqhp7bJQcEmhnPUwYe69sraKTYoVwQYHMqUpkGAvzGUOMYPGmDL2aw8LmB5G9OqZJDPiE+4lzNmzkMrIi/ah/kxTEPIlBavRKiaVVRvnWlk3ibfWyk/98uf4qU99kdfvQ5eJrgvGMg72GSGHGEugk7GkUWRoKGxNCppnTGAdPNxOo/saKKw13NZAfUbedPhVRmFhHqIo1RSNDId/dLgHBtoqnnA0xBdWMV9ovfP0XHjzsXDeT7B0gktY6hyiHj0l6jB+ali8dxxxJzvMwz7KddibWaL3KO5cG5KC3pEkcrh3fcfeVkhBC1D3YWkTwpCOh3WZEAW6CxfrwipKl0RdI5jCTEJY1wTp4YrgjKhYgKSR1GNGA1YXFnP21jirC3devMdZ3TH0WTSvMSY0AZ+xXiKxiODMBlKXSWkKCxopGJnVoI5maBgxBYeSIUwkVP9J86BkgLWwcLt+5Rp9HbGw5iGcmyam4y2boyNyKoF4O/E7JeIXoymIjWaTgzeeS2aaymUTg6fxWeK6HCyxgqOenn2GDq1GTnwU4gc1fxSlwV8OWkb804nsu4qxYkmwpPiB5kD0oTLQXvN2SXU4FO4HC69osIZ4anAbGUI58xbFbE4cjFqvXbvLc3c/SJ5u0ixf2nWlnOP+N+g1xGJr3XP1+Aof+tDXUq1xvjdy2pKSsUmOrzYEUcpqlYPlpaeO50pjpcxBa8mSyOZID3PbZR1NUD4O8VKSgBRL3POtO7VC7YpR+Lp/998D4Nf+2U+CTHEdBZo0qtTYY4fbrY+x8mIr1VfWfsEqK09tx5qdrg23hfO+Y/UWLg3DwcHH0dMl/E4bBLrYR5NtUZSaKpaErkLTRE8TngpoJskUPr050dWoKXxPLTW6GGvvMSXohDXhSBeMfSv2okz4kzKeSSkTp3Xly2895PXzC84onJty0XroA9wxCz/vRjSHbtCasXRj7Yb3PhD+gxWbYJZGg0QInCyiTEtKg2I27PUGcm8KSMH9GPHtiI0u5LxBc6LaSGaMXRY/iCveXV8R6zOf+cz0Iz/yI3cA/vbf/ttf/NznPvfpL37xi7949+7d+tZbb5Uf/MEffA7g05/+9HwoFP/sn/2zb3zhC1/49D/7Z//sX67rKv86v++w7t69Wz//+c//4he+8IVfvHPnTgX48R//8au/+TW/7/u+7/UvfOELn/7Jn/zJX/7Nr/mVsN5xgVoPIwRheBgSYzQtzMcnnJ2d89orryDe0MGdFGuk3tkApQVfMqxeogjtagFIEsVLE4uc5oPY48BDMw87H2wcYHG49lH8NAHPYxP1yuqNho3ittFtwdjj7INIz+AQ4s+cA7LSdQhoUqQuifbgRorS+wZrJ4hPiDTIC55DkBH72xBgiFJVWOmsdExCGJOw4FL2OlKbIDvhG+kNk4aNsIA0PnsjUOXe9tS2h2FpFSCRBco1rFYCEw50xMUwr3TZU2Vlsc4ijcfrns+/csbnvnTK/SeP2Ntjqq8xvrIZ9xTAkyurKZ6C13vRKivQRagYPUFTwfM8DhDoyaNQ7QvWF3oLTigHL9txWERGuoOEsjayxd9eyMa1NeMS6XNzzuuON56+yZN2ypIu6LKGs4SukC5AevDvsrF4Y28rKz1Q7Msxt41giAgbsHH9A1XscV1lxbXhqWKy0NkjuiCyoKmFdB0w76xWacMkXyWS0s72K+fV6JJxOr23KGY94g19uFI0C74xRLFrtHBvyBFaYclZe2XeTty5d4N9Pw3fR+CQxBROFxk8xtpKQSQfmJMgwe00Ebo73QJtOthSQRp2XgTXWGSkjdkl77LWxjTPEXlbK61GPGkqmXm7YZo3JCJ21XoY3IencQiI0mhmlXicIaYoelkEh1BSCNQ90MtDcfrs+gcdYhSFh7H/+LscUGPpAfl6RYipR1AgKiIrovFMp4CcBsfVL+kCoXmKcA7n8LiNvY5L2wIOxv1RvI571qPJOogtJSVu33uJW8+9SGdmtUzzcARIYnRbWNo+7kES0o3nn7/BtesbHj85xcwpydhuhCw5XEgQFmvRvAOme0x2dFuQHmgdrZOa4jWaqdbiOlqa0TIhRUmTkCbIG2HaJqbjxObqhj/5t//3fPAPfxs/+V/8XX7pv/4vgw8TTAkogmWGOGkUvWM6kXMjT5V01PFtpc2dNht67JQTx2ZHtplawOeJfHzMMt6XpLDPcxu+Cx62fqtXqoWjhqVO1UplpUnHVFGm2K8k0vdcoUvDZME1/HBrI+zr8kR3wRyaxUxKBcQ7CWVSwiJLOj0Jq3f2feWNxw957cFTHpztuXDnvK8srVJbZzG4sBAN99bodaW1OqK1HasN6yu9r5gbbXi6moxn0+O+ERXQQ1vtpClRZhCJn2U0S0kzKc20NiwLS3C2IyRjuN68u75i1j//5//82Mf05s/9uT/3fhH5puvXr3/ijTfeKAA//dM/fQzw8z//85vDz3z3d3/3Q4BPfOIT+w9/+MO7f53fd1jf/u3f/vjWrVv96OjIX3rppQXg/v37+Te/5p/8k3/yEcDHP/7x5Te/5lfCescj/kMpaw4lxY+VMjHPx0zbDT/7Mz/P6W7PZnMSKJN49MXqYfxsMawXN4RMG4WdtQ4t/ET3vtKtkx2KKJkEJtRRoHbdDQ6jUq0hFgKLKU30VqPolAZi4Ak3G/ImofUa3LvRaXrruAm9C8hKKiWmXInwLuxrIB0AEtY0ykwZYyfzimtYjtAZIoiw/fEkgarYyoSSNXKx1/UUSVsYCvekQqsdkyW8DCnkEb/XrNLVcKk0dkOcrTFGbFAEoOGWcWuQZ7ocFPESSKzv4/vy8BHUacu5K7/05Vd4et75fR95keduPhdOAl5JyVEvYb4uKyoepvC1AUOB3uPPoNQeaEJKSicBIVowd5r3UQSEf6W7j+jI8LuMkWzwNLE+PC4PopODQCXsh9baefPxU7708DUercqSj9Hx/Zo2yIbqNq60jASgUZB1jEk0UJu3G60jiBtJMo1ImRKN4qoJ4EsUWGLowVXCy7MkozRU4GaB4UrHxDjdXXC633Ftk4Zx/Ghcegj5IEaVNlxpgREJ2xBpCBXEkZzoDa6fXOfe7Tu4r+Ry6S8UfqqD43Yo1swD5TMOBWaEOogyxu6EuIkakwoZTZ7oZab9MAi7RMfW1tgeXw2/zFoHrcDZbjLH2yMUpdUxJpd4DswbojMHnDaiU2U0AkFDyKmM9xwFvIiHQM9gECji/ZhjFgKYsOWMQkbGWF016CLuhoqO8S+DfjHEf8JohFqgtJpgIKWXjZ0HpUhVoEcB2s0pOQcqO+g8DMqNuY+YybiPpQe1Jw3EdW0VmTbcffFr2K+nPLj/Ms2Hd4I6po3V1qAfpQ3WGqks3LxzwoNXH7H0qxwVyPOMXQzvTRg0iGH555XeMozmBIaXskzIFGLKNsIgvIdPs1sPrrXruO6d42vX+Q9/6P/E+//gt/Lj/+l/wk/8Z38zkMkBtmZNlDwjKRxOcoopVBrxz3POTBlQIXtEI2cVSgbRSrLM3gjD4c1EU1j6CKlIFbQEz7wLapEaFj7KEQwSyHWNPcFzTF2cEAZiaJII43AJtwYLCklKAUPYoMGoGl4DXC+SKMqwegtLs8N9EPeWcL5W1kdvcbU1TE5IozHaphYJiknJa2W2xpQUYx3TOEN6ZfJOniaQg/OCkjyDBPbfvSLscV2D254y01zY9k72C3IfYk96pNhJDoeV3slFApF2uZwkvLu+MtdHPvKR3TRNv4El/NJLL63///x9169fP4T6kQadxt2/4hDSf9V65z6o/eDvl0glZo05JY62x5ztF37uFz5Pkw2WN9ERYzSNB8fVEKuRFuMNtYgu9YgYoqM0iahCk+gybSTK0A+IRHDX5KCkl46khGsn+Yr2gWioRxITSpYt2gVPGe/hFFAPAi/JQXh3jzjCtiAuWA0OakLCUFmNpDuSLihTbJDDvqb7iAMc48QQJyiuKSxybCG3hvoo7MwxybjoJVesN2OeMgWN6DtxVtZIGEmObSrQRiEiiOZRuoGI0cUGZ68OukEEBYQHZka9RkGNYtrpdkbbNS6+1OntmK9938x7X1SubCNQwce4KynQFkQLRSRG95JI5IijxWgtivKAWKIcUQk1eu8+kk5GQlAaFlLYGMtGIRXuCKHEHl5a4erQO2ZQW+P1B/f5wiuPeHSmrB7jr9K2SM+Y7EFrvAXrCDUECHG0BUdxwHdJM+tAcNOhuLEgGbgobhbNkDhCpeQc4+TeIwrUHb2kNOo4FuJ3yUDj1rrnYtlROaKakfoa6KQHR1VU43LKHiH2FHGNBio1UgpnCZUJb53bd+5y7eSEuqwhkiBs2noPFJUDiuyBzOM2AK4Df5KwzzpotSzG9K16PD8DCTQTWoduGi4N4znJuVCmTF1XlmUheeFoO7OZcjzDLaJrNfXw55I+UM5olKLui6vujH+XYU/WB79wfKPxXKbLxvDtojon7OdkFJF+eAokSlYfYkEIpw8OyLglRIPaYZdFdKC1rbawfpIUSVdmzxBZ8WEZFbzYoGPU4S4gY8CTLqkQCNHkHCy6BM73C1e2xzz/vq+j1oVHax1JVQvunbZ26tIoG4miShfu3rvNwzeectFOOboieN1g5YJeO05GU8aX2IuLJKQLkpUyFVId+6YO1T96yS0Vr0hveBuFtkm4Pmy3fO9//o+5+6GP8Cv/rx/njc99nm/4o/9jdg+f8PJP/TRptI1uEfShni8DFg6fVSzR9xbPmASinyQoF832iDSsR/qYpBVnwjkINnrs0RIIZ7cxXRLCEi9mZSMGV+L+8rBV0xRtsUiheKZVjSbFOiY1GmoJ+o92C82AjP4dobvQbKG6ha/0KCJ9/D8HlpR48OSUviyk6zNpm+m+IDRyKmCVSUYghoVvM8kQj4CQpIZpvgw0sVFQRwraitAGR1uw1ilZOJ6VLJWJCE3x8Vx0r/jg+ntLoPHs6qDGvbt+d5a7c3Fx8RsuwLd8y7dcHLj03/3d3/3WX/7Lf/lNCDeZH/uxHzu5ceNGB/jEJz5xiVr+w3/4D2/8kT/yRy5+7ud+bvPZz352+/bf963f+q3n7+T3vZP18Y9/fP+bX/MXfuEX5t/8ml8J6x23XYdOfJ6nUSyG9dR2u+WVV17j/oMnTJsTXKIIbC4EP3IOPp4M8ZMG/1TMkdZJ3i/V3kUSk2gUdO6sAjtx2uggB2aFJqWUo/CDs4IDWYU5hQoUUginNOECk2/JVgKbG+iDmqA2k/UISdth3h0YaLJOdg/U14iMaekj/WWBA1ctMqLI8swVIF3mpHfCr1JGRnVmnmamlKPIaXGgFi1MWtjqhEpQA/phh3Yj9T505jIUr2FkX0lUzXQNP0TR4O4JIZDIeSIzkVomdw2rGzNM9rTSWedjvvTGGT/7C7/GL3/mFd68v3KxB1dDi4VVD2nExxqkhdXPabLi0mm9os3R7qEkbRaBCQRaqUMUMJyBnq0xthcM7/WSoiAeeiSxDr2FwbsJ5+cLr7z6Fo8eNawek21D6op1QdIWlRN621LXhFlGJRTuSQVVyEkwa7ReWfoSVAqxEQYw0UVZLdCyQ0EUyGTGLWGWaL3QLAUv94DAo8PGbEXZo1SSBsfzYic4W8w1xH5mYDXsug6fs6+B6MGl8l7UyUVJGhnp0ht3blzleJpidDEsmFyU7kbrK91XGKzbQGwHx/QypemgfNcxRnV8oM9x0B8OV6gtRDaiE8sSxfN2u6G1yrLuQeL5Pzk5ZjNthi+vhCVYSiCBQMebDFQV65dNj2igmSkNsdLgqx5ETgfeZyCng783itMAJgf6Of5uIMAxbbAhpRwXZ3D9Bl7uwf/TnAYaZ8hA2cKaLO5RYdBBBm2DgyBKJTiPKdBLwSKCVILqYQN9RaJwAuje2a8rj893zMc3eM/7P0yer4d9Us3hXrIGj9YQRCtmxq2bt9gcHXP/4TldC+RKnlqgbBp7igx0u0gI93r3ELpJRlQig54ahdAoIo3wsw36bOy4Iomjm7e5+6GPAPChb/t3+VM/9J/xH/7Q/5Fv+5/9L4K+orHvtnqBLRe0/fJsnDxI1NYsUpHWiq2G7Zy+F2wV6EKrO7zXOGzMSGn468bdF4KfFPQqKwSFSIw2PG2dZxfIacEnlhXXfrhoSO+k3sjWkV7xHgEJZh40G68h0lQJcRPGvhvVWjQ70UNSPbjgHfAUZ8naK0/3Z7zy+DGvXaw8XBu7vlCXp0itqDnaI7XMe8Os4WKsXrmoK0tvLN1oHnG67UBLYwLf0HsBCpoKmgu5TKSSRhR4+EUriveK+xoUIYaZzhBemb3j+uTd9W94vfbaa9Px8fEfePs///gf/+Nrf+pP/am3AL7/+7//pRdffPEbP/ShD3302rVrv/87vuM7PvxTP/VTRwAf/ehH12//9m9/DPB3/s7fufeBD3zgG/7QH/pDX19K8be/xkc/+tH1nfy+d7I+9rGPLX/0j/7R3/Ca3/qt3/rRA9L6lbTeuYr/MO2WZ92aanSbv/zZz+JayfNEs9gcrSvugbKIpHGA6EC6hN7iQQ57l8jNLjJiNS14oU0jzi9ELTk0D94HBheJIu6OpRYbEY3mCmmi2ww4KsbGZ/Dwk+sanXvrLUjrmml0mleKxoEuB/9GAfeE9zQSWjQI7hp2POLRaQcXLQ1XxSXiPVsjoyzDdzOnNKijh1hUAzR4d72CxoiqE0if6oQ0oRziU90HMT9TLdwhkw6/TgmfSbewolBN8TtwOnWQ8zViPjX+6S40hPOlcfr513n5wY7rx5nnn9vytV9zhyk7hTXGeMMqSFB6b2McbYhF5nf4Eh68gQ4EgBCeRCrMoWBSkoxxlDk2IhdTKqFsx8aGG593vyy88fpDHr61p68hJigoyRqrLqhp2EZ146IaVhLTpiA9rp218D5cWyUnIkFKNFT3ekx3YRWjFSXR6XXFbIn3YPNIXZoxTzSPqNB+QMw8il+s0q2RNLwXlyY8edpYd4JPEodccvAFZ0EIbqF7xvuh2K1gUXTnlNjkTCkzi688d/sWKYWVUPeDKGJ4gx64mBoepwdzeXUG6hjc0nA1GHy2w2+w0RxKpK/JGKc7gArrsCQRVfbLSu+do80xZaOklFCZBsrqETThPdC9fuBnjv1huHEcioCgAthIDJJLtFTkIHiK4rTWOiYxg3M+DuOD6t8dDklGBy5f3DnjtcbnPFAdAqGHbs+CMlLS4OQOgVhMABjFHuHT6z2+U83hKyvDjmv8/8NncwZSfbnHeyDcFaxlRArumZQ2qBQysDbHu1FbYztDbRMpTxwdH/Pw/jlmEyk1jqbEsoQ5fG1+AEXDrg5jT2W7BoexaqXKnlyEpDNtWJm5RmN/oHIAaE6c3X+d/+VHXqA3xr4ezgQRoTnTpFw241kJbuVlkMMBPY7f7WtDOPg0R+68a4K6IBrBJm6GuLDfjekBSpoLDWe1jh2CTlwGB52w9MKDukUfiXRhDWWW0RpCRx3c/PA3jDZYDdKBp+/jmmr4JaOZ2hOlZFIptDYmE74Gn9sVqYoWo9F4uDR2j8+4feWIGzhX3Cj5mGUNUa8WQXrMCnTywecXvEcwSPbw4E1qZHUmjYmcS8jEwkN1i89HeJ7Cr1ZCOMpI1nIBlUKkaMW9bQ5MF7/N6f3u+t1Yf//v//0vfeQjH9n98A//8O0vfelLm2ma0gsvvLB+27d929M//sf/+Onh7/3wD//wF7/3e7/3fT/+4z9+7fz8PP2lv/SXXv6RH/mR25/+9KePNpuN/U5/3ztZh9f8iZ/4ietnZ2fpL/7Fv/jqP/kn/+T6T//0T5/8m/wO/ruud16gXqpZuURnRIQHj5/w2c9/Hpkbezul2YonwWV4k3pCPEUxQxSEwfXRS96hD56ZcxD4DG9Gh+JOHWKOboexUqP3BZMaNkLa6Z6oTTBJkNIl9w2NIq2b0dyp42Os5ix0uhip+zA0j0PKJMUYXhQbk0sOKvqQGMfnt4ypUfHgt+oaRvlWB09qMw6zQz794T3F55Qil/53tXaag+RCsxjNzakgB16hOzAQQjpuLTbvoTQOm6JhhTXM2SUJORWaK9WhDqP2sIRq1CKRglQXnr51H31DOPr1iS++ccHHPnyP995TWl/wXWPKx5SyIYV0CzEZxW+MjD0FWhLBXLFhJ4yUD7zGQEEijCHGfyaM72U0A0RqmJdCr5297ZAy8Z73vJfniqBHE1PZXKY6pSb0deXJk6e8/OCUN8/PaS3hzAO5TcM70zmIaw6Ha8FY3WnitIGsaRuvL9Ckk8d71WGM3y1M8eMhaEFpdEdSQXwOsmcWTi/OeXp2ypWrISBDHE8rxj4CDQ4Cj3YosFbcE2qFKW2YZKWkGeGc97z4Qqh1R5IZBG9bDrZS8DakEIjjjAOSh0dEZ9IUY94h0ujNEDopB7IqadA0rA13g0B3W+vs9yvTZmZzdETKUR5HBDFo6kH3GHG+qnGPy6FITXI5no9CZrxrG03P4d71w4g37NoOHqcIz2ykOIhL/NmfzS+L2wO9gAPFQd4WWeqC9SG8EkFyovUW9+cQhR24jYci/jLOluCzYzqCAPSS05tTGq4IY42iOeeIP5a28uj1h7z56q9S9w/QvGKp4sWpdWV/ccGcJtJ2w8W6D2P/MvP4dMeTxwu3rhwN5HPF0GGdNxwWLFC+7lBbCNRMG00qlT1btpfvK+eC1hoP2hByZdWBO1sEHqAB1MefiMcmj5jkEfGbbPBBwTkIBhuHJsBYyXlGdAD+KeH7EKd5r6Q045Zol4Y4giRFeljrOfFnsUCXVSI8xR0uLb/ScE+wjvdCIsUzRjQgJoPv7sLM8IpmTEjGbhTjpoS3TYzze9isyWFcLk71yjwlrPdhX1e4qJU3nz7mfFWuX9my33SuSOa4JLIZ2RvFPL7XJKTkA4wQurcQhJaMJ6fSmeYJSJg489VrHF17jpMbd9hcvcY8zRTNuHf2uws6HpHMXmhrg9RoLRqGWyevAP8V765/e+udxIF+//d//5vf//3f/+Zv93eePHmi/+gf/aMvHB0dOYTK/q/+1b/6EsA3fuM3XnYeKaV/5e/7rRKtfqv3effu3f6jP/qjv/b2//YDP/ADb/yrPs+/7fWOC1QfkYRuvwGf4Mu//ipPTxd0cxzjRslo8jHatsGHisLJPUzzY2SuMapkzDzTEEUQB3HRHOiYRxdqwwS5YzG29Yi8E13xrjhHEdvnID1QxySx0XQJgr1IwUeeOaJ0jKZG6kLRwZ9CaGqD1wYHz0YdSkqXkcdM5CMbRvOwxEqa0H7wR824J+YpB7LRO6VEAcOw+qEEuuyWWFeje4w7uwd5f5oTuzU+h+QYy5kL3iLj/JBCpcKl6XvOmYAqgBbqzo7jquGhiJO8kr1htkNkpqtw4YZOM+e1cvbFN3m6rDx5dI+7N7bcPEmhku1hIdVbI5lGnPRAUN2Cx6l6sI0CBn/qIOEOxPrAKgmbomgINL7jJGGnkgpiyvbaVV548f0knZHjjpdOTjOeHG1C8kJd95ydXfDy64/5+c/+Gr/6ypucHqLCESYtaFEaDbNOtYYCte4wwjgd9QgWSBNKZrWGWaWPBJ+DOlsx0mGUJgKSo8EiUmvUFZfOvi2c7vb0q1ep5mTv4flrMaJ0JqKtGZ6qEkhdZg6PS4/TXXPh1t07LL0xbbYchBDe+kBDR+ADB2/P4ed56YUUqPHhe40kt+CzIaNIFRs+o6FhcavRUI6HfF1DEX18coUyTyH4k7DzMuK5gYSY0ZuRM1gPVN8PdBuP2FHog0M3FMwSbg3R8PZLt45nBeLg16Wh+PcoXA6oqhLFizAU7EQRzKGgOSCbPCtuk2a6xzPdeiNPEVPq7qTL6A+9tI66jOYNIyAYHEkRjRhlDmp+3lYcQ04Z75WHr73M7uGrLBevIb4LFGyurNWwNLMuF1y5cp22Qls7eSqcnu15fLbj6VnnztWrFA2efDhbBE8zviKJPU2EtXfmeWJZhd6clIHsl0VkJBilIdqL7z2aYhv6grgHjGfTEjVIjMbddRjR62XR3w+ewOPrTSnHJMt3iBTquMY5bWJy40bOmd6VZTRnnU7vYKZMeYpmsA+nhMFBzTnTWtBwjBBRqcQ0K7KXp6BKmMWIXYMHb95JHrmHkpzaIXyf26VgMZVjuGxE+ognjWueCWW/IWSdMVNSchbbU/fOeW+cn3RuzMqdPDFTKdbYeLidiBmlV4oIWUdTbh3c8ex4VpoHWHL7xRf44Mc+zrVb7yVvryIlrOLcjdpWlnVBZAQQNMG709OOdd1jblw9IC/vrt9z60d+5Edu/NAP/dDz3/AN33AhInzyk588WZZFbt261f7CX/gLv21x+9W+3rmK/7Ap2vBPJMbfX/jSl1h74qhdQ2UHsmC9Rv5xHwoyj0NYVWJkZoKUGJWbWYwtUgqRQx8FnPjQR8W2qaJonljqOd2AkaSjKuCFxcEkk/KErkQHnvcgC9LDDaCUjDJypCWhHogKWS9TsUwkigjrI3LvMColRoGHzyB98Ch1jKSj6DySDUknWnd6ynQNY+hmoF4oWQddoeKegj+Kx6FwGNM6IM5iC8IctlRRwWEdPA0bHrXBYANNeulLnlTBGCM/vxS8FE0kDS5kjE8VSaEO7nkDU4bSKZb58psX7B495MVbV/nER5/n7h1haU/QIWxyVqAEEsyBY5gufR5ljJnDbSiq6IOISxRKmtj45hJBLQF8k1IilYmcphDoaEFNYW6srBE9mwSzNazP5ok7V7bcvnmX9zz3Ar/0xS/zqc9/mS+99iat1RjNWqdM00AFY7y8YjiKa4ikxISJFIWFR8mpNcaGcRiOJmHw75JsyHnGgJUoFIZyjcU6j847S8/ktBupTxusKpYyeApLLolKOg7LAep4cHd3a2Vz5YSbd++y9k6eMn0dfMLWQqhiXIqRVKGP6FglkH4n3BQyCZ0SqSq1WnB+JWO9Yy14r+adqSibOdHaMjiY0VAe/DsNcMlD0NIgR3yjtYimhY7VCALQVOg9Pqt1CwsnLFCkSyQ0BH1uPYrV3sdIffjKMsbtmi4RNBkWbQOHj7SswT+ywzTGfXiyxu84UAeCKjCmGFlIhz2oxaheDwlb7gOBjwZXRqAEKQ0PVrlEfrv78GwddIfLpDHBW+Xpozfp5w/JLLjXoMYEGZNh0Bmeu+dnqBbeeOM+r7x2H9Ejnp53umfQzJwz58v4nkaTlCSCKiJEV9iokiyR+4T2TPIDWxFME00HCUKjUWz2dt74iIXuAl2jmE0EZ9sO/rIJbALC0WZgFnHvtU5KkUrnXtGpBD3LwvfZew/6g0RDdwi1CcePuL7JRupXb4FiJqUOSleTTtOOq8de7IpQYvKRbDi0+KDFBl0F0bgeOkR2wdDm4JfrFuIoDzPc2A8Y6XWiSFLqPig0lkYjhqMy03qnNsJiqiyUnjjZdLb5MCUKwZxH5B/ujlpHdYA8HpOBi4s95eoNrt57L+nqbTi6imnBe6O2SDDrNaJMRRUoNG94iskBucQ5lN5V8f9eXR//+Md3L7300vKpT33qeLfb6e3bt9t3fud3Pvrrf/2vv/r+97+//qt/w1fvescF6mHj9d4P4Az75Yw3Xn+Nkgq2AjKNhzP4Wlk84tjGWCbh0MA0xDMhmOo47dJiRD3RBVYzkhCk96GgMZyUN1ymuKiCXqEG24gkGpnPHiR1tR5YXm8jm9kGSkqM/8wpPgXSmow2+DwqimiL0dDbvBkNp/U10EiIA8clRmVWSQikKdC0gb60blgKvlMLWSlYujyAu+/xPqyQbA2xTk6BFjehlHSpdG614d5RDeQGSaSc4lDQGAO7vY0Xq1HEoCMDWp1qYB6eemWIVdydZoq02EStr3iF0/0FX7p4hW15zMVynefunHBlOwNrHLIWUbIiMf6SNDHPI9e+G5MqJKGLQVGyhAl/RBqmSNzysIMJUZOPAjdCB7IoanGQ9OUwvnWkKZJToLceh5Gq8fxz17hy4+t58T03+aXPfp4vfekVHj66oPYOnshpxED2ijRAfARhCkkTqXfUhMkznjNiYanmg7sob4uyDJQt7o1JZAiQwqi9N+XR0x2P95W59MFhFuAI7wWRPYO+GPeiVzITuKAlOKudhpQN12/cCmucdIHV8/j71kMgRXyB3frggzdMHSH414xRLYAe/IPdOHikuqZwNRjKb9WJo6Njnjx+ShtCHCFshIrosIAdFkDWA5mNJyHQKo3fqxKvKhYI/kFDdLCZM1G6jKZGQqcco3qhSHC5I1kn7s/a18vCzgiBVIjUouhMwy0gxu7RPgeyHKN/1VBQMxwdwuarhSgHEB3IlI/QhoGg6fCUleFzGiOd4chwiCcm+PPYwRwtPqm5sN1uOT7ecHY2nDgkkOWkiSQNsYa1hfOnD5Gc8aR89nO/yv3THdu04a2HD3iy33J1JAhl6TQJ/jfAXDJJoFbBNzH+VnWSTGTf4MPSKK5/CpcHaWxMgmlqPUbOeDBELCZligaVs3eSDgEePQJMXGiHEIchGGwWzZ4ekPekmCRSiqbJ00y1PZIjHCWRYPigHkSNUThGXKj1yqQ6IpDDAaWbxc/LgnhHOYqgDInSUzTs4MQNyRrPhEDrIDmCMILEkeleQ90vA5KmAodnKAR/5mDVgYboNBoRu7Q0C979yrI4T9dG8sp6LBxvlb6Zwl5wTDaqCZacnDzirx1EV7QVVp2489zzpO11Xn71LW6uievXrrPdTBSN/c487uQiFq4IgHfHpcY5A9B/g+vQu+v30Pqu7/qu0+/6ru/6zO/2+/hKXO8cQb1ETYeqG3jy9DGPHr4Z/KgZlIiTbC1zsNGwtiePeD6JWKZAOSDQFQ/BgiCD9O6ITmiSGLMSue0+Ri0pF0Q63tZA38hR5MRWhrQVsx1eNDwye5gvS3K69+CoQghgREktuFQ+imC/PHSiYx7M+2Bq2WFomIaVU1ihFHVMDyWBxxh52KygJSxuDNqhOCXQTxtIMQiajW57FEfzhNqEdh1OAjFySz1QMRHAIm1pxQIlHDGkKW3ow/PQ+oLR0FLQrIHa1hWx4CJO6YisE0cO1TtzMsoERyLcurLl+kni+nbi3p0tR8dK3jrz8Ryk/zSHhy1RxKVccHKIs0yQ4kHFkFHQTCkKl0aYTkuMhcUOfpIQxP9wBu8MGyILRbW1QApdglIgXZlE2EpBUmLvFWfl6kb44N1rPH/zE3z5fS/w5Vce8PlX3+DNx0+5qJVJHdcQ6S09VO8imawhSLDuWBe6JopEDG3kZQvWABspajKhaQqnIwtUyxMRaZiU02Xh8cXCjSPYOGStuKyBOEvcO/iBS+goBfVMTpnaKos7t2/fYntU6NZY9xfIQfksYfyNBH/PW6e2UQDlQM+7BcIvw/JpAK0cCloY1j7W8daj0MsZNxnODYfCJiyWxEfByQFtdHQYtQdoFehkWDwd7Mc8Gqdh4C/ex8RERgqOXlIVYhqSDk8aPsb7Mf4fUcNyOfwf38MoCt0vo2IPqnW3oBOEL+lw4yDEYRJDnbCVGs4Y1oeHqgR3VQaCKtFJB1KdZHB47VmOiDyjU8TnGX82Z7PZcuPGdc7fEmoTJE9RJBMJUipOq3t2u8T1G9d47eGbPDp9iOkJOzMenp/zdKncui5se0JOd/TeqX6ghowYYNmAH9L90uDwSiSyHSgH5nQ6pzlxpTpXe/DyxTi0GPFdWgQORA3c0SKcbiYWMtXCTaV53IeXoj0Xsk6j2SyYKrVG4znnDWkq1Brce0nBc7Y6UGCdoSeEFrx6CQTSPNFbWGGhLQRXQCKTRLEm41ywMOsfyYORM+Fj5BVuMm5hnyYuI9rWMM+IFro0iBgS8Ix60F+EMQnIHcnLQPfDxSOYHJ1uK+hE0y0Pzk7ZLXDj6pbaO1e2zsmmUD0cHdTj95UcgIM3UIzp2hFXn7vLrsPjJ0/HhAOQmxwdhV1X8g1mFgE5a4Mk1IN9mMTVOwAe765311fT+h0Y9Q8EVfxyDHd+tmOtK6UYF+URkx5hSxnICGFkLyM73oMsLhwOvEC+xDNJDiMYx7pT4tSi2rCtuczrjo1GxXGmy/+mRPyjmqMok3ZcaySL+AL5OAz4O9gg15kN/8rhn2oQljj0KJjGYeMaBu+YD7sojYJkpB9lheQ2tK89xqBjhBbF1chadsB1FL5RNHRvQzEcylLLRq6BTlVrFCOU7jIEZgyuno+iFIZSNLir4fXYw+bQIpIwDestaRVfLrg2CXdvXufe7avcOL7OyeaYuWRyloj71M71K1s2WdkeGVkhJw3bFVMkGZImyJmyGe+qd1JOWBc0EZG0IqiGKCnrs2vYxKJ40GHGrsE91VGQBDoWKv4a1UfUF84QgRkJIWvcQzklJAuTJLo2VBrTRthst1zZvo+ve//X8PuenvLag4e88fAhjx494vT0lP3pjicXey7WzsV+QbqRtMS9mkugbD4QWwv/UrNndmsQGdhjJjzYkOHVaGJUYNeE5oG+iHZUDM1h+I8LvR9EJmN87aGkTll5/NYTPvGt30qeM+dnF5g45WAZJIGAHa6/a/AhVQP9kYD4xujy8u2iKZTVdbVhWRQHbRvIcbRfCSRzmRZUCjofRWOIkBgIUnqGnDKER731cJPQeDBVPdBv66NADXP8eATG+N0HjC6MacVBIBOj+UhmGt7CEk2Ye7Ccdajx4944FKdO7375nPvYWw5iw1EJk4bDBBY2cFkTboGkXd5wKcXkxeJzOJmD3VVsPD6oClGkIWFnNbYlRIWjK1fQacO6PCW50Pow+VcJ7nFv9Lrw+P4Dnpw/5WQjLH1HVWVV4fS0w/WJqTiTxmU7fHeRPhQc9NqctDZSyaCVZa3IVEahCck6VRP/z3s3ySusHtGlbkKycFdAEr3PqG0CcJYFLUbNRiuZ7EKtzgGgIA06RgrhKx731363i7F2TqAL9ETXNVK6+kStu0uLNXdB0qERPbh9CGtf0TSsAglfaViH73QIoBCJSVfEo8TkBhBLgdIOH5PuEl6j/TBdKtCjgCZV3BtiRnJFu4/GCiJpLZMFSjboNaYvDpKdnCyoOhrc24tW6ad7TveZq8cbrl9NXJ2cbSbOtNaxUYQnClYb73/vTab5Ck/2wTE+f3rKy63zHo/73VrneHuEjHAXTSG+W/uKcmiWiSnBu+vd9VW23vmIP4eKM5T2sQnvdo1lX2FK4UuHkKXHmLOHYIIUyFlMm+0SmTD64MvF6MPomEIqMWr15rGhjb/fkRh3DEVkThN5ICd7MZo4RSCbkdxYW8OlUwzoMepXl0sZhFuMJM2cnGe6RTGl0geHMjxU4yz1oAzowFLt2cF6sC/xEU7A4IcySPdwgfkQHUhGRlpOZBytTMx4h0UE2DJj0MJAvQBecvieDgW6+RhxaYiwoAyLoygwwyfQxqENdEVs4eom896veZGv/9r38tK9W1y/umEzd5SO9EZrdWirQnCSh/uAj8znKcd3fhmviTLPCfdGXyu5lCHeSBQpUWAETDi4x1EclBzjV1ENzqlASTKCG2IEHd6Xh4OfsOAyp1sN/8rBse0ObVAUUlKSBGWELEyulEm5mgu3rm9533tuc7GsXFzsqMvK48dn3H/0mDcfPuHlV9/g0aNTdrWxazuE4PclzcGd7XHf5klJozkjVYJUt+LDW7W5D+uhRPfM4ycLF1dntlnYaMc1s+yczQyMz3d4pjrRTE3aSHSONkd87KPfSK1OrY4WDY9dIJXpbZzjkZylOQo2J5LFDpZfA6hUHQI2DbW7WSRW6SF5YKxSNmH7Nf59KoWWS8w4RlPg49qGMj+EUME19xGhnogYhihMTYMnfQnj+kC5GOJJuBRSRckZCm5hjKaRS4pNxLTKpeArHsMogp1AP41oiATG5wvHAlBSngLlHQ2GWcf6M4qEAMn7oAoI4Vk2pj6Wgwsuh4mKjOYk/n8ox+N7Uwmlf5m3bK5eZ3d2H1okwuXMQISdDQlZnYtlJSXhhRtXOC4L99cdu53w9DGsdzZMJXNzPsEvKttRjHQVNjJTLxSZHPOGpGgyzQxrKwwhk4lCmdnlFeshFDSJqGUXHWkzG6po7JeawiEkd0wrtjZUNiTZkodf4mBLYTTW2kiuHM3HlE3iuXu3uHJty245jz2owMuvvcKRGLac02v4k3syPBveDbWEKsO6TjCvIegzRSUmJD7s9iSDaieJk0wRb/Q83GGW8NYWDb56iAYH7QSIkJagXQiRQJgNSg8eMoc7RoV93UJVJDVgARniRhdUJ6Y+09aO94WcG6obalfOT4Una+fu1c71rXO15GjQbEELtJbI5YSr12/iFdq+DYHsyvnTp7z2hS8BL3L16nVqM+YpAnDMbMRnK9binImH9V0E9d311bfecYF6sMEuU6HV6KB3S0fTBk1K5gjtSjIHa/TawCcSJQpSi7FZ9+ArgZM0Upl6X6k0KrBRIbniPQQHzT26VhHSOLTEleKBFDWroJByCrX70ofDTqBJSo6kEgvhxIGTldNMzhN136AnsqRAMb2NAnQw2ISRLR7Rft4b1nvELrrTeh6IcdiTODpOTRmIQorIzR6cqKR5eIb24asYh/LioDqP4v1QwKYQJmgBb8H1FEe9x2ZmoBYHISVGSS5t8PEUunNSEh967z3+nW/4Ol66e5vjTWYqglvF+jlTiWLY3NC5RPKSCXOZEQ+z6G6VUjJWW/DyPKMUpDVECqrhurBax0yiIPEQsCVN4ddqBmk4H9jgGGpHxeOQQQjxUKQzCf8/9v482rY0LesFf+/XzDnX2u3p48SJvsmIyIY0gaRPQJrrRSAtzboUyigFhxYi6CihGKUICFhDy1GUMsAaWoziYtWghLo0dqj3aiI2pNgUKU2SDRmZGX1zTpxmN2utOefXvPXH+60dyS3AALkwhJg5Mrq9z95zrTXn/N7vfZ/n9wDF6LnbiEzc2XCXTIEYkODt5wFRjAigohaTK1jbXAsdSuw8B2GHWne4dvkuxpTYzIWXX77BCy9c5/mXr/PMyy9wZ70iV9M3bjaTFV2+daeDXftFK6kUk3GIWhKVKipGDgh4Tk9GxnmPgun0REMD/7dF7gxo2cZ+VXHiCTWwCIFL5++yZDNVuhDo+97uwRCas/3jRvjVOswV0NRQYB/nXreCrzZwfyG1yFonTY/aTqUxGSitUyzBDDSl5NbFsV1b0UrRajG3zXgkwVFybVaSbUypyQmg8Rq3YPwt5H3rvscmLBX79pZWyxnC6QwvZWepbYOobRdjGmErGs040z5/B1Jq61gaNQK16YadW7VOWp2bHEXP1vyK2rTGAdiGQNp0xYw2tEKKdh7lrECVpouV0LNzeInVjeeoaTJdZQhsmHGlEtUh2TFHiE7YWS457HbJd25yejxx+3hmVUyzPXgh5mLPBLs9CH2kIqQpEQfHll7gmxQmtGZCVo/GQKIgGHPaaTTNetNTV3U2ttaMEPEYPs3hSTqhZFyo5Fb0bj9DqZlHH76fh++9m0fvv8YiCrsHPf1Oz87xKfH4lJyU9eYNnJ4Unnr6ZZ4uZlZ9IN9mPDU9uVdpuEEQZxMZc/iD950Z+xp7t8pkNA8J9K6hvtpGWIoQcG1CYde/Sm0kg8LLVXjWtc1GdYiGsyAU0/ZvqbhNKVBri4k1Y5KTAWqEGpEp4ErFhx7vZmquzCUjMVCnQr25YdoRdKdnL3qGLgCZqoW7r93NzuEh0zxTSqZ6CzHofGR9esyTT36Yq3df4+KFK/T9kmHRsZlGcirkmvEtgYrauMivH68fv8OO11ygOr/Vy9Wzce1mms0FWT2SF6YzLdaREOkwdqR1V6QtLnpmNvFmWJImwZeOQmmFWhuvY27gmhNowXvrAmn2aAKc6XUG9RaffTbOCbhgXLtZiqFNsi1+W3C1SATtoNhuOQTLczbhvzHzqO0B0BYimt5HsIW5tqSoqtI6VNsC1QrW6I0aWmtuXc9tUIGtgB6P00oIYrnQJTO3GFSD6TtiqeQ6WXKSgyjRFhbFMEH+VQeqAZ1trKdZuXb5PJ/xe57gjQ9eYy9AECUEPXN+926JpkTsBpBMVmXoezrxuKxUERLWYYli5qVSbAwcxM7B2ZTUMFNlW3huU34adVCbVmor6xAhuGBaN81s04bMT28SDq/Zine3NWE0LQdCLhnnheiN5bhF/bgQiC4SHFZgijOGoRokm1bskgtzmvF4DocFB/ffzwNX7uH28TEfe/55Xr55i5evv8KtO7fInbAaR07HDYVwxm/MpZJ0NqOWC82AYuB7V00RPZdsSTJJWYZielvnqZrMKd4K1Fo8pXRU6Yl+n53umFeON/zS+z/IPfectyK7dPit/lVh6GyiMc8jKZn+VNU6+wXT3TlnXeUmErXi1wfrwmByFjUAremrayE447+W5hSfx4mSZ7xEcirWrW/dX+t/2uecc25dOLsHTPdqY9vtRm/rkH+116NnY3k7Q8sX9347Jm8TE9GzAroFlKGqZ6ao7c+xdKktEq4xT6mNTbr9g2J55rRz81j3jUppUgV8M2rhzAbkpBW6JufY/m/bZn5Vp1u3+197jxXEdSx2z+PiPqls8GpBn4N6xprMdElhzdgoBBUtwjLusOwDN9crbk0zB0NHDafUPpOnZnzzFaKgS6VsKk56fIh0YUJzouaE21IF1JLPZJvKVwIpO5QBxa5JmBBfECmt0e0hL3BqJq0sxSgM7XXHZnT6fZ/9yex/xps5t+NYxkwQk/z4m8e88c/8Tdz4qxuR//s7vy6++G/KsUL4pHP38/SZAsY64rZlqzZhEEiKmf+8EkRbc6XDu64Z5yrqEq4RLNK4JnplGXqgUNLIRgNHFSRVxr7jYHdBFz17+7ucv3IP2QmnZYTB7iunwpwTyWXylHj6madAHSFEdnaW5rHVYg0jNVmD8Cr94vXj9eN30vGaC9TYbRNfaMYAOFrfNJG5KqF6QgPAqHMW+1gTqJlQYoxmPsitk9I6oxXLPtdghomcK5uasTo40G1duJpM4C42rDPDkgGaOzW0T9aMxoiI7Y5zTmRRqrdRpA8eRkP71GKLqom0kmngpBoDUpq8oNrCaMM/bZ06QZ03s5UzAPp2B7s1WIFJGozNJ2edFnEVJaEUS4ACQ/q4aCPPYulZKragi1OUmVwMFu4w/ZETIVfBRzN/hS5YMyOD5MKOV5544l5+zxsf5YErF9npwIsVmrml4wRniSaGicp0scOrWua3d2bgwlPUxn9pKvS+GUmCGEJG1eL9EGq2PbzzjkKBUnHBtKgF65Ba18oKGXsdreNTrZMB1gUuZNQZUsd7QwFpW/DtynMUTfhi3EwvDonB3mNpjnmxsb+gSPUkbfqxWvCqSM44HKXMZtIoyvkhsPPQvTz24DVu3T7i+o2X+OizT3Hr6Jjbp4FXTsuWw26FkrPrQbygzaEuCm3OTVHhaL3h/IHnvFhaFTrayF0821ejTbbifWAYepw4Dvf2+fCHP8Bnfs4n4FxgHEemsY1rc2OXNiC5c4r3Aao2449ScmNFtk2V7a+2caNyhm6iJb0VaguDyMQQ2vnBNI1Mp0foYocudtZtDU1+4RqHtRV2diXo9te1DdM2NtS3PmrTHot1u+yVf1zcrbSvoa8i3tr3nPFdZTtyb59F68Bui1cvpu+0kbvaSBda0e7ZFqcheEqdmJOZfkIcWniEnhXtpQUibPW31o1upADaxkls8+iQs8Q9M1oZFmhYHBKWh5zeugk14x2E4HCdMqaJWhzFzZS5mqRDTS4xdLBaTbxyZ819hx7pHG4ButpubDIqidlX8IVpnuhdxHshBDWDZNvUWHTwRPQFqiNnZVbbbKOK1gn8GiemtS3VtenAmujM2Bl9ZFyv6Kq9X7/3U98ET73MJz5xF9MVT84rfFC8BHLOhFtr3Jj4yP/xyzm9dhkk0He7gOPcrWOu/IW/zj/+8s/np28ec+fmit3leVKtaDDRSx88wW/f245lP7TrrlAlowyU0hNix2KI3Dm5xcsvvcTR6TEnp8es12vGccLh8a7H+cDDqfLfr+5woRSeEYFacMGuwoQFvzhXUW9BM8F5HAWHTdJqmZnzTM0zTgrBObzzDFG5fDhw8dwBR7dn7hzNZPFkB5uUmPPEKg2MEtjbXXLl4jX2zl+BEIm+NWmyTfhC7ECgC4FSlZdvvMju/g6hs+bLZtzYfdjkb2Iante6lL9+vH78V3O8dg1qK0rFOWKwVXo9HpF1TfQL+myRdrbsFqra+DE4j9PUxnaO6iplzk0PZ0YhQQ1RIjbbq5qpogRvEG0pzVTQVhmnpg8sTsm15cL3AcFTBXItdOLNRhWFsYxEgukq2YL6E0oCZ25Mv50HNhXA1rRjppdMUWWuZk1xtAQb7xBVNLfRuhjj1MaVWJFEh2I4qZQLLbCHlobNVCa0WBRiR4fEjpmMMFJrNtdnxQD/Usi2cpIFA1SrI2frZfmiXFru8PYn7uOT33gPF/YXBJktIMBZ5rwTofOBoNmA5Y0/W0s2s4ODSjKNXNMyltqQKUUoosyt4HbN7exwJM1UVXrnTAPpqmFqGrxbhWZywq6RkpkRMzioAqEZpEy7W7cFSbHRnG8zXxWTfvgaQRrn0zej2lyQPlKDp5YNUbaIMBqSyPLi1SmasUzuYhxKLTNVSzufyuULHZcuXuO+ey/w9HMv86GPvUh68Q7+2EaTtShVveWzi11TpnOuFJ2sJHeOMVVS6ZmzMjih85gbeqsVxQQLKhuqKMWt6YaKzsp9993D7u4u6/VkTvNWkeWU2KzXNFuhGdG8sXidoyU0qU0wmhHLYeYtpIU51IqqjTedeEojAdQ6kdKItFbxMPRMFHKa6KNJDCwFyq7jlIzRKiKUkg0Z1OJB/bZXqoWzfAPsHq4Nuq7NGLedsGzjk4tWk8ioPTdMPtGYu1h3le273nShtKLUuUYnaIUmYklWWiqlVLy3eMtSE7UaPN4eCXZNFxviW/Hc4ja9OAq2qdm2SUXq2Wfi1Lqz+SxjHsO+FcWHBcvdHW75wlQnvFOmMDOHRFEoIpR5DXNrlrveHOeaoY4c3TlmMx5yEDp6mdimqdYCi27BnNasZU1lQHwg15ExHSFOyLoAoOhMLSPBZRvpU5vJa9OEysmuR3FoDaA9+IrrV+TQE2QHHTMX+sBnve0B+MVneOiapSIGnUiquGGPmcCYA0UjXXtfbxxe5tblu/BdQJzQh8A4HnMFuPfT38aNxQ7/8p//O37yP34Q1+8TdvfJ1aGzI0g0uko+Jfo7DN0OMfZkGamc0oV9lssDOhUWuxcIj12hC3C590TvuH284tmPPc9TTz3F6eqUfNbiToa80vY8Chj8XtNZs0FLS6jK0qgigGQWy47zB5e5cuE8+8s9DvcP2V1Ger+hzhNPP3WdcbzJ0WqySRiVJEouI5tThZ2Bg7sv4YeBmsz8KFhKlEjAA9Ep2gemOVFq4vT0mP39XduAil2TqVpMiGtys9eP14/facdrT5Ky+SqxD2hrIxWD1tlDWTrEG9i7qmUahxAJrmsFSrXJdrFUqJozIXo6F6nOllrnwAXrp/jUGJc+sAxLgzd7T06JJJUQg2k71dN1nl4Cq5zJURGXSesVXTeQCVBm1Gnjr24ZfoqTarF5mhAfSBWUATSjjATX4zTYzrkaKiSI4XiyCqnY++K6rpnAEiJbfZa3zqCHEGPLoK6Eakk2hMimFtjfJYwZP64JEaYkuCA4OlDHVFZ4jRQfTDdYkzFAfSTQQyo2eswbHrjnPJ/z9rfw2D0XOeyU2HdUb33tWpQYsLxoZ2ksoThzKztziFoKonWfay5IDDYAFEN+aRuRLsMCx0ApMy5UhIQL0bre1dm1gLFQq1N8aKEK2jBe4iiNy1hLAzDWCpLRdqVV2aZ5WWHqzD4OtRJdR4hGNSitSJu1Wpc1eeoUcCKMecbJovEsrYMsDMBM9q1IFCVNVsSXAhSlD4HsKnOp7O0uePwND9ENS3x8luWzL8MNiHWmlwU5q+lLA4TWTQ/tdyWduL3pUDkg1YnBGWrGq8eFoVmyQTWTamIujqGPLHcXyPEJ167dw2JxSE7H9L3HORuVSlRc8GgNZm7TzGa1oeYGH/dbPq2nC71JMaonuh1mP5NdwkuwONEMea6Y0FJIc2KeRro2Muyatts7h5YmKcG14beYy7skoBKiR/NILpUYPVWsaJb2vVoV1Fn8qasNL2YFpWtd8saO4wxYinFovW47pQBW1JpuAETKWSQmtE5pQ2hVVcQHM9SRLSpSlKqOlBLgSU320xf7vRI8qcxULMc9ioNazEnekvRq+7tzjlynlgLnmq8enNHSyKkQXGB5eAm6PciZqjM+2GSiTIWsDpGeHWAWoUigk8pQjSV943RknQN9SMTocO18owRChRBNp76eC/1CmvzBI747UyaGAJ1bcrrZEJomv5JtAuYqUgWnizONZ+yE6gRRhyZB8orLex1f9Pmfztu8wg/86ya5gewOqeEKm01ls1E268x6TBw9e5u3ADeP1hwdzch8TKiFvvcsbp8C4DeJN1w+z8N/8J08cfd9vPsn/y3ztKZqb6gp7zipE94ncjllThtyDVRxpOK4U07gaEKzmTUXw4K46Bh2BvYPD7hy11U+5VMf4TPf/vk89bGnWf37fwOnt4lA9dYwqd6mL1pLy7lXvEToIOSBpBtKrRzuX+TTPuPTuXr3eS6fP8/gIqUkplVis1kxT3fI5TY7fU8nJjvJ1brBBSWpMNeZy/fexZW7r5GrMqUETnAxEmM8a4okEbIqWYQxjdw6vs3B+XMWMOOjTUeKqcyDujNaw+vH68fvpOM1F6jeW/dEJNJ19s+v3LhDWOyBC6071hYi1abdtEVUcJTiKXNB1cwG3rURmlU1bKnttRrLzmPJSllhIuNdYRrNEe/8wJhH041hGereY+keBdDMwjfIe0p0LE1rmgWS9R+c9qZB1WL54kUtLMC1TptGwBacJDMlWsRnweHVkaujuu0otDma9dVFV7x1b5z3zfxiulC0NGOFGWtqMRCh6yLiHCUnRDqCs7F57wZybmu1DzYGrQ7Rnk6N3dnpmjc+dI13vP1x7r68T9d7iguGSHERsKg9H33bbRdKSaCZuo0rxMZ4ir33MXb2WVlQuuknvad3BtvPOROD1RKKRV5Kc/duG1feRxDTIHsnSLUxclF7+NaazU3bonDr1nTh28gXIUQbz6KZWjKD76xYqnImsVAVKErKthRUhbFkPEpwpr2UONl5YJ36rluQc0FrwsXQ9IgdQQyvrXUGFDPOVx558G4Wy4HTeQNPwu7gcWm0ctqbMWtOmU5B3IKKp9bENCppdoRFIGrFayBJItWJQis4LUKKuWQ8pp1e7uxyeHC+ZdwLqUxnGeq2LFk3dLnscTJQ0kBJ9l5OOrNabZjGiUnGNkZ3dF1n+wCcRZK2+89yzZV5nlivR3KBGLf3uzTJS7XRKp7QoiFLzog3baN9dNuUnkLOtRniaHHFtuE0I5OJAczo5am1mDa8TV1KMti6k8AWSl+3+CdrxTcNqLVxzdDEx10X2p5ZBnvfppV13rVzS0iMZ1pWMDmEOsjt/hRnyWtS1SgO2002DYvQ4nlV6hmrdasEt5uA9lnZexL9giC75LK2Eb86olZizaCOrgbyZqJ2HZXImEdWm0rQjjQq6xXsdVY4bnmwtcI0rimugvbkCmPqEBamo6zdGas4ZM/Qd3hZs5VDBCpSrUPnmidAXIubzlbkx66HCpcOl3zpf/upPPHEJcL7P2yvLVqiVOz2uX5UuPHKkU208oZcRsLaor3vnBwxH+3x2H/6IItpotbK8o4VqHvv+XmGjz4NxfG/KZ53XLnML77/l8jOkX3glhf+xaVdihcoC7RUsiaqQOgWFnggFTKsjtZsxjVT6VnNA7dPT/jIx57inqvXePOjT/DQgw9w55mPwku/BLkgIaLSmbGuKiWZGU2qCeudwDSvTQqicP7yFd7+KW+ncxkpEzlP5DmRamKaR2uYVEH8gIsLe+blZNeumv73vrvu5vc88Th9EOZxwsUO5wOh68zkVat5OBDIBVeEwffGls5K6M0UOuvUppomfarMr3Upf/34LTquXbv2lq/+6q9++Vu/9Vt/2+JKP/ShD3WPP/74W97znve8/zM+4zM2r+XPvOtd73rg6OjIv/vd7/7Ib/T3/viP//jel37pl77hxo0bP3vx4sXfsED6tY/422DJ4c8KVMQRQth6fqAZEsR5+uDxrrMFQzwSI2Zwz41Jak5GEdOaUcqZhlPOINPOfPtiWktXIboOJ5HVvLJ1AkcRG1/XSksoqQyho5ZCoDE2Wwevb/Mxb04irIq0YIHgfEMYqdE2vUdqbhF15kg3XR3WIRZ/Zoza9na0mXVEHK7xFVNNTfdHS+Jy1FRxwbKWizpiiPg4EEdzwgfnUclEH6EWqrTdsustEjA7fC3s9MoTD9/D53/6m7l8rsOHbGgkb6+l84Kr9tl4pWkkbdRuoHMrlr33bTTcOl3VPgu3HcrL1uziGn7LHPiGHTKTkPe00TKGrlHrIgcxxJfWam5zNcSYaQFrE/pbcSHOMqgRT/TBkCpUgkTTWaoVB9W9auzZvjZjq5b2uhxTnhnT2q7LkAnBm7zBe0LsTcPpbRQ/jaMVNCFabKNY7KqKIwQhl8JD91wmrB+B97yXB66c52PrDS8crcluQZXQCnMHzuOl0IuiZeZ0c8K8UIqzkfaspWlBW7fNeSvEFVQjLkSGYcGlS1cY5wkXBR88Xd/Yv2L0Aodt7mq2zWDYpp5pQJY9urDNQqrFjBclM08zZMV5hSZxyKmSpkTOhXlWxnXGEdsFbe+Diw6J0iJEa9NuF1CLVXWAZtMNnz0TtreYt3x4qqG6Si2tU+cajL9N4s2JZOyBYmxZnIIT1LfitBWAW7j/llwlztLXai3EZpyjSUtq0cYbtmu9YPp3sDQqaS7wKi3goIUgWKKcdbSKWvCGos0EaIWxUQb0TPKy1Shb4VtxASiJrlvSd3sUvYNIJeLoJTN7sXhRlOwg1UBygVkDhQ4fHDkVXrm54t4r+zhRQmfFXS4OF3vIR4TQGZwf66i6UJnShpS2BbM3xJ0PFEyakYo2ML9pi3OB6M1k6aXJV/KGvQH+m899G5/2yW8g11Nct2iv0a6RW7ePuRMjuWS6zhO9MKfKorM3w3cFV09wR7dZR88UPLXJxK6nRMrC3rAkOM/lxx8k7S957y/8InWeuVgdSzeTF7sM3QIEprxirqNNxeqMZktQ29mvpARzw9gdHOxzz7V7uXz+Mppn5nHi0vn9dv0ogwsW8KHNBS+g1RLutCS8K0jXQ7VJ1Dobh3QQYZ5W5DIzrifyVBt1RohxIIQFpQbSbHISQg9SWYaetz74BPdeuAq14oJDfCSGjoJjzoVSMi5lZJ4Z80wuNvo/TStu37zFuXPnIDhCb5vNWqBikbK/K48Pf7jj5Zd/9TrmypXMo4/+tlTv//E//scP7O3tvd7b/i84XnsHtf3duda9AfpoGtGUC32/AG1Zxq60/GHrpOAqzhfEG6sPyRSdbRzqXMPl1FfHfC0FRGjxqKqUaTIWZxvdLaI3IHp1lK6nzIY86rXgMXc+IkgQvCbrhFXFuy0cfc1cZxCIsm8u+ao4miYWT82JqolIpOaKx1BSrRJuDMamm9Rt8KQ0x70Vsq5a9rnSitWUrUsrNr52xSgAZt1qi19VpBr0f80G3wV8qbgacNk6mhEYgvJJj97Dp37qWzg4GJjJdD7gfKWPihdwDUfiMO1lbTxVc4C+6mbWVkCKOCv6UrEO6BaQ3pzMOBvFS7S0H5HewPMUYDbdbWNubjE0HodTZc72u5pckKoOFStm0FcL4FrMQV0IhN7hA9gs2jrV4q2/qql1r0q2xaVU0/RVo91a8WAd4pIr85yZpRCDI/iKDy1e1UHfB2IMhosawUkglUoXe8Q75nkizYnDxQDAG9/wMM8f3SS+dIeX7iTWcwP9q1B1xtU1XYCqwslmRaod+ACdp5RMjK5lsoPm9t47676XAnddusz5wwvs7EdwmfVmRW5mHtNA2vxg3hQ8C3vPBEqe0TkbFqdpPMERW1KWdB6idURLmRvg336k1sLp0YpXXjnigeb28WJkhVoEv7S0IG33ZBOU2r3a5Bu1tizy2nR8alKDqrNJDdSfOfxzKnZtNvLDFmYXGimglNLYxKbDNu6qWooVttmqtaLqCSGcOf2ts1opJZkARO2eqlhhLQK5WsLZqzguyC05KUbfCvfRCCXi8T6SG7eAxkGlRXx6F9tbsaUS0OQMgnd2HUkX8YuBLNXc9b4iTR4jgPNCGMR4o9oQScEevFLgzsnENPXEAsto2+E0OwqR2FWmNOOSQ9KGoa+kkMm1UJ1tamaplFCp0TaF4ptdrbGgqyghBHJJ4JQudjin1JJ47PH7eMsnPITzgTQGDuJFAG6/cgTA8dFtyvkFMdi7KHikLqDY714uAtIFfBTyTgc+UjYZDg956C/9n1k88hjd/j7p5Jjr/+7foH//h7j4wDXK0Ya9XLnnyl3ccYVUJlKeqFIIXUSidX0HiWbKFI+LPdItif0ue/sHPHjfG5AMLz77HN7DctFuumBNBt83/0A2/XRIjuDMCOcDJO/I2eG7juPVMbdv3eDc4XnGMbNJa/JcmMfJpFeSwM24MBG6mW7ZwmJqIc2Zg3OHPPTgA+zvn+d03lgUuLMUO1+hlIlSjUldp42tB42ykebEarXm3IVzTHmm7wNC1wzH/O4sUD/84Y43v/nNzLP8qt/Tdcr73ve+344i9e67787/+e96/fi1jtd8VXu3Ta3wbGP11usRqUIX+jMNW63GJk1pw5RXFN2gZOaUSM0ZXjXgZEAYyClQs43zYugtPlIshi74Duc6+m6BdwHVwpwmcpmQZm7Skii1kGyejpMOITCO2Uw9SZnnxDTOzHMiN22deE/oIiF2hg+pGDKoZUKhM6VuKMwUBwkliTLWyqhqIyipVGaEbB03wBWHZoEsaK4tNtIKPBXXujUWD2qdY0VCpALjnNDWVdYGEC/OkdRR8Iyb0ZKa3Aant3jLGy/zuZ/7Vq7d1dOHkZ1FoIuBPnb24JNIR8SroxQlzbZhUATx0TSlzQyGQCrZGJ0qhNARQmhRkVhR6ITSsGDbtKQqDiSyTfhptS9CgNaZkkZDsA65FedmLjIji/ehmebMaCOY9k9SIo8jOVmCTHUOH6O5v6ttaLw3YoRopZZEmidS2hgIvFp6U/BKkADVsT7dcPP6Eddfepk7t24zrzfUNBPNuYXWRHBK5x27w0B0ZiALITD0A60q456rV/iUT3gLb7r3Xh46f44riwU9mKTA9zi3wNFTaiSlCG6XXHpy8UjtkOzZkmEEJc2Jko1Bub+7x9GtW/yP/+Dv8bEPfpCj69cJCjutc7XoIkOI9C7Y62qdv0JGfaH6TNLREonyxJRGpnm0IjsZc9GA944YDCG0M3QMITKt12xWJ2ccVOcMv+bF4+npYjSEE9sxs20SLDSi/V+9bdx0q4e0e0p8obLFh4kZBtkWdVaMlmJdLDDTo7b0pTlDViOA1MoZY1XVUohytdG7d02aUpz9nGr0i1KEipCLkKt1uqsKpZoBxlBhtqlJKZ3RJrre0qPmkoAAYgEZtVjX2knAu94mTDUba5mtacqhat9fRHCLjuKFSQtZTLesvlJ9ofqJ7EaEzIBQ5plxnkgKOQqruXB8mqnqMMaedY3nYslEmqBOlbKecVMlFoer/kw2M2IgeySRpzWSElHBVZtgGTUEJAjS6CDeFQ73Ot70xBNEH1ivNyCRcWzzogZ97YOjix7vKiWNLbK0sk0jcyUidIYMrALO08UIBwcs7rmPZ/75P+XD/++/A6rc98V/kHs+77/l4Yce4MqV8+zuLnj4/kd45KHHeeyxN/LYY0/wxONv5pGH38z997+Zu+96A5cuPMClC/dzeHClGRsf4J577uHc/gG3Xn6Z0+PbLJaB3b1AKaOdeydoqKQ5k5MZQE3b7BECWoPRFfKaLlScrijzbe7cfJ5xfZv18W2m1QmbdAfnJyRMFDkl6TF+kUgcMZZXmOpNxK04f67j8Tc+wMVr5zhNp8xlBrHrcnMysjlaMR2tGO+cMK3WVjyLZzEsCaFnM8689MrLHG1OmOpskwWZgRllQvnVUV6/Y4+XXw6/ZnEKMM/ya3ZYf4PH7du33Tvf+c4HF4vF2y5duvQJ3/7t3375Uz7lUx7743/8j9+7/Z5r16695Tu+4zsuA3zpl37pg1/8xV/80Mf/jGma5Ny5c2/9m3/zb14A2zD9hb/wF+66du3aW4Zh+MTHHnvsjd///d9/bvv9P/7jP74nIp/0D/7BP9h785vf/MRisXjb2972tsd/7ud+rn+t551z5su+7Mvu3/6OBx544M1/+S//5cu/0vd+wzd8w9Vz5869dXd3921/5I/8kfvGcTx7r/9z5/qbdbzmD24L5w++Izf+Xd/t0Hc7bDYzocd2cmJdDmVuuhtvOsTQI8GSVlRo6KjGklMboYoPiAuW11yskBU8SQv4yKwJ8bZ7xineRfwwwGQGKAn+LC1ESyZ0C5xmZtkKwgSS3chKM0ypWGoV1ZiIzgDeRQu4jPOWhuNCAPUWzOJsNJkwDl2gNjC2GcAU0z3aE7+wffqXbOP3NM/0YF1BMQBPoemPBLaofg1CniLiLJpvZ28H4YS+bPjMtz3K533WJ3PxYEFJa/b2llB7inJGWchToYpr48d4xnestZJKNkOUb+xWbwuM1oojWKY3NMipgNDCA9qi4x05Z7JW/BaxdFak+oYs0uaMNXZiRVoHq4LLUFu3KLXEMO8sCGJO1Gmi9xGDMznGsg1LqPQhmnZSjVRZtUkQgoNUgRY8gGuax4KoJ7pAksYNrSN5XlPmjuVyYG9vx7ihPrJYmDZZxMZugQreU3FnznSnlXsu3MXuW5bsdx/jgx97higTx1NiVA++I2tuhVJEZGCeVvRSLFkNxzaqkKp4AlILKjMHOwNk4aMffB9PffTn6IeBy3dd5U0qPA688MxT1IOB/f09zu/vkJMyR8dmWlO0MmllKqnxPpPJJ8DMQI0+kbOxLp2ze09LZZrWCJnD/WVL2rFbJsZI7Hfa4m34LtcKxVJtvOiafs5y7U2msiXflJphyyPWYnefxVKxLUwtialFpmqhZvsctWlWadpwZ61e2BIoxIqK1khq16BFXG5JEGcRqk1/LNqijRGLBrWPgFowOYoTk9WUargrMeZuOevYNpZrS6Q66+SiZ0VZVW1dbUfwPUmbZrLrkRoRb0l7IWQyhbHOaNtslZSJElACWR1ZPCdzZTMnLu0GM/AA4ic0dFAXxOAgZroQiBFiDvaCmlTDE+h9pG8RoIijipndPEIuWEqbl6YrFqRkHrj7Xq5ePG8kFW/Gq+NTY5dq2EpUZrRsCL6HqNQ64UIldHYBeAlGfkBwwUPrzPLcc3z0z/1Jjg73TZPcBx79I3+c/Qce4Pq/VsYxs75xmw9/4BmO4g4qlVxOUTfj+h7f71j3Pmc6cQyLJecv3Mu5i5eoFZa9MUfnccNzzz6NeqHr7PMea6L2tonfJhx6OmI/4PHkbFp5xOO80qmSx8yN528wn7tKTuAlIjIzTyNOIIRIKpGSlZ3lDvcNuzz8yMM89sgb8BLY2z1kpx84OT2xaRIT86ykcaaMLc1PCqETQudZHx8humG1nlnNaxbTwL0lsbccWK8nll1sxj3OpjGvH781x9d8zdfc+zM/8zO7P/RDP/Tk3Xffnf7iX/yL197//vcv3/zmN69/pe//iq/4iltf9VVf9dDR0ZE7ODioAD/2Yz+2P46j+4qv+IrbAN/0Td901w//8A9f+O7v/u6nn3jiifHd73733p/6U3/qwcuXL6cv/uIvPt3+rG/91m+99tf+2l979q677spf/dVfff9XfdVXPfje9773g6/lvEspcu3atfSDP/iDH7l8+XL+yZ/8yd2v//qvv//q1avpT/yJP3F7+30//dM/vT8Mg/7zf/7PP/Tkk0/2f/pP/+kHvvEbv7F8z/d8z/O/nnP9Lz1ec4G6RbFMKdMPQ/uvjnG9aaMsM+MULeYqRcjJhmI1j7iQ8dKZW7x12MzJ6ijF2KalZDMViYK0qNAG6Q6ht46bFDNrVGjYACgzqYJI1xa7TBQhqOK1FUtO8N4WDcCKptq1rp7pTnM1xIh3gvPVuj1qQHPvWkFRLdM5K1RR5lakRgqhNlc82hziJo43dqLpQk1Pa2Ne2BbTYBVcoXil1AkfrKgVZyDt3kEZT1gME2//hMf4zLe+iV0EpjUxGnqp0tF3PVVX1DzhfThzHG91f1WMfWri+uaUbvIHXOsy1UrNim+xreaYNoi4FVeNcYm3LrBaBCHSCv+Gg3LbPHTUFsSmE7HuSiWEQp1B8SQVix19/gUeuHYfl3Z3uX77JhVHcoGnX3qJi5cvc9/dd5HmZEQCEdS7puZoIQ6tK2u/V6ARJZxA6CK7fqCPHZt14eTkhPXqlK7ryAn29w8IwcxvNrp19C7QhY6pzkwpnWkMnSpRhPO7PY8/cJ7AKXsvKzdOV9w43bCaLK3JpgSezHmqD1aQFOsUBmdvSNVC6Hq0jlgZn6EULh4sSGVkmgvPPvkU3WTdn59697/g5V/4ORYLz8HBDju7Sy5dusre3jmWO4cM3a6hxbrtdkJQdUxzYhonNBUzZNDYwdV4sneOb1PrzOH5fbhlz6rqKi4qYWgJXU1wLgRKk+ds05MqprlNKRmbVho6DrVCUARphj9tiVJbw0/rx5rMR23j48RZIhSGR9vGCgP2NdfiV3HNeFXJLbYUnGGsqEjjzM45472xd8/u02jXa9bCIi5QLNjBTqhaV7Rub+Mmd2kyFaCFkrRNy9nrxTSNNCSQOIJzxvXcFsel4BUijjknG2UFaXn12e7R2CJdBVY1cetkxV37kT62sf18wqZ4ln6PuUxMmnGS6RA2moyV3J7UMmZCLtQ6gTc8VkGMaZsqvgq+CxRXUKfghaGLPPbYI1w8fw6H0oUdVlNlmtsmte1AQie4Dtt8NuSdw5+xdKtmtkg0wTiwLpjvoO9tQ50VLv6eTwLg1gd+Du+F8wcHjM9eJ80VJJo8qfgW46zkkvBdZAhWVDoZSEk4Pt6Q58wJpyyGDprOuvMdt67fbAuaw3nXIoMrOReb1Hjs/o9CJSDaMaeJoeuJdcHJKwX8Lr4bKZuJpSzIGWrNrO4ck9KKupm499xFljv7vPGRN3HfQw9zcrLm9PYxL9z4KBCYq3K82jCWShZbo3x1dMHbOVFJcyKnDUenG07TGo4Ld917N489tk9NigbfAhis6/v68Vtz3L592/3oj/7ohe/93u/92B/4A3/gBOAHf/AHn7rnnns+4Vf7M+9617uOvuZrvqb+wA/8wOHXfu3X3gL4u3/3757//M///KNz587VzWYj3/3d3331H/2jf/RLX/AFX7ACeOMb33jzPe95z+7f/tt/+9LHF33f8R3f8fz237/xG7/xpS//8i9/ZL1ey3K51F/5t7969H2vf+Nv/I0Xtv/++OOP3/rpn/7p3R/5kR859/EFaoxRf/AHf/Cpvb29+smf/MnjM88888K3f/u33/Nd3/Vdz8/z/JrP9b/0+HVgppq2SjPTNke5zIjvjbdX8sfJAKQ5Z4UQI0KgSouFxAqm0LiWtWbEV3yLbawkqlpBHABNCjWiRXDRk3UmT4ngFwiOeZpxEUhWSAr28FIHU0kE5wlxQS2JUkrLi29SBZyN2BFiZ1GQlrJTzcXrrfOUZ0VTNQOHGuex1Ix6BR8NhdQ0hK46igpVM6XMNqZs21sXI5oK3eBI8wYfDeQtYkaiVHLL0waCdSjFbRDp8Lmy3ylveewB3vrYQxx0C3aGXWo3A5lSIQbLUK8CRbbRjDZar2082rjqtjHI2UIV8OSazzA9Ttq4s2W/l1wQFZxUOu+sMVMLndt2n2rrGIE6jzbjWKkGsrbrRs5wXZ6MEysfogugHSdTYefgLpanyr/8N+/lwfvu4g2PPMDp6YZNUg6vPcK/+9n/xPs//Axve/xRLu51DF2kX1hiGWCj22rLY8pjCwCyDpiyjcyFbuGJwZiCm82GeUq8cuMIrR19B7rb0/WD/azgoCScFkLrCIOlcqXNmmk+pYsTjz96F1eunuOXnnqO/Vt3uHG04ubpzJgr0ziyTpVFNzDphugTJelZ16OqXXdzyiyHiPMQO6GkDeKEIXQshwN2Tu35segGfFGmkyNeuvMcpydHjJsM7NIP+6jvCb1nf3+H8xfPsbe/y8HhBRaLHfrFLqFbUBTwHUUTc96wGTMn61N8J/heWE32jJnKGgkVHy3eNLZJgEorElWoxcxMro3Ig/pWfEtLnrPCMpeEJ5hcQxpSyrvWabUNonOWHrelTEk02bNdmo2v6gwjJs50pFtyhqqafKHY7wajVpSSW7KTJc8J4H1LNWuabNlqaTFTpclTmgZD7bninRmzaOerxfSFvm08bZzeCm4xDaNpYS1daeEgNCkG1YBUnVPWxXTic07U6ulix2bekMqEeofzgTlnbh+tKFcuNmoAhGgd/p6KuEjSkVUtRhkJERc8Lm/NrZkYhRoqKWbT7mOvX0qic9GQU51FFWep3H3/Pdx972UKShcXjFk43WRisImiF/v7OAl1Gz2dqunSq7YuOBDMiEhRnNrsIDW6wFwz2sEb/rd/lnNvfCsv/MSPc/Te9+DFE2Om65Uqx8YSLYk0r0zzW/tW/JtMY66VnEc2z71Iv+x5wyOPsL/c4cUXbyAoOzsHRKd8+MUX23pmz8txs8ZkRx24QhXDQokEMo6AsyCOnPEl8PJLt3j2xZfYWcxsNsfUoxHdzJQ8k3VFCDO7TBAVnW7zzAd+nuef/Qgu9oQsuLEyTZWpKrfXIycpM8aAho5OOnqJ+NpYySLkVJkyzC4zrde89MorPPrI40gVSpazwI4zntjrx//ixwc/+ME+5yyf9Vmftdr+twsXLpQHH3xw/NX+TIyRL/mSL7n9Qz/0Qxe+9mu/9tbx8bF797vfffh93/d9HwX4xV/8xX4cR/fOd77zDR//51JK8sQTT/yyruzb3/72Mzf+PffcMwM8//zz8dHXqLP9q3/1r176gR/4gYsvvPBCN02TSynJ448//ssc/o8//vj64w1e73jHO07X67X7yEc+0h0fH7vXeq7/pcdrLlBTG42nKVFnex9EKsJEnjNaFiSfydscYwmAw0k0lp46qlriUdYZqYVOQPNsHbbgCDFal6UFDSYyGgoeA+DX0qO+IrImpNQYc3Yenc7INIPvmCQjg0kL0iSEUvBtpNi1rpVOye5psdxmrR3eR9TNrbPTU2og57nF2tnSpiXjxNG7CJqbzq4jyEAXsUSYvEYU44yK5VvXxk8lz8x5Iux6Uki4ObLQwqxiYz82VqzkDt8JvYcFDuYVn/GWR/nUT3iY88sdlouFsTfVU+qA7zp8TGZMmR2avO3Cm6dLW0dasxlapGJzoVKaCU3RzqNuJvsZj6FWvOuRYMY0nCNhxqmsmViMRFo1WefKx0ZjMENKFxekGeZq2t4giUjGlWqFYwiU3kPOMBVeuV7QcJXhyoqnbr/M4vg20zgiss/lixfYPbzKs089yfm964R7rzDMyk5ydJ1rhYOwXHjmKaHS4aOgWCoZNRnWyAdUMgyR3f6AzfVKzZVpveF2ucm58xdJWdndySz6zuJdpeI7M7hJk0+UnHCaiKrm0ZLKpb2B/Tc+xIeefpEYX2bRC9dvr1mNhQ989DkeuXaeq/se6SMS9AwzBVbY+eCZNNE5ISiEfiBrQmSXGHfxaqPVvUXP7rKjE9jb3afoZebNxOp4ze2TkdNUON2suPPKiuc+1sx9fmB37yLDcMDhuUvsndvn4MI5ljtLfBdIm5GT1Yrdg30IjqFtTjanE7H2aHa4LtKLbcTMO2wGE2nGoCjW3cJBbcB95dWwgBh320ZlixaD3EI7aGlYlmRkCDZFmDOIRBwBr7519e0nO9TS65x1JUspOKeo5iYl2AZqGLXAAzWVhtryBO9I04aK0i0WlNkKV5w32gZAzfgGbsd5SrENj/eBUm2jJ2o57Y541uEVySgTgrexuXMsdnfwMbBeFyRUqFh0pQg5BZwEii+sdMJ1gZgwmUGd6bRwNB1xzA4abPqyIz07pcOFFWGp6EYpOQKVPibKBKlJs4rzZGakKr4KWmdKCRQCC7+g18DsC6s0I4Njd2/g/KV9HJUyQ3HC6vSUO6cTi41ZOvsbNwA4fOmEGBfkYu95wdlm68Vb9vWXTwnrxHDnFD9N1N6zOLH1sFsn3vgnv4ndN7+VF3/o/8nLP/T/YicERJS4WnG3y7y1mznihKm0jW1N6GZGpyUqHbFdE6VN2habnrc+dD+7VPyt66QxkdLEzs6CdSuM35ph73jNWGc6H8nM5F4o88SiCH3oOZlmSzL0E56Z/bjDfs0c/uJ/JPjCIo/4AuoyqgXnzfCWpjWhswJTVye49QHD7jm6MEDOlJxJGUYvjKrGWU1r5mRUBdQ1bGOTwVFJZGYSlz/6ERbLXYYQGbqe0JkmvH/mqde6lL9+/DYdf/SP/tGbX/RFX/TY888/H/7hP/yH+8Mw1He9613HAMfHxx7gh3/4hz98//33/zJB8TAMv2z70XXdWaf0VeTca9uhfO/3fu+5b//2b7/3277t2559xzvecXpwcFD/yl/5K3e9973v3Xmtr+PXc67/pcdr76A2B/H69M7WnA15ZhgWpOyoQ7CCR0sb80KRbCBiDbgSz3SinfdobazEGnEomkwjV13Lx64tyahUW7TqAug5k3mJ4kLFuUqplRgCUFBf8SKUWi0GtBfqbEWY1Np0eRC7YF1cgcpEybmhpSzFps6ppfJ0QGwpPyA127lT0di6jcXYmUmLcQdLIeAJ4pgdlpbjrKuk3iGtc2u522tWZcT3A75mpGxQH5FgOtZSjpnTCf/d7/u9PHblPAsynWTEJYgekWicvAC5bJjnQs2Bmi0usjobr5l2znS23kszLnlLRMqKBOsCeR8RLU3rBzVXCjbepRZc+5pDGLdzTvMfoY6mJQygylwKc64E39M1jFKjV5kuFMAHXIjcfullbq8c+1eu8uib3sbL15/k2Vsv8coLL3LfPW9kt8CVhx/BL5bUmjg5nik+s5Y1u8tAv8BwUBLp3IJuZxdLWSpnOLNKtqzxAFI6iIGD/X1miZQ4Mq7X3Lr9CvuHhxzXU2pZoAz4EKhNM7o1jVm3rmI9uWDpS1iR+dbHH+DSuSW/9NHn2B3Oc/NYuXH9iNu3EheGAySsEQptsEsSSykzDbTpt7vFkjRX1Ht8F5EQ6Hda5yoWuqFDciRNDpWJoQ8sLnp2DifEL5jTDpsW8zhvWldRekqaOb71EqcnN3nh2aes++ccN09WZHHs7R4YAzKYdvHozjGLkzW7fkCaLlrEOmIBxYm3dLicqblJc8QkJYolMHXBndEWaqk430bkJm02HZ3Ypkazmtdqe22p/UUEtpGo+KYxlXZviZyxI8/EHUpLpapNfmJGSJwpco0FbL9mO+Z1jbOqZRuratOQ0grwUHxz6tskQtUbDm/78zS1wnh73vYCHY6sivqOGiIS+/bJF0uhq2LM12Cb2jwVy4EXMyHOecKzYDOuG7KuvcrqSfOM7xO9ehaCmX0moRsGalBErJhMNVO1azi5ptRv761qRSUhTll0nn5vIAbHycmKWaHbHSgl8/Ir1zneJM4tldQFHv+RfwnAJ33v3/s1147P/H/82K/8hZ0dHvk//d/gzW+Gf/pPufr3/ylXh0tw/Tr85E+efdun8+Ff8+f/iseP/X8AeMev8uX/+51bv/6fyQQ3bsFTT/4G/uxv0vHefwc/+sO/2lfXwCu/hWfzu/J4/PHHpxCCvuc971luu5Y3b970Tz311PBpn/Zpv+p4+wu/8AtXd911V/o7f+fvnP9n/+yf7f/+3//7b/d9rwBve9vbNl3X6VNPPdX9Zo7I/+fHe97znt23ve1tp3/+z//5G9v/9tRTT/3/maw++MEPLk9PT2V3d1cBfuqnfmpnuVzWhx9+eL506VL+rThX+HUUqLetecNLt9ckrJNdI6x1hesCtYwgEY+z8S7BugwonkiQzopGHOrMpFNRqrfFK4ojuormCZcLMXTNJABOneFwZE31CVyiVAx0D407Gch5jWomhkgqlUymqu1qpenZStp2f42z6MT0qM7Hpj1s5qngWzy8dWRyw5B0YgWVUoxWYH1KvFOCVFzMQEI0k+uMht1m3mgILSyOUgFPpHil+kiRyk7XIbMt+p0bYCzsO/hvPucdPHbXZQat7C32cH0k+UhRz+BtXFrKzDyvSbOiOlCKt+hKSZb+ozYOk9AypXMDoktgLgkpmThE0EBOmdAFOh8o1du435sBzTrJtvB734NMIILT5gxHzVCB4Lyws9xB1ZGzLZROAs4ZW1RLYZ5N67vsd5jWR/yrn/gpnn7uWR55w1WeeOM1Br/H8Z0N9WPP8zO/8IsE53jXF30h5c4NxnmNY8Q5zzQLXRzogxCWnq6LwIi61DTNUIo5y12jGgT1XD53gVU44rgktAbmPHHn+CYH+weUrEybkdAFfN1BXIcWK5zSnBjn2fS5vkNrJqcZTYm8nrn74DLn3nKFj714k4+9cJ3DHeXqpR06f0LXOLlbq07USsjG7ySZnqwCcRnp9xbge4JbsKNmkuyHPXwcQFPTYGIjdozzWkthCB3dcqBWoXMzKc2oTijGLva+bXTVkasnpA39cp8uGEXDSTOTbGby7RP29g5hzqjExhy17jmYZk4rFLFI4+AcVEi5kGsxQ1UxvUnnujONpwI++iYJysafdR2azagjYmg2EW/XU9Nyo69KA0zP2RjI26KwmaNqw49BsU2lGsJKvEmVRABvRW0pBTKGTmvECpFgmuNqv1PU4wWyJkrrAGN+LfuLK68W1hJRtdhj+5w9YbmL291jOnqJWCudKn3f0xehpGJxoR7EK1kK2ZuOvZSZEAdy7hk3O/ho95K4DVUjqTo63+G7imZPkYHqBnIYKc6e1eM4E8KFpqGF4AeSZJwIXqMZurywu7NgWC4RrZxuMh955gb4gXm94tnnn+fkdML7yAe/7LO59+kX+ap/8wH+0Zd9Lt2bH0eq8h/+w/8XwfPA/Q+y/9JNvvTvvZt/8RX/a453Bh78hfczDh2liyyOjnnbi3esOAX4oi+y/wM33/sz/Ps/9TV0Cu7khP9w9QqrEBinDDg63yNBqd5MpzEEovd4iSx39vCdpcy54NkZFuSpmG5WA+nnfpb//X/6t/zZK1d53zgzbTb0ncOFQr8rHC4dl/uendCxXO7huh7chuAzXmEaoRIZhgFfYay5MX2bjjTukGsklZmUCyoR9R0SAjs7S4beU5u8Q6rJXgoKLlAJ5FTJ2UylUo1oggjjnEkoUyk8cP8DvOVNb2IxLO2Z6jx4x+f92a97AtVnXuua/vrxGzvOnTtX3/Wud9385m/+5nsvXLhQrl69mr75m7/5btc2y7/W8Yf+0B+6+f3f//2Xnnrqqf4f/+N//Esf/zO/+qu/+qVv/uZvvrfWKp/3eZ93evv2bf+v/tW/2t3f3y9/5s/8mZu/Gef+6KOPTj/2Yz924Ud/9Ef3H3300en7vu/7LvzCL/zC8tq1a79MHpBSkj/8h//wA9/2bd/24pNPPtn/tb/216595Vd+5XXv/W/ZucKvo0D9yDMvAfBLT7/I8dp+f+kCG1XqPLHTLwjeFq9qM2W78VpHJZWNjcact0Zri3+bk1KdIsHhfcHLjGxxVG6gEMw5n9aoPwWXWkHQUU0VaMVHc+dqSbiuI7rOOhvMqHrU2lOIbD8HbUWr4FWZZzP6hNCj4sxEhSN4R3CmiRUNBPWN5yh4zAxUHYiviGbrsPpMsValxS1mxdM6mpps1F4BZwVgkEgU4fRkRXSB2HfIeiIU5Ys/57N50/33UMYV3bCHuqHB43sbqbvCmEa0tPE+5qIt6puLuTbGpjf3tipkNXB6yTjnbMSoTcpQPKoRJTAlM4DhvMHSi406xQulZtMZqpm5nOusU9mCDrx31JTQLlOLojXTxYBzkHMll2odY7Vu5Lhecf2lF7h14zbzZqJsCmUDL1+/w5MfepY8foBaLFnso8+8zCvPfJC7L+5z9a5DTueRvuugVKbplJxnhtoxDB0hdIgrqCjROTR7NDuqbpoutRC7jr1z51A55vTOCajj6GiNFE/XCaGr9EPF+SV92mLDWulRse546JGi5DKzXp9QS+XKtQe4cNdVLl55gePTWyx74eTOTXTKCJXQUrw0ZzTVM6ODdguG3QV7h+dwS880Q50942i/+85R5baMLNxMvwDnM14Vj6fqgIp1Rb335Gk0OpIW5MykUqFOZ4xTkcCis+uVWl9lEQPeB+7cvs2lS5fpdjosj7g9iLVRKqi44InAXEbTtzoL2XCtYNy2TLMaFmnrNqvtH7sQUe8pVc40xVu5p2tFnhNl61iSbfJTLtbxbC76rZ51W0B6ZyYoi2PtzxzbFjhh2t8t+Th45azA3Zr9tuejCtUik8VVey8byN9VTy5ixW2TEG1RW1UrOCVnkzL0ix0rrrXapMI5KqVF7SZECo7EXEdmsZSubnDgN5S8w81bwEUzqUoY8V1HLTuUIZL8MeNcQHcYwhItpqm0w9PHPYLrECnU6lFN+G2nWIxMIOqoyQgPp5vE+z78FE8++yxlWhNwxLBLcJXROU6ai//vf/gjnKpw6eAqHx17VqsThvWH+dQY+VLgA77jydORMiU2LjJTOZgyb3v6aX7s97yJF5cO5wJaHbFbUIvghh0WCjsIz125xG1nWnhHJIYFLipE20h7ifTO412k73dw0bPc7en6wCzCtE6cnmYeeOANfO5nfzb88X/Lu775L/FoVT7y4Sd56fmnmKdbLHY29OXEjJUucH1MLC9e5dad2yiJaX0KS4g7S4LboU6ObmfBPK+oxTMWJbNkrgFa/KwLDpFI8JG95Q7L2Nn7q67RLczsNJVKdRYNnNNESTNdNF33OBU22cJjMo6jbg8W53nkgWuYGRALz/ndVpxeuZLpOv3PclCvXPlN55H+rb/1t579Y3/sj93/ZV/2ZY/s7u6Wr/u6r3vphRde6P5zI+6v/MqvvPU93/M9V+++++75C7/wC39Z9/G7vuu7Xrh06VL+63/9r9/19V//9f3e3l5505vetP6mb/qmF3+zzvsbvuEbbvzsz/7s8iu/8isfEhHe+c533vqjf/SP3viJn/iJg4//vk//9E8/fuSRR6Yv+IIveGyeZ/fOd77z1nd+53eemat+K84Vfh0F6ssvfAyAl55/lkltVx5loE6ZPiypGhEiXehJabIRaM3kks2EoGppSSLkPDHnkSoGag/B4ZxFwvnB0oJy8aZTk0pOGa0bkw9Uj+8G03aJ4LEEKq1C3+0w5UJJ2SI+naBOSQW0OkoF5xqiRdpDUSvBBdwQUOmsMC6mq/POCtE60rSxrayujcEqmYDDORO2SzVDVSlQgnUd23pufWVnqrm5VIuAFMdSA36G4D2zDpTeI0zsxMwf+OIv4M33XmJa3+TcwYKdzlkhiSfikFpJtTKPs7WSVEg5N7NVYzuqUNpY1SumDdZgRAQ3M5UN6uwhd7reEJ1jiAObyUbiqND5imSLoa04ZsmMZcPCz1gJEduY1IEY5zJIRTykPBHE4TsrhKsTisdy3WMLV63KK6ev8PKtF8giuIXwwq0b+OcCJ+s1q5xa16znZDPyb3/+vQz1iNN8hznOdF453N+lzyODB+rEfOLQepGl7iIeJE64YF0i1YqLPTln0y36yLATyRU22bHezByvTklz5sLBgr4BuH2YKbVND0qTQYgB952LeA++CH3sqNVzfLTi4OI+n/KJn8rx6TFPPf0xcLus7rxCLRMa2vjVBZLrcKG3jqjzLPf2STKwuT0zTYmymejv2BhjmmdqjcQ+2Lic0grNxtAtM6VoM8aVJj3oqGUby9kg7eIsqaw0tqZ6agtT2Dq0YwiMq1NO79xhMfTUGs/MKdBGAS0ljQBSmiu6bWb8FsVkNx3qxEbrakWuoIZ0VOuUqjNc2RZBV2tCEYK3yGSxm6lJN+z+FrU40uqkMY2LjdZdwylpbpAKR612LupKG23bPeGca3rfLX+1QLHYSagtRMKmD83z1Tbidl+kbAEc2pZC2w74FlZgmyPXefqhx4l1zpzdYfjOUSaLGPWi9K6jlhVZoWhh8EJJkPPE7aNbzAf2DAu+Q1rnTueMIyOaIW0gDYQ0EhsurCZlfZpwrid4JU+OIVrAQC0FdRXvHFVnuhAYht42HX2Pj5W4GCCBUJnmE6Z6ymqy6zfjeerZl3n2uRNi6Nm/fDeZsXU84fZmzZ2SWM2JtYyk2rNMW7OqAxaWhKVmg1NvARtFKzUo3d6Svb5r+LJKnpOlFXZLQt9ZMpx6umAd1GG5NDe+JoITkmRynrjr6gX6U/NwXLlyF5/zhjfxhZ/3xYynx9y4/jQvvfhhxuPrPPuxjzLNhc/73M9n//JFbt28w7SZOb11i9XmiKPVEbdu3OGVF26Qbh4xxCXTnCE6wnKPwV/Ax4DrfDOhCn0IdN7SiqVCnQveRUNZFfvczSw5E3xsCYgR1WIcVoHVlNhbDEynp/z8e/89q9tv4BM+4RMIocPpltfwu+h49NGZ973vfb8dSVLnzp2r//Af/sOPbf/9+PjYfed3fufdX/VVX3UmsXj++ed/4X/+5z7xEz9xVNWf+ZV+pnOOb/mWb7n+Ld/yLb9iNOqXfMmXnPzP/+xnfMZnbH61nwfw2GOPzR//9cVioT/yIz/y1K/wrc9v/+FHf/RHz77+8Y7//9Jz/Y0cr7lAPTmxYr8LC7wY5qRmwWnH8e2R3f3YRlnTmVvaSXPCi8c7T0qVzZiBirhgcoDikZxxamia4D2iSiozVSZbQHoQSZBMgF/qpo02PVoczvdNZ2bj0ZwTsUuoRqgdoulVfVprKEw5MWMLbexNjJ7nmUrAB4jRkfNMKYInNOOPtKIWUGfjwvY7XQFKA6eHQnFQqseVZNo7KSCejFC2UOjqwEWLhpwTh3vnWNeRMI98/qf/Hh67+yLTfMzBzsCii2iZGIYB6RyJYliqXCnJQgm0CnOppJoMt6Ueqj0ExRe8z815G7B55mzZ2dVG9zlVchhJPhM6T/VqD8ri8FIt+EAdSSqlTGRxqHqCCyQtOG/g8BiF6my8GpubuyhI44z6GI0rWyfritVMTolSRjRX0jRxWzvizYFmhGadJ3KolF44Xd/h3oeuQD3l9vo6Uj1jiownlb3Bc7jXsbuEKjepbk3sOrwMROnxWnAuoWrXZK3KNE1UlNAP7O4L681NSlFOphHVzDILe/ueWDNpMo1hSanFIQY8thBVNW5rnRVfPVIDqzvH5AK7h4fc9+AjPPv8c3hdcnz0CqWaUaTWQJWAlfuVSOD4+Jij09tmwNKMzsqlyYqNadowboQSPNkrInZOzinOKZ1T1DdsG4W5VqQKNakFRtCwYWJWJ/PDJZTcPiPfjFDQdx2LYWC1OmFns4vvIrWGVlyavmCr4xRRYuzNPNWMcqY5btgm74gxsplNDhL9q8zRnE0n7rsArXhuJYxpnlvalBOhNGxRLdtOp3U9zUVv3VrvzNWfsyW+hdBb9UPTprpmSHEBL8E2lSUjwRLYREEbqMq83DDOGUUJGpDGgm0Vrhkm61YDaw8aFQMViApejeO6t7tPDL1tzp3aZ5ErKRmj2DuPLzMlC7iAFE/N2aRENbEpK+a0Zw/vMFByJUvC+4FeBrJukFIhFaL09DR5WRHmXJE4gGS8OmrOFE2G9vPBpB8uEn0kepNoeW+sTwSqy0xzNh22B9dog36YGfY6qCvUrZn8hqkk1tWWl1mLadS1kMoM0rMFoGUtBNeRc8G1OOxtxnwQcMk61cFHUin0XWDoPcH3CKaNFWeSnRrAB49zAS+emgs+RrpYwVVSGkl50+6hkfXJmlNWBOe5eu8DXL58AakbPvlTM2NS4u4e1Q2E/YQUtfVKlalYOMvxrRs8/9yzvPT8C9y+dZtJJ+6cFtbziigOkuK1Eh1I9JTgqIuO2AfEFyAgRttCXCCYhQNqJYYIySJ6fR9Yna7pambRtNVpNfLkBz/ErRuv8I53fA7T71YQ6qOPzr8dKVHvec97Fu973/sWn/VZn7W6ffu2/7Zv+7arAF/+5V9+57f6XH4nH6+5QF2nFhlJsN00tnOm61keOnO/UkhpakmlCihdg/PPuRKjmZxQK7ZUMa1lzoQaCQ4kN10oNv4jeFt4Q2z8QaH4GQ0FLZ6ipv9TVTa5mH4uVIvizIrQEbGcZGQb7wlaK6naLpZsC6yPDk+g1Jk8W3pRiNEW2IrxK2uhVAH1jbtp+KaclVzEwga8Gb8kq0H8ne2MtdJ6nz1RHL0Xqnccj5khVOK4Jo4Tf/D3/V4+6Q3X2KyO2N9dEKuHyREHj4QOfMtkp6IlUWshV8OtVAR1npKhJGcLWG1dzdDyta1vglfjzKYEZaoWbaqV9bTGzzZ69CJMUq2Y0M60t1pRMmMtOO1RNrbYi1IlUzp/pi1UL8zFNFVdN0DnySr44Oj9woqTooxTZZ6se9BFz5gzm+M1LlV0LgxdZN3GtkFmat5w/twOwSdOj0dOxjXXXzplOp3Z2xm49+o+ly6ecPmSY29vh6gXKLWj947gAuKULpgu2nuPd4Z08V44d24fh7A+WXNyOjLnAZWOxeA4yFa4eYFOsC5/Nd2wF09xnuQypU6UeUPndyBFplWg39vn4Qcf4bn6FKd3btJSd1n4SKzG63QiaE4cn5yw2YiNM1sc5jZ6yiF4L40Fa7061YYErpVaTLftqzNTYK3kYsUpCrVYyMUWlu+cxXuO1Qpg18DqAMOw5PDwkCJwsj6lW/T03YLQTFSoNL2mncNWX2yaX5s2WNypQdrnZIQI8XZ95JK3RF3E//IukPfBCiGHmfqwjmKphmMrtMhSdWZKxDVzn7nxcjaUlSB42epmaYW5Q13EO3+GyvLeE3zARZMp1dS+X6ttToM55N2WBHJmBlNUxNivZyVqRcUS10QEdYGqytDvoRqYG/vYuuaG3ZMKnkzZbKjzhPbBNohqUgkfPfOUmds12HUBN87U3OFih81plKyRQmToByRY1z2NiUIlB9skx2jCiaS0CGRzC4TQ2ZSl2gY6b4pNINQ2EHkqIAOBnr1m2jt/fsnLy8A02mse620IHfVskxPp0hovShRFxcytAM4LOCXG2GgMla6LeCd0ORNDZm+5oO+X5BBQMj6IxdeqIH1LiAnCsDCzqIiQUiH4SB8jq5NjFt1A13X40QpUoeBDgSjkmrg1JiKwCEt859h1A2MqSA7onKkiTMkmVmG5xAfl4j37XLnvcShr5pRZbVasUub4+IT16RF3XrnJya3rpPWKedqQyWTxlAopZWpNDN0SFzxjSmzSZIirUsg4pFSWi45pnnAeDveWlAT73Q6zjyRXuHP7Bv/T//jjXLnrKl/xh7/kNa3lrx+/Ocd3f/d3X/lzf+7PDTFGfdOb3rT6iZ/4iQ9dvXr19XjT38TjNReo/Y49eF2oLJdWoBpE2zdZWDXWaZnpvGVZ12JFjw+eLpreLeWEiI2TpBhLkBpRP7DRFUlm/IDdxFno/ALmQl8qTk2rllxBfLYCSkPrdLQpcIw4V63jiiAsbXRV68fFbULsIzF0jYdqo76SC2CAcecMpl804MPQcqAzLkCIlvVetVLnjMfjpTMckxdECiEbziUD3ik1mxazikOyMzd9zozuhNkFdpcBf7rmS77wC3jzw9fI0zF97yy61C/JZSZ7oest497nSk3J4klrpqiQqrP8bZRaPNOsjJuRlEe8c3R9T4wzIVo2e5krtWRqdUwboQ/gYqbKzGYz44Mt+BPZtLgkSnIW5yiZ4gJBhDyOBCdsNmvTz3pPNyxYjyvQwjB0LBYLfHYMvmPY2cEPPV1whogpmZ0LL8MwMK8yGbUCKCsqvo2FpzaGtWKh5BOmVaX4jq7vcf4Otb9BXnuu3xrYbDas1/ugB6TkWexNLBYn1DDQe0eMlWmarLEnjmmemXMCKcSo7OwFUs5MeSZtHON8xO5Oz+HZAgchNIVl24zlakFlqXp8t2QR7BpZnxyzyIIUZa6Jk+PrHJ/c4HyxnxWcUpPhzRyCuEJwiWW3R0rmcu+7gPhtx3Vm6HZtDJuUpJVObHaYa7GRQzU3etVo17SzjYlrWlWaYUy8JS95EYawNA1iqZZ7D3R9TxcHi/mdZjabNSF4OteBWkFmNeHW+W6HioHzWyuSVAzFE50HffX7tVSqs3gCqVvpjUNcMAWBGhZKaZrprVSmOrSxIr0PeHVEgiVj5RmtJmlxLpqmcC746O36qRZUoGfn3cbwYmljzglZbJdcnFo3U6s9Z8SwbcZrbaEWqiatqK++fpFqWfYYYkqro2TFx4HlYpc6LsgyMWe1qGeHXXsCQSpdxCY/6tA8EfwurnNsVjfZjLvtGnQsho68rtS0wruBLgxU9cxpaml2r0riJHrInuLAN/6Ed465jjijAoJLhgQshayFiqNOCQuAcjj1JsnwAWHLQ91hZ3EerTMVxcmGqeSzxEFfC1IynYNdrUxpw9CulUEre94cbrWqbRZzIYbAUCCGjov7+9TdPU5Ojima6BZ904+rTbhCTwiBlGcLOBB7bTWbCXOeZ0AYuoFSjuz61ESMgo6W9LdY7JDSTKrJ1qS0QVwwhm3oKaXQR3DZSBRSHGNKqDulCx3B9xzsBQ7cwLXzvalFXSHlmTqNlDRRRBizknKlpEqpkFMhzYlUM6uyYspr1B4i3L51h9t3XiGX+Uym1UVblxaLyCL2FhGNI8Zf25zz+vGbe3zmZ37m5hd/8Rc/8Nt9Hr/Tj9dcoC4WlgPeLzp8YyQiQpXCmCd2BLoQSHVDnTN9M0xprdTZ3OIJT3WKLzOuKJKtuxqijeVEPS5EG0lKR+cFnzPnXEfvhL6bWe456Aaev/k8t9OGPl6huAVamsWkZqLrmDdK0YIPa4v0jDCO6zP3cgVKS4vy4slV6MISn0FrargrA3PPaaRUJXY9XlrM4xlGxjVjyQYvWIJK8BSXmetsXYoYKK6DEsmazJwwHzDHSoyeXQ2c9xOf/o4neOMjHVGvE/slYVHxvqJ+svi7PjY8VWasQipKSjP4gHrD3eAspnNOK+a6ojAbNaFmxiMos7P3KHhiGIihsyRWLaw2twmlY7Ec6KjkdcZFYZMm8EKqd9iMK0oKBHeAZCGJGcVKyaTjEzabkZ3z59m7dIGr997DpUsXOX/+PPv7B3T9khAHFos90ErwmSqwzonw5LOciqcuAm4uSFVymshOSEPFkah5JC56fCesykSXKufCAbVU4iJz5a4OLuyxXntO76y4sz5Fn6ucbEYOLx9wLnlyABkGXIYclNB5ulrRMVNLYc4TznuG5YJz4QIajtlM1vG4fbJhNZsGdRoz05gIzU1eSkElMIQFe4sO1zkKhc10zLQ+Zjo6odxw3Lx5m5duPktceDN6YFo5HTqIBVzFIyx7x8m0ZtEvmWtmVQupdaREM7E46izgPE6KFUkEYoVc7X5T5ymzollwWihqHVovgep9k+FYtxPJVBLibZoQWzfTB48fAlIrudo9NAwL0JGu6wixdUGbXALJLbLYMGlaFU2ZIbiWImfaS+c8cy6Ga8pC9IZlU9euY7GCsGpGtRrD1kzx1JZx750nBmlBEZUibaTfNKLqLNnOiRWjtUwtqc5IHSKYfrNUVAuiPVodNWvDspmJstZKSlYMG0mgWuFYlOBCY5lmDJXcijJXiVII0lBtYubQrjOz4pwz0XtUPbULzHXCjzMuO4bdJd3qDpLWoHsIwer8YmrjKZuOMnrofWUzK1J6uiGgIbFeJaSLZryK9qweXSHPStc5XFfJ6ixaV7N11j2E3tMvPNGDZdBZkbrl9XoXkKzGIpVCC8NjnjybEygbh3qo3YJUJlqQVCsMR077yHKc6Ypnp+H+hqKUNFsnFcVrR3CB3nVI7Fnv9gznzuH2lgz7PfM8E4KdXcqZlKxTrqIW4OCVXDaULMROcH2A4AzmrzBv4RUTaIZJTLucUyaGHbxCmk/bxjMgkgElRkdF6YP7uI2VWEqhVvNaFAcuN92yIzroJbLYP7DuuyWHWHiMC4jvyLPaRiE6TtIp7//I+zk9vkMZE07Mpb+z07E6PaV3S7s+pRB6mwZ2XaCUioRflRH/+vH68V/t8ZoL1NxGVzW1VCUgkKHMDAuP1AmlELzQh5YelW2sVbWiLtFpIQKuxfh1g2N/2XF+b4Hmyis3T7izWhHb+NxpYGdYcGUvsbf0nLvYQZxY7O3zkN7Ff/hPT3LnRqKTgHSRojOiGzRnOheJBCiJDQlBCb3pvQCcenyNlqSi+Uykbw5oMy+ICq4lSzlXkQoqgSQ2FhKpOG/oKKoa67AIQsQHR+yE0WEdCl9MDjDPhOXArBEXHcv5Nof9wGd94hv5xDc/gKsbi1oNgdB1ODUDx9ZotR2J1+ysI9t4PUVbXF8uaE24MuFkgw8jNSWmaabMPZSeeUw8c/06XiKXLx+ys+PwwYr1tFI079B3PUELm+PRCAmh5+RkzTivKRrIJbNpSJTihXncsL+7xyd91mfy8BNv4O77HyAe7nKwf45a4fR0jYinVkixZ54mW+iC5848cjvNTA72DvY5HdfUMTH0Fl1ryUUVdcK5c+d47NGHOL7xjBUOJVMUnC7IdY26O+xe6Njd7RjXM+o6Ttcjel2opxW5sE+MBWWJR1CpTPNsiWc1Eb3gghAEQtfRDec4Ol5z6+YxY5rZtK7n0cmGccwMnS2KdTt27zqGrmexu6CQ8ZLxpbDJifV4AjIxLDtqKNTVlnFcKDnhHYiLTDVRBduA5ER11digZ4xNSwmqmihpRkkEp/b+loojUHJhzonczG0A24S3LK3Yas76qoZpqg5yqpSsr47wwdz+3uNDh+sdaS5GA9iO5EWB3LBPBsffZq97CWRn1AqtW5JAM2iJJ0QjM6hCrgXNVgjRnPbOdYZewmI7BWlIJGfdQQGnW/mCUho0X3WbFEUrDGLTzJozntZwsq6oNt1jkwCpmQELCalmjfTOqAHN00eW9n7WSkXts9NGvQAMtm5GMNckEFCQrjLsRvDtnGu24j9N1AKFSugrfecJsyGm+i6wntZI2KVbLDhdbzFTNoEoJaF+YpwSTmbEzdRcEQ7N/AbkeaTMFQnRus9OCVHMMV89wblXdafBQ6mUmtp7pxSnVGbbwASHk0pxjUJBotYNLgSywDxnRDxpHNvXldT1/LsHrhK10C92uXZ75Avf/yQfeMPDvHLtCjFaePLQ7+G0p48LDg8P8Yuegz0zD85TYPLh7LoraiztaUpMcyaX9rGqFX3RgWSHJmXZ7bLol5T8aoPizmokROva15KoSXC1EJ1h8lJKeC+kkhtuwjrjykyIiotCzQEJjjlt5SzZNj2qtpHqBqa0Jmg0MIaaXMq7QJYCKKF6yiz8g3/yT/gffuzHSFPh0uFFrl05x/0P3M1yZ5foB/Kc0KK4YIa+PsI0nRBi5L57H3itS/nrx+vHfzXHay5Qa+N79X4gNAfmuUXAHR8R4w6hqkUSSjRMjbNuSM2F6ALLsuHiAFcvevbPdwz7hzh26BnY2x2Ivd3kr9w64oWXb3F8NOGB8+cie7uBw4M9hr7Yg5GeK4vIwSc8zIc/MPLRV1ZsHCSp9GqJMbm2RbZAl0aKKNpHwyxhztWu2LqfvCVFp5QMAeN9S/QoBg8PYiYTzeRamIsiHryv+JJxUvBBDA6OR1227nKtLCZYoox5xnWme3Piyc523hf6y3z229/C29/8GK4e44fAnEZCgI4OZCv6t25XrRWdMzlbGAFBSKWYa7qeZffgsPjDHNReRxfBD9RsmeTVwTTN3DlZoa7j4GBB9IFpTKRNoo5qI38q86is54mxzGQnrMaR0/GUqURiiKxWGy5cvMRXfPWf5No999ANPXfuHLPrdygz3L51xOnxhn5YmIu5ZqRUG30m6BjYcTscdns8es9DyPEG2REWB/s89+JLRKDrB8ajDZfPX+bShUscvfQSYx7pY2JWJZ1GVqdCSiPdoHR1QhhARlarE3JZUlImq3IyTly7MDDMhmiKnWM1nVDyhKqdlwhniDH2OnLp8L1YeARw62TF5mjN+f09YjQWqPcBcd66yrUQ+o7h4ICJah1HlBALdWPu8O1IPITm4s1CFij0eKcoG+a0ocqMUplHW5jnuTIMHbgTSs4EF4zDqtlG9DmjOKRpP60Tadn2hn2rFggQxIrSrMYNFtNc9n1H19mjITil66zjqN6hziIyrQgRlosFSmJMiWHo0eJaZ7axcBvpoIqZX0Izmmw1pULr4voW7lFN5lCbgXE7xbARezNmYSlS1TJ8TUrULJotx44mlrBRcG0+JhpWC6UT25yUloYmrp5p51M2400tplWXYkV1KWrPNUwWEpxDS0FLxTuFpgcGUDXTooiZwKraM6Eb9tk7vAfhZeZxBcx4X+g94AMlj3RDpRfFpYqPnqIzaEvGq51NNIBpVHQZ6IOj1EoXAhortc/UdAppYGgbjSHN1Mkg/1O2KUot1nZwYaCIw/sFzvXkUnFVjRIg4DUZ1UAw3q5T0Exo16/3isQMrwbTEXyHV/OuKEZvGL0neU8deuauFfL9Drq3S42O0HVUeoJf0O/s45Y77O3v4YMFe2g/AMKUEjknck1sdKYGsQ17yjCBSGxFZzGEW050C2V1dJPFbJrcQoJYmPOr8cWdU+ZpYioz0QecRDIOF4Kh07BrNHYDUmvbjEREA+Kq6XqdNDlNJeVMdk0WogmvQhc7VIK59wkmlyiVf/0v3s2/+Cf/iMMeur2Bi+cG7rpyjhgjuVgwhgtCHEyC47VHXeDe+69w/32PcN8DD7zWpfz14/Xjv5rjtXdQ22ikTIXq7cHzhnnFK6Xii4M52oKgNi6DRBcqR95zq3dc2t3lkYvnuPfSwP6FiN8ZELck1q4tYEroIo88dB/TBKvTkWla46XgnBUR69M11GCdtXrCzrkllz4Jrq4nnj5acf1GIt1yhDpwlFa4GKjZM6gz93yFyDabukDaoFqJO4KrI75GOnGQC5QZKQVx0cwU3gGFUAu+VorzlOooxTWcDc1t7I02mTOlZCswBYgRFU+vAlPC+ZnD3YFPe9tbeMub7oU04iWgybOz2MXVFUHBdZ3pCdWMTKUoJTeUDqb1q2oFDM6ymSFQS2f81xrwTomhUmpHZmKqG7QzQPtLx2uOp8LxFFkuBuNGlomhq9w+XhFjYMyVW8cbpqqclpnrt49ZrSux28UDm/Upf+prv57f/7/67/jQL32I1fEx+3sHTccLXVywt2+RfM4LtYz40JzXRRm6geB6pER2+j0O9y/Qx8Bid8nNF14mZ0fnAtOwi2Thxade4PR4onNC11cylXmq5NKB7pA20WJx1VFcIdeZ05Lp1iN764kLh4e44rm0WHK48KzTTJVK5zt2YiRVJbeCTnOiD5H9vV18p/StSLz+yi02iwPSRtjb3WUYPLJjOsPoArhI9R3VC4uLAYYRt16hvef29VfIc8E13qelmzlEPbVF6lbN5JSZRk+VzMzEerTb1XnwoVDyTCngiFa21RmH4d3AEGOIUqshexRn2lIteA9RQyv1BPAWouCF5U6PO21dV6+IM/1mFSVLQ1TVSppmRgyThLONkuGjIHgzNlGV4DwGrrCxMqXBNKqVk1qt+yuCFY01UXJBshDV0ffBxvRYAbv9HdKkAM5ZMV5rsu4V3lQLZyR/BVEE/ypHn6Y/rXpm4iqUM3e5D2biKjlT0mydUmc58ggts90KV6+K5mxd0ZYRZcmD0v65gAbbNobAsLxA158jzWZQQzYsvCNpRQOozAwBls4zayLlkUV/wPlxxQUS9862Sbp3FgiOV05XzFkZ5uZOX69wbmCoK+5v5tZr4y1Wr3wM33sOV6eA4EPLnXeK7wZcKbjVSBCha8ZBxK4rM5gKOZuz3Enh4h3rkF69fcpNBy/2karFIp0LhDNZpIC+uunQZsoD6PoO10EXA8EJXQws+57lzkA/WOHnfWR/fw/vA7XCrdu3G7XFXoMkpdZkH7ODXDLUQIi+SXYceR75uZ/9D5x75ik+FXjyyQ9wEmA57LNY9AzDAL4QnKCaSVrQUvDSMaeNSVaiBWyUCTOKquI6sUAIF1pUr8d7RwxGD1C7s1GtrMcV87RGnCfGnqHfoebMv/+3P82//Il/wU4/MOzss3+wy+WLF9k5OMd6mhuYwuH8QOwGnAQODw+554Er3Hff/TjXk/Kr+ufXj9eP3ynHa++gNs5aLZmHl/YQ/itPb5msv3pwwEaEP/HEQyzecJX7L9zDfhS6ITGzaeapDkekYoaSeUrULOwuOg6WPUYUzJSyptvfsYIQpdLRyQGxX/DE+fPcc/fM6X0T4/WRzemK549OmdmwOV2wmsxEtZkn9lqhvReUZSgUzYRgLuChc/TVpjnZddYNrZHqB9TBnFZoHamqrJJwOkcqnSVDNd6rNu5jToa9mn2DiXdGGxjiEjannFsWfu/b38KbHtvH1RfwHOLcDrE/MK6mtNSt9oijmp4350IpFquoUqmNTeh8JRdzaFMDlQVVZ0pNJBXm4sjJsdoUjlaZk7ljXTyrdeLOcy/Td3e4cP48i4Vnby8QXCJqx/rohM00c3Q6cjoV1iWxnoVcF8SUkTLjtPLwo49RUuXC+UtcODzPtDoliZ3vuQuHOISuj/hQURLOCWmunG6M6blY7nJ0suGjT78IYYebRzcpr7yCJOiIzHPh0t33crKaOLp5i8UgxOBJSUjiEV8ousLJKaGzWM6agiUfhR2OciKoMK5XTHmijhv08JBpiIROGfYGgnRo8biq9J2jJAtrSDnj8LaQLW1jMOXEsy+8zHgAOXn29x3C3JiciV013qwbIn03cHD+PE/f+SjXn3kJXz2aAz7b7Zez4PAUMK2zK2YGqs5eQ+dRhCo2rl3ueFZ5RZlnKAtyccQQcK4ypxlRKDVbdLBCarGjam4g7A4qhjhqpnettuD23UAI0cbsgPMBnCeEaM77wlm+vSbl+PiYbujZ2d8jzYXgrIAW0TM3vRfrLGmtzNXIEV7MBIVgscZaW579dgoBUBt+KjdKiIUKePF4acGnDoTQAilsTL/FWolIG/3XVphaxGfVYglQbRS7DUjASSuWLWLAJBAFdVasOiz1Tp0ZuiqVBsUyfa3AmXYAc/8XSuus9mhV5jziFxW/SMzrDTCZVEgqiy6wSiBOuHSwz82jY6u4NHBvWfGvjo7Y+bg65Kv+068VuTkCd87+7dueO4Hn/pfxdPwf/v1TjN7xv/t9j/Pi0hmxhMIWfBRDJKpSxO79glJ901MHz9AvCWJ0jeA7M0OWzJw8w7BAJHBysiLnwjAscb4zWY2Yo9+FQugdqpNpiWubDGATvDElgu/ZXe7QRSOg3Lpxgw+uN1TxdEEY+p7d5QGX77rEYhFZLncZ4h6eFeIrwTmmqeLdADkS3UBJ1bB4JeNDQYOxcKXzlOhx4hAi8zyzHlekOls6ofeEw/PMZeI9P/VT/E8//o/ovHDprrvY2d9hd3cX1crpZoMLQqqJvtvl0vm7uXr5Ps6dO8e584cc7CTGaUaq0Ev8lT+c14/Xj/+Kj9deoDbsjHNwUGzE9AMPXeV/2GRm9gx+roE6TWRds7cbeZt3/KVnXuDxcztMF86x6HticHgPyyiIi82Fv02msVnc0DucZkrNiASyGus0VE/QiK8duThcOKT359mME4tu5tLeCXE5kusJD9eLrBKsjyPHqw0KrFZrHjzOcOMOD961S94bqFrIKjiFkEDmak5fH5ASKDmSQkeqykhAi6PUQioGUqbaArvNujd4t3VuXLAI1tArm5LpvMeVzE4nfOZbH+RND15gVxOejmU/2GtyatGlqoRoo1Ba9yuX0iD8lv1tVUcb14J1WnFnJhCc4Xw0W5E1TjObcSarY1a4frxmtRpRN7Aa4cazd4ihY4ie4KELjvXmhKyTFU+YEcX7DnERCcq8mTjY60ESzz37FFPK3HXlMqJLYpqR4BiGgZQT47SiZkU14RBW65lUrfvWx56Apyblvvvu5XmUp5/6GMF1qHfQCfc88CjHt0545dmnOeeF4JTNOFFih/eJzbyi1jULB3Na43QJMuC7JX7R4yWyOjphPDqm5JEpnXJxd5cLhwfseA87Hb06+tiZUa7NoIdhwdANDHvn2C2WqHbl6lWeWyWON8e4Y5BQ8H7ASddSmzwLhSA9ORWe/MgH+ciHP0xKK3aHwbq0bbSICwQf0ZJbHLDgPPRRuFM3lCpkJ+SGSOs6WDW8kncB56JxNbWg2PcVrfZ5AdvhuMJZ+hEiVtxJRUu1qE9VlstdRDoz2wHOLwhx3yD64gi+YBAcC1pIxbHejFQ8i+XSxu5YkWoeQsH5iLTgexc6SzhSS2oSZwgoaXgohyO0JKzc8u1zNcezE2/jUy9YSlNphaclSZmj39GGJDa5UD2jd6haR2sb0SpOcGolplbrNjvnTaqhAsU0jqr2fmkpLaHKdLHbn2k3uzNdbCtQTVJQqcUy7tEZFSFpoV8s6JcDJ6/MaB2JQUz3nkYLHFBPF808mjYzXgIXdWRH4TvecI3ze7t83c98iJ/9uj9GefgyUYTl3o65ubsBROh3FpRaiE8/zaWv/7/y0v/la5kevGzPaekQettEq5LqzGraMKWZKWXG9cQ0zkzjmnFccbw+5nSzZhwrKXc414MrXHz5Bn/2X72fH/yE+/jDP/8Mu+uELHrQma5bgFj31rrZASSgItZtDPnsOnHWNsaHruHBTKZU8kzXVYKrrE43iHPksjbmqTiqegt0IdIFtQS/om3aZUWuUphLIi4il+66zIXReN4P3neN/spdrHNmnjacnpxw69bLvHTjOea0YW//POcP7uLShUMODpcslp5alDTeZnBLJgJUxW3MoBh68x2ICHljEy8FnI847/E+srO3JAtMqTKdbvj5n/8Zfvrf/BQXDg6468oFDg73UYF+GPAxMCwHzl84x87eDvv7F9gZDll2+xa+opX1PKKY2dCinV8/Xj9+Zx2/jhH/dvQlZy7+8296hM/5pE/i3e/5GWLdcOfmmtVJobgF0/kFt1TgGbhw5Tw3wtJG4gwUnKU0teFiENcSRfi4vPpijcPWOZQuGmdyNLRVH/eZc0K10g2O4AakOtQv8e4ch1oZ8inn/n/s/Xn0bdl114d+5mr2Puf8unvrdnWrSn1JKhWSjIxlY8tNcNy8l4TGcTJMeAaCHwObETuJCeMB7xGTjOEBsUdwEyADQRInAuzAc4IfIbZBDIPj3pZtAbZ6lUpSVd26des2v+6cs/daa873x1znVwohdiUxTjC1NTRu3ftrTrf3XnPN+f1+vostN6dDNEBpyvUXzuAXn+Gxa5do+yNzK1TLqBbmzRpToeCSBpkT8+zpTcGURRJaTEzVHaDStXyqBXDWqBt5Fbob2UJiazPjkAnzCZeXh3zhW9/Bb37igGVqJFkRZB9iYhiUkO4TQ0UY0FpIIbsZoE3MpdC079LJOGimuobK3EYiihcAdUOtE9VmFKhaWW8mprKlUjlZn3G+cWe2hIRGY1bztCftv6dM/jXcpS69AyIyE4PHhEqYODhcsVgIOp0RLXDvxRehd5liithsPmZrlTYr07RBq3J+voWYkViZpy1oxVolBihVsTBgaeBsfcbDR1d46PAqL94+JoSRG5cOCLbh9kljGxz4XS2iusfJFmgHYI5CGphZrgYcCqXYGDhrhbY9R8fM5sF9Hqr7zAQOVx5zmyMgrv3Kyz3icp9xuU+MHhTy8COP8caUuHvnNsLEbA842w5oG5jqHkOp7NVKeWHLvQcvcufuXaay8QzxNGGhUPFFuiKONqN0w5GPO8eFIvkM0ghkbCdP6ekzQQY3+ER3Mqt6ClMTR08RPMmI0C5QSokAHWyPuRZ2B8kfcyan1OOI+60hZogZN1178SiASXE5wGrJydmW09NzRLzTmpKRh0iM+HngDi+XeJgrpD1pzmUpZkrsHNFoEQ8RhtijQ43Qn65itaLqJsJdbKkg/lnJLrmqn694we6yo54gBb2IbgR6YdzTmGptpBDJodMHJLjGVf1cRxxJJOZRp6FjqlTwmFMRrLv4Q3DMlnY9cwjai+rAOB7y0OWHOX3+ObT4NkJDISRFi2AyEnJFktICUIRHHrkB957iX/33/iCP3HgY/o0/zNt//9fy3NXI5v4dwkKYS2WWDCGyzUa1iYPBmwmb195kfutr0FaAwJCXCAOt+kYht8oYAyEmagEaSGjUtkbbxPnZKffunfL87RNeuHvCg5N73CvnANze6912GYm2IAQnuuThJdpLziOmlRgiKWZCcJlYUEVqZRwXiFZiDh5MQSLGgfV6zXR+6vcRFJ+mjzSCTwhUEEtYdSaz4EhBEEiOmGrmm6NSZkrtRAKERc7k5YJwtOLGlcu0Jpyszzlbn7I+L9SnnuLe+09ZLwLL/YGjgwNfMHuTZczR7/chEPNAHBZehJvrV2PKDMuB0BletSq62ZJqpVXjtQ+OefzNr+XwcJ/lcvRQhORBJjFGhtGd/3E22u3b0G6BxR6sImhQtCljSn4Nf9YbX82/aHGn/xc+Hn300bc999xzwzd/8zff+o7v+I5/aiLTK8evfLzsAnV3aGuk5AvlmOHJxx9GpjdSHjzHrU/f44UXjVkTFpSHuizgoEDVgUGEVCsigRIUhkwUI0WlMXXcxuDWBlUvuFgxSCTaTG2FFAfX1LWAkbFh7exADYTU2NYtMR8w6h6iK6rcQ8aRpspeilwevDN0bf8am8OR9bzxrhOF7UJAlAljMythztRJiKVRtsY0K8USRQVtMzE0RCu1zZg0UgzOmBQHt8+tkYuQhpG6OeWhZeQdT76Ot7/ltYzhRSQFctpD7IA0GCFskTCTo6A6oM1pAa11QX70+FVB3I1qDkZXFWLP/m6tYXXC6gZtW6YyMfcgA4J3Zj3K85xSo3ffdItaY1hmkJ48JNpbAJ2Vam4KkV12dynkZGzrlt/05BtJ0ohWwBLWF8HQInPZUrYesLDZbNhsJlSVQEQLTJsNEgqhKpTK9uyE7fkpEXGQvrg2T6ui28bZgw2tNG5cukyQyKZumKsxW2HY6+PA9TFBZpcVxAx1Zj7ddhSSMlulKGxaYtsqR2lgKjMzME2FK3tHDCkSk5CXAzEtiXGJ2MAiO27txs2HOVlG8rJxenyXpls2dYuw9PdvveHk5D7bzRln62NKq0iCaoViEU07OcjucBewmKLJww08fcwxSckiUXxRz31BMi0E3HDWFDBzp3CIVC0ecmRevFk3FFnYFcPdEa9KKx6Vm2Nyc9cQLzSCROlsSzzKtetmCZGmDZHAuMiUUjk7O2O52IdlJpoQHb+Pdt2qdyF9vC8BJDrkXutuNC8ESS+lSAXfuNZWqPMM3axUQ2+J7uqfEDw040L32YMLuqPezLdyMSSPzzS/jzm71CNMvdL1/zt6qrt98DAD1y2oI44UVKvzWHtxqrsH+oxDJBAl0Hr31aNVXbN++fJlbo0Ltm3jWmmbSBnSFJlbIg/Ccm+g3F+zXFziD379H4Rv+n9z/cqKzfYBAGd3nscWRwx1opw1lxsEpVRFQ8XazOb2PX8ypzP1eMIWQ0cxzW6YmrtKUsxNU62iVfy9lIbRWA4DR9ev8aobN3nz6xrnU+H0/IwHiwH+5vsI3RgWyYgOhGC04rgygFoLlgKqbjyUblUDb1IskpCkkVLqO39DLNLUmbTaKrVsukFN0FpAsk/gRL2wnxseha1gSkxGk+I60TCADIS4hD4Kr+pTwdaUWmdnbOcVB3t7XDo8ZO/uMb/j276DPP+6hxT9Hzk+iMhbXilSXzl+oxwvu0Adege1FCUNDurXNvPpf/yzfPYv38KOj7l395Rpa46NoXKz6z2ffOpZphfPICSH+0eYlomPP/kGZByw0AhinmSE43XAc6abTsQ80nBOY+japZwCUhutJYalm1mICbNMaxsGaaQMk+yhJSIUxCKxjy5zGBjHBWGMHlGoxtGYqXpOsUhbLCg2sZlPGU5nZplZW2FtidPmTSjVglLc5NVqT8KJSKg0Iiajj7emytXDA778XW/jDddHhnDPuyRyAHnw5yYJbYFgex5NKpHSPJ0KsjMsuzHLaBCLL+TNu2aigjUldKmB28CCsyhrZZ4rJcBa4d6ZspkTxOiLNQVk40xGRpz8VzETggo5CFGUiPU12F3rp+f3ef3rn+Df/rp/D8KC2hSNSgiQbNep6uOu4ouHBaPVwlw3zPNMrUoYR0iBsHfIuQWOtzOTFKa6Zm9vj+Wy0tqGqfN0oxauHgzkNPJgnXjxeENt5ywPFrQWSHUkk9HNTJQtEhrEPTZli+lMDiPbWhhF2KyFGgpFGhut3Di8CgzsLzKLsCBaJsrAMg+kFFmMfu7v7y24cmWfxd7ItL7O8YvPszm+B8mZo3XecradmZqy1grBddDSErGuIMxuPgGiGa3NqE1EItoahYqMS/KgtCqE5phUgMYWpWC6ReLQx4nRYyvxyE9Pd3LNpKqjyGKMEBIqzuK0IFiptFKJwfnGKs7/HXYFqtaO30p+DoQzNykF30ApLvvZ31+w2RTO1vfJ4zXXzpIhC81mNyyq0mIjSSCoElojDYNft9q1py25nhPvsDZtiDaSedfLZa1eWAcTl8AE/H0n+jShh29Ag9ADAdTTzKwXzkjsm79GjEpOnj3v0Z6CRDdIiQRUKzEGigbUjBh7GazFO6ex30YNLuCfLYD6e+yYOHEsWDC2tXJ46RoHR9c5Pz8hYWRzqsAyZKQsaHXL5XFJnE959Vtezxvf8EYANucPduQoTr/nrzK8+qZfl+ISBbp5p3u9iLe943/43p8lfOwZ7n7lu4gHe2gwSivMOyj+6OlqtUyoCSIDIQzdET/3TmVA68yQGlevrHjkLY8D8Pa3PAk/9TShRZKtqKVrwpvzWtWqR3kmJ1aEi1mAqzUWkhALZKJzbGPArGI20bSRgm8WrPVNRAMJhRwGJAhVK5oqmszP7QCVgolv4kxgauobqI6+2jaYaCQGQkyoNqZ5yyJkkhp7D07I88yPf8M3cPKamxyfHnN8/4T1dmZcLcCE8wfnHA4r4hh47s4LGAlCRcK2nyMZiZmUsiesBUFsJkgjWOxotUrtJtcoGTRSK4Bj0pbjiiQDRI9KTeNI0MgYBlZHI8vFQEqBG3fv8lu+/c+ugKvAKwXqK8dviONlF6it7yRbm4nBu0iI0jZnxNMzNjKwyUs21XVMIQ7UPuKZcmK9iN2JGMmmLKeZAaFIwDSBBB/tNTDb7a+lmzV2I7aumcPdsiklj95reB66enemanF9Gq7ptNw8G52IdFC/5JlxtWSImbKVPhZP0FxXGqw6XzFH0n6iRGPICdnAybYQNFLnhsbkO3bJSB3d0R8jrfbIU9ty5WjJF77zLTz5qivsha13jfPSx6fmGehB6OzJgFVDG2jp4HikF6Whd44CIYyI4Kk51hBpXkwgBGkUbZTqWr9qwqwzc9ny4GzDg7Opa7jc4W2iWEzOVA3u625NidY1tjERTXycHATCkrnBarzMn/qTf5LP++zP4plnP81EI+ZAEiNq8FFUH+GWuqXoRG0brE3Uqbi8gEApBQ0ZFnucr8+49eIdSjsDaVx+6AA73YIqd154gfV6zZ4kDg+uskgD1y9veWHdODuO3rmPHiJQS0Y5Z7UoXDrKnG4KZWs0jWCJLKEXIwFiYApwf5qQ0xOUTNMVpTUCwhhXoMq4nyi7eNJxj9fcfDWb7Zpbzz/H+uQ+ZTESLNCaMEljtoKFwDgObKc1QTuYvbnZZxeLaVKoCJYitfMzY3LeY0yJUoVGImS/XM36yB71zQWB1jWZzloKPr63fh614HppGbxotYppoxbQWZktwbBExiXDYiTlALsoytAjIfGYRycxJELMJK1UK07gCMJyCMxz5f69F9jfO+Bw/4CYVuS0AFFiUijmXXgxNxf2+FGPXfXQC62V0grKS2YnL0odMBXI3mFrjarNSQMm5LFzYA3XIWrsZjDXntadKUo9/SoiSHJgOjF7IWDOTjXTzjAFrFJrI+bRu8BmjiKLHdreI3hjB+rvjoBLBMwMDY0oilTQudIEDq5d5cU7nyJsJ3eLtwo44zYuF1zNV7l+pXH1MHP33jNcAxYHe7RjL/zIgfUgpBAZxoUnYDWXPYUuApa1F2QtReT+Ke18pg0jMfh9NBhYUwfVZ3efB3GyhNlMEDfImiRqSNgohCbUckYpzgR+4i1PAD/IXCaqNj9PUmTbC2mjx+l23XhOdhGYstzPzHux0xF8c4S1Cxh+04iF6LQDrf21CSkmxHq319xUmkKl6oxEIwrkGCkxsdWZ1Tiwv1oypL7ktUbdFibdkgY/X6JEpxrkxC6H+PaVq3wwRZ4+PUZFiYcDeQmlbEmLjMS+abl8g3GVSNnlH9aEJBkwUkykPPTXtiUGWOR9ogRKWUOfJByfbZm3gCWqGkFG7ps5BSIIcw3kcR9rwryZGOcz6nqLhMLr7t3nt7zcxfyV49fkUFW+/du//dp/89/8N9c+8YlPLGKM9vrXv3777ne/++kv+IIv2PyT3/8f/8f/8fXv+77vu3rr1q3h/Pw8HBwctHe+851n/+l/+p8+8/a3v33afd9f/+t//ejP/Jk/c/PjH//4otYq165dK29729vW//V//V9/8tq1a+1X+3prjT/9p//09fe85z3XPvWpT43jOOq73vWuk+/8zu985oknnphf7uP8er2Pv9LxsgtUqy9lGFfdxc0mEkusRdambFC2YvzmP/zv8NZ/82u49OrXQAjsfcO/zfHHP+g3jmhIU4ae/qFGF+17hCfdA+H54s3NHdL6YuadvRDlojsXY4AKKUaKFh8lWjeEAFaVEHeQ7T5KpJtjAWu4iaEpQiKHPaJ4fOg0GxRPyAlJyKOxKJDNoJQuQRCI6gusRiQmWvPnQ564shr5nN/0Wp581RUOYweVx9xfqpJl9BGZKGL+HmjzbHBTzykXqd59bG46ESKqCaR2IHTtc8yCaaD2zqvqwHaeWU/u6p7LGSfn50yamKtS1FAqhOaxfmZEqf4cMYJUTF03aGa0NvkbJwNzi1w7vMLnf95vJWhlubfgrMxuzBhGtDVCMObmuKRSKtWgtIC21BFAjal6YYYoYy5MnHF6cs+xZi0y5CVH+5e4/+J97ty+S9s0lssVyQ5YinD98IzXbiu6KRxPE9uoVAI1NMalJ4ilcek4s7lydPmIxbDPg7u3EZtpNUBagoyoJl48m9mUFzk/X3D1cIXOW+qmcHjkMP59b28w5MzpesPzzzzDp5/9NKfnD8gBLAQku0mDps4bEmOeNyw6Ikab+d6kj6BVKhUhxkwpSu66RVUfXzcVzAIx73zR6iil6JpHkW6ai97Zt+KFfzA33DnMacAsYf36Cur671ohDvscXn+UMgy0zi21iy2i810DRquV2pz1KuZjddFCEig2Y6Ysx5F53nB+eg/TwiWJjKs9n5AHyCl2vBQ+ru0hAYh5kpX6PgwCU23eUTNzR72Jd/eKEkx9A7krYBW0VqL4tReCA+y1F8AET2FC7SLwwu8Drg9sBOKuMGXXeXayagjiMoSqmHgM6kuPvZMnwEt3HbyQ3YlezWimZPGO9VwbbYwc3rjO+PQe8/mJo5nSwMGVy7z2zU+yd3XJ4dUrfMXxxLgYmIt3QmdrDP08yKsMByOBRJOARhAZqKWi/Q2XzrPV0QH8q72MLR0hpa06YB4jSOpjfY8/vegQ0xBZUFUpdUK1Qp1dY9onXrXugP2Vxpa5bQk10fp73LQSg/TC0UMNhsHfp0tX9pHrlxyT1hpaKvM0M20LQQzEgxDEzD+loOQUGEaQKNQKc3FTFXFLkq1HNGe/ptsEZzKRREnRGPsmb285sr9YMbVCbRObac0wjEg0QkzE5E2YD37oY/x0nIkZllq5tBzIBPbHyN64YLs+Bs2EFtDNxtGCNjLEA8CYh5nzwTc0sMCjwZUgJwxB/FzNERPvMi/2AzGOGC6bCcnDIyQYB+JcZtNECCtynlCdaLpm2e6/3KX8lePX6PgDf+APvOo973nPdYBLly7Vq1ev1g9/+MPLj3/84+M/rUD9sR/7sYNPfepT482bN+cbN27YU089tXzve9976Su+4iv2nnrqqX+8Wq3sueeeS7/39/7eN5RS5ObNm/PBwUG7devW8IM/+IOX792790wpRX6lr1+7dq39/t//+1/91/7aX7sG8Pjjj29ffPHF9MM//MOX3/e+9+2///3v/8Cjjz5af7XH+eeuQBXpBWqqbhbwf0TV9XCSGzFVlJk0jjz9D/4+b/7yr2D16GPejenoGQlKNDcSaSvO6tx1IbQXlag/Ro/RVPNFwnCDQoyJeaq+gEsvBBDQRhrc8EPtC/xu7OdRNhc6MWFB0BVm1W/G4q78ZtBsorU1rWasJUQKxTbOSZRG0wmTGckRlUhIA5KNUjdoTSRJJLYc7cHnftbrectrbjKEGcHI4woNXqCmlAiycHMMPs60at1MMaNsvANJ6wgbN8Qg7jpW0+74V8Qcj9NUmeZGbf5ytRlzhWnKbNaJzQRTq+70D8CuwyTWF4LiI1USEponCAXvMEtoHssZMiktuHX3Fv/Zd30H/8pXfiGXbjzk0o8SqEVdwE+k9lx3MSGQHY2VIqqzO3VlRqQy5sJqrJy1sx4HGxFLbDf3qXpOraeAMW9OyPtHSHxAjI1LywWvuX5Em0946vbz1BaYpn1Kcmbgdjbu36s0FZoKD9+8ysHhihfvf4pUE60JsxRCMwYNTMXYbCJTXjNPG9r+yhNcRKls2T99AMDt527xsbvPc+eFF5jnLTl0alLwTVMyECm+ecBIqSKhAEJtShxCL24gYgTztKKKJ4URB4TEkBLBHGG2G7sHcZaT6tB1yJEQhRCSm0Sa0swdzNIaISpCAUk4ybMRtHnEb6ksDq/w8KtfxXMnD4h5dEqDnxwEMnUOxCAMcUCbgvWQCMRxT1Goxc2NKSQsRc7Pzzk9VlQzhxo4vLRyrWccYYcI0oK15mYjmheFbVcau+HJCNTa0GYuq8HPdQd+uLZZ+0ZXZyWkfo5p7wDH4Bpu3/K6hlutmzFfohsYRpO1d1DpWtXWOiM1d2Nih76Zsy0x1+YG8c2LiSAd/qlJ0C4voJ8XVL/3GYGisH90hf1L17h7/z4tzMwYy6MlX/rbv5S8F8mrkdVqj9Y2rP/+TwHw4P499tU/G1ElWCCtVhz8q/8P8sOvIiz30fUpmw+8j+1PvdcfF3pR5Eau2nwTCkro4Qy7r/kmAGqp/f2BaluQQOzdbVDn9arLpTbn24vPS7V4F1MbRXtTqBelrkJQUoisFj06exhYLJf+fFpFc8fplUoI5rQEUYI1kihDcvZpiKVrkJvLq0IlZL+XpJQJqXsGyoyJkUYvAp1rgceF5kxejNQ2EMIhp2dnqI3k4SHWa0coPv30U4Q3PcLl1cDnf+gTPGRK6KmldPpFkMFD3mxHchFiWIEEzpbKT77pBtuUEPYIYXlBfxhC8mlCdBOdmHee0+DhGKWtGZaeGKc2sczJjV9TQmVkEZXVOPg1XRcvax1/5fi1OT784Q8Pf+Wv/JXrAF/+5V/+4G/9rb/11GKxsOeeey5tNhv5p/3Mt33btz371re+9alxHA3gB37gBw6+6qu+6k23b9/O733ve/d/5+/8nacf//jHh1KK7O3t6Uc+8pFf2t/fN1Xlx37sx1Y3b96s//Af/sPFr/T1D33oQ8P3fu/3XgP4c3/uzz39jd/4jXePj4/Dm9/85rfevn07f/u3f/v17/7u737uV3ucX7938lc+XnaB+pLMqtLMn7/qjIa5I2UKIbne6mf+/HeDDLz2HZ/N6tHHXB8V404W5WgYM897Dp01aI0QAjF2rZaV3uU0rHIx5gn9TxGP/9wVAKaheyaEGLIvRgYxZlpR3PpU3GEPmEaChQujiBepUMwLmUYASRChmbP7CsrWGptWsETvxPj4Va1Arh7POMP1w8Tn/OZX88ZXX2NvAWPMSIqUkDBxE0oKXmjOtZFD8ySYosyzuvHKWu+EGNYNAibgcXq7P32U6xxL1zSVtqW0SikzU5morbGZGg9OKuttYW4NwQMSRHxEJta902pYae6eFvGkKn9kckqw00pKJO1HvuPP/2f84w/8DH/0P/hGDvcvs8iHbOuMDo3NrNx57hZxKqwUSpnYtIm5FTZnp2jxzsX55oznb98n2DkpqnermoOyj4/v0GzLPG+AgrYT9vf3ScuJEJWlLbg67DNt4OR0zfr4lKmZG1OmBtnYlokYF6zyAWUTubvZUNaZxEA0QRuUtkWac29JgdOq2NmGsp3ZzIWzOnNpXjMcO6bm009/gmf3Xbs2BOdyht6Wt+a6ySCNIO7MT7mhNnU2p2LkCz01zTPegykpdFKk+oYs50AKDW1C7qWbF0OZRvIC1TJBXA7jKWXVCw0gWPGUJCuOcyIg1qC5s72Uwv5y5Mr1K5xIRXq36uIOazgzFPHu8E7b2g1Z7i/y156C68dVjZQipRSOj+97FG2E5d7oRUGKtFCQFhApPWnJwxEa+j+LZg0hkBLupt/1XQWC9S6odEdz669JPDPdpLNPJdAQ14fXrs3cFWNiSHRZi9EgTP678CKjCUDoLn0jhLm/f46lQ3rX1F4a42u0/hkpLfRCuF9fqn02EWNvrieu3Xw1d557lrquCJn79+7xI3/v73Hz1Y9w9NAhi72Ry5eWHOywX2SmtY/4S1HKPGP7Qrxyg/X7f4y2PuXgt/7f2f+tX4Gsz5g/+f1+ow8J62MoUy+KrN+MBbBWsa4plpA6VcWvDWuFMRljgBStU06UefZib7PuzniJBKJrOukJYPASikscKbYYFqy62W7eVOb17F1hVbRUWvWO67AYyGNyPXxTYu8ee7iB9fv2TE6VFOkSgUBTozblfDM76D5EQoq9MPdVollhtsaIT6SCZK5fu8wwrLh6/SZPve/nABiHwjBuGdhwMJ0xLxJzir5WDZnWnHcs6rIapPlUI8KiGZe0cGmVWS9zf95zP7dDb0x4cZ1DIuoK60U/siFkQ2ymljXTtGZSYUiNUgObqZFkJhIQFdrzx7/yAv7K8Wt6/MRP/MTebvP5R//oH31+sVgYwCOPPPK/Wtx9/OMfH/7QH/pDr/nwhz+8Wq/XYffzAM8880wG+C2/5bdsHnvssemZZ54Zb9y48Ztf85rXbJ944onNV3/1V9//ki/5kvWv9vXv//7vv3he3/RN3/Tab/qmb3rtZz6Hn/u5n9t7OY/za/tu/e8/XnaBmuTQ/0MXlNJ1nEEwqdC7H0ECoXNLY9ghXPoCQiCHnrJSPZtbzItKv4H1CD0xms40q93RG7uj3Is5E/Pxr0VSdL4n4Bc/gbkqrj6Nbr5tESyCzT4q2Z0U5gJ6bO4O2+ILoLikwKzSbHIOIkoICZPA1AKTLfqQNRDF3dZCQnSJzMpDq8w73/4oT772Cik2xjyQ8+BMUtsBnONFF3nXXWi1UmoDnA3b1FFV9MWlb9K9Y2D1QovYzDFDpkqphaYTpWzYzufMbcvchAfnjbtnWyZVYqKnDWV3dKtrwHwcmjqSJwMDzZI7nS2RcU6hmmJSkOgIpudfOObo4Io7xmNAvb4kAc9+/BN88Cd+moNZCZ120NrMZn3OPBXKtrCdtjwQIeztMaaR7Zm6dhJls/GYxVJ67CWBYRhI904Z1seYZpLt8epJWMaHeDQGpqXCsEMbFeZ5g9aCtUD50MdZbytvwxjYEqRRY6ZpJszmmo840VQYgTFFwvEpNSfOYmKafDHev3WLRy6tQIQcA0GM9SJyenToNAo/O7xHJwEJ6QJk711xHFbvpyK0hBYIJN8steSdp+xjThGHhYNvQloT1JI75dWh8nIBbhO3oQQ6/t/RUnFXeEron7dQ1YiLxHJ/weVyRDDn1O66u9aThozmxqSu4bsolcU7+U2V1vxcNBNCTEgrqE6cr49ptXDp8mX2Dy8R9wYIRo5CDpHWStdOmi+27AxS/kApCjFJL2JdVequqh1o3wtG6Z3+ok4akYjfN7q5JjS74FMiLxXbYIjtwgx6+JS4LlHpRWawTkXgoisaEMSkv+fezZVuDBUck2XBO4Kod513SKrQhHluHF6+Tt6/zObsjCEOzGXmp977P7E8vMT+pX0W+4k8Zt40C18LxLBEgncmVSqNSntwh0//538SrPmkKSQuf/nXIFce9pEzLpvQAMMQiSsPdXC6QfTCtDnL1V987dIR5zhr83t2aYWqlRnzuOceuardteXDrIYRsd6Zpb+nEiIhKDEIy3FJ7tGEWitlMxGaa+elNoYYiMNAGhJpEEJQWg29265d0uL3S2szOZhLNfpkat7CehbOZzg/n4nDPjkOBG0Ecv/s3FzqRWtis554+9t/Cx996hP80i//Y64deqG4XEHTNevzgpqyQWgp9nuRd9ex5B4EUdRcgpYWI7Eq41a5/NAei+WIWXYEVadT5NiLViugxhAHchg8CSuCpIiHDwwEuUJpmc1WWG8m0rhFMab11k14407+88rxf8XjAx/4wPC1X/u1j++6lk8++eS6tSYf+tCHlgCt+XZ4tVrZL/7iL37w3e9+95Wf/dmf3fvoRz+6+IEf+IErf/Nv/s0r0zQ99XVf93X3f6Wvf+ZjPvHEE5thGPQz/+1Vr3rV/HIf59frvfmVjpdfoIYDAMa4R538xiQIWWLfg7pZyBngrovbbaGlL9ki0TsPgNO0kzuMhYtdcbPmC4EE341LxoJHBdbqo+4Y3EylfXGKOfUxvhdPErs2VPvzMJ/3C3JRNHsVEH3H2mrv6vpO3SpYdSSOWCWJQ5nRSG3CrINrZw2SKNU2xDYSSuDm0YrPfetredNr9hiDu6FT6FnZ0bPrQTqqJoCFi129aEc6qXdmg2QfMxJ6tKKBRbRtEfNov6qha1a9o1Kr0WahboV5FiaNnJ8bd+4VjjeJFvdptvVEExXf+as7Yz1FZ+ifhZtRaoUmYJKpuy4BBVUlxyWbzTFPvOntHOxd5/7JXdQqKY/klpBkvO0tv4m7H/g4H//Z96FnZ76Y1OKJS5qxEogaGFYjlx66ynY+pZbZo8eDeQ529Q5e00xMexyeFf6td/8Nxvp/nkzma973/v/Fv80x8pe/6l/m7HCflBSJIzrXC8OTUEEHlz7Unf4R78DIoncel8TSgAUWtqQkrp/s9QMArXoXzCKeguRdRap2gSmgPQ0pAurBCEGy60cFRL24IlWmUjDg8PASZb0lSuAlm6JifUpBSD6K9xmld1u7aahWpRZnh8aUQZWQpMPu15zObuZCg48ycyAuMnEIRE0kG2hNaXOlNWWuijVHDkUxolnXze4G8r0I7ModUel6XZdRxBRc64sQSFhxIoWZea56T4ba3Z0EQ0vu+vU+vg+CSEGYkaCouB67Q7O8mIsefBC7RCj1azmqkNQ7lk3BVDxuGS4KVkWIeeDGzcd49v5tWjkhS+PSYo/TB4Xn7j7PSTnh08/e4rFifC1w956yqLsxtVGBHCK7UE0ksHjD2wDYfOJDnV/bO7paHV5vCau1Ex/8Pk7XMavqhW7XzLXUWvtgvBlm3hlvXZblJ4n/WVWpKlSLhJRYdJOsWgfWNyPnwP7+PsOZN2mCgWmjbAsxNF8fmt/Hp7ZFmzDm4O/cxWN2/wEvAauCRDeDVlhPwvna/2wtkW1AJ6hFsW4REfyeV5vj04IIzzz7Cab5nMVy0Z30sBj3SeGA9fkxrYzIuEeUgXF/xZf8+3+SK69/M4ujy2wf3OfjP/J3+Pn3/JegCWkZLRNtFqbzyLaGjraqu7EDORoxRN/oYGxsQ4pbJAaaKXFcMsbs3dWYYVi4zniciXJAkIl53iCtsVqfvaz71ivHr83xrne963x37/vO7/zOG1/8xV/8icViYc8//3w8Pz8Pb3jDG8pnfv/P/uzPrkopAvADP/ADH/myL/uy87/0l/7S5a//+q9//Wd+371798L73//+xZ/4E3/ihdBv+F/0RV/0xh//8R8//NEf/dH93/W7ftfxr/T1P/bH/tjt3fP6Pb/n97z4H/6H/+EL4Iauv/t3/+7+5cuX28t5nH/uCtTed0DVdT3gWriA34QlBO90xNkd5Z/RvpZexFofFXrh2RNtoiNGvO8jSNdFYSBN3HhEIIRMw2PshEiwhrVKCIlguy6MQvCFvNbSFydDZfJxnIwvFQU0H2fpgOLOaVPHqKBGYgATxCqzFso8Q8ONF1pQug7P3NRC23Lj6Igv+Ow386bXXGJvKCRZMA6Dv+bk49ewG6Obd56CeaGgTWmt+MJV/fcj4h2Rjq6p6ko6d7m6aao1j5CsTZir0UqjzYbOAZ0XzCVycnzGyQZmWV50u4jW33F3sov0RPZ+M3SdXkMvtKpK0UYTIcWBQQrLvOBuDRweXgfLbmBBqM0YxU1rDz3yMP+33/2v88uveYSP/uLPc3r/edp2S9s2qBmtxmocWR49xP3FHpxs0RApFGIUFvsrTk/PKDiWKGrmelgw1sZf+6K38+LRHtoGxwDNW87mytQaWjLb4iD4lBO1FogV0szp5pzaGqlFIiOl6xgxcyB4DORxQGvFT4cB08B+Sry1bvh33v9+vu+z3869wz366sj19Sn/5k/9Y4Z1oa6EmEZiWCC4cc0Tn2ZfuDr8fYcUbXQ4ewguvagTBCUmoUkkDyNUN5nsjiCVNnuBGoORgrMtTA1LHnJB8OXb1HFjSQYkCioNlYxaROLM+nzNvJ44OHqIk23tOfI7zJQjz8ClLyH6iNtVOrsuq2+0WvPFd9eZjMnH5X4uGevzUw/lwFisFg7iHzrdIzmYvKXmm7mmTHXq10Tp43zpHT789Zl2yY5rVbVHnBp2kZUuAYIFL3rYxT+5cUybd/1A+obJrznXS/u/ud7UN9steCeal7xv/RrtSXj9de5ul9b/bn3qcDHy9lg2v5eqcvXhRzh57hPcf/E+UIkxEYOwGkewffaO92h33APw3LMnLNTXjtOzQjk3htTIY0BS4trv+n+yfP2TnP7cj7D+4PsYO4t01/PdvT6aXJR3Td2IpIprb8U3/to3CISIWqA5vNYJBmWm9vz3F+/6ePn8fKKkFeQRkQWtF7ClAcF1ofsHK44uXSL1JgetkujvH0Zrle16i7ZKHgJBE6oDEt0MWtU9Azl7h9VaRrUHMmhimoTNulC2CltFaiQobNcb6nbL/rkXctoCtRq1QAgzQWb+0S+9j3d8zueyGC9x98O/7O+bDmzPBd0mplnZbPy9ykeHHD36Wj7wt/9/bB6c8Nm/52v5rN/9+zh94Q6//N//Tcp2ZqgTbGfu3T5jvVz6NbQLjyASZEOgEcV12KiTRYiBuU4slkuGfi6MY6bGE1QgxxGJCwLCIq2IAz0M4JXj1+t485vfPP/e3/t7X3jPe95z/Yd/+Icv37x58+DatWvlk5/85OK/+C/+i6fe8IY3PPjM7/+sz/qsbYxOHvmqr/qqN968eXO+c+fO/yL+67nnnstf/uVf/sTh4WG7cePGXEqRp59+egHw9re/ffOrff3JJ5+cf/fv/t0vft/3fd/Vb/mWb3nVu9/97hur1ardunVrODs7i9/93d/99Od93uf9qr/n1+EtfFnHyz6rQ88Bb21LnTq/UbJ33CQ5JilWYoTH3vk5XH7dmxguXwbgyru+kPimN3Lr7/2wF6HB+ni6IbEnIBn4XT307qfftMJubGlCChlH6PiS5LfXAWk+jpJwsW5152hnHVoFUi/E+guS6qpSazSZMG0XOjSRHjcpkaCOfbIa0Foo0znT9oSpKCEHkmVSg5tX93nn21/F448eshcDY14S0ujczuQJO7vFy5obk8RnuS5bKIVWKkPIjlOhoqIQHEcUJCA6905H9Y6MGnMt3qVqnpRV64y2uRexhWlzzsnJKVMLFBnRHpFp6jBXkY7LEdzNj4IWtMrFWNMwRHwxnQisJDKaQl0jYjw4O2HcHwinDUqliVGzp1QdTxvkaI83/7Yv4crjr+XOrU9y+uCEzXryjkyDy0eX0MWSn/xHH+bkYxskJGqdkEFJgyCpYUyYKimMrJY+fjt++IgHV1fUWTBbMG1XnG23PNhsODmtnGvD4siwHGnN0VlVMtPyyEHsvatNj6ht5p+pBRhWidgy0g02EjOLvORo7YXb81ev86nVErGZHFs3QPkCX22nx0uYRlRhGCPITNXiEgszx0IBLVSaNYIlmhaUybFJccAUhhSxbBcpRXSjk6j2LlJDok8dWp8CqPgIN4l4apu5mNSxTm5gKxYwCWzPNmwenHBweIXFYvRz9EIHGggSXHKCy2xy32iZmju1xeN1a+1xpsF64R6QmDx5qSjWZs7PzsCgqUtS6tLxOzEKNvT4AImuvR081ay1iJbasUMvdUBNXwpyNc8W9cQyq1Rrzn2VXrQ3L7wubgDaf7I/togQoouDaH69eb2bib3jZVG7P3Q3jYF+gXj8JtYZztBMqLtaVdz8Zmr/s+6rVENrZRyXXHv4dZyd32HeHENoxOSBEsKaxcJY9XAUU2HeeOF3fjxz9sIZQxaGg4En/vCfYO9Nb+WF9/733Pv7P0CMCXZ4QPXPpLVGNGHII6LmnfVgTnzAN6UhCtZlRF64CrUa66kxl0qbZubzM47OvM34D//Rx/gycNRZ803JzIbN1ovQUvUiEezy5SuM4wrrIS4pRVCXU0koaCu0sqGVyYszy66Z1i4FM0/ns2A+WaOBVWpTastMW2O7qUjzGFKbCnHPcWyaYO7XqTZviWDqzNIIR4cHLIfIyYPnOTp009H5+X3mNGP1nKIbzjfKNFXON5/kL3zV7yQDKfp9/ov//X+fK294o5NRzDpf2q9n9ca/93t3a1Uw32Bp6bIvcROaOd6s1XMmFZoWNjW4D6EKe+kSUy0EnUlD8sCX7Ssj/l/v43u+53s+/Za3vGW7w0w988wz4U1vetPmDW94w/RPfu873vGO7Xd913c9/Z/8J//JIy+++GK+fPly/fZv//ZPf9VXfdWbPvP7bty4Ub/6q7/67i/8wi/sPfvss6Oq8rrXvW77NV/zNXe/+Zu/+cW7d+/GX+nrAH/lr/yVTz7xxBObv/pX/+rVT37yk4thGOIjjzwyf/EXf/HJV37lV56+nMf59XkHf/XjZReoOntRbbZl02HHiOOC7DOwNDEMPPnV/xZv+ap/8+JnH/s9v5/HgOf/3g86J3S3RvRFKuzMOv4APf0mdGOBdiZhh8SbEAkQnY1q6p1cs47pqQ7kFonseisWEs4I7Rml+IAIqqeN4C7tZhVL1eMfNdJCpoZuSrHEIg8sxsLVK8bjVy+zWiXWxxM2Vd7yuod48jUrDuNMkiXIgGXz4jt2zquYI5vwDrE19RurNi+gihKiFy0B7/4UF1shQDPXGzVtjpOqhrWC1dalCY02e7OpUZl14uT8nPOzGbMlKTYvesmoOqPPu0zmBbFNF7zJGDImQ+/40seYxgIhmWJq3ci1ZlsfEBcCUQmpAEYrXnyKVOYyIRY4uvYwB5evUquxmWZUPR0ohcDWjOHp59i0CZNCorEIAcqE1NoZk5HFIuNhtEA9B4TFkBj802SPmf1QuVuPuVvXzJphvXAElPkUPOMkgzUdaWbStXOtd8Yb7bSSNbM3BlbjTMgRtca2qwo077G1zN4QMU76GNx7JBZ61jw93Sj4+DWGQJPJTUYqn2EGmhFxK1qKgZyEWrd95J8wZs+N70VKANedJpe2TFp9wBvEtdsknwZoIyT/naZK0xnpKDejdC2zMs+V4/v3ufroY+TcDSjd7WzBF3fr16Rp2NVkfh6LF7w+bK60VhEZvDvZSQRCI2WF5jxe3Z7SQoNQMFmSc6KKMM+Tc3SDRz3GGMhpJGmC1Git0boGVc3NO9Ya1tz9j3oYwbC7RowumXHjlcTWZUBuDCQEYnQDjQi+YRbfA4sqWpSLYAoJZOnM4H4L2xkTg/o9UCW8VACbuWmLnZO/6ybVsUHNuhSqGVKVazdfx/2T2zz/zMewOhHCTGZGbeZgkVikjsWSNSkN/SGMuWywuOKzvvlbOXj167jziz/Hc7/8EfKjb2Nz8oCT20/xKuDFOyfYpvL0J24jR2cX1IkgHvBhWtGmTBapeHFkbWYu0cNXqnG6mSGMzpm1mcfu+5j+wenJxbnSwtZ1zXlk6MkSVivWCqvlyMHhEUPeR4IXgDEvHGdnFXRymZVtIVRCEiQF17hqwloAix4wUqRjxWqXJgzMs7HdzjTdAJHSr8lxyCzGgbAHq+PFxdo1jpEQmstGNLO3GPnERz7G2dkZN1588eJ6btOGVGcwdc0vM0wzQkVDQJPxms//rQA8+wvv8ylF8M/ZgtEoNAJJhCA7aUzo55yTfYN5k8cnHObSnn59hWRUNVJaUBVqidSp0GwmNvdIPFQubI2vHL9ORwiBP/7H//idP/7H//idf9rXn3322X/8mX//xm/8xrvf+I3fePcz/83Mfv4z/37t2rX2/d///U//rz3mr/Z18Hvgt3zLt7zwLd/yLS/8H/k9/1c4XnaBWqqPRkQatV8MhmCxQqxcZF6j/Mj/5z/gH/zJP8YbF0u+7Bc+wI9/wZOsLx85a693cei606YePSi9cJXd4tF1bjtd6273jCkxD+QQmSbpCBk3HmgX4xvm0HvbjcRBot+EW/Pixhq+mMQeC4XzTtUMJaAEKsJs/Yus6AABAABJREFUjWaNnDOPPvoYr/lNb+WF81PGVWYIxv3bL7IQ4dGrC5ZJfDcdvSspJH9e3ckb+sruJrHe0ehLvbuNjdI6xisoErtEoXmaUGvebba+4Jr13+MuBm8mNKG2xvlcOF4b905hU7JTB2QCUVSDd78J1FbR7iTdGUWESEjC1HW9AcdViQhDFBLagxN8QpGio76iRIZh4cW9urZLcW5hK42qhpq/N8MQqJppraHd3DEsRlQLgZkxQSYyrwu1BKKsUDNSzhdTXquBWIW3f/IOh801w2WaKa1wvl1ztpmZaqDZ+UXhoPj58gDhbx/tU8gEoKkgMTiX0ARpSrAITVjGgShGwYMNAF44uceLw4rx4SMWaZ9277Q/KR8BNwmkuCCFiOKLfwzRi1WF0P3D4EYR6YM/rHn0b2uUck5Oe+Tkna/UDUpeGJmjyKxBcOlFvQizMFKMblYypbXqsG+J/po0gDS0tk7qUY6PHxBoaITSKtZB/Wrtolj16Ubs778XY2aCanVmZujdW3VNtFjyLqoIPvzwpLOmE9Ns5K0/V7WBmBKiRjEhhUYKmaQjKfrmMJKISfomz3vA1rJPINT6+4sXzKqUeaKU1rPYDYkBqBfXOkE6msuLBvyr5OAyI+/OuhSHLsG5YJ4GJ8uq+f/N/HdEFwv5u9MTuHabwOjtS6drKGiInvJmhrZCToEbj7yKu3eeY563DIOQ8sClxYob1/e4emkLz7yP5bJStjujsHdx42rFwatfB8C1d7yTa+94JwB3f+kf8cvv/QcAPLi/pU7Cp58+5SyeYloIAtM0MW03aPVUt8KSinjsMpVaE3VbwFzPvjp8iKPDPQ5HL2wBYqdRxBHS4KbPMAbS5M+zlRlBufTQAUZlsz3jsJ/7zVyINQ5LSlVabajCYrFgtbekaQ/0EPUutTZoHrZh/ebkSWEuZWm1oupYrAqIpIsGSNXCXPz+f3q64faLt5i3G2ptzJuCaePs9Jj1+ozX3HvA7wLGxaGfV9XjgEM0L2rFiNIYFpnf/h/9aV7zeb+VX/zr38cv/eAPezs2JaSOzDNst0s2bWBMicUAEirWGk0rIr4uhaCEuPRGjxhVFZoH21gU1CJt6ubVGGk6M8lERhnyuNNwvHK8cvyGOl52gVr7FWAxuJYLH5GpbcDmrj0zYqqIVGJIF67jKJ5O8tJ4HddC0bs5zbDmMHxsV4zulkEjdXSIF5DO4vT9Zc+o79ON0iox5d6Z2oG2vbvjlgRe0sYqHa009IQZd/O2WtzE0BxM7gWwuQkiBq7duMbKrvDMs8/ywv1j9uLIQ3tLYoM6Z8rePiHDEI3cBlosL3VL8OJiB7aOOThUWz1vXYNr5+idmmBCDIZKwFog2NINXGponT3mVMUTdVphLr5gFq2s58ALDyIvnmfmEGgyYxTvYLfU9WcO9FNR10B1eD69i9pEkS6nQLQ7GppzV0UwMintszmeGWrgMC6ZN56SlAVaVKiOBiMaltx80ap1aUe4KHzTmFjsZWIs1LaFJmjLbLdKnYNLSVIjjoFN9bHlVBNtSgznhWm5RPZGdFiw2Z6zwdhY4mxT0di5ll1CMjTlsDSSGTN0/E/XOtuusGtYEDdytYyYkk0IrUclTiech8addeI1j94gjl6ghpYIDEAiiPmpac111yH2jUkEG93yvjvL9aWOpF8r6tq61hjHjFojXTAtfcPQdO0+Hck0jZ7+lZJfreqJSI3maWE4gsc9JoJa61Gf3t09OX5AqzN5XDHXxsWYIwQIXoxIj9CVXWa9qus++zWt1ryAMJCQe+eVLvQUQowkOrTcCpvteW/jwRD9fmClYcGoGKlKh/YLOQRyiq6Hlt2o3E1gFpy7G4BaJ2qptGK02tw0FQKSAmX27VcIQtx1T3HovlvNM9oMrQ3tRj4PLehhAtqd/6lvEs0utOIShGgV+gZ49elP+Qayd5t9Y6pM2miIc0QRailoLWSbuCwTCxlYE1mu9hiGRBpHxvGIo+YNgiu377K+69OsvZMNmjPtzn1+8ss//6XNvdKnWoG9U+9yHq4nWoVrz91jTxz8bq2y3mxYb9aUUimzUSxDGjxQherbueaGTJVMPJ/YPx64tAocnbj2NHVgPw1ySJBgOxW6eJ153rJaDsQM6+1d1ufn7G98ChrySBpXNJshNmqbkTiyWO5xwWUFJ67ghaERqdWNt2pdskRk2s6um9Xawy0yCLxw50XuHN/lfD7h5vPeGf3IR57mY3eeYXN+ikiglkadGtLcYHIwddNRgmGZqJtAMMgWKM2w4DrUr/nOv8hrP+fz+J/+4l/gp//Ld3c6RoQSQQtDqaw3M+c1shVYx+bGuxCIKZKHSNDiQd6topIhRapWkhkxJjdsxYhaJUrzyGZRSihIEBZ50R0VrxyvHL+xjpcP6o/u4idmJO0WJYc2I0KKEEz9xhYUv5n4t4Wdjs3Xh55N/ZJmJuyE+72wlD4SE7x7GqJcpJKAF2RmhkgjBNdzYoA2WgUkME0TObslVNTHfNG8eAIuTEbekazuVtfoJqOd2cEcbm0ysFytCClzvj7DFiN5XLB/6Qp6PnPruRMeGiPXr3sSSIjZM6eL4bk1Ck2pqgQFNS/3tRqlVmprRAmYuB5qp+lrIh1AILTmHTZt6tKA2c0kVq1HPmrXpFa2VTlZB+4cV86robFibBFtXhjRx3pSXX/nVlrXAZtzDGtzXaMXpVyMKZv4SGzIA6KRg9UlPviPPsgv/OxP87rHbhKHPVo0LBbKrqPXZQ0mrm9rrY/lRAnZdcYhRLKMoLEbiCqzRnRWaguIVBYjxLFyPnmROJeGTkA1qnTWZYzE/QW/7Y/8R1x6/C0sL13m/N5dfvFvfT/v/c/+jCcOmZJRjxgMre9ZfCH0ppCSQ8K0YiHSNJBMPE6xd1BFXK86xwyrSzDsQNlexO2qEhH89VYgBN98BUNws52fjD6udHoCPo7GPHWpGWNegBXapluQzaMoEe+81NowXTiiyhJNZmiFXXykKwlcVtDUr7faN4Jmjv5Znx2zXZ9z6fBg54vur3OnC91ZapzG0RvFPuIWj4l0J3VFrTLmDGEXNArQWbEmpBSpbUabmw9TykhOrsvT5p18K5RSLlLmShByTK6PDH4uhuCyCR+jK61CLUZtrgk1pUuKDG0zIThBY3f/kT6p0aZ945Adv2bdiNk72Yb5ZsX8NXj0an9d0tmh5u/V9uiQOg684y/8xZd7a/3fdPxL7/kfLv77rT/3iy/7597+Pv/ed/zkT/+aPp8pBs5jl57sZEtaHTdXduuEMQwZazPHD+7Ryhmnx15kT/PEsBwoTbGakGFgkRNpGKh1AknUOnvjWnYEBemNhobWADLQLLLdbLFWiRI7xlCoOvPcrTscn5+zbWvm03MAbj1/h2fOBdPJtechEcgMjGDOTgawOCEjSG6kGBgksLVGHBf8ge/569x4/E189Md/jBc+8XHe+GVfyubeHZ7+mZ9BYnKNthUqx7SgmGVK3aK2JaaBzIqizlAVgRhaR4cZKjCYMQyO/kujELJRtTHPCgV06W2X9TRTdua8V45Xjt9Ax8u3/pknfyAZ26VKSSSEJVFGJFY3E3XHsn2GkV+t9S7iro3qHYumFbPcc6N5SdtmdG2qYuKGp7PzU1o1lst9X+CqA8hjwtNC1Po4taN2pBfI5p2VHt7ZuznQBQqIuaG9mdKaOmDd3KDk2kxltdrn8rWrnJyv2UYj7S+58fBV9g8v86M//JM8/9QdXnt9n6OHBoYsrkFtYLF2o0VfRJt3ZGvr2B7rWlN1QHkQc7MHIGGgWegLJrRu6FJt3RCgbkioDuufqjKrcrYtnK2FO/cnzucJYqHJlmCNoBGX6qknBVlzdiSGtkpQI4kHCCgQWsMS3kEr/bNJdCB9Ag0shsTpyTE/+g9+hJO3v5mzeeLo4Ye49NAece8yg+yTLJFDQqViAVISLybUqJNCVeZWuPfCMVojteXe1Z29A6YJrDGsBpbLROiAcG1QJgd7a8/WRiAdXuXwNa/ng3/rv+XFW8/zBX/wm/iXvv7fY33/RX7m+/4rkhixwThmpgjVmhdiYuziJAQv2IfQCGG6MAOFzkmb5krMC97w5reQcmTTjYO7Dn80IQYl5cw0C01mT5iKjVrPGLIbvwBSl1sgRq3VnffWEDJGJKiwSBm0myulj57VnGdZ+vg8uXwkyM7E4+rQpn4eBxXvNkX7jE3ijIgybRrnJ8c89PBNL9x2hj4601S8syjQZSGwc/to0wsJQ4yRWjz5KadMTIHStJMLGjkGL+7FzyNtje126npQca1wZ6429U6rEKliVAkebRwNgrjbXWLHIimiw4XOs6hfZzHujJMNZ1aah0CYd8G6V86nLWE3tQm+gTKhNfrn3nmzHcskimvhuznL/VKB7cOP8CPf9Z0MpyfsFAE74kEtM9YKWKVOG+p8Tp03/llb6ug4I8RKyrsNlxLTyNHtEz73v/rb/OQf+GrO7pzyFX/77/LL73wHxw8dOFWkVQIdv0eXTAVYHj/gne/7AB/4vLcyp8TT73gzbW9kGBJm6hHEc2OQBQ+Oz3n2zm1XTIbBdeY2e/GEJ6CFlLh8tM/hwpFaP/2Rp9Hj835aClrVk+BSpA86qHNju5nQnChnZ4idM3c3/YPjWwybS+RFQiLkRSaaUnuDQ8Qg7BjP7jkYh0SKgdpmlw1JoBScgd3sYqxv6tOY9faU9WZGo+wSbh1h1hJlmjmfJ8blnrNzQ2VIQu2mYLXCkEfS2HXKooRg7F+9zI3H3d/yxi/8It74hV8EwCd/7qf5+E/+uE8vzMk103Zmy+S63/jSxl9x7nWKmSFnCNVDYZpdBMzU5jSTVumUmgBVKFOjUtlSabNy6fQVzNQrx2+84+W7+DvGIscFgt+QfJEcERlIcyGrQAtIGJGQic3vBrFVUmk9LnAm9Lg8dxVrLwalJ+u4llB3XTtxl7J2IxF0YH8fPU/zxo1QHSmzG8/H2JNGrNBauDBnaRfOW9+Bo41Q3cqhVrFQ3SSjfvMexpHXv/E1xMWK82efY0iZVz36KAdXr/DT7/+H3L57nxpXvLAuHD64z9GVQw4WB1jKTHjSh5vBjFa7fq6ZC/+DuLmja7kkCTtuYgwZx0nXbrJRtE6ouKlKLdDUwdhVjW1prOfKZjLuP1DuHa+puiGkyhDBSiZYxlOrtUsIkr9HsY+XTb17a76wR8uU4J9B6KPO2guepUWwAaNycLDHp5/+JIt6xjPPfIybNx9ic/aA1eIm+4sbWIusjgZamlm3makUWq1stzPbLbQ5sC7w1LMvkM2YceewihB7PK4VYwiBo70lexepZpnKgIUMaYGFRG3K8bPP8b1f8xVs58b5thAXK77y//WnuPnEW4khM8RIDDOLccEcI7MVL67ECMnPk1AbicgokGWCZJQqTM1X3bxY8PgbnyCPmWc+/RSPzx1arkop51gKxJyJcfAuus0kKinOTKU6ErQXqCENhOD8WVVDkgsOylwYx4gijMkxbv66GyKReVaSOBJNLHbTkHmycEog/jkj2k1OvZ6y2nWiFW0TMUfK1Lh35zaPvf5xsF0UaO+gmhdlMSZa7QgnwEPOtHdiO1VDgiO9tDCMK8bFktgK2hrzNLOD2scYEIlu9JNu8OsmJ68iGmahX+duNmqqfg+J0t33Xtg39X5m7Brq1t3nDfXgAQxRJ1HoTutLQEkvIbQsEHQmSP8MZx/D+qbWC7+Ep6wROoLqn/ClWMfCzTeuUq5fQdTQeabOhaaFMm/QaUuos5tc5oRqJoQB0r5n1aeIxB0ebY9hIX69qI/RH1y/zklxk9Tp3orjo8NuApt8I6xGaT7VCilx1D/HzeEljh57lDf8rn+d29OGEGBcjNw/PuH+p5/n7nP3uZuF+w95CpyQ0ZpRAmKFoIYWIY9Lpkt7bPYCOTRefOY5jno3tLZAKUZeLCgou2pw3lZO7j1gjwVDA/MoKgC267ucvfAsi/09xv0V9OhmM3e8a9/MG0JpYM03NmIRrcENptLYFKGZO+TRQKtK1S1Nt9SycROqCvPshedmfco5CXRGFc7OfeKW9kBDo8u90VlJFhmWe4RwQrFGE+P4+U/zrZ/9etQSSqLW6tppUddpG70zX7sBrVBUiFqIWS8kaiEYJpMjzHo6VkgDZgXthk61Cau+TBjJpzEqzGXurN/AXLYvdyl/5Xjl+OfmePkjflzLNMQ9RHc3JKhDY7OnxAfKfjNKS0yzESQydvPBMDfqdu62I+/eTMsFjH1RDs71lGpISi4K7x2KEAOtFpbLFTp0LFJHv2g7986gKJIiVRulKEMsWPUimjBiVqktEmL2Lgp4O1ACBe/6EiOS3ByjVmjqWc2PveY1PPTwdV64c5fFOCDAtN7yyZ//h7z/p36Wk/uVFI44q5GPPnfK3D7Fm1+34PJRH3EqRFugbfKOBJkmlWZnhOZua9u1jjVCCITO/GumEFxPaAa1ekfHncCFhlIMpjJRWqM1OK+N59anHOspKhPGgNgBTSo1FBpeCEiU3l0OWG2gnecYtC/4EUSJFn2dMSFIghppqkzBMN2Qm7E6OODFB/e5sg/7EuDOAzh+wK3nbzPmy4yrA4YDOJluUWTjWkgTTs7W1JIJbYUO+1Aa2TaEZsQ0IiRiBKszFgck7bFtwllH59w5PueuNk7Pu35tdKzYelM4m2fmopQCb3jXbwPgoz/5Ex5iUHpHYkrUPEAIFK20KAwhEURYrvZIGlkmGNJMaRPzXGmdSfvWtz1Jfvvj/OiP/xj1fMNq6BOGOCJpgUWFaAwpEAXKTi9tQowLTMeLjUmUQJsrKS9JIWN6isgCEQ+QEK0EGYkXrMPeNbSMiue/m8ze4a6CMFLVfIoQHWUTQiSm4FpiFxh3kw8kE8SUO3ee4/zsAeTlRSc/mivOLbi9vXXKhLU+cbgYlYQuJ43ktKKpsK2FkQWrxRLVxjhE5s2Mkfu4xDuiptCmSkrecfLcynRB82jNu2lRuNjsUUCTa4odFxUcz2ZeQDvip5s3e/AFwTPdQwi+GU4RCwlV/x0hFGc8d82uqesd6cQEldKnPK3P9K23K8XDDdSg+USEVmnzhE4bymbNVE4xnaE0am00nSEKcRiIQZDgiK6cI3EcISTSuCKlEZMGwZ3yrcoFf3aojbidSCI+4lVPOxpCb4BXI5QuSZmNxfKARx5/K/n+A1544Q6BBOIkhfsntzjfbDsiqjKbb5JGBsSaJy7FgZATKkIN/rpLU6eUAFodx2bRdakh+XVagbPzNauFsR9gKXvQOqh/ntienLKdJvaaBz0EiewtFmCKmc80TIvj/yJUm9Ca0AqzRWpwJFcxQSwSBEwaRStz29Cs0tSYq1H79KWWDXW7osWISGaQQE6GxhlJAyn59RzagjYtMB3QkAmDIWH27U2f0FVVNDiA22hIbIReoJtVRDakBE0nWsL9hUS/pxJBI7WYp0cBVpvLmubArE4zqFpREbRsCVVYxpF13JBTIktA4vxyl/JXjleOf26Ol12gNlwQv1m/yDR5gTqXQhmND/yma+jZijrD+blw8sBYDEc8ocrn/tIH+fDrH+P+9YdYDLmHP4KNGRtjd8t2dI65Ccf6UDygnccHOUbHuBDQVjD1rgTWUDXy4LB+rKFNCcyoJaxFWi0ew9d6zjtA8mxxTVDNs5un4iP4pgY5cHh0BIPwkY9+hDIVhnFgOWTuvfAsd2+/wEPLRFCh5UiVyO3jNUVnTBOPP/oIVy8fgRWqbNFQaOJCf9WJqO7qVQxrru9Du1GERmnuLhURWnX3e2mCaqA2odbq7lNVtmViW4yzdeHW3QfcWU/MdFxXFRw6VdA4eUZ5SEgYsOLvN/jCjbTeHfNuabNC0LHjXVIvQbw3Vfruv0xbrj30Gr7mq7+W9/6P/x2f99nv4Jd+8UdZjANXHrvMredP2BRj3Lg+UGvGYqLMhTAn8iwQQZMy6cTGKpVIYEBiQluBBhIjlx66yjBMbO851ePBfM7dyTjeTKzrfUrKGEZRYzNVUh746u/4Lh5/1xfzk+/5Ht7/t/4HAkabHcXUmnBeNsTsLMzt5F3z1WJgXQvJKlgk5pHF3j5xGdiPvvG5e+8FnvmFn+LswV2uH15BzvpIUHtqWXLqREoQQ6CYR9WGOKJb74CL9NztYDRRCsUvSHNuJCLORw25x0j2ria9ixojRKjiRqhIQkg085GsiIPpd/pIf36tmwczviJ6sbhIC47v3ufO7Rc4uvHIS+Yn9VGzIbRivQMr3QzlLONgXKCctIdQlFppm8K4WJDzipxGxnFBTGu2m5ky77BJ/npbq65h7R36lAYI0ScrOAPWeme3S9mps7vLQ4zdROlyms7rQUhoF75LkC6S9E4VOw6ttgvnvXdpm7PpQ/DiSD261xSXf4h39kQ6B7a2bspsWJsd51Uq0hpWZg9dKBOmZ6ht3WwmBskNVorf15xx7MVKq5GpTZT1hFqgqrF/1014m1Jh9PNGamO59ZjYHqvggQDBebClzgxdr23zlg/feZ6P/Y3/lhYXJBlpply6eplh3KeoMKl6UhFCElCZKVaIql0C4RpJS81TrJrTG+rW14MYhDAkL77tQiWCijA3ODkryCIwLIYe6Qxt3rLZnpNEefDgAXFYshhXpIgzigHa5NKH0Ghl8v1VSJglTHwqJOJJYtack1sNTEZandhujc12S2uF1mk0IUykvICQCNHIg5GWgTBEJC+g9HOiKbU0tltHqBlulAt9qqTVmaUpBCTQp3n9M+5ZvUGyxxp3ao1JdEJLp3HU4OzlYCDNjbpVEkNWZ/puCybWA//cuFd6HHcI4WKtfOV45fiNdvxviJ/wBe7Vp8/yql7k7d29y43nl7SpUFtlu51YrCuLCVKpHJjfYA7OtuhiwxBn0i4Gtd9Ed1nakZ6oZD4qE4NgFTdbCWqCtug33tJB9FoA1xJJhFWb3J+ikzPodEBkV7AGrMHRfS+0mxlbdaRJi8JcqsdAtoqZkoeBh64esZ42RJTFciDHSJbKkJVXXd/ncGx8+JO3uH1ym3Mb2QInJfLUcy8wn2be9IbEQ1cE4oxo8jSgdo6UisjIrOdEBk8KNFDxBc9C5wJS2W7UR1dh8BHPbrTfjNIKm7ahGGwV7m823F+vKRbRuCDpAlGozCgdSYQRg0fTBoWg5rid5MWHAkW9YK/BIzIJo5u7aI73CRU1I5aJx64csb8YeefbP5+n3/8BfvHHf5Qyr4mHl7j+ujfyqVsfZnNm7F094vChx3jh7n2wRDvfcHZ+h+20Jh1WLE/MOlFDccyNRrCAtUoGTCs3H77B3mKmffJpADY2c64DWzXWdWJdC82EhrDae4jf95fezRs+//P5e9/9Xbz3z/353jFqLzmwbcKkYiTURi+Kq6CzMIU1YVjSQmDTBGEBOTM172Q9+/yn+fR0yhAGHxn3zPMklcRMVNdcx5jJ44LNXGkoKYLZubvCu1GwikJWiqwhKkmj686aSzjSuIPn9+6l2/hd0iKg0qjakJDwxnhDtae8BenFLhev20h+6Yt5RrkZy5w5Oy88uHOfo6uPuPQEelfIDVZBxOHuPXVJ++h/h70qzc8LCwZSmGdlvXaZwmIcCUFZjGAqwHyh/YzJjVgN9U5+dBYn6kaxEJSmjiPr1TZqrntFQVS949sNTGLW9e6OnHOnfSR1PeWO3ez6gS5hif4+xZCx1rpRrf+vo6d2kcjSJQi0itSKtOp6bpu89i2t84kntG4xLZiuUSYsup7SjViZpoHSi2sDpApNYFOUuVVq79Dd3PTOH1CynzcfffLNPHv1ctcAO0eXFF0nbd5NvXbnPp//c7/ER37T43zyxlXuPfc8kcwQl5TWWG9nVvsrZiqaIyEuGILfJyYaVUA0MoRMw6dUSiOKkIKxWCYGdtirQmkdQq+BOvs55JrKFaXB+baSZeJKn66Z+By7im94FuNISiOlCtbcz4AJUSJRkuu2u7a6mm/0FOfdRhIWMlXNu6YEasmOZ7JGHhq5Y6YWy8BqNRDHfTRMECuaMsiCormzVOlSiwibLaZGnmrnUFckwGDJmwj9MzXPjEZEGYGUMoF9tEZCUhAjmL8mKc011UOgZe/0t9KjhIfAbDNiDcFDZ3orgZIDc4iMWjF1iUqwnYn4leOV4zfO8bIL1Dt1n7UI33Xv3sW/felPfhB+8oO/6s/+Kz/8E//7nt0/o2NOkeO0hJqR6vD83BM7mlaGIfGWJ57gyrXrfPLTzzDLFlFjHLLr+SIcXFpxtBdQMbYfe471vQ3LdEgIe6S9Fffmyi9++EM8/saRaw8dseQqccrU7TkhCFNUSjDG6l0dEXdzajGs6/N23FfnZbo+UVuj1rnjdLaUeY3aPqdnjefvnrOePcLRmhLC6CNUUy/MeqBBsAGaEC2BqZtfLEDIsIupdaeFa9BwjIs18e5UcFTKtDb2b1zmC9/1ufzN/+E/5/7997OaniczcHZnw0cfPMWqNLbTKdvjwoY9TtaF0IzUAmMaYZgJCdZtw3ZaM88TMGJ41ybszKmiPHTpkBy3nOz6RaHLHVSpwctwtUTe2+Mbvv//y803v5kP/ejf54WnPs5n/Wu/nc2LD3jqp36MLrr1cXJMVAu0ecOYhTx66lfIS/KYe1hC42yeQCqlOz/irmix5sldslukW6cl+Gg4xsQ47hG1UHumfZDk3cA+qtU2O7arVSwaqtGZiyE6w7ODAcKuC9oMrQ6M79SoC2WlAQShqBuaUuzJbDvShQgQHVPVvLBMLnEmIGzPN0T/Ff097tn0QAo7bq0zb1HXd1ovCGOM7ogWlze0qbI5nxjzTIoj42JEgrLsiJ15dtmEiI/Y3eCSPe5RErADmrvchNCjOHcEjugc0do6tix6ek+wRrC+ESa4DEKMUHqBGzIhJDR6QaOSvcM6b1xmowLqXGCRhunGu9xtAtxISWtEU4JWEkYwRVqhtkbraW6tbah6ThAHyqs587mZEFqm1cS2CesGLYwIA4QlSqYJSI5IMO/GRh+JKzuKAZS9kXlvz5FK0zkaEi14NKa0iTQk5hPXOW/GI+pwiUXb+iZYvOuWUmWzfUDI1adYIZFiZp62lKpoys5w7QIOSSMxj8TQqNPEyfnEpd68K1XZlJkowqCB1hsZZe7Sq/1DUi4cXkmE49sAVBOquTRisViQ4wJtiRAypVMnYshdvjJjLfVUsIRapkmi9a41FxMGRW3rgSVVyTmxl0ckB0Z12saw2GNYHCJpiUpAoxLzPqpLN8i10F+T0TTQJHM6jOzXLXnuemhpRNTJDrsbUggXkg8CnA0LLK8IooQw+f28N2VCzOQUkChUwSeEYXSucKuO6wXGcSQ0v0/XVp0SM4o3GqIQzRPjXjleOX6jHS+7QD05WPFvvPEJjs7P+JKp8g0v3uK/e/K16Be+mVBntm3JtNkwrTdu3hhWvHqu/Pa/++P83X/1i7h/5RrBjISjYWISXwcw5xJ2Tb3uMDDWoM0grfNWBbOIxEAMRiv9Rmuhv4ydS37bO6uBJAPaPH6vltb1rZF7g3C62iM1IVShVWegakc7HR0ccnR4xL07d1g/eAACR3sHpBS9h9id74vlile9akTyPvlDz/LMC2tKW3BnO6PbF1nKmtOzDW96/et55KGBVd7HUkaZ0LIhjx5bGlPsnaiOD8LHOdYNVGbmbvw6dzamL4BWJ5iUWSP37m24f9KoJKIqwWYEoann+LlZx1BNzvrU4uNoExCP5PTOViMFdaOG9y7ZWXNM/b2OoWHiBZdq5Mu/8l/jEx/9BX7x7HmuP/ZGluGQH/o7P8KqPItwztWbBygT9z695trqCkGNg3FgKw1iZn1euRW8OJEI0SLjMDqWZXYKg0RYb0+p0wlj7zy6UcW1tPTccCGwunTIzTe/GYAnvuS38cSXuAb1qZ/5GZ76mR/1LpAGjyBdrMjjPiFtGBcn5KQEzczzAjNlO6+Zp4kkKxbD6qW5Zc9TkKiozlTtkZLNPEZREi26mzjnTNwmHx/jaWut4ZpEINEYQqDMEGtyN7a9hGYrs0sNdlOMaIkUBlofUZv0bO/OKPWwKIWoFOxiw+EaVnfGYwFPD6uodBNUEs5OHzDPa3qmp+vreoe/aaV72L3j39QZpL3wdR1oojWP5I1RqG3i9PTYGcnDir2DzJASMXbXfk7uJG/+2anCPBd334fINE0eCSlO51BxhmiInjS3M1xhLmRxRkXfZDXvYoeQicE3YM3cHCiSvcOqePErgjTxMauZF0M2E6USbHbn/w683xpU1xnGvjUwU1qZqdUNMdUKJgWJhaozZkLVyGyJqQiUTKuRrQbWKE2c95xCd65HQMyjc7UhYdxdhcS8k2tUvydNze+LMdFUCGEghex6f/znmg0cXrrJ8voAVkjJPFnOCi+++AJDhkl9elIkUFOkTIbNSmLwmFvJhLgEBmfiBkPDknVx+cGk0pNV3WRWu/41hODvewpcuX6Jq9dHxtsr/5osMVuSwwrRkTpFylzIOTCOS5RGsQGrirRI1gEts++fY0IlOiUCL0xR13qbNUQ9jWy5WhIRGjM5d1JDWLncRp0Y0kxAF6CGSMW6ictw5N88Rv7eY9cJOjGzAVrn+fq1m4m+qQoeKJGDQFO2JMrgWm6TikjxTVLMWHIZ0yr59GAymPykdVBFZzLHONB0JiIMYu78l4IsvfHQ1Gi80kF95fiNd7zsAjWnBzxYBO6FxBN98bqdV8jDj2PzCVs9ZzqH6TxQamRYHnG09t37ydVL3H34Mlk8pjSId+KsF6gpuVFECxTFxyqog69xw07rEGpP1AmUeeNu/ZBoCHVSdC6eUFQ21OoGnxSEaS4Ox0aYxdAIlC1aDKlgMvjIvxmry9e4/Mg1PvDxp2jbM5IIB3tHfQwekZCRFAjJdYB7TLz6oUusnhix9glunU7sH16nlomwFZru8fGnT9hsPskjj1xBQia0ysEoSG3IoG6H7tIGdgaMHicaQ3RDSi3elamVUiamaaLMjdYG7j6YuHPvnKIZDZBDxbRRdUItIZ0lCX6TjyEjoXZ4fyDKSJCEaMTJlTPBmu/KxQidJGAMzpY3ccpAnjiebzHNp3z+5/w2nnjiHdw5eZHN2Qlf+tA+pycfZHN+zGtuvoEcrvOxjzzDpb2Rs3svkKzwYPMp5rLl8rVHONPI+e3naRYZxgU3H3mMNisv3nnBjQFJePqTH+dwNXD9olvQCQnm7laRgITEya07fPPjN4nRo0DTLiFKAmlM3LjyMIdT5crVfUJYkNIRYUjEvKWWmc35BG3F1DYIxbPiO2ZIzC8ZIWAdjJ+zsKN9GtE7cmQge3c60IHwAaGRUnbsUe+gBoMhJhAhWSKk3N28nkRWixsG1TqCTCI5JIIazYRijYSPQcHNT4Q+ag/VdZPiv1/MR+BtxxgOEMwIwYgGm+0pp2cPuNIlC3QmsHd8HYXW1KUeTgVwtFs118g29a5lDBmJ2sMutpyujco5Fi6zXIzkPCBm5OgRl9rRVRKT45mab0ysKRalM1XBui5VRPoGwc/H1l+X9VLFU6+cuyqeeUoNi66l9NjJ1Bq1To5+EsNKhDpjdUbnc8RmCDPSUVw5JDCjdSpBB+Z5cIJWqs2E6IEC0sQ7fIzMdcNmhk1LTCSmSYiWycNIDY1qM06T85jPHLIzcXdGLWse4Qy0WsnJ+jnoG7ScE3FckJd7rDczQxpYr7dgELodvdaZuXqUqIiSTFmGyDzNzFOjFWEIA2q+8QyDkFtAp96bT8mRgmFEC9QU0TAya6J0rejWoGgPtw1ygRkUjHFIDIvIlauXsbhheXAIwGJ1iXE4JMSMFmHbtrSqlKkyl5m8HAjj6NG4NdLqBGWDmjHbGXMc0ZDw+NAEMUGL3nBXAasgEW0RZCS+NJIBqTRzQ1cMo+uWQ3F5lfnmMUQhSENCoWRlMg8uTdnDIxShEoiaoG8sMfMkui4dwTY+xaIRovkAJ4Kl5D6I1ojiPgtyoGpA1MGIFn0jFfMAQVmIoNMW4o6+oi51YPe6XjleOX7jHC+7QD0YBhIDNSdiZ8TVOtPmY8xepImhbFxIT0J1voDrhxBJyTHfcmFIcAB26nGefiMObsZQvXDtCkKpfgHGiw6DIJI88xzvLuUUMI0IFQmBlLO75rXQQsEIFBWqun7K2uQdwBiYZUbDwI3rN7l8/WGqNK4Mkfn8HvP6jDRGLCiVCiF7R9F8xDlYQq1x4/IBn/ubH+cDn3qOW/duU6yiY2ZSYTo75uSTZ0yl8OobjzLmTFEjDCPKCbF3lXddodZa1xHWXpR73J817X8XqmVaSJxb5IXjU86nCtmLhSTBGY/q0YtBOgNWG0LxsWHsZjVTWpvQpgxx0U0w2k04vOTSlob0PHUjA/uslo1SNnzf97+bf/kLv5TH3/gWHn7kKlEe5vHXvZmN3GUuJ6zXW6ayx6XP/gIvCKYzmDa8+uQLOD0/56Erj/LjP/PLbJ75B4x5CaZsNy6pGIYlp+stiyHwyCM3eeT6Q5Tj+wCMecFyuWAYB4aQmUxRhBQjOQ6uNYxK3PEzDYJEUlzQ2pqzM2MeBNKG7ek9artLDp5bH9kSxHFNYkaUQB4GYs9BJ3pCVsoDZsEZhUAzTy+KsXf1rRLEGHKmaO2je29JWu/G1mqYRtcg4y5txd92Yk+fivnCWW9SUWaPm+0uc6JPCmSnNcXczGG5L7LegQ3BN2qlFL8WAtClClEytc6cnDxA09iv/IBqH2AGHDxunltjwR+vmY/eK3i337qeXAGphKiglfV6JtwXuHTEsLfHIi/987FMkA2b2dFr0cBK7aB915YqYOoYqyC+OaB3Oz2GNHjYBc7M9a1C6hGjFbMJzdnHtwo6KaFtiXWL9alL1RFaQTCyzIjMiBWqTpgZTUa3MPZ41RCj65fxwpk0ulu8KJtpZjs3phm2U2YmUUJG8ogsR7TBxipFK3EcWI4DogGr3gsX9XNpl5TUdhsGPDoYPzUAJcbApatXuHLlIY6PT2jV5RDnm4mqO5TZBKyBkVpm1ustx7WSJDBvDSwRg7JIwmSNZhNJKpKGTk9wqUewQCKQh0htEUKkdsWNRiX5MAqLfn8GKNOWYYisVgsW45IxR6xv9Iixc3Z9c1XLzM7UNvcktYUsURS1irTCGCspuC69mEuZdhG+FmNn4Qq1zcxzcTOdKDl3XTZ46EY0SIWYcp9uVEJoxAiL2YvuIQtBCqYTMYDUQqaSGkR11q9qQhj67+6MXUKP73bUm4qAepCGSfTNo02U6pSPFAO1p/QhnqqYg08MW6dt7ErQOCRIkZj8/Gg0pwP8C37cvn07/tAP/dDBwcGB/o7f8TtOcs7/Zz+ll31st1tZLBav7DL+iePlY6baQKsZEQi5F5lWmWslD1DnmZiMFj0taBwTrHddGEeHBHcweYPDvQmOBDGFpgi904UgrfkNx/xmolqofSHSJr2L52ROaZ5GRBRqK6QhMs8gOaG1YjawnYubIST23OkJiUIJyrYqVx66zENXDxiXiSvXHubZT32S++czR6tDlqsFzSqSIpJyN++oL8Iho6MXj3tLeOPNfXS+zy89fc4pjcWqUg3OH2SYCuHslMduHjJeWzFZYGCgdcZoUB+jtlK7SSNRUZq9tPDXCnMRVEeKGZ++d8ztB2feFY6eZV1MqQHmIGRzjqgX1T5makxY22kWxTtjNNc8dSi0dz9mlJ4+FPAbtWRqy0g4pJwe8853fi6zTfzl/+4v8NlPPsnbX/16Ll+6Sb58kxwXhMUhi0vXiU1I00wKK8q0Ikpgld7IarXk9vEZ8/uf8pi/auQorM/POFsbZfIu75ufeJJ3vesLefG5Z7jXXirs5nmitYIRvRBNYGE3anfofaUybYwhLWiq3Dq7x2EtnLbMvDcxc86QIOsBKfgmSVmTYupqV0OCEVKXRgIxeXymqlHKS9GgXtAXmsZuWCqEBMM4sK3qetOAd1I68swsYhLR6IXlQDcCBZDQR/aCj+vBCQE7537w68pwJ7u7h50bGWL0RLLilIAYjJCGXvA5eN1UGWLwEWo05mni7OyMdtgL8YYzVsVZxIr2BVh7KIGHC7jnyxfeWhUskcNAo2LM1AoWhfsP7qOtEVS5fHjEMAwMeSSmRMwTkzUo7WJyoOoyHpWuw+5aPG8wulVcQpfoaEHEzX6eTNc5zOYmptbW3nEvhanN1LohU4jMQMFqRLWSRRBpLisQ99obRjWBEFymGl2vqeSOeqts1jObzeTaTSJNE9McUB1gyMxmXhhTiP6rKKUHTGQlxSXRBuc8A9pDDWKAlF9K9topHpeLFTknFst9ji49RM6Bmw9fZq5GXi4pz7/Qi3XIyXjVY9dYjfvU2livz2lTIUvmzt37bFuhlI0bgQyyCMvFirJNGG4kJSRWiwVjUmqZmK0wjAnr6LE4OK+3zJWtNcpFgyLw8I0blFJYr2cWR+MFwULRnnXQaK0yjAvmUqm6Zbm38rQ324L5Z55yggKlzm6mjJk8ZKwGigaUxlxhmh1yn4IwDJEx+3uYtk41WC1GLh3uM8eKaqI1v15zygRJHPTN4JATglLnLWlYkCQQwwKxCk1IwFydVCBB+vCrQQhdWz27YTEkL8RDwMRo1og6E0KiBaGKJwq6188lEdqC676rn/M5JmqbySG7XjsETNtF8tS/yMf3fM/3XP66r/u61+/+fvPmzfnv/J2/85G3ve1t0z+rx2yt8af+1J+68Z73vOfa888/P1y5cqX8vt/3++5827d92/N/+A//4Ud/6Id+6PLt27fzlStX6ld/9Vff/fZv//Zb4zgawB/5I3/kkR/8wR+89If+0B964c/+2T9789atW4Oq/vw/q+f6z+vxsgtUk3sslledqbjxwrPWRKkjy3GJhcTcNqQYiYsFacjEzmazCNr84kbcCy7R+Yo7YbsjYoQcBufsaUG1kVQxaSQJNBxfkxDvSM1KbcYYDJiYmQm5j9u0QRipBMrcjQVuRQfJ5HRAbVtiMB555DqPPPIGnnv+NvOLt7j1KUWLssgj4zgSTRijF+c0pVlj1oqGCiGSMmidGUy5vEy8/sZDsG08d+uEO6cDU4OwP/AsM7efe543lcwb6sjDD2fqsE/QGQuNUrvYDzcxzJPStFANahNKM0oxYGRblOfvn3D7+NxjE1SQaSYmRZNr+YIZKkqxjY9DnVCCSnP1nIxYNVD1aEptzLP5mEzcIVpEadLI6oU5MRDSGRLPmfJ9ZLnPl33ZV/E//dT/yC994lN87NN3uLSXieOa68sbPHT5EcbFATl6J6K1gtXE+tyZkk88+TZu3XvAs5/+JQ72lPPzNa0JbR4JMWEyMFvl6NJlcoqMy8GjFIFNWVOHJVVhY4V5jIgKbaoYbpSJyR3fFhqTbvs4GFSUvDcwhVMfS4cBVSgNcorEvMHtL5kkmSQjAXfsAt45TdlHcBcILtDggREhFNRmv8IkMsTIIOoxieoaOWu7qNOR1paEMKCyYZIGBHIcXatqQtWXTFWIZ8+TBBNzc1Kziw5xEDeRoG5v2UUPY8F/n4jzJjHvjol31OnGrXkzYXv9wo89Hao2x7Gpy2f86u14tJDQafKxt3XwPdWd8hK7c774dADj/HSLtHPmjXF0MLLaG1nsDZADNk3emdVGaOoINkkUuotZtI/svQhNcSCIoDpjeXAerBYoLmvQeg7m3fBUCq3MRDPEao/7bWiKlOZRw/QCnB3SDsGCm6jGkGgYUzW2c2VdZkpTphpYbxrT1nFKeci9eAXNfj4oCj0G1orLj1AXgqSUmeyUuZ4T2oDY6JIcNcLg6WWL3WjaAim40SdJYLXMHF5ecnC4Qqwx5ghM7O9lLh3tMXQCxBgylw5GDvcDZW5cOToikClT4fTkLqEVJ6mEhLQFus3kKEQm1q0R85JxWBBF+nSgIrHQwhm16zrVClMYKChlc8721J3ww+ia46SRtimwWDAOfoJVwFJgCJGiG2o5BvHzXdvI0eoSmKH99ypbGoFGxmoGFqi67ApTpvWEtUTMYIOyOExcWSzYlFNCisRjf66rceXa01YYFgcsQ2KZlBQjRUf2cr/OY6aVzBAO+vRtQS2uyiJUatclK5UqRhYl4WuNBXW+thnBIOIdd6nKYYosaIROX2iSCDFTWus+g0op3sBQCcTuWhzE5W45JrAz92b0mOF/UY/79++Hr//6r3/dZ/7brVu3hm/4hm949U/8xE989J/V437jN37jo9/7vd977Vu/9Vs//aVf+qVnzzzzTP7lX/7lBcDBwYH+5b/8lz/x6le/uvz8z//88t/9d//d1x4cHLRv/dZvvb37+U996lPjD/zAD1z+G3/jb3wspVda4P+042W/Kyku8QtRoAvv6S7iNBzS5jVhF1NIRjR13SNgjRRn6AxDgmvk1JTOlULVdUNzK2iPPZQkaKmEvjDX1sgioEY0Ya4vpXZcHF0jiYJOjbkqyEgQT+dAN8zbM8ckDZm9o30WiwO2U+Xo6DJTDVx56JCzB2fUyQvjFBNCdXOE96a8a6XBo0arutatd9+uXDpkkTOX9gc+9PQ57f7kKSgxUErjmTt3nSEbHuWRKyvymJCyATVSGFAzpu2mJ9p4EdxqY9psUYIny+CJOdv1mkC8GA1L6x3PGPq42kdOqhEfznkIAELXODkP1vLOIW0EMYI0UqkMMaMykGL0UVI0mkQyA0NZsWgLLuerfMUX/escb0+5/cJtnnvuIzw4fYaPru+gz99lTHuMQ2S7OfYzSEaOH2y4dniFJ97xOdw9fkBpldVyxWY9kaLjgSqNuRbGReTS0SFRhDGtur4TQq3YZovUwlI8qpUQHHHjCkYyiWbeUfToWlioF+XWdkxYoVpAUXICyZ5msxufphg6hsh2ZCjyYnBNMqEHfflJGNW5pzFEfwwTzDIhDQyDUEoixAoyU8TNJUV902B4RzIiqHoqFBZ8hG3GmPqIX6UbMvzz8t2Ia2ydBiB9XKleCM+NOGRCjCiF2ma/9sJLxWq70DyPbM4n6mE3SVlhrmuGQdB561px4UKeAH6+AAQRSqs+pg8eK9nUO0pDXPg4NCi1CJuzc8p6w/Yscni0z2p/j5gzB8uVa1zrjNWCdp2tp8cF33QET4rze4cn1KUIWs8xJkRntEHSgLY1/3/2/jzYti0768R+Y8w511r77HNu+5rMl72USiWZCSazKJBQdYlFyECFq1zGZQoTyCqHqgKBHBYKB8EfFqUKUQoJBeGoCALRhBxWmKZcBgVRRoaQHEAJyYimSFJNpbp8ypfN699tzjl777XmnGP4jzHPTVUViKcyCSaVK+PGu3lPs7u11hxzjO/7fW6HMNCIDm11otYTc8lPJjlOp7CNzbRRdBdd0K6gE+vWebB2jtuJU9tYu9Esh7SCQtMJXzpFQxKynSrjLQ7pDsOoJhktYYChh/zGdNxMo1cX97dUyGkipTS4tQOGb5Cm6D7eu3cXf+Ye024hcaLkFPc4KvMMTz91xsVzzwBw+9YF3jqnw4laK+qZLIa6cu/OBSLPsg5MmOaJw/HI9ePHpHTGmTmHo7FkZZkE9UpRpVvi8vUD88PoStrVieaOdCf3yp19PM/bZzMPX3mR87Mz3rDGnYvzMdIPjez5xb3QHOdlyEg6uTtl3iNpIqtzOj6ktyvq6YDVikqiW6fWStndIunMYVs5HDspTxG8IaMwPhNosSHeX4y1Kwt5N5E9k6eZrJmiEeLgzNhgfd8YRY0e0dwCZhuIUOYJ1wVvhltgyqaspJFa1XoYOHVMCuXJCmoxzUoVSYTmfGy61AuJAtrR1EkdmhUSiZIEbwdcNjR17OSIFwo7Sl/ezDL+RXn8uT/35+7WWgXgh3/4hz/x1/7aX7v1Pd/zPc/92I/92K1f/MVfLO9+97vrP+vHfPDggX7f933fs9/5nd/5wjd/8ze/DvDBD35w/bqv+7orgO/+7u9+8eZ7v/Irv3L7xCc+8dJf/st/+d4vLVBrrfIX/+JffP65555r/8NH+NIBv4ICdT9dADGqLylSNqxtXD56yN3906gszClTteJNEZ9JOiDR7jgnnBhLaBqrvPvoLBRUpqGVlKErq3Rfcd/YSRpYFwcNl3/vhsr8BDPj7pFkIkDrT8b+yYNVnyjUbaVvV6hs3LpzD50nZCocjo3ar3nbu97GaROef+F5UlfuXdyllAxY3JzMouAjx+gbgmk3ssjxOUaMvnE2ZZ67vyPpGfKzL/HywxN9Omcj8/D6SPPM5foCj95ywbvedZezKZPN6V1QWVjmxOXVI6Y8s24VWzu5zDy6uubU4dZTz3DxzFv52RdeJifBWhsIoRLlsw1zkxtOHjqtAgRSKhPSivifs9k6TEZEZ00rmUrvJbq32pAcN3lhApspdcdzt59hn+Hq0SVLFt737i/j173/1/Do8iGHAn3rXD8+0LaV0+lA9871WnnnNPOet72N/TNv4+KNR/yrv+mrefBD/x9ee+2NOF+U4a6t3L64w8V+x3ZYyWmhpNHea84pdR6rcMuc5UbjKZnuBXdH6ViLbZWkz5uZHueJkyfMZ3IuNGmYbIhEmPmcJ3oTeov3cCoFpARjEqi14lMBIs6QITsQh7pWeo1setUUCLE0xXlrG55GIs3QEpo71o+kDNacs/mMzU9kjzq0rxvJpjB9ALUpMKHpptsX0PDebSSTKaKV5JWAqer4E2D/2MWFgcPN6eEpwnHW9YhfXnG4HVgjRHAatTVSNmh59BVvuv2RcsaA9GtRWm1Ya0PLqWhKgdayRC7R4W0tIO9X18ZWj0yXR8q0sD8/Yz6bKGVGphnR0KAnc8wUmpO8ot7o20arK50WnevtGHGl3kMjCLitMD7XasFsJWXmAtMkrOuGtY0sypzKMJ3B2hOrJU41sTY4nuLfaiu4ThjQTOimQMKz0osz5YK4R+drM/oaHTbVBLXh6uRlIqfCejxRe0dTpujZ0Me20G6OVDfMw7w4DHLNoY1zOE3K2ZIpKQ0TV2DXmhoFJZ9N3L4dbvn7d+/wsDvHq5XttCKuFF0pufD2tzzF+9//Lq4O12y9k6cdWzOur484xnZqfPazr/D48kDysJuqhcH0ztltnjkz4CWeu/MUD/YFrJGT8B6d4Wc/w74Urq+u2WRiPTSe50XyVZxfZTpHdhdY68yamZbC1qJQFkmoC9hKbyvr8Yp2XPGewpynztYrZTWmi/0YkRdIheqd5oWSEnOGNCstVXZrbLzyPHN+5ynUKyILkJB2oruHrnYgsmIDW9EUNIXWK8vUQ7JTT7jMoDFlAB+RqgaSI71tbCSzDBkKjS6NrQd2bE4TU8pDNh33qyQelBVZKZMzSaGPaaG1jqnS20SSBdGEpgQj6fFX4/GzP/uzM8A8z/7Rj3702t35nu/5nucAPvGJT8xfiAL1Yx/72LJtm/z23/7bH//jvv5n/syfufsn/+SffPaFF16YD4eD9t5lv9//d1ALzz333Pal4vSXP968BtU3okDdkUZnNGH06wM7mTlwDOOI3HSVIskFwCTRzJk1xPBhutDhtLQY2XjwHb3bGGEGhF8TwSftUYBZDzBzeAYS5mlozyI558bkk11pEFirJJzWa2q9pMzG2X7P2dmeJjoSFyfmiwsOLvy3P/M8frriLfefIU8zoS4chhO5EazfRCBmtgrWo8vRrSN9IXmMVneLc/f2kV/3gWf4medf5ude+Bye70M+59RXjg8fcnX9Km9c3eYr3vMWbi8T2TpZQZOFBrVWtnWLWNnmbFXI+zN0OeNzL70a77dER00IbqkmDSxOiyLJNIMGECfg6GE+GSb9KFS9xw2VcPKbNU4SRpiuCe9O6yMfWmdmElKc20/vQNfQVppS8srVi29grfPsO97KU+98mnXbYgxdBwhIBMkTt+8+w/HyQN0yjx9dR4hDxEaFY310gKesnC9zdJvcRxQmdFWuSuYv3yssN90nCaOUtQnNGUkpInS7UNLQKXtjdeNoTh5yAaGFcUxDI72tlZwXSsnkLJQ5EzVGyFYOpyO2W+J9vEEvwTD6lfjjidYGh0L70KIm6nGlJCXfuPL7CWmFrAnrG1aX+CyrM+lEwVCLCFaAJAvuKaJGRUY3PI7gxwpJMq0Z4pmkE/RE35zQo2TUDS1Q60prG6rRwS1lIlHp2+iKmdNMkDrG4hJSCPHxiuXzHVSz4biXYWQkRACuMjR5mc5Gl47nDbxitXGsna0pejKurk7kWZgXYdnN7Pc7VANELs3wrWJtCwRdW9G+ja7h4MV6uJ+TDUOmW2htJTDn4cQPCcRhczQtoWVV5dXDxPG0UsU5njqbB95p3UIekZJQLb49pyh+pEWCViT9FNoWQRBFCiYNUlAcpDu2GYd64Liu7M7OCIunodaZiA64SxT5ZRiH1BNZp887ZHBai/W2e0Otk7yhPgV+rBTa0LCWeaIMdu6UE1POzLsz7GzcZ82pdQt9vcBuv6N4kBgkZ+blLrV1fO/cuX2Xy8dHXn35Za4uH2JW0Q7nZzuWKdLVlmVhOYs0s/PdGct2c1Zmus0cj0KeZj79uQfkR68AoDJjXcI0JVOk/7lTpjC41VOlnjp9M8SEujpti+7lZpWr0wnJK7tzR5Nztp+QnLk8ZEpJSA19tZY9WQ1vozOapuANDxIFThR6PXY2aYxKNOmTe3t4oCKNsNKo5qFXJq6/PnBhiCPJohsb44ZB1hhue7kZ8indFfMobiNgwYEKfaNpAzkBG41GSROuGdKO7hMugqaGlorpP7ZO+lVxvP766xng7Oysqyp37959Ugi++uqrX5DZ+X6//ycamn74h394//t+3+/7sm/91m/97O/4Hb/j8d27d/v3f//33/ve7/3eZ3/p9+12O/tCPLcvpuNNf3iaNkRnhBtGJmTJrFcb6+kEeRuLUSOlcA7fLJuqBdeCSwJSyE5NUNMwQg11URElZyVrZNI3E1o/YUmQKUfcoBbWasPCGmlDKjYwHtGtNQ/nrwBJYd2ugBNntzrT2cI83aLWyADPk6AZrtcjn/qF1/nyr/wQr37yebxGh7SLIa3HqE6gudG7D12g4JLp3sA62WO00y3jnGGeOV+UkuED73+KKhuffPkR3TstLVSvtFZ4/uVLLo/Oe9/+NPdv7zifIXtia06vLSJOHU5bJy8XXJ4aU0+88sZjTq3TU3R0HcGkodIj9YcJKBHfKhWkjpFzFB4lKarK5COe0ATVHIstQvcbIL6PG+s0DG5KNaOR6AJpKty79xRbq7BtFIPz+TZ35Ay52nDvPF6PwVF1IZeZ6SzR18rD1y95/bVLXnzx5XDpyggN8DBMWTV208Q8R/eX7OQlFg8vjk/GNYnDOM/IoTHtayVPGuPCNJEsk0ikKXFsjlhwP0UbRgC0k4KSmFMUt8u0xPekGxJYFDlA5K1baF3D+DC6m6JsnrDNUY8uYvbOpI00aeiy00aSKWDeQGIkFIkgatTRzTaP9TICF8oTRI47tGq05kwlPiPzMBTJQOWgmW4ldiAKeAvcZwuHTymFecmcUNZTwHJ8vK5eV9ZjdGS8gxDFefLEcYvvw6MgDVlPnEeI0euIdkjhmL8B65McySE/MaLhLEPHqpLpYmG63Izcjboah8edS3WWKcabWRzxiBC1biQxJo3X5x7FsTd7EjHpDO2nSLjFLViVLhPNE9dbxRyOa+d0vOK636N2p5yViAIGkMTqJ8SN4mEkcwvTHO4BYE+BzEueoqBvhml0tvNUgNjU3Lq4YPaZY1tDglOm8bmFRlFFKZKCVJBzGL08itYbstrNJmVclsNQajElUCVLJtNoGEnyk3Ps/IVPI72RyzzMdPG2tLaFLOblc3Yqo0vYRmhCYraQVuWUudWE29cHHl8duT485vp44H2HS+6Mzcyzjx5R/YxlWZia8ex1vO63XVfOrjf0BM4VZieefj3iiq8fX7JeXcUaMd8kMXWkOdWM03rk+uEbtNMlx+sr1sORbolDNaoZWzfKaWM9bYik0GpKHhdJD7lNF7wXJGeUm1F48FZ1ClZxFmHKE52OaWKaxibYT6S5YD0iTZdlgVWwCtMcGuzQpcdUwcTpychlSH16wizCUtwFkiJF45qSFhxl75FiJ3kwhxdEIvnKXektDWcCVDaSdJhOYPHZtbEW/Wo97t+/3wAOh0MyMx48ePBEkPv0009/QTqUH/rQh07LstgP/uAP3nr/+9//2i/92o/8yI+cv/Wtb12/67u+66Wbf3vhhRemL8Tz+GI/3nSBatLRHJnBjAKVnDm6czKL3akbPvBFKY1uGAztXpgCRIX8S0YaghA54UajR3vPIg0eMcRTOHhHhGG/wfnc7GjdmFVozVmbxUi/DrxJbzhC60eWc+PszoxLRtMZaEK6D+C0cv/+Pf6d/+A/IGH8xT/5p0E0cC3ZWAa30my4td3pvY3Ftoem0zcUYc5hlNg6pLSjHyrnS6FMC7/hw3suXniRj33iBbZ2QfdzUlq43pTjK5Xj6VXe+syOL3vn00gfoP0aBXfvBnnieq0cmnN46TU++cLnqA4pFXonipEsVN9QUzILZkoTcLHBjARxfaL1Su4jRnDCeiBtXAqeOqlLJA6xgoBOCc8Z68KpHZg189xb3sInfvYT3H3mDsv5Bftbe6Y7T9NORs5O2mXauiG7hJogozi6ON9zfXXN66+9xnve8x4c49Hjx5hFTKDVRpqE3TwzzxPgpJzYLYk839yMY3SbKOAJdWVK4apuJZOSY9s6TDqhEctTIkl0c1MCTR3ViHtd8sKcZpY0R1Rit3BY5ziX5EYrBtE1tGE+Ij3puHRCU9qaIb2TNTpimzm5Q+vXuAY/VceI33NkbFegp4TSSLmAafBKs2Cyhunq5lG8B/EiZUCo2zY64x10pdlNTnmn20pRja8BaKaUwm6X6KZsJ0GZUQouynpy1lFc9IHpmQrUrY7XP4IlGJ0hUW6ip5Jr5I2P60qSDpNQp/o6BCWC9xlcSDhq4fRHa4SwurEITOok6cwG2rb4nIYGHSz0qB73EevRnQojmYTBjtB6hsvZcN1zfdyobhzWzrE7pxb3iOMKaTY8h6xjKQUnAkGKgnfjZNvgtyY6Sm2Num0kUbLmoCTIYDPf9FfG2F0l9JaTTtFlToGTay0+x6SJUiZqbSEfscDqqYwie9ypBbj5GCMNrCM97rupg2+ZkpXeK9t6zXR7oS8zX/nH/vSbvdX/jz7+Tz/xyX/sv//+H/87/9h/ryWznk8crh9jLszzxFQKOcPpurPVSuuV1q+4PjymbRvVGrVvkIZRT6BuxvHYcRZK2eGiJF1xrnE2RAsQQSRlYDjmKXOxWzi6knUaCuBETgXUSWMjan3DUoE0o3bCq+M+gyol6QiliNejCNUtpF8iMckSEFPUUnRNh5SmWwTUmGu4iCkI80AJhiTJthMimcwcqWk0zMZ9dVxTYo6Q0P6r1yT1FV/xFSvAuq7yN/7G39j/9b/+12/dfO3973//F8TFf3Z25t/0Td/00rd/+7e/fZom/+hHP3r10ksv5Y9//OO7973vfacXX3xx+tN/+k/f/Zqv+ZrDD/zAD9z+63/9r9/9QjyPL/bjzYP60wVoRPDV0a3sJCqZ1QW1CffY44GNkeEYRfVtJLREcSQIpvLEjWwWHbqcICVFrEUxqIQZSQeQ3Yid61Q49koixly9QW01OoMaSBrrnVMLruKt+xdMZSXnhLOPTnCxMd8uuGfstPKPfuxH+Zt/44fQXvk1X/4+drs58r9bx6oFd3Ishq13WvCfyCnHKKg3ujipCFmEbW3M+YytndAyc1aM97/rHnduKf/wJ1/i1YcHGkou59SqvLZWHr904o1j461PX3BrD9oU90oS5eHVJa88vOK5L/8KXr+8pJTMsUaqVWSuZ1yhtUqSGFerO5ISpEDnhKbBIXWsRZE9pdEZFSFLyBOw6OCJZorEWNy60yUA/iUrJV3x1rfc4z3vfgs/9+lP85lPv8hTd26jtVJPJ27ZPVI/wjwzzYXjo8fMaaaLcHX1mFdfeZ3dfuL8zi1ev3yAa0bzFEUVJ5IktnYgZWG/34fbuVX2S2igE0ZSjY9xtdD/Jg0Mkc5odyYRVALWXZYFLYmzNFMzEVE5tH7yJAIUTq1GF9Mi0nTOhTLPEbKgUbiFSCWc1NY6daTmbFvn8dVlFMAYZ0sms5BzIU/KoguXjy8xW8PlSxS1W2+R1112UQgSi1CzRkpOw/HBHy5FyDlkMa11XJXmA/NEJD/ZiKbQ0e40NyBMHtVOo9tsiK5AZM8rijfImqlrdMXw6GyeTo0iEDwbj9hcybHxiQd80t1zwlnsInH9DENVJgDmeKQxqcGclKxOEkfVmArMyZk04kO9N8QrSRpihqNR0SPggWULmYrTesO9IExUhNqMrcNajWM9cQynIqLKYSWQcWmBksCvqf0YSZWtY9ojIGOrwVx2YdrvowvWBBu/B+1sIzkqNR+TnDQKD4k2Z+okLRzbylZP0W1NOTbAIYmlabz+1iq1rvhkCDOkgnh8vkCwNIdJsBlsQ14gXjltneITZZ6j+DFje8s9fvr/9t30F98AMtO0fL4DjEU0a3fKNKGi0T1tW6QxIdgNzxZlWxundQ0D1eHA9dUVr7z6Mvdfv+L3/djf4z//6g/z0t1bbNVITLzt0ZH//d/9Mf7zr/7Xee3pp1h2CefE+V64vV+w83OOt29j3jgeVg4nA+tM6WZDMxoBxwNeT9T1QLdO2e1Zdhfhel+NdXUePb4EmZl3GURpZnRtdF8jVlaWwH8NSY9KYtaF9bTi1khpoW2GFkHn9EQys5v2MSXKhZ1MHNcjR2vkOXBtmieqVWidkgtFJyTFJsqaxJrowRJWkUhes2BgOEr3jLkSPdItdh8WYQElC2jD7RRNnCHJoil9izVZZEN9pcjN5vVX3/F7fs/vefCt3/qt76q1ytd+7de+/+bfv/qrv/rxF0J/enN893d/94s5Z//O7/zO577lW76lPP300/Xrv/7rX/2Wb/mW137kR37klT/0h/7QO7dt049+9KOP/uAf/IOf+2N/7I8994V6Ll+sx5suUFPdYd5JJVJQAHIKSPlhbez3+8C79NiLlqyksQA7He3D+d6cai2KHxt2DVESBaGx9Q1razinNbH1jg4NYVsrSsaak3B828Ab2xrxb80C/9NdSSVzvpsoS6HsRnqVC/QJV0OyIZMgLKxVuXz9EZ96/uc4m+Adb3sXeVK244GcFL/JPh+dkKRKthjt0Trb4YhrIudE7ZEaUnShJEVKZinnMZoxgXrFO24t8BVv4ed+8YpfeO01jv0KyRccNkdOhctDx5Ly+qMDb7lYyAK9HXnl9df413/L1/Jrfv1v4P/y5/8cDx8/xPUCq0dSmlGd2YY+NqlQ8kD+mHyedDBGs25bQLVF6BJdpBuzTWJMyHLkoCfS0AY3NLIhERdOtXJ5daDsznjvr/kKrMzUqxMv/OwvcHVsPPrcy2wou1t73vm2t7BLM+rClEoQElJif++cox154aXP8sblgTTNHK8vwySlE6YNLYnLy2vUnYs7d1j3sUFeljP2uxlvid6hpMy8W5DTiWqZjLHMiomxuQYVom3R4UdiJO6CkDitKy0Jlhl60k5Cce+0TqBrJCManQqRwJlJcupp4+pxaMAuH1+xYZSSWMrE/nzH/mKHzjF9sB4Qf6ePDR0kMkUTSTOTXnAtpxjDJsF8RTzCJfIwFxodkuE9Uc0iwlSj52Nm9FbIyVHvo3M6s1mMRElOtY1ZHSmFVDqpdLwGwD7YrJ1t8CK30xqJa5oGND6usxtYBkoEGaQUxXoyaEa3RNebcI6gEKgFakd0ANHp7EumeFybqjCVMHel3kKmkoTeK/gaGk2mOFeJz3U8gbFj2NPbxFqF0/XK4bThzFTPbH0esPMUcgQtuGRq73RvpDKRewU6SsJ7YKhSkuh0i3A8rIQOvwymc3TRW90QjYQh746boCOdTc3w1miTIDlzVvaYdbY1+M1FEl6dlgxJHREnF0HExuZbEJ04nG7CUSLQBEBT4K9M4x0JqYDTTkdMI8O9d+fy3m3qfA5k9vsL3Iysgnll20Lfn3MEObQWMptOaHe7CSIF607dGuu68vDxJQ8fX/GgTLy6GWuLZeTx257j07d2XB83su6QHNrUl27f4VMXt7lzd2LZd9L9hfn8jOQJve4RBSs9kF9to6fYdEsOmZhqofpKKkuY0PKM5Jn9+Z75zp7jofHocMVh29jcQGdOdYMsFGb8ODaiOUIegOiCb0pxIevE2XTG4fqIN0HnMPQB1A1shmZO2sC7IrkHqq8LqzWi1EwICWseBWdOlJxCGtRkjPg9Op7Jn5xXOuQ3rbeQC6iRZKPbEXSOa1qMXDK1Q2tC9jPmtB+bagGO3MhIfjUed+/etT/1p/7U8/99Duqf+lN/6oUv5OOmlPiu7/qul37pKP/m+N7v/d7PfO/3fu9nfum/fdu3fdsrN3//43/8j3/uj//xP/65L+Tz+2I43nSBuqSAaTdgyVdAQIzPdreohwS3bwOPcJcYF3t6spgXJrKUyPLWSDcK1LePjl5oPN0ldIg5RnLNHRejEwaZs7nQt2tOh2sk7QbKZw0DUIfwphe0KDrDbrcMrdUaYxkTUgpXNUggUXJnR4EJznf36XobSdBtpVrAz0s0a6LT6wGWxpxWG7X50O7FTSaXFKN/76FXy2sgiurKRGLev43TeuTdT11zewLbJ37+06+xaeKUEikXvAmffOEVbp1B3Y48e+cc26453yd+/a97Pz/yD/8un/jkz5PItHpCZArzkV8j1sK8pol1qygblolxWE+oOCI9ChmPzyDhwa+UxMYKRIdIJRK5NrPYdxCdraRCrY17d+7QpfHo6sSD04m7z95j2Z/x4d/01XhrPDpc8/j4GHHjTEo4rrXT+kbbnDt37jCXBd0mlt09rrpxbUZeMqob7iuZxFP7+9zeP4UKrFedJV0AsNdbnPVC107dG2LOup5Yi1B6xv1EHRzN+OxWVM6wNty1QGcla+ds3kV4QS84xjQvVN0gK8t0xpT3kDLpyXy1kbShdKQJOrLS7969w/rMHealMGkmp4TkHHrmXoFdLPp+oqSQJUkTqLGxczFoBU2GmpFziiQo1ScTCWFkJSJISax9Q1DCI5ZJyVBWcp9IbQcYc0oj8WpF9WZzuSBSyNLp7nQ20IZZwwa2prbGoR6Z50ROQjKlOqBTjPV948bMiAhTWlhm5WrbUAk3dbcjO4H55j2311j0molE6hN0KCqBk3OjSufkDR1GyhDChh5TXEgpFnyzFkUczum08tqD17C+4JxB2jGf3aeLsjkwLaT6CPc2CrTogNftRN+uSLNhaccy76k22FODeIEVxISzeWXdotDoxPXjObPf3WY9PSZJY0pneMtY1xjhewOJIkbEkJRRgwkQ1dCz54yz4a4sux11TZxOJ6Z5xDJhTDmaAhXHuKGgGJ4Lm2/sp5DB2M2fbmzbRtHoiK9S8W6spxNZExuRFlfrRqsV8SU2PliwcWsPAbRB6xVQ+tbZThttq2ynLa6rtDwxCF6tG1VucX73gr52kjy+eZpMy0wz5eLsDhfzjDSnNyOleK2pzKgYMk+USSmljNF7Yrs6cPnoAW4Wcg0SZhNb3VF0x/le8CTY1WM8bRyOnbplpCRSP9EEahWKZVowvVjXlUNfEVmCo3y8YilTdOK32GQAFC+0rdGZaQlSCcZxl0oXJSUiRS5NNEtUcyRlCplJCuawacWVJxvGkKJ28IZ6bGTQjPX49Jr1kKF5ZpaQ79BmqkNPhsmKizNpQnoDP8P76c0u5V+Uxzd8wzc8+Lf/7X/7Yz/4gz94cX5+/i9dktSXjn/88eZNUlPFpFJKQTXGJCkLF+cLmoTWNqYpeHG1VrKOeTwR44asSOox1rdIDXEPpqggqEzDca40v7nRysAaeZguWqO7D1xQjCV7cw6n64ByS2eajLIrIQ9InUjYiZxySUIpJYwSgPcao8bUx250puQZ00hkIoF6oGncQ1do1kgpjWJaQSp4ezJadR9g8hvjlid6D8xOJAtF1zercX625195m3E/n/OLrx54+SqxkWiyUabMpvDqy6/x/g++gz7NzKb8F3/xL/LTn3yR49UVNkHzhW4gbCQ6qo2ZyI/eULbh0EcTIgX36JIiu4hXdQutq8f7KTLGrWlkcFuwYJMUHEHF8Z7ozfBpYb+/y+M3HvLKa6/x9J1zOK08Pj2kpMzt/czZxczl8ZrTcaXbhOfEyTrz+YLkRLOG9JUPvPcd/PoPfDk/9JlfoEunizDPC7IeONZLHp4uIWXu3b7g8vgIgOPhwLUXKs6Rhm+BbbFl4uinwLWUDC5Ua8GAzQ6aOVmMtpP2OL9MEApFNXipHfY9xVg5Qc+QmqNtpOOwgE+0ZlwshXv3An11+1bmeBZjRonIKKRMTCWhNcW4thxitOhxfWgO5m+lYlZZppVWG14L+BSRnRoueoCpd5bW2DxkADp0bSaKtUHDwLlxM4UGN1BX9IQwhaO7GJ5Xjn7CekJkj0qlJGW7jk0oVqmnDbEl2JyzR1SwW0RzWg++ak64Cinn4WJXJpk5S2CubKdrDqfH+PVDkj9myk6XJQrvBGsKXa01H8VuRB1HjFoUMo5hfUUktHjufTimIyp4f3vH1dWRbb1kPVSu60yazpmWp+nVRtERw9RmFqNsUabzM8yPJIdtPYDk6DaPNvGcE8c1NiKihXXbqLaRCiANq53NrkGNZifUFSHihrGOSTi+WQ1vleQRb5mI5645pE3dG9uqJFm4vd+DCqf1SOw8bnT1JySdx99bpW4nSgmzooy6WiW0vymleE+pJPdw61sd4/t4X8VjImRPmLrO1ozW+oiY1nEvNlZvUMCkYVS6byz7TJrmcZ8vTNNEUqf7OsgvUFJHfSVpYZ5zBGcAW+usaydrvB7EmebEPEfEcZAgnLoZOi24b7/kfBa0OD0bacosZceeMHfZGkznflpBjCknvG/0tuEWLv4kce30vuEi1FbpdmReFjRPtHFt9rJS2zXdOmvPiDWmnCEJ1oXanJIKSWJKp1mRkpgT9H5kkyMmCiwkLwixQSyyD/+FxeegGgjGwBcurKcN5pFeOE10FxKdlC1Mr954bNckEZak2PwlQ/jTTz/dv/7rv/7hv+jn8aXjn93x5jFTZ2kw+hppAMPP9jvyvFC9U+uBnK5JSch5Iqco0iDA1yZtZIdHprIOIbh7Q8i42xM2HAIph5t16xv0Cg513caIBFpbY4PfoEwL024CqeHw1sZpa4hqGHh1ZjRzh3s4stXnPKNZRo45kTdtEsVna/S6Ie6IKb21eK5q1F6ptdGdYEJKmMDMWhS2YqSUo3CHz8c1RjNk/H4hMXNrvuK9b7nHnFbOHsLzr1yFackSr3zmdf6Pf+A/4t2/9m18/1/6M7zl4i7X65HD1XWYieYZLMwc2YwyJG/FJEZVEtnr6EDdjM6vezibWwuIP0kxNzSlwUENWcYiidoaTvAzZej6RJScZy6eehpLwqNHD3nbM/e5NTk/+ff/PusbV7z+6itc7C945/vew9PveTdVwundrEMR0qSjC9b55PPP8zd/7Md58bMvhUnLwTXTO4h3dnNif7EnnZ3xqRc+yfHVz4zP0ugeGCw0o4uQKKGxkxrosgpqA/eSo2vRPMbsIh4GlUTAciWSsqIYkFhYxKPj5oL2gJBDdCDneWYms3gm1ZtYxzqkLSVMVVqIfHhFSMw5IXOhnW5Md2E676KY6AhYMOpaIUWHTbKiCAy4eU4h3/CtYn0jJWcz6H0CL8GzdYniiTUqWEmxeTQjq5LLxDwJ7JTLSbBVMcuRA6/gjIV87jSuKRI6yWZKyhMisfG0FkEGNwVyzoHz2s07jEzvxuuvvsHp0Wtcv/E697KQM2jeYS7U4si0IbmiaRiuENygWY8ENBhCAaeZ3cDUSKLjLXFc4Kwkbj9zFxHn6nhF68b1caVuD0hyi5M3SimYBXtUU2DAugtmhZI0iiFl4Lsct05dT9hWYdwrRB2VRu8N6xs6uqmVROsV6Y3kkCXhFGCidh9xrUCvFJwpJbTAageqGToQXq1WyAlRw3sPskILqsKy5MBXjUMdxKJjqiJxvd8cPoJFBG64tV22CE+gh+TKgXHamxF58IOp3CUHY3rIaT0prXVMlOqGJcWTkuYh+copCl6HszKz7AYv2yuCsUwzU1kA5/p0ZD001lMjpxRj7JwjNawJd+Yd0zRRtxVP58h0I/NoYfTUMrTXIcXJU2JZZk6HWC+KwDLlQM+pkgdlQh5Fp1GkkVN0QB1Y8hTa0AmQio0NwcPrN/AShA+TDc9KtY60hMhEzplqlboeKSXjoogndnkXXVI7AQm1EveUEb4hFulyJRmiG5rXIKN0SNM8Gio1qCx5Cb22O93WiBXXiyDZJBlGxF+9JqkvHV+8x5suUI8IaOFst1CWG4j3RM8TIhFjWfuJSQo5K97rkwJVSDTKMDj0cPNjI9UoXNB4CXbqYPjJ0IppC1OSSKQBdWDdTtS6MU/n5N3C2cVF5IITxpN1PdAMll0mpwVvN6tcZJ6r5hi1RYuE1tsQsvNkd68OiOI9IimFTrcTtZ3CgDI6ZG4JH1nLbj5c6NHRkiRYPwT2inKzXqCyD4A7NXh5bNy/t6NpBXVee/wGj954zL/3P/tt/C/+l7+b7/4//1E47qk3OqQstDbR1sgFV5VhFpJgb1qiWxrj+w31iNETMkjHNYxsEIlJrqGP7MN8EUV8Y20NZQ5trUUnJoISBLPGw0evc+on5qxceWObZj77xjXPXjzL0/PTXD98zN//+8/zr5y/i/1Tt2mnR0x2jA54bZBmkEyaLii7u1xdfQ6rJXo2ZpgH9mm/P+Py0Rv8wj/6b/js5z7FR5ZhEtFEdaW1UGCZG2VJqMCcJBZb0ej8dYkYWB0Aec+4d/LoEXWzUcAVoFKmwkkruLH3xs4szGYD9aRsWBckL6PYjUvCuTGXjU4WaXQ1KyItilexMRm4MRWFLERSjIU9LbQBB3c9RawpEzZIAWuCAw4pfjeENrp7mL2cgXeiknQDzTDyvyudPCekdGr3iFCVRFeoVik6IwJbtF/Z2oZOyrEdcTy0lepIAWOltTWQFZtBdUwNPS/M+zOm3RnPP/8pfvyHf5A9K3emwvV0izrPnMpGms8pSyGVE1PpJI30sDJNaEpkVbQE+7b7BpqCJDKaRSLD8De6YWKOb2HavZ1nejJuL4W1J06nK659o3VjPTVSXijzbUSFYw1cUVVHdYqNp8NcEiVn2hoUgzUdMDdymcho/B4XlIyb0phwX2PXTI8u+hhHe1K6Gm1scs2M2k+UUvAJUg0Vo/fOdmp46UxTbKLcGmWwZt22EckaEalpxLB6j7Qz9UiUC1irUFTIotQ0pjzJosAapkiz4Rh3pdVKa7E5E43NKmYhH7EwFhlO90TridNWuTpt3NnGemBOdmWikOaCptjkqCzADmzHo4eVkuHBq49Yryu9Ccty4vzWOVUbh1NnOdtxebUyTTHZOm2JajusaRA+uJFaOXMZY3NukE8TqCETuAreBwaM2HicX0S3dpozy1Q4rKfgri4LKU0YnXWLgAKASScmeqTa0elag49LQ6xFUEu2uFaTwZQgOyc7kPrndcIR9dtwT8ASm80Rvy2542P9PFkjpxmZBLbRNBABG1rvasyemVKJ4pSYDPT/DgL+S8eXji+O480nSV3cwVrnfH/OssSNx3GsVlpvnMQ4y9EtbG3F+0qvdXwfdE+xkLvjVLw3Qhmp40YemdVAMOcsxk2pjchOh1PrbLWxeieVzHS+Aya2tkVXtkSbME971IzaGt1OzLnctA9BMjrNiGZqa1iNrkrICIytNVrdInGmC9Z6FFMSiJuSEt073QIDhe9xz/QeDMQsRhqLCUZ0pCQ4l7VBryW0gOagHTWhoOwL3JqN074hmnjbU+/m1/5Pfh3f9p/8J7z28gvcvjPx8LMPOJ46VRe8hO62dSeb0yQQO2pCd6VLYkLJhHvfXcMVSwDZnT6kF6GJ6uaY36CKwiWuKrStIS1FdytBo5JHdt98dov/x1/+L/nIhz/Ib/rNX8PuYuGrv+Zf5dVfeJHKyv7pMySvXF++xvlTt1jbyjIluggpTaNzrjz97Fv4yL/yET7z2c/yyZ9bA6lijd6Fad7zk5/4eT75qU9xtpv48ne9nV9//x78v/5m8F9VBw/So1Mtwek8Xl/hE0iZRgEKXlec0EEnvRWLxTgvNEeX5ybK1HwLPFMSRCZc2ojfjYUrZY9i022gYeLnugkVIYkObq+wSMD6Y3rQI6X0RgQZP4X1jZwMWqeXJRYljQXaeqen2G4wriUjkZKQrEd3C2eziNut7lgHPKYdWYMhihtNNlLKZJ1JwKyJZSpseeCfcKx76OKA5BML56x1xRu4H9jaAbHOth2gN4o5k2S208qcZ6wKV284ZXcOx0e85faMHa44PX6DV3hAKRNdCst8m1QKmir7ZWI3T0znGauNMMcIuQQazFXoFuEVafDSfLj3nZAFhPRmcEpFY6TrNRiq57DvMVZ+5nzmVOHq+BCRzKwCrdJdmCSkO1vtVBJpnnAVNjei79lHgTwiVnOGBlttpNbJSVDinMNDOtP6OhiYjOjh/iRkwZuOrptitSNuqDRaX+k1PpsyZ/I4WcLkM5Bm7nQC3zdpIhlxbQ7TWHJBLIr45Ir0jiQGQkkQekxTLEgSXiNmVTSIJNzIgSzeU7wxl0ROmakU/HQiJcg3ARIuFCbEIwxia2MnoYXrQ2Wrj7m6OlKy8ODVB9BgyjOXj1eurjbSHBuTadd4/bXHaA69e28bbe30FlGkkpxuG5qcZSpc7Hecn++ATDNn7StrjS5wSQoDHyUiNAvpSi5L3APLhFtwrW+MfljlrIQ+fMozx36glMyCctk3miSWeYeeOnmaCMZGkA/UIz1OmSiW472TGoQRNVAJPWpOeOo0tZDMCEiembREzLJHR3yaFKQRS9CEyMJZmegi5BRmwcITytuXji8dX1THmy5Qz8oOkjN5Cr4JYFvj8vU3OJwOnL31Nnfun4ezvjnzspCGSDkW587NjVXG4nOjmXIfkZy9RvfB6xOcSsap3bg+XrOuG2mZ2M23mWYhLYVWJbK5JeMacYspTzH2ssqym/AeTDoZRgu3GBXGohGJPL1WVCxu3urB+vbIzm4qrNsJ8LixWEgCShkL5xOtX7iRvcd+npKY80K1E91uaBfRPekccTkhfSO54tWYXDjzxHz2LE89+5X8nb/9cXLuvPtdb+G1h58FVa6vGrXOsZv36NKYBSAaNzKKSUO8jyz0RqbHHcxkjPQyKgtiKTqq4/PJSSOEwTZ6r0g6Y54zWGJrR4xGLlHIXz16xPt+06/h3e+5x9/6W3+Vv/ux/5oPfeh9/Lr3vp/3vvU97OencN94uz6H7m6xSifrBZsLeZlBJ2yriMAyweHys7zx2s+R8xWSCktZMBdag1IWvuLdb+fL3vUWvvw97+apl4KL7NZoIjEGTkKZ4vlvW3SZcorORuuRTqUSxqaUnNVPwBzMXd0CY+QdseiIqXbOurNIDgC8xHvso7NYDZolXDKiA3sUJzeuCRtjVaVFt9wNl6GsTiDa6cP0hDRUNooK1htinSk1rFm4zT2TtJCGpm+RiYUYp64WCCIf5IHQ1RZEQ3uNN9wynqKwmbSwnyYWhdxj3JstEEmLzDQ6p+1IPw0N6umKtD5ij0Br+JDcSG2UdoqxbhI0F47rY1wvOGeHrxu9Ny6K8Zu+6tdy+fg1rh895vLhAw7Xj7h84wHH0xGOGce51DDlzVNht99HKtFuZloyeckxzpSOSAMtqBYkhZzBh068UwbaqrJ2o+zOaG2l9pWUEmcQSW1TbKYvFsUEro4b69xDS9pWJO241iAabJuRcqFVZatnlAm6h/lQpwDbd22QG7O1IAAMw2FIaSqa2ti8RnHtFuzhogVaFHIiDq2RAE1G7Q3rjUkSOU9YjfNuykvIN4iRfKCgwsCJhoGM0UW1J+iOMOL1U0cHZxqxmPJYdKIlZaaSgz1qleYgkhE8pEu9h4GtVtp2hfWVpKHh1pvi2QRpTmsb81liuYHdE9MAEWetJ64PJ8qSKZ7YTpUyZU7bFUs+w2Vi24RpKuDO8XgAD0Pqdmqjm95Z2zFA96rkXNifzeyWPdjC5eNK98Y879i8kyxIJlGsjylRI6RKmlBJrG3lYCvzDDIwUADHtlFjpsZZysweJq3cdrE5XGPzmzSjqqSUsdPwJ6QSvgtviEsYKuVETx6yn5QgDz+EJVKaYvTSxvRxWnHtuFd8XM9GnO/WDWtKUkhJKL+KQf1fOr54j19B1Gns3k/HjYcPwp352suv8+lDjLxv7QvPtiUi6Yab3caN1G+KTo+bs3jgUAKzYzFG8ogTNQafs0fhpFq4Xk9sXinnC7v9LeZ5Bllx75SitLWTMtGqHVB/YxQKAblBJMZ1MlycvbcY0zMwjR1cAoquY0zqHoVs9QZpZAiM3baQqLUjsiIaHUpNGhpFcyIJPNG6002pFjGpiJOysxhs3qi+Uv0M0p6kK+dFefh45cUXPsfjDco+8+rDR1xv11w+OvDwjc61T5hCSaMYlQg2UKKDJmbxfufQy5GieFZX1AQnDSi7PDEiiAXuSCVi/dZWkamHu78HNstzo/Ywbfha+bVf8Q5+7+/6d/hLxXnh1df4Rz/903zs459gP91mmhfO9zvmJXOxv2BZLvCUQ9/YnF//wQ/z3nd9GY8eXbK1jZdf/jRXl6+yzEb3ihtIzxQWfvNHPsLX/Ksf4vZO2B5f8qmPfTzOybqiO6VpZxspSgvKVGKcmlOca3iM1INrFtDsyOxWGi3A3mkJ6YmnGB2aMlMonmhdyJ5xSbTR5u+p0DyjaUdJO7IGUgd3ko2s+mxYapFGZj0KTgSrSq/AwAXlokG2sDo2FYGh6ZVwtpuj2blpzAsdlYDEu2loKMVJyUECZyYSsg5UcELPG5GLYD1QSTnHeVNKRSTc+MucuHvvFu+8neEnPkmWh6T+MmrClJWTBblgNwllCbxVFWOzjVYvsTlR1062RCbRbWNrK0wTz33Z+2jrSl8fc3z0kMsHRx48uOJ0OrLWldaFdqic1kopE8s8MU2JNGfSCGyYSsJTplpiKgs5z0ghDEka5h4DJCt1A2Gi5EzCMVuDFTumNzq6sIsYZ3Nht08cjkbFOCtKxbg6XgdbtTYyCW2QNPSybp211jDC5UQZk/VuRFduMJETEtrqG/mHJIoU6LDVjZQVw8ao3hBNpElQoLXGaifa2ABtrbGXm6jp+N1ZlW6N5jCNLm+X0LonYvxdm+CWEC9Yb8M4GRKnnCdSHiQU6TgtNOsayLBcJLT6JvjWx1oARYLfeRNSkbKS1LHe2NaG9ZBblAytnQBjvz/Dk7IeT5zWSIwyb6SSuK5XSE9clHsgE26E+bXH85QxsRCUOS9BFhuOusurI8drjwlXE0yErTqZCIWZpxmnczyGBvV43MLDK7Fply6YGLU2tFba4BqnVFi0UOuJ1RpZEzvL2PZ5E90yncU9kQ3VTJ5mCkugEf0AvUbx7vEaEoZqi/dtrFeO01tn26LglyRBU1i3CKSwMJS2cYIlCkkkzF4iTyRGXzq+dHwxHW+6QL06nlhPG+uh8tYH4aJ+dHXEbt1lmpTDaaU1R3WmzLHI32zgHYvRlUb3UkbSjPVwLyZRnBSjzN5xoDocTxutbugsLOdnzLsdKU9AQnXG2gHHmKY90DCp5ARGjos6RZKSTjfGiyiMVYQbgIu7s7U2LvBE2wYou9VIrrJGtRh33cRJQg9Jq4DohrHRDEqayXpDJYid8dXxOkwGLuF879EFMu+REmWhiTOJtKJaj5zd3vHy9SNevHyDq89lRDqXp8ejdzfjBdSgtE5nw9IYxXWhpnA0OMKmnZUT0hqqMyI5ctG94R6jpZSi/1Frow7uo2hhmpStWiTgWHRkXKKTME07cjrys5/4NE/ffiv/u//1N/D8pz/Fi69/mocPX+fVl1/l0eNHZH1IvWo8fOlTWDOu+pGaje0aXv/5n+Hi3/1fcfupt/LguFJdSGXB+yXJiOx0g9kqb793l4uU+eRP/gSf/PhPcufTLwIg24nWnDwtdBKtG21byZoQO6G9hFnNZSzYjloi9Yh71EJAzgmXu1tIL0q0ZDmpsLkz/ZIC9cZtZ0I4p3PBTLDRwVCU5B4bBG50oeHw7TWc9YkZ+oRYXH7eIg6xN1CZqF2YU8b8iHggy8wbEItml4YlpcqKlBmvaWjyOrUf8Bo6Z8kWRAKPbpmHkBCdZjwVmod5bnf7nKenxG53zt1nbnN2nnn6pZcBKMUoKTiSWZSUVpBO8+hWR6etoBI4NrXKomf07hwO1+hZpLW5JQ6PK1n3iMLtp/ec33We3hq9nnjw+ktcPbzk+rJRq1G3E/RKXRU9KGlZOBVlKZmz5YwkmZ4c0UYqihRH9DF5CvC56g4dUoB+PDLNCcmF3mss/BadvpQS+7KEHKhunM17TtXJClKEs5Rp1lj6ynV7SGsxrlVL1JGMlqaFPjTaNx2+TtAhxBMqEZvqGveEum50b3HdSUw3WjPmHOaYVCaaW7B524rkMe2BkDjoOG88KAGiimelaxSzRkdSdJltQOIrguQZLVOwRqWjScc5EQiybTvR+hijZyKlSoXehbVV1q3FGa6FLAXpK8ki4QjArJJy3Fdr26JNCfEc8Scd2P3+gpwzLVX61jgdw1iYJaYXp1OnrnU0NjpJdFAFNppvNOsxnXMhYcF7brD1SvUjqczkXUFSxGO7ONYap+OBbYsphFu44aV3tvWAlkKaEwxSRiDhoK2OpoQmpXul17h3uiiWlb4FHztQa3ENtr6hmkhZUR1AxXpT0GbUC1nqSCM0sjZUobnTHaZ5ISksKcE2UTxRXbimhqENJ5uylpAIGI2j/OrGTH3p+OI83nSB+vxLr9Cur5HWaD0u8ndPwmOppNZYHlbuf25hFsiEO/LuG6OrhGF2wH0XonIzEp2SdYDFo7PjJjSXcMRWo3YhzzP3n7mI7gIynM2h05S0xE1MI/VEpYShIAnTrLgWDJiyRvZ68yEriJSqakI3Hx0Pg95o24m4q7UoPrWHlnagbvAoNnEi/zoZqDHlTNEWPEsvNEKXhgafsLcWsYa6xe9tYHaHWgWXwmk7UPsJXZTL00s8eOMNTg+EKs9gTZn1DlVWusyoJDpHeg4RRI91CjyRRoc6qdBIbD6Nj3lGmQhjVA/sSvdgeN6MHiWK6KSKppkpgXsO/t+I1TOHtSrn5R6f+YVP8Zf+7F/gt33dv8WH3vd+PsD7eeONBzw6XHN9OvL4+vWICj1u9HWj9jfY7Jq1ZbamfOZTP8+0n3n6bc/xr33Vv8k/+vs/wed+4SXOl3M8Oc4JmZyf+okf5+c/9l9z9dKL7LfEM6NbME0SjvfjRtcSso154HS8sFqJUSpAPaE5Rtx+agglxq9TgM+3tYEJRQuSzmhTSB3EhgzEOjTlRijdjfj/yZGcuMmeUQHXgfUyC6d5zPBCx+sexaxn8GCN5rxDJRJ90lSCiyoSGd4aXdu6NTa9cQdVTBOenW4nkAlF6b6hWvEbTJgsODPdJExU/USZlGU2lrOFsuxISZjLjpLPQCZEI8Wm1nid7ufUtiDdcRG0KJL2uE5c1mty7kxJ6AfDtnCq9zny23XxMPWsMOsZbPHe9DTHhgSjpM6cE8s7nqO/rbJddx4/OnH96MD11SXH44HiGdaObUGCXfMVky5RhOYFmRJ5EUpxOB4QgTJ15vkc9xj3rmunPomQdXKaKMsZ9VQRJuiZNrVgjIojvSHbxrk6uXRuZ+OkwmkrHI4bx/VEM7CaWQ+gskPLjnmBLgea1djQMNF6ptdwgqMNkUazSsco80zKMW1xMbxAkw2vQtEEJaycT0wwPeJkAYomrnvDVEYHOaghoqE7NQm6gaRE9cT18ZpjC91pALfiviHdSFMgu8CwvoWWWxOdPZsJXWJM7imxpspJnGW3x9b+JHo1TTNVDKeGg31Iwbwpu3lBs7KuB/AW6XvzjO526BS0lWlZ6DajekavTtsaatDc2Ogc1wO1xsi/5BmkkEri2CoJZ9KFqcxRYBOb67nI0Es/IiFMOtiYAqeTBA/XM5PmITdIoY2vw+A771jrGhIyiwK9eadZRdxiU60VzUITpVuElkpfIRlpXhFNEeTiSvIUiXzRgqaIIa1hvVO9IZMG3rA6PoghTTJ4oVQlSxTqm4IthVQyV1tlky+5+L90fPEdb97Ff3iVWZWLWwveF/gM/G9feB5eeP7z3/Sj/8Ofi7zlNDpZBdVdJIjQcT/idjV0kBYmHg/4tk+J87OF8/0tUlGaR9TpyN3DzIa5qsQCnGVIXIOfminDaBJdSvXEDfuvWSCIqg3WqkeRqpKRlMIZ6aFvde+I99glj5H4ExQOFWuFXObodLUozpH0ZCyVJdAtmhpZPcDXrdObkpjI/k6uTw+Cgbht5HnmdCpcnxINQ1jp3aLTJ0qWHF0PM5ILNj5CkUgiUggjlMTrmZhiwR2oI7dG8vYkcCAPDaX1KKZKGaVWM9DOlJXVItp1LhHv2Mhkha+48xb+27/1Q3zu7/0gH/yNX8V7P/hV3Hnm7Tx962mevT9ztHfRU+LyeBmJjxDAa3b0tJFrxa6PvPzTz/PSZ15G6oaWRperMBH1GDu/9PzPcMsaF9PExdmOfIjRoZDYhlHMvbPfFZLVGNmXM6o5jkJO4ZLFcG3oLEzNSFnpYjSzkfySSYwuSifOnUmw4my0Yc4ZhahmRAtbt4CgjwUi4lCH83YkvYgoemOu6x3rNU7jMZczdaxEh+3khmliEjAR1AK03tyeANpNwmSRrOBrdF2zT5gVXCbaFAir1jtGGNJu3brg/PxZ7txeuH13R9ktpJLGYh6j6QhQaKhO4MF1xTXCMiTIFblfBAfXN3IRci64hdFnM2W/yzSM1bZIgMsDrK+ja1mFsPwIiHFyAV/IkkjqnN0VdrcTXjPH65XLqze4unyVx48fYmsie2LbjqR0zTztSf0CO02kY0bSISQBObPmS04lIiJTMmraImiBGOmu65FpOqNvDjkK1rVm5iWj6US3FTBqT/SmOAtJLrmVZ27fzqzNw8V+3Ditxmlb2bZMZSEs5IVcMqiFBnaQNhAnpYKnkF14zfRWSJqYJuW4PSLlTpln2slJuqNXp9/c9xC2weKt1ZnKHoZ2PhHsWBsuflFDxbBeWbdHbPU0ZA8gbtStoqKcX9wK6ZOENEk15D+9O0kgqwU9YTqLSF1/zFyUdV3H+TWoGjV0s71vMQUhnqd4Y5mUVBjEC0NsGDI7LHPEqfZq0dXOiZIS8z5S7VQSNRXSZtQ+Y71HuhmJKU+UFPora8Zar5nn8C7ARvc5pBAeqDnpcc21dmSzS5zCbprC05AnWj9gPXirsZocSTkMrYLSh3ehaGbrR5IfkVIQn5+kHHZxWo4VQlt64n9wd2qvsdGTwBfO80QuJUgyvWMOyXNMtjzkR90yjUTTHB1tIWQOdUEtY02Zts+jx750/Is9fuZnfmZ6//vf/2t/9Ed/9Kd/82/+zcf/sb/nN/7G3/iVH/rQhw7f933f9+l/ls/vX6bjTReod/b3WUQpKfN4iov3u77yg7y4OyNhiE182bvexp3zhSxbXNSSOO1nrm4lsjAwTENNZSOto2sYLbTQzGn1xOaw39/i/PxujNZtjC8G4ieE+45IjDZdNIpLcSwN+PFY/MVD05efsP6iAxzGmRgDdT+F2agPJ3tf6WbUlaFTjWJXh9LTh/Nd8xC36ygascE4dVIOo8pxPcQO2iZarU9A/mYbrV7RLCOpQV9JMxzXA5fXwrbejphHz3humBguAZ2/0SAqCprpNiL8xOlutJHYlXVosExw1yhSEZzGjfxJ09AFM1BVjI6KEKxD30hZsOxsfWOzGFtVOubCc/fvcXjxp/nx/+df4R/+rb/NxVP3WO7e5+L2s1w88zS37j5Fz8J8dgbJQAr0BfEj9eFn+fm//zF+9qef53ItXNWNXdrH0uBRKGd3zl15Kk1QK1t9dMMsH1jKBWEKXd9mFCmILpw8s/ZOITA7IiOthymg9ThJ5ziX/Ia3WSLqVQRvjknGVCJyFY2R8RODSvBAU8pITni6+feEMMc5LimkK64DzxMu/tajw9hGLrhpp4vjmqlVaGbkqaDLApZuvE9PSAG7NEfRSiCLcoG+3UhqwkyU54nbF+fcvfcU5xe3uLi44OxsoeTO1k40i9jQ1sckQIazWzPWZTCLCTqGGulm5FsjprWzsZ0OnOke98JrDy+53ITzFlrsnHYohtmGWWWTI+pKKYEDsxZu8TA6ZXoXtq1itTHNoFMhyZ67F4n7bzsDfzeXD4688dobHA4aqWTW0O0atZV0AtPKlhOSIReYpomczkjJcTmSlz3bYSVP88DDDcQdiVaNJoncGIk+0eUzYiKStVDbFXW9DqybGPviTAh9SjQzmh24Or7B4dRivNwznnLoIkVHglhGZUJ0Qgi0F2ok2YVLnUyScPLnAu7XUALrNU4p1hobNBdnrcHfHDtsUBm4uU6SQbfolWVJZF2GG3+447dMb5GqJdLHBiqKUWEK3bQZqhkzpfZGb5B9ZpZGS4ZODR2SA+sR0pIGj1XHpu25qyvmN16PzyXFJt9HQem9Y5JChlBjciaphB4+8C8gRqNz14Npit1A8sDbI7KGDlMFclZyXcBjitfHFEOt4dV4y+OY6qkYqp1ae9wVNyGR6W3EWt/YpHqn9Zie6ZRQM2SrET/sRvIwK/VWEc2opNCC57hsxZQ29N9ZMopSzeg9OMK6KjllRGbENtQ7ok6zzrTMGELtUDuYlOGL8Hgf0wlPgXjU8gWLnP/S8S/o+K/+q//q56dp8n/6d37xHm+6QC3MuG1sdWUb+KhfKDM/nxeSO6Uo6c457am7FBqljPhHhewH1CMv2FiHWD8YbibGVrfhvBWqN27ducOy7NnWjaSRojNQ4BgB8g/QdCZQVY56CT1YihQTpGIWST5Kiq5lr5HkxDBkudFbxe1E0jRwMI3W1tCu6jy6ttGtY5BTOzdubgnItBvQSCq4BdjerbLWI4LRe6X1jHmAqM3CXW84x/UzHOs15BjRPry+4sVXV7o+Q7PGsR0ju7k43TqCkXQLlqIrQov/ioXOC0eSISlg9WbxfW4Lwm4wWhkGNkP7yKOXiGIM/F8j5UzvJYoiibK2W8NVgQ1VY0sbh+OJe/M595fCasL60stcvfqI1w+f4YAwz2c4kZ+9ttdJUimcBa/y8Aa5rTxd9mQXPr011FJ0NYfbHevQTqgbWEenHTaKp0wEEiQyaoKt12heYvGahwYMYlEhdKbJJCz4EuEE5mE2wR1rccNP0xT6NDwipHp0icTCcAEMs0YP3Zm2oREd3SnmJ5IVyRpFrlW6BN+yd8Mz9PEzSeM8qs1IfSLTyDjNRpwkzlQSrCN5qiupJRTBtI7NS2F354zbt+5w+6k77C/O2O/PxucYG7rmG7VWqldc5ihoegLx6O4T77FTSeUmVvUUXfe8YDS2tnE6rTRfSUV46bVrrq9PaDrHS+LxqTCtwpQHXaMkciGKXIW6PcCzDoZjQmvwefswEWUtqBgua7xHtiLeSDqzf+YW89NntFU4XFZOjy85Pnyd06OHUfDmHat3tJ/Y6sbppGTdhWYyZdIan85uHyif1o+4JEoJ3qRR2TxwSiVPZMl0jU210UOn3B28Y/0YSWCWmMSZxMj5wL27wql31g5XJ+FUC32bqDSagfitKFCfcFFPOBuTXFNrI8lEsplWI1I1ErQ+f36hHRsbG8TY6oE8TYTGPiGe4341ZB1OpW8VMafkwPVta2hN85yQLLisIa2yKH6k50iO88TWDekji17jmkk+odbo7ZrqG6dRMIsIqiODXhLXe2PNmf/ob//tN7vM/HM51py5XCaWacEE8GDa6uZjQjSj5QyA/XQbPVwNXX/Hk4NGmMI0Z5I3mnfwRHajaPB7iZWKtRnqQk7RKKg9THzmBt2Dy+vr8EUMzXgCE+ewRrfVLdEbo3AeBrdpRhbY+krXRs+/ujWovXd+6qd+av4H/+AfnK3rKr/zd/7OR0899dS/1HTYZ5999pd9/qfTSZZl+aIuYN90gVq3x6hvuFWc2IV2eUDPoQkSP8fzY2QK9pskRdNGgKo78gSuHeMSd4kxJBVno9sRTYXzsx1lqnS7BJGIePPyJA2l+3CtC9FFTAwqQBhbAg03tFTukT8PcYOx+O9NkVZ7H11cAl5vWzjgu+IeNxnQQWs13HVgXQIUrQpukaqjKlHc9nhcs9CZoRa53aKQIq1k3U6sa41umxCP0TPd9rz24CGnntAsGBWRqxGDF4kpYguM6FXzSBJxl9HBDUOBjkCEG5OBSMIl+ItRwnq8N8T7iBLkgniDcOs0D2asi7C2DfGIPJ090VtjVuXWrJwBaQ2U0ZITU5kgJXwpdElsLQp0OdrIjW4RQZsSNp1D0cCtbA3XjWZHmjg9J6QfyVMiz5C7oD3RBPpNJ12heiXrhIsxnTlwwjIk28gSPe/s0XGOkMtMp6NlobHiODlncgZooI2ehBioL6gv5NYoEvgw28aJ3Gp0vUdn2rgZsUUn0zWFSV8kQN0j3cnMqVLRoiOkInp4swT/M7mS6OQuZE2R9y4Nt/6koL17eWJFqeLItHD79i3OL+6w352hw1Ftjw/Yo6snCKLebWykfCgPEo4MegNDd+24Oqpw57UHANx77RrNj+lcU1vntJ5ILVBpqJI3YemFaY6xJY+vkW6UJEBDpVOykVMU4VlDjuHecTOSR2daRsdKU/CQXf1GTRHjbbkKmQCCyoIyg+ywiwu2JKyXndOxc1of0P0SZ0NQsk5YyyQ9i46VCGV6TDenzFNohZMyzzNabu4zPjqABMN4XDM3SV4iRtuucbYx0bgcQQwnUOGWKB0FJmrLdM90iRS21k60+jrVEqZC144WDdC7K4kdWWPC03pwbLt33noVMPy3PngUpiBg2yo5x3g4kpJilKySscFrtRt9vQeSqZSC6BQJfSkx7SJopdeGIhQZunx3TB1SxbvQunHTJohxg9H6xvF0HYZGgu07zdO49wiXd+/xR/+D38PFaSNPQp6F3iq9dUrOeKsozrY18DxwaRZRVL6FZqp1xNJ4HR7gfXGqNSoNl0iwQsJMOM8T1id6OwPTiEQVMCqlhGHtepd5dD6zJB0Jf2nIhEBSiXtkuuEAC5MqlY3uawSaSFAS1BXvggnRRJEam10T6tbp2mkYmcBClZQQDfwhOEhGdQ56hfFEqlB7GNdOLbjNk054Df0qOiYx1hDfhem3zCy/iqNOa628/e1v/3WvvPJKufm3l19++dN/5I/8kVe+kI/be+eP/JE/8uz3f//3P/3SSy9N9+/fr7/39/7eV//D//A/fAPg537u5+Zv+ZZvecfHP/7x/Tvf+c71T/yJP/Gpr/3ar70GeOmll9I3fuM3vvPHf/zHLy4vL9M73vGO9Vu/9Vtf+o//4//4jZvf/98f8b/tbW/7tb/7d//u137+539+/qEf+qG7X/d1X/fgL/2lv/SLX8jX+C/6eNMF6noKUb74CVoslN4P4BVNmYW3U6Y9ognD6GNkqB4jNJEleG6sT5JQ3EOThszkUijLWXRNbhBQkgOCLjHOUlXEQlCf88DxoGMhGZGjWOQkuzxBSHkfelVNoQG1ldoatcVIXlsO56UUrPUY4w7EVEoCmsJM4JEeNUoAboJsVAWEcOlrHp1XJ6U5DEkjVcZ6jIJqi98dJXci6cKxCq8/cl56LUG5xalFp+usXNBtxeqRMjirZpHZbCK0noZswIJ9iqI+BXdVA9MVLvI0UEvhWlfRMIx4xCTK0MfZKH7VnZ4a7j7g3hN5FVyUjFN6p28nvGQ83aKJs7Yj82SoRirTaWuUMiNiuHR07vSWqH5Ec0O8Um3FvFO9sJnhuqMRi8ZMaPPMF1rbAt2U8pNZd/dKLlMYzlBUF7w7nTAUuCh5jDNRQkupCcuZij4BukPCPIoSI7LII0pzRmUKPFcf6TUjxiiLsGi8F96H45jQh6KBK3MJfJCZPAGs9xp4o3m6sVUBBlPKNA0MlnnGTJiniXo4opKpOI/Pd2w58e/9+E/8/3DJ/8qOf+P//v/+5/ZYXzr+6cf//L/4LwGo08RDduSWoXb6VCNuuQ8TpwUvU0RIuaAe17UTqUlZdlGUSSZJBmsjAhaEjtWIpHY66IaKcDjEZOm4XnG1Xo5UtijfIfSlN/HK3RrNGo/v3uZEoduRadZoUFjIiayv5ASnGot97521tycJSeotAltqZjPHVbHW47XYRu0rzRvTvFDKGSlP5Fyo1ehdg2895FauoDohMlEmQ/2a1itKgixjJqaQQwLRBnO49RUVA98QasilLCYqIdHJw3groIaphfQsdqmIQm/+xLcgMlIHvWPdaaqIRIG99hobCVFooY12a4GQKwXxKMbMIhxkPXl8m2bq+qvXJHU6nfSXFqcAtdYvOHjrD/yBP/C2P//n//zT3/Ed3/Hp3/JbfsvVZz7zmfJTP/VTy83Xv/3bv/1t/9l/9p995gMf+MDpD/2hP/S2r//6r/+yX/zFX/yJUgrH41E//OEPH/7wH/7DL925c6f/wA/8wJ3f//t//3ve9773nT760Y8e/kmP+b3f+73P/sE/+Adf/I7v+I4Xv9Cv7/8fjjddoHb2FGIcrAMfMvmeue/IlpinC2a9HYYJPwa3zxdgjhueb/QnnckeYvoW3EJkRy53Ud3RfUV1i66fBQYJbbj4GC8Pk0pK1FZH0emoGpK3kcIhWEsIGjqzJ5y54Oi5Cd1CB9ibk73QtxS4Kw9jlUvcKMmKt5hzmzNuRgoSRZ6I4NIxq2O3Xugt0c2jEKUHFmj8nJZK9o2Na7bWMFNWyxw25dMvvU5Lexod04ZbwpiwnmMkn5zsoUvqGpGEdAXyoAn0wfGcnjxfBgc0GAiBllIXoh2VQmtoOtKbgpeaU44FxBpOi+QhSihwRUEr2Su3dmdgjS1lViqmMzkpzUYyVVK6KrVH5Gin4SoxxkTR2nEpYAXxaXTVE2oTKe8pWmltw3Qm6YTJhpVMGsXg2TRzlgu1ZzYytUZkLTrj7OJzGp1k50Sjx/BcEtI6NkaoMbo3UjI0FRxjSpnOgqCYOtW3MYaLxXjKmZLi5wIPMyYtoyOXRkdray2kJeqBLrPOFD068s25TJiqRMOoZFIwlFz2yNnC0888w92n73Hn/h1+6H/6b6CXG7dvPcUyLRyPj7i+ekQ26NvG6XgNIiSF1iu9RWJRdOpH99QjMADvUVt4XA+SC5vBWo3zF9/g3/urP8wP/I7fxmv3nqJZx1MU3DntWFeHFNpVJxZJVUjSRyEvnw/DAIoGvaO3yGMqqZMTaGGck4Z24ybiGA/ZD1JIaUYz5GyIK1hohUfoZejQPXBAaAVO4Bv1dOJ0qByujlw/vsZbp7XOlCfmeaZ3G9MDxWR00suM5Bx/T2E6HJHnWAkzomhsCN0Dg+eeQBeMQu8nejuR5IbBOwrGIStiXEOiOSKJo18+umIenUQDckZKpiKUeebOZ1/j3/+rf43/4nf8Nq7e9m7k9n1OZ7e4c3LKlGmbscVHPOrFkO0kcTQppZyPrqyRPV4fOK2Hn1+Ijbzb+AxkGjjAGEfHvbKzrhuPrg+ctk7OCzmfxuYLpjJTUmEumZaDEpKKo9UxnEzcH43o2KZUgmzRVjQ1JDnr2nELOVRrxDmzGWs3tAS/ObmjqaBpoVhjKgvLdBGZSpYxOdE5IDkxz8Gr7i2MfiUJ2xoMWLdOFtBSqG7kEZRB4cmGM09n1MuKeyZPmdZtIAxT0FNwsoa4qgHV+403EsxJTON8DgoCEiW9SBTNvUczxZXYoNOZNUIFtDMS5zo9QW+do50oaaG7Ug+N6oZsGw8eXL3ZpfyL7ri4uLDv+77v+2TvnW/8xm/8sn8ej/ngwQP9vu/7vme/8zu/84Vv/uZvfh3ggx/84Pp1X/d1Vz/zMz8zAXzzN3/zy7/rd/2uRwDf8R3f8bnf8Bt+wwd/8id/cvnwhz98es973lP/0//0P3355vd94AMfeOWHf/iHb/2Fv/AX7v1yBepXfdVXXX77t3/7y/+kr3+xHW8e1J8DAm8npw/8RW4TpZ0hrkx7I6dO9xVJR0SU7hMmgrDhdopuqgcor7eNWo+AMy23mc73pJKwdqL1baCOhhuaNHSnNyOZGLeZh5Mz1tgKbGGe8pnewzUpg2kpoiSN1CgjureiAZe2Gkar1nzspDe61Cd8QIlgdbDxHLjJfR5fcxsLZqfWE62uTMvMfJG5uF/YX0xo6gG3LtD9DleHE5fXB1745Iu8/GrjpU+/xtW2Ics5za8wNjSdcarH8RgyzDbxHvTeabThoJUA8sswSHATWxnomtA2dBLDte8xhjILh6wkBsnAyZpJWaH1kYgTfE7vRiZSg6qv7IqxdCG102BjNpbpLOQBPUxyt1GOvdGqU/IZuhlunZSIQlA3WnVSFqQ41ErplYJgbUVSaJvLoBdUIrWlD3zNmRTksOEWzuA8OuhuiQOVJAmVGsk/0uiEVMIIaoT3GCP7TTCDyCgucwDAzbDUqSnYvVMqgxRBdEc9ok2zKGm4WLoLoY5VCLlapPpsWxhfkmGr4bWP7lOcU10EZkU9sT97hv2dW9x/7i3keeL+U09xdrYgarQksLvFenGfJsL11RtcPXwV30709ch2OkALM6BZD+ObRLEaU4gokvo4LWqNImVrgkmh9TBxvKXG63np7lO88pZ3QFaabZA7rSZS3lGKsG3XpJJDZlENbT3G9IRJpHan9h5xw6NgVQ2HtXobRp64tySB3Bo5NXLeSNoxy8ggUeTSKRqkhayGIFifsC7k4pzUQlbhK+hKMgcv7Ezg8JCrwzXr9YlXHz6mbS00wikMPaUUtIc0yVGmecc8n6HWydqZiyLTMa41EVLJpFQw39FdcE90BLMzhAUIM2bvdbDYx73PMjnNkfuuhufQ1i9SEZTaM91nNkkcGnSdQx96DE3kS7fPObz1afraKZdXtHbNbl8425VgS1sfhInYkFY60gUZxvSUMtY1JidmmEETgzYCUtyjg++FWjurJZrDetiw6my1k6c9z957O5eXD+jtQQCBCZNUWzekN1KBMhWqV1oHUWHrFnpwKUiakdxZ+4HarkkqkVsvKcyrAsaG9IrMOtacGhvbGD6FjIyJnCfKlMGE3i1G/nmi94wkpdYjbh1rB/KkkAzVRHNn3VaWMtOEoHRIyKRutOadwtV1J+9mSs8kGskHYkoz5pBLbDW7ROipeQ8pCTHxM48oU3OLNYfBWfWx6TMBVaSAmbDWRulh8hJ1VjYasXmRktA0sa4Nb3EvExxse9OL/hfj8Q3f8A0PHj9+rN/4jd/4z+XxPvaxjy3btslv/+2//fE/6Xs+8pGPPCk03/nOd1aAl156KcRkrfGH//Affutf+St/5e7LL7881Vpl2zbZ7Xa/rFbjIx/5yPUv9/UvtuNNF6gqK4YhqSISu0v1NtSZiTQZnq6xdGQpgVDq7TGt9iiC2kiT7qHHqZvRTNjvzylnOzw1GidcN5J4oE1w1NMTdR/R8KCbcaonSg69UCol3KBtdACyh9anRX66tT7+f2RKW7foHEoAtc0c9bjZNO+YgkiOG6F13IcO7QnkXhGiSIw0D6gYK5WLW3ueu3+fe/fPuHj6nGeeO+PW7T1Xl6+j4sxTaIym5Vku7t3m4//NT/CPfuIX+amf+2GSFq5tw0rD+ylSaTyQPCmNMAM6riGUdwzVLUDYFgkrqNDlhKsgXhAEkRn3I6QxHqpRCAX+SPDkbBYFXABMUmgXkchlZyTSeOfojWtfeevuNpozHDeYhCITEye2dAhge0vUPkXCljjiB5YESKJzjWuPFCxrrGycRIGV7EJLHUlxk9/7xMIWml+Hud20J2DnwqKFy94Rq5TUWcXYtIXMhI7rhiWYkxC5jgmXAGJrkUE+CGC7qODNIs7WI8xBNdN0Qac9lUTLUaE+e/kYNeOcwuzCW67DpPDUg0uKlBjxDxGg4LS6AT0kDTW6j/vBWnx6c87KwnL7DvNymzv3nwMJk6GipMePOb38Evfv3uX+3fssvnAhicurx7z4mc9x63DJ6fED2ulArxvbtqEopmHrUwvNXJfIe7cWhV9zZW1Gw5k8tIkQ18H9wTDWXADHamz0vAWI3vpKJrPoHEVNd5JmumSUlXo6MJV9dFZ9RbmhSwhSlujMaSQBnVbYavTxJhz6FbM35jyRmOMa0xiJVqs0jpysk5gQd4pOSBNygXVt4/OLghEvuCq72/dZ7tzjHomrqwOXjx9Tj5esh8dcHx4HrL0XVFeWeQ+tstZDdOsW2HpHqkQCUK5Yc1oWRBOachiaonzCXWg9xt85ZyRJxCM3ja6hTmNzOPi0RBxn0hTdUIy5CLqu1H4ipYkzCVpNtiuW6URX5XB14tHlyrxLEbgw77h1fs75+Y5cnDIP6UrKlDwS4xxoFl1aj01WtU7v2+hEZ9qmTzT6x7YRd8nM5WHjne/8cs5v3aVV+Af/4O9w+fiKuo1Qiu2I9AUnsTVo2Ti1jrQT05wjjhlFZUZcKIC3BhImth6OpTGqV8qkeD1wOB1iCpILRTKTKUpii+grUjF6XvEWnfsgJMwxFfGQue/OSiRlqbOZI5rI2pGUIgrajbUdKCmxeCGPgYhbo8whEdqOHc0WXgwB9wwCbXNyCiZyysGS7k0oqohUNAeP23qL+6uH8z6LjWhloTbHJEX4QjOSQXahmpHnHCZZD53s8XigWyG5gBxRa5T8L7Uf6F+6Y7/f/1PNSaWUJ98jgyrUe+zmvu3bvu0tf/bP/tln/ugf/aOf/vCHP3y8uLiwb/7mb37Htm2/rDRhv9//qhIbv+kC1TbDkqHmyEDqNDqWLdJ8SidNkDThPWGWKDEghR5ZxNacVm0kgjjL2S2m3QUSsSUgHkiTkXzTu4+x+UjjoMXfxcj0MWrJmNyAp2fcG732AKtLLFizlliYa4wj3QyrneZ1GLgElxpdB0uoT1hXjEYazVO8hbt46DzRMpAtjc2MdLbj/R94L/fuwVPnztnkaDowbZVzyWzbATOnpHNmMbbrRzw6HLl7pvzWf+sDvPjiI77nT/xN5jtvH11IRfpCERvygBj7WjckC1oK7g3vIy52JLyExrSiIohNqM8E/qqGhtP9SfcBd5wwY9hgp3YRKsR7ak7yFCN/oNOoVlEV7p7dZp8KLpGAJR2yGzUNN7GVMWYvJLl572zILXro0FpDfELFyeYIW4zeMEyjkzmNDrV5p5igLT0Zjc+SmGkRO5lDp9n6iqhE8IALkbwT+jAfsH1BnxSj5IymMYIlYiOTC2oe2rwWfLKSElkSV0vilJX/w4/9t//Y6+Tf/9Ef/xVfhL/3x/8h/Mp/jDvAO37lP/amj60UjruzMAFGk4dT96HDjljO1huWGedPopSMuNFto3vBeqW3FUp0hEzLkFPkGBsjkEoQyNypbsDZMDbmCCMyY78szNlxW0MHbIpIiVAPP0V3sEXnOkkgeUBxD6pDtU7PlVQmdhcT07JHuRcF0PGS4/HE6eGJbTtR64pVRiJXdMuXJUHbkVIKZqU0NIcUKCVB80JOd8IwZ5ApoeEcCLfgV9YhOTqGqRLoLSFp4igrJSeKzliP+9BZzqQsJBXuTrFNv3/mvO6POVFoNHqGy9ax05HX1pfZlcK9u7cwGsutHWmYv+7deYYkShboW8NqD8ScQ20D2J9COxlToENsBnzl3tN32FaYdpnn3v4VXF2d+Kmf/od87sWX2XrIgADatkXwihnVQsdutY0UtbhHpDTTRuSs9Y4QRq+cZnrvqHVKSkGT6gIeHfPdMmE5QfdAqo3EK02OsWGbIj4z6Ryv0xpiG706GrJXPCmpKKlHkEV2p1pHthO7+YxF4XA4UH0bVAvIqTPPwqkfaV7JQLONujY0TcxlD77FlKQrrYUfYcoSXX4XnG3ogUHpyPgzeUF6oo7NmXZBkjFl0G2sYXiEFTTHcnShhUw2QDuaOjnDlP+p9dKXjn+Gx4c+9KHTsiz2gz/4g7fe//73v/Yr/fm/83f+zvlv/a2/9eE3fdM3vQGhwX7++eeX9773vf+jualfjMebLlCxm/SMlT4AzI2NrhsU5fxiYs6KWxSK0iaSOkWErV3R6gFlplWnmZKWPeXsHMtTRNz5jWwndIguYBbg4pyia9bqhoihRAIItDBAWeTI0574Z0JfNzoUOsYrZhvWo8BViXFTbx1rC+I9fkaj+6oSu+rIqw+Di93oNQeI38Vxr5g33veV7+Xf/B3/Gq+/8lNcvfYLbNuJjLAxc2qKZ0dZ2N97jsPDV3jw+HO0dobQSNn5jb/hK3n6/o/yyvGa6XwhSURRRidNg9vqY2RLpIzoTUqRRtRm8LkNxnsUWVKJJwUsJRz8o8BLGqM3fgmiqtMjglaUrFBQ1KEkoU6CizB3527JTG0FAnujIf2NCEqZMckgOcwW1sOAJBKdXxnUAJPIhU9lkByiQGlJsCQ0C41w01hgsugNCheAMy3cRnm5rxwBky3I31SShSs6mKdhvFMga5iQuq1j5BwmKVwjdUrHxkohqdKTIWkjc6RQeHAufMu/+xHur85iEzvLLGSefXTF7/yxv8cPfM3X8Nrdu3TvqEaueRJwSWjJnN26hcyF23fvcf/BI37jn/y/8re/8X/D9dvfHjGrZSaVQndY5h06Fcoyc37rgnt371OmicLE8XTNK698ltdefpElQT1ccXj0iF4rxy1SyyrBdBTzSD2yG+2x0j3+IEAOE1un01oUFKqZw27H1X5GvYaOLrhFca54i5QsMboqN1D2KUd2+rxM4R5HSBmsb6SccZcgTfRAIW1DSq2iKD04xnJGk5sgDQOHejSW7OQBpc9ksmic69IRd1ptwwxkQ/Iy0WGcbw7W6VtCJJN0AnfypNw7uxVSoWcqtR15/PgRp8PK4fJErxuVDZrh6UhqE2IzWXckIxLySiP7CdM3SLJQ0kxKhW6J2qNb31uN0A+1MNGlFJQMZHTrE1ahSQ9hLnlIJWKT7jIDUIogfSNvlQt1OB65OlYkwZIjXa2z8fDqSL0+MV9ccFor+5cOCMqUp9iYdQu5h3dAEZkiitWDehKFuXHr9gVJ92zrNc888xw/+ZM/zac//WmOx0u6HzGp9CdRp4FQQxQzx7dO9qHRd2fzzjQrvQs5RZyyoPTWqQ5iOXSg1mjWw1tAIuVlRBVHZ7q7U1KOYI0J0hRNhdgYO9qdadAzDkNrDolqzuG4gQhLKkylBJ3jVJmopJzw3J+wTwHEJ8SHwVdXah+sWh3mqB5+ig0fzGQHjWlWB7onuivmhZyFNFWSnJAem+nkE5pmEonmEXLQk+IagS6O4VunFUKXa0KRFI890GHK51O7vnT88znOzs78m77pm1769m//9rdP0+Qf/ehHr1566aX88Y9/fPfLjf1vji/7si87/dW/+lfv/tAP/dD+/v37/bu/+7ufff311/N73/vefx5P/1+a480XqNqHQUSeFKguna1dk3ViP+8irakF+1Hcn+TOew+cSGuN2qI4nfY7KAkv4XDO7kMqaUhz0IJ5wgjmXFIZQHqiaEsD++MdSZGr3topipIUeiR3yCmx1pVeK90aT8Cm3gZfEbZuEXGpha4njCu6GUKMPRvDreo5TEikUfgaZiu7feY977nPpNeczbDcvQP1isQGKI9ef4WUz7l1+5zr1x5ydX2J6kaSmcPJuTw8Yiqdr/jKPS/+gysyt6l2QGjRqaVHB9Q/TzKIGLyE9YKWAM+791GclmAh+pBjeEIkocxED9kwkYhW1ABUPdGvjhSalFK0VbTT6ykKlARJM/OxcTt1Sr0kScVcqCJsGGoF1Tl6BD661F4xj/eMNFz1Ingq0am2RPOI9YzzSwc6Kzq9AZEPbiySnxhvshn3p4n9aWPtDc2QtMRCNcDZOYUWtHnozoQw8uCNkNgGAV8kj/AIh5SQSQdKKQx43jdUYoT7/2Xv32Jt27KzTPBr/TLGmHOuy76efS4RJ+4Rxg5jHE7bZBpMOsCQQqBC9UClABMCiRcDRhYSEgKMEFgm/IJlAW8gjFSZxUtR5UKoCqi0EqddYAinHY4wDttxPdc4Z1/XWnPOMUbvvbV6aH3tsFxJ6gAZRdpxhmQ59t5nr70uc47R+t/+//ufbM5ZTzZMmtloZBvj06DIl2/seO32OZKMPJgrHDmRpy3D7ozN3btY2nA5bhlffgWAw3vfzfJ134iEkTZmxu2AaeOwVk7Pzji9fZtpu6UOA3NtnJ7sGIOwfPaMz//czNl2yzZlLh8+4cGbD3hyeaRaY1Gvbx1CplRPKY8hY0UpxSBc+0oVC+oPSGmOg+pe5WBONqha/eDS22yC9UpcCT2AJaQcqbUCXotqEhhSdpecRV9XpkzU5J5cl8kISTxo0ipaVyBR1H17ecgeKKqNy7L6ewCvSR1CZYqRMQaiLX64FUVa8SEMdVpE9BKOZIHWZryQwYOTMQ0gI1hE5UAaMzfvbAki1EXZXz1hnp9Q6hXH9SFlKQQVmmRCFbDIKIJ220hMwbvfzesvh+Tc5Kq+rXHXR/++BT/4xs66FLoNheqDnvOLiCESgoeDg8EUAiEUhJm4UbZRWGe/vxKNy4tLLq9WKpMjnAg8vrjqDOa9+8lzBC3EaAw5oxpBdqS0I4gRg6f4c6o8efIqDx895uz8ksP+iqurxx0LWBinSDr4Y8T77f0IjAihORbqWI/sdpP72UvFJLEsC2aBnAA11lYY0o5pHLzSmebEDhUkZGLr26LW3FaRM3kcHdGFPVUU6Tg8bU7jaBFH/6kgcaDW4uFIFeqqbNJEHKPjAHUlJUEt0lpPxeuA6YCRCNG3ezFvGCSizUNySEUVRAcig5NEmqLSXGXH62X9cCjAQI8MeKuYhs7jLjQKcxWCun3EMX8Vog/EwVx5tmqMyf3bNKGUr+0V/7d/+7d/8Gd+5mdOr3/9gz/4g+/4oR/6oXf85E/+5H9Sm9P/2vXDP/zDr6WU7Id+6Iee//7v//589+7d8rGPfezNt/J3f/AHf/C1L3zhC+Mf+kN/6IPTNOkf+2N/7M3v/u7vfnxxcfG1i2P4X7jeeorfPEAgwd+sAEEcXD0OA2OYoIQ+IKwgDbWFVWcaFW0D87qQx5tszs5hDBAL9AFHTbydo+M+av+9irnSdY2JCt6L3lojGJ376EqmydKr4UZUHUdUSqW0lVpXrIPuvY6vdPC9B4wspI5hmglh6SECb2AqNIIJMSa/q+h1El6oFW7sNogdOL75RaYwo0NgODklUNCSMArzWnj48CWCTNTqVYrH2VgOkaVcMW4rX/f+c/6nf/OINldPl+rEYp0dGhohdGVUkgegTEgyOlpGvN0nBIE2uN0y9BO4embcwuC/lhVQrGOVFCcMOEbMVU4xv7mqrZCre9LU16ZjaTyziQQ7EKURLFCzKwaxukrXzEA8Ge+vFXzdeX1nbkbfYDlEvnqzWFBvu8qWyLi/N1sjXTcbdQQNgNSVs03iPARmiz6IW6MGJbCCFaIoSO6v2eDIF6qHFWIgigHN6whxxi0xkDKsy4JYV2daRJOPRtUiFrJzEczdxxLdD5/HI+N2IQ+JNAjjNPohQzLXrV8x5u4n9qF2HCe2t+/xrnd/gKv5iour+5zmxJe+8EVuppvspomb5zfJQ+Lzn/88Ty7uM88HvvTFl5hLZXl8xRAyugorEyW4baOA2zkI1OBoM1V/La+2IuqvG+9AMA+zpIjgzUmuUEpP5Xsbm8Xoa1JrUHzVWtVowS0A3Y/CsnqDz5ATtEIeRtpSuhfLeaxDSmD+ni7zAaEwJA/luZ/auaUiIDlhNrDWzNxbpKIIW0tsVcn4x04pPQ2sWXMvX0CpxcORrRZEVm+xCrEzggVTIw0bVFc8dJjZ7AZCHtnqKaVecbUfn4aFtB4oa3WFswZKEWLILHLdvGXkjUB2u0yIxjD4xkCL2520b0jyEGndHynSEK3eSkQmKOjxK6D+ECKnu1NsUi4vHqI0FgpLL9GotbHUxq6sHNaZ+fFjYhqYTrbEOGASWVv1RH89om3xe4ptkHCDmBwP1dqe0o68/DLElCAELi4uiGHAqq/13c4xIOKgflerBa3q92UBVT/IoE5JWNZKHJIH99aVSCDG2PnQq29iYsNL8xQLEdXgNoDm5AuLIClh2e03Viui7lFXQIPnFmzyBH9V994OGDFBrQVZ/Xtf2kAKsMZIkUDMIylEcuptXde3q1Y8kBS8CCUE8TKU7FuourTeBDahFsnRg3sWKs0WVGe/b9cdzTaYFW+66oE2R0oZQbq40jdXIUBOA2oBivSWP0djFWZqbcQkT7mtX6vXr/7qr25+/e+pKq+++moGvioDaoyRj3/8469//OMff/3X/5mZfeLX/vrOnTvt1/7evXv32r/4F//is/9rH/9nfuZnPvNrf/3KK6/8/48v+L+T6y2/qmMQr70j9jAFoIkoIyebHdMQQYWcJ9AZiSume7QuGIGleJ3p7mxEsqNhojiTWZr7lkyLh6AQVzAlEK1zRs0w046xkqcepBi8M7pW7dxJ6RxLnq79BAXtD1M3tQGuyBo4qy5URCohLEhsPZlaEQu9us8V0xBd2WjFDe4qRsgRKNjcGCbjsDSKJIa0xXA493G59F2jFEpbWEqjtJlEby0qCx94z7OcjF9gpRFiohWvCEgxU6+VzeDIqabWKxeN1npgKvb4kPrw7IgYH4IMvECA5t641rAQOpwfBLcSBBFPutfq3NBeu+l3/kjQyJ3tGbd3O3Q90gxSa4z+DUeqXjPf8ZRZJQYjhUy1HmITA3OVwMVQ7SteVxayjAwykk3JYmyiMTYviVDMAd744DGFyiYZsSS0Dn7gYUFydfKB+MASJWJBOui7t09do56Cd46LdH9uhmHMtOoHHiz6YB9nNAc0RlpSRBJDH45yb14ax8Z2KoRkEP01K8S+HTCWw8rZNjLkxBD9Z3O6O+OqNq6unvDam69S2sxmtyGMCYtwXFfag0ccDlf88i9/hhLdhlGLst3dotZGLY7CamFgmAzWow/+q0P+RQSlciyLkwXE625TjH317+n0oJGkmahuH/GHsmOzApHFFDE/bLRSCObd4AqUUvtKV5E4IHjfvCqsxWsqW/X0vFMlAkPMNBXmZqTsK3sJ6szf0P3iSG+YSpiql0ikjMbIEjJqK9kaVlekNFLI7MYtBIerJ1O0DVQi2o4gs1s9GFiKkM2IMaBr6K9ZKE2pUlGLSBiRWNme3CHnA00XWp0pM1hxv7VvaK4cmVYSzEZaI2FI3sI0rIxjIEpC1DFCSZKrZ7N6bfJ1mFPckNOkdX+S0poPTGtRYh45u7Hj2Wduc3HxJi+/8gXi2YrVQLRMXZTzqOyPhaujo7q8Qc8bu7T71jOVxkJdnbpQTFhsRgWUGaJbimI0r4eFp9XJpS6gEbXcbTLQCKytItXDQC0IeRoJeHVuzm65KsvipBCtlOLvSQmRWhaoQhw6/cJ9IG4+qkoy93dWEWLyrUVQI/X2Jq3N1cUolOA3oYij9EQL9XhgiIEcYV1Xpu3WCRpF0ZApMVLMyLWXvECvTzVC84NcyF71q6b9XqHklBiHRC0V0737pmNCY+qkhIiw6X5UvwcTjJgMizMmq2c1loo1f6aamYsMAjlFalNEA8EC0zgQh8SlLszzSm0RDV/bA+o//sf/+Fc+9alPTb/29zabjf2BP/AHLv9zfU5vX//p13+AB3XubzZXGwAQYciJEIE0E9LOGXbNPV7WkVJlUbDI6Y1ThknQsHaeqqfDqe73LLZSgzpDleghldZ8KLsGH3fovKgPqFbdc2kaUBIV9zoGwdtRgqBzQ1p3XlajdTyU46lc8QvBB2FfiT911RMsIKa9Nzw6ZFmkBwM8K57GQB4q2mbmQ8XI1EUoB/fMzuvsAwDZay6bgU0gV5gcCJIpa+S5557l1t2Rl+6vJLa0UFyVCuL+WvW6VTGIKELxIBmOiwoh+fci9KHIwDAIvZzVKuD0AgwHzAMh9oFDndcaovp/owUss1YhSSbETKvKC3deYAgDNY0QjGGdCWXBQvUbcTBihcKKMfv3s6fi6XxI1UgMzmI0qWiwzkp1WkEzcRZocjWT4j7ZIPqVitDr8E6OHT3VCyAksAg+mIbR0U/BBx/M1Z2IY6RcFXfvtEZXSFcViiZf9XdurIh5xWyM0IN7Y4JtSIwoOXdfb/K2F7Xm7TfmIQ0JULWyXj3h5t27nJ9u6aVPHA8HXnvtZe4/eZOUA+fP3OYwH1lq4Y1Hj3j1zUeIZf84ecNu50Eaa7DfH5FSae0IUSFGYo0MKRMtsJQjUXupw7UvVgsh+IM9ICSJSErulRTz0Jg2rClNi3uWRYhk1rJCc4920sZ22Pm5S8CovV7Y31dNjbYsxNhYa4GQCMnrNNdlZrKR7XhGLQADFo1iC4KzJZ0xnLxBrVcN5+T4OQuBqtIPr4G1BkwDy1zQFli3vZs9NDZDItrG237S7N3l4vWdrRpBPflfjR6YE0+za3U7Q/ROeg++DwTJhLgjpYJV756vLTAfG+VYETPEhLI6vqlUJeSVtgiB4NWXYSRFfz+oiVNIrJJS8hYyE6pWYvJKXTE/AN1+eCS88pAYH7GbRsZyxXr/MePga373+a80nVErrNe4uHVACaytVx8j3n6ljarOKF7bExa75nu6lzTlRIzBD6mSCDZAbdR2oImyGtx7+MTfd52UEUXJIbCKUkP11HoQlsWHbPfR61NGtVuVC2quGlvx94uY11a3urrtK2ZX1eNAToksiaDdSxt6+DkEWvCVdyuV0YwcoNSGBkOSs0slD1QLtKoES2TzlH+zSq2Fvn/wpByLh6ZC8lyCKnG43oBETAM5CUPyZ1EzPMBmoDNYE+ezIhjFSQA5oiK+acQZ2hIyunYShBZUggeBze0yLQQkDdiYSJuBXZ0oy0JZoX1tU6b4zu/8zsN3fud3/nv5oW9fvzGvt66gipvIrxuaAEJyuLiZUq05JL9VRD2IYzZSq6+UdmdnTLstFpQUgzdyVDqcHfdtRXFGnSqtKqrBH5IdeB06X9I7i0dEDJW9z5N46ENxj6G1Ba2NRHKF0ScvXxvp9X/fO9atA/xNwNxHJECwRLCENY/zOk4mePVi8NrKpjObjZLyAnF5GhLwAdd5k1gkxQlt7nsKsiMJrHrAKMSQmGvidHfCt/62D/G5f/IZ4rRlleLhBW2dLtC9lLiCgIBS+vAnvmPDm58U98R5zZZhtmK6PlVKo2Sa+uAaCW7LbdYfHBUoSGykOLKoP7RVjWzC+fmJo7osIOo1oyksvQK2IdSuPFaC+b8pNEdfqbiHtt+cg7iS3swoGlhF0BAxiSSqo7Zq9YdCSGjM2LXfytwScBJgCgvHIChCDInaG8xMJpoqsRVCVCpKZvChy/CQVvD1vmmghUjQxLIaMBCDewOzJJJkRBNBBgabXOUNngaOvQbTLIB6hSYAPXwSsq/uxmnLXI+kZNTVN0/7J49Zz86YTiZOzs44zCvrWh2XkzaM48hmOvG1N0axQiuNshRMmrNbsz84a46w9PKA6oeh1tFZWQSNPkDnEBnTSJREkOTIsBAoUYkRBjGkKbUWSI6sinlgszTo24akxnY6Ya3X74eKaCTGQFkd3yatktLg4bfmClSrFQveUlalsrZKaQWtXcXHqNocTybOG8Ui1mpX6gMWAs3i0yrXGBMSBlpraEg0GTiuKygojrgbQ2McBlLaEmhk6z7jZm4BEnybEQIpjz7YmdDMucIE3wLVJv1wVRD2hFTZSCSPI3XTaGul1YK2Si2L44UqrM26VcLB8EG0c4gDEh3DFXNmzBNq6mrekEk5cDUGSo589B//BPAT//F3/K/SNafIfjrxOo9QaZN7h00FCYlpHDnOM61VUpSe4O9hyeZK/bX/vKrbj0I/9Ii5JYcQCSljEqmr/34SPzBK8uZBiV7fHDG3jDWvOJYsWBohBmpRCJlSgw/DUTzwdvSDW3G2CQAqC1AYx4EmilLJybF/wQKNjZdMBPPXawhPbWjRhJxG6rqgxUszzIyiRl2FKJkQRyQM/aDljGDFKS0ShBQNW2ff9OUIU6YCx8NMjJksW2pryLVo9Pb19vWb6PoPGFATqqF3hXdTfFPWtbEZTwlxohUjRyMnV+RUA2s14jSST3e03l6CeXCl4StQlYaKJ+aDKrSCaR/GLILxlDcKDZMVkeS49dCgGQ7uvzbJF7Qt1KbUllBrtB5iUHqzTh9I0IBYBe2Qf4KHadQI1gc33IvXWu0rJ4d5N408//xdnr17ithKs+rpTv/u+NdjXo3a2ooPTJ5exxpBI61tqaUrjBX+2z/4UR4+Nv6Hn/0c42bDuvgpPTjAkBrd3xktdYP9wckJ0XvVHR5vVHEvpVOaDJH6NBDE07hb9NCYCdGcwygBmh58/R8akoS4umcUK5ymxMkuYcyEdSW1gcYWckYYoXgamejrN7R5+w54MIpEsBGJRmtXUH0Qi71MQTG3aoRIiIExGkl8xWuaqZqfrvhb8zT4nTzwoDReM2PF0VhbJqSJB/Q1EbGukvta0nmMrkwEgNB91uJe43A92OSE4Epr6GDuLqXhTWXXTU3+U2+rBxhiTu7FrZGcB2IcOLlxi93pDVpS9ssRPThr9PLqyv17YeTiaFgUbt30VH/IE3kc2Wx3XFxcMC+zHzLS4KpyjLTVKezS3x+SvJJ1CJEhbb2WdRyxIJTmPeBDTOToNIrS1LMbMThlwVZXm0Q7Jqn6IU8csu4vb2XVCnWmFFexnjY6NX/fiBh5417S1P2UMW2obWV3tvHXq8J4mrHmtqEYvK+9rKu/HhT3X1rDWiF5D69bJ1y2JUgkh+QbiqF6ICYE8rRjmZVZMykF1gKzCkkghsJuis51TvRaTPHgWGsUO5JS9lKL5ko4EUS8JS7EhPTXRLCKaUFiZdgC2+aHZ20sSyGvCsdCOR4o60xbV2p1nFLKUJcjfq6oxFxhcE9wmkZKKUgYuNxt+O//xO9lnI3tyQ1Oz86odeV4uKLUhbpUhuCcUA3GanuItVMPcLtLSJTWfIOj7sdVrV7vjPSl/4BGt1K0YqhlRDJz0143iqt7ZiiD+7FT4lHMXI1n7GgsSTlmNwRsmnNo5wYqEQ3eKkeIBFEq1dP6ooTQfDgbxFnFNRCTh1Jbx+QFCbTq9+ImRhb/fWenbvyep0rWQOlB0mYefETALJLjQClCwkH+ilHK6gGsKBDlKZWCWFxvqP7zT9nrodeipCR+uBO3XynRbQ+EHrx0ISHngOlKXRff9GmktYBodD+zxc7ibqQovgW0AWKg0ViWAypKSt5+qGtF50LMfsBeS3vKon37evv6zXS99RW/Tb2n/rqNxmcWrYEo245i6j4+fLW89hvx7vzMT9Pd56ZN0d697JkKdWRTE8ehNr9ZmbjPxzUs56D6ar1iMjo6x/B1cfQbGbpQ60KdF+qqRAw1w8QxWc0gWC+bDH5Cb7IiWtx2IIOru+ZfhaOn3KzuD2kPZrVmhBB58cV3cPtOBi6oKo7BkuZNI0TUarcNdK5dyB7Qap7sXFBfiZZGMuO5F7b8zv/yRX7qZ3+RbBuaNIoqxIoRkXhCKx2J1SKwca8jwdUDzBUlPAXaXJ7wwduFUP+eWesDLtAf9hLEi74suncrqq+9o2AhEpaFZzdbzqeIHo9sSgWNWAyuskpiiANShNQLFiQkDweoH0iiOabLzNXbbm51JUnUDwEk5yEOmZzVuaQp02pGu7kBvMUpSGATArfywMVxpRgUUTZh9CR2V4Ytxs7vbVRt3SriwRRzfQzEul/WCOZlCH0CQqWrvsEjWiaFaubw8U6WAA8dNes0iTAiOZHHiTRuODk/R1KmNOPhxcLWfNjLpzc5e/ZFdNywGpxuz2hhQ8iuJgniitsQnEtLIkkkxwDND1cFbwKLJwOyDZ5WVqOuxQ+SdaWszdPT6pYaF5HF1VYcm7a2gtrKIEImQnOkm2olpgGT0QMySVjXhXVxLrCah1/KsroKaf69TcnfS02FIW8o6+ye0YGnhIXQw1QhBHIeGceMbjakYQRxvBytoqvQluIEAvWCBVX3ZQfJEJwk0KqrqiqGpOwtQWlgLkeW5nYVqYFKV7XHvl61PdtpImkAa36gw9/3mCvKFhxj1HqTUIojQUbfRmj5ihc8uB44boTdyYCslTpfMc975v0B3RfmtUJb/TVTYscSVaxc+fuYhRobZiNDPOHJNMLWB76TKXB6dovWTlmWPXU5uiUpjSCVSkSseOuWjCjeOAeuCDdrtLqgbYXmXNnaAnFzTt5uWOcr1uMBNHFychOpynF/ZC4ryzpTSmNe3fKwxIFWhO1asZgIwynQXwME1tYPGTRidlKHSOr2BiUH52Xn2PygJEYjEPKOEAJa9Wl1cNUOrJfcC6zWnjXwn0mw4LSEVh1RR0RiJsdMUw9T1dbQYgTwqtAgpBzcouJHxafPsRSFII1aFz+whMhaizeQEXvI0jD1wF+T5qKJJEQGZ5+GBCEhQwLUm6ckQF/Nt9LQtbiHtm+qSluJEihW/e6kQlsakUpZjhwPB2/gk8RajOO6vOVH+dvX29dvlOutp/irUounbL2i1JPf2iKt+louxuCVitYwbcxzZRgndpsTH6Bc/HA/aWv+cKWh3bsmJEINiCdvkFidH4lg2tycTr85dCCmaSCGU0zj05X8uhR0zb0SL1F19pN7a16BKtJveOYDqi2glWyDp9jVE+ga/AEe+5I6iPXPtWHWqGa8/uUv8ew73sEujz5wRfcrog5pdsiA15Q2M1cmo2C1MU5b4nlj/+aeeX9FQrj/5uf44uc/TWjS15IJmBHZ+wldtgSJRFNvzgoDIUJpxdeWKZBUnia2BX9IdENk57z6uB+6p4tmSGuuvNI5sWrU5lzSlLID1suB994+Y1qPpHL08Imt/h1qhaLFh3kcC+QInQGJyRdm2vznbc5OVApRir+OzBdrRq9CpGHNE8FFKyMNC+o3+h5kad1AG1vldopciFDUuCQ6GCw6V7LFwCwwRn+4pJSwWt0yoZ5Ovx7QJQgixQt0owO9m3tCEEsEy6QcO5qm0KxSzFVIAIuBsMmuPE+JOI1oCrSUeXKoVBPieEoeBoaTOwBMt55hf3rqvet5II0TJPdZXkPy3TqjnG42RF047g+MIbDIStAj+8v7lPnAfDwwz3vWxakVbo9wVd3V4UBKkRCMmCIxJaZxIKREs0ZMJ4CSRBjjhkgi4geicZhQGTFtjENimZc+iQWaNYbNyPHqiusHfGtOw2jNWJsxjTsur1ZgYpn31OoHtVabK1EhYLbHU/QBSZFhSuw2A9tNYgwToSN1SvPU97qulLmylhW9ruuNoyebrfuTTTnUiiVX7ipeN3loAWuZmUhOkaiFde+1uFGUIQemPPZMpRBVWJcjSTyoZwQWqdTqtI9pHPyQtS7UHkKL0UNRpMhwvmO8MbErp7TVOB4WDocLDvMleig0hHVeSarkELk6+Oecc2Y7ucc85obZwuVaWK4uidl92jG6wqnRiyeGTlVxG1Vw9V8NlUCTgEmEFBAyT7FQMTJsT0ibkdoWQnFPaB5BpTLlpQ/zA8fDgf2xsNSFthpSDasjSxto44baXKGPIZEs9/BXcWRb7SQSKzRVxjASpBGiErqvX0mEGFhbIaWBEH3no12UkIAftiXgTRFeb+0OEMGCUWPisEIOmSg7oCJSaO2S0pzg0qKQYyDkRDG619g9+gBa/dAcgxM+1mWF4GE3Qyh1RZJgdNqEuDUFicS++fE8gFu/TGZvP4sJzSBRyRsPhWHe3jUq3SLVUFaiKFoDNFeJc1SGofjjk0yMgXF5m4P69vWb73rLA+qyHkhdgaMbyNWKJ25T7CdN9aanPtyEkDnZnRP6Oh6j8+C0V3V6wr61hVIhyuh+HnwtbeL4H2vVgfQxIH096xFKP/nnEGg1UNfSvU3iXcvOX2JtblRXRpoKIgNIRpmxUFwp6aqSNa+Ts2D93/D/3czXYb7iNyR648qTi5l1fYYQd4g0TLyOkb7CUwnU5gOThYTiEOZijRtnNzgys9RLyMbarrB1RrJxXBoMERpMwymlLjh6fXElEgfvF3EF0IL6WkqL2xLM10wxZGJwz2/rtZv0AIqq+19j8pRLNYdax+AqsTSH7ZsqTZRNEp6/sSXpnhSEIgt52EBrDDUSzdfBUEmd7Qjaa1OrA7sJqAY0eABFTGltpap1HE/qIYpKoCfug6J19iKAkEniypYE6Z5BZYyN21vh4cWC1yAWBKgGcdihwKqQ48Z76LFeR1mR6InqpwNqAFEhDxlSpFUPj2nzVR7Zm6hickalGJB8RZ2mM2Rzk6rQGKH5ABdrIKVEyFvSeEbYbEgnHi7Z3rxF2Z2QBX+IWeHk5MQHiqKYLqRa2T95xLGs7J+8xmuvvM66rFxeXXI47FnXmZw6uD65OjxNI9O4I4RIzpnU/28aMzG6N1mkW1pwSkeKHXtj4HxQIYkTNmJMiHgnfIqRMi/XNwQ0KOM4oruTp5uJ4/EK+sdfCwzDxO3bjRiEdZ1Zy0pdCrW67ac2ozRXeZd15rgeOV5Uatmw5IyYMQ4jIXkQK06R3faU1FfSh8sj81ww85R2DCBJnBPZKilvO291dVUXdYUVUBOi3ULrirUZKOQFNkNGdGAcRyy4jzpQUC3UpliE4eQGN27d4vzGKSnBg/uv8vjxl2m6YqK96W6LtkxKSpy2jNvMyY2AtpXLy4fYcc+hrFxcXBFVWfZX7OdL9hdHzs5OserFB152EAhpIGb3f4/jwOZ8ZDZjd2PHbjxBWqO2vd+rAz3E5/fN3LQfmiMtCBIUaZXafLhWDKvm2xAiy1JpCkMaaVrIKRCnRGiFSYxtLujWsKKsxyNLm1mvAk0S67BBbce42RDi6BgpjRiBGsStYeolEBbcLx2zvx6X5gUEFqGaPLVfeWlSIwbtPvyE+y+85TCk0ANMbmVQhXkutFrIudHMC0mqzsTogczjuoJEVl2JIVC7z91IxDC5Bag5Pzrm5PNr9KpYE2i2IKKdN52d1oALMQ450M7ejbRiSHPvqwajWiFEpxwkMhOZHCcoM0tb0Shoy0jbIOq4ul3e0IrQNKEtslu+tjmob1+/Oa+37kFNQhIhJyH5bsXB6MlIsfd9N8dntObrxTxsSHmilA4sto5EUkWbK2Yea+ntSJ2hKOJMUnURC8W9gw6p92CVXfNB1eHPbhswtBVo1fuQGxg9bGUgIfswYbF/4PZUSXKYs2OREB+sPPlu3pQUXJGzrtKoNmprDMOESGBZF2JqPSQTkf7/mxiVhFoCkgcAtHJ5mAnpwJPjJXNZIER/YBi86z33OLvxRS6vrhCMKDdo6wRpC2FEwoyEHmTqCCSH2XuNrODhL7oKaeau0xDlaZ1p7MEgB5/4jT1aB6cTukF/ADJRC8wHnj0bubEV2qyUFGBtEAumQib7wt5WLKjX9plzY/0zcyVC2ohYQix4v7YFmkKp1Q8PZKINbvq3Y+8rr09T1EonEQDBKssyw+Ckgs0Y2aRKicoaA3NbaNUwS+TdDtOKSCaq+9GizV7da6ETJyLIgMhAs0IKyZV/8dau0L3LOSSGNJKyK6zBAtfl3fsl8/jKE8Jh2BCHkc3pGZI2MGzQlGhJqKErswAKJ9POFZeUnAbx5BFmjcOTx1xdPeby4QPefO01tFXm+QlXV1cEiUzThjFFdmc7ttsNu5Mdu5MtZjCk7DxKM4bsg3/nejlzE/dcow42V3Hl06jeNe5xRKQrbGbemhNCRFFCdP+udgalFCdr+GvROYESIjEOEIyU3HOZUmIzpb5p8c/BKzYb1g9ITRuHeWZd1QOGxVjKSmFhqQf2+0vKXMl5Yhwzm93I9saW8zgRQ2CeDxyPe2prHI8r7XDEyhFiYAgerop5BMyT27pQZUeYRo57I8VMQTnOzk2OszFtfQN0+/Qm5ydbpu0puxt3ObvzLNuzG+SciMF45vCYB/dfpZYDYpV5XrBlYD4srOsVy7znOBeywG674/Q8kW4aZ2Kc7J8Q6sz+8RvslsQbbxaqzjzeP+xBTiPIgGrG4sg3f+Qj7OcD73r/18OQWNSIYWQgsB6vaPWCw3LBQf2Qb6USl8KIuP0o0HFOlRAceddmRSwSg6/gW5tp6uJDTHQPr2PAWjQqKxYVG401K0kKRQf2i7G0J8zzBo2nqAxYHEhx44Of+M8gaPPXlDi3OoRECBFaIGRx1JkKQiSH3HF47ekavql1rrW3ptEazYo3dEmk6cwyH1mXhZwFk0qzxlJXpjCQYqJ2G1BpjRy3yPWjUUZf/5fV278CT7dprS4QKypCsQVQok4Em/qWz0UYtHgds4G1iFjyZxp4qMq8XtpCIoWBUAesjEiFFBI1+qYnSHa8lnuMSBmimgcYQ/0Pe/K/fb19/Qa43vKAmsczpLhPplVPKAuBnAOtHpF6AkFoWl2tiCM5D67EWG+HEsFUn1YgBt+hEyX6KVFBpdEkgvjJtjXplZ6CqLqZnNAB8RXV7InXUj2F3Sq1zB5asEgpxTlyFjryR/2B23C1SV1hEaBZtxB4Bh6rjrEPCeeSqmfemwHmlY7TdEoeRmo7YKGimgg90V0aNArNIrX4gxzxQFMIxnG+RBWGPNJapq6CLZV3PHPG/+n/+I08fpi4//gxn/3cI7782pHWdlQr5JwINGpbkRY7Hqt3fov/SNXoOCrx9h3pzST4jVJVSDl5SrlWiJBDZFDH4NTuTwxFGJOQS+E953cYWZlLRUU9bGAV8wwZWiuE7nltOLfSDFXc/0UiMiE2Ylo9QW84Nqg3vDhKLJMIRFOseXgupq1X30r/woBWVywmJEeGaWAbhPfe3XBMGd1tOZpilvjcK29ydXzCZjuhawGLDGEgoSSMaOZ8XYlgmcDQSww8oCfikKMoHTclgCbW1R+OuoI88c/p8SVcnmZIA9NwQoxblAmJExoDYQhIUkxXWnU2jM4zqRQwY754wv7iAfv9JdoKy3HPa6+9hK3OShyCcHb3Nu947lnGvGEYRiRFQoyklPy1EWIP/F17dRuB5vWv9brgwosIQkzkvEEtul8X9TYkc1+zuypcnVJ13FIQecre1b5RCLjC7AEl94+H2P3HJr11SghkqLhnlOBUj+yg9pwjU8rOiB0GaoPaHG5fFyAKh3rFk8uHXG1PWOaVeV5orXC1P/Dly0eUomzHgbOzHbdunTOkRFmVi0dPOFztWZcFKyvLXNnuTjsNQyil0sJMilDC6ip0hFaNdamING7dfo53vPAC956552SF7RnDdPK0vMQsYSjj7pznNs/6FkDU319N0LayliseP3rA44eP2F9cMi8HluUIcWXYbggnN9iFwLjZsVuvOLn5LIfLI8dDY10X5nlmmY0nVwu/7Vu/jW//6B/g4nDk7NYzLKVyXFaWYyGIcGcTMTuyPz7huC60dWG+eIJeXSJloS171rZSS/HNlTRUVppn6TGKT+TBA0GtNWLyCmQTL//QKixzoPTGuClXcihsQ2I3OnVDQsZEOK6VtczUcsG6Ckkd4yYaiePgwUJcrZTgYabG7Fu03lyWYySa9AzBiASjNPfytlp9kI6Bdu0DUN/2SWhIqNTqQSOThraVEhqjjEiMrK0Qhw0xJYJHy9Bu30ClBx8rASEHoZQjaiuas/OyQwYZ3PePOnNG1AOq4IdDdSsAarTmVpYUvfDGRNHkHtaQgOR0kBQy1otltHOVtUVi6kN6Fyvevt6+frNdb92DWgYooYeJfM1nBF/FmyItEKNQaMTsp1wJwVUXdQSVhODBEowg0R+CFcdy0JObVNQMCa46aq9MDZ2vp9a6t3T1oJBGCM71q2qoOtjZfauGqKfAPTVekVAJtA4LF1QT2qqvZ4LXFNJTmXR1x/uiQ2+pckYrXVnNaSLG6K18VgnRK1q7db5bGdzXatotn3XtDUuVcdyCDewPB1eXiOxIfMdvewFsZF7fx5tPHvHaa4/4xM+/zs986jG23ABGzGZSUG8fwT2SKu51VYUYPN2MaVfLunpG6Mprxyvhaekkro5HiVRxdSSmSNM9t3PkubMT6uExJy0Tm68ZZ1udY6iZQKZRWNtCski0qQ82+lRV95HZFWofh3xtGgchWEOKemijequLNLckODJ1QVlp/etgCkznI2mzAUkkhWdOTiihoicTNm25eed57uw+z09++hOEWpjClqaR0KLzGmPnsuK+ryiukLTgwa6Y/PsRTUnBiBFigLoq87HRFmcc7o4eeNKwgzh23IyjGyWpN1elREwjtRTyGJgG/zttPfLmS59j7N7QdrxiG4W8mdBNJtOYhgFrjc1mgtFVFLFATJ0R3MN71txSEfqAGWNEdKWuB6wsZFOsrOznPfvjge3JDfJ5ROLomwTz94A5n+lpOEj6uvSaUIF0r17QTorwhHvsaDhHj3VOJMET932AjWkkSMZM3TrTBDCmzcT57tRfq+aBtZz6wWrnxIR0NBKBW6e3EJRaK4d1Zj8vPNhccZxnrq6ecPHl13jz4esMIXHz7CY3T25y79YN5vnIYX/Jm2885Dg/xiQRhomYd4hWtDTSU6VOaO3IdnvK1/+WD/Pe93yIcbcljxsPDYZEq0Zsvj5XASF1zqhj1qLgiKPenjSFwr1bL3D3RaXMM/PVBVcXD3j06FUuDgf28xUItCUBW4ZpxzQl1nWlNR9C3rh/xcm9Hd/+XX+QcOOdWNyzt0jMkW0K5LGy1iOaAxJ2nGxvsV3cw7/ePlDLkVL2tMOe9XBg/+Qh89VjWj1S6tEPn8H8wF4j5AksEHJwhJ0Y1fBAkBgpnxB1Ai1IqKispH5PJwjjxu8VJgNlnVnnmeOxuefWjEWVtlSWGiBM7rGXTAgZrwN1b2c0Q7ShrYc+GVBpECuSIWhCGqCBaIlVFdM9ZgWhMY3Jv57m3uA4ZhqVHD3NX/thudXmKEFc7Q+tEsE3MEA0Q0shAVVHYpuQMJLCCKGysnfiRYguhuiAlh7I1EpjRZh8U3ddSCMRLKCWmM0b94JEpFUGM4YQPR+AEoZIWd3n6kOr8TXO6X/7+k16veWXddIjYRhYNNGFH6z5anQpUIMnFCERQ/bBrqOfxNwLWqTRcHC5Gd6AYRGrjrQJqeEUOhBdfdVojjZBBoSMNB/sTDtiJwKtEFtwZEfx4JQKSFA0eNUp3dSOqnvTxH2azZ+xSPIVk+EsPA9+RF8rayA0r4BEYCkrSmPcwfY8YtFQmfClKZjNmERUkleuilGpXXVwJE0eJkq5IoUZHQpx8e9lw8iyI1tGq3F2I/Hc3Vv8tg/e4Vs//HW893/4VX78//kparpNa1vv8aYgGjyMwRELPigL0Wv+xINLJhULxb+vJEJNVHN/aQhQBIYcOdBQlNwiJawsdebOnVs8NwbkysjbjF65p3QMnROpzTmWJJL1pL32AIc2ct04wVZGVgJJE5omZHEvaY0rZjND8J70YgWsknuudgkZLDNYRMzxTJZhurlFhpGyNAYiwzb6T0FW1rmxPHiDD9w55/DuF/jF1x5gMZC5ooXKkgBdGSwgnBCYaKZoNELOlHogXEPNEcxbAfwhmkZEVmoLNB1Yn27rG5VGjIrlwhoqEkbGDCKVTQ5kgfPTHbvR335lvuLr3/9buHXzjP3VGxz3V8ylMowjrRXOz3ZQK2V/ZMwjix4dm4ZXkNJVI3o6Wx0gifQq39SB9xZGX+3HSLBKomHJgyKSBImBZPRQVXC+ajSw6pNp6AD96B/bo5HZ3/PZD4Dj4FW17taJmCUirqSLCE0CKUxOhguR3WbnXmDxgFhrsZMe3FoQonsSzYxaPEgz9cBQ/6Q44xxV5dbNI1UrF48fMF8+4fHFIx5fHfiVz3+RTXyT3RA4OTvh+Xc+z9mzz7K/OPLw4QVP7l+S28AQA6U2sIzVwLw0zs+f4bd8/dfz4ovvIo5bf12oo+KGHAD1xHUKPZXeHUI9KNrADw3ylUYuCSPDNrM5ucHZ7XvcXF/kufUbmA8HHj96g2X/mKuLN2j1yOMHD2itcWwwbSa204btzffwwvMfIIrwy7/4KWIauHHrDikOhHFAgzGe7DAz1tLw9j98YM4TlhZkPCWdKFmgHg8c90/YH55wcfmAq8sHlPkCK4WgDSvuUScFJGUIGdOt30PDwckDGoiyIYTGEAdSitS8wWSHWqI1YRojadiRW+Z8kzmuexZdISSuDkdCntBQKNqwzqkWogdGc3LaQTUwf12pDKh4452JQlIKRlVBNfp2TZ0ZnPCygSLXeK9EWUu3Cgg5+uu0lNK3O34YWJaDP7fMq2zXZUbIDGlDihui+NvDpsSBQgyNHFwKUKmu5FrvrNOA4IMuacF6KUxsSgqZLKNv0USIawRzdNrS8LuKLC6wqBDC4IdHE7Lfdf+jBoDfLFetlZ/6qZ/afuYznxmfffbZ+l3f9V3709PTt5Njv8Gvt/yqFrlgbRHigPVWk+ua0cOycCwzYw8QSOjBixh84NTW12Dik6mZs/hwP6kQiOHa/9ZDKoKvrU2Jsaf4uyroYSRfKVarHiSpCWvevNGaw8xFOhi5Ng9WyIBZ7FxQAOnpSnG0pviq0n1pzcHcJu5xre6XbVLZ7QbuPf8s954/5c69icrqbSl0KamrxjFnUKG2hSidZxrUT+krqAWyFCwENAeWNnIsFcLCNAlVB+w4sskTWlfe9cyG//YPfYRaGv/k//05xnjLPa7Vh4VggSbXTVrdZyo4VL8rpWbxKT7JlRDtHiZXwo/iCndOGVmNUhduTAPP3zglrUfGPLCWmRj796ms3rfd09whJE87V8cfEVwp09b7uWNzFmyt1Fp9ENdEkdiVWEEpWKjEWD10F4Siju3KAqGn+MMYiZuBWZX9fGQz7FgrXM2FGDPHcmTJxu3bN7k9nDAx08KIsNDaAaITERBXuwXw3h6ILI64iuYWEAk9aKVEg21MiBREnDZxHftVNdZSGfOE2QatG7ROUBI3bu+4fXNDFuPVVz/Laz//0/yXwLPP3OGZu2c8eHCf27fu8uzdF6hmPHryiLocSK3wmV/4ebYpc2zeVvNkfyAOIzfv3Ps1jWHutdZaCeKDdbPmW4cUPfGNIRbZZmG0ratcKWARSluw6ivEUhulNlop7veWilkjxuTsTG2IJJSBEBIpRVQbF3pFSoYEyGl06H8aCDGQonvIMSWPgzM1gzCkiZgiY55AvZ5yiImlHLuK5+HHWov/nES6jcHfw1G8Yep0M9I0cZLu0E623L19k8fHhcePjsyXM8fDns+/8jpffPMNzm/d4h3PPc+73vtejnf2zJcrDx++6ui71ijrwrve/T4+/E3fyPmtm0iMFGtuQQnJCRBldbuH2FeQZPgtTrBOhBA/YKsHP7Voj2wr7vgRCAMMxvnJbc7v3GCZL1jLu4kYTx48YD4cePDa61xcvYpJgrbhsK985ld/kvsPvsxmc8a9e89z65lnGE9uMO12xMXZu9N04luf9JXyEyQDilm3z0yJk+mU7c17nK171uMT5stH7B/f5/LRI/b7J5SyuE89Zl+tI8QEpfC0Ftenr4HaBq/elECIPgCOm4Egwv5w8AS7+tZqMyWiLGwyxOwFDUtp3uKW3IRzXI2lzRCMIY3EPLKuwqqFsnqtajCvwDZRNLrnHdRDotFtTk3cuhREfQunjrerRZ7WkIYQCUNvrwNUG8QO4BchRKG2SsAP/SGMvvEj+jOqOb1FzPxn7M58CE4c0KasHYMVQmKIuVvYgGp0shnaPGBnGAy+1ajqQbSyLGQJiG58gxgTaH6rj/LfdNcnPvGJ6ff8nt/zocePHz+dZ27evFn/0T/6R7/63d/93fv/nJ/b29d/2vWWB1TFSEExW0l9QJW2kMctFg9oW4lhoLaClso4jjRdUV1JBKx5gvQpU9DMV4Ihu+J1XS8qoWNdIERvb4pSaVbdfxMi4DD3Zh68Wcw5ehCJwT10rTnkGKGrmdZDObi/yKBao2j107VE97hKc2UWo674gGxK00ocVt79ztu8+N4XuHH7BiEVGFZiNlcKzcsElM4hxVFaQkWSeKOMCUOePJRTR6LNxDh5TWjMBCbCODBuhUUC1jZElCFFQjhy61z4Hb/9ffzE//hL7Osexg1LR694ann0lb+pUxbEBz7HkQzdV+kHCGIimqNdPHCgVIzYjNgCRGEojdsivLDbktqKWWOdD+RhdE+jdDKDdOYl3vwVotCC0aQ56kk6vzY2kIDqQpOFLL0RvK20UGhACsY0JjZ5wLV4qB1J5v5I94fFsEHCBtUVE2eGHo6+ut5Mp+QwEFelXjyhHS8pywXDyZb1KEiM1NYTwMHh9iYzEHutaCEnA2lUVe9+xx/unhKGZV1puhLSgIi/J2oFbckfHmUAgXvP3eT5524xDJUnX36Zf/fpT/P6G1/ifU/83vnS536Vf/2P/8988zd/G+959wcJIkwx8OTiisPlEdbKzd0Joay89uqriAotQDoPRGvOu9UeQDRfv0v0rzF2QDmoI53WCnXluBxYtTBsJlq54vLqQGkVXXqjj3mAo5ZrQLoRUvTO8VrdB5483Q+BJfjBr6KorqxlRojEODHkyT+XADlGhjx6wOj0nM1mw61bt32tG7w4IAVvm5qfrFh1DqrW2j2wbuABb4Ey9TpMrHWkm5IkonkipETanXPjRmDdr+yXhe2DN3h88YTHV3te/bmfYzfseN+7382L73wn9955zqsvv8qXX32Dr/vg1/Nbf9u3kLYTGiNzK6QU3IcpSky5H7Y78UL8oO2DEYAPNTG6+hu0By5NaapUVWIQH9rxgbvUQpRAiBs2ww5UufPsGTlm3vXingdPvsh8nFkOE2UJ3JXnmE6F4+HAgwef49HF69y+9w7u3HueIe9Iw461B8nyztvxnN3qQ5nW6gdJi37HkpE0bJimm5yfPYc+M7Mcj1zuH/H44QMuHj2kHI/YumJmJJuILTnhgYKoImmg4Cv0wIrYTLNrNTCQB2HIQlsLSbw1qTa3g+jq1oBh2hHSREgDSmIIhbk2mrWucCvRIjl6KLY16wdNQcU77kNyfF5MCVt867XiQSiqoqsyJA/JiQVUM4f16F58tX7UADVlSAOLRo7r7O2JVJpWqlVs9drsVI0k7r133Td1Hq6BJLQ3kiFesqHSukii+AnGPd6tOVkjBw9Sre1IKNbjjN6o1qwisdHqwTeMGqk6/4c8939TXZ/85Cc3v3Y4BXj06FH6I3/kj7zv9ddf/2SM8avy77bW+Kt/9a/e+4f/8B/eff3114fbt2+XP/7H//ibv/N3/s79H/yDf/CDb7755s/duXOnAfz0T//05ju+4zu+/pd+6Zd+4UMf+tD6oz/6o7f/0l/6S+/8u3/3737hL//lv/yO119/ffjWb/3Wy3/wD/7BF97//ve/bSju11seUDfDAKqkKNzsbTJn25Fn7+2Y15laK2VVcvR1OdWHhiC9Y7p3HXuNpqt1Zh1YbIZZc09dHPuf4Silfuq8TnEa4uvHzhc1q0gyFKUsK9Tq6dNgaGed+nCjSFiJKYHCWvGmp5Q7yqd7+oaICrRWHT1DoNnMeKJ8wze+h3e/9x4ajWZHYnS1M0VfsYQgoA2hefDHVoRKjGDWSCHTiqDVfCUY3I4QhoSIh5bCIOxOn3MMTnyIbC980IyRlIXDcWa7SZyfBw4PD2CRmKRjjdy2YBYIrFRdnckXtI95oQfJfAgxayTxnnMzJZhQxEg1IhpokxHWyvtv3+FOSrT5khgqY4xUc7U55+yA8aoensAwq04RiEJtq0PgU6ciBPdRVVndSBDxFKzOaDSMjIkjmXIKZBNE/fvoHbWuXgGIZtriYYdpDKTga7CTMxjjgWGYuHz4kNZOvaLSJpaDekAsTbSQPeTVZjIrOU+E1IAVUe9HD0Fd3Q+GWiHKiEQotXA4LFBXUsel0b8f4EPJbhd557tu8OyzA4f9l/k3/5+f5dVXvsjp7gYvPPN+3rm96n9HeP7es7zvvR8g5UxpDh9/5t6zjNH40q884uzsJrshMR8WXv3iF3juxXewuXWD6sRXjNARUREVZS2Fw/GKUivzMlPWBSuV0BpDiE5aGIQ4euvV7mSDNSOchKdlBHkYsGZOyDB13uKYqGslSiL2sJQfgpz1G2OkaaG25WngzRCWulK1UOtMqQtLdR/scT5nzAO3b9/h3rPPQfdFX1xccHm8ZCkLtRk07UND72436a08jdC93sH872rDvxZx8seQhM3ZCVs94fzGOQ+fPOLx5SMuLi548ugJn/53v8gnPvGzfNtv/yZeeNcLvPDCC9y9+QzaCqoZ123xhqKcfVBua/++982Jxqd+dX+FWx88+q/VWZoxpF5I4cOtqgcYtbmnUlJwTyGhWwXcSynDhvNn3s2ZKSmesByV092HKfUxVxdfZiCxVHFahIyYBn+Nq7DWhoZCGDxEKSKQ3YtptVJKpfoe2e+1EkhhZBg3jMM5w61nufHsyvHiMWV/ycWDLzPvL1jmI7VU0jjhscYVCZWlHdE1OAVEBlLYUo4Dmpx1uyxHjJWYA0ManGGNsJYFFx5br5eODAkkHoh2xNFwrmQ2EkdbnGsaA5GMiCu7WC/TCFBbgazEoD0o5WxqW71OVcRo1b2lEt0TXxsevIL+rGqdfa1ejS0B71wJWHX6S10UohJTH0q7QivRcYmqvjlKnayhdr2v8RBjqRWsuGgTE1Y9aAVrxydCjI6M2w4DjQOWZ9a1Oov8azgk9dGPfvTqe77ne978o3/0jz783b/7d1/9hb/wF57/W3/rbz13//79/NnPfnb44Ac/uH41/t0/82f+zAv/3X/33939G3/jb7z00Y9+9Orll1/On/70p6e3+vfneQ4f//jHn/t7f+/vfX4cR/vTf/pPv/iH//Afft/P/uzP/tJX4/P9jXi95QH19GRxx5kIJ87p53x3wmMTppzR6kijEDz521n3mBii6uluodfCNcwqRasPRvQkOiDig56ZOqqpQrBNv2nTUVUBq9dKSkbWI1hXLGMHpqsjcWoP4yANESXH7A0fGjpbL/og4qmmp0EOk0BMmVYrw8nAR77tQ7z//c9T9MBVKaQ8kvRIytm9fuqKMJJRa9TqvsA0Du5TrJUYruvrhDwkBkYevHnBczfukLVicyGFjJbCulbuPnOTQ32F41y4efOc/UVh3hvz4ZJxrCCJZtWRWQAIrYdVRDLYSkgehYJeINCVHqK4EqTmZIaODfJ61EAzuJyvePF04B03T6AcSEP0atIOmo5maJ1xPFOimfffWBBaK56C1tVvw0F7lWig9qIDwyhaKSGxqlE1+MfC17eqPnhomwlx9cQ9QuqtZaEW2jxT68IwJHIcSNKIUyKjpBSZx0SVwJdef0iYbrFGx2e1kCgR6DaQZhBVSBJJMREtom1GaER/4fXBuxFCpa6e8I7mDT1m101SlTRU7j6z4/0fuse0W/nUv/tJfvGTv0KwkXe+40VunN/mZHeLu4+dg3pysuORRV579XVu3LhFjBHFqGtlf1w4rv6QWkqB3QnD+RlhtyXsNoResajVwfVX+yueXF4AsHSoeE6JISd25zu2KRMRJ61loZofGIdx6oKge+AUD6dJku5tdlC5v468FtcbyDxIFoh+oGtClgFy6O3qEROYhoBJppaKmaAkYorM+ys+/9lf4Y1XX+O1l1/mzt17nN+8ScqJaZq4uHjEclyeloOE6E1EMYrD0q3bfVS73+8aeh48cX79mm+VKWYGieyeeYa7N2/w8NEjljsLV5eXvPrqq3zmS5/llz7zGT70vg9xfn4TPR6o85Gbz9zBre5ey0lw7Ni1z15C9IQ2vX71eiNk/XMS3yyoeWvWdSrdmt+j3BKV/ZCtAmmE5FxiScFH9uqbB4kO5yMnrmZlGm9wemuD1pUhTiCJGBOtVOpS2A6D82W1+QFa+s9SXPnzIjS3MdW1UdeV43HPsuwpS+loP2PIA7tbNwk3z7n9/HNEGpeP3+TB/de4f/8l9ldXxLawy4HTQSlVkbhDbYvWEzz5FVFWD7RWBRrjmIhWkBTZjrkHf6DYQlkWSjXUZsyqvy+j36+rCUglZ6FZhq5Qp5hICEtpzMcFawWN/fWuRquNEgW2hnRRBBrRKikbahXftvtM40xfV+pj7D/nlPxQJEKIFbWKrpBHtzlVUbfBNX2KSUQCIY00a1hzC0jKbl2rpbrXNiQXR3QhBhgCbCdvb1vXgnXblAT3e6dhoFZP9Ns1su5r8HrXu95V/uE//IdfAr8PfOpTn9qAbzbu3LnzVeFvPXr0KPz9v//37/3QD/3Ql/7sn/2zDwC+4Ru+Yfl9v+/3Xf2Tf/JPTt/Kx6i1yo/+6I9+6aMf/ege4Md+7Me+8JGPfOQbfuInfmL7Xd/1XYevxuf9G+16ywPq2akSqbRaSaWjjFqhzrOvPFtjGnZoW2laGXrquDQli0IsIBkzB8ZfR9q1udczxuireJMOmrfeFiLdHmCoru4H1ea/r/6CHCxSikJrrmGIJ+Zz8K7kyvqUwbqC4z/iSFsdOTKl2DvWlWrqjVTigPbSZj7w/vfyTd/+7eyvHnH18MjJrWd5/t3vQg9vcP+VzzGNiTu373J1deRw3JPzwMnZCaUopcxIE/KIo2xKIWXFYiOPA2c3b7FfViQ1xp0QdEDbkTwdIBaGtiUOtzlewuXjlWVfqeWKaQpYS8RxZNUrmlZSCMS+GoJrSoF74bDmgYLgymlTIwwRi4r2KlaSr4NrTjRLMK/c2ZxwPgRYCylmRL2wIPcigOYl8kgYfUitS/c9wrxcudolrlo/bVaR0PmsM9aMZsFrTFsgyFc8WaGzN028ICGG+NS7DH4IiTmwnbYMvRGpUmnR2AxCyjv2x4VZlRoFEpQ6kxNorlRtVCrDkCEM1OoomRg2PVVreKOVY4ZS6L0760q0xG5zynpc0Fa5XgqmEd77wbu88MJdatvzU//TJ/jiF77I88++g3vP3OPG2ZbTk3POzs4Yjj6giktlfOHzn0Vr5T3v/yDb7Y7Pv/Qyr7/2MtNuS9WZYyusSbnx/PNMt25w1MrF/oonj6+Y90eawjiODMPAbrfrw1Ak5+QJZMNrY+nr+1YotTIMvcWpH25acGi/2a/xVMp1TTHudRUPYhE8pe9j4TUmzA8iaur/jXVVyfx9mVImSPaWsug95fvLR+yvnvDyS1/AYmCcNuSYieK1rVeHPcfjHjNIMTFNW6ZhC5hvbcSZraV2lVjkqX9QNaClMWVfaydLnMTEePM287pwuZm4cfOMN5+8yasvv8K//Kmf4pc/+zn+i//i23juued59fVXOD8/52Q68Z+y4sN7iFjDq3PxwVUkYNJdFbjaJ+H6gCjXr1xnxYr2w7ofyEPoimtTquI2ApfYkNLZYFHRJmzHLWtZHGvHiMaV1hXsUgopCHGIVKuEGNnEbklAQLye2PrPJoSApUDaOaZsXY5cXjzm0eNHXO0PvtKfMjEH/zc6uWS6e8qzt1/g7rs+wHp4zNWjN3j8xsvMF0+IIXF64zaFACV62Uc5gq5eVjBElqVgFBQvafDgARAyY4pUqt+7UbQ6C1Rthc5ElqBuCcAzBWowRtimTKnGQRr7Q2XfDHRi1A0QWVKgSOnopsKQR1IDM68FJgZHq4GLDP2+KATW1tyfH73hLos5JzU6iosAVUByJkQPoIp4IJAYO+FBieKB3RwckVeb9Z+5o7dMC2qVeWnkcfQDcHRhoLSKyMDh2Gg1IZJ9Y/H2xZ//83/++X/+z//5DYA/9sf+2Bu3bt36qkzuP/dzPzet6yq///f//ov/2I8RY7Tf9bt+11OP7Dd/8zfPp6en7VOf+tTm7QHVr7cO6m+ZPEZf1XVQusc4K8GU/XLFYU5MOTpCSkFSAo0UVcyqA+sRaI7HkeA4FpFAzAMgTxukBF+JQKC0pVdOLqx1RkiuODSl1QYqFMPr4a6ZN4R+qu7s1DgiNqGqrH0WCyGQJEEyljpDrB72MdDaWJeFaZN48cV3ce9d7+XN+6+wP1ywHq+4ePN1cixISKxL5fHDJ5SqnvhWoalQV2NdAkEmUgzUdumqrs1oaWgNqAqlHhlGYzMmNkFchZURCxVrI2XJPL44MB8Ll5cPKHUGEiYTzTImRkpG1Ebp2BEN3vYTpCN+JHZ1s6Fa++enpBhJMbtvzxZsbZTsn8MtEr/1mefZtoUcIm4REIZp4wSE2hFXMmA2AYnaig+tMZBk8FR8iH7jt4DWjiasAbPsMO4wkmIkqnMHneGphODNWIqv5Ytr7V0Vh4VCjZV8kkhZScOK0MhJyWNmu2nI0Hjly5eMY6AejM12g+gFNAdfBxMfAMTIOUGIrtqE4sUGBES9tytiSO1BDKCtSquQhkToGYV3vfce6f3P8+XXX+Pf/OufpS7CN379f8U4RG7c2HD71qkXXsRKiL2txiLb3Zbjceb+m6+yf/yA3/aRj/Ced73A7dORf/2vforz8y0yZTbbDYeLmZdef5OLy0sk+iHv5q3bbLdbPBgSep1ro9TuF499QCRQW2fjxswYAJq3ZOEBO9XOfgzOQ3X1uA+pOHrH278aQiJqL9EQRxA5DQOKQhAPQobm76thGIDAWj3EkoaEipEHP8SoOVu1zJd+SMK95illttstyzKzLH4QtOYr8+1m4PR06/iqIARz1qRzjSNNIKSB1Yw8ZIJG1mVFgNPtlmk7MNfClBNjyNy6c4/PfuGL/F/+H/9XvuPbfzsf+a2/lSePH9A2xm63c1tLxYdU6eUHou4NNPNtjnhy3vpQfn279O2QD1QSBQvunUZXZ84G92pGhKDaD0qC5EBpUGe8HUuqv6aLoSY4h1VZS+3hH1ebBQ8PiQyueF8PpL3uuNXr7nlBrbGUiqGc37rB7uyUx48vePLgvlfTLg2RwGYb/TUUBxoD0+YWN04ad59Z2T/3gNe+9EWePHwTmbacbSKHqyfUecbqnpxgqYUQg1ufqDTJhOypfQ8NGE09KGm2EmJimjZdgS1YPLrPuXkoKcQOvVf3wYccYQicbjaU0y0XS+FqX9k/vqIWiMX5zXUp5Cn2WtxE1UDIG9IQGKIr9jm7j1wbxDGz1CP1eCAN4s+kWhnyiHTG6TJX1tAYUmLoVriUPARsne+tzfzQGz1UKiKkQA/oeWYhihFyZG2NZV0x9SIVI7CsOMGgermNBU8PfK1ff/Ev/sVnf+RHfuQ5gI985CNXf+fv/J2Xv1r/1m63s3/fn8XoK83rAz5AKUX+ff/929e//3rrIak6sNjKNN2gXvppTS0Qw0iQwnE5MK8DIXjNmzav4yQEH1ibeII0JlcOxE3jatbLbdw7ZGLeUuLkd2+XwW9kEmZiKMQYaKX0hyrMRCxFLGb3Di2KqQP+qzVCC4QwITa40hJmT9TiAs8qCpMrHLUoWZUsCUmB0+3Ebtoxt8rZnTPKfuLq4Rs8eTgjMbGdMsvhwBsPnhBDxoJQrXBx8RAskewEa4FaZ0I+Iiw0O5KyEGyLMHDr5jlhrAS7QtcLxG6gdUuRJxzXlf1xYX9cubx6xNVyAXFDHM6RFEBGIJCC47skuiZh6h7f1gLqG3GaVLwlSJE4EHUD1pWV5j7PqcGcImVufODu89yLI+N6IG0m6rEyxOwVfQtEIlUrKY9UddWiaoCQqLWABP/5Be0BskQke1DtOt0slRAXopTOGvT+byHTqnhNbNtgElhjZoiZJv76C9MZsjnzTusxEgbAFsIYIHlTzMnJlpuHmVtn8HKZUYlgldhGLGaCGiH6Qzkkx22pKGoLycxtBot715JFYs5ICe5rNlco1zozTP5Wun37jE++9DI/86/+FSfbUz74vq9jO55y9+4552eTq7ACOcenXlosoE3YbTYYC6988bNcPnyND3zo6xwdVCtvvvoG03bH/YcP2B8ODNPI+ekNdqcnDMkB8dbTxNoWrDSCdDoGjndTFCW6DxHQ5vYFCR5gdFavIDlBU/d/q5KSr6S9Bc7X24h7VwMTVvsQFYwaViR2eGWI7iluAuI4LI8QCpvNSCkr83L0dXdMlKWQgiHJ4f4uQ8Y+PDmEdRwHpmkghMj+auZ4OPL6aw/48utw48YNbty6wW4YKcsRGZyjjOQecmusKmQg5/ErNIIsTGlgyy12J2e8+vgRYbfl/qNH/PQn/jUvvfx5/puPfjfSRubjzM2btxmGiVr8DhJjJEY/aLnEKr0+1r9/ItIH9dY/H3t6/4sxuIJWC7WXMaTssN1aV6QjoppUkI03jXHgWPa9ejaAFCL9vooSs6CtYRIxCyiRNTrVw5q6JcnkabNc6IdyT7G7N741JeeJO7e33Lxzh2WeuXz0mCcP7nPx8AFNjXFzkzydcxxcTRwFhht3eH53zr1lJZWVw+MHLLNyWI4sx86zTiOtwrSd/LW6uGDRamNIY+fLrkgKNMnUFrGaex+9EnFuaB4yLQSMiC6CNaBIP6R7k9kmCWGEKRZOxpm6riyLcrWfKRHUtlAn5pI5VmM62bnnWr9im8o59e87mBqrLlgOUCtJJqoK0pzwTOghVAaSZLebrAWlIbE5oaaHDgXHI5n64TAQSOKbDKuFYzVq9EBkkIFSlHpoHsEavClQmREWSMe3+ij/TXn9wA/8wL2/+Tf/5gsA3/iN37j/F//iX/zKycnJv3eI/E+9PvzhD8/TNOk//af/9Ozrvu7r7v/aP7t3714F+NKXvpTv3r3bAP7tv/2321//MVpr8i//5b98us7/+Z//+fHy8jJ++MMf/tr+Yf6a6y0PqLUdvPGoht5VDcpMk0iSzJaEqnBEiBmyNEJdmIgMcfIeehFWlCaRoJlIZJREIiGlAh48aJbREDCpFG0MGNpA2+j98GoIK4ivmC1lajVEE63zViWpN5XUzDgMrLXRVmMUMBKaCqUeyCljxy1qAckB5UitS08Sw1APHK6+yPElYZwGRoxwusUIaE3EFLyyvCSHfNuK2OI1gjJSTaEWtmMipIJFH9ximEgyICGxO03Mx+pDaV1Y5gNlyVwdG7VGrpaHlIO5ET9FRq3sqDA3plg9FFG8kbrJRA0GHP3mmDz96hzZAauC9H7ulMHa6j4pXb09KkemUrlnkQ/dvI3OgXpylzAWqszUJXJWlMieNUVWGVmkovbAAd/TOcdDIOmAWPMAhHjdapWI6sC6LEQKYQiuipjQNGKrkcJITdEV8bqyspDNCJZIFhhlcq8xEM4yqx44txFpgUMdoWbGErAYObQD4eQc0cDN6cC7pyOvXBX2wwmLDZw2byRT2dIksBQh14W48Yd1Hio0RQs0IrNVjEYMkRC2hJORsBR2my3P3xgBePnRm/yzf/MZ7p3f430vfogpBJ67s2G3w60uLbnPTqL76IAmC6ozQ96yf1J5fP8xjx69wTAOEE946cuvcXH1kJPdObdunnHz1guUtTJGh8mbFJayesGB+XDUgCo+nLllopElOJc4FLKMBNxyg4EkpYRC1IG6BreLSKLq3BU/Z9rq0mgrEDZPg1HW6XHRMlL8wKkExDZILURmhsGooiQZGcbE+dkZp+c3ODm/QVPj8eOHXDx+yOHiCcs8E2KmSKRoJVJJ1Vm7fooBq43dZsPJySlnN2/w8OED3nz0gFe+/Cq3bt3mxq27nIxbb6lrjRTV7Qk2U6qy25w5usd8NLBQCWPiXAbOTrd88dXGzSHxzts3+B9/8qf58X/2/+K7v+v3cGdzi+XhFWwCcTM5M9cqtVrH4IWOlKPj8jww5Zqy1zw7fD4QAlStWFFygJAEbYrV1YtPundVJEAY3Yajq8euNKLV/46IYDl7WKv50BySun+fyJQGqlaiRFdOTZ1d3ENR9ZpRq80tINGLO8pSfLtlwhA33Lm34fYzz3I4XvHgwSMe3X/Ck/tvEJpxerZhGSNSA2PaMKQtJivnL97mNu/lcPWYJw9e5f6XX+Owv4JQeXi8gFgZY0ItMuaEycKxM7ebgcTBtzRFEK1UW71NzoxQKjltkDixDkYclcQVWgNVTphr4eroQ6nVQrJCojLSuLH1nchlOVB0z1VYGaJghx1xPSUXl72LRlqcOGhyAoZClhUOjWl3grJ6UGzYchSH/aeQERvBAq0dkNCc5uznBxfcu+9ek3gbnkXCaiQJxMEP9nodOm1OxyAILUboPNWUGxRhv0Cx/5/552vm+vEf//HTv/7X//o7rn/9C7/wC7tbt25988nJSfvkJz/56fe85z3/myfIttutfe/3fu/rf+2v/bV3DMNg3/Vd33X1+uuvp09+8pOb7/3e733w7LPPrn/lr/yV5z/+8Y+/8ulPf3r623/7b9/79R8jpWR/7s/9uRd/5Ed+5KWcs/3ZP/tnX/ymb/qm/dvr/a9cb53ua426FtZakL6ziqJYWzERlnZJmI3deAYrxDiQZERb8vZ0O7Kq8zhjCKQoDknu/iELFaz2tDm+mu8NIKoC6qsRmtFspZp7l3LeYKUhq5Jy8vWyOn4kZlAplFZQ88pSIRC0IikRNFCq+v6mhzmU6g8JTWhVSmkcjm9wcQHTumOabnLz9rOs5cDh6iEmK2msOMDJwfxqI9hITFsKiWCNIVaKGoQBCRltA231A3ctgcN+ZV0rba0cl4IqrGtlLQADKgsGJJlYxFgs9NO42xQqjbUtNCkgRpJCNHHNLOCcRotkSTSjf59WD5pUI1sg5YkiA2G54oPvuMP5ZmXQI6fTaefMTkgslOWx+/tSZrc7Z24z8/7Km2GaQc5oq2hd0eiplSADIQ5u9/A0nFv5ggcmvAwpQfM1WAiQiUhVKJWYo/u2Oi4JYNrtsCDMS2E3TF6tirIWIzRjv2RqMVLYcXZDudlWDhZYroxkM2kcSckh2Ki4IgVoW5zzao2mXmqgwZW8Uh3FH6iEKkxD5j3vfo57ox/WP/nzn2Zz6wbveue7GYbMO59/jpOtr1dNfUVuBJZlJVX/O9EiYrDf7yEEbj1zj9YKn/v8Sxzmwu5k4t0vvoeUAsOQPek7RLT4592sMubM2lbfCKxOq9hsNm7tUEC8lceT4+pcX3EFVXG8TR4ipRwdzUNmXSumMI4JM+8vDzl8JUxVKxYMkUT0JBnDFFh0Qc3DVckMCZVSvYCjAO24cHn5mNOrKzaPnnB+8xZ37tzhhefuQVUePrrPo8eXPL68YikHAkYrpfslHRGnzTBVtK2cjAPbe89gzzzD5X7Pl9+4zxu//FlOT2/wzDP3ONlse8PbQooRJdDMGbvSGbiq6ofS5j7E9734Xh5fXvDK66/z3R/93fzPP/9J/m8//n/n//Ddf5Dx9obj5WOybhmnAYse/gwh0VpnV4begBT8fqZoxwp5+56KD4Ue9FJq8UjZtU/V+dDdSd4PGNY/hkjnGdP73c3Q1RPgqYew1loY09hX/EZOjgd76nXtBAZveesqb/QgXF0rqkYMHlht2u/HxVvDtrsdpyfnPPvMyv7qiuPlHhGjhkaLXlcSDcQmyBNVj+xuP8OwO+GZd7yPeT7wxv3XePjwNR4/ue9fc8zMa6GWQsoRm6/YTpF2bFSNDBJ6SUtDcqSZD4PS3D4Ux9Ffm60Ss2Ic2QBUWA7qHu11Zl1nSlGyjGzGnQ+tU2AzbCgqzKuiZSapEzbW/essMjAOC1etsKwXDEOj1UZaKiRHarXaHKun/mdrXdBhYsxOSaEfCKwr6F4iY6zmm4vc35u1VSdypI3bBigwROZqNKvkBG1pUBr+khFS3DD019nX4vXSSy/9L0Jgr66u4uuvv56+GgMqwA//8A+/llKyH/qhH3r++7//+/Pdu3fLxz72sTfHcbQf+7Ef+9yf+TN/5l3f+q3f+g0f/vCH9z/wAz/w6p/8k3/yvb/270/TpH/+z//51z/2sY+954033hi+5Vu+5fLHfuzHvvjV+Fx/o15veUAd4oDEiIQERx/wVRuxqzLVFpgDm5MtY5oQhaUqLYCGjooyYQhCAkSre0zFK0RN1Dmh1b1xOQXUoGA9kS5ocVh48ImWtqrXN4aM1spSHntqOUaa5b4eqzQrSBAPu2ultYKYP1hqU2ePGgTz9YxpBfGK0rXBfFwpa0H0isRAzUJdnxDssbMygyFp8G9o8PWVh3gTB7ydKZqiCz3Rn8EStSjH5QqsJ06tgY20tlDqzFJ8UMYy5mRpApljazCdkMaVaoIuhkRfZakI2EI084S3Nq8l1EYUD40FE/e4mT9MB4nEBpFEXWZujIkXTibGtnC+DWxT5eqqEFogxpVGZVZll0a221OSbmnV17ab6QYpRF5/9fPMhwMxXg8T5ql+mgc0xP1kItEh8taILRIkoURiMwaNTGYMVESN0gpNErcGVytXFdLmnFCc81qWSoojRZQhRranp9SlEidjtMZumblnI7VWHh0PZCvORewr2BzCU5pEUKMuRmnqCBz1h25vJ6WsR1JV3vHsPd7z3ncTXvsSAPuLlQ98y9eRY+aZO7eYxsza09Ax+IC9Vqc/DNE/mBWlrj6A7HY79vcrh6uVGCPvevEZhmHiuByISbvSVQjmXfHWKmKOYIoSaKoMKTNNEykMlOYtbpjQmj4NYRA8adyuXyNaaebFGyEMEHyNqnLNV21uKBUoa/WvJzmyp7XVV/z4utWsK9xEEPX3TvRmrHX1A27OmWWZubg88vIrrzMMCUHZbUbGwd/vk0TGPHJYC6spdTFqKT6Y1oYWo5TmQ0ErtADVYLM55TArr77yBod942QzcX52xnP3biBPjT3eUBaCe+YjDkmfpg2lFHStPHPjNkkiL7/2Zb75t3yYT/y7n+Of/cQ/5/f91/8N56e3ma9Wcr5BVQ/rNHOKiYnjp9zWq24PybFzWumDtReTSAydAOGQeBEnQpj6e4YQMb0mKNAxST2IdT3w9Bu5qit1givg9M1Fa8UPQeLe2KfV0yK9zpWO9vNhSVW73cpX/dCDcp37us4F1SMiwtmNLXdv72jNSz/WZNRyJGog2EBjRNeZmIzpzL/mm2ng7rt/C80WD5FWZYyRxw8fcXX5BGzleLzA2oKIUVrFSkXLyjI7FcRKYb26RCu94lloVRCbGCeQYY8tC9CYJhhSpi6FtUTWKrS1sayXrLPXS5dlT9XGZtgQc+Vs9Gfc+VjYSGOJcExKGDNrrWynnT+3FFqtnodLLowECbgfv3oIELeyiYROfzAivt4XzH3ToiQc59aqYBIdm9Y/bgaCVG/Cyx4WXdZKiImk6Sng/2vx+p7v+Z7HwzB87tf7PE9PT/Xbvu3bvmrr8hgjH//4x1//+Mc//vqv/7Pf+3t/7/6Xf/mXf/HX/t6f+BN/4hO//r/72Mc+9vhjH/vY46/W5/gb/XrLA2rDm5raNYsOX5W3PmgFbhBsxNYBGYRaFkdMpYpKJOXJ4fVNnV0YPNlYg3iHfRNfeUcFM2px0/cQR1qVvhaP1Nae4m6go4hqYdxE2nJAaWibsJZZDh1blMLTB3RWrzdtq1KlNwJ0tI5P0xNCQhg8sNEMbEeUc6zNlPmKR+UJ2gopRqx0CLA4lFyDp+Zba7QizG2hrA0tR0rxsFYpDjMvy0yRGWmFVov71RDWotQGzfxBJ0FoUSntiKqytJFX37jPWiPDdMfpA7Jw0EoNgUxCdXRQdc49wxEQRmqDJJlBBKsHSps5tJVNSGyjcvs2vPf8jPMhMMRTtrst83JJDTNDahyvHhMIDPkElcyQdzy6/4jDMbBezWw2l6SoXO2fEGx1a3ELmCZX2zryRTGK+c9Y+4PRd45ecSoRpA6ErmRbWxnGiOWE9vDBviph3PW1rftatyc3eHI4stbG+c0zLq+uyOcnTO2MOzzD/de/wJ3TU9rSONRGq9FtE5IILfeHQnT1ua0ECtJVrqL+oBxCI8TMyWbDO198ls125Itf9IPvu9/5Hg5x4s7NW2yngVYXomRiGLofER9WEJbFD/aByJBGDvOef/OJTxDiwHte/C3cPN9yPLzJsixdaVu7QhcobXX4e1PGafShevCf9boWhEitTt0AqNVoagwMjhtDgJHa3LvqTWKNRKKV0INFStP1KbosMCDiijx4Il6ih/HyMLEsK81gs9n6Qa+5T5lhhOCtb8ME1MayrCyXV4S44TgXLvWA1kItK8u6sB5WWHwAr6FQk1A0YBVSEOdEVufOSm9Os1w8qJSONCK73RnLvDqrskHTA8+/cAd6T3zwHCUpJi/iiH1Lo06bKIeV8+0ZwwsTL73yMt/6rd/Kz3/iF/jEp/5nfsd/9bsYQuZwvOBkM/n2tnnznCSv6bhOpcvTQdGRbyKxNw059dUTPv0+0gNeEsyDalwrqH5vkL598Aaqvm8y9+3X6kUG1RrjNFGKn5RdRXWV/Bparq35piW5+l1bp6Pgqu9XNllf8WI6kg23hOCEjeOyUGNEG0hMWIhIGAnw1G8ex9HDqdZYjt6+ltJICgN5OCXsBqysPP/is3ipSUCDB4RKaQTxJP9hf3Q6wMmOL/zSL/DpT/w00oq/ZtdKS4KEzHGFQc4IVqAtaF3QunotaM7EBC0Ltkmc7CaWOtPmA8mMbBUrM+3oCurUlBOZeLLA6eYmS31CGjZeyKCuRqua2zGqD5sxBMY4YEq3eFWsY75CDJgWvzdaczJKjMQejBqSoETQhG/1Auu6kKaEYszHmU06wap7qbUpoRmsX7sT6tnZmf6pP/WnHv3n/jzevv63v966B9VS58MJadgAoGTWGgiSGNNNtDaOR2UY/KYckyNnHH/sCmMIRjRFImgQirnpWyzSWiOJOZ6jVmrxlVEIgmmlanH1MwkSEnGIeJWoUgxaFNIwoEuC4v3fJp7QvOadJjNyHFBzXNJ1StjppGCWMRuoZqx1JubCWgrH48KQKuMAIKR4gmlm6Wle61Bu1ZVmzQHmLVCTo7p18YHe2aqG0esj1dc4IbpSVdtCrYrJSEyCNsHwhiDJ4kUEMvLOd93h9de/SC3n3sAV1JU0BQ2JINuutCSvg9VGlOvErq8Mx9y4fWtgc7Ll7q1znj/bckZjczRk35h2O9p4ysWheCViWH01HDLNIsvqLUvPP/c8D//dL3N6cptWF548uk8rMzlWalWSZHLA4f7mHjiTSggGpqy1eo1kSN4YZL4fraVSNfrBRiJVIjVGlu7x25ye8rj56jyNA0PKDMOGZELUxPntZzmWN3j/h76FL71+nxAu2W4fsNSZ3TayXys1QkpOOzAzUG+EyQGKCFZBKcTggb/alHW/ZwjGi3ee49aNU+b9ni99wRXU890Zw+6Um6fn5OBr8FVXT/LG67CRtwzl1N9+Ennj/gO+9MoXuPeO53j+uXdSjoHD4eDBiRQ8JR8zirEsCydnp9y7+wxlqdx/442+uk2spaAGx2V2xSbAWhYfViRiNYAkV3GCl15oUYax8zObAY59i8lpACF4vafPKn6QSCRiEiQo83ygmmEtYwQunxRqWZ5aEOa1cXF1QW0rIRinp6e89tIrHA6V0xT7+2gAANt8SURBVPM7SEiUsnhCf14wrZRDYbCBMUY0KW0aCNPwdMU9TCNRYmcoOx+TcCQPULRR1kYxyJsJkcDjJ094/ORIbTPvevd7OS6Fk3GCRm/v6Qde8xCYf9zIuhTGYeCZZ57h6ssv8f4PfICf/+Sn+PQv/yLf/OFvYl2OrNHYbE46Eaqh1YkQ8brqVLxByswbgWKIT4NmEDohwZ4Og775cSUfs05I8Psn4boEQJ8OkXSLgogn41v/t1TNyVTBwz1OYzCfNYOvmt3641Yb6Pgw6Di3js2i0tqKmNfXQmBZXVXPo2+qYjD38bfEkLZkca97ikpkotbGvC6cbEbWtbIcFw61oNrIaWDKA0UXV/YjHNaCxgGRSJYJs0atiZQTD196wpfvr6idEtmTYm8RCwWVAmwo6+RbIfuKH9QsUtvBh0v6NjBBDo1bmxPoHl6zgfGxHx7X/RFJW7cMXV6x3+/Z7CaaGilErBhDmjAzSlvJU3pq6xDpFIfWemhVKep4q2CF5OQpMC8GKNo3iGkkS2KYJpDCopVqjtma1+LWFAsdhegbqva1i0F9+/pNfL11zFRQTKIHAGZ/N7RSkcmVq8AFSyvEtqXaxBC3RAZ0FVLOaCgQgjMBxRPFrftuPPngJ0bVxdO1ZnglJkhQanPEFKL+IMWVN2sNYmA/Lw4sDwnTjEkij0bRC5ZrllwszGtBCBQVVgvkEAAPvxTDE6ENtK60umCj+cpFA7EjYQQ/Ba9l3/1TgRAHWgWxSms+HIj0ytUG1OSsv3J4yvATUaJAs7WvRxWjElOith6gUWWtC+t153RITAG++7/+ej7/2c/x+PFKxVmSUZxVK6rEsCFhzPOhNyCtjMkIQ+B0s+Xe6Y7n7jzDtBPS2BhTYzsfyI8aujem7Qnb80iNs7NWl5GLy/vEljm9cc6dZz/Ip375l3jjzdcph5nT7QnTGHlydSDqkXEK3s2gfiOFCrYCU18nFkg+VMUUHajdHNtFMEzMfxaAyUAIgQosKeNOS9huT/zBHAOSBn+gxczZaeLB/ftMm7GntZXbd86Y5weEeMVy9QbTLhG4JI5bYhj9QXyN84wJjZlSC1ULLgM7ZisOGwLCNEbu3L5BCsIbD+6jHee0nQZ252ekAGJCTAPURikrqvK0yaboytr/zqPLCz53uOA7vvN3cPPWDb74uc8RGFjXA1NODHnqQTdfs968fcbzLzxLkMCXvvAl1upexKUsntaPXTGthZSEYRzYbCZiTMS4JeWRkJRaZ9Z5JZDYDAOtLTw5PmYYdqRxomp0pXM5sq4LIcCyLtAibVXm45F1vaKUFUuR+VixOHC43BPtmh/rJQ6HUpi2Iye7xKNHj3sTz8Dl/uDNYVGorZCycXZ+zpgysbkN5Vj3lCSkqX//RNlNA0POHK5mlnJgrZWNbBiGLVMQ2MJhvzCXxn5/icXAvTt3aa3xmc9+jve//wMg2X190V+jEiJBvR5zPq6ICNuTM47LzMnJCbcO54R44NnnnuVXPvsrvPj889w6OePq6gpVYZpSJ5Koe+WlB+qcL+WYqd7aZnj/u5qvdb2pU54Op3S3MiK96/36CohdU3evb6C+NHY8nxBILEvxQ0agQ9yl194GVGtHz/lgq+o0ga/4X/3fu073qxZicLVXWwWy+5vZ0FhBI0nw92dvyBJtBAoMrWO2ArtpIqbMmiubaeBwOKCtcPXkkmPz3EK1gknxQFxVYkjMIkhHFT66eMQrr77E4/tvsFxdMujKSaoMU4ChIVS0LBBPXU0Xrxw186atZok0RIIMoEZbVudKiNGKV/TmISK9D2g43bG7cUp48z60A9tNo7RGDBO1GCd57CT+brFZiz+fgjpGUZvfUmKA2IUM8zIBQmOuXtSQh5EYBhpKC5EhJqoVaMU3iktl1QURzybE/pyqzctLvnb109+Y1/d93/c9+L7v+74H/7k/j/+9X295QA3twhuAZEBnx/xkCiejeRhGLj3lmxqHAnG4ySCZZIFUG2FomPhttTUHw0uIDDH2pKLSintZQ1xIORMsMq+VdZ2xVog+w7K0ytoUqhCaIKU4cxNhf3VE19lTpKGw2Aw5etd6c0+soZTuvwJF24wGb75pzTmF2rzfe/3/svfnMbutaVkv+nu60bzN18129V11FFBVAkdEbCKYo6KS0CiKkVhgNIYAR9EDKscETVB3UilRNGA8YtCcgwrIIWQbwX34QzrZlIVUFVQtqlbV6mf7dW8zxni6+/xxjzmrtu5tljunVKBGMlO15pzf/Lr3G+N+rvu6ftdgOL+7U3arDZQy6U1bKuIT1lddv9ZEsJZcIsFHci6IeHw4JmV9P8Zq05XTaJjWI5pCLVZrFbN2PAMUJkQsYlpMaAiigR9j1hwvCit/xtveesi/+7kNrjnAGYvLliCFKntK3OBKpXOGZStcv9rz6PUTumVPsI5Da3FMFInIWFj6DrupdFmVseP1mjSNTDLSO0c1mZR2BBqa5RU++wt+Gx99/UX2Z/chRZrWM2wH4niKd5Fc95pI9QvlM+a9hhtKUaW3jJrSFYuZu6pjyRqMmgNUzukqPOVEFU/ol8hyTTD6NRpjJPQNzhqiGKwNLFcrdvGS0BTun75OGwwf+dAvsrq+pnU7TlYFyYbRFvwuz1WdFaFQjFaaOonk2ijyzGkYMMekwHcMxgl923B8sMaJsD2/mPme6Ehti7arpUw188q0ZkIIWGfJaVSlLqjScrY557N/9+/i6PgKn/j4C0iMhFYh31IVKWOrm9+3w3vPhz/6Mba7HRbLul8z7SJCZrleYhYNzjS6Qg2OxbIll8Q4TqSidplcBs52A+f3L8hTIQ0D++05cTcheLajIBJY9Eut2N1fstmeI1LxVq0X3hiEiSkNGOfI1bI4vELwLU4KQxooOdL0R6wPV7St5fhKh7cWI5Z7d88xrkFQm89ytWK19FgvtKGlzmGdzq/IBnJRdFzNE5Q9YxSGcdSSDWNJtWEYB2rOUDMXlxuKMVy5doNq4OBoyWNPPcJrt+7z/Asf57nnnuZwudJ+eSPkqqRdbz1trypyLBm8I4SWp288zvOvvsLTzzzDBzcf4OWXXuLmO96pgTBnZ5+uBQOl5nn7oaxhDWJqm5syUj9567XWzME7D4Y5/DTXbczBQF3V61CrbFX1kGokSe1SMnNkjVHLjPdaADC3ZVArWDcP+SLk+WOy9oGKy2yefzCg6vBrXMCY2btr1SNbygMvryBlQmzQIVcKVQaKqPXZikO0hJngGlJKiBS6rqFtDzDGsF6vQTzbzR6sOkIuz+9RpsTF2RlTHbEYSo7ghGff9Cg8fZPN6QXD5Zbh8oLTs3tMlyMHrcXbiOn2+KZ5yP+11tD5JUkCKSXF4FXoQgCx2kzmGoqF3bRjNQcx3/ZbvogYWj74yr+lbRRDKEUI1uC8KrpxjOovr4ZYig6iLmndtSsEU2etez4EiFEiGGrd0HpXCyZQZxvRvmwI3mNNxUqllglLwpaK1IEiyvw2PLBkfGZE/cz1G+96wwOqL1tl5/nMqtU360Jl4Sq+bRizY5TIbthSXWFhDFEuWYSArR4ztbi2oc71ksqBq5QpkQSqeDyW1huKqUxpR8WDd8RhhNnzaar2zguqSpRUaBSsyRCj+njaFqre8FzfIRj2yZKnlqbOyoHVgTmXARjBetKcoiRrKKcxHXkqXJxdkGOlZlGx1zpS1Y/ZSJmHGjWuO9EBXBFLhqlM5Gmkb8BZoTARU6XkgJEOIVIzOOOUX5jMHB4asLZBpoYygpOGaRJNbJo92Hu89a03+LlfeJlYI5JGbMw4m1isDMfHC64uG44OljRrz8FCaExkiBdYLEtjcdWB8zizhF3DQjyZS1brnkXo2AyJvu/pzIb99Am8qQSOef6jr5FX/562bZhqousglQv2+4wwIUSExJAMISz0mecqvjHkseiLzqgiI1WIOakybQMi2kxkrKPOTVWNCVgcpVrEWq7duAnAsNuRF8JisSRbx5BUDdnvt0z7QllXDtqeabthvNziKZwsT5ARtqalEUfOCxytwr3JSM3qs64J5xuqZHJRRceHRiH0UuiaQBu0Cvfi/IJ2HihWqxa37rHoIBJzxnpNSO+HLSKCNdB2HWdnpwAcX72C7Ttu37kzK64TMLJerailV58olZjBClzevcB4Q2gbaoXbd88wVT+uISeYPMMmUbNht90wTXt2455cCrlY9kNkmEamsSI5YIslD1u8TVAE71qqdVjvGfuiEHzb410k1h1t02OrU5XYGrplwDpProYhF7x1pDzS94oKqlJZLDswhVwTU4y0vmV10BKjIFa08cpZDo/WpBTZXO7gAbN1DmDlURRmbzptGcqVPpwoL21WEJGISOH87FQb3VYLZdQ6i3WV/X7Lo4/eJLQrnn/+ed71jnfQ9x21DurtnTJjjXShI4vakKx1jNNEn6DzLdsYOTm5yr1797i4uODg8ICUM617EDhTUoUzGhIT9LXjMPMaX1f/pRQqSh/R9b+iqErRwdR7z1w4NB/udeqrD1bG1swWJkMpBmfUGwqo6p61uKJxZq4Z1sGySsK6OpcGmNkKYDGflGkfFjRY5tCWqFWLORT78D0ZQ/BO73tGMDbpEG4BOpJYLPrvp5JnW4sjphHnPXGKNP0ayYbrN9eIZIa45ZGnniVPlZNHEmPeMI6JaUpUMjnvcDlxfHAVWzzjoDaTs7u3GU7vEcf7XE732Y+waFr6rqdpGopkSh5pbISmYItQprsYE8FYhp2WyTz2xNv5rMcP4V99gEee+Vw+shko9ZCa91q1LKq82uAZUtaDA46Uo/rLnVrKSq26HZsPvlb0e4qxuKIVsmKMhkanSqxJfcXWYFIkp4muddQsNFajFLVmzMw8FpnwWBwVU3Z85vrM9RvteuMhqf6ElCG0a2KcgNfYW8e5i8AEdYUVS2cdK9ciyZFoGGkJGNp29kbVBjFBk5gSsbayQBOwg0SyEVz1etJGV0BNNmAbSjYUYyhJGajYRG0gOaehrNBgTEvNQskTbeggBybZkEpBcEzW0jrB5j0lZiQ7mm5BpigDlaxAe9OxSeBDxB0vyN2asatYd06ohRYLvmJqxFYFnVMdhgZDVgWxEex4TvAOoWXmK1FlD75QZSJXQYIhVYi5IM7gzJpGjshJiEW43J8Ry0C7OmK5PCTjKfJmHrkGz775ko9+8JwrhyesDweuX1tx7eiYRdPiZKAxmZoSYzWYfslhv8bXgjEZI5lQDH3W4brsEgeHj9KsFpwS2TNy3a+J54Y2HhLJbC1cXTZcfOCXGWpBpGPCUUxBvPofa+2puaXWLcbvKFOLlBtYt2RZElIaJr9GTCGazLndMdmWqXqkWoLtWdLO8P4dRRL4q0xFWDmLTJqw3VxeMj22ZvnYdepYkCzEPCEJfLQwCrFkUk2sQ0PjG8br10i7DHfOuSlXeLFWJjPSeAh2QXAdk0lgO2oZoBQ8QasKq6oZqg41nBM5nyZe3Z1yY9SPaXs2UO5uaRo7Ww8MwTVY5+mXK5q2Z7Vc4ZtAvLsB4NHn3sT01NMsF2tKEabdFmfVQnP//l3yOFBjZpv2nG8GpmToAJuFYTewu9ghsVINDHmg1C37SV9HJUKNA95mcpmwTr2svXEsuoBzDgM4jglGoy3GJCoDrjG4xmKstoMd9QviLtK6icY5Sk3gDbZVbnHvW5oh46ylaa5CzYzDOc5HfDgH2zAOigsb857goDGiBRfoOnm/2ZKnLaZEfGjBNmqJcQa/1Ia2aizBdgQKzqllIpdCqllRbc5yeP0mbeNoekuuCe9XrPpHkKlQmsJbn3uWg8URH/u1V3j7Zz9LIZGjx4YOZy2xRCBrIEw8fWjJjefR5ZLppRf4c3/mz7K5OOM//PtfZJXWGm5pLMG3eFHVX8tAdNArGEqxNL6hetjnAec0sFiTwblu3ujIXAsLJc00BKtc32QEKdBWg6SMaxswyp+mJK3ndJaURpzJeo80luoCRtTX/7B1yeitXzDqBafq8OPnIdbMxQs1zV5mtcpYax8WLuj/V2tMQnFdjdW2PjHggtZdlyrkXGiCRXKipMyin3MMVpA0Ya1jipN+vWxgitq01K46WloOa8YZsFimYSLuJ7abHbvhEjGV5ZUVy2sdMd1gvx1Y3Lvg/HLL5f07XJwOmLpj1Xcsu46+71geWGK64P5GOD9tseaA1RNXeNObP5ebN95J/6FPAP+A83MQ09K2HRlPqkIyG8RbcrW0krTowwSsaTTnyQA+Ib4SrSOaTn3tssNPZ1gCrtFDH9XNVg+oXhA/b/m6Jbs4YqaIk4bO9SykoXOJqWT9/pIxdExTpSpU6zPXZ67fUNcbHlCNvQADU4yUOcVvRMixEEJAiATdUJHTRL9YE7xHUqFgmJKl6cA5oUqi1AolzevVTK4ZYz3KwvQ4FhSZCK4heK+g/aQ4HWMCpSRSTPNarUdkTqPmCeqEDy1S9WZfU1EItghUR6le91lBlb6IYR8jEqBUocxVjzElDo57vvC3fT5Xrx1w/+Il+kXGoxgecQbXtEiGkvVhZGFuk9JKP3zAoJit4ALWGFxpZjVD42OCIrXcHNSpuTKOE/vdRKzQ9S2H/Rrw1LonTwNZEuve8UXveoQn1yvW/THdAr1Z1kyJA5ZM1zb4ztGUinQt1llICWs1MBOsh6TQndA1nFw5YjKCmSKH6wVxHGAaKGVSQLh1WFeRthIKjHEkZQHjoba4sgSZsT2mY9pfYo2naR3VZrARcEQpZIkQDD54bMzYqkxBi0WKhjwEwXtHipUhZg7FkWeLyfXjR1msnyBuKm1jGeOGizJhg2Nx0hLZYiXQ9x3eLdluNozDyMGi4VYcWPaZrkbwHpNbHdaK0LhAlEgILcVaai4PgzQaVAoYGzg+vsZqveLmzce48eIr8L/8DF/y+34/3W//bVhnWCw62rblgTNQxCl0He2AwSpce7VYsxkKl/duc//+fX1/ObLf77jcXjCNe5gmEpVsIQ0VX2G32RPaJYt2QecMjgSuYZJDjhYa1ijNgORK4z05gfUW32pyOBXFPRkMw3ZHnZMW3qL99lZXnzIjuIIVjhbXMFLp2hZrlerh2g4bGv2ZzgVrAk0IOAfDvlcF2gZSVRIAkjCi3GPbMvuQA0UUvROaBb1bqTfZGIqYWVFXz521VrmSuSI5U6wG96wxtG2LXwQa14BkxCSsFZomIDI9DCy9+toLfMmX/CFee/UeH/zgB1ktW7ouPFQO69xWhBFyquRSODw+4a1vexvWtZyc3CTQUJKqmDEl4tkFoe3puyWLbgUwD3g6WFlnoBZKVoWxlqLgdamE4EkpAnX2TIK1YV7jF3JOFCN4G3DBEYJyULMo4zk0jX6/0X9LSp693kLOs4fUfoplgAc+1/n+Ple21jrzWZ19oM3Nf/5A0f0kq9UZj3GGlLTT3gela1Sj9pxay8O3A1Vly0yNSCk9/LMHdAtFXlWleBhtvYp5toMZmdvJLC4E+sOW7mDN4XQMVEKrVgJrIKXCsJ8oWdidX3B5cY/br7/M5vyM26dncFGxd4Vu2XHjsd/Cc29/msXqGv3qmEmEe2fnHGxu6xdGBrBCKgOuM0ybAefqw6YwJ4aUVCltfYOUBpMCrS3azpczhIR1BSuJYAO29tSiry1jI7mM5JKxtsXWhSriMeNSocRMNobqrG4IaiFnLbUJRpukrG2pMr3RR/lnrs9cv26uNzyghjYp3sRVwjSz95xlMYdQvFfuZnCBWiClTNeqR8ZV7RyuUql5AKM1qEKdh84ItmLRFb4pqqTVWhFXSUXUf2nVo2ONwwajidbqqLVnSpVaEkX2OCbEJGVAFjX7K4A/I1nbpgzKP5yYWXRdz2Z/oeED0c55sZZHHr3GM889RtMmzKbgnCPYBpMtxVaKyRRTMCFoPWHSNGaaXUHWCG0I5AhR01dY6wmuYT8Nai+rQslQkq679+NArkLTLzhZH+K7llIVszJNExotL3ibefaRwFGxxO2GVCzFGHwT8G1PY4VgHd4GglSSqVSE6vTh5F1LjYr8STFx1Hds9hdMxhD6ltYYLu+d42cjv9RM4zUpPKSJXIQqIyB4v6CKpxjthqdWStlT7B4bEsUYshS8ceAWmrQmUYslG4sUi8US5iStM6Is3LEw5oh1DW1jcH5PaPT117lCEgOpEMcLnIsE27LZRZpen8hTmhAxnJ5NkAtt17C9OCWOe46v3+AEw50pacVgylijr99qYEoz0kzczGv1DEPl2cef5Jve/Y28452fywMID+//DwA8+ugTlJMbTDmxmybuXe643GzZ77WWcxwjMY7ENNL9ygf5MuDnfubf84njF2YMUGDc7QjBk4nKfs0Rlyo2NCQjuKkgxuKcY4oDKe7JzmBkVOKDXc8Pa8H7hPO6+u6bQNs1VFPBVtZtj/NB7SXXD/RwNSNzmkaxWHFGXHd9wBmYpkyJk3punSdGwHqkGnIcWXa6ko/jdiZFqGI6icV7rbA1WC1GsDqcgILsrXX4tsObXrm3aUSMHvvqlKiitp4siiJzVtFLUgVM0fS0KHoOD856hAdDUsA4oWkNKQ8MY+SFj3+Ez3rr53Hv7gWbzQ5sUiSVaEhT0UuVlJSOcXFxn7PTM8Zh4h//P/8ZNUauHq8x1pJT5AO//Eu8+urrHB5e4fDoKsvVmr5fcHR8zPHJkvVqQd8u8N5igicXxYHZ0BLzXIdpHjBHzbzONUxxom3BzP7liKOZQ4NFBNe2SjepOqDnLMoSds3MjYaUxnmlL/OvAsw11KJILOsACnluJMMqxgs+FTfFbAdwKPTC4EOHFa2GFimfwuScQ1e1qh8T/RyctfO6veDEE7wnZQ2KWmv0vl/nUChzOEuEnCuZpEEjqyULplUcYAScC2AM3hgO22MqwvHVGwT/VmqZKCly7+59zs8vuXPnNr71PPvc0zRhweVl5GwzsR0uMTYS/PxJ2IhxhdDDLu7w3jDlRCkZ7yCWqPXSSUNhnfVYyfhJD1K1OEoA0zksemOpVb+GyvwbsWaLMZk8ZSwG7xuCFKxYinUkh4o4OWFm5dq6Fid6D7YOMJ/xoH7m+o13veEBNe7At71W7JWZ3ygFqeoNdRjypL69nA25gdKBetRn/xKVWkdkBs478VjjKaLeK6lCTRFfNP1oTJl9Whbj/Mze0yapWvWGnlNWdYtWIe/zA6pI0ZRmUXh1zJGYDcF5TBWKJIoTHbJQNQa0YcnaQM4adOiWniyXLJuG46MVu+2pchLFIz4hVtPV1j5QHpxyOi069OhMCgLBWGKpxBiZykjJMOQRsMSovdvrwzU3HrlJsVr/R1FrRIx7ctabkIgw5YTFsAotyXsml6jekUOrDSs1YcWQU1HfpNWVnbFmxioFOlqmcWCfNnjnqRZ2457Qr1kvj7i4fYc0ZEzRIcBZhxVPjJExTjpOGvOwX7rkiZIjpegDsEqZH3AaHsPb2Us5UeayhZwNxYBkixOHnZPF1ldKGakmI16Y0hniKsMApj+Yv1en7DbKlHRWUV2j2eFtg0yeqRQWrkWcAacHo9Ozc87P9jRuwdIc0TNhuU+1mZLMzMSMiBUK+mBVwkIh10KpsE+ZX335Re5PEzGqrWHxKx/iS4Cf/Jmf4e7HX6TmQoyJ3X7QVrAU1esn2uqV0sjRR58H4PT2LS5EqKlijVOWpbfEPBLTHmcstgq+W7KTii+GNliahUHKyHrZYPNITXsWqw5jDevVMcvVIavVmra1pKS86hACahB8QJmo5KyDWC2ZFNXjZkRIMdKaSs7CsNvN6XM//72KdS2lWGqsBCe0QcjDBX23JDSGkiqWSq5AtYS2xYhGBKvYOd4jGnKSCkZIOTLkOpdKVIoobo5isTbg20a70V3AomvrIlURWkYHoJKFadQ2sL53LBcLrGsJIShuzbesFh2/9vyHeeKx51itO1555RX1RM7Knp0RUNZa2hYa54lp5D+8/+fZT1oacn5xzpOPXQOTMUT2m1Nee/kFbr/+OjEKISxwvqHrerqlpe8bjg+POTxcsT5asjxYsVgecri+xsF6xXK1mMs6dIDJWQsRFq6n5oFSIWXBO0MqdW5Uqlgper+xDql5TtyrB9Jaq8qsZuOQUmfCCIDFWT/7ZGUGzBsar8ipB9B+Y+ysrKK2AYFq7Az41wCSMU7Vc2exVt8uWN0IibMIzAUAD8D0dvaYl4eBryplbtRSVV35sXov1/FY1WasfYhtss5Rq5nRWrMuXCvBVwX8U8hzKULFcnLzUW488SRPl2cIwbI9V0LKwVHPdP+MUk5pfdBNHECdFOLxoHzCOvz8HJIyIFRyyji/pAqM8ZR1UwnSUaaAMy1TBEkV12jdsakZcR7QwoCYkn5NBOKkbYBN0IN6ZdIK6sZBzXjjqShWrUrEYhUi8CkHiM9cn7l+o1z/FVWnN6jRUaTMFWx6qpM6IMYhZqkw8hKwvqX1a7zrcaIJxmoSmAwUTJ3vJGKp1bG6HAhxIFMgZ2zVUIhYEKv9SZLnYUsq4jJFRqwz6p3MUEogVzvz+gre+hn9VKl5j46hFue2lFKJOeqa3wSKFeIUqa7oWorMfpfpesdbFj274RxrtZ1HygobhTolJCdwlSJCLAnJEJyn1ERMkyqo1SE1UXJlVzMx7nU9ZD3ONKxWK/q+xzXqj7DOkapjPymfkez0xI3B+1Zbmcw4q0UHpEkVkiaMiKva9iXKDqQUxFS8C+AUMVUtTEmHzmmTGS8SnV2yPloj1bIfC8vlIdOYiLuEp9NQhnjaVj1TachgAjEmfZCImxVvNfmDwYinaa6TZcRkQ2h7nBVSncgpIwGseJx4pFbIinOq8wNQqqFYS/FufqBWxAj3zkbuW03Md6ue0AZVJZKlTIW2bfAukMWzbBvqmNgnbb669eptTjcDne242lyBbMhlRxVdu2IsTiBa9TFitEnKGAs1UWIh+AV9G3jlhRe5/fIt0qTVhiefeIEvAT78S7/CJz7xGs4ZQtMQ4/SwUrLmTNM0NK1jv9uxGhUGbuuIqyPrwyU5Vbxv8FSs6cA0LIKGxw5v3MAcrLh6/SZPPHIdkcLZ+X1WXcP5vVu8/PLHaTrH8fEjrFfXGAco1YCrhOWRVl3Wqv7GUhn3UdXiYhRZkwSplpwT1ha8Y6YcqKpTspCNYMRjnVfWp1LBOFi2LDvHqjlgmhJGoBZt7RLj2UzCZpzUtlETNSeqFMRp+QZoEEgMOHTjEpqAE4N3FisesBjN9dEE/b2ExQp64DFVQ44iLPolh+slvlExsIjV5LNYFn7JZnPBweEhzz//AXb7iYv9LZ548q34aaIUVVCNMLcnFQ3JeaFrLafnp4zxAmMjbWfAJEqJOCc8+ugNQugYp0rKEFMh5YHpMnHv3siLH/+4HgB8JfQNTbui7w5ZNQecnBxyfHjA4eEhV4+vslwsWCwWLBcLTKPc167xuAKUpNaLtpkxRY48DiiVRA8AvmlU6fNuDudpY5+qtEYLMphBVQ8TUuZTfunQUx8Mg9bpoFd5OFRa68j5gRdYiQBgdWier2BnGsLD92MRtDQgzV9r75xuXua/I1IQsQ/DZG5ufFOxXMkExlQVI6oOjDllZQ+Ltk+VmrTwwLu5sjWTc1HV32dSzoTgWbZHDOOW61fXrNdw67VT0l4/lo98+Hk+QMRaP6OvBG9ach0wRtnOpRSCE2qNUBO5Gi31wCPGYIOl2Jm3+5CQUPXAb3taq8UOuRq8rcrPlUpws0BhKtYEZdCKp1ZHSobWLLS4ZRzVXvOZ6zPXb7DrDQ+orX+ELBnDoH4g9BamXeqRZC2eTjmpxRBjZlXV+1ZrQpSrgUNbeSQbUhEWFxu+7sf+DU35H3NFkT/yCh9++5/g8vqa1fKQxfKIpsuUcU8RQ5JMlkrOall3zlNTprEV6zwlG3zj8U1HqhFrj1kulxQcNRtduUuhSEYkM5XMMI6U2mJdh2RVSersw3qgdEkWag5sLhO1dIr5kYGUVU3CaeuP9U4HeckKvqco/mYUhtNE3gnLRUcaCylHFqtDrl+7xq1Xb5GnRNkNmJpplx2pCmWYKLmQeQAWn/vAS0FIWrnqNbQipqoKZ9d415FL0oYtqZpMNzpYTEnI1Wgqef6z6gOu9eQ4kBIEuyIVz+3bI6sLHew+8rEL7g4Ni35NkCVNCOykYmJiH0eGeMH+cuDjr91jiI5SDLjCM48sGOPEsj8nuAskRyorjGifdqwJM+OxSi4gogUSRiEOF/fOeN/P/6945/HzmvrZc0Xa3X3tFXZGPZolOpw3NB660NA0vcLUPQQTOUpLAJ56/FGuvPU5xBpc8EgxBGPo5pWpt4GcC8trNwjHBxDUH12z5XD1OONuJDjLI48smWTChjVFlqQaGWMk1fjJeaNAiemhIi5iKLlqaGZmY7rGInVCTKHrPdZYxiHju4AzCh4PIWiquIwsGsu6M+Rxx247KbbHO7zXTUgx4GsilEwqSVXVaQTnEePwoVFCiNP6Vu+CIpPmZrWmaQjWIwhFtN0qRocl6Hp6Rju1bSDUQNd0HK4PWXQNMW6ZUiYEJR783i/9ffyH//X9mLoDscQ0crE7Y7FoibtBIe4PcEszy1hSJecJ2xRSHJnijioj128c42aU08XFJdvNvOWwkdA1OBwtnabgDZSUSMNIrZFcR6YcyXXDZrPn5YuXdLDu1FrR+IYrJ1dYL5YsF0tWJ4csrl5hfXyVw37J048/hrVuVpY9MVUW7UoDccGwnyIiAWdn1RFlSitualbb1G6r96CS8dZ90pUqmtM3dua2zsOiQS0+AKKrE4LXtzPOQ1WPqfVKuHhQgCGiA6lzDqn1oTos5pP1rnyKzzXnihFt+bKNeeinRep8D5yLSUydpeE5jJY18GWsqqrGqlUiStbtWlHV2BVPTkJoPXkUvCzBZMowsjmNDPfPASWFTE5wpiGPE8G1ahdjAirWwKJbzwN2ogkrSJ4hRXxTSSZSbcX4olpntnqYZ+b+VoOlhaKeZGv1AEYVsilYb+mt0zAtBvBIdaSUCNZQZ7X6QWXDb9br9PTU/uzP/uzy1VdfDTdu3Ehf8iVfsjs4OPjM1P7r/HrDA+owToQ2kIo8BIwrKMrhfSC5Qk2ZYFSdyWkE6TUFWxNTzljv8LYhl0yMeirvppGmFH7ki9/J3ZOVNjrlgsZ2tEEploKTFqI+UJONVJ8wTigpg1jGaME0+CCkMjFsE7U4vO9pFpbFsqFpW4wEnAvYxhCrfkzVQBs6fNAVeE7QmJZnpwt+9//rX9NcDNQbVxgnQ5VEthNdIzRWbQfBOlzosKbH20AcFWnUho5SDTnPPdV5ItdMqoAExDrGOGJdoIpnSAM5R1WkbSam3dxYpbSD4ArZTjTGElNhHLfkFCl1whmDb1oMczmAzACSahhy1s5oyVSTaFyHzYa8G2lZ0ZoV07RHjOH61SuUaWBzcY+a9tQy4EylusAw7HHJaD+kLZoaplJr0vT0A2XcF7KLlLxDrCOYln3aM+YJKTCJzMSGRMqZbUkkaynWK5SaylQzmyHj8rxKlokkhep7Lkd9/X3ohfv82mnE+4ZaDIu2I/QOYxPDNDLGAUmVXfUYF2it5+jgkH01dDEhpdL3Bj9VcNoK4wVMNUjSpHPjApKzYs6Mw1XLtI+k/SXOGpaLjpOTQ5ZFVd0xb9juzzBmiRdH6wJt27NcNqyWyn30AQyZxTgC0Hcdpe0QK4xpxNZANYZt1MNP5x3Bt+z2EyWdcXyyIkrl/Gxgsb46W1t6MBUkMFbLtB+1ItZURArTpIHDxni8D0jNs9dSg2sVS+g9FkPMFSMNwUPfeJxxGDsyxkrjAsZbGu9prGjVYh0ou5G0mwjV0C4ackx4286+8z0B4WBh8I0q8lubGZMwfQrj06M1kQ8YkdYFam2wtqoSRsGauRLZeLzTWmLXeFzr6dqg0HlmKkXO+rkaSymCbzvarmW5XDIMS6ZxYHXY07UrXn/9da70e4wz8ybZ6Kodo9g5CmTHNCb2+4FpGrl69So5FXofGPeFcTIIge1eB1AXGozzpKz+2KZp6JYLgu0oNOSaqFhSgtQbtTxIJQ4jMU3cO7/NvdPZyyhCc3RI9T0H7ZK3Pfsm+r4lGaHpO2zXcLRsubbuaLuAb5b0Kx0IG+8R0eCTINRcdGAu9WFRAGhfvLN66AJLqXpo9d7NuKv6KaEn0QBZzZpNMA4jGiYzythSr6QxGgPVhNY8XBZqEbUHGauHQOeU6ZrLrMxqUDLPzw0dcvXwYD1zZai2dGVRe5g1lrnZg2ogiWhpCSBiqdUwjbpFcNaAFNI4kac9pRhK2fPqrdvcvn2XR2bF95mnn6BeOeZ//sn/L854rKjVxLY9Y50oMVJTxgUlutRqoHpKFWoZkLYjlYjJlUVosdaTxZJrxjZFB8844cTigq4jsq0YZ5hippFKY71W8ALZyMPg2jiO2KYSgsW4/zEFnv8W1yc+8YnwzDPPvONTf2+5XJZ/+S//5Uf/wB/4A9v/Xh/Xf82Vc35oEfzM9cnrjTdJtUKsW6qMsz9L10TedXpD8pfUashlpIrHeo8Q1fwuEFwzr/000c7chlJnfuTdw5aXjjpcBV9nz8/cLmOsQ6Kjjg4xjhoyOSRKnUg5M44G+g4bAtUMnFy9wed+zm/h2ac/m8Ojm7z42isYNxHjyOYykZOj2MI0nSKNo+tbhS3PcO58OeFoKPe0vhIxGNG2qyLCVLIisgATLDhwjadpl7SuwweLqQlTIcdMNhBrZcyFVLTq0s8rn1gEiijGiBZBZih2xdlCkQnjC86A1AiyhVKoYyXuN4hU2iUY8ZTsKRGyFEquUB0imrQGsM4TU2bYDrAt1MmwCA3eNCQmjLXcuXub03v3mMYBmwrd3B19udtSUqLNDSVHbO+ZJrVZeGPnl1JHzR5spshelZFqSaIJ7Wmu5BtrYbSVLIlJEpOFOg8zSMV4DzYx5ZExC0YS3m7IRphYMdYWgGjg7naHMGJ8i82Fjo5UJiyQqqdvApPJiEyUMrBwAROWGAs5BaZisNWAzbMyUbDBkbJyJcFiioOS1UdtLcvVmsPDa5ydnXK53fDI41e5cXAVgHYVEF9ZHC45PFwpI9dZsmQudxe0TU9rHP1iQUx3ALg4vWC83GI7x5RGTAYXrJZHWE+tsDJa1FBqIZ6PXI7n7IeEaxpdKQ9bcla0zVgGAn5WeLXKtQ2t1iMWZbI+aGnLpRK6hjJXY0KlsWrZyHFiLBlqIqWEC0HX8QVImaYzkCJn929jU2LZHuCNh6xhyeOjE6a0Z5jUYjPEiVRHnLEcHS7ZDpnDxZp9rDpk54J1uoXwvsH5HusCQiKnLc4JbdfqhCKeJiwQsaSSqCZrwKboRkKqUIoyOGsVgg/Y4PjQB3+FXLIWS0yVvl/x8qvnWHr6piGWrAOUzoqIgBf1RG63IxcXWy4uLrl69Spt0xBcw7Cb+NVfeYHTs4H1wXJuCxOM9erdxJJKoUwj+ECsCZGB0DqC9zRNgz3sabsGaqYJDRbL2b17DDvlW1pAWsNYMpvNOe/7xV+kaRtM62j6BVOpBJO4smpZLjoOTq5ifWC5XNB3PV3Xs1z09H1PaDxd12HdvIL2Zvb06mpfZoVS5jQ+RvTrWitu9n9WKt4bLGVuomrmBL4C5Est2qxUi2YMnEr4D1L8IjIXEgi+aSkpIiIPa0JrZSZfyByCM2ofEqHMflhjUX+90XtopdI26umYYgZnMSarkFIgZdS/WhLjtGWcNuwuB4zA5mLPfj8wpA1NW+kWGg6bpoGUe3xwBGeoOWNnhXemBj70oQZTsIwYN5ckOCgUgu01DBt1s1RtxVgVDKDiPORYyMmAdxjUziAOUkzYWPFWSz5200CUiK+VrjWzepoe5kJ+M16Xl5f/mYC82+3cu9/97mdv3br1y5+O9/lbf+tvfevb3va2AeBf/at/deK9l6/7uq+7+973vvc1ay3DMJhv+ZZveexHf/RHTzabjXvzm988fNd3fderf+gP/aENwN/9u3/3yl/9q3/1ie/93u/9+F/7a3/t8RdffLH70Ic+9IFf+7Vfa//yX/7Lj3/0ox/tvPfy5je/efzBH/zBF97ylrdEgL/9t//2te/5nu+5cevWreaxxx6Lf+kv/aXXvvEbv/H0wcdljPn897znPS/+63/9rw9/+qd/+uD69evpu77ru17+E3/iT1x8Or4On+7rDQ+o++Y1OtfSlozdKb+xC0IwgUJDwhPsgLMj3sMwTAyTozk8JKYJKSOtWyBVV07GRoSRYvWAk0m0VTBiUPu4J0+ClQVVIJWI9wqk99kwpsyE0GDpVkvKYs3Jo2/hHZ/1W3jk5lUee+oRQnvAfgOLfebOnVcZxkiuA1NNIAHrOiweFxd4TvUUWxf0vqW1A207bwjsAdZbjN0CFnE92TSaykyz2uLAmIhtWqQsyFlJAlVUyUlTJWVHxlLIxLTFWQHbIaXgEaQO5HJJ27UMU8H6DskCJjFlYSqBaB2jGC73FcktjaskuSDut7i4ouCINlKtwo1KglwbBhFirlzsPWWyLPPE0hfMuFdPrsmkPOLv7Am50BggD6QKWTRNHto1u2wQ6fEZbW/CMRRN11a25FrJA2A1vZ2GhLM7RqlMpjLURCoQkrbORCPY4HCxQnYkIo3bcOiXrFsLDFQSGYfYhlJ3WK/KY6kRKBg7gG9hdYPBOoRIaxK1TsTgibnipWM3ZdppIrUDvW8IYnDGQ42kfA59zzhNiBMa1+Gip0YoDnAZb1qEiaObK37n7/49ON8Q04ZaN6xe/AQAz77prdyTRAyQ2pbD1RpfE74mTNWwBsbhfKMNQ0AT5gaaOGLTwFQq5E5DidbgmwVie4xUTJrYsWO3HzHOEcoGM5yyu3OH/vCQ5eoAV9Ujao3HFkNre3AQS2ayI0USXgyOQC1CihpEHGOlFouvFptG5ZiarIp+rLghkdIlGWERWkz1mP0lSzEU00KGyZ8xnA0cHF5niIXioASDEcvCdeR9ZO8N3XJFv4TWLzQ4KJVshKHMuDnnsFIJVutC6de0zVwIXC1j0q1EaBuCvgzwtdBYQ0qZUiHnStv2hGpofMvNm0/z6u1bLA97DA1TcWzSnvsXr3J8csC+7PSQVFBVft53F+fYx4nNZsP9+/dYrxc8/vij2gxG4P2/9B/49//+/Rg8tgXXB7rlms4tWYUFKx8Y7I5IYp8rtlbtfK+CqwOmVvayxDr1oy8WjqZxLA46lkeFLqw1aGQbYoLT0zNV7aym7cftls4t8Y1gWLC9TFycvcJ6FbgtE0U0GGbNbB/pW9aHa/rFgq5fcHRwwEHbsuwCy/WS0K9myoKjzgGoqjgUxX0VITQNBUGcMqxlLmQwFqpEnDOUqmE3MSgqyln8jOB7sILHGWoueNNoEt2IdtKT8VaDQopztdrKZsCgbXTeO+XiViW6YPQenAt46/E26yEvC9Sigd28Z9rf5/Ligpdfus1LL73M3Vdfom96rh4fc3B1gSyWFNFDsPEHGNswbAVxAecTeYwUW6itBZuZpgusVbLCVBwEhziPZIfNhd7tsCaRsqVIgwkyY6c6allTMUQ7IKbSOkNlh3OCLyO+VZasD4ZSRlpfsXi2sbIbPX0b8NVQJf6fmwB+A1zveMc7ph//8R//yOd8zudMTz31VPr6r//6J77/+7//+u3bt8N2uzWr1erTkiD74R/+4Stf8zVfc++nf/qnf/Vnf/Znl3/hL/yFp5588sn4rd/6rffe/e53P/n888/3P/ADP/DCE088kf75P//nR1/1VV/15l/8xV/80Od+7udOAOM42ve85z2PfO/3fu8nrl+/nq9du5a/4Au+4O1f+7Vfe+8Hf/AHX5imyfzMz/zM8oE//Ad+4AeOvuM7vuOJv/E3/sbLX/ZlX3b5Iz/yI0ff8i3f8syTTz6Z/vAf/sObBx/X//Q//U+Pfud3fucr733ve195z3vec/3P/Jk/8+zv/b2/95dv3Ljx605mf8MD6qL2WsdWLG27Bk4pxTJVHSZ9CZgCSUZSSaQUcZuBtu1pvacaIaekXhmjqI06N6OAhkOzKbiUeOsLt1hMZW6QMVjjKEbIMqsbAN7hmo6u71msDCUEXn7ycaYycHZ+ySdeucXNxx7l5OSI0/PXuXXnJZaLRhWXseC8qkFt1xBCwzQZ9kXXoCYbfMgYN9cN2oyx6jeaLe56w54By4hhGkUxLwZSmsCOxLShJJlDWSPa+ax8Qd/MN8BiSFlB3kksrlkz5Yz3PeApZKgtJldq3ENZsN1cMuVLFkuHqZEpDUy1YE1LyoGpdGo3TJFSFIM1IiQqxreE6jBxpKQ9UgylTAxJPYe2VnIuVFORDIInV8uYNNCUi6WaQhlUITVFAfG1MFeBovgvUb+eGIszljElslSstzN6SKtjxaoHDWsxXisVpVasDwTn8LLAWcFabc7ZZoFxDtVgsXaBGEfOwjSNNL2j7SxlqjjfYgg4Y3Dica2C6b335GEgScW1VYf4ZHC+pXEtKWVMddiaqCVCMbRdi5VETXDnlVf5sR/6lzTNgqPDJcfHPd0M6n/0kUf5rU88wW6IyjUU8CXiyoShEmMizXQA3ypcu+1P2HcHpLIlimAahwuQ4oizSwyelCcdqv0CYyyL1jNMA3maqNNI23qWfUsplUXTI96ScprT2xZnAlhL3CfIlXFM1KThnlgSuQo5a3NXshYr6rOrJKRqEIk0YY3QSKVuthTvsDlTY6Lp1IbhSuX88nXC0mL2Fdd6nPfUFAkmIBTqKCSE1gfG3YAJga7x4A2dBKQKOSoBwNSCsWgbVClIKRhxNHj1QGZdFcscznvA3rS2EnPCmJa2bwne8szjj3L/7i3e9vSzvHb7Nco4cPrafRbNSr+uVWtOq1XPpq69KzVlNheX3L53l3EceMvTb2HhHOu+5xMvvMQv/9L7SHXCehj3O5jAXW6w0tAFVWar1crivnX0neNgucaZqCn8EOikVc/ztOVsd5+UBppWcN5Qy4bF4Q1OjtfcOFpxvFyCTThntOUuFYKB7V5bz3I2UALbS4ttGoyfdDuQC1NMDGdn3L13jyoQ2o4+BFpT6YLlqWee4U1vezvL1YEm7ufAkrUG/yBZjw7GVpQO4phroyu6hp+b/kw1CFbDb4JaL4xQU1LclLd6mCgaeDKoSqoP5AeBKx10NRyKBouMmdnZFWPCbD8QaikkMsYqqeKBr9Vg1O6SImUfefHDL/DKSx/l/OIu9++9xn5zj1213H/dszhYc3B8nSN/BEAZI+v2JstuwenlXZpOmwqlVlyOeBvALilFyL6niCBFkYtSlARRjAXRe5sVQSaLkaCbIrNnTEpwCS5AKVjbzSDchpIzwSgRI2e1OHStAVsZ9uc0LAjS0ZT2/8zz/zfM9ft+3+/bftZnfdZnv/DCC90DdN2b3vSm4dM1nALcvHkz/qN/9I9ettbyzne+c/rABz7Q/4N/8A9ufPmXf/nlD/3QD1396Ec/+stPP/10Avjrf/2v3/63//bfHn7f933f1e/5nu95FSDnbP7+3//7L37RF33RAHD79m233W7dl3/5l59/9md/9gTweZ/3eeOD9/d3/s7fufnVX/3V97/927/9LsA73vGO27/wC7+wfM973nPjUwfUr/mar7n3Z//snz0F+O7v/u5X/8k/+SfX/92/+3fLr/7qr778dH0tPl3XG1/xlw5jPKmq2RwgVqPszZRJqWAkYkJGnEOaQBTDFEEXVgZrAlINVTRA5BA1+qPrnESlpj1dnCjOUaxFkmBsRYJjqh76jtXhEf3BIaHtMWIJQJcLp/fuMJh7HHRXqdLSHwwUM3F2eUrTBnb7kTglKLDbbpQhSKAYYbcZaLrA1ZtXSWOkTJd07VxIYBPOqT+riptB3vNsbSy1KEzeG4MUVQGKCNU5hv1ILYrasQ/8cFnTp2kG5htnEevwXa+hkqSMQorCwmtVbBTVc3m+Y3uplgDjBprGMcmSLIb9EBiiIRZlSDorrNdrZA4KiBgMykZsFwtC2lLSnikZJCWF/jhPRpiKIMUh4sB0FCOk6nSAcoDz5ClTap4fJAGDp5pClZGURgqqYIhUqoVgdKXpvAblDJbiAlIL1ViM9zhjMUmrGzEQbI+1gncZsZVQ9IYNaBuZawGL9Um/pqJ+3CJFP/4acPONvvEW7xolN2DJMjGRqdbTNMeIaYA54GMKpl6CEx3uaqVUHY7G7cB+Uyj5jFdKxgfhMu55N/AT/+YnuffscyxWx1y5cpPrV65xsD5g2TqCE07Pz7jYbRTuPUcbTjcDYhes1gew2ZDMjlQTvusJoUGk0jgduhBL6zvidAm5EKcBVzPBOUpMWBMwxTElDWeUWpBcsHUiTpnNZqtItWKgaiAtPWgGqgqxz1mUuuGV9WhzJWDpl2um7SWy2VEvLshNQ5oGzi4uqY1hffWYo2XLYhmgqezSxHq5JNeIJzANhc4GGjHYFEjDyDTu9PveedqF3imIBTOVuX5YbQ20ga5r8D6QS9afRSq4jAsOGxpiGua2I/V06c9sJk2JuC88/4H3Ubfn7O+8zvbO67DbM263rLoljdNij5q1oraUgpQKFna7Hffu32YfB9703Js4WqxYL5ac37vPL//iLyB14pEnrrKfMtfaFXEcGLaRnAvDdMF+Eqo0SPH0TUPfBraNIzSWrm8w3tF2hiao0iemEPpA1y4Z9hPTdEENF1ArF3dPWfRL+sMeGwTvexatxbgEznB0tKakyPnZGbvLPY1ZkYeCMaOSGGqlbT39aoEwe9WdowuWg/WCKRfuX5yD9XRNgxNLpeJ80MBTnYsM6lyaMq/k3Ywtw1SS5IcsV2McJRd8UH9wyhEz+z9LyroVsBZN8CnHVv0VRodcMyOqygP6gL5GS1W11ljR+9rscZUiD20GOQu1Jpw06oUtmZc/9jFe//jLmLTnoElcf+4qhgUXZxdIadlPhddf+gQvRfWUv/bxj3CXidYZ2gCpjIhtFBk3D+pN7cl4qhxiXMLLhKmWIoZKJWZLMHMzno1YE7A0SE0YN+mqvjhMzTig4KnZqKCQhNYbbM5ILFRn8SETyDS9wQE1CuTf3JipnLP56Ec/2n3q761Wq09rSOrzPu/zdtZ+0l3w23/7b9/9w3/4D2+8733v60spvP3tb/+cT/37MUZzfHycH/x3CEG+8Au/cHjw3zdu3Chf9VVfdf8rv/Ir3/LFX/zFl7/n9/yey6/7uq87e+qppxLAxz72se7d73733U/9N7/oi75o+33f9303PvX33vnOdz78Nw8ODupqtSq3bt0K/3/7xP8bXm+cg1rVqJ+KsI/6Na4FbEVXNERwGUJFQsD6BWIC0yi0FbzVTupatQJSZrbegx+rigXj8aHXVGrwZKcIqGIt7cGa4+MTvO/oFksIDdOkp+iSE36ayDUhvmWaRlwIvPjSyyxXDSkapgTnZxtqSTiryKoQOnbbLXmnfqi2XeJdw9n2lKOVwzGTB5xFvMda5TiKSTpoI+o1o+h6f2ZYVoQijio9Lmi5gDHKcixSENFKwQdkFxdUDSrVkKrgQ8AJOuhmT6qRWgrjfsfl5SWCwbkG71r65oB7dwvnZ5nNpEOwdUIbjHai10CKWt1q8CAB1xR8sNjUMWy3uDRDoYtoCrc6xmrxzlKzwRrFP5VaENSvVl3ElKyDG1p8YMRgCRiTqcbifcs0e9BCE+iwuCo4M2cZZMYqFqN1iLZq2GKGuXtv8aXgAY825+gmb15nuUJiREqE4jHe4bwHL9jGEScwYvHSkGPWtapYcgbfrihEsjiKXVKddt4bmRWLCjVboMdYT5SMtQFHj2RFhDWLBb5tsL4SztRP6qyjjCN3z1/k9ouf4MMiHK8WrPqWGzdugLdMMZOTxd65B8DZ+V3CxZ40OparBV0T8MExJQ10dJ3BGaMpYa9Ki7cWkUSMBSeFcTdhdiP9SohzQ9ckiSlFbK3YomvlnBSQLtnMuDNDQRvdQqsrWDGOZC25VjoPnWmwCRrvME3Ldn+L3d1XaI9WjOM0V182EAzZCs3qGNMdkaXhg7/6axyvlzx25YT9dk+m4NwBEjMljuw3l2yHkfXxAUaWxGmk7ibWzZLQLRiHkYvtpcYxrSG0Dd639ItDXNNTjYUukE3lYnNBRTg6OqQJ2iPviEiJSKl8/Pn3kcaJ81sfY7Fa4cKCVTAYr0TWVFSJC1pqj3GWi8tzXn/9NUrNPP3csxyt1pT9yPlwygsvvEDf9zz13FOc77b0ObGcf67iKpGyYTuNxBpJRIZxR548Y1wSpwaxAS4LvmtZ9QNNA94GGu9pXYNwgPOFZddwcK0lmIb7r55x5/Z9mtUK3zQ0PtB5j2uhX7SknLFGuHL1gKPjDvCkZDAS2Ox2mtYPDmsiWE/wLVeOrvK2554hTnvOtucQHNUZMg8oHYKd0/PMaX4ERXFVzSKkqpsP580nWamSeQgnFRRDJxXv3EP+qZaCzS18Rv9ti9PAHzqkijEz61P/rlRl5xprZ0X9AW1AVLGthhA8JjTkXHVTMEXuvv46d2+/SnCJpmlJsVUiCi3L5RFVKqvDwHpxjeNXzgG49doH+LX9x9nnI5w1JBcoPlCmEV/AVa/3GBakaYnzkcYpissazSdUseSiqnAwBmNGMBMYg8VjbaBWi5RxfhI6qmihRusheC18yQ8/v4AjqOIuhkqhmt+8K36Aruvkx37sx57/+Mc/3vzoj/7o8U/91E8d/tIv/dLyl3/5l9t3vOMd/01rtjabjXXO8XM/93O/8p+Gng4ODh6u2du2rZ864AL80A/90Cd+5md+5vaP//iPH/7Ij/zIyd/6W3/rsR/7sR97/ku/9Et3b/T9hxD+s9PKA1X519v1hgfUTZ6U4+Ytxc7YZA+ehLMO0xUwRcNHjEgNFPFktFvYOjMPT0bRIKKJeZkDV6U6SnFI9VSxTMWQnOXoySf4v/yVv87BM88R1gekzSV3fvZn+cg//0GGGGdOXqbPiaZzFLGkaWQfB5brE3YXhv04EadJb3a2aqCiMcS0Y0ojU8n0a8PFxQUX51oRul4UvKZk8E0H7VKrB8UgCJINJWuy2DmoOSNNRUymCGA8NZVZCRAFv9c0V1x+ssKzzDgdFwJGCk3jCc4hJVFMoWa9sQ+7c84uThEXaZbMKdgjxqGjThVyxNiM6xRNVDKkXKilzsEEqzxU7xEPyYI0DdGpmhmqolpyVj4irqGYjDhtiyoSEZkVzarIHDt3ldu5z70mVBExDkMLGFyAYlQrNHlO4jJjUYzVtR6qzBTJWJmB/dYhNVLSMDfiWEC7rlPUm3GqA9FoPWQwa63MtB3WV2ouOO9gEtKkoSlRyWc+SBRS9cTak6UwjRnXVLxLxDLh8ECDEUeKmeItGIcp0GEhVoSE9QbnhVH00HZwcMjyqSdYLzswlXF3ye7inGG34fy0sDw6YtkdYbslq3M9DE/7U269+DFSTKzWgW615PDkhIPDFbiMtRM5Gvb7keVSwxTDtAMLQxyxpbAfRlIe6KdCWBwg2bGbBl0hW6ExICUxTDucsfT9Qr8+FlrvlbaB4J0FHAXIKeOlYKaMr47pfMc4bvEeQmfIdiTKSA0ti+Njim+o/YJUempesxsVoXTYL6jV0rQNMu6occs4Ji73F6ScWCx6+q7VsggfGOqe7bChpwDCwbJjGnYMuw1xD8YF8jjRtisqEFqvuak0aSHCIuBbN9dRZowkTEmYckmwlbTfsB3PISw4uP4IqUZizAgdIOAdOWdu37rF/ft38N5x85FHWS3WpFjZXQ5cnJ/ziZdv4dpAtzzg+mqFJVOGHTKO2KYFcWz2jn0ySNuQgJJb4uTZbCYKM92DkdPtQEkDjeuU5Ws9TShKK2gyF+PAwWKJCY4aCmKyEjqmDNIho+PyYgfmlGV3SOs7QhPUr+0KfXvA8cmaairWKvJoSoVSRkqJ3L59m/2wYXm0IvQB1ykFZEoRa3Swwihg38xrd509LaI/zJSqpSlYtfLIQ3yVhn3MbBWVrKgy5xRlVS0aRLUPLF+q0D7g41Y3WzhEHvpavQuIlZnbbzHWUR4UYRStX8VEclLm7sXFfT70K+9nuLzPqi3EOJGSJ+OJUd8u5gtgIHDEotPB4amnVuzWLS/eSVxuDdFaUp2oJmO8o2YwVRsQba6EmfzwqYEvA+AUV1cMuBARN2FqB+WQNAacrQSnjVrWKoPX1oz1hjFNOJOptlLFkbPH0FJxiBkRvyeG37whqVu3brkf+ZEfOfwjf+SPXPzBP/gHN8Mw2J/6qZ86BLi4uPi0xeLf//73Lz/1v3/u535u+dRTT01f+IVfuC+l8Prrr4ff//t//381ReCLv/iLhy/+4i8e/ubf/Ju33vWud73tn/7Tf3rypV/6pbvnnntu/Nmf/dnVN33TN93/lPe5evOb3zz8l/69X8/XGx5QfdB6Oesc1s0cVJuxvmCoZKenbC9FB7JacGj9aMpe/YDOq9e0JGIdwWZynk9+RgMrhkypFhY91598iqfe+Xmsn3ya2z/3M8TNhse+9P/KE3/oD7O5e5cX/+2/0dN80fT3tB/ZjjsWoaeUzDgIRlriuNdGkTww5h3W6vAyxYgzLRhPro5SMjDhTCJmMEEH1BB6/OJAU7klkVPEiQVpZvC5EFyDRbFS6tGqOMvMjk1Yl8GVmefnFE0oimsRKVAT3VwraKywT5FcIsYEYt5yenmfMU6EzpPKhi4ESooMl2d409D3iSFPpDnNb6onpkipCaqGVKzTobKWiWncUlOiWk+xiRqjKhumKrvVOGWz1oIzGesjphjAqVfPWKqxc5OJxRjBuYwRTfRb40ml0HoDLhNLRIxgncdYj+SiFZuql+CoOFNAinpGDThb55UY+NBQrKEaT0HvOVkK1eqg37iAuIDBqVpRwDqhsCemSm9bPSS5gvVC2iecWErS4JJ3huC1rcUayCXjTY+IQr4ziVQrbvYfe2ehqRCSYm7mXcC9exdsXn6Nxx+9xo0bJxwfXqd74iabyy137p+xn/YUPCcHaw4O1wA8+ugj+KuHNG3D3Xuv8vGPvcLR6XX6ZcvysOfg6FBZsKFB9htMVUxNzongNYltgqdvPcO4I1lDaANOlKsYGoczYE3DYtkqX9J6LKITg52VslpxTjClIgW1oqSJaTuxWBxrB3hO2K5lceM6pYyEpmcaK6MJLBcnjIBvDxE8JlceuXJII4U8DhwfHHAeJySNpLSl1AkTHCdXT7h6/QZTLqwcxOWSYbMhpYxUUS9y39E63UDkKpQ8sc8VZxzDNrJY9fSdJwSLpD1TVq5qSok8RWoqDLsLHNroNu52XO7uQvB0x9cRo9WhLni2uz3379/j8vKC9cGaa1ev0rc9NQq3bt3lVz70YTa7PZvdDt82dIue0Hr6YPG+I6xaDZrN1aPD5BHbkcQz1szQREyTyGTlfFpH3PWMg66ztZEtk8ulDvaxpWwSm2aDmRVK8QWXM23jCa2j5BErFmNacp0YNwNtaHFtprAndQacxweHtwXJI9YG2nbBtNvz0ukpLkCUgfoS7E/2rBcH9IsFwQcwYcYKoixShGrUfpVSxTv1mpaaySUSCCqkimCS/nxY67BoRW/NBclqE8AE3c4Iul2axQuDoYiQqt6vDVarrlGHsKlCFf2lFjL1sntrFXtXIpbMMFzy6qsf5/7pLcbtKecMOAySG3BWt2qzVSl4aDtLu9BHY9u2rA+WxNe3RBy5GnKdCMFRscyULZwpNCHirSrOBsglIlWJLaI1NBSrWQtL0ZBsMbOvVjRY2ngKBWsjLQVDYZJIsKgVpgZqdohRu1lmbuSyDwm2v+muH/iBHzj5tm/7tie/8Ru/8X/z+wcHB+XzP//zP23D2+uvv9786T/9px//pm/6prs///M/v/z+7//+69/5nd/58jve8Y7py7/8y0+/4Ru+4Znv+q7vevkLv/AL96+//rr/iZ/4iYN3vvOdwx/7Y3/sfzdR/+EPf7j5e3/v7137iq/4ivMnn3wyffCDH+xefPHF9o//8T9+H+DP//k/f+vrv/7rn33Xu961/7Iv+7LLH/7hHz76iZ/4ieMf/dEfff7T9Tn+977e8IC6cpZs57X2XKtWTEaaDN5T6wIjQmMNjbFko77HabpEyoRvbqCunopz2pccS0KZNWBMwplC2zQcnhzz6LPPcPL0s+yHPT////jL1CKM00CMkbd/3bs5ePZpmlaxH6VO5BTnDvOWHHfEFBEzMqUR6zT523QNR6vrxDJpx/kc7oHCVCZSTnjjca2u/73XgdG5BtPO68QsmKI94sZa9WAKNGGBsQ21Ft14Ctga6JyjmIYxDQhaI1kf1A0+uKmKtus4cXP3d9baPwp5nDg/P2U/DNhmVkCLQ4qjjhWPYSqXeA+2GlJ2lNLgglcrRdJWriZYrJnwruIo+DEiOSq6ikxhwmDJ6M3OUBQ7VDUg5uzcp10Eg+gq3ViKqHJRJeNsgWrR2tmOEhMmZQ1RYChOWYSImREyRv1oRbQ5xRpKSQ8rT7ER5ytSR6o6lKk4/T7A/ND02jQmVr+Zor4wZ5w+IGTE+EqukcZoCrewxQdw2eENBBLeGky1mKQPUYtgTMbYQsXo8G8yxgRFD7kKplCz4m1q0i3SGOHVe3uiuWATKzevHnKyXnJ05VFuPPUcr927w527p9zf3eZq1mCV9z2HJytCb1mdPM3R1SU5C7shce/+BqHFWEeMiRCDJqjFUCXMQUIhLBZ4ZzFtoFssqDWxcA6Zv1fWeAyeJnRalxgnxt0ltUw0jcUHj4gjp4QplrrP5M0lMe2oFfYFht2IdxDWh9SjNduLM7zA+jjgFsd0ByekMSseLp2zDJlxt2Pc7bl7ccZueUQ1HpsvGcZLfLtkfXyCay37OHv7SsYuGrrumLQfGC+2XJ5f0PtA27bs44RvA1OsvPTiKxgMh4drqoWFeELXMGx3JPPJlqVchd12zziO9CFwenqfzfkG4ztW2z017PGLJa6Bu7dfZ7tV0eP6tSucHJ8gpbC73HDnxXv8wvt/iXuXO2I1amMJFb9V21C/bGm8sGgcB11Hbx1t6+naFpMcvllwmUcuy54Dr0GnEiOmVuoSSu1xLrDdTuRoidPIOOxwBSqJ3ZjY1wTGsNgNLF1L2zjiPiMmEkJH0wScE/q+odY9NRtc6BmT0LkGi1IraoRh3LOhYk1DoFDqwOmZ4dVXXyE0C1aLQ5548mmeefZNrA8aHTKN4YFjFKc2EGNFG6rmgJMpdq71VeuPcxp2QtDXsFfl1dmg4gZubopD25rQ4gh50HT1oHbYqFpbZ76p+ZQMg9SimytmDmsRJEdi2nP37h222wtu3Dzh8rRwem/QMFncKfu6jDS+Y+l7JSG4CUE3IlIOkbRiHHZkEiIZW8DZliQVrEMaxQCS9g+zCRX1zNpGcLUwC9Aka8GtkNpSmf2k3lOSKN3A6+bIMWGxTGWg+kqxHl+DqrVSMHak2gf35wZr/jdi3m+q6+mnn/7PVvgnJyf5n/2zf/axxWLxaTPnfuVXfuX9YRjs7/gdv+OzrLV8wzd8w51v/dZvvQfwL/7Fv/jEt3/7tz/yV/7KX3nizp074fj4OL/rXe/afcVXfMX/Ie5puVzW559/vvvar/3a587Pz/21a9fSn/pTf+ruX/yLf/EuwJ/8k3/y/LXXXnv5e77ne258x3d8xxOPPfZY/O7v/u6PP0BX/Ua83vCAaqaoEG2rwyWAoFB1TMHSYqRofSWQswZ1piky2gZ8j7Xq67Qmay+7eGRWwyqKpLn26OPcMAva64/Qrg+5/dKLxGGvdZFSufl5nw/A/Q/9x1kVnShpxKWEw7Cbdky7kX65wNnIelWwwSJ4Vqsj1kfXODu/4M6928QpKiqmqbrGso5gDdZEpBhM0JHazIN5rdovj2VOmgoWT/ABZ/RhaIyQU8HWBhK4YLBGV8VGMtbONa3omt7Md3upQhZlvk5TgmBIubK92HJ+foEzoqUCriHIiuki4t0C6xwlTcQhsh8d0Qds01Fc1kHYe5wXCpkxJzoEUwpmxrdIySDqkc2ihARnvVYN1geqhK79FZRdqNVDESaKKqIPGYoKfpficCJUY0lZP0czq5O5JqyAm3FjVUAKSKmIt8qwnGsSa95RS8TMdADx4NwS4+ZghrS42kC15CLYmjE14iXgjGccN5gatRM8J4zYGVWUcNbP0Hf9eqQ44UygNS1OHKZkpqKhx1IdtU74oOvF0ICRhDUK0R5jVUUdwBqS9bx+seNyipxvBm6eHHLlOHIilZMr1zi6eo2z0/vUD58DEDP6sJs75Y+vrRiHSLfq2e8siKPmSo6ZzcWebrlgtV7TdQu8t1hTaYPFGqETLVCwxuLmgh1jPFX8Q/+tqL6JN4ZxGJm2iWwszlqy1wOY2SdcnOiCBR+YYoFgCV1LNJ4hFnx/neAMYi2+X5CmBMWR04bOT3QNuL5hqhEjlpwjrg9UoFk2LI6OyFYJD2IGDUMaQZyAJGrJcwe8Y4wTqURKhUXTM0lks9swTRPGCdUWkJbeCNkalidXuHLjBscnV4kx8srLr/Dqi8L9u/fZnA9IguOjtbKB40SssE3nnJ6ecvPGDY4ODtQKkuDW63d5+cWX+fD7P8zzL71MCh5xDV23wliHdZbQNNjLgVpHGicc9EuOl0uurlc01rKwcLjsWLg1R84QbWE/bRm2ZxBHwqoSk8E1S3zbU6JgpSGnljI6xlLZxIHGFMYxksc9sayJe8+0q1QKzg80rXq3j9ZrhIIYi7ENLrQgmSZ0HB4ekNqOpplI0VNzxZQB42DKE3GXqQkaGs7v3WW8eZN+0Ssz1TmCdTPjQKtwrTWzIqqKvbde1dBsmK332ojmAtZaSgHnPNZq46DMDWaGBxwpbRgrsxCiuDzlhzqjQapcslIemAdb0QOvzJgwBHJK3L93j9t37pJrYXGw4uTkiEcff4rLi/ucnr6CqVt6byj7QhCDlco0XlCyPuNy7CAfEswpzm4VBWUCki0WP7e0VarPxLLT55/V8K5zVu/D6LDurKU6qNVBaTAOjK3UPGmmwQhS1CJlyQ+wr/P9ziHYuV0tzw1mmoXIuVEo9G/S64/+0T96+bt+1+/6pZ/+6Z9enp2duaeeeir+zt/5O/d9339ak2MhBPnH//gfvwy89J/+Wdu28t73vve19773va/9773tN3/zN9//5m/+5vuf+ntPPPFE/smf/MmP/Zfe57d927fd/bZv+7a7/0d/LiLv+09/b7PZ/NJ/6d/8H/l64yEp2WNNmPmCc69y6UlJT8hBErlaJnpySqQciVHhy9UJl+dnDLlydb3AmAQZXe1kVSnFNhw981YeefZNhPNf4vjak2yLcHF+oUnMpuHz/9w3c/I57+CV/+UneO3nfw4jlThlTCmUFFl2njEWfG/pVh7rDMvlmsVqCcaz20+c3bnHfoiUXaY1Ld4YKhtN4puAFEGMbgXs/OWRmilZkTA1T5iivc+1VvWaSkstWglZa9LUfnlQaFApEnStnXTd74lQ/YwyUi9VlAnxDVivvtM4Mmwm9tuEodB5mGzGhIBMQogNyRvu3xto7AHOj/imkL1BbCKPusZyzlImbXqyxtN0DWISE4ZaB/VeThXEk8XooD0H4qgK3bdBQzCp7hAZkdJBhWy2NFRcPSTVjHWqclhXoQrBMFdoakKVnPCovwpjZh6spniNdXPBQ8UyYUzBELEmY2iwxWKrxUzqfQPw4gjJMFlDtNA14Im0uVKywyWDz4o0c7QEaehMQycVmTSsEePEkAolC8bscA5C47E2IxSmUhFT8LZgUTrDaAxiLF6A6LC5mZVoEJeQJpLFsJkgT1t25wN31mc8vr3CtaMDlusF1w6OWB4e6duYzG6I9G5B33dQ49zeOXF4oLWGUi3jAKZULu/dJw17jq8cQdPS970WZph5CWsLzhrVgYs221jjqaZSTaLKRPWZzJbtxV3sLtI6hw+W7C3BBxpjkEbI3rErlRJaJuPZGUegpSTFI02mkPYblinj0UHdeTAPDjurltVqgTN6kEt1R6pLcAdUr1aP3Xag7CcWrieEDttahrQn7geW4ZCTGyfs4zkp7ZD9RL64iynC4coztoV+aQid4BctxzducHD9EQ6vPoptlxjf4Cm86cpjXLn5LP/xfe9jqC9zdLhgsWwYZcJOhjRMSNvx1ONPcLQ+QFLi8nTDa6/e49VX7/Cxj36C1167peptmZA8kYdIKjAZg2taWtRKMUhl73bs12u2Y8I5z8Jl7g0jTVgxFYdfrsimRWSNCy2mJsRAtD12KdBOLH3ASEeaIotiOC4BamJMIzFnbaibMtP+AidCqhMxFYLrkWxYtgcY11KNZ5cqZ/fuc//eHV5bNbjG0oeOw/aY1aLFdwvaBRgnnJw8wvWrj3P31m2G/QXkPTUP+v0iYKUqJ9U4KAYxBZlX7xRRnFTVgdPAwwKIWqKWA6DBoX3OVAO2KPyeCqVaqvVUgTIPoZLTvLVTi0+ulSoZb4VaJnAGYzxG9FcVIU177t075cMffp79MLFYdtqU1XV06xPaq9dZP/YY4/YcVzek7QX5Ug9lZRopSQ+nKW6J+47WGZoSiFSCa/S5RzPXrRZMHSEUPUVXcKKtbAVLdoHWOFoDgYFExJgWTEOOgi+G4AVTR0o1WNsgEsjWqi+7JOXLkik2gRGcC7QS8HMxRVd/83pQAW7evFl+PWKUPnP9l683PKAmBpyt+oPlVfUszlNtRxVDkUQuBVeFKUZNGBqDdZ5qHBf7ifubW2zzdW6sF/QyYutEM9emPvLos6w+9wt45PCQGzdu06+WvPjxF6gpsjhc885v/r9z9Na388r//P/hV//F/xuDMOz3IIXWe9q2BRx9v1ZlYyaWjgMaVnKw2U7a5CGVvmmBgkgCU8hVu+5LqRhXmWJGOv08rQmUHNUuIEASSjIaOJCstaQlkivUkpCUqUC2UAbBO5UJK4mcJubiZWWxVkemIo1npJJjYhoK07ayubScV4MJPQMJhydMlh0NTbvi7P2v4iQQnlpDa2hKwaaAMYZUHLnkedUkdKZVq4JKalhnKaah+I5oIWddcbcYhEJxBlMTtoJEp4OmCMYWjMtU2dNQaIzSGUSKChde21OqJGx1OBdUJShlrl8NishC9GNxmip3xtDUgBDwTnmW2UCqBW9abZ0hkI2lzMG6KhlmTxsC5IINXuHe0RKkwYmB4ACLbyzijLI+c6TallIL4zjhfYOIqtixZDKqZDhj1QqCDqUWj61ad2iYW228xQd9rSiWST9mVxviINzabblrT7m8d85jj55w9eoBR0eHPBn1tX+wWrLvW2pO7LeZzi8xNeGtAzJtqwpK2zasa8/lxZ79sOfi9JycBWcth0eHtF1D0wa8twSvaXSLWh8MBTAEr7qTKQZbVY263G+wpWp9pG8I3YJc50/GQ0JoeqhOG7XOzu/oxnaX6LvAotGHsTEW6xz9slWuappovCfYQEkz8koszYwG22336EknUmokMkLsIXmSRN2atBXfO9rQU7cD0RYmmcjO0hwuaNwhN598ikefeJJr1x5juT4g4SnWMxajmDpjaJqOG48+zpdcvcGv/soH+MTHnmefC85Zjg8OOeyW0AjeOs7P73FxvuXVl27z8su3ubwcSKZydOOIyWaa7Ekl0nlPEbiYNERYxUJ1WBso1bPZDgxjnpPpmcbq0CbOszy6Rrtc0beBxjkaChIaslhcsDTWAgkfAtY1OGfpvCcOI31NFIkYZ9jv9ux2A42DYTLqpbYdJLBdYLU45PDKNUy3YBpHUhnZpS1jSsQk3Nud0exhuWxZSsfh0QHPPPNmnnj8Ge7fv89mHBlLoSsFYz2tseoFlaKbH0EVxAeJfJRH6pzipdSAMuM6DBrELFq/W0WRfFVkVvq1aU544CsVzLyxKlk5qSVHStF/KhkhRe2ot67M34NKKZH9/oJPvPxRnn/p11gulyyOHqPtF/SrFsfEuI00bolZrzhc9+Rpy8X9u+zu3aHsAjSzetuOmLDF2YE6jjjncc6SalLbkZlwrhCcpSat6Q22Yo3MSqjV4bJWYv1k+xQmzYdJQYz6yKnz2zlLLvZhyl9LYItaKRqPiOBQJRpUYX2wVfrM9ZnrN9L1hgfUZlpgi8e2nbbMAK4ILiVVTHG63hMd3hCLs05P2TbQOuFit+XV+3usW3DSNawabQ4CeMvbP4/x+pNcO1zT9h8AY0kx4tueL/grf53lY0+ye/5X2b76Mte+4AsZzu+TP/gfSbkomiVXRLT3HhHatiXGSM6RkYJvgg5YFJypMHsvpUS8LzgLtRa8dQ/uo8pfBKxDB8yUMOKx1WlS3UxIVZvBVBKl6ANPe6HB54zIvPpxFmMmsgzsp4lUAzFm9nHPMA4Y5xhzZhiFGGEcKzEVkvU0piWVzNIH2mgpfsXFZSJtKyfXDxgax944hn3BJO1ub0LLmCsFqNah5dSViiWHoLzF2mBtS7ZFl75igayQfpx2khtLER3Maq3YWnA2IRL1cxVBSsJKo4xVCvkBp1C06lSqKi62NjjbIkUrXEFIJZNqAttiZri1cRZrG4zowcC6hmohlUoUeVjdaqw++Kyx6mstgmQYUyQUiyna9KPKS1KluibGVDl2M1+ROfhldZDGGsYSNZCVja76PGAVA2aMQ6oji0NMJXiP9Q3ugR1ELDYbfBXytGMYJvbbDSUObM6E09P7PH7jBsdHG/q573t7MSLXoe0CY5wY9zMLM7iZGWz1e+M8Ui2Hh56DgxUpFu7fP+PscsfF2ZamD+pBtOBcYbnwtE2L9x3Oaqo8NIFaEiUnTCnaToRhPwxUgab3BFuwTcCHTu0ecSINE9vdhrzZsR8H2oMWH7SK1baH4AKFindBEWpZWZSYQMxCHBPBB9q2QYpWZroCRSrBGbUK5EgsmTI1aq8xls3+AusBhDEmYooMJbKv0Bwd8fgzb+W5t34Oi9UhwS+omLloQkOPOjRDzgXjG9yi5U2f/Q7uXm6QkjhYrWh8S82V/eaS23fucv/uBffvXbLdRnZDImFp1usZzVUI0pLSMAcADU1ypFLJSSBbvLSUaBSHVBM+WKo17HLEEKlV2Jwnwm5N61uWbaCRSmg72tUK3xgyleQEH1DyRN+RqlcGdGO5uLjHELf0yxViPdZUVidX8QTSCHmEIg2b/UC19zm8YlktFixWx7iF+lINDcP+nHF3iSkQp8jmIvIf3/9BPvyrv8bZ5RknV67gFwuSCC0WHuD1MORZXDCiA5iZwfpVtOa0PswX6DOkzon7WtUW4Iyi9qoemRAREP3/3ujAmnMCowGsHLMOqtVSBcZxYBy10rnIxNnlXd3A+ErMO3xbedNbHqNfLDhYremalr4PkAx5SMShUpwhGkd3dINHrzzG2dFd7r7yIun2bOsLju6wp74yIGnAyoIpVz2sOuZ7UaVEwdceWzUIbNz8+dQ6W6P0OQhqdzBk/V9jyFKRYrRFqkamUrDtIVUC5IzNBuctxmsIrRaw8sCjWzUk9RDY+Jnrv8X1C7/wCx/57/0x/Ga43rgHNS8ZpgQJQqPp47Zb43xA6jSz6iwlOx6cm6towjMzsa9Qw4Lz7KjnA/Gw47HuhGSUz3V84zFOl0ekIuRUaWalrz06ZvnYkwAs3/JZvO0tnwXAvV/5AOcf/oCePicl9uVaME2jHtiqymjbOcDgrPIi4zTigqE6PZGOU1YDPhYvns73VNDVf33I1MW5QAgdcZ8YdyObyw0X2wuGGEkTlElIMdEtFqxWKxad5+SgpXQwVuH8fMPpuOPesOPOZuByDOwGTylwudkR2o4swn6cWB+s2W4Huk4RSM5o8GfVOPrqODQtOQjy3A0u2sBoJ8RUcs00rsXZiuSJxkO2gSEXalXTfZUFOTe6Pktaw2pLpauafK9WwFoFR8/DmwKzPUKlSMW5giWQZFC2IQkrHeRZVcbO67+qCX3TIOKoMoIk4AF0Wy0AYh3VN2SBWkfEGLxtCdVr2la03KFitSTgwWvSzpzECs5YbAVTLCXNCd9i8KEhk7BWm2tU8lFVI3iPqRbnGqztEGMoGNAsHDUbJEFjVTGdSqEYx2QB5zDOk43X9iF5ACwP2OKZthP7nbbElJJBKvt9ZBsjF/d3LPsVi4U2Sd25tWV7eEm3sPggdMFDLQoaR19Xzgaa1s6syIr3yrctOdP1PTElhjEyTqPCu8vEZWPws23EugbrggbzRHFBzlTSFInGw3JN2/T49oC2sxiZ2G8vuDzdc3F2iuQ9TRCO+wOWrUdSpGlaSIk0DPhloyt9YxlGDS4qVsdRRcjG6WpUNM+QUqYYy4OmoalmchkfHg7BkKIyTJ2zBNcQo2E7GSKB9fXrPPW2z+bmE2+i6U+IxZFT1UYjo0xMFe0EJ2pbqMaTBdrlIZ/zri/glZde4uzefUoc2G+33HntPq++dovLywEbdCU8FQh9Q6qFGhYEJwQa2tDgXMU4bWNKuVCSwRSHrZ7a6jbFmAy2kKwlFbULOWcpFKa8J057hl2lEX2dHxydELoOZwzdogOrPlK3j/StxaaK7z2L5pg8Cb7xOBKpCn3XYarWw5ZgkKRhzHHckm+NWBPAVxaHPd3imKOjGxwerrl59ZjGdWg1vDCOOzbDBY89/jhXbtykbTu60NJYbQs0Vu+1dSZeeBPmsJKFedjKzGQLo/goZV6LevENenAw8xnGzsiqmalqzSwyIuRaKAZSisrwjforxsw4RXbbRIqFs/NbvPTKr/Ho49d45NFr9J3jysk1vLum963ZHysy4LxlfdBxmvakMbO7hGlMHByccHByjfVqRdgPwE/QrB6nup5Js3/ool3ZrIB+rAac8XjTabGKzVqFOiNhmxlRp6UnlmAspkQERfRVgFSx9gH5pSC2qsfU1VmpFqQaSrUPC1Ssn+toAWN/c3NQP3P9xrze8IB6ZituseILfvvv4J3dEn76P/LZv/1LuXLtGvv9liQbhm1mHAu77UiKic3mjGncsRv3XOwTd3JlSiPnwwDpgN4sedToQ1pCA85TsjYCiRGOT46Jt17nff+3P4e1jps3H+EjH/kIu92GKplKVpRMUcUupsTi5IhaIpvNOatlp2sU10BJSEoEV+cTvXZ/03i9M1bLol1zcniDO/dfQkp56HXEdIxTyyuv3OfVF1/j9ZfvcPvWhtOzxC4mMF6HHOOw9pLVeo1vhRuPHiCLyt3thstauTsOXNTKvsrMStUqwHFq8fS40FCbibtjxDhPbyzbWmiajpoMvSxhKKw9mHXAr1oOTGFVMmYTacrcOOQKqUTEWop1ZAyFgnOKCSvFQ7U0VhCj63gvllwhWW2pIlu0TlCHUTEVTMAaofo9BocprSZW8whVVVZlGYK1BeYWqSIWxFOBav5/7P15sHX7WdeLfp5fN8aYzVrrXW+3+2Rnk4bQJIpBBeyuXBsUj17iLVAExWuDTYqiSimh0NKrHrCrAupapaCihZzDpdQClavn5NicHFQSmoSEsJOdZGe3b/++a63ZjDF+3XP/+M0d0bLZQBCF/Kret9aaa64555rNGM/veb7fz3c89EvMwXQXqEmYEaJNGJlBDI6M0xZ3momHcaBv9IDaisFDY/bfw9VLi0R0PlBig8ZbK8Ra6WlmC0ozAZVcwCopztRqSKlSD+N87xvDFZGWchUVW03TyFnTTEF9z9AH4pTJmZZ8BaS5sMsjaRdJc0OKSbNyoLZtIvZpZEqZ5+6fAfDcCze4q9D1wvqo59KlE5x3rNcrhmFJyhHrHHFuXedX0q5UKtcfvUauhnv37jPNIyVnrDE451mvjklVOd/vEVcwRXFiCa7DiCUhVDtgVobgGh82jpXd7Zts7z/P7nxks1XmFAk2sewNEivdcsAki6hiXGj8S5kQa5goTGPGB7DWEueE1pbXvosTxuwQLNMcwRiMbdKAmmFKTWajOjctMxZVw8Vmy6JbE0ug+GOuPfwQr3vTmzm5+jBqB3IOGALCdOhKtdGwlTYRsQa8MSQMKpBy5vKV65QifPSjz/HcRz/GdnPB2Z2R7W5EbMDWjPUG01mKRIrJVF20z7gq1ltsJ4htmnxvMi60BCAKSBXQgDGZSmKPEjPU3IG0AA2tBigEA0aVNEcuLu4hGwvi8P2AdT3dsGDhPTJXGDOjTATfuv+HIQLe9ZQ54l2mGxzaKVIdWlpKkdZKKZkYR/LZyOZi5P7tM4Zlx9HRwGpYs+7XnJ6ccO3qZa6Hy9h+oBjf3PhZ2Z6fMU2RfdyzG7f0fcfRcsnx+qR1CK1iAGcPY2jXqCCYQtv9NqZzVWk69CYMafGpWpu20sghXrWZK62xrcmRC/M0Evd78hzZTzNTzOQEm82GD/7ke3n55Y/j3Ru4dmWN7xd4VWwGUExVrAhziUiAbhHoRuEjH77BcnGZxeoYkzKro57VYs3RtdYUuf7wm9mfLrE/8Szx4ibOWazvmPNBc1vb4zS2TamqUaoVihOwBlcFa1okdlEOulzXDHhKY1QbxXlLySOiijWWKc1kFbxYymF61BoFrxjNmqFKxRx0/v9DBgV9an1q/RfXqy5QdXnKF739d/Jrf/Nvhp94GoBP/2Wfx2vf+CbSPDHNd0A94Nlu9qCVi80D5nHD/YsNt85nPn7rjAdnW7a3bqIPzniw21CWLZ1sSrFhng5cwJwal24YFuy3G7rOUVRYHx2z3VxwAImCbQcHRTg6OcGtl9y7s8F1Bmw5xFNyoFemQ7JHbcVTLnjjETmc9P0C0y2xwzFhbdvIF7hxa+TfPv8RPvzhF7hz6wFn9y6YRqGUgZw6JHQka1DjCG7A3LeomfnAC3fJ3ciD6Rx7aUVZdpTQI95Q8sRyqCSJOAw5T9SaML4wxx3Wt+cgqsHbnpR7avaU6tlrGzs7K+x95XIS+uiQ3pOTUDQTTcNV5VKJRaiqeIAyNUYoe8RlxAvZCNIJ2bSxdxNCVOwnupympZhUizGu5WIrWB0wrlDMiJo2rvK2oLmlThnvPxEZacRRpHEPirYitppKpuFVSm6JPgZap0MqWTOWjJp4APw7tB4iKIFcQV3T06oopSRqNviupzihWogkqihVWoeqcWoazzTHmTiPIIGYDeJb5CxZDyeDitpKKg0pVA6onNYd1hYtqs2EpYekjt24ZfRN54wDh6CaSWSMBacOTIsYnQ8d+pduvMTHdzuGhef00jH3T/YMi46j4x2XL58QgmG5HEBKM3BpwBhhsV4g1hBz5Yq/xPm5oeaOOrUC79rVa0ylsrv5MhxQP846vHctE721Xkgz7C827C/OKfuZtLtDTWcYelarNSbSeJEO7o0TjDuswLLvOD0+xa4dRie8s0xFsLZi155KYS4F1DS6AxnrJoy6xqq1nhIr3luc7dA6M88TxlRWiw7FgLVMaWK/HVmur/HY6x7jkdc+wfr4lFQaqsiIxas5FH4HLNqBPmFtIxrkrGBfGSFXcklcvXadN77pM/g3P/jvuHXzBierE6ppus8x7RlCTxdsO1YU0AzeGmyxrW2m0pBjxra4VTkcUV/R91aLtQMI2APhouZEqTBXg9Bc2J3VQ5FpDoEBTau43Z5j3cScZxKOxWJNDgO9t003bZvJSE2F0oJFUj6EXbiOMAyU1OZZpTZJluRWCIbgyakyT5GznDkvjRG7GDpWxwP9eoF0A3MxpDmRtiPzdiSVQnWwPlnz8PXrdNaxM/vDc1+gVPoQ8P7A9BRAE7lEasmUlBsJrgrONb18paCUlpBmPf5gVq3Sggxyzo1Sstsz77eUODPHQtEWGHDjxgvcuXML1crZgwfkmNDSpmVD59rxvVawDkHIB4+Ed56S9zzzobtcunydhx45QbmElQXhAC5yYeDKQ4/RDSdUHqDGk9BDnoDgtUO0fZ6Na39XUqHNjhoDlVJ5ZWrTNk8g6g+hBI2goiaTUSxts0Uu5CiHiZZSaaY0K4q1M0hE1DemtnI4H35qfWr9wlqvukB9w6e9jV/3a34bfXdCNM8BsFgssasVpfMMqUVUWtNxekmxFnKegEzKlVx7ohY2mx0vffzjvPjsR7EU3jBN8P/7PrQ241La7jEC292WO3fvkGNiGJYcHx+3rheG5WLJbnfByfERJ6en3H3xJXoxPPbEE8x9oNbExcVdqjaagJPWDc1kWnuPxgeNBXtwlQqGMWUkRi4/8STez9x98UUA/sW/+gn+r1E4Oy+k2ZLmJaUopVj209wMHcZgXGDRNwSTC4KPQkgDS2MZz2ZMjUQ3YlY96pSp5kOEKE2zScbVjLGZnCLe9djqmTcjKcOcK9Yv6apyNPR4Z5jLjvPOkk4GdBTindhSR0RJuY22cgFtKHxMmeglY82eqk0PNyuMDkQsQxQkZmYiSSrWgunMAf0DPnQYP6DVIvQYP1FKgmQOOdkzdQYqh1ACd3CXg8EiugQKlUzWTCRSVPDSY6qllparXRASHIwEGdXaCoCi1AY8bMdkY5req2Ra6GpFpVKlFbwpxQNmrBUw1loQxR9QLtRmNhGxiHEtO1wrWguGFi6QTNdMQQpOFa+g80zOgrOhhU8cdNlz2lGCAQeitbmPS6bYQlWDl8CUKtYEkJZel+LEftwSo2O/nQj3NwwLz3rdcfvuwHrdc3J0BMDJpWMGt8J1Djc0w5P1hlW/IHTNIFanBqb31uA6y8nRQMyFkgudFaxksiZKTez3e7YPzpjOz5A84TWB7FmfnlDrgt0IWidwDumXTNNM2U8EMiYl7mclxUK9owTryOpRZk5PlwTfuLdGzGEcXtA6I+Ip1TbbX9czHB8TxFBMQlS4uL9hPq9MRdnlPdUpDz38BE992qdx9dHHCasl1XYtkQhFasILZBG0HEwjRigKRQ1qWiHkDgxN0OYEp/Dmz/xMvuiLv5j/9X/5X9hMd1iuT5jmPVkM4hYNrSQt1MBZoaYIKdJEkg5oRjprDGrmxvx0QAajAe/6dlyUCJJJ00hBWHiP8yMlJWpKjbZgK5Ca5l0y3oAPlVI37GdDzBPWOYL39B6CB5OgXy1YdwFTIEVlNwO24KcmjzAC3nl8Z/GdxZiKM5YogjGNvaplQjSTyo7bdx8w3sxs5sJmn5EqHA9rrl++wrXr1zi+dsqlK6csux6dEjG3zcdumtmeX2AUVssB13v8YgDNpDSCloMh0jYd5Ss4KqMNk0XjJXe2R9SQavlEzOluuyXOkRQjeZ6pVajiuXXnLs89/wI5V4wN5HLoNhoompmK0uJZQaRgjCfOhnmaMLbyujc8xMu3f4yPfPw+D7aP8tBF4pFHHKeHM2POO/rB44dArhlrA6k2LWxPIHjbWh86EevUTKDSfrnW3OD7xrYpAQXVSCnSeNDGHQS6ClIQZ9AcqNlBStisZFPItiDOIxKwWqkyt+CXw/GVKrzCE//U+tT6hbRedYHarzrONhuO+gFXW4HQfeRppGjLmK97chGUNgJzzuA0Q830AGJannguvNYr8clHqKIMz7YicPrRHyfkSq+F+OzHuJgnzH5LL7BeLRn22xaLuN/jppHFNPPoySnDXHH7iaEUutsPONPMFeD83FNrYbM/Q0pp7v1DB6nmmZIytkrr3NgOsQUThEU1HNXCvbv3+fgPv49fBex/7DlWDNi5EGPDSxWFXIXEjEjEFoMjYPxdijGIm1n2lhOzooiQgsIGJpnQfkNaeKJ3rZtoDQawpTQwvGasgMiWom3clYqSXY9xgU6EI+9ZBY+pFXEGrxbdzGzvXeCpWKPUmEEdqQpVGr/QaSaYRNAJKYn9JrLZJ5JRqo4MYvFBqIOyNwU7eFZrSysnWoa1yLLBDV0gIWS93ExBcWra1WSwqSL7gkmCzgVqRUrF4ls+ilZmUc7JnGRBJTXjRRU6Mid1xxHga0JSam5YGwkxs0ytsHuDZmxMyJRbapJL6IGzG3NzvxbNkC2dBroMl+9PrHLleqz0PjPv91z1jUJQo6Mag2hCtWBrG99n9WAbtzWIJbiZ4HqsbfD7kisPX9wH4MndBUJGaHpXU/UTuKecOUTGesRWnpwbqN+4Zr4pJVOLsplG7JnyYOHo7zisE05PTgih49LRMUfLE4ZhoOstq5MOGwxhGAg+4DtHWK8oqbScclO4fNITY2GeFGs8SkFyQmsh2Mpy6Vi4JaYE0rwh5WNOH34CYzpu37lN3STWR5dYLU8J3KUsHEOIVJ3Z7TdotmgRxvOR9fKYi/MdN2/dZQjK8fHAydGanEZKmUk5o9UyJwHbcfXR63C8Yr8deXDnDKPCrVsPONvcYKowSeENn/npvOktb+PhR1+D6zoQ36J7nWnAdq2IbYcyY0zrQNaD5rC2NLvghzb2xyLWolLImrBi+A3/9y9kv93yXd/zHfTaJADWBYy2IIZcBdGAs4Za2lTCiEGyQgVxrsWKmkORpaC2desbQ7lFPVcF5z3dIe5ZBsdklEmbA76gODHtZ5oxVXAmNTC+TxRGSjaUEpimpn9ULMPWkJZgPaiN+OBZdIE4JwRhnmecWLphIHSGzivGt6LVWoP3Qk6VWguIxWgjaZws11x5+ITLp1d45NpVrhwdMfQ9xQhTzsQ5YVPb7GQtTGkkl4LJhrPxjClvSTKzWh8zdJ6cGy7NSWipUhJJNZKrtlAFaS74YsGKNC6ztE2I5pmSZqZxJsWEMY6zzV1efP5ZdrtzSs1YC9M88vGPfwhjH+XSlcvMWRtez/umXy8KtM+FMnNyuuDT3/gk7373R7h95xbjlHjw4EWODql+GG3a0xjxNWPKhJWm07dUYomUWrBB0RJRiVjXYWuTrmhuNBucbcLazCfMui38qfGnRUIzQuZ23BCtiI4NzWcsTkKb9qmiNaBOibUlqUmzBv4MS4BPrU+t/37Xqy5QX3zpWW7efJ6Ta6fU0yPqMHD5j37NJ+2B/NK/9pf+g+9XwGtf5e9efuWLf/LOT9rj+anrT/7kB35ObvdT66e77v8H3/2de3d/nh7Hf379pY+/+NO6/l4MZ96SdGxubSypzuQCxMx2lzAibDcTi8WKO3cvuLw6p/cL+r5jddzhesNyuWK17Ok8HB2tWgqaQN9ZnPPkENBF0z+WEokpEFNPHpaU9QR1puaR/X5Biobl0VVUEkfaY3vl4euP0/klhpk8CcErU9wjy8zlKw/hfODmyy9xtDzGrY6I+wqMuLWDoWumGWMxoVKy4juHuJ7qGl4t1cosjqEbuPSIZ5EVdR3ry1f5pW/7ZTzy+CNNNoHBSeO6gmKMINqc0FUOesaDLtCKoUpznHsRUIt1jik3zqzVipDw1vNFv/E38ODiDj/wT/831sMRfQhIng8b6x5V0wxYLhzA8rwyjDkUef4QCNEiNtvmINNCjQ4jBWlAf9Hc5EzGEHxAxeI0ghVcDkBFipKmfDDHtI2Wldr04ZTWazQGVYjjxJ39DvUZ11eGfkDU4WxApUlmUprJm0qcDRdlC5Lo+wXe9qxXa/rQ9N21PVv0g3B69RpXrj/B+ugS3htMzszTjjkrWRo838ZEtkrMM7VmrBE22w0vPfcCt+7c4M7ZLU5PL3F6+YR5jgd4vyUEx8mlFauTARcWiG8yLW8sKz/QeY/rHOIE1UKOI9uLC6Y5431PypkXn3ueuzdvHkIzEsZYxnHHMx+5R9WRz+gGXFghRKQqUgPeObxrhXgunlINjz/2GHduzbx89y457rl/+x4f27cZv7Oel2/dI28Sa3dELplkUpsAUVoH3MDC2daskQSGTxSUqSq5apMoOcHiMFoRUzEqbcqPbUSV0jbVmEwxTZLmBaiC14JjbFMqLCUNKJ4iGdG54RI/tT61foGtV12gnr10wUvPfJSnnnyc4ZFHufMv/jVy734zp0giNsl+QwKVQskzOU/kNBPniCI4FTQXUsrsx3bwX9+4yRv/5/+ZH/jS30l+6nWc9B2PffBp/Dg27VTJxHnEHIwfRZVpmhqmxpqGkgHmLvDSZ306NRhyiVADRpQp3mPRr0k5Ms5Tk6g7yHnGGo93C4JfcHJ0leXRCS/fvMn/8a/+T27eOOOJ7chfePEjfM3pY3zE+YYNobn+izSnd+fA29q0k2pRY0hOUSutU1ADC+kQCnghmAFnKnGtXCxh3/eoL6xLpq+VvGydhj4VXLBkD3Ga2cWZJBYfFlT1rIY1g7HM8xZ1wroP1LNz0p0L/CT49AodyVJsYK61jc/xIJVgJzqfWtJJcNB5svcH6H1zsxvjKNHh6DFUEpFCpuZMZyxSBOcMWkeOho6AY7+bkF6pfiZ7Q1cMCxmQOWAvLoi37hPPEi61od4O4d6UKabpKiGx8MqJWIaqdOSDOME2B/3Csd5t+X/fPOOPnh7ztBvIOJSMmgnTOawPzcSVK94JC+NYFuX0aM1Djz3E7Vs3OR0V5zzP7u6yW1is6anSE2vFHP5GhyMnSJWWO07BGKXveno/UFWYxsZifCpu+ebnnubrn3odzw1tpKxYorbkcFPA5opqQ8WoaazHc99xq3PU3Lq2KgUTWgpUKTOFSAgDU5wbOmm3I252WNshzrFYLQmhI9gHXFp2LIKyWgX6ZcB2hm4xMCyO6fwC75SuE7x3BG/IxbWOY22Af62ZOGdqMRgnpLrH9ZaTU6XvV1ANVx67Qp4vI+pZHUapxycrtFYWq0sE66lVDrrpRNcZVFt0r3BAKEttkwz1iAuEwWNEuP4ahxPXnOvGUmXg8pXHuPbQdZD50HmSAyOEw+exGWtyLY0IoFCqHLTl5pBgFADBmDaNMAjBOlJt5VhOkcVi4Mve/qXszkbe9yPvg1xQqVhvG3lCoKpvmldjQMuBpgDexRZRrB0iQpFKNe1nYgs1p/acElDX9L/iutaFVfBO6IzgLQyzNBlrhb2JFCzjFNnvMsF3VK3oQbvq/JJh6Cklo7GC9cS5MFfD7f1Fw9h6oRs8xlt6F+h7Q8rCfprRWYllYr7Y48OAGzpsCCz6wGA9+eyC+/NznHc38X3AW4s3Hus6kjSyhqhSUmK72XJ+dsHLL77MrVu3uXv7AdOY2e9nzu7P3LpxRk4zmgtBAoKyXA9cunzE6UPXOb12inWGVDNRLwiho+sXDMsF87xns9kwxYS4QMLwkWef59kXbyCl6bydU4yDiiXljlu3djx0bcvDD6/bMTtXclFwFuPAuRVGDNNU6MLM6153jTnPTDuDMxk3ts3vsx/9GB988Qb7WEk1UJKQJRPJjXl8iHLNueBUms5UhVobUxtx1MqBMAGiGXLGGksRQ5H2O1oLgm2Sr5IOnxVPFQvSomCFHcaAqT2SA8avG/XEKNhXfSr/1PrvcG02G/P2t7/9yR/8wR882u125s6dO+/tuk7/48ve8pa3vPkP/aE/dOtP/+k/fftncj8i8jl/7+/9vY/+nt/ze84+9KEPhTe96U2f9YM/+IMf/LzP+7zx1fz+t37rt17+hm/4hsf/W6VTvep39f17Oz78kWd44y95iidOluijj8EjT1LtTKkXZOnJsSBq0JLIaWQaz5nnPUUbES9NE+RKnioXFy0G9Xrf80bg7NolLq6fcK/vufvYr2Wwnidf9zpOT0+5/fFnuNics9+PzCkxTiPW+eaULYrkxCRK9IKxiaoJ0R6qBTlGTh/lfHtGOURoGiq57LHO4V3PyeIq8+oqH3n+Bv/bTzzDj956wH6ufEZuwvOnreX93h+MOgfNo7EkFGcKIVi8AVsNxjmyTVTtGewaI8JgHYWJscx0xTBUQ1CYFB50A/lqAEYcieyhy46rfkGlYjvPZnPBtkTO5ogRj++OOT2+gq+w2wt+2bHwwibvqFPPMnT42eKohK650aeSD2apQLfoGJaFbshEn5m9sK+wz0JS22Jrs8MZQ+wySEUoTArZL6DACkfOEe8DtXjWQ2DlAuPgMKEya0WNEIxhCAOr/honcpVye8XFSxv2Lz7ATIaLuXKTllQkrkHAj41yirAWWEjf/D2pgFH8emhIlZtwbyg852aSUfCeSgcihC4gUhlMxyoMRKkcnfYMl5bUY8vk4eW7EaXjo9JzsTp4p1TINWClubGlOnKEXM2BZlDx3rBeLXHGkFJmqpCtw9ome/lo6HimHwjWYtS1mFRo7E+EKjDnjPWeUhRjGtjbGkglYa0lOE+tMyqKd43fa71rnRiEfTTARM4TMY4YCWg13AmOvjeEAN1gWR0vsCbQ+XNOlpfofcdiGegWgg2NF+mDw7sFVjqsDCz7hgxKeWIVjlBDC1YwQikJY65QSwWkmUxqBpopyV69hqhDNeJc+9tVFeMaLL+UBsIXKTjjEPFUVarEpkE0npwLU9xTtbJar+mGNeNYmhbaNIOdloRKxnl3cOW35CwRg9JieVuiz2FcKpZSSgMfqRK8R0vGyYEGIVC0cHR8id/95V9ByX+XH37PD9EvXjE56UEuoOSSm766VuyBRyGSqfUV0gTknBoX1Dmc6+htR6lQswHcYZNSMM7jQ4uGRhJIZdEtsK8MbEPPVDJY00DwQK0HokNs5qF5nlCZMCIEv8K6Bc52jYaimTnOzEmR0LFl4uho4PR0yfJ4xeCX2GLZnO3YTom0ncEkgt3Q20LvHc71iLOE5YBxnlW3pA8DURW/7BnTzINbt7j54ktszjdsthdkEtVnvAihTi0UhAmxFangrEGzsL/Ytu7v3XMef/Jxrj98jX4RcN4yp7nJCDSTUiQp2KFHrOfjz73ITzzzIUpKDKYV9F0IjTWbKlkt55vEiy/cZrE44ui4P8ikMuM4o5JZLtYH9nNATObS5QWPPnyZe7cjosrRunUk79y5yc2hZzIjO7vHHOK1jaXh2oxrRq9ywBWKQWrjJxsR6sGcqOiBYJBaJxyh1NgMdNIoIEkqVaXxpjFUaccd19lGCUDRmtE00TmI5PZ5kA5k8bMoA37hrHv37tnv/d7vPQ4h6Jd92Zed/VzFnX7u537uGz/zMz9zf4g6/Vmvv/7X//rl97znPat/+S//5U9ev349n56elr/8l//y1f/4sve85z0/uV6vPymOuKeeeio+99xz73v44Yc/qfqQL/mSL3nt+fm5fec73/lfjG19NetVF6jnccs+R6q3jGlq6I9qsBLxXSXPDcadYsSKkuOemHcYC9Y7ttsL7t+/S46JPCpxqsSYOD1ERHYhEOcJY4T7ObNYLAnbCx5oYgoeTi5h+gETIyYNGCukeaSkSO8Cx6EjpkTKFi1rnBkQgVxG9lOiVEPfr1kuGqP0/OIW07ynFkjF8+4f/gDvete/4aMvPsdFnJhjIh1c1lnLJ4pb63wbn1qLMwY1CTGuaSSrIcdCNhUvHaF4nGumm9oZus6hOXMx7fEVyk5wpXLlkcfxj15h2pyxEsOxW7AcFow5o2nGFYPNM6ujlgE9xYLkEecci0VoySPbSBqB6knVohIAi6+Vwg6vBet68qKnu3yEdMLMxD7vudhM7JOhWgcGRGeCEXJK4KE6IYuQk+IUpBq0GJxr40sbhFkTVSzbAGITXipBDTOWmAP7GUYzc3ptyfUr13nQv8SDj96A0t4fE40eECQcDKktAauoabo1a3G2YHNicSgGrx85nlo5pqyta+fWLUnHC8F3eBWOl6f0XjhZz1waGn/w+vGCTVTONhUbeozPJGrrUqRKlYx0njxninNI9RBbPKM1HU46TG0Ru17sv++MwCvOLUyxhENSU0vWat2bKLRi0PiGgzKKakaspT9EqXq1xJqx/YKSS0vXcgNpruSSm76xJmBPyRU1CzIdF1PCVofuI+HCcnm2xPGCuL/ByeoSi2HNMHQslobQwbC0dIOjD4G+6+lCOEwUAtYb6mwbPs2CuMKiN0j1FFMPYRSWIQy8EmnZBU9KBpU9VUe6rrExGyi/FWyGZjbTYhG1lLQn1T0xT8Rc2O72xJx56JHHOVqv8U4oOTd0kzPElFEpWG+bQUoOgAIVnDRmpDUN4YMq1jYpQMulF6x1jSxBxTrQVyQBThjjzLWHr/Mlv/PtZE189NmnyVIxTpuGNCZKqXhxqOb2ewdkUnsME6koqoIYj7ED1g4IYGtthh9tYHq0PWveNPd7qb4xjw8GwUymWoNB6HuHGk8pDWnvO0fOkJIlpUgIjRObUyHFPbZvqDlModaGaJLowUO3XLM6OsFqJdgeZwK7BKXs8K5NMXKa2KXENO9wuiFXA32P8T0Lv2VhOnKt0DuyKHmayCmzGizWeWatjZZSC863WNZSwdoeJ31jTruBnDOlVubdzLMffp67t885OT3m0UevsThqsb9NOhHIoWK9497FGR/7+IeZ844+BNCC9x4XDFNp5jVrHKUoL9+8g18seap/gqGzLZwEpeTKZrPHSMPuuaCItVy6vGa7u0fJa8KqnZeca58T3UfmcYcoxDTTmx6thmwOlBhpG1zrPAWH4HHiaSEgBmsLlQZ7NbZh0ETKQUfcNk5JEwWLC5ZaYUoH+OoBPmtr49B6W3AyktVjVKk1oNr/jIuAXyir1spv/s2/+an3vOc9a4C+7z/yu37X7zr/+Xw8pbT3539tffSjH+2eeuqp6W1ve9v0X7rskUce+aQVk845nnjiif+uxcuvukD9Fb/2l/KFX/QbGPoT7ty8D6YxL41R2LWuaMlNL9UFh2pCbDuY7nZbzu7dY7/dEeeZeZ/QDEYsehB3e9+E8yU3HMsEvPT8szhn6FfLJuGidWL8wZEprp0ZhIhYw8lqQYqVOAbmqRB6hy2GMUe8c63zkyvTbsu03bAfdzi/4IMvfJB/92/ex3Mv3mAzz8y5RZWWgxlMAGMN3h92y1qaQ9sIxglODK44jLaTYZEW9zfNOxZ+AYtAqREjFdMr0WSSgWAGZAZ/obzhs54kDxuu+4GFH9iVQkoFGzI8BLcf3Mf4QM6Vl+7fYlNHiskUA5oT6WJPGjO+gqHxP9EAKKJ71BoWl9eYVUeSPTFXknVMpbLJI5MN+GDoSkZSIVuDk0qulbnYZkypFio4qVhJFC3EpKy7BUYnprxhFsWqJeQ1UR1q20A2xh2JCxTL+toJ1z99wfm9HWneUTLtpPYJpzUH1lSLEsW3DmeLBQR3oPWvQ8fD6wVjzMTkCf0a2xmcL3iUznnWLtB7hy8TdpvIFcJiwdUrJ+zmLWV3hqjF2FZMOgexJEqd8YslZSzEXUL1AOM3rrn9a8UZgzFKkdKA7IA02jil1kZPEMgkWopAKz6sd3jrMXqIxq0J7wMYS5knNNf2Nxaa/swv0GrROjdcjoyIjThrSJrxrmJCxValSmYeJyodF2d74rhjnkZ2+x3Or3G2w0glBEPwbTQaHBwf9fQLSxc8zjdDTd8f0fkl1ikhFLyvHPWnFG06xeADnS+UmLE+sJdIMQCJekhqMwKlRuZpjxEh5xGRnnkyaDbkvGM/nxFzIuVKSoUnXvM6Hn3oNXRdT9UJ5wKijpLb82q8OdxWQkSwnT8UYqkVh+JaOIIxBNswchahGkOtzQzkg6NobhG1yiHDPjCPE088/gT/z7e/nR9+77/jxZde4nwz8uyzL9IFT9GIMx5rFWto4PlqsbYxc41KwyX5BSEMGHHUUtrraD25NvSQdbWxSdOMUXC2o9ZMVsV3HqpQ4oTTFntqVwPOW8bpHGMhJvjcz30bq9WaSiI4z7ib2G32jOPI+eacKY5stuesV2uuX36MSw89wsmVS5iaGM8v2G9nNtPMg92G+2f36JzFO4d1A4vuEr0TbN6SjHKeEnHaM+9nJizWOuKuUk07/vVdT98P9DmQNFKlTdEWneHs4pxxHKFOyOF1Mr4Z0WoBV1tBef5gyzhGbt++zeVrl3j08Ue5cnrKultig+X+xX0+8sEPcP/Wi/TWEqxBSiVhqcVQjcN7pQo4bfG6t+/e4+jSMcdHA0KmMw5rLXOMeCdorKTUpErBOI5Xjnv32mUAOc7obNGSwTrmWpkPSYLWWJQGX3C2mSsLlVwjlcYcVlokcy4ZNQlnhFzKgSHsPhGDqi1OoPGmHY3PbAWxrskpasMEBucaFaA2hGKhkrWS6vyzLAX+x1/f8i3fcuWV4hQgvfIifpLXl3zJl7z2Pe95z+o973nP6u/8nb9zDeDpp59+/zPPPNN98Rd/8Ru+53u+55k/+2f/7KMf/vCHh3/0j/7RM08++WR8xzve8dh73/ve1TiO5nWve9305//8n3/xt//2376B1o19z3ves4I2gn/b2962BfiPL3v3u9/9oUcfffSzfuqI/+7du/Yd73jHY//8n//zk+12a5944on5z/25P/fil33Zl/1XC/P/1Ij/7//9v3/89V//9Y/fvHkzvPWtb91++Zd/+b13vOMdr71z5857r1y58glUxD/4B//g6E/8iT/x+M2bN8PnfM7nbL/ru77r4695zWvS137t1z7yD//hP7z8yuMG+Mf/+B9/+Lf+1t+6+Zk816+6QH3yTa9hTomXX7xNrYnLl1cokTlFtBp873CmwxhD6HzrKhrHZnvB7Zu32J1tW0zhtKfk3E7u1jOO23YHxrJYLJmnCTFCijMlgwyekh1xmqgpErpA0owai1VDiW1nnkYa5FoKOUEpmYQlJyGmSvA903TG/uwWRiZEZwTLg7sTP/wj7+WFm7fZxMSUYwMq1zaGoj3TGGvaDpgGtxdpGqTGYVRKbi5sYz1WLJGJqoLH4TjgVKqgRhj8AqOCTYEkgd1LZ/hbiTc/9QbWfWA3TvSpsD5e4RaVnCJHbt0Yj9aStHB2/0XmmthPEVNBYzzo8ioSZ6RacD2Zig1Cd21BvWyY456yzWR6kgnkPOONxRgl15lZCs4H6mwR65nZk+qIr0DtGG0lmUzIh6AEtbi50lXBG0dSJVsYS6VII+l3rlDzFpHIebXc3kw81C8xl9Zsbp6zB5KAs4fc7ZKJ1RAreAPVCIWMcRYXAno47rx2bxiMIWvjoFIm2IPvHb5OdN7hVTHG4MPIUJSSHXNQwrBm7ZSOkVv3U0tTwja4eI0EI6yOLA/2O3Zn+0PSlGEpyloPne2asdLSrK7NjSxQanOHa1WUQBGYqRhbMDpTa6GzPUZMez/ojBhlTo2C2MDmTU9HrQTXtY2BmpaG5T2kPdYZqunJucVimrpvXRkVOlswVVtak47gJ4qJVKnMuadmwUelpImaI94YFkPfMEqlglVsFwjdMc52WFvxvjD0np4lGMFIJeeJPlhSnOgWC/pFjxua/rQPK0puuDlrlMqIcw1I3piQizblMDQgPQtcUk67NU992mfQL44pRJRCKQqqaLZYY/C26f5Emymq8Ugr9RDgYMyB8coBV6rN0V9rbQWta11UpD1HxvpPbHyNtGCFJx59jNXy1/DyzZs8+/GXePHjtxGjOK8IM04agN2YhkbLtM6dNQYlIDQHd7W5sXurUk1LY6s1oqQmi7AN3m6tZaZSKIgFh8FYR2dCm9Q4YbnqsLY97lJnHnnkYd74hs9inDJCbu7yWhnHPRf7LSqVzeYMY2A1nOD6ZZv8CMTFMTdevk3UC04vHWF0Ju0n5nHHlGaSh70zWNkjS4OGdhwjKrlmjBW0VNI+E6W0JLPosEZQbelsvetY9ZdYLU6Y00SpE3Hcs99OjerBihKFYCyCa4gwUxinPR9/9oy7d++xXq65cnTEpUsn3Lj9Ii88+xGkzBjn207WGDIGFcPQD1SJpBzpfSCTmaY9Lz73MtujFcFnOm/oukVjOUtqHVR3xHqxRGdl6S3350jZtRH/NEc8x6zNintpJpcKzpGMY6oFp55godR0SIGaSVoaL9WA4Kg1N5oIQlULpaH3Sm7mqYIizh7CKaQlapVG3KhqELFkLQ1FhVBnxePJYlocNTNFfkbn/18w69lnn/Vf+7Vf+5r/Fvf1N//m33zhYx/7WP+mN71p/OZv/uaXoHU2n3nmmQ7gG7/xGx/7pm/6phff8IY3zFeuXMkf+9jHwm/6Tb/p/Ju+6Zte6vtev+M7vuPyl37pl77+/e9//wde//rXx3/8j//xR77ma77msaeffnr4vu/7vo90XacA/6nLfuoqpfCFX/iFr9/tdvY7vuM7nn3jG984ve997xvsK3qzn+Z6+umnw+/9vb/3qa/6qq+6/Uf+yB+580M/9EOLb/zGb3z8P77eNE3mr/7Vv3r9O7/zO581xvCVX/mVT/7xP/7HH/v+7//+Z//Mn/kzNz/0oQ/1m83Gftd3fdezANeuXfsZM9BedYG6T5V/80M/wrpfcfV0YNx19IPl5OQazg/gKobmIFVVxu2O7W7Dgwf32e9GciyM+5kxJbwXxCpF28EEIJfSeHrSOky1JKwTxEpLqsmxJZogpJixwZBLYp5GFosFca6cXDphPz9gt7/H409cp9TEi8/f59Pf+BkM/ZIf+5Efxkgm9AlrYZwcH/7Qs9y5ccF2m5lSpQoYacgQMa0r5g5O21ILIuCcwXcO4xpkuZqKehpSJLesZDEFdYYSFK0zNSewlhgzzjiCC1Q8oYDdVe689yN8/mtfz/r4MueLCVMNvlq67gC0L8pLd26xmbfcuv+Ai1S4mPbUOTEEj9TaoiYRDA6T2sEtBrh6+jBHp4GzumdGyeKYY+vmZAWtjlpbNzqSSLaAqcw0tnmoAnFGTcUbxapQs+LdAmcyWkZMZ5Di0W1Gg2E27cBrbCXYQ7KO6YhquT2e4WVH6Wcm2ZGkGaBMtYhpbt6sM0UqogaLw/ce33vEwX7RzFz/r2du/Ezf969yffynde3RGC76oRXLRgGLGotSwVZKmak6Q/XkFLHGYmxFa6KIwbpFyx83FVMLAUsQz7yvuM6DC2Qzt00YyjQrjgEtGVtyew0lIIcT2z4WEMH6lqOl2hLaiquIaeR5owXrLOM4UrO2TrGpjHlDLPcR5wkeOm/aa5ErvoOuhyF4Hrn2WOPnDh5/bDldr+n8mqFbYq1wfLTE+444jfRDYL1ekaVttFQdXhylJqY5EYuwWFxidemEqIUqpbF0aW31YB2LrsOEFrahqgiGUpoBS0UPLv5/3zipVWnqzaZRBQ562Iqx7eeq5ROjf2cPKWLWcnpySggDKVpOT66wne8Thg7yiJPWHlccWj1JgdBYyC3V6pVi2qCmkgqkUhDDoUi3DeWeK1IKqUwtNjUYSpmwqpysj3DGMaeESkeKsSUQoYTO8/4P/BhXrzzC0dFDpJywDiyVrltyfPk6Uxw5uXSC1sg8t+60E0cuhZTBh4H1CoYhcLw4Yns+cnb/HrduvMzF+XMYZ8Al2A9UNyDG0atjsJb1ssO5nj4ohYTYQsoz87yHPOGNYRaP9SsgoyYwdJdZrArHS0gpkbGYbUuG0sPmwYdApZJKO19sL2Ye3L/L6s6Scd7ggmPpl6jVw2ai8bd96Oj6HmM8UhcYcex1pMSZ3YMLZEr4LiGSqMXifAA7tijS/hrn3RFpt8N0W+ZuwWjbDqdbnXDp0jV224jubmGsa9MdYymlYk1uRaLmFqVsLVkt4A7nkohKi3dWteRs6SRQtFBLPBSo0qKasc0MGhUpHSVPiPNgBXFNtjLHQlCHIhitOFeBgiu/eKNOa6185Vd+5X+T4hTg8uXLxXuvwzDU/9SI/Bu/8Rtf/h2/43dcvPL99evXx1/5K3/lJ0xI3/It3/LyD/zAD1z63u/93uOv//qvv3P9+vUyDEP13utPvb3/1GU/dX3f933f0fvf//7lj/3Yj33gsz/7s2eAN7/5zT/jN8K3fuu3Xn3yySenv/E3/saLAG95y1vmD3zgA8O3fdu3PfxTr5dzlm//9m9//jM+4zNmgD/wB/7A7b/yV/7KIwDHx8e17/s6z7N8MuQDr7pAvXURubiYuH9nx/as5+7NyvVHr5BLz+rI0Gsla3Owbi723L99l3m/J88zpWbGODHHjDEWb7tmnjAN0QKQ0khOI85a5rmwWC544olHSXnk/r37xHrQ66RMTRNWEyJgbOPZKZWjo0eY705Yu+D40jXu3rvNHPe85bN/CTdv36RQWCx6apoxxvL8i7d5/09+lAdbZZ6bSYNqEMnYAN1hxF9FG8vOBCwWL4beCtUkijYwfumazrBOFq2edWhj4yKGrI1UV+baujXq2GeD7QsOpRTh9q07fOC9H+QLr/46rB2Yu4KdC0kjN87u8L4Xn+Hjd26ws5nnd/fYjBMaI1315FixuaC5QvVE2+N8Ry6JxdGak4cfap2QTQI1THVkqrElTUkm1kItlRqVYmF11FFlhtq6NyhUP+LNhPMexDGmRDGGIpnoIrOvqDFk79AaWnc7V3wQTO8pUptuNQhFdlwAkz/HhogbO3x1TY9ZCw1c3ZytVsAT8GbABqgycc87vuGXPsUqe8Q6XABrKrVkvB8opWNlBZHSUpNCZXmtx7vAfG+Lbs5wSdjlhF2vOFfLBz9+kxfubKl+RbUO6wtGTStCnKOIYoNw+eiEZeiQGqFUUpppV7OchZ671hPyiD0giDQrRtr40LAg1Y45GrwJGBsaV7LsMcZTbACNzNnhaKD/mLYsTMAlQyJReiUcEEjWZERmfPbEyZARQmj6xKpKORiBVJtRLgMqI0ohlja+/JzP/gw+95e8hZLnFqVqHFWEqbTufCot+abkmQf3H3DUeS6frjg+7lkslhxfukbXD3TB03llsBbreqzr8cET+o5aKmlOLRkuDBQplJpxzlByYtwL1Tg62zMsV9jQaBk1t/eMNR0+dPS+J9iD9lShatOSGuNQ2ti/KlAL1lpSmlAM3jSjinGHiEgxGGOxxpFzomjFGUHcQCyts4lVpArDsOSpJ1/Hww9f48c++BIPXTth3h/MLaYlq6VUm9PaCN61IkOywRYDoqgtOCdIjhgBa1oIRaJgPa3z7Tx9Z1EiY54oaoham9yoCoWIK8KiO2LKG7oe7p/d4AMfeh+vf0rou74Z8YzDmCUpVsZ5ppSMN93BG2BJY27FYSkt9jgWLs733Lt/wa1bd9jvd8SUwGckGLCGbA4YqTSjpiNp5GJ3G+/XdOYEuyisFh2LYYmhb+/hece4z8zTRKlj+1wPPbUq1neU6lgfnbDsjrlz7wagWNvMbB7DEt+sRdaQtLCft1gPy+WCqcgnzGreerxxTSdtoGTwLqDOtOOGGJwaYhq5v9vig0FKwRlFnOJNB2Vmd/GApBM6jliXya4d+0tYtkQE214x0YrUQsxC6kMzitom+4kApaM3DmcFI4epiSg5N6h+AQ6W4TZ9OWw4SmlEAGcCxrT4aRNagh/F4E1/kBVpC3woCa/tM+Jqxuefk2n2/xDrb/yNv3H6rne96xjgT/7JP/nSX/pLf+nRn8/H8/mf//m7n/r9+fm5+RN/4k888s53vvP4zp07vpQi8zyb559/vvvZ3M+P/uiPDtevX4+vFKc/2/XMM8/0b3nLW/Y/9bJf/st/+e7bvu3b/oPr9X1fXylOAR555JF0//79nxOMxKu+0QdnLxCTQnLkB4kb90Zunp3x0INzTq+ccPXKKZdOT7HjyLS9YLc5Z7+fMGIoOTLvd6SU6PsejRURS+j7lnEOoAUnsN/u2G5HNl2gD5a+t2hOOFEqqXUo80ytzdBjnG0Oa+dYH19iO2WKscTaYfwJb/z0z+H0odfy4o0XWR8NODEsLr2GWg3v+4l3M6dCik3L1iqxFrFpgmkVBiA149Rg3YBzFm8UasZXR+870D371MZOdSVAJelMR8taLhowBpwIhoqpLZ9cpZIXigvNof3D73svjz18mSc+/Uk+fudlUhz52M1neWFzkxe39ziPM6PJbPYVOzt8AqONyWcSeFVqmpvea2662eWlS9hjx9mdCy52F9xPmXhAmeSUECOHIjmjtXKyOsG5QGlUaywNoo8dQQ0nx1dQPLK7D1nph6Fll/vC2fkZNbSiPcWCM0vUBeI448VQJCHGsuh6YpzIxeBdh9XGqTSqaNYmD5HaNgpWcKG5zsU2l6wzAxdLzwMM3dphfEaKYIxhuVgzzY6NGPY1sTw6JsaREAyL1RG1O+JS/xj7mx9jmhvWRVeO9eNP8eIPfYCP336AsyfUqGjtEOkIVlBNhGI5qZ5Lfsl6uIx1lSojcxmZkrbODGBshyTFG8CMOApeAiU5rCixRHIeqa5Qa8AcOioSaHzDUskKeEUl03tDmvdtQ6YNX2PF4XowGLwIRS04g+8tOTYZjQ2CE0dNmVKFYprL3YiwG/c89brX8gX/t1/Nm1//FMuuw4hQqj1g1A5d9Di3BDcVNpsLemvoveCtYrwD27cADDEM3uGNpWKYExjvkBAOJ9aW5lYUSjVULFOMaMnsp4j4ga5fYp1rtAxthb33HSH0LRZTWwYZcPi/SW+MbRq9ephwvMIOfUVWU1UQDvxQI4g0U0opB90wQs4tMcma2gxUopjOUebCyeUTPv9X/Qo+cuPDXOwvGIKFqlhvKSkj1mMPUxXrhFriAfHmqNroAUYrFm2aWDXUYpCDjtJ1lX31Dc9H63pjhbnMDTVkCrlEhu4YlRaCEskYV3j2Yz/J7Zt3uHrlKk88+iiXTy6jJlPUolWYdoVdmvHWEfrAZrchlcJ+3HPnzh3u3rnHvbv3uNhumVNqHd4+4KzDWQNGmDHY3rburFQ0Nn2plsq8H5m2ibhes1gc4cTilGZuOuqZs7TjU03kuG3j9+UpNcE0bdle7AnG0fcdJRdSbZOm2cwgFUzF5ImSUkuxs4ZyeF2t83Qu0AWPGEM1rchDFa2HY0XXEYwl5hkvPdYKi8GR49g6xDYwa25SnBRZDQGbK4vDUNKjWFtQb0jGoJ1QdA++6dKd70i50vmhjeQLzZznDhGrNEkE1lC1jWUxzVSoTWzf8HGqiEaUiCGTpW0orEqbdGRFisOJpWpCKyQXGx5OG+z/F+v6xm/8xsde+fpbv/VbP9Ht+/2///e/bp7nZ//gH/yDD/5bPp7/2GX/1V/91Y+9613vOvoLf+EvvPimN71pXiwW9e1vf/tTMcaf1a7i54pQ8F9bzrn/4H5F5ID8+zm4r1d7RS8TdFBCRIJh3J1x996GaCKbMTIVxfsFpg8MztIFy3afKeox1rUoyhrJqjijdN2yOR7LK69RZYrTJ3Ri437P888+y9HxgmUfmguyjA11Q8WY2pzBWEwXWAzLdiIUxXnD+f37dF3P9cvXef97f4xnP/ZhgkuYwwj0/R/4CDfunJNUwVTECLkmMhU1SjHKfMBMiROCEaQqwVlMAI8l1Nblq2oZJFB9YHSGKIUSE1KFQEOHWNPi7VSbDs90jmp26Kx0PfQauHv7Ju/8t/+Cx9Nn8tF5w5R3vHzvFhfzhmogF8OcK56AFUvJI1IKQ+hwUjHSnKHBQVeFEDyhh23dcGt/l814zj5b5mKxRmlx8dJIA0QWvadDYZo5PrpEWBzOEcbjrCOYBYvuIXJUXnf5CG88293U4v/izJXlkkkiZ2ViNobFcJkXb9xhlYTBGpLPrI5O8a4nT8JicY0LP2FkR5BWPHTisbUZV6wzuE6xA9jQIkybMU+Q3Maib3jqM7l87RLvfs/7WB0fs1wvmO4+gLqgiOVsrHThiLt3HvD640v0p4Hd9gajDPjFgFdlG2F1csJbP/uXwDMfbsidMbCbCuO8hzHgtFKlcLa7w7m7Tz8sWa4WDKsOE1aAIQSLswlNe5xrcgiflVQMORpEQotRJaJmopgWvtty40cgIcXjBdR0iLX4xZpUZ1ytNIx6c3LNdSJSD4V/RayhGmXMkcKESgFjm3GoVFzocZ0nlUKKmeNLp3zWZ7+Nq9eeRNxxyykXg7EthazUiLHK0LVEtpKV4/USRXECpiZiyVS1dKHDWUcLXGzacm+VqhBzadxQa8lzBC3ElBtD01TmKaEEum6F90Nzt4u2SYtprnvnBGMqqnLQ7WrThUvDWNWSW7ea0kwpWako3vvG8n2FQ4litMXnyoHjCQYjTV/uNTXEQC2NlCBNnqFG+czP/iz+p/g/8Y/+wfcyxpn1oifnJqsIh6lvkwIpNUcwbXSrphVBTVNY8caiarFVMdY1Q6E14A1THinVgmmaY6XiO0NOGesNPggUCDaQUgO+z3HPuL/B/du3mTYXrFdr5lgwbmC5PCKNkXG3w4vFecf9s3tMObKbJ8ZxQktr9RsP3kIuERXTpB6lGfWchVpe4b5WXCdIt8SLxyTlInqSVu5tR0iCT2Ob2ASHXZ2w6HuOLl2BMnN0smaeI8+/+DJ37r/EOE5cPT5tpqQiODwYoR5G2jHOeG2FqBNLyQUpBluh7zqGoafznphS62aaZqarWelCd0haavri1SFQwYmSVBBnQE2bHDhlsewJptEa7CvTs21idxGJ2aBqyBGq66hJCN5gbUMNatm1J9EcTqvaeMzVZMS2qVDNB4mNUWqtOHtg+JZKKhmtGacVIxU0U7XDu1d4vluEiWo5GDALJSe8tWCaMfcX65qmyf6Ur80rX5dS5EMf+tDPCd7Ae19LeXWbgh/+4R9efemXfum9r/iKrziD1lF96aWXws/2Mbz1rW/d37p1K/z4j/9498noor7+9a+f3vnOdx7/1Mve/e53L3+6txNC0FrrJ6Wl/6oL1PWybxBlZobjQLzXxn/3d2ekGkjSsu0fu3qVk6NFY/f1gZjhwdkDShmbVqcmajao74k50tcmRt+lkUTlysPXW5JJHzCS2VzcIeWxjTZ0bI59A9Z1lJJaHrdOxLzl+Y+cMU4TU4kYY9ibwNlLL0DaU81IKVsU4d7dm3zgfe8FUfYpEU1hNhBVwIEPnuqhTO05rlawAYIqVgRxXTsBldg6KLkQ1FDGhmQy1uBq6w4bOxxyv1uOc9WBXEyTEvQ9R86h8zkxbaim8PTLH+bpH91SH32CcTpnW0BNi5fN+wmKYAdLzoWcE1YcU4qYlAm50olHXEdnlhjjiEVAlNjDRjakaCEuqd5SzCFGUA2mC1y9fpWFKJ1aVssVxncNOURm4aGTHqNLjq+u6brEdt6zYUeODvUO01Xu7W9zbaiYYcncKTpmdBcxNbJcLzDWsd9mFrJueBY3YEmUrIgqrmsjO48QOsV1sXXqTGiyEEkgI8VUUiyILrB6lZqO2W8dV6+ecvVyx53nb7AfIyfXT/jln/9r+Ff/6n9nuTwlnZ2xe+EBtRpcb8F0MEG863ni8hM8uLrn2RsvwLKj84kUDDU5KKB5wqoQp8hZzOz2CXc+4LoVxnqO1oZLxz2LwbDyIKWy2wfK3AwOtgeboTMeY7vWjffmYNhTctpibMQyYMIpSS2lQE4R1URvFFcz6gbEGqiVmCpkoSZDzobqwBoHCjlWfDVY61tXXC1WHOI7Xvfap7h2/Qq7qX1+Y7U4awk+tM6Tdq1Yo2KckGmM1lhBakHFYk1uxiDrGytVmtPYOEvNCUFxFnIaSfOMo7noRQspzsScmObM+ugU61yLv7QG7+0B6P/KSbfpRFW1dacxpJypB5mQaHvvNEps23DVCqUoJSeca6N4YwCa+9l5ezh2VDCmFZBeIFesNQeTW8V5g9aI88Ivf9uvYNrPvPN//2cowjCscAiaK4rFMpBKK8KR2niWLgCh5a6jVLWoGhB/0KUqyYL1qaUL4Qg2HDSGtA01FWs6qlqMtCCENEPFYU2PNR1dOOLmy/d5Lr7IODfZwmIY6F2HrR3BtFSmOc8kDu7vmMgxNW09hRDahpUKkpV6iMu1XuHQ7DFdwPkBFYdawE4sjpaM4olJWvqRNZRkmOamET6/e8GDbmboLTEvuHP3Ls+/dINu5VmfHpGNIedEsB2SpYEqrD90ix1U/fddfY30/ZLlYiA4Ty7acFU0ba9TQBPWOoIYFG2Z9aXSWYeostlssNYw2AVgCb7i+wMScMxkzWy2TUJoJLHZTpgM1xaBuxcTUzyiOnCSqXXGuiYzKyQwHhVPomJ8wPVrBumYSyLtZjQ3Q5cRj7G5aVDnSsrNRNVaH4180kD/irWJyg78lmwixUIVwzw5svEIll/MHv7v/u7v/siHP/zhDuD5558Pr2gmf/fv/t13vuZrvubOz8V9PvHEE/FHf/RHVx/60IfC0dFRvXbt2n9Wb/na1752/if/5J9c+h2/43eciQjf8A3f8Kiq/qwLuN/yW37L9pf9sl+2efvb3/7UN3/zN7/46Z/+6dOP//iP98YY3v72t1/812/hP1zveMc77nz7t3/79a/+6q9+9Ku/+qvvvvvd7158z/d8zxXgMGF+des1r3nN/K//9b8+et/73tddu3atnJ6elv+UyevVrFddoFaZyVlZL68xXUQW8hB2tWe723A23SDf3UMsBDsw51bsTSmzuThjv9+CrTjTouVSEpImjFHC2OQau/3IYr1msVpjbU/oHFpGzi4OnZEaESaszdTc+H72cAKTekaeDJIWoEJNCYxFS+N1evaIq4hJYOH23fvcenCLMTrGXKlGyS06G7HmkAYCNIQ2WgBpyCznG3g9ayVLbkk/KEHBTom+RkYS2Qay63DD1JxGUkAcFoPGtsMOTphdYkYxNjNqQmskn91FVkvivAFfUZ+ZtZDsRCG1RKLYJPWqzbFs1FBKJeaMzQH8grnCdrPH75Wpd7Ae0DwjGinSzFfOeFb9CZcuX+No0bHQyNo5+m7JEK4zhBWrxRrnlN6HdsI1lVJHnO546JGeOMGcDGOJdP2StNuRLyq7boeGE54rd9m70AgD5yMru8biScW1f1HwpiOEDqMt2cf0ltA7jGvFnJEFplaMjmAmUp3xywUf/MmPYn/yHjEFajTYtKJsd4zjSJoj1y+fcPXqEWPe8szTP8nl6lhGS1msSXOiGo/FkzWR9mc8fOkqL7zwgM3FnlQcVRxiMsZAxoLxiBSokTntiDpD2qPVcfEAzpeWoyFwHAaGxZJqetQWuvWEampGurnDSOP0iswYsThWVDE4U6jaxv7BdMR528D9eUaNoSbIJaG9JaWMzpVeFgTnoXLoyC5QbVgz7w0UpcSKuuYcvnR8wutf8yS9s4z7C8apI7gFfRiwRhq5njY6t0bIObZM+pgohEYWwCAFwEAGtbUB5Kcd1uvBVV+Y40zNGalNVkIt1FqoeWZzfsGwPqJf9vjOMyw7vPGUWg4u74NGXQ7j+yr4V8bzWj8RN8oBP9e5jpxLG+m/MupvKlVqTaSxER2QQwe1Nv2qNZ6ilTkrVkwLaqgtYrbdhWJRll3Pr/2CL8Cq8oP/17vovG+ItzyRUqEWIWXBGcew8nS+NhJGMZQiqAqxtGCDaiCjFIQ5gzuYpEoRwjA0PWZqHVrvezRZpqjUMmOdkqIhhB6KBzNQikfMkr5ziEukMmG9JZeC1oTzrQBDpU1DrKGk1MbNKlhRqsZGYE0VkmCqxRqhFIuqYDHUKsTZorbDBEHITAqxJnJt3VjpHIvVmjAbxgmsdUzTjjHOjPmc3TTSrzuOLp/inKfresqcsLnB67tgsU4Z4w4MB2B9e826EFguBqw0jXvKCgSefO3rKDVyfucWvutbUyBXjGubtTFllkOPsYILhlKbfKSapvvGVpbLNRoMD+o5w6VGKxrrlrn2hL5nFTp27NjFGRdWkJuMKpeE7XqKQq0C1lMORjxfPH6xZDl4wioz72byHCm5hQ80k1Rj9Ip0QNd4y7TkulJnssxYWxFOiFkogLGKOmVWyDmzz59oHP6iW7/tt/22DbABeM973tO/UqB+0Rd90fnjjz/+c8L5/FN/6k/d/Iqv+Ion3/rWt37GNE3m6aeffv9/7rrf9m3f9sJXfuVXvvbX//pf/6aTk5P8jne84+Z2u7X/uev/dNb3f//3f/SP/bE/9vhXfdVXPTmOo33iiSemP/fn/txLP5PbetOb3hS/8zu/86Nf//Vf//jf/tt/+/pb3/rW7dd+7dfe+Lqv+7onhmF41eEA73jHO+6+613vWn/e533em/f7vfnZYKbk1WoHvvKP/CY1usCUAec6ap2wg3L34g7TPHHkrvDmN3w21gykmFitOnI85+6dlxrS0jXot1aDNaHhMkrmkVu3+aN/5//L937dH4a3/hK6boExgZhmSt4z7s+Y0gNKfoBjT+dBc8GoQ6o5pPPUdhIteigyLbVUjGjbiSZl0RvmvKd2C77/ne/loy8l9nthu5sa87Q0rVofwgHoDJ8xTvyLmzf54sdfx8cuXabreoIPBxdsZJpH9rsNl/rAY33gSCtp2rJJO+7SM5olwVf6xRHVJFItiFicdDg5xneWYpUke0qsXOw3RDlHL3XYhy/jfOVi3DH73LoMqqSckRIwO4ObI04jwXSEZND9jCstfWlZe8aqbB7y1McD3cIQSmLebBjPLwhWWLqOI7/m8dPX8pprr0NywctIv+hZHV+jN5dwLCgpAzPeC8Z05FKoMiPWtVhZ09H7AW8s+/mcm/dvcvvBfXZ1x0b3fGj7Eps6YyYlRM/l/pi+GtJ+y62PvsDu+QuCDIg3kGd6nXjo2HFt1ePEY7sl3g5IzigTxiaK7mjo1DWiJxR6rOtYLntUR3QaifPE9cceZ311zfMvPEOIwqJarl4a2HeFeTdiiiPWjgsSctKR3cAP/tuf5O69lpQTbWaOW9I8IxjkwG701QGVVEest4SwALWUHCEWOl2yHK7QHy3pjy1dX7EmoWbGqqfkVkCVNDXM14ESkXNmXyasX+CMo05bQmeYpvkQndvMLZMzFCPkmCn7GVuEEALlwPXMNWJt42xqyo1/Ggb248ibPu31fMEX/Gqs8wyLnieeeJTj41XDJtGCKEpNWNfGkPfv3yXPrQAzbolzHmtpMcco09x09avVitXRmv04EnPFWqFqpswjlEpNCc2JadqTSiT0C648+hj9Yo33HS0TyHxCn1dKblHG0iJ7rRqsNt5oNc1AE1NLbep8hz041FvqDqQUySXjQ0AEkAaiF2n4q1wKtYAR16YI3mCNacVbTgTXtK3iG5M3a0NSjfuRd/4f7+Q97/63LDpHnvfs93vwS3JeYU3HydrSd5lcKtvRgHYMxmPy3FKjgpCtgHON3VozVppj33rf0FIkrFEWg2e8qKSqOO+xrplsRIRpKtTicG5o3dUcETcjTojJkMbW0fShJTSlNJNzpJTGyx1CQIDNuGGMO3Kd0dIMgp0LzbSKIyaLzBZJM0pGA4SwwFZP9IUqBtQ22YIpaN3SiSfIAmMqs05MecR27XnulwPiYMqRwMDCB4I66jg2NqxRKjO5ZubSCv3l6pjFYglVSakwTZHdPnP1ysP8P97+JTx4cJt3v+tfYUtLJttsdk0yYh1YfyAqFNRaSlUMgWQCJsATjz/Mslsi1THGxPDhD/L7/9q38v/5w1/JB1fHXJydc37rOWLZ8NL5A56/sSH4Y4Z+hTtIMZKZmgTCOoblMcZ1ZDL9kWdYdVCFtJ+Z93tiHsm5jelficJFF8grkwvNhKogM8bODdhvl5TsqLmlWbXAX0g588btxD/70MsAn4Pqj/5MioH/1utHfuRH3uSc+2evf/3rt4vFYvqv/8Z/fdVa+e7v/u6TGKP8XCZJ/WJZX/d1X/fQ3/27f/fazZs3f/yTebv7/b5/5plnVjnn3/Q5n/M5T//nrveqO6gizRyU81kbF4XmRVx2zZV+vDpmzpWzB/dZ+J60H7HssLXhVagOsWDEYKUpxqx1nKyPAHjoysM8sAFRczAttR1ush4ToeRDoovWQzYctOg3bYkatjlg1QpiA7nsCU4peQehZ0wR4zoebGE7LsjVMMctaKXkluFtTWN5Ki0j22qTH4TO0y0DwTu0VGrK7M+3bDZblER2zQ1sg7BYCb5qOxHMiTqekBBkUOwioWZHzgbFUrWn15Y6pDlQg2MjnnNt8O4lHnQgqEIGKQWpTSCPti6UqGKs4jGI8ZQ4M+Yd87glWcd+XjCdj/Sl43R1xPHDa46vrijjyLEcc9qdcLo45UgWrJeB/ggkeNSskWqY4wZvDHGKTNvCatl0iiXNLAZLUsc07kn7CWzHZpq4Eyc+vL/J7bxhKhNzmUnbHV31WGNJccQCsWwobqa6SKnNYe2lEDqlGyB0LRRA/HxICdKWuqMGKx6x7UCtdk/VPUU7mJaoZIZoOFqccHb7PucXdxkCdKEZc+5bOLo+4KbKYydXOTs33Pnwi5jsUS+sTtZsY8EuMrmM5DSTbcVaxZiIVm36XrckJwemjYVDFyhqyPNE2Y+cb26y2Qf8xYDvLOt1z3DcsewszjeIfVaH1FbIVW0nTxcsWuNhfKikFMF2iDj60FGlMM8zYhq0uziLd5UhCMUoUyqIKWQOlAnX4nljmui7wKOPPELnoeQNojMpDagKRga0Qi2KdS3H/u79u2wuLhj8AqojjjvsYgAbyFo/AWmvWUlTZh8yi9UJOs/M80TXLem7BdSKt46439HHPaBce+RRhvUJpTbjVootSCGnQi0NMWWMaSk7qVK0Elzr7KIVSm6xmbYVeVkrpdaW2kWDnzcQemoRp11Pa7keXOCHVWrBGKFoQWttRpfSXNfOWYzaRkQwASqsl8f8ml/16zAi/NiPvhsbOgaBWCrGHvTxWkm5tE6vtUAi14TRfOiOgTGCdYJBiEWwxtOZ5mSvpWG0qib2tTJPM64bUCpnFxsWg8N5WCw6UoEYt9TSQy4gERFDrYFYKqlGnCnYIjjT4jOVSjd4oKXdGG/p7YJa+1bk1oz3FkTQOFGqgASsg2JmMhNxHvHzGtMnrHNMUXBhhV8uqNoS0orG1vHzgWE1kMkslgO5TDhfGTqLTdKGTDUTgieVSh8sPiyZYyRWoRpLMAOevqHHNOKlYkriTZ/2Rt70aW/gX/2fN9DsDqEJkWFYttheBXGeOI9IrS1IRRwmFfy647Wf9hqGRcf+wZa4i62RsG187uNLl3nzG1/Pbjzn9o2OkjdcPj9jyh/m4gLmaSbWTN3PdKvmVcjzyBgrrl/he0cdm0LCiaPOhZpa1GlwDhVphlQL2ixPUBUtcjB6OayzFDJqRjCKaKVOE1YDNnRYCXR8UtIv/4dfxhi+/Mu//Ozn+3H8j7q+6Zu+6eqv/JW/cnf16tX8L//lv1z99b/+1x/6fb/v993++Xo8P40CNVI0slx5KLvDmMxigD50xDnxoWc+wtBfJknEpz3Bz6iJ4B3We2qFbvB0XWjxin3H8kDUvnv3HvsrlwmdklsSINO8oR46o8F4Opug7AHTWKN6wMeYTExbQtfSjmoSvBxjSBgj1Lolloq6nvsPMvdvR+K2p8bm/BZjWzfOerTNXdtpzLanpw4WQqXqTM2WzXbifDOhtdIvHUUqDzZ7rLNcPjJYKSx7Acm8VO81M4sNeLduLllb8Rhq2RDFYEKHBINPsNKBmCvjHuZq28jRKXncUeKE1UhJwGzwVKztyKmQVfBSUUNLidpn6CxBOpxtOejbbWTZd6wWa3bVk+LAXj2bpIyuEGSm7CNOe4x6Yso4lxExpLQABjbjHr+sjHnHg805425mO+6JznGB5+X9no/e+RhJLkgmkjTR5YxPlWwjeyP44NBI47W6jpgvWlRs8FhTcUEJvqPzHu8imW0zdLm+6XiNgPPMk6LqD6OwDaIOSmHVrclhz5RHsB3dcsVv/C2/gZ/48Q/yYx/4SR568g1cXj/EvL1Bt1iwf/lFjvuOi/2O4jsWl9aM957BjE1303eWbtFBdRyHFfYwuiZmVt3QGJA1YQSOTy7RdYF5uyHvR6Z9ZpzP2J4VHpwZhotLnK46VoNn1TuCdQdwe6YwgRNK8syx0rsOcuucVSMH1uSeYiqhc6TYmLvdEOhpFASx4LTpQbNUfFg0bm0SgvU8/vijPPzoKTntmccRMbUFI8Sp5dPbxnDM0XGx3bLZnLMYBoLvMDhijGhN5FIxtI6ZM6bpVHNhv9u3RDDfQdeRc8R427LSc8ENRxxfucZy6FBjmeaKFg6vrztEfc7UwieMVEYszrUUN7HSjGKltpQxbS78UlpOvTFtlF4P7mY4sFCNoZR06KRWpmlqhhnnmnwhT+RSCM6328pKKYVSHMbk5hg3HVPKqBrWq1N+1Rf8erabPT/+vh9htV6T40SV5oSPGWqxjUpgFLUzc06YQ0qYUUstUGLCO0FsR6ojRtwnpLdxTmgqFKe0tETlYrNlSpmcZ5xVfBjxIaAY4nhO7zuc8Wz3OzIRGwLgGOeZ3rfErVqUrgs4L0z7HXOOIIYuLBppwU2gDd2Xcm6JTV1Cu0LJnlwHUm3UENONmJooSUlFEBbMc5MgLLqBKoLO29Yhl+buz7kg6pDZgjVYWkxrTpmFc/S9b1guq3RDhzWOmCtiPLmAKYopQhCHVXjvj/wIN27cZj/PkBTJFXUtWaooJIBaMN6TcmGaWwCEr54nhku4sXLzzkt0fgnGEEvl8mIFwDxPlJRZD8ccv+6ziVPm4Si86Q2/kbtnD9hc7Ng8eECpE0+85mEshXs3b3J29oAxJ6YUuXf/HmwNi35FS0RuGD1oMjfnG881lULW2AyL1jQEVU2IbwiunDM1Fbwx+MGzHSvQGiqZX7yYqU+tT9565pln+r/21/7aw+fn5+7hhx+Of/gP/+Fbf/Ev/sWfa+D4f3b9NNhVhcVi0dzpKmgMWBd45NoVbt+5z26+wPgl07xnnhOhRNYry/pkhXiDGTzr1RHLxZIudM3sqP8+TjTGRIyKHxw+OLa7DXM2XH/kCab7gXgxU/MGkEPSUyKIQYyiRHCRmQklABEnghaliiDsCYNQ3MSdBzcp5gEZwWAwtSfWipVmDinpkNJx2MFCY+2JWJyxjHlkP59RfWQ1dDhH62Z2ltXpMZpH5mjpjzr6K9d44UMvNKadO8Zox0INtihD3xG9kGjGqzLv6ayn7z219qwxxHliksKkI7G26LuaPOINKpV5qqR5RHNPlsogE4aIVEs39ISjI2pQppqQ4qBO3L03ceYDDsesif10hg4VnfZoLLjVQDSC9R1pihwvlgxhRSVivWOa7nJ+dsbd7TlOM6XANkZ0ObDLhvsP9qgUomR8TXR1xNZC9QaktJ8VmuHDFTAL1J5Qpcc6RUykt5ZeLdQZ1UjvzMF0UrAugPeMdURCIOuEznuCGpZhSckTVQt4wRDY7QxXF0/wpje/jff+5DOIW2HSVe7cSZzdnbjjd1xstmjn8bVn6E7YXNxgP80s+zWWSgC0GHq/4ur6Ck4rD+4+4CJNJK3NIW0sMVXOLkaOLzsW6zUmeBaLC7JkLrYTdx4kHmwn0vaEafE489LhuwuOViuUglXYjxOxNnh+kUIyihWHqQVNkWILuRSQQGc83juiawYSlxRbFOOaBtpngxMlCqgLrJfHPHT1cXoZyGkCA67r4OCOJoMe3OK73Tm77YY+NB5l1kgIsPAWzbRuo1RiHYlTZQhrwDDlgkyVUAtDb5AKUoQ5G/b7ia6vhLJgm2zTeKqhasZaPXRMHdZWkrQEJlHTNoty6HxWDkxig1AwWlu2vWmfiQJYa1tXMoIzthWnKWNNm4goYIOlamXOcwOeW0fJiZIyxjSDTtHGb3U+oKVQUsF3oVEGMPT9wK/+1b+O7W7P0x/+IMvVAK88HgeJSqrNyIimlsC2XNCHNXGaidMe1wlZlSH0CDCPI1YMItKYqUv/StA7qU7NyX/Q3qoKVR1zUqRmxDYsU06tS9uel7bht9IKGW2CJrR64pgRmxlWQs2W2lrHOKuNOJHy4VjScFkxGcYZ0lwY3IrORTReEPpM16+RbWU73iemkYVdEOcCwWG14koFCcw1sbQOZ1ozwWULBrQ4tBhmUbJJBCN4EygVioAGodSEN55aKmPcNZyXLczzlrMH5wyLIxKJLLVtWrW0Y7wRsO1kVwrsxh1xUi4vL7EcArdu3SHaDhVP5yqLoCz6lp/euQV3xz059XhZNW6qm1h1lqPVmporoW8xxNYKeRp54vqjGGeJOXH37C4v3X6ZagRjPbvdxNn9u2w294lpbg0UgaIz1rWIh1IyIQwtRCWBd5ZpnmhNfyGjDP2ArTOpNi124VOT7E+tn/36W3/rb70AvPDz/TheWa8eM8WSmtzBlQopRk6OL7McVngeYD1stzuqCp0PVIFHrlzm0qUjrAfTJfq+wdgpERUHh7EutO6J956+77nY7Nhu97z2ta9jihfcOz8jaCWIAXGoNVAKKgcXet2jBiqeljvTGHqqFghIPSJOCekCJVv67qj9jgZKcXTSgbE4Y6glQhVMhe7QQfU2MPgeTTP7/YY5TxjnGVZLHIk6bnj4ymV6a9huZkZj2e8zsezZJYNzgSOWdMUy0ADhGIs4RxBBUztxIoaYYbVeM7pIkUo2ibEW5moJtIjUWCPKfOA5JsREQligk4dqWR8PLDvPrmzYFovIGhVIzKh21BxIxTdAf96wne9z0/Y4Fti6ZNLG6pt2Wy4tLzG4I2ItFJkpuuV83LCJGdtbAo5pmgg6NDYtFqdNS1kEHAE0Nbc0tE6GiYg15NjGtuIc81hwWghuxveOzjqcNK1xzopYBVsQY4nRYWXRImtdJpEI7oSUAkenp6gZGccLci1UjUzjyPf+r/+Ul248wNmO9/3I03RdYAjK3kWkW1BVAEvfH+PNQL84oSLNSYzDJKFTT287Li7OuH++IWU9GC6UYdHROcOcE9vzkbBe0Fnwqx5j4eqxZXWpcOPmnt1mz4P9PTaTwZkZfXjF+miF84IXzzJFxLVUnZxhjhXnm247pg1GArbrMMW1UawtTeZhBZMtNdk2Cq0HJJsYVAImCZuzPZurkWHpqJKx1uGNwR2KoBhj45OqcnS0YrHooMaWJ68R5xaIgazKvuxRyXTBozaRtOnLoRk3xlgQLVjXYUwg9JVa5wZjrw2DpVoRakvB0toMUgLOtylG64K2Y0RLjrLIAbzfBqXtfwyY2vA9euiYNqYpGBFc7+FgjFJpUiMxTVv6ysjdu/Z5t/awCRZBtRwCASCWwrwd6fsF1lqcs1y/fo3f+Bu/kJhGPv78c5/gsjaWK3jrsAKIY+jXWOkgt8I8GIM10rBzuANM39H5QEoTVpSut4gV0pwg1ZZ8ZAXjOkQUFzxFhTJPWOcIzjWEkTM4rYxpRnB41xG6QBcsZZ6Z9k3n6VzAOSjSXONySD6rteBtQIJFa6MkwIyVQgiW5WoFZSRSWS0XWNNzrltSyayGgThmnHPEecZXkFipu5lMphsOvFhp701bOnJuRqB+aQiLrj3vVZjnzJz2VFO5dHTMMnhyUuh6zu/tSHVq0a9MpNqYsXNtnUmxgSk1dJioUCVTUQYXsK5QUuSjL7xAWB8hwSPSolprisSpSUAu3bhDFVqXclQ63+M7i1KY0tzA/69srhCsNjSaSAuUeI143nL6OGpbYEYMkY1bsl+dcHZxl7OLc+Y5tkKcjJbS4lR1394nRuicJdVIrhkxQpwT6JaaDbm2T8Dr4i9mH/+n1i/U9aoLVJMDuUBYB6Y8YbxDTSGOG9K0AdsMBJt9JtqeUBNznem6gOqE1pmSwHcGMQ60ZdfbA75ARHji8ccxPnDz1l0+53M+lze84Y380x/4Ps4eXHDl2IAJrXMiFiShNJ4issQgVA1Q2sgXJmot/z6XWw0paXPaFiFmms4nSnMr20aCqaJU2zqz/mAgC8ay7AewjnvlAVSL73umPPHolTVv+MxPY7x3k82De+ykkuySaB13zyNqV0CPwdFh6aQV+cVa3GrF9uIMg2M59JxvL7h97wxfBsqyIr0wmYliAASSIMlgnEe1daa0KiXv2edMX3pETWMj7rZsyxbcKaYsKK6hekQFFYOoI+eCNYWd7NhpxtIh+4lSRopMdGK5/+AcqTNqJqrdg50ZS0XCgqk0Xl/KEYlAhc4u0JIPxUbFWYPgoebGrAUaizy3k3mATMLYhqvTmvGusuiF3inl/9/evfRYlqVnHf+/67b3PufEJSOzsirr1o3lRrLdGKGSmbuFxAAJecQQiSF8EM/4CB4AHwJo5oDcKvWgcTfQLlfXLTOrMjMy43LO3nvdXgbrZMkT2oUwXVH0+o1DysiIc068e12eB8sSKzUb/DBQauuqHseRdZ1JWRmnDVf7l7z37rv84x/9M/7yv/8P/ttf/JTD/iXRPOejz6747NlTpu0Zl5evODm5x2a35er6GdOZZ9xOxMNCsCPxZiGosDGWubRzoVX4+pzoYdnz4uoF0RTUOzKKf12TaSA4w/5mj82JBxcnYDZUTQxhZTce+P5bE6/uF26uXjDfJoo6XrxyxHLCZhMYwgmhXrY6YKMoidFarLekHNsKYwiIWESgasaJHvNFE5qUiXsgjnQc/JQ2qB/Wlc8eR4YTz7vvP2wPi1WRVChLbPFK3hNzy+t0wWEk40LF0Vq1UipozYzBIE4pmtGaSDlS1aHlBBOm4zDY0jaqts5zFRiGAaSt8kHrL7e2XVzi62xSjgkHHHORW/ajVsGIp6VrtBxfMRaxBqu0UfW4+vg6RaDmiB1a2H9VIVdtzVpG2rEBWmxWye01i5FjnFVr8sLKMYGjDSFrTCgFYw2b7RbnHI8evcUf//GP+Pc//k+8ePGMaRpY15kcIyFYBusoKkhsl7gEaXmoIlBKC1+XFZHMNLZGrgWFrJTcap5bWWtBtA11xrY0kaLHRBNjKDERqzkOkwXnDcHAvCxkIjUJjBOjH5iGdrzJ+gmlQF1bFawYXJiotUJp4VmpJHLOjNPAZucwNpBSpCTD5vyMWis3+5mihjAM5ONrouSEHQLGWZY442w7M71/dcN1jYQJdBwI6ZxxGyi2kjRx/94DTLCo+PagqyNugGkYGa3FuS3znMncMsdrShH26zVrrXjbHkxqlfaaOR5D01oo2tq/TqdNS7QoysdffsEDlI1aLl/csB0c989Gru1E9IF/8u/+zf/t39jfpAPw/Nv+Jrrub8s3H1ANFCkoqV1GksKjt7/Pl59/RizXaKlICkx2y7J/SXCG3SQ4WSiaycUh1rU+b5G2HUJBTHvyc87x6O1HfPb4CT/84Q/5e3/wh3g/sr8+kJcEG0dVwdjQVkQUnLSzN2txVGlrp6oG1KOSqbpH5Bbs2kqidMt+eQk2Uu2Kd445ztSSW0YeQjYZrMOJwdR2hm07GjbBsa4VJyPWZDabHd4l3n7ve1w8vOBXV09YvMLZCZSAybDTzCEuiGt5dmWoaACRQtGEWTNWBYdjO215dvmSmNvtWjsdt1aXiPHCoIpbr48XidrFtBpdy7oU2zr+JFKlcIgLJIORCywnlLqgWbCyQ7KllhvSfMCLYbuzZDy3ybKkjK2FcUhUWZASkJqQUqjlph0fwOIKxPnAdnOKzaldKMupXT6olTknsmZEMjCix4HCasBoy1nERIxRjK2ksrBxExbbKkE1E9cDtoD4Ce+2VDdi7IBWxdkFzQeCtZR0n3Uu7O7vePP77/PFsxd88sVX3CyZLIoGAVs5uRe42b9A3S33Hz0ksnB1ecnJySOWsicEh1sz89UrXFxx6cCAUq1SKNgQ0CHzMj7jUK8Yd1vmJZNSZWPbtm9KK94M7KaB/X7PGALn52cYUYgzmmAQ4Y3TwhtnnqsXl9xe37Acbjncerabe9y/f5/hwZaqmWPsPV4cRhzGDgyDw/iBNRWsFcww4hzEPBMltzxikzBWkKFdtikltfetrezXmU8+E9wG3nn0JtYacoxko5hpRKgYVawxjCHgXUJaazq1Cs4qaVmIKbLoLet6oMYMGgibM4r1MC44aSt8KtJuy6eZWgomtBUq59p7rK1ctbg0kTY0tRU7Xi+ctmEJEAxQqOV4hq/dNGpnU7W01VZVkBa5JiIYa5Fj81up5uvoKbSlBdjj15TUVvxeex0vJaqtwvg46IfJk1PGiWPeH46VzYbf+Tu/yz/6Efz4x/+Bx08+RyiM3qO5sKaMNSPGt/B4qhLXPYJijw1DyC1hBEcixoKzrcZ30YJY345BVIM7XjarzrKkdmFPqmKtB2+OQ/vxIjiVMXiWeUaNtBa/ujIfFoIXjAXEkJOgyR5PMVooLQmi5Aym4n1b0U65DcbtgllEzIL1QG7xf9NoERXm/cxmEzDi2Jx4Xl7tCWMLtofSqnqNI9UriuyxwbPkPWssODVsz85bGxaJssyMzjJsDYMzaE2s5YCEwL03duyvL1n3laqRNR4oxjAER81CymAGj1egCsUKIoLL7fWVBKbTDS9fPWddEvMh89n1K04nz9nZKf/6X/wrTnI+LqqA4jhu1WGNsN1tcL7l26qrxzPOghFFSzlmmJq2DW8EY2zLmNXSYr1QSlVyLcSajyUe9fhbEPK6sK4zkLm+fclhOfDy9hWHZWVNif31SskCZqBk4T/+4uPfQ/XT/9Mh4FtUAf3byATtvluOv/N2m/XX+MYDajaJqgmbE7ZG3nvvHS4uTvjZz74kEpHsyWvrTpeYmdzAw4szfNDjH+bNsUt7aN+WVqwIzrX8ts00cXPzCtXM9773PtvtlsM+EmNi8IGSM7kKLrh24/4Y19hyDvdUImoUYTiu1KW28mEKZMc07KjLxDQ8IKUnIO0Mmg+WNS9YP7UhMs+Ax7kB49o5pM12IHhIUgjBs5l2pKVy8eY5t4fCx188J+OpznHYZ2CgVkNOCyLCyckZm90W4yP4dunD19YPPYhhsAZKIscV4y2zaPswRjEloJpavBAJKJRksHWDFIcmxTiwxrQzsxbsEBAZWRaPJIOURHCeAQ8Fimlbv1ItukKtpp2x44ANhjIYbmNBvZJqS0OwYwXnuL5JFDGoU7REXC1UOV5YMUqqkaSZSlvV0irU2kLRjbaMSSseYzxp3RNji42qeQYcznu0tpvo3llsBTcOOL9lWQq2FKyszCVirKeWE3IeeevsPQ43I3/+859w8+IT1EaCD8TlPmfTOVMQ4nLATMKrl095vp+Pl0Respk22KxcX14xr4WcWoVgoK0QFi1kZ9jHW/I6M22Fk50jvzhQq0HMxMnZhlog5YLx7ejIvL9mE4TdyYZcE84NOFrQureR7YUnnSZevLzm2fMbhqHgbKbKlowSvGEY289OVBiGAZGKtSNVZkIIkBPkjCseGVrlrMMiJlNdJca26mZte51ogturFzz+1HH/dEs+3TIvFuuEkiJShRQzaVlxBhgtpSgLbQU8pdweMhCEoRUNoBh8u+Xt27Y7uqK1XS6SApTUOswPBRFpl2WMUOuIK45Ky8s0pkVEibRtdy3t88sY2zJR0eO2f2uAUjgOkLU17hw/r0RM+2w55qQelogY//UFSGo9tvm088NqLLHkNpSKHPNQjw/SosfWY2kJB9a0Np/UUgaMgRhn3n30Dn/yT/+EX33yEZ98/BGffvIrYowMPqAUSl7ag0zOrOv+mFEr5CXhhlY6MMcD882BYdxhwkg7djJSS8JpxlZBrMEYh0htlwulElPCmaFdkiyZMVigfb7tTk4wzhKC53BY2mo3QtY2CDkboDpKzmhW5vlAroUwBLwzlLKiRhnGERGHyZm4RJyFZVnYjRtkgtPhlPd/9wf85L/855Y8AjijnJwF8rpCXakxshrD2f0Tzjfn+I0SJLQqXrE8ePgmRkx7AMotJSWtyna3wxoDxiFGUGu4d3HKfHnGDRk37IjZoaUFlXnnmUJgzgnJBRGHGIezIKntri0l4oNlHARNN2zGEW83vPzqC3LcczOd4q1jshNVEmF0eLfBSMvrdc4y+IFh69vr3rUcbchQU/scsYI4R6nteIoXi+bcHlq1JU4UlFgLa2lh/da2BzbnlJgPoCvrvGcMjjeqspSV22UmXB+4vYmQPc+fXcHP/+q7NJwCPFXVtN/vN9vtdv62v5nuN2e/329UNQG/9gLWNx5Qk2nbPbUIm7Dl4cVDvnz6jP0h4sYdcR/aH2sm8rywuX+KdQOrRszgGW27oSu0jugYI6VW4tL+AD179oxPf/pT/sEf/REX9+9RauaXH/0SNzjCbmLJVxQBTwvR12radjUW8aF1WFMx5nglWIF6Ss0ezRFrtzjZMpgF566oeotoxlrDBsvWudZ+U02rWZQBL69/PMK4aauJ41VF55WaPK+e7Nm/Srz16AEX2zO8ZsgL2C2PX1zx1XJgGC/YntwjuAFqhqQkjv3dNmBKxFM43NyQ4kyxhVKFmFr1ZJAtRSOVTHErWRaoFa0FLYKpipTUzo3pSKoOUwppWTBkRh9QRqgORz6ewVOkwlILtgRC2HLqF/bxipyUbE+xOrKkTJCCNYk1FSgTsQphdCRmajog2HbJCzlGoKS28glI9WAG7HHloTUQRajtLDHFY8S3+ti1YMQiYrHDDr8RbDCYCrVUsl6TSqEkixSH2IHD/kCRmWJGPvvVE0RfMZkBVz053hLGAccEt8phfklwSl0NulQ2VjBRMWum1JnDbSZnQ8Igmx11vmpDe2nDkEZY1gVP4eEbD7DBcOUK1YFqIueFIUCuiarCZrvhcHnDq+eXTAPszieyFmpJ2OgRAkpGTOHBmw+5XgoSIEyW5XJmd+rbgwG21RuirTtc2tazN4KE1h5lEgwMqPMkLTgUK23LOhlpZzRLwtQMRalr5fLxE/7KOwYq0/feZ2t3lJohJiwWBDQVkhFiOqZaiGBa9lfLbLTCZB2jcXhaRedNPiBSqLTSCVMLUgPB2NbUVAxF2zn0ec3EHHE24P2AOjh2kbaGKGmrTi2rWdqq4F87AtCec+XrYdZY11Y6VTHmWFWp2t4v2la13BBa85QIFmmD6jHSyRrTzkTzOuS/rd5WlCp8/fNP8Zgre4zAau8BpeSVBxf3eOvNf8jf/8M/4OOPPuIn//XP+erpV2w2jkrmEFvL3TC1rNNlWRBjqXWCIEzDjmDbMBZVSblwe3uLHzaIQNLUMjyzotm0VVAEZ1olrfMDKvX4UGcQtQwSQC2HeSVFg3VbKqW9DzW01qxSsWIYnG3/ds7k2h5wjAsIhlyEi3vn7G+uONmcUGtlGs9ItxWjHuPP+Pzjl2zH+2zI5LwQ1xXrLNYPmNwKCsxgiTkTbzLnwz3sSRumnVGqzNTiqDm3135NlFTQ7Fhi4tXLV+yXA0Yq59PUhlAp1Jgpqa2yK4rainhhMIL1rYUuoThr8R7UFUKBVBYGwFjhoBXv4OL8hDGMXB8iRjLroWXHpnVPrY6aA2OY2gOCKNvthDjHsB1RYygls91sGAbL60e5Utrrrwo4kWNyTAbNqGZElQFLOa5giwgptcUSawybybXms1oY1OLGwP3NOelCmMIJ8/vfvTOoH3zwwfWHH374b58+ffovgfvb7fYg8lvc2fpbQFVlv99vnj59Gkopf/bBBx/82gD/bz6gJlAjxDhztnvAkydPuTnsGTe71q3NwMnJGc+fH8AMbLfnzCkznY7tjaytznLeR2KbsUgpsnzeIrbCxx/z8NEbPPj8U7789DEvXrzkq69e8uD6OfN6SV6v8K7ivcNi8ZUWN2MEyKxlBlvb3fxyvDihhlxnnKyg1ywR3r+8Yk4veNvOxEPGFkdgx5gKJeX25CogqfCD4/nYMGwZpkCwlTcennOzKq8uZ+pSeOPNd9i4LYebrxicYQojl9czayzIMDJsTxmGiWA83lS8aV3kmdLyKbMhl8L+5hZDO0NVbNvqREGPzT2FxKtayMYwCJisLHlFirLZerBKLp7lUDCpsBkMF+dbZGO5zZZaFPGRMHhW9aw148NAxbKsCWMOmHJNsBN1ybg8IN4i+RZswYqnWovETM4HjK1MqkxuIhZBrD1eRoiIFnIxOOOxajBqMDhgxdC2g2uxCJ7RbQl6i8G2LV/AT1vs2LbMDAEphlIPiAWSJZcBTbVVkDrIukduViZviRkcJ7jcVt+N2SN1popgnWUSyxILu9Nda8SaC+shI8VQq+F3fvB3ufzl/0SP/9+qlWAMUi2ihtPdjvvnD6g1cj1c49XijLAuN4TQtuCX2C5MnJzex8TKMoM7T9ipUJaEJkDP2G3OSOIwbuTsPHJ7c8MXnz/hfLhgc/EGKi2fM/hAqhVpO6/kucWnIUL1hk3dMOIpAZKF4BSniYF2yYalUPMeiJRYGTAtceDLF1w+OOfdd99uVYup4MVgnaBSmQ97rm8NYgLDNDBNA+Lb9mhVQa0nicPhSamlPBjjAcUIFKkUctsSxeOlDVSpVtaS2zGGIqSUybliXWEYJ1rTkrYjDMfYqDZnVqAeo6JeJ5raYx5HO/OccnugsLa1KIFijOCcJx1/L1kr3vuWx1wyKWdMbTfFjRzXSrXlk6oI1hkMypJaDFQIAWpbxdRaERVKzozOHdM1Zrxz/N7v/z6PHr3DX/zs53z0l79gPtxSS0VM+3dqqeRUEFFC2CJqEdOG+zVFMoq1LXvVqUdRsuHrStl2l7FdpAHIxyNJPrRzn0gbStelMIQtWvxxqK6sK/jgqCWhmhlbJy05rXgXEO/RFFuVbbDM68JyiKyHQokrmzHgXcA6h9/M7Pet7evq8hItM9UWNN1ijZJ1g7cjk3NkFylDxU8Dt7crzy8zF6PHj3D96hmvLp9xNp4xhImlRAoJoXDYZ85Od8QZrl6uGHvApoWdbAnOc3OI1Nwuv2Ha6yDHhbDdIDYQYybmhJcBKQXrpe3mxcTWC6MP5HklKoyTR6phGgOVdjY3eMHqSioRJxZJC8t8yzAFqhduLm+5XSJzLuAM5+dnnO12TNOICR4XWulBlQLWUIu0s8JaEFMZrCGl4+vXuuNOgKceUyGcHTAKnow10i78loTxbcFmN22+6Z/yu+ZPU0o8fvz4n4vIBnpe1v/nVFVTKeXPgD/9m774GzdJ/T8j8j7wC+CuvsMOwHftbE/XdV3XfSd8+OGHJ8Aj4Le3s/W3QwWe/E0rp699+wMqvB5SH3zb38b/xvM+nHZd13Vd1/3m3I0Bteu6ruu6ruuO+nJ613Vd13Vdd6f0AbXruq7ruq67U/qA2nVd13Vd190pfUDtuq7ruq7r7pQ+oHZd13Vd13V3Sh9Qu67ruq7rujulD6hd13Vd13XdndIH1K7ruq7ruu5O6QNq13Vd13Vdd6f0AbXruq7ruq67U/qA2nVd13Vd190pfUDtuq7ruq7r7pQ+oHZd13Vd13V3Sh9Qu67ruq7rujulD6hd13Vd13XdndIH1K7ruq7ruu5O6QNq13Vd13Vdd6f0AbXruq7ruq67U/qA2nVd13Vd190pfUDtuq7ruq7r7pQ+oHZd13Vd13V3Sh9Qu67ruq7rujulD6hd13Vd13XdndIH1K7ruq7ruu5O6QNq13Vd13Vdd6f8L6wn7ntJVFmhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_imgs_to_show = 3\n", + "lab_object_counts,pred_object_counts = object_counts_per_image(labels,predictions)\n", + "for image_to_visualize in np.argsort(lab_object_counts)[::-1][0:num_imgs_to_show]:\n", + " image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + " print(image_path, '| idx', image_to_visualize)\n", + " visualize(image_path, label=labels[image_to_visualize], class_names=class_names)" + ] + }, + { + "cell_type": "markdown", + "id": "e5ddd4fe-4477-4b68-ba79-e5cbb62822eb", + "metadata": {}, + "source": [ + "Next let's study the distribution of class labels in the overall annotations, comparing the distribution in the given annotations vs. in the model predictions. This can sometimes reveal that something's off in our dataset or model." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:04.219561Z", + "iopub.status.busy": "2024-05-24T23:50:04.219316Z", + "iopub.status.idle": "2024-05-24T23:50:04.394285Z", + "shell.execute_reply": "2024-05-24T23:50:04.393705Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Frequency of each class amongst annotated | predicted bounding boxes in the dataset:\n", + "\n", + "car : 0.08 | 0.06\n", + "person : 0.68 | 0.7\n", + "cup : 0.11 | 0.11\n", + "chair : 0.1 | 0.09\n", + "traffic light : 0.03 | 0.04\n" + ] + } + ], + "source": [ + "label_norm,pred_norm = class_label_distribution(labels,predictions)\n", + "print(\"Frequency of each class amongst annotated | predicted bounding boxes in the dataset:\\n\")\n", + "for i in label_norm:\n", + " print(f\"{class_names[str(i)]} : {label_norm[i]} | {pred_norm[i]}\")" + ] + }, + { + "cell_type": "markdown", + "id": "200cdebf-b24c-4c2b-8914-6a2fce218daf", + "metadata": {}, + "source": [ + "Finally, let's consider the distribution of bounding box sizes (aka object sizes) in the given annotations for each class label. The idea is to review any anomalies in bounding box areas for a given class (which might reveal problematic annotations or abnormal instances of this object class). The following code determines such anomalies by assessing each bounding box's area vs. the mean and standard deviation of areas for bounding boxes with the same class label." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "59d7ee39-3785-434b-8680-9133014851cd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:04.396847Z", + "iopub.status.busy": "2024-05-24T23:50:04.396345Z", + "iopub.status.idle": "2024-05-24T23:50:04.593547Z", + "shell.execute_reply": "2024-05-24T23:50:04.593017Z" + } + }, + "outputs": [], + "source": [ + "lab_area,pred_area = bounding_box_size_distribution(labels,predictions)\n", + "lab_area_mean = {i: np.mean(lab_area[i]) for i in lab_area.keys()}\n", + "lab_area_std = {i: np.std(lab_area[i]) for i in lab_area.keys()}\n", + "\n", + "max_deviation_values = []\n", + "max_deviation_classes = []\n", + "\n", + "for label in labels:\n", + " bounding_boxes, label_names = _separate_label(label)\n", + " areas = calculate_bounding_box_areas(bounding_boxes)\n", + " deviation_values = []\n", + " deviation_classes = []\n", + "\n", + " for class_name, mean_area, std_area in zip(lab_area_mean.keys(), lab_area_mean.values(), lab_area_std.values()):\n", + " class_areas = areas[label_names == class_name]\n", + " deviations_away = (class_areas - mean_area) / std_area\n", + " deviation_values.extend(list(deviations_away))\n", + " deviation_classes.extend([class_name] * len(class_areas))\n", + "\n", + " if deviation_values==[]:\n", + " max_deviation_values.append(0.0)\n", + " max_deviation_classes.append(-1)\n", + " else:\n", + " max_deviation_index = np.argmax(np.abs(deviation_values))\n", + " max_deviation_values.append(deviation_values[max_deviation_index])\n", + " max_deviation_classes.append(deviation_classes[max_deviation_index])\n", + "\n", + "max_deviation_classes, max_deviation_values = np.array(max_deviation_classes), np.array(max_deviation_values)" + ] + }, + { + "cell_type": "markdown", + "id": "b260142e-b760-490c-818e-c037fab5c6c8", + "metadata": {}, + "source": [ + "In our dataset here, this analysis reveals certain abnormally large bounding boxes that take up most of the image." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:04.596287Z", + "iopub.status.busy": "2024-05-24T23:50:04.595797Z", + "iopub.status.idle": "2024-05-24T23:50:05.281630Z", + "shell.execute_reply": "2024-05-24T23:50:05.281011Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000422886.jpg | idx 103 | class person\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGVCAYAAAACFNDWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WYx1W5Lfh/0i1tr7nMz8xntvzVVdXd1sdpNNNlsixUFqUrRJkxIpGdZgSaYebD8Y8CC9yIQfDQt+EPxu6EmwYUC2BT+IggUBgi0bsAbzRZRFjc0me6qurq7hTt/3ZeY5Z++1VvghYq2987u3qbqAh7qNXN23vsyT5+yzh7Vi/eMf/4gQM+NxPI7H8Tgex+N4HI/j98rQ/3+fwON4HI/jcTyOx/E4Hsf/J8cjuHkcj+NxPI7H8Tgex++p8QhuHsfjeByP43E8jsfxe2o8gpvH8Tgex+N4HI/jcfyeGo/g5nE8jsfxOB7H43gcv6fGI7h5HI/jcTyOx/E4HsfvqfEIbh7H43gcj+NxPI7H8XtqPIKbx/E4HsfjeByP43H8nhqP4OZxPI7H8Tgex+N4HL+nRv5R3/hUxToUagbGhoyq+O/JQPCfa/wrn3IsiTdZvEcNTLa/2e44+9c+dcTBEv6BBojFucV59X81jlEMsoKhFGskERKCWKMBTeJaFFQFM8OaH0cEaPEvSrOGaD8V/yK/FAMRssTvYtS45otBazCrMImRAcO/R8SPs68cPe6D+rEyQjGjASqCqiAYmKEkv14zRPy1JkoVUGtoFZqCKQhKsn5uhoiiZghGw4+pEt9lQilwasLTAxy1IQZFAbO4ZgHU77XauBdCo1m/Z/4KzR/Sdq39iRsi4u8SoTW/zgrcn4UFuEmQkh9PmqEqNPzB9fOoYvGg/HcV8XlmRsUwFGv+IPt39XNprfmZ2PZc1XxCNBXMqs8X9edo+Pw1FGmNpErDEIs5IVCLcGoNUWHG55ViVBpZEi1uljUhSQNgUsUQSjNMoVVIYqS4+KU2GgmzQpKEArVVTBKtVRqCKj43VP15NEEQv3ca9zeuO4nQzGgqNGt+v5L4ehL/fH9WWWNii8ba8PtpgKgisSia1XjuRmv9I4KgWDOMionEGpoQGvVcOWvhkCeeHZ6wtAtmDchM0zWlnCjlRDUhT0dUhFpKLFCodcGsgkGWjIhiWmjWsObGpFlDpc8X/HwNVvOZ76MiY+JKnAOYCRXFaKg0pPb1PqYwoow13O2c9DUsgonSWoPaKNWfr4qh5vNwP/px+usW603iefXRWvvE+/rQeMZ7MyrxnnGJtv0hhQ1t5vawGVyaPTyxx/E4fozHjwxumjpo6PuTCcRa7/v4A0SyXyx7kCL4cWz3nk9bMvvP7P+Ft4GObyLEefXPBhYh8MbOiOFAqH9WoAU4UhW6OWoE6Go2rq1/jQ0A0r80PmXbxtyPX8NICJDCSEwinAWKGbP0cw1go344Vd+AmhkPLBLb9aT+uUYAGUAamAMTx18BuAzfkNPuRo376bi1tYapb2ZibnAdBvhHkoI241KMwySYxHfsHk6zFpNDgBqnrn5+cY1m/ab0CdWN9zanmu2ObQ6ZpiSsxSgmJIeDqKofT7b5ZbQ45+2h9WfuL/lzbhKgaHcf9htL/9k3I58EvtGLb/Z9zlhzMIOMTV1jozVzgJk0k0VYm9FUNzAai8AwB5siqKpfR0xgFaFa83tm2+amAUBLAGNTGc9CNbmTIIbGJakKqpla/XyzKCkLrVW/5wISQJAAZooiAqp+XbU2n5Oax7WbNBAL0NJXT3xeJ1QSWEGzkhxVY1YwNZplNAlIQ+QArTIdhdP5FkQptjp4Nb+e2gqlrQFOlCkJUzqySKGUFaOR00ypK7VWavK7pJZIASKNivS1KuLzvpUHADdmwG5q7xehMalSm893C9sI5rbhgevHA1Ah1u1GQ/wBoQI1HIj+rN6ei/21TzubT/v7fvxIiMQeLONP2M/fzbd8HI/jx3X8yOCmABO7vSj2L+k/g2/k/TW2RfWpC6Mb3NjwYduc9h/se3bHEX3BfdoY3/MWoBlsylugCtzwV3wbTvbwHET6/hsbkFsud4KbbQDnE9TSZpjMzDfG7m3hNz2Je+JNGAbNPanw4OLdblzsgYVpcW6t3zTrn+vb5PagRAQxQxsBKPz3/hnb+ZWtu3Aig42QFudtjay+mSxmNFMkVaRTZThQsHimnX7zv2iAtzbAo4PAAA+d62obUOybqQXQs9bIyUgVCsKMg6dxH/qGMai/DW1vc8YGFG0w7s14an1DCUBh1cb5ml8UauYgsd8fw5kHOjB+6GlvYLeRzFhbo6mDmA54KztQHMA5qTpwoM9JP1dnORQVIQckshYAD/O5Gc+WOC/tgLnfg7SxWKr+XZ0B0LEAHYR0AOUv913caOKfpfXzSRhGa4a1illDVdE0oSSmw9HpgFIQMmYHihWyQM6zzw3LYEZbjWm5sKyFOUFOiZQmGoXWVlLK1FID4SuocpiPwbotpKRAxpo/aQNEhZyUta1xnzTAlwZ7YdscEb/i1gKQd6Yr0KXET6KJilBbYcCXT7FN25yM52I7hkUEFaO2zQGwt+bk23Oqz9Pf7W/je9mZjd1n9sDp7TXQbWWNz/fL+d1s7uN4HD+u40dnbghPcgcUmgV9KdvfxzLZrfUdlhjMTd/HlO3z/e/b5rwdo39eic+ygaj9sYcB2X+4/yjudbcwRR1U9LBHk9gIIhTSjZp/Noz82JQNrD1gqPpmhnVPXLZTkM2faxiTCItAMWEe3t7gMDaDFEzK/ngAitJk8wj1AXW2bbRqGxCqgOLMSg8kNSBFKMkG+8MGyMa/Dl9mEc4Gl1o5BhoMaBIQJoBT35CHYe9X1p+vbRNm3MQ2PrOBw+ZzRj3ENyvc18aqSkrx9wFaOzK1MVk3nCxxB9sAbRuDx2BnpB9nPPPtuCo+N2R31P5MTQwzf7Y9PNnf08FvVsiqlNY85KTbZM3im2lA2tiAdHv26qHF1tr4Dk0eCuqAREeYz6/VKiP0poF6+iZfawEgqbNQYspSV7Q/E9UBujTujao6w2nBGbYOSsF8t+/YGKOCKPN8oKyNVteY0ws0Y8pXUFZM/Kkf8oy1BOKhukPK3JbKWivzfCDPB8wSy1IQEtfXR5Z1QWVycBXX30FdzlOAloKYYmTmwzXIheW8ILL489Xkz6usfufDCakB/oZDFd6OkJCklNqcsbNtXo/HHaxNd7A6iHFWc5uTzaAztqpKa4VGG6zgfrzN4hAg5W3UsX+f8bsDn4cAZ7OZe0Dzab8/jsfxeRk/MrgZ3m783j3X7hrs6csHaN/ePtJb63FsTG8d+3c7Cdlv4bFvhmcq9unv7XT+IEDifc08XKHibEDBmE3I4joT64yGdeBCbBBx+HBk2+6aHhgC2bRAPcTgIABy698Jk+025TgvEWcI2NuvQW/7Cx1MiDjYwR7eoA7OtDMPXRs0vHvbPDlVMuIhrkCKYg4qmsQmZ65VyiYs1jg0EO3eo59nku37zTrM2gOeDsT2INb1QSIMmYz/6Jvx8JebMSXXtdQWJzO0RbsHH6BkD3Ib5lqq/mg6cOnvC8Btu79tE8z1MYqHIDqD5/dWxv2qtge//nmfJ4JHlYSsUGp15z37O7Vvhx0QxsHNducpfg8qPuGbmZ+TCil0RAJkTZgJpTWSKFU1tC4OhjS0Mo7hXceiiOt4LJiXYF38uWtcP8F0pLgx6qhGDJHqz1QTKplmlXU5xdyCnJV1PZF1Bsk+p2wlJUH0gKYpnpw/7zRlro5Hbu+WABGQ0oTYjKULrRopZw7zTKuNtqwUdS+rOQ1L0sSUD9QqYIVKRbIwa6aVQm1+X1qtwTBl11W1HtYNnVHo1gLxOeBUv1fWIInSaFjdQGm/lj7HZf/fp4ARgwhRPbR6n8rC7ByObYraw+O99Xt/76cdT3afGQBnZ88dzkH5dIv8OB7Hj+34kcHNCA/tQAzmYmIFpPnGYZtdf0sb8/BzIjvHPd671z88CEf11/The2pswOmt92aDItu59KXs370T4zWPkbtd7GGnCCMJ0BzY9PhUBzKGDSFNFijNhX0qBBU+zH9ct4Xhc9ZAJUJPKlzMKDiYMeIeBhJwUWocNxgnB3E2Qgo1dEJdjFx3trPbZRcee0iFzmCEcLKLKjVASq2+eWbp4KPF9wmIosk4mHHXhLWJszfNHFzFU3DgpBHZaOPhhSPs99jY9D0YMh5W57YYSNEQ/w7xME5WN7alClMIc1X8XP0K47tbN9gBEAI0ioVn3WOqY/b0UFiAFJUQvUa4C6WGZiIHEuun7XIXGYCwP5/4ItbQpByAi7lIOAfgyyIUAW37UJ1t1GKAmiRCwcMpCQktSgjaqwPciDiSQtNUm9+/Zuai4xCAa0qU5sAhp0xKijCxrgslOaMjqs5UBWuj4kLpUurY/USElDNqkJIOAficD3FtE6hiouScAlhLPG8hiSIpwrvq56pJmPLMRMOqspSFuRVEE9M0waQUM2pKpAztfEYnvyeJTKkgGhqb6gEWEWFZVuaUyfORWhu2VNQaYgEEawFssNBKZ+liVomH2RoedkuaHNw2pUkXG9uD2fTQBMrv+puEVq6Hij/B1Ow/82lsTISXHuhuxjzWcV7jT3RAFWvLp9AYamAKtZknYjzm1T6Oz9n40cGNOFULYcjbtnBbf43ucbOtXHt7Sbs4+QFo4ZO/f+prNjCHn0fsTTU+0L+ny0Csn8uIp/driQ1E95umhKhv0w1tWqDNmCTcY+sbWQvKSGCIj/t3NTye7qfXQzubQUoqSPUNaFLfuNV6po9fdf9MbPH03zbk1D3EEMm25pqQOInamn/P8OACIAX1LXFjO6AaDFLsNoMUMcPEM1BmSVwwLs04mKK6gQizhw9cce+2AmZtbNgCuxscIFWUElBwME/4ufVMEFUXcy4NSnNBtgPGTeDcWSkPqXSPVUIa5KhUAni1ZlQ6K1fBNrFwuO8YbRNYdpGYmIeiOuuCeJZRo1NW4zY4LPJ7mVSYVVirr6cpUP7YlLouKvl1l2quOQlPYIh9k6NkMfU5yYCW/nlRpELWzjyyzZ8exklCqY3WGpoczEkKZiaAiwvaLTRCEVpVn6xqEloViVBuG2xbTjO19UMVUkq0tjJFeInq+iBFSJppSRFX6Pr6Pk7cnK/5+HxPWY3lcuIwzeR0hcjkbGSAtnw4YBTypJgmdK1ISrRW0GLUFqvDGponpnxEFjiXMyoNsxrXNdPaMmyZdaG+Zs8iA6xcnK3URm1CqdVBrCaslgE4Rjh554g4ruye3ScBjCDh8G0ZW2/5h+P3MbcesKCdsdwAD7vfdfe7vXWsB8Cn23fb9H2P2OZxfN7GjwxuOrLv2phhAGJV7PU2Hejv8M341/pndpZ/pCnujfBbq1p2H+kvhP7uE6/3jUXYPjREznuDMoDBDlCZG+0OLGz3BdYsvPLNqTYcGBmRzrm7TuJ4XQGj4ZVpXGSzxiShhzEHN74ROmNA92jDk0uDvekG0r0vi/svHbSYDR0IRMZVsx0R0EGOOiMT1mz/XQ7CiM0+WJYIyyScLVuaUZow6S7+P3QkwZDIls00nkU8A+doCF3NFt6BLYNtPJzIuBLxFPpTaw624+87CElQAAwmJ56Ps1ShpjLBIqgkkTbuz0Xp2WYWGomknWkwZ/j6cQJsJHYAagemwFklka7mNpDGIXkad2kgESqazN+L+AZHa/49sch6qEo7AyZ+jio+6Zq18PhdYJuAKSlrMwf/ZojuwXcPvUhXgAOeQdUEqI2MBmPYfD5KAJsQEiO4RkQnD9lZIWelxLy3BGtbyFnQpjQTuMCUppFhZQJFEmjyDDhbKBh1TuR8RPWENajrAvMRzbMDTDyE1mqllpWcE7VCkokpZ2e0RMmHG071QikXsEarxjwr5JlpqrSyOIANNXxnUMV8wfb1vVUViBRuUXLKNJRq1W1Dd0JkBGPDBnTHQTryZiQJ9CUZ/7YOjDvDrPLgfX2Meb1ja343tufvOsw2htu2f3rofQCgTzmHx/E4fpzHjwxuIEImw4X113639eQG+iEo2a+PByAgGI++jseC2n2wA57Wneptfw+jtL23g4z+nXtgs/dSku5oYNzz71lTPbOkI6UOaDz7JDY3sSAfbICAT8TidmxC19w4w+Cb4iRwqkZpno1WxQYj1UMCDw5HeLYiAxR0FJfU67FYXAt04LhddfcqW2SSdEVL39D33l9nAh54kQEaZhEWc2HxPJBsG8+qxTFc62JbzZftrg4DjckmEo9/UwBMNICabvdhksYB42xCMc8aqthIx93mQ6JnVBGbXd94tnNNI1y3aW1sPLfWhGYSoLEO8mtosDqnIzgAGkBNPeRB8/BhzHFT4aDKfakUdPjoatvF+ytpiO07k9TMyOrPs2vFrBomGqBnW5wSehmhBUj0+1xbIyV/v6pi4qJ4Z7JcxVVEqFGoKk2Z2gqoi44xyCnmlAjNlJQyUGnWyMmzlCKZ3YFAS4g0ss6I9PCWAyNEouaSAz2z5Gxnq7Q8cZUSd1ZIViitMtNQhFkSRRTpGqxa/XpTwjPPF5JmNE8sl0qzM7W2OPbFRdU5U82F1dWgSkUlOVDs8T3AxO9ZkgyilJ5xJS4ubtUGo+ehZxtZEmMtjeNtdZ16hlZfFWkA477W9uHa7W8P7MGejXkrJEXX8/wunx3HYFzq+O4aL8ruPY/jcXyexo8elmIDHn2iD4DSwcPmsAIbwOnRDtl93tz58ffBCAc9+I5wePYf3H/3g5OTvogZugN5+y0DAG2ptz19WWJzrOKsgW5WZ1dHRwaTM9iYzqDsrz/OQ3afFaBFXM0BlzMAGpqaZvLgPIbn1DfN7RRCDBopqsNYNsycrN8DOuvvtXC2VXBuqHVMNICMA6X4WXQH8BjXKnh9nizCJK43qs1r0HgpgABD1gsNds1QeMDmG56oDgNOeKCtb3LxMEdWW38IcU81CUeD8wqrRRHEAUgBbaGp6vrQrn/xFPY+yyQAokog4kAuNjYZQSSBebq2RjZQiwfTdUn1AVzr//jJ6mCCcNAZHvkhKbfFKLUxBftig1aJYNf+2UQqkJqXEOj1cwiQlZKA5d1Et00vFudug5FMfjyMlLtwOeZMUi+MmJ11a2bkNIW+xEOokUeOqJJafz5phFBzcmGvNiOrZy2RvXCdYdTJyJI8469/twhJEmvyOSMtka9nrpYLt+f7AKcCyfV0TQCd0dqYklHrGTVjKRdynhBpLLU4yCoNmjNi58sZDtAsQwinMfH0eFFKWQLERaZVMGQoFGt0EbVhDnIC5PUsNRWlttbRvc/Xfejo7zJ6ckCL6Tj0V/IpKd59XgxAzIOQV//XutHYvZd471hruzMbpq7js7Cluvvs43gcn4fxo2dL2bbZAoTT5Vqc3d/DEQdjVAQOh8UNc/zt7cJ93bjK7jskQEsHPL5TbyDl7eXWv38wH32hR1ihZ/b4Lh+VOYkUYJFRZM8MrMnYlPuBnXHpwQwGU2CdkTHZnVMHKx2dbaxGZ3FUnDeZxasWV/OfPZrTDaxt90ajqFpzQ9g3/37MGka435lN58O4iR5aazuARNT6ibDgeDaejdP6dfW9P96PCJPCuTp7MtFZJlcMIK6peID2ukGNDUOQ+F4XJL/9PAdY7fMjJocZZDUmFdYGc2P7rgFMYnTQQBTbkwhPmW/ye7aD+JtH8WRcq4gzahva3EC9BgDoc8M6ypYAM+JXJtJo2sGO65YSxmLGdcyhMW11TJKYp6M4uN8PbVGHxNPJFUGs0si4HMYzgUyTswlSB7iprRc58CdFk5g7EtosZRKjpUSjkUywNAUIWFGZQRqqXtU6KQiJqiCtuZYmJYzmGUg5OSjQ5OwXDbKD4FoF7UUyk+twkk9MvChgI11l5kum2Bqp7WBqGBW44BWOQ9xbq1fULS4S9nVc0JRQmyMVu3FZGiJGq23Hahilrhs+lZ4E4PDan0uwpQLW1NPzm0HzleLAZzz+TX8jDysJ71+PFxAEtV7Os7MwD0HN2+MTWVF0W/sQTHXWqDPd/fyI6aw2Zu74nHZ7Ib2ExH8VNHscj+PHa3ymsFTXSFR8oWzF03iANPa+QGca9uyO7d+AsyXJNm+hH2QIiPdvl7F2x/Fg2wvePhf/W2cH+hvDe9ctFbfHzBWjRkjCa3psouRuGXTHIlj/2zivAFSDh3l4vu4591P096Voe9B2QMjMNsaIIXHw792xPeBGd9R4acHdxO9dHG0hLPV7NhAbQbKMyhybdyfjvc0MtS0eKAJJjQlYqnFpMJu3BvD3dGPeM9S6YQ3GLL5D471rgCjdF1LahWjMnPWR0AcYRkrCoQr3AQrzCIQAkd3kz3O7GmHL2NoE1aFjicy4Hk6jP8th8W3oyLq+rGHjVH2eK+uOiaKDZbZKyK6RamhKTBUu1jgbHNnmuCKjFo+GhmZcmwiNSD8WJcUcU1GqGZ6wzmAMOiElirMlLVFrxaLwHjjgHdM7eTq5V2+Ou5oz3uJAgezXqhWxipnXs5EIwahm0jSTrbGUQmnNnQqrkcGUqRWqVqr5hr6KMJugDWRKAWIUlcZxmjlMZy5LY13vmNcDZDDJZDUaFU2ZhrdEyC2x1jMtSj1qZCgmdbCOGdYc/PRswiHVF6XaGkLnHnD0v7VwCjatTKO1Si0uku/lKPqcGnN/rKttTY1svHiom610h6e1WP+y2Zc9tBgam/1KlbcK9IUjsbebw9nbvR+zMTfZvf9ttn3/nsfxOD4P4zOlgneg4gXvHi6uvvEGYz2AyYM37F57sOkF4OmMjQOC/ocRvv4kaIn3dbvS4oC9Aq9/bSx62X7vm85mjfwCxbxFgfce2rQmsBmk/SXBQ3sBW62IFIaphhfawyKeBtu2xKQAVFk8PbioRAbNBsr2t7BT+A1PX41T92tUBzraNjpaA4wUoqVE3I+UgL5JxutdsOt6nO0Bd89TYiL4uTQmhVmNpan36xIHaN273T+oQUQgwXT4zyNd3VxzEK709t1xiGZGphdq8+c7iQOOtbl2SVOfU3Hzeyhj/7zoWhmfMR3kvP1QTTahZX8O2ucTRAFFz2zzjTLCVp0djGcubNl1CiEwTmSBY4LL4gDxEADV37c9PxEdm28Kdsd7iyliztqUYBlUhdYE1MjeVIokiiMcz4bqvdJ8HXil4/0adPHzhEoBOQSQIYpBZmrDQZE2pDkEEFXQHMzGilGZpiOYUMoCtKACKqITjeRhWHVx7lSEmh3gJsuknFkXwaygOnF1PHC6nLisZ+Z6IqcjJtlnrfVctT5fF6ydna1icmYuWERP65fNDkkIePH7rOqsWE+KdgH/9vwlVMcNB54dSIMLknsbkweGKtbrPvuya+472Vg7wgnnRALs92Xoc29je/ZAp89PiXX6qbqcmO2fqE7cX+/L4a3XhA3kPYKbx/F5Gz96hWLZ92QKKWos5g1cbCBkbBm7tdYXzH7h7F8c4SgLv0cYiT1hk4b3PIDLjlDdC0r7eFDpdm9z+ubKjvWx7Tud/t8uwN9vW0O8nVtkCtJXv7kH2AvLJR2Rc7pwtpfeH5oJjJSMBdeQHAhxc4CWie7RDR9vnK/1zVyCWpY2BMNubCOcZn1zdhfbnbY67HCP92M97h91cTrjhd98v7YWoRBjTsqlGEsVjilMu43Ukq03V5ynyZaWb3GMhEaYpZt1dtkpNjJ6+nbi7IcwZWOusDSl0ramg2ZIT2+PmdLDRTJYne25b5VorU++sQk6UO+MUQDU3bzdp937PNFoY7Fds8SG6CqTmOfSmCaYS/KMJmMwBtJDIrGRVQthqfi3azA2HhHpz94ZRavufjQzjBXpQVTzUJUmHRtcUl/+0VNzFAjEKqoTkhQsY2aUVjBTmqy+lprrVaxFG4Ok1KJIyxQTNJqEIl7Yz7PdnPXJScmaIM8glWIurU6SqCSmlDlOxrJevExCpBGWItRyYZqPAzTShEr1Z94q3qMqYa2CXHZUMKNvWbcZFnYBvB2Dak99TpjVKNInDnXEw3a11m3pm4WYOmrkGLtjhl8imw3qdmsYiv0YE3J7n/Vj2HacB+BmOBzdxj0wfNvfP/HdD+2w7T4Sh91e29nex/E4Pk9D/6vfso2+2LrQ1GwTnPXF08t8NPH/elE5Dbv5ABTsT8IcIOxDMT17cgzZPveQGeoAxE25Z5jsP9g3TtnpeXogxtFTD5cJRg5qv5ifXdqxQ+OkHKvE9W4n6roFC7bIxvl6nYwwpEIIe/1mSGTXZhVqNe8Cjb9Hrafg79J4O3uicU9Vou7JdlN9U+2hJL8uZ3q2/9Mu4N2wEkOmHHEGb7xo5LTLBuseKN7VXFUotRcA7GjUzzfHMxkprT3GGBOlZ/047NiMex/aLWscuofk+r+HLJh4Wrj0pyx9LgTXYo1+eyS6WLeYux0wdtbKm2ImzybCwYsGQzbCowH4OpgWUZKmwayMruPm4S4j2CKFFunFNT47qdciWkfrBRB0y5CiPyB/2JoSqHj/JNu1CWG7/mb43AsQ1ZddMxdzq/dpeNA6QCMu7BqLhqEefpVgEUiurZNGbUucV19DBRXPCiPNwc6AiVBT8hCYTqHVSkzq6e+ptZhfldZWijaaRrZRcjhIXRAp3ORMqQmrhtSG1ZVaFmq90NoC1Gg/4cUInVWKsFkYqe5meDhOxjoZerCYywOc7Ip3dR1M73lGtx7WaK3EPNhATIdQ+zFUVdIz86LqdzBwzh7JsDd+GPvEsXwZvp0dtQNF9vZ7B27a3v72C7Fm+stuszaH83E8js/b+NHBjW0amy1WDfQNfrMDD4fs/umb1HbI8HS291iAItgW5Wb0t/d3wOAdlLuhwjf+2K17+EHD61LpXraFL92Zk76hRwVc3BC2UBcLbIDJvL5G7YiuI7P+vu4Txrk32wpmte2t9M2/70Epwi6IsAYj0zf/jia26/Nww6hxEzt1FwE266wNu35FsfmNTbOniHdjugG0Xvwu3EJ6VlEvBiL9veoVi6fkd3OJueHhmRAI70JMBKizmDhiBPMnO6Zlt1n35/U2qJIuxlbmpMziCTG1G2NHMSEk7oxi54RkN+ciS4segvLwgooH7KQzOhKF/QKdawC4zpqZVfZ8wJiRI+TRN5NeG8HivivHrKQQRnuoQsASgnorgrHZbZvRADxqURm3xtwTRB0wEKAs6TTCUX0DFulsjmtI1lapLTqpN2imGIWEQS2YFGfttNJrAtXawDIqE9IqKjDlA2hmEvXwkmSyJg+Bqod4qroOaKFR2kJLNRpvZqw22lpYaSxRakE0kTlyNU+YGqelUdsZ0RVsJcmK2BqdzfNoXdLZR3/WwSlryPD7+pB+XxjMrmoPW4aVMPOaM3GsZrbVopH+3phhHSxGU85RWqA/OmGb4x0w7cBT9zR61/lhF/txAmCN/2AA1G4X+nn1z9mwG58CaPoIu/F2Ac7hvH36px7H4/ixHp9JUAzDXvsaiOCxyAZ09ivhxmDGX9uLij9xPMY+yhm4j01//3bhUz4f39fBwvb6J70SHq7bAaTGd/dDxL6dceamhkYm9QuQ8ACFwczI7rp7WM73ni2U0r/JQueSNtGNd94216wsAosJqTmTo2H4uuZp+IUCkEa8HQtdT4+72+7c+gbbNkGvG8bw9bsuKLz5DjEiKjWMYtdr+Nf1fC3P8CoIFxOuDUh7zUhkZUUJ+Bo1ACyO0Yhmi+Z6pE3cTDAwLjRuGESnbA+5RUhLPGxxX1yvlCU2oqGlsQGomnj6tl9b1+P0DSCeaVQG7NlcxDkh5plDtGDZvEZNM4tWDDj4GcUS/do19dYcsdnFQqkBgqak5CRc6spsQiKNDK2ud+gLzu+H0uMrSRNVLV5zwKJSo43ATC8goymPytXeDdspvs4ltpgzGZCm2zM3I5Pi+QmiSqsZsUQVRZOSJHFZCqVWpnwgSSXZ1rZEOgsSii+a0UqjpyYKUMTr5FALUDFZQYWsDdFEQ5ivrjhcCpf1zHmZuNZGboqkGWPF6NmFjWYVCSekw9r9hu9zOWjOoOCM5n2pYNQM6uHFnlnYj6Nx7sO/EQlyKPQ3HdTubIsZYS+9Nkafb72lSn+niD+2Me+s9x3rtqSvzv2wzSYESHmQ9r37V/gkyOnkVT9uf9/OJ3kEOI/jczc+U/uF4QWwiXy7F9yNscVCuWrwPzT4ymc5G4PXFf4vAkscX3crcxcRGufUUz7lIVv8cPH3jd5GdRo63QtbFkwdn3XBbwGwxtS8OeGDL3j73rxlQQzfsPff73/270xiEZqi14zDMM647uaqKROgZqN/V79EF/eGoDUYGhHPNmmtC4QdNMUHRr+jXqcD2wxy6uZLOxvRs7H8516TaFRufuseFIOzGWsxXpizUC1SikJyCm3XwoAtn1/Ce62RsaNt39yyp2Z74UJV945b25RWIv79tw3SUrhKW8uLjU3ZPaiYtSPVNh5YbyEhSC9kgxlUix1PiNR4fyYW19iBsCRPuS6dxuxf2eqYIKo2MtX6WlJpnEV43eBqbdxYQZKSgr50lqDGpPK8K78mZ4GKNVS9ZovE+azNj+thFkW0je/sImoJgGcILTRiWaDVFuxpYyr+PX4HCoYXMbSqWFrJtZKzsJSVul64nvwcVqvU6uHMsl4CqCgiM+RCMbCUmcyFvitAqUhxhsiWCAmaUGuhUREaJ4xXa+Xq/o6bVpk4jkamvYYOYrR1QWpxkJeiTsCgSPY6NfMeU9Y5vb6ltwFye2KBmUEN1i8gp+2AxH5e+pE+BQ4EdTuY3X5063YzHAyItiD+njmAfN0d6G1zJAGEBsEZTs8+zBTT+FPHMId/tyHyE5h9+7/iXY/jcfxYDPm71VHYj6skoyKI7f7rnk2yyJTCw0o/3+A/AA7/3znvx/E4HsfjeBz/vx33wB94BDiP4/MwPlNY6m3UP2jznXfQy6G8xIHN/xb4zT2zIdt7x6/xyxF4BvybwJutrMpgjfpndgkQQwezY3Y/cZ7Dg+muPmyeDbswCHvnxT2o0ty7nHcHHediXYuzMVj9zvRYvDx4faOOkd53yH/vLE4zYwnB67VINFDcXS9sIsjd+fR/tYdazEIQ2r9vu48PPoTsnp9rHJRetdfbF5hI1NSJmjwSLIwo2ioVpZhwV/z7n+biOouYEIbQrNL5pn6/VXTLxjBYzfs7pQjp1PCaJcJRqaf1xLn29HRpsFThdWtcqXBIwS5JMEStcx32IOOvl4FOIlQhwnZG7anPCNaEAqOCdmTQh7fd2ZtECj2Hp7rvxbo6wnO9PlLnCrsWQk25Xwr3rfBsVvI0MfldoLco6Nft4Syl0MgINRicbCmYANc61aA5c05jvklUQvZL8OrApQmuUfaMKDWvSGwROiMpR00UkhcGxJkS1Gsz5ciMW+oCCmm+whDKZUWkkFpibQ1JRraJ1SrNbwZpmpmsQq1UUw9nBaNZagmmMJ529ZDTm7tbLrby/OaKo06jmCFiVArWGlZa51+gVg8NNtvCsvRu6m7B6mBcdmsjmml6qGusFHbcX6yzMcW81UR/ob9xd9AeXu5hR9uFrfcZXB6ibV5h27rQXbdyDP0zu/PaGzIzdizpZqu6Cexvf9tOdsnNPv27H+MPGPxv4Bp4D3gEN4/jx3786BWK2Qz8flF0bUyLTb6vpr5p/w7wG/jv/7P/2/+dn/jFX+Rwc8PrH/yA/+jf+Gv8a3/1r3pTPINrg3cE/jOBj+J7NhEwIXjbaGAs+jwFPWw7w73f/AUilTiMUqelx5VtuCf6VfZXWKRSDY6iJBoo1Khb4p/Z0b8DXLlAtsSunfShSemwqtcm6VZFw/AuTbitlWuBOUVIg35tm2ZGOlXG+KMbsaDIRfum6melREqzyQj3DHmOdODREIwU2gzX42iEtVxQmlS9F09rpOSbqohwb8apCS/TxJzLOK3WfEvumXUWG3QPZfZeQyVA3RQi2tq3kLiureKLhLDTIw6YsFbhzZIQGs+yDFFtF1DXtjXRHE9JXG+UEFYxNPl9qfE9aoKphPbKz9MbZ5qHfSw6N5ngGEKHfgUS0roQ2a87x0OscdwUOiRBKCJ8sBrXKfEiaTwPAUloSkPQWv3OsVohx1wy88J7SMUsIWKszTVVKWVyNOdkgCoZ86UUQaSi6k1QjUoWZZquWGuDpBymibUlhDRCOCgkEq0u5KS0dqSVQpqBdKTokcKZieTZYFaYZfYMKvx7bHZwI61RqjChNHVFd1tThFUdCVgtSFv5eJ15fWk808bTo2CWHYSbYaZYqlGrxisoI+KJZlkopW64oyW3HUkpNUJKPS1cDJiw5mLtNurj7OofmURhSQ3baDRNrvdh5+gFspAA12ohSB9x/hAGR+kGGfZNqcU8Y9MIXZcf2fVjPCidgbhlUSQyVDsM2oOnh+CG3e/71xIPa9soO3nA43gcn5Px2Zibvh777/HvrsQLb++3440G3/6b/zF//f/4fwAz/qF/4X/Kn//n/nl+55d/mX/nX/6X32JNtlRuG6m6MroBb8LaXthqF+W2hzqLrTqxPaCJ3NRrj54/ZDV2VzXEt8hgifZp5jYMy6d8dvzU4/ayMUd71042sIQ1ZkmoCBdgjjYQSbeaMb08f/dY9/dANfQuwTxtV+vGr4Mf07ShOevacBuW0q+30hJRIt/TnS3OU2lISpQKJpmJyvGgXFbjYolkieTV6zz11oLxMYIJ8iaNnpHR4g7F34jq0HixvHHHpM8LB7Z711W0cVDlVJTSGnMmNFa+Wfje3vsr7Z6ZOkBQbAB3DXalZ7AIuzoz0hmXECnv9Eyinn7f9Q9dTCUxf7yijw2w6t/jhQCnSbgqymWBloyUXejbwX2f25hFCwkwEiJe0ReBpETvLAGpziSUlZQm0OxgLNL1Jfumr8miOShYtG3QPCMkkiZKrVRd/ZZposU8xAydJ9e8NCPlRikFK5mjCk0bdalodqG7FsOSkXSC6p+ptdeVkdHjySrU5qLk2gqdbLK6Uq0wJ0VZubsvHJKSpSFyAEnQCMay68X8eZkR2qNKb7dhLcDxrpChs22xYluj1Ypqb04rmwMwBMRghNaJ7uhsovtupvqyci5OOkSJ7+ni914WIeyeeFYZdcuO6tWo21gQbNZFJIqXDhdux4rurcCnA5u+vjrDszfItvvM43gcn5fxmcBNt9ewzf29YG2/CfUhbJ/51/6Ff4Gbly+5fvGCv++f+Cf56h/4A2xVPbfPa2wotssoGsfrQtTdou0f3kR829n0Anf7lbphoyhUxwZiBlsQR0pEx2D2NVm2DbfX9Rkmq98fhWxe56enPLtg2cYNco/PDZobuTC2Zt5vqjlLNE1RFFB9m7RxA/xMDLZiefFfZ0UsgIDENXbPFbMBwXrBQbrxDdYgtQkkI0k4HCbfPUks5YK26tt/8/vodVcaUy0uUE2NTHIpaO0VbEIgTBSgk86SbeE2M/Gy9kkjDCSoaYhK455bF2L2CWnMKlhunItwaUI2HoBQEY3Nb9uEfK4Jxdoe98Z8jeyeOK+eMSOiUa3X+zr5fuLwLJkvqP5Manj5GkCzSQ+L9O/om5CRcuIqZy7nhXMVrjQmX99ZOrCm37dE68cRF5smFbRlLEJ7zVbfpCPN259/CwDgvZ4kAZYwKillVDISTTCTNKoZrRSQaPsgGmJbPHQk6iBEFJPMulZSXhDNiEy0tsacMxqFHFs8gDaNbtoejjQBWsNYqVWobfWsJ4VGpbaCcmBm4rKsLJcLeRJk8tBYk+hCLlGzxlxwby2acYbN6L3AujPWq8oIjWZdrLszdvGMUEGbeFZ5LKTGViNrWJ++xIet9GOliPdYr/jZbdkoS0GEqnw+JlWSGQtG2dkcREaygO3A1PhbzKzu8H2icrHtphQPTez+GvbDdtfzOB7H52F8psaZPQab3vqbxN8H4t9/jm2bMOBf+lu/wtP33gPgr/+r/yr/7r/yr3ziAwJR9E0eLCgZB48XdQM7xOY+0iGl7/ORRhwvaKRjeiaMh4yUYD90B966x2d+vSWI3e4VPrh+ic3Oa7D7ebRI/1XB6pbmLLTNO+qfxd8nnQZSY0ZZmjdWnLCH2Vo2eI4NZXaGyXSEyvxP2z3cmI+N0RHdmkdaBZEDqgeev3iHp0/f4cWXvsg7X37J9XXGpsTp7sLpsjAJ2KlwORmX9cLd3cfcvn5F++H3ub1fqe2CSXPNSIQOVXOgPQ9L0Ou4JP97q4Y2Y206atQkusFXmnQvOurNqCBU36w1cdCVnNTBQQJRi+zs7sI+8Jm35ze83Z4A3u9tcICxmdnYJMSLxAmIeBuMLNU9a63OGFmK/3zOOdNSncEajJs/lBzfOU+JthpLMQ7TA+cZTTpA8CrRVgHPijLxTdx7NRGbtg7my+seCZJca9JqIzVfxTkJKU2U4vdWpgmkUSmAp1rXqlC8KnLKXhOpZqE111YJbhymNFPaibrOpORMQ2szLTmgLLVQ65mmOZyaAyoJo4AV7wovFauXWLkeEhLJaJqwIogW5pS5lHvOizDlymRrtGF4y9kxr6RdLQBdCjtWnS30zX1jPLxWzv7540CPcD5G5Wndioh2lIBFGIttHQ9r1QPRFomaMd/Ma9l4ZhsOHm24GECvmRQsoXZ7NHIFI9F9cyKFTYc4RDQPrRWdTYzIfn/1oS6y+1L99Udw8zg+Z+NHZ24ErxHS10z3uGWb/HsgI9vHtp8N/tf/+D/Oi698mb/4V/8qf/yf+Wf4G//GX+Nv/Bv/ur+n7j5g9tZ6iqO/xeaM1MsRMuqYqCdd92281y2BTi+DjLi8e43R38i2bzSBLEox945n82N1o+CpwQ6huldt+3sRbzRpQ+zbb5iF1kTD67deDbYJR4OLGmsTp46S7EJnKQxkddMnm2GSsLgdnHUGZxUBcR0IrVKnZxyvnnJ1uCZPB47XT3n3yy949vIZNy+e8fRLV8wTWEqs4Zk3EvN55Xq5MB8SmpSrdGTOE0sr3N+duPv4ntv3F+5Pd0g9c3l1T2kFSuN8eUPKE+vSqOXe2wqkmWMWrCwkrinpwroYp7s3tHKirot7//hGY+KbLpGeTjA7YkASrlLiXCtLg6Mq2tqYm6YOLFM8by/Q1pmq3SQWwbs3bta+P0/vgeVCaxFvLekaCB1MAHhxPROvNKxqSKsICZXkAAOi6LAHxQRhTnDMmcu68rwpEmntedfks+BaFwiwY77FeU83wTL00GnyYgJIqLsbhqYJtUqplSRCMkjpEuAoM6eZaoXWjDkJWUMLlUqssSlAZWNt1TXbzTgbHDQx5yNe1LCSdKWuCdPqNYFaw1JGm1E06tk0D0Np3PIaYMOZpBlpdQDKnCasrUyzImtiLYXaDK2VhLel6BnfLXZud1hk9G9yAFAG8MG6Fi/WVSiCRqFDrD8oB6ehjUFd5NyLgjarwxYW6dewCcm9XUmvgxMcc8SNOnftovfm+pqoZio0JsSLGhoBsCWmaouO8Vt5hiCWHPzIZiFdjeZgd1RieBv47DBRx0Xdzr9dOuxxPI4f9/Gj17nhAUmwxWdj7XeR22BePm0xCPzKv//vjZ//R//a/4lf+u/+9/gbf+1fH58DRuuGBDvXIkBMBx6xdj1U4L/4YuwrlKGPGJV8zTdIzJCeLbHbxGR3nn6NMij9hDnAUXGhaYSROnPkMf7tPLrOZzMQsrt3LiTdQkbmRqt5WMrw2jZTgKrVPNV+iKlbmK99/G93A82yn0ey8fuBmTRd8+7Lr/Oln/gZvvEzX+Wr33zK69M9ZzEyC8cnRw7HKUSj7skXUVRmylKRpszWoB0wUdKUSVdXeEn9A09uMlfvPOFLPyXMzTCZaFqwS+X29pblcqGuft/FGq00kqbxPBPe5bmYcLq/sL6+cHl95s3HH3G+v+X+9mNO93c0u2Baofo9d9DiQCVNhdxgbcqhNSxtqE/N7zPiobgeGmL8DESrhX3hJH9eEp3boVpztkkirBVhD5U0Cr+ZqoeEpGd/yWAUTb06sTdA3RqaqsJ1zry/rNxb5YaEqoMha0KyBNKi7pCQU6K1Ro1wZbMQf6r6e62HTyzqzER9myRYrVirm15IlNZWWrsADWkLngWWMG3Upfh8VwU5+gZpiSKNZgWKUbJFZWqjVS8R2JpnMGnypiaeaCVkKtgKNkHzTb1ZwcT7ndl4LcCElGASGkmFQ06clgvremESo+o07IVrXEIM37f9DnZwDVjHrc4MuebLkmGtV5Tq69XGc+tAqIW6VsKJGjo8214nWKBuDM02BsatgQwAsV/Dw7ey7ffuqHi2X9cHEfM4QFGLHLy3jinB+PjhdsCmfwVvvZ+3bDwP3/s4HsfnZXzmCsV9PGAK+s9RgO1tBlOAP/QX/iJ/8q/8Ff7O//M/ABH+/D/3zwPwnf/kbz4ALMNZogOF7UgPFqU9pHv7OuxeHtDlGAR8iE/WcSzd8a3diHRA4+CB4RNl4AIUEw6yS/+OYzd2mWSBpHpp973IEFxnUhF6dobh2TOtbRttFWNCWcRYjKheG2iSvah6O2//k2f0pGSYTVh9wld/8vfzla9/mZ/6hZ/iJ771Rex6Yl1umQ4HrsvED+4+4qDP0QIvbq5Z68KlKGQ/bmmNLI2yNGqC9FRJ1pgOE/M0k7KLVk2OLKtQZUXJZJSilWWCzBWWM5MVRA2r7p0uFEr17zlxz5Ul0grXeiQ9f0JphXfqF9AG6/nC+b5xvnvD+urMR+//gPObD7k/v8bKSiZBKhzVONcAjxJp2RZtCSK7xfs32dBLdTCLRGXbKIiHMdKxHeQKtbkCKIuzbtp3PxmKqHgy0bU6QLVZbErqoRI13cKnIRK+mROvzpn74l3DkwYLaZCaBiMUCyXmmJg3M62tgWWstxkgQiUDOG9AJiWorVBaI4kX2cMEWVey+nnW1lwwbo3aBFtX5pRRgdIaprFGqgOEZkJqzmxV6yno3qpBteD5hgWRA9iE1YbK6mCoNcwKffeVZkiySIs2nLMistkaU8qcZWXtRfgCpNQIC0uEbk2qi4mtYa2E+DeaZDa/R9ofWGdLRuPbxpbB1MGSMyg9q3Ls/2GUVBRpRom5kyJUKCYDFPWQa3d+ephq8C/W1/dml5LjErevvVq2hf0J5rFbs4ekTDhf4u1Z9sG7bqc7w7u3228DmwdZ7Y/jcXwOxo8Mbj4tC2qADdtsQxFnGeSt9755/32+/of/MH/0H/vH0Jz56Ld/m3/rf/Uv8W/+L/9FPwYMR8cXoXvZo0q67L6wn0k/ofDIPa04Qk30DX/LbmoDGPjy3wSpkRaNG8Ut1mwe8pBGFqO2SIEWN4i9RH0S70o9jEQX9XVWCca5mIVo2bbranHNQ/gXYZNk5i0ZGqyxCSvdEBkdFY7r6SBHZvLhPb75rd/PT/3+n+JLv+85cqysUnm/fki+yzRmplZ4Ml/z8jBRS0VneHNeefLsKakoVd1TzNa44HVMSprI0U9KS/Wu1OkYrJ0gujJJA1bqcqGWxlo9JHd1PbPU7PCyVUSUqyYU860rc0UulTULrSlWW0AksGrMc0ZvjPxiwr64cv2TL9HLyv3pzN0HH/HhD36AvXpDLhdoK8W8CapK2+aX9YyX2HB2c883m54SrCPMIeY1VpRI0cU3/twbHUYsVACbAnQIjJaV1joPMOafhlLdNTm+2UpSZhVu5sSbpbE0r06L9F5Frr2pzbwTdvPQlOLC3D6/oXn4Qc3F3CaIVdefVItwVw+1GKKJJAlVOMeZdn2Psz9KTk5GWGlUOfv3izhgaZVmC2pzpOhXn5Mt+r2bhxGTZKwVSolu9LVgyZkxJGxMa8GemXceNxy49NpD4XDk5A1tWxNqFQ650lB6tpSzqh2g6Ehl9oa2PledxVN3Zlrz86PhNW42EfxgYOn9o+Keu1UZz3XfkmRkR/qV7IDIp3AgwQ7Jzg3rKeLQdTbec+7Beg8mcVRCpx8DWmQqevPdXu34IYD53diY7rjFsngcj+NzOT57Eb+NfcXsk38fG8Xu9Qb8xn/0N/hf/LG/l5458GCZhZhWdgeyQYGEN9P/d8em+DlYZ353rkh/r4xzFovE7wGQIpco3rtdy8O08KQOXFRgMmFpvRVA9/g8lt49n5694hYmAFAHPLFhbKyXxOdBmmdT9LCFG+PGpA5sihlzN/rdCMpmeJ2inrm6/go//bN/iJ/+hZ/knZ946im5CK1dyFVZF+HJzVPmY6ZUYzlmvvyFd7i9uyDWWE9nro5PMIHLuiK1sZ5Ofq4Jns4zzeCYEnKsbkTJeKPFjEhBqrKsC7dLJaFMKZOuMiklsglLEZTV02nrRI6wwLIe0ARZq2foVKPWipqRJqWukFpF0sTCAqlCXnny7IanX3yHd37mm9iHF773O9/j29/+Dqc3b5haYUpKw/taTRrpx90rTjKyAH3jitBNVy7EM1IDaZ1pEWrzXlbYVisoDRalh4dik2HblH0KW7RlcJ6zCt6OoykpJZ5fTdxd7jkXuJmnbe2lBto85GLQrIJkvx7VAQKSJqx6ny2XbLnmxQRS9vdba8E6BWulhuQEa7Ag6gX1wDiIQmo0Jhcv6wompLUhKSoj1UatZ9+UTck6efkCVVopLrBPkFDOtYIWxDzUaSnYNGvQVkQziKeCYxCyKQwjS0IRsiQOKXEujTU3Dlq89YUePMRmHdR1Eb1GIcnNMjng8GecPJaEaAtgkBz8tTp0LT2EzGB33YzoADfdfgkZot5MZM0BqcR9Hj5azLMQnDsp5CHTbos6IE8oaxdYxwztvco2XaFfVGdjOludIplhcxA7mNrs7fhRdq/tjfjvhoQex+P4MR2fSVDc+gYOn5oauMcWe8Sfdm81ujdomzB5xKXeolPNN3AktCgGvauvFwzU8X5DaBIN+3Aamdh0elG27p37CKATFyUYmNKkbswNsJpT2SbiRfMq1KYkaRGCUy/qNtgkp6b7xVW8joWb112NinGf/K4NlmF4n26NknhDzdKEWjXqy3jF36SuUvFmiM/51s/+MX7hz/5R3v3KkaJwc/2MaVbMlNvzPTk1uCwcpgM5z0wH4YyRUub6WeJ8t/D0aeJUC89fvmA6nbm9OyGqJIcuzPPBwYhUTJxdcfAU1L8Jq8FpbVzW6LxcFWQFu8Rdcq1IaY2yrsxzpmHeCFEdFKzaRm2YVj20cTjOCJlyuXDMR9JSaOtEqYWWGlfzkXZ15BtfvOHLv++n+O5v/A4/+I3fRM8fYXbBU5zdQ1fpmTEelnFc43NsSn491SRYhS48drZAa6WKenVfsQAxLgSXKAQo20oZ3rThzIsBEnoZFfWidaJMAX5yPjBPK5dmrHXxSr5NIgzk77dqIUSPartkZ5aaDiGzJJhEoLTIRmskjfIHYr5xo0jzWjtijSlBqRVhIuMNN5sYiQg9YWDJK/ZoprZGIxi8Js62UHzeq/MbSWFtFeTC5PUJMUuYmte0ic292AI01Ktkuo7JekE+77XWWL1mDzCpcisr57pyyDONSq4rkBx0RQEgX7eCV9xunkat6hovay6v6uE7oFd59noFHQ8E2B1lFRiOyRYqFqKMkDcgpTMrAZ6l9z2L7MlejKF14DFMyAO9npeIgBzPqc+TPVDTwS1FFph0rjCyPBuuAwvb0kZI9tPH8BW7jX4cj+NzNj5TheKxSNkm/9vv+QTg6bu6dTrVNiY3DhDl3B54EpumJDibTsma7EJCLY7d3xekbmds+nmFMZcHrxvgXX5HtFo8RGDBxPRCcghe2yMlNDUXSzYhaVQ0iXo5Pf7ddobJz6zRqyb3vIh+ji1Ep+BC1V5TRcZN8K7TC1BaISXfgDNOQViauMpf40/8uT/HN3/pW0yHicPxhic3Mykr03REVHm2vqSu99TlzP2l8PKdd1izcL0UltK4eXbDdT7SqNhyYVnO3nBxVmTJlEsjHQ7kSTikTLXGUr2GSqmNuq4srXrhM1Gur55xc5Np00xtlbYukXYjlLawrpVJYLYDqxi1Lg5q4pGWJlh1rUhNGRG4UMgi6DRRaNgkSFJy8dRiMeGgiXMz9Lrxk3/wG3z961/h4x+8zwff/R3Ot69Yz29YWmHOrnkyjbo1qpEJFV3IpfnGRvem/bl5d+wIM1gU+ovULbOEWkEsgZiDbfBN2ZxFIUIwrWs5+maIq8G0NVSF68PE5XTmUo2b3DyDHkUt5p0IVpWWHKyVZmhKDhYkWnz2UKv4UmmmiHoDTxNAs6c/N++iLQKqDlxKq2jyooO1d0qXhtewdiZIpbhWqDoLhCTPaLKLN88sC1kmFxnXENH3+BIFZzuiyaZmZ1oajAad3lwi7n2EiQJImBk5J2cjW/XWHWNVG9ZKAIQU9mrXHVw0ijrWwbwpGinjdXvmI6y4gwmxJlPQuw9MmXUdn27gpBvEcKws7FEPPw9Re9iFjpXGZ+MFwwsdVmsewnWESE+gMDbncxwxvFBnp9hKHmynNEY//5EFGvOyO3rddD+Ox/F5GZ8J3MC22b9NW3Z030mYnjnV2ZOBjvbHG+/Z6rJsb/gUl8G6FxyecK9hElW0hvhvZ5C2RSmhb9jEvT38JP3Ed8I+2VmAYRwwMsaK0FUUvWaEiDjd3w/T70u8r4Xx3V4nqOVeN0g2cyobpSxiTCJkTVQrXqyNAqI0Vd55+Yf4c/+t/zpf+IPvko+JPB2Z0xWHw5GcQLOXmU/XM+slk9s160c/YK332OGKp8cDp/OFSYTX7UItxoGJE4Xrw5HUbpnnxJwSixaaJFaDuqzUpSBkUkvkwwELfYdmxSieoYOnvK/zFN2ehaUljnnGxMMSuWbuzycQY62+4bEsXlW/GLkVFr2HlihkWnGQk5KzEyKuJWkW5c/yjLWFtTbk6ZEXT77Gi5/8GqePX/H+d36Dj7/3AeX02tPKtWFecseLBgYbhUhUp43tKzYRxMMILhzq3bonjGD8lCiM55Orhyy29eIzLlmvKLhfY141NyNczxO3p5VSDJmBYBQ9ndxZpLXWqFYsQKO3jmjmLQSsf+/wSDwsWrtAOtjNFmnhmGHJs+RqXTG8RME2WwtbGrKLgB3weNZbLRIh20SqFhBIgDTSpK0qSo0MMNe09TYHbisEMy8a2J2SlLwKs9cJ8mslNCVHU27bSimVm5ypnTXthRml2w2HPa0RFbNLgIeGkKIwZH8ODUyjlYLsnlOfCxsr3NO3HzgzO6erg5meIDESHvpzlz5X9pLdt5GEjGMTYmUdwGibPdvs2nQzHVz1yuJvT+e3h+yOAcOMPoKbx/G5G5+tQjGM/k19MT/cyBmOTi90dwRu2naAvY3fpy2K+Hv7cVyQOY7qI3QF7j8yQNEoqW/h3e4oJontaWtpvvk243N0Q+UMzHg1wJWLLv0gaqGlaGA9UI4O5qlLAvs1ds95Z2nHRcZeGOmu/fR6zF0Gu6MJZhqXomSDOUS8X/ja38s/+t/5h3n5zSMtCZoP5HwArWhqHKYrkjqVncmkSbi7vyBy5NVHJ+aL8Uq9R9H6ceXFy+ecl4U0GdOrE6/vTtRy5vTqNVf5ius5UZOQmjIdb0g3mckSVVzgWpbVs2tIngIshjTBNADZ7OX3rc6spbi3nzPkiUNOSKskc+ljXjNldRZIqFwtM0txxmgu96yt0VomV1jqBbIh64qaMOsBknCpZyRCJCQ4vnzBF5/9fp5/48Kb7/42H/zGt6GeKSyeSqueGUafU8G8EH+zIB2yQAm9E2RUe5cnQDJCisq75plV5i6ws3Iy+nmKJgfJ5gJVVF3kDmRVrjXxphbW6hWrLZhCsQA4ODDztgau9ckpeRuEka4cDBXBXEZau9ABNMO7d/BgHuYEWilRydhDKGaCtYq2hOZK0wPr2lD8v2ZCLR7WS9HvCZwpSiqeHV0ZxTK9mWXzUBsRrtmFUzR0Mg4y1PUmRoBOXy+HnDktlVIbLYH1VPmxiD1Lrt/72htiihspj1DFQu07v2kwIm3b3cey9fBdb78w4NtbILWHuGibt9MrcG9WZefA7avp7X/YOWLaWc0I13cGsTPiDzKhbPtsC1pGkK1QqW3vpX9u56AmIWpB7f7+OB7H52h8ZnCzp2E/DflHhXEu8fsMvNwtmi5zca+Wt3hUb5i5jO/YglUdIAxGaLyn62y6gfZVO8q5D/vh4aZ9mwL/cxcd97DVBoocoMigZhvmlrk5IPHaemGqxLUWWXyD9BTTKP8OQ4dh5seRbpR26G7IHUPhqnGTFWFWY9GJapWsV3ztW3+Ef+if/cs8+cqRMmWm7tEnA5toObHaAnIgaUJmpV5gOtzwbp65u7/n5skNej1RzoX1cuZ8fsXt6xMXq8xVuT/dYnXlmCcOh5nrJ0dI6ptygzxlanHtTyswzeqxfTyLxWunKJIUrVBTo4SuQ2RBZXKN7CQseuZihjQv0K8pI6mQ84RJIzfjgLGcF2q+Zq4VLbCuK7JeYHE2oEmjrJVUJvQ8sS6VmcplWUgszPmK9GLm6Ts/w3tf+hLv//pv8/4PfwvWswtOzasdS/Xtonus3ser+XNBSA3v4WVgbY37TojIPdRYw8vvwnOf5ntthk9kjbnjQLjPeuX6kPn4tHAulSlt1Y6x5FosFWpjAJI+z6wVRNX7NfkXUKI3kxA90lpz5iqlaGwa27ThDT8RZ4ZUospzwXPnQFoKAH5CZcWqUYpRa3HWThRsDuGzH7vXenFQUAO0WLBDWx8vn/cawLAGoIsihkRG4LhvUCdlKol1LZxz5aBhOaKwplGAYKnoBe6KgwKPzUUtqwh3h1XpNqVbtc5mSNTe8dvuzk2vEK17xNAz1GI9YOaJAoMJ2jIqiee+OYsdOIdt6ix2Z+k6PSyb7cJ2YHWcdZ9LWymMYbOtszud8d6xPraJodt2+MfxOD5X40cv4ieRismOf9gBje7gdBu1BMr5Pwv8F7IdQ4KWseoUiO4XnTqwuQ/gM1iNHUfajVSvT+GbRTc+PS6+W4wRNurG03vLxHmmbk+7l7SvUmIjg2ZjVLwS7qTCxbzcPexSJ82ipsqOndmDN9nqTIwS7dJrd3T2CLxEfw0GKrQ6kpmlsErm+bs/zz/0T/8jPP3aFTIf3dMuUf/EwmuuYMlT140KxZgPE2lW2qlymIz3P/4e+iqhRdFppiRhnq/QWnn65MDV8cjt+Z5WXex8qY3r6cB8mKP4mZDFS8YzJ5IJ61q8sFvJrCZcTxMtwTQnaoO2nlExmlyhTFj18JOkA7nNlHV1dixnqmTv2mwFLSsXNeR4RYo69E1WDvORK3nK3f2ZLBmk0eoamUuN86tb7s8XDssKrbGsi1fnnTLHL71Hfv6Cdz78CX7jl/9zTm9+QF28QKBEqNMZnbyb6IJQyVmgZUTcnTZLmFSSRHtDSQ58pUXK9pY1Ywgt2Bqfv856jK7jzTUzKWcOAms1fIbk0LV6cNIspPrViz46sA9BqXVgZQgTDVhroehKlhybJFitNGpU0tbhQCT1vmClFtd3CX4OcZ2tFU+Hbt7120KrxBod1JPrW5o1v9/J74tn+0TosVWkZyMiI8Tl970i6uuxVsgjab+zIm4kUlNmVc4FllI5TgI6BdD0ooGWN8fHuq2x5vdP2rAB3Wa0AA5dOzfAxnh+vkZxEzY0NKJxXkHDitjWfwwbjpOvf4bNG+YhTEJPwR+v7z1JcTqlRfYZ8awN4hn0AwU0MkHbZkO7bewF/zrLHOROHIctCsvjeByfz/GZNDe9CFQ3Mx3t9yHjfxh/eCPwUXgYrqUMLyF13qQfbMNKARlCP2MPjteDVR7rHkd4+KU7vc4wRhEXd0HubqMK17w3zuwAI6kXzuoBp7Zb6Sr+emueodWN8P4sBiGzR33mHlruntQo/NZBGgGAbGRNeUdrQ6Qyp4nrm2/wF//pf4T3vvWUNh99s1sNk4Rpik3dC5ehEhkxjWzJa/GsKx+8+pDz/QKLsxRlakhaOUwHpnnmSGJtjZfvvMcLMd7c3tJq483dHddXV6TsWTLUhklmscqU4Hx/oaiDGE2T16/JGSiDkTDrNVu8PkwRpbbGLM5KaZ7IArV6M0zBvEKyNuTuQs2JWV1gfCrmjUVT4ng9Q9wrxK+zrSvT8+c8fQJpWTmxcrCGXRYuy4V6XoETT7/6lJ+afo7f/E/hzUcfQbn1tOSBTCtmvYSfkHVFmnivH5XtbSIIzqr04KlZo0oOFs6fhagwibrI19/lbFDUs9EkUYNJucmJjxZYK8xaxgZaWg1wrbToj6ZWXNuVDM8M8gWZohcXOKtYtDibhhcZVPNQiwojRFTb4mG6tbFYJTvdRq2rzy2pJPPaBd5lHqZ5Zi0OKAol/k50Tg8xdpOoi2ODyTSc/ZHgTwzBNLkj0AxvuRmAwZQWjJCE4HvKQq7+PaU5+HQ742xRba7+QZQkvZear7mutWnsCjAKDhKHINvCrGyZb0KLUgzBdtnGwvRFbXE/e9g5dV2PBNQxG47VYHRVRl2uXm25WxBnrmxIvhJ4sUO63QiQJv3qPCQ5WKH4Iq+FtYXC96x4B1zdkR2hrkfq5nF8zsZnq1DcJ/8O2b/15zG6eLb1P7hIZncQ/4OxFc0bx4jFORpU7pyWsdg1VA49A4CNVRrH6tRv/NyNzxZm0sG57rMa3AG28Tlh59UFE5STsFaoRP2ct75jZIbF+fv5gknUKQlPe5jz7vB1lyo2OsSLkGVNXN28x1/+p/4JfvaPf9nDTDWxYp7GK8KcJq/TURbuTyemrKhmDxtJZl2gni9c5Sc8ecdZjmRgrXI6XZhl5uXz5+ScONWV1hbmaeJYMkknbq6uWcviG3yaQkiprG311HCE82UFg9QapgnJmUmUjLBgrFEJ9zjNzCKcW+SGlcY8hSC4uF5HRbCyslZjnRLzdMWlrByykGjkPKN57npytDau8sSpLayTkvMVh0vhpIVTnpmB2lbQgt5AO515envCLivzi2t+8hcnvvdrv8mHv/Vt6uXON0cxSnMoLeZ9olKS6EH2sK+Pn0cU0DMctjQFhdq82KP14mohXkvqoc3UmcEOcKIR5NU88+Fy4f5SvCLy7KGh2hqSMmZ4QT10CNNVvIJ0F/9Wc7BRiarFFVQrmrNromjU5qxPpiFqoz5PwksfYImkimbfxIsZCRerVyk0aRxkRjRTpVLKxZ+hKlYlWm0QjEmN1ZSwJhgrzRpZvRnqutPHbeHlRu/o/dCt8bBxFliaUZsxS8+cijBQDeCGh5Jb62t0M2ZdK04HAWFMHFDEMu6Eijkc0q5VCoDS2cyuYfJJ6fapyw7TziHsLTk2h3D3x0AU3elyI9IiW05YWxeOB1/9gGWRAIJsTl44fF4uwPbvHN+p/RrDex1Mu23/Po7H8XkZP3pYKhZhr9OygQb/QTso6OzG2wthH+yVvvnLWwBpQzHGttC3Sr/dA9l5HRsJ43/Hdp5PsCFhgLq4siMoP45nlkDoFeJ4Kc7RDcjAQGMrE3GRsbcmkE8ANIvjSTATpTU0Ob2fwlr4+bvxG8Jnc7FqojEnN/4pH8nTE/7YL/3D/Pzf/y3yfEWalHMtzJpZrI3O06h74eu6spy8Jk4SZc5H5uM1N0+eeyp3W6nlzKwT1Y7k6cilrHz86hVPn99QS+XudM/V4UBbV+6WO1KemURJSUnTzPmyYiYky67BSRM3U2JZF7BGakZZXIexRtsDK2dviJiMtWf4mNK0MudEKQaaWGsZGqlWPAxCU3JrofnxLBrVhFWviltVuAg0zRQTJhXS1UxaVq4vC2tq6DGRJkNqRfKBMh1pS0OfnbEvvOTZe1/nB1/8Ct/7tV/lzfs/oK0npGtjxbN4akt4Rg80S8F4+CT0/j9E3zIZYMUrxATL0UI7I1uK+MD+bGyQtcZ0OHBzKVxKpZhBq0ya8f5IvtGbJTCNei3VdS6ingWlUdAuFov0giql0aQGq+NAvpinUPc2DZiRc1SWpLr41xzETSGSblHLxlqjqQuQe60VD5Glbd2Zh6P6RtuZTEIsXCKNXXcbuvXFHeDfrNK73jsw8kNNKXOuK8VgRgfz1QaQ8vep+DlLNJ2lyQBMEswi0tc/oRMyto3dT0R6QN0G9BghcxlnHoLp+L867GLYkN0xpRuzDox2xmQACwMVn1+F6EumGyijA8H+3XF/W4TnBKIw49vZoGHXIgzX6+7Y+Nv+XB/H4/h8jM+kuRkIHkYNhA3Qb8BjvxA6r6Ljsx0FyM4wPPRgfH3aOOYO5wx6lvGezq5EJokQ2pMOGuh4ip6t0AHNyIwa37HRxMgmBv40p0UD3LTmfaJ0GD3GfRh1PaQXdhs2iBF/72GxnWFFEibmmS8Y03Tkj/7JP8ef+cf/AeRomEwYaehCkiWmnBEKpa0ISmbG1IHecZo5Xl3z9OlTDPdym2Wm9ASJom2X80o5w7KcWS8HVCZmDqynwvObp6zyhha8dVkWNCdK894+FUWjLUPSRs7qoEYMs8L5fD90Gbka9XzhclOZ59lTjc3QOSPrCs1YmgtB52mmkbDLGqDGOGSlUdBk5NZo64mcElobC8apXJBSmeeEkikI18fMZRKuTiu1WoiyM6iyklhZmFOmrAvpZeJr88/x7le/zvvf/i2+9+t/hzfvf5/VLtFhXIfOxsvfN+/SbWMVgHQtRuwSOgWHYKOgpUpjNHEiwFBshqYC2gGrcZ3hw9UozYFxB+ramoMmS4PVaM3LBTQJD91i04pFWWsLwIVrXsTDPk2I7uONao0eggMjSWOtlWJ4kT7xwpVZEtQpvrthbfXrwqB46CnlKQr0GYXo3G1tFMeTQVe6UFdaccDaWlQU9vmtJGpwVI412rBDiDKp1565WONIhNBa7Vnbm5MDhOp7syexyC0KhUokBHTr5YlV3Sljl7ntYaJerLiFY/UJYW+A2O7ApP6dD4afxNvFUS3SPKV/g3kKuGL+PBDy8AL7YWxXj8wGa9yvQXfO3WB2BLd9PUy3c9Yex+P4PI7PFJbqGZODPd2IFv+lg4j+WrzfK0nEL93YEBt8bAbbwTrGcalb3ywexIzjfGx8atPmWDdEON3fF3cHO2PYIHAYeQVmA5hEc+dexmuwQZ2GFvOmAwtGad57p9dLlmE0NiQoeEM9EQndZo+/e38eEYNU8ZobHoqylDlMM++881P8/X/hT/HsvSdeaAyhJdCSyFNmTtFjyIRLceHp4ZCGR3t1feRwPNDLtWvUnxExCitYYk5esO++QFkX5mPm5urA3VlYRHl684Lby4KWSi2NcllIJJayUNdGS4ljFtKcWIqzKrlWsANajde3rxzgzInrNFFtoa5eoJBSqEWZxRs4LprIzNSykhSmyTflpC64rbYwRdVn0Ryp1l6NV/G9spSVSmG1BnkiNcMmQyQxz5m1VMSUXASZMpWV2jJzSuSXz+D6GV+8fsKTr3+FN9/+Lq++/33e//73acvHtLx5y03xRqAY1rZsO5BgpYRmxRttphCf9w7OIogmsOYCWgGJ4FIPD2hbuZom0snZm3kSSJUmHhLyZqsFM6VZh09euwYi2yWqB3veVsWoo2JxCzG+4xhvAYIQBe1SZCtBNaOUFmnxPqcbQtYeywl2Rp3BEPHaTrU64BFrnkQg3ivMM6FqZG510Nezg1qsOe+jVZqXBIioFl0Jhzrb0lCSwCzKqRpVW1SK3pa7Zzh1ENBLSERKNWAovWaEhxZl6N6GbA62TuPS13DPRmIAgw6itnpbrqET2HQ6Mszh5u/1H4cH2dmqnZ0Ko5XF6whZtGNAvXP8diwZhljAxdU8ZIuGHeyAaqDAXmwUepLGI9Z5HJ+38dnr3DBst4vk2ABNf5Ps1ljCY9HuGfrm2usu9DBQazvxZvONKikU23yt/oVOynTGRnmgcdl5Y9u/m/F2Zmd7n3WXLViXXkCvh4f2Y3/MFp5bkugh002ZiGdVdfpedQND3eB1wBWATcWhH9Z9ewc7KSUSM89ffpU//U/8Jb74c1/zNtFro1xWNDzHlJSUQ2HQhKvjEUXRlJly5upwiC7RnlWWVDlMM8tlYV1XLCUO0ww5M9mBfLiiLIWnT58xJWVu8MOPPuaLz19wttd+XIHz6cJhnlhbDrmnYLVR7lfPGGoBDdVTvfV45PTmHlYgCVpLsPCKrQsmwoon7pocoQq1nMlz5vqgXFaJ0v7GpJCTPz9PYwaR6g9FKkbxtgOtkWrjfj0zV6NmSHqFTZmkFdbo0C6VSQlNkDBdTcwHyPk56frI4eqGF9/4Eu98/2N+5zf/Nq9/+ENo914PpBrU6gLd2Bi2Dclfa+ZBqdp6+f0NvIyeY8GYiJfoJZnrR8SEOWeupsL9snA9JUybs3sWaeYRYukVeWmhXbIaG7nPr6wJS8ZSV2pUQu7pyYb33nLap3qlbcCab6RJo72JOFvlIaqMZhc5J81Yq9CK15rpWrh6CZGss5xYb2wZayS+3Vtf+I7verdoExCMVJWoHiwM54IWpE80Bc2qUBpLa9Hl3LuoD1XU0KjstHGdOQv2qouQHyx82VKou7NTI7Tm7VfoqMsBbgC81npoyCtLV6v0Dt6DMdm5aILEYWxDz7saXsOVi0QLbQGWNGTO6sZpb4+7drD3ENtf2NuAZU8aaZCOvZP5W2TU43gcP/bjswmK4aGXITttzQivPBw9ft9bDBAGpi86p0mjroRsoS5/L8HayPh1r7/py7EfuvdjajuDAYxMhh1M2n3B5mX10BHmNHoTBzB7D3BjfJxFyAqlusBSenZPT+8c52q789tEydrdtwBZahNoNOqT9/jmz/wif+wv/El+7he/iR4TZfX6JXlyL1MlRaa4e7CHeSYfD1wdDqSs1LJSlpWcJ6/yCtRSuL+/RUWYZhcaJ01kTRSANNPkxO1y4cnVFaLw5PqIivDi+po3pzNLWUmHa6YZnrQbWq2syUMxZVmp1kizcGjKqXkI6GlJ3N1eWFbjlCBPyrFVJDsgLMClrGgzmF03VG3lssw8ORwowDzn8EA9t0UztFpQaV612CBJo0jFqm9AuVYmFcwK2gRZz9RVIMNkCjlTMZZWuLpOnM4rUhemJqyzcv3kJdfPnnL7w4nL/Iyf+9rXefPd7/CdX/1bvPrg+9RyiTowDY2NO2mkTotPltw8M8qKRQbNpuVyJtNDbgExaK2NfktVM7ka86zcLsalGofm9yegdmz6LkZGNEJ9UVOmESEvAfH2Er2xZK8z06dgteL1d7DI2AomVFwbNatSIxTnlSwrtbWobty1O0arNhZZs0qp6pnTljGpPR/Kz8kUUw+vISk0Ks5KtBahteaAzyK2ba1GyNOrJBse/p0SpGLRTZ2tHo5tjsXGRbgl6CFtz2iKAobSGY6dfRnmRAZwAzYwsrMsFvfQWeetdIWN6ujRGFd6VHITpXcD1Bmgty1W/82z66AH0PaM4VaAcPtcT67YZ31ujLuMrxrMkfR2IfFq9NV7HI/j8zI+M7jpmSnBePprBA3R7RWweSOhTRlIZVu6KVBDsw0ESRQjw4wsO7bIugcmm2clGy3caX7fLdru+32TUZOgyjevCaJC6cBd/ouxeT8dgFhnffZGAi+kpiYUg2RCljqufp9lNVilkZUbZ90848YkkfSKJ8+/xJe+9XP8kT/xh/jyTz/nC1/8Cu986QvUVFjvL8is6OTnUKtGJ+nMPAs31zPpePAQTC2IJg5XGayRUGqtUBs5ZUopLnFNQllXJLpFp6D/T3cnkmQOU2JS5VwXrg8z02UlpUS1yrrC8xc3LMXI1jhM3rH5flk5XRasNm5yZqorNR1Z68Rv/+CHPLl5wfEItly88OHhwKUUavOu5FbA1ovXFs6VNbmYtRbPqFnrAoAmdQ2Juf7EdxXzHlxkjMYlFabaaEk866osVM3MNZoHksml0LSCFa7VRbWlJswW2t2Z49MbXnzhGVcf3fOb59d8+ae/DteZJ7/9jPe//R3a+db1Ic3DRR0oW9fdRGC2p+lKzBnpPaJMaa264Nx8/notJkU1gVaupsSUEpfSaJOR2j60or5uoi+aRsiuigtrk+pYs5MJa0s09RCUpEgZb41ekVcQqF64r8U6F1WyCDk7CFYyq1UPbTUhyYImB6oEQzu0Kp5zFX9rPWcL4twD2sT3N2diOuuJH2hcq5mDoAACnflowXrNqXloqgpTqpHq7vanhX3ZUxQ9i6nbrK1MBCPMNszbrhYOozpwt0HxmQ5UzPmSbsF6SNg5ok4I2XC8NufQQofX4/dtwzg7ltrZGwd/zRrJHjqX/lUPAU1gbWdypDtf++sfhmsU8ZO4QW87rY/jcfy4j88EbrqYTngrGyqYGM/6sL3tGKW8Kw5iskqEg7ZF1wXAhkGz7XuiyJZVf017gDpASi+ZLzvAYjtfpi9lC0r3k6GmB/CDVbyXzp4X8uyXXe2JTu9G3qSIcBC4VE/Jzql706NcH5tuKP6lh6aEPAuqV7z3zs/zi//An+Crf+irPP/CgXlKpHzNl7/+ZfL1zOu7iuTEccpoEmq7kFOGlsgpcTxmcnYgQ4OUMzl5iKIsldI83TflA4jQ1oY2JR2yG9mcos4K3BgcJHNeV2ROSDPOtTBNEzkfWAQONNZl9Q00KVc9ZJETE0LNM+3NwununvzimsMkLDZxeH3HMU+89+Ipt69vWRCez4nLWji2J5wOJ06XlSQzpZ65lDP3t5V5vuKQG+saIREVLyRnE616iKPUBlK8CWMz2rpQ6sJpXVBRsiiSMqkuNBHWYpiU2PQrLTeYo2N4BmOm3DbK/S1pKogUypsLy8uXfO3rP4VoYrq65sNvf5vTqx9Ep/BNJJy9NE6Ea4ymeaRFpZirPS3Z8G7VrhPzkIYDjQJSmUS4Spk3y4WlGVfNAYOjc2dyOiRX9fCGxHePvwWRMInrxLpsmBAV+/66ZaOVHvKL0JUmz+TKUcBAFE5rpbRK08ZsXnpghLysYhZZQogzKLFURRK1GfvWEN6fIaTCZvQK0T1Fudd9Ed3C0b3IpjMvQtaMlkI1Y/IbOxyk7ngN/BIns/19q0TcgZXYloRA6N06kIkUNGcOI3PL0UBna/q1OZAZ4T+6w9XtTDhQunMcrZO6rmUy6SwTbj9V0OKWbkXIRrRj2LR8ji4DmEQhPwumxi9dBlMkbOx5b1dBDe1NP5nH8Tg+R+NHL+K3OTQPXnPWMujfbkl2ML93ufZFyKCKBwAKY6cqg85WFRcS9vBN9Lrppc9HCGnnhNkD5PLWShwLnvHd/XMSYGP/UWMDNd57JiTH8SGBUbrcNyoboQYjCmDtwnQS2iKEqMXqzRGVzCTP+bk/+mf4M//Yn+bpO8oijZwzx3Tk5Xtf4Or6iqV61d6rq4OHABQ0HxDLJDJ5EkSKi1KBlA9Dy1GiAaKJd412j9CY5pnLsnAQIeXkYlMVllohKUWhrZVpmhBR1vuzA5XpCZMqN8fEx+1DXq0XrqfZO4vfHDCrXNqCNmPNr/l4Ucr3f8DzJ1c8uX7C9dMnvKrKV68PPJ8OfPDqluk6mm6eL6gemK6MqVREF25vV86nM1UvpHzgxdUVH53eUFpBr4/MdvC6LGe4ryesQkrGlGdowuX8hvvLyuVcWOuJuSlWC0V9M2hWaM3bOyyXC00n0mFmTsqVJniSuKyVu2JMh2u+9uyO1+dbvvDlrzHffZFDa3whzdx+7zkffu87tHYP0lhaJelMqsIiPl+TibNM1kK35ZNNxVkolShXFwC1V8FtUeL/MCferHBfVg46I9nnXQrmclTTtgK06P4drrcLKGgoqgupNlpNrvGJ7KFkUKWHTrzjezMHQKppq6tiRGYUzFkd5JqymHmKOI1WI/04Rap+9RotTRuJFsJ2d0xqc2FzZy4aFpKTXfg6qpp74TvfoPu6VnW2sRioNZLAWgoH9UKgLViKQAtuQ2Jj78BqDwCccQrj8MD9cQOxBbh77pttNkQ6k7TZOUFGKFqs2yN5aKa6UepUkTlopXXBsvTTDzsSDp94VmcT0BYBt57qpNuhOwOnEnY26CiLitb91Ds4kn75AwjyOB7H52r8yOBm8BA7kLMp/a0TKoBshgT3Mlx0rKzqXlnPKop3h2Fpo8CVje/z33pHWzeb3QvaMFTX5HSxsCKufxlAKPaKvuZjs6ld8BdXNKqF7qxOhygWbFEXJPYsCCJOnxHX6ZhnbiQJrzDuhSaJ6xKQ8GX1KX/yz/1l/vQ/+feTnl6TtXGjmSaF59dPePbyKSIwy4QdDKVSygKa0Tyh4qEKrFKre8s5p2H8UsXFvRPhxisiGcWN4dXNNVJdU+HPDaZpZpXC4QZaEZbzhdq8a/Sb1/c8feeK+9OJnGdSM958eIteP0E0cdfO0CoqiazCfHjJ+uxjTnbNR7cLp1cfU9dbXhzf5YPvf0B+PqHthMnEupw5Xc7IJLSlsVrjvSdfgvwKDhPr6cCUD9hN4iYJH92faatyc/2cWSqnbNyUK9ZlpbXG8fqK6zRzevqMfLpwvr+l2LuoZLCV9faOer6DDGvL1FpJzVjXlXSpnLNQp0S+eYrO1zy5HFlsARa+egD7/q/y+9uF+/KaN4cTp68deG/+Gr/zgw94c/+G0iqnZWXOGvVPlGq7dgOmHqyy2C5L827iatEoMkIvFXLyFTMnOKTMqVx4lotDGvFQlnfWtg0Q2FaWoLX+c6M0L4OQBUowSh4264yBC199PVlU9A2GxfCMHFxLox2YdS3LThBcqT7XRHx+mbNDWBQIdAoGMbcP1VEKEkwT4j2vJO7PTgACVkcKuJhF803P/pvUdXCXKrSmpLQHfTZ26UYwGW+BkAe2K/7wsGxD/0wwzL0gnnQmyY/eDZb0ujWy3d8RCho1Z3a2poOfcR67bKx+TibDqeyhpmbdBg7T9cB2WbSZoLkmbAvxdQVSnEs/8e6NxW2XR/bmcXzOxo9e5waGVzNe22lXxk/CJ1B+iuXp2U+yW1BsRkd8469RZTSLkiMWH74gqt6w8O3zQsJGB7DJEQf3zIReHM92VFM3eBtno3FeELU4sKhAup1jb3jpRs8NqjV3jyb1OiSrGVkF2XUuJjpCt+aCzqaZF8+/yt/zp/5h/sJf+SX0SeJpPqJilOw1bt59/gzJQomeUZoEK66XmeYrJCesVcxWMO8J1QukWa1ISkPn1PsWpez1Vly0vW0goJ5xIYpKQrNyaUZOGVVlmma8SvLE3Xri+nggqfLsnffI10a+OpBonNc7PvroI+5v77GlsLTGqZxY35z54I3yE9/8Kt/65u/jal45nysffHzH8VxZppVrEpeUKHdep6aZ8sPTt3l9+4rp6pqrqfL6/jU3+owXT15wf3/i4/OZFzfeM4q2cskzuSZqUs6tkWfhOB9ADtyVgi3C8ebAzTGz3Lzg9nQiJQOrrOcLd7f3PKPw6s0r5mqU0wL3P4DrK5LAO7f3fOX17/D8tDAptCzoIbEc3uVUb1nn53z07jM+evOG9z9+zbdffczd0pxVCwkFreFVpyGlydmVCMF4E8waRfySr5U21GpkEY4pcVcS51K5Tr4gfQ1soU4Pbbh2p3fDttY8dVqaz9kAG8amd4PI9KlR2M7Yqgxbr8UU8150hDqjDjCzCBKZYU36Z0L8G4xhBwOjiGfX5+DOSASjBpbRMCrh5sT67JlcYXvCDvVg0JyUpVSWEGYjW2HPTcgcoGEXlnINFqGvCVbHwtHqNmZYO6GHpdx+tQAdzj1FftIupuaf7BWtu6PWi59KB45h0ET6vPjk6H5VP3w1z9jUPZUNoy/fsEO787XdsR44iXtdzw7P9NTwx/E4Pi/jR9fc2AZuuiYGNrp3AB0B61UzwWPu6u/Lol62vWttcJ+xa1AyoJqo1gaN2heyaxEfLkronkoYKDOSuMHoqZpukBSR6r2ibDvPnS/oDE+AL9f26KD6+xJ3Sj4MSFBZ6tXanGpPSqkhcRa/qqRpxONVlZxniijf/Kk/xl/6p3+J+d2JlDPWMnI9MdXGk+uJnCNFvrrxnpKS8hVJM6CeGkvyOLs4xW+Amnq4BYGkpDl7unKckws1G1ai8d40karRxM9VwoOeDwfydOByPnH19BmGMlnFToWkFVX48M3HnO7eUH+wUNYz60KksK+cW+Wjj098/P4HfPTRmUtr/OC3fsh733iHS62UO+Pluy949yvXfPThh1xu71lMmXLixZMrLAmTXvHFd77koJd7npTK7X3jt37wQ66LcbQj6+kV7//wNXbIXB2u+fDNiXlWrp9d8+b+Q6abmWfXX6LefsyyKIfje6yRmXScrjkclFYbr+xM5orDbFxzJOeJJy3x6vw+890HPPvwQ760fOxlAa8ncjqwXB1hnuB8j93PTGVimo2vvfsEq1/mXjMffrDwX/7m3+Y33/8hF4LBkxZp7AlRAyqiXqhuqDWCJezudu+NdJyVaZ05t5Xr5mvN1KLyrKFqQ4PmTIFFmMVFzQml2TI8cWtRB2qQKZ1xjFUxyiV4zZpeWqH2cEjs+J4q3nyPj7BRdy1EdDgpsru+FmvKorZTiqBtC7jkgCfAEtaLOtAhUAvLETImZ4XE2bCscLbKHBWk94DA5SixeZvTT20AEHpkaYSrFPE0eQk7EcawZ+2Nz+HicKLFSrczWPPCgFHQ09/XZdWbhkfCGRtV1OO57PtFdXbFHa7ecFS8QCJhW3Hm2pkdG7b47erHmw1/26jG+fQ37to1PI7H8XkZP7rmRngo3I8aC6MJG8GGmIzaN+CGqHWPoWd4RFjINSJubbqwUbCo08HoldOsDc9hlGaPL/Bie12ct2NphhHoPhJ08SDx1y4ILriHo7bFzvs7dfcZpaeFW9Sz6M0t/ToPptxL9aojLdFxkLvdGameIv386uf5R/7Zv8Q7X32JHCQMkt/UfMhMKaPpAFk5pJWMIDpRhZFSr9W8YWdnlNSbKyYUyS7cBg+JmDqw6gZcRbHJt4pJxOv0VH+2OU+YeVCkpYYsR4oYbb3ldHfm4w9esawnam1Qind/VpdKLmqc3px5c/uKj374Mec3Z5bLynJ3odYb3vtDP8GzG+X7H3yP45R4/6Pv8r3vn7jJSikJEtQ88+tcWM948TqbuH5+YLJCzjN1vuL66kB+fsVxhcth4sWXbmgkWjG+8oXnrMstaymU08rp9Jp2uDDVhY9er8wznN+caHczN194STsX8nzNshbaemE5NY7pipwzz14+48mtMP/gO3yxvEYlUdMVdZ6pGZa18eYH99x9/AZbLmQRJpmpU0FuEjfXxvOvP+GbX/+T/NqvfY+/8au/xvdv36flGnVYmgt+U1dviV9Hc82MBBMw0pWBWROHVLiUibUZOVpDt1ZBElZ9c299o2wFTL2KdIR+8aR/UqSEUxVrBaOSZY66KbAEM5CDCSrm7KRnQjWv8SRKynhtHFPPsml1cLkuJG7RAkKiWjGx3jZ4Yla9v1UHZdXB3SrVWRyDGrali3u108m93gvEz42Dwrl6VeQjIbLuYKavyQ5ymuvroMUa8+tOnd2JnV7w4oba7dmOdRkGyb0DegaVtP63hJqn0ms4dw3ZmKG4rt72IPXDDSauWy0L8KPdipHMsz5bOHduDG1Ex0Q0GDPX3g12px94OIrdi+ygD6L4zyfp+MfxOH7Mx2fqCi7QyzbEotnix/5aAJTda6NoViz2XphLI0UVM2iNNkpiWhTm2orqiXbI4Qu0szXb98a/cWyvSMzOXdvi1l1MKOaFyXbEDOpqlJ2LqRtV23U/OwDkFDn0ahNTdEpem5BTJbVMS65BSWZofocvPP8D/OV/6p/kW7/4Dabj7MXkWhlCwykpc86k7HVpNM8QGSdJoj6GGUilJQeC3h3ZG2cmsl+/ehwkpxyFuMKLM3ORp0ErFdVMSyDqvnVLsLaVWiqny5m1rty9v7C+esP9+R5ZKzkdEIn06lV4df8xp9f33N2vvL5Xzq8/ZL29ZamV2/t7Wjnw9Z/9Av/Ff/jv8Mv//n/M6f5jWgPVA4ecQYS1njjIkZbBJkWLcrhKTIcrpptEWeH6yTOunz/lydNr1vMtM5njF97j5vqaF194h/n6iuunzzjoBKlx8/wdrK2cNfPy2ROuXigfvn6fWZ6jNxcuH3/M5XTi+t0nXF69QS6NL3/9J/n4Bz8AveaYhfnN7/D08pqb4xVlaZxT4Vwa3//ND7l/ncnzFZqfwvyS1i60eQZbkfNCaoZOF47Prvijf/D38Qe+8Q3+s7/9a/yH3/l1fnj/GvKZQ07QcqTeFsQSQm/8aF7bJXZiw4HGk6Sc1pVTbTxNgrZpbIIWjIhY5ztKZPu4hsdrKyoaRRYtwlMpQak4SEqbKs5aWIkOBAbo9/Bm8gWK4U0pk/ga6jmLPWXaGQkvLjiC2MEqeUq8YbVRw/EZLNJutcWuG1lHDv6iYDG9ibuod41KEcIulaG/G2Gat5gK6RRuG1Bm7OfOGMmuBMbgbmKkjaYe1xWAgJ5aPr4QhF62kMHQdeQU56SbeQmHRMZ59vtv1qJ/mTdkLTtuS5uN+412MLQ796Gn6Y1I/WL9+mww5d2mblf2CHAex+dn/OiaG+VBRmAsXeL/nQ6XACvKKPjkjkzrzPaI5TZrI/PC9+FNA7M3Lk5a7zMWZCw+g1jcTs/XGjqbKN9uu0X6yQvqpesFjeJhLY6ZunEd1xnGpHfqpifdGjoueSJROSTjYs6UWGpkmcGe8JWf+AX++J/+0/zhP/OzvPONd3j2ZPasMFNKmqC6F368nsk5h8dOVHf2fkbSvBEhUmni2SxmRtbs54aQ8xzMloegWvV0efr5QoiPFZszpRmTJpa4w0u5cPv6NafXr1mXFa0rS2tMTGSU9TpzOi+cl5XzsvL641vOry+8+eA1WQuXu8Jyuue03HN3f0LyE3Sq/Nv/+/8dt9//iKaQbQKD9XJPScLh6ojmK8+GqWe4JJbaKMtEO7/y5zRVrICYe/mkjLSVpldMc+JwpeSbG66eTqQnzzmmI0+ePuHlO+9wuDpydSWQnnD9NPHkva/wzpOnrOfCyxcvWBYPveW08uqj7/Pme99GnjznvSeFF9/5LteHA0rFMpxOb/hbv/wRtgrXU4a2YjJHtk+ipYxkML1CJNHqhfrmHnlSefmFJ/zZL/w9/Oxvf4O//iv/CX/zt77DpS5kWSJE04v/eWi0hujTeZAMeLmBq5xJ4t3SqRXL3l3ImRCN9WGx4zuTgb/VQz4xV8QUa6s/ExWkKSX6Tfl99kVUWvX+XdEOYbMHzQuixBpq1jwxAGc1S1TtrSFGVvGMJwkGwdeqp4wrEkXuGAtv9MsCcmRrjbRxiywyC7sjbNYjcponlNK8qKBoZ3d0Z782I9HraHViA4jzCzAXYMGzPaORg7lOrYfw4kMOFOLQvamq2Sbcj4fibx/KOBnsEKNAY7eXG73SHcqhY8arXifDGeidfR6CHjohE/baT35nDDtgGqZxjBaNsx5hzeP4vI3P1hW8M5od6AQ7ui0G20DMeMk2T6UTNeY1KZzl2ZajxPdEGQf3yuQBT7IJ4Ab42AzJYJK6ELi/EVysONIUuigxMqRky5zogujx1u5ndsEmQi/y0zNIujTCLDFrwlvwCDfpmi9++af5w3/il/iFf/Bn+NJPfpV0NfP0MJOvrkhW0eoF8JLiFYazN/0L5nv0xUrBKqlF/eWoUJyzeufw1L33EB+buefbAZHKSO0lz1vvLPHNqyx33J9P3L2+xU4L1TxjSRrUlDgtK6XBx3cfcXp9Yr1r3H58Zl0W6t0r2v2Ze8us6x3ncsd3vv1dfvvXf5035wvLuTJp4kmeuFhBJ+MwXdPaU3Q50ZaKzd5puuiEHrwZ45Qm6mFivShpbjS7oKv3axJJFASzM/PVAW3C+uEr3nw4IdPHvF8reTry/Oa5h+pS8X34KvHkxVOeP3nK9HTm5Ze+xDsv3+Hw5IbnV1dwrvz0T/8El9dvkF/7WxxaIecDTS7U04Xf/jsf0u4nDtfCpV6wcia3QsoTZke4X7CDoE+8AN8k1+h0pNVCuT1z9VL4+k8/4y+9/FN86/mv8P/4tV/he29ewwSCVyquKM00WMYohRAVsU2ALByzcipQmzJJrKnIVPMMmfDYk4e1kih1FE9x1kYCSBWr5Obf0R0WAjgPzjQyC5vV0GY50KiA9OwlNkHzRs5sm3JnJcTMgZtEEpT11Gx9EDraMy02mln2QPOucrhttbWMzYGaxAX+S4NZdaRRs7MXD36nr+Ox3QeI6mxvhIvifvs1b0CEDiAghNiMdP/ew6p7ZRrXNmijsFU9s6uDO2tbgkMHUT0BY9g2nxLU6sxrdmQc1yTjXd7IdbNr/bPCdh/6jRh2Tbbn/zgex+dpfCZwE7hheFe9l04fY/Pfx2fHurHwdIiifQ8BSTMX7SXZ1ruFpUnqgsRu7PfAprMtTvcObBUHca9jy+riwe9bsMoP2CnoAahkrPWx2j3U3c+jC3TdH2zqmoArPfL0ydf42Z//+/jpP/hVbPkh/69/92/y57/0Fd5555qn1weqVqRVVGbS1Lx0fNReGSEwBDVFtXmTPASrXhU2WYpwnSCTP0bNid44sYfKNHnPnr4h0O83haWsnG9fs9zfcXrzBq1QTKhB7TcT1hXu70+8ub3j9X3lfHfH8upErhcut7eUc0HJVM3U2w/4tb/zq/ydX/1t7m/fRBfvG6Y0IdKww8wN1yRZOB6uSUm4fu9dpCqXVx9ye1rJtXKYJopU0tGr+l7agrTiGoWsHJ8/dZBXK8udYFZ4+uyapbxE5onpWtDFwZzmxIsXL7k9Lbx58xG8uqPeL7x6ceb+N97w3f/ol0EhTde89+4znj17wjd+4qs8u77ii5fKNCsyJZIdqanw+nJgejFhNUG9QFloywnyhZoK7diY6hV5ESxXWjpyPFx5qDFV1tcfc7gynr1zxR/8gz/JzZz4v/7t/5LfvHuDVRe9++OLuaYtIrcOgBWhqnGVlLulcmmNqbVYi70VQfb1ER24fVNPvh5aG2urWS+AFy+rRhhjczCEqIUTfZ06sg7JfzBOkZNorovx0K7sMiv9g9G/M+qsGEQB4G1t97BJHQypZwAGQ9GhVjAo1Xre0j4DychRQTurn8OCRWsORiFBC7vSF/l2hGHMgpGKEI9GSLhF2joa4udOwtjug24rhtQ4Kkd35mTvcIEEyPLPOd5ycNaz1Bif29/PDlR0gDtFqdao1rPM3mZcNDQ3PY2dB9hs3y7mLdP+OB7H5258JkFxX0+9/9M+FXy8b8SMNjp0oKLBfrh32j0ai4OP9gZhkJM4YDCzXaRr89FEdZTR8rTX4ZYMAbSDKS/B7uXUZYCjSYQqEQ5rXrZ+sDc4eOrsj3T9DVv9EA8FdY2EABNC5r33fp4/9Y/+9/n9/42/l+fvwg//vb/GD//2yssXL7i5uiYfnDIXFWQ2SMlr7+CZHV382z3IUt0wJvFMEpGMaELEqxP7vUiYCBn3nGuTAH7iRYutoFY5L2eWZeF0PnN6fYfUxmIFYeY8F1rLUIwLidevX3F/e8/9xx9zKSvl9YVy9wq5KJd6Zs5XKBd++OFv86t/61f46IMzJzJPnn+BJ4dr1qUAqzN9AvVyQucn3Dx5gqpy8/SKm+PELBPXX/hJPr59g2rjXJQnxyec13tUlWUx7j/8mNPllsxMbsZ5acyHxvQ8owpTS6SbRi0n0rlxWhpXT5/CeeXVD7/P8Wi8++41r95fEKvc/vD7XF1lpsOBOc9kGq+/+5t8/5dP/Pp/qjx78Zwv/9Ff4EvPXiKaWeqZS1spolwdnzG1Qs1CvTfs7GJks0K9E2xdSQ2mpxmZjsh6RvUJV++9i9w15O4HTLUxvzhy/JmfJB8T/8Gv/Cr/5Qfvs9rZgatEMT+Loo+6oiSKung+z0a+wLlWrk3JSTyVWBPSGq2vFnHA27UVxojagEMJsjWaKklsFKeU3Fta+Pua1rG2Pa07MhBlS9NOAOJViQlA0oJpFNGRWt7CHjgbIg58jdD01FjPbieSKRVzkXPPltyxCl5TxytWJ/ze1FjLokauwhqsliVDQ+UfkjRGvReCKRr6Pv9bEzz81qsU43bQEw0EsRJ2o9vByOWKtO5efX3DCgFkFKR2zaIEw0rcX3/JWbQd+ujmrxuweA5+VypKY21QaMwhFnb2dkt82ML5bDIDtdHEdf9V3RD2epKPvaUex+dpfDbmJkIk4W/QY8/aFyjDsdu8AcKADK8rasqoe3hDBifRHyq8BxvEqR9KJTJ4BpXSBXOyHZNuiyMNNbytETfXHVsj27n4NXSw5eLDURU5YvrVbIThTL1nj0T6dULRnDnq1/n5P/KX+ON/5b/Jl/7IT3I6zhyuXnE+f8TLL/wsz955zuEGkm71M5JmiAaYqinur7kht+rXrUIt3cub0eRGaNJpNOmU6B+kllxcmDQ8/sJS7llPZ9Y395xPCwtQLkuwABNGpphxul84Xc4si3F395rTm4XldEe9fc16e0tZF8SuOGRlvX3D3/nuL/Pdb/+Q+zcNmY8cbjyDaW0LcjVxrUfW5U2EyBJX115hWVoha2JKmdSE+9sPOL1Rbl48ZTokruzIdVbKXWU5LbRmvPOlJ6zthnoqHI6ZnBtvPjrz5u4NtSQ03aN1QsWYjweezZnTuZKSonNjrY324UccqJBmjnoNlxNvbj+CdOBqOqCLobNS7m5pJfGcFZtAtEIVLiewOZGeXJNKQ9eFY84c3j0y38wkFtp54XT/inV5Q7tcwXxPMeFoE3a6MD97DykVW3+ILAs3z1/y+/I3uT4cmP/zX+M//d6vs7TF2cronG3q4R/MSM3BRQaezMqrc2VZGlkmn9KtIVSGAtZ2mg41ajHMlGwAFUnRwdu8q/oIYxgkC10XycE0XdAeOoyesdMBCmvYChlZNhab7CZ03m2q5lk+nlEJvdt1B0G9JxxEpqX0jMtO7wbbE1mYNK8F1BtRNHEt0dpcv5RIIxuJwaTYYHptoL5ez6c3TOgeWgcqNgBItzVbhfQNsDyoUjM+EI5T2FO/L86mJXoxJOvvCvbFovkpg2WyeN3LCPg9n1SorW1FAS1uAuOj3XTGPZbtyrooe3eu44oeWZzH8TkcPzq4kZ6wONa0LxI60BnL8YEgrZM2nYbQ4clEV2KRXbq1DfA0DIcN1UuwNGEZpRtPeygC7N8ZIKlrayx0By08pMYuTt/Pq38t8WKvMgzepNE8rV3NXOtihqQJRZgP3+KX/mv/E/7b/+Jfxo4LHywzl3ZkunyX5Xsf8+Kn3+PpkysOkwOaOc0I3gvHaKycvZdPc3BjvUjgiLu7MUqo10SJVG8hQmMSBRDVr7eWlfVy4Xz7hvObV5wuFyDRdKZqouVEEaUsTrN/eHfPR69eY6Vw/+ErltM97W6Fu9fUljhM3sDx4+//Bn/r27/F6995Rb16ydXNe8xPhMv9LZMk2lyx28U3xGZc5Zl8/Zw5HTheCcv6AVmveOedFyyv79DcePfdd7HVw225ZordUyzxpWcv0S9fIdW4XCp3pzvaoVLOCyIzN9eZ48EL2unqDTfVm+xwfXXDNJ15c744S5aV1WZyLaxl5fp4jczPuFkbNol741lJJcHNc7717hX3JN6tiTobdrpQ1wLTFSIH33iPmeOz5zx7+pR5LiRZEYNymlnenLl9vXJ5fUt7mTkcEumuodMzjk9fsLwx6u1HpGdvuH7xjK9P3+DPtplqF/7j73yH1aoD/mTh1RtqiRpFIKUZB08041Irx5aYVWhUTBtiKcoibKvT8GPW5iyLSmdX1cs1mPOQXV9h4todLJqTSgida6OaRCUoEKlYhLMs+kVJF9hFGLRWb4a5WYtuJzwUXKVXfemwwMYm6+GfztvuNl2LTKEANLUDIxh1f9wPiE7hceQWrFKK4wlbiKuLhntIaOhvhoMWyADvSC7q99H9vl0mWL/SnTM4AInYYHs2fVIHowE04r1dZL4VHZVh23rTzmH94liNwJaBkVy35Zqbrk3uWOxBheaeCst4dOPaH8HN4/i8jc/WFbxrXmRbj3s9Sw/jiLBpB6CXftgWrEYTPcIJTD2HwbqzsoEMul5kSyXvgMYN4/hy3Iv08vJ1GBI3CD3rovtEnbyBDahBeHixlnuWkRvoAEpxXZWMpMKcEgd+gX/mf/w/5y/+D36ev/4f/tu0Vy/55j/4ZzE9cP7Oh1zn53zjJ7/FO1fPORwOJDm4mfKYGaYrUg10oUTnbiDCS72OTKervQN0kuQ/9/oe4iXv1/XC5f6ey/nE/d2J5byAGadiTFNGZMZWuFuMN+dbKBO3tx/z0QdvWM5n5P4NerolnZ3CT4fMq49+ix/+J9/m+z/8CLUrDk/f4etf/gLL4UixV6x25sXVl7i9+xizmcOLL9LsDeVy4c3996l3jePLr9Bq4cnxHZ7eXHO4Ut57+cJBzXrP1dPnlHoHbebu1Q9ZZOF0t8Dr2UWxJuTUWPM1h6uF9XziOBuHq3cwMS6XC4VMWxaWsvD6/IZmC0+mA6Ieprl5+owmyjRVLuczp7UwTQf0+opyPiHlAJyYWuFqKZzeXDg/XTiUa05U1ssdKR1QOUCCqycT11cTx0PmajqREShC4yVVT1wfz7x68wHLRwtvLgfa83eY7g7UFy+4evJllqKUjz7E1jdcPX3Bt376m/zlA+Sm/I3vfoeiC7X6LtWaMy8mvl6yZBSvCnxpxlorU8+OMRltEpAdqyBe5I8Sm3Znd2LyNwPtbJEvdwcCYrH2ozeZWBTJDJEzoYuR7CUFRkNMGSJ+VY02EF1b0yINuqczy9iIa9fAdEeHbWN3++AtHJzNcWvRmn/vas31MbgzNKkwN7gYlGZEFNfX1nCmHHD1QpgdyNWdTWtmO4Dhr2s4bQ4MZLBQxvbebprcUanhlG0sD3Gevbpxi2qK3a72Iol0+0iE67sN24UFu52qRFHOCP2N7C556IiGORlAZktp306va3PEeByP43M1PgO4iVoJXbUbaD5IXGdlVLxmhW2Loac0b8I42UqCR2ppa5B1x9jE53plUa/Y4TyFK1y20bMwPBJm2/eJeyq9j+8olKUCzULj4l7qKFosu3ON10as2iTEzi6BFDOu9QlPn/4J/t/s/dmvbVl25of9xphzrrX23qe7bURkRmZkQ2Yy2YtVZFZDZrHYFFWqEquhXXKhJJUBG3AJfjHgN8MC9Kg/wX7wmw3LsGADNmRJNqCCpZJdDVlVZDI7JpkZkZEZze3vafbea6055/DDmGvvE1mAkSkDLiZwJ3Aj7j1nt2vvOeYY3/i+b/zOP/hf8kv/7j3+i//8f8WLf/J1fuHX/wPKsGGImevdNa/d+Sw/9zOfZzMMLWg3cudS01lybkQjdbr80vkOGtpQS9OmhAqEVnMWNUot1DIxzntudlt2l9dMu5lS8REKcYAKYdWTLXD9cs84Fp7vXjLe7LEJ8rPHcHWJzDNS10iMSHjB8+99j/e+/ifsb4zTk9d5/WOfpU+GWUCrsrOJfQ4EWTHuXxAYMSLoJfubp9QqnPQXFDI3149Y9QOrLhJVCfWEYdWxuruhq4rYxE0eoFaG047dzTU2VVBtqihXfV3lDCVB2TOOM9WeMpaJpD2hS4h6ULf1mk09pYxbbsrMkDbUOVNQTJUU1+TphjJvsedXSNgQVdncWSPzRC5G3m/ZTlu62BE4xcojxnHHeYJ+dUZ/9yGDVnrNBB3oGNFeoHaUORGuAyEI+/GGad6zf/k+dbxkPd1hdf6A7sEZ+iRQrx4j5SVhfcK9B3f4jZ//aQrC77/3HWayoxAKWGkk8koRRVVYJ+HZCLOf7Usn6oDKeJLS+GxLFS/4jmqw6rF4KD6CoDl0B0Cqz0wDO+wnRAlS20gHx1asbSLfP60vLbfUjW0PsqANi3posWNon/Fyorp63f9e244/ejy1vYknILW6oHqh0i/7XVvbK4owYszVicpqjkiJqiMcSCvGbhGLzfk79VYsWuKLtdexFFp2KxlZ4pxquKUwagnmrQzhgFMd804OQoXDY/nncGhVLzeUW4nfLZk4Vok4X6/akgQ5Uh3kWFweqtOWHMmt13S74LPjy321Xq0fufVD+dwciLYf+dI3V8wFwbnlYuy/9c10aGotqgCkVQ1GaaTJ21PFDx4T4oqHJeFY0JuDSdjxiQ6B6YDMLPNtxOHrgrVqr6kzDjL2I0a0eO/A8pyOjjgitfTHO4IOfOKTv83v/E/+p/zM3zzhv/w//m8oX/tjVjUhuiakwlor7/3hd/n8536F119ftfcmfL/p10IdOvS2G5Skop7YiDqkHxR3Ha6MMjLPI/vtyO7qhu31DVigFsPqgIRIPyhTnqhVuNkbL168ZD9l9i+umHfPsZsbxpfXyCik6Nd6t3ubx996h/ffeY8Ues5PXufB/XPiJmBWSNmQGhgD9NMOHTr2884RubSmSmWcJ1bdhm3eU+Y9mLA+OeHi7n1WQ2a9PuP8/A5WR/JYGDYBLcKD4ZQ5Z6Y5czr0bIYLnj//kJubmRy86n3j7Jyb3TX1VNnd7Nlur4jVCL0ieWZ1esZwkhinHWVWOl0zj27VvznpCcOK3X4kxkCXlN31S+bJGPPIpp+5v7kgykA37tnujeudsd5kpOvQbkXdvmSaM/EU0umGOw/fpLMt5dk7hBrRWHzO2HZAqHRJWZ8mzGZyVrbjNde7R2znS9arU1aru5icMe9eQrlk2Gx44817/Hr9ceb8kq88umSso/PRtBUHJhSb8MGUvon3xeirEdQRt2oLqtd8YJa9saCegiM0zf1OamHBMGwZstoSe5djBzD3rHFezNLiqc0VOGBSPSFanG3NC4Gjw249PGZt7ntV5IgcLGR/W4qkpu45ILVLbDkewrWpv44FiNw6772lE9SILUnrDomKHhzXTZakZkF4lwG5HGLP8vyVZWCMe3W13IzFu+dgQ3ErM1gKpgWNksb9ETn+zN+QI1seHcIBFTLsEKdMhGx+nW87JFu7dg1bO6LUuiSFfmORYzEKR5L0wdzwUNQdX/u/oiR7tV6tH4H1Q7WlxI5Iie+1W8nEstHabZfN4cexebCkVaDt5lQjNldNa4e6LPDqsqXEg6g27oCTUz3i1lqdoHqrNWbmSJBzbJoiowG3t94JqMvPPSj5m3MouyFLIi35WSrSikp0XoMOnPV/ln/wH/9HPPylwn/2n/yvid94h04GTu/e5/4bb6BBmB5/l/u8yU/8+Z/FYpsE/v3XFK+ia5vEXMvMYn2u0qTpmgjqPIJa9lzdXHO1v2Z/tafM4sqo2oFGdDNg0zX7XNluYTtVrq5ekqfC9tFTyvY5q+uZcb9lqoHN6pQr+4BHb3+LZ2+/w8vvXXJx53U+8eYXWK0SajNRV0gQNFYyghQlkMng1b5BH3vGYtxUCKGj2o6TtCathDm4qmucLqm5ct717KcrTjeBLhhSZ+acETHONivqLExjIMWZNz72BuN+i1Xl6vIlc96zOumZZ+FUI1cSuLp+Sd2NpDggkwEvqVeF3AdqnVltBvLNzAcfPEajErvEpl9zs3uJhUQqHSGOzHvj0YeXnJ1HHq43zLplN11yPQ5sNhuGeyf073zI5eVTus0p26fXPE1/wsVqw2pwxVWoO5hnpOyhbolDoBYhxMFNBLnDlG/IBXKJXE6PvX0SIymPlP1zuu6Ej792zr/5Mz9J/erX+OqHL5ltcs5vU+6ICHMtIEovwq5kpqIM+PdEGx7jlvqhcW+OSj9MW4JhRyzUAlZ8T5V6ZJfGtmkr1rx0FGPxXnG/nNqIbwYH0vFRdNB24IKQmu+EpVV8XPWwU53s2gwF8YTggHJIk/m3varS0Fh84nUxN+RszRgn/IuTyn2Wut9WhYMTtIcE4XC+e0Bq7/EQ3vz5WoyqxWOfijriVVvrzirSEJPb6Azckne3ePeRCeMsT4K39w4JzyG4HWOs3H7cI9fIY4q0JMlb7NjxPdpt1ZccEZpjQbdc4/Zaqid/t41ZX61X60dh/XCcGzhsroXHciDx3+oN304lpCUKt4lry60EN5yaqnNkFon54TmE4/0W+FTs6Ikhtx9veXA5/vUjO5WWwCx1SAtkh8RoebzbiJCAVYJG98jQjpgU9E3+/f/5f8S9n4f/9v/2nxK/+i3O+56Te/fo13+eh2/dZ1Ur3/nGC37l136Z09cXEz756LW4FdFq87lXdSfioD2gxKBUmdjvr7m52XN5dcU8FYokKB2mEZIH1GrG1X7L1eXM1XZLHl3uXa/2jC8+JNVMngxJkWLXvPzeu3ztm99i9/SSlZxxcu91Hvz0Z1gnRXWF1UJI7s4rEik1E0yoGeo0EksEqYQ4UGImxTN6DdxcPyPvBcuBPG9hvKEbetbnF5x2FRuvyfM11y8FDQPDKnBy0hNKoeaZmidOh4HYGcMqMncbKIHzLjLbRFZhP2ViVa42L5gu1lzv9kxqBInM4RTCNZ31jFeF7XZLMuhjZcpuUDhKIUhmSBvmkEllhVWnO41T5qldso8RvdmxOpvpzAjrDeenkfeePWN641PoOjI+f4zNW8IdodeIbSu5ZoIIfZfQ1JGnDk2G9D0mPbGcYEGwPmCamMeJmxfPuX62h32lky0xbbj3+mv8Vkic1G/zz5+8x1xHH4+gvgOtyY+SwLYa+yJ0ImgE8OGm7iFz9IoRWSZkN3UgmaOj95Kd5EP7paq7EBvuao1oQy38cRFp3LTSRjqIQzdS/D4sCMfiieP7ctnPjuLc2g/toF+KG5qR5OKRQ0NSDgZ+LIrFxokr9eDMa2JN964kVXI5Dow1qZTDc/gBXpx0hB6iwELotcMsvQO0zNFo1NoellZMLdyiQzBs9zgmcu39NtTsqAy1Q/F4DELHYlI43tYO//bvQICjwzqLCgvirbbV8Tm+73XcCqJ262Uv4fT7C7JX69X6UVg/HHLDsWpYvvxBjwok8AqgynGTeDDyXxwSiSoHtAQW9dJHsZXa7iiyDNBsyqpbm3WZPXWsqzxAhgUGtmPAXMDVQypzeL12MBXUJTYfkpCj94QEIaZADKd84Qt/jy/+Oz/GP/vD/wtX//if8dnX/gyf/MlPsntZ+cyf+Q3eOBdurjI/9okf5/zNNWZCDdbaABxe57JMsr+w4vJykQ7DKLbn8vqal5eX7MYZq5FaFVUfKFk6v277PLG9uWHczbx4eklB2L58zPT0BTpmQqmcpMicC0+ffIc/+PrXuXznCcLAa3fv8tqn3mTdd9ArQTqSGUUKIQYK7j1S5h3VZhTntcTWDwklUPOEmJLzSN9BGDpiTEySyDkxjTtOVwM6BGS7p8aRmDacnN1Bq9EFpbdElyCWkfVmTRAhxkDCWA0BYkDqOWXac7MtXJwKppWTE+HlzQ3DzZrRKmZbdvtMILCzEZFCiYqUylx6Numcm/mKyxeXxKDM9Qohc7K6R1z1zLsdY91zIh1pdUomsJtGNtNE7WBz0qFPn3Lz5Dvo+JIHZysm3bMfK0glhokSCkQh9j0WBixVahE09RDPCJaoMaABdNUxUDg/u8vl+XOeP3nMzdVzglT6IXHv4T2+9NOw+lrgd598h5t5PIxlWBJjUSMVZcqFHAJdq9p9ZPitfchSwWesBk/0xc0djUWF41iGH9JgVVqLxhEelWUekrbWcBu8ireqvBXkCcZS8PhP5TDCxe+3yJ/9Fgs+A23vNrS2mhyLnlv7+PauN6Ox0IwszpXRNul7SQCCVCKeeJRwbF9pg5PcjO82suV/KfXoa9HyMuzwihuKwxF5pg35XVySb8e020va+6QZcXr2dLsYq4dntSXGHaGZWynWgg7ZIaiFJqjwzp8tyv2PrENL6/seUA4mjk0p167993ONX61X60/7+sGTmyVRWBIXM0KzF/fa6JjpH4OR/6Ah6Yc2ywE1aVVEEJ9oXdtj3q6mFqTF5+ssGYlvxtC8aWgD9uwW8e6A6hzAETt64bTbLQZkerhxS5pkmT+jaCNMFiZCXfHJj/0O/7P/+O/y4fVXefxf/dd8/OyCz/3FX2PSKz796Z/izc8OAGxEiG8NfoBVqKWANi+ShoQcaqlmoCNaoM7M4w0vrq+52e0pM5QiaFiR4kANylz25Gpcb0eub7Y8ev4c5onp5TW7J08JJRPmwBBmSt7y7NEjvvmHX+PZO9/D9nDv4iGf+rGf4nx9hgSBmulT79OpxahzcRSlC/65TsC4J5lSrZA1k2JPDYJoDyGBVIaUmk2+p0SpzgyDwPqUbuiI3UA6PcMk0qctw2qFqKKxI2hHp0pfR1JIrE4Hap1bQyRBnluLDPqLngrksqdPa5JE9t3E9e6Gy5tALHCyOUH2e+KpUHcj+93Eugtcb2+AHf1qBSbUKdPFjheXjxmmNethxTTBvmR6GbnKRtcpKW1YrwxdDdy7NxCmF+y/8x771X32b95l2ID1HXIS6dYnSN+Ts/NsTCPkzl2dpM360kCuM3K9BdshYeb07gXrIfDk/ciLDz7kZnfNycUD7r1xhy8OQv/Hmf/Xt9/nxbzzg9MEa4lmJ8JUC1NRohoaxHk3VTBpLc9l5sYiZQYUH9ngxYO7TmlDX9yioR54OUsytQSBBZVxhbk7jBtGqrc8paQpjQDqkfBfZWmlyKH1LItyyypFKkhoSVk9JmuHPXNUWsmhJeZJXxOW4cabHm0WXtseRzluoxvHSLXEkGP8Ck3lddvs79iaP/ZylpabteRmcQX368qxeGoxb/m9v8Zl1MVHMZbDrL7lcVo8oyVOLP9GjiNtWlK0JGj16Ft6RIWOT3H4ux3fSnvuhqq1370iF79aP2rrh/C5OVYuy78Xb5ilhjpM5sXhb1ig3HYbO25eWcqGtqnjLWVFaDcvtzbUYrJ3q17zvy+qi/YcvtetJUfHTb4kOEKTkzdOzSEqARV3aeVQBHmmVVVIMrDuPs+//7/4+8gnt3ztf/t/4g3NnJ39CvcePCClT/P6myuQQK1KOgluvFVdlikSua3eqjWDuPZrth0343OurrfsdzM1VzKKWYcmCCcbTALTdMM8zjx7uWU7bnn66AOmZ1dcvnhKPwkDwqrOiGWePf2Qr//+l3nxvQ8pOxiGNW8+/DQX9x6wWiuxG1BV+tCTs7dRSt6iJB/ZkKJf/7n5eXQrSi3IPDsvoyuUXFGtpOBePdr6BtIHJFTW0mM5sD7fcHKyJm46UhVCTGg9J5gPAdWkaIgEE7oYSSnQx8AivHWVTYeVQs4FqwWhuCNtKWgnDEEJOtCvIzdXlSm/RELE6opedlxRuNntiTEgNoB1CDfkGAla6GTNtM/IeE1/sWaaoNRITD1lEnZ5pu4rU4ik03OGbs3Qr4CKnQi2SdTVBru3wk7uUvLI/Owpeb9F7BSCELUDiViu1O0Ntcz+HmSH6ghJiH3g/utnqFYevf8OV88/4Ozu6zy4/zq/WAN97Pgn777k/ZunlGlqO8lQqWg1pgxDI8G7RbeTJRRx8i6LVwoYTYFnjkA4R2Vp1iyme/7/0pABL2LMM3YL/lk04KEi1IVUbG032nG3qgTEqh+21Q/vYxJAQz3cjLK0REYW3Ed8ry6sHBXFqrVhlNY4OrowgbidoriDuJKCsq+FUhzPcTfwo7WEtZjhOcIRaV5i1bFVdoxpC6J0261d8PlntxPJJVFxkrcHpiXR88SnJXmLIWFLtOQWPdi7hkcEx7BFxHpIJK3FyIC4LxfHFp5/Bhw5RLeRpSXx8qBNwVvp0hJie5XdvFo/Yuu/k8/N7aDloYeDesIOAWG5D2gQh0lbwNN2gyPCIiiVUoVSlRA80tTD49+qGuUoa1zGC2grPQQ92Md/tAKSQw5zpPTeJkXLoXJyeUFTYKBNMl6xGOjvfpHXfvKcb3z5v+LB5WPC6tP8/G/+Ne594oRV9GrXWiXmwa6wDNk8PPOhAq7s83Oubp7wcn/DfjTQCNohUYiSmKRiokxzYbvdc3V5xbTbcvnkMZfPn1GfvSQUuNCO/e4Dvv3ut/ngW+/y9LuP2V/OrIcV5xcX3P3Exzk7GVjFHu1AiD7FPURq8gCvohAHpBglZ0fmqoEGrEtglZCbzf+8p5Y9gcQ8GhIzKZ0hMmGlejtBfVr55uKCk3Wi26xYna6JU8bU6EwJREQhdD5OwnKmNl5PyIKmQJUCuVDK5AlUqyapmSAQgqBlotQRktHHniSV588qvcC2XFPqni71nhjZnlo75gxiHTEXZNMRCtTdxEurbB5tmbrAmsJmn6nxgrK/YbcTLGf6ofeJ78NAnSZIJ8RPfZru7kC0yjhNXH73Q3h8g1FISSEptlqjyY3fXN5cqLm0CrkSykssC2EVOLu7pk4f570/fodRbzi9uMu9Ox1/hrcY9AP+4buF956/INSpufkGoipzqUwKvUAIPojzeKDVW4fZgkb4aW62yJ6Xg9rvl5tVwuL5oizKw2WSt5LNqeVuAdHk1Vpb4eEt3gVlWfobQjjEjAUFOioi/XDGFn7JkkQsonAjNMLv0pZenJBrC0yytLMErDa3cTWiCaVADt6+MepBabTEM7GWzNWGsn2kQrpVY0Fra9/e4YsgoR5e03IHR5YWrl97Zy2uHfSTzWriNg/n+3Sh7fr59dEWT0Saku1WsiRSKeJSeDXc+0huxUU+kqfdSo78JreNTm/zcl6tV+tHYf3gs6UaGrOQYBck5JilNLXB9xHiFpKumEOncDSgarfw+7ZhjVmOHJvapOIqC3JzbGjRDLdqazFpIzou/jai4lJSjrv1kCzJsTpaeuPLa13gW1naYyghBKp9kr/99/4OefiQ/Zd/jzvrh5w++C0+8ekLQir4jJeESOGAP9lSsxY3krNKnq652T/lZtyxnWayCcSeNAQHlGOgzMKU92y3E+M8c7O75skHT8g3L9l+8AQbZ5+FtHvG+3/8Dt/+5h/z7FsfQoXNsOLe6UNOf/I+p/2GEArDsKFfA6bE4ElTwHko2TJHt1OYZHZFURXGuieE3uf2FJcNl7wEwQ4LmdhtPGzbTM17pAZC6OkksFp1pJRZdWvWJ6fEVBmCUgxiTQiFFF2ir1ohQPDpkIhmomaouR1O9UCMdZlP41RVN7KbJJDKTMgZCVBPzwncoBT215A6ZbO6z/Vuz/7qkmKZmzJRZmV6cc3dO6eMw5pp95Lr7UzYVbrZWPcrBoRxf8UQAqqFQO9DUqN75jx/9iHyYc94FSn7HfsXHzC9v8V2hX7T0Z8FuqhYzSTtqJ23bbRmXE7d0Lw8utonZ7q+4+LklOn8jMdPH3G23rBe36fKFV8QyMz8w3ni8U3FasbEyaN7y4ylqXJaW1dVXMqNHdo0IgunY+GbLEVEs9NsxYKwyK2bJQPVD37UZedaqVmo7TNauBoV/DO9VewY7svkpGT9aBv58McOsuSF31zNmvLx2KZpOU2LKYubcPPoOXj3+MyqpWWuAh3CFiOD+yGZIcGVT9Ke12NBu5dxEAEssWcZD3MLrGlJ2pEPpDjvZQmPis/TcwSkHl4PyxW4lVzdjp202CkNPZGleLNj+baoQQ/x65ASQsZJ8pFbz8VRAbZ8Lh9Z0lqES3xvReWr9Wr9KK0fOLkpS5LRNtjiDHwoTJZqoPXNl7ZUoIEXjUzoELAe8yI5Vm/gEk8TIagSWvDzYZbHhKQaLXnx55VFqrpUftJ4P+rVihlocOKzm/YddAaH5dwaO8DFx18A9Pz8L/57/Oq/93F+73f/U9a7j/MTv/Lv8uZPPCAkA1KrSG/jvNag+0zJO67nKy53l4w5UyVC6Kh9T1SliM/8GXNhKhPzPnP94gnPHj9l9+KK7ZMX7C9fwrxl3G158sH7fO3Lf8Tl+x8SZqHvej5+9w3OLk45v7iHrJSUldTk67GRLBFlzoZooVhCklfzi7EipZIEkERNQogVyVCmiRADxDa/qjqhOTc326AgcaKWRNCCivNmogkX3Slnd0846RNVJmI2KhlNBlagBrogVMukkGDeE2JEAuRx12ZsRaQWn8klcnCWBZf9K5UIxLgiS6Zq4WTTEUNFL4167u+3KGCJTbrH9moPNVM7Y7uNjLsdIpGYhRwqMid2+5nx5pJyNiDDGWOZiWZUttTSYeGKENakG+HJH3yF9+Yb8jZQqiEjdBTO75xS8466qaRug+wnpEbnOpWCZcFE0ZjIVtwHZp+9FbhObC7OuH70kpcvXtK/8QabVY/kFT/5+n2urif+6/dndrtCtkI0p9XmWg+Tvv0rbQ0FaShJa1stAm8vNpwwXOtR1bRM/vYEodkxaDuaDRZ1VVR3SV4mUx3JzI60SfPmYUlEKkezzzbUaIkjrQHjf1M51AcHPxlbEKCjg9aRRtISNgv+/1v8PVrykXBUpdbgyigpWKmHWUuHLrUdY9wx2XCU6/D3BTIxWousOS0vr2wRXniGCIQDUh3azcqtSCS3eDdyKyk86DDgo+2h5eXcykOOyItPkc8Vioi32w+J1KGK+77EpiVIdbHd8McU+1fj5av1av1pXz94W0oWr4qFsHvcGB5AWu/fPDk5OhQf/6gsplyNuNcqnmXDJ4EZT6RSsyNfrMUWc8CMw8mxBYiFMyAtcNKqlrpUbGpe+dui2FjaRovXhqNGXgkuaiYf0ulq2Q2r81/hd/7B3+B7T79C+i782J/5q3zm33jYYO82PblZ0rsDcqbU54zjnv18zXaekNBh2sHm1MdDULFaGDNcb6+ZR6XkLS8vn3L13lOevP8EdteUaeLm+WPe++A9vv31b/HinUeU3ZY+rHl49wEXdy64uHPOaVpjZY9FYSo7AoE+rVBJTMXoLbkB2bCm2I0feFWBjlqhUoghUmdhzqOTYAW0FmKMC/6EaEV0QKmk4twao2JzJpkStSJEeoXNKrLSjjRvCVrpQkaDH0ilHaYiFalGFE9SRAzmiTArlDbNWoUUE1YnRBthc67U6hOo3eAwHpx0OzGCGCEqrHugMk7eLprLyDjtOD3fULZn7MsVSQPKSKJwZ73m+X6mVOOqTlxe39A9f0YMPUOcSamHDDYZ0zTTd3vmuELjBdN7M1tLrF/7FGnODPsd07xDL/dUnWBdURtItWfuO6IkJ6yqEJIi2Sj7PUEyQSt0Qr/p2Ww2XO8nSlW6FDnpT6jrzE98bOZ74w1f/2BPyY7KJBNygVoav0sUywJaD/sX85bJMmU+NJRUzCdp0xAP8H9r9QLCnbOPB6q3mZ3nkrRSrGmfDtwYXQwQ/H747WntIJFbjBLx71Ft5PrD4d8O4cUUb/HHMZEDf61hUrcw2iXxkUaG5iBqMDGSKHP174loG7SptLjhP9PGf3E8qsW/WyTiY1HXLCQOKK032a2WZl64GHt52id1STaX+CgHw9LFd6csRaAcARO79aTeHpSDovRoknhMQvzatpb6MtW8vceliDvG9uOncyvTagmOFxSvgJtX60dt/RBqKQ+Uof39AD0foNyFw+K/X3rIh2rMFlQEFsO8Zcccp/16sMrVe8V6kEn6/YNKC2q0YNB687faZYI4DNNm67jcUp3I2J5UCSx2nEuixhKEVd0kEEXVePjaT/Ef/If/IZ/5YuK/+b++z2/8ub9CiHdQ11tgGHNUyJkyPWccnzOVwiyQU490Z4TeA+y+upHKfvYBmbspc339kssPHnP59DH58oqrZ0+Zrp/x9MUj3n37ff74q99k/2hEsnHWJ+52PWcP7nP3/gPOH1zQrwaHn6crVCM2FU77E7qhQ7JhQUkykynEbkWdZzREbPaTIwyJUmekzOxrJUoESahVqqknEExQlSg9BW3uJT4kss4TSiZ1CakZDB+rMEROup7VAEMtpLxHcyWkBMUlxRKExQrAWnK6KDpMDI0tKVUjaMBKhOaXYpox5sY1kNbKnPzTLYHMDBrQrtDpKWPZc7OFJMLLq0qsxht3T7gOhgwz13NkrltiEfpVz9PnlXKdudE9m0tlt1oRTjqCtjEcWqgZrsc9sdty0j3kzoMz7Okl83jDxRd+hk0NbJ98h3pzjXUTlqGkCamVVJQQneuUhg3ag06Vmis1XyP7ilgERudgTYlcCrJK1I3QlzPu28zP3Tzgu8/3zPYcoRKrksWYG5dYxFyZTaGKKwzdlt+oVtzorfVjjshA00wZUN3fpporh2iT6l1F5XsoqBCBQCX7jiY3FNNbxq0N0lCBZeM3HAdZeDjNnHP5+cLRWxKhutz+Ft7gSfeSCLRZV+qtGLFluKdRtbnEBB+1MJsxmxsULroCMQ4clqUiWxyLb4UrDkOEb91uISYvP3dk2Zqjc0uA6jFeHpKV5faHaES7UN5Srw39+r405/B4B2fh40tpiZQc/YFoYNcxOzoieXL7BfnvFsL5Eq8XBdmr9Wr9KK0fOLk5VEwcN8wCFS+JzdFY6/ug1MOeqsd5LNoqrEZoXLw0kihzcYQm4UHCmmzKfWgcyXHAvJGJ5aPmeAvk6jwSt4V33o6wKKbAWvuLA9/EbElqvBKLqlzvMrULPHryDT5Rb1ivVtx7/RSCkcsNeTsx7l+QrVC6AEMPGt3jw2DOM7P6/8t+puwyNzfXPPvwO7x8dsX+6hn75zfk6Yan332Hp+9/wJMPn/NHb3/AdJU5S4nX1iecn55ydvKQk3VgddrRxd5N1OYrVHu60FEkoxrpYmIuoCER8x7drClU8lyQKEgXISjTuCPPN0DG6p4kJ0gK1CpIVYQCIVIKDF2P7QqhC2iXCJNgBCcgzzdIScTkhnJdGFl1Z3RdIsZIDIVQnAiupSWiErBsIJUqhaCh/dwl8uKDvG59x2pT28TWOlEKkIKhuR2A9H6AdRNlnlCDFMTJypMQ1gP9asWwPmW8uWG2mdfvvU4ue4Z9Zhw7yixk3bHq4fHjhM4zlcju8gVqZ8RTRZNAqEQiZV+4unyB3IWT1UMuLjbcXL/H/u095f5bdKc9YegYkrBSiJJRq0QSMMBqRbxzjugMe5/6Xq93CAVJPYGZFHpyD5VMoMOCoUPHKkc+ce+Mzz24x7/4YMdkOzqrjCZMxad1qC2cluoHcGv7qqoDdyYNRbt94ja+yWFfVRxyawXGUsiExaV3UeRURx2kJUb4fquypAfawNXauHnLrCqPA2LhOBIiNNMIa+iEn7qOHNvC//FHLe33TdCOCP46G5fJeTieeIiJtzfNRQ4ee+oioMbT7aYQPLSpPGK06RcfaQ19/2y641w6v0aL3QR4Ury03RfmrxwSm1uI0wLZ2G32zDFxoaE2B46QNDzmQDA+vj73FYIsLZ7e+piX51xe95KALsXnEYs6plav1qv1o7J+KCl4pVm7t/3jgoJlou+SIBwKg+N9D//xX2gLGsVubxprm8o3WzYjfqRcaMlIe26Hiu2Wh0OTWZoen6xVIbEFcbl1O1kC5SGQuL+Hc4uMREcgcO/8l/j8Tw1856vf4I3Xfpw79+8hXPL85UgNGZEBO9kQYsTKxDSP1HlixhhLQaoxjVs+/PARj7/3HtdPdojN7J49YzuNzE++x5PvfZPnj0fG/Y5HL7Y8fbKnp+fhgzs8PLvPnTtnbLqOFN3DZNWtMK3MY0FlzTxuCalDLUAS9lHoQkCmgq16NAhae+Q0kEuA+YppLMTVmloMcqY2hddsBateNYoVJ1pqx3Y/skquasqjzzpKUdpYiOamjLDuEmfrROwDXa+efER3UE6x90OrzeQJ0jVCqBEcs8NIqCk2Z5/urAlEMSmE0A5nBKKiJNCMBiUbmDlBt6iS6FCpmMWWBp0y5z0prOj7yk2sZOuZ9zMnpyuGkqk3iWm3Y2eBaQfx4z31eiZ0e4aU0KqM24ycBEIwpCuEs0qY17x89Iz+jZ675z0fe/2Ealt2N9+kSk/sN6AbOD0jxDVd6EkbT4IlRKRL9GGNdJE5KHUaKfUKJENIxGEg7K7JtbAToQMkKlikXw184f4pb7884dE0k8hElinYHBRD0toZy+FmVp37goIEQj1Y6x3QVmnkOsW9XnyPt7KibWpdHBoWZHZBZ02oVci4WueITbjXjx0QmFvtl7oUGNIQHsN5O8fRC7YgDHZ8b65AOkYS9xNq4oaGyC5DOQVP+lI1ZoO5Vjpp3jhtNEJY0MHlGtCuXwtuy6uXFui0VXwHk3Y5xhs3Am37yUlGB8WXF4QfTUZot1sQriXxWPg7h1jJUdV2xJWOCtBlTE0wIdfj5+oxkONjtcrz8DLa53rb08eTPV6tV+tHav3AyU0C9nhCEmmDMJvMedlcvuX+VRRnWb6x5Ag1s1RiLIUiYg6JF4RaCyEKR+LbrQRFvVZbIGtYKnz1aiw498NwQzNaMNemglAVVJuCQZyAKGbEJqndDPd481O/wL/zD/4uq801n/v0X+Tux19nlpdkNcLZBmqGMrHLE3mcqAI5G3mcePrkQ56+/4TtyytyLly+fImMmauX77J9/9s8e/SI3YuJufSktKGmmffe2/Ls2Y4HmwfcPT/n7Hzgbj+wWa/RUB2JsI5cZwBUIxqgX6+wIkhxr6EYoY6F9XrNrAHIdH3POM3U+QlGIkYPsjEGSp3QOZGbIZtKdc4NHTFkhEJQN4TLzKwsuLS5TJhkogidKVET61XH6mRNFyNdrEQFrZUQjt+Bw4BUCjEFzAJBAmajfxd2GckTJQq66rAoNH2Xc4PUT+2qibmpXXQGmyox+IEqGshWmaqTllULUYUsmdQJcR3YTzDlSAX6TU9Yr6nbjvWUmU8yNo1c9u6VM8SOGEEsYTIz10xFCVo5uzdQJkW7PdJncjilS2vub1ZuGGdCiZn9/gk7UVb3XiesmgotRoZ1IlohT0KZO8LQMe2MMk0UK+SVIrXHxpGcO4iQtVBPzqiinN2Dzzy75Grcst85/2Vf3bSvNhWi1abQUU8jOYIxzmPDnCxcmg2CeItw8X8BaZyQhmY0oofZcSK3HDTR1THVKu5/o4u/Smn7V1uy1VpGVg+tbYPmSiyHttZCRKahtAuiYNTj2AW8PaUIWpvi69Ztj2WUJ1g9wgzMBgn3ADrUX3BIJmpTYakeLEAPyIzhgc45f7dzlCVLOKLEB87Q0j63JUb69VyUpI5KNZ+alpR5UmSH62vWhhW3gu+Q8DVEG/OWnrXrEVrZYHD0QTQ5tNc8EaIlbkuCacdKtb2XV+vV+lFaP3ByE8TogFygBCG2kbrL5lrA6sWdeFEaHIfT+Z9SfWMutzmQiqthYUFTSlPFBEKr9IJ6b3wJqv73Foj1Vt0mTn5UCc2jom1widToSg81hSD0zWrc1Dv5yRKn6ZQhnvJTP/ur/PW//zv89Jc+5lb6dxKVmYmJnPdM+xvmImCFeRZutjdsXz7i/Xefc3N1yf7JM0wHyv4xVx9+j6tHj7h+9pxpFGqE1N3j5P6aajs+ePacb3z9Q+K+cjKcced0YNVVeskMnRLyHqVj6CLjOBJCpKoSXWhCDD25bqHrYc6EnZJWkcyEWo+mjnneo9NM6u5QYvZqvBQszwRJ1BixqN66mPeUUqgEKiNKoENh3hFTRWyNzIHQDwQpmBa6GFh1ic26o+8jQYUuJOeUiCHVVTLU4klLVP+cLfgpS0VzQCY8SZMO1dAq40AKRhH/DkidmFv1n3TAZ/QYlgZKyWjdk8sWiYW+Kt0cmeZKIKJWKBk0dIReWfWVUibmbKDGsFqz6gJznginlc08UUqgzoXUCzFGpptr3ATQkb6ie8J6YKRyfWPUYQdyAh2sgkJI9Nqh5kaClx++x9nVJf3mBFLHvE1MVgkhInlmO73ket4zb6HujalULCmqM9eXV5SayXlkVwtTVeYYONncRfQxpXGZksFUjU5wVM7UD0rslltMU02Jk+61VpTQZkY1IiocBmy2DeaoT/PJOZyIqk1Vs/A1zIuH4ricAzvtPou3DosScmnp+DOYWOPRNDrvgRBrbRyEG/gRDIonYVU8oTqMU1nij+kBLREpjsrUAFIJ5uiNyBJbDLF6OOBVFbVKacjFUrAdkOkWxxZMSMSTilDlgOzUQ35wfH+LEaIg7sRcGzLTCDQm7ZrUY2rmoe6IzDQJ2yGJAT7iDXR4ndJisEEVN+VTORaiBy+iekTnPVHz4m+pQ+RVfvNq/YitH8LnxvvHRRYEWohNIXQkrB0D1bKTrYJEaZWbLUUDx9aRHKqY5XGXtlEuvoEDt6u15i8hi0lXO/AOsDLQkh3VJrNFkBDprFKjoESfXcRAl3o2wykPVp/i3/iJv8CX/vZf5PzhQ17/wkNkA2qFqc5s7ZIx730AYDZu5i1XT5/z+N3v8uLpNdvdTauajf3Ve7z83rtsH78g39yQ6wB9IvSvc3r/lKFL7OqWly9f8I1vfJfnH1wzdGs2p4VkEcsZGb3dYv1EGs6JKsxiaIpQhVQqQSJmkbHMJOmpY0FjQUKPUFBZUZOQ5yuoPTr0WC5QhRqEHJReO0SMfSnUKkz70VsUc6XEnScYOGoX17272dbUAn2BJHTdmu5kYDVs6LTSJyeXRqQdeMrBoiQomvwT1apoEEwcZRNWWCnELkOASQslFDejWxJaiVQrhOAoRC12II9XNZSAauctqjpRfLYjMcZDJRqoVFGSKCaRPClV3JhfNKJJGcdI6ISY1BPAdaLaRKl7dJ2oc6aUPXEKzBQsTXTR23ovbm7Y5kwXZzZ9x2ow+ugtPRFlt72hC5kkAuuChB2aB/b5isvrJ1RuSKlitqaue+IQmmGhUcvMvLth2o3U3Y55OzFdFVa6Z92fst1tiWpErczVUZBQqw/ArN5q1KBI8INOljZLO7iCejtpUcl4a6S2Vo82G4U2o8mPxVakVHflbW0ldy/36dzUBaY4no6HdjLHpEvayAWpi0rKWOTTSGsXafGWVIhoTtSYkQoJpRIotVJToDu9z8funrE5fx3JmWdPPuDZow+drC3Fi4Pqqr0ZITaaPNIQk0Prp/END07jrT3U2lHS+D7SEB2BA8dnGWR5O9lY5nF5K+7oN6O3Hnf5LJbnOiRFB66OR+QDBeAQTQ935ODwZQcG1Ue4Qgvqdvs1CLBwpQ8PtyQ//+qR8Gq9Wn+q1w8/FXzpv7bk4tDEb9/+BYmx2ztajjbjIi4pPtY8vrPqIdQ16Btcpll9do53nJpsEydKWpt/I+LTyUNsFZ24T45KdM6AgEah0wENSgoDURM/fv+L/IXf+GV+7FM/x+d+7bOsztZ+RVppNpVn7PPEaCO7vGd7+YwnT1/y4tEVTx89Z7+fSSGRt5fUZx/w+LvvMF4/JU8RiT19ukN//w10WFOlw2zHVDIvx0ueXz3mD7/yLS4fjTw8P6eziQtdoUm5s+5ZS2TVbyil8uL6BUMXkKsKIRC6nhgipl4xRjPQjpRmD4Zrw4Yzap6ZbSRpB6nDqhGCYWQkCzEkagDLBbneNxmuUfNMAcp+j1mgirfxao2oBUJygnZXjUikS4UuCV2CzdARyPQhobXJkVWxOiNBMAltHlmmWkQkut8hPhwzREf3qiqWhuZWPYO5M65VkBAoJRMpGM6cLcVbB8TAPBX6NKBZyfigxFoyUpVg3r5TK5j6LKUYErWUJmHOLcERcp0YVCAoQSM5Z2pMTNYhOlOzt+lqFub9zmXGqcfU2O0umXVid2PE1LE5ucOwPqWLAzUOzMBuDV1nUAvGyPX1UySMrIcz5kmde1Tw61W9ZTrjnxthBUGJfcamF+wuZ05j4FEj2yYR9rgqKC6br3FTFmUiKo6W4hwoV8csXjEtbTEnghfzwmZxxnUU1gsLbT2Zg/eUz2JwXpaqJ6BLiBA5DNr1bRZYqMDIQuvVhqBUILZYUJDSeUszOIplGsicEPuBLiSsG+gvej73k5/hzY+9zsm9c2R1xtX1zP7pJR98633+5A++wcvnf0yyHTUoZGMsRpDmVOws6yZAoHm+HAuqQ1hb6rdWnC05x5KQHOTet1pGx47Qwuk5qjyXSeJ+TYRFqaS4O/TR58eRKUevjtcRjjwpac9BQ8nNbiVPAouW9VZqyoHMXG+nMUvQfgXZvFo/euuHSG58k/sh1+zJsePOamXL95s9yS3EhgM6s1QRvnl8Hx6RHNomdoaFJ1FBuSXXhKDBRyMEDoZ9zmEIBIKrb1SQoKQUiSGy6U8ZVie8vvoCX/ypL/Erv/2bvP5L9xp6IK06dCv8vd5wPV/z7PoZj957n0ePtjz+cEfNo1u47x9x8967XD15j/31TLCIdivS6ZsMwetA1UTF2DMyTzfUsWLDmucl8y/+4B1uHt3QB+Xu+oRQtxhwvzthiANDHzk7Pyd2wrjdMo07Bu1I/YbYdUiAkmntQaV2kSIwW2DoV9R5QsgkixB6sswkixTZodqhxa93rkbZ7kkmBO2YmdGU3GxPV2SBKgHynrofKSJYzXSrjpQ9+MeY6EOgT63dZE4gJhfQCiESg2LiXik1VwgV6QKiHcHAybMzhieGIeoyN7EdshU/Mb0V4YMRq3NElu+lFaiVSGsPiPvC+v0UkY4555YQF2pT00kQGFaUeQap5IoP8dSEVR8voJLQqEx5RPKOUvdOuVIlhg6rmaAn1GlqLZURs0yIyrgvbMeRcPmIs5N7pP6UKVfu7Hdov8a0w6bMbhbW3UCtHVbwdlsrAkopjPPs3I3qE9vjECkyM5Sei5O7vPFy5ptEcpkQEdwD2g9Ht3Dw/5R69JmRhpZaKzAaW6WBLdYUPgs5Vg/JkW9VT5iWxEi9x+tIqSyU4UoV8cR5wV7ND99lKrkd8oCFU+evt6ItZrjzMVo82bYM1nHnCz/JL/z8z3Fy55S06ijZFY7r3thLZY4dd87X9CdrrvtTLA50654/+cMTLt/7KmO+QSUfrtGCUAhAM/tc+EXLCJgF0/FvY0s0joEOBfKiyLyNgLSbLIODXW3qLUG9Nf7BkbLFcbk5rdfmBiQCDeVaGv+HhGiJtwtizgFE83iJkK06kvcRd8KGxLH4lHkcPcqqWn1qt5/l1Xq1/vSvH1wt1f4b1NGR0prQi19NbQm+tGCwQKAusjiIRw/jGQ5BZPn/EgA/omoQsimZ6jJiAdFKlECKHvQFca6CCjEEYnCSbUyBEAKxH1ivzri3fp0v3P8Sf/ZXf5Gf+IWf5sEX7lBjG9TXwo2ZUaQwTu/z9ntf5t33XvDow5nrq4J0Rn75PvPj7/L4+QdML6+Q0mG6YhjOSP0GjZmpRqZSsFpRc+fYoAEJ91m/dYf33/sK/+Qf/VOmy8C6X3GalP32mk/fucvu5prVJrLuTohDwVSYykQfzw8SemL0WU/TSMqJve6IrP3aavADefL3EawpisgEJ5o4ZyFEimXybo+aEauQ1dAusIk9Vgy5WKEh4YfR7LHVMvP1lR+3AlKNflhxmjpWKRClIDPEoERrfXwrSAAkOlLQJPJGwkxdaZdnkhpUxUJLdsmIQfA7E2IHNlNy9ZZK80BSjc1criAlU3JBPTNwQrq5cZqfDT6hu9Zy4FhUi5hMEA2pQmgty2rejpGoBE0+JFSstXkCs5wyaWWlV9TUo2lwR9i9NI+YiXk3+8FTJ6wG6r7y+PJ7pNUJm9OOmidq6Vl3azD3vQkGdZepbUCombaTNFPLjBUfeeCE3w4NRuwi2hl3u45qwr5WOvVJ4VtxXkloic1C4zCcR7eMVBFRpDYEtR2iC6fN2h3EzFu+zfk7NiVNbjyOJVk5+q64KV6bH3tEH8LCL1laMo7wLQ7HsvjamDSPnIpYAi2OcAwXvPVLP8uXfvUXOb17H7RnP4+UcU+dZ2y3x3YBO6ts1h3VApVTrm1mQ+aNmNjcueB7f/T7WH7CNTPFINWGSjXOj7sRaGsVte+tGLY4J7fvkLXYpU1RpE0A4V06OV67w1VZkkNPGKwVibY4OS+pXkOQVdS/jwvp2J/4gBYd5ukd+1kHLtOS6ogKlMOzNXTHH9+TWzv0v0xuyze49d9Xyc2r9aOzfojkRlHxA9vEVQb+0wZJL/EQmprJ77f01pcevh4fsKmkGmpS6iHJoVUuAe/D10ZUdPJqRLRzp1oVBEcxYhR66Yi9Iv2add8xrE54sP4MP/+ZP8df+NVf5fNf+hzlrLgSQYRo6lOFDYJUXo7f4u23v8nX/+htnl8lagWbH7N//ojrx+8yPStge2I6oz+7TyXQ9Yk83VApFO+vEKSHZNQQ6Wtk7O9w+qkHfOUP/iFf/d1v8PLJlvUwcHJyn4drYfv8BZcvX7Jer0ndihgzOs9EHQkhgI2EqFTtiEQsF+ZoiMyEfaF2E5UEpZBrRbSgogSJSAErxYcdaqIbBnbzNTJnNCmhCrpJrNLQnHI7pMIkGaygtcC89wNNI90qolLow4r1uqcfBoZBGfpEskAQQy37B99FtJgnMqJ+cMY1ZhkRnzoca/XnLJWaFInOabIGr4cm00UcVxCfD0EwdcRKhFhnb90YTWWiRApqrrrLKi1gj6RqVInUPBNT8daEwxYNdXLvFqJSbE2tM0rzY8mVXhUdIoXAOFRK8cRBY0VqQIfZzQYVVAdsngmaXY2TA3PN5OtLXmwL1/01+92Oe3feIkVhJYG5+msHyHlySXCtGBkxIaJUq9Q2m6uakidvXaWwgaTuMq0RrTPBjCJemR94GA2lmc0I5nPEQsO4zJyrBo7OBgmoVKTK4aA8ALZLtqLa9ji4EPtWa2NBh2qbAO+bnIWxUy23fb4c3m34LGBSm3lkoIgP1j35zOf54q/9Ob7whU9jccPVZNRyQwoFzZWSDeaKTTMmK1IRMhklEzulX/ecnZ2gP57ozgceff1P2L/3J+S6peBJ4+JSbNURv9Y0o6odirMlkfFWlWdppgtaxRH1WMZOWEPQGrnQ42FLnFrYs/YZ6JJ9tITCrDbHZmOZPrFcfpfq30LgbLmWHjNFHP3JTYFW/C4+2ka1oXXWpog7gi4lHPZboSVrUn7Qo+LVerX+VKwfYvyCHTZOUFeJ1EYmPiYyC6x79GC43Y8+bLylomiZTzWvlJa2VmiEYlVF8UnHIkpUH1QYPJ4SQ3CJZhJWMRC7NZthw/rkjPsnn+Bn3/o1fv3v/BU+/oW7hE0CwQ/8KggFq5Gqey6ffYdvvv3PeP/JzLNdYLcv6PX75Ecfcv3sCWUKSOrpziJS7yAhAUoKgZozKfRYKVRRcmqthEkwifDgLc7u9XzlX/5j3vn6d/jgO0/ZpB4tE+yeETfnDKve5c5lpmxviKf3SNHl0WoRE6NLPZN5v9xaMCvT1vkwoaMLwT1qSsasgCZv4wUgRkoVQqeM+2u0CprWmGZCSnTdQDZXwJU6OnF2HL39uLtEMLq0xrLRnUQCHbGLpCGyXidW64HYRySDFsFsT1V8TtUsGJEiCe28NRWqorU4MhTwIBsC1gGmmGTAERqXWwcnaUpFqyMx2siwKq1FakJQn3+FQCnZyeaa0Vp8AnTxkyHj6FWuBaRgMRBE0Wa+FIJhQQBFzZ2B/TL2nmjUyd1hiZQuIkWhQIkzWlfU2VtDTjrxxwkmzHXECmQ1pBbKzUvyuONmO3N+9w73NmsG3UCdybVQaUhN40yAE+OlmTFIUdQyGqFIx01+SZ4KElr7KCQsF6o/EkmW9ooftm4E58mjIIc2xmE6twGN+yKyNKxaC7D4v8BckdRQDR/MufxuaZrI4bA+uPi2n4s1JAT3dKnLJG6MaAoEshqc3OGtP/Nz/KW/9Evcuf+AmjNlqsQQmXeJy+vnRCakCLafmXNlxSm7eaaYMmVH8TQIdhJIUdmECz5z9jOcvv2Qt//oa9TtM0T3aIVa5IDuLdyaw3URRYMb8pWlleNB8nCN/F+3firSvqf1kJzcmgV+SAeX2VQHFaksnCYO6qulKaULl+pwPY8JzvK4Wttn1qaUL4ljbe1sYoTUs16f0fVrUgrEXum6RNdFEpEq8PEXT+Br3/wBD4tX69X6179+4ORmsQFfTNeiCLMJpUmtBfPKpSkmSuvLf7/3k9wOci1oS0N+lsRHWJROi1GXUtUlnVG9ZxxUCTGSUk+XlH7dcb65y9nJm/zCW3+Fv/Trf5lPfekTxNPY1ACL8mBuvhI3XL38Hm9/510+fH7JiyzsP3zC/vF3uPnwKequXmi6z3A6sJuEEDN5qnSrjloLZS7EGECErLVJNwUphRo7wv0fZ/Xmiq/+k/+a733vPd79+rt07fWv6Igz1FG4N/TcubhPLTNr6QkBYtcTYzxMPReNxKYcG8eMUohhDZsVmcyuzGjvyhNNHUjywDUVgiZUCvnmOZGIpnXrwycoPZYTfR8Yb54xP3+f3e6aaa6UEIkkVnd6pB9Ynymb9YYQOrpUiUGZ68xu3DNvfTCkxUAnSgXGPLt/TcGN/NRVOlT3KEoxNaQAilZcx4S3JYKBCqIRMT0Qk1UKNOTHJ18HJDppteYCuRBai7RKm5hdRoK4++++ZDSIJ6gZitV22Fd8YLW6Sg0Dy6gqwZSq0X9eDHIiKtRpxqYtqh3F1pTZ/LrbTC4zBChViFEpc0aSkLSjmFIyoBO17tk9+4Cb60dcn59yfvoADYWuKr0GuhhRkzYA1gnTEiJkkBqxCaYqzFPh/f0WmDjtV9Qa2NUJvAjHamVWiOabXlsiUaQRWVUbGbZV/75NG9IT2ow2byua+me2zF5a2tILjc6oBPGoUBuaq23EwqFl0s5kDcuMpNa+aZVQkUogMHeJz/zCF/nFP/8LfOKtN7B0wvV4RR1Htlv/LswmTHthe3WDMNN1CUsdqY9kjUiJhDoRLIEGBouIJTQUpnXHGz/1CR48uM/b3/hjHr37DcSuHIlVJdjiMtzGzQDH5MPfjxxzlIMb+6H1Qz3MflrSkCUO3v730TSPw0/tIzdoj2+HGx1/jqPlduwsHX5Z22DSYI4wVjHyquf8zn3uffxjvPbwLnfuXrDebNAqzPuJcdwz15lqmRKFJInXHp++Sm5erR+p9UM5FN8mzanCXBpxk1u8GW6hMiyqKYdJ3TtjMeriVk+5VRw4BKxNcrpweopCEZxDEyDFgIZAN3QM/cDJ+pTTzUPeuv+z/Jtf+rv87G9/ju6eoJYI1SgKWgs5AHnku9/+Xb77/lPC5gQZena797n81p+wf/KM6WZPihfEs1P284yWwn6uRBFyMfrTE8RGb7FpwopRcoYqSImIjNS5p97/NN0bytf+6T9i++wFX/vd30f2Qt939Ci9wsXJCUNQhtSxXg9UE+cSJcWikWXCSk9MfhgbmbwfSXFAZoEYsNnQuGfFKeTZEYFZsSFidYYhUMVgl9GuJ2oEIlITNr9AolLGHTfPnrEbC2xHQtgwrAvD+R36rkPizObknPWwol91RBWm+YqIUmTGckAkEayj5MAYJrQUogZvAZUJKQXyTIgDEntUIVclDkIphRKTV5dAlYiK83mstCQYdZTO1NVL0bC6w2oGFNWAhspcsiMdjaoiGpHkHKE5Q+i8DWrVvx9mEzI7H6m28Rtm7v8SQ3EPEsV5PvjAU6Shad2E2kAV/9MhlJqouic14onOjrCJRkKM1GAkC2jcsBsD1L3zc26U97dPubnM3HvjIUO/8oQw4vJ265gnb37OZcasp2oma2XKhcvdjm8+eY9O4LRLaFpzahO77ZabDHN2Uq41x8zYeBiGI19qjrKWReLcDt/qUAXWXKWP0u1lfy8z3vzg9Dv6qBZvN2k7uBfEwqOFOCx04Oj5/2u7/ubT16XjrV//Ff7OX/urlE7Yz4qNM5fXlbzdM2/3ZBPOTyPDSnly08F+Ik8Te/acvnaOSmUMgTkptQi179E4MgVDxkiRCY0d8qlzPv/wF9l88wGP/vAPudp9ADa34qw2ThHcSk+WAHZIXhaA6sCl+WimsURJFkT7gAgdEBg+kp0sPz62reTwEHbr0Za7HThLohwHeRoVpcbAcPcuDz/7Fp/99Ce5/9p90nDKHCM0M8rp+iVT2VElEGajaEJq8AQxXP1/OR1erVfrT9/6oaTg1iqrxXwvtP70wqw3MyeR3iK3BdV/RSZ54L35ox4llW0Di2prIaknPiH4ADqFlJQUe7phxWqz4ex0wxtnP80v/dzf4tf/+i9y5/ObZs3vJWsRQawy15Hdk+/x4vIp+/4Om48JH377q3z3K1/j5sUVlgWjoz87pxjM8wi1Umt0x986+/iB6RrDmKtX6dY65bUaJnt2syEXn0Q/fcE7X/4yWOAPfu8rxF0hxoTWTB8TJ12gS8pmFelDog8DUgNdHJAutEGQ2ZEOM7egLzME9/2wqFjwg72MFQ37JikOEDtPvCJu5jaOSOgZuhNkHr3KKzO1FvLumt3NE8rVC6TrGS42WFoRZ+WkPyPEmdXmAZuztbv4pkKohSEmpr1zCMQqsRuwVUeUQt5XtIvMU8VKplOlWvbEpLUarBakT+QoaEoQYZ4zUo2QBrQLWAiYeYtKUaKI++4EhTK7NB1p0ISPCOiSV9njvKX0HSIRmSZsntBqhNRRpaJV3f3XisvTsaYCCjRtSWvLtO+8enKQJTY+joBssJUPF9WSKbUiwbk+iQ1WtvSDkssFs78qSjAolaqFNT0lCzMTiBJK4frZS27Gl5SPfZKHDx8iwdV/WEQQ5ptLbsYdKXTs9lu2N1um/cQfvvc9rsc95/2aFJO3X3LhtO8YUuJmnNiWTKEgVhFz3xgQqniLObSOqrS256LqWZDVY8NlaSqp82KkEVbNKJWD+aIngo0z1Ta+WWurLhySQ1fFncTdMFAZY+LTv/LL/PXf+i3CyX2uLidurq7I855cjFoTw0oYQuF6zsg+cH5xj+my5+blS0gZGSIWhFQCIUYCM12FrF4k1SBIHZjIDCTSac/HfvJTXJyf8r1vfJNnj75D3r/AmbhNOdYQYGGp3wQ+woNpCR8fncW3XLWFubT8aEGqltst6Iv/269TXpJAmmi+Wou7x6RqMQuUxWoYoSrE9Qn3P/Emb33+LT728TcYLu4QVh2igRISq6DUnNle3TDv904LiJG9dFgtxOAE+RDDD3NUvFqv1r/29YOb+H1ECujkxEhlwlUNYenRL1D2AsTKQq2xw+8MPxQXHoE1OWkbxo2pE9xMC6JCJ5EqCQ2B2PX0657NyYo7J5/ks/d/hb/923+Hn/jN17GVj25YyKgVqHWkXD/m+vmObnWHiwfwrX/6f+ePv/ZVrp7deFurO3XXXBXmeT6oLmv29lspldR15HmPiLcySgEzN77LxcgWmcpM9/AXWH/qlD/6gz8gdMaX/9nvcfXkGT3BSa6hY857pB+QMtLFE8LkdM4UKiGZS4hD9L5/jF65Y+5VE2bq/oqYVszmkmapgoSKhZ4YAtI5v0i0w2wkpURegm2bYK67HfO4pzCS80w92ZCGM7SPBBK6jkwyMgQlrLZYEijGNI4M6YRQE5tBkLAm6ArTHo0C5YbV2Zr95Q2pjyyutIYQuoilztUopRCYUEvU2DGPEzYXglYkBkeYmkW8aAIp6OwTtasKUtx6v2pAilJKO3Zi8CTb2oyq4smydgkLk4f9Kpgq9OoOt5YJ0Xkw1gYmYgVKa6tWIxIotRCttRpMQFyLFjSRrVDVyC3JSiFRJTCbDzYNeaKqojoQwoSO3gqbJEDc+My2MJIVplH4zne+y/X2hjdef5PT9SlD6MhmFO3Y7a7Y8ZL9fmS+vub3332Hbz17xElauU0AlUhlHfy6pQopKP08s80zpWSyC8pIuO9UaS7AVeSIpJrzaBT3VVGplFucEV32bmPWKDDBLVWPHE79RlmFxt85sEyWwqZWSmuNlbTis7/1y/yN3/pLnJ3fhTDw4G4ilMx3n26JQbl/sUbrzG6OrLs9/aojk9nc6QmPBl5cPyfGFSkMZAnopExOovH2Yg3M2lqg1d+rdoFO1/Bm5K2zDa+/eIvvfuPbPP/g29R66a+3+uRxWa5A8+YxOKLWh5YVTfXlt49LcigNDavVn9+ObSsACaDNr6iKAdragd5ecjTNac61KctCi8pFnBoQz+/zxk+8yad+4vPc/djHiSeR2kWyrIkIIRYSCakThexmkPPcRlm4749qhRr8vZXbONGr9Wr96V8/RFtqkT82GNZcCpqt+WOIs/yt3fb2pLWDjJKlpmgM/yX4tcpv8apR9T53FZcCxxCQ0KMpslqtuHN2wd07n+PPf/7v8G//vV/l/Md9krdJ9EPJjKoz4/PvsHvScfLma2w+fsW73/zH/OHv/T/58Ls3zLuJ1eoUkeSKGBHm0R1Sa62OxKA+vFEq++2eGFztUqogQShVsNzeUd8h6TOsPv8a7/yL32XTb/j6N3+XZ28/J0bnK6y1w7tOgXvpjGQjUo3hLFLyDps9YKV18kF+cWgVcYW5ICmiVmFYU7QBFrkQM8ShZxoGMPcCCSrI/opqbou46VZNtlthylBvnK+gIzIaaXNCSSO7lzNxbaxTQtSoGslX0JURO1HOuhNiSlgVUty0zyXQn2yYy0jeGkEHTh+cOpm1zpQpoyliMTTyqLeJsljz3DBIiSABsb0fdil5klrEHXVFERTJbbq1uDuJ1kIpMxJ89k4xN4nT1HtilVuPqgRKMao19EsFcnGSujiKo6LNUNA/fwnVkaHcju66eI/oYdqz5/yzO/+ae71YiECizOYScVOsdmhMoJV5bKouTWhIhMm5SROZ2BuSjDwGXj56wf5m4u7Dh1yc3qHXDTvLbPczN9sX7K9nvvndD/nnH7xPl9bcOT1nZGKec6vsnePUiRHqzDAkziVxM85c7ydymY+He4WqgqkcbB5cDh/aydsO8dpuQ8FUG0m2cXiMpp5sxN2PEJOX6qXpiWprWS1xQyIqwrS+4Of+2m/ym3/5i5yc3qNaZJ5naoycPrjDWylA2TLuMkWU04vE+el98k3g6fULtldPuPPwDHq3iAgRcm52DCg5CKlbE2Mhlz1mBVEDBSnKSpS4DuRcWJ30fO7+Qy6/8wne/spXubn6Hmp7f7+KJ2u1+Te1ikjlkPYcnNsP4FT740hPbUi1thbdUUJ+iJvtai2tLl1cctSnluvhdoubkzDce8BnfvpzfOonf4yT1+9CvyHrKbNl1rE7+oMJBArTeMP1y2vG3ZawcLtqRUtlV4xqW6IJc84/6FHxar1afyrWD5zc6C3fhKUSF3UiW64GJqRFLSV2YPIfCHDiWIpvcE9qpPFqlg2vKouy1ElwEgkhkJIQk9Ctzzi7uMcnHvxZ/q1f/R/y5//2j9Pdyd7pwCvGIpm6H9m/3BP6u/QfU148+zK//3v/Ge+/s2Xejc772LgkudjsEG2GTMZQb1W0MqxSqXXyQZMNDhbtsGBuCKdCjQNleI3zH3uTD776DeLJKY8//Abf/P2voyXTaU9oks1VSlg1Xrv/GsINeZzIpaLZ6IcOGxJI1+hN4s6pUqh9B1RyViJKzkaICQmFuu4oXQKrRO08eAbDciQmkDq4zwgzOo+tWuuQqGgJrM5Hph7Gl1ekVQ+a0D6zYkdXhOH0nBgq6xIIJLp+7WTr2KHBacC5zBSE0A9UC46sJCcMh5Sc2KgerEstnrhqwEioJLpOMdmiJFKf3CwQ6JK3nkKIKBWkourJcC1gsxFT7wdJLUTJwJZCRiQcprwXaQNApfgIEQloitQ5Y814zn1ssju74okIQI0Bn7Xj0Hy1ZRaQmwhaKYgVgnRIFIJGN+ajYrUQzCeaj1koRQhkRBMhRoTivKLZiHnNqHs0BmLck1W42o3kDx4xb7ecrh86/2zuePedd/mX77/NZYHzizVJOqyHlXQECrnMmDUStxakFtBAVLi3Hlh1iav9yLSfvFW2SHFqQyBqs/RbWlLKR1vHpo5eLb0UGvHW3CzuoCCyxZDPmvEdrc3a0FUzl8nXip29wS//zb/GL/2Fn+Xs5B47IOeZKRfqFNkk4XwjXO1czdPHyD5Htnnk4mzDcHKPx0F4+uQFJxcndDGSamIiYIwICnHAppGEj46RUjwRnCtZK3FQ1v3AqIrsd1jKPPzcm5w/eMj3vvnHvP/2Vxn3z6lktyNYkjWO7/dYwDXeF560lEM20tCwpaUvHEjcy30+unwAqhBAvOCKfYemhA49KQXW/cD5pz7Bj//EJzn7+APqagO1I2gkhuBFTmitKg1QJup4yXi1Z3/jiaqSmJmRHMh5xKIQJLGKsF6/aku9Wj9a6wdPboJXxAsHwTdkJQpkGqqz2LAbh6qCA2jNoWJYIOllsKUBIXg1LAohLIZgiZgSsU+shzPu3rvHx+/9Bn//v/c/5if/2hk1LXQfR1tKfsb7336P1fCQiweB737nH/NHf/j7PP7gPXa7SgwnaNe7WZvCNM/EGNlPRgoDoRpTnV1NrJGgkcJMsAGrmWqKZqXmShlxmbZWJjnl7luf5YNH30H6wM3V+7zz+/+S+fk165AYQkcSN5lTCcQUkThzfnqX7csPyPOOVQrMIdD1g7eaRNFqnsiQfAJ7ngjmQmCpMOeCqqHD4J46wdEurYLNFQ2evBSEIOKojxjarTH1acNaJ66vZmJIpOEU1UKXjC4KiRPCcEHSSEqBdHpG2lwQEkitxBjJNlNLpcwTEnH3XFGitCGcEqgpQBFyzkcCq7ikOYRANwSw4jJnrS3FbM6r1RANYN7UiJ0nOVZzS5LBooPyNkGt+5bEiI9kEKWoD8205BwgFff0AE+wggVHfywTRMnms64WDxFVwRQfJtqs8auVVo5HavFRGBqSc0qsUOctWjMg5FpQgz6ekJkoYUOZC3naoiH7ZPSqWJjI1SvzAliJ9N3MPE988PQDLvd71qcXyImyOj8nPj6lX1XW6QShUJbELHSusJJClpmSDZEExf1NQoSzqKxPVlwF4brMTFNlmafkW7m1TigU8zxPJLTPpDnnti1fm4JqOcqXokZ0aacsqsiKuxwffYzct0fhtfv88t/6t/nSn/0F4uaMqUSKFeapMpaZVQ+xRHa1I/aRRKZoZpDI5c3MNF1xuhbOztYEhbns6Lp1I50JNbQxD5apATBjDo4epqLEoszTDaId2kdWF2dwHah5IneVYbXm03d+htc+9Trf/vJXePrBd7Byg/vBtLh3C2XxCNdQ17YOpr92RGTaPzGVhrLeQmxCIK56uuGU9fkZp5s13WrFcLIhrnpWIaExwiqyuX9Kd7GhSx0azyG4H1gR/w6vO/XYIAGxmVx35Osd425P0EzqZzT1aO0RnYm2gph81IUE+o+MZXi1Xq0//euHGpxJS050UUCIS0uTNum3LRt72cVH0vDyL/+9Q7bFlhkuSyho3B2EGAMhKGmIrE4uuLf5GF/6hd/hN3/7b/LJX9wgRFILEmozjz/4BtcvZ07vvMk+v8t/89/+I97+ytvYnLw10HcII9McHIGqE1F68uSKlXG+8tlLxShWiNE9UnIxt4STemjxSISSM6Uqk0XWb3ya7fiIl893nG0yH7z9J7zzjUd0pgxRkTxztllhc0eZZu5enMIMm9WGxF2uL/c+MkEnqHu0GwhEKHsPSBqp7Btylimxp9TZxwuoNgfeiknngx6Lz3aqrbAWFfeFwajdQOk66jRSd5lSKsPdh1xt30eGSGdKHW+o10Lc3CPWimpCQoeuL0j9KV0cqXkidq6OKmVGk2FlQor52IQglDI5oTwbpk7Enaork/I4EpIRY0DMuVKE6FQC9SM2Yp4kNQRPQoDqIwhqcVt6bWRzqhEDlBCpNvj3IlhrN0kzZTOKuBVONKGW4sZtGonBKDOUuieGDgk9ZhVybq2+hRPmnBoR8W4VgnQrAo4AWPZDXK2Sq6ttSo0uF6+ze8pE8WtFh5SAhhFbGeRAlDViTmSf856cE8UMK3D98pppn+lXZ9x5eMrP8Wn++Xf+hF2+YdOvgICWyb8nKtTiIzU0GD5WojJKdb+iGIlq3DnpWNeO6/3MdhzJ2ZM2N0X0rMbQ5kDuZOnakNdFTKCtKFHUZzGZf361ob2IJ8O0gzY3/p6Jczn6z36W3/pbf5XP/fSPU1dnTLVnqhPzfmIW5WTYkDDoAn2XsGzkXCj7HZMVVinw/PEl2zBydnbK6s4Jq7Fz68WaIAgWO2LKdHVilwWacaSGjsrMVoxAoO4niNekqOj5gOSekB2ZtD5yfnHKT73+kA+/+Se88y9/n93NBwcFmtji/+tiiNsRULBmzidtHAWgjmllCxQxun5Nv1mzuXfBvTvnnJ/fYXW2IfUdEjuC+igUnwHnw1+H8w3D+TnDMDDXhOpMFXcil5B9WKsKNURWihcYpWD74tYJ6pNlTbuGVgpJB2ro3ZhBA9Wg67sf+nB5tV6tf53rB1dLLd4Xhw5yQ1wMnw4uRqkKugyZ43Br8F606qKWakGvqaK8axXQQJPgJjQoMfacrO/wqQe/wF/9zX+X3/h7X2Q46zA1tLg3SqnPeefrXybxSR5+4nW+9cf/iH/xe3/AtL0ikAi9ULOATe6JqpNXsjQjwpoRC81JFKxmYpcQyczzjGqkmDEVJ9SKKaXO5FLAKrb6LOH1xJNvP2N1r+PZu+/y9pf/mM6Mfn1BZE/RPVrX3D0/49nNcz+A6p6yz6RuxdndDaHrqHlL3m+9tx4NLUoWiOyp044oA5IG99to7QAN0WXKAYoEUhCseItFqkCV1jryCryLiTn25O2EqrErO/a7LdSOnoJGPxA3wxtuini24vTuPUK3InQduhKsKjXDbn9DxQOnUQm1tSskk6uzDjRHLBRvMcXgfJbUhmOWCWtuqEhCU4dEN/uTMiF5dtA/iMuii3N0yuRJEwRKKUjFlT8KmpLXxKW6K3FKVCZsrkgQAqmN+Shu7R9aqq2BaL1zRnTwdkkFxGdESxsg6tm4tvkTQJNGQ/BZUM7LpSDEfu3PNTvpXIOQSFQr1ACSGum5zszmnI1SlCAd/cotEKZ5Rq1SyoBJZZ5n5vklsYOTs8BPvH6fr334hO04sxp6AoW5uMlgDF6EFHOOmIZANtzJ2gqJSAgQorc8+hjYbid2pbjvkJvxYNXddVPb1iaLeecRe6itfeX01zbSxGk/zaOIpmwzNEubFh65+Kmf5C//zb/Opz/zFrVfU4pPYc+zQYqcqTo3KHX0KdENCcvCbtxTa0/Z35ArrM5XXL+Ep09espbCve7Eyd1BqCh9NkYrrj4z3Bm5uvFjtan5dxUsC+M4k7mkP79DjIkQE1oHNE2IwLCCfvWT3Nk85Gv/4p9z8+SbZPYUayahVhoR+NiwMgneXm6jaUwjQTtk0/Pg/j3uv3GP03v3OT29IKwCOSqJpjoLTpw3jOBOl0jKrM/OWZ9tsHiCkhjweFZqJUlkbuTpISSiBIRKMmMqeyfn54KUQheUEDo3s1RX50WDQOct+lDad/zVerV+dNYPN1tq4d0s+k3zwYEBI9mtSnYhEdJGLsjRtE9wQmJs/ftl6KUTdwMpVmISYrditTrl4uLH+fVf+7v8wl/4IvFs5dWfVUwztnvBy8dPee2Nn+HJy3/O/+O/+F2ePnqBjoEUlBgToymWBJkbEbWW5ixsVDokZMroRmzGBH1PFUOsUkI7yK0ZqFllrpVsPsto0vs8+PybfOPrX+Us3WW7e8S3v/0nvHy2ZUg91ir+lfSEWrhIibLacHN1DXJBsZmgK6JUutQjSbA8E8Ps1yZ1briWC50M3rIpBmEi7yZCGAgJ5upS75Qi5J3bq4s7qKpEwAhBEekh9sAeYWR7tcU2oLZiP3+AjLC+OKNPG4b1BXEjDBdnlKCN+5LJ456sngyWqWAaqGXfSLjVE8WmiHHDvaZwIpNDQqOr3moIyLjFZpekh1UgaAatpNCxSO+CRp9nRkZsgpyJKOgiye080aRQ6kS17DlzFR9gqSA1Qpj9GpTkxOK6BSpWg7++ppsXeh8UaQ1lVAFz92nBDiijaSM74+0XVxEJMWhzQE5Ms1HyREie9Hubwidpp3DCFPHWGT43K5q/niyBIjPdEDGNTGVH0p5pmghBfOr4VDHbstkEfvz1O3zruy8Zd3tWq440RoruoebG4/ANGcUNoxY3YCdSe5tqMyib3HESIy/mmav9RMFHHpgV54wItOlTFBOfHwa3uDSLCWd1d2sRYhWiOK/GkaBAlMxe17zxZ/4sf+W3f4MHH/s4Xbci18CcjbHMpFhICcpkhBDoe08y81zowgldiuyzQVoRwo7TkzUPzk95+XzP4+cvWF1MdCc9Foyukf5D36Hb7CaIEhxta0aRqbVdqinzaKjMhHFHTBWJEUkdoV8RLaNcELsdXVR+YvNF3vnDcx5962tYdi6OSiQ2XpmqYgY5KtKfc7o+YThZM5yuOXvtLqdnZ9w5P8GiT5Ov4iNAeqDEgAWI7p5KtUIpmS6dsr67ot9cQAwQApTKrnpCX80NVQmOisegBKsYI9n2TDVTVBlFsKSk1EMM1CiIBULtMCvukq3KPGf38nq1Xq0fofVDScEXQvGBMyM0mwdvJ812Sw55vKPfVhtEs7Suml+OyHEAnGhFQySlFevNCadnd/nZj/8tfvXf+svc+1TF1JVQiHH14hnluXLvjY/zB1/5P/AH/+K7bOcR2xU2Q6TQU0skRmPcXaPSUUohl4TITM6Z0A2M8wjaU4O5gNaMWnx2jMZAMShtEKP5qUkksWVg/cYXuCqXnO4VTkbyh8/58OvvoGSokaQjFhQpQpBAv15z0bs0WSpkmemkJwXnNBUSQQNlPzqKFQtSKtSeEhMioydhtqdPK6R3XkgMroqJlhtPo4fqtvwhJKdyqpK6FTnBdLnHshHun7DdP3bPma0xnJ8xxAtW6wvWpwNxwNtG4iaIYi6VLggyTWjOTPMNqblJmxWyOclXdYBQ0VAJsQ0MyAVJgTkXUlQkbmDaUWv25EUgxdgUUJmoAa1KMkf9nJna+BwIpc5AgNBMIrN/KYs1giw4J8IqIgWqk4cXFZGIUktw1Mg6jL1P484zUEnR5dy5tOSkZk9wiE62ldDGixilTFhuMmefuNh8eRSTllwSsBwodUTE0ck6VeqUXSk2DLBvQ1qlI497NES6OlNVka5nn/cEEfr1OdvdCwiZzbrj06/f4VtPnvPk5oqTfoWGSJ0rUrPzh1rlnTSCaRtP4QNJleLojSqiM3djoEs9l9tEHiemZsBZcxtgiysJXSDURjos6GxDdassJOLS8jo3YQzA3F/wuS/9RX75N/4cDx98DE0DVpWxVnKp9C15Zq7EtEII7MY9ogWbZ04GR3eHiHssSU+fVoRQ6YY1m92aXPY+mmMypv3EOFZ3p5Y2jyxFapwZ5zazTAwhop1QmCkFai6MZYf2HV3XkWI4JNYhugv4ndAxbDpOTja8/ZXfYzc+IVCZJRJST396yp2Pf4zXPvExHt47J0Tn1ZVempq7o5qPx4ghEGtrv4pzmzAnnOcZiJXuYuDkTs86dAQJzBLJGYRIJ+KP0ycKlT4og4KUkVwLZd4y2eSorhilGNHCgSYQzAvMEsCK+4oxz8Rxomy3P/Th8mq9Wv861w9h4td4NAepIwcCnbWKNohXy+7ncCQRL8mQtUpGGhPRGqoT1NsqUXtSiHRDx2p9l0/d/ev8zv/g3+LiLZfvYhWxwu7yKWFe0b2e+Wf//H/P17/yhHkG2Tm5EivMxRCbGadC159CHinZa8w5G10/MJUtQQcQY783NGprQ7jqQ+ZKabNZrCVnooGpCFVe4/zNNd/8o3c5uXfOOL/g8YfvUm5mBhTq5PLfaoQhgGTmaWZYJeK6Y3OyYt7NjHZNWm9cHRYCOhmSA0k75jyi04h0nUtra6S5ULSq0AiaXPWkAbEdUXqgsOSS1QpdSt7Oiso83xBlRT4bKC/fQ2aj8gJlj9oJw2ZgdXbaOBnqiYuZtwqqq8Ok7Kn7TJkranvnEJSZUkbv51ulxDW66mC1AumwEAhk4mxo3hOGhHQrZNVhE1iuWCdoHCDPUJWQYhuQOTvfS2P7LHxkgqq7zopII826a/RsBY0BbfOZiBHK5L41tbiRnSjU5OoUqwgzSEQkk/Pk7a8yYYSm9nKidskZq6XJyZU8O4k2aqKGSqne8gztwA+xc3UYeGJWZqg7pN/4cNMaXfGlhRqVuEoN9ayeWNUMfcJyJhTBCMxzxsoNfRqYuESDMZzAp+o57zx9yc12z9AduR5SlRRBNLniSwvuNOwE04iTzTUqoj19DQh7wiZyEwz2SqmeGBjZ+SKY55JmCL6nTV0N6VPVa9vzwiwQUKQG7OI+f/bXf5Wf+fP/BnfuPsDiQKmQzail0JvzUFCjjyskJNSEWiL7cc80T5RxYj1ENKwYug1BEpB9z0omqVFkoaR3QKGUPXU/Uc3dxosIOULK0RVvoWKiWKkETZjN7KeJqImYhJILSSfooxvalQppRR/cMPGNTulOVnz3T77B6sGae3fOuHP/DqdnTgYuQdEYqMGQ1CFTIZcKsyGx0CmEmHxAZjWgp59HxtmYGOnXHSdnZ3TrC+hXqEaokaozmJBrxiS4CCIGhqj0ORNrYbKJWjJznr0irYV5msgUiEZsltSlOqoYmCkZrBh1n5m2M3V8xbl5tX601g8xOLOR4trfnTtT3WyqtZaS+b4sLeVh+a9LCJa/+MM1qS+tuo0xELSS4sBqc8HDk5/nv//X/0d8+lfXqAZ3UJWZF0/fQ8trnL++55/+4/+Er/3hM/K+UKeJvktoFMaSiB3M+5laYLYRNaXvOm7GPRo7r+Bz9pZYNVJSTi5OuNnt2I9bci1YqUBEzRU0Vhxen6Tn7K3P8OF777Luz8myY3z+Hu/+0btY8PEHMXlLRWZHAEI1KJlTzpk6YX1yQYo9dO5Lk/d7NEaSGTF0VPOZRjH0zn+wjE4Fic5vkbhYrEcU98+puRDVCM1QTiTShdTmJYmPO0gDUm/Y2sS+TKSzgfrohn54wLB5jX61QaYtJUXW3eBtplqpZUZUqeNMnW5ghDJlpO7JZWase+x6yzy7Ay4pUaRQO2Nz9oB+iKQ+uvy6zoR5QNdnaDdgfaKWQnaxtxs8qoFlJ/DajEr0wyr0wIwxQ3HSa5CI5eoJhCgheeVpxb98YkapnU/HFvdwMQveupv3/nqlUqu4hDz5OAlP2hv4WEFEScEdjgtuIRCTuxVLUxTV6OoSMyg1N8dawJIP3DQjqlDM0aEQKnQ9eXaEx1SRYkQBklAlknV2PxYiSU8p+RrTa6ptiF0HRRhiQNINn3qw4sOXEy8vt8zR6IJgZQ8SSWLe4lMnmpbS5McWiNWRLB+ZUVh3PalMdHEgpcJuX8hT9n1x6Eq3+W9WD3t7cYxW9blahUiiQBbsE2/xF//NL/FTP/tzpLNzRNc+JX12VE1b6m7qe8ZECeroAtH9qHbzDbtZCLJmvR5IyXkpU3UJus3GuM+UWB01DUrXR6oovRXGvbtEmzqxl6iE6uNdxAoS3Q8HjCSBiHO9rEz4ZFcn98bonku2munN7ShOujUPP3YXzuD8fEXo13Rh8GSm60htvEiedmzLDtVASEKUgUryCfayQygw7dhPMyYTaXPK2cUF676jxgG0B4Fs7sdUEIq4RUQIgR5HStfaecExZydES0SqYVNh2u8JZMwCpVT/Pgaci1YqdYLtzQ1T3hKjEM8XftWr9Wr9aKwfavyCikJ16L0JRoHWKYLmUmyNo+Ld+AbStOQImr6pPZ47n4oIkUAcVqTVwJ3hx/jLP/v3+YW/cdIG60Fk5uWLD5F6n+Hihn/6T//PfPlfPqfOE70G6sZ9W6ZdJqbBlSbVSEGxWtiX0pxYF+LwRC4+gbxUQ6IwFSGGRJc68jQByjyNDQ1QIkK2iMo5/YPEoz+qrFZbpqtHPHn6mCfvPWZjyQ/crFiqsImsVBgto1FZ9R222xIkkJLCXEh9IGiPBijziIaCxkS1FVXAZO8+OX1PngspumIi1AoRUoqUeUeKHbEKdcykVYekzhUZMaJEQtcz53ZI1htWKygx8ezFC9742B361Yo871mtLuhXinZAiBgFnXdObB33lF1m3F0T8kwdM2OuZFXIA1MekTljoxHTiNbIZJds338BZWQVhdOLe+j9+wSb6aYVdnaBdBukCHWaEHVURoJD5lH6xufwqj4EqBnnrwT3mhFpiVObuO0InEKJLvEOPaoDNdVW5SolF6p17gVjILk474XSknG/zpbr0o91bg14K8MAqQTx7CdXR0Pc+8ZbCqh4wj0qYk7gzWWiViGmQCnZPX/6DdQRpGDaPHMU5jID7lQ9E8lzJfWJWu9QrRCCUsnYymXsJ3NHxduxL7aZcRoRMrW4r0vVSh9dqh8CbnSHEMyHlUbE57jREUUIFZIYUQM3ImgxQsnOJ2rT1uE4K2kWo6M6KmVCMCOHntOf+hm+9Nd+jU9/5uOk/hSpHdkytRQsF4QMVZGodCHRxUSuwpQnqhRUCxIKQ79BcqTM1Z2+1cUIZkKZM2UaKTjKVID9vGMukUIlrjrmWmE3Y0DUSFVHbZZmG7IonQJVPV5IzshYmVQIfaKTSpcStukJ00DUwC7DXA0d7iF5Zp8GXjs/IQ09IawJIVLyzG47UsqOiEDEbR2AqjNaDc2QqxsPEgub0zM2J+fE9RkqPbMZaqXxxoxc3MXYmkFip4GQIim4j06dZzoLxODf91wzYy4UC6TOOVBlVpgKIiOjFeZpT97OaIVuFen7jrQv/x2PmFfr1frXs37wqeAN5FVVJ442x2JXOslB9RQEcvVhbctaSMXgCY42no0Gn8AcghLSir4bWJ/d4Qtv/Ta/8e9/AV37ULlgxn4/0pd72NkT/vP//H/H4ye4O28ZmHXvpOWcXWZaZqwoXRe9ajVIKZDLTN+vyNVlv/1mxX5/CUS6rkNUvHVlHjBzzpQi/n7UkC5QUeLDhzx68S00wTxvmWbl6XtP0N3MHN2DxhaERSOUyiAdSZXd7gUVc4RmMhhWHoyDECiEuMJipVR3eS3iAx4Fo3SCZWtSfEFCbNUfhFlIos6f0Egiur9N6EAjJUVHKDBqVfaXT8h1Zj9nOulhP7GKA1ELKUaCRfxQ9Ync024i5B11P1FuJqxcM1VFu1PCEOnqSFp1rFYDIfZov2HMH5BUuXz5IevX3kR1oO+c0xKCe9GgEcUIKbu6o8lzXcLq6JREQ6354ihM0zVU9T/MjdY1U8tMzUIwHwyaqzUjxNiQOHOOUgzkCqEfyMFnWFFaUlPF/WICSIjUMnui1By3jUItGSOCKHWe3R0b82SsNDTTBJNIVaVWIQSX4gdRVDeMVHIFIZGikksmqSBESvFhp0ESqauU2d2bQ1JKrOzHHlVlHEcgY7FDxoKYJ0GrtZHCTBc6rraRq/nGp7zbTC1G0BVSzZV1TaItWp0v0wj3FiM5G7REQaSy1o6b7Cqcccpcb0csz456iVGlstKGWuFjM+ZuxSe/+Of45b/8Re6+/nG6bo2pMheYxhmpucn1fW6cxkApMO0nN6gkMx04ecIwrAi1Y5pGdvsJK3s0Jax40og5wVsV9rnw8iozjzM1G3vz71wUV9MpPvuuREVK9dhh5iMVFrf0CkMNZFGmAmE/ElJANLLuO4ZNJHWJvl/x8tkLrrdXzHHHwEBOyr2zDTGcocDNzY6t3TSLgAIlkFWgZFcdlkKcZrK5si2eBFYnd4mpAwTvgHoSVjFKwV2xvSdI6pSgQhfViec5uyAhDN5aDpVSEuPNREgRTW5bgBp1O5NvMvuxUA1W6w2n6wGGpny72f//cs68Wq/W/9/XD9WWqg17QZ02uLgQL20qwQmHxRaheLvrreRHtIlF1RW1QcWh1GgMq3Pe2PwF/sZv/9vc/Ux0UqYJ2/wBu/cH7nym56tf+3/z/HFEbi49SUoDNXvSYaUQu546jpQMkipzc1ztmkxXglDmkSLukYIEYgxgkxOJpQXHmKA0joVltHYUhSondPcuePL2E+6tV+ynyDw+4f33vkfoO2LN1NATY2R1MZCfTej9E6bdDqmB3XjF6ckZhlCTkWL0CchjxqQiQ6JGQWevmlUCJtXlxbV6tU9Bknpgw7D9zoMxjq5JCNTiJoMhdvx/2Pu3X8uSbL0P+40xIuaca+1LZtalq7vP4eXoHPKI4kUX06AtwyYgg5IsGDagBz/4f/STX2zAEG34AsoPNiRRlEgd8tzZt+qqytx7r7XmjIgx/DBiZx2/dcuGqAYygEZ1VWXW3rn2nBEjxvi+3zdsQVdjf/mAjINuT0RdYAzG139CXWGRE3I8sa6PbLVSJNAeWB1EpM7CW9Av3zFuyfNYP/8KOW9sy8KdGvCBsR84ztEvPP3ij7l++4F9f+GLz37M45c/zlDB1TMg1AwzEFdE7lkMhl/x0Viw7Aq4MxqpEwmnH1eITCKPVlBds2ugBWTC60YQ/Yb4tCcHc1468nMKp4oRI1LTMzxFzZpjr7ATToZMogWxdKqkSyi7NDE8KdAqs2MToEmNdnf66B/Fz2UrjDFoHVpcMVtSrNzy5l1LhXGbQ53AEcI7IYNSV0ovDL/M711wdnpT1Br7ZbCtxrIqBw/cjidO943nKNz7QBHW25kPfvDULik0lQUzpY+YwMrZi1JJYbHnwR5zxKbNEM1xjoxCp7DUhppxvVwYI2NBNYKGs3iOmv3zt/w7/+A/4O/8W3+HxzdfoMVoLrQRjKOhvbGTsMm1LinyBdoIjt4pdgWCQ8DqiXMpiYmYz/jtBvutoT1DWZ2ENIoKSGUpC6elIbpz7M7+/J5KYK6oKG1M376m9Tn3sfi4p5VimCdgUSewJzrc9k74DUfQ0wlVeLyrVP0MvVau77/DdPAcg7+63RPrGbntHPtlPr8BUtKm3zp9JODTe2OIsdyf2B7vOZ3uMT1z4CwonfTkNxRxR7GMGMEpljbu01rTpUgjdBAlsEiWlITxfBm03rDSEVeigx/BeGofnX13b+84P95zKg84GybB9v76/9tJ82l9Wv8dr1+5uLGPI6iY9sYJrJo0zleBsYlQLJ0VwBThTl3OVOmnBEc+doJKKeiy8fjwl/j7f/N/y1//+yuunRJGk2euPxXe/tYbfvb1/51//P/6A/yyE3pieQj600Fdz+ztQnSjmNBe3TRj4N2QeTPurnA7EvimC76/EA6hgZCiXS2Kh1PLwjhgYeWpXzFprN1g/QyR95yWlV1vPL18yzc/e8/lm4M6HNEVxKnbPf14RjgI3nCWRieDQF83SjGQcVA8Z/8iikbDdkE0XU7yqmHSgl0PrChdUosSWoAci6zDeMXja02ra11WRoqK0rFVTqgtXJ5eWFzZ+8F6fiC+uRJ9J5pDzxuenmvmO726n1pn//AN7XajLG+pjw+c3nzBw8NCOYzy5szLc+Obr/+I52/e8+Gb77g+OSe754d/5W9x/vyOuvRkasgjtt0ztNCAopW65BikH8HYX/C+T5tuupvSo5WkYlxR0vUikXliavPfiSSXQwTpBaTQvSGygEa6ovwgS/Usul0aiuXtOa45EguheDB6coMYnoJcKWCFIdP+bGm/7b1RLUkwuhRMghgjC5zjYClpOW7jQGXJiAKz7JK0PcX5uiDRP0Iye++INFbrHEMJlCFw3s5cLimO3U4F7/mz18UpCD4qp1NhqTulGqpHakSuwct+cLtdYN2oZgmr47V7o1hVbASEZ1zA7F5U2RiNxAFoJttva+W4WziOwfXW6UfDwmk+uP/d3+Hf/Y/+A370u79PXe44rCYLp83sKzK2YqmVdV0pMW9FlpDEdly4cIAsLGtlLYbKkmYFaakDkcK1X4i9TcF3jpeWU16MlrJyXjKAFXPu1kEfO3EEtixwNGSO65ah1NeudFGGp9ZHVRhz/0qjVBbFjZY1UPcZppoavToOjiWoaoyr4LJT+8ovnj7w3FoWclFpPvDh6IDojUME2zbePNxz9/YtdTkhUhmzM1OGso+DYsa+7/l8zZm/FMBgqWmIqGnqZAC9WnKHeqMdzu2Wlw9pSmuNfr1x3TtFg9O7M9u7R5bTmcVWKgWnoC6sZf3/x3nzaX1a/52tXyNbSiaJM/kp2SnQaSNMe7ZMt+4ruOrVYTWP8o/dHkHmX9M2K7aynj/jq7u/z//0P/59uPM8yLTx8s0zp4cveBn/gv/H/+Uf8v5J8QPWB+X28kyxM70fHEdjKXeM0bG6ENKJYZgZMXZCStJ7+4HGihTHex6sqEy2TUz6pxIMrAp6GEbBW7AfyuMPHvnw7bfcleCyf0AuNy6X92mBt6CSFmXfryyb0d1pt8ZpvSP2G49vHqh1o90yrdutg5zyEIkDOwwwfElIIJJ2bhOjcQCDWvPGVsUpLOA7AZi9alUEtcyY0vWMhnM9nqinB26XbzlevkHLikahPQehp+QOmSEy0OJgS5JdcQzn6Df69RlYsfoZWz3z5uGRtSi+Gvvlz/nZH/83/PLPf8n+Uok3f5u3f/kL7h7ecC4v3EdD6JT1TDmd0E1hxBQR5429LGsesDgaLYuD7vQ4UhtiBYkFY8k6xrId796J3rL81vx7kYKa0USzSPKYYuJKhkXO51QdCc0iyh0fgPR8NTw7ka4rHjNtXJKkbDrwETkd40iruKRL0EXTVTMUxk5QGeH0IhxRyQCnkSOgYrgU1LNY6yNfnaUsuAT75SU1Q1ppozG8Y/aA6RVc6O7oUhApyOicTvccrWN74zYMWZT1pJRypawP2Ied6+2JY2+MEhTLa4nhMDVL5hWNg0Wdm6fItnikYVEz+LWHUhxOuuKrMB4Lt6Nz7Y2vfvvH/I3/0d/j8x//JbpuBE5ve6bc90b0W4531yUTsB2GaWqnYrB7Z/Sgh1FWo1ApR+Z0HZpJ2j0aHp2+t4Rq4qxe0SUz6are52UmHJVgqcoYimtNMfptUExp3tFQhniSpSWrVtOan6kkUws1lNdA0OkAdae3xtWD7nlpMheqA2q8PN345umFzQ8+vOz42OfOKDn+7A3pAyPYHhYeH97x9v4Rs1NeSiyDcscR6XRy5xhOFc0RrmYMRimVpRbK1AvZ7FKjJfU44SjK6I29d0oozWF0BS3cf7bx8HCfHKC1YiwsYhSrRCwQB/YpWurT+g1bv5agGF5Fwd//NSaZ9KOWPoI62Su0vEEzoW7MMVY6pQwtC0WNc1l4OP2Qv/dv/X1+/Ldf04SFfhxIf0v9/MJ/9p/+J/zy66A/X9nefkXv3yG6gFh2YtY7Sunst06wUFTp3VnXhf32TCkrInCMTl1WmjiDzrZt9NFwGuF5K5PIXCRZYPTAxkL0G70Z5SEYP7kQW0lBKs7XP/+WVXOTllLYxsLRX/ArrGpcjhc+f/uWfYf7u8+JsbMsJQuc84kunUJFyM0ITZpuJlqDSt5yrWa0wZwR4jLw6AnYm7wVk8iDenXUKmxGdEFjoV12xnGjSADPyA7DG+uW8QFwUMp9dtVMMBf6cSMiaLdOb5n7dHd3x4/+2u/gL8+EwPPzn/Av/6v/jH/551cev/ybfPbv/l0ef/QFtR5sz8/cv3zN+uFGa1fMTlhJu7rjiK2MIayhCIV1CSJWvEnir31gVIqlV086GbIYMnVgA5kcH5d076Q8Jh/KYnkQDQxp6boT5KPtt0wCdfeAMrN6xgG95RjWJJH0VvE+PnZsRJRiKb4drU19SoZTBpGjsQDRlT7xTFWFup5px5Hvi6VlWqziff53rUAfKIVVBVkL1+sLLkJdKrfLt4y44KLsY1DlxLoCQ7j1HHNZdUJObHqwBPRl4+Wi0K58rivPLwf7IexDuXVHlsIgO013boRG6pA8i+c+IjPMLAXdHpIxG2T97QRaOvd39/h+4fz5hu7PPH37C7jujLqwiVLaYC/GIoVtK5htiBu33tHSgJ7PfCQEMWNVCxzOwYHsO0Oc0QetHUgctN5pIzV+5gOtjm33UAoxFJ+cIxVYtXD0RuDsSqbUh6O94Tagw9CgaEEquMyUMzOK1pn/lMyiUoxaC+dlRUKpcebaG9eROqJYbmwYf/aL7/hqqQxXrAQipxnOeiC1I/WO893Kev/IaVsyn4zs4nb4mP4t8/KFCM19dpuDtSzYjGbYyoJEZoyJgY/cax1ovXG93oBB0cn1WVa0bNRto5bs1KrNvYRCj4HQMAOV+useFZ/Wp/WvdP16guLJuUltRwbmwXRDzcNEhbzxzt8Xr5WP5IEgpIFHZVDVqXZm3R750f3/hP/xP/h9vJCjBhr74dx9tvAv/vn/kf/8v/gJx5HjJCuN0TaKdoY2xj6opzv6cWG0C+W0MvqOe3AcAqocfmOxJW3XnrbHQNjbLZO9h08YGamXmH/ezRbcG6MuFBZa6fQpNixH4+X6NfsvvkXagJFY+fX+LeP9L/OwNs3AQFc4Va6X99w9vqWeNrwFroV1rVgAo+AyQHIermqolWwxZFJnCqxVcgMqitmY4xjypqWKlJpW5uWUIZ/jSm83Yrujt0HfD1q/8HD6gvb8nnV9IOwFPd+jVYluSCOhhSh93JL78XKl+cpXv/+7WBEu9cbTn/0Rf/wHf8gvvm781r/17/Ojf+/vYndnjAvr7qxPF07Lgr49sZbPaBr582FHjwvDM2092g0vhpGuEZGKFUPF0SHJ73OIFISAGiKO9+yaTAA2oaTmKDxzo8Yg0hOeDqYpFkVmmnOQQL0yO3bxStJ1THO8IT1HCGbZlwwfJOVXqTW1E6KKR6LvZWp1IhpEQVRoHawPZLwKkGeXCE13mETavUUZOimzfaeYst2t3NoOOPd3j1zbjToKevoB4/17rtcrm27UZeHWOtJm9pV3rCinZaXHgCKsNtiK8OFpp6Bcjobvg/u1YMNhLPhkvmgt1CHpyOqNNoQwpVimmauM1Dmp4rrj44LLzuWP/5Cf/uQb6rJSf/Q59e0PkPMbnpeF5e6R0+NbPBzve1KIh9NunRH+MS2+mnLSFR3Bbdyy6xvOcTto+xMDZe3Q4sBplLpx8cGj3E8uUdq3tBTUg/1oKLBapQ3HJEdDqgalzWchQHR2pQciNY0Rkx8jxSgi1GmEELLQFoLryO+9IrCuKIPH6vzhd8+8+eyc4D+pIM5uTphx1nvstFDWO1ZbWcwIShZYMx98R+gx0iLvQY+gM1hCwJTDlHNNwnL3YDVlaD7HZSa09+G0lnEyQZK6VZ26lURD2Ippmjc8EmKo8z1wgj4SevppfVq/SetX79xM85OQe4C/ioZFJqWV73+BKDpHWBFkEvArzn52b4xCkY1SK9vDF/ydv/E/56t/w1E3hqXldFlXni7/nP/0H/2XNH/kaO9ZykOKTI8XqJWqhR4Ho13w1rk7f8Uhl3QbFQFG2oGL0X0kH0bB5y1eFfZjx0RzDi4zR2h4IvjDMG055njzJa09Uxyut++47lc+PF24XJxCWjKPsXMXZ6Qq7RBiC0bP2mQ7p01cIzLvqS54VyQsxb0jqEvqXLxHRhVoYewvqYMwzYRlgroUFKP4yNtWyR9QdkVyfqAeaDV8GFULB8J+7ZTzysv7J4o46ypIYUIAUxQ7gmzpe8/JYtuJcePp24Pf/du/h8mgHVfe/9kf8sf/9R9wPP6b/I3/8K/zw7/zO5Qv39FDEDfK7eBOz5RzIH0WJpour9TXNPzWqfePjCHE3lNPIa8HqBIj0JYjHGKOMnkVsKcWiYmsB8+vMS3iEmkTVycpzGpZ/CAf8QWEImJIHJl6D1hNPkvEjC54HUepJgsl5uwIGCOTv01qutd6w3vauYNgtCtCZa0bRCaZDw/cBY2k/I5+TE1RQhdfiyUV6JN4XBj03mZBdM8YH3Dp1Fpoh3DrN7bzifNW6LeF7gfr/ZnugkdnrTVFykUpZmzLxsvLwYsIt9E4ehZiZsGiSTKOELCOjEGtNS3KowJKMVKf1lIETVnwUmBP/pWPF7g+M/74PePP/5SXpVLvHlnefIm/O1Mf3mHLxpvHL9nTOpnbjAzqUoixcUjCEsd+UEbneQT+csP35yQgu+E0ettZ7YJrcPrRl1TdaCyID0Y/kjckOdYKB5d0E3axvLSpgVYwZ4y0/qd2sDLQLPRE5/P2vXC/lsx1U0mK9s0PmjqrGX0vRC/aggABAABJREFUrHfQvunsbxp3lheYzsG2Clo3zutKMQM9pb6HKYoOmX9NS32TSB2hVhh9CrMHd3XJ59OdKAVR6KQj7HVPljn+7L3Tx4HVmGJ+sFUz+uM1GgMIyc9oHzvhgmFIdPrxyS31af1mrV9Dc5Ot0Vf0PTElmTr5w1Ng7JNHIjKtszGJOJIWSxQMS/tmFeq68fn67/D3/6O/QT0VQp0STgsoZeFP//z/zXeXB2xckKNR3hUuTx8oZNr33l/QuqAauBU6wdGcavfUGtyuz6z1Ea3B5faC1hM9DgLlfL6jHddkULQpgJ5wsxBheGcEOIaslbvHe172CxYD4WAcB0+/eJ8J26qT+TForVPLQjuu9B3ervfI/sKD3mHSkZE6AlPFbIU20vlk2RVQEl5mmtA5Ecde6Ymvm6wYMt0SRYQCyBg5ztKBcpfxDn1ljM5xXIjrnsF5uqJdOV5+QtGvUAbST1QLvAUsz4xdcFeiHcTtxvtvvuXx7e/ww7/71xlPX/PLP/sn/Pk//yNa/Da/9+//h/zw9z5Ht05f3iK6oy9CtaRVmy3QGmEFLZYWaRL3Lm0HhPX0QPVnqioVh3Hkn6870oLoIwnORbIIkUCloJq39NEHJgOdMD7Irk5EmQWqMyzADc8ai0FASR2rvAZ9likqtYARSahWy4MlpgC8rGnF7R0/GkUKSKX5kS69loJ4qysSN8Y4cK8pGDeD1lG3ZLFIQutEDR8jBaYi+LHPsU9ahKWPHFfVM+dakUWJ/WBYYS0rL3ujdGdZCsud0fYFkc66JAG61IyzbAI9OqsO7rfC+yfh/cV5aSP/G5YdwMyySAKueYqvi3Z8ZEBowhiDWtORFZ44giHQVuWM4HKg4pg2bBzE03vi+Rdc/wyuBqFnPtw/IqcN2VbKurEud+ynM6aF3nuSkwkuY+Ct0f1GNJlW50b4gY5Bixvy5jMezn+bYqlFgtyjmgt9dpaxDCSNYlAyxRwvWCn00YCDosZrFpiUmYIuqalzyzDOfB0zI20Rm1EFg9Ud8eAoHdGNtkP3g5BKMChWWGvFakUrVDnlaF2MQaAhWMCN7JT4cDrQQxiZ5JpOKUuq9CpKEadqn92kLJpVnFHn93l0+tEpJR1x1SCKplCaaWONgkoydJJB5Ejs+LjifefY23/bM+bT+rT+laxfQ3OTN1URwYPp7EkuyOtYQJmUVSFHJcyNmqnL0bzloIbJYKkLd+tbfu9H/zO++lvkqCCU7kkOhvf84Z/9jFqgfbhxOt9j7aDaiXI+MfZnohtaJVunQ1BzNq3c+oXeQNS4tqdkuYTiY2AWHH7gQ0nOiOH9RtsHZdE515f8/RywGMKC3RWOrz+wnE/sxweOyxPfffucTgmECKfKSuu3bA9bcBsLB42jg9pCWRakOhoHvMK0Sgr+tA1cB+hGvOYfNceqEjJyo1KQ0bGoFBszK2cGGWoQMjBKdkBGRfzCePqAlYXDOrYY7fnK7nDSCnIi4uB0d0JYoThhQqnp8on2gZfn99x+3vmdv/dXcG1cLu/54z/4b/iwf8m/9h//r/nBv/3X2NbC/vyErwUfwum08mZ5QfQ90o317o6djqyV0W9owGE6GTWDotlqTxHuDXCiK0Zaf1kqrpqRHfNz6OPIDpvW2dXJno7Ow0tkpXQ4OHCDhZK5QVO3pLZkcCTB0ByxNE+nkFqyXXLCNJ1oDu5Z/IRnMna73RgE9XyCmIL5bSUiHVlW7jFx3A9GDLpL6sFC6TrQWtEBGoMekpqQltyXsMAWY4QQdoPlhIdQ5Eo9NDslDmzKGp3WjHVbMOvcnSqX5yshFa1G7w075/MhhxJ+w6zw+OZMqcrpuvK+dq79hu+g50KtPR1KcXC4oy6cLcciEoGoZIdRp9bIr6gEmytaPBO4pCckUDTFqeKw7JhsFF7g9oK/SD73phxSEFvwUVPYuxyU5Yx3AXGUPn1tC6/bjGpeNra//FdY7++IsqDNgKRqK5qE4dZxERZVdpUMxBwJLsQMHUb4YJRkv9RoIMZqhWpGRzBd8nIm2cUJhTDDh0At4I0ixqILp6740TKxfVlxg7uSgbIqBQ/BpWNhdImP1OjAMUmrPuITShk5ZpWgmrEUWJYNZi6YuxPSMS1zhEU+x24ch3MZV8w7S9lwMUINI2NzOpa5Uh6EGMMTrNpiRS2Qlm7BT+vT+k1av7rmRvg4EJB5kAtz1IR8dIrotCdOIU4i1SPnuSm9CUrJmfVSNk7bb/Nv/g//NssdEyglXJ6eOd09cGt/xMvPX/Cn90g/sT2cOF4+cHTD1kpE5zgGPtJ1ohVGHAiBj8oiBecCuuHCzKfKDdkHqdvwgfvIQqJkS73giCqHpvNFo4Cv1LXSL1d0UY7rhaf9iQ/v3+fYTY21piC571e2bct4hTk6OZ/fEMdgffeG0GfagNUMmW4NUcnxEpbdI00CbDKCpiWagdRI14ZK2j4lAWSGTZt5iozNnSOSUqruuK6EKPv1G6LNMZ4vDN5T90IsnbYfbKclxYPVWDQ4diPaC+vpDcsP3jCuV37y83/Bd/vKX/1f/G/40d/92+i6EOXAamXomcVvrBaMywunL76gUOnjYK1nut/oPb++MEAci4YyCCy1DlmtfXQzRWRcgM5RScQgvKfTLmp2EG12FeP1hp5OJimC+UqMhu/P+UxKAgq7ZOHiHojn54dLhmlGPu1l5pl57LQ+6EPANpyOBJzvHtL1MocKocsMyiyTPtzSRUMSZavZFI0DknoWfCRwUMHWQqgQxIRhBqIF6UuO5iw5MXlHSIyCHML92ThunWi35O0QnNdKSDBisJ2U4yCzl7ZCG4k8WModERk/4s8HXDdiwNN+8LgY5ppuLkkm1egHrsFSkzSeB33L998dmA5FacmhYssRlvIxFdzJ53JdZmhjeHb0NAjpIAdaBKXgodAyxT47WTMTq2ScQKhRS9Bj4/FHP6CUJWF3CC2cQbBLWtR9uozG6PRIXV0VwS3jFlinE8rz0iCq1JHd1FtRNqtsJCjPJBlAJpPHZVBk4TZSnHxqglaDHrTdkTckjG/d5qhxwz2LXCa7Kmvu1HLFJMHjQYnB6J5Wdw1qsdzvyIgXZvpFROpjiOTiWAi320E7OjaSleXhjN4ppU6AY3Z+QwTXWeAwaEKOq3ujSafZ99yyT+vT+k1Yv0Yq+EfdKpoZljDHU+mYko+iztfUWUi3ipNI8VWntkMF1TNlM+7v/ha//3d/gEhPh9TewO/BP/CP/tH/iaevD0YUyt1bxPOGJJapxv3olFpZy4ZEo94/sD89EwTv3p64PL0gcebNu3suzx8ya2mtXC+dui2T35WFg4tTKPjRcHFa74ndF6VVYRRHNSgN5HzDjysfvn3i+nRlVVhLkpSpBYmg9Y7WylqTHFyWFRZDR2dbH5E4UjSrKTjOeb5moWPJq0Be40ezVS1ixMjcmCUSy58E3gle8wReiClEZ92M4+iM04ny9h39mz/i+OVP8XFBb4W+BP3yLfX8GbfYOeu0n/fBEulFMq3stxvbD37IL372R/Tv/pxvf/I1D//6P+AHf+/fZtQzoQOJkjC7AeZCefk529MT9f4zjnGBCNyhzXFLb43osJ1P4AfjuKDLBmNkSKRLiptf1TVS0uEUgkiFSFKwTX1Xi9S6qECpQscxNsY46N5SkNw7bh3TE9HJ0YfDDKHiY1xI9uES1OeR+gdAy8pSa2YY9QN1UqsxKVCqI+MadOAoIgstrpnCYMpWLN8F9RwrOsToFBNAad3xAFtKft0+aN5YqtEGRLtS7s6EZKcqiwXB68HYM3ZrPy5436jrxmI5yhBNmm3xM3VdGB70ETS/InSW00pNTzunsvP+uvNyBN8+dR7Pg7CChGBqWYCqohbZttCYz266qcIblg5sarV830lYZXjM7zufTx/Btm44ngX5HLOqRIpcLfeKMfp0B81k9SBdS6Xk11XD1kfuvvwxaCVGXhbcU3e1iPOiwXBPqzvkYT+Ful6mqD0i351hDJSmsDhUneMeAS+Gzqy2qsIiknwccfae4zoLp5syNPc9rYWHbeXudM9pPaOyMFB6TCcTMTu/ydzRWeCo5NPfABfliOxob1UTFaBC1UIluNFo+5Gfn0qOsrpzaReGH3hzRkncQVkKx9gxkgll4QxJDtEiOrlkwULuQU7/qOn7tD6t35T1Kxc3QkzR5ryBCd+LMonvf1V8NIkDYJLakVetjkwalhVjqRv/2g//Hj/43RTshuaB+vhZ8I//q/8D//Qfv6Rl+xDe/PDE7fIeYeV8PtGOKyoLdTsxxpVxOPqyI2K4N/bbdd4W4XJ5QkVoHhz7jXBlOZ9QbYzbFJFqYcTIA1QqzoGp0VugxdFhVDk4VLhXgaPRPVCUMgV3ppXVCrKu9OuFuqyIAx6McSP0nnF9YTlXlnpCSdEyDmZTTzNyBCWS2ptAsMhbtulkohRhWKNEMGcaSG/zUE42Ru+deh1YLSxS2ceOXN6j28LTL36CnU7IblxN+PzzO/y6U0RSf4MnWC6gHy9cX5wvfrgyjhtf/8uvuWy/x4///r+LLwI2WHVBu+Nl5ehw6veMp58wPlzYQ3FthK3ZTl82bteGSiVGT9dLSUaHRBaURpJzx+hoKQiJ1xctlCJE61N0Ce4tmUSiHzHzwxtYRTyJ00UDb07Z7lNeIBClEWNPR42uBEaqG15dc47IyERxnYffGIzIwqRoJRxGdMzSGu0zRDZzp2SKx40hQkR6vcMHVhX1HGHlGDcPtGplppFnZMhaF4oPfKSrSE0zqVxSRyWRKc40zeBzD5b6wNEcqWBrzRfc01kXsmNrZTSnrie+/vZCurUc4sTD40p5uqAL6HPl+XrlvTfu72ApQozUF40j8JIC8ZjvgDAdRKWjBCoLimMaM0g0xbFpVFMGHbOao5SiaGTRIEja980yfdtvVF1xNpCWBY/ojH5ZcW0MEeTLd5zu36F1wUeWo2aaf/7Id6hrXkBCUksTzRmM5O+ope5JCl6MJo77DNRUOL8aATRZMkEQJrDopH1ljIyKYE0ITYHwuhhfvb3n7fYApzPBgpUzbrMw6sFtdI5jJzywpXI7GpmjnnuqSor9i+R2XcKIYpwtnXoHUDG0rDOCZLCPweiD697z955Khqvqgtg6CznBveNG7iEOLQZFhY18tlPfo5zqp1TwT+s3a/3qgmISqQ7p6Hg9JGTqDICPrdHwpKkyN7fF8paS/0xRCotWNvur/J1//a9R733qbQytTvjOT372c4YbFnkHjxb46DhKH4Nwp/vAvc3Z+0BpjOiz3ZpulxGNGpnz9IrO74dz29/z9s1pinIT/GZVaBHJh9DC7g03RXrQV6G1ZK70255wuesVbY1moB4UCYooLTxZPw10PWE1b4DanNPjgrdpSbY8WCTycwkRvBgpfwxk8oEKMrUmPSMFtEKkFqVQkP1AXJCakREcg7IYcnlBH09Yu1JfgnIUzvXEy/Yl3q/YuvDoTvvl19y9+wpXS5hrc+Kyo7qzXz9ADG4vH/jQvuG773be/Xt/i/PjO0Yo5gsa4Fa47BX34E0Z2OjYD97Qvruy3G/I+ZyHRXgeIL3j/QZlzacrBLpT0Eno7TN80SEaUtYc14jMkECmK2rgnkRZMc8nWtPdJO7IKDlTXTselgXGzIpSskHWSfs4MYtNchyQm/9r8WvTNu44+TWhYKKINJAGJQgv+b0QwJEuQksxtIzXAjVw8zkegzaSRK3A8DH97ODN8dFTa5Lef8YRKdrtjTJ/nc50eErGSNRaoF9o0likzgOdDDWtlfV+YxxXvvjhDxhXRwOa7xQJajlT9kEwgOD9E9wEbAvUBoYgPTj2wbIqpRrhKewODpQlj3qVFHwHyYySyPRwFWRkgSAR2bmq59wbIsetppI0UHVKKZguuMv8tVtiDuzGcElnlDXki8+pS7oLVRIspNUovWb+F8HqcJFOuGb3bXaby8zDUkv8Qscpmv8cSQExZhTSwk8FNPdD08qiBQmlCOzjBpSkBKvwxQ/f8eZOkeWMsuJaGFZwSQPAEUkS1mq4p51ctdA7+LSqx+ziBkEpJSNbTLNfqJb7xJgjQQ1chMODo++cTgvHy0FZlFM9seiarr/XcZw7txj0I/EdIQHjmFpJxy15PtV+bSTap/Vp/Stdv9YT6x8NuJNXE993bNLhnfjz7NJMBo5AsaCF0EPZpkbHt8rd3e/xu//mO0LK9zqeUL55/if82R9+x6DmZs/GsMHoDVvuIJJK6pLivDgOTuWBro64shRwErhmsxUbITzenXl5uRAGd+sddS00vaRwVQouB8tSaW0kmVSWtHe2nVq+RHwQx3eM0Rm+0/dBdzgVMozPnX3f5y1ZuD8tNMniyBZjKwXXE2st2RpXmwnEI/UhKlMEmIevYcQaEC0PeNuShyOZ7I1MpcprLMDcpKN3iGCcjL43elkxlDgVohkiB62cwQen9Qf0r3+OtgMJoY0raOpFOtDGzghle9h4+aXC3W/x9nd+j9Z27uUdl6NRbw1bgl9+/QGOwlKFH/zsX9JeXvDtHq8GLXUVvQ3GfoPrhX55odZKnEfGG3hk8TG1HHG0tDWJp17Kd7SsYEaPg6KChyZszNLSnuGQ6TDDWxavNd0g4pkPpQTUNe3E0rKgCbIIiJbEYwKfxGebz3LC62w6ByEMoivuxhgHIgOxjADJUW3SSlRTR6S10KMBA43sZiBCNWNoEpsllOvoWWSaEYx0+lDmyDIoo0M7UrNf14kuyDFlKXez+OqMY/C0v3D/+BZbVhbus5sVRpRKVeFcZ0fUz0jsdGCRBx6lJRDOlX0Ez4ezWTrvM+TVEFew5PNECFLL/E6PpPtGJJTP+vyzzhAXNSwBvKid6DFYy3SjaUyBcOr7iq6oCmEBywKWY6XQlTqMIQUpJ+rDF5iesssxq9boaalfdMFtp9rCRWAZMEiq90qGRzY1hs/wVIPiAysrCxkUekgGsC5aWFTRmriCIjmiEm9JyRaQmvTmLsrnP3hkfdhY1jf0FkAKg1XqNAJ0kEIbHTpzFJVJ5RGdmDldSNLD1yKsRdhUqa4cwBK5N4fmmLJIpXnjca1IbNziQGOn49RoRGw0SWb8glIkWKe9vHsiCfY+Mp6iOMMzquHT+rR+k9avobnJtmVqaVKZINMu6VMzopZ8hUA+jrAyKTy9DTHAXZAKqy18df+3+OJ3Ntw9xxKk4PC756+59S0FlPugnk60sYMXhhlCm+LMmoWSGP21vYpSthPH8T5ZOWXFvdOH0Y5MPF7OK6e7O1p/ydBMJLs1JH6+yKAfJTd3PGMI1Cb3BqolOfSYY6HqhXUxLCH2eSstlXbc2E6VO31t/QtrlenEKVOjNJIsPLJ9bGXBRTNFuk8NiAhqG6JKGNikIatm+IWKJ23dHFtWRk+tTOsDW+rE9Gfqd5eDTYLb07f0oix9QTZjP564XU+ctxU1oSzC6Dvt+szz83t+8k/+c779+Xu++mv/gMUG3hv/5T/7J/zJH/8pP3oULt/+KX/wz64c27/Gf/TXvuQH7y5EKWjv9F0oVTmGQAzGt98SH94jrTNKcF9X1nFDozH2nXV5yIPeM2HbVYgmSFkITV5/9BQQo0ItSdh1Sd2RRcYtZCp4J20t86mNpBP78NTHiCfGoHd4DUkVTY6TTlFzeI4helrG3QNngO+IVIqtqBrDG8eRrjY1UK2TLNvp+y2fjwBZLLH6kxUVNjUXdDxmjESiqSm6JOY/lKDmwd6cZTnRRmPfrywiM7qhMPyZpWzUbaX15Lh0BpsZd3ef8fzyHb1DWZbsVJVgO9+zHzvaKnDB5ARROUrnfHpCbs5+OLeeQuDNNLu2Q3BPXlPMwZ5GQbRgaoh0JDy7PaIUyWItKbwCDCKyiFMbs5OVupvsWtoU+ic8z+wuR7keSMnqaLFCtzP25i2lLIgbVaF1p0xG0GKFwzt9UcpQ2owtSNed0BlUNSIMLOF+mcnG/HU5tvKiRLXEPqhiIhj5jHlkBpxHoYjjZclCe1txXbKrQ2QKee/ZIRGZHW3BycJX3Om9cUR27Ypll8UMVlEWy9RvgvxzhKPhBJ7CcwtKz4JYl5X2PDt/dYW6ztGV0Y4dxehDWSxHr2hnqwujNeLY8V7onu35FGB/Wp/Wb8761TU3M5SRybphtps/6m0kptjztSWf61WXs4jQLYFYooV1WfjRF7/D3btsz+fxPC3RnPARWMkQPttKditsRa0injd6tQLS8GmHDCaXpCkygWm3247VZIWYJDY9VHm5vbBWsvrS2ZJ1AVK0Z9UQDborxc+84OxLcPGBtIa31LzkjdxYNPOyDEE0M4nWeubx7sSyVr5c73l4c0+NFCvJLFLACSVHDCqpO0q4CiG5QRM5DlRL6yih2e53EvCmmi4wGcTkw1ixLMwis2sGGdJYW0PKiYcNfvH+z1jXwtsv/hLSbxQDKRtNYj4YhrfC7jcM5aEY56/eUcrGP/0Xf8B/9f/8v7L2zsvJiNg565ecf+/3+OIHL+go+HcH8llBunNEg9UY1xf86YXb+w+EKuvnmXkTvYEFVQONa7JqRqaEy3LKrpQooRlSqdXShUeCB/HswIhIfo4TvKc+E9WZXaFX195wOBqGJ0em9eTMlCymsJqwvhHMqgks7boyUoAsWvEjwx2S5VSoJfU6SI51ElzoaHGqFYoUOkLvKdxM6nR2DLTKdK5UesubNGJYyawzd6F1h6qILxTP6JGQG0GlrorvgtApZgw36lYYfsPHQmjHUpmeTp8yExctnz+RTr8IFoO1KPZ4x+iKbc+IC5fb4OKK3lWMneFZXJdluiUjR2qvO4BNzViOSwQTSF3e7IKpYZK/Ch/o3I3MJgPIs1gwLdkRwTDJ0WDowlpTOzLuHlgfPkOk4Gh2sSIJ4xpQDNYmNFW8w2LKYQtDWmraJLUyuwTFZndpblxDwUqOgG2KilXnhUPto5sRdYYUmoy08Ksgu/HZUni57Xy5pm6mH20Wf8qI7IVHJCF9lnS8qph8Ot10ssOqGVvJywo2cIEipO5JKnVSmYcfmCmLKx/6UwJDS6VY5mURIBGM0dhkodTK8BQMDG857it3xObUGFScTbZf72T5tD6tf8XrV+/cvBY3THfEq8zmtePy+g8IVPxjgZN2XighjHnDXLQg9Z4f/PgLdFOUkbeYAWqDr3/+xxR32rgQsmK24u0Dhzc23dImPJzhB2Id0y0R8NEniGq2fVUz8C1mgu+8cb7qGo49Law2baqpa6n0yLA5Ilk8oy3cr/eId+S4pZ21Lvhpodxl52nvzp0qD3crd2ti1t2VxxN8rg+spwdsW6jumM+NVzXHG5EJSVpqtusRaLnJxcT+iwXQMZGJRh/gChiiOf6QPlDd0XqCGOnCyS9EaKHfXtg5OJUzvPuMYwRL7ER7z+n8yFIrNg+i8JFgQ+vI0eilcXmBupz57pff8Af/t3/Isv+cd5+f2R7OqQnRK7d/+Y+4X98w7J5+3eFYWE8rY4BcvuX2sz9nPD/hDrI8ULe3mDbKMqjiMBq93cArIcpSKyM0M5fMcB8Q4KpJlp2IeMZrBk86aSBHSn3GL+jUTyCFGB2JgYUwekd7argioLtn7IR7OrdaOpioU/wbWSxFKC0GViv9Ntkr0tEJZAsRwj2FtVax8/206mYhPWrQbi0DDzWyO9PTdVhqA1PGLoyRGh80UA+sO94aUSqumc80OggNlc6yGb5X2u6YNJSN7sL+8kS5vyOAMke1uFPqwn4MrvuF8+lMjXviGEhZcBMe3gnLAWI3Qhovt52n2+BuCVxHgh97z31gSa2S0zFyzKTopDvn6GQty0fybRDZ/TBJirgqpebYW6VQSr7DIpby2pwpolXRuoFkqKy8/ZxlfczYDUmQoMzOSwbJarKKmn6M5nB9ZbkEofmeuZLC4IDuA4vcG77HWmRRoLNzozBF0vmeFVWGFhBnsY0RzzzUjf/mSenap9sskQBFBMbgEOfwRFAE+XUldDqmHHwkUZ3BtmRmnpWKqDO8I2KMEtQJ/txbo4+OqnC77jR6BqtSs4CdDjKX1CxeFO7dGGHZLX11o4mnxi3yMnHZPxGKP63frPWrC4pFPo6kguzShMccjWQpE0wL+HQY5JIkwIpnofHqDtGv+O2//Blq0x0UKUI8/Of8yR/+GXhnHMr59A448L1nFMHR8jYegi6a82jX3PfEsbpSCvRdQFeWk3F9+cCynal14XJ9opYFEfLwVqePljZVjD6ciIL7zjGcRiEWZce5V0NHOnG8CetQ1h4c7pgqzYOTLbx9fGCtil9gtRPvvnjHdq4sONKODOZTIaYGQcIzD8qMGC21TJGtdyVm98ERHZPKW4jo2bERJSIwMUyVjBBMl5CM6QYpYGPH7s8s7cRenjA7sWo6KDZdONUzJXSabYHjwI7UMB04dDidF+T6xC9+8ae8fPNH/PYXhYflA4/bj/iTry+8PL3nf/LX3/Hm+Y42nmFb0a+/4/aloOeN9vVPiZfvaMeV6+3Ctm2IXFE64QfDYRyd4pmcLSr0KLgVzGqO3rRiml0p0Sn+bT1JxAoxGqO3vPlOXtFr3ELWPGlH9ledjisxOu3akG1BiWlZbglZHAMpFWQykka250WT0KsSWCU1Q1FyxIWjmvRhBPreqKdMx1YfuDurGFZLMpYkyMzphsdgjLRAr6tx9GBvmXLOFJQmni6ImjRaj5rvwMjx1sfE++Lp7qnG9WYcN1jPJ8IheEEk3VfbpgifEzRK7Rx7fjdlPbPW4OWmlFoRPhDSuR4HRxNEDrzoa14oYmVq7yK1YcYsapwiKdx/3QsQSeFz9BR/S8W0TKLxFNDPy4koWCTnCOtomflgBJQFffM2IwVU0/FoSkReCnoMtBRqc7oOuvXUznTo1Yhbz6bcokCO3VChWLqVYnTcB0tJCroJLEi+w6IwM6YUY9GRYl0rLAUOP1NVGa3TImnuEclXkuEZd8JsDvrrA6rTFAE9Muxz9B0pBuLUZZtddGXVkggOjdSLtY61zjYCH87LvmebSQtovj94oNTsdJqzSuDRcYQ6C38NQUfHvXI04bYfPPgrLuHT+rR+M9avDvEbr8VJiobT0v19gndMNf+M1fyYVZLdnmxPV3EoG6Ebd/YVX/x2RawTbumWQnn69s95+hYuO4l6L06xzG06PXyOx0G7Xli2e2wxfHfacVDXJTURErR+EID7jeOoLGVJvooqpVTaSBJwRZJlIrMtHMkaHp6ckkGdeHYH2bG4Y4TACFZXtvMGViiRIwsNx/cBTwcPP/yc7fENJTrbmo6K4pf8JHxqOVIZmRuQgWo6zdCC1jGZHwWGTOcG06UBBJOInDdfMZAwInSOD4UiQLEpcDZWU+6WN+z8lGgHp2VjteD+/oS8/vy8w6jpzNHjo1trO29c48C//QWxXhF31nefcbY/5fmX/zX/+//dn/H24Qf8r/76v4H3K+0inN48EhrpjrrdiOuVceyM3hkRhJ3TDdLSVZT23XyCxugUD6iOnYyQnqTW7LHDK+hvvLI9JqJgFjAhJBaAObrzyC6IHzAy9T08R1e2nPEjO4towv+8tywWq6UVvI90UEVSuEUHy6JwZGEelrEOAUlzFYipJSvrKWsqz4PDJOgtybQJH/QpUE57MgxCE0Jnq3JioY+RBY05EhX1QdfBXnoeqFFxGjqCIY53oy5binnH4HR+y3W/UcLxcRAI61IzMsSDh/uF0TOawU8n3AcjBrYKJ3nD8CfevJV8nj4It9uNUgR1AzqLKa0Dy5jdGRCriOX7o2Gzm5I/QzVFI4FxAh8vPiJrXnZqzNFPFh2RdXwGYVoOu8Qqhy3o42dYWShaaFPLA/k8ZICmYzPFe4vCzTtaC+jUm4yBDE/XlOaFoqD0iCxCVDDPfa/oq3tKsyM3dTeEsNQcNXUpmV+1Kt0bn28nnq+Nx7VwaYlBGKQhw0PRMeYFMWZnMr+Wh38c86kpZVuRkqJmY0C0FN+7MNqBz1HT7geHD7wkA8tUsggnCyFCqPXEGE/5fTgU1dfGGAVmgTXo+w0fO9u2/rc5Xz6tT+tf2frV3VJpKPn4EsaETcXrWCrI1v9f0Nu8ripQdBY6mo6Iqp/z5su86er870sEvQ/aEPpIG/iINjU4zvHygW07EQL9dqOWM8Md0w1ojGEMvVCi5PzdrxSXSS5R+nEAiSYPccYUQnfPkDwfeYMOSdeSWZY44dC5oHHHsqzUsrK9ecvy4ZJ6nh4srrCs/NS/xV5ufHX7kvWxcr+e2GpSVMvIdrZogtBSF5Ai6uR3zM9nOiQkMkPGZxGpXrECxJ7iY9HsMmjSSkWm4want51SyOufp5PF9oXH5cytnjNB+N1b5NqotlGWytCYBZYDFdNOUSeOxuW795TTyvHhp9y9/S3OQ7BoLHVjXJ74yz9+w196+CE/vlsYA1Dh+uEJ2ypcP6BaaO8/cPv2p+x7p2lFHx6JWjNfSmDIkfC10WZo6IacKrYYR79Cd8IrbksKJMMT4Nf2hDtKonBtSfqq+7SO9wxDfO0vuqY+JrwTJnQV5M2G0elTT5OW4LTGM/O9gsg3JpzRJ76A+CgOh2BMO3P4wFDEhd5Tx6UiuA+iO9qUoQMXx6oRw1nUkFXorX+8vcfgY7E6JIm7iRBIPYnaSutP3DyJuVuthB/Tut2neDVjSU5398g4kH5gVqE59bQQsmHLAnHDa7BqFlMxbhCGrZ1zbNPSbXhP7clx8/zsEPoOroK37BquGtyOg9Npy4DJKKimRkT1VTJdEwhYJN9ZEqgpxbGIdIfNjodajqyLLIgWCENdie2B5f4RVGlMZ2IkEcEFqi6M0tjpUARxw3pGFZSSHa8xbhTTdJnNYkJi5Hh7WVCPLDQlLw7VJDtbMVg1c6IEpY2ger63EcGmOWp/96byz7/+wGc/PBNhZDmYqfXdv98vp1kw9WI4ZdqxpVaWUlk8eUpDScu9RMZ6uBMTbKp1yWiM6FjJQrYQqL5iCAwPzSKKqTGaz25o5POWNwOOfUf6hbvzibI8/8pHxaf1af33Yf1axc1rXpRMl8fsQSciPlLU+lGwKX/x9+YGqKJUBdUzd9tXPHxR87YiHZmbW4vOoKClZRhiOdPHnqLPEjkrjiCs5J1PCutaOfoFTFnsDrEOIy2PYcbRbphtaKm0PeF/H01fkbZUcZ/IeKWQo7MqQpfAozJaUMojdVmSM4Nzt22c3r7l2H/GUpzPNCjbW7YJNDtviWqvRSkMrCzo1vKQKJJ5Ngha0r4a/aB4Os1sJmDjgVk6zpSSM3MMDaGEoJb/X7ojVZAtRY51Ml1MK3XJFOpLv+H94Fw3bscVCaXeP3LaMk4g3NBRUAKTli19uUdjg7FzLsYmF+Tywm89PPL0Zz/hs9/9K5y/+CH/y3/vO/7m27/J2o3966epYepYKG18i7eVuOy4K5cbtHLH6btveDh3YNA08vvfD/CBbZmvFQThB2KSQZTrGdcC4fQ9AWPqJTsEM+V57A7N51VfYWg6/QKk9hQqj9RbvYYnOiAjDxobKW2PyI6a4FODkEnNaIYtyMjU8fCgqNDnLV9F59fwTGaPLBhDxgzdLDTvlBk6Gy1F+vkjkwxVJD6GZfoUqtdSMO+Mw/ERqGfW0VjvsOcr4cFR0mEXONfrC6dlY4ig0kEH3oyiC1KgTdfdYh0/DtRPLFXZR8NqUIsQe3Bcg2VJfYfqHY8emO1cA679Nqm+Srt1fJ0C4RrUEgzvmBhMYGVYCudficf5DijFVkRauv9IYJ2QGhnTFO+iilAwthQCq8HDA+V0nj9/ZkxHXmZMs6shkoL/q01AJAM30lk4GrI4IxpYur9c0k7t3XOsNgYHB1UqMXUpVZRSBlqy4DFd0v5OYW87XSCKUf1EWYVxrPxsvyKHIKXjTTFJ9EUgjAiOGa8hKOLZPTITugwWK6xaJmwwL0ZjGMIpx4PSWOJMEKyLInJlj4Z7XjiTRVZyC7c0QlgURodia5pBFLDULvY92MeNcl6xbaXap87Np/WbtX5tzo1OCqvKFMFNuiqSHYaPjZvMZ5gy42BICgtLEbal8nD6Cl13iAWRmm35kXbmUoO17jy/OOfzG7Q+M1TQWuntggzJrs1xo7dEjK/bOouTzODZe2ClgqfYrtS8JcZS2NY7erS058q0no50MUTkLTGD6zp4oUVQl9xs15PCdbCF8HBSHk4nLuvK47aw6uDxrnKnD5yqstWNZbXp2kg4HyW7BzKFq2HZ0vLhFE0XVLqjIu3jlqM2E0U1Ra+4kp1xRYpSmRaOpaCLZQSRrUTv6PkMNcdl6/0jl+9+wrg0lqVgy0rRSjFoXTCphCseR7qnfYWy8+azd/zyF39OOQbbdqM9fc0XD/fcfvnC+6+vfPXlO95tv827VWk/+5pxGPbuHreBRmBdiP2F4/aB756u7L5lJk7v6Gh4pEaGw2n9GbNKHy0F0SMILei6Thv4zCbSTJYfvaGzUzN6zwOpgzfY+wGlUEqSXD060QY+QEYHXXETnNtk7CS4L0aG9UyPGkHmDIkKx7XnwVwSvGiLTlv6QBejNFIXFlnYIp0YikfejMUEqlK10Nsc15BjxU5QxkGIc5gQJlQsEf6R2qw++TiL5CHkkuObtRoeC300xOocdR0c44ZaYUR2SqI4InmpABgj2I8dYWfb7tCAU13oakQvWN3RgIGzLif0tehgBxr9qWcHrGRAbjucEgsaHQQWLbhkN0bN0kUmK9EHzg1bKio5vtJiSChG6lnMDKtr/j4LVJdZ6GQUh5tg796wnh7AynRhJQmZ2bUTI/OhSMGvlEoRaO1gn7/WS5LBZeZ+2ZjBlRhGoZfvM9vGbDO75rgzOzk1O0kCaIawRgxCK+Wk+HHltx/O/LOf/oLf+vINjdTdZAzFxAGE5+/3mG6xfKasGEUSMOmWXawSUJBk/AgpjI8UXXdxVNvHEXt2FwWhIrLk94XMC13iLbqPmRqfuApiMNoBqtRTpZQF+/+6rX5an9Z//9evjZ1M62O2nmPeEV//9yo4zi7N7PLAvBVM/5TAUhsPd4+Y6eygeI4YTPA4MAYLwmLkyygd0TO2bnSHY9851YWjd1QPxAutxyQWX9IGLZV2u3BaFnwo+/GS7X9xXq4f8iCyOWRzUArFSoL4esvQvR5EV7CVrQq3553Hh3d8891PcpMphcdTgXriR/d3PJyVxSs//vGP2WpGGZhuKD1v8L6gklTb3HRSh2CvltLIZOQE+8Vs3/tkYsRf6IYFSMNlo2hyW9QU0YE0oZaFMcdqMS5JX6WgMVjrPXIehN2IbWPskSOQAKu5Wbo7feTGu+mZd18sXF82TuWcvKLLd+y3Z35kd3z7s+/45U34m/+Df4P1/c+4/uQ9+sO/yigLNt1K4xD8Mrh8d9DYCFvxuFJP95g2GPukyOYzFWqIVPoxqBSkpvZJJPDbTjmfMnBQK1rzZh2T8ptnqiEFFhbaJFOLTpq1L2gMIpToA9zxthO3A6kLXusUHaT4N0bLAt4K4bAsih+D6Dm6YGZwZWZSh0iL/+vTHyM5LcN3zFZe40FeU7XNsyjAPbs/KrgqOjwt555llpZ0YElPBo+7sxQB72g39lITXtg6xU64Bt0MHwOkI7KinvykLKI3BlesGLtUer+x+JGfoThiwVbO9GskJe6omFRYO6MLd+cHxG4sxXj/9J7b3lnWE9E7racbUdUZKjTv2U2ZGY8VoSyVkD3FsTNZ04pRSEYOmnBKs9Q4Qc33oST6IEw46obcvSXZwUr3ud84mBSEkXiEiYmwDqMYQzoLC9ummb01puMpYBHjJs5gBiB0sGJINGwGmXZgG0JlTU3QjFBBZweWRAyI3xCttCF88U74L/7l4OXhmVHW76nkE+SYnZo5jnbmfunZyTJhq5VFsuM1a6AZipoaLY/4GJIaHhMVERCDmFZ6FShe6J7FW3NYi0432IGFECM49hecwd22UWXLLqV9Km4+rd+s9asXN2n8SGDfqxMqpthvFjbh42NEg3w8iYURBXWnqKNqVD3z8OaMFpmCwkJHkXHhn/4X/5jbTbmOCtEyOoBgi57wNAckuB4vlFpQz46QWGCe4XgKaAyQQo8Ju9ACRWmHp/NrzNsQrxoJZ0RHPW2oI1r+GYpRS8FpXK4vrI/3uASLCXUpbKcHXu5eeLi746vP3mBDuCvGeneicMqWfExA37R9Jy8l83NKSXib0tDo2cVi/vvX25y8hmGm1kE0RxKLldnRebWDK9gCuqGSfIy+d2QtmSz8/B47dratcts7ve2sUTLdb9pPU4mdn18ILDJ4fPPA89sPROuoHWzhtJ99y3ey8YO3D/z+7/4OX1Rhfx7EKW3o5ju87PQ26LfG7fLEpTnHacWqsW3G/f2CeaPGjB+wAsWyS8dAl8BlwHGj6EZEYUjk5V+S8Zi1caBDGA4pWjJYlIFT6prF20h7cKSogD4CvKXA2Hv+bESmoNtTvBwNb05IYVje1ENKal58EC1FEqI606obkIUBEnifluSaY5sIxcdgtIaaps7F878lyEQZCMPycpAEnZFwZgnUC25BoaQ4usEqMCwF/X47cIF2PIPFVOl2AiOiJe0W4WjKuub4pR8dpHLatrQ/10JQMWtUlL4WbAc/KUeHYs7pdId6J7RzflxQK7z/8J7eYV0qvV3prtz2HDFtC9T+jl6MUnsK5m1BZQVxTJL1I9RZpK+ozuJebIbbBlaya0PNcVac7rG7x3SdRcYleFY2mAorWSS7J/E5FMQbmxkf+s4RKUYnZmimRHZ+zKa2SUAnhyrrzI+bYWrD5jOnY174dNY4xr4Pekapp42/BJ+tCx9++Yx+WamtoXWdQvp8TrIDnoVNuuc1O4QRFLGPQaI5uvMcUYvRI7JTFjPR2AUJzeDQKcAPcZA2nYaR47WycoxGlZaXJBf6GBxjR2uhLgu1ZFEr8il+4dP6zVq/VnHzqrH5/l4KrxlS3+dXJy/mVSeXE+RMjdb5+8VWHt/dIZruCHL7pUfn2oXmBWfHdWF7fKBfv+MgA/nWWTSNPihriuOUyf7og7uHz9j7joRzun9gjMYxDvA1nanSWWs6iLx5CjwJihrDNVOdxKaIFIoWhu+cxPim33jz9iE3HVvYfPDwcMe3ttDp2KLc1zVJwZYuI2HAq4hyJOsix01b6mW0M3qGVc6mWGbwBPPfK+H532PEJBMn5EzGBAHOwgkgomFaU4zYharpIvMpyqx1cL1eWPEMWiyKD6Uz3V6RuoPhI2+r5hhn3rz7nOv7b9nuAt8Hlyrwwfnst97w1UOl/eJbxrOjy0apAvsLsTdoN9qx83xt7OWMy0ox5/GLB053G0vcqGMwdbyYlOyCHDeGObau4I1+C6Se0O1MnxTg1L94OnNECe9kJIWkjnq1TGl2pR2RzreSjCRVw0fMgnFBZOA9c82Q7AZZzLRvE5w+NWfzABMyhFDTyeM4iiH9YMxnRwliZKo1MuXMPnL8Iq/MpVctixI+0rFDMCQ+JmGbTQecC972LOYjbegeedjVIshp5SbB0R3vSWHelhW1QusJhRQp6ZqJg3Z0lm3LPC+cZdtSaP6aVyS3vJS402vBJKnVlGC5O2fRN2683TIW5P3LhdZ3lrJy7AdtBxk7RQrNbthQZFmIreRIJUCjY1HyUmRJflZ1VEvuD2aoZFFfwjCtuBrFFl7OD8h2l5eRnvuTmCF9IB+dd0ksjpqjIPWCHzv3Wlhq8GHsVC/pkJwFBT07ISrCEYOFwn5MN17PMMmIwfADekHXtOkHMt2MhprRHEYotRgyDv7GV+/4T/75N5weJ4jT8gUWEaxM6zmROjLJ7dl0uqgEwBEHLZouN4E2uzQxg1pTlOy0/mqntznGm532yHFY9o06aDJxFGX0wdF2RI1lXVIraIq7Zi7bp/Vp/QatXx3ix1+obaa6PguA3PDDmS/i+DisgoRPZQ7SAXE3xy8n3rx5h1i2zPP6olgpvHn3iPjPqTg7wnVv89b2iNpk04SxLHeMfpuHTgpzvVSenp9ZLUc1l29fKKeFWuF2uVDWDEgY42DEQU21CmOkpgARSi2ZD/WqaQjHD0eKUMqNkHvuHzauHw5KzZvN/VoTHHak3kHPJ3BFNQsysSQjc+sULDcqUayS2hIVJNaJUg+w5GwgKRgO7zm2mDlUtShEpXhm+eRhOTlEImj0JPy6UawSBkOU4YNiC9tWGdHSGbau1Ou3eI9J8FWibPR+o85b4GKDx4cHrCuLXijnwn534Mtv8fh45vjZT1CMOC2UujDigB20d27XC7/48B3X8lnqX7rw+NmJ85sTVgRr5M201Gy1e8+E9hEfOTZiWYiM3uC4pMVYl3SlZG3NCMDKHPukmLSU/DOHCFqUvg+YrqdJo0F1xSMHAOEN9ZZ/7zFvvXzs5CTXaWG8diuJGcUQyGtUwxS+jpY6Ipli8jZmh0DI7hDT4RY9C+B4xStA6ULVoNtAS8VFJ3juyO5e1IRWjkCrghsRFcaNdTOiLbR9R47G8I5v5wzrLIHHQrEXip25rydEEjPgyLS+Q3t/AW2UxzsWNmQJ2v7CUpywjT2UzoXtbuW6BxKNu+WOsgnffej0204pC+24crsG1RzhgsnGUjPj61XXVsiRTJK0CyZJ7xUZ6ZbT/P5Ul4T9zYM4ZEHffcm2PGJRaWTO2IiOz5FfblFZMJUQ1lDCCjdzRhxoyXGurZXunQzXHagIhTn6UUPKyrIsU/GdGXhNMm3ehNn1zC6RCtRqOS7Khg61KL05dz9c+fxPHnl5ueDLA1Fgtbz4BBMImLzDjzpGA24cSBE0nEVXekCnTlcWqY8jC2XUcTojA0kyv05zbBdSZhfI0yzgI0e2YtAzFqIzWNaFtWS4cffM53q90H5an9Zvyvr1reAquXlEvoyvguEkw86RT3wvLE4bMwQJzhMgZHD0A6KCaObTSKfHglNyXDVFn0sGUtHHoI9C1RR4hkS+rIBY4XDw7oy2U1gpFWIbSbUdpNOFdBC5e87hNTskJgVFCBn0dqOa0bzPDKIOS2ZKmQ/ac/Dw7p7rd7/AxDid7rG7jesRSF2ymzIMq5FIeSRv4cUwU3T+OorSx4VJ4E/UjU9EfS0JQRs5Ty8a34uKLU9zmxZatcKynuhj5M+jnNLBEYYsyxytdYoIrQVjQDuCcr5jsbQ/70+R7hApeFk+piJ3FG0diQtFz5zuBlZX7pfOcZyQD53PvjgBnd4HdRn0y4ekC+vg/fPX/PybK8f5M2LdWMzY1sHp3QMPD3essbNEZnqhSgnHbKH7oC4nQp3R9xSJi2UnIxzfL3S9orrRsQTykUh/t0K9v08Hyu0GDbRW2miUMHrLLCmflNb4yJkx5OhE93SZzeTuUEu9T+j3Y6wZ9Oq0pBlrJJsFcKnZh+zp4/YyMuxRdYrBC96D8PZRNO3u+bzP/y9TNCyyIA4uIztDoiznE+EpGMaC7s4gxaQ1zhzHLem3IkSttGiMNnL0qWfO28D3jtQ55higpYJICrB7n20pKCgujkdn1SU7oKZkAhWYDtZ6osiCjxtmoBI86TPXSyNmZ+F6BEvNtPTjaBlnsGaQKsWoU1BNlOwGIUBapg2dTqmRDBpTQo1vlg2WB9bgY/EbTPlIpFMt953OWpQx0pFmPTPp+p4srK1WrjIwKyk4j4GGEm1QLFJYrYaV9nGsPEZ2OIcPljDG8MzqIkX+zGwqIaNFDgKk0Frw2z/4nH/+9U8JOYh1+5hXJyYzET0LmxKKa1BVkB4pwC7Z3ZJI5VJufj67NqnR8ThmpEXqfojA3VMHNiMlPByRgZnSW8FH/rOgo6sgdWGoZL6WWP6c+ATx+7R+s9avMZZ67cXIxxpeZ3cjuwbzpoR8v8MwPScCH9u2CCKDow1E8hZkqgwU5WAcV2wx4lCsLvTFiWtjtCul3aEVej8I+YDWEzGUWIXYhbpmG7cslbb3zFKJbDOXktqAHoAH23Kit/3j2Ge8BlHaHIu4TJ1Lbjbhg02N1i/cv33gZ/wU04V6v3D/xRtefvqBoQar4Tpm6kEFy+RvDZ+APUF0IWaODW1+pq9009zqc/ihk/Gh6ahRS5FmkRNmFZ05OFKnswTJDkNZqNsZoSbxuGbejk5S6XKuhEIbilyvdBbEhN1ILksIfnqgWkNuN4qDuFPsDS7K9jD40VdfcvnZL3j86i1xeyFeDvaXG601xvXC037j6drZ9ZGuJ5SOrSt3X73h8y/ecu4H2i6M0T9mfhXRTA8fDkt+hsNv6ewpW+YohWcHR5WwA6ekfXXk6C0E4mhZ2GlJbs/IwiCnfTl2SzvtyIJbE+TIEBiWnB8r83nNX6eRKc/Mgt49AXESaQV3Hx87DjHy2WktQZFIxSOTuk0zK6odLd8Jze+H4KPrSjS1XqIGfXbzROhKEpMn5TtzrtKSruKUko4phtP3ji0LfQTmKbg+Ljvf7i8JnxwHq9YUSiP0Nii10FujbgsmSwY3lg0ZV1yUdVs43CkyeHN6oO1XKM6IhdEUDmW0gzcP90g80+Og9YN9D/bFsWNwsoJ7at0CQWVNm79NPRlB0deOcI76CE+HlnYco9cV/eJHbA9v0zAg+Y6Omfr+qony6XobPiZcLzI3LJxSKpeenZqlKFEMb4OR3m9U86sTQbHArKAquGUgKyIwSsIWcaxnV7AGxDhw0XlBggT8bZT9wldv7/nP/0w4bY3uC+5ZPIQlbV0NFkAiWUaCs5BBuyN6QkTFpyAd3DtFY8YnJLenHw1vWbQKMkdYGQ0SCXqAIrTjyuCgz3dDVTivW3Yz1XJsbX+haPu0Pq3foPVrBWdCbuoJ88pqHzKK4XXFdD3pnBconptxZDTmwDKxuR2TXVMYc76dWU5CbweJv8+xkXi6KHqt6UJg4LKhHvTe4VKoJtCdoxlFjZpyUpZ1pZE5Qt6OGTqY1muRzCbKXCqfRNMcZUhJFHkp88+hhRHZtVq3z3h4WHm53Cil8ni+48P6zPMOb9bMwhllhiAaWDhGQ4viBbTOYMUeFGoSh71TZls6lAnSet10MoFYi2NywrRgdUnLaxWwkswTW+hdqLUhcs1srcWyM4QR5xMuC8totMt3rAR9XFj0mv60bWUcA1xo7rRlozyecX+bol93yv07yvae9d747N1nSIHbUJ4+PHH97oVbu/J8FKI8Iu+M2x5ICQz48geP/PBH9zzoC/XYWV0Sqx8Cu2cB4R2tqQ8JrdnVyacId087PJnDpKMhldQDmM2ohVnEHJ1xpPYqRieOPfOvZiGSLB/Jrp5PMCVZ3ApTC2Fp4WY+Z1EtD7ZwipXEIrQr0Z3eHJedUh5BdpSCrUbEQfi0CqvjsROe3+sYrxlKK354JoI7+Oi4BlGyoKVn8CuRI61kTHZKsRzVlBwGd0/xsdoKHhztoFheHEIKJo6HERi9K+578msiCy41Yyl3qEe613RNwOVyl44rDRZfMnBRBbXKEVeKTZJ2LElCftk53ytSKzIGl5fB08uNUoxndd7cg8eN0EKgHxlZUmq6tUbAIoSlvkYCTFaEpG4/1TOyPmSgaGjiGyR/niJCj5Yj5ul+DJEp+iY/U3rCFkeK/dWhlkr3wXIEFwvokTEJEdgQpBRKCCWMiM44GrEKTYwikcUUygihS3aIl7qytyM1cSWz4so5+OFy4runn3O3nqnVAGGVHLcpUCyF30MjheiaXKNq5XVzyLiGVH8RHPCqfYxO50azDmZsppiCe4qRnQNkFvgeFB/0saMz2d5kRVkpWReSWVPxUUP5aX1avynr1xIUJ631+79/Jadmbk8WCa/CnO/7PHm7FYSQRvPB8MH1eoN4ZTBkEKSgWawU6LLQfWe0dGzEUVkFejhSNyoLwwZmC4wrvSjLSN/V8CNtlOOgHblhZLjfTJGemHJVxXt8DNQUUkiqmrcoEWH0I/+4M5zIRqftwWe//SUf/tmf8Ob0QN8PHh7f8d3TwQ/eOWfv37ucwmfjKmY2jpCIl7Q5p8i6zQ18UotldrhQSlVMRlKd64rJmiOpybWRYhSf+P9zZQ1FuxH9tYjKEUVdNux8Tgt1bFksXt7jVii6YmWlLgsjBjIGqwXjeEmxa12RZePxs89Y15UHu1GtofUtY8+sJbv7DJd7xvMTrGDLwtPLwbs3Dzwsxg9/9CVv322scbD0FK2G2iw+MpfJUaTmjTHC8sbdGzpq3uxNGWNQtNCnyDJwGE7QCDdcBnZe6MeeQnPxpAWH0NPzD9Kz2A6+v8m+6nB85kkJCVQLx9uNOBoay7zBZoL2CE+nVsBiRhudY2+sC+B7jqt0IDI1MTGS2aJ5oElP3UxMO7hYdh6JdB56ny6fkSC8pRZKQETncmuoBxIZAZDvXwrNu99QlRQZh2QRMRyi0fuBHAvlzui+068VtcEiC0udX3soJklNVlvofaRYmkgNmMyxsKdAGodqhi6GlE5Z7rBLxxanyg+w8g0vzzvXy8ZSchzXPbuRRgbMYoaQF5OIZL14SvGw0MnVGnicOWFct4DljrCafCrpfyFSY47OmU4kexXfa0YTzAT2dVSadmSOtApK1MppKIce9Mk2Hw6bzGdLZHb1QEbQy6BInaGfFQYUMbplLAw1HX5doawL3i78tR+84R/+0z9H312pbWVRgyoMzXT2jGR55YcFbtm9itdYj0hdV4J9MurGvRGM7Doj042p6HRR+gzn7RHASCyAw+g+41sSklnsRHhe7LD89UZ+uU/r0/pNWr+Wvy/tkgDfFzR8dE/Nf+bz389SPyBFrirTATDo7OlyyTd1jq5y89iPgHGe4sWGekXjGe87/XZlWTIt99quLPVE2Ata19zU2zVvtgWWUjn8oE/7dIhRTOnR6a1DqfBq6WSSZ0l+j07uhA9HpoAwYqYpS+P9d9/y7su3hPwJY79SS2U9Kd8+37jenHVTNM5sTA2SlPyMxCjoZKikXVikI5Kk3RzpZfBezZqE7EWAFEXklC3mkSnRqUpIzVFKMxVZlLATxWYaM0pZ8zMR0qo7ZmJwWStlKMcosJ2I0wJlUAZoLbSheBssplgZ1PGek8N259R6Rra33L45iJdvkM05cULefsGb+wVT+CsmbDa4K3CyDa5XTrIhS4XeJmp/RhxQsosnganRwhHZ0Oikh00+jvo80lHSJUdDNQQ/DoYn7Xo4UAQtZUYfKG6D4f49mThyMIJmplQShAOrlpykkRouiU5RYC00SZtxRCYqBzla9DFwstC2mjRoGQfmNdk5koGbEWAzNBUkR2ZTmJw/+1ftxHwOI52Ho9YUTCOo5Nddan4OCJQq9D1R+9Dm4NhAKtApku6d/Xi95QvH/oSVjeGdogtHSzrwUlfWWjn2G2aF0bJ4sZpj50EDKcTUqNQyOSg+CC8IGWx5vvssHYMfqcNXxtG43pztNqilo3Wnb2c2W7JLNgs8Zo6TacIq8Xw/E0J8hfUzzo9f0kafsmzSuj1zoWACLhG6JH06N6eBLZWqwu36gkaCM8fohKZwXYYzNFjKAv0AF6qD2CA86enWheGNIwpVB6KVg7TRL2YUJHUvVoiWozJG0oePbjx+UVn+8UZcLlwiRdbLmPl8Bj3fho8ltwp0j9TsaUkKNzEt9DKLoXR4iRdoGU1RQpDITLqwxhDFo2A+6C1DWkNTNmBasJLwxHTryRRlz8C0+N4I/2l9Wr8J69cqblR19mRyA/EJm3pluSJTtyJ/UXyWRY87xCgwFLzz9P4yxwGpqJUIRBZ+/MMf8Yf/9R+hHtx6sKwniM5xPBOtEaUk0yN2aCurnrg0pVbQO0Evynq643Z9j9YNsS2LsJKbWCmVslgKVCVvMf5KU56KZ5tJvmOM1L14WinHSI+N0znaibfvHnn65XeUunF/PvFSLnx3Nd6dkz8T2lMX4dkBQI7k7YRjIumgGsnHKGWmrNcpGpyfsmpFQ6imc5RiSBUoNfkf040lYlgIqksWSqJJFi2G0yCgnk/U7Y7RL8i50MZBqSfipMh5w7a8xd/XlbDOCGNvDTXB5GDVxlrvqbpRli84XOkq1M++ZPn8HaHG6iuxP6Nnw9qN7bJTxNFxoNvsXDm8JrlLWYhiiBQcp5jQPXBZkLIwZHZkYLbHB5SCqBEtKbj7yLhEquWH1nag0MncL6mGm+Hd0SH0lgdCuq3SXu8+z78ZPKplwCBZJglISVuypgDe3ecotaNFYcxDWSXdVWPFWzKhQgtWBr0F7WjULeF++bVKOgqVGZpIPnPT/XYIuBXa0ZLdlGBnSlmJIEGTwFJeu5+VwClViL6yWIpaVQZjMaTf0/YbeCG4ocUSLuhG9OT4NNmRdQHOmNwgCmPseOtgjWU9pUatBK5pgu8eiZLq94zxwnYC03uID5S4oxbj+eWZcWt8eLlRrVLLIDQ4NlgUquXPVzU7I6bZLfLZpRMElkf8s7+E6sK2JNjvVZPknuGX9jEvyRmaHQontUoSkV2oWlgsCeYXAbm0rP4npfjV6h89u399NEC5defOOgPlkJGuyNjZYkH7gouz24yamFonx3Pbm5ExSxV+/IPP+OOnr3lTD/b9oJQkYC8ajHlRSet7XgC997/g4lNUxtSMpS4w6fDZBfZ4wUqOos1y3C6hLOoMkyzQFk+zhCjLWiZ0MAu7NI4oZe6PKumM/bQ+rd+k9atbwTVHTLO/kNZSAZWZjyTA96qafCFIAk6+fTKFgdlWLaep4ZGYPJi8dYg662YMF0IP9g/fUR8rt4CynBgl8MNY1LDzGb8+M/qF++2B3hfEOu0y0LIx+sFoT9yXhe6N7k7WXZ1ojXXbkpjahWEdGQUkqbrJTGGO45xoHXFjlDxIvnt+5osf/4jn9y9QKgud85uN7y47L61TN8ekUrEE6s15+aiKhoHvuHV0WEKyPOboajpHZlyFiGGeB5d5R2KBejf1JbOzo0qJdPcIUDxQbUgfOT9fDNbK/eMbfDgjILRTa+PWOvdbQSssK+jpDluVISu3cXDylRgCvqNyxeSAMMb1AyKwaGddFgwoR0Nuz0jv1JHqqKKnJPKKZRFQJdksUqEYvi75hb0QR9KA3TMA0E0wqwgbWpU2OvQMwvTRsusXgUnqKrKkTj3YoCeM0CFaOn7wdNFw5I01VLNS8Awq1AjIMyOddBbTuaYpEo2ESBrJXnESSNcH6eIRpvA1YLP8nw6kD6INjMgRiivj1onRcctU7xiZQeXD0WXSayUoy5JdBRp9dEakS26MfClVgu49/7ylIj4wwL1RNMnEVjRTyG3htMD11hg9aDibpbV4mR2pox8UDU4lb+636NQRICsuqQcZR+BcaN4QXeaocIpVo03rX8VUWcYDbi/U00opK3v9Dg/lej3Q8hoCqkg5s7Jk2nYx3CV1IqTTxyKDXa+ffcH57Vu0FvY+2AzcsvuFSm4zIixqGUUw7fcMxVAsGmZwHIl/GNXw2541pQ+GJqvq2ht4o1TN0adYCoq9J4wxhHFr6GmF5nh1undqKTRPfYxUo1Bz1G7CYpUV6EfjX//rP+An//Dn9PsLrisvG2isnMLQCbX0ORqXPinNdWFEUGTMfTi7niFGiYG7snvnEHLUZZLPlnt270iRuongURCtSN0J8wmGlEmxJsX1kt8Hmnb6T+vT+k1av6Zb6ns9jchfGFNF2ix1Ys57JFwM8iLqAqINj5Lwq/HCz/70p7QG2zZDA6dg+eHunFZxH4h09r2hbphVxi2oa6AGl1s6X2SB5TmBfIfZFE32TMFFiJHt2jYiW/o92/8uzt6uWJHs0MiC9KDLkQ6peVFxgdC8PeKBDEFHx0rnKsZnnz3wzb/8GZTKWo33/eBDr9x5w0vyV0yZNtY1GzfdSQSpTSLs1BZgiZ4XMMuMHSOdUOKKRiTjZTGGdmxIOrJGOjU0BB0DNaGaYLVQloosC8vpPlkZBhqaVk+D7eEOscqqQq2K2Zb2fZRSCkc0RlEiFlQqSxF0VLQM1AWJBRk3rEcWHhGppdGCloKrzdHBzNKSLASIhTjnwetMXYhpjoh6S1G3VQjoPZCeid2qS+JGRideBcJHT2eVAupoVBiSugEXessUaGUQ7Li0dOlMgTje83kmZlinTz6Kz9FePvtqszM0ox7EShKxLYXBMQvhpBunvmfISFeVJcKACFrrqV0htVRqQpQpHh9kd0stXWtAHzmWU7MU25LjuJAcaw2FMTVhiiTXZChDrgRHFlWW0D9dBNONfgR7D/a9IzKQeo8OGHFjNWPrBzE6VW5pkzdHHURqEpjdWJaC1o0xi8OgE7cgjjtkpM1fF6XpHb133rxZuKnQxwu1bNwGPF0yhLM0o50rVRykzy1n+UgW7gK+bIw3b/FtYyCc6kqo0vPHnuRd8RwxqmYHJoKuQcYzBRpJg14stT2ig3FaiDFoLixiuA9OZvRoWCm0aTa4I4N02+is2d7gaI2mmXO1jiQpS0nKeC019UpTH9OZur8I6kNh2048Pb0g5YH7m3FRZxHjDJQCIZncnR3xyugj3WmqmC+AJXE7+Bhm7N4gHJWSIERJPlAqCFKH5ZH4AO3KxsJTuxI1R1jKyGdwHg1BUru9f4L4fVq/WevXGEvJLGYSDT+75+BJe5XX2bi8iomzWMmDLUcvKZw1Yhx89/6n7B8Kp4c2XUvpkKnLI1qmJqHmuMnqA6a/5OjfAD8CntHYiWNnKZWb7Xmz2CEYWE27dW+X6QSpVO04G6WcOPZvMnxzecfteMa04CPR5Lw6t2AKGzUP10gybd7qofTC5bbz9vGOb39ZEVfuT3dc151v986PeiFq2lB7BEs1hg5AJowsRy1aJmq/QBHQGa6YOoW0Q1MKWmvqmLSiksA1dUFt0ox1oVYlNLHpSxXKsqDrRjmdkG2D8wnalbi9525bsxCxBStLjhZfc24AFc/Oj26Mqgwapm8ptlC1Mzyw5ojtOZLp/hH2JWWZlmkhVpsU4evH8aWbImVDqxH9QErFi2JaGSNdL4wD5PvRJ56i9OGpXXllwsS0CY9p+/VotJ66EpnwstRwNAaNfnvJgmdkXlQSZ8cUak4d1BQSi892vLwOYidDdmZIhc+O4+xYBorILITD0T6IY8+U6XJGl4qHz2BGQWRljE4fjo+MDygVkOTXGAJjYLP/KSm+yDGTJvSSAhInrvvUT1iZsRQJcozIhO2j37IgIiFzIkFZSfbRZbDLB04PD5hkdlXz/LqKE5Ij0NU22nGkI4uHHLf4yIDTmW69bvkZ7FfDSmA2R2Ols4/gJM71aRBb5UfrxsvLwfWlI+zoWlA9Ic2o1jMXSqHGwiiD/fPPqW++op7OVBHeH8E6R0CugkZqp/Dg5kc+35EiaNB0D0pJEF97yWddhWrGcV5mens+Czl4CkoIEVmIRlG0pz6qSeAjM7Powi4p2JZQtEs+2zoDeKNn4eydKjWfd2/8/u/9Fv/nf/yfsd49s6uzWKfpmUOWqZcRTLITKENQMfCWXc95AUFekZS55Y4YqKZuTVWyg6vJxPFxgCwQNYnwNChB9YWiTgtlmOcFquf7la3Mudd/Wp/Wb9D61a3g869pQHwtX16ZN6/Wqdz+c241f02k9TqoqT8YSnTnevyC737eeffbNRkhZNLv6fQFVkC8sJSN43hh6WfqWtmfyNwZM2w4pYGIU88rbTTW7US/3vCewlAtyero0QitRLvSj4NixhCh3z5gMVCtWPjcoOPjbT1EaC1Jvv7qtImUgLrvLKq8v3Te/vBzfvLHv6SUzmmr7C/Bd9cUPFcrhOUBWVRmrAHUaTUWdwhBw1Alb/KTwvqKnbeSItQY0102PItGJS2+BMknLJRlpd6tFBXMjHJaoSpesjAVq9i7N3BUeH752HFAJC3AvQGFGC3HYBIUXXOU5VdK7KRrbIFlgecdWuYBCZ6tdF0z+2fLii3aDdUNYgqDVRFz4nIFifxMemccBxFJ7w1LkrSP7OzQB046i8bUyowxeOUqhWaWTsh8On2kYFKmjXokCA+f4ElvhGfmF6/jIH2FQ8oEyZFiciBEPzrPtGrqxcKxgNGTbhtm4GNqzBy65wjLcjSAZgfHZEHiFVWXFmhdTrTbFTxox55hkvjsNOSUIDydOKL5PCXrJN0yq63sY7AfyWixEvSo+e75YFvvkYBbH1nMaZ85TIb9f9j7s1/bsiy9D/uN2a219z7d7aLPyIxsK6tYVWQVq2iSIiWapElZkCxYki34LzAMGfaL/Wj4DzBgGIZfDAN6sQW6AWjYIkDSFEiKlMyqIqthddlHNtHeiNucc3az1ppzjuGHsc6N1Fum3wK4MzMyEveedu+11hxzjO/7fWIcDh0Z92yHDQEXMIfgUSQSB3fLuKqZZamUofjvqupYAjXvlqWGqZNtkyT/+br6AYKGjVvIhen4jKU1XrncMGnleDxwtE44U8axE9PgaeNSkLzQLt6Ch28hY+EsbdjXyiaZgxQlE1W8cxMEiwHpnRZw7IOCNs8T68E7tSFn70QNiaYQu6Klw2xoXAvXNdF8UHPtVvKNX1XJ67VQxShrUR/MD2najYVGTKtlW9fR/Krz1hgIi/Do9TPS7yXmybtjpUCKjRQDNYqPcoN4YKd16KumaA3o7Hcjc7zDo9Zd6L66KaPcZU3xYqxm65gpmHd9p97oyZjFqdFBIkFl/Zj1ma/6It7l5Xq5Pi/r5ypuLKxjB/tMfIvhD3ZbQX6yzr/Xm8E7OYLKQmf0TQihtU94ft2gJ2IMrl+wwBBHJ/IGQXWgTkc/LYpgRJoqQzmHYYLhDNvM8PyWPldaHNGYaMuRoQgSPSBummby4LN8x413DzqUTpDsYL8WSAmiRay7eHitNqjdOxrdGsH8QdmD83pEBnKJXF5knj2byGOi03najMvuOVYpRlScx3Fni/cOkY+fQg8kGcgJn39nhw/G4C+wiAP6iHhXQxU11+Mg60Mo5jXsLhKzEAxydI2AhOLZfnWBFNDtuWPsFR+xiLmOYG4u5IwJswWxmVCLb6SyuC1+NsJ0RGNCNLrOMBZ08BO0DBvvEJWIpoA0FzNrzF44GqARW2ZY85VsmkE9SkMqVDJsCz14Z6Y1W4m/oF1dQxHBurkTJgaPmGirkNOFCKunZO3umGdoeSHnuIC4Bi2qrp40VU+0TtmdM6G7KJTVeitCV8XFPMmzquyzTahH6FqRFX5mEZqtowXFU8SJ/nurv0diHQ1GZaFK98IvD4ScWPrk8R0KYS1S+hqXgNhacKqf1GMkqo+OglQkCz0k6M5MQQJqnZhHqDMCDA16j0x4bIPMgS4VKQkzo/fFR1C1IsOKCYhCCBuqNkrye8DajHajnTp5WxgSBNm6dXsxQpuhGT0lmibGMSLtgml/pF1suRwT55szDvs9tze3zEtjd2GMIaOpYts3iG++gZQLUkzM2rywEiO5woguqyV6jdoQEYJ2miiJ1TzgjyeCGUurpBAZwoBl7zwt5pv70hpHq2RzO3rHhbbVlLK+5yZute5dsdboAaolsI4bywS6Z8Kp+HWrCCaNFJLThwf4zW98kd//0fewJBxbpHRn2vRu9OD3eTQjRKPRaRKIVKKtdHZhNVj4de72eecoxVUHJcGDRQUfv4WAOw5DIi1GTMbhNDGmjllBovqBQcHDOO92gJfr5fr8rJ+9uAl3IX1e2CieTO37tDumvOvhIyVbCaN6Rw01dzCIQYxK2i7MvdIpDkNDMAtst/e5uNjx6YczKbldFinEEsnhI+rpmnTmG83h9JRN2BBzROfk47GcsCpY980jCqQQaD2jLCgw7Ha0/cFdTCKE2EixoNrXVqxvgkFcHxNWt0awSBBjibpyU3wscTMZ9x++irbAzfNrYshc9wNzjxgV6QNWlCYLqa/AsyiOqlhdOJLN9SkvbMIrdv4uOFAFjd4RiAg9BrIIoXlHSQiEHImxEXS1nvcFISNaMVFU1gwqMySNaPHRiWBQO5pcgGqt++glRsQM0xmrE7kqVO9wiSQv9GQdy+xvkbJDs2FBkTiuBULyDk+foIE0d4L1ZXEQJIm+dKxXd2q0mcaIHKGHtfuiCyoJbKAz01UIrdHD2hVssiLMgFBcsqGKSl9lkF4YdQuQE2hAk1tqrVckBQjB7dwqL8ZLzqxnpdW6EilhmETa2qlp4iOyKF40p+Cee1u7QFFdQG+qq17G9TEp+mDBwnpPmTrbpXdn85hHZjTcqZdEiWGgBe9AuRjasCZo6J5pFCJh47bhuTnGoFEJ2S3x3dbcoSDQCxogbxJ9NtegGfTZyOo2fcXHtCX7fRFSQeuyXh+Cysqm6s3v1VxobWEYdqgYrXmgJ+zQfqKgxDKgdMLlGaDc3h44u3qFbd6Sh8SwzBz2jf2TI0sx5s0V97/xCM7vE9OGs/EcS5luykAipg21ViRGUl3diBroNrs4dt3oXYcTid11UDG4YHaiOWDPXPOmJgTxgsKvGe+KmjYX+CdBFtxZlEC6USsUE5Y2EbeDC5s1EIM5QNIFMT5qjj7XjuLPhkevXvL89yfSxYZ06pA7PXWWFLy7orpawaGrMRZFzTxaAZxFZF5AsTr4hhhfSAX80OnaMdVAR9dICwE1Ip0xR/qSCUMnVLDYHDQphd4bSvVu4cv1cn2O1s8hKF43RVlBWSvqHtaJ1F3HRoEgn2ERhNXWCt0qSxcOx8jT59/hj3/nY37zr37dVZTiDitjy72HVwzvTczTAUudYCO13yA5k6fg8/G0RU4HaKML75y/z9ICOShIQUMlSmCpjXQ2UmfFmnG8Pnl3IjSWulC6UWVFuZmPGyRFWrs7oSuxw9IrVhwkF3pYgWEu8ryZAlcP7nNzOpB65NQSz/vIhSVygmDNAWzE9fAu68YZyUkwq5gGD5PEOS4xFv/6AprXThEBC87RoLcV4IVrXFZmR7DZXTnZT49WFVvHXIZj6YMFJGYHgpmh2cF1YZ7Ruop5U/DXIih3KWISPD3Z2RretRMiNm7QMGApe0ZqaC4iOnuAnZ67dmWuoN416ctEr7MD0TrUqToyLYLqiV6vcbt+RNsJi5mme7pWiIEuABFtzWN2BDp5ZQNFmh3cKbKe7LV3kMCdxyzImpKd13iQ4NoCL/UW72yR/Pf1amXV16yOK1F/H72JQlcvfjxSYC1cDAf2qQuEfaTrolMPN1zdLFHWI3intrbqcczfNxMPztSw5rmtIzgTQhIaCuqJ0mEVR4QYidGYW13HnWGNFVj5OSGjBKxBU4U8MOSOno70PrPQkNPIZthQVbDQGaIgvTHkNchzFWGrGjFmF3JvhK6JuXu0iiAQ8OIhOafITNx6Ho3xMnJ88oTD6Zazi1fYhPvEODHEI8t8oKYd51/9Jvde/zJxd8ZeB273nR9+9yf86MMfoQ/PefvR61ydnfHKxZaSMrM2kglRC4dYaa2TdDUsmGAx+Qh6DkScCnToHXQNNS0RmTyktq42cgxaTM4oEiHnTDCozYtKJ15nrCnL3GCIrtcRF9KXCMvSaequOHrzUWU1NueFe+XC9UVdmeeFmAOxBSxGj4Uww+k5fh2XlFcr+HrdsDowxaNj8po1FgioBNdvpZUEHgRP9PTySMU8CRzAEq3r6p5yWrTIZ2yzl+vl+jytn4tQvFYxXvWvf4QahPXBut4In2lx1k9dhX3+OauboX/KD7/3XfbXX+b8gc+sbR3BvP7qq3w3Pyb1TAvGcb8nP7pAxz3LAQYiPXfSUQhEeigM48IyXRPHrQtM5xviZseks29XxxtKjHSdffRk3bsZMRBCpgm0efY8H8wzswIIDpRDPGG7tQVpfhKS4DEOSQLahaNGXn/lNX7yk/dIFnjWD9zrI2MOmLq4NWZx1P0aYeGnKyXERJKysjhWU3NKSPdCKJQCSwNt3hJXd/nEICt/xX/muXVUZ7olZDeSwgpRE8GmCUoihOwdtgIk/36xRc/8KeYdm2jQK9Yr4IRaC+4+C+rjPs2eu2Q5+c9smbh2b0gewKfPP/LXazrSpwNBm4emzobOMwsHVA2bKlqF1o702qnT5G23kml9IeSRuo51hPiCaBuSoDp5URUKpgePzkjqo6qY/GNbJZnQ1F90XUsVkeAk497wDCjXVvi1Gny0gr/Xnl3kn2+9YW0dIwXXaPXevdsmPkKSIIRYHJvQXcvjY7F1jIAQ01r0aHeY3PoxtTa09XWk0Gnm+hutSsjFv5/5GNG/phKjd/B0/Xo5BYJluhkxGF3M3/sU6drootCduk0w8hDQ2UM76yKE0NBubLuARcpmoNHJkdWuDQjU3l7gHMyEujhGIZonVQvRfz6J5JTpMVBNGXOE3TnHpwemC+NqO7I5GkMwjjEQL9/k1a98hdPZORJ3LNcnfutf/x43H39K2AzIeM535ycc5TkDnRjgjTev+OK9Ky7GM3aSWPJqm8dorRNTxgQ2QyEG4YzE9TJxXJqzcKKPyUkJRJh7IyQf39BWfY0qGj0TKmrzAqF7fEpvnVkWSkrMupoCAnQxTq1R4sBwp84NAS3GV7/0Kr/76bcp4xWLQTbvvql67IGKkVmp6hHMKioFk89AnYYTuF1vs6I5gnjRZXedGw/g7Wr+O4AfFEzJw8Cx3jDGTMTTzVePIJ5R99It9XJ9vtbPBfGT9UTKTxUvdxbuVaXpG4etWghYZ8Hukgnr6RGb6XPj02ff5vr53+DsviGSXpz2UgiEMLNIJ8vANF+T2zmFzG27JdWBkgr7dKTX5GLZUBwlLhlJQtLOUg8QN8R0ItQKFkmhUJfOdnfJYX7qY4P11KbJ28B3RRyYt9xDoJvRe4MGMY2eNRQCOQd0qdCgxQhSePW1R3z0wYfse+B5NV4tPrpuYU0mxhN50xo/IJII0TOmgkQH96VVT5MT1gyWu9Rp1+vI2rkwBDFvu2vtUBvTfMAsUcs9trmwISDm0QLSXMBqEW87RA+WFFEkOedHe3NtUgwY2Yuc1nzkp+Lup+bi3DB3h9FRAfViIG0IS0WWG8Iy0WqH5cTSKspMO+1ZjgvLsjp65gXmxnFaaMkwIr1Gam3QDOQCmVYRsc0kG5EYaMuMFC9GkQlbrglR0FxIQyEF6Cqr/kBpdzyUHJ0dk9xlw4tAwebU4Or5Vcb8QrPgQfeev4QKquICab0rk3BhON7R9FDNdXMX3xiMVZQOBCmrYNbW07ytWVagzUMsJbr2RRBabaQIZt6FkahIN3Ia0Sz05egOreA04q51DRhNboHGxy7dCtY6oOTi4v5p6fRaKWMmSnJtW5tZ5oWcC7Urca6YBeKuUIORifTWqb3Tm9OZVRu9uw1ZMNd8SSB0SONm9RiIB51Wd7mVzY7TYWG/P3Lx6jmpC7TAEs+xt96kbs+hJ548n/nWH32PZ48/ZnhwhlGgCDkMXEQhS0JT5iefVn783nukpLzz2gO+eP8K2W3Zdu96ZIyjNZo4AK+V4HlZ2lmOB3qrZHF9XjZWCrantnvukxfMPayIhiqgzQ92YR0bq9JWBEVKPiZatBHTZyOyKkY0oXbli195gz/48Q85tYVYI7EmUomM6gnlK5EQYqBJJ6tCWmNdcOu8sRBk9jG4RDcKkNfQX1YxuKJB6LaOcYOsafdOJo4hOSjSBBMfzwvhxbP55Xq5Pk/rZ4f4CavhUO78uT6WCi6ea77NrjkwYYX4tVVLw0rxdjaHNmGpgf3xu3zw3p4vfPXCSwlzbcPl/UcMZ5l6hFgSvc5oEaae0XTD4XDD7nKk5IHD8WM24xUpZmqcnF7bHTmV046cO20paJiJqaA2QYkcpwOYYkSm1kgkYrmLYnCdhGdRNRcUq5+0J/X5eoiu2Viau27C6vI5WieGkUdvvsKHP37GJ6eFVzc7HpDIam7dDWvG1UpCDTG45VOMkAImGQnifBzcbWHq4yDDSGsrPMoa9tlBrLjY1pRWZ/oyMT137VNMF5TBv5/RV6dOXk9+rs41O7q+aCW4EgUNCSffJSQsIBnRiOpCap2+gvY4v0K0YfuPoU/IbUOSUee9gw/bjNXOJB0NCUuXLENHh0ydK91OIAtsVw1OV093X7ONxCrUha4zKSaindHEyNuI5Yi0NStqMEgDlcAiAktzUW1JwELvE1IrsmSPwJAKckTVT7YxRef33NloRYlpeMEtEYme/B7yi9wjF8+vQl5cYK1rVg+2CvDXoiauWrXa2jqeuQtA9AKr9YpG8ZBWoGkncJe7lWlmdFu8kG0zMflhQUMgxEQUWeGXgTQkVITWBG0dUyOH6K8DinT/BSREYjFCS4RmhKjryCu68Lt15tYhVw/5XPx3abIQxMcfMW+829TnlWZtSOtMhwN5KNCzO8nw1yzEQCax1Oqsp03k+PwZ/dGbDNuBPhnx7IzdG19m1siHz/d88MMP+HT/HuP5BaTAZIOHxRbPXOtEUq+cEdnHgWU+8a2fPOXbHzzn4eWGX3r9FcZdISvo7GGZmoTQjLEMHDFyU/p8Yra+FmeB0RJz6HQSoTamWunZf/5EJKXB4XerS6+26s/E7nEMdKHNlZQSp7ogaoy50AyieITF+aXxtdff5N2bn1Dzm8TaqD3RVMnKWmALi0Q6nRADmzvdjnbvzGLEjofvriN+FccTxBBR+uoEdDGxmUGIa5fdH9BBE7k4yDHgnSuvaZobPl6ul+tztH4OQXFYSa5rofOidbP+j7GOdFjt0vriA2RVEiurs8eUridO03f5o996ym/+ty9eiI0FYTs+4uLygv3zp8Q5EPTEdNPYnZ0xlFtOJ2MJCQtgfabVxaMMgtFPe9K2YElZliPSEhoNlQitoclHC1IrMW/QnEAmFvXTqKkXAFDo6loVWxp1aaTdjt0YXqQO0xYfI636o3o6EUPmFGEbdrz1hcSHH7zP42PjfhEngq7dqbgGKMqdgPWuqJBEKG4Tv7MUh5XzYiqrnbMSevdIibqQzef9jBvyEAlaWeicjkeeiUGsXBUj2OjdgBy9nR1dv2Nh3amjgCmiDkDDBNHqG2jKBMsuMC5naGjoZkM4iXcy+ppjY4FoJ9ohELvQo0GrVBVSiVQRbBgYU6dpY7zY0GtBbo6oVJZjpdXuKdnDiFon9RMpOQaf4A/uLgEk+c8eBWtGZ8DKlsLsNFfZoqI+7rENS4pYCc7ZaYHWOr3NLEujco1ooh0nYkiYHRmoRLkm5w25DKSciNGt+QTWnB9Q8aTtmDJNZ6wXj1BAEJshFj/Vm5+FS2a9l4xGXMM91zgKWd/7pqA+hui9o9E/pwse1Ng7vRqUxtwq0YJnasXVtWiBMSVmjAYsk48wbVlIeYQg9F5Xm7YQxgF6YOmTR6roQM7ZBaVtomrFNpneov9MooTQ3VVlkZwSm5iQLNQFJCS/N9TJyRG36t/FB1htJF0hlzEyH/fsTzPlfMTGc8oX36EPO548nfjx93/Cze01edghKWCWSDmRYiKn4F2uFtYg00ZB0c3O7x+Dm33in3/vYwaZ+doXHvH62Y7DfGJajM0onKxxFguc+bOr9pnaFpYIdB/jZIuIKEECHSFqx6T6sy2tOVhx7UqxFrXL4rlT1ii9kWOkLydutZLiwMnUi2zrvP7gPj94/3vE+wvURFsKcxKym+to5mymqEKKrrsSS+4IXDUxKmkVgSW/f+PKc1qdchLE+V7iOEv3Log/c+iIKb3Nq77H8/6EgFqk28vOzcv1+Vo/F6HYuyv23yA6yYt/r64P8Crlp4Iz7wI2RVz326I5d2R5yg+//y7L7RcZduvXEUN0y9e+8nUev/+vaCRyVqab9xk2r/lp6JigGjHtGKIShwt3EqSZulSsFndRnG5h9Bs+SULbRCZhEplDg1AYs3ECco2EudMkYjlj1rCp0drEkAZCGF2/ZxW7g3d1F1TW2hFLhGEgWka0oR1qVB69+QYcD5ysUJhd5pdG19y4hcKdDSn5CErA3Vp3uVtCq9WdOiHSVd0BcjYg0kg5k8LIcHlFuhyp8w0yPKQfb4i3J24+fZ/9zTnD17ecnW2A7v/EBubdpxAiMm7c9lxntLntPkpAq+tdQihIzPQwIragqXjRdZbh+ppwWnBd9+KjCbuzkgZ0KuQIOhtxs3J/porOEwHfyPvtEUvG0I02TywozTqaRtKwI+mClC2xbKEnNDQYsjvF1NC2QMxeLJBozehS0FTpraENwlIJYfDuSIzsmVGU7QXMdomFQGw7lMYyG6deSClRY6HOldSEHJSkR3I2ch6JMTn/JLBGF6zjLPssXd693G5d9/zGRmxpZRo5ETkmGGJhbkZt7pDR2J1VkzKiCxCgdsxmYvaRgTuWInNtfm1F6MtMoBNjIuTIIEaUwrJmUgFUqsdhrInkbnF3sKFrNNZMIomk3QYxobZAiCeSFdSMUrxLIAZxBemJRIaxeA7ceO4gbklYVUL0vCjrtopdo8MYh8xm2vLs+mOuHvwq/d6O+NoX+Ogp/PB773N7/QnlfMBkgK6cckCTkMTHshlYdHZ32WoASMHp0WpKSZG2KCcyf/ruE348POeNqx2vvf6Q0RKtzp7nJkreJNqiFJwndTdqb7jd2xJsSiE1XKgd19DJFe1AWPVzIblFXITQBQtuqLBQSDIyr92VEgLLNHP+5siD75xxuxwYwxbrsO19JRC7HTusdvfaKykMSHAdk7KSvM3c4SYBkYypp89joE2Q7DlmwSDp6gYVoctnLlcNBbFAVyGHDGtXyDnqL9fL9flZP/tYip8uZHw8Ij9VzdvqlNLAmqwd8I1UXnQgwImbiynowqRHPnn8LZ4+/hu8/s7qEDHI8YyLy0Qa8joqgHATvLBpI1o/Jh5eR3aKFZiePWOzu8JSwaYToQy0ZWbMA2gkbc6p856gQsWwZIx9QNthFcoFdxEJCB2ZO41GLIWus3eIQnDNiugLMrOuwLaUMqKeXyXisDm1jjaoTbg6v88y7ZmsMKxgNFu9M4RISAbJ6KKkUtbXbFU3uf3HT5DBCKUg2a3kMjXCbks8u6Lcv0ceInkO3H76LvPxwLOnj/n48UcYl5xdPOSdt89IEZCMNSC7xgJ8zCUqoAOyYl20NgjrplISJiNh2GItI/trrAwwTYg1kA4hI62ulmVh6RG7PZFjoeoCeSBN3Xk7QagkQm9YnwkYyxKxNiEosS7YcmJ4ZUM4u2AYjZwiabxAY/FrK6h3NczZPHU50giQRpY20bQz14yUTJ2PlJioAmMp9GVhs82UHrxTZELtMzkV7/KFRJ0nTlNlDEIaNh4DQKCrcugzoR4JujCWTMmBkjJxGPD25OixAGECG5yl5mHunocVZO1mqjvlgN4CQTKseVEikY7SliO9G7kIJQes11XMq4gZWRJ5dNBi004OiRKKX+utkvARci4RDVCXk7/f0UnXTqY2urmjLMVEbZW0ioanpbv2hoC2Rk4uMK/HhfOzLcvcOcxHyugWbczJ4al4iKd29fc0pBeGAqwTU2AIkaQDdds5PTmx/0WhvPEl5lPhvfd+wtPTEzbn9+ipMlsnSSSXkZi33sFqgVsWSgi05B2cHLxQc8xDgq5kVfLonJeb/Z73PnjG2cef8M0vvc7D80tKLNxvgWfLc3KEWALSYdEIvXqB0kFqRWOk5UKSQEyQYyIja+s5YSuLSGJgMSPGQm0LGowSIxI7OWYX9gpo9E7hq++8yu0PP0Zeb9R6pHZjboIkIa9GVLUAthKHcRIxzTAqqOeCEQwNiUD6qaLE2+1R5EVBY3x2PXYzF7cHz+Cy3v0a8SuTl8GZL9fnbf3MxU1fc2vkhaDVb8y7fs0dAtxsHWfc3VNq6wzLTxAiRtDmXY+lcT3/Ee9+58jr72xXnYs7hXabR5w/aByeZQiFLgeWa2XYjYxjpE0n5GzDmAuHWlGbiLlQ5UA9HdikgqXCNJ1IS6aJCzL1dCTrOS0q2jrdIEtBbUYElj5TYqG2CKQ1+LEhRRAV6rRQW2coAyDk4huBI9Z9k0wlM50qmJBC5vY0gWzI3HIpm88s9MRVrLra69eTlI+HQLt48nccsO6OGYtCMiP2TtltiWdbyuVIKJ3D/lNON59yejpxmBY+ur5mmY0ab/nO9z/krTcekUvBrCLqDzBrvslJdzKzJoGU0N6IllCLSBix6JlPnG5AOpadPCv15COzZYa8xcYBDdHDFNNIu5mx4qfBOE8OojPQ0IlDgFlQz8AkCfSlIilDq4Sp0eeJ4cHIuIuuBwq++Yc0IMNAmGa/ZmIipIHQOj0mYs5IVNqpkTHKbmTShbQoC0YMI4N11BK9dGKvhGlZtTsD1pVqjRwLhjt+VNewyTLg5utCnU40BZkqxU7k00weEyl1YgIsI2tcRe+Q19FkYy2UUyAHoVU8YwqnHmPuwrLYSATCSrauXZEXuT8nsOK6nOiZQWG9/2y957R3bxzFtI6DOzEKSSPOpjQvcNQ3MwteFMQQ1m2xM+TsXamc6TVhOhOlEyRxOB1+6rmgTus3oUlHW3Whuht6aK1RtZJyWnUfusIqN2jx2IQlBM43Z7z3/omnTz4hDRkdsn/dNjMFIwukNVIha6MwYH2gmrOjWDuerA7Nm1oZR49+OKpRWqaMC1oj3/vxgaf34ZuP3OV3dTZyfQMnOjV28iaRZ2dwTb3S6CQ1Fm3kVFbFyp3bMb4wH2Txjl7GUDNyzBy7EoGmDbrRxKGePXRkEb7w+iv88F9/gN5/isaH7IuSohFjp2eHdqb1fVJVt6Nx10hXLDjgsq1avmhGNEdZEh3rsAK5X8AMQ/B0esxIIXCsMzF0RwvIXeddfDb2cr1cn6P1c3VuvJjxmyOsNb3hLoG7WAKRsEpw1uomeBfHLar+GWqBhEO+luMf8Xv/7Af85l/7OrHktVhSduMX+ebXvsonP/w2RQaWvGd++j4xvwrbDfW5MdpIK0qaFnIXbJcZNhuOt9fY5j6yiYxk6v6as1IcM05iXmbGTcQYMFsI0mgdJEai7dAYMXE8fSoDvcJSG1Y7It7alZSJ3e27ISaazn7irwpL94IpdbQtCIlnAe53odrEQPFmr4FJRi25CDs5xTcWQbqPLTqBWn0UhkTkMBEu7zG8dZ92eOahfcdbpsPCaX/N9ZPHPH96ZH98zvX1DXMrLFPi49MNf27eMgzVGwviZFVZycEGXuTE7iMEb1e5ADxGFxvfaQpOs2t/qEgwLEdCFjqLm4EULwolMdzfMi+VIgmzRGvKWDaoLrR+omdDLGO1+UY8JtrBx0XzMlFuTtgbgVhGokDUTEwB2W5ovZLK8CLcFAH6jNJoVbCaKBnmOhPCSBYI0ogqtNix4Yw0DCz1SJxuSXFLbaCixF653G4ghNVHJSytsxwnqtWVVZQJ29EptXpgOXayBegHsswkUTZjoKRzSEIMA1VPoFBicW6Urh2GAMEqqsHjE0pCksMnQzA0z55BpStTJzjc0cw1GEhDgjvw2tw51cXjN2KimjOMxBRFSWKUNKBmLHVCmzAMBUXXyArXEnlkgq6AQainCenCZiuodcpmS1jBkKad1li7QEoazPsGvdNaJahndcXkna9SRnfkNXUIYUiEyw27t9/mk1vlhx98SO1HtuMVFgOzCuRhdRdCuQOJxpG9wK64zkVXGrEgRIXWZzZACpmlKwlhkYplIQwBKZFn+4nfOs5cjIGvPLzHxUViWys3xwO1KSkKkjPaC9OyUFul90adOzYW0tZHYAQoEgnd88dsJWwjznKKvdE76EpKJ/joNgvMGhgHgzCwtAmqcVqMi1LpxNXDocy9MmZ3Qck6EgzmmX5iQg7Bfwa8H20CdS3yuFMUiDs3u9wVR4FqwcN2NSIR6P2FAURCdJfky/VyfY7WzxG/YHe64c/+vYJabJ03O89mbWTecW3MmR6h+7y6mScqVw0UrSzLxLe/8wccb36Jy0eGaSZEj2IosmHYZKYDDAWOtye6QixnmH3K6XlkfFiIEY6HIylD2m7Iyy10IQ1nzH0BoJWBGJWiCyc7EeQRNR+hKrNWYhqJQZnWAL5kFbPEol6gxJjdMZGEEoVugRQKNLcNp670uJ5uIvSghB7oFpBuDhULwmIHQnBhKNF85BTFWSgoIXjINxV6n3wU0AMpC/N8YpkP8Kwx7BL3d4VqEzenA/1mZmoHjrcn5sPC9VPjuNzjFBN5c0XanfH9T57z6vk59iLyvHu2VV98tk9YC7jifJXRY82tOf/HwImoKSLzumFJQEQhymqrj2hzu3UcEv24MCRzS21PxNRobQZzum2Qhkb1AslkFS86rn5eTvRPbxiXhvROGJOD94ZhHdlFT/EOglJpomj0NPLYZlQrujTsVNGoyLjaaktB5kSoRm239GVxYrIldF4YoucydROsTaTdzvUHUtFNR62CDqTBrfOpw3zaQy6EcUDiOdYr03xkfziwTZ1SAikWokCOA713enPdRUgOVBQV/z2JHv655huFEPxri2HNXUpqC7UpEma0O1IghOLAwBSo8+yhm+YJ2CFH1+uUuI4dhLoY4xCoDapByBHpMPcFVefdhBAdYihCLkLo7jDMqdO6u7BCWGHOwV1pJWUvwCyQ8wAtYbpgVokIKSa3o0ch5ITMYMnIrz3i4Vvv8MPffwx9IUaPOMCcypsQCN4hEYSSCxYyScCaOncqehhmNIHunJgyRBfg0zlRqVHYhh2jFKcHx0RuMJ8af/DuR1xdDjzabTi/OGdpjXktwKRPZM0svZFDYm4LtXdOy8xuHNmk6CNDwprRhEPxWJjmE2suPFOH1jpDzB4XYY2uykTga195hT/4wbe49/ZMm5Xj5oLcZqoEEpEoI7MqgxpBAyaBHmQVAAsaDO2eE9WCP3tMvNfXe6fHO5iid/tYCePBDLPuxgbJdGuIuc5LVz3Wy/VyfZ7Wz1zchLvqn9Wxg/ohLawFzHpastUa++LDcXaHiGtu7E6lr4GulbkdeXb7J7z37sLFwxEJLgIUEm+8/md47Z2fcLAFfdLoh+foEtAUSReJ9mTPfDwjpUxMjWXaAxvysGG+3SPLyCaPTHlmrhNDHGiSKUNimW+JuRBzoR2UEBQLJ6ytzJyqqJ6Iw5bOaq3MRm9KSpFuiwv6EtRumARyyq6tCJ4YnCWid+Lp2pl3IzML3GXdpBFVQdV5JFU72b2a9HakLQvVFJMNSzemdk3tnXHYsOMDPnlPmdLA2GYgcbo58OTD5xxvO7OdocNITgPl7IwwXPDh82ue2xX3aC5S7AYtgS3eV9NV5xMcQ0/3RO+Q83oCZY0VSI6kr0doCywL1hRTWzkpEEqg9cmRAI7GIZEJ1mlAT90zh1SoTdEktKXS60LXiVqPWK8suhDOLl3OEAbCcEbzC4oYk8cfpMC0GFUbaYhup2/KfLihL422dAidaS104saJwRoiuhj9UJmW2Tsy3VO7pQykMWOzR0BEA+FElvXniLhbrRvTdCAZDNsdISVadwJxyJeUcaRpZZmUEmeGaGhQYnHibVh5OeC24CDunDMRWlMkOAFYxLBsWBIvmpusbpn1/utCXZyYW4qw2WTqsmANtC2UcobFTLeJLBF0wcSoK9Ok2+whtwRyStR1fFHbnW5OSCkSgtK6IRQwIyTlNHtOV4xKSeZF26pJcV2as4sIYQ0ZrSRxl6DGgOWEWeTR177JdCo8uT0S6kyOA1ijikJMJHzCXUpmuxkIZE5r9yKVgtbm4MTV2bnY4sXRirFoWhHrZNzptskFDa5BCVGoMREs8/ym8eObx3xpt+Hq8ozLoXBKDbEdpWx4PN0wqNGHhPXANFdu5wN1myhD8iI2OtW7A4gTtevSMG1uqLDIYW4okFUIoTMF4c0v3edP/ti4mZ9xkR/RTw3NGU24Vq/7yKgGIZk46A+PmxEgkRik+L2dDIvBz1BqLiZeycRB8vqsdgWl6wg6JUdsqciq07qbob/s27xcn7f1c0D87rQ1n9XwdynKYbUi2qqp+exW8IIH8c5EuJPRdiWGjrWI1pnT/Pv8wW8/4Rd+/VUI6iJXE0p+wFe+/GWQDT+4vWY7wOn5h2yHVynDSE9HBjnHZE/Pis0TIe+cBjws1ONz0nZkKCP9sAcL5FyQrEzHyjALcr5Dt4q2Beuj81kq7C7usdQ9vSm5DEiHGA30SFgjDGoXD6wcC7EnlrmvEQ6QTBBtiCljDJwQqsHBrqi6d51Fr6Tojo8ubsVezNA+07Wup2ej94lJ98zLkaM2HuwWvvMnsH3lNfLpCSdrHB7fcvxkz+0p0sYLynZLKhtCCJQ0ECPodOIn7+25+vKWUBdMgwsPo6dmo3GdwXvelaWAlAS3k6d8B4jTyU/EyR+atiwwVz+Jm9CTYWnr3bxWkbQWxq1CHukX54ga+bSn10Qzp+DqNNOWCa0VasOOUJdMuXdJ2Hjbvek6VtA1kLAba9Y3VgJzbVTLyGJ0EVSKhw0axJDZ7gZqP9GqMkc8Tys6rXhTNmSMpVbi4Pbd2AUbCnqc6aGTtgOShRgqpkZKIxo6aavMC5TtFoudQTLzvNAXSGHA2EE+QB04LDMpNmKrDDGTQlgp1M5H6a2vZGwhVaB3QsxAIZJ9XBoO5DwyU++QU1gP1JVOTUhefAUhZCVYokunh0BIgihIDKSkWI90qVgX2rJqckokxsxcG70ua1r0Bg/Abc6DCj5qQQNDiSzL3n/GskPVvwfmgMPgfTWk21pUNnprhDB4gaRGvbji1W/8Ij/4ycK0v+U0dKQX7x5YIUtwrUpMjHlgSIN3cRGSQY+CWSSF5Pp7XQjR9WSJgIVIXZ9AEqCyMKuQYl5DKIWkxpycGzWcAo+na67nmdcuzrnYjJxvNuTWuQ4TRYUybIDC8TRxPB2Y5xO1VoZilCFTiiARjMQ4bmgWmLqRApQyrhZsRyl0m2m9MkflrYdv8+OnH9KHhWNP7OqOlsGYSMmJy6ae4RYkEAznYGXcfeUnidWH4J1yw5AUfbTc1YtnNfyjXG8gd3lTJWILL+zfbqJ42bl5uT5f62cXFK8eqbASiEXuyJl+Mrf1ECDImsWzjj5MV6otLpIEZ4CY0LVSa2Y6vs/v/NZ/yd/87/9HPHg9ryMHPzE+unqDH7R3iaVQ8shp/5xlfwX3r5CzmenmMWcX52jeIMcjqhDKSOwdOSxQzpmkMW5G5mlmLILJQBgibZ+gznQiITVaa2QCMW6Y5xNFjB7xjVsKZg23NwRP07aRJPFFIm9Z0egmETPx8clxQodIqpHWjadt4S2JJG2IZDx8XFZbsHc/rBtIpNKYl4OfOntFUyIdjR9/9ymkkceP/xA7TFAFtYrIPc6uHnKxy4zDjhYiQxk8U0Ynal344Ac/4Muv/SJn0VbNh7tX5E7QjAPh1DqiHQ4ztnSwRpj2zsWpnRCyd3GaZ+RIV9q80IsQL4tHRyDI4s4xyQG2F3Cxw7pibaEfb9E+Yb3R6oIuC3W+Zl4WLxwlYNqpx0q8dwnFU98l+zhoOZ1IQ6TZ6iIJINnoU6PWSp8nT9kpQmuVegqEnEghQGv0ZXJb77ZQG7S6MAzZXUIE5sXzwCSlFwntcdgRVel2RK0TSkYCbHeXxBhY6om53ZLGDZIDYguRhNUtxOoZWa1Re2VuM0OspF7IuGPJ6cyLRyncCZhwYrVExVpAZKCreoeC1bXXjSCud7HeUYvriNOIQeldaa36ex0TjeAp5KkQa3dtUTbm3l14qp27yCsVQYKuZUom0gna6BbWLqtC94NPXWZiyCsNIvhoEO9EiQSkNhAPunROrtF6Z3xwRdWBD599TNKZB5szTlPz7uUYQY0UMxfbSzZlh/gRA4tCiYmp9RWE6ca9SCAPg+u4urvqZCWR92BryKw/rWKEpEbDSBqZwCnnMbJLA8fZuJ5uuRoC9y423JdzMPUM2e5atLPtGb1mulaaKqG6GF1CfDEy6qXA0gkYVZUhrnlWCcIszv2JlUfv3OP3f+s7jG+9BjWw1MrSImOKHqAZjEFhMSOL+j1skC0QohFSpPX18InzlFQ9PNZMIUbn4Cgks1W/E6A5D+ekC0NMq/zAsRTKy97Ny/X5Wj/7WArvvtxd4yYKFlif+awQGO4+4LM632+eOzFywJ0HSnNYXO/UeeInH/19fue3/ib/3X//ASYRWbOfhnxGzoFSdtThSBqv6c8nhjeuWGrhdPuMaR6Qsy02bGj7Z2yu3iAXYak3LNPB+TNDYJkboUGKnazCUmaCGoWBnLe0zUJfTnSPlUYVohoVIUlz6NkCUhKpuDsFGlaFEgMtViBS1anGMSt5k5mXmbI+xOYWeFZhKJ1mFVnBfMnEOxjmHS1TofYDHRhyIu/OOc63HE5PiTJxu3/GfKykFqn7wvb8nPNXH3F5tSXFFThnkQJOAG6Vupx4/v4H/G6K/OW//HUyHqugOEhMSkFxrYAQXMR8PEDrgGHzQrx44NlR8+LBnerC494atS5g2X/X21tPAo/iTJOSkV3EpiNyONHqyQvL4xFdZi8+2kRdGvsT0IN3MCSTx5FWRiQ5X2XqHVRp2miLh4zqfELn2RO7qwPLypiQvo5CAvTa0BhJ0bfp/c2e4wJld0anUnVPTAPIGSkIYROQ1tDkbKTej6R2JFgGc5uzF+9wPN2ARsoI1jyFW0SxMPj2YgGRyvZsy2lpzMvMPAWsQ5bKMt06S8kWYjDuUjlTHNBodDuhNSIBYgx0bQxlQFVpzbVLrbnbq1Yj5Yh2h+ZZhmyeCTU3ozIjYaT1hYQRyHROpBjpKqg4bdhUyDHQQ0LVC3hBCJbwXPSJEDNCpAxbwFCd3Z5sHgGhq32bsOo4tGNMdCkES5h49tXm1QfsT8Lx8JxqE+0gbusX78QgkYuL+4wxO5ROIirBO2w0SvJcMLhLWveg0byOo3pdHDyo7mQyg5ydOpzECEGIGnyMo4pl2A5bEoGI0pryfKpc30xst4n7V+c8zJljVVg8MmMOmWwRtCFRCBSQSMcRFwuVpXWCGSkmh2OK0PriY/oeacvM7sGWrZ1xO92yiWectDPYjLYtm+jDrto6ISlFEmrCQsexRQEx5zgZQlIB6yi8iFCQ4Dq51O9iXMx1gDRKCUwnaDYhksAiaqxBtS/Xy/X5WT/HWMpeiIrFwtpu9eUxBbaKi11bc3cvOAbLx1NdDQs/laQbhd47c5uYbv+U/+of/h5//W/9dfJ2wchgkSE/4Ktf+TpPPpqo056437LMH3B6XNhcXSHjgbkKxRKb8wsm+ZR5ekbcXhAHod2eiNI4hi3bcaSfjmCFGreUUVnmiWYKNlGXipQt0g3awqRKSRlU6ZIomy0xNua6+JhmjTuIq13YMKbFGMeM0TH1JOUUAqaebWUifHSIXKVCsOZAUZwxY5qwEOhW6SEjc2EcoFzeh12gf2R8/dd+nZv5T/jX/+D3mE8VI3Dx6AEPHz7k7GLHMGTKEBkkEnrFakVk4Xr+lI//6CMMODx5ys0iXG2N2G6hKeSNi4lzwZq5fmZpqJprbuaOjOcogpSMpgiHI8SGxOjMDjNsmaiH56QYEGlIbWjMqJwTmiLTgXpzjYkwz+rW+tMNS514+rhymI188ciDEG/3bN54AxtHH6mUQNXGMG65fX6LBY/90OVETtEdOPjwtNburBEBk0AIhUEiWitLBzSy2W4wGsvtgVIyJiMWCqTsmpTuID6xQDehhNH1UHQkrUGqy0JYJrYSSNvgrKSYqbOHlXbUN5ziTKXDfCCEQApC3A4EDczdqdLBDO0TUQ1R1+SoClr9MBBzIZhnZQURiH299lwfMW4Gz57qzd1LtXlWlUU6qy7FKqpeDGzKhvk4I+JdEcEYiO60EqjasRjJ4id+Q5mXBUsZy4kSt9S60KmgsqbbN7o1omRCGmhLxaQRs3cjVYUUt4QcV5Gwwmbk6tU3+HR/wk57RCoDIy26c6yZsjm7WPOp1lR0AQuRAQ807XNFitvXo0QvAPs6bq39RQZYtoCWRDBjrjNDKvTVeWSyAvDmxnmBbcmgXoD65N11YU+Plfdv9rxyecGjyzMenZ1RFuXDdkD6+rpldbdYTH5NaGRYM6OO04F+rOyDEobEJmYIEUuJ6bRAPPIrX3md3/3oXe5/7QE6j0ybQAmGpIWMR3nQPdRV1fsqIWUvLNdAU8U7sgY08bFbD/7XpkYieu6Z+GtIYNV9CSkNaMWvM15Eor1cL9fnZv3snZsASnR3DbZaA1fDt61OqvBT3IUXshvv1wAvsOSoD7m6gOHC0mV+wg+/94/49h/9W/zybwQIbvlEhUf3v8jDN77F4ViwmCn5lunJibwt5LMN0/OJPm/J28Sw2VKfGPnBFklC3DxnmQO7MqAR5mkg1sxYwFQowRNw6U4y1V5pfSLHSIk7LLg+KIpiWrGSMa2e+6RK10brndqMcTcQUvOWtoy05UASo6eIVfGMl2bMVXj/WPjiZSCYENVZN6pCkIQ2xYaEjCfGiy2abrkI9zl/45LnN5/wJ7/zr7i5fUYOO15/7R0evnaPi90ZoRhDDgzjQEkNWxrt8CnP3v2ET35y5AvvvMHuzVcRXfjJDz9k+MVX2dlKYk2uoZC+QPI4AS0JZXVcbFxAavNMP+4JZSSETGeir5wPubOMLwdSSvTY6dagF+T80qnC1wsaYD4e6fMBTtfc3jzld777hM2+8Ohr3yDsdsjzGyxviW+/Trn0MUBTt8Pf3N5iQTnOM2fnV0TbenZPv0Z7d3t4iNTj0cMzcbq2NO8keAr6QseIJGIIdInkXJhZ3SYmdI8+8lyoVZiKOodGese0QXd+Uu+dXiMxun02pLj+vTKUgboM0DtJo9t/o1uHtSnDsHXBvQhtHumnE8tpAqmkdCSHMyR0xMQLJ/XXNaS7tPZIMM+7stVZZGZIMO9wtY5KpJ5mxpIIcaTWTu9GGZJrdsRp2zKLU7/NyCXQWnWE/zrgSJsdXY24cmsEaN1t/GYwpEgQqL0iEVIKoJFeu4utkxDJNOs0hdgN7l/CcMbx8Yne3CnZSwFVahTGcct2PPfiSFhHJN5l6eqogiqNQdUPCyL0btgaHtrqwqKOb0hEmjmvaDMOyGIkDQRTWnBKcSnG2XYgxOik8TUCpfZGD6szsGY+en7g8c2REo03Li95OA70jZEXJcqGk6vgKUQaMAaoJTATGCXSdGFpjdPSWdTYNo+taa3y6J1L5HuR1o4k2aGz0mNjroaFyJyVINHdnLqOFUNhjW71w6R5l6ab4w30BRfHcR0piDNwMOfgdP9z1sNqCC5gjiJrdt7L9XJ9ftbPzrlZgU/8VDpsCCvT5gVHwV5A/u7sUqa2FkSut/H7yjCL9A4S3K65tM7t6bf5h/+vb/ELv/JNcgGiJwfneMFbb36ZZ88mjreNQztxWh4T62voIMTyHsfDU67GR4hkdDyiTz5Eznek4YrAxPG2sh0Hhl2F04k+u800iIt2LYBqIKZECo3eE6FEECVUd0NFES92kpNkmzZMHdQXi4IZQxlJAZoqUYRFfIPxl0oZTajW+HiObJbEq8VtmEUaiFKbYlK5aTdszag28vz9H3PItzw/Babra549nxjCjtdfeYtX3nyFq8vETgbCWWYslWEXGFJmuf6ED7/9LvpU+ZW/9OfJFxuePP2Ij959zJ9cv89fK/8mv/7lK8Kw8+iENvtu3hKy2WFFiNOCLNWdOr1h1kkIdppRWQk5qxdYYiRI9yIQIXRgCfTzDSKdMM/o3JH9Ebn9lOVwzePHn/J3f/d9Yrjk115/i7w9R/pE1xOXX/oq21cf0TVgyUck0zwxbEbaYoySaa2Sy+AdpTyQMrReiSlwPJ6c2JsSphOLHrB2RAnEOLpluTWG7YZJPSl7EwRNgCREisME6evo1Z18nnxtmKqjD3KENGN1wSzQ1qOzVmclzcsNhIGQjJiTQ9hqhd7IZI+9wO3QqSQ6IyFE6tQ5HZ9Twg05dmLYUIYzQhSCCFFdedJWR1LJA7X5SKR3w2GazcNJ1TOGmio5NlIK9F49CiRmlFUAnQbCGvlRrWNRHK1MRyh+qOnG0hoxdnIa1uyxvo7fCmLRU+ibuZXdGtIbyzL56xiij04k0HtgfO1VVAYOy0QgsoRMjN0zvJKQNwOhJB9j4504VpdTutOPLEbQTrCGpTsdoB8+Oorl4JBEcQKDxEDqSiGCdCRHijlYUTKksmaXWXOwoapf/yh5tbqXzdZF2BJ598men+gzhjHx6u6S3VbYRB85z3VhjIna3XyxiZlja5SUKBJozRh7Y2FZYY/CWe688+ARHz255t7rD7Dq2iRSIYkxixFMyQhNG3E1bESJ1DYRkwCRLncdMsFiINXV1q1rQctnifYxJAiGRGPpt0TGVWQs7pB8uV6uz9H62Tk3xpoX5Q8ONYg4p8XBfnd6G3nxMeDFi9zZDddxlWF007ucRqw7Ur5Nj/m9f/Wf88F73+CLX/WbE2kImS+/9ZukaPx/bxrL4cBwOrD/9GMu3/4iw8UR/eQT2rUS7w8MFx2eLcixI+eFVGFa9iynwFgKp2Ggz0eG7SVZMnU++Tw+CdY7hB05BizO9MWLuBAFmxbaCuaaa3O4l2VCSvTqhViIwVkk2pn7TAgDY9xw6gtDV+bo6by9Lnx63LAZRqJUSuhEIk0DtgnIfOL6VKF/gPUNr75+j+vvfZ/vf/fHnOVLvvSNt3nl/gVnu4HdLrIZzxju77g/bgj6lP70R9z+4Z/yanuVe//BX0W+8hU++O1/yPe//ynfOsEX/q3/iKevD+zbM85y8eIjufBbcQeL3cxYMHoR0rLAUqEMUDJWTzDNJMn0AF3c4hzECcrWFiwNyOacOA4wnVimPdJPnK4/Ra+f8PHjJ/xn//TbjNsrvnKW2bx2hdx/jeHZj4l5RN55i7jZMpw5DbqLb1a1LsRQ2A7nnI7XmDj1uJsyjAPLaaLub0jNNSVWcZt+iU4yntWT3CWiaYUPSvI/i06mVquUKM7ssbY2bVxYLbY6UboLaaVCnSuB6p2JlNHFXV85R5bpSNx2ek8wGEbzROiuiEKrzaMJutI1rIWJknOAfoa2yqkaXRfG43OGTaJsNpgWUjSG6CL8rt3BfhIoa/dCuxGz0ObGvBiTNVI6sBkH8rDB6HQN1OaHkSbNo0NQQkjeYe0LQdwJGXqntwVicu5TCJTtQF/cmt7rgsSK9uivb19zmu6AkQqSvDAMNBojVw9fo8/G7XSi9YkeYQmu7dnkHbu8BRLVPAHdHEPsTjOB2DpNWDENgrXmh6620NsMeHzBJkR6TkhT4ugGPpUGoZNkgwUhdmVXIhmfaAWDeR2uS3Rwp4i70XIMSFayKLMKEkfsUPn+0w+pUrkcM/fuXXJ5fk5RYxgyk4JUp0IHbWjKLmAOQtVOaglrxrM28Qt/5lV++C/+NfrKLYSB3ho5CotBXEBIhOBi/rx2rELMYAs1dFoXAtGfyuLXggFiuhaH+JgTgRCIJnRzeF9Kq16tNzeJ3BlEXq6X63Oyfj4r+MrfEHOiTdfV6bOK0mytaeyuewOoCV2FJMFpttwVO4DhNM+g9L4wzycON/+c//If/gf8x1/8CiXfuSwATYx5w6uvPeK0PKMeZk7Hj7h+vmF3PpDPt9T9DVnvE/MVbbhl3s9sN4UqW7a7gOxPELeMLFQ1TqeZqe2REMg5rqkHhgTX/ETNBJu9Dd58DBX62vYO2YMJo1FrJWSPD2iqtLnSLTKeXVJPMzVW0trWjdJQDfSknFrl8Y0QzyrZZiR0chmZdeG030N8wIOLexBu+e4Pvs2z9655cP6At974Ag/euORsCFxuC5vLV3j4tV+k3Dsj9ifYt7/L8sff48HF1zn/2/8hfOkNDt//h+yfLTzfvsEv/fmv8st/6Qu8+91/wnc/yfzq22878C0VtxGH5CPGHEGrZ84shg0bwiajKcDJMBKyuC5Ft2eeA7bMfi0Eh7tZNtATdlJsv+d0/Zx6OvHk5pZ/9Acfc/XwIV8aH/DK1QXp/JIQB2pOxLfeIT64Qkw57E8gMJ55eKnWGWFh7pUQR3qfud0fuX/vittnzxiyBwzmqzP6cYbFu2I+N9kQimuKaB1pnVASOQYCyXUazYFr2j0zS7Sj6uGS1gVdZlIQalVYFAmKLIAJKRsSOoairbKcFOkLqTdCTjQKubsIOQVnjSSMZV6YqxHT7PqXlV+SNsUPADUwTcY8n2jTjHbx7maOZHPGkjuUXIxszYGaUQLNzLslqYMFTlOld9juIiFkZNWHdT0y5B1doxeSa6vVihNytVYiRiz2Qgzflo7GQK+NHCIxpjXKoRFSIEWjVyVSSCFiQVESMZgLpcvI2YOHfHLd0F6JcSAHI4mwyQmNQgvONFLTNc3auzYa1vCXtchBlZILrVZ/76rSm0BOhBTRkhnxLuNJT8iq3cnmbKEYIUXYpuTBlihVPBfvruBDApICOyKLOql7mwvRjGlFJGxtpPbAab9wvf8Es8fkFLm4GLi323G127rrsBQuiNzbBuZW2U6FW2Zqq4QWmDcL33jtTX7w3nt85Uv3WBaDaOzSgNaORXdXBgNSgphQ6ag0kpQXDDIx444Qr6JeENmaFt69IA4IPQja3QXbaiAG72SZssZavFwv1+dn/VyCYu54NqzZUiarXXAdS901aPhvEi1NxHHurIr9n2qJqgiiRtNA6DPH03f4B//53+Ev/hv/S772y+Ma5+DtoQf3v8ov/Uqh2y2HT090vWX+9BPS5dfQcUKnZxw/CYyPHjLshN5PTNcwnBVSSSwxsJxuKRKJJVO7k3dpPjbT3ul0UivkEZbp5JlxWZhqYxiz12yLshsS0iO9z1j010JrpQchjq6bibDSmNUdQ8HdC6feOd8NzEvjZlnYzUJJjV1WUjKePf6U3cWOedqznBbee/cj5tuZs3v3ubd7wMOLS87HRCmRcbvjwTvfYHjjFcL+j9EffYvpd3+buNxj9z/6j+Htr2P7HzD9yfvMD36Bd97oWHvOB3/4/6QePuVbH1zxK195m9g854pY1uwZRaho7D6S22zRmKmh4VSQkSa3XsiWuALFPMXYglN374SufZlpbabNtyyHPbf7T/in//JddttzvnS24TIV5MEF8WpDD3vim68Rv/A2LQ90EZrNRI0sh4XaK3kc0do5TSc25yNDzNTU6XVhu9kQg9DzRMwjx9DYXA3UeiBIRrIXy21ekNUOXJNgNiMdx863CZ1dqKtNabPCtGC9+aawNJbQCLieJaaAaCeESBAfVeVUaMcDoS3Ueo3afXqYSdMFFgqb1YFULjK6HGm1OddG3L4dgpBzWe87AWmuc9kM1OMtt4c9+ThxvrvERh8dBTYEq3R1iJ2ESBIgBVKAuSpzO/o4tSb6YaIkJcaI2bo5mkEQUspr4CWU5o4Zw1ha924sYN1p1qadYJHem+uTvJVL72v+Uk4+hgqeqRWioCZY2pBff5U0XmG3jdoaFgUhEWMhjRuqJCxlmgg1eJdBJLiKrzv5OoqPjbIZ0zwhArXNVOtocidjzhmJns/U13BRawolEhoQjCLiEQQpuabKvIMWzMeQEgMhJGJOZCJSIBGYpkq2wBZjDl50RYvUUgiACkQVnu2Nj59+SqmdKRkPzs+42hTitvBo2FB2mVc2mSVlDuVImxfuP4x877e/zfLFG6pdsVkUjZ1eIlUXOpkSOkkKaR0dDSFS57suJIh45IUzyAFdHazm+hsn3agntjcjp0RvuFtydcg51Ojlerk+P+vnhPjdaWpYEd6rxftuBHX3F3cfvi4zdUcCRuhrJspaEjX8AUITmi0sMvLs+T/hH/zdf5cv/cKvkof16xKJ8YLz3Wu8/aW3ePzxJyzzTK1H9k+uOb93wbiD65sb5sPC9tErjCT67RGdlbS7Qs/3pHaiHRp5GBhPG2LsEJVpnkkhM8REnRs1CbEAaYvZwiZHzDqjZSxWOgHTEzEE5qWiEimxgDiqfZDsIZBDIpkhJdOuj6SzDUVnal08QLF1bqdITsbF2cjCnptnz2lHZWkf88PriR3n7M4e8uD+AzZjoQxGiJ0yjsRNoWx28Ol36e/9K9oPPqD/aePsf/w/ga/8twiyRz/8Ay4f/Tku3/gqxw+/w2uvbHll84S///d/zPYrf5v84AH6wTOirNAvhGCdTiBuBqx650NiJ8oWhkiP1Uc+Q4f5hIghOaFafLNZRZ+tq5OH58p0s6deP+UPf/ARu9e+zsVuQxFluLwiv/rQuyq2kC7uk7cjY3TQYesdjUZd0f9L9XRjQWi6oPNMbJVE5mY6sT3bUXZnLHOlDBmsMuREyGc0nQA8Yd7j6ol0rIKeGqEbLAmdOl2F3jpMynx7wvpCmw5IMyQeEemYZEKBMYMkpffE0gL7aeZ0XDgdAxZOZHuObAStM9tyDx1Hwhg5Pb31kU9IbIdEKIWlVRLKdDoyjjsgQ0hINkQXyu4+sc6048xpPpFY0BzJBhYaYgmCeMxDVSQkYlCG5KO3PmzpPTqVealsSgYiedygnnxJjJliuKYndw5ToxOxkOjNED2QYqTWzlDMAzWlYUlWFyFOiV41KilmCM7IKngB0LWzef111Aq1HREaKguCEXNBQ0IlE8QTzwnm+o/VAZS4e/40Su9s88A0nTx1fHZX5rAZkJjW0XJiLYsYY2Hqk8cjSCCLsU2JnBOIEKpQJawBsmAS3RYeCykFwqrBi2ZQAqF6+rkFc0G0OOgwz24omIOwa4GRkTlWbN7z6c3E86cLU+8UUS7vDbx6eUmKwpC3pGnktHTm/ZHreiDEKxJK6WDVUBItVkKWF+GZjuxIlBxZenW9lHj5kjCPLFHDIiueI3hBa7y4p/x3U2IOLLPHpPgnvFwv1+dn/VzFjSAvRk934Jo1C/yn/uyzjs5dMWRmn2lt8A9JEtYTgb3gZ2BKtxvq/CP+2X/1n/FX/uCb/OpvFv/K4sVUife5OL/ii2//Ipv4I37wrR+x7N/nNHyB8WKH9BmbT8zLSEoDslH6PLEc94QiWB7oydDJNzU0EIOwG85YrDuYbuhO/WRAdCYNI70336gVUgxYaHQBbRVSIBKpzdhdbNClUW2BnBHttOnE9nxgGTMahGFINHVkfgqBuSrHPHDURJg70TJlGDnZA87jUy6vXiPtztmNG4ZtwqRTTZ0Lc9gzffAdwid/gN1cc/vt97n/jb+I/Zlf91l5+wD5wXukX/q3GXaNt/I5rz+4ZGuNf+Mv/DqP3vkqfPjYXTeihNARjQ5xo6OnCZFCi4kYs7uq8o4QFnqMhPkWOzYsNIhezPRWfQokghq0ZWY5XVOPz/ngk2s+tS/z8LVXGTdCHAU5f0CzE7keCCmSNgGJEynsyKGgfaapRybk5MnL82l2IbhWYhlJEmitsT0/Z+mNOk1shoGYBJ0bKWYHt3VBtZGSu4dqV1Qj/WTUw0JfDG2J6ebgf74cqPs9p5tnSL910GKsxHIEE45a+PDJxI+ez/zkunJsOw4TpBwwPWIIb33hAV95c8PDoIzNQ0CxjW/4kullYJtHCDeAa7ZKjMToqdO9d2KILzKTQvHRgQVh6YVW9/S6sBk8dykGp/Dq2qFQum9qKFkGGKB1Hz3s988w7YzDiLZGLgMWdWXLeAZayC6sbmtXJKRIDsOLiBEJkIfiGXISMXPeU0hr90OEpVYfobnKh5wG5sOe3f17HKbOcaoe2ihCGbbkXFBcQ2JrWCjoZ0GduMbLgECgIUytUVXR1rAYXf8WErEk0goMTMI6jqkEYJcKZsaQAruSUHEGTbfI8TTTcYghEtlE79zmJKQgiAaCKKINKx4jMqi4HTyAmNFHP5ptxWMuBlNMFJNEF9cNxbQhGNzOM/sPn7KgZBL1+sD1408o77zJLt2nVWNuhgyd0SpzhCiBQkVjJgUfZQaNnFBKjtR6JxkWsprzR1djiCHuAjRPLjcCEiK1d4KM9FbX7qs6nf3lerk+R+tnL27kzloqd27BFQxlaxv6Ln4B7tyF4F0bCWsRo97ydsGqo8Pv2DjaXfomLSKnhf3t7/BP//H3+PI3v8nFecSsuTguBO6d/wK/9mff5o+HE8+ePePZx7fMz59x7+HbMByZ2572NJHuF+LGQVT1cGRAMIpnBvVGUPViRoWefHAmIZCaoFE9fyXhYLK1365toS4VxozERAyFaB2tjTBmrC7EDjUG5NhIQ0KGkaaNIRfQ7iVe6wRLLE0pm5GWlPdv9ry+hfNHl5jc560vvcNP/ut/AqZsQyLvBkIw56FYY5kXwvScT/bP2dQDdlg4fWw8/Ft/C8YBtMFHv4seL7BHr3Jhz3jShLwJ9P4aX/qFb6LTBJPSLRFMkd79TYxeOAQDs4iU4InnOWDnCWYQmeDkuVy6nNAO2menwppn/vTa6dOB5XTN6TDzx+8fefCLf9YlAmeBNK+U3/0R9EAp53C8Qe0IrxQ0VnIUtC5u65XAuN2Qx8LmvHA6HekKm7MtZi623A6FVhub7B0JLQGxtmZEZbSt8MJF6UfQk1KPB/RUWQ4z8zSxnGamaaHWp/TpiPQjsRy5Pi58uL/lO88n3n1auWZHl5E0jJzvLji/f8k3fvkNvvLl15ivZ959930ef9LJXPBJO/Bnz87Y5IGyGSAV0EDeOmslWiSskQDNAsNwhlkl+b5MCJCj+Ck6JBqGJGE6JmpX5rpgOhDolDyQSyBGPGYDHwsRundyBGyBHAqnudKYGSVRVchjZIjeiSAK2RLbOKJUghgxFapVxCKqlV69E1tSJJjnpqklRDq9q1vHoydh996gndzyfO+Kq/uv8t7zI3NfnJSbhDwWujj3hSgozaGha4Fiqyuza3PYYnd7dLeGSqfRXPsTg8P0BKK5nTuIkqPQLHpSvQgRKGNhKAVS4HCYWLo7PmWF3EiKpOzXdEmBEhPSIEYI2pnUKERHP4wGXShNqCJ087F8C4nKzLgoscI8FieqByHKOuZORupG0UbbbXjtnS9BhDkWv79M6ceZwyZRuheulchOI+EuxT05fLJaQ9esNz9HuoYxrgdLDzz21zMKnj0V/VrT7qJvD5Ez3EL4cr1cn5/1s1+xBl3vxMPyGZB4tXnberN4l0Y+q3Lu7qwQXrhwYvJCyGQ9U4hgdOYVSBV6Q44f8l/8vf8d3/iF/w1/8793scLLPFp8yGcssXP54CG/8mtn/P5v/0uuP7jlyXtPuHzjASEEDk9vCNMj0sUG65VsjdqEvBsYS6YuM7Zf8f37E6dWOb+4RJeKpATBT4DR3KquzOiSKedbjmFPVN8YWmrQImkckXaidWU/d9LoyPqYvR1vGLG70HXpaX1YQy4DQYRZM20KTMMls33MvfxFPv7o99lcvknMmRA6QYWcoweXNqMebmlTpeUMObF/duBi+xrha19f83UeE64/gM0rsB3Y9kuuS2E+Dmx3l9h4D3n6fSeqTotDB/PdsNA8mNGMXgKxNy9sBCRtIEckC31/QyiF3pR2uqFOjT6fHBPQA0hnnk4sh8a3v/8ep3rFfZ0RraTygECgf/oYsYUwJDQPbDaZvNkxH2/JY1yvpUCOTn+2w54qhg0jsSukyjQZZRxJ0tkkgV1BrBHMWFCsKmjD5gm7negnhRZghuXJDXpzw+H5DctpYmo3WI9of0zSBWzPD44H/uW3DvzB41t0aOh4wW73kLOLLxK0cpXh3/ybr/Abf+GrfPmdN1170xq1vsG77+/5nd/6hO/9WPh2mvnlq5m86bzyS6+TYmbZP2G+PjE9j2h8SDTf7NBGMAUZ3P7MyccqFgiaqSGyyYVNyhzrgVY7rdc1zbsgVZEsJHHXjOZASYlWG7NW8s5HvXKaOM4zrR1IJbGTDakMCJXcEl2UPAhjL0zzgrSFnNPq6oqr/k6xZoTkqAO1RrRAStDqjEYhBsAaIbqVenjlEV2FVhdkVkI/sdueoU2oOTjWgfRCpydRsGqE6IcmN2s6JTw1Q9tMW04OGYyZQRKIkgKkHokSICrWV61JTtTo46vdODoGQgK3VJotfl+YIEQkBmKMpOivYQl+Tap5AbiLkU6niTOCwAuraFC7YESSgkVBx7SCPT0INQXvgi/ixYaq0lIGEaoGD+69s+MbHHpnNxnHcOSsCIEtVbJrp3oEm5AuxBRYllWTJGt/Xb3bJSGugD4/bIp5TpeAdzPNSFlgXiUELxs3L9fnbP0cnJvVSSSrbN687fpTQ6o7q9SaMeV3g7z4i3WJeAFj4o4B81F6xwPeeu9UFFlOcPhn/H/+H/+Ib/7Kv88X3hFU45oubiTZcu/yS9y/H7i8N/A7v/U7fPi9jzk9TewebhnmhdpP9Km53btEQuv0wy11CuRSWMZAqxBHYdQzdJ7QBbfO1obZ+jCsne1mw7P5QKiwSaNnHmkjG/QkBJ2YpwXZZFJaC7voL29axyd9af4gCcEJoN2c/iNGPcwsFphiod8MPFu+xf7px1wOZ0TZEOOGVFzzYCiikbooohPNhGM3Dj2xfeXLHkUhQuAAH99AeBszYxxGrh5+iU/ef48vfeM1TBbQE8LkLKLF6MOGqIpYWMdUEM0FqiYzcjqsfBRBloWgSleBqtix0qdKWxZ6nxEZAKXOM9fzxB9++wmby4Q8eY/NxRaeusg6aiOohzdGUbSJ52zSOd7cEvKGmAoWKqkM6zjHT9OxiDOFcgBtDGPxDS8oLAt9rg7pWxr9tGAVWs30U2V+fmSZJ+abZ8zPP6XfPmM+3qByhNg5ted86/GRf/rBNe8eOvceKn/jryu/8c3EQYQ0fJF/8I8/5dOPIl//jQv+/K8+4u237jGmSmSh60yMna++ocTfGPjLf+V13rza0uvH2DJRxvdpyzUaj/Shczi+isjMLgVSNtqiBAsENUKGEDbE4KGHVTs5D66LijAEt6z33hEaU5uRecaK84Ekjo7pt06MybkrapSxMIaIinK88fDH3mb6buRcNlRnG5PzgI6JHBeaVgKBygTR6GRaM1QXTDtIc1yECqFkWMdHnlNkJCsoxsX9e6glDoeZaTqwlEQhY8NADMXpu92F2mIu7o7iGzRrZMLSlY0FRl04zZVgmUCG6NfWuCavGz5ikxici7NygDbDhm0MjEMhINS5UpvrvOraihbBCdgpkZNndkXxYqsZFIqPuUonG2j139vUv8cQfDw7B+VijswNbqlc5JG5u0AbMR9nYZDWPC88CiN0D47FoBmIOiPM5k4viR48cqHbqrnp6zNXEzkE7xRLoAfBtJKD625CWJF/LhNan/NetIUYWJa+lj4F/alH+Mv1cn0e1s/OufmsevH/rtobCXdXvX0WLWV33Jv1Y+5s4uJWVbE1XXwN1ewIIbAG2xlVFKszTJ1vfet/z//5//hF/hf/61+hjBGxCAJRBu6dv+kAq1c7f+GvbPnW+e/wnd9/jjz6Ivki0vdP4bjQyoaxDEzLHhJ0NcQieSiITJiNbMbAMldCTljsZFmdUQiSE0uHs7GgoohmevCRTZKAtrbGEBRiEMJm1dpIRXQiaEd7B/HASUIgxkw1T1zeH4+M6Yw+R46nzLRAP/0Q2pHl9pbD2Qy5sFtGQlFSiHTp5DLQWKiaPNl5u+G5up4nUhE5p1dYbp/AcsMujFxdPmKoGRnvYbffJS2FPijKDfL+R/DOl5AU/XRHAFuDFENyy/ByIn38MTZk+u0etJBKYZIJDZ4n1JvQKVhtiM0s857vfecD6uHEFx42CBPSIqneUmPkrvcXzEg0UlTCGutQ4si8TGibiWnVmqwnbBemr06WAONu9IuvNYaSaBrok9GOC9oCMkfmk7HsjbpvtNuZ+clj2vGavtxS6xOQPYf2nO9cP+E2Ff5v39/zxdeN/+Rvwy//GeNqq9yokmThn/3Wu3znT57yxTdf4xd//VXe+urrbLaFFJQ2H6GfkDoT2g1ffeshm3LF8fBjgp6I2x3anmN6TajGcv0+8zVYOWd4dA9F0TiTu0FQWluQNCCrJDYFofeKdDC8eFAVcs40MZbZw0iRDDagdBeOqqLmwEPJINNCsULe7NBl4mY/MaWReFJEDpTdFUPx75GDUDvE5gedKJFOQ+3kqe2LR7TkIbt12DpmjdoWhjQAAVFjCSesXHD1ymvc3iq3xwP76Smy2zmIUTYcV52NAkhACTSBZLp+79XmrN2LgOXIZJWYtlgIZIlkk1U+HJDgotpg4cWoaRwcenh5dk7JGZqydEjiAMYYEjQP58wlk5J3XFIQd6HZSm1GOdXFgYViSFGSGhYTXZ38bAbRIpqNHITYm0fRxEgX8S62CNESRYyqzivS4N1KLFCDd2Da0qlq1GIkMtKd9u6HKBCJDGvMg4izcD4zu4YXB9EYI6IrnDW6UBs8lyoFXSNE6rpNvHRLvVyfr/VzEYrX/+Ppvqtryl4ojH/aHvUZ8MlPbOt/bJUlv7B0+t/pOsoS82yYvkY0xBpYTu/x2//8/8B/8Xf/t/zN/0EirSGcGKQ4+NxYz3jjwSNe/e+8iunf53t/+n3OH7zNcHnJfFKWCXZnI5sU3F0zTeiyJ4ctjIZOwAIhjK4fwW3ras27RcGLr6CRQPfTrHXPGRLH91solCFiGXTuBAnkODDPJ9BIigXiKtwzRVpf28WGLI2QGsTKs9uGpC0xvcZp/xHtcMtpfkKUyHZTuNcG+lCQaMgwkMRb9b13TsuRfXvMcpgYHwwOWnvtNa7/+I/Z/eRP0S+8QzBj+/qbiBzR6UALBYmN2PdM772LXFwhr9wjuKAKtQWaEbYj1hfnXkwnxCqBBpZoCFYSNQJFMI201ul9ph0PnKbODz96xtXuknI1s00TpERVdxd1dfZIiYPLKsRAJmqFEBIlup12KIm2TDCMdDWKZCTCsN0SNx7cKL0iqvRm9JZoYURFaaYcb06wdLiZsNOR5fCE+fCYebmh6xOetWf86e3E//UPP+LTCX7pyzP/s/8h/No31bOgNpDKwPf+EP7O31M++OSGh/e/wttfG/mNP/dVdmkk6dE1ShSESudIa3tCe0prVwS9JuSImYMhJWasPGEYhBD/gCdPA5urX2EbjVgK0taYB83Od9H4wtIbDUQD3RpFjBASTZxYm3Naxw6R46IU7UTpJHHmVFNhmio0JeMC9VI2nJ0VnuwPzEdhu+1cpBFsgBQpwU/0EoWegCWR1Am7IXRIivaGSvRrXDtYJKUMtdN7R02JsVMlc1giT+YTeriGIIRSsDgyIaj6vRLiKm6PgYgXJgl3Shk+xult4VQnWgxIDJS8HjJaJ4VAE0GCd4ijutPOUqJpowyRlDzHq2ujq3ePgynVeJEIn2NkG9Ma0OlJ6JJcv9VQYikE7eTV/dmi26ct4K4mE5pCEGOOjSyJZubBuXg3NgVYmnm8Q1O6GXFtMnVlff+VMUTm5eSjwLyhBhjWwgYRJ7+LkvIKYdTo2iPXAmBqqNyJiP3UaarE4DkcvXV6NT+IkbEeCC9bNy/X52z9/6ESuxMUryJhcHcUd34qd8l4rfPZrPbONeXKttXtYJ8VKnc3HOItZxMlN5jjDeH6X/F/+b//n3jt6/8Jv/rn3B1x9x1jzJztHiBmnNqOX/srv0o1+OjHz7g4fwsNTxhy43A8sisbcsksEphMqT0xtkYcR+rpltgDaYxMs6cOWTTXmOji2hDDxbIhkDu04OTONAy0ubnTSDJWhKXOmAXH7S/N29tqxBTQRdGm1OZjlrK5R9WFJP6aNI2M5Yr0aEu62rNcf8j7zz+loxwevMaDi3OG4mPBFCKESq8JiVu2D99m7jdsugAzpznx/nd+whuP/gW7MCJf/iZBIr09J3ahnwlh6djH71FPz6nPnrF9dMFGiuOFJPpIqi0vxMXGCZsdNKbDGWEY0euGNfWHOMKyTFif6EE5WuPh/XtcSGU7blGUuU3QZ0LPRBnom8zSZzLqJ24VoKN1wmLyB3WHTRpc1DomcvToDFk3NakLUivU7mGTLWGWWGymzZ0UCsdnH7LcPON0+4Rp/ylze8bEkXZvy9O28OFRKFfG//wvdn7z14XzAnGIDBvjRx8V/tP/d+Nf/KHw69/Y8h/+250/+ZPHfOWL73A5BOz5n9LiyObqdUIaab0RwkDM971LE2Zi2oA8RNIWbQtimXTeSfmSV+ObxA8Th+sbyu4cGaI7+iSTQkDrRMyGxEirTk2WKHhURHQ9WxB3MtE8jbqqx2LEiEqkhw6itHmi7vcuki0FkUxaOiXD1S7y0bOZ29MzgmSC7Eh95JTXbTgmukZan73jah4NoOb3uUc8CCKRWn2EE1XBKhZGuhbKwwekeM6Tpze0upDKJRI2KJmg/tN3baToHRcx33wlRTDXtmhrDAa9VmpIDLEQghsT1GCJMAZBaH5AWWcvFvx5I8EYS/bXxgJmMPfmwZd4R0MkkFL06y8GxpJZ6oKEgHUjxUAKhdOyd1SChyBgdLKIh/AiNCKLKj0k0mTs7yIfEPrixX1TBY9lJRNoQdHWQYwZiE0gJlJTWhZGUTZRKMkdZLp29Tog0qnWOC8Dt4dOCN1HaUTPV8Op4l7+enGja/Ejgj+Lo9JaJMQVgvlyvVyfo/VzuKXuDFB3dnAlhrsOhwP5EKf0uqDYb4YXQrS1a8Md5RN7kTQrJh5UKOZ6ie4ZTjMLVgPRnvHJD/8Of+c//Tqvvvbv8PrrgoVVABf887HMkHc8vPwqf+mvPuD9977Pu9/5hHMp5O198uEJ8zFxdu8KOZ4YmKkNeouMKtQoaExU6xSplDQy60xrLsZsSyUNGZ0CKRjdgo+Fpuqhm8FPWrSZpIGKj+ySFCounu5dHNVhnjGUonepYg4UiWCFVmcwYaaDJkJ+wPjaObI84fpww+17P6K//RYPzi/IOa4UWoHicRiWFp7+8AdsygM2u5FZ4ZNPPuHx3/td/urX/xq7bwyYTsRg2ObcmSi3P0If/4SmjeXZNaklYqrkJmgpJAHtCxIT1AlbOqF2Wq2wM7TODqJre8/AqR1qoy0L1Xyk8ejRFtGFFGHRTp0XNBYPtpRKad3pv3WhnfbEtCUWj8sQgdYXhELM2YXCREf/5+wZV3VGmhdY7g4qNO2oFOZucHPD9O73mJ98wLQ8ZV6OzFT0C68xfOEdJE6cffhtvlZ+j3/3b8BrV8Ysge0u8v13A//i9zrfe+8RP/xk4t/7a5X/1f904uF44h//13vO3/7zxP49ztI98uXrzGYcp49JDGgUYIOysD9cE+TAZnOB9Jl5/4wQu2uYOLG7LAQ1Pv7eH/P0+le4fJApJJpAFofyrRUEUeI6koKQAlU7rS/QG/RKiJEx7jj1iRCNJp0Sio8iQsBMOdtu6G0hSORYF7IIMRbibuC1Erh+PvDxpwdyKWQRxpQRkotxZ7d5T3Xx50IcMDptnomkNZC2+zXaKlUXLAkxG1WNVAaenU5oP2E5YJuCkjFVmnj8wv+PvT+NtW3L7vuw35jNWrs5zT23f31Tr1hVLFaxKVISKZk0JcpCHMewEsACnMRxEgiWEQMBkhgGFPiLbcAfBMOJYyiIZckJHEWArMiCJYoGRVESSbEvlsiqYnWvXt/c9vS7WWs2Ix/GXPvcYmL7VRBYfMqdxCte3HPubtbec64x/uPf4IuNndVwGqQ2vaONgosWZKxsUrLsKRHwgkgltr08OsFVi1DRarlJDvOhWS7n7HVzKh6XKuNYGEuiYuqrKoJ3ji5EgjhcI/PHGEzhiZ17qhkXGolYI55KraYeM76Lqay8QFIhdZ557djkjDhTX2VxBKlmhqmV4pXoPdlnXIWuOrIDnxXtEotR6WZC5wtzcQ1Nd/hiTsqdeKr2rIZi5oOWvmZ9aHB28Ks1qC31jyufMjEkrTqCFGqtu1Dkp+vp+ris76K4kd3gSdp/VScfm7Iz5kMtP3iSgl9NkSbbPjPycjQLda1TyWObTA1+LYr53mTP1o/UzUO+8dX/I3/pP3qW/82/9UPMF60Yqk1NIw7RDqfKwV7P0Wde5ntePeGtt36L++8n5svA5ekZZXPM3AWG0RG9EPwMxNHJDPB4oGTFLyN15fHzBZ3L5K2jBofjklpnuHnEq1BjA8hrtZtPKRSnxNghVQmA4k0xVRMUZ2MFV+nizDxBQqFmpWwGnJoniVOhOiUEWMyXhOWGf/DL/wgZznnzzQc898wzfOqlZ7lx87q5ppLpZkoNysUHr7N9+VkIlcXdO4zPHxH9p4nf+0mkFlQCEm4hy4fwwbvU8xPUz1nFSpwFxkePic8emulXdU1dYQ7MZtfu2nhN0PWGcXhEKQM1C2XYUC8vGM/OqIxkgFRYdpXCguorYxkpOaNJ2EZHqAGfYEyZ+WFinG/x51v83hL6JS6IydTVAgKDD3Sz3pxkmwU/KZFqBZaoE1IqJARdKfrhYzbvfIPx/H2G4YQVI+41x/LFz6FHr7Lpb3Bjfohc/ip3l/fYP1TCnuf+25G/+TN3OHu05pXnHjNcf4BP1/g3/3Ti7sEKRPiB74PSPUDcs8TFJ6izA0JRFlxSaiGXmVkYlC2BjjwkNuk9eudheJ8UltTi0bESFjeJZWS59yEXH77O9uCHcNEkxjWaMR9jwhWMNBvEuDg542omajbfkuIpRSgzIS4WKBlNlUrGiRVHITqKCup7Usl0XY/4ysU24cOMji2z5ZLTBye8f/+E549mqDtCe7u5RwVXApJspFWB4AUtI6WO5OIJruCKb5wTYRwLvqxZp4EyJDaritYNxXdUF6limKwX6Bx0tWPMBebevH6kYRPVijxfCoOFv+HUUsJjewxacK0XT6Liq3ViURzOQcVS4GPXQVZSzmzzSB4zJVn0hAueAPQxEIKj60JDdAStxv+a9kcIHSJGfHZkehWC8y3o07gtSsZFQNWsJUIxc0ZcU5KBOkM+B1Wkgk/OAmgdqHMkX8gOiMJ+H+m8w0fLuYKKD2LqrBDI40DsHGmTTBa/Q2Vs3FtqMd8kGmLTnOBxypjUbAoorUGJ/1/eYp6up+sfz/quxlIiT3BvdrgLu8JmMuUzzsTVv3mSj6PT3Fe0ycFpHjm6y6zaTbUA0URNjlIGtqdv85Vf/Uv8vf/qNj/1zz5L7I3Zb6+r4F3E4wnOeC3d4g6f/NSPcvPuGSen9zh9sM/Z2SnD+TmdmzGbecbtQCqFrpubf0xNhPmMmipe5nTiEV9g1pPGjFvsWSEzquV60rot8dQs+L0FpZjaCI8RE3GUsRLxjFRLta7JLpVrnhO1Ip2g2YwmvHPMOmV/3/P43jv8nZ/+RR5/+BiP8HYc+d3X3+F3v36HT73yHJ//3hc4OJhDWCLDlvjsc1SfyRcrFrdeQl54iedf/gxuVk1pJd54IcVTZzPkaMkmDPiD68jSky8uGLZzXIC+KVyoGW1JzkKlMFIZTV2yGUjrRNlm8rCijiuEtd3UUsFVBQmUsGKTAoMWfFlQVPDVsrxGKeATQz4A5mQcwdtnWQrUVJDOIVqJ4rBUJuuQ82h5XThPrRmyMI4OSmF84y0u3v4txouHFDKXh4V0M/Lc5xdkfY9hc4y/vMHp2VtI+SL9XuHsBH72Zxyvv9HRyYYbty64fhP+wB8aSN1jbtxWWFgu2tF+4nz7FXQ44rRfs6xLC+nUPTQP9DhSKYw6UCj4OCONj/G+p3a9ZVuVzFAKbtyyd+NzuM99gjW/zsWjN/DXX0DmXeOKBDQUVGPLORLLcUoVihK8pxQlhrm5HmN5WtV7RqnkWijJRhLRdzY+dtC5npJHIo7lbMZqqLiskLbcfOmIe+8ecxw8cS/jcketLVoEsdGLghYjLHexZ8hbsgxISzyvNZsBo3ryIChbDg6uc14LqkLoWsyCiPFQEDogixB7j45bnA94zPSuUima0TySpZj0WzzaIk5UpgF5O5UmHpez486JYybKTBxBhKyVVBJjSlQ17ysBIo5ZDPjO4z3MxUMtproSO/d88Ga4lyafLKN8S2tSJPqdBBvnqNURtFArhOSIXSu+cAiB5CpeCn0jIeO8kZOLXWNfHKOa2nMx7/E+GFlasbEdihPPkEe8t2JwFgJbUfDeCqW2Sq0EF8hgESttdO7UnKkJnjFVSwqvTwnFT9fHa3304qZO8qir4EuZoEwM9m1knPYPGh6jciUP14lgbEiNcXIaqbYRbVUMMgehipJrQV00xGB7iR7/Xf7jP5eI8c/xk//sPt7VHYJE9Yi4nYeM4JmHa8xvXuf29edIL1xwuj7n3tvvkEvi/r0P6cThcseYVwTMbE9zRCQTCE2m3m4C0dw7VZyRHJ11SYY+OYqr+Kx0PlBgx3dQNSMzFRBRnDPI2lxSzdtH1KGa8SHgM8yXjoNlxzde/23+1l//RYbNBl8dKoXNeMlFrhyvVnzrvbf59d+5xqsv3OEzn3qR7/nUD3L48nW+9Ru/xWd+7A/jx3d5/jMvIX5keOfbhNu30YPr6OYefPBt6ntfpf7mV1htlNmtPfIs4rYbxuNjytEhMqwJ0eOdIBnUmVpFHYwlMw6JMo4Mm3NyWjOOiZxHkmZyuzbqHIUNmzwnVYFRyCWTg6NUJajiorT4BkXGSjmYsXHmAD2fBXrXEaOFRXrJaAbU43yHL44yOIiJML/PsB6QzV22799n/a1/xLB+yNA79NOvMrt5yNxdIP19glQoH/DhV/8WQR4xP3Sc3Yff+V3PWJWXnr/k0dklj04CP/6M8Mnvrdx9RnGSkWxEzfVZwesFF+m3We69hpRzS/8WZ0rC4RyvSh+WjCJoToTQG4qne1S9pGo2LsT2PsPFiiHd5Nr1PYKe8/j0lMNZzzyZe3Zoo6GqI1J2u4zoPVVGckk4SxCgl0BQxzoNFu6JBUQqwpDsOZ231OjghVoD3plKzsU5vp8zpIH+7oIPV4/YPLjPa9efw7ueXKzgpWR8gM57Uk0UVZx2UKE6azpidIg6yjYhVNKY2LqIoJScccFfGctZTG3LZXOIrwwUogqi3tyAtVA1k1GszALfRZwKAXsc384eQYhY1EbA9mPwgVmAWSPcOhxjLpRacdXGWBqsKPLREYJjHqOhYmDhk0gjbIOrjRhOq3rUY/lYRhquExm4JW+r9gTsTKi14LzDu5aHkJWoV6PDsWZUBA2VLDZWi66jmzm6vqPv5gRvnCsv1hh1OFLOLJxnk1J7XoevjiLViOiYKmpnzdHGdtCKNsF4SJaOZejO0/V0fYzWd50txa5AMem3TAZRTTY9ycQnss2Ezsj077nqemxYZWi7awhBbU/gRXBjJXmPqwWnjmEoeM5Q/i7/6f/p/8zt2/9rPv8H5ngComYtTs0WrCcW72htW8VLxHdH3O6ucXP/RSob7j//Ho8+uMfZ+SnrC4eXyHA5moRYHH2siERQGLeD8TvGERf3KT5Bwqz/SZQKYdwaTN9IxzkXRgrOCdVbmGSv2hxc1dyaRwuoDH6GK5YhFPeVw33HL//iL/IPfu7XcTUbWuKU3cVW6zhXA3xwfM6HJ2f86lde5+jg69z827/Cv/Q//p/z2vp9TlLg8OYdHnz9q7xxccpzn/peju4c4L/9S+g33yZ/8CEng8L+bcbgkZKpumKRO7SbcXZ6xh6RkMUOXMEKl2R+KON2Td6M5DqyySMlbyilUukorpjSw8M7769Zrbfs7c2RENAs1Gzy1qQjPoEPc8Yh0aNEX/CDIN0cEU+c9QTfCM6tEy7JiKLjoORSCXtbZO83WPRfYf3QcXH/iMcX58T5nO5H/wDcOEAWh8z8hr5uqHUFvuJmjrwVHnxgMuA//IcK164JyyOIM8/F5llQR+RdLh5UjgfHtYV1/pcb5eQD2LubWL5wCX6/jWkDrnqGYWC7esxy7wViv8d2ew/NraCtmG9UddR0ZqOOdMblg99B413q/DmGt7/MKgTi/gGhW5BSQXoopeJyIQISZkgd0VrpuoYUFMsCq1SiC2B4B4hDc8W7SBEYc6bzQggdFNCcmLUwSi2F9eqS5JWbyz3OLi758NEDbhxdZ392QFBPSUoSxTtPyR05rRGXrFjPBedtZOu88eRG3XA5VG57w1U2Cktxlv2EIYNalOIan06giwGnNtqhVvN9GSyPTmI0ZV8tVDEbOt/CIFULBSVg/lhOsGgKX/B9T4wdw5hJqTKOiZoyudrYx6uzqI/OyNzRR4qYatI3bopzvhkmemq20bwTI3i7JpZwWu19VEetAmS0dqAFH5UoHSlnfPC7UxYg1QIIvah9LngGqUitOK8sZjPibE4XZgQXGEtt3jgm5AxEG2X5bBSA1meGds6KGMLkxNM7O58zpQUaV6o4xnRlZKi7pvXpero+HuujS8Fhp4qyouGqsJmK+ilHBtFdF6ATOuNkV/ub9bdBxk6qmQEKDb0xMt9kuuWaXLKSCcUxbhMiWx7f+8v8h//enH/j3/nTfOp755bvpEaqq+qe8N/5zvGZB7MYZ8nzt1/jmRsvs1qf8M67b7FZbVj1mZI60jiQ0wVldO0AcW2mvgTn0THj+0gXoCQblQwxw6aimiibCL2NDcR79pY9NWU0tODBbL4xuIRXkzTTBQ5mwiad8tf/+i/xtd9+HS0JNIAopbmyeuyQNQi/kvIIKM47Hj5+h8WtV7i/3fDtD0ZWmxPe++qX0YfvUC6/xre/9Mt84tZ17gzHBHFsszD0B9ALUQKxZHwpzI6OCJ9+jdX99zh762323AIyFoPgIK8T42ZFXm0Y60BarUipUKWnzBfUdEFJnjSe8sbX3uHhmWe+v2QMAUJFpRmYRUxFJoFOrRMv1XK6HJleqvl4hEznO3wXkGA36DpW8mbFdg7jHoj09OlH2Atrlnd+mud/fIPceYVV+DzxdmW27HCzHq2nsKn2OUZhtc587Vc9y4PCCzeF9UzZ35fWkR/Q7X+evLnH5eaMPFzw3reVF15RXn0lcXMOZyeOvZvPEhYzpIMywnbziLS9xJdMkJ7V6j77R3dthIEzM0pxaLH8KPGVWjeIG1jMRrab9ymbB+zdvsnZw6+h+fMc7jv6PpJHxWmwxHmxhGdxgTIkXBWqVHwwnkrKY0vaFrwTQtcb+qYwagFvN2mz2Mf4WN7CM0MN7B/MiCmz3hpx9mQjaDxl1s3MgDFII5pXRArBO1ILHPV2V7bvOQCFQCQuDpj3CzapoQIq5nbsXMuOsmwrjU0FlCvFVTptJ1EpNsYVCArZewRTipXAjt3nBTPUVPOWwUHAE4I3P6Bi73nMeSdTL1SQSCcm+16ESOeNM+ecENQ8kWu7hs4ZUqMSW/HUzhsxR2OvSlG1NHQnlOohQsqm8gvOI1UsxwEjjpdaUW8Fmnce9ZVSi3lNVSUG6PolIc7xxCaoSA3Fs6wvSYWhmTou5x3DplClNlTIW2PajFQpdj7T0PWilnvngycXsREbT4ubp+vjtT56cdNmStLGUkIDEcA6FGfdIjuOzRXEKdBGTaYomMyiRCY0oFronpqMXKnUJr12YLbltARx53Cbkdw/5u03/mP+nX+j8mf/vT/DZz+/QJ0R9P7fEVTHk42HFWQGuDrXc3iw4Ps+e4ftsOLBw9c5OztjfXHJ+tzjtSeVC3TlbL4eHCUNSA2NXNtBjCBKHISk1gVvKCy6niDgvSNvTeFjlzwRo1CLQu8Yq+JnytE88Nabb/LX/9rf5eThCV6K3XOktCKPpigzKNyJKZEyjYxdCvjA8eM3+OD9C3x3j5//23+Z4cO3SJszNifKwbVrPPfckk/ducVze/sc7AmH/ZwZArLBjcrBYp/uU5/FPfsie9eXbM6OOXnvjBmJUj1aoIxrxosNaXPKqEZSZLmHv3YdaiGfwMO3XufBt7/N8vozvPTyNc7PT8h5QxqF4pXBQymOLsyZxUBSZavQ1UoYLXOKnC2AFONpITauRAUdwG2h6JZh7iEr65Vnw49wfV5Z3Ph/8tof/AarTcD5t0jDJbIJpDJQXGRd90hu4Ne/MrIalD/1Rz15Vfi1XxUu/77w6rPw/X90yeL5TK03Kf4A16+49eI9yvw+OYxEVzm66+mvPYP6Q/MeIduNSRwaBgIjXiLj+h373nUBKYek4RTRgkpCfI+UGXW8QMMly+s/jK9z9g+epfvGJQ/vv8mi+wwuKFGbA2/0+Krm3VSUVKFr3caQLI/JieBxdMGTnallfOcpKeNTxuHwLljxEz2btAUqpTq87ynDFt1s8UWZE7h3dsbF6TmL0HN4eEjn54hsySRy3uJkRnSRJMnyiVSRkNAqaBHGXNg6kNiRs1KCor4gavwPQY1Iz+S9YseGxQNUcsmkNLQ+y4jtTgpdmKEo3XReeVNgunYcRR9stOwjne/ow4yUCjkrY0rkktFayLXS96bE89HTNX+f6BwWQCqGthXaeSatmbLixok000vZjeBFGmHYgRTjKLko1swJ9LEpoZwheqjDqbZRVkZrQkqF6nHq6DpPDAuC63DiqaWaT48qohaU6bDiqdSONDaeULGwUePc5VaIKaUhsuaoTEPRbNxfmxpT9Glx83R9vNZHLm6qwFXovW1qa/ZsEwE2X2rrybGT/akVO9AypSqqQlWTR/MEslOnsZYzonGhze8BcrLDYiigp3zw1l/iP/i3lf/Fv/4/4Uf/6VvmNeOuXul/7RJpKiZDjByReXeNF5/7HOPtkfX6nJPTdzk/PaWWGQej5fasz1fU5LksF2i1bJs0bKhJIQild8wXPUsn1FGo6hnTYMqJ0p4rWLaOtOTiWzNwIfOzP/8L/OLf+2102BJctdiuBuuLWkZQxsYAgScmVNPoTwTRzOXFKd/4nV/hK1/f8O2//w/ZXwbW24zLmXuXF7xzH7517UNeevYGLz5/xK1uxas3Drk+38NTCHc/h959geIXwCk3Pv0Kj9M3ePj1h8QxgzjSmNAyUILDhYjMl5Suo+BYffguD770FcbzC567+yz1aM52ayZzqoWa4HJ7TvURN/MMZEKcM2Rh2JxT04xQF6AdSmEsma6G5rdT0DGhYzG3W/F0YUmeQ5WIxsBYI8fpB1nKKcv+Z9irX6QkkFwYBpg1xvpCArUr/Jn/ZeTGEfRk/v7Ped6/JzxzAPGwcPPmQ+b+A9bLPdblNmO+Re7usnrwiG7+La7fOEU6pSaHCzNUzHitRiXlkZQjhYFYKzhaZtGMGJVu9izr1TFldWzjhipk1qh0rNZvIPI8Z+8ktttzthcj73dH3A23WTrfbpYjUNHO+Ko+BJMeF0WyIsG+a1nNY4aiqHjwvaEQXSAXoeCoagZ/MXbkcTBl3HaLT9kUWg4OZzPK4cAHHx7zjXfu8ennYHkwspwF+riglEjWtaEfIaJSWr6WJ0hkHNcMOVFkRLKpJufmsoK4itbRJo5qhaETTPUEaLVMqJSLZdx5TxLLeRolMxYlBtckzM2wT5y5WqtrgkolBKGPLS+pFlLOFubZODzZOYKA9o7YR0IMRjCudgaKsyLBDPFshKPSTD3FI3jjW+0Uhdb47SjOTqjTSMhb0TlKJqjggsn7vZiJoRU/wYj8ziGlnQPe40KktscuYqerKco8paHedg2jcRCdIhJQb35ijV9MKmqZXRNvcWfsV+x88+0ceupz83R9zNZ3mS1Fq+BlJxm0ebc2ywTdFTXml3ClrjLCbytfpBU7zdivFss/8abvsO7WWfdhjvEtY8faYXIVnEukseC6h7zxtb/Ev//vvsW/vv03+af/xAt4XyxCmSmp/L+u6xCaradJPMVcNGado49LDg6uc3HjAefnj9iuV9RU6X3g7OSMbt5T6goXLPtldnCAi57DbOZpaauIJkRaJ+QcVTJV7PmCN5+bWYTjhx/y0z/9C3zjG2+YHSlGWsQZPBzEiIAO6/YqzYCrTmVmKzTFrlVOZ3zlV36GWgsdmc1GKVnIpoFFtsr9R2c8PNlw//GGz7x2g6Rbvv9G5bnn9nHXb8L+DYOsuw7vHbe+7/sIBz0Pf+13OX9wjDpHN+9xi47igpEj1wPDBx8yfPg2Rwc93fUD1rplfbLiMndodcaDGDKx82xqYrs+p1/MuEyJDkEP99lsVxzuzTDGiOLLQE2gcU7JQt0M1OMVjJWyvEEaK7kKlS3eLdEqhsroT4IO7HV/Fx82LJwBe2VdEVG6ILi5sjzcUIpnfex47VPwp5+FLgLOszkTkvQIA66+T+/2iLNDwo1nOE97fPiNb/PCy5GjO59G3AKpa8bhkpI3Np4VD65nrCuiOiMSeyUXqMnRdwdEES5OLij1mFxGQrxJP3+Gkw/fYjg5Q4oSQk9+dI2Nm9MvIt6Z0ZpbzttNaaTmYsWV87gAVQdErcEoueCd5VSlnIyEigOJaPZstxscleiiuX7nhKsjMxmpy8B2c2EW/eK4dWuf9x5dcHxxn7B/ly4f4jTRA6KBMg6IVFJNCAmnHZWEuoFhzIzzYso2FWrsLSRUBBUjq4uzYms6Q+wgqeSqpFrxzlMxFCrXTPXggqA7ubOYL4saRwXXihIHMfqGkCi1QBqTcbeqktXen3fQOaFz5ukjaj40Ji5TnrzNazPEc43vo+2/6cwTN4ktTAWmDhv3pEQM0ZrGGI0VLtB1PTlnez+1NgzGPHcQKzSkIW0iYlwmbbVVZef+rs6RS7Zmyns6VUN4heZwrbsi0CGNJ0dTIGYqFe8sz6+Ikdmfrqfr47Q+erZUMw+biGWiuvNFsD9Pm16/YwSEE7OPagx9Jk4s2pJ9LY5B20hqN85qpFEaImE3dpsPFymkYjyFsN2SZ8ecH/+X/N/+wzmzxb/Gj/yRl4m+NETJP1F0PfF+wEYIItOzceW2Y2F/vnYc7b/Itb3nWK8fMwxrLveuEeIJ11HOLx+2LJfb1GzBfbqKaBoJdURDJNXBVAyquBCQnIndDC9bum7Fr/3aV/m5n/tVzk/NIdmMwXw7xMwptVZjVu7CSLk6943A+EQiu3P4Al437VBWXBW8qxQVxGVSNX+gqmveej+xPr1g+5nneX4+5wdvv4L/3i/gfI/Wgvoe6RZQNlx/4TWu7R2yfu8B55eXjOPI5nLLuIHgKmPdEK55DuJLjBePuTjfsl0lJBywFx3DACULdLD2lYthoNbEcBlwbsMqzLhOyxFKhbAwgD14CE5bHIaQx0IvHcP5inG9Js82uBfv4joFV+nFk9IcxsLJ+OPktOba8hcoe4lZL9QedG03UxFgCHzwruIjPPNcJRaPI5GyZ8zKpRdWmyM6NyBOkfwmnV/THX6aF1/5Yyyv3cbP98lDIa/OqDqgOSMFOg0MCCp7lLRC1JN0IPqemo7ZbqykP7p5m9WZqfC2F5cM9euUdEkvwra/xdE1z1e/9G1Ub9A931NjIERjs0iuSKnmP4RZ7UcHedPCacWETRIdrqhlK+FwPhCCjYaHtSOnAfHJNmgeEaf40BGAa07YboTF0nN2Udjfj5yMAxyf0z2zTyiQXKa4iPYmb8+DQ0WIfTOi63r25pG8v2+RAd6RssdG1c2ZXC3exSEUtVgRgzxttO1VGufF+HNBKiqBeRfN4XcSbTq7mffONW6ffYe8d6gzInTJhZwTRTNZ1ZBcMsu+Yx47ZmKKJzucmh9XrTaCFfAqZDFE0aFNfm9+MZaJ1c6V2sQDesVL9N5TVdmMiT524Kudc84RGreoiDTH5xHnDc1xziwSLE7BrskEmJsK1c5ij1qkRnSshzXLfo7XjIgntLN4UpmKsjMXLWrokKij1mIKVJSqT4ubp+vjtb4rQrE8+adpA0yya2kcEL36zalQMcSn/X3jS+yIMQLVjOJhctFETV4tNMO/lhrenkParN1XpYpj2GypRXn/w/+C/+DfesS/+Gf+d/wP/tQnmbUiRaBtWpt/txfMVRXWZNq7WAdaV2uv0TnPcnmTxVI5OnqeZ5+zvx/TlvP1A04evcXq8Tk5nZO7gpeAeDX7/a0YJOyCZTPFjtki8eDhA/7L/+Lv8/o33sSO4enaVHRnhKi7PBkb5/F7ihwrFqfsLiafILBwRDHZb6JYCjvmOePF/mwMqMzJ5Tlf+uq3udHt85P/yh+FW58wCJ4296oGuVMKwoK9xSH9rKOULePBmu3xiuEis0lK3vacrQYYAlFm+DsetKcMFXxie1kJ3tF5WEZhvQrEpacIpDywPn+Mc4ULJ3QHc9R1SDDPIAMoMpIT2zGxzZmazsljwa+eIfuCphEnmegz27rBuRNCWSFrh5t7mFfczOIOVxcFn6BIZr0RjvYMXawuQ4G+KJ0mQvktnH+Obf0UfrnPcHlGDBtUHiDzHyQubpJTtmJh7y5leEweH1DqGZoVXzfgZxActYBPnsoK5xTnlWG75uH9RywWN+mW1/DzQ04evI3vB+q6sNz7Ahw+S/e1n+XB/Xe5dv0mYblvHXxNSA02BqGpoHLCqSB+Zg2CJroQqCVQ80CYOUQUipBrooqynHekhUfHwsXpGU4LcR6QrkezUrVDPOjg8b5HwgylUMqcx49W3L55CHg0V+YhMmghOmWd4HIlLIKhmEWFjRS8QRrmLVWai+/E7ZiKHC04zUampYGsjR8S8WzI+JkRg3Nt0vaWkB0BDQHfuDDiKj56K9ZKYEwjdUzGU1NFsUJs0XeMNXMQlkjwRtYW0FKswXLe0CKskCitcKLa2TU1G87bHhZt36lW1BjiYshUQZn3XWtMjBSONNqgKq7WJoKIaBFUM+JMll0VqjhqqTvio2CjOnWWMO60MvMzxggFxas0EnEzgazmgyS7i9siJ6rinRGhxWVEK+7pWOrp+pitj1zcJLVN7Kq2btCKERoprqA774dJ1DAt127UOpGNpzoHuzEXzDhKJhSC1uw0Lo6Iu0ImFISKVzuMskEc5JQoZxdQ/h7/jz9/zr3L/y3/0z/1Q+wddPa6G3lOBOtI2lz8yddpXY/9WdphC9O4rSlKBIJXqsAs7DOfLbl+cJtHNx8gb7/F5vSYzeWazSaRtoqPPVETJSfCzFHKml/6pS/yd/7Ob3Bxem6Osc3b48lXYr5j7SbkrPSbxGgNweZJkNzh2vXVXdE2BePZ/xlR21RXEwPKOkzvKnnM/MKXH/Ivymd4xZm7svjGrap1Ny6TIGgMhNRRS8aFiJ8HupzR3DNmz15wjNsbMKxZ+0IZMwCzDkrN6CrTVeijR/d6xlgJC09djWwvV/QhUg4OYCjkmKhq8L1UqNsRLjeUx5eM91bgocRKvHifbjljGBO5DpQ8EPVb3Lz2XxHlHfJQ8aNSA4Qe9KDQLwUJQhiVlz+lBCdoFY4fWp15ratmQyCVRXmX0kfK8CKzqNDfogv7LPYXUApBjpH0GLd5G00P0HSNmhKuPiaGNWN6gcqM6CNpW8jDGc4N1OLwRfHlgjTsEfoDhssNs/gcsrdgHI45O/4K+3eu8conXuU3f+Nt7r9/F33Gc3C4RC+3RDcjRCFpxSUzgTP1nCmNnAo6VkNsvEBtzsYIkpUcrftXcXSLwL4esN5szMVWA87VNvJR6jYjLrG3t2S9Vs7WI6vtYxbLfZYzy1+q2W64IUYO53NSymgVUt6SU2YRA6V57hRnZ0oN1rBMKkelmuxbJ0RCwGHohXiCBDpxxKy4GCyDqkorRjzOGQLkEYorBC9E5/HYSKpUy5EaNDMCRTwORxcDMTh65xHXsBBtxqK1UYRr3VlfXHFpQlN62pni2hlmuJydjVW1ZVo1REeVXBJ915OL+WZZQ9fOnoJdAxx52qu+Ik02X8QaQS+ebRltjzcS3tTsDGnEaaHvF+RtMlsK5xqlUVojpE019eS53cZ7rYwT8xp/up6uj836yMVNBjNbm5CP3S3TMFptLP3fK1WyTqUVDiLQfBbck0OWifrSHrW2MZeTNque+DtVd/PsKopmabpuc6od3ZrLVWE7/kP+6l+85PHr/zz/w3/pJ7nz/BG3bjzTIhAKNY8UAdQbJEwbrU3FF1Mh0Ta4/p73JB6vVihUhM4vePb6q9w+usOHj97mvTe+QXl7i/YZzRkvjsW+5+tf+yZ/42/8Xd585x4dlaCVrKHRg6ZwCuv2rgrEdk13CM10nUCM0cxkwLo7fhrgYkiQNkSqxV0IxruhBRK2RxxQynDCr/3aG7z6+efaIa3gfPNiyaBCjSCLiKxz8xfqcXNlPRTiIpCj0l8UNGXmXaSyYONWFLcBX5ntm8urDkpXA5dphe8PCNWT8iXrdUfXbUxWnhJOPWg0E8QxwXogn28omy3OV7IWVttLtqfvsnd4HSVSyoZej7n7/N/Ex3tmuIjd1OXSUSRDb92pCjjv2Gvychw8d9gmERtBLxTN4PtMF9+guA8QAhteorBENyvq9jdw9ZdQPcWxJV84UlkwXypdvM6wgYuzM3zIDLQAyXRqGVziqSniZUtNW8awh16OnJ9+nVJ75rMlF2fH3H/95xiHJQeHG+69/x6Lg0NiNyOGGcRk320BvGfMGa1KzJYJFKiwTWaWF5Q8RkM+e6XvnTUqbg5pSxVltr/P2HmG9cZk19IxXg4MOdPvR4YzIa22LLvIJke244Y333+fTzz7LMv5jFVJhCqoF2rxUDaoGynVM2zWSIxNbFToppFTLTuJsiLkbEpBp4IwjYaUIM2zJZhhH972bnSOXNUiILxY8wKoqzi1gNngHdqUZWPOpJrJYugLEghi5f4y9MwXM3IeUW/Iz9QQmILJnHxpzyu1kHIxB+C2hy12wT4Pyfb+SjvLtNoAzHc9283WVJdOUCkELHplOnKqM55WqolCNX4SAdRcjUu9KmSqqLkZ12rKUu9Rp2g1M7/gbMxkDonS1FHWsDkxojPtfRrCXQxF1uaC/HQ9XR+j9V04FFvWUXUA2uBXJqthm5O7q01pSxt6YGy+to9s44h52FS1bpnJ2A7jAk9Kqqm4mMqmWtXg8UYERhXfEB0NSm7z83r/N/nP/9o3+dm/+Rf4sX/qj/Njf+wn+J7v/16eefYO1/YWRA/H5xcMs4ITWHSduYdiHd+E2tR6BcdeITmldTWuSU2FQiXIjOdvf5qoW770/rtEdYRYePedN/nZn/2HfPm3X4eidNVQmeqsKDOOgbYuzN5Wxvolh+UqPVk6NuS+HbTgd6Tt9lEBSHuNreO0wtT+sT1TbUiZPaZH6fScf/Azf4N/5k/+MEc3FjjxlosTPEqlZgUN0EV0s8E7jw8RekeYb9GS6WpGXI/2NmycpQphj00dqBoJM6EvlSKFWGDuFpxvB8ZthTASvIH947Bhm0cWEsl5MJXcKuNOB+RiS7ocSTmT8yXb0xPmJzPqiwvKeA55y9HzfxPX30PayEPdkaEC5yewFHTpwBfLMXOK60CLB1eMebV1yKYiM4ffVsoolI1SyopV6Qh791nKu2zef4uuy8y6h9RayOro9zvms30kn3Kx2bJaH4J4RBKaivkg5YqrAdVIcSOUQ0q5RIY5ujxgXl7k+P4brPWS2f4h67Eg9ZiDI89875z3338PH2cs5pl5XOCKosVMMEtVyAPqImRwBFxRkGDjlTaCKJKREOwmycDMeysWhy2LOCPsBU5Pzqn1EnIH+YKae67ducGwHcj5gsXeTWpegq65f3bKC91ty3ma94QcSGnA1YyTDucSfj7jYqi7kecQhYDifUAbKpOr7lAanBhxvgpVCrE6Bj8hvpW9EEjqSFXxwfyDtFk/WCNmiqQueIJaYZRyJY1rI85WRfDmEByhn3uzbshmfufNGbQhypUJvNGp2NEKWvBBGrrURm1PnhkTF6eN3RTIWs3cMDqiD6zTQO97qoA2xZeoNY2lWISFd55gSWOk6XdEdq8pepOSF+epTQGnvrJwntTep4jiGydIBbw3PyTVqUkFxFm3KdrSz2k/f7qero/P+uiEYoWsRnYLTCbpT3zhdZorY11Eu+Huxknt16c/Tzfpad5sdt/2UK5ZfouaQgi1DT+R8SbynmJkuFqdQcjZblRSzSE15zMuywW/8vP/d776lV/mM9/7g3zmh3+Ez/3BH2GxqNy++QrzReV8c87jM+hlztHhkllwVF/MZVWmyM/pNTmuoKYr9KmWwphGzi4e8PpXfwfNl5x+eMLP/oNf4bd+8+tsLwbUD4YgCOR2AaR1UEZStGKv0pCXlpRO8/qoiHWhGALjxNAsg8Vl5xPE7oDS3biqTrN1USsm2/vZoWdAccJbX/07fPEX/mf88X/hs1QnOHVUFxDRBpKpWevjcQRqtQwdP1uS8oowbKl+wM17OgdatiiZ6hes8oCK4HuhV0/ZJpYlov6SbSrUIozjBWEL68slw7Bk3AacJmRd4CQRhkxeXZCHjNaRkrfk4Zi8OmJKqj88+gr7y29asz8qrAS259Shwgq0w8aBSahbRZKgGct5ilC8oIOyHXvOLg7Jx48JF+BnSo2O5SKxcA/weC5LQMuS1SrQLwthv+JrJW9OSWsl5z2KvkDoBckD1XlK9ohPKDPKdmiqnwGXe1zncP0hi73C+vIDNhcrNoMynznGHPGd0B30nKzPOD97THC3CDFSg6GJtdg+9KVCM8gskhFnKikvQvSCK0IaMtoIskWFZKx+QvAMQ6W6nsVsn816jXRq49/NBqJncf0GFycj164fIHXJo+Mz8uVjbh1umEdzkS4SCAE2dW3p71UZKyRvhnhVzXcG5xhrJYh90bVm23fNo6dOaAKBTPviNxfhMUPoveWXOYf6DmmcnlgEddXyqKTi1ZMqjLmQbOpl330xm4XohYXv6KM5Ohs7uXkF1VbgTAKExsXJxU4B74AiDRWV3elYJ0ahA02VSU0l3uFqIpcCIVhHJxNjTinSDAXbvvXTGL2hr7UdversOYOPKJWiI1Vs/OarkdqTKG4mxNJT68Dk8dUeoR0XghZtxO7WAOlVUVblI9hrPF1P1++j9dGLG29ywSJi8G4Lx7wqcXRXbLQ7M0AjAHNFKG4z62nuLK45Yk6cm9bzeLki9NqIxh5TGyxdoRFm2wx76mAqVHV4MQLdMEKomXzvW/zqvff46m/9Ml/6pc/x6mc+yQvf92P88A98H3fuLNnmRxyvTji9mLHolsQ+MOsj836PrhNER1Qd4iwTxjtvydN5zcnxQx7fv8fJg/fI5ZjH773DL/z8r/IPf/nLbDcrxFeKK1Bdi16wAsZGb5N769U1M7UDBhPTRnS4NtqzX5u4Ta51WSZlb7P0VmRKk7xaPTadhtquq+4s2W1lJCmje5///C/+J/zoT/459q4FqlR0tkAuTpAsSM6Qq7nSiuBVcZpRNwOtrMcRVzI+QdA5ukjUUcgu07vAMIyoFkIndBpwRVAXKR5S2VLJDHnFanvCerXPwawnDoXt+RZOM25dkDQy1pFxfEy63HC6uQ/5Lsu0QnXN8uirVMlIUfSxMK5gu4HoKy4JPQ7WpourXiFAvVAYQNeYIip4ZEzI9pw+VMI1kOiouRDEzAdXxeO84v1bzI9G3EyQLaRNItXrFPcJav+q+bQM96jdEl/M5XnYrFA9o4yVyjEUYVsecnDtOn57xurym8z6a2iGHAbSycisE3Lv0D3l1c88x5u/dcL88CbkxNy7KzQuC7VYvKlZEDQ+lma0eopO6GlCNSEu4MUzbrZUHB4bW1XJ1JRorBToZzgdGMaRbnbEbPEsD+4fs3crcnPe8+DknOOLwI39OXuxhwBlOxrfrSrRd6QhMe8W9k2vRi6fvv5mD8Gu+amNp1d1ci5vDU4191+hWjZWLcRZR6qFOKWei1iERIAQnOUr4dlsR8acyaVQihUwzoMLlWWY0TmPOsvKylUbt7CZZO6aBN2dZ1PRkfOAuGg+Nq0Ym5BmpHGBXEOGG0rixOO9Z8jF9m61MZcq7bkt3FKzWWFUVYgOcR5vFwipkFOx+ItSjKeoVqyI86Q6EqMwbEdmfaDWq4F01dbctFT3FgPYEsxru/ZWAP/e0fzT9XT9fl8fvbihNLWDo7RCo+5IabJDCiYY1niBbUO0TmDyetgRhBtnR7BwSlFT8qCNqd/uw9P9V2U3ULHOQ9U68B3aIe21CkgmeCVlx7aA+ELSkc3pOY9/7X2+/tu/xsuv/Qbf/txneeGT38ONm8/y/AvXKPUBG7Gwx+2lEPsjrl3f4/z4HqKBxV7P+eUWIXN2/AgpK7YXK/LwmPff+YBf/eV/xDe+8TrnlydUNR1UyGaxXpxVE6X5UVizpg1e5qor1NqKtatr5Nsoyg5K18aC2qTo0ooeQ5MqUyHZSqY21nM6fS4GsU/Kklor1XmDqceRt7/20/ztv/IT/Mk//VN0QUE6XOjBD8hg9BvEUSTh1Cz2vZjnRrffU0j4dbabATNiqNRtoJYNKo5Bt9Sa6WeK9wN5HVgP5qKaoiWo+4sV64sV24M5khJuwEajxWz9y+U5eXPKaji151kc0MeO+ewDYn3AmB36YcFtHau1sFJhHuD6q0Cs6IWQjyunRZjNhGUjZ2cBV5RKYeaE+fUtNQiUyvZSGS5he+ZI55XZ7cTB7d8lXNtad74RykbYbCKr9auksiT7RHELQjlAt5nVuCVtztFBkTqa4doQ8HVF3DtkNrvN5uTNduO/yThuCJ1jcbjH8cM1s72ek/MP6LqedV2xXj9HjIExVVNfBUeoNo5p91UqjtSM6qbQxFDNA0acR8WIW10XudyOzOaOukmoE/yiozsb2IwZF5RxGDhfnRP3hG4+53A+58G9N9ER3rtQ/DLQzzuUxDx6xJvTr+bCOA6A0i0PLSuKLRZpAr4afc6+q1fFTLEKHi1l2tn4xgNTB/tdxzaPZK10zr79wbWsOanEaNEJ5MK6DmxyopRMJdMcanDiCH2k6wN9DMyc57ImOhzazPiQq7PKyeRnY5T+XAsheHKtZpCH7U1zD4adIenUvDillkpRSKr0fU9OmclErzbODmUqoiySwffxauzf9r/3nmFMNNqNkanFmUjDCUJH13lqMh4TTA1pG+Wzw6iaBN0AqAmVNnK2a6ja0/V0fXzWRy5uHAaBllpJVej8hAS0jmvadO47K/w6/Xz6Zbg6GJzfdTm0m3RDYhuBzQ4B63rabGbHL5EdAVhbF0K7eUvV5ulScQ6G4nBZ6VrXlOuWk3yP1T864+tf+W32rx9x+/kXefbOHZ5/7iYHd66zt1ziZzMW847t2YLVxSNysgtRtwXNW1arc05PH/PN332Tr33rbd58531cHhFXkGLXxKmSSDgv+KLtRmKzdKnVsnlMQ2/vC0NsdHqPOGpzR3UT6cZhh6C7urYtTtLg79oI3AjS5n3TSE93Rc+E4DSlWxWKA7SyHR/wV//yf8IP/ehrvPbZW1ZoVUXyGhAkNzVO6xRrdUh1RN8hMyWX0eD2UhEX8aEQg1BCpkSzddehmjNsV+m14zB5TsbRnJSD43KbOb94xPX1Hn0n1AFctms3bEeG9ci42pDTBfnuM+y/doP5tQURMQfpe0vculBCoS56+jpyeCPjZqBF8LPApWYevS3oqDx7G/oFhN7caDUo7Ck6s+8mF3Ydy0a4OK3c/KSw/6LDzbf2eFtlOBMePvIknTPKCTmvyHKJ5kO2CYKcw+Ul43hKLRtEK+Owafb2lZs3X2Z1ktlcmkuxU8H5nuX8Jud6TpyvGVZnxG7B5cnX0HKd1Wqg78xiIHgIFFSEUgo5V0K12BDbOo5eQ3O6hRDnFuyt9rmocziXKHnDrJ+x3WSGoZJwrFMh1IAOmVmulGHLmArrUbl2eJ3LTeLGsCUvOi6Ggq8NxXWC94HtWEgoY1YWe66NuQsZYdak0bTvOZP9gXizhMDM9aYoBfEWCYB4hpLRLhJF8K0pKSpQC30UYoj0fUcaLRQzpYbaNG6K8wEnpqSadRHvAlmgb3YM08iXXSFg7ZWNhSpFs/1drbvzrW1eE0CoxSo0hk6LkzC1qUqTrDeCsaFlbaNXaciMjbXwUEshBNcCMqWRnBX19ng5G+JdqbjJ0NCpGVxWT5wHttuMb++nzfbNZLSClowr2Ghf7ewR8aZwfMq5ebo+ZusjFze+MU8sn3pqRoywqsAUWA3TeGkaSxkpVp9QP5mHjTYCYZtBizQ3VXuQ2goDad4M0Aqc1kUZzG7FQq1T8NvUh4AScLXgpTAUKDVQuoKvBa+BDIwyorpl++ElD++9w1fUM4szlgf73Lx2jf0bRxxev06MiVm3ZHV5iqrj8ePHnJyccu/+YzbbS9I4UnGMueAVggphmpW3g65U4694bWOPVqs5s2RuUzerzuwwrU0p0uBpMYWZFSpW/Jh67AlkRtyVlH3HV9JGym4cgzbts8+qpUS3p87NT6cUx4dv/SZ/4f/wn/G//3f/FQ6uzRAKZsk+UtdbS6LGNRKlRSs4gFJxYYHvM2XMuFBgUKgF7x1d31OoqBbKquJcb2O/6yPlYh+3WXMxrun6xOWZ4/jxBfH6gj4XymZL2WTSak1NF/gucb6OvPjf+6M888nX8OmSone4vPxJpBvx3Yhjg44PWB7cx+8rmuw7W7aZDnjx+wvhyBFUqRuQNeZ9csPBQuBc0axIEKQTykx59vs9s2dAY0XGSt0Kl6cOlTscPfcSIndJzHn8+H1cPOBy1XP8u18h6AW1ZDRlXNgnpWPKNuE9HN66wd7By3zw1oeMq3NSHgmzGd53XF68h7iReVQ2qrhhZNZ1XLsz8Pj8bfbnn0FUmEdzvk2x4nOmjgnVjooR1bVCchUfHOphRAkxkNOaEHuyeNR1nKxXzHpw6ln4iOrIjZtHiA+sFwvq6Qnbi3MW+yPzeeCiLLj98rPEgyNONxcUN2NsqJ7TDKVSEqy3GVxiMV+SciU4b3JmafsBS9jWYqiDVtv/BZMv56q4YAV7aEhl8R6RQogRLa4hGBXvKl30zEPAV0cpxjmqxcY8VQPJCZ13dMHRtwRwipH8Q7DEb1S/QynkRJo1ThuhYR5WkK2ZaGdYLVZYmOGMFZfSODxwZSraecd2HInOG39G7Vysak1ArtXcyIFZ7IwsropU87Uxfx/d+exM6I9de9vbFkxbKKUVQW3sbWe1IZWqSnLt9KwN1al1J13fHe5P19P1MVkfHbkRG41kUbJC1Jb90m6sExT7e9d0UxXnd/RV0z5fEXKl4QxP2kRNIXSItDFYczNuBVXBRiHTwSgT9Fsn0q8ZA0bnCE7Z1Iwm8AF6reAqVZoHSIOTq8ushoHVo3MePb6Hf0O+IwyvohbmqdncU5tRnsNu3lI8IwVLNTY7dksZLogqSrCcF/ORfQJKbu9ZbTRkPCW/CyvVdh0qdrijSlII2B1rcniuOpEgDW6nTmPDK8SsDdnZGQA2eLs2h9jqAU34WviHP//X+Iv/0ZL/1b/6x+ikQK6QbBSodY1mU19YinGl6IBoJcYF2SdSvYBScKL43lOdI5RCT8bjoAibnFCXiC6yv2dy2EzhbHtO8D2nZ2cczAXUUccVZb1C1wlmG0RHxj3P8sU7UAK5FHKqoM8Q5JLiZvhyyfLoDfxshRQx1OtSKI8r8YYj3qYhYUZGlgJ1DhwAa6Vum0x2BuOxcnQIcb+igyADjJvIMAr99e+hO/gDqOyRB0W2hfnsEtWKG1bM95ec3r9kfXqCSZq35HHEhX1uvfQce/MbvP6lrzFcPiQuZlyst9xZODbbFXCKDzDrl/QzzziMaHXMXcf9sxO2RwntehxqsuMGMxRNSHZU7VCfkejNnVcU7xy5Qh0TMXSNeB4QDTi3JixnXF5mDr3nwPdsxoExrel9pL92ZJ46fWE+W3A4n/PB/WOc2+PZOy/z4PgYxi0uDTinUBOug25wXAzCYt6TdPKh8bsCfqLiNltQnJpMu1Q1YrFUk1u71jBJYNkFxpKhGc8FheoKLkRiF8wJuJoTeU0j1GTIpjg6cfQizLyni6E1FQLBMaZE55pvlzYEpvlimR9WweEo1ZvBnY/Gr1FTLxap+Nr2mxdTWGLclqnJUy2MqdAFhxQbvXnXoWVso1E1Xx8c6opxoJzHVyuuqhrnxotnrNYwilOiGk1AxFsGvcAy9qzTmk7C1ENRkSt7DQHnve1lTFZupqk2ouUpcvN0fczWRy5uyqRUElM9ZDHVVMNgdxDubu0KHStbRB1XMQi1MWe8zVHANtcEl9rpY06b+uTjPnFTVoN1232/3bOb1sBpu9mrOfI6SKVxXUolS7HORyraiHy18VfsJSgFk0cG5+0xtez40NpMvLQdPmLkErxTxiLkIgTJxmlpqImAuZKKtFm37uDqicg3jfi02azveDMNJXNqRZx1U0Yw9q0Fq1yVizukBho0LTtUqF3gVui4dkUrTjygLSSvdc35MX/tr/5nvHb7Gj/1B5/HjSv6EEALjNaJ1gi1JLQoZcyknMBHnA9IAOcVSTQfIVO5zboZAxbMRwmMyZHLJdH3HCwUiZV6WTjOa+rFQxbzys29DomJnAsuDczmgaEUPv1Tz3NwfQ6aKVxa7lCoJovWLbPuA+LyEbUKmkA3ldMPlbyFm67iI+hCrXhK7fvWg89QLxWyye2lWPi76xyyqmgQLtaO7A45ePmThNnnUW4jdYv3gymUykBAuXGt4+DoBbbP3ebtb7zNN3/nXWIM9EfPsJi9xGbV89bDFaF2OCLDZaZfPgNEatpQqzUSPlRmi8q4gc1mg5BYzCObPOBzYCueUCt+FAt7jK0oRBkyBGceftoKm2EzsNjfA5zd1GIldKCDYzvAcD5ykdfEawu8z6QxM5ZKLpEcesZhRR03jMlxZ+G4nClVCnmInF+uoCaW+xXJVvw7lG3OaIgWd6AViiDBvpWlNB8YwOHxpYCrjQMC3kVrpETI3hDSlBXxbjei9g0B7ryn99Hk1NWhWtmmTFHb80UdXgLeWfhm56ckbjPRo5nxGeJsHDXVdg7QRAy7aXxDptt+qt5ZUVC0GflZ2eZcawMVaCowESXlwixEqIlCcz8WtVEdLWevcX/87hAyzy6lUCqgzsrC2tAbMS5Vxbexs9J1PaTSzk43WQe1CZVriO6TCLqnkK5Q5afr6foYrY8ev9CaXo8RXZNWAhAbgW66gUODbJ/YC0ayK0YCpPVnLZfKyDa1jUZaAEIbQ9XaJLtPwLg8UURN+81UQnU3F5cnnlxU6YARS9R2avJMh7cixRl6UQsNCq+maJJCmTob39APBaruFBD2Kq/UHE4MGi7VoaGCa6hWcxre/a69MnutjUs0qUJoB5gr2lAd18bvV/+uyvQejJBszFG368Ce+NRoUy92BY2YMRoTvC4Q/NTt14YQTdB2RdeP+Pf//F+gbv95PnNtydEzt5ktPbEmXK14NZJjyRY7kYMybtaAI847yjii21ZQ5YzLRhQN3iH9HIpryJOQy0CICw5jB6GjrAe2wyWPHq/oVXApsxku2ZORkAKyP3Drcy/SB0jjY7SOCD2eJSEWtD6k715HN9UUIIOS1sARxK1nXSuLS0VSYDyrDOfC4qWCCx6XFLLn8nEhFod4y54qo1IGePxIOK/P8Mmf+OPI4g7IHF1fcnF8QvRzUEfoBFcrmjM6roleeP6Vu8wP9/nyl465eHSELAvLowWLa8/Zt0m3bC/v0dU5jx98kzQkZp3Q+0o3C+Rc2Th7rFRHFoszTh4+oOtfhGIE1yQjNVqJoDkhdUB8Jna98aC6zjykfMc4KhHj/BRNZHFEP2ezusB7YTOOyBi4fv0mRRMuD3BtQa+Zk4dztpcf8ODkmNn+Af1QWNw6Yu+a5+EjR8eIngrzbkQ1MWRHLoqLPYLgY6QWbTdYQ0lqMb5IzZkkxW7aItRWTES1XCbvHVomJKQlotdC0UofPfM+4ELAVQ8lMY4DpRjaWjFCsncO74Wuj7jgDAku5lsjYs9jewKkNkWiE0pz6558YqCS8mi+OMEQ16mRc97vmh+1jJeJCwwUYoTtYCMznGsZVzQXZeu2nPekWtkLPetczCCxnT0mzDCRBtRWuHgm81SHo2gm1UrWzMz7Rs7Wxnm086E2Hw4Rs1c1V2Tz9bEw0o90m3i6nq7fN+ujj6V0MplzIJ6kSi6VIA0pgR2/40lX3x3Jvv3dBP3uSMYyOT9MG7V5Oajd/r272lUFbcMe6zAqtilr29ShSS7bS2kFkxUcXipDtS7KTfN9ERteFRvt5Fos5BLf/FsMsfKNICPaiqPaeCZoQz8qtSWke4Sk5qPRBu2NE+Makc8KuenHHiMciiqpHaqV5nvTYi5KufKjmcwTW72C1uY8vCv0ZAea6e6asrsu5n5qF0em6qwdujsvnF2ulylUyvlD/vz/9a/zz/2xz/LDl69x+/kl+/0eTtZEXSBOKeOI854qallACioBFyJhXm284ywVXUvrZn01E8eoqERc9WzKGq+Vw/0jpFtzthLWKXBvuOS6g6zCOkRcJ3zvf//Huf0H/hlWZ5lx/Q5OEkXMS6iKQwjUJHhfUO/wvaePhX4O1IJeGkm5bDJh6+Gw4m8IMhpZW/Yq+2Mgn9jIbhiEMnjuHxfOzjwv/vjn8YtbKB2s36FeDpw9/AbL2XX29q4xC0ItHU4L2s/YMiB+y7W9wvd/zvHFXz+mW3yS2bV9wnKP2PWI8/Q3niNdjGyPlU094XC5ZTa/bAWyYz5zrNbWJEQ/kNO7DOMt6OaM4yXBCQs6RHqCQikjMUAZK/SebaZlTWVK3YJ6RGw0G6LDL2acpUc4HxjShv3gWKVLxrBguCik7TG63xFDYj3b50YsnG83PD49Ju3v42TOtefvsr2n7IUNMSwY0oYiSlYrcGKw0TLNldiLa6OQyX+pkDyE6hC1BHGP7LKPonMUUWadZ6wjOSdCsIIldg7vPIqnAjknck54cYylos4TMKS1i54uNL4YhnI67ygpNRsF2y++7ZHSNNOlWmRFrZWqmRgjUgWtmZ1haZNQ12l0L85Gx4JFmyjUZGdIiA4tbX9wxTey4ExzlRq04NuY3s5ZhzaJuDZxwjTnVrHxscdeYxc6hjSSa21jsemMmMgA01k1IVv2d741Vzwtbp6uj9n6LqTgDRVRG6eUqpQqVN88IBqYXLEb6BV/xl1VGmA261xxbph4JvbTHSy860ymMUu7CU92XlMxZE3RdOu/mtlbn6Umt8YIvpuilGIeOGBmds6ZFFrEIQ6z3KpXMk8RodTSZOrtWogVNDqF5bmr99s1355UzWfDS5sGVd2NvOqueKPxo5UI0JKCd4XHBGHLE6O49l69s+tufKSpcKnUVmB95yfX/tQOrImFY74oE/xun1Utk5zfRl+imcGtOD7e8Ff+1iUf/vAxf+QHP8dzt5Q+KNcOFRkElxPVe8zSRKzrK4YONRFcm4kIkpVaTCoeQkJrgCi4mvFjz7o4Cp5Fd4QLc1LOrFYXvFnOubWcUzeXPPdq4dnPPAfSkcsKh2/qkYoPPbglTjLVLWAmaG+FrGwFtgoJGIDBxn31TqE7BJIgueI6h85BFgXZCNtLx+lKOX+8z5gv2Lt1nVuvvIqqg81bSDpFZM616zdshBgguAXb8QJE8EOlDwK9QzWx2J/zyc+s+ODBMTN3yGJ5iA9zXKkwjiSX6A6ep9ZDTs6/DO5tYoBaV/Sd0HVKiIqMyiJesH18RndzSS2OqMJ2UxHZGO9iLuAiII0TpqDFglwRkAWIw4WKamUsjnno2KxHtFbGS0WlkqmEeWRzeUnv54zeM56fs1qdUEJHHhKrD97HL2+QaqCb2+jKF6WkwsV54ny7IYkwm74T2sYhzpjuVS2KoBZDFiwGxLfGBZKDmYtNqBAoaSBGb1YEAsF7uuDoQgScIVJVyWOhlIwiZM10wRzVu+DpfBsfN1glV/tuOnHkpmqamjNV3QkYDLHOiHeMJePEolTstTnDilvz5Z2zrK9yZYAqzkFJ1tx4j4wVcbUReu2cnSCTLjhyLqaabOesNm6damaaz18FAzfPIxXj/1UhasBLu7Z+cox3BC+kNDKdLpOadXdWKLvMr6fr6fq4rI9c3NRWNIQ2AnJOKcVcTTusG6hT0UFtCifrPgysaXwOBfGTN86E2UzFTBuNqOxGWKUar6SJpFpKEm0izA4FUVogpGjjmtDGNhZtEASia/JJ9WTNBHEtcgEjJEpzBNbcuqJWjLSZs7REYhMP+KZ4Mrt3UzhghFocgyq1ipESXbuxYh4dnta1TvN8ZyO1gDkXi3NXV0WNWKliMDGtEKzNmdgYTbrzG6otyMEBo1N8nT47K65cK4Yqdmg3TMq4CW7yYm5MnBYw6ouNFlfbU/7GL/4Ojx9v+BM/9gPcPpqzHQqz6OgrFDLed+A7qq9IdWSB4hwuGOfJOlmgFqpmRGZ0XnBScK5HNLDsMkNSxurpOwd1w56/w/Gqshb48T/xCi/ePYOju7hSTA0y3zPCMxvLU6qVZf/r+Nmbu8+XCNJbSCOpglfqqMgc3IGhNU6UGgWyIkvgtuIPYSkefdQR5V/l3q/8NPMXfgDiNVh/GcaHqB5CnLM4fIWSLqAM+NmCmXrScGzInkL0EWKHuszhbMvj8Dqzxa1GTJ1RQ0QPEj52cHKMdoVh/ASPjjuuHb1LFy+4HK5K/CBKlhXn4yNm9Ra+FIp6nKt4r2jXgzfMs6hnu1ZmeIpXICI+oGGOlAw1EehgFqi54LzHp0QuG9wmEGc9a1cpWthcXDLre/a7ng+3iaO4RwXu3fuQw3jB8eoxeeM5OIhcW8zpNZDHDZu8JbpIlmLRIdg+ciiZbHEGNZgsXe27W6QFkXhz3i3tJu6kmhNxa7A6F4nREXykw4jIQ64MYyXVQioVpLOiKUbmPrIIARcww0epJsVu9DrvHeTCJOS2JuPKy0ZqBQdz17HOA9VPaG47BVVRPxl3Vtwk724Oy06dSfhVWY8jUS3Q01WLlphQ8KrVXp86ZrPA+jK1ggtDkFWo1f4T3/yzcARnYzWtQinJOEHRU8exRba0UXXFCM0yxeoIWpq5KtbYPSn2eLqero/D+ujZUu3mPKlqnpRsT0WAFQBXpQo0tEHs3wM7Umt9YvyxY7aJIOJbB9Gykard0P3O3fOJgsbZPJhG6jXCXm3ycXsJtRohMYhjHoRVKgwKnbjWOU5UaHt9oc2fi5Sdi7K2Q4emjKpivjBOYGyvfwdOCeYxkQtJhb6NkrIUihai+DYumpoyIzIXqe3Atg6xNAKwYGnVNvefPokd/ceuzROHaZa6k9/70kIjtJrfjbBDbWiSUansrhW6+3/2eVbXHFfrTsGiJfMPfvfrnGxX/OT3v8ZzN6+x7PfYXwhz76l5i190iAsIEWRo44dKlUxuahU7WyMiZj3vq8Op4KMjyQwCOFZsk5D9HsiGpT8kZeEgvE3cu07n76GP/jZ7daQyZ2Af0Rklz1mdv8f8mTdw3kaIJGBj1v8+VtodFbqKbEE3DsHDTA1lq8C6jfQK1FDYWwyEk/8LZ8/+ce689oPI6lep27+D5BEJDum/H9d/CrfxDGevI24f388puo9Kpg6Xllu4eJlFt6bbX7K8e8Fi/z7vv3fO+eUr9EefQWtv960o+Ag+KqvzNRfn97h+E8ulCg46oaRiSNiYKD7DUMwY0EVUK6UO6BrmC9+UfZHNeouPns5BDMFI2i4Z52UYkaHQh8jF6tJuwv0SZA4qRBehzDh/9ICDG9eZz3v2h7us8jHjJnDj4BrnFyvLgiojWoBygHYD4jLJV8TbmEmco5Ri1x3zW5FSSePAiI1SFLtpu+Co3gp/9aa8FFFiDJSc6PpI9I7OB7wE1HlyLqQxUdNILRXwNiqVwMwLs86byd9EgmkNkfeRUjKplN1+KI3kb6opafQ0h1fPNhUIdsa44o3DpkKmfceUHckf2nh+Ei9UU5MG76g5GRdwwqJ3RZyZV+YMbFPb+2YN4dQcp52nRUJNAaTaztfJI8zowXncNLHBxH9szaA39WXJE7fIEFip/urgebqero/R+uiE4vY/uwGQGHelVONBdMKuUHkSwqxMhDfZedHUxsY3eLz5MzgjEBdoxdM0kqI9o5VXuUmbHXbPqq2rmLgqAk2A1Z5Dbd6nYLAAAQAASURBVG8WM5TZvWbXpNalZceIWsEUkN34yG72rXARdogQKIk2BmukXMXk4vZKDdky86xWMbRDZEeChubRY0aDFfBT56RX1ujTqG0KsjMY2jy+hOlMbs/hxHx1WuUUnPl7OJEd6bk9WjNEawVoQ9amYlOkqc0k2PX0jWPgBJHEpnh+99v3ePDgmB/73Kf41Es32F8uWfZzegdhs8F3MyAQ3BZXe6BQa6EoVPFodAZTuSuFjGjFh47qKiEnAjNEtzitXLrIwbzj1buJm3cPmD/zA8j2XfLql1rUhhKdIjKjiGe2n4l1MHWZNKsRAbkQdBQ4rNAJLgvqG0k8Z9goUh3VW9FpxFXjZWl1rB+fc3bvF3jp9Ndw+w+osy1UZzLeAOgl4lfE5Q3GZIZysvg0AUcYBzbrRxTt6eo+B9fu0p2/y+byhJ63Cat7nF2uiYefBO3wIRCW18nF0Y1wfHqChocs9wrjoJTSyLRVkG6BSMXPHHkL5IzzSh4HnJ+RU6VUIcaM6x0S1EYhQCmDebK4QPCCDz2uDywXA5WOMTmoHsYB1cps3nG+cjy49yEHN29wePs6w/oGx+ltdLXm1ot3WV1ecvrgDM3C6DJkGMcN2XeE2FGK0FVPkoo0Ir5JoQ01820UG8QbWZ/G02rorfPGb8lqfjnBBUIIOG+jrIpFF5SU0FpJJZObqZ13hYgnRtntfRUQ79Bc2ujYuHC1ufpq47pM5pjazrWi4Jx9V8Q7GuZie8pZwabFcrMy9vy2Ve15xzqCWPo2zojdV2MhoBF8YxdIVEpNqApFUxuVWXni0CZcEGsEp/HydF47R80WhZGLvXY16SvOOcacjdOkQhE7rXQ6+BqK/nQ9XR+n9dGRGwGqMPUyk0R72vSlNnSlgTBGYG3KJtV207yaW4tzO+4K4qyzandduQJydv+mtPFRnR6LduOXqwhPk3fbYyiy25weszlHlOg9JauZmT3ZSbXiKO9GPLauFFmNVN1eWBWMn1KbS2h74gnWjQoFR9ZCFDFYXdUKQez5Um3FFVdxElXrFapT2R20Zqg/oS7Gq5lQGXY4mhBoox/XpLJOd9dzkqLa5+F2JoBTLoNrxdwVSUZ3Ba0KRs6uAdXKoBser0Z+5td/m2/fu8kf+tzL3J7vEYLnYHGArLdI6FhEgZSR4JjI1EULeLFYA5o/x87IrdCFnheePeLavqfWgfXlwHv37/Hu8ZqXn3FUjcjBpxnOL7k8D0QdTGI+d4T5QPTgQ3vtGwXvKUERr9RrFVYOPYbtyjN7PiNzzD168Li+UrLa+C4BSW1EtRVWZ5Wzh/DJP/iYeM28fcgO1hWZLVG5hsgI4QjCjL7OGKvg4jN09Iyrt6jlQ4bVB6hWvLvJrBNKdISwZR7f5PzxfVbbOYvnX8HtXWemivYzxs4xq69xcu+EWt8lpZFcC6UYV8zrylIc3YwqlwQiJRVSdXQ1M5KZSQeWX08ns2baOFKGDcwdqnMQoQwDIQqx68nFocMaUU8ZSyvyE31YktJAuVS46VnemPPa3idZI7z7xiMkDyzikm7hKGkkZWFQT8qJ4IMVA9NoVW38KV6ouZC1cqX+M0RWnCG6Noqq+KZYVCo+enwQYggEEbqG2ow5sSkjQ05kVaoLdM4RHfTB0fex2TV4VIupiARyzlP1v0MxJ3M82p5TVZMZYuiXJiP1ijOeztSkUC281JKB2+adoFIF5wXnAhebAV/ZjaGmYmLa3VpNKh9ioFYr5nMdwUUcjiDGl4qxa0KJJzWjSsm5KS7teafAYqOot061HcBCxVLsbXSsU3/2dD1dH6P10Tk3dRq7aOOKGNJQkBYEaQ7EtRYo080emMDPduPcdT1T1dDIx9KCMidJt5sKH2WXuaStclKMG2NEZMG30c5UcInZPZAb8uNwzZa8EMXSr0dVFrirDqW93rJ7x9NYzV63n0ZIAM1pWJvfzzQW2+FaqgS5KmC6OpF0MZ8NWrK5s6KwVCX4qTBrHVV7fERIVEJDoa6KnwZzT4ovVXyD95UWp6DVxjLVnneyk7akcyuqJrTN+EKTnNT+zaTOQQ2Sd1opvjCrwloFXypON3zzrXvcf3DJD37Ps7xy91bzi6nELrIRxUvAeYczD3nwgg+RjBFDQ4OuVD3P3b7BK6/eZRH37KAfz3Hxkrt7kZfvfoAvX8S/+i+QpDKuIpcXLyL+PUoNdPpZlutvslisCXuDdbMNCSADc3Bze+9lDvWdwtu/6Dh6Fq69oGhnnC3X21iBSMszAzn2ZFGe/UJltp8RV9HBoZcZ0QP0zh8BbqEsW/ccKTi8vwM5kS6+AvlDvCqhU/I6MY4PKHXAu5H9A4/qmhuc8vDBzzKe/4/ws+skEdx8n24ocA3SNvP48ZYQP6Rk0KTEvUw9WZFRSCMuBMZxQyyONFSIgnc9o1ghYRw24zjVPNI58BItf604ZNxSVjbe8OLIFxfEuSNJx2UecHuBWGEZD5H5Elnc4OLsMY8en1FmBzzOW24OK94/2XB7saSLlc2gpFVi8LQxrimRisNGgGIYb1Ej3OsU+Ikhh4gQncM9gfTRih9xEEKwEE5v50lJmZKzZVqVRMVRqwN19N4ypLo+mr9T2+N25ijRm+pqzNk+ezGJuDDZRUyHoh2HqSWwd/2C7TYRglheXDv+KlBdk5lje1Zw9p4L5ovlzRFZJJhKUUwZ5htvJrXsqVwqzgdSLs0c1c4pJ8E4S66NtndQ5ZV1Rogd62Fr47P2l6Wh1NZ0YEVlbhJwzD9oCkl+up6uj9P6LtRSdhPdoRrtXu6dUrJ1Cl51N2PeFS/SOn/FbqhCi234PUCnXN20pRU5028oWHUl08irIUSTu2abHGdhZ0aXmzbat82pYgQ+tBI8bJMhTqGNhDLsohFqhaaVsuds4xwvWK6L2qFg+SuTkktbcabWhSr0VLY4hiosGtlQsXutt+oBacqHjHVjgsHpk94CmpOomBS2NEJj1Ktr6Hdd2sRvsutTpBWUwk7+aR4+TVbbPoeKwduVNq6b2NtWYTWwR3d8g+oVnwtjdQQ81WXOtqf80u+s+fZ7p3z+k9d59voBs9KbY6oz9UqgA8SKsOrAmTJGS6V4x4svvcinXnkR3y/AmXLLlUT1Iz51zOWcfOcT5A1sL96mEPAHn6ZsI55LXPdJnLtLLgOMv06cn0zDQHN1XQmaFHpFPOy9Iiyeh5IUmQFrha1QvEMmn6Jg5bjsKfu52vclV9zWQYLh3DF74Rrm0aQIj6lygGMGusLpMcqKLmxINeN0Qyd7FHcfwRPijDFdEPyC5cEdvMtIPObhw5/nbL3i4O4n0ZQI+QHqjrl+faT3n+TsbEYpH1BrIahjSCOb7YZZ38F2wKmZbNbgKF7IwUaWNW0JvrebblFqVmr0BJSgI/gZmpRcB7Imgo9QHHmo7N3uyadKXmdi3Kf6LUiP97A/v86juGX/wPHCuE+qHZ+4veSD977NYTHOyDptKNXcwx1CFcFV2wNOIWhhnRtqoIIWad4N0tRQZtHQQkJagyV0ztG5aGIHQFOllMqYR2oqjCmTCXhnxXwXHTHE3f5SjJQrWlFvCqVSlBg6Usk7o84pjoFpvKtYAVbN46kU+z77XYekrVERqG181KqKKoaWajHfYus9hKKlGaY29HsSALhKDJHtpoBY0RVcZ2Ne17zEfLS9WrONop88Pxt/MTZzQjf9QIRc9epKOHYGhcWqJ/MznLwmfh+uL37xi/vAM0yi26frn9RVgLe/8IUvjB/llz96ttTULbV7nrRRSW031IwhFrF9vXbAzJN7QuSJQqfNlsymFp2cJnZSRpCaATOa0jZ+8g3R3SE5rXi6orzZI7Wyg6nuoHlW1IZCBFGSNqtytcNhchKtWHEljfysu5t/6xqvRtk7VGMygzDtlLN8m5YPNebarovuEJfa5m/OWaaT08nq3Q7s9qYtVK9dbMW6udrkrVd8JFNITPbviH0LHAb9MyE0NKPAVgzVJz9TGp+goWTS/D0mboFiozjX6h4nxpFKtKlWgexH3n70kA9PH/H87Rt8z0u3eOnmHikKA4kohUDES0Uk44pDgkfrnLt3nuWz3/Mqsb+Oxs5K6e3QEBTB1xnbtOLaK38CqReU9ftoChAWxOWn2ZsfoHWDDzdRGfC8BvvfwuuMvL1nY0+vgEOTIGIOyb4WxDsbRc3UVNFqI06dpniAuor3XMnkI7AH3U3Q8D6SPwTnqd0dhH8O5chCPMt9lAIxMQs3ScM5SU+YzfcYk4B2xPgqJb6FT0ooa3qpfM/n7nDvvW9w/xu/QxdvMV/27MURjR2z2RH7R56Ls7t8+P47nJ9sqKWj6sg2OeYacdUUQs5NRLYFm+1I1zmYBVwdkXUypVpvgRh5WLO3NyepY0SNuJw29LVD1yvqxZLDozmPTlb42JEvtpRxzdnFCZUZS+/RTWK8OOf4YuDF117jzo0V5eFDLoc1l5sN8WBB9Mb7KNJsI8RiTdg2srkDXEBwjYAvBPFMHjhU4+lE7+icJ4qzcSyGOG5zZlsLY85sy0hWIJpNQYhK6J3FLfBEE9b2gRMhtSagaPmOn8sEzrbNJGJKxhA7ak5WANRqcQuteLOtNfnW2NmwO7MaHyyEyJiS7e1GYjYysfF5inpKaT44KsTgSbVYHlXjyam0OJaWe+U9lFLM/BAbKRt52/Z2blwbKyzLThSirWCrJTVEV62J/H2I3Hzxi190wJ/13v/LImJeB0/XP8lLa60Pv/jFL/7JL3zhC+//t/3yR0du2qi46q4Mse5CzWgvK6RqRnr6RKU/wcdP+tNMmxvFpItt9qstvXpnANiQjcYFtkwjvvPnzVurGe215ylqYxwRG1FBu1HJTsrdedgWpejk0mOjGdeiFaaTbCLhlqogFefbg4lxXlw1CaliiiTj4BSqKlEgOjMOK+qI7uqaTG4/k+dOUcU3QqB1tbo7/IxIKc35tI2TPOSmhoAdRWA3HlMxmFlEWhHTBoLyxCiqfbCeiVRp/Jzdcz1B0n4yRkKcKTVM1m2cJouvcLia0AJvf/iADx6e8tyda3zqhRs8e+MaoYcQINSMV3DO4zWTXc8rL71K6I7Qg30rFscBKQXpe7joSfKA/tYt5vNIqQFWpV0vh4smOXcugq6QuqVwQLm8jnSP7dp4gc6KU5yVoOKs2BEa4Vgd6hXXtMBiHxSizZeoVyNqViuSxUFwU/FXwWekniJ+S2EEGUCzIQJFqDriwnWiHOJrQnJi417C6TUoC3z6CnJ0wkIjD974FQ5u/xg1nXD/vS8R3A8Q9o+IsRJmSkgHdPOB+eGMB++c8caj+5wfn3Bt/xnc3MO27pARqiNfjKCVmjOMA8NMwAVz9s2ZlEcWhzMGhGFIxK7DxZ7tdkWdRebdgiFtCVtH2W4YH17g5zNGEnt9IOmMN974BonCtfmcs4cf8tblL3Hz+oytX5PLBlImhIjTYAo+Z/Njj2UxDRSSU5wG0Nq+g0p2FS/eGqyGnDgx/o1zTfLsbE+JQi2Fuh0hVcZacb5jKIVIoY+RPjpiDDhnWUpTQ1BbMzO5E6c0Nj6e26HKU0LMdAQ6EVI2VUEMHZVEUct7MpGC+Qo5p+B847pVriSDkFphQzuHJlhlOuccBaeRVDYkHUHnVoTUydTU4hm8sywowVSOFnkhO15ejJHtdruLhRFnXEc7u+xgqrW2+JrKFGqs7vctIPJnY4z/2t27d8flcrkW+b3jgKfrn6RVa5X33nvvxfV6/W9/8Ytf/NNf+MIX/htlfN+VWmoqJKaOJ4vdM7xeJYXX1tlP3zJT+shVt9Iegx0hUNoM3k3tzO+pv+tuBGYIxNWmNwTEDpjQqqUsBi9MsPEOZmpcId/+HDy47EgVomv+L+J2B9jk1jspp6b3rKUpIWjunU6ueDpqfzfxdOwlK9kJYxWimVsAlaquFTctNwZDY0KTf08k7OlxazUkaQoJnTyDdqhK+70gjQxL64a1EYnb7D0Iu9/dkYcbr8ZqOnvSopPUvPkKTaBQG8v59juZQnRqeJko1QmpOJzLbFPmm+9l3r1/wgu3D/nki3d55vY1uuBt7t9cXg8O9tm7cYjOD5H5wjhYDkQquhWKjKbSevxN9PIZ/MGnETkjb+8TPVA9tSSC25IJFN3HFaW/eJm6fw9XqiExWSjeSOjet27U29ufimApti205DYasYvoqhGwBUfN7WNxDgnFDn+pSHHo7BOI3EKkM1NF6SAGJDg0OXSzQYf3kHiL/tpd2Gwp2/eY7cOmHtGtO+r8HkHucf72T6NxxvJ6YbXuydvvZ+E6Q5kciPfMF7d59uU9fupon6997ZTTk/u4cgMvZru/6OakWvB5TYyRUROeiORKnAVOysh+CYzjmpiuU3IhOKFst/iFozTiP/0Mhg3ZOcJij8cP3sHnS1QCVWewdLzymdd49+0PqbrlMCrbzUNOH88JYcbF1rEqidAJ2opSqaC1EryNrYqzkWWtgmLaZhc8obPxp9NKo82AN6TTOzc5WpriPytlLOQxkUsBNQRIKfR9T+c9XezsiNFJFAGT/5I0dFQbsvGkynCqggRDrGtrLizCxDMMW8S6n11WnNOmBAWiD3ZuTs2ZNqSn7ddar/ag6gRRt4JLDWnqY882Jfu+OrOd8JMvltOGTLczajf22x0jiDi8963AmriRdjhrIz+LQnDeojAQcL6N+3//rC9+8YsH3vt/+e7du+Pt27cf/+N+PU/Xfzfrzp0752+//fZPlFJuAA//m373uyhu7IhotjLfsURr+2mTWcvu1t72rW3eibg7FTwVG73Y9npixDQ5BkNDRbCbsNrNGXhCTu6+EzpW4+W0Z7SOTOxGrtNsWRoR2Tm2WgxFwO04LObN11AOrDiYCgF7O42AJ5Y2rFPhpdPsejIAFDox6m4pdTfWmYohbQWDFVD2PkxybTk3bTJlh2BDyp5ExoNccWUsKKG9Br2CzaewPdeKMasfW8Eok0IKkJa6zIQUOXYC0FbZTPC2dYomYU9VKDUQXUG0cYKAUa1wizUzpsqb7z/ivQ8f89LtG3zvK89y49YS33t8CVzbv0XsAi4GRKPN/UmgjpoHvA6k7gzOT1k/+EeU08pmewEa0IVrqrpkSdXddYIcUce3UOlMIp3X1PNKXnWkso+bX0ekAvuIz1ze/xZzBsISUlKkKPR2Pcqpjd9ygNlegHidWhbU/JhSLpHkCRF83GP2zIv48JMUdxMXDshyaqhNPsWVJTIcI+N7RM4pFBwvI7NM6YTD/rNc7D3D6vhNqnSEeMm6W3Ft74h+s2ERH5P0PsPmAD+/BaHgZEmQLULHkZvxh/+pW5ydnPPNLz/i8YMtcbbPcrZPzRtk5tmmkblrxpjZUcZKvwhmpth3sE1IH0l1Q0kDQWaAMJydkoPD1QCbzLW7Nzm7qDguOX9wivMjm3HgLMxw0nNy8pDzFNnfm8O4RcY16/UpOib2+iW1JlwN1jKIed1oMu5YxqHNy0baHrJvc+PDtDHMTIR5y4Ny6qg4XC2UrIy1kMlsa0I1mIeUhzgLdNETfLTzRRtuJ1f8Ftf2TuIJ9Ln93RRhMuW8Ta/Nm4q7kYK18duqFTp1auysQWknhZ1OYrlRWqsV09Mxp4Ycya7wENQZt2osglRDeooHnOJdEwE4b2NoL2gtNpZuOvdd8Kd1RNRScC1c80pIYHl1FENufGMJppyNb/T7a90VkbhcLtf/uF/I0/Xf3eq6bhSRPeCI/18VN5WWU0Lbr2oEXduQSpBKauN9/8Q+0MYXsU7JNrbq7hbd5IjgpEER0ByAWzfRCqMJxtCmENjlPU1dl0yeFc1HZwrjbOMTz3d2MAh0rrYMKLdz+UVspDXB3IW645nAFbdHYNeB6QQOueYToUYCdq1gQcwQK6kyUyMmTzbu2V0hRVaMmQOr+e009QgNPWrjMGnjIwObJ95MtcdtxMR2tVoRNkU/2LVwu/fQlGtCG3lNPzDYvzAVPu3alEasxoou72AssNXaoiYajK0VL0YCrSjURHVKqoHX7z3kvZNjnr95wPe8/Dy3j+aIT/gaqK7iNFOL4ptHCS6gKgQpjeR4G42OIAsgoQTED0DGaY/oPqVu0XAdrSdsHrxGDUeUepPoD3DdIwozpCSqHuHShk7uE04fEb3iDz1DELojpV54zh7CsIWDZzzSRTbbZ1BxjOMHpJUjYJ/pYv4ysvjDqD6HuJkVDAQYVwzvfIl0PuCfeYHlzU+DRARlSDO0Omo5oRYh4Oiko54X5tdvU48fMd+v9N0ZMS0Is5GHj99klRYs/HX8Yk7WiPgtoe2Pw+s9n/0hzztvnfD1rzxkvTrlxt5dXC3EzlA6JVMqpBLZp2NIBddDlYyOivSOISWk90gW3HaNyF2S91w8PCb2yuGzN1lfzIgnK3Iekc4xbgeqZFbq8LOAOE+32GPz6Iz1dkWI0C0Wxv+wA4QpuTFpIYuQsL8roWW6Bd/2uYJmqppnjGDclr7rbGRVjfdXSmbMiZwzpSgZG3/OOgHNhLBoRcpV0VSrPkHaawhvK1TGapEHHjfl0+5QFbuajqqFsRacDzgnpCERJdjeauZ/HuP87cJ6GyJYS6HUttMaYmMIrZ1vk1xbpcWZ1Oa0EwK1VEJD1sS5ZpxZdmeto6kkpwMLcN5TajGXZtjFMewanva7tQHpokZED98Jp/9+WFa7PR1F/f/VuvJu+m8nj393Jn67RzTehtaJZMsu7iAjO7Y/YOMWo9FNL6+RVVtB0B5Zrn58VdRIu1vT0AtxRg4s2iSh0+27jc2m1/qEUmBataEaU/AkVIIoAXvMzhdU/Y6Ia8dnK8CalLtMkJVMKIrunn+65jppjpy299GgXYShYnEMYgVGrrqDiqdZ/mTh1QY9k9ACaKF7bXRlKjDL+Jomd7WqKUowflKtulNFaJO5ql4VKk1GRaXujBBt1KfgLNTSV1qKuDZJaIvfEDsYgxNGrYwq9K2IVLu8aHNLnsaP0r4Pqwxv3jvn4cnXubl/jb6/y0/80PcRtzOoHvHaco8cLswo/YyhnCCHz1P2r0Ge4ZwH1+PqBh0uGOs5XbhmPA4iPsxZj1vE/YilYjuH+PvsL7+MymAjjmkE1VfkWoV9kABzKmwF75Ub32u8IucqsCVsXuedb3YMqzZOcI55Kpxvt7z4wouID7gqVO0Jp19l8+W/wnCywt/ax/nbEJ5H/IgrSqSAS2QnSHEMwyUnD9/h/OIDfDihm1ditwcs8A6G4T714j55e0I++Dy4F+n7fdzygMCacbxARIidcvsZ2N/v+NJvvsc7H77OC3eeYemXjGCqLQR1SswLNpsNi1IYFtfoBMbtQK5Q3ZKQC3JwjXS+JR4d4fuey/c/ZP/VJQd373B+/yF1HIix8tx8wbcfXHDr1gvk9Tk6rGDYcrG5JI+Jg4NDK76rITbBCSmPdsMWkBCb+VywoqHlN0Uxd2VqwleIys6sj1Isk00ETQXNBZcyNUOtk5eWMg+O/fmMPoTdtKc2vxmHjbq80vaPqa1KrZbyXaZAW0CrJX23Gfxu33lPyhkfTG1VJ9TYXSkVzX+m7Ud0d1BL48FpQ129b+7BOy+qiKsDiWksbzwfL44ohl5JC98VGpF4xxUsjc9j/JpSKt0sUlI2vp9aAWPGofY6KrobQxc1/lns4//H+8LT9XT9fl3fHedGr6bAiKLOZJnGw2jwq5pRXdv2T6AvDUvQiSWiTwAyeqWSajdHQ2ieOADaq5h8sIyba7ySds81WLndoJtDS3tIoZarQsocexu52AnbUoiA18lroz2h2GFTsaRc52xUVNUgqomfI9N4TXXnHTOhIUVp+TRCqlheUpAdXFx58sZv78EOU7s2vr3+0q4/PMFrcka6FOegtpETtCLO+FA2ShLThburcle9Y5K3uvZeXVOOFbWwvYBdZxVD5FTMX8i1MZdD6cShhZZOrlMDatB31am/skJYTP3h1XKF1qny3vE9vvyNNxjTmpgzlJWNjNLQvnR2EYb5DdziBdbDObL9qrm7nj3g9K130OGUxd3I0Sd/ihAV/Iw0CKleh+gJsiIA1R0wbF5itvgW0jkkKUKmzgRf7U1qNe5MdZObrCPEirqMjpGgGx6+vWG7FroOdFYZLiMxvMujt3+LGy/8QTTO0U5JF6dszka61z7L4qU/Ru3uGPKZRzzFPh830jRn9H3PnU/9BLdeveDht36OXFcs957h4uyCzeYew/A6PibcsOZk1eFWjzi89mkWN54lLuf4LnJ59tC+N74jLuCHf/QT/MovfpWvv/0mz919hpv7B4Cw3+9Rc2Y9XNJFGLdbnKzYoPiSCfOOIUDWwrAZkT6ja/tOzGSP03fex78w5//F3p8G25Zd9Z3ob8w519rN6e65fZN9o0xlppSkOoQlgQ0SsiRb2JbLxsJBU+EyJbv8weZRz+XChIQjyoHDYRxgh12EbXivVMALmrAxLrBAxjSSAEmoTXWpJqXMvDdvf9rdrDXnHO/DmHPtkxRNCmQQVC7I0D3n7Gbttdeaa4z/+DfL4Ek9xMPIXK/RjtbpwpjQ99x46iKhm3P9cI+2cbRty1Q86ox472LEO0fMhkHmVK7aovoL4vDZEEJV0ORoBfCCeKFF0GCBqW2XOUyZw7gkk1nkTHZNGfEmgiitd2YgWBqmjBXodXwrmC1BJkMyPk1OwxAZwc7ho+hnLUK8C8Q+W9OgkAsnKIuNagUzihStRQxogqy+LFGpINvZxq1qozSj5UQqh9AXIjXO43Mujsa+rMEVqwYvwcjMBa0VdcMCslz2uGraWe01siB5tdZmKSh9zjTiWS773+328Nz23PZlt31RnBukzppXW72xazGFq0acFeWoEKn9WwbynhVIdaYMRVReip0CBdULcwWLUJ/m1IiJ1UmrFl8VxxkCNitBliLZLuOgqpoau0yXlNgHXDDVQ1QByQMfRYQSk+Cp7sqUBUoKkoHYwje4MKNorstLoCn70GdoSxcXnDMTv+TKdDuZkVgZRQlKKiRdLVM7KQVRFiy4rxaHqBFctexDHTOVQi9VSH3gDZTYiYqq5FwKLPt89cSo2FTtKp2rniBFKSerlHi8lELTmbGZVtmrlODIOksrpmjiiDS8/E/dT467oNsgY1h2cDgv0tgZQsYtbsDiKl2KpBtXWFz8EPtPJGa949idI/o0RfOI1Gc0ORKJMD7OxH2OtfATuNihzb3sL15Od7mjXXuC8TSCgm9BnSJesTtKRpPlS2lWNJXvO2ckwVOPex79kPLgS2GyoUQfmazDr/3sz3L67id4yZ95A6rn4dyrWdu4mzA9TvYTsjhEF2Q8zme8TNFuDac9KmPC2ml0Ub7H5jgb7RbN5DgHN/cYHXuQfPI0a5//FXp22dq8wPbdr+Li44+TloeMjp1GxiPWmwmL/Ru40Tp57zrRH/IVL7uHX/rPH+XJp58kxjNsbJlaiy4ynozwsSPlnu0w4vCgZy4LprJO38PBcknTz0idh3bKIirL5XX6Zsr+zatMNie4E7dzc9bRzHfor845fmGTPbdBlhHXDq+Qusj6dMqxU6eZbh+z4yuQnOVk9YALASnGwAlI4piIxzslal9M5xLqlCwOp4GUlUl53iGRFBMxJxv1IKg4Gie0PrA5bWlCixaOn9nP1MbM2iYtDZM6Bk8qg19yCaNcjXZrsC9Y/R2zec+M2hGz2RLvLePOxstlsRlQXhvH1yYhah5iZFQM5XZiSIxi52bMZlTRpUxMidGo8PJIeBeKxNwSxjVaU+nUrZzixdSBo2bKwWJu6HblIpY1GxFcQaOqkYhHaH3Dqpx7bntu++OxPeszVtTcdLUgE664yVTmho1aMr7MrOOA1LC62Q+IRlVJMcBBtq644spbAjVFOaoc0KIsIhtht4ACKzip3OjdkR/Vli2Cqzf3EktX1EhOoA2mmsoVNRr2u6qGPKgR/9xw0ATFGTLjDGbPiC1U1JiBOlXLeJdpnZkLmqGpfW5X9lBECxfH+AhRIasD8fjsqEYTGSleNcVfJhcUq/JsVIaipio5tHSQ9XNnzeDkGeM7Z0Y65fHlE0i2N5A8xD24ci6gVU1lC39C6dJKyYYD9dbtOjUEypf3qQaF2SnNqOUlz7+D6HqT0ccZebYLcUGa75EPbpK6p2n0JqP+Iu3BEzSjs4TphGtxytqFlrMvvZv1s2fo+kSSFh2fYbx1B+PpFtPR+3F5FziA/jqEM8TRq1guThbID7THYhSS4CwOeeWW7xXmmTRTuqVy5Zpj81hi5xI8/hFh76Zw+bpDVXjo3gW3bXyY+VO/TExX8PM5Ktt0aYMoG/Q0JLeB0FgKd9oh50OQFvIICSfQfIXZtV9nuplY3z4JozU07eL9gq0Td7Fx/k+zNjrN4san2f3ch2hc5vJTH+PgcEYOgozH+LVNmo0pG1snGI23GW9u8NKXP5/DOOfSjavszfboWXDYH9ItFyzjDO8mLGOPdgu6xYJr/T7zRYdfHyHTCaNp4OCGBWm2uoEe7LP/9BMcXNxjf/cAvGdJQx8PufLZz7ARe46d2KJbJILznDh5go2tNZREKG7Xmi053uFK5EIBF2qoaSHV29DUbBhiKE2KwNg19ItYxi2Jru+gT/TLvhTPIE4YN56mbfGhKSMfZ6NetQK2IrCgQ3RCxvynkKKeKguCLzLqobApSLTPiguOPiZzSi62Fr4gu1KLp2FhyqgmK5zsKkHEEVwYkPGkOiiYfPksWZVx4y21vVzjZshZEBc1YrBl9iVb52pjqpmYlriQaRoLKdX6eMzfJhUUS4tSyom3BJIV1+G57bntGdvLXvay+0TkxS972cvu+6Pel6Pbs8+WKl4fKFbAlJtpLgVPEUDaAgBUup6Nj4r7bUFtkJWpnJYL3Z4hR/5WbtJSsZi6H3lANpAVMmSwsluNRcof6zir5jJV2rK589peNg46b0VHcMXVGEcebv0D9ES1fJBcR0XWXQULQWDYgUJUNnQk4yQTRFj2ylKhESwiQaxrS0gh5Bp6Um0NzQW58m+qZ0W9CZTjPiBWZuanOnzwARUDC/F0TgglsHO1QFM9CAeky0CW2kcrzuWiWpUBsaIaK0qB7FG0jBervfswoivnisMK1iwQVNnamnLm3CYuTEkjRQ5nNpLqMrrcp58doCd6/GiKd8J6mHHpsV9i/da7eMkLziP9Ddq1e1jKJfzW3bjt+/HtJmmxYJTejfMfAWeZWF3f0skCNznPejhGbq9w+DS47JmM20K66MihJ4hxo1gEUp9YInzuUcW1Y+58YeKhJzOPvr9jZx82TnvO3QHnzoBvlqCP0/gtRPagGSEpkZcRCWLhiTpF9CZJ5/j2pAVXSkdDT1gP9Ict6cAjNHh3jtHaOjt7H0Ufv0avZ8l+nSBzblx9D01y7Fyy4vVM+CqayTq5aZF4QDNxtDoCvw63ZO573q184MOfRUaO8do6QWARd+lzoitIwGiUmIQN+tSwODxgASg9Iy/IFBZpiW89zaKlTwtSnsNygognuU0cN5ntXuFTl69yuHPAYr7HuVMn2Ng6QV4m+oMFosHk+8Fu/DkpOXgLVPWeJEIrzpA71F5bIzhlHDxjZ3wdH0oitgq5i8TYk3M0/k1FVgK0rSd4j6/RBKxUUkfPW5NS55IhZ27CKcXymHJNpVREEhVN1aIstGyrvu8NGcKUnDhvRpwlhFPLcpfUfJJqYVZRJO8MCbZRkZF/RQRSKgonU1J1cQmh8g4z2dk4NeVoPjtUsnLGFTlXKpYHKYJvPZFIK7UZsmLMEF5LJnfizOVcMq76Hzy3/YG3l73sZfe9973vXT9//nz31FNPfeSPen/+pG5fhImfK0VDMrM71Ah5w83Q/tfX7qsqiWoRBGWmbOiE1TxypG6od2MZuqR6h17xbnQYXVV+ipPVX6rXTpCK0Njm68vl1Rip7qIv8/PghC6qKTFWZJ3aDg1VVC1mDEGqhYTDRKy2qFJeM4mNZrQcHynHZ5kcrSQCmVQ6SNtXU0i4gs70whBp4cQW0wwDhJ2V0kkWNKV0Z7lUE1JQG6SMWDD1iKeO+qwQS5h7qs/WNNcA0SBSSk4tKQzVcLEUpVWIIblI14Ves/EpyuvnbKSJyiFa1VyCauD0ibOMttbJXYPmJcQl/WKPPFsgfU9adia1bUfEg8/B8hCvM64/+SSnN84wOnMfa2degew15LXTOBwpzvHsMHbvxbG0EV3KdGkdbUpxNjpAe2U5uw2/dgupP43XiKQDkl6iafYQDyl27FyZsXt1hviT+PX7cJMTPPCKz5LTR3Gt8oWr8F9+WXj4TisAu4NLyPpFJiefTwhKnxP98oAmT0yaPpoQOxi5A1wY4UND389MGRTPMTm1TV67iEtKSmu023ezPb2Py1c+wcb2C5DpPtef/Bjh5lXyWDl5YperVz7IZP0cmxfup5luIepQvcl4ZGOKdm2Dex+6nc98/jrXD24wvhY4vXmKpWvwOYBEFl1HJ2Oa0xNi35ES7OxcJ3ihGwfWJiPUOdJIWfY9hzcX5OmYuV+yteWZXdnh5KkTfP7mdWa7u8x3b7A+atjc2EYQlrND4vrIkNQsdDEZaomN/6wfsDGOc3ZNC5YT1TqhcYZ4Vr5ITomMI6q5jfeaLb4AQByezNg7xq1n3DQl+y4XQUMw3ltl7Wsh0pemwRWUOFbSbbGXkLpsSVUh2hWSkpq6T8B7b2aJYopKUQx9RY3LU0azWWwEpgWByWqT3JyKOisW3k9Zr7zzpN7TaQLvaKZT+sWiFCVqcRswvKYOa7N1paLgfKBRR17GAeXVsv42Yll4FUuS0rjmnFhr29/9BvHc9tz2ZbZ9EYPU36o/KiTigtZY51FuzlVZg2UmDWWKVjKqrLgptQhCqTwbBuG2Hnk/XRGaXbnoju6NDDTlAmLba1aUxwhyZZxToGVf3s1Mq2wp7bOVSbmQHFemPraIZTWBRhUbiRRuTTIOUM1lqqOmGgRK+eQjLNCuqwTccnQKD9EW1VIFplz4QVnrBKUoK2rR54afhVLYlDFcLmOjakDmxBVPHkWyfQdewWUl6IpMbLJTq0RqDIXZxwta9KHVs2NwiqZISrPSZ7HQPmSIaagrqFaYjdIdS+T0LSfwzQRyA4uI05YwHqFuyWJxwOF8TpqskSSxvn6KWRwznnom7YjxseNsHv8KYt5Ax1tIzmhUJIyYtNcQ91krKlMg6RrqHsa5KcoE8sz2RK7QtofksM6Bnuamfx67+lVcSV/LldmLuRG/EjZfQVy/G7/1ImR6ntyc4viFh7hw25Sve5Xn2/4HePCBxONfAMWT84J3/Nh/4ubT15gtBDdapx1vkDTS9x1ZA9qeZxnXiX1Hzh5xE0SmCIIfncStvxDXngIO2Dj+PEYbd7O5dhrNC3x7C6QRa2vHCO4UzbFTjNjj2uWnmAPqJvTNiNi0SBMIaw3TyYQT2xu84qvuJCfh8vUb3DzYY9Z1LEj0c4VW6EaJ3jtyE2jbBo0ZR0Ky0qeO/Z2rRJ8JG0I3Ug7Skk4d893I3heeZufmdcJ4jcVyQaOwvrVBM2poQsNkOmI0ciQ6QxpyNtuIlA3RI0GKxWrAipuUE6IZnzMjvAVJBg8u4PBkzSz6jmXs6HMilbw554TWS0n/HhGctyuwspPrewzGnatRU73eYx9NhVTP8tIs1N5raMg0m2u3ZpN1u9rA2StWNEaTKZycGHlXVHAEI/uWnwUP4q1BKWudrZX19SoyLMy6HucanARTKWounmNlsucteLO2KDZ6thZHgjMX9FwbRrXxsWr5z/YxiKFSz4ipeG77b7qllPhH/+gfnb733nsfHI1GL9rc3PyK173udXd94hOfeEaFefXqVf+GN7zhrslk8si5c+de8L3f+72nfrsR0bN5vQsXLrxARF78lre85cI3f/M333bs2LGvOH78+MPf9m3fdmvf9894z9e//vXDe/6Tf/JPTv2hHJTfx/bsx1JALTYUu3E6qTyVemMts18psC9KzkIuMssqNXZHkJFVujVl9mv8EpE6YtFnEPgUCtLhLXm7MFy0FhsFLXBOhn2ASpSVYWGjogtiKgPvMsF7I/hqLoS+yitZ8VGGdO+sqxBQzUQVXPF7EfFUs6xqRoiYpNJ5R9AS+5AcjeuJ5RhkNYdhP8z8S9dVjoNFMxQgqSz+ZsHOwB9KWRBni77Vl1IKESv4mlIE9lRCdOlEtfoXmUmfV4s3HPx16sBM1YjDdlDNxRfBF253zEqvYuozOwOKQmQ1cguInXji2Dx9FtecYt0v8M6jjRDGntAmvPbs3bxKmCU2p2OWLjLdUtRtwp4ymd6OHzlSH9GSRO8aGOXMNL0TkX0rgGNmyTmWzQVwWzh/BRdmeE2cvDCH2SeYLe8iTs+iyZM4QCSwePozjI4rBzcOCO48TI/jRiNgTDOd8IkPrvGx98yYngp0Vx2f3BHue2nmvhcIv/zOT3P+4ce4d2ML1Bv61AhKoJ8d4n1DaLeJEWBuIz7nyA34BCGMWDaezfYY/bJhNruB0MPOoyx2P8JkXTg8nDGd3IaOH2Lv8n9mtvMBnvrwcc7edjfNdIQXj2snjCWRXKRxyh333sJrJfFzv/gxLl+/gRs3rKVAM3IsUiaMWvqcmMXECMVNWtpJJndL+oVweHCD5bWG8XiDYyfX2b25z+HBjJuHjxOXV1ncXOPm1V1cN2c0bTl57jQb29usM8LLGgejEQ5LWBfMUTyJpwMLmczOglUV47h5jAPmhCTJcqQUnDfko8826umjkb1zhuRMkeU8hODxvjEuX5Flazm/swox1XZoZetgXDS7oGqT4+qCV8gtRZxp5GPxxBgZ+YZlNMQL52wNKXhpDQTOhfNn65hlU0n1n/CKcdhs5J1KqGhOcdg3EQjBMrWi2jmjORcFqI3LndjoK5dmZWXC6YgxEVVpswXaak4I3tZxTeBtnBXV1stgHQDL9Fxx84e1fcu3fMtt/+f/+X+eArjnnnsW165dCz/3cz+3/b73vW/9gx/84McuXLgQAf76X//rd7zjHe84BjAej/Pb3va2W/4grwfwb/7NvzmztraWR6NRvnLlSvPDP/zDpx966KH5d3zHd1z77d7zrW9962/7nl8O27NGblxBB6gTZSmEXIzsVrAXklYPG7sYkhZSrhgAXVGVOpeuhUxGhkKppudpLkoesZurDKMhwWGQdtSSCSViQZW5BMnVaqfsj8dZRwIlP6n4zOSSTqzCyKfiJWMmaypVc1WQay0KIWfzcspkp45gqnlfhZFhhaioyjCaCg6SJBaF1eKxMZZTJQt0mLeKYNLrmKDXFUwPZURV0ajy3QhFvUQmoEPRgpiaTVWtYMomgTfCr30htpg76yaLFNepGnpUzoHsst2AZIUiZVeVZ0LrtERDHPExUsjFpdXQIStSvfdsnr6N17/utTRxhG+3ye0a4kf2SdyIdjplbU1trHXqOC6PGPktXJgQ3RgZbSOTbbu59TuExuNRmvxukPeZyUhWNG0Q/VcSfIMPjsbPEdeTncOJ0u8tSf0V4uE+cXHdvod4yM6VT3PjM59jtpzC5BQhHEd0nT6P+fAvvo/9azvM9xwXPxW5tguzLvG+dyo/+H2Jg6uHfPzDF5kdHHIwm7FY9iyWgkqDCyOQBWmZUNmmj6UYdhTL/4bklNFkzfx+XM94LTAaNYTJDuPxkjAec/a+P4sud4i7T9OnCSM5YHHwIa48/RkO9g6IUQqKMcaHhradMtpY4+7nn+fPv+6FyEi4eu0ys70d9tKcnoAuEzs3DvHjQCeC97BcZstpmu0g2TGJDbvX97m6O4ONlhxa9ncPiYvIU194itnuVaRxHDtxnGObG2w2U6ajllHbEkIwhLJmOmkyQz/7+ExGI0Mv7DQn5xok6YZGhGBFSlcKmpgiWZOppaKRgpGMbzxtaBDxhTMjJZLBrklTCJYAyRozUcZhWtWaBdmoozAqMlI6rWqEmQQWqSdrphm11hBkYyNKadi0IjZVSJgTKcdC4M8g3tYqX2j3zpOy0g/sPx3k4SpC0wRaFwpaZb+LNiu3Nag0LjFZOeVs9xk3Y1KnZE1EijKzjNer6agdE+z6duArie657b/p9olPfKL9kR/5kVMAP/ADP/D4Y4899ujjjz/+kTNnzvTXrl1r/sk/+SenAR599NFRLTL+5t/8m5c/97nPPfqud73r413Xye/n9ep25syZ/jOf+cxHPve5z33k1KlTPcAv/uIvbv7W93zLW97y9Oc+97lH3/Oe93zst77nl8v2rIubpJVjYz9nNdSgEoOtk9EVubUCJAP3pd7oq+MuDHydylSG4eKy2IVaTFFIt0c6kUEqXizyKkFPVqThmLPRfAUSRYFV7rq5dGEqOhQNwTvjF5RuEGyBGOyJsUJt+LzVhA/rygY+SVFK2MKZcTVcUX15nyK3LA6qWdSs/kVL2reRiz2FU3NURkrx5qAe6GIMJpb/IqXyqJwcO5g1w6oEcorlgTUFmXFaPIFqcClWzFU1moh1ygN8r3Y+KBWaz0hOxUxM6HMq71+OnzfVVvJ13OWYZ/iGb/lGXnrr7RBG6KhBGl9WY2CpyFIZu9ZSxBdqXJWYyH0ihBEqY9SdshtOTqS4RPqbTPSnUZ0bJ6pzZHeBpj1NOx4R1OHiPpJtPJd7B6Mttk9/kHH8GXANUXfZu/RZ9qOSJncyXj+FtKfoOcbFx67zq//fn+aDP/8b7MwjT+zDZ27CtWvK4a7jxr6wtwezA88v/1+/xo2rX6DPgmuP48IamjLaK2SPBAVpiW6beZzS64gsa/gWiwhgjh83+NYRgkNGJ5FmSrt5mtFondHmrWxeeBH94SfZ3vKoOtLudbob19m5tsOyU/rswLX4xhMmMJ1M2Bif5d477+CNf/YlTCYTLt7c48bVG8zjnMN+ThMS7nBOnM3R0QZdCixzZCmZfgJ9XlqcQzcjxQxpyfqpNdR7dnf3oOs5c/IkZ09fYDLZYDRqEJ/JKTHywfgkuUaylvDT0JJcwzxHsssWfFu7B7WiXTTjxZAdi08x8UHfd+ScSPSWO4XQOGdRC8HbyMiZj05wYbBLcHXkVGMHCtyhpbjPqoi3WBZ1dUxbx/F1abICMjgzz2ydJy07qoxTsUiaXBj7FcHUKoAoOVDiamiuK4/TYd9UqlEG5TkecZ647KApYZx1XFXH1oWA6LzpFDWb27r6qlq1z1TXJKXYSkhxPNaMFnfmat/x3Pbffnv3u9+9Vo/13/k7f+cOEXnxsWPHHrl8+XID8N73vncN4IMf/OC4PufNb37zDYBHHnlkcd99981/P69Xt6//+q/fOXHiRJpOp3rrrbcuAa5evRp+63v+1b/6V28CPPzww8vf+p5fLtuzH0vV8XKpXOyWxpEcI4aRyW99WlQlqKX/luaHXDqhmlVUEQnLcbL3UBhylSp47KkohaEAA/RKIucy7lELFkSPmgNinZaW5aigD/Wa1QIYeS/Mc6ZRIZCpeF2VWxv0W54vjmJxg3fPTNC2cZDifR37VLzKzO88nogjgoVdokU2LkWKnAvwIOCL+qh2kRWVyeaJkihmf1nxdT+LAaGqDPC4ryM0MiHbzQFnZMhakYqzLzJrmcEXEiblZlC/XhkQNfu8vuy7uIqI2YJtY6kCi0vG4XEOztxxP2/6M69EFzPc6BhINNfguDCDxGifPbuAb9bx7T64EeKmpPFZwmiNvYMdQoJmPCHOD/CLAybhV5HwWes4UfzCEcNpJu5nSfo89uZ30LQXyS7hnJLHAswZTTpOn5qxP38XV/ZPs5zdZLJ5ljC+ha4Zc+Pz1/i1X3wfH//Ip/HxgCY7Zjfh0GdcFA6xY9u4orhzkd3LV/nNX/kcr/mmh5jPZgTdpx0lfLsFbp2oiYDgXYPIMTIdzk2JcY/APuJ6kHVEJ4zHO4y3ThNZ0HeRPL/OjU/9B0aTh0E22Ljrecz0Uyw/9wR7F9+Hn0NY2+LY+gTGmWm7TmZEM1ki9GTvOHmh4Wtf/zA/958+yO7OLlevTWnWx6ynddrQM4+RZssTtrZZRI9cSThmXDm8hozX2RfQhSNLZG16nvXJkrXwBFsb65w5fxvbG8fw3pk8J0cke5zBm4j39DGZmabzRBWy2LhFY809kuqAYOooXxyH1VCcnJUYlRTtZp4NEsQhjJrApG3Kc9TSr1VImgZVIrry0BLKNZyzqZtKkRCzlRU52fXrh8SlKrkWRLwhxnhGPtDF3gp6bLRW+YUV5VmNi1b8vUZsBEUpVKqGwZDVXFAgR3ZK1MQoBLyYO7iX4tUjGEJEWW/EmVs8buDjORRddKj2TMZT9nd6aCvvxg0Fp6/77sOR8dxz2x/mdv/998/btn3Ggb/11lu73+nxX4rXO3bs2JAD7b0hqFrVQn/Mtmdd3DitKMfqojv6iWvHX4uJOpYyqbKYZ4urCI3W/y8jFYObK2emlEArOBoG0ziRI88tAy6jIspgP25+LKuFUcu8XCk33FphUT177F37lU6AZVKaBry6ok460s1V/os7ekxqp6WDH4Ww4hg5MRi4jsiq580yKUGgAfp6RGvlReHClAVMRWy+7go5OCVWYZ1lKyZgNWsoD0fKfnY4kmb6shqKihnYaZWCqiUJS5GrQukcLWE4Y4u/KyhOqsVL/ezln6lIxq2hFCRikRQOJDu++lWv4vS4QdwI3djALRNpb6eMKkE00/U9SRp0V8iT48imRRaM5p4d3WZr+zZcusnIZ/J4hC6uEcLPg084zTCFOBbk4DMol/DuM4z8neS+B+/QNuNb8GtLS9oeCxvyYW7ceIDx2Ufo9j/F4saTfO5Dwr//D5/iiZ05U21ITFmfH7IhgfUu0YbMeCyMvEd9xqlj4jOTmHns/b/Gy7/6haQTJzl+YhMJ+3Rxzig7yD1xbYuARzXhmNJHh/MTMj3Bnx34Zt0sIOLZPvkgk+mCbv4r9Pv7qF5mut6yefJ2XBT2Lt/ApT12r3yMtTNnmIQzhHaNnDNBxmQybRstBy1scsoJr331i3jPL3+Ay5eeYOPUMfyJhi4uaNst+kMF7VlbP0l3ckR3eB09OCTuHxKXCw42OtZGJ5ivZZbzBcfGDc3aBOeiecbknhTVwivVE0ritp2qgvb2N7D8orEL9ERrFNRGrL74SIldSAWZdeQspAQ5KaRcXLIdEkxSbWnZRoZ3heinRU3l1MwqE1ZsOcEctYcrWYfgTO+coTviyVoiao0tb5+jVCKaM7HEHTjniEkJTSjXfbR1EENplWz7DcM6UZFtcaWwSsncjXNZBzzgLINMsxVXrTPDSq9WQFWeYUVcYx1ZaS2yHOp6RDy7B4c4PzIDTmXg9dnzzeOmAjqeP5b3ty/rTVWZzWbPOLBf+ZVfOavF8Jvf/OZr//Af/sMrADln3vGOd6xvb28ngEceeWRAS378x398+2u+5mtmH/jAB8af/OQnJ0df7+Uvf/nhs3m9Z7M9/PDDi9/6nh/+8IdHv/U9v1y2Zz2Wql4r1SyK4X42DJ/5nc5/oUgMVYfCo974KuQq5YecdeCnVFmCKXz0SFG1wnos8yjZTdyJ5aWU1zR+jw4+K0mh00xfuho5sv8GCZul+8gFkji6UkSVpa4gNKZ6YihcZFBFVXMvAypsEcv5iD8M5Uavrjj75pLFVQnUK9J0LUaqMoOyGEsJ9MswqI9qYaJALMe07AlZzAE1ig68IdQWvVQQNVHKzJ8jN4E6zrN9iZptFFW/7vL9H4XSEeuwnRP6nG1hrUoPgYw30rM0vPKFz7cFef0UrhmhBCR4EEeOkdwvybFDEyz2DiF5xhu3MD7+Amazm/Ta4KYer47+4AoHNz7PKLyfEJ4mSzJ/kUbwQZG1J5Fe0Nwh/afI+bMQkt0oHajFVMFYkSmMmys4OUYYn+a973uMd/zMZ/FdYkIg+5ZjUWiTMvZLLmzDLacc548JJ48lzh6D0ycT54/DLWeV/vpF3vH2t7Nz/Tp+axM3PsXaxim8B4JCPERnB0Ymzj3Q06cI4Ti52caFbVLOiB/jWOJlxnRNmWyeYe3UC9m45SGayXmuPfYLHF77HMFnpuOWpt1h7+Jnmc0OSctIxJOaBtoxbjRh1EyZNJ5Rs8aJM6f4qlc+QJissbOzw+7ONWbLjlk8RJueRVywu7/L3u4Oy2aNw+iZKSxpeOLyLnu7N1he3We+t4d62Nhco2kdqj1ZI65pkGYMTUOKEYobtksJiRFNiZH3BAcxJdQ5egFyIqjZM5hnVLlmC7qSs9qxUS1j0QDZOCu+8Tjn8eILwR9SNql2DaWs6LAVTMKKSFf+KjKsc4g1OeLMrDOp4a8i3ka1DoIzM8Jl7AvyU8fTZXxfxukq9ec6CVoVFGAOxLVpqvtXx1cOZewcGhMqmbRYmngqleOqWhAXQ22keDYY/01wrkGCJYGPfUvQbGNpsfGWvVZfZPUUC4g6Gn9u+1July5datfW1l509L+f/Mmf3PrGb/zGawDf/d3ffestt9zyguc973kPbG1tfcXrXve6+3791399CvDAAw90X//1X78D8C//5b88e9dddz34ile84vlN0zxjdvLAAw90z+b1ns320EMPLV/96lc/4z1f/vKXP1ARni+37VkXN7U4MLSFMj1ZIQxOba2223OBjjFfF1NVmaV3KmMTLUhKRU2GbsMxkJXLpMRIv95cRctQBqVCqaXQUaAQkLOqEY1LsSFSZM+lUKjF2cDPUYteAhuheZ8K+dbjqnrIeesii7mXWrO4ej1W0O0gt5baOVIqDltUo9jrt2IdZEwOTYIUZ+CsSlJTODkUUWcjmsINsIKnUgyrzd6Rb6pA0YbTGH+n6J6ohyoqdGrOwiIUFoMRcGvhWT11ErXI0SrVGjJ2yJlU6Y6VSKw2UlpoIU+W78iyyBJb22e458x48ByRPhpXohCfnSb6PpJ6yD2wbFCZkBaXSTufZXLhNsYnzyOT82gjLA8/hux9lNa/E4hIEnQfZCmWoTUaI9MMM8fIw3hLIHhSUlwEFqW4LqMIF5R2nFnbuo3Tdx7nyYM9bu5HbpkK900OOTuecf9J5cKmMBrBSIStRjnuhdMbyqljwoltZTr23L4B7sqn+fn/389y8+lM7DxZFe+EIA0aAm4UkJjIuUGzw7kJOYztptwvyH1PIoFvaCYnEDdi0lyn0Rl91zHZvhsSNLLLdDOyvnmSabtO3HuMm9eepuuhowGnOAmITPHNGiGsMZlMWBuNOXnmAl/5qucjHq7tXWYRO5rRlMl4zNbxKblbsHvY4RRmfeLpnevMcwZpuXLtGntXnmDUwOaxU2yubTKWMT7HQihfknrzP/LOk52SsxnXdaKo9yxjok+KNIGoCZdtjaiJ9k7NJFNLAZP6RJ/VjPu0JxWk0XtH68B784UxpDINY6GcTFIV1VzUFUomnJ3zHkCtuMCV8zyZwZStR4YNK7URUbIDIaDiaZvGzPxSLKanBV1Ws8qoQbeN+qJg1NLMWNGWoVz7Uvg/tshYY4SFhWZLXF8bT+hipu87urKaenwJJ7VrV8k06izrQgKiwjJ5elVCsDU6uWwXrVqwpopHXMA1waJUEFS/SGHtc9vve/s//o//4/Nve9vbnrj33nvnV69ebS5dutSeP3+++xt/429cfu1rX7tfH/f2t7/98de97nU3x+NxPjw89N/1Xd/15N13370AUzJ9sa/3bLa3v/3tj7/2ta+9ORqN9ODgwP/P//P/fPHhhx8+/NJ9+i/d9kVxbqQgCEMzU7oL84hYjSaG0RMF0hSDY5NCw4p0bGOn4h9jTx6qrRUKohU6McRCqsyc4f2kaJpNaVXk5eUmX9GZmqPky/25wBvWqVTkYxhrJQKgCXMELOS7lGXIoamfIBdDrrqP1P+R4k+DdU6IFB6KdVBGGDbOTZcTrS+qKSn1A1JGaKYhM35TVSbZGJ7yMer3EcCKk4q+5DyMByvSpJR9yIaSJWcFKAW50mwwuyU3VzM+Brl9kiPfbZHImwWAOfrmcsg6gV61hGcKOSREG0QzZ8+eZm3N4bolzA/ABSSaHw3ZG3LXd+T50m5Chx0pNchoG78lzG4+jTt1K0gi9zvE+ecZr38Ewk0rriIw3yavvwHCTxpvYNJZgaeKeA+LBEFJEdxSSEZWsmMTAuMRqGu59wV387f+X2foWGf59B4f+LGPMl7r0CxmHuczEwnMSrE7XphnUkx2s13MM604rl7+AL/6s/+F177pVUxCgEbRGGg0QO7J84uEtVvIwSFZ0CQkEn3fcThPTCfb+PXz+NAyu/YEfjTCL5b0O49x8/MX6XVGk5VJ27G3e4m1zXN01w/Yv/w0ywt3M4lj1LeoE7wXnCSyehq3RiYhIXDrHWd5lTzEr7/7kyz1gEWf6WdzJm6TPGrZ1wV5N9E4x2yZObEhNPMOnR8wo+fU9mmm6yN8O6JLSnCOhmBNRUokyfjcElOywVOCqMatkWSxClFBxIMmvCrZZbI3FY81iMnQyYyliacIdWxcUDjvhKl4WjEvF1fP4EL6l5wR780IMNvvq7O2kW1NNZhLwKtRzux6GEQJ2LhwhWI7awg0kXLPeDplsTTGXrVCoFyfw8IoDIWXF+O2OPEQU1nPCsqUV0NlEVM5alZyTDShQVyiT4noKCiqEYIlZ0S8iSqcWNFGwqnS+MBssaBxgDqqxYWQab2QesuHs4mgobHPbV+a7Td+4zc++Xs95ru/+7uvfPd3f/eV3+0xu7u77id+4ic+N51OFUzN9D3f8z23ArzgBS+Y1cd573/P1/vtnJJ/u/08c+ZM+rmf+7nPHv3dW9/61su/1+f5o9ievUMxHOn8V9yKI2yTUqzo6s5b30Ss+x+GJfX6disIODtz0c26IqraxbwqhEyOvioeTGLJiu9DUVA4KYgLxf9BVxwYKg9lNc7JddY8YMWZEBx9r3TqaIqJ2ZGjYHvnVgWD1oJk2PdKILa/VSn9oJagHEdnBVKnygQb6/RJyufKeFszi9+OFW1Vllo/y/B65TikQmKsSrWsOlRBK0BeVhybIo1adYf2oIK3rKhSMBwjKwit2GtKYSTeRlBkxYsVbj1KS0XPErGZ8vKveRHemySYxcyOyTIiSdEIEUeflZSF5MckMvMrmY0Lx4h6QNeeZP3MKXzMpOUN6JasnxecV5g70hKy22C2s44PD7B25gtk3+GmZUy9TLAwqavOoL+hLL1jeg6cZJrNNZZyjq4PHLvtHGvHPs9itiDffYxmf87Hf/aD7KNMvDD1juk4cvPA4acOXc/kBnTprS7ONp48PZ7zSz/5n3nFn/tTTLsdmrgHGxfILUTf0zQtmQOULdBg/lB+jB+vMco3inS4pT+4SewvldT3BSneYDw9JM2taHU6ZdLscHPvKU6eOc+lS9eZHSyYTCe0rVn32428IfhE7pWxruPlgM2NDe64/U7ETXjPex5lR55mOj5BkobsM6MQmPVz9g+WuOwJfWISAot2zKRpGI2U8cQTXKbxqXiwlAiD4jGTNJErxysbxdU7U+654Fmkfjjfepdxmgk4nAMv3tRmYihkqqZ9hdMn3tlIKpTxbUFKpWS0QSkknKFnknUo7Oto3Ez9ahGkeMdgheDUmg2HjaG08tbK4udwZLWCZhl7u151dX3W9UHLuyWwgkbLuLoIFByr8TTYqFnEDPVsjGUS+D5Z1MSoCfi80qQiviCr1lhG0eJCnvBi3CEPIMYHcuJtdJ6xi784gFodZ3IFN6xrz21fLtuP/MiPbH/f933fuQcffHAmIrz//e9fXy6XcuLEifid3/mdv2th9P+E7VmPpWpYo13M1Rl39TcrOFY3yGHTAvuqITdx4G0oKZlUG3ekrhieLBx1wB2Km1LgyFHIAinzYjfMnOrjKCiEBWCu0Jk6D+fI61LGKagrBF4rOjSLzaahWLdXrs2qOBuozOqK06gbTPRKuzdUdZVnlMuADVW6bFLeylOsn5ly7KQUcbVgct4WZleOhRUzBuWvjkc5RiU9fZCPa/3uhAglFSvjMNm6eMF52+c61jrqikxdpEvBKEXFhRhqU63yXYalCKjg1aMO7n/+83nzm/8CMMKFEdJ3cHiAHO6jh/v0i0P6XumlpQ8N2XucRq58cp/YO+Yzj4zvJKRElpt0B08zCidwnCAfAPvg50KKW6R4g9nBreTDkybHl8Zk5h1wKKRlor8GB41w+Vpg2Y/JfUvb3Id3Y1QaJAfc+BZGW8dxss5Dr3sli+ObBG2Jh8LBdXjycWH3mnD9eubGZWW2ELo2EabK+rGG6eaY06dbTufP82P/+39iceUx0sf/Jdz8MCyu07JN9ifJsolp9Do0LclpRHYbuPFZGr/F7KmL7D35K+TFLmF0O+1kk+mp02zc+jDTrdtZ276N1p9h5EaMfEfymZP3nmDvyUvMY2TZKSk3OJmCm+LCOs1oim88vm2ZrDesba5x21238pKX3cd8b8HBzc/T7V3Fp8yTTz3NSB266Jjt3eBwfwe0ox2NCY0zPo0KksSywbqOnCIpJ2KKxBiJKRbkJJCLlNuXczdqpg3B0OFi4yDekIsMWKJBDbHM5BgpEyMrJEQIztGGgAuhjIHLf+WaVKR4Y2mROcvKdfiIEzjlWre8bYfgy7jWHbm+KFLrsgI4Q5Eno4kp2krF4EozWE3PRYzjZuNrDLUp1Uy9buvSUaNojGdXs9yMn+YQxqGhX3YkMTjXxtXVosKXospsKSi/S2Ihtx4p1gdajpOhxbkoJkWsCM1qYovnti+v7eGHH57feuutyw996ENr73nPezY2NzfTX/7Lf/n6u9/97o/fcccd/e/9Cn+yty8iW+pILTEQTVYFSEVdPTKMq2A1oKo364S511JQgVzcgOvP9vKV4V/CI0vHkofuxJUL/8h71Bt2VkTySrZcPFxUV9Oj+qRV4viqeFq5byjeC31UeiAEu9nbFMqQi4rUaj1AmaI4sNf0zhbSejBMXVTUVkXyHhQa51iokpKYokgKATfXbtIUV/nIwbTgT1s0Xfmc5v5LGYGtlF8VNcuSC+Re+EflO80quLQqUJCK5piyRUqBkzCuxEDGxgy+qqeNx5Wu21yIk/MsNBKzGR/2eN78xj/NMd+ifgqSkb4nL+fosiN2keV8Tlr0dNGRwhhHIqeM+BPk8fOZyYytTQ+6g3dTnPTMlvvw9GVGNCQdk8Lt9O5enGvRMOFw507WR1+wUi4J0mf63YTrHe2tmXYNZHSWa9e+mo1jPV3zID0jtFFin0giqJsynirSwWRjixuPLSyaIDUs17bI0xHs3sAv5tA7wlYiBc/6mQnjpsd1I+69R/iVX/6vPPayv8CD4wnr134JvfkB4l1/EfWtacg1oxrtHO4D3UgZBU+/iOw99l+ZnF+jjzfIywbnW0KzxZrfZO/SdZppousP0cmStnfcvH6T7TNb7O99msXiApPRCJ3Y9+YkI84DmTBucOpgKbRjYZ2Gu++7hXY04n2//hmu7VxjKyitEy7e3CM05geVBNYnE0bTDRq/ZDIaE9owFAiqiZQsY8lZfU2fM67LRgFRC3Ns1NGVUMvY9QNC67Hn9WSCeDt/nSMnJcVi4CnlnKwdgYfGB0YumKoIiwrxNdkbpU994eMwdGKW55bKWmOFxAqhLuh0UVraFcEKSRVBCyoEoElpvLdGp9hGOOz6ObpZPp2hWU6chVyWhU1LM5VRmopmS+1GzTm4rnFOAi6XZskBRcFo0m6TVZhas1pLmFJLSBYFUnhNms0PLJJMOFFcnTOZZy2peW77Q9u+4Ru+Yf8bvuEbPvFHvR9frtsXxRIrwO6q+ygFhVDHI5XRT/UYXY2VRAgJsjiS6BDeuBpoCWjCYgqKAscLVeIzdDJQ7si2sNRCShFE80DWrIaC1oTkgsoYiZj6+FKIOVfTtktoZc5DF6hiXhd9FpwrNMKCDtVOqoQi2GdVIyeHsutoXT8Lr6iSpesHApoMS1E6FQurlBKupxZGKS5T1VwVKyq8XiNmJ8uCSVJHYOWD16oyV9n7kepItIy2nEHSrhRe1OGblmIUXK7+Nw7JpqJwBaJTseRm+86sRLVhQx64PdGb/8vtt93Gyx4+S3flC4zbbUiZNF8SZwfELtId7pNiIi2yEUZlBGPonQe/hncXaBcfwIcWP1pHZEzqD0nc4NqTB0g+SXvu5fiwbQobFRrnSXEdFoKMon0HraObK00ruLYUrf0G/fQEi9F5lroOXmmS0EtCSHjdwfkxj77nk+x/9jJ51CKNY+vOB8g6Yrp+K2HxKeYXP0wIUw4PI30L4cYhx24NzHcPaRbCPe0+y73P40/dhtv/z+QTrzTlTZeQMAJpcO0YTYleMk5LAOviJmFzipueZix30vV7uIXCfJflwRw44ODGHuQbSApINon6zqXHOThcY+1gxnRjm4UmgozwLiMpG2ogZlTX4vA0BOnAbXHn3WOyE97za5/k4MYuG2NPFyYmHphMSdmhoYHG0cqExjW0EgoS6gneAS1JezvvnEUh9M5chyVGghvhnMOrMPaeWYzlGio2DQNimHE5ERGIgkYtHi7V3sDk186bH46BlGrcExEryNUhkiCEIiRIiB7JQfOhkHmzIa85EzVaEajFnVutQVAFUlFwlYbGShxbL1JWQrB/B+8LY9iOQ42bU8Ucm1Nvqj2HjWZTaVqKS3m16nK196BcdymDGAm4bQKps+R05yD2dV2r16Y1NzihyeZNRAkRzjkTxSFFdp+iQ9WTcl41e7/VwOy57bnty3x71sWNxT7JkEfkdMX3GMYthfAKrJK1FapXuRT0wQoFI6AClpRbVJi5zJtFtZD6ahFURjj11iv1xetYKZdux5uRHQZrp4LQZLECRkSGLk61IDy6mjGjeRiReTLqICaLjnDlLSvWs/KFSKu9KwVbrsRqqd1jOR61+1IpvhwKojQCXY4EFUYUsy9h4ALZ6E8HeVctvKAWkHnYt1yPkdYR2Aq1El1xGuuibiO6+nWpKae0+NyUL7sWauZTY4tvwhyVHa6oVbWcI46sxShQhD4Lbdfwiq9+KSc2zxDnDpcS/cGcOJ/RL5b03ZzFwQz6DlUzDkwiiAZyErxvSGlO385xkzuQ7EnjNRwnacM9zMIu/axlY/sh+v4qvWtoFTw7rG+9F3EzO54jQ+XChuBawFkBsT9fY3TyPEmmaPIEJ2iKZA7R/hCY8Ll3f5wP//t3MGrWePhrv4FbL8DG8fu4+bEPsvtLP8P6+RnpFpgtDnDHPJcORty4kdlnydaW0B86jk8Tp+J7mIy26fcdobuGO7yGbNyG+gaJHTl6hA5Hg6QFtFMQxZ85QXvmpWjeIN/4KMntIQdLYBfnIuMwIq6dIccrLLsZLYYMTHxHt7NLPHGG+bxj5EZDgKP5x2CFuwfvMwTFtYG2G3H3nWcYNSN+7f0f44krc9YmkeUyMW5GZDJd6mi0AbeO5p4UHb5p8I0fFJOuNBpJzTVckiEwuLZc7w68xQRAIHgrbi2WxRWuiYVJ5lwM9dRiQlSzWSl4j0hmHDxNsJEXhUzsy/VhTYWtA42EoZSvjsXmlWVIp0PIzlSKRugVXPUjcgVN1pqfVkwHCVYghEyOSkqprIti5Odh8bBjn9SIwG1orT1KZdzlMlpG9kl0MFPjyHtm8WRJuGBr8zJGnKRiKlpGcoXw78pISSSbSq0cw0QkNC3EGhljusiMEsLI6AQ5QSq+Uc9tz21/jLYvSi2VS4EzUOxs/RjA1mcQ6nX1vDrtNlTHH1E9Fen4MPMqkBBF6J1Xhlb1zi0rKITyUykWys1dIJfX07JTfR1vOVfm31q6oKKj0DzQf30hIVaVu3MWrhe1yqVNol0Z1RV5siiKCn2X/VKp6m/AxlSu7JjpFrK9rlTsx9FnGLkqnzd0yA3HpbisFtSqcea7s0r3tdeolUrt8hqOHI9y6HKBwKyDtM83KCIq5KWlGCpFpagpgio4rpqG/K2VMNbg9ozgJeNRsjhkbcrrXvsqGAXLKeo7+uUh3eEe3cGS7nCXuD+zRV8ySLCibil08ZDWKd3BJY5tdXh68ugM4qboeJ1+p2O69XwOXELdOq3rGY2UkK9C8xv40eNmNLjn0C0ljZT2pIfOlDZpLkzXj5PDGsvegyTjfHRLYr9Pnnc8/uuP8qmffi/bx+7ma/67N7CRLnP89ntoT97K9vJRrj42p0+ZyxeF43cphJ7pZuTC6RE7e+uMuh3Gk0x3KDz1qRvc/rwzjDfuh/klmpu/QfRLfLiXrpujzSaNC8S8JPcLnDS4E3dybPrX6XvQuEdozhA1IU2LCws2Nm9nkTt8eppmuU+ziGyffRFXr+ww7z5Pf/h5lgdnaQP0EmhlRG48GhjI3iKe7MeMJhBGiWbpCHKc9rbA5vYj/Oq7PsWv/OZjtDHiXWJj7Ripy0jqyS6TNOBUDFEp6KpIKoinJ2kxvnQel6HveqQpozgstiOpoyGba3dWvAYz0oxlROJslE1SciwIbMgkelo/pnGh5CIVtWHxc3JiJHenASkKpYyNY0QLcpkiXld+UHaJiHFpyhojYjJsVUsCz8TCc/HFo2s1GgrO2bqQi+JRfXH7tmvMCL5wqEvGvoU+oT4M65tkaGwuRC7+OLl0KVIUXU4EXCmuOhvjKaCSiWpNl3eeGPvSjNlz1Zl1eoyxOJEni4DJglNPTssy+jbn6Cxfnl4mz23Pbb/T9uyRG+yCKZofu0iO3C3tnl6RhCMFUPlbLQIcSnQUQyx7TtJa6FR4oIxBtN6oS8GgDEnhg/JgiDVwiM1yhtcLQvG8saJHyo4IYkS5I2iHr941qsNIzdQGVkCkbOojb7OW8mmk2ljgpbgGF8JyJSkOhYboIAeVYvxThkVlzp6JzuzUtajEbA20cVaVMUdrpEDEUtE1D/4YQlVvVd5QSR0ehlll0a77WP6v7FQJ67SF1OnqGFTVhxRqQ1ZDtGrMRCoOr+orwRlcdkTMy2epjvseeYD777qTeNjRp0iKC/rlnMXBnG7/gOXBATqfm4lg4/AuozGi2rB/sMPJ2+fMLn8UOaG0YYpiN4b25PM5vPRr0Jzl1F33Mm9O490aKX4CHy8yGe2gfUJnju5yphk1yKgnT1IZSdlxW5tGDmNH0ExMjn6xpOsv0x/c4JO/+CTX3vdRbr3rAs97zZuYcoNjt30FyyceJXA3ExFkNMb3h9zxgCCbHjdRdq5mjt91htHidp768Hs5cXLO1rrj6U8ru088QXPhAnF3SeM+QpMOcfE6uv0VqEZiNqRAXCKmQ9St04UTNMsDYrePBke/vyQvb+D6BZo2CaM7adZbwvKQSejQHBlNGiaTKTu7N+mvX4WNNRb9jFYFn0b4YInuweK3URdRCcTUEyTa+R8UP5rw+lePGW8EfulXPk7fZRbLBYtDz3rbohs9NCOgwdReEbQ3srtXM49TwwWCa8xUUhPZRUQjTQp4J5ZfFXuCZoJ6ApaDlnMuRY05BFtGWrmmVHDeEbzDeesMav9RVwc736WEuiptMHdiA22lIBwro1EVh1MrTpyv18pqFTMun/FzUuHeUEZpZhkjSOORnIppnyC5XihaRt/QBG9O3MThc4pYG5VyXhF7C4I75FqhOHH0XSSljGsM+s65otNCzBHFE7O9nz1CS6aUoXamWLMcKfurKc5SMhfjVMjM+lz8wnPbH7Pt2Rc3BT0ROcKrGGgdrnBWCn+hsnfraER1IAm6AhVHBa8YqlCBG13JrIebtLKSatdR0FBQVQn4UEMgRf5M1hJ7MOAMKFgwpTtCOC5FRL3zm4+MzaLrizsPfbLCwjX18VUCL0WtVNANqZ2oGixvVcbQ+RUchhrnIIKZ+qGM8HQJliitqzL2QrMugZpOzMzQnm5Qu3O2wGcp40Nd2aUrQqQ8t1Y35TtclZzl30U1YeM6QBzJ6aCGEufwpbipz9PKQaCoTlCcZgvaJNNoIGnglS9/hEYyy5RIacly2dHN5ixmS/quYxkTLjT2HaSEi4m8jHRpxrVLNzm3OSHPbtI+8FKEgHMK/RyX9mk3R0wmH8V3N+iWAcKExBZRTrM8uAsfEv3eLoc7HZs3esJZj/M22sgIRGV+sETlOk6nxOUBy/k1FnGHz/zy0zz6Ux/gvhfcy4lbpky6x9m+42Empx8iiGP+vn9Hf+1DnL7lEDdV8nSCO/NqFk/+R8ab0PvLnNjapn3oHIdPPoFf7wk7wuWLh6xvXUPTKXx/kXCjJ6+P8OleZouEa4Ts18lubLecBCMJRBbo4pDl/BJ5ftNOoGaDPLvO4d7TdH3Ah3Vy23C492FmO4GQOw4PZmy3LTE53NKhC0XHYhCenbK44G2EkxUfBEJD1IYQGkQWNMHzmq95hHNnTvKT//HdLHZn7PuEV+PZeGloWsipQ7wQXB2N2gWeNIG2llydk6V3O8tZ60XoReji0hoNsdy4lAz1cK40VcXBWAG12ThOGjIlC8eVsl4r8uqQZARaX9CcnB19jGZHoEoNi6QQrO28ljLScuSUbN0LVsxITqWocsV2wQ3KRyMmK6FpWcbOkBWtxVEua6UhrVkhxYTgWfMT+tTRAV5rd+bAO1OYYUhwbSBtPXaQhVHTslge4tVblp1zkKojRypot60LOWVSdWRODMnj1sNUkjVQYme0otgr74/ntue2Pxbbs5aCV6TEuDD2m+qhMqhsyqZQclqoCkN7bLUjV3M37nLNiTFkJRUINJXXlpJKWSXNxq0pHBbJR27SDHDr8Buxm322BqWMtGR4fFUuSB5sHQpp1wqgqBCdFodUIwwmKHbkR15JtLB7ylhGdZCXrnguOmRAaYmhGCTpaEGZjIPkvaNXy82RUiQa3O3LTV1ognEkwNAWu7HU4qQaja2iE7KUz6uVCEwZEcqAlpVnFjVI/c5tkR2k4F5BLZyzUIWsCCywuy3fNhwTtWTnGDJrm2u86pG7S6ZQJOuCfr7HfLbLrDtk0XXEQhbtc6afw2LvgJ39Xa5ev8LFwxmnLtxOzjuki79Emu3hYk+KN5HUsX0Cxuufx6//Zzbk51Fd4HKH9gs6PcdsdhezhdJsCfFQ0T6DNuADkq1oXR5eIe0+xnzv0ywPP8X8xhU+8J+f5Bf+/aM4v+DY6Sl3vuK/YzppyDefJs0z/SffBfokEnZpz01otiaEUYLlAaPjL6ddU2TSMx51HDt7irVxptsV2sZx6eltdvduktMN8vSF9Ash6zr9zQ8j/QJVh/gJzo/Bt6a6CwEZT8gskHhAjnsk1sjuGEtNhPGcoDcRZkynU0ZtZjTJOL9kOkrM96/jEJYZ5sslWTNJ/YqDpQxqukCg8Q3tuCH4lvXRhI3xGtub2zzygrv4m2/+Gk7fcYL9ecf+wR43b9xgd/eAg35ObAKMpmW06HCYvDs4T5Bg5yRmtxB6O8edGDrQiCPGOKSGJzJ9zhZ8mVJBXSljHUMvRNTiHrIVrJpypfkVC4raHJk0e0Btc8KM7YyvZ9d2kYlrIrtcjMXN56UG0Van9qzJGiWOLH9axmZEQjEdRMwMD/UFjbZ1o3LmcoJlThY5AcbDw9YjzTaKCnhcVrphpBYN0SmjaR8afLCCxBAbhRKpoMmEFub7E4Z9sHwqLaO70qwlOx7ZWZJ4zXrLemSBf257bvtjsH1RJn5SCH1+mFnYDbWiN4YK6DMqJkNr6r8KgqMGCdeiIhTItmIJlj1VodhSNNTRFAzoEcARrAeoKI8baDnV4dhJISoXZZSqrkyxBvjaRlsJho5TstIUtGRZijR35HWlwj5aoenVCC1j4x3ruGoryUBEdoVpA2LS3LLod6Wz805RV4iVWjvKmmFlDq9mEW/jvqAQh+OkFDzd3kUgu4roWHHl61fI8IEHSW2HycollbW4jKZW8rdyLMTUVsYtKERMrBDSDC2wPtng5NaY3CspL1kuZ6Q0R7XHBzXypw/0MRNniTTbZRFndPMFT1/Z4fxXvpLJ2iY7MiPGOaODj8Hmywiuw6CCBZoW+FHG51/FzYTDdHvJy9miC5ksXwC9zOGBwHWYnG+RtAHpaVg4YneNPn6aRT9m7xDe+e8v8ZGPR06Mtjg56Thz1uOvfgwfrqOX3s386keIT/4i/vgYd/wuJu1puoP3oTojz38D4hbLA0d7ekKnG/jeyKUpKSOE2d7dHN58H+2tL2Ny+DRufZNw8Amy94S1h0gyJqeEcxErq1sLn00O/Cm0PWDWfZ5+NsONAt5tI81xUrdDQ+ZQPP7wOkF7nJswmXYc7HyGRbyH4I7Rp8Qy9oQsJu8TMX8jEfNuyaAp4sQxCi0Jh4RAQ8YTuP22hm/+i2P+y699hA+87zNwkHFZcbJNCOCdYQYuCThHDqU4QAk5WFC4ZLrc04iJjb1r0GTKnISSfFHqiRoBuRTlWSteW9BkV4Myhca5YlBn14xXV7KpMkkzvqiCcK64Edfrl3LdHllP6gh3eN/EEOSLNV8FT7Jiy5jGkIWcTRHmXeHZUAuvVJ5s+5lzZDxqWHZLc9IuQgpbE8qr1/m4mn+U+eMY7VmBLkY0KWHcsJwJ+FJ4ibdjLgEvllllPB2HUswUHaTkGETmYjYSgi/rYSnWniMUP7f9MduefXFTLl67txXvmIHYW5eaAhlwhFxsjfywFlXYM5TCJid5BmwKtn5oRVKk3tDtxervgRV51+7ORankSodVipqC2gwkYB3ehlps2dNLfnZBiKwoELzarSUoLESZq7LpLPjSEJgj+IdmqPN1NZQGkUJOriTc1b6qpgERqzvlCqrTKzRSvEpLKrG9gKzGXQVCz2rfT5BVUUVZpOo4MFZEpnSFQwE5IDWGkg0ZPOLIZAJFFVfGYzXrR119X4qMHELWFRrk7PzQ7NlYd4zp0T6iORkRGZv9J030sSf3Sr9YspzvkLrEQZdIswV73YJXv/bP2HhBRkw3b4FwCKmHuINO1sjxz7K89F7GZztkEvHyy6wf3sJs8TJyVOL8JmGpdNmSo7trjvHxGRoSLoLzic9/bMaBu44o/My/3+PTH99hs/GMxHHsRZ6N8TX0ys/QxyW62Gd6a6Y5mfBbxwnyfPLhb9C0GechxANm80PCtkfCvUiMNGnBaOoRn5hfzxxceozdu9ZZv/4xbo5u4toHObnmcSdeQHTHcDhytw9NySiTETk7uqg0k2Msl2scO/0Qiw4Oru8gmqA3KXTShPOedu0ci/njyCLj1RNnZvPfa8QvI6mZkUO0fKt2bIZ12VHTr4WMSrYi2SniPVEzMhacT8R+i9d/9Us5eWyTn3/nh+h3d8nZo9HBdqZZnzAJE1IoRHwRdOTpvZnKNc7jUxkVB8tdyuLMcDNnvCoNMsQkZDF+ywp/LWnf4szrZUAvy3IiZo/gCtHXeTc4a6eY8Y05QVdhUUYMpcnFaBBXxmkZ9fZeK+9gI0gXrMeu6eJpo4DzLcvlonCZXLm2VqIHLc2EillYOFFGIbBc9jZuk0rkh+DDQHL23pNST1ArPlSyhWaSWCwSTtriwSX4KjnPlofnqSrTYugpVvCFxtF1S9C2qMVsfUs5D01hXi31z23PbX8stmc9lrKLt4iMy+zi6JNV86A6Ap45phKGKABbGvKgQDDXYuvybHxS0qdFTfpZFiPVI+WTVnVQ5Xms3m942/L7rM44IYMfjt2ADf2otoH2zFr/DHVWyoaElBmMx5CrPmUGvTilsxRKRg2YaVbtkBwZZ06quY7PyvEUm2UPJL8CzwcHXc506vDqh5gItGS9lG6ukqSlLFrV4t76RBsRJV15VdjblkW4FFjOuQHCr5+/3kyqj0ii3Fx0dXxtbIBxgawpHcI1s3Mmp1Xz4Ln7tlNshkjuZpATIhltHHnc4KYt0jr6fkm3OKSPsMw9/XLB1b1Dzj70Eu64cA6CMNu9Th/GyOgULK9aaS6nII+5cfkC8VpJah5H/LEnmW79Kj49jfgzaN6DrvBAUqa/oeU88vgg3LK15Asfvsg//KdP8eiju6xnYUuVzVHilns2Ga+t45stkgSalIiLGbRjtNtF9/8rIldomq6MIuwgBk4jy560fJo+30C7Hre0G+z8+i7XHz+gcze5drlHdEE+fBrdO8CPWjQu8PTYkYwIHTl2dMs5h4sZSadIewvN2mkm2ycZbZ7Ej9bwAbS3EZ8PE1rfIE5pPfTLTI4YWiOF25TKaCcIKfeI9nifaVrBB484u4k2zltWlPe0o5bJeItjG8dZW5/yohfcw6v/9MPE0HB57waXb17i2s0dlvtzoprsW5xDQksja3hpSaJEcSwlWwRANsTXOaHxjlYMdcy5cvhcyfMq1PkC3qRiP+Cdw/sw2FNo4ZFECrpbTlDLTAsIkJMV2jbGtSumryMcxa7darlQxjeGUla+XWlgANHqZFx4OdSCKwwIkEIxLK1tiRWTpHJ9qtr1UQslg4vswkxKqIqlAremXNRQ3jEZjXGuNajVYSMpDHWRoowS78tEShG8RXyU4y4cWZvKWpmcUQW0uDs/t/3hbBcuXHjB93zP95z+o9yHT37yk62IvPjd73735Nk+501vetMdr371q+/+g7zvz/zMz2yIyIuvXbv2B5bnPWvkZhUJUNGBcuHVqwJW0K7kgeALteqv5ODSrZAQL6SkJByhwLhSlA6+3iyLSYstGKV9GZQ65a4sz1RmaYGqjStZRkOFJFyJyZVYq6tp0dBVSUFvDFkooXVOGZVFrU8maTVneB1g8hU4ZIZ/FbSy+VUtyqrKawWty6CSsCUvIEQcy4yZrZX9q8omG51l6+61yumhz7W4qr+v62JBx0ovWHk2uXxmc0dl1S3WQlG9SdGdPEO4JgMSZURqyW6QuGbnSiHo7MasgRd91YttXKiH5B5CE3B9j5+0pD6BeJJ2RHp6ySy6nv0uMesdr/6zr4K8IIty+PQN4s4lRjhEzpDGa0i6jhtvs37iDDeefoxtl2k3FEYJP5qxln6WZv8+Zs0x8mxJ8Al1matfCJzZuA/vLkN8mo3NxH1nlKk4JhlayUgEdUrrziByGzee/GXWJ4kYEqN+BqM7yOGUebrs/jrR7TOPVpSHcJpet8myTkgzFv01vCqHnYUaLg8jv/LrgUsHsLPr+O/e+GlmTWL9xA3U2xlgUR8eJy2peJ/03SFpuVeQvAW4NXKG6alb6GJLenIJsmC6cYrm/IMsDg5ody+zlA6fbxLTnOjWaPHEpHQ50aCELLTB44J918EF0ADakPqZIR9qZbMPDeo9a5OpBWLmjpe++D7WNie879c/ye7OPt3ly9AlvG+t0Wiawh/xJOdwveJ9w2CNizVIijlCu3JyqmaSC2WZsZFPzZYabCicILn4KxVcJ2nxXyqjVAUbf2KFuajDOV9+NvGBIKxCacXWoBKsGZzDpeLVJWWN0WTO3bniSOV6ykKvHZoiEjzEIjt3BTnK4O3FKbmYOPEsu2VRMuVh/OWz4NXZOqSghfCTy4DcGkTHsow9RTyp63EhmLKzKBu1cphKr+ad4NQhEliknuqJY0udfWbvAylmQuOrd8SfnO2xx1ouX/6d739nzkTuvbf7Q9yjYXvve9/78Y2NjefmgH/A7YtyKK63Y1fm0LncsIeFhzoPPzL6kdVNVqrypxQ6Di2ZMrZ4mPsnK1i1jEysvrG7a3UsXQkz617Z71TMc8Lu0UX1hF3c1ViwEqDt8cWddPi9lBu1DORnBFzhIwQcy5hok4XqUYqZVMdGZUCvqoZGP0PptTooUkZIqsViq5KQ1QzxvEBMiSSW1ZRZHTvrBIvBoTOCda3zqjLN7g3lO6loz5GjZS6nxYSsHHdFhhuB8XzEkob1iKy9+hwdQXtWrR/WYbuMuIBrR7jpSV72lQ8SAmh2OGdEyJwSLkaIPX3fkUhk70khE6MwX844cd+t3H7PeZTAcnadg/ljaN5E5DayT9BOkLhEQ2R66iEWNz7HwcWezeNP055QtD2AjcRo/AncOLMcO7rdLfJyn36uXP/sxzl75zapvcDWqYv0HpycZslVcqPMfGayKTTNDRbXP8DJrWv0s4TkQH+4g0YIkwfp5gs03klefpQomewn9G4DaU7R93Myx/DtFJVP4l1Cs+OwU57Im1z+0Jg2X+cjnz7Lyzcd8xm03SFMKNlEiuaAkkAPWNvwHOZ1UtwlS2B98wKLxRVERyTGMGrI8zGuGdNs3U1Yv5uQv0DbNIw1segyo7XO/GTUkSWgztv5kCPOjXE+4JuW2EUa55F2TO4zlnJgjUsIE3TSMckjoq7jgnD/PYHbbz3HrIssl/D4Zz7PzvVdFn1mc2uKawL9REna43xAnOJkgvPNoFJM0bg3TqNxWqTsmyZDNtWuKRu1eFwwVIgQ8C4UFpudpwEtSEltNAp06k3dGbMplSqC7Etjo8XkKueMOItHMFm2haE6NRFBJuMkUM1LB36MczhJuDbQxa6sa7YmlExci51xguaSCSeClpyqlPKwNjlnF2mOCprMH8y7Iom3cVbMFqCpi562GREK/7GuGYa0G+rrqaM0JeVkhGTfEHM0HpJa+5NStMiZongbGtg/Cdtjj7U89NBDdN3v/KHaVvnoRz/6R1HgnD9/Pv5hv+efxO1ZY406QKtWGIjU3CdZPYC8kgzqkV+rFCtxWxxlUDpRMk8ysVh9p5oup5WwKsPNuI6SVsXM/20vV+0T2BinPrvAsar1v7rI6FCQ1YJjUIGVi7ouEKpmLqbOzOxEGcLyvLMxFFrfR1b7XN7TUtCLDDSriTW0OmhUZYLxEbzU4syKFyeuUPyKIVlBzrIa+bIa7RlhW4dRUzXrs+JKQOuojOEY1GLKEGlTaFgUhhGvk9pICqlsB3vvYlOEFil7HRdKNuktOfO1r/1q7jl3mjDexHkzWEuxR/sF/WxJN1vS94ek1BHjkuVywXyxYGd/nz/1F/80o0bwXknLOb5LODlOnl22c2p+w9peneLX7kXUI+Er2L1xjP3rIHOF6NDQ0h4fs3Grsvm8GRsXlGOnBF0k4uEWjgfwx17Mgy9w3PsVd9KeOEXXZVJ0hMWI+NRT6OXPsnMt49eE9kxGmoTMd9FrH4XZb5BmH2PetSzihKzrhkbFMW17nKY9S3DHyV6Ji8yVy7AzVyZpj7g4wC8dn/7MlL35OrP5FhLAp0N8jngWSN4l0OMERmsX2Dh1Dt9MGU2P4/wGLcdI3WVk/nl0YYTfdHiJ5VMfYTzahFEgu0zYUuLudVp1eLUIgRQF1cZuhJrRQppNWWlCY+ddM8b5EQ5vP3tH4zJtaJmON5iMx6xPGrY3pmxvbHN86yTnbjnDG77htbzpr76Ge15wklmccf36LvPDRCuCaE/G0Uiw8ziZ4WMQQy6hmGYmQyu0FDVODek0Pxu7Zr0r3DqxEVNSW4eSKD1pcOlOpVhkuPZXywZ19Gsrgf1aDN+UohY8SmS2816JWOOVi/0D3pWmZrUcZUzkUK9viqeWrQ9G+LEom4oqM4zHweTb3pv3jUuKS0XtRS6jrEwIAd+2JI1okRWsnGtW4/w6FtNso7OUMpIzrffE2FnkQrYE9hwTOaaBjvAnZrt8OfyuhQ1A18nviuz8PrebN2+6N77xjXdOJpNHTp069cK3ve1tp1/2spfd99//9//9rfUxR8dSf/7P//k73/CGN9x19DWWy6Vsb28//C/+xb84AZBS4n/5X/6XsxcuXHjBeDx+0X333ffAD/3QD23Xx9dRz3/4D/9h46GHHnr+ZDJ55JFHHrn/Qx/60OjZ7neMkb/yV/7K7fU97rjjjof+0T/6R7/t6Ow7vuM7zm1vbz+8vr7+yJvf/ObbFovFcKx/r339Um5flM9NHYsMZ3pVz1CnU1JkiqtNjv5vWWQq2lFM1S2/CTU5MzqQiJPD5tg5G2GyoA1VfbXCiIr8meqVW6zEpf7NDThPnUOJ3Z+HG/TAeZbfMl22X9okXS0TqxGhy5kG830pL0ylOtbihrwqaKraC8x7QwvvgVKs2ISvkJHFFvkuQZcMQg5Ocdk6TLCiEO+GA1uJ3lIhFalt6JGvi/KWrvxdTSLuRQgCkqtk3IpRSmdn8RUF4VFvxMqSvFlwsXJ/KOaIzgwGuzzi6173Z2i9w7et5Uz1hTC9OCDOl3Szjr5fEvH0LpOWyu58h7MP3sfdd92Gz44siZz2mS1vcOkDv8TdL/kKpAFZXmU+O8SN7qGZrDM6doIw+jWa05kmGL8kXfb4tkPXgKC000iewuhMZGPhcfkzkL8Afo1T92S+5S98lI99YsHsWmDvZua4dhyKMhnbccvrnr6cRxoyGi+a8ssr7fg2ojTkuCAvPNpcArdG7HaJh0+h0ZQpBwfKbNnQbpwlHV4h+CWXPvpxfmP7Fl79lzqcTFA3R/uDcgp6NG/gfEMkIOE4bnyN4AKz5RXE90hw+LxP6w/IoSEdKLs7/4XloblIE5RR09CEJTFD04C4kjmklUzbkJJ5yXj8ajzpA+IC4ot/UWhIyUiz6jKjMDGZN2OCmzPOkcNl5NqV65w8dYaXfOWLufvOi3zh8ae5FHu6gwNGMiW2CW07JIxsfKSxmGmWkVMpzrUka7tUUA4v5mHlzbdm7Boa8cb3yuaJY3lTxlPJULgxR6jIBZ2ppOHqzl0bEVsjZFWkOCsRUrbixFU0dmhM3GpshBnwpZwIviEVsZGvxYgySKyRShhXuq4zRVfhwbnCa+yx/Us5Fa8dgRTs6c4KH1VhkSLTSUO/jMWbKpXjWJHqghClyvgxRDjHZEg5yRSczltYLbZ/OSWewTN4bvt9b295y1tuff/737/+Yz/2Y58+f/58/7/+r//rhY997GPThx56aPbbPf6bvumbbnzbt33bXbu7u25raysD/NRP/dTmYrFw3/RN33QT4B/8g39w9sd//MdPfP/3f//nn//85y9+4Rd+YeN//B//xztPnz7dv+ENbzior/Xd3/3dF773e7/3ibNnz8Zv//Zvv/3bvu3b7vzN3/zNZxW8mVKSCxcu9D/6oz/6mdOnT8df/MVfXP97f+/v3X7u3Ln+b/yNv3GzPu4973nP5ng81p//+Z//5Kc//enR3/pbf+uO7/zO70w/8AM/8NQXs69fiu3Zc26onjQrn86j5bw5+5a+viwIMEwvqCoicuWbuALr2uNTScWtoZflKQyZMHW1wxV1kZYCwfg7DAjFUb5PQSiyA0kF9SgjmWyvVVUIVA8eKv9Gizmd2cAjK0+egLLEscyOiRRouCxy1pwVbw1kqCMsdmFI4yq1hQ5HdChApJZtNnKKqkS1kq2OijKKr7ymDN6tsqvMX8eDptKk1qKOAXXLuRZRFcExWbgUwoEixGIQZOTlmvYuxRulcJmQ8hw3FK9lwA8KZ+54Hi9+4C6cHNin7jPqc/EPETQY/6ZtWlKCHDO969nrl/zZ1381PivaeOM57N+gYUEYjYnnX4c/eBTX9ITWkdop4Ng8N8GN9sCXDGN1JBKHT8JkyxkXJ4C0Dg0OGQuQUElIXuAFvurVu7z81UC0xGpJppjTWG50Xebmx2D2MXBeceM1UmiIi2swfxKZnEL9Gs26kPMC6RJ5/lm6vRn9DJYzZedQ6GMi715iHMwtd+MMvPBVTzLyN5k/8SCj2243mT9mjZ/yPvgxkj05LWjHJzi88QkrPvHkPqLSw3gD+gNEEhoyzUaLzE+xsXaSZbuHphaRSBMMiUnZsoSy5KJUUugTAUNX8RDEI6OWTo34budaxI8DnpYmBUJ0aHZIaMjZExqPHMzZuXaRY6e22Tp1kvvaNc7tJeYXv8B8OiFPj+Emx0kTVxRZbkCNQmhIGu369itbhVSaqRZDdryYwgnncSg+eKJkQjKljxUxxS+LVUODCl2OJC9mCVFcvwdPpyp7KtdAJSiL18LfO6LyLNc86gb0NykQAv0ymttxwXDsOdXrxoqjOqJClTYENBeEpcjInRqPZ0CUytqVS56eomhnrs6z+SFtGKHRvrtY1leX7bqMZUTms63XEVNGWmq7FURarutlzMUwMZkq7bntD7TdvHnT/eRP/uSJH/zBH/zcN3zDN+wD/OiP/ujjt9xyywt/p+e86U1v2n3LW96S3/72tx/723/7b98A+JEf+ZHjX/d1X7e7vb2d5/O5fP/3f/+5//gf/+OnXv3qVx8CPPDAA9ff9a53rf/rf/2vTx0tGL7ne77nqfrzd37ndz79jd/4jffMZjOZTqe/Z+U6Go30+77v+y7Wn++///4b73nPe9Z/4id+YvtocdM0jf7oj/7o4xsbG/klL3nJ4gtf+MLFt73tbbf883/+z5/quu5Z7+uXYnvWxU2uhnoFwTDDtjIGKd3/gNpIzRqqY6mK+BjC4MQIanXIFNxKNeVt/kU2beZg81+5Lxkp+Ua2AA0y6+qQLIpoWXzqKIo0uCmXkmYo1FDMJ6aMc1QNRamOqNW0r/pdgNI6ocM6KXUyuCDnWlhVebjkoQAr6X12LBPFJRn7O4UnoOaUqnbPLWZjFjTaYrP+JIIXj+X22Cgv17pPCvolprSQ8gcrLl15fV3B8FSJ/ZFNa8kl5bFF3upWuBAFbUuAZMWr8Rqy5KJys2L1+c9/gI2pQ2cOwbp8w+Ia2vEGuWuIfo+UM4vlkn4x59qNAy48cA/33XMHwbUkekQdMe7jQmLeCSwV1y2g9YTpg/jRGTQeQt+ivcIkG6FcMs1UWI7gxhVod4XxWGnHCQmCtBmZOLI3/pT6bBCeWjaRK0qaamCYFdxIWX/QcXB5m3yY0WWD9of4RmDckH1m3LR0zuFZo+s+js4WzK4r8dBxY0/Z7x3jFlIT8Vl44Ksdr39TZnMCcW/Blc/8BrfeelcZR4xA5qR0AHqqmuiSQ2CyfoI+LulnC0gzUuzMlC8mtBkz7jOzZSYvgXVY27yFS5ee5vQtd9nl0mSctmifSc2YHByoxSZkRricwStJI+I9zXhEyt7OCYWcG1wINGNPms9o24TGiGvGeBcJzrO/WDDbX7C5tU47bZmwoIkzJt0B3eKQWdhlf/0Yo2YdNjZXozBvOWouC5FIgyl+PEa2dc7j8AQssVskEyQURwNFvY1r1PmidipIRCX/O8ixXDNawymPjKgrupJLhUeRkx9pFrw0ZZxezPA0DiRlW9c8nUt2HYsYghbN58b8uApK6qSEtpX3rplUAy+nNB/UNcw8umKKUFSlojBtA/tLRWNppJIvFLke1GIYnFozZaP3Mv7KinosmVxKI5syqQgcyNncpZ/b/kDbJz7xiVGMUV75ylce1t+dOHEi3XnnnYvf6TlN0/Dn/tyfu/ljP/ZjJ/723/7bN/b29twv/MIvHPu3//bffhbg0UcfHS0WC/fGN77xeUef1/e9PP/5z38GGvTSl750Xv99yy23dABPPfVUc++z5BX943/8j0+9/e1vP3nx4sV2uVy6vu/l/vvvnx99zP333z87SoZ+1atedTCbzdxnPvOZdm9vzz3bff1SbF9EcGa9wcvws6xug+VXMlx8tRS0G6tdSL6QXWPl55RuRdQs2JUaZmeX8UoRZXjKiiJnm60JeTWaAeOolAXBDXumFRKpH6Y2TlbcaJVHW7GE1ETs1eNRy5VSLNOmEStwYoYRhRtU3fJUiGIz8Ux1W14RsStKtNqXQtAuroZaRlnVUyNmoY/F9E+yLaLDAjnUKjhn3Vh9aWs8rdM2YKvcoIfZ/soocYUdUXpMe00v5uNRYyAUP7yO2MDEiquh07XXFoET508VEzcPJfNGy3EMoSE00Tp9SXTLA+Z7S3KfeOWf+RqkaTFMIgAeJ5lWHOnKFS7/5g9x9oG7cJ1HmoiwRDggNdtweD8SH0VawY0VxjA9lVksPYuZsJhnRIUgLaMW1Hf0ybOxlWjHggQgKDlkXGAYK1qVYyo0367h104zv/Jp8mLPFOlTR1jfwvlNcr8gLyJexuTck1tH8onZYWb3wJN9YrzpmSd41V+E178pM8WxPEgcXIr811/9MF9332s5f3qJcaQCLrRk15BdQF0iNA3RNQiBrBchJ1I3Q/MmoWnp4z69RmK6TAgz5jcW7O6NId+Cd6GMVihEXUWd8d2Sy3jP4CZO35mTs3c4Dyl1SI42Ei0zYh8C0o6gl8JjcYyaQAgO5z2LZSYvI6F1jMcty2WPbzJjl1jP+4z3Z1xZOrh5jMXxE0wnm/hmTGoaGlHEt6gkUDPqs1gCb+GPR7Kkqn5IVEhqKExFKcERc8QrxTfKzDltBKtDJtPqurQFRpyDnFjFvhxBdRSoUSVU4r0aMVeEvuvsoQXJPGqlYOtbiX0oa2bwDfPY4cxPgKYWSjV6ohCFrT4zZ+SsFVVXUhnJ+RDo5gt86wffrKRmggGpAOCWXZaSFa6zbkHrAoqdGxam6oy4gwy2EM9tf/jbN3/zN19/3eted99TTz0Vfvqnf3pzPB7nN73pTXsAe3t7HuDHf/zHH7v99tv7o88bj8fPUFy1bTt8iYMA6Flmhv3gD/7g9tve9rZb3/rWtz7xqle96mBrayv/b//b/3b2N3/zN9ee7ef4Yvb1S7E9++JGhwHHsAgcvVBtzTDtgc12q3qIoYqofiuUAkEw5p1ToUHpBBvBSOmVpNy8tXwZWsZTQyFTvGKGkYktUnZxYo8vBD4pN+NajtUbli1XulqwqKWU3fRdIeRkkeGTinM02fa3z0o78JHK64sRGiuaYpoMykJ2dJGQIzO8ipRkcoG3g8sDotVlaB3D8dCq71IbtVElqoUATIXXV4cfO6pVdlv2oBQk+QgXCYzTkEtwoM30S5GpJtmvhmkiNQrDHblgYNS0jDfGRvLFrYqe+rFF8K3QTsZMNrZp5xHfJc5s38ltt59CjA2EMEJDg44mtBvA6DLz6wfk/j5UhXD8NMnZzT+sv4i+OU36wqcZnZyT1d7DTwLHzmaufx7EOyRAInKo0C3giS8oJ4857r5XCQkkKW5pnzllQ3M0gWw54lWYXztEFp9kcqcSvBIEfEhocwWV6/R7HTKP9P3jtFtC346ZX+y5eOjY7zPbFzxf9z8o2yc9t92ZmXSQ+8z+5zxP/Kbwqje/iDMXBJc9ygjcCNVAprFCUdcQN7ebU7yJak/q5vQacRwSjh/D3RDywRLJnZFHFwfocp+N7buIKdHKBDBOSM0Hw3kykZgUFzKJhPfOEqMVQgg2whBLr3fB0yj0YkWqZk+rprRxmGne1GVa39LlBUm9RYckR6+e6D0tMAqJaVhy9eY+N25coz92Ck4f49jGNl0YE1QZuca+OylqoRKSKd5GT/X/UBAfykjL48VGw1GsyPdIaXQMkYh9XzgvK4M+xYjHKbsylhr6p4I4U9DlPKDJQrFDKCCy8aRSacgoDYS3QrJcs4YElWZQKY7asnq/otaijL19QbNRpc82Zvf4gqxm+piIucP7powHo3lzlWu8ItAVoVJNpkx1nuAahi4MW0O1eO6oE9Lgyvrc9vvd7r///mUIQd/1rndNK1py/fp1//jjj49f/vKX/44jmde85jWHZ8+e7X/4h3/4+Dve8Y7N17/+9TdHo5ECPPLII/O2bfXxxx9vv9RjnaPbu971rvVHHnnk4O///b9/tf7u8ccf/78Rkj/xiU9MDw4OZH19XQF+9Vd/dW06nea77767O3XqVPzD2Ne6fXHxCwMy81t+LnfKgRSLdbmDZHj4rY05qjtPrrwUStii1GtXBlv00mRAQXRyfXNWKiNEhgp0yL+ioAlHsJ7qkzMUTcOnMwJw9YyppGCpLOOCBNnYzV4/eKFF6BP0KhawVy3EZDUKcoUIXP05xIn1WerKJM2KJauvqkuyDouR1zKyy9n8P8oxMVHZqsCxA2oz9iGdfChwMoOBT/3+Vuj6AP2sLMjsAVoUUdYSm0w0FHk7FeVyUhKDayGqqHgkCLPdGRUHEjVg3YkrREkh5EBwHY2HSRixLy2n7znDZLJltvvOitnsHGG0ThsacurhYEb39OOMH/yLqIxw/Q4uZVK4C2nO4tY/SN57N85lGCekFZo1OH13QGIcKkQpbPJb76tBoSAukIjgknn1REGinZjx9IggLWvhBuvnnI39PLimnF9uUbgXHiUZKVPMHO/ur/Z85F2Z/+vfKRv3wj0PKttTRXphuVCe/A3Pjc8nJsc3OP3Cr8TJBuJnVtxgNxqVJcIa3gndUukXSjdfkGMka6YdHycfdmhzlrB1C/nqDlEb3Mg8XsJoSWK+skvA29leEQRpEQ/kzvKIckJ8i9NYCLeKSEC8t/GxGOdFxST8ThONWDp3TLE0IhP8CCRZGnl2ihsJTQzlxiyob5j6Bee9Z31/ybWbj3N9bx09cYbpmVNMpltIY4ogK0KsEPDeG53GV3qslPXC4SrCKGW2jRH5yQzxKlVpmMqaVJuRusJpXdR0tVZo8cRBCrpVrpoqVac0WprAe0tXL6wYa/zEYGzvynB8QI/NLRiF1jfEvit8RLuO+1I4+QFBUaIqXmujKYj3tM2YZb9E1EjJWRQnnlioBBSvotoYOoxgrCnRjkYsuwjJihlj32hZt5+zXfmDbtvb2/lNb3rT9e/6ru+69cSJE+ncuXP9d33Xd5039/XfvXj8S3/pL13/oR/6oVOPP/746D/9p//0qaOv+e3f/u1Pf9d3fdetOWf52q/92oObN2/6X/qlX1rf3NxMf+fv/J3rX4p9v/fee5c/9VM/deInf/InN++9997lv/23//bERz7ykemFCxeeMdLq+17+2l/7a3e89a1vvfTpT3969L3f+70XvvVbv/WK9/4PbV/r9kUUN/VuWCH6o7iNPWL1i6ECQZCB7GpeNcZ/QYSoVSptpFxXuqtBwlhulojjGWMcBRGDYHOdn0jJcdFcqqza/wgkM7JKokNxsFqxKoRRkJmyb2b0VVHZqnqSWlWQ1bKXeoFOlXF2lalYGjxXgOSyqNXDolXMXkdjq+EZlHoFg9NR6zQbMeQmicMFU44kp9TIPldzuWT1kf7vjVbtSlf/rp+5kouFyi4ohY2YmZqgZqshhdhZlryh0SvfCdmg9uyF3f0lO0/vkiTiswPtjQ+hHlGHd46+EbQZk2WOFWCeO2+7Dd9WJM4ZJTxF2vVThKmn7/cRFa4/9kHOP/A3ccurqO6RskPWL0AfkbXzcOCRBahLRh4OpgJyw5daCmC1/CPzJVIUU+xYPZgtZ9ADrUAL4iPN1FPDDW10YchV9rmo6hKOgJNIUqXJQvDGl3rgNfD1fzVzfA3olbSEm1cdn/poZjs4JvecZH39AtBYejaNZTypET81OWLXM19cI8Z9Ut4nRYc068h8juae/mCXLGcI7QZhchce5cB9kOUsMFrbsKLAZdQbvyunZP95JbrGTNyKRDhIS86dnRc540Mg50QTWvoUza+ocSgNXoWYMs6Z1HxV7FqUgWhPikoSTwzJ3H4FvGZDYsYtJ2hpwiHt/g7XnrrBwf5V/Lm7GB8/jtsUnG9L0+AIrnBKnDNTS5FV0VC2JLnw2820LudkGWtF2CDeIVlM5SQFYRQ/XAOCFTTqsq0vCMmt0r9NNGBFikq5Osp6lHJRTZbYB5OY2dVngeam6lQ8znu0ZF/1y97Oo5zBlZajJqGXc45CgE5q47BciOGanBWoKUMuHloIxjnKaI5U44jqPJzU/HcO+wXeN+SklOQrW1qj2jX8J2U7cybStvp7+tycOfMl95v5V//qXz3xLd/yLbf/lb/yV+5ZX19P/9P/9D89ffHixfb3Gst867d+640f+IEfOHf+/PnuNa95zTNQj3/+z//5xVOnTsV/9s/+2dm/9/f+3mhjYyM9+OCDs3/wD/7BpS/Vfn/Hd3zH1Q9+8IPTb/3Wb71LRHjjG99445u/+ZuvvvOd79w6+riv+qqv2rvnnnuWr371q+/rus698Y1vvPFP/+k/HYjIfxj7Wjd5xoz5d9mOjw38NRjTDWTX4YWo3bBdlF+h8M4e/nQjfMSt0BcGbMAuTLT6thj7v1ebr7SVcCvQlHIgeykIQ4WGbXwy7EmRJksZRtva4Mqop+TQUOzNyzjraM1mfi+rTi2LDN2cKISqLsp2k1exrJ+lCusOcEa6s7e3EEwLuCwLJ64UcVDzsqQYeckzJGaySkZPVoQsyDj1TBvwEkn4ARjLouZTU7Jt/DDHN+Qg5kLOLN+fOszR1aQ2iBTyIq7EWhS2kLgCsdt7mKQ+410oYXoKeBv5Sc3Jovh8OF78p/4CP/zv/hZ+ucD3HXkZWezsMT/Yp1vMWSw7FrOOxWFPjAt2d+Y88jUv4eTZc4hAUo+ECTQty+UOT/3qWwj9ZZazyKI7xR1/5i+zcf5OJIzJeogLwVCjfJX49P8H6a4gxzpkGtDDHpkLLGtPXgrmhhXByJXzdwC57EYmAGedxQhcUvLlZI8bF/8SX9DAIMi0uFAfYCnqTkAy6j1Xr2eOnwJ/YKZ8iz3H4lBpJsAk89R7PXF2C/f8D3/f3tO1Ri4loXmNzp8m5hHx8DLLvadYzC4Sl/ssu4SKp9vbZX5wwHLes1xMIO+x2F+yc+Vz9PtXuXjtFNsPvYZjx29n2jq8OCZtSwiOycaYdjLBBY8XpckLfIqM2ilILmG5ig8b9GkJLpAJaF4i9CSFvo/kmEl5aQqmLMRof8spE5cdfexIYgTbTqHHbBFULHiTmOn6yGLWM88HPL274CAcZ3L2Fk6fv4XJ+ia5DfjQ0rhgcSMCrfeWVRX80Crk3COujG60IG0K2QNZcJJIqUdEaFyw+AZNwwi8AJOWmp2jjcFE8D4Yskldj5L5wpTzSJ2hQjHFwrqrEnQl1kbEVePPkuWVDT1xwbGYL00ODiUyoe6PobzqhTSf48gk73DRlKYxmzFf1J7JaEy/6EuxBqRo/0O2ghRfJOomWU+NFc3W8CSEQNSM6zM+K8c/+2m++f/9nQAvRvU3n9VN47/h9v73v//+EMLP3XvvvQfT6fR3JOT+jtuXiUPx3t6eu3Dhwgu/53u+58m/+3f/7rX/1u/3x32bzWbjxx57bD3G+Gdf/OIX/64y9i/CpOgI2U4rWVdX3URdDSpJtTzWlblyDRIHrdEoA++jqpOgxC4Uc6yWleqqvnZ1Ax3m0qVuqPsgVdstFT4uhnpKGYbrADxJcd49imdYLVFHWTIAVFKMt7SMtZxz5JSLJw8sVBnlopCq5mI1/6rETBQEenhtRcuNtSi7BsRLyv7VQ29W8ilDzIoPrsg2S/dVVVCYuktdHlQPRgtwK96N1PeuO1PGZVKNxQovqPCIlLoj9p+rjmiDw01NOZYCexkHJWumizfRXLyEdEyOhzauIVpHm4X1jePcefctNI0yn+1DKKNDZ9wOxKHS4MfH8O4YsXsSfKaRPdLTj5KO3w2TFieHdqNCITfI5mtIsyfQ+Cu03RiZ7SNdgr6yIAz30l6gjBVEA9kreFO5abTiBa92YuZMd5CZXzMujwQYTUBbcBuQx4YmSvSkQxASzmcYO2QKp08IOlMODiMffp/j1rvtupguhY0t5a6v9eztnKMVWKaO1o9MkZhHxJyAA5w0ZexlhVxMAS9TlBFZDy3hVaHvLiLS0esCWBJxLJLi2zXEiyEMzhvCqBRflp6RD+RkYysF+pTxPlpiN+aWJ2oIrHcefEOM5cTyUkYphaMlheOSjbTkXCCEXI69uYe7bK2J+dcYF887GCeQfoPbNsbs9h27N77AjvZ0py+wtn0CJyXt29lnsdPRWcL5keve4VfjZSnjvZiNI6TluVgxfzTGpa4AKlL8gGzMpcV0tA6I69R3NZKu64Q1L66sO1LIy+SM+LpgGfIq2dCXqLDsepIoo8azWCwZBVOWmpqzXnugUiJty/HDOaL25okVhb7vhzW56rAGTpFYsWlfURlFJ7O8COOW5dI4g97mVsXU89k1wX9stnvv7f4o3Iff9a53TT760Y9OXvnKVx7evHnTv/Wtbz0H8I3f+I07f9j78id9e/YmfkcIxEPidsFMqtOnc9XFk9WUanU91ifbrwvCkMvrpXKz8ZhSqdg0mFvpUAzV4urItSarMY+97lElUi1GPM5V2fOKsFdHYkdTxutESwakaVWs5dXbF56J3fOCCDErI+/wddGjjHNUQfzwegN50NVxvoVlrpYgGQ6fUOqFUnLErHTR3k9WlY/xB6jqKles4m3prHtUE4aLa8cRTpOhNvUYW41pURX2EVfKNygQ+FBw6ipeotxcvOH4iAuoD2YQl+Lw3QgB50bgA5PJGqdO34kfbSJEW5TzrhmxhfolKKjgx1toc4KswnhLSGHGjSc+howa1s7cCSdeiE875MZBvoRzATn1Gg4e+zxN85i9f2c8MMl28FOGw4XQ94nFXqCdJDYuKOOTjnQAedehc4U1pU0JVWHvAD73eZgey4w3hQvnlMmGjVXM80fRnHj0U9CocN+LPG6S0QiyhCtPCD/wb4Rf/syEb/9rE1519036nFkeeqZxyrE7vsZk2F5QGlSWRA5JBES2yakfDOKyYl5IsaPrd0gxkuOUrDuo9Iy2nw9tz2z3N3HSgcKodasxmqZS3Nhx1gxdygTfkqIDXRKGpgJ8GJVICCs8M64UBfbZvYRy4zQ0VtVwC18Ki+wdIg2SsyFsJDqinftSiLnizXemKWir9GyFzLoKB7MbLJ9W9nJkun0ct7bJ2AXaDCkoUZIpfNQKEBvvCua9UINs7ZrJKRuwVq6IGnVhZ7FW/8uCjq7UVM+0hbDTMxVUJZfxGzicesulwowHLeeqAik2UhbnLPPJOqxhyQwCi34JTiz76yjR2DliSghuuA5zuebagiYvJDPCkXIqfjmhCDjysDYOjYt9vWi2GIeUrIDVaMny9TFu+MDPbX/Q7fu///vP/N2/+3fHTdPogw8+ePjOd77zk+fOnXsucuFLvH0RaqlSvJQbcJ3l2kWng+X/EdAGqAoeBrRF3dCvlMur8FmUgWzrHCTcIJ2s8uth9DXc3LWCNHZjVhlm2vWmOCwZUgodGGDnOn+ygkOPwMerlUuGfS2LXiHrZqU4iWZahaVa8VFvcKviA0O6RIhQuBw6dE21dBDK8c0FyNYVOoOa9Dx7e++UoRkyU22fMpCdLaAVLh/ybkrhdKSsK+WOLb71+1hJ71eQvEl+dUg/rq+JyFAs2hNMfVHT2xVl+9wZXF6WTjYNHAd1jjD2bE1P4sfr0LYQTfLdL1MxZTPo345RQlzD+rmXsrv3S8SoNGsB7XtmT36E0eYpZPcGzl3CbZxG/W0QHLmbs3HhlfSXMyF9tnAYgKAWm1F4Ubs7RlTevQHTOyE1Gc6AO+FglqAV8gykgelJx+0vhRNnBR+MqJ2T8Z5QQbJDk3Dm7sjmsYCMEyRHN1OuPA4/8C/hpz8JJ+7a4CM3X8LmUx/ghXddZKwepg/ArCdvjFDfkvqM04bgPerGRMaAWf2LFzQ5Ur8kZaVfdEhOpH5JXh4gMaKyRhg3xDyzRHo/xXsj5IoUjgZGpE8R2lFjsSC+3IS9IF7wfmwyY7XvIjQtufBEyKmgGYbk5FrIZCNuBwc5CTkbqmAWmJlU1EMeSJJwxTW3ckvSyNHKATE6+m5EyIkTLrPX7XLz6gL6Q+TEWcL6cZpmSl+u1Wr2R3H9TaV4qEoqrdx6VuhrziuTumeiq5TFy66lmCJNYY/nwodxgo1rxZqYIbBW6+9Lce9KcV8KrLoEqaplv5UCqM0QxaGxpwJOlDVHAefN/biKKzzOktGzoVA5JUIWtBUcZggoRQxRh+a5qjnRgXzdp56maTiISxoJZsyR6+ohgzP6c9sfbHvFK14xf/TRRz/+R70f/0/YvohU8FWVj1RoXwbItAbUFburYXWo3UqtbkRXEuk6h7bJ80rVVJN2kybUF9ssraMrre/AUB5URGUgE9vfzCOk3FilFjWVyKtDQYWuBlOqMhAhRWoURCl8SodmNwf7pKh1Wp04Ftms7kN5ezMIM3VVKmjJ8H4qw7+BkhZOuaHXz2b7mcsC6xG6bMTUxpV9G9AgHZRkRmqVUrrksoiVIi4PO1c+q42spBQvSSgQeDmetQBUe16VfddzoRZ+NQwnK0gWmsbx0AvvImik+PsDPTEtUOc5tn0rrVvj/8/enwfdkp3lveDvXWtl5t77m78z1TlVdaqkqpJKQhJCgpZBZrwMtuEa03SH3W4wDY5gcIAjAEcTjmjsIEwEIOOBcDgw4DBtYfDQNug6fIUY7vW1Zbg2QkITUqmkKtV85ukb9pC51nr7j3et3F9hDCobgUs+KVXVOXvMzJ251rOe93mfh2YDmXWwWK2ZHry1xRbtlODJ2tPuX4TQEcISUJrNA1aLKfMXfhPyY2y/6lX4jS+xlfrqNr4VXH9A2HsTehgQeRK0RzYUnVoVYms7I5uZm08XLcPK4SSSVfEedCbUyhtJ2djPbGwBK0F7SkkBNJsFflIleDh7n8MPiXgMt4+VT35U6HvPYieT2sySJW5nnydvvZnt5+a8bsuTF2fIwe6s4JRERKNYmQxBJZELcIypLxNvJCUrgaU4IHlg6A8Z8pL83GMMA7jk2Tr/ebjDQ1RaNBpIcb4EzArk3Nu5ySDJnMIrIZddi7hUmvMKQC0zr7WQtwRRyyFygkguRnRDsSUordviyckmW191LdHuhZQHA84+m48Unj5McdIz04HV0rR8G22mSUvmd66xHCJyOpN2z9C5KT6JlWR9LTeXe750/oHFM0Ss9JWIZI0jiJDaLJFNDIxmA5YYUJHiBWSGf4xsriv3h3N1ZVUQTsa0bLlm3FVAlcq9Xqmcutgq5cGUi44oEGNCmvWoZ0zpCbG2GotsHWSOXjLaePrjBZ1vyM4XrWAuXjcGVBrnkWwdWrUlPWXT7gXDrGXcsdLwGu3d3e5uL4/tU5bAZyr9yglSREaDqUS28LgyCb54e/HfFUoLpg0rUnQfpb5iFHgRHQ7l88wRdQ2ArF5eRbsF9Ixji7BWhZba9wgWqkg4jx0vdZ+rvsT+7sa9dRUklIHI2CoL+hPxZJcRr1afL/svWgpCUtgqgabskqhxJbWWnXM2oS9iURGZMogprugAEsUJ2Qm9CikVfYPYvjqVklhcSm0FQA1wwqPHMqIo50HG0kFphS+/tGrGaS5A1Z4X5w3ElteYrKHEU1C7YYzkN73ljAfP3kvQYB5+MZNWiZQi7WyXZrJn7EzToe2GxSx0nTmhSkAkkFxjRm1OkATT/deRNx8g5YBqxrtEWh4zLO4w2bmOn50m376EHj4Lq6chB9LsIrTnkI3Xo81bUQIMgrYeNgU2lK0zyrlHtpjtvIbD2w06tLjsxtKGdKBdOYODQ3pBVoKbg66EuBDmB/D8M5lFUrRTpIc091x+wvH0hxTpMgvNfP4f28eFgPMrjuNtrh/1fPSjLe99l+PD7/4YK7mHPiVUPaQlWY5RFwrrsEI1kvKSHAdyHhiyZ7b5MCpT1MFyPtD3nuz3oZuS4w26/YvEeI52Y2KddWlVxORCFiWJw4e2lGgzqCW3I95ypRRyLjEVrjFnXGcdb04cwQXzmhEz+qv3nGEFj3NCExp8aHDOG3vkHc4FnASCc/gQrL1bA14CgjOBsBNC0+JdS7bmNWaSmOYVaX6Tw9tXWNy+wXI1x3xbaunF/G10MAGtFmBjHpt2ryrOIlbEROSaja1wumZps9ZA30SuwKYsNkRt4VGNOjVmmgQk7Lu0Zl35MuYUoFRM8lxha3yui4n1mEpWhmht5Em0uAeLBV1SdT2MthapPO+c0LlgzKVUJZBl1TWFsUKsq00zDNYpQcbCi82wsC4EFdH0nzWP3N3ubi+H7VPX3FAZAarBZ3l0XcrQkXVYA32tav0Tm5VRClIaJ0yt/6eGV0o+qURREFvVvshXR06s0Oory77VAWQ8Bq2cj5bYg9r6Oe6t3dByYn/qwCeV2q3iZBkH0iAGHAaXLRcHN0Ij54RcXD4pK6RcqWg108NRvKuVENdCm9vfgnhrO1Wl8cYQzREkldW1mNeI5UJpafEoKePluFIRT9qYVcWE9pwqxMLB1JSIVHm1OoBqHktXonqCOxs5pvE5BKTbZOP0GbJ4c7dtPFkUpGO6faZMrpmRvJKGtttEmhZNEdVg+gnfoCTQhDQztu59K/OnL4EckbLSbrX0/U1yv4X2t3DyIXLTwtYfQ9MKWV1BdEqSbXT7HuTSh1F/G1llcBnXenKEyfYR2xef5PqVN3N0/SZbZz+BSwnE1F8qakJUVTQJcQ63rnmOjhPHc8eqF84/osx2FV1BngvPPZm4fhOaPc9svyFPHW4q7HcgRHR5g3a2RVgIlx+7yu5kxfIYtpiQNeDaLdTfstKC92hqIXs0WuQstHjfsji+aSZ+q4FBj8lMyUe3SC3EsE3XXuDxxx9jev9DZBWSF4aUaMq1bQZ0xVbBtMQkVZwP47F7FxAC4kPxtkklooC1f5OUkokXK+F4X8TCAXFK7jPeBysPigHmGDEvKC9kUukSUrP+l4y4xkBNmyFmXE4436DRoXkg+dvEpmOOEvYEP5nS5obgBfPgMxfx6hnjsf+mnBnE7CPIkZRKydpbTc4aIIqqRQp7p0KMqbBa1cai3q9SGG0lYxqfapBZNTXW6yDm+VSAhteiuxErvasovvG2pKi3bzaTxSyFCVcdwy/r+Jgp/mEKWc3+IDQduhzs/QVsCUoIFjKaUjTQp7Xrz0qoq+VAK+ZLlbSW0O9SN3e3l9f2kswLxpttrF/XyXj9+Fp2XN9UgA82YJoAeV1KshJNEaXK+jsEK09lNVtx61ioTK7UWXWka9dsy3rgsY8/AVzGfRNUS4dFXq/CqAzOeEjrFZKxKfZowkBOEsaVkXMQnDCIMVy5HJdqRpwN1K60bCMVvth3uPK/6n5aWWA9AR5tkqAwRqXVvFDbqsmEndTMGPsdbL/rStROgfDiCIuK/dZg0/apxNPY71CmUtNVlRW6cyO1XhPjR4lTBt9NaLfuKV8c8N7TdBPa6Slcs4mE1laJqxXaD3YeXEeiIcU0gkkVm3AkK4GWydaj+Om9xnh56Dpwswk57nP7o7/F6spTqL6GLPeDnCUdXCXnCX56Du/36LvPIabXQdxGVmpGe01E2szG7pJ7H77C4XU4vPZK4rwlLSekG0q8VXKFRKBR3A74fbgzN7B57tHMhfsVtxRSD88/q9w6EtptoZlN0XyG7b3znL+v5YELtiJ+/tKHuDm/w61+j6Meblw94spv/Rs7j8MRUQdE9xA6cg7gCuCQaDlS/ZK46omrm7iUycMAeSDpEeKF1B8xxGMOjw6YnurwzRRHQLzgfLD243IF51RKmVWj4qybCgmIb8C1VoISHUu6eWRpi15FPCF0iJgrdc1Pqo1CCKbjKWFsZoqsNGQayTTB4b0YePAZF8o+BE/oAq4JNh5IwoWBWdPTrG4ji5vExQHzg9usFvNR31X9tbKsQ39PdnzW2z+VJG9KO3fOdg9B8ZuCUgrypctIx3/GcSIbGIlO6906jkHUoamCoHJvrsdDK1sFhCDeAkJjsuu+MFChOEODlY3VUI79o5mQraQszpGTgjpib6vDnIuyTgpTpUXDKEIobQhZwaI0WnwwlpbaDUpFvXe3u9vLZ/vUBcVZR+Ch9Z4SHSfgetPajbruJngxk2N/y9gcMYbBlfpxHWy81CHTRHBDtqC4+olrE6r1F+QTFC0VABX2pgxrJsQUM/JCSk5NaQ+3z1t3QkiZsEtfN8ZlYJ1FUNpBGQM2yZlOi5swtZG27LFIKaMZZHFCqX+XE1EHXSnaJimDjVbuRddArjg5p6zEDN6XzpTC01RxdT3HoOM5VetZtUll/FktaVzKCa1gTrR8BoWNwSaJ+nuha9G04RkFTfareUdWRxc2UX8MlfVpJnRuy7rkitMsQ48OKxt8EzhpWQ2WcIwLeCdW9lPbl2ZyBtl5CMcRGm/B9oNwcImjm09x+yqcOz5md/8Oqs+hsxZZHSHtLfLsHrLs4M58GasX3oMcbdBs/Sbil+AFDWDlvSc4+6Dw/DP7HOVHmGxtk4/fRw5zTl00NtENHhkyOzvQzDLbe8K99wn0gqzg5lXl5rHCVgPNDrG7SHKBgNB01/m6rxF+/P8HHBzx3PFH2NzdIrcwTOD0w+eJR8e0U0V8KoxKRqXF4azFNynD6pCU7hCHRB4GYuwB833Z7Kb0PQyLOV487cZZ9s6f4uBgwOeE6wX8gPjGrp2cMKEvWLyDrG8uH0iSCM7bPVDLuqUGLKUXz3sLtNXSrYQaK6JZIcZC0tauKm9lx1yYTUeZ3K3AiVrJN4nlaFnx2eOabOU6tQvdEeiGAY4OkLBBj3nZrJyHqccVwXjSEvxSGBlN9v50YqzQch6cBASIqmUMMj8YqfdguQ4NGJrORkerhNIkUe/3unBzNubI6CZcTrEUq4vfwdymGPFNoE8DnZRYB8mjBABfnNoLGK1mm+7Efd86D30kZaVxgYSxxdVhvbLPmqv+z4bCmKIxPb61u1rVkuB/56L17nZ3++98+9QdimUkNsZVutZKUBlsKiiwZV15H2uAUxFP1dBZ5UdHTczYRl6BgTMqOGUrmwSMX7ZVCCaClfU7qjBuDUzW/i0mKDbRcw26q4/XnZQCKEwoWDNhyudKFRqvWSUpHyLeErJ9tPb2mJW2niyp7FEBf2TTr6gSUzatUvlswWrhBhpMJZTL6swXingsCwkW2ulHZxqq8Lkee83ySvXHc+ZnoVlKGYEyuNczWFpnpYQqVgGRCqmsfoPYKjWTCSdKimFEsRa14HJmmRLSTmBYAYK6FqEZW9PFCTr09o+CxoiXhqFoJJwrDBsB9WYsNtm8h8mZN7PKt3F9R9NtEH3H7LQjhp7rLzzH0v0rutmrCJun2br4uSzjYzTHR7D/CK49i9t5nvn159D5veyeu4L6Y1znoBvw2aPTxL0PX+PSR1bcufYa9i8KW/uCpArAza75+lMZdY77Hsz4Qcm9cuvQcfVQYHMLN3mUyDZdez8uZGQ4JuUJb3rdId+uh/z0zy+Z+DltOOKRR+Fzv0aZbD/O4urDpDN7TPwG6npU7gGZkIfA4vAaq/nzxP6QISrKFM1DYfKUNuyxHG7RpwNyvsPqeJfl6pgXLh1y4ZWvNJ8ap+ADztuq3yZiA/yKaeAkAT6TSYimApBtUrXoslzAS0Q0o8mynMCYF7v2TGTtSvk3FzsG55rxnsJnuy5SNifcwisG583XxSs4RxoSyTnEZ1IciumnR73DDYl4+ybDKSHOhSjCZvBsNjMD7rVchjehMNgE7qztOYh1CzlfIii1dGOKFIPBci/naPdVpoxD69gXW1EUY07WA0tSxWVbGGmq9bFxyEQ1G7hWyEVEp9kYrNSvSM7jfVOGJdunoWTHObG2cMWRNBFwREzLmFMVB7uS6F0We0YZ2fcC0YyxzHJDzeE9izLvFwQcqCtePy+J5L+73d3+yLdP+Yqtc5fTUveltklXQGNCViW/uG2w3Ozm/lBav09MvrkwGDXXqJY6KLoOVzwwotpKq7ZRj73lhTQdu6HKI7YvdcKv4Xq5fP+6y8oGdil+F4yi3bVYV0dQU/e1gjLDdZWfV7I3kSUC/YtPASfVQ7mAHSlfWNvrzfS3rvrsOESSrVIreMQ6sGog3pDzSDvX1GBZI07KCSkrLx3zlLJWzVL57DKQ5VxZJuovMg7G1PMpVpqy8psxP1XnlJ1NfMOwYnHzwNq8AdWE+AZpvQnTs9X7NSV8v8ItluTjBfTlt8sOFU92UoBlYyDP77G1+xChu49u//M5vH2HrImke2xszti8MGN++ylEPoiGa8RbH4DFBjHvw+QMaXI//swXwtlHaPdfT57+v8hxk5wU1QBTkE7xopx75TGnL76PrVNzJGWIgssOouPOC3D9AC48JLRmCcPqyHP9oMVtP8x05ytotj8Pmb0K3TjHQEDaKW56AWZv5vP/2Ofw0OkdWEb6rNz3+tPsnoXt6Yeg/+cMy0juM0QlDSuG1Yr58TXS8VP0R08Ql7fQYUKMc3IfyQlUAhoz/XAE8+vQnObS88qH3vckp0+fYuKmBBdRjQQSjUa8JhwDXixTiFR0KSg5RxwRsNJmTml9vxfdiDpBfIDCeFSw5F1jkz2mwQELYK3Cfuec/a7O48XhvSMEwUnGFadoJ9E8ncq9EiRb+72PiE+IDgQfaZwSlkd0h7dgWJDnR/R37hCHlXUqlQVJLbnZtV+us2QaKtQCalNZl+VsGiuwsri1eNt+pBRNMFwcj2Ht11XF+ZRyuvn2pWIPIbWKBAnT24gtjMjGEmnGxNYZXIKmBpuCMblZIFoLuBMhFI2SOIe6XM6vw6ljOQzjfjoMsIrtaGFbbaz1tQNSHN55Ezl7V+I5rEnihL/h3e3TvN17772vF5E3f8/3fM+FP+p9eTlvLwHcrGnJUZ5S2Im1MZSMzEadDEv1ec3awIlnDWqkgoZKKX7Utri8LtPEMsDkEzdnGV3L3p1wcakMTJ2YZU0wrZmUUp4pk+d4DFVAN9bL1wwQrPU4cuIYslK0KErjjA4bMgwVxKiM588VoCdYeB5aCkr1+6XoeKTAwCxooubdjR1JjXFADElOUPX2jwPTLax/MZxqGaBqecwGdzuXpUumdkFVwHjC20YkIzr6sI6/Zz2vhVE3VimCrBZcunwVjR4ZbAUvTYvrZhDMK0RTGTGXPWl+zPL2dVZ3DkkxM0QlqaNYvCLSoOoQt4HXU4Td13F0fIfl4gpZIz0tLtxDO5kwnSVuP/dxhhvPslw+S3/530OzQZZA8hvk6Rn8Pf83mvv/BJlX4OUbYTFDhwRJkMYhDTTTyOx0jxsUHezXG46VO08pV64o0x3Y34vIUoi9cOU2HOcp2r4WnV1kaDeR6Wl63+GmZ0jTCwzdPUR/hlV7mm/+iw/wirOe60dw7kGlQXCtZ8s9xfLm4/SHR6TFMRoHBEuwzkScbOJCayt0HCsJLB3ooPQHt+gPbtAvj7lzmLj0zIp2e0YIpv3y0tE4BzqUbh2hKWGmkhJBs3XIOAuHdZoJ3txwUUv79ohNfiogAZUGdZ11LubVWunvIj6A957gGxPvutIW7gMuhNIlVXOi7NoOUv7BHvfO0YSAp8PR4X1nXXliXKg4pQtCc3xIszhEWDHMj5gfH9LnAaKQk5q1hGTT5GCRCjW2QAkmtlYtWpiyFEpasqlKBlOxlVCwlm1dMyqqOnZ7qiv3VQGE+QTbPYr+q+t5Mi2bS2UsyPbYxHeFAXIklOiM6TU9UemyxMrFAxakqVKsHBz4xpM0FucGHccyKxNbO35QwWvJ9HNCnzNpSOTBvH/WY8Td7e728to+9VZwEaNPXflHKv+xvuylfKAbkUQFKmuGBmpZam2QNwKkscq0Xq1V1odShhk/pKwmyx/X4KCspEZwUtudxQS5qexAZXXqymatMzRAYQwGoPKiIxy1zAVIGGVtFvZeFU82C341P4kU60qxignLuI8iOZf6d2FbpIg7kfXKkCKO1spsmZBYvDkbD1lLhp5aB8vvKIPZetMXNsjXszn+XiJiJbaqn3KMLazVwGstntRxchB0fE9Wux5MuGnnNuYD3vuL/yvp4LpNij6MAMhnLOBSbZLLaWA5zFksD5nfvkWKQo4DmlaQKozMZXHpEb+Nb+9lsvcwYeeV3LgzJ80HYtMQNbJ54RTtFkw3nmHj3jcw7NyDTvdwQyDgEbeFuBnIBWSyz2o+Q/kKXD9FUzLaTazK4rOiycTL156IvPMXlPc9DXECZx7A/G4Wyu07metHAv5BctiwjLSwCX4LhzDEzCpGVsubrA6eIR4coMc3+MKvgHOvSxwf3CQNkNoziAjzax/mzsELRM2llX8b76e0mw/gJhdANkBXSIxIhgkdeRk5XM1ppg+Q8/1c/tgSFWGWGvLKbAJS7MuKvyOrw4cpgQlNdrSSCAZR7B8/9vzZdVICIFUgskJlAB0g9ZDM7t+5KiLWkkNZeEvvwHlrBa+2AmJ5b943RaTuTajuvImTfYtTbywFmeBXeB9pnMNJQwgtThytehzQesEf3MbPD2GYszq8w+roCHIy5knL/aVmhImai2+STMoR8gAaoeamjRq0On5JqT6lE8OQFACwXhhQ2FRgPM4XiYvLH3NKeDGQppJHkbAvq7y28SYcL/tTfb7qQixG62msf3fZETMk7xH1NOpo2mYULksBj66MVy6XTL/CSoWseE0lZNaywHK2OJm8PuK7293tZbF9yuBGT9yba5O38kAp34wrmDLR1S8YDeRe9IEFuJSySM46TsqGc2xydsXzpZZz6rxtJRuj0AtHg7G9tc38hOBV1lN97baq9K3NYlU0DE7yi95XSzJ1kFsfbzmI+oCuO6QC5tNTX5+oZaH6Z0pxrLRFyRo0MX6iAZMRv4kdoYjV9b2CJ4Nz9KXN01VQWECZlmOzlaSBu1xboDA9i2ZZx0qIEAu4EpXaSGZ7ajSXARLxhc1iDBut5UbDYYJrA3/8LZuEOCf7Fpx1fpAiGodSygskEaIOLPoF88Njji8fcHRnTorZxLRa2bRE9TZqJttMZ/cT9h+m3X8Tew99JTePViyWQtg4R8qbbJzZI8YZNPew//pvJmxeIIYNIglcY+WUqGiziTvzCjTez7B4C7lvyYNALgaQyUop7iosbzh+42nhlz8Jq0nDxiZo71guhBvHgdX0FKvJJr1vSD6Sc0C8msOxz4g/InQrmu2zSOP5wGNHvLBSLjwoPHNTOVpkhoVDXINwDecdvjlFpiHGTFqtWBxfJfZ3LPdKWxwNQaakXunTMRu72wyHt7h95QWeunTI/qlTOI30t47pj27j8xJdKblfIXlAU0QY8N4S08WZ4N2M6sS0Oc4DnqzekslrzdY5m3idgiScCEmtXFnLwb6oaJRUfFh8uf8KgCrdfwi41iHB4YJHQjs6llunnuBdS+smBGc9PuYNaEngzgmBROszcvM6YXFAinOWiyNWq0WJmmBkiTVbSbQCl1ypUWUci2IuTAm2ANEsCMGisrK55Zv7skPVjePPgJbX2H0eUy6laB0XddWiYizzeRkbIhQlu8IIU4I6s2U/2SLGxp5qGugRvKGusTNScyalZMfjxATSqnhxJRIG01lRHKbNZtQcyUOgmUwQrOmD0lV3d/uD2XLO/PAP//CZ17zmNa+dTCZv2tjY+JzXv/71r/n1X//16e/2+h/4gR84++ijj752Z2fnjSGEN+3t7X32V37lVz70wQ9+sDv5un/+z//5zhvf+MZHt7a23jidTj/n4sWLr/vqr/7qV167ds1/Ks+nlPgbf+NvnH3kkUc+q+u6N21vb7/xT/7JP/nKxx57rH0p3/Pfy/YS4hfWZZs69a7hSgUDpVRxovRTNb9eoPpCFAxk74HSeXXyo8rEXFifUL4rFSahilxzXf2V76mma2vwsy5WuRH+rL+sghHL8bG3OqW0YpeBppRyxh0ujHJdu1ncQU0wt31zZfW1ykJWi2jAlZypcX/sj5XpsHPiLBkZCkRzI4M1tkFp7So163TJ9f2lHRVshYzYCrKKg+2IRxBlKznFAJT9t/6+glIDA228r3ofN2prrNxWS2yFHi/KpcYl9k89wBe+9XPJYYIbVRxVLloHSiWlzCL1zOcLjm4dcHj7kHj1BjsXThMiSJPwvvjzUMSd2jGZnILVA8SdnpimyNZD3L78OHFvQvCOdmoeMEfPfITtvc9FxCOyoMsNyoBPfRHMdtA8RD4zwx1fQG/dwG39NtknBA99Jt0Elsr58/D//OPKzz8FZx5Q3OBIy8TBwrFgwtapL6KZ3E9qOyChukDTNaClDcZwSEyk5Fj0m7z3yZ7lTNAD4cN7yv070M1agu9YrW6ifce226RfBoZ+zmp5C+17HA2+22I53CbngXiwYpV6nJ8Sl4njW5d46pkl7c552mnAS2bIR5C2iUdLJhseHyZ49bi8wgeH81Oca4rWTMdJ11yMbeKTEMgoMZr4VrOWhYzpzFI2JsGFBnIsJcoBJON8g0uMbrq5XBE4h7qIV28dRSWkMihEelt3qOCzmGmjRlTM2A4nuDAxvxr1qCY6hGbVM7/6HP5MJopn4TItW6hvwHtCGQZiThYPkW1BFhVeHJ2SbczJoFKyoTKoc2XxZsxrFnDZxpgs5iHlqY0JinjzqMk5F9aptHQ7d6IpY730M6F/Ea9ncKqlhCulRR9jo7NFXqSUQaV4cNl4OWjGh0A/RLyzHKosAtGyvOr4qAikBMEXrWQg9wMxRqIoE+ch3QU2f5DbN3/zN9//9re//SzA7u5uPH36dPzYxz42feKJJ7ov+IIvWPzO17/73e/eeuaZZ7rz58/3586d0yeffHL6K7/yK7tf+ZVfufHkk09+aDab6QsvvBC+8Ru/8aFhGOT8+fP91tZWunTpUvvOd75z7+bNm88NwyC/1/NnzpxJ3/RN33TxZ3/2Z88APPzww8vr16+Hd73rXXu/+Zu/ufn+97//I/fee2/8/b7nzJkz6Q/7fP6XtpcAbmrpwtqYbdK1Pp2qwanCW9BRN5NFxmA5xTwWRM3PPmvpQrKPL0CnKELKc1A0JBgQiNns7WWcJnVkY0SFav9gOKIChcqAaCWZilOv3bTVIX7dNs76uLRO7LUGVQYsV/bXMa6EqKWsUstekRk005VBRwRETdxcuyy07osWsTZSWkvtCHMFEGKoqwIyCqhzkskZYhZafwJQSsnoKgLP0tsxgr0qqK7npB61UAZw0RLJICe6qU4M/CNgKj/8yFQJaSW84Q0Pcs/5Hbxry4s7EwXjyBb+Q9TEcjVwvOg5unXM0dGCw/6Io2dvcvZ1kW7VI20gem+dGy5T++bInk72OXSn2Tg9IPpqFl64dftZpl3Dhhtw6Ukkdhw//WvM7v1cWgd5OERWt9HJFtpsMIjgc0D8aZjNaN2+Wc8vBXeg+LmJprUTnIcHXw9//l7hnq0MSyElz5NPe64Nm+wtr7G510CzCe20TCrbDLoipIzmbY7mytFh4lf/1w/wwacSrs1MRLl8x/GbHxH2z73AdCpsbzqWyyNWx3NySgz9DciZOMzpVz0xZZw6VqsjDg+eQnF42Wb+wmWuPhu5dXuf0684S+M6GOZ4B4vbd/D7K4Y+0QTr2guuI/gGCQEJRQDsGpwPBm6ysTLirWSUszE8JgSTohupi5ZYOtyyUZRinYS1W8ru/UwI3jriqpbNOyTave+dkrIgmvHFsyCnEnzpPEkirpbIcjJHYYwlUudtgdE6uuWSg8vP4oeM7J4lDUre3CDR4qjgs0SWJIhiAmDnC+gqLt84N4LqXJjmpMYqBnF4x9ojS0onY1nwgI1hKUaLrCh7aiWuAjbKYsZD0dmBag2gVRrvGYaBxhW/8LpwzAbusqwNQcfnC/tax7GsikvYYiV4fDUVtbNgMgMtZf5s43Vwjj5HC+ksmpy723/79rGPfaz9mZ/5mbMAX/EVX3H7X//rf/3kZDLRF154ISwWC/nd3vMjP/Ijz7/uda97sus6BXjHO96x9XVf93WvunLlSvMrv/Irm1/7tV97+MQTT7TDMMjGxkZ+/PHHP7y5uak5Z9797nfPzp8/Hz/wgQ9Mfq/nH3vssfbnfu7nzgD8vb/39576zu/8zht37txxr371q1935cqV5m1ve9vZH/uxH3vh9/ueP7wz+ftvnzq44YSYtgKS9VOl9vyiB4BaUqh51ZXhsVdltTHQFWMpJzqWuKiAglLCUSlhccqg0Lj1tyg1LI/ynTbzutI+mU8kf1dmZ10CXzMy6EgWjWDt5CQuFYXZHo2sFFSGpzIwNmg3ztrCVTGzLKnfb/T/SOTounPJzrOswZ4JdMZ9LL0Rln1UYFtEiSo02dp8naN0UNWfxgSLVTOArJVSRoIZ9Cldqmt4V8wTR9WRVstCW+2aGZsbvX9MKpBJKrzpja/FSwOEkklUSnAFaKWkrFYDx8fHHB/MWd455s7BMUf9iv7yJQ4ObzNpM6FvyI1H1eG0sD5lBR1kwu7mK1nqJkdHS7r9wCAdQR1H/U3ccJOVXmfy5P9OO/E07QoJ58mTXdLyeby8iqbdIrMyoWroSNyDHj1EPJri9WOIDGirSGur+1nO3Nc5wiKTVnA4h7//zzLP9Tdp/W8wayd29iaBqbYse0fIlifVHwrzuGKeE4uDBWwlNtOUHJYImYlXlovIdNLSdJmDeJV+cWAdaRGIAxoXpH5BHgJx0bNa9DRb55CwyfEzz3L18k2euzLl3CsfodvcJi2P8S4S+2zAmhnBdagOBliCA8l4n/De44OJfrM4/Ahsq+g+ASaEz0VkWhcRUu9dJ9bRI2XR4Rw5rq8P+5exEc45Yk7mreOs9ChiTEQtv0oZQ7yvCeTetFAoLuXiZKzFYTiYW7gzJ+VtEsvrlyxU9MwZlBVdt01uHOLLhK32mSpCdJmYzcvHFSdNSToCrGrA6dQ8mbQyvG4NOnxZEOFsqEgF5kgyPRLl+SxluSfGqqRcFxl27zt1dr5NzV9awU2cHAr5nMRaubU2AogYo1XGFc2mwWtE6MtnudKi7ooJaCzAUbK5JTs8yXfE3GPdk2Ufa+367vbftP3ar/3aRq1q/JW/8lcuTyYTBbhw4cJ/ERg88cQT7bd+67c+8LGPfWw2n8/d2jwSnnvuuQbgzW9+8+K+++5bPffcc925c+fe+MADDywfffTRxdd//dff+uIv/uL57/f8v/yX/3Lcr+/6ru968Lu+67sePLkP73nPezY+le/5gz1b/23bpx6/UFZZY/BjWTmsAQ/USR+RQopomfAqC7M2v8ll9tb62dRJtDZG2/eY5XipU6sWd2BHoxVsnARBNpjYoFyEdjLu3BqllAG5LFSopZ+TF03Vway3kqBdVqrrR8s+iBQ9io4sRm1SGLDOBCkrutqq7ZxR+6ZVkZHN8rgyaNlABiXXqwK+E8gyiCOKgZuIoxUtegBr0XaumJhVpEbBSqKsIU45El1/rpTVNrJmxyqjhJZVYAV4OjZ/WIu663j4vgdtAFUwM8JUQKqt3oflkuXREcujO8xvXOfg4DaH8znzoWfZH3Ptk7fY25oxLBe4ziZhoZanKKycp9UpKe2zu/MKLh09B3IWlet4v8vy8FSJTbjOrWc/ys6ZLcLWQ9CcQo4/gsgVxE8IkkiuRWVK03wF0e3hNzx3nj5md+tJfFDYMJBOcnQxcXggDEv4xEczn7gGiyaBT7jlEnxGFo7OZ5aLhn7pyXGgzYGdTU8jU5qNjqm0BBpaCeSh5+D2isYrXpe0jWN1/XmuLJ9DNhqmm/vktETzgGomLg/pj5bklGl3X8/t5z/CjRtXefyJno1zr2W2uYewgiGh0pvmapiQj49ZpEw4tQ9uavoZzFPG4wp48Pb7llvZ+TAWEl3p8BMR02KkZJ1BCmIBSKMjN4q1WWdre86aUG8iYrGLneAcMZsJoKor2pRq5ZBLR6Mr44cQGiFFm8BjrtYOFJYyIUnI0co1Piutz6SDy/T9Ed2Z86yaJcPmima6W67fjLiB6uBrWVBFt1fGg2J5gxdvgKGsNqSOIxXQVFZHIaXCZjolFgO+xhCQjW4Fg4z6QGDtz2U+Nlrue2sg8NYuXhY4sSwoBEqQaakGqP0WriwIY87mn1PMErWM3YW7HUv3I3NbGjC02Epb9pwJAu5uf/jbRz7ykfYbvuEbHq5syWtf+9p5Skkee+yxKUBKSQBms5n+1m/91kd/4id+4tRv/MZvbHz84x+fvOMd7zj1C7/wC6dWq9WT3/It33Lr93r+5Hc++uiji7ZtX/SD33///f2n+j1/WOfm99teAnNTOn5yASpVECdVAHxy1S8nWJSiK1HMDVUYS1aIK+WRDLncxLWzQMVqzVIm1VwFrKULqZSGckU42H+qfmccKKAIZEuOeQEmBqh8rahQE7ClgCEtrqYV1NWU8KylR0zXk7uDNcgrOyLO7NTBsUqJXqCtYAsdwZR1QFXPnOpcbEZatRtN1UCb5FKiclJWborPFsi5QllpKp0llFKUKzX46tJqK0LTNay/c9QXUVpRvSv1d1PTaDbhpp74vStAtLMgZdD1JM340LHZCsSEdBFyWP9E2RFTZJGWzIc5x8sDFncOOFgcslqs6GNkxRJ3fIv54izBr2inE7Jriu6hXFveVrIueyZuC+E85+77Cm5OPsLR9ffSygK//QqStvjpJW4++zjDrcTmhQY276d1Gc8K6W+amVuzTU7Cct5A8wgymdPc/9nEoxdwLK2rJ1gJUI6U0AkvfEKZ7Ade/crE+x5zpuGpWhCnrCaChMTpqadfdEyblq6dsUoDfjLh9OaUOz0cRMduk3jh6JhVvIVMWrppw8H7P8z1o8D9b3oLzc4+Gzv3cNR/gthfYlgOxGVk6HsWz3yA+fHAjYOzzN3A/fdcxKWG1fImmla4mZUvNazIssF05lFn7eWeTDDFrp2H0FpYZolCVx/I4srCZj0WpGg3rPhgTOEQQZOVHotOy0tDknLNZhBnjsNDKtocEdII9vM4MXvnwJcyp9o1m6ONE6OuL1u5K0sANTapmg0OboXLgpfWnJgBlrfoXzhE987jszCIo/GTIkZuICtpyGtzTndSg2aXXCqiXCmAxjshkUBNI0TRAtmCLZoQPRtrmzPG8JQaeBIb7xzmW2VYMRewWRaRoTC4sZxfhOQrO2ylKynePaNUoIy90RkwSiWXjsIqWQSD3duJbM7vSYmKie1RRDJ56AmU/KmSEXZ3+2/f3vrWtx7X+eTv/J2/c+6LvuiLPjmZTPTy5cv++PjYPfTQQ8PJ1//Gb/zGbBgGAXjHO97x+Jd/+Zcf/+RP/uTet33bt73y5Otu3rzp3v/+90/+6l/9q1dduXa/8Au/8JH/8B/+w/a/+3f/bvPP/Jk/c+f3ev77vu/7rtT9+vN//s9f//7v//6rYNfkL//yL2/u7e2lT+V7XrbgZizT5PWEv36ylo9YMzvUsoo5hKIGTkavFK0CX9Z4qKIkqSuM8uFSjQDtbbF4MPgCJKC2oGtdUhXR4gnvnMpzF31OfU813zLKubRp2w6WUs6J/aj/FjCJbKn3A2ZaNi7OyudkVDxRM834CUXHURmgatonikgxE7TphUF17CbJZQD1Ze2YYZw8vELCMWSlqy2jcEJlo2vmI+dS5DckKN7Oae22yuO7CsCSwqZpWZmfIHzW6z77XSfesf+K05w7v4X2EfWDSWWcAa2UhL4fGOKC1eqYfrFklRN9TixSZLHM3HfxNPdsw+rWTVaTlslSIZjZmCuBm3at2EDtfKDt9nArjz/9KOIG5pc/Bk1gdXSNlPZYLeek2SnS1afp4gZuuoFueWTagkvk+bOo38M1WzBpyPGIjbNfQu8E0f9EludRp7jkYOqYiDLbhWaR+favhR+fwwc+AZI86qx91s8bJhuB2d4GG1stTeMgK00TOH36FPe/6rOQZpPdyZR3/9L/Sdi9yO2Dq9zzyhanA/ec+wQffuIZZtfeQGoXLN0B+WjF6jixPLjDsj8mHR5z+84xT33U88lLygMXL9I2M/p0aP4lzZKpD0jT0rUN+AFNPZ6OIIngs3Uw+Qbny8QuDnXOXGmrFUIpGdWSqBNH8iUS4ESrsoglxGcC2TlUoxnMYengubIPkkokgbNrNw9IsUIQl3A4Uqw6OkXEykKpgPcgiewcaGMWCJrwahERvnQRBReROJBTIpCQ7JGD28Rj69iLm7ukYA0nrWtRlw3uRcX7bMcrdi/4BL1Tglr5NpPJMRdwZLERtcVaNRvoET+C/5wSSS2EVJyVtEbBnRqoMbADNR7BqTUveWd3e84ZycEWWazL+gbGhJLXWVzPGWNSmrYhLvsxVV3V7kdNCprMlLAIn1VNb6POkzSxCPa52d2FN38Q26tf/er+G7/xG6++/e1vP/uud71r7/z581tnzpwZnn766ck//If/8MmHHnro9snXf/Znf/bSe09Kia/7uq975Pz58/21a9ea3/m5L7zwQvMVX/EVj25vb6dz5871wzDIU089NQF4wxvesPj9nn/ta1/b/7k/9+eu/9N/+k9P/7W/9tfu/4mf+Ilzs9ksXbp0qT06OvI/9mM/9tRb3vKW3/dz/hBO4ae8fergptItWvp4lFHkOnrUjKzL+kawgbHUz0uppwKL+op1N449nimlE1dXKcZuVIMvLTewaEnkLvjIlRWPFkrZSdUF6FhmyhUAYb0QY0tmYXqy1ul6DUTKC0a2xbQ2egKQaa2vFaFyYWXEWlSleNYkMZalHnU156qltzEfazxz5TtGoaIWN1MlOBlZKo/QlNOulE6noqrWF51r25ysNRNOiqdOAX+VLZKSu6VjEztFO2XnvaJ2Y3Wsk60RA1dv+aI3c+rUaTQmZBCQHk1CTp6YhH65YDk/ZJgfsTpacDw/ZjHvWa4GNqaBR165j4+H9Icdq70dFt0c15sWwPQWNnJbs5eg4vAyQcQxzHvC4iztqQ2OX3gP7f796NENcnOdrA9wuIDrn/gl9vwS1/wZQtpFwpK0PCDvXQQCuZnRMBB0ijvzfyXH18Ly7+PTAepPQ75KPwiSodnI3LcLf+UvZt7+b7a4Hk+zmCcWwzESA5HEciXs7e2wNXVMd+5hfycx2zlNGy7QTVuExHQSeeY5z4f2zvDwA1eYzu7lwsM3ue+5iIu3WR1dQWJkcXxAPM4sjqA/PGBx45Bnngnc0QucOj8w2Z+BLiDNzYAvOAM1wdM0LV3XEpwxOSEUOBsMpDgnuCKst84p855BwTlf2MvCtopawjeMzsVWSikJ1sXpVjVaSUQVJwnxYuWflEvSeR5ZPSfBNDpDb8CHqtUzkJ5dqdjg8GJdXEVYR8L0JX4s9+RSRnKEPDBpPBGHkxWaI/31JcvjO8jWGfq0hZtuWst0cAS1+1K8gSsVtW6owupkzXYclDJajuMyR2F0IK+uCxXgVLGxKwsUu4btHjeZoLE64mQsd2u21XPwpqfTEhQnxR258Q5SImXT4OTit+OzMKSSzdf3YwixFgM/ckRTWjONWdCYi1jcxpqGhmWyc+zlJa2D726/x/bTP/3Tz77mNa9Z/uN//I/PfPKTn5w899xz7lWvetXioYceWv3O137O53zO8u/+3b/71A//8A9fuH79erO3txff9ra3Pft1X/d1rzr5unPnzsWv//qvv/G+971v4/nnn+9yzrziFa9Y/tk/+2dvfPd3f/f1Gzdu+N/reYCf+ZmfefrRRx9d/JN/8k9OP/3005O2bf2FCxf6L/qiLzr4qq/6qsNP5Xv+cM7gp7bJi9iX32Pb7UzOWSdLEcHVzJIXAYQMWXkT8L8N8KUBPuAYB6kqRq6brQRNiFop1cw6PHNd8tJxAE1YHINX6LwrIEiL2NZqJk5rKB1j4GMVAZePIYu9bpy8yzdViCWursTscV9WWxaGV8CHfZol+RYh4YiiimhvlYWYhQaYeIXSLqpqvjKKIyhlNbZ2BKpkUyNl5TayUVbyqoCscix9Mi+YLji8K74wFW1JOT6VcRelMFVZxr4x/vOOMZvQalaOaqJa6Fv5L1BdYic46Cb82P/3bXzhqy7CnSNCmCEhgGbi4DleDRzPjzm4cYP59VvcunLA9etXuXXzkKPDY07ft8sXv+Vehr6h39iDnS12zp1nc7LDZGMDH4TO+XLNeSzl2P4rmkirnuNbT3PzziV0Y8HNSx+lbQKr42fQvkd0hdMZabjEmXvfyMb2Pn7vUZqNfcggzQbqwOVjGkloXpKPnyLIewj8OyTuo/1NDi7P+cTjyn2vAunsGrz6tPAv/vd76DcfpNmA1VHHSjJt17Bawtmzm4SNXVoGGr/J5u55hhhpWsfqYEVD4ImPvo9v/3PPsNs8R8qneOG68MTzf5zJxjni8Q2Go5v0R1dYLQ+ZH/Q88/gxaftRmtlp0vwOp3b2GdIAaY4OB3Ttkm7SgRNC6NjePotqz2RP2Ng5w+b2Dn46I3QdTbOB896M/UIHYiaLihJ8IKVUrhtHloRm06hoHnCp8LGSEWnIGnAqlntlkByTBJcsq5TJKVrOEYN5rahFZKaciH00sbFqEZ5YknXKSr/KpZQ82NOxyHZV0JSIuSdKguSIy0jMK3IIJAnkmBCJRA2onzD4CcvpDu3eOVyYkaZT2mZCEMjB4dSDLwadRdgrlLHDWQyKNTtU49Bs4MdyFAjixiw23xiYaVzgpHFYLnETWgNmpYA6NcFv1Mww9LTeWvEtakGKTAA0RpACbnIxKsyZHBPkyJDsPHrLXjHQpNFAaDl/YqjMfltVYsys4sCQelLquffZ5/mO7///ALwZ1fd9SpPGp3F773vf+2gI4V2PPPLI0Ww2W/5R78/d7Q9nm8/nk49//OObMcY/8eY3v/mx3+u1L0lQXKgLqNxG0V9IKS3Z4KalfmzvMz8VGVmNst4f2QnBAt5qanbVuVQHd8rrqgKFMsjkQo8nNd2JFCYDrKulVFxY17nWMKBuTuuNLoXBKZO61LbtjIlhbbCpxyRSJ/1amqvMRzk9hVY29giCM6uIml3jRzBoLMT4HjF2uZrn1d01JsuNZohCobZzPacF3oiQcMRcs7G0eO8UyDZqe9ZApbJvlglU6/Z1QSyFiRqVVHbMJVxzLHzVcyeZey8+yJs+61E8c7J35NURLm2RNTHEntVqwWp5RD8/5uDgDrcP73BwfMh8dcBidcTzT/Xo513Ah45WHfPjgeV8Thdm+BgRF6zDzmFCVsnGBIogriFMYHvnARiUm4e3CM1DLO88R+oDG6c6+oOMd4lm816uPf9xjm5M2Gnvx7kdWF5htnMBFwJZB7TZoGk6hn4fab+J5e093NHj9JzmE88+zRPXG2b33OHiA6fJcoP7XtnzP+drfPTmG2m2H+TGrSOO+sg95+8l5ETqTrGzucPtW88xDR4XpripJ0Qhbim3bl/n3kcf5oVb97J1/n9hyC8wDZnlrWfgeMHy6BrLxQHEHe5cOeLpJ5ZMT19kc+sUaalMdzpk2uCXA5kVwQmz6SbtbIu2aRCX2d7bYrU4pAlW8jBHYPOmUcHyvwplWpKSjE3RPAbOrsXnuYB9RtAtOCvPakRy1Zblcg1pKd06NOUibBdSsmRtLWUdyeCCxw/mbpXIxhgpkKOxC96RE0hOdp9mE/NKCdx0RQzrvNpxeoFk4ZmqAx5FWeD9QLPsGa4tOWp2kK1d3PYe2m4gEXDZxNDluKvXk2rJnBJLOTctoWly6rkS1eIAZcAspkjjvLW54/HiDe4p+GouOI5ZrO9FEULTmoC6GGaSa1RDGXvHxYvis47MjpbxRsQGIfWlUyyZm7H9BpCyAauUM1kcCRN+t+KYqwHYu9vd7eW0vYRU8MoA1JtmLditbMdJEe/4jNQSjZS2yAJmsMm5mp3m9Ued+DxdMy1U/YjlJHmEQWp7sxavifVqSCmMTaF2reyljJpeIEs1+iusSbEa91U8qbVAldf7x5pmXhsVSgEybgRgxQLEVmAZnNr6NWL7JEUYW90oao1cxCjnCiZyEQ5l0ZK5U36DsnLMqmaiplK6r8R0OlkJrgLOCgxzAX7e9EBS9TR1YildEifOp5TBtv78WkpBY3mvGAFKhiHAhVe+lumsQ5bgZorGY4bVAdl5lquB1bBgPr/N4cEtDuaHHCzuMO8jQ44cHh0x3QqoeHIzITugjxzfOWZz94zplrKQykRSriLAfDwURX2L+MTs9HnCbJvmZsvlYcmgK248dwORFSF0+KObhNAxXyrNs++n3bhEcodM3ADNHjoR3PQUMTZEUTP7m30lqfvjHB8dsvPwb/P6CwNJ5hwv38/e3n0MzRM8fDEh4XGeW97P2Z0p5yczXHD0txZM2kQ8uMTk+NBE26sDVm7FSiLT7gybWy077hRXjibsH3wJ5/bejZwSpL/FzYMOHTLzqwNPPn2JO7cWPPiaV7K19SCL/hDnFswmm6XdeEXTQRDPpGsJzZTGO7pNj2sCHVO6VgneERqPazrEBUIzQVxr5SHsvq0lkZOKebvunXXliRJCQFMmqYl37dpZmTdMiTiovlBZBVKitpUbe2BdsN45NBa3cg9ezMsmSSl1FVFx8Hav1o4iL5BdJKVYmMREg3liWReiHxlLxTGQ8bpCtaUfEhO3wg8DzbBg3t9hvrhDt3MfbTcldp3p8pygHgMV47UvqK+Dl564b8q1KFX1l0nZpNNelSTZOtBUSZLGYbWe3+rIXsXMDqUfBpqmMZ+hbOOBqgGvVBdXVLmAGLODMcGrGAkhIJSyuSo4b+cwl7DNolNKmiy9XR2ZhMejK38iiuPudnd7eWwvuRW8zth2M7rCAmRqSyTiymRZQE5lNFjfwJaFVFkUOUGmGHWaMUampvCamV31hSj5UGqahwEtOgxKBkrdX1tlVZBEZZooXQoqKCdWpKpF5IehoVybv22rY8JIXo2t7LXS7tYHWJ4btAxUYnqGqBYA6ktVxauxD06MU85ZwVmd3KlDRElOGVRHW/VQS0IFqHkp7qdlUPWmPiCe8LSoQ+zI8YyDbgEwDhu0i5mXIqW8kE4U6dasVJ3obMKS0fPDCTxw/t5Cf4OEgJtOSHlO6pf0MTIMA8OqZ7Fccjxf0A9LVGC1WrCIK3ZnE5CA+AbFo9rTHxyzOpzTNBNyMOYoiuKzKxqrCBqL4DlDE/DNFt1kxulJh2rDQXuOxfZ1FofPMb/+JDmumHTHZN0l3bzBbH6NyXbL6mhG015hOnkj5MSwnLOcX2d26kFUztMvjkihxW8+SphkJtv3cufqFrPhvbSz84TdyzzAExx8Yspt93m4OCf3c/rlEdOtKUGVYfUcczeh85s0zWk2ds4SV0dM24a0PCTevsKHrrRc2vlCZhM4eOEDXL7zcRYHjscev0by8JbPfTN7m+ethKPQbnmmnZDSHcIEgg9472lnEybNhDYkmsmErpsykGico2uClaG6GS50Bs69lTutRbowm/mEeMT6kg3guKpjy2ZUV+5dKfqXytNWzxitLI6z8ojmDMmErEJbSrKDiYeTBTnG2FLb/pNoYWAMUFiZ2RhJhxCcN/2PCDElY+CGiHdCZkBUkAC+MEVeBJctfNQ7aFgRhgXp9pzV8S2Ws/O4/TMwmTJpOtvn2tEgZpDpKecqlTFN1uOeFFZWaohtEcQrStRk3lflxbk0O2QUn0s3ozCy0M47Yo7WXECycqxzpFL+rosXc0u20qF1cmV8gBwHAyrl+xRQz+jVpXHkhHGxeA4B/TBY12e8C27ubi+v7SUxN1U4XFcVI6dZ8YmWjqVxSqzMTOE6ymcYllgzPCJVxkqhuk+ACVfpWV3rb9RMvFIZDFI2tsUJiFt/rtabGCvFeK3TO8WzpRxLVrwzorrmV1UzLdPXrM+DlqOrLAsV9FUtjlgXVI55rR0Stdo7ypBtMPQjQ+Xqbozf58o5rQDEVm9lovldfpt16KhpcRJS2WrzGFqfXdB1Gal2pBXcR4VqUMuA6+/UApKcuhd9r2KdFQ0R1Y7UuELnewgNMlFcTuSUUInkFM0rxDuS6/B+i6G/zu1bx0ymM2JcMciAc0ucbiB9JtNzeHCHyfaM2E7sfAJZB1x25XxlA2Q0mPm94KTBbQT2LzY0l6cc3nF0+5vIoAzH+yRdkNNtlqtjVv2UzdiT+yfYPXsR7W4Rh4H++AYqDcRAHA4Y4m3ayRaqMOgRy3lPbF7HlTuXuL+9gTSOra2Bh+77GO//+DkGfz8pJVzX4Z0nsCAjTCcb5KMVty99lG7vNijEjW0aEYaDBbE/5onLcOXSAU89Maef7vPxDz7J6X3hi976Jva3LpBXgWG1pHEDO7MNcODCBO0UH1qaNtFOOjbaCV4Svm1oWqWRBvGJtpvgmxbvDXwjAREr66ClRFTM+aRklCEj7Wo6mHqHudoBWTyZKMZ/uXT5uHJNeW+xDWNUiiLSlOgQMaFusrs0yYALQsqelAIQR00IktFcIgS8R6PiJJvAHANBUsqu3oXCVjhSUpwLlu5d777CLGkWgiodK/zygFV/xHx5lcXmPnn3HnzX0XQNuEDSYp859MZ6iC0mSmJJYVPt/rfkbdMnrUh0ziM5M4gjq8MRx3BKyetOSKU4EGfw3jEMfTH/syTvWMZABFyiWD7oyGoFQLMBGitF1UVquf3tlmHsFlVbpGbFSorVTsLrGDdzd7u7vVy2l9gKvqZKQQpAWOfFntTYnrwVRIv6v9z4/sQL8klBc5lgbcFYQvnqhK5WoglOqNnWTpQoVurxainZ9jFSx81iXmfaE1twrQdhLV4yrgAcERMNq65D62p923atanIMBpwEenV1VtPEVQXv1h4Z1hwLAzJqYjJQ2yJUbGxxYq2uhbSnMOE2CFfqCBBc0SXVtvZsH1AA0YCV7lqptXSrC7jaZaU2YVXvjRGAVqam0tt1yV1F2WKTUGWKgss4zYhr2NsI0BvbIurLtKfWjdNkWGScBry0eNcSvGO1Oubm1euE1hO6Kct55OAGnL6/ZaVKbDz5uGdYHDM/PKB1M/zmFJWAkkrp0c6YdYgl0FiuMqPfJ+0uzX1TphsTbl16Htl+hFvdZY6vfgJxF1Aii/klYtzi8OYljo6P6Z56D+1Wx8apN9D780h7FeEAlwdSPyculBh7tAHNkRvHr2bSXOaevQHfHHDmbObB27/ORz/5BejufXSb2+TlMdpEZntnOT4eWM2PuXr5Bru6RWBBWkQSA2k4ZHFwyJ1Lx3zyyausUkPsE6f3HV/1xz6P3d0HyeLpl4ek/g57pwMbG55MtNTt4PCN0M2EJkxoXIsP4H2gaTwaJqjrCe0E5xuCE1zwZB9wNOhQFDS1PCvGcqrWjsGEJgMXFk9QFwWZ4LoRl+fiwYIr93kBSDlXPynT1KiaDiZnBy6bc3HMQGOhuqKIVyTZRD92XUoZTSSQJZeL1uJNfF0oeI/ibZHhi+hYHT44uydSNB1PNv1QopQ9vTJ1Pd1wh/nVI9LNm+StXeLuKdrNUwai2kgUM3hoqLoZKR1ORbcnxjLaMOIQyQyY2LhI+oxNNiOcMvaYT1Iuqw7BjAlD6aRKqcQmFNCIiEWaZBlFzaIJnzIrUWJOtjAJDZrWjRlVH5TL38lFmF2Fx3UR51wZR+9ud7eXz/bSy1L17yOQsXbjUbA6YpUKNMoma9ZDsFKMjq+qTMuaYj7JVoz/ES2UuX25kzKIZSGJuWs4iutvfU/BA2PyNbX7p2Ipe0EdqCGj6tZMhqyFexU02eHUozHflZNwLheA5k6cLxMPW8Nooibzlm6tUtJJWltm7fiSmj6pEmTWAl9WVFoYcKWcy/KZUPJvrATWlNBJm0gqlLPzkHJxTh71VIWpqef8hGlaBYWVxXJaRKcJshdwys7WDgfLayRVwpCo1gCCLxNkRHVFTAuW8wOWh7c4OrjBZBLQdkZcLlgtjnnHP/13vOkLPpdXv+m1NJ3QDAlWS9JyYOXu4ILHTYIFOWotzwVqDIT9uAOoQ4qI0uGYnrmXMN1g8+ous3gvh3vnuXXlKfLiJhN/nsWqR9liuLmk0QMubr+O2y98kDB70lLEfYOTAZ9XzA+uE9pdnO6Rh0A3Ocut4avZOPxXbO52dOEyFx/M3Lzxmzx7uMek3WFY3UHDKWI/J0nm+MaKD3zkee6/NbC5tcVktmK+9Nw+uMNzH3+WW7ev0LUTphtbnJn0vPHNb2R7/6KFTPaJiGdj1rG1M6WdTIszsKdtG9ppi+uU0ASCa8BFhAaHx08ChC3cZIrvpohY8rfzDUmDGd9pBu+t2iqOVMq0Xi06w+IBilhWbTEiTsiayHGwybNmPenaJNIus8rrKkq0O70AKS2CX0QhBzTbvkhpcTZ2x65IR0PKjJ5aFA8Zkl23uTBBtX1cMgRv5d9UErRrqRtVhIasA2hPI4rTSJKBraBknZOO7zA/usRydgbZOYVuzAjdBJqGXNLO7b50o6Yo+5IuXzRttVMip2Sgsoj4URkBRC6OptkpUtgWJ8WX5sR46lTQBDir1Ikr45gIqLdmBhLOBxbDipyVEK2clZ0xzbksCJ3zDLmE+2qpM5ff0Awa7zI3d7eX1/aSy1JVUHrSo2E0+ioTsFl/l/JQQRhKEaeeeDz/LoMdWrqDtDIwZTVUwIRqBSg2kHg1jUou7/NaP690X0n9PD3BuKyFelm1rCoLeKIep5QJvnzXqEepa5qy4tJSeqP4xWDUuLV05jVoK8caBJZaxM6Sx24po89LDb2s9ApVUk637eOYQZVNbyNlH06W7Mz1FEZVM7UjzcatNbKr3W6sj6p8kGkDEuOZLK+zAZSxrGjknQGoW9duMtvcx+UlSlNWyXFs/5VSJHPO04UWHxomG6cIzYqj5QJJidXiiGW/5MMffIynPnmZ177xQS6e3yHPE3E5kLsVeRXJPpHFF+v5aG48Bfxa5IQZv6l6c7h1QkiK63YI90zwR9cItwdkE+LsNLcPn0eP7iA6Y3F4g4U7z2OPvcCkO2a2HZisfptmdoacb0NaMdvYIHCHPivH8wX4GZvT+3jh+kVeOX2apj3F1sYNXve621z9D/+RxfUvIoclfbKkcScTbty+yf65DZ69dUy8EnGrTJjNOFwuWRzfYe/sHls7p9nd2uN1D7Zc2H8lime5XKLqEenZ2IlMpx3tpDWGTBzdpMXPAmEyw/uW4KdknZvdQgy4NiDNBAme0M1Q1yKuwfmGjAdJaEzlkjV33axpLE3l0jKsQE6pnPuS/J4HNCe7Xuyhck/l8ni5znIi5Yjp6eKYaC/SoNhzzgk59RBdWaTIWq/nPClZCcYYjCJWJuO8kHorYZnjb6Zk9SJkxgw3zC/LV2ZCe5MbO2tnFymGg9mRifgcmbiefrHkaHWdfnKKfusUk51twkTIzpdzIzitMTKulPmMGeo106nHazYTxMLAWtmsLCaKOWXV/eXiNeW9p08RPISsaI2uwEruSdXaMp3plcyHxzPkoXRpGojMrpQMsQYKLQ0MWUoRW/MYtaKFnXaGKO9ud7eXzfbSnJnKZLsuTWGrY9arMmAUwkFx0gQoIMLwjatNNr/LF9Q/6vg9WuhmKCWaqhUZmZFcOgOKLqSAmHFVImK1aq1sC6PNemmKKoOIaWNEMonqgVNAklaK2BQsuU74pVPKjnP9maM0oQ7m5V0OAx9RrRavmJDZQEkqXQ5Fg5TqDpb09NqBW4BilkxSO9f1TKhUPslKa33OTEopL2OW6/V3rBBt5GbyiRW2ulKuK795+Xkky9ouvgA5W3UmFjHz6GteQSCRs7PvTGXQVQoY6RA/wXUd0809pgvhcEhIttDC5bGj2+hgkljFG/yf/8ezHD3yCK/7v7yKfHwJNi4yzBeIBNAWJm3xurFVcWUExZUSBdZxY51hhtB807B56jzdxiZdmHHj+guc3mu5015muL0gboEuVwzxNsujDY6Pj5jeeIx26yk8kfMXHoTkObj1CeLhbVJ3nr2HvwQ9vs3N4zNsXv0k9104hbg5m5tLPuvhF/hPH/047cZFvOvITonzQza3Oz73VQ/zwuNP8Z7feo7gBvrrEdXI1vYes9kuk8mUR+/Z5r5zp3G+Iy5L0KHPTKaevb0NZptb+LbBtYJrBd9MaboJfjrBhwmegOgMUetScqEjO3DB4cMEfGetwK7BIaTUoNQ8NGHIZtqY47pMnDWTsmCF04RqP7IT4sz7yEB0aXceFemluxFTvGTxaC7i/pxw0pNTbSGPpknxrnRjWdfUoHks4yDmsWRZTtYejio5B8TVuzIjRa9ji6pcDPrKWFQ6i8QJ2nskG+OTNdt95z1BhT6tEIlMvdDkQ4bDI24vbrBcnSedOstGt2Wgvk0M9d5KatElpZwrSU3cLI4QfQnEVETUEtiBWAhiL7m0mAuimahKdh6IY2NoZZUTubgfmw4nacbnkmSXBRFP8MHiH+qoqaUbMztiGQFtpWgAyH4pO7/e3WVu7m4vr+0llKVYT3CFgVFZu/OdFKrpiY4ae3OBFLWkAbbKZl3MceOQVwZP+6q1MFZf/HoRew9qlKypWlgDKKl0bqGKsTKNKzEAJzehtjq7MgjL6MGRqUGcdgx1aGZ8rDBBbm0aWB/XEzurZRUsxZ00ZmWolbACjgrfY2UtTIxYy2YVQo6N28V7Q6hJCgXsZUaRoap5WVjrKbZ6rF4iYAJM7HUj0CkaHVs1lhbgEwZjllTsR1ZLEbwYjd3LjNnGfTCbIX2PJpuwNAopDeS0QvtMXkViTAx9zxAX9GlO0kg/mINtEya0kx0a50hx4MOfeIochM/54jexWi5o5JBED2mC6hauacduE3JGtberzNWLr5YPFevniagGmm6X7XOe6WyPo2sv4JbKQb7BxtnTHN6+gVtt42XF4mjOQb9Abx/g0pyDWx9gsjkgso3GJX6yzeL5p1F3SNcqz119mM3u42yf3qRpFzz4CuXy9Sd47tZ5kNuQG+ZxzvmHXsuz7/skXej4ss9/NaKBIQ2shhWLhefKjdvct7/i4sWzTLsdog4kN+Cd4Dto247JpiO0gm8DvmtpNmb4dkboArRTvDQEEetm0mI8F4IxMc6BbyxqQQQSeDXmBR/scskYo5OirfqT6W2sJy+hqbKyxsaMZV5nbtZOhJSK/YAYs6S5AJWUcMGjmkmpvtcWBFkKM6N2vWfNI8OqKZru52QMjGZctns9a8KFCnAN5CrBALDK2FUnDrIvXj/Y9W4h6eU7i5OyF3tt5yCqBUC0Tuk0Q7zJ6trAanHAcvcB3MYMkSmIEElIU9yYUXIBOKMPV9aKJcrippTRSidVzkp2jhpBYS30BsySWtelq+NySWOvbPbIrJZj8eJYrRY475HssIR4LeLlNLa4Z6L5R+EsKbwyXDWY8+52d3uZbJ86c6OyFpjC7wAypayUhWpw96K31lIKRmeUis+LwMpIFJfBrbITtam8GswxlmYY98OrlPRc08jkqhOpGpIyaTsHMkYu2I44twZSMu6DjJUhhVGnW48+lddQVly1HPSi0l0p+9RPqafEwA0kkcK6VIAkoz6hltIobHbNzhKRMZuLUiJzI5dk35RcYchUx7yphPlrKONuj+fuZAmuluvsmGojfBUsr0+4YsZuktfCQ48j+wmTzT3odiBcQYcFaRBinxjSnNj3xNUxaeiJcSDnQ1Ja2WWokOKSpm3puo4mWExA6zdxYcFjjz/NZGeLh9/watp7Aq3LxKMlQ0zmZ9O1BeTmIpo2RqAyX1qTjSVBFptoUSvPbDdsTRqa7Q26zWssjq6S8iaTsMPy9k3SzTnNbAsNE6IsubM6YvfeB7lz+5DV8VXk8GP0R1cI012ETD8oTxxnXvumQ7oATSe84bNvc/2X38OqfwPZ7SBL4YUrz9JOEtONTSZtV1p2lxzeSvg+cuaRfV7z4INs7Z+ySXDp0BhpfcBJz/Z2R9da7ccFh2s8vu0I0wlNOwE/NYF6zvg2oCla6TZMindLBvE4PzXzttQb6PHeQi6TokOEFBFN5JSpYnsq++IAfMmJMpAfcxHuoiZSHT2YkuldqvGUMy2Piiv+SplY/KBEtbBJBZg5cNoQ81By0IpLcoH7zlm5jGy/dWha60CKiaQJH4J5t+RkNgvZSj8huHHVFlByKyOob0XoNY2eV94HY0NiRoKQxDMV6PpDjp68wVHzPHL/K2jPnIfpDAktKtkEwsXVOaEMMTEJjZV/c0ZPdngWzxzz51ovp3IBphXMSDYTxgQMhSnXbE0LaAUtFpXSqLAqLGs1HS3VOvtdsPHCNI6WOK7FA0zBVllrB8e7293tZbH9VwWGSKVGTmhDRGs3TZkExxmUimkYb9r6eHmsei3gTjARIy6oeh6hto/m8YNL2akQDBFrgzbPliK0La2NoxFXmfhVTnQsIUWakteAStcTe21ldd6Nrsi2oqtHcLIcZe/LaplLNUW7HoPgCGRiGdhTzqWN3QYyy/7VAuJs/50qudro6DgvFO+ZorepK7WqPi7aHWs/t3KbsVbZMnpGcq2U8uxMjm2kUjpc6rlwhZIaM3tOpKyrCEkinsTqjqLtLnTX0YUjp0RMR9YCniIpLun7Bav5gn4BKVq7a8zCsAy07YTJbkc3CbBK+NajzRZxccSH3v8hTl84xeaFPXyyQMTYRyQlGGZo06IlI8l3YSynjeJyYfRyQZOtXMVW636ySeNbwsYWi/kum7OrHF2+hncNTLdZLFLxfmmYsMXVj9wh+Qm4exiiZ3G8ogkrJB+ArLjeC7t7OzzwyAIJie1t5bNfd4l//3847qxexTwvOXvmFJt7D7Kxsct00lpXynDE7s51bt+5wtnz97K5tUuY7FoytCzYbB05zmmbwNb2xMo+g5rg2XnEebwXfOgQ3xYGsYjoM9ZqLFYiRBypTIjiPWCspmKmkOZJY4AhZzPJo7Q0i9ikb01GJjhVjWa0V25ma15LxS1YC7hy4AJZbSGU0oBS3LdzLqaUoL0xBSVvFxFPGgqgdx7NtkiJqSxQcrQSihe884h4A2PJ2sLtUteyyHIG6khojogz8a0oRJES5VG8c7wja7J9xJfS5mDl2eRpe8fi1h3y5etsn+mYP3ubg5tXCecfpNk7TZpOCU1xTc5muKfAENMaWJSIFHXOstrEyn5V/wKlHJeiaYTEWi5SyqTSQk45T1FsPMqsx7jKCds4Zxof9aVcnF2pT6Wi7dFRMpBTAURZ6sByd7u7vWy2lxCcaZN+URQDxpKo1DpV2X5XVb2uZxexv48ZVVSwI+vS1giCCjig+rTICExq5bi2SGe0rPhc0dPkdSkNWwWZ70wJjSyW8pS1USValAIapNzk48BgCd2UfTIwYnoZGwnyGsSpUeGV+zDWqbAc5RgdxjBFNTDjnIyfXT+ievEoSioCbtPsOGqyeunSXmdkKaVklcfno1oJrKkKKKntu6Wjq+bUCFR7eWQtKqSyUdbEAZoKeHSjLiqrIMMRH/zQx/naP/taQrsJYcC7JaiSVkIcelLMpCESh2Qg0SnZJfrUs0oDXbvBdPMs4qcklri2I4givmN++4hrl26zf+Y23YXz5DSHYcm873GzGU27SdMGQtvSuIB4yz6zdmAQLU61kgBv+guLLCfjEAlMvSM0Hd1ki25zj40zp1gdHbI8PKRfHHO0XLKcD6yGJUOMxGHFsGrplw24niFOaJtTqBd+/d0DO6cjO6czXo84/1Bm/z8+z/Ub5zj70GvY3DjH5sYG3eY204l5zKQ+MAktFx54CE9HFEVDILgI7RZNCogqs41AO90yUHh8yJAMwAgNaENWaHzpzRM/lmY1mltucgoabFKLSwgdPkzQfokTy5FStasoqTGIWtidkZRErORS6cASD+AUUixt4uUaM9YmjzEBtSxjomHLNyo0pf05lXuoAvCsiLMyV042DuWczdFY1MCz5pKFVfRjGmxylzwuVrLan0PoyCkSXAUCCs7jkpb7yxYq5ppsN6RoNubHFcYlOvLBMX65ZP++HVbB0bhEWL7A0bOHLG+cpjv/ILq1i28mtmpzjIvCXFZ1IiWGpbCyo14PW9hY44MwJCmWEQlcKKU0O/deQb0veVyUxgFrhIiakQw5lbZ6AJfL+FRGYNHCIrtybhO+tKbbgvMzF9xcuXLF/+Iv/uLW1tZW/tN/+k8fNM1/Frr93+22XC5lMpn8bpPu//DbpwxustNiLV4mv0LZmLBV6/0xgpf/fDOaRJ2tiHK5qar0EGCMdKifX8smZVVVdTCushRU8XDRp2SxzyjvqeyPPbX2nMlS6N9SEhrZJMp7T8g1UhlspICQUjBbf0cuvjuy/gw7BbU8VUFLYVekHEP53lTOhi/npupm0MLYUOGVjMckrNvhVZWoJcMKRqar6n5qF8Wg5sXhZB0eagnjtigbZYYFtIGV+8acq3LsVVNRf+LxJ8+ZLD2/+RvvYXX8dfgwRZrbeFdgnSYrUaQe4kDKK1JeWj7WEMlDxoWWpjHb1BQHJGQcTcHGinQ9zz/7CbZ3MupnbOxsgA7E1RxJPbntyY1Dp1s2YbRTLFyz/H6SURfQ7M3grXL8DnxJPFfnaZoJ3k8IYYvQbjPZOqDbOWB1fMhssWIYMqu4YhUTi6MjlofHrOY9KQ+sVisrDTUbZOf42Ec73vyWD+FDJgTlrV+p3PlXVwn+rbRdwBFofIP3DS5kZhs7TGcXkOSJ8yPy0RGuE0IzZRoaSIm2sRBR/BQXk/14cQlY+ccFX7rkCp9YFyYSzC/G2aSdUrU5wEqMajdHKtOeKsQqmE+Qsy+6lQiSzdMJDITkGuuqiAQkJzNrdIHi8l9Ah2miRE2LYn4tdjElrZ5MdeFjYKKyNXWhoGL3aM6QJYEOpi2WYk9AMfQrgaqa8wn5lYVqmS+VK7q8BvHDGDKbc8L7UD4v0/hATj0OhwuR6nuV4oDLS2QroLOJlcZRZj4R0iH98RGLp66x2n2A7vQDdLMpLjRkgegz2Sec9zRFiJ1SRp2Qst3jQe1+T2KC4lBa5WMaiMU0sep8VTMSGfWEIYtlX2EdZhZ141ilROt98bspihtRKKLtrFbAHdkfVwbM9QjxGbX99E//9N63fMu3vLL+/fz58/0v/dIvPf7617/+P0vo/oPaUkr89b/+18+9/e1vP3P58uX21KlTw1/4C3/h2o/8yI9c/o7v+I57f/EXf3HvypUrzalTp+LXf/3X33jb2952qes6Bfie7/meC+985zt3v/Vbv/Xq3/pbf+v8pUuX2pzzez9d+/py3j71VvDx2q5y19Fbt4iBKwNTp/f17FfFuIqOxlV18k9jm3jRjdgSu9Sb1y3bRbePpwpo17ebTZ5rZ88IoIIvn11Xf2XNaKWm0glxgjoagYNUzqU8PeK1EzUOPQGwKOySiZmLT48aY5ILK1Pr5r68vynlnD4ZFR5k/dz4NSdayO27xrNoYKqWpKRQzGKupK7CLLHW85hN35PKuTOzu3I+RqfmE7qg8qNVaVIhrux7y8pOT+ivnJr40onw7Ef+Ix/57Wu86U0TgndIo3j1EMB5NzpWOxcsz8hZm25Mjtn2Lt3GJk1oISWCDiSXcW7Tvrv1PPfCAVtbNzg+fA/3v+az2diZoP2CdKcnbvSsZi0TPMl7OnEE15GTtdlbirJR7Gb+p5g42o5Xnbdr0WUzZOsc7ECaznCzXcLWEf38iMkw0A09y9XAZLbFsHHMMF8Slz3Iiug7fNOR8BzeOcflZ29w7yt7XD5kd9/zeX/sCu97/+O4rTfS+IapD5Z2vjVjurFpwGgZyfMB5Jgw3aCbbOH1GMcmk9kE107NhC72NKrIyhcw3hOkxbm2XL/l99J1ecbut2J86LxlMrEiUTqXyuWh1BbpREwWHZCxiZYc7T5XhzpIKRJ8YXg0oiRrSY7G0uaccc4bUNJSfNVkX5QTKSUTGY8spyulpvXYYgsX6+lOBeRIyEgS0IDmiJbIkJwTJEvodr76SJmeCPHgojFKynrfsrd7X7J1aCmEECy4EyvpxGSrLI0ZlyJDMyBdhzbG90gqyxFngv1ZXHBw+SkOb98gn7qP9tQFUjcBn2g6CylVyfSFlfJFSCzomPItBdxIbScQR8J8eqocQDUXZ/IaOrxe4DXZFmM5p3WjRMKuBx3K/e1KsKgQNDGokqseKfEZWZa6deuW+7Zv+7ZXnHzs0qVL7bd/+7df/LVf+7WPf7q+9zu/8zvv/bmf+7kzP/iDP/jsl33Zlx0999xzzW//9m9PALa2tvJP/dRPffLixYvDe9/73ulf/st/+cGtra30gz/4g1fq+5955pnuHe94x96/+Bf/4hMh/FcpS/6H2F6aQ3H991iGGmf8tfisTsaynpjXjMyajakAaJxaiwq3dv3Uur0THV+3br9eExxVL+LqEtzu0UKlFrAgo660MCHFZK8yMLou8TiwVsiCMlw5NtAT+Xg60tZ18T/GUUhZMZXPN3Am4yK69lqBEJyQ1FavuQiN7at0DRRrz+eJM54p4X3FNNGV73AKKtkYMrX9a8r3JhX6ZKJq500P4QpAcRSBZ9kz1fXvWxmnDON7KuAZRdSSzV02J/rVJ/nnP/ervP4NX4+fbCHLI6PRTfpo3ifBm3C4nTK4RFwumW5tsLm9QyOOZhII2VLUvSopJYJ3eG8aiE88/gz33rvH9ecvc/aRR9k7tUfbKf7wFu0ykGamAfFZkJSRSUcsq3UnEXUNOMFJsGyjwgyhlKR4m3CcgzBp8ZMG17f4RSB0U1I/4OOSsFzStzP6MCF3h6R+jrJvQtxuQpIpqonLz38J2/v/lK3NAWTgvlcvuXn9vdw8ukjYmhDCQDfZZrpxmqbbMJYjH5IWx0y2dtjYOkVw4CTRNBu4dmIxC1kZ+jk5RhrXkPNQzGUV5xqEasWvOG83gtQS5JgCbRdajr3FTHiLQhj6Him4L8YlOa0YcsRJxuUB0Vi0WN4myiJkt6vRo+rQOBQgYwZ3WsS4KkomoUO2tm8UTXl9X6fBymVqzIbt31BKomaJQI4UXtXYoVh/Q7ElkCoQwSUQK8hapFU0saxxp4xQqjCcSfPYPaWUISWYSWh1P5YsY95W2JyQfGNAMJkOyQ1K0Ih4SCExkQEZjlk9e5s7N6/g9s8z2T9t3996kpjWLmRALZdLnJgcBsZxQTCNXiosTNUPOmcxDknSyDZVx2hVkGyZU9lhpcN8cnFTgFMuvLQz8EsS6JMxXM7Zvn2GbT/7sz+7NwyDAPzqr/7qY+9617u2f/RHf/TCr//6r28/9dRTzYMPPvgHHoV+69Yt94/+0T8690M/9EPPfNd3fdcNgM/6rM9afdVXfdURwNve9rZL9bWvfvWr+8cee+zyz//8z++fBDfDMMg/+2f/7JMXLlyIf9D795m0vXTYVzujRnbgRO2H9QDzu7zF4Eep8TiV6qww3mgnQZIIJmS0bymP6QhW1rEDBUCVm53S7plLB1UFYKMpX1n/mKnd75zUdd2mWR9VXT9HBUBiQjsnJljMjKZbdqzr1a9lVLpyimojN1gOEgQHKSsRsfRwl9dln0pl1dJW+ev69NbutDWWzMIoIixIsr6UnGAAnJRhXd34NfUY1xpxGX/T9c9bdVEV4Njnm7HaYIZhuuRdP//P+J+/+g184Rd0iDhCXpJWK6v5E3DdjLZT2rBC0orGw+6pU2zu7yNDsZnXAa+BnBSXhWGY04aOGDLD/JjnPnKF06/c5viTH+aJj7W8+k2fw+7OhOHwAN+viDKAKk0aaHUT17b4YG4/GgzAjCW/XESw5fow3CiIn4JaR07oTKDr+jlp6AlxSghHeB8JTUtaNeiwQcpiJoNNQDWQcOT+Xq4++3mER36ZxiW64Hj162/xkfd8hCbfS2gbmskEoUUj5GFOWtzC+Ui7tUHXeFyIBDeB0Jp+Qz0iEVxLmGyYxkUHNPd414JmNA8g1ViupKqJlq4hY0m860hDtON0A3GovYOJ2PekrKRhWZgaqy9pHgBjUnNRFdu9UjyiUgLxxGRxEDbJFoFsMudeax23z8taHIMRcoqkNNj+FM2HFhEzLpGLbYEJkh2ioSxQFngfLDjTBaSI36XUsw2IBVTT2BWkamOIF0FyQjQXWYwUIO/ILkF2OGnwLhjjmCI5Z5Iz8KVOySmV+84Ev2hdmAiNZgJKF27TH89ZHl9jfusM6fx9dLunCdNN+028efgEsFZwxLQzRePnyz4jSozxRJm+WE2oImrsTC6t3QMKzj7Liy8NEUP5XYzFRqyTTckM2di28Z4vIcKfidvjjz/eAXRdp1/6pV96rKr86I/+6AWAxx57rPt0gJv3v//9k77v5U/9qT918Ls9/1M/9VN7P/7jP37umWee6ebzuUspycbGxov68C9cuNDfBTa///YSwY28mJih3gAv7koZ9SaceE35U5WdnKSbayszo0yWcfK0haXpUsZ5+kRrdt1qO6OU1UgqcQmN1ByktSeGFhCwJpdqC3ShqVl3cFV2YzyIAr5qOzblfZXQqqJoTzEOLMxTZWROcCLGLtUVmQqRTKtS/CYqqCqvlpMFs8qE1W4I1mLE+hxV02PIJ4gyCKQycBvGrOevslOsRcy63u+x1Vzt+boKH2GuKJK95QBlZXH8Hv7uD/8Mr/rxv8CZziNyhJdjICIuE4KnaxuCKsElzl84z8a5+5nOZmZCtlqSU4SUGGKmH5a0q9MQr9HPlRwahknm6GpgU4QhLPjAf3ov5y/cz+kzG3h3wNYq4qJjutuT6GnjDJoWfGMrV/Hm+WGXHeoFvFA8psuxpeLlJGQi4lpCI4g0CCvoHK7pcY2Q2kBaJXxewCSTEog2RJeRVpjnt3B48xOc3n8SQmZzJ/LAq3+L69c+Gyfn7JpKKyRFUn+A9gf42YTZ5jYhtKgEmiagvsGFltgPNvGLQ0JnJms1Ukscmga0ON7mhPmgUFgJgTTEklMUcd6TooWairNOwBgHEsVLJidSjAYScin7QGlxLgA6UUBMiU4QN7Yzp2rKR0ZjNI2ea4gxo7kH8YhALGWTeg8riWHIiGutA7J0NiVTKaO5wWUhDktUU8mXE3LuS/6u4F0gSzF3VI/GPO6LFHZYnIOYIBdPG7WoBnywvRGPuYlbNxJkpAORUMqxmVAWPzmCeKFNgSFGko94ZyDOuYBIJHDIsOzpn7jOYnOf5t5XEnbP4tsW9Z4BJSbFa8ZnXzyJZIxnUdHS5eXMi2eMSyjxCWIMrqtsWWXBS7cc3kTGLoPPjl7NKVqcoDEVIJwYyu/hsbHpM227ceNGAJjNZsk5x97e3ggirl279mmp92xsbOh/6blf/dVf3fiO7/iOV37v937v81/91V99sLe3l97+9rfv/4N/8A/OnXzddDr9zPsxPg3bSzLxK5kIJ8BKoYELk1JLOWtOt75MXvRBxi7Xm65ClNrqTfnb+A3UOssJ/oLKWuRSzqqoycYeY3yiFsGkq2BsvSKpk3UFDvXwXvR5rIXI64cNQPgywNuqsACByjyJdVasMZGjamXWx6tFwLiORrAJo5SZCrBzrgLBdWnIuqcMoYxC6/rpWs8RI5ftC6AZygAZtEwgaiv6VMTLzq2FhGQbHGtnVj2Yk91pFeyacdq6oTxp5sPvfwff/909/++/+IXcd2YD5yNd01sWVT5m2UamW47p3oNsnLnAbOcM3ntzVV4uiMsl/XLB0Pcs5nOWd5boakaeHXLY26AcugEfW7bCjDiB557/CM9fnnLPhTPsHB8zP56zuzrD5v4+k9mKdtLh/YSm63A+kJOtxq2M4U7k8kjlFEGtPdaYkPIbu4BzSjdpWC4zvp3i3ZTBH6HqkJjIvRJTYtI0qJ/RskFKf5ajo7/NbHOGa5bsnTtmufz3DP0DaJyR88p0JukYJ9DONgx0OmddO65BXGPOwCqAw7tQxPGpaJg8KeXyewVSVjRnYkp4X7wWVHDOvGly7skukNVYkpgGYsrEbHEJpGhAiUyOmcZ54jAUxlBI2tufKSGVYvobEU9WbyXPmMlSTPi05EurxSakYUCk9PaJt/1NFuQpuTfhd+7tO30ATNhjnjvVIC/iXCAmY5dUUikB242v2TrmYjRwBNa95V0k05TgWJAgkI2VkdCgtMVOwnRYaLYYAgkWVCnRvGay4gMWJlruxD4APTQRXLAsJ09pjhBTBoquyPMj+sdu0G+cw194gLBzmrYN1i4fLAoDlaJBLMxioqiAvLXemwAPcbXErgYGT7DTgrG2GchDIvsS61IAr2a73r33pBwNqKnZNKhTK8t9hm2nTp2KAPP53OecuXXr1pgxcebMmU+zMaG7AAEAAElEQVQLM/K6171uOZlM8jvf+c7tRx999PrJ59797ndvnj9/fvUjP/Ijl+tjzzzzTPvp2I//EbaXgE7X5Y11uaQwJnUyHanMkwDIHhhLH6LrNUAFQicQh558bj1N20NlYucEkNIXf9DJvSFjHaXOFpaMPjRiA1Ktajm1gSCf/HJTVFpXRmV2CugpFYw186M6/rlyT87YYGNSNFNTttfdSGuU6ABXylfGChlFX4+mlslc8bAZS1snTljdp1TPQsmCWUdlGEeWkDXoK1O4njiOLJRWeTv+mtpeB22VolvypUNGIVefDi26CS+ov8O/fc//wkef/E984xd8Hm/+7PPs3rdPdIlmY8p2mLK5ewq3sYXvdmnDBlmX5Cx0Xcsw6egXDXGINNMpjb8FeUWMW6R0mziPtK3StdC0gf3NLTa2pzx98xpPPvFJNmdTtrdvcPpwyfn7Brb3j5ht79G0Ec0RHxqSa/G+Q5zDe2M7XLDJS9Qyq6RMjrVtt+Z44T05RvOTcZ7oIkE6vEzRGNEm02pGXSa7huAC2T/KfPFl+MVv0ky2cG3P7uknuXrlt2F2ioGMpB5xA67paGfb+NCiLiBNIGmCmBHvySKkoQhwnZWHXDARsZdsTAyhgNBsovyUiSjOmc7DDPl6JCfQjph6YloRxRNTgn6FphXmmmdl32EYxpbvnGIB0Aa0kitAUEqgJZmcrK0758HYMTELBu0jpFKu0tK+TDQWx2NOyDUwzmW8K+xkLb1k82BJDAaqKhWrhVHyjbU/54QjkGI2/U7xBULWrFwFrKKgzpmZIljmkkQ0K95FKjVjOh/jMwwUNaQUURF8E8hJiCZ1IqwU1ydisDKZK/eZlZlM+9S6A/rFguET11hOT5HOX0R3T+EnHZNggLFH8WNDtjKUlm9nykKcmNgwUywcso0iFhpqreCJjHox3ZMaW6nixsFDS5emlGN3mBC8jpGfadsjjzyyAlitVvJv/+2/3filX/ql7frco48++mnplprNZvqX/tJfuvwDP/AD97Vtq1/6pV96dPny5fDBD35w+qpXvWp56dKl9id/8if33vrWt85/4Rd+YeeXfumX9j4d+/E/wvYSwM2aN3nxwy8WEkup/550KdYXvaJ8ilYe4yT0YSyrnCSA5MT0XBcQaydgGctBI08iFqCZ1coyrmTFjOLhggmyMhrxjd9fUI6M3TQ6EjkjqChg6MViXxtcc7V4L8K+CsZe9EqpScpl/9UMAWNhSdZdaFIx3vi9o/aHwtJoBWmy/pXKftigLWOoaD3X5uZs1HNttbWzXGMe1p1QY3AotRzHeDyFnCrnsugonOI8NK0nygHP3Tzib/+bG3zuR+/n//4/vZULj7Y0YUKjE0Rac4sdFkaLZ2vJdgIuBGQyIQTFhYbWOVKESE8OwhBusxE6ZtOWbmvK1v4uuwHuve9+Pnb5KZ6//DTzmze5evs2R0dH3HvxHLunj5lO95nONnGhIbRTQtPTNB1t2xLTCh9AXIOZFChKjZvwhcwTW6EX4xhxvpgagtMWsFKBb03TkIi0PhvoQQntN3J85zk23fNkf4ZmK7K1eJqDoyvoZAuvAcGhTYf6FlyD+IasfvwFUyyaFCs6UrOJqr5GheL3Ulue7RqLg4lwYy7ZTIiFLw72eSkuDXS4YGnqQ09Oq4KLPZQ4DLIyaMJcvw3YOOfR6o2Ti1hXTBwbU08TzIRORcB5RJUYe9PAiJBypJafLYqhuglbXICqQlAgktOAE2+ltax45+lTKuVWA/aSPZLTWD7OOdM0Fjth+2XnIUgZKMpCDRdK7tRacuzIuNJznRmMtSkLIMvJC3jnQAdyingPnQjJeXJK+FWCqAytwzssI66W2DCWt8k9niV5cYf48efp/T7x3EU4c55uNoNGRoZLStkv5bKgAPIYpUJZxbnSrWkiedMTFV8i50ZWJ0ttyqjjo7F+qsb4oXY/n5QAfKZs3/AN33Dre7/3ex8YhkG+/Mu//NH6+Od//ucffDr0NnV729vedimEoD/0Qz904bu/+7ubM2fODN/0Td907bu/+7uvv/vd7776fd/3fRf7vndf+qVfeud7vud7Xvibf/NvXvh07ctn8ia/Myrhv7RtB6eI9RYoFI8QXWs1dM1kqAqfrcq/T8oXB/hAfU359+hiXLbR/6V0bli2yfiG8poCEOTkg7X88uJjqD40qeCdIGXqlmpLbgDMyxrEnAQ5qRxL3S13omxUEZcIeCcnoICBm1TOZxiPw9gXV/Q+ZcfR8j2KGy3XV2rgoi37WUMgh5xf1DWRZRyPbf9Ye9tALW/ZTvoiOMyaGQprIyp03uNNVTFqmXzdT6zM5Jys83vq7zS+ppbK7Jpw5ZrQAO2kYct3LIbEocLUOU5vbfCa+x7m67/mc7nn3hlpMSDimYQtfNshbWcdPn4KqqQYSdms6ld9JA09R7dvcufGVVYHR+h8ydbmJls722zszJjtb+ObbRALJXz26pN8/OknODpeIsmzNd3hFa94BbtbG2xt79FtbOK7zmz5gXayZat9Kb+XLyCj5CEJFnKYFXQYcE0JiZRgJdDYgyacNKQ0FGAM3psJm4jiJTNog/aPsTj++0w3HyANj3J4MGEx3IOE7ZLVlOl2tuk29plMNnDe4/Bo7u2cayanoQCHiBbdh+U2Wfdaij0WLiojKIuDpV7bfSTElMp5NgalHwYrQUVLg09xQPsViDf9idikTE7mjYKWKBNjt0w/o6BtuTBN+OpLu7nZbBujgDrSsDSggrEapdXL7sEEEI2r0OLVI+X6lWQsA97uZjFtspOM5hXSdJDA5WRf6byxL01ngDRlEHPkddnjZVj7RxEshy3bZ1u5xjHGygwrBklIti4+cxj3ZbAyo8IcSyu1QnANuujRZWIYenJJD095QH1LVmcBuGkgqR9NBjMdfero/RS3dQ/N+fPMtvZIXUP2JhgOWPeWhjoGepyaGWL191FngmCvEMkMQ49GOy/eOet1EEGijRODRts3hSEnE52L475PPsW3f//3A7wZ1ffxR7y9973vfTSE8K5HHnnkaDabLf9rP+ePwufm7vZfv83n88nHP/7xzRjjn3jzm9/82O/12pekuXEF2Gg17ctCje+xB8AGgjXXsi7ilNcUMmR8+EUalzIQ1yQ5M8RhFJaUP1Im96q/cXnNNEiZ5av8NokBiNpBlDSXCYxxwvass6nK15BH0TIwdloZEDANi634RnxVXMJ8PZbRXdhWk6nsl6v8bz1d5XhEpQxAJvottIytvCuLRNW8VGFhOVflTGcnVWaDL5qdqisCRtFjD7hs4MWhVIdiW+EWQfTYNVYATEnYTrnaLxZ2zdvvbZb3BuhSgjtDthq/ekLjCD7x1PXL/Op/eor/x9e+hhwcblCGYYm0rf3EanodspKKLa6kAe0XxYsk0PjWOoY2A7vnTnH63nvZPL1HaBucn+Cy5emcOn2WV1x8BR967P1cvnaLxXzOs88+Tb97hvnimN2dU3SzDcKsw5PNxyVMTDgqzrQrWQ38OBOWem8r/5TA+4acM8HX7jxw3pib+hs3aDGQc7gAkCzrqf0cpP1OxE3p2WZ2ZoJbzYmLRBrmpFwTw4L9zrlWRBI4a71WnGUuSfWs8WSUlCNO7DUiWkzzsgGYlNC8MuZEPHnoyarENCDqMZNgMfZGEzj79Z3UXCqttMMoKDe/GfOAEc1ohqSr9X3trHyZ4kAgkFO0smhoyJrIJUHe7iFdM7qFpcSZL47Dk4eVTcTFyiBrHJ29vXeljOTs+IvPi0Nxmq1rLamZ85WFj6WED+Tq/5OdffY4CtRSV/WZSeQS2+CCgLYIg5WqRMcxgOCs1J2NHdVpaSVX8McJ1wopCJK0CJdNpN3iGRiMWUoDHQu6eES6dcDy4Bnmm/uE7TO4nXtwmy0r5/ChwZlpzdhdFtSTUmIQk42YM3fJ3HMBvDIMKwYR04Sp4vDltYIkIasFtCLO9vP3mR9erts3f/M33/qar/ma97/zne/c2tzcfNk5FN/d/svbS4tfkEqBn3hQKqkJ6ymvCn1rOaeUT5yWLp36/nXB6kRR5UVlGHu0TKcFENVylJ587QhXjG418GCgwKjf2i11AldR/uXKfirjd5z4+uKmUY74BKNT/6WFsjJ26MS+FHt5L5YpY4Lg6pejJk60wodNZQJmf1Z3Io/nqkiAjLEpLVIORl8KKUJCY6TqAazZnKr1qdNmysXUz9WurRLk6RhzrjSnkbXJpVUXMQCmZTXrELwXusaOaxGVIWWaUi4MogTXMvTKfHWT933wI9x/7xm+6C3nyCkypEg+OKCdRTTMoFn/3ilGUuzxeSDHhNeBtvHIJDAJDftnz7B3+ixbp05Zq7YIOkR0GMhpiZfTfPHnfAHPX3ma93/0aeZD4uqtaxwuNlislK3ZijCFrc1N/ErwYUnwieRb5gIueEIOxfdEQIrAFI/EhPMtQ7+CnAlNQ6UQnHcEPGgyEaxmJDhEPJoyofU0sy+0Dqx+iUZBpKWXBf0iFl1GIsbBEs9TpvElE4iEauls8kVUmkunDrGUYsTAOSVpW62tW3KC3JOdLzqVZKLcPpH7ZKxKHIirHufXxoeak7FRgt28xW8gx1Tuj3LNFwYyl+gSzYo6PwLgOETM4M+wk5X3BOJgBpfB2rrR6jekhR1zDKsBIZXYFANtAhAsWiNl0+WImNOueRV5lGgTtpZyog62uJDyGNXQrsE1xvCkmAleivKtqUs6chbEKRLFRgUt0RbeDALtPi3lOBy+6Ygx2j40gTAToq7IqyWyAp14cBlXQkdTAXMGCk2Po6zwLJnqMXJ0SDq8xOGzj9Nu3kPa3SWc3qXd3ESddTQ5VbwzRi9ZN4ItGnIq3XP286l35XEbJFQtUBQF5xxDbmxpmpP5Z60FiZ9x25kzZ9I3fdM33f6j3o+72x/s9qkzN17HSb1wLJRMghOli/qYVJyxRhKsHztZCSs4BU0nwclaFjz66GRZ6xx0DVLGFVb5U/08K9dgHR3Y6lJe9KXUoyDVToQC3sCYm3oY438Z/1BKW+sWb08p1Zwo1dWwwiomruGctjqtgGQ9mRfJinVClPesoyHsrdWNsCowhgLIqj+HOZTqCLK0DJqjo7CWFHWUYfwJa3mhCIy16o2wTxWAPOZoqZhHjKKEshpMDlYxMpTQUu+sy0OKNf+t+ZKVDxwtrvPTv/DvuXj+z3D/vY6okZR78gKSiwTf0jiPE4/GhKYBySWmQ5TceNxkyu7eHrPdfXb2T7G5s2N+Kwq4AcShUQgxESVwcf9h9t90ivd+4mM8+dwNDuZXWQ4rbrbC9sYmq70zTGc9zje0relHQjPBNS3RZ/M3EesM8k1GpGGIAe+sDOMciGQ0DuACk3Zm+5sgZqVtWlznbc5KxXQNE6b6ZgsNC0LeIqnSeMdqNYfSuZT73tqZCwMjePPlyR6RDpVEykvTl+VY2JOhMCslI8imcMSZ4FRKWWSIJlPVlIjD0kqXybqXUKzdPCXIg4l+fSjhswIpkYfeurgKE+LUm6EjCZGiWYoDyWhLNCXThjhhGCI6WCK2pMFE2dGYLVStjDVe8w6qaBgTRgulXBwHxDXGopKLeF+tvdtZqOaQrTQY/LhMwotfAzalOAr7Ai4MdOVs4DBrT+MFskNlhfNKSj3O2+LOIdjuWhlYJWF5UMbCpNgTQmNLpGlDI4Jb9gyrJYRAcoNFfIt17YmYF5U6E/RWgEle0khiQwfy8RFy3JIvT1jMztKeOkezvUueNqy8t1KUJHNURhic4LIB7SElVikyxROxNnOPK6CneISxHh/VQ3Lj6Hl3u7u9LLaX1MuvQK2Y1At/DUhYEy+/A72cxPyqay1JLZnYPCxrq3GpKhZ50WdJpS84UejSNf8jpRRTQQMFJFX6vL5vLCWdACT1/SZVeTE4oLynrNlfdDwVqWUKqBo1SPqiP9egzfWeV21LPSB73GumHwM9i+C5EGSuany0Jgev99FayE/+Iif2Y8wZsv11ZXWdMGDnqtHZeM5TAQq+nENsoK27KYr3vvxmyiplVgT6ZDX/Vk0kOSRPTkopaDBRywG6c+caf/sf/m98x5//fB642JEHWKUlgSMSM9QHQu1kUYHgCcEZi+M80gRmu/tsnT7HdGcb9Q5f/GssUshKYy7Y8C1TYUOVL3j1G3jF3mV+88kP8/zzT7M53eNo64DF0cBkNqGbTpjOtmhCoHFztBG6jSlNO7HrNgRiBu8F5yKJAe8d0jTkZKZqDk9eDSxzIjTOzpN3pGIy2XQNMVkpS5Pi3EC/yHiXaCeb5H5FUGFYDuQhWv5W05USUWknTgtEPTkKSG+dRWIdRtYmnQrDksg5EkdhqJUdyVo8UmBYLdGYibogRUs+r8GROQ+g0TxgxDRiBjKsY8mCJLWAA8s8Us1I0SPlsWxWmMIYwas57KoZ6uXBnKuJGR8mxOKn46pAdryncmFk7ep2ruht1EwYybF0GZqCp4rk6iIoFa+Y0ZMqDUgeRgdk0YzLxvJWgGV+WhnXhkJpJru+inu1SEOmt/0p7fCC4p0i2pCTtaz7EIBMdpnQNqh4nM+4+RIfHSrKMg3gvJXZSsZcFe+Ts4FWLR1PsrJ4EHpkmBEXN1ndepYUZujWPu3uGdzWFkw6hiD0InSDkIM3zRQe7wL9qkec0IRmbLhIlIDhnI25c97E53edVe5uL7PtpfncwP+fvX+NlW276nvRX2u991FVc8712g9vv8HGMQbMJTaQp8I5JnC54iZSpBPlRoSAgoQiGayIICVCSUBOTBz4cINQiPIhsQIfiHKlCOVFpMC9iUggwMEJGJuDwRjj57K392OtNeesGqP33tr90PqoOdfGEBtwgp3dt/bec86qGjVq1Bijt/5v/8dDRUO0iK71isZkFAv9lb3vx1bOuqFjcXCt5XINnzhOzg8VNteIy841kuux2LpeVK2E1yuuiuuqCuBYcOmKtKyFhlnA4TpQmfW5aytK4mdbH+OqTbXKxVVHk25NH2dt2vnxs62BfTYgYvXgAjly1RJa/1nhKIYMmau2Uby5HQnZR6rSeL6u+2uDSK2OKyTjKAn38ZzFVz7R+DwCSY1pFBZzs1gBS2JTwnRtaRaOqskpHmTqjtA94TgVpZmhi1FSYnZhsUgE//UPv5//9z898M3/xx/l1a88oZuxmFP8AqvCpAk1IeUNujkNbpQ625zJuzPO7jzG7vajpM0NUgplEn2J71xC2p21IGr0zQ41JbvwgkdewFeffTnvfez9/Ndffg8f/sglz6T7nJ5tuXF6k93uEU7PNlHAZDitN9lsb5I0kXOGoiCNlJXtZot7qFayNpJ39k89y/bWLba3d9GSyYqVOMY5TdRhnqeDYGytI9oxySSF4ltqnTE3Wp2DHOxGKuP7tjqM4jrd75E9RyHRgwsU10DDrGFW0dABoDit1kAqmyMpIWT64UCvHZNG74ImpTYjU6BXkI6tydgG1ubg8pCO8mCz0fagRiaTjZTuBik7rYepoVtwZ6IQMqwtqDuihneh1kPEkGxyRKiIBGfJGfyi+Jw5Z2rvA+EIFEl1KBPHKkt0oJ7NgEpKUWBEH3dwaJTYvhaSaLSuB6dZmkDryNTQPNGbgHayJHqbcFrU/lbinqISHKKRpm1UxCKk0kSDMN2FTkO2DtNESpl6v6LV2JRwPDYPz6k4stG28p5YvwB3JVl40cRdYE/BsLoPS5zlw7SndizpBu3kFvnWo5zceZSat3gxdAryd5IUkSSErUY1QzxUbBpHDPp6D7qGxD8/nh+fIeOTLm50uBA7DqP/r2sfVqK/sU7KwnVeDnAsH8ZkOqqLI47hV2jKCv8IV5P1OlZ0yK+edtzIscBhFBorKiSRIt7HhH3EMOQq8dvhuDIxvXrDlVa4vl10oAbpeFQ17hx5zzp2rK3vse43q+PxiizZNVTKj+gIEkcvudFE6KKk69XNOE7NQ8GgWGQvjSOmLiQsfve13gx5ecJJFhLwVfyt6MipAUSpECqTJGgSypSZco62BdC6I0XZJKFZKEO2mtnkFF431oJTRKe34EFEsRefTZKxaUGebP0+7//4Bf/0X8H/8f94LS9/4oxdLvQCGw39VcbRajAvgeaoMG0Lm7MbnJ7uODnboTmHV8dALVafZnONtuAoSsygtcbUGs0aL3vkRdz64h3v/+iH+dWPfIiPPd2Y97A7mXkw7zjZnDJNhbkmNrvKZnPCtE1MfUJ8pueCdw3Z+3YCySDO5paQS6AIXYK86j3IudWG2tDCO0VNoq2Y8uA0FUTa4Ke1UXB0ZO+06pTpFLcabrUtTjyTNbG7Uw8XgdpoKIp6N0regRqmgZiIgzHjTbHm1HYJTSJdmwmrQSZtGk69eMY0kBLrEUxp1kE6vafgXUlmZaa13sOrx1OcU7VivY42rx6z1HoLTxw3obVM9TDESw7UCNLUpIEitQV8JeUP4mxvw+jSRrEP3uI6S7kATl0amoZVhAbZWa3Ru5MwNDu5pChodF2oOdkTNjfoC+VkF9L+VEZEgQ+vrpFJpdF+dFFUDWFLt2X47kQLTodyiRzEfGsRS6HbQu5KPz/gtSEKi4Ziy8VJU0eZhrFhXMP0he5p3MwsXIV7pdeGqSNZUN+zbRe05WnqMx/gwW/sWMpN7PQ2N17wAuR0wkume6NlYdM3uK6Kzk6ixwLHLAjdjBiL58fz4zNofPKp4OP/0U7y3/T34whogXVCdonk72NFMW6wXD3lWKxc8WhWhOjaZt0fevyKbHx9v3gYJXp4E8fnrG+/cvcMP5KK110VBtQs14qwhz7nw29y3A+7RpKWKDq6BHqjRsilZfWmYY3CYq2yZBw+ub6vK19oFEFRh9kVcjWeG2RjjgWkXe0efUV1xkFbC7V2PEJxIxaFaUpMmwka7JfgbywOlpVcEpe9480pKTFloWA8a51WQ8YqxZlESWqoDJhfnA2KpUTvUAn+xcXlR/n//KsDX/bFL+MPvvpRbmw2nOzOONtktiokZqQnykbxtiFZ5eatGzzy2GOUaRtKntawZQljt/F5U87RMunx/lPJyJQQ21C843lhqxMvu/MEt3cnfPDJj/OhZ5/m6WcmTi4rD3YPODu5wdku0ZcFP6t0tpgIJYfCSnonuZNaomtM5ppPAvXqjdI2kCCRWb8Ra0tImUPGh4/cH0GovVHrPDC7SMRe5guUREogbcZFIzV9mDQdrKKWqHWPLQu9LqSpIFRySvQ6h0VNShET1EJR5Wa0FqTlcNZt8bhXUEMs1FgIpKGAazUKDsZZaNZHaCNAFCQiFkGNbYmUdRkxBzJaw6a09iDk2V6ottB7D47LiIKYl0qSPFLBrxZUkEjJafWAeI9kdwmUxwQ8SGFYPYQdLx7KsLTDqCQaeD2GTvq4pnSwkkgeUv59ww97RPeInOAWieHuGbwiKYq+3tuQUztIxy1HhIdPuFRccnCRNCJVijuGYoO71OjIxtjIjnYBda6ULFAyPaXwDpKMsATSa6usf0Uo00DRllhs2YxVQbUMdOrAJBU8k5cN9XzL4alfZ9nsyLceYXN2Ez85xc6Uksa5KBE9kSwsAkwkIhv688XN8+Mza3zybSlz1iCjlU9y/XQXv/a7X0mzV6R4bR/pNZTmoctlVC5HifGY6Y+UFI60lKtCYhQzgly1ttYZfX2Pa0WI++phMyaWlQezVjTPQYKOaNKoRByukJ6HPvv191v3aZCDh039uhs25PMrsnIkYg8UzMdh1kFE7kpA9+g1NCqe2GRl8QwuwUCGnKEQH88/HsP19eNQrRiZIRRxsig5K9uSScA9C2flLEJWZ6dKScLeBfOE98ZSOwcv7LuwDFfTk5K4kZXWhYu50VYiqBtLi1UvKbxV7917mgebC97+C/f5yMcf58tf/TJe+Pg5l7s7PLLd0nLh1DJ+cKZp4vT0Njfu3GY6PQlUygxpC9gSfA+NycG6kUoeK2cjyQTTFm+NnDK9FErZsBwOnMiWV73gCV712A0udoVf/I273P3Ysyyt4rKhZaFeLOzo1O5MpZGykMvMphTwTsaxsmGSGeUE70Jf5uAs0JEcdgS9LYE4HG2hx88umDd6D08fb5XUO9L3tKXjqdDnJfx3pmFOp45Zo1vCvVEPe8Qjp0xFIUUIZdkqXTLWjF4d606vC0YnS6H6nvCdWSB3vCu9zeDByfBliraQajgjDUKvyOCycIVIBZrZR9xCG7CmXPm3uGISfB3vQm81zl1zEGPujZTKOE5BjvcUTDcVoy+Oe/BcumXc52i7jtZkydtIRych0gM1qtGLde8kjfMvayaJw5CIy3qD6h1vBwQj5RSWBCjQQKI15g65ZLx7JJijSMqoCr0HImRNUS8jlsSjXefgwyojeEXgFNCJ5Il+cY7XBaSDShSeamBxjCPZPVYotVfojVY9UEPvFBlKxlZx4ruzHoRzkZnkl5R+zuY8cTj/CPdM4fQW20efwB55DG7dIkmmYlF8SUc7oXzU5971nh/Pj9/f45MvbtaWzrXJ/+rB66jLwzyRVQG0rpLgIdDmCkkY230IsbleSPhVYfFQB4srLsr6uH+CfUwe6MW6GyIrT2YgSaPGOaIwcp1DN7guXKEpeu05cu091329niZ15MQwSgtficxcQ1GutczG9m2teWSQhQcSdNUau3Zwrh+vsc21a6isRcwwlBtPlGv7u8rPZ4NeO0UTS3cmdzQLkkMuvts0pibsGzxYlCpOzp2tOnkHJQm3t8Ik8Oylc3AhpcQ2CVhMcCkVdgkOsqBMTAkO9Zz3vn/hgx97mj/0ms/jNS/q9Ed23Dy5jWbhpipTUsrZht2tR2KC6G2QLRs68sRsrNbdHU0SEm2LJoKnDT4tLMscAZSbCT1M5B5GbLuTm3zeyz6H1//BE37j7vv5j//157j79Ae5Ve9w80xo3Silssl7ymZi2m3Q3ZYkPgirNbgV6X44IJcT8mbCXWOCToLXfiR/rUWt9fVM7KNl1aHOzPsHaG/R9hkeMuJL2ApoRugxkbmwLHv6HMUNmsmTgAX3qA8/laUuYdFvQlsOiEBd5ihGXMAbEfhd6b0GGbobnTqeUxAmrDXcLyK2Im9w+kglH+e6+bH9pCNSpLUaj+PjXjKKoa40r1FX0JGc6LUf4wJyydQ6I91IeQMtCqk4ZpVhxRLoj/fxfuF7I24RVyFLkKW7kHeb8OIZHB6RyKJSz2gLkjOp4SWjk4M0oCB0NEUrUqySEyNsdRpZTAmnU1tczK6EP1KLghUBhmeSumDW4roXoSVDthNJTpG90/tMEUUpzBW8GdYXJIOmcETOgPeGSA5ER6JYRH3EtBitLSHvJtR5qka3Ba2F3J1dVuziArv8OPOHT7HdLeT2C9jceZy83aCbTE86lIK/Cbt+fjw/fl+PT764ufZf5ROd6KPACAvgq7/KuOGNouBKqcTxB2P02sc7HFGTa4XG1btfG88pfvw4afzmNlJM3UNOPEjEx+JnNQiU1fCGI7oSr40fDDn2nlcVll0rMB66/q8XUzCEv7Gt1SZsTf4+du2uvXaVgptb5F4x5Nqyxltwlcw9oBi/VjzK8Z9BnJYg/AZZWBi+aVF8oiQV2gC+DGEZfjXTJpFz4tAalwibOpE85LE9eYQpSuLOJo9jKxQBFSVn4SwlTgsUF+5dzrgblca2ZB5JW5ZlYamVA4WzqXLahV957wf50N2P8aWveQEvuXNA5XF2yRE54eTmbfKuQO9I67gZVmtYBTBQMYwkA7bPKYqbPg5yKaTNjtw7db9nk7eUXMknO07v3GQ6PWVbTvmCV7yWz335K/jVX/8V/st/ewcf+ug5u91EkcTJtOH07CanN26SuqId8qaTtWNlQ0oFmtDbJe2wD1M5VYKaEsoTXdVn3gMxUY2Jrs3xvakxTYJwQl+g9QOYYqmjJtjSBhrSQlXVZ7wtgWJMjnuiN8P6CEPsireQWLdWqctFoBU9ToKlGTCHxJwlEu3ZkoYdtqnhfTjSjwwjFcU61HpAZQpeSa9jcpdAKdHhqDyURB4E6QUL07w1oNOFVKI1RQuSMZLxGkuJlJRlrhSdAtGQjpAD6RwLBtHRKkoT7j3CJg081Si2WqbXBm4hszfIpVCmLb0HqTrrSbSTgqiDNJDiqNpwQS5YH+7GKpAyKU3RzrPCNFWsO4tFoRVkdxsLnoSTg3hvYH1c6GqxeGBLM6HvL5EuyOCwqVZyFhh5caoME9GCuKDSSUTUhotF4SQRjop3pEMhU1s9Hn+kkxy8J4QLrN2D+eMs9z7M4cM32JRbpFu3kFu34NatKF6fH5/W8e53v3t6zWte88U/+ZM/+Ut/7I/9sf3vdDt/6A/9oc9/7Wtfe/m2t73tA7+X+/eZNj7p4iZy6da4gRg+JuoVuVkn3liRrC/kWISsBOEVAVkfXhU7wLE/fx39uY4yXAMb4u9rRMA15EfGhq/ck7mSiEsUHcmHmkrCPyeER0NB4VdvnT1WVzaknni0svpwOV4LpOsy8rU4em41FkXcdVhFjqjT+qGOiIw4a4KyWXjkyDVC0apC64CQULdjC0wGMmTixxs/thY2BMMghaNtHqnX7pGcfDI5UxYOS3BBEkqrRutK7cYzLdQzyWGbnZ5gWzqpwH4u1KVTu3F7K5xtjRMT2gzP1s5SHbOQIDfrQGfpQT7O2pnShpQbzz54mqfPE8t8zmtf+RIkOdv0Im7eWjBJ1ItLcpmiUHQfK1ulK5A0uE1uMJXIJeqK00nTROsdbQu65EhyFodS2D16h7M7j3J29ghSJsKkZuILPu9L+LyXfw4//Y6f47/8t19hPii7jXLz2fvc3N2EF72AdusOu6qcbIOXpNYGt6SS8obmsfLOOaG5BOfKHSONySlOXOszqXd0mkibW3iOxy/vP0MmYbVGy6h3Wj3Hh4zYOvS6H6nmxGc2iWBKqdi8iaDNXgfBtx0jIkRPEArW7odSh0qI9xlmj0a3RJVOYR7WBXGdWDNUZkSg2SXdOBrBeYsCwG0kdDcPd2eHTqN7RzXjHuRbA6yN68IMScHVqdKQEllRSqBQdQmOkKqS0kBCR2irY5gFAVlVh8uuAws5ZVqbwYWcOi6FeWlYC1vKsguSbUjrnVQF5xBEYC/hBeMt1F3u9K4gStaBxKZtkK0peBU8K2VKSFtbX+ApIhHEerR6VtNMU8QTXRfS5gxZGmIN9QOaypA4RraXZ4IHNLxpwssobnxZQoXZHFyi+EmpDtRvLOAG/x7rTBI5aeZKtZltOVBYmC+fYf9sp7JDz25w5/L54uYzZfzrf/2v3zNN02/CAv5XG5+CWoqjyy9wRAn82AeCFZ5ZOTbAsRpZi5rjuFaIyHWkZy0WjpEAD73koXrBr7+Ahx+4tkfHto/KtXYP14i7XY6coCMd2K+3uQbHSBgW7+tzf3Pw5lEAdR3r8qv9WGMT5DkfZg2EsLX1tB4bVsdXGSTIqB5XGax5fKCoLQfnxgw00JuQnDtJhTWIM+cUPjIqLDitBpqzTcKdTcDxmyLk2Wm1BVF4rDL3BlkSOjk3N9FumpKxr1BbxaRjvbA0R7tzaI0HszL3iEVo4mxEmQjOZ+0hK04qqDpLKzxdjXo4cH5YeOqeM8/KjdMTbi2Pcnp+jykp292OnAuh8R/fXxoOstbDlM0Zyh4JCXeZwolYZnANDxxx8o1b3LzzOLvbj5DLNhK/uzNlh5rQvOErvvSr+cJXv5affsfP8wvveB9P7p/k4uIeB7vg8fmAPnYTxDjdTKCxYs85Qh/pkTtFBe8eFInR5lOJSAIzj4V5EXSTIjg0l3BmTonWwi6ALnSrtKUTKekeyrVuJPVonXiLydXCcl9UcG3UpVIPM0KlHyp4Im1jMl8Ww6RFCGgL9RNEIeAEqjFbtGZwIXWhW0c1eGXNBaOTzGEUMiQn5USbLdAehyBKK6gGSuUdlQ0+DA9tID+5OyaVtDnFGhxsxAeZ4nZAJSO60FqkeWsOkpqkHJfVuE5rd+gLuQQnuVtsv5WJlAsFDbQJZ5mDAO9+YLu9gfswQ5wrPYVPTthndnTELUQKd+SQ9dpQLXhyskNbZpQN1gUdDt50QXomq7LYEvussYBxc6RkmJQmil+0QK7yQOg040WQBEVSHLPh4IxpqNxcIkUewpG6a+S1SUd8AQn+kqw9eEA83IqzONbnUFt2J9NJdondf5rl6d8xkPD7evTeede73rV5+9vffjLPs/zZP/tn7z322GP9f/Z+/W7GE0888dvu/+FwkO12+1lf/HzyJn5rwXKtwHnOw8DDPJeH/r7+Mgi0du351wm5x3E9GfK57zUKj7Voud66ut7KOl6+19o+ErswTO+uNhj5PLEjfmwhXbWdjmDK8W1W4fvVfoAfs26uF0A+2jTxDDsWOysXZ3XNiTTv1UhvbE+C8Lvux/p3iMXcejwhLPddwjp+bXvESjuNAxZQtSbY5EQzo7ceFuzudA35+ZYgEC80DgZdhrvyOG7VjUmF0w2UTRRerYJbI3Wn07lw5zSB1Y57YjsluhkFJQ8Ayh3SlKgGpSRKElICdwvuz2XlwfIM999ptCnxpx95AbunPghq3JFHmKaJJCXktZIRnTiSvIZkGEBW75UW7RH3jFADRSs3OH3BCzh95Al0s2NNrBaCp1JyRm2mknns1kv4v//Rm3zuiz6Hf/Pvf4Jn9k+zPNNZWqf3l/D4i7aUUhGZEPUwRyTUOCUNngmrn1CBHjJet8gnwp3p5CaSJpISPAvrYannYatfW2W57LSlU/se8xm8BKIw5UBKWgHdAwUpOUIZG8yXew6HS0QS2IS1GWqcN+YzSIn2U3OwhmoPWXLtpAyoBELk4d3SWvjamIfdgNlCs4p6kHbdCl4tWixeMaBzQHyizRBMr4L7gT4QXrM5og80gXbavEd9wuwQROO+hMFfcWrtiCveoYgNo8dQgmVJdA/idc4Jt8TSlpH6rvSW0HE9iETxtjqIp+Sgw52qJfpigfKVcfPwcQczYISCWutxXFcZd55o9QAeiipQxDWKeSdk6Z7imNQeMnsPyb6UEhLw/SHSw6uGWi4lPMlAWvKIk+gj3DMhnlAJGwLxiACpqdK9knQTcn5vcf6rxPnowVkzj/uGI7TlEu1BlG9tDgL42pL8LBq1Vl760pf+3z72sY8dw6Q++tGPfuC7vuu7PvbpfN/eO9/1Xd/1xA/90A89fvfu3enRRx+t3/AN3/DkN33TNz0N8Ku/+qubb/u2b3vZO97xjtOXv/zl8w/8wA/8xld91VddANy9ezd98zd/88t/5md+5saDBw/Sy172svnbv/3b7/7lv/yXn163/9y21Ete8pIv/rqv+7qPv+c979n82I/92J2v+ZqveeZf/It/8b5P52f8/TA+xbYUx9k92jDrL/FvtH4eRmjWYmdV8aytoXUcPQCJJ6wq8utk24c9bJ6DAF3t0kP7ekSGrhU26/7IaE0p4Th8jHg4fr7Vl+eqlYb7kWt0LDBGMRJ/G0S+weIVudpG9/CMWB3Mj6jMYCWvMvfjZxnHyNyPrsw2CichpgRZt4sde3md2GjS8NqpQ2eeZLXIDyVLNacp9G7UHvyG4kEHefZiwaaJnAjPEsI8L26igbZoErY5M0lhcmhLyKIL8XhTsC7MNVpeJxM0cTQrkweyNFeQrNxMTi6gqVEyCIVJhH0KU7Qiylwf8J/f/mu84OwJdn9cSGWLunJ2doPtTshpM7KboohJIkhKMYOMikyaI0vDWz16o5jD5kVnnL3sZZEkPQLzrAdPARGS9OCFqNP7Cckzf+Bzz/h//ZmJf/f//U986GP3WbjHoS3Mbc8jjzzKY4/d4fTkBn2T2OzOgvTZ50H01GPLUczxbiTJeBKkBI8Fi3aP1U6bR1ZWtbDiXyrt/IL9fk/tB1ScLjMko3tGFUo/pec2+G/RFmqt0+aZdpgxyYFezhU4hKmgb1j6RXja+EC/JHLDWpuhK14K7vNALyIXzWof+UmjJeRGEg+kgRmXKSbRFulqJiVI0z1MBh1QSsjExYEWz9dtLCBsCeUWgSKqCloKS2t0U3KKQMvW4nwWWXOaMs0705TinF+UlAmzOjIqmcOyQJkoUwrOEx7oRofeDmGgR/hA1SXaQmnyQVAfuViyFisp9t0z1haMjMoJtR5GrzmPHrKGAZ+tSJOO/LkU94AipKmwWMe3E9nOaPOM9UYWRXLGFZoJTWbEW6AykjHfoVIxWcJ7x4ZJaRJqN9wTQotzxvSaatWREa+jkkgiVDPMKkljMZKs8dk2DoeDXi9sAGqtn2A5/Xs7vvVbv/UlP/zDP/z4W97ylg985Vd+5fkHP/jB8q53vWu7Pv7mN7/5JX/37/7dD37hF37h4a//9b/+km/8xm985fve975fLKWw3+/1da973eV3fMd33L19+3b/kR/5kdvf8i3f8opXv/rVhze84Q2Xv9V7/qN/9I+e+Kt/9a9+5C1vectHPt2f7/fL+OSLGzjmDzk+PGLkiELYQHaOtJBrFYcNUOR6i2b8+HCr6aEq5OFtrLWHXnuPUYcc1VjXASB/zv+vg01rgXNUt68k4WNhc4XGrMWXXqvIZByPI4RE2NlfbxutRMdj+24co+uI0/rIldLs2iEYf1zl8xEfoUeeCRJojqmykpyW0To6ZuvIqnQIlRJjUt+mHNyFahQTcnI8OfTgETzbK0mMZo0k4Xuju4z0RBcha2Krxv2lsqvKfon2k7thlvHJaFWZPbErCRc4mKMGpcTBWVwp41h1N9oceU2O09qCdGMhMYlyIp2L5R4/8jM/y8ntzOu/IFo5olDyBnCyd+gzmAS0bzYmIQHXKGrqgTYv1BreMJvtDaZHPo989ug4l3R8X0aIauv45go5TXTfoykxycQLH30lf+b/eYP/+NM/xS+9993c28/YhyuXF/ehXuB3Huf09m00TxRV8ibSlaNLlqP90hs5xefXnCFPdOtkTdRD57Dfozh9MawKc+1c7mf2h/vsD3tcHWzCOSeXHd1mUp7A90hVNB1w0jCdM+bauH9+SSkhyfba6X0frRS7xNFADrRRVBFzWtsHD8UnzAWVduWj1B3pRnDDlI6GWR71SASuXmm2kCWDLjQr4EuEZfbgnyi7sFGR0PShhvg5nnOgWj3clN32JC8sywEXJU+nVDuQE4hnWhuoi+vRmNJFcE+00YsWEuYJ4zCQlD19ieyqJAWlgSbUDvSeSFow2uAArXlpFjwhG8aRaaItHaEOefyC54WUtlhPkCLotLZwXJaxb6lkVBt4xKAYiqRClokmB2SjSM9QKzpaR4LSXcgKWjKqmbl1atuTvCMOichBQwINDEQ3glYZIgRNo8C1HkRpTRHJ0SIQ1XsL5FBlFGDPXVJ+5o8bN27Y2972tvf23vnmb/7mV/6PeM9nnnlG3/a2tz3x1re+9f1vetObngL4oi/6ovlrvuZrzt/97ndPAG9605s++uf//J+/B/CWt7zlw1/2ZV/2Re985zu3r3vd6w6veMUr6t/+23/7o+v2vvALv/BjP/7jP37zn/2zf/bIb1fc/JE/8kcevPnNb/7ob/X4Z+P45E38JJxxy/UKgqufj8jD+phd/X1t4axFiHosYjpRXKRRRKzRCDgR0Mc1CTYr74ejP81KDl5bWxaLSUbu3xpe/FBrbN29CKjkSMy9qqZWD58Rn2Br7XAsaX4TUgRD1eQcXVjFHVMZ5lpx0FZS81qkxU0ndjDkxOAu5FURNT6/j2pssBVY4/8i4mHl4ljA4hLmg1mUTQ7f2EsTUlem5BRVijoLQov1ZxR5LiNQ0eh2LY1cldNUuH3iFM9ctM7l0tgvnQVYMA4WhVVWZdopKSdmOqTEaYLajGQwpaA/V1WmSbkzhRvs/blSW6PWkY9ua6p1FH5LEzQr1i74dz/xdnZ3EpIKcuM+/kA5PTljV7aAkPOEm+LeEAk5cMiYw59Fe0drxVsl336M3ekpSPiUoCP6YpVrp+FwTb9yvvWGdSdtTtjJC3nDH/nfOZ22/NwvvYtzv+TyyZn5/MD8kspj85470tHtCUxbMjomyCA155TDhbqECsYMvHfmy3OMyAHaz5fUfafWxuVh4eL+fQ77PUuf6ZaQfIFqGLklF/AeyBMRE4EmuiquylyD23N5aUM6XKHPiHYkhURa6KjA0npcoBZMVAPUF5qEh0qywmItiMs+g2dEQg7daMF5sUSzBU86CnWhe0XNoqAgwjTX4M+8TfSeMO/hTz13OjMSjT1cfMjCZ/J2Q1vmwfEKRMIdim8C5SidnAreM83DB6jVWKCl7JgbIo3uCmSSB2Jm0iGBVyV5xVIo11bjzQADA6ERd7xB7xX3mb5UyrSQ8xbPW8SMlAvdEyIt2j5pVYLp8bp1C9RRLYjH1ewq7DaB7hQhocmp1kGmuAeporZjmyaq7uldqDVagmZlcNH6OLEYhPFEXLlDr2k6eEbDc1mgjxZZ3IQ63odE/rNw/KW/9JeeuX//vn7zN3/z/5D3+/mf//ntsizytV/7tfd/q+e8/vWvPxYpL3/5yyvA3bt3M4TL+nd8x3e86F/+y39556Mf/ehUa5VlWWS32/22jO/Xv/71F79Xn+EzZXxKhOK+tp7gCoYZ4yEs7wh9jB/tOc8b6IV+whevPJer16wq3n5Eafw4+V4VPGNTfrVJ9Yc3feQer+jJQFhk/LAWGvHu117sHPkxa1L3FbIySjdZi7BRWWmESiJXxdl1Q0G7hjwdictjRTyCfI8KLPAhzR37eESE1lKnj/1tJIRtUU63hZJH8vc+1CDqTu2dioIknCh+dLS+qg35LD5WqILkSDqeNPrzvVYuFqgmFJTD1GkCOSUmVXIS6E6STMnh/nF/2MRvSh55VsqNrJxtnf0Ml13CX8VakDOzIAV2WsijGLq1VW5uYd+e4sd+4t2cvWHLYb5Hf8FLsTu3aSe32U5bdEqYNsyV5BOqa7BoD/Jtr9HuShPb23cop6d4mWA4DOMGKYiYbnGzNxjk2YIniRiKFP48dbrNl7/ujzFtTvk/f/5naN746L2Pc74/52X3n8CWws3HOqe3BU8SjrYompRORvImJpK20OoFvUOfG7WFH01vl+wvDxyWA+f7hcv7ey5rpdmMkMg7JeVMt0buG0SX8HjRaCvkckJPwtL3tAZLd1p9ABaTVgRA2VA5KdL7UUZsw1hPakf1gHse5+CCeKO2EbPAAjqF63Dv4/wW3OZo7ZjTekyuOWV6h2XZh92/dLp3sm7pi1N9oFAVfLmP9AKTUTVQhHqYKcmYL2c0zaScaRREakTEmAAtihESrS+IHyjTCPjyTjIhFUMl07qEwjALrbVQf/UcOWIK6gZuYVyoYLKAtqFyixDKVmcgk3MJYjgayKJHlEbWQrM8crtacG16xFiIJJRhV6CO0xGfKUnj7rxVbHMSIZyjRZaGoV7zUOe1ZiQpJAXVTnfBkmM1/GmECFLtPZyxgyJ+gcgmCmOPwGLrRqt9tOJWMnqK2ujaPfz58Tsfp6en/90DWUq5amaMlkPvYSzynd/5nS/8x//4H7/gu7/7uz/wute9bn/jxg1705ve9LJlWX7bdtrp6en/cnK3TykVHEbrx68m4+t/h+Oc/xC6cf336y2Ztb208mj82r/4w6jL8f9XXZirwuU5hc2Rq/Pc/b7+QcYvnShQ1j9d7d+1cNCHPqR/IkPjY7vM/EqCHsGdY4PX+nH+m7b5nM84XhtZSdeeIsGlWeMiCk7WgLRXzxsd6M7JlNhMcLEY5z167klAc44V5Di4hUBraosJKWvcDE2gJ2e3MXYTFIzDsnBoCffKJBo3ZRdOErgp8yLsxzH15NyaYuezCKhS6yAxa8Na5lCN2gy3MLHrEp4gahqtnBQ8iJPdlsfOGpvJqU149skP8+/+f5mv+ROvoc4f5DBf8sIXKNxUpG0hh2qq9wPWMlhkMXVbwDpJhXxyRrl1GysbPGdEShSqfWQqpWinoY4e5cVEIYKiKZFKovSG2Alf8sovIPnMz77z7bgWzuf7vPfDe+7dm3nlS1/EYy99IWdnZ2xONohO4TSsJXKDlhmvlyz1MiTUszNfVpod2B8umQ9wftjz4OIB82GhSsK8RluFwlQiBqFn0ORhlw/0ulA2CcuZ2mfm/cxh34ZJXgUixVuz4M3YbLa0PgI5eqRBi8wkS4huaX3GfPXtqYjvAmXsinMY6efh6qtOFFCSQTvWOs2MJob3aPm5JMwWTMpAFg5UN7o6HO5HIGZSmBt4G6aAwiIKpWC2IJZjESWC9SDDirTwrmkHer9AFE7SLdSnQI+sM8kWEhg9SOYGtAM5Q7I5CNplojGjPgFK7/NAbUIgEOTcuOaat2gDp4jOwNLgFnm0js3ofY6FlAWiqD54bXkUkSqUNNHm4FYdxRvDcbr3PmDuPhY9geGWklFSJKr3q6w40Yh8YUQ9aA40urUMOgcZ21ugvscFU3jgdG+BZGomiZLSwvPjdz9e+9rXHrbbrf3oj/7ozde85jUf/1Rf/9M//dNnX/3VX/3sG9/4xqchyMm//uu/vn3Vq1712Sln+12MT8nET7hCSUw+0bOiR/SQgnsADOscr2PyX4ugYzHxCQqZ6+qkh/bjOurhV2jSc83/XEYqeHR1nrunQ9QZ/6brjwlchYCOQgMeYjKveVBrRs1VURf/tZVYzECbVvLheIOrbcfGwnPHrh03O8JcNvbx+veQNDHp8LUdnzsBhlA9kp03kzDXyqUYTZWdOqeTstsISOJChMO+U92PcnJDSSgdKAK38sROhYu2cD4LixlZBboxW2crTknKwYzFM7V1RJxbOZO6sXcwUwSjekeBZMbl3OJ9OngfxOcko13oiDtZnN1WuXPW2OYCVal15t6DPR+8/17u7YWv/qN3qNXoTLxIMt0TZ6qUaROIYat4C8TJrWHdEMnsHr2Db06hFIQUh9oivyeKA40MIcBpyAgKlRx+JJoSqsLGNyHTt4UvesWXMNfGz//SuyjbwlwrT55/lOXX7vHE5X1e+fJXsLuxYdqdMm2miGXQYUgoCTOlLnuWi8rh8sChHtgfDlxeds73l5zvLyLWwDKaLNyXPTKNam/UviCaQlIuPTg+kqm1s7Q9bdmzv5zxrqTUETXUchg9q2H9AbXr4Co5ayLslBvWRhu4BpfJtSLFWSwce1UEr2FWiZZj09N6H4ocxy3TGRERZuBRioer84Fm0OuBnDu1aaBlJbKxpGd0arSeEM+4LaTe8bIn5xaoi4dRYZky0ipmM+6NvM0c6kKRFEWXVpidlDMp5RE+2TCbSbodGVggXSKodNwTkEBGdBTh1ZZo54rgLXHoe8q0IWsKkr3L+F6D2JsGn6iP+IpU0rgXVDQlRArumbYcIn5De7SrsqFAt0S3WHg5NVrhKYdCbCwgkHG8JWIeerC24valQsMwL+AW92ER3DUML334mHsb/jt6RD79+fiF35NxcnLib3zjG++++c1vfuk0Tf6GN7zh/O7du/kd73jH7rdrVa3jla985eHf/tt/e+fHfuzHTh999NH+vd/7vU889dRT+VWvetX/iN3/jBqfcvwCcCXFfk7xceXke61QORYtq7Hcc7YbDx1jBtaCR7j2N7l6T66/53UEya+2d/Vr3JD12mt0bGstjIguSjR4Vg8aGG8qx0Jp/dysBRRX73nlNCzHN18LttWUz+VKEbXupI+NXn2e0R4b1ZgQaqw6uDE6knvVYwFnFm0qEWeT4rUHjwO3b8bOC7tSuLFUahLOpokb28SUYX8w5rly6KGiyuNYDZ1ytKJSpiDsZ+e8hYFaFkCVy+bMPcIzD9U4NKN5WNpPEziVfRMuATVhEidJoyi4JfbdeDA3DGU2ZeOdEwkJ+8HDOwWMbSrsmJDunM97nrqAy+Ykqbzv7rv59//5Mf7wlykX/cBhmXnpi1+K0JmmE4qkKH5rxZZGWyplu2W72yLb01C/dXDsqlVJfL71xHQPnxwtBbdAlbLo4J8ZttmSBXq/iZ3AF7/69Ty4OOf97/8Aecq0duBedfrH7rK/uOQlL3oBt26/gM1pIuWCpAmzjteILLCeWPqBQ92zLLCfO/vlwNwOsXeayWViu41WChoIS0Q3hHOluuFZyZoxGrU25mWhHjq1NdwSXRxvlY2mMED0TuuHMMUbidPmjaQbWnNcAvGyDrAgS6jRNIdVgTeFfoEwPF9KtDf60kAW1D24XKFPxKwREfSN3idaa4hbOCXbHrccpGYU4YTunVpt8GkSVMFNWWon52GvYME9MtmxX8I48WR3gjWlabTfxAx8H27BLSTQJSe8J7SkCLO0zFI7k3eSR2yBiaEykVOPfZdYUrXxX0lx/S51oTYnp0gb7y3yyHTwBLs1UENTGd42ivkSaK/G58OclIxu/Xg3M0mkHOerYCxAItEtYkYEwDNadiy1RtGkBAJDQZEhN2/kaaLbNGIhAqmzngNd6w0kPJrcg3/nZrHfn4XjD//hP/zqn/3Zn72x/v7d3/3dL33rW9/60v/0n/7T78ol+Lcb3/u93/uRnLO/9a1vffG3fdu3lccff7x+4zd+45OfzGu/+7u/+yPve9/7Nn/mz/yZV2+3W/v6r//6J7/6q7/62fv376f//qv/1xqfWlvqWpFwbCX5VfEBD6MxcL24uf7fazyTay2eh/6//rBu89p7rA9dT3pYC5zrnH5/qIhYEafYkAwF9doOs+M2h2/MePGxkBuTfyAsg3TcCfnxCNNbuSrrjh/diq/vtBMk5oeQIR/FYiA4R6L08KaBIOumpJh5SII5vg1FiQnWIwBTpIfpW02cbkIqXS2KpdYal5eV80PnssaKshBmhG2kd0+TskuJpRvPXPbggUhCFaYNgywNJRsHF1p1kiqbHMlVRWAeoZsnROBf0sHp8BET4S1u7ghTDmOxLA4SsuEqjldnWlocKYsVftLKWdLIVtKFy/kB7/uND3Jx/4BXpfbGi/cPuHnjUTabE7IW+lwpIky7aQRKlggyXCcPsyu+lQ3+Eiv3aLQGhmcOKmEW2MNULXUw3ZA3RrctE8IffO0f4+L83/Pss/fQTWF24/7+knmp7PcHzk6e4dbtHae3bqKyxXvQu6slzIQ6H6htoS6d/dKYSfhuRz4xVDbolJk2GSziFPAgKSOb4Ed4A8u4BB+kdaitsdRG7xJth9oRjMt2II9IAwjr/tY2uMyoppjUvOOTwALSHc+ZhOPLUEshuF9iTYOcPAjGffA70OBz4cEtCSflmNhdgh8jjKgwt/FZDmATtFPa/jIOv1QMhbbgkuhilARWHR95VqpGbY5IYTNlLvcHJlE2usNsRmhMMlF7hEImd9wqRZQkkVklfQnisjimnewZZ4vozNJ85EaFMab5HC1GC4TQEZZ6iZWErxL4qEEHgpzISYNP1cNnSnBUSxRvS2BZ3S1COxW0EOqs4dG01H5cBCUpR8Wn2IIkxayw+EDxPAd6NqzgS9I4dj5HsSQFWiS6R9ZEBy+0JVRvrXbylEmfwNvss2G85z3v2T33b2bGhz/84QJ8WoqblBLf8z3fc/d7vud77j73MXd/+/XfH3vssX79b0888UT/8R//8V/77bb/sz/7s+++/vuHPvShX/zd7vNn4vjk1VLXipUjM2n9mz/0azyfq8eeC2g+VAzJc154rSB5CDH5TTt0VTQIHHOl1n1bixxnlXuv6is/+rwNkCI4Isedec5nkGufzY9PxOxq/3jo8x/Lt5Bf/6Z996ttjQLHRwdgNKcwd/pAe8SdosKUAr1ZzGjjgKyZUClrrP6BnUaSeHzShmimdnhmX8fKN5QiZhIETO8jfDBUEzkR7sXdI8G7x2rbJFpKO4uW2ElyqjjVIJWJTPiLxF3cyKOQ2aWA3ptAbc7BgpA7dyOrsts6U+4Ug14Ts3fIsb5PIlhXnl4a2hduJKFoHIdDa2xKBiofvXuPjzx9AFfSacXrzHxx4ObNW+ymKXJ3UkFky+mNE6bdLo60O95rLMKPpEknHHRl+H7EhBunUBSuAdFrFD5a0EHkzGmLTXDj1m1e//ov46d/6r8gPpNvGBcXM/cPF+xrY3d5wb39RHnyw5S0JectiEX7rIXfSfdO1/CNoZxhhKw56wZPzsGdNBhW5h3x8brxzWc3TA5UM5xCb0Krnd5r7Lp5IC+itHYAZsRzIDtEmCQ0VHZIMmpbSC2RUdos4VukKQoL7UhaEDLecpCKZcZlg3kPfhCNrGmYAa8xBh4KPVGohrSBAuVEkQ2tN+Z6QdKMdB33oIVFE6KBJCx99Q3KmC1MpeBSIzrCFSQk8NU6WSc2OZPZUvslm2lCPCE+YTR6C36JtQXpTp0rnkM239oDyqZFZIQlUlKSJHDCwdsWrHc0nSLa6D7jfUuzJVqqKZFU6U1pY1EhGiiMqFLnDpLoLRRyogubzYacV1XVuOJV0WmH9U7qmboIzRtpEsRKeA65Dh5RIFoqBkmGt00iSSgnu1VqS7R+Ee3GuFsitFBWuTBpHsntn+Ae/FkwfuRHfuRX3/nOd26v/2232/mf+lN/6sH/rH16fvzejE8JuTnWIc9py/z3xtV0P35fgZHnPP7cvx15OdcRnOttoetPvgbZiK59rmvbv0YafshkkCtZeJcrFRbAtS5TPHOsliK/aXjJHLcy1vty/XNcoUAPuTr7MOi79ieB4aTLMNuL6k1V2ahGESZXrb91Q5ssFHVmc0gS7qs9ChVLzqEVnt4fOD8E32RlO6dRBvax3Yyxm0Lx5N251xqhmFKETsYpKSMGc4dajdkCfi8YSxdqc7ZTp2SjeJjpzeN4nGZhkyfu72OyCcQm2ml3yobFOvfdKUjc5M0oSZmKUHsiWcQltJ44X7ZcSuc0wW7fOU/3uGW3+eX33eWRF23wR5VuM71d0HennJzcgHKLk9MbpGkT32HvWO3Du6nFcelhXY8w3F/Dzj94OkDSUK3JWogaScFV8ZTxVDCrkE95/PHP41WveYr3/Nq7OEuFzZR45mLh/nlwaZbLwmnaMmVjbw/oKHZ5IEsZjsENy5k0xbmlqaKqeF7gkEgpWoniOVK1B19LS3CBzByrM7ChuVPnHq253mgj2yqZMeUcsQ4ak656ofU5hGMY2MXwopmoowGb5TC8oia6dHqaUS9RnIyEdjyFmRxOyk6tFVKiW6ZbxzhQ0g5c6YdQ6dVlIW2MTKI1p/YoYLr58IzqodDvgkmLnKam5GI0F0oWbI5z0n3P4bCw3ZZoi06dPE24Ohf1PpsidG/De8iDhN5t8GPCL6Yte/b7zrYsSIL54OSikVFVK2RDVWmjtaSeWPoe1yEwoKOpRzE3iM9toEya+pDBN7oE/wgY7SBwDx8d60NBIUbSKc46d7onui+k4pHs0SdaD0+b2ixyvzqQw0+njR5/gvH5MmIF74G44UG4TwqiNpyfMypGli1t+exUEn/FV3zF5Vd8xVf8lv4wz4/P3PHJS8F5GLF5qL30CYqchwqWa+jHMeTguYjI9dc+p8i5Xks9l+/C9b8dX+9XuVHrfsJR5XSNTnN8bNQuvwl9WrOgEI4ZWOs6qh8Nua7e6NgCWyu49XMeJWI8/AKJBohKTJeLOI0gtRZhQN9XLbJwEI1JJhHk3FjRFZo7SzeadXbbiVQS5+cL89zCfriv3BKlpAjYtNDCBzokEqGMTVhQpvWzmbHJQsK4qMJl64g3RBNZHagkSVSN9twkiVKUpUUuVZfMRkI1pQIRn6PcmhKbolA6LKMF14xqRsPIeeQadbjoYCMF+ZKGS0KqcZ8Zb8rB9iTpfPADHyZ7opCY67PU6kjeoCfC0g2tM1t1vC+R8MxQmhmEb5CFN0zrUbyas0aot97xqUS7wQXNOUjGydFcSMWiTZUq2Tf8gVd+Gffv3+P8wZPcKmfkzSW5wINnLrlsB/azIFRqC7SoZEheqa40c6Qv2MEQPaBigTKkaJHlFOGlKStaMqJG3mWyTfSW6N3Q3KnLzFIb+/2BVtsIrrQolrvR+iWqQu8Bx7sn0IrVHEU5hFeQ1ZE63TGmoZoKAzjTimZHdMZ8i9gcZHHvuE34UnCBi6WypnWDYs1CfWY1uCuZUFI1o9PAwq/HVgiNaFH2qLzwnrC2x5pGyCiJJFEQmVWm4sEnsoWku8i40hkkk8oJ6oW+dFLeI32LSKVXSFMPVVVfRkhm+O+glbYY2xzt6Ln1aIfVTtIN5MjGcul4SuRJ0B6ybPqMkeM7VDBfwqm4FDQVkulQ5RFkc89R4PZYtKgkekuYG8toWaIZ14z7KDpzBQ3vqL5ktCqHudJV4r1VSQLLEqiOtQW6oXRSySAbXCT2S+IaC1l4puSJ58fz4zNpfEpqqfWH45zHwyjIOq7XGkf/GblqweBXaquV1PtQUXG9ZcVVgbSWBEf0yK7k4tddh9fXrG7An6h4Wgulh/OihrHg2uq6XrHIb1FYrc+9htas0vLjZ3/ozcd2jy00jc85shmMKKY2OSavbsYBQc3GMYxt6OD+dPOr7bV4vorTG9RF2C+N3jUmlRRF1EajuECU1hsisBFozTkM9UeRsLYHoYfRKbU7tQbMpSmKH+/hTosbRYxEovZQWMwtioYsnYsljkOVdgwgrN2pYkyemWtjGYTGLpmTUri9KVSJuIjalDYJO+uITmScQ7ge4mnB5cCuJS6e7fxq/ziO8LJHd3zMGmJztGdqw87O6H1LzhtyNlQL0gZaph2hQwvPDykTpqN9g9I60OJgRNq1YpICMQMK0FsdWUsTJQmf/4ov5b+96z9SNoXHzx5hs9uy1XOeeuoeF/OD4FYwkbTQagNiYhNJqPdQZeW40gxIoZuhNcM0ktuzRQBou2xIariHyaEfZtoCS2vMNTx+urcw23OCvCpOEg2HXVU6IXXuS8OsRZunQ6cHv6aHq65ppvcl0L3BTxIBSTaaqytG6sztMkIdR+YRSCAUrUWuWSEKyBa8mwWPNp0EXwsL5ZGlUWj6DFqRBNrDkkBUaWZoivwtd2dTgmuiKQMeUvZqpJyos6NqqMT3uHgL8rMqbe7UWikYkjPNwOsDdruCe2e2Tikb9nOjSKGIAjNzLQNxjONgCNiG2ow8DUKxzyF/92ivbrSQhhS+dx8qsiAoex9t9KFg61apS2fphoyIi241FjxjMdBRFEWmDZqcDKQMJoqYYr2SBvqTU6G2A6IzzRoq2/jWJKFlFIye8CaIfHYSip8fn73jUy5unouiXA+gVK4KkOt8lLjN+bHQCETkqlBZlUU85/W2yixZ/V5kPGf8RcM59dg+Wj3YeE5Bce0DXEd5hgD4aI7V1q7NWmythY+s8uBP7IP0EHJ1vVi6jubwMFp1zNwaZGT3oTMRSKqohay2+XArdiMj4dEy2kp1SLbdw6BrfS4iNDPOLxrnc6ghNuqQIy1YR8vFPOTNirCscQ4EsqIerYBNTkhRrHUuqnGBEFRJ5eBOTjq69OGdY+IcrA+UzCkS7YRlvEZMohWQKufNcU9su9O9o2bskoM6N7dwkjt7F8oGbk4btlmp0kgdLmcfaeVCJjO7sZ0av/qBj3N685KlVW7uXk65uePu/oLLp56i9pmb7SZnZ3eYNqfksqOkiKRowy1aTZA1dUETaWRcdVeaQyRCy/HYSc6Ev8kECDptERO0RCvx5iOP8bkvfy0f+uCvcuP0FtvdCSebU85ubLl//z4PzhceHDq1Kz7ysMQi4VuQUDG1aGumpHSPnRMFdCJIwHvMC+6F1BX1jnnETHQzDr1jliKfSmJSN3O6SRTDvoRJnWgURup4V8zgfF4QFHKklqsrvc5BKh/23WJxfnRpoAeQaRQOYJZoFrJw8SjGiyq9dVwNq0a7rESTbSxIpMcCY3CZRBSVHCiDCKLhENwX4nvQRmaDNotjxcRmG6aT5gtLDc+iKRvWwhJAVelJMO1ozTS/xDFySiyXgVzodhtFlVygZtQ5E3YOld6jLVRKo/mEShT8SzNarySbUOuR1K4tLBJsi7tFwWphMNhSZ5o8cra8hX+OOd6iLZVy+M20JbOfOyI9jDVdwgMohXGhDyw3aWFZavg2JSOXtd0uNOv0bqCOSGbeHzCiyPGcSJqj6BWNctUA32DF6J9wGfv8eH78/h2ffHGzVhxyVThcdxge1hA4USCsCMoOuEFM5rHmFDJh+X+AIyfjOnoixERzDBvQUZRIGkXOKDKK49mPLSZ3p3S46Uoe/ik2XMSrXN/2+n5X6eTrgw95ysjVh83X0ZirbtOVRP24mYeftw5bN3UNcVqRpoGyIypsUwTaNYgIgi5kczxrhNipoOpIj4gAdxlckGg3yIhjaN140DrdjI0K0zClM4/EpOROwdkBC4zCKFpU6kI3p3WhKJxulH3v9BDQInkkjpdEyQmxFuRkZZiTBSE450TrzkVtJI1k6Orh97ETYU/ChBHM6eQ8ymB3LuaGkbhxsuOJicFTKNyaFtpS+EiFZ93Dd2ajnOSCmXEpjdw695865+2/+CR/JJ3wwkdPuOzn+DOVWg90c3a7Ttk0pqlFW4e4uQe/I05Ir/El9hqS9a56BfdpHPvkOjLDNCIT0gTFjq1GUeclL30FF5cPuNg/4LHbZ8iNUzbTKaentzi5/4Dt+TPsD439IQIgXQw0zO+S69HpmhHRoWqkVEA9uBS+DSRJFhojvdl8ELcb1SVIw56jFeeOeMd7+AyZrAqmSPcWC6+UaK9IKMhMEMuo9yER7kevp0Soipp0xEucUQ3cMin18FoYCxITiWRsiGwpawjDy8lsWLVE0SyD4N28kTMx4etCziPJ2wv0mdSXIMBqJ0/CLhXcnIUe/lW2YEvHOA1+jAgTxmIXYfhnO3ptpG06Fkttv0fUKRpEdNHOYoZ4xFGQGiqjcFOD2kmpkKSzuLEs50jN4Uc1lfgcdhEKQa+BGCpwEKxdXJNzO8sSCeWSwDpYlzgHZWE7TbSuoxWa4kaShN49SOfdBzJnGDrS6Q2YRms82qpmjWmT6YdEM0HzcCO3DBg2crfMaziV60Oc2+fH8+P3/fiUTfyu/+GIwIyiZ23RJIdpTOxnEgVOH21zcWczZvmGsCfs+NeiJZCSwF5cI1NllYqiOgqTsKaigG/D8XZFQkoX7nTYVoN59crRoxdNwOirDZZQ3WkCly7shymfSBrchOCnQCAnOvxQdLweOLbUrresVkTqyEe6htjgkBRKljgmruGfAiRJA3WKMMsZYzbwZEwaapFQOwlJIgHaV1k4sV8QBMwIMxRyCtVRDTby2E/BhlusioyCqB+rtG5OsyiwpBlJhKXHO2xyR7OQJaEo2XyQjh1NCa+N5hwN8OJ7z5SkZDdkPL+aYEnYqXBWRkLx4ABdLI19FbQkTr1RD5ln507JicdvZTZJ2U3QNHHjZMNJFvqstL1QvXJ3/wwfS8KLD3smFT7/i17GF7ziRSz9go8/+zTdlFuW2DpUnIlMTjusjhZUH3EEotAiiLSPglwAqw1SuBT3NjApSTFZA5pLxD9opohgyXj5S17Dr7znXdw/nzm9cYN8AjllSi5Mk/Dg/jnb1KmtR4vO+5gIQ01jHjJuTYqZslhDpITDblCLqd0QD+K4NWeeI5epdZAyEBnnaGXAev5JwvNAcUTBCmo6uDFG04GseQrCNEKXHCZyEi2rJE6SKVR44xp1EdrwgLHWjtdSFUFVSSJ0TXg1rHWQKAqDVhTa6e6NlIOMW5LhOeF1g/mMyYyZk7cJJoUeoZ6Lz6SWIC/kTSh9TYyUCS8qNZpdRhq79+DVtQPdMyZbUlFq7uzrActKYqK7gCyo9cgh66ejbRttnLg2A73KKUjhoabzKAQdNBlJEiIafji1wbSlNSfpbiC90VYe1sL0HgTsJMaUNliDUozmOgz9ouXfzEFCKbUa+OFCN64y0lTpUodfVo5rdnvCMs90DwPLuKcJaKdoGSs9Y8rX4ennx/Pj9//4lOMXgIcQiSP68FC7JyZvhqvpPNCCacAZbWyi4rG2OjrnrcqAEgWOriS2SiwFYfUbcTOoBhtYgyRdA3FwC9VNYuX4GH0wmRW/4tRIIEndnQcpYX2lLKajPFwkhbU7NVaHKwTlw6dGr5K/x+L6YWLydVRnoDTTFJ4wl0s/7q9qtJKWZlctiB4345QVlOBZQLinatysXCK0M0kiZaViWB8FmCaEztyF5hnByBKwUQWyC9phkShg1tT3RPje4EY3Za5xqAWYUuIkC0JkzhysIeTw5mgdc+XgiVSdSSLMc5eFKRubBBdzcCOaO1N2bk5OOXG2mkgkLved+wcJ0zQ68165mBuXvbJpwoMpM+0Kj5zM3PaJ3TRxWDofuqicLyFjPi2CNOW97z/n6Xvv5kIaZ+UGjz1aSDrz1P17zB1uWONUO8gJUKC3EeTqeBqrbQxPUVA6HWmOjVTx1RFSRosPh6wd09V52fGlI72zZcurXvp5/PKv/wJ2MDZ3Nkx5wgv0bUxKmi65fGDDtr/TmHHPVI9U724dahor8ATUOC85RLxEByTTesf8QBpVdk4lEKEUBNg8aSBU4uH+K+FbI9KHfUEEN4YDd6ILoBO1CiKXOI4RvkcyJM4pKZCoNcpFTY4STsWKQwqUzkSH8smQlFBPoS5SIyfBvAZSpVGqd+uh5uogRTDPeIs2VtXKVILj1Q6VyTV8ATcZxdmwGa3tgmTBSxSu3RaaKaLK0hYEo+S4xVy0S9JsaIGpJFo1rO+BaEWqN9LW8HyO2yaOp4ctg9MxOt7CBRur9N5GqnYafXMFlFK2uB8QgZQKrQbEnFJAumbrz2EHkFPBNHDl1svw8jFUAyGdtNA0EDYdnKreGiIZs4akSKRHGyVPwaOjkwTy6EcbUDYJNxnagwRqw7TwdzZVPD+eH/+zxqeUCm5+xWfpcd3F/f1aywfiJrSIQ4MHCgcP2HRQT2kEn6QyvEZkeMIMVMFF44a0tnZ8FUB7KH4GZ4AKeg5pK/TkMNKpHxhsOmzXomvtJPgg4g6OTQVEncnhpBvnEtEFDsNWPfYtNlBwyTQCOs9qOBY369IoQK6d2qD30JatRc51z50kwi5nmjizCb1HcrjH0m+088IJ1gbHQwxsqEaCdxzIykRIxY1OChAaE2gSq7kTVfZmVHNgCVOycfMDYQY0edjSD3KyepiTuRoSeXu0FsdKFXJWuoI1Y6kwWxgHdhhW7dAsXtsSWDJ2CbY5sVHHNnDZhGlQY0XgLE1sVbk/N545wEGVjaRY2YaFHTt3Dil8b+oyc+jK3CKp3s3oIiQ6ZwlS69w3IhBSM4d7H+Wdv/JuPv/zXsyjNyfKZuGp+8+w1CgO+q6ymxaSJvJmQ8lbUkrYcIQWiRu+1TCYM4lChp4iWLAtodBTBXIQMtWDjKzxnbecmfIpf+BlX8Av/cov8fSD+9y+cxP14I+oF7KdkvQc7adIv8AXqLaEd40Pm8ku43ww5qWBCL0JXQzHgyTt40rLGRnKKdeO1GjxWktDgVcwJRYBFnlitVe8gfUaCw+pLIugqUByNqp06XF9pOD8VHPqcMHtBAdnkTCjcwRSIm83YEZzQ82R7TY4OEuQfntx2po8vUnQMsmNlgSxRJqEvRNKwdzAU7SL6BwOM7ucWTS8fw5toUiEhyZLZN3Qa6Onhlii2oSwUOUQidwsuG/IopgtLHUhV0WKoyXao4ygUHdj04XULXK1gMNyIA9Xa/MaZpsaXjG5QXcNU8phNJjzljSuxf2+sdkGSqUaae3W00h6D08qt4ZJJumEJWc5LJhrrPO6MLdKKYJLDu8gCT5PtBaD19ZqB8+kNMEIGvWuYEpKEcGA9SjcJSwfcA/H4nHPe348Pz6Txidfjl9rt8BzuCvXWy8KNTnLuBjmDAdz1lb12rYK/seKuUA4YyqMNkkQYFqQNvFw+yWylHwYy+FgyyDVlEBFDOHpUVU84kpxZ01XUSFWqwTq60Mq5UShcEcCMbjvRtMMaFi668h9QXGpmDZ6DohcNCM6c1pnbqCcu/OMG1Xic65tq/WgbaZQRx1qBAmG43EUXhEwGSqKFQlwBh/GiKLPIwDTiIkdI9xOg8XAiD2MPrkMro8YyVc0J5Qsu5JR6Yh3chJaFS680VWog0Dd3Y5tr060Gq3D0ju9C4clCKouNjgDgQbsFFSEgwvWO0WU+4eOqXMjZW6kxIPq7Ht45WzzhpaEp88XLqswZUVNeODGDS+oVHqXuIF343wvPDN3Lmxhu8DZBJvkR0K0K9yadmhKWHPe89EHHMpdtlp5+sZNPudlj1N28OBwgT/VsZszddoybU7ZitJNKQ5pm/EkoUoyi9bKsJuV5GFE19cWT4+WpiVcDCGObRLDiyI1eEgb2fKFr34tv/Qr/xcffv9dTk6nEX1g7OcL5iVIn6GUkZHSHkWN1ygAHKdbJmWnNSUnH/wUDbK2Q2KKibx21J2smbk7qmHi16UFEiUZt1BOuTq1BWsn8rMaTcF2p2yKskmZgxSWKaG1seIVbh5SaI/zYXEoGsnuSIak+G4tv+M7bFNiY3G9zkuneGfxQDo4OYHthnT/gtY6J7vbJId9OZBmZ99mfFk4AS57RaY97fwc6UFU6X7gTBIXLiTvbCdnmyfmxVn8QKaTJdrC1nrYAqQeIZEcgAY6sa8zrp1UEnkYZeKFZRFc9njfILmiNC4PLZBbEbJk1DKtt1CU9hZke1NSylhfCGFWx7yz33dK3jFNE2YL7hXvW2wOlaPVUIBlSTQcTxFlYj3sCRDDasZQyib4NCIdsDB7RkKunjOGgS8D7R5CD91ByXhbmOc9IjVS1AeiayZHxPz58fz4TBmfEnKzet0oHAMrjwXPilKoYDmktQCWiNWX+7GzFHP+aIO4Di3UFTHFWQ3kGuorvyX+NbdhiBcrVSRB6yF1EockNBee7s5BnVOEsy6sadluEVVwXVE1nDGYzLgVpRR7Mar7UCNFWGIYvMWKNEkKGbAlWBrZYVcd786FQw0g6bjnOo5NQpm7swx5dRRsoYJygzachtc2nazw1TACFIGpBNG6OtQe5D8bRZyP76iJj9ZOkKazBMoTzrJwtlGKQG3DX0fBRMYK1I/GaXV8sWt7r4nTB8ojGEVgkpjMkoT7cLTngluVYznLoUKfMsUSzRb2ONkzc4OPnS8Ukegy5oIxs+9QLbPIPFRKhVMRlt5YDIRKEWLlidKT00QHaTWhc8XqnqVkXvXYGfXBng+Wp7jRFk7O4BF7hHLjhHM7YA+Us83CaeuUaUInpacpjPG80Vof56NDZm14Yi3aWLiPCUWHEWCsgmkL1IVUF4oZiwh5e4JZ5gv+wKv5wMdOeO9738Ph/p6SlMWcJo3endbBbBNF00ip1iQUL3Q6mgQoJCXk2VYAuFwuxrqgkRAWGlqEbcph7Jg1Ihh8S2uN1g9hsGdQpoxlQW7fBJmCM7QNJEs2Z5CFwg1Otwd6K6iBRK8DSRM1R8v51AsuzjJJOE+n4BdZglyN0uOsrMnZ6sSmLWhdaLtIZzctTHlHf6yytAtyOWPKzguqsffGmSiHwwVSnNxaIGqXz8KzH+XBU0+RfcN5vyTXzMYKDTjY8OIxj0aedJZ9xtmDx3dVilIouC5IOjCl7eAGKb1HgGYpgWJYFfb1HqJBh845YlhUNxhBihYULRO9LVir2AjoBCPlUIdNaUNrnYvLB8xzIedCTuG8LclQyWhOgxu0R2UiyYbuDfeF7XYb6iqcpgQyJLHtaO2FSWEpm3D+1i1tCW8lEEQ7mqLAnZKiqVCXA7UL01TIItRqiH52tqVaa/zkT/7kybvf/e7NC1/4wvaGN7zh4saNG59YFvv8+IwavyOHYhstnustn2ORI89pxbiMxNpR/LsPWfWg2ow2yxUruY8VZbSeVAU3u6ZKihaWq10Z0gzpMX29qQTScC6wuLMHtsCEjuIk2jt5vHUb+7GWWCcQ7QeCI4A33Ofh2hGfruOxEpOMdGHbw4tug7DF2cs1z521yHE4zEaXVeItg+ETo2GYyLG94+uLPJxwEb3y8hlPGPGaYzXvmAoFDVg+dLUkQNXDfVRgU5xdcWqFuQdvxCUQk50K2Z3LYbKGR+hfJLlHazFrkD7j+MV7SpIgjopSOzRrbD0Kur05loRJwwm3ujL1jlgY9j3wkIxvszJpY7ZICL+RYuJaLLEphIFZ72xE2ImhNiFubNPEbvLg2pgyd2Nuxn5KvOLRR3k0Fao4Vvds9Abvv3vJU3vj1aLcnh7BizD3mdw27MZpFVavCyqRmAw5SJmDoxJVbwvTNguGlqYcjZnx2VRAc3BCRMeqXhPdjcSGF916ETe+4IyPfOzDfORjH+P88lm8bxGD1s7posGHSRvEC26KtgRcBgF3dno9sFSnWpB+ST6+i4k8TWx2O/JJEJfNBO+J6gutZea6oEuY+NUa3AopO24+/jJq2VF0h09bUjohl4lKx1DIncIG94bMDUmJlqNNctLimpi9s50UcWXjQvUDJeUwZjRItTEBc4KNFCzvaFOkYrtk2k6ZfIdym+4Rn9kmmMSYmlGmO5yLcYZgtrC58QSHJ17JbA/I+3vI+95HXfbM+4XDHkQrm9TILbFUx7VhtUW2lQtZjf1FQ3RPKkKelD17NuWE0qPtu91uwg+mh/mB+0QEbjXMEjkXgpnVh8GnBBeqBRIpKYMqh0OnFCXJJtrEKux2EXWiaYkT0NNAtg1SkJLbUsIKggjuVLVAeEmIVnLO9ApuKdBFFdKmQQ8Pq16XuHctgaRrFlQLUFAJV/TtdhttvFUz6hK5cNcc3z9bxtvf/vbtV33VV33+s88+e5wH79y50/75P//n7/nqr/7qz05L5v+FxqeulrrWl1qLHWWgFEK0KZBQm2CBbGiKJ6tDb0FQxEE8pJW+Fg1yzbgvime7flHJKJRwdPKQgnP15l6diJzxI1/HjBVoZhpeMR6bIjNaVeMtZsJAzCVWQEelFB33BfFQxSAShF4XqB3tzqYHMjSJcxtoHsVVWwscAmuqBK/Gj+ZnkBJsSsD20b5zau/MZvG5UoobGYzCIRRHI4tvtI8EQclAXlP6zENllY2iI1U8Jc52md2U+Pi8cFmNTYaNCJukTEkRcbR2vA/oOkJwQh3jgg5ZnGG4BFkyCWxUSEW4FKcPOflFE5oqpzlxZ2uUbPQHRkOp0cgiE4GKrTuLdm7udvTWuTw4hx7qj20WVDRMzgiU6dCMpp1dzzyelLQp1AatZR4cjJON8uKzDd07pQjTUvjl99znhS9xnrix5b13P8IrRLllt9ATpSbhsh6wvbLpiufREtVMKptA1zyUSe4Vt0qfG5o0VvO9R+tioH+o4jlQFV96kMSJc1iKktsJmyR8zgt3vPCxl/L05ZM8+2DmwfkzXF7uWNoerxXalbkb3kl2QCzR9ABbZ9ruqBTmQTxWnFIKcuOMk5Mdk+aYLOlU66hNpBrXyOKROV/dsZ7wWTnNN2i3XkgFrOyYUPJQ2uQOzi6KnJQpk1HFaZOSu2I5oQjZO9mEptEK7p5QUvBacvCyqhiFRNHCgrHrIdOeszOlE0QLeGcyQTW8WyrOrEQuWa+IOT4rbDbYifF5L/oinr37DBfljM3+SS7uXTIfGvXB01zUGZsrfe7k5NDB6HQXpiz4UhF1tnJK9saUnNoqJ1bZJGFZwg24tTpQ7CVcpXMkapsl8EMUuVNGUXq9xLqzzR6u3kzkjWK10Xtls92Cedg7oFhX3Nqxf58kFKNZE0vrdK9ojtZeSlNYXQwXGjEhp0xdGl06ZcojTkHHdSbU2sPVL/sowxLdKo5FmCxCFwlJOQKeaMtCW5ZPdqr4jBnveMc7dtcLG4Bnnnkmf93Xfd3n3b179x0pfXqCtnvvfNd3fdcTP/RDP/T43bt3p0cffbR+wzd8w5N/4k/8iYs//af/9KuffPLJn3/sscc6wE/91E/t/vgf/+Nf+Mu//Mu/+Pmf//nL93//9z/6N/7G33jZP/yH//B9f/Nv/s2X3r17d/ryL//yB//0n/7T973qVa+qn5Yd/gwdn3z8wgBXxjwXBYldR2gGoVTDMdRcgBlhGgTWaBuJjt41cKyQiAk9HIxXDCjg7nhzHS2skOy49BAd5NGyMkiu0J2iMFm0wSL6LybCxeOmODpa0ZaKLtaQrgZvZYYoKGSkBw2is5gR4uxoV1gDJOIAkvRoLY3jZMCjCOJwIMi/fUQOqDhLhPoOtYOyyZkbkzE35zBaU32twEaOVR9KMxEdxolRHHbWuM0IIUxiVLcI+BWnZCUWjImkUfhEDEK0rSwOG2nIvMxD5n2SGWZvwEgwDlfVNaJAqaPY3EnIzlvLpCzc2hqbNHGoFiv4Anc2wo2TLYJxVpz7o5jRcQMxh9ka6hOnJXPehAdLo5HYZOU0R7zEOcJiocA7dMVV6RIo2nKAB3OjLsT3p8KTz1zw6I1CXSr/50eMyz7z5L0HPPXkPT7/NS/lV379Y7zicwuPyhm6PaAXRmszy+FAmbZspkBAvFkQdN1CNo/j0pESSEk3Cdm8QXOLitWV7Ep3pYtEfpEJyYNYCkZKCbfI2Hpk8wLO0kI7fZR9O7C0A8v5BX3es7Rw+LUuLFRaT7RaWZpRWzhYW2sYjhLk4E0p5LRFesa9hrw6EQ1arSHXH6nSWaHVRuOSi9q5XU6BxF5qIFUCxWOydHMqCyYJyylaJEZ486ChLLPQVEUUprBNG2xwwhKKlDKMnOJ6K+QAyySiISbLEZApGckexH1Viqc4791waUjOFHMWveCmT3z8Pky7W5zdfgXWd/DofTZntzlcPM1y8TTnH3+Wfu+Ci8OejUfrDnOW4eI9mXNZO96EU4eUw/DSNzC3CzabgqVOGosGlR3eBMyofknSiUkjo64jI1yzMfcUzUx1sm9JuWLSqb2iUoagQmhLJSUj5SAAOwI9srMkKdjC3ABPZFe0jADcnmmrYzcSQZg+iNcZ3GpYSGjwnswH5zFByYVlOJnjcfxNZBRbIXUv+bOvLfWVX/mV53/xL/7FJ//CX/gLT//JP/knz//aX/trL/77f//vv+jjH/94+bVf+7Xp1a9+9aelovvWb/3Wl/zwD//w4295y1s+8JVf+ZXnH/zgB8u73vWuT9pI6HA46Pd8z/e86J/8k3/y65vNxr/lW77l5X/uz/25z/uv//W//vKnY38/U8cnj9yMImR0lqKvLFeIjgjDUCqNpN2r14oFbyXaVumYWYL3qG3W7AS//mbjl9Ev8tUwZjCT3WICRwcZtxrb7px5WF6IDLIiHplLrA7EPvw3VrRoLdYGX0UIhQGR9yOyYko+oNsaN3JkkKADbSojwTsmATgd297LMCu0QWYW56q8Dp5KTtBIXNQ2ODSDUTT6fMOqIlKF18MyHhd3Jgm5eB/FmFmUPAeCf7QxRc3ZWydlicA/SyQPToThzGZ0h1k7m+SUpJzk8N3ZL41Ls1C1GLjGBL0JhzTKWEneb43UM2clCqnTItyYCjeKcXYyoS48/aDx7CLsZ6d6qF8SwYnKIuw2juXGee+YRivrZArL/8mcG9PgLHkCdW6UzJQyDxa4f9l4sMyx0sWhFS73M+dzxfvCoRqHZsxbePFjN/mVd36AeU48eXfPF7/6xbzklS9k8+gN8EZveyiJKW3oo/tJ73hvqKdAs1TxpIGVeEwmLhJtKvfh+DsKGQlX4UiDHgT1HM691oYz8cgQijroBPcC24leTtHWaF5p1ZHekAVgxqWCGO4zpiHh7T0Qu+IdaUvw1HIU8CpOkk6XHgWPOClNpAQ9G9Kc+/fvsXupgxZ2XVjM8KRkmXAzFrEx+TmdTNaMWqdrmF32IYNLXaOAxim+JpZHQV/SROsVd2OWjLqQxSk+fIU8Fgwiq7ndKMCGakwJgm7rnZKcTU5YclKaOZse45mnnqbiPGPCi6fMtHsZsjmlnjzK5t7TyL09ur9PXxp1vmQ6zMxWWPTAthtKYd862SwItR6qsrZ08sbJUyKZIb2SCsN3ahNBmRR6s9GqD7VTbwcsZdwlvHM0Ch8hPKccCTl8yfQ249XAjF59rD4ymnOo9wiyf6sLyRWX4OB1c1JKQ+FHBJHmFLepZjTvI1R4i8tobRGZXCUnags+kEuYLUbUBWEEmMonO1V8xozP+ZzPqT/0Qz/0fgAz453vfOcOgpv42GOPfVryJp555hl929ve9sRb3/rW97/pTW96CuCLvuiL5q/5mq85/zf/5t/c+GS20VqT7//+73//V37lV14A/OAP/uD7Xv/613/Rf/gP/+HkDW94w/MhoGN8avELA1R5bvf1od8tpNzH2gTBLYIGVx6JSAryq2iQ+UYKb9QGV7nX689R+4Q3xrEcGQsTspA6nFTnBsKkTk5Rd0h3tg5dwtelMoocd5oPfyr5zcRfF7+6Ma16bhmOqQLiIU+NrUHSyhoRka4VfmVsNw9WzGGk9g4u34haiL7Y3IM3saI/nbin+bU2mojivY9jHoosIXgcKQm9BeKTVQISH+hI8GCF2YIsnJcoRi6rDUQoVtfuTqtOb4YkZTslTjT4L2mgY06QMpMGQVU0Pke1kPh2N54dNvmbXLiTld2UoWae2TeevN+5rI3mHRUdyFl42hRVTrOwzRtunholVTIwt8pixs1p4uYmUcVoJHpztq4sbty7nDnMow8pMkzwQJY50LckIJnbp8JNF37m5z7Cvk/kM+WZD1yyPTUeLDMv/dyFF7/wUU5OIk37crlkKttY4UuYHXYPN2NMUM1YM5LZUb4LDHSn4xi5RMGPWNghlEzyieT92IZsPSbIPvT3Ccf7UKpQMImC0mScTxK8EVejqSA9JOeeglyekpJWBEVjEWFuYI50I3kGzwgjXyolNBW0L8znz+KHA2w3cR55pZkH+oeOPnTgMEhGyRTx4CAByUYmkV4ha1nSsFeInC6jxP7KEjjt6M9KA+0WLsorUmzBhusoprHAEetMuTAvDdOwM9g0WA4z5+0B9+qB248/ys37gULsTk/pc+M0T8h0k7Lbc+/B02ytkS/uofOBdv6AVpV9B0yZcnjz1LnTu7LdOE32lAa1JaaUYFPJBNerTNG2NKtoCpPN2jtKeFLRnGaHYS0w0bySc7Sd1MMEMsDqoTxrcQ4pAf2aR4ClSkZTyPe9huWAS1ynvXd6i4ytnMMDS0xj+eCBhucMRsKsYKbD0bxh3lgjIBgy894rKTuSPz0tmt8v49u//dtf/GM/9mO3Ab7+67/+Y4888sinhVT88z//89tlWeRrv/Zr7/9Ot5FS8v/tf/vfjpyg173udYcbN270d77znbvni5ur8alhjQO9wUcRcP0xJ4L1pEMecCpgbawCxu9H7xqRobTwUfT4cfOCXet9rW88Sh0P6WkUTR5vZ87ONSISMjQT6E4yGRJr0KHe6VEXPfRvdTh4BFP3AVMPSInrPCDzNvYjDTJvSH4Zsm1YgzeF7MoDjHOBKspBgptgLiGbPvJWnP3Sw4RPJThDA0UaR2fshh7RKxkRCTYgMxOn93aU2yfVY3vMLXgxkkaqOI5UZ78EmdjEmSThBPcpcpOiAKvdmdfvxTz8axgSdI3ybzuShvcpjpta52AaQYsJ5sOW2gyrF9yfnYsauUHblKIITSFlN4v3nUpim41HT5yLLDx4EI69CkhRdiVzVqJkrN1j5b136As5GqK4R9zGQosJHqekwmLO+WXj2V5JauRs+JJxKbz9//p1XvTgHq0tzM884ImXvpA7L3iMCKlYyF2wBCmX8DEZqFm3GmiiWxC6GcX72v8kZP1uDaOPtmpYDghO8ijIVBpJWiBpDphijEwmRsuX+G7DQq9RpZPSIJX7mn+W6Aopx3VnjHOtxrnivYVJoOZoTzHI5llIphwayMU9Wp0pU6NrZquFAz3SookiJYqNROS8hc+QmEfB7ZDMOYxKv4UPARvTgbo6iJE1DQJxLA1cBM0Fb53mnewZF8U0nJTbWOQkDcZL7y2yslCaJFJx2jyzywuP3L7F4fKcXXqUB33PDkdOTim1U/OONJ1xa3eD+fI+u9MbzA/uMd28QW578sUl88XMcmi0DkWHntMzftixyQtbTbQsmDRS31Bywxcj4aTkaGpAR3PCVMNDWkZ2U6/BjlMbwbWC+hQtZ7OjmebSQ0UnUgI19Qba2WjGLBCXpRkpBQewN8eYI5ZBNsHrEzu6D9dh7ilSQ43nGunxGCJGyZlmQp1r8PYE0nYKm4D+2Ssg+o7v+I4Xft/3fd+LAF7/+tef/8AP/MAHP13vdXp6+lxs4DhSSoEh+NVTaq3yWz3/+fHbj0+5uFlRBMa5LjL4NjBYsyGfXTVAQrhyOnaUMscVHq2lYwGzVhDrzY8oI+I26qOYWLc6UoIB64HCXKRAPqYOqXsgKGNiVl+35aSxOFrPmE7cMOegt+CeMIlbdki8YvkoY/8C1dGx1JThEDxaXsTEdKnKfYR7rlTR4APRycmix62J1jpLH6nensKjx2M609FSs1HgJYkJeuXhxM0v0K6cg9Bb6zrVxOc290hVViGHXnmQfjVaIc7xWLj6UXLex/O27mjr9JEkrjqcagcHycxJ4uEum+BUEosYS48iN2sUm61X9rMxW6PV8T2qR+zCWWHuwoO9Uy08XS7niRs7mBfjqfud+/u42e9yICXPXkTe0ZSMkhOrC89GMiDMGJqVSWExo3ticzbxyDa+suWicTkr5nHztrrw0b3zwht3aPeFH/2pX+XLX3WHV55f8ML9gcde8AhnZ7eYTqAiZLNQi5HIynCtdVrrqOQIv2TY3q9woBtohHKmFG0I8T7QSx8EMEF7GgT7CM7sauSk9KWP6y1hFmgQagNFAqTHBJkz1hwTh5RGkKyRtOM9rvaIcehUEquLolksVUQ7mczlfEmfG34ahNbkGfWF6jV8knyQ30VG1pJRSRTZIN7pKoMTZqTRonOxo8IyJPaRZo0KCxpWCUBKQUDv9GgDH9dF0abKMmJIUJI4G61gTlXhLGekH9jM99kflMQDyJnbu4lG4WS35cIWUp5Y0oROme3JjoyT7lwwXx4ozan1HNs/y2Z/n+XpB/T5IlC8WsmDnF6HC3W6NIwL8sY4nU5Q9uQ0kXJBBmKW8kS1FiKENEwuiXMAi+ymwEQj1ynnUOiJRSCN24I1QzdbEA2zw9WPQ5ReG259EId7FLMe7ZVURotbFGSQhytH52ZVKElxV2o3VArTlPEa9/GwfJiO9/vPtvGd3/mdT/y9v/f3XgLwxV/8xRc//uM//qtnZ2e/ZQHyux2vfe1rD9vt1n70R3/05mte85qPX3/siSeeaADvf//7y+OPP94Bfu7nfu7kudvovctP/MRPHFtQv/ALv7B58OBBeu1rX7v/dO33Z+L4lHxugEBo5BotZgAL631czMi9UYbbqHisCoI6Y7Ga8Li5ITaIxIziBRjwf/wcJmHJLRx4JXY4D1O7GcKfBbh0uBQ46yHlvkZZHjfOKHhWICiPnytwjrD34Kt0GW7JhD07cmXgJ2oobaBMMXup+7hJB+nvUoSnXTiXFLiORXYVozAoKBsVumqYqwnkBFMKrdM8uCfBq47cGyRInJ1ASRJGl2hZhbTeowXQjeqACZPCJkc7UEdbbUrOpMHDWayHOb4EkToNN97enToKHPEgK26SMI22nErcGFt3qguHJXxmptQ5vVG4PDTm0RI0Fy4Oxixxw80pvsNNUW5tEzfPEueLMveOa6Bfz87GZg/PXM48exHk87OtkDfKfjE+su/QMrc3xq1TYUKpzViqxWo0KbuS6L2DZnY58di05fbOIClPd3iwDMJtgqpgPnO4V/np93+Q7Vb4z//tnKefmXnVfs+Ln32CF7/0hZw9csZ2k0mWmVJlOtmF94dD6xYTBKNA7uF3BD3sD1ana0tor0jtUA2v4xpJIZk2aeFNJCleK4SnUnKaGF5BvVPFsNTQ6OWQJFOl4z2urzKliDsgEEtzG+8f0nVrEu0oggsnWaMdFMEbJK9YPbBzZTEDySQKXRwIErq7krtQdbQjh02BikZ4yeCBqDqZMJMLk0NAo1VmRNGcPO4NQbtzpqieUR/FURq8M+K5yYXmQWzXEuhdaonL08Kd0w33D5fsUoN5g3pjPxu+c+5MNzifK5YTG4vz17PjOpHLKXkzI7WR/TayPMKyHNjcehq5d490cZ/95SWtHiiemedKAbaaIDtLE6QdSCqUUlE/R9KG7J3UIhoFgdQNOKBFo/gRRy1HSns+RP5TmzHbkmxBUo6CWGZ6M1ovEUxbMsqGxgFJEahLIsJQWx9p9mBB9ov7V+A2GFBKxnpDTGjNB8obiKymQutx3mjcfCKB/LNs/Kt/9a9u/J2/83deuv7+i7/4i6ePPPLI687Ozvo73vGOd73iFa/4PVcfnZyc+Bvf+Ma7b37zm186TZO/4Q1vOL97925+xzvesXvjG9/41Atf+MLlb/2tv/Xi7/me7/nQu971ru0/+Af/4InnbiPn7H/lr/yVl3/f933fB0op/qY3venlX/IlX3LxfEvq4fE7SgVfycUraViEaLWoQoKdCDdblPqqS6y0TKJ9g48wSx8bXTtAQ3pIlDSxluxscLZjTbN2qmSgPVkiZiH4KVFEuBImZYy08LGPhdWsbzgHE62LC4/CpouO9tjaPhtl0UAEXHtMKHQKnSJC66FYqG4sOMkSdzWIvCbhgOrDSCtu+pVJQDSPFgOcTJmizpTDHyZ5rOqaOb0BLiRRPIUFv1sQcRkQfZfESQl+z+EwblzqbEoUZ3Nzlh4TUE7QB6k1jSo1yJtOUaEMo7WFgHSyK1mHQR9C0sgfah1ad3qXEe8A2ykEwoVEMmc257KvHiLRLpJUONk4j5wmcs6cH5y5GpvkZJTelJIq7gXrgnplsxEePU3c2iQ+vlRkrszuPGMw14VtFvbG4KwouUBKTrfCNsHJZgvSaT2RLFHSCdvdISZRaeS5cNEbTz54lk1xzi+Mvq383K83LvZAa5yf3+dFL3kxtx895cbpLbwIfZ5oFoV6SdF6CB6YYd2h9WGw18PavkXBYz2KFkkWpoCMk3oU7ymlELkQHKtADUPB0se5EcX6ikVC75VuhnUlS0Vyxm0LWjEJA0rR5Xh+q2qcfMOrpw+fI0mgacHnxmV9wFYcZ+FglRH2gVsI+HckuhhdLZyBreHDgiC6TkZPkV11PN9STLLpGGQb94BIjI9rNTpySvaIICFpFDQWKJcko4tRROkqkb+WtjQRbCm8YHeHzZ1L9vPM/p6g9T7qM4stTDrhaYtauC9L67TstOYUNlByyKGlsdmckOuMnpyxn+7T/UN4cfTCuL+/JDdnIVGnBXpiV6FpoIzbPrNhQ7aFjtJ8plTFS6dkHfe8QHjoE1Xuo+xIGdynMOWzRm17zGDHCUnCj8bGfbFbI0VvFGSi40gPJM8wrNcRzutY6yFfVyjTjnlptNpJWQeaHmrUZjXuf73HuZhLcLU6xxbmZ9P4wAc+8AlZ0ufn5+nu3bv501HcAHzv937vR3LO/ta3vvXF3/Zt31Yef/zx+o3f+I1PbjYb/8Ef/MH3fuu3fuvnfPmXf/kXvfa1r734zu/8zg9/0zd90yuvv3673dq3f/u33/3Gb/zGV3zsYx+bvvRLv/TBD/7gD/7Gp2NfP5PHp1bcrLAyg3y7hkZqrARKSYhaTJSHuHFPUsOCnhyr2bV4cB8ISPiXHPke6465s5VEkU4+ojvH+gqIdtNEIBi9+7HoSoOM6DKk4ASnhvHa0QWgEkqmuF2vWeF+vOBNQi2FNDQbbBrqjak5NxrMAtXDlO/giUUTswGaIvNIVrqMksQ42yRubIIYOXendmNpDZ0SczMu53qcgMInZrTWhqIoORFDONpm4kZSZVMyjnOQTtbh2SFO68EDae6orVB0tGxc/EqVJSNeQSKP6kQUTYKmQJHMjNZHThAZsx5oAJGe7V05LFAXI0nGeiivzJWUnEwfJnPOblNIqfD0eeOp877yf0GizXQzZ7Zu3MyNzc6QnLi1yeHFU+BkcnKtLC5cdGWx4G0k9SiwR0HbpTOVMGerS+O8BqKhCi8Yct7LCvXQInXdGvTMoyfCUxcHVDK/8fEPceuDyiu2jcP77vPIMy/mziMLjzx2xtnZhNlMzhOiGlYBvWMWjrAhMRawTu/1aABZrY7vpYEOJGMQulXDmdYFhqZ8eAusESQEMXqN4/DwaTFZMIzanbRNqE6BOCYLCb9ZSMU9eBqqQzWo0Ml0j3Pee6bJAfcD0pxGxVtGsgINHaQu88im6mJ4D0+r7DIm21BSuQyjRwc1XXc7ijYP1ZYIA3UcVgYykFMJlK/RwuuGUN/VYSdhEv9PllC2HFpHFfrS+MXL+zyRTnjFi1/G++yDXNQacRbpjPc/uGRjw8oBIck2nJ+1BqlbJBRjlsjD8oEJTm4qB2mczmfIrcry1NMcLp+l1EuaF2w/UyWxVaFMzmFRFtszbYTsB7Ia3UP6Pu+NXBqaNixyYCpbJGcW78hsmDdSgaKFknd079QqePr/s/fnwb6nV10/+lrreT6f73fvfaaekxAy0DSEJCRNIklBtO4VVCblCsQS8DIEFAstQJFyhLK0SiUqKqCWDCWIgqUMhZDr/al4KQVRM4AMahKahAAh3enpDHvv7/f7+TzPWvePtT7fvU93J54ALaZ//Umd9D77fIfP+Dzrea/3UEMZWjvODK5Iqk2t9wzLBUqlqmJ9Zp5sry4LYwyhTUbVAQembUdLIdwYopWtmUd1vnVfao1C+xm2fdEXfdHVcRzf9URey8WLF+01r3nN09biKaXwxje+8cE3vvGNDz7x337f7/t9J+985zv/x/nfveENb3jbE1/3JV/yJVe/5Eu+5OrTtY/PhO2Wixsjk6JhX2RkAEL0dmtBS7iUugitJgqj4QcSkL0g87JySQELsWpTjUDAQmcUWCnU7E3DomKS5NCctUQ9/78ur/Gkw+TTmbzX5IucKZGaxzF18SQEO4uvTuZ9xwOdSbxLO0s9Buy1h09xcWHrxlYKs4NL2Zt5ioRLqKEgxqoqhrGbO61FIngHMuiKyQKxiuIgvG1Eoshx8f0EEAaCwWcaq7AeB7orhwcTbY4CbTtFJbpEVVgeWbNwA46Gx6Lncciee7NQXxQXRhPWmYxq+N45OcqaSIx2c7wYfYYZpXtPlE8ZzaIFYdGy6+ZsZ+fqKVw9hTZP4Mkv8kCCrgq0QZlM2UzRqrqkoD0QmsFhrLDzxmxhGKduTDTmJgxlwAyqhEx7bo3rrTGOwh0ZW+AeSBSu7DxI0KM3+jCyaT3bbTvePxv/v//2bl61eT73v+wuHr36a5xOE1O/xB1T5+jokPXBZXwUvIC1CdHAHc012kCt4T0yuyJEknTRdnoPf6DgYiieZFIVw9VCnp1txbi3I2i1a5i9LWFtzojbDGWmlAKSEmAUa43uM5Dy9UKEIXrNBYDv7w3XkAYPXtjOOw7d6aUw2oIYxQTZEZqEZ4t4oDEm4WztGn5ImsGo5D1cEiV0WXKwwItRtIZbN4JrPItKFD94miKWBUlNuwUi5qFiMflLZ/QeZpAb55G5c3q90KfCTg5YX7zMBbmdG9Mx7ts4To0FkWSb1/GI7fCKaUcrVFnRrKDrwnq+Ha9HcGDIeAE5OYLTR+jXT5jmHeoNb8KmOwciiM+IFAqVXiqt7zDfgSm6M4Y1jKsRbxNlKszdsbJFi7LSC8y2o6HhVu0nOANVDuI5lFUQuV1D5GAzeKjZpEeulKRTeO/GuFqjWpOXU1iiRIYaI0PJgT3UdUH0DoRxiELaLc/7M2u7dOmS/bE/9sce/+3ej2e3p2f7kKTgsQZgL9k2idVyKcowhIqkeaf3Tlv8uVQi7I30WCgOLSD1ZTWLOOp9n1NU3WIVmNtSq+Cevfeb92n52ILsk5itRC7StgY6U6aIRxhIPguLkDsM7JaVaFQxJTkDgZU7gjVHdoF+eI/JfXCj5MA+eRQqk2QY5tLSCt99HONkN+F0pkQ2wonQ6T1aPyS6kXp5cNu3yZok4VJgPShHtXLaHHpjt52pK+XSunDqxuncw/SL8OaQ6HFAkro9mkRx7KqMgwbPpzlzs1R8BYdprMZYCZdb6bQ0EBtK2B5aemI4QQR3b3GOJBAtFUI6XZyVhpfJ8WbLrjlp5pvyZ6VZ58ZkbHZBGJ1NOVpVrAsPn3QePTam7hy6BGlVSiijUoKsGkGdc0q0ixg7C97AyozeYTMJG5lZ2wFi0eLyDrMP9LajW1yyNjUmV0RO+I8/+24efGzHZ/w/7mGzfZgHH2p462xPL7JeTxwcHrEaC6uxRg6RC9bmaDFaRzt4SaJ6M2xuUQg5+15MgFcxoQskyulxK1pywCxco5fE+DBYNAoFsw1VY/IXNLxJeqGY7FFPaKHcwnHTPccseFtCIdQ+zQt1OuGgw6YYTTr7PC13urSwBbBFmdYj7VuC0u5F0jag78NMJUUAgdKFYrDT6RieKfVLy1nFwZRVDzK0lMJp5NLvzTct6sRwqHaLMF0JBWUthXl3DTCG4uxmuDEfc8hM1+SxuWA1WjnaA8Fad6cXR/oYrZ2yA1VolXpwyLQ1euvI6oh2csz66E7K+gJy4wC7fszcJoo7N6aJoa6oUxQJNt4INNlquGynJHyaJqoOKDvquI4CcJ6ZbQtFqWWNEtYMu96xcab6kNTqDh7Xs6inHUPk3tViwEgp8Ry0NuPSUB0Q31HqiHh64/QoaFUWryZJT7IFZRd6mzPm4dnt2e3DZ/uQHIr1HIfF0+NkGGrafAfq4ctKPGFMKeFq0Ts4loSX6Pe7K4IzirMmWlHFlmn3bDvPnYEFrVmEtuxXtoJTCpRB6MQAOB/CVomB5tTxOeS3mvjMUjqFigP2hc2C+y/fJ45PTsfYOhy7sbJoe02emh3J1GMkCptUGC0FxeyFWjrqypwIi+pCNvB9G00S0dIsGnSp7lypAgcVxGA3zag7V31mbcLRoAldWUqHsxxdUCuV/eTb0lOjSJCPh5LFolkiG3HsUw+njaFEC+5kdsZaIg6hDszNmZqxXYzqCDoHaRw3IujoDIOirpgJu9aZe8LfotHONKVh0YojLsHhYeW2w0qXkcfnHactvF9u4AyuqBrNwC2IqyJpMoix0sYwgFNobYpizJx5jtyjUWbWQ+GoTGyG4IS5pY9PXwTOM3hB2HL18Uf5yTd3PuV3vJB+uOVXHjnlyo1jrlyeuDifcnRQaXWklAEn1FQDIK1hU4uWU+1YF7zPIQ3vLfhlIlgJEm2opzpSQ+IsTUM2LAYyoTZDKqbMox3W2lnIokgHWSMyIB3ogkgB7Zil+YEkwZ4oEM0b6kHqrlLYlsa820U+Uom2pqTpm/kI1mNypaAeJv4rD1+mkRoCgt72revgsUQrrEoseIBUi8WComQf2UkkxQ2rnUlmDmwI1RhGpTCXGLomBPUSRokUTMLvhj5DCYI5CMXm4B9lAYdrLIIskKetOlgLp19kb9wZ5OpQM3pd4StFCXuRo0u3Ib6hT4fIuMZXI379BvPplqLO3JQTrYhPaA/u2igTqjVMTadwWlaZotVmM7UeYFI53cysDwqb6UY4CktBZMZ6xGSgU3KVSkjte8RtRIZfiYLVwuxLSxhEugmStgE+B9FdNPhOrbUUXgUPLJBmZZ4bWPojcW4Afnb7bdu++qu/+tGv/uqvfvS3ez8+HLYPSQq+AAomUIdCrUIpkRfjaZoWg8OSAQVn+dv9jBFcIl1aurM2OESobvt20/LOwBrI1sXSNDpTQp0vcnpqSWtNiTjObg3bNXQpFAq7XWduEdFQPNQSIchdMCRf2M35+WHiJ3tpWJiLbSUG8hoOETQ0qH4L61rCwMWlBHSfrRBDWI2V0Qw3Y7e4EftZAVUkpOLWoWU1qWlMuNKBVQUR48YuVVtZ+J02Z5eBjb1HtTfUSkbogDu1RHtgaiH5Xlb5fYYDVaxkG65H4VrVmLsyd2GrPRyQJREu0T2a1vO8KcKYE+fOo3BZryoX1gPb2TjeBarS3FGxPFWFO49GzIzHT+doazFwOAofcccBF4bK6a5xIJ02CBMkKTZ4GE444opGvpOLYqbMLqwRLh4o2/mAzW7H6W7m2IJIWdfOhaFSa2U1F1ozptk52TmbcE/EE100Mx65cZ0H33HKYzeE//cffCmXjgqPX3uc092WO3a3Mx8dsl7DsFoz1BWjrrA+06ddxA1MgtOwHgRhALdOLTEhuRMRA2XMNuouDO9EsOT0pLkORWFqkVHWfQ7TPqlhSxDfFnert+BalBrhncyIhXu4iwX/aqhMm4CCXDXVMtDbltl3NA/yu2giTJaoHMGNQc48r8KU01nNkbxddAjis2VSfCUCJBVgpkpa/GfESHB1wFGKRqtotsjDGhYDQYnrEohttGnnZpicBeYWJHk9hLVCCOUC7ekZPyBL60ygGsxnhoqqwei+KStSooAw1rgo48Ehve2QzUS78TAHhwNtuEgbrjPtblA2Exug2MgogXB5H0Bb8Iz8hMFHfF0ZB6W1wjz1aBPVmWlTkFrQoeINZuvgI8iEDB1lCDQMY7udmfpIrQPUVSxsesdkpuBYCx8jlZpjmkZLznsWWFGQm7X89yiIJRd6RZwkhz27Pbt92Gy3jtzo2SSsRRnGkSHfHbyQ6OfWEgOQLomRCKXUbFnYHolwjV5ud5iQfU/3PJENzsjLPOG/+04Liewk3G0ddu7Mo3K9hotv8RjGmihWYNcjgDAmgEChgDRPsnPKsH42wi3YfqIqzUP+ugzt0UwQEA2JsKb0swhhjx+FUevCelBKaWlBPITXTYGL67BXb1mo7OUjwCCFgzHch7eTYsyMRVHvTNaYOhQNvo8JrFVZF2W2TjWF4gzJg+rSQ1LuwuzO5AFpt25hgOhxLlQkPUWMuVfGsbGqJZVSMDdjbkbLSVg5a4N5TlphBV842c3cmKJErRJ+JSZBKu+tMdTK4VDY9EBvQrrvtKmx2cxYh1HCVKc76YwsHAyhdJu7ISNcWo20Hq2q8aBy5aiwmwqPunC9RbDn7UcDt68GEGPNEYPMzGKc9JmJaFW1bJF4RoN0F1Qa737wEf4///4Bvuj/9RouveAijz52g/c//CA3bhxy8cIlLl8eOVgTvA3vgYxYp1gkeHsXhqpocag1Ji+pkVFGB2tJHPVsQypzCWRvIOT1jTML/tksbjUtTOF/HOV6j2DPUoJ0XDVQFidk5Qh7NVaTmaKBqBY5QJmZT6G0HaXcxqnO9DZGlpaEaWX1yq4GyXfdjdINq5HfBk6XykHW+UshMnq0Xq0Ylq0uDdgmiNj5DEdCVnDw1iJs+w4dRrK5Bcv9QaA8VgIhtbbHKuM+JArhlrwherTJOkb1wiTgRTjsEgrEcraoKTkYmZAFWKNbhboOQm7vDHVgHLfYhQvYXKlySKkD03XQumPanCLzSNdGV6X7Fsxi0JVKn2eaddoo1GFCvII4o64p6pg5u9OG6oT6ijZPjCuj1hWO0PoUbTwV5mmL9U6fbR/i6jR0OAQao4zpdm2IdFSGZcQKI0qA5CKZRQyEOFiLxYA+TSGSz27Pbk/XdsvFzTKh1FoYxpFSQmqsOXEvaiPxIFLspYMSSdTSDUz2vdwUsdIQTiByhIDRzjsV3/zfsyYSZ147nP3j3EMOvq1wuhZmyYkao1lJtUi4ngZM3ZLXkgfnJLl38ejJgucJ37MHaBZ+jQs9TeGWCSMULx6ZPmnMZubspgjd7J0kY3a6Cc1gJUHQ3U49uDd5xN2EaT5rk1kiSdYXs75YpSoRTBrtBmU3G7Mt5zvG7pr+F7TM0iICPQ1hZ51mRiVW8KEci7DP1eAcjuEfM82wm6PN0T1MBqOIC6InHuTRsURI52bqbJsh6iFTF4n4hN4pJlzfNlbFWQ+C6cCUUvNHru4Qh2s7Y4ewyjZEFFLxfaKReTVL4cLBwJ0XVqgJXYyDsXCwrozDRBnWXDo4wM3C42RnYaaWq9vWnO3cmXtM8uqOJkPdU6HjXqic8rMP/DK3/ceP4I987sdz6coFHnvkMa49PnPt+DqtdS4cHXK4XrOqkYRNd2gTw+isLxymdwg4FdMxnh3vwWGxYKiJjsgQOVClC6qNXlKhlMWJ91BoSa2BILqB1njm3KGG1414oHTewmVZUNSFzo7w4qlY36Fu4R8zOM51dt0ZZYNSw3FaPWTtKfcv3aMQaU5T9kaXTYJjl97KlLR2sLz/gmnDPiFdJUwLQ+4d6I97mBEWiBa2RYEUi5rgbikgHnJms4kq0Qa3hZQkktwSD2RZPGIOwjwifXl6GAwS966YRstdljIpOUvJa0HyaKRgc0dWaw7rnZwcX6P5RD8UjsrAtHuUw0sXmI9POL5xjWqN0qMgHVT2qBUWitPBhHGMMXPXwsFYEEoJzl+Xhriz2xnmlbBYakkXCLUgbll8xnAWhKcpbDJmAZkoWtAClBaqxzktMDDquLTkndY7NQvV3RzxG89uz24fTtuH1JZSVQ5WY+Q5afhiePbJe7asQjpdgpUP1EFDmlgK3WpAsubZsw8ou7lxIqlJ0ihwSsLeCwnREhEoSSQUFayCaeTy7AQmFSZ1dgO0YnsUyB2sh2QYwu6dNBd0luiEfHjPITV7pMgXlCil7yw53J4I0OJgvKz8Um1VBWqou9zBW2RctbkHx0MCSHcX5hmOM/ah5+AOMZCbRy7Vri2AUKzWkpkT7TgRVtmqwZ0ps6rcPLkIlfWqcGENm51zctrZhLlrtOlKrHxBgptTos0zqrAW5cJKuTgWbuwiGHLXOwtBmZRgFwVNZKFUY13iGI/niWbG4WrgyiqM7x7bNBoCbkwWJNKLWph7xzUKumvb4AJ0D2RoIjJ8JKMntDhWCzoIF8cVV8Yx2iYuDEsExS6CDS+tjOrC1euNx7fGrjUoxkFyw65tZo5nS+WO7ZGMoN8C2XbsreDV+I8/+zO8/P7n8/te99EcXrrClceu8eijj7M9OeXkpNMnYxpWQRwuM1cuX2Y8vJTowJD3Tqau94b7DvcpvISWNqZl+8VDNt4lWqDdw2pfZGYcs4hvwWfpEhOolhKcnFJQ66HAk2yzquAtcJBBla3kc+mBQQ7inFqn7wwuxMM9SiiXehNQZSc9uBkekvKmkfE2qqZpnGGScQTukcGVD5N6eN0sTqDhJJ5xFAS3T6qyWyI/isbiqBZcDNcaXj09CyCBsRvmsXCgKEZHZAxkKFt3Uc13rBS8g2oP3LVURhO6tXi9+j6gNhYGluhNLGaqRIDtPID7zODCar1CZlgjbHxmLPcgNuPrI267fIXd49c4uX6dOjdmD7VmkYqXGXfHe8G28TzNClq2rMYwpioMYeolhDu0tSA2SxSDvmcfNnwCxNA6hty9d3rz4GoVw8tAFcfniHrAeiLMBbdG67EYtWlm9l0o7AiZ/bPbs9uH03brbSnJ4qVI/NFl4o3HqhZBqiYJFoaEeGsND4y5CG41jWcWtETSwj2UH6dizMBaYeUx0FWc6mHCV5LPY8WwNdgYsQkbc7YGk3i4p5ogXVLmHRMuXqIIcQh1SCAeC1E5htmnXp3soxfOS9B9MR0MBGrvACodKTHTV62x0jVN9Uv41iiGaAyaSwsoIhwWtIb02skCZil0EhEJdDn4NlVjde6Jophn2w9YyKNSKpcPlEuHsKqCW2FbhJaGcuuhhhSftFGJpSq1CGOJ1XdvyrU2c5pokORKNlRqQQgdRmWaOs2dQQvqsNkGz8YpuIWbLxZnbOVCk54FkXHaO0UVa7FqXlChWs/Sri1zvMxBVwO3H4xcOloz1MLp5Dx0o9Pnzlicw0G5tHJMS7gl7zqPHW+xKYoKl4lTUybrNNNoM3rwCwxPDtiimssHgECKdtvr/MD/97/yMc9/Lh/90udw5+3P53kvOOXRhx/hkYcf4fT6DeZ+wsHByOGFQ7wqu2YMrgxDjWfI5phg0jNIShQOoRWDYkrzGVoUHZqeON0j4VnrEJLfeY7WZnK0RDSdrQU8WpBoQTRaodGyKLjUkPyaRTxAZp5pGWHeoLtrwG2BdARxK9RHWYCqOWqOeLR5igqaPDUXQbREe0gDOVEKopkVJYBYuBd7LJyCaZvaqq5UKUzF6QWm1liVMJLs3oNEnvd5IVRBk/XwBHIIkm60diuL8aWBGMWhyoJbxtd276hFzpKLILUEbydhYkvSOgYuURSNYphEjIWMMLriDIwCAxVobPsMp1uG2w/CqPOGULYTtMZOjLlFZMxQNNyeJRRhwzqLaRkpdYe0AcwpdUJ6zVa3MNZ1WnCEdcWiNuttE4icBsG79VNUKqjQeqB3UeguAaURpBoJ5VOcAykRLxIw4a1OFc9uz27/R2y3jtwIwacpJQZLSWWJhKeI6IKTRFjb0soxc0oRBgZMCm3yUG844c2xh0hiAtzhzDS2hNPxIKHcUQvOATjzGqZD2GjEDXSPnr0HmMDiFhaBdAJNY6W2yK4y0yrG/5BAnifnPtV2Hknxp3iRe7jRCbHyjpWWnpu4iETvfGspkg7PoQIJTpLvPz/G5yCPqmqczrNdjzaUxITf43IwWUy8Q4nPMAu1ysEIVy4o3oXrG7i2NebksGgJHGo3hRKpEOqIXY9WQpuNZp3uwmwLlK+sSnBJhCg8VB03mMzpXjBz5tnydIfx4HYOBKGWclZIlTCBG9MJem5JiJYoTlYqNIHTbRRN0bIJo8JLK+XysObCeqRW43g3s+s7BnZRdvbKyRZOZmfTC3ODzdzxtgOL8EpcadlrlGw3Lujc/ipHbyeuM77nimwffj/f/+/extfc/v/k9ufdxeHlIy5cupO7nvs41x57mDaFzFZCKpTnVpjmhnYQn6AZYsHH8hL2Ae6OtYY1w1t41dhsWJuZpzmMH2u0QduU6F9RXIKzgcU5UhZ1VKGnO3hkXMVxzHS6LJLqeAIjNaEwqrPbXqdaOoovgKZFK0pNGbLINE+TSI1wx/BkKhSP9pgVy/3xJD1HASKJMHlAq9HESpfjcNKOcWSoul/gWHeUFllsEtdO0ksn8tIcI+IHIoNLzlQJHsXL6Nn68yQXK3jNQqw1xKNVgwc2aoSCCkjrB3B1tMeYZxmsWQrRGvSCU1EZqOMhZbzAPG05PDzCjx5nc/w4cuMEOz2lG2z6FC3A4ozqmHTaRqnVGepMsYFBZ0Shm+JTw3pnNQ5QWiAzEu3C7p1hjHtYPdr9Lhb0AUlfnB5H4r6ICsCt5UKro6UjEvw/VFMt9ez27Pbhtd1ycVO1MA7BtVFI2JtwWk00pFs8BOEUK/mzxkTee7jdDkEIVa+oG+YzuIQPg2v+XNmJ060zqlCJ9og7mAa6s5mdrQpeNQZ0JaWdBPwKaC9oL/ik0BzpETYYA/6Z5TvwAQub88XMckznt/OFjuwjJDTM/ESQMmO2CWREHNuELHOR0hfVzHQK9YvkzsR8aiFFlUhEjlZaGJwNEtZjLXODcopjoQqoCqWGpmLtyrRRHt81dlOu+oGKgCunFiqy2ZxRYrJyN7azMBOIEBbk1ogIWI6zJM8mnIyLBwfCumTycwiqVQz1xctEmVqqusSppCutOae7tvdHUjFGDf+k3S6I2M0NrcJQC0U68zTzUN3gk3JUC+sKt9WMyHCl9Zlrp8KNXefUBZWDKMZK+rv0LDDzvEeCwlJYJionKdlPYrDk+RHvbPyYB689wFv/53P5nZePuLS+gmjj6OA2Vndd5OT4BtvdDbCKuqA0gstu0AlkQTpSA9X0pVjoQp8jM6nPjT4789SZZqO3cKVWDcNE8xbmdxhQ955NNnfGITg/ZlGQevJHgrG0uAJDI4oTioNG5lER2Gy2rKWDrqJlI+Fm3IBVmrt16XnPkrLuTjGoJcnCWZwHT8pQcYpGu1RLDY6QRTK2JXkbEawa9LgHhMiF62boWBlYZO2xkLJUUanGNe3mSTiH2dmrsIoWtMd9upFIF5d8rhRFUvnnEq1QtGbu1Vlha5rnlwiWVNJYcI52LETcBdJQGShuaIHVwSFlWDGVFZcu3Um/8Rg3Hn2QduMa0jrilvYIUTr3qTF0ARloPoVJYqmYzbGwKeBemadUpxanZBLu3OM6FqnR8swWuGtDTXAJx2ws0VsE1Tn3WWIBRU+epVDrYgzx7Pbs9uGz3bpDsRumQVS1VG+Qipqgo6WU2qF3xS16tUIsDatE/5fVyG6BiHNFFRN5IkF0CpEngygzsMPYqURrqig0EDOGGgOzx2IvVVPpeOyK9ooT+xKD2AzekoiYihPOHFp5ikf4ia2oZXtinSPZ4lrgdhSMLd53UdQ4LEUVlFgNmVHcAvkqSkvkJSIYlaLCSp3ZjNmVKsqqLoN4TPhehFokJkxidVuTI+DizG5cn52TKeijds7wrImwm1twolxj4kpORqgm4npWiTakJc9oURCJZAEmcZ3FwrgNybBUjWso5uTsRLMgk1YJInasIjun2qMFJbJ3bp5MOJ1D5j65M4zCeix4F7YmHKtz2IVdFy5b46jONIWrJ4Xt3GgNNr3QzWhSGWUXHLAy4F1xCXM0LAppy2BQOYdAqkbUgVnynDzQKBmga+E2NR56+F2899dup4z3cnh0lMaIBbkI40qZp4ZNjnWhjoFq2WwRROoNPDhG5g2zCWvgs2HzRNtt2G237KYtXYyyCgnztnV2szDhGNHmGm3AvdO8UIZsG6efkBEr99Y61WMSRlK9iDKlwWLgFAMiA9PxNWS3pQ0hB7YWRVnN7t3knS6NwSXvyYUaEsUuWMivTaLIKZFrZQIiLRBZN2aRM3QyOR617yiUKJaBUgvbjKHwTGIvwOC2tyhQoFuHEonaIi0do7O1a773+pHMkrN8Jh0J9ZQSxosmQdqVFDBkG7uT9y1x/bUl2zkJwl4UmbNwRSmDQMtCaSyssxVYpaDjwO7SRebHH2e+cRX3Fdt5jhDMLLp9E4GifVWpBtPGqKtogo/DhOqOOoys9CAyzTyNLUqSps3DfkADMQ+j0nBQzhVg3O8+oCW8csw6RUouyFIs8gytbh577DH9qZ/6qaP3vve9wz333DN/yqd8ysmlS5eehaqeAdutp4KXEvbeqZgIT5iA281iEJFMM/ZlOUwOdB3QINOO0rBVZTbAKtJj9br/HuCQnk6kMdTORGwAqpSu0FpMQrOjO7CV0AYyo0aQ5vikuWJT1MZAhNgiLgzMuXYNaejOSXXSrW+LYir2eZkMoxUlRRA2WBqf0TU4IhKRBeaxOqsshEkYM5l5Z2GrvhCYF1M/RRkHuLgudHeOpxj0Bo1WgVmQQ6s4VZ1So6W164L14OpUIvHbJREKi6kNEYYKkvEPQ4nBfu6dglCTj7N410QjKySjQkx2Q0kp+UJPUajVqXXAujP3mDhnD0+WcKZNIzJ3ijjrSmpvIx5BPfxnxGE1Vq6sHFXlhMLBqrI+GLg0XuLCAH0zc3VjvP8EbpyG6ikK2yBe4o0ZYK4RyYFRS2Wlne0U12+JmUA0CdvkseY/eyjqVIPjNE0b3v/wlns/snP3nYUbx49Tx5GD1QotQmVA5AiRmV4Naz04L83oGH1u0SJKyE7c8DnSv223Zbc7YbPZ0tqEDMq4WsFuZLvb0m2imxNoDVQXXEJ9qFRUI6dMakG10vuG6kKXnvTTSIwXSC+mLLzdsliq2LTBtjuoA+YFpaMSVvyNcKyOSb0wuDJpug2r5fOlLObD4fsUwoMAOKI4jqtUwrhPw90Yc6rX7Cgll6QCU8d6kJEjqyrsHJY2m9BAnOrpAaU1VFU9sConCNfmGm200mkp6lQzhiq0Fh5TpqGkixaTULQgvePSQRdkWPY2EiWL/YYxiNHo9LKmukPV4Ah5EOApgvvIrq1pBxeQUlmt10xXr8FkzB6cK0Ro1hgEppMMhhVht2l7om8dexQ120IZjWh+dmpR5l2Pe052lFrwqQRaXIZo43sosBRPzlGnlnEvHO0emV3WGm16WjIkf1u3X/7lXx5e/OIXv+L8746Ojvr3f//3P/AZn/EZx79d+/WhbK0F6lmeleo/adNbfeEyHZPKhoWDwILYEA+4ZrbOMvEHmqHUomFgp3BYYxXea/AMlv8FiC4MLNlJTsVYSWQ5rc0ZeqN2KB2GGVYzHMzG2pTBsg01j3gf8TZAr4iPQQjwUG4M7hx44xBYEYnaC2H6ycf9hL/LzT9HQRPnwARshF4meg4cki0MSZ5BLpcQqQy1sBoLVeFoFI5WJaznz31PKFo1XJxVWdeRoyFURxfXA4MEsnDWcoiDkVK4uBo5GitkUSN5fkEzmT0k3FoiMPPSUDkYlNUgFO0hZlFJyX9J+WpPq/fOJLAjCpl1iUnDexBMUeHKwYor4xAdw+55L0Qg5+EoHK4HqgpaC2NVLh1W1gfOaoyCaWud6zZj4hxIrEJ37gyHhefcecALLh9wscwcH2/45Ud2vOeRHY8dzyFTdzAazgxEyKh78JJ2c6O1SndFypo6DogGwTJaVIZqQ0sei8Niky0q1GFgNa64cDAyHBq/tt1y1x13MRZlt9sRd64ipVKGNWVcU4YVdbVGhxEvFRk0PG5qwauARJIzbUebN2zaluYzOsB4dIH1hYsYlbab6btoWSmaZOEg88efIHaLSKiMShTDmg7iZou5ZKAui3GlSqjQigLaGHWizo3N6SmrSbEEWo3IECP5KmKaqdHhMB5Mbd8/F+qdShCHRcJBXAiH3HAvhqKpqsIp3hlwipQ0k1PoHXEPzl83iiwmhZ4RH56f6dSqaJ/ReUKsp4GghdKLMKmLvkvbB0968vSKD9Qe/4ZEdAbScGnRPkxkS1kS3W3vvGwSSI5RMKnhxZNxGe5Kk5TGp0psNRxwdHSRYX2EHFxC1oesLl+mHF6gyRAu4hZ8wq2HUGHqJ2xsF+i4dTbzzNSgN9jtZnYbp01GnwvzVpm2O9p8AuzotqPPPdqcLVDE3oV5DmSYEtliRo92ozV679n6nMKj5xm2Xb9+/Unz38nJSXnDG97wUU/Xd77mNa/52C/+4i9+wRd/8Re/4OLFi/ffdtttr/yar/ma51lSOjabjXzFV3zF8+++++5XHBwcfMIrXvGKl7zpTW+6uLz/W77lW+64ePHi/d/7vd97+d57733Zer1+9QMPPDC+6U1vuvjxH//xH3dwcPAJFy9evP9Vr3rVS975zneOy/ve+MY33vWRH/mRLx+G4VUvetGLXv4P/sE/uP38fonIq//O3/k7d/7e3/t77z04OPiEF77whS//3u/93stP13n437HdcnGz3OwebDp8SSrW8ANxd3pve6vu5WK5CDIUyhhptVpAmRmrcXBQ0BpuocvK+Sb8c1EzWSimasq0lzwjKcJ6pRyNIysKQy+oRY9KYkkcq3SzCOV0ZZTOgTgHwIoodAaPImedbaWnqHEWKsBN20ICJvaegULxkPUKHpyOFmqO0RWZSJXTAAwhO+5hpldl8f7JU5GIQZEzAuPGjIdPttyYGrVqKJnMaX0J0Yv2zWmD05nINOpOt+DTmDtVhVrDvXgcSihOzNlZZFJNzfEG1SKqoRDLuJ6T/EBhXQrroqwKrIbCahgYsjhwiWIxbG+E410kcpOti3UVbr8wcPeVA64cVC6NcFjhyuHA3YcDz7twkVEGJlPmXqBXzJwTOjdmQVrhYhfKsfLwI8K7HtrwnkePeejGzMlMqIZ8oYGFH8nScowCZ85CawpkQ51SIhdNZGGkaPKLdI/KLRfGurDbNaZdY2Dk3hdc4VX33c16GLjnyiHb42vMrQW2JUqpA0OtaK1ILTBWZBxiovNClwErA64VZMRaxbszrpTVhSPGixfQYY116KeN1rY0PwFfIdLDULNWylDQqqxWQ6AwRFGKGqUGmdidQGRSZu6i9OyASJJtC8pIQXxEvDNfu8qWGbWZ4lNwPnrHPQoHNY+2qyRhWZwqJe6dRWkk0NVwjbbVWOLfBbK1Hdwflnu9BILWNAJ44zYIFLD09Ow5x40qBEC6+CtJquykO70FF7AvRcgCOBPjQzGjZMHSxGk1CkNvDcsFSiSdR9p5X9Ani/bU0jYzXfDM5Y4pKesu0IOsHIsgS9RJGMqa1foC66MDju68h9WVuyi338bhXVeQw0O6FazXaIs6iFZcC10ixuR0ck63xunJzMlmxzSfMs2d7XTKdrrBNE+YF+ZeMKt0m+mt0foJ2+ka2+kG3Tc5sAW65B4IbJctLhPdWqA8z8BGzSte8Yrdm970pnf88i//8s+5+9ve8IY3vB/goYceGo6Pj59qGvgt2X7wB3/wjlqr/+RP/uT//Ot//a//6rd/+7ff83f/7t+9E+ANb3jDC9761rde+J7v+Z53vfWtb/0ff/AP/sHHP+/zPu++n//5n18t799ut/pN3/RNz/1H/+gf/fLb3va2X7jrrrvaF3zBF9z7yZ/8yTfe+ta3/o//8B/+w9vf8IY3PLxwRL/ne77nytd//dd/5J/8k3/yobe97W3//Uu/9Esf/pqv+ZoX/+iP/ujF8/v1N//m33ze61//+sff8pa3/I9P+ZRPufYVX/EVH/XQQw992EJCtx6cmauy3oh2fQkir7udWxXmlCxnBYoUjT52rnrjKTWKBPSqq8IWYAqSa8nBweXmIgf3ZJJEEVCrMqwrdT3QNfg8pXuoA0qsr9wr4kN2yBqFzorO6HHgmVIQ0s1YwFIcJiB1XDGAPgnSuVlZ5bmPJhacIA9l1xFwwSJFfHLjqsOWkr176F0YDKQIN05brFS1hNV+TgwZAIBZSMWjiPQklsYksChFmgXZUzUKnwZMPdRgYaEeZM6hRHBma31vzjUZGTgZ3B8l1Vsu+5WpCqxH4eK6M4wRbNl6ZTPB8XZiZw4aLrrrcaB5QOyS0RqucGE9cnm95mS75XgXK/KdOVIqnRoJ2mY4jaGODFopBidd6M3orXHagog+NaXZBD5HIUMPm/3FpmC5TmQScmYhhb+M0PsObUOgUmp4mYNbRgmEI83m9kopC5n1cu2v7wyb4PqNERFlvT6kyHU22xNElaHExFS1QFWaaeyrRjspIjAa0xxuwi4NORDGo6OYQE8m+rTD2sRu2jLZjq4zUofIYmIdBpkDESTqYQfc1RHqvkh2n4FFhRecqLhRJDxvfCkuwLOFY1RcjfnGw1xoL2YqA61L3g8RIWGpZhLRQFAIeXZBMe8ceAGLAgozqgNSkaEEJwvSTDCiF2bOyL9jErq9N0yhWbSSFKF5D2K9sQgjsx1DkJqL0lvsn9QgF/dOZCdlkKSJUM0Ri/HLMvF8cGWy4EPVHoNC73GMvqCkYaXMIFHQdI9zGAujKNaaS0jThyEQUxfmINRFq0eAJpRyQHNlli316BKr4YB5PqaUEanXsdPjiCz1IXyPph29SLiNW4RwHhysMIGpdxpTkvedUre4FKTXkHTLQKkaCE6Pc+g90LjeU0FaWozCLlCj/YqFi/gzcfu0T/u044/7uI972bve9a71siD/6I/+6M2FCxeeNpbRc57znOk7v/M7f1VVeeUrX7n7+Z//+YN/+A//4T2f/dmfff0HfuAH7nzggQd+7kUvetEM8Ff/6l996Md+7Mcuf9u3fdudf//v//33ArTW5B/8g3/wnk/6pE/aADz00EPl+Pi4fPZnf/bVl73sZTuAV73qVXuo7e/9vb/3nNe//vWP/vk//+cfBnjFK17x0Jvf/Oajb/qmb7rnD/yBP3Bjed0f/sN/+JE//sf/+GMA3/zN3/ze7/7u7777J37iJ45e//rXX3+6zsXTud0658Zjcik1vR/C8CGUUTGKxiI5i5OFsiDdsCnJawsxM2gNWEn4eixM5niLldJSNNQk+3bCvwYcqUpRpawGdDXSCiDCSgqqTmmNbYdJKzCGWZnvMhzQqAl5x0o1XU7jIxgTwdkIbBSm4OexEKUhJs0n1TqShEWd6Vo5cOHO7lxoQaaco0nB2oQdjmuDGmZsxUC8M6Vvx2oUBhnYmTO3ti9egl0YkvXtDN0rVX0vU5U8iFqE1apyoQodYzJC/iqOpRPx4BIkYiGVMb6X6bae0vUYO8MnNVGlglDrwOHKWa0rp5Ny43TLjZ0lemTUIhwcKHdcLtQphO6txeQlQKVwfTPz+InRXRgl5Pynu87108Zunpnm+N4qQYDeesPmge4Tk7Xw/PC+eMCx2BKEg60gUpGcZCmKDiRiKNgU0RFTb7H6nhcv2OXaRsE+++K5cq5Q1z2lOkjXMvH+hzfc9bwNJ9sNly9c5OKlNTe2G4ZhjZqDDohZ7JM53gxpkS3WpeMpnS5HF5GLl1EH7zO768dMPkWC9LwLHgiKlsO4m5RAJYWIahgUs0KfHZWebo+R+uxmaVMScRBuBunV0rtm5lAgfA505jDGU+Gxk1MutlOqXqJbwRVMwvvEFbBEuTT4ICIelgsQKEX4XSfHJlYTPds5MU54koElPXNCHdmHlHZrFpapzhINuXXVQvHwIzLX4NbhSHHcBWvRqlIHMWdkwOjJZwtSMkYEby6u6BL3vktI5M2cmgpF8bj/8WgvW5KxEWdwyVy9kONbydZWd0btdA0/nH2b17MVOAx4MUZmdHUArVNWh+xsZLxwgenGBWR3wubRY/rpKW4T7srYlabOSlZ47xzvOlrieu12oXQbwmchwo2Jit+1MfWCqKEleoltFrCGrvSs+NUxVFUtLAqC+/bM9LlprckDDzywPv+7CxcuPK041ate9aqTBRAA+ORP/uSTb//2b7/nbW9720HvnZe+9KUvP//6aZrktttu21eXwzD4a1/72s3y93vuuad/3ud93qOf+7mf+zGve93rrv/u3/27r3/xF3/x4y984QtngF/6pV9av+ENb3j4/Gd+0id90vG3fdu33XP+d6985Sv3n3np0iW7cOFCf/DBB4ffsgP/37zduloKY7YZemXQdHDVKHpuUhTtGTj5vhYKA3fDLNKzi0h6TMRKp6gxjg61IpODdaotvhjnZJ6ADpXxoGKlRqBgTfKtKUsQ3KAdlcrUop0TLp+RzKsdinRUhWpRihm+JzoOhPOorIj22y4UIklNOCcLX44w0SgFXBh65w6EK7tY4XWHJlEoRWFD8jgUsfjugZh4FWclyljC7G5r4N4YSpjsWc9WVdH9aqtoSm7FGLVwWAK1UYHtLKnaEIo4K3FmKWwtMnmS24iKUK1w4qEaqkT6uGkkb7sIxSvD4Fw6bAzrgZPNyPFmy/HUmLtHm0OFwyI878LIWiuPt5nW45w1gYNamd052TR2XagSOTiDR9vx9LRxfQ5JLEhkJXkgUNgU59oVlyA3LiRRJxFCDyJw0eQ21IGhrhnXig5zFA4I826GXUUmC5So79INu4QXjaZ7dgun4Ox5xGo2tfbNCzY5x8dbVtI4vr7h8GhmPR6wOTnB5sYkBXwT17lvIvunR4p3Z8YGoV48ZFUOghcyOb5tbDYnzNsp0LriobRRYygjRqGUjAwoGdy0GuM+a42uPXhbli0aAiZw6+yVa55yf0keWJtROlbD3FKJZ7Vqpe62nJxcYz1cpAblJbhaUkP5lt1kNcWLocyIxnu7aMilPfPlPJ8TjWKmSJjRiRYk/WtKavImVeqcXi1FkdZAwhiytsxAWpBgmyJ2ARhcmLvTiyPzBH0VqIuGakiTU1JUKGKRN6WKaxb0Ioxe2FlHu0MJR2OTgvR46Lu0uF6pKjD34DD1CdEgi2fXMdlXoUxT90B9Uqk1iwX5ug7BUxpHxGG0CiasygW8nTAc3uDk8av0a+9nd9povaPN2ZVQhNHCn6cnf9FZ5PfO3ByTGbqGCksbQx2CVO6GWAWdkCaIj1Ql7Rtqehgp9LBVeCZu6/Xaf+RHfuSd7373u8cf/uEfvu3Hf/zHL/+3//bfjn7u535u9YpXvGL3v3Nfbty4oaUU/vN//s//44kE4UuXLu2ry9VqZeeLI4Af+IEf+OX/9J/+00NvetObLv/QD/3Q7d/4jd/4ET/yIz/yzk/91E89udXvH4bhSWjVgmZ9OG63buLneaC+TOyhlkHTCCtRhawR9sZPfj4NHGLQDcFNvN5jUFkcjpeBrrfwsykFVkMkHiNBPrUapoFj/n5uvud7aEnZt+1QF8wqQs/U8TQKIw3wRdIE7OwYqUJfQRuW3j3YDMxnC/nzLanF3CuKvFjtCRLAVkqam4Rk3VzAoqIIPVKkgu/MOdDgCUy9M3Vh3qViIqGlxahsrMqgQnPYNaclXLy0prYdNpsW075E2nRPeaiKIBY99YkoGIcSn+fi0GCUaN3UAVYDrOvApjtiwlAALbQZHj3ecGM3sesS9voxpDLWAjLw4I0d147nWEV7mO4drivujUkEkZm1yj4bqnXj8daZOumuqyyuqOEGneaPZ+VMHvdy7QJNKSVC/kpZMQzhzTQMClqjfFRHGcP2Xo151+m25IzF/aY6RG7TnkJL8EHyexeuCA4Pn57y6OPXOb5xg+fcvWI9CEeHnePdCQfjGHyeUehTPj8FZD0wlJGD8TDCThvstqfMuy1tt4mipAoyjFTbMekKVUOGCdEVI8TETBCB5zLgc8+CIcjfc7Z0Its1vFakBW+j2xbXcDe2HmGYKkEe1TxClcifWlPYPH6NcuUeioWFgXmEp7oKMRV6GveBuEbyd4eyZKr1uFARvhgKnFBrWah6UjYtFCYLPpl4FOROS9eIMQqZ7oFGJX/P6GlOZxnG6zDU8LRq+fc0tVxax94J1RqwuFGHv1a03WrvbNLN2HqgT1KWzLxom1kujEQF754+QiXUeR5u09Y7TQ0k0EFPhVhIsT29fzJANhFaV0VrxkOIIDYwjEfshkPG1QFyfIPtYw9GC36ew0MKZSgRhJm1LJN3bBYGVszSGNWY6IxV6L1EIWcWbT8hxiVmpq6o1sgM00IpEdCJP20UlN+27cEHHyw/9EM/dPkP/aE/dO2zPuuzbmw2G/3xH//xywDXrl172rgmP/MzP3N0/u//+T//56MXvvCFu9e+9rWnvXfe9773DZ/+6Z/+Iau1Xve6121e97rXbf7G3/gbD95///0v+af/9J/e/qmf+qkn99577/anfuqnLnzVV33Vo+e+88J99923+WCf9+G+3XpbCiCzityCXKdhVbwvZESEYT8JxKRv+XtNdUSE84YvThjCpQ246J7LM8gKSzLwoNGGcnKSrmH85Vpo57wrHM/9CKMwdWcUp+tMz5aPLNwCQj5KBvMNxLPbgS7OtgpzlT0J2VuGhNKxfk62Lmf/FQ/ZqrUwArPFC0NgcmcKRTgmjgyOjIbMFnlOprFSHCtFKtY6KsJaYb0aoFS2c6d2p4rnoO/BZXBPV9dQMO1axzRUL4XF9G9BPzJ2gijCzCMmQTxIl3u3WYF1US4eVIoPXN9u6d2YGlAKR1WZmYOHk8XhgsJZd64db9k2mHIW0PTNGXGO1sqmOx2NXCcpdHqmgXsiJYvnCSwka9n/3/J72fMsJAuriAwLDkTGOSMSyilKgmte6MzQI+W6DDusR7Xq3uk+oNZixbq3NFASpszbOki04o2ql7h+fMyvvu9x7nrO+1kfHDEOhTJNHB9f5eDwMuP6kGEcGIYV3XscpzlmA9Z6IDltxrQjg2A2BtI575A2UtZxr9QVcCBhRGcRANlth/TYzzBqKyzBqkLDWkNKuPG6GdajGC5pkim5aLAeZzLItnEfiBrjYNy49ijDpuHrCWOI+6WEtFnNGdwY8gIpheYd60KxwEV77+jcWB8coGMJDkuNFqn1xZAuJd0KjY7IKlpgPXhwlveod2PXOtojGsQlSc1kxYFAUSRJ7N6j/bf47niw8fY5UT2fpaJByDcHU6d4xazhZoH0EoGfLsrithk+lbEAEgs5PqYYymQhY2o10JRotiW/yUMo4BJ8Ns8iXrN4Cm+wEmFttkbqzGUpbGSkdOXoSqOfnjJtT8FK8ss0/atSMWbgs7MtJ1SiTT9KFqZtRrrG8C9h7Ne8QREqDl5o7ZTuwmq9FPrPvO17vud7bv9zf+7PveBP/sk/edPvL1261F/96lc/bRP/+973vvGP/tE/+vyv+qqvevi//Jf/cvRd3/Vdd/+Vv/JXfvUVr3jF7rM/+7Mf+/Iv//IX//W//td/9bWvfe3p+973vvpv/+2/vfTKV75y8/mf//nXnurz3v72t4/f+q3fetfnfM7nXH3BC14w/8Iv/ML6Pe95z+oLvuALHgX403/6Tz/4ZV/2ZR91//33n37mZ37m9R/8wR+88m//7b+97Yd/+Iff+XQd4/8J24dg4ueU4lHQpDwYYhUVBYolghOKFbNlUpJ9cROQToYtEgWHhZMWi6mYeqWUIBy6ZUtj/xnhpdOWwXtZTSwpu0WY52w1OEShY0EGkr6fiPdvA8Z4O65w6jApzBIDjViBPlCWiU4SaXAI5cPSqlqIm0LGYmehkEGGZOHk4KUjY8eHsxBOPP79dG6MPbJvovgL4z7zSOldvtDT/2cQwcuZLL8SA3OsMXU5NXHOCF7MknJeJHK/hki7TKVErDi1COuyonXn+m5iM4fqhCK0004fA70YESZsT0y1bmzmIOGKK0WMUqMN15qwnToXxpHSJ5rFuZa2uA/3tIJf/E/Y/8xN/10qnD1bijMkJ91V3XGZsK70XWQmlVrD+VUqaEHZxoDulbrq4TA7K+YTWMjnJRGzaOEkL2O5eSRQk6l1lMrxbgstEEcMDlcrbJrZbU/oNtPKEMWYK4iGNLeHv4i1DCElWrgkIR4VZFzj8wkMRq0DtQraQra82ZyiHcymM0RVgSSGu4cRmyWqKeqQjsJR6EdLqGNB5HelW8OT7KxqDFVZbU7opzeoh8+lWGOWihDKu2IlJOAtzeCKE5GohjHQeyiR2O6g7eDwAvVwjdRw4XYNwYG1vuf5zEiS7gvildY7fZ4xF8QNsznba8s57dT8LEPo3eO5UaG3HgaXNewlcKcX3Uv8RRbz0WjjTFHrUU2Z8plSIonbYoUXrSYP7k88etn28yU5nBBPFEekM/gQHCmUll48SIG8Nj2R7Ghh+TIk5K1SMAw5XHGoFVdhUwEfAKNPBn2OdHgJr6wYkCSMVG2kF6fMgsiITVMYhZZ4LkWFzXZG1RnGFeYzxT3adXR2p4YWTcLxM2t70Yte9KS20+23397+2T/7Z790eHj4tNVzn/u5n/voZrPR3/k7f+fHqSpf/uVf/v4/82f+zCMA//Jf/stf/vN//s8/9y/+xb/4ke9///uH2267rd1///0nn/M5n/OUhQ3A0dGRvfOd71x/4Rd+4b1Xr16td9111/ylX/qlD3/d133dwwBf9EVfdPXXf/3Xf/Xv//2/f8/Xf/3Xf+RHfMRHTN/8zd/87t//+3//jQ/0mc+ETZ4qJ+mptlrFa1UODg+oq1BiSBLxFpl0TPCxZnzFbPzYo8d82p0X+O+HQ3BmJNxndfHBwNMILkdliVleRNEhip9uoQ4SDRKluGTfP3gFnszEKkLrje000+aWpMHobPjcYDaOeueADObkDAgwhZOqXMW5odAPoiBgGnAbskpZYOoeXi7SUw5/fmoVVjjPEeHQo0jaOZziTC4cC9go6GGgwLIV7DR9VMhely4kZ02b9ShyevIERpHIkfJsfSUZSHHGvBYNB6m0HiaBMXJmSnbg6ck5kJClkkbBBIlXkiTpAluHqRsrEyZxhjpQC4DTp4C/JQfzsNRXxlJwjN4b1QBVtg2kVEZRpj4FauBx/ZyU5qrEuK+Sjs6LrDZGf1muWPJenEWqHfyRuIfybspU75hkKqoDahlxKpVRnV5m3GJSo3fmeWaeIqJDhDxfnv4knLWjkCgUKFy+uObjn/98XvzRz+cPf9pruHzH7ayGNc07kxjNC6pjTGTWcfNYtVuY5fVuMFkgNyi9zcx2SttMbE83bNqE7xSTLb1UpI94m5jnU+Y57vV52jD34Ec0icXHTJgGznOjW6BD8zyznRy3ICo7kU69m7bQZgTBbWb2gbk1tEdLabPdcXrnfdz5Ufex08LknbEOrBJh0x6GkbUIRQ2TGbUocK0YVaC2GbeOlxUHly8yHB6g44BqoZeCzDOVaAVPKRJwCtI6J9tt5Gx1GLAoKgZjfXgAOmJ9inVTrTiFbs7oxrQ9DX7KUHCNAN/SYdIobqSFNLtLtDw9wB2KCL3N9HmHGJhUdF1T1AC1dXwfHmoRN+KLr83MPG+R3pjnLVqUg3KAaQWpEVchoFICrTanaadZA/PIDHNFvCLaEAsvoe6xL22ecJt57Nd+len0YfxkxnenVAL5DN3FEqlQ0dpCIajRfh40x1sHt864qqBz2FNktE71GlE4Gc5Za+HeeeKNP/MwwKtx/+lbmjSexu1tb3vbS2qt/9d99913fHh4+Bs24XnwwQfLT/7kTx49/vjj5YUvfOH0u37X7zo9ODh42gqb17zmNR/78pe//PQf/+N//KtP13c8k7fT09P1L/7iL15orX36q1/96rd/sNfeeio4JRQKtYZ/R7hUxaqQ5JqIoCX633KT63A9a1/oAg+HxLkWxTwVHDFLZw5M5OQ06YEC+CI19wimzLnMesdd2fYeJmi5H3igSSYGJVRJ+153fBM15kJ2A8yDMxFyajVJjtFSdIUTq3pFiEEnWvhxLOJRWAw4lwXWiUAYCxAe7SkXoLAPbGQ5RQuCk+iEZaETqvkopEQDnkfDLXVxG14I2qMIVTq4RrieCKuarbHZQ20zEKhY90iWzuI0To1wINH+25inggqaeMLSiwTa6AZTj8KzauyzokiJleuQxNPeA0GYWsOsYBYuwe6Lnbvs1WeC5ko6TlSky2fUwVkJEyvShRkiy94vrwkOWEGwqum3UvbmReLZUvBoL4xUTDrbORx1SxnwoUXgZxY1jrKYfERS8nLRohfx+MmOd773UW67c817fu0hXnZhxcluQ1mtw0TPA8WUOqbk2OkG1qDNm32Yas9CIoJQC10rdbXiYBD6yvD5At3DkrBR6Etoo4PoiPQk8tYRk4HqM3M6Tsepbrn/lkCp5PkITlzXTrEKMsRzIiULxU6tMB0/xnZzCgeX4jhspulAJyIQvMdCpeBI6XTLtG4DK4FeRm7RxOb4GqUUilR05TRvSLYLVXpMtL3T1UPWLoRFQItcNoaSSeadlULLcMcaoXUUjFlCo+hi9N2MVkXqgGlhIB69ACOF4p1uPcMzI1DSS6i+bNeiGOmB/LRMbS9YLHy8E3dq2DZ0DRXZ0ENc7ua0GqgNJfyiimi8IwvwEqUJnmOdixIuyPF8unbEK6aOeEV95PKdd7E9Ffxow7VHhe3mBMQYu9E9rvqojdaj5abWmMxhKFRPAjgWqfMulNawOcYHq4WVWCA/MsVYMT0z1VLPec5z+oer1PnZ7YNvt96WkiTmSRj6lRImZVWWBGo7ax2574m2MQ9ZtlnSNVUqCwlblYCWTei9sbBozdn302dCSlws/FaKK+ezYbz35DDsacvBlChBYDULGXTX8IuJdlFwbaiwXQuPVzgxx5tgFn7JpJ9vaE6GlI5apmGH/Li4cwHhijsjSk3y61J4QEy8kyyciCWPK5r24ufUZed/WH6fgA49sqJa75Q815btKzdlrMpYBzat0bQgRVnXWFVverQFD8fwx9jNxukEYkbNIqyZhotxiRZG7+GX4h4T/xZnLAMHB8JaBq5utwg9lSXO1Fu492q4KePh9THPIfm2LODO2k1LobCUmulT4mfnbDn/wSnIiyuJ4GgWOokCipcoegUGLUyAS5CIJa+5JWfDrTNrrrgxeo9gwFqUqoUmc6ZABAE7SO/Lfi7gzaL46zxyepVfe/8BP/pff4nLlw557l1X8F6iMC8VasWlUBgoouFyODhla5G63vv+uEQlcofUaSg+KaJGGwRtHdUpENJSmWg0omCSWqnFkFqYTehtQGSmVsEnC26ZFnqJ1YPSaL1Fm1UsjqcoPluQs9OfSAgfqHF3g/mRx1g9dw1S6DYzF4ssMHGKBf7XMbxF0VitM2iJS5tmn6MMtKnTpmPKQQEuRGK1WhJbiXtcnIKiXRATunXmNodCEjiUAZphZcfi+huy7xYRC1rQVWG1MeYg0oRMGwtnYom2mnlYWsRz5lFgORQiELbh8UxbnKPSlvuPNDKM+6Si0DsuhUFWgRjpmOcyCmH1xRsnwyLMWViroXks2QJPt2+JQEwsVFx4R4YweaxHlzks0I821MMDrl97lOmxLdN2g9Nxm6lkfr0FejkUx7oxF2UcFbwGd9KjkKqlQgGnMVMw75g1BpVwMX52e3b7MNpuubgZUp20+MSoxCS4sGo1Sb94cBFEc0VdMmspzc9ElxV6PPSx3pFcrSwITmyLiZwSSizzINxFHz+5BNnrxheEI9KPscWfZZFqRpuoEVxTk0AabHBO1dmWdEo2x+dAK4KjEKvSBVxJFy/CR0VYi3DF4YjFl2dZXZMREsJGs1ApjhY4MEG6s+m2P3/L8S6z+6LI8qXnhdM91Vc9J3+3MxMzs1wdFlYlUIypCdOUKcklujkXhoGqPdAUd8bo9XFK8C9WNQb8DYFerFSphPePAhdXA5dXlWbK8SSRR+Nhekieo10zmsG8vzQJs+FZvOYxh9tezi3ZPkP2x73wbKJczPOynCxbvvDsF1IUqYWqA7OHAsvaHOiJp6LOLHlH2TckeCiexYrK4rydKsD0ZvHl5hbPYyHItCUmwAcf3rAuv8r/fOA2rlxYsTooiHXcFPMGPkMJZDPY9QLDiKhSW6f0CKYt5tGiIFuSxbE+47rQfRKVTCM5J12hy8BQIj2+u7AqoXxqFFpPJY1Pia6VIBobmAcGGOczivYIS2xI7XgBm5UDb5xc+3XKHbdh5YDZd0BhLQU1OLXOQGfMZ8PLTCcQO6VSCCQIbYAzbWeG9YyWDZQamVJE6zSIyoHS9B7cFi9KUc+CujJkQr32QA+7R3QADuorqkfOWfi7pPmlhadDcSd02tEG73mHSfMMmAyHbpcSxUUWxFIKQlgjBCrbQ+xgFqiKGmKxkCtDGAmS910MLREOa4uySpyeY5RoLPDCQDNbvRKxCy6Cthg7rfdAb4eR3g5xBla65kAHxqMtJw89wu76dYrWuJoeyGh3D/UacmZa6OFGHihScPuWYqx7JLtjitP2vmXPbr+57c1vfvM7frv34f8u2y0XN2WMFWeXSEduWMDae3ghXieaE1FO2qWU8LggxhJJAnF2H5KodsZdWczHFlosHpJpkpgbfFGPldIS8aAB/y77sXAzrHVMAuXo3dh6eMqsPPJsWo0xbqfp8IrjpeBboEnIP0soHUIgEYXNAhzovmFiGcjne/KwE8enxEDiOaddceGoQWvBx2l53p7IfdojGCJn/75M9sa+H57alnAiniL8byRWhJvuWWD0RF8KpzujDIpWaBLusKMKowKijDU5ByJYMwZ3igprYuA93XQuroSDceB4OzHntQ7ibbT1Ju/he+NxHfdcmZutGeJy5a3jCe+zX8smZyZbYYt5nuegHw5yZ7WhFGFVKnU8QKUwWmMWIh+nzYHwuWcbRrINljskESvSPDODlmu7hDs67PugSCIFFu2Qahz5yOPbU66cKj/77ge5/bYjXvyRz+FoXNG8Z/20w3VCS0HHFV5qlnNLTlK0MYL8m5NdbzRSqtt97+TrnpM6ghUYhhqxI3mProaCe8WJiAkdWiCrqgyFUBmWijYodKpXus9Y9H7BnKI1FEUSWWIrF45PryKPnzJfjkn8oHfmLNwHDwO4yQ3qDHPcizoUzCzuEzJRnALWaPMxwzxQS6GppN1DwUqICXa94zi9gFOp80CjUc3prefF9yhq8ViYkFJt77QCuh5gNrzt8Nap4xixJEC3OVts8Rxp3lCSY5XXEpwaa4neLjYWFagk1hm3duz6/l5V4jzH+yzGjrqEtpZATCQQ5JDrF2yO5HaTIPwvzHpRp1dBWrRdo643dH1AmQuzQalHdOtcec5zOV2tOL36KHSYzSgWZOO5B9LeTfaFnbhTSuyx9R5Ku+YR2VFz0Wo9Bspnt2e3D6Ptloub1WqMaAHISTazSJbJQNL5k0BG9kvsHIy7eZrBkZ40noNZNiqSkIoE2qNAa+ELUjzQmPCkOVtVL9wNs9QZ2KK2yUJgMSlzT78XYQfM4qxDCEVTmCRURoogPQP7PIsIdxbiqosAEVhYkbRZd27kBF1zAHfI44SNdBpR8FyhcNccI+upnf/8W9sWddgexdjXlOmq24VmnakXBlWaL149wfuYRDhpjQuqHNZClQIWCey1O1OJfv26Vg7p7FzS/t4JmpCwmeHx4yjyqgrbHpNXt0X+nsib+/5nkfNVTbanPFaMIQl5QjEnZ62r5T2CL8AOvp9SbN+WUh1QX0FTJk/fGuvgLVHCmCilSLYCF9uAaH8FKBfIjMhihSZLh3C/33sypnjA+bOyY8f6oHBxNN73+K/zSw9f5K4Lh/QLI1orZbxIGYfgcHg4KRtjTJYWMQGmsTDQEgqfniWyaAWCw2aQCIEy1AHvHWXAlmBWjdBMF6HNy3kvqA8M6nRvFAIV2bYWyGQinvQ4NscoWsMYziq40nGoxkHfcu2xR6iru8J5OxU1TeO5GGLdEm3IothcGb1TVsF9iXSISlFi8WIQKeTgZuGtY0JF6B7ZVOad6gVzZSpx32ymFuR6ws9nbXEczcgMqWi3DS6MJmzTPFTE0xm6oBIKsTlyGVhCU/EoYKzI2VDnxLkWhRpoXnRFdW8yGuIKDW8Yc7pXRDxiD1RQDWTOu5Aks0RDkk+WyqWkQLG4H1sW0modLUnaB3qqzMSUsa6CLIwxtYmD229jva6cPPIYfY5cve7J6yoCU+RbCSDdGX1RVkbIpzXDw4EwH4HOND8z4xee3Z65260jN2UIEnEOEPFcxkCgFj4mqbU845TAnnAca96UXeqZj3EpseL0IkFGlJCvhjSiQIueuHvkNVlJEmWqbBZzLilCLaGUsNZDmZIzk2fwmzvsEE5wVllYzRLBfBSQXvF5SP5DDKxhnd9wBvCQomNOwyK9nIHZK8c6c4Cwyi8yoqCZ4zQxOlxs4QcyA7NnXhMpLn0CcnMTYpPb+TJomXBFziTlnj2s1s4UIAsi5kQbpc3OTp11LXQ3NrZco0BmNrOxEmVVlKYwZ2FJtkyszVw7jqJyNqOnr0w05KKYyiPIYpCzPVhQvv3vZP/jnjKclgKekIknf8s5mxRk/zG+L3bMGhsXaJkPlTwJl74vlEQFTcmvk6q7LHR8SYjO9lmANZ7tsUWttS8lySocpTM7XPRDcOHCWLm0mrm6exgrd7AeLzDbCaWtGMcVUoNQHu2GkkVWOsuahUeMpbw/C5mgr0ULRKkgM12WBUVJ9KohWik6hFWARyr2Ehcw6EA6NeG6o6ox9ynIuzLSdcNAqGTCiDKP1Qjuh8CosN08xnBtBQeVlu0eawMbdnQrUZxNUGrBxijAylywoqgr0gtVjEnBZuhzx8ZOLeEw7hpoSc/7aEFIw6so/GtMDPEgwHYqTaGLBsJjksnesfgRDZ+a7s7cjFFIzyqYPQp2s7QhkHC5dnWaOdULTRUvyuyBG1dKKvOEjtLUqDkeRhEdKLNnFI2iiE+oHYXyqRSanAkbVOPe7JIQjnS6W1ptRAHmBLJlhBpRzLO4dkoJ+LlXhXVDZiJvrAwMWvAbG06vX6fQkRb5U1VjHHLpqFWkpYhBQS2FIgbewhlbEM6xBZ7dnt0+LLZbD85M5YqSacliWdnL3udEJCICom2TKx+LleJ+Qkr1CJouqCknbRareNVKKbmKTumu5aS39H0XFVJ4d4SVm6qCKdZb8nOC5Nz70r6JiWoW59iBDhebYFX2ZnjuisiQacZL8rGBzDmZlgUzyV45rEhVlws77xQxhMzIkvDRGQ1WAgcJbBiwXWzw97P1B97OCpib/74UQE8O9iQJ3omKpaoo4PosOs2ZuzPNKWmVaHU0F25452gsDFpjHy0UPnMzOpqT/pnfz4If5d6da6Etl/z8a5Z9OlfcnHvv/pg42/fgwywH5tmOSI7OMin1jksqnBY5vYIwoDLjXvdJ1arBx4nzENyD/Z4kUrMEtwaacVaQLYcS6OCUpPbC48cbHvhV4QXu7DaN9zy05d7nXMe9ULqipdHbjloPkXGLmtPDbITFeXlx69Yi+zgLqRpyfVMGc9rkmPVAegZl7BXzaGXUoYaXyi69cyzaIbUGmtKb4N5AG6pQdY13Y2aGYQyimDeWolGy81sIZIla0JMt0/VH0fo8TA0rPbO5NJOzC00CKajzjA6KM7HuFeoaT8O+kuOCe6NYPr/JIWtJUg7eG2EwKaFKlKKMjPS83tWcWRtaErn1MNw0NUpLWlctwWlK12GRFBYoaHOqxfkpEouWeFmyAYP8gvrS7mJvUwBQvKX6KWnCEghISQ8b643eIyZGsw0cz9uZDQIS6FjRvLbuaToYhbUuCzlJn64l+qZ3SiLaXWHUAyhKlUrb7bhweMh8eBVbF/TaDSY7odqA+cQkQqXSKRxPE0NXhirUGufYu0NvqOgzNhX82e2Zvd26FDxX192cWknuQ3A7XBZpbyIJ595n59Qme0JnkujcnGYzmhO8I0HOa6HOsjmJoLm+lT0pVALNgUzRDgv0bhbBj2ki2HsULOYWBZXEvk4uXGvGvFkyt2M1v/jtLEqZJagyuDZLgROvyXIhbO5zVd+JAXTYEwgjALKIMziQ8uJJYJuT99LWe+J2K/5D5wuc5ee9ekiXlkqiOvFtCMZ2duYue/TCPbxISIL31Dw8O7THObUgM5uRCMdSufi+heT7AuGJ///Ux7F3Yr1pWxA/P/uT8vQ9+idZ8OwDEJdrFQo6VQPpoUpy3X+7Eo6vpkHqHTrobMzzLrxvPJA83PYTzjIBYXaGTMnCCQN6FMMqHWTipFdubE9433uvc/dzlXm6AHaM1gGtM6tWYYDiA4iGU3Vy1KIAT7J9GsxpYi09eV5dg2NTMnbEQ6sPLXOmirLbNSzv+wV1Ej0LiVXCRTvo8KEcKkJ4F7WegZyJyCS0OKNnrtnDlhvbLcN8QBvXlKZhPKgFNMiuroqJ0l1RWwWhVUMBOQiJjAbqZEb4BmjKkB28FOiJalrypQiu34BiPbKv1Euk2jdYiVDDZY+ePKcoUiO0tEmEaJZmWM34BhNElb7IuT2y3bo5rSgzhqQholiOKyWLIhfq8uhqjlMGUqLYUC9I0yQHDyCGaaGkI/hMiBw0nYq7x/hmOKpKt8iNMw+z4gFndqMpVIvi0IVoCZozSMHKimLxXAwHhd4bqoUDOcBspJszb1uILixR0cWp2ZU2NYbulEFCNIIwtYYnH+zZ7dntw2m75eKmNacWEE2uDDH4x2orCghd1LoKy6QW/DSneN9P5OIhJ4+5K0ibllkvZgYtkoKtRxJvWG5oyIEN1INsbETGjXaLB3ApfnKFbXZeIZNtsSQeG3DcQE4N6WEbv0ykSKQfRwXXcab9+t1FQ2hhhosz0ahuXKAzqLPK2IiAeT2DCGEgVnIzzimEVBlPytHNLagnIjXni5jzr3viz/v3Lj+fKyyiixPnCZEsbnzfHZoThUnLOk56cqfyXC7IyQLWLX9ZSruzLz2H0Ny0a+cKmVwN7/c9C6TFVXl/7+TfNOudpbBZPmI5XiDuETzLzgLZhol7oUYrtEhEVWTlGSaJJQo2zxYMCxfsvI+O7btg+0V7ojfR9nK8F2Ya73/8lP/2rkf4nXdc5MZ2y6VDx3czpVVsXtNG40CPUNlFGzbNltzBXfPrGmLB/doHn2qlW0itVZSqjnuoFjVtcXufab0jJRK+jSielIL1hi4Y1Ln3aAG1wmgw09L/Jjg4aBRIQwSo00RYaedkntlee5zh0t3p7r2jj52NQXWllAU1s0D7ugTC6ZKOv8FVseKY7CKOQMNDKtCLs8n0PEKLOdUlRG5KmBmKUudK13DsbhLPhDZopTJ2pYuhQ4Xdjj7P0bYJqWeolwg/J90LGc6utZQomrwrjQi/JBcsZSk4XViAbPcoOs3BioKH23o2n9NeYTkHyz3v+3G1ZEq5d9vHpjjBbwvTyxhkI6WLvWF2zQKMUrE2hSdZGWh1xeU6MK2U1Xrk0UcfZj5t6fUTKFXNrLDFRJNJ6Go0CR8yvD7LuXl2+7Dbnqhf+SCvzMlAwjdEXXIAlZx8YvVpIot5TWxLK2lpR+UkHyiAQ890XdFEZizN+mJSc/dwGbaUX3qs+TXjH9xTadL7GcrTLfKr0lgsOEI5VfoyCAXM6yb0ndGPO74JGF+XngYFkVBGOCXlxPFvLpKrn4C5jzCOzBgsBr2FoCjAmuDcFA+x7anvabdPKmzOfi3c3G5yntiaOv9n/6qbODrLBZBzxcP54icQHiOImF1iMln+hLptIVM/GYPxdBjm/L473LTbcO7fz/ZoKar2ddES3rn/k/YB+bKFm/DE8xF8nJ6TYBTKgax4eIUgeK2UOlKHEpOAK7NF+rjbmVw36sxKkWBTuS/n3M/t+znEKdU6C4pk1rl+uuX914553/uv8iuPXmcoM2NxWtuymye208TJyYbddstut2XazUy7cBpuPTKmepujULGWrY1or9ocrSY1p1ok3Retcav2ju3bOD2UerWgVaNlIxKuuBbXFAn+jntIqqsItYyQk71KTPyRvt2xIbxjEDgoSj+9BpuJTdsx2UxjZslNMmLSnwZjo6c0wntm2QfLlG4Ro4ozujP0UPXQG1jDCXk3ewVSXAHzKLK8RiuS7pQmyGzB6YH0x1wq0EBIlpgFrRotsdZZWkk1qzF3DeWkhFx8kED0QjgR918R9i3PIuHZhWRgqUFJtSdaGKiIFNzHkHj3uK+9hPJqDFOZKLQ9xlTVEvtZ9CwIVhQpSinKqAXRipWaYyYRjyBRTHUxeoW5SlgPSGUsh5TxCuMdz+Hy3c/h4PbLdCeeDy2JtMU568BswjR3dnNnNztzC0POZ7f/87YbN27op33ap9174cKFTxCRVz/yyCPlqX73ER/xER//V//qX737N/o9IvLqf/pP/+kVgHe84x2jiLz6p37qpw5u9f3f8i3fcsfFixfv/41+/29ku/XgzHzIQ3UQK5EMKGFJb6aUyHhh6UsTPh6pKNgnh6dp1nmEQnPqNY0Hv6WTqpIPXQ6cgmMWK9zuHr1hgktiPTgU3ULaaw54T7Qm9+ccT2VRbWEgs+O9gWokMjPEQKSA1UQ9Qugdk0NFJOXF2H4Cd86Mh9WjYFh5sHUM2Hk4ISeOtH/f+fbSU7Wkll99MERn/zlZMJy1cBIl2reQ7AzhyQLsrBjN8+Ocm9hl/7lyUyHz5P0Egvtwfr9kv0Nnv1/CVjVNZJa2VsJEni7FsYSOyWJJB48D1P3rVTXIuRLmZ5ELFrOQlI7XcJdGwtSsm6d/jeX8l0GKTvBf/IxnsyTBBz61KFuecNySfDTxmOAQ3vPYNV7y0o/gxuQ858ohdZo53jWmlkiSbKk+o+MarXmvSdZ7+aVOPF/dOr0TXivJKzLriUouOWZRnFm3dLntacHgTPMcixFfFgUls4hANeIgMKf2ypSO30WU3tPGP8ndg0AvymBCmWam3XXq+g6sdEob4gyJMhdhaEL1FXObOFTFV3MEeOaiRIpmBMEqzfWWIlcxV+iBpHQnfWXyXtCC9o5TqKVi3elMqChtkEB629nIEbeI7RdE3Y25z6zqal8Q68KpIQsZfO/NVV1wrczu9N4C0BINGwsPJWen00WREs7hPVV3xUFQujRcxiA+YwEz1hirApXKe5a41YvWGMd6XsPFgRnFvEeh6GHRUPK56LYsCEAzJHWPbqa6bgYOLtxBqU5lYPvI4+zmFOl7KPeaJ4fKlkXrwnV8ZpNuHn300fL93//9l8dx9C/4gi+4+nRFMPxWxy/8w3/4D+94y1vecuHHf/zH/+c999zTbr/99v63/tbfuuuJv3vLW97yPy9evPhbchHvvffe6T3vec/PPve5z/0thfM+7/M+70XXrl0rP/ZjP/ZLvxWfd8vFzXY7M1ih1ABEtcaaetBCUaFbo3ukTEdeVPqQWPAjQrab3BwJErAjzHTULFdBAUcvsHWn5UASE3PJgsVTlrysvIJjE2jNsi2E4mXSzCl6/+/+hB+8Z//ZJtwUl4ElcoAc3IUehZxXwmVEyTzeKLpkkcIm2pAfH1C80MTZEoWfEqne6mfePXBzwffBt5sLiKciFcNSf/hyCMuLl1oDzhUw+yKErCeksCiwyJVvBJ36GWJ0/v0fdG/93Plf5OLkeZV9MbUUYPsXSBY3vmA4+d49oX3/QbiPLK0yIRxii2qoQPAogLoSmjkBTYt5a+fOuZ8VnTddh0AXbb+PT3Wu4365tj3huePtPP/OS7z7/afcdjhzsF4h1Tjezcw24btG7QO1GXW9RkqNa6+hpBGzeG5EIFVvCvQ24S0cjcFj39OY0Ho4EVvKnJfWLF2yaMuEdAkkQ9QSHRVsJmwXTGPR4tEKiuyxgrZgmJkEOfpAnKvbG+iFy0gZ0/COUBN5BIAWj31vc0//pxrmmR7cJZPCoAPegiflNXhTJa9ymGrGOZi8MwCa6i9NtLf3hmm0xOvcoUYRa2lYB4kYqSClsu1ToBSa/BYWN3SFJC0H+qIBHRv70Esn2nMZJoMVqD3PZd7DEbURhFyrRHJLFuyGMLgiLmkmmpJyDwNNz8JJ1ZkteEW1JNoTVdByOwTTezHUgjPUslRKD8VdL4snWV4XgTY36niJ4bZ8jm+cMG23Yaiaj3NzKB5XYVlM2OIJ9QzczIzP+IzPuPctb3nLRYD1ev3AF37hF1777dyf3jvDMPwvX/tLv/RLq3vvvXf7iZ/4idsP9rvnPe95v2WFSK2VF7zgBf/H9ylv+Y7d7Rrb3cw8N8ziZu/dmFtnTu+WIvHgej+bF8yStJrmVJ5+HmGpvxBdBVPHiwaUriUt0ENSWUX2QY5e0odCgvNCOiObRTurNQvL/973vAq4efLfT1nnZij3WPVa79BTAm4sO3zunT0nwwYJl5cFioe9p82ydlx7pnWL0x22kJylPVTyAQuT3+y2FDYgZ4XDnhOT3x4OYrE/SSheTpB5aNVCYbJMFUs6+9IS49yfRHf0A0vbz46Zc5+5/PZ8YaNnfzsDfvYwU9Q6jidVVjziDVTBJXKJZgR8zIkhkRhlD/GrFpYYi7NzZnltGzGzxffIvog629PzLauo0xzDaKa88I6Rxx67Ad64cbKlzTPrQTk6LJTaMDrTvGOeNvTtKX2zYZ62zNOGabdjmnZspy3TvIvMtD7j0xbfTtB6qnAmLFsaSzdY1XNejmcxiLmSESU90UdD1DAE0RVFBoqGjFur7O8TVdASXKXFjTzak8Zq6IzzDrt6HBO0Ok2NTWmgnWFw+sqRQdjoDnFjlpBSr8pIzcmy98akTteOL3lK3vep4SXHAuEMlbVc0IgIQ624wzTNzK3ti11Pcq7JWa5bWywCPEjHca9YcE1E0BoRHFKULoGGuAoUzYyraFV2t/3nWvK4xuBE085xv3QYEE+HZk/LCwfxaGMtz374h509EMtdFm7WESuhIiG9L1A8ijKk0EUj2FMroxTGOqClxnsHjSJYYjE6lEI9XMOwoo4r9LZLjFcucnT5QmRplQjbjFHOw+2aQM/m/sylFH/zN3/znUthAzDP89MyIH/e533ei97ylrdc+K7v+q67ReTVIvLqd7zjHeOb3vSmiyLy6n/5L//lpZe97GUft1qtXvVv/s2/ufjf//t/X33qp37qvXfccccrDw8PP+HlL3/5x/3wD//wfj9f85rXfOx3fMd33PPWt771goi8+jWvec3HPtXvAJ7YlnrkkUfKF37hF77wjjvueOVqtXrVfffd97J//s//+eVbOY6nakt97/d+7+UXvvCFL1+tVq967Wtf+zHf+q3fesfSEjv/3h/8wR+89FEf9VEvOzw8/ITf9bt+133vec97BoCv/dqvfd4P/dAP3fHv//2/v7Kcmze96U0Xn/jdH8p269lS3pm6ITtBhsiLEc38JHOGMkRxkKZVfm4yEy0IPZwwHejh7to93HHDi8PTFrwELG+GSImVFUZPO/ZQgXg238F6D8VLD+g+eDbpbnwerVjQh1RNIZKZLze3X3DDbJtE3xVSBvbKrP1UnOopEu726FU/EcA4Xzl24FRI5Mb3KMkyKS7bE3k1T/17bvr9/6o4WiTGy3nI5mJ2fPZU6UBRlrYUsULUzPIJHmOQQOXcid0jTbIHYuI7Ftjq3HbTPsiC5rFcqj0R3ZdjX9pqJqHESUK678mYQTD3UkL6i4O3aG9KDf4BisoQKIAIUkFsRNqMU3GfghCa52BhJMW+VM5uoiwKFrWUyRnsvxQ+OTnpODDvBh559CrPfc5ljnc7LsxrhkE5qAO6Kkyz0zqYN3aTUbTn6lkg1VSq4K0FImkScQZVsCkQSaVEpIAnsbl2vNkeCVzy3kKd5FQpmEWwqqhSx7hD2zTHebVYYMhQ0RYQ6SwdTaJx95GiDaTS1VkNnavbh7HdEZSB5sEXMeusm4TcWAOt8G1nHAGxUEMZlO6UldJruCFjhtaSSsxshzTbk/K1Jx9PUq/ohmJIZnO13hksizkPzp2UKH/Fw3tHxfA5xopVrUnI9b1zr8i+mUVNtVKQsiulG95mfEjybxYnTsUKCD1QWq24tfSaigDfGCg7psE30gzwtPSZAg91VD4BmqzkuCZZcJ5DXhXwQrbrfT8GqQgtoa/ee/B7XNiJsSqxkBkPDjisxg0dcB2YVLm0qpxeu0rbOqUOzK1HDpuXMAHt/8cv1H9D27vf/e7ha7/2a1/4v+O7vv3bv/1X3/Wud61f8pKXbN74xje+FwJR+cVf/MUVwDd8wzc8/xu/8Rt/7WM+5mN2d955Z3vXu941fvqnf/q1b/zGb3zver327/zO77zj8z//8+/7+Z//+V+47777ph/90R994E/9qT/1/Le//e0H/+pf/asHVquVAzzV785vvXd+z+/5PfednJyU7/zO73z3x37sx25/9md/9qCUcistgydtb3/728cv/dIvvffLvuzL3v8n/sSfePi//tf/evgN3/ANH/nE1223W/2mb/qme777u7/73arKl3zJl7z4q77qq57/Iz/yI+/+y3/5Lz/4jne8Y33jxo3yz/7ZP3s3wN133/2bqqhvvbjBkQ5Tb5gLq7JiGJI8a471noF3StW6b0v1xRKdICKHrDCm00HD5KpZmKt1c5rPUT54rBAjqDIIlXh8Hj1mxL7Iv5vTm93sxyDEoE9OwDnAAftZeD+JLttCZMWBKeEcI2bE4PUsPBBZ3JQxGtCI+Ia0oNgXNpb7Yh7FzdnV8rPJ/twt9STuzcI7uWk7jxqcK3D2h3K+BbQUCQvCICyVhyyBRdniEbIFqCWCGDVbft0Sn1gKo/1JjG9I5U34jOS/PWG/o5Zb9muvscrXBoLk59tORJvAYiYDLC3NFJWOiWBWKOogaSegO5SCSKEWZ1aLaA40XK4trzELjySKu6I1EQ1n3+6RWIG7ldiXhdQqQSLfn+mlJiak0kL40pyebPnl9448907DpXF9e8pY1/joqNVIlZazcNVuMzqVRE4yFNYF+qLQUVoLH6fOEgAqiBtNG2GtsKAB8Yx5nnNPVC0QV6fUEaNQu9NbtugIyXjxiu5RlJhUhxakYu8FmHCg1sKqG7Vtma9eo64v0GtBPcwhT4vG+8ZCFU9FInRtNBWqRlq7IBneGkaQYx6rebSkSeKuWqcRz2OVFCUsz0J65DBHgGsdK/S4x5ooxRMFKoWxd6wYvZQ4PtW0iQh0uBPqt8XFWhC6xp/SCq2Gf1S1TpEahaMKHUs1U8rZJe5lUaf0JMtbFCxaS7Tlei7qpOR3GlYKpkK1wmwTak4pha5QPZZTakLXDN3sgXqbGbWW4GXVAjZHm90lW25BHq5IeDzVQw7WI6eirLWw2xxzYRjYXjth3mypEgiVE8diTwuW8du7mRlf8iVf8r+lsAG44447+jAMfnBwYE/V1vmGb/iGX/+cz/mc68vf77nnns0nfdInbZa/f/M3f/Ov/+t//a9v+/7v//7Lf/Ev/sWH77nnnn5wcGDDMPj5z3uq353f/tW/+leXfv7nf/7oZ37mZ37hFa94xQ7gpS996fQbPa5v+ZZvuevFL37x9tu+7dt+DeCVr3zl7hd+4RcOvvVbv/W551/XWpPv+I7v+JWXvexlO4A/9sf+2Pv/9t/+288DuHz5sq3Xa9vtdvJb1fK65bZU1ApBvJzbzLSd2G0Mejhk7nZzOL6Kprw2JzY32jzR5kafQxbqXuKhnMImfp6c3QzbyZknY945bWe0aaZNDTp4c+apM20bJyc7Tk62bDYTu118tvWEQfZN6DNk4fxBPBXK8STFEeDecZ+TgzPnSjnkqviSKhWT7Ux41xSJpPHlj8De0Ow6cHoeIPLlz5OL5Sf/7qkVUU9SS51HqVgQqpvApJyAJVGaBWyIBOYoagaGobAWxTvpFRS4fhBYOUtgT2J10SHUHctkytl/z85pfs6yezf/cIb6eCJkqcISJLjrSKph8swLkYJdQBhRRqDSpeKlAgOjrmISJUi3LQno1vu+sBGUmq0Y1Sh0Sqnpkr0UO8s+Lvt1dh2WcNaFdGlqtM3MydVTHnjPo/zsA9dCTuzG9ZPrVHNq8TB7dJCmYVYXU3GSVmfMJ3qfmK0x9Zm5Z5vM8uyKIwXKqjDUMO9Tr0DInCtkAnW0FR0DnSnDQKmVomPwOwgyay0wiIYkuThU23NNRMj2TbRwUMEy8fxIhX7yMNPJNYbWadqZcSZ3enF6m2kCU3W6dEYqA0M69cYEE62fQhFhthZFjETxY0XY+cwsYSTo+Z4lY8kAtNDdmdoUUm/vqHZEAklGgRKxCRKyJFpvGVC6LDICKSqSBnsq2c4KDlTxVBYWPVN9CuEs7IU9wV0ANUziPWih6/IQni1GcEArzkD38AWKmzAKfUm/ICklC+pFDajhTGyBgncFkpDsKeMqtSK1oiXuZSkDVQckXZy1Rit3LCOHq0usL15hffEKh7ffyaXn3s3h3bejQ2UcB2r29Z+JlJtv+7Zvu/0nfuInLgP82T/7Z9/7270/r3vd607O//3atWv6FV/xFc//qI/6qJddvHjx/sPDw09417vetf6VX/mV1W/me376p3/64J577pmWwuY3u/3iL/7i+pWvfOXp+d+99rWvPXni69brtS2FDcDznve8+bHHHrtlgOVD3W79g88VDo4xzzOtteC2QPBkKljr9BlaS4yikysaaNbDLaxbSCMlYPXWZowZLSFL7d3orYfEsTtuytw6rfXIhrEEju2MC/FURcJNhNtbANwWvslylNE2mcE7KpnRsG+pBM4gUjAtiDcGa1QsJdVnk/V1hauWBMl97+oD79B5UrE8xe8/MHnYWWwJgb3R4r7VAok65DEkCqHJQ6k6xOqxdXbe9uTvWIOm9Jq+57As/jZCcFe82E38laVVtZzbM6QqMHZHE/Xx5EfJzce8tKxE9+93cVxzpSuGM2T70ukpMW4yU32d0L6BW0ZYFRbJdk8juEXBB8ElKmVIYuUcYY/hMnfm0SR6BtdAnGvPI1xIQd65cX3imt3g/dcqD1+9yPjcA1anO66fFC5fPGA1DiCN7bxN7x1DZMwQx0CxJNuJJpJ5rZnOLHG9grgbrTIp0dAoaEyave+fwcXUsQxBWm7N8bnjhL+LYeCRfxRcDljYcGYeaFIXsAZe0KKsrIN2vBbqrnN64zHGg9soteJ95qgLbbUEWlZ2RfFZad0Yx/iM7p0ZGDvYUOhtBhVGESxVdMWgSGXyHZMvT2bct573lYtCKVif6dOErgZ6ieJC7cyZwlVhGLF0Ypbl3OSndrGzz05kbyHNi0rkhLU5sr80MrJMouhGM/LVI8W7hBsigbIaiGM+UCXOSSCNisnyXHR61q6a3CZVjWtY4vMiUBWsKj57FD8sbtzh6SQSrSrSXbz1FtlWEnYFuqCWtdBbupNbYRzWtHnL6uCIcRgZtHL62OP0k22O8c+86uYbvuEbnr/8/C3f8i17lOHLv/zLP2q32737K77iKx7/37k/T1QzfeVXfuXzf+InfuLSX/trf+3XXvKSl+wODw/t9a9//b3TNP2mcLSnSwn2v9pqrTd9762LZ36D33erL/RzA0tMdpFb41NjEXKHrDeUCacJ3U/bxmmPiWOoQlFHtTL3mWma6daZW0Ol4ppOuB7EYE2J7WJOZhZkQ98vkZxbOTfnT+LNeMKTj+/mNzpBEQbzkoVDFDgxuQMexOiNFMbiHO5jFYLQeoxz1aMUOvsKv7mAeaqLnIPq+dec/+8Hk4EvxYOeVRPn/l+WuTgWxyi1hhup9c6UE37GF0ax54t1/fK90TrwlGyb9ZwgCiKdpOBw0/V5YkF2rq127pecYw2zACUQ5myaxVaoRmLFbAZVopW59zkxR7QzeWjaSl7KRVXUuzHPU0QU5A4Wjet7xqVJB196gkjL7xflmZ07pihIVBVkoNvE1c0p6yPlyhXloMB4KIy9wnbDpowMo1JHGFVpLVoWohHK6p6tTSl5HQORCUTBaAuappWJFjEERRHTWBRoYdct2lfiiAtDGeguCDONjCDA0spfKWNBTfA5ojZMBqiCtwl1qFaQ4jQrdG1hl+CVUhqHK+X0+DrtymMUuYKNwilG7VCqsvUZbGDyuKfmMrMqqzim7uyIhc6CjPS68OECbfGq9C6hlsx70OzMSiDOV8FozHOjTw1fJyfGnbQcD+RHS7QpM6h3uYwu4T/j5uBKObesiHoz1FCkuV48Az1Hvh6+PR7Pk6niNmMZnzF0yRaXhrOy6R4JUWnA0tYK12Q0jmtQZVoUn5qO2ShWBM9Ec12UopKpaE4ULKqx4x7EZPU8FwhWwsaiCPkMCDquIn5i2qF1xerSZdyMDUI/2YSr9jNs22635dzP++qt9y7veMc71k/Hdw7DYP0WydlvfetbL3z+53/+o1/8xV98FQLJee973zv+Zvfh/vvvP33ooYfGn/u5n1v9VqA399133/bHfuzHLp//3Zvf/OajD/VzxnF0s9+6BuiHDAntyZMpzbXFCIS2R2ikK+mewGa75WTX0u8mUouRinnD6bR5pjdwjxXG4tcRRNJlAoz+9740yRXV+Sn7yft5VgTkD3s3z1vezhcc6WkTeEM5Z5keA/GMcn1ZyeFsBLae0u+n2M+nLqbYk3P3E+cTWiBPPL4nvR9PtIZEoYKEve+yiFJKQTVbOlLx7sxLuKh4TghzwPjnEKTzxZEun+8ReSHJ91heIVnMnZVXvv/X/c6y5H4tqAwpmz2T+QcZ1Pb8ipCMhzQ2/FwmXEpKnA3xAlQ6DdEhPD9c6N6xZtCiiLPe8SxcQzEVeUN4CPwh0IO6+MJYoIZLYRqtniCAVs1Wq4DIDAjHu46uVrzvV5TnHxrPPS1sS2dsE9YnWpsZdGCQgmgW88QEH0vxkqqzkOFYS55Sye+zmKTrYu3fYhI0V7x1xILMG9YNlT47ve+wlnyx5Sg9JtIiA64ROCup3umtUdWiHWuka27BpMW5EcfUOKjGyI7ttasc3nkJemWnjkyBDJTeoYQPzWTOgRT6EN5REo6gQQavUez0uUGp4eeiIBYtU8f2oajNLRAJD2+hQBAVvNF3M2V9EMG30ulSkDQgVImC0jxaU+E5FCimevBdwtgxUKEuSe4lFVN1CMSjO0MJJCTQI5adoItDKZEfJoWuI7QGCm2eGUusLFQLbrEvrukW7aFQWpDKIhKmqaJUSjCeRCk1KAKiQvEomqKKF0Q9XJgtwlaXQE+RNHJ0YydGrUPEWaQJptYRhonjk2MOhjWyXnHh7js4vXodHrn65PHmw3z7vu/7vgfe+c53rgB+5Vd+ZVw4In/kj/yRh//Un/pTDz8d3/mCF7xg+umf/ukL73jHO8ZLly7Z3Xff/QH5JS960Yt2b3rTm277nM/5nKsiwl/6S3/pI9w/5FnsSdtnfdZnHf+O3/E7brz+9a+/941vfOOvfdzHfdz2537u59aqyutf//rr/+tPuHn76q/+6oe/4zu+456v/Mqv/Iiv/MqvfOTNb37z4b/4F//iTvgA89QH2F74whfu/sN/+A+XfvZnf3Z1991399tvv70/FSH6Vrdb59zI+YIhJrW9B0q8IsoQCernQro0a5hN9LZlaltONxtOTk/ZbLZsT7fMU8NSWt36HEWPNazPuLfkvgReK3voH5ai5wNtT1Qg7btq/uTX3RI05tGmQjouM24zTqdLWOLP0tm48KgL7wcedzhBkp74wfb0yYXO4pmxAOZ7RCZbQYssF4J7sXf2dc/CQrMAiNVltIACnq81+BVFRzDdZ3JFVEXLSsxJHfxN50cSsVoKlzPejuT9cIaEPOmceqAbN6Md8fsowCQ6PEn+RC15xA3HKOKhMvFF/O2YNpRK12hL+FBhrJSDgfXhIUc1CoLZGm2ycMOeJ6xvacxRHLmkUZ9kCR1eMNG0ObfC8qWFsZQ+sv+v533pXug9+B+7nXK8bVyfH+XR8igPHW85GtfsWkF9F1iPFDSAKJxQ+3gXbHakR7BkIAMlIw2iWCmlhpS9hO0+JjQPqTOeGUyrwrBeU8sQpmzeg7vWo6g0a4gKQ1FWQ06mrpT0rXINnHK9OOWKoDKk1Nxjsi2VoVQGFS5XkBtXadMpTB2dhTkl62KKNmVrjs2h1hpMGPN7qoW8uZSMNqGj9PTqCYecIO9qug1LSMlb8KfC6fiMl7Xpc4T1iiBSyOEjCddQBigEDwUhPzOOu3jsSxCK49xLqCZQMVbDOpLE6ciCwChBRk6/G73peQWXHsiJEB5CYomkKK0IrQa64iU4Npr3M1LwYWTCmdoc7aZSssUWRVRP9+nF9VglECsXpxei/ZQqONOwrRCNzDtzx0TCD6copVRWqxWXDi+jw8D64kXmUiiXLjLe/iEvxP+P3z77sz/7xtd93dc98nVf93WPfNEXfdFjy+8/8zM/89pHfuRHPi3ysL/wF/7Cg6UUv//++1/2vOc975UPPPDAB0RivvVbv/VXL1++3D71Uz/1JZ/7uZ/70b/39/7eay996UtPP9DrP5TtR37kR37pla985emXfdmXvfj+++9/+dd//dc/v7X2GyqcXvKSl0zf/d3f/Uv/+l//69s+8RM/8WXf8R3fcdfXfu3Xvg+C3Hyrn/PVX/3Vj7z4xS/efvInf/JLn/e8573y3/27f3fhN7I/yya32vNS1agP9m0SznrenKlzFjTlExx+Gng18d94T0wHnpXGEnx4tjfnfjjfshG4mcxxCwf2Qfp5v+FenywFR7QFRDXMwUiS4d5Z1m86J/AUBcwTkaWlYDF/0r/LnquT+mpZzvxSOPmyaGRpZ519USAhqtHWWFqH7oJ5y3PRMZOYuJJzYf2MGpxUSWyP3eT+LF0kgmD8xHPFE69ttpgW/lMUwKHkEBb+lJ4r5pYjjgTtIiETLhJqkSgMJCz1RaCM1EEpq8JRX3HST9ld77Q+h5Fdb9lO7Qnja6pYEhGSgOjF656vVET2q3wRzvYdx8Wy4F64WFn0U6gYrpXbr1zmj3zWfRxdusxzbz9gevQ6dVxzcLhmNYyorjCZ6Ci7Zigj4mGbHwiOEG7Ykv5QJSS+3XEKvcd17BAhkiaZGeQReDo1egsRwNwauymIyoZl2vtM94b1eKB7C2+jWYCpYWyZ5kKfZnprQRBuna01ZA4e3Xa3Y7ebef9pY3vpeYx3PI+1DWgpWIWhjthYeM7hiiuXR267cpnVhQPKIMw91D1aKz5UmnUkHcbDSDMjMmbBpolpuw2JdLdAXjAoQvWSXO9QQ104OqCOA2LRQvchkK6omDvz3NAumHfK6ih0UQ7iIX0XI9PFlcULyYFixm67QRTGMmDDuC8qeg8Vn+P0eY54iKkj0yl9BjSiEcZ6SK0rTAtew8g0SPKVUge6N9TDZ0Zap+1OA4k5WGPEIkAMtLdMNg/0VEsscDzHoiaObWd6b0EkP6fQEov2rCzt4RY/d2kxjE1bWofrm4dh6nz8tWv847e8HeDVuC9D+m/b9ra3ve0ltdb/67777js+PDzc/q/f8cE3M+P7vu/7rkzTJE+nQ/H/XbY/9+f+3HP+yT/5J3c/+OCDP/db+bmnp6frX/zFX7zQWvv0V7/61W//YK/9kDk3y0Tr8Zf9POrnJr7zc6s/6TPOiqMnfwnnCpwnv/+3avvNkJiWskK1IBquyp6p0fu9lQUi/wAoBjefz716IguZBQHLF5y14vY9qvg/338XWUxku+bsRctH7D/XenAwoCdvxZKjIsG7QOgtCIT778sZfenp74sUOduXs0L17NtvvpTLMbK/+Gfy9fPnp7PnNeFR++R7xMEKaPIwVqXCYIgNQehUYaVD2OUDdKErESbpRCsuDjmk4RL+MKrp5ZGeI7bfB6KNJ2Eg59hNrU3J4xVK1uM9z0MDLbjMPH6y46cfuMEnvuIyjtJFUZtpuwHpnXHlyPD/b+9dfi1Lk+u+X0R8e59zb2ZWNasf7CaalCmakElBmpQfom3IMGDY8MyGp4IBzeS/whOD4IiwJ5wRMPw3eKIRp4INQtZAEAwJps0Wu0l21yMrH/eevb8vwoOIvc+5mVlVWdXF7q7GiWYlM+89j/0651t7xYq18lgfW3qiDE92JGiZ9k327KRcCcyE7p0YOcGnUsGJ4RXhoPQ4JbPgQu8JBNaeWfRmExTQC1FEW7INnteGhzMY0BR3y3YxKXCNVgAgBNcSkGt68tyqcf/sKTeP32MchJMt6Gg58t4nnvdAe/AN74hmorVEppljjdBkLWLAMtZkh8TKINNz6kg1Q3elWq6iya/VdZR67+B+XTg0w0Qx0pBPGhVvcCDE6PdrAVSYJK8VkRojlxzt9s0ItITvosFsxv1Y0pGiTTkKrl7RHqk/a5HtYIBe7seBI26M7ljr2ZoSsJpZsxwFS+ZMBHFJN+IKe7U+0DbRq33fgpQFmDKFsUS2RK3sDyQcj7Wm4vIQmWWLNfV4Rh8Drcm7FPXPDHFoR4jOcX6HYS+JT35qqccvdKkq/+gf/aOPf97b8XWtP/iDP/j27/3e77349re/3f/kT/7k8R/90R999x//43/81z/PbfqSY1gbOxAXi1XU/70dcPhC+OJLgJGvXIVdzEoSChUm6RnZyCbW29isfcF/M0P06s8vp6B2zc2bUN5FS07kEkQ+/Pl+XshePcieeL2hE5Hz+VJV7DDRmjKWXmLNM02xA9dINkM2BojMo3loglGvv10aXB6TV+DOxa5eYLlSDtc71x20kllIs+aIqjQgssWRcRaNpsKsB7wZwco0BJtTMyMqEJ3oQWgaxrmWA64a1Hh4WavsxmpRYGhj1UIuWco9EWhv2cVuxJemfK2d+LO/+An/0d/9Fgd/xAsJ5lgJh74uiAbNJswELfbBNu/AEumn9kZLT5Sc4DzN2R5xYZRdu6w9NTFsI+qRC5fmXfk0GeaBd0nwZVQ2VXpMZSRDnqupwPCIGZUVs9Q1DYFoMHlj1Y540FqDceLRQXjx/I7T04+I9+b0UdIVW4UbnHUFPzVenk7McaDpDaOM5URysglThhhTyxiABDbFlFka8a2eIupwSUDq25i403AmZM/bUiv/n42dI2oCM8+VNgHvTG1OrYxosmMi2dEVcizcpFpVirQJ95Whg+liOipKxB/uUDESI87Xi7gQYogVD4tD4gAANX5JREFUyyLZFjJ0/8iaUyAuc/qGeE4yLSfuLJiQBHyWOprwdEvGUnsUWkoDz6tzao0YPVPhpwPbNKVKnksKFGNCx2naaC74ITi0huo9a3+MHna7lWtd67X61//6Xx//8A//8HtPnz5t3/ve95Z/8k/+yV/9/u///o9+ntv0hcFNvImWeQsg8Wq35OHvXmnRPHjgeaHeHvsACHzK631V4ObcKZOL3a3giO1usdptSCDl9yL+sFWzGwm+Clo47/elGd/2Xjs4ePA0Of/mjBzqxTbRay6O+TN2lgfKr6bu2hE4HI8cDxPrsjB6sMXyCGdxt9R+yzY14ufX25pHIps+Z+O3Lhioi5067+fFfrABqVqIStuD5N25qSDNmGUiJCd7VkYuXLNwtIB2Q5+USTpE0Jty1GQY1tXTmTfSkt8m3QWVIxTv97vgOrVDJeRlpBg1Uv2ynXupY5dgdFycINlRm1m2GvrS+fO/esZvvPcNbufB8vIOd2FuQdz3akWUeFXqfUZqa3L6UM/ncmhdVxWOGCSw7h1fOzJR/j0TEWuySaQRHCTrIhK5OEqNkee0McRa2VaKSeSEkjSiKT4WiI7GRES2KJNIye2YbGK1E8cZnt59ws3pFp+e5MSSnjjJxM1pYdGZT25OfGMZ2K2i0nISrlgXB8Qmbmk8W+9Zx4qX145klDUmmm1CAipMVGXzisnF28tYVKeJbbpOYqCW225qNE+RdYyVoTNeTI9KBat6Wgg46WczSU0Vkswc2hFWdDRaKKvkJNVKbsZigWlU/ApI6XdCnD6UyTaZfW73UsA6J50ix+ERmBq9tGZiVuabTti0fzaHZFq8M3JEXAXt1LXlOb0pYJJxFptBqlVreOw3boKJM6IRumLHGb9bmI9/Y3Yk1/olqD/+4z/+AfCVhIF+VfXVX7F7q+JhfRbWeCNg2l9uW2IfPvazwMubWJEvUw+M83xbfLff5T+2NVq0/qJW2t7xypazUxmfue1csBj1jzPrEQ+AXWy/e+3lSqCrO6eQJ2ADQjJA0k+jNWM28HVlPY3UbdT9Xc59bToiqUV+EwAn+NkZPOKNxz1vhuvx+6itP2So6jXzX9nuKqKsJj0q8yaEzkAHdCmqfnYmszJdG9AV6ZlndlpIJurU8eE13daRecKOB2bPtkNfO+Ez6UotsC0eo1KbS1Aa5aR9do6mxMDpGyQEEoaTCzLSCBvctom7yZiOnWfPoI88cSOEdblDXg6Ox1tsnukdRghtSkbBJk2nYnLijanOQYcQ49RPxBgZk2GtjO0yN4pJUJuRBewiRRwdaDSaGy6OW0fwPHYq+AAZa7YqPf1ocnc0DfK60u2EI5g7YHgz5jFxaIPj3cLdiztu332HoSm0t1W4F4j2gukT5cW3O4fKbWqSrUYqBd1kovugR/7cIlikWDTLtpWE1qh7EX1jZZKWY+zZ0MM7GU4pDr6wygEZqXOZPMX+a0xMmiPnTQQi22AawVoIvvWcsLK6QwtTDhzp93eMyZGps0jGTPQILDI0poWwNmH1GRknRFZcJmIIa/McFRfjEGn0F5qt3RWhWbapgplgoUHGVoycOotIhidlNim0X6fUHmVSuBPqSGv0vkBkawpLofUayYhKfYlJCEcmVjrDLD9jMWFDcctr7VrX+jrVVw9u3rRuy2f87jPqywZKPvC1+QLA5jUG6dNemwsQUou3lCfJ5gIUnLN9Pm17Xtu/XYNyQcbE1k46A6m94izI3sEV543bDMiiXkP0/OQcCc8JiXV1el8ZPTb9cXWvtumgYmYQXNLoTQqk5TSLPtyw2PZzQ3Psj693vziCFwCSfL99n/ft2EBdOthj+doqGd/hnrb0JiDi9DFY1kFflvQ8WaMO6Mo4GrePb3msM31x7vuC9LXGaTqxu/l6sTWtWAHHpTxxN2ADRTWcz+k2MYNoTnItzvEJ/OY3jyDKO+884dlphXCGn2jzzIiFZTkyxaAdhLFuvi8JMG1DuHloaE1YR8YmTBMwtxpNFlZ3TLIVoyP9UZoaYziqyioDrxHq2FocXiG0NiOMOi1TesyIpxidQbPG8ME4QCyWTkA9cMlroNmRW7tjaS+4f2nE8R1smpCAPq20ZQWbWOUlzz96yrfeeUJ7fMOoFg2S494iQhdhkmQT+/2S484l7tYUzjBGhwCNnNZbR8c03aKVIMaKdqFJQyQDNvM/RSzjC8wjXatj0EL2Fo+MHLEOAHWi13i6Bnow9EVnEqM3oKUHzfAgREt4X87TDcI7DEdGOgn3MvxzKVZn0hQPWzGLpGuzS/ni2IQcgtPSUV+Qw4E2T+Aje4RliDqVa7hHzRPKQNSJuaF3C26bgD9bYV5mhdtNiEskkC6HZAsIjOOx0ew517rW16l+traTXxCrvPWY9ldUr77fgzFouRhDf7gmQ0RNS0n93S+mnD4dLD3Ij1I5Y5OtfcMZD+rF7/fX3IBNoZ59G+Xi9es1ZH9+TkSplHjToS85bZG/i4um1yiQcY5q0MvjEDUtpFLgqg7OhvpqLx4yc6+ydGfAIxswFGfz5/HQFDx7Ti618geRKVtVjAqgJFOXhfRJ8dNCLIPoHbXB8BPalCdPHnO4uQGdWKMctUctKOUto1pu1DVir/Weezx1HdVNW5UrZgJaK42FRIpgI4wPP3Sev2z8yx/es4RxOChqzuFwZJ5nDjcT2nLk2cfCPHVGv6sexcU50VZGgeUaLOVbokqbD7RpwkyZdOKoE1MYMiKFqdtZFcnWxiZS1fTDaa3tLabtHDgB4ogFbTIslEkmVNLef4taEc22lqnnOPE0c/TO6dkHxDhly8s74cG6Dsb9PR9//Jzn9063QTTBW44/l0KMSY1jm3cGzyC1RRLEFqUg5y+wAEZ5EUVE6nSGMNb0pRKf8hoKkBj0qBaPZTDvOnJSrgVMkZ83VLFeYNGEVUnA4gU0J0HXgRZbtFs0aMWuTMlKzj5BKL24XENq4ikZqU65EkfpZDIQjS6SoaItU74FIarVZS6YVEZV5UapNkKEJfI1Q1IrNLUJn6zGz/NgWVR4jCpS55EaQ1c1vMI6txws1V84E780gf8KfF+u9fWpi7Xkc0fMvxpws/cQPuMxb2yf/M3UTwWI5PK/XAy2rtC+CxfAAuqmPzyN4cbYTcBee+lPYaIEykH3vGDGBYDKuIcL0PMq+6Pn1lO2fWJ/8DbavS/IO5MEo0c6ukbfF+eQ85d0TiKfGZj8s9pjuzdO3vk+CM283PjcyNxmv9xuPYuf8XNrb2+DFUAkF2DT3ILI9TazsDYPFrXcLneWuxOnuzVHcT3bKasv0ITDo1sOh2OaocUWITLo7sVStAcAItwgGuULWyPxZw+h2ATXso3N575apPkcMRCcu/vnnO4Xvv9k4sk7weF4k4snA5OJySba7IStOSUVp/R5Wtec2ZKNxRIiOmoplJ1mo7VyVg5DtNG0YZG6is3gTnL6H1WlTQesTWBa4uFso5wjRXI8OsQxs9Kq5PlSlBZKQzEp00I1Wks2YLWBTNCYuBHg/inj9IJ7PyHu0Dvj1HneVz7+5CVPP/6w2EKlxoJywdZsgQ4zaDOocR+d4T1DHOsy2679tAPd7A3SBG8UMF7WYNWVXgDRAg5IgfScFBMy12rUNafbh7JYpJMmvFzx9JWJFOqqpgg3p9a201TMo5StQiplaDGREC31QXiRfpU8bmo0ySmpkIKzkcxOs8zvS4+jCVnr+o/0CZLJiitOQLZ9/DKeK5kYVwNrSE92yaRhMqGWlgMukYGdkiDWWmNWQzWBrbaf7X3wW9RfRsT64sWL25/3hlzrZ1fLsswR0YGPPu+xX11bSqhF7Q2r+s+OfPnq6iFN8ppm6EGnLQIhx2I/q5P2WQzOg79ftJd2FqUQ1mvA5pIouWBCzg7OVK4M+xdmEDxMtt4SsfOLdeuCbG2p1MTUY2uS6iGrdbEPcW6BbSaPG2/wqnZqE2JvjFK23zbPmwAZqEm2IyTZG480QNMYjJbhkCpA93K7dtY+wFcGo3Bo43B74PDoAK2hozEKPLjne2AZuCA4vh0OHWUwOacOJC4ZuVGgN/bzowWAO4FWOrNE8OS7v8LTdeEHf/GMm9tv8u50oM+BWWCqMIL55pAwbwz6mknsvnaWsdCOB8RGJj7LVC1FGGOgFjRRhhcbQE7CeWlkJDoaMFm276Q7a05S01ojuu+dNSGT12Gw5ZRlplpxeLLFBjgtWkZBaIAp0RvhwszCmIJ1dA7L4P75x8x2oM850WYReHfiPvjhB8/41e89p83fAGYgTexEJH13UG6mI8v9oI+MgcA3s4Aaq1eKdczPR8YgCep5/YwR9BiY3SIu+AiaVduqAJ81ZR33hHWYH2drJtJYz0v45pLXhqEZ7GnKWCKjFdpAPcXRjtBE83Hac3JNhdEcHXmxBrAoHLS0LUaGh3oZAFZSeagyiuUJO2DAcrfiDewmhfbpVJ26Iik2tsVAw1GCTtBotFnw0wnvA5sao+5/Rl4IRJS4XCJH4WvqT1SRgNZ+sZib999//5M//dM//d/+8i//8n8Avvno0aOXIpeTFdf6ZSt3l7/6q796x93/d+CDz3v8VwNuglzgN6bjq5pU+gpf623eCzZwwQUgiwf/7/zT2DUt2+L+JmbmwfZLLj6fu0/xugHgq74455DGBCp7M0nKWH/voNWKm9+QyYiQFPx51Lse5zkWnjh1CyasLzxxwnXX2DzEYBtzITvhlSwRld3zEBzK1r7aGKGoSSuPEpbKzuREBQYOjwomDLrmyK/ZEXwwPNDeWZbOOjLotBGpSdCJ6fbI43cf0Q4zXQ7IGPRxYtDBlFkcN0lA5DCwmirp9GJlrFpvsjtz76e09qmOU0Ca7mXOEDpz/ET5F//Hj3j8H36Hu/EO71grEbSjtmIYax+Y3CIMzNbSwayMSjWfWk7QRGTgJ2Gkv46jokQThIbHysoJdSmBsTAq221dVqAmZlQys63ajhqkZ4wGuO1toCBBm2mQ/qWGaTopmxjYoIchU4EAbzQbmAmzDk7rPcvLlzRuGRqYN/owLE588vEzPvroBYdvvEOjTPg0fYNEHI1MdguTDAo9nYievjUh7PoWlWwFu0DTljcZ25RYb/SToTcZOzBEcB2gGY8w2cRJMkYi24kZQImmlqerlAcNxXomwO8oYhPW4BT3mCu9tZz0Q9JbJzbGTGpb0yxRZmUySb8Zzc9yhwRMW8hr5PsjxmoKOrBo6NQJg1WdKQJ0StAXA9ec6nLfPrOGuCEdmggnWRmz0kxYTZn6Fu/gDJdqaQ0mSyA3WoIrrbbcL2D9/rqu/PCHP/zvReSWz+4dXOvrX+Hufx4R/+P777//uW2pr1xQ/PMGNl/2eQ/AyQUD8vobvPlXqlvr6PVfXhr17Z4xb6HHedO+PGB5CkAQG6goN+fIFOBL9UxqWFJPIbVgb+SNFCLZvrwvd3ZrU+Urjcxx8hy1FrUS/G6agZqKusSDKTsoJmD/6ev7ux0TocTZsCczs2mH6uhFeuu0ITRt3K/Bsp7oa9+zsEZ4fiE/bjx574bbR0/o0w1z78RyR6DIYeZmwGBCR4kve7YUTRWPiaidV22oOj462VA4n+8cHw/StK1cWTaA54O//uhj4jG8983fQEKZbltORa3PmA+Hor4G3p8T5Y7cqg2waa16H5RzCtl4aURMQBQIyZVULIXWE8YyFlScpsoyNmYxAVFEzsFZazCE7kH3UT2/vKXPgMkpM4zcmVQYZqw+pVeQbULyaktqYAZtNA4Kiw5uxsInL36C6Ldo04HFBJk67kp79pK/+MlTvvndX2V6Ysk2qdB7TyCrkqCzGYepcXe/5DXoAdiWLFJMR16TWpdHlBFex7EOxD19mtCxNUKV5CKUYU6MlmyJe07HqdMikinaAK1HxkXEhMpAmnC/rns7V710Wip5vlSTkSEZ0BBjKJlRpelo3OYUQFMi4vBsSalqTl6iZdmQwNpI1tFjYDRWgYYxbCZs5Hkz8HUQLXPkouWxyVZzIxbPVtaUn9kWhlraQyiyHz+tbU9riF+4thS1wP1Pf/qnf/q/AN/jZ60hvdbPujrw5++///7yNg/+SsHNGxf2L/NCe7vliwOVNz7+UwDJWz33TS8mZ8iQQuC624vtbYrWqIX/TSPSn8b0XIKeTwVKsAOOy+fsO1nUdxTSkB0W1H8FNDbtze4qrRevVVqLBwdOMts4sUcyB8kaZUtDakJjA3Lnwx6fsq0P9z9p8O1JeZxMz+DMNwOeEkEynNPS6SPo4wRROiAFZrh9css83fDO8Zvc3MzENFifNj6UI9Otc7NOsKzcjZ7b6gGWzJeK0buzLU20IAOc5zQ9k/LCkc37NS72K31vAsF95TQNvnf7LvcfKM+/f8N7v/4u//Zf/Qg8uBvw7o2SUQrKaUkQ0hqYTDkRxCkN2CR9hlQKcOiJiJZttdjeLyMHokIpW21eHxsjVuZ+TWjDEhil4x1GeqsMT/fiLZpD9FBGLcn6uYK2PAdRCccZ0DjR5ZQgp8E0lDGc5if6s6fY7btw6IgYJjcInQ8+/JD7F884PLoFbdlasZamigoS6ffjbcbmlXF3V0CqsXsSke2TGCO32wqokPgr1o73mVBQHcRo2T7MzheHyei9s7jTJ+cgLSef1FFGsi0VseEkwElH52R7Jplhb/3m51Y1WZj8IKQVodXUYQTEgEltv9kx0dINeYmlA/HOLI0hsAj4oeE0lrs7tBtjmjOBPATmGe/3NCrQVxTTlgMDUwKrmSP9/pTHFgG1csMmb2Iina7HCELTSdIknZDnX0Bws9X777//DHj2896Oa/1i1U99xT6YIrr42VZfmEMpYLMvzl9qoz7vLb4A5NrIj8uX3lpElTuzfaFt48s7/bG3X861gZqN6XlTfd5+C5z9beLyh5BAon4hlbq8JZoXVbMlcb/pQGUquxYLkQsh1bJgMtrBaHNDtbzsNyBSC2oCr7PAtjap2jZnN9rzL7eq38U5W6rkB5khtYE6ohyEnXVZ0+StLySjsY00CzePb3n85BHzO7f4sdFtZr2feO6ONuXR4Ygdj8R8zDgCzUBCaaCHnBwBkrIfIzUtm4gzzuDzPPKeCx02M7UjJkfcG4HwpCkffnDin/5fP+Abv/0ev/W7f4/p0Tscj0c8gmU1prkxH4L5YCAnVAVr6RodsRDREXUwT9dbsdTD1AG2GEhURASB6IpZAsLeB9skjqpgk2Fty0WjjnWcR6gdUoEEUllPyjaJF9tVsU+WmWYbDnW0TclyGalt0eBWA1+f8fLZR6ynO+jO6AvrKjx79oKnnzxn9DWF4S4gyijWIqebJIHPPCW7EZJmk+FQrsBa19fGouVlnwLj1QfL4ikkphEETdbUw7jTfMr2liU493BcGiXnJduw242BE3SGJIsl7Yi7cd8dZ01AVhf28PQsCoVogWt9KkSRqWWoZTg9NlYtRb7oDJbZU74ZCkpqeVqb0DYTonTVsikgfWikIZafzWitGK4cC5fYzpMh04SrZutSW0ZItAMRKereW4NseVwbA3Wta3196kuBm/PNvVz87BWA8+Dxr6CDzwAX52X3p/gwvYoNXvn3T9M6y/ZJ0sT6SmtpW8gv3ui1N9+Ym8tx8Qdg8FMYnfPh2IBLsTdveKxvjE26Ce7tp/PmbQv0bjPMrs2JnFRChCGegkMz9NDQ2xmbaxQ4LppMtf9b22vf3teuE6nYhstJqQvGYxMgb14l+91i7qyUeyw+iD5Y+8La1wRVDsMVmw4cb448fvyENt2ih0cEwnrq3K0rxuDJsTHPR1QmxHJCx7Cch2oZ74AYZVeYAZQ9WYQ8rslWiAq7yWQBMjXNhGWVzMCKwcd3wSkWHn/X+e3v/yb2vX/IzXe/w2F2HjUldCX8gMiBZjO3N+8wT3OO56ZlLekonR48ZsmSic47SB7ueF+IcQLW6kLkNFmbhHlSpmbJCNT/suUmaLMcryaBHJFmhVoLXCqsx/7ZbcVWIgmWVFITQxNEHWuSE2DW0MmZBB5PwVifsjx7hr98wXp/x+m0Mj7pPP3gjrV3RmQcgZLTU1LZUqINxxCZksFSYJ+RSuGsitG0oQg2QCTT2XtNjI0+smEYLT1dYqVJJpJLKPM8g2RqfJd8fsZdzCA5Yu0RNT5dNwFiSEvvG9dgaDCcvDmQnK9DlaFKL+1YArgURIc7a6zQdJ+QEgT1/Hx6PU8wQiwfo8JBGtOa4mivD7d6tom7R1klJDuFGk0mmltCcBVGZMp490FEvscIQWQCWk7JIXQJpAndSOH4ta71Naq3Bzfn9ak+NPnPyzvYT2NEdj3FW7x+bLTt5Yr8tpv4Bhbpp65q21yyDTtjU3R+/ng7MBctqP1nn/HybwBab27vbUCKWkilWh/n7SRSxKpI6of3/6TmTmUHHVKU/AY0pe44Q/ILWWwkoLmZOD450EyYSHdV75XnE9ud4RmoXW56kTr7Huzvr+QfFyPjmzNxPt0rhiDHZKN6VXUPmj4j9cUuQQUpCvPNzHRrHG8PtOkG0SOzTrQuLD3DGg+HmeY3dNJmXlWIViCiNY7zDbc6FY/kCBmgmLEFAwXSvi4fkRud+pStlec+0hbA61r24N13lW994wkfvvu7vHP77/Deb/1ntOkdpsOR2+OE2MiEbk8xbiu9hFieRHXJVPO+5Jh4xSiYKJbuhZnB1XJEfFugDMW85YSZOqLJUJwxstZ1k49OULeZNI5axLPFMqodtDE1mfmleR201CVREzvZmjJmnTANJoPDFIzlE+6eP8Xv7pHTJ7SXd/zwJx9x6vfIGKyUfoX056ngMEAwDNMpQUicGJHeOckaJsPo5HXheAZAlgaGSBM8Rk+RsifIGJFi4lka2knGJwYtxn4Nbzg8IoFuj82puq7LMrxTFxopxhVgso37UFTn1JDV60W9xhTK7JYGgmRUSIuBek4FupPj2eW7482ww02a/fkKloBnNGjSMJ0YPTVpLko3GJYGiGLG8XigofmpNZBy9xYFmxvdNJklUcI0vXHyZH/2F9m1rvULVm+vudl1MOwthweLl5wXqdfrclpmo8LPeppdCLu1HzaV6leht/mS9SbBb4KnHFX2i+AoAcK9DLFKU/Mp2/O2P3t1Wy6P1QaiLg37Nn1SHrpqJeXDtj/YzoMU0Lh8fsVmp8/LpNgkzCGEGWMNTGbGMmD1jDIoP5pcO+RCNHxxhVy0zETiASDerpbtAbHZCKRC9MHvvLQN23PPLYISRqszzROtGc1uaHqgLwOT4FAxQK0Jh8nwOOBxn7O4U37NT8vKUAVpaE0ubQ2wTOfOiIG97QWcRU+xb5d7BlR6OBG6mxs6nZuY+Qk33Hzr7zCF8O73/w5Pj0dmH2kWJ5r40zMtOpNBHZtSjCoDcE8jQdZMwh6BjpweQjMfSNnePz9DWx50uvRk9pHv5z9ZmRixdVx2oBbei5E6M4VabcXhHZHI+IaIZHmk4TKQAozWJuYYdO0MS6D3uDVGX7hfXkI4LgsmK09//BP60zvWR462BAlrjGzrjGzbYIMu+Zmz6cA6VsZYEVIbEkBotiaFzd8ljQq7wW2BYp8lJ8OcjOuwbXIsozMkBjY6NIECsYYi4jnRpKB1PWYHzWh9Zu33DF/QOY9vmuRdZIIFwEg2pEA6bSJNJwdaJntonk9BGJX+vfoA0TwOCKskMDGE6CVOFsljGqMm5ySv5z7K+DBjPDJvVph1pkUKrqlhgDpydaV45mz5KOH4NX7hWl+ventwE1unnYs7bLhAPJSN1INmQz738u/xkMmp9gq8wryUuv9n6VD8aRURO1sj8KCltC3oDyetsh5MO21r9Vvuzqu6pTfrms5S4Q0I+o5qtsfV6Sngk07FF9takRFSrSJtgTaDMHzAumYa9+idiGCMbAfoVCLSAT4kha/7yX8IXfa3uvwHJcSOvjMGOQVUEyP7IE5+aYc7aWFSwtmR+hIx4XA4cJgPUFT/yJBjxrhjJTBL47qjZOLxh7NxAO5GYKfMeEqSTegBMaq9sDkW1yLVozOIjaypS//8YRDYF8rAUZ0QcZoYd2vjV/+r/4R/71feQyQ4xg2T3GJ2T5eMDTi0R0wt6GPkOC+KcSAyPImAYkXqzEcnQoh1oNOhRuapFl4ebY9gSPrHxJpj/D6C3oO1R4ahB2XFP3aQGVA6kGCEQQxUPF2AY6A0RAaLdMwa4hPYS7o6PlIIHqLMk+ExE2MhcB5ZAxZ8HSzPhInG+uIpH3z8lG9857voJBkYKYJ4OmQPH6m70mCYEGp0M8RHxkqQ7TFHcopOOIvPqw2nnhNEY07NlTgMViQCYSIa6M3MevcSljuOkyHSiFGAMgL1BPTN00eIENQaLj0fo6SY3xQdQh/pIeTu+42bkUxK12R5hjhdB7T81tTKthpbQKvlmTchAzEjWAykTdytA3GhHRoTQpl074BJNAXdOk+ZkzWCsEY/zul5s6yEHGhtokmk03Ezlr7QSh80fCDlHn2ta32d6guAGz/fiMsr/MwrC7Zsf1zcue86mwuX2pqB/MxW0musBV8tQ/Np9eA9BTY2IU3dLlmT3CZVPW/XTlvILoS9+MUXev8NnezgoP7iZbr1aklSMw8efz5vl4/U+sKtHKNqM0QovgRE5yQKmlMb6UYsMCf9rarlTFxi5Q3k1hueCb3tGGztm8pm2hEtPOB7KiQyiYfMdyKSNQg/sxIjAp2M6TDz5MktfaTQ1mNlXZV2fJyZO/V6NpTF4YXe0TwFw63fcK93dJvokcJZRsCQTNhOfJ03rl5ZUbn0lN8N+776Bti2bB5k2zkMeG4H/t0nv8v3mVBXHs8HZJowXxA5Ai2DG1u2odaRx80sJ3matmy5FKDKxTwBDgojFkbkVEwaLdYUEUCMDL+MPF99HVtUVcYsBOWsvR3/3HGPs6+PSYEdSrwbnu1CK4BaNzeumtlVBK0JcxzSU6g1RnemGdpJWMJh3LO+UGw68qOnn/CbZEtOxRkDDCc0Mmh0sLOmQ2BuR7w7Q31vUyZ4n3BSX7OphiJgtBwN9zXNFanrLduaOTE0A/dTwy3NIWeXYsSiOI181rDU0Zhn+8xUCG/ZCh7JXiGtyOco3JOZUttUm1DtQZJBM0gBcYHnjuTlT8Ha8t0xBJ0qYNV7Ml3lbjhECBqyZGbUgPSzAcwmlIxZsfmIrp0+B80aDUNkVMht5beVsDua1ef1Cm6u9fWqL9RIfXDnHecWQbW7a4GTfd2CM3Mg8pCZucxGysdtHiub/f7r9Wnj0Z+5zT+FBue8vRt7MF4XARco2Pbb645ro8of7sCX2Ib6c18sN+HqxbRVepbUKntxkh6+XS1cccE2UcfcALFMVB6kmZ6CWU1XedLacgvz0ThMMxINd8PDcI9aeC5YjMtz/ZDnO4+YC/ltWgBQXkHFPuqut0TR7nkXHxLYpLTWaNOMTTPt5sDx0RFpR1o7si4DiYbKAXVF+uA+1kyBbq1AjzONkVMo0fAwYjijn9LvhFxQtM6mWRqgbYzNtrn7PtX12WS7XjqQ0zrf/t7MP/u/X/DDEJzBPAt28zgXFQailnfImu0o2T9RAn3Q1wGep2oDLapkUnTOjRcwgMBLEzX2VpmxIqxErKhVfld0hJEMkMse3eGbgaOn+PR8b6KYTGxj0aOuO43ApISsbUrvHBVkKt1NUybLMeNZ4ZE1ZpHcpvU5p48/4Om//THzWMFz1Fws2bvUErUt4wSTlmn25DlTF3ykVomS2Ay0trHk7ZrampBkNufNBypyP3L6LkHTUUA7LAO81bReMdKE0h3WfSotGZZtsKAP38GMh2feVn2vyQYuOYvQhwwmtdSwjc16wUBTPKzSUMprqdjVvCwaqDGZouJYfQcvtd8mmWUVnmPcrQfWE8RaaOmFcvw83DlJsNZeGqSmSg0JodvEoJXnzbWu9fWptwY3l+GMWXEBWF55cFwscvXHw9HZ/YEPX59XAMwuwJP9/fkb/Ix92kj7PkYtcdbV5CPICR7d93ETdhb6KxAXe9vobd/7QZVw9yFb9DqLtUtRtm2DXQtTb5KtpzKGyxZHhQ7E+c5YzZjmTHOOGKgoh8ORm+kGoyGRrY3RM54ArWuBh+B1a5nt5+68pezn/sKAUNVqPDlbH9sOpbA1WxRqik0TalPth9CHMsWRgyu3k4EFcTNhtze0eUKbYpPRrDHPjbBkXsaQbGO4YwHNHR8rvfdkO9wZAcvIhU9NmCYpHXEuBkG2X0Q2CJT/EzkHXsas/M7twP/VP+fZi5UQ4aYp33z0GOYZE0ViJbwR0TjOT5inhuqU26jBiHRP9i7EEGKQrSEmwg/o6UA8VWyRTX+LmqAWIKOu3RwTdoIxBk7Q3XPSKlLSs5NvLkXg5J37/vklQNLrBd0m21KErrKFLApm2+fWaabMU2O2hqlhJkwmNeY/aMsLPvzBD/jxy2c4zhSKqRIyEaqYePrvlDuzDqczGE0JC5xOHyeCtZhB3YF7EBXb4DByX4ePUupkcKwGTCE0Jlo0BEc99gyrHbOXqJdIVmVjwoamCeKme8pYiIwtMOpzZjn1ZZxf1CK3c2HhnhRSoxni2tTQyMgREWH0bPumCzGECUOVZXVOa8e1Ms3ciUmIScEyA6sXcFsrdHQMT1+cgFhX+hgMyeksIi0eFiI1P5qS6DNvf61rfT3qrcHNw0X03G86t2K2RfwVAgHOa5m/8gGpn+0AYOMpLsWuegFqzhTQF9jFt6/LVtQGYvZ9kwtW6lLIW74nXnf6l6/zZd77tRJq5LiO0RZQGa89bAdQFWZ9bg+VFuAyGTxIN9oYQnQy2NBHHXKhrwPvjlpjvm0cjgcmMyQa6zrwnnfZW2L4m7k2zguDxPn81aRR+nDkv/M19gcXNnTcB90TaIQKNk20eaa1GbUcn+5r2vy/HIN7z9C/R6HMNLYM0yUczJjUmJmROZU095xYR6fHghRD0uvOXCTbFY5n28qCZpkQHvs1EHUX76mTKEpFkNRzVPvwx3+18HeP/w8f/fP/k/unK/bJj/nG3Di2iWGOyF2OcYfXYZUKJ5X0eCF1RsvS6euCD09HZgAcH3fc33/AujwnerakglGgvFpPsnFBm3kQOwANqTanZLqUiIPWmLEY1EIcUeye1BSQF/OxvXZ9RtSEZplSria0ZkxTsmYp/M4wVBUyEf3pBzz76CkSQVeIEAbG4pJTQ5KTcYvl2LVIdU5EUvtVWqCosNJgZHCkJQizloyPICw9rydFcRfWnte6jAQPDc2ssj5YfTCiiCPPzK+c0DrfyAh5XTrQ+5rttAFDybYdsOo2e3f59SWZHaVGaNoUGFLJ7plLpvv3nxW7lELmuU0c5lskEqaJQEMIawy1mjDMEW9X6MVQFu3L1A6Izogas2y6sryuJ62QT7Hdnfhsw3mta3096q01N68yC9t6n39/CHwe+raw0/ifugCWlmIbOczXuHzz+mMT8e63Uz8FG/IZz9m+oD3KoVZfZa3Y7Vw2A79tQ3fTuy/8zq9vc67zcvmvC/aGPB6v4sVXjv/2xaequUDtyPPhNm8OxoKyruuuwbF5QgycQYyVcGPpvbQFcWas4rNx8oZrooJz0kGXYrmEFCxQr5PH1Iu52VpnycC0BBflmOveUZuJUAYDa2kyGNZYNHJahAAVbsnx2HsDOwHRaT64J83WGD2F0Q6hW57TyOwiHLFGM0FWiN6BniBg0xwBgSFiOTnrmRCvvtKPzvdunY9/8M/4N/OJv/+dE09ulb9+mtoNs4bYkk7CBUbMFGgsL4XogstgG9J7cOzV4QiT3TB6tpyoduEYyQiMOuY4+PA9p2qHN1skB9vrdtCBRCR7FKnLIjzbRCpUcFIu4COvJ6Umd6SVhiODKQPPRPFoNB9MZrhLAZLU33zy0ccsozP7nN5DtqJqdILQJUea18xUCsnlmJhyskfLx8YdkU5YjvjrPOVNiWqmpJOeQEuk3UCOjudnZtVkB301xhKoLkxtZvNYgkr/3lg6rZsdSwCmS7pWR6RnUkgyH0PHmfkJ8piR4nU1ZW4ziw/WqLwo327sckx70watNRZvks7GSx+IGWrJJLkoIyKnu0a288ZYE4B15xiWbV4zpHdeyOAWkPsTcYSYjBGGSSCe4/428liOz/x0X+tav3j1hZibV9tKn4YttlFoOLdIttqAwpues+krLt+v7uuLuLlkdvhcBufLaHRefd4DgFGL7/6SEcCW63Nmrs5PZN/ez6tX23K57+n1so9BU+yGlDD3FVD52r4WW2NWbZPtzi209uNyYy+BYwKKNmUasDIxtyeEN9ZlwWPUxA5ATjed22SXB5JdK3Hexk2vcGYGIEWYUiyIx8AjM5xEUv+jqvvdv6qgBtYsF+7RK3DQuD3ccjPPHOYptSTl/rqBvImc+qn7azqGxkB757RNYGkvYFH7F+luo2pYa0hrdU3WfhcjIC7VM8jR2ZBKk47Ge0/e429/+4bT3Qf8yvHfoPNTbqaF2ymzofow2nTkcNPQyTJzyIw2BaYLc+mfxijGzTsxOuEr3nsyFhroIdsR7NeHMmIlPFhPzliiWiq+X9ZJShaoEa3gRav90r39nKAzNSaGJuDTdKeWyPHmNN2zOl6aI/pzo81Ka4I1MDMmm9LQDrI16s5PPvgJY5wys4ygRWp0RhOUGRxaJFtSXSFWEVbRXMA9cqItRrJDbaLRkBquNstwTm/l+0JkcKXmvksELeYEW83T78Y30jHNDjGt1lBsl0eZ65UvTJn0CaAZlpXmfZHNHa3PdLLAke+5AoujkZ5BI3JuMFSzFbk5f1v+jKgw1CmB0/3pDj8NiLQ/UA+mZnjaCOaXvDtjHZwEBo6p8Hiai43Lz17xqdlyNmWtD3GPK7S51tevvpDPzZlDuGhFfU79zquPe7U19erbxKvMxwU8qj/+Rqel3vDa5++xzfNk2//tr5/KSX3qa37WY85QyPfppwRR1a4ZuRhFbdN2vOTytcpafzf0w+suORcrlY356udtGEDrbJMezQW5v2NqE9Kfcbo/MTwBw+ZuHCOnqFQ2FuCiO78dN6/t3LZ1Y9p3tufcchvbPsN+tyyRLrgHBNZec0CgvTw/AtrSOMaRQ7ykcYTm3FlwMyrZegg21qTmw7lfO+tyx916j94vnJbOupwIz0DE5luWFdl6o3O7NqQJL0dqgEZsAKJgXgTmjq2Drp7H08DGyuP/90P+3j/4db49fsh3nv06cb/Q/vzP+NZHLxgffMLpBIfjAWuNQOnryAggnOPdSwD6ME7rStMZaxPenqIy5XQXvVgIxYekF9Fwug88oC/BMoKlZ6svNTaRRngE7oPRc2HtdX35WJIpitgZoyDwECIWwpURg95P4OXk7EHEWp8ZJYYTvjLWzjpg6c7qwcmDBeE+lD4GIfDuj/6aX/uz/4/bx59km8vTAmDpA5bOuiysxRr6uiLrYO0JUX0s2HDuZXDbZrTNMKXQGhVMhWljaqxaSZKO0xrZfk2tkuG+MCL3vc1H0i1ZihlKkbaV7k4tmSUJR5bO6ANagmCj2LPeUXf6WAtvTon7p0ZrNzjB6ittnmhMhLUEjQh9DFQ6Hi2n0MSy7VYWCb7csfSeYPFwyI9xd1Rg9KW+o6SeE3k8IphCWb0zTvfY6OjhwLDUHA3vKRYanRZBE/j+j3/8+d9h17rWL1DJ2wIF0VxNH4w2v/rcvLkD4NeBfwU8+mq281rXuta1rvXzrZfA7xDx5z/vDbnWtT6v3h7cyIW646EM5PJBXNIuvw5866fdwq+gLjDXl3vcG37xaqPpkjmJi8d81vtePv7ysTtLJedJovCtTXZmiV7T29T/3zOvtlcr75L9FMrmr/H6pJs2g3ZgmjIjSUTAPRma3jktS3qibJ41aWtXLbRtquYVGrvuOFOoVdoq8t/ZzSu3Y9k0K/k4ALWG2AGbGtZsz7TyGs1vIQwJhjiHNjM/esxhvkGmiWkix5Jbq/HcTphh7izryssXd/SPX7KcXrL4AgZzKP3UGb3kEeQfPjW+8fgJqPHx3XP0/h56Z89c3/fBMBEmUxYGUwg8OvDf/Re/w+/87b/Nf/xf/7dM7ft43KN/8U9Zn/2EH3/4ko9fdvqaYYtmgYQSzIQEy3rPcn9CwghpBCsewvBkADDDNEW/XqfcR7Cc1pwwIvDV6RGs7izLQl8j22aVnp1i2dQWpW1M2vtHBDKSRVhHTtZETRk5TviSz+2DIV4sUAVBVuvTo+PLCpGC23Xp3J8690vntK6soya13nuHf/hf/ufYt34NmW+TfQjnfgxk6fTTib6s9OVE946sA10Dls4p7lGNEvamyDiacrAp22TN9jZtiGTIqJMC8VE6lKmYQmBdFyS0ojDmai+lBmnpaTY5SsumoWA5Ir4unUmEpunaHAGjRtXTGSDN8gjBJyVsQmymdeeOZFAmm2s+SXAX1AerCMogtDFFttc66c0k9wsvfUXmmUObkhGNAEZeyw0Yo5jSmpYcgxbQfcD9fXpeH2duZeZkqdnRCLT3ZH1U+J//1z/+W1dgc62vS719W+qyHvRALn/+cLX9Qf0HnMV0f5MtpU+pB07BX/S5+spzC3C86We8+vNP24ZXQOD2+8u6dG2+bOXFBQx67Tm5Abz20wcyp6jR7c2n5WJ/ZE6tjSnT8SZFn30FcfoY3C0dH2k9H5IaH9P0CjlLjuKBFmrTakhtB5rjwrt+mBIoiJ1bbZItKZEMslRTDocpQwo9/Tk2vRNL5koto/Pk5h0Ot49ppYvh0JhmYzrOBIoug27Bag739ywBJwdWGH6DLoP11HkZnpMupUOI2u5v2YSq8pG0imuwBHMlsogoq0cTmm1ATfntf/Ab/NrvfZ9/0d7h3/8P/lOUXwF/Ad/9l7QPZ/RHz7j75I7TkpM7x+MBX4JljZIsPWZZFpYlAYPNShD0tcTdlnZ1lLttghkIV3qNFscQljU49cHoK0tfM4NpSLnoBjE84yhHCpf7qGypkeCljxNLX8ooMFtSMRruwTqC0Hx31mpPSV0XYyGOc0YqrEaszsuXKy9t4UWdu3RLDn713fd49J1fwx/dMk8T7nA3BrKu3L+44/70Ertb6OtCXzu2Dni5sLYVu8nU6zFylF8nYzreYDKh05TiW5FMtqiwVZWgdaeLIHPqdFwCG4PTi85onUc3t4ROuDhGsCzZyg3NqSYT5aQOYiwv7hhj4dCydciIBDfhjK44I72MHNYGTAfmwyP0tPBSBzE1jnJAmhDS0AHESO+e6NyHcCMzq+bn70aE9flzXo4TejSO7YZBw4HWe4JBXVNw7HljYdOErx0LYDjL/XPMg5hmYp5QqXw6QJaFFhAWXIHNtb5O9eXADfBWfMjlIh7xuQ9/+NSfApC88tyfSqOz62rqtV9/swIP8uBxD3KzNoHwvl2vb8+D358FRjsYFCkHVh4CHC7/9sZTcp70CNEScMr5d2wOwmkmFzguE8NXZhr04O75i1rwNiOyXMy1UrFF8857SwXP/RD2qShI3YqkA/LGQiUOCjaBcyldAWrc2oAJtQNGw0WROcM0j5W8fRcv6UvHpNGXwaEHi98zTzeoC0uH9nwQ5rzUXFFywWjEfODJ0VhMWZ7fc3c/OJ1W1ogchyZ1NOlpoyzhCCMnqCKhTxrs1yRdpFEc7ogYTRrzN9/hv/nd3+Jbv/ouv/n+36fFLYgwbEUO76DzB9zcHLh5fldZRwd8PAIbtHHidHcivDM1ZUyO33dGT+8eWBENMjnKcV+TdUGI0ntExTjkTzoaaYjYBNBGD1hW3/PBZHSMBNQWRoQX+5MMoEmlhwNJ3wQuUT4rm1DWUfXSXwm9pbZqdmERIVowNWGegnXUNluw3J/46/uX/C16GiCuaSs31xSlm7PqOAeAeul9dMDRMGusaxrVEUELyxDJI6Awm9U9VhSbWCPSk+5hm7GsmLWcAJsEmYRgzQk4ciopp/Vy7H9E6m9mz+mpk6SoODRBo1V+V+rfihkSydymCGRAHx1vKcJe75YUzU9HOspNM0a/x3r62gxV7iUduw8ouo404BNlWTphXm7GwTBnnYPRU5ytMiV7OQBprDp4JMoqM6OvjFiwOd28e7lDN1Mq6vxa1/pa1Vu3pa51rWtd61rXuta1vg71heIXrnWta13rWte61rV+0esKbq51rWtd61rXutYvVV3BzbWuda1rXeta1/qlqiu4uda1rnWta13rWr9UdQU317rWta51rWtd65eqruDmWte61rWuda1r/VLVFdxc61rXuta1rnWtX6q6gptrXeta17rWta71S1VXcHOta13rWte61rV+qer/B4JisBxIlMAhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000341828.jpg | idx 104 | class person\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGVCAYAAAAsUfFEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9yY+seXrfh35jzpgzIsdTZ6iqrlPVXV3NbnaTTUmUSXAhwQsa4EYrA7YB7wwY8B9gXOCuvdLGgLcX1kLQcK2NRViyAIEA1RwEqtndZPVQ4xny5BxzZMZ8F5mfJ77vW1kkT1nZXNz4AQfnnMyI9/2Nz/N9vs/wy6xWK23apm3apm3apm3apv1ttezfdgc2bdM2bdM2bdM27f+/2waMbNqmbdqmbdqmbdrfatuAkU3btE3btE3btE37W20bMLJpm7Zpm7Zpm7Zpf6ttA0Y2bdM2bdM2bdM27W+1bcDIpm3apm3apm3apv2ttg0Y2bRN27RN27RN27S/1bYBI5u2aZu2aZu2aZv2t9o2YGTTNm3TNm3TNm3T/lZb/m/6wWw2u1qtVspms1oul8pkMpKk1WqlTCYjKrn6z73xc1r683c1/136fbyTPmWza1y1XC6Vy+Xi38vlMn6fzWbjezyL5+bz+UTfGCs/47uLxUKZTCaeyWe8r/TP52uxWCibzcb3M5lM/C6Xy0Wf/DnpfvocpN/Jz70/Pr70s3zd+D99W61W0Seel17n9Np739Kf+5u29HP/qnH7WP+6fXfXd++a27vaXf25a+zsj/Q7/qrn+Gfumqe7+vZXzctd40k/18/AXXPi//a9vFwuVSgUNJ/PlcvltFwu4zPpsd/V93w+H/s9LUckxZm9a3z028+5nzE/a3yW85Y+h+kx+VrwPsbm7+c8MH6eI0mz2SzmJJ/PJ37HO1xeTafTeF4mk9FsNos++t+cx8VikVgblx28I70nmW9+5zImLRf8e+l+0JbL5V99UDZt0/4ftMzfVFFkMplV+tCmQYn/7ssUin/2jnd84cDdpQSy2eydwuouwHKXwqX5IU0DnLuen+5r+ncOjBaLRWIc/B/h6IrfBctdyikt6P3//veXKWQXgggZH6crdf+Zfzc9Rv9/GgDdNVdf1s+/7t9fBmb+KgCRHlv6eT5Hf9Vevuu56X2YVqj+zLTC+zKQ5gr1rwI7fI/5Tr//rwNYd4GSu/rv++6ucd2119LzjOLjd/Q3n89rPp8nzgoK3PueNh587Ol96yAGQIDyxsBIn0f/nIMaPuuGxl3ru1gsEu9Nzxu/4+eu2GezWTwnn88rm81qMploPp8rk8moUCgkDBjklJ/jL9tXd53D9PvTZ8PXKP291LM3YGTT7q39jcHIe5nM6sHtv3MIWR5y+/fq9t8r3fh/ppKu+cyXKNpEZ+4QincJgrsAioMPf34om9VK2Tssir9OqbkFmO5n+h3pA+2C1K0jfpceZ1qJ3jX2L1P6X8aGxHMlZTMZLVerxHpJyfVTSqhlczktDTTdvkDLxSJ+l56zNLC7i02Lz9v7/f9ppf9lc8Xv7gKk/D+TzUqr1V+peO+at78OZN31nb8KRKTfn+7rXQAqPS7/nH83bcWy5j6Xd70vrTQz2Wyc4aUr6lxOqxRLaANZn/vbPbZyRXn78wCut3vwLsCBoZEGXZISAIAGywCASe8H6YYhmM1mX5hXfx7nnOYMCyAhDVzuAkZ8F+Dl/fcGyKDfvCP9bNYVgJSeD98vy+VS8v2dMhT8szyLPvCZi0xGz24/6/26HdcGjGzavbW/GRjJZCrX0mjr/vuzaZu2aZu2aX9LbSTpv2i39SKbVb/fDxZH2oCRTbvf9jeNGSltSfr/SPpcUrFQUKNe10prvyTIfWtrS7VaTYXFQsXVSv/x8WMNjVacz+eS1haQtPbRQrm65YL1hvWEhQPtOpvNNJlMwmeby+VUKpWCnoX2xALinW6tbG1tqVQqabFYaD6fB81ar9e1XC5VLBZjfDwrl8spn88rl8uFlZPL5TSZTNTpdFQoFJTNZjUcjTS/9QevVivt7u6q0WhoPp+rVCppNpvFv/P5fPTh6upKo9FIk8kkLM3JZKKtra34fDab1UrS6raPd8V2pK2gYrEYfn8oc/dLT2cz5W/HVqvVdHl5mfiObtec79dqtbAOWRtJYVEx7mKxmPg+n2MO8cNj6V5fX6vb6+n66kpXV1exL3yPSGt3gFuak8kk3s2ew6J0aw+6nv7ye/rA3mZdMpmMSqVSzD1zUigUlMlkNJ/P1ev1Ym/WajXN53ONx2MVCoXYb75/WRfo+uvr61gT9nTaDZPP53V9fa1cLqdCoaBWq6W33npLkvTy5cuYP/ZAsVhUtVqNPuAeWCwWKhaLkqTJZJKg/51JyOfz2traUiaTiXlxBoKz4e7OxWKhfD6v8XgcLAF92CqXdTUer8/r1paKhYImk4nG47Hm87mm02nEVWQyGVWr1cR557vT6VS1Wk07OztaLBbqdDq6vr7W+Pb50+lUq9VK0+k01tjPf7lcjt9XKpUEC1KtVlUqlTQajWLMs9lM5+fnwZZWq1U9fPgwfr9arTQYDCRJ9Xo99iJMHmNi7TgXhUJB5XJZzWYzWBrmvFaraTweazwe6/r6WltbWyoWi7FPx+NxrFE+n1elWtX11ZU++ugjzedzfetb39LDhw/jnEnSdDrVq1evdHR0pOlspkI+r/bJif6L/+1/0//7f/wf9fNaTf/4H/9jHR8ff6nbctM27T9n+xsHsErSZ5J+Jmkrn9f/6//8P3X4/vsqVioaX17qL/6v/0v/9n/5X3S4v69hLqf8ZKLqZKLOkyca3irwxWKhUqmkZrOphw8fqlarqVQqhSLiwPb7fQ0GgxDYklQqleJQb21tKZfLqVwuq1qtant7W9VqNQ5ouVyOgymthS+CKe3+QblIN8rhww8/1A9/+EOdnp7q888/V6te1/e//3194xvfULvd1osXL3R9fa2vfe1rAQIWi0X0a7Va6fr6WpeXl/qDP/iDm4nO52+AynSqYaGgq6srZbNZPX36VL/yjW+o1+vp2bNnevXqlSaTiYbDoUr7+6H0C4WCyvm8isWiZsOh8rWaptOpisXijbDI5ZS5VRyXl5cJEDa/BQPL+VyDySQBDAq3fUEAl0olTZdLrQoFLRoN5YZDrbJZjefzeNdMUqVS0Wq10vxWqa1Wq4gF2NraUum2z5K5MGYzFQqFGA9gYDqdqngroGezmarZrLovX+ry6EiXl5cBBLa2thLAF0U4nU5jrxB7AAU/m80SYGi1WqlcLmu5XKpcLuv6+jr2AT9H6aIU2LvFYlGdWyWp2zkYDoeaz+dq1Os3CrxWC1B1cav8+C5z4/5/wChzNJ/PNZ/P4+d8d2dnR5lsVr1uV9fX15pMJuF+2CoW9ZfHx9ra2pKqVWVqtQA5k8nk5hnZrLKrlRqNhtrttkqlkur1uma3CjbtUsve7odisahSqaSrq6uYK+aeM3h1dZUA/CjXZS6n7O16TRcLjbUGqarVVCgUAoQDNOv1urRcanh5GUBmuVzq89Eo5nJ424dCoaBSs6lKpaLx3p5KpZJ629vq9/vqdrsBlB89eqRSqaTj42NJUrPZjD2ytbV1Y8wMh5rmcgH2V7OZhpJGmYyur681HA4DsOX39pTL5VSpVFQol3VmQHyxWGh5CyiGt/PG3LI3GdNkMok9d319Lc3nWp6dxX5g/yL7mI/FYqHt7W09ePBAT7/5TTXrdW1vb2tye7az2ay2sll96zd/U6VSScViUde3xl+pVLrZ08ulnmSzeiLppz/9qabTqcqffCJJevDggfrV6p1ByZu2affVXguMSGtf4sXHH+vn//f/rVw2q+/91/+1/u5/+9/q6uREn/7bf6vFfK7c7aH7zd/8Tb33d/5OCON8Pq9ms6l6vR7PwvLF2sCCQRhLqRgAs2jdeur1eppMJur1evqzP/szHR4eKp/PazQaqdVqhdWKdZHL5XR1dRXCs9/v62c/+5l+8pOf6OTkJATCp59+qp///Oc6ODjQkydPgrlgLPl8Xu12W7VaTb1eT9PpVMPhULlcLkAVSh/2BKGyWq10cnISCnU0GiWs+Hw+n2Cf+K4zS4VCQbPZTNPpVMvlMsAVSnE2myUUjsd/XF9fa3t7W1dXV4nAvclkosvLy2AuYHrccp5Op8EU5G4FOcDBLUUYhEqlokqlosViEetaLBa1tbWlq6urmw15C7h2dnZ0dHSk6+vreA6KFWDi7ARAlX+zJ8rlcuwnFAH/v7q6CmaAPrEXUJCz2SwUButXKpU0GAxCuLO2q9Uq/o8Fz3MYBxZvOrsDAOtxALx/sVjo8vIy+sI5Qvn1ej3NZjNVKpXYV7lcTtfX19HnQqEQew3LularqVgs3gDcW/AjKfYdcwTgA/gzj9lsVsViUfl8PljE0S1oYH84Q+dzzRxfXV1puVxqOBwGG8Tn2fOVSiXGCCtYqVTU7/dVMEaFeZ7NZrq+vlav11Mmk4kxz2Yz5fN5nZ6eqlqtJti86XSaiFfBCMhkMrq4uNBsNtNoNNLW1la8k/1cLpdVLpeDoSgWi7q6ZfRY50KhoOl0GuCH+ZjNZrEe0g3zA4i/vr5WqVSKfVSpVCQpnnd+fq5er6dWq6VvfOMbKpfLATbm83nsFfYAYJ49OBwO1Ww21Wq1QgaxPmk2btM27b7ba4OR5a0g+sH/+r8qWy6rsbOj0T/4B2q/9ZYePHig3V//ddVqNWXGY9WnU5X/q/9Ky2YzFB2KsdfrqVgsJlgLlItbhQgMSSFQecann36qv/zLv9Qbb7yhwWCgDz/8UM+ePdN4PA5Fmc/n1e12NZ1Ow82BEgKouALFwtve3g4raTQa6fr6Wq9evdJgMNBoNApBfnx8HECrXC7H9znAlUolLFiAk7swzs7ONJlMQnDX63WVSqXopwsQFBNzBPPj0fkol8lkEr9z1xOK0K31+XweFjtgCfAxm810dXWlcrkcTAzrtr29fWNRlcthwcXGunXl0CeUG3MAwMLdwHcATc5+4BpA0NPXfr+v8XicEPYIbOYftofm/WE+AX8AYgCLpAA1uBlQnqwza+HuKizUdrsd+5XvuSvOGRfphtY/Pz8PUJnP58NN4MAGUMkzmM9isajBYBB7MZ/Pq9FoxLpeX1/H54rForrdrhqNRswXLNDl5WWcFxRboVDQ0dGRJGl7ezsyQACGzVuGgjOK2xOFOp1OwwDp9/vBSlxfX4cbFBAJyOF7vmaSQpmzXsPhUOPx+IZVud3zHutQqVSirwD+y8vLYOdgzcbjscrlcnzOzwVrDnDAJdrtdtXr9cK1xLpjVAAsRqORKpXKF9y6sMO7u7u6vr6On3O+OYewJQBNz0w6OzvTxcWFtre39ejRI7355puxFnzXwSF7HVfW1tZWnA3+5nz6zzdt0+6zvTYYkaT8rRD+7/7lv1R5e1uS1PvzP9eT2Uyrr33txnKbTJTpdNQfjXRl/nZXNByOra0t9ft9HR0d6eTkRMvlUq1WK/y/HD7o1x/+8IfKZrMaj8caDodhkXPQUDIIpWq1qkePHunFixfxbBQXgrnRaOji4kLZbFatViuE9nQ61e7ubgimdrsdVlixWAxrCGULiOIwIwRxCxCL4m4hUvnw7SPIvHYB4AX3i7TOoEC4MV4Ai0ff43+GWcHNgjJzgNRoNIJFgiIG2DmoQFl6RgLKm77SJ5S3Kx5AKPOFBYciQCCzDpIilgBG5vr6OhSip0kCkNz6BaCk54mG4kVx4+5DSRLPwLyhpGezmcbjccQA8S5ALzEOWMKe/cBcwfoAfvkO68fcUI+C/Q6bmAarmUxm7Uq7BVYow0wmE0yUpNjb7qIixsIBNNb8dDpN1MXgz8XFhYrFYrwXkLa1taV6vR7uQGdI2L/831ktgBVzlmaLmHtYLdhKSfGc5XIZMTtuJDjIJCZquVwm+g6oQkYA+ohhYa0ymYwajYY6nU7IKsDk1dWVSqWS9vb2lM1m1e12IzZFWgPw58+fx/jq9bqOj4+Vy+XUarUSMU+0SqWSkG+wdT/+8Y/10UcfaWtrS4eHh2q322GYvPnmmwHMcZFheODmZu6Y07RLe9M27b7aVwIjq9VKxVJJv/8//8+q7+3p1/+b/0bbv/Irml1caPyzn6lYKmm+WGjc66nb6Si3u6tsNquf/exnOj4+1oMHD9Rut7Wzs6PZbKZPPvlE//Sf/lP96Ec/ioPjQY1YUdPpVAcHB6H0W62WKpWKLi4u1Gg0QlCORqM4dG4VY61Vq9UQ/LVb3zXxJ1jrUK0Ip1qtJkkaDAYhmFCEWLIIMVwRKH1XkihjLD2sVZQ+Chjg5q4OFNdgMAiFJCmEW/ozWHXlcjnBECDcPYUQ/z8AoXnLZqHkXQkzLlxC7jbwQksu8D1GZTqdJoL32FO121iHbDarWq0WyhMlyBg8qLNcLgezxGehqmFrWBNiHgAzWPGwQawZ4IbnQ7c7YwHQGA6HAailJLgEmKJEoPqZK9ZsOp1qMBiEy3A0GgVYKBaLsUf4DswZQaoezOrWL4qUOWFcjAOABfNVLpfV7XY1Go3i/KHIt7a2gnWSFAGljLFUKqnf7ydYJsaN64T9nw5ip18OXt2Vl8lkwuggJqxSqcS6cI46nU6wkzBQNPYMfcFNs1gs1O/34xzgfnNjgrmaz+chGxing+t2u63r62uNRiNtb28nXD0E8xYKhTj/rGuj0YhYL9YLl9hisdDLly9VKpU0Ho81Go1i3wK4VquVms2mHjx4EHMxHo91fHwcLlvc0k+fPg3Zheu6XC6rXq9rmlnX3IHJ28SNbNovq70WGMnopl5ALpdTPpfTiz/7M+3t7enjVku//j/9T8o+farsRx9pNBzq6KOP1Lo9xLlcTi9fvtS/+lf/Sj/5yU/0ve99T7/7u7+ry8tLlctl/Yt/8S/0+eefq9FoJIIpUbKVSiUUVa1WU71eD+GTzWbVbreDioXadGE0nU4TMSD8nEONQMLHShAYlhBCBdoS36/77WE/iIZ3QYFgBviMx2NJaz86ygzrHwYFwY0g9CwH+uZWJSAIC4+YGH7G3KK4UCIwS8RGIPQReCg5xujMjDMr6f4AUmA+GDvKGsrZ3RvEImxtbalcLodCQ1lMp1M1Go1QEih7AB/vlRT+fQAmYwJA0W8PckWxOyMBQK5Wq5HRAAhgr7E2khLsBeskKVxKxBx5pgVAaTKZJFxB7AfewR5Fwa1ug1JxEWBp8w6Ax2AwUC6XC/cojABxJrAaZOLAhLFPZrNZfB6WYTabhaJGqRWLxYjTYdwAuNVqpeFwqGq1GjEmAGaAiDNEaTcYZ4114SzMb4OrOdvsGc/a4oyS4QSb5GwVexVWizVkbXFPwuY5YwCTyFlyYLtcLtXv9wNkMGcuU8bjcYDbxWKht99+W6VSScPhUO+88462trb06aefxr69uroKFvXw8DDOEQwNIJyYklwup9FopPF4HPEi7F32vzOcziRu4kY27ZfRXhuMSNK3/8v/Un//v//vdfSjH+nBgwd68Du/I0man51Jq5WOj49vfMTtts6XS81vBezh4aGOjo703e9+Vx9//LH++I//OAQLgYhO73sKGxaPdON/dYE/Go2C2ka4uIDBcnYLAeoVJRSpsqt1USSEkPtqnS52oet+Vw41DYWIUoNF4Xeu5D3rJx13ARND/7LZbLh0GHepVFKv11Oj0Qg3D/NHUJukOy1UBKingPJ7BLVnKXmgrVtQHrzqrgXmGgUCwGFeEfDERNB3T+VEUfAensMazOfzqGaJonOXGAAKhcHcwuagbPgeTBpsAZ/3NeI7brECLJfLZQLIsXeJD2CfAVI8PdpjC5gDnoUiYw2ZN3ffEHMEoOAMoACdxSJGhGweaR3vxNp4ajnMFiAPdoXfDwaDhGuP8eMS8RRe+uBnjD3mAdCeKcU72Ze47Zh79oa7khgvwGU4HMaZ4fwBptnzrAPnkOfwfoA7cSwAUvYL844bDCDE566vr/Xpp59G7EgulwvmVrqJz6nVanr58mUC3DBe6SbWaGdnJ9ge9ma73Q73FXKm2+2q1WrdyOv5uuJroVDQ2Jgo5N7GRbNpv6z2WmAEbNw9OVHzzTf15Dd/U9l8XvPBQNd/9me6+tM/1fz2ILz55puaXV7q/PxcOUk/+MEP1Ov19PDhQ/3+7/9+5OJXq1UNh8ObztxGjBMLICnACHSwK1CsP1cAKD7Ay2KxuEmLzKzrUkDRo5ikZFVJLB+EAoLJgyjdVcB3EdZkV0DtI+gZS61WC+XisS5YL/V6PcaKiwWr06n/2WymdrutTCYTVjfWK2PF3bFcLtVoNBLuIiL78T+7T92tN0kJJQSLAWjBReKxOwht1hVliXuIz7o/nLnlGfiwASIofAATAXgAhG63m6Dp2SMoIdYLxYeiA4yg6HDfkbHhTAh9h2Jnv0Gjszf5HftyMpno+vpag8EglBO0P/sOMMLa1uv1GDdsB+ANJe7zBXPksUAwZulgYVhEAArsh7OJuM488Jjsq9VqpfF4HO8lhku6SZ2tVqthUMD0rVar2Jv8fXl5KWkN4v0sOAPGvgfUo7hZN37vQZse01Un9fp2D+Au8xgawA1ZSxgYgF8UNH2gn/QR4IM7mL3AucXV6/E2vV4v3g2zihsHVrPdbuvRo0eq1WoajUY6OzuL2BLcRmdnZzo7O4vgVcA/QcTMISxNvV6PYN1w5d6Cm3w+r8Xtnt+AkU37ZbWvxIy8+NGP9K/+h/9BhXxe/X5fv/d7vxf0pwsVYg9Obg/Qs2fPQpFvb2+HIPHgMFIDsT55HoIUurTf7yf8+1j+CAOobZgErCZAgge4YQm0Wq1Q1ig+rA/cHigPt9KwkBEozAOAhj6hbFww0DdXkFh2BMlJCkXhYExa19Wo1+va2tpStVoNIIcbApDEeKHIPY6EgE+39BFECGFpbU05OwKD4dY3P3O3mFPCKB0ADda608H0BQCJgIaBQEkyfx6r4zQ8Y/AUYNbFg/WijsTt2KDW6R/KazKZJNgXDx71oMXxeBxz4m4LXHLseYAB68qe5TmwLFIy7dLHg+Jgrn1srBcKmb2HomKv+L4mvgK3DK6dyWSSiLFgbgGzPN+zrngme9v3JQYDrBvsEQGZjANGwN0pnm3Dz52xcmYQoOSxTOw3Z28Asj4u5sdjpFjP6+vrRCE4d9XBtgCccevRB8BatVoN4OXxYICai4sLrVYr7e3tRdZQpVJRo9HQJ598oul0qr29vXDDvvHGG6pWq1EQ7vnz54k6MbA4Hpvmhgfz5Czxpm3afbfXDmBFCcxnM73zta/p82fPItaAw4tlslUs6i+ePdP/8e//vS4vL4NahI7Fwms0GhGcxeFwGtgtWrd8sYJQ9Aj5TCajvb29hNVN/xA8CHiELGDDLWWEC24cjxNBeaIsF4tFKHkPLvPo+UqlEqwCApW5QyCQ4eN0uaQASDBHmUxGrVYrBK60rkbqCq1Wq4VCQvAjDLEkHWD4d1kjfz7PcqWOAkKYeUZBOuaF3/Nz2CIX1IAY5gQmgawc2BWABmNA+ANSPJ4AZonfSeuaDtD57mZhr0Cpe1xLJrPOVHFGiTGhtIkLYf4cKPF+d5EBEFhvSTEud7Fg4QN02Me8x5+XvzUYYDhgsBgjtU2YJ1dIgG/OHUCW/QKD6GwL+6/dbidYNICEu2bc7eCsH6yHB4DyXc6Og1mYMY/rYN/4eQWg8B1nrsh6SseGMV8wY6xDrVaL+A6PNSPryWVDoVBQs9mMZ9InXEQU3yuVSnrjjTfidzApuGLH43EYTY1GQ8vlUm+//bZOT0+DaTw7O9Pjx49jTur1ug4ODnR+fq7z83MdHBwE4+PnkDPFeWK/btqm/bLaV8qmQYiUy2U1Gw2VK5VExdTt7W11X75UeTzWP/tn/0wfXVyoWq1GrQqUM5UQsSBpbmEj7BqNhhaLRQhVqGfcDVjMWKgUKHKmYj6fR0lqZzhgV1B+XhkxbfFg4XFgoXQR7LhWXFljwbkLyalxBJG0LmCG8qXAE0qTOBf3rbtlyHwgUNPshLR2uSCUAI8IUVgGt0adFYJ1ILAVn7zXjPAgXgACLgO3bFGG9AXAxOfpq7TOhkK5ATI8HsCVGArOgzslheLBpcae6fV6EVzpmS7EBjh4o7AdgdW8k5/jgnHLm4BNgGYmk4nPEkvgQbjsO9YyndaLAvGYjrRigYIH6KDwGY+0Zqxw33mMDDEHAEffJx6UzLvYL+wF+oHR4MDU440Avb6X2A/IBJiU9DpTw8RBxXw+V71ej6qlnDF3RSETCMiFWWN/enyQB7QCQgHEHvzMmAFMjMnTZvn39fV1uE4xgjzFGJBMtdzxeByyoNfrxbgkqdPpqF6vRwn6wWCg7e1tff7555rP55FZ0+12dXBwEHIMVoqzxFp58Oqmbdovo702GMlms8rcHsqhKfzsreJCqRcKBR2fnOjV8bFylFi+jfYeDodhVSGYUCjQmlDmzWZTmUwmgrNQ/LgwnF4nOJDy1Qg6rEasWVwa9Bdl4j7fdJGpfD4fYApXDgCIYDkECuAAwYPiRali3UoKwJKx+fOsCGJGUCrEo/B8lDfzBivhDADrJq3LuKMAGA+KBKWDhe91XBibZzEAIhC8ABHm0xkYhLkLWxQEAhtLFRcZfYMpAOCg4GElHAChDFxRYxEzL+wx77ekSK8F7PpaoXhhgth7jJ+5gREhNol0c/YT8SPuBrjL5eIAgnF6YC/z6y4++uKZMMwDGWMe88CekRRVSzm/zoRxRjzdnflmTIAVzrJXJGVfe1wSwIBUXS/Nzzg8KBW2CiCDTAEoc2ZgV3HhwayxRwCUkgL0e5E3ziRKH7YS8AxYchcHRoVXyHXwKa0DkpfLpbrdbrh5WAeeCQAZDAZh2DB+GBKAS6FQCHm6Wq10cXGh+Xyujz/+WN/73vf0wQcf6Pnz5/r444+DZQb4AZbZp5grntVE24CSTbvv9lpgpJzJqLxcSsOhatmsrs/P9fDhQ2VGI+WnU2WvrqTlUrPJRFurVdwFgWKYTCYRlHd6ehqCDcHn8QEod1daWBQIDqeiEaDUP8CNgQXvFK77tT04zmljac0AoXRxlSAgPVDMQQ/CwyP/6R8WcyZzUygJxeqC110p7r7BCmw2mwmWBNDCOAADsDQIZiwfwIEHmQJGUL78GzDllrbX7vAYEX6PgqIB8lgX/NkoFXdL+c+wUEmJRnkxv4zFgQhjpU+wKawBQh0g58wDKY/MK+PJZtfFqjyeAKXOXM5msyjUBYByoICy5Z4T5oZ3OeBg/tkL/Jz94DEePt8wE4CNWq2mfr8vSQkXS7/fD9cjSh1mYDQaqdFoBMPB+nFWUWK4O/L5fLgUstmser2eJIWrxhkz6mTQf2JjuKIBYI+ip+4Hawzg4FwDPmFQOBe4pngv4IjYNgAVbApsEc+/urr6QpAn8RywmKw9TAz7gKq5uI7YJ9L6ji2PQWK8GC+sPzITwAFz57Fxq9VKT548CSazXq/r008/jc+uViu9evUqgIuDJmKSOG/XmXWQP2PegJBN+2W1vykYmUhSSVJbUnWx0EE+r+pyqeZ8rlyvp/x0qsxwqEyhoMJyqbOzM70Yj5VttUIhkAaXz+e1u7srSUFBouyktVBGecNIIJTcTYB1gUCEuiU+xYOwPJ7FgzWxlhB4LvjSJdkBMGkK2t0u0PiwBrVaLeHnRslkMpmYG5gHaa3QmQfYICwsvucCDYFLY/4QaIASSSHwUOh8zwW6pLAyAWQAOixHlL4DFU9VZr0YO+/iuYzbXQ68Fwo6l1vXSslms1+wcFHU7I+7Yl7IFmJcrHscgtvAaWIEPFgYIc5nsOBZA6xqWAPfB8wbyp5+Yjk76+CsiAMz9gzzx3z5d+mfx64QCMo+xsqF3QGUM+fO5mUymQQgofEdzgPjof++HswVzdeQM4q71eNKADqwEaPRKOEago1aLBbBXuDWnU6noay9yimAgcvk3IChFou7oJhT4oNgDhgff+r1+s2FlreyBpnCvvHUcjdyCE53ALJcrmvBTCYT1Wq1SJf29+Xz+WCZcDVOJpMAHtPpVIeHh3r33Xe1t7en8/NzFQoF7ezsqF6vJwwzB/3IBenmyo/0PUnsv03btPtqfzMwslqNlcno/7ta6Se5nLa3ttR76y198/33NX/nHe1897s3xZK6XfVvA7T+2f/+v+vl17+u/VtrEsWApQvtiQJBSEtra5dDQKEegr/q9XpYHe7rxWrnHVCR+I1J9avVaonAUYQsihOFyeF01wLCFwuVoDWCHAuFQpS+JjiXuAK/Ewf/PhazMzrEsGA1MUdYLIA0fo/PmhgDnueZNwi0bHadWQBwYF2c4cHNwvfdckahODhDAN9sl+Rz3IUFuECBewyMuw6wlKHZUeC4WCSFkkXxb21tRbCfgwoPKJRuqugi2D0TpF6vq9vtajAYBKPgLomLiwsNBoNQpB4ngwXs8RUoYFeA9M2zVuhnmlVyJeDMnSsIj2EAfPIdAJKvibsN2HtY++x9Kemukm4yiwDmrIWkKJJGILO7VXzMzhYtFou4gwkQzvoz9tFoFIqeszoajWLd3XjAFYaMAexwNpbLZeLuoMVioeFwGKyHtA4AZo44U2ROwYI6o5R2k3KWfP3crQjI4ew5A5vNZiN+hAKO3W5Xy+Uyqrm6a4wzyDpiGABGYIJ6vZ729/f1+PFjVavVmGc3LKR1DR4ablIP3t60TbvP9lpumr6kjqRiqaRhPq+X47EOi0Utm02N+31dl8sq3ubJ1x4/VmlxU+ODAFOsNoJR+bNcLsP9Ia2pZgIMUUCe/uiCDMWMNYvC9TgJnoOQokYFsQGZTCZhOeHSoY/UlkhbSfhvUVoIteVyGbcT+62bacpZkhqNRnzO42KkNWDwmAuUJ8qcMSN4SVtFyOEX5zNujaHQEEwIT0mJWgqe/YPyZMwIY5SBuzig8RGwfMbBqaSE0ibGhhTGTCZzU68mt66MSrAwCgT3l9/HAgBzq53AaQKcCdCErqYf7lpcLBZB0cM2eHCqK1EYGPoASJDW9WtYP4CItM5sYD5RVO6ecWbMFTwNMO1sB+xSGrh5jApnipgk1mk0GkXMFqAQJpL1I44CoL21taVGo6GzszONx2Ntb29HlhL7lbgb38fSus4Ka0jjTNBfQCluicViEX1yOULA7HA4jDUmaw6g5IGizCu/R2YBhJwFZI0wWNxd62MBgDjLAZB1FsWDXjkT7XY73H/EybG+1KvhDBHbksvd3BTOMz/88EO99dZbyufzarVakWLscpZ/ryxGJA2M2Y+btmn31b5Saq+kcEVg0XMICc775je/qV6vF64K/LKkWGJpIRBgD66vr4NORNEQ6+DWN1Q7rgYUqKd7TiaTKD/uYAQ3jqRQxAgCBzxYegAhvk+MBvQy/QGMYImRioigYQySwoVEih6KyMEAAjd9T43Hk3gwH8rBsxJQ7AgedwfQLwSjAxYAH/PpKZJYo/yf5yPQfR6IZWHv4FJDmTo1Trl1ApChoMvlclSUZaw8H+Xj+wKL1l09VARln9ZqtWCIKCblzBquCneLSAoAmo5VkdYptQ4S3BXFM7BgPbbH42rcEvX1Yg3divV1BYB5/BXKivlmX3C2UEzulmL/wmDBCgBquFSSdYBtYfx+3vv9vtrtduJumWq1GtY5gM9jYajO6u40fsZeI74DtoQzAyPGvBFHxXnlrAMM6S9zxtywD734IrKGzxFEyl71vQA7Bmhm73k1VK+Dws8ZB2epXC4nSsW32+0wojB8ACoe3C7dFJ/7rd/6rbiZ+cWLFwHMPdYIA2NJwPtqHd+EW2fDjGzafbevBEYQdKVSKXyV0loAoXi5RMytbqxqDhLKTlpTg9Ka4gT1b29vhxAhqMtpRL6D9YdbgZ9j9SE0SQfEYkQJUxgKyxnhgJLDMuHdWCkoR/zG0NZpJc73C4WCRqOROp1OwppF2UnJdEhAD8KBcUmKgF8Uj8df8DnAGK4k6GUAy2g0Stx0i0IHKMBOsS5pcOPKj3E4eMCyZFyufKDvUZRXV1eJa+ZRAu4eAgiSieQVRQE/zoQxtlKpFBV/yVTqdDqJImQIdT7Hnkln0jAvPmZXyFjqgAzWxVkTPutskgNNp/odjAAueC5r4NS/gyKANuvCXuJ7nCsCUR2kc9Zw+xSLRW1vb0daMnOJm6xer0fJcdL3d3d34/Ps6+FwGLElKHL2MW4QgAQB2MgQwCTuSa+S6vMhKZhZQBDnHfcxZwCQiMsK14dnqrGvstl1LRWADUYFc+asl6RgZ3yc7n5yQw8DhLNxdXWli4sLFQqFcHPncjn1+/0Axxg2VGMGXNNf3su+Zw8iy5AxkhIyaNM27ZfRXq8CqwnGdrsdgmC1WoXyQGDgO7+8vFQul9Pu7m4INwSK08ko8+vra9VqtaDBoc7xi7tfm5+5q8UtWA68MwUIKvrJzwlMvLi4iCh6L2LmzAvCGxBBfIq7YlzZI8icsk+zPPzeLVu3slDKCH8UlgMDKWlRwV55loqDBOI6mONMJhMCG0HGM6F9seaxoAEMadcC6+BZI54aiSLmD3PAnqhWqzo7O9N0OlW73Q6Wif0Dle9BgYzJmSP2K64UZ6DG43HUkICNYQ96+jnuDgQ4c837nXng507Z0/jcXUyGK09ntTxWyONBmFPOj7/XfwZDJK0VNX8cyEsKFlGSut1urHsmk4mYC24UdvDA+YThJHgbRcs8Ub6cscBA4H6gPxTq29ra0ng8jj1EuvRsNosgXM4S7Axzxvw4gB2PxxHI7TLBA109vsrdQjAOPDufvykmR5/dVUnGFvuZc+//55yy1zkT8/k8rqFgbSg1cHBwELIKNmY4HEZWHlWpqcLs7sGTkxMdHR3pyZMn8T5naNj3zBt7hTn0fbJpm3Yf7Su7aRqNRgjmTCYT6XxYi59++qm2trbUbDbV6/VCoOFvdx82AYAINxA7h7JarSYsICwpr4GBqwGLgb65i+Dq6iqsB0CFMx4EkCEEPTPHM0/cZUJcCz/z2AEPnHQhjABDoDvDA3PhoMQVpQedIdARPLyTgDZfMwShKyun8/2zWNC7u7tarVbqdDphqUqKdfMaLQAUyqC7BQirQnCpx6IgyMlIAOjxuXSgM5a1U+a0SqWi4XCYUGyAMCzNfr+fUJYwAIPBQJVKRb1eLy5ddBeJryWKAiDkIMNZNtbQA4kdYPO8NMBwYMM7PJDZY3+cQfF3+Nm8i0kB/KYznXg+bIQrYQqLwTLkcrkAJoBLgo55D8HANHdZ8S4YJ27tltasFfuWPrCegBjYu8FgEEGpXoMIVyFA25lH1sIVuDNHnEVX7OwXD1gHbMCq8ExndwF2BDwzBx7cCtj2SzeJzcLVMplMdHJyouvra+3v70eNFvYJ8wUjiJvy5OREs9n6LiviUIi38cYcO3O2aZt23+0rFT1DCXOYsBir1aq63a4++ugjbW1taXd3NyxbLEsvj52OWyALxotFobQ8Wp7Popg8rdGfS2wHAqBSqYQQdYGOIkW4O73PZxBkDiL4fDpjAwWdZkQQdJFCZ26JdEEoj2mhiBYXjjnjg99eWpfv9vL8zkYBCtKWuNPVsDpYSs6oLBbrG0iJ92FPZLPZoN2dESJbw9kPt/RRWD6fXnq80WgkUmtxtTlYQ+Diw2csxBf0+/0vjA/wy7rVajUNBgN1Op0EXe1WLHOK4gCoODh1xoPvOJjx2A0fswMYP2t83lkQjz3x97g70MGQu2/S7IsHQWazNzVCCoWb8uUorNlspn6/n2AScGPCGkhrZsVTo1Hy0+lUl5eX2tra0uHhYWJvuTuP+DAMGOJMHKhzRgG3MBqNRiNAs7vyYF3Tyh5jA4ACm8k7/XZoAC7nCFaCGCPmF5dKtVqNfgO22TsYNwAbvsv+BWyz5oB7j+FqNBoRFO6GB33gnOFGvri40OHhYbhqSQtm7Lz7dpPE3MAMusGyaZt2H+213TQ00t+IGel0Otrd3Q2L6sc//nEIWzY9go+YD9wEKCq3SnDd4GYAVLi7gEwGDi61L7DuYVCgcIkhAfUj1AmeRThK69Lj7kJypeH+Xb6DoHSr1WNBsEIRlChxFyZ+m60HwXmBKk8t5X0wPYwdwY3yYr74PUodlorvekDu6elpIluAwFWUM0pGuvGHw46RBcOaAAAkJfz8CDmYMGcwsHBhxwjkg3kBhKI88J3jP6/X6wECUJ5+JQGFtpi/4XCo4XCYqILp6azSOhgVpeLAgb3joNQZAM6OMxh8j7893sNZDUCfxwM5CHKwAatBPRHmEpeUtGY3HRACPsk0Q+F6LRUUnMdIeJD1fD6P1FeAcTabjTRt6gmxRltbW6HUASPc4s1ZJaOFswWz4sUHAfvO6uHWrFQq6na7AUaRGT5uUnd9Pp01gXF0to119hiY9M9xdaYDbR28wLLwHRhfD7Z2ucQYPT6KsRLbgoxgz+dyOX3rW99Ss9mMW4GJ+QOwLZfLuAh1ebvH0269Tdu0+2yvzYxgiezv70ea4/n5eSic1Wql09NTDYfDUEBs/Hq9rkwmE1S5lLxB0tkIt4BRqgg8vlssFuMwcyCLxWJQvLwf4QMtjcDBF4ugQsEhpPg/VDWgxH2xPA8Bg7DhoAMUmDs/1ASq8VlnLNyqSlu39A3l5JS0tGavXJAgWGmsHWDH2Q8AAf2S1gwNirjT6QTbxbsR2igjL2UN6EQ4S2uXl88VSsDjJthbCGAARZqlOj8/j+wOBDxKlGwc4hhww+Br7/f7iYvS+v1+uJ+Ie/D0YJSSM0zuemBdnP3wM+SgxN02DkRwI/oYnbmiH3yPnw0Gg+iPg4e7YlP83TwLg8HZGwKa3X3kzIHHGJBFB1DhO6SVeuozDeDEu2BGabBf1BwizoQ1cKVOzBlygMBaWBr2D5/3YmC+lh707PLE45zIDGQd3S346NEjvXz5MjJf2DOwNYw7GAmtg11dDsAWAYboNz+DyYEJBqRLa6Ox1WpF8T83xgAu/X5ftcW6MJ6Dn03btF9Ge/0AVt0cmO3t7VBmlCpGsXtOP5aMx4oQRMb/nfJGYAwGg6g0iCJGMcESoORQZl7RcDqdRkyJ35jJIcPKA+AAJDwF2JkCF9rS+ipyrHwvbOV+egQ6z/b5ALig6AAGfA5WwyuzolCgYN0yo18ILCx1ngNoAeg50EEo8QzuKQFkkCbtn8PirNVqCSq33+/HOACZADnmn3fzvDTVDKhgjCgc1ob5cQVJFU4HN1jmlOhGgaF8xuNxWOaM0zMLAITMl8cgpV0w/ByF5gwZystbGkz57/keQNmZQP8OjX3B+HiGx12wts7UpN037rLk987A+d5y1xDzyfPJWmEf9Hq9AAawlfyMmA8PoqZYIX3A7cF+cnYV9sZrA3nGGJVcpXVJ/J2dHQ0Ggzg/BOxyZtKuNGfxCA6H0SsUCgGAAWbT6VTPnz+P9YPNKxQKAYaYt7sMHECLn2H2d71ej3UHlDmIwn22vb0drB5MSa1Wi5gaB/4ObJ1hTZ/LTdu0+2qvBUaWy6V0S4t2Op2EVXZ0dKTvf//7QcOz+bPZbMRqYM0iANzawHK+vr4Oy8FjO/x2VoR8q9VK3PrqZZ0BKSherB4EFAGlLtCweBBEHpMCi+EBmfybPsKSAC4IPCXGBuuOcXCRGNYRCsczgtza8hgQWAgEGT/DarrLkmOtmDOoZdI6UbbD4VCz2c39HMSzsG5kRBA4x1xh9c5mNxVg33333VB6AApnA1CCzuB43A5KzlkQFBAWdzabjVokVNUdDAbRdz4DUGMdAcur1c19I9wtgttKSipnvgub4gqaMfi43Kr1WBBX6ii8u1x6/lzmMM2cuOJwgMH+dXDojA3/dzDs6wK7iSLmeavVKtabqqQAKFwKrDH7yM8Rz+n1ehH0SpYUZ4PPM9b0eYLxgLXAwAFUOvvq4J+KuwBfMrPYb5xt5AduIEAkIAOALN0E2AJi2UuMEUaGuWYuh8NhGDAUOQRgA04clPrN4gAcQL0zqWThwKI4QHI2rFgshlvdSxrQfE95heiNm2bTfhntKwWwLpfLREXM6XSq4+PjYDuurq6ibgWHMV19kwPuAXQcVCxbBJ23NP1LpD4CGaEMSMC6xrfMASSOhUPNzz0Lx+l2Di2HGiHJz9xd4paNB6mhOGA6SAMmhkNSKHMEHAAFC8UrTCKc8DN7wC9WIsoVQQzQQIijIABnKAaeRfwBgXeA0LOzs3imB+CidD1VF6XqLiAUszNRHnTHWgOw3FWFgGSueTbBiVj31LmBZaMfCOputxtKtt/vB4CAbQEwuQvMlWXan+4gwhkSt1o9LZ13OG2eZkQcGEhrBgTFx9r6XNBP/z6fBUT7WfZ+E7fgVXzZL85mMVdY5cwJChar3t+LRT8ajVQqlXRxcRGAHdBwdXUVVzZwbg4ODjSfz0PmcHEic9Dv9wNYACybzWbE/MA4sjcwWCjsxh7mnCETYGEckHi6N2tL7AZAjrlEDrDme3t7iYv/fO04b4Bil12cE9hT3utxdJxlmBvmguKL7kLzekkYLew3SVppXQQvzQhv2qbdV/vKRc+azaZ+/vOfR4EwfL4IGQJL3d9McCZpu6vVKtIFK5VK1KFA2aI0sHI9g8etOih1LDeyZxAUCG9nMKA7sTiktcXolqUHJrrV54GxsDWAHZQitLXHhmAx8g6nQREMKHZcT+mcf0/Zo/+AHgdABCKikAeDQbAYLrg86A7lRHpzr9cLAQmT4kWa6BdgzOuaeKCsx6SgIAA5gAyeifDzglKAFA+spOYFzBBuN/ZjqVRSr9dLXDbG3JP1gEUMe8YaupvNv+suDsbO2jEWd7+gnDxmgHG6e8f7xn7zgEkPYpXuBhJp6zUNltnbKCPvM3ubZ/rtw+k++v9x4wGqscrd4gdodzqdBLBy9xfrhzzxlNrpdKrt7e2oCEtBOhQloGU8Hke9IOYW5hNmxJkfd/ltb29Hhk+3201ULfbsG2eMkFcYCKvVKtjONOimBAAAwq8jyOVyAdRgZTCePHg+l8tF7AvnCqaP71LvCdCIzKMy9tXVlR4+fBhFJJ1hjKqr+by+973v6Q//8A91eXn5pbpg0zbtP2d7LTCC4IWupAJhqVTS6empJpOJXr16lfBjegAWCpwGtY4FgDLmQjppXa/Dy5Lztwtb3CyebeKWLpa9C11qUvAMae1Dd/aDw47gQ/AjSPm+KwQOtgs+LBD65e6INPBAKKGIGBuUuFPwKNDJZBIKGkuLoFNoZg9MBAz0er0ALZ5lQiYL1hwWtQtkwIm7BQgGBQB6vA/AEwuWn7sbAbAprbMSlstl7BMAmVP1jA1FSGVPxp2OQSCIlXgF9jFVQtlbroBdqTtT4n87UEnvCQ9O9e85aAEk+r5JAw4+7+4hf6ZbspxVV5oUJnNXHiDdWRd3nzlY8N87nQ+gS88PypXYF/aSgzNAO1lAnLVisaizszN1u121Wq3Y5/yOGDXOGyCUe3U8vsMDm/0eHlyl9Inbbql7UiwWA/RyLv2KBhhOQAeghfG6HAFgursPl9JyuYw4uqurqyg0x973+CridsiW4RwDsJ2NRe6Vy2U9ePAg7gZz+SStb+1O7+eNm2bTfhntKzEjHnC2XK5vlTw9PdWLFy9CWGCVEIDmypDgVNA7tCiWll8qJSmRF48gJp7ALVRX9C78PYASgejWp7ROuwP4uNXtVgwCO90/GB0UJIIc1sSFFVH60M0oTa84mclkosgbQguAQhollhFxMChchBpXlRcKhcTnPI7GY0gcaHFzqyu/xWIR2RIoMOYG90a73Q7L0t0HrAVxRZJCUXrKsAeoMg8AJAQ3tVewNpmf+XwegdPsU+J2PDOFgMJutxtg091/riSdPfA95C4jZzncfcE+5OdOe7uAd0DBXnFA7bFDgDgHcLwLQMEf2An25Ww2i9tgXVE64+IBnJISe50xs1+w4JENzg6w/sQp4fZgTon1SrucmG+YReI8YD48+NzPBUB9Op1GkCYMBO+vVCoajUax1oB8aX0LNECt1+up0WgkAJe7minoxpoBkDgTuKvZR7PZTbVo4pyQD/P5PIJ5kQv+Hp9vmC3iwDgvyOGDg4PYF/zBhYUswlCARd7Z2dFkMlHdDMV//+//fTBUaYZs0zbtPtprg5FMJqPDw0N94xvf0A9+8ANls1k1m01985vfTPirPVPFrQh8mC4EsV449AhcLBfYFeItPOvDAYFXccUaRpij/DzLhMOMkHaFA5OC0sEqQehDt9IPDjwCtFqthqD1GBAUXzqAkQBQxoKPu9frhTU6Go3CLcOzvOYDwos+EhfCHHj8iDM/TuWisKHqXRFCa5M+yFxKNy4yKHK3kF1pusuCNXQfPf1kDhGYpAO7UERwuzvO62Kwd+hTPp+P8QMWSU+mvyjutCvNQQVK2hW5u6vSWUlYvPxh7ChdzpS0VoZSMiiW+WdOnbXhs27BunsAgOwBxA7cPMaIeeZdvjY+97hgGFO73Y7CaJwf/zyGBm6wfP7mBtnLy8tEaj/r6CzBYrGI2J5isajDw8NYPwp/ESPiAeydTkeLxUKtViv6OR6PNRgM4vZaGAb2HoYH4IRAfUCUA5LV6iZdln0FAOaZBOniAvFYGvYXayCts3yQe4BW+kWQO2CLfebyCdCey92k1cOMSjeg/+LiQhcXF3r//fdjzJwr31eMw1lbD3TdtE27j/Z6YCST0epWkHlOPjR5LpfTwcGBLi8v4zZfryuxWq2CCkTpAESgEV1w+yFAUSLkAC4eG8HBvMvfyoHzAyYpIZAdpHDAsUA8wBBAhTDwgEBoVKwyFCOCQlLiWZKCvi0UCmG1IdQ8S8UVi8+RB5J2u91Ig8Qq80wkmAp878R1QLM7qEn7q4vFomq12k1NglotovVrtZry+by63W7C4kQZu5JmDaS1q434Ir8LBwDptUz4HinbKKLr6+u4mI29hEtwMplEPAB9OTk5iYyQ4XAYc5iureFAw9kD9nLaxeLuM5TvzbHJhHIBPDMnPIv/+7PS+9a/I61dSA5EPFgx/S4HB2k3gqTYt5wtgAlzmcvlgo3zd3hcgdcWcibHZYCkuFuGeXVwhkzhWZznxWKhk5OTiC+jjDwsBMHtMEvT6c2dLATj8iyYOj5HHxgz7CJrCevp6cLMp7OayAzcQYAsYlHIdHFXHDFL7ENnpVgb1oO/AU2AQlxOzDWMGmcWUFIsFvXGG28kEgdIy2fP8Tdxeg7ONm3T7rO9FhgBiLx48UJ/+qd/GocVpbm/v68f/OAHOj4+1t7eXrABWJ5YhU5tu3tDWqezuVBLuwmkZIojn3Vr3RVHOr2X3yFsJSVSgvkM/cdSw0Jyvy/CKJPJRJaAtFYUKD0v++yAivRZgAr1DkglXa1WUc4c+nuxWIQg9pbJZMJC49p2FB2gCarbAZS7DVgflCEMD/7parWqJ0+eBIj09XHXEWvIWFxJI4gdOEjrjB8CA10Y4reH7ZDW8QFeJdYpdUAkCmRra0tnZ2dxKzAgCAXpSsDdAw5S/bPOmDgjwHv9Z8wDwMrPAXOffjZjAvSgdH3enD5nfzGfsEvEEaTdPJ59w57kM8wp1jrAljVxlgA3EAoeRpE97swV+w2XoTNmaQscVtHnDSXpdWNwKeIm8bXjXHOecVM1m80AWQAhWBjOOACBOkUwO+4+Yz4ATPV6PWKPfBzIn9VqFTEmHv/CeuFK6vf7EVsFo+JVlmFdeQasG6yIn+Nut6vhcKiDg4N4N7Fvzgylz4G7vDdt0+67faWYkYODA73xxhuxYSl+RRApiB5hg3CS1oGdAAGAgisAV9oceE/lcyvHBQ8uC1gZp5cRNgQ4QpfyXuh8VxwI4kqlkki95fvlcjkusMPKgSWiP1ghZKW4ssQFQ8AegrhQKIRQlNZK1904bp3yDqyd8XgcqdYeI4H1TBApMTFeThoAdnh4GIolk8mo0Wgok1lnLkmKeWatuYQQBc+cs95ppUP/3PctrcueO5PFWrEerC/fY70Q4NDjfLdarUYWkaRgoNwl4+9zlwmAxPcUn3M3lAfscjbSTJ/vaWcL+H7aP8/YfD7TjIgrEeaX/eHxBShfAAelwXGDACbI/EBR+Zq4EcF33H0AG4Wbgv7wDP6k58Pli7MCrJ8zPB7LAJPB+IhN4yxzASIXzZGlA5DhZwAK5Ix0E2DvjGy1Wo3z74wnRd1gIHFX4SKR1nWUOIseOM9+w63tTCeyBPBPrBYB6s6CuEuHpIGrqyvV6/Vgtpg39oEzow6AORcAVmetNm3T7qO9fgXWW3cD6Hu5vCkN/uLFixB+7opxhYCyg7ZEkKT9y/yN9cCh8IBLhDmC0KlnF1x+SMvlcmRaoLxQjAQ0SslaEoxnPp9HDAUBYPjWXZAwH6vVKpgJslxIU0TJc8CxmLDEqGqLS8gFM0IQZQHocSXhAlVSWFkoay4T29nZUbFYDEHtcSRppQuF7X7qfr8fhcZ6vV5clEcWDtY8lqlb0+yPtAuDOSSGodvtRhYSwph5Q0ATT8NnEOAAP8r+o1iYN2cIJIUVD6j2fc+e9L1KHAOf9Wc5kPHvpuM2+Ax7j/lmfpg3SXFu0m4k+gKw8z5zBlarmzgn7uzp9Xq6uLgIMAAAIeYA4M48elCmGwvuFgDououHsdJ/PsvZ4xw7q+MGBH/Y07AMl5eXiaBngBQuPAAK74eRKBTWlwBivDQajUTBPNaJStFuCHlcG3FdMEPIHuYBRtWzkWCE2IeeHYfc4rnMSbvd1nK5jLmH/WSfcf6RSxgnzlw5k8fPmRfPvLlrD/LzTdu0+2yvzYxIiniD/f39m4fcbv5ut5sokoWwceVLcKKn1blQdcrblSAWOcrffeooYBqH1gMJoSS9L1ggjvzTqbXEx0hrixPhiRDq9XrhTiFQDtDkEfpu5fd6vQSr4e/DsgcAEbAnrX3y0L5YZ66M3MoHgBHQViqVtLu7G3NDgDFKAAsRmhk6F9cQWQYo9EwmExfkIcxRoKx/2lXjhe6ktVJ3xZR2YUgKFw3ZNHzGhb6kuEvG7xSi9DeBr8wlP8On/zu/8zv6wQ9+EMATMOUBoA6Yt7e3dXl5+QW3Df0GUPAOvseeIz7HWRm+Cxhnnfm5z6/HgvA3e4B3wH5xmSB7kn0CoKIUPnsS8OzME991gEA/YEeczWHO0mecP2l3gAOzdEyOMzwwm5LCVcfcENjN+eMCxXa7rd3d3WBtkEXHx8dxszhrKynu1wIEuisEdtEBE30H1BPky1iQPVSjBjh7bBZGhcunk5OT+Bwp6bCDfB5WivmhjhJyD6OG8+3utYiLMxnvxuEGjGzaL6O9fgDrrTsCC3a1usnaODk5iWAxpxCJcE/T0/heeR5C0IU+wV3uw8T6hRLl+zQP8uPfPF9SgBcEC0AB4UbArZduXy7X1VT5nN9lgQBGmAIUEOrX19cJgcbY+v1+0K5uxbllB7UqrbMtoH9xOWH9QlMjnBmLF1JDAPIevzBuNptFsSsAp6RgjRgDa8+cEPfCz6h3gAJCoRADkHZX8H8sSNaKvYCVTsaBBxiiCFlH9p5b9R4U3Ol04qJGt4KlG6H87NmzRF0W1gDg4FlXkmI87C3+RqEC+tZHKFmzgbExFx6TwH5hPtKBvA5c+L0HjnpdDP8eZ9JBEXsSkA076PEEDviYd86ZgxUUYNrVxn5w5gNWgPGwR3mun/t0oDWyARlA2i7/h8UE3B8fH+v6+lr7+/tRhHCxuLnhGXlA9VcfIzEd4/FYzWYzmFD2PuCL8wkgh9n0mBpAkbuquOkY9pYziVHD+3GvsIa8r1QqhTxkf3H2kbcOkjA2uKeGPpdtXzko3LAjm/bLaF+JGSGaHbai1Wqp2WyqWq1qNBppMBiE3xILjOh393NyeKgFAJuBYkJRIKDdhYCQ5mceFMgh5LvSmnp0+hyB4DEJgIvVahWAYDKZBENBECWHG6HjgZBUOwSoubJCmBNfgI8e69AzWgANuGRQtPjF8/l8UO8I9O3t7RDYCHFJIZzTtPJqtdLl5WUIyuFwmOgb4I15RAkAOmhQ8FTLpG9u2bsbD1qZtWF+WF/WwoNRUXaeKl0ul3V6ehpzS4AebAlsGO+5vLz8AqjyWJmPPvooweLQZ1faHrfjoMvdEwBw/jCn9MvdGwAnmsebOPvn4M5dkgA29iLv88wmQA9MD/PNs2Cr2Nf8zo0DZ3l8vRxIppUYn+P/HhDpc+PvYM2duQTgNZvNqHHEOULWlMvluJ3Z3akekLpY3NQRarfbEVALkKC4H64QzvRoNApXDkAYxoW9gyFD0bytrS2Vy+WEm5H9CqjgQjv2AMYL7jDAO/sKV7czaPV6Pc4Ge4xK1KyllGQ4vdQCMiIdDO37Edm0aZt2n+31YkZu/8Z6QeARJ4DClhRCF4WNsgIAIGRcqCA4PWAPxeyWWFqAcaBRoBwsqk563QqnRJ2qvri4iEM/Ho/Dync3kLMQMCS4m1BwACXPJOGZKDney+cIsES5MAeZTCayWQiwhXrF/UL8DuuyWCwSVRmXy2VcPjibrW+jJWUWyxHXh2drYH11u92Y9/l8Ht9lPZgT1pl7chifW8IeGIlARGim3RxpVw8ZNcwNlqkX16OhNGu1WqQcX1xcJJiqdIClgwD64IqXPjk17zS2xxegSFHwuLX4Hs9zJsIBc/oz9MOZFmeW0iwCZ9BdeHyG9fB4I+bdxweA9fgrB6X+PdxFbmiE3EgxYXyf8XlcC3OKC9fPiscM4bJgrTxbh3cyXkA83zk/Pw+2FIABowh4BYiXy+W48BMgAYMEgwLTSvA6QA556Kysn29cpz7vyBFJUSLe03PdjSkpgmWJI0PuSgpGzJkfGBg/X85k+zl3d9qGGdm0+26vH8CqG7ry2bNnevr0qebzuRqNRlT+gxIfDAaJsvDEUMBcIMCwKPg5lgeH1g+LsyIIL9gWao0sFosQSldXV3GQGo1GWFTn5+cJgQFT4IIe5eqBjtT8cEHrn0N4A5ycfXGXDZ+T1tT6YDCIW0exbvL5vHZ3d0PYMB4X/ru7u1+4DRiXCZfiYfU5KIBpQeBfXFxIUlQs9Tgdj9eRlAAr0rqUOIKXok+u2D2GgHV1ZenzhOJk37gbiXnkmfStWq0qk8nEbarMFa6mfr+vy8vLAFsOLtzypl/MsbsoaIAwF9BuOfJZvrdarWNiHLg4w8FzUfL+fI+hSLss3cXn73bmyZUMf9IMBeDNWUiP0YBldFdpmulgDzoY8fXjXTTmwN/H2qTjn/j9+fl5MA1+2+94PNbFxUUUOZOUiEuD5eDfJycnqtfrUZcnl7u5HwaAT9ZMLpeLgFfYJc4B5eLdTUblV8blBcz4d7/fjyB6QI1ntrnR4sCUPeRzjstIWrtu6AtMiZcWgO3FRctz0/vXXT4bZmTTfhnttcDIcrWKGx05kD/60Y+0t7en3d1d7e/vx30z+/v7EfwlrVMU3X3CwXGasNlsButAXAPuBSx0FB7VMz0QC0XLv/1Sqn6/H98djUZheUhKuIuwXHg+VhmUPYrVXRAoYIRDuqAY48MlA8uys7MT1gqpg5LiinH6hpVGvxAig8FAo9EoQasC6BA2xE4w71iRuC2IFUH4M25XwsyrB77yc7c+5/P5F/qDUHeLy6l7t/RQaCgmAEI+n9doNNL29nasLwBwuVwmil75OHu9ns7OzvTq1atwsbEfHfS4C4bquu5K9H6jnAEB/gwUEPvU43Kc3WOumUPW2NkifudK2z8DqHNg6793ho5++poB/ng/z2d/+prBFPDe9Lo5qEyvrZ8xdzX5PPoZc0aVcTEnnA8vAMb3uIiPOCxP1ZfWAcu4Gcm8ITUXZqTdbmsymajf70tSXF1Rq9V0eXkZ8qrX632Btbu+vo64OdJpvQhbNpsN8FCr1TQajQKoMJ8YFOwfAMpgMAh3jbOGPh+AGC82Ka2BHyBotVoFM0SgchoEs/782bRNu8/22m4aFMPW1pYODw+1WNxURYSiPD09TWSESEr4KLGu0u4SSYnfe/olz+IA4dJIX3NOamkulwvrg+fX63X1er2wglBcvIPPubsFypXfI6BRaA4uPPMA4SKtU4MzmYzq9XpEwZOe53VPUMTQwdxUikDv9/uhDLiF12M7lsul6vV6BGhijXIRnrsEXHE5W4DwRMB7BgWKgvVA+Hm6McJUSgYkOuBMu+TSdLArPATj9fV1FKry0tlpSv/i4kKFQkHD4VDD4VDn5+c6OzsLcOJxFs7Y0Od2u616va6Liwudn58nLHtXsqy/KxC34NMsECyZsxEOUFxxp9kT9n6aAXFl5KDE3ZduKfM8lLK7Tf2Z7EPG6m6ktOuIzztodDAkKfYH+4E+eoyLW96+R9hzPvfOTPmezWazEbPBfmPsyAvcMrlcLlzH3W43GBGqp5ZKpTCE2DsEnHOJHX1lrOVyOWRSPp8Phs7rkQCQcDcxZ4BfZCPGjDNW9A22yrOc+BzGEKALtiWTyUQWEWeatWI9Yx+Yu4wxbsDIpt13+0oBrJ1OJ/yhjUZDf/zHfxxxFlCfCD8Oglu+NDY8QYBeZAnB6X5iDmev1wtBgoKlXgk/T1sWg8EgaF1cJQAdv+5bWoMnL3DE77B+cLUgUIiER5iQSre3txe0KJYRoCUtyCVFjEYmc5Myy/wsl8ugqN3txfOI30GB8jMoZyxPBDvgI5PJBJPiAseDHhGAsDn0211HkhJVImErWq3WF+IvADLMn8dl8LN8Pq9arRY1W3gX6w1YJLPKwZ/Px+npqc7PzyN2CEHu4MiB3M7OzhfYCGc+3KXibgnGxTjTLhW+y88c/Ln16SyNgyT+z2d4TprS92BJxojin81m2t3d1e7urs7Pz3VxcZGYewcKd7mg+Gxa0fueSYOW9N/pWC//PnvNQZl/3wEYDCX7xxkx2A2ACwDUr43wmkWMh0wajBW+S2bVcDgMt8p8Pler1YogbhgwroCo1+uqVqtxh85qtYrCaBgAAArmGHDAe9gLGFUYQzA/ADAMAcAI7ktuaE7LVuaiXC4nLt/j9x5E74bCpm3afbbXjhmBAYCKL5fLeuedd9TpdALRD4fDROEpIsU9aHA8Hodid2sFShQLXLopke4uB2l9nwuKgroYtVotEWRHgFepVNJgMJCkAC0Iag7rcrmM2gHQrARkeuXKRqMRyo/gUubGL3VzUEC/nFouFArBYiBYscL4PUwPCpmxXV5ehvD11NVarRZzi7+YftPc9QQAcL86tDAAL81YMIfMGT5vZzEAL6SRkjaJkGTM7kJwSt/ZAGhwj1mh4BmsEGvL3PT7fT1//jzcUJ6NkvbFu4XN7z0exlNNXZG5a8af5cxGGjwA0hHw7p/3zzsjAojyeXGLlud58KIH+Tqlz43LtVot6uMwBnfLwAryOw8qZw18bA5w3Z0FoGJOUJjMDwoP6/4uaxzQ5/uBvgBKYCIAOxcXF5HV5fMNoMXQwH17cXGhvb099ft9HRwcRIVlgtNhUGAa/L4nmERpXaEZhm65XKrb7YZLGFno/UWWTKfTyAZCzhLATvwXBlqa3XJXFQGrDjowWghY39nZSQDBRFutXX0u+zdt0+6zvd7dNKt1/YBisahut6u9vb2wNiguRJlwZxXwv3rAoLQOPHShdHl5GX5TwEAmk4lDhXDD+kbZAZIAMqReFgo3JZIbjUYID4QKh5x3u8sjk7nJZnH3ClYSGSxON1cqlZgfp5Whj4fDYQgF5sWDMlGQHoMym81iXiUFuBsMBqH0XakxJyhchKqnQfu/pbVFKykhGJ258MJiHh/gcRDMO9Qx88XvYDcAbp71gUXLXuC7udzNXRuwQpPJJKxW9iHAkTVvNBr65JNP4v4enuuuClfWHquwWCwi9oA9zxyhWInv8doxKAjm/cuYAWjyQqEQ19Oztr6XYDvS8R53xYrwXT+nWLaAED4/n88j0DOdfuwuJpS/u6D8+bjJHGjdxSSl+5cGWp6+y/sdzKfZJwfF9Bn2E/C8WKzvbtrb24v01mazqXa7rdFoFGdrOBwqn8/r6OhItVot4rCq1WqinDtyp9lsJjK/nE3w9Fwuj8zn81GdmOrTzKEHvGO44DIlnoPYONy6yC6ABEYHLlJAD8G4zJnHwO3t7QWLy9i8NIGvne+fTdu0+2yvzYwgTM/Pz7VcLtXr9fTJJ58kbn+cz2+KglGgR1IokOFwGIqcOAmU42Kx0OXlZVzKJSV93ShNLH+EGWDIP+PCHwCBAOGQe7otbgFuvCWoFKaDtECUEKAG4YAQAoC5JT4ej8MnPZ1OgxnAEiSTRVpTqIABhOpoNAq/r9OmxG8wbiw/BAzWIAIJ69WtWo/+57ZUFKHHirji8GwKAJy0ttS99LezMI1GI/E+Bzxp5cR6kjFFcCL7AjDHvAL6PvnkE52dnQUT43vBx05/eQ+Mirs/nAFwVwi0ttcsSbMauA7ckndXDCyZMw7sAQeXzjb4/3k2rBr9Zh7ZI65YUIhklKVdS7ifPOPImTUHV7Ap/n8fA+cqXSNFWrtoHICxD9Is2V3NA6kJAk1XNs3n8zo7O9Pu7q6azWYEPL/xxhs6OjrSZDJRvV6PPfTs2TN985vfjBiZu4qNSYrPu3xh73nQKuepXq8H+JlMJnHhZKfTibR7+ocsY2/AZnAR6Xg8TrzD09qZY5hld9NiLOH2zeVyUfCM7/iZYA03QGTTflnttcAIwgbl8/jxY21tbaleryufz8dm9/Q0DhhxHShED97yIllp2n4wGGi5XEZp5mq1moikRyg4femloj2AElcLLgTSZlFSFBBDyaHE+T4ABMHJ4UcZSkr4lhHICEyYG4Lg3HUByELIuB+c8ta8D+DlY0SZeFCadHc6KMwMgswD41hf92XjtvJ4BMbHXEAb84z07bnEeHhNg7Rl7/EzuKCwHmF0WCePM4K1yWRusoNI4WVMbvXzbPYAzAh9lpS4sMzdEKwN/fR7lTzuR1q7wqTkLbz8f7FYqN/vfyFQk9/7/Di4Zp6cGXH3CM9ykCApFJuvqbs93LWSjtVwcOMMhbuYfJ74noMpfs6+8hgG9kcaqDnI5t0UtnNZslqt74xx1os5Oj091XK5VKPR0OHhYbB3GBlk0HU6Hf3oRz/S+++/r0ePHgULyVkjm80rsi4Wi7ickTVgTnCRcEeVB6t7EC4GjAMeT0vGXYyLDfe3r6UnDXBeHbDTn9XqxqVZLBaDweZ9SA1nTj1uZNM27T7ba7tpdCssUMC7u7t6+vSp/uAP/iCUN1e0E1jYaDTiIHmp8sFgEKwCFiIxGPhrARiSQhlI66vo3eJ3VwOHfXd3V8vlMmp4YAUAZmhY3VSRXSwWweBwrwnCnFt0UWQIonq9Hp/1QmLQwcQ5HB8fB23Lc3GtMGdcYsbY0umhsBMIdBfYUrJmBUpdUrzDgRtK3gMIXXl7sTdYHgc4ALxMJhMVId2nztqyXq7Q3J3FGgNkARkoCw9OLZfL6vf7QXePRiOdnp7q1atXAVBhlaC4eS+ADAvYmQmocAd0fI+fTadTnZ2dBbDywE9aOvPlrmfRT/7vYCD9PX9W2mJ1lsszVDgbXtiM8+MgyMfmADLdZwckDj4cnPv3PV7Dx+PP59mARgdI6bgVnuGp/A6s3N0GEAFMEKy7v78f8qfVammxWKjdbiuXy+no6EjD4VCvXr3S4eFh7GH2hLu9vDKqv5N/o+wZJ4Cff3v/CfwGMDKHGCuwX8gb6oL43MDKwtLQZ8rk83mYI5eVq9VNldmyAUaCdNNgctM27b7a64MRKYIs8be22+0I4hyPx+r3+3r69Gko1lqtFhktCAgUMQcMq4FDC6OQzWYTz0bpb21tBWggvoR3ce19LpeL22oRHO5ewI+K4FssbooqjUajm8NZLocC9hgIrkhHcFIaH3cLVkq/31e321Uul9NoNNLl5WUAC9gewAVWfKlUiiJLnU4nSlq7RYxgckXuwhjBhKD3i/BgBfg/yhRA5f5ohBxC0+NcENQOMBaLRSLjJW3lOuvDPKXBiZTMukEYsqaAK56LIJ1Op3rx4kVkIrnLgc+7snBGg9+5MvRsG5qDO34Hi+RKPa2A04Lcx+yUeNoF4vE2PAfw7sCTNXKQwDN5H0wPQM/n3NnBu/rja+Fzwc9RfqyxXzdAPx0c+x/G4unD6fXzAFaAAGPD8KDv/lnADOO8vr7W6empnj59GnsVObSzs6NsNqter6dnz55puVzqrbfeCtmGzKNvk8kkMlWQD9RIwlCh3IHfAk0sB/WBSBGmwYRwfQZl6ReLRYByP6fpzD9nXZHVxI0tFosv3FgOaHOmDbYUYzB9DjZt0+6jvXbRM7f+EDoIN9iHFy9eRFAp1rErfuIwyKLBgkJpQYUul8s48OTPX11d6cmTJ9re3tb5+XnUCJCUELQADASCK0QOK2BAUlDmXoui1+uFAJduLEP6i7B0ny4uF+I0JCUsFNwjKCy36FBAjx8/DtqZz+EecreQuzo8TVT6Ijjh37hK0syE+73d0mXsBMKikFyY8XkAEH759HX3vPPLYh9cMDr4QqEwTjKMyNyaz2/K0/f7ffX7/aip4jc3O/hwhUrfea9b4A5O7voDqAWIIKx5vrsgeF6co1Qf2O/uUkpnoNBX5sv7wpy6y8U/CyuWBn5pYEZ/fG5cCTlr5bFHzjp50K2zPc58pV05aRDmQMjZty9jgpwF8v0L2HAg3e12NRgM1Gg0VKlUdHp6GmCBsdXrdZ2cnOjx48fh4sjn82o0GuGSzGazwexi9KxWK1UqlXCr+l4n8NqLCwIuYCdw0zabzciK494ld31j0Pm55ny6ocL7SQTw5ANnPZCL7vZjnAAw37+btmn30V676BkCptfrxSb+2c9+FlkPKHAsB2kdt0HmjCs4F0D4fSVFKXmECsXKDg4OwjI4PDyMksxYj9JakfR6vWBNUGwwNwgCSUFv9nq9AA8INFxSxHQg4PEXwxQQqe51EiTF9/0+F4QoAkVaZyh89NFHMWZiQRDoaR+9W52MG3+v98EVrCsShBf+ZxQFAo719T/0y8GPU8is6+npqY6OjvTmm28mnss7nY1gLM5aMS+eCgkQYTy48qbTqY6OjgJIUlhKWmc5eLwELI6zK+5CoK8+r/zes6UQ2GnFyfr6XuTfaQaFn9VqNS0Wi8QlcGn2If0O32MO5FgTPufzydh5ZpqNuAsk0l9cFqvVKpH6zN7xfemAwa3w9Lu8z86E8Uz/P/uGPUzfPHaE5zB+ArJxQU4mE3366ad6/PhxgKt+v6/Dw8Po8+7urk5PT3VycpKI2YAtYL9ns9lgCKUk8Ey7TDDAcHNi4EjrSyZh5Niv19fXUXHYXYe4cRuNRoK5RO7m8/k4JwA0mCLWnTnEdXR9fa3ibf+vr6+j5orLnk3btPtsr51NI60F6XA4DIVZr9eVyWT06aefxmcRAk7fulJ136ezGhxUL9UsrcuKczD9NtlcLhcuEY/DoC+4ewAjuAsymZv0XTJ0CIolpgCBBkgBfLgAQhEzxnRmBQIcpYpAdSVOPy8uLhKVH3nHXYDChaI/E8WBQnHrUlLC2kNZu9vBlYWULOVPthHPBOwhlAkU5nNuxXvAKPPh+0laZ2HQcFOhCN3dxH6ZTm8uwet0OgFMnXZOz4crc+bPAYaDFemL8TgASX7HvwGD9I/xuEJ10OCAiXo4vka81+cHtofvucvLlV+auWAefL8Sn1UsFiP4HObAGQ/mg3f6HHq/0vuN7+AmpDkIccYqDWSYLwdHafYORoPxOXDju8RvAboXi4UePHiger2uBw8eBKPWarUik293d1cXFxeq1Wra3t4O94bPk98bhdvYgROMJr+TFLVD5vN5VHLFVYSL5fT0NOLv9vf3o2DicnkT+0Z1WORnv9//gmHj7jyXu4Ai2Bzm+fr6WvXb7+P29DO0aZt23+21wQjCFcWC/3xnZ0fj8ThKrhM3wCFAeSCIEEYUvyIwCyFK9PpisYh6DK5AlstlKMCzs7MAEFgECF23QKkf0e/31el0IrgNRkRSPAegg6vHg+MkBZMDNYurxi1RxuxCGncGrhx+5xQq/3cBv1qtIvAUBsHjPvg8AtBdHavVKtxEHiDHmJlPVwgIWQS9BzTybIAM98MwRoJtuTxRWrNjrsQAAu72cqYEMOmMCe+E0YGiJgCYOWAP8TfBsO5SYCxuSbNn0u4D/qT962lXB2njrry9Me60pelBpg5kpWSp7rtYHMblLtFKpaJSqRTVitNgSLq5kqBer8caAvbS73Fg4CyGjz/N2PEsfu/sDGviYM9lis/3XUwSZ9vn1NfF3SPuqiMTZbFY6NWrV6pUKtra2tIbb7yh4+PjAGm4knHFHB8fB9AuFovqdDoql8tRTwQQzzrgUmHtkZEeD4L72I0efudxIb6/GNvV1ZWazWYEwe/s7ISbmfExBmnNkiHruPeKs8D76C+Gw6Zt2i+zvTYYAcH3er1A7+fn53r48KGOj4/DpdLv9wP1O/0rJe+XcD80B05SoiAQlqdXIOU5tVpNjUZDuVwucREeCgpB6FUSSZMlKBLhlo5XIOCLA+6WooMFalO4BYMQhTZ1itsFK38TiIayQvB5cJ7fX+H0qytYD+5kjry/zgT45Vj+DLf2cfuwZs5MIMDuCrDFCpXWPn4HpghZj+lAofJs0jgBhmQdcG/H1dVVwpJk3IyT8aOc0imwrrTSlqCvtzMAPqcAQj5bKBS0v7+v4XCoTqcTZ+YuUOOAyIEHf39Z8CzGAHvP34GCR+k1m82Iq3H3oCtMf+9kMomrHLz5nDmzmbaaeb7vD+bL59DX388UYJXPs5/cbUU/fP+zf9LA0Bkaj6VYLpe6vLzU7u6ucrmbehsUcWTtYUkJ1IeRWC5vUoS5TJFy7wTzuzvTZRxnsNFoxJyzLvyetH8YZT7HecKg8Iw/mB/YFTcmfB6QswDUxWKhx48fx5p6WYXRaKT9/f0AYxuGZNN+Ge21s2lcEJ+enmo0Guno6EgPHjwIq9uFOEKVPx7sKt0IKiyztOCR1oGADlbcSs1ms9re3tZisUgc0l6vF3Ed6bRhDhauGbJbsGZgF7DwXciiPN2iB8RA5fqYCcDkPhv+XywW1Wq11O/3I/jMUyfdDZKmzP3/MA7MG24xZ0uw1r3f/hxPwWSMWHvcg5GmxZ2el5RwEQAqUNZpt470xRtmEZYuqDOZTNx55IF0WI+LxU2hsouLiwSQdKreARuNvjlodIDgyi29F115e90I9gsZU674aGnA4T9nPe5y6Tgo8d/d9WwYpm63q/F4nCgg6IAAJo5KoYvFIpFqnJ4DB4o+Dp/n9Nx7/53BS38+bfn7mNLAzfedz9tdzd+LHMCgyWaz6nQ6qlarOjs7i4KGBJ9ub2/H5wmad9aCGCY3fqhjxDtJj81kMsGwekVkYkVggAEi7OPlchmgNpe7KbDXarUS8+7yolarBVB0V52zJcvlMvqL0ZHJZCJGT1K4uHEXb9qm/TLaa1+Uh2WE5cydNIvFQs1mU6VSSe12W81mMw6zW78oFY/Udh84jUPjgWkIJjJx8M/jP61UKtre3tZwOFS1Wo2aH5nMjctgZ2dHkgL4lEolnZ2d6fT0VPP5XJ1OJ1xPXhnThd1d0eVeNVFaU9i82yu0ItSJaymXy3r//fd1cnKis7OzLygYYmTuYmRceadBkLSuIQA7AwB0K9njTlzRYWUjuAEV9N/f4+wAYIvUZxfOjM1dCozL59Q/h2B2ViybvSk4dn5+rvPzcy0Wi7BUPdDPlVmaieA9aQuecTtQ4fseN5LL3VyCWCqV9Pz58wCyXEeQtvp9/6afizJJMw6uTB2op8fhn6OhJD02BWXPWuTzeR0cHGg2m+n09PQLt8w6KPY/AGAHnO56wuhwlxpnyl11LkucPU2vR/r8+x7hWWn3DGfRQRtsEGdoMBjEZZR8D4OA4E4CSjFkkHulUinAy2w2S1SgzmQykanH+YXV4/+S4h4sv2CSdXNXI/VKiC2irg7u8H6/n4j/Yp1Ye1w2yNlWqxU1lHh/NpvV/BaM4grCwEiDxE3btPtorw1GsAqy2ayq1aqOjo707Nkz/fZv/3ZC6SEESqVSotoiwgvBw++wXPwASEqgdQAIDcp+sVhETrynHgKCZrOZWq2Wtre3g27lzpknT55E0N7z58/jHgn87M7mpC0twJPHG6QFOJ/1ehRurSMAvbInigLAwedcuDAvrryokiqtLyQDWAAq+I4Hx/JZfy5CmP65IvVxpVkQ5gNXE88DUDB2B1LuYuD/tHK5HIGBrCeXIuJvbzQakanFNQWMAUXuQcJpQPBlf7NWvJefM4aLi4sAeChT3nmXAk23tIXLu3ge3wfk+f7y76Sf6UxeGph5Cuf19bUuLy+VzWbjAjXPdHIF5AxGGjB5SXJ+x8997hxUO2hgfhxQ+NjT7AfvdvDtZ4Of+VoCQvgZrlriPgCx9XpdZ2dnMVdUfSbAlfdTVbVarSaMF1y1hUIh7okhNs5Zv9lsFhVQO52OSqWS+v1+nEGesVqtgr1yoA0QWS6XcW8W5RD8sk8AFAYH8+PpvZzd1e35Xa5WarVakZWTBvObtmn30V7bTcMBmM/nevHihX7lV35Fy+VSR0dHqlQqieuvuSuCuxRA2wgXouz5g1UwGAzUbDYlrYUyBdT85l8EBnUnyuVyUJ1Q9wi77e1t7e7uRvXD/f19LZdLVatVtVotDYdDHRwcqN/vazgc6uLiItxQXnoaoUuaMCAE4OUWiaTEdxiPW8xXV1f68MMPJa2LpSHEPb3UXSMubN2CwvdLuqIrLwQRfXPgA+vA8x085fP5EFxuVaeBAwDKMxacZUDIOkuC4nXw6XEl/Bwgk8lkwoct3dzmfHFxoVwup8FgoE6nEywVCtKDSXm+s0l7e3tRTdVZr7Ri9Lgixoubz8FP2kqnOYCQkgXenA3z+XAFwPz7e/gs6+/PdyDC+/gcNYB6vZ5evHihnZ2dmGOn99NBovzemTTm2vvn/0ZWOLPjwJazhAHh/XZW5K9SiD7XnjLre/Mu5gV3LlWaYTK4ORdGtdFohOyrVqvB/HkAKm4WWBdkG3d05fP5uNKCs8pcE4uSy+XCFUSJeIqtUasok8lEqQHiyhaLm5L0BN/DssA+MzZqoczn88Tlo5x/Zndxy9r6OdyAkU277/baAawcWEBApVJRq9XS559/ru9///uJQCqsY6dyUaAeaOj0PwcPujhtEfBvvkO9EOqbOLVP+hzl5Xd2dlSpVNTpdDQcDtVsNkMRNJtNlcvlyNx5/PixBoOBLi8vdXp6ql6vF1Y3Sg4BzdikZEEmAIWDLebQYyy8oicCmnE4sHHBLK1TTCmw9LWvfU2NRiOyeoifYa597nin08bOIMCweNl1Vwg8k2DJbDYbmVE0mBEHYg6CXFn4vnLlzlwiHHn++fm5zs7O1Ov1Ii3WARRCN62UWb9M5iaAt9vthgJxq98ZrnT8R1phuqXv6+T74S5GJi3g0y4Hd1s6SwAYT4OYtEvxLndQOjaH259JSXfmgu8yH848OPsHoHD3m78/zd7AxPn8ZrPZUO78LB1A7H1LByP7u9IuBQcjPoe4+1DK+fy6DojX2Wi1WpGJx7u2t7cDbKP8B4NBpMtOJhP1er2IK4I9kZKACdYFAEd6L7IQNwo398LK0H8yzkajUcKYq1QqEeTtF4DikiEGxePiirf9m8/n2t7eViaTiRulN23T7ru9XgXW5VK6VV5YA6vVSjs7Ozo7O1Mmk1Gr1YpcfGlNlXMY8e27jxY6Ej/mcDjUfD6PQkMU/uEz+Fjph6e6Sgr/KNY4liBCoN1uRwEzgAQWNSXgi8WidnZ2dHBwoEePHgWAOTo6intQUN7OwLiFh+BaLNYl47EuXUG7lesuIBfEHpmPUmc8xMu8/fbbmk6nevbsWbgyEIy4TgAwKBWEkTdARSaTUbfbDVcbz5OSxa4AYvQdmhlQgLvHlQnKx+M2+B6/Q0kBUiaTiQaDgba2tnR+fh6uOb5D39hXzioxtwR0wrRQwdcteWfeaF9mHTr4dMYirUCZO3dX8hnOCPNHPzhH/X4/1v3LGBfvG59xxsnByP7+vmq1mo6OjjQYDBKuUvrsQNBb+nmsL/vIgYuDpbTrJD2nHoDtbsS0S4g55m/fe5xHzoYDYU955wzSx48++kgPHjwI9y1ps9RgIdMN0EvdkO3t7ai6jPKWFHNKf7gbicwcgAHB68ic+Xx9zxV7krICyM1cLhfsLvt5Z2cnzo8XAsRQcDYL1oc5h61BJrC2r169Ur1ev5Ol27RNu4/22rf2smG5Y+EXv/iFjo6OtFrdZIw8fPgwrBAsBvfr4qOFmuVwc68M9zZQXRBKlOqbABYPhMU6o48e5+DR7H6zJ5Hv/L9Wq4UgcABFGl+73dZsNtOjR480HA51dnam4+NjDQYDDYfDRGl8SWF5S4q5wIWBosVKA1hls9mwnnzOEcgobpQrAof3dDqdqB3hUfhe84BgPGdKXKHyGcbA/NBHQAp0cFoZsuZp15SUTP2UlABYNObeay94/A5WKjVlqAjr/m/AKMqA+CHmG7aItUYZ+1icGUm7a1wRu9uHMfra+bMYQ9r14PMMI8K7mZO7YlZorrB97tPvkm6AeKvV0mq1iuwzBxX+bu+7nxWPc6GmCZk4/l4HrmlA5nMB2GTNfOz0jb4A2Pgc+8XdmM7ecP59jzGn/Pzq6kqXl5d6+PChFoubKrjb29txI/lwOAwGBeDvmXfIrFwuF5do4r4qFAo6Pz+Pc4Ubhr3N/oS1ccBJ/B1FF2FHpPXFe9zT5aULMLzY841GI+bIWUDmkz2XNSDsDGZ6X2/apt1H+8oBrDs7O9rd3dWjR4+0u7ur58+fR4rvRx99lBAy0K+O0t3XjnsFq8hdMAg5/o9CSxexqtfrkcqLNYPihmnA7QNTkclk4iIqrCXcRETH845arRYCc2trSwcHB3rzzTfjArxer6fj4+Mok++MB/UBEJCrVfL21K2trRhb2jXAGNw15cwL45pOp/qLv/gLPXr0KCw63gkIQsCjwIOevbXC7spEoY/uWnPhD6j0cuur1SpcRa6o71KqzhxQZI495nS9p02Ox2N9/vnnwfj4DapYynzPgxY91sEZmbTA5XMOFDzA1gGnMwqwOFjnPufulnRwgmL3+AzeQ2YOz3AQ4AGqPocoEeIA/D3EuQDK064pnucA2JkOlC9nkPEQ8IkCZC+km4MaZzQkhfLndl0HPT5OT2P39bsrzshBiMfU0FeYEly3pVJJjx49Ui53cz9Ns9mMs1Qul1UqlQJgwAYtl8uo0eHryT1agA2e42sCOOE5NGQTbBOuYPY3hg1z6enbfJZ5Wi6XEWvngerOxt3l3nvjjTeib76fN23T7qu9dgArh2hnZyfy8b/97W9rMBgkLpZyC9QD+hBW+Cyd1narmQqAaeqbQ4pvGr8pz/I8fRS5W/BQn6vVKuhWZ1YINnO6HkWITxd2hiqMzWZT0+lU77zzjs7Pz3V6eqput6tOp6PxeBzjRYlA03LIEQ4e00E/pfWdHAhbFzj0nb5xW7C7eZhLj4eAHvaAOpSEK3Xe77ElzGe6/4CkVquVKKjkwXfSWkGnM0d8bOw1LFEobtxQXExI6iOAiHEArtIsB8oLoU5fYK8cdHh/XTEyToATBfr8egJ3ATqwTDMbd7l1fE583ZzBStPmaQbSFTJ9oe/c1+KgAYXuFjNn2K1nB6a8i3nmZ8w955Of4Y71MfqZ8Lgrny/Os+9HZ4NoabDrz8I4YoweZAsLR3bUu+++G8X2AAMYLMiObDYbN4ID+hkvzCHuZTJyAM5UP+VsEHNFUUMydCiCBvPCufPYHJhh2EyyDgEhPuc+P9REevPNN5XJZBJZip4e7Ptn0zbtPttrMyMoMjJMUOZbW1u6vLzUq1evgnlACbnLBH+nW9ZOMTtzgALBiifmAsWLa4PPetaOFzjy+2IQPNyl4zn9gA6UMVbDcnmTTooA8boIxWIxsoYWi4X29/f16NEjDQYDnZ+fq9fr6eTkRMPhMFGqHkXgAp/nIwQ98JQ+UkY6vSar1U3AKkGrPnc0GA0+jxJhPNL6/h9JCcYIytizU3zt+JtaCKenpzo/P48S106r07+0VU+feB9M1nA4VK/X02q10mAw0OnpaaKOhgdMe+wHriQCAWkOSFzxAsxcgTkgcTDIe4vFop48eaJMJqOTk5NgxlzhpsGDr0salDCXzt6kWSRnMJhLQBjP8VgJ5gRg3u12wyXJWgLgnHlgPe6KA3Hg4c3r0rjbBKDIPsYoARS8evUq3Bw+NmfqMC448y43PEaNswnYTbN9yCJnSjmP3W434kXIOgHwYgQhh4jlYW/X6/W44C4dl8UcdrvdCET1s8B+Jj5ka2srsvwAGMTKpQEhwIzLSekfDCjzwv51Q2U4HEY2EfPFXT0ea7UBI5t23+21s2nccqpWq4l0tk8++SQu2UKBIhgQ4hwop8ah56FhOWheG4Dg0uVyGZaouwxw/XAnhwsl/u0sgvttJYVgxGKW1vEBCDBqSkjr+BmYFKLZy+Wyms2m5vN5xM9cXFxoNpvppz/9aWSAuGXN/DmLRJ+dhSgWi8EcuNJmbB4X4koQ4e5+dXzeDgY8ZsDv0MH6g4Z3N1JaIaJk3KpzgclauaKiDx5wiqAGJFBg6sMPP9Tl5aUGg0EoEGd26A/r53dwOJhI9wklQ59c6foeZg6d/mfsaQDjQtzHi2Lw2JU0MEqDPP+9nx1fv/R80j9/nnRzCdxsNlO32w3FDCigX5x3d3t487ORdpMAGtydeNecOpiBseGZ9IG1SbuxfL49Lsoteu8z/fTvpMe5Wt3Ep52cnART4bFFVFCWFIwH/YWZWywWARwAMpPJRM1mM4w0PgsgpBIrNZAIKs1kbmLZ+v1+GAa8jzRd9n29Xo8YKo8lQ6b5urrcJYiV8TPnDvYchG7apt1X+0rMiBfjKZVKkUFD+Wnobg/uA7nzMxQbz0Tp4arg8Lji8qBEGA5S28rlctD20toyRBgg0Dxw1SltKVnoy5VBJpMJny/KxxUzIMgD0KCeSRUej8dRHfbVq1d68eKFRqNRFDpiTFhrgBUscPpD/+iLZyOh+LzUM1YoQZ1YaTBbbuk7y+CXivFct9Sz2WwADcAi41itbuI6qIdAf10Apv3U7ANXcKw1WVXD4VAvXrxQv98P8OeZACg39kAms75CnjlMu0gAebzLFdld7IQrYeYpl7upc8JdTbR0sCt9chDBH3ehuaLmee5m8ef4Hr0LfJJpxOe4y4exsS5e0yPt7vBxpC1kByIoOwwIBzfOUrqCd0XJ89n/7BVnWVyhOvsEoCcY2V05aQDnc03jHbg58/m8arVa4jK68XisXG5dh8SBHrFxpEm7HAHYtFqtxB6E/XNXF9Val8tlVHctlUrhqiRGBQMFwwFZCijzPqTdvexX1gSZwBxVKhX97u/+rj788EN99tlniaykTdu0+2pfKYDVBRNCHvoXZsFrGQAosHjT1jAWtIME7nLx7yCI/JIvLN9sNhsxHNI6HsFTaREgVEkEFDEu+sgY3UXiAhogQAAlyg7lLymUHL7l5XKpR48eaTqdand3V1//+tfV6/X02Wefqd/vxx0rLjTpB/5gF97+bt7HenjqIt+TFP5qAvF4h7NBbq3yPl9nxu+BtB4sy9x77IkHvvp4pKSbiv87iM1kMhFU/POf/1zdblf9fj9BQaOgsTpRruwX+u6WHn9cqDtISVvXaVaQ7xPD4qyOW+F8111+3heau1P8Xel+OUihb2nQlP4s70ZBpQMmYfgc7Pjv7mJf0kDS2R6sfGcN7nLRMVcOqlivu5gQvsff7privew5Z1v92RgSzEs6WJZYjUqlolqtFmd3uVyq3W4nXMC1Wi0Rd8NeBzQAkt3VCPjnvGJ8cV68zoqkKEsg3YAE6sJwjnjW6emp6vV6zHGj0QgZxHu49Rtw4pmGXo6h1+vpB7/4RcSReBzVpm3afbWvBEYKhYJarZba7baWy6VGo5Emk4nq9XpY2DAGZKH4IePQIZixSAAkZN4gjBEwKFAECYFlCCpSW9OuC56DUJtOpwF0cAvRN6xbhByKk7661cptn86k8CyecXl5mVDGxWJRBwcH8b4nT57o6upK3W5Xr1690sXFhT799NNQCoPBQJISFRlx1yBMEcpQqw4o3NrmswgyhJW0LlnN95lzGB63dGEk8GXzPVgJ98WnqXLm0hUs6+BKx91V3P/y6aefBhBJMwu+j5yOdwaBPcC8uELyOCCfP9pdQIF3eFVggJuP2QEBINH3DM+l8Yz05x3IM540SOCPvyPtQnGgw3PSsQUONr6snz5//M7XwZlP3uHBxfyMf/Mcd1OiqPmeGyzMr59vnx9nX9Jz4MwXGXIoamRaq9WKrBoUP3OEnMIYgnV0VoqfU3IfpqfRaKherydcrc1mMwquMR4KpuVyuXB7EoOHe2VnZ0eLxc29YMw3LC6unOVyGSnCfLdSqSQuwXSX4ne/+10dHB7qX//rf62f/vSnd7rpNm3T/nO31wYjtNVqFWWMi8ViHBbcJbgxOAzlcjluNPUocI89cFcEhxm3Ctb41tZW5PzzPRRCvV4PgYDFi9Xv8QxeWp5IdoQC1iEUvIMm0tywwDnALpShlxG80Lc+TiyOSqWiSqWi2Wymvb09vfnmm+r1evrggw90dnamTz/9VMfHxwkKmvG6wPVAVHeVODMCiHFFLSkR3OmWpgsoD0DO5/N6+PBhsGD0ya06Pu9BwKyrtHZfIDzTzZUt8/f8+XOdn59HSrhb4nyW96UVpPTFtFiA2M7Ojl6+fBmgNu2OSccWuCLzNeD3/n5n0jKZdTVLZ7j8955azXP9HWkw4X1y1icdI8V63BUn4UwcfXLARn/ToM7BngMHZ2T8M95f9lX6sw5a/Dy5UUGfnGHx7/tasCc8hsiDtd2l624pvxdmPB6He4UAbmSAM33L5TLOMj/nxmlScekjzAvf8ys0CEAFtCwWi3BJcoZ4vyRdXl6G24jgdg+29dRi6pKsVqtEHApuH98bJycn8fu7mLxN27T/3O21wQjK9NWrV/r2t78dfmgs92q1GjntHDDqi2QymUjDhHVAoKTvQsBiJjKcQ83vubnSKWae5TUFAD3Eo8CcwAQATJwCRljCSiCMEUA81wW/+6o9JRAFTD8kfaGmCM+p1Wqq1Wra39/XkydP9PWvf12vXr1St9vV+fm5jo6OdHl5Gc+GQcLicZbB6WCej/J2VgVQ4PMLyMjn17cjO1D77LPPQjhBY4/H4yip7ZlQriDonwc2+/yy7mml8fLlSz179iwuRZTurgDqIMUDT90nTz+km3orL168SFD9nm3kig2r0el+FJ6P0e+3cRYAoe+VbHkmIBGF5c1ZOgcc/juUHyCLn/nc0lzpM5c8H3BIH9NgyM+nu53SAIl5SgNj31+cH5g0PzPML8HlnMV0AOZd7iqfN3cP+3dcTjjLwtn3Inir1Srur+HsetViMpTIemH/XF9fq1wux1zXajXN5ze3OjebzXhuOrtttbqpMn11dRVuHcA+84T8qtVqMcfMk8eBIQuYR9gR5obMHwfikvThhx/q//jpT6MYpQPrTdu0+2pfiRlB+RC0CaU8GAzUbrcTh8eLk/FzKRlXIClcD/P5PJgVGAU+75aOxwNIioNDoSEHFhxO+oDg5NZMKFEHF6vVKlH9E4VGjRGEsjMqKOJ0xD3CmDnBYkFYeGAs1hdF5aBzqRL54sULdTodXVxc6Pz8PN7v7hJ8w7iFoKJR3K7AmBtqZCCsXQi6Fe+WKbUhsAoBYrzL78FAKLv1TH9cmd3lavj44491cnIS9WR8/v3faQDh1jV95nf+GfYg2RA0p/HZiwhyByVppejvSJ8bd01KycyStGvCn+NAhO86M+fnhHGlg7n9GWmWJ90/f6+7Spw58v6n++bzR/uygF5pXdEZNsLZNQ+Gd3BB/3yunRVKAzt3PbqLy/cj4+90Otrb2wuwBEM3m800HA7DfcP3yuVygvl0RpR+EejubCQygMqq3EPDH+7AIR4EwI+reTgcxnnDbc6cEHfHnvXg47vchczX9fW1dnZ2wi3sZ23TNu2+2lcCI4vFQuPxOO4/gQI8OjrSG2+8Eb7XnZ2dsPgKhUKCIZlOp+Ej5ZBgrSCYnc7lvRx0XDYoqGw2q8vLS9VqtRBgBD7SKIsMC4AV5q4TBMh4PI6YEClJ+9LSrhAPYpQUoIqxoNQAHh5AhtLLZrNxz8V8Ptf+/n7My8OHD/X06VNdXFzo7OxMP/7xj+OyN9YC68xpcGcQoHPdFYZyZWx8z8vjM0bcZtJayfFODxT1eXIW4C5Ln2f7+5if6+trXVxcxA25gDefe0AEytTH7vS7u6CcrcGddxeYcTdcmrlz65yfpZUz73TGjbXl+255+nO8P76mfvWAs3R835W2AwdnBNOxOQ5O0gDFwT8KPM18+Xxioftn+J27gpjTXC6nZrOpRqMRYHM4HOrq6ioBnHiGP9dB512MlrQOYEbu8EwPrEXpOnPkgBgDrFAoaHt7O84HBgtxJ35/DG5e1ow9zjlkjvL5fBQh414Z6ebyTj53fX2tWq0WVXm5SRhjZTabqdfrBShyucUaDwaDYKaLxWJkIgKAkYG1Wk3v7O/r5cuXUUfKgcymbdp9tK9UgRXrG18nPk63oP0OBvfTQ9HCEhDrATBAYbsy5NDCnPCudEoa1qBTn25VELTqqaAIHmkNKPL5fLA+0jozxlkO+iolCzJJSmTguKXKZ3k/c4cyR0i5QmVMWEXEOQBMer1eFFb7+OOPdXl5GcIJ4e9R9zAprkRhRDyYlUJurKdbefTPWSme4wwSY+fz6XgUXwPmL5/PRyxSPp/Xq1evdHJyEpeKuVvLlQVz5C4XAKCni/te9hRSB108k+Br+pNmWByMeDaS0+bsFxfmuBnZD+xvzwxLswceb+OgxsdFf3ze+RmgwgFEGog4cOF5ruBdqTNHDoQYG5Y4Y+O5brUz77lcLgqMedVWz3BKsx8e6Mr8+Dj9PPP59J7x7/nceJzXcDhUq9UKdy7xZ/l8Xp1OJzF22BxnIAEmrvRZ93q9HrJia2sr0tXpNwYW5RAWi5s7c2q1WpRQYI0Wi0VctsfYAU7EjLDnisViIk6O8TNuScqbfEwz0Zu2affVvlLRM+IbEIooIZSlU9jS2tpDmTj170KQw+C1FJxCXCxuosCHw2GgfwSipLhdU9IXFLKnmWKVQo06DZyuNUE/vQgQ72HsTh3j6+Z7ZAU5sEhbdR6vksvlQsilLVTvE1eVF4tF7e3tRYwJgZ6fffaZRqNRFDRC8LuvHuAn6QtAgwJgfA7AhDB2xcQ8eFo07wSUSev0VWcCHAzyfv4Qn3J6ehoWWhrATKfTL9yL4y49+ncX8+H7Oa1QS6WSDg4OIriv2+0mrGp3ZwGiaMwHgMovMmPuUEpueactcfoJqHVj4K64G6h7fo/bzi9bo6/sZzcY/PnOdDjDxhr5/+86w+wxPufBqOw3/vT7fQ2Hw8jIc/CYZjnSYIhnO7j1vrvs8DWm+fni34AR9hfFxDAWstlsZKqwx/mepAAQ0g1rV61WE9lizD/vdzcyY0JOtVqtCEqldg99mM/nkV6cNnK4HTgd00bMC+AJWevz9vZbb+lkOtXR0VGk7W/apt13+0puGooAsfnr9Xqk8T548CAuMXNa1oMUOThU+XTAkI6/cEXO79MuBg4j7hcsGZRAWtmQu+8R6tCoUlIwuSJPW4owRM5ASPrC73gnwov3ZTKZCGpEACMEEYRpRVEoFDQYDNRqtZTJrAOC+dnjx481Ho8DlJydnenk5ETz+VxnZ2eJ4Fai/J2FcXcU4AHhjKXl1jx9J+4EJmqxWATN7rEQDsKkJOBEUaPIP/vss0jnBfBK66BZlB0N5eyC1RkE/4yzY6wzDRbv+fPnievaYYc80NXZMZ7P/10xs+bMKf781WpdgdOtf++zg2UHpOw71tQ/w/zQHxS2Kzv661ayK39nOVgfB0AODP280pwN8p/7unCeF4tFBIFyDmAWWBsHHR6rRd+9P+4qvIsRS59j30ucS36H0YKsY27Zp+12O/F/WFXivzyzBcaEPl5dXYVs29raigrWpVJJ29vbiRg4DLpcLqdqtap+v58Ad8gwmFDmGCBPZejVahWuXQfq7OVPP/1U57dsIOPeMCObdt/ttZkRrL7RaBSHt16vq1wu6+LiQrlcTk+fPo2DiTXgwlVKltlGYXm0t6RE8BjKwzNHOPB+zwvCyqlRD/IkANWVkCsnmlt1kqJ8NuwAFrO7fUgVJkCN0vROKzNmBLFbrygRgmBhIfg+whlfMmuRzgqo1+t677339OTJEw2HQ52enkacySeffBJBuc4a8AdfNym0rizG43EITqw4rzQJC8KYUBaMnX2QdlmwTr4fXr16pT/8wz/UX/7lXyaymjzbwteddcaixAKF5XGWCwXH/z3I2q1pHwfvcSVdKpUSlyhms9n4DspHWqeqwxa4QvJYGilZZt33DGfEXTIOSHB3sK8AjTyT5wGaHZg4W5cGIND3DqxorqBcwdNfBy/OcPpzfd5xI1ar1bi/xQ0N5oCgZ37uwNgzZ1zO+M8cmDIOWCuXVVx3sbW1pUqlotFoFJVLqdPR7XbjZ8wDMSSwPZw1bv4lm24ymWhvby8BpFg7zq272MrlcrAsfvN2o9GIca1WN1k6V1dXKpVKKpfLwWKPx+PIQkQOkm6OrGFe9vf3dXx8nDBSNm3T7rO9FhhZLBZaZNbBcSgnFMN4PNZsNlOz2QwXAsoAgYEQQmgjnCnmI33xllpcPyhRhIZTnyj0brerbDYbhxYli4WC6wSLvlarSVofZBdGy+VNSWY+T2EkfPuSwgohLgUQgsDzQDVnPqRkkarpdKparRbBpbyLeeBdbhU7a+F1Buh7tVpVtVpVuVzW3t6ePvjgA33wwQd68eKFzs7OdHx8nMi6cXcDIM8tLDJ2UAgebU8wHxaiKwEsWvrl8+3Mj8di/OQnP9Ef/dEf6dmzZ7F/PMaD+Uxbv2kq3gEXCox18eBSt5DpD2NHETPXKAfWjnmgLgR7mLPBHLgVipvG3YM0n5e0Be9jSO9XvzuJdXDGJs0EuTvUlY2vkcfiOCvijWd6ijzgw0GMx1HBdLH3eW8mk0mUQaduEW5Dd/+wdqwLn/G95ynvDsh8rMyrsy79fl+7u7uq1WrK5/M6OztTv99PsK29Xk+DwSAuqFutVpHOy9lsNpvBbvAeLzF/fX2tTqeT2Ce4Tr1UPzKzWq2q2WyGYQKQ4lxMpze3iB8eHurq6irqP3n9JenGfQS7yj7ykgiff/553F20aZv2y2hfKWYEQc3NtwiQ6+vrAAFumRF0xcHHmnGlRQVWDh1Bo+4XTrt7CHzjGdz46TVIOExe2AfrkUAxBKT7bKV17IAH0PIOZxQAOltbW1GtlLlyBYpCzWSSV3YDpogloB5BrVZTsViM+2ucgfDaDAhXXAoudJfLpVqtVtR/efPNN/X06VN1u12dnZ3pxYsXcfHcaDRKBK26BcpcOqXvwtDdFm7NpRkxvo9wlpRQYJRX/w//4T/o2bNnMXafN3fRpIGBx9/cFaPC/gXI+Pz5/qZf9JlYG2cWWFeyKNKuGUAFfXG3i1cTpg8+Fn6Xdmel3VD02VkBgIgHwzozwdr53DuwYV74vDN7jMeVN+c9HeDtcsNjVXgGrisHSKwX8+FZb37LLzLIY3WciUEupEFeGgA7QwiAIOh0MplEXRCy4AALFxcXwZrQN0qqs78JKvX4EECWdHM7LrE8/By3K6xKrVaLgpEYOUdHR6pWq6rX6xoOhwl3l7v+qENEZiEX+GUyGe3t7UU/MWKKt/18+PChfnoboIt82jAjm3bf7bXBSDZ7E+F9fHwcaLtcLiubzarRaEQQ62effZZIw0SxO33KAXffu/svEZDUNHH6ezgcJuppoMgqlUoUx/IgssFgEO9EoQCAiHng2QhxF+64kTiU0LEePDafzzUYDOL/XtsEehYlgVXOez14F4Hn8Rg+Tqe2HUQheFyB0V/GTZZLs9nUwcGBDg8PtVwu1ev1dHx8rOfPn+vk5CRh4WO5e3aTU/8e7Ccpsk/wSUvJAlo+t+wNv+/n5z//uV6+fBkpvVS8ZX48FdcVC0rSsxx8DlCCDnDT8URpocv3ve9uSTr4opQ4QcueHcMecoaPdU/HKLl7xX+G0uL80PzfUrKiKHN819+Mz5mfNGjzeA1/V5rl8ncCvpgjB41+/n1sgAA3CDiPABL24XK5jLNPH9MgDQDpeybtgnL2ibPFnppOp+p0OqrVanrjjTdinavVqrLZbGSktFqtGFuhUIjL9YbDYcgtwCvvRoY6E8k4ut1uADVcvvP5XHt7ewHkKF8wGo2iVhJAx1lSD05tNBpfMCaZa3cbS9Lx8bFeXV6Gcehnd9M27b7a67lplkutjC3wgjo7OzsRZ7Czs6OTkxPV6/XE1dfu8uBQOAjxlg4oRZChELEuACHEj+AKQRCRkkfshufrV6vVsEjcOiR2gsAz/LgwF/inSc/D5eT+bRQTtU5qtVr4eVFWCEAur3Mr2lkD5tj98u4mQal6tgd/e0ouboTVahXrcnh4GC6GnZ0dPXnyROPxOCjoFy9e6Pz8PEF3OyuAEEaoAcIAHLBf7ipJCzcXktfX1xoOh9ra2tLbb7+tyWSi8/PziBvxQFYHCf4zD9ZEgHs2iivjNMuVdo0w114l1VkuaZ395RkqPJfPMXaUIkCG9zo4SoNO9gHAHYWcZqA8doW5oH/OtLj7yJkP/7cDOH6HwmfePcbHGTT/LnPrtTXcqACo+37g985wOLj0Mfl+T7steR/rwZh9rnxv8m4Hy1dXV3r16pW+/vWv6+rqKgqXuXuMgNKrq6sosw4wcKaOOQJQZjKZcOOg+Bk7V15kMpmQU3z++vo64ldgUXG5EMjKuOfzedytQykE2GvP+nEGc3G7zz0eZwNGNu2+2+sxI1oH9nU6nRA+0+lUFxcXWq1WQSu22231er2o1YAARaDiC8WCKZfLQXW779ItHSx7qHsXiIAPqrACgDw+he94oCU0KwePf7sQTKcoYq0BKsiIASBhzaBcAAQoK4QMIIiD7u4KF14OxBijW7kulP3ZNGI8mJfVahWUL641AnO5Kp2qrwcHB7q4uNDnn3+ui4uLsOoBfW5Z4etm7DAjAAHWOh0L42suSY8ePdLv/d7vBbvw4x//WL//+78fVmOa7XCFmXZfpOMi3GXh30sHkqatfQrYwbzwLAQ6Y/YAaVeSAHBuTHZwxZrSVwcEPseels0e9DgUwBfP9LgNPuNK2efM2QW+5y3t1nDQ4cxe+rNubPAdxpFmqdLrybOc7SPrhOJhnHHGzb95PxleHqvlwI81cqBPlt9gMNCjR480GAz0+eefa7FY6OzsTAcHB1H5NJ/Pq91uR9HB5XIdZ+YB18g9jztarVaRTQMDjGEAqC8UClHoDDaW4HwC6T3IHVlKYDt7zRka5pH5nUwmmkwmat7+bm93V8VOJ9gbP5ubtmn31V676BkHmvTR7373u5JuDkav19Pp6am2t7ejSBXpaWk3DUGpWACDwSARzY5QccGFwICmRHC53/jq6kqtVkv7+/tRGwLLAKWBIPOgWcaV9o+6kkKgAkKIX0BoMEewJwhamBvGgkIfDoeq1WoxDuqTuC8dRsRjZaR1LQPGz2c8FsUVIv9mDnBzYXV5HMT29ram06nq9bqq1aoePHigw8ND9Xo9/dEf/VHCB+6ZGyhKtzbdveQgi+/7nkJxPHz4MJTiaDTS9fW1/uRP/iTikjzoE8VDw+XjIM7pf9aSuXRl7ErRP7dcLmPvMu8OWGFLJIV/3hkW9i2lvsmy8osFAWi+ToBKAhNRlD6XrH16H0v6wnhZpy8DdGk3ThqU+Dz5/nKmBcXKmfSAdY/hAcw6uHX2hXPkmV1u/HCukCUelwOr6q5eWAfmJT0OXy/2FO7L3d3dYDQHg0G4DReLRQB5gCPnmL2ZzgjkcwS+rlarkE9+jlerVQTju5tntVoF2GA8XB7K/TfsR2JaMCyYT8ALa1QulyMTS5I+//xzXV9f64MPPlCn09HPf/7zMNo2bdPuq32lCqwozKOjo4i72N7e1vn5uer1elCIk8lE7XY7DiKMgbtMOPRu5YHWOYQcbg7rZDKJqHVpXfBpsVhEDYqnT59G2mUul4u4FgSXB9kCHvDxutXL8z2Yi9gU3CtO+aJ83JplvDwPal5SZM9AYzvl7pS0tAZE9A+/L8oD14u0zmygb6yZtA70c+GPsIP2RVgh+HZ3d9Vut/XHf/zHiSwNZ4tw3/FzZ7YYk7S2nJ0lGg6HURIbIS/dBPnBIiCMsWoZmwdLp/921wPN4xRc+bny5fusG0wTCtSVvgdh8nnW3cEsGR8ELXrgrQdsuluCf5Mu7mvOz90VBEBIsx/0w2OB+Nufx+f9vPu/fZ48xoK9dtcZYBywGuwvn2NnJtjvnEnef1eqOG4JB94OrnzO3LWVNjgAlT6m2Wymi4sLvfnmm3HNBWmyZL4xdqq1OtvC75wZBkS5u9avtGA9KFaYz+dVr9eVz+cT8STOLM3n85BHgDzmB+ON+YOBIaAfdgZmT1rfqVWpVPTs2bMvsFWbtmn30V4LjLiwfvz4sS4uLkKBABz+3b/7d/rggw80HA7V6XT07rvvJir4uSXsFqBboRwmfMkeGY/g4WdYG1gfXCyVz+e1t7cX2S1pIVEqlcJtAY1LECV1AFDejJ3xYwG5wPVgRAAah19SWCmUf3ehWqlUIqZEWoMP93+j8HkPoIg5QKHhUnLr3Olx5i3NHhDfwXsBhJlMJgRXJrP2cbty8jVwqhsAxLqicFh7t1QJMiatEwbk/Pxcn376aaSRO+PCfko/jzG6smO90rEGDmjpSzoOA0XGvLuyY+6gtJk7QGomk4kiWFD5fjsvCgEGieBlXzeADNYwiiht6QP4PfDRAQTK3GM9/Fwyj/5zfucsSJrRSjMwjMcZPT4PeAAgsBc5g1dXV7FWAALWB0UO0PYLKR1Y+tz4unrz+WVfccZR6ADPYrGo8XisVqulQqGgXq8XGTaMo1AoBCBhza+urqIAIAaJyxUMI+JLYIoxqrinBzcKoIJx9/v92GPISmecAC2DwSCKuOVyuWCEM5kbRvrhw4cBjHnf3uGh/uIv/kJbW1sJBnnTNu2+2mszIwiycrmso6Mj/fN//s/127/927q6utL777+v/f19vf/++5rNbi5uwrJBkCAAEDIElHqAFfn0CBeqVSLgeR4Ci9LGuVwu8uo5lHwHAcDzESQIIKwBFA8C3K1WFOpsNlO1Wo3D7UqBseHCcRrblYYzQlg+i8UiAAl9Q2AxZnclpAUon/FKoawbfURhMX631gCV7nf3a9Fxux0fHyeEu7tl0gGYpBS6leoMG5bh1dWVzs7O9OGHH6rT6aher2tra0unp6d69uxZ+NN9LgGZ7iZgHbxfaaaJ+UBBwmKkL1b0fU/AM4X5AJzMNXS89MU6FjzTM5+c0aJvxARIStD/gFg+6y4lB3/s37TLx9kG3ysOQBknzZkFfpe2jn3P+e98ngFrHtyNu4b1ZP081gMF7WeSZzNf7tphbzNW3wMOXD1wmPlgrpgPlxHZbFYnJyeh1B8/fqy9vb1gvQA7k8kkLvpjT2AIcQMvDBbvgyFyEE/5AM4M3/d5gWHyOJ1erxdAFkYTQxFZhWEnKRhgShU461QsFjUajTQejzUYDEIGbtqm3Wd7vXLw5rN8/PixPv/8c3344Yfa29vTcDjUe++9p69//etqt9v6/PPPdXp6qmKxqEajEZYfgsTLnrv7wBXEcrmMa+rdknLhBzvAnTU33VwLaFw60jq4jFuGPRsC8MJ73EIdj8fBQNAHfLJEwrv7AKraDzqWs7RmWRBcaeXhTAeWErQuz+GOChSWW130NV37wl1NCDYUG9Y0Cg73GP2AFanX62EpuVJ1BcQYAHi0u0DDcnmTedTv93V2dqaXL1/q2bNnYemORiN1u907mRB3CwAM/efuqkr3izlhLXAjoCzSDADPhXnAVQX4dKWKYqU//J53ekApY+F9HjPl8RXEE3m8TprZwboFbHnMDP+/K+bDQdJdbInPhbsJ/TP8e7FYhHuUOJvRaJQ4PyhFZAFKmblwNiUNvImhcaDDnnJGxFkxd0He5dbzNWceqaZMUDcMoWenUecIwE6gKf1jXd11ylw7C8bZc8C5WCyisip9Y554tsfGYEgg91g3fx5F0GBIGQf3GbE/f/VXf1VblUrI8F6vlwA+m7Zp99Fe+24aqNdut6vFYqF/9I/+kb7zne/oX/7Lf6kXL17o0aNHQQljPbhQcSGArxSmBZ86RcRyuVxkZKSFK33B2gGwOD3bbDYTwhgmAgsdBYNApS9YFygRmBYOP8JKSrpUPDvGFZFbl3w2HejnAstrIvhnEJwACeYIsOXKGKUFM5RmfDwIFGXjwagOrBB8bnF6eiKWJM9Jp7gCAhxMohTm83kwI0dHR5GxM5vNIo4EIS2tA3cBKzTW3deb+eLnKFFnbzxokLVlblF4HmjqSj8dNMr88VwAi18u6MCDxn50oO1Bhrj1lsv1JYzEkPg+cfcP80EfPA6F+XB2wBkCB0o+d+lnp8fswAiQzFhYLwLW6Tt70ceS7gMMYbpfzB0/c4PH9wV//Nk+ZvZv2g1VKBTUaDS0XN7cP0MRM+IuYFk81Rowls/fVKgmC6vRaCSYZekGzHDLNqBlsVjEtRXcKbNYLNRqtbS1taVerxduGdw2uHpHo1GcJwwpai5RH4UA6u3tbY3H4zjX7kL94Q9/qI8aDXW73UTc3KZt2n221wYjWDNnZ2d6+PChfuM3fkPZbFbf/OY39YMf/CAqFz558kSVSkXHx8dxyPGdIjw49DALKHssb89QkZS4DZdD6oGWnm4MPekBe2k2hHRWFCkAxUGPW7Gec4+AxRcM9YzfV0qWD5fuThu9y9/uSsKFPWNPszbMXaVSUblcThRMgsFBGLv1KCkAI9YUgAFql/gNjwtiPuk3gAvq3V0Z9NmZBOaAny8WC/V6vbgQj33W6/XCykRxeMoyc48iph6I09G+Z+kL6bUoOWeOCCR0tgrl6q43D57EFeAAkOc7+8S6s2/dFXgXgOWzPJ/n8VnAnNetYW+7ZX4Xk+HnhxgEGCV3TdJQ0ncFgjozBbjwsfI5Zx8YOxknDmQd1LvrxdeSNXL3Kv1knM60spbp7CufB/a1syoo8X6/H/Ef7BtkAHWLWBeXGdxH0+/3w/XscSKtVkudTidxiZ0zSM70UOl3Pp8HqHOwgEsHpsMZMuauUChoZ2cn9uVkMolsJc5BGhAjHzdt0+6zfaU6I6VSSe12W2+99VYEal1eXmp3dzc+2+v14uZcNr1bTwghae1jr1QqYaFAkXrwobMe6SJBHCa+x8F0ah5/tbMAZEqka4kQQwAocoWGPxdB4MLL4xrocy6Xi4CytACnJgF9lNZWK8KW/vi78Ge7v5v30G8+j+CTkuW/YTwAhA52ULKZTCbcbLiImFOsc19TxgtAQDAzdhSBx9dcX1+r1+vFnR3tdlsff/xx9D9tJfMeZ8agwCuViiqVijqdTmKvOENF9lI+n4+7R1Awy+VS5+fnd7oh3CXma8B8AdrSljgAwuOGfA+guB20Aw5ZG+aVPbJYLKLap9e9YZzpOAsHdMw/6+Ggg3E7ePV+O8OSdhWhSAmmJNiT9zmDcBfTCahPnymMBgcuvNeBiIMv2FI+x1jZ5x67wfo4cGE/8wfG4e23305kLzE3PJexUDcJ1gfAn2acACS8n9ioSqWSOJPT6TRuNQaUYMR5mi8y0YOgqU1SLBb18OHDOJsuX66urtRYrK+VIKbk8vIy+rlpm3af7fUCWG//vrq60vHxsb71rW8FRXh1daV8Pq+Liwv9k3/yT/S1r30tCvJgsWLB4/rwOAcOlbT2f3OYUcSwGQgylJ4LyMFgoHa7HZRwNpuNQmwoVGJGVqtVACDiOgAzHFIOuTMCTu/yOwcG0jp9F9cT4AmryEGAtPYLQ+UDllwBIlxgcdJWN3PoMSEISvqFEGa8HneBQkRR816/V4gaL8y7+575nisXBD1r7AoRVxdjIj0xXcqaZ6GMYSk8s8KVymw2i3oQWNmuQGDAmB/2x2QyUbVaVa/XC/DMnEG/0wePr0FZejwUCoNMCMbtrisHWChB5tBjjLyIH2whVnir1Yr7SXAnMg/ucnCmxNm9dJxI2iLne/STtQUw81mAq6QI/uRz7lIjzsKZEwCDgxrmnP0F0EMx0x8PBnc3KGfKgZnvdfaRg2k+C+AZDofxfAyGwWAQcXBewRQ2gpRcv9UcY4Kz7f33m7AlRUwWbEWz2ZSkAHXME2caNy17h9R86or0+32tVjc3EE8mEx0dHUV/F4tFItXcmbXJZBLGAVl1m7Zp99leD4wsb8rBI/goh47Q+8lPfqLnz59HoCW397KRQfNQ2Bw6lBnKC9cCAtiVAhY5F0p5wShcLqTB4WNHGHPonbaU1il2WAPuM+YwokRcEWOlA2bcb4z1tVjcpOnxPpQAFr3HEfBvd9k4OGEOnC73+IfpdJpwY7hrwN0oKCvmxq1Gj29hDjzw1RkqSWGZOrsEqARwebyIK8fxeBxWWyaTUbvd1mAw0MXFRbjeXHh7TIBnYwEscrlcFEljDXyc7FV8/4vFQvV6Pf5cXV1pPB6r0WiEMnHQ4PPtChpgCECBiWK/kiHl7hdnJfxvFB/+fM4KAaCcE2JJiGtgDlkHD9J1YOeshv+bsbg7xlkCB5F8Jh23wx4BxHLxInPhY0T5sa8dFHgGjT+PzxAgyziRN5xrByXICHet+T6nodzTLqh+v6/t7W0NBgO9/fbbwTRICjcwZ9cBJCCBLEF3G3KmYO04J8R9ML+A6cvLy1h3r65KbApn/vLyMuLecCnV6/UoHw/DSRE0gCGZOMwfzAg/Z942bdPus712zIi0rpPAob+6uoqSw1gIHBj3nWNVO1XskfEIXFiJ6XQaFUqldRYIhzAdTY5gQADgtiGegGfwB6tHSt4Y6r5TlLe0thr5HZ/N5/OJlFxXCqT30QcsvXQMiLsR6AvC3lkWvg8oSNP8zIXXmHDWxJUBsS0wV9K6Rgf+btKYPbXW3WuAStgWLDT3Nd/FvjBW6O+trS3t7+/r1atX4QLz+AR3BeHKcxcOSoB9RdotgX4IZ6xEwBvjLhQK4d8/OjoKt5GzYMwNSgQQnM/fXDx4cXER/eMcFAqFuK9EShYUc6CNqwXmhpobjAVrmEwq+jIej1Wv178QK+FuOhgF9o67Zpw1oR/uYvQAYGd1XMGnmTtANIaGg5u7+peOKeFzuKdQ1gBbd73AZDjj4YCReQEA+pyg8JEXyAMMEHcBNRqNRMwZ68Demc9vCo8RsOrgnDO9XN5kY5ECzLmgz/1+P9YdVplCZ74Og8EggMlyuYwsQow95g9XM/IEZg9GNA0K2QODwUDVN95Qu91WvV7XRx99lAgi37RNu4/2ejEj2XWgXbFYjPsOlst1YCF1JbzCH8ras1EQJC4IOLwIcXe/8HkYGQoRSckKk26ZEI/gFgxl0FHaCNZ0Jo4LVlxK0voeFd4D6HJljsCUpNFoFJYY4At3BH5kqHk+T1Ae72fOAVxutbqC5Dkene8xDsz91taW+v1+YtwUSvIAYxSTAzLm2YuaeUEud28BsvwiQuYY5czYsPDb7XYi5oX1dQDr83LXzwgqbDab2t3d1e7urur1ularVRRVo7x1t9tVu91Ws9lULpcLa/H4+DgqU7oiQdEAmmEwDg4ONJ1OdX5+nrAwcf15SiX7DmXEPPC3x8RgccPuZDI3FTU7nU4oXZ7NHqnVaonz4UHQDkJozJ0zIwAKXwP+doOCfU9/UfL0FcUIgPY4FN7p7hn2m7OMADFJERzNutMAapnMOlbMz136s4wPFwQAGHehsx/j8VhPnjyJ7DzmmrPI+Nxg8GrLXtIfueRMA6Cf+CVAEHLAzyHpvbhvkAGVSiWudnC2Bje3yzqfY9YgHa9zdnamfr8fl2Q62N+0TbuP9no7bLXS8lZgjEajUDIIxE6no52dnVA4WAmgcmcyEEIeFIlg9iBQaX2gt7a2VK1WValUEsLaA0Tdanv+/Lmq1arefPPNAD1814W/U7kwElhkLnTcj01hImldkXU+nwfQgUZFkbsVRhEjZ0UcNFQqlYQ/m78Rml6XhfmUFBZz2hVFXzyugbXb3t4OJURfPU0XoQ2jsFqtgq0igDUdO8AaMk5XUD4W+lYsFlWr1QLgNJvN8GWzprhQXKk6QEQhwIgcHBzo3Xff1RtvvKFCoaD9/X3NZjOdnp7GHMEoUGCM/vZ6PbXb7UQQLCDv6uoq3I9cPTAcDlWtVrW9va3hcBhB0QcHB+GX/+STT2IdPGYg7bYD1Husz3K5jLXd3d1VqVSKOC1+zzw2m011u90ATZ6uDmh35U9zxepzyuecyeFccjY8doq59RgN1srddNLa7QYj4XFFnnrvbhB3D/Fe+sW54NzSd2dIMpmbDDQABZ/xmBNk0mq10unpaYB1QB5ggfPHOAAwgIvZbBZGmbuMs9lsZLQMh8M4W8vlUt1uNxF8CuDnjq3ZbKbz83NNp1ONRqOQN9z/hVvG58hL13vQPuPodDo6Pj7WEwMcnFEMzouLi7+Bgti0Tfvq7fWYkUxGuj04b7/9dtz3AnuA0CRoc2dnJ5SP06ZsdAQmVgzKhGdw0PgsB+nk5CQOr6R4N0IXwfPgwYNEvAJjgPaE1ZHWlh3PSVvd7nZwIORCEIVIc6GNICCeAOsSNgMhz1hoKHoEOULaBaizQljhKDeYD3+m+8VhtRDEuDBWq5tiVSg9mAAAFsqL8Xg2EkqDz7jicP8zgANG5Pz8XPv7+3r33Xf16tWrEJrT6TSAD3Puc8qYELAPHjzQBx98oPfff1/b29uJeAuUw9bWVrAhCP/hcKjBYKDvfOc7UYjt+fPnoVQJduY26tVqpYODA43HY52enqrRaMTeoIrsw4cPlc/ndXZ2pm63GzVUpHWsEkAV9oU9BdCmVD73PrE+nIH5fB4pya1WK66Id0Dpip25wEr2Perr5rFB7O+0cnf3S5qF4/3uauSMoWQlJcC4u4f8AsL0eU27m2CHOOPskXTGG32CkXSWA6DAPCF7+v2+2u12xHD4XMGsINdQ7jzX+0sMFCAExou54f/L5TJYGk8hZo699DtuUmLlALScQ4K5OacO6OjL6emp3n333QQQZa4wAnBDb9qm3Vf7StzbdDrV8+fPE77awWAQytVjHjwAzylo6YsCBaXq33FLm+940Cq+WZ6FnxorpF6vR5AWQAch4TS5u0Fc6Hq6KoLWmR1372DZQcUCspytoSEIeRc+cqzvdJ/c5eW+bwc/HgcBxes1AmCqENpO7aMcKKrEOH2OWQ93rbj7xQMlXUHxM5qzGvV6PQKHt7e39fDhwyh0JymEoVvuKMx0RtJqtdLe3p7+3t/7e/rggw8CDFcqlVDq7XY7qmsCRFByrGm5XNbf+Tt/R1tbW7q8vNR4PA5rGdoe5UcBKUk6Pj6OLIXxeKyLiwuVSiVVq9VgfobDYQKge5wSfXRXE5kyk8kkKnwCDqUbQFOv18NduFwuI8PGK4R6hWLWwJkP/vYYhzT48N/fBUBc8bImvncxKtJxR87WoZyd/cpmk6UB0sGUDiacYXEXjccs+RmEiWJ9mUP6e319rXfffTfiiegPcR7uJmEOOX+S4vyVy2UtFou4roKfpa8TYC/UarWoJUL/YGMB1NING8q6OtPGuuOmRna4jEU+djqdm98bmGNeAb+wwJu2affVXvtuGjY7xbakm4NSr9e1t7cXbAc37SIEiJFA+KO0i8Vi4h4awIO0TueUFMGICAEAB79bLNYlnDmEWC0cdDJ0UMAubF1oomjdB+zABSVNP9xK4TOwL36wPd6GlE9SjrGMods99sOVu/v3vagY8+zULtY8ApQrxgFRuI+8wqi7onDFSOsAPAQx1puDHbeAl8ulOp1OYn6YWxiV5fImrZax4w8fDocRF0Gwnscp0A+EL8zC7u6ufuM3fkO/9mu/pv39fVWrVY1GI0mK+iOS4nZVwBqAkqvULy4uVKvV9P7772s0GulP/uRPIs0TMOcBp7y7WCzqxYsXCXaEMZN55oqOPcTcOxOBy49MDhQfrJQzZBTM6na76na7arVayufzGgwGcdZgtVDa7qLwP75WnAsHlf57/u9MI+/CPcR3+cM6EoDOHJA95S5SN1x4vwdcOhuHjHEwxfgcjHBGkFsAG9x7PGc6nerq6kq1Wk3f/va39eTJkzin7DdJiXgoD0KH2fX3LRaLyALkPbCPHhtSKpXi0ki/eoCYFeKUeDaxJsg74tRwNY7HY+3v7yeYUAytXC63joexgHaYVeKk0izZpm3af+722swI/vuTk5OIVTg7O1M2m9V3vvMd/eIXv0gE6qVTXom3QIDOZrNE6pvX/SD4CiWA4MYdgVLHt4kCbzQaev78uTKZjLrdrn7xi1/onXfeUavVkqTIwQc8eCqmdCPAYFAYM8qAQ4xi4/P8HuGIJcGhRkjSRwSap7A6AOGznqEiJa1AvuPKGbAgrZkn/NkwEIAGBBrj5J0oDhQk/WeMXgsEq5315b0oJN83CGwPUMQ1wZ9+v6+Tk5OgsX3+EMo0B2bValW//uu/rt/+7d/W48ePQ2GRwcVcA2BQJs5iETviFvVv/uZvql6v69/8m38Ta09NEjJGCOau1+va2dnRYDAIgNftdlUul1Wv16OGiQcKSoo5dRDKmNkDrnxWq5U6nU6wLmTdZLNZnZ+fS5L29/cjRdPLyfNed6H4+qRZB59v+upAxt19PMszxviO/9tjwgAf7G/WVVLEefkZ43sO1NmHzjih8DE67opzYbwOeDB6ut2uMpmbNOK9vb1Ye/Y3oMoZz2w2G+CB88C7MdKQNTBr9N/PPIYWtWpKpVLsOVw57C/c0u46g/2jvIJfQEpfcIEOh8OIG3OGLJ/PB+vW7/cTMmLTNu0+2mszIxwugkmXy6VOT091dXWlBw8ehO8TQeUWHM/wg4diciFIPvzV1VVYEjwHYOKxA5TDdgoY364kffjhh2q32yGYpGSarhcek9Z3YXBoUQj4emEM0n1BSLrrw1kWLEN8z57yiUABYEkK9wF/e4wEc5lWVB7UmbbCEVgoXJglvlssFtXr9SL2hgBSmDDmiz4Qw+PzylqiYOkPgh/wQbEn4h0uLy/V6/XU6XTU7XYj6wWl7EGyPI/9UKlU9P3vf1//4B/8Az19+jQUG+Nwyw5gyTM8cwqliaVaLBbV6XT0O7/zO2o0GvrTP/1TXVxcaHt7O6xaYgHq9XrMVb/f13A4VKfTiT3DXnWXpdfcYZ48BRglAHhCcdVqtQCYXlAN19NoNNL5+Xlc/w67wv5xtiodKJ0GFg5G0qxJGrx4HRXGkJYdzD+Al3PNOSmVShGoTP8804M97XFQX7aezmjyed7JWtNHwAtzS4bfO++8E2OrVquJ4FjkiKdxwwbTZ4qNecVoD+bFPeeuGs4WLicAPDIRpo3nuHEjKer3ULfEzz2fxWVE6nlaHtZqNQ0Gg8jIevjwoTZt0+6zfaWYESx/Nj8U9uPHj/Wf/tN/0mq1iuBWLAEXcvhM8a+6kgFIYGWA0KVkqWNXSriFKIaGZYLvdrVaaTgcBrgh4MuVK0IKC91rDDhooq+LxSLhJ+b3ABePS3H3D9H3/B9rx6ukOq3tjIy7ltyn7mAOdoRnee0EBDCME/E1Ppce8AoYc9/2ZDLR2dlZAhygEGGUeKan6MKUkeIN+9XpdOLP8+fP1el0dHZ2FjS/xza4y8rH8d577+kf/sN/qDfffDPodj7vmUUoKizaNBABWHnmkXQT1Ptbv/Vbqlar+vM///Og2Kktcnx8HOm9pBA3m009fPhQn3zyiTqdTsK6BKxKX3TnAS493gr2sFKphPuTtYLh4hxxDmBniE2C0XRDwBUj+w3Aw/w5KGEf0m93gTBfnD2e5/vZ2UFnDnK5XOwxD1ambx5o6+sqrVk470O6Lkk6pdbPJ/2aTqfa2dlRs9kMA+PJkyf6tV/7tYjLAHB4ZhLnjbWF7UVusTaebsx42KukvzN/gDBiVtjn8/k8QO+rV6+0t7cX58xdP7B2o9EoGBluHucP+xSmz40cGCDk82KxUL/f/+vUwqZt2v+j9pXACECBw5/P59VqtdRoNOLguLXnvn7+JoV0NpvFASMwFaYDJcqhd2bEhVu5XI7YAyj38XisZ8+ehQBCaA4Gg8SdOa7wsRoZI1aqMwwcUFo6kDbNXGCNAqBciSNAPfbBXTJ3BQai/CmmRqyDAwpAi7tNEDywWbyTMSOAURwI+HK5HPFB/JxAStbBaXIHWQRrAvyI7l8ul5H+2O129fHHH+vo6EhnZ2e6vLwMYerWursoaLlcTg8ePNDf//t/X0+fPlWz2UwUfeLfKB3my/9mbgEh7B3mEUDcaDT0K7/yK9rf39ezZ8/0ySefaDwe6/DwMOaq1+upWq2q1WpFvMfh4aH+43/8jzo7OwtFQzyIuwzoC+AdJoTvAJZgHQEYgC3iBDzQ2jN3AJ7UoyDuBBYC4IBS85Z27/Bv1sQtfvYgzZ8L6OEzzooALgCwDhQ8Dot3sp5pt5rHFjkT5X0GCPhYGRvZZO+8844ePXoUMVfOtsLqSYo9Q9YZ/YTlWS6XcQ5yuZwuLy8jds0DdaV18TTGtlzexFRxnorFYsjdnZ2dAKjc8IvLF/cLMXQAUuQVsXDusiwWi8rMk5dLIicHg0HEXm3apt1Xe+3U3sVioe3t7QiQJNAL/7T7kKV1+XJpbWm5u8IPhSPyNIUrrS8mc8UPMCJAEVrx4uJCP/nJTxLxKAhABBoZJ94/p3xdqbt/FkFEpU0Xdn5jJhSrKxuPW0AY0RcX9Gk/MIJVUsSjuKWKNensgT8LAYkVxRohlHkH4M0Vgfu2qY/AHPFZV6Y8r9/vh3sH2hx/u6dunp+f68WLFzo+Po7MFbeG0/PBn2azqb/7d/+uvve974UCZ57cPZUOJKbv/hn+z9gkRSVO9tz+/n4Ak0ePHuns7ExHR0daLNaX1pG1RUXZw8NDTadT/dmf/ZkuLy8TtHralQab5/u+VCpF7Qj2DtYqljrMCaCYfQtwhTHxFHKUMiARhcuZcrBxl9uG+eI5ngXkCtVBsit+XBIEU/J+9qmn5HrQN4rUY6do7K30GNNxIpLC3cF5Wq1uMvG2t7eDJXnrrbfCTUy8Ff/2O2VyuVxkgDkzyf52wEbmE/1l7TmXsM3Mx2q1ijOUy+WCKWk2m1oul8FEchbJmANIw64Bltw9SEwXco01Pjw81NntHux2uzo6OgqwuGmbdl/ttWNGoPhInZ1Mbq6gfvToUbhLOGx8hkh7UtAIAMVyQymC+vP5fNRNcFrZBSFAACYEdsAtKqqZYrXh30/74NPWE+8EWBAbgWADaCB4HTAg8BEOZPGgeAACCAq3Aj0gDgHsjIC7vfiMC3gEJKmsCHnGK61jOlBkaWXoIInPO5hgPMytuz5YG56H0iEl0q1X5rTf70e8CCAEnzfzxfhozM3Dhw/1ne98R4eHhzFmB1buCkgHGvI7xsT8MgdY6NxZA93NGo/HYz148CB8991uV4VCQQcHBxF7s1gsolhUqVRSq9VSvV4PIc8ecTch1j7voQx5o9GIcwLAgiWEvUIRuVt0PB7HmYINvLq6UqfTCbcN54j95a4YZ5VYB18LPudAWlq75dw1w37BjetlAPxSQdaC77Em7C/ew54GdHj2nseZOOD38ThzidvCGUvAO8wtYICx8LfHW9A3PwMeE8JZIR4LgOXFGFk39i1nDplIFWkHPs5UYyS6UQcwwpXqe8nPg3Tjdp/VarFfLi4uEm6yTdu0+2ivzYygvLCiSNnt9Xo6Pj5OAA5y6gEnHlOBb3U+nwc1ijCmwifCxRkJvg89jUDj/hF3gaQFFJaHsxYIYkAT/UT4OGCBkYEBSFuaaUXsVnra3+5pgA42PD7Gv8ezUbYoLIAD8RzMBXPsRZ3cQnPmg355hgL/RlG75eYZPO4OSgssLDWsXL6DILy+vtbFxUW462C1AAIu4BH8KOt2u61f+7Vf0zvvvKOtra2o48AYPWiRZzl4Rdm5W475cPcTc8h7ueG3WCzq7OxMxWIx6Hmv74IF7FVxqQzbbDZ1fHwcN6rO5/O4IVVKXqQGcMXtBLvEWqDE3LXjroxarRaVWl3RwgZ4ppe0LiDooCS9t2n+HgcezC/9ZO09LRYgT7YP6+8gG0DBxYHOYnJGYIk88Nf7RR880NdBJ3M8HA5Vr9f105/+NGJHeB7pt8wJe4T5Yw1KpZJ6vZ6m02nMI32jNgjZT9I6EJz97oYEcW2eDUTw8ng8VrfbDbmZyWS+cE+OywoqC0s3LNDV1VUiDZpnI/++/e1v62o2089+9rPYM+5+3rRNu4/22sxINpsMTPzoo490dnamk5MTLZc3BZdOT09DkEDDSmslj8XFJkchzufzEAIwAK4c0j7rer2eEAyLxSLSHPGRujtGujmYuDnccnL/MoAAKtezMVB0WPoANGdmPPvFaWMsKN6Bb9f90WnF7uwQ/3cKGoGytbWlnZ2dmAfmlL440ILqprmPmwJjzDGMErSu12lhT/AMB2WSIv6H+CBAzWq1Cj/0cDhUt9sN0EJGSFqZMfZCoaBWq6V3331X3/ve96IyJgqcuQKA8B2PG/JnejYSQMuzoKhsiXDHzdJut9VoNNTv9zUYDEIpnZ2dRe2V4XCow8NDzedzHRwc6OjoSOfn5zF/uH3w9/vaAMDpu6eMkgVFgCqBkoBs5lFSKHH2EQxftVpVobAu8+3ulfSe873gcRcuFxwkICeYc3fVOAiAWUUGODMAOMTg8fO2Wq3CbUKf02cUYwf2iP6k2VN345GyTqB1t9vVYrHQG2+8EcwCLB9yhHUDTLBugBH2EGvD3gScEeDK7wnIZT6pD8NeJcga8MMc8AxSzVkfN3w4y+y/yWQSLndf0x/96Ef67Db2pFAoBJu8aZt2n+21wQibu9VqBaXOFeaPHj3Ss2fPEv7p8XisWq0maX01OMIR5I/lDEgA6HgMAMKJQ4oFMB6PtbOzE0G0p6enIVQ8eBUlm3bP0B+oeYQLB9oVKnPAoXYh6C4Yng0t7RYV73aQ5lZ6JrOOnQGcQLNjmbqVS58kxV0pPJd+uu+fBsvkcyIlLxr01Ej38ddqtVBi7qKhuYDH4oIh4NnSTUwJzydLhEA5lKKnngL4dnd39au/+qv62te+Fu4uZ6SYMy8s53EK+M55NplFVDZ1i5m+wLy4cpjNZtrf31e73Q63zMOHDwNkFQoF7e3tqdVq6cmTJzo6OtLHH3+si4uLKGC1vb0dQG65XAbT6OwO1rKDZ9bU2Zutra1IiSa2ABchbgKADtZ5uVyOTA/mkL0Jnc980ACrvvfcnecsk7tFHPTTyJ5hb3AemXf2l7s5aYzdQauDjmazGfcd+bnhDDswgWmkum673Y4rLfjsfD5Xo9EItoQUWMYPA0If+v1+/D4dq8XeI5AbIM/edRmTyWQiRZd+8j0AELKR/c24arVaAoRzhmHaaJeXl1rm1/VvKpWK3nvvPf34xz/WgwcPNm6aTbv39voVWG+tKzZytVpVsVjUcDiMyHwPYsTKQchKinQyrDgsIr5LyixWnFOrUOX43KXkPRiwMRwed/W4YMWNAbWOj9ifhWJKZ3bAOiDk3ZXhLg8ABMLVFX46FgMh49VQ+b3HYzhz4q4gac3wOCDhGQ5IXHAxz3yfOUtbnYydz6VdR+43d1det9tNPJubcDudTsSMcOkX68fcuWXNurbbbT19+jTuRmLNmB+3yhHUnjHktwXDYOTz+UgJZ9y8F8HN85zBYG4zmYx2d3fDRYnLEAuXS/SePn2q7373uzeC/xYgj0YjPXz4UBcXF7q8vIz5cd+/B026q5NYFt+nAFevPQNYqdVqwUR4hVOel81mgw3k58yps3H8+8viSJyJ8j3IPvR7hjxwmzUEmPB+jwPiewAoPudsJc9hPV2RAlxYP9ybDp48uH53dzdKsRcKhShahzJ3FwfGFHuiUqnEePxzyB4qIvve5bwxFm5+bjQa4W7BrYe7EICcDhDnokQCsdPp176PYXykm4J5z1cr/fCHP9Tl5aXq9Xq4EDdt0+6rfaWYkUwmo0ajIUnBGhQKBZ2cnOjs7CxSBx3Zu6VJ0J/T0c5QIBzSVVEREh6ghYCjIXyxBDjYkoKGx6JC8SM8XUhgPfNzjy/h325FozScDfDmAhBB75lECCsEBN/hbxf+LjTdN87vHCyl6VUHEA703DJGcRCwRyAv9DNK0AWts1bOPHGXi8d7lEolnZ6eRoEzhCtzSf95J0XIyuWyGo2G3nvvPT148CDmz61i9qcDCgd9Hovg7j3cPMypxxVA3ft+c0BLvxuNRiha1gJ2zjNBuKBvNBqFe7NYLKrVamk0GmkymUSRMuIHxuNxlHNnXTyjDYsci5miXcwnljt7idoSvkaAQWdqOJv8zkEn4IT97Iqfvecsh7SuqgoL5O4x4h6cEclms8Hy+PqmQTZnDpDpxgOgkho37BsAuadcE3zc7Xa1v78fQMkzmObzeVx94WcNVo+UWwfvuIsIfmYdiKvLZDJR9p8xUGQNAEoROxg8d9MyVvYH+5p1zuVu7rthPzLuNPMk3bA4mVsQ73J70zbtPttrgZHlaqWcWSGU74YR+fTTTyPTQ1qnxyLUOWQIcDIyiP1w94MrOg4owh8r2l0QkgIEIZgQyvRltVqFYkGQOG0qJYUowpvMHVdSCGKELT5iZz9Q5Cg/9+N6lgd9IC6D/jhjhPClAcywhjwzx4URgAnA4jS8K2pX/swzNL+khFI4ODjQ2dlZAhDxPhdqzD9xINDRADmPCUAxwQxIN4qLInXValV7e3t6++239fDhQ21vb8caYvkzpz5XPNPde8RzkCXhwY+MBeob4O2Fs1wRuvvE3Xs8g4BB1syL261WKx0eHsa6v3z5MjI79vb2Yv1wdfJ3v98PJbNarcJVRUYKLhuAn8cKLJfLuEDPQQDPgKVCscMwOMByBej70QsYejaUu5w4y4wNYOKg3F2evBPWBsUOqIBFRR7xe1xq7m50d5O/i7PDvl+tVsFSDYfDRMwa7ES9Xo+gVJdduF7Oz88jk6larcZldcif6+vrkGPIl2q1mtiHvIvnA+AcNGMIsvc5k16ribPAmvB75AyuLEy6brerwsOHkUjgsVibtmn31V4LjGRvD/DJyYkGg4Hy+bx6vZ6Ojo40nU51eHioRqOhV69ehZJGYXCg0pkY0s0hIViVAyQl7+7gWfztsR8eC4DlgZWFAERRugWcVrgc7OVyGYFgCG1+7+4f99mTnSApAAyfcz+3+4bdzcJY6AMC210w7hpBIAN0AGs+f06X3wWk3LLEAnZrNh2jAlDx2i3MAWNDaKPEXr16lajQ6n5/5oZ4C3cveTGp/f19NRoNPXnyRE+fPtXBwUHMUdpt5q4sZ8i4MRc/P8WcWq1WIuDPmTwHtr4XXEH4RYGMASuYfhCzAqChX9DoZJGQvotbkT2Ey2AwGMS6kokmSYPBQKvVKm4GdlAA+EA5Y/17XwnOBBg4yALMu8sGJej7gv3r65jei4BnrHO+y1oRK+VMn4NozzRzVxGfZdywCbzbXZ30ydlL9jVgk71PHBHXUwCO2Rs8h7MHuJ3NZhoMBrq8vAx54wGvvNsZE+Lf6Ae/o+quy5PBYBA/Azz5jb7sHWeX2AOsJb8HLK9WK13frvX29raOFutUZMa3aZt2n+0r7bCdnZ1QWAjsq6urSNMDwZNqS0CVlz0HBCC8oJ09lsIpewQhihgB6JQul6txeLw8NFYQBwzLVVLEsyC08NUi7NN+ZxQ3fxDOHpfiLEE6pgMBgqVEaXEfm6REf72yqFvmCDWUkLMo7jqhXw70iDdgPNLaxVIoFMJyA3i5X55gX89UcJeQu0acyidFcm9vT+fn53r58qUGg0GCYmZNyRB666231Gg09PDhQz169CjuGXLGTFqXe6eP/PEqphcXF+EamM/nOj8/j9gTFK4DZs/KcrdZJpNJFM3je+w1QB1KFlAAAGC+YAWvr691eHgY1jbWK5VTp9OpWq2WVqtVxNp43AHuzZ2dnVgvgngZO0wILiPGAZAGrDhYBFR5kCXr625D3+seE+UuHpQu+4zzxh6SlIg3Y94dNPseBkAxFvaEn1GPSfN96fEo7pIDuLJG3CHVaDR0dnamWq2mnZ2dAD2k8TJHXnzu3XffTTAh8/k8QIGzNHyXufTfO0Bkj1LwDNmFTEYOu8xi7Vlb7sUiLktaXxyKPMxms3rw4IFOT0/jzLBum7Zp99VeO2aEQ8KFUtVqNYThYrHQX/7lX6per4fSIYgLP3Uulwufp9OnCE8PBvVKla6kCGBzNsXZEwAPwmKxWARTAnvgFpwzAggDaV3kTZJGo1HQ9VDMCFH30dMXj0NAIEDju8+7UqkEiHAXFd+hH4xXSrIkbgl73AiCnv67Jcl3sQQBZrhh+D0uAo/DASTwLILh0oqC/ULGDO9YLBaR8dFqtXRxcREC14NRc7mcWq2W3nnnHT1+/DhuxG00GlHXweeXxs+pTAnzgHIioHZnZ0f9fj/WbTab6cGDB9re3pa0Tptl7u7KZnKXCwCTn6Egcet45oLT+pwh+s5+8qBbCl6xrovFQo1GQ81mU4PBQM1mU8PhMEGrsw85c2RjsL+dkQOUAoT83LGO7ipgX3lMmLS+roDvcL5wCbDu6Vgd7wd7Jc2kAfxhMT3jhHnyWAz6gIHjrhbGB+Bg/Zh/XMH9fl+np6eqVCrxN0YD/a/X68FawDKh9D1mhH2B25L1Zf8xftbF+8izORuAad7PnDFf0+k04qwAiMhcj2MqFG4KUfJZ2mKx0Pn5echPP1+btmn31b4SM8KNoLlcLu5IOTw81DvvvKM///M/T9weSipoJpMJmpmYBRQiwg4mAOF4lwJAYWez61LXCBTSdxGOHGZYGXcn4FpBefEdnk+gKsKV+iccboJv3TfNO51mdwsUVsQtSrc4scoQ6vztFVedxXDamvlzdsLBjM8hYMlBngtwd+PAdknrwmNurTpApbEmKBpne+hzr9fTq1ev4rMOpNgze3t7Ojw81OHhoYrFohqNRlj3rlwYoytH1ph4lMFgEEL5+fPn+trXvqZ8Pq/PPvssrNJnz57pvffe0xtvvJGofuu+eZ9HxuoMAuNg/lGIgF+em2Z2cJ94DRHYJ0nBLhI8zV5xcEicASDZGQACzZ35w9WHUeDWOe4nlKYDBOaYuXeli2JN7xO35D0mzL+PbOBcu4L0+BOUvgNyFDRjcFcVLhA+w89psJoAkul0ql6vp93dXV1dXandbiubzQYjwppxNty4QOEzJowNDxAejUYJIEowfTqLBtbZQSn97vV64d7zkgjVajVcnO5CZa4AOTCDkoJdW9hcU8eFOCVk96Zt2n21rwRGOLRQwARzXV5eRjArSoXDBY2KBY2FhEvAAzwlJRSBuxhQ0K50ABv8G4HJ4SbGhIOPMkMp+7s9K4C/EWweDOrpsNSg4PsADtgh+ovAAVAwj8wRgofnejYRoMcZDx+vuzn4TNqnT9/S1Lf0ReDiQbDMEQXAUJquTFxRAWzy+bwePHgQ4/c5Oj8/1/Pnz0M5eUXbWq2md999V1//+tcjgHV7e1utVkuVSiXhXko3WCqo8fSNwrA1P/nJT2LOO51OsAiXl5fa2dnR7u6uDg4Oory7AwYa8+zr6fvLg3v9zhFprfCZV4Q/e4Hno2ypd0HGRrfbjbnmKngCHn0eSTceDAYRUEu6KKxNJrOuYwHA9rV1JsObgxL2IKCavx1A+z6huRvTGTTcW7ybM7ZcLiO2gu/AqAKoAFlp1xvgiXIEsDXM8d7enlarVTBv0k0829XVld5+++1gg++KpfFsG4+H4bM8L51txe/8+61WK8Coxw4hV+izs1Qe8xIBqav1jcjIBr8ewFPoF4uFsuZ6x3jMZDLa2dnZgJFNu/f2etk0y6V0a5lUKpW4b4PCSQgect9RGnyXTe9BW+4uQcG4tc6B9ubWPdaI372AQsLKkRTVDhG47h5CWEnrmAlnDXApYf3zf5QvAhHaFUsViwd3AgLDrUuPO0m7Ougj73BrnL/pf5oR4vPuwpLWytABzF1ggr6jCJy1ajQaMe88y33UrNHTp0/17rvvJsaxWCw0HA51cXGRCAjGouR+o2q1qt3dXe3u7gZQwOXgtLTvTQdSk8kkBP9oNArXXj6f1ze+8Q199tlnqlQq6vf7YamORqPILCG7pdVq6b333tPOzk5Q757FIykE+nQ6jSBq4jDYQ86woCjuysQCCFSr1ThTnJNMJhOKCop9sVio2WyqUCio0+lEmi/rS4bZwcFBsAZcmkbpcvYn6aS4tdxVwzqxP9IMSXrPsvc4g/57FKOzF/zOY25gnRiPP4NYEZQ/mWuwRjzLmUcHJC53cPc+ePBAx8fHcf63t7fVbre1u7ubuAYBIEIDkCCrkAf00Y0A5KJXRWUO+NxoNIo5c6MDVgj5Wq/XwyB0lw9MCf2EKeFuG7+3ZrW6qYNDJWj2x/b2dlzVQPr9pm3afbbXZkY4xBwmrDGqPg6Hwyic5NYwQpxD5fQtGx2rM52Bk3YzwHoggO5y93D1tlv5UOSk1bVarcRzPW3TgRKKA6AFrQ2AcVeFswKMyX+G8Ew/EwDj7A/z6kCJ/nnwm7e0rz/NjqRjWNJgyJUMzBbjpbFO7nOndoMzLN/+9rcDBHrG0qtXr/Thhx9GSqO7Hra3t/Xmm2/qzTffjFLvtVotanPQT8buCtH3GywIipYLHVerlXZ2drS9va0XL16oUqno8ePHevHihSaTic7Pz3V6eqpvfetbOjw81HA41A9/+EN985vf1MOHD2OdXMHiAuRvV/q+Fuxb/o/VzJri7uN3WOmz2Uz9fj+UM7/HdbBcLjUYDFQul8N6Bzh6bRECZTm/uGIc1MFU+T0+9NfZNgfCDsxRmOwt9pzPC5cPpm/fdhCDzGAPO1MHK+uMgLNunA93RTroxjXF3pBuWIdf/OIX2t7eVvm2FHo2m9U777wToAnXLXOBO5p+LZfr4GT2H+vHmajVahH7gqwEfFA7hzVzhsqZIFw9zBfj4vZyD1YFIMMYkcEF6GYss9lM09uzu7W1patb2QQTtQEjm3bf7fUqsCpZkEi6idOo1+vqdDp6+fJlggGQ1jEAoHJX8FCgXkyMGBQOHdaMC02PJUH44ZPlUKYFJsrVqXanKwFJHrznFCuH0Wl0WB6UhKSEnxuhmK5jgdtIWsevOMvjAY4OxpzpcPeMuyvom7sL7rLKUXr0yxkRvu/gwv3eDp6cLUIJsU5Pnz6N+grMe7FY1OnpaSKLplarhYW2t/f/Y+/PgyTNzvJu+MrM2nPP2ru6unt6mX3RaDSDBExgQJYMGGGMjTF2sDi8IGOHI8AQbMYS8IKxMfAaO+zAdtj+LIMdMkTglQDbmLCFEKORBKOe6Vm7uru6qmvLfaklK/P7o/p36soz2ZJ6UAMv1ImoqKpcnuc8Z7nv677u5cxqaWlJCwsL4TXK/bOeXDG6FQ2AxVokeJU+jo2NhYyI+fl57e/v6+bNmzo8PAxMxPj4uKrVqp577jnl83llMhkVCoUguOfm5sL6ihmu3d3dcPYM/Xc2i/FCIQLG4owPdwcy/oVCIQAILO75+Xk1m02Vy+VwWCBjEp96zboDmOFe9FLsfMYVIc/gCp39x3z49xkL3o9dixgtrrB9X/veZ9xgqpxpgZn1eCYHQM6iMOYeW+VMJtd1l+Tc3Jw6nY42Nzd17ty5IOfYTyhwj2NJJpPBLeZuK5gK5oRgcYKpKSNw8+bNACgpO8/+xg1H/7mPxw5RewaWjgzFdDod+sK+9rg95ELXYu9qtVoIIs9kMnrppZd00k7avWx3XWdEUqgEyKJmY9+4cSMIkXq9rnw+H5Q71DWCAXqU3HusWN6XNFArxAUaVhbnPsSpp9Kx0sLKgKr3Il5Oj0IdO5By/zVCh/sjkD1V2AWox8qgWHgG/3EB7kwGAjl23dAvHw9ek47ZAo+piGlZZ6ViZgWqGEDEianuTvGzhzx+BVrYmRNXBtJR8PPOzo5qtVroN4IRxX/q1KkATEgP99oM7rpzK9pBJDQ5gZust0KhoHq9rtHRUZ0+fVrNZlMrKyvq9Y5PlaW+BH0j2HZ+fj4cMBcDOZ6TE17b7XbIJHNXDZ/1WiGAXleaACr+HxsbC0Apm80Gf/74+Ljy+fxAlVhJA4XNKGWOqwqrnn3ggI31jcLmuu5ucEDrgJT14EAFJe+uT76PiwhmARABaGK9sq4ciJPyTF0NmCn2LwHLuGAYXwdOfk1JAyd4T09Pa3Z2VrVaTQcHB2E9UHOEufTaKMyx1wlivLk+4AcGq9lshtgh5BV9x30nDYK6g4Ojgxr9XCHcUu7GxKUDY5dOp8Oe4DWXuYSgA/gOD4+yz+r1uk7aSbvX7a4rsCZvU+muGDxFEgoVqwWFxwm1HjeBMkZosDGwshHETnE72+EBeAgpBCeAxbM8pOP6A65Msb5gKRCYKHY+i58eQeRsAMwG1qSnCaMIYlcILJK7G9za9zHi+aRBqwvGAYHu8TZu6Tnd62MlHfvxEXTuiycWx4OMHTx6IC5KAaEN84SCgR6+detWKP/OuI+NjWlxcVFvf/vbdebMmVC1kmqtfAYlErujYH5Q4ChvQBJMAEqvXq9rfn5ely5d0uHhoV577TWNjIyo0WiEcaxUKup2uyoUCkqn01pZWQnriaBt5oL1SvwGc+CBlMyrr0V3iVGLwk9w5gelyhklsHxYvs5U4ZIi1oZrw26xnrHU3f3hgMEDLxk3B8fOQDi45TMe98DzOmDxte9r2xlKd9XiLnFmlKBeZAVAtVQq6fDwcIAxZX/zXZQ577POZmZmJB0HjJLW70DdmQrWGSyNgyPAMIYM6wA3C3M0NTUVDvcEnNNH9qV0HK82MTERgpn9M+zfVCoV1gR7h/kAUPL89Xo9jDnPDWs3OTk5YIyctJN2r9pbqsBKgwqEfmfRI3w9YAwrAqGNq4KIcVwlpAEjrJwRcEGHwkHAO13vNRP4Dt+nH1hB7uOWBitN0neP20AZkxrpgiZmP7z/PLMzKQhHd5E4sAIQ8H2uT8Ma57v+HD7uPBfN+4Sy47OxhYeA4n2n1BlfB5du4R0eHqrRaCiXy2lvb0+tVks7Ozuh7Ll0XORpYmJCDzzwgObm5oKih4UI68+AiI8BysRjGOIKlMVicSAdtNlsqtVqqVAo6MKFC9rf39frr78emCCysyqVira2ttRsNrW7uxtSNamTgiKnwRg6m8NnfHwdXNJQIM48OJPI+kin0wH4cnAb3y+Xy0GJJRKJ4AYdHx9XuVwOALFSqQyAEyqL4gJC6ePWgcFgnh24e0wR+zZmRRx4OaDx9eN7PgYxzqh4DIq7EZ0ldLaT13wtSxroN4wCTJF0lHVTKpUG0rGRH8xtvJ8AKQAKwDxAGPBzeHgYatokk8lwFlYul1OxWAzyjGfw+DdkFyyNx7Egd2OGCrdlt9sNhfacxUkkEhq5PRZkHcLQuEv3pJ20e9XuOoA1kTjKPXcL0gUISgFrDiGGcuI70JB+XZRNzGY4E8AGY7PDQHhdCIAIFCXXhaZ2pgXh7wIEJe/CD+ErHafnIWCGsSguSNxvj1IBEPmpsAgbdzkgSLg2z4HlC/PiWUuMmY+jszaM8TC3Ea97vIAHGrqCxR2STCaDlcYzc24RQZNjY2OqVqv6rd/6rWAVwgJMT08rn8+rUCiEA8hQ+lyTNULffVw9ONFjbzw1lLl1H/ve3p4qlYoymYwuXLigdrutSqWifD4fAEiz2VQqldL29rZGR0f10ksvaXx8PKSBZrNZSceAlbTQuCBfPB/ONLirC3Dryt5Ty3E3pFJHaZrEDjjDiKJPpVIhZgf2xVN6nR3LZrMhFRglxJ7FaPB1GCs6B4isQ38dORDHl7BfWLO+NmFZ2Wu+HhhLxsyzglwR8xwYHaw5PyiQufODCInBgdHD8MHQSSaTIeaJMRgfHw/uYPYPFVdrtdrAfaWjQoozMzPhEEQHET7ezsKyxknnBjz62DEuzmDB3hA/whizJprNptoW/N2/nUKPi4y4l5N20u5Vu2sw0u/31Wg01Gq1BvL7i8WiGo2Gms3mwCZCUTjdLh1ZMmTdcEouglk6PmHXLRsElAsQD4hNp9NqNBoBgMTWsiuobrcbqFEEt1uYcUQ7TA4CgWfDcnALlv7iq0dBYLG7teyWJIDEYzrojzSYXsn/7lpBYEoaqBPBuHqFVRpjhGLAKqRhPXL2RTJ5VAjN3UEeFOxj71ZvpVLR6uqqbt68GU6m5dyNfD6vixcvam5uTul0WtlsNpy9gVUO6HHQyppwocn70NCjo6NqNBrhRFQ+MzY2FoJWE4mjlNn5+flQyGpsbCwwJbVaTd3uUT2S69evhyJQxBXAVLCuY1DrrreY3WIuqP/A/4BLX+fScRpwq9VSpVIJFDpUP5Zus9kMgBx3BfONG61SqQTgQ2zIncBz7Lp0Fsz3aAxCeCbGwhtjwRqL3T4oaGe4sPwZl9h9R//JIqF5vwEEKHTWCXKn1WqFvQnYd+aEeyFPMCyq1WroH/cjvTiXyw3c31ORkZfsXdw7ExMT2tnZGQhC9UYaOX135i+VOqp0DePl+5RMGkBTqVRSr9dTY31d0u1YvdvGAECmXC7rpJ20e9neEjMC7U2dkVQqFU7v7fV6qlarA1RuoVAIG4HNhyI5PDwcOGfD3SNxzYGYEnefqAMdT2fEEuL4cE9nAyQ5pQ/IkI5PeJU0IIwRVFhOPA80OgKWeA1AC8LCXQuSBgDb4eHxORU8DwoE4MN1vE/Q5cN88G4ZIuyhjl2BYClKx0HBzAcly/2ZoIxhaQBWXIN4DfpYLpcDYGXsJiYmdPbsWV24cEGZTGbAnYQwZC5x5zBHjL0zC7HLBl84gIXnR9Hx/uTkpC5evKhyuazNzU1ls1kdHh7q2rVrYW2jvCkJXi6XVS6XNT8/r3w+r6mpqTBOuHLczcb6coaKde0K2xke/vfYBgAfweP9fn8gRob6IdQYQfkBwPf398N5I4z32NjRQXwAg7g/sTL2eDB3O7LmeD7WNmMdPx/AMC7R7t/34mXxXDuDyFzyrLGriX6Uy+UACljr7j6bnJwM14HxgwVEjuH+gm0hO4qx8HRg9in3Yt1zf9YftT4AF1RYHRsbC2XbiUspFArh2QHP9Jsxpy/7+/uhdgwGCftHOko2qNfrOn0bLLJuOp1OWCcO7E7aSbsX7a7PppGk+fn5AfcBCNvPPCCTwK1+aF8YDI/ax8L3SpRO6cZ+ZKx1cv3ZpHyWv1ECKEh8+lj3CFS+E7tZ2NiAmtHR0cDocG1nTxCaXAMGwYUvQptrI1j9Wu7+8s/wv7tO3KXEHAGI3D/P+PmY81kHe/TbI/h5/n6/r9OnT4fAvHa7PbQWyujoqOr1uprNpiYmJrS2tqYXX3xRm5ub6nQ6QaHPzs5qenpaxWJRs7OzgX3BlcA4w7y4qwYF4s9AX105jo6OqlwuByUF04JimZ2dDWB4bGxM+Xxe6+vrWl5e1uHhUUYB9Rtu3ryper0eCrKdO3dOzWZTZ86cGeg/a9fXMmt3ZGQk0PCMtxfW83nhdSxjjjzo9XqBJWGsyDDxuAYH6/v7+4ExgQ1AATYajbC2AZ/9fl/b29sDawlFydpkfuLD91gHfMbXIH83m83gfojXOs/vRgXfZV0668LeoQ8eHJ5MJsP4eal55AP3mJiYUKFQ0MzMTNhTHpfCZ4kdQu5gFBGnw/UODg6CK7rX6wWji5RqGFoYFh8jAAtpzdyDfvthfrDUvvZhlrvdbmBop6amAqjx4H/YbFKNu92uxm5/FuPKjYSTdtLuRXtLzMjIyIiWlpaCKwKLE6Gxv7+vjY2NYOl6JUmEDj51NgVR/2xk3wBuGUsayCDh3lgQtVot+Je5hrtgUBIE8nHvmK3hWd0S8zQ9Bx3SsTIkHRlLDUXkitWZA89EiQEHfWDMiR9wIeqCj+dEqbl1yf8UunIKGeHuLjBnsACYrVZr4Mhxt0oZK5TV2NiYNjY21Gg0VCqVtLu7q62trUD3Hh4eHfaWzWY1Pz+vbDYbCpu5hckc0Qd3YQFE3ALlf1gmWKF0Oq3t7W2trKxof39fc3NzevjhhwOzA12/uLgYziW5deuW6vW6Ll26pE996lNBMLdaLR0cHKhWq2lnZ0eXLl0KQNWrgAJiAD/sBfrobJS7AgAfgAtfR8wR7iVAA+OOqwCwyFrt9XpBgVar1YHquoeHhyqVStrZ2dH09LQ2NjYCqAH0egCuKzJXoM6I+F5jLbnLUDp2ObkxwLrGyPG9BHsSGxtY+R4MDniNXaX0C4AyMzOjSqUS5AbjdurUqQFWxTNMSJtOpVJBscfgkOcksxAjjPlFnmAcVavV8D0CSJPJZOg/soxnBXwyXm64UV8EIAarQx0nWB/20uTkZGCAGB9kG+4cdy2etJN2L9pdMyP9/lFa5PXr1/X4448PWPSZTEb1ej0oRyK3Pa2MhjWD4HGXCEAljpBHGfAawtt9rQg2AvWwbnK5XChW5TEnseuHvnFPZy38xFBXJE5fu5D2/52FcYUdu0r8+/TB/daMlRcwc7DhtDjjifACxCEMHRT5WGJ5uYuDTCiAkcdtOCjAEqbMeq/X0/Xr13X9+nVtbW0NgKZ8Pj8QGwRYddaG50GZuAKMLWd3FaGIUS5YqZOTk1pdXQ3xK+9617s0NzcXwCrn4NRqNc3NzemRRx5RIpFQrVbTSy+9FIABQdwbGxtaXV3VtWvX9OSTT+qJJ54IJwz7iaooHmdFnOnzasKMv1emZdy9roW70vh+Op0O4IMf6ohglcOAeKpnq9VSPp9Xu91WPp8PjAhrnTXnQBAgELsd6Z+vY8Cqr1n2MPMpaUCp4n5AscJqcG/iYHq9oyw8AlBxBbK/qXI6Njam6enpwM45q8ueTKfTmpqaCgHLS0tLarVaWl9fD0cCdDodZTIZVSqVsMbGxsbUarWUyWSC7GNuCWp1AwvQARtBzBffweVCbRDWcMy8EjTtwfVkr8HaZLPZwCIDhj1+rFAoHDGcdo12ux2yJRnvk3bS7mW767NpkrcVSRxwReZKIpEIJ6V60CoKDGGOYkPoxMIZt4ukASXtLhSnaJ2qdVCCJUGfUFbSYKEiBKrfz9NKe71eCKhECBO/EAtLB0xuwbvi9oh7xswzPty945YvlhUFnmJL1ONm+B6xBO7ygMUYRqljUUnHVjX36fV6IWDTgaI0mAXV6/W0tramGzduhAA4AgNZE6RHM2+ufNyqZ8ziteCWNoF59INxSqWOanNI0uzsrCqVSghcXVlZUTKZDIDk8PAwMBn4zWdnZ3X69Gn1+32tr69re3tb0vGBfNKRIrl69ao6nY7W1tZ06dIlPfTQQ1pYWBgo/81ceoo78QIxK+autJhh4zrshYmJicBWMQcOuqempoLFTuwJwLxWqymZTKpUKoV6Qawj4izcvce+A0wArhycxu4/dzs668G8umESKz13u8bvs5dTqVQIUIbppLKsB4Xv7e1pa2sr9MvBDe5eArVhtZrNZoiF45qFQiG4amFP2IvsX15n3iYnJ4dmQtXr9YEUdp7B3co8P0HdrAdYDtwy+/v7ymQyoT+4xZGlgBPcTO7WTKfTkjGpNAwd39sn7aTdi/aWsmncN43impiYUKlUCucgjI2NBVpY0oDSJniw0+mEKH4+g6XGpuR1F0pQxU5DIiwQol7BstvthhLUKAOsCQckWI8obw8MRYnz7O5PdheMC2OntiUNPBP9xqJxReTC3gEYn3WwgEWFYnaFhFXrMR0ob8/ScBeAjxm/PYgSACMdn00T0/b8X6lUdPnyZb3zne8MJ+PCtmSzWR0cHKhcLgdh6mvFY0AYRw+4jMEez+/MEOOJEqC0/MzMTIjFoAx3v9/XwsJCUDLUcpiZmQl+90cffVQvvfSSbt26FRgeXF+VSkWtVkvValXb29uqVCp6/PHHdf/99wf2i/UJ5T81NTUwn8yJu9+cMvfvOpD10uCeueWuukwmE+YPyx0lxGf5DAwLKdjOerCPPSjT2R7u6X+7so4ZLV9vMBTukvE9znolfiKZTA5k4bEWcKeOjBwd6khsE+6ag4Oj6s3IgL29veC2qNfrIYaI+1EEDbcz65v6Sp5ySzyXpAA6YchY4wSmMqYwYBgkXAuWh71MnAmMBZ9jjt01iUwCpLuLm/XtmY/uPmaNEZ90Ei9y0n4v2t2dTXNbwHh8A0WhZmdn9eijj+ratWshKI2y2CB4V/hsJASwgw3+9iJFKHga/cCSQ+gh+AqFwoDV78F8LgwRWjRiKRCMboV7pkH8HmAorhviSoRsFpSjMzGudLFCXdgwfgAvH4dYCcCaxOAEIQqIcncUgtMBEddzhQizASjlNQAL7hDmeGtrS4uLi0GhJ5NHWSBUaOVwr1wuFyx4D87zwN/Y9eVAj/FyYMI4OsNVLBY1MzOjjY2NENBJvMT+/n44RM/LpmezWV26dClky7z00kva2NgIfn4scIR4vV7X1taW1tfXValUdObMmRCMCN3uJ67Sf5QY6bg8G3U0mC9nFQDJxJ0QK+EBwF6zgiBLWAWUK+CCPqRSqZCF48Gpo6OjQUn5OidAFiVJP1mvrN84yBR3lKSB/eGB76xNrzOClY+yjQEQfcBd4esBVoD0X66dSqUCsFteXlYmkwkMGYbE2tqa5ubmtLu7G06vpsIt7rt+/ziYlarDgBdiRfh/eXl5QM7F40qfAVG1Wi2AIOQR4NXdrDC4uPBYV7AnMDW4azqdjna3tgZkK4Cd5zppJ+1etrs+KA8lDHWZTCaVyWSClbm3t6dCoRAEIPSnMw4IcHyhBIGxCaTjAFOEkvup3aXA/wg3D1SDLgWweBaC08pevpnnQHA6e4KV4BUYnWVwtwfgAiGHonYLDiXvjI+7jBwUuKWGguV7KGx3rfBZp4pRZh6w6m4Q74ekAWUZ+41duCK0mAfe576lUknT09NBSM7MzIT6IqdOnVI2mx2IGXKaGCuZMXQQSZ94fh8vZ6WcHeh0Ospms5qamgqxA37OR7vdDgeVbW9vB8CVTCYHYkvy+byuX7+uW7duBRqc+azX6+p0OiHA9f7779fy8rLOnz8flIdnm7llChBxIOmMiM8rzFqcTs1eYOxQJgQhw3Lt7u4Glxtn6bAfm81mYIdYO6xp5trXsitEX0/sGWcMPT6EefX5AjywvljzAFz2NeMNUPAgZu7H86Jccc8AesmgYv8nEgmtrq6GowgAOwcHB6pWq8HVSON/gJ5n6QCivKCipBDIiovaM/QAj4wNbhUYWTfo2IM+7+5mdRDqbFbMBrt7SzouaYA8TiaTJ0XPTto9b3cXwKrjLBIUEKmC6+vrqlarYeOWSqWgcLF0sAr7/eOj0RFMvN9sNlUsFt+klJ1FIMiRTYXQPTg4Omrdy8TDQkgKljiuITYYAgtFQxwD10DQSQrCGSHPNaCP3f/t/nssGxcIXJ/nQcjEjIBbPM72cG2ENf/DzsQuDRSaW4mAIVeK0nHMDtarfzZ2b2G5MY8oTSyvfr+vixcv6hOf+ITK5XIQ0rlcTmfPntXCwsKAEmYcUDheVdQzShgDQKGDImdNXFEjXBl70nXPnDkTwFK73Q6xA14Aq9frKZ/P68KFC0omj9LDM5mMrl+/Hs4scuu/2z0qlPbGG2/o3Llzuu+++zQzM6Px8XGdPn1ac3NzgYHAZYOLk/lGKRFX4gwKFjuAPXaDuGvg1KlTunXrlqamprS3t6dcLjfACBB3QYwEConCYCjsOBsL0MSapu8x4MZl6ODQr8G+QLb48zj7xW+uIQ3GVWAUUBeDDBnWAIG7VEOVFFgw7rmxsaF8Pq9cLqednZ0Qj3F4eKh8Pq9OpzMwH8gTlL6Drm63Gxg/+ugFH4lvcZe0p8nzHA7mWNvsOZ8HL6+A8YfMbrfbITvKY864B2PkLlCXLSftpN3Ldndn05hvFkuXRZ9MJnXz5s2woFut1oD/M5FIBKDgFqtvZk4D7vV6YeN4YJsLJSxvjx1xehEB65kFfooqVC8MQ9wnBwrxPdjgfBfLAuDAfd2949+TFIIkEWqxQonZARcQWHUIOJQg8+PKVzqmy53C9u86uHJ2AQXkFnqvd5S5gFCLQQLPi4sOZuH06dM6e/ZsmId0Oq1CoRAUgrMqrsik40qrMX3Na4Apt6AZB/rOidGNRiNk1SC8r1+/rmQyqWeeeUanT5/W+Pi4JiYm9Morr4RnxfUEkJqfnw9K7uDgILh9POgT5bO9vR1cN7lcTqVSSZVKRRcvXtT8/HyI44CVaLVaAdi64gfkADK4H1YtY+KsH2Pb7x9VXWVdxYAhmUyGmBqyR2DGWEfcG/DvgA8g4XuI/cP6oKHkYCqYU/YGexOXnzNyzrzxjO6SQk6hrNnzDkAwDsiAIdvEDQKOAnBXKanZ7vKdmZl5U/FDnhdmie8jd6gbwrx6eQKAiQdzM6Zk2EgKoA9Dhn4yJswTsThjY2MDmT7IA9iTg4MD7d+OT9nd3dXBbePAY6NO2km7l+2uY0YIBnPazmtV5PP5N/ntAQQoVd+goHvpSEiB0t0KQBg5nS0dWUEcrMfnoa/dikIpkfVDbAkBX87gEEgG00GcAwLPI+JdICaTyRDRj6KTjsthO5hiTEgVRoHR/2HP7IrfXRa4iRDuzAdj4Pf2OAR3I/lc+QmdCDKedX9/PxxgR9+c9uVzvV4vHHFP3yYmJjQ7O6tOpxMKnZ0/f17T09PBzcBzMl/SscuGzzhLwbg7WwTDFbsQmLdCoaC9vT0tLy8HN+HW1pauXLmicrmsL//yL9fc3JwSiaNj3l977TXt7+/r7NmzIV4ikUiEw8YABpOTk9rY2Agn/XJfD3Yul8tqt9tqtVoql8uq1+t6xzveEdYDgMqZONbB6OiodnZ2ArsDgwbb1+sdFzKD1XK2wQEcY8fzoFz9mrgXyHgiFsTjmZxhYg4c2Mf71902rBWXD8RVOTPgTApKkf4yXq1WK7imYoYPJsQNGtghsqE4zBHjqVKp6Nq1a5qYmNDFixeVTCY1PT0dYivGxsa0tbWliYkJzc3NBfnl4+t7lfFC5nggs7uqYBQ9jgd5yZ4ClJCu7TLD2UxccTEQ7PePzlNCHuIy3N7eVvN2rRFnIgFUzOdJO2n3qt11nZFY2Xc6naC8m82mzp8/r3K5HCLe3c+N8uI96UgQLC4uDmSIOIUuaSgqRxF5gSGEl1Ow0mAtAxfMXrKbz0DZ8jeACUFycHAQahRIx4LABTTMgJ/TgoBwgMC9XXBLChQ/oCl2ySDAuYafb+EMgSt09+V7f7G4se6YY9JAeUYHHfivEX5OF9NPd3shlMlWmZ6e1qlTpzQzM6NsNjvQL9YIDWDCeouBWBwbMkwp8qwo7Hw+H2KZ8OWTHvtrv/ZrWllZ0dvf/vZA8fd6PX384x9XNpvVzMxMsG4JROTgPAJAKSrmmQ6SArOyu7uryclJ3bx5U9lsViMjR2cC4dr0+BFJwRr3OiQOXj21nLXmFT4ZB5Qc7zPXACaPVcHa7vf7IdbGWQ9n8XxP8b/H9rBmhzF/rFOPN+HZHCj7/nAWxV25zCfrmWMKPGYE1yHZfKRWO7OXSCTUarW0tramhYUFTU9Pq9fraXt7W8ViMZx0nM1mVa1WA1BhD+CixFiCgWFP+z52wM413OXLvcj8wfjodrvK5/MDxoizujw3feFvAEav1wsxctVqVZ1OJ4AWl/PEryALTtpJu1ftrpkRkDUghOCmubk5ZTKZIBBA5J55w4aAgpSOaVd85QAER+Kx75jXENwIfGdAXOmjOB2wwOZgPXJ/QAoCE2DgzIY0WDaezU/BKQ+GcyYHJerP4pa9gzH3oyOo4qwWnjsGJAg5BL4zKx7sSuyBf8cP8nOQ5+XnAYn0yZUj14NtImMlnU7rwoULYW6ovur1NhxM+Fi7Zc14OcB0AIJiYxz58X65W4ny7+VyWc1mU61WS6urq7p8+bLOnz+v8+fPDyiUjY0N9fv9cDovyg1mqlQqhTXIGvMKnsxZNpvV/v6+bt68qYmJCZ0+fToo5KnbJ6bGAGFkZCQoW+aTtdbrHWcNwRL4/AMm4mJqsAYwdbw3NjYW0nsBcaSC+nwNmztfy3Ecggcqu9sSIOwKmb3kTJPHYwAiGRPWBIcrugvZmRD6yfusNQ7ZdCZic3NTpVJJmUxGxWJRkgZARafTCZkm1PjwIo+NRiPItV7v6NwgmAmehb3Oc8GWEMSP24gTonF9UsjN2RfGlbXDuuGZ9/b2Qrow90mlUkep9re/32y1tGcxPi5jT9pJu1ftLblp8Gvv7++rWq2GjSNJn/zkJ0MkemzRcw0+70IGheZ1Evhxn7GkAB6c0sda8kjwOAaCzyAw2bSeu09K3jCF6z5p4k3o/+joaDi8ivQ+jw9xBkc6Bl8e9yAdu6dc8LqViXAAJDgND/hjnH1sPGDVv89nmR9ncPhN/wkQzWazoRKlW7LuW8Zi6/f74fh03ABnzpzR/Px86Cv9jOeT5rS/94v3/Ld/3teNW9/EEjB2KGCsxXa7rWq1qjfeeCME2M7MzIT045WVlYFTVwFoBCZiVTrghUVh3HH3bG1tKZFIhFiGvb29kM2Dm5C4CdwEvjcoLJhIHAc0ejxH7MZiDHZ3d8P6wzXp9UcmJiZUr9dDnAFr3EE28wFwYozdPUS/PTWd5p8DaLurxfesA9x+vx9iLvwzgAhiY3CDEnviYBw3SSKRUC6XU7/fD4Xj6Fuz2dTly5c1NzcX3Hujo6OBdWk2m2F8uB4yx10nABPiNhwUO5PF/mMfwK6wpl3m+bx6LBEyyt3N0vGJvr1eLxiDzgwTuyJJszMzujU6GtxCnnp80k7avWp3Xc1mbGxMX/7lXx4KAI2OHh22tb+/r9XV1RBPQsokQZ5x+ieCyxU1igghFVPu0rGSdYXkCpZ0xWGWulvMnkfPZ6FVoSa5pwcTInixKBHGWFLSYPYGStmzUmBeJAV6nc+4kHEfeczMcB/uheL363B9fxbGw8fNX3P/PYLSqXTGmYqi9NFdd06bM/+c6XHx4kWl02ml0+kASKVBdxfPH8+fg9thsQrc18fFgRYM0djYmGZmZjQ9Pa1KpRIyJMhKoE8jIyNaX1/XysqKisVi+GFMNjc31Wq1QnE/DwgErOIy5PoIf+o7UC9jZWVF1WpVhUJBi4uLYQ90u91QxRVQ426UWMHGLi6PA2H8/Fk922x8fFztdjtk2nCYJXEM7He+64GnDhR8vTlTgiKkb7i13GUDkPL9jUHAnHhQZwxG2bucuYPxwVjjPkuljk9fxhBBebvrZ39/X7/zO7+jXC6nQqEQGCTcH6wvl1nOzOKGBER6NiL9whVDrJeXOmCsiRNxlxsgmD6525S9iuEmHZ/JwzoBfCMbYUorlYoOb7ueACQAu5N20u5Vu+uYETYYGQls0GTyqHrhxMTEwDkRWAIoSzapU4SSgp+X6HYXnk4V8l1eAxRIR2l8WEUe2Ccd+3LpK0LIYxCwWD0mwZkMHwNcUvhX6VcYWEs39fgB7icdgwmUMAG2KHJ3qfhYODiJXUFuoblSd+UW++vdko4DRl3ZeS0YYmsQxm4tu1sBV8j4+LiKxaIymUxgVlxh0RDsMZuGEkKQ4pJwpeSC1l1ZLvwTiaMYj8XFxRCgubOzEwJYUfQIdtbs1taWKpVKWN/uLqrVaiH7C6DJGAA+YVBwb7L+iF1oNBpqtVqq1Wrq9/tBiXk2F42Tkj3uhT0AuPZYJHej+NgRvAqwIeNkf38/pPTu7+8H4Mj6dBeNMwyxa83XBn3jPelYafIarAhp3h6Iy+eceWF+/aBDXBte1p696PsEg6XXO65FQqCupyenUimVy2VtbW2pWCxqZGQkpPsCCFhruLn8WbiGZwUx7xhPsFq4dZA/yWQylCJIJBID6d+sY8AGso41zXg1Go0AgmHfksmjzCnADWPk6fmx0XjSTtq9bnftpul0OvrFX/xFveMd7wiZAf1+P9QX8Wh5jwqPfdsgbQTj/v5+OJwMxO8R8K5cXIBhiSE4W61W2OheQwEqlfdcuaGweI86C86mAKh4nT559UeUr5fG9rL0Hh/jwYVc34GSC0+UtQMyftMvQAJKKwZzuAwYb+h4XFR+TcbKGQlAmQNB6Tg4mP5CZTOnnPXCPLgrgTHwiq3OdqA8PR2cdejgyfvpzI5/HuXiPvlsNquFhQUdHh7q/PnzgQmZnJzUzs6Oms1mUN6AJw9g9owHFCDBkdSWcDp+ampKExMTarVaYS/wfQ5Mm5iY0N7enm7cuKHz588rmUyq2WyGNdxqtcLBb4D+g4ODkMWGksbi7XQ6Ya+huFjXU1NTARwBmBuNhtLptFKpVCgVj0KDSYR5Q9k7CHE3WsxuYqD4umRuAIweiEu8hyt8XCkAQuJZYFXGxsaCkUR133K5rL29PVWr1bAO9vb2QvYRAcIoeHcBkm31wgsvKJvNanFxMdwXANpoNEL6t+9lZALrDZDsMS68Tz0br0kyMjKiZrMZwArrwJkxZwAlDRSqY85h55C9ACXYFOaBg/JqtZr6+XwAQbBNJ+2k3ct213VGJOnxxx8PufmwH9CcbsEgfBBMCAqUEz5KLBFqJfR6x8WaEB6xyyZ2CXg8BZsc1sLLr3vGQSwY3S1D2mPsn8XV4tS/MwgIXXd/OOjhc55+ivIHbDgzEwfv8ZxOv3osiFs08ef9dY8XccbJv+OMlFP0PmeMId+LGY1MJqO9vb1wRDnz3u12lcvlAnAFnHggH8/CvDg74LFEHgMT952S31iyNEBGOp1WPp9Xs9nUzMxMyIQpFotBkSGMiTXBVUdxLVdegB3qVgD6yJoZHx9XPp/XxsZGAKpcY2xsTOVyWbu7uzpz5owmJydVKpUCEBoZGQnMCbFNjAPnzrB23H2KMuQsKDIzPB6BOAJnEfgs6aw8DwDKx5h9ztyxNt1NC1PicS48F/1gPcesn7MkWPojIyPBGECpAxzn5+f10EMPaWNjQ4uLi3rPe96jZDKplZUVffSjH9XHP/7xkCrt66zT6QywMyjhra0tra2tqVAoBBc1oEBSCNQeGxsLAarO4mAkAXZ8v3mslMsqvuMuSB9zry0D0IkBHgYA8hWAR4kGz7xK21lJGBUwSCdg5KTd63bXMSOJREKvvvqqOp2OFhcXw8Yj3ZMTWrEWsC6wFom7YIOxKXgNxQZN64rN33fmwMHA4eFhCKDFknIrBWUhHQeJAg48e8EFBIrbM0mcinfGApCDokRBcE234hFWHlyKpeYWNd+NFbQrfqdS3fp3BoNnIjMC5e/P4aAMZYkv2YUi88m4MB/OtqRSKc3Pz4dn8QBh4iyYEwdr/hzOTPG/g1HpOCOJz/EafSLN26n3kZHjQ9Ty+bza7bYajUaokIo1PTc3p4mJCTWbzaCcPeiP8fIxAFwx7iMjI4FBJLUYuh9LnximRqMRgmv5m9o7zAPnpdAf1oADYj9PxpXXwcFRWXP2auz+xA2DiyCRSAyMnwPDeG/ywzr3YHTG3e/pMsVjRHxt+/5kL5A55hlwuANnZmbU7/c1PT0dXC6PPfaYHnjgAeXzeT311FP6yq/8SjUaDX3yk5/Uf/7P/zlUBuaIAoAPzwrrdeXKFd1///3hGTFqHKDxPy4tZ0md0WV+YIkxcrgXssPZVQKmG41GyNzp9XpB9rp8Yf+xV7LZbBg71u34+HjIlmLNSAruHH/N9+VJO2n3or2l4xh3dnYGrNh48zob4BuU31habt3COrhbALrfGQysq5gxcfcQFiDCCmF4cHAQztHB0keoYsGwgWFy3M9NLQrpmI72LBEYEY9VcFbCrUB3G2C9IFQ9INCfnX6424YxcaaDa8cUOmOF+0HSgIXq7g+eAwDpQAFF7GdfAKik49THkZERPfjgg4Ehc3DZ7XaD1eWuJ2eCnJlhLXn/vMXPHwM1LGoHg8QpFYvFIPTb7XaoqeD3KJVKoaowMRuALuYbhUA/ydIhVgkXz9zcnM6cOaPV1VWtrKwMVLnE/XBwcHQoWjKZDHFZsGH1ej2sPQckBJyi7ADi/HiQJtfgUECexRUnGRYeQMp7vM46c0DkaxSA7SwIe4Axc4aB+A9JA+OSSBydh4W7iP2ZyWQG4rrq9XoAT7du3VKhUAiyqNlsKp/Pq1gs6tSpUzp//rze/e5367XXXtMLL7yg//W//pc+9rGPBaYS2ZVOp9XpdHTr1i299NJL+mN/7I+FtcRaWVtb09LSkgqFQljbvjbZx4wd14e1AEDgXvMMLx9/d9XU6/UAyty4kY5j1pDFzIMDQ89S8qD3jY0NJW/XzWG/O3g8aSftXrS7DmCdmpoKKBu/ayaT0erqasix52wZt/hhTzwOYmxsLLhCoIGdcnXrN3YvSMeHQzk7AiBxtsMtJ2dkYAOk40PO2Mz4Xj1okj5jwSA0PI2P1GfpzSnAMfvjrqe4KJpbltzbFbKPTTxH0nFwoMe0OPBxf7+nLvt1sUCZN66dSqUGgjgdENJfrDjWDIqWcUNZOvDAVeEsUAwsHJxIx0LXKWrWiLulELieMYHwZvxnZ2eVTCbDsQUATeprsE68DDyZGGQ9xHPA/UdHj06xZk5PnTql06dPa3R0VKurqwNgmj4RS8NJrYyfZ+wkEgnVarVQR4N9RCXYZDKpbDYbrHCAeKlUCu4z9gvjzfPCwHS7R0X8uC9po1jzjD3MGP1nf7nLkd/EuiBDYBMxEnzft9ttZbPZwGBxD6+tA2vJe9euXQvfeeKJJ0JqLvuRvufzeT3zzDN66qmn9Kf+1J/SK6+8ov/9v/+3PvKRj+jll18OfeRZXnrpJZ06dUrnzp1TIpEI+yCVOj5nhvH0rB8PWnVw6rFSfA/jjmBWD4TlWWGTnYkjFZj4kN3d3VBuwOWbu4dZr4lEIgCo3d1d9W67F2E0T5iRk3av210zI/v7+yqXywGps/lIP6TCJMDBg05doeGTdiscZc/GdyUsaYBVQAh5RUtJIWAvk8kM9BumhECzdDo94F91ZsDZkphl8OJPWE4ADZSOu0lQXC603UJ0/zmCJc7KQQHRGA+PPfECZnzGY0k8poLvIsCcFXK6PHaTYJH6eAH43E2FhZfP54MwJFMDtsddJih6QF/MaqAo3b0Xszn01+eQdYbgdZDirBQMDRkZp0+flnTEAFYqlVAKPZ1OBxcNzMTk5KSy2ayazWYIEoY6h4njKPpisRhcCcViUZOTk3rmmWdUKBS0vr4elC5rod1uhxOOYVXoP2uj1+uFOi4AJPpHtkS73Q6VQ5kfytl7lVL6znzjtmFPcmYO4+Frmflkj8JqMEe+XlkzyeTRid8x0xfHJ7BGkCv+7Mwb8Tzj4+MhsDeVSimXy2l6ejqk+7r7x2XKyMiIisWinn32WT399NP61m/9Vn30ox/VP//n/1wvvfSScrmcKpWK6vW6rly5EuaUeySTR8dBELPCWsSw8nNhGF8H8IyjAxjGkT4yZoAIX+POIgG62G+A7VarNQAa+RkdHT1aw7fHP5PJqG1sGvvupJ20e9neUtEzSmFjFUrHSpDcfY5iR5gRtY8gQpjAJHgkPcBmmLLBenO0DjtB/YTJyUnV6/UgZF1pEujnLiLvf0yze2ClxwKwOfELu+UiaUBxxsrbhTMCiWdw5e+gIGYhUKRQtNJg0TEXeu42ipW5NBgL4AobYYWl5TE1vd5xjQIHUSjDRCKh2dnZUGWVcUMgO0BIJBIBTLmlSN98vbji8vH15uPkrJbH1XhMD66hXC6nbrerU6dOaXx8XLlcTul0WltbW2H9MkYIearukklBei9AD2WYz+c1NzenUqmkM2fOhPT1CxcuaHFxUaurq9ra2lK9Xh8ApLVabSDzCMUGIwIIcfcVWT1U6GRePKuGSqAoaFw8FHOLn5e0WWfXsOKdZeI7xFM40wdbxjoi/d6DsXEP4fZkLF2RuhsHRdvvHxXXy+fzqlarajQaeve7362nn356wOBh/bLXWAcAKdi55eVlnTlzRl/6pV+qn/iJn9Av//IvB7bplVde0d7enu6//3499NBDYQ/C9pHpwlrmmuwZNy7S6XRgtTwGR1KodE2DVWT9wTARlB/HKbH3kX3sBc+mwe3IvNE4VRiDiiqzJ+2k3at212BEOo6fgKZMpVJaXl6WdLSIOVqdDel1LKRjBSApUIP4inu9XnDdsOE8EM6tZj8fhCAulDvpelgMHAvPeQ7u13Wl735UF6QOEhD+CEqPb3Bh6VYPbhzGwNkRBwLO+rhSjgWRs0ewK34//qe5e4wxoq/OXHlcBfcFbDQajQDMKFzGWJKJgXBPJpOan58fiD1BqbmPnL/JPqFeQuyWcxBFQ9jGbJCDEY/5iZkVGBuUK4GbZLwQczQ7O6t6vR7ANywbwKvb7YYj51HIKOtcLqezZ89qdnZWy8vLmpqaCocNesrymTNnVCqV1Ol0tL29HeI7mKtmszmQaTEyMhIs8UKhEFiNVqsVDjtEeQJeWDczMzNhzFFM7L2pqamBM4lgeer1eggOh6Fwls3lA+vP2VDGi7772VXEi7Df3eUqHWdgxSwaRgnXJDNqZGRE58+f1xd/8RfrvvvuGwDsuL94bo9fYU34Ppmbm9P3fd/36ZVXXtHKykoAEm+88Ya2trbUaDT05JNPhlgRB2u4tKQj4MR8AUQIJo3ZQsALQeYemMoeqtVqA2CDzzCO9B/jivl0NyYuO2Q5e7dUKqk1MRHq7sTu8ZN20u5Fu2swghAF6bfbbdXrdT377LNKpVJ65ZVXAkLnM9LgBsGt0Ov1QsaAdEyfe4EqhD2Ckc/ho3fKOp1Oh3Q9PocQpt8oH+hMjw3xgFCsCzY04MRBCYKUfiN0AS/8dsuR69NHd6fQ3M0QMwGMh3RcPCnO3vEaLVh8Lmxj1xcCE7cT9+N69A+fuPfZqWP3kycSCc3MzGhqaioISWIXHDDQtzgo2RWUx1EwDwhh+juMRXI2xMfYASZxJIlEIhTy43Xmjeyser0enoHnJaDQre1yuRwYwlwupwceeECZTEaLi4uBOeGZoMj39vZUq9VC1k2z2QzZNrCQBLXeunUruCEB/t1uV/V6PZQp7/f7gSnc3d1VrVbTwsJC2CMjIyPhvj6eAATSnWFqYoveASNrhZoYHqvja4+6H7BGAAL2l7OjjD1rGHcdgJn9KSm4XWdmZiRJxWJRTz/9tAqFQjiaATCeTqfDAYi+39xI8LXT6/VUKpX0Z/7Mn9Gv/uqvBtnU6/W0s7Oj559/Xv1+XxcvXtTS0lLIIpyeng5rkzXr1WadESWTCvcKwBmwEFd65Zwc2CyP0YFVgwViP+E6os4In4XxyGazYQ/VajX1pqeDXDgJYD1pvxftrgNYm83mgABHeMGQEHSFoIY2Hh8fVzqdDhkCVHR0FwUbKg4qlY4rcwIOoEKlY4VO4SBcAWxIv5b7xNnwXuhIGoxnkTRQTRHB6EF0ULT9/nFWAFY2GQ2ALGdd3OpHIDu97VZ/zHLwmwBE/55bz/j3PTh2WCwJr7s7wAMy3RJ2EIEScfcW15mbmwtuAIQq7AkVPhkPVw4OCp1x8j67S8wDJ52JcgDGc3m8CP0igJKjBNLptOr1elhn+/v7oRx4tVoNqbrJZDIwPii6drsd3FMooImJCS0uLiqfz0s6DmyFJoeRyGaz2t7eDiwCirder6ter0tSiNtotVpBqe7s7Ghvb0+3bt0KDCMuFwwGUokrlUoIYCXNGtaBgGdiSVzpU4MFVuHg4EDNZvNIiIyMhL3urkBYM0khdoo1z56gb7AJXhgNEEQcGM9FAC3MA9/f39/X/Py8FhcXNTc3F56NecdtDBPgLNswWecGw7PPPqvTp08flUo3t+fOzo6ee+45HR4eKpvNDjBeyAbS9X0N0pCl7kaCjYpPFZY0EJ/k/fA6MyMjI4Eppi+AD5ezjK0HV0tHqb1bt+OdkLve55N20u5Fe8tumpGRkRDhv7u7q06no8nJySD4O52OstlsqDrp0d7u4ybQyl0W0MQoQA9q7Ha7IUDSc/Pd7eG0JpuJTejFjBA4zmbwjChKz+rh2jAyDo5ietfdAnzXWRmPnYljV5z9cAGOgEeZMgcONvhMbO0h5NztEse18Hz0izlw5gLgw3c98NF907jwmH8ADvEPLiShpVG+XiY8dhkxJrxHf3gtnn934fj33QU2OjqqXC4X3mu1WiE4keyNZrOpubk5zc7OBjcN57jgVweAcC2UUT6fD8Ke+zqT4kGdpVJJtVot1LzAPYNbhbkgtRrA02w2gwJydpAxHRkZCYbA3NxcADe4S6hbgSsBIAbD4uellMvl8MzOMPp+AsCTgeNsVVxSHoDIPvSYEJ7B41UIToXxZC/Ozc3pySef1IULF3T69Gml02lVKpXgmsrn84H58uaMobNnDn5PnTqlP/tn/6x+9md/NjA4yB1qlhQKBV26dEk7OzshG4v54jdj68aFZ4858+buLMaL73qMDsCWmBRJAYjAhvgZNAAjAn1xsbrLisNQAbTMxUk7afeq3TUzQmVUNsju7q7y+byuXr2q7e3tsPgBGAhFp/EJkkO4uHWDqwP6l/vEcRXSMX2I4uYod67pbhFobo8693NtPFA1diM4I+AUtLtgAC7SsdJ0FmJ3dzfErJAmieLGMkFgOyBwNsYD8Nzid0CBcOezXMP99/TRMwkAXw5SeAbp2OUlaWBuAQ7MEULWLS2CEVkvMfBjjgnG9Pd434Fl/My870yJsyu8z7i48mFciO8g9TOVSqler4fy3NSriKuNAu6SyaSKxWKwUAleZVzjWht8B1ACAzM1NRXcOSj++fn5wCAQEwIAwDXS7XaDJe1AHOVfKpW0s7Ojfr+v9fV1lUolzc/P6/DwUPPz8yFNGYZhbGwspAzDiGI88DyuWH3P+Lx77BdjDqBHCU5OTg6U0neXZCqVChVje73jAxqdWSoWi1peXtaDDz6od73rXSoWi5KOqqZub29reXlZ8/PzAzLBWwxC/DX6Ojo6qm/4hm/QL/3SLx3V4YhYoGazqeeeey7sZRgZHwf2CYGngFofOy9N73MBe4ehAlvibkquw35zw4o5ooQ9QArmllgpSbpx44ZGT50K88hcnLSTdi/bXaf2Qr06/Vkul3Xp0qUAQvgcBZlgOmA13PoH3SNE2SRsWrdOUCIxSvdzM7AgsBy9L+4CcjYCYcN9ec0Fom96mAFnRzyeBOUnHcdhJBKJoNgo3kStB/pNHIAHxMYxNzEg4j0UKIrJs094FnfhSAqC0F1UzIEHsnoKIdfDwkTgOmuTSBxlpszNzYVngF4nkJjUatwCPC/Pw9iyHhh3+uCuGFcm/iwOaHzMHBw4A0UfXNlyPQ8+BgzFijOfz6tWqwVlQV2QYWyNPy8NtogUYPpSqVR07do1dTod1Wq1MB8UvcIdSD8AJSiddrsdQejSxAABAABJREFU0vEJeEaxwbgATFhHuId4RtgVlBZrHSXn8+9xH2RlEOzs8Vlk+lSr1TA+GCrEUUgKtUhgaSSFOJ7JyUmdP39ejz/+uB5//PGwdiuVilZWVrSwsKDTp0+Hk3ZZ46wPHwePUeGZPB7joYce0k/+5E/qx3/8x/XJT34yGF6wP+vr6/rt3/5tlUqlsG7T6fTAOnJjAdekx2E5w+tr0Vkl5oNnIe6EveNuatLRveaPs5kwKr4XvvALv1Bby8t6+eWXg8F10k7avW53DUZgEPCtS0fC+aWXXgqUKJvalbIrEAT96OioqtVqCMADrEiDMRLQ0lC/CBD3f3rMBcrLBb4DDfrin/EgUDa+pIFn4TfKyOM6nPqP40H8M3HQpdO9HoQJVetshrtsUM69Xi8oymFWnytynoXvM1cOBhBkPrbueiKexi3DuIZHv98PlpwDJFgpBCV1PdxdwxzDpPEMWNjuHhpmzXrciL/PHDhlzZgihH1twgJihbvScTcV68ZBGsDR2T6UiLvY+HEQ68HbZO4cHh5qdnY2BHuTuup1N1hLHmwIyI9ZCX5arZYajUa4NkzD2NhYMCAAtTwXLhLmxxU8Y8s6YHxZy/1+f4ARpd+47RgDQIu7Q/0ZYI/Onj0bqtmeOXNmYG9WKhVls1ndf//9oYKts2cORJg73uNzDtRZi+9+97s1Ozurb/u2b9Orr74angXZcu3aNX3yk5/UxMREOOVXOo4T8kBh1h7MmMsPD6h38Ms4AU6lY/DO2qW+iLtkSSaggCHBy8Ti+Lp56aWXVL29djqdTtgfJ+2k3ct21zEjbAhiAQAm29vb2traCkgbwbu3tzcQ5Nfv9wfOosHS4jsEx6G8UHzOXIDWCdJD2GGFYV258JeOz1CRjgR1Op0OAhph5YoC9sYtD8YBa4O+uEXlCh4l4dVfsX64F82D2Ly5FeoWHM2DeR0k0FcHRK4knHFyyx0w4Nfy8zPIAOFaCDjOPpEUDnjb398Pp7/SPKuAWKM45sDjcTxN1Nkdn9/YNYPFzjMwxwAkF75u/TqAItaFZ/IAYb9WDGjcBeZryufZgYqDJ9anZ9kQH7W6uhoCVUm1dQDt7jv2irNrNI8t2N/fV7vd1tbWltLpdFDcxBQ4G+dxP6yDdDodDkEEYDJfDlq9jx4Dxrwx/wAs3B2As2azGWq6jI+Pa3Z2VgsLC5qbm9Py8rJKpVKYn3K5rEqlore97W2amZkJssP3LwDeY6NYL6wNj1vysXv00Uf1D/7BP9D3fM/36OWXXw6fZa9fuXJFZ8+eVaFQ0OHhoaanp0NsHECBdbO8vDzg3vK9iOtOOgoqJeh7YmJCa2trYQ7z+fwAcD88PAyuIgc2HvjLoX48k+9P5o+sSTc2TtpJu1ftrpkR93+yISqVSoj69g29v78fwImnjEIfj42NhcqTAAu3nIYd0IVABDx4qh2Bswg1NibCHx8pYMqVFdcflsHi1+GzHjvj1ptn7fB53sd15ICA3yg0Z2KcsXC3loMNBKdbc66UUBD8z3347QwJDeHD57H8eC4fL5gej+OAnp6cnAxK22OGDg+PzkYpFAqBNmasPRbBwRN1SBwUOivA/AM0mDdciv4aSsjHzoEX1/JqpnyXdeRgzgMSEeTDru1AyrN/eM+DqllHuO6g5q9fvx6AiM8Hn3GWxV0sMUD1dUL6MEzJ6OhoOG0ZA4NaNru7u6F+CSwJz8T8wqY4sMYyx13njFoymQzZRH7St4O6bDYbCsVhaJRKJeXz+fAd6Si9+PLlyzp79myIvfF5Pzw8DKwPID5WtM6eePM98YVf+IX6kR/5Ef3dv/t3deXKlQBuMLY+/vGPq1QqKZ1O69atWwMHRvrYU/fIGTOXJR7vAaiAXeE9gASxN762AWgUsfP1yN5xICgdx955Je0TMHLS7nW7azDiAhvfcCaTGTh3BoXusRCNRkPSUWoiqB1gAn3LhgC4SMduEpQRGxIFwWZEwIP+sQAQEnyHWAUUdKxcpTcf9uVWObU2YGHiz/IcDipQUPQ9pqJRGNTkcFYF4ScdKzqax4wAkAAWzkTxN0rewQvXcTeTdAyUPFhZOi7zDch0por1AZPEfDlljLsD1gQmjEBF+uNz5D8eXOsggd88G0CL+XFlz3M6M0TfHbQBHvy6MaPkVi3j7dQ/AMHdJM7g8Bprgr5zDfbJzs6Orl27ps3NzaB8PE7Jlb8/n//2WIJhjMXe3l6ok9FoNEL8C9Y4cRvsO2qsoAAprpZIHAW8Yn2zTkZGRgbOuHE2gnXB8+CyZQ1MT09re3s7ZJvk83ml0+mBbL1ut6uNjQ1ls9lwSq8zVMTTcHxE7LL09e8MmTcHNV/8xV+sf/gP/6E+8IEP6GMf+1i4xsHBgdbX13X58uWQpXR4eKi5ubkQp0EMmzNhnm2GHEMeOPva7/dDlWn2QTKZDGUXiJvhOslkMgQHSwoyFsaTCqvEsCwtLWn9dp0cYpHicThpJ+3z3ZKf/SPHLaaTsY5Q+n7aKcFT0hEV3263Q3lqZ088sNQFNZuLCoXQ5tybrAaENuwK/fSD3CSFqpT8QDVj2UnHyt0VAo0NSbS7n+hLfwEbDkZ4LoQb1+I+sAa87lYSFhGK1cGFK2Tu64qVfiCcpDcHunqQqMeVIKi4ppdtdwEN6OS+WGwwX360eaxcDw4OQsl+1g+fA1i5hY2V7EDYhbmzQYydxykQcOtBsQ4GeH7P7PIgZV8jzjAwxrAHgC4yRWJQ6bEijKEzCKw9rFJYlhdffDGc8EvfPZPFfwAXWNcAvUKhoHw+P+AypA+4RGHvGo2GdnZ2QlHDnZ0dbW1tqVarqdlsqlqtqlKphCquk5OTmpycDIDSs3x8PXvZcVgO9gq1SPjfAT1jwxzg6kskjlJr9/f3tb6+rs3NTT3wwAOanp5+E3Ano83XsRscfI558vl2ZsDdvU8++aS+4zu+Q2fOnBkIht3b29PVq1fVbDZDXRhknVeT9XmjMafOrjlYSqVSweXDmoVVRkZ7HAoMNd/nb+qusGYogPbiiy+q0WicgJCT9nva7hqMOMWYTCbDokXJIdRiPyMbURpMvaQq4+HhYYgdQQHHtT6ouQDwcd8z/QJ0uKUPVe8/1GzAovJMHOlYIEjH4AEl4myKK0HGyIWXB0RKx9YsCh+BiwDh716vN3BI2cCkGWvhriMPiOR1xgFFjg/aGY9YoSOInflxwMJ7PA9jxGcAj+7S43MoPmh5vue1ZriGu1cctLjwjq1XZ1AAUz5WPj9u5QJuXdE7UPEximMwuIa7lpwhcRbF2RwH0w6gWIuk8d66dUsvv/xyKLTG+nGF6c8SZzh5DMT4+LhKpVJIO+ZzzsCxfz2NmNgSGI9Go6FGoxHO0+n3jw+5ZA86+PbxY084i1Or1ULJfcB5r9cLr5XLZbXb7eBuaLVa4affPzrE7/Lly1paWgpn/zjgQGYgqwCKzAXNmd94jhl7fpivZ599Vj/8wz+sM2fODLBoW1tbWllZCYZYtVoN6dK02EjhHu12e8DVzHoEJHumoXRcL8b3HQwVAMj3ErImlj/MUb1eD+sNg+SknbR72e6+6NltYetUI5acp2TyOkLMsww8DQ3qFOEF/e/Hr0vH2TDusvDDunxzsnlRDh4sS+xGPp8PlWPdunRlg7J2H6xHsEPP49+mvwi0kZGRwATQPHIdahYr1oNiAQlc09MD+U2/AC/DfM98Prbu+Z4HViKsoMf5H8EbB87ynltjFAzjVFr6gqDzlEUXcgBR6pa48iYWAVBG/7EKATvOWKD0UA4eLOlMhX+Xv1m/0mC2DX2JlVhs1Tog9GswlwBFj5nwNevP2O12tba2Fqqfsq/Ya349+uNrk+dnnOkbBcC63W4AHKxjB3QAQ1q73Q7PxlxxWi7vU4WZvc51WYMwm4wN1juuBI/LoX9kfeD6y2Qymp+fD+v06tWrSiQSunDhgvL5/AAgPzg4CNlHBEvH6zhmP2ixwcH8+1qSpPe+972amprSj/3Yj+n555+XdOTSfOWVV3Tx4kUtLCyo0Wio2Wzq/PnzISAV17IbeS73nCkEdML2uSxx4wPXp8838tNdklzfgbMkzc7OqtrtampqSrVaTZIGXOcn7aTdi3bXYMTjH7AMiJ9AcLG4icgmPgCl1ul0Qv49Z8O4BY61A1XtGS2+mRxs+OmhbpHHCqzf7w+UHsfPyvf8moAdlLyfyeNWtKQBABazJrA+zkKgtJxtQvg76HAl6ZaQKzY/6MpTIPlh3NwV49YTgCRmahzk8BwcAudjC6BijlA2WHGMsY+9C3bGlef0Kq2SwnsoRZQS/WOsuC5KwpkcXxOxi8ZBjLNt9A9wOIzlkTRwPwdwvO5j7UGqsfUN2EWZwAwA8DikDkUYW+j0hedKJpOh+BzKiD0MwCWVF3aB+B3WpwNcYn/4PvdgTCcnJ0PGj6+P2K0E60nzdGK+w/oBOOBm6/f7KhQKoXZILpdTvV7X5uamnnnmmQBQfH663W4oV++gnOYuMgearHt/BubJ3ZyspWeffVbpdFp/+2//bb344osaGxvT9va2qtWqZmZmQlB0uVweWEseK0MfyPTjO8xt7Abm/i6/PDPOA3jZD8hk9hhGI272nZ0dtZLJAabkxF1z0u51uys3jaRA+TWbzSBUOOoaRdBqtQbObKHyqXRsXTq6d0odehLFtbCwoOnp6SAwoe/5PJuPv1EgHu/hfnS3PHjNUxVdKVIV0q/Jb56VjU/mhX8OapS/3X1Ev7Bk/ARXmluJA5OWTA4oHQdc9MuvBfXtrgm+T/9cQQMI/H9nHnCzeAowyssrTx4cHATwAqD08XHWxFklT+V1l4ezGjE7QV99ftw6Zo0heOkbIBbwwVrl71arpWazObC+GHdcKg6IfF3F/fL+OIPmgae9Xi/Udtjd3Q0sw/Lysk6dOjVAr6NgsH7dXQMjAJM3Pj4eslFarZb29/dDnEcmk1GhUNDS0pJOnTqlfD4f4mBQXARH01/pCCTm8/mQAry6uhrGKra4GX/WNeNOMHgikQgnGmPIIEMwYKrVqiYnJ/XII49oeXk5AKiXX35ZvV5PDz/8sEql0gBI4PwVZ2KcAfF1Hcs5n9MYWMVMJGvr8ccf14/8yI/okUceCf1eWVkJpzADNHd2doIbzMFlLB8wJpxRZD673aOqu61Wa6AIJWsE+cVacHbH9xF/YyicOnVK6XQ6HNrnc37STtq9anddDt5pSo659vgLggV9A0gaoH9dkHMSqqQgHB3obG9vB6sYCwIh6y4JlFq9Xg9MgfutUTC7u7shfx/kH5+T4gIddsctI3eNIDB5ndc8+MzHAOsljnVAISFIvegYVo+PfexKQpghtNxa9gwUZ1voH8KGOXIrzZUm1wKMUhnTQQPvr6ysDJwdRFwQ9z44OAhuB2eFpMFgVP7mmfkswt+BQAzCmM+YxeLZPEbImSRiJlwpMK88I9/hfW/uWqTvngVGNom7QVw54HqUjqqsFotFXbhwQTs7O8pmsyFgk/t7nRlXmqwrKqkuLCyE5yYwdWpqSrlcLozd5OSkstnsQFA0+xVlxfMAHlKpVIghYX7cnTU2NqaFhQVtbW0NWO2sDfaEu8RwveLKlKRMJhMUZb/fDwcTtlotve1tbws1UpgDrusuKJdDDhS9xWwnr/m+iw0H5jORSOgLvuAL9IEPfEA/+qM/qk9+8pOqVquhDDsZS5w03O12Q0qu7+fd3V1Vq1XNzs6GkgkuozDC3MjBBe3AhfgSP8CTMgyHh4eBhZYUxvnGjRtqzs+H0gon7aT9XrS7dtPAaORyOfV6vWBF9Xq9UAQNgUfa3djYmHK5XIhmx29L6hoKMPZrAlZcmVKIio1GlUo22TB/ucdz+PelY6UUBwSioFGcseDhe4AHnsMFrQs1rgFAQki4onVBGVsvAARX/HwHZsfdPolEYoBOd/aB91EAsQIDzLjgdWUNuMAa55n8XJft7W0dHh6GdGXu7feD9mecmVMHIfTRXS4+Pij4mImg8fz+DMyJx2rwN1Y0TBnPSOAkihB2BODo4+f3Hebyil1xgA+eh3nnhGCKBp4/f16bm5tqtVph3XhAZSqVChlMrAXGt1arKZ1O69SpU0H5VavVkBWTy+XCoX8OxDm92DOQ2Oe+pqrVangGHwfACWNH7IaDZ54FUObygHvOzs7qHe94h5588smB2iKvvvpqYEu8uKIzWJ1OR81mMxRGGwYm433ge8HnKwYhNOYXEPZFX/RF+uAHP6jv/d7vDXtlamoqVIat1+taXV3VmTNnBtg0AAFVdguFwkBtHda51+NxtxRGoq972FMMRQL4yYIaGxsLDI0kJZLJcNAp94xjbE7aSft8t7tmRhBwbBCnH2OK2Etgb25uBmUFRTzMUk2n00EwUK6YjQ7qh2LHOoA1wAeeSqVCnAKCiY3OxnLaGMHnMQK+ybmGuwwQ0A46PF2TayDEqGTIs3psCUFsDjr8hF93p8QgR9LA6aAoUW8+N/687gpxIODKM2ZvuD9HpfO6xwkkEomQJsq8MCasFQcRzIWPL/d3Ze5MRfwarzud7LEa0vH5Pv1+P/RN0kCANYHYrDcPpEbR53K5cFCdA2XG2kEPz+3xSA70UBqAoEQiEdwo7ko5PDxUJpNRsVhUpVIJrg6+x55k7N1lyB7c2NhQt9vV0tKSMpmMTp8+rbm5OfX7fZXLZZXL5RCMmslkVK/Xwxz1er2BVNyRkZFQ9KxcLgeXl8eEMKfdblflclmTk5Oanp7W9evXw4nfsAC4NA8PD8PawpAplUp66KGHdOHCBWWz2dCHSqWimzdv6r3vfa9Onz4d5A3X8aBMYtR8jUqDcUIxaGbvM08AtNhd6Kybu8ueeeYZfeADH9D/+T//R7u7u6rX6yHI++DgQJVKRdVqdcB9yfVxq/k+d3mSSBy7galRxJogUBf3HbWRYjePM5L9fj+k9o7fBjPOIuPuO2kn7V61t3RQHhkytVotlPve3NyUdFxhlc3vsSJOzWJRIqz4HQtsj+T3+A4UGNQrwhCFgvXlShXB58rYLWaUU+yqcapWUghGdesdpiOOcZA0QJ3GvmjGwp/d2QtncLwPse9bOhZa7n5xpY7V6HEUbg06CAAM8bePAcAFwYglzjwkEglVq1Wtr68rl8uFMeJ5EHLOJDmgjMfd3W2e4hi/xmfj2B1nYpgXng8QRRZIIpEIViL1Gfr9fqDKU6lUKH+OlU0/YpdWHNvjgcN8Xjp2s5TL5eBWYa17FlUul1OxWAwsI6CK+7LXUD7OILIO19fXVa/XdenSJS0tLQWrvVAoSJJu3rw5UP/F69J4ppskFYvF4HYg2DwecxTk6OjogCsinU7rHe94hxYWFnTz5s0Q6NlqtQLrMjk5qdOnT6tUKoXS7yjpWq2mlZUVFYtFPfHEE+FQQvYOriVcswRFD3PNMEe8zv/+HKyfmAGNDQTfs91uV+94xztULBb1K7/yK+H5PQtma2tLrVZLmUxmgM3wQOrYHeh7mf2CcTYyMhIMPdYEa3lqakrNZjPMgQfuIx8laXt7W73bBdo82+6knbR72e7aTTM2Pq719XV96lOfUqlUUjabDf50hFGn01Gj0RiwVAgapAz7wcHBAK2LW8EPI+N6HuDlr0nH9Khb8ViJ3MMVM/cgCNZdIzwjytv92AhkP3WY+6Mc+d/f8wAwz2pwNwqxNu6O8Ih/rhPT+1hRxBf4YVz0C2EyjOnged1Sd9cRlTUBbq5UnVHxYMFsNqsLFy7obW97m8bHx4NLgb7FJa37/X44xtyZEH92rk1mgJfBxlqEkQDU0BDGWHasHz9Vls9hsTI33MNPkG02myEzwsGsZ5f5M8SgkXlzVyDMCP2hiBXrw+OMlpaWdOPGjVDZWJIajcbAvGBhcz8HkrhUXnrpJZXLZc3MzCiXy4X1B/VPrFR8zcnJSZVKpUD3X716VY1GY4BV5LlHRkaCUeJrMJPJaHp6WtPT03r00Uf1tre9Taurq2q329rc3NTe3p7K5bIuXryoUqmk/f19FYtFZbPZAHhhct7xjndoZmZmwE2CUoepaTabyufzA8De3Y6Mjc8bvxm/Yawc/zuTwrW4xvj4uC5cuKAv+ZIv0W/+5m+q2Wzq8PDoxF7cR4BzlzGwvwcHByoWi5KOjQ0fY/4HyLurx2UIsXhUq3UABitLTND8/LxebbeVy+XCOj8BJSftXre7WmEIl729Pb344ov66q/+6kAJkwEA2ACxs4gpX+zlhb0Al9/DGZCYCkU4ukDwwECPOXAwgYWEdRLTuB5Q6kpGUohFGea7lTSgUNnQCHR89m65OmPhQpH7I1AdRMX9dIHnQpUx5NpxrIUH4blg9fgLKN3YBeF9IShxYWFBi4uLWlhY0MjIiO677z7dd999KhQKunXrltbW1oJAwzqVjs8qcVcODJGkgfNGhvUbheOBwj5uMDSAvTjbyUEb1v329nZQlhTuAijmcrkQrEl/XHG50ootZne9MVee5opLxgEJFDzAhGvSF4AYwdJcxwE34MBdYjAqtVpNnU5HlUpF+XxeMzMzIZWd7BgaMSL9/lG8yOzsrBKJhK5cuaK1tbWwNgC/vnaZXwdFxDVwNlG/39fMzIw2NzfDoXK5XE6ZTCac6J3L5XR4eBgYqlu3bmlsbExPPfXUAMCNQSqVmfmMr2XvE/Po6zxmRmKjxV+PY058DCTp4YcfViKR0Mc+9jFtbm4GOUHKMfue8el2u6rVagF8ARaRiwB8dx+63AXI0l9cWxgb8TUPDg4Ca1KtVnVoiQLOPJ60k3av2l2BEaK3E4mElpaWdPbsWS0vL+sTn/hEUGZsKLfaPUUMN450zCJggUvH9UOG0e7unqG5Qo/PtvDof5Th7u5uEIDcy5W1/8aadyEgHVeTpS/+fQ7i41lQfP58riRcYNyJQvbmFij98YBWBydYWy7kYiDj9+WHMfVS0YAT+vDII4/oh37oh1QqlQZqWXjgIedyADrIHvDxAeA6Ne4WH/fzsXOQEq9N5ssVobsMGo1G8I2z9vb391WpVNTpdIJFiluBU4X7/aND6whg5Tmd6XBmwMeCdcqPp1p74DXuT3fX+TyjnBuNhm7duqWNjY0whgAWQAhxRD5u7jLiPa/qWigUNDc3FwKzYXu8TDvnz9y4cUNvvPHGQHBrIpEIYJLXDg8PA7ADzLG+OLIBEEYhwm63G8Y6nU4HEAL7tba2ptXV1YFTeZlPBz6431DS7NVhe4A5ojmwjMdx2P5xw8n3rp+Ndf/992tkZESf/vSn9cYbb7yJJfYigYuLiwNZVjTWlbOZyFSfV9yPDjbik7edZfbKt5lMRr3bcUsu907aSbuX7e7cNDpa5HNzc3rkkUeCJex0LoieA7coaIQvmLSy0dHRENdBFVQsZwS1R9s7DQvjghsIoYny5HsoJza8F1nDgnAXkAffIeCd4fEAWDa+uwSIm3CFiDL0YFSeRRqMh8ByiT/vQXcIVQcPTqE6myK92cpz6xVBxP15ncOz4pRmv46DFIQ2cwjYmJqaCsCPOZcUKm0iEBkn2BH6zZg468G4eel8V7A+NigvFBLjvbu7q62trRDTRD0G6egcpXK5rPHxcbXb7XB+RyaTCcqCwmRQ24wFaxMw5euKPqEwO51OYH9aJvg5riCVSg2wHoDBqakpnT59Wru7u9rZ2RmIRZqYmFCz2QyuJkBJIpEIh9oBUmARYTp4PuaoVCqF/ci5O4zf2tqaXn755eBSAlThekNhutuB8vO7u7vKZrOanZ1VLpcLa6RSqYTzVWBiisXiQLxKOp1WvV5XpVJRKpXS29/+9mBwMPbS4KnTntVH33gOPoMRxbzFeyY2UoI8jL5PY74dLLB3z58/r263q0qlEmKDKBrp8UcTExNBfrFu3JXK37BnXkeIvcz3+DyyhmcDrGOoHdoe4fu4ijx276SdtHvR7gqMJBPHPt+ZmZlwaFaxWNTVq1eVyWSCrxkfPAIcwYy16ZvPha0rEhSUK00C01zRs1HwizoD49Q/4Ec6dr0gKFBmbr3BXKDUXHl6jALP4YoyDPBtN42zO7yOUADc+D3j+A6+50rP4zgctPA5V4zeXNEzbli/npXhwjl2QyAcmZeYxsW9ARjhOxMTE2o0GgOxLMMCCHle76tbaK7gpeMaCc46UGyt1+uFY+8Bpiht3He4DLe3t5VIHFXAhC1YXl7WmTNn3lQUL2ZzfAwYO9wxMIQ0AEKn0wmFq9y1IimwbABhGKTp6emQkgtzQOzL5OSk2u12WN/sIbItfCwXFxfDfl5aWgrXon5MOp0OzAlFsCqVit544w1tbGy8aW2wH3x9+EGYKEP66vEonBwL+9LrHdfwwUVGZsfq6qpyuVxI1WVePRYIRUocE9klDqYdNNAPH3+Pn2I/OajnuzG76ayZu0J5/cKFC6pWq7p8+fJAFpLHcjhj7EHMNJirXq8XglcZPwAaxoUDfDLEHKzQL9ZHu91W39KxHSSdtJN2r9pbyqbJZDIqlUq6fPmyPvKRj+jmzZvhPWhbgt38gCbo8V6vF4rt1Ov1AcXnBck8iNIpbwCKn9wLoCAwlfM2nPlw64BofaxIP8kUn7PHXrjwQdC4cvZ7eF0SZw4cXKC4eM8ZAhfc7gZyBeysgP/49fxebu0xzvQ5PlQsBjGxRSgdCzp3GTmwSySOCmjl83m98cYbIVuD597f3w8WHQoL6zumxxkDxoY4Jaxvz8YitZHYJNiGfr8fslVGR0fVaDTC64ARmIfDw6P00unpaZ05c0Znz54Nx9E7KPS6LoybxzTxOebNFacfJulxUmNjYwEEwLRls9ngOgFAnzlzRqlUSqurq6GCKWsaRQtIoS+wlKSXLi4uKp/P6+DgQHNzc8EFNTo6qkqlotHRUc3OzgYQsre3pytXruj1118fyCzxoFGAHCnJtVptQOF70HPMYlIh9vDwcCBTj/VKFdZ2u60v+7IvUy6XGwCksfuODB+KuPlnUfq+vx1gcp14z8ZuGN9rfC++D69x/YmJCT3yyCOqVqtaW1sLAIb3HfAzb8wva5r1B6MnKYAQz2DkN2ww13QmiL2Wuv3/wsKCbtxm7ABJJ8zISbvX7a7BCMKkWq3qxo0b6vePfL+1Wi2AAmhVaoSgZNkQWAD8uFDHymZDEaTHRkIYIJRjGh9BRxS/K3MPIHVhgXWBIkGpYz3EVolbO+4a8P7xHGx+V97cz0vcu7J1d4QrMwdksVB0hegCNVaMvO/xLn4Pfy6+z3cd8MSxMnGf/PmnpqaCsucId1I+uY6zJ7BRPt5ewImxAegibH3sHGxg3cPWtVotlcvlAFiwwiWF8uilUimUR0eZuStvmJIaBjxRMLAbrIHR0dHAYLTbbe3s7AQQ7vOEGwfWkXvQT9xJtVotKA3POmJPAWYmJydVLBa1vr6udDodsuHYr16jAmU+OTmpjY0NXb9+Xa+99lpgJ3283SWBYqU6KgwZ7rBsNqt0Oh32NWwIxgrZMzCVWOetVks3btzQ6Oiozp07F+qcoCg9XgRmRNJAjJKzcPF+jgF5vK4deMb7yeOyhl3b9yjs1tNPP61Pf/rT4TuA6WTyKMCXmBKuh/zq9Y4PlITJbLfbYQ8708pc4Hp22Ur1ZJ6LcaxUKmokEgMxdzHzedJO2ue73TUYYTFTAh7Wgqh/SQNUodObKBj87NCAWISpVCrUAUFJYK1BcVOimGBVhB9CDWoegcLvYXVAnDZ3QYVg8mA8QJQHojo1jWJ25YMbAOEAAOA1mB/3BceHAbpFhbJ22jUGSwAiqFjGyN9zUMMcxSxQDDgQpjFVzTO71YiwTCaT2tjYCK4893tjoXv1W1gwBznu8+b6IyMjqtfrISgPxeeKkf5wbsfu7q7K5XJgYnDnwcgAQDKZTGBtFhYWNDMzM0B1MxYOWh1UOwviDIWPldc78RgBABqxKsy7BxF6PNPY2Jjm5ubUbrc1NTUV6qOUSqXgCk0kEsrn8+EejUZDk5OTmpubUzKZVLPZDGALwMjaApzUajVtbGzo8uXLqlQqYf59P7DvvYYGa3ZkZCQAJMadehge58U+Icsjl8uFfnOQ3tbWlpaXlzUzMxM+z9p2RnNvb087Ozuhjoq7Humfx3k4aHd5wJz5M7OHnAlhvcb7Yxho5b3FxUVJRyX/6QOfYWw9LRqmNwa7gG7fM549xP+4c+g/ayjc9/bnZ2ZmNHH7TCaYthNm5KTd63bXFVgRHAgNaG2UKgJJUghIY2OhoPFJ9/v9IEgRIvjlfSMhtBE+HkuC4gCAIGSI5XAFhU+cgLy45oV0LHi4r9ebCHRm6jhFztkNgvmw4N3d4LSwB5AieJ3lkQYtTA8G5BreR+aGiqCUio4tGrdkEUi0YRSzMySS3mQ5uqXnypbnbjab+tVf/VU99NBDYbynp6fDHDqtzrg6O8D1/B5OZ/M+zEe32w3MB6wDZxuVy2VVq9WwjgqFgpLJpIrFYqhB4cD6woUL4awTdwPEQZqMC2NDvR0HdZ4dwzUARVyXjAen4N2Vxp7CbcE8kyGBomH95/P5cL9sNhvGmlodgADGlX3Mvalg3Ol09MYbb+jatWtqNBphjXj/iAHBNce+cEavWq2Gv5PJ5ABzCTDFgnc2hTXb6XS0s7Ojfr+vhx9+eCCDhvfd2Dg4OFC1Wg2F0mgOqF2ucR/+d1DhxoGzXzF7GLt0/Rq+L/w+s7OzmpiYUKVSCdeP46N8D7qMOzg4OnDP5SMM7+Hh4cChg54yjwxykH9wcCBGZGJiQplEIsRZuZw5aSftXrW7LnrGBstmswMVFZ2qxLqbnp4On2fzICxQwlgtfuCcu2C4PtQwzAjKAGGKcObwLy9eBX1N5UwCWTmnhnvGcSmk3KGQEJiecueWPIoK0OWshAesutUYCy/PvuA5ef44QFU6PrQM6zMGLjSEqLMTkgYUO59DOLvg9DUQC23/263clZUV/eZv/qaKxaLm5uZCPEculwsFnxgvhCbAEobMlTHzQb0Y/obharVaIV6k0WgM1HCYmJjQzMyMMplMKPKVuE1FA+JgIShBzhp1MBKDL5S30/CMq7Mi8fdgwer1+kAKJc8KwJIUWA/WFRkoxFfhDoHid9cg4Jt55xowOaw57g/A7/ePapGsrq7q1q1bWl9fD+AJZcj3PH6ESp88M3uY9wAsFE4DvPA9SqYDurhfuVzW5cuXNTY2pnPnzoX4CfqMzHBGjDF2cMvc+L6TjovjOfAYFnflz+Nj4f/75x3YxAwnn8tms0G++Z7jNQ8KhiVm7MfHx8O4AuR5rdFohPXEfHc6nTA/0rHB6LKq0Wiocjumj++dtJN2r9tdrzL81fh8UYJTU1PBcsKNQ7S7gwqYECyZRCIRKGWP6mazYR1JGkjP86wJdz14nIqkEMAH+JCO00KdsUGZADy8UFIc/MVnnYFAiCA0cFVIx5ZvTGnHFpqzHsPAgAs3B3JYqLHFJg0vIz9McPI7fj+2IP35HWi6L575WllZCYGIHtiJ1UZtBcaI8uuetcQ93aXGtfzMDQAKc0fgJJkYZIugEBDagFisR6f6Y6XhwMOFd2xJ+3y5nx7QAKiu1WphTLrdbigKmM1mQ+Ex0m0BJIw/wHRkZCScusv69foqiURiIIus1WqFTCHWNc8MK0n8ydramm7duqVarRbqn3B/GA3qmzAOMG/JZDLEBwEwGR/2BSn9gAUABeuZ66ZSKe3s7Oj69ev60i/9Uk1PTwfQzhw5IBoZOaonk81m37R+ndGL9wcAi+fzzzlwkY4ZFvrHPnXWkf0cu2fifba3txfqx2xvbwdwASh3sAOAJzuLMvj0o9/vh1pQZMj5vPR6vRC3g0uStc8zFItFjdw2ND3b56SdtHvZ7poZ8XTZVOroQLp6va6ZmZkQbMfGRkDwN+4JBCOWLvEE3lwggM6hDNncWIYIMPygFEtyhoB7OosBe8EmxZJ0MODXcFDlNDHvOR2aTCYH+hazR7GVjYXnDIr3EeGEpeeMkF/jTmwFLVaacY0S/wx/uxCWBotD+Xdjxue1115To9FQrVYLJzXDcOA284BL6GKq2fK6n0SL8PQ5YYwJdCyVSpqfn1e32w3MB3PmitFLY5O1UqlUQuEtgozdlefWd8xaeSCnsymsWwJCAUUwc9VqNRRckxQUEPuIec5kMiF+AiWHUiKYkbogvV4vuII4NbtSqYT54nkIfCRAtFwuq1araWdnR5ubm6pWq7p+/fqAgqQ/MQgjQBaQDsBxeRG7ZZwtil2efj/ODVpeXg6GAWNDNhYyZn9/X9vb2yHA14FjvEeYM2cdpeO03njPuCzx/jsY8v99z7iblDUFOMO1trW1pdXV1QAie71eYDI46ZzYEfrrbCqfa7VagRXh+QCG7AUH1wBl1l86nQ4nbztwOmkn7V61uwIjbGqyEshY2Nvb0xNPPDHgB5cULFYsFDYyi93rc8SUMoAAizhmN3ARsdFQ/LlcLtDMcfCmKw2sY/qJIAdMuFDhMw4a2KRQ+fTPmRUAFc0tHPcNA3qcLXH/vWe++AFzMejzTAz6E1tisVvIARL/S4MsjAOSmJ3hWXjPAyDJAqnX68Hq9DFEacKMIZSZN9ZFHM/jsREeCImQ7na7KpVKkhRiOCQFBcmzMmY8A+Pebre1tramsbExFYvFYGGiOOiTjwv3cKXggMQrcfpPp9PR1tZWKLS2t7enfD6vdDodSqCzVrhfIpEImRCsG+j38fFxNRoN7e/vh1TZZrMZ0mTZo4y9M0uUoW80GqpUKoEd8SJqzDVgP3Z5cNou65+qqn7oIHENgEOuAWhz10IymVSlUtHq6qpmZmZ0+vTp4KKRFDJQPIAd152fueMsmzMWPk+x0nX2JGZVfCxi94srfwc4zqyy75xZ7PV6OnXqlJLJpFZXV8N+olgc6c/cg+vDujqAZS/hVmYOYZddRvsJyZJULpdVuc2W0a+TdtLudbsrMIKgxgKisSmdimUhe3wFFSKpdwCgcMsJYeRKEGUtDQabuWLDWqR/vE6/saCwyp1hwIp0JU1f3AWBMuV9BArCCKEA0OGz3BOwghKRBs/iATQwdoA1fjsz47953Ys0xS4EaZDRiFmTmELm8w6mXLgOsxqdtsYFkMlkwuFg3I9iXp5J40rdUzEBHlzXY1LioGJiTrA+mV+UYCqVCimmCHE/gXlvby/Up6lWq9rd3dXs7KxOnz49EF/kViY+fVdQrig9s4v7c2/GqVarqVwuDxTnAqjAJgK4YQT5jWvFU2epNwJL0Gg0gksE5oS1m0odFSKs1Woha2ZnZ0ftdlurq6tqNpsDrkN+iEvw2CgH5riG2DOFQiEExBL86m5Z6QgskmpM29vbU7PZ1Pb2ti5cuKBMJjMAjmCR2HO9Xk/NZlOJRCJk0gwDjb5eub/P3TDwwRzGrhfGkh939bgB4uyvsyPsX9yXCwsLarVaqlQqAwwQQf8wTgAQn1NPuQboECfEPZzFZS02Go2Bz3BOjbPRJ+2k3ct219k0WD8InZ2dHZXL5VBADFCAQHV3CRsARQQ4kRQs3ImJCdVqtYHoeix+AIWfQYLiglonDgAQQL8RDg4kAAwITack2czuj6U/vV4vWOGAhVgg8T2/Bv9Lg/EZpF4yrlgq3g/pmFlxwegC0yljD8aV3lygKbYSXckPE8ouzGPrMWZb+Jt4HSr1Tk1NDRSbw0J2AAuIbLVaIR6G+2DZMcZxETEvCgVdnUgkQqwFmSfOSOEu8YwUQMmLL76oarWqp59+Wm9/+9sHshPiDA0HJG61Yrl7jAdMQbvd1vXr17WysqJU6qj43P7+/kDwKgyPAxzcEnt7eyFexBUf9+GzKP9GoxFAGTEszHWz2QxAZHt7W2tra9rY2Aigwud/ZGRkIJUYIAIAAuB4plg2mw1WO+CQ95xV8iB3mNE33nhDvV5P999//4Dbx1lB+phMJrWzsxPYNmSHr1u+G69f31s8q3/P90zMMsYgnX3l1/L34r2FnOh2jw4bPXfunA4PD3Xz5s0B1sLjrxxQeTIBY4ic5Kwldznu7e0NlF9w0F8ul5W4bSwCtk9Se0/avW5vKUyaDQQ6ZwOxEVj0WIbEclSr1aAoSMl14cmGxaJ1PyzAwsuWcy1XooAaP+nULWuPWYiFDxYDmxWgwUZk82N9Y1lLxxZ9zKa4z98ZH2c8/EyQWMjEffTfMa3sbhl/fVgwXXy9YYDExy62jPz6/O2MCgqav7e3t0MgJvOOdc1YM84UI3Ohi7uBQmeMF4q0WCwGocta8SqssC+ACa5RqVQCKK5WqyH9t9/vK5/Pa319XR/5yEeUTqf15JNPBteGM36xQmIMEPDOEHIoHPMHWJmcnFS32w3ntQB43IUIyzM+Pq56vR7Oj6G2DuPvYAWDoNPphD3nsRuNRkPValXXrl3T5uamKpWKNjY2wqm+rBd3n2Sz2QDmvYosTA1AEADCZ734Hc8lHRdnIwbs8PAwlJ+noNvU1FTIwIFV2N3dHVCSgJd2u63Z2Vml0+kBZe+giv0wzJ0a75G4xYDF595BiMsYf90BP+wGgIy1mU6ntbCwoN3d3RDL0W63B+qOkAnjMS9eNoBCch43whhhDGJQ+Xww38SXOMt80k7avWp3DUbYTASvSkdFch5//HHV63X9t//2394EHBAejvA9kwHhBOgAwLily0ZBEbB5nKofHR0N556gwKRjRQpjgt/fz36AzUC4sLkBFu7fJS7GA17pO+PDWLk7xjM3ACOSwt/uFomta2d0HHDEAi/+m/vH12VcXDjSYnfNsDXgLIsLYu7ZbDbVbDYDC1atVnXx4sXQFxSzdJzdxJiTxurP4XEi9Xo9gE0sQBSwC2mUY71eD8oOJUwmDunBN2/eVLPZDOtnd3dX+Xxe73rXu0Ja+Pr6ugqFQlhb7sqLAxQBGfwNw+BxURRqKxaLAZzRN18n9DWROE6px22EcqIvPn+MDUAB4AezRwo0GTO1Wk3ValX1ej24Z1gDzk7m8/mQKeP7m73s7iQU5Llz51Sr1QZiRJhjZzWoOkosy8HBgcrlspaWlsLYk6LabrfDWSus6U6no0qlovn5+QFgzdrCEHFgznsxiPd59b3h+wdlzRy48eB7093MXt/I68pg4DAmc3Nz6vV6oeQ/LixikABiLocYX+YKAwnZhWvUGSnkENfb39+XjJk9aSft96LdNRiZnJxUp9NRMnlUOCqXy+mBBx7QuXPn1O129cu//MshEA9KF7oPwYwlx2/3q2MVQis608DGdlbElTibECWAknSWxuNLEIAOOHDFDKNeeS7f0G758RkEVDJ5dCIxQjqO+4hBgDMYNBekscCMrTE+79f11/13/P3YGowtuTs1HyNnttrtdgAM3W5Xt27dCiD14OAgWL7eV2fDeGavA0OfOCdlc3MzXE+ScrlccHnVajXV63VNTk5qeno6HCDXarWUz+dDHMvIyIhqtZpef/11VSoV7ezsKJVKaWZmRnNzc8pms8pmsyE+pF6vh/Lb7gIAKNEfD2T1NHGAARWMiRNg7TAHZITx7JJCPQrGinuzF8gmmZqaGlA+rAPcUbu7u+HU31deeUWbm5uq1WqBGWk0GgPZIB54OTU1pXQ6HQ4aZB373my1WmEft9ttzc/P6+zZs3rllVfCXgDwcTIxe5o9Arjc2tpSu93WwsJCUMa4mHhet/wBgblcLgBG3x/OEPoa9mdwVyaAJna3uMs33kfenI1BRvGckkIskDMXXGtkZETz8/Pa39/XxsZGyD50GcCcAA4dkAKA6S/j7P1B1vJs9IkxYf3Ez3XSTtrnu911zEi329Xk5GSI9AehX758WblcTul0Wru7u4Ei5PNu6ZJySUApmwWEjhXnlC6bleb0N9QuFpmDBXysWJ3EC3CuRazcAUz8zz09/dQzRnguD8Al5sOZIDa6CzpX+C4Q/Rlja42GkHN3SOyyid0nw4CMf97n2alk76N/15mLmArf398PtT6SyWSoXTE1NRXiOxhL5tBdVH7IIdkhIyMjoSpkuVwOAjiVSgWA3G63tbGxoUajobm5OZ05c0b1ej2krXJt3DT1el1Xr15Vo9EIQYO93tHZNisrK1peXtZ9990XCrc5CCCuBUveffI8CyyeM3q4GPr9fsh4QRFSIwKlAQMCmwJIgHVwCt0ZLQdM3BsgUq/Xtb6+rlqtprW1NTWbTW1ubqpcLg/UlXDXImCMgmweq0HxMlgRxhb269SpU5qYmND09LQ2NzeVz+fDXozBMc/DGFEvhCq5scExPj4+4O6FVfN4sHidxhlV3mJAEYN0B+cOTPw78XXdkOB7Hkjq1/JrYMzNzc2p0+no1q1bQd4wxjCByELu565MQClrwgEc4xEfS5G8LYORcSdg5KTd6/aWwMjm5qa2t7fV7R4da37lyhXt7++rUCiE4MTx8XHlcrmhQZZYRqlUaiDTgQVP4BVCCRpSOg4kRYBDRcK0OJr3WAy3Ej0dUFLYqC58+Y6kAaaETYxA4O+4DoSf+RALuFjoxG4THy9pECjE3+d9+oKQ41k+E8BxActYDmNLYkE0jJnxzwDo+BxgAat7cnIy/EaIElTJeEPPd7vdwFZsbGyEOiCAk4mJiYG02J2dHTUajQAobt68GcDA1taWisWixsbGQs2NZrOpTqejVqs1EPRIjMfa2pq63a7OnDmjkZERFYvFAKrIXHAXI2MBuGI8oM/JiMB1xcF0xAXwOQ+I9ft4LQ2an7tCwwXmrgh+SJXd2NjQrVu3VK/XQyVYXJBu/UsKyoogXp5vYmJC+XxeU1NTkhSACq5PgjFheWBCiJFxNo1y+A44AHkAmImJiZCCHLsou91ucB17sUVvyBr/rgNIBxZx8OpnA/e+H/xaGFMO4nnPZRzveQxIr3dUZ2R5eTm41djfjUYjyDteA7B6PB97ECPMY3OQne4Kp+/IPz+e46SdtHvV7tpNAxofGxsLh3mR1/9v/s2/UblcDuidjRoHqGEh4j+fmJgIwsnjPaCvPRuHLBMEGP5Qrufpik6VI+w8KwaBJw3GaGAheCYPljrPMj4+fnSGw203DDUTpOGZK+6e4bdbbh5n4u/znrtuHEzw3C7o/Dlid5ADJFoMiIbdZ9hnHai44GU8AQzUSZCk6enpAUodlwZjyLWo1LuxsaFqtaparaYbN24MFD1jvRDI2Gw2VSqVQn2Jvb29gYqnhUIh0N3U2yALodVqDYAQ4l7K5bLq9bra7bbGx8fDAW2tVisIf9YIoEE6Dp4F5Hq1U1JpUZgOIGFDnPkjmDCm1GEdmQMylIjTIf6K6wLW3njjDa2trYXzeggMRvmzzp05TCSOXEelUikcUuiuSixo4jHYi9PT07p06ZLy+bz29va0srKi0dHRYHCwH3398nxbW1va2dlRoVAIDBJGBePujKuDJOSGX5f7OEuJO5X9iQJ2F4zvJ9+nvg8c3Pheifdq/Iz0k3Fg7bGn2fuZTEZLS0t65ZVXQtxaOp0Ohfv8EDzkM+uf4m8U/AN0APz83rwOuGNcP1+xI88//3xW0qKkE3Tzh7v1JK0/9dRTjc/1C3cNRqAOM5mMzpw5o9/8zd+UdCR8n3/+eUnHShwliNBmgyGgEfyerujCA7DCNQEPZE2g0KCQUQheu4ON5lYTQh562e/ptClxJtxbOhIcHK7mTIq7NGgufNxnHQOEGAD43y7QuKaDgGH0sVu0Dn5iQektZkDu9L34/c90H9gnCnnV6/VAuVNp1YN3PSWZwly403AvICARrO5Dh4FJJI7PJhkZOarkSpoqNRWcRcJKpD/ufiQ+odlsKpPJ6PTp00qn0+GYgmQyGYq6eUEpAIhnIfT7R+nO1Wo1FBeTjrIkULScfk09jWQyGU4V5n6AvNj1xzgAPg4ODkLROYJTr169qkqlos3NTW1ubqrVaoU4BvaQr2NARiKRCMc7UMcD5efKqtfraXZ2NmT8nDlzJsSZFItF5XK5ACw8AwhgwrwSSJtIJHTq1KlwsKF0zNJ4rRLcUYBY5IPvhWFZK75ffR8PYwPj/TpsXwwDJMP+jpkUxs6NCJ/bZDKp6elpLS8vB0BNoTrpuMYQ44ABxprkus4osU7jgFjvrxsMv5v2/PPPJyV9XyqV+qZEIjEq6c2Dd9L+MLV+v98/eP755/9/kn70qaee+qxo9q7LwUMrehYMqWheyMkFQex+YIGn0+lgkeIqIXvAT/b1WI+RkeMS1igT+kMfpUFqXDoO1nLAErsm9vb2QqluZ2+4FkKVOBDu7VYFLQYRsaJ3JRx/xy0iPu9CzhkPZ1fuRCvzf9yGsTDxfDvbMewzw9w4ANBk8qiQGIp7fn5eh4eHqtVqwcrs9XoDCoT5HRkZUblc1iuvvKJr165pfX09CMROp6NcLqfNzc0QC9RoNDQzMzPAiqFwtre3JR0f4CgpAFgENFk09AkljaLu9Xq6evWqHnvssRBICkiFfeEoBOIncOcAcJvNpra2toIyJyBzf38/xKocHBxoeno6gCDcE37on59TA6Dnnv1+f+DwQK7D2S5vvPGGXn31Ve3s7IT1Auh2F4UzAbARyWQyxObA0vBszjDW6/UAnh5++OFwUnO/f1T8zFP/3V3KOmafUgJ+bm4uxObwPLhCPXYGsLmwsBDGIlb6MSvhryPf6IPHMPm+iveOAxyu49/FCMN48md1QOasjF+Dn7GxMS0sLIT54jtehgDZRv9Z5+wFXKMuF3kO39POuDo4+l207xsdHX3/wsLCfjqdbicSiZMglD/Erd/vJ1qt1tStW7fef9v9/iOf7Tt3DUYQKtRLIK3yYx/72IAf3V0cyeRRmXaOEWeDcMw70f9eaptNAGXI2SbEqVDACaWD0Od/6fgkXoQq1wTceNQ4QoN7I+Sp65DP5wfSG2M3DL8ddLng4zU2tqcE02LLyYWR+6CHsSxxPZTY6nLLblijL57OGIOVYUF2dxJSY2NjYZ739/c1PT2tTCajarWqVqsVXBHZbDakczabzRCwSbYGirjVamlycjK4FFC4/X4/KELSWMl4Yr2gtAAMuP9QdqT+smb82Qgo7ff7unr1qv77f//v+tqv/dqQrQGbwL05/oD1heXa6/UCO9Hr9VQoFAK97uvp8PCo4Bvpvn4+iWdqoYQZM74L4CJAvN1ua2VlRQcHB3rllVd09epVbW1thbmGEWHf+jyjAGERqfLqRgDZO54+zLwUi0U98sgjGh8fDzU/WIe1Wk0XLlwIewp3lP9m/83PzwcAQ0oyxRSl4ywV1i0uVHcXuwKPQUq8B1xBO1CJXZGuqH0vxNf3Prh88Gv53vJ58Jg7xmN2djYEXAMKcQH6tV0OAbCYJ1g59ohn+GAkYbixtt5qe/7553OpVOqbFhYW9ufm5nbe8oVO2v+nWjqd7kiaXltb+6bnn3/+//1sLpu3dGovrES5XNbY2JharZauXr0aNtzc3Fyg51HupHqiVFFU3W5XjUZDpVIpfB9qGGEoHQegukL3ktTEgSDEUTpYI1gFKAmsOwcKqVRKjUYjuJigx6mJIg3W5nDwQRvGMsSCyj/r1+SzsZKP2QhnZOJrMlYOPBzAxNeLBaaDEJoLN/fxx/3msyi68fFx1Wq1ABZRVIDP0dFR7ezshPNLnKZHwUPpw54BdD1Wo9/v68yZMxobG9PGxkYIBqUvBFXjZ6dEejKZDCwFCpY1x7NyvACg+MUXX9TExIQeeeQRzc/Ph3Gg/zTWeqfTCcCJANh8Pq9SqRTSe/l+rVYLChSAwBlOVDRlnaZSqYFaJwA4YksIkG21Wtrd3dW1a9f04osvhvOkmHsoeLfkCdhmzVBdlTo+ZLLAiDpQLhQK4byqYrGo06dPBxfW3Nyc8vm8Op1OMGZgmBgHXLbNZlM7OztBedIfirTlcrmBdep1W+LzaOK163vX17vHhMBkDGMG3YBx4OGv+ZhKgyn3rtz9M8PkCc/m4CKbzWp2dlatViusb+mIMaQoHPcATLNv6vW6kslkiDdx0KHbfdrf31fv9loDqPwu20IikRhNp9Pt3+2FTtr/t9ptFmxKR3FCnz8w0u/3lbi9kHO5XAh6y2azIePBD8ny9DFKXENLc1Q8Ct997ghTUhrjgCtJQaFxTRQZG3BqaipYQwiV2H/KJndLAIE4MTExcFaIU6ge3+AF27w5oKCPLgCHCcSYuYipZAcAMdjh+26tDWNCYrBzJ+Dj/mu/DoxODID8f4Q+GRoTExM6depUCGJkjrCqAS7EeTjw3N7eDuuLdPF6vR7iTlAanU4nBFZ6AB6KjgwMMlHwp0P587yABsCQBxNyAu7//b//V2tra7p06ZJyudzAUe3JZDK4Czz9lGctFovhmVlTrA3cVLAhBP8SJA1I8+wjLGOqq5J9Qlp1r3dUl+W1115TrVYLLJKzIr6PfH0A0iSF83nYv5KCy9KZCZjEdrutJ598ciAGCHdSIpEYODzTWQSCnXd2djQ5OamlpaUB5g9Wjf3ua5LgVfYshoyvUV+/ruSH7al4zzmYiNnC+LN+DWdBYxDCe95HByu85zIomUxqdnZWh4eHunr1qiSFgxKRGaxxd6VjsLEe3RjiPa7vrGjMiL6Fljx6lBPXzB+1dnvOE/ocApbvCoyglDj8DDYEehg63HPW2XDUAKH0tft0/XOSQmQ4f0sKQbOJRCJUhwRsuNBBEaTT6YHD/LB2Eabcn98wJfTDgydvD2oQCCgKF0J8xn97i5mPGBAMAzPOfsTfcz8uVp+kgdcZ15ipiYGEX9/fcwoZpc8Y8p2Y7uY1Z6AAdjADq6urarVampubC+4EzlCB9aAQVyJxlMWxuLg4oPSw5sjS4XXKuXu6N2wL6wl3YKVSGbB0AVHuh/f1C5MgSZ/+9KdVr9e1uLgYXHjdbleFQiHUQKlUKmo2m7rvvvv0wAMPBDAMUMYlKSlY834CLawenwWw8DlYENgdlAnMQyJxFHfx8ssv6/XXXw/7i2vCQsbMHa/7GpidndXm5mZILWV/+eF4ZHbQ37e//e0DIGpmZiYE5gJo/N5xjM7IyIiy2ezAOU3VajW4+ABlnplFDBGf9zgOl0kOuAAZNHdDuXsi3oMxs+n7xPeeN9Yu1x5mgPT7/aEuYR+rdDqtmZkZVSoVVSqVwIjwvsfyMH4Yib6HyTqDXaMPPPewZzhpJ+1etLsCI71eT/3bqJxjyaUjawbfOIKeIEOvJ8I1YuSP0EAhQF/zP9cgqHUYgCB+hfiURCIRBDLWNlaIfz+ROD4jxWlqj9R3CjmZTAba2NkMt7CGBb7F6XM8r7MZMWXM+HB9PuPUrjcXlnGKYhyoFiugYdfhPU8z9DaMUeHeXk3U3XOjo6OhvLmPB8/sJeIPDw/VaDRCBU5AZ6lU0tTUlCqVimq1WghAxT2DOyidTqvf74dCadTCkKRqtapOpxP6CtCEXWO+ievAVeKM1tbWlur1utLptLLZrCRpdXVV7XZ7IK5ha2tLZ86cGQBzpLKTZcI9ycyBQfB16DEVvI/7BrAPWAAUXL9+XZcvXw4VZ3HLfDbWDUYokUiE2ipekA2qn7XMeElHAObs2bMhDdoVOEHGzmCxLpgP4mYwCmBfiDGDKYrXaK/XUzqdDvsXZpZn9ZgPQIzvzxgc+N7xPXEnIOP98fF0g4Z1zr2QTw6c+Izvea4ByO71esrlcrp48aJeeumlkKYOiCO+pt/vB2CdTCZDbF0cOAywo8UM6O82m+aknbTP1u666BnZDviiKUhEtVUyIdx/iqIHHEgaiCJPJBIh+FVSoGShoCWFzeqpaV7sR1IoiATtThaHR4X7d6AmEVD0B4vV6yY4YBoGQBy0xGwGn+X3MDARf27Ye/E9/X//rPulAUGSBoTNZ3KzDLu/C8k7sTo8PzEic3NzqlarYYylI5BRKBRC0Gi1Wg1jTQVUwB7Cmewq6rpMT08HJcma29jYULfb1cbGhtbX10PtEdZMKpVSuVwOY0EqOYIZBoZ+EozJuPk6IJ6I7IVqtRqyW2LBzn7Z2trSzMyMTp06Fa7POqWQmGelZbPZwMjAgDiTR4wEew3jYGRkJAT53rhxQ88995zq9XpwZcWMh8+bryOn5nO53EC2jO8f2BDpOL200+noC77gCzQ9PR1AHAYFrBNzGrsKiCGrVquanJwMa8HZDN+zzkJgSHgQfLxP/PP+feaKvenfjeNDWPf8HgbKhwF33/ux0eFAyZnPeJ5wWSHTpqamND8/r9XV1fB8zAnHMtTrdc3Pz4cxAfg5UGNtsTdGbrPQHi920k7avWx3BUZGRkZCUSk/PZdgQndhAEAkBWUwMTER/u50OoHiPTw8DDQ9zAaCFgubDeSH32EtoYCh+bFgHdz0er0AnPAtO13p/nK3eGKXhPt4Y4vJXxsmSBy0eNZPzLDEQtQFmfushwnEz0Qlx9/hde+fP4ff28fIY15idsUtTehhScrn8+EZ0ul0CGAeGxsLrjWKilUqlQBcM5mMUqmjOiO5XE6zs7PBJYgbhvRwApjJwJGkra2tMN8crMZYoxxZv+6XZx3RUMKMjceZ8B0UrnSccotiQFEQhMs64vgET1+HHSTgliBgwBJjzX6h1g5gYGxsTNVqVS+//LKuXr06kBEUu/fuBCpZnyMjIyHzh+BSsnoYF8bEa3s8+eSTIWgZUMlvYrKobUFQMbKCfT41NRUCmIlPa7fb4V4oT9+7gBePF/L1Kh0HeAPYnS2lIRtioO/j5+B7GLsUj7HvY5iuYS7PWB44gInlyMjIiKanp7W9vR0yZJhv4vIKhUJgxbzwmd+/3+8Hl6ezRnzmBIz84WnPPPPMA88991zm6aefbv7Wb/3Wy7/f/aHdVRW8VCqlQqGgTCajnZ2dQKGyMaCQd3d3gyAjBRdBjQBx+tMPxGPDe7YN30cx0Tx12GlNrxVA/7ywmgsABzGjo6NvqiXirIJvUqdwpcH0V6fAHRy4kIlBjCuZ+H2PZ3BAEF8jvo7f83cjTLz/3INxHgZwGK/5+fnARME+oMinpqYG0hMTiUQ4G2Vqakr9fn+AxaI+Rb/fVy6XC4pvbGxMuVwusCUzMzO6dOmSFhYWNDMzo3w+r0wmE9w0XuQOKhul2Gg0QqAlAIl16TQ1TEXsjnMlQ0wGY7K5uamNjY3A7KHsYQ3S6XTw3bOeSXsG+Dvbw9ijeNh3pA+/9tpreuGFF0L5fE8rjZWdW+kOLnq9o8qfnoFEYGg6nQ770d2egI+zZ8+G+WPMuR6MFnuZsaCPuBwmJycHjrmvVCra3d0dCPyFTcEIAqAhZ2JQ7fvHGVDfe9xvmJHgfzu4iUECfWLtOJgYtte5buxC88/4PoY1hgFZWlpSLpcLY03ANjFbxCtR4M/XM331e/k4/VFvzzzzzAOJROKppaWlx36/+/KHud0VM9LtdrW1tRUWKAuezeVBeO12W9VqdYAKjQv+sOhhLTxoDIsDAe0KwGMnAA3Q5igpL9EN4CEegIPaiCGACicozzc993M3jVuZsU88bndiI2KLK/47FljDGIjYmnLLya8x7LvDhGHct/i6sTD3sYiZmNHR0eCSILMDIZ1Op3XmzBl1Oh2tra2FgnIIb+Zqb29P5XJZxWIxsGowEolEQrlcLjAeuDqq1aokhRgOgAXugsPDw6CocMXQNzJrCLp0l4hb96xVrsE68PNAPFuFWIdWq6Wtra3g3iHAOpFIhOweDwBFeQA2vAZOv39cA4SAz2TyKJV4Y2NDn/jEJ7S6uvqmoE1vcZCmrw9qipAq7+cBEbPBMzJm7XZbe3t7uv/++3Xu3LlwTeaUvvNDHRQCxZlLTnvmLBqAKa4o9jZ7EsYJkBvHaAwD6PztLFUMut0lO2w/DFPW8esYSYA1339xcKy3YYCRvsZsbiqVUi6X08zMjHZ2dsJ8AVZjl7QfhEjhOeJ3/P7IYV8bJ+2k3at2V7AXZYSFxMbE/+9ZNTH9DdsBS4HFRPAdGTL4tUHzCBy3NLHOACNeiZENi5DC1eOAAtDBRp6cnFQ+n1c+nw+CcZgVKR1bTXcKCnUBFlPiMWUbW0DDmA4XfB6LM4yNiMGHC+N4Dl1IxteJBXMsXD31Nn4OvyfzOzo6qu3t7QHKmXTf+fn5cMAgFUlhFlqtlsbHx0PFUwdEzC2WH6XKUZbZbFbFYlEPPvigHn30UV24cCGcWcPaJc6JZ3N2bH5+XufOnQu1MTyd1AGBW8AUW3Ogy/zVajVtbW1pfX1dOzs74URaAnRhEXw94yaK1//h4VHpehQI2Sm7u7tqtVr61Kc+pVdeeWUgbRflx1pyZos17QCz0+loZGREs7OzoX/0pdfrBQZkdnY2AD32zeOPPx4AHXONYUCqMuuC2j/0cW9vT/V6PbwnHachUx7ACyrGrAJ/x+CYcWDdsHbifefgPo7tioN+nVHwfeWvxT++z+gDLI3Xc4lZHtxxMXDk/Uwmo4WFBZVKJfX7/RDIy5jGjPHBwUFY08TScU2PsfPnPWnD2+HhoX74h3947tKlS4+Mj4+/PZfLve0rvuIrzl+5cmUgt3xrayv1VV/1VecnJyefXFxcfOzHf/zHZ2FdnnnmmQfu5npLS0uPJRKJp97//vcvfdM3fdOZQqHwtlKp9MS3fuu3LntdmK2trdRXfuVXhnv+/b//92d/TwblLbS7Ykag3lEcCMnJyUl1Op3ASiQSiYHTIdPpdAAqbAg2IcKFwlCgfdI9iRfA2oE6J0ODAFdJgRnBynX075aydHwyLEIAay+OakeoeYxJzAg4ze1gIQYWcfAnn/f7xG2YVRWzFTSnpP2asbCleb/v9Dnmyl1bsWCLGRmuk8vlAvD0gmf4rokd2tnZUalUUjabVS6XU6/X08zMjG7evBlcBKRsdjqdUNvGGYlms6lUKqV8Pq+dnZ1Qcv6+++4LcUicIg2DwBlHznwwfsViUcViUdlsVq1WS6urqyHTxdkQAHcikQhFqPygPtyNzWYznCKcSCR0+vRpzc7OBlZkZmZG1Wp1IP4K4M68wpTARMD09Hq9cAje1atX9YlPfCLEzDBHvvb8NV9bMQvAfKytrQWACDtD1hxp+MRojY+P68EHH3yT6wU5MTExoa2trcCiwgT5idvEjPCcXAfgxTrzWA2PcYEtZa3G4CIG7Xdqw/ZCvIc8nsL3052MChR9DExiwyUObPX4pJiN4bOTk5NaXFxUu91WrVYLe0ZSyFDyYGhckawBB1HcF+bkxF1z5/bN3/zNZ/7dv/t3s5J08eLF3e3t7ZFf/uVfLn784x/PfOpTn3pxaWmpK0l/8S/+xXO/8iu/UpCkiYmJ3gc/+MHTv5vrSdK/+Bf/Yj6dTvfGx8d7m5ubo//6X//ruUcffbTznd/5ndvD7vmBD3xg6D3/ILS7ZkaSyaTm5ubC/61WKwSbsmmoJkm8CMKP78BicJYHCgXhA42OUIbFAFywsaEXXQgAVijVDVjxPhC/0u/3B4CIdGxpOAhxtsOtE1oMrmIgEjMZrsTdkooFGP2JWRjAQOwyoe+xYnWLLWZvvE8u2B0w9fuDdUNcQLqF7etEUpg3gIjXnOj3+8pkMpqamtLMzEyIL7p161awBOfm5kLwJLQzZclhIprNZsge8fklVogzbU6fPq0HHnhAS0tLOnv2rGZnZwfqL+AKxOpGOMOQzMzMhLRyWCrWLN93lyTXY056vaPzbvb29tRut3X9+vVQKHB/f3+gIiluJfYAjCLKmvfJJGLOXnrpJf36r/96oOpZT1jwvAawcLrfmTKA1qlTp8L3ms3mAHNEQDL9xgiYnZ3VxYsX1e/3Q9+lwUwuACfPy7ORUQVAKxQKIdDSC+J5bRO+y5zgCo5j1Hyf+hr1a8R7Nwbuw77LXDvoiQPT41gz36++V31fD2NU3CAaBqiIPSJ9mrFgPPP5fGAScWv6mT/INdaGg5OTNrxduXJl7Od+7udmJelnfuZnVl599dXLKysrL8zPzx9sb2+P/v2///fnJOny5cvjgIK/+lf/6sbVq1cvf+QjH3lpf38/8VauR5ufnz94/fXXX7h69eoLs7OzB5L0a7/2a7n4nu9///tvXb169fJHP/rRF+N7/kFpdwVGsDAptEPQGH5lNhQBoBQpYxMTy5FMJkPkNhsA1w7uHDYgQi5Ol+Sarnyh4N1iTSaTQYHRKAo1MjISTu71gLUYPEiDqYAuVHjPP3unNozVGCZUYoHoQiq+T/y+W1h+PWdz7vS+KwyngT2GxvtFvMKwZ8GKJeZhc3NzIPgQ5T0xMRHKlo+PjyuXy6nfP0pZXFpaUqFQCPVqms2mNjY2QjqwZ2PBaJEtgEIlzmlnZye4ljKZjObm5nTmzBmVSqXgc/+iL/qiUEOHwmW1Wi2cHutlyQHd/A8oxjXlgNPXXbvd1vb2tqrVqm7duhXiIHyMYY9gBVxRJBKJkInCT61W08svv6zLly9rdXV1wOqO12Zsyft8xdY5FW9JI8alGVv0sBv7+/s6c+aMCoVCAHnsG+aIIGJO9YUtlY4BS693FLybzWYH9hwHB0oaMBh4Tv8s8+MF3OLxiJ9jmLsx/vtO7/t4D1PesUzx+fbXYjnk9wJwDWN4fM3Pzs5qYWEhAGD6RYaRXxNQHe//YUbGSXtz+43f+I00Y/Q3/+bfPJdIJJ4qFApPbmxsjErSc889l5akT33qUxN85xu/8RvLkvTkk0/uPvDAA523cj3ae97znur09PTh1NRUf3l5eU+Stra2RuJ7/rk/9+cqkvTEE0/sxff8g9Luuhx8pVIJKYYTExPK5XLhBFCsoNgKI7iMsyNwm7hF6YAFQcaR7tLgwWu1Wi24bjydGOWHQsK6xWJygZVMJkOmhbMVCGXvf0xlu2L3v2n+fyzwYyARA5RhY+7fiwWm34fnje8R07+xpRUL6GFgxZkV+oBvkoJ2MdhJJpMBMNRqtUDj44I4PDxUsVjU66+/HuakUCgEtwMKJZPJqFarhSDPXq+ncrkcruUW9sjIUYVTTrbtdDpqNBrBPw5jRkEyrMPt7W399m//dmBYer3ewMm2HNwnKQDpYWfmONPCfAEsUNoevAkI297eDuODyxOAxRELWLowGwR7drtdvfDCC3r99dfDZ5gPB0ReXIu1wn6IQQkHAVJFFhCC+xUXJ2wXmWqPPPLIwFkz/DA27E+yqLyOCO7aWq2mhYWF8Jzcz1kb3zes5X6/PxCHwTPGe9P3RrwXP1vzPe/MkveBa/nzM8Z+3zsZIB7o7+9zXdge7wPrn/WyvLys/f191et1SQpHBvR6RzF/VGxlTTrgjQ0ydyeftDu3Bx98sDM2NjYQCLi8vLx/L69XKBQCTW/ehz+QzMdna3cFRg4ODvTGG2+ECqdQ5QjUeENj2XnQFSjc4z08/oPYEgSVNBhrgaAkCBBriw3lgtYFGL5SAuOmp6cDg+PBuK7MnfaFCse3Lb3Z2uH3sNgN/x03t4KGMSW8Hn/f++pCMLaKh11jWF+GMTzDwI+DGAKV43iDROI4I6Pf7wdXSjabDXU1EolEyAJoNBoh8wRFy+mrBDJWKhVNTU0FZouYiWw2O1BGfX5+XvV6PVReBST3+0dxEGTlHB4eampqSjdu3JCkcAgcz+buIW8e4OdxK9R14KA4qqzClPiZIAcHB6rX61pbW9PCwkLoI4CH3+wHUpMJkm00Gmo2m9rd3dWnP/1pvfDCC6E2i++VuO9xfAhzGCtIqq56RVpJIRvKD1kjZmxqakr3339/YCV5TvYDZwEx7hgMKFEseWrK4LqRjjKyarVaOFBzGCjBxRszCzFAd8Xur90JqMR7wsfKwbuPt+8Tfy8G/HcyUJgf9pb3Ob6OAzDGJZ1Oh5o8yEmYLa7toNFZEY8nYn18LkDtD3vr9/tqt9sDA/EFX/AFbebhG7/xG7f/zt/5O5vS0Xz/yq/8SqZYLB5K0pNPPhnYiA9/+MPFL/mSL2l/8pOfnHj55Zcn/XrvfOc7W5/L9T6X9sQTT+zG9/yd3/md8fief1DaXcFdrL6bN2+GtEW38vCf9/v9kClA0BvCwi3DROI49dYBgaTgz49ZAQQ+efMoBMBLDEoAP91uV5lMRvl8XqdPnw4lxR1c0BwMOG06zI3hfzsIiJkHtzrdpUJzF4wDo2EgxIWVf4frDIsnib8/zDqLqePPBKbcVQHVHn8eFwhsFqnezBOfLRQKoSIn6yeTyYTKn4nE0cFqZ8+eVb/fH0gD7/V62tzcVKVS0cbGRijRjoXIZ0dGjo4o2N7eHnB5pVIpnTp1Sg888IBOnz6tM2fOhIBr4jPq9XpwKZDtxff91GgyIGBq4hOlsY5brVa4JswN9U58TbBfqBcBa8N+29nZ0cc//nF94hOfCPvP3YgoZ4/3iVk6V2jOHM7MzIRnoFgc10smkwNzjrJbWlrS8vJyeE7/POuLKsm4XVmvHsSK+9RTqwmG92Mb/Bn4HvfyOKnYverts+3jeN/ERov/H7/mQMv3oYOX+HuwichDPu9zE8+jG2veSqWSZmdnw+ueRMB1mCv/PmvWXarxtf8otvX19bF0Ov12//mFX/iF/Dd8wzdsS9IP/uAPLp8+ffqx+++//+F8Pv+2r/iKr3jgYx/72JQkPfzww/vvec97qpL0T/7JP1k4f/78I1/0RV/00Ojo6MDAPvzww/ufy/U+l/boo4/uvfvd7x645zvf+c6HXY/9QWp3zb2lUqlgxUJHj46OhqwHAtsymcxAkJYHclHmmUBDT9Xr9XoDKX24ZzxSnk2KcEO5QSOzwQjSmpyc1MWLF/XUU0/p1KlTSqfTb1K6LqBdaAwTJv4ZFz58Z1jsRsyUuPXqgWKxG4V7DwMEsXDjfZSi3ycWgJ/pde4R39vv60IxLppEm5mZ0dLSUmCpqtXqQLAmboZcLidJajabYY75mZ+fD243ghpRtDApsCDNZlPXrl3T6upqyN6ASdnZ2QnrlaBrxpj188ADD+jd7363vvZrv1YPP/ywFhcXtbCwoEKhEMbIq4y6MkHI40KUFBQs39nd3VWz2Qz1OHZ3d1WpVLS5uRniZgDZABDGS1I4u+XmzZu6du2aXn75ZV25ciWwSXGRtjjGiGf1gEre97TfdDqt6elpJZPJ4J7CCGCf9vtHwasA/YODA7397W8PAIJrAgYODw/DNTKZzEAmDvue4naAFF9jHPhG7BfPAFjxtTmMkfB94mvcf8ffjdOduT4Az13L/r8bG35/Z3LYQw6gaA4a7hQjQp+5t7uBfF3Pz8+H4oOxq6/VaoUjM/r9owwyGns6Bion7c3t3/7bf3vtgx/84I1Lly51tra2RtfX18dOnTq1/5f/8l/eeO9739vgcx/60IdWvuIrvqIyMTHRa7VaqR/4gR9YvXDhwq50lOlyt9f7XNqHPvShlfe+972V8fHxfrPZTH33d3/32hNPPNH6/D3956/dlZtGOtrQpVIpIOdmszkASqAV3YJFYXmwI5s7LmCErxx0jtBEEHqNC0kDR74jGFECWGdPPPGEvvmbv1kPP/zwgI/fo95ji4dn8L8lDbzOeHiLlTxtmMXG/ZwGdfoZhXen+8Y0M5+L2ZhYeMXCxV/3e/rzudB2AcWY41rz+09OTurSpUt68cUXVavVdPPmzaCwcN8gSLkXBdKo7YFygzkhE8PLgjOXuDA2NzcDQMYCZ51xvL2frUTsytmzZyUdnUr92GOPhWqwtVpNm5ubeuGFF7SzsxNKl6PAPZ2U9Um/3dpkb+Tz+QBgrl27pnPnzoVKsiiNVqsVWEPWPsG4m5ubunbtmlZWVkLGms+9rwXGNVaKjBksDtaypBC3A6hBIXo2kaSwx4gZOnv2bGCGPBaMa9Tr9ZD9g4sW9ojYImqleP0R+k52DgwK68/Bta8nX9/DWJFh+ycer9iFyl6NWVv/TAwufOzdkPGYEzdufO58n8V7kB9nLnw8YFkKhYJ2dnYGCs9R5DGZTIYgV5c1zprE4/NHrX0uJdN/8Ad/cPMHf/AHNz/TZ2q1WvI//sf/eHVqaqovHWW7/NAP/dCyJD322GNtPpdKpT7r9W7evPnC59LP+fn5w1/+5V9+w1/7wAc+sPHZnuf3o93dQXnJpBJSKFKF4E0kEiFFDLTNZnCXAYKfvz0NUlJgPYghYbMgjCUFy4rXXDH0er1wWipsyhd/8Rfrr/yVv6ILFy4MWPCxm0N6c7yGW5augFFwcRnpoWMWXTtmVbiPZwv55/06TkvHr/t7XssljiuJhWt8nVjY8jn/P7Y8PUg57uuzzz6rX//1X9fe3p5effVVbWxsqFQqDSi1kZERLS0tqdlshvH1lE8Yg2KxqE6no0wmE44k4GyaYrEYYkFqtZp2dnb02muvaXZ2NmRlMB7UJSErRTpSwARh1mq1wMyQKjkyMqJbt24FN40rSRQk80AwtY8fqZbJZDKAlUQiEQAGAKzT6YQUYOm44Fm1WlU6ndbm5qZu3LihlZUV1Wq1gT3ma4p14PPu4CQOknQX0/z8vFqtVigBT9vb21OpVJIklcvlUEdmd3dXZ86c0enTp9XtdkMJd0AOoHtsbGzghGJSo724V6lUCt/3BkjzQl2xsRAzPvH69r11pzYMNPB6/D0HXQCY+F6+F/icZw/5/bgHc+XX9Ou5QRG7YX3NMUb5fF7z8/Pa2toKsUh8hlOvKcEvKYBHTw/2ek4n7a21n/u5nyv+1E/91OIjjzzSTiQSev755zN7e3uJ6enp7nd913d9RiDzR6HdXTZNryclk3rqqacCxc6Bd1iqLpRRhByYhUDxOgPOfrCpcK+wIanSiqWE4vYy2Hzfz6v5ki/5klCaGgYFZXEny4a/ed8tpGEC50405meyJIa958JqGEiQjtkR72N8Pe+rX9eFXRzQx/eGMT4Ocvx7jDXjAdBzkJFIJPTggw/qwQcf1Cc/+clwRAB1amBUUISktJL6WalUBp4FhqRWqwUmbmpqSiMjI9rc3Aygg+Jkvd5RRky73dbc3FywFDn7hjWZz+e1vb0dGDVOoU6lUiFYlhN/M5lMUKawOwQ6O7gCYMKAOBNAJgkpy4C4er0e2CB+NjY21O8fFfG7ceOG1tfX9frrr6tSqQyAH18vvmZQ3K60XME5aO31jgK9i8WiKpXKAIuISxQXVDabDXvz4OBA586d0/z8/EBqrafqUgTOwQLWN8BpZGREuVxOpVIpZLn1er1w/s4wt4mveRgwf043MGKA42Pgaz4G/H4N/2xs2Pha9e+xbwBmcQrtsL3K+nXDwuWA3y9+Xk8agA1cXFwMcUqeaYaBeHBwEMBI97abiObunZP21tsTTzzRWV5e3vvt3/7tdKfTSc7MzHS/6qu+qvL//D//z9q5c+cOPvsV/nC3uwIjvV5PPSkc781x7js7O5L0JrYAWt1PLe12u2FDILTdyvbS0tSSQOghNFEQxBEQsIrVsbu7q7m5OZ09e1ZLS0uSjiPHnbKNQUQsuO7ELvjnhzEIwwSlNJgiy3suvD27YBg9eqe//f+YIRlmzfH5O4GbO829g4w4biKROC737debn5/X+973Pr3++uuq1Wq6cuWKlpaWgkUMYOBckWazqUQioUqlEjI5crlccAn68fOwAgTK8v7CwkJgNUhv3NjY0Pz8fLDkAcaAWyz3TqcTAjKJbSJrhSDpycnJIKx9Ln0MnUL3OijEfQDkyJDZ3d3VtWvXVCqVwsm4sCitVkudTkc3btxQuVweyBJjDGOl581dJ3E/HcAfHByEYnCjo6MhYw02kjY5OalmsxlAW7/f15NPPjlwSnMM9vv9o9oxOzs7A7FfuK9Yh6QU+55JJI7ioGBMfH94oKW7CVnfno3i7TOxjDR3WbqM4nsOtlxmwDz5Mzjo4prOQvq1PdbEAZS/7/2NC8f59/nM1NSUzp49q1arFfYSwA1DkhoujAj9/kxM0kn73NvXfM3XNL7ma77myu93P/6gtrtz09jiPzg40NTUlHK5nG7cuBFcNFSxjKlsFxRkOmANIZQ4Qwbh1Gg0gjXr1gCHYXEtYkkIZp2YmNDi4qLm5ubeFBfC39KdawsMs4ri/2N2IbacXGjEAXZ+PQRSHD0/DCx53+J7x+/H8QLxdeNx8Pn168bCMAZeAEwsK1IHef/g4EBf9EVfpP/23/6bPv3pT+vVV1/Vww8/HA7R6/f7KhQKIVZkb29PjUZDvV4vHB+/s7MTlGatVlMqlQpBkLhEEomjwMterxeU+djYmBqNhtLpdCiVjiJE0U9OTgb3TKvVCm6c0dHRUPQMMEC2CzUaYOdgbBKJ4/LtAIVYCfX7x+4Jr5kzOjoa3B7VanWg2N/6+rrK5XIIHHcgBBD3AErPQomByTCmDGZlbGxMS0tLoQgbQb5kd5BmzXMQwFosFvXAAw+8yWXga5i1EDNnDiqSyaRKpVIIYo0ZTLLf3PrnWoy7s4vsUWdj4n0Yg+wYHMRGgTM+Mfvk+9+zVO7EePr3mBPfq/5939f0MWa84ueOGZNMJqPZ2Vmtrq6GOSc9XlI4ZNLn5gSInLTfq/aWKtncuHEjpO1yJghAgIOeOGLcS1GziTljAwQPxUosAMoAoIHg8XRCTwl2pTk5Oanz588H61sa3KSuTGNBEwujWBjEgko6jqR3f/WdAINfzylqmrMmd+rjsPe8xQDD7zOMWRlmzX+uP/4sKEaPRUBpjI6O6k/+yT+pyclJbW5u6jd+4zeChcacYo1LCq4BUlhxy5BmCm3vpdlRmDBuExMTmp+f1/T0tKSjuhkADM9oobYIwa+cI7O7u6tyuaydnZ2QUQLrRiVZV7aeZcN+gClwS50+c/gc8+SZMKz/g4MDra2t6erVq4F99HUcg1Z3fTL2vo7jNc6adeamWCyqWq2q1+uFGB4CVwFCIyMjyufzYV0tLy+rVCoFmt/75HFasWJ2Fx/9Q3YA5Oi7B8A6iPH1zfjGMVmxQr/TWAwby9hgiQHWMNblTjEfDjTuFLvGmHlGjrNr/sP3HTjwWV8nzl4uLCxoeno67FeYZk8KkDTgViel+qSdtHvZ7roCqxIJ/ff//t/1rne9S/1+X5ubm0HwcRouRZoIPCQQlZoRbp16/YJmsxmsW3zU8dky0JAeP4IV6ayIb/Jh/vI7sSNucSAMfWOjeJ1qj6ngGFBwXf/bBRO/Y6URW5p307wP/pzDAFXcv2H9ivvuLBdzBLPhKYso7ccff1yXLl3S5cuX9fLLL2t+fl5PP/20stlsSF0tlUrBLUGgnZcLHxkZ0czMTFDyuFUI+OTZ8vm81tfXQ2xGKpUKrB0KkzLspA3z/B4PImlAuEsKz0QDCPnheT4WjDNrxBUwB/URw4L7stfrqVar6dq1a7px40aIs0qlUqEmiVvW3oadxcL8+RqNFWW329Xs7GwI/ObcKIABbA6fJSW00Wjoqaee0sTERFBosC3OgngGG6zK9PR0AEP8JmYH4Dc5ORkYLBgT3yuAVJjaeM/eqTEe/vlhAD8G8cgf1oKvi/i+MSPi+49xil2p7Hnq7cR7NjYeABnx3nWXnIO0VCql6elpbW1tBdkbA5x4fXC9k3bS7mW7azdNMpnU1atXtbS0pHPnzml8fFyNRiNYhtLxGTTUeUBx8D6Bgr6x8SF7nQRocBSKWwxYuF6hc2pqSnNzc5qamgp+cDaubyanhodZPb65XUihVFA6XjzIr+vXisGICyePS0FA8TkP1Iuv69fj72E+5nju/PmH9Su28OLP+/igXGGmcNW4gPNgwunpaX3t136tVlZW1Gq19Fu/9Vuan5/XpUuXgguGGIpsNqvXXnstANrFxcVQi6Rer2tycjKc2tvr9QLIddBbKBQ0Njam3d1dTUxMqNFohCPaAQKSQnG+VCoV3kdx8jkPIiR4GjCdSqVCwC2BgMSksE7YG54CD4DjrBZiWarVqvb29lQul7W2tqa9vT0Vi8Vwb57VGY0YKHksgyuuOylq5pITiom/4VrsZ4AOQIG9+fDDDwcDgSKHPLvfi3HF4Oj3+yEWh+/xPi5cWCfOkiJIOXZnxGs8joeK17MzILzmTMgw1oO/Y/fHMDkS7y2as1r+/50AR+yGieNUhu15B0FcCzfW4eGhZmZmdN999+nGjRsDdV+CzNNx/J4nCpy0k3Yv212DEWJDSLObmZkJdK7Tly5IsBIRxH49FIikgfoTsCsIKIQDCmhqaipYY1DHy8vLwbJzxen9cgExzN9Kv3iN37752ajDqNbYGop/O4WcSBwH8NEvj62J+3Un4ch7bg3x3WEAA+EZ09a0uM/xmNxJWB4eHob0Wpgqv+YzzzyjL/3SL9Uv/dIvqdFo6Nd//dc1Pj6u5eXloHAymYyWlpa0t7en69evK50+PheKtQAzwDN74K/HdIyOjg4U6PNTZKmNQV0LwCogGrcPCtgteDJJeOZEIjFwlo5n2bBGnClyNw4AgCBC1gMuI/rEvXjeGEDGtTV8jmPLOwbFxG+R3pzJZEL8D8wP1wNsYi2fO3dOp0+fDnsdoMoepm+sBwrV8XnWhvcnl8uFgmh8hpReB0i+b5A5sSERr+9hLEIMGAB7MUvi4+r3GOaSGbZ/43s6M+NGkwOUYe6iWJ4NA1b+2Zixk6R8Ph+y1XDZsAcObxsWfhTGnQyVk3bSPl/troueIWD9uPVSqaRKpRLABnEjk5OTKpfLoYqmK3HSIXd3d4PQyuVyIb3ThQuClk2Pxc2GBt1TWdXz8GNhgBB1gRNvNixFWkzVohCcfUEIeyl6+hwLpmGCzC05Fyx3AiZxn+7E6MTfjcFYzLB8Li0W3AhVFAQ1R1xwo5z/3J/7c7p69apeeOEF3bp1S6+++mpQ7jAIvV5Pc3NzqlarIV6ELBuUEWXBWUcHBwchzZz000qlou3tbbVaLRUKhRBvAPhgHbI2eTaAQFwvhP7V6/UwloeHh2HNuiKBaWGtcC+vqdHv97WzsxMKl/X7R2fncL6NpBADQz0V7hFb7oCvfr8fQHy8ZgAJrH/YyYODA83MzGh2dlZra2tqNBohONVBJ/d0C/2hhx4Kcz2MrfB9QD+npqYGzqDBWAFwOACl34ASnt2ZTp5r2H6O13TsZqPPMDv+jJ9t/SOj+L5/z91yw4COB67H+94zA91lHKcED5MBPu7O2PR6vcA+d7td5fN5nT17Vrdu3Qrg0J/PDb/PNBYn7aR9vtpdg5Fer6fFxcWQ4dJsNkMQKz/nzp0Li5i6DolEIqRkSseb1VNusZ7YjFiAWN+xVZdIHB20lsvlQgowCsrZDOnNvnR+x5aSpDcp6fg7ZO945Ve/V8zA0IZZSbGwdCGDVXMnoeP3G2bdDbuf9yW+/7C+DRNGsbBnHvHf7+/vh4PQXIj2ej0Vi0V99Vd/tV577TXt7e3p05/+tGZmZvTYY48FhZXNZoPCuXz5sur1eqhPwlyjvDqdTigJTzlrDtqjYBfsG+tpYmJCrVYrrMnJycmwXkZGRnR4eBhinwhw5Swlj/9AsVHBMg5IZpwAz86u1ev1wKh4Ns3o6Ggobd/v9wdS4GOQ4YCV8YYl9CJ6Pn8+nzA5qVRK9913X2C1/HkoZ88ehs2jeu1DDz00AJ7uxAyi2PispyTDVsG6EAuEWwsAhwuPZ3dGIAYfKHOvhMv8+fzEDMOdWrzX+NuBkbNz8ec9zoo9I735IDyuRdE9d1kzjpIGnisGp55l5OvFwZp0FNTdaDQCKIqZlbs1Uk7aSfvdtLuuM5K4XYgJEIE1Mzo6Giyd8fFxzc/Ph6PZ2XCeBonViJJwpeb1KnC7sCHJiEgmk+H0XS+0NmwTuXXgjIArerdo/X2aB2PyN4qJ5mwO34kp1mF9dKbCLZthn+MafMb/92v5/XgOf063VOM2DFTFLQYjWHwwG/v7+wNpoIzL4eGh3vGOd+hP/+k/rQ9/+MNqt9v62Mc+pna7rbe97W3BNTA1NaVTp05pcnJSzz33nFZXV7W/v69isRiUEsAVJmNnZyecXMt9iTGBqdvd3VU+n1cul1OtVhuYXxQGcRmUzfY1MzY2FhgWHyN/dndT+CnAXI9nJPCSmii4Hcm0gbmQFLJ4hikIYqiYS2f2hjEovr5hOefm5oK7q1wuD+yXbrcb2Jt0Oq10Oh3YlPPnz78pCJPx8PNVuB9KttvtqlarBfABaOO7kt6kgPv9frDi2Steyn4YUIuBhjMXzoJ8Li4e9pXvnfg+vp58n/H92Ejis359PhOPq+9rf82vzfUIOgaU4t6EuQV0E48UrxFkobPMJ+2k3ct216f2OnrHP05RKuJJ2u12yKKZn58fcGtgtWFJ9/v9oBywmrCM2ZDu3kGYzs7OhgqWLgjcf+uC2IVGzLTQXFjw2YHBSh4faR7f1+sicC0PcOP7sRK/UwBsDCrimJU70afMD2M77CcWsMMYFP+sj9ed1gWKEwUCKJCO/eDScUzGn/gTf0Jve9vb1O12ValUwsFvriwJ7jx79qzy+byq1apu3LihSqWiW7duhRN6Ocuk3++HYLterxdSg5vNZijj7vEmxJDgbpyYmAiKicBUUtS9+J4rzV6vp3q9rkajMfCbI+/39vZCPMnU1FRIXcdPn0wmw/UBs5Tmzufz4bO4nth7MWhlHlwpxyyIA2cHu+l0OjArrC+OVKAiLOMjKbhYHn74YRUKhQFL3NeMgynfBzAdjHeIVbi9Zv1YAV//Do5iJcx8xusyZiNiAyUew/i9OzVnVPx7cZ8d1MT3cZcT6z6WBXyHGI5YRrkMccMCNyaxd+76ZqwJ9KYwZey+cjB0Akbu3JaWlh77oR/6obnfzz68/PLLY4lE4qnf+I3fmPxcv/N1X/d159797ndf+N3c97/8l/+STSQST21vb/+ujwK+azcNir3dbqtSqahcLuu9732vXnvtNb300ksDVVXdTwkD4kGpRNGzEeOj4bGW3MoDyCwsLLypjgOf4XdsLcRWSgxI/D4xO+Cb3xU4z+Hf8c8Mu6cLEx9TvhtnQ8RWuFtPfm1+x66eYYxIfK1h8+zX9WsME9zEXtBvAGjMWklHgrBUKukv/sW/qGazqevXr+vmzZsh/uLSpUvKZDIBqF68eFGFQkGf+MQntLW1FViAmzdvhrRgZ+go5Q6VTeaHp6bCbrBGcTNgtRNL4UrAM2hwI8B8sIaJ7+B1jjbg4D/q61CrBIWPW6hararT6YTgVhgUCrLdSVE63e9uA+YDkBXHJiUSR3VCeK5+vx9ib7CMeQbmlbigS5cuhfXjv6XjzBlYRI+TweqemJgIII9TeT3bKDZGEolEqMIar/c7AWXfR/F6jsdo2LqOGZ/4NQcPMaiPgYWDNv72fsRyx68Xy1VvvpdhiXw+EolEcI25/Nnf39fY2FjIUIrHzO/3+57a++qrY9rYuLO+mp/v6tKl35diKM8999xL2Wz2JN3od9nuOptGUhAe0vFBXgT8Ue5aOi7BDj3uJ3QioFKpo6PVs9lsUMIclAfzQuoZgolS9O4Td9aCFlOoMaAYRrMOYwmGAQDuGYMhWnyNGDjE13Nh4P5wBxAxU+KshTMxPk+x8PV+DWOLsIb4PwZNscB04IWyZu6IPSBAlD4zT5cuXdLf+Bt/Qz/90z+t9fV1ra+v64033tD4+LjOnz8fMk729vaUTqf1hV/4haGS6vb2tvb399VsNjU5ORmKgmWz2UBHt9vtkPXV6XQG4lqkI4XpZ8FIRxUpiRHBmqSq7N7ennZ2dkL8hqRQbyOOARgdHVU+nw+gij7EQKRUKgWGr1qtqlqthroaNEARa9jHHUUcF+3y+Xdlzd+slbGxMc3OzoY0+evXr4f32b+NRiPE0cA+LSws6LHHHhu4X+wGdfqfvRuD4mFxRawRjx9jHXE9gE2n0wnsLM/sin4YC+jredjfw2TC58KWOBPCd3wvw6TBYLmRwT1R/Iyf943/HWw4Yxr3E2OAMfPKvTFA4ugDvocc8P7/vrVXXx3To48+qv39O0/C2Fhfn/70p38/AMmpU6dODu75PLS7rqjlgoSKqVhKZBtgXbq/GIsHAYNVieVMWiiKAarc/fAAjrigkgs7+uh0dsx8DBPWMaUaPzPfjxX9MPDCNWIA4IAjFtauzPxZhjE/MXsC43Qn68X759QrQhEQ4tVTY0EYP1csyLkObhjiInCVINBiKvi+++7Td3/3d+ud73ynDg8P9corr+jq1avhgLhEIhGOHaBg04MPPhgKpMVurkqlEgJaXbiylohjwCIkpdhTylH8XBOrlGwW0ntxFXJtdz+USiVNT08H4E1AKufeZDKZkMGSTqfD2DCvU1NTgZ0YVnWU8YvpdF5zpQ+4iAtppVJHFVfJhtvb2xuIucGNlUqlQmYToO3+++8PZ5k4KPc1Ea8Z+uLK1NcDrJEbJb5W/DO4uZhbP7cmVt7eYlfJ56Jkh8mDYfs+dgnF93DXrseo4PbzfRkDADdg/P9YpjAu/oPsjZ/d06UpGMe1PdZJ0h1ly+9J29gY+YxARJL29xOfkTl5i61SqSTf97733Tc5Ofnk7Ozs4x/84AfnnnnmmQf+0l/6S8t8xt00X/3VX33fV33VV533a+zt7SWKxeIT//gf/+Np6Wgsv/d7v3dhaWnpsYmJibc/8MADD/+rf/Wvinwe18cv/dIvZR999NGHJicnn3zyyScf/O3f/u3xz7Xf3W5XX//1X3+We5w7d+7RH/7hHx7qSvrO7/zOxWKx+EQmk3nyG7/xG8/s7u6Gsf5sff18truePDYhSieTyYTKp1hrKMbx8fEghPE7S8dnOZD6i8XjJ5uyMRDwUOd+9o10HHjorgk2nbuAYgASx4sMixMZJoT8Hm51DhO+w6yVmAHx12NWwyndYc2ZEAS8W0rDLEP6Fwu1+PmGWZExmxM/M58nrRVlgyIEpDJeBJ8uLi7qb/2tv6Vnn31W/+E//Af9zu/8TnBdLC4uBpbg8PBQtVpNU1NTeuyxxzQ5Oam1tbUAovb29kLp9mTy+PRejiU4PDxUNpsNIBjQgXup3W4HMDIxMRHWVbPZVLVaDc/A9bA0cSlw4u3p06dDwClBrKlUKrAuPBuBoIxJtVoNGUD5fD64igBKvrZdwfn8OHMiKYwNoM2Zg36/r7Nnz2p8fFzZbDa4r3B3Af4PDg5C7BfurMcff3wAIPsaiBk8fjvAZb0y9jBYfI9Adp4JwIcsYfwpmubswmday8PA9GdrdzJSvMXgAbnk+9oNHj4TGx+87v2PZQ7XQL7FDCcNuQHgICaPvsI+wZD5WkomkwMVdX/f3TS/T+3973//8vPPP5/59//+37926tSpg+///u9fevHFF6ceffTR9rDP/4W/8BfK3/qt33q+Vqsl8/l8T5J+8Rd/Mbe7u5v8C3/hL1Qk6fu+7/sWPvzhD0//o3/0j6499NBDu//jf/yP7Ld927fdNzc3d/BVX/VVTa71gz/4g0s//uM/fmNhYaH71/7aXzv7rd/6rfd94hOf+JwO2js8PEwsLS0d/PzP//zrc3Nz3V/7tV/LfMd3fMfZxcXFg7/8l/9yhc999KMfzU1MTPR/9Vd/9eXXXntt/K//9b9+7ru+67sOf+Znfubm3fT189HeUsyIdFxzIZFIqF6vh/MNCHKTFA4Yo4gSJaappAhYgSmhPDabjYPyEMyAEQBKvLmxEgE7znzEAigGMDGTMYzZYBN/JoUdA4FYkPlnYndRTPO6NYSAGBZbEjMn3ucYDLnf2D8Tgzq3qOOxiIFc/DpzTCr34eFhyASJ06KJiUgkEnrqqad0/vx5Pf/883rppZf08ssv6/DwqGIkwc/EVuzv7+vBBx/U3Nyc1tbWlEgcH0MPAwBIoKoo73lQpRcpI30XNoPzazilGraCfrRaLSWTySDQ0+l0iPOghg7rsdPpKJVKhYBBDn2TjpSFB9nyHu5Nr+bqtHnMYPlaY5241c288Oyjo6Oan59Xo9FQPp/XlStXwh7CtQY7QZVlsuUodBZb6B6v4rEqHh/GvLM+YF8csIyPj7/pWACvCcN99/f3lU6nB6x6fz9mF3yP+OufCzgZ9v14vzpD5TEifh8HhA5aaHFMCN+N40yY59jt4gwbRh73gEWVFNYk/fKTmWMGc1if/rC3SqWS/IVf+IXpn/3Zn736NV/zNQ1J+vmf//mV06dPP36n73zd131d7f3vf3/vQx/6UOHbv/3by5L0cz/3c6Uv//IvrxWLxV6n00n8o3/0jxb/83/+z6+8+93vbknSww8/vPORj3wk88/+2T+bdQX/Qz/0Qzf5/7u+67tufcM3fMPFdrudmJqa+qx03vj4eP+nfuqn1vj/wQcfLH/0ox/N/Mf/+B+LDkZGR0f7P//zP7+SzWZ773jHO3avX7++9sEPfvD0T//0T9/c39//nPv6+WhvKbWX2h79/rEflAwAUh+htt2vjyXARqnX6wOZBtwDIV0sFoPwpNaBU9TSsUvBhR8bUhrM8/cUQ757J+pzWJxGLEzi6/MZaTAtEUvQBUcsAPmf2BgXbG7Jug+e6/r9aQADjynBAosVWQyq/LUYEA0T5LEw9c9gYadSx+fDEOCJRQZjQmr4e9/7Xj377LPa3NzU1tZWqMZJfZF0Oh3iQkZHR3XmzBlls9mQaUNGF2ebAJqZg06no3K5rF7vKBDb1xfuCZRwr9dToVDQzMyMisViWNOAbAKqs9lsCPQko8bZClJ30+m0isVi2Dsc/kd/+v1+iJEaHx8PwbrusuS6rtwdlMTgMWZVUErZbFalUklbW1tKpVLa2tqSpHDoZa93dHLye97zHv3iL/6iVldXlUgcnTN0/vz5AQXp68HjV3xPsEcpTMcecmXqmTIAEV9/XAdZkkgkAqPqMU+xMRCDkmHr2Mcv3gfxuvbvDDNK3OUZMzexrIiv58/sYxezX8P6A/hzeSEdx5mMjIyE4w/IemR/wfR5sKzP2x+1duXKlfFut5v44i/+4havTU9PH9533327d/rO7UNBK//+3//76W//9m8v1+v15P/4H/+j8C//5b98Q5IuX748vru7m3zf+953v3/v4OAg8dBDDw2wLU8//XSHv0+fPr0vSTdv3hy99DnGxfzYj/3Y7Ic+9KGZtbW1sb29veTBwUHiwQcf7PhnHnzwwbYH3z777LPNdrudfP3118fq9Xryc+3r56O9pXLwTz/9dKByES5suunpaU1NTQVwgqBBMSBA/eAs6MNutxuqLzqix8WDEOV+rjBjFkR6cyCaNCh0fJP5xr4TIxJbP36fWBn4PWIWwoVhHOvi7U6CkOd0BihmLoYxMTF7EjNDwwROHDvymZScf94BD/dhnnu9Xkjr5Lh6B2LUklhcXNTc3Fxg1VqtlorFovb29lQqldRsNjUycnTAYi6X07lz53Tx4kVtb2/r4OBAm5ubYYy2t7dVq9XU6/XUaDTCoYxesl46ssgLhYLOnDkTQAOBp4lEQru7u9re3g7PCVMwMjISzpQh9on6OQSozs/PB6aC9d3pdMKhfcQ/wATWarVQ7dWZDtaMr2HuFQc3ukJmfMksWl5eDoHn7EsYKMBPqVTShQsXgrtma2tLDz74YLiWg1DcOoDumIXjfRT12NiYxsfHA9MFAILF4rnY94AfACD7zquzuvKO99QwBR63eA/6mo/3Dn1izAFDPAOgxNlaHys3GIbJLv7nb99nbqDwvht6Lh+IreIalP0naYD5oH9TU1MaseMIvDT8Sfvs7Zu+6Zt2vuIrvuKBmzdvjvyn//SfchMTE72v+7qvq0tSvV5PSdKHP/zhV8+ePXvg35uYmBgQwGNjY2Exxjrts7Wf/dmfLX7wgx9c/sAHPnDj2Wefbebz+d6P/uiPLnziE59If/ZvH7W76evno901GImZg1wup0qlEijXcrmsUqkUzgXx6pNsTB/Yfv+4bgCghSDDbDYb/OukCMcZM3eyTuivN9/Qw6yZ+PWY5nXFi5C4E8XrIMep42Hgwa/twjSupzDsHg4S/Mfv5fEC8fNwbbeuh93L+xEHBrrlGgO2+PmSyaOsFJQIAhtgituG+AQ+VygUlM/ng8sCF8ru7m5w9fX7/XAIG4oOWr/Vaml9fV2rq6tqNBqq1WqanJzU1tZWcJGcPXtWmUxGZ8+eVSKRGEjbrdVqKpfL2t/fD4GbCPODgwNVKhVtbW0FBU2g5fT0dNgPFIGjdL3XBMElwXqfmJhQuVwOIMPXFM/q8SA+xjQHJs7mMdZUXS0UCnrjjTcCW0VQ+vj4uC5duqT19XVdv35d/X4/ZDoRzxGD7zspezcW3Fp3ZR2vMzKfAHseZA1obbfbmp2dDe97nES8x+L1eKd+fqb3Y4DnID5mDx0sOujgs/69YXuGueKenoHIGPj3fY8jb50V9DgiwKKkIHO5byaT0WizOSCrPhuI+8PYHnzwwb2RkZH+Rz7ykSnYiJ2dndTKysrEO9/5zju6KP74H//jrYWFhYN//a//delXfuVXcl/5lV9ZGR8f70vSk08+2RkbG+uvrKyMfb7dHN4+8pGPZJ588snm93zP92zx2srKypsCYK9cuTLVbDYTmUymL0n/9//+3/TU1FTvwoUL+7Ozs93fi77S3lIAKwFv7pfEb5tMJsPhY16FkxoLKBcPzEPIUKG12WwGxUUxtGEWj//4hnNLIv5MLJiGMQ7cJxZmMSodtkGHsSbxfYYxN27pOuCJrx3T4sNAFK/H7AXPFY+HP3Pc4vGh38MEvX/OX8cadssZ193k5OTAtcjGwhJ3V0S/3w+v5/P5oKgTiURg2hDYuAyxCInXuHTpUmAhcJHAeEgaSCd1v36n01G1WtXW1pbK5bIODw9DjEer1VKj0Rigx4vFoiYnJzUzMxMCMzOZjPb391Wr1TQ7O6vDw8NQuA1lMzc3N1ChdRigvNO64nXGGSs9BiiSVCgUNDc3p83NTU1MTGhrayvEv5DGe//99+vrv/7r9W//7b8NsR3nz5/XqVOnArPlFjwAjv76/Md9gRUijd8ZI56TvgC8vJaKpABiYEmcnbuT23DYWr1Ti/fVMHniLlDP7nIQImkAVMbN5QqfI3WZfjjjEbOODkbcLeyGg48PINiLBcK4SUfAmPn9owxGisVi7+u+7ut2fuAHfmB5enr6cHFx8eAHfuAHTvkavFP703/6T+/8q3/1r2ZXVlbG/+t//a+v+DX/2l/7a7d+4Ad+YLnX6yW+7Mu+rFmpVFK//uu/nsnlcod/82/+zZ3PR98vXbq094u/+IvTv/ALv5C7dOnS3r/8l/9y+oUXXphaWloacPEcHBwk/vyf//PnPvCBD6y/9tpr4z/+4z++9C3f8i2btzPtfk/6SrsrMJJMJtU/PAyFmUqlUvA/ctonFHPvdhwIlKpnPOBmgdrm5F0i4znbBMXARqQYk1dolAbLF7tydWEwDAxIg5YY3+EzwwRPfE2nV4e5MO7EgsR/D/v+Z2Io/O+YKh/2eRdiLvxiazq+p4OfeCyHgTteH6YkiepHkBLQzLknTss79U2cB0rHlRPrand3NwSeAlrI/EBB8pxebZICW4VCIfQd9wLjSXA1AarZbFZra2saGxvTjRs3Qo0O7jUyMqLp6ekASADf1Wo19AmQ1Ww2tbu7q06no5GRERWLRaXTae3u7qperw8EGDK+HheBMnQFxFwMUyaAB86PmpycDGfhAJpINd7f39fKyoqee+459Xo97e3t6bHHHgvMiVvjzjqikJ09dPDEnCUSiYETgPnhfRQmTBPzzjOQhuzlA5y99D302QDJncD/sM/5//5dZyWGyQAHDfHr9NFLGXj/4+qrsYyL74985fXYVYRLjvXEa5I0MzOj5O1xj+Xj70ubn+9qbKz/WeuMzM9/3n1J//Sf/tMb3/zN33z267/+6y9mMpnDv/E3/sattbW1sc/mpviWb/mW8s/8zM8snjp1av+P//E/PsAq/PRP//Ta7Oxs9yd/8icXvuM7vmM8m80ePvLII+3v+77vW/989fs7v/M7tz71qU9Nfcu3fMv5RCKh973vfeVv+qZv2vqf//N/5v1z73rXu+oXL17ce/e73/3A/v5+8n3ve1/5J37iJ0Lg6+9FX2mJz3mRJRL9Z1IpfbzX0/d///dr5HYga71eV71e187Ojmq1mhYWFrS4uKj7779fvd5RsN+5c+ckSc3b1J+kcAAXQVNsvkwmo4ODA6XTaZ09ezYISFeisZ/fFW1sUbjilN6srJ2VcGDhFpp0zEpg4aGwPJA1Fvqf6T4uNLxfHg/gfuFhYAoAFgvDeLycAud1fzZ/b5gAduHpz+rCcpjg988wv7u7u0GhoIDJQPFndJ87gMBLvceghGf1wF583h7bQMyRv8dBeqwfwBD3wG3U7XZVrVa1urqqq1evqlqtamdnJ1R9RXFOTEyErBncRlDhHOCHJY37aGNjQ5OTkzpz5ozS6bTK5bKuXLkS1o2vPebP1w/9jtcRVi9zAPj6s3/2z4bxXl9f1yc/+ckQZJ5IHFU6rdVqarVaqtVqwd319/7e39Mf+2N/bKB2ha8Z1i1jGTfWAW44AlkpD+BBxNVqVeVyWRMTEwOA7/Tp0+p2u9rY2FA6nQ7Ain2H5T+MOYrBQ/zaMIAdAxA3WLhnvFfieBoHEPEe8s/472HyxEF9bLTEmTRuyPk9CF5l7n70R39UV65c0dt6Pf3/2XvvKMuu6kz8e7FeDpVz59ytHACJoGQhmcEwYJuFBTJ4wDZG9hLMDGatMfyYwRbSeABjexkciAMMNjaYIII0YJQslFrd6hyqK3TlqpdjvXrv/f4ofae+e/q1RI1pJEydtWpV1Xv3nnvuCXt/+9v77HPP//2/+J0rr8QzPh8KhQKy2azZ8p7JZP6f6JEnn3xyp9fr/e62bdsKoVDovMGfz1leJBlYc7mce2Bg4KL//t//+9k777xz4UI/7+e9lEqlwMmTJyPLy8uvvvzyy59zW/KamJF6vQ63x4O+vj5MTEwgFosZa+nxxx9HPp83wXvhcBhzc3NwuVwmpwNjANSdUqvVTMArdxu43SvndTC/BBe4ujDsop/brIbeZzMZtoAAzvULs6jQUsWgguz5rCubZbDjWNSyo8DRumxgYCsCW8gpa2QDIbstrVgOfW+9h5+3ej8buHB8ms2mwwVDpURWg3FB7FcFJAxipoXILcO8Ri11zSBpsxy61ZWWYSAQMApbd60QgLCdzOrK2JFYLIZ4PI7p6Wm4XC6TVjscDpugVbIeZBbIOjA4NZPJmHiR4eFhM+/PnDlzDtjVflQGh+OiY02FrqCWrtLe3l4MDQ3hxIkT6O7uRiaTOSdfCRkrBpVXKhUMDw9j48aNWF5eRrlcxtLSEiYnJw0Lum/fPjMmOsfsoFrbclf2hHEODKLlqcl0G9CdRnaLLqBW5fnYkOe7zp7DdoyHznPbeOE6JZjWvlXmRK8FcM54q3tLcy8pe6JtajUX2DbWzTbx5GuuS9+z31erVSy7Vs854np9Qcu2bUsvRHbVhx9+OHjo0KHgtddeW0yn057/7//7//oA4E1velPmZ92Wf+9lzW4aACYjJgUNrQA9aMzv9yORSBiKFVgJdi2Xy2bHDBUvrVWeERKNRs32RgAO4Wb7gnXRAU4FyUVr+00VDPFz1qfCWwGCCiRd8KyfgkgFj/5moU+YfWZbN/b1rQSlzUjodXZ7f1JBq/2r99vts9vwXO0+H3ihImX/qWuG6asJVPm5CmJ+RrCgoAGA2bXFIEuON+cTBTnHTWNLbBDHuVEqlTA/P4+ZmRn09PRgaGgImUwGIyMjJhMxXTQcYz4nHA47FBfz5zC2ioGryWQSkUgEqVQKlUrFsRtFXRsKzskAtHK1sb/JLnJe79y5E9VqFT09PSiXy5idnXXUp2NHV1Mul8P27dtx+vRp/OAHP8DIyAgWFxcxNzcHn8+Hq666Crt27TJrVfvOZiN0/XBM9V01SVej0UA6ncbAwAB8Pp+JRSO7RjYHOFeRn6/ovDyf8aBzVddHK2ZF3SE2c9LKcLCfrSBNn6HjrOuqFVujbhzObQJ97Vv7eZrDpvrsNve+vj4cSacdO7RsRvkXqXziE5/oufPOOwM+n6+5Z8+e4v/9v//3eF9f3/r2op9yWRMYaTabaDSb6OrqMsg6k8lgfHzcxHkw/4gGLFIYEl3rvnulkZndMhKJIBQKmc9txdYqkAxY9bm2UpQqCFn07/MpW/PeopzO5+ZQAaGMiRYqhaWlJcchgHZbW7EYqpRaJTw73/+t3q/V5/aOBv27ldvJrsd+V41hUHaCypOWF1kHFcAcc/7PLagsFLBkN3TMCXD0WrutzWbT8Uy+I6lufp/P503gaiQSwZ49e+D3+7G4uIhUKmUCtNva2tDb24tUKoVsNmvOl9FnamAgY6WAFSs/kUiYc3L0pF/tb259VVcHPyeA41xhUkIAJianWCxieHgYO3bswNTUFJLJJKanp812Xl1nenig1+tFe3s7xsbG8NGPftS8DxnQcrmMo0ePYnJyEkNDQ2Z8qRDtdcSxJNOlW0c1ZTqDXLPZLPr7+x3gkvKFpx23AmT2Z1psufFcRcGFDVA4fpxHyubZoFuBiRo39trUovKBY66uZN6vCf3IGtlGhd7HvibDR1cMAJO5WF2etmv8F6Vcc8015cOHDx99odvxi1DWvJvG7/cjFotheXkZMzMzZmtlKpVCOBw2SaS4IJkWnJHmNrhg9kpgZcEwCJZChnXZrhouTJZWYIBUr9ZxPhDTSijYgERBiSY1Oh87oPczSJdWuH0aMX8rCHmuohba+aw7Ver8XIWbrZxb+apVgOr/52NwtG/1PZSNUAFKcMZ7yS7wHCO1FCkclY1q1d9K86vvXt+TbgxtIxOv8XehUDAxFjt27DA5MbgDh3lDZmdnUa1WTU4QPpugQ9cAz39hsDafm0gkDOhiNmMb6DEOhuOjbImeTcS+4/0EJvl8HldeeaWZh4VCwbhZtA85Ruwf1k1Wgtt+mQ/G7/cjk8ng0KFDJp6DY6vrg643tkeVOIEF2RBgldnM5XJmPWtG1mAwaPqWDKuuCRtA61x9LiDyXOvZ/kzXltatz+fcJ4tlr7dWz9e5rPLyfIBIZRjHjp8rCwzAuNkikQhOnTqFkZEReDwr5y3xe8Ap2+zYk/WyXn7aZc15RlQgEIEvLy+jvb3dARAYJEirjcKpWCwiHA4jHA6bc0D4HRkRFaS0ajVHAgsXi/rHleIEzo2HUN8pP7d/VCmrgFMhYLtn+Bnv0z5rNpsm54UNcFTZK1ig8uG7q0LSwvaqX16/0/Zou1oJ3FbtaSXstD7N6/Bcz7b72/ajU+npFkjWqcfJE5SqEtAt5joO/My2Svks/iZAKBaLJmahs7MTfX19ZncXXQNerxeRSMQwApVKBb29vcjlcsjn845U9PV63RHrwLlHtxODOAOBgDlUr1qtYnp6+pxkVOx7ZYOowAnayKZwTZJdSKfT8Hq92LBhAzo6OjA5OYlNmzbh5MmTKBaLpj91nnFOsV4WKlTG/DQaqynjR0dHjfuE81bjtRQ88Tf7RN0yCtTb2tpw4sQJXHrppWbLM7C6K4/Fjq9i/7QC9To3bYBhA28W20VzPsZB57ctB+xnqwuZ9+hxBuwXBRMajKz16NqxZZTtfuSxB9xa3mw20dvbC9ezGXhzuRxcz55VZO/qWS/r5UKVNYERv9+Pjo4OACuLJxgMoru7G7lczuwkaG9vN3EiSqFSOBetLWP0R3Z1dSEejyMcDpv7WlkwtnJrZSHbFqX9/fn8pwAcQpmCUgWq1tsKWNjtUAVpsxI2Y2G3i3UoM6SCRQWhMhIK0vi7FTug7WPdaoHZ37e693xxLyr87Ha2GhtVVFSE9rhToRGA2EBQx1kFugY5kq3glloyFDxFlyfVcg7q+CuzR0WfTCZRr9eRSCQM6FAAxZT1jAthThFmHObOsba2NsTjcYyPjxs/vs4npeG1Xh6jwHOd2H9MTV+r1RCJRDA4OIgdO3agUCigv78f6XQac3Nz5hA/3d7JdybIcLtXt2Hb46H9//jjj+PNb34zAoGAY0eNvZYJtFQBc0ztVOSRSATFYhGZTMYkQaRs0VicVoaAriMdt1ZA4bmUrQJBne+cA/bcOx/gtt1uGoDMdyiVSgbE2u1Ut0mz2TRuFc4H9q3G2NHlx/N/2C6uDb/fb/LmdD77nN7eXhxOpx1y5HwsznpZLz+tsuaYkaWlJSwuLprtdjMzMw4FqdYrhSGPp3a5XNi0aZNZYLQEu7q60NfXBwAOxd9KwdoUpSpBLsTzAYVWlCy/t9kSKjFbaLFutRhUqarlq5aX+rm1TSx24JoqdhVKtitF+4t1nE+wquLQZ7I8l0BtZUG2irmx+9lujw0wtX/YJs6dZrNpgASDHKnAdZxUeZFtIGunoFIF+MLCApLJJGKxGCKRiIPu13dXdwNjfdS65BZ1PrdUKpkYDGBFmZZKJUSjUVSrVXg8HpMvp16vo1AoYHBwEG63G6VSCQsLCwbM0JWhipt9SfaQYEIVotvtNjvTent7MTg4CK/Xi1KphI0bN2JoaAj3338/stmsOSeILhOdg7SM+SwdE54nxPnue3YraCqVwvDwsKmHjAfH2567ysDY1n2z2TS7kubm5rBjxw7Mzc2hu7vbtEvnls7BVvPe/s7+vNU8tVkpvZfXtAqe1/XBz+0YJWVH2FecF8qAapyYuiD5LhrErTl01F2mRfM2FYtFs+48z47T+Pg4XLGYca2TBVsv6+VCljWBEa/Xi/7+fiO8PR6PyeDH+BAuJvp01aKl75cH3tXrdXR1dZmMjoz8BpynfmppBSpUYbcSBrpwlTFoBU7U0qIAUiWvVoJazrrjoxUDQGFLy4/XaftZvwI69gWfrwFxgHNnAIsN2AgKlU2wgV2re/m/3e+2Vayf855Wgt4Gj3xXBVKqpBTgchzdbrdx/RGI8Dct/Hw+j1qthsXFRWM9qzXY09ODzs5Ow35ojAL7m89VOlwVVLO5kimYaemr1ao5QJIJ2ijElVGhEs3n82g0GohEIuju7gawkocnnU6bvuGPsmt+vx+hUMgcoEeWIBKJmIPvuJ4SiQRSqRSmp6eRyWRw0UUXoa+vD/v378fx48fNlmPOD90VouwM506r1PTqHqnVahgbG8OmTZsM8Nb+1TlDJccxU8WtMTcMvp2cnDTxaHym7orjmCio1flkz2mdw7qGWhk7tuzQuaB12QaUXbQe+3+2VwOPdV4qoCb7pnPEBvh0dREY24wqsJIokDu40uk0stmsmf+cdwTv62BkvVzosiYw4vP50NHRgWazaWhhCvRMJuOw1jTorLu7G8vLy/D7/SiXy+ZvghtSyjZoAHDOIrOLrSABZ14SW9joPYAzGZFa2gpANF7lfHEiKqT0f17rcq3keVDLvxUoslkcrV+tKO0jFfy2MLQVgS2QtLRikGwQ8lx07XMJrFbjyPfhj4LHVpbn+Vw9elzA0tISotEoms0motGocV2okLfpds0tYr9LK5aKVmggEEA+n4fL5UKhUECzuRLMmUwmHSwYmRrORSphl8tlThVuNpsmNbxaznxvO5EXAX17e7tJ7d7b22tym8zNzWFiYgKZTAaJRAJ79+5FLBbDd77zHZw+fRrlctnk/SEo0YBa7VsyFgpmmW5fxy6Xy+HUqVO4/vrrzXxUwK5zQftU2TEb1HPO1et1LC4uolAoOHbVaD8pI/lcxe5fPuN8rIkd12HPaxuwtJo3BFnKugGrqfKVHdE1p+5FXX8Kwth222Wkc0bfi/f4/X4MDw8jFoutHGxqAWE1wNbByHq50GVNYKStrQ2vuvFGJBIJs9PA5XKhXC6b3AlqgXo8HnNENbeHqZXb1dWFSCRirre3YGo5n+XCxatKhfXze2VJWLjQeEbJ+epXS71V3IUCBJfL6Qdu1XZbodoxGTbYULYEcJ7WCZyb/bFVvfrONutyvj62hZ9amAoGtI9sAKnXsE161oxeq9Yl67M/t5WB7b6i8OWW3Hg8boAK20fQYYNb2zpWN5xuc9T2EVhrunkGbvNUVDILVEZcF2TTfD6f2UpJ1w/HGYBZNzw8LxQKIRqNIplMmp0+pVLJZEJmQrb29nZEo1H09/ej0Wjg6aefRiaTccSIEGRQ2RCE1Go1w3JyjdPNo+2zXWrNZhMnTpxAuVx2nF2j60f7Vu/lGNjz2uPxoLu727xj+tn8F6FQyKQMaMV0cBztcT4f62F/z/mlBoPOHZ13Khfs+aTzX+UUr1E5YbtP2ce6tni/9qG2gwahbp9m7A/nLX9CoRCKxaLZjh4vr5wuz2289rbs9dK6DAwM7JuamvLfeeed0x/96Eennv+O9dKqrDlmZGpqCmfOnDF0dD6fR1tbG7q6uoy1tbi4iK6uLiOkmXWSQXfhcBgdHR0mYyWva6XkWhUVQKrobNeGovvzKWVeS8HIQmFNulMDIhUgqADkM212QZ/rdrtNHICyJmynCj4FW/peWp/dJ/Z3dr22Bad9qVaXzYjoPbbwta/TNtl/qy9c+9u2lm3w08rSVF+9vcuIbkR7jmi/2P1h/7AQOGi7C4WCAQC6bV0PhqRCiEajqNfrmJmZMblEAoEATp48CWB1V5pmom02m8b9EolETKBsIBAwMQKzs7MGYLhcKwnKdu7ciba2NlQqFSwuLmL//v0oFosOdyIzybKo+1DnAmNjWJiXgu5ZjfOo1+uIRCKYmprC3NwchoaGzjs3OC48KJNjRLaVLBaf5ff7MTMzg0Kh4Aj6VfcOx0lBiY6zPXe0tFK0rRgPG+TofHguNqaV/OEzVPa0eoYCF1umcTwZS6UuS7af2691FxTrYh/Pz887XHCVSgWIRBznAK2DkfVyocua84xEIhEMDAwgm80aYbRz504cOHDAgIpCYeVcIC4ABruVy2WzI4en8XLx2EFZLLayBmCeS6VOS1Pv0d+0bFtdZ1u79MPTOrTrofAlOOGhfxo3YltUdptagS5bYVIQaH120bpsVxJLK4CgdLDdF/ybAIx+51ZCXC0tra/Vda2ea1u1HP9WDA+vV8CkdQNOy5qUNfvPBlf2HLGt2lZxKzo3qMCjz26BDIfDxmLXxFNUDKFQCIODg8hkMub4g0cffRTlctnEf3BthEIhJBIJsyYajZUD9TKZDCqVigH10WgUW7duNQAllUrh9OnTyGazyGQyAGDmJ/uM76D9TiWmcRwcf/2MJ/lu3rwZbW1tePDBB01uFbpz2AZNfsb5zHHhfKGFb5/zxHnt8XjQ1taGbdu2YXx8HBMTE6hUKti2bZvZdq3voHNHGT17ftulFWi2jRj7t8182s9Rw8WeZ+dbk5yvrWQE55TKKfvZ9vNsw0iBGtMukMXTd+JWcV0Pz+WeXS/r5adR1gRGKMQSiYSJ+q/Vajhz5owRqrT8VOAzyVIoFEJ3dze6urqM9ad0IxeaXWw6EjiXTrUBi30fFUOrrKesU2lRCmPN8KkCT9upydW0TazbBkW6uDU/Ryt2gM9lPSpgWj2jlfDR720lpMyDzdC0UtTK/mg/qv/eZqTsNrVy6dhgqJVw1zbZCkjbBqzuNrH7QvvUVjz23wS9jUbDWPGatIy5Q0h5s95SqYRQKGTGm+4Ov9+P7du3m4Rj3/jGN3D27Fkkk0nDiEQiEWSzWZNQ0O1e2RlDMLBhwwYD7hcXFzEyMoJMJmPmqm6ppTGgVjeBgfYr20plp9uIm80mdu/ejde85jXo6+tDX18fksmkSX7493//94hEIiYXSaPRMJa27qKxd39wzpEpVJePMo5UxAsLC9i4caNx/+gaY132+LWSKTaoPh9I0Hliryu7tGLX+L8di6LXs784LroGdW6zT7huKE9VhmoMlLqKyZrx/ciGcHyUpVVXcMN9biqBX9TSaDRwzz33dH3uc5/rOnPmTMDj8TQ3b95c+dSnPjX6spe9rGxf/6EPfaj7y1/+cuf09LS/WCy6o9Fo/corryz86Z/+6dmLLrrIJO35yle+Er/rrrv6Tp8+HVheXnZ1dXXV9u3bV/rsZz871tXVVX++7+v1Ov7kT/6k+/Of/3zX+Ph4W1tbW+Oaa67JfexjHzu7c+fOpZ/0OT+rfny+siYw4vF4jA+a7MDS0hIOHz5srKNisWisUpdrJZiVvvC+vj50dnYan+T5FBZLKwUL4BxlR+GlSo6FjIVeq89Wocw6KBy56G3qlMKegl2tb7vdGleiz9U28XM76E/fwa7fZhVs5c5iMwd2H2pf28pdgz61bhswno9lsAGA/bm9JdJWHvqOvEaFbivwQmWq7WwFNFr1AYBzFLcqyGq1ahKjUeDTwqQ7gWngOceZJZSp0wkYmKNn//79yGazCAaDKBQKBrjE43F0dnaak2rJLI6MjBg3S6lUcrh0NL9EuVw289Sm5rl+NV8FQQnjvPr6+nDxxRdjw4YN2LFjh9mST3C2tLSEQqEAl8tlQBPXw8LCgulLHUvbjck22K4F7jjiTo6+vj4TLJzL5bB582bs3r27ZayGDQZ0Pdjj/1zFngNcfxoszvfiXNKt5OzrVnNY14DOQ9bB+9kXKhMoZzknlI21QabKLbIuZKEZfKzZVllqtRoaHs85svIXtbztbW8b+vznP98NAIlEYrmzs3P5+PHjwdOnT7e1AiMPPvhgdHx8vK2vr2+pp6enOTIyErzvvvsSv/RLvxQeGRl5JhQKNaemprxvectbttRqNVdfX99SNBqtT09P+++9995kKpU6W6vVXM/1fVdXV/32228f/uIXv9gFAFu3bq0sLCx4v/vd7yafeOKJyNNPP31kYGBg+fme83MLRoBVFoCn69JSYe4Hl8tlFku5XEY0GjVWaiwWM1YdaV0NPFRLn3Wp+0G39KkFBZwbv8DPbFZBv+M9Ho/HcRaIWjO2wqOQ0HNzVInyeSrAVLC1YgS0Pby+lcvKFkrPBQ5agQDtE96n1o8tIFuBO1vAa7taCV67La0YCi3KOtlKpRXwsttnC3jeT0GsdbVi2QiQqtWqySmi8RPcfk6l7XK5TPwEmTcqB7IT8XjcMIYKqrZu3YrvfOc7aDQaZkcM25XP5zE3N4d8Pm+2yrM+KhJut2WKdlq9fCcqHlrHej0VUb2+kgckFouZ+6677jq89rWvRW9vryMlPLB6qB0AnDx5ErlczsxVtnNiYsL8T+VNGaBKsxU4ZF3sy3q9bhK7MTcMgVarOdlKadrrXuesPW90ztjrqpWropXMAFbzDem819LKCOKz1fVp76ZR9k+3tPMaDVDXelX+sF7KYHXvcIxVdv4il+PHj/u/8IUvdAPATTfdlPnGN74xEggEmlNTU95yudySKrv77rsn9+7dO9LW1tYEgK9//evR17/+9dtnZ2d99913X+RXfuVX8qdPn/bXajVXOBxunDhx4lAkEmk2Gg08+OCDob6+vuUDBw4Enuv7Y8eO+b/0pS91AcCf//mfj7773e9ezGaz7h07duydnZ313XPPPd1/9md/NvV8z/nZ9eTzlzWDkenpaczPzxtrkIdtcZsg2ZBisYju7m6zk4BUNLCy8EkP6oIh0lcLyVaWumD1HmB1i6suLBUCet6H1kGKmkLA7XYbgU2lzAXLxUuhqifBsk57y6ENDPRa2+K3r+d1tuC0hXkrK9FmdGxAwLr4bFsg26BK28bSyipVdsMW6irczuf7btXGVqDJBoxazgfQtM22EFfrVH9Ia5NBIPDWc4b4GeM3mCGUAducQxTw4XAY1113Hb7xjW8gm83i5MmTDhZN55bX6zX5e9geu/+azabJ6sp3c7lWg0RtEMz+0R1IzWYTfX19uOGGGxCLxUx/k31h27hVWV0ACjCmp6eRz+fNGVacRzZAtOcC309dPBq0W61Wkc1mkUqlHOtF29ZqLul769qx54/KHWU4dH5pX9iySN9RjRIFvjoXbUNE52IrFySBib6brj8NOG1lqPB6ZdAoM/V9Go0GmiKbfpHLww8/HGYf/Of//J9nAoFAEwD6+/vPq8hPnz7tf+c737nh+PHjoVKp5NY+PHv2rA8ALr/88vLg4GD17NmzbT09PZds2LChsnPnzvIb3vCG9Ctf+crS833/1a9+1bTrjjvu2HjHHXds1DY8/vjj4Z/kOT/d3vq3lTXvphkYGIDf78fExATq9ZW9/7QYGY9BK4tbDMPhMOLxuBH+9i4UXTg2EreFliovte74GYsqLFqOWh8tN1owut+fwrVVvIjLtXrGBhUXrWSNR9E20ypXQaVxNa2Ep76PrfBZpwpOG8honSosbXfPcwkbW2C2AkQ2k6KWGPtCx9u2AD1CBz8fyLDBiS3k7eu02GDEtmLZjwSmBB1U/pwTHMNwOHwOKGk2V9wl0WjUuG3IYmg/ce5t3rwZb3zjG/HZz37WMQ/IJHB+84RnPelX41T4DrSSFfTq8zg+etwC5zCv4Vk1nNMMYCU4Yj0MqLXnksvlwuLiItLpNJLJpIPtsK17Pl8Dl9keNTJ8Ph+CwSBmZ2cRi8VM+nLeb8/BVixEKwWtwMQGr62KzjeVS+f7257PNntigxptm/aFfm4zHBw3jjXlkR0bRwOLY8t+V9cdn9WKQf5FByU/aTly5Ij/tttu20o2Yvfu3aV6ve46duxYEADq9boLAEKhUHP//v1HP/WpT3U89thj4ZMnTwa+/vWvd3zta1/rqFarI29/+9vTz/W9PnPnzp1lv9/vEIRDQ0NLP+lzflZ983xlTWCk0Wjg4YcfxujoKLZt22YWGv3kbW1tJpaEAhUAotGoI6uizQ6oAFFfdqlUQjAYPMfioVCj5UhLkcX2t3KhUpiyfbrAuRA1jbgme+J12g4VYGwPwYrNWOizbOVgC1UA59yvAlXdQbYFxbZoHQpUVPidD5S0AizaRpvFAZwsA+vQnUcUenpWiSqBVm3VvrAVxloEpG21qhJSP7sCRm07AQmVJndyATA7jdzu1V1HwAqbwZ01ttXL/vN6vfjVX/1VZLNZfPOb3zSp5DkXdf5pNlcqEZ3Lev4O28PtuozBcLvd5lTsSqVilLqeDQOsHkKnqcU1oRjbr2n5lWlpNBoYHx83aeht0EiFSBeSjjnXBOdas7niEu3r68PY2JiJoWnFfNjK354jbKcNsu3fCtrt+tQtY68LBXi8tpWh1Krd9lxWGacAmf1uuzNtRkTT6nMM7Bgt5o5hnJ8N0FvJil+0cs011xQ5Ph/72Md6XvGKV5wJBALNmZkZT7FYdG/ZsqWm1z/22GOhWq3mAoCvf/3rJ2688cbiX//1Xyd/+7d/e7Nel0ql3E8//XTg/e9//xzH8eUvf/m2hx56KPajH/0o8rrXvS77XN+/733vm2W73vzmNy/80R/90RywMi+///3vR5LJZP0nec7PLRip1Wo4cOAAqtUqbrnlFhw6dAiJRMIcXkUrjqndaUEy+RSwivhVQdmggEKDgoflfGDAVv4qLKkUSFezHrWy1aphsJ+CIhYVHLaVV61WzYI/38Ll/fZ2XZvZeK57eT3fVQWZ/V62INb+5f02UGmlOPSZ53u+xu/QkmZSMFrxCiq1fjtddav31T7Xa1QRtGI/VMnY39tWn+52YswIt92qC5DxTZwfzChMdowJyggsVPgTiBJIJJNJvPOd78S2bdvwpS99CadPn3YEN+uuGFWQrJOsDD/jPOS5TxrLlUgkkEgkEI1G0Wg0zA44zezKRFlcr8Cq+5Pv6Xa7MTIygnw+bwCFsjL5fB4jIyO45pprHGyF7ZYkMFPmjG1V4EmWiXEzHD+NqdCTvnWcbZDPz1rNb107Ogft9dlqzul6VreuggBde/Z8ZbsU2Ol3jN1pNBoGJNLYU+Bhz3U1AAmk1fDitl59R7ZB5cMvatmxY8fSW97ylrnPf/7z3d/97neTfX190a6urtrY2Fjgb//2b0e2bNmS0esvvvjiCtne17/+9dv6+vqW5ufnfXa9U1NTvptuumlnLBar9/T0LNVqNdfo6GgAAC666KLy832/e/fupTe96U0LX/7ylzs/8IEPDH3qU5/qCYVC9enpaX+hUPD82Z/92ejVV1/9vPX8DLrwJy5rAiOVahUjIyPYsWMH4vE4XC4XwuEw2tvbMT09jWZzhaYul8sIh8MIhULo6+tzLE49lZMLC1g9F8RW1LrwW9H+FGhK7/J6jVGh5cD/ueD4GWlwLkoKBlqOFMa0ONk2XbhKfbZS3sxR0UqpqGK3rTObEbGtez6jleB8PmVsC95WjATb18p6088ISCnswuGww6K2hbjW0+r5/NuOD2hVbMGu46P1EQxwvqiCoJsCWA1g1T6nMiYNzsKgVZ6+y2v0vVUpapuY6OyWW27B1VdfjR//+Md44IEHcPbsWbNFlsCc85DzmiDJHiuuKxoE0WjUJE7j38FgEFNTU8hms2Y+U8ExGSHHSel8rr3JyUnk83mjJPlD98CZM2ewvLyMYDBo2qq/eb3u7tFxILPK6zZv3gy3e+UwQa5xfV+uPZ0POuY6x+x5w2Ir4FZjZq8xu/AeurXs/CCt5uj5PuMzbJesriW2yWZytJ1cv+xrfs9dj6yDReOndKx+UctnPvOZiV27dlW4tffs2bPu7du3l7ds2VK1r7300ksrH//4x0c/8pGP9C8sLPiSyeTyPffcM/H6179+u17X09Oz/IY3vGHxqaeeCk9OTrY1Gg1s2rSp8uu//uuLd95558Li4qLnub4HgC984QtjO3fuLP/v//2/O8fGxgJ+v9/T39+/9IpXvCJ3880353+S5/xsevAnK2uLGWmsbOmbnZ01StnlciEajSKVSq1U+OwCTCQS6OnpQTAYNG4UDezkZFfr0o4ZsQUMP7OZFLW6lHGxLXbdRqi+d3Xb8HmkqbmQudtGKXEbHNjtM/0mVpwmamoFLtg/rEvrsPvAtuxtJW8LK62P765Ury2YeW8rYa6uIr2XwZZq3dvj0Aog6OfPJfBbgY5WfaR9w+tbWeC8tl5f2brL+QGsugy5xdveAcY54PF4EAqFzJZe3VqsCl3nvH7OPozFYrjuuutwySWXIJVKYW5uDouLi8hkMmg2m47Yp3K5jKmpKaRSKZMXhFau272y5ZguGTI17e3tiEQi6OzsRDAYxOLiokkfTxYyGAw6DhfUd9V2B4NBc0imzlf+pFIp43bSupQpYT+RQbJdGurucLvdKBaLxvWlc5cyx2Zf7Lmkc70V+G01h2y2xFbUynrodUwJoHEc9vO1rbqW7GfyGs7HUChkgD/fQeeXulhaBdPTYGg0Ggaw6rtzPXDsbVD/i1bcbjf+8A//cP4P//AP51t9Pzk5+Yz+/+53v3vx3e9+96J+1mw2n9T/u7q66l/96ldHz/fM5/seWJl7H/jAB+Y+8IEPzP1b6nmxlDXvpnG5XCiVSkgmk4jH41hYWEC1WkU+n0c0GgWwsqOgt7cX7e3tcLvdJvOqMgqtmA61cBSwAKvUoQIOtWB4ja08dZEDq4JaF5tSmVQuLpfLkQRK/fNss1p3trDRdvFvXdAUvmyjXs96bLBgl1Zsh8082CDCFtK2hXU+dsJ+D+1z4NxDyshAaL+3AhG2663VO2lbnkt5aJ/YYMRmZ3S3DMeD84I7w9ra2kwiP74LlQzHhme4UOHr3NV317HVPtR2ElB4PB4kEgkTFM656PP5kM/nTbbXZnNll9rc3JwBKvl8HpVKBcvLy+js7MTg4CCCwaDJc5JIJNDR0YHu7m709fXhzJkzmJubM3Obc77ZXI0JYbvZ9kqlgrNnzxqwboPearWKubk5ZLNZE8yusVeMv2k19hxD24Dp7Ow0bBRPA9extdeJgodW88W+zv7MXjcKFJQlUoPJBrecb5qKnfJCwb7tntH1pXOHgLFerxtWQ9dY41ljUYNe1SjQcSSQZn/SPQ3AsNdut/uceLz1sl4uVFkTGPF6vYhEIoZCrdVqjtTUbrcbwWAQmzZtMke0a4Io27pQi4alFaWti5PXqGtGv9eAO9sdwuRrXPi8n4tTtydSeOozbCZC26aWoyoZW9hp4KO9i0T/tpUzv9NisyPKRPB6tc55vbIUdp0KEhWsKFhTJUtBbDMsrcCFDSz4uxWI0rr0fxuQPF/f6JxRK5tjwXiHWq3miPvhvGB2Us7tpaUl44rhGTPqmrFdSjbAsy1ZnUPse57x5PP5zPN44FkwGEQoFDIgKZVKIZPJYGZmxpy+22g0TO6Tnp4eDAwMGDcSc4eEQiG0tbVhz549JlcIn53L5TA4OOjYPcS2ud1uVCoVzM7Omn6xwWsgEEA6ncbk5CSGh4fPCQDXOch5wz5nnXT3NJtNE4fj8/mQzWZNnIu9VmwwoGDHZivPN8fsd2kFKvVZ9Xrd5D2xf+z5zDHXPB6sy15X2jb2FUEcZQfllc1Q2uCEcUC8Vk+5pvyu1+uO4y/csq5tQLde1suFKGsCIxTOPDeDx5/zsC5ahxs2bEB3dzcAp0JUQMH/mUSKwVjKBqgiVEuep4LyWgonFWw2K0LBqr5odelUKhXkcjlzzoh9Vo4tpOyjufmOdttZbGFhu5i0jlYMAuC06mxKl8LMBnG25apWXCvGpNWztB4Vsrbwt9tvt7GVkrYtQn3+8wEbG+zZpRW4AVYDbLlLhrtjaHHqmJLVY310xbhcLvj9fgcwadUWGywp86bzm6wEFVuz2TTbZ+lOyeVyJu5oenoaCwsLKJfLKBQK5vwYxn34/X4kk0lcf/312LdvH4CVOJhIJAJgNbHVy172Mjz11FPm3mq1ilQqdc7cUAXL2BoqOSp+Ki6OO925dCew6JZ5m21QA4DztVarIRAIIBKJYGZm5px5ZINmHX9+bgej2/Ok1ZjZAIbXaXxLs9l0nB5szz3tG36mO7Ps57J/WYfOfc1nY8s3vifloG2kKFPTbDZNUDDBnQYtt7W1ofnsGgHWz6ZZLz+bsuY8Iy6XC52dnQBW6NZ8Pm8ovmaziU2bNmHPnj2Og7FspU3fO+AM+Gr1PA3Q4yLj4ldrslqtGnqRAIcLm1YwBQKFgdLGXMgMXCQdbws8VZ6trHoKHvW1Kv2pgsG2mFvFmrR6jlpUynJovbxPAQiLCjwdVxZ1Kamy1HfU+vm39o9azGr12UL7fEDkudiPVqDGdufpvdp+siB6UjTr0fT3FNjhcNgxPrRMqfB1HtljZzMzNihknX6/H6VSCfV6HXNzc5ibm8Ps7CyeeuopzM/Po1AoGNeLsntU8nrQnMu1EsM1MDCAQqGAxcVF4yohCGcbfD4fXve61+GZZ57BI488YurI5XLmMD8FElRKTGqobCCVvc79ubm5lv1vj4vORQaM24qYSeRcLpdx/+r4sy8VDHEMea3GedgswvlAts5ZbS//ptGiLJL2A+N5dA6pa4VySc+TUYNGn6VtV1c167Jj0jTwWOe0ruNSqWQOXyw+C3TUXb7uplkvP6uyJjBSr9eRTq9sS15cXDQJkmiN7dq1C5dccgkSiYSD4VB6U4UVF4/tP7aVD+AUXrpYCG7U5dJoNBzuIQDngAtbwGg7S6WSocZJh2qwmAIUwBlA14qZ4MJnGwFncK6eD6GWIus5X1/Y19kC/7msW5tutgGDCkT7eedjf1hPK4bAHl8V+q3G3LZibeWubVDwoXVxrhEAcix5nyoFzYNDhcg61G1A8MCA1lYAspWlzr7jZ4VCAel0GidPnsSJEycwOjqKM2fOIJ1Om0SCVGRsjypY1qsWsd/vNzlCCDZOnz5tWEQdB/4dj8dx9dVX49FHH8Xy8rLZksz7bQbQ5XIZ1xV3oJEhqdVqBsQ0Gg2zo8Ze3zp+9jzT+akyIhgMorOzEydPnnTselMFq33OdWYbJbYCb7VmFbRo23RO6Ty215a99nWeU1ZwXLPZrDlElEYZmTe+DxkLm51Qt7L9nS0bte95XzAYdAR187pYLAYsLraUI+tlvVyosiYw4nK5DGVdKBQwPT2NyclJAMC2bdvw0pe+FP39/QCcJ+FqzIjty7UVkm1JtRIUtkXE77Ue+zpaL8CqH5QLXs/84Imq6XQanZ2dpj4KVFX+rVgDtkHbwv9pBVHIqaC3g9r0N+sgcCOlbrMJrRS4Aij2u1qn+pxWY6L+bftZNkNj+7pbsRa6PRFYzWGh1nerefdchW3ROaP9oe+t78w5oPka2DbGRBFEcA4wRkRjZWwrW/uN11D5HD16FI888gh+9KMfYXp6GplMxsxHUvBkGu0+VfCq804Tgfn9frS3t5uYkWPHjmF8fBw7duw4J9iR77Z9+3YkEgnk83kAK9uN6bJhHAHnHFmhcDjs6AuCJ83ymc/njfvW7iubnWDbOY5kOfm+LpcLHR0daDQaDrfI+eYY17W6GGxZwfEn8LSBLMdF3TLKnmn69Vb1a9FgaRaCuLa2NjM3das0wS6ZPJWjreY7jTB1ASlLw+/VwODYavvn5ubgfTZPjcq49bJeLmRZcwbWUqkEl2vl0DsmVerp6cHVV1+N4eFhI7x0AfB/Lbbi5d+2ctcAVVVYtq9UWQVdaApMgNWALb1WFzMtKdKXPBNE69W8DGwPAIfFpEyDMiI2aFKmQdujip4/rShh7TtV6treVkBB+433qMVtC3kbFNrPUEFuFxv0aN+wL+1ntPKbs9iWqv0s/UwFL100nD96urQqQAa1NptNY6VSaShDYgtq2zJnPMeZM2dw9uxZnDp1CgcPHsT8/LyZi8Fg0CRWY7+oK1PbrgqIzBqtbCryzs5ODA8Po16vo1KpoFwu48EHH8TmzZsd7iTW4/F4sGfPHlx//fX49re/DbfbjdHRUdMmAI54LpfLhWKxaE7mJWhTN0IgEECpVILbvRLPxSRrdnC5rjkqfZ2DOreCwaBxzywuLp4zT3Wuq2tX16a6K1qtPe52UZeJPcdsYK4ZZvVzXcP2/NR5Hg6HHTKK49psrmYHtucw69b4EWAVXOnxHIx/Y7/oPOMzVE5zHqsxt17Wy8+irG1rr2v1CG1mNt27dy+Gh4exZcsW40NnWVpaQjQadSQpUmVpKxlbedpMhC2AWLgwKVxVOKiwUUGuAYdcqJrtslQqIZVKob+/35FJ07bcW1lDNgDiM1WYaPK38zEhWmzhpJabLbxb9ZHdZrVMW7FLNo1uf2+/k+0qsS02BSCtQIsNbLR9P0nRNtuxM5xT7CsNKlRGSg91c7tXtu0SGHALr+2S4/tVKhWk02ksLCzg7NmzOHPmDCYmJjA3N4disWiu4Q40AGbHjFrGVKRMHsh5rXPbHl9+12g0sHHjRvT29mJsbMw89/HHH8ctt9yCvr6+c8aaTMOtt96KRx99FOVyGalUCoVCAYlEwgG+ubbPnDmDbDZrGApglTGgQm9razPBt319feZZ9tziOicToGOn7ol6vY6uri40m03HoZwcb44nr+X8ZB02sGY7FPyorGgFeFWusM91Deqc0OuVfVGgrS5q1qNjQzZK5RIZEh0XXcOUz3Sx6XrQ7fecV+Vy2cGeAKsubbrhOAbrZb1cyLI2MPKswABWLILu7m4kk0ls2bLFCCIKcE5+Un0qODX9tw1G7B0mGpBmW+u0DNWaYCEAYnt4D60EXsu/deEHg0Fks1ksLi6arZR6NLzS9jYroiyNbdWyTbTOuUuAeRNscMGidLECmFbW4fmYKPavtlH7Wr9ThWXTwfxcn9sKTNkslc2eKLNgKxX2p17ncrnOEdb6Xvp+qmi1Xgppzb1gb+nmd41Gw5yLxFT29XodmUzGnOeRSqUwOTmJ0dFRjI6OIpfLoVgsolwumzgqACYIlgI/FAqhVqshGo2aRGVsP+czmQkyM5w7GjCqSq3ZXAns3r59uxlPMj+ZTAZjY2MYGho6b+rw4eFhDA0N4dixY9izZw+SyaSJHaF7hvOdrAizi7Kvuf75rktLS1hcXHSAKTvmgoYH08zbQEPnWjKZhN/vRz6fdxhFXJOa/VfXqc1c6VzVAHA7RkTXmjI5LFzXrVxOug5toKmggKDL5XKZoGpbJukzWBfnI+UK34l9Yq9hZYXoHuL4sY9Zz9LSEtzPumnOJ5PWy3r5aZc15xmhLzoUCmHjxo0mxbT6T9Wn6vF4HKeE6iIEnFYsFxrjN5jAR5WlWhH6LC5Wv99vtmrybBobqPBeFbCsg7slfD4fSqUSxsfH0dHRYept1W61WFmXAhF794zL5UI+n8dnPvMZ5PN57NmzB7t27UJ/fz9isZihbtUdYAMqtsGO1lfh2YqxUOGo39n0uNbD97IBkF5rsx72ta0YG63TZolsVkzr0fnA79Ui1DFVFok7AxT0KtglMGH23WKxiNnZWRNcWiwWMTk5iUKhYFyUGndSKBQc58jQfaH9yWBoAGa3CgDH9Wy/7pJRxlF3arHv2traMDw8jKuuugoHDhwwSq5Wq6FQKOD+++/HlVdeCb/fb9qsWY9jsRhe/epXIxQKYd++fSanCvuUY+H1ejE8PGwUGbdJs2+5TuLxOLxeL6anpw0ws5WazS5obAaNG2WGenp6TP2ZTAbJZNKhoBlboWtE1yL/tt0nOs9sI8n+W+cf71XGUuvUzzhH7PnMftH5quCHfcG5r2zR8vKyY0su5RPHVNcvQa6Olc45laW2AWAbjetlvVyIsuaYEWaIBICuri7EYjFDHar/kYtWFRHQOtBSP9dMgFwMSndSaarfmd9rkJgqNsApcGzmgnXYcQCRSATZbNawO0rPq5ImYLItOrXOqFyYD8Lr9eLMmTMYHR3FgQMH4PP5TObagYEBdHV1oaOjA319feaMF56MHI/HHVsgNdcFBZIdlc8+0eBHtbb5mYIpWwDpd+xTXqMUOZ+l9LaOs/7mva3cQvbc0WIDL73Ppur5PI/HY1gLl2uVoeL4ZDIZHDp0CGNjY5iYmMDCwgJmZmbMM5h4q1xeOV9Kd5uQ7rbnnvYjd5+R9VDFx7957ABBlY4zx06zpAaDQQwMDODqq6/Gy1/+ciSTSXzve99zxL3UajU8+OCD2LVrF/7jf/yP5l5lWVwuF26++WbccMMNpk10DyhodLlcJnCVc5rBq8CK64n5KzweD5555hm84Q1vcPSFrjOCQCpkPotjpHlMfD4fBgcHMTMzg0wmg3g8btYTASmBmz0ndK7x2XTNcs4QeOlcVXnF9rSax+pyUeOAdes85TXlchmhUMjRLzonlB3mGPGacrnsSGRmgzJlR+g+135WQ0n/1jW4DkDWy8+yrAmMtLW1OU7SZYZVImxVUmoFKY2paaGVZbBBhJ2KWoUXhbe6EEjxag4RMiQUAuqftf3HKnho7QUCAZMEqrOz0wEs9D4b+LBevq8KI7qNSqUSSqWSg4YvFos4c+YMTp06ZbZYMrEWlZ7f70dnZ6cRpI1GA9FoFF6v15yOHIvF0NHRAbfbjY6ODsNohcNh4zLQjKH6/jaAVIFqC2fNJQOsKKJyuWziiVoBPcAJRFQR29fodTpeOm681mZW1A3FepQZyWQySKfTyGazmJiYwIkTJ3DmzBnMzMwYupwn33I3CMEeT6lmvVQMVDLqBmIWVb1fT6C1lSjHlRYzr3G5VrbU9vT0oLu7Gxs2bMDAwACGh4fR29trdn6NjY0hm82aPms0GgiHwyiVSvj7v/97bN26FVdccYV5Jvtf3SdUTLrLhIB7eXkZ//qv/2rGWfuVfb+0tGTYlKmpKeRyOTPvuPY1LkzHWhW2JnKjq8jtdiOVSmF2dtbMcVXoBPqc28pW6FzW0ooJaTX/1JCxQbPOSe03rm32qe7YIvujjAZBIueBgkUF7HzHVrsT7fWrgfYqk1mH9vv5+uR8RsELUWZnZz3f+c53otFotPHa1742pwDyxV4qlYorEAi8eDrzRVTWnGeEQXjqE6elyHwGunCA1S2tAAxNraifk51gQSlqFpvNUPqQ//NvPftCF6ouMIKAVuCGZ40wGp0JqRRM2TkmFIzoc1kIcqjkyuUy0um0w53C96DQZz2k/6lwC4UCgBUQkEqlEIlEUK1WDW2rwoouh1AoZE5YdrvdGBoaQjAYNHlhODa2MNf+opWqAlkj+vWUZNut0Aow6LhoP9msiRb7etLLarHacUS1Wg35fB7T09N49NFHMTk5iampKYyNjSGdTiMYDBpLVfNs0LeuCkXBrdfrNbtGGo2GqUdZBbd7JR6CB5LxXoIUnZ8ENAQ1CgLcbjfe+MY34td+7dcQj8fN+KgyazQaWFxcNH3OzJrMy5HL5fCP//iP2LlzpzlHRxWrWs3KmnHHDJXkyMgIKpWKwy1GwKDvzPmuCphjpMpXx1ytdAImjikB98GDB3Ho0CHs2rUL2WwWbrfbBNOqgrVZDT5X3aYKgmxjh/fpj27PVfeuMhO2gaOGkMoKnqxM4EyGKR6PO1zbnH9qKFDWKrunu+Z0/rNtOle4LgiqbZmtfaBtfqHLZz7zmeTb3/72zfy/r69v6Xvf+96Jffv2nXOC7k+r1Ot1fPCDH+z5/Oc/3zUzM+Pv6OiovfWtb52/++67Z373d3934Dvf+U5ydnbW19HRsfyGN7xh8Z577plua2trAsB73vOe/nvvvTfxzne+c+5//a//1Tc9Pe1vNBpPPt8zfxHLmpmRjkTCsATAaq6MWq3m8AtTgOhiUIUMrFKbivh14ZXL5XMWJXBurAEVvAIUpTYpfJRK1uBNLjz+T4WuyZWUDtZ2qIBRVw2FA7AymW1f9smTJx10Mtkg0uCq0Gh5l8tlRCIRE8+Sz+eNEGN/sjAZFV0TZC1OnToFj8eDJ598EtVqFS95yUtQr9exsLDgOJyM4IPCsqOjA+FwGPV6HT09Peawtnw+b46kZ18Fg0FEo1H4/X4EAgEkk0nEYjGzNVaFtfZfo9Ew6dnZL+wbKm7OMcYzcGzK5bIBU9wRwpNjT506hYmJCZNUjH1L/znZCk3rrjEr2q+Mw9DcNFSc9o4uAl4CXMaI1Ot1c5ru9PS0SRJGJRwIBBxryu12Y2BgADfffDO6u7vN3OIcV0ZGU8q7XC4DlgKBAGq1Gvbv349vfetbxnXCecx5yrHQ4HCdx7VaDfPz88blyPXC8dRgzHq9jkKhgFQqhd7eXgcLwkByAiAFEnYuDMqRcDiM/v5+LC8v4/HHH8fNN9+MZrOJYrFojqagbGkVv8Girl6VO7puVZkrK6IKn/fYLjeVDarkCTb5XsvLyygUCg7joVarIZfLobOz0wHQ7N+Uk2rEqZFnG0fsXwVoXG9sI5nOer2OphVn92Io6XTa/du//dub9LPp6Wn/7/zO7ww//PDDJy/Uc9/97ncPfOlLX+r68Ic/PHH99dcXzp496zt8+HAAAKLRaONv/uZvzgwPD9eefPLJ4O///u9vjEaj9Q9/+MOzvH98fLzt61//evLv//7vT2ks03pxljUHsNLaAlZpP/qJaaFSMCs9qL5fwLlfXwEB4EyUphHutlXD+1R4UFHwHtZv/2/HP/B/CgWPx2MU8dLSEiqVCqLR6PNa8TZFajMCzebKtmGeB6LbOrVtSglTOdBdowInHo8DgGFGyI7Qr5xIJBAKhZBOp03f0FpeXl7GxMQEOjs7TVAmzz6hUna73Y5TWtknajG3ooIZA+Pz+ZBIJBCJRNDf34+BgQEHm1GpVAzQyGQySKVSRsmGw2HjqhodHTX9s7y8jFKp5JhvpVIJ2WzWzDXWSxBGml8tW/YhxwBYcTEQaPH91YXCeAn2F7AKqjk3OWfJSHFe9Pb2YtOmTejt7cVFF12Evr4+PPHEE/jUpz6FVCrlUFRU8lSOwWAQ8Xjc9B3nnyrEpaUlLCwsoFKpoFgsmp07bFe1WoXH48H3v/99R4JCKi6b9lcQwrk7OzuLdDptwA/XHMEbARTXEueEuoC4Jsiq6A4adRdp4CbBTSwWM/FWc3NziMViZo3qMRMaVK6Agu/Lem3XK9trAxi2jwrddiurDFMDTOWBsmZcI6FQyGzBVqPMlle67dntdqNYLK6cIdNsGiCuO4vstiuLoywwjcNWLIi+m71uXojyxS9+MVmr1VwAcP/99x/77ne/G/vTP/3T/kceeSQ2Ojrq27hxY+356lhrSafT7k9/+tM9d9111/gdd9yxCAB79uyp3nzzzQUAuOeee6Z57Y4dO5aOHTs280//9E/tCkZqtZrr//yf/3Omv7//3DNP1ospa4ZphULBnHFBtkCpfU5sChnGSOjhZOrPVaHGBa0HkQHnChM+nwuIC0sXDIUkWQPWpYJW26Jb/JhhMp/PGwumXC4bMGLTvGy/1q/UvjJBjUYD+Xwep06dQqPRQLFYNDsE2B+MkFcrrdFomPiFSqViLGbdDqi+ZQrGcrmMrq4uE4wLwCglWs5UJrxXD43TZ1GAqhtNLSv2KZmdQqGARmNlK2g4HMbBgweNcgwEAgZ0Kl3s9XrN2UBKQ5fLZRO7Qcub7gCNP6D7kP1FsEFAwvfUuAabqtdAUdLh0WgUPp8P+XzeARLZHp23BDRUItu3b8c111yDnTt3oru729Fv/f39KJVK+Lu/+zsT2ModPZwzuo1VE/apsl1eXjm3ZmRkxHxPkEelT8bl+PHjuO+++3DbbbedY+Xb76SK1e12Y3p6GtVqFYFAwMSNEIySFWtrazPggUCRcTIKTBS8qdWva4lzm+PR0dGBUCiEcrmM/fv348orr0SpVDIxUQQYygxoYKa6hezn8h3V2NJ62M/K2tluGa5V+15dl5zTlE2cux6PB9Fo1ASscz3xx+VadeVxvXAN6GGOCrpUzul48m8F3QqG1HXTyu38QpQTJ060AUBbW1vzuuuuKzabTfzpn/5pPwAcO3as7UKAkaeffjqwtLTkuvXWW3Otvv+bv/mb5F/91V/1jI+Pt5VKJXe9XneFw2EHcuvv719aByLPX9YERqi4OfEBOBaLKmoNjlMLwf5MBapNj+q2RxWSGtyq9TKbpS0wdDEpOFBLA1hNGESLkts19cAwtXy1T1i3PkOFNO9rNBqYnZ01+RfIwLS1taGjo8MIqGw2a1wydCfQImdMC/uJwpjKs1gsmmRa9KkDMG4nvrvP50OxWDTKZWFhwZELhdaW0sH8n30Xj8extLRk6GaOIetUfzlBF0FGJBJBLpc7x1q2Bajb7Xa4gZT2potDFQvfkztcbHqcCl/98JxnZGNqtZqpJxqNGsBEMMATcPnM3t5ehEIhbNq0CZs3b8bg4CDa29vN7qd4PG7mAZUR3SCvetWr8I1vfAOnTp0y80rjJZrNJs6ePYuDBw/iuuuuc8x5ziFa11TajBXS2I1oNGrmxqFDh5BKpdDV1XXOOtC1xrXJdcvnETCxjRrEzLEhMzI1NeUwXgBn5lJ9Bu8h+LLnXjgcRiwWw+TkJB566CHs3bsXy8vLWFhYMPPNdi/Y4FH/Vjmi37Po3wQDBFlsI9eTuhW1v9TYYX2MDWEKfgIR1qdxNjaj63KtBDNrzI+CLIIvlVNkO7UvOMdaMTEK7nWDwQtZFhcXvQAQCoXqbrcbyWTSNGp+fv6C+D/C4fB5fVX3339/+Hd/93c3v/e975385V/+5Vwymax//vOfb//kJz/Zo9cFg8EXHsn9HJQ1DWAwGETM4zEBlMViEbFYzCw+BQGMy6CioLVKJQOce2Kr1qOWmm15qJVhgxlanaxfwQAtVwpUWh+6RZPX0s1A64/Cnu/A67X99m8WKmQu6MnJSQNUKpUKgsEgNmzYgN/4jd/A7t27MT4+jkcffRQzMzMm02W5XEYul4PX6zUCjHXrjhwAxkKk0gBg8mIw7kMtKlqEjCvQFN/qqlpeXjYJ4Ej7cydDJBJxCGkyYnRvMQ1/Lpczz2IbNeYiHA4jFAoZdxEAA4qUweG4K6NFlxEAE8RMoc64EB1v3ebs9XpNnA1jQdg3BGbNZtMEfkYiEVxzzTW45ZZbEIlEEI1GEYlEDFBspRxsdwDnuc/nQ3d3N6anpx2MX7PZdOy++va3v41rrrnG9DmvIXPX3t5uYkaCwaABfyw8lC0YDOL48eP413/9V7z2ta91rC3WqVY0n9VoNPDkk0+iVCohEAiYsdbAV/Y97/N6vVhYWHAAFjUOlB1RZc3rtO56vY5QKGTclbOzs5iYmMCGDRuQyWTQ09NjXBfKlvI3GSJbpvCd1Z1ht0XXsQIENbRstkxlgRoEGrwciUQcIB9w5gRRkGizOpzfurNLWRS2g7JS5aKCDb4HiwJ2ddu90KWjo2MZAEqlkqfRaCCdThu01dXVdUGYh71791YCgUDj3nvvje3cuXNBv3vwwQcjfX191bvvvnuGn42Pj/vPrWW9/CRlzbtpyBTQwlNLTNG2sgH8jsIJcG7r5WRX4Ua6VC0tG4AAcDyHFL+CGj6L9SkdyWtUwVHQqJ+WMSNcpBqXwja0KkoFq6A+fvy4UUL8/OKLL8aePXsQDoexZ88e7N692/QlsJqgqNFoYHJyEtPT05ibm8PU1JRxazCOgYKf24eVtVpaWkIsFnO4e6LRqMksqlQtrTeyMhR07DP2JbfA8rkU7PyOu1Q4FxjrkcvlDAtVLpdN3zN2hUqHfU7XDMeJrIgqU90Jo++srjC1AFmvsiv1et0wO6yfQE0Bz4YNG7Bv3z6Hi5EgTa1SG3Szf7h+uIZKpRIikYiZl3RlEdBFo1GHlcq1QndUo9HA9PS0IwsqGZhIJIJCoWDAX7FYxPe//31cccUV6O/vP0e52mCEY8C8KxrXRSCpLAbvq1arSKfTxmVLdkSNCnVJsM3KIKg8iUQiaG9vx8jICNLpNPbv32921eTzedN2zl8Fu1p0fFqBCW2DsmeahE3lj7KrGpOhMlHnnAZys33K4PF7fQZd2mRq+Uw7HofP0diiWq1mdt61t7e3jN9TkFy3XF02k/RClG3btlUBoFqtun74wx+Gv/e978X43c6dOy/IbppQKNR817veNfOhD31o0O/3N6+77rrCzMyM9+DBg8Ht27dXpqen/X/913+dvOaaa0pf+9rX4t/73veSF6IdvwhlTWAkm82iXC6boEla5BRySvdpEjTdDqkIntfrLgRgdWdFqVQyAoULXq0XVfJccLrAKci40JXi122seq9mbQ2FQggEAiZQjspQFWArilPdCVz0tOy5o4XBjY1GA11dXdi1a5djCyWFiVKrwWAQXq8XXV1duPTSSx1jo4q8VCoBAHK5HI4fP45vf/vbmJqaMlb7Lbfcgssuu8wwD263G8ePH8ejjz6KVCqF0dFRkweDgIDKgi4MupY0/kG3g9InTuBhgzxaqZ5nmTaOA1mTRCJhxpFWne7uUXaH7is78R4ZOTI0tCIJ6vr6+tDV1WXOUaGLjwBYrUaCA7rJNPbBVmYazKrjw3nKualuiXA4jGAwiGKxaBgYl8tlwFu1WjUBurZFz7nEOUZjgXWz33gt237y5En84z/+I/7Tf/pPDtcr61eFxT4YHx837lDd+cT31XgushSpVMowVWy3sna69glm+DfnDOcYc62Q/Ttx4gRGR0cRCAQwMzPjYLXIwupuH2XjbDeuLV90/PiZghi2kfOec8ZmwrjGFIBxnur7sx2co1wPamxxfahrU9uqbLACSU3Yx2sJ+nVe8l3rIsPOZ2z9rMttt92Wfu9737uhVqu5brzxxp38/KUvfWnuQsSLsNxzzz3TXq+3edddd/Xfeeedvq6urtrtt98+f+eddy48+OCDc+973/uGl5aW3Nddd132Pe95z9T//J//s/9CteXfc1nzbhrdRcF4Bgr5cDhsFpxaInYwl056CrlGo2F2HnABUEAo+FBhYC84VV4qTOv1uhHCXHy8n5YzBR3Bi9frRSAQQDgcRq1Ww9zcHAqFwjnHl9u0rgojteiogM6ePYt8Pm9YnGAwiE2bNmHjxo2GBdB3Yjv1fQmAlOJmn+nJsslkEu3t7bj//vuNm2LLli14yUteYs4pYdm4cSNe/epXY3l5GXNzc3j00Ufx/e9/H1NTU0bB8D18Pp85tyWbzaJWWzl9lu9I0BaJREy7CBoymYzZakxlSQHJ3TdUmlSutuLge6sSAFaT8PEeBlEyIJlMxt69exEKhdDf349kMolQKASXa+XQsIcffhhf+cpXzPZVmxlgLpFIJGJiFKhcaPVS6WrwKftBA6ZrtRqmpqbw0EMP4dixYwDgCERUa9oGfArECVj0fTnenE+ZTMawZeqi/OY3v4mNGzfiNa95jVmTGh/AZ5DJ6+/vx+nTpx3uVnXH8rRYYNUlkU6nsbi4iA0bNhjlzTmqcQvaRwAcSpnziiCZfT0xMYEHHngAr3zlKw1AIljkD99XWQ8FCRqAzndl/6iLSq/X9a3tPx/gYiEIJZBTt68yHepC1N1FCrK5TlTO6H0cP/ZrOBzG4uKiOXmdwIg76xxuHNdqHpgXQ7wIACSTycanPvWpM3aekU996lPjF/K5Ho8Hd99994y6Y1g++clPnv3kJz95Vj/7wAc+MMe/P/rRj0599KMfnbqQ7fv3UtYERhgHwkI2gX5+G0HbC5pCnQCE/nkNCgOcCx7AOaCEAl0FGRcXFZgyKcoaaLIyClgNQtPF63a7jUtD41wo4FtZxbxPdw4pxTs+Pm6SG1HxdHV1GQqewlipXxugsU8UELEtdtR8JBJBMrnCHC4tLSEUCpn4Dm0XqWG3eyWnxRvf+EbE43H8xV/8hVGcFIBUahRU3KlB61cDUNnW4eFhvPnNb0a9Xsfjjz+OqakpnDlzBoVCAd3d3Whvb0elUkG1WkWxWDTjQwWnrjeCSq93JdNroVAw4ENdBW63G729vdi5cyeuuuoqDA0Nobe31wh1gir2aSKRwGte8xps3boVH/nIRzA/P2/mpt/vN+4X/vT29josXp2v7AeChIWFBeTzeYyPr8jNhYUFHDhwAIcOHcLCwoJhqbg+lDkh0FemwlaeHBsqe7WyeR+3klIBEWB95zvfwb59+8y2a13HXD+c11u2bMGPfvQj81wFxGQgdGt4oVAwrkIFV7qLTvuO7de+IPBwuVaC1JPJpHELVioVPProo0gmk9i5cyc6OzvR3t5u1jOfp4YLFb8aEGwD1xM/03djnRrDYssEPosMF9e4uqNY7J1IHG/OH7v/yTDrGLE92k7KV/v50WjUMU4LCwvIZrOGNdP5pLKN4/JiKG9729vSr3nNa56+9957o5FI5OcuA+t6OX9ZExjhBD1y5AgKhQJyuRwSiYSDhgdWkwopFamgRBc3iy469cMqyuf3FFD8jpYmXQgsKvBoMTcaDUdyKxb63rnY+Uyfz4fOzk4TdErhoddo24BVBoPP5vswXkTjJDSQkkyT9oFdlH1RwMI2qOJhHw0ODuL06dNYXl7G9u3bzRZZFs1hQDDn8/lwww03YOPGjfjRj36Ehx56CKlUCh6PxyjwbDZrGJFsNmssV7pPqCS5tXNwcBAdHR247LLL4PF4MDMzg+PHjyORSGDHjh1oNBr4m7/5G9x3330GzIVCIXR0dKBUKpncIRSywWDQJPjittgtW7bgpS99KXp6etDb24tkMmkofc49Kjn2lyoKv9+Pffv24c4778Sf//mfI5VKmX7SLLS6E0fZQAVjuVwO3/nOd3D06FEcOHDA5P/gODIRGhUG35cggnOdTCQBoP5wvKPRqCNeSjOhNhoNw1qqoiKzMzIygh/84Ad485vf7GBCdG1wrm3evNkR68Q2kNUCVvMKMVaMoIfvwXYoo6lMjwJ91scAbD2fiW7A5eVlHD16FB0dHYjH4+ju7kYikTinjfxb2Qsb9PMzZbB4v4INBQR2fBD/z2QyCAaDhiHku6gRoAwFx8YGZ3wO69Dst3ash74Dn6fP5pqZn5/HoUOHMDc353Cl28+1x+LFULq6uuq333575oVux3r56ZY1B7AuLy8jGo0aQU7KUN0VGvegSlp9psC5p7GyDl5ruyWUBlXgYwtZCkC1JlTp8H8AjkRJFDSqYJrNJkKhEAAgn8+bnRL6XmpFqKIDnAIim81idnb2nIRZIyMjmJubM8rBBkoqvPk8vov9LLZFaeVEIgG/329YEnW7qEuNbJXWu3XrVmzduhW7d+/G3XffbfJFMPkdFTCVBXchaf0ej8eckUMB3Gg0jBXL9nu9Xlx55ZX48Y9/7GAXisWi6Re6hwAY5dxoNHD55Zfj1ltvxc6dO9HR0WHehwGgAMw85W/OBRXC7N+dO3diaGgIhULBuCK7urpMkK/H40E2mz0HPLPeXC6HT37yk3j44YfNkfdkAdlP7AvWz11bZEI4pyqVitl1waBdAgS1tBOJBPr6+hyBvZwHtLgJgPk34wiOHDmCSqWCcDjsOBiS64rAuq+vD/F4HLOzs8YlCMAEsLLoO+VyOWQyGcNc6ZzWdaauCAI6BQHafh7Gx2Dd06dPm/XT09Nj2BHdoq4MgzKnOv62QaVuGN6vckbHgAYN6+dWXY0NUbmn7KkeT6GuFjW6eL+y0LpFWvuMso2Ahc9fXFzE7OwsZmdnjQHEayHsnMtirF5MYGS9/Pssa44Z8dbrSKVSxjqlq0MXFn3tKmyUQlTaVxUiFxEXl7IKAMwzaSnZwEQpS/5PoWoDHo1A57tpIqFGo2ECNMn+ZLNZk46bpRUwUWtGgcL8/DxmZmYMM0OreGpqCh/72McwMDCAgYEBXHbZZRgcHITL5TKH36lbhm2kkFMQYgvYcrmM0dFRTE1NIZlMmqBCbdv56Fi1iIeGhhCLxYzLhuPudrvN2UQcdyZnazZXYhV05xHniMb2cKw5T3T3C5UXrUGOE61tn8+HSy65BL/1W7+FLVu2OFwCqjRsd4qyNwpS2SaCN7oDarWaI2mc3+9HLpc7h+Jn3WNjY3jiiSfMTjMqEA3aVEWpO00I+Ni/jFOx1xPHgu+obgMGrRJskBmkW5Lzie1Jp9Nmy64qN53LjUYDQ0ND6OzsNAcKNhoNcw/rYsyGxpMtLCyYdWdb/yo7+H4a9K7KtVQqobu72wRz87parYYjR44gFotheHgYmzdvdjAxui6ULdB3VYaD84fzgp/pb76Psr5cFy7X6rEOvEcZDmYW1qSFCpApR3k9d3JpPIm6ZN1ut5lDGozPuVEoFDA/P4+pqSmzu0oZPh1nPpPlxeKiWS//vsuawIjf7weqVXOuhlJ5VBQq9Lif3vZvA6s0IJWBIni1SrjYVNG1tbWZhcdCBaS7BbgLxGYPNDKdwoNuHrZf4yiCwSD6+/tRLBaNwF1aWnKcYOzoVEmDTSVRr9dx/PhxwyhQ+NHynZqawszMDA4ePIjvfve7SCQSqNVqeN3rXodbbrnlnIP9XK7VLaTHjh3D8ePHzU6nLVu2oLOzE7FYDGNjY3j66afhcq1kW2WOGI6BsjrqJ1dqtlaroaurC4ODgzh69KjZocJARHXF6fvWajWTY4SHuynrxP7XQM94PI5wOGwy/TK+gWPDZGOMIwmFQrj22muxZcsWM+4cP2XXms2mmbO6xVvpbLUUg8Eg9uzZg/vuu8+wEpq51u12m10iCvAo2HluEAOhK5WKAQV8fw3EJDAg20DlRVBcr6+cCaRBwQQnHEufz2dYS7p6FKRwey9jBDTQtlKpIJ/Po7u72wHSbcDq8XgQi8XMePFvbYsmhyOIHBkZMWuHgFKZFCpGzfnDdjMBHecCY5QI0tjvxWIRzzzzDIaGhrB792709/ebsVfjRg0cvZ/zQOUTgZN+r24eKn4CPI4p57/KMzXEFFSqzLDZE/aNsqO6NjkX+B6UlbqzanFxEaOjo2g2V4JY+SwFKzYQUbDIZ6yX9XIhy5qz1rlcLgwNDSEQCJgU2QQJSrPqYrMXoCo/XTwUgvZefpfL5QA1tODo/1Qrm35krY/3ahAaC9uvFhmtLQIXn89nzsRQi5QUsVqOFNh8jgpqbulVFoL/ezwrB7zRhUJQND09beh0FQq8J5PJ4Itf/CIOHz5shGYikUAsFkMsFkM+n0ehUDCgQbc5aj8o28T6OQZ0bezatQsHDhyAy+UycSfqDtLdMRxXjfOgkCPtzbElGK3X6+js7ER/fz9OnjyJZrNp7i2VSgbYVCoV43655JJLcNlll50DctUl1GyubC995JFHMD09je7ubrzsZS8zR9BrO/SdhoeHHUHImgzO4/EgkUg42BSyA1wDtGArlYrZNqxsk9LxdOGwDRwHKrJ6vY7BwUGTyVXdB3pfe3u7AQPMsKv9QUXPuczdNalUCuPj49i4caNjPbGNutuDycW4VvUQSL4PAJNbplarYXJy0sE6av06burS0KB2rmM9fHFkZMSMFddRNpvFE088gcsvv9zskuL3CiI0mF1lDdui7iGOv71eFEyoLLHdS2ThlMFSt6vKS5V5ykwpU8JnKWNjg8Z8Po/5+XlkMhlzThHjerjW1fjgvSrH1st6+VmWNYERCuJ0Om0sG42mB+BYcBTMesaM7cLgItPkRqSuAWeKdWBVOKvvmACB9Lk+Wxc528utkNpetRJ5P62iQCAAr9frCITkb/sZBDa6mBuNBubm5nD48OFzXFlut9uAJQb80bLq7Ow0O23UZaV1FwoFzMzMOEDB4uIiFhcXHXSvx+NBPB53WL1qIVJAaUptFdSNRsMcusdxooDv7e3Fvn37MDg4iEQigWPHjuG+++4zcRU2q6NClMwAhXY0GsW1116LY8eOoVwumyRtBCvBYNBsC962bRtuvfVW9PT0OMZc/fTZbBb33nsvvve975mTiUOhEEqlEt74xjc6tu8qywesKPaOjg4H8FQlQ8DL+a7rgLt9ePaPBn3Sitb5zHlHwEjFRxfC8vIyMpmMWRvqWiBQcLtXAky//e1vmzgbggEmnuO6K5fLDhdDtVrF3NxcSxZBWSSv14uOjg7D+hBs8/1sVo19mclkUKvVjEK0E9ixDzm2us4UcKlbhuxovb5ygF65XEapVMLZs2dx//33w+PxYPPmzYa5UtnD9rNof9suHHUjKrOiskljuNTdYrMgOr8IsLRd7GubTbbXDYGZzkkCsnw+j9nZWSwsLMDv95t1TwaSGZzZd/pclW0s68BkvfwsyprASCgUgiuXM0IJcB7kRcGkVjJBgPrlWRgUx0VL4agWBoUuLTtg9Rh33WNPxab+z2azafyy9J/bvlAVHIDzdE4qaPrtGQiprIvN/KjVp0prcXHRtKEVkKHFQiVmU9msn33KzwiaFBwwc+fy8rJhMPL5PDo7O00AqPrRNeaGbVarjc9k/Arb6HK50NXVhVtvvRVXX3212UK8efNmTE9P48CBA8bVwr5RQawCGMA584QJ1zg3yLIEg0G4XC4MDw9jx44djnZqojYKYApt9k+lUsHp06dNvhdtk/YHLetmc2WrpgYWE9hqojUV2uwn9ievV/peD7LjOzJIk0wM5zUTu2k96u5h2bZtG7q7u83xBXwWWUQ9+FDdCMViEQcOHMC1115rwJ1azspa7N271/QFD8Xje+h85XiQeVlYWDD5bbg+1A3C53BdK7OqsRLLy8tIJpOmDrqfCOrz+Tx+/OMfY3BwED09PY5DMvkeGiOk7JOyHwrUdc3Ya4PMh/7Pv7XYnykwIvukyee0DQrYeK8aQWQKFxYWDPALh8Pm0D26AL1eL8rlssPtYxcdcwWY62W9XMjifv5LVgsV5qZNmxwKG1jNuqpWv05iLh768klLsx4KBE3Brr5Sgg8KPlUMvKZaraJQKBgLiZlIaUFSUCq13MoaCAaDJh8HFQS36J2PzrUXru2ySqfTCAQChnmo1+sm2FIDKWm9UvAlk0kjALUvKUgphIFVvzPbFAgETJp4jl8sFnPEUyhlTGBjU+f84ZiwjVu2bMEb3vAG3HTTTejr6zPP7+npwWtf+1r09fWZ/tRzQ1rNDRW6TCFP5ULXDOcM3Vb9/f3nHNam27abzRUf+Zve9CZ8/OMfx5vf/GYj8OkGU9Ci1DjbRSaIQBmAeQbHkcBU/+7s7HSAVmbN5H2Me2K2UAVhmp5edzcpQ6ZjTMDvcrkQi8UQjUbNvCPbwDlClo+fKzhKp9NGIXOsbfC4vLyMjRs3oq+vz2HlV6tV4+Yj6Ccg5pZm5m1pNpuO2CVd17obRRkSzkm2iQGszWbTxMDwfzJB3/3ud3Hw4EFTH9c7jSZ1b6ghwaKgyWYOaEAQ2LBO7SubmWTR9Uy3EzPw2q5fBUucP/rDsZ+ensaJEyewsLCAUCiERCLhOMKB7eL5Vgr+2Kd2vIyug1bgar2sl59mWRMYoUUajUbPobQVmADOUzDJDugi5OSn8uO96kfnd7bFrlabHbOgQaVUOIFAwOGaoSCy/bZu90rW0Hg8bjJzEkDwiHLeq1YvcK7Lg3U3m03kcjmMj48b5UfamcLHVsp8l97eXgwMDDhcSsrANJtNTE1NORQXg/xorfO8DuZLYQI3BU0UShpgqH0ErCiM2dlZLC8vG9fYNddcg2uuucYEhvJej8eDvXv34rbbbsPAwACSySQ2bNhg6uXY8104pmxHT0+PEcC6y4r9E41G4XavbOHUYFQqBq2XbMjg4CBuu+02vPKVr0Sj0UCxWHTMAWWoOK98Ph/C4bBh1jjvCHLZJo6Pxhm1t7cbEBEOh+F2ux1H3DNY0+dbPX+JAad0ZXCeEGh1dnY6FAjjtKhYlpaWzEnCy8vLJgcLAQ6BHn9zTShVrwyWzcZxTrS1tWHnzp2GvfP7/WhvbzcsEcEP10mtVkMmk8Hp06cdMV4M6iUAIeOmsQ2sw+PxGKYwl8sZhatByar0y+Uy0uk0Hn30USwuLjrGmsCJBg7/5nuyLxRosN32NQp+lXnRNa0yplUsigILAgN1x9qsCJ9dKpUwNTWFo0ePYmJiwoBvjVkBYFzAXH8EwNwaz3gWjdexZfh6ObccP37c73K5Ln/kkUeCz3/1+ctVV1214+1vf/vQT6tdP69lzTEjFBqkrnnkusZ8qMDk/8qY0JVAsMDFqYpJrX9b4atFoxaYvYsCgHGz0EqgoFUakj+k9NlOWrO0WJXVYV0ET8Bq0KH6o/nZiRMnzHku3KKo25RDoRDC4TAAnBOop3S6ghwqGp47QUtXlbJm5lTLHDg3UE2VvwpW/s04lEqlgo6ODgwNDRmAqjEQtNKvuOIKAMDZs2cNI8RCJagMEuvp7u7Gpk2bMDIy4gBibL/f78emTZuMQlQwBsAh1DmXGo2VE1J/8zd/E8lkEpOTk+aZei3bxjkTjUYRCASM4mfMQrVadQAUtpHtDQaDJlkb7+Mc5bgRlOi60HFlki9+r24rxoSwbj3UjwqX819PMHa73SgUCg7XIMcul8shnU6jvb3dMS8ITDiu0WgUL3nJS/Dwww+bFOx0h7L/lf3iu0xOTpo20AVFtkvdMLp7iv1L9+3i4qJpB7fek1Gke4dzfmlpCfv378cVV1xhMhyzj7kOKW+4LtTtqi5fyhvbMOLatNk+ziFlS3QeKxvH9WUzc/b3nFterxfT09NYWFgwjCtPMw6FQqhUKigUCoaRq1QqZi65XCu78AiuVJ7o7iYt66DkwpZvfvObp/x+/y98YM6aD8rzeDzGp01QQcvCtriBVfcNrQLeQ1SuoABYtc7o49TChaxbeuni4I9uz2V9AIxS0EBRXkcAQktVrWtaZFNTU8jlcujo6DD5NorFoqmTQMYWQuw3BpNROBMcMZMo30sZl66uLiNAgHO3/ZGOTqVSBrxoUjEqWbavs7PTYe1qn+v7KjXMMWo0Gjh79qyJzL/iiivMdlr2PeN6FBhcddVV2LFjh1HGBB5UUDoHqBDC4TBuvPFGfPaznzXXV6tVRKNRbNq0Cb/+67+OWCyGrq4u01e0ihVosq8pZJeXl9Hb24vbbrsNP/rRj5DJZDA4OGjmJ/uX75BKpUxOHZ0T7C89dEwFusezEix8ww034DOf+YxxM4XDYfT39yMYDOIlL3kJrr32WiwtLeG+++7Dt7/9bRQKBQSDQeNeI1ChsqSbsFZbycYai8Ucfck+6O3txcjICIDVbMe6dqhEGRCsbitlKdlnXMc6L3bs2GESj7GNvF5BiALhU6dOIZvNmvXDMQfgyDhL8MEU/Ax25c4fukw5NwAYVw3jpQKBAIrFIkqlEu6//34MDw9jaGgILpfL0Y9kVXQMVdao+4bvpABXQbgyjOwrFo6TAgzNMaPuUT6D61eZw0qlgrm5OZw5cwaBQACxWMyMcaPRMHFFbBcDlTmnuR5YZys2h2vIljcvhlKv13H48OG2J598MlStVl1vfOMbs52dnS+Ow3P+H0tPT89ztr9SqbgCgcCLZxAuUFkTGOFinZ2dhcfjMZQgsJrdkotMBZctnBhAxUmvitNmQli4WNSyZN4G3a1DgUqlwMVIYKPsi9ZFQW4r/nq9bqjQtrY2E6ewvLxsBChBULPZNCwFQUG9XseRI0cwPT3t2A5Lgal0LD8n07RlyxaEQiFjTaoVw7rz+fw5/cT+KJVKKJfLCIfDJjEZczOoDxyAibdhnAewClJotZKpCYfD2L59O2KxmIMVsecJhV8ikTBWM+fG0tISHnjgAXg8Hrz85S93WMYejwfbt29Hb2+vOW2YW8kvvvhi82z7mTYjpwpDgXIwGMTS0hJ+8IMfYHBwEMFgEKlUCkePHsUjjzyCQqGArq4uzM3N4fjx42ZuUGkxt8jCwgKKxaLZraBMktvtxk033YTJyUnMzc3hiiuuwN69exGPx40rguC0u7sbk5OTeOihh4xLgHO9XC4b5UkmIJ/PY25uDu3t7WYMOaY+nw8DAwPGZUNDgQqOrIQqRX4/NzeHU6dOYfv27Wbu2+uP9TAw0nY9cA23iqEolUomiZy6/3gN76FxwLXMNcw2ce1qrI2CALaFwbUnTpzAAw88gDe+8Y0mGZzGTWjskO0aUVZX4874Djrv7HVDxpZ9ruBMr2O8jLImytjyeYuLi5iZmUGxWEQgEHDknFFg4ff7TbA8Pyew43jx+ZQrGh+kz30xlVqthsHBwYvm5ubMWSKzs7MTH/zgB+ee675/a6nX6/jgBz/Y8/nPf75rZmbG39HRUXvrW986//a3vz0FACdPnmy78847hw4ePBgeHh6u/uVf/uXYjTfeWASAmZkZzzve8Y7hH//4x9F8Pu8ZGhqqvve975357d/+bXPOxFVXXbVj7969pU9/+tMTADAwMLDvzW9+88KpU6fa7rvvvuTNN9+c/sd//MfRC/mOL4ayJjBCC2VsbMwsMFUAwKoFpUFc9frKmRvc4khlxIVMn6m6StRqppDSBUrAwS2+XHi2OwBYsQ5qtZrZIqpuIlpeFBbAqruCCzsSiZjD3Nrb242AoWC1LVj+0KJ/5JFHjG+bgp99QCBDYc/+CYfDZvcKi80iuVwuZDIZY9mWSiUEg0ET1Mp4F6YX7+jocAAZYDW7YzqdNonEOG7sC8YnDA4O4pJLLjGZYqnk2R4yX5wH6k6jBUx3UrPZxPT0tHEbJJNJ0x+NRsOc0eJ2u3HJJZfgla98Jdra2tDZ2Wm2udbrdaOQ+V7qpmtFO6u1+t3vfhdHjhxBZ2enSclPRU0g6/P5kEgkTJyBWpFzc3PGHaKxMJyznZ2deO9732sS3bHf1eIGVpKR/Yf/8B/w6KOPOvqfCpJBp5FIxMRMkJFQlwFZyE2bNpn5yHqo8DiubCtjO3j/U089hRtvvNHUSYtbwUizuRLY29fXh+npaQCreT7U1aRxXW63GwsLC5ibm0NXV5fDpaprmwBdXaoEHKpUGXOlbhGOQ6Oxcm4S28s1uHfvXpOThucoKaPJZ2ogrIJQfUd1cdoMA/uXY6lMJOWKgnh1gWj/6dojK1mv1xGPx01fKEus7j2CxUqlglwuZ1hEMk6U5/YaZntsdvHFAE4qlYpbgQgA1Gq1C+4/eve73z3wpS99qevDH/7wxPXXX184e/as7/DhwyY48UMf+tDAn/zJn5zdvXt35X3ve9/A7bffvnl0dPSZZ4Pt3Zdeemnp/e9//0wikah/7WtfS/ze7/3epu3bt1euu+660vme+clPfrLnPe95z/SHP/zh6Qv9fi+WsmZmhH5b3SZJxcfFpTEVXFhc+Ao6lP5UypaAQrM48iA0tZ65UPhcun88npWD6PQ4cfr3Q6GQCRwle6IMDbBqyRFMeDwrZ6v4/X7k83m43W6cOnUK1WoVXV1dRuizH6h4XC4XRkdHMT09bQQrE0EBMIGmwKoA4BZOJg7TRFUqnOv1Oo4ePYqHHnrIAfByuRx8Ph8ikYipV+lvWncq9Dwej8kYSkXMvlDr7eabbzZZLe2gx1bbW21rUV1A9Xodv/IrvwIA5hwWTQzV09ODt7/97RgbG8PWrVuxa9cu44L7+te/jgceeACRSARXX301du3ahf7+fnOGkCoKW1nxb87f0dFRHDlyBD6fz8RkqMItl8vI5/PmvB0mXlM3k/azUtu6K4S+em2TslwbN25Ee3s7UqkUQqHQOe4VAlwAjmPg2ecag9Pb2+vYzq55TniNbscHYBTb3NwcstmsUXhc8+qCYLs3btyIJ5980oBIzhP2nwIazk8COn5PQELZQMZTXWeRSMQEwZLJ8fv9SCaTZlsv37FQKBhGhGu80WhgYWEB+/fvx44dO4x8IbPL56oRw/5WdkgZTJsNVNcLx1TfifdonFSrtcK5QaCQyWQwOztrjCmuJY5bMBg07KgeG0GQye/o9i4UCsjn82Y3WiKRMHlHWrVFGcYXukSj0canP/3pkXq9jne84x2bfxbPTKfT7k9/+tM9d9111/gdd9yxCAB79uyp3nzzzYXjx4/7AeCOO+6YfdOb3pQFgA9/+MNTV1xxxZ5Dhw4FLr300sqmTZtq//2///dZ1rd79+65+++/P/blL3+5/bnAyEte8pL8hz70odnzff/vsaw5HXyb14tMJmOSKGnkttKVqtS4OChgKLD4vSoP3kuXhm474/VkRRjjAcC4AXgPlaMGpvEdKNTJ7gDObboEUrVaDalUCrlczgiPbDaLM2fO4Mknn0Q4HMbOnTvNNmCv14t8Pm8sLQAYGxtDLpczioFR7Kr0CLxorQFAf38/urq6HNY220mh9uSTT2J2dtbhBqFC5jtTcPv9fvT19Rnhq+wH+zwajZr+o9BkG+PxODo7Ox3AQ90hWp/Wq1Y34MzSyXN++GML6EsvvRQ7d+407fd6Vw5de+ihh7B//34MDQ2hWCxienoaO3fuxNatW5FMJg1wsP37BAaAM4dEKBQyDALbz//JFhFoMrspt+UyhsaewwSXOqe0j2z/PAv/5y4SsgWlUsmkn89ms4YtYR/z3kajYQ5EpJJWoEBGgn1KtyADYmdnZzE9PY2Ojg4zzzi3uKZpXe/duxdf//rXTf/qPFWAz++5hZVtJivB/CdcA/xeFSCNkVqthkQigYWFBdPHymwQ8JK1ZT0ejwdPPfUUXvWqV2HDhg0G9HDt8f3o6rHjZggyCFC4NijXlO0gWNV5rbElnHcam6EAgIzt4uIi5ubmEAqFEAqFjCucbQRWM8kCq4n2+Ay2w+fzIZfLGVCi9yqAVjZU31/Z2Be6vO1tb0vncjn3O97xjp/J855++unA0tKS69Zbb82d75rLLrvMgIrh4eEaAMzMzHiBlbnz/ve/v++f//mfk7Ozs/5areZaWlpyBYPB50R3l112WfGn9Q4/L2XNu2l2X3QRqtUq0uk0EomEEUC2a4STXL8jsLDP3lCGgpOe91AJLS8vo1gsGotWFxKtK7IJqpgpIBh3QOubViqwGqRn5+lIpVKYnp5GoVBAe3s76vU6RkdH8cMf/hBnz57FJZdcYnbCcIdCLBYzOxKWl5dx/PhxoyCYc4F9yb5xuVxGMJKO37dvH3p6ehwCzY7xOHHihGPHD5V5IBBwJM5iDIS9g4CCz+VyYWBgwLRJBSQVKK8lUNF4AbqZNGaARf/m9QREOndUKPLZdD+xvcvLywYc+nw+5PN5dHV1YWlpCbOzs6hWq9i4cSN6e3tNH/P9QqGQefd8Po+xsTGHG0O3nPKHO56o1IrFIiKRiHH7McW7beEqMLfdmPbasD9TC51gW5kAKim6YhQ4sf3lctkkPSMgY5wFgRTHUsFFrVZDsVjE7OwsNm/ebBSbbj1VENfX14dEIoG5uTmHm5KMB8dYGQVd6xqsTRChbWKbCRIikQhmZmYcqcx9Pp/j9F7NrcFdRgxunZmZwWOPPYbOzk4D5ggeuO7pHtR4N2VCyFJxzPi3Bp+SCVJXi85xBeBkldhvlUoF2WwWY2NjaGtrQzweN2wr62EcUKlUQjgcNkahzaCyf1gvwYy6T/X/VmwP55ct339RSjgcfl4U5vP5zDXs13q97gKAD3zgA71/+7d/2/3Hf/zHE5deemk5Go027rjjjqGlpaXndC+Fw+EXnor6GZc1u2lqS0sol8sol8smCyIAx2RWPzEXGa1Mm/7nwtcslMBq7InS7KVSCblcDv39/Y4cJGQUCEq4WJPJpEn+o4JDlaxt0dXrdZP/gNvjkskkotEojh07hn/6p3/C2bNnjXDu7u42eUj4LnqqLE96LRQKJnCRYIhMCWlXCl0ezBcKhUwgnx2Ls7i4aDKIUgHpWSvqhgoEAsb1w77kGFA4xuPxc6xCFULaBgUkrQQW54RtYfF+BYzqolOlZbvNGo0GSqUSHnnkEczPzzssULq7isUi7r//frNDxOv1Ynh4GIODgyYItF5fyRMyPj5u3p/AlGCMeXSoyPQdOJcZA6WB0bZ/XWND2Ld8ZitGhM+j0tCgarokmNCPwcMEzgzKdLlcOHPmjGFP1Cqn0mLdNpDiGqRy16RedDux3RrwSYaFDBIDbW3QWSqVsLCw4ADDDKok08l+Yz8Gg0FTjwayktFKJBJmjbFdaqRUKhXjoqjX6zhw4AAuuugibNiwwbjddPu7gnQNwuVzlV1Q15+yrzZTqOuWrDCBtjKepVIJExMTZldVMpl0uMf4Tpx3ZJs4Nuom4vgw43IkEkGxWDQyR/MvFQqFc1g9bbs9V3+Ryt69eyuBQKBx7733xnbu3Lmw1vsfffTRyE033ZR517velQJW9MuZM2cCW7duLf/0W/vzXdYERrxeL06PjSEcDhuBwyRaXq/XZBRVF4TStK1QtipEtazta2gB7d+/HxMTEyYxFs/rKJfLmJ+fNwuuXq8bOrarqwuxWMwc465WOJMeUaET3DAeoL29HX19fQiHw+js7MSZM2cwOTlpdgbQWkkkEqaOarVqUjKfOXPGCAcKdz1XgsGvmqo+kUiY+nQ7LAUglYnf7zdxFAy4ZDwMg3kpZOjOUKWpTEAr9gVYtdg5jjYdTTCl9djWH+sBnId66Xd8BxvUMjCXMTDhcBjDw8PGKmScR6VSQSqVwtmzZ5FOp1Eul3HllVfioosuMn1Jpb2wsIBsNotcLodwOIyNGzeis7MTr3rVq7Bz505UKhVUKhVUq1UcO3YMX/3qV037aKnX63V0d3cbpcD35nxQF5ZaoZyjTM7X09ODsbExfPnLXza+e8ZMADDri2sjl8uhXq8jkUicE/9DNmBxcdEkWCuVSg42knNOx8d2Z3A7M5WnsgRc15lMBocPHzaKEIA5TZnt1TgJsiWzs7OGidG2M66LbCb7TxkH9iPdMmR6uKY4dyqViglupSziuVVTU1M4ceKEI3aE78X+5JoicNB4HZVp9hy2g/j5uSbS4/UEwJR709PTmJqaMjKH2XYZ+0EwQvDG99a0CgQkXO9k1dgmygyNR2ECPwVWvP58jMkvUgmFQs13vetdMx/60IcG/X5/87rrrivMzMx4Dx48GHwu1w3L5s2bK9/+9reT9913X7ijo6N+zz339CwuLnq3bt36s2j+z1VZc8yIJl2iz5/KW4GFCmAudC5oYNUVAji3ZfJ//uZ3wWAQ+/btM7suPB4P0uk0xsfHceTIEbODhFY+FVQsFkNnZ6ex+phPgcpT85HYWRzZbn4eiUTwa7/2azhx4gQOHjxokgkxYI40N4N6a7UarrjiCmQyGYyOjp6zDdftdhtQR5aHgWX9/f2m/7Q/gdWkXrTyNQ6mXq8jl8sZ64dBbV6v15EpVd0vKiQp9DjOjObnNQROzGfAthEA2XXaFpXODwWhtitDGTEAJo317t27UalUcPLkSfh8PsTjcaPkmBekWq1i27ZtuOWWWzA8POxgyxik2d3dja1bt2Lbtm249tprTTZPshJs18UXX4wjR47g6NGjpv+oqFqdHWQrJbp3Tpw4gUceeQT79+83gKKtrQ1btmzBzMyMcTORzaBipDuDY5jNZpFIJAzQZOJBKv9ms4mFhQVjNXOOs326Lm13Ed9Nc1UwBqlUKiGfzyOdTuNf//Vfcfr0aRw9ehSFQsHhJiAjRwWpYKNarWJ2dtbMDwJ/Ar9oNGqYFc47YDXzM5U6g9EJvAkIi8WiAROsg3OIa6vRaOCJJ57Arl27TFA05xt/CEYJthm/Zs9j7TcFasoYcq5wvasRAqwYQ/Pz8xgbG0MgEEBHR4cBGWScaPRwDTcaDRPorCBK26YxXdwVxn6ke5EJ9XQ+2O/W6v8Xslx99dXbH3vssSj//+M//uPBu+66a/DBBx888rKXveyCsA333HPPtNfrbd511139d955p6+rq6t2++23z/8k9/7xH//x9OjoaNvrXve67YFAoHHbbbfN33TTTZlcLud5/rt/scqa3TSJRAIATMQ/4zS48Fyu1aPWlc4luua1Gv3PRUDAwoWltCeFz/bt240rZWhoJYPusWPHTFZBMh3NZhMTExPo7e01x6JTMFAw+Xw+E0dCwUlmQOMwgFUlSoaFyprKiy4kunYY0Hr99dej0VjZavj444/jscceM32lkfbsr2AwaE7qZb/wGh2HXC5ndnmQCqf1yfFRRRaJRNDR0eHYKmwXG0CQhcnn82aXAoX88vIywuGwGV+287lYEVWYNhjhdfo9wQ/PqqFA3rRpk4lbSqVSqNfrSKfTyOfzyOVy6O3txQ033GCSXPFazq8NGzbgv/yX/2Lyg1CZqpXPZ5GJOXHihIOeJwBTet+m6ZeXl7F//358/etfx1NPPWVS8wMwdPmTTz55Tn4MMngul8v0e3d3t1lXW7duNW4iMiDs48nJSRw8eBDAKgOiMT6c1wS0fFcdn/HxcczMzKC7uxuLi4s4evSombulUgnpdNqsc3Wb6PvZYJef62+NRVIXA7CaOdbtdiObzZrdcXQ5BoNBzMzMGBnT1taGarWKtrY242atVCoG3GlMzdmzZ/Ev//Iv6OvrQywWQ1tbm3EH6fhwjhaLRSPv2H+6ZjSAWZkmXUMqA5WBmpiYQLlcRm9vrwGP/KnX68Z9qm4jgmZew9xBBGkE3cFgEJlMBplMxrhr2L+UfWRkaUxyHlBGq/H0YiinTp06Bxk2Gg1MTU35AFwQMOLxeHD33XfP3H333TP2d81m80n9v7Ozs66f9fT01O+///7Tz1X/Y489dlz/n5ycfObf2uafx7ImMFKpVDA1NYXe3l7HwmTODrII9N/TkuSk1sWgSp6CWH3rpI35t/qC6V8HVjJ8bt68GYVCAalUymQ7PXXqFMbGxkzQK3cL0BrQxE+qRNgmZXHUf+pyuZBIJBCLxeB2u7G4uIhGo4F4PG7ACnda8LC++fl5xONxvOpVr0JfXx+OHj2KU6dOAVildPm8eDyOjRs3GguI/akgaXl55RhwUvjz8/MmOVqjsXIWCq067l6IRqOIx+OOMVAwSNcCsGq1MSdIJpPBY489hlgshlgshkQiYRKysU26W0TdLQo8KOTUdcd+ty0vtdQ4Xo1Gw+SK8Xq9uPfee3Hq1CmTRwMAhoeH8au/+qvYvn07XK6VGAYm2XI2ULcAALRTSURBVKMF2dbWhkQiYeYmmQMb9PHv7du346GHHjJtKRaLaDZXztAhkKEVy8JcKJ/97Gdx8uRJR8Al29FsrqQl53jxHRgDw7EPh8NIJBImtiGRSJh69BTearWKxx57DBMTEwBWj2/g2Oha0x/OL7KHJ06cwEc+8hHE43HU63UcPnzYEZPCdil4JMtHtoj18nlkJWZmZgzIICvCuCiN3eG5QNVqFe3t7WY3DbcHk7XJ5/NmbG2Xjb1jiHPa7/fjxIkT2L9/Py6//HLTNrJIynYpU0YXlDIF6uLkZ1yHnBe8nu9Zr9exsLCA2dlZNJtNdHd3OwKJlWHjuToqP/lDcKk5U7jziu0nS0TAwey37BOue3XPNhoNNK34rxcLM/K1r33t5KFDhwL6WTAYbL7mNa/Jn++e9fLzUdYERoLBINwulzlMToO7SCMDq8e48zOb8tNoeS4IAhYVroBTYfKHDAYBUE9Pj0nCRYGezWYxOztrFA/dCwzM0/YAq5acfq4Wu1pMPP9hdnYWp06dwsaNG40AaW9vN/55pss+evQo5ubmcN1112Hfvn3YuHEjMpkMstks8vm8AQ6ZTAY+nw8dHR2OwFV7VwIB0Rvf+EZUKhU89dRTePrpp+HxrGTF9fv9Zpsut/vx7Aq1zprNpkPx8TsGutK/nE6nMTo6ao6mZ6xGMBg0ipxKiEpAn2EHDlPQ2gC1FZtis2acD319fbj44otx4sQJZLNZ9PT0oKenB7t27cLw8DAikYixEhuN1cPBCoWCASAUxJxHOvaqbLZu3Wp2TREI8T7OEc3bQWs/lUphfn7ecSAZ5zRjG1iXBnsrSOHc27x5M9xuN6LRqEnrT2XDvzOZDB5++GFzTIG+P4GgBtLqfNJdM8vLy2a3kfa/zWoqs8L+U5ZAg3ApF9LpNBYWFsypxgpoaP0z1TsAc3QD+0x3zjF4OBgMGrlBmcJ5qEwQwRywkqvl0KFD2Llzp2Ef3G63AZpcR3xvAih7bqiMYB2NRsMAMwWADKhl8rdIJGJ27zBeRtcGwbQyM4yh4pwjiOLfDFYlQCdz6nK5TPAzx21+ft7s7mvFgKiR+GKJG3nFK15ResUrXnHe/Bzr5ee3rAmMBAIBlDMZXHnllQiHw5ienna4LHRBqJWglC2tDxYViAQmStMrkOFCpXDSa7hYaB35fD6TF0OtN5vl0OfbNCsFmTIy8Xgcl19+OR5++GHMzMzgiSeewPj4OJLJJNLpNGKxGLZs2YINGzaYXA0Uhvl8HqVSCYlEAkNDQ0Y5qIXOXTHMsKmJwNTy3rhxI/r7+1EsFs15J88884yxkJiczev1YnBwEJs3b0YwGHQk3qLwB1YDedkm0tx0gbjdbkxMTGBgYMAoSd0NQMuLcQCas0N3yrAoK8Kx1KBnHXPODRYqlksvvRQnTpxAOp3Ghg0b0N7ejs2bNxuhzvYQaPE5xWLRnPxLZcfnqr+fgIM7qyjcae1qBmKgdU4c1svr6vW6Izsm3TB6Fg1BHql3BtiGw2FzOCGfo/PiyJEjeOaZZxxMhc5/xiFwzG1WjNtxCYQ5fkrjsz6uH3VtEtSRydTfBOipVAozMzOIx+PGnUJDgaCbMRusm+ubczoUChkgzzZqAkE+UwMwK5UKotGoWW8E1MAqgCoUCibOjICQQaB0/ZKV4XP4wzGg+05jrfg5DZhsNotwOGxOhNZ1QGDHZ/HZ4XAYkUjEccAmXZAADDtCg479x/7R92AMTDabdYyZrlEFXQpc18t6uVBlzW4al8uFW265BY1GA+l0GplMBh0dHSbfBS0nYNXvbgdXUbkoEKDQUHcElQKtbwU4vE8taPVD2z5atZh4vV1aWT0KUsggvOIVr0A2m8V3vvMdVKtVjI2N4dixY8YV9OCDD2LTpk0YGBiA3+9HKBTCTTfdhN7eXuTzeRPtr5YhALNF2Ov1msBAtb61bZr3obu7G7feeiu2b9+O/fv3G6txcXERHo8H27ZtwxVXXIF4PG628VFRUQAqO0BLMJPJ4MyZM5ibm8Po6KiJD5qZmUFnZ6dRxmYyPTvWmuNELX1VoKqsdTxslkTdC7QKqaSi0Sh27dqF6elpbNmyxZzXoQyDKkx9X9uq1/GmYOb1s7Ozhl1R33tHR4fZ/aFzmff7fD7EYjGkUikzD+nioOJ3uVzG5VetVh1bYRuNlSDU3t5e098ETzofvF4vzpw5g+9973sGIKr7QNcO+5T9obFLCqqoyKn4WHSbryprYDXmRJlOrlXOscXFRYyNjWFgYMCwGXwHTfrHOc6t1cvLywiFQigWi46TuDlmutOJ7886NI6CaykajWJoaAiJRAL1+kqmUsackM0hmOV96lpW+aO7kzTRGJkMAuDx8XG4XC5zzAPj15gMrtlsmiR6CqIJnBRwsT2xWAy53MqmDnXxKHvncq3EHmnOJgJO/q3xMq2MtBeLm2a9/PstawIjFMjco+/xeHDq1CmMjo5iz5495hRRCin11StbQkGril4t5VaBb8qWsA79rUUD4TSGQf26NtDgM7ROW4hTOIRCIbz+9a/Hnj17cOzYMTzwwAM4ceKECTAslUo4fPgwjh49Cr/fj/7+fmOx664b9dVSGZFqJmVMqljT6bM9elZKNBrFzp070dnZiXq9jmg0arYf9/T0GJaGzIfmJdB2UIBp3SdPnsT4+LihmUulEhYXF3HjjTeio6PDsYuG7We9jB+KRCKO3Vg2EFWAort0FCAybwuBLA8u5NbsaDSKaDTqSKOursJSqWQCjMm0EJQQBBBI6PwZHBxEe3u7UVKpVMok0VP3BYEIP+M6UCaPbJdaq2QLNVEYsGLtdnd34yUveQmGhoaMsrUBxeHDh/GFL3wBP/7xj9HW1mbAu+bJoJtId5LxHRXAqLJTJaXxP5wXdCPwyARl7ngfFTjP9onFYshmsybuiy5KGjo6/4HVgx152OPCwoKpi/ORfc2AejViyMgsLy8bMBePx7Ft2zZcdNFFaDZX8qrwPmWT+N4ESjRGKFM45lTsCtTY388GV2JychJu90qaAdahoIXsjbJqdLmwTrp02S8E5tls1pHQju0nmNWx5lwng0JGxuv1wiVZrG25uM6MrJcLXdYERqLRKOrZrJnEbrcb7e3tWFxcxMTEBDZu3IhwOOxYWFyswOp2XgoLDRhUhcQFooKehd9REKjPFoBDubMolawgRgUrsOo6aAVUKKjVstizZw927NiBvr4+PP7445idncXCwgJGRkYMECsWi5iYmMBXvvIVXHHFFdi8eTMGBwcd701h02g0jGJltDvfl/EF3MHB/qPlxp0/XV1djsA9zVNCgcx3YIwNrTMqTrpvFhcXkclkTD8kk0l0dnaira0Ns7OzyGQyZncV+8/tdjtcS6yrUCg4jn2nQLctdw3S49hReLa1tSGZTBpLdmJiAmNjY6hUKojH40gkEuacGz0Jlf1Qq9Vw9uxZLCwsGHBWqVRMxlaCFp2bnL9kXKjMyQwuLS2ZYGMqddLl6mbjnKJSY5Zcvp/H40E8HjeKlnE+u3btwoYNG4zriwGzHJ97770X3/zmNzE3N2fGmkqTIJbzQ90rBF7sbwJt3qvrjGNFcMLxUhcDgRTbwDo1rwWvZb+Vy2UTBM3DHOm2YgpznjrN9wgEAigWiyb2QWNKOIYcd/YBXcnMVROJRLB582b4/X4sLCwYWcXcLSqzWBeDjCkvOCcZeMx+4zymu3JiYgILCwuIRqPmlF2uO6/XawAF5YD2eaVScTC9gUDAxJjo2DF4XWUd5R1jQjherDcUCjnyECmTrIbAOghZLz+rsiYwQqt6cXERfX19xiLnXvmFhQXs3r3bBNiRkraDJoHVbZzKnOj2QxUwXMAKTBQstFo0urj4vy4w2z/K57T6XJWJJr1iuy+99FIMDQ0hm82iVCrhySefxA9/+ENMTU0ZH/34+DgymQyGh4fx6le/GslkEslkEuFwGKVSybh4KMzZF/SLsw0UXnY+ByprBX4ADP1LS5RbmqnQfD6fEXoU5FSIZ8+exfT0NIrFokkct3fvXuzdu9cAGI6r3Vek2KmYKbAVROqPshI6vqyT40N/dz6fx8GDB5FOp7Fjxw6TZVW3HrNNCrwA4Ac/+AGOHDmCbDaLrq4u/NZv/RZ6enocc4Dzql6vY3Jy0oyLMhnT09NGWfK9CUI4Hr29vXjmmWccOzYUGPL92TbGMXi9XrS3t+PKK680ALNYLOKxxx7D9PQ0ZmdnceLECRw9etRx8i4Dbfk3FSsVnfatzVrSGNCt4mRYCCoIxG3mQAEAx4wKkIqTsVyFQsHMH84Jj8djmDw+k3OV59ZwdxcAxGIxzM/PGxZNjQQCBrKKBAF8V7rWKMuWlpYQj8fNllkAxkXDuUpmUmUI31lBBF1ehUIBJ06cQKPRMOclca0QpHKdErATvNE4otGnTBTdU3RZMpMz5bAmcFR5xfnrcq3EmVQqFePa5HNsWW/LwfWyXi5kWRMYAWByHnCiAyuCJxKJoFqt4sknn8Rll11mztHgotPAPvWxUvAwK6n6mwEnm6JMCIv6Oikg7P8p8Fu5X87nqtHrbGudCpbv5fP5TMr45eWVo+O3b9+ORx55BA8++KCJ0+C5KuFwGK961atM4CmVHGMLNDeLRvOrpU6lSAGmSoOZWYPBIILBoEMRak4Vv9+PQCBgKG/GCuTzeWQyGZP8iim3s9ksqtUquru7kUgkTJ4O9gldM7aw1rGwg0R1HEitKzgk+wOsplf3+Xzo6+vD5ZdfjqefftrE5xCI6HZWgkYG43LL7fT0ysncc3NzeOaZZ8ypzKpk+ffp06dNrAKVCtkMBjqrVcnP/H4/LrnkEjzwwAOmbsYU8H4qayr05eVlk33z+uuvx65du+ByuTA+Po5/+Zd/wde+9jXk83nHvOBzOV91B40Ce1Weuq2T70vFr+NHpcY5wzOWVLlpELaON89bUoDjcrkwMzNjlG+9Xkc2mzVgx+NZ2Z7KHDp0Ay0vryTpikajJqeQ1+tFNBo14Ib3s65oNAqXa2X3H0/oZQBxLpfD6dOnjVuVeUbIlmmGWA0opRzSmDcaAHSRzMzM4NixY6hUKujs7DRrvF6vm+Bp1seDF12u1bgOHVO2gUCM70lQoy5fjhmNAF1XHAPutGLcWjAYRKFQcKxFHUddf+tlvVzIsubdNKHlZbNtjcJKFVkoFML8/DxmZ2exYcMGh1uAwpdCkgKc1gSFIBeQWmcAHApar7VZEuD8fk4FK1oIclRgt7LOAZwjdJkci/ERgUAA27dvN5lUv/a1ryGXy5l3OXLkCDo7O7FlyxYDBNgvTNpUKpUcwXS604WZFKlceS/bzB0ZwWDQkRSNY6S7TNSSZ790dXWhWq3isssuQz6fN/7u0dFRTE9P4/jx47jmmmscwY1UtOxfzbVAAepyuYyi1f7WMWPR/qWgZf30hW/duhWRSAQ9PT0mtoCAiPdR2VL5cpcBFU+xWDRpsTXGQV2GTBtug0AFwmyXPrfZbJoDEwk42N+MH2KA8969e7F161acPHkSBw8exGWXXYaLL74Y1WoVDz30EL797W8jk8mY8SVwYVGmjp9TmZEl4vdULhrnoW4xggsb0JA1A1bZJmUFNP8I1zXnKAvdWgREVIoMjuYuFI4DwUAwGDTB31xnXq/X4eoie8JkcF6v1xgJBOx8fi6XQygUwuLiotm51t7ebnZLadZUDWAlA6ZuIRpRpVIJs7OzmJiYgM/nQ3d3t2HyKP8I4MkA0ZXEcaObk2uazyEjyiBbxphx3ROcLS8vI51Om63tAIxMYnA5XX2jo6MOUMhxazQagPvFmWdkvfz7LWsCI7qTgUKc21EZaEVUXiwWcfjwYWzduhXt7e0AnAqfyoCWPX2hulNGQYn6uhW1A+cqMRuYUFGoi0C/1zrsRXc+v6nNvgAw/mk+MxqN4tprr8Xk5CS+//3vmziQarWKgwcPYsOGDSZLaPbZWJxIJGIYJ1piDGSlIKS7QnMfqEKIxWLn5PZQur7ZbBpriqd+st5ms4m+vj50dHSc07eNxkp2ztOnTyOfzyMej5txoLJjv+jzCYDo/qElaAM9fZY93poSm+yNx+MxWXh1dwx/OC7qpqHS45zyeDwmoZgCEJ07g4ODxuolCGcbFHQBqwcKEjAwYy93LpBOTyaT2Lp1K4aGhrBnzx5s2bIF0WgUCwsL+Mu//Evs27cP8/Pz+OIXv4jx8XFHzgq2keBed9goa0cmjO3T8Sd4tF1FDCpl36sLTdcNlRufoy4dKlaN7dIts5wPVMYaGKrrm/O+Xl854oDzv62tzYA5DZSlPGGMSDweR2dnp2H3FhYWzsnU6vP5sGnTJrPtncnVCGwYD0T3GcEQAakC4NOnT2N0dBTBYBDt7e3G9USXlDIsdBcRkHE+VioVExztcrkMAGP/KBDhNl+2QdPWs80Evyr/yDR1dHQYxrCVDFX5pi7v9bJeLkRZExjJZDLwdHYCgIlxYPIuYJVWZ3zC9PQ05ubmsGvXLvT39yMej8Pv9zsQPQEI6Uq1TKmwFHQoG8IfG8Bw4dguHV6j4MYGJLoI7e9aWQf6GYU/FQAX/DXXXIPR0VETbAmsJF3av3+/EVCM29AslqSW5+bmzG4BTf9Nd0yj0TDnk/A3x8AGXgQMzNWwsLBgzjqhwqKg1D4FVhTd5s2b0d3d7Qh45G4DtYg5LrSM3e6Vrbhke2wGS901OkYEu7Qk1eUQDAZNwCrbomCU13N+kRGicnW5XOjo6EAikXAoU40NoLXJZFgU8hqLQGBAJaZujIGBAVxyySU4deoU6vU6Nm/ejFe84hV46Utf6gCNbGcqlUIkEsHx48fxD//wDygUCg63CXeQkFVhwi9lFNmvrNdeaxrwTMWqMQ2cB6xHkxCy/6nQ1ahQd6sGT1Opc0ympqaQy+XQ+aws4ftQwRNcKPPHNcUtuOVyGel02jBaBPqMpyLz53a70dPTY9qnrppCoYBoNIpYLGYyKBOsAjC7jyjv2CYFTTQWjh8/junpaQwNDZm1w7Hj2iJDocwwGT/mWWk2Vw43JMjUQFoCXd5DNoYBv1wz7e3thinTbddch0tLSybotZWMfDGX5eVlPPzww6Hjx4+39fb2Ll933XXFaDS6jpT+HZQ1gRENQCsWiwDgUL6k+0jlRqNRFItFnDp1CpVKBZs2bXKkjlcrTa0vwKmkKEyJ4PWn1WKyXTv2/3wXYNWi1mLXrfEA5wM4rUASwcOGDRuwb98+TExMGMvL5XJhYmIC0WgU7e3tJs26WqS0ejo6OlAoFExQKAPQaOnQwmIqesaOtGJv2A+8npaexqdQufLd1HVFIcmMkB7PynZKAiiNB9HASCpOTZuu7jVVdmqNMzhax4wggYKdSoZuBL6rxprwPWZmZlAul03fEsApgNWxZN9RcWuAI+NM9Dp9H7d7ZWvme97zHiwuLsLr9aKrq8sRQ6AWZ72+kmCuWCxidnbWxBpR8XBO0S1BAGPHYVERtVovVNya/IxsE9kfezcNATLfi3OIgI4ARXftUC6o1U6lC8CwAYwrYdwGwXAmk3EoUMod9gfdKF6vF7lczqwZj8eDQqGAzs5ODAwMmGs6OjoMoGVcRSwWM/PX5XIZ1wZdPezTer3uiGfjO3EeHDt2DBMTE+YUZ65BBoxzHmqCPa45gin7FF++HwADxrgtmmCRY8n71MVVr9dNriJNyka3byKRwFNPPWXAqM182IbfiwG0PPnkk4Ebb7xxRyaTMXormUwuf+UrXzl10003FV/Itq2Xf3tZ0wxjLEM6ncb8/DxcLpexaLiAuIjS6bSJ8g4Gg5icnMTRo0dX2JVnrRelZoFzXSSqzHQLpPq/lc0AnOxGq0XEBabUo82Q6P+8Xp9BoUSFw+v0HfjsSCSCwcFB/PIv/zLe8pa34JprrsGVV16JW265BRs3boTL5TLn2wQCARO0V6vVDDUdjUYxODhoaNy5uTksLi4aYBMOh407gAGA6gpRxQqsxuhwu6OdKIxgR60/DYTkoXS8LpfLIZvNIpfLmfN4ms2moZspYNmmVuBSXXcac0GXYDqdBgCTJr2rq8u49pQ10FgGwHluTrlcxsjICAAYin9hYcGcCKzzS0Ey8zhQAZAtIBhiuxUs8dl0zWzduhUbN250sCk6JnzW2bNnMTIyYnJxKCPEwmczuJMMUrPZRG9vL7q6uhzxLDpv2acK2jQGSt1XBLlch+rK0uRv7Fu+L99LgT6VLftJd8eoG0QP3iTgZiHgKZVKJoMujSLdyswgVmYuJXs0MDCAaDSKgYEBdHV1OeIylI3JZrPm9G0FJAQR7LN0Oo2nnnoKx48fR3t7u3GdMqDW51s5X4esBYEUASTnCteR5hJill66/MgEcf1QhnJtaswek//RFcW5UalUkE6nUS6XMTU1hQMHDpwj2zhGlGm2fH0hy8GDB4MKRAAgnU573/zmN2+5kEG29Xod/+2//bee4eHhvX6//7K+vr5973vf+3q/9a1vRV0u1+ULCwvmLIlHHnkk6HK5Lj9+/LgfAD7xiU90RKPRS77whS8kNmzYsLetre2ya6+9dtupU6fOf2LpL2hZc9IzLlxuIQyFQo5FSOHBxeTxeJDL5ZBMJlEoFHDy5EkMDw+bVO0UcKr4gHPPMdF4BGD1fA8VsCxcPLa1bYMWG3CoEmpVbAtTLXtV2BQiFLzhcBjbtm3Dpk2bcMsttyCdTpuAy3w+bw70o5VWr9eNtZZIJIxSJ2Dw+/2Ix+OIx+Nob2837g+CGRus0bpUEKU7djSgUa1cWrqaPwFYsQZnZ2cNLb64uGgOLIvFYoYmpnXMYEIKZQ0G1LgE/eH4NhoNk7kWWGV0NGkZ6fxyuexg3VQp+nw+c04Mn8l2aIp82/rnM8lCMBaIY0zKW91HrEsDdamkFSBzvvBZlUoFo6OjjgPjyHwx5obKhW6JWCyGDRs2YMeOHdi9ezf6+vowNzeHD37wgwbMkkmim4rrkla+HtDH69hGO6AVgMPNpuBN1wX7WNcf3RD5fB7T09PYunWr6Rs+n8CGQahUxmSM6HpgACtjOuiqYnAwGYpEIoHl5WVzqF5bW5sB0owt4btwzvM96UYjQ0TwQtBz6tQpnD17Fp2dnY5AVPYn15Ue1si5xba73W6TzZZtYNwI3Z+M8WDsCeeLBiprxleOox1wzXitpaUlZLNZbNu2DU888YRj7vNv2zh7Meyouf766wtvectb5n/jN34jdcMNNxT+63/9r/0f+9jH+hYWFnynT5/2b9++fen5a1l7efe73z3wpS99qevDH/7wxPXXX184e/as7/Dhw4Hnv3OlVCoV99133933d3/3d2fa2tqav/d7vzf8a7/2a1ueeuqpYxeivT+vZU1gxOv1IhaLmclKobCwsGCO+aalxiPuudCWl5dNwOPRo0fR2dlpjvAGzk3WY6NyDYajVcHrWrlJAOdBbRSmqgx08fFv2xJQgWpT3nY7+Vw7Mp3CwOv1oru7G729vcaSLxaLjh0XpVIJCwsLxt9MKjmXy2F5edlE6Hd2djoi5qn4ad3brBHfm/1DIUxwyb5SoEBrSnMs0GLOZrMmR0MkEkFXVxfOnDmD6elp9Pb2Yvfu3WZcNU5E3R5si+62YGAemRQARmmQglbXBBUHwYjNOvAZ3K45NDSEVCplqHZ9NvvJ/p9KSN0NgUDA5P9Qy1nnmM2WtZp3CpgKhQLm5+cdbgHS/AQg8XgcmzZtwkUXXYS+vj5s2LABXV1dxi1AQBQKhZBKpUxf0+LmvOMcoEuCW77ZdjIGfHcb7NusGd9PwSwZJPYdn9loNHDs2DFceeWVDiODMSF0Y/FYg3K5bMAo5ze3/2r+Ex5JYRsvVNTc6ktwxwBkvh/dIQTwZOOYt4XvmslkMDo6ilOnTplke8oKAauuFc2zoqypy+Uy7BfdLmRA6PbmwZnqUiaTxHZqfBplDAPFmWae64VJ3arVKjo6OhwBwDazZwOSF0PZsGFD7fOf//w4sDJXDh06FARW5l1nZ+fyc9/9/1bS6bT705/+dM9dd901fscddywCwJ49e6o333xz4Vvf+lb0J6ljeXnZ9YlPfGL8+uuvLwLA5z73udHLLrtszw9/+MPQddddt37o37NlTWCEQjObzRo3TC6Xw+zsrAEgVIRjY2PGSmf68IGBAQQCASQSCUxOTiKVSmHbtm3o6ekx1iuLTR8qQ6KBlhqMyqLUPO/l56pobUtVn6d1at12nQpS7GBRXqeARi0xggeXy2WsQcaQ0DqmMi8UCpienkY4HEZ7e7sJBqZbhAJVXR58tm2h2laQKhoKVF7HMWG/+Xw+JBIJhEIh81ym8+7s7MTExASq1aqhw0Oh0DlUuK28yW6wraSflWUCnDkP6B7k/aTUOY8YMFmr1VAoFEw/DQ0NmfN2XK6VYD9lAXTHCQuZArablrher4xAq79VGWlRhmF6etpkIOWciMfj2LhxI17ykpdg69at6OrqcqS8V+aLO30qlQry+bwjARiwYunv27cPu3fvNnEOvJZB6JpZlEGqyn5ofhRa+rqdVwEnXbGcwyylUglnzpzB1NQUent7USgUjPXP5wMrIKJUKpm4KZ7Bwj5jMK5mGWXAJ91ABOnsY7JDVPycK5lMxrj9uKOIBxkykJVtGx8fx4EDB9DV1YWenh4z/2mIsW2Mj+M85hpvNpvm1Gu6QwGYwxi5DuLxuJnzyuiQPeIa0rlA4Mn26y4vPpPtGxsbczBfvNaWcbZMezGU9773vf333XdfAgBuu+22ufb29gsSxPr0008HlpaWXLfeemvu/7UOj8fTfOUrX2liWi699NJKNBqtHzp0KLgORlbLmsBIvV5HZ2cnFhcXUSgUsGHDBgQCAcN80GpeXl5GV1cXcrmcSezDTJ6BQAA9PT2GPqUPn9HsGgRo+yopJNXH3Sqwyvbx0mJQ5UXBqgFgLGoZKNDQz5V5ULamlRtHrQ5eQyXbbDZNanAKVW0vrZ9IJIKOjg4TPU8By4BDWkpUgPzOBimt4nPUPUPAx3Yqk8LPWE8sFjNutkgkgkajgfn5ecNQcGwIDPT5+r8GP7JvbGZJFSKBCNtEBdPW1mZ2vfC9yOykUinT18zt0tHRgZe97GXYu3ev6U/2A8ecOy/IHvA5ZLEUyNrt1DnDomPB73ms/H333YfFxUUkEgkMDw/j+uuvx+7du7F161aTdl8pczI7arUvLy/j2LFjKBQKps2NRgNdXV147Wtfi5e//OVob2/HddddZ1whjzzyCD75yU8aZef1eg2bpUHlGodCtwufzzFTBsQG+epWyGQyGB8fRzgcNrvrNNAzn8+bvvF6vVhcXEQoFDIAgkGrDGReXl42ac7Z/vb2dkQiEcNuEUgSWPBoAcaHuFwuw8oAMAG4GhSaTqdx7NgxA5q580X7gO1Sdxtjb8h0+f1+49rk+mfOFMaVUBYw+y6BB+c9dxURXHHeajyJghRNuOf1enH8+HHzrjZzo+vvxVbe//7393784x/vA4DLLrus8Jd/+ZdnL9SzwuHweQNmPB5PE3Dqjlqt9uJCbT9HZc0ZWIPBIH7wgx+gp6cHu3fvhsvlMoqQCpSBUwyimp+fN4IiEolgdnYW9Xod7e3t8Pl8SKVSKJVKDkqSxWZIKNxVYeiCU6WgSbLUOmWMge7qUOXPzyggNT6AWWXpu23FgmibVFGoYtJ3ojXDtmmcBtvFfuE2VLaH76DtZNtVQfB/u2/pJrHb2ioYUxWs5j3hvcFgEFu2bIHH40EymTRbj9leAgmNPaLwVqXKd1FlRsuTylEzZuoWRW6rBFZZnnA4jM7OTrS3t+Pqq6/GFVdcgaNHj6KrqwsXX3yx6VO1Etk2j2fl1ONgMGgOoaPVH41GzfjREmW7Oabah2QRpqamTKr9s2fPolAomGDRX/3VX8Vll11mdmbYilzHQseDCqlareLUqVMAYMCTz+fD3r178epXv9ooWM7hUCiEm2++Gdu2bcM///M/49SpU5iYmHC4vPS4APYzYxDYX+r60TnNsSeLwRiJcrlsDi0kaCRwymazhiHg3G40GigUCgYUcN4wcRnBHWNF1P1FdgeAYe103ZABJBChi5Rzl+4gAr10Oo2+vj6T0ZTGGMES71XmSNMP2AymxuTomFYqFRSLRRNfpmvJ4/EY5oQbBwi0+T3lFxkmuuJodNCNrnKQ603nLNv1Yigf+MAHej7ykY8MAMC+ffuK999//8lIJHLBGrd3795KIBBo3HvvvbGdO3cu6Hc9PT3LADA+Pu7r6uqqA8ATTzwRsuuo1+uuBx54wLhkDhw40JbP5z179+4tX6h2/zyWNZ9NUyqVzBklxWLRTOhms2niG5LJpNnfzuRUPt/qiZLVahWLi4umTi4yZUNUcXOx2IF/Kuh4D8GAzYJoHRpnQCtG/boaa8LnU5EWi0Xjs7WDam3QpL/Pt5j1PWgxMThRWRh1SxGIsN+1fr4r+9W2zO22EKxo/xCgADDWr1pIFHR2vT6fD+3t7Y5dNBwv3SnDNir4Yxu0Xn7H2AWmZA+FQoaRoTDXwFjeS6VQr9fR3d1trOZNmzZhx44dDsGsoEz7rNFomFwki4uLDheCvhutUZsR4fVLS0uYn5/HgQMH8NBDD5nTZ9PpNPbs2YNf+qVfwubNmw0DooHFCjx0HJTlYl8QuDJYUV1kXGM6n/i+u3btwo4dO5DP53Hq1Cl873vfw2OPPYa5uTlHALPteuKcUaWloFbXtNu9mjW0UCiY2J1SqWTiXdS9QOOEa5RKXRUl40q4jbVWq5kt5MoWMOuqsqEEa1x3XFvM1cOEZPw+k8ng1KlTpv/I5nH3Gs95Yb0EWYztKpVK5tA/JmDjtYFAwBwnwQBWBr1y3hYKBTMfdBsyAaMaEXwvxuhQ9uouuWuvvRYHDx50ADyOsT3fWjHQP+vyjW98I/o//sf/GOT/zzzzTLi9vf3SSCRSP3jw4OFNmzbVftrPDIVCzXe9610zH/rQhwb9fn/zuuuuK8zMzHgPHjwYfNe73rXY29u79Ed/9Ef9d9999+Thw4cDf/EXf9Fj1+H1ept/8Ad/MPzxj398wufzNe+4447hiy++uLjuonGWNYERl2sl/oOH5GWzWUPLc3spzyzhce0UXMx8yAVSq9WQTqeNsGeegVbsgSolO0BTaX8NRgNW4y3Ydl1YFBSqPLQo5axsQDgcNkF552urxj+o60QXtLp8NMhTLUjbwmPbWVgvBawqP71OFayyEaxD3Se813aX8T769RXoKPXLGBGCRHXFEOCQKlfwoP3I+22XBi1/VWAKlJRZIaNEQKLsE/uGdD0FNq9nm6kImeCPZ6hQwR85cgSXXnqpmdsMSHa7V/JkUNnOzMyYpFi5XA4u10o8CAD09fXhxhtvxMUXX2ysaZ2v9ty0LVX2M8GZ1+vFLbfcghMnTuCpp54y781dRHQxKfOnDGAymcRVV12Fq666ypyH8+CDD5qEfZyLCtjZZrp4NGhVFSLHXBktYGXn3ezsrIkxicViRnHT1QHAuDJpJPD9m82V7e8MZI3FYkYWuFwuI3cAmLN11LBxu91mt02hUEBHR4dh3hgUW61WMTExgdnZWWzZssUwEWRS2trazLlTjB0hu0NXCmOMyErpll9lPTQdvG4f53bucDiMYrFogDa/o/xQJpUAj/KFfdjW1oa+vr6WblsblLCeF7pMTEy03A5bKBQ8MzMz3gsBRgDgnnvumfZ6vc277rqr/8477/R1dXXVbr/99vm2trbm5z73uZF3v/vdG6688so9e/fuLX7gAx+Yevvb375Z7w8EAo33vve9M7fffvumubk5/+WXX57/3Oc+N3Yh2vrzXNYMRsrlMiYmJjA3N4etW7caCpHb1zTRDxUqF2AqlTJ+WS4CbglWZahKk8pEXTHKOigdaStUft8K8ds0ulp+vN9mEBgUZy9cttNmd1g3P7OViyrgYDCIWCxmBJlS0ao82T5+zz4hkKNypvCgO0UVLfuAz9a+oxLWNmv/uN1uo2xspahxMNpOMjjKiPB96I+nYtP+06yZCrx4L90i6tLhO6sriAKbdL0qX3VL2SCEfU/XgbqAgJXTfwuFAq644gqkUikcOnQIk5OTAFYUM/OT0LpVNo3vvGPHDuzcudPBztngUOcZ/9Y5TtYOWAHgmzdvxu/93u/hj/7ojzAzMwOXy4VUKoXFxUX09vY63l2ZRGXFXC4XNm/ejOHhYbz+9a9HLpfDmTNnTDzK3Nwc9u/f77C0aX1rvJbtplQgxHHkeTGxWAz5fN60g1t56bLI5/PmXblbpFQqGWBHw4PgwjYAOG85P3kQJPs+kUiY7dMEeNw51Wg0DGBiZuT5+Xnj6mIsi74nXSBut9ukOkilUmYe0mXJ2B5lfbge6C4jeON72wYFWRrKNoIgMjxkVgqFgtnmvrCw4GB/dK7Z8sk21l6I8pa3vCXj9/tH7LiMaDTauOqqqy6Yy8Pj8eDuu++eufvuu2fs737pl36peOLEiSP62dve9rYn7etuv/32zO233565UG3891DWDEaWlpbwspe9DDMzM8YSpuVJ94vmeuDiCYVCyGQyjgysVCipVMr4Wik89G8VwhRwSjWrggNWKUobuNgAg1aiAgqlLO320MKzlYL9N/9v5YvV6/R7KkDuglBFQYFigwZlTRqNhhE6VGaauVMZEQIY/aESUepXKWztQ322zg0KTA3AU1DTbK4GINuMjDJUmhWS9TEZFncu0NqkctDgQY47lQEBLel5ZRKo3Gg9ctcD+5NJ/jwejzmZmttKq9UqHnjgAXz/+993zAGbrWKqdSaD43baSCSCK664Ah0dHaZPbRek7fqw57KCVu3rrq4u9Pb2YmJiAo1GA+l02tD8muCNilaZDCozxnHF43HEYjFs3boVr3zlK01Csa997Wv4q7/6K6P0OFfUnaKMpLrhuI4Z48Cttow9YawG0/2TFWA9BBAamEpQTzeNsoV8BtkbyrJ6vW6SBaqMYV8TQIZCIfT19Zl3U6NC/9YdhdwSz/lFN46CJv4wJoTtDIVCJqAdgOljzqt6vW6CbkOhkGEeKb+0fgI7lTu1Wg2PPfaYaSv7XeeX/m/LtxeixGKxxjve8Y70C92O9XJhyprBCAVKJBJBMpl0CJBarYZUKmWoap/Ph97eXmMZc8uqClBmK0yn0xgeHnYoJxabSrRZCH6vAZq0shXx2/epz9yu3wYjbFOrdum9tlVh30vBr24cZXxoabKPOjo60Gw2zdHfBAqa0IhZKfUsC8B5HoWyR3wvxvWwfXyuKralpSUj+PU6Kli1zgkQyAYojWyDIR0Xtol/E1BQ+TQaDUfSNFqs1WrVMHOMS6IS16Rt7F91ySwvLyOXy2F+fh7f+ta3MD4+ju7ubni9XkxPTzuobe4KazQa5nRUAhUCSSo2PovvAMCcu8ScD3ynnp4etLe3mza1cj3avxVYcqzUbcn+LpVKJukZv1cFzf7g97qVnOtVqX66O+iy8Hg8uOWWWzAzM4Mvf/nLxpjQ9UAgQveJvkssFjNBlMlk0iT4Yg4QuoS0j2OxGCYnJx0uCiZcZFuZfVQVNueE5q3hu/CsJxpJCtSUlfR4PLjkkkswMDCAI0eOwO1ePaxSz7NRl4sezcCx1wy8lJN8Dz6fQJDxJy7Xym41upb1LCJuFqCLi+NEQ4vALRqNmrXHrdT1et1sFfZ4PGhaOXdayeL1sl4uVFnz2TRc1ENDQwa5U5BwIS0tLRmfbzQaNVHntLQo0KhEuP2XAsxW5Grt2+4G4FzmwQYZLHYQllpvNlBgfWqxPlddvF7jRex7VOFq21hXKBRCLBbDwsKC8fH7/X5zkJ26UPg8FioQtQbZF6RulYkgSCG44XjwOwIAttd+BxtgEBQRJLBfNVaEAIj1UsnwO43dsNvocrkc59oAq0GkzNSp8UjA6snBS0tLGB8fNxT11NQURkZGsLi4iFqthoWFBbjdbkxNTZl+U1cWqWx+lsvlTJs0TwRZJq4DAjUCNAAOOp6nVXOuqsurlStG14e67BSYcDza2towMDCA06dPG/CkOWMInOgK07mrzByZMgWyZAf8fj9+8zd/E3v27ME3vvENPPHEE2bs2Q66cBUwEVRTMXPuMW8O2QuCXgZz6tpSxotuuXA4jEgk4jiQkafcUvHTfUHXkJ6Cq8CDY8V5xbZ3dXVhx44dOHr0qHnHSqViYjvIeEUiEfMcBjbH43EDztTdovOD7BXHizKShgUNEDUAuLOJY8bYKp1THG8CFTUUWsmT52JB18tPXn7/939/8fd///cXX+h2/DyUNYORbDaLcrmMzs5OFAoFhMNhLC4uwuVaiQVJJBLGN8n03IxboBBcXl42e/uBle3CpMbVMqRwsAVyK0XPoowDFybgDMridfZumPP56p+LHeF3FFr6GYuCA62H4Iffh0IhdHZ2Gp818wjwADxlL6iMbGCmrIbSyXQdUJCTXVEmBYAZGyo0YJXWV2WoAkqtZj7fDnC1YzCUDeIY6GFstPo4Hjzinc/0eDyOrYpUILoFls8qFov4wQ9+gMcff9y8Nyl9tsmOGWH/8b0p8O2x1/wu7DMCLgY50o1ZLpdNvhhmrWVf2ODUnhs2A6j9SWVJYE8Acdlll+HRRx81QIoWtJ6wrLEmGuSrc99uo7bL7XbjZS97GS699FI8+eST+OpXv4onnnjCKE07kZn2twaKst94HV2Dym7QzUuXDgNzOUfpbtHAc/YNE5qR5ePnlE/MrKsnDpMF4zELbJfH4zHBrB0dHY44Jp/PZ5KbMaC5VCqZLLk0yGigsU4FBZqOnzl69NRgMikKFnhWD+NgGo2VU615sJ6ysHRfKvul46vgZB2ErJefVVkzGPF6vZibm8PAwICxLgYHB7GwsGBYk3A4jFAoZLKGBoNBk5p4dnbWuGe4TZMLl0JKXRe6SFUIAk4qWIsKT/1tf0ZhZDMVtsLl9ar07bq0LWpN2O3V+tUKB1bT7Xd2dhoBxK1+tPIoSHTrbSuQY/cXBT3fmdcqha/Wtr1rRoUV3SDsD2Wu+PxyuWwEJqP81dev7aPg1T5RVx4AR94J9i8FKd0xtC5VCWUyGaTTafMdgYGOJ9+RLBHbWi6XkUwmDaOgcQoaaMnnAXAwJbREo9EoEokEtm3bhmuuuQZDQ0OYmprCv/zLvzgsWJ0nNhCxx9aehwo6ySbt3r0bGzZswNzcHNxuN9LptKOvqTxtwMh5ocGdrSxlPpuxMJdccgk2bdqEo0eP4jOf+QyOHDlixlznG2NVWCddFGRRCATIODDegm2hMlfWjGsnGo0imUwiGAwiFAphaWkJi4uLZo4TYDO+hcCOzAiZCwaEU/krk+tyudDZ2YlMJmMSOXIrNZkNjge/Y5Atc5ZwS7Lf70ehUDCgjPOQcS883I7GHucxWSeNf+FnfBc+k+uZ/cSEeNwBZgMONRBsGbVe1suFKms+mybs9WJkZASbNm1CqVRy+JUjkYiZuNxet7CwAJfLZXymFPhUfmpN8Hug9V53CgcWdacog6EgQP2+vEeVuc3C8Dn6HQGSzQjYv7WdrRa0gi0WbTeFRSQSMRYOYxsAOAQvAYZ+rm1k/9FKV5eJfkffNhUE26fgUJU7/1Zww2d7PB4Ui0XkcjkDnOjrZrsoIFkX61MAqcpPAR6LBhhrsCH/55hzt00mk8HY2JgBNHwGFZHOt2azabJqUpFwFw2BF8EP560dkNtoNMwW54suugi7d+/GRRddhE2bNpnAxIcffhhjY2OYm5vDtm3bzHuyrxSw6fvbrCDdPVREXKeNRgPxeBxdXV2YnJzEmTNn8Nhjj+Gyyy4zrIPmGrGBIZWw7aZRQEjQCKzmifF4PNi5cyd+53d+B5/+9KfxzDPPmHHhczgP1Y1G8BOJRJBOp80Y87msmwYK83VoUGilUkEikTCyhuxMNBpFPp9HvV43h3kSdNANpGuG7aI8ImNCYFSv17Fx40YTI0cAxSzEbvdKTF0sFkMmkzG/mZyM7liCG2Xo1K2Ty+UMC6In+5JV0dgkun1isZgJ8Cbb6vV6TUwZUyjYc8pmRloBlPWyXi5kWTMz4vd4cOjQIXR0dBgfLwCT3rhUKhlLgsdZk/qnZcP/ldUgslfa0LbEWjEd2jbbt2kLbZvBoPC1rVIFFfZC1UIBzvYqANE6WOw226yLxk/QF01ql9tEGfColqoyHfycQI9WE2N1CC4o/PQe/Y6gh35ttoNZH/lctpnvrmfRUHFp0DKtaAJXghoCELJvwOqptRxbKjTOF7IcquBo1fLAvUqlgrGxMXMAGUETA1T5LhTwZIN0lxGDrJn/gX3DBFtUPH19fRgYGMDw8DA2btyIjo4O42KjEm00Gmab7OLiIg4ePIiLLrrIHEBpzxtlKshIEay0AmQMpiUDRobB7/fj8OHDGBkZwZ49exyBxQqwFGywPrZbt17bVL6yhvX6SnblG264ASMjIybtOQ0Rus4IDLLZrAMQEMhyHtPVxaRlZLPoCmOel3g87sjLQYXLnEc9PT1mbivwJkvBosni3G63CbblGiEo2bNnD5566imk02k0m00DfhkTkk6nTQA04zQCgYCJG1IXGAOgycgUCgWzPmigcc7qmmIwbjgcNjEq7GcWji0ZEyagHBoawvz8vGM+6ZxTmaZG4HpZLxeirAmMRCIRuKtVTE5O4oEHHsANN9xgJno6nTYJfzo7O5HP55FOp+H3+5HL5ZDJZByLH1jdYkaQQguIgl+VO6/XuAPbmrOFJH9Toak1wLppkbG+VuBELW9+rjt39DnKyKgiBc5lcmyAw7rpmimXyyZOwe12G6qavnENcKNlqttZ6WtXgELXCYsyEux/BRUEM8CqH1+3zqrS0rwStrLi+OnWQ7sfWJ++A618ggAKbj06QMeUbWSbqtUqZmdnzZyjoCdFzWybFPqqVAlM4vG4Sf8ej8cRCoXMYYV9fX3o7OxELBYz1+l84Tzg3F1aWsLIyAgOHTpk2jY3N4dYLHZOrJENcNlfBGyav4WAjnOY/aLMTTqdxujoKPbu3esYc76rjoG9Fgg++S5UzLr+eD9dVaFQCL29vSbIUgFUs9k07gue/UOGg98zloKMAYNCyXrR/dtoNMwBnJQNChoIElgvgQ4BG+OBfD6fA7gTBHD3EJk9Bh17vV4MDw9jenrarD8CDe4yZMwH+zAajaJYLBommXXyvcjCKOPhdrtN4CnlgzJY7A+6onQbL9PVk5WhG4jszv79+x2GCeeZMqjnM8bWy3r5aZY1u2lcS0vo6ekxu2l6e3sxOTmJpaUlY4ER1Wt8Qjabhcu1skWN1g4XGK070on0FXPBk12hEtPdGPx9Pt8mF5Ju6VS/ux2cpy4V2zpVMGEHW7YCRcrEtFLOAM5RzKSSaeHTKqTVz/TSfG8KEU1uxsy3vEeTMdG1o4yGAi8qOwo+CiqCA1LSbLdN02tsiNLeBJ3nyzKqriSOiz5fx4ttoQuB78bxpZLm+PGUYSoBWobxeBzhcBi9vb1ob29Hs9lEMplENBpFd3c3urq6zI4wWuL2ThO2j/Ncgw/t/iXb9dhjj6FeX9l+e/bsWXNUvQI1u48I0vU7dekok8j74vE42tvbMTo6amIERkZGHIcJ0l3KeaQAj23ndxoozHdeXl5GMBg0u7/Y7wR6jBdSY4DvxEBpKk+3eyW3CF0RHCfugqJV32g0zBpgn/b09BhWRBkvyhwGvHLOLi8vIxwOO3J+kBmigaVsWiAQQCaTccgEHsY3ODho3ICMB6GLhIcpatp2MscEOczVxHHmNmkaHhqPxDnCpG78TlPLKyCnXNF4Km4P5saDViwur1V2eb2slwtZ1gRG4vE45kZH8apXvQrd3d1oNFaSK42OjpoMlcVi0XHmA61l+mdprZCqJx1ONM7Fw4VKJWCjc1vJa2nFUihDotcooLCtAGU4ACd92WrnjH7P+1mHtqHVb2BFoadSKXN4Grcqar4CO2aBAox5Bagk6UMmIAGcWxZpGWp/sF/1/bS/9XO+F4U3gYq+P5W3ZtBVup7jaudCsV0zylypQta8IhwnCmiOmdfrxebNmxEMBtHZ2YmOjg6EQiEEg0F0dHQ4+phKQ+eDHVtEhaw7UvTZ2o/8jqwRAMzPz2N8fNx8ns/ncezYMVx88cUO1wCVt8186LxS5kXHEFhNdd/T02PcNqVSCRMTE5iZmUFvb+85Y8s6dOyV1dP1QjeguscUANNg0EPqNOaD11FJErDo3KQc4L0Emuq2AICOjg5Eo1HDRCirQNcI3SR00akbToEXAQmTlzWbTbPOuLtLXYN+vx/bt29HPp/HwsICMpmMeXeeLMwDQTnvmY1XY1LIjBAckaWhq43X8R0Iauj2AWBABmNOuEWac1aT8NVqNZN7RNczx5pybZ0RWS8/q7ImMMI8DL29vThw4AAuv/xyhEIhnD171ix+j8eDubk5cwS4KkD6y5lhkAKMh1DNzMygo6PDoHwqB1Vy6mfVBdMKCHAhaT4RVcDqtmGxlQnrUStBLXylS9VNwfr5W3NLKCWqSmdpaQkTExMYGRkxFqXmS9B04soq1Go1Uz99zxTeFED8jEpXLUG+pw2eyFiwTtLAmjdEx4Z/q1uIbVLFyX5Rha5uGd2aqe4uVfrKhND9QeVBgNZoNNDf34+rr77asXNC35d/q/Wv80bdYOoaonLQcVbQrGBIqfSDBw9idHTU9OHS0hKOHDmC8fFxc+Ix269jwfdhv9i0On+484pKZ9euXfjWt75l5veRI0fw0EMP4bWvfa2jr3Wt6jsRPKhSYj+TVSF4oVuR8zkWi5mkfVxTGhxaKBRMFlEmZNPnu1wuo1h1/rLdnMPMZeTxeEw2XjJzXBsEr7o2+WwNmOZ4kXkAYFwn3AJcr9cdO9wAYMuWLUilUqaNNMaazabZvcLdPEwJr3OPz+WZS9xlpcdDMDZGt5trjhhlSHm9ZnWlQaMMDNtqyysdsxcTQ5JKpdyPPPJIeHJy0tfT01O7/vrri7FY7MXRuPXybyprzsAaiURMLoze3l5jqTMAldYwo9eV2qfC0r3+XFjZbBa5XA4bN240AkgFoLpNaJnajIUNAtSSpOChhUDLiEpNLSSb7raZEBsQ8Huly9leKkzeT8HL9qoyXVxcNMGWsVgMtVrNcdKoZkylL9mOE6HPn0qNQptUMAUqn8/+p1WobASBiDI3VF4aKEnBT4VLAEnhqf3BPlSQQeGugZgADE3PIGkKZboVNEkaFTfnId8nFos5EjyxHvaRWoQ61gomOOds5c+/OaeUuVHgw3mRTqfx9NNPO4Bevb5y4N7TTz+NgYEBE8DIZyjA1fgjZdUU2Kq1T3BAJoBjOz8/j2KxiHg87gCgrIN9oe9KQ0PdU/ycQFxjnOx+Yv8ztiEcDiObzRrGlONGJkPrZxIvggxewzUYDocBrOTk4C4brgOC71KpZNzDzGtEecTncr2okaSgj/Ow2Ww68vww8LSzs9NsoybzRxZCQSllFMeqWq0aNlnBJLPPer1eA7gAOPLvcP5RZjabTccJyHxHsqqacyaZTBqwo4ZVq/F/MTAko6Ojvk2bNl2kn4XD4fo//MM/nLrlllsKL1S71lJUfq4XZ1nTudBMrMPzHxjz4Xa7zfHu9Msz8U+xWEQ+n0elUjFKs1QqoVgsGvcBLRbGOmheAhVs6u5QWl8FqjImaqXqYqLS4mJVIQ+sZiDltQp2KHzs2BNHp1qARXdoqDWvIOTpp5/Gd7/7XRw9ehSpVAq5XA6lUgkLCws4e/YsMpmMI7MoFT6Ty7Fe0ucUsqqw2traTIwOBTsVjIIzZU3sMWDbCbAYGEdmgkpZGSyOjeaS4LipZU0LThcrwQzfTUEM66IgZV8ruCTI0fnBYrvaVHHy/ViPDUYU2CiI0WfwmezHubk5jI2NmTVApVetVvGjH/3IHLJn16U/2g8MbEylUpiYmEAqlXK8F90eBLLqrtGD+1g33QgcG64FAnmuNwJVDWTWs4MIYhuNBgYGBsy8V5csFS9dKdxBo2PHNmg+FGUkCUQCgQDi8bjJy8G1qifucpcf14eyb2QYdP2oa0ldnayf7hHOc+7GKhQKyOfzJrsvDTMeBsrgXgbvMvmjxh8RbOtaZAZaAjMydmTj1Biq1WqOXY0ej8e4IilbfT4f+vv7zX02ELHjkWwZ90KUXC53jr4qFouet73tbZtbXf/TKFddddWOt771rcNvfetbh6PR6CXJZPLiP/iDP+in7C+Xy653vvOdg93d3RcFg8FLL7roop3f+ta3orz/E5/4REc0Gr3ki1/8YnzLli17AoHA5adOnfJ/61vfiu7bt29XMBi8NBqNXnLZZf9/e28eHfd5nfc/s2AfzGAwGGwkFpKiSIkUSYtaosWpdytSqtqRUi9tLEtqHDup3dRNI9ex21Of1rXTOq6lxIm32FXj9Hj9WUuaxJajKLJWLpJISdzEFcSOATADzAAYzPL7A/xc3BnTlmibluLOew4PycFg5vt9v+9773Of+9z7Xrr58OHDJvb55Cc/mezr69taV1d36eDg4NY/+ZM/affXFQgEdv7RH/1Rxxvf+MYNTU1NrxoYGNj61a9+NXa+5uHnMc4JjJTLK424ksmkNmzYYKdosjkWFxfNic7MzFgNPsIrL2aj+yr0Jw4Nw+bV3NUpFoyJp/aJJvx7vVP1TtmzGR6U8D6M5tlSGd5Ycs8YG+YBw++pdkAPqQ0MxrFjx/TAAw/onnvu0VNPPaWpqSktLS1pdnbWxHzekdAbwht2gJ033v6eQqGVXgb8LmDGgxHAmJ+7s4EWzwhJsjmUVqNqAIYHAsyDf0b+mXjKGyYNR4cDAOhQzcBa4nN4Hj5tA/NSDRCkyoPEPLvg54I/XM/ZUnuSKtYFNHg1SInH43bIHq+R9x8aGtIDDzxgrem9TsavafbM8vKyTp06pbvuukvvfe979ZGPfESPPPKIJFU4V+aK57iwsKDjx48rk8nYWmBd+HXN/BB1V+8fBLGwIdX7l33pgZtnH0ulklUlsXf80QSLi4vGDOBEARdNTU12XThZDx6wOV4M2tbWZvcGs4Lmg+/gczh+gbVA8OVTdOhQvNh1YmJCqdRK5+9IJGKHgFLNwve1tbVZaTt7x7eBZy17/VJ1yskzk5QS89y4d/7O5/MWFPJZPu1aHVTx/X5/vBKYkW3bti3df//9h06cOLGvXC7vufXWWyckaXx8vG5+fv68XeC3vvWtRDgcLv/gBz848PGPf3zo85//fNenP/3pDkm69dZb+3fv3h25++67j+3evfv5t7zlLTM33XTTxv3791ut+OLiYvBTn/pUz5/92Z+d2LNnz7PJZLLwjne8Y8PVV189t3v37ucfeuihg7feeuskc3z33Xe3feQjH+n7nd/5nfE9e/Y89+53v3vy3/ybf7Puvvvua/XX9Yd/+Ie9N99888yuXbuef93rXpd+z3ves358fPwfLeVyTmmaTCaj1tZWRSIRDQwMGJMBwmcxz83NVZRSBoNBxWIxhUIhU3CzyaEnp6enNTY2ZsJL77g8TYiDfTHWpHrz4Fir8/sYKG9siRgZAJ/qzYoBICr0h8chWON7pNXun/zu2NiYaQjC4bDa2tqUTqc1NTWlRCJh53f4SgL+SDLjJK3S4D4F4Rkmcu6+ZNo7Cu7dR2TSKp3s59GzSZ7e9SzA2ebep79gBfhsQAv36Z81zqWhocEqFAAn1cyVN8zNzc1WouwjPz88uPBsjh9ch2dDPEj2jFI1WGFOTp8+bWe3cDibT1MWi0U98sgj2rJli3V95dn65wO4CofDOnLkiP7u7/5O8/PzikQiOn78uLFnRMieMYBZyGazOn36tPr7+415AgQgovRrxot2q/eEDwh8usODGoIQ5hUARBoSdhXQAUtK+oU1EA6H7TXACHOMo/dVXJ5JkFYrTioOhyuvVprw3Tw/nzb0IJbUlAeesCcLCwuanZ2tSIXyB4YGsaqfS2wKpeaka1h7AHwCCdYg98Y1YHM8GPR70mvLhoaGDLRjb/ksGBXPyr0Sxpvf/Ob5iy66aMuxY8caeR4XXHDBQiQSOW8X2N3dnf/iF784FAwGtX379qX9+/c3ffazn+268cYbM9/85jc7XnjhhX2Dg4PLkvSxj31s/IEHHoh97nOf6/jjP/7jYUkqFAqBP/mTPzl51VVXLUjS+Ph4aH5+PnTjjTfObtmyZUmSLr30Ujui+X/+z//ZffPNN6c+9KEPTUrStm3bxp988smWT33qU13/9J/+0zne97a3vW3qt37rt6Yl6TOf+czwV77ylc6HH3645eabb86cr7k4n+OcNSNdXV3WWZMKmvb29orTZqlUyOVyZnjoGMgCx0Cl02lb6KlUSrlcTtFotMIY+uGdpmcd2Ph+43lDwv/5fp+L94aBn/Fvn5LxUQWAgtSUN5Re28G9eop7bm5Oo6Oj2rdvn2ZnZ9Xd3a2enh4tLy9rfHxck5OTklbL8GCOuC4cO10n5+fnjTbmZ5498foEnCM0OmDDiyK9c/cOx+sRJBljAu3soy3uFZYGI0nE5QWIPiUBVe+BG3NIh8tSqWS6G/+sKIXOZrOanJxULpdTd3d3xWF0Hih4ZyFVAiLPlnhQUL0fPDNTDVg9QDp69Ki+9a1vGd0eCASsYRWGf2FhwToWV1+j/zzWxpYtW/Te975Xp06dUiAQ0NatW00r4gcNsfjepaUlPfjgg2pra1NXV5dpITo7O+3zq1lJnJvfCzxvonaeXblctgPvhoeHLbXr0yOSKg6qCwQCls7t7u62ww9huRB/8t1etEpKxoNCHCrfTbsBr1lDVOodNyks9g5rgv+z7jzo4+90Om1AYWFhwdoTIPpGvwOjA6gulVb6j/jn7L9fWgXv7DvfqqBasMv+AdSzz9j76XRa/f39Vh5dnaZmbVevw1fCKBQKgRdeeKHRvxaJRM6rgPXSSy/Neh9x9dVXZz//+c937dmzp6lYLOriiy/e6t+fz+cD8XjcjEZdXV35yiuvtE3Z1dVVvOmmm1K/9mu/duE111yTee1rX5t517veNTMwMLAsSUePHm289dZbJ/1nXnXVVfOf+9znuvxr27dvt8+MRqOlSCRSHBsbq9M/0nFOYKSpqUmSrMHQkSNHJEnd3d0aGxszBxKNRhUKrTRCwyH56IxKmpmZGQMHDQ0NmpiYqOg54A1wtZGvdhjVqQZvuAE0HuV70OJzpnwOkQjggzQIGzcUWj1fo7Gx0bQbnjnwaQIfwdfX16urq0sXX3yxJiYmrNdFsVhULBZTNBrV5OSkGRHOqJFk9C5GuaWlRbOzswb8vG4Do8WccK8+v+yNDqAEtudsuphqNsqntbg3KHjU+56m9xErkZ2vsOC9OD70Dl6sCmvgKexAIGC0dDgcNgCXSqVUKBTsmHr/OzwbXuPffu14XYkHyNVpJr8mq+c6l8vpiSeeMMCOUyWVBqWey+X07W9/W9lsVtddd51isVgFc0V6E2cbjUZ1ww03WFSOs/WsFWkgmCRpJbJ/9NFH9fTTT5sTL5VKestb3qIbb7zRvs+npZgbUq7SD6cDYUXoxnzgwAHt3bvX1iZz7tmxbDZrILN6fVd3QqXRGWvAsymAX54V6RPmmp4nPvjg99jvkipSgABoDsxDo8N+8iyS15nQet2nlT0rGAwGrQM1olrW9NzcnAEJr3Pxa4qW+dFo1NJNPDNYn3K5XHGMAe9ZWlqyQxrpLMzz9YM5eiWkZ/xobGws33vvvYePHz9e/53vfCf+4IMPxp5++umWffv2NWzbtm3p53ktc3NzwVAopMcee+z56qA5Go3ahDY0NJSqmdlvfvObJx555JHx+++/P/btb3+7/ROf+MSae++99/DrX//6rF7iqKur+yGEeLYU8j+WcU5ghAllo+bzeaXTaWsYxcJeXl45s4FcMMbBnyyJ4/YOwOsD+L6zUf4YSB/NeyBSnYLgdf9zqbLVNpUf1RE0jsKr7olYPMviFxtGr1rrUZ2r7e/vV3v7ii4J50m7dU7cBMhBqxaLRQ0MDKi9vb0CeHgxJ31JqJ7hGn0ZZ7XzZC59aseXy3rWRKosSeYPFDJi21QqpZ6eHnPKPo3jKWbKQQFIvi+JB0QYZa7HR+m8l2vu6OhQKFTZgZWeIpzgWg1Gz0bJ8x7/fr6zOh3ogZoHxMPDw5qcnDQwkM1mFY1GLaUEc7S0tKRDhw5pYmJCkUhEb3rTm2wdA7Z82oQ5Yc+hu+F9AIPu7m7rbUIHXkTkOLNgMKjnnntOr3vd64yV8PcGKPQggfXmS5wDgYAmJib0xBNP6IknnrBqsGrGkrXIswC8SqroU4KdAKQAuIvFYkW/Dm+jSqXVqj7WCeuNPiTMEfuYwf0RRKEVwebAYtBMkHthz3LtpVLJxPye7WUeaWbmmcXqddXQ0KB0Oq3GxkY77ZeqIAA3mh3PhPJMfRt+wH2hsHKGzoEDB2zuq4ffB68URkSSxsbGQt/+9rdjv/7rv56+4YYb5hYWFoIPPvhgTJLS6fR500o89dRTLf7/jz32WMvAwMDSlVdemSsWixodHa277rrrzrma55prrlm45pprFv7bf/tvYzt27Nj8v//3/25//etfn92wYcPio48+Gnn/+9+fct8Z2bhx48KP+7x/7OOcwAgjlUopmUyeFb0vLS2ZoJMKmtbWVjU2NlZU2GAIiKQRw7GBzgZEpNWIRPphFFjNpHhQ4ZG+/8Mmlio7YPJ5/M0G9Q6R19nsfD6/450leWIcSyCwUjrY2tpa4cxhO0h9zc3NaXx83CKdEydOKJPJaMOGDers7LT0DSW7vmrH58LPlgLxIl0MN/PEZ3gBaHUE5Z2zj3pxsrFYzOaH7/dtt6HFAV2cLYKD5trQ4sDC8DMvQIR14JlQwsn15XI5E1x3dHSotbXVelJ4IOSfoXfGHmx6QFsdOXoDDqCj6gnRNo7cl0+jcwmHw5qZmdHu3bt1zTXXGKtB4ytSFtXfT8rHA15pRSeBBuVsTs+nzebm5iz1yt6B+eA7/VlFXBdrt1BYOdTxnnvu0ZNPPmlOUlLF/HrBLGnImZkZNTQ0VJRiA+R5/n7N0dAPFgFNC2uEvUMqQloVlQaDQSudp9wVBw74phTes51cS6FQqOjySnBBW3tfqQOoYG9xT5LMbjD/VCdyXezrfD5vTd088GHNU9kIs+jnnOuDcQZAsRdDoZA1q6y2kfz7lQJI7r777vY77rij/3d+53cqXo9Go8WdO3eeN0c9Ojpa/6/+1b9a+/73v3/y8ccfb/nyl7/c+Z//838e2rZt29KNN944ffvtt6/7+Mc/PnTllVfmRkdHw9/97nej27dvX3j729+ePtvnHTx4sP6uu+5KvvWtb53t7+9ffvbZZxtPnjzZ8I53vCMlSf/23/7bsdtuu239jh07ctdff33mW9/6Vtt3v/vd+He+853D5+seXwnjnA/Kw7EBNEhnUF4KIME5IyDzoi02YDQaVSaTscWO/oLeA34TVAOI6jSD3zRn+z/fze/4/hpETT53CljyFKk30GejMcnhYqxxNFwveXNavXvn76lVaGVATENDg0ZHR+2ajh8/rkKhoImJCYvC+AyMs8+ZA+wwVj7lcTYa1s8fVQC8hrFmjjB+HowlEgn7GQY1l8tZp0gMKteAQJXDF8nvYygBMzxHvgvjzrrB8HJtOJDqg9fGx8eVTqetHXwkEqkQGvsUFOwd3+edDIyPnzP/LHHSGzZs0Gte8xp985vfNBYkm81WlNz6aywWV3qPPP744/rlX/7lCtDlBcg+5Ublkk+F4TRbW1dE+N45AR659kgkovXr15uz5T488AeYwPAgaA0EAqYROX78uJ5//nmL5H0wgBOEscEJI9QmqKGKxgNRSaYJYo9QpeK1VOw3nhP3yTVKss+Ynp62dYY9gTFhvdIDpRrge80Z9o628/yc+Yb18gEH6wAGBSDOZ6ID45kD3n1lEykdUnGAlkQioRdeeMH6k7D/SQWGw2HF43HbWzxXhl//fi2/3GNwcPCH0jDt7e2Fv/iLvzja3Nx83i7w137t11ILCwvBa6+99qJgMKjbb7994t/9u383JUlf//rXT3zoQx/q+fCHP9w3MTFRF4/HCzt27Mi+9a1vPSsQkaSWlpbS4cOHG9/5zndumJ2dDSeTyeV3v/vdk7/3e783KUm/8Ru/MTsyMjL0x3/8x10f+chH+tasWZP/zGc+c/xXf/VX537UZ/4ijHMCI8vLy4p3d6uurk5jY2OGtn21ic+te+PKOQ9QycVi0c6r4TXK9NgI3rlUR5zV/yfSZwP5FAzROkyA32zeMVdXllQPD0p8PwJAA1E7ERZRly9BJbcuVarymRvy2EQwLS0tGhwcVFNTkzVEKxQKOnXqlMbGxuzIdKpGpMoTjH3EBQvlQZyfX2m1M6WPyrw2BOfHffDZLS0tFs2yHnCGXmTnc/nQxjgZDCdG0qv8YV+qK59gV4gmcSR8Lt8Dne7nYHR0VMFgUB0dHYpEIj+kK6jO8zJwcGfTiPjrYp21tLToDW94gx5//HEdOXLEHBoOinn0eqTR0VH99V//tTZv3qw1a9ZIkkXCzKO0mt7L5/N67rnnND09rde85jUVET6/D8PhwYZnAwF/7AUPPn2qA4aF6JrreeGFF3TvvfdqcnKyojEX9yetiim9mJkKEua7tbXV9CF1dXVqaWnR/Py8PRu+09sHb3dYK2jTpFV2EGA7MzOjpqYm00d5/Q7rMxBYacbY2tpqIJCfswcANmNjY5aW9p2SvaYmn8+rra3N9hQgE0AN8yTJGEJYjeqU0dzcnO059i4p2eHhYas0IpgKBFbOKuKzOP+Kcmzey/r2c/tKGf/8n//zzC//8i8//YMf/KBlZmYmNDAwkH/1q1+da2pqOq9Iqa6urvznf/7nQ5JOVf+soaGh/OlPf3rk05/+9MjZfvcDH/hA6gMf+EDKv9bX11f43ve+d/THfecdd9wxeccdd0z+qJ+Xy+U91a/Nzc09/eM+85U+zgmMYMzq6ur03HPPqVgsKh6Pm3HBiKO/gBKl0oRNLq2yCKFQyA6s6urqUiKRMGOHgcIZeaAhVQpVq1+XVvPHHhjBSPjf83l5NnQmkzEj7aMhb4gx7D6K9tfg74EIxDMOROreeEqrhtMLJXt7e03olk6nzRhBaxPFcagbBhDKmlOAvfFm/gFHXL8HEz7fX80Q8QdNDSkZnDXAyjNfPsVQV1dnJcz0VKEBFnPAs+EZeu2GZ3t8+gbtCilB7tdrUXASCwsLZrwjkYgSiYT1ZPE9GM62ZhgexHqWyv9ue3u7fuVXfkXHjh2rEMGSugEs8XvLy8t68skndccdd2jHjh264YYbtG7dOhNH8h3spXQ6re9973saGxtTT0+PLrjgAlt/pElx1P4ZhkIh00A8/fTTuvLKK7Vu3ToDMnw+B75Jq6CI652YmND09LQefvhhnTx50tZBMplUPB7XiRMnfijV59cHgQpAUpK1XW9pabHzrph3gKpnPnwwxO+TEkQ878WpvkcH88FnEhj49u9eI0J6xbMygGy0Ib6zqe9eOz4+bmfCVLN8Z6vygUFBx4IN9Y0GYcbQArW2tpoN9naW71xcXNSpU6fs3CKf4mJ4bdcrgRVhdHd3F/+xlq7Wxo8f5wRGENiNjIyYk0SkFY1GVSyunDibyaysFcCLtIL0W1pazJBJMgcaiUTU39+v9evXWyUOTshrOnxqBsOGs8fQeifMKJVKmp+fV6FQUEdHhxk2fsZ3QWVWR4A4L/qqABQwQLAD8/PzZnQAHjhBokDfqpkoBaYII4TT9U47HA6ro6PDokw0BKQYYFEAfcwPRrWhoaGiQVUoFDJny/MAgPgy0GpmxKdrADK8FyeKw+H/zInPmTM3sBZUJZCy8Cp/f4YIwJBrqC7x5RpJU/EMeT9RPN/DXKVSKS0sLGhmZkatra2KxWIGlDy45dlyDdy3N9i8n7XPvV5xxRX627/9W+3bt68ixeQFkhh/7uHkyZM6efKkZmdn9Z73vEft7e0GpFiDpVJJp06d0u7du1VfX6/Dhw+rv7/f7g3RbiaTsXnweitSC4uLi5qdnbXrBmjyfCUZ00YqIZ/PK5PJ6KmnntLBgwdVKpWUSCS0detW7dixQ5lMRidPnqwod+cZoZdirwACWbM8WwAV74MBI+3B614Mz/PiFHDaxEuyPUfvGtYVdoAGZFxHdQDh+yCR9oxGoxWpHy8y9r1OmG++l/uhYsenwtmTzJ3XTvnDSP0epTya9CNsIM+P+brgggsszWMC/DOgOh6Pa11vr44ePXrW9V0btXE+xjmBEfKig4ODqq+v12OPPaZ8Pm9isIWFBS0sLKizs1MXXnihstmsMpmMVTNgKMhtEmV0dHQoGo2qo6OjwkGQXvH6DgZGmMjCG3Kp0nHAvvgW9BhkdCGAEHKzPqeOVoPImu/yf+Pg2Pw+ZeWFohgdDL7vlYChh20hCsLpSCsnJ0uVQj5/lo93UJ72x3gxR77BE3OwsLBQIQIE7FVXURCR+u/gd3BU3LenqAFVHgB5XQ2pL6oeeM0DmGpnTSSMESbygz1AfwAL0tDQYPl13s99EaHPz89rfHxcyWRS3d3d1niO7/SO3D8Lzxjxf35eLpfV0tKibdu26amnnrI1ilNkfeDccNJ83+7du3XJJZfoTW96k2ZmZnTfffepv79fr33tayt0SFNTUxoaGrLmgZIM7I+Pj1ekPz1jiPg0nU5XlMr6+yFFWF9fb8CmVCrp8OHD2rt3r7LZrFpaWrR161a95jWv0fz8vObn53/obCFALI5dkmmkmMtsNlvhsAFtfn0zhwz2KcwHe0uSaZ9w9vl83nQq2CHeS8MxnLj/LoADwt1IJGJVhdiX1tZWW5uAe8+4IirOZrOmrSkWi2ptbTUAXSqVrLIOdpM5I3VUKpUMwAFI0Nn4zyfoCAQCWrNmjdavX6+2tjZ9//vft8DEj4WFBXu+fn3/vziefPLJQy/3Nfy/Ms656Vk8HreoEyOaTCYrUD5ivKWlJcv1op/w74PKhVbEKbL52STe2PPH9y3wjgojCnXuc5+kEDDygBAiDE+dT09PW1qHckBplZ3x0aykCqEqmgtfrtjY2GiOj+tns3ONgcCKyM7rAmAnyC/j4H0VgST7bmnFMaOZ4FqJwgEV3Au/hwgU8MB9+ff7nDwG9Gw9FHCqPBOvkUmn0+ro6DC2AAfH34AvGBPApNcYeBpbWj1VlX970AfAgaqmyZ4XjHLNNEzDSY6Ojmp2dlZtbW1KJBJWQebZOL82/TPwYMn/e+PGjRXpPc86eHaE9c9c5HI5PfPMM7r88svV2Nio4eFhDQ0NaevWrWpvb1c8HlcymVQmk9Hs7GyFA4xEIrr88su1a9cum0MPXkkRLi4u6sknn1Rvb696enqsf45Pb7HeCoWV1vtDQ0M6dOiQ5ufn1dTUpO3bt+uKK64wYE/HZRyzT51GIhEDeqwdggtJJm7HPvCMfFrU614AUf4zqHChrwd7D0DKs/RpCUqbPZj3eqVIJGKiYJrWofcgPcL69KwFgCMUCpmuxlfUADhYKwAXUmkcI8DcNDc3a25uzuyUJAsMU6mU8vm8dSwGxB09elTBYNA63GJHfVqR846q03q1URvnc5wTGInH4xovlzU1NaWjR48qlUopm82aI4GBOFufDSKMurqVcx3oGNrR0WECTDalp1s90+ErRzASvMfn6omOMEw+ivetoHFUfAbMxNzcnKanp1UoFNTY2KiOjg4rTfZ6BM8G4CwBIPRFkGTGsKWlpSLaCgaDFp0xR765GkbQpxyoQkD8CgMA++Bpb6+3AOgxN34uAWQ+xYXx8dEmESTOsfo9vgcE14ERZ1BqyecBaHgPjo9586kanCb3ybVy7gbrgXUHbS3J0nRcJ04JpomIl3QBoLBYXOkTMTExoYmJCXV0dCgej1u3Xb/+cPDV2hreVyqVlEwm1dXVZdoKD5aZE0/B48CLxaJGR0eVyWTMiR87dkypVEqtra164YUXNDExoXw+r6mpKU1NTZnmIxQKKZFIVDT58uW1gNpisajHH39cP/jBD7Rhwwa9613v0saNG82h+ggcIHngwAEdOXLE0l7xeFxdXV2anZ1VNpvVxMSEOVCeF6AzGo3avbK/YTUoh+3o6LDgAa0EVSd+7jxjhu6DfUMQ4HUapDmxMx7QVgN/gB3XmcvlLLhA8+M1ND61ArvJdfogKhAI2BEbXDdtD0grxeNxLS8va3JyUuVy2ZgQAFx1UBIKhZTJZJTJZBSLxSwoCYfDpp9iv3B4n7cXfGY0GrVzdmppmtr4eYxzBiOBfF4jIyOKx+OKx+NGDRMR+CPQFxcXrbsiaQ5SPU1NTYrH47bZ6QvhjQubFkPjS9DYvAANHAeGC4eFuBIGxTt6aZUt4RqJmBOJhObn5y2SgfGBjpVWohDv9AEnvhyRszC8Y8XocR8+LYVgzjsMSab8J/KXKs/OgP3gM6VVDQgjFAppfn7eDDJz6nsMYOi41moGByOLwUdfw7VwbR40Akih572GA5aAaNbPD8/ai28RPDY1NSkSiSiTyVQ0ymO+oZqh073uBafFc+d11gygC7DEvJ8+fVrT09Nqb29XR0eH2tvbbX58OsCnpzw4kaS2tjYNDAxobGzMng1Ann8zDz795UFsc3Ozfv3Xf13Dw8OKRqPas2ePvvGNb2hqakql0orYdHp6WuvXr7fnQuv306dPVwB9nrvfR0TQd999t26//XZ1d3fbNXlgODc3p7GxMUlST0+P1q1bp8HBQU1OTlqKFeDMmvFMBusNJ8v/0ZJVA27WE/MAeIFNYO7Yk8wrQMOzFARLMHc+LchzKJfL1j8EW+QDJVJBpK4o7fWpXiqDPJBj3rk+NFFcG0whPWf4Ts/mYasAVKFQyPQxlGd73VYwGDQAjQ0YHR01LRHfLUnJZFLq69PExITtqxoYqY3zPc4JjORyOc0tLGhoaEhbtmxRT0+P0aiUmRExhEIhO+uC/Pzi4qJisZi9H4OPAydy9RsAEMHP+LekCr0IQMQr3Nlg3kH4pj9eFwK4AahwiB/G3PdXGR0dNSfc1tZmjowD0DB+GA8Yl7a2NmM2iNakSmckVR6ohyHi/TgpDAxpJQ/MfDkfEVg+n7cDDWFYSqXVyiCf+uL6PaXOfBNtct38HnPI37yOI/fRrLTq2GBTvPCWz/AGkDlZXFy09viwKJlMxowz4HZycrIi/44xhgmgdJSDy3CAPNdIJGLgjbNdqPpZXFxUOp3W9PS02tra1NbWZikxesn40lucAs+LJlPMM44TJ8cz5nd5Pul02qq8uru71dbWpqmpKX33u9/V6dOnDTTPzc0ZpQ+b0NraqksuuUSnT5+uYGz88/Ii4FKppJGRET399NN605veZPvDCz3b2tp00UUX6aKLLlJfX5+lWil1BUxzjz6tmcvllMlk1N7ebmkEdEWkgFkTPH+f3uR6AKjFYtHWg68GY12wjn3vE/a/12zBerJuWdOk7vg/wALbEo1GDVDRGZX1CoBjXkm7Njc32/uwL7BFCM3RpPh0EsGbT0/7PV9XV6d4PK6JiQljTmKxmNmq+fl5NTQ0aGxszD6D+ZCkgNOF+f1YG7VxPsc5gZGOjg6VTp7U9u3blc/nNTk5qQMHDhil2dHRUdF3AodcLpc1NjamxsZG9fX1mRMAaFRHTwyP6r1ewUcQGG4PRuhSWb2ZiGyqUzo+WoNWpfdFPp+3vhXLy8tqaWlRf3+/KfK9cYRhgMXw+pJoNFpxX1yDP2mUa0TLwjXxHoYHbKQjPLPhDTI/xxnCYJGu8nPu2QwYGB/J4WB9XwyMIBoIL/L1TpWfS6tn4PCseBaAFtgtmqV5WluSra1SqWROnWe3vLxsNHWhsHImDQAVRobokesGNHkQm8lkFI1GrQKpvr7edAexWMyqSKi+SSaT6ujoUC6X06lTp5TNZtXf319x74DhN7zhDXr44YdNvxIMBtXX16dt27Zpbm5Of//3f29rmfmSpJmZGR06dEjbtm0zZuLxxx/Xnj17lEwmKyJzwAhpisbGRg0ODlr/DFgHBk7Npz+y2awOHz6snTt3WkWOf9aNjY26/PLLbZ8imsWJNjU1VRwVgaMHEBw/ftzExgQC/BywCIvnGSjPlLIuWHfVJbGS7Lmzz3xKUpJpNbwWyQPjlpYWFQorJ+pOTU1V3A/C23A4rO3bt2tiYkKpVMoYYUqiAQVU3LEWeA6wKVQiMr+zs7Mm5PU6D2wO68uLuQE7bW1tlgoC6NTV1WliYsK0evPz89qwYYNGRkZUnJ6WJBWd5s6nymujNs7nOGcBazgcNjCBAevq6qoQbpHSYEMRVSYSCSuBk2RRQiAQUCqVqqCmvYNlo3rjKf3wUdcYSTa/FztKlU2fiDag5YlCYSn4GSkXwAgARJLdh68gwSl6lgXGBIcHePONlGAvPLtQLTJk/vmOavGuB1ae1cD4l8urZ3vQ6AmBnBfxAQA9I4IT8mJBjL6PrPzveIPO+9CceLoccEaUCDDFEHrwShpwfHzcDLtnIebn540Vqa+vrxDzep0Pwkb/HL1IEVqddTY5OWkH1wHkODMEWh1w8dd//ddaWFjQtddeqwsuuEChUKji0LLOzk4NDg5q165dpqEaHBzUP/tn/0zHjx/Xgw8+WPFsfdptamqqQu/AYZTJZFJvfvObVSgU9NBDD9ma91qr9vZ2NTQ0GIBjjfo0Fowh333ixAndf//9lobp6+sz1g5w6RkfBK9Ue5AaYI0ClmFeTp48qb6+voo1VFdXp66uLnumAA6+z6897yxhYFijfu17zRPXC3PDuvL9efx+YC3R46W6+RwBzAUXXKDp6Wn91V/9lTEbsKNcC2DbX7/fC1wnQAz2kvvATrDfvZCbQJA54hoRtR46dEjr16+3uYWtzmazSiaTKp/RiGAb/KgBkto43+OcwMjw8LBmZmZULpcVi8WsJTyUKlRqW1ub4vG4RaMNDQ2am5szwSAU4/T0tOkN2traJKnCEPj8udcrSKspGHK3vOYrUIgCGdW0pk+p+M2OoydixlAgnvR0bSAQqEhBYOAaGxsrelr4lBIGzLMCGB9/dojvuYHR9YaQwbVihH3XSQys12JwP5RcVjNOGEAvrPTsDPflc/Q+5eVz6TAgOFfuHbAD8OAaEPCVSiVLP3H9tLKmimNmZkaJRMJSMFwnxwwAIOlciR6BJmCUVfJzT4cvLKwcdcGBZr7ygRJonh26Gw41W7NmjQ4dOqSvfe1ryuVyamlp0cUXX6w3vvGNisViamho0Pr167V//37bI3v37lVvb691oZVWBbzMuWfNuM6LLrpI11xzjXp7e7V+/XqbCyrAuL5wOKze3l4lEgkT+3r2yq9fn3YrFotKpVJ2Qixgwq9FD2IByhwGmEwmrYMqg8/NZrM6cuSIgRG//nza1INovxd8JQjrlO8HmNM6vjoFhoCetCUgCNAA0wC4Zq8QMHD9gEzswfbt23Xw4EETKPufsab4fEClZzhyuZyl8WKxmF0bqUOYFvYWn+eZHhjpeDxu6bB8Pq/29nZNTk7q8ssvVyqVUnt7u4LBoE6fPq3GxkZtPvPcsYl+bmtg5Gcz5ubmgjfffPO6Rx55JJrNZoOTk5NPNzQ0lKtf2759+8W/9Vu/Nf4f/+N/nPhJvicQCOy8++67j/7Gb/zG7KFDh+o3b958ySOPPPL81Vdf/ZLO8LnzzjsTf/AHf9D38+zqek5gBEEqx35jEDCOlGx65XlbW5s5Fpz8wsJChVPFSfjoBGPkPw8DyPCiKyI9H+1IqwAEZ+f1JlCkACaMlqfUfaWBzy9zjf76PIXMdXlKVVIFpcz1lctlE8X6+/YHvWFsvCPgHtEF+Pvmd2CfENEREfqjz2FbvDOWVs/x8VodX+khrZ5PA2iD/fGaFl+ei7Pxv8O/YSNgQQBuGOR8Pm/Hnk9OTppoD00H98VzJXUI0AM08rNYLFZB7VdXOkDzNzQ0WMt52KS6ujoDM5S5ohtpb2/XJZdcooGBAe3bt09Hjx7VkSNHlM1mdeONN9ppsz66zWazuu++++wU5+pUoxdQwkqEQiFdeumluvjiiw3UhUIhXXzxxRVCS9Y0a5W1x2d4kAjrBZO5c+dOXXnllfYcfR8SnqV/vuwhgMvg4KCSyaQdgOlThsvLK40EOacHkF/NBHoGhDXm1yf7kf3m9yusJaCeAIqfVXcgRegKI8J+4vNZ94BzUn4AoIaGBr361a9eSXsUV9sL+P2OnZJWgAT9mOrr69Xc3KxIJKLl5WXbB8zr/Py8NTn0OhsPbCQZMKaCb2lpSd3d3dq8ebNCoZCef/55zc3N6bnnnrNqxvHx8Yo0LQ3pqq//lTJSqVToG9/4Rqy+vr78jne8Y/Z8tYS/4oorNm3dujV3ph38Tz0++9nPJnbt2hV58MEHD3R1dRXa29uL//2///dk9Wu7du060Nra+sNHKv8EY8OGDfmTJ08+09PTU3jxd7/0cdNNNw2m0+nQAw888GNb27/UcU5gpFgsqhwI6OTJk2bI29ra1NzcbGc0kJ+ndTkbtlxeOQ8CRwydyCZqbm62qNEbUc+SePGmLwUlcvXROUZNWgUkREsYAwwcNLskSwP4aNFHmDA5y8srx4A3NzebQee7qg0Ow6dKMOh8B9fs2QhP0+NQuE/flZRDCkn98B3MVy6XM6V9c3OzotFoRSUH1wUYwXAzR7wvEAgYhQvw8ZGqjxphYvh8XwIprbI5PFevUeF54zi4BspzWWPZbNYaTXV2dlqqBEfe1dVlbAtRJl1qvTbJp1B4PR6P2734tehPB/agEyDKtQWDK/133vCGN2jTpk164oknND4+rpmZGTU2NmrdunVqbGy0vbG8vKyZmRk7JLDa6fI8OP+Etv8+NeZBvE9HwL5MTU0pk8lUlKITEIRCIQPfkUhE27dv15YtW9Tf32+n3ZbLZWM4SVf63jW+Z09bW5sBogsvvFDHjh2rAMo47nQ6bWk0WAKfoiAdBmjG6bMvfAdbaTXI4LOq2UaqsvhsgKjX0pxtz0oroBQbx7pgz8Nc1NfXa+PGjbrmmmv04IMPSlqt8GLtAigJQmBjuM50Om02EGAMuAPMYX+5fwTnmUzGAjLWUiaTUTKZtGdMU7alpSXrSeOF/wCtV6pepFQq6Vd+5Vc27Nq1q1WSGhsbX3jnO9/5Iw+m+3lcD8/wxcbRo0cbNmzYsHj55Zcv/rjXent7f2bAIRwOq7+//2cKRM7HOOeTkDBI2WxW7e3tRpNTahkOh7VmzRo7BwLgQRkvVC5RSaFQMAOLIfHndfh8KkbWG0MMrjc41dESUXckElEsFjMxXnNzs5qamtTa2loRrfqoEuOKc5yZmdGRI0d04MABjY6OmiaBa6Ltva+E8OkfH6VyDxgJD2h4v88Rc/+UGxJF8X3ZbNaaFdHkDJYAAIUx9OI5Xq++X89wAMQwgFSheLpYWtUBUbkDeMGxM6+IVynbpRwXIAK44ngBHPXS0pJGR0cr0i0zMzMaHx/X7OyslSl2dXVZhQyaHRrYAX7D4bD1eGhoaFB7e7s1tCKVSE8PqmYoQa+rqzOhM025AoFABe0PIFu/fr2uu+46bdmyxTQmyWRSfX19Rs0zjx5cMJ/oJsLhsHp6esyZwCLBTHLUAE4vk8nYnOVyOe3Zs0fj4+MVYB/AunPnTt1yyy36zd/8Tb373e/Wq1/9aq1fv1719fUWZTNP7BvAB8/OA1JAS2trq9atW2dl0IBY1pT/A6jmM7zegj3iARo/4+cAL//5BCqBwGrVGbbEpzsAzJ6J4r3YEGyAT2vyHABDaLB27Nih9evXWzoHkO9BEs8MESzX6FO7nDfV3t5u9pCAhH43XnPl2yQgpM/n89ZzZPqMSHXdunW67rrrFAqFdMUVV1SkBz0bhR1+JY3PfOYzHQARSVpeXj4vF3jTTTcN7tq1K/LlL3+5MxAI7AwEAjsPHTpUf//997cGAoGdX//616Nbtmy5qKGh4dK//du/bX3uuecaXv/6129IJBLbm5ubX7V169aLvvOd79h1XnHFFZu+8IUvdO3evTsSCAR2XnHFFZvO9pokrVmz5pKPfexjnfzu1NRU6J3vfOdAIpHY3tDQcOnGjRu3/J//839iL+U+Dh06VB8IBHY++uijTbz21a9+NTYwMLC1oaHh0iuvvPLCu+66KxEIBHZOTU1VtOP91re+FV2/fv2W5ubmV7361a/eePLkyTpJ+uAHP9j77W9/O/H973+/jbm5//77W6u/+1zGOTEjpVJJRUkTExPq6ekxCpAugDhQHFg1y0BunvxrNpu1Dq2cjImTpMyumh3AmKEfwPgQHZVKJTPKPyrf6V/3Tp7IjXMxMJI45YWFBY2NjWl4eNgMJpoDr6lA2+IpVgAAEbRnQAAz0OO87u9XWmGm6EDJ84CBIe3iIzmMF/oIrhHjUk3DYpw97Y7RB0xAnfPZpBmI4rh3rzvACXBPXvPg0zAAKhwq4AKdRCqVMlEq1RqFQkHRaFQNDQ0GKrkW5tinvjwjRQTu1ynPwOtvAI3Ly8tqb2+354mj8ae++jQWaRY6YcbjcS0tLWlsbEyRSEQbNmzQM888UxEBc93MlXd2pVKpogsnLCECS9azT52wzxYWFjQyMmKgwafj1q1bp6uuukp9fX1WMUZFDiwE3wFI5DkHg0HrRsqzQuROKX9/f786Ozt19OjRCkfPPoYl8IwINoN1xDr0QlT2FB2Pec7+2jx7x54GnAaDq+cDwSzwDPg8X/buS4cBSzQtZDC/ra2tuvzyy+2QQJ8W9gEGe52/ARqk/Lx+DOAXjUYNxOdyOQsQfCk1bBV7B31VPB7X4uKi5ubmlMvlKtJtPoWdc1V4r6Q0zfHjx+s++MEPDvw8vuvzn//80LFjxxo3b9688MlPfnJYWmEsjhw50iBJH/3oR9d+4hOfOH3hhRcudXR0FI4dO1Z/3XXXpT/xiU8MNzY2lr/4xS8m3v72t2/cv3//sxs3bszfd999L/zu7/7u2oMHDzbdc889LzQ0NJQl6Wyv+VEsFvWGN7xhYzabDX3xi188vmnTpsVnnnmmKRQK/UQP5eDBg/Xvfve7N9x2220Tv/3bvz35xBNPNH/0ox/tq37f4uJi8FOf+lTXV77ylePBYFC33HLLuve///1r77333uP/6T/9p7FDhw41zs3Nhf7iL/7iuCR1dnYWf/jbXvo457NpAmfSLUNDQwoGVxrndHZ2Kh6PV5TgSatOYHFx0aI0UgHkiKmIoPcIynaMEp+D8SD68T/DIWJQMO5s5urWzD56lFbzwD7F4rUNbFTAE1FLLpfT1NSUnVyMA+ezfArEay+8s5NWS11hfXzFDU7Op5YwkL5E1UeAALTZ2VmLyJqbmy1/Do2NMaZ8lufljWRdXZ0ZQqIvHABOBVGdrzThGgBj5OYxnvT2AAT4YwNI6c3MzJg4NJPJGBBrb29XfX29YrGYwuGwpcpwMkSgnm3zegRv8P1a5d/eWbIe/OdKMnDHZzc1NVmTNZwP4sHm5mb7DCpOSqWSLrvsMr3wwgvat2+fgWnYKe+E6OpbLBY1MTGhdDptDfeIrmEB/N7gc2B4tm3bpr1799qBj9JKs7Jrr71Wvb29piuCXaLBm+8KzOezdnHm/Jzuysw3aYGBgQEdPXrUrou9iY4HwS2M1PLysoEcGDVsEP+nr4m3OQAw0i0+bcna9+dk+RQoIMOnZ7PZrIld+R0P9lnjvhQf0LJu3Trt3LlTjz76qM0pa9inQD0YZW7Y43zf4uKient7LbXFe0ipNjQ02HfA3sBOlctljY6OatOmTZYOHxsbUzKZ1NVXX63u7m5t3LhR86OjklYFsQDwVwozUiqVdMstt/xcgIgkJRKJYl1dXbmpqal0tjTHRz/60ZG3vvWtdoJwV1fXwlVXXWUC0c985jMj//f//t/4N77xjdiHP/zhya6urmJTU1Oprq6u7D/vbK/5cc8990T379/f8tRTTz27bdu2JUm6+OKL8z/pfd15553JdevWLX7uc587LUnbt29fevbZZ5vuuuuuHv++QqEQ+MIXvnBqy5YtS5L0m7/5mxP/43/8j15JisVipcbGxtLS0lLgZ5UCOufS3sIZCvHpp5/WJZdcYnlHHCi5TIxVoVAwml1abRbk0yQYFxwaupF8Pm+Rs8/R4+jJNRMx4pSgdDFWbHSiSEra0LYQUfvKAlJIGOBgMGjMCM6GsygwIP7kTb5TUkUJL4P0CE7PV5j49xABMqfcP//2aRb+D4jwUTWfz3UR2cFAzMzMGMOCgwPccB9EkPRw8MAGlgD2BoNOUzXmlDXB/7kvnJokE0rSXCwYDCoWi1l6pb6+3hrI0dPG52y5R0AHlV44Af4N6PSiTq9B8NomT+fzXuYBzQDgBDAAkGD+cLJU5ASDQV177bWamZnR8PCwzXVLS4v6+vqUSCQ0OTmpkZERm7OZmRmNjY1Zm3CvqWBtMM+UoTI3HR0d6urq0tzcnOkQ1q5dq66uLovEmZtsNlvRvIvSaM6SIZ2A8JpnzrpBVL28vGyg2OujCBIAjKQ36OLM/3lm/nnQj4a0BKCH9G44HDYQ4SvweH4eHPMH1gVgwffwXQhIsQ8Aa0ByIpGoYBhhJnbu3KmjR49qfn6+4sRynhEsBkEI98rzhC3EhtDG3bPN6EPy+byB4nK5bN+5vLys4eFhxeNxveY1r5Ek641z3XXXaWBgQJdffrn+7OGHJa30VWlYs6ZCm8N1v5zjc5/7XPvDDz8ck6Tf//3fH/7DP/zDNS/n9VxzzTVZ//90Oh389//+3/c+8MADscnJybpisRhYWloKnjp1quFHfcZLGXv37m3q6urKA0R+2nHkyJHG7du35/xrV155Zfauu+6qeF9jY2MJICJJvb29y9PT0+eEGc5lnLOAlT4FTU1N6urqUjQatTJf0iu+wdfk5KSGh4crImc2mM/pwjq0t7ebgWJjSqqoyccBYHxw1jMzM2ppaTF9CqI7DLl3eugdML5QloALKEuEYzhAGhHh3D3Vz2tEFJLMIWM8UOv7VAksDsBCWo3Uec2LXqXVNAjpI5+SwIkTJeFEfCUQ89jS0mLPj9bTAER/Jgfgzqdr/DMFIALyMKhE0bAWUNXMNRqkYDCoVCplzxFngcanra3N6H+cHnPuGRYPLny6zGsFmHNf/cS8EgFLq/1j+B0PvIi0uRbmnbmC1chkMmpqarJGaYBivmdwcFDvfOc7tXfvXu3bt0/ZbFYXXXSRbrnlFvX29qpQKOjRRx/Vn/3ZnymbzWpyclLj4+MaHBw0JzE3N2epOB9d81y8o+Naw+GwWlpatGnTJiUSCaXTac3OzlrK0TMqpFx8gz4cbk9Pj5Vj19XVGTMkrYCh2dlZpVIpK+Pn9wF5vs8N8w8r6Fk69hL7IZVKVeiZYLywCawB9i97wQvquU+eGS3oSb1Eo1GFwysdbdvb2w0sNTQ02AnQ0ioLCuvrWcNIJKJLLrlEDzzwgIFvUn+ecSPw8aXudPylgdrs7KwCgUBFSTrz7VOQk5OTthZzuZyampq0tLSke++9V7lcTpdccomluZ977jnt379ft91220ob+NFRDQ8Pq//yyyvm/5XAjnz0ox9dy7/vvPNOi+Jvv/329UtLS8ff8573zPw8r6e62uV973vf2ocffjj6X//rfz29efPmpebm5tLNN9+8IZ/P/1STd74qhV5shMPhiu/F3p237zuXNzc1NanxjAHv7e3Vc889p02bNqmnp0c9PT2WM8aZEzmTx/SOivfg7HK5nLEWUJ/emOLcvGiSzUfkD4CgpwFGD/oUA8Em83lgXyWDEJX/Y4R7enq0c+dODQ8PWwvwlpYWqxzCOXj6vFxeUcz7a+UPWgT+70V6XKukCj0IAMBHmQATwJZvVY2hzOVyFqnzeTio1tZWO7F3ZmZGi4uLdiYPz4DP8qkODB7PXJJFkxhMUjw+8mRORkdHK8AaqY9YLGasR2dnp0XmRN08Z89AoRPy8+/TYT669iycFyl63YjXXHg6HPDiaXV0Ai0tLRZVc2YOz49qrYaGBtsLOMpkMqnrr79e27dv1/PPP29rlzXJSbgPP/xwxWcxD7zG/UuquC/WRyqV0unTp43Fa25uNl0BpaWwPLBJzHm5XDawCCiXZEJgvw9JEZTLZQMjnIcCC4A96ezsNEaTn/kGhOwr/iByrdaDMO++ZNbrg+rrV86O4fcAuwB9vx8AnTBf6JRItwEmuF+E1oFAwJhafl5fX69t27bpwIEDOnbsmIF6D2o8+8hzI+Dy+3xiYuKHmBPfXI0OvMw16TNaMczMzOjEiRO69tprNTo6qgMHDujEiRMqFAravXu3dX8NhULauHGjpXzZGy/3WFxcDLl/m2q+WCwGDh061Hj23/rpRl1dXcmz1T9u7N69O/L2t7899a53vWtWWmFKhoeH61/k11507NixIzc+Pl6/b9++hp8FO7Jx48bFBx54oEL8+uSTT7ac6+fU19eXS6XSz2xhnBMYaWxsVKCwciJtf3+/Tp8+bVEukQpNhiYmJip0Gr79NKgcJ1UqlTQ5OWlNo5aXl02H4VM0/D5Gi98nmgJc+LQPERHljT6nDljwOXQibyhrjBZMQkdHh2KxmOXHSQdIq83BcNh8H6ACVEnJK0aH9BNRM0DJp6O8bsYPrpuojoFBJRrju6G2fQ8VwABO3Ud2ABwMOkaUdAQ/pzsl2gafYpqdna0AorBQpNlaWloqolHSd5Iqzv6BBeFZsx58Cs+niGjy5kV4Pt3l59DPr2dU/O/73/FN4WAAPLgmKgcULiwsmP7CaxBYq8ViUclkUldddZU5bzQxgUDA0lOlUsloeN9NGD0Pa4c1yXMKh8MGoDnRN5fLaWhoSGvXrjXwUSwW1dnZWXEfrHEaE8I6sW7Yh5xmS2ABSDh16pRSqZStNxiiUChkrQEAnB5A8X7mh5QJjpjn4gMWn1IAlDIP3nn7MmTmEjtAisavKXrcxGIx26fMBWDX99bBjhCIXXnllRoeHjZmGPE1axLAC+gFTPBdHhwHAgH19vbavuf8Gs4t8tqseDxuNqarq0sjIyP60z/9U/3d3/2dbrjhBrW3t2toaKii9DqfzyuRSFSkuV4JYOQv//IvXzh8+HCDJJ06daoejcO/+Bf/YvJ3f/d3J8/Hd/b39+f37t0bOXToUH00Gi11dnb+SH3E4ODg0v333x9/61vfOhsIBPQHf/AHa8rl8k89cTfccMP8ZZddNnfzzTdv+OQnP3n6oosuWty3b19jMBjUzTffnHnxT6gcH/jABya/8IUvdL3vfe9b8773vW/qySefbP7a177WIZ3bcx4YGFh66KGHos8880xDZ2dnsb29vXg2Ae5LHeesGYGqb29vV2dnp0UiRA8e2afTaXN68/Pz5qgBBtLq8fUjIyMV/QHo9ErKxUdKULCI2Kpz1D6nC0XtRag4CqIPL9T0J2yGQiGLbv37ofcxxBjL2dlZKyeF5fARj08B4GSqS38BDRhs0jMMr1nAkAGKfCoKAMVn8J1et+GZk2AwaL0rMEoAoXw+b88TWhmjCuWNdgAjzGnJninhmYXDYROh0i4c8MnaIULmOmARAJh8Nywaz8A7Is/QcU/MmWeaWBs+bePTaDhJHBdz6cWUPFuqHLhuWDEfDfuo3FffUOI5MDCg5eVlTUxMqKGhQfPz8xoeHrYodXJyskLwS2RPyrBa8Mm6aGtr0/bt2zU5OWkOfXx8XMVi0cqTPbCuXlPVc0XKkUFFHPoF1oEHolwXn8H3so687gtmoLo6DTaKa+A9zCm/C+vBc8RRM2fco7RSCeS/j/UGOwrIYy+wlgE//jsBZJ6l6+vrU29vrw4fPlzBaBLU0EGYOfOpvuq9DKj0AdTY2Jilj2maBrMFAGacOHFCF154obZs2aJMJqNQKKR77rlHbWeqHIPBoMbGxiru4ZUARm688cY5SXOStGvXrkbAyPXXX5/u6+s7L300/sN/+A9j73rXu9bt2LFjy+LiYvDgwYP7f9R777rrrqFbbrll8PWvf/3mtra2wgc+8IGx+fn50I96/7mMe++99+i//tf/uu+2225bt7CwEOrv71/82Mc+NvyTfNbmzZvzX/nKV45++MMf7vvzP//zrh07dsx/8IMfHL3jjjv6m5qaXrI46AMf+MDUww8/3Hr11VdfnMvlgvfdd9/hX/3VX537Sa5JkgIvOQcUCJQ/9MY36qlAQD09PXrzm9+syclJoz+npqbMqeXzeaXTaYsEUJH7FM3s7KydWjk1NaVEIqG3v/3tuvrqqy06IF+Ksff9NrwaXVptpuWrQzB4OCXSFYjkqMCopmcBCkScRIV8nxfVMRDqcq9sfm+0pNVctnd6PjLH4fhozwtrAVo4MBwEVDvgwTtWjC9dQ7kWImkMeFNTk0WAVEDRIZLPhzHygA0njNCOiKq1tdUcCU6HMlxEijAZnvXxxtc/b8+4AGq9s6E0nDn01LukCnCC2NUzbv7Z8jNACKwQ8+VBHOJd+nF4ZgmwSXdNnDW9THjW1aCxrq7OIt1Dhw7poYce0okTJxQKrXRYfdvb3qauri4DFaQvfH8f9p5PkR4+fFj33HOPpqamFA6H1d/fr+uvv15XXHGF3Sdz63tNAPQAJawHnK9nAOlDtLS0pOHhYT311FOampqyOeMek8mkbrrpJl188cUG8puamsxJ8zfr22sYPFCm2siDbVg6wDtAhGfI2vXsqgegPBvWnF8PXpDu06ptbW0VfZD83iqVSjp06JC+8Y1vWDWeZ3aCwaBpb5gDADl7bHZ2Vj09PRX6r+npac3Pz2t2dlaNjY161atepXQ6rcnJSfX09KixsdH27fT0tNmIbdu2KZlMavv27UqlUvrt3/5trZ2Y0JPFot6USGj9zTfrS1/6UgVDtrS09BMhkj179mwOh8N/s3Hjxvnm5ubFF/+NFx+lUkl/+Zd/2ZbP5wPnswPr/yvjjjvu6P5f/+t/dY6Nje37WX5uLpdrPHLkSKRQKFy3c+fOgz/uvefEjOTzeYWam41Wf+aZZxSPx627ZX19veLxuKanpw0IgNBB/BgyNofXbUxOThrbUU2le8ePQ2ZD++oMwANGD2Pho1g2N4aJCgFeB9BAnVL9QMWNBwcYFGnF4WIM6QLqdRZcu9dXEN3xM2k1aqz+Di8g4juXlpas66hvvuR1JbSR5j0+bYT4Fc0NzEZ107ahoSEVCgWLSLlO5g8WiaguHo+rs7NT+XzeGl7R/ZTvwgHzrPwzJzrmPohyq1N1fj3wPHGqPAufYsExeDElAItRrUlaXl42kS9ziqPAEZG2oeqEdQSr0NjYaA4afQviwnA4bN1laahGo6zm5matXbtWl112mSTp9OnTymQyGh8fVyQSMdEwjIZPOeKA+TsYXKlKAogHAgHNzs6ac/QO1gNE1lCxuHrsfSAQMOcLSKEvCet1aGhIzz77rKampuw5ACh41sXiSov2eDxuwM7rJQCUvnyZ7wSoT09PW2qFdQMwhoEFXFANBnClLJ1n6kENew32g+dKcETA4tkprpf7Y27q6+u1bt06bd68Wfv376/QL3FfjY2Namtrqwi22KPYENYa+hH6iMAq5XI5TU9PKxKJWHBVKq00AcSmSdIll1xiOpi///u/VyqVEurQxcVFjY6OGrMC0H0ljWAwqH/5L//l7Mt9Hf9Yxyc+8YnkVVddlU0mk4UHH3ww8tnPfrb71ltv/YnOwflZjXMCIz6PWiwW1d7erubmZs3NzZngMZPJKJVKVQjqfIksjoXPgG4GTCwtLRlVC4vgHYkkM1bVgMXTyPxfqjwBFyfL+TjkvkulkqLRqDExXA/RO+yFd8SUgXrxLFE3r6M18QCGa+N6oX4xrkS1Pp/sGQIMECW90OLeUXvnms/nreyWtIkkM/Bch3eqAEden5+f1/T0tBl85pKKg2QyaWW2HJSIiBeA6UEBIJTP8/oEz4J4mhhgxFrAGXC9RNLSqkaA3wOUArz4HK8l8XojnrG0AnZ8hY9nRzxAQY8AUwGAQozLe0lxMf8IgnmvB4vLy8tqa2vTZZddpt7eXj3++OOamJjQ6dOn1dHRYWCXuYMpABTSeIz7bm1tVTQa1cjISAXQoM25F03yDHw5PiwI80z6DSe8sLCgkydP6tChQxofH7fAxAtLuV60M7A5PFdYGU5J9muies5ZS8w1a4l7o7+OZzFYE75airXm06b+WtnP2CiABs8am0TKRlrtjwJQhtU6duyYFhcXlcvlLBCSZJVjrElsgG/AyCnN3CeCWXR7s7OzK6W5TrgPU02Vzbp16xQMBq3HE3tJgdVus0NDQ6ZR4vnWxi/OOHLkSOMf/dEf9aTT6XBPT0/+ve997/jHP/7x0Zfzms4JjFDtMjg4qGw2q9bWVk1MTNhBZXNzc+YcJZmhIwWCQfD5Tg846Cjou1z6aAqA4isnvOPwDg2D4L8DWhdAQjkyHWG5NsAHEZC0Gln5iBKqu6Oj44fSDT7t4EVggCUMJwaMzwZgMN8YXZyffw/njHC2BCDOsy9eQIkxpVU7GgHmC6dI1Af44JAzokVKbROJhDo6OhSNRtXe3m7pKQwh9yzJgB3z4pujeSDnHQLzhoMmivSnnXqw5vUFrAkf0fmoG0DsI3Xm7Gw6En6GU/GiypzLtSNaZq0B7o4fP24l717cSGqM3/fMIc4ToLp27Vq98Y1v1PPPP6/R0VG1tbWpq6vLgB4RPeW4nvWDgYnH41qzZo1OnDhh9zk7O1sB2LyzBpSzXzw4RBfFs1paWtL+/fu1f/9+jY+P2/wxh6wJ1jJCZdaL11eVy+UKO1IqlSyy96kb9i33Xs2ukYrEZsCU0P8G5k6S9SbxDJHfnx7IsrZgZFgX3v5QIu/ZtM7OTnV2durIkSO2jgB5nk0DqJEG4wwfrof74PsAXjy71tZWxWIxTU9Pa2pqyuxcsVjUjh071N3dbU3Renp6VgTjc3N2nxdccIGl2Wtg5BdvfOlLXxqS9DM5/O9nNc79oLxy2ajEpaUlHT16VBdccIE1CaOqQFLFmSPxeLyiXJZjzr0WArqSiAKj5Ov5fTTso1R+TpThnYu0WjGBAw6FQhaR+ejOOx6qB4gwfeSFcZZkJX9eSEk0JFV2WCQfT8Tj0y5EMTgEr3Hg39C2OGyuGUcPy8P8kYqAaiXCmp2dlSRT29OWm/OFYAP4/v7+fl144YUql8tKJpPq7OysyO/7tBl0N6mhUqlUYZh96ornVw0s/WuABp4vzoZ1RoqQNclc+iPvfcQvrdL1XK//GUCX30PrAEAIh1d6T+DQSqXVfi78Pk4aB47TQmQKWIERoSLDpzlYH8xDoVBQLBbT1VdfrbGxMY2NjWliYsIYKNbz3NxcBeDnOtDtrFmzxlJMRMEHDx7UwMCA3TMshyRzboB3Ujr+GUxOTtrnjI+Pm1gX58me9oAdcMFc4IA9i+qb97EHYKjYX/Pz8xX9RNjvXB+gkPNXWFMIjBcWFhSNRu1cIVKJvjTYg3tYJ0T77CnfOZp5AlChoxkaGrLKM9Jl7CGCCtLUgEOffmaNoH+Lx+OWxoGV6+rqUktLi303wSOglAq2devWqVwua+PGjStA+QwYKRaLpgfyzHRt1Mb5HOcERnK5nJp7ehQOh5VOp028Go/HzYBzdgYiUjaUp0QlWXUNNCrghO+BiaCroE9jEJ145yatnuArVVb+EJ16cSMnty4vLysajVZ0ACXF5LtAAjIAQZFIRMlk0iIvDBCgA2MqyQycF8ieLbKXZIACIBEOhw304CR8qoWIFsaE6AmDVy3aZN5isZgJU6GMqXqKRCJqbGxUPB43B9ja2qqmpibrTSGp4gwgABPOnUjW90Xgff4sEV+yCFsBUPBpNg8UcCasD0CIdx48LyJlvqdQKFQ4PNYb7IL/nmpmjrSiZ32Yv/HxcXuuRM6sAc985XI5a+UuyVI7jOpqj2AwaGXPgAH0Gpwhwz379V9fX29ibRiByclJ6+2xadMmY8gWFxf1+OOP29yTHkFo6/thAFpZT6zFo0eP6sSJE5qcnLS1QaXU3Nycdcktl1f6scAoTU5Oqr+/316DfSPdQSDCfQHa2C/ocABgMIQweTxDgAIsBvtiaWnJBKAcOscagQXyqTCfmkmlUrbvAKV1dSvHEACKfeqKQA32sK2tzWwODKwkY2dhM6enp+0gUi9+5fRtbCWHl6KXwm5ks1lraBiPxzU/P69jx46pvb1dDQ0NOnz4sGZnZ9WN1qhU0oEDByrSdjVmpDbO9zhnZiSZTKqurs4M29q1a00wSCRNROWZAJy4z597w4ozyGaz6ujoMONTXZp3NqQOAPDsBc4Ao4MDJXLhevxnYfgAFgi4iOBxXuhI4vG4naDqo1CiGE8X+54BULLcj6d+fb4bYwSgAojgDAATREXMHxEpTp9Oqhj6paUlU9XjmOlwysnGOEQPDoiofPrCp8MwXAADabX9v2eGMLwYS+4boOSBiGdGfH8art2ndgBEzCGGm+/gbwSMXuBK6o7n4BkRrhWgIMnSV5Q08/vMK+Jn71hhJ7gPQBMpPvRSMAHoAZhD1jFMGOxNIBBQOp2uODSNrqz5fN6E4r7iZceOHdaAi+fAOTqkYGGACCwARYFAwJw/19rQsHJQ4WWXXWaAjJTH0NBQRSk0c44wfGJiwtZcOp22+6mrq1M0Gq0AIsy9T30CJEgZ0xaAZ5JKpdTW1mbAfWlpySpXCAY829HS0qJsNmvVT9FoVKVSSTMzMwb4OGyOPcCzY68uLi4aM8GaLpdXDwvdtm2bSqWSXnjhhYogBzaMlgjT09OKx+PW5t3vEexLc3Oz+vv7TYsEwCoUCkqn03Zyc7FYVFdXl7Zt26bh4WENDw9rYGCgIsUtSfV1dfq93/s9ffnLX9bBgwdtH/4UoySpXP4Z9NyojX9c48wzL2tlDfzYcc59RlDwd3V1Wd+JkZERo4kps8PwQVO3trYa4+CNMIYYkdXo6Ki6u7uNsvUOR1JFV81qMSNO3FP/RFJEMDgBIh1fngpwCofDFWeK8F4MhDcunq3wgMRHj5Lsu3GS3kn5NAzRHNePoc/lchW6D4ANQlxeY85xYLxOPwH+tLS0KBxeaa9OhAXrAeUdi6006UPgiHHH6HlgyNoAGOHweU5e1Mfv8btEXjgEWm37XD8RqU9jAD5xTJ6N4Dnwx+tEuA6vG5mfn69wFrwfMMLnw8J4TRGgh7XknwX3x1osFoumTWDt+vXHcwVsAMxyuZw9n2w2W6HbCAQC1ogPJ4TzAdQwb55tkWTPlXW5uLio5uZmi+Jhw0hhwEy2tbXZEQ51dXVKJBKKxWKWSsDxLy8vq6urS5KsCRwpBAAuAJr0o+/ZMj09rYWFhYqD9Jgvb09I8VJNxBrCVkxOThoAAlxRggsoBchR/j41NWXpE5oKcr3o4BCfcy/sdQ/SQ6GQ2TOCipGREQNDCE5hcz37297eXiEEL5VKOnXqlDEi3EdbW5t6e3uVTqeVTqd1/Phxq55D6EqhQTBYedIyDe8Crmni2rVrtWXLFu3fv9/s308xxsrl8nI2m21uaWlZePG318Yvyshms83lcnlZ0ouKY8+5miaRSFjkMz4+br0ogsGg5ubmjBXB6XPcdVtbm+kh2Ozlctnak5N/n5+fN+MDG0FKwzt7HL1nLHAMNDZjg/MHYMAmpZMn1+tz1TgQGAp/kBggxqc4MEzRaNT6a3jBW7G42iIbIwmVzkYvFAoWiTY1NZmD5B5DoZD9XFJFRRDRrSRjRnCKdHwk9YMuBBqc6A6Qwu96AabX6lDNIK2e++LLGTHgAEOAIEbWAzicOEyHZ3585VP1XMJcILDzcwX48E3TYO+YS5we18D9cW9nO4eH+YAm53XSC766inXIesNReecFGA8GV3pIQNsDsqH9Wc/MI/fl00W+0R5arUAgYOkPnCHaFVg0ABzOns9nv/C8cPhE+7yfc09wpAAfSVY2GwqFlEgkLBUI6OOaSUV4zVY4HDanj8gVm1FdFUWZLkCOMvKFhQVLNXEtvgcI8+UDB5+K8p2SAUqsPfYb+hLft4ZnwFz4jsKDg4NqaWnR/v37tbi4aGcBse5875mZmRmVSitlua2trRaUkQaiFJh0y9TUlBYWFjQyMqLZ2VlbjzBgc3Nz6u7uViqVUiwW08jIiB3B4O1rsVjU0aNHLeXjNTM/ydi5c2dmz549d4+Njb1PUqKlpSUXCARqeZ9f4FEulwPZbLZ5bGysvlgsfmnnzp0v2gztnMBIqVTShg0bTIUdiUSssqGjo0NHjx41x8EfNsPIyIhtWJyAJKXT6YrOn1R7eOEmYMcDC5/D5drQhfjyQ+/giFSJljBeGCYMFUwEDpeUimct0IosLCxoenraHAxgSlo9hwQjOz09bXOXTCbNoEurnWhpHoaD9nlqAA9plmw2a8I0L2Ll3tDzlEorDZk8U4TzAMBxjzgSr2PwgkqfkoL6hxHwehGvm6mmgT3b4VkWPts3yCPFxFwTHXrmoVAoWCkyawYBJ04FcMC1SDKgg7NgjkmVwC7gNNEReNaEdIBPG/H8vQDXV3Vks1lFo9GK+04kEnbqM2sHR8mzJY3CnmJtoEPBYUejUeVyOWteB8hGs8IaJEXX0tJiGjCeQWdnp+1V3//HV3hMTU0ZIME5k4ICQAAqMpmMotGo3S+ROs8CWwKIL5fLam1t1dLSkqLRqIEi0l0IZHmdfUraCVAMUKEXUqFQMKDC76BXw8kD2srlslXM8boHwuxf7JrvXkvKx6c7c7mc1q5dq8nJSXt+ntVlvfJ3V1eXXX86nTb7AIBobW1VIpEwzQupJ/ZzJBIxcS9rq6+vz3rLBINBdXd3a3p62tawtNpu/tChQ3Y92KmfYnx8eXlZIyMj7woEAs2SaimbX+xRLpfLy8Vi8UuSPv5SfuGcD8qjPLGjo6OiomBsbEzZbFZjY2PGDlCGSwkqzopowTMRgAtKhBFRctqrz+P7TQwljJHwkSzOD8fry/lw/jgEhGRexEg06KNfaONCoWBR5sLCgh11DxVPPtyzDr58ks/j+0KhkGZnZ83o4FQxPMwR0R7UsU+P4QRwjD5PDysBEIOR8OJMNABEyB60eYNZ/bq02kyMOWD+pEq9BnPqG455pkVSRSMt36TN62p4ppSOS7JGYRhvnCeHBKKf4f3+8DZfTst64vpgDyRViCyZN97L58Ce+CZnAFn6slDRlEgkJK2IPL2+CmfLd+N4WY/oTzz4llYPS5Rk9D/MCnPAPfKscrmcpV44uyiTydg9kGr12gaAHc6c9QEj6oW0aEx8KsOzm4BOX1UkVTp334vI7wlSWuxlGE8Ar39W/jwY7oFjHnz/EJ4DvXn8UQS+wRxzAeiC9fK6JirOSCk99NBDCoVCJiQlRVgNMtnL6GPa29vN3rI3JicnLRCi55PXU7GvANaJREJ9fX0aGxvT0aNHLR3+N3/zNytC4lBIOvNMk8mkNmzY8DNhRiRp586dJUn/Zc+ePZ+R1CPppxKh1MYrfpQkjb4URoRxTmBk48aNFcdwNzQ0mEakrq5Oa9eu1dTUlMbGxgy4QN36xYwBkmS5caJ+H/GzKQuFgukRvM7CAweADZvRU6c4SpwZnULZsNCzOFMvGiyVVnqlZDIZc2qS7DpId5CC4XdxYswDkSjNpTAUnOcTDoc1PT1tgjMiEt+DguoEOt1KKywDeWBvjDyTwevSapkmz4z7LRQKZhxxIETV1SCDFAyAx7MB1UAEdgGD7HUkXvfg9R88P5yQF6Wi8+A58t2sg7m5OWPZAGy+ZBbw5Jkyrx/B6QAy+T8M4OLiool40YrA5gCeWNPNzc0GbBB4kqKk1NSvNV/txDXzvXw22gU+m0ozevwwn1wzzwgRK/vCC4a5R8AX7Ad9KUhR+fQIwspyuWxidt9zhMoP5joWi1VcIyla/oZZYc17JoTUISchc/3cSyaTse7HxWLRqozK5bISiYSVPwMUASRU3zAvTU1NmpmZMU0L7AbXxHMul8um5fC9gKp72PiqMPQ+7EW0M6xhrgemc2FhwXqF8Dq2CAaIPk/5fF4zMzNas2ZNRXUPexeg6/f0pk2b1N3drV27dukrX/lKhUAV0Dc1NfVDQcdPO844p5/4/JLa+MUd5wRGYrGY2traNDU1pbm5OUspIMLKZrPq7e21MkKihFwuZzoIaRUcEPUi0ItGo5bPxpmjqmdTwwYQcXpxIM6GXLoXIBJhAioQ5XnaH2OBI8rn8xofH9fs7KxyuZwd+05OHlaCfgI4bBwjOfKFhQXFYjGLhri2qakpy2VT+ZLNZu01aVUP0NDQYBUH6D94HcYC+pzoHWofJyatGBqqcIi2AQ4+TePBGQbJ6yVgWaqFbR7Q8Xles0M0y+eTWgAY4vxg0ahM4JrQNAA0eK7z8/OWFy8UCuru7rZoFyfpqXuYECJaHGgwGNT09LR9J4AUx8nckmYkHcI1oOfA6XldE8JTwCkpFgw9TBq0e3d3dwVAg91Dk8Q98Ow8O8h1AjYQJJfLZWUyGSvhDYfDmp2dtRQYTp11CluUSCQqgHwkErFyXU56RvPkmUCAN9oKhMcwWFSiAMil1QosGINMJmNrGeDtQTprm3WJCBVb0tzcLEmamZkxtoe9AqsC6EMUStrOB03+4Ljl5WUDPQBdgDOAHjvEddHPp6WlxRiH9evXKxqN6uTJk8bmRSIRTU5O6vnnn7egCRsGiAGgbdq0yU7FZr/B/HhWsKGhQevWrVM2m9W+ffssTfjNb37TmDGdCSQKhYLuvPNOHT161OzrTylgrY3aeNFxztU0RD6SNDExYUbIN1Xq7OzUsWPHdOLECS0tLVmHQy9StA1wZlC9gkATY8bfGDmEeDg9wABRLGyFrx5YXl625kapVEr5fN7KDaFPicKhO8PhsCYmJkwMhkEmlw+NjbEnvw2l7WltvoPDrCjZo8JlaWnJyhMDgYAxFxzlTlM16GAqmjA6pHB8K3G0N1QL+AiY+8XBAe4YPlrDYSPAxQgyx9JqSa9/L+sFFkNaBTukq3DuXC/pG5wpVDolpb7TJvextLRkUT+iPZpRYURhh3xPDr5TUgUFj/NJp9Nqbm62nDvX55kx1vTS0pJSqVSFA8Lx4OwoWScdR2oN7QEpnVKppI6ODmMfYQBglKjowmGSMmS+mWP2Cffa0dFhrEI0GjXANzY2pkAgYECJ1A8pyLkzjbD4LCJrgB46EEA3LCNrG+aDPYEjB1AxL6RqfL8X+tzw+6wZUkvVwnYEobAcpJRhSTivBUE3axcwz/x7cbYHg9XsiBds+3tFUB6NRjU/P28aHaqNJBlobmtr08TEhObn55VMJm1vHT9+3IISmELWWyaT0dq1a9XX16e6ujrt3LlTTzzxhB1ZQDDl06ulUkm/9Eu/pKWlJW3ZskVzc3M6deqUvvvd7xow1pl5bGho0LPPPmsHoWJLa6M2zuc4JzDS3d1txnxxcVFTU1MVVSlQ0mvWrNHp06eVy+U0NjamwcFBO0APJ45BZePDnmA02YheLOk1Imxactdn06NAN5L6YVMi7JuamtLMzIyampqs10kqlTIwhFOuq6szDQt0qmcOcMZeawLVnM1m7UAqDFgwGDTxHnMRiUSsrTw5b38AIdGWTx0QafoGS7AgGHCuK51OW37bpyVwXvl8voKeBjQx30R3gE+eB8+ezyF6J+r1kRXgAcfqxaSIO6lk8NEvTBQaCqhurot54dpgInzDLCJ42AfodG/k6XNB+oNSTl99g4jQVwihVyiVSubUuXbfz4JUFI4VkEGKkrkm1eRBJmyEZ4NIQfmSZfQ8Xv8QDocrDoqLx+NKpVIWdXMtrCX0GThWABmsCKDTa1zQMXkRJu+BdUKYzVz59B3XjjP1qTEPKEnD+B4ugAL64ITDYUt/+nJbQAIMjE8Xw4jAbvmGbj4Fyfr2mif0KZTUh8NhJRIJu9empiblcjlls1lLzfD+ubk5XXzxxUokElZRxFpmf1JVhK0plVYanpHe+v73v6+hoSG7F5/mA4jt3LlT4XBYf/VXf6V8Pq+BgQGdOnXKAiVJCp0JZHp6enTSCdhrrEht/DzGOYGR/v5+TZ3ZgKjWvfgsGAxag6BNmzZZy+oDBw5o3bp1RhN7zQGGhM2XyWR08uRJdXV12WcRAUH54pi90tuLCAECNAkCjOBMpVXFe3t7ux0ehgPCcXAAnY80cBD+mvgbp4WTQmOAMeV3Q6GQlde2trZWdDf1DgRtDAYdQ4eBxhjjuIlo7eGeia59xI8j5jpgJ7hHr+4nxYZzwHFSgQI4A1TwuRhpb8QwjPST6OrqslQAc45jY/49C4CzhXr2pZxQ/zhC5pqIHWMurXZsBUCxjjnx1PeUgGXis7h+5sXfnwdkABFAAs+NyB0WBufC79PvpVgsKp1Om+iQ+0ej0NbWZowM30uJML15EFTD1qB9WFpa0szMTIXw068J9hXglb0O4wBbwBwsLi6qs7PT7pMyZhg/v359AOJTIIA5bIFF6m5uYWQ9kPGpHfRrgFmYvPn5eXs/TdhgcaiaYQ+XSiv9kAAmpIa8SBVGimcPSxkOhys6HnO/AF7/PYuLK4cXdnd3WwfUoaEhtbe3m46M1B9zzRoqlVZ6rTz33HPatWuXgWKCN5g0WMBLLrlEmzdv1lVXXaV0Om2BysmTJ3X99dfr8OHD+od/+IdV8H5GK5I7Y2eqtVa1URvna5wTGCGXHQwGderUqQpnCGLPZDJm0FtaWizHe+LECa1bt049PT3GPuCwJdlGxljOzc0ZzQqVj5EhukHEhSH0zgDqWlKFEUTjEovF7PMRiWGsEA4eOXLEmgj5aIrIybM0CDUx7Fw3wlWul9+PRqOWR5dk/Vakyi6xGBjfuApw4XPJvvKnuvIIB+xLPInoiUz5PgAU3wGjgwMlikJQyCmj6DuodPBVMNVVJ8Vi0dIDOC1vuOmdQhoKFgQg4kWtmUzGjreHYcCR4KyYc+aivr7e1gHOl0qrlpYWK+XFIQB6YVMw0h6A4XD9umN+WeescfaFT8PAQvjnFYvFFIvF7Jr5zunpaUmrnYJZOwQGrE8/r7OzsxXiVVIzBAcwJ4BARLqe1SJFCEhhX6HXSSaTpiXDabJnACAwdgQvOHUPkHHYzEMmkzGmDl0FrdsR0sMM+muDmZRkAQp7tqGhQbOzs+ro6DAhMXPBc4Yhwy7AusB+8bz8IXf+e7yGB0DIXMIqp9NpE/oXCgVNT08rlUpJkoEY7h/AzvEZpA8By4Bo7MXatWt12223ac2aNXr66afV2Niot73tbcrn8zp9+rQKhYI2b96s73//+zZH2JPe/n6NjIxYY8vaqI3zPc4JjBw5ckQ9F16ocDisEydOGBghAsSQeOdGjwBo3lAoZCpxfp+oBFpSWhGbtbW1mdHmMzF+GMd8Pq9kMmksCr0CcGBe/wBtS1SL4cJZkKqRVo9GX1hY0NjYWEW0zqmoXhQKOMERSis5/GQyadEITgBQgsKe7/dUu69e8awBw/8bQAMAgaliPgAYnupF04ARx2lhTAF4y8vL1qtEWtVKEM0SnVezVJ4q5vf8d5FOgjlC4Mz7oPh9eoPvBcCwFrzThCFaXl62HjbMHywKIkKecXWKgxNSSRNQDYbDmJ2dNeYK8AST4sXIPEdfrcV3EMnCCKDRwOml02lJKykqgAH3yToideHBFWxbY2OjpQfZOwAqmDnArNcVSTLmgGv3a6tYLBrbwM951tJqW3zWEAAZOwEgQ/DtnTSMA826pNVABIfLNQMKvU4K8IDgnLJa5pf048zMjFWhwSwAKEullVOMYU0kVWg2sCGwiL6smJ8BHklf0X4eAMQ6RjcCCwWwZs2zvwDH8XhcO3fuVE9Pj60hSVq3bp3GxsbU1dWlTCajYrGo1tZWnT592oAgbObQ0JCampr0+OOP62tf+5rtTXqxaGJCgUBAt99+u774xS/a9dZGbZzvcU5gpKWlxQ5Yw6gS7UiyRR8Oh61BE06Hze2FlN7AkafGePn8Lhsc54oanmvI51eOAfe5ZChRIn+U+RypXi6vNCGLRCJGRfv8NJFZfX29pVQQkfIZOFsoYpwe9wv9T0kukToGlf8TxfvKE28cAVKIf3EEROI+TQPw433Q6UT+XrBKpI3jRWRXHd3RywMtjk/NFYtFE5jyfb6tN46JlAvgg6gVfQ7OC4cKcJVkqTdJJrTlfiRZRQpiS75PUoWgGGYIIOaZEq9D8rqHfD6vSCRi+XmYGdI73A+fSYoOB8k8+g6brCW0BqwjHDoMDVE9YBWnigNlv5CKYS/gQPyaQCxLlRjCYMAPKSiYC9Jp0qrAF2aqo6PDKmd47lyntNrUjgaCgDiumR5EhUKhokurFyeTnoA9gnX0B96xxwAxBBowJQQkXD9OF5CC4J7qIe4DJhMGjD2FloOfsc7QIWFv2Mvoc2ZmZgyUsF7ZKz61hUjfjHM4rGuvvVY7d+40YfHMzIz27t2rdevWqbGxURdddJE1PyNwoFKvt7dXoVBIzzzzjN7//vers7NTF1xwgXbu3KkvfOELFamwrVu36v1veYv00Y/qggsu0J49ezQ5OVljRWrj5zbOOU2ze/dubdu2zWrXMR7VqRQcQF9fn+ktKK2D1vXREB0bfdrDC9sQVwYCARN24hDz+bwmJiYsbQOw8MJLqFacJd9JVOsrDMjXU/0yODhojA6MBsaGKN9HgzAutHomB+0pZF+BYg/jDIWMMSSV5UWWfm6l1VJanI0HLpKslJQo0p+JgqH3Ij+cBM6cz0DP4kWpHlT5rrc4S3+PgE6AGZ/rqydwgl7kuLy8bPPtRbCwNv5kWB+l+yoCHBv/5/4aGxsr1h9rCibEnwVE9M71+nJjgLR/xjwz7h0gC7hmDSQSCZsbv04Qz/LMcNAARypDAHD8nq+0IhXI2gCsca4MDpRImtbxHILnWR3K+EmReHamWuMRCoUMIHItkqxKjJQLzx8wAuCgQofh1xn7AEaIYEGSPSdAEs+GawKMcr2cj8O+4vtZy1wDLAzPxwNBggt+DuDj93p7e5VMJjUyMqKRkZEKlmp+fl5NTU3q6urS0tKSVdtQtXbppZdq+/btBtAfe+wxPfDAAxocHFQymawoWeY9mUxGqVRK6XRaiURChw8fVjAY1Gtf+1rt3btX11xzjbZs2aLf//3f1/e+9z1NTEzoyiuv1O23367+qSmz89/86ldfzB3URm38TMc5gRFU+fv27VNnZ6eOHDlim8r3jiBiIZqFffC5e6JqqgSIjMg9Y7B5P4aICC4YDFq6hEHkGgqFDFxIKw4B6pvICMOMPmF0dNToUm+oE4mEiQiJ8DhJtNrp0IsAx+3TLAAqxJrcP87EV6jAAHHfzCOOjvy6j3y9g/DVPjAfS0tLxvBUiyeJ2Ph9gKWnyjG6MDWAMa4JoMJnMLc4A4AE7/NpJ58SkmR6A+4dA18qrbS1BwizJhH/+kiYdBoOhSgW0MFpyzwLPosoNZlMWkm3Z69II/iKEZg3gI13xL53DVoMxNKsC1gj5smDhGphaXNzs9rb240t8SkrQCzOlQ6ezCm6FV+aSvTP3HiBN/eM86SaB5DCPXjtCqkU9EPMLVVUCEhJLUUiEes1gx3x68NXvHAtfEc2m7VeKewfwFEsFqtgIign9joL0ijz8/MGatG9+R4+rCdAvu9JAsDk+VA9EwwGFY/HjXWhDbzXdQ0MDGjbtm1av369Pfeuri7t2rVL7e3txggfPXpU4XBYMzMzmp2d1VNPPaW9e/fqda97nR14F4lE7LNPnDih9vZ2xWIxNTY2qq+vT6961ausXJ2gh7NvOjo69PWvf135xx/XH0s6ceKE2Q/mvDZq43yPwEum4QKB8p/cdpta/8k/0fj4uOXjH330UaPliUAxGESlUNNEzF6lj5PEwXd1dWnt2rXmpIl6cAg0IqMDqaQKp4tDgiWBtSmVVjoRQkXn83lrWEU+FVaFqJTr5PsxgjhRn7+XVsGC12z4XDNRNop8okPvdHmvJHMy1dUkRHHeITHHRP4YkWrWwad2eCbSqnjNAyWuBafonQL3TTSNMeVafdQsrbI6XkDrnQfpFObDsyk8AxwokSdVBzgYnglOGYALuMEJ4vy4Xs9o4Pj5PFJeCHXRB8CaAGbpJcFcYsxZN8wf1+adF9fI93p2y3cI9mJmHCWaKA8umUf0OrCC/vnxHbAr/pp80z3ADClMr4Xh8/kcXseJek0OzBTrGCDGWiFVhljcs608d67ZpxC9aJk1CFiUVtN0BDH+Otk/LS0tJrzP5/NWKdbb22s6HT4f4OM1XgRMBDt0n+U5LS4uKpVK6dixY6bFSSQS2rp1q5LJpKWy/Hrbv3+/ARZJxnLRLiGZTJoNnpqaUjweVzweVzgc1vPPP6/Tp0+ru7tb9fX1GhkZsdb3oVBI4+PjOnDggA4dOqSJiQkNDAysPI9nntH3Z2d1WSCgZ86kY9knZ/ZKraSmNs7bOCcw8sXXvlYtO3dKkqnAR0ZGdPDgQYuCQd0YUZTq0NQ4ACIKjCCMBIeWdXZ2Wstlz2jU19crlUqZqBJj48V0odBK06NIJKJIa6vqwqunsnohqgIBLS0ummARB0YUSUoDtgCniwPhXnmNz/c9PLwQFdAgqcIps9mJkHEcUML+2jAOOBsfQXoqmucKaMDZcT3ewHpwwXUCjniNv4lU/XX7lIgXC/s+IswHz0pSxdxg9PlOHwXzvX4uAH00l4KdkFbSAW1tbWpsbNT09LR6enoqQDIia6+bwQGS0vCADcEra8NXJcHY+JbbXH91OSROlX3gU0rcI+CAdexFpf75cL0+Pcga8n1H+F5/7fwNKJGksqRgIKBSuaziGUeOpsYLb1mH3D9MB+CBNWFAsFxWqbh60i2gifuXVLEmYDNIzUiy4II0Yn1Dg0pnQCGiT9Y8TFmpVDJtG/1NEMQDTsLhsDFVvhEiTEh3d7eGh4cN2HgwBFBinv39e42M1yHl83nNptNazuc1ODioDRs2WKAEA8e+9t2RmROeMQ3nuA7sBN1WOT2ds3XQK/EZ999/v+lB/Dq5SNLdpZKuCIW0V6rYz2eeUw2M1MZ5Gy8ZjBQaG8th16WzNmqjNmqjNn6xRlbSlkBAJx14ccxkDYzUxnkbL1kz8hcf/rA2xuNWLjY3N6f+/n7FYjHdeeedmjhTEtbR0aH29naj0slRU3VBVIIuo7m5WdFYTIUzFO3y8rJisZjpE5qbmxWLxSqEdsFgUENDQxU6A+hWqMjqqJTcPKJFzrhBOEgEQnTp0yu+KqQ64qfyxDcogjXwjdGgctnYRIieIamOtjwL4lMCfB75adIBfiA65D5gJbgmL6zk/RVReDCocCgkBQIKh0IVbAX3t1woqHiGQaC/i9eGVKcFoPmrB1GlLxGHVfL6CSI1zzT5VAv3J8nmZHFpSY1nKHDunfv3lUl8D+kuH5HCmLAmmU/mBIbK3yPf70XHpDooZ+V+/DVw7f6+YTN8Gozr4mdev+MZpWoGxK8rL+b0KR7/XPzz9OuW+ePzeM2nplgn/K4XlXI9fi+xR/hMv6ZJWfr0ENcLi1UsFpVfXtbimRSa13TxXdUpZP/5wWDQKvKq9UTMFT2MYKbY83w298nc5/N5O4bC2ySYIiqUfA+SQDCo/JmOw4FAwBielpYWLSwuKiDZz7zg2Wu50OhIqwJX0mn79u1TJpOpmGv+niiVdMqtlZfMnNdGbfyU4yWDkZaLLtL/98QTuvLKK/Wqyy7TP/zDP+hkuaz+/n5NDw7qieHhFU3A8eMKDw0pFospEomovaFBITp4nnGi8TN18nV1dcrX1SlzxpBkmppWxF/RqAYGBjQzM6NDIyNaymbV1dWl9vZ2ZcJhDQwMaK6xUUeOHFHhDB1u5bRnqMpisWidKjOZjDkMX/mCGI9+AQg/pRXDCNXvm5XFYjHVnzn3AkcwPT2tqakpBUslNQaDKpwBFvkzIllPk+OYoFuhvtGZ4ExzuZwdu14sFjU5OanZ2VkVCgXrGJtKpazUmKoCWtsDoObn5631Nw7bl6BCp2P8MbKSKkp5cTxod6TVFtqSzCAWi0XrzElOn3mnignqv1rnwNxwbZ56Z858DxmGd9Be2BoIBCzt4lNt/n58msnPBalGr6/w+XO+y2sVvOOt1r/44Z2SF/164FE9PGj0qTWuy2t1/H35RmD++v01eIDmX/M0vZ9XxLvlKqeF4/f34q+hOp3nnz/3wpx4MOF/h+/ivfy/2rFWi15J4fp78WlCAArBjAd0fs1WrzOvC/MAkv9zX6xlPsOn4LyY24M//6yq9Rv+3/6Z8Bn+/vwatn3m/i+eYw141MbLOF5ymubiiy8uHzt2TJdeeqk+9KEPac2aNTpw4IBKpZIOHjyoP/3TP61Q9Tc3N6ujo0OdnZ0KhUKam5uzc2Ty+bw6OztNMAprgbOpr69XV1eXRQ3FYlGJRMIOkopGo5qcnNQPfvADY1hQ7ntHC3igmoQIA3BBmWFzc7Pi8bh6enoqOlRiCNFkSKv6EYxBKBRSLBZTe3u7NWdD/Dh1plQONmZqaspKlDF8nF0zMzNj+f5IJKJMJqOJiQljoeg0K0nXXHON5ubm9NBDD9l8EdG3traqp6dH0WjUmrhxUrEX48GyVAtdq0Ebv4ODoDrEO0fEwvzc613Q6PAM0FhIq71CvIaEPHgmkzGNiDfynoGoFsvyPv6gwWE9cH84Fv7wjD0g4+gBnrMHCNVG/5w3XZUj/3mOHwWMvJOuZhV57Wyv/6if++dwtvcBRqp/1/9dDVirP5/hAZ8HPP5+PVNXzTz64ZlDD3LOxuj5n3s2y//MM1Vne+b+fR5o/CgA4lmq6jVZ/R3V1/PTjlqapjbO53jJzMjY2JiKxZVDm+655x790i/9krZu3apnnnlGO3bsUG9vr44fPy5JFSd7btq0Sa2trXr22WcVj8c1OzurQCCgVCqlqampiuZg0WjU+icsLCwol8spmUxalDQxMWFAYH5+vkJcBhAB+SNuXFhYsP4gUJg4mUAgYJE2f7e1tVlvBkALRiGbzZoT94ebjYyM2Gm25XLZlPi0ry4WVzplplIppVIpbd68WcePH9fRo0cNJNHrhOZKdIlsampSIpHQwMCATp48aXMKU5NMJvXYY4/p1KlT9vknTpzQxo0bFYvFrFwZUIf4FgPvq3P8CbClUslYDSh5qgiYI6ItmJCuri6Njo4awAPA+fJOqqZgN3xaAwAhyXp9AKJIhfnqmurSaA9UfMUR0SEggwHYBID4FIq0moLz1P7PYlQ7huqo/sVef7HPfTHQ8GKvn81xevDwUr/Df4YXJHs2h5/xfs/EeKf8o66zmnnyTALvr/4c/x3VLJFfX/4eqlmV6t+tBsfVYMR/3o+6n+rvrH7NMzVnY7Oqx0t5T23UxitlvPRqmtqojdqojdqojdqojfMwgi/+ltqojdqojdqojdqojfM3amCkNmqjNmqjNmqjNl7WUQMjtVEbtVEbtVEbtfGyjhoYqY3aqI3aqI3aqI2XddTASG3URm3URm3URm28rKMGRmqjNmqjNmqjNmrjZR01MFIbtVEbtVEbtVEbL+uogZHaqI3aqI3aqI3aeFlHDYzURm3URm3URm3Uxss6/n8h8Arsn4eaVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./example_images/000000461009.jpg | idx 105 | class person\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGVCAYAAAAsUfFEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92a9ty5fnhX1GRMy51tp7n33OvffXZWZlZVGudFqVLsCVWHRVD5RkWaLAvOCGRx7wC28I2Zb4C3hAAlu27EdkEiRjZCFVYYGxqRKSKTACbJFFU01WNr/uNueec/bea605ZzR+GBExY8611j7n/H6Ff/fKaxyts1czm5gxY0Z8x3d0klLiKle5ylWucpWrXOUXJeYX3YCrXOUqV7nKVa7y/99yBSNXucpVrnKVq1zlFypXMHKVq1zlKle5ylV+oXIFI1e5ylWucpWrXOUXKlcwcpWrXOUqV7nKVX6hcgUjV7nKVa5ylatc5RcqVzBylatc5SpXucpVfqFyBSNXucpVrnKVq1zlFypXMHKVq1zlKle5ylV+oeI+dMN/59/+i0lEFt+1n9v3JatrSomUEjFGYoyEEAghgE+QE78aY7DW1vcigoiQSASJGGMW35fzGHOKo8p5yzZtOz5WStvb61tfV/l+/duldp37ft3W59pTzvfc75feX9rvY75vrzHGmN9HYtTP3nu8nwijx/vAOE4Mw4D3nhBS/t0TQqjv2+9STCRKe7VvrLUYIxgjiJj8V+pffRkSCWustltAEpgExgggJAExAiIkdPgJut36PpNMvU5jDMYakgVEdB+ROv7a8WgQDCzGatm2vKy1JKt/y8sYg3Muf9b3giAJYoyMwTNNU30N08g0TfosxZjHo26bUsIkSKkZVwlI5YpTHb8p6f2r41nKpqU/9Br1fgXGYeR4HDgcDgzDwDAemaaREMLiOq219Xqcc1jT1Wst91RMGfsRkdJn2o/luSjP1XKeIV/H/H4e4yBimm2Xc1K9Lsk9kftpnldk3j9BYj73ufnt9PmIQEKknKuM5tL3ek5ttsnny9+JYDAYsc3YThhrsU7Hfem/Mh+CqeOntFEkPwOkfM/hf/5P/9PnH/KrXOUbJB8MRuB00r60ALaf24mlPDRGhBSXx1pP8CIC5vKCWCbA59r4Pnnfgru+vvXENE/qp8Bl3ZbnAMnfju8vySWw8T55DogVcFlfIeJDwI8T4zgyjVMFIsMwME0KOMoCGkJYANSyiKZIXRRFwFpDCAWQSv1rrSGledEp4yZKXIIAwCSjC4+A5H1iMyaluda5r5KCgXIfYyIRETGIEYwYbG6k5IXDGosR0dcKQJcFuoIRI5jmc9neOTfvywyUWhBO/t6IIZky7nTxqQt5TPme1buZ36fV+FndY1IFW/O6LWD0XNYarDUYKxgr+f6Yk+cgRgg+zGPGzM9DUTwkX5feujK+dEwo6JyPq4ByXtC1vdRrWiz0cjp+Tz6n9srLc1yOdXmOO3e85fOlAD1GPU4BWSCkmOe13EhJefxgEKP9bKzFFMCdx7nJANVasxhX+tdgMgBfKmvzOL7KVb4t8jODkXOf4XkNoj4wZp5cdUEo32WNlNTOO4tjrY9/buH/ULahaPeXznOJDXmfnDvu+9pzUYtb/X7uOt937L9dUoBIARAhBPzkCZOyIuM4Mo6jgpCjatGqQQ+MozIkBXhUAJJfdRLNmqqxOlGXbRWARFISYgxLFm3VJwtAInH+Psa5zzJD0uxYF0gSiDEKmpNqt5YMNKRdDOQESMxsju4vDStiRBccMjPSHqcwB6WtpKLpz+dcgBtV64kGIBHj3JdGVONv+9eY5aKb0hJMV8DSsAfKrkQkgTUGZ62+nCVGB5k58N7Px0n6PBemxntPMlKBSGGbCjOibEh7zwqzMCsbMc7MxxJw1FtXRigxLsHUfG3lbsvpvkm/L9vWY7Wg9cw407bF5nPKbWwVsdx2pdYU0C7ARHtvqaDbdq4BpwpMxBjEKhCegUlhWNZzgTT9cpWrfPPlg8HI+7T8933XUq4ipk625bfCnc4M4wxIyn4fAwg+9prmdqhcAiofc/5LfXIORKyZpPcd49L51tT2+wDjuf0vsV4tK1JNLaNnHGcgMo4jw3HgeBw5Ho8cj0dlR7wyJDEEUl74CjNR/hMxyjpYS4pCICKxMGYRNRu0C+vyOsti3pociuIsqZhlVn2Ux57k8ZeoDDqpWRycbRaRxhRR2A3rHHYFRlqw0r7HXmZOyv4kiCEAEAVsMFhjiMaSbKz7xBgqyEgFkMQISWaTS0qL8dyO4wIK8w8LxlIXaINIACLOWTabjsj2hNEJQceFtiEftzJesgCy1lqMLWZZBT1lDlBgkpr3xXzSjt128V2bcYTZTNKO7YZJEb3OeeyApKhKUOkKyOM0LZ6HlqVazmlSTYLlt3J9gkGwK+Ch27Wg1FQ2xFTmzFi978YqEDHGYCtYLWyKXfBGS9h1lat8O+SDwUg7mbUP4XrROmfaWLAgIkhMRCIiVifAou6kQpBzEYicYyw+RM4t0pcW3XP7tZ+X2tD5a2+3b4/9PnapHL/tt/W1r/c9d8xLDMoaiKzBT9u/6/Ovwcg0TfjRMw1TA0Y80+gZs4lmGAaOx2M10XjvF+eZJ+MCSA3FV2HJctQWLtpatMOigc7bKNCIeSErZpfKOqCmDsToRC6tmbBQ7ApGnLPYBjC4rqvtds7pguAsVsxiu3K8E58oazOgaViTBdMDpZGRhJmSHlsMyVjEQgiZccisA6lZ8FMk0ZhpUoI4sx9rcDmzIszP42Is2Wxey4urtQzDgDGGruvwPhD87BNW7nFMOlZ8mLA21H4JIVQwsl6g28/rMXDps/pqlLHdsF/NNdT35LknZRNUu2SnGYyICCEt57xzsmbJChgyxaRXfsOe2W4FVq0C4nn8gGRGxDRjqr12HeMJY2ZWrVyVfNjUeJWrfCPko8w0RZ5bwC9p1OWviDoTxkIX56dfdV50MqwHWB7nHAj5GDDStgGWfifPmT8unaPVKi9NgOd+b00U6/3W13gO3K0/v48JudSOS3KuXecASYxRAWTWgmMIhOAXi1IxzZRzF6p+PRmrpu8wxmLM7NhsbDZTmDLx6++6kM9acqH/y3lEhCgzADCiDqGVjaEAIM6CkXbhsFbBiHNKnVcwYnUxrguFSGVN2kWngJHZb6Q7s/iyuBZtR1Q/GpPwYjHGYu3MFBRflsKMlPtkVmAkpYQ0DEp5sPSzqd+lqH476zFTWKcQPMYKLkLXObzf5nsc8FOoprphGBjHkVTHQSJGBdlF2zeRi4vy+8BH67xewGWLKZ4b4yklUjWdFI1nySKYBFGk+DGfBfML05uYk2soTEcxxZg6LmiuuWFPjKnma9OAmCSi/bUCIevXzBDlbVLCXNHIVb5F8sFg5EPYiHML9yWtvX2JCPGZRb18d8kX40MkZMr73HHLeZ8DHpeu60NB0bm2n5s0nzte2741uFqzGJfkHNBo29P+vmaFYLmA5COqQ2Xe3shMH1tr6boOgGmaTtpmVgt3O2kXJ77ZcbW8LNJEWbVtX2qMzM6kGYxUaj4DkuIkub4uESprMUeEKPCwGZAY55QNKXZ8Y+qi1DIjxRekLOh6fFvbem4BXtxHURNSywBZY5Dk1IGVWM0J8/21FJ+R+l08z9DNUVGFNWnOH7NJIyVMEmwUbLR4H3DOEkKs5hk/xcqWUH1GfD1HCOo/UgGZK/fG5gU7ZRCo+66jpZYL8YweFMNJiROidOFz4Lx9Ek39m8+V9Hep/hicjLN2zLb3feGAvBrTYqhmvBl0NPe/ARvzyWD9lV6TmixPxjyZYC7M3+muV7nKN1Y+2kyznjTXsl7AntPm14DkEivwHO36oXKuXee2ed+5230/ph3nmJBzi/3PIu+7N88BkA+RVhstDEQFEjapQ2Pq6Or9nJ1Di0+Bc+6ESWp9Jdr36qx3jsaf/QzOT8TLvzHNDIcAZHYlFbBSiPoFQ5Fp9gZIdJkJ6boOZy22c2pqWYXoloia1v9jybiUz+7kXq2fkbo9S+agshs1AlUWYCTGWFZoaMNe4+ni3D5/+pnFPmounNmwlBI2RpwrjsSRELQ9fipmGEuMaPSUt4ifz1scn0UysLEWI+lM/y9fl0BjkXZslgW88F8ppZk4ybvEei8AUY+ORBnX+lmsIZn5/NbODqftuHRmvtfOzfe1HdfGGDBp8Z1UM+AyRLw6eKdIyOhQcv+XMVmuQn9emlX1L/OFXuUq3xL5cDNN+zQzm1SeAwrvM0Os97tk2rjESnzoYt4+qJfacm4xeB9Lcun357SyddvX/iHn9luzIJeP3Ry/7FdmYrVFZJ+cVPMsFIq3nEcWx2u+b85bJl2AJDnPwWjBqtanpgxH5zTyYhonfOcIMRAzO2GNreyJMRqpYUw2pzRAZJ6sqX/FNlqkLCfjuc+aBYkEMVVzTCqgpV7bmlKXyow45xSE5Gty1mGdtt1Ykx1Xm4WnyYVSNPrSr+qjAkgDTpq+Tonqs5FSJPpAahxDpfpT5cU7qXNrrAtQXtjJICWmfK0JMcU81t5bfVVzVX0GVb1WPwRdEFPjHFzATwwavZJSYjIBI9ncGgJ+Ghknm/tgybggEENS5kFmH492nLWgIy6cTZfh2+W7fHR9FaBRvoIc2i0UVCpiMpunDBrM5hArglipPh8KNl2+lvk+K5iSEzCyBtmSO6Zs37IjbTtLXpMQgra7OCSXwWrVLwk7m2NOn9WZGUnLTa5ylW+0fAQYkcVfKZPWyWbnNf9zrEAr5wDIORPE2txxSaNsPwN10b90zkvmjUumkefYhg9hTi45qa6vaX2+Zxkb/aU6r9WlrkzIK+dPpISBpnm/sskKfJ7T8EWEIF4n1uzfYZ3Bj1OmsNX5c+pHvHea2Cy1Dn9ukfTL5PZUjbj0T/MZEZJJSHHcNKb6HZW2paJRrvMspPmaZjBlKkVeNFo1zZyCkbLIdF23YE5mqj0vviw1XqXM53uR8oJZ73lsgHhMFZAQoiY1C+qPo9ckGSskXWzErK6zAM20yNOjmvVyrK3HvEjmWZpn+9xzEYrpxqScGyazCUSS94S+4+AsznZYM2GMRyRUQCLZjFP8Ycp52vu3HO8JkTJVFcZnOacUMKZem3O0Vlngy64igqScoC6DAetmRk5fmYmyhb1RxscYzQNijcGY4t8kZ1kTa8+zesjMxpWxnQcFIQWizOOgRCPNSkUeGxHEQmGx1soMqONzbAD5Va7yTZeP8hlZfbPSsi7vtwYkl1iK5+QSWDh3/ksL+zmGZP35uWs5R3Gfu4b3mXjex+Y8x6ica3PdhpkESczqqE7Ks8SGt47NUqbT/Kn5o33fmguKFhmtw9qAc04jbNyEtdMi0VcIrjEnFfbBVY1TnVfhXDTEYrLN83cBI8aY7DWx6qu82i37e0ZadRzKbK+fgYily3keis9I6w9QzDYtbT4zISsfkBrFMrcwtPcyJUooe0opOwLPuViKaePcfZjNEqehp2uw0TpAwgyGW58R0jJKrGXvFucvYbA58CklQVIixY7Qebp+ot/0dONY+27NApb+rsBzZaZZt7eyNKvxWRZ6fbbLNlBCSQp4m7ct7JWpidv03koGInZO7GYK22Ey+1VMcQWcmOr3sfZ5WrM8ND4wl+5TMaWt55H2b1Uczsxr7bb1M1e5yrdDfqZoGkAfcE4XdjhvZrj0W7tN+1vrNHZpm3OyZlTWwOTcA37uPM+19UMBy/t+f9+2l/ZdhxYvFu+iRTUQo2ji1elP5n4qE+f6OOeA1DkNzKDZOY0JdeHxGWQUVkHDemcH1qWPyOwMWMwTp5NvM+GmTLm37ZotC9WEkFKEEGsyMD2G9kdd1EyOVmgWEGUPZnDinK2AZJ26vR2jxcG0ZRTqSVf3vISMSpOorLxKlFJKiRROE8MVGr/0WWxyYbTnWI//1u+itLd8P+8nLMJpWILPeUNZ3RshWYt1UR18u46uebXAp7StmuCy0+o5MFLZJSQDjXZsLsdMCwJzIwGqiafc24VjsTP1HovQpOTPJkOLgmQp40MT/isz0my38g9a+7WI2h0X/bpkdOY08utnbA0yL8l6DPw8zv5XucovQj6cGVnRfYvF4BlG4H3gY70Arh+iDwUf62Of++1SfpD1+/XivN7m0qSwbsc50HCR1fiA63zfeWdtqIRwqn8IInUBn2nv08ntEuW7BpPlvbW2ru3GmNnJri7whq6zTJMlhG7RH8VHQ0TNRSklQohz4q40O02212iMITUmt3lByotPu7CHEoJc+qdgA3WyVZtQqgDDOUtKmlm0fCfiGo15fp1q56djTi0GM4Asv4UcgZSa70rfLKJbYsypP2K1/4sIUow+IpgVA7IeD88B+JPxlASSqf5g5U+2BmXzEZrVtjjQprzgO93O9wEXOvrNhu3kKxAxxmQz3cph1bBY0FuQVL7Tc67BSCv2wvdgLYvzGaORPC3bpWaWJRiZTTZN5IztFtEz2n6l6ooJsYKS8rkMPJbPz5KVmsdl6aNz81q9xguKQnvvL/fVVa7yzZSPACMXvj+zoK1/f46FeN/x2v3ayWr9/cmCfAEYXQIW7wMtl67vOflQ0HEJaLTfS06zvWhvWh3PJCIBQa0Dxexi8uJVisW1SaLOaV6L854BbmWxqPsswIjgrKnMiPc+Z+gMi/DqecKNxJjzUYRADORtPTEDirwH1bxiliBkjqaAGENmYmJePBXkVGpbhJCzhOo1aKE2ay3b7YbY9xAVSEhK1YxCFKQXrGQAVuqJiCFFjX5AZF7IUwmVbVLfZ6AV5wQ6J8zIop/Le5ET8N+C+fUztmYVy8LXRp1c1L5ZmQ5k3j7l0NlCMJV0/YZEMuo1ovlHLJu+w+82hOhJRMSQs++uwcGSTWivb6momDIE5r4oiz4Z7M0uvifXv3AqtQV4mAX7tXzNYGQ2weRomTQfFwFpANTi3l2YR9bzzrpEQssglXtbgRnz9Z+b/9rv1++vcpVvsnwwGCkPvRyOmMnDyk4PZUJIZyeE4Bxh0y+++1CG4Tl0/z7qsmxzDqxc2vd92sSHgqp28l8DoUuaDCwp1joplQybaflb+z5Jpu9rpIA6d+rxlB3R2iH52tukTqm57rJWXrA4Lxcysg2+uSaJqr1LMXW4RXXetlheCIEQSyE9z+Q9wzCyPxw4Ho9VU2zPKwLOKoMRQqTvezZ9jxjDNI48PDxyPB4qeNMsoFGjI6wjZLbEWkvvDF2nGvJ2u+Xu7o6bmxu22x4/efzk2YyezSYQQyT4QN/3qjE7IbZmpZz1g8YJtd73hiVJ8VxukMJqUTVf4XShofluPZbPgZMiJdfJc+OeZoyuAU/b/8rSSB1LpWBfMqkyDv2m0+KJfoIUsWbOJTRHHM3RS8WPiOqL1kab6KJv6vXCHEGzNotJHbeSqTAFsI1p0EplwmZA4hbjtfiDtMyItkmhfWXiiBTfpNkkqO2uz7FU9JpbvGTREhmo5sR0LZvUskTGZEYsXVakruDjKt9W+XAwgmCOR77/7/0ltj/+CXY41t8uDv/yYIjgdzs+/60/rZonlx+aNK+Eq0Olk8+XHsh6nPJVNiVcAjmXKNHzl/RxD/viHIt4lzPH5gzbUY5T8kQ0i9jCpFVUJhENTWSmictkTGYVYNYoiza8Ll4IkNY27GYynRkbU89FaVuj4fkQCBmItIDEe0+IET8pCBmGI4fjwHg4EPZ7GAbMOEEM+OBzAq68OCYhOl1cQ4yEzjFap6AiweZ4RMYh+wtom0OMhALKYoQYQAxBBNM5xBridku8vUXu7+nubtnstmw2GzabLX3f4br86vsaYdNmlK33uNzDFtSlWaMti3IZD5Xlgtkcg7Izi23asZLOf0+zz3rb8n79zMwLeX1U3iOtfs7MQMVSMHFgHEaOx5yNdRo1RXwFOm2ujQJAsr/OggVasyOzs+ppf5SWpdo+qccoz4BokjWrUV4a8WWbaBpbAYk+E5qojPIsST5q0iJ6NQsxSyWhbVMdG6XcQZ0T63/Umx8jqTpdL4/VmjVLaLucqWq+vHnC4e7udJurXOUbKPKhi+u/9+/8X5N9945f/df/z/zav/F/wawyml7lKle5ylW+WeL7HjeOv0ZKv/+LbstVrvKcfFQ0jYhgjwMmBP7gH/1HGD77TH9Iqo0UnWQtZhhw+z0/+fv/PsLNzUUtby0LDS+d3/YcRdkyEAuGZLXfRQ3xGTnr83Gmne/b7yz70di/y3FTzLRtmqMR1sxIeyjTMBxGTE3KlNU6SrIsyZRvSwe334kRYpMds0RP0eyj58haZKvl5UaFEJj8wDhOjLmY3vE4cjgcOByOPD3teXj3jqeng343Dvio5pvZV0T9QNSfRH0OCKmGXdbrFqNaZcw9lxJiStl6GDMD40vtnKyBWtGKvCA5+sPNpoa+Y7PdsNvuuH95y6effsqrV6+4vb1VxqTfsNlu6FyHdZYSRnoyBlpzTOP0oCaZ5XhQdmW533yc86azNVPQMh3L3dP8TKy3hWx2uWw+nFmKU1OhiGT2KdckmjzjOGnCO+8JMdSKwMpUFB+RdIYROS/n/MFKf5VuL07B6/3E5GfBahIyDSsvCfdcfTZKgbuWESwtiynk+ktBx6T32RSln9sxS/V7ye2s14wen/m5rM9r8xy1fjHlGkzeL2UGtBzn7Pwj8PKHP+Ef/N//HwC+A1zByFW+0fIRDqyGktoIYPz0M4bv/wCAP/ZP/VNsf/mXka4jPD3y9nd+h5/8xb9AyouHOR5w7x54/ON/nOnuth7zQ2ydJ34R58DAe47zXpPOenJ7BpS8r53vAzTFh+G57QvwIFELzcUwU+EpFf8Psp9C1Mk4pbnGhpkdXqtzYJ7QnJG6KFZHVPJkaZpIACPYRchknlxX4Ytrh0N1ggyM08jxeOR4HNjvBx7ePfD6q6/5+uHAu8PEw9PAw2HkOE0MMTKkRESjOYJkZ1EgEghpYsrATEOJBWug7zp629U5WO9fzH0BIhY/eY5EjiERghCjIQQ14YjToBpjhN45etcrOAsRM0x0ETrvuY2B75qeX717xS/d3PPqk1fsdlt2my03Nze43tH1bnbQzMnPSnhuKdQHmjV1vtl6HzWN+wrSnQEq58bcIldIc3w1/+SxfQGQL8ZdXXRjtnTMyKoFUSWFW4X+aT5XTKma49RcMzB5r1WGszlqNpkUp6WlH5Kh7aCmfStfF/WTaoFIqkUbS//FpEngSuVb6yzOLEO11+G4bcK69lwxm6G89wzHI+M0MmawldKcGl+kKAWpZnGlOuraxXkXz4+etIEjqT6T5fcEWLHNPu19YQVYr9VprvLtkY9IepbzKJQFpzxICY4//jFv/7P/jAR89mf/DN/5B/5Bhs8/5/Vf+Q/qc1I17jPOc+ec6tZOi+vP75MWgKz3WU8yzzmTruXStuecCi+161wbTrZJ8zXEmAg+aFbFmFNwN9p1IlZbeiyTfWw0rtVEG0mzHV2W3voteDHGEDK7cgI8Ghv2IkwXvdc6UR8ZxpH904Gv37zj8598zpdfvObduwf2e3VQ3R/2jNPEFDxTmPIcLHgfGEKuWpuyLR3N4hlRnw+bsvOgm+t2iJEM3CIhQgiqoQ/DyDhM1AZSwp1zdVvRhQIRhnEkRjVDmuGAMcLxcOR4OLJ/2nM8Dvyx9Gvw6atSfppt3OqxrfaPLcnb6ji0WYNPLBKlpCXTVMcTLNJ5l3t0blyV+1XDg9toqfkAC4fqcxmJ6xheLHBLn4151C3XwAJWiRHnDBpu2yn4bSo3r8/Xvq+f4+kzsn6fZPnclJT5qc3T0mxT84s4TVy2BgRzzZfLkjLbp4xfZtq8Z5qm7D8yb2etAndrheQsRlwFbef6vvRqASTteFgCfWYmMu+w4JSqknKVq3y75MPBiFk5OUJF65//hb+I7LbY3Y77P/XfZfu97+eHpjwvDf3YLNaXgEnZrp1snlu818e8dOz/X8q6/fBhYKeV4iAXgldPfdDFa+G41kzcqWLFs4xS6Rcr83Zrp9UWcFStURRs2DOApeyzXkyPx2M2yxz5+us3/PinP+Xzn3zBw7snjsdBM7V6T2FbyNpk1ZLFECXhvaZCjynkEGAPRlO4kxJj0vDfEj6cUsIHn7OYKjEwjRql40tdEyQXudOCfGVCbyN8UgqkVIrOpRpJM40TPvtLiQjyqakLTEihmnlio12rU2+TY6OEqXKa3K+OW1mO63PjR+abrQxkBisuR25EimlIAV27X3G8PXe89z076+eyAGG9HgEMnRMtB2AdwQViigsLltT7fnpOObfI5j6hNXOdgBEFJCGGzCAu22krYD0teHfu+tv+b8FUjQILGka+BiNt2HIpwdAqRouEbmtWsXm2Ls6PzbPbbreYO69w5CrfMvm42jTnHo48QfyJf/afxd2qCebNf/qf8uY//o+VPSk0qQgWTT+umvkpKPlYEHFpcW8f7LWJZr1vCxouAZkPBRHnANQ5QPW+79rzVrNRnvBT1ogSafYFKW1eMbblGCXHRDlXTKnRPks7mfcv129mVsQW/5MMTNqQTJHlojpNQSn6ceTduwc+/+JLvvj8K969e+SYfUU0F4j6ggx+ZPITMQUSAQUoJi8eWRfM5/U+kSKYBFE0HDJKZJqmeRIujE/OwDrnOGm8iQQk16Ap/TRNE8Y0ZjSJ2cyRMhWf1Dfg85izcCpbePfiRqOGYqDrHX3XaSG9nDgNZmCgICBURqSMgXPvzxU6Oxkv+Y+wMv+QWZisMNhV1WS9vadMy4c8f+e2aZ+dkpguRYM1kbgCPovF3pxfdAu4NpndSSyfy1bxgBm4KxjN/kXtOZHqP2VcY+bIrzZV/Tofy8xQzuawAkhKdFiMjbmK8jxo32vxxyX4uWTmXL/Osa3rbc7dF83U/4tVyK5ylY+Rn702TTuhCPzhb/827sULPvuzf4aXf+ffybu/+js8/M7v5G1LWmeDEZsXnOeByMd+Xre1nTzmc0DLJJTP51iMc9d+CWhcAlbr7c7te07WC0bdPuXpTeaJtVDRIpJt/cu8EOdNVTNqiWlOxtW0QBexQvfTOMM2k3rRigugKX08DGNlRb766mu+/OIr3r594Olpz2G/5+HhsWqTPgaGaSJJUidQUdOKMQaxjr7b4GxHyZeSkmHyPi9WObySYsaQXElXWY8pH9/HoGHKObxyuRCY7M9QaPg5HFj9ISIpBkLSMTyifjz2c/1sreWXf/mXub3zQGQaLWPnNC36IsunnYEhy0Ww/L4YI6bk3VgyIyfAmYaSX91rSXOCtRTPjYPT8fYxYORZICNSXRaUFTlnLs1tP9MuySCqmIxCYQPS7AkRm/4o2XZ9ioizpNzPxfeqKkTGaAG51SJeQOM5pmH9fZEWCIXQgpD2OszJfucSvC3MMqvzPXdPLipZyBWMXOVbJR8MRs4tnu2DcPy936vb/JF/4p/gkz/9Wzz+zu/QpkArWgJJ2RHklJX4EHkfy3F6TMmvapXNv7f7l32WzoA/q3zIpH/pszGGGOIKTDQtzx+KYxw846+SyvZqnmg1zAXAaViYVOwbIS/yYkiSSKK1XCIgoeQqSTUDZUpJfT2GgeNx4PHxiS+//Io3b95pvolx5DAMHA4DwzBowjAiIWlCsr7r6PpeNc2gJerH5Lm5uaHv+5yrQjDTOGvCsS0kJ1ijVXXnAnNa88Pm3AyajTUSoyyo9fV9M0aIKWTtfZmq3MfIm3dvMwDS71598pJPXr2icxbXOTbbTa3wW2r0VP8EmReeFqi0oGSh5ZZop2aMzGOc6vBcQE6c4QkWzauS3gMy1gvf2szXaurrfc4fI0EqY/iU+SmfA1LHjzVzQrH1sTs7szgSVybIGElWa/6YHHlVEs+VRGGzW6hg7Okiv1Yuym9zLhEWfXA6X81zSwswyilaRuQcGAGwMrdUqjVGlSZB0+6bVf9dujdXucq3TT6KGSksSCu3v/7r3P9dfxeH3/s9ksAnf9/fD8DxJz9B6fDZa8QgzNlJ8kJ2AZB8KCtyfmJYtrv5dPL78nza1ktMxroNl8713P7nAMjJ35XTYGmbzlWZKSna1Kos/Ln+WZhonimgVTT19hrLPU9QEz1VrVU0tbyEHNYZAuOojqKHw5E3b97y+uu37PfqpDpOE8NxZBhHrUODqrnWWa1lst3hXKemkBgJ2TlwHMd8DRbnehA1A3g/MU2ZRbCl7ogu9CHO1W/LwqiF4NRElRJEH0jZfaNcq2rIOc28dIiomceIxTqHgLZp8rx5eMTHHxFi4uX9C169esmrVy+5vbvh/v6e7XbLOE4VlFSnydx/xYxTqtqeVLE1p1r1yTOS8/4vFlbmxGp5w+w3sgQya8DR/l0v1Mv3MxDizFgVQfs6s2jV2b285p1x2Sm+XVTt2r8MwM6AV7Sheh9Liv0QkBhyCK/JjMjSTFNbak6v7RzQM4VBlIQYSCEzPIlcd4izIlKUn9z3Yla/nb6fW7lkQ0U78wTELfv7FNikgmCucpVviXy4z0jOBbAQEcJ+z+b73+fuT/5JxBj8u3d8+Zf/Ml/8P/7vZaO6cBkRTELLtjcL/6VF/JKsGZD1b+VY8/v3H2/e7nQyfm6ftt3nJrbn2tduuwY8i8k7L06l/kkN9zM60cNcEn59rjX4Oee4eJ5NugC4aFLckxXQXA/Gh5Azbw68ffeOr9684fHpieM44afAOGpkS0oJY9XJ0jjDZtuz3e3oug3el9oyHiPQdY4QA09PTxgzl6LXvjL0fa/vcxRLYs762i5YreZaGCHNGaFgyLmuKYCXcn+rn4m1kRCi1iwxJgOlkWmaeHh85Id/+EO+vrnh9vaGl5+85NXLF3znO9/h1atXbDYbuq5js9lQWBGTU+eXqrbWWvq+p8/ZiWtWVy6Pw3qfDAv/kxpJwnwPnwMd54576bv5t5U5SAqbtAQdxR/EnIAqaQ++uC8ikv3MGt8NUZ+bej7IICTkEHaoHkExIwVJJ2BOF/bl6c9d58wYZibXGFIo5o/lVUjdV4fbCWDI/klnQ3lXr3X/n/uufD6376XrucpVvg3y4WYaqMl2YB7oxx/9iL/1v/vfUsLJLq37jT518k3dZrXAX2IUyrbnKOM1MND9i6Z2Hry0lPcl4PKzAKbntl9ruAsgks5pPDMQqMeta+yygGArpgErrfa5aoxeeAYJMVPcl/pdzz9T2N57ZT5GZUTevn3g9evXvHnzlqccwqtAZASodUBc5+g2HV3fYaxhGgcOxwPDMBCCZ9N3bLc7UkqaOG085oVWGRx1cC3F2jQaZgpjNvPEzIDM1DZA9BombLCq7aZcvC0XQWsX6+DVpGPs3IdqmjLZkViB0cPTE8dh5OHpkTePb3n99S1fv3nDL/3gB9zf39N3HS/vX9J3XdZYtV1937PdbmskUDtejLVanK8Bo4t7X/6WIn3MUR4pab6PUjrguTF7CXysn7sWcNSEdxfCwYsvUx60UP1F0mw2TCVZmeaVMSJLc0gxTWRY1YLodrvFtaV8HHICsTUIasBM24/nJTVJ2pbKz/J9PfhZRcI0CkPbT2dfPA8wPgTALLa/UiNX+RbJR2VgVVkP8FTXeNVMaZ7QGXhkPa/+pXiTnMEIa1NFPfaFhbFEl8wOns1Ek49ftMy29k2daOcrWZ5XVhN/c7xzbTpn614Djfn0y2yYte9qY3W7MrmWybywNwUMGHN6R9b9swYhYsp9KpekV16ibIwpjSz+I20nzUGDKaVqnpkmz/F44N27d3z99RseHx40MdQ4Mg4Dx+OICOxudqSozqZd12GcIST1MxmHgRgDzppc80bb1vXKHhyP6oviM7AKSRCfr8GX+jM+r4EC2el2zsqZ+za/10VzjpQxxuUFQQsMBp+P5XW3KSSScwjq29H6E8QxMviBw7jncNizf9rjJ88vff8HWGvww8SLuxeIgE9ab6fvOm7v7thut7ogm2KmMVgXkCgVuIlIq37PY0pSvidzxEfwueJxHl0FkOmYmAfxiSYvCoQXFWKN+uFIw3KYnLCsvGe1oFKaWo8rp4+5EQWLZUzL0nxThmd5Rkp+55jvnWSSI5LmaBWrjqu2AUuL48yXefZZWTKEBrHUKCwxq3Dcs/vPLZ/ngdlAJEtjUd1v+X75uWVrl1zMav+1ftGAo6tc5dsgH+8zspbMiiLMjnPzHDQvAvllyjLcUMuVXs07F5q5pCM/x3bUyTiWPAq6d+sRUZkaAVv2Kb817+fP2dmuTIBn2IHqANoAkrL/e/sw/6sLfG5bKh1YJmarP1hjFBwQmRKosl+uMOFjwjFHAZS/50BI24eSlAovn0vTDaKOqhUWpSWwgxqxk2Ii+qC5N6bAOE48PR149+Zrjk97puGIHwamw5FhfyCmyHazYbftNStmDqEdjnu8n9SHxMdsxhDYdhjr0DDiDusMMQk+JPy0J6ZESBria3I/pZSdIPM1x1TGkrImLShRfbyDmAiZHSHGbLO3SKIyRKC+DVGyk6QkTMyshCTE6QIcUyJ6CPHIME4M48TDu0devnzJcZh49/hEv+kh+6Fst1tCghATiEGMxTiHcYkQE9KwWbQadr63JZokBM+UK+RquLTPFbRpoq30OmyzSMUYlT3Izr1WB95sVrEZeJT8L8WPBVtDl9ca+mKcrZ4PI2pqLKAlEueigRlkVRycmZViDkxRI6wMmS0RfVZTAp9ytXChgjZ1XD1lDyqsWSkOJ+8FQkpEhBRP83YIc1v1uouzdPajEqtJ9DCQDBaLwSjYSwbTVvGtfZhNsC2QKTpMShRyzGDruVopz+u5a7rKVb7p8jMwI7Pomix1wc/L6eVtjdRcCOcYBFhPEu+nl6UwHyKEE7PNrNLPwGj+fe0rUYBQ3YZl9MnPKs+aO9aTnMz6U6p9UkwimtBJ2x3BLCnrS/StWWmKLRBsTQCLhUSWtHn5vXxfkj1NkzqZHo9HHt6+4/GxJDVT/5AYEn23QZyh7zv6TY+I1KRn3gcFgGIwRAxo5Iu11OquKRJ90OyeJodnBp+zzZps1y+mqpABRL57qSTD0v7LS2TOZqtRPBaTAVYkxESUUJ1MFd0K3iSMpGZE5cqtKSFh2UcxBPw0ESbPcX/g3cMD7969Y7vdst1uubndYa1ht9shQvUpKRFA53yQTNb8y30s5rGymJeaMKVfNeS5SQxewmyRpaNss3hr+LaZnWetQSQ7QBvBGIuxRk1cZxby50wHJ6CgYSXfC+MLWVhAs9IuixDdcybbcwrUzNyc3699Vk0GYDomZMnaiOZ1aZ/fcyaWs20o38npc3uJ0VgzrBeVw6tc5VsqP3OeETMOyOFwUvNCVlNLSgk7DlS0olxs1e6WJozzE8N6MV9+FpCSBn09sbWk6PnjlDae+G8s9jwT6XIG3DwnazblhO1pWitV/1u2L8TQLFgKRlrnwEuaahsaWliE1gdh7WB4DjwVE0Cb7GmaJoZh4unpia+++JLXr19z2B80a2oEYx2ul3qPnOsI2QyUUrE4qAemOiOCswbXqeZdGZvMvhkiKc6OqRJT1l5D1cKNIVsu5oRnxQxgjK19nJLmJ7EpYgvwiilHSehgKixSIuLRxc9kVqcsJkXLJjNthqJFS61jchwHjsOR3c0N2+2WF8cbus4xTSPbbc/t7S3ej8S4pRofMoNgraYul/K3vU/GVIarvUcloVxMKRdoIzMc2ZSxAp31ScrmF7GmSdIldV/d3sw1ZWqfr7LNsny2yt+27XMxyFNp2wSzsl+Pkcr5CjDLZiiJ+mqOc8qMUKilswpCO9+YPJvFeizAqLmnFqtbgYJLc0IyKZMkqbKPhSGpviIrE826XcvfzsxjzWR89Re5yrdNPooZiV1HuL0BwD7t6R4eIZtY5of8/L7TiztS3+sDzHmzxvKhjhW7pDSzFBd4F6qtaMFsfJhcAimQHT9X9OfPKmXCWUzY80w7b6c/rsxIMwiobYrL3BQFeNRz5es4KcwXU07FPm93KT31fH6tizNr34HpOPL0pLlEvvriCw6HAyFnPZ0mzzT6nETMYPs5Qds4eKZxZByOs89FTv4VjcIwm9uk16pp2a1YrHFYEwgSFn4SddtQEoFl9qhaxObrUXBWmLEIUkwiovQ5ebxlwJRQf5SM4zB5hU8pIdbUSNHCYAm6gBez5TR59ocjMaF5TmKk6zSqZhhe4P1U21KK/LVtFZEm4+t8f2Jmc0RSBl+aLr++solDRHA566gu3CtGUFb3Po8pDUVeOq1qm3LuCzmNlHkfI1KYtdkH69L2zVSS5xXdx5wcQ1AEmrLXqxjduZZNqOcojKMeU+L5Z7+aN5Oa3kwBCs2zIkZIZh4H5Rm51A/lOhaMCPO9rP8usCvrPqr+LxeYksIAXeUq3xb5KDCSdju+/nv/Xn7t//iv8NWf/TPsf/1PNJMERU3Mb5ewIThH3G5PgMisESyZicbAohNTPe6qTavPJ5PABe0HZk1r/ptnqexXkMil6RvfiTZk8twxn5X3bZKo5gG1Dmh7inaW1hS+zAvFOoX1uj9qv6Y2w6hebkxad0Xy+aoWWDYA9RGJkSmXhR/HicfHPV9++SVffvklT4+PefEWpikwHMecYEx9CwqIQkQdUQ8HYpgaIJQQ60hGGLMfijVzVtKyEFnrcNHjRQhpxr8xBISc1tvkBRNdkCSjikQJ98zsieT+zlquasKSteZ83FiYkBngVPempAAp5QVS76/RsFNmnw5EmHxAxgnrOo7HIzEqQ1FK2QPV9DInbNPvbDZZFWbEGKMp7mPUaI3K0rSgJBByKLiCL92nRKm0x6IAnRwuvmZEFoCjYbNOQ3abYbUCIeVaynfteCQlaDLQ1sV28YwZ1ou+PqZlftDGqVLUsI3l/Iu/evNlFRY9z10yjxcpzroNSBDN86OPxpIJehaENNe+Bh7r13NSn8/Vcetc1ZznKlf5tsjHm2m2Wp003N3h7140W+TZu50UWDEgK3PI4vgrfw3N+pmdJZttqgGjTjgNEDojKbFy1jyf02N2iNWnPCcZr+fVy5sjYJ5jU06uu3xuvjrRGJsslXUSFtEcBy1Ak3nxMVbo+76WQ1+3qZ28F06oOSFUOeYiQRZzBE2Z9FLUMFfvPX5SMPLw7oGvvvqK1199zf7pSEol/DXkqrlgba5UyjL01E8TpSpue59iCBDBT1P2D+kQMXR9p8cRXeCtCJ1YUnaAFCT/TVl71b7Tq4oYUfOJQX0nbE5iVYFMNnmBApQUhRC170vBNZMXzZpeveJWzeZqYAHGcxbyvGBqZlqYsHYkjokQelISnOsRsdWkpH44I13niHGD956u6xaLDMwJ04KfKhBqgX6552VchxByanpZANjChFRgIaB+Iq15JkfXxIQ0x3x2AV59vzaDlu/akHOTb0o9vjE6NlPKfk7lmvLxWydQgj4vzfEvMQxCcdRW0NHyCfXziVKj9/GUDVqak5/rj/ksl1mQc3139rsVEJlp5GdPfZWrfGPlox1YZwVDFpkMU6o6NJUOTctF+7kF/PTRSxl4zBpOWkwcHyDPbH92wtATAdljPS82ZYE+50eip/nAGUBYHAMKEJCsrWdWJE++DTe0WDBE1Jeg36rjY9/3Z8FITYCVZn+P9ef2+2XXNaCGWWsfR89hf+D169d8/fXX7PeHuq2CEJ0VjbGZdVHQoVkxA9NwZBoHHToZgJRqqzEAJmFiwBmHtepg2VmDj5EpbxuDOqmaZsTlpCHqM2IUMFpRrsOkRGcEZ4TOWlxmS4rjq6aGV78jxOCDRrP4FEjOMmZwhDHqo5JyUjRJpFCiVgSTZl+H4nxcixRGDRMdhoEpqR/L8TASQmIcx7rIWWtz+ng1h7lc4M40AKDk3PAhNAtaHmKtBr4aa+W7dQKudQG3pe/RzIgYPcjJQr1+xp/7/gSIUNb5BJJmBqQCh9zu/JyUxyI1z2rZPmE0o24DmBbXXj+XyLnMetWhnubrXfebWYKH5+ahNcthZAZ69WXW81+maVZtba9jDQLbfm3NMh88H13lKt8g+ejQ3nmyO7Ogt8g8rR7r/L2GjzZfXzJ3lO2NLjll4kJWPif5nCdAh6Z9hVlIp4zGueucHRIbeJW1T1AN/X0ayFor1An1zER35lDG2Bz5EevFlEWoApFNz3a3Ybvd1iyfInICOMr5W9BRGIr2b7t92SelVFO8KxgJHI9H3r17x+PDI9M4IclgEUY/Mfl8nFCyQqSap6F3nbIIwZOCV7CSNPV3GRNC1OybCTqBPoecOpPorMFIREj4KS0AlEg7lc/UvxOjvidENggbY7jZdOycw0mi6xQw+aB5RsZJa7hMUXOKHKYRnxK9GMYprRgkMDGHs6eS90L9atKZxSKlRPKBMUY6a5mmiXfvHvnyi6+YRs9m0+EnLdhnjG1ASXc2wiYftI6Nwl4saHt1+V08u3Xh5wxzYASxBuscdu0LcmZsn10U2+ttFtJ1GYICfEKcq+WW53RmPansnWuYiAar1HMVR1ZYFZ1b9cnJtaw+n5OS6bgmUctjdHaHXkrLSul1pAUgOb1P2TFZ5vt5qX/bhq+PI1IYXZZM61Wu8i2QnzmapkwmJ4v8SvugmcCzZwChMeOUh/vkXKIoo508SznxZXuUcj2J6knaBlhOvqWJqfl9cd5Ujj2Hz1YtKl9jLRz3jNZ3qc/WgGQGP+2kqJquYa5RUmj5kjp8d7Njd7Pl7u6O3W5XwUgLRAqYWIOREMICjLTblPaX76dpAmAaPQkYxpH94ZDrtRhIkk0MKf/VxGM+ThkoRrpajVeZDZOBh7U5RwpgjWBFcEScGDpj2W4cxjl80jrPRixGEpK27GNCgtfCfTlypjAipIRJ4CSxsY5eLDsn7JzhxXbD3aajM4lN32GtgpEQIpOPWNsxJThMI4fJcRg9U4TDBMPkOYbAFDXZW8zjZVass9Mr8+KQUiKp/61GZWQT4DQF3r174Pd//w94+fId9/d3NWtqYUhKyK/3HuPsYoEDch2WmRnJZV70b9ITNtzRPAblUibQ2XdkNkVkk0JhIs4t7mcWvbV2fy5DsIg65q5ZjHPHaJ/Bcsy1FECyWOgbYFKP25haCxhJDUNZe6woV2czIl9e6Nf3SRvHHK0kM0O1ZDYks0PnwewSHK62kSVb+742XuUq3zT5CDBiM9uQHc3OlMaG2QFQJJFKyGWmVxNCMglJsWCN/ACZBp6oKLDJVcyYkzaRNIGZnq0kWpszFbbghZoCXrXEoqeAJvROJQwwQZKYqd/CuNTA2gWAqYAlGwmWmqauRJV8rpe0nHCK5l58UFqNVRmCrCFFtYRZAWcsQYSu79lsN+xudtze3fLixQtubm5q7ZPSd+dAyfp9ARzt55YRUf+FgLU9YjqScTw87bXYobUkq+XYQ+Ow6aNnGEemGLBW6J3QWQc4YjhiJWv+xtJ3FtJASoHOWrbWsDXCi03HTedwrkNcx8MYeJz0fonpcETCEBBnNOFV0L4Xyf4dknAmsbGW2x521rKzifve8PLGcNsbHInOJba9xchGw5ETCn5IDJPhGAL7wXOYEm+GyH4U9oOwnwJDSPho8KIRNsXcZoyZnY+TaIK0pOa+4vPgE0gyDOORN2++JvgRSZHddsN207PZbNj0Pdu+Z9pp3hAXnBZqa8xx6uxssjlKk2uBLngx+8qkRM0fYktOFspYVn8QKxYrFmesHjMVsK7XwOo5X7MkLfBi9dslc0lh8drwZBGpFXwLs1kVnjx/1Aak5jk35X2qdWw0DKhkL57PXS6+gJsKOiqQby4gtc/2+YX9ue8Xr1TMZrO/iL43tYHC3NhzIKS+zwhqfY7Eck553ph0lat8s+TDwQjLh+QEmVNwg9FVtICEeQrRx8QYrWq1enBO/EoKC1J3LuddmnFmfoRcgC8fOVPYFUjElbaKAorSkuIMVwJDCwjSNs1ARCu/zictk2ZKMeekIC8CK3NSlcZBLjX9KTmJUj58naBRRknzKGh5euscruvY7Xbc3Nxwe3vLdrutURlw6i9yzk+kJs5qfi9AxE+e43Fgvz8y+cQ2wbuHJw7DwOAnphQY/URI1JBdHyaGaWQs0SAJrOtJXiM7jElstx3TYeCm29DbyLbrAE3//qLvue8Mn9x23G6U6RmTxdlAJOCjJ8bEEIIuUswLmJWEySDXibA1htvecds5Xt1suTGRG5u43zpe7Do2xmBMYuMMnbWEnNwskogm4aMwhMRhjOyPgbvOc/COpzHwMAaeRs9+ihyDZmX1ManvCRDyOJEIKSacEZJYfPT1ucDoOJzGgcfHROccdy9umMZ7DocDj11H3zk2O02U1nWdhvGWcd8sYFJzVRjtywwypIQJp7p+LfYt39Z/kpOgMY/zsmgW7UFMkzyvYVgumUDX37WLpz4OS5NRgpMqv6UIZGqYu3Ph9oWVai705G+7uJ9rWzm+Pnczq7KOBHpOThjR3KCaVE5sY7ZpAFbR0FbHWR/PZF+9k7xCLVi7ylW+ZfLRZpoTULJ4gKVqLeTJMaF2eNLsKFbyAJT91hPZbLrJEyAlkRT14a1BtovJ+TQPyQxuspKX92mfby3WlUn0lgGhBRN54hZ1ZtN2zxE3NBilND3FpVa4nqgXxc+Y56OWMi70udUM0FiTfQmcFpjbbNRv5Pb2dkGFt+zIwn6dih/HHN2ydm713jONE303ItIhYnk9eb7++i1ffvma4TgRvCbXijlFvY+BKSf58lMASWydw6VIGI70mw3dxhC8IRrDi03HZ7cdd5uIEHl8GOiN8Oq25zv3O263HSAcPHjxPI0HDgSG4JnCwJQmooRc5wYkJCyJDmFrLXfOcN8ZXmwt37nbctsJO5PYdoab3rHre/reYnK9V8GQ0hxZE7H4JBzHyLHzvNw4jgEOPvH2OPH2OPJuCDxOnqP3DCEwhkQIks1KGWpnJ9ySLbaM2xQjQRE0ZNPX4+MT+8OB7c0uJ5QbGMcx93MGkCnRGh7Oab/t/V4vnu0i30bVzI6rZYFjBihlnMpyIT+3MF9arNftWZtQ1t+1xzErU047V6yrVV+63vb9cz5jc78CicUz9TGmmkX/CBkoCm2699PjASu241L/Xtpmaca7opKrfHvk48FIA0rWdmBlArLuX58Dw6yXJfUZoCEXWjCzAiTVubN5pioIaQCLzD9WOLJ+iFNODKXWn9ye6h9anP1YhPSW4xR2hXJ9OUJEvzuvDcI8GbyP6m12pIan5usuOR9iEkpskYhg7Bz94Jyr/iRF2pDJtQ177djaApWSwXMYRlIwjH3g4eGJzz//ip/+5KcM+6OG3/qAnwIxR4lMfmLKOTISia2z3G06+jhgjedu04OzPB4T/XbLq5sNv/Ryy40cAeiD5Tgc6Azc7W643faMg+eYPNaoJmmcwJQQG0lMbHpLGEY6azEIm2TZGuG2d7zohE93jpe3G17dddxtHLe9w5qENbDpHH3vsMbliB4hhpw5tivh1MLOJo7GcOsCY4gcfGJnYGcTt53w5A3HyfA0efZeGKakfiUBohUQze9BSmB1ZNl8T2LQdPRBhP3hwJu377i5vcNYR9933Oy2Gn2TM6q2+Ufqwn1mQWo/X1p4F2C8AAFpQAkGETtvJ6eRHMvjvf/7luVYAwyg+spcep6KrIFJe52XAMOHMBqLY19gc8719XNtLf1a2Kra1gL48oMuFDCyPN8lM9daLvXHVa7ybZGfw4F1qaHMvxfmYt4uza4ZOsk3gKJMUGSbSnvMAlqqH359cDPoENHsr/Ey9VokZm++hVYpak4phhoaIJMaFKS2/jI/pfpKadbmTp3Wlsdby8mESwuBWGlJZvGrOkVm00pjilmH/p6TNUuy/q5d8FJS0PGTH/+Uv/HX/yZffflatXMfGI8TKZshxnHgOBxyLg3YOsuLvmMTvZpdbl5wtxVi53jTd7yLB17YxHd2wp21jFMgbh2HIfE0ep4GjzVbHh4Drx+OPCXHFC1Ij2ciTp6dtVq8zhp6YNPBrbXcbzpe7ja86IWXW+GTu1te3O3YOstu4yB5YgqaYdRppI1H82pgLTGZeZCIpRON7Jks+GjYTYGNtdxstrwaE08+cpg8T6PnYYw8+cB+Cuwnzxg0sshbw1TAMPP9Epnt+t57np6eeHx84vb2luPhyPF4rGCkrRD83IJzSZM+XazPLLAiVOVBwFiy2fW8U+j7NPN1m8rCWrLlnmNH1s6u58D0Yo5oQM050H+iRJ3pj7bt9XNKuVhiPOmnS9f9IWBHRLKDcLttsaN9GOg5xx6dO885592rXOWbKj9Hobz54a6TJM2iWl07Su6JYs6owWda7rs+TNl5s5hI8kEK9BBZZmVMaYYQiwfyGY2gbDs7qukJS3tTA7DaCVSByGw6aa//FITob0XTuayZrrQ97RG94txdhYFpz1jAh8+asm8Ko4Wcd+JsBMF7tMSyQCoYSXgfGceJd2/f8aMf/YjPf/pT9k8HNv1Gi+ANg7YnBo5HBSJGDMYa7rZbbl3iDvj+XccP7rfcbxLu5pa33vHD+CXbOLHF89n9Vs07yfM0btgPAz/86g3vbhLv9iNPU2KSxBAdx+MR/3Rk5yMbZ5EUsVbY2sStM3x60/PJbc/L2w3bTnh1d8P9zZa73RZnhc4JicgwjlpYr7NIdNjJkwKQhOhjrigcNHeIiXRO7fw2BnWwFNj2lifr2Y2JwVr2xnLbJd5NnodxYuuEY0iMPuKj4TgFJEaIJemcqHu3cSCCj4n9ceDNwwPb2xvuX95zPA4VjBRAUsDiesF630JoV1V21+O8sCHVN6sCg+W4P7cgr4/TjvlLi34952pMfghoaNvX/l5LAqTTpGznikGux/8aNJ1jR85J+9sl89giiqaafGelzpYsfM/0b7nvc1be86ac2oar88hVvkXyM4ORlOmORRry7PiQpwDIj14yJWy0WZilznu6Pw3nkWmIk5RlzeRgZG0+SfU4JyK5nkiqnMxycqxsx/oI5WGHuWaIptjW6JHY8N0FipWLW7b3w2We/JspPWvVykQUB9NSiK0sVu0k3E5ilyat9nPRvIuvwvF4ZJpGnp4eefPmLUMGHyFMTOOgtVLQ6rvGCM45BIuzht4KG4ncd/BLLzf82nde8J27jt3LlzyxoZ9GpsdHrHhub24R0+MZ2Wx2vH088mb/xBfv3nK0HWPnGP3E4WnP9PYNd35Q/4+N0NmOm36HxfNia/nuy1te3XbcbTv63nB7d8vtbsNu00MM+f6jdXISYI2aDY0hhrwJWojPWIePEWOtOm32BhMjaZgwFmIyOLH0JjCOgQ1CHxPOGZyFXWcZojD4xBjhcRgxUwIPw5SNgdWfBxDNIns8Hnl4eORwPDKOWg15HMeGsXoGbH+AZr7evrzaQnhlgTwHds6d49I2l9iCc8BhXfDxuetb+5mtz3cJ4Jxr/0Wwk/87x0I8BwQvHR8xCJrWv+YraRS6RHFSPy08uD7vulZQe+5Fn1+xyFW+RfLBYKTQ/vIcRViYDZqlvZ04yGG8Dd0cBfWt0Nm5HmqRjmOBE1L9K+1v+fxGTk0mWom10NCNiaJoXkKTqyQnsEplgpsPXs01JcdIboAeqpkcchPNGc3uQ2y5pW2VfWFmgkrdEc2tEQlxLqB3brJca45rKfsUn4TD4cAwHHl8fODzn37B7/7u7/L5T39CihHnLMF7/DBqUiwSYZpIQXOvaHF5SH7CdYHv3d/wx773kl/99Ibvvrxle/+CUXrC02d88ePE1npudhtNamY6gnfsX93wB6+FP/z6LWOYSF4I+wHz9MhnTHznrueTV7fc3m64vdnRW8PT4xs+ub/hB5+94m7nuNk6bGexmw1GoO8ckjRz6zR5kjgCiRI6bkSIHqIBTc3utbaNnwCLpp+LSAyEEHEWgk+YXn2NehKdJGyImGDoTMc++5cMDsYgOEm4DtzoeZMSY4jZxyrV+4gI4zAqGzJOuSChZxzHJuqJaso4twheAqOn9/0yGyHVcVXHPOj7lJbj6BLAfc4Esv577tUeZ/15/ZxcYiTWv50b+8+ZVqT+dwm0fZgPStun9cgn1zuzvef6qBznnMlo3c+X+v8qV/mmy8+cDr7kGVlMAqC2VlJOUFbsuUnNIWleaMth6v4ZkNRJimKWyczFynxTFY7FZHSqmZVG10geDDFHUChGKYxKqgxKwQKzeSnnTbmgjc19I9k/Zp5gzk0IHzJZtKxPNXnFpY+InzwxA5FzzMh6klovOm0bSqryw+HAfn/gyy++5G/89b/O7/7u3+Th4R0heEAIPuD9hMmZQaP3msTMGgg5h0yMdAKfvtjxS5/d8/1Pdtzf37J9cYPH8nf8ynfgOGDwdNZys7HcdVrR1nznll/+pVv+2Ot7fvzVA28ej4w3hu33b/nsbsMnNz3bXY/LDryPD4/c2p5f+t6nvHp5x6YzdL2ai0znENEU8EIi+AktdKfAM2V2x0jApzRH5oggBnrjFIgkCCEzd70hhoglaUr7HOlkOyGNnuQF21k6H7FjwPpIZwRw5GHHEBJpGBlDBiMpITGRUmCclA3Z7/eM490iF8w5H59z4+jcgv4hr5bZU+17OXbWY6b97kN9Js61cz1Gz4GY9eeyOK/3PQdKzrX1WSBS5gszR56t0+Sf64tLPivr9qcYSU1IdKlQjmjOlfY8zx3zHBh9rn+vcpVvsny0A6vJDIA1p3SiKpuZegZSMmCKiSHOJp1Y6JNECmERWVMcu1IBHK3tJ83Tpc0aRkm2BTMEkNlWpNKwIDVLoRT2pSKefF79qpzbZOfRlEJFB8IMkEq7lyyNvomNoWmGSqeyNDDp0Vt2aT5RbmrKCcvinDk15Nwbz02E7ffr3733DEcNJT0ej7x+/Zqf/uQnvHv7Npep1/s9ZCfMvu/wXhka69TpcfIj1oJzkfvths9e3vDZqzu+8+kt7mbD9majBeQ+fYE/fo+nxweif2TT9Rjx2K3l5pMbdtsb/lu/8j3GUTgcJx73T0zTkb5LbDrlKvykVYPTIfDZDz7j089esttuMQJdZ0kmkazgrMEai00Qrc2p6j0Sshkwl+9NVki5P0maO8Raq5WHU9S09QLWOSYmXUy8ghZrDWI0M2sETWkvFg029ggJnyxBwIfEzdYy+cAUdExZa/V8YknANE4cjkeGYWQam7DeGE/MjOe04/VI+1Awoq82xFfH3rwwcuZcl9rQjO9m4S/mGfUtUZ+jc6BIH83CRhbwVUym59lGkSW7sBzjzy/c50SYqxvHGDHHI/3TE9N+T/+0Z3s4kA4HzKgVqhMJW6LbvKebJixA3yPq7Q1JtAZTjPja9tg89QZrT4GP+vyIjqsGjJbn8mz7r2DkKt8i+XAwYmfgAdkhSx81rBgFHGWBzxO6Pl4FKMwhe3M2kFgpS1LKybOkrr1Gije77rVYnleTkrVWty3tZc5qWsDMrCmWEq1x0Z5izQFd8Of04pCy+UeSVo2ttXLICaIKXiqAQciRQ02z89pHagBZ+3tMuDxJA83kb0AmJIa8v0NovP0TOe3VUgpQWdxH0Qlv3adh0vwg49EzHCb2j3seHx85Hg5IAicGHxT0YCym6whhIlldaKbRA5Fe4E4C37nr+N7LW+5e3NLd7jAbC67DiWPrLZ++uiGNj+C29P0Ws4nYTri5vWW73eFcR8jROsfjhod37xiGoy4QkpiCJxL55NN7Xrx4wWa30UncWsTNFYSVGVEHwSkqMNj2O6aYGIKHpLVBTPJazdepCYaUk0sJECAa7TcTEwmLn7ROjohWJzYBOgcYg4SImERIgcEHBiKGhEtw2/VE8XhnGKcRLwqqrTGKi0LAh4nD4cBxGBmGQEp5cTXZt6AsVNjFfS0gO0rSBHr6gzriYtFQXZMZv9xHAslkc6nos6ZF4ajPyax0nDKBZTE8deQu5k4o5s0yBwgKbNRHQkPXBWUVjbX5eSrjuZh4tehiQjPspjy/IKG2RRmdVGvU1LGO9lVRJRIT52QBbsrzm3QWk3HgB3/5L+F+/w/h4YFhHPFBn5mQaxuVY7QsSri95Ud/6jcx2y3WWFLNUaSh3SHq35hiLvtg85hSUKI5hnIBRWsx1uBcX53FC4Bs58bcbdz8/h+UTz84e8FXuco3SD4YjFQv+braN1QlSnmnlKpjnm6ypBqrhhRDZiqgTDY02s9MMMy23uJAeo6abL3zT8wmzSTZmlna/VuwUI9lz9QCQUFOjDN1W0xPFQqkeSJcsDCFGi6TZMFD5ZpSWQRk+T2VkDmr6RQWqkxK0kx25xaOaiqr3IsuvOtU8da6RpsVpsljrOYzKaaOGAP9plfziolYZ+lc4u6m47ufvuKTVy+4vdnSbzqCE6xzkIoJxSDO0Nst3bbHOaHrHf3uBtv1WNch2Zfitn/BZrfleDgwTRPj8YmtwGa7pXedZict11sWxwxQNf28ZllNPgC56q3RRdhIt1hMnHMEuzSLaEfnu6+la0kpVIDgQ9ZejZCMJYoQQ8LZRO8sbgo4UcdeImyco+8cdhCmGIkhO8qiDFUx0xwOGtpbALQgp+aCNQtykX9rR3EdFCtG4jyLstj7zLbr52n+LmZAUmBFGdMz4yGyPPZ6bOd38+8nZguTz1PYjyULYur5lhzlOdLgnMmlzgfTxM2Pf8Kv/pv/JjaE052fk3/33/247f/2y7+ByG+Q0u//ohtylatcko/PM9L8rQtn8xJmKrbsd7ow5jA2VCMsx8i/1ndGZHEcsSazLosdzsolh7b6d3XWcmkVl6wn4daKwtoxdA2Q9PhFF1MMJzOP3PTLul/XlWHLSZ+jXNfXug5jXG7XMEPle5a0r7WWm9sbXry4Z7t9w9PjE9Pk2XVaHbgsmN5Hun4Dw0CyBiewdfDpyzs+++QFd7cbdrsNu5stx6BAwGctMKWE6x27mw3GGbreaY2d7Q22czhrmaIu4iLCFrh98YLgPeOwJ0wTMQTIi7kPgZhDmwuDIMYgeUE0xmKcxTpH1ztN3DYlnM1J5c74H8y5WwzRK/gwRkGUFsWLRB+VRcvabIwoVZ8CnRU2zrJ1Lmv1yqb1CNvO0lvDGCMhBvWxEqN9M47s90/s93stkper+BZ271yRu3PjYfF5NXwkMw/tMc75RZyaQk7ByYVRSaO5UOhCZXZmUNxG78znOX9MYyBmn6wZxJsFyGlZP1UE1oCtAKDTc6wVgdY/JQHmeMSGwF//H/wP+PpmxziMOetwoEQXiszJ2zrv2Y0Tf/Pv/FNMm506m3uvyQHz32n0+Bhy3qD5/jpnczJDi+s6us5pvaLdlr7v2fQbXKdVnduw7VnpUWbkT/7z/zzAFvgOcAUjV/nGykc5sC4mvgsazYcumjmjxgxu8vcxNonJpPhiNJNrWdBjG9Gik52IqeYhCgNQrTQr73TmZGrlu9bHY3EtqgBnNieRxGT777zd4toS1XRS2KIyAVbjTnPdC4fYxhelbFcm6/XCc+nzumZF2/c6WbUTf04D7xwhJJzrlElwHdvtFucs3s9MgYjUCI+usxiBKamprreJ+13HZy9v+fT+jpvtlk3fY22HwyDGYUxAxDAMAzFGuq5nd6OgZbvdYZ3DWItxDhs8xlrIk6t0HeI9mMRkLWGcIEaMi6TR10kZES1NbwQh6lgRBQpi9B6IEZzTHPsli21hhk5t8IJDNI9LZkeMKdEmukhap4uiz1EyJnuM9AZ6p9l9NYluwgfDTddzs9lw8FoBOYkFiYhRQHoYjjw9PSEidJ1rFrvVPW/YtHPA5Dm5xIac1DxZMSAt2L3kCFqeg8JC1M+x2iQpA70swstzLsdt+wycgIU0l3NYX9fMhDTaxHv66Czgatp2+PQTnu5e8Kf+mX+GF3/0j+I2G45v3/LDv/If8p//y/8yKQasNWymCX8c+PF3v8e+2zKOYw2bPw4DxwADkZDQGk9JTa5WBJcMLhl66dh1W7qu5+Zmx4u7O+5e3HJ7e6tAf7ej7/tF9tqZgb0mPbvKt0c+3kyTpTAg68UTZnR/3l8BKlhoQEJxFC1layr5kQHJ2mF0ZmM1kdXsB9JMbuQJMxZG4FTLW1LxywmvaBjVotFeR/Z8L2XjjVEgVE0miPp45MlY5+Hz5qv15CjNd3WSZqnhpQQxFlu87nVpUSnX3FLbhSWp5q+kdPpm0zMMPc7p0FhU9Y1R7d550e46V8071ggdwt1uw/3NjvsXN9zd3dB1PSEkxDhELNFPHPZ7/DTx6SefcHOz4/Z2x3bbY/tO76MxiDVYkQpGNOIg4WyHNdo/RlRVjj6ohpxSBSQ+BkKatDd91AJ4oGYVP4HR+j7BT2qvlzlrbRtCWW5FmeitCJKzlMYY8CFhLUxBi+CJAfHqrGjI0UXBI0nojDCFiE1qvtn1PZvBV0dk7UeLSGKa1Im1sDFt1eV5lJw+e+eex+fkHCB5bru16e/5LJ8zy1F9PGhz/VwCUPPvZd81YXgCwnOBzqXCUdhIFvfyJH/RhePCbL40UspalA3h3e/9Hn/w7//7BB/49f/RP8qv/yN/nscf/ZC/9W//27pvAh+Cmt2mlCPV9uz3B/aHQ86wm9mVGLPjM4iYXH9KmY/dzY7ddsdxuCUU/5LKoGTloesW7S99e5WrfFvkg8FIiTxZmBWM5EVszoSqvgRLE015D7N/hf6WHyxy6nddySkUeatDURiCfL45EuY0t8jJxJlBTz1/BjNrOtsYISxASAY0cbld6+CWe4VyonodZZsMjkp21wXQEdXSUzlGKmwRMwCq5unsJByz3p1mQBJiysBkCdjOMST6W9k/VpaEmJgmTZO+2WzYbHpSSvgp4r2CPfWXSQQf8sKtYa/WWLoU2VpyxtOeXd+z3W7VpCGCGJsrAR+JPvDZJ59ys9uyu9nS9Q7jDFiLZHOKD6EpbDjfEzFaGr5zDkmJME6Nz0wGFCI4K0hEw58JTD7gY8AYjVgx1mCtZBATK3huF/xF2nI07FdLD6hJBgn5XmkxvFkTTxmMgEk58iwlLNBZISToMWydY+Msk49MKVbnRmN1PO+PBx6fHjkej9zf3+XaOQX8qfnoBHc0Vo5zLOb6GVjLKUPx/vftvvM5oER+NFtQHopMNhBjWpgY2mO3rAgsn5v2OZrH9PJcKWXA2izM8z1a9sf6ms75W616iv/yt/8VUtdjNht+5e//+7j/1V9VJlQJR3VQDYHDceQhTTw9PeWU/3v2hz2HmlxwIoY8bnJbrbV0XYdzjt1+x+3tLYdxyKA3VKfWso21MxCzNrNQVyxylW+R/Bzp4FXqIyuyNKc0cmrGOAUJ9W9eKMVk5qHsQ8ysx+X6HCdMR7OdrLZtf2uvRaQBV+nCJcnq/ZltEknBiqT2y0U7W1t+mTvqAkxZ59YTobIEJZw3hEAMmjnVOoN1lnOLxpLZMnWCjzm3izIhQ7047z3joEm3CkuSsqYXQqLr1HF0HBObboPxI72FjTPcbDcZZPTYbovrOpI1SOd5YS0v7u4QwFnJ7VXHW6ymWg+lZHwCUtQKt94TUtRFn5x7wwdCyeJps4OntZRwb3EWh+I5H0cQg7GC2GJq0EXROWV4SuK40nc1Q6iiECyGkAKl4GLZPyVPiD6HOs9MlsmgwRmDjYFIorOGhOZr2XSO7WbDYQpMPpFCxKekqcExTOPEV19+xRdffMEnn7yqjEI7Bp9bb9YmlDLmZsbsMiuyHjPnzDTtvpeeraWCkBSdJc21oYwFJ8cSU/ZJFYieYy2X56GaJlKclaN1e9bX0v62fM40ukewGdBYlk+mqh5/7l/6l9jc3wPwe3/pL/E3/2//rpqAQ8CHgJ0Ch6cDDyHw9PTEw+MjDw8PPO73Nd3/nNBu7t/Cdjjn2O/3HA8D0+hJEZwIznb0Xc9ms6Hve5yz+d5+nKnuKlf5pshHObDqAnvmRyPZLs+CEi2yntDm34um1FaSVdvvenJrGrJACO0xz02IVZNaHabN1zDvl79bIQylgfM+eaGpB7xIiUtOqLZ0lq1XXibRfEnFbLU4XmafCluk/TMvKgWQ+OCzVq/a95o+P51sT52Ki09IMdtMk/qFFKbE+9lnxDlH1/VYa+hsx8YKRiI3neF227PpDL3rMLYjuQ30PTiD20Q2uw0SA8lPBD/lid7MJrmSaAuUtSiLVorEacKnVBcpgVwoMaq5z4CPPpvEsqnFWWy+PozFyHzfSy2ftp80t0hYfCfFfCiCYEkBxnGigJEiMUVCUPYo5eKPgpp2rMnADwsGJhPZWMu26+idprxXQi0ziykRolL8jw+PeD/Ve3ZOa79kYmmB/1rOg93TYz5nujm/kC+Bz7rNbQNOn8wCopbnKUxmWoTttlcSoVR9kaUz8vw35n64zIAsmmdmUHrud4D/17/wL+Du7vj1f+wf41f/7J/lh3/lP+RH/+Ff0XaGgPd6Dx+mkcfHB949PPDw8JAzHTeVrtPp/KClFgybzUbz46SEtYbtpmO327G7uWF3M7Ddbul7V+fOFmRe5SrfFvm5mJEWBLRA5Jw2dVYbSVIX/lQfHH2YzjEZGbfkhYrFsS6ZaOrnGBcPZ9Fsl/srHd/8VIHM+njtOUoiuIVDnwhRFsii/r+ghUnLCJrSj4vrbhaFNNvPizYfwxyWy7SksYssbfunNPUMcNRfQeljr2aZoEAnoSxB13dYK9lpThfwrd2ycz5r+x3b7YZus8X2G5Jz0GWHz+TBT2DB2DJxlqst5Z0V9NnqdxSRmCBkliSHVscQlN6uqf5FTUpGEGNqCDY5WZgxJpvR5vtkjGiRv+zEWvq1NQdIg8D1jmU63GnekWqaQQFrSHP9IgAxBpvAx4A6Piu4cUborGHTdxxHjcqJ6P1NoqAkJr3eGEt+jrldl8xw7e2tpruGWZiH1RJMtDVPzpkulkPyMhA5t+2apVkqJO0xL+N7ETRSKq6fR8ngZQlUlm0swP90Hmr7tFx7yYGy8HtbEpQkEl/9F3+1Pif/wP/yf8Ef+3P/EH/4H/wVzXUSIiF4DsOR4zjytN/nkG31FxmniRAalqeOGL2OmM2K5StjhO12w/Fmt6joHEIBNJGUTJ3LrnKVb5N8uM9ItpW3msxaq9HFsi3mtdxat6GGdtbvJedtKB7xKScSo5m0Spr2vE9qFgDqw7ycaM5aWMrkU9s0L+4C9Rztvqn+eDqBVn/BVpNLZfKbJ7caPXSmbcs+Kj416zwMwvq8MaScQj9X811dcTu5xgaMxehrP5RaNyFp7/sYeHza89VXrzkcj+prETQCJniPRE9npdbn0cUustl0bJyhd5ZXL1/RbzcY5zDOgXV6m4t3shOM6UB8ZWMkag/VgoAJjFjE1pUUEY00EKsp2VNMeZLWCTsEjw8eAYxTc02IkRQiEkVzlxTQFYLmT/HKpBhjcF2nIDIDuxhCNfskDcpRNiUWRi9mhkZ9E4yxCIWlyeM4RHJu8QwYPT4vFlYSO2cZ+56jnQhTzsshCWOc5mMxll2OSlqG3hpleWQ5rssytHgyUy7quH4iRCvIGiTXlNIRalAguPa3KGPp3BgrY1JWQzVl8NyORTW/SbNxe8DcjjXTEnO0nMTKksympjIXrABFE3Kff22e4VOgvriUVMZdfnZXzfz0N3+Tz/6e3+KLv/pXCTHyJ/78nwfgze/+ro6LONeO8pPXKJph4DgoCKmmmcaklOsmkyfaKtF7JoHge6ZpqPv7adIQd+/r+YrvWEqqqFzlKt8W+XBmpKDthk6sysi8XtQPs+UjISnbcnV5oOE3oDie5SSCSjWaSlnPGouZTTj5ZAoqZlCy1gXKnEejlS0m09b2XFq10uJmmnuGKA1/UtkaKnDIX6RUQ5QTJaIx1YmmQrG0BnXtRNQArsIYCZAMkiySShZcU5kBmDXCtQZdRAN/yn3S4/ucDXLykYSh3+4QZ3IWWe0T7yeMJKyzTH5imCZ10nTqF7HpDHd3t3R9h4+RaASxHWKtmqyS3m8xFojqsKqoipi8XoeZs+gWU0dKCazF9r1OvEHjv8XpdcWsgUbvIQVlmmLCZwAdgjqTOmepKXBFQVQBcsFraHC/2RBiqV+T2RMckgIpJnUgTtQJH5SJMWKwRv1gUlB2JCXJNZeKFp+zn2YTkiOxNTBY6IwCrSBCYHaMvbm54dNPP2PTbygmMmWkDHHKJQpaxkF7UZmkDLqNFPNXNnE1z4uCDkEwWNGXaRbGdfh7YQpNiziqwjA/AzGPrzVrqUfO/a8jcH7GKz5ZAZFEuSp9VkxalJQQyc7nYWlOKU6tet72+ThlDkSKYtJOZiV0GFLuP726xPj4wItf/VW+//f8PWAMh6++4q/+6/8n/vN/7bdzEcuEhKBjYZrNqSUfDjlzsqvgy1RznkipG1pAuOQorqRp5GOo2ZCDD/hhxG/GHHWVQCwpRfrxfKbZq1zlmygf5zNyxu57/vv1Qt4uAGWfebsZAOjmM4twmglxfW5Jaz7g4+TSdT0nJflybIjV0nihDbfNsv6MNHvKeu5taNaytLS+DWVibbTSCjrOAY/z5cbb39u/KSU2mw2fffYZt3f3dP1bvIfHxyf85Nnuulxp2WAxmBhzdlHHbuu4u71VzJFZEeMc0nVEM4OfFEPuKa33QrIa5ZICZXGXpGaY5CeIFowhBd3H2g7w2flWwYc1jm7jsunG53wjvvaWAptUo21Cvu8ba7HZbl/6rWR0LSG1zjl89LpQOKNsBwljOhKFSUm4aEhRSE4Xo4hkFqSMG11UfNIF0Rhd8K21OSQ5pzpnBpF3d7e8ePFCP+fvrHNYa/Gimm+cNYEy3GYIK6cmz0vmmnO+IyW/TvubXYxmmZ+/WleqAGxTLG55bJVjPcOwSLt9ATH5B0ArLZd71c4z5bicXFtbQ4t1X53ML8UcSlV4mrPXbR5+7/f4f/5z/xzHYWScRjUJrhSXlJWrmJOaSda5nBhS9l9SsGgyKCSDkQLmTL231lps8b8JAT+NjJlpORw7jLNMIWpYvBhiSpinPVe5yrdFfmafkbPLdwMwqhZR6eOVE1hCNUeZt51lzXH8bKDhQ6U99gedIzXMEEvuQmfT1ACK/FUTeiiL7c+3p2whZV8TMvU/71yZn3nPk4l4/V5kzja69imx1uKcZbvd8vKTT3hx/xLb/ZTISEjg+h7X9YTotUCesRgCnXNsup7dVmtmiLE41yHWERDNTaKetToBJyBpxV+lqoNOotFgkpo5kJIpNmvYqdSCSVop2Fit92Jg0/WV5ZiYIOZ8HdbMzqhGJ2gN7zXYzmnWy2lZXn72JTELINeFTvk6J/hxIuSKuy4lfJiwkrAmES10UTQlPIINukYbii+yHjtkYGZE6IypVYhbtsoaQ99vtJ+zH4wxhZNYsQecz6Pzs4jkPC/JLJm2c86eIkIpJ1U0eRYLezMHpMKzlGetqU3FCcnTXM+FdrLMWKzjJZ51OF37qLTnaX2I5rauTppOn9sly5oBRFaqlFkrgfs65i1CJ5aUw9IhViZKwUYGTrkLU4IQs9KSMxGb3L9+mhiGgf3+gDHCMHn6vte5ooC9t2/Pd9xVrvINlJ/dgTWdTnbFEnHJabWIlG3LZ5HMg8ZmC5M15f/m5GcFOLpmVFdG6tU06GSl952cTxqgspa5TQaRMkmu6eWGlYG585kXvHZRPaHLm4Wr/WyMaugFTCQMIQm229A7gw+TTngou7XbbLm72bLd9NzdqolGTMk4ahDnwFpMV5PjQ8wRI1YQm7CqHioLMk06kZfZ35icW8SANYi1WDuRYiSKYHyuABvVjOKSxed9U0j5mnK0TgEiOTFaNIJN82JU8owUc0hKGvLsvafvN/hJq64S03xfDLkvDGIixui5/Zgg5MJzgOTQdMmLZfG5NSIYq86wIsw5bZIOosN+z+Gwx5jvLJPYrUyTCkxbENsAbKhlF87JmhVRs858LpHMflT2r9leWGxTtiuMzKKcQ9FDBOaQ9xzhskAic/vncWqoWVSlnSvK+Vti4tShvQINSsSY3vc2mVwsKdmzvaiEyaYMLIqUXlWWLxHj7PScyvgOAYkxg2Svpjk0OaCzgkkWK52G45uS5CznZcn94X3Eh/m81up1hxAYx5H9fp8zJE903WEOwQd1ev7qq4v3/CpX+abJzw5Gziyiyqae91YvUh42/T47pUqxLZeN9I8tk2DeT0kUVRnqsrxGNhcaK8VnYdWu5d94+RCtLI4zT4KLwLqGOqkRDesdaLW/lplZdW4T81snPFYTrdHcFHMJ+PNRBe21t3kkNIv6nLxrmiamSZ07retwQXN5xOgVPOR8GttNz7brNLfIdou1akKIKalpxRgCYKtfCyTx+Qp0gSmZeMU4kpMa/SImzQ6wbgLfkcIEfiBNE84IEhISE8FHpjAR8YjJfgRkDb/0v8x9FkI4O1Zrxs3GfKXmGl1U/OQ1p0MsGVc1rXzXCd6POJeIyeCjY4wB43PdkWomEiw2OwVTywY46zBmxEQhilbYJSUeHx548+YNIf6RGmqKlOdmvr8lG3LKwI4Gx59jNVrAWkykSdD+ypp1Nd3Byb4tGH7u8ZtDe1tQ0phkVzufY3PKvNKyRuWX9jilXefMTc0ekIGH9wHvNbzWT+rTUUKHjRH1hbJOTSg+VKCYmJMMxpSIPmQfIeqxYwzYqHlwYgy52jd0xmC7Hjo1yVir/lZd53KWX2UGI4nRBGyOlFOAZyCqf9MwjpinPTEmDodBnZ3zHFYST5ovXz9zZ65ylW+WfHRtmvr+opHhdKFff99qWTBPSIWabDX88mOxo6bV9y0p8RzL0YZkcnHbdnJbLvjrKB2h7Y/1jAqS5OIkXX0+6p4rHqUuNuRFvy1eln9oNNJ6VLNMWX2J/Vifq+xjjCYfCyHgp0nZgRyxYl2X+yBXSUW07kxmLvrNBmOM5ieZJvXZNOrAqQUO53OqI6i+TE5ZW1keo5lYMVJruYjtIGwUkIQRgkPciBkH4jSSpoBxHTZFjJW58rBxxBSZphxhY2yuPZPHWrbzlwWzsCJlIZ7ZIvV96DqnUT8CwRRgZkk24Zyw6Tq8jSQJ+Ch0UTRkN9/sRIIkSs0TtKieFVxn6KxRml5yREUxFYg6ZiZySvp63/K9W93X1LzeJ62vSBljyGrcZoZDRGo+jFhZkcYtdDW2KqjOfxUka8bV59pSnsFUw/7rCcqb3I9kk8gcyrrC+SftKc9w9GFRJ2YYBoahRLho71lrsJ1l02/Y9D3d4VBZHnMcFKQej5jjgJs8+JB/Tzl6yyPDoNFTXkO6jQjOZaWBYobTPDNd5xbzpQ8BYwLj5Gufpdyf0zjq/cigpOs6qj9MSYgYE7dv3jx7/69ylW+S/PwZWFeair6W5pWlHTZxPnPaPJ8lJOd2SCcL6un7ZYKjn8evROR0Ej9nJ18AoTWJQaF5U52LFyCgAU/tF3Ju20XbZKazm3al/C+W7KSXMeJFKYfW9OeJcRwZx4nNZsN2u2UYIzYJ0ziqBk9ATGLT9TjX4fJkGHIIcNdpbZvC2BixORttXtytVXBoioacwQnqQ0A2yyTQonQian8Pnji6OfkYlpQE4oR1CZMS0Y85XiPm6AoFSzHnKCk5RUzOctou3SmlxplUWYGyAHWdw0rCRHJiM8c0RQp34M2s7XfO4XuDeE0NXirT2sw6GJ+wGKIEAprZtbdOM2uqgQprNLLn/v6e7373O+x2W3Uazm0rES8LpaABx3Mq/Xn8POdDsmbOFqY8WvZlfnylgoTmGAszZK7OnUP506ot7XO8ak1+hlpzS2OGKb811/fc9ZTPJUngeDw2dWL2+f2RcZwIXkOxO2fZbDq2ux3b7ZZNCBx6rf9inx7ZpEg8HEnHIzJO2Qk6g52oIfMxBt6ajmOEaRoJuX6RMTndu3Nstxs2rsM5vbeklKv7BpwNGOZItxBjNn2lyuyFmBjHkhAvkGLI+Wng8fHqwHqVb4/8XNE0Jwt1VcvU4302x7T6WtGuV9KaPsp/H4ErzuCCD5a5jaee/guts0yMRek72T9vly8gldXg2QmzsAJlgma+kppJbmnqadvYWoBaLfm5hac9f1108vbFfi0CYZroXIezjpDzPBhjMSnR9z23t7d0VjV2xRCimuSmV22tBojKoq+QnLI+JijJvXIuDmMtYp36q4hQwmARkBAwtiMOlsRIigYs4AwhTNh+q1R2CGAjMdetcdYSpknTrU+BMAWwWmk45iRqayfG0n96bZqACqNmlhhZMSfazoLqCsMXY6G3CrshgMUScYWNyb0jSROhCWi/AH3X873vfY9PPvtUI5Map1pZ8WqL/i3jEKlOs++XuWZUOyYKwNC2zgn9aq2q0oDloTITWc6do1lOzCzachG7GJOFSUkpIYcD7vd+D/v2nfYx5YnJVbNrBeqSoyYSrSNtNrn91Ovy3jOMA+awR/b64umJtD8gxwEZJvBqPsM56B2y22JudpjNlq9fvQLgy+//gB+/uOPp6YkvQuAPk3A4DASvphrvtfhhmDx773kYR80HkjPrGmPpnKXrHH3fsSn1ZUSIKWCD4PM4Cs4BHi0GqtWsjc2VrfN8MfmgPiLBE/2Uo3dgHMYPuO9Xuco3Qz6aGVlPbK2vgywYj7Vmot+1IXTzj4UtWSKQJaNysUUYM0eInICm1a6XAoFns9LcurT6vW5XjjsrotUMVNmQpn20/irNgZdmo0bzE1lM5qZS6CwWjEL9n2iyH8AOLTXTeX9jLc45nLPZjyTVXBnOqf0cf2RjNRmXSRoWG2Kg72/ZbLYYa9nd7NhsVJtHDKkkqyIpSW1MXqNyPY2UmQpj1EfE2LzOWEqoq5gERiv7iunBOpKxmq9kGtUBNmiYr0GzxaakNvboBRpThBFRX45ENdFU/xlrap+X7eOo4aSuU8fWEqWTkuSkaz6HO0t1rYyRmrNETS75mAkNSY9RHX2NwRih6zrsFJmiskH9pufly5fc3t5qpFNetJy1mYM8NSuejOsLOGQ9ZvLgOgGnZVsKeCzHlNnYuD5F4ZuWz/h6yyYvD0szYvnaHgde/Pa/wqf/4r+I+QYl8Pozv/3b9f3gHP+rP/8P80YcnqTAINeL8j4wTR7vR60sTZzLETS1Z6xTNs5KwiYh5PII1mYWxSkIEVF/E+c2kGs6aW4gT/QJCcoUx6hJ/uSCSewqV/kmykf7jLR6F2QKnZwBNE9Sao9vwu6ydpSIWdtti7bpQq3ERNGiEglPSLnGCOp7EOOcfVF3m00VMTesToQZELTkRGqp3jw5LiN/yHuUIl6p2vkXU2/5Hl1U5uk8e+uvMFlqq98BYnLkQTExlYm/LCy58YJRrT2HuVpj8UEZBBGLiFMTCIaYSvtN1jSLGeJDGBJlRDrrcMZijeWTl5/y8v4V1v4QZy0+JrwPCkasYXu3Y7NzpCDs3JaNEzoMFth0G/rdjtQ5YjKYlLOp5gUvic3XXLLCau6RKGh+EmvRIILsB1MofgGc1aq2boLJZlBjScZhnEeMIwZPCCO4DZaEZoWfSATNMhWNpmxPmiytrn7GKoAR0Sggkbk2EJC8R5R0wYWIdZtcU0YXkCl5fIKjj4xJ/UoChpi1WrCYkOhECAgpWYIoSDIdWJNAYs0cGkIgEOg2G7p+Q2c7usyQpJRIjmqOMc1iPmdUzX0ogomCwVB8kBIQRV82xx5LYWYasBtLraAC1vXBmMEQs4JSmaX8PmZzrQKw5jmLYLKJLaWUzXZzUrPqxzQMuJ/+FOM9b//x/zH+u9+tz72QyyhIQgpJkhIyTZhh5M2f+3OkF3f1CfDeczgec9XcR96+fce7d295+/ZtrRUzjRNTdlQ1xrDdbrm9veP+/p67u1t+6eEt//C/9q/yb/0T/1N+fP8Jt3/wB/zP/q2/yO5xYNgIQ86MGkLQDKnea4FH7xGvvkpi8zyW748lh36LRl7FzKimfANtlxMcGq3Qu9lscG6H6RwhaamGcRxxgzAawRjwwUMS3HRlRq7y7ZGf3UxTtPuFc6RQmemcE6MNL2yPVWy4i+NnLanukU0/mo57yZC0QKSVhcmifqEU8+qKVq2qu9EG1Ug9ahPtk3eV+kt7fqlrW5mUT/CAzG+UaZEZZDVHabO8ztCq6YO6QkvdZp7MP07mPCOummBevXrF7e2Op8OAPxwIMTBMgd4Im91WS5MZwVmLM7pg9V3H3Ys7+u1WtbkMFiRnfU1JmRZxFnLECNFX3xBIECOmpP/OpdhTiIix2eqhadsTEE1COovIBuKE2A1ME2ncQxg002Ueb4nsr+IEQiQmTyxYpIy9lJmV4iyaQaqPUR1gvWf0Hh8SIRpCsowBjlPk4BODTzweRoZJ2I+JQ0gMIRCS9lWUSLIC4lBVNve9STnXyDw+CgOTUsJZp8xJCUuOccFetMOqOUS146V64DOmvGp2WQ3VtjGV61jzISsGJZuelkM11X6cHaCpjFexMxVH2pMLAvwf/aNMf+SP5IiWkicHkJira2uEC/sD9t1bjr/xG6SXLzVXcooMw8Dj4yNv3rzh7Zt3fGEdX8XAV+PA22Hg3TBwBIagQMEI3Ijh3vV8trvh1YsX9byff/KKH376Pe7fPQKa4bcUliwgRE01MSfh08ialDTBWakfUxizFJNatlHlqzJpmTHsbUe/2bLdbtlud2y2t7i+J8TAOAUOh0OtdzMYMF4hWDd0XOUq3xb5iHTwzauRmo8g11lop8LZDm8qewIsJkOlyef8IkuzxdJk05pt1r4cVWt7hpl8nxljpo1La87ClRUAWsCGeZ81SrnQhnPAoU7Q7TmkfZ1tfp3M3+eseElE1MnSOYt1hvv7F9zd3fLl12/pOqcaV22RYRxGNtaQbECsQArsbja8/OQl/W6HdE4Bh7GQE0AlhGRiNrWIVvBVxIEmaS00lhp0IEFQZiRkU15KnZpGksXKFnE9UUb8uFdg4jpIHkNECBjj8iIniFFbu88+HNaqv0KCuW5NTFr3RwSx2t8Wo/U/Js80eKZxYhwDhzFw9JH9BPtReBg8D0+e4xR5GjzHUSNrEglJIQ+JqGnfU4kosvTGqiOjMQwhL0RCTf9e/rbPwEUH0LUptR1Mstxk4RtSga1UfLuEIucGDdUsKaIRb3oog2lNrMUni1mxKWxGYVdPr+HctcGn//j/hO5739XMvvs9x7/+13j77/0lSL5eYgGfql1ILSo5TRPH/YHjfs9wODIej4zDkWkYmIYBP0yaaEy0+rJzPbvdls2mYxiVafDeaziw13krhEAwnuiDvmqdmNjcK+1FdW7NTqpB07obo2xYMqrM6e/aP871dP2Gm5tbbu9ecHd3x3a3w7oOHwLDMFVwqqxMX++X5iW5ylW+HfLhzMh7fi+TS6XdqzmkaKUFKKxNIw3goGhLzXlXAOT58N0PuI5qZP+AbZTaaL5vPjZIJRWNvjENlXV1Ge1wel2XROeu0k/r9eWZK5W5zz9UykJkrOY78N7TdZb7+xvuX9yy6TvexUf6rkNiwEri8PSEJXB3d4tNEYnQdYZPPnvF9naHdB0p27VBTS2SDFjRbKwmVtAlZWxMgTiOeUJPhEzj22y22R+OhBCxdGw3N2z6jiSBaTgwjnusCYzHPc4kTIr440QKHglRdfGcHC0WLT1nfS0sQxm7gsnsWDHBJWyCcfSEKRB8YhgjT4eRd4eRvU/sp8DDEHhzGHk8esYAhzGwP46ZFUiQItYaemOJkE00CoJMivTWaqpwdFG11nF7e0ff9zmN/Xxv16/33OFzesSZcVBxyGLQnQDoVH6ef688yZqtKfsyw3gRmWserc6VkuazUR+hk4EPAtMXn3P4r/5LSIm73/otbv97f5rpq9c8/if/ST1XkeKLFXOivRCCOnl6rw6fk74kaQ6QYAzBj8QI3hWWQ4tFpszkFkDRZjJOTS2gufpFBmNJzcgSE1FKOyLT6BnNlM2QGZAAPmp5AU3937HZbNnd3HB3d8f9y5dsbjZY45imgNgDwzguwKoxDkiYKxi5yrdIfubQ3oXDpH5R2Y+iCcxOktDywCV50EI7g6o9LBS5ZjJq2ZELjfq5a9W8VwrSyLN2BWEsI3HWel0xqaRmG23yhYWkmmBmsHB5zUln3z7HopyeTie/ruuYcmKvl/f3vHr1kpubLTc3O6ZhIk6JTWeYjgObXUdvHZ1NbHrD3YsdL169wGw6ktpdKKY2NRWgGr8VaqG66InDQDiOHB+PPL154ngctN4LaGr5ruPx6cAPf/QjHh4f6SLc3d7yyct7Xry4IYaBMA5sekGSZ9t3WEmMhwNpGnFGE07p/clF7boOCRp6m9K00NQlJWJQutzm72PRqoeBp+PI02Hi3d7zZj/xNEXeHAa+ejzy1X5kP3iCWMYQmLxXnwCjZhobI4YwV/m1msPEAF02k5lJQ6Sdc9zc7GoeCdMktLs8ZsisUgEV5RY0uVzO7CerQxR2oZXqY7U+fcHirRl18YxKIShYQoWlA24BIJfYnvLsP/zlv4xst9jNlvDf/nXcZ58Bc6SPIadNLwll6r6rvspzk7OGzhlIjs5HgrHEph7UHMm2YpzyAUMIJDtPpVqHJmVH5WXfhBgxXgg2MKH+OilGYrSVzUmiCSEL6+xcx3a74/b2lpu7W7Y3G4xxjNnHpZjuiiO29/70Hl3lKt9w+bnzjCyiWPJ3pcBY/T4tS9i3tVtSWj301WDeKEXpzLkaqrpK3r11TC3bC6sJUmbW4iSSpoKsOF9Xnoxm1mPJ6JyTUz+b4gsyn/OiLEw1M42+JrRLIri2E54zAV1qozEQgvpzdJ1qWZteozl6p4mZnFi8CLveYHrLyxc37PqOODxx/71XfOe7L7l/dYfteiRHxGg2UE0uFpNmoiSamkiMCNEnPv/JF/z+7/6IL754y08//5xus+WTTz4livDm7QMPT498/fXXah9/fODu7oZX9/fc3WzojHC37bjbOL7z6Uvub7f0Fo6HPZ1AmgZub7a4ziLO4GOgK+nRfTYvlIRWIngfqr/GZrPRxSaqhjz5wOgj+yny7jjx1dPE28PI6/3AF08Dj2PgOHn2wxOjD/gYEZPo+45t77AGdWhMwq7fcrvZ0hlDDBr945wlhohFU9Lvdrs5t4hdZtctkTkmad0TQbL2zewjlcCkhDPzWGifs8U4FKl1Zlg8kyw0/3OyWKsT6qSd2h8EJObxoP1dkruVHSMp+w3NY3N+CHJxwvw8fu+f/Ccxux0Ah7/6X3D4//zn2bKTKvAq1xWLiUgMxmikmLVC31msiFacto4wBc2Qa4UkTiNdMkAsId61bef6oDAkMddfyon9JM5FI0JQfxnjTX52k1a4juqnVP1tkBqJZnIkVZd9Rnb5upXQ0+dXMybry3v1wQrhmxOBdJWrvE9+bjNNu+CKXN5ysbaypHjL3zl1dN6ohqUU7/MSaZPPlRJIZJnGPVPt7zODpOpqutq2BRnZ1p8vIJWJtZkjlyCndZplYeI57Y/ngUI7DbeU+CnQ+NvBA+kxNPlprgybF8bb21s6p46mzhpuXtzRmcTWwqv7W/oUGcdHXt7f8oNf+h79TY/0HVijtWOEHE2iETti7ZyFMwp+THz91QM/+fFrPv/yHT/88efsjwPxaeLz10+4zYb9ceCrr95wnEaOxyPHceDHD3s2X71lYwRD5LObG77z8obXXz/w6nbH9z+7Z9sLMU64FBiOIyk5HFYXShFM7ss5l0im4YPPE7qmxRcRQkiMU+Q4Bo5T5O3Tka8ej7x+GngzRL4+eN4Ogf3kGXzgMEWOo88+FInBR4bJa34RItFHRg+I5XazAQNWHJ3rtcgfsNlsuL29rQDEGvvsuFmzGWWsxDNlDgQFMWv2rmU+1uC9aPhrEF9/R6pCoN8VB+0zJ6fAC01Wt2Y9W4BUd8ptEBHe/IW/gLm54ea3fovtf+c32P71v8bhv/6vL/ZJ66BtncV1Ljtrd4zOEXyoFXPFCDaD8r7XnDl93+MmnS6tueCXtWKHBLT2kYhG6WR0NmXHVtdZUnTEEAlOQ8MTmilYyyqkOfuqFH8wNXsWU884TTWb7DAcGYYD3nuMNQT/32xtr6tc5W+nfBwYOcPQwsyKKAMhCxakPpz5t1TVpVWisGcW7sIMFI1uzXKc+J7I6bHlRDM8L9WstLq22Tl3/n7ePoOatKS5DVpjorS6ap2XrvI91yFCprGb4/zcWKSqr5R+NhmQxKg5QardO3pc77i72fJi12FTIBxH7l/c8uLuhpvbDeIMOK1JEwsPlBVjBAgaiikRjvuBn/7wJ/zB7/4hn//kC/aHAWxPlMDrN+/wOWzxzZu3DD5yd/+ShGUMhs32Bh8D4TgxHg8cHo9M08Q4TPxoOvL4g8/4le/d0wlsO8t4PLD1G25ki+tcZg5UCy7J5UKIHI8D4zgSY8ysyERKMAwD4+SZQmCIkbeHI6+f9nzxNPH10fN6P/A4TEw+MYbIFJI6rhbTYVCKXkSTp5HADxNJjiDCrlfTlojBicXZjt1uV5kRazWk+UPYrnPOrbF5pcycpKT399zzcuKj1bCQzzFvi7D2DBxmgkPND8VgVMFSzOnuzep4UgbNqYx/+If1/as//+fZ/eZvLsCImoXmdtqaPycnGtts6DLQUOZj0mcrZ0e1YmoG4u12w2azoZ9yBtbqn5HPlfunvEwFa9TaNIVpExEMCR8zf5PmkHljHWIEYyLWgXURHwJTBh4+aP2cafLEEBmHiXEYGQYFI+NwZBoHQpxw9BdT71/lKt9E+WAwktCFsNCoS83l3KBffl/ME/VT0ZouaPznHFbPsR0noGf124dE2JwyO2m+5rPfnJeZySiAqW0HtA58pc0XJ/aMOGQxIcvqc/72Z5pzUvNanlZLmhusGFzX0XcdfedqezZdx2675fHd1/jjkc/uX9L1DoxgnKXa73MfiDEQYl7QIhINh8cn/tbf+D3+2n/1N/jii9e8efOOYRxJwOg9KYykEBnHo07I48TnP/mxshRxIo5HnDUwTWydxcWJw9vXHBl5sev54qc/ZmcG7m9vMNseKwmRQNebaoYiqtNgDJqoKoTANI1M05iZEnWkVe3Tcxg9T8PI63dPvH73yJungTdPI18f1W9kijH7iURCzEyLVYCRYsQnTTUuTpN6JGA/TZijyb4xro4ZZyyb3PfAwlSwNFGe3vz1s5DSbLpogUAFHdmsULm2tPp9ZTqJq2eyHVHt3/o4nXvWCwbMn3Nd5eW8IktiBKD7tV9j9xu/wfTjH5OAm7/77wZg+uKLeq72EFosUZqw9Y6u7+k3PX3v2Gw6jp3leEz1fMYaxCobUgHJbks/boA5++6SOGr6IUcW1j5s3scYFQgnBb/BB4xV1saaQMlCbJ0CF7GGbnPg5kZDd4/HGwKW6AOHw5HDYchAeWScJryfSCkSTSSeEmJXuco3Vj4cjEh+4NZrJpBWUEMXo7wQlcVe9CD6viztcwrq9aKsdORlgDL7dczMS+ZJV5NEaVF5kxbf1+0Wk0t7Lc+bQxYAKc++iZLme30iQROpMbNMBd/kv4tJrZ6jmZQXwKnpr5P2Ls+7lPW1JHKqrHLTAGVHtn1P33VYI8QQc10Nw3E4MgwjruS8QCdxzR2ixzT5ryAEshYeEtNx4KuffsEPf/+HPD0+ESbPpu+5vdshEhnHiS/DwNuv3+HGkU97SJ3heFQNenw6YsdJE7UZIQ0Hegev+i3bNPGi3/LZJ5/hnCGlwDgc2W767PvSYbMZSoyQcvrvGDVV+DgOqqlaq1WLE0zjxOEw8XScePs48MXrR94+HjkcPTHlVbUuOLkar0QSAZOsZiZOCsasMcQU8T6SrGNM8HQYMAgvX/aIVTOS6xwvbu/YbreN1cPMw2UmLDKmbIBt3WZmMlIqGWaTRoU0rETMNU8Ut8/mh5rvIgOWYqJZFD7MDUrl72rYaVsaYHpmHBYzSmuyLSxrOaDJodnxcMB95zts/sSfQIwhPD7y+B/9Rzz+lb8yz0K1EXPQvbWWvu/p+w39pmez0XFdolBalUNyNtzNZsNmu+Hm9oab3ZbNUcNmO9dVvxPmJ2d+5RtU+lnyc1186UrSM3L9JAVAdvYHMgbrrPap1SKUT097ttsnrO3oJ0+MkePTXnOLjApGJu/x2SclNZW+r3KVb4N8MBiJeV6IzXRispY0T45Z810BkVl7Kt7tulyfI1Xi7MHFUsM+ZUhENPV2Cz60iFpaKP4CUGyvqUwYcxbYtsx5YUd04jVUO3ltR8yF2GYgNAMjNHlROXczOefM5whCzWyRmmuTwh7pjrGdHAFJsTF5tIsLOTSUmuWyHFPbfSm8b9aqtUJqA0ZyWKtGw0S6znKz2xBjYNt3TH7I2q4SHn4MTMeBFIWEQ6RT1iEFdWLFAZEUgGD4+vPP+eJHnyMx8PLuhhc3W6bxiHWGfqO1b/749+45vHvk4c1b4jRiUq5WagzD0WutmJQYhz0pBnpnePnqnt2uw1rD7c2Gvhc6a+mdZdv3bPsNDk3Zbo06EyJaz8SHESFg7bxgTNNEDIlhmNjvjzweIm/eHPn6zcC7/cTjcSIkQYKniz4vPJrAKpLYdUJJlKX+ALrATsFjS//5iE+G4+DZhUAyiWQDrhM+/eQVm65XpqoumLlYHZGYJEdrzABco4HKGJ7NpTEGipcGxJwKfwb3McY8hrT2TioAOD8nBuYoODODi5SVjDKkTH0WMgeTch4RMZBiBm95JmnmiVbqolyX9/y9COHzz3n9r/6rC1CT8tjXKSjvk0Gi5PamlDI7YhWU9n31G7FW89YIFiPq7LvZqGlmt9twc7Nhd9PTPeqT67qOztmqgBk0NNuSctKy2SgmMrNL5RURYgMOAX2QMkAWEVx0OgdYi3N7+n6Lc8qS9ZsDkuB4PLDfP7I/Hhi8x6dETEbHFlQz1VWu8m2Qj8rAulA7ZJnAqN3unIllcZyZzzjZr7xXbXW93ykFvXjeyrmzSlZt0ifnv/z5fbLe/qL/yVpLvLANqbx5/3kX5p337jG37/QaK+eCsjU0dYVSU5BNlNbuLDe3W/w40TuHH48Mw5EYJnamJ8UcCutj7nupII6cMVMSSAg8vn7H7/+Nv8mb168x1nJ303G725GCh+QJfiSMI7Hv2Nxs2YaIH0f8NDGKYZo8pnNMo3rjdNsNfWe52W64vet5eX/DZqOOh7ZTR9DOWvrOsd1uNapltwUi1ghhTIToa5/6HI6r1LowjZpY6ulh4N3e8/bhyNMQGAKkHJHTdZrefovWSXKiwM5ICTHNPjgpEWLgcfLsp8DgwUftpyhoOvEQscay6Xs+eflSF5YY80DPLp8JUs5Ke85co4Bk+bmOm5Tqvalmg5Kgq74KpTHznTEpGBHU/6U6nOoPOUnbe8ax0XFmksm5XrTdyiSVv8320jxvjeJQo+oK48IysVj9LuePsbmtbaFBg1aTNswmF9VDBGscneuUHek37HZbdrsbtpvZTNP29yK6aWXSKtWf19XFi8N0O3/EGFQVEalmw5Tm57Hcr67vEdEq2k9PTxwOB8ZxJMQ5sWBVwq5ylW+JfCQYaR7A/N1SQ3n/Eqn+E3qs8vDX4y+3PGO6Oef0mvmEtn2N2aN+9QzD8iFtPr2+dPG3s459iZUpq1yT/riCWMs2zh/qBCxy2t/nPPxPv1u3ITVtKZO2Vqd1neXu7pYXL+746quv8N4rqxMTRgzjNBGcAVwu/BY0rDEDMcmTZwLwE9PhyHR4Ymvh+5++4sWre5w1TOORh7dvGZ72TIcD4+FAHAPjMLF/fOR4OHI8HJnGkf1+z5h9SzTKocPaHcfDAWs8GxvoZItxQieWzUY1YOsc291GteG+V/CDhhVbm3Buw+S19lFM4H0iTJH905HjceKr1088jJHHo+foA0MIHFPAp0TIVHwvwsYYre+T84T0naXrLEkMPnrGaWK32fA0Bh5Hz2GKDGEiEvHBa78ZQ+ccIQQOhz3b2y1l0daKrAqgYgzqIEmTWrxhSaSwlasx2QKREEJd4EMINT9MVTTKOM8AqCgT7QLJah6YR1c24BaQIMpSSFJfjsLciVAdQk8fnVn5KVIWeA2yixQGtYS5SwFsKaembwBXCFGznxan0Ki+G1q9Oc8nRn14ip+JEafMSWYZTWaoLj1nBYQUp9Xy3Nb+ylLASP3b3KsCRtrjgWZ/3Ww2GGPwk+cw6LNRauKk7AcleqPP3JWrXOWbKR/uM5LaKpsqa4ByTs4zJ+ePX4/Jkl1ZRKysj1cNG80yu15vK6vzcQDk3GJftcxz27fftuTD+7SUCz/O/jYNcFnJaRuX+z93srlP0+KC2sn05uaGX/nlX+YPf/8PeRonbIIuO6r2rtOJOUV8nPApaL0aXQlUG8yauEmQvIcw8v3PXirD4ieGYc+GgNlY9kfNQDodRw4PD7x798ib119j0eJ999sNn93daVbMEBl9AGt4ef+KTSekeGQcJh7jE9Nh4PbuFnlxh+tu6Tcd3c0GsZZkDdZutF1YkCNumjDTBGKICaYpctiPvHmzZ3+Y+PJx5O3geXPwvBlGHvzImBIheCQlOnE4I/Qm4MgV7MLEGAUfNLmZWItxwmYS6DTEOZGgAAAjEBLGOE353WuhxGJ2iCERJRJTIARPTBMxnaYfb8175ba2Dqmlsmsp6DYvdgYrFg13aoC9HiADTYOxytaknEq/mJwW4y1BWbBLeLxeq0a2FTCiwGYOvZ19R5YAxxxHzOE4zwWpMECanI6UkBBgv19cL6AF5byvIbDHYWIYJ4ZJweHoveb6yETewm8rpVp7Jvh8PB+JvsnImmI2my7TDNTnqETRVHNwywCfPqOLzK7N/JdSytmRO5yxxBAYg+c4HJn8VJkUWwqRXsHIVb5F8lHMiKTTBfHSol2kpYjn3wFmf5MPkfVxLgGKylQ0FGjFUO8BJJdMTus26OGk0sPLC6vTf92yApL2eEJjYspTdQvIUjpt4ykx07QrnTXfzBPe88nQZspct9fIDXVK/e73vstm00FST5bOaX3e274njRPga4PE5qq3pTska5I+YlLkdtsjFsJwpHMRF4V3Xz8wPu2ZHg88fP2Or376U77++mue9ge+8+mn/Oof+VXu714gJPZPT4Rx4jhMfPH6HV+8/prHhz39tuM7n76gv91hLEx+4rAfiCS6Xc+tM9jOYbuOhMF1G72Hk2cMAdM5+k1PN/SkeFTTzH7i8TDxePB8PUW+fBr4ej/w5AMjueJvjOy6nhvX8+q2526rwCnEREiGx+HI43HPEALiOjbbLX0wdMaydYZoHGJgjEGZBBGsddzc3nH/8p5u06tmbdShMeRIjdPaJ22ETTNW08yi1X2MIaWZFakLZa7mkzLzoaaEeTynmNuXjPrAZJCtJimjJhtpxlyjHRRlJq0qYM/mDbN4Ach2R3pxr+8fHzBv35bBWo+dUswMnLJyMUX8/T3B6WJtMsswZpPG49MTj097nvZHDvsjh+PAMIxMOeW7jxGsZcrmOj95hmHkmKNWIId5uw5X8nhkEKIgYgaDi2eQ+fkvqQ8KOKmm7TJRZKClGDQyjRN7nhR8DCOuc3RWHcV9DGreQ0GZWcxZV0PNVb498nFmmoX6/Pz2abWYFhspkCcyLRrWOnct7b7zwrk+VnsOMUt2Rp3tZD0dsJ4gLl3j+1iTYsNdL+xtfZMlmzHbvBf+G5XOOQ/kSovb86RMsRTQsVyElmBp/Vs57Tm6XiU2TSmaqiF4r/4YuxtIiegD7manTpvO5iiSkd5pPYyiBZdL1JPry5pENJprw5ik+TyOB6z3cJx4+PotP/zhF/zkJ5+z2fb86f/+38v3vvtdnLUMhwNPDw8chpHj/sjj4cjjcSSIY38ceP32kf3hyHc/e8Wn97fKUvSWEBKHw5HtMLK5A+c6xDqk2wGCuEA87LF9z04Mh8cDkoRh8DzuR57GyJuj56vjwOth5GHyDCGQNJsbnXHc391z1214edOz7TTb6v444oNhEw1jFMYMbobxwMteq7A6A13KNWqy2UOsZYywu9mx2exyMbWQs8IKwc/MRgqrENJ6P1egOq38jbJpQiTU7wBcmvNiVIZiNdbUpKPmCwFiKLFSCWN0fBtr0Po+7cKs4zDGWLOTkhJirN4HsaizbAnNNaSbW47/0J/j5f/mf83+f/gP43/zN5v2JtROo9fiJ48PEyF4RhG86wjDQAyBaRw5HI48Pj7w8PDIuzdvefv2gXePT+z3R47DyDBOTJPm9EgmYMeJw/HI0/5A3z8hwOOTsi7H/ZEDBjdo4bwQQ3ZaLUCwfZaoZqzy/Lfzx5r5SCmRTPNbri4dRBgZ1ETaghHUDymgZJyztpkPuMpVvjXyc6eD/xifi7WTag0XXm1XHqST7c+xFmkJNdqsqrWNgEmzGeV97Mr7ruXyfquw4rNmkgZg1G0KMmnNYc0xyoRFATtlwjvnhHiqJbc9tDZ55S8rWokxVDu+GN2m6zpubm5xrmM8HpmGDofmA7Ep0u86NVcASZR2rxE5QEqBMA2EMEHyWI0nIE4DcRyZDgNvv3rNj3/4E370oy/59Lvf4zf+5G/w2Q9+gA+R4zTxbkg8HBNvnjxv3zxyPI4cjiMhwhBgDMIXrx8Yhsj+aeTFnTr5vXA3hCj4SRcI228wmx3SbYgYJEz04Z6+7/BPT1jrSDEyDp79MfAwRN4MgdfHibfHieMYcmZZ4Wa7Y9dvuL9/xd32lt4CYeQ4JXzqGEMk0pGSV8dWJ4x+5Ck8ghESFpugNw3raISut7x4+QJrLfv9Adfv6LuBrhtzOGmsviNT9EwxEFLrDHl6r9uxF2MkSsD7WVMHxQfWxsbvYAbaMSV1xBU1p6yfgZKvbA2mC2hINZw/V2yujJ0ONDEWY6yG8JbvEdjd6vFevoRPPp2PnWJlJFIIJO8J46gp0ccxJwMbmMaJ4Xhkv9/z8PCgrzfvePfuHQ8PCkaGYWIaM+gLCSQgtgCYR6zRFP2v3jwC8PS0Z49hO425fzwpOTWZpeLnMc9hNctQKsyXXdyPli1pS16U9+UeTNOk23mLtxkMihBQB+KUx2UyOtNdk55d5dskPxcYueRTsXbqPF0Aizf8rP2fOl4uH6Zz52ofdCnaAOQMk3qGEl649pV4zszzYSDltG1p/bm9bjizMOheaeVkeM7cUo5ftJ4YGyDSApOkyY7KhDdrke15l4mhStXheWGKqu3FyBR8bl1UB9WUVPvyE09PezoDr7YbYopYVyITcmijzAtHSgHrBCs9QiRN2q5xGHjz+g0/+fHnvHn7jj/2x/8OfuWP/3Feffe7yO0tIcDnP/2Cv/X5Wx4enjjsPQ9PAe/BjwmJESOGKUasGN7uj+qcmG7ZbR0vXvXEZDXjZTKIcdD3eNchrsewoRcwznIcR0hqcw8+cZgCj2PkYYo8jSOHYSBFo5k7Nz23t7fstltS3/PgA1/vNQvmOOiiCMLN7R3RdRroGQIxJI7BY8Yj1m2wYkkpqg+AKMfQ9x39pudwPCLvHolYQhC8j3S9w1mDUY9SUiQ7X56abdqxGGOcfRbQNOMis/NkWeiSC6QYGifI7BNBNsFZuzAzkMdtXoPr82MMCA4kzlWt8ys1zKdCbPVXEbGaIK/KnGTRiK3VaHWsCsQSAq9j1YfIcZiqw/N+v1cfkeORp6cn3r19y8PDA48Pjzw9PPDw7pHj457jYWCa1A8pxESYRqLRtOyddQjCNE68eqdmov3+wF4Md4UZCerDM6cGmFkJNW9LTcm/VrDe50syR+PMv0cf8DE7B1shqBYw539J1HnhKlf5tsjPzYzQPEBr6rG8vyiNXblMlvNP55OhnTywxUmybJPSHMo7m2Df6w+ybNZlX5FmK05MP4nKvlxiRc7JCiudnLsClUyxx6T1PAp4KJ735aXFSs/fg5lZaUw3zFk1q2d/8Dhg5xzbm47dpif4SVOwx4AzlmEYkM4gsgE0j0NNu59SjeaQlLC9IyWffW1Uy3t6eOTN6zcMx4kXdy/Z3X7KzXe/x+b2BU8BfvIHP+G/+r0f8v/+nf+S/dFzHDxv3zwQ44QQ+cF3PuW+7/CHPX2K9AZSTAyj5/Wbd9zsOv7IZsuL+5dYaxSlikWsw242YDX/iYyq6QcfkJiYhpFx8gyjZz9NPI0j0xiw4ui3W/rtBuMswxQ4+gf+4PMvOAwTn37n+7x598DT4xOGRN857lLiVw6P/NEYMtPgsWGiD2CNhkrHqOYKb0cmMYxi+M5//ddIhyPm/iXp9o5wc8t+u6PvO/UZMJrK3hDZTCNpGOiOA5thwE+DVm7N99YYA1YL7VljNW9JXvitsdXPoziSOusUjDRjMuYBY6zFmg7nuppe3Tot02ecJX76KeFXfkXHF4IWx8sAQrLfSQqauCi3r5xm9h8pPiSCdTpFOefAOUqRTTU3ReT/y96/xdqWpfd92G9c5m2ttfe51Dl16a6+kE2yKV5MihFJiRIti5bsAEkoIM5LFCBIICSSkzzkybBfEgFBYCh2giROIiV5cB4sI0akiFIUwJEUxIFFUrJ4E81ms7vZzW71paqr6lz23mvN27jl4Rtjzrn2OdWsouK4K9ijsGqfvfa6zDXXHGP8v//3//5fCITSq8UH5llA8ul44nQ60fc9fS+/31xfc3NzQz+cGE89/ekkFurO4YJUo4QoabA0k3s0yRrlZ8/pKGma/nSkT4k5MyPee4K1ucS9ALzz4Gc1fjtP1dxmjbfA5Px8qLPUGSlXUGWGWXrXCHBcUnvhDozcjY/O+OBgJCVUOq+EiaglTQJlU8uW14jx03ZB00oJdigU7Eui9jXyybyGKsK3JcmyPE5nQdw2xQCy9hVSRRa/RFBhE7WkDQC4zZ7oJfJbNSz585X3eT+AldJCVxfBKrceuyw0WkuEmkWLpbAvEUGZvN7IolxKEOPCfIhgz4e1SVY/jNlNUgEVRlsUAvCkdqGAkETS5TsrpYWi9Cjlm8HPqOBhGJlujozDTBpOzMMzvIsoLolRY7SFmHDzxDBC0oFU5a8oKpQPEhnn9yrObykkgvP4MZC8wpqW3eWOoBt8tePL33qXX//c7/CkH9C7S1Rz4I/9sZ/im9/6Nr/0S7+M9xFN4s3PfA8/+D1v8u2vf41vf+2rTNc3xKjYVVIpM02OafK0XYdtNFNwtN5R+QDBoVQiRYcOjug9fpoIwTPOI8HPuHnGR4XHEKNsBFVTE5EeNs1+z6c+81l++3d/F1VHPvVDP8z8xS/xvB9oaku1q/mJhw/5X/zy71C//Ip5//HFL3zYZ3xXjNh1fOX//ncIH/8ECtGFiR2xMATbZpdl/unclFFSWSKcLpmaktEozr9bw7+oICYpIA5BMU+B/jhwc+w53gjwuDne0J96+uOJ0/HE8XhkGHvGvmceR4J32aisMJQF5IvoVSsBsd55hnEAYBxHBqNxfl4+d9HhhCD+SMXUsaw5Ruk8zzLLpDQps0bi3rIGX9tAZgtGzkZhVWMOvmx29g0BozQhRURJcjfuxkdjfGAwUn35K9h33sX+3lcAaH/rc+ibPqdHtpH8KuQKVpOyURC5lE/AyHbin7MdqYTtGSCUrawQvNvNXSUWhb9s8rdo6iTispIa0hs30iKz3BonlU5221ztSi+f37M8h3MWwl1eMr76KpnfXp+j2BxnOqNQywJYXllrAW3rip3dOoN4I7gS+eSGWYt/Qgh472ialhgSXdfJe0YRtqGKGFGhSypF7iCkBCESvCfOE3Ea6Z++x7N3n/Dk2+/Rv/tNLpTDmUirAz7BNI0MbmZnDOHxQ4w1kCIJsziDFqfN5bMkBUEiSIWiqmqcVUyT46q/5ktf/DK/+cUv8anPfB//w//OX+D5aeR/+b/53/KPf+kf8M6Tp/jxhq6zGKX5zPd8nO/7zKd589F9vmDg+bff5bLZ4/uRZ0/fgXQgxcDx5pp79QVaV9mtNpK80OrJDaThRJomVAahSoN3MzEEoDSwA1SgH26kid6u5Ud/9If5wR/5EXo3849/9df5tX/0S8z9QGfB4HlweMAPXl5QA3//0SN+d5oIPmCNwWpFpRW1NZgc2Ual8cqQZk9rLf/Jxz6BunePw+FA07XSJ6VpOez3dE1LVVthR4wiqST+KMGLiVuQEmCjsh+IUtkCXwzZTP6pdUkHZHYjMydaZ+2G2rCSSsACGKrKUlUVprAjxtB99at84t/4NzDPnhHe/MSSmlxZzJK7gKhWwfdaRZOPJ+uOlt/LnDAZyJwtA5Kics4zDhOn08Dx5sjzqyuur684Ho+cjkf6Y880TgzDwDD2uCxu9SGSopT/RuS9iwsqyPrhZodKnDEhzrmFfYo+Ek0SEJJyQzyNsISFfUxaOlinDdtb/itaj7Q+vqwr8tnXdNjtv6WUxHQ2RgIKTSBoLeXvd11778ZHaHwwMKLU7lNVJT4Mebz+l/7H/1kd00d6hKbhF//qX0FPE83TZ8v96dYikxLiSLlhYJI1pKambNrFhCmGxOwmqn5kdi73TBEQZqsKUzfQdfi2Zdp10DaotkXvdnKrKlKmuOVYpJuwyTkslRImSaWMGge0G4n9kaq/5tVp4p6pOXzyDS7Ciat+oNvXfOWb7zJOJ3Z1K5UZxtLsdpIGKWyVShCl0kJlFo2Y8PMsJmbOSSVAEjbivSfv8eTdb/HGo0vu7Sz907d447U3+FM/+WP8x//gFzmEnqoKVCS+7/u+lx/65CdQw8jp3Sf0T6+Ybk60u0vYtYx9xcVlx73LPZf7jkpDZyw2RvAetJStJjcT55nkJmL0aJWorKW2hqa2aB/RKlI3hjgJgKkqTVsZpuMN89UVf/gz38v1N7/BW9/6FiYmrDZc7C/4Q9/7SR7kL/5J2/J1pRjHCa00jdXURl6nsgZjK+YYmZImJs0DpfgtbRh9oB0naqBTmp2xXPjAvoG9rei6lqatxG3WlHJcv4BzpZRUvmThpFD9Gq00mnPdgqKkaLIF/CbtVh6jrUFrsVOvqgpbV2dN/OT6zv+7JWotd6UNKNmmHwoAUTk9IvcJNaKNpJq2lSIlkCmlu+M0Mo49p9ORm5sbrq9vOJ2OHG+OjP2wiFq9c8SQUylJo1TC6ApdUkAKOYbcvVfAtMwPAO8d3leLKZk46xYheUkhZUM3oxY7/G0383Jebt/K+rC9b1ttswRKaQUiCTJDIlxU6Q5cmOK7cTc+CuODMiONdo7rn/95YlVz/2/8dZ7/K/81/OPHZ9E/5IVGJdQ0o+aJ65/7U8TDAWFGEMIgpwcKM3L23OUO+Xda+AeWbpeFolRpfU5MYknug1/cCEuFieTF18V4iRA3AEEV/crSL+Z8Ir+YJnqxOmf/9a/zo//Wv83hS7/Lj//lv4wOH73FYP+S+1LbcPHv/M+o33yNb777Lqqr+e2rp4TBEVC4SmG7DmyDCBEzna4SKYm1ukZn/rpQ9AllFFFFtFW0u4rLy44/9lM/xuHyATd9z7e/8nmu3/46n3l8YPdTP8qTJ0+EZh9GXr934Av/8Je5evKUaRiIznOoLNdP38No+Ngbj/jkp17n8rLFmoRFbsl74uykh5CRpIGxFpqaUFm0hqaxHPYd9fMZ/IRNiUpHaDTeC5ukI7z7T7/O+N5T7h32fObBfR4SGKaRpBKP33idh23N8PY7AHg3oZVUnfzF/9vf5mP/3I9S73b0773Hl//u/4Nf/rf+MmGa0TERUsSFyOl45GoY8qZf0+RW9rtux8V+z73LC/b7Hbt9R9NWVE1NVdcYs1aqvGyzW8Xf52JJcjp0cc1NETbCVPkggDWLR4kJRnojnk/kMzBSxsqQ3b7//Pi00ovjqVJm85jlGch6kl1Us6HZMA7ZS+QojEj+OY5D7mgra0NMEAoRuWFtFn8TLWBaaZW76Zos5s0Jx8xsbleEku5cwUJJYWdH17S1hk/nguJUyqZVrnheGZGXCVnLz7ImJVJmXCDF0nxPft6Nu/FRGR9KwDp/7OPQtgDs/s1/E/uJN1FVRex7hi99iev/6P9Ncl4intMJc/2c8bOfJV5esoIRRSCcp1PyOJuYSkEK5+h/+/cSGSQxn3JOfALmeV5o1AJIJGpb7Z1LJCcphLzgGJNJ0zLpyyq8vjcpLlKXjIeW496O5voKHQLf/FP/AsPjV88X5VuLcZanYrID6Nt/7I/iu44YJS3j5my6NI70/Sm3EZ/wQazAtRJgVdcNbdex2+/Z73dcXt7j3r1LDocDh8OB/eGAsVbcL7NmxAhVIZGdj0TnmaeBNPc8+cZXef6NL/PmMPLx//W/y704Yj/9GraKfPGfvkXNRGfBjyfSbkdzuEDVDUpLkzzy5qEyA0HuDJuitEw/XFxglaKqLN4nXIg8ePUBSml2+wva/ZtYUxNDou9PfPqVPddPX+HJe+9xdd3z7PkVp+NA7SIVQFUDER8cWsGDB3u6zlBXirYy0t9mnNC2Rde5Vw5k7Y78u2kr7j+4lLx/qHhy5ehOnjo4Wi2eIlgNSfqaqBBI84jxFfd2HY92r4t9vZvxw8BXf/u30c9v5Ht2jqqqwVre+dzn+J2/9TfRwE/9xX+VH/9v/be5/tpX+Y1//6+hckO7GAPjMHJTmt1pTVVXtG1L13Wcuh396Sh2/ZcX7A8CSrr9jrqW3iralOZ66yibumRg1khc/sZiRKi0IpRIfqNjkA3QZ52HXQTURp+/T2EttqL02+O2LkvllJJSBqVyN90CEFj1Fymn/FJKy1yfpolpHPP8GMSYLJf6hhCJS6+XgolXwKGz8PMMuOnytwLcVu+iFEU8W6r9QpA0zTmw0GhtF1al9N5Zjx9CuAXEcqfdl4n1z89tDtQWMLKyrZFV1H6ebr4bd+O7e/yBq2n8t75J/5WvQErsf/KPcPiJn8A/ecrp1359YTTWUSIyVgvs32ektDHPKrvFrb/HGJfFaLF6Hkfm2TFNAkpSTGhtsFWNNSb3M7FizJRz4MZYrI3YXG2wdPQti1AuTU3lQ8CZ2K2MmOt4imnR8Oqr9J/81HrMZ5oXWXjy26CHkep4w833fA9Tt8sN2mb6XkoUT6cTN9pwRDMkJQttFJ8FrTSN1rTacLAVF3XLK4cLHj14hYcPH/LKK68w37/H/nCQBnJGllbpZpo9JpzHzxPpdCLOR/Shoe4U8cl78n3Xid3DPd9z+DT3X3sVnwyf/+I3ub6Z0EQePn5EtdtJ87ikUCqBVaAsKjhCcJgQUUZhawupIoaGaR4JyVEZBcHQtB1tV7PfdxhlmKcZ1VjMDKFS+MYw47C7mj2R/jThA/I4o2hbw4NH93jt1QccDh1VbQlAs9uTjMGlQG0UuqqwjSH5SQzMtJSttrsdDx8o5iFysWvZVyd2s0NpwxwiVVXjQ8KHRJwdcwwcVSJOA7UCoySd4pIi2YbWiOix1oZaS0XL/+sv/Y+4fPQK+/v3OP78z/PK938/xX1VK6RDb/L4MMr7pEQgwag49Za2a+nbjn48cTldMLkR5+9JGgBQqZPrOKc6ttOnMCbLHNuCjCQCS4U0s5Pnbudh3mQVGBFsrVF+3vDlcS9/D0kdrM8pYHDdNIXxUCI4WjoJy9wJ+ba+boySopH575jmmWkeMwiZF03H+tryc1u1AioLuhV2w0QI/tPFr+8Fc8ViDgdkYJIdWDePKW0WxDplrYrT2b1W60DR0gnTpFCsHi63Qcntf5c15TxtFbOlPXdpmrvxkRp/YDBy+oVfwH3v92Kahvaz30/1yivCHMCyiW9HWYiKbOv2Rn77sUsahjyxto/NdKh3jjFHQIU9kC6WI9M0E3w2ujIaa2u0lki8bnK+265CvLquoLIoq7KxVJnomY7VLy4M6wHf+rkZBXh95i/8Rdo33kDXNf545Pq3fotv/Z2/I+FReWJKYvk8zwzDxNBPHI8nTqd+FeOdTgzjIBbWwedFXYzJqrphf7yh7+8xOyebQ1l4M8Oz3+/pulYEc/mgldpEzCSM0ezbFrPbY549BaC+d8FUG5qm4mP7S/75P7En+H/EV7/2Ng7P4d4e01ghj7RCGQNRS1WN0jmSE+tuocHLwh8xVmGrmkZEBMxuIN14jDb4yTGNA8PxmhQmVArUJpGUx6QZnWZ0jBz2Ffcf3ufy4T0uH1xwcf/A7lBT71rathEBZ91hd3vs/gBdS9KIWLJuUC4Q3UxyM7aqaOqKi33Hoa0ZIphpZEqeprKkSjM5R4gRUmAeB9I04rRm3zTiT6ENWEOb275bpahJ1MagNPz5//gX6R6KideX/tbf5It//T9YXElzliBLbFK2KRcwPLuZ2c1MWXMTg/iClE1OKqpygzdzLny8HWG/bLNbKsZKqX1mOFRJVcQEemUAtt4m2xhjyxKsmofb90fMC68TSWlT9npb0LmkUcF76a3jZknTuFn0IEvTuLPPVUASZ/miog2xpnCiMmtlysv7F4v1JV28aEPy72cs7zblpNZ5lX1bImlptJcWxkTY2Uz4LN/DbaBYNCfS0FBOwgr7NuedlEt875iRu/HRGf9MPiOv/fk/j9ntAOg/9zlO/+Q3X/q4lZ58CcXx+wzFunAs+pAgCvd5mhhG6S8xDAN9P4imoM9gJNOysjiXFM0KQKqqomkruq4jxm7N8W4W7bKJU45CL3mbD3LwC/AavvVNnv36r0FKPP7n/ySP/sSfYHrnHd79pV9aXjumxDRNDCEJE3Ldc319w/F44ubmmtPpxKnvRag3TTjn1shUa6yt2J9OTNOIczMxGzGlFXYsm1ZbV9lQKpf2piiLbhHMJelSoovPw2FPvHcB44gOkddeu+Snf+qHMCpyEyYePn5AIGGVFnM0JXIDjUIpK5tZbnGuMrmsDbRtI9UfwDhOKDRV3aCIHI890zAS5on+dMSNI6fxSCAQCWgLDx7uubi4xNaWw71LDvcu6A4dVVvTHloOF3uUtbgIptuhdwfYHaCpCMlDDGhTk/RM1EZib52wRnFoa/a1pfcBUoWOEZsCttI0aEYXQGlMTleM80wKOdpVmoQiTCMAOnl2xi7l1//R/+AvsHv0mB/68/9dPvNf+q/w1b/39/idv/sfolHEDBTP6fi0TKSSgiysRRGpSpdgYf6CbySdYHhhrJqRcz+dmDdHfTt9k6/326lSkri1lj5Q2zQGy+a8Hbei+iVFU15TLO/lU619X/Ijlp/y1lKR5b1U0hRmdJrFY2UrAjXaEDbW98uRKqlEspURAIhCFV1TXgJMAc3bWGhjNFh+DynlFFcBIMXmXuc4puhAVAYkuUIosXZAzt9xEQNvRauFBS7vt54RRbFSyBhKArf4/sHe3bgb343jnwmMPPvbfwuz27P/yZ+k+0N/iOGLX2L84pdeeNxW2f+B58d5NmN5nbXbqMtpmSlv3Cf6YeB0LMzIhPeBGNcyQQEgKxNS1xXd3KytuhGsYYzJ/TXWRUvSNi8e5lKO/JJjlzVBFq1v/MLfQncdum25/JEfpX3ttUz1piWvnGJimhzDHDjeHLm+uuHq+oab6xsR5Z1O9Dkf7nJknorTYl5MnZvFOyFI75LMQS0lknJgCn2xx7R1XhBze3oiOvudKJUIKVDVcomkmLDGii8KAWUin/jUY+BH+dbzp+z2LUpBcEHwmlKEiOT/iZjKkFIgusInR5SGdtcQnWYYByoli/TUHxc3zKq2tM2eqq4YjiearkWjxc3UB4J3WCti5O6wo9lX7C472t2edt+B0ZiuQ9uaVNWoTlgRKotJnpCCuI5qi7YV2lqiDrmRbqKpNdUIlVFEqyDNtNZgasvOa4ZpxsdAbStiZj2cC6ToRc+TN9XWai47MSxTaG7+ya9xFSJawc/+r/53fPa/+q/wpb/7H4rxmNKbJooSTW837cIyTvPMse+xxtK1LbtuZBon3DTjO2EHdK5A2ZaHCqZ58WJeQIZWmO8YNKzBgeJlwCOnH1/+tBfulOeuaSKKODxFIv4lz1mZ1ZgFrM7POF9YEb8wLYv+Ywkw1qOSVIxa3GalgkfnOUUOTkrKY2PNnnsDlbTUyoysgVcp1y23lH2OUhayRtJiTliEqgkW0exy32bNW8qNCzOyOR/r6Swn/g6I3I2P1viQYORc7zF94xuLz8jDP/tn2f3oj7wARrb0bDH6WijShf5MZ+BD1koFQbGsyvk1QgjMOT3TDwPHU8/NzZGbmyOn07BJ0wgYWUrsdFqi0qqqaJqGpqmZXUtC/maNpa7ssjhuo4+SOpKeGLfo7vKJbs3/mMQDgQw6fvxf/9epDgcA3vvH/5hv/+I/gJBBmvMk58XGOiWONyeur67ldn3NsT/RDz3DlMWrm0od0bOIKd04DLlpH8vClJAKBdGVSorEGoPRUNfnobP4kkRhV4g0nQiWwzii51ly+N6D0dRdzff+4PfwyvAxWYRjhGxqFWMQoaASMyadK5hSFgaicwlnMiQb8Vrjw4hzI0Zr2rYloBinCVDsdx0qReZBqPV5nKgqnZ08I23Xsr+3p2obuosddbtDVzVYA01LtBWm3aO6DmxFMmLypk0NJoC2qKqmqhqGNCy2+NZoFJHKalLUECKNlh4uh9py2VYch5mYFF4pYub6UwSrDV0jaZpdUzN1Na//7L/Ax/+L/2Xe+7VfJabEZ/4b/00Ann/hdzBKY7T0GyFH/wsbwRp1wwrMvXOMc2YIh5FxNy7izbqtsdhlh9xuyKpIIDIwUZBt28v7nad1ykZ7Vn2TJ+bKmCxTdZmvL0wUNq+xyZpsq2WW522yNEtgsGgjtoHJ6vsRfBBB6QY8aLU9b6tuRuvMSqjc3C8zQ6DE+6WkhHI34PUDZiC0/cBp+/2U1ymfjdWZeHP+pWy5MCZaev9klqTcwmaun4OSDaji/cYdILkbH53xB2NG/uV/mYs/9+cYnz8jAYc//BMAzO+8s0lpyOQMQFQFcMTNzFk3fJZFMS10MEmIWsmTIp0rs1htnCb6ceSmHzjejHI7DmL13PfM47RU1ZRFNJpi72wxWlNXI13XkZIAkaauaZsaFywheXSqJF+cd/OEUJ9KKSKbBTOltTKj5JDL4uEDwTkBMDHyhf/9X6W+vOSNP/NneOUnfoL3fu1XefJrvyob9Tyixon+dOImJG5ubri6ueLq5orj6cjNzUkYkeCXzSXGnFoJUm6adGJmJkyB9Hxd0OWHgqSorAVtsEYj/9zlfLVBx9w+PgSh3kOUFvaAn0eMcxifCMcJddEyzyP15QGFQTkwURNVAhVRUWEwaGWg1kTnQRswFaqORO9JwZCcwygtF6KfScFBgNmPVLZBzTPKGIaxR8VEdBPBzaQYqbqGum1o2lbKWlv53Ripegl1LU3xmh2m6aCuodIknTeLCFpbYUz2BwIR2ziMGdDWomuDUlKt41KiqmpCNuhqKktrNVYZLuuKcY4MfsbFAJXC+wzCokT2WokmwT97yuX3/wCv/6k/I5/rnW/z+f/jX+Vzf+XfwSDXUtHzlBTlC6kbsgYrJWYfsnX9zDA7nPfM3uG9kwomMUS+xQ4kUCUwKA6gOaWWcjVZ5gT0Bg6Qe8iAkXRKUsR0S2uRXxG9lsrCyo4mlQWs2XBPAJDOR6GkSkmR3+fFUT5/CUwWIOLWkv4UIinIuqKymFZ0TKBMlMUgRRQaqw0GhYrlyPO53qSohK2RNNJyHGHtzFvWCGPWztqKhFViLqgRo7hYQEqS5G3xlVuEwUbuKEBk0ZJsUrFlKJUlWWldaysRuKwI6A6L3I2P0PiDgZH33sO88QaXP/ZjIqg6Hrn+h7/M9S/+4hLdAC+fDOplfzunec/K/SgRgdCx0zRlP4GB4/G03E6n41L6Oo/TmYgtxkjQJfrSGKVp6joDEcNu10lpaxallZywVNas3YHleNTtgz9bIAFiFo7FEAneCe0bIk8//zlSSjjv+OF/9b/Po5/+ad76R/9QTskwYOaR0/HIjQ/cZLHq6XTKXgn5M6XVubK8p8ohZMyty2OMjOPIs2fPCE7SGZJ6l/JQZSxNZWlq0c80TS19PkiywURx89TWStUEoGPA+hn/7IZv/vbv8OjTH6d5/IA4TVhtMTkdUFgtKSEWA7SklLAUSkGS1ESqPMk7VGWJfs5GUwqtxCrezYEhnBj9jKlqnAuyUaPYdS1KK9q2pWnbLNY0mKpaUhiqRPe2QlWVNHhTCbNcgrJgp9yrhqoW87h5pm532LpBV5UIcZUiBkDrbASGCA8zc9JUFVWVqB34GFFaGu2NzlGd8gYSA5rE89/6J/zif/3nUWhhUyK4EBcQojegYZWBp4zTi5X46uSrEHZkypqJUs5arv/ttXqb1dgaai2zrehUWH0xZDJqxNc9Ai8RomzHsh/eYhBzRL/Vc5ylDykbq15fKJ+BmC2J5ftNZ72YBJB43OyWzy6VLbcOK2/0pTmfKazIkhIp5bqFNlo/Q0Iq10CqVELYgKXClCwOvmtX4sL4bL6FMyrjtsfK+pLrmrJlgZZqpGVNkp+FfUTlFeqlmp27cTe+e8cfAIwk+NVf5fn//N/GvfnxTCUXSgBQtyKaWyADONtIb0+a9T7yoigTUURqohMZ+pHTqed47PNmfcPplIFIZkRC9uEo4jpfcsjknDzQNPUiDtsex8sWiK02pGz+S56YQhuvdCpAypbt9/7QH+LVn/4pnn/xi6QEn/iX/iUArn7v95jHUV5jnLDTLFoR5zkdpb15STmF4HP/jHyeipeHHNDCKJXP4WMgjaOwOYA2lqqqabuWtu047Fp2XUPXtlLSrLInhdaZzVJUuw4mKU1V3hGur3j7tz/PW5//Ak/e+gY/+Md/GmwH7SEzL5vvV2lMVYlJliZXI2W3BqXQIaBSyEZPUaqyDnsINQRw00x/6kGDqSxVBjYqJWxTY4oAuWmo6xq0wucmYdZaEecaK2AiG6sU0aWcRDGYolDoRqOsJRmTgY2l6RrafUd1M2J8kk6pefOqrKWxiqYyWA07bYlUeB+yc64msedB7uxaW02dU1RL8k9lMWNS6KJtWu1t8qa+njexcj8f20aJMYb12g/hhWu6/NzqEUpaoUzt2ykASLmVQbp1//m4vZnCdkNc+dLy2HXO3055qpe+TWGCEmoB3CF/Xudd9hl6sZLm9uc2xiyBhjWrPkMCou0xlzUqUkTg5wCBpXgwpHNnVU0+vyozP2U9WU/pJiW1OVebtNy2qul2KuqsO/Ptc7VJsd1BkbvxURr/TALWLfC+DcLTy+7M44OY8RT6UlTzAT875nFiGif6kwhVT6XUdRiyRiQvxCkubedEErdGF5mPZtvHRt6QRdB2/hnPfRK+01gZkcKQeMnpP3/G7uNv8ugn/gjKGManT/jy3/wbfOE/+D8TfCCGiBpH4jxL+a7z9P2weKaETAlL64q8SOXze7awlygsn7eQEuM0oo9S8dHUFbuuZb/bcTh0HPYd00VHG+pcNSPPiUoRjGa/28FwktceRob33uP43repoxc27O132N97SNI10TlM7HIKJG9oubQUZYmEDIzyOa8bUvTSsr3yJK2oK0t0E1Zp2hCpu5bZOarKijYkROZxZAqJbrejamrJq8cg3WhzB3VCAO9RwZOiRyUv1HhIJAzKKDCGhIYUiMGDd9JNVrh9jFV0u5rdvqbrKo69lI2GGKl0jepqbGGXdEIb6Wibosb5QAzyOfetsAhtYxmzPiepRMi9h1RI5dvc7MGCcLVKaLIzZ1xbzC2aDnmxBVAX9vAcXG/TLCs7+LKRkNNszo/kA49tFiidbbjFbfScjSnMyNZpdBWC3gYpGSxnICJuqjOzG5nnkWkexGPEiZA1lMCgVJPlS1JphbEqZzNWBqOcs/P3zMezpGkKM5LOAwNug56iicnAasN0JcpnfzEYK836tudiywBtjRzXip4CeFiuixfWhbtxNz4C458JjGyHWgPj7/CYdYJsJ8rLJo4stMIupNzAbZ4mxn5g7AemYWIeZ4Z+XBiRl0VGMU/opG7TlmuZa1HUl1wtm4Wl8D4l/VCo8rPjJDMV+S+FIQlBtBHPv/Qlfulf+9eAkMVwxVdBGnR572GeSNNE358YQlxcJH1u6FYWquVkv89YOg7LSSZE6IceozW7tuV0ccHV1RU31/cZ7l0yDSNz21JZK4taZghMVVMZjx8nLGC8p4qBurbiN7Jv6doGazRT3hxsDvmWjShHh5jsV2FloycFVGpQKpG0RlmDigFDhHGQhnUhoSvLLm+oYZoF8GhFayqS1sSUqKwRZUNe4L3zxOiI84yuJnC1AI+iV0qSvyd7jKQYSMGR/IQJDp0CiojRibpSXB46jvd2nHrP7CPR5T4kSdJQdW1orcAEVMTUmjoZQtYstI18V61S7JSYZaE0EfApke1eSSFRJ0UbFTpExiKYXEBy7vKcCsOThIXMKYCSIjPmRUGyPksblI1fjOluz0NhjIpi5HYKhfUa/H1G2YvX111/FsOx9Ti2QGndiNm8X+EkU4LgxYun3Ep6aiylvcGvDTIzAFFaRKplFknJeXn9dAYMyvkt1xUoYS3SOr9jiHnOs6Rp5PxbYV6VOjv35VMo1orC7bkXJle8ZLZg8izVvE3TxLh8lg0pKeCEAkbufEbuxkdn/H8FjBTEX9aubaQuP9Yc93Z8J+S+nbClp8Q8O8ZxXizRh0GASAEh5bZ9r1KJEENYFjRVGpIqaUuusxZA7kyo3JQr3FoKZeHfpCPyscbNAgYrGInFhyGIORakxbNB8s5JOo56j3IO5cQ5dg6ReZ4Ii4OkRplU/KPPadx07pAp77+az5EizgUxhDseOV5fsz9ccLy+4nhzycXljraTVIfNuYGkDHW7w8weN460gMruqZf3L5mGHt222IuOetcRTZ37byD+nYmclkmZrdFZaiBiPFO3Wcyq0HWDDo7kpFmdqWvSNEMMxFGjUyR6R8ylwSZZkrb4mHK7eUXMFQbezfk7UEw3R5L3mBiotYIoZbsiqTZieKaFGUGJu2f0Myo4VPK5kZ3ict8wXO7pTx4fE1fXwsRd6UhbXXDoOpTJze5Myh10hXkIPlLvpBrJpkiXTei8D9JhN4L2ARsSNkRMAhUVpMC3tWHO+qS8HZ71LQFJEywB+CYNsI3Ol+ZzZ0CkTM3txr9hJFRxgklrp+sSfSMpm+KSen7t5ddDxK3CiKiz9ykbdNFmnGsrMhjJIOyF9SHlFgneMc+TpGyHYbmN43DGDN1+3SIGRQRWciyb+XQWKCVYGkumEkCU+bVJJa8nE1BnGpTz4KYAkU1Qsf1oBXxk0LFlRcqcXkDIsjiy+h4tzMiGkoovvs/duBvfreNDgRE1TSwb8zigTkLhp7IoJYQOB9Q4Ls+7rQn5wO+nzuvsSw+KcVwXoXme8F7sxqVbaVj0IYXSjpuc77bxlvzcUsLphWhwO76TKGy7OKW8CKRsGV0WCAWgEzrKGhKSRObRBwgBEwLeOZwPOOdvgYoNuLoN6uQPa2Jq8xiFQiVFcJ7+1NMfT/THI8ebG4431wz9BdN+z9i27OpaKgm0pu46or9hHqVTc3Azxij2lwdceEQfEqppUXVFnKM0oAsBZfXSaEw2G71w9goNxkCSMkZlTHagrVF1K51zQyDqEZOi9LnxToALijD77NOhsFq6yrp5JsZAZTR+nghOyjtn74l1w/22RZOIwZGiB6VRdYWqaimtrBOkCjVnoaoPAlxTzGkt2HeOe5eeOcA4zYQYOfUT76VARaQy9zBGS5dfU1KCCV0Zqn0DwLvf9yrXjy6JPjHPHp9g9nAcInOAq9HxzAWuk+bp4Pnq0+dMMaKjRqW4uLOu1+7KKpSeLi9jQMr1fCZ43uZTSJvLK1H6NbEEGMVYrTA06xxeUhEfcKzMh3rhvm1aJpEyjt0CBDb278KIjOO4rAN93y9MInDm1VGEuCW9obLH+/Ke6cWUySpcPQ9qlvnG2cdYSoS3hmXrePmaobUSBm3zqHMN0HmJ8pKeWdYFOYSYjzdmBlVRKqPe/7u4G3fju218UDAyATDPqFkEefrmhNldLfNsCSZYfw/3LolV9cKLfdhc5lbEJQyJNI8TRqTcfM6jrgDkZe+1BF5KfAaAJSesNpT3y46xLDJn4Gqz0Jz5DgDGeew8s5Q0Z/YkpoQOHuUDzJJSYJrlc/pA9IkU0prSSRvqluKUSTnYhZUpCpnzcx3RKEL0uHlkGgdpsX59w831FafjJYfDnrrrqK0AtQCYugZtpUQSeP7ee6QLxa5t2F3Kpjr5SGsMqJCJkHwcMUfO2TuhiGgTCOsERJ8YpwEN1E2F0hZtBHyooIluBpNQyqKSxiaNboShCd5trgsvbEMQFsdlXdFxGOkePqSytXwGq4ihmLppVB2hzvqRJAwFsyeaAZSkcpS2gEcBdaWX6qMWjXcG5x1Pnl5jjOUBClspGqWxWpOMgNECIMxhh97vREsyToSQ8LOIMF1QuKSYdWB0ipNVjMaIb0t+DQ2LD0hMG3ZOKUxpd2/WJpBL88dFj6EzQNnqRVbtQnmtzZXDkqZMa6GtgJnCpEh1ze+npdq+X0plDq3PS8ucTagYBXveGpK1KmAkd+ldWJE+uw67JU1ZrPFflhr23lFqdhQlaIgvOQ+38h/rqcmX+u21RQTGJncEX15HrRUu+awv53V7XOcC2XNw9NKzqaRSbakcQ60G0R9Al3c37sZ30/hgYCSlHqU4/umfA6V45a/9NY5/+ucYfuCzm4eUiSMTMcZEqipS1/B+kcHv/745/ktkIWskBYlci/AzhjVaCDEI28DLJ/U6sbcLzKa/w3bTP4sgz8dS8hgicUOPLy+b8/Y6ONqhh/L6eRUrEZ5xM8YFjBN/iGeVZUyR7ToiIG8VLcqxRcj9Oxbb50K1b9JlAGQha0TEtEN/YjidOB1vpArpeGQYerr5Al/XsoBrizI11A22kTTD86fPmdvAxWHP7t4DrKmwppI+LJWmqmthv6OUu66bZQFsC6edm9IlRueptKGpWvEQiR6NRTUatIWkIHgIEEYPGFKMWFvhnPQiISX8PDMPPeOxx00j4zBxmmfuvf4mxjagRWOijUIniEp8VVAVySTx1qgTqvEk25N0RdI1STlimkFpUgqQPMYoalVT2YpKRebhhmfPbqiMlQZ8yaJrK0VlGSgA1MbS2JoUnUTsIeTqmJxCzBFtSe3pwnaowOI3UliFlL3eUlo6UZf2BnKrqapiPf8StmTdI0mbTrFlqzwbGfWmF/6yCjFfHoK/+Izzl731agXIbtM92zm7mTfeuwWMFAH7PM9LeqMAEek/JVb9hbHIkyJrPs4ZmO376e28LvMvrgLW5SPmc1SYkZL6WcCIXgOYBXydGaK9eI7eL61dxrbJn7weqGW+6YWp/uCc1d24G//5jw+VpomHw0LLxosL4r1L4Dayf8lCcuv3F9iFFyKM8vdbgCAtgSKl5G7btCosTHaOaAqbmdRmgkqFAkmEgypFUvCiSwhe6PCYjcw2keE5Rb4cqCzIueSyLOcxMwxf/eEf4r3XX12BCBBTwPvAOM5MWfdy6geGceJ69oyzI0SpBoislUCFWVlKDTNtXzaqSDzL3y85800KLYawtlrP1vk310cuLk7U9TUmKXb7TkSWaFLVUl+IY+zsPDfPruifXfM4Ku69/gaHtiGNPc5Bsq1sxtZQuqsuDfIIixYgcztoY7m4/1A0CVqLCZY2Ag6MhbmWlPc8SbRcWZLXIlwlEIInzLNU2AwD46lnOJ4kFTVNdPfuc//RG+h2h+r20nMnf2eSnmkIaPl3ZSFqUuVITQtVA2YiKU1IIjT1QaoXrJbvWWlDWzVMwXMaBk79zK6pqLTCKGnIiMopAYrkIkLWEymlMCpbghdGSytKq3mdRZe2sgQ8ycfleTp3kFVI1+mmrmgqS12XHkzCkognSk7j5CulXNdFvyDXzLlt2fkGqZbIvjArZY6tTGLMGGkF+985/NiC07xilOerlNmT289RpCjN8Zz3i69KubnZCYOkpDFm2zRUdb24nDrnzgKaEMNqwLYIPdc1p6Q32czs8qkWYJfPWxGsaqNRWsBGEc/C+v2nzGiWmzC0m/NdvpuS5ingJa7urnoBf4oiYC4vuHyfSp6j79iRu/ERGh9OwHoGDF4sHztXwt9acM7+9p2HbL7llisylEy+sigUHYikZQRiSHXA6idSvC8iSajTBEaJ1bNKYQEkpAClo2yM2RZjk99WedNP62dZAEI5FykjJVaK1Lctc9cti09MIlb1xjPExOAjgwkMNtDbwDCLW2tc2qWX+k/yz3zbRGnkXDFnZ7tEmsUzUzaTGKNElP3AcOo53Zx4/vSKrttjtIGYmOcJUqCpKiw1U75EXvue78GlG9zxSDKK0/Ea982vs0+e3eM3iXWNspaYQq7o1SgMMTmKt8jSuTRJdGerKm90GnSx3A5oZUkJTNVI4zltwEiCJSbp++KcJ8yeOM2k2TH3E/PkGedAVIYHj18j1RZ2O2LXkqqNn0RIKKvROoGyYlFfK6gbtLU4sk9LNtqSDVDKwrUqBlOyMWhbMV7f8PTqSFcbusYSQqKqixhzBRExhuV3a7QIlJPonBKRENZOrpVV1MrmHiaa2piMk3OVh9ZopbG1Zbfr6NqGupZGkPI5sx/HZi4WcSWwaEnKXFmOcXMNlet8YWQWncr6+iubsvG1WDbh8zmvNvcvaZoN8yHXu879jwoAWjfqUtI7O38ORKY5n8uENYa6qtl1UvpdVRUpwTROS+pThYSPDh+lN9Gqwyi9dlZmpJCOW9mpyoFOcX0pa4XK3bHFaVUvn3dlRV7GdmyEtrB8R1prospuzkpRtHjSNwu00RhjV4C4BCt5fQDaWzYFd+NufDePDydgLaK2PH4/YHEbrHzY9yo08FZMVnK1q7L8RRamRI3KyBGblHKrcI0GrFbUxmLKYrh5va0JWokylsX6pcf54rid+y3/Lkr5on8JJeUU/CpYy0BDaOFbQtRt1HTrvZbfWVNb5Tdhi3XeECPTNDCcjtxcdTR1TVNbVAr4eeZw2EvVwa5lb5ZAnss33+R7PnkfvGO/a7n51rf5vc99geH3vsZn/ujP8vj+I/FLURFCRFsFSpgAlf3yZVHWy2aplkqDnIZISkpMyrlPIvBVKeFnR/J+iWqLdiC4GTdNEi17h0+R7uKC3cUeH2dUY/A1qEbhgqdWRgShfhZxbAJdNaTZEYceNQ+Y5DEpgneEyREmj/OJmDQhalzwWAzD7HHe41Kkn2eOw8jlVFPVmhBjrqzJTGJKSz8eRRTbc6TCS2uTQZp83zaXYasYRYxt5dqJmaFT2iznURlD0zRUtsIoI/4yWeztXS5zj4mgAoZNqkIV0H9+DakNEwIri3IGDMrzFescXa451u+P8p1/h03x/ZaHJS2Zz9/W5GwjXh1zioYkAUdla9qmpe062ralqipiTBilpQWBD2Cl3cFiDLeYI+YDSgq0gJKXC8bPWdtiplYAx5oKU+szltco53/LtL7IGJfzrrP+JON5KmPRNuU0XIUx9uy9SwfuFBN7/Qdbe+/G3fjPY/yBS3tvi65uj22e9GUpmpep+88WrrQKvM7f87YOpICHuAAlndt2a4VYlWuJ2ipjsuJdGsVZo9HkTT/ExbX1TMyGWtePFz/lkv/9Tmmns2MuVPHG1rmAjvU9WYHIEum8qPYvqvqzc7zhf3WOalVmJXQutw1uYhiOHG8qmsbSdRUpesb+yHAplSHPteZ+W/F6dhDtoyJcPmB/uQOd6JLiwbtP+cYXv0T1ta/y+Ad/WI4jBFIKoAxKB1QMiCQ2l+Bq0DabsheeP6eSBHgE0YlME/gZHTzJzYRxQPkZTWLM/hL9OBCnmXmccEH0QqqytBcXaGu5uXpO9+w5tbGEYRIfFOeJk5OqmQg0DcpadAqY8Ujoj4ShJ84Tw2nieBw59Y7jkLg5zpx6R4yJtlVYqxlmxxwjOkbGaaYfJ+rWUlUmCxm3lRw5VRchRM/sA94lQlByvlTEaOgajd3tODnPHAMqKXyI+VpbmYmYhEuwVS3+IkovYucCSOq5Jthw1qjt9xOcbv+qUZkZYUkdxDwl9EufkX+LaZkb23nxYoBS9FAvWUc25GpMa4m/d445e4vMs4jXhTWwNE3Dfrdjv9ux2+2x1oo+C6kok07Pfqm6oRghJiAb1WmVQBf9VVxSowtoKHMpf+y1sd32XBQmZAs4VnBye3ErotsUhAkz1pKCF+AeY07JWWqrsY2mbRvqSoz3rK2WEmVSASSJy+uXm9vdjbvx3Tg+PBj5DkzHy4DJ++lEyrgdDby4UJFZi1LiG88YjG3p25YO1jlvXxmNVTrTmlLpYI2BlKiKwC8/dwsS1gN8/8+pSvpo/TDv89gtmU2O+IsQNS962+hUrRvA+0WOW3boLAWWtmLD7fFEivdDCo6pP3GyGmsUEDjd3LDbdTw7vCdrZYyEsefHpp5PAd4boq/xoabe1VSveF7/4c+iHz0kXTySaDpH2got6ZX8vqi4UPByoPk701no6hOkiIqR5Cap2nIO5hHmkTQN0kTPeaZ5QoUIPhCmGTfNi+HV7D22bbm4f59mv4cYef61b/KKV6gAfhy5fvIep6trTv3ATOLRx97gtY+/QUwOnRxxnOn7idNp4unNxFtPe7729jPevjpyfXNCKdFoeB0ws6cfRhHtKoMPPjuANoTUoAs4JEuRUEgHIIX3EecSIcnfQkjLtbzvOrr7D3g+joxuRqEFIGstTEECH0V7FFAoY6nqClOqoTb24fM8Y6xBW3mNJU1TNr+zAABhBdJmSy1A/CXX9srUveT63Fx92/l9+xreXqLbuUK5fhcwklM0t7UibhaQi8IaS9t07Lo9u92e/X5PXdeiJ4lJGLSqYq4s86wX0Sekpfv4UgydIBEyW7X2pSmHpY2k2s7Pw8rklv5IqrRBUGr1J4lLRveFAEPmfgawSYz9jBUjNWsNTVPRdBW7XUfbNNR1RV1XZwxKWS/v3zEjd+MjND4UGLkdvbxMePqyv7+/QJWXPv789VYGpPw8r8FfF9KyuGit0EZhtKIyFmsMTS2RqilGREh+uUQ4MUl70226RqeN78iGqSmfUzp6bvPa54tuodJTbg7HBjQoQG3Mk5b0S2LRpxSDtNvnZWuAVF5vKx7e9nyFnNNOCCuhICUxjhqGEyaDkXkcGfqG07FewFBdGd5+70k+vQabGhgh1RFdt7SvPuTNewd6bwnBo42RzqMxEn3IoDACAaLoHEiQgpd/hwQZWBA8xEiaR+mpM0+ocSCNA3Ec0CkKmzCOqKSYjj1+nEkh4PIGpSrL/nDB4eKC3eUlu6bh+tkN12+/x+npFV//3a/wxd/5PKhE1bZQ17z59CnGTTx+/JCoEtPkGefIu9cjX37rGZ//8rf43a+9xdP+RIiJrmk4tB1dNVIbsMHTWktjLZUuDFURPG7cNvPlESMLKxMiRAwuRuYQCUGAadO1PHhwn2oaGZyDLBqNuYmh8+KlE0LAJ+Gd9Oa69iFmrxqXK0806HXebQHJds6Keufcmn1r1f6yUVKlL5u/WyH19r6zx5BBeennkiJERcqpq1KqXvROxWtoGAaGfsBNM8SsFalrmqZht9tx2O3ZHw5U1uKsdDD20yzN9OaReVDMRYyc145tN5dEyBNcypdLjxmQ9cVYg/JyHiVNwnJOt4xlAeglSGAzT9d5u66ThQEt34gxYJSsW1VlaeqGtrV0XcOu62jbmrqus9bEyLHmoORetmG4G3fjozA+HDPy+4CKly1GH/ylX6y+IaUz4CF6i3i2Gce4aYpV9BGZ/aitpa4slTVUVu4zZXFV5w3DYopL5FLeP4YoDMWtNM3CxpQdZjkh8qP0tzEmN+aKWw2EsC8qbeBCyb2Xl0jL/+RHFOFmTFvl//k5Xs+BFjV/jsoX4LPoAFLeFD3zrBjHUSj+GPFuYujlPFW2ItUNUzY9O44zl8lABN9PaCPgIynF7GasmwnaUCFt07136BjQFZCkSklpeXxQWVAslAB4v9ii63kmTANxGmAY0N6jgoMoZlfeOdzo8PMM2WdE9Bma3eGCy/v3qdoO07SkpuHiUUvyiZAUb3z/Z7CXe/a7jjfffBNb1ZxunnE63vCO97RtyzgOvPPekS/+3lv86ud+l6+9/ZzRK+xuh44B5wKT91RG01nLRdfRVYp927BrTW7EJtetjev2tnRULkxIAh8SLiRmHxlnj89ppsNhz/6wQ9WWNgS0qUhoZucXIOJCwPvIHIJ0/V30G1nQGCPeedzscwpHgIZ38ntJPy6akE1UvqYdVjZlAdibebC5Ct9nVn+QsWVDMjDXW8v0fP6yeLWwPfMk10KKWZirNE0tjR/bfOvaDpNF07M10tywsoxGSyUT+aYSUSWWjRwlzIXa2q6vqaTi2GxUAXXrnL/N1Moydj5nJZOaNo9ddSPnD1xfRym1lnHnz1LXNXXd0DS1aEl0Cd5kfWm70x/8a7kbd+P/x+OfQTPycubjtmhze//t+77j45fUxea+DD62ItO40VvI/ivPK0SE1mCMwmpNVYygltx3WrpeymsF/EZgii6VPPIYlc6PecmN50Wl0Ks6uzbpRaypl8eozessIKFEXGpjqhYFUJQqnVJBtP3st89fOXPkNHhUEaOQ96cstueeCt57xnEgBoedbBYBVjRVjapEXAvw7pP3qKKjNo14mcWIiiJIjdEJ8AmREKMwMCmhYiD5gEIcZtFiMqbJPuYhyv0ug5HgSfNEGgeYR7SfSW7GTyNz3zONkzADozitzs4xuZkIHO7f5/HHPs7lo0c0hwPJaJSy2MqgasuDj3Xce+1VXv3Ux5n6AS0BLzfXNxxPR/p3n8nmPju+9da7fOHLX+Vb77xHVBXNrkVZSDFh2sShbdlVlr3VVClQVYrK6qxNUiJUjlEaNubvJhS2wnsi0kxv9pHJCysyx4iLCVXDbt/S1JX4sWiDtTUBmJ0ADx8jsxfjP+0C1heGTESzWkkZbAxRwJsRjc7MjHbnTMc2xSDMoWx4xhqsrXJp8DmDwprMeOlY4vqz9MWqOzlP26hbz1TLrWhjIH+WDRjx3kmlSd6oK2vp2pau66QzdSfVRQDGSRGuUdIE0KiIVhFDRKsgDQk1udtyXGKBssaVblSrLFfKerdi4NvauJczv9uzI6Okn2VdO/+bVqWx3mYtswpjsnBVG6w2GGUwJbgioTAkXuxTdDfuxnfz+HBpmg8KJF7CcmxvsNKZ7wdYUpKNKoSVEQlZBPhyrUgRswrdmqI+37g376+UlMOGlNAhyL9z5UIR/hkj5aRn1XHx/HMtwCIVBf1K2wIb90sFae0r8X5xpOCODeCIablFtr4q5xbR6/FkTUh+D6VAGS3PV4FIdqU04q9RjlMEgDlFpc1SuaCNxmftxzvvvcOhv2F/WeNTpE6JNHkBGrnPiFEKnXFGpQ0peuI0oQgoDJggFHzK5Yoxp2ecl1RNDCQ3EqcenDAfyTvCPDENA/MskbCPgTl4fIzYpqaylnuPX2H/ygPaiz3UYnKWgpiHJSXGYsYYXP5M3geunzznyfMrjqce5xVPn17x5L2nkBIPHzwgKM3RRVwEgkTrOim6poLg8d5RW4VtKrSVaLmua1KCefbYSi8dnIGl+7KPidkH5lDASMInkc401tK2rfTdsRVV06K1ZQ4RU0WqDESYPUlZVB3xXhoyeu/XaD7rq+bZAwLiYkh5g3tRx1HSl9bKZ7DWEquIqeyiL1lAc7ktIOMlwESdz/vfTzTLVlN0Vq2y8HmktOlim1O0SimsMcKEdC1NU9M0IuhNsVTN5FYR0RPjjMr+QgrRdZACMXp5TJ47y+dVwMZvRD5bPk5d2KJzcFdY3JX9kLXhZdoZOT+F3S3vkT+/FqazML5QvlvWW9b4kMjXWm4doMD7O5+Ru/HRGR/O9CyeA4cXNQvnC9B23H78kh7JAsyXvcYWjCx27xsAs93ct28nLEKQfU7LYhWVwjmXgUgipAA6b0wh4IJf0gDeS8lm1EpSCCBrRDxfTLQqS0VuAlsWJ73mlssR+U05bwEMMS3hFzFvsqGU+m5AFLwI5l4G7grNnTKjkrTC+4AyCY1d1npj7Fl5qNYGlEFrm/UziaAUY9YfAJyubvj2W2/x+NX7DGGWaNJ5VPQYlNjb60qoay9+GikGEZsSwCiSLxGgl2qnlASQ+Py44EnzLEAkp26CcwSfxZpZBzG6mUTCNBVN19Lsd9x75SHtYYdpG6LSeJXQVhF9xGRX02EciSnQz1KJce1HhgQnn7h+fuTdJ0+ZxpE333iDB688pPvWN3h2fcQncH0iRgQQpcDsZ2ylqduaet9iraRHdGVROp2BxPUCIkf3ueusE1+U3kVGF/BGc6hr6rqSFJ9tqJsGpczKlM0eHxU6+5CoEEA5QrnUVFp1UAu4VoQgaZutHmQ7R3UufbfW4JyjqiopjWVtbre4uVL0EOtH2zKI5felwgN+HzByvlaoorFIt3Qcae1TlXLqs7IWZQz7/Z79bk/bthlk5xSe84xDzzj0zNOAmydCLhMXAU8gBk8MXvpEZRQfY1qqY3JyZgk2dJ4rWtt8vKKHin4t0d922JVTsDJDL2poyuN0PhslHStVcEWUulb0CDD2IeKcR6GIuhg0hmWdmsbpO5zzu3E3vrvGh2RG1gX2fLLlDTIWe9QipxAadY3EcvTNSlmeMSsFVeQoIfiEmxxu8rgpSC+PcD7RlZHmZj6FrLeIqAAyYRUkj0ZayFtjSPMs5kQ5V6yVIbiQaX/P4Gb0NIFSVDGCeXlEozPboZSiyoZU67pZFh4tQkUX84ZavEVEdOhTxMWQyxZFA+BDZI4JT8InjyfiCOuitjRMS3kzyO+VIJHLP5VsnIvLpk9oxK0zoSSNExJULBoD8boQS2ttxFArRsccRDPio+b6qkcFKZH2cZbPrSNNirjnz6geGOg64smhkgM1oyyoAMlLEzyNQgUBKhLORYiyGeAdyTlS8OBmhuMg4tR+YJqdpCdiJOYqqKqy7O/f5/LBA2zbgDVMYabp9vIdGbUIk5WPKK1x48w3v/Et9vs90+QYxolpnkkq4aPHpcBpPmF6TdNU7LsGNweuwiDpFKUYJnHItaYS99akgYrJO6ooVRZKJ0LS+CjfT/CJ6BPBJaKTRn5zgilpxhgZfSASsVUtDQLza6ta9CIqQprlMcpYTNL4KKyeUianIkWQXTBGScmVlKPbAutlTubrWWuM0tTGEn3E18WALENtbUk6oZJa+IuYQMeCRFgEnjLvNlqrW6Dktl+J2JZq5D8DqQB56ags7yUl4ypFVIhYoLYGX9dorai7BtNIRZGUyIKbHdM40B+lBcI4nJjHE9M0EqLPt5BTaiIQlk7I4gpMFF8YndcwQ2E+NaaqxKtG7gBMZli9dGVetG2rDuUFwfAShOXHqLiBXrnPTMylvnl+pqSISeEi6JjQLpIIzFl8TzFxS5H+DozcjY/Q+HDMyPX18u90fUV6+vQMjMSwjQYTsTKEpsn4IgvBYlxozhfSPFl/UTZeP0eGYWQYpFNvKefz2wgk3wTkxOxzkcRLQCmSreRYoqWqLNGEJcIzxqCjAIXgPME5ybHPM0opSV8UulZv8t5s3Bezs6tmwxzFohMQADLNM36ecN6JdiCnCUraKcQojd68EyOvzWeLaZPKegnrtHAvaZXYpZRyszqxAY9KUgM22+anmFBWLQJXYIl+TS5XJCaSl3NTPpIyFWAwlZFqGVNjkkLFmWEaaUhE70X0mzIQCCFX13hUQkBH+a5TWL1FcoSqQT537p7LVh+UEsoYqn1FU7dc3L8nLq3G4gIYXWGrWjSxIVAbobJD9NlZVr7Ty8MF0zTz5L2nDP2J2UmJ7jTPhCjalpgU9x48YJwDSkUwI1c3R0y3pw9OTLSs4eQDaZyYo2zdcfI0GGGNtGGXqfIQErML0uTROamgiTD6yOAck/fofPwJhfT2M2hjkVaHCaXT4mchhVcCLqwxwsik82qwmCLOSUqssHVp8xg2104BI76qqGKgzn8Xp2NJOWqtiSaCMecAPS0v9MKa8X6MyFZDsrI1+VhYgdLy7MRiEJhikPOhpHzfGIOtKimBtZaUErObmYeJ8XTkeLzmdHPN0B8ZcnffeZJ+UD6UACfltEc+Js61NWu1CqCygDWXUhtrSUrca32MwoI6L66wlCDsRe3MlhEWMELOra4mheUcbB1z4yalE0gC7gl57RNAFIPon+7G3fiojA8GRpTaAbzyf/nry12v/I3/K/7+/UVhvhAa8huQ8LsdT3/qJwlVtTyOZSJtX59sOBRzXl0WB+MiaZyIw0A8nuDmiL25YX86ciqLSgEmJKFZMztTrN9ra6lOFcOu5frigmQtxkgpoLHZorykUzLzIN1z/Vklgc4daFPKluCsVtnRBKw2i9gz5BNRHCNF/e8ImWUIOTW0bBg5LeR9wGc31sUdskhOYLGavq06eVGjI7ewUL1iox+jbIreBCpdi4eCfL/r96DUqgUIEL287uyD6DCMgcpQNQadZtQYUESmYaB1M847WmNRKotfk0MnUIU1y7F2jIEUJI9vZPchOo+bZpJzRCcgzk0zyliiCmAMu90OWzVoY3NDO8NxmGi6DuZImEdiAmMqfBwX7Y3VWpw7e3HsjCGx73a8+867dLsLqkrRNDuUmokJmq6j6/Y8fBh58vQ5qdI0+z3e1AQzgtH0SbQhY9DsMLTW0p8GWm+plDALF1PI5y9XzgTRiIwh0rvEafL0s5emgXVFQDPHtAARpUzWDMT8vWiEV4s5TWGW1ElxFV2UByktYCKFc3PB22AkhEBQWXy72RwjCbK41RpDNIagc7PIxK3NdDOvM2tXRKjn3YKXByxp2qJfer9S4hSLsPy8S3dKKc/h9XkhinB3GHqmYaDvB46nE0PfMw6DdHaeHbMTJlJMf/VmDumz+bBJqgCIrqapaWIGg9ZirEV5RyQxeycdhIvXToqLtc6WLZKy/xV4pVx/r3JqGVWq/coc1RLIaZN/V8vrxCQOvbKGSNAzO//Cebwbd+O7dXxQZqQBePT3/5/LHY83//5O49P/3r//oQ/qP4sxas1/74/+DNeXl6A1VhuUkYoBay22qrDGysKfXVJNTsWgc4oqyMLhcz6eJF1TY17InVvBBgg1L5oUjw8+M0dqMVKSf5MreCIhlj4oIkYsDpvLppKK+HZFfmcbQf4pTI4wINLLJAMZlRfqCD54lEpYa5dNxCcBdCZHyRq1fJZ5mjke+0xqJGqt0QGpiHEe5glLxFbN4tlgtCJFMUBLGZhVxmYWJ+aUkCEGL2W+afWtEKVJwrYtPgRMW3N5eQ+bmbYQEsdTT5xnktYcb25IxxM+Qd00PHjwCoTI8+fPaZsGozTPnz7jdH1DAk79DVVtuH//Ac+e3zBPHu8jVSWGUlVVoTRM80Q/9JyGHm0bptkxugAhV7/EQKUVjYvU2kCY2NWWfaVxPnIxyYbQjzNj1zKFxM3ouZkcN2Pk5CJjTDitMbYimgqqFl21aNNIeiTnAIugsqQ8rZHKCRDRpC8MZQxnJe8ySkR9Dl63G78wcS5vbGs10LbSxhiTK9SkAd368i9j685vtytyynHd1rEUvyAB0LKLr6B+zn4jcwb3CWV0NnYTYBaCaHLGYaDve079QD+MjKM4ts6zZ/YRF5JY3OTO1oK/xBskSYnMYgwXY1zmic3dkfWUNSTGCBjRxaws67+ygFZSkhnsFAYkZ6XPUlhaZ3fXbHKHkfSpEodfDdJ9WgtQNfl9pTMxpMJMp/Pv+G7cjY/C+FBpmnd/5meYXn3Em7/wt/nGn/15pldeWf62kiJ50xxHqr7n7T/+xwjd7jwdwzlNiwKdtJTvhdJ7YmIcJvrTwLEf6PsTx+Mp96To6ceB2c2LUVSKRWEvESIhL9jW8v3e85e++mX208RzZAO0dUXb7ej2HU0rRklt21FXDdZUsvAWWjanNkoqJBAXcGG0uLtapaVHBrIZgGz4klIqlUDrgibnIgOGkLILp5R/rqmqNdqMmwW6/L7kotksaPnvS2+evD4VUJNIhBiYnSOmQF3XspEphYnSbdfHgFWGypjlnHrnefettxlujlx2lyjvSZNDTTOhH5iurhmfP6e+d4/kPNaA0mJjncImfaClgiGmhHeOutJM40RbiRCx7Xa4YSSkxO7ikmmecINnd3lJd3EBWjOME+8+f4KpavphRGnD1fGEshX3Hj6kn2baaSLFSTQ4LtDfPGcaR+qm5urZc5ybOR5Hqtrg3MjzZ1cM48i9e/cgJdw0QopcXz8nxUBdVVwPE+Po8S6gKovLjddGF7iZAkZBWxuikZJwNUX6sYARxzAHRhekSWKEPkaGGJgSYGtMu6M5HGgPl5i6wdgKrYywQqglUtZGYZL8nmJhHPRayplNuLaarpK+28697SjXWgRxz53nzTUlehRrLJW1ok/J6ZAVhKilfL2A5u801mPZbpjF+K+kJ9KS8nTOMWRwMYxDLu/1OW2lhDDQa/+lULr7TjPDNDFOTjr9zsIaSHom++5l8EuRuWz8hwoYP6tay4BBbxxYZV6tVXmSAvI5tSqAZHv+k5yEs3OiikYlAyBUyk0nFSpodIpyajIgKYGUthodyxoVM4ni0fbODv5ufHTGhwIj48WB8f59AJo/9+d4/HM/R/3wFZTWfOX/8Fc5/d5XAJljZhzx19dcf+rTuMM+35+FlXkBEmdBQf8pSZvveZKI5ubmyPVNz5W54kYZjgluQuKYEifvmWIi5r4TIURCWid7Udvr/B6aXMIaAaWwtqLrdnS7Hfv9gd2upd131HVDbaSscRutwWq6VJrZxZBwzuOTlEVGa6WzKywVKN57IVaMWRcYQBZdQ0qekOTYZ+8yuMo9U5IG4mK6pJGSW6JCJX1GxRfHVFkk181GKwEjJjMQSmvpUJt7mIQo6ReMxyZpKFhVckkkFXDRM+fU0zj2vPfNb/Cbv/Kr/It/8qfl2OcBPc5M1yPvfPs90v2HvNp1WGRDm+dBqkEQ+t9onbU1YhqWGss8DmijcSmhbYUfJpI2BKVxeKLW3HvwUIzMqgqfEqfxSspjx4mnT58Rgcevv4GLAWs01iqePHmPqu4gRo7Ho0SWStF1HVfPnmG0iDWvnj9Hx5lKB7yKWOU47CusidQm8uBij4pw1BP7RuOiph+dsF5e0ni6qhmL3ggFeGIFhMhNPwAw+ch1P+BjoveJMcBp9owhEYylajvuPXrMqx97E4xFaStC1aomeg8hEREhajH100qRiuurzj1VkpRRK7Vh1NQ5UNiChbLpLoxb3ihL7xathCUbs0eP3YCREILoKDbC9fKa27GdS7cr56TkVS2aivJT5lwiZs3SNM1Mw8g0jMzjJCAhf/6S5jG5YR0ZI/nsyeK9z1oOSf/6oOQWIZDdaTODqFDFER+CbP6LZ8zS4iCnWW6lngp4ccHjU25ymCu5tu2Q35e1UErK7pPO4EiRTFg0OzaICJry/WWGyhQvoyoRgkeFIN/bnc/I3fgIjQ/twLosIlXF9ec/z70f+RHqBw8z0j9PGxc/AhWLk6owAImYyw81yq41+ClJesQ5zzjOQrGeTpxOR47HI6fTkX4YGMcR72di9ITswxHSGgVKCmUVxC1NsZT08bB1Q9PuuLi45PLygv1hT7tvsbbGaIvVa/fTtZzYAwJ8XFx1HcRIzIvSohnJi9ay6CQppxX6VVIxwNIkLwTZ2EJePJc+PEmqJ0TKsm4axbjNmNUrZPm3IgM8JeWgqLUEWRWXTSkRTFFYg4QnmIQxkRihqiw+BbQSoy1AIs1x5tf/4X9CfPouP/oD38tBK8bxyLf+6Td5cur5+A/9sGgDkryvNVZEqXndjVG0Pd65bEglke88TdRth3MBZTTWNkQpZsA2DXXdYGyDC4Gr6xveefKU58+vGMaJqq7ZHw6L2LXSmrppMYi/yjCMtFVFXdV0bcM8jJgY0cGjY8SNPcmNPHpwSbgQcXNrNI8fP2KaZvzeoSJMcyTcDOAGWm05jrMYq+mK0XnmIGWhw+zBOYJJVLsWl31G5hCYfCSimZNiDAmHkdeoKu4/fMAP/fCP8Orrb+B8xNT1Qv1rIykIHUVwXb7/IvomJSIKn9ME3vsNGEmLXuFlm+C2tH55TAYXa+l8WjrTVlWFtYaqcoQ6YO1GNP2SNNDL3nOrWSlMRuk7pXVagE2Kq4B6MTtzbtGJGCsgu24qmqambRuMqRYhuVIqC0tLU8H870K+aCXVQSmbAgqZumhlCpvhQyAkEZ7L/I6ShsknNqSYwYcAkVC8i9KmyV7KHc8zS7VQnKr8W1JDKiRhQPJ/NkppujKGKoRcziualNpbvJVjNKzsltIaFe9Ykbvx0RofsjfNyhQ8+YW/yfTGG+w+9SnqBw8zfZybzsV1IVpr7tNS7hZTlIjGWmLM0VUCcu8N7wPz7Oj7kdNp4HQSUDKM49IcK4R5BQqU/PJm4VOQkkJatJXKAKSpWNPS7nfsDgfu3b/P/rCj6VpxnFRyLFKKK9UtKXhUkLhJ9Aph6SCafFjy1M6dg5FAWgJGAQ160YagcgSmVvpdOrcawGfKWEBEJLNIeTOom4a6qhYAYjLzUhgYYSA2Svycppa9XwzN5HjnvFhKV9iQK09SUoQYaNqGuukAEWpO/cxpDPzWr/0mX/2Nf8JBK5ybGSfHtffsXv8Yf+KNNyGJeC9EJw3agnhfOO+pmxpbidg3hpCpbkVdNVArfBAvmLqusF2Lnz3GSirJOfHoePfbz3jr7W9jq4qPf+xjmGS5evqcV155SJxmQoJ91co1pyfu7fZ0TUN0M5Wt+OTj15iniZvr56h54JWLA1LFXXF9fY079cxdz/1792FO4OCqGrEM7LsWbRVaTwJAlMJFD0kqYNw8o43mom1R+fuGbP++bIZKTM5iJClD3bY8fu11Hj56REqKtttTNTVaCQuXlLBr1laZOTBL2ajK4CHkFGABnFvTrZcCjg1AWJotFt3RBiwAWTOyMiMCRizV7CRVsKl4YjMPJTCJmQ1dDdKK5gWEKS3HtKwZQY4nhrhW6CURpRdQVNc1YLF1zW4v6daqrlDIHFAmiz2VBmWkQgpFyGxRkPoTSUvlj01hMcrxBQEU3ovvTwk2fBAn2PV38b9xweOyVmSp8sufczm1ZS1Vm19gASoKRYpqWdNSTiEp7bHGM8+OaXZU07QwuDp/dTF4vJvFX6W4SN+Nu/ERGR/aZ2Sb91RqLTnTWrwpKKWA+TEpyoISfFzYhKTiGc0rEZ7KLIG4Rk7TnPUhwoQM07jaQGfr5LLoSVXI7cVWNmFZkPMimUo5YEXTtLRdR7c/sDvs6LqWqm4ATci202rKBmk5ot+CK+ecLPQ5by2bZfbkyItACmkRwZUuvDG6vKDmkkRbUVXSY6L2MQMmnd/Hy4ajNVXViIK/aenalqZpqOpK3DIz67Kt/FkaAuYIU+WfzjlcDIzTtDSYi7EIaAVALBS4MhQjptdff5OpscxX7+FDRNuKaRoYhpmkDN7D53/rd/jjf/rnpBYhpewhkpsNxojVZgGlPniS91hd5UU6Sq7eWImQTSUgrjEobYiTNIyLIdHWB8b+WzRNxfNnPc+e3lDXln134HJ/gVGa+4cL5mHk4uFDdm0HMTH0IzdXR6bTwOnmRrxCombXNjTNDh8Sra2F7Rocz4YnXF2feH7sGfqBGCJt0xJUoA6RaQg5Qk6iEUhSWh6Q6/twsafK14KPCRcTUa/pg5hkI6zqiocPH2KMeL5UdU1la5QOyzWllKRGIIsqYz6/5AqaEFAqYZRoiLz2y1yIyS/anzJuMxNLxdgtVqNcy8YYKmdz+fmMczXeuYU9VBswcs58kJsxsvxtu5aUpn3buaWN3czjdb2xxtA0Te7GW4FKVE3D/uIgVVa2IUawPmCMCLNjZjhXO4AkgtUYs09L8fmIS9+ohW3KKZ4Q1oADVpamBB9unplCZM6GiQWI5A+R2SWhQJLi7BwXaqToevStz02SihutPbMXwz8zTYuezXuHsRqNtLOIeX303uOmu9Leu/HRGR8KjCil1/4r2SxrLVUrpXUapeKyCZZyQyk5Ey1HyrUSW4vkdZP3TJPLyne5TblkdKkyiaXHSo4iNgyrRP/rokhiYUaWHjLZ9rptW9qupdvt2O13VJVYeTvnQEtUq53L+eeQS3Al6l9NjcRDoETuwBINl89mchOrsiQbW2GbBMaS9EBISmjYtmMaZ8k5Z0AEQsvXTUfXdey6jm7X0bad9OLY7RZ2xBp71ktEKbV6t2SzuGmeGOaJfhiYxpH+1DOOw0L9xiBGUFXdEKLi+kaabT185RGPfvCzXL31T/n67/wmddPQNhXWVgyTp1WGJ+8+5b133uP1Vx8Iha0SfvY0VSseIwQJOjOo6Nod/c0JnRd6o6Vs0VSWUmZtK0twnqptSSEx9j3jODHPiX4Y+Pa7N1xdP2fXVZyOPU/feQ8DXB4u8OMk4GHynI4nrp9fMZ56wjiL26gxRBMxdUVlG6ytOZ0Grq6vOJ36XLEzchonroKj95EJQzA1U4QpRoJSDN7TjxNawUVd0bU1KsHs5g0rJzT/5AJTgGEOuAi2bbi4d5/XXn+dqq6xVS2sQ22JUaq1Vp2HlJUqRd4wDTHJRqm0RoVACMK2JWQzNdZgYiSmzbzM1+F201vKZDcMSnlMyKmBEpE3dc2crxfn5qW0ddWlZKfQLL4oJfLbsbCnUc5QUEq6bS/N+XJfllx2X1WWpmvZ+71cEzGgtaKqa5qupW4atKnwLuDn7DSbAXEIXnxH3IzzAiLmLDCN2TguZZORVDoZRmkhsLI4m2PPbMk0ianY7GbpLeTcUrJfxL0Ze7BaIOQ01PuMEsit6WYvAYG0f8r9ZyT17f3MPNdyTaSS6nICiENgHIf3fZ+7cTe+28aHAyOsoq1iI162WNkETZ5yIYOFtdfKqmAPGCUmTkkLBykt1WUyz84xThKxu0kErdM8CTUaxJQqRkix+GBoYUW0UCEphc3Ez3Rv/l2RpFmWUUsPjrqpqdsW2zTYqpIoKHoy7SO5+HzcLjh89FkcWxTvRgiAuPaCWIzCgocUlhx/KSEGLaZWVYOpO0zd0U2TiPSmeSljFAFsoq5rqlzxczgcxPp6f2DX7ei6ThT1WtIdOgsaUXljKWAkpsWAbRx7hrHn5uZI1VboG83YDygN85xISVO1LVEpqrYC4GOf/ATqk5/i9UcPuX7vHXBX3N/XDFoW8cEHbq57vvCffp4Hf+KPENKMVlCbWtIVzudzFalsjeksbhywVoSYZLFiihFTN3ig7g453YAAUy9ak9qKOPlrX3ubqCz9NDD1b9Mfj9zrai7bPbu6xhC5uLgkRo01DbXtePTwPpVSHI83jH1Pch604XSaGMcbnl9dc308oZRmmjwuJEaXmCO4lLiaTsx64BSkJDcqgw8SfTcasai3FXVtqSox3APZjByK4xy4nmEMEJWiqSteefSI7nABVYWpLHVtUFpAbklLyAYXMpuQU3wpoZJUk6QQKManJgRiVKSkCUFhtCJqK83zVESVxiYvbLIv2SSTAEfvIs4KQB7nmdo5Zj9TuWqpyFo6SsdsPqj1koY8j/bT4iwqc0Q+Q4xyCyoBhkhAZQ2mrSy7ix0YaFwrQCunLZumkXOdNKfTIM6lIZC8w80j8zwyzxPjPDDNI24WgOJjEaRnf6KICJViQifkpjUosZ0rctDieeJymmaeJybjcX6Wnkkh5HQPS/pZZc+SRTOyvFZcU6m3CpBiFEfl4sDro2Zyo7TESQHnasbRilFhkgrCtKSuI/0wvnwhvxt347twfEgwwsKEdD/wWbof/CxmL5Uyhx/4LPXDR1z9yq/kR0sIVgRxIa4RQ0xxqS4pCvQl+pompmlkHEf6sWecBqZpzOmZXMkS47KWrmVysuAXulNtIpFCGZdUhrWyUZSbrWxWpMsLCYjKolIflhxsoaRLTllrne8L2cX13GekrDpiXS5leKaq0LYiJsU+Ji6SyuCreCDMS9TlMitT1xW2qdnv9xwOFxz2e3a7PbvdjqZpxfMg07Yqi0NKrjpmQWwKidnJ607DiWHo6ZodTdXQ2IZnPMMog8ppma7pCCnxMJdv213Hg09/kpaITjO/9nf/NkRFWzWMlWPXNZyOgc/95n/KZ3/oe7m416IrS4oKHzy2aZjdhFFGIsWY0BmcifNtYBpHml23Jsuz8qWpNdenI947pnnATQO1TTy87IhY2jrx8e9/gz/yh38YHTw2aQEETc2jR4/p2gNuChz2F1mwGDneXDPcHHn+9F3GcWCeZp5dXaOD5+OvPqaqpLTWhcTz6xuuxonn88R7/cDTceLaO47TjEtRmC/AELjXNnRWi3FbJb1TQPY5FyGimcJMVAqlLe1uxyuPHy2A0lpLbSsiaUkPlOt20XaUK3WTwrhdOVGCAEkFrvOmPE9rvZbC32JCXuwVlXvq5OtznmbmaWJuauq6FhMy5xafi+KJs7xGZj+WqpqcBjlPq54/pxxH8e6oqorD4ZDfT0D6KqgV7YSbA8MwAWoNbuaZqdgB9D2zmzIYkZRkTJkZiSL0letDYZSm0uKpIr1oFCaLQqWUXhxPAXF7zu+3tKpYl0rRcyDAo6Rrz8qfvxNTskkXLWtZTDKnzIQ1snYVTdiaSk8M0/y+r3s37sZ32/hw1TRqXVAufvZnOfzMzyx/evgzfxyA61/51Q3E34KDdWKtZYV6YU8mJ31C+n6QCpq+ZxxHptnh5uK4KEzKqn/LBa5JUj+pNJzifNEuoyzqpUbfWCsGQlovi97SJXdpWicpmSU3nhX6KiOz1ddAGqjBWlVD9j4w1tJ2HU0rupSqbtBWrNWj0viQcg56zUWvYCRhq4qmbdntduw3QKTrpBzZ5s8BWwMpWWRj0ezElH0XJqb+xOl4zIJdjTUVVluOxyN93eO9o7K1NLBDANZUGa5U5O0nT6gPB1LV8vzmmsumous6etezb2q+9bWvc7w+8ujxgywyFgt3HwSw6dqKpDhXDMhxSQ8jk3UBWmuSky6qWknUv+92hHEixciurXjj1Qecro84H7jYtbz6oOW1RwceP3wFomYYRlyEIXpimKmbijE5WlvjZo9tLA+7B3Q1eCfpqsOh5ZUHl1L6HKRJ4DBOECpCcIxTpE1QxUgVE53RdNpgjaIyin3dcbFrqbUmRUdljDQOBNAW5xPHYWaKCafA1JYHjx7x+PGrqOxrU230Eov5VTqvoiri1Ns9X7YAvzAq4geyAnXvXZ7IGqXtplpsCwzOgUi5v4i2nRMw4uaG4MR3JdZxfXBOcZQ5l5I0RTxjXvLrLVqYtL73Appg2bzruqbrxIyu/L0It6GU3q9poq378TRPua1En3UdMQusfQYiOR2TpO2lVQaRnCiMtlSVpEDrlB1XtcKkotmB6CNO5Waefms2d64LKeO2Dbx6fyyynPstkIwxUgWfy7uzTqww1IV5UYnR3WlG7sZHZ3w4MFJMiYCn/6d/l7f//t87j9Tii7Pqtrui/FtytKVyJsYoBmf9wPF4ymDkxGkcGOcJ5wMhrILVEjmnZQETIEJuElcWttvHoLU5E47aUh1gLMV2OVFEb3EBISGGNQ9OXmA3AkCVedZteij/USLduqbb7Wh3O9p2R9uJpbmpGlK2dvbFDt57pty8rVhKG2tpmoYuW5TLzy63mi9AROUFK+VzG5ZFOeayUx+C0Nq5n4fKm5fRRtqwdy3jNKES7LodcXb85KuvwN/5m3zs05/madPwpa9/nelb34Bux/F0xaWpsCjapqIPHjUFfvNXfoOPvf4qLs7sdi0heqzWxBhAWW6OR5q6EgBiDE3XMg0jXbPDO4/WnspIHtzNLgMURZfPASrRtoZ7FzZHzHsu7+1oG0W7qzCm5t5rD/HkSgpl8OOMmxyTn9FWvtN5nhncgHczY3AMbmJMDj9JNdc8TZyGgWGYOPUub3aJtm5JdaKNCaUCGk9nFV1t2NeyQYQoDrRkxsol6H1gCIE5KZK1dIcLHr/2Gk3XZbAhbprF76LMm/U6OwfYRbB8xiSoNbVTNq4CRgTEhKW86tzTI569zjoyz5jEw8I5h58m5rrCzVJt5p10x12E4qWCp3jrvEQ3cpvhWVjNLSDRajkPpYvwFjhtj917jzHSt0eev1rHu9ktbOucu0AX9qYcK4DKzTaVsSirsUZTVZqmFrO3NkrK0lqVPV2KYN2JQX9YDQvPzmFKZ4HcFki+GDK9/yjnxmV3ZpcZkS0g0ZseWqUU+W7cjY/C+JBgZF0ki6bizBws50WX/OhmQd3W/pMXgVWUGjideo7HI8fTiWN/oh+y02IuVSvVAylIyqEscOt7n+dit0MvYETnjTc7rBZLZSObeUpR3FC3lTpL5MhmwQdtdGZQchOthS1ZOlugtaGqG9qdlBEfDgd2uwua3Z6qbqmaFls3qJzuKYBkGqdFUFqo+qZpaZpWdC75JgZUlrJZLIsh0lIcIsqLOFBlgJRqi1LNYjUf8qbhYyAqQGsqW/Hq41chRQ6VfJr7h0vMo8dc3LvP6e23uHj0Ktc3z3h2OnHIZca1MVRa8+UvfInjn/xZ2l0lVu5aEYNn17XEFGjqmhQjdW0JWScy5/b22phcHh5QxlBXlhgC8ySOoJW1NG1LCJHPfN+nqayhqgzdrqZpK0ytGWePmgYO9x+ibYXWFvYigHXHgTjPBKtwOqF3Lb6XvDwhSWWQ8nilwRqs1jR1izoo4ugYbkZmFyQCHgdUSjQaDtZyaBsxXasqZq/wITDnDWHyiVP09C4wa01tGi7vXfL4tdeWVIMtFSB5My1M3BaIlI146zb6svu3m3phJ0M0JKw0w80My8qo5H5Bt1I2qaRCk/jhuNnjjMfPTjRds1ynwlyWze8cVCiUdMHdjHJcK5vzEuY0rVv1Wk10HthsS5dLUFAYwiXFkQXh8yS6o7DZpLesQ2l4qQygIkpHASTW0DY1Ve4tZbVCkxZ3WFIR1N9mf/L3Uu67JQ5+MeV2/h1vH7f9vGWhiVGMBFOmVrTKhoj5XBQh/d24Gx+F8SGraSBtqEeV/ZPLTwK8VBS3EWfFKAK6lLz4RnjpLnk6Hbm6uuH65lqaWo0D4zTgvPiJpIAAkZxGOV+cN2V0rNHGEkHpkhZaG2qlTcQnhEIu+VvASOTMt4Tzhd4gVTpa5wXBGExW25VFs25quv2ew8Ulh8MFl5f32B0OVM2OpttjaynVle6fKTMjgWmaJQ+dq4/yR6Oq6uzzYBfKXjakTOsrJT1plq9BY0wu9XQigLRK4YloDVVlaNua4FtivEddV1TW4NzM5EeUNQJQgLauuXj0Kq8+eMS3lSVYS2xajv0NTY7Imrpi51uevveEL/32F/nxn/znUDFxOp3odjUkRQpxEdl5l+2yc9Rcqo4SgeAi0zjis2naNIw8f/KE/ngkpISuLIddx8VhnyujarrDBXNM6LpCVzXDPKDmiW63I8ye/uZIcgE3jLhp5nh1zdPn14yzJ4TEs+fXot1xwoAE55jnCe8Dxykw+kAfAv3kGOYZlSKt0bRG0RpDY6S6LMZIRDF6eQ6I2+qQDEFblNFUTc0rjx9zuDhIlVrpAqszGLm9sXGeitle39u/AblkXueeJWtHa2uyfXwyS9o0xUQh+bUSt9Zt2W860yGweADNzjPNjiZrnLz3KzOaEqQtSNBLmkYpdStpsawUC3uyBRdlvSnX+m1W5EWQtrIDW41KYU9KNd45Y8vqj6QUJCmFN0ZjrMZWZukODOK4rFXarGlpqV7i9ndW/r8RkJyvT2r58/sFU2c6nvya5VwVYKWU+Ndova6Ni6D4btyNj8D4kD4jKzMi5IdsdC+WA5aJVSKC5X8r2xAczifpHTFMHI8nrq+vuTke6fsTfX/aCMIQVkSSocuiq1QpEyYzI7lEL7MvZRLHzYYegzAy8yw+Jn0/CECxhhTBZ5vv7bqyfNa84CslmyrJywJVASlicy+IKrcWr2xFylqPbrdnt9+zP1xSdQJGqlzGKT4Ma3qobWfx/ci+CCXCWnUD5fOXhbuUQqqlyYZO4HOZn3gnBMgN68gVQzpFaqOJTQ0xUBlFW1nRA4QgPS/yd2gS6KSITjavm2OPR2FQjN5jrGxwOsGu7vhH/+CX+cEf+n52lxXdrkWnKPqCmBkQLWzSNE20dYOpDSlGpslhKyuLboo0VuOdw2pFU1U8myZCitx/+IBd19C1DZA4XN4nkjC2pu46UIpxdigDz589RaXEcDox9yMqJb79rbd49uwZ/Ri4uunpRwe64tnz68Xtdtc2nI5HFIpnfU8/TswuSXUOCqsUXW3ZVYq20lTGEhRMMTH6wBQUg5Pz17vIoBROSV+k/eUlb37ik9R1i7YVVV1hbLVsauEW0Chjqwu5ncLZplnKHCneJCl5kslN9xKEYq6lAJWrNm6lgsrmt9VzeO+ZjWZ2jmmepFzWCcMZchfb4j5qNpsnnHublMlV1gMdNajElg16GQNyvh6di2BB2IFiylaEraXcfWUmIikzCKTVW0WYmNKoLy3P3ZoLluPXS+fczKZQ0iR6sRagfMxNLuZ2WiZxrhm5DUC395fzVh4RN0Bke12ozEoH//uIUe7G3fguGh8KjJjgCbm2Xs0TehjWPHASjYUOCe09jFJWlnLku4gpY1zEmtM40/di+35zc+TmdOKYrd+HccAtAlJQEbE4VqtgbV2MkcZkFCAkHia6CGSzJXcI0iBuHEZOpxNXV1eklJjmGVNbtLKkpETctngM5MguR5plI41rwkoWCKOpShv03ECrbRvMrvTA2dPudjRdR7vfU7f73Cpcoiz5HCrnvVWORldAJK3hVx8G70N+TFjOQczm8UaBIhK9VCelmLBK+sLgPVal7ICr0ZUBb1B1RaVg1hArwzTNnKYBU4kDq7aymBtrefXxY6pDw3vzwPXTd3EhoqymqSv2sSWiePbkKb/+K7/Gj//Uj3C4t6Pve+raMvuZi3uXuHnCe8+u2zH0I1WuIvHzjJsdSkuTwxQkj3999Rw3O3a7HWBkw6ktza6lbVrmWb7zpu0wRuND4LDrGIaR2mrC7GibivF0wzxMdLuGaWrpT89JfqatLFEZLi8O2edmwmjNru1w3qGBrq7Y1Ro/B1QS74uuqWkqg1IJHxNRaSYXOQ6OwUf6bDw1ec+kIRhFbS2PH7/K/QcPsrOqVBVpo6X9e9YnbTeubaS/enGcA5OXgZFVOyLlwYU1ocyVzXPWbMKa4iCtzeDKfA7Z9twFj/NixuW8lN+DWKnHlIQNiXFh18rxFs3VGeigeHJs0zurNus2ACvjHKSkZQ5tAYkpInU4WzNeGNvzGLODaspsiT4//+X1yrmx2qCDFtAvh7Key/JdbkDY+dsWAPGdwcOWWSqg5DYztHn0GqjdjbvxERgfFIxMANp7zElMsKrTiXR9tfiOqBTRkdzUSzbCYX8g5Bb1Rhu8isuCOE0zp9PA8Xjk5ubE8dRzzH1ohmHE+4ALcy7hVVL/nyRqKW6oZSz/VpuUDUkYhMSyAJTOnzc3R+q6RinF7Bz7eaLpGmyucNFKbRY5Se1IVFRss8WMSS/5WSUuiGYbjUqrcd00UkXTNNTZ9VWqamqKkX1SZQMBUNRWeuMsJYcpLVFZzP4FSt2yv6esdQkXhPWojAajmOYRH6ViJTmHJlHFgFWJujLUqWYk4nTCqciUAsZCcoHayPn8ype+QPXwIdfP32MeB5699Rbj9Q1aWWKacd6TkM2vq2rmqubzv/k5fvTHPovrJ1IIxKDYNS3zOFI1NeM0M0cRqJKkfFQXQKeFpj/l6w0UtqoYnz/HGMM09jStuPj2/Uhdt7Lxxmzw5hzGWNqule/Te9w4MQ0d9/YHkeOCGwABAABJREFU/DyzaxpaU2FSxCeNqTr60fHs6ppdvWMaRg5dwzxF9q++wjhKysZNTjZTIyWeQVqP4ELCJRhc5OQCY4gcZ9mgpxAIpkJXFReXl3z8E29S1zVaKemEmzdoKQtdo+D1u12BaLnmi2Zkqw0pjy2b/FpBtlbYFA2U1uevq3VG9ZmlkzQJlK7QZeNb2wmsxmfeN0up8FZvtWg5Np/jNnAqz0HF5TPJpptWlgFeACPv97lvl+/byi69oUpas8yX20OYqbSkPrfgroA4rTW2snm9QByQlbgeW2OycDRJ5R/vDzGWSiBCftAHAySrdk29BIRsmbQ7ZuRufHTGBwMjKfUoxbMf+3HGT3yCN3/hF3j2p36O6Qd+YJnRQuE6/CR5dudnJhLJGKqQIIkGggjBwThI75mbm57r45Hj8UTfixeAc7MIG1GZwizRAAIECtWqsmHR4rCaSKlQmYmAsAlF4DW6gevTNaYyJCLTNHHZjxzGkd1hT9t02V69omQ8okLYGKUWTUgKCaKYcWkFUSUqIxEZsHh+VKYi2Ya6arFVQ1W1VFVDZSuKAZvETGb5bKUfb8pUK7k6AJv1MkGeoUGo/FzkE4tPghJ1f0qRJje/S2li7G/ws1SOlMiPJD1POqPZdYrYKKK3pAOQKtxkUP/0mwCoZ29RXb/Nf+FHvhf1w5/hq7/xa3x+eMaTq7eJydEkQ60qtIL95YGLriUZxRd+/Xf4I3/0J6QvS0g5LSa7XFXVWUAri/CpH4hBSpmTE43DzfUJrTXd7kBMkfnb30arlF0/a26OPffu32d3uRfzPAIpaUxdEYC6bfKGJU6rjx8/wiiNHwY6Y7AhEqcJW7ccTyPaz1SHhrqumaYKrcGajoTh+vrInJs4TvNMUprJJ/ooxmg348TReQYfCEkT0YyZlXMBlDY0Vc2Dhw958PAV2dSMpTLSLiAGj8rdprdR+jINyWBbJaTzwirE3Ja4bu9bAImJ6KhQQTrDqpTEql/wqqQ5dUJl3ZcAAtF+yAVQJiCkoPGzIzZBLOFdwDu/+G6oFLO3SCJ7huXXyOhGq/KCuTme2rznyj4Q2Ti1Fmwmjz0T55Z/A8oIe2esxdYVtq6y1sqIODqnjJeNXOXDyh16lymVtS4qdxa3egM+6lYE6FUj87xpqMnmii731EkZSOVrXc7LBl+qNQ2WMtuhKClZzsfLWBy2jMpL7gdpiHQ37sZHZHyoNI1vGkK3AyDudoSLC9C5qVOK+Nnhqxk3W7yvIARMCGgtm6XOC4CbfS7l7el78RQ59SeGYWCepT34VqSqlvCi+JakvOmknJhYdRW3BW5l0gNM88TxdASkn8QwjEzOMTnHPDl2B8dut6eppbdI0bqUnHNE3GIXvWyu8DFaoaJajNNMFsyK86XKXiZ5MTQmR/+bVWmTpilCVKVYIiulNMpAUGHtXRFlY1IqVyJkbYg1oKwmTJN0Np57jJrZtxFVa4xqUZnxSSCsjzWYXDVDDJnlCui5xfRPANj5p1x98R8zeUhao45HXr2ncfcarp/20q00GX7sx34c7RO//Ev/kNMwcHN9xeuvvcbHvv8Npnkg81oYrRmcwzYVbd3gplEEl9mbBa0ZhoHd/iAlpMGjtOby/n20hmEY8CkyzBOXCvqhJ8ZIncRV1+gKFzxpmmm6FvFJT4veZ+nyawwXhz1102KNprYKNzuC91zuduIIqzXjHGHfcnPsoTYEr3BJmq35BL2P3LjA83HExURKGh8VY24RkJDP1TQVr772Om3boZReHWjzLlSElC/XDpTy8axp0CoDc/XCtf9C1Ube/1WO8JNJGASUSzdlJZ2OkziRLnucLmBg1WYkpbKPR+6BkoWhSzfqLFIumomFZYly9Jq0bLgpv7NM73NGRd63sC1Soi7z4Txts372tPj6VFVFVTfSVLKpaXJzySH3R1rOaFqZpuWIlAKl0dqKrqsWVrPO32Xbtuy6PW0ra0nddjQouRailM8Xk7IllbLKSFYdzmZtSnkZuC3vXY5qw4a8bGyBiYAR9X4Y5m7cje/K8eFKe5PaMCFQYjX5/XbKYM1bpwhaR0ovGumGK3qGYRwZx4FxHMRldZsvX9bd8j4pMxYFgqwq05flk5fDzj+lE3BPigKc5tmtzpQ5Sto27tIml9yWXjSLAJRMqXtSCiiidCy+Vb5YNoB1IxBgI14I5TFrdCbHUFJN5XHlyeumklIiprBExsURkuQxSmFMZFIemLE2YmtDpTusqqmMlnOs5HiXW168VBa7qhTQYYK3xWH31cf3uHjzPv1pYDge8fPA5RuXvHL5GYZ+IEwOHRS71vDOW9/m4eNLTt848fY7b/PLv/RL/IuPfi6L+zyHiz2hVNX4wOl4pLaWkP1mQgh0bUsIgd1ux+wcddMwjqM009OafpjQxvLg4SMuLu8RvFu8U5Q22KoSixEFyXu5UmWnJwZHCA5tFHVb8fCVB4QYmd3Mrmtwuf+LmyeeP39GcIGkK4wSzwmjDd5HTFL0fmTygX52jN7jk5illdb1i/JDKXRluf/wIa+//jpVKYeu67P+My9LYWwvqCJO3F7zpfrr9liu5XyNLOkapUkqSp7GGILKPj1JqsJSFJZk9a0plSOrvkO6P0uvJh8cPvc0AjIrIEZnJf0jh5fOjr1c/0VPVo75dipHHp8BJImkNOQUzha4yXEWvYjYxLcZhKzl0+astHd7LMsxaYWyJguLW5puR7vf02YQ03UH9heXdLlvU9e17LQl5cBMdCLktFVamQpY9DNleShnZfmZ0tl9t8f7pWZuj++UHrobd+O7cXwoMBIjxFL7rwBTRGFx4VEXVL4spOps0Sy27/M8icPqNDFN0xJJwBr5KySiEHa2MCIlRVNYknW8LCJMaeU9QwgM00gKUlYaQlxcHM/s4e1axheyDbafJ9nUogcvNLSSAP4FIFTy3CGu0WDZ/GWx1Sz0ioatnH7VsYnsLZFys7v8WiGf6pBdLvPqplQAJQBF4amrhG0rrNZUGqwJGMIijhX2wUgqTAJBOU8pd2CNgRQM7FsAqkOLeXjB/mKHmi+Iw4H+5pp7wwHvIv3xxNNvP+Hdd76Bj577Dw/o9lN8+733eHb1DI0W59NaNvJ9U5Oi9Cma5onR+QWg1XVNSomu6zDZvdWdROD86muv0R+PvP766zRNQ9M0jOMkqZ4cXdrakpTB2g0dH3N6S0u/FFtXy/fRn3rCONK2tYA6ZTn1PTEl2v2Boe9xc2CcZmKQJJk1Fd4HQkyMs2f0HhdB6wrSjEIRYNFRKKPZ7fd84pOf5PLiguKbUVIpYdN4cZ1vt5rXJaQnU1LSiiSs/jflen+xsk2uf9GkaCke0VFKfFUCI0b2pAhGrDOMEdBQOta++PpS4SZtEsotLIBiNT0LWT+SU5GF2Uwb8zOtMpiStMhtUFWAQ/Az3k1ZT1Os79eGgNIqogRBYuLXVBVd0wogqRvquqWuxPjs/Tb0UrFmrBVGpNvR7g50hwvanPboLi7YX96ju7oGoO327KrVwj8l1s7A3q2MxbKYvc9IZz9emp55gfH6Di+WvtOf78bd+C4bHy5Nk8RWHMp+mR0PldCoim1fi3WyCACRjrzz5LK/iFC7YbPgnUWFsPSfKe8Yc/lulGTyhpVZj/E7RQ4x5WZxSf6tlWEcR9q2XYybgvPZzdERCMzTKJUfbib6iRQkN26NzrS2QilZeGIubSyrgOSfVd7wDeTqHvLvack/qQXUrAJ4if5Szj0r8nNzVZGKFqLLVQdyPrQCpRLWKGxdY23CmogxEauibI9KiPIsFMiQJ/87BXmDGCFaoCPWrWwjzY7Q7dEtaBcwXce+PVD1J/w8UVUKgudaJ8JsuTmNXFx0mOYNYkq89c23ePzqY1RSuMlx5WZiChgrlTHGaJzz7Pd7vHNcX1+z3++Z5pmmbbG1iD/HaWb2nsZWNI0AJWsq6cCqEn1/g20bfC+diA+Xh0W0qdPa78VUlfBPXmFs1lFosoX4RPAOlF5aEqSkcT4w9B6UJSaYnGeOUknlgCl4QgRlLTFp5nlerlFb1zx45SGvvfG6sGhKiYD1fSpitiBkeysCcAEv788GLleRXkXWMh/92evrVCq3NCZJI72IWoz8zmm8BCnkTVKu9xAc3s9nYETYinOQvgUZZ8xPEqAdo8JomezBe0mVANpLf5WQm97JHBdXXV0qhUpfm1gYRWkrUFeWtmlom1bSNHUtvVyMwXu/rhmsAGAVwFY02S252x/o9he0OQ3V7fbsDhfSRwnY7Xdc1O0iiUl5rcnYPutZNmxMCTYKmPgATMftqpnbJdi3gckdM3I3PmrjQ4GREFjAiHgxlEUOjNKiJciK+BK9xRCXtEzpwDtNE/M4SdMt516IhpaJJQGtZMo1mQ3J1Od5avWF527zq8vP/BgfpAzUl+Z9Id8y3Z2CpA98lB4cfp5w80j0sxh0JaG0lTU5ulWicdWFNSoLhkEpCxgUGbVlV4KNVARULqtM5fMVc7j8+CzOSz4JExINpIAm9yrxHkXEWKgrMWmyFqwVAasmoFSOhjcW26jFdFyYm2QheFBSKUJUKCOiPVXV2O5CRHhVIM0NWjc0lcGOJ6zV1JWhMorTzQlPYnh+Ayhiinz+tz/P0A98+ns/TV0bvPO4IHb3TbPHey+akSDW3U1TM46jVM44x3S8oW079hd7DhcHDFKCPc0zVsNwmnHecf/+A4yyJJuomgZQeCc9Stq6zvbsihAdCc0cAoObcGHm6vqK6+trvJeU4uyked40OaqmZQ6B4zQRkyMkGHxg9BGHZooRSdiJG6dPufw6n+G6adi/9gYXF/eAlRWRhnVhARq30xNQNm+F9EvyCxBZx8oovgg+VoallAOv5b7SZsHaomHySwkwsKRXmhB4dH3NfpplLuZu2NZWtF1H9+Q9Drs99/segP0Xv0DjZlRTQ9Nm/Xf2JNqG+0rJdNBKSs8XQ0Kkx0oE/ZUvy2f47c+Tjic5plceET/+ppTSaiMalhDENyWB0VIqXdc1TVuz27W0WTdS1TV2si8EQNw659LGoaHrduz2B9r9nmYWYFTvOrrDBd3uAAgzst/tFv1czGCsgMV5npfKuJJqjZmpK+7LZYFK5etccEr+3jLSUVpzfgrv6I+78f8f48OBkZjIwUE21BFqtWgttjcgp2UyIzI7pmlmGufcBG7Ge7mJjXTKDeZyRJh1E0UnsvIj+f8l5XxrMm4X4ttR47JAy85/hmWE6s3gJLs1zi4f6zzi5pHkHYpEbQRYKAXaKKrKorJfBIDOzc60zblno3MaYSswIx9D3LAhwlXEvDjGWM5hQWXZpj6nbYogOOXqisoqbK2xFmn0ZVJuN46o+hd6u7xTNr3Kwj8J5TJXHxMpOrTy+dxFlAViTjNpA0bj04RVIlbU48j+co93Hnsa2DUN082J4MTf5Stf/jJNXfPmJz8mm7HRDJN0zHXeEeNAZSucc1RVJV18m4ZpGHn4+DGn/kRbNySlOF5fM44jTd1wfezZ7fZcNjV1VRNiyuyDsC1GS28TpTSTmyADTwXM3nPTD0z9wOw9EcWcOzVHFKpqmHvH3M88v+6ZvSIpS1Aah2IIgd7HpfIqJPDB44JUO5Wvdrc/8OhjH5PNMPcrKg6aIQRCii+Aka1JmLCLazqkAA+ZL+cdqbdzYKvFkNRjBsOAc9nzg+xtEzVGmUWRZZTBhpk/+fkv8md/4zewHyCCB/ixv/JXP9DjPsz4/v/J/3T5d2gbfvPf+/cIn/xknuM6gz5ZFwQoGeraith0t2O/27Hb7TidTvTjCefdC4AP1jSNtRnMNN3ST6oeBgCatqXrOppGqml2+x0Xh8ucAt2WNueO3mHt8Ht7vGyNSryovyvr2Tas2jIiZ+LVO4ByNz6C40OBEbFul0nlQyI4jzE11ohoMKjwguK7NMNzs2ccpXvmNI3Syts5Ke3MG6LKEcNSo1qiAyVMyJLWOEuqnvsY3B5Cu6qz37cU5javWhaQ4vzqnMPNk5QqTxOKgFFKSiCVxlSauqlo2gZjKqnaAJo2l/zVNakxmEqRdCDhkehTaJEFF1HyyQVwyGYTfCQESaOkkPtfFK1AKGmxiK6keZetwFYJYwScKAJJZc8DxC8lJmEqVBGKrCSU/FMV0OJQyUkKCCA5uSmbdQaQkibVFYmA9pGq61AhESZHf+o53fRUgI9BNjkX+fznfhvnZj71PZ+iqg0X+z0xRmHWSEt64HRzZNftUUr9f9j7z2Bbs/u8E/ut8IYdzjk3dt+O6EY3GhkkACYQIkgxChQhj0SJlMUZqazyjEpVDuUPHmum/MVj2R9cHntcM7aqrJGG1hTHGpHDBFIjirFoBglAEyRI5EbqRqcbT9h7v2Elf/iv9e59Tt9u4FIqCa06q+v0PWHHd7/vWs96/s//eeTzcI69/X3xqPGOMXhigm4YqaqaiML7xPHJIdZYZvMZe3tzXNeDtbh+JAbPOAwMm45Z0+C9Y7XpUaZijB0eTec8PoE2Fc4FkrKYZoZ3CUygH0f66KUkozWbmOicABeUzn4jAR+TaFIy/rt69Sp7Fy6A0ZObZ8ploxCDAJe7gJHdzCLRiGxLHPI42w1AedzCMJTzXaHQVhGUxqssHFa5+yspUjEIJKERgatGE1FUIXKh22BT4rff+EYO22a6dozW2LqaspIujY63/Yt/yZe/93uIB/sY53npfd+ObxumzhI4db3mJIYpz6kwFCnIhmD+3HN8x//7H/L7f+tv0j3yCAcvX+e9/+XfI914GXftGsZaAcZTCVS62CprqJuadibhiov5gnk7m8o14zie8mzZnR+MMVS5I6eua+nIqWtsVYLyKqq6pq7l57ZtWe7tZXfk4geUtkAzBGLypz7fCVxkdlLK2nche3cmq+194CwguVv55rxOcz5eT+OewMjoAkNub5O0Xdm9KyMTsbSwhmliLFRoCJKQWsSq/TCw6Tqpqaft7m83aXTKuykAZPoXkKIHxR3ybkKv8pjyrz51s92ulFdO/hKRrpTexqXn/A2rErYyJAW60lRNRTtvaWctVd0wyzXkuq0BaFtDaAzGJrSJKO2JacDHLQPEDhgR0Wgu04SUO06E8vXe53yebV1bqwTaY22iqkCbhDEBowWkJMS3IitoZdKWB2AqFe3urEI4dVy0qaaAM6GPw2QZrqxCaYtlSUwK5aFZJJRL2EbadBfzOSkqKltzMgS0NZysT/j855+hnc1oZzWzRcNiby7MVAiYVsIAiQnvRrQ2qJg4PjqmddJl04dRSgStPP6NGzdQasP+/j6Hh4dcuHCR4fAIoxRV1ZJCYBgct27cYG9vifMBpRyQqNsZqW5YrTp8HEAbqrpms+mJSYOu6ceOcZDwvCHB2nvWzhFQ0kUzBhxqYrJiWXi1nqLdrz3wAEOVc2kyK1LARsyeHOV62f19uW5C2JZipGPEorWdrrUiui5A5Gy5JnmyPiPlkqrJPj0CBIyaYOeW3QynF7ebe0tuLRe886/9BG/5kQ9x8PDDKK35jb/zH3Prmc9TdaLpWF+5TLh0kXp1wuED97FpG4I/XY4t3OSkoZI3NwHt4CUN+GAuAP+F5ZLV5Yu4rPUYncO7YeoEk0ydlAG6ntintq6Zz2YsFpkdaVrWTUvXiabo7HyxezzFy0YAn9F68hEqFvFVBid13bKYL9BKESYAWVKDM5BMkrRbLNxPdfCUEq28iFfOY7y2Fu7Vxjk/cj5eT+PemBEXGMedyaB3aKUwqsIYhbGGEEzeEW4dQ8WGXfQiY7b7ds5PqP6sq6TWmhSgdNBMQyE6iqK3yC1+r3bVvaJlT+1c1AUETBN/8UxweZJJWWAbtr4JRgCXqTRVWzObz5gtZszmM6q6ZpY7T9q2MCQVvjFUlcIaiZuPaSAGM5Wh1BlARIqZ/QiiufER7wI+OGKQBAzp+Kmzq2bKZZmIVgmtIlpFSAEVC3oRnQQoabe028l/mvty2FcBgUkbApakLBUQtYgGE5KNU7qCVKOk+yaASYp2Ccl7Di4O+DGSosL7NTGO9Jse7wKbbsNnP/s53vnOtzEOjroeSTpN3Rvr9RprDMNGNAqztuXwWPQnwXtUZVlvTlgslsSQaJqGWTsnxMh8LkyLuOEqgg+sVie0VcPe/gFaiS+Ed6P42uTkXbSwCk0zo9v0kgycNON6oGnnrDfH9EPAJ0XnAi6Ci5HRB9Aa1zl8krZTlUWUGMOskQVrsVww7JyoJbBt+uzZYUKcw3lHPwzSyZV9d1Iq5RYrIE2p6VrbZUVKiCJIvHxQeeOQGTEBG2oC5aW0IY9VfD6YGMVyjhTsbOuaZ3/vd3n8u7+HvQceyPRGnK7VkK8l7RzrzYq16+T9hldqYuL20pw2LtEV3xKPOZaOlfXqmNVqxTAI4Nl28ATZmmi5bqS8JI7PNrf3zmZSqpnPZ8zmc5qumcpZu0MpEb6Wrro6f1krIYbFbdoonY+1TJ9N0zJfLDDWSLmulHmLPm4cGH12dn7lJJX/PV043urmhDLZBSNpunbvXpopHY33Cl7Ox/n4tznuCYz0IdA5QfZ9H3CDp7IGX1doJcZFylboSpJ5ySxCTEni1J1j9CNDcHgiXolpVLmNlGKyRlOLa+ZEPzLNmzuXbBYIlsn0LruKtCMKLUNahhMQicETCfgwEuNISrVMcKp0AGh5b1oLG1BbqsYKdTuraecVi2VF3VQsllKemc3ksFZNjWkqKquxOqHSSPKeELNPQvEJKXXibKIWQxJmxEsXkneOFAMxGrSqSMHjXcdsZqnmBmMjSifp0FSJlAIqjiQvOz9lIJFdN7WSULKJKdkVs2aPkWyJT0oEZDE1RFyKaF2hkQyOZBpSlUtAUQTNhEi1v8fce/rBYU3FODrUsBZB4P4Fgk8c3Tnk85/+Iu/8prdxePOQZt6gjOL4ziHDONC2DUon+q7De8v+3pLnv/o8i8WS5eUDLl++zDA4lvM5ar7EVDUYxeHRkXTPeM+tW7eYz+dobSUYTle0izkher7y7JfwbqRWie5kjeuG7LzrQSUGN+BcIkTR1kSlSFpyh4yxED3dMBJ0LaJJo3AuMDgnpUYrWUDzhZgEBi9tuFZbFKczVaQkF6RjJIP2YRzpncsJznItKK2oqppa5TA2JW2sSosnhsnsiFHFwC6JnwiieZb23QheriKtE8bkzw3xwJEu3wxI9NkSqDAPf/jf/ENCitz/zney98ADSMN9nK6zFB0xDgQ/MmyO6IzOHUpe8l6isBcqaz30zqJaWIVhkA6d2UrAyNh1jN0GN8o5HYOIelOpdZZASBSeHNdgKkzTUs1mtIs5zbylmdW0dUNd1fSmn7pqEgWMWGpjqSpLVRusleTeyppCEmawaaYNV1VZ2nYGSjOLCZ87B4dhYOilxDsOA16NlKJpmdNE8ZoVL0oTOQMgihTmVYDFXYGIKjPl+Tgfr59xbwJWL90LAIMbGfuByibRjLQVOrs1GmOwlUUNanIZDGG725H6d5gm5LPlku1Qp9B/oXQLpfn1XHMCUvSpn2XSLBJSpp1pmZC0kUlJlR2W1aRksZWSXVZr2a8q7r95m4OXX2LW1tjasnj+ZQD2XnwBgIMvPENK4u1hspCVtiFlbQmZpt5qYeQrBfkiRHAe5TwxJFQyRAwhRuoH7se8401Yk1tTlZSyNBGVPMn14EYpq2hFiAqSMCrkNuOicSjHUhVTu6inytgkRh490Seoc0lOSZkmkcBYVNtki3GH9TWz2Yy2adgcd6i64dHHn2R5cBlrW/zgODq8w/Gd6xzfOWK2bNisey5fucQwDCg8Cjlme3t7rE7WGKW4euUyISSG9ZqwXDL2AyGIW26Vy0/WatqmJsUaEhwdHdM0DXEYaZuGbhhwQ8+8bsFW3Lz+Mn3XYVVF7wI+weDlXxcjJ5uBvveMzk0iU+89/TACinHMCctJT+2cIUWST+zN93j00Ufhj/5oxxNES/uvTvJ4IYqpnpd4gn6UBUyYRMcwiLV/YUSMhmSLVko+A9FtVdhs+rYrbIZSLppUQVud0KssckopATRKujh28Ui55PTObycgkkMbY/R4N6LcSLdZs9FKdGKTTkOhMxgxRkCU3C9mrdaYc4AcfRaNOufwzk0A/pT4NOvIysajbEys1dR1EaI2kp49K7qRavISKo+xFa/a05qRLDreMkXFKl5+NrkkpLSAieikvNt3G5q2oaormqpmtFZa0He8W1DkTIkzLPDOEb+bJu5riVTPocj5eL2Ne/MZCX6qs46jYxhH6kFhTY/SiaaWhzsFIGLK9/OTdbS4NobTNeQzQKToKXZ/P1GPU2XmNBr5WrTkVD/f/V3+vVZSEy6TUds0wlA00mWTUsBazXzRsq8T7/rd3+XtP/0L6Luo5K/9w38MwEP/x//86zuwf4oRZy397/0zzBsfyhqRBCqiUoDgSG4gjX02gtKgK5RtQNvsYJl3lSoLWtn2JMSsMlRp+1nG3qOSImlNtDbvZq1Q9yaBVVAFqCy6qqnrFq0tXmkWl69w5eHHmC32GXrPuFpTW4slcHJ4TFVdwofAydGG5WKObRSr9QlNbdn0Pf0wYFRF3w9YW+PHgcMbt7BNw3q9oZkviOs1s9mMy5cu4UfH8ckK27b4FFk2NTdu3sJUhs16hes6xq4j9D1aaaq6JfjEqltL51eI9P1INzjQFZHApu8ZQmQsFb4cKueDGJ+JNEeE3DEEQvTYqmJvbx8QjdU4eqpqJFEjEp0CbkKm80f6ftyaAboR7+UasdZQoTEBqiTg0gWFDQoTFT4qCKCzCKSUVESn4PP1lq+5HSZxKoumLF5NWvQjOwLLMoofTYkg2P6eU7v3GCLRe7wfGYcNfUr0Q884OukqSUqAla2INgcDakWKZdPiCH7EjdJtB8Wrg4lFMUpPr3ESvRa92Y4OytrsxNq201fTNDR1Q1VVU0fTpBXZ0YtMJoj5d2orsz3VNWizk67WmpAifhi3z9kIC6OtyW25pTxWyij5eO6IV0/Ng6h7BhaTqPVcNHI+Xkfj3uzgYyCGHIk+Orp+oLIq12g1RiuMyerwEElehGgl2dN5x+BG6Y44UzMHpsmkfC9eJacnvsKOSN00i+BI08Rw95HBzLSb2Snp5MmhtPNZa/LuukHr0iYppQ9jNLN5w97YsXeyQofAjQ99P+naFYxR2Jt3OPiZf8bq+76T5a//Hsff+52kixe2G1Ln0D4wfOd7UJm+F18KYUbKtJOCmKgVvUoIkRhKO7Xl4skJV/6rv4/5yEdRJ7dAByTjQ3anyQ8oP8I4oEIg2gbbLqFekkxV/NTIIcFCEysEyKT8OGVy/Kz4PCTnqKwl1DWxsnLHVKNSZl4UqOBQ1oLWaFMxX+6xGBJ2/xIXHnwEpSy1i7imYa0C+AusjmB1eMLiYI8weFbuRMoz657jsWf0I+PouP7Cdck+0QarFbaqufbQw8wuHNCtO2bzOclFhlVPv95It0xIzGoJyjs42KPrNxwdHzKu1lSI+VoCnPOcHG8YBsdqtSYmaaNFW4Z+xIeIrWqGNOJdEF0A0HtHADxCNKUEXSduwtoa7hwe8cUvfgmQLJ31ao1CY7343BQ/CpdLWgJEBrou0/rZzVNlcWwiSSt50NioCUEzuERIAeelo0qSYxU2xw5Ipotn1+F1t3V0F5CoJExIUirnI2V33jOlGsp5w+6322s3Zt0LwTP2PX2UtGzvPSkqNJpk83MZ0U+p0naUAbFKmRlk+zqN2ZZGlDntoyKidzE+U1rSmxUCFJq6pqlqZk1Lk5kOARl2mjd2xavlq3jBbJ2Tt5usch/glE6nytk0269aUoNzK3sBIVv9x65o5vRxPfX7M+Psa7hbueZcM3I+Xk/jnsCIUtuLwPsgniGVEcvxymAN1JUYKHnncifAyNBvu2iK9Xs4U6LZNWaC/Dzx1S+uIuiKSdpYz+6IXu1+5X1M37Pd5VTWCq1bVdS1zSJRg84TuzaKpqlobZooXv/IA8Q3PMjsO76b+VvfDf/9fSy1Jn7/97P/679+1+O4/OXfuJfD/qqj+Vv/27v+fnc+M6/xt6/3NmnW4OcNNtuHR6OIaAxWurCpQSdCGFHGSIlFG2zT0iwSy6v3sTi4RMIQRyf29ARMchA9q+Nj1ocnVG1DjI4Q3eTuqbSApsrkZOOkcN3I4e0jXnzpBvtXrrA4OGBvb4/lbE4VDfjI8ckh1ayFShEVNJVlM/ak4CElnPesN2sRAmotLb+DE8HrZoOpKlQMWGs5Wa+zf0hkdAEXIi5I+7kyGjcOJISd8EHKRc55Qkq89JKU7lbrDauTNd5HqnmLNZUcj5CDI52j7xz94BjHKHoVL+ZmSinqZFBa2pdHl1A6opTHBY02QQCIEeM5oyOV0dkOP+uQooDa3XbTVzt3ToOQ3c2AfHP/u76Jg0cfYXbhAgAPfNu3c+ENj7L5hZ8FBAD54FHe493AWFxaveiR2Gm111mAqzMo0Vo6V5TSGKWxuVV2t2MIZGOhlSLFLFxNsmGQgL5SmlXS5mvMdF0XvYgk+dptPEPW4EyxDTudSXezK7ibRwmquLeWTpzTHU5lM1QYSSZAIoBTqVfOVRPISKd+OU1id23pnT7Mc2rkfLx+xj2BEaO284jUuqV2bo0S50+dw7FSFLfVYWAYejbdRvxFetnxOedkEjlDr+5eiDEbb5Vxtj+//I4dgARbkPLqYtbTj7HbCglJdBKTxiTlLDGZYExlsJVB+3660CWvJ4K1jJ/6I2ZveDM89hjH/9MP4d7xqNSws9GU6gfsumP9Q98FezOpQStEWLgTlaqQdGDR1khdwLtAiIqDg0vsv3Cdxf/if0f4+/8XeOtjKJUFjkkYqRAcxhpU8rjVCTFE6vkBenGRZGphQHaOt8x1MpHrHNQXs+133HQYArGFOA4YlUhaPB2Kxkb4cwO2RtUtuh3xvYem5cKVBXv33Ydpa0JA9EVpjlERwoCOHmLk+PiY7uSYmDxKZzM4JX4TJlPOyhgRc2JQQbFcLrly4TL1bIZRln4z8NWj56jI+TuVAaNY7C9oZhWMA21lqGYtL7/4MkYbVsdHxJjk3Ow9XTdA7sIB2F8uGdpA5zYo26CCIkWPjx4fE95v2Y3BBUDjvLRx1tYwZo3V0Z0jDpeHNHNHPXiqukHpihhhGJwAktEzjFLOcS5MJUljDDpZTLL4aBmdJqTE6BzKBDn0RmO1oqk1dSXXY10pmspCTIS4LdNsE7HTVKIBAX2xXFc5b+r04igM3pv//Id46s//+em3b/3LPw7A7/z8z8g1kbYGgiVIL4WYgc62lb+wLymlyY1YFdYmJZTRuStKhMMqL+zl/vnJcj1qK3gvJooT62OUbJas2LxXpspCYg2pCGlFEBsQ47q0M1/satvKUdgVIE9zUdp5Tr1lnASQZIt9rU+J8V9BOqVtie3UyKXTV/z6LuLVsx2D5+N8vB7GvYERoycRV0wR5yPD6KitZqg0lVZYJM1zHAb6rqfbdPTZ6Kzv+yz4C6dAwdkW3FK22P0dbHdqu/+eFX3tPu6rARJgEuZNux61/XvKk6kI7SMpWQE9+TaV305MMZdTjv5/v0Lz0g1mP/634bHHiMsZ/sH78+1yG+ymQ52s8G9+knRxKer8nLcDMZdK5DnEZ0Tae0GRQqKpZrQXLqM//Yzc6C1vRH3zUyidiN5PgsQYE6apUQTsyRHD6oQ4W6KXV1DVHBhzOQZ5rymKjiSKH4IsSWJuztEadesm3LqOu32H5tJ9KB+wykjgmjaopCFZtG1Q7RKCIjkgJEzU6EqjaouKCY1CmxlUidpcptFRtCrRccJIP47Sthk9xijQCLWfpMMojiPdeoPWmgfuv8rlS5dQOdQsfyAYEuMw0G1WhNFx+OIh2mrqpmEMnq53AqqVou8HSAqFYb3ZsFr3LJYLXAoYrSQcD0XA4FKkHwMnm57RJ8Yg578PuYMiBIzVuOClSyQkKfcAh4eH3JrfZj4G7OCpmxnGNiQkONCNkX6MjE5YEe8VStnsbWHxsUI5mxmYiNZePiMlYtjKSjBgWylmraGtNaHSxEbeRyhOoCVOIZ0tf27Tf0PMXS9JwGC5xOSyTPz2/+k/47f+7v8BZaCuLbNZQ1NXXC7Xb/AErzG5xTem3UWbqUxUuohAQEAKci05J148u11wZopeyDzeqet1+/qLgLVY35eSrNZaHqOSVF9zxi16Ah5Zy7bLIJWv7es5LbafDuOZ6Wb6MRW9TeLUQd/5+3SfrGlTryJn/frHGev983E+vsHHPYGRgu4BUEpo69ExGEVdGQalUEHhg2Oz2bBerVidrOg2hRnpCU7U5LEsgjug4SxLkibgsbVInszQJmb0NF25O85SmKfqq1lMVkbMjo/OjQyDmW5vqwptDNbVk7redA7vZGIq7qAkQ7VDfafSjgJ5h1neRUQC6QpLA9OWCKmYK1IGfUJFGW3RxlLVc2xlYNpdbgFbSTnWaJStUKYm+QGUdDbp6GFcEccBokOrPHmT0MbmHWmA6CemRpHQYw++R/mB1YsvYS/fj1oekExFaixbQzkFVAJ2FopKKaJK+FWP606oZnN01crtVUVKDcrXNIsZi77F9RVuNKRoCTrhvSyKZD1SQhGTBBTOFi3DOOKGDcSRxla0bUVd1VmMm0ixYf/CjG5zQr9WdOsV7qTD+YAfI0ZXdP3AatUTQ6LrA6vNiE+GzRBAKxyJfhjpR8dq6DneDNxZndD7hEuawYnWI4aSGGu2O2pkQRyz4Hu1WnN4eMwYFHaIVG3E2IDWNcKmREaXcA58UISgsn5DC1D00n3jY2Dw5RKQ3bwCqsrQVIqxhuANcWaJXhiiqrL5XEnTuSKC0O2uX7rbPCGK+3BZlGMK+XxF2Ifc7i6bAQnK3HoabwF6ymF+PnjpMMliTZJsZMQI0WFSIgSL8WIC53J517lxmgPkXBeWpDAlu+xmAVFnO/JSSlM7bhlKCfNZROt3m3tCCBkUuSnQ0zmHD7kNeJqfpolm+qdsZiZGpcxzmZFKOdbhbjChnDvy3soLvssNv45xtovwfJyPb/RxT2DE7rgQkmQScC4wGKgHjUmBqMGFkc2mE0CyXrHZbBh2WJEY05mdTTr1/Zb+LF33ZeIptVJ1CqicvWJf0ZWz+7e4bestfyuW25Kf00t6axb9iaGU6EdEkGZxfc84DAD0/UjqHamJ1OEspZ2t7qeadEFQRQJZbi/fywKzTR5VShw8q8pgqhm2qjA7JfdSfxYq2ki7pdJgKgmnCSNRK6raEjdr4tDjPYx3blMZQ9W06KrOuTn5eMYgr1UDWqOcJ/kR40eGWyecPPNFLjzxFMxnKFWh6pz2G7SIWW09gcWahI6HrA6PqVHML12BakYiEnVCVwbTGJpZxWxWM/aWGBUhGqyJdN2AGwNRaWyOHbDGYFvL0ixQKnB8dJsYPVpFjF7k3a8FVROjBkaS70iDkVBGF4jdwJ3VEZ0HsAzeserGycysViIsrquKvhtY9wMnXc+qH3AhMfpI5zx97hBTSmh4o5VoSXLXRQiBkM+xvu9YrVa4mKi9ovZpx5m3IgZwPhAipGRE6KgkN0bagaV12DkHyssmOwroSQRqa3G1IrSgYoVR0nFSeYM14jdyapEskQNxu/Mvi24IHp9b8bXfhvLFVHKTgmh51LbMmaHRdI2Jo24UobqWjq1TLSPeEyNoH1A6J/PGOD3vVgOWZwCtTjEZ6sx8IZlNAvRFByYaFEmXyCCqZC5lQLbbiQPZrKzMBRkUeeeyAN+JgBrJ6DqrGdkFd9PrKs8T004Y59nSV5nB1OTcu/v7r3ecZYJVAn1epjkfr6Nxb2DEaOrSm59idg8VUV83SF24jx4XRlarDcfHG05ONqzXGzbdRnazIYgx104Z5hW11+n78t1pmnd7zZ1mRV4pVC3Csww+UkQnKU1oo/P+TjQuPnqGsUdtZPepkHRf2HbamMpijaF3jq4XJ8hhGInDCBi839pLKyTJV5hdAV9KpemL8i/bLhqpXwvUmiZ7pbC1kSRSbXLHUr55bgkUK37LpDos3iBAVOLl4Dcd4c4xsRtZ3bqO70fC4GkWc5YXD2iXM2JKYqpmK5TRoBOKiNr04AKNc9z89CdRMXLhTU8SiKg0k4k/aFCGZK0AkvyWzIFioSu6o9uMGur9A5LWhDgQlQebiK2h3W9JaYYyjnHoGYeEU1EEyij8OGK0RRkxo5rNF8xnCwbnSSkwuB7rLegaHSUoTRuwbYUZaxrXsPGe2DvwkWH03Dza0AdYdT0+JIYxMIwBzEg/jJjK4n3ER1j1I6t+pPeJzZCBSAokbTDaULCy5JAI85aQriiAcRzZbNaEmBiDpvWRqkmYKqF1JCmTDdbE/2Ui65PCi62nfKK5zKGUFoYjlxSdHglBk5LBaKhrja0qrPdoI+eMXGue6MMOI+Kz03Buv8+sQPBhuh2711dhG8mnGzul0p3bxSTMlneeZC3lzI6ZPfDJiVHZziVbAFER7Ra7dWDqcJm0WpDZFiYxfFayZvAkycuJHHoYcxkqbUuTpCSHtICtKCBs9JIwPuZgTzc4RusIvpi6if4m7YjtU8obpwLEvLBLIWcKhV0mOH+GhUxK+diVMvDO7EgWxU3z2e4ct9tBuCuyncSy56KR8/E6GveoGTHYIijLF0lMMI5i7e60Aj/gxoH1+oSjwxNW6w3rzYa+73HBiyEUpyPTgVOR3tuhzvwrQ26Sl+271WBfMYoQIzvDpoRKKftqyCQWo1jWkyLOjbJL81vLem2MgBFrcyumgJG+70l9z96Tb2f2lgtw9SoAzRvfgr10he4TH80AasfXwRhpf9VMi9iuKYDSogUQ4WxNVc2wyooXyo6IuJR7SIakLEpl2kS2jYToUcZAVKgxcPKV57j+5S/LDjFEVndORLBZaWYXD0hNS1Qt66TZv3SB/WVLbRL7xlCFhOoN6nDNy5/4DG21oHnwflhAqirQFmWViGeNBdugTAWmxjYNixqx8h43VHXDtM60FVa1RDNH00MaOQk9w2bE+4EYBIhoDLZKzK3FNA1tXbFoG/b39qGW3zXtTNo2c2tnGBxD50i9Iw4DoeuJY8g5LZbbR2tunHQMIScYh8gYIj4qAonQh+wc7OnGkWHweAxjiiQFRhsCsogZI+W80bv8GWfGIAPU4D1u6LMmQENMRB8wTcRUc7RtKUZ0qnRapNyqqrbaCCm1gNJC+0tTdyKFgHYCOmrnGUZNXWu813jrEbYmnCrBiKW6xzuHd+L/I4DA4UdH8tusJIDKe6xzmRFRVFpRWUXtoEoRk8W6ehiEJc3sCHqrT0kpMywgJaAphTpOry0VHxK99fZQuvh0mOlxfDZAC0nKviXZOhekMmhTE6MTomTfhOwblCLEKCWRhLRIh+inxO6+ywZ0/YjNwYkgzMjk2cIWjIBseFLMx9gX1ikKYDq7aTqjO9kWuthikDOMx9mxq7vbnWPKOXM+zsfrZdwbM6I01shddBZa+RCJ3jEOiZ6IHzeMfU/XrTg5OeHk5IT1ek1fWnpDILF1USyg5GzttozXLLl8nbebbhO3zzXdJl/wMYdzOaR2P44jLr/eIoDTWUSHDyJ8BMZhIAw9F7/lz3D12z8wPdfiW78bgOFPns6/2bYLGlORdJVJjDJ1Bopw1Bih+q1tqasF1rRYlevmu22RuUyTkhIgoioBIjpBkC4VFQMMA9p7lHf4kxU3X7rFydDjRo+KBqhxL49sZnNuD/Dbf/iHXLxwwLX9JfuLlh/8rj/Du558EuVPWFyo6Y9PCLcdLhyhH1CY/QXRSHlH6YqARlcVSlfS6lvXMFPUw4DyieQiKgQYHPQjjCPj0DEMPSF4UvQYJd0oQ9eL8VdIpGBJvqdRHlKgqSqUBpvA6AqjQu4USoybHrcZWJ+c4DYbxlVHt+pZrwa6LuA2gf54zeFRz6gbQki40RFVwjYNLkUGL7tk78XwzadcaYhlpwo6RYzWVJWSkkwuW5zVL8QUcH5EDfJZFQOxCpO7OSQpWGe7+C1lkHL7dJpEkIkkbe8pbp1Qk3jRRK8JTuGdwjuNt+B9USIV75pAivJ6fA6k8066XnxwhFx+Sl5Em5tMxbWjY2GMgBGjqUlUBKoqYLymyddE1Y9oEsdWywYllWgFJUqkHXAQ/RaEFDAR0RJvkO335VyXWIbdeaKAgZJRQ9ZNnT3+u2WorSA1Zq1P9kaJkusk2UB+6gbs+55+6NHWToaPMW4dpMsUImzMjgYnsyclQ2dK793tynkFWHgls/tq425z4W6ppgCS83E+Xi/j3gSsRmFs3qkY2XF4LxduDCMpOMZuw9CvGfoNJ6sMRPo+p/zGSdQ1deXs+Iu8FhC5289nx65g9W7C1iKC3b391KKX67tiDhWykM5Nk5XWGhMM0Qf6EKaJyTmPGzyf/8m/x53/53/OU//tL3L9f/nXSG94kJJkrNBZV2CzfXcD1UxekXKAQ6sAqgflMBpUqrB2Ji3FqkJrn7t+NFMuvdKAAWXF6ElZkkpoAoSAHj2q72C9IXUdldXs7S9Z3VmxGnpUiqigSbZhVPsMzWXU/pwjPoveaJquJywVDzz4FuzsIpvDyKKaUdeJuHa4cMztk+tcfeJR2osXZcdvJHo+FL8IY0lGo9oL6KpHDx6lBuiy7iF3KWhjqGcNKjnwDdo7Yj+yiR4fHb33rMfI3nKB60G1mm5YkVTAKUdlE8okunEFAcLocL1j49b04wmj37D2JxwPG3oPYwjUlWN/zzCiMKZh7DVjjPRl0VGJkAQEeqLopZSUCkKQ9l7x94DKqGlBymjiNEBG6H3vR/SYWS5tidoSFVgV0dQYJKRxwsppIutPnbdbXUKWk2ZnVUwkjoFQR8KIgBEjXUyJrX5imy5bGJGiE3E7i2bEacUf3neZv/DZz/OR++/juQtLtFa0s4r5oqVta4lDMJpr12/y3o99ik898RDPLltOhoFR622HWGYtJIJp27myfT+Z3cjtr2I4lqbrT+0aj8XducNvF+P0yoyqu3XHxBQJpfybGafympwTd+l+6Nl0HV3XYaoKn5mfOBnIlfuXktppDUsBSVNL9Rk2+Gw34dcjEnm1DdlZL5TSXnw+zsfrZdyb6ZnWGF1MiDQKucjFT2RDcAPjZkPfrRlHEextNhsxOgsxZ3cUH4AzLXVnTNBeqz33buMsyNi9764AL2Q/jrPZOCGIiZSOouovYVcxZXdSJbcxJjF6Rwilm8YzjiPjWE/eFDHkUpAqtXXZ1WldoZWADKoF0tY7kpJDKYvYj41oHbFG/BCMymZIOdtOHq8cEyP3SwWUKKKK6BhhHFF9j9ps8EdHxM2G5D06Keb7cy6ogBpG3Ai9XbCu97EXL6MDLI1lz0e+/Z1v433f8W1c2dsjEBjVSB0i3vQcH9/i8OUVx35NShuuPv4YswtXSXXCaAghaxuydkK5iAlKavQ+kPwIaSRpT0gOdKRuNGr0JOsZGPBuRdUo2gsXePDqVeZXLrF36QIzW2FAnGpJUFfMlguUlnJICgmtICTPnp/j3D5xHBnWG8IYGfrApgs8duchVl3HnZO16JuOE8fHA0cngU3v6YG2hm70bGKpnAQIEU2ktQZtxXlYyRMC0sGRXnFOCn2fFATfE3Qi5CyhkDw6eXRVk2wlIA6mEDi9Y0MOGVRnvYguYXExkAJE5fFovKlxOjIS0bEi1QZtpLtGAuv8qd26aDyyt433WXAprFCfn3dt4MRobKVJTY1pW9SsQjU1lVZ0OWOm04oTrRi0ykykZLYUyUmYfE8EfEyC18w0mDzXSAhgnnuKHiqPmHY2N/kr+7u9Yj7YBSElH6voTMT8rTBHKXf5jPRjz6bfsOnWbDYLqrpmHIdTj3e6THOahQmZhRE2xp8GHWfmqe3P/Km7Z8qY3HTPu2nOx+ts3BszosBktL3LbPgQ6PqBsVvTb1YM3YZxEH+RcXTEuJ0ctJLci7vl0pyltst4xQ7izO/PjlcAkzJpxO0FH7KYLEVJ7pX0zoQxlpRinpTDdleqIjGLBl2utQMTgzIOp9X2OqVJvqGUZJZokzC2pm73UM3eTipqzPbVHhhRyqOIGCWsCGiULscrG4CBMBEolBbNBkpl4zOHcgNq6ImrFcPhIf7omM3xiq7r2KSAqSps8ERdMSrDaDUmKe6ftXzwW97Ld77rnTx5/1UIHjUey+Rme26sjug2R3TDMZHIrLH4kzt0N2ZUymD3ZatuSrdQEJtx5YN094yDtBwn8ckQr4yYu2E8xkS8dmzcMWa/4pEHHuXK44/TXrkPM59Lt9EwiJfF6MFoqv2FGKK5EZPkqMQwYnWgMS3KHKCiJ3QDJooHSgxwst7gug6jYLMZWK89t2+tefn6EbcPN7z48h2++sINXrp5wjhokjLTuaSMLJQirKyIaEjulB5AwQQjiihZyi2BFEaiF3fYgMckTwoCRlJpmVLFGGy7qKSS8FoSnskGdDGIGBtLwOJMZNARnQIES/BZAIp01sSseyi795BTb2MGKzH43J6bSyjANmW6iLFFO6bPXGel1JF8ZniSuKQW8aoAs1R81fJ1qaQGplQ+34VJLM17SucSTdoeBwEhIYcQBgl6TNu5ZXJpzl5AIQTRgsUwZWNNc05mskqLvwCSgW7o6LoNTdNMicHigxOmXr/yOjgFSLyUvDKDFqL4rUSyUHVHKzJ9tpOadTu/vdY4u1l7JUtyrhk5H6+fcc928AWETOp2ZPIZh5Gu67PB2YAfpUc/JbktRqN2KMoyERSDorMU5tdTonm125xlVqZo890a/s7OyI8jozWkVE07Hmnl86cueIUExfnoJ2bE+4AbPEPjpjjyGAIqLxpiL63yxKoxxmHqeQYjGq1qyNSyEOkO0kCKG1IccsfNFrhxZodYRI8CTyI6CRBJmxNYHaHWJ/jjY9Z37rBZrQkRKtWgTMOQoEua0TbMbMMb7r/Gmx59lOV73kFtIm51jK4S6/42d27cYhw7Eh6tPAcX9qiairppwdbURjN2a8gheqrOTq/kz917VPQQRkg9KfUoPYB22Epl7l4Mr1Zjx/zBqzz6xBPMrlzD7F+EqiWFRBxGfK2pmyWMo5i7zVogoYKmxLGrERIeUxlUpUj9AC6is9ZCqcSFC0uGVmOV4uDCHj4orj3oedIpehfZdAMv37rDF7/0Ik//4Zf50pdfZrMZiSmrb43FVjUJhRNFJq+o++92PCBGczE4EXBqTdLieyptqAM6VkRr2FqHF1WIIFCpKGRRZhT/mhgysEgRgkWlGpNqdKohOmKwjKPEHeisgI5ZUBnTznUQTrMNk6h0R1eRUgQt1vTCKEDx0SkgwDtPCFauHcprLe6u23JNuSZjLN4naXIlVkpJWSYfP63FHn57rW/vK0GWEZW70XbZ1vK6SwtzzIBE7vPKkrDoajxudPR9L3Na39F1Lc4VZmTrlVQef2JfQ8J7scMP3ueU3qwh2Zl/EkyA4V+H0PRsmSb/9l/5cc/H+fg3Ne6xTCO6EShurCK8C5kdcSHgY0kxldqvUVm0qXZAgtruoHbZkLMi1rsxH2eFqq+mMdkFJhN1S96QlN1S3vmN44gyW1vsaXL2fgIY0skiwV5jbhUEUMMIm040NJktiZsetV6j/AxtPFpHlFEYLwZmSTco08pkW1YYJTtclaJ8L6YfJDxi915aPsUtNB8ByK2g5NurMEC/QnUnpJMjhps36O/coVuv6IeRbhiJo8aNiTE0JNPyxGNP8YbHnmLe7FGryDiuGfxI0AO379xg0x0zuA5UpGlrqrZhvljQNA3Lg31CZbDLfaIRvUNyIzF6cGNuTwYVE8kPRN+j4oBmkPelE3hHDJ5137MGFm9+iuXD12C+ZDQ1qmmobI1yoK3B6BZVabRr0LUVEW+u+adso55UhTGVlIlSzB0XFTGp3FHl5bysWnwIKBRBBVQFdQUqJKqFZnbhIlevLXnqySf48hdf5hN//Ayfe+Z5+iGRjJLui0mEmm35lQDX0tUt52pOxVUxg9CIiiPJRUgV4j1jIXlSlL7ubYOVmkSuZMHyqV19yEwDEJLBJ8cQR1SsSL7Hj5K15EsWi9FMbjvZA6T4YMSs4Uk7YH3b0lo2EEyAYXu9bhmUcl1JwF/KoGd7/U2MZDxdot3OM3oKxVMZ9BeoXq7RkHVdKW31LUXAenYOmDqGSolmR8RaAM0uj1Bs7AcnupGu72nbgXGHGSmdQOXzkc9EvIriXdxbz1rKvxqrey/jrJnja31/Ps7HN/q4tzIN2015YUaKfXFIZeeU6WWjqXWN1pXEg2f6UuykTrf27jIWrwZAzmbSvFrp5m6Ps+3al1lUaO2U6WTHSMnoiMQkTMrkShniBKBCFql1MbLKz9f0A3G9wQI2ZeByssbcWaFblzskHMZ6TDVHXb4Ks6V0mhTWRsVMe8siSRpQyqFMYXSKiFHtsCClTKOnLguVAow9aX2CWq9wx0d0R3cY1sfigjuOeKXwoccHCNHy2COP8OQjjzE6h603rLsTVOW5eec6h0e36NYnmORo2op61jBftDTzBfV8STNfoJcLdF0RtEW3M2FGaps7DJy0UUZ5bSqOmOhQoQPfkZInqZEhntDFjnj5gAsPvo328gHJaOLo0Rh0JW3CiYDKdt7Je0xrZYceYwa4GowckWQUyspxiYPoFqq6RYcE0WXWKqGrSqzIo2gzlDL4ccC7kZA8ldEsGtAHcPFdj/Lk4w/z6c98lX/5sT/hxRuHOCwazRjFbnynkpDLClkHoUpLdsqll1yuSB6iko89iQuqilpYEL2zoChNKj55SU0LeaIscrkAFBS974neEH2NdxX1WOFyeJsy4j8y5b5otWVIUshfu6GVpdNLnFOLEKoQdJqEdPJsNRTxFBOZmQO23wsYSVNZY3ds3y+5jCk/hxhycOAWGBXX2AmMJCWlmvzcJXfH++yfcgYUFBO43RmivO9iADfkWIuhkQRpEOYnhuKkvGVZdztpgvdTN17pqHm1zdK9jKncfcZa9izwOAci5+P1Nu4JjKCY7OALM1LaVYEcPS4umWTxpTZS2pEL3AFSsy0TQnFb1Fq/YudwtwtsVzR2dtyNUdkFLHkeF6FbknCzcRxIUXw9fLCiC9gBSipTzeQgvRgV3sDvX7jAf/D88/z+fVe49dD9XL64zztS4Jt+5w948dvfxezb3s7+/j71bE5l92hnlzHzi9DukeZL2eFSAFLudUiBFCXJVkpLCjB5VcofgNJTk6dWhqgVSUmJA9eh+hVhfUw4vkN3dIfj27foVht85/CjpxtGCD3OB+bLq8wqy+r6dWaX9tn0x9xa3+b48Dar1SE+9LRGMW9q2oVhdjCnns9o9vao5nvY2YJYVeLiikHZmmg1UUtaqUqB5AaiH0lDh04jJIcKA9F39H5g4zpilZg/8SjttUehWYgA2Hm0cRhbgbXyudVaylY6e7UkSNFlQCelMG3Ji1wk1qDRaCWLV3SeFB1KBRIOpcDqJKxdyE6jQ0DpSD1rGEeF8w6rEss2MPYdsdZ8yzc9yZWLF/gXT/8Jn/7SV/EYohN9hzEaH8SNc/IMyWNyEE3ijmq0ngB+ioGkc4tp1gWlsLUGF0CawT653JF1IrJDF3SglCIGBdEQo8M7ixsraiuR9sYaQh2yBkgAVNRydUS2jEgp42wX7DIFqNxmm+PlUvEJ2S2L5PukHWZkErCmrfvpzv3ObjSgdOttheJ9308t9f0wMPQ9MfmdazUzSBmIlPlCBObjjpOqP9Xdtz22YkRYNiKjcwzjMLX4uph1YqM8znYuitlYTQCPc356rvJ8u2Xpfx1lmd1RHvMVIYLn43y8jsY9gZGUyLViKVvYHM5ljMosiUHZSlpTMVQadBa6KQNei2V4zBMRUcR0aCNdLmeErbC9sM5qTAqA2b2NvMbT5Z5Trz/vgKKW3ZxOirGUYQaFCX6a0FMsbER5/KzuVwCGMR+HE6VY24ZaV3T5ef3MMC4r0oUaNVsS6wVmeZVUX8n+LFEWDCNPojKpn+JISh1ajZklyQuCkklWAEnJjoFEhVYNSXkSHaq7Rbz5AuHmTQ5feJ6TF68zHG4IPtCtB1yUkpUbFaaa0+7vszYDyXYc9Y47L99itbpNtzrE6oStDfVsRr23oNnbY7Z/gXZ/D7tYYuoZum2JuZXXpNzGW1f4bEevfUBbqf2nuoLgSL5n8JqNH0ltzfKRJ6j3D1CzBVgLKlP+aoSmRldyiqoUcjmmaBYSJI8KeTL2XiLqjZEv1QjqJLvIKsnKGceBCul+kXMoaxOSaDoMUl7URrHZiHhRG4tKArAMHa7vefRqw/w730FTV3zqiy/T+yT268qIrsjHDBIyuE5SqtLZ7M5oWdCrXP7TpMkhWGNkIYdTi3WYtBY7RldGwGgRj+rsvCkiy5xTEyqisQSXY+1dha0syksaddICjMWOMItZC9BIagJAWoE1YDVYrTBKyk4CLrbMSAgQUimPCahO2el0C16k86VUOlKKmfTTpBQykxqnDrW+d6zWG1Zr4STXJyecHB3LxiaFbSge4txamWLJH1mvJZai69d0fS9Osz7ggyMmPzE/Shkp2agtMzI6Rzf0NMOGMb9W5x3ODdMxJ0Zi7lByriP4ntENODfmVml/CnD9q46znYZnhazlNueg5Hy8nsa9aUbYLvxaK2xl81dNXUl2i86ruFYGq8HoNOVCpChx8EbLJHjqAk1ygRVR7PScO4r4XUByNxX5q4tcJ7kcu8XhECMehcYLBxE1qITRFihpvttMDK2VTN6F/ZEnIHgR/7lcpglBvEMUHm2DWJNbO7EhZFFiytk1QnU7VBpRO10mMlvH/FqyZiTpIhssKxxEB90J6eQ2/vZN1jeus755i+7wCL8eGHOg2xgS63EgBcV9ly4yPzhANTW3V3e4c3iH9eYEnRyVTphZTdu2tIsl8/19FgcXWVy4SLXcQ89mKFuja8mhUQmUz4UkJaAUZFFRUeoNSVswFrNo0XpBWM6w8xn1wUWSaeTvRHTKomFtUKVDKAMQkM6cmMQDpBDVKcmiM4yOptHY2ma9Z4ToyW0vmLpi0OBTom1q8SJxw5RGrWLmonJrbdvUImjMHRYATa0YNx1+HDiYL/n297yTIVpOPvccxiiapsEPI9ooKfFNnR1M55PJgZNm59yyaruApBi3OqAdkWOKcRKBlmtja7wltTzxzAlbEJ/bTKO2hMqircV4h3VW9DfGooxCGUNS4HMJNcVIyuxB2tkgaJ2DHFX2sVBp0kgUzcjZ63VbVtxqRmIs5Q22fy8lkySiVO89Q9Zp9H3PyeqEvfUGgJOTFXfu3JHrrSReKy2bJC0l5FJu7bqB1WrFerVhs9nQ98PEbOwmA5fJIcHkoeQyO9L3PUM+pqMTpqWcE6UEFLKd/JZ9cXjvXqGJ+VcZd9OJnB3/upmX83E+/k2MeyvTbJdBsYO2lspU1NZS1xVtVeFSyGAkYFROUCUvvKhcKz5dPlFa2kqnfd+ZC263bLLbBXOWLSn3ea2Lcfqb2j6uyxxIcVuNhh0Aok+BH621WJ+rKSBGsm2CZwxjfj8eY0a07VG6F+MyU+ewMoVKhglP6ATBQZQ0XfCgtkBkKhOhIBmKkBVkEtbRoYcNHN4m3LjO+qWXuP3VFzi+fovxpMdtRlyIjDGxGhxBa5548q3s7e9zslnx8gvPs+pWuLHDGMVi3jCfz1nsLZgdLFju7bF3+TKz/Qs0yz3RhdQN5PKJNhYVFCRPDICPWPIiPDrIbZCdhmreoGaaMG5oD66g6gZMi8KiEDAin1EkYnL3xLbzorSIsqul0MKwuYBk4th66vZIYSDGhFFJurlqi13MUD5KkGCM+EH6vbW1kCQnKCUBrbW1OGcIzmMR3xJNwppExNF1x1w4uMa3vOedHI6RW5/+AtYa6lQTx7wbns67/HLzIq61yiUkdSr4sJRBJXNIrpWifdgqsMv5y/RaoRBB2zZVpVQuSQZ8Xvy182hvcVYEotbanIYrlIewhkzmaEXUmp9SWnmz5mX3jZUWf/mYdssuyNVfyiHTdX/axnz32kxJul9wbvL2WK/XHB4esTw+BuD4+IQ7s7k8drbn10qjEcZW57Kqz27Jm/WGk5MV3UZMzAqYeDXNStG4Fd1IV3X0+bobB7GJL2AkTTbybkodnpJ+s27krKnj3diMVxtfT4vv+Tgfr/dxj2Wa7UkvOzuxiG9MxbxuSE3DiLS9yq40kaIsrJPCPJ5WmJfHSnpLPe5+lectwCHkCa+Mu9ViX03cuh1lwhczJhURh83s+5EI6JSo9GkGZpceLWAkQG7bi/js3Km1x9pewvXMHKOlnBJLD0My06ZXJUdKA8QBhUOcq4Ls6GPMjIjUuVLSwjKU9Ud5EYOuDkk3rrN59gVuPPsCh9dvsjk8IYwRPwacT6xHRzCWS5fvYzNGnn/mi6xWR/TdMcYqqkqxWOyxt7+gnc9YXDhgfukCi7195hcuYhcLdDNH1RVUtSQDayP1t7L79cIGpaGThT2IBmJUCr9sWVy4AMGJJsJqVNMQlZXHUFrKLtnAzejSrRUgCahFG1QW+5YimhwHhakEtJi6ISnpbNK51ZMkoX/YimaxhOCJ3kOqMLYSy/xyXhtDciNu8BhraKsaPwjdHkcpSdSVInoIfc9wcpODxVXe8dTjvHjrkGdv3CGoChdyamvusHpj8JhxpIpJ0oetwWaWUNixrMWYzkGBZjGkXNGMU4hcZEdLosr5CDuoTcoeGchopaYuk0m3UlJwK0sxysIolMknZi5Tphh4cNMB8MimY3l0Qj0a2q6hqW3ukouMo+Pi7RO5JjP4mKDYxH6Wa/n0XFJAW9lUKJ3D7bKHD8BmveHOnSP2j6RMc3R0xGFd57Zh0XzpnN+kigkdTN1y61XH0dExJycr0X84d2oOOnWNs92ojOPIWI10fU+fDR/7QXQkLjuyikDVTe61LvuUlOc4awM/fUqvASL+NCWWr4c1OR/n4xt13BMYEZX9lnY2Smywm6piVtfEtkanEe9yPz+ZbnXS8tYP0i5XLtJdkFHaGM8CkfJ90YiU25cJ9NVLM1/rYi+3VbmuDQlhQTQaoxJWiZBwV5/CJBjcPpfzLovaZOGxOmDNgLEVxkaMbUCJoLPsaEtAX0ojpA4YkeVHyjRlZzrZiGjp9EBlwSpAGlHjMRzdYHjhBe585XluPX+dfr1hWEvInAsQksJFQ9IVtw83fOml2wxDh8HT2EjTVOwt51w4WHJw6QLVbMbywkUWly4yW+xRzZckI4ZcqmpJphJwBKgkdtzKDYR+AyoQvUPHRKUsXlf4WcviwmV01RIZiEkWPqNqOS5oUsqtq/j8uwI2FJC7TrIoUplCC0jLs1KWujUkto6vWguoUCmXPVKagAtKo4whallxo4+iy1GyiElKsxiEeedo6xrnAmEY0VpRzytiDNRdZBw2hHjIfRfmPPXGhznselIXGLyc07e9YQP831YrmHqwXp/jf/3JZ4BnXvM2g9EcW5u9RAqbkz8uChiR8kxhSGIMoMRjpMwJwQdSchJeCXR9x+pkxTqXaVarFbdNlTVGcuaIXiaDEZXLLUGA0mbTsVqtc5mmz23B6ZQubIvl5AXH3N4/uhE7Woacy+XGMYMRAUo+BFwu3bhxxDu3oxcJp+Y6eHWw8LX+/lrj7KbpHJCcj9fbuLcyTZ5IgCkLQyuF1VBVmqYy6GgYlcaPgI/iQuhHxnGg70f6US5SF8WSuVykSTF11ADb3Voeu2WSAkLKbc62zclLTXf9fms0VOrDRYGfo8h0AUOaGCGoBCZJsBuJ0opTvBdiSETv8S7gXWZ6tELbDqNt3gU302uPub1ZqUCKa1JYAyPk8DelEslHokoiskziT5FUdrrMtLQBdOxJq0Pc9Rvc/spzvPTVFzm8fYRzgaEXi/mEYQiJISpOjtYMwyEuBZqmRtmEaQzz+Yz9gz32Luwz39ujXS6Z7e/TzBbUywWYClXV6KpBdBtiO68iwuD0HXHdwbiR0tzY4fuRPil8u0d75QrVcgkhoHSFbetcacqtmHnnrjJLootUQgdAtBdg0EpaWQmlx1VlcCZHRjQZAvRiTNmRU8imU3NzFgQbZaCqxR9G5d/rSDK5NKZMpv7BZNGmtoYQI3WlWcxr+mGkXx+R4ow33HeJF25conv2Zea1oU/wclXxfQcH3AdYralsTW0t1uQypzISraCYTL2UVoSY8jkojJtL2fMjG2xFMoBi4oe2oF29sgSgOQ3yycdKZ32MkiheMNvIh9J6/nC35j/58lf5L9/5FHeuXqJpLW1bi26qlDPGkX4YuA3cbOuJDRHRagYhRfAyESbbtv5SqpJrO881IU5Ox0M/0lsRFANs1h0nylLQjswH2+4llcuwPgbG0dN3YmC26XqGYcRnk7fXKuuW11aYjlHn15JLNyWfynu37djx8rdx3AaDxnQ6nPNPU6r5WmN3Ptw9BufjfLxexj2BkRAkswXIdtG5hm4VjdVEq9HBoILYWbskVutuHBi6jrGXJFzn/QRGykhqC0DKBbWr19iduMrfdhkSOD253X2COZ0QTJkgklDeMeYJ2GypZoioZIhG7p+IoLZmaEUc2tRuAiPRO6xxKDVgqNFUE/gROnmAsIa4JsWBpGQBycV6FAEVY9YPZNCUnVgVYHOLoV6vGV703PriF3jpy89xdPuYzcZly2tZW0IKOB9xXtqUN+s1gSThbrOW5XLB/v4+s8WCZj6nmS9oZguqdkY9m6GzYFdpw0TrEFEhu6r6HtX1pL4j9CdSagmO1I3cWo2YB/c4uHwVFSPB+exGK225k5GXUCz5MyrCYaS8otLO7zK7oYUhkXWo1CdO1Smm3S1Zp6Qy2NgVD5OSeINkwWuMnkDIz5OFmka6qIo2w2cPCh88VWWZzy2bbgQPe/WSxx+4jzt3TrhxvCEYiNbyMnAjBWoj2qpZVVNXlqaqqIzFGjOJWsv5LZHz2YCvaRi9w/mAL3H0SLmmtNmW8z3GiN3V1JwZ03WV1VyKrLXQmpgd6kxu1y/+OqXb5MXlnBuX9pnNKtq2obKWlFv2xa3UMDo/MQ4pUyIp7V6/pQRSdCRq5/fb1zhdzyHzZUEYCpeZknHs6XuTb5dLtagis5HOoFwWdj7kFN6RoR9zMODpcu/uHFJOn1IWds5hjMFlkFaYEZ/Ley4DkbEIXTNQmVLK490tB+722dzt3681zlmQ8/Hvwrg3MOLjlpp0nugdJI9OAauhsRodLURDcLldNdsiB+8I3klceRS75Lh7Yeot6NgtydxtN3FW+HYWsHytUerTIqLLe8u8AEbyjjpEXEroAMmkqWSig8Salxwa7z2DGxkHj8tgxI0jWjtQI5o5SlVbCjYliCvwhygcxSJcJybRqjhqhrJUoFREV1J+SNGjXC8L6q3brG73PP+Zz3P7+m3WneRphBiz5wt4F0gYKis7cL9s6ccBqxKLWcve3h5NO6NZ7KGrFm1rbN1S1S1oI6UrjGCC3NlDEF2LCh419jD0aD8Sug19d8K8tvjeEaLh4rVH0LM9ku9JKaKVBa2nPJLS1lx2t/koyS5aKdnl62KJXrxX4u7KxQTYQMBcSjtunOJmO8WeMFUO5PZGQ2VIKhG9IgUNKkwgSVsxCQtNS4PBpwAagguoEJk3FYs60XcjMZxwoal4+MpFTlYdo7XEIAAm5bj6CeDKJztpY0zRJ5XSQf78YjYHKyUkds/xlBlKY6b7qqLfOTMK7FdFT6JUbmcWUCLnHJMJ2vSYO95ambCgALwQ4sQSBh/xPnu1qO11OpVoUppa+ndByd0EpBP7yfb5tVFiaJcdoMXurzxHnEp4crjEeMxls7HRSVfOMGT24oxWZJdNgMwyaGHtdrVqPr/UMYORMbPEAkK6yY9EgkPHLSA5I14t7/PsOFtqudu4F4ByDlLOx+tp3BMYGQfZAQH5ghvwzolmgIDN/lxRw6ikM0FBdksUszMJkHolGFFma1J0VjOyO1mcVaSfrcWepV1fi4LNyg1Ktdgo2an7KOZHJu3kaVDq2mKHkc0Ycc7LJGRHBiePc3x8wsPZ0VKxACU23xCJYSS5E/DHaCI6t69OM33wsqA46fGRv1tZZJVGRUfq1gCsn3uOl45vcfPZF+k3AV1bmrohKpHKOu+JGfDM2zp3lrRou8/tO7cJ3slCb2tQFco2GNtgqwZrK6yxaGUEPCQEhIAIa4OUlXCONA5E70jeszk+oY8Bh8JeeoTFtWv4qCAGKUcYMf2SkhjTwpW5eYqfStoBKPLhIvdTWSsiEXF53d0yNimELOYsOhBQ1kDW6MR8TipjxOdFRXTu5IlRgvcUyELkU+4ySdRNg8KQ/ECIQX4fFFYb5k3NUeqJnaNVLQ9evsitwxXj7RXBRIiaEHeEkQV0ZaGlLoF7BVDvvN+oFAEycNh9u2cWcXK5JpesTp3rFMympp+3h67AvCTi4aQgJmIKYiySthqp0qUjYXIxf2QSKum9uBXLbcpnSgZPp1/LWQJLXsYrtWJGG2zWaZhKTNuqStgJay11VSGuyaJlS9lHJ4RMmBUhbXZBLfk9p4T4OyysnNpxy5bmz2sSoea7FVFsASNdJwnlwzDsJJXnjC7vp+6i12rv3Z27/lVBxDkIOR+vx3FPYMR5xzhuXQjHcZSabhJvA/HNiNPMWa6JbcZFwsdMM+cIdGEk1KuCirPsx+6F9mrJv7u/2x1p9/dK9oSycImZlsS66e0EqkAVHwUEtCgj5aoxAw/vHP0AtakZxcqS46MTQtQEDEE1WDSknug2hHFAhRWaMTMdsiNVKWXbkEjyTm4XI8pWqCZAOydpBeMGf3ibGvjqZz7Hc6sjNisBQpVa5EJSpslDpK4qtNK0jUFpzf6FBVXdslg23Lh5g/VqzXxvgVYWo820kCjS5JBZ0maLU1WKAeUjKXpS3+G6NWEcccOA2wwc3bzJYfA8/NCT6EWLjx6Sw1YzUEZ4gWlxVCBWY3L0szBWl16MbIKW0jaOQOzGBVjobYCLeJoUYJLIzE5EWSssXWlXTV70IlacXqPW6ARKGfE3SaVIIwBGK40xFq8LUNZZXwJaJ9pWs7+s6YYNfhhYWstDVy5ytB5wIZCiIXrRA5FxJ6UsqbaOpiqf5wkpncSUMFpP3h/FAA8lolyVO0fIAGDSfpCmylVhTNi5fqbrrLAiCEszAb6Yz6IoTETxGYk+4p1nUHINiGaklK3CtLkAeYxTooUdOqrg7jT9Yed45HA8YyzYiqoWvVVdWdqmock/N21NO2uRttoS7CflHx+CdEhpOZe997vc2SniSCnxlSm/U2XeStv5oswZW1M30ci4DEb6vme1OmEYRtbrNV1mSXwxOzsDDl9rfE1G5OxDneOO8/HvyLgnMOJDYPRSphm91GJjoexJKBXARKIKpDyB+pySKbOwyq6LaRulrc7MWa+yM3g1kHEv7XFq59+yR5xquchufGrdTQofy5pZZK5KdtcxkGUbWW2f2PQdo5I011u3jvBjRVQzaYENAYZbhO46KgoDo7S0FCflITgBHtmVVnmP8SOh74nKoJcO5nNph+2P8SeH1MDx0SFdjHjAk1DB5/bhhLWGWduIO6oxVG1FM59hstncxWaPpDx3bt+iqSuauqGyCmc0vhYfCh8S9Twz5WVXnd0m8RHtHanbEIeOTdfTnRwS145xtWZtYe+ND6CMwwyeZKLQZtSicVA5kThpEtK5opRF7O9HwFNaeGMUuruq61yGSFnjkSZ7dUqZYvIriTnxNW0XPZWPcTlntCJpSFFAmJ6M1/JtggOfUFFJS3pyYnynLcZkR9iU0HVgsafZ7wzjGBiBg5llb1ax6nu8ke4hYnndxYBYQIRWucWX0jmWqIxhTJ6EJilNQBGiFHhi3F3etiW5wmDonTN9Knfmn9XZC65cR0h5Q5VDpdiWfLJuI/jEOMjCHkPCaxF1h5KEu0vpTGRXBnZCLwrLmBTi8Sq33SFtckBeha1qVNVQVTLftE3NcjFjNggl2bY180UrUZK+gDXZ5HgfcE5ypqJPGCOvWUXQUaMmljMbzu3oRYoXUiRvqqYDlPViQCohmlkzMmzWdErRDQObzZq+24jXSBAmpoC0s6zt3UStX3cZhlfikvI406Ys3u0W5+N8fGOOe27tDdPuIEeQh916aO62Sdv4cemxz/HZ2bzg7IW3+/NpNfgr656vBT5e9W9p++/datRbcZlMalqVALp8nyJslaMgDbj5Qnch4qPYSIecRnx0uGLsFG2cU7tAXL2M769j0hpNlQkBD15LgFySxT25UWrxw4DW4LsN3eipx4HkwVaadHTMcHzCHJjtLbi0N6MfPcMQCM4TnEcrRV3b/JkhKbG7UexGjuuDD1wjeM+N6y9jrZWyC2C0wY8OWzeEccTUErA2CRb7gTA4AT/DCevVEZtuYH10h7QaiMlx38OPcunaFUIYIJgcWicsSKEGEmFaJO9WdNh+GQGESQugQOeFM9d5lOKUf/+04MpuXwBLnJJj5WdZceWszaze7rmRHYOJskCnXAoIwZNI1LXoQcLoQEVsrZnNLXblsCiaWnGwN+Pm8RobEtZYYnICRHSamMHdWPltMNzprJEtcEm5zOkzK1I+X5VLPtkZ9czWXyEma+Uxzoq+Tx328k/+dYzba34cHX03EELAWo0xOVwyZjntKTfTM49dnFZ3Sjgpi5DlEt+K1Y0xYltfV9R1DUDbtiwWC2YbMUFrZzNmi7lcd2ELRkKIOBcwJmfPBI8e9cTAorL+mR2h7q6pHCqXp9R0DFIuVSVdjkkgjAOugJFhYKM0/TDQdZ3oRnZ8RmIGg682P/1p9B13e6TyOBOD8xpz5fk4H99o497s4LXQ6CAXQ4w5LyPIxF3aXIMT47NQ4sjzBCQurKUtc3tx7rbwTszEq4i57gYmdn+/e0G+4uKfJpxC1+50IaSUGZCizM827DkVV1G0dFrEjjo/n9EYbam0ReUdZHc0MBwmZg/OCbdugKswaS1OoDGSkiMxEAOokHJnUoAgZmvFPI0Y0DHhTlaEk56gQXtHY+UzeOKtb+HhR+9jMwwMg2M4XrG+c8Tx0ZGUTEY3OX6mGIg+gBU9QFVZdIpcvXSJF198iReefQ4VEylAGAPzxYx21uLW6xyoJhb+RmtSCLiuxw09Ydyw3qxwPuA2PeO6Y9V3PHr1MrrSOD9gzAIxicsmaWVXnJBFVZXMn/wZYYBqWhy0Am1L+rMHZUnF8rwsGLHoTXJ9PqRJ7Fg0KUWPUTQBSiu0UYScbzOBgZynZMRjDhUlTE+RiMHJ55bfhzIaYy02BtpFzXwv4keYGzg4mDO7aRlcoNYGr7eFiZhSbtMNhKTxMWK12JlrqyFGQpDjVEoEPohY2ocAqnSdAbkUt40MiBloZZCd19bCvNztOjv1c0rTR2G0IUUBAM55uk4WWVsJGMmXEdKuLgBJ79Q6VGFyJkExEyAprNDUDaOllGiqCltVohOphW1s2xmzdkHbSGvvbDZjPl+ccmMuZRFrI1pLx9vYd9P7ki6iIGU4nX1JzgKBCbQoCvpQ0395xEgMDp/bjvu+Zx0igxNN3ehO59HcDWacnd++VqfNXUc5nGnrQq2Qsp+6y8brfJyPb+RxT2BEa4POgjKtc5cCIm4MpZ7cj/T9kHvtxxy3LeKxknORYoJX6uyAr01TvloJ5+xub9ez5NRssHvBFww01WPT6T15XoC0Eu8Fk2v70QTazIK8U8HFBPUw8GimkB/vNLM/vkk6rHHuNpU24ioZ8+pGIGkHyRCdxKBrrTPsgQZZrMquNiWhhlWKEAPphVsARGPASCdIwmFrWB7MMTayPtF0ayT+fBilBJJU3hWKLkVKbIqDxZLrq5s8+8WvcOHohIuXL7PcXzCfV9R1i6nEBKyua1SKeDfi+xHvBvp+w+AdISR81zGuBzodOLh8VTpODFBbtKqBOr87j6LKwESz/SAKSLSUFTQRQJlJb1EEB6qk8ebuGaWyy6oqIEdNu9EYxcdCXEZN1rIGWWB0NsmCXI5I2dW0BLdJyYcUMBqMUaQQCMERgxINhxZa31aJ/YsNYR3oVWRvVnOwaOl6T4yyQISQF2hSbsEO2KAJeWEUpiPhQ2SMgTEGhuDo3EjvRobRiVomSUnDGkPMOSuVtVRaCWjN5aApZGHnmKjXuO62oH7LGha2342OfhgwDozLVvZTSCZoHSVbyqitHKh8rEkg6GmxcjGiKwuytI8rJblXVV1TWQEjTdUyn8+pG2FKbLVlTaZul+BzycZhdMoZNfaUXQD5M0fLRoNSSlJ6AkVTJTAfE/FS0pjp/cRcqpFNg/Oenq2o33k35dXcDWCcFerufn+2BfiVH9Tdf12eQ1gcYW95DcHs+Tgf32jjnsCItRaTd+UoASbBOUJMjM4z9iN9P9J1YnC2TceUXUuIommIiH7gFZqOHZFd+Xn337Njlw25m9bkbHvwK8BPofVT4YqFvo8pCROgJbujthLBbrTJZQ6Jo++05u9+9auveF3/s48/Cx//B1/3cb3bMF/j76mp6ZqKzeExfb8ieYeOgRAGjE3M5g2VlkTY9apjHB0pghsGlFVYY0g+YJRFJ8VyvuTWnTs8+6VnefGFl3nw4QdYLmuaqsbabN5mjGQSaakPrFcndN4xOI8PCTUOqKhRFxvmBxdJvSfOEsZUpFSjaBEwIt0tCT9pCuTD2HnXZZdPALwwIZm9knKgmmr4ZHmxDGELlN5Gw0/nkc6fcRStQ/mb/L0A18yiKARkJLGf1yRZ4BTiRZJi1hsoogpoHVE2UdWK1iuaUTFvDfvLOUerARc8xGydn80wStnTh4hWnitX78PWNSglC5wPtG6kHnrqYRDqfxKKJrquZ3V0zEMPPogCju/cQdcKFZIYweVFXis1+WoU/YLORa5X0yqku3x38eJldBgZxx7jNbqYtRlpGzfGTJ9nDtE9JW6YFsuMTqS6ttVuVHXNAw8+xKYfUEpjtDByAFVtqaqKum0BeOMb30h99SrPffWrpATOjVSp4tKly8zbBUdHJ3ziE5/IIYg7c00mfjL02uE7ttqVLUNEZsgUxuqpjJdilPBBX0zQRsYYGZ0TP5gphO+VFgS7/+4ywru+SWcBzGtp6HbntvL9bo7X+Tgfr5dxT2CktjU271SU0VKf9UHaW0dP1w903cimG+k3A13v6Ecxa5L8Ftl8FrJ6h/i8KzAp/94NbLyW0PWVj6XLN6d3gNPuQ2aoREIZS10ZGmupraGtxdypMZbaWrEL1wFvDP+b7/gWrqTErLVc2jvgbbbiu3/2w7z0H/9HNG9+lLpqqK1GaWk3TcmidIVSQQLytHQjkEtZ7CzLQO4GkW4G40fI7FJ0I0Ol0a2hPj7GjQHX94x+pPd99gRR0unR1LkJZsM4OKmVBwUm4geHRvJODJq9xR4+nnB455jVyYqLl/eZz+ZYY7BaMZ+1GK2E8UDKS0Ebul5KTjOtGEfPfQ89SNPORDBYBKZIwGAp04Dd6gYoHSrZSRWyqDUCYcsmpcjkOapc/jk742ZAUuQjeWsozEZix2dkK0SU3fDWcGs6a6ZzBEISQWvIbemJiNbisgsaHeUxRZui0DpiraIyilltubA342g1MPqOLoGPIt2MKRI8uAQ6yXn5/T/4gyyWS6KSl++A3ot4dz30KGPyzl+O66c+9Sl+7n/4Wb7vB38QP4z8k3/8j1FKEoBTjjSKcQu49vf3ef/738/HP/5xXnj+BWGF1CsNBXevwbRzPn7v930vL/3JH/PM5z5DKGyDBmsjyRY2S0oyxurctrz9TCmPtXPAtUqZxYkcXDjgg3/+h/no03/ACy++zHve+17sJz8tl4JWzJYL3nL5LQA8/PAjLB9/jOOTFavVGmsN73j723nwwYc4PloRY+Jzn/scJyc7IITCzkRh3ZIY8In3ipwvOiVMKVnpnDA+5Qflh8odS2WxjyHikp/M1M6m9N4NXJjs47LL4p4FI3ed317xmzxHpl1GV0qzd2PAzsf5+EYd98aMGIvNLoQpIs6GPtCPI+uuo1v3DN1Atxno+kGssgcBKj4kASJpS0icHXdr393921ldyNczTjEteifPJr+ICegARtvcWVKxnLW0dUVbGWZNw6KtWcxaqspSV5rlfMHB/h6XLx5w3+VLXL1ymWs3bsLPfpjlu96K+ea3ZkYBmHKBDUpb2bWUkkIR/p1SvivxsUBNVGvyg5RW3EjoO1ivqdcrXAqEsQc/EsaBtOP6qFDEELBa0dYNfhwgKcJYjLuiOOV6MUYz2tJULcul4mS95qXrxzT1wP5yiSZxbDrqrBvRGlz0KGPxY0AnzXrsUFXFwX1XpZ025ZA7nTLQ2N0ub8szk+Qy7R6BhCzJJsNWT1JZCxELzV8yhaTzQRGl/TkByhdlyvYpkYUjhoDdqVcIDhS0kpRGE0uNLp87WUxaQArSbgzZNC8lUgikpDBaYY2iNlBrmNcV87qiqR1jiCQvnSdKgUpJjoJSKKf4pV/+ZUxliQnGENl4z0OPPcq73/NufuWf/yrPvvBCFpPKEVmv1oSYCFFAvguBwTmS1hibGYfMQwTvuXL1Ku9+97tZrVZ85StfAW1OsQZlsT69iBVjQFDKZJ1LPuqx2KkrUnTShWKN3F4xlR1VBvtyyE+vkMI8gLaGFBPW1oQYmc1nvOmpN9HduiM3NIaDgwtcWSwA+OQnP8n1o0NCCDRNw2zW8thjj/G5z36ej3/8DxlH8f8pICvuAK60sxEqAYWQiKm0V2sSMdv0F0Bi0FPZV6wKQ75mQyw5XPEUsDv9Prebqyms8MzPDz74IN57nnvuua89v+3+/QzosDkc0bxWTed8nI9vsHGPmhE1sQzeeZyP9INj3Q+su0FyHzY93UZ0Cm70jE5agF2IMpEpaZu9m4DrbnRmucB3L+CvNXZ3ePJ9fh6do9JTytkqaWLNrTHUlWU5a1nMWmaN5cLegofuu8KjD13j/ssX2V/OaJqapp0xm7UsFi3ztqVpKmxlaL2YkdXLFjVvwGiiAkWda+hlt7S12iZFVCxZKlLv1UpJ0Z+ik8jHTRUxp0bXmmGIuNTjcaATISf9EhPRZW+FkNAIiLTa0PcOrQ3RRayp8D4QQsJUmuQjShuqZkblEyfdwLBxOL+hMpp52zCaSAyDxLRbBThhViIssAQSswv7OD/SiBoWpQtVEfJXYSxKaIy81+J4UZCDFBLidBxU8lK6URKKV2gk2WRncJMZpnwmCBxJ4mIrZmnl/BLhJEU3ggKVF9dsH6+1IRlD8pFkQEcDu2mvMZCCaEFUSkjHqKHWhkpDpQKVVhidhAEwCm01fky5+wocwpoZa/nKV5/F2IqQIMTEehiYLxeYpHnuK8/xpa98GedcPocVRmmadkZCMzoJajRak7TCxFzmMGoCUl/4whf4+Z//eb7whS+QUsKniArCTCihKSaGSGXa3++AZK1VDrgrYFKur+Bj1l3EzD4GCWFGTY+zWxLa/YSKV4pURdKkQztZrXj66aeZf/nLvD/fo2maU/OGdPVUeO/Z29vH2ornnnsO7z1938ttczJ36fgpZRdp0RafGK2iJEkrRVCKmPUkWm+Fr0ZtNSPSCbVtr94FOnfLyTrL7J4FJikl6rrmh3/4h7lz5w4/9VM/9aohoBObqzKcKo+1A64UAqAq87WKvefjfHzjjHsCIymJMh7EX6PrB1Zdx2rTsek6Ea92A13fiylQyaEJMXskbGvWcHca8mx55uwOYvtavjYHuZ0ESlurypbaQo2XhV5rLezHrGVv2bCcz3j42lXe+bY38+Yn3sC1KxeZN7LAGK3Q9RxbW2wlDIHKk5tppYSlW4te1AJ4kkFhMxAZ82JqAYtS0hZKSCgfcg/nToupynqKGBF72yBtxkH0Cd5EjAVMklp1FItynbKNONKVEWMghmIuD6DFM8aNwj+khB9GQkpoY9FE2vkSpxvW6zW9jyhtWXcOW0UqY0hB9KJGyyRslWZ/NuMNb32CS1cuiTlcclgTpRtDNfJ+saAkmVipSNHplAK9pPAWYWF+DypbmFNKPGlHmGnksXLbeAGYUMR8UsYxWgCIVjqXisjVubT1Ss8cTVJamBmVKXmlsNbgvTtFuasEBkVUGoPG7wqgU9G2xBykNgjwi8KMlGJRyrqL2HdUVYXrB5JWjC5Ia2Y+DimfF7OmIaEIPgjwyJ9vAgEqWhEVGYjoKQYgIqzQRz7y0Qzst27HJOm2SpkNkjMkW9UrM0UfhMnKPYuq025ZQUS/5aOEXH6yO9010wKeP1NkURf7FZW7aUTjEkPk859/hjeeSNKxyQxFuZYnYzSy4NVmJ2PSVH4TS/ndMcEHjNHUlc0uwypfMxGvCtg6vUkyZkddkrL4eCcSwmt9qkSz2813NxFr2VzpM/fz3k96D2PMKZZl+jefY1umTobRouuSsqrGnGtGzsfraNxbNk2KUzvb6DzD4OgHRzd4ehfpRpcZExhCFNv3FPEkhMjMAKHIx+6yW9heWomE2eaSTPTGzu3TllIuFPO0gMsTCPDIj1j+EgFlDAmPTtBYy7xt2F+0LGc1T7zhId73re/hbW95kssXFrSVRquYuykqMJWI93K3RcotoqoVdb9uaqgtYgSXdRIpL7zTV5mgM2ugbH4/Akgong0xQfQkRK+QD6Icl7yLtUbjoiy4EfGASTHHqSekPBOR1uLkhUXQuXlEaZwXC/oQxflDa4PRkXldYfQS1/Vshh5TW+oxYKyFylKFyMwoHn70Meam5YG5YX7fJUxbQxzBryC2kEaUGoAOKUtJ8aB0+Egpxu589HJ8Uvm0UtHSKGGPsk05IfuUqGJuVrRBEZQhep+rL/n2Wo5bVFpukgwp5seOEv6H2zqllo9KW0X0iIjWKGxVgRfjLxVBB7BK41TMLe7ZhycntgYig3c4F4hevEqK5FZcehMmaFx2VU1KEVJkcJ7Rj+JgqxLWaGIWzqoqazFy9SiR8ARmlebCxYvs7e3RdR0nR0eMzmO1RQGz+ZJxHIkpUtc1KSXcOGKtZblccvHSRfq+5/bNm4zeZx3xVnPFZKKmidmLo2kaUOJ0Kl4uWuRQIaFVIJkM8HISNsgx3NvbY7m/h+vXrLsNAYWLSUwAk6etqgkAaJPkMfN1UVkx6nPOoW2FUYYYIk3b0DQ13nsOD4+ym67BaEPTNFy8uODCxQM2mw3dZgMJqspmQzaZj9abNSkm2ramaZocgucJyee5RlFVNVf39uGlF2iaFrfpGAcn520Ea2vqumZ1coIxhuXegsuXLxND5OjomGEY8kSkaJuZfBYR6qrhYP8CRmu6vqMfeowxU6aRAObtpmyrocoA0ugcWaHRX1MGfz7OxzfOuEfTszBFensfJHjKecbRiZJ89CQftzSmFGBlB6rKxS4LjZrwwraVbZvSmxeQu2hITnEpagd0TCAkb80yXS8XqVy8huwtoMvO1mA0tE3LYjFnsZzx6MP3877v+Fbe/a63ceXiHm0tGgKthOLVpiJl+2jRQhiiyRqP3GqINmLjbk1548jKVhbcMrkL8Eg6TTtpuW0GKTGAD/kdeaIjt6GKiDT4iFGGylhGpI7djWOOwdHZGVcs67XSeWJ19OOIC4kxt1iXFtAQIlFB0gadoDUaTCU6iNEQSdjRszQVjz74AA9cvUJarbh46RqVrjDrm/SHh9w/f0xeuxtIoUcjTAgM+QOshS3Kn1GaejvK5nYHrE1lm2xRrxLSGlxKMhnaalnwyCF00rJrsholU+dlZx9ld6+QzpPgPToG0uhQ4yj5OTZtk3FTnLpRpjJPSkQfUVETfcjBfsW7QmcioLArupyV20y3rF2QwlXCKENICUWYjMZ67whZ8Frep81ttNIGnCYgglLc/+AD/OUf/Ys8+cSTIpBM8JUvf4Vf+vAvceOFl3josYf4iZ/4a/zar/0aH/nIR/iJn/j3uXHzJv/iX/w+H/zgn+Opt7xlMoQ7vH2HX/3VX+WTn/wUMZt7kZ9LaYUPsnN/6KGH+NEf/UvcObzNL/zCL3B8fIxSGuciJsn1Z9VWEBpT4qGHH+R973sfj77hUUJMNCZx/eYNnnn2+RwMGLBG8We/53twH/sDAL7rz3wnh298Av3ZLwLwrd/yrRw/+Tif+9znefNTb83Y1PP+7/wujDF0Xc/f//v/kKOjY7QyPPHEk3zguz/Aww8/zDiOLBYLbt68yW/8xm+IfgZ49NFH+eAHP8hP//RP88bHH+d93/HtLBYLPvnJT/JTP/X/zUwMvOc97+GHP/jD3P/Si/CJj/M3/vrf4OpLL/OLv/iLnJycEGPiez/w3XzLt3wLf+/v/T0+8IHv4jvf/z6WyyXExGbT8Xu/9/v81m/9Fkop/sP/+X/Io48+OqX9vufd78EYza//+q/xcz//81s/GbZdPrszoSrnpGLyFSpf5+N8vF7GvZVpoqRhAtJJEZwYdsUgu/pMceuizVCyc9NGoYMW86P0ylJNKcHI97tm1jtfryroKqRlNrRCdm8qLzq5jD09l9FCWZews7oyzOdzZm3L/nLB29/6Zt72tjdz+eIFmhqsLa8tMxU67/rya8Xo3O6sxMMCUMaCtSRtptefyktNUseeViYjy3Hxyk47inoVdAYzEYIszqL+11MOR4oJP3jcMBJCQBmNfByZ0g1hasdOKaKNER+EpHAhCy9jQhthDGJOLFYIKRN0RNeGhWowzrOctzxy6TLXZntcu3ofN7uO1dEhD7/xTdxeXcfGKLDCJ3TSmZySRVYcXgMKn1mMXQ3QzqeudC6/5IOmIENJpDAStn+DXLIplHX2CDFKWCzvJk+RwpRNZHdmoKJzGAXJB9LgJIyvNUTzyo4IkGNOyteDc7gxEPL7mXivDDh2wyBTEnaxgI2UD7KPCaMl0rCU5QJpSnstuhqlFCazYiCdKMZWGKW4eOGAH/8rf4Xbd27xf/8v/guOj4548okn+dCP/AX+4l/6Uf4///U/kPbuJKmzMT//hQsH/Phf/XGOj4/5B//gH/Dy9es8cP/9fOC7vosPfehDrNdr/Gc+K+8hv++QSwhvePwN/IUP/QWef+EFPvzhD7NanVDXVW59DShthCVSW03Iw488wg/90A+x6Tt+9ud/lhs3brI/b3jnO9/BO9/5LsbcFlvcSwsT+wdPP41Kirfm0sPnP/tZbg8dq/WKT3ziEywWezz+xsf45Cc/yc2bN+m6PmtKLG9729v4wAc+wKc/+yl++p/8E4Zh5OrVK3z/D/wAP/qjP8rP/9zP89XnvyqxCbbiu77ru7h65Qq/9mu/xpe//OWp26WYvL35zW/hn/zKr+A/9lH+J8A//af/lCd/7Mf5sR/7MX7yJ39yKrtUVcWP/MiP8OCDD/IzP/MzfOELX6BtGj7wXR/ge77nu0kp8Su/8it8+MMfZrlc8v3f//28/PLL/NZv/RbGaO7cuT0BCpWBdtH0nL5qyv+3m7dtJ9P5OB+vj3FvYISYuwjke60j1iDtq3WFnjckq3CNpQ41MfopUXPKrwhB/EaKjXSMO+BEhGMTOzKxwzu7gLuAku29t99TLki2ttrCksizFMOoxaxhbzFjb9Hy+Bse5h1vewtXLl+krg1VJUZOQoULG5K0yvJ/gRDFQIkMTABp2cXK7jsL+UrVZdtmvPOKU5L7qzi9B9nt68kGVFuDri0MnpQ8KUksvcpkQYrgXUAbS9QRl1xetiMhBUhgq5qkxNfCRS0LqDL45MEJaivJplqZaadlIzQhslCGtzz+OA/uX8Adr4gnG5azOUPnYbNhvjcnaE1EUWkLSeduE0XwI0ZbROQiwXXyTrc6kNNlrFd8ohPgUPmYCQSJ22NYQF0BMCkSohfLfaUkYC/FXABSAo68l1ZORLiaXCAmj6kqYBtktzuEr8kMlRfzq6QrUIoUckRC/qIwf+W/FIkRfEhgcskjBhyls0NlUJ9wMeZskzgZb9nsUlqOi9YiVH3w2jX+4A8+xi/8wi+gSBhj+eQnPkGlDX/lr/wYb37qTdy8eWMqc6j8Wb/xjW/ks5/9DL/wi7+YNSear3zlK/z0Sy/xt/6jv8W3fuu38fSffFKOf9YyROBNTzzJX/pL/x7PfP7z/OIvlPsaYkjT+VYWRB01MSrqyvKBD3yAcRz45Q//Ipt+TTtb0Pcb/uVH/gUv3L7DD/zQB/Mxysc1gw/zuWeomjmNkaA8+4UvUK9PuAR4n5hfuMjcDTSf/hSLw0PUuuOJkzWPG8X73/QkLzz9EZ755X/Ko0r8kuyLL/Lsz/083/ShH+Evv/GN/NqXvsj96w3XXnieKzHyqz/1Uxx+8QtcNgZjDFfQfO+jD8NXn+NL/+x/5OT553lTPpaf+cxn+Owv/zJ/8S/+Rd7+jrfz9MeeJoTAwcEB9913H//ov/1HvPDCV2mahtXJil/6pV9ib7nHt33rt/LRf/kvee4rzzJrW+KfDWy6DZ///Oew1mRQseuVlD100u5VsWWST3/tbKDOx/l4HYx7AiNGbUOlmkrTtmJmpQnE2uDbShJng8enHNkd/SlBl+wa/JRb43MrqsSAbOlwlJSFypjaenf2BVu2clq+s730jq+B3gIYnfUnCjFqaivL3qxl0dZcvnjAO972FI8+eJVZrTAmiTOqyffI9XJlNMnk75UCZSZwQml7VmJ7rjOjIXq40rGxwwwpqf+m0l0C0jVDnJ4yRUlOsWoi+vMbk/Tc4DwpbEtjMcXM3hg5lnlCCyGCBmM1ISa6fsRhqGpNTFp0DMGRlAQEJjyEQGUtJmkumoZH77vCQw/cTx0S6RhhHKzF6ojvN6jG0AdPNAmMIoYcdqdCFo6K6yzFGn76NOL0ffEdKZ9wSa0pDItECgRUCqLhEC9TUNKxsj0zpHsnpeINYlFFtKyAGPDjQOpHrLR6ZN1MyakBptwl+beIC7WSoDfy+exDEB2MVplZykm3SQpQRqkJaOQTRDq5YxEaywikbYkSstC1tJtugYowL6W7ShKHh82G3//d36XShqbKws6q5uUXXsD3PQcH+9y4cR2AqqpEDJrZnd/49d8g+kBtK5RSBAJudHz5y1/mDY89PlGLBdQ/9eY38yMf+hB/8slP8iv/4z+TMlcGRSkmOaeDdNkYm8tJKfHII49y//3386u/+iv44Ji1DdqQgwItx8fHQBZyOg8KNrOW0Rr+vQ//c/jwP5+O1Q/8d/8ddxtvvdsvf/PXAfhbd/vbH/8RAH+1/PzrvwrAX7jbbV98HoC/86k/5u/kX3Vac/DEE9wJgWEYeNOTb+Ljf/Dx6TP8zd/8TV544QWqqiLGSF3VKKV45pnP87a3vIULB/v03QZrtGhXUhLhcb690mrKBooxbtmO3T1ZQs7fqTyTU6BflU0+H+fjG2/cm89IbWizSHM+b7l4sMe8rRjnLd6JOVOKPhfGs0I8eYpFcQhCPTs/ZutmP4GRENIZcFLo7By2F7JKPcUpnXS3C6NM9KWmP12GYafnPwkzoZWisRXzWcNi1rCcVTz52EO85U2PsVjU1AZ0GkFFUjRomwGHMZSkV2UyG7KtI20LRmVjrrZtqvL0sqXRGUCVBXbLkuTXnXK3SMyLbBJGKXmP9p7kPWM/4Ecnrpw+kKJoL0LKplzWgiK3XUo3giIyn8+YzSN3VrcJqsYNkjuijWIMAaU0o89y4xSoXODCbMmjly5TJcXzL73AE29+E+HmbfqTFfvXrnC4ucMYRurFknh8TEoeakVwiegDMyKoIGCk5M4o4QImEgMpfUm7ENNxQJVWYA/Jo5JHa6GDJBnaCeABASfKi14lBdCRmCSLhJiYPg4FRBHtoqUcVTqtlFa5PVM+YxWkBFnaPOVziaWgkmv00kmTKK6qotNRCfHlycBByhxynmgloDBmsDO96VjM09R0YIoQGYQd0XpbSisdGbdv3WJ9dMy8rrOuRDpeKiMLXF3XUxdNikFaW63l5Zdf5vjwiCqblJEUKgPZGOP2c0Baad/+9rfz1FNPAfCRj3yUcXRiyx5CrnxFQlkwCyCpDCFGrj30IJu+4/r169LlY3NZV/p/M9DLYs0kKeFHB0v+r3/5h7hsWx5+5HHeXs147D/7u/zGf/Dvs3rooXy8E3v7F3j88Tfwsac/yvHxCX03cHKy4q1veysXDy5wcnIi9u1TKVhRVZUcjwQf+9jHiDHy/j/zfn77t3+bz37ms5Q2K6UUe3v7/I33vY8P/Nd/n3/6V3+CO/fdRyBxUre8b/+AEALOOWaz2aTfCCHwuc99Tli8lLDWynE3hhRidnM2GTiQPYW2OTNlPpOPIJcHVWFTy9SSy9PZM2a67WtN5OfjfHwDjnsCI01VMZ+LHfNyOefSxX3c2OK8J3jRjuRoL1Quz5QOkJhb4UKIuDBOQMS5bBvvgljH+13WJGS6Vi505xzeO0I2jprSQvOKJhuEtKUxi4BwEo3IxV9XlnnTsL9oWDSaR65d4Zvf9ibuu7Ck0WCJ2SxK9AcT6Cj127PCsIJAyo+qAKA0iRl3d/vbEgNTLUqM2OR5ydQ9wecYe0cYR5QPROfwQ08YR4J3chxQolOJUTQy2hBGl8mc7BURAzEFjK2xtSHEgFc+T84GN7oc326lZVUrKmXZd5r75ntcWu5z/dbLrDYj1558HF8b3Kbnom1AaUI/YjCgNcM4MK8NIUiyb3I9qm4R8OEhueyIassRoZTokvKo7SpM8SZROJRyJBVyqVBs2nfEOLl8w/Y4Z+GxhDvGrB1J02cQMvOlrWTu4AzaWrTy8lLzR6Zh0jUlJUGJ2e8Vo6QNNQGYXCRK5fMUBkMnUbrozCzKa8oBdlFN2cXyqnOra8qsxyTMZjJIM0pJC7YoqrFaBKOVEdM+LfU1KYLlMsO08GmxcS9to5v1On/uCpWK8FblbOptRhL5sZ588kk+9rGP8dSb3sQPf/CH+Zmf/mk2mw3Thl1LJ5BRmuC9mLiFhDWG2WxO1w8478WhtWjKlMKHgDEmX9fkuSDgfeRm29JdvET7yEP0zR4Ah9fu5+gNjyAEViJevET/ljdz59YNDg8P6bqBo6Nj3vT2d3ID+Omf/id06zXOOTlm1lLXNW3borVmnRKXr1zh5sOP8Ln5gs8vl5QUb4ArFy7QPfooAD/1sY/xmfmCru8JMdH3PSGzZ0XropXGOcc4jqc0cSXnqoBIU74mUHJatF88TLTWWFtRWqp3hHCTVmQ7/2wbBM7H+Xi9jHsCI21Ts5jPALiwv0e4ckXa+by0MG7LDZLlsWPgIOI9LwyHC1LKKRfrODrGwe8Aji0AEcDiTn3tMio+dxyEGPBRAFAM2XNCVgNsFpZqranrmnlbs5zNmLWG+65c4Jvf8RaefOwh5o3G4lEhd7gYMW0Sc65slkahyPObUmVHWzQQICAk5Z1mWfzK7QvYSOWWeUJJeUcvO/vkRgiO5D1pdGjnBYx46bDRADmCPmqFqiqsUqjgiSHhg5QyrFJU1uTFX6FVYt5WNLUhuCSTKCnTwWIGZ22FbWuUG7jcLGgS3LlzC2sM7qTn6PpN9pdL4trTrXqWBweEw2P6ozWLg32i9ySTSBbMMBI3a4wpJTMp0aisnyiARA5GWXgFjCQVUcmjCCTlAIcqpmnTuVX0InLupVRASYJsIKfzCThJPzQ5XDCSrEK1Vnb23qAbix7NxNKUrq5tmVBKZ8QMujMrF/JONQE+yXmeIqikxWIchc231VrcMVNKYoqXtiZaKSVMyZVBJLE6MyJ1VVFZ+Zx1WYCspjKaoKRFvTHV9JojiSrvxo3RUnJUYuamtaYyliF2VFVeCLN/SEzb67bs8sv4vd/5XX7zN3+LZ9/+LH/1x3+M7/u+7+OXfumXtqWlVFgjeY8xChtKCHRdT1XV4l0SHFWdtVdRhJl11UISfUkI2c8kbgMFT2WtKAFcqpQ1tYA7ZbSE6IU0tfju7S3xbiR4jxtHRK5j8KOTrKbiXZK2X1qp3JclI4SAy1k0q9WKYycJysPoJLwwe4RM3i07o8wKYp+/9RcR+ZmiMpJxVNq0T909CQgUZwCZTwpYSdPtXj/I4+mnn94DHuC0ev18/Ls3IvDie9/73pOv9w73BkbalrAQMLJ3sCBePJiElClP9ilrG8wZjUNKTNoGH6TzI/gtGzIMPptDiZOk5N0UsDJOQGT3Z+89wbup5DPmbAgBPfIVQsDmUkRdNywWM+ZNxWLWcPXiHu96x1t4+1ue5GDZUpuEzl0fKu9OSTp35ZgcPpYp87Ijj2F6j6qIA1PKu6oMZqbFsbTwMmkKUlLiAQWig4gevCMOvSzEIYifRoQUgrQC5x2+Noa6rXE+4GMvbJSXnVRTN2Jr7h0xbjUuisR8VrNctqxur0gpi1jzzlTKXUITN0oxmzXUumLT92hgzzQcPX+DB97xDjbP3uTkzglXrt2HSsd0q556fwajQxlo5i1qE0l9BzMr3hjKgrKTGiQXO9hOqFIqQCWxk0c8ViSpxcs5XsolUyBHybPJZZ7gc3lHFpYClm1ttmBQg6mNfIQmU/dWQ2XQyYrOprBYO7khWil8jFKWdIEU9VSeIQMKCb/zhCCLKhlgGJW2uqtckhEfki1bIyOzZklanoUNyTtqVczI8k7bGrRicti1k5ZJpL0mlyyn5Fq22pPJipyp0khe2slVIeIu4R8iN2/coG1avvTFL/E7v/M7fOADH+D555/nox/9qGhRjM3idGEHQkgYL8foxRdf5t3vfg/33XcfX3n2C9RVPTm6Bh956KGHpuvfOy9Owrl0G/NGY+tVX7rnmEqkKGFmtBHmo2kabt64wYMPXOOJx9/IZz7zGeq6xrkwXYMxRNq2lnC7XJKbXJDVVjza9wN3bt8GYLFYYFG4GDAmoZSfwOpyb8nR4dFO99XOma22mg6T23WNEjG9KX5KO3MmZGYziNcOuZPR7C7jiS3IPjO+kdiRp59+WgP/qTHmryulRB1+Pv5dHiml5J5++ul/BPyf3/ve935NNfW9BeU1NTEzI8vlAnVxL1+8eYdoshgzMyMq1zSnV5eNhUJwU9y3dyEDiITzAkjKZDRkE7VhlGjuMYMTN46ilXCjLAqFZckUqRsdIZeOvPPslYliuWBvb8GsNlzcW/C2tzzBu9/1Nq5e3KfWCZMiOiCshU6kqMSvI8WsFzG5q2Zngo4IczI5iZLBTGTqQEV206XdmEzpZoELKuSpNXkxONtsiH2XtRGgYu70iEl2taYi2ZpmNmccHLby2MpLrDlC405SFpNLFEEktDFGrNHsLVuu3zkhJNGbKKVpaulU6EdHGAdU9ITZHkNMtIsZm5M1NkJ/tKJtW6q6JrogICmBchHXDaQ7CULE1g0pjOLD4T2YICAheVLZ2ZfgvJREFzIJSFJm2QSQkJwcH5W291Fq2l+lnQU9Ri+lFgIpiBEVSYCwmH8KE2TrSnQ2wcsCrVUGONuySNGjhBAETIdEcJ6hH/BjQKVaSo1RYWwkRjXpX2JMAoxjyvbjBq0T1iQm7UhS6Ki2V0napsduu2u22pQCGE0BFlkfUuj+yojZXphAyPb+RpXWY7m9CGxFIqu1njq+CkNTvIJ8XgR9tjovYvTf+Z3f5f5r1/izf/bPcvvOHZ555vPUVTUhmZAiOmi8F4buC888w2a95pu++Zt5+aXnGYYRXWmCD1y+fIXHHntMrtkg5dxyGoSYZO7YmU3SVO5kRxO2BVjGGKqq4vbtm2zWK9773vfy4osvcvvOLYw1Uq4JsFwuef/7389HP/pRfGY+yjPs5vbEGPjCF74AwFNPPcVHP/3pyf22gL13vvMdPPbYY/zMz/xM/ijT9DhFVGpymWwCJTtltFJSLvcr5T6F4vt/4Ae4//77+bmf+1k265VEFbDj+MsrwccOHvpGGP9pVVV/+9q1a+Nisdgopb6xXt35+Nc6UkpqvV7PX3rppb/tnAP4u1/rPvcERuY3rmNrucuFl59nNhcx627NclvK3KmDn7kqphbB4rcQIs77nGSad0I5/asIw1xw+ORxeJwKeJNwEcak8ChcVLik8SrhoiIoaV0NaO7PPhtvV4rLbmSu4YkLV3jrsuWBG9eZ37pOYxJGSwfP9MqNkt2yMWAMqarl35z1wZTVkzM9Pv9leX/OwyjheNpYIDMiKTMihS0CXAzYKNbqmEgce+LREWrsiXsNVDNsUqjkMm+v0c0chSJEsM1A6zxhHIgqUVWG6B0YEUn6UYTDKkm+hgoBW8PlC3O++rJmswpgaozWOCdtvSebNSkGlsuWUCX6YcQMif1Fy3q9IcTAerXCVWDCACnQzWr0qmcYehb9nLhx6KbB64SOGr8asXZGso7ChwilkPUNKufUTNvdwp1EBIwUUBKBYsuew+oQjYMmQhzA9wJ4opuYHvG9kdul8nkoAZ4qgfICNkISvZMOAZU8wY35M4vE0aGcwnjJ9nFBOsbW/ZqkJGAxJjEv80nhk4RJei8gK6qYHV1B+YhSEaOEmUkhZhOzTMGHkqMiXUJG51wiOS0xRVSrJZzPkzJzokkpRwLoxOTwm4I8DgmdAjpKqc9oiwhk5X4xJTF9C+WuSVqU85Dr1qOtYQyRX/ylD/M3/+bf5If//A/zk//NT7JZraaOtoR0R8WgSEbRnaz5rV//DX7oz/0gf+6DP8In/ugTnJyccOXqFb75m7+Z6y+8zEOPPJyvC3nNIXjQFSmXb0ptIoVi1qeIPmCisAw6SUkraqgqw0m35o/+5I9497vfzQc/9EE+/vE/5IXnXySlxIMPPsh73vMejo+OODy8zcWLF4nR52NFFhHrCfB98YsCRr7t27+Voyce5xOf+ATXb95muVzyjne8g2/6pm/il3/5lyFlt2YtZZiQN2eaJJ/dJIAHU4k5oouBru947LFHedOb3kTfS/noS1/5Mm0z43u+53tQSvEHf/AHfOqP/3iKrkIJm6uilJUhCug9W+75tziefvrpfWPMX7927dp433333fq3/XrOx7+ZsVgsOuDyCy+88Neffvrp/8fXKtncExi5/7/6f03fP/qf/O//dK/w3+L4X338Y1/zNq9VyHyta7v8Lc1a1N6cNAwoFMn4U3X3qWyT72XIC2LWi8ShZ1wdkbqOdnE/WhvwWV+hhdJWCnRlqOqKuq6JjWWsK3yvCanoGrK/CGCrSur3TnZ+RiuMgf29JbeOD/FxpG1nhOwO2Xcde3sLtDJUVc1Ma/yqZ1Y3XLl0iZdu3+bk5k0uXb7I/5+9Pw2a7KrOhNFn7b3POZn5DlWlUqlUKmTEIEsIYSxowO3xfm6gA+OGdhOfm8Y2GEeH3bRN3LBputtuIMC+PeDPn21MTzjssMPG4L4MduNugg9wuB0YfAMwg0EgAQIxaKi53vfNzDPsYd0fa+1zTma9JalASEDXVqQq38yTZz57P/tZz3rWzpfvwu6ZM9g8egy787vRndtB0RxAqgNwxMKUBXjZInKECx5UFhJWoRzKClK/h4bQwFiUKo6qScCKmqaJ9IYVcERhUEhSfhkaytLwYQ5PJU4QszgZ5JijWu8zKEmxQiRhtDgl0ZQEj9h5gBhBU9QpElKQjK7sKGqcuL0KAZN04FQZSkwI6kosYuaRIBEiUKSUszY0YJIZMyLUTYOdnR0EFUXmG6mftUdGPV/Cd61qZSSbKrHYyjljsdjdQ/QeCAm7u7tS18ZaLOYLtG3bazFyFlo23mvbRhxVdZvz+bx3CS0ICClhZ2cHf/Znf4ZnPetZ+L7v/V685z3vkXCHMi45nd8Euds//elPI3HCd/3dp+Hvfvd3o3AWnfe47bbb8MlPfhLPfe5z1YSOUNdLAQfE/ZPpu04fNPSGhpYMEBOW8zlyLZd8fqqqwpkzZ/D+978fj370o/Fd3/U0gA1CCFgsFvjwhz+MT3ziE+jqBgcPHsR8Ps9BV3n2jNEsGNs7sH7oQx/CI/9f/weuf+z1YGOwWCxx5uwZ/N7v/z5uu/02AMBiscCZM2dWrxVJmj2RZGzN9+a9iaRvO7zvL/8SP/j0v4cX/viPoW47fOADf40777wTMXjc+slP4tChQzh54gRoeEgEiueU9XFI7RuLd7iaiIqNjY3lw70jl9tD25QFm0F0Qg8eGDnxf/9fAICjL3s5Tvzf/xe6Rz9q+HJ9pF5/GIbnZxADKnQfF4JaKQql3iMpSopvFomNM25y1k2IQeL0IUp9HO8ROo/oPQ7eey9+6K1vwTt++FnAox6B6665CocPbqJ0BIeE0jBMUqEkx5V4OlmtkaLsiHWFhGusVPmUCTYNY8jhg6DDm6BmofpWkqlsVqf1qEQ6JkMGJrJkzRgPdDXq8+cxP3ceVx85gmqzAhsPcg4cRKhHzoKTmIsZ52CLAkXhkMoS8DIIJ5ukhDrUAj2OBveU4IiwvTlDVS6ASAjBY940aJdLqe9hC1hrsTdf4KrDx9A2AfO9OaZHrsRsWmH37FlceeRKyUbxARQCbFWg8C2WZ3dR7dQovehaEnuQ78BBDMiYArLPCKcI6lkR2UdS8ahSSQIwSF7MoY/rEw/AQkI8Y5dXVn8L9KUITGZbNHMpi4WzLkdmtFq1VUNpmUHJmWKs92BMMqCTtZhuWMRISCQaEfF8AWICOp/QaaiGVQ+TvUIShFmz1iKy1LphBSKAAJ3bPv1pfPELn0dT16iKQq+hRWKGJZkJv/v/eRdyJpa1pCZpDBjCYm8Xf/K2t6LT0Ofb3vJWNI3UO3nve9+DGNNq9oYyd4YMPvD+94OMxTEVKbzzne/EHaq/8p2X+5AZn/nMZ/CVr3wFZSEVdHt2J4cZEiNGgnUG3gfc9unbcOedX8CRq65C6Ryapsa582dhjMHb3/52tG0D5oT3vvc9qCZTlNUEZVXh5MmTuHV3ge/QLiXFwYTxzJkzOL+3g+Vy2fcfEjqWcM358+fxvve9T0NnCU3T4Pz589jd2UVZyL1+11134a1vfSv29vZQVhVgJITinIO1FlUlmYS3ffo23Hbnl1GWJboooObEyRNS44kIRVngIx/7KD59+21ofdenWo/9jj5/xx3441OnMZ/PJcvKWnzm9s/gc3d8DrONTXSdx87ODpwx4Bjx9rf+f1EUJfb2FnB20H8N2Te5W9H+SsN43yBNE9Iuh2b+d2t6zbMw8D7bJYGR8NjHrLz3j78JwPDg5/f31+4LjKwo0dNoWZZB1GpBM5MibJSBgUIEB4/kPeCDCBh9B+sDKEXMvnAn8Na34JrveQrMDddhozSgwoIpwrMHG5b6KSwCNpvFgcp1ZjEbiMDOCQAoC3HC1Gq4g7kaIZ0/DxBgrOnFdUQWcA49f2qt8vUQ99PoAepg2houdohto6mkkvFC6r1grVVMEWGrAuxLRF+InqftEDuPIhUIPqAoChHwGoe2boXyZkboPCaTDWxMGbNpgdgwdvcWqJc1Jq7A9nQDE1fAuQLWldjZm2OzqNDVNc6eO4eDVxxCvVxivrODYjYFQkBYzFFNp0ixxe65OTbP15h0OrBxgOkCuG1gZpU4y0KLjnECWNxqh9ldLxxBTu3NoQYBKRqyIQnQMEcYDgouvDAuQH+uewiYJHyRM20Qo4CMFMFR7ptexqJCYAYU4HoRB0eGjwExJriiEG0IsxR4Y0YK4gjahYQ2MlofRPOgRmBZAyD3tJjeiSmaCHJZ6SEiAgxrQcoGs2qipnasLI8sZ1JC29SiGXHUaxhIi+oVzqCtl7DGwTCjqxuQhnSaph6yhfSRM9b0Qs4QAjpfS0VcAPVyKSFK6CShi312SF3X8F2HXiCbnxtmNXYTz6HJpEIE0LUBJ+89IX6BVjw/MlthDKGsKoSQUCaGNU7ZDqusy4iJVBYkxoBmoc/MqH8xJOsuFHC07RLzvaXsr/eYVlUfMiYi3b6swxrT/1aKR0q4t6wmSCnh1KnTaHyLpm1ByqDEKNWPQ4zY3d0dwoM60YoamqYQsLOzoyG52E9+fOdxYvceAIAPAc4VyCJ6AaRW61Nxf5+IJmVgYGjExFxul9s3S7skMLLexmg/sxoXpLXdBzhZX/4Cx0CDnuolJlhjxctitL2U3Ue1Q0khIEVhRFLwIE7Y3j0HALhie4pYEUzX9JpTUEBAhHiEiXo/Qh0zVfBpCNqxShzZliUwqWCLUkICMcKnIA6UIPi2gw9eMjasBRkL60rYsgLpbBrWghScJAVNSA1QL2CjhyWx2k/RS+wcjKIo5NhjAqyBKQqQc7CFQ1GViFUlAsCU0CmdLd4HnXqMOHRtIxqLmFBag9mkxOlzZ+G97P/GdCo1dDUo3bYt5tHj4MErUBQllnWDcrFEUZaoF0tsziZYnDmPIgWQgp+6brF76jw2Wg8zcfBtLTWM5nOYzQnYknq1ZMDhQZTLvecpnoSvBnXN+D4ap/eKhiRrSsT4TFeRZ4dZ56q1aHrGJf+ds59ShOEkIDIB2cI9xgDDRvQmY71TTGBrkRgIQdiIlIyAEZ/gI8NHUbOIIDGpAZvAI9lPMTzLDFuuRZJSgjVSXr5whYRpjEFUQEVOhdUpz4YH07UcCjRGWBIx2ZIU9yR0hfqc5JorWqpe73/SZ9EAKJwDdV6vwjBpMGpJL9vkwbZdgbu41PZPuoQ8mIRRKUlcW4lADgAZ0eNoOM3YQsOR4oHDqhMRd9zV/kPqxojWyTrbi2zzMSU7eIoIqDAoygJd18FaixDUS0SBXr4rjQpLXeFQlhWITA/KCudgE6GsJvAcYWNA8mnYH71HSGvaQMFNSoOxo3EOEXJNQ/B9pp0hQuEcQoiYlJJtlCc23DNOqb9/BHANffH663K73L5Z2iWBkQuNde4DSIw+vz+25P6WWQc94+1JpwNlC1TKGNUwLMkgNduQLJHSAcEkGCPZHYFYzZeSVGAl7jsnY4zWGYlalVU7TwZgCK4sMZ1uqIVzQtvWfccevUfbdqjrJRbLJVICyskU5XSK2WwD5WQK4wqUVQUqnRAlANDVaPb20DaNhJrqGsV0A4EYRVXJwJoSyAkbQDagqEpQnIC9R6g6lGki7pmhRJNaOGsREVFUhQj9rEPwYqRWWItpaZB8i8JYFNUUVeVQOkJZGFhnYI1DvVjizLlzOLi9jUXT4Nz58zhy5ZXouhb28EHUHOHP7uCKrW1453Dn3V/Cx//ks/iHjzyCrcceRbAR3DRAbYG4BYamEBPBcmZJLIhz6nSO5+VUzhxaYU2f1nANEjh5rT2TwEkyigyrrTpYw0A6+09yjbM+JRd+MwZIfR0grehLVqM5KWOXoQ5QFMtzQxaegZx+m1iASNtGhACEAPiY88t06FZBaX5aiIb6SXEkFAWRFqQzvbA1KZiJBqA4MEkCtCBuspphIX7zpEleqt/IYSrKWShQ3UscwhomA/A+P6kHdzkrpHcHTWI5CCNmXiFFMAjGsKYU69BOQIz5iI0AN5t9OSB1WKzpB9eYGKWRlHNRDEH9SuT5BNCbjIlZB/qBP/clw/GY/l/nHJxzICMGfz27otlByMdrZX9s4eCKQuvESDgNkMrJhSXY9sLBf9w/rewPSQmAHpAAWq1bQoBScDRJH0bUl92Qc0+9Zw5RhoTU38uC/+Q4e2O7USbQ5Xa5fTO0r4kZuZQ2BhP7sSeZGh0/zPuBlHUmRj4T8Z8xELdNZ2HYwLAFUkSlFvZVZWErB4KVkjKU622oMygYrjAqHpRZKKUE+IDYQVKJuw6db5EgndK0rFCVJZwzkhXErAZLEfAepuvQdQHL3V10PsG6EmVZAWQxmc4w3dzAdDZDYQwoBsR2ib3zC+zOd7F74hQOb2zBuEpnVwCZ0UCdAigUgHMwRQlXVkg+wDqn5k9WTLUAxBDEs8F3KCwhcgAnxmZVYqMs4KkEkUNZOpQOIARhK0jSWnfmcy3CZxB8hzPnzuGqI0dwbrFAeeAAmkWLz33hi/jil76Az375c9jeKHHi1s9j+/ghcfc0KjgNHQwq8VPJzAWLIxqzAUENxyAiV3AEI4BIPUYgglUy4ifCsUN2xuA0iFdFDBq0WJ0Rh1qwpGyrwCclGcilmJ/S3sYKg5IYFFnsSqIKQEaRopQAiixsSQKsKeBboK0j2ibCe0YXlBlhUos22b6FQWQ5Nurv44x0xs+FRpQg1aeD2vWnPNAJKpEMKzJIGsbj7J6a/6di1j78k0WwrMeuA9zYVGwMlqwOjBIKMpLUlLU0imqG31I/WPaW9n36+6AJIgJQkBRnNlpvx4gTrLMFYByYsrePlZyqFBE0/9jHCM8RQqwYUSBp3zDuN3qGQ4FI1n9k1iwDkb5f6sMeBladaq1zGu6R7tIYyUyzVkAD9RMhGo5PFuwvZD6/MZI4HydGMspyYdiHBJb+x4rZ3fiGyF1hDoPl9Hgyo/3MoZqRjuRyu9zG7alPfeoNH/rQhzaf8pSnzD/4wQ/e/nDvT25fNTPy1f5uPyCSO4/9qMX706L0HVB+aZzYaTzeWEbhpFOoigLFbCJmV9ngSE2yCE4HPuhsy6IwVmPwDMQoFuzew/sWne/Q1jXmyzn29oJW0GUBJsYgp4ZMqgmKguBDQtd5tE2H5fk5mkZASucDIoDpZAOVK+AowXcL7M13sGCDJx+6CtVVU4AcyEn6ZUwRbC3IFiAX4KqJ0NzWgq0RAGKk8JaPUrsjV/g1xsDHIDNXBjYnBY4c2MRuJwXynGWRtlhhjZAYRVmg3VvizLmzuOKKw6ibBmFZY8t3cF3E7NBBfPpzH8WXvvgV2KbDsSuP4vjxK3DvF76I684/FnZLxItwBIotKE2RJKdVtDSjarqsDp6Ds1wEpwYwki3Th2J0EJQsGLFvN6S6i6haE851kkxv2CqiYh0ujREBK1T0p6pTikBqI7iNoEQwQVJGOTFC69EsW7R1hwIWUUMKKQFdG9HUAW2b0AVG6yO6wFLp2TBgxHuWoLiDJSVXCvll8DD4SzAgniiUPWIY0TAMMyJlAz1xTg2QWTaIBxt7TX2FsnmrTX8LHphFXvXtyPuZqxbnQQ8sYEgySdPAUsjV0sgTIYt1hZnJzA+BSNKajUlgMuqzAzhrYGwJU5QwroCxBcgWYCNAS2pbKTOSpCSEhWYxSWewUp8l9yvZyyO/yOhATehpnzH4GgrOEawlGEuw1on+A4N3izCalC8twBiy2TTMNZxaBRspSr0ow0pmcV+rKjJGRTQFmORSBCv7yAOozIyIM1Z8ZFbAyGWT0wej5cH7mmuu6e66665PPNz7863avmpmZD/mYj+wsh+Tkdt9hm+YV5C9TJaVotT/EeUZWp6RZJW5zuiI1Epb1lFWJbCxAQoeiFEe/BhBSXwXtCtVIwCDZITaFho8gqtSUz+1kF+I8G2DrqnRzGu09RJt12HRCTMSojI+iZC8UMxN06FtA3wbMZ8vMJ+3WLYeTRcQfYBFAlGHhIAv3Hsvrjz+bfj2Q1eAJoXMtIhAXMhMMwSZ8VsHchLftllgW1iEoDoWa+Hbrj/fiSU0YEEojcHWtIJHRCILMgnWAkXhxKAJQDUp4WJC9BE7OzuwzmKx2MOJk6dwft7grls/idPnd3D0yiM4vnkAy3YBZwrwokF9z2lsbhxBYjG7c74DhQaJkqZKZrohrNpbM1TcGsGpEwM4RIg+RJgLsOh1Uuhgnc1TfWFKMtuR4gBwevZNVBzGGJA62iIkeaUkguIuIdZewmIQzVLsItq6Q2hFzNo1HslJgULfRbRtQNt6tB0QPNC0Hl3wyLbmhMEqPNvCG0uwkRApj9/5mZABnHWAYhImJyEhUbagz0xK6gchn3JRP1lDz/JzEg8S/bsPoTBpaYJBsLvy/PaDpeqlsjU5BEwlQFij0fOclOHhKOnPGVANfYbVcAWDrAStnLGwRYVyMkU1maKqKpSTCkVZSb0kYxE59aGsPpMuGTjrZBLSZ7ithkpWQhei9Lwg2yTLnHPfQSPxqnMZyAyhYaehFGsMCufAKcEjSgZgrzbKzAb1gCQl6HUTIbLR7suYXOhA2KR8zlc9nPTeSdAFTA9G8iuL7y9rRi63b7b2NUHnB5o580CWuwC06HOUZxa6VO4/MXAh+fdS54JUne+sQeEMSkc9M+JciaLagJ1uwkw3YCcbcNMNuGoCW1awRQVTTmBcCVNUsJpRYqwM8qL72EAx20Q528RkcxubBw/h4JVX4qprjuGaa6/F0ePHcMWRK7F16CAmsxnIGLRtjb35OeycP4Pdc2exe/Yszp4+jfNndrC3u8Ry3mFvt8Zi3mBZe8xrj84z5jtLfOJDH0V9+pyUsw9aiLBwYFeCXAWyhVDRhYMpHdykRDkpUZYFrLNaqZZRWIuSLBwMLAjRy4DuiDCtSpTEKB2pB4nUsmEAJjFMjDhwYAsHDm6jJIJLDLYG954/h09/7rM4d/Y8tqoZNqsJrrzyCA5MN9HtNUjziLs/+UWEcx1SAhrfIoQa3NWg2EFSehOYPVJaglMNoAHQAtxBXFfjkMILqQpN7GUZCmBERN8BoQPaBsm3yLbhkokUkeDBRtN/OYCjB4fYZyghodePiOmrZNqE1qOrO6QugjuP0LTwrQeidvqsrroMdD6iaT3qNsIHoAks1ZQjDRQ+GS2UJgMhQdeTh8V+Vpxv9azvEPYEpNk0QJ+dMRbUJsjxBmUNIse+9lBeToSSwqZkmTZDwFJiNZBj9K/e4A/Qwn1G69wYMWLTKrQ5c6bPGOGkGgkBRRFa0E5fzFAnVwmNFUWFqpphMttANZlhMt3AZDpDOZ3AlZVknyk7BAApJEQvdbE4ZmdiYS+Mgg9CDi1J2DKDeYkeMdhwf276PoaM6EOM1Ro+Vj1G5F9AwUgO/xBQGII1gCOWvyHmclZN5iwECBqQ3i+ia0spZ0fpOdETZljCzZYsTH4ZN7y3Tl+DHmbQiQiLdhmGPHQtxohf+ZVfuer6669/fFVVT9re3v7OZz3rWY++7bbbyvFyp06dss9+9rMfPZ1Obzl27NgTXvva1x556lOfegMRPfmpT33qDZeyvuPHjz+BiJ78kpe85PgLX/jCbzt48OB3XnHFFU988YtffK06nvbb/KEf+qF+m7/6q7965CE5KV9Fe8g0I/u1+0PuvPZ+VI0C4zwLw30/I/SvTILhdIZhaIgfU1GC2SHFIELH6MUGPBA4SQE3aH2LlGfVOtPrJ61aiZesuFVGY2BsgClEkzLd3ECKMovu2gbLvTnq+Ry753ewSws0bQMfakQWarbzUseGSWZNrLbdJQh33PY5fOZDf4sn/B/fA7NRgm0B5IyeIIXmEhFgSbbvHKyzUoDLiRMlEfeDHwVGaDuQEaDCEHt4g4jgVflvCT4GwCRUqKQ+Rteisg5XXHkFdnZ2UW4exomd84hM2JhtwcAgLBucPHECWxtT7C0jzp/ZgbuzwMFj9+DoUx6FWdHBpggODYgdOLYAWYAkg4M5Acmhj1mwzCwNopqbRQEoCDLKQcWuUUI3RlOzWdOms7M7EamDvKAN4qijLdT0DMI4GQjPzmL57js1iXMGlEhMzLooqZyUTbBIgOMyYG/uUTeMZUeYNx5NJ3qRqKCHILVxrDGyvz0gEVASTR6o9U4fWdMz67XBEMLJwsg8/2ZmGIvB4I1VtJrvV1mRDHp6H2u5PyQNp/Rhgv4505k8gEcF3+9LZMmg8TEqqFC7+OHphiExszMKrogBGyNcSnAxwEUHmxJKZkyZUBmHCRlMmFABsDHANKT5RvI6eua8rL5HTASwOMhqWeO+rhSbobZMphu0FJT2INyD7sxjOCIFH1JnJ5udCdjRMI3V2kBWNDTOkmSfGSlOmFivSb5OJGE8UgbXaM2bDIRI9T6Z1TWQsOCY3TDjkMta2Hvl1QNbXG4PUXvRi170bX/0R390BAAe+9jHNqdPn3bvete7Dn34wx/e/NjHPvap48ePBwD48R//8eve/e53HwSAyWSSXvOa1zzia1kfAPzO7/zO0Y2NjVRVVTp58mTx+7//+1fdfPPN9cte9rLT+23z1a9+9b7b/EZoDysYWW8rhmfAqCPJQtMBhOQ2rt9BGlKxRjoHY+Sh7uPCxoCciCXJEEzSrAxrQWxlAMiiO0MwItNHrqibUwDzA5/tXAwAsgZBehJZV5IQTTlxmMwq0OErML9iD/O9Bc6d2cWZU2dx4sQZhNjBmYhIUjCNyepMieA9wwePj/3//gbX3fTtOPSIo0DlwBAvCGMIbLS6KKtjJGUba3XhtHKs4k2ghdv0bPngwbCi52CW9F7n4D0DxsFah9p7VKbAdjGBaQK2Dm2iaRr4LuARV12FM2fPS226yKjrGqFtYdxhFEWBulnizF2nMb39izj4mCOYXL0Bbj3MhmTBILZIBjBUilg2AYyohZ8ZfdotvOh6rFHAImZlogVJqn9hnfVDrrcOuJaUmh/fZ4osRU8hWTikGqL8ijFqmqmwRD6S6EBiRN0FTCYFrHFIbNF6Rt0Ayw5oAlB3Ccsm9Jk0STNbaFS+KA8eco8asaAnC0N92byeaSBQ1qH2gxx0GU5JWYPBo2T1SIVNMHqz7gf/JctneK7Ggk4GcN5a1ET4lVOnLvrsPpStKwrUs9nAKGi4qg+KaBiLrV0pcHhB+KIPc0nLos8sXh3Xjunrx0Aq/trxd87BqVeIiFSjgpLMCosdvuynGbYFwIx2YD+93H4hl/H79ayZyyGah7bddttt5Zve9KYjAPD617/+zp/7uZ87s7OzY2644YabT5w4Ufzqr/7qVa973evuvvXWW6sMCn76p3/6xBve8IavfPSjH5085SlPuemrWV9e/ujRo/7jH//4p6bTabruuuuecOrUqeIv/uIvtl/2spedHm/zJS95yb3/+T//57s+/vGPV09+8pMf/1Cdn0tpX7PPyAMJwTyQdjE9Se4UV8qH5yiO/quRCK3bQaM6Htl1M++wxuQpi9tk1gIjYEKK8pqhP8+1PThLyZLG20f8jA5+8q8R+pRyOh+DooVxDobFodNNJphtbeKKqw7i8NFDOHX3Wdx792mcPbuHeeMRIYMciBBjgu9afPkLd+MzH/kEnrQ1g6UEM5My7FK5lmBdBdgWgWthiowq662Bh9RHIWMQOeh5NDJAMqsLLFBYCxeURo9Sp8f7CDIWwTqUrsKkdOiaBtdcfTVO330CIUQ84qorsbOzh0SEurDY3d3FiVMncHBrA12X0MUG99x5LzY++Cl8+9OfDC4isLuAK7LpW64rU4LJadgAkOi5R+IAozVKLNlBsCrlXkGUJJbPrAX7tHPOOo0kYDSzAQTkosByA4UAdJ140ug6OSaph5QiCmvgI6MOEW1khER9faLAQNNFLJaMZZ3QdITWM5ZNQNsFkaFEFcf2hRQl5HLhcyOZMSKqHdS2zNyHJS/Uc2C4V1kfAs5iyoFVScggepTpobP0/ukg8a+4wAXZEE44h//z+CNwMMYcKZXnJyUpaqeeK324qFfEGhVRcu+FYXvmwaKqJL19OpthY3MTm5tb2NjaxmxzA5ONGVxZSLpyTAhe3JVjjKhnM8wPHoDNISrdNrHpJwnj8Es+RVkVksELEqlgmHugQRrGGafHjkMg+dT1g74ZQEv+fQYCMe9DYuQKwCvXDugrffefj/Qh+4GK9WzEsfA/h+Iug5GHrn3gAx/YyNf1pS996XUvfelLrxt//6EPfWgDAD72sY9N8mcveMELzgLALbfc0txwww31pz71qdmlri+3Zz7zmecPHz4cAeDaa69tT506VZw6dcqtb/Mf/+N/fA4AnvjEJ7br2/xGad9QzMh+bT2bhtZmdwMrMgYmDDKSGiqdi86MKXe/8sqFyzhXc8UQH2cW8R0zRsZSBn0aXhYbABLysEb8CTRGn2ICIYAcEBEQA8NWMxRkhXUpAGsZ29MShzYrnDy9i7tOnsXJswtwJMRAojnwjGADPvbXH8Thw1u49nGPQcXboKIYnQ0DYwoQFSCS2HqOewt6klCBTxEBjJiEAcrjFxJrxWXppEW4SmAVDracYMsKFUtxuIPbB9Gc28WibTAhC7e5gfPzPVSbU2xvznD+3HnEkGBNgeVyjjN3nwY+3uHwVVfgyM3HEdEhzWqYUlI5A4sdPJHJAQMwezB3IPUU8W0NsIM1oh+RoVSyQYTgkEJ3RjOZOERw68UfpixEM+BIvRzkmFnTr5MXZoQgn2WXT+ssEhFa38EHCZPYokRRSRZIFwmLOmJvnlA3hDZYLHzCog1oEyPCSn0g0qyVxPtktYyYu3xUrNoCk8WlI/aC0A86RoWYvacGKyPUx2SGTWSzM2KSjFOdobMZDX6cuYXVxsy411qccE6fA1bwwj0T4ENE0JBNLoAp96XR5xS9nsGpRXtZFphNp9ja2sKBgwdx4IorcPDQYWwdPIDN7S1Us4mECENE23bo2g6d1tIhnY0wR6QUkJKBYUnfzlXEM7Dq03wZvYfNKKDRL9ODDzswI2NQ0vc8NKqgPGJIiKTmTDZcMypSFf8XZXghsJI1bGTWwF8GEhlUrPeD639fEKYZAZPL7aFtN954Y12W5Qq6vPbaa7uv5/oOHjzYewtmQMzZJfCbrF0SGNnPI2T8HXDhQ/NA25j9WEf+wMCEiPvU6CHNheMANbvKs7JsLsV5GiwzzP6nPMySjcxakwKQAQAlIElsGIhgH3SmJbMkBoHNaGB0pq/KS5RQOHE6TRzAlkE2qfmSQSotCgNMEGHjDJOJw3RjAutO4szpBeaLGr4LmFUTGDLYOX0Gn/ibj6EoHY7E45gc3JYidBzVmCun8uXBTQ3E1MY+Jq/29BhA1mjEMiSpiDBGKr7GhMge7BjGAyd3z4OLKWZFicXeHLPDB8EnzwJth+PXXI0YA+rOY2v7ACyLdfjGZBOTwmHZLrB37y4+8VcfwdMObmLj2i2EeQdTNWAwTFEBsHoMrGczIIUWHL0AkrAEw4GdAUiZqjS6vpxj9FKzhkJCqFsxREsMlFqdNg2dP1ICB7GBN4CKhAN814JTQjmZIOig0qeMFwXKyqBtA5ZLj715wHwvomkLLJqEvTpg3iV0iRBSdvXkPnwmqZ9ShTekPiDT3+PC8Mm1jIh5Gi6iR2U2rD4XLASQQuvRbHv8/OiyGe4kHiCsJBwNxnJkAEq0MoCvVxPJ2x1vyxgDQwxDqffWSDzsUfbPyMMxg1VnMoCZvI+k92JhHcqiUGAQRQMSRfgZYhAWp2cehB3hmHIcqz+GxKyaHRXwMotgOTNja+dLOhNaYT/yfvYh4lFf55yYCA6ga9DeUEqwyOejJ6O0fxiu2Xp4Wh7D/U3L1lmPDJbG361n31xuD05jZiyXy5WT+rSnPW2Z75EXvOAFp1/5yleeBESc/e53v3vz0KFDEQBuueWWOv/mLW95y6Ef+IEfWH70ox+d3H777dPx+r7ru75r8UDW90DaE5/4xGZ9m3/7t39brW/zG6V9TczIg4m+9zM32zc0s05bDnxn/5VqyYbadDbPaCQcIyIH5bMZgNoLjdcvVWF1YGdNFTVK/ffKSNPHnfuZGAAiVquFEjAJRVkAMcFzB3IJlhI851lkB2Mjqgnhyis2QWTA4S60zQJUEKwjwBp0XYsv3/kVXHX1EZiCcMC3mGxvycxMZ4c5Pm2M1bCMehVYEfcxiYjXB4+kng9MEscWFkXFnAZ9mAsxIYJwplkgpYijxQGExR6OXXsNlmfOIymzsLWxCcIClCKu2N7CWR+AmHBo+xCK2sHzEsvTC3z6Ax/Hk5/13SDLiLwHe4jBU3U/dZkZYHAMYO8RuxrWJJgkxfYIDmwYkQlgA9f7lKgfTNb3hAjyQVOxNdyWrGK1AVQTMr+lWQ4piXCZoNciiPaGpC4KR4PgGYt5wNl5jbPzgJ3aofaMeROxaD3amBBYaggz1kShGSuSel2oGCSHEATo5kEP6jVBygHl/waQkdeZB8pctmAIp4wGXg0nxqTwRS35B5A+2NH3z+O+RM6FA6I1DOZBFEMp9Zkv+XfySK1mAMUYEUOA90MBzMysxBhhXc5mkVRwayVDKMWchaLLxQhORssMDOwR63Y4CWjhNOhM+kMcswqakZdnPxK6kmcl90fHdndQFyWWyyW6pkHnOwFUaWT+1rOn6K8HVk7HMDOSbQwMTb+MhsJ0T1Z/q/trOKkbr4LCGGGtTEIe6b/qSfnltk+75557yo2NjSeNP3vNa17z5ec///mn3/zmN1/5qle96to3vOENR2ezWbznnnvK+XxuX/e61935tKc9rb7pppu6Zz7zmeff/e53H/xP/+k/Xf3Od77z4L333lsWRcFxsCfGTTfd1D2Q9T2Q/b355pvbpz/96eff+973rmzTWosYHzCmecjaV216th94+FrafsBmTDcK8yyPcE8561DCPfUt4RljGGSShGrULhrASMgos2mmBCadGZKkOUrLHZAMSNKZJBhnEQMj5cI2hlT4qjOoGAWwAOo4lUDGiVsoedhokaJB1wR0TYPYRcQoA05K4mmxWREe9YirYMA4cWoXicTQKgXC6dPn8IXPfA6zqYNBQAqdpD4SgYMXO+41xoOMURdKB6YogkzocsR9SigR+nRGq46XNungYQzmNmLZzgHncOVsA7X3KGcztLtztPMGVx46hHbZILYdDh7eRtpo0fmA0jrMDh7GqZMd3NLg3OdO4zN/9Uk89rtuAFpG5yPKKwlcJRGlapgJIQJdBxMlO8pxBGIHGAtKpPb9DrCVFBqLXhxpkzJinmGSDPLJB83o4EFgBJaSAUg6JickpJ5UAkmxMx8CvI/wbYfgI9oW2NsLOL8bcG4esVMDex2w2wScXbZY+og2AZ7Fshx92AnIoajelMwQTBLUYCjXpxlm3UYzrHoQwhJSFOfOUYgBGU4DOfaWy8r33h9QjVSuRkwESjQ4kY7cX8fF5gb9x/DoZEYCwAqbaYxoeiIx2FgEUs+NxMJOsWiUohZcyXVavPfwXYeu69B1Hr7zCN4jxULCHUSa3ip1noyxPbMSUwL1FbzF+GvMuGTQw1HCeNldN09uVoAVZbBICuIEmKYk/cJO4dBYi//3Rz5yQV/1Dd4aAKcf7p34Vm1/+Id/+MUbb7yxfuMb33jlF7/4xUlZlvaaa67pvv/7v3/37//9v7+Xl3vjG99454te9KJH/sVf/MWBxWJhX/GKV3zlTW9605W33nrrbDKZpEtd3wNpeZv/63/9r4Pz+dz+y3/5L+9+5zvfefBDH/rQ5oN5Dh6M9nXXjFxq+GYc610FP0BPqyJ7HqjpUhal9pIPeS/0yEArMw31OXotibVgUvtwZTo4SbXcXjJo8ggFkHU5UaMPgQBqSMWagjciToyRImUEkirDdYfQtQiN+Ff4LqHrGL6LCG0ARaAywBXbW9jZbVF7wCcGi2kjTtxzElcc2sJ0WkqKaPRIhQMSIwYBGTGKiJDzeZcTJsZZzDDWwftWaGRjYY0DIcg5igw2UuSrsJJy2HFCzQGLtpYZIBgHFwdw4PAhdK3Hsm6wfeggZtUEdT1HvbeLw1vbOHt+BykEXHnl1WjP7YLB2Cy2cPrT96Ag4Nue9ChYS4hmD/YAIxUd2BgQSZ0ailHj/BCTutipfwTBRL0fonyHzgOdZtiIUEfBBsBqRsU+SSZxLtKXRJwMrfybNHunNxDzAV0X4ENE2wU0DWNnL+Dcnse5RcT5RcI8GOy2jLPLFrutR2CGTwogmVWOqzQ8gFypJnvpZDdQYigrQrCkIQFrBRQrIMhZMZkVGcSKtmc3mIVJyeEKaDgg5QdnncKn4XMykHDIKGzQp9CPJgv78aEZwCTVVpgc7kux53JoBHCI02BcFgK6tkXbtGjbBnVdYzKdoJgUKMpCCk2S6e9lJSM1HJIQE/XVl2McBO/9S7cjniQjb5kRMyIHoX2JnrrcD+VZ5OnpFC975jMw2d1D23Vo6ho+BATv9blANlYZVo71f0fnP4taeQQ2Mzuycr5zv0cX/r2iFYH6ogjofZTv8P/5ylcA4Hlg/tI+l+1yewDtgVimv+pVrzr5qle96uR9LbOzs2Pe+ta3fmE2mzEA3HrrrdUv//IvXwsAT3jCE5Z5OWvt/a5vPyfY/fbz6NGj8V3vetfnx5+9+tWvPnF/x/NwtEsGI/vFN/Pfl8KOrNOR60LV+2o5nRecQzE5xptBSVbAKwMyZpyNEc8KkFTPBYnvRI5j8BA77wcrzcgAEYx1ABllZ6DgRazge4fHmGCM021nwCvsRwwtom/R1TXa5RJNE9B2Cd4LXY1ESDGidAZbGzPU5xcIMSABKI3BYt7gK1+6CwevOIBqNoUpLcT2USoWxyB201n/IoOMiOwCxZ40iTGqmC4hRI8Uxa2VyIp4VTUk8jsGkUVHCae7GpPlHrbuuRezGx6L4AwcOzR1g+2tbcS2gU3ApCxRGAPPEss/fMVh7O7uItQBVxw+iC99/A4wd/i2Jz9KKHYm0EaBaCFiXFcCkZGihxGDD1DsBExSAafupAgsVv11AwoAYEGks1/N/rAmC0iD3gUKOrPxGckMPwSP1EUkL2GDtu3QNB4hMJom4cy5Jc6dizi/AHZqxm5nsOsZp+cNdpuILkQkAmI2DwMLo9bffOg1AzI4D/c+p6TsXB6sFEymHH6R+zbrEXoFgzInosGm3meD17bH4D5lVcTV1N8fOWTUD3Y6mGdR5zoLgtGzekH6fQ9IdOOjLmH8ZOe0V+892rZFWTRo6hp1XaOaTtC0LYqmRFEWKBxAGNJpAVYvFfRiVnF11XT3/hyhD/eEDHxilGrLo0nSAMz0nLI8tyGElZpZMUbc6wp0GxtonUNNJKyOcyM9yqh/HG2DOQ7nCPoVmX7Z/V79etbamDEea0uIaEVMa5o+pf3eC1ZyuT3k7U1vetOh3/iN3zj2+Mc/fklE+Ju/+ZvNtm3p8OHD4eUvf/l9Apn/HdqDyozsB0geCEDZT7iaY979TA7oB/yUkgyYENqXOYDAsGxh1dUoGgJTggUEGADCDhgDonLQFyiTAo0n98HdFIHImh0jBcrIquqerMx486w1RnAMUmSNNSxEJCmowfc0tWFC9B2i79A2SzR1ja5u0dUdYsfougTfJTSe0XYMawlVwWiaFsaVAByayDhxusbBr5zDxvYhFFUpAksjnaX3Hk1okVgzZzRgzSw0fQLQdo2EJciB2cJ7oaIpQgraGUn1ldk7w8YE6yMmbNB6j/Ohw+f9Lvbu+gKuoBIFRcTlHo4evhIgh84ndG3AxnSKvcUc50+fwuGjV2GnXSAiYVJNMF1s4N7bTsLXEY968rejbC3oYICdGVAZwb6TDhUM7logNGrdT2AXkdgDycAkCwoMEyH6ldjCFQVSFwRYFoWwA1GK0skwKUwSQgQ4qjYlgOsIX3fo6g6+S1jsBbQt0NTA7rmEk2c8ziwDzjaEcy1jpwN25i2WTUAICT4xwggIGIaYzlnNVOH+7oKkvQrYlToowpr0GIKoByuM7O8lOqBs6BWYgcgoHMRvRnUfTFLhdfwcWR5ACpFYthulGQyt5JYAgIZaJAAkn7I8P2uzdgBqdc/KiFDvE2NAMPqISKaagASrzGHwUtgwGAPfNWibGk2zQNNUaJoZikmFoulAE7ViJ1Y/llwrSPYsAfBBTrijnKYr1zyG0GeSdSwv+U9AUyJSTyGpZeVgJQQWBUim6LUatIZ7QlAQy7DJILKkKyOzUWbELGEEdvT5Y2g4i4e+pw+bslGH2kErd7FJ2n6i1ZXMn6xJuty+YdoTn/jE+tprr20//vGPb9R1ba688srw7Gc/+9y//bf/9u7rrrvO3/8avrXbQ5bae1+Mx/6AhcY9d17wvjeShYmD9eawLv09Zb8AgkrcMcTZM03LjBSzbbSaSuViYMzasWgGS9aWQD8HZIZrrQ6CScy6oszSUkzo2g6t0tJd3cA3XorotR26jtHFhKYVOn9SVagbjyaK66U1hL1Fgy99+W4cOLSJauakuqgj+FY69Bg6gAe/gYy3QorogpdTay2YDUJMCDGHdEx/nqQlxAhETXelBJSuQGJGg4R7ds6hJovtosIMFQpfI20UaOZLhHYXBw9uI3jAc4eNwoM1s32JGhuHN7Go5zhz6izcZ7+AA4uDOHDNIbgDFahyoMoB1oAN1JQMMDCgyGB4gIOM9NH2fiLsW8Sug40FSGf/QETyQEQCOXGpldCZ6k6SR+gCfB3Q1R7N0mMxb9B2jPnco+0MFouI0+c6nFkyztaMU0uP04uAnaVH3XoErccX1ZmUxoMCQ+6lPrt8n5mugg5kLAxa0Y6MxZZZsyGhjiFcM9zf1N/ug15E6hDphz21P2YtxkAkb9eAsrwCPW9C9/UsD58bDUMknTwM39OoBhFU2xHQdh6uaVAul6imU1TLJVyZa8MU/fGM7+d8OEgCxE2UtNxhvYNINoSgqceabgvRE9leJKTrTHlionVwWJkX1bzELLLVGjmrQI76EEo+h+PrkM90n0lDBPT+svk7rLAx47aff8h9fbZqgnC5Pdztuc997t5zn/vc2x7u/fhGbV8XMPJAQi33lwvf45B1QLLPNiR2yj3+yN1D9iDpm7HiwJrXmy3C+1XJ+8RJ+iUjLAgyCEkMKYVuJWMjeqkQS5KlkhX+hgwIVgZSawFIYbCg5mN5FsMcsVzU6JoA30V0PsB7GdBSEmq+Kh1mkwqL+QJgh+Sl897bq3H3XfeimloYAibTEsG36NoGIbRS2TVKhg3rTDiDMTYWbBJClxC8dLreS9Vf8a4QQWOKkqppyCi75EEERI6ouwaWCE0I2CsKzKoJ5mixMangNhkogEXZIWwTrCsRthmbW9ti06+ulUWaoY0N5m2NcCaBLGO2nGCyvQmzOQE7da5EFL2wsQJMgoelqNnbRmaxkWBih+RbCemwxPDYa0jNQsI4QQbIGIHYSgipawPaZUJbJ9SNx6Jm1HXC3oJQNwk7Ox4ndwPOLhLO1h4n5g3OLgMWbYQPChSYh3BMjLDMgDE61LDae8u9MR7QaewQTGP2QpxZEye9V+Se7O3L9R5hkvouA9ZIYuSH0T2NC5/JfScA3H+pmm4Bf5Qn8erim0M4+/1UFlPH2BxiyoAkaz4gAImYwSSuwF3nYZsG5bJBNa1RTWqUVYWumqBxDlVVXTDrz0Xz8vEJIDGDuDVKhs44S4c5rRgkphVmQQwTwZA0b0Rk5dg4hThreHqYlkNt99Pv7Qcc1hbo5wHrQOa+gMm650j/fs15+HK73L6R28Nem+ZinaTMHHABJTxuvX9CBiAkHb50+ui1eT0iMQQYO+oUU+/EmcVjEi+2/T4kpZsBCABJaqqVxxAicMzHkdTcKbu4GpiiACj2TElOd8wiuxgTgpcQTUyMEFlmcNprEzMmZYnpJGFnZw6OgLWEpvXY2Vng9IkzqJzF1vYGrGWE0CHFgESM5IOkMxKJ5X1RwLqIyA06HxG9pEhmjYkhmd0TZ6dMp511PkfSAVtjEXwHV1jYiUNHQEIH3wa0rsLmxgQ8IXS8h/JggaIq0RYtbCnnNZiEjj2stdjeOoKt7U0YkwBEhCWhZg/TEtxsAltZwBokSn26rWH1HokSIhPjNgK1AFqGTyp8lbgTmBjGEoxjcCcZGG0X0bUJMVp0bUJdM+qGsGwS5jWwrBl7S8LeImJnN+HEPOLcIuDsosOZRYe5T+giIUQVlkJca/NAp2esnzVbNlI/yQ4sB2O4SVkZi2GQG2bPzMPAB5aZvZp6IiUJC2ZmhRnDNZc7bYX1uE9tl25+eKbQD5DqPyx7rb8fGJlh9/K9beSSDEBkbdtj/J+SMA6+9ejaFk1do20adG2Lrm1RlIUUpXNuZRsr+wAAZEGB+m2OgUifWRNTD66sIZ0sQENM+TwyYhStT9IaMTmNeEXcu9Y1rWb/rQqBV9KH16+pMiI6F1q5Pvtp6/ZzWV0FanTB95fb5faN3h52B9b7m1H0zDXQU8wXLqQhltyT9svoA599G3TWP4RtpHCZKNkTOGlxLwCsNtYiyJP4P4x0VKwDYC8ABAmdi5Q1abJPRDJzhxTec4XSzRh5LTDBB0bbBQAsFVdj6mdkhghFYVE62S8fAoyxiDGhrhutdXMW0bcoKwdGgCGGsxbBC50s5I9mxsSAxDKIhiDf+87DGenws+iSVU8QU9LlIoyGpDgEEEctHiYVXMkSiomDmRh440EpYjatYGcGprKoZhWK0qJwFgwDFBW2Dx3GxtYWCucQgwelAEcWiRgRBOIJDAo9vVpgnUT7waFB6jpAGSREAB0DvtQaN4zEIlhNHBDgAYpgiIdF0yV0LcMHi7pJWDSEZUOYtwl7TcKiSdhZROzseezNPc62CTstY94RmkDwSUJcXlO9nQFILa5yOm7Sar3CFCRQMpLRZQYyf3znr2SvIN/K2f/CiFdGBh0YgRq9lySLZpjJEw0ogfPzs7a9PjykWxweL8oSCKlFp8A47xevr2N0NJnh6bPWsgg2pyOj984VwjElhEgw3qPrOjRNqxk1U0y7DhMfkMqEZFIPCPLkoU/dVX0TRmGODEDGoKRPbQbUgNANkxbwCEyg30b/POtkJW9z3HI/tg4ActbUsNywfA7TjM/FehsEr7zy2X5AZHW9l9vl9s3VHlQwcqkPwaWapvWdrL7Pynnpg9YfTvkeLLPj/PtxV0o6/cvl480ofpzNk1SNpxs3oJTZFKshGwbBymDI6GumADJrR1QRawhInYpZIculKHqClBhEBl3wYjCr+y+nh2AcYXNWIoQZzp5bgFnATesDdnbnsASEzmM6K1BNChAlFEWhBewSYmCETnQodROxWLboGhFtynRXBX+cUBQG2esjZXM4JFCKKK18ZiDGSoVhTAvpUIvCYnujwnRSgAxjMi2xtTXD1tYWprMZXFViOiklzdJaVNvbmGwfgqmmcKaAi1JJl4hgjUFhLeD0RYBLEYgewbdStDeWIE5q9mZgGWCT4ApG6DxC6EDsIYXwHGJsEIKHpPACIRi0TcK8jtirE3brhHkDnKsT9uqEvcZjUUfMlwGdT6ijeKIE1iyNGFRPIRWDU5IKyRLiEjmniCKVwiAxQTMstX9olKWSDfWSml8BMoBjxAwyq3SJ1bejv0c0xTdJqjoZAcYrAyNRD45y6HLle14FInL36oCtt3L29pHVKfMxfnzz4K0TAtEsyPbiaJn+LZGC+/zYJATvJTul9aKnUmYkeI8UApIdzhmPUoP7DJSe1pH1Z0F3z4pw6vctsyfWWDUWG+zXhyyhEWMK9Onyef2koHO9rQMV0c8woHLysWiGe8e5rBcZMy+rrMh6W/9szI5ICvzldrl987SvGow8kKyZ+/IYud/4KkazxjF9rB/0JLRS5IhanbMQ/xHxGWEdbId5KGHoVLONOPXTkmzdPdDnGP88vzHKmiT1JtGCeqQmYdlmPLYtED0odkhtjdA1yEJXASIyMKUEhJQQYoK12WQN/aBhQZgVFmFSoq48lnUr4Z2Q0DYe7cSjrjskDiJWNIQQxMRMwjCM5bJDu+ykeJ2PPTNCiVDk1EQNSGUKObFUIi2dg+88LEmc3VlCUVpUhUXpDIrCYmNjiq3tDThHqGYlDhzYxsbmJjY2NmGLAq6sUDgSHYu1KDcPwm0dQnIlElx/DVIOUZCwWMZIQUAYGTAspkgowdyBOYJ1qGMM19K4iNi2SKFBaGvErtFCaxYxSnXiZZOwt/A4t4w4s9fhzF6HvRrY84R5l7QonpEMp5jQxYCgfi+EnCosbA2QEDnBolBGbRTSgGhsmOW+DJpKTDpg5UFy8JuQUJQITEl8RTIj2M96V/gU+RxD2MKOXEjzuvIMfexnkQes9dDA+vMnTEdfUaV/fIyhVUCytgIxDJTn0lrRTeUU47x/YNOzAqIdCWjbDESyEVqHoutAzq76hyjrkev0iNZrABXey2+9933qbe/RQYNuS3ZmFNqgIew19BXYd3DfTyS6Hq7p2Sm9xlI3K2fD5LM9AMQHpO8ZX5vR92PR+mWG5HL7ZmqXXJvmoWqZBclt/ND2GEE4XoCkQxdyogBBraU4rVTtNTkcIzx+H70Zytmk3DP34Z6BodCW9IejmeKwz/pZDIDvYEKN5FuEtkHqWnAI6JpaM2k82jYgpAQfJavLmJzGKdStJRkspKZMxKw0OLS9gZQYy7qBtRNgawrrShWYEkJISJYQE4AUkYIYqi32Gvg2Yjn3qJcdYgiwDDjrQCA4Jz4OubaGMUbs6BMQmVE6g5hEr1IUFkVBmExLTCYlyqrAoUMHMN2YoJyUmG3NsLl9AOVkiul0UwoIOgtHBBM82BqYYgIqK1AxAcOJ5kOtuDkJiGQATEar+moHywm2mMKEAA4eHDzyoC8hKQKKBOsCyLcgu4QxCwAOITDqZo69vQ47uw3Onq9xahFwas/j3DygTg4dStSJ0aWEyIToI6JmYMSg1WEhoExlmsjF7xIN6ZWGSGj9JExGdrnN13a4nbJxl4KSPIgjp8oOtU2EDdRwTR+qGMBjf6czLhw5adiqOv4rmzAKzfTMxjBTz2KGnHWS3WAJkgrLmpmy3jMQkZ4WA1ggxKjHlWHaAHjyIJx4SE8PnYRsurYVH5Kqgg3F6vPGg/9HjFEFv7E/ZyH4FWO1lJ1Xe2A3sDnjVGh5K5OG/sg4A7kL+8D7G/RXo8s8+vzCENelrHe/ZXuW6DIQudy+ydqDrhn5egKWIa1PthF7HUNCCB1QGExRiGeDMhu8MnPQmUlO32OZ3faOlYO1av+vzmmGTjuOwEg2RdNBR6ymEzgGpK6B8R0oeLDvkLoWoW3R1S2ausWyadG2HiEGdL7TVYg4tCicMCKUDaoASgHTStxfm3aCtmtQNw1aP0ETIjaMRVGUAGQ9vguInZfwTC3mXb4OmM+X8F0roS3rwCYBZDVjxqDQujZkRBMRKSF2ARYMYwhVVejLYnNzhmJaYLJRYWN7A8WkwGxrE9PNTRTTDRTTTdjJFEQWweiAbCVkQdZK3KEoAFiwgpFedIFRteXE6oir1ygWgBOgyUlDMTGJaBVGnDZ9gIkBrpzAugrWOhhrAVPBhwLLdgFTEAJ5dGxRc4dFANrEaKP4UjDQu9oCUUWMWYyoGUYp9rIhCXVlZmNEzytbFlXX0c/KkYHIYMuf3UklVDZQ7wY5pJekgJ4+BqxURe/2SuiBSp6V83iGD6i4dwjR9IBADkFAwijckf/NUCJrR5APG7QPHMmMyigdl1aZhPVfMHhUq8b3rqyZIbFl0YdX9tOMMBJSon3ByLCcsCdZKzbetpBH+qwraBxOE+97jNhn0F8HBrgIiFlf9kJG5cJwzcXaZRbkcvtmb183Aev4AVoXdt3fw7Ui+uKckTDEugGdbaaoM88Av1wCEwOkEsxKpPesxvBgo/9NQlItR55Z50XHNWwGxwf9MutBWL7nle5Vvk/BS6E3Drq9iLausdjdRbOoUS9rtF0Hz8KKkIpqOQTxJNHZMhEBltRHzYITUBYGB7ZmWDQLzOslzu3sQafc6DamcKUDEcO3YjcffdRwTsBivkRTN7CcUJYlnDWwZFCVJZyzcIWRrBOtXOzKAjFEqUpKwtBUVYXZZomtrSlmG1N4BEw3Z6g2pphsbWC6McN0YwvFZIpqtgXrSqlJ6AAEj5wNkMjAkJMvyIFs9maBdvASAiMyMNm7W0GHlr6VM551O0mrFyeAIsMyg2KA7SqgLJAKEdmGRJjMgKl3qBoLV9dAacGFQYwBXUzogoARMGvVZfFTzWmgfSSPhkwLZA3EaNYtAJfESI5z5VdpuQpsX5iPBwv/jG+NNWL5rzdmYHEETX3YZcxqZPfQYWDVj+UuXaEidMFx7CExWHOTGRi5uMoPerKQAYzE3ZQBe9ZyYFUUm5/XPoySMm7LhSWzgFw2mJJU5ZUQSwvvO/hOs2oq8RwZA4uUoqaw61OcBc1gxBQH4apOHPK/yPuZB32sAhI5NWv91AXd1sC6XjSTpmeSsoaN9llXvlku7Bf36yv3Ayw5VJX/zn3I5Xa5fbO0BzURfb80tP2+e2Ark/8ZhoQTxkCAIAWsVB2f2hY8X8B4D9EQDOEZJoC1am/S+hVIEZSiDGShRVrOgcUc1CwB34KCvOBbsG9BXQtqG6CpwW0NtEugq4HQAUHEdcxJzyZruikj+CiZAYsa8509LHb3MN/bQ1M3MsjHAB+TWoiLOZpRo69kgEAJyQAeESlZgKQ6auEYk4kDc8KyTWha4NxugzM7S+ycX2D3fAPfAMFbNDVQzwN2zu9hvlgixSRpksZg6gpUTtaTSAoOJktwVYFqUsI5A2sJBgnWQEIy0wLV5hSzAxswU4tiUqCaTTHd2sJ0YwtlNUNZTVHNNmBc0TMgxhWAc6CyRCKrM38LsiXIFiBbgG0BLiZAOQUmU/B0CkynwHQGVBOgKEGuBBUlyBXCqpQTcDkFJlugyRYw2ZDlJxP5zUTWZSYzFJNNFJNNlJMZXDWFcQVsUarFvxQ8FGDBykREHSQF/ySWwEzu5MlIQWhiuU97poLEIZUzQNFaIVIZGSMfjFxVNuq9KUZ6KUB010CfKtwzJLrOXGsmMwQZaxgFDuNnjohgQbAs/w4Yg/vlIicJOpEMoD1sysyOpswTZa0JDcenYzrrzjJlACMvKBMxiGcVNLBkGY1/k1KEDx0636JtanRq5Ne1NXzTSOo6R+TMmRx2XS2MJ1WsU+8tIkDWRIaJrGFAuWD76TRy+CsNZ0HPoxFfmHz6dB/G7FE+nyvptSNh87iDy6Z1QLa0X2VBLkwlvoQX9Lpdbl/3dvz48Sf88i//8lUP5z7cfvvtJRE9+QMf+MD0gf7mec973nVPf/rTH/O1bPd//I//sUVETz59+rT9WtYDPASpvZdKN+bf9KQoZVll/63McDj1YRG/rOHnS1RTO2S7jChS5AlCyi9hRowu59sWse2EESgL8QYxRgt7DZ1BnrXnjl9Sg2VWExHFBZ49LDGYI7ooBcDqZS3eCXWLrvXwXQDYwJkShYuIIQoz4SQ8Q0b0Ij2jo7oNBsMSUDiLjUmFxXSKpgvoug7OitjRt4SqKFHaAr4N6JoO9XKJZdNJZ2oNnLMX2ElbY1CUDlVVYKrOl4kj6sVSZ/uMoiowmU0wmU1QTiZgBFTlBBubW5hOZiirCtV0ClcKCCEj7IZ1BlQ4YXs4W+tbndmTnGsyYtWv4IWsA6zT66e1ZmBVn6HXP3f4WVxpVUwco/jJaO0hRC9ApqxgygqmnMC4ANgSZAOMlRRlqeshdV44ie04Q2zDAeprw1A+bxi5o7JkymQ3UMDCWaOnTlPPFTQIQzDMXmUdWlMFsp5BF3IhfT/M6Km/JwH0z8w6YZ9BeT+LB+273j69fS11dH1dGcQYGrgDZgmrJbBeGxZNCRFiP+vPqCWHcLDCMmUvj+iDuBQX4jkyqSoUZYmiLKXulC32ZSlS4p65oVFWSvbzkRDQqgA2f3+xvolXHFKBHAa74LysAZr8GUjrCl3AFIspzUoVZV3HOBtnHWSsT/DGk74+6yclPR/fQszIZz9b4sSJi49XR48GXH999xDuUd8+9KEPfXpra+tb6GQ/PO2SwMj9eYLs1756DYnEqDPZ0MvziBCDlAQ3KYG7DrFpwMEjBa8cd5KsW4359kJVSEfICVpJFyCyKFyJ0HiEZQPbtIjOwTjbdyYyC9IZrjH9vJFZnEpZ69EwEigEIDZIoRUfjCjhoKAeCjFGGDJwJFky1hpMJhMYa4RW9jHbmUhHhawvIKl/wwkFDDarCZpZBFENZyxSTKibFoUtEHyLWIjAsAsJrZdCgK4oUCoYseqxUBQFrDOwE4vpbCqMiBVwAiYYZ8VwlhnOOWzMptjc2MCkrBCTRTmdYjKdoZxM4cpK2RDRthAZkGpQACPnS6f0lJ1eAa1DKOyBgAgHqOvo0NEqxc0k64TVFFr0jAIZzd5ADiMQkBKoK8DkwMaBycEngmdCIiccGlnYooQNgI1K1WusJAoyQcq1ZVRLkO9NqSCQwFFTWGnQLGSwQADIkOhipAqjMGEZPPThH6khJJblAmrGPh192iblbWEYlPPh5n0aHsA+NMD6DLCmrKaURDQMSSumNPIEAVYGvpX3LOLUXOwOrCm8jL7+zzgiRLpdGj3DK+tV4KWQD5EjopdnplnWqBWIlFUJIkJRZpaC14DToH/Jk5HE3BfLS/qKIxalD2mk4V4b/9vvPxFyuEwqEg/VfMcsyAVCUmat8bPaerH7iMXajxkZG8YNl3QVvGTB+fh+gVYP/5Zon/1siZtvvhldtz9CBoCyZHzyk598OADJNddcEx7qbX4rtksK06wj8wer7fcg5g6MeaCNuZ85RHCMUla+aZGWNajzoJBgUgYZwzqGJsNHZp45CrNijAzUlgxS3WB59hwWp85gefYc2vO7CLtz8HwBLBugbkBNC9O0sF0L23nYrgWWS/BiAV7OEeZzNHu7iF0LpKCeFGJp7pwRE1jLqCYlZptTzLYmKCcO1knKbFkWKHNdDmuF3icBO8ziCFs5i82qwtZ0hsI5LbQGGOsw2zyAopqg6TwWdY2u88JQWIuqquBcgcJJeXZXOpjSwjgDOJL3lhANgw0B1oituSGU0wmmW5soJxPYsoQrS0w3NlFOpyiqCuVkImDEOHlZq0xAvtB6ZcdOuKx5Gc6JVb/YYMq9kLjXiMg10wEbBkwOMIWsBwJ6pCR7nvVDQgQ5ds55qJOquj6KULWLjMgS4MgVT4tCQJpcAyefE2las4XVwmqWDCyMZNbo/ZQFk3mwUyQLQASvxrreU6RnEeTb4c7PIGufsGefCSIPTj/gjB/LdaEljdaRwworNWzWll9/HlefeYUZeT0r/2HlXf8LBSlSbXvgOXMQZP3Z5xglm0bNz5q6EUdWFbMGTdUljL015CSICFivg4qG8/XwPiAE+derlkoYk/GLERWQ7sd0ZBZnHXyMr9F+J38MHDKTlvHIfuf8gv5wn7D3+HWBCRu+longN1g7ccLdJxABgK6j+2ROvsp27tw585znPOdR0+n0liNHjnzHa17zmque+tSn3vBTP/VT1+ZlxmGaf/AP/sGjnv3sZz96vI62benQoUNP/I//8T8eBiTx4hd/8RevPn78+BMmk8mTbrjhhpt+7/d+71BePoc+/vt//+9bN9988+Om0+ktt9xyy40f//jHqwe63yEE/OiP/ugj8zauu+66m3/lV35l31DSy172smOHDh164ubm5i0veMELvq1pmv5c39++PpjtIQ3T5H/3oxrH3wPQ+Hee0WnnpgMU1AYcIYKbFqgbcNvBxCizL+2Yclw7syoDhc3i8xA8UueBEGAAlM4hWIOmlhlZ13WI3sMQoSxKVJMJyrIEOQPrLApXyMySDBwlpOTR1kvsnT2H+XwPm9vbsE5EoWVVihDUGNjCwhURvgtw0SLGiK4TQy4UDtEnsGEkL46hkqjDeQwQh1UyqAqHyAzPCZYMphsbqKopODHOn9/BzvkdRB/grLAgzloUzmHinKTZWgJZgisdXGlhpVY7SAffBIKtSpCzKEqHje0NTDc2UM5KFIUDkFBOJsKEkJilGetA1sGUJYwrZfJncjgxV24dCgoKvhjCDsx6fbOkMF/zUYyfIwDDMFqPCGag/HsqK0ZI1eQOCAEpBQQf0PkoXhZdROsjfARi0iwRY2GsON2SE3deMkY+8x2IAJM01GK0Ai0RnKasBhYjuwitz2JEgJoHf1beglhN0KJk6hil7A3RcG6w/wDUP1N5YERm/nSmnAHGQBbIucsGgaNZ/5gFGT+r43bhgDyslzCEamIaUpblJ6vZJ7nsQt5OFuCyDqJ523lQDSHAdx18W6BVUFKUpeqqbOZYBmCV1Jgtb1lxYErqIhzlFUOEzyxJygznEHYiY9TQTRglEfIqxKLM7shLTBcHUNKvZ2yBPw7zYhBA6+Hve47vK6S9H0Oyen2Ga/CtgkUezvaSl7zk2r/5m7/Z/OM//uPPXXPNNf7f/Jt/c/xTn/rU7Oabb17ut/yP/diPnX3xi1/86J2dHXPgwIEEAG9/+9u3m6YxP/ZjP3YOAH7pl37p6re85S2Hf+u3fuuLj3vc45r3vve9W//sn/2zR1111VX+2c9+9jyv61WvetXx1772tV+++uqrw8/8zM888sUvfvGjPvKRjzygQnsxRjp+/Lh/85vffMdVV10V/uIv/mLzF37hFx557Ngx/0//6T89l5f767/+6+3JZMLvec97bv/c5z5X/fN//s+ve/nLXx5f//rX33Up+/pgtEsO03w17WId3gND7vLA64813i49Teo82sUCpmlB0aseAf2TyGRBZIcOOIOQGMUV1XthL0IH6jy4beG7FikERO9R781Rzxfomhah9SCGzJIrh0lVYWNjA5PJBGVVgYxBQkQ9n+PUvfdib28P191Q4dAVhzCdSiG6CSf4tkH0WpTLEYI36DwgTq8lvI8aShKBI5LEv5MhxCRx/cQS+wbEJ6R0BSaTEq4o0LQee7t7WC4WIACTqkDpCpTOobQWTsvVG0N98od1FtV0gmpSwWoIhwAJ1aQEYwnTjSm2DmyjmlaoZlN11qc+PEPWgYyEO1AUMNZJl21En8IkWhhKWScyMADjnpMkdxSZD0OK4liaGIaF1Uo9tS9sE2WgimzZncDRA6EFhQ6IIjJuuw5t59H4iEUb0HiWzBmdRSciOCsAjyT3GRqbAVEBEwg+JDF/4wRmg2isAiYBjTExEg2ahBgjYJ2cSwlCgMgpzS/7moFXTp+NF9EJ9GEazagZw+v1JzOfQfX1Uy3FhVqRiw1u+7Mi+hj2Pxn2K5Gc+zw/Z1DP+uT1DdvUbRmzwsn0IQei3tDMdx2auoYtHYqyFH2PcTKY5/IFyBozAahjb5ekobaoz1PQ1OGQmavRto0Rh+UchnFOnlNoCJFIjt0YA6usVkqrLEnOFsPacQ3vR1ztcPkuWG6/v++vrTMrF94Vl9ultHPnzpm3ve1th3/7t3/7C8997nP3AODNb37znY94xCO+42K/ed7znrfzkpe8JL3xjW88+LM/+7NnAeBNb3rTFX/v7/29nUOHDqW6rum3fuu3jv3Zn/3ZZ57+9KcvAOCmm2468/73v3/zv/7X/3pkPMD/8i//8l3575e//OX3Pv/5z3/scrmk2Wx2vzdGVVX8G7/xG3fnv2+88cazf/3Xf7351re+9dAYjBRFwW9+85vv3NraSn/n7/yd5ktf+tLdr3nNax7xm7/5m3d1XfeA9/XBaA+aA+ultvt60EQNDkmLlE/yN2pg5GFiRKhrdMslirqGhXiOiNeCzng0et53niECvgO6FugayZxpa6Suha8b+GWNtl6irRs0ywbNfIl6d4Fm0WC5t8Byb4F6uUQbWzhrMa2EKSnKCsVshsiMernE+TPn0MYOkwOHcOToccAazJJky5AzCG0Hsl4G/iIAbYIxUk+mbjq0qUVMDGcM2BnJurDoY+tJB2RXOLiqgHUFUgzYOXMe8+VSKvACKIyBs1L5t7IWzjBcntVpCm9ROgkLTSoUVQVbOPEagRTOM8ywzsEWDrPNDUy3NlDOJogxwhqDajKDKydialZUsGUJztkpZPRlwRzEndRCWBnjEFk7Z5lagxFUSyJhKUIUzYem7LLOvnNh1VF9+x7QkLrfUgxA9GAfkUKC7wKWyw57iwa7iw47dcBuHbH0ET5I/Z3AeRCVAdE4JwNQiKJrAYEogZJV4BDRz3Yh2TdQFiuGMNIZWJCTGbxk61iQUStyvb2JhAlMeiwy0F08VEMKRvqQ5JhFGc+O9c8M+rI4vI+25L9B2G9GngfpcTPKNabRwGfJZMVGH37iXhUz9Bd9YUrI9RQia7Rd/RssRmld18E2DUwhIcayKBCKsgcMoP5AVOidBBSxCIWHzCUN1QQFJCMb+b7PGTEb1so1zv9q9EwAiwLfZIw45K5pelZCN8hMSHavzRlGIyBO+4eExv/mfdxvmYv9/S0TpnmY2m233VaFEOh7v/d7F/mzw4cPx0c96lHNxX5TFAV++Id/+Nwf//EfH/7Zn/3Zs7u7u+a9733vwd/93d/9PADceuutVdM05jnPec63j3/nvafHPe5xK2zLU57ylDq/f8QjHtEBwF133VVc/wB1Mf/+3//7I2984xuvvPvuu8u2bY33nm688cZ6vMyNN964HItvv+/7vm++XC7NHXfcUe7u7poHuq8PRrs0MJInY3jgN/p9of391jEO00hHm/0INEqTElIIQOfRNQ1C08C0Te/loGtBni2Nu1FKQYBIWwNtA/ItTNsiNjX83hztYolmWaNZLLGY1wo+WtTzGovdBbq6RQwJxhqkFFF3NfbiEiEymsRoQ0TbeqQQAWdw6yfvwJVHj+Pq41di44CDm0zQtUu09RLdsha2pW0ASjCGELqIxIWYdqUOZEhm6QwAkhrqg0dgRjSEpu1Q13OkwBJnDx4gRqmDhyGgdBbTwqKyFoYYhROmpShEyFpOChSlEw+HskRRFihsITP2FMBFQlWVYAMYZ1BWJVxVgr2X8EUh2pCiKGFdASbRbkiaqNFQjNLZow5eBiP1XwBEA8RJgYhkY4gYNV/RfG2NpE73DFj2IGE1nBPmi2OHFDrERl6LZYe9ZYuzuw1O7dU4tww4VwfsLVt0IejMechGkYFSNA7W2r4KNOdRCQBhlG7LQxYOrwgjJW1WJMiS8ivqXskYytsSIMJ96MOYCwehHNrI7MhQxmBVtzAOkMhAT/0i/Vvq3wzPzdrjOGZRVkNE0GujAs+VwVevJzSjhWRCkdkCQ5Ic1W9T92FFuImMMcSG3/gOprESqikKOFuAyMAyS8gmG5iR1v1hHqrsZkO5pOG4tUyadTCyntWy2kdRXw+LARgjk4i0BkTWhf5Eo2vXX8+EbAm/3vLv92WlRszVOlAdX6PLQOThay984QvPPOtZz7rhrrvucu94xzu2J5NJet7znrcLALu7uxYA3vKWt3z2kY98pB//bjKZrFBqZVkOHORaGPP+2m//9m8fes1rXnPtq1/96i9/3/d93/zAgQPp3/27f3f1Rz7ykY0HehyXsq8PRrs0MPIw3t8pRc02EVfF0LVoFku0yxpoOtjK9DFfrDzESWfUAEIAtw14PkdqasS2gV8u0dUL1HtztPMa9XyJum6wXDSoFzXaNoAjMJ3MMC1nQu+SUL0cIuo2ICbRqqTEiFFs0zkAX7zzHnzgAx/GD/79H8DRq6/AZHNTwMhijtrN0SwW6HRsSzEhGZYCdKVDCHK8lDSkEWXQiiySCp8S5ssFFnstnLEwDEklVSE9EVAWJaZliapwKJ14lIhY12EyqVAUEp4pJyXKagJTFnCuhHVO6GoS7UhZlkjEKKsKrqrgyhKwBk4rERtjpYZM9tbAcKuQFnwz1iGxzkaFd4GxMryzFnADQ9irHKZhBjhKqC1rQRjgFDT2zuo3k2ABKabmRXvDnBC9h687dIsWu3tLnD4/x8mzezh5bg+ndjqc22uwqBuExPCBEVISzYB6VeRwEkNDVhiZ9EKylbL1e8ZDrMXQEkOAkdaWiZxEvEmkocMEIgtxDY0rqbeZFTHG9VkevaHV6G9KIzMy2SnRiqRRaAcj0J8HQ9mIfjSayd/H5GD/v1Pvu5F7JhJKS9LcjZVnQYmYGKMAPGWIokCWntnpIdRoE324JkjNmqZpUKg3jGOGLQvxx2ENzXBEdunP9WhW7DbYaNi395PtQxr5Gsr+MIwZiUpHbJSeSmFQHPrMp3EbAwpC1uf0O4Hhal+87cd8rIfu1q/N1yPB4H/XduONN7bOOX7/+98/y2zEmTNn7J133jn5ru/6rouGKJ7xjGcsrr76av/7v//7V7z73e/e/qEf+qFzVVUxANxyyy11WZZ85513lg92mGPc3v/+92/ecsst83/9r//1qfzZnXfeeYEA9rbbbpvN53Pa3NxkAPirv/qrjdlslh7zmMd0R44cCQ/FvuZ2aZqRESueH/ALOiudsa59utLBrErbMMS2x2g//0Srxkope4+u7cBtgF+0WC4bxE5MyYqiQtK4PEE1CkgycOV6GCkiNg38fA9+bxfNYoF2KZqQtm7gmw7BSwVW50pMNywmM/U/YNmX6D18aOA7gm8JBbOwFzHAGULhRGfAxPBdi7u//GWcPHESVx2/CsYVykzI4MqJVaRrEBIQUg0Th0lrHqxCYkQEJFJvDQbYR1BgVNagdE58SUiIBUOkYMRhVhWoSofCGbhC0pKrqsRsWqGoJGWymExgVedRloXE5AkgIxbjs40pFsuFZOIUFeAKzfBhEeNayRBKEJ8KgCQklWd+Pd0g6Z/WOjnukAB4sIF4jICE1dDRizjbr+fZqw6eKQwMhHrNRGYkH8RHIkYkDui6Fsv5Aou9GqfP7uLe07s4dW6OU+cXOLfXYtF4NCEixiSZFjGCjGTHJKXTKYV+9i/hG0iWEVgeHiIdkA2ICiAA3EnqbuIomoKoA4QRAbFWTgIZIBlCIoPI2eJdgxsjsJDA/bZJAQWNUQiJULuv37MSVhlEkwNMpAGvjwiKHkiuzbjzv/trv+RBzaJPPTU6zIs+KcGCjYSpYkwCsklccnNfMN52ZhI4aoglyLWsa8lsKlwFYxxKYhQmlxjIwCH7pWRmRHyHLDMCEpiigo18P2XgO+qPOCowMXIvWSmXkF2RSa95f76zVoXkuTfEg5CYhREbKviodiojJhKGbdj2hSDx/kSr69fkMih5cNqhQ4fS8573vDOveMUrrj18+HA8duyYf8UrXnHNffnw5PaP/tE/OvN7v/d7R+68887qf/7P//mZ8Tp/5md+5t5XvOIV16aU6Ad/8Afn586ds3/5l3+5ub29HV/60peeeTD2/frrr2/f/va3H37b2962ff3117e/+7u/e/gTn/jE7Pjx4yshHu89/ZN/8k+ue/WrX33P5z73ueq1r33t8Z/8yZ88aa19yPY1t6+hUN4+8eXRQ91TvOinjPsupx8IgNHl8nqjdkjQ2aP3UjgrNQ3aZY2macCdB0LEjLVD0xx7UgtxVjdWQL6XzA1ZxhDJAFwRClciTpNUufURsQ3wIcKHgM57hBCBkBANIXGHaCQbxVoD5wg2EFwiREsIQQYyCyA0LfbO7aCtW0y3ZijKCRxJZ8TMaKwU94oxIHiPgK4v2hWVCUnCCWsnLzoFTgmFtXCVWLqLdbiIYomEJSmKAtNZiUlVwFiprmudWLoXhQoCnYRdXFHCFg5lWYkGxRDYJJCz2No+gM6LOZgtSzGxskb8SJw6mJocjsmDHa2GApIHIE6jBIYlBwQZEcgkcWWFhGs4RenA832AwY1SwAiLX0QIGqVhcBTH22yY1YUOdVtjb2+O3Z0FTp/dxcnT53F2Z47z8xrzNogHSxf6yq+ynoikGgBm7jUDIY0GIgDWGgmlBBaTNpL7K+pA2oWAoPe+DI4RWY8yxDLM4LcSeuIHvSA2C2Bh5Lbu7+QxMJBzPOxbLlCHHgRyDhHpwCiXZZ8QwH089+uC1pWJA2lWTUwrzzlBAbKRgT1HlYyKfXvgMe4GkIFMfskCQQFJ2xZo2wbWOSmVgARTWAG/umxKLOdbU8NZ6RnZ39XXfkJhzhOjUUgnGUkPt/l+7s/NYC2fQ3aJCFAfmZVzJn9cqO3IBncaasrXreexRsAGxMi64JXw2ChE9EAGy2+qdvRoQFny/fqMHD36oPt9/Jf/8l++/KIXveiRP/qjP/rYzc3N+HM/93P33n333eX9hSl+8id/8uzrX//6Y9dcc033jGc8Y4VV+M3f/M27jxw5En7913/96l/4hV+otra24uMf//jlL/3SL93zYO33y172slMf+9jHZj/5kz/5aCLCc57znLMvfOELT/35n//5gfFyf/fv/t3dxz72se3Tn/70G7quM895znPO/tqv/VovfH0o9jW3SwMjF3k/NFr5Jqft9QCDoUW2VpG+LMv9bwaNiAy6lJJYp7cd2rqGX9ZolnPUdQ1uJDU3woCNpPyxdhjUDwba/xclzMYmigRURYE020DXNojeI4aE4ANC6+GbDt51oLYDPCEZAERIHJDiENMnseCQ0Ie1SEkm+85Z7Yws0DH2zu4iLD1oU/aKigLl5gw+BtjUwbQW1IjRGDEBUTqcEBghii9G1DL1ZIyETaIU1SOIBsNm63YrFuVVVaAqC0ymExHKWoNyUsIYgnMScy+KEkVVwhYFymoi6ylEEMuGwJTEt2RrG3XTatVeB3JGtR9G7NmtE3FmnulZoxk00OlnAiGAOCCFVvpaLmFSAmxCooDERoSRUYEfJIMh6y5SL1YVoaL3HqH3i5CKrG3doW1aLJdLLOsGe/USu/MF9nYX2NldYm/ZYtl6yaQJEa2XGihZH7BuMJU/79kBIxoS3Q1kT42cfVQQkBz1gyJzFCCZEnI9F8kigWodEhhWZu1RwnKZBYFS/8YYSQtmRkJafX56PDLEeFYYC9qf5dhPCHmx79af04u9Xx8Apd4hZUJMkppJSh1YzYJh5iE8NTrnpLsvp040QMawAM2mRVPWcNaJNw6xCNedaJVyjIwVsPIoJVwv2wXHuy+TwNxf/xiD1msywnRB2Zcc11lrsq5V0NFrTRjKSo2+s70dHGTilQGShuRo2IwxJPfOGpO8n3j2W6Zdf32HT37ykw+HA+uhQ4fSO97xji/kv3d3d82v/dqvXfPiF7/4dP7srrvu+sT67570pCc1zPw3+63TGINXvvKVJ1/5ylee3O/7H/7hH95b/+13f/d31xdbHwDccMMN3fj76XTKb33rW+/cZ9G78pu3ve1t/ffjzJuvdV+/2nZpYGQUfO1nM+OOSRmPPAPJ3g886mBXHqI8K5EVDbOUJFU5Y+7Ik5QV75pWQipLzWppWsB3sElquLAhRDCsziwAjJ95JGNArgJVSezPignMpEXyAaHr4NsOZJt+dho5wXCCy/sVQj8LFZ1EjoEbcR4Pg8+JpPA5pJBw8u5TOH33SWxsbcBNrXbIBSYbG+AUkLoWsW3RLVsQDGLkPk20i0AXI0JsUZYlNrc2MJ1uYKPpELyEEKwxAjZKi6IUn4SyKntfEVcIM2ILBzIGk+kURJLGKuDCSsaMVra1RSGpyswoJuLnMl8u0PoOxhrJnjGEmCJ8TGBi0a1YqJ9Fkmq6mnhpiMTzIwWk0KFrOgRboCgnMGUCGycRmxSRQgfvPcRx1SAlwPuos13x5ggR6HxA1wU0jegI6rrBctlILaC2RV23WHYBTdehbT3qphMA0gU0PqKNwnjFELQYnQz+1lqEIBOscWgiQfQ2RhkqCYdIyMzKTSHZT2rqxSkBkdBFLeQHINt/k1ZIRtaBgGGSBXeif8n3HylAcrAXPGv9E9cDfR7d63ngHcIxYzFqbg8k++L+hJBjYd36TD0LZ7PLD1NaGTAHcfpImwEN9+hZ0yiUMh6pr+bbWMlQAjEcF7KvpOFUKJ2YkjrC3v/+rx/vuH+TWjdGtS4SltHEYWGdRkBgfI7NiGGTjQGDp2u/A3lDPUgRJgkryxEJ42OMUSdfDTVhoJb60B1yH/UtBEyuv757ONxV3//+908/+clPTr/3e793ce7cOfvqV7/6GAA8//nPP/9Q78u3ervEMA2Q7/wE3ncm2c80eDVkswo0BjYk1+agUS0OZlGoexmRgRTgO49Wi2Y16srouwDEgILTyC20ZzmHRzk/oMYCrgDKBPGoyMXnJO00ATAxwDgLU1iYYGCigWErNu+kHh3WwqQk2SQm6aRXskGMEXAStTS8MRanT5zFrX/7KVRVgauOHUGxWSKZCGckXTFNpwjLBnOaI4SItvHoWo+68/AR6GKAtcD2wW1cccVhuELMxFKUtFuJThGqysFpUcCyKDScIAADhuDKEkxANZ1Ixd7s15BDD64ASNxoyVgwJxSUgBBQnZ8hsJxZ65ykvUY/EtWpcxj0PRukKOeMARiW8EuKAYu9OaKPcEWFYroB4yqE7JTpvRQRDIzOC/DwXnQdKQJd57GoW9RNi2XdCghpGvg2omk6sW8n8QPptAihDwF149HFiM4HtD4gZufT0cA4tl1fL1KWlGXLzp8EUt+TIfRhFagwW1SuAKv2JI3uQSlfb4dtqalaBjoxRq3eO8zME0u9mt5PZYQPxgP5MPDlAVIe1/Eg2Ye61oDDuK2zJJcy2x6WpT4UlGiVkchMSL/PuLD/EGZhmKhYzvb4UovJOgfbOoAIMSUUzDDO9aGw3otolDmz0ieM9nU/kDYc8sCapZR6sfKgUblwXURZDLsqJM4wZrQH/XHnMNqFDBeGZfI9OurYSNe5ft0NcR8muty+tvZbv/VbR3/+539+UhQFP/7xj1/8+Z//+e3Hjh27bAH/ILdLDNOMaMksEMuzsp71yJ9hhXoddwr59+BVelxqR0jnG1nCEqyxj+g9QtvCt61YQ7cNQmilLog1IFf02oW+FwZG6Y8AQOKs6SwQSjBE4U6GYDkhpQBbiKdG9AGwBmyEVrfWIlmDZCQkwmzhvYFzBt4HiV0bAwugIAKizL5hDOquw2dv+xy6eolvv+l6XH38KKZbWo+GA2IwiNEhRYemTdhb1uI30omXwXQ2xdb2DFceOYLNrW2UZYXEysgUTmrNOIuiKPoKr9YYdfbU82EMXFkgMaOalVpThRBDQAwBVVUJAAGjrKYaIrCAb2AnFabbm5jPJd3eGgNbFjBJ0mxTDAhtJxoap3btHBHSMEP0nOC7DnUd0HpGs/RofQNgDltO4FPqQy6i1UloW4+2DWiaDm0T4H1A03q0vkPdtgJSmBGCCA5lMkwKgAhdyJbgEZ1mZPgYBit2Qu9MymDAUB8a4dFYkHSQYEDNzWRIMXEY5K0yHQTAGkI0BgVbsCvQxYDEmcGyK7PopEZbZExvAhZzXRzEHqDIPkpIKFcNTsx9Nev+sUpSYTl/Py4yuV84JgOv/H783fpy4/WsMyYXuLkidwHDPqQMRAA5XpZwCvdoTeoRATLjF+PYVeYlRtGOWGvhFMQpCQJXRBGzyo5rfyOaM0ICkTzLNHJNHR/TuGlCMvK0Jvdhoo8xfZbP+DSMAcn4fPTsFS48l8PZgoAv5h6E9QG3zJoQ9FjGAuWh3k/WadHoPF9uX1v7nu/5nvrWW2/99MO9H/87tEsCI32tDUiaXgpaKGoMNoALQAZ0ppKyOh46c0k5JquZBFpNl4GeBIUK0ELXoW0bNG2Dpm3RdR1SCKAYEQ2BtYaKhIxZOuS1iYGUNCewtSBXyIwiigaBrNXqrfKy2tFZjc+Sz2ku446M+2Jjxho4BpKP/SwQugvWWiwXS3z2ts/h7OnTOHrsKI5cfSU2NmdAQYjBo60b7J3dw7ndBRZNC5DFgUObmGxuoJpOMN2YYDaboZxIRotzBaxzYCLNiikwnU3hXCnbZzNmgMHGwBYFQFJoLMYAYsDFBO87GCP1WEJMYgtvjFwPIlBhUVQlws4OFos5JpsbfSl7jgzihJgCEhNSEm8Uce0X746UgDYktG2Ltm6xXHRomiCAq/UIvIuQAB8i2s6j7Ty6Tr6vmw5N06LrJJYeYgQTIUTRicAY0ZTEXFyO+1BaD4KhDpya8kvE4lWSB5rRPZJTaK21/b0pg2C8YLDOolYomCGo2FjBSVKRMUhSsSlJ9hGP7o8seBQvEwVSadijrJnQO1i2oeGHsXQkz45ziLAPctDaDH0fIJE/v9h3+ZjH3+/HlqzoMDCwIci/25cJ6bcwWkcGIDphUUDDPAiXg+/QthZMQNGzqgLMc2xncGteZYPW9RXrbFEOcVhlOcemb9K/DGLqfEzAalhGbOIHIEE0dEirOpUcnslsUDbKG4faeL0r27etH9e3VJjmcvuWb5cERmKIPcsQ1TK972SSDBY5fDMIxwRMpMykgDXtUR+2UXgm/47BPVVtGEhB/EV85+HbDr6TYlkcg5RbJzP4i2iKq6xcH/HRM8mAsCfOwSCBYwGOoe/AjIZirJN6Lj44mMRwhQOXDil6RC/UMCsFbkjEnJwA5yBZJYngIODNOQdmRggep0/vYOf8Hj7/uTvhnEPHAWyASSWhkxgDXFHh4MGDOHBgG+WklMHGEmxZoJxWMFYMxkzhQORQbeRCdTMURdV7YvSOpTnDyBgkAowNsEmKslBiOFuIV4crEFIHQAZHnwKYCLYoUE0nIAPs7ezg8JEjKsoUl0zm2NPlrVcvlCi+HV0nDMde3aFtO9R1i8WiEaDRBnRaI6YLUcCIFwak8wFN24ozqoZtEnQmDfThC7lXAFbDsoEDA5yREEGeocvyScAnjALJ1QF6XFdkPMPN/4qZVuy1MBpQQS5fn+8JS0acOSMDZAdQkBjJroKb3PKMNpt2xfxZfj7AoKgAmAFwEodblmudoKZc4H7wy/uT1z/+d792X4DkYsvv+9k4lLQOnHgUkkmSts8AuL9W4skyrFA+i1HSYmPw8J3plyFIsUTpP7S+0Gi/VsLHI9Z0vL9Dwb0hKyZPXkZ7fkGHIm9ppQ/LoZLxuc/L5O0N55kgNRDygcq2VrkNs/JX9lXY9/5ZA1yX2+X2zdIuDYx4PzAj3sN7cRsdz3rybHLscMhplPcPGSAy1YxRSGe9VkSExMpZZ0MCgDQFNgRQSlJN1WqBNq3gKrPdDBaG/adM22aPCqVE81xMOrMoHbvun7VWljWxn2lkKp1pPBsBcrEzZ6VeCRvxJ2BOaoVFIJLKrcEntE2H3cUCbIDtA4TZRgVXWMAaFJOJZAtA4tRwDkWpYSjVx9hCKucW1RS2cGJaVk0ky4VzimMSx0ojg1NiLRvvHNiLcRu0bsy4oip4AJ/OGMxmU2xvbmIx30OzXMBNSrAxiGCEyIgxwMek79Udtg1oGtF4LGoBIPNljcWiRdN4tEEYi5CL1aWEtusUfAgg8SGIjXdfDTcpST2AAwk1KCNiIFeTk7A7ZkgplRm66WP/YNHd9HYooxnyOEYvZl26Xp3XMzP86H4Fcpxe984MIUIDwJJB4IQYPMgUI9CkYNYMVYOJqE/tTZpNJkdMIw8R7gE9VnQjg4YgC0f3C0c8EMCxHzC5mOBz/TsiguHBI2W9rQg7kc8q9ec5h4SFbQMMa9YJs4Zq8u+AxIQyJrjSCTtiHYw1EmYcsREr+7ZP+usqGBl/tsp0Dr9KCqwuPGcrrEtm3zJjlPuL4Ud6MPurPIZlx8BodLp0IVr5bAzNL7fL7Ru/XRIY8V3XP3kyy61Xwi0pjdPSlBVRsJEzZJiGWd4KPc6rHUa/TIxIOlsO3iP4TvwlotYtUfdP6zTE0q9hPAPSDilFIKnt+NhqnBno/S9kxpVtwF1KiNmHImU3R5l59oOgMgmSAaKeBsbo/hG8quCNZU3TJBiySASADQxETOpsAesIZVVIAb6yhLMSJ7dFAVc4ANzrQ6rJROrilCWMsyjKErZ0yGZjVgEJWfkdR9G2SE13kgJuMEg+14BhyQzJ1zMGpOjBCDBEmEwqnDp5CqdOnkAxmYCLQsuyZybDo24DvAfmyxrzZYflssVi2WCuotO66eB9gg8JMQFRs4dClPh8CAld5+GDh+86dMEjpIgQc9iPgUj9MeYYPoEUSEKquDLDpwDjHKApwmAoWNBUYRjEFPR0rA6kFwg+ocXg4jDgjO9fMcZL/f0nxfasipm5z+oQXVSu5KuC1zgwGNbKtQWpK2+SWjvGiJ8MIesoBoHoeNgZ71c/884LjQbY8bGusgarn+f1jAfj1TaEE0cJvD8AAQAASURBVFZ4KQVD+fN+r3h1kEwj1ufCtQ6Lj4GyAJIoFXjJi2hZ+xYiAAVg2QI2nxtWTY6EjHqjjn3OxQWD+z6tvw/Xfr+y/+PDyeRHpks4X29ePR108fWtNBoAykDc6DWi4XpcJkYut2+mdklgJDRd30H5tkVXN6sMiM40V2c9Wdg6ngXFC9Yt5SpGnZTOBkMO0fgO0QekLoAUHJikCTSOERxgSqG0iSEsCUcMrmHoKdBB1CZNKu7Ki2DgTAEUkLTV6IVlQQA4gJJHFoWSsTCuQIKEiwxFWJL1Bo6wanfurEE0DFY6linBOiuASgclIkZRGiQOcLaUwQBGRLQkqcBgA2sLOGcxnYqdu3EE5wBTEAgKqJwCI7JAiurOKcdu84lgVndaAIiI0cNZmd2n2PU0f4pA9BEGLBk6JuHue76M2eYWJhsH0XHAXj1H2wXMlx678waLpcdi2WKx7LBYtKi7DnUn6dkpAYYcOp+QmMCIso0Y4WNASMKAdJ34jcSoOhCg1xwZYxCTV6Gu7W3msxiTWAb1mBgmJnEBTeO00oH5EhIi9RqhvP6+lkr/XsCaAJo882ck0EDuQXQpEloxgO5XIg1BqO196DoBSNYJc0OaBWYiqDBAAkxOC8MozIABNMh+ij7Hkvh5Zst5MIES6bUmpAhYw4AkOV10wFtPzwX2CQVAmM3+WdZ97O+r/DlEswHdN+RxWJdiAiKpoZ3IS2X9LANpH9ohg8QGgSTF2bCGoJhEP0IdGAkdMUBJAxoEIskGI5tt2FmftTxxGAT4F2hHAGgsb+UY17MHc+hlAG7DJOwCVmlsX92fu/1YplUGp9/3lWug6eVr4TCswCcCVoSul9vl9o3dLgmMNG3T3/xd16Ft27UUyGHSsS54y58BmUofwjK5Mxg/7Dn0k7Up0XfwXYuuaxF8QIqxn+CDjKab2rXaNHm2poNZCqAkoQfpcEJvJ86yI4AlEXACKJxH8FnmKDNS6xyoC8r6ZM2B7rvSvykmWZWV9XCMSEhKG6sozlpJIdZZvLWEqirAsHDOKWWv9vZEKIpCioQ5qxSz7JRzDs45GOP6TgpJZqVGs4ByITckSJiDRCQZg5xDjlJ80EOq+UavWUWG4ZNH2yxBHGGNQzWZ4ct33wPQnTh27XWIzuLM+T3s7C6wqD129xrszlss6hZNEyQ9N0nILap2iMhLHb7E2iGTilMl5TbfJ8PgyCsgIb8HMGS/5HuLaGWQGdcMyTqN/ZiAMQuwf2gi15MRioHyjTwaLDLoTqp7khuDYexQUC+qbipBXEhNUUhoBmLVz+pFEhAQkoSooPtksplc3l/KzxEAzebKx9DXtNFjSHkQH4lj18/buK0P0uvLregfhjO1ch57BIJVpoAhwAxjhqHnTgYdDnOCUeQyADKs3B+I6LObcs2ZqCEs5xwkv40x1lkwBmZk5Rqv9FX5HOTvR9GUtfsjX/N8TmPk4fjz8nkfsf86VvZjtMxY0HtfIbZeK3JRPudyu9y+sdslhml832WEEDS1bS32m2c0GM2EVh4eRgp51jGikDN13tOYDI6MGH3PjAQ1qRJNiqYMKrNgtHpsjpmyTmFX5wosYRoFIIhixNXvsCVQ4frB2xrpzEWiYcBWVmgMITO+RBLLLgqHEIIYtbEwH7mDKMgghSSJgoZAo45RysqnvqMzBBSFQ1k6lGUJRoQhQlk6WCdUs2T5OFijwAQ5nY8kwwhGK5VZGCY93iBMSBYPpyRaHNWVWEPwXQMiubaEUlN2a7RtI8dkSNJwI3DHl76CliYoNg/gzM4SJ0+dx95ejaZLWLaSDROiaEJ6YooFkDBH1dJkulrs1KUjFyDhnJ7PGCUkhlUQks/feOBdZ9astf29mrNjxrqA8b07ZgX2y5zpO3sj/iICOLTiiGJeWVSB9eg+TlFZmxHIHgrjCTA2xsA5Cc8YZlgWhiQzK9B7mpn7gpCEtVBoPg4dB7PjaR4YzWiCcDGh6n5Mwfg7AP1z1x+zXMRRwIZGTMho6O9H8/5/CqqzDwj1z6ysXu3FOEoYF8JEZb+VDAIICSZGRIroug6MISXYQUKlsv+r1ZTXAeiqriS/VoHA+vv185X/vWBidZFzPP7dfm192fXtj//ebz8ut69/O378+BPuvvvu8ud//ufv+fVf//V9nUwvt/tvlyZgHc0yQwjwXqoKD4wH9f0M595xv4eRVh+U8WDSv1ICZwMs38F3XjUjHiF4yf6wBFAB4yxcIeZeDKGR9yModZgAs2pOYgTHKKEdK6EdY0mYj+BhyMCRFE7LnVMuV97HwnPxLK0xz8TisDqeNTNAlGDsMDcikvLjRgWX1gqtD+K+EyQFbNZZuMLCmmE/jCXxFzFZsAhJ94wMGNHSkNboEJ2MB3EAOEmGB6uYVfUzKQV0baODAKPrEkJo0TYLhCDW68Y5JJQw5SZOnTyBPf8lTK+4CnUXcX6nxe5ug6YLUgwtsph+9QXLVgd4QzqTJyBxAPoBbGAtnHP9hTMwPfjN68igYgwk9vt8zJRcbABaZ1bGoCffo6IL4R5kUx6A+3tZ/h4bAoLEkXaAxYOQm0n1VsQwkJIChvK9I5lE2StjhZKnISlZ9mEEcgAN1ch9mMOfghckXbsXYvcAgIZ79SIT6wsGzzHT0Z9HEiC8xj4RIEUUdf/kUg9C0cjcbzurS1QFpE/sEOWgfL6VueAYAfUNYQoyMQmEFORcBoj2C5T9VGQtY2CyL3urrNOKqHVN9Lrfb/dj1fZj3fZn3+67je/hdQCy3+8fkP7kcrvcvkHapWlGYhjd4CPTMygjHWkAGrkzkkVXmtg2Swekkyo1rsozFs12CQHsI0LXaR0S37MiMnsiCc1YI46gdkjPAy6y/dzJIPWDJBKDLMHASpErw4AKVGXG6nTgJNkWYaS2h4Rf8swX6N0983ZTSH39EukQpRMWt1bJYilKCc2QYQEZat6UUp4LsgIVGe4ILFkzY/4YWrEXkAwMLTrHyQMchMAOQZgInSnHFJGSFotjYUuYGT60iKlD0zZoGxGnki1QdxFsp4g0wb2nd8HzBM+ErovovJiVie9H6mfGAERvATk2YGAOrLVaQ0Tqt2Q2I4dfjDEIms2S2ZIc88/34jjcMAYeGYw453ogvR6mWQcyeR0XNBpAn9y61F/gPGyKONj096be4f3zkLfBeu+nGGGc66+Zsa4HCjmzRkThugtmNCCOGZsR85TZBRB6UCXgnoRhUbbFmNXsCwnjKC4Zndt1Hcn+s20e8BhWwymcJOssny7q/5VjCZmZ5ATWKUQ/gI/8PHIW0YiIwcCs8iD0JYNkCL5rIXVrVDmTwSUPjMeq3m2VIcvREalvNcqwMgMLOT4nF2NAxtd7vMx+YbFxu7gw9kKmZL/f77c/l9vl9o3cLknhJGBBOvUYtLAXR606GxFTQIzySpoiK/4jUpU2Bi8pwV2LEDoJvYQOXdf2v4tRmI8QvJSE9x7RBzU68pqVM/KBsFZi6aOwCBKGip0rA4v2MJlf1s4uaUYQwYj2wlqwEf0JGyN/ywb7TjRCQiui4ZC1WysMjVUtSLaGd87CWSMiVwigMFZAjjUAIY7WlUNAqizgNAwwnK3ghrCOOL/SiFGB+lIo0NLjRBJgIh4NDXxX96yJEWkKmLX2R9dJ5Vsf4BNj3njs1gGnzi9wbt6iDoRUTNAkg/PzJXbnS8zrBsumhQ9eir5xQkhBU4nR62VEWpN9IVbp7P0EhdaKhiaDzJz6uu4LkQfvPjUWWGE31me168uMQzTAYCOe92nIFBuxH5zLGUA+52EQ6Nmy0bqZNSOIVTeiKfB5JDf5Quj7fDx5383o/jMaJ9TK9Svgn3W0jmkVgGUDONn39WNLKwPYxQbN8fkbvhOzu76Ccj4POYSF8f6JyBwQBsiAeqCfs9X6sBPl+xIAm0GPhjVgl7eXRPvEIYoXUQiavSTVogdwgJXfD6Gb1XsxptQXMIwpirg6SZmHOGLKBisDuW9iHCour5zjfE4g1gY5bMejY9qvXQqIGV+fy+3BaSkl/If/8B+OPO5xj7tpMpk8aWNj45YnPOEJj/vABz4w3W/517zmNVfdeOONNx04cOA7nXNPOnTo0BOf+cxnPuZv//Zvq/Fy/+2//bcD3/md33nj1tbWd06n01u+7du+7eZnP/vZjz516pR9IN/HGPErv/IrV11//fWPr6rqSdvb29/5rGc969G33XZbeSnb+UZplxam4ZEYEAk+rtrz5wctiwSYeaWj7OlVGif2Xtg56FMNzgAmdPoSX5MUJWvAkgHpbLooipUiZsys2Q+MHLTuP8+CMBbAIkpCERHKLEu4E1gHWxQwMcCVpYQ9YkRrWrVit0hJqokaq4fHBs46RARwEkt1IvHesIaARGoyzVrnxgBR/UnciOLWdGAHB2fsBSGBpK6nDnaYxRkGURLXVCKAkmbMCHjhGBF8O1RIVrBGYCRK8EkyWsSSPyEQ0EZg0Uac32sxbz26yGgioU4WDTs0oRVdSIKEf5CnwYPjC6UEY9xKx5/FqDGq/TWzijuHATzPUq01MnjvE47Jy47DM5k5GXfgF9NBrMf21yn1Xl+CwctEHF3TwJSkvmSasCQ8JKpeQNMjCnBJjAip+0PW9GEEIpIMIZt6Zsiw6Qe78QBMY+aJVqWLOWySgUmemSv1MYQ+Uur1FeNn8WKaEll3Zr0UEAnP2D9jIKwkjzDWyEnKXJ861TJryClvNx+n3Ni9udyYFtFbLbOg0HUgg3BixK4bWJV+2QfGGuRuSH+oYTnoc5nviwyChr/z3CcD1Hzkq34ra//qP2Z07++/T6tOsXnZywzI17e9+MUvvvYP/uAPrgKAgwcPhiuvvDLcfvvt0zvuuKP67u/+7np9+fe9731bX/rSl6pjx451R48e5c9//vPT97znPQef+cxnbnz+85//xGw247vvvtv9xE/8xGO893Ts2LFua2sr3nPPPeU73/nOQ2fPnv2K957u6/sjR47EF73oRd/2R3/0R0cA4LGPfWxz+vRp9653vevQhz/84c2Pfexjnzp+/Hi4v+0cOXLkwtTWh6ldcqG8fONn9D/uaJPO3AH0Mxzqf4h+IL2wexo20M9wMhiJ6vERJYSQWFkMR33GibEW1tiVVfZumJkZGH2eN8+cxXgA5TrneZZLBigKECc4ANOU0CWgrWtEjqJTMQa+8yBr4GDASfxQxNbbgEe4U0qXONik1YCNFJITSh9wVhiU3j6DCKUrEJNUkgWbnlEgSFojs9SFiZZAmk2Tz39K+ZwrENGU2WynDR5mx3I9Ja02JAGZwm4Q6jZiZ97g9M4cizaiCRFNABZdhE+MkAgxJqW/jZxH7TSdNf12mEchgxFIELEo5LhoNfQn+5UNx0bXNgOE0boeSFpqvk8vRnXv99tB+yEhEyl+pywJKfCigQ0gvfY9AkYO2bCEJ9PAXjCLQJuCAUOAh4QaDQwJKxJjHIGRBGYzPFdgrI3y/THK3zII5iPNgZDxvsrzIQO+RspW17HPecnVcQUUKeNkMuuYH69+NB/N/IfB1lCes8h1N5S9RkbrEPQhodO8/yznJ4MQUiTe/6cACwCSkXs+i33JZG+g4fi+moF85R7aB9issEN6DNlfaeU8rv1urCxaP+fr67+/ZS63B6fdfvvt5R/+4R9eBQDPeMYzzr/jHe/4/GQy4bvvvtvVdb3vSX/ta19718033/z5qqoYAP70T/9060d+5Ee+/cSJE8V73vOezec+97l7d9xxR+m9p42NjfSZz3zmk5ubm5xSwvve977ZsWPHwsc//vHJfX1/2223lW9605uOAMDrX//6O3/u537uzM7OjrnhhhtuPnHiRPGrv/qrV73uda+7+/6289Cdyftvl1ybJodIYowr2TSZls1TotzhahYvxh3nvj6D+feqGRHjLVYxZOz9J3oqn6ULsmRQFIVkr8hOSont3AkLJ5o3seo5csGgJJ2ZMQauKEUfUqheJAa08wWCF5qWDPWzOjkfrLNEmeExZT2MztaNdKLJMhCllg2TgA/OPhYAiqLogV6eQRqMZ0Os1LWGYjgiBgI5hmWCJa1k2ut7etpJqOKYtJZQhPcSismUcogBgSMa79F2AV0AFk3EXhNwftFi6ROWTYc6MnwiRNHDapqmsDti0T3sN6DuuxCWKFPW4xleDHr/kKb3ql6kDx3IpdHDGO6d3qF0FIZY13+MO/3MNIzByFgfksMhF7Ik6Gn+7JkB8BCW6BmafIXG21ZwbkSEywA4SI0ckHplxAgi+dfq78b3Zg7PjJnDEd5YaRcTNOZhvv+XBzFkYha0DAal1ZDWfgOfzPIz69LzoXrkQx2aXI2l181AtETId4g+F6Lgot6peQAuKsQF1gLK1DM8K8fIubKvskQxgkJAJAKxVcG4GfbxPloGQ+tsyrqwGSv3yYWAY/0c7geCVp5trILs+wIZY0bwgSx/uV16e//737+Rz+2/+Bf/4t7JZMIAcM0111x0IL/jjjvKn/7pn37k7bffPlsul2Z8rb/yla8UAPDkJz+5fsQjHtF+5StfqY4ePfqdj3zkI5sbb7yxft7znnfuB37gB5b39/1b3/rWfr9e+tKXXvfSl770uvE+fOhDH9p4INt5cM/W19YujRlJgwYjxYDou1F/kOOhqRf0Qf/St8gzmf06gjH9nAcWzvH1mJC8hA8GHYjEo9kakC2kfLhEQWA5yraQWRHu9x8pgmIEogeSFw0MQ8uHyKw3MoBqgsIQbOhkXxZ7MsMnhitKTUEFXCJwBELwfd2UzHbIgALpao123HHEHoHgpCQw8rAiLAhU1KkxfzPU22BN0wV7pEgwVlgdikCiCHJ55pg1AKop4YSYRcJRKt12ne9j62AgJkbXRSwbj71li2UD1D7i/LLFTuNRe6DxjC5qmEJtum32yEialWTzIAfVuxgNa6RBZ5GG8UTM0KRyrVi+hx6sZEEz9O9+sKGLZ8nsO+tMQ2rwfgNLX3tmTbw60O8CArMwF6BeMwBoqrqgYUD1AFmMC8g1MmSFWcnVY7NY2wcwWaQQJVRoBqt3cWlVVikO4Iz6/VslR7jf5zU6f/Sc9Y8jxqyFnhMNk5C+F7ZtFOIBgVmqO5MxyvSM9oky6BlcVQXM5XCYAg5mCZMSpDI2qzjbSHhVTjHnI0ImWqR+jfYyRH05gH7iQyTMo16WGAJAchRgCyQg5ZIBWAWr8vznsyKMzXAfkR7HkI2UT+DA4mS2SPdf/833C7RnzDohMoPgn/VwzcjHZhyqXA8zrgORByJqvdy+/u1Tn/pU+eM//uOPzWzETTfdtIwx0m233TYFgBgjAcBsNuOPfvSjn37DG95w+IMf/ODGZz/72cmf/umfHv6TP/mTw23bfv6nfuqnzt3X9+Nt3njjjXVZlisd17XXXts90O08VOfm/tolghHuZ3pJRapIYxQPnSlB/x6sjABlSnL1Su1Y+u9o9CDnWbw+tHlGD52BU96YFYEprAzoiYaOlXSAYKFQdDaYxPQsevHdYLE8B6TTtzp4RzKw1Uz0HB2JgHUUN7bOgSyJQ6iXcAYTrVrcE2kqLiGpeBWkmbfqDxJjyt2OHJqeM0JCDJ3oOYwDjNXuUV8pglIA2ACQUBKxkQIvNjNPWejKso9tB992iF4K0nkf4buIrhUPF05AAGHZeuwuW+wuAnYXHRa1x7l5g702oA1SfTZG7YFTgljb52h3PvcDqCNSd1A1NRPbE2FihpCfsGzjDjf7hKwzKesAZL1zzvddf79dZJbf/7b/XLQafQgFQxiJwbB67YizUFMvMyRttSeg9P+DgmMVEBgYQMW8YBV5x4AULZKxyFlc66DC6MCf93281qy/6DdCmaPYf5ac93GF/QGQJVakDKUzpreez+ALzKOQDPXr6dfbD8rjNNqBHRkzJcwKRJRRNWYYuHtPFgX1cq8PA70sRsCIDcthqKQZPCBIRhkRLDRMRgy2AGW3wvF56dm38bXjEQAZjidfB2A1rChhOhoASV53b+ia05/lGiYFZPKb1IOhDF3y5CyzPURinDe+L3owtsbaXGZJvvb2Pd/zPYt8fn/jN37j6Pd///d/YTKZ8L333msXi4V5zGMe48fLf/CDH5x57wkA/vRP//QzT3/60xe//du/fehnfuZnHj1e7uzZs+ZjH/vY5Bd/8RdP5uv2fd/3fdf/1V/91fZf/uVfbv7Df/gPd+7r+3/1r/7VibxfL3jBC06/8pWvPAnIvf/ud79789ChQ/GBbOebF4yMqu3KWKQAoe8e5EHcb3aa30uqav5sFFlPqjtg6Qg5JaWw5V9WvQOPHCmzpbexdqg7oZ0XE/ehGsZog/36uS/eBxjYvJAxsK6Em0wADoDPfZZ2gsbCFFpThBMiMZKBUPXWjArOGaQ0zMpiHMytJFVQU3dZOrvskGm0+FzOLjI2p8ImGOhgGSXrhY0BuQhC1EtAoGhgjAolNZMpdR6+aRGaFr71CMwIPqBtGnSdMD+Nj2gTY9l47Oy12F12OL/bYG/ZYa/pUHcBXWCts5LTh3VQUVdQMCONDMbGGRo+JYSR4LkHm9pyCC53rvnvDECAoXMdg5MMVtbdRC8GQNaZD2sdjLJIzkpqdz+LJyk4GJNQQByjVERmPQ/5zs8DyBggwfT3WL7hhbFCP4jkATlBmLBoAmAIJolraA5t5EEobzAPav2dTbnatJa7T6sz5fsSRK68p+E9QVgARhwGWBqu3bpmZ//1D9eHISnvOSspsTInWqp3AFQrT+wF+5ugLEruY1aYDQU6ABDFaD5BTOSYGcYyjE56REdi+mKXwzZkTYInkl7X/lvt2y5y/tY+A1aB8Ti0xLm7lIVkYXVjZs4Tt35Dwz1vhrTi8b3fX7f7YEout0tvN9xwQ/cTP/ETJ//gD/7gqne9612Hjh07tnXkyBH/xS9+cfI7v/M7n3/MYx5zfrz8E5/4xCZrvX7kR37k+mPHjnWnTp0q1td79913F894xjNu3N7ejkePHu2893TnnXdOAOA7vuM76vv7/qabbuqe//znn37zm9985ate9apr3/CGNxydzWbxnnvuKefzuX3d615359Oe9rT7Xc9DcAofcLs0MNKHPXT2mPKMUB7QpAP9ekd1ATBZW2ee9TNGgldlQVKMkkEzSrVcz0fuTcmQ/T8UdPSzsxwW0foiyrhwSmp4Jop78UMwMEUBsgbJS5XV4DtEDSW4soQlg6btJL1vVCRQOothkMldKxkjYCoDILCqB6D7pVoLLQdvdDD3IaAsShWAKiuVB7A4nI9IOYVWMmxClHTnFMSXhUOEbxq0ywYpRAUGEqZpVYhaNwF7bcCi6bA7b3B+LkBkvmxRhwAfIoKGpLIrLeV9yYM3AE4JQUFIZj+YRbQbQli5HzLgALACXMYMyH6W5flc72d/vl94ZsyOjP/OHT45yfTJabRjwEJEoBDgedAimN5oTmfiGJiSvD/9PTgEMC7Ytz6VV2fRKUVQsuAAkM0DkUiWmVTLwXI/UWZpiLPTeb+N1fAMDQ/ceHyi1UENgGatjBf7/7P379G2JVV9OP6ZVWvtfc499164NG3zkAZEEaV5tYlEMWQ0SkjQMFSIr6G0jUEj0jhakh+YYXCQoG13fOCDBNSg4COJ8RUl+IAxGAmCxtCR8PALiIK8+jZN0933nnv23mtVzfn7Y85ZVWudfZq+kVb6eqvH6XvOfqxVq1atmp/6zDk/UxrQrO6pEozb3Ku7chMoG2IpsP68NC6c2k+/v86esgUI18951k1wdkScmZqFlNj7WuHZa9Po9WaychDsrj977mZj4y9sW8v8HEe1beteGaMCTmzzFSx4eHJuXTx826eFH+v6GogQqaawt6xIyxRebJ+e9nM/93Mf/oIv+IL1a17zmks/8IEP7HzkIx8Jj3zkI1ePeMQjNvPPPuEJT1i//OUv/+AP/dAPPegTn/hEf+rUqXTjjTd++Gu+5mse2X7usssuS8985jNv+z//5//sffSjH10yMx7+8Ievv/7rv/6266677hO33XZbvKv3AeAXfuEX/vJRj3rU6hd/8Rfv/5d/+Zc7i8UiPuhBDxqe/OQnn3na05529u6c569nBO9eOy8wok9Pu1RVMKJIf7q4zYO/vE2MRrPDLIbWd/SsFXNTSsgOSEx3Q33OSinrIm3GmoNmBDgLYrsoANWlJDX2JQTNXCAKWq48ELqoO1MyHQ6xoEoGtFotCOvNUMS6XMsgj1oBNobeJNUDpDmXLkZllSkLIZABY0UQCBERabR4Flh8AVCyjMj89vVGmP6L/5uNajfANWxGDOtNEY/bJI0Z2Qwjzq0TDoaE/dWIO1cj9tdrnDlYYX814NwqYT1ohd2UDTJ6nANpRoSgSmsXbQVLbRVmM0BcCsWlnIrxbF01voh68GrLrrTxHL7ocnP/2nl1VExSuzi7+8feqFkrJnDXKr0WtiGPeuwxQ0izn/zaAoJlyjTZZagGhQxmt4JmVYRN5zGLAMaOkEREipPnKGhnEASF/ajPoROC1fUEd/HYB7aZznacmFljWuxopr5Sr4ea48d6P+axDO2xCxsqgsSmv4Eioq99ct8Qqsw8BwAcTO142vfiChWPK3F2wTdI0ri5AAhPincSMSg2wcom1OKMQ7kOD+ht3IPlOza+wa7tLtkQay2oBiyl39kv9c8WlibY+VgMiFTKqtzwbSxge+6L7dPXQgh48YtffOuLX/ziW7e9/9GPfvSd7d/Pf/7zb3v+859/W/uaiNzU/n3ppZfmX/3VX/3gUef8VO8Duo685CUv+fhLXvKSj/9VjvOZ0s7TTdPSklwXvvP63ozOLG8ZpS11pyu2uCsL4P71DAlRJaQNxYgLgwkgksGiqYJozkVQHMA5QXJ1NTACEIJS5QAQO/Pp6/eDfZ9FEBc9Imk6LyQjgtDZJTBrJgJBAw0D6bFdc8KD7YQIJFQyhZyC9dRXNTSwQE7fsYaSKu2BngFq3JGVZ1EQ4BobKv4EsXiRpEBpSAnrzYCD9YiD9ajBqiPjzGrAmfWA/dWIc5sR59YjVuuE1ZCQksaIMMME2srdAotKeadW9Mkyn2BjklNC5hp0mjKbTgyVOeQthGkmy1ELa9fUmdFMo2Am1IMas77eZM5Er4zLovo0ZlAD0UQsLYSAxWJRwI6OqyBCqX1hdU95PIwXLcysKaTwnb8Vn/Edvz8pGkNTdVY0u0NKFolYKjPnYq61L0QFVFTmBf5C1ZbBbPfeuFcmRlKmAGLyrwi0OJ3NXQd8wfreGOCtrIF3C+Zu9U0AAZ7J4nc9tP2yH2WCtAKvc24VHBpgEXW5OPBiwFiD6VzR75GCaKtTk4XBFPS5ilo6AdzEkLi7BNuZH//NQWIBTO0613zO/y7jZa+ExkVk0KeSWM5cNQfxgGiSCkLmP4fu5cV2sd1L2vln0zSMhu9OqKACTJgT/dh2v/Kh18SPieKiEZGSPaNAxCLxqQbAFRDin+GIEoXfdNV/qTtiABRAmkupH1UVMlt8BVrgXF1FRMDOzq7Ga6wHBNHBS7qxQmCNH2UnoAkaLEdUA/6KjolfMIwJkiJERlQDWd0YhBiQ2TRJmDVzJjESJcReQZGyDHUc0qBqt2nMlgGimTKr9Yiz5zY4c7DBwSbh3CbhztWIc5uEg82I1ZA1rXcYsUkai5KSgqboybqiLpZst2pMaeJGGz3lG1ooT6QWb/NMCvFdO6ZMxnxxdUMw1SipuhItU+JxEw4AWtbEAYczIH3fm1EWY8Km34mNMmth5IQQQrZ4kcroEVRNVMMfWAN7sc0gTANN9fpsegQgG18gzMhlftRJ7Cm+5bkLBLIUeI+NCJaZ5WN7yCpOHrimZ+YiqYGWFWAIqttR7boBJbIso8rNTI7uIN5dM26E9U1nGBpAZO4oMaYAhfHUeVSfGQYbqJ+6nuq5y/WIsk9ljUBAFo2zkhAREY2sZBNHCxaYDSA6npul1s/Gbc6E+LyaM8V1PP3WSJ1nAiuIKGUs2jXMgTYRbQUjbV+2gcOL7WL7TG/nV5uG04RtqOucLzOVJvXP+L9HuWxKK2qpUjQd3AWiQOSwIJa4UbBib5Y4YxR2hqc9SLOIuf8dtphSCFZpV4Do8SIR4BFgRhoHCCf0fQdCh81qA8mMaMsFCZSdaOMm7Md3wDDQFMiDblu3DYGJkKXGWGTbCWdR10sIrtrq4MspZS1YKLAYkswwPh1pMNdMYo33SOqe2T93gLPrjDsPBtx5bo2z6xFn14x1YqyHEcOYkVJGypopI6ZLohkW5tlmRkq6g88spbputvs1ci40MwroACT7btZSlIkmLpMuxnKvyviggoTiqiGydOjqRhnHsbh3HFB4TSHPzGkZkFLfBlXHAz7GzVyNpG47TWU2RV3JRY8DzEVnxA2Qug2p7pjR/GJxHoDFOTUBHyRuQBmS/ftTpohISyDos5FM92T6vJWde3stc3Bj7oA5E6XGTtpNvmGHBpRM1gBpPtX2w4sk1uPrXAjwK/P5rPcgaCxM0GylnBlEGcmeCaIASG4YMRubcq1miN0lCjK1VGd79P4I58p2cjK11oAQg9WGUpetpqfP7s/MuNc/G0ZoBgQmQMSUYGuVHUV+RTNJIZExMs1xDde42FshcJpYqG3g5AgUerFdbJ+R7fzAyFizmDyTBeK/izEM2x+AQ+6ZLc0XiRK8ygJOVVtkTg3PfwrGsB04OTgqCqziGuW28wJgdD7bIh/6XreqGWXx6vsecWcXm5HBBmCC1wwxrQC2Hwmk8ujCRkGbCBjpGIWgipIloFI81sJrWdjumGxcXevAN0oipr6q56Cke2hhQRpSqcibx4xxSBhHxpAyzh0c4GBM2F9tsL9mnFmNuONgg/11wsEgWCfGYIGqmb2iMRAg6EI0MJiKuymLlCDanDPGVAsZZvIMoSYF0RmQENCFGr5b2AgzOK7tMAEMs0VW2Y/pDnCxWJRjOXBxMNIeo5WK9/P673P3UOm7M2XGTjigrX2qjEfZnbLd35YRgAJFcguEBgSJHUVct8NSYukwmM85G7FHIEYBQ0c+WVS5km3PpPfbX2sZn+LmMHbBn/ttbppJXIRIySbS/hsgkgqqiUhdf35/S0YcIQQgts+6PRdB6kbIHCmVdSvXKiXLrwbZK/wh8pgSfV2yvpbtPDEKYuwAsYw5Y2J9zrWek3Lvm4FvmYn5a+32rcwVmxM6XrD4sCmr5thiGwviv2/LJrvIjFxs96Z2XmBktdqUnUIy4+M+3+LvvxvHKesbbJ0QMQeAP5y+m5HyEOvGRoDZg65MglWdZYaqblXKmJr/w3cVgUyTxF4OuiuD/9usbDFELJYLJBYMaaPLXx8Q+06DKILGH8S+V/lpAELZXDLTBcNdSz4GJc2RNZU3WbAuIRTwQsH84zDXgX3PRyVzRh4ZkoHNeqPurayxG+NmwGo9YkyMM/sr7G8GnFsPuHMt2N9knFkNONgw1pmwGbKxMxaXwoJoHVUxLv09ZQU/zIz1MJRibylnDGmswartbjiQ7jjVNzEx8BQ0nkMZNZRU5vlOL+oWFzlndCFOQIUX0vPvdV1X4jEK4PB7TVWTgchk9VEDYUsWT9Q06syMxHmqewEpVLnPz0kWjqDdNhvQcpeT9UNaDR4qsQ4lvgICza7awhTN5r+/5mD8kPdCyMRMm9gHB7MNIHJmh6n+XngMFnMjTAFI+3ubheQMymGXgWbLqOQ9Tcof+Fj4HHHmsZATDTiTBtA1ozEFVVQuY3trx8meqWx9cbl6jSnX9c3Ht44rSvnuw/fJXUQGoImqCJx9JpbJgMKYCKTI1heg0hxXCZPt8SFzAHIRi1xs96Z2XmDk4NyqPEDjesS4GhD7iNhFtEWh2tY+wOVBIQKoanLAdmOUjUYl1oBAtXqTuBEQITFjKbpLCgSl/wGQaCYJAIRIGsQBrvU2ggDIEBM8IwqgEJEDAbEDLSIkACpKFACKiIslkDMG2mDMG9UOCSqeRB2BOiD2QeuVGB1MMWIYLd4EWho+xoC0GUx6W3fW2QJPKJGpywKeoKSMStQaJUQIYoGtAEbJiFqEA5yALvYYhhGUuFQ2zpkxWNDq/nrEmU3G/pqxvwbuHARn1wkHA2OTMzZj1niXZG4hhqVXJmiWke7a2NgbrcgLjJktwFVdM9mNvvn8iTTQNoKwiMGKsgGdpa1SiBpAGlR1VESsxpDttCkgdp2mYBurESkgEqHv+wIcSqVeW6xjCI1Ee+PTB4piJ4DC1KSUII0EPZHpVzBbVpPGgIwspSJxTXVVg2jVT+CxFIAep4MFN1OtiRJMfyOz7fQDqRE05mXMGUIBY8qAZ3kEDd5sjZtwgMgAj0MoWJ0qqLBhKddfUu/tOVSAb4aQqBpXxb3FfPqmgWwMJ894AdptoKcyChTcMHMxwHoae48qEPTjZKiuSxZ1YbJlnHnhPGWMBBmkY2n7B5J2hwG0Cb9tVpY0KESsb8KCgKAgJOmzFWLUdSUEZQqDjo8H9AoJINmmax0tB0GNihKoFANA0Q8prl0fT3KNIndeVeCyjelwUF+B7pR1udgutntTOy8wsr+/j77Tr6zXa6yHAQv0EGgSSuvPLLtPZ0GoBgeqhjmVHQBgi2HQyIhsWRjcPqztThuwJ17fc6OkBcwIMZJV4+WygALaD1c7rAu0MTJt2p5UOjlQwCgepCkKvHJQ2fUYteKqim5onRlL2YyxBt8R1QWl+N5t8YpRy8GroXdtDd2R+/XqtenCaaLquhs3YS0GI48at5GGoRi6MSUMKWM1Mg6GjHMDY3/DODckrMeEwTNlsqY/cnYGRI0vwYI3s+7yvJT6mBljzhjGUVVohZGl3fep0mgIAR0pOHA9j9AsoM1tKdoqgSwmwuaPC5E54wEAMMBQglAx9Z9PJN8b4DGPN9JDVTXYiavG7qNnCg1J4xdcG6UaN0yYF52a00BCP1+7EWZUfQmfdxwCYJlIfu91RKXMdRFlZTQAuLITsNfa5gBtwh/MdtSwfpB3bPZ+y+a1Rm/OeBwyfkSIRxhIr7UUTNunBSOezm+jps9s84xrnypDpG6U5rRt3/0zzrD6PcaWVjBUQ13ajzORCq6naeGln+Xrfs3zs0hzCgNAW8Zn7o5sXYzejkpnbz9zV+7wi+1i+0xs5wVGzpw5i75XMbmDgzVWq7U+kObeCFHT5eKcaofu9KPTj75zbQxTACApI8sI8cWoLAyHaVB1DzWf8fMBpeYHoaHHcYjQ1X85m2YGVUMssKBYDaRLadR01BDR9wHCGbEbLSBNd8QhRpCksih0XYTkjJQsLVmmMSAu7V0NhrlcctY4UaqGxs2OuwTUrZOtfy6jrf7xZEZzYMFqUCCiYITtb8F6ZAMiWYFGFgVvUsdUAVCN28mmGTKmhGFMKgvPCkT8s4DHcygA6UJAF7T+TgxADHUh9xo8MBeHL7AehNrGjfjfMcaiwdCCGg9QBabqrK3bwDOAPN13TAnuMgBQBNkUyLG5HasWShJVkHVtEfh9IWU+CmvRuG/aZ2BqvKkYTU0Br3M6UgAXl4/6JTw3R4mcgFDYBgO6ojEQJFPDZo+O/t0+yGYrPU6DSn/QGFhsBXOqlzIHKf752Tkmf1rAbhMP4SBsrsExARClcF7tU7ZA4vKqGMsKAFLvef1OvScaVF2v/9B4NcBF60jBNhAW8Etc1i8PiJ9c5xZw1o7L3HU1j/tojzP/mZ/jqPPNj32xXWz3hnaezMgBFgsFI5vNgM0wol8u0QkgFBBjhy526Iw2J9sRg6rfvwQY2kIYgguMMTISKGltGIux182JLf5oH96WyhTfQTntigkjUkTPJpsFNd5i8gKu3EpiKq1Wc8KNMMwwClk8gUXG23JV5Nz7rldgYQXfRFB20jkruwI3AkZTO+CYXA9mImICi13IGMcRcdD01DQyiLgABokdxsTYMHCQgDOrEXeuEs64hsiQsdqMGI1J0RgRKxaISsNb4WQFILlmy4wpY5NGZIujcBcELI4iQv3rfYjou4DO6vB4oOJkIbY76RkwBZg21HMrD+/ALVo8hy+4c6al3b2LiNYNsnvpGUEpp2JsdTeezTiaUqhQiYURCMYsSFxF2lQN00S/nPGY7V4dGHlKcTF4uc5l8e27i5iJxk+Ru3as1KTWMyJj0oK54hpVWGkyK8R+5qIbQGE/xO4X4AJch6+hPDNuwG1sfc7LVltXGZ0Z+q/3yQ9n7spJvI3dYz9XZUVzARXU9KXSDTQ996xPBZwy10DZ2TW3gISZ4fK6DCAiQsjk5Zu560Uc52M33Tz5ZyvL4c/4fA7PmZH5ced93vb3RRBysd0b2/kFsK438Kc/e10YAyF932OxWKKP/SR9sjUwwZgEXYiUSSkPTkrITEAYMYIqcGCXDZ8bsao0qecItjv1kDuY3Duq61bEWBP73Xfz5DpHnnZLgDtELFaFiDR+IU/rchCo6FYMQ0IJWoHrY+jC19LMBJTqoyifhl1fAAVL84UxCLZYs3BxlSQznuOY9ZxCGIaEMQsOhoyDxNjfJNxxkBSMrJMxI6kAERcqA5QJ0oWfrGaPYCgAJGFMI1LWlF93IWVLnS7BiEToY0AXO/13AjAqeChGujFCgYxhAwpodWM7Z9oC6kLd0tPtDtvdHGzKucxclFUFGvsBAGz3MjGDqDFERDbOSUEXhZmroBbzuysave13+UwwIBBC3cnblJdQdU7YJgYFdVHFztOWazYPUoLHp5QeSDnk1qafpcKETCn9Yt1tXqA+sz4/RQ36nK2cxI34I0xNf+w47XPQ9vKwK63ZPxT8IOY9sdRzZ/FY02RL6jgAF0MUYKKC3Lpv2v6311GYFE9RB0qhSsmwStpBg9hnbe7Cmo6rNhfLmzMjc7Zk3r+jmgP3i+1iu7e28wIjWjBMH4oYevT9At1yicVyiZ3dPSwXC+z0i6pm6UYEMLeM09FU2YGyQBEQkuo4wNiMYiwDslSfPkV9kItgUJy5e8TUUI1VEc6aJmiVf31XqEGKGcwZgVUFVR/6qIF+za6QYlD1VSSIkKqnAoiBwCFiSANEsmmCeHChuyVI1VhhgbnGFoDCZLHNnA0Q6c41xoCUMoZhAAVSN0EeIMJIYwJnYByThsZQxGbIGDKwv8nYXw04s844s0rYXw9YDRkHg1brzVmzZoQFOZksuahGScqa4eMgJGWr8pvZwIgyBS3dHihgEXXMuhCxiKEACgekUmq7kIrEtYwIUWHTnK2IBkzcAJQ4kmb32u4y23o1zkQlYw+Kq8X6XowMq+uNWeXxC/61GAGEoEGULGDUOjvz1how7xvQSI43fbU39B8RlZoQKEsggASCiI6HcIZETSOPXUDXdwWYCQctkSCCnDSaqFRPbpgD722kMMmGAdxLZgDCMrU8ZgVAqVVTsj5Eg2iVzUQRkGuP2TKX/rx7zEvrGnIgr9fSAEgHF2JxFQYd5qwa81TB1FupgqsfdEhVgH+b7dWyb3ND3rr7tI+sqs+weQoNcFX135bpmmYa2RCXflegcZiRmYPWu8NwbDvGtjiTi+1i+0xv5wVG9o4fx+7uMQDA7rFjGPdOYG/vBPb2juHY3jEs+h7LzpkRFGPrOzDfMQVPefWy3CxI2VLajM6UnJFHLZKnmiEwI4gJXR1jRN8vdaG2RRIWL6KLq8ZE6Os1bRVAodmJxWTmAWRSliAlSBohFtTZdR0IAWnUzAtNfSV0FIHI2HAtfOXn4aQZOyACmKoAFHuRrroAiWh67zCOCFzrmIzjgNCpqmxKAzgndZtQRux2IEI4WI1gCBIT9jcJZ84lnNnf4Mw64+x6wMEwYjUwRhM0E1FxMrAyRe4q0vgYweiMiAWpjllBiRfsAyzd0dioLkR0sUOIQNdFdAYyWmassEhKP5TjxBg1i2QWK9IyIsD2hdk/Gywjxg3IRA12HEs8iF+DHytbVWgRFKZEjBFRA8pVT2d23rZPc7fQNgp92661fk5pBPY5BH9WCBQDQteh6zt0fY/QWYo0M1KXMWKjPJ6lX1Mzr2BuS4jGvCDQ1n6yzckCCrRHKpvvrFPz/LbXNAeDEyPoVtjApz/rhAlhMiEN5vEUqulyGOjVv/UAmn1m7qMWDM7uDzxFF9M51dY9avvin3FAJqaB5M+MAiKLmQtVmK/tqx6/9knPPZ0Hd+V22fb3XbXJvLoA2y233BJ/53d+58SJEyf4Gc94xhmPY7w3tPV6TTs7O4d3NBfb+YGR+5y8L44d2wUAHD95AuG+p3Dy5AnsHNvFzs4SfddhEfu6y6UafAfbKYGgKbyW2ifmDwZgvCyXgnCS1ZfvMSMiylD0XURvsSl932Nndwdd15dnL9hCDHPTlCWmZUskm/tFqXJJCRKpAqhSU0YDL2HKkCKWUixAFI2RYBB6iwtoRcyECRRtZ53ZxNCMMibNxvFAXmVGBOM4AknQLzowBMM4gmJEMDCSU8aYE1gSFssA5ojVesSQR2wycGaVcObcGnfsr3B2NWKVBJvRxMyyWPXgbGm2ZGPBpjGi6boufDbk6p7JjVF2jY1F7NRNFwIWXVdqhXi9F11kNbgTEoqRLUDEPscGBLYJN813eUcZ+/Z9Z0FGU4Z1RsQBik9H13gBqBT3850u27GycIl7coPiO26f33oEk2tvGKM5i7JNWK0YQCbNJmcCBbYxdFakQ7fosdhZKkCz+zYMg0rACzA2SqfK+kkBJMCUBWnHSVO1LabCXFvlcXGBMAL62BX3qphLpLA5QBOHUYOtHXT4sz03jdSwGBPWSXzTERA0ox0BNQanOmpRXDbaz+k5xNYMz1xr589R4LYAF9O9kZaR8Rg4EVMlNiASp/Ee2+59jHVe+LmKK2xLX7bN8W1upaPahcqM/NzP/dyp5zznOZ/jfz/wgQ8cfu/3fu99j3nMYw5V0P10tZwzvv/7v/+y1772tZeePn16cckll4zPfvazb73hhhtOf+d3fueDf+d3fufULbfc0l9yySXpmc985m033njjzcvlUgDge77nex70+te//r7f/u3f/vEf+ZEfeeDNN9+8YOabPtU5/za28wIjl1x6fxzb2QEA3Pe+p7Bzv0uwd/wYljvqqum7iC50CGbFudml2J7FFikLJrTffVXJOSONqciLc5aiSOpMghq/Dl3Xoe877B7bxd7xPSwWvS1e5uYo8XBUAvk0xk3pX9/+iXVOOIMpWhEwwDhm9MslFl1ATiOGYYTtW9WQou68itqk7ZjYqtyKB0KyMuBF7hmOvWx3byxAyprlQaEaVazXCASkZAqnLEgsYOkw5oRzByPOrgasRsad64w7zq1w9mCD9SgYzJWTc9LF34GeiMVsWAYPCCkDY2KsR4sP4VQCaH3AfMfch4BF7EqGSxcCYtBFPFAw3Q0DkEF1UtqATt81e9rvPFivzZTxts0dMjEgdkydR3YNVqjPd6zF6DViVURUwAdZwLIzdzp/wsQgtefyee1GGI3BkC2/zxmF+q/W/glBzO0GIFg2Ud9hsVxiubOL2CkoYANJkgXSZXBqRdcMkBgrAvIYFJmMJ9v8cu0V14lxZkRi1O+JVigWIiBnxIZhcVeM0orNNTfUhz8foTGO1f2hmj1t9VtuxjpEBfweF1MH/TC4QdOfcn/8QzK9B3NXyiEAYc+mrxFE+swXZjM4uDbWqJm/2+77USzF3L0yf33+2W1g/KhjbnMp3pvb7bffHr7jO77j4e1rN9988+Kf//N/fvlb3vKWP7unzvv85z//wb/8y7986cte9rIPP+UpT9n/yEc+0r/73e/eAYATJ07wz/zMz3zg8ssvH2+66abdF7zgBQ87ceJEftnLXnaLf/9DH/rQ8jd/8zdP/cqv/Mr7izzBxXaondfIPOCyy7C0bJpTp+6L9SWnsLO7RN/36BbqJglCJejNMxPcB8yeouELi4kUMVJxp6SUkYaklWYlG2WOYhhiVMq6X3TY2e1x8r7HcfzkMfSL0FTq1aBKdNFiRIyUCQFiKaUUPH4kQEzgjOIC6BYgiqBoGTQhgLL5hYdRwYwV1fIAXN1BC8TqkeTEVpHXqvOyK9xrJoJ+J6gEvAXIaeaKaEwHj2BEjGkEQkTOCcgJaVT3iSBgNSQIEhJH3Hl2gzv2Vzg3CPZHxrnNiPWYsEmM0VgZZZe4gCBmRiZ1Q6ScwELIDI0PsYDV7LVAYEaUgD5GjQvpevQWw0Bm22NU8bKSdm2tuB1QjTFgQMSAie+mCygpP4VXK/dxW1MijAvocE2QzFVHBGh2vz4GrAJ5BdjQdFdJdnBXv53vsMv5m2sgoMYuzT6jO3sUYypGLQQ3ejDwYy/GoEHBy77HzmKB2GmcAtv3JLOmxEfX5ansRrHDLJAgxvKF0s9SR8pLL4iDabtOASQqqFZwFkGQ4uacKq566q9fIzVuH1OohbOS2kVll5zdaL5vx1TVYWdfmuDkwlABNX7Jx5pRiveJZeugCdhtxl775mxOg1qsz2Jz32+OsLhM6tTQ23xxUF1BMuC5R95hI1asr1OwMJlz9sFDUOYIIHIhsiDz9ku/9EunxnEkAHjjG9/4nt/93d89+cM//MMPeutb33rygx/8YP+whz1s/FTHON92++23h1e/+tWXXX/99R+69tprbwOARz/60ZunPe1p+wBw44033uyf/fzP//zhPe95z+lf//Vfv18LRsZxpP/8n//zBx70oAelw2e42LydFxi5//1Poe8UjJy870ks73dS67b0WgOkiHDp6qKLncVQaLAegUl3WCHoro6yxosgW3pqyiXoMOcElgyhGgnfxR597NH1EcvjS9zn/iewd58dxAWplhqg6ZtkJiFKFYOKEegXoMAWzKpMC4NA3QJhuQPpFxpgaK4DL+AXMCKwWDBlQOio+I2ZGVk0MyNnQRq5LFwMIDGQspibJiN2HUIgjKO9D0HK+rkwCLJkdH1UFw1FCAObgwMMQ8Jm1PTd/YMBm5ExcsD+/oAzZwccJGAjwJrVlTMye4kd5KwGuAt6j7IrSkKFaocSoJoKK8JNtkykgI4Iy75DRMCi011zJABeu0NRSzFmbshb4TtA42+KobYfBzzRJNCFxXRrmt2r/b+opLYAA9B6ORZomFhl3CcZS1KZAbJigwiwoFEdp0LDk2XtUDQPo4IEz7RpFV7bHX2Ja8I0lkLjoA6ngbohdbilxtzNoxjjpKq1fbTU8aBMRd/3SDFijOrSydlcSaS5YKooSpVZ9HOITuvOQDhb8HIAgYVAbtAJatAF5m6t7gm0LJO14srz17iCMZYaGFsCWgGtx0JeGVkKOANpYUll8BToF+hDnlGjgcU6Z1pSytYfl7v3lGJnnMSvxu5AiFZQW8ozDZYaaI8KRsqGArDUnZopGKkG5wvUFc0SGidR0z+0/UWZ3xPw6rPC0Zt9yVkYn9P+74UOSN73vvctAWC5XMpVV111TkTwwz/8ww8CgPe85z3LewKMvP3tb98ZhoGe/vSnn9n2/s/8zM+c+g//4T9c9qEPfWh5cHAQcs60t7eX28886EEPGi4CkU/dzguMnDp1qqhgHj9xEosTJ0vqqsF5lSy3tNFAooJMDZWutLeAM2n8glGuDj5yyshWZVZ3tC7GpYZqYe6ZnZ0dnDp1X5w8eQKL5aIsAK38uz/tZC+EGIGuBwKr2qv4YhNA3QLU94U5gfcZUpRcXdrcVRxdg8R33yl7pkouu28AGIeEYRi0dDkxYqdjpS4SBkHLvqdR68CEqBkSm9WInNR9sn9ug/39FfbXGaNEnDlY4ey5NdbrEWkjYO6QEJAikK1YXxKB575ogVCCQLNaWEx5VTR4czOOCkTY6+VoLIlnxfSxUwGz0KGPsSjxapDpnAGwdN0m06LVEWnZEb0/+t3gAZPNbpmIJgu5uJGJNaNDjVKzu253vjNGZN7a7B7fRQuFYj0cUPkBSzwBfJpMXUR+rjbw1c/dStF/Kp9+Pa7/3ezGm+ssVzE7Xt15e9aaAx+LrRCdAx0EkK6K7TkQsHR5vR9s+F7Bm7NrJdi8MCpyaBwChdl9ocaFI5PjlDTaWb0XAqGLncb1WI0cCbKFmXH2w0BCGSuU+9ngIDj35u5VjZnh+s62++PzonG3lfsZ1D0Jd9faE+d1sObz75BrprmWeg/vmvXYFp9yobbbbrutA4Bjx47lEAJOnTpVjP6tt956j/g/9vb2jhzcN77xjXvf+Z3f+TkvfOELP/qVX/mVZ06dOpVf+9rX3u+Vr3zlZe3ndnd3D0fBX2yH2nndwBMnTxYjsrOzA1ruQBcU3yWpffcsijZgcPKAsT6mzALkuvBwymAvR59yQzvrg+ry4F3XYXd3iZMnT2B3bwddHxH7gBAFIgEWwacrgAWiaSPAAhQlRF0oQSCYrDtgQa/K1BCzMjY5laweWCaKVqytOhzab9ZYDncTQWXeU7IsFjBCVHcMb0YMmxGcgRC0SmjKFlg7bMAQjAxQTBiGjLPrEZ88s8bt5xJuO7vCrbffjrPnVpDEONbt4PjuCfTLJcYgYBNOGTIjCYMoIpJS7JkVrAk0gDNlFWMbjRXJltYqIloHxoBHF2P5cYACqGumZRzEtqht2icwBSY+D+aLrromvCiKL+hmyOGxHcaCZFXOTcw100GkZM6EEEB8eDGfg6Bo8yRQQJYMZJ7ENvi08dWk6KKEoDVqGv2Kcl2ePk415oVQa9Q40JjHyczjGBzUZHM7DaO67YQ0tdxTrjNzGZdtLVAAGRCGzXnHV6RBGeoVyO5aMEPqLqXSFwXkLFZTB7WfbmznhtHXgMk9lgY4spvs5rpR778zVPkwvVCYNTYmye+bB7BPRdkqsBVn6qBp1JkZFFsVWCkAqcydwuKhuGOYGRFVBM0BjAbS1u85u8ez+V6uddY+FcMx/86Fzoh4u+SSSxIAHBwcRGbG7bffXtLtLr300nuEebjiiivWOzs7/PrXv/7kox71qE+07735zW8+/sAHPnBzww03nPbXPvShDy3uiX78bWjnBUZ2dnbhtEPs+lIdVQM12VJX60LT7tbatEsxYTGKAqaxLFgFhLiLxhd+GBAJAX0XsOg77O3tYu/4LpY7C4QuqIG1baxT3djilzUGtywWBILJgwJgUDYmJA+gNAKctLJr1gyUEgOTs9aDGUekcUTOHhiqRw3BYjBGdzkpCAihR6BoabbKWgQDZuOQwZyQIciSsH+QAeqx2iR88twanzy3wek7DvCxT57B2fUaIsAyRgU544hFCMqKBAEoIAvMncAVIFmWEogKkNLYCqu50oxXCEHFtmJn6roBsYsaG1SCOqkwId6qCZsulG3q7ta6G40xc6OlLE6tBePxICwqD+9xIoeCEt2QzYXQMN9NKvtAxUc/pb0rUKhjknMGzebVBFgZs4PmOZgbkNaF077m53RQwAykzKBhBEOL9ZFlbo3jiCE5kOTCLHiqdENBgPy/whxoH1ks1iGTFqgsLA60EJzBFmcC1UWDkiJb54CUMSq4wTcCUo2xNFk/fo89W8nrRsHAp99/faTqvfB5MGFhbM5QYUjt7oYau0Ll2J5qrq8zNHDZgTRVvNreMP2HZQZADbrZWLHptBA14+B9mYGGQzFFzXkmn0PDmmCLuN/fkvZ5n/d5GwDYbDb0pje9ae/3fu/3Tvp7j3rUo+6RbJpjx47J8573vNMvfelLP3uxWMhVV121f/r06e4d73jH7iMf+cj1zTffvPjpn/7pU0960pMOfuM3fuM+v/d7v3fqnujH34Z2XmAkxlqqPYAQgwtVcaFIC906Ew0qQMQWSiExYTAY06A/beBhVV0FImnwXYwBfR9xbG8Hu8eW6PqIENVgRcAZWguU9QWvphe3y5fGddi+zNgQsKb5Io1AVsZDGrZAmDVNN6XqTkqp0vJktDhCUY91FU/3J2czMNlTSwmlyq8g2VgJhqSuk3OrAbcfrPDJ/Q0+fvtZ3HFujYG0DlAQwiiCkRnIGYygwbDItbqoUeKA3xe9T7lJf/XrA6RoJmhQnsaLKBui7iQ38u2i3BrXdsc/V0q9K4MCeNyFC4+pofIYIv/OmHMx9GVOxapRYzeinKsKrzU7+QkYEZuXVP5WFqMaK0/AcjTLuVU9pUrzt6CkOV/LMEzmoN2bAkLM9JRjCcCUIRgxMiOmBMSIlBnDOIJTwmgxQp6hZlmkleERKTohGidD5Xkki5tSliQgNM8vCyYZcWT3JYhmqzlwcbdfvSoDk8YQTe6x+FNpxwxktV8qq2YhGpNWn+Ap2ChjDdPyoFpvaAI6CRVoEyBSx5ghQBarckyWDWigur2HRGWTU9w0gDKpYueOGoPDzX1WsLtdZ2aeLYaZ22XCFm35znwMtrkNL5T2zd/8zbe/8IUvfOg4jvQVX/EVj/LXv+RLvuTMPREv4u3GG2+8ues6uf766x903XXX9Zdeeul49dVX33rdddd94s1vfvPHX/SiF10+DEO46qqr7vye7/mej/27f/fvHnRP9eVCbucJRmJZCEIMJWVTmOBBZW6U24dmTkuDaoVYTzUdx1EVPy19VUz/gax8OMFk2y2Yb2dnB4vloqHULTjQskbQAJlmo153c1YjRv0kBOFsgEQ0eDUbI2LG2w2EGvBRxbTyWGNbWIpom5/U2SLXsgBpRkFKCZvRA0VF6fOsSrGiUbVgAJuBMSTgYDXg4GCN9WrAOKQSH8HQHWwSUe2RFADqdBcL1ULhQ8u6Fv9z4Oe7N+ZaO0UVUGNJ29UaQipwpvttp6WnbpASE9T8Xd05ccKSbQu4a415KUiHKuXun6/F+TyNWxmd2MQnABXwtK6Rtl9tLMP0R41Ha4QLlSAW9CztvlfKmNTzfApjUAyuFOag9q+eDixIg8byIAV10wRC8jIJOWka86iZXh44q0iuqqhKc5+qTa4BIIGCxoM0zyqb/owApfQLpAYLtwav1aFptVwqYzKNF/EAYN8sOEgBpuSAG2hSmqSwKf5eu8GB6ObCoU5ortnBjhI5Ng9FdWTaGCBNnJkyWWVOk65HbayIu2h8nPWZbACpX6WIkz4F9FfA7DNBUIaoHGPb1KnXZJMV7cBdiEAEAE6dOsWvetWrPjDXGXnVq171oXvyvDFG3HDDDadbd4y3V77ylR955Stf+ZH2tZe85CUf999/9Ed/9GM/+qM/+rF7sn8XSjsvMBIm+hBWTdVSdSHq401SF4l2sWh97R4UmsygsOlCjFaSPhkboU1ZBheB0jiGgJ1lj65TUaRAooX37HjlUZ0YDHsNSmOLeHE4ZTCcblYZ+gzJyfzsukAo2DL/vbEivmNnK5alC7idSTR7Rt06TkMHpKwsxiZlS+3NEE5lkRKoEmwWwmYENgOwWidsViOQBR15lgcgVkYtIWMQQWfsiBjl7UX5rENFaTNDCvvkfSUbHiJffGtAqS/qZP96/Q+CHs/BSnE7+Pu+e2yBKCoz4YtmCzrcFZCZ1cBaSwYMY4zaf84FNIlu00Gxgp1twKh9z9vETTTrS2ExpLoft7E55Vh6wDKW089NjU7rymp3s7UvBAiVmJGckxrJqKnoyVwy2cF7ThqwSUFBaLCKstEKOkoLqmpgbDHwFCzgM1cxMyHEJi29XGPT3P3CwhNGzAGB+CkdbMyAhvdD6vDYGNUR80ewMg3V6PoPQ2r8jwfAuotmMqaahs/lnlbwERpgUL7RzpXZvzoXFARp+jRm97D2UdlXf4YaFrJhhVrX5DYQUgam3slybWKgpP3ahRhLcs0119z+VV/1VW9//etff+L48eP3OgXWi+3odl5ghFwMAUbpUqeZKUDZ2QSp0srbAvL8wWRbIblN5U2puGuE68Pq6XldULXUGAmLRYcuamaOVYMBRKz4XVVtJa67bXfDkJhLg21nbRGdwZifnBIkJQTJRv87ELHUVxMRY48TsetvW84Zgymfqn4DQbK6eEbO2AwjxpTh/L9KSuuVMGeMDAxJs2hWqxGSBCQBi9ijpwwmlfhmBGQAg+3IiDOKq0gcfqGyNMJgRIh4emplAgAUF474ouj3vrm2OY3soKXu5sJkMd9m/Fsg4r9rDMtY3vff3bhlS0EtwnIiBfRozZHDkt5+jnn8SNuPeQwL0Kil+k43MbhlVswATgDHbId6VKOZSZ/3pbIJZK4SlOBoyYRMmiquAE3dexBzz0gGYIBENKVe3VcKLqyDpU6NQsryxyTok4QMOCnL5n09BMaMmZgANQckzXhvA3HtdmEONtzVRQTNN3ODjbqWmHW37yuEKa4j5skcbuecKiVP74H3wkF3+dffM6BdAvOl9sPZKAcFgBTGJaBehw0XPGi3ZXAr+TQdp7sLKuYg6EJtl156ab766qvv+Jvux8X26W3nx4yECJc2ddVNceMAfQCiNMahWRSAViTJJdOVBUkpqZtmM5RYDHGNC0uOiai7co8dIduCSs66Whp7QSZ+JuYT91Un5QxKoxbFY82c0MqfGWJgAGQBbIEQEG0XU10FKan42DhkbDbK5BACui4ih6BgiMiEw1T9MwtDssprD+OAIScMiZGy2HUZCLAd7JCB9ZixfzDitjv2kUZGLwC6DsuuxzImjFlZA4ZKgQdWzQUSFfGKpCnK7jYTkUKtS9np2rWWNWwCOYwRkGbR1Xdc8t6PC0wX7djskOfgo50HRDUeRI9rEudb1FcdZOSsO3eVsq+Vc/09/xxbhoQHubbHKLQ+KnBugUp7XQJP0bZKxW50Waz0YRuQqd8oWR0tWzSxDfOoh9k57VhFKM/m3mBxHEmUXcsGZCOZ5IWNi8YsREQH5yLwCrcAFIQaUGXOGrdh522vByLV/SA1roXbvsJjamQ2ftVBeFcxDNuMbzseLUhw31bLqpUNDmlmjNceKoxYDGWjNGFSbCPirpK7YiPaWI72vMrqUgGpLKQbHVIZgvL9LdfZ/l5ZycPxMNs7hLopnDF/QI23ugCJkYvtAm7nx4w4XwooJR47o+pVawLCCJkBytAaH2yLg2VyhPqggEVTZnNCHkbkzQhOXo02Qyvgmi9XAhA6S8UVxAjETlPoIAmQoFkwZHSo65tk44fdpuURMgzqCtCVWHeL5gdG10ECtDZIjMoy5Kp7klJCHhMoCXjU1zMDCB2o69GHgDyOKh0/JoyZMXBGghrazTBiPWxU8t2NedS02wBGShqyklLAepNxx7kRZ0dGSoxeMrpAoBiwu1his2GwGA0fOsuQVqErEbKUYYKI7/A9pldTIdnSlEnclQL92/QqNexGd9DZXAUhRK1XYrJPxXfd7mRhO3LTn3FWubiCWOz6yYJTNV6IyFx4AuSUUIIHyY9PdRcJ+64ZhxA9tsgAsWWbtKADqBLzDn5aN5ICXaoxFwYOxdiFSAGJMwIEOXkFawWf6lrSbBTXxWkNsXUa5eGROnb2gqmhKmMFC67MJIUBy2ZMPc03u4FlsVIC+j0KESYqY/ETJmQWtPI1fOfuhk8ETpOUQo5OJpaLAEqFaSHLswVgwCTZNfgtAxwEGQD0SdD806wqZYwOgxJ/ncCerSIaJ8U2P1X1mKEZY3ZPUWM6kKfBnhU0Qnc5ovls2udgLuFY7L2Kx9XvVkTO4GFEFmVaOUYNGA/mFvOaTBR0yBqQ4bEhDqy2MR9HMUpEhAhb+3zc0dxWqfErcwbuYrvYPpPbeTIjVKhedys44ViKznkQXBBTVxQwAkAM8QBDozE9PTZtBgvCG5DTaOlxjRoC6UPtpG7sIjpL51V6U5Setmh6fdD9aYcqvcJoXivEJ2I7XitYF7oIip1F9zPIYhQ4ZaRh1Kqo4pSrZdT4DsQyTQQAZ8E4JqSUMSYNEk1SXRDDOKrBDNVHXWJRMpChcSXrYcRqM2CwIFcR1WDpqIqQpZzAFFR3wq4tEBA4gIjLvSr0tDE8vvv1IoLMgtiF4tbxnWRmRhQpmSJS7oDuCrWqa11Qi4sBoveLjJkpdRC1H54e7c3FrMhl64FST8i/R0SF5Whr2ehcpJJy62AEhFJjZpt7Zv67VyEWkupmRK2Zotdl2psR5kZUhVh4wUc3aoVpqIqrekLb33O9L3UcLAqHq4sGpGNZbLk/f4EQbFgDaa2gEGqcTzCGxOMRNDCYm/iEmViY35sSSyKOAydqn/UeetAwQ4Ia/ySpXIun6ramsNnMT9pUY8Tn0FS7BeW7TQyP/gOPvfCxBSxVd8Yc1BNWkNu+5H30PukvauFbsFRkCFK2WLOMnKygoVVWBhSMCJNuqIiKkFsdR7uOCVuCgiocSLt6ce3ZdvaE5tdzCPBebBfbZ3Y7TzASysbAsyvEd8FWO0Ixgwc2akQ+CUoMA4iMFdH02JRGjcEYzVUzjpP0U9dGINtZxhDQlZowuaRcSs4g0XOK7cpJWFkRk6ImX9UtJc93kiF2VXmVyVgVgSQBEoNYY2HAAhkTxnFAziMEbCAmggIhJcY4qvtmM2i8SEoZI4sVbctwikJAkGBUPqlc+2jBrauBcW61wWYzFjpZXT1J41u6he6Gcy73Q7tuRpMsSJfrewJlONoskKms9JaFGxVAiN1TkGrKSCCr09HGimxP5XY2os1scXGy9nOQmo66LQjVM3JacNKed6KIiWlfvM3jQ9rPuFslhGCZY9BgZlGjEySWa1exNx23QGQVfBkWxWgYOhSD47vs0h+pwM7Hvo25cFbGZqyCf4uJibA4F1Hwrf2ttVFiUCl1oM1Qomr4uZFeL31wV46+omMTVHF4ZrkZXk9JijBd2whbCBBUgzn5dNM3owqqERWx6wY8W29ra8Zqer4j4lRaJo/qZ6cfqhfRBj17Rh1YgBghFDQNPDOSgRQt9xB0LbIsu8lFO+Br+yN+Hbq5qjEx7TMgBYwcFUdSAoENvF5sF9u9pZ2nhO7hXaVHxHv8vKqUagorzG9P5sIpi5QZtmRxIsOwsUyaBE6jxnMYABFIqYrpVHq0miVKBWcFHKxxJmSrPBnoKVsov4JQaVx10URbVFTbIzh1nblQvEF0CWBOyGlATgO8WF5nOglZBEPKhdHYjAlptJo0FrgqGSCxUTA6PrEYUBDTCwGGpIJW2QSU1JBVQ+J+aYqd1u1xoyAE8rgZkK/zuqMD/A4VkKd/6XfgvwNVabPNKEHdyWumDgOuM4OpL90Naxs46rEhZVGf6yuUK627UNcHacFGER2bLcZzcNEetzVK21iUcp3NNbRzvIKCunsnq60kXtGYQjH2XIwLmRR4DUoViLoH/TmAAxeqQLJhC9wghai1TzSmqQn0Eb8mVwaN3gu978aYwUF7ASANK+IMkD/j5gaLZGnUmMZAiPefah/VFWtBnw4n5qREAzLKEyliJV5cydfjVBycVvZEx6kBx0eik+mcaP8+8t5SpVbcTefrBktTwNHAt8diMWqpA4wZkgU517mr/7qQWp3ndRPhrmif+82/omq5sPmmgfxcWaeGDfJr8OfzIilysd3b2vmBEQbQLlm2EIqtGiIwt0Gt0mmmRQNJzVevJd5TExCqtVvSOJQddHQxsrK8aQsmTx5DVLl20zgBa2aBp9HCQZJXEYa/bDtXQTEOnt1DtsMlplLCPYRo2QsWN8K5eo2CLaIMjDljMyoIWQ8aMzKMKv2es0fuK4NUW9AaMhaYOGbGMDDWmwHjqCyK7+JZyIyaLYjqjwHBC4jpCBXXhI+BV05tdqVEc2PhbEPZtE2NobEp7W7aDdHc3+9U9nyn7wvlPNMKaDNXalxHy4x0XTcDv9MA1PbvGqNBxZjMP9v2pe37nI4PscahTBkiM+FiYngEiGhtFwEpOwLX4rBHxwTACjiYHVfdarN+FCbF3C+kwDFA40sK+CIoQLWmsd9U3JHMmlWmoHS2IwdKam42ABVCRGe3PRbgPgUB0hwHmMYptHL6RwEG3ZTA6UqI+fLUvavp4lpTx8frCCbA5uZWVm/2rTkYAdqV5fCXycThDn3C1o2UEgLiNFvLgbeVrRARdDEi5PrsTeJW0IDEmZKxri9kzErD4lgsHWzMJ9fjc4cAhMPiaBfbxfaZ2s4LjKSUii9fmA8tNPMHIoRQjONkJ8IZOQ8GREaMaURKg0mu687RA+ZYxArLAVpSHVh2nTIi0GwZQQbljMAZWhlYQCEqYEoCYStb4JoetrNTrkYNXVz2WnxN1za7IEBEYyy0mm1SlwoJEAJi7DBmxmbMWG8SDg7WWK0H5KwVeYeRTco8FwMUtLcK3FgD21JmY1C0cu8wJg2Mo1Cqy0rQwmUCraHCiGAKJXsAQDE0zm4c8kdD8aTXcoHooqVBqQbUuAaflu/6Ts6PGagYueBxDQ0gcDdMa/ALqGoYkxYY0Aw8zPVJnMWgZgF2V4im9U5VXUOoiqzTcZgao7YvDpQmYAgOTmCp0Wq4U566KjJnI+L0OkqsCSwmxg2/xexM2AGgxusAFszaxioYJA8BfQDYAEIo45EhEjR13Oe2uUJL3aiMcp/gU1w0Lih75os925wTRCI6sWw2N8h+P8mZt6orA8QimKaXx4fiftpx9w2CJc6XIHOCn49qynhACb51QNUey+PJ2kKE3nJzfx1Yb2PVikvEgXnYMj/tWWDWlcNZtXYueSFRAgo7LMbktWtgOx+2MTjuhvRnoLCE4npGgiCESJpBVDYZRDU9ewtAu9guts/Udl5gZBjGIig0jiNySg2Nbrs3ACi7eS4ZMF56nFgDV8cxIQ0jxmHAOAzIRfQsFVeL05lOhVMgdH2PrrNF2FQoo2SLD+G6chsBoeDG3B2cAVNMBaC7S0sR1oWTLR3YWBbO4KxAacwq+S6kvnSiCIEWx9sMCavVBvsHa+wfrLHZJHW1WAoovP8O0oy6Z2HVj8jZJOIJKekOmyQgNOaKQwexejM5C7IrzoZg4+SM1ZbdaFlIbUxNCKpmoJihMkMWpChPwL+ohtVdMvoaNxWV5wvs1JhOxcLa/vlnu64Dgkrc+yLcLtATBmTLGnsU6GiZmtawtH0uc0lyWfyzFQ6Ucm418MkL04mmSmfOJcC31GaasUjO9hmfcmgc5gZvHuvAxpB5kG0MQWOdQrBgWX3eMiXIKEhsKeVWBFEse6ycv97WCoo8+8kZKjfOLUtTxmtq59rbEcp88efWPmNUCDXzFNAq2PqI1MDlQK4M27jGykHMXVGYuXotR5neCSMSagSMlHm+ha3gBpC096phKPSeSlGTJaKJUrCIqCifMZjTsZz2kZvxBVAFFAka+J81hZ2ildKgBqCjAnR39xDpGnKx3XPtve997+JRj3rUY97ylrf86Zd+6Zeu/l+P88Vf/MWff8UVVxy8+tWv/vCns3/3tnZeYGSzqbWIDlYrDGfPIsaIrovo+og+dvBwN3E/gNQHNZiTMxfF1aGAEQc3LuKU7esIVqIeumPvug5d11W1SE72L5d0WUB3fF69kyyAVXIG0mhS9BYrQQGUskqdQulu4aRpwOOAcbPGsNlgHAbbaQqECZwJKQnWGwUi51YD1mt10wxevdetNsRk1KUsZM4slB21aAxLyqxR+AiIZIutCDbmGxJA41vMAFarcNjAldYstK17xtVqS4Q+oewMMVNMPbR6Qg2I1/OYGPY5GMKUgWgBAYAG0JqhbXaR/r4fwxkPbgzdXHBrHg/QMh5+fgccrlPixq113RQmhLNmOrEK32XW2I5s4ESgYCUbaGnPW44lNWh0Dpzm92seyyCwAFlmxKjif575RREA7Fp8nKACcYlzAUhTx4/dPz3BxIp7Fk6IzXixgnB9nAkQrkXtmhbMdavPHIpqa7kn/ru9TM0YheaeH3I5gEpqs7uI5uMEvxZMwe6nGusCYpoHxDdX2z5v6Lu4d6Y1Z6hUbAaojAMkzI7RHK0Bpu1nPKYJAJiqazOi07Reqt8NVoDSx4B8AT78GF5sn4Htt3/7t9+/WCz+1t+t8wIj6/UGPsNXBwdY7e8jhICuj1gseuwsluhCD+osE4EawwCY0FmtpZEMhKRxtOwaZSOC6TdosTLbvavVLOBnstMSFzHTaqoiJp0QgulGmES8fy4lVUSNhJC1CJnkpO+LsSJjwrgekNZr5PUGbH3kkVX0bEzYDAnrzYjVesDBeoP1MGo13jFrLREDEs5B1zWRitESvzDSANo0ClhFJBplU4vBILJ4AB9cO6ADvsZNM2c22hd8914XYYEEc4mZym67u9Mf+90SlAJQwNY8dbYFG3MAMDe0kx8fHZq6Z9p+pJRqKq1MXUMOOvzvrXEEM7DmwbCBqqum/ECMXWCMWZmQZAXpPCC4LTLoKcrzfptdmgIRqdCA6m2ou+YJ3RAtO4ohQZ+JLgQgBmjqfONGMADu86QEQFLDMKAyNNXg67vBpP0jhVLYsaVCVITQ2M4QIKzsZ+Y68whSY5b8ns4uqfUk+Oz1eVDBobu4uDG+0/snMx35yTVtA+azuUAwkDUfdJoe1z+v6gGVNdL7aueQJthVlF3RNHq2IZyBrBkwnYPoOYun91fZJMSG4QFKTR5A64UdWgMukJZzxrvf/e7lTTfddGyz2dCznvWsO+9///vnv+l+/VXaZZdddpf9X6/XtLOzc8GDlfMDI6uVClYBOHPmThzcfrtW0V302FkukZYDFv0S3WKh2huxFuJyhUZmFTZLw4hhMNeMpfVmzoVydBdABIyu9WDGKRhRNkQzTAQaza5iXmLZHrEEzsLcOa7QSikjJ0aSjRqYbDElOQMpY9wMSOsB6/Uaq4MDbFZrHJw9h7P7Bzi7f4D9c2vsr9bYP7fBejNiM4zIydwJsAWOnJr2BcYWP1ZmQSx4lSVgzIwxNUFnthhnaAxMWWFmu1KnkinQ4UWoXWONIfHFk2zBddeLV18+qvnunyQAgTQo2YMx/T41FDYRJkAFaAAImkVW6nt+PdmK+Dl17XEX7JLws93uvObMNqASbQfZZvKUv42+97+LuFhWlm09KujIzEiiKdVZLMbJwQYXpDi5XvXL1WJulTGpn3N3pkNKgQmrzYxklE6NM1hVdoNOJjZWSwGs/2iWjY9FmBllv9XO2DiUMHkN67aNP9WsKRKxFFIGvNAjNFahuGEIRZjOL1aae6wfqqyc7h2qAJ+zE8JUjqffpQre/Dr8YDNQ0g6yNK+3Ke1zgOCfEanfcoDn73HmGkvjLqUWVLnLBa3L0u7zjHH056FlzfxydKwbUA+NOWMGgsRSK0xfV3E18vR0S8G/kNo4jvjsz/7sx3784x8vxWhuueWWD3//93//x+/qe3/VlnPG93//91/22te+9tLTp08vLrnkkvHZz372rc95znM+CQB/9md/trzuuuse8o53vGPv8ssv37ziFa/4y6/4iq84BwCnT5+Oz33ucy//X//rf504e/ZsfMhDHrJ54QtfePo7vuM7PunHn7tpHvzgBz/mm77pmz7x/ve/f/mGN7zh1NOe9rTbf+3Xfu2D9+Q1fia08wQj+6V42f6dd+LsbbchxIDlcom0u4txZwfLnR0sdpYIvebad7HTh5QZkhg8JPCQkTYqdpaHVCrfMiczCPpAkxCiqMZHEKCDoOsIIQIBGR0zCCPAI0Sy1aExFiE7AxKApMfFyJCUSqDfmAew+dZTThhGzeyRYQSvBgybAZv1iIP1GquDFdarAQerNc6u1jizfw4HqwHrkXGwThiGhJTR7EIFhFRdIAB89wfqkFkzbtTrHLHJjP3NgHVK6JR7V/qfApgCQKpxwUGQocqcAQSwATcKZQGdmMMGiPifrilZCBZGyRyABc5CVHvS4Y0Hq2YBhASdFS9kyYi25jHXVEwAphLpfv2AnGsapCuVBpCJywFktYFEprv9nGuxxZzzRG+kzdzRyzRqu9ULaXaarXvGwRhzKo+CSooDiQXj6Gqngo2M5lKTEnPkx2yl0BWITtkFEVQ3h9QS9y0V31a9LTWgzLCgcUF1XUYwFVySBM+qgQRkEgRiEDIICTE4MNBaNdH1VaCkmgc8c/BMLf28CqkBno4vZHI9fk9JZzexucjg7pxaBbowZM5UtC6VatuNFAxN0LJMFFQz6/hS9DnsSe56THXRlbuhk7m5N2jui7NvpYSAga4SF9Kwc7DrBqn8frBgckMCha0UgYEbsZR4S6mHPkfOvhBc8HHGtvg90B3X9PyirmmP1yFzAWUWRGZ0nSD0nSU5mvZM7+dR9+GF1NbrdWiBCACM43iPE0DPf/7zH/zLv/zLl77sZS/78FOe8pT9j3zkI/273/3uHX//pS996YN/8Ad/8CNf+IVfuH7Ri1704KuvvvpzPvjBD76z73usVqvwhCc84eB7v/d7T9/3vvfNv/Ebv3Hf7/qu73r4Ix/5yPVVV111cNQ5X/nKV172Pd/zPTe/7GUvu/mevr7PlHZ+MSPrdYkb2d/fx+2f/CSICDs7Oxj29nBsb08zZHJCt+gR+x4pKhAgBsbNBpv12nRFBoxNAOs4DGXBcDq2XRqI1EXTdxFdDJrFwRmQpo6NLYXCKkqUMyNLBsYNlgByHpFNVE11L5IyNabroUG1CePBGuuz53DuzDns7x/g7LkDnDtYY1iPWA0jNiJYb0ash4QxaWZFFoZHCUZTynQpdu2/puiJBP18Vv0GgWqNrIeEg82AIWUsIpVAYKaAemV1EZ/EXzRxFDMoUhbatrX1dmKgAg48MLD9AgsjiLqIioAWERJQwIsCjmBsQXXbaLqpaTBYv0ocgWi8TLSYIDfMbZ2UeRxFm4kDNPEGW1w1LVjZ1uYUuB5XgcqYMzJnjJwx5oRkbMiYxjrmzfi3rQSZUtCUTt89m1Fx1qXthwcPt9dZ7PaMts9Z52oIAV3XlTpAAQDHCE5Js6VitAysQn8UZqRksohYZrxlqPj7cPdJw1T53Cr3RABEBVrObFAtKilTQqdcS/t7GxNU44YqGyDOiDaAvrIMHtTq8URAkfpt77NewOSe++/6vtizI2i3DS0z4mm1zoS4y0tdcFKAwKFzOxvmwGwGdtp2iLVqQHU7djpPpTBOAmj9HZOjD1lF+XQDeMTJ7qXtxIkT/OpXv/ovcs547nOf+zl/Hee8/fbbw6tf/erLrr/++g9de+21twHAox/96M3Tnva0/fe+970LALj22mtv+YZv+IY7AeBlL3vZx/7O3/k7j37Xu96184QnPGH98Ic/fPw3/+bf3OLH+8Iv/MKPv/GNbzz5n/7Tf7rfXYGRv/f3/t7Zl770pbcc9f6F2M4LjGglWmVGDg4OcOeddwIAdnZ2inrqOI7YHRP6ZY9+uUB0TZDMGFZrrA9WWJ07h/XqAJv1GuNmo4GrxUipuwBBdypiPmOyHXaMWiQv+H5CMoi5AhFTfAWkxp00DzZnBSPuIsmFldGfnAakYY3NaoXVuX2cM5fMmXMrDJtsWTJQtdSUkLIUStwIAL0MIWQOttNX4BF0P6tKqAQz8BrfMohgnbWejaCqzDJZJd9mNylbFr5S4Ax14QVQ6F20htMX85YxJ3ePWYanu3CcpRANyg1w9sAMMhhJbKEWN4y+8FqKrKVqExGIa7aBalNkM35k4LIai7nh8N/bjIWWFSnX0V77DHS0x9F5AGU2SIBQmZDEgjErIMnMSJwm4mhz4+N/xxC1kCMqK1jUOEWQiQHK5Tje97agHxEVIzkPzm2/E0pmSOOeY62jQ7HqjLSfnbsjCJ7pVmNZ9E0UJqfOKYC5GvwiVuYmlvyLPkZHB256XNChuKHm4/P7Vb9byxCIz72ZQmuNzZnGZNQeVseOGAeI2bn1MTEQIPocd/acULn26TXp+jXtdzsPD41D2QAcnuvbWj2eKj5nHhFiB/QBMQo4GBNjrsELrV1zzTW3nzlzJjz3uc/9aznf29/+9p1hGOjpT3/6maM+c+WVVxZQcfnll48AcPr06Q5QOYzv/d7vfeB/+2//7dQtt9yyGMeRhmGg3d3du4SKV1555blP1zXcW9p5KrCi7OA26zUODs5BIEhpUFl30wtJeUQ/LLAYlui7Dl2MkJQxrDZYndufAJE0jmDPcJF2QZgGFAr7DlxLpatfVn3nYGcEBGAL9GMxgFHBiLMoIjw5rj/gMRI46LGDGQPJzpwwhiQYE7BJelxme/BJFSpVLt2NTFW1VJ+zqaA65W0LUIZgFGDDjJUV3pPAYGiF4kxAImMUTFKfME0drTv0w0JeviBPfeOVPfDF0NNEwVWtFQRkTvpXo4Bb4wqoxEMQ646RSB/AUIyNGUPfyUoVZRMRaIZyrQ7rrhNf5bcFvB65sH8KwzcHJvWnzrUkjJxN+wUq8a2uvKmcPYoRrDvmQIQYIjoLnNbSBeZG8X5ngEN1L5Xnqr1fQJlXBWYEPXa0jCN3AQXrexBCRxFdiMikbCQbzRWCzU9jtfy6QwggVjqfTK3YjXQ7X7SGkQEM9ngRaA2noGUh6jMIe07b+TZtRbG0uactGJGJH8dAw2wOtOuDipvWeKjJczFjFsrr0rI83uvW2Du4IP+S/gTdIFkdcVTgdTTr0c5DP7/PyXJuiz1qyacKujCZc5JFC5XWToOTuhqJWEXROlyQYOSvu+3t7X3KQez7vnymupa1dOlLXvKSB/zsz/7sZ/3AD/zAh5/whCesTpw4wddee+1DhmG4y+myt7d3gfFan7qdd22a6svNGMZNyZDJDbOQc0K/XKBbLrHoOvQxgseMcb3B6uAA587uY3XuHDbrFcZhoz74YmBMvEhjCuHqDABQsmKMFSHJKMFiusUtu0MpWRGiYmiwXZ24EFR1C8QQVDxNFACUz7DGkqSkdWbGJOqWUcwDsQUlmPAWyMSmWN02uV0USeNeWNiof73OxIJNyliNIwZjEAZmkER0RFaPtO7mnLEoK2+zKIuwBXhO3QfKOvBk8SuLZ9nhWSBc8PurLpz2GiiQghK/BWaojHeaVksVgMTiG0SLC9eYFFPpNGVNr2cEQnE7eB0javqLLb+3f09cV0d8fs646BpvadYWLDykXOr4sEzdKhCpgMzPC691rO61WIBJBSPKOpnBHNO0/2aFWteFa8HA7kkMESF6kcSIaPo40e4HC4MTIQZCH6L+DXcVRDPYNHGDFfBnbrjs4LydN9IwHaIMgldLJmEtR4A2ONbE+iwOZdu98pgf/3vOinishc+JeUw1EeCB7rDq4KCa2eJMIAHGrvqxmnNumQ9FC8ZjYSw4l0jTZ0PBC54NVxlFBzdzd0vbaY39qBuuEk9S7ru5ywST+dUiM2drfBNBvtExBpJZK3FDgJz+1tmzT3u74oor1js7O/z617/+5KMe9ahPnO/3/+iP/uj4U5/61Due97znfRJQ78IHPvCBnc/93M/9f9YluVDbeYGRrutqcTKzax5/sdlsjMdVI78Yl+iGDYauRySCpIy0GbA+d4Bz+/tYHRxgvV5hHAfT/aixDaH4gdXAAWRKpgkEhsgAEQIJF2GwzGziZqRMCAuQTf/BaszkMUGSC6DJZBHUTAeGxGgJCqwgZEhIyTI4YAAEQXeFsGBEy9DxHUy2uIAMp3hhO0kFH4kt+wCkiqsZGJIgQY1KR4RoC18mddN4QTKxBXpqUI1BElYp/uaeVdAxXfztD2M3mt1Xib9QYKW/M0KAytCnXAEDCLWyaUBWPqfGJhBKTEJRwbU+aL0hiwvK9prf8xCKCJQb/nlrGZM2pXe++/Tf598pYweY6Bwji80z+ynxHGXHStbP2h+vrFreMxBSUtBh8RwEE1ab1sFpr2fyd6TmPc+M0Wyy2EXLPFHwoe4vABBjpAic6vNEhamgYryISN1vUW+Sxrlo6Cub6nA5Pwhd0PIObM8NuxujwGSPSfEKwlRCFloQ3F5vy7QZwrDnqJYS0G2HFCBe5paeCSGKPvaBIeyCeLX3ATV0YgJKgemsMlawnM8YlyqyZ2tIE3vTthqDcrg5CyXWH4+DcRakMD9Us6rKGbYBnBZot7/pQ2uMl1xkRj4N7dixY/K85z3v9Etf+tLPXiwWctVVV+2fPn26e8c73rF7V64bb5/zOZ+z/u///b+fesMb3rB3ySWX5BtvvPGy2267rfvcz/3cv47u36vaeYGRGGMBIzHEhilRl8g4DiBbyMdxQL/s9XNQI5Y3A9YHBzg4t4/V6hyG9QZpGFXrAdPFwWMVuAEiUnbayop4Wi+Y4cH21egZyLCdL4Dilgm2YxVb5F2sijqAuwHRMoGYRVN12f3fZtSEEG1HrzVMpWzJsoim6LILRRn1LGqI2BZeZmg1X1bNkiEreGGLN8i63QUHdZG0KbR1N8+m9dYauLrMFrDV/m674/Z1ZVe47iIdRNkJve7J3JXgp9Jj5OJSqDtPKQYnm7EqLhpbhFvjnkWsJP2U7ZjuHmu7K0ZkDlZaV01x0YlL8Juyqh1DdUSqtDowNajODLlRceOrSU8Eim5Ua5CyiIAlT2IuSj99N9z0fTLO8/vn42ixKG7MPHtoHMepWwMOHDE5TzXsypwhwjKkgtWqEQOiPkc0iwfNPQsGIvVcDpyAuRtmfr8qGAl1UG0tmQDGOuKTsQiAq8AXrOBjHa1ejN+/OQvC5FlfKEUhswkhFvG1enLtE4tuRMobR4OPeZu4xVDvbTs2wZkeTFmRbfPeM3Km86Eyikc9LxdCe+ITn/jIP/7jPz7hf//AD/zAZ19//fWf/eY3v/mvpIJ6V+3GG2+8ues6uf766x903XXX9Zdeeul49dVX33p3vvsDP/ADN3/wgx9cfvVXf/Ujd3Z2+Ju/+ZtvfepTn3rHmTNn4j3R13tzOy8w4hQr4OJjqnmgOyX3rQNpVOM25kGD6YQgKSGvB6xXK6zPHWBcrZEGdemAuVS7boPOPPiTRX33YoGqRfo9aH0a05NGEBR9iJJW1y6G0AUrhK4sSrrIkhWlArq+R4w9gtW20QyBAOaxbDQIMANkVK1Rw3puQRbSlFxoirF/z42wGMDSLA2t7JtYwAhgWGE+qYsYxCldFNeBjo2yFiXw0WvK8HaffRkLEoAshRdiIE8r/ym3odcT3JhL3REDUCVaGEBzvtp2ekCjqGpgRGxXKCGgZK2KxjsApHXlrFsK2myHb2DOOl/G3ueHAw4P8myvdxsz0gqaKRDJGCw+ZMwq7Q8iZEzZi0M7e/PvtwxJJGMEAmkRQ7tXPiwaPJ2LcuwkqFLay5zer7a13ykbAT8+ROMZCBaXJMW4gkhdDBRq/SJ/4Iz9Cv68eKCrFdrz84oIImk9nCyiW3yZBqE6W0MGLEp4LU2NYwumIE3WnLuxWhAGB5b17xas6mtkhQTZEn+b576ZJ2UMfV45pvbPoD1/A0xsp1RSipvmz6T/3rIWc4CsGyyUeCpA2bJDcx1+Ptr6rzSfnY+rHpcqSLvA2vvf//7d+WvMjI997GM9gHsEjMQYccMNN5y+4YYbTs/fE5Gb2r/vf//75/a1yy67LL/xjW/887s6/h//8R+/t/37ox/96Dv/qn2+N7bzC2BtHqIYVZY95wQiL8qlRitnACQQDirjzAIeR+T1gM25FdYHa2VF0qhgxB5yaR5qgsVfBE3P5WwPXFAwxJzAnHU3z6odQqjGBmCzGaHQla2v2BcjIkK0WjcpiabJobqfmLMV8GNktuq7vrtk3e3mnJXFEQ9SVYsgVnvGz51FdUMUtGiV1MzKpGSv6soMDqHS4KL/87TK1ocPTDMICNNFt92dtgugN10oYWNfTqaBjy3ImH8WAESZAK17IkUtFghIyaout+XeTZ/CM24cCAY7TWMbZv2z2eAfgu1mfZfbBIK2i/+RWSri8TXAmBibXAXOUs5+c1FHo3QGIJoYBjdW0Xf4DaBmA2N+X3POSKbDAdecmDEf7XW3r82va1tcTHt95f1AnhpVjJN/w+NUBA1D0swvmNumHNM3A+TftDlWqgmTxbE4aqi7dT/2VpZkYjJLJMjsuurNqP1HnTS6l9D4LQPosL9lft9hOjDSjFdzXN8EASiM1jajXh6PtlPA1vsyB1eTa/OfGZOxHWToh1WArv2cvlFimcpE3NLxe3n7jd/4jT9717vetdO+tru7K1/1VV919m+qTxfbp6edHzOC+jDFQIihQwgdBFn/zTXLJLDGL4gIeFSBs3G9wTCsMQ4brdLLGrga2kXPjSnU0GWrCZI4aTxDML0LiwlhsEq5sypksuQmiJMgISIUr3GzO7JgUaeHy46SNV0uc7JjiZ8KOTvAKZtjI2zJiqfpDjMEV3PN1ZgaFQ/O4CwYmTAwsM4BqywYs+9YtR+ZlHJxtxR850Z1ERSj0dWhMl1Yt1L6rZGVajTaJbIFhBm6sHugXRGo8B0vS6GFBZYxQ0ojt0ZAHW7qC2+l1HRIxOJYQ+mOFiE0g4pQdv9koIQMPHndFY9tgbFc7toRzhbEad8nT9FUEJgZmp5t7JKDEc+McdBRbKEYvV/iRDTVfOLTN8VQBpeAVcCzq2DVmGFz1d+VyS4dgAVFNztuuEGtPzlvqYhtF+sxCTBQwj62qJ8jG1MWaXbmNt+M/ADVWCmmapz186GIuxE5I1ZXiyqkV6fYFIzUeIgCrstssiBRrjNOoa7XwKEivU+mPhrBkKBsg6aeBzgVpyJ6BVr7YJd/2btI7VjV4+s91c9EL1HBbOpwNtf92OXRaq5Varp7iReBsySAV78mkM4vHzs0gMMuoPL7VO6pbwQckIjXtbrA2pOf/OSDJz/5yUfqc1xs9952XmBEMsoCAAkIISKGaKXTbUfSbKpF2GrOJOSkku/DsNHsm5xUJZVFZeNnLRulTWKxGxZclnNGThmc1LSxJI0TkWx+YPVrZ85qmMBgcT+9QLVJTPY86IPL6nA2A8GWsgh4IT3VBrFrJKnGiZxRsLgArqyFZv6UJQ5m2ZByxpiBgQkb+3dgq1xq9kCCAgEHFcGAUsuCOPBwsDDZ0UtVOt3W2tiOcszm4B5M5+ZBv9QG1RkgA5rdGIqBA1lAse/uiAyGUGFJio8bdb4Uw1VOYlkobnSsA57VQAYUhasLK5CA2YwqMZCpAEYHAAouWcXNREz2PdfYJRJI2fGjXIcboi7EUuV56gqykWDtS2pBZDmvAKjKqy0Ab90J7MJh5cLt86wspP9ICCWGQBrjWmMfnM1ps2dkGsA9pdfg5rcGqaJ8t3WNEVmwbogliHjrnGuAyCE3lE9dFOykz6JXQBY30oorqiZw/Y7PaCbVHwpSw+EJoczhqog6ZSgKOPd72aSai42rp9qXzwMQMKJBg8p+KCM6dxH6A1WYGXIg4X2plX3d00Jl3KDuPzIQ6PO/ZU+knAUOiOguSjtcbBfbZ1o7T9GzNBOYAkLU8tZAXUx8gWWoymZOWSXfXWAs5yqh3TxQTrlraXZLyw2qWzHGTgNAPZV4DMiS1OBATOCMy67PYzWCdCq6ZR0UgdaeCVF3PtQsaiauFqT6iQHfTVuMhLMsM5rdW6G0ra8UOgChuI9UqAjIQhgZVuFX3U0Tw9cs2lL+1xgE4ND5yXe2oC2v48jXPC4F1HxTWiAyNZTVCPgSWmyYZQtMd+GqVm87Xc/CgmjBL8Kkv17d1neprduhfqYuxj6HPP4gF6MitQ6RQ1Sbkyyw4neaku5ARGt6+HJuzJkZiD4Gw3u1fkpL4DuwK3PfXAJCbZxPneNHgZF6QBeFk4JFHBwqCOfyb+uea7b/zaFas+07adS/y3mnoMjnWiu65vE5dY5WcNKyb9vaXcXD+OknzGi5Zn/Tr60yCBWseqC0A3jvZwU9XKbztufGumAndXZPWVjT4DFAqxsuA42W0l/Go3047Hg1HsXnYgNeg3+hYTANiXi/imienSfMlp3qfp6uG+HoW3GxXWyfce28wIjGeDQsQ0MFTgEFIGJhkK67kRI4WeyF6YoANTWxHIMscM5+Z2gqbOZcSqNrMKCASauYxmCLj2tCmNCZMMDICAZGvAIoZyB2BDKthgCLMeBmh+GFKfQybSdjBhRoFhSULcyhnT3cQKmBzU6xi2bTZBYM46jBuQ5E2gGfGSdfrAvNPtupOtMTMB3TbQv/3LftjhQ3uMVN0uzwWgNajyto9mOlsw5GIOaOCDoOLmxX4kik7hD9GNndW6L+8a3BqW5ixdODLWVb/JoBFKNpgZsCqDKuAhER0XgkyTqX3S3fDFcIGgsRLVZpEvsgnoVk1VlZ1H0gYvMVhY0Rv4fl1tb7MwcjbYxACSL1XTTV63PQMwcM7Sxyli4I1K3m2Ur+GWclvI+oN2MrY8NT15Df/1Y7ZH4t7fyZ3MPZvCyMg9MjFQ4X0Omgubi2Sh8sYNdKMeiYNQCBaSJwOAG48344M2MImy0LzpTd7VnR1rJH3kIzPq1rtDB3dlVx8pzK9Ds0f4YP97O8X8Bl8x0c7tfFdrF9JrfzAyN5QMoDADTuAdjfrj/g6aYCEnepJEhiSMr6w6aQmjNC100NKplhIV1MxpzBQkhMqoRaaofECaWbPeDU/P5WJQOcGI0vouz4lSFhSLT3WPTvLFU3wgINi58amuaYmyBC3/nr79NF1xkMFvfzw0qYQVVXc8bIPKkLUk377N8jWIJpCmUo359QuJgaBfvC1tfdwLnla43G9l2veAcbl42U8ulqIKpstpsZ8vtgf1etkKCVWs3I6HuYMHKMXIxyBR9+HQ5cXDxFByDb/fGIhJSzGbQGQhGVTKQuRhUXsxT2uXS5j1XOTeAxqwAYYOcru/LqNJizTO24tjV2AJSUah92gQ6GxkhFgEPNVNoyN9p7WgDjFlCgmi9B1Wdn358fsz1u2/dSfG7WtgPY7Z8pf1NzWwrTQOWnBVuaoVYDbylophYnbkD1FOBBpunV2/qjgKMyYFkYAdEywGqj2ffg3d3SDl97oWowARJbwUjrbjrMnuqaFWb396ieXGwX22deOy8wMo4jOFeWoW1E0MwTfyDZgkjZ/dvZYkdyUUdVOrUxhma8EQhIuiBlC+wccsY6jdgMIzZjwrhD6BmIELAkBCiQYMvu0E56ho9F15PGh9jyqateNro7Z0jW/nFu0mVJ0x1DFHS+HFCElPoiddEuZcBRMzaUBVAmhEWQofEgCYJRBIOoR1zAluYXKjDTgZnUopnsnOy1UhjON7V3sQa1O7W5UalAxQ6xZfc6Ocb8fb9echE5Zy6mtDY7W9FsdqPAXCx2zVyNsAaqNuPprE3pd3MNpi0RiMtnNCq47rX9Hjkb4PojEM2mCgZGutiZESOE6DEYoXyPAcsWg140GjBhMvl+/Pa26E52ezyPX4f3ezr8OgDqcoLN5BryWbO5KtCj8ncdOxBKkKbA540zAQ0gbe7bHECV57wBtfPPtszdIVeIz5/CqnmPUZ6lVnjN51P7fd+8OOioQyQIUStNkwFAnwsxAMyHr2XSf2MYhQEOHsPh8U4WPC1S3WioWV3b+nnEXS7cheDoz7Vj6EDWY0vusjkQv9gutntJOz8wMoxISUXFtj1obpiZ1eRT0R5JSKMbejPi7Oqa2ogICKHsbAWaLTCyamDEDKyGjIMhYTMCQyL0EIQgiFQVUP0JdBAkBpIAi/1wgJK1KBuR1qvJOWEcRgybATllFTtrjbW5P7JJmKPsGrn4ot0qlgVWAA93ZRFksSQgARIDKevvLvfO9mmSmrFQ4gFktrNqFv7JQo+WyqftC2Iz7q1GQqG0m+ubG5FtxsWbGw8SKgbRDWXbbwcDxSj6Bxr/e3OJcFeH3tfGaNoYuYtCQYWBw6ZUOznQ3cIcVAZLdVc6c8cEczv4rlT35AZnHHxOrqwyOWr/DhuMSqDbv3NGgJu+accPsygu5w5zmXCwiN7pbrqATTOeWaToc+izRgX4+edbzqE979yN5K0W6psC023zZG7wJ9dOde2o7II0gLmC5FITqR0pKzkAco0cBRBRpGw9HKVL8/2j+uPriJjWCoGAaH/b6w7Y6dB3KwjYygK110zz1xu3UvsdB+mo93ayUdjyiHug9sV2sd1b2nmBkc2wLsyIME92T7rY1EVSA79YDfuYkUbVFBFxTRJlHPz7ZFSxLxZCFshqypgUBPvrDe7YX+HMao29HY1jD5GBoIGuJUBMVMqdzUc+F2/S9cLk47MudjlpDZo0atZPGvX7ajNd84OL3kgqLJBG2TO0/xos68FonoVDEAoQyshEGJkxsGAw2W1udoUAJrx8EaeiWVxAyyiVr1FZsCevzdpRYKJth/z5c8NZ/p6+roqWVmaQUOIpnGSvbiDbUTY7vRAc8qGkZ/tYFCaj3U2LgwMPYtS+ePZNCM6azOMctMUYDfwSKHRFyh3G2Kn7wt1PbmS47NzbmjUClPRwAk3uwXTcpuM3N2StMW6BWX0fIFL9mhA1NipsuTfzueIMgd8HT9/VDzhwboDWJFB9C7CiOi/9fsxje9rXjmoy+719Enw+FwPfGOryXgNUGpOuQFjxoTEYCjhbafhtzGABA4JaJ4Y9o62CWoAg4RDUnszPyevkz4ZYcGzNyiN7aMsmAhVY1md1thFp74f3t4mJ0bG/iEYutntPOz8wstmUB7jU7mh+AFtsmTWqnTVexNN4OZkKZT6cXucUZ7vzBWBBnwwQ4+zBCrefPYs7zu7gxG6Hnjr0yAhQdchKj/oOGyi7jdI53wEqaFE1UXuQi2tJ5e39oScKCEHjFJwJOXTNftxiXC27I1v2jKUnp5QwJNafnM1PX91IzojMd456HpkYGH+t/G2r76ekcGffOwRomt+nPujpeYurBH7qmgXDzTgDYhkABhzApZJxYR0CgUyjI8SaUQB2/kENQ7vD3gaQWkZILDhWmvteIWsFvT73/DqIXGPDz1y1VsT+5ubcDhyKVXCrX2/drL/T+J9t16Pncbl0Zwn0NxJBEkHgVnOiaURlTgOaxqznCMWeU3NumvVnDiC2xijY7y565tfY3ovtXZvPIxsbG0MRTMbWZvRkLk1aw0JMdVncsDf3vmEEW0PfXndhjWaQgn1TIgwiD2PXz81TeaW5vmlXq2uwQHmqc7GMmz0b03Hz/zXHa/vPov2yTUu2oP+L7WK7t7TzAyPrTX1o+LAxcGPhRh1ZU3p5VDCiAaaNiFbTPH6EKdTdsGiQa7IH+GC9xp13nsUdJ3ZxcneBnnawgCCKZbkwW7S60uxCRu+XPrMFSlrQrKUPO1ujuieF2LW4GF0kQ9Njrejrwkpq9DJroG1TlLPuoMzNkLOYeJqq1Pow+Xi0C5IrmpbFZssODDMD4cF6cleApNltuvz6oXvYLJBHxQqUewYp6bzzXa6fj8yS+rVCGn97U++nPWYBp1INTFnAfecPKQCm7VthAcr4ODMCZV7Krt4+vSUH0o1G+X2y43QNEDr0Wb322XjNxlkm16BjM4/BElC5l+05NDA7qOEJ0YBymMwHMnbHAzupMVqAFNZGBA2QMGPb9LnMk20gpEj+z832dqC7jcmbEwiT9+ZYpmEsKvp3SFBjRsoGRKiwouVQDTidz+35dRag7cKIYuuKUBnreSvjFupnpmsBihBkQcTbmrQMjB+3xqdMP2vz3M7pVcO9IviF1lJKeMtb3nLsve997/IBD3hAuuqqq86dOHHirum3i+1e0c4bjMTOsgVaWWoBnFUXwLQbGMgVhOSscRkyqlS2734DCNFVM0OEGocOFBjCGxUJ44SBBTgQ3Lm/wifuOIeTe3vY6Xr0IQIhIKeMXgQdMgJlgIIuxhlAsgWUMyKyGUYNKtVgQFHtkjQim4tGJbs1uyNGNWjZQIGmahI0X9V2/kFfYRFwDhAOGHmjUu8IyELYCGGVAw4yY50ZLAQyIOWBnbHvdREzA9mWbfcaONWlNV1AdTdf7xcRTQxqeduO1Sh3l4Jl5fPN97Yt3n58901MjHNxadguMARkLWUIDwgWm0MorJDFf2RV0VRgWnU/1KWnK3gWNibFsnCoAoxgjJQDOK2XUtNy/dqoOe6UeVHjFkJAtsUdgGZbcS7KmOrBmwZ5uvFu2xSEmCFKOi4ZjAxBtv17Ne5+PY3qqQcpQ8W9JHZgCsikwEQIYBJkEgh1oNjDKyiLoNTLqeyd9ieZ0dV4lQCPjgFYU4GJymsm2aJxNXTILB4y7oXx89iSBpgU146DMBt3dYugxM+I5duzCDqKxVBvA9udFbdsSyl0nmFiUxVW8M4zf3LOdVwrtapzyLkYA3YuH+CARJgtEDg2DA1MiVl/8ULCJFApARQ+RYfDRHOEI6SrJQUwe7b9mS21fzwAnwzI62Jm8gZijGutlH0htJtuumnnK77iKz7/jjvuKHbr1KlT6b/8l//y/qc+9ann/ib7drH91dvRIf1b2jBsMI4jAJScfV/0y9/ONJi2SBoTRnfV2EJRPutPcAygGDVrJZiLwxaIzBmbccR6vcHBaoM7zx7gE3ecwSc+eRa3n13hzMGA/U3GehSMWYvOsZA+kOOInLQQH2CxLCZuVRc7mBhZwjgkDMOIYRwxjmNRgdXdlYeZmgR4KJELxo7Y9ZTdSWUpnDat1WHZSslzUQ9tafBWPIpgO91q7wqLNE83PRxfMHWhFWMhfpwaJNs2XzBFahEvas5NzWfKd9p+HN6/wQW6XNAuiyu0VhDkZrsWs0Pd6dk98/if9pwtC0Kz330s2taOb871XD4XRKyWTCOG5sxEvbfTYnrz8a6pvpjOdZ9zzpaJFLcfS9UkISu8FwIQo2bzlJ+O9LUuaKBtFxFiROwiQhcRFh2o74AuavpIZ9V9TYsGpPEObmQ9K0jVgROSMYbsg2L3k0JNj/X7e3QsydHzsKwZDch18D29V+2sKCcoc3c+/xpMWLQ+yndsHscwle+vzxkqiJ0ByApup9fEBkaMbzr8nt/LIovvrIi7OCsr1V57Aa2z8/nv06xFqc+GAWpf5+QC4wve8Y537LZABABuv/327pu+6ZseUfWvPv0t54zv+77vu+zyyy+/YrFYXPnABz7wMS960Yse8LrXve4EEX3RJz7xieItfetb37pLRF/03ve+dwEAP/ETP3HJiRMnHv8Lv/AL933oQx96xXK5vPLLvuzLPu/9739/f491+F7azhOMjBgtm8ZjRgA064U+NDlpwGpKGXlMyKMKnnHjpvEHzh9Y13IIIdbAVttlpMzYjBnrIeFgs8Gd+we47c6zuO3Ofdyxv8H+asRqwxgTMGZgZM1WEfEH2YNupRgfByDuOirxLKbIOSRblJsgU9iuJBChC8qYhGAUManbQI2MB5KFIgE+ZMGQMoacS2E8ltlCiwZoUJju+GOw95oqqQZIysIrFTC0NLpe/HTxh+285yDGb6cANQ7HFlDdnXmcCJXd59wIb2MHsmQfnfKjX6+whn0HC8swErGdXi4AjqVW3Z0H/pbrCFSYhLYP/tMqrpZ5yFvmhZ+nBSTlGqfnbFmo+Tnn569znwuw8WDYEA1QdAouYtfZT6w/Mdo1khZ21EkJirGodYb5780PRdNNsWM4ozMZ99nVlDkXqht1/t7WOInZnNgKTPwzh0Zweo7pMe/aBVFAtIOXFsw7uJpfBzDBPnMg5WM0ARtl3Gpa9eS7HovWfo+na+C2c/lr8754T0Uq+LILRkn5NnakBe4XQnvKU56y/y3f8i23/u7v/u57x3G86brrrrsZAD7xiU/0f/7nf764p877/Oc//8E/+ZM/+cB/+S//5c1/8id/8u6f//mf/8Bll112t2mn9Xodbrjhhgf+x//4Hz/wxje+8T1nzpyJX/d1X/eIe6q/99Z2njojAyhOdwCTwC17AFJSAII8quvDFvecs1KKbttgOw9C2bkRqeIlgu/elM4fUkJmQd8F7PRr3H7mAMvFEl1ni+7eAgGERQjoJCOSILCAcg3kYhaklCFOk7OKkoOBPGbwmA2sALBYghA6gDKIoikwqiS8g5JsherI+VnRq2KQMiEMDMwYsmCTGUNmFTqr1mzCXDiICKTVYG1wy+7f3WK2fUbrSfYdWHElSdUtkWIsCROa5Yjm1H3bt6mtMJq5OYiUPeLUcOh4aLUd3yGSeCn4WvK8pLLanGCj1adnRVlkHQAQtXoVFZBtW9Q9wK/8bYUXSyaIHFYZFRErBtfsqPVgtR8i7chOrn8S+zMxMD5mBp6iMhlkQmtdDBP3jB8nxojQd6A+WpVpY4cQQBwRmBG77hBomHWszD0GgGBMjuj4hoA6/+qo1mvHYWO+rU3WhxYMo96XT5VxA6DMY2fsMOnJtutDeW78XO4G6oKm1QtIRePMVXNUNyoL4bWAanFBdoBOFdRB0NxvD8hleLC22IZlXtfGPz+fu229n3bNbcdYTA3Y2UcR+VTabve69tCHPnR87Wtf+yFA58y73vWuXUA3sve///3vEZ/U7bffHl796ldfdv3113/o2muvvQ0AHv3oR2+e9rSn7b/uda87cXeOkVKin/iJn/jQU57ylHMA8JrXvOaDV1555aPf9KY3HbvqqqsuFv2zdp61aXKtQyOHacVKp2t8CI/6k1Iqu0uSYH5rPSaFoItrCIhBVQZ9BwejkMfM2AwjKDC6dYcz/YidxQp9v0S36HUnSQGEHruLgGOAMhWcNO3R+pkzq34IPA/fXCVZkM2lU3RQzOCrqFMAESNQBJGmBLuiavks6TJT3TPKiKTMGJNgY6xIckl4W+B9N9i6Q2KToVBYjOJ/N49zMWzNWPoib75+LWAm7nMxdkTvmIMLweHFzZsvfHMjOtmlwowapBjN1kaUPsbGkNv4sHCRrrdumShdk8VTCPDaPJ6iXHsxbrVXdYycageAqbVRAN3004aqDZz1880N6eFrrM9Ea2xbV1prdKX5P9xNQcqMdF2HLnZa5iBWl6XaO6quGXPPFPAXCEEExBkRXQ2ktPdsovpAa7abB5Q3gIm1jgJkCwsyvQd31Wjy1RbUzpmzcqwCzg43aecBNXMelY2AjY9AittCDFyBHH/pdyOR1kniAAkNULL5TD4hy/9RgIe04FccTtb51143s0CQgRgRPDUY7Vyt40P28BwFONpnsVRIliZwtWFuiiv0Am0vfOELH/SGN7zhvgDwzd/8zR+/3/3ud49c7Nvf/vadYRjo6U9/+pn/12PEGOUf/IN/UGJanvCEJ6xPnDiR3/Wud+1eBCO1nV/VXsm2wwVAXoOmUt0kgFhWirtlUhobClzjKzozJv4QhxgQou74BILYqavGq2i4bx054dz6AF0MWHYd+n6BbtFp/Ibo8sAcgCVhtwvohNBLqA9+WcRqbYlsEvV53CCNmxIrwJJraXl3uyiFY1kKXHgAYSBTRhaVLcmsrqVs7qJ1Ymwyq/tINHYkc0btljIiXYjoQkSkUHbiGiypom5qG6rhbRe06o6q1LQjKnL746mPs+yRqTHismi37x05JwpWqp0poujzFdfvNzkjouMfYyzBgfPzOUvkfdFjuAvK/wsWtCi1Ux5w7C66LQZQDQmXnWflmOq41JTfqStim9EkosImzSXkvYUQCisWQtAZboxIjBH9YoGu69H3Nq/nAIioul66DqHri/GTlAFhdNIVttH72oLEwqxJZ9luAKx+TRYGggYS5+jZNg0jYtWz72p+kE04H/JtrocWqM3vTfmc0k8gMrl5CgZUqzxvYdImVyqGeO05N1CmysDq3giBEE1xL1JAkoxAsYALAZf5W+I9yIQJ7XdwrQukGUwVnEQDRoCUekWY9FIz+GKkAlCOGs/Dz4RvLHxuUHktWxxLhiB/auLqXtm+93u/9wEvf/nLHwgAV1555f4rXvGKj9xT59rb29uOjqEgA5iuLeM4XqCjfs+38wIjpeCX/jHbLQpYNOaCzU2TxgFpHJVN4RoACqK60Nqi3cUO/WIBEsYoYoW3AjzrJSd1twhnrOIaZ7uoC3Yki+Ww1GDuwELAEliagcozqp/FJOmzgFNGGkaMm43GuYwjhmHAZhwVlDTBi9VIe3CtLiwZAIuKmemPxq2MmTGavkjm+j6TFBltoImXMYYozAyY077uhqlA4zDFq3U9Wn0Qp/FNGE4IwGH+1j+fPTCTasG9bcZiQkMX1kPHKRSmqGnZjQRZOXbPggEgnuJajVwdnSlDoeDMjQImehkyG5fi02+NyvwaMJvHgsOfdRapARHuGpkyKC6kNmVR/F+veKuCb3qNkSzWI0bERY9u0SkzslhAM48MjDU7+zpfqAAUAUqsDAzIoBGCQ3MfvQw9ci5zDgCSEIgYnJqYjPLM0+T6t2mRTMZNplOgjYfYFsvjv0/Gn/T+boutal8qzsotoLm99yV+RCExEBQ2i4iWk9C/qrcVODT31a3FCAhgEz1Thk3rVgWiaedsHk/k4m3uePSUO29YUCrybgMkk2PapgrSBF+3sEwO9/1CaC95yUsu+6Ef+qEHA8BjHvOYc2984xv/7Pjx4/fYhV5xxRXrnZ0dfv3rX3/yUY961Cfa9zxu5EMf+lB/6aWXZgB429vedmx+jJwz/c//+T+LS+b//t//uzx79my84oorVvdUv++N7TyZkfqU+gLRqv6JKNr3+BANBGQgZ0jOAANRs3er2FSMCFED9LouAhIQc0YIUYNZbQfNbNV+IVgPA/q1gpEY9d9FCFgQIWKBgF5loUl1R5aeOcMZwknZG/HsjAzOCczqokmWhpyyxr4kziXQ0I1bzq7CKhYwpsxNyoIxCwYWjEkwZGVBRtY6NCOLSrQRW8Va1CBUAyFhixFzd70DLrU/JoZVsoJst0bKTKgLyYCTWAYhueKoHdZp7cYYUFnoUNgGIiuh3hoOnxNmMNwols/MJEgdXHjVXnebBNtpwhblojdixsUZLx8GLYxmG/sGkHj/2znqBridnz6u/hMo1lib5rtzdoaa370vLbPVGlt/rS18N9kZExVXQAzOcBgY6fWnX/bwSq7le4pGKmDVfGiUaJUYQIgIWdkvsusRu0/BbxNsAAOBzE3TW0aGqh37/YYdX+CFDImopMPeJXvWjNl8/Nvrmbwm8/dQWJhPzZ5sd/9MwCL8416hmgqLkYkqayIC00ot65s/lwpGAIBL2QONITN3mfsg/brtsrgBqFIYlBrG7YU9HXBuA23tNYmgfMfH26HnhQdBtP3Wb/3WiX/7b//tZ/vf73znO/fud7/7PeH48eP5He94x7sf/vCHj5/ucx47dkye97znnX7pS1/62YvFQq666qr906dPd+94xzt2n/e85932gAc8YPjX//pfP+iGG2746Lvf/e6dn/qpn7psfoyu6+S7v/u7L3/5y1/+4b7v5dprr738cY973LmrLrpoJu28wEjbBNCS6xPRKZiuiNWkMVeNq3sVutuoV4oBXddhsVgoPd33EGbEnNF1XYklUaqcLB4jYb1Rn28XO2VVug4dEXoAHSX0YRc9BcSYEQNjkXSOZs6TTApmAeeEzOMkk6bs+KVGzetnrTS81ERfN/RDZq0wzEBKjM2oSqsjM3IWJLa0VjE3RlBNB0837GJEFzp0IZZFDDZeAaFobviiGAxESKig0LejQZySDmDW5VBlOoxZQBOLIThsSOzavBNCqJH5rTH2RfXQbtD+bI0/ImCVQpy+LnMCzjW1ThI//fR1ZRaoxNwQAJoJ8M1BwTZmpLAXocKKshtvgER5vTEOrRFsj8ciVR9mxm45nR9CsGq8CvI0JbdDWBgg6TqLE7GxnvWlXBMBEvxezprPEQdiaB7TBpCI2c5gKbtd7LRytWmzCHJjUKdgax5n0hpPB2+t9DpQY3HcRfMpW4v47qJ5TNBRxrs9XHlu4PdZDXqQYHodqv9S5l0zf1p2Q8pzVOcEgwvgq32rf4utJyr4FywgtsZ5oJ1fW66hzB8PfEXzOaIpEyhVw+dCaR/+8Ie3psPu7+/H06dPd/cEGAGAG2+88eau6+T6669/0HXXXddfeuml49VXX33rcrmU17zmNX/x/Oc//6F/9+/+3UdfccUV517ykpd87DnPec7ntN/f2dnhF77whaevvvrqh3/84x9ffNEXfdHZ17zmNX95T/T13tzOC4w88M6zWG4GAMD9b70Ny74HJIAlYxwSxtUaq3PnsF4dYNwMGDdrcM66e7XCeCGu0XULLDYd+r7H7jDi2DhisVogdj0SBKvNiPue28fJ/TO47/ocPmuzxtk0YkgJIoyYMhY5Yy9n7Gw2OL5e4z5nd7F3xw5271iiP75Et9thsQT6wOg+fhsAZUaYk7EbBjyS1c9xEJWlaH+4BBRsd+7Brk5BCFRcKHmWTBaMScHIOGRscsIg6rJh1wFAXZwUiET0nhFUduvTRV5E5e5rkGutDuqGUSioiwVQBtrOJIGKVgeZ3omKSlJlQQqbgbqoi++xaIZMUAwlmRGA1TmZ2ucaw1HYFYRyXLczpe4LjFhxBgX1dEqj14W6MCOkAbAsXL7lu2m/NApUvqvnID+R7Ypb8BAA2g5kwkwczfvS/mu8hA4ZG8ByA+PXV/rnMvjTlHYHBkTYyqw4EIGYcYIf01gQ9zE40hQulWYrExd9CCCBCxOi2WMqtIagsVBucCdGPZgh9ffs2lHuto+HARKqAOAQw+Hsh/9Z5qJPRlQV5cKITQ1+27axCv56gF4js8Al9BwwdwjIrHCZmIxV3A7U2376+bJYtkwBFP79AnX1iRDdm5E/Cswq9uhzClSeR52TtY/qEtK4MJCP/GG0Ro7wt7BJ9+b2Ld/yLXcsFou/mMdlnDhxgr/4i7/4HnN5xBhxww03nL7hhhtOz9/7h//wH5573/ve96fta9dcc81N889dffXVd1x99dV33FN9vBDa3QYj6xjx7X/0x+Xvr/3t/36PdOiearyISMf64nJJ41jZDiGwaCyDA48ghKA+GATWILfsmlHwhUEZjw0bEMnAmARpFI0ZEUISWCCl9oNIs2UQqASqtpoirW8bAGAUcQBPglpjCCAKRUCOSf3fTFKMfDWkem1ZoMbWLbWfAnXBbFkCEW44iVbsqn6agruNUL5na2Uj8Q647Lu7fpzt8sNpfQ/UhbcEN5qmjfM5YunY1utsZLfek4DCtRDg/FUkKjFOWo1XWQWymAt1BZHtWOt1tEyIK5hKYwnnboZIpGq6xgoRqCjlsgNFU84kCspMWICsCCOI1ZwtAYqHd/c2iNW4Ix/qx6Eid0ABSfp1rpLwzRxQOygFaJRr9PsAFJdaKQjoMLAFgQ4kpGHgfE6bdeZk9XKa65u4ushdiw0wh/WhuU96yul83uY+KiAU0+eLkJXhNaDMZDFNgSAS4GJac8Dk/5Z6NjBGRSIiqASPBjRlDQTKiIhfqwKTSDquSvppUT7A72lNGw9NrSR3y/igS/nDAcuF106ePMnPfe5zb/+b7sfFds+0uw1G/n9f/g9wPwEeNgz41v/xB/i1f/KPceYBD9B0XBGkzYj1ao3VwQrr1QqbgzWG9QGQsu2cNG2x7yP6xQ6W/QI7uzvYO3YMu7u7WOwsEWKHxIz1kLB/sI9P3v5J3H7nnfjk7Xfi3MEKB+u1qrka1dkvOiz6HseWCxzfWeDksR3c7/gO7nd8F/c/scT99zoc7xnLmIBTu8B9jiEYS8HN4iZAWYQyGdvBKtUtQVMAOQuKzJYxKyllzZrJ2YTZGMMo2IyMMTEyrPJwOV+NyQjkcSINIzJjBYBaE2cSuOg7aRAQo7rCGgPQBvO5TL83fX0uaVUNWFlcRaAxJm2PCDRZ9F0rZMo8CMuk1Lu7KNrPTAyswHaVNaWWmSsVTmT3SV0IZIHD1Uve7A/dLtHh667MUyhBz/7FQ3E6W8bnrmIk3P0IKGDlBlSqSfHtajCGxOafuQHJjJOwzTURgNOEHdnmhnDQuQ2MlM87CJXKO5VPtxNBKmPFbFkggNVT8eO1bi8HoQ2omDEBfpKAGmfmhpkExdXnc24S41FYoPPf4R91P8XvBjmbhDL/QtCCjiG4vM1MRwnTZ7N1OU0+RxVASPM5L2mgf1tMimjWnUrKk90nlDni96uA/ckxq9IsN2Pn8+6IqXyxXWyfke1ug5Hb9o5hf7nE7noDAPjEJffD7Q96oJZcZ8G4GXCwfw7n9g+w2j+HVX8Oqy4CKUHNpqDvOyx3FlgsdrG7s4u9E3tYHz+BvWPHsDy2i9gtkFiw3mxw5uwZ3LazwK2LBW6liDOLfZw52+PcZqXpiKKLfgfCLggnEHCKAi4JEZctejxwd4HV8R6ndgUnF8DO3gLdkCxLRw1ScmVECkVCnmHpuWS7JDLqlHTHmzirtHsSjIkxZq3Au04Z65ExjMDIjEE0k2aESX7DshhCVcD0iqchKEMSfVFraH9nFBy8xFCZFJDu5jPM4ENUA2Wy3dXVVgMew8QYtTS1F9qioigLZYU8+h/mxii7L3Hm/BAYmQIWOmRgAE1BLN8lNcIOpIpegn6h0P2l5ohzDFL7ET0GoVDabvythQrqWjDUvlb7h8nvbnAOBVw2n3G3maMhz4DxPjLUhcLZGCy7xpyzqutmQogKbCkEBJJSr8dOND3vTAvFQUvOGX3fH3LtAOqCaqNyvHBkK1s/qUbMUgoeTcatHMLnBeqcKYZToJkqNYtO2A1tBWTlXLP+FmaGDwNnP/NRrXXVHAkaJ+fX4N0A0x8x0OU1Znwuulw/pEn5bjrkwCpJtmeayvd8RIw007lsGTjZwGgwcMSkcWLC0JgSR20mdSDkgErPrvdvhr4vts+I9oIXvOC2F7zgBbf9Tffj3tDuNhip0tPtixW9u6/bd8quEuLmw3fzMXbou04zYBYL9Ise/WKBRb9E7DqQqKFa9AvsLnaxt7ODg93dknbLkrGBgQJhjCkjImENwj4ROgj6ACwpY4d7hJEQ9zoQgNwpM9P1HWDBqykxciato5MzUtZ/OTey42wVd1PWjJmk5x0tVmQ9JhwMCZsM5EwYRbVJkkhJoi0y2i27YQt3IC0hovXcBJK5IcBdwMwBSxPUS5aR0XUa82Kujszs3gB124inauoCVoqHWf8EUhiuCQVNBjjIl936fnAj5VPBd2Og6W4Xh3enJROohUa2mDMUAHrsDIsWc5vGZzDamjZlMvo/BWjMQFL7t23hnXGa9u+ut5RbAzYNhBUGgaZMQDFCbuD9taz3hlKG9B0CBUSK6LsOXRfQ9TVmb15TZVI92LbMHj8jzedqVE4dVxFRZeQQMcyYq+J+8B38jBLw+2wzAiAq98O//ynHDxVctuOod7fkiJT1xYPew920t3NQ2arqOjPTtgBlQAMMgFjciKcxz+ODPJgUzbEB1GBuMR60GTexTYkDfQD1uWvcYhUE23whq+OEKYgr12g3vL1NylSdV7WPi+1i+xttdz+AdbajBOyh8N22NOuVPYxNlltZ9GMMiF3EYrFQMNIvEPu+1OAQZnRdxKLvsLtY4thiiRPHdpHTgDGNJgAGrIdBKW0GxpSxISCSIIIRweg5oc8LhBQReQkSwe6yU3EQ03rgMSGPGoDKiU1zhJHGjHFMSCmDE5CzYBgzxlEDdTeFCdHfN0nl3scsSLm6ZnRBsLGzrB8UhgNlh1bSNKE7QQcZvq5N3TPGjvhOnJrFXAIitOAZkxqlLJqKbE4OdSHAquFS8fjrLTMdEjbWIkSXq6bqzih+kOlq7oqX0523mP97agz1muOEbgYpre8MiKrIqrHzVFLX8PA9JhGV3acfW3zuUShn9blHmAY3tgBlzuCU+W2tNTjTx2L2XNB0ZNo4CBYpVXjZQDdIU2X7EBEQsYgLLJc72NndwXKhQd4al0PVrYAGjGzp97b++R1z4y/MWsRyGIrBTcNo41Z32TqeNj8chDEOCefNz+mAQw2l91GtJrurAm16aoVQOlsbg+tIzvrVAuD5/ToKSLb3fFtWD4NBbEHlEixbKUxLA9ix5nIGCMFYjgAhabRGGlDVACktUKjXlC1oRF11CrIdtASbTA7QyProGkUOPA8DQQtSPr/SYxfbxfY32u42GAlQ9qOlJQnm62YBvHCebnn0I74Q2kPvqbpdjKql0PXo7MeLfEUoVdp3EctFj93lDk4cG00LhDWrxB6z1ThiNBp4TAlrM8AiDJKMwCOQFurSgCAzsIiMfkgIUZQ9YFZtlNGL+rECkiFjHBjjRrDZJGw2CcPAWI0J+2PCOidsRgMiLEhMqk/CLppUd0WulokQISATR9piyESNeSzuEP1MF+MhF4OXc/frdVVTFkEXpBh1zeg1n75IEWfyXW0DHXSBI5OcF7iIZaHf605WPz1VfBXMMxCIZKIr0u5MpZ64Gu8yZk7v6zXFWLUV3A1AqBL6YuMWKECVM+16mrEt5/a5WS+r9sEAmr8i4i+pIqnHC7Wvl85U+112rwWElGrVTrcbE8Ri8v56nV3ssFzsYG9vD3t7x7CzVMDursU5IyPWEYGPTYFlDUvjoEtjFMpxmJGsGnbXddrPkcGjgpLSCivW3C/Dg6UaLXwnjgL49HtSPutd819Zpt8DoZmNuo6U9cSBQ7lzd4+9aj8zr+/SfLL5nGcH6RrjcT8lbsdis1q2xMfT3Tdwl4ldP4ko9ekbD9S6Ns4OBanuyWAB6BBofBSqiu5kgtXRq8DPx9cBOe56jC62i+0zqd19MBJMLbJsAM0wCRfhMMnZqlT67lQfBwci0etu9L3qiLiWSFSBM4SI4L5bUNEg2V3uWOCqIFgEisdcrGg03ZCEzZhLlVyVbVW2QwBw6jFm4NiiQx+BGBjRFqLMwDgy0iD6MwIpAWMCNkPGZpOx2mSsx4zVkLFmxpqBIQMb+8mssSbcGIwYtMqqxAgOQVMmLX0UmO5aAQDisQdiYx7Kv04fB1soNXBNDi2MmYEQohXqYwMq5gefuyPgOyzfBdd1ruxIK/1SCoKR3X9BZSJkctzm3yOuVZqTtZEg29gI38kys84j95nr6MCjWoKn1ZrJC01PfXyKaBwIwUSrXNK+vYCyEff+1u044K6JJnCxvA4Ho8aEFHefX5TGALhTRG2VzvWd5RJ7e3u478n74sTJ4zi2u4PlznISIDlphSw4OpZFf1cXKXzUbEc+DBucOzhA3y00q8yAyBCipptOVFZp8tsc6Ikhu0OskGvAGIgTMVdc4UOksD4OCOdEj97bT21YJyDN+3UEa6TPTS6xIlnqFYagbpoAfV4FXITqykMS1J0YUcffQUGGgELUGC7RNUuY1UVr4NUjYVxBmNnZvulwi2i1JvOKKnNy6GoEk/vjTOBFLHKx3Yva3Qcjheq25gyI7fA4ZeSk6qbCNYXDq4+6iFlnvvDYKUChaAtfs5D4T4wRy+VSFw3JIFj11KCGVaBGYkyCYVS6mxODeYBkrcYpOQGcgXGJTQZO7iyw0wN9FKiSvC48OTNWQ8LBOmG1SVhtFHisRsZBZqyyYJ2BFevPhoGBSRkRSw3WxYTN7aLKstQvMEIqKHB3DGBS0LaMmLVz7QjCtCbLpCAaqkFwQ+U+/+g7qxDQGXhMUN8/bEFkS1d07Qyx7CRuFkk972HJb13webLgt+9731qLIpgaBioGx3fdvpBXCh9AqaDbHl9Fw2wHa2nYFIJS4P49/6xlKnlGDuyz4Dq+Hvxb+1p1NeZGvqXs583dR4UJYQ3aqcewfT0BNYcLxhoqUF8uFji2u4sTx0/g1H3ui+PHd3Hs2LGtYKQc1zDQJJvCrrOwIqbx0jJTzIz1eo3l4iwiBYzDgGG1wdCvsek65NSBOdV+AnAlFSKu99mM9KERUbLUmJF6re0428fMaNuoFAakBbV0yLDW8aDGcMvW+dj+7cCWyA28zkUHaa3mDYkymBk0+a6711qmrczT8jlnfOyINtWZPGTIg9ptXgWy+U7KEhugdQa0CTXSApONmxY+Vx10B6vqdXcDbC62i+0zoN1tMBJDrLEKsEwP2/nlQYNLtR6NyqrDqEjqOnRxyozEWI9FFgRGgClpshlBk2EOAYu+Ay+Xxm6bqQ5WqTcQNoOCpA30oU0SsEoM5BGSEiRr5eBziXFyt8fxRcBOB+x06jIKIKSkYmurMWG9SViNGQdj/fcgMTZZsJZcCt8ll5W3DVOMERF2bbEDh6ALmdO5hQmopGpdn6W4MopPGy5DPVtYC0U+TeMk6I4tS/V/C1QnRTSyuKjhliyKZnerCzAmTEI1xnX3pa9XENHuSFvA2hpHmJCc0PYdqy7ONZvD+2Pmr2QCkbhx0sU7YCqL7XCI4BktNEk/1pgXA9GfYuc4D1r0NnGXteyA+PzV+VBUa2e7VmrmhBovjaHa2VHwcfz4cZw8eQInTuzh+PHj6Lpucq7q/qnnaoMsARQA467Rtr8iGoezWq3KXDs4OMDa0vIPDuJkvGrMhL1m8xS2y/chLePWjBXbfKuxPnVECAQhbu5aGaQGwFTIOh3/OYicvj+/b1OXDQCZBrSGoBsKMnbDXYB5yzGcHWRRt7G7lLxgnojoGuggkhkUq94MfOgMKEOUIXEXj28StLBofZ5cv0ZQlVzd75WZ60bH1tGLzMjFdm9qdxuMdNQjokcwKWKICn4hJ+Q8II0bcBoAHkGSAGTEqPEPXYzoomUIUAdCBMgUJ22nKGD1rORswZBkTAjAIWLZLya7lxhhwarAOYoIQgAihnFE5hFJBOsQwBtgFGCTGGcHwcndDid2Ouz1Ace6gGXfIxIhp4whMQYLTF0NGQcDY50ZBxk4yIJNzhizFhQTJlPZVAai6wJCFyFRffOqiKoS9OKF/ADb/dtCbLtBN5x1cdTj+oJddDHEDQFskTZAADOGRvMSB0QCkggCRUQXeLRqp2IiX+yy5AEQcDHubjwUPLTZB1yEzDwwlahqTLSxLxNQgcqOZFuQJdSYE7FMn0gBEJcgF0tfdpajMSaKuXQsrehh2fHO9EO0Sq7GkYTGmCBQvTaWrZWMy78TF4/1s9hhu77ihnAXhPv+3Qg7mDPGUBM5QdQhhA5xsUC3WGCxs8DO7hK7x3Zx4sSJQ2CkzeZwFsbLL4jHbZHf975sAkJwL51mcSUrucDM2Awjdo+fQH92H3HRg7qomcChgkQFT8ZdRc08UXBoEEXquOmcqHOL3QcS1OhGAagdI2s+lsRSDaoOElrLqmNthpcqiNcZiuKKK8dt7h2sz7C5rVpnbKAQYNbKxwJlFvSZCOWhy6VKudXyaU6kStNcQZpoQT0iAicNDvYMHBGaXL3YhkGPy1a7KxSAU58vAjGVOBTncnzOu9w9Q79/sV1s95Z295mR2GlaqU9w0oh8TgnjMCKNCTklcE6WqqoPXQwKREKMta5KiFqgzCvKloWsptP6Ih5oGsAJGCsQ3bCoq0c/ra9t1rpzGEVTcpMkpCQ4GDP2NwHHdyKO9x12Y4edPqG3BzkLY8gae7IaNUZkMypIWWWtxpsYyKKGTMfE/fHqgsmkOiPFBDULozMO2vE6tq250p0PFWPvb+hiVel6FkbUqBf/Jpx3KQDB7lPLepTxAyFIzSooDIfU4Dp3/xSgM2FGpmAD3nfZpu9AlsVj5kegO0j7XXwQME31bI/l11LO2RhnMkNRpdRpok/R7u4PtdaYFHajnpftOBoc27pCqPS5Jbemv8qkn+W40pAKJvYWLL5IY6o6Y0p2sLOzg77v63XZcWqNJUFKGTkHiGRjuyw1nGCFJHvEDogxgCgiQpVFBYRhGLBcLrFcLtEvNJarnKswZajgS5FzBQfkbJNPASkMQBmZ+gCUe+UMxNRgyhRkS/NMiJTsrnaoj2JH5vOksi/tPBB4vSYP7q2A0ec36px05pIMBBgb4ufSTYM9U7apmCC1AmIMCKNm60iTsdQyLGie5QnTYxuZyVW3zwSmQbsXSvvkJz8Z3vrWt+599KMf7S+77LLxKU95yrmTJ09emJKzf8vaeYARQozVTaPPmNKRnLMGimaNd2DSzxIaMOJbM6JaFdSOAejutBSmY4aXMJ8/UL4wVhGraA+s1H8hGIakyqiiku/MgjEnrEfgYIzY7zKWccRON6KnWGqUjJwxmhtmSIIhQ2XeMykjQgHoCKV6OwCwukZYVHVV1VwxMeAg2+35dczo32qAUb7pixoXWXYplXm3eOn9aAV8THz0Us/ZxpkcVQre++h/t0qg889ti2doX6/MijFC1DAP5f+2lybfRDsD04CRwgpVNujIHys4WI3MllZ28TJ7uYqclT7LdD62gKz9V/xfkeLyijECYkJvBRhabIrhcXfPRWMRJy5Ny6YpQNTum/bBn5dcflTcDBBJcIExolie32CS5NGy2rquR9/rT9d1Gp/UxofZKLTshBton4eTeA2yGzkDY/M5E0TKMSuLtOU22bjPA1NFajVdPy2Iat+aeeNjPJ8LxW3mc9KwiL9WP+dsnGdwHQbF7VyA6LOqrFyjuiuuxGoznqFxc7D54m4YEUAYkWJxX+pzEeAFlX3+ekezsTXzPl0o7YMf/GD/8Ic//LHta3t7e/m//tf/+v5//I//8f7fVL/Op6WU4O7Ti23a7jZ01sDTWFIRWQQ5qzQ7M9suTQMjHYT0fV8VT31XPzG8trgILMU2N5khOFSvJZqrZ7FYYNf868eO7eD43jHc5/hxnDy+h73dHewuF+h7LQ3PgErMJ+AgCc4MjNsPEj55kHDbuUF/Dja4bTXgk6uMO9fqzjkYgVUG1kwYJCBRBGIP6hegrgPshykgESFHQgqERBpNz2Yksv1wnvr0W/8zgJp1QKYNYq6OknXQLDoOOPS3w61dg+oCfvi8bZbTREiN6NDf02NNjcpRi/zRvxurZlT8pO8ODQgIxXh6bAhb9ZnDx26ZA8C+G0OztZ32t9n8lmubB6vW409rkLTnngAREdWJESlxKm4QfUzbPoRACDGg66NljvXqyjTGzVurMTMfb49TyXlEygNSHrDZbLAZNhjHESkNSMkzzthYKUKt1GuaP8ul6f70WPR93UDM2uRezt5zMKYbjmk/52CxXJNAA0UdAAhKVWwm3dgI1Wyq9h7NXyOaxgd5L3Xvsm3cGgDSfLrcM9j0acBi1TAmdA1AbwNIxZ5d/5ebOCLAlVz1b3++BQomfD1ladYOd8mJuomy2BoDrc2kr/Fkjl1oQAQAzpw5c2hCnjt3Ll5zzTWfc0+d84u/+Is//9nPfvblz372sy8/ceLE40+dOvW47/7u736Qrw+r1Yq+/du//bM/67M+67G7u7tPeOxjH/uo173udSf8+z/xEz9xyYkTJx7/S7/0S/d5xCMe8eidnZ0vev/737943eted+Ixj3nMF+zu7j7hxIkTj7/yyisf9b73vW/h37vhhhsufchDHnJF3/dXPuxhD7viFa94xf3afhHRF/3oj/7o/Z/61Kc+Ynd39wkPfehDr/ilX/ql+9xT4/DX0c4DjFSj5U1JDaef9YF1WfPWwLXZAEftZH1hcVq88MLW2uN1UWvSLPsFdpdL7O0ucfzYLo7v7eL4nta62d3dxXKpEvMsAYMAa1aAcZAZ+2PG/ig4OzL2E7CfCPssOGBgLcAGhBEBTAGIEcG0UASAhIAMqNIqCTgQEgiZTD6epiqSR5EYwQ2zS9FnTfzJrOnJmipsRfxsQfKgy/lu3l6EBwq2u/RKJ83O7yJqM0ByFCgJW+5rucTm/UP3t3D4aJbeahBsKwpAYwxChBUvYxCJFQiTaiDCdC61rRgbmIQ8UNMyqZx6a9u68zY2bw7M5gzSHGi2Y+TvzBVUQwjo+x47yyV2dtQts1wu0feqUDwPPm2v2V01HvDNnDGOCkSGYcCwWWOzUUCimwYH+lzuvbMhi0WP5WJp7hrvQ29FBQ/PmwI69I+py87u48R9MQNR7XwKUIaEREXBglEQUp4j/cmoBr66R7a5BG18W1AxAyG1P4fBtL+mx2jZn2b8G0DSzht//tzNXPsqJr2k3IaISs1nAXLWuFW2CxbRZ98Vk1l4upagPvv2pFcwNPk5zFje29tjH/vYzete97r3fvCDH3yHiNx0zTXXfBwAbrnlln5/f/8eu9hf+7Vfu6TrOvmDP/iD/+8Hf/AHP/zTP/3Tl/3Yj/3Y/QHgmmuuufxtb3vb8de+9rV/8ba3ve1Pv/qrv/r2Zz7zmZ/3zne+c+nfX6/X4Ud+5Ece+MpXvvKDN91007suvfTS9I3f+I2P+NIv/dKzb3vb2/70f/yP//Gea6655la/X6997Wvv+33f930P+a7v+q5bbrrppnd/67d+663f/d3f/fDf/u3fPtH268Ybb3zQs571rNv/9//+33/6lKc85c5v//Zv/5xbbrnlXku5nFfMiC6u/gDq/4g19iCgQwwCCVbl0hdyQN0nZWFHrVY6e1gmux5AXTFRd8a+uLlxIAJksYCQBdY5JS8uflW01/S9PJqyqBr+kSrtCZCF5hqdWgyjgBwEWHCggC1sVvUS3MHAZMGEvlMmshoSLRaYGjCCa3yosWQAyBrAyQDQdcqKBIA5qJdLYMdtdkAitaYManBfuXbUXdq8EVGRtm594DHGJkiSj6QV5+muLR0/YVIoAEYji205CQLmrPeLgdhFTVtEDTgMWxCEn2MuZDUHt60ryF/z3XedeofHpGU7StbClutuPwOgxOK0/fGMGu9DjBEspijb91juaBbN3t6exYgssVwusFwuJ6zivG/+u3CC5AE5jcjjiDSMmnoqhK5jBAG6EMB9VPDSKQsXY4cYBV3Xoe8X2NlZYmdnF8vlDhaLHfT9EmMcIIEhkmEJroC7rGzaTsakAGBM5tO2e1J38DVGrGho+O8Mc20Jgu38tVaUIMzudZln0xuJQyyisWLO0BFcA0bKfeXi/lCAZPWiyz1UgBmQUtLSCtvmkB2rKyrGomUO7H0PFudAGDnreyGChEzexYJqSee/kM6ZQGE6f6tnqYAn0NFO3Ht7e9rTnrb/BV/wBY/+i7/4ix1/7j73cz93dfz48XuMCnrAAx4w/OzP/uyHQwh43OMet3nnO9+5++///b+/7BnPeMaZX/3VX73/+9///nc87GEPGwHg3/ybf3PLG9/4xvu86lWvuv9P/dRPfRQAUkr0ile84i+/5Eu+ZAUAt9xyS9zf34/PeMYz7nj0ox+9AYArr7xy7ed7+ctf/oBnPetZt734xS++FQAe+9jH3vLHf/zHez/yIz9y2T/5J//krH/u67/+6z/xHd/xHZ8EgB//8R//6M///M9/1pvf/Oa9Zz3rWWfuqbG4J9vdBiOLRY/YVSEdfVbrQ647mgCJLihUF2t/+Ik8XqTZebvhmtGtRFQi6T0ltiw2DTBZ9ouJLkewxYdFAK4Pcxi0uF2VZbJjBY0voKgiakzVwHjherEnXgTVD1xYjUqxwvzMLPVaXEl9m+vEF412x+f8rYMEQJVjSQQhBggi5juyQ7S0G3s7TjYXkaYqVnfD3MXR9q8YzlYOmw77oefHkknfp8fT+z3VMrFP1DnhQMSMhl0R/A83EtsYkbkLIRYAgjpTW2ZJoMDNX5sZ+nK9Dn5bs2PHhe/kW/BTjjNNjy6sFarQ2XKxNCCwY4zeDo4td7AwF2cb33OIQbTfU0pIacA4DhiGwTJrAthqHHVdh7hQV1ALvqK5aDyAdWe5U9iZ5XKBcd2DU9Lj2LjDnnvD6w0TVdmB+f2Ya8XMx7je17qelGwZiGVbyYTGldn9nx/boUb9Qn3d5097n5qD2GxrA5lRmIbJXA5hcl/m88evvX2+5s+sQDcwQYKuIaT5ijpk2fSUpuBrgj5sjdw2phdiSynR+9///p32tePHj9+jAaxXXnnluXZD8KVf+qXnfvqnf/qym266aTfnjC/8wi+8ov38MAx06tSp5H/3fS9PfOITV/73ZZddlp/5zGfe9rVf+7WPfNKTnnTmqquuOvPsZz/79oc+9KEjAPz5n//5zjXXXHNre8wv+ZIv2X/Vq151Wfva4x73uHLMkydP8vHjx/Pp06d73EvbeTAj6oP34CsHIEIBYum7ujMi3ZmhUpYC0Zx7dwtYkFxbpXa+mHtAalkAZ8YuIFh6oUC6DkvXkWKAJGggFwjxQI1yFwSbgXShNuOn/oAIIUKWFjhYACl5sCWXgnLiCbpGhWZnTMruSoMDRRiW+3tkUxBiBkaqci2zFJAWERHENTg07Y9N1KjdgQK+ERQUsa1yJsGcAdhG+wOHAwVbkaj2e+XIW8AJEWll5WYeFIE1S7Od7yaJFChSoZgNJBXsSJNzzM+39bpA5XxEVAzMfPE+6npaQLJt21XswcwQATClVcCp+wmTYMq5fd8pCNjdsfinY9jb3dUMmq7fykbNwUhh7NxdI1rsUQu9qRpvSslcOrWPiqFUjHDR91gslRnZ3dlVhmSxg1V3AFcj1etVxmW7sbOLnb1Var80MTcTgxmAIFrGAIQSxOl9LOtDMdpUGCNQsx7Y5qUMczn8lAnTebC9734cbm4ulzTjcjMV6IYtmWio5yj3C01Zhmb8GQo8XLMls2oDqfx0KBoiwqZlYp+VnC3mJ1RQ6Cfy6zsEii+ctrOzI7/1W7/1vg984AOL3/zN3zz1pje96T5vf/vb997xjncsH/vYx27+Ovty9uzZEGPEH/7hH/7p/Fk9efKk10jFcrnkefzVr/7qr37wLW95yy2ve93r7vPrv/7r9/uhH/qhB//Wb/3W+778y7/83N09f9/3h27wPCHh3tTOr2rvbPcSiCBRYyqIPRrcdEJoSp/GqKmLHoTazXZ9zFzYEdEvqTEp+aiYPHAATM47oAsdqPcCX2ZcPYDOEEoIWrRttEA+vxbDL+WhbqlmNeFkGS1a5Mybl4PP0jIAtqg1xwKq9PW2xcHp4gLA1HkBhjIaHREoERCBmBmZckmbBrbvhNqziBQCF4eCRbeAjtAssm0f5zs7b23AXBsn4A/n4cDPZlGnqaqvMAPs0tuNnHWLH4gwu9wjgZIzF+11Tq6N3OYczTQdxQS17x3a+ft3pPmcZTkg1F111/VYLhfY3Vni2O4u9o4dw+7ObonZiE3MxpyV8utQt0JujGL5hAKUQxEHtWkftDzDol9gubOD5c4uljtLLJZLdOaazdQ8fGVsj0LZVOKa3AC386vtv16TrS1eaJE028e1eIKThYr6irCXPur2fIt+z14u41VcFmbYy70rwMRYHprOdU0Lb4AoO8gyNkTUvbjtutp71d4zZikAws/PVgwyBCrBqMTG3kbtYGB172j8lK1vCFrs0u+jiT+6auu2eXkhtNOnT8df//Vfv88//af/9M6v/MqvPLtarcKb3vSm+wDAnXfeeY/FSvzJn/zJXvv3H/7hH+499KEP3TzxiU88yDnj5ptv7v/RP/pH553N86QnPWn1pCc9aXX99deffvzjH/+oX/iFX7jfl3/5l597xCMesX7rW996/Nprr72tOefxz/u8z1vd1fHu7e3uMyMWv+BNH+JQcuuV+RBk4rIr1feqcdKMnA5dMCBSUtymropq/Dwmw85oD7H7mHUXo0YrBgBdb8FirIGLpv4YSLMWYojoxhFjSpN6LCkzJDjnUS4QIi7HhqIboNU9m5ojmMZITBYmwiEgYmuqfs9fMBAlAstMYrgoFAUNjO07V3C03RpJ1TCRurAqa0u2y2yAnPeBjjawc1YBqKCyXUS3NV+Y279bw81NtpAqpoba8WK8pZYdIJr2vxgSiyc4NFfqebftDAtoM2NTjZTfs6MBSHPw0tcJWAMm8TgE70OTZglLz2RRl6AFYvf9AovFEjuLHewsFAT0iwW6vup9HG5qxCrI8GuoKfETVoysH96/UI20139aLBZY2s/CAltj1zWxXRZvY3OjwYmTs9ngHAKBh+6D/w6Y5gzMHWTXJdP5lCHKpPpxmDWgXKbs3mQ+2LzxZ6KM1pQcO9RHPb7HiDhYqMf3dSe2YLO5vpZNLG5OWARUmUIlwgsQFGkBLaiYEe1ZBhEkM5g9KNpivEzrSNlp0TIc5CUQmnt/AbXXvva193vRi150+Xd913dNXj958mT+oi/6onvMUN98882Lf/bP/tlnX3vttbf+0R/90d7P/dzPfdZLX/rSDz/2sY/dPOMZz/jkt33btz38B3/wBz/8xCc+8eDmm2/ufv/3f//k4x73uNU3fMM33LnteO95z3sWP/mTP3np13zN19xx+eWXj+9617t2/vIv/3L5jd/4jbcBwHXXXXf6Oc95zuc8/vGPP3j6059+5td+7dfu+/u///unfvM3f/N999Q1fia0uw1GvBBW0X8AlZ1PgMaCcITqhbAqdTL0ofEdmPunY+fBsE7dS5NF4yBCQ+aKWwRNPRVx9qGGkIrtOrsuYim90vuZQZwRdcVDQMCaCDEEJE9Lrnsw54jrrsZ2lxApu3ayKPf2cwCqMmOzPIspWE4ICRFTrfRFnqBLrepDsPi/Oh6JEygAXdIR7wJBOo3EV6bX7omDMzFa3EWnHP1ATChByoJZWAujgtr0WLJFT49bQWOrVCpSC755SuWcuvbzMGrgMQiQNOrvthMMNqyFcp+BDKAajHnA7dxot7714pZpjRFVY+T3hhwUOrprYLBeZ5joYjh1VuqEWAYEmcEoANTnUtnREzpE9IjoKKILPfrYY7ncQex7xH6B0E0zWSZxO0EzjnQPwEBgZNFEz9Z9oxZOIEGAAHRkaanG+DEEXTQNks4E10xzJHY9YhdBXQBigJC6UgpYbe6BT5/JfcKEyJzcu7Y5G0iic9hTeEMx1najYijAlKBrQCwujlB0P2BrgN9v+DMM/5PK+Qrz6WDU1GVdlbgF7TGS3WuLF4PHxUHVjZtnZ84Eiq0deq25mWOOlTyIVnS9swHlbPFVtuFzoTVm2HoG7S8RIDbnOIN9M0jhQsMieNjDHnbIDXO/+90v/eIv/uKfHzt27B672q/92q+9bbVahS/7si/7ghACvu3bvu3jL3zhCz8BAL/yK7/ywRe/+MUP/Ff/6l895OMf/3h/6tSp9PjHP/7c13zN12wFIgCwt7fH73vf+3a+6Zu+6RF33HFHd+mll47f+q3feuu/+Bf/4lYA+JZv+ZY7Pvaxj334p37qpy77vu/7voc8+MEPHn78x3/8A1/1VV919qhjXgjt7rtpJq4EKAWcuVDhbmg8vbNV7gwWKFeElRohJ6BKW093pOJrQjEk/mCXT/jGmRqlTDt/31cGQgBkCmWRXGGNEvPBueTyUzY3Q7XbdZfNYn/btQMlcHFSpKwYZK6ZMnaNDtr8NSIqheHa63f/vjTXlokRRZA5I2WAYgWDXnDrkGWQmnKtVPh2Bsd3Z/O2jYKesyNhdt3bvjtxH9i/MVKNjWncW0ezAdNdp59z3u7qu/PfW0akvC9AE6jSHqCwH4Vut0GbapLUfrRj4rv8UjXYQFep0WT3qF7/9uvw47afC8W+NXWNqHGNNqqq1RDW6/bU7hhqQctDado6MBXcHdG3TxWn0H5GryNOnt1pQKiyEoRYUuPaW1OYmgZ83hUL4/fBA2Kl6dNRLg1/Dj2gtj1+q/i71RVlmxmtZF6P147F5FwOnOCxahonIxM3kj6rElBBmLBVeiAEWMyVHBY0vLe3r/u6rzvz5Cc/+e1/8Ad/sHf77bfHhz70ocPf//t//2B3d/cehV1938urX/3qDwP40Py95XIpP/ZjP/axH/uxH/vYtu++4AUvuO0FL3jBbe1rD3nIQ9Ib3vCGP7+rc77oRS+69UUvetGtR70vIjfNXzt79uzb7+qYn+nt/9/em8bYcZznwk9VdfdZZiNnyCEpUStNLZZtKWEiww7y48LBvdkQwLB+OE5iJw7iREFiGP4RIzaUfDCQwEYWwDJgwLGTOEbiIDESxAuCBHDg60+fA1iynKslFmlJlERxGXLIITnLOae7a/l+vPVWVfccUpQsmbJuv8KIM2fprq6urvd5n3e7cjDC/CJ3qTSezdDNLr382RBLINCo7pjWtAggYhsQAcJ26ZoUOL3DkijxxiYhkWW0UfP7BsJnBvgy2t7Noh3Xa4jf5bM3VEILMBAIiTUArP8Mj08ICeFi6/igYKak3ZK3oule4CBgY4zvLithlIK2BtL4bAzVun0eU7T4hIQmjht225URXQsJs8BjdE13Q+NzQGNTZ0mtdPpuco89m5YiFAKd07MuLiXTXDSN6WgBEH6/CWj8vHmlA39fo3UZLWckcxIIpWS+Oe2cx5KeMyhYMCARPoUZjc9MY4Ta15wqQCXJ/cj3QjhfPwa+caMvVtiuJRNAiYgF0NgNIKXY1g8lGUH4xyXHSOeFmYcrASfh+76CsQjlRQW44LkUAkJlDVaPn8805uhy9z81fOhNVv7N9cwXJwQ/4w1+JyxZWq/SM1TN+jwxjsr4+i7Op+zGDKj2uOKgI2Pi/6TsM0vHAwDFpQv8bbQWkCBQ6RIW077wI/RDJ3v37jU/rKmrnVxertxN45JOr6CGUlprwFpwp2oJQbwl4uYvlUTu3TPsh2ZLrc0INECJIweNJzZJifrOmm0lQ5t8U8kDsbATVTRFqIhaa4ob0Vb762I3EaXYsVui4Wd3cQ54k7XONTq/sjLj311jrNOtXdsqEd++Np7zWhgoY2AE9b8xUkJLKiftBLsgPP0cdkwGVKzk6DMpneyS8bK0rddtgMQ1ffOcxcBX0rYU6VgWsA7GJi4cSHBsIO3fL6yMgwstGcM0UNJWgu3r4N8V09mO750DjAi3iy1iCwOZxbXtEpaBwaSQ8R6nCnpqLI3XubbFvjXcLBDbvwfASeeBhQoxNg0L3d97JSUFi/vMnMxXdw3gNAEbgZlRMVODIXkTcl76nvBcXInE++XiWQJQ9q+nII1nRMQUfmB7Ibn2I7YtgNo1P8LP2DRjKPLA00UKCaUE9d3y808FH6VnbjI4+PpD2jTurUvue3rOUBwpeU0EgOHnwX9McAAshHfXuMCQvAZxSCevcbliMBJ70FD6tDEadV1DWTS2KyEEBb7xJsnlpovCMyMZWV6pMnsBi0ZISQFaLkIOFz8ACxtqafB30g0t88GCRZZDFwWquodaa1S6Bm9NzHQ4wPs8wjtRUfmTWttUFi4ds2P2AA0r2Z9kynU2AVm4rOS4xlooYX3ZZxfKRBtrGjEc9J0EQPFcBMVDln6byuZ5bL/WZhK4y26D+mZLLpkxZhbS4wVrEdw/A4GpiYpHht8vZVG3gVA6zmkgZpp7pvE9v4E31hyED2D08SCct5AwcAFQBcucmaM4nfGaaGpEsiYA+FTypB+Ta8d9NNkSUrYE4mTDpdNUQJRdQSn0eUYl5tuMZLhWmQYDR2XPjEkAsT7v3cHFuj9T5jotZrZtrSTzHgCMZz459imMQ0rPUnkWyrqwnmUALhJCyYbrZhp8aNfKSV1UqbHA6zllyVoXGG4ugyde/1x1OstUmEfhP+Ac4PLYc4sq5jaNMPqF5pmPS+yoSPYRz7w0WD5/v3lpSdoD6D5tm4pOXqQ8+OCDR672GP5vkStnRqyvnumRu9GW6pb7hS+E9EAjSUeUvjR8lkNmGaTKPOvQ3AymWeH+A8EFxM9VSps6Fzcf/t60xm9KKeTKwiiFQmUoMgImme9ELATVHjHWQaBJofKD7qI28UFs3rp1PmPGeV1l44YVx+n9uMlWGRkdgFFOQ8myonS+GaGU0NZCWkuKyBooKyCFhRQqKDa4eHxWHmETFyI03EqBRjrO9NobFi94L55eVCl9pQ0mOB2SLUeRnIsVOFXfJBo6jcHYTqE3mZepwCqRad/n12mOWCHGJmOOHPYxk0QASnBti6b13QZG2yx1RCXtPIPijL/3NvZ1qqoKdaWplHtVIc+pt9N2SdkMAH6OjDYwJjbQU75WReqaaTbc82PzhfVShpCKpnGZBFbQCGvVecjbfm5fSNL5SBUwvZwcI5lmjlVhd9Z2JixJR0/G0h5P+nfIpEtcNLy3MWPEgarMItIx/HilIKXv140CV8qlo9JeqBpGV+qimbZP8fMKv1cAwmfNNedLgCoZpyDUBXAkIFUS5K/rF7wnnXTyapEXCUZsEkDK6YLcj8ZbXioGy/G/1JZchZTC9GGctqGFDSUUHIpKFkIk1Vq57wO92bQqRWjA5RyVxM6VhM4U8iwnQKIylEpRHQ/4WiLawUqiPpWiiqxh8wvgCYG6mBaAysrW+QJoYQ4T8MTX2Uy1IZFsFfIcgawkaQy0FMisgLEC2hiaY9/EI9jGwmdvMCXtmht5qMWSKuqptDGPO9nIbVKWH4TPBBIrEOTTjtlF/taJpJYJ4hrg+bPc9j6ZmxQMTWM12orphRRi201DbIRPjwR8mwK6z6FYl2dH2HXH85uO43KSAqfgGlIKABW60poYxslkgslkEnrL9HqxAmvjWBKwPhiACnJRE8YQC+XXv1RJ1930/ksRgBFLCkKM8b1s+HienZAeFExT9kEx0iT7+Zk+L2kc0VSmCilbx//4NdOaU74I58/JK/BSIJbPD8spxDEwPjAVqbHTHB1kwkI6S5lvEgw0LNilJyXtHUopcFp15rfadK9o7xuN/cXBt5aIr8WhqcjGIS7HlJERUkC1Y8o66eRVLFe+Wht0PPV0yaSCEgRGcuVdMJ4SThWFVCqWak8P2X4Y26dsMCKxMBqLYWrbuWDJ8PfgrV62mCQQajsUeYYyzymVsVKezTH+8xbaGGRSQtgp7iS/8TkXu+qyBKqcleiUDXebCyo4ZKJQqqgN2QWAj3dxFtJYaGkgLaAFoKzysTqR3pVthgSASE8h0LoTcTyN76TWl4t0eQoSZNojB9Eq41REAQYwSVyAB0pcnp7KPUXF0j5ve27aQGRa4bVp851apum1mvR+8fyoxIoX1vdzaTaOawdwtueMf9rKl4Gb1hplWWI0GqM/GmGwtYXBkMqxFwWB+qIoWnOQMkFtIGJ8vYkIzLkKcJtBJJIruogoqJuAkfbH01p7BRvXqLMCyMhiD9xEmE/hP+Yaq3qbO6L1e7yu6IKjGC4biSjrs1cYFHoGUvlg3ABUsH2+t0s0KJyLa5rnhWK9kpgRsX3fSs9ljEFd03GllBR0LiVUJn2ncwUlm2CEJWVKBLwLxxsGmYtAKWVjmUFJZ46bbtJw/b53eZzcSSevKnlR2TTsiwaoi2+WZcgEgZKcA1NVDE4Fb/CSfqwA9UvxvC89/B7l2NZG5ciPzP58xw9malEkFm34STddHxzqvBUkBMWwCJ9lkBcFsipHpg20sVDKwhqmcKl2iHDRh848BbuqglWfBsm5ECWQdNgF2LSRiRK01m6jYUN6o6S6FvyehQckwkAbASVpXNoYCAC5kBBeWdLcw4MhhI2Lg3B5g+XXJQTVRIl3gF4XTReOQ9zoQvO8qAXApHq6ZgR8ozaHEDMh+J476sMB4eu0cPCd2J5qya9zZdc2AJim6KZt+qlEMBxTwtmypuO68G8zu4SvN45rKlOQfr51XmMt4BmRvBhhPBphNBphNKJy8EURs8+op0x7zHyNPhbBUIBwGIW/72H9GAIckCrcJwFBDEitfX8bQ2Ck1gGMpNluVFSrycAF0JWML7iz4C4z7u3uPpF8RwimAjgzh95iF1E6z+01N03CuZPzN/eTwMnBpTV6khNMBTeeITHOB9xLCZlnxN4a64tBAtQCgPagGCsVywDwc8pGF5/PGANnPXvFIIqpkyaR40efzE0HRjr5IZIrBiOZVABs2BjzLEMv7yFTihgSv3EaAUApWK0hIOGkgFHUnTIT1B2XLGwDISVq66CEQu4AYU3w21vnoCVgJJD7ni21pB4yChI1LEoITGqDDAKZoKJlGoZcAkLAwEALQEsBOIVaOGjnAJXB5TmE0SiKArKuIDVttGDF70FHLhScFFBSobaGa1zDeeqYu3w6xB1TGgehFIw1kNKXdU/qP3D2kRACpdFwUsI6AyUVnDGwHmQJlQXFpRxR8kYI1MZCKFCgrTG+KJIDhKXmuBCAD1aljrg2NBeEH7kVtKlnjkCHgaN75xyE9JWVraXiUvCbtxRU90DK4LIjzEMprUqyUvb0sQOU9RVTZTMt2E8AAKo+KZ2EgY3sifO+/ZYFyO9TWqyMoMqhwZqlG3oKGLeBBq83KZ3Vj5w38pDF4GIfpTAWv+kHzE2FuYSvqLbNKnU+Vsf5tvAOsEIDZQk1GqO3tYVi2MNgpo/eoI9enxrohfFa58GRIzeDo9eignWU1stri983Fk4bOEVKTlrjeQtBSlR714zWqLWB1oDVFqbWlApvtW9OgLDGHR8fCUBFEi/j+H/MICB5PWmPwEtgKoEhKBbK37806BRAAKUUJxXjZ8J9DdPeZMEcEI0JxxVrRYz74v8cVTsOoD5hJdIl7JwNsVjaGIja+AVBjiUlfTy8pOcgMntxbM7JcG7hBNUD8qyulBLWOBjjfKmA6LZ2SBpy+v+nz4y1Uye2k05elfIiip4BQpI7BgB6WYFBfxAocqKwASUFtHD4P48+is2NLcr+KCS0FMidgKwtIB1yqfBT/+t/4pFHH8HGhXW87c0/QWXQhYTzvthzF8/j8Se+i7fecRekMbA5pbCtrV3AidUzGOka2hkoZzHMCuyYn8fs/Byko/oczx8/jgkMSiEgnSJgAwldVXA+NXJpcREb5RhzC/PYv28OosiwORrh7NmzuHDhApBTGfzaaPSHA9x44ACePXoUo82t4E93AtDG4KYDN6OfF3j6e09C5RluuPHGYDWW4wkuXjiPjfV1cgH5OTtw440QRU4bk3UYjUZYWT2Dra0t9Po9vPG2O/H88eM4d/KkZ0wyGACqKHDwdQexcvIk9GgLChk17wJQGY3l5X2oqgqjCxtQijp/CmsgpQIssHNpCXO9HlafP0lUfy5hhIOSCvuu2Y9ROcbWuXPeuibmoLYGxpELY9euZSztXESWZah1jbULF7Bx8SJZy84zYIZKdgsHWOEQKmp6CY0CRWQomD2RvnWp8AHP7CZSHKuSsg7MAqAJPoDEXdESBieS03H9oTjYltgDD1awPXsnjVkI7zvOB+InBuF9foUrpRpQurkBIJRCMR6hN+pjNB5jOJmgrErUdR3jQIQ/suNAS3jKj0uUcxVOP48+3spqyoAzmUFdVYBzUJmDEBksAKM1/dQadVUTM1Jp6FrDGh2KAkaWzCEm1raYIZG4SdCy2vn3hLVrTVOYLbrXHDjugb7bznpEcOmvWSJkB7U/m7rIoo5mZkWE8zAjIqJOb4Kb9qCFZ1G9UQKhPeskwSXtnQMgs9Dfi11aUsZriK4zIDTbtA4CCkJYAIbmwIGYkgSYTHV/eeOlk05+WOTKmZEsg4QIYCTLska0PwX5CZS6BJTCLa97HZRUsBA4X47w1LFncfDGm7HYn/WWLQDjfKAoAYPKWPge8750tYDNMohBAYxpIz21cgpnzp7FjsUl3LS0CyJTqMsxNi9cxLlz5zDRNXbMzaMQAtft3w85KFApiY3NMc6eX8P+3XuRQWJiKjitcfrUKczPzWHPvmtQTUpc3NjA/Pw8il4P6xsbqHVN7AIAQGBhYSFWmAX3knDQRlMb+KIHrTV6/T4WFhYghMDmxiZmZ2exe9cSTp44gZVTp5ApBecs5ubnkPX72NrcApzF7pnd2Lm0hCcOPwEIYGFhASunTwfXjXEWWjvs3bsPeV5gefduHDtKAAe1RiYLWAD9wQD9mSGMNhhvbFDIm5AQ1gACGAyGmBkOsGKMd0/QPjgzM4vBcAjVy7Fx9qwvoBU7MQ8HA9xw003QZYVTJ0+iLEv0+j3MLyxgYf9+nDt3DqOtEaTjtufwJd99dIxI3BgpVS6a9Dkro3aZbZkpn9rZtH7bG/K0jRpIqP1EObFbIcSgIFr7abzAdLdC8+/IC/FgQArLW6zW+xyo0aKBASAnE4xHY4zH9FOWJeqqbnTbdaxcUj0oSPkKzpRRCsL5WjnKszrWwljvdqm1Z5AAoRwASWPwgITiT8idw9k5QdnDwVoksSLTXVDpvAjRbNbWVLjMJDZlmisk7bfSdn01uqFOYUbax9xWwdmvT4jkngdgNWVsbWYEzM4QANJaQwiBqq4bjA73I5IyrrswhngBjXFa7TPpOMBYm5AGnbrPUhYwLeqmtUEnry7Z2NiQ99xzz03f/OY357e2tuTq6ur/6fV6rv3anXfe+frf/M3fPP0Hf/AHZ17KeYQQhz7/+c8//Su/8isXjhw5Utx2221v/OY3v/ndt771rVfUw+f+++9f+shHPnLdD7Kq65U3ypM+YNUXfuKmd9ThMvo3pQPqqkIuFawhS9xpA6cthr0+ciEhBWVclKNRpBSdhQY1e6IYOXqQLcgPK4TAhYsXcfrsKq6/4QYs7VzE1toF6C0Naw3m+kNgp8PZ9Qso8gIy70HUGpOqRCmB0aSE8DT1xtoaSlOjqkpMNkeYX5jHeFLiyHefQFlXqK3BYDCg8Se7koPzvnTyp3MWhvVZEaENuiTlbYzBysoKnnvuOQyKHm699RZcu/9anF5ZgbEWRZZBa4Pzq6t44oknIAHMz83j9a9/PfYsL+P06irquqaYCxCAM0Zjdm4OOxZ3wjqH/nCArOih1jW5eSxtmBYOeZ5jx65FGK1RjcYUKSCF93NbVLWOTcp81P/C/AJ6RYG6NJhZmMdofdMrIoder4+Dt96K50+cwMnnj2PH/Dz6/T7qusapkycxOzuHXbt3QThgPNqKsUNc8NMFphtAyjCQ24LjZdiybZd+DymqvihXY/P1kmZUcf+UtjSACDj7IAbBirZS8+AhZQGYQm8oPgYuweiPyi0AV88AwbsBLYBaa5RViaoqQzYNxXDocB0WBtZ3Z42ATSBTVNhMFzlyYxKrm+KHLHy8SK2TOXNQykHKjNw4PhvEWl9LyJrQoyXGi8TrstZCqGaK/jZgIlpKmz/jovuG08yn3Z/0vnF6fWPNtP5O46TS99ql+tmtxPFewrto/B1pgaEmcG2P0QUqL36a75f29ZiElJBWAbXvxSTipwOx5xDuiwnZURTgbI3fXw3XJgHgbCOeJ13zMSYHqGo9ZXZfG3Lu3Dn1xS9+caEoCveLv/iLF16pkvB33333rW94wxtGvhz89y2f+tSnlh566KHZr3/960/s2bNHLy4umj/5kz/Z3X7toYceemJubu5lobYOHDhQPffcc4/s27fvZV0Q73jHO268ePGi+trXvnbZ0vZXKlcORgRnz3i3jEx2G2+1Wa1R1xVqo2E1+f+tMLC1BpyDqWpYRe2vRaYgrLcAHAVyQiloYYFM+sqiEkJIqv8hBM5cWMPs/Bx27diBzfNrQFXTZmosKtSUpaEybIxGmFkoYGsNpSSEpg2WqoBaSAH0sgzSWJj+ABPrYLTGoN+HE0A12sLGxobf6KgzqHEWxlKSIVdy5eJP1nklLwWMJd9xz2801CcnhzYUHNjr9UK0vXGxyVue5xDWoa5r/3cBIG1oRwBDSIWlXbtQFDmOPHEYB268EUu7d2Hl+AloSVkp1gOisqpQTiZY3LWEtTOrGG+OQno1QNYal5QWQqIocuzYsQNnzpyBGvSwsLiI9YvryIWCBbBr926sra3h1MmTOHDgZiwt7MT65gYgBOq6xsrpFeRZhqWlJZwcj2MoALtufGpkCCZl2toJKBHdNfFr9Pl2qW12ibCkFiK7NdLvXx5EbLfwpyo7uMZ42scNQZzOHzMcHY04hbY47gCdgFxmRBrBo44UlXCxdxEH9GZ5jsJfs/IABojpyMbS2iN2JQMKXtd+rjw+YJjQ1r3MEHn6IF4rIkgEvAuBFbrYTi20mSrB4ME1FboQ1AiPj0Pp6xFccEB5+/44pqGScfPzkzZWdA1E7Mut+7HHcU69XduuJ2VQrN8HXV2HzKu6rv38KKr9oiWkUBDw8V08Jm/MGW1DvRjjmSquR2MtncO0iuNN/wHq+rXJjFhr8TM/8zMHHnrooTkA6Pf7T73rXe+6eDXHY4y5RF2gpjz99NO9AwcOTH78x398crnXrrnmmpcNOGRZhuuvv/5Vj0y3m42XkFzmVPjJR+Y5S1a6tRpa16iqCcpygrosUZcVTF3DVDV0VcEaDemDKOuqRF2XfsOliqKVNThy9Ckcff45PH3sWTx3/DiePnYMp8+eoZRcAwiV4eJkjOHsLFytgbIGrIEuS1itocsaWlP0unYOdW1QVjXKsoLWdegEDOegQCgskwL9PId0DoWU2LtvL+ZnZ9Dv9ZH5Gg/OciEun9oKB21NYETSh5+oWpov5yi63lqLwWCAa67Zh91emRtngyK2nsoeFD3MzMzghhtuwHA4xPr6ekohhKBSlSns3bsPm1sjnDx1CmvnL2B2bgF5v4/KUEyH9tdaa43VM6twABYXF1H0CxhnIh2NaLFqa7BzaRFFr8DKygrW19eRZRlmZmdhQOPdsbiI06urGA6H2LVrFw4fPowjR76HZ599ltx4QmJzcxNSSvT6PVLg/jqVoCRgCYTmcNJHH3BwqICgzCyV+do1ZPXnWYZc0Y/yNT8otohrZCRAxHBMRQQ+lwIoUspGCfcgXisLb2xLiAYASf/l35mR8JNKP5wGjagwIRDVJr/mlSgVG2t1sGag5ZKMmHBeCaly6obd58DXAYpeH3mvgPQ9adLjcPwFszXsPos/ItyLcK0+MELwdQEhuyha4k3tHf5OPpPOlZAxDX7bvDPo86AkrBNfQiCTFDSfCUnBz/698NkEMAnECJc2qwLQs+LoZIHhbafsX0q4+m4bCHAsGQMGresAMuua0qfrWqOu4k9V1qhKjarSqKra/1SoqhplVWNSVhiXE0zKWIsm/anruvG71hravDbByCc+8YldDEQAoK7r6f7C71Pe8Y533PjQQw/N/vVf//WyEOKQEOLQkSNHiq9+9atzQohD//iP/zh/xx133N7r9X703//93+f++7//u/e2t73twNLS0p3D4fBH3vCGN9z+L//yL2Gcd999962f+cxn9nz729+eFUIcuvvuu2+d9hoAXHvttW/86Ec/uszfPXv2rHrXu951w9LS0p29Xu9HDx48eMff//3fL1zJdRw5cqQQQhz6z//8zwG/9nd/93cLN9xwwxt6vd6PvvnNb77lk5/85JIQ4tDZs2dV+t1/+qd/mr/55pvvGA6HP/KTP/mTB5977rkcAD74wQ9e88///M9L//Ef/7GD5+arX/3qXPvcL0ZelJuGH3rAK2If3EYPVw1TVbDGULaHVwhGCgIDIP9npTVUBmghIDU1fjPGYOXMGThroYWj2iWWMmmEpb9ro8n10CtQjSaQEKiMgRO0SZdVjUpJTKrS92oAJmUJKYFaOlR+0+HiThAOUjjkmYKqNaw2GBQFrrlmH4rBACdOnvRUa7TGrLVkybG15eeGNqGo7JiOdtbh2muvxb59+yABjEYjPHH4MGSiIGAtlnYuYt/yHuRZDikljp88jtUzp9EfDsNG6mMVsbS0Czt37sR3Hv4OIAROn1nFnl3L6A2H2ChLaGshMlIe0jq4WuPs6TPYu2cPdu1exvGTJyOhBWJurHPo93pYWNiBU6dOQQiJ0dYI5Q6NuYUdGG2NkSkZCnTNz81hc3ML48kERUHWwLPPPoui18N4MoaQAkXRQzmeUIaFiAqNRYiosAQiM8KxMYF1D2XPkyJeiLVsIyPirUjXtI5TBdRmNpLDNRRrwyWA5vfbICT9N/VBRQWcBkcy7OD4mcgKEKOQKOvG2moqRv4MpVYrIMt9wTYJSA+8fEG0TCoCLSGTwwMwSX2jnIBPd4/N3iiziIFICrxSgIJtY0IbV/ib2AYs7TkMbif/NzcSTP+WsQchAO/eCc0LE5ojHQE/h7z++Hi+FogN42mBKc/khToyuHS9oHbWFIN7dtWE+yk4yN+zVYazuyJYNhyv0/jbBiY2LehI8TzNmjntNgLWvvbAyDPPPJN/8IMfvOEHca6/+Iu/eP7o0aP92267bfzxj3/8BECMxZNPPtkDgPvuu2//xz72seO33HJLuWvXLn306NHip3/6py9+7GMfO9Hv991nP/vZpXe+850HH3vssccPHjxYfeUrX3nqAx/4wP7Dhw8PvvSlLz3V6/UcAEx7LRVjDH7qp37q4NbWlvrsZz/7zK233jp55JFHBkqpl+SaOnz4cPGrv/qrB9773vee+e3f/u3Vb33rW8P77rvvuvbnJpOJ/LM/+7M9n/vc556RUuI973nPTb/7u7+7/8tf/vIzf/iHf7hy5MiR/sbGhvrbv/3bZwBgeXn5+1pwV55N47jRHJ3PaAqIq+qaGs/VNUXtWw1jHWAo1dBAoNIV0YvWQmhDD7cQMFZDAOj3+/jJN7+V6hv49E5pHFYvrOG/Hn8sKIV+0cfF8+vYu/dabE4m1DTOgc4Nh3E5QVXVmJmZwdZoRIpRONhMoHQOWZ5DW43a1FAZ5f9nCujZDKOyxMQYWOWwuGMHpFI4evQo1b8wtqH8Al2c1FMRkA0rmDfu9fV1rK2tYffSEgTIHVNVFbQx1MMHArqucfSpp1CVFcbjMbSlrsJpS3V4pbG8vBvrGxtY3L0by8t7AOdQGoPdy3twYe08FChDQgLInIByQDka4eLaBcwvLmJpeQ9Onzkd7qvxAGt2bhZlVQIO2LtnD7SgTJfhcAZF0YOua/ZAUFEsZymYVEjUusbc/BzKqvI7O8Apj8660EuEFlK0WEMMQuK/p46k0aoWIjInwfJMYhn4nrBySQMD2bXCPzI5TiPWAAw8ECzzAFwgYn2UKZZ1+29yATTdDs76AF3Bpe8j48L9RoCm+4fnZhuYSk5HgIT6QEEqCGkgM3rOnLUQFiEYVzgBlcUUfCUp4FUKHxTsg8i5cqgM4/LAyVlAJCXt2ROTsieJKyttfSCUjBlA8NDBTVfyQMQYAYhAAGj2O2Icl04/JdOK4HaBcw3wN+2ebwMZ8ACweRvpPdesccJBySkgSZkSAJCG0vutFZ7Vau0doKajBF4saq0peNhSALEJ8TwuZNAIJ7cBDx5fOrZpc/vDLNZavOc97/mBABEAWFpaMnmeu8FgYKe5Oe67776Tb3/720MH4T179ozf8pa3hADRT3ziEyf/9V//decXv/jFhQ9/+MOre/bsMYPBwOZ57tLjTXstlS996Uvzjz322Mx//dd/Pf6mN72pBIDXv/711Uu9rvvvv3/3TTfdNPn0pz99HADuvPPO8vHHHx988pOf3Jd+TmstPvOZzxy74447SgD4jd/4jTN/+qd/eg0ALCws2H6/b8uyFC+XC+iK3TRUGMEXVwI9QFVZopw0acO6qlCWJcqqpODRukKltQ+CtLC+U65zDs4YwBiKlZiU2LqwjvH6Jsbrmyg3t6CrCYzVsMJBOmBpbh71pMTqhfMQ/QJCUr2MympURmM0GqGqK+RFgUlVYTQZU4pqNUFV1iFYsNYVtD8u4JDnCv08B4zB1tYWtkabWFig4EzAWxmGAj4nkwqDwaCh5IQUyDg2hAPX/AaxubGJlZUVHD16FFIK3HzzzQ3l6EDpvGdXz2Jra4vAhyM/nzUm7LbWOczvWMDOpSUYa9HvU6XOwXCIzdEW8qLAwo6dqI1PebDkjpKG0qgvrq/j4vo6hrOzWFxcjJ1+BcgFs2MnFubnMT83h6XFRSzuXIRSGZwT2LGwAK01JmWF/mCIrdEIQggMh0NYOMzMz+Gm170O/cEARVFgZjDEaGsEo42v0JswC0itX6pNkXmXDFPtmVQ0n/4npep9S7BAgcdKoQmoSKzl9D6xH39aFVcaS7MVvBIyKGWZgAaW9Pvpa0gUVvLpqAwTCiEqXe5nIgNYSPvKyCnnoeZ3GZTKoVSOvOih6PXQ6/Xpp99H0eujKPooegUV+fOVh1WeQeUZZKYoyFKpBKxkoeCaSFiSbcxD+xrbwAyIFn2qPJOfafMWFLngpngilORvxA8FBkVEkACE7zTuj2gxWzTxDaDHzNU0RR6Ab2O8yfti+3djcCllImltfVxQjA+qa3IlTyYTTMoSZVkRy1uRy6asK5R1jcrUfu/yMUU2Vp/mxpnpugIiW/takU9/+tOLDzzwwAIA/N7v/d6Jqz2en/iJn9hK/7548aJ83/vet//mm2++Y25u7q7hcPgjR48e7R87dqz3/ZznO9/5zmDPnj0VA5HvV5588sn+nXfeOUpfe/Ob37zV/ly/37cMRADgmmuuqdfW1l6xHgNXfGDtAyuNV7Z1VRPwqCpoX0baag3rDPkqHSAgAaVCszvjDOAscjJbqRaFtVDWUfEuZ0GlQB2loloLKyjgTALYt7QLo81NnD5/DrOzQ8xkOQwcoCQ219dRVhUWl3chVwrPnjqFnhAwTsNpCSNy9OwA1lnUuoaVDv2iR/1BrEWWZxgM+xhv1rDGIs8zFEWBkRh7X7/AeDzBaDzGrl27sHbmDHStg3JZXl7G3NwcTh57vmF5c5n60WiM06dP47rr9mN5eRmnTp2KrIdz1H002RirukavT2uY2YBdu3ehPxjgf3/j/4XRFtIBUkn08hw/8sY3YcfOHVjfuAhrDBQEKm1C8SspBC6cPw9kEvPz8zCCHAcGwNzMDHbu2IHDhw9j68IGlFQwkoIc9+zejR3zc1hbO4fzF85j585FbG1u4syZM9h/3X5kRQGVZTh56hTOr63htltuxebGBsrxBL08p8BNyXR5jE9gRcBxDBIiZIrwHKSBpsR+UCAvXFLCPIkFaZZ6j9R4OysnKBKXVFb1Fj/XagESi9q7/V6IFfEXBm6oGMaOyArQ+X0Jc6GQuZgmz92ti6JAnvsKrIHJkKHEfkNZCgmlHBRyaMcxJb7gnfftkauM+tVID2CkpGrJWmtkue/um8efLOcO2xJWSFAHY8F14JouJf8MiG0UQcyYkcnaDvPCcVjspkloIwaDDCyZLUlBYbu/Veqgk54hYVjaBicu+R5EbO/A18XkSirsSmIwzGuX3UCu9VkAng3WDXcfB6Rz9dwQtGwBY3zVVc+CaGdCnE9kRrj+jl9dzgdl89U614jvea3Ifffdt59/v//++4MV/+u//us3l2X5zPve977zP8jxtLNd7r333v0PPPDA/B/90R8dv+2228rhcGjvueeeA1VViUsd40rklcoUeiHJsqxx3mlM4st6viv9oKkrWGtR18QOldUE48kkIPWQisgWkBCUU28MVF2jqDV1kZSeZJESygko41DrGk5YaKdROCoxbjzwGVgB6BpGWORK4vprr8GZc2dx9vwazhh6gOtaQ0hg/w3XwzqLZ599FsZojLhCpbaolcOCcyi1hnaAMlSU1GQ5jDaYaIPSWCiVY9fu3agMWSE33nwTer0+vnv4MExV4vhzz+CWgwdxxxvfiPNra7DaYG5uDnv27EE5meD488d9lVofkyKAzG9YZ06vYGF+Dvv27sWF8+dpE/HKhTdrdkFQozMRqKv5mXnsWd6HY8+fgPb+ZirtaFHXE5w5cwqvO/A69IoC460tQPjIe6pABsBBOYf11TNQUmI4MwOAMm/mF+ahJyXqrTGKjKq+KikghMNo4wJ2zA2xMD+Hs2vnMOz3sH/fPpw8eRLffeIJWADOWuRZhltedxBzc3P47mOPByrf0i7q54PrcDgEY1vR55wg8CBdyqLEdFt2uxjvKjTWQFuyMJ2neEjJUA8PqQQkiFVxHoyFqJOgg2RwG7EC5DgCySnPzoUGaW1Ak/rr44PqgnK2wU1E4ECAADhVsKVjFXmBIu9j2BuiXwzR7w1R9IfI+31kRU69TZSEVJxGr0IECte6AYRvZkefpWF6lw/gu2cDkBGMKKVIgUqBrO6j6JfI+zmKQYa8l1MQbNGHnFSApuqv1lkoR0BK+HRz0ts8oWEFh3smhK84HHVncKGEOWFF7gic0G0hqMzxLqzM28GwfA8IKPj59+/7Ysl+3tPdTII6SxIz6ayDtvS69euHGya2hcfJ52cHFV/+NABjkhIB1lpIX6coZfdShq+RKcOMS8v15JwGkDBEzl8Sr0fgkhlcP6wymUxU8ntg9Y0x4siRI/1X4px5nltzhYHA3/72t2ff+c53nnv3u999ASCm5MSJE8X3O4a77rprdPr06eLRRx/tvRzsyMGDBydf+9rXFtLXHnzwwZkXe5yiKJzlrp0vg1wxGJlMJtTqvKS5qKsaZRK9HSxUjqHwNCjgMBwMsbi4iJl+H5PxhDzAxkJIi3179yEvcui6piBGF8usz/WHeOMtt2OuP8RoawvWWPRVjn27lrG4YycmdYVakx8W1uHs2VWsnj0LW9WQjs4B5+AsuVEWZueAukY1KdGbUXAWyHOFXn+IHUUB66g2x/mLF3Di+ePkYlCKSsaDrLKNixs4cuQI9u3bi2v374cSErqucey553D8xHFSuC62NR+Px9FykRInTpzA7bffjmuvvRYnTpyAtRZVWdHGIbAt/bWqiYGam5uDMRbHn38+2YCp662SAufW1nDddSV2Lu5EWU4AKTGeTGCtCQwBU7fnVlcxM5yBtRazwyF2zC9gdeU0KUrrkCkZLNVyPIGAwM6dO7G2toa11bPYubiIm266CWVZwlhqETA/O4uqrPDdxx4na1spikeRko3dRHGjocStXy+SWaKwoYpEH9BmzAXmKJOLg/g43qJpfSupGudhacdhXIrxaLthpgWS8r/TlGT7vPG+eXeClMjzDL1+D8OZAWaGAwwG1Jum3x+g1xsgLwoKMJWeFTHNOip+ZhouEGaFgtuETgaVKUjpXTBSeY0lkecauWdjer0eFczrk6unyMcwuvaU/5R6Ii485tuUMbu/wveSz4bPJH8KboTHoCTsI80+Se17kIJCno/AbIj4AgMaC9v4bmCaLnGf2/d0qiRvpW4aMhoojR/M5CVuRWJETKgvAhfT1J1nEwOGdsyC8HPhuSAPRmy65oQIpQdeK/KFL3zhqe9973s9ADh27FjBMQ6/9Eu/tPqBD3xg9ZU45/XXX1995zvfmT1y5EgxPz9vl5eXLxkfceONN5Zf/epXd7797W+/IITARz7ykWuda4c4v3j5uZ/7uc0f+7Ef27jnnnsOfPzjHz9+++23Tx599NG+lBL33HPP+gsfoSnvf//7Vz/zmc/suffee6+99957zz744IPDf/iHf9gFTGF7LyM33HBD+Y1vfGP+kUce6S0vL5vFxUUzLQD3SuWKwUhZlqQ4mRkpS0wmk0bxnYaF4Mj6VZKCNKEtRhubFHCHGKw37PchpEA1KaE8CBGS6JN+UaBQGaqtMfU48UFw1jgoCyjjUE5KTEZjyv6oSuSW6O8a1lPEnmyvNY49/TQGeYZZX9BMWIPM5XBaoy5rTKoKm+MxRpMxoA1yqfD8M89iXJVwoIZvzjqsr1/ExQvnwwYMD2KUUmED2tzcxIMPPojQUA4EMMbjMR588EEqGOccHn744WCppq4HKSU2Njbw/z3wAPV1cQ7PnzgBeJqaXUdSUGDceDLBt771LfSLHvI8xyOPPIJcKRS+Yi6DHQlyuT3z5JMQwgEW+O7j/x1K1MuQcknKQTiHo089BQdyCdVlhdMrKyh6PczMziDLMlSTEs+cWcXW+kaIy2BrjqlyAd852TMgUdEIKOLxae0kzIijzoqeeY5t7kP2jAdadAvIjUCMXKuPTAtUbCtWhumgIVVWYUwt0DHtdz7HpcCLYjdEnqHf72Ew6KHfKzAY9DAzM8DczBDD4QC9Xg953vOdXwWgjW8cGQtgGe70YlOFTL2KiPHx8+mzkrjBpZSS2CjnKDW418Ng0MdgMPBdgwv/b466VtBGk6Hhj8lsQ1grrBexnR2Ic++i/kRkAuPE05pRAo0YGdE6VnqfpktkptLvx3WTVLK1nt0QiK4i7+Zy2H7/LotHEhCSAqQAHBPglLIfxsd+0M1tMnBouS65v01gC50Lwe7p3FgA9hIA7odVfuEXfmEDwAYAPPTQQ30GIz/7sz978brrrntF6mj8/u///sq73/3um+666647JpOJPHz48GOX+uwnP/nJ59/znvfc+La3ve22HTt26Pe///0rm5ub6lKffzHy5S9/+enf+Z3fue69733vTePxWF1//fWTj370oy8pbua2226rPve5zz394Q9/+Lq/+qu/2nPXXXdtfvCDHzz1oQ996PrBYHDFgUbvf//7zz7wwANzb33rW18/Go3kV77yle/9/M///MZLGRMAiCv1Af0/v/przhiDPaur+J1//zf82f/4Hzg2Nx9oSMBvsEKQJSdE2PSUlMjyHFIIr7RzZFlOVRz9w8Z1KkTiuoBv5ma0RiYV1VlwFpWuUeoaVV2jLCcYj0Yoywqj8ZiCwHx9kVLr0B48zwSKPEdRZOgXOXpFgUHeQ1H0IISCscCkrrExGWNrUuL8xjq2JmOUVYmtyRgGlI4HB0hFG6sDQtqvsbEYE1uqDMradD6nFjLNay37tl2wbqx1MEajtlzZ1dPi3s8P+CDXukImBTIp0csLKClRZDmKLEMmgJ6f94aFDwHn6WKEDdT6NF/LTnYq59+K/OdMA+2zVzhlm9msVOHzvZdSIuPfQQ31VBIjwzVXHGJsgfOMlnHWF4Iy0Iayt7Slfw332vGbslIySQXeXl+iDUouZQXw/Yqbvmt8LxwT4hLH8M4oFwj2xPyPoCYrepiZm8fM3AIWd+/C0vJu7N67jN3Ly1hcWsTMzCyGg4G/Hh+npblvDFH7RlifPeLdS0IAzge8hlRdhSKXPjalQJYXoQWAEAJlWWNrawtnz65ibfUsVk6cwqnjJ3Dq1CmcO38OmxsbqCcjCEtuRyG4hUNM9adLE2B4ZC3FIzlQ8z6qcOviPCTN6tLnRQqJTMZYHwER1lC6Bi8lDqTTjVfyHG/FQZ7aGGh+3TqqS+NceI3cgRxkvH1fplsa2UtGZG0gMo0ZSztOW8/o8TNvjPGxHmh8z/I1NdZgk5EjoB+ZQfghvslZfGOyBQCH4Nx3Ljlpr7A8/PDDt2VZ9m8HDx7cHA6Hkxf+xguLtRZf+MIXdlRVJV7JCqz/t8iHPvShvX/zN3+zvLKy8ujLedzRaNR/8sknZ7XWP33o0KHDl/vsi2JGtC9bDWBbASbAb9BKeR91VERKUYEi4elE2jCpwLnzwVgCCF1guay67ynvffbW2zr0I4n9RCaAfp7B1BXyTMEYFaxG4WtoWGdRCEApKp8tuMaCEr5XCiBgPRACnLcCJQA4B+XTV6Xw/nq/cXGWA0B1WBqbpUtSG0UsmpUGWUaK2X8vCcgTgorKcXoqgwDn55xBoPDxAkYbVK7CoN/3QboaWVGg1gZ5lkFN2TCN0ck1kOIHEPzldG9Ew3cuZQReXHtFSmKEJKdw+s3Wu98BFwFa01aNlDLQtIYBhJgNqn6b/PgAPz4SVaZNgIab7opJLVWeU74vrnGN20HINuXiyP5u3kf+XKosEGJS4jVLQAJ5lqMoiBkZDgeYmRl6V00P/R5lxmR5DjBtDzQAECsylyh569esAyAs8VIx6NTFeyBicbAsy5AXOWXgFD30esyUDFBsUdyKkZIaFyIyW3DN6+LLlH44IWg1xHvwXaXzk5vJsyyeOBGeOQtzzJ2Uk7lvM1bpenEuLbvvdwu/B+iQdZJ8IXwvQYt+7bcCTaYCz3TuLwVI0rkI156AMJ63lFdyRHzSv772Cx+7vY75JLz2onvstStSSvzyL//yhas9jh9W+djHPrb7LW95y9bu3bv117/+9dlPfepTe3/t137tJfXBebnkRYERqnBJSoAbpwFxs09TEbPkd+UD0BQojTOQs5Z6owhYcBaa8+CD/aVsXRpHtRqs/wy96hWnAGUEOKqOagFASSjLEfIGGagNvFKS2Jkso+JafmMw1sL4TCBylVBJbnqdlLKQHmS4F7Cq2y/6jZuBBc9ZquCm9VgRQkBYpnDpc9qaRvVLAX9sR5H4ZaUhemRNGmMp1sBy19fEn+w4y4LG1whD8jQ5bFS4vE/y95xkZe0Yb1B9GR/oCP+atrSrSgsKwvT3jd1XYR4TJoLFgOMi6Ji17yJrLWkp6TOChEAo1MWMRXSnT3elTFNol3LBbLudrJAbt3g62zLtOBYOSnEGDaXiDodDDAf0b7/fR3/QR+EzlXhtSClhBDU6dP6+UXfZNJODA3+J0qf5cIDzICaZ41DXRBFz2St6KHIaT7/fR5ZJFHkGqTyYCKiqZYQyknCRS6C1xXV4eILjV9txGlLIsG4AESqpSiExTbNOc9c4fg5czHKxhvYAbRIg5mJwtRVM0vDzwSNggrDJ+LXPSVMbQQeXbmecxtdvgFCjqX0cYvHSuQx/BNcjgrMzpuzSmJo9lQRUGJd8jaX2dvLyyZNPPtn/8z//830XL17M9u3bV/3Wb/3W6T/+4z8+dTXHdOWpvVo3Nm+24oMfXMXS07GSowyKzAlyz7LSY9bBJQ86U/UWTcXAEeWWFboUVDHSSlilIPMMyllkDtSjQwpIbWOpZ2RQcMFtkGfkKuJ29MY5VIZqldRGU4CktTBOB7fFpZTMVCst/CqSvxOQklhDtD8nFlX4SMxI4NTQ6KNPP5d+P/rFNQyUJSAY01+9Akp2XAdS+olN5vGJCO+HgXtlJAQgHbmaWBExQNvmN6fFAudEbIyWKCE+cFu5NHzq1hLIDOmUpOzYAmZQI1h5hU17u3ulfe+mgYU2sNjGskAkU0LZIpc6VnqcyLZIKJkhy3IUeY5e0SdQUgwoaLQoUOQUUMot6KUUcMohS6xuB8AaELPGa8rFc3LFZCEEZczLGHMQn01vJPj04jycOwvpxWxYWNF6FvxzHaz6ZLm7YKkjAnEaWFTALTZR+LGQjk3mMwGW01w04XX/vCBhQ6J7hlyb1lmKRfIyjWEJd5b3qoQpcwmgCnMA3p+SDJh0rySUQoA7sERNEOySNdUcQ3xeoxHEwIkpLwQDDnD+ddcmdjrpJMhf/uVfPg/gZWn+93LJiypgwkqi/VoaJ5AyJADgOd0ISEA58AkpGilVa2FF0gcEUVmzheEiKxrLWwsJKTPklFFL1LOkSrDhPIJfV8hk7qt6shvAobYGZV1jXFeY6AqlrlFbQ9Y4N/JLNtjwnDdo1uZnhEg25MtZ2i1gw4GsrMyTrZPVLJ8W5N8WwSNiHPnFpQchVoikAR2rDU6DpAmVyesQVJ8iVRxx/PQ7g4DoLoj3MQVn6VqRELAyrY/QYiJ4oxXN9aANsVUpMGGFHgCIbP4LCB8I2+z+2p7r9N+2Qrocw9FkRJDMH8J9viSzIgSUUFAig/K1PpTKUOQ9imnKCQwoH29F45cQgjMtfFq6BKQFhHKQyVzzSJhZUP554noljYJvklgHVpBKqdCNO8/pX+ndrqlriGF1A3OH51IEXBLqjiRg9nJxH7FYWQR3zPNcSq82wC/Ymeufay6v7pitkHBOwDSeYRp8um75uWtgjksAIY4vCRlOzjbWFH+H07wJkExZk9vIJlrHPMYIdgXSWJbAPDnOWkvW3aW3nE46edXJFYORNC8eiA9nu5plKM6UWrqJ0rIAReXb2N697aaIG4x/TfhvM8PgLCRbxULACuWLo1GRNeEyWHZPsOr1w8kEBVOSc0jAeCak1DXGta8YW9feJeA7CsPAue0ZGEiVKRKGxLWACJqg7bKSbIjWkY8+BQUibFBtoU2Rg/SUUDDCwEBAJps7AMqscYCwbHJaUqjeP8/Tzf52kVq/flMNgXX807q+aBWTcjDwIFMCxgkIJ7dv/M4GsJGyQpxB02aN2Jce8QapLgY1wcU0dZrdNgWTApe2S6fxWSF86RZ2dUXwNg3kbHsNsdy6AFdYlRCSyrKHRoJS0TUJYn8CU2Xj/Fif6uwPTMAcMlS4JaCumg3k+IaGdZEGHPu6JlJCqbh2+O7TOkdwYUAKvyabzKDz9/5SEtyMPLfWxuuOJAsjvG16dVtcBs+Ho4DqUJnUZ6rwWuLnig/uGtTf5WUaMyL8C9vH0gRJIWXf0S4Y3InJpEXmI84R1ULhc0ZA2FhTbvsMtQmcTjp5tcuLAiP0YLnwN212BEAy3+f+ZbxbAAAG8klEQVSCGNamxQzniPHgYznrUxHJhgvUexIL4UApfpYPxGxKusE5IjeVlFRIijdYKWHhGQGvvJ0PylTC9+vwNKZxFrU2qOra/3gworUvqMW0qAisy7aHnJUmMxm8wTKj4ynfaZuD36oS6r1ptZHLisYQrVIRvs3WU8rUGGNhpIFxFGMiLRWgEy6OkVkmIVqVM/11pswVnPPVU5nxIYvbhEqSMcC2cW0MNBzFGEnuayQlZHiP6z8wSPLBtTayIEy5c4AzDZECi2nN0DwEYMz3wPGai2A0XJRLFd7llVHw6Ys471IKMF1GeEQG1kp4NkowAAhUAf1rfWkcr8s9S4HAKARwAwoKhp9f4/s0+oYzPviaXFPOXxAVWKNJFyKOTwqJTGS+zHwW6nbQGH1ROClChkxwD0gFDkAVDEZ5XpwLKb1N4OFdHP4+pYqyAVoT+oHvG/XwaynqhDFr3hiEuaF2WJ5ddS42nHPWu3c9UEmKsjG8Cis3nCMuDucBZzQGED4fzCf+ShhL0/UjkmMxrOP72wS5cS7AVXrDpyPQ5UB6gCvcekDEOy6vtVdPyIj3vH//NTc6+eESf8+Zh7isXHkFVu824Kp+rKSEf1hlogT4fQYmAmxBgMqe+kDUTPjgVecQyEuv1JxzsI1MB//4WgeKPwCsV9YW8IGwCGOQUvjCn37ThvPWifXAgQLKtK+0WlUGVa2h6xrGaL+R8ZWoaJO0TSOgsZlBxCqeAR35T003wCJwo0fVW26eXaJDSTjIQEHHQ0VgFMlzAnvaaNQZWckGDtJZCBdtWCmlz4rxnVvjgUBn9PfXv5RS5bx5Kh6foIq6DFhl8nuAVsJvnF5xWAjPcAkPDAW4sBZZsXRtxlIKZjAPhQt7beyZ4lN5E3eCFALCOAj2X4k4xyEAlZ+TBCimFnu4Q8Ir3uT6Q/fbcN85mJjWmfOKmBrt8Sw4QPhqqMISAJHWgylH5S2CZvOfESKocyUFxX34rrvOOQq41toHlgtqNCnITeMEPa/SShCNn0FCQgnFs5YAQp5XjudQdF6ZAHEA1ABRxWfNA59kAqNBEZAKXVKDMUimDuC4DPpg6oKDoHgX4SQoDBThixyH5Bw9K9ZqrrqC4CZ09GRYx0nHaXEwup4URjskNUjAIMmvCb5Mv39Zb9A4S5l4zokWsLcBSPGx/BKO1y0EtbRIDDhe4A4RyKRMigSlTfsLCHWZBECxQX6M4tWj+1ecc/XW1tZwZmZm/MIf7+S1IltbW0PnXA3gBYNjXxQzAkRF1LaDm5bA9CCt1O8cNif/XgzAQsOySI8znZp1QWm2FQlZmdTLc7u/14U0UaMNtK6ha98jgmMUfIpw0+ibxm/E657mV37R4sL/0Pztyr/umK4WktxVnKHUUrThO2HTQ2BGrmQrm3bN7eOzYmgGAiaMEJKgTOF9/9aGnkatM3omQlzyJ4whuSaek6Ac/BxPu85tVHlqwl/mOtE6Fp8vZQKYzYivCz+m+Nq2eBVv7abXyHPKheDIWIjfU0JAICMDOXF98YTwHLafW7bAm+MQUSteYlXEZ7v194t4HqZdeyoufS5E+roLQe+uDXoca/7oqrnUuVNX8RU/y8l65nNf+qORJbrc8dngabv3+LKZRXLJe435F+F/rwo5dOjQ+sMPP/z5lZWVewEszczMjITowmtfy+KcE1tbW8OVlZXCGPOXhw4desFiaFdc9Cx+Q/wogIcB/DKAJ17SSDvppJNOOnml5XYAf4urXPQMAB5++GEJ4MNKqXcLIXK8mtBSJ6+EOOdcbYz5PIA/PnTo0Au6aV4KGLkeBEKGL2mInXTSSSed/KBkBOB2OHfsag8EAB5++OE5APsQWyd28toUC+DUlTAiLC8ejAAMSHa9+C920kknnXTyA5SzrxYg0kknl5OXBkY66aSTTjrppJNOXibpqLJOOumkk0466eSqSgdGOumkk0466aSTqyodGOmkk0466aSTTq6qdGCkk0466aSTTjq5qtKBkU466aSTTjrp5KpKB0Y66aSTTjrppJOrKh0Y6aSTTjrppJNOrqp0YKSTTjrppJNOOrmq0oGRTjrppJNOOunkqkoHRjrppJNOOumkk6sqHRjppJNOOumkk06uqnRgpJNOOumkk046uarSgZFOOumkk0466eSqSgdGOumkk0466aSTqyodGOmkk0466aSTTq6qdGCkk0466aSTTjq5qtKBkU466aSTTjrp5KpKB0Y66aSTTjrppJOrKh0Y6aSTTjrppJNOrqp0YKSTTjrppJNOOrmq0oGRTjrppJNOOunkqkoHRjrppJNOOumkk6sqHRjppJNOOumkk06uqnRgpJNOOumkk046uarSgZFOOumkk0466eSqyv8Px6yx9DZMnXIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_imgs_to_show_per_class = 3\n", + "\n", + "for c in class_names.keys():\n", + " class_num = int(c)\n", + " sorted_indices = np.argsort(max_deviation_values)[::-1]\n", + " count = 0\n", + "\n", + " for image_to_visualize in sorted_indices:\n", + " if max_deviation_values[i] == 0 or max_deviation_classes[i] != class_num:\n", + " continue\n", + " image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + " print(image_path, '| idx', image_to_visualize, '| class', class_names[c])\n", + " visualize(image_path, label=labels[image_to_visualize], class_names=class_names)\n", + "\n", + " count += 1\n", + " if count == num_imgs_to_show_per_class:\n", + " break # Break the loop after visualizing the top 3 instances for the current class" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "8ce74938", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:05.284052Z", + "iopub.status.busy": "2024-05-24T23:50:05.283686Z", + "iopub.status.idle": "2024-05-24T23:50:05.287540Z", + "shell.execute_reply": "2024-05-24T23:50:05.287046Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "expected_values = {0: 50, 1: 16, 2: 31, 9: 62}\n", + "\n", + "for idx, value in expected_values.items():\n", + " assert value in issue_idx and issue_idx[idx] == value, f\"Assertion error at index {idx}: Expected {value}, got {issue_idx.get(idx, None)}\"\n", + "\n", + "assert all(i not in issue_idx for i in [0, 2, 3]), \"Unexpected values found in issue_idx\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/outliers.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/outliers.ipynb new file mode 100644 index 000000000..58a597c66 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -0,0 +1,1572 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1043b220", + "metadata": {}, + "source": [ + "# Detect Outliers with Cleanlab and PyTorch Image Models (timm)\n", + "\n", + "This quick tutorial shows how to detect outliers (out-of-distribution examples) in image data, using the [cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset as an example. You can easily replace the image dataset + neural network used here with any other Pytorch dataset + neural network (e.g. to instead detect outliers in text data with minimal code changes). \n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "Detect outliers using `feature_embeddings`\n", + "\n", + "- Pre-process [cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) into Pytorch datasets where `train_data` only contains images of animals and `test_data` contains images from all classes.\n", + "\n", + "- Use a pretrained neural network model from [timm](https://github.com/rwightman/pytorch-image-models) to extract feature embeddings of each image.\n", + "\n", + "- Use cleanlab to find naturally occurring outlier examples in the `train_data` (i.e. atypical images).\n", + "\n", + "- Find outlier examples in the `test_data` that do not stem from training data distribution (including out-of-distribution non-animal images).\n", + "\n", + "- Explore threshold selection for determining which images are outliers vs not.\n", + "\n", + "Detect outliers using `pred_probs` from a trained classifier\n", + "\n", + "- Adapt our [timm](https://github.com/rwightman/pytorch-image-models) network into a classifier by training an additional output layer using the (in-distribution) training data.\n", + "\n", + "- Use cleanlab to find out-of-distribution examples in the dataset based on the probabilistic predictions of this classifier, as an alternative to relying on feature embeddings." + ] + }, + { + "cell_type": "markdown", + "id": "70016f64", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have numeric **feature embeddings** for your data? Just run the code below to score how out-of-distribution each example is.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + " \n", + "ood = OutOfDistribution()\n", + "\n", + "# To get outlier scores for train_data using feature matrix train_feature_embeddings\n", + "ood_train_feature_scores = ood.fit_score(features=train_feature_embeddings)\n", + "\n", + "# To get outlier scores for additional test_data using feature matrix test_feature_embeddings\n", + "ood_test_feature_scores = ood.score(features=test_feature_embeddings)\n", + " \n", + " \n", + "```\n", + "\n", + "
\n", + " \n", + "Already have `pred_probs` and `labels` for your classification dataset? Just run the code below to to score how out-of-distribution each example is.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + " \n", + "ood = OutOfDistribution()\n", + "\n", + "# To get outlier scores for train_data using predicted class probabilities (from a trained classifier) and given class labels\n", + "ood_train_predictions_scores = ood.fit_score(pred_probs=train_pred_probs, labels=labels)\n", + "\n", + "# To get outlier scores for additional test_data using predicted class probabilities\n", + "ood_test_predictions_scores = ood.score(pred_probs=test_pred_probs)\n", + " \n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "45cb0f90", + "metadata": {}, + "source": [ + "## 1. Install the required dependencies\n", + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib torch torchvision timm\n", + "!pip install cleanlab\n", + "...\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2bbebfc8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:07.631340Z", + "iopub.status.busy": "2024-05-24T23:50:07.631170Z", + "iopub.status.idle": "2024-05-24T23:50:10.384327Z", + "shell.execute_reply": "2024-05-24T23:50:10.383771Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used: matplotlib==3.5.1, torch==2.1.2, torchvision==2.1.2, timm==0.6.12\n", + "\n", + "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "markdown", + "id": "41733949", + "metadata": {}, + "source": [ + "Let's first import the required packages" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4396f544", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:10.386940Z", + "iopub.status.busy": "2024-05-24T23:50:10.386472Z", + "iopub.status.idle": "2024-05-24T23:50:10.716753Z", + "shell.execute_reply": "2024-05-24T23:50:10.716191Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "import torch\n", + "import torchvision\n", + "import timm\n", + "from sklearn import preprocessing\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.ensemble import BaggingClassifier\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + "from cleanlab.rank import find_top_issues" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3792f82e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:10.719463Z", + "iopub.status.busy": "2024-05-24T23:50:10.718895Z", + "iopub.status.idle": "2024-05-24T23:50:10.723236Z", + "shell.execute_reply": "2024-05-24T23:50:10.722807Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai \n", + "# Set some seeds for reproducibility. \n", + "\n", + "SEED = 42\n", + "np.random.seed(SEED)\n", + "torch.manual_seed(SEED)\n", + "torch.backends.cudnn.deterministic = True\n", + "torch.backends.cudnn.benchmark = False\n", + "torch.cuda.manual_seed_all(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "be38283d", + "metadata": {}, + "source": [ + "## 2. Pre-process the Cifar10 dataset\n", + "\n", + "Each image in the original [cifar10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) belongs to 1 of 10 classes: `[airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck]`. \n", + "After loading the data and processing the images, we manually remove some classes from the training dataset thereby making images from these classes outliers in the test dataset. Here we to remove all classes that are not an animal, such that test images from the following classes would be out-of-distribution: `[airplane, automobile, ship, truck]`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fd853a54", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:10.725412Z", + "iopub.status.busy": "2024-05-24T23:50:10.724989Z", + "iopub.status.idle": "2024-05-24T23:50:15.607924Z", + "shell.execute_reply": "2024-05-24T23:50:15.607406Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/170498071 [00:00See the implementation of `plot_images` and `visualize_outliers` **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "txt_classes = {0: 'airplane', \n", + " 1: 'automobile', \n", + " 2: 'bird',\n", + " 3: 'cat', \n", + " 4: 'deer', \n", + " 5: 'dog', \n", + " 6: 'frog', \n", + " 7: 'horse', \n", + " 8:'ship', \n", + " 9:'truck'}\n", + "\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " return np.transpose(npimg, (1, 2, 0))\n", + "\n", + "def plot_images(dataset, show_labels=False):\n", + " plt.rcParams[\"figure.figsize\"] = (9,7)\n", + " for i in range(15):\n", + " X,y = dataset[i]\n", + " ax = plt.subplot(3,5,i+1)\n", + " if show_labels:\n", + " ax.set_title(txt_classes[int(y)])\n", + " ax.imshow(imshow(X))\n", + " ax.axis('off')\n", + " plt.show()\n", + "\n", + "def visualize_outliers(idxs, data):\n", + " data_subset = torch.utils.data.Subset(data, idxs)\n", + " plot_images(data_subset)\n", + " \n", + "```\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9b64e0aa", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:15.610122Z", + "iopub.status.busy": "2024-05-24T23:50:15.609840Z", + "iopub.status.idle": "2024-05-24T23:50:15.614653Z", + "shell.execute_reply": "2024-05-24T23:50:15.614118Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "txt_classes = {0: 'airplane', \n", + " 1: 'automobile', \n", + " 2: 'bird',\n", + " 3: 'cat', \n", + " 4: 'deer', \n", + " 5: 'dog', \n", + " 6: 'frog', \n", + " 7: 'horse', \n", + " 8:'ship', \n", + " 9:'truck'}\n", + "\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " return np.transpose(npimg, (1, 2, 0))\n", + "\n", + "def plot_images(dataset, show_labels=False):\n", + " plt.rcParams[\"figure.figsize\"] = (9,7)\n", + " for i in range(15):\n", + " X,y = dataset[i]\n", + " ax = plt.subplot(3,5,i+1)\n", + " if show_labels:\n", + " ax.set_title(txt_classes[int(y)])\n", + " ax.imshow(imshow(X))\n", + " ax.axis('off')\n", + " plt.show()\n", + "\n", + "def visualize_outliers(idxs, data):\n", + " data_subset = torch.utils.data.Subset(data, idxs)\n", + " plot_images(data_subset)" + ] + }, + { + "cell_type": "markdown", + "id": "eb28f354", + "metadata": {}, + "source": [ + "Observe how there are only animals left in our `train_data`:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a00aa3ed", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:15.616626Z", + "iopub.status.busy": "2024-05-24T23:50:15.616446Z", + "iopub.status.idle": "2024-05-24T23:50:16.170003Z", + "shell.execute_reply": "2024-05-24T23:50:16.169377Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIfCAYAAACLueGlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxdVZnv/Zx95qnq1FyppJIKmQlDGEUIhEGJICLagENfBRUBsbV9G7vv1X6VwanbtsXbdtuKesVuvX1FW7G9ImgrMskMCUPmOakkNZ+qOvOw9/tHv5y1fs8hdQpIVZD8vp8PH/ZTa5991t5r7bVXzvrt3+PzPM8TQgghhBBCyCFxjnQFCCGEEEIIea3DSTMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIa8LqfND/xxBNy5plnSjweF5/PJ+vWrTvSVSJ/RNx8883i8/lkeHh4yv36+vrk6quvflXfde6558q55577qo5BCHn9wPGHTIfp9hPy6gkc6QrMJOVyWa644gqJRCJy2223SSwWkwULFhzpahFCyKti//79cvvtt8tll10mq1atOtLVIYSQo4LX9aR5+/btsnv3bvn2t78t11xzzZGuDnkds3nzZnGc1/3CDXmNsH//frnlllukr6+Pk2bC8YeQWeJ1fZcNDg6KiEgqlZpyv2w2Owu1Ia9nwuGwBIPBKfdhPyOEzAQcf8hM4nme5PP5I12N1wSv20nz1VdfLWvWrBERkSuuuEJ8Pp+ce+65cvXVV0sikZDt27fLxRdfLMlkUv70T/9URP5rULnxxhult7dXwuGwLFu2TL7yla+I53lw7Hw+Lx//+Melvb1dksmkXHrppdLf3y8+n09uvvnm2T5VMgsMDw/LlVdeKU1NTdLW1iZ//ud/LoVCoVauNYV33HGH+Hw+uf/+++WGG26Qzs5OmTdvXq389ttvl0WLFkk0GpXTTz9dHnzwwdk8HXIE6e/vlw996EPS09Mj4XBYFi5cKB/5yEekVCrJ6OiofPKTn5Tjjz9eEomENDU1yUUXXSTr16+vff73v/+9nHbaaSIi8oEPfEB8Pp/4fD654447jtAZkZmG4w+ZDul0Wq6++mpJpVLS3NwsH/jABySXy9XKK5WKfO5zn5NFixZJOByWvr4++fSnPy3FYhGO09fXJ5dcconce++9cuqpp0o0GpVvfetbIiLym9/8RlavXi2pVEoSiYQsW7ZMPv3pT8Pni8Wi3HTTTbJ48WIJh8PS29srf/VXf1X3PX+MvG7lGdddd53MnTtXvvjFL8rHP/5xOe2006Srq0t++MMfSqVSkbVr18rq1avlK1/5isRiMfE8Ty699FK577775EMf+pCsWrVK7r33XvnLv/xL6e/vl9tuu6127KuvvlruvPNOed/73idnnHGG3H///fLWt771CJ4tmWmuvPJK6evrky996Uvy6KOPyj/8wz/I2NiY/Mu//MuUn7vhhhuko6NDPvvZz9Z+6fnud78r1113nZx55pnyiU98Qnbs2CGXXnqptLa2Sm9v72ycDjlC7N+/X04//XRJp9Ny7bXXyvLly6W/v19+8pOfSC6Xkx07dshdd90lV1xxhSxcuFAGBgbkW9/6lqxZs0Y2bNggPT09smLFCrn11lvls5/9rFx77bVy9tlni4jImWeeeYTPjswUHH/IdLjyyitl4cKF8qUvfUmefvpp+c53viOdnZ3yt3/7tyIics0118j3v/99ufzyy+XGG2+Uxx57TL70pS/Jxo0b5Wc/+xkca/PmzfKe97xHrrvuOvnwhz8sy5YtkxdeeEEuueQSOeGEE+TWW2+VcDgs27Ztk4cffrj2Odd15dJLL5WHHnpIrr32WlmxYoU899xzctttt8mWLVvkrrvums1LcvjxXsfcd999noh4P/7xj2t/u+qqqzwR8f7H//gfsO9dd93liYj3+c9/Hv5++eWXez6fz9u2bZvneZ731FNPeSLifeITn4D9rr76ak9EvJtuumlmToYcEW666SZPRLxLL70U/n7DDTd4IuKtX7/e8zzPW7BggXfVVVfVyr/3ve95IuKtXr3aq1Qqtb+XSiWvs7PTW7VqlVcsFmt/v/322z0R8dasWTOj50OOLO9///s9x3G8J554oq7MdV2vUCh41WoV/r5z504vHA57t956a+1vTzzxhCci3ve+972ZrjI5gnD8IdPhxX7ywQ9+EP7+jne8w2tra/M8z/PWrVvniYh3zTXXwD6f/OQnPRHxfve739X+tmDBAk9EvHvuuQf2ve222zwR8YaGhg5Zl3/913/1HMfxHnzwQfj7N7/5TU9EvIcffvgVneNrhdetPKMRH/nIRyC+++67xe/3y8c//nH4+4033iie58mvfvUrERG55557ROS//gVv87GPfWwGa0uONB/96EchfrG977777ik/9+EPf1j8fn8tfvLJJ2VwcFCuv/56CYVCtb9fffXV0tzcfBhrTF5ruK4rd911l7ztbW+TU089ta7c5/NJOByuvdBVrVZlZGSktgT69NNPz3aVyWsEjj9kOlx//fUQn3322TIyMiITExO1vvIXf/EXsM+NN94oIiK//OUv4e8LFy6UtWvXwt9efD/s5z//ubiu+5J1+PGPfywrVqyQ5cuXy/DwcO2/888/X0RE7rvvvld2cq8RjspJcyAQAH2XiMju3bulp6dHkskk/H3FihW18hf/7ziOLFy4EPZbvHjxDNaYHGmWLFkC8aJFi8RxHNm1a9eUn9P95MV+pI8XDAblmGOOefUVJa9ZhoaGZGJiQo477rhD7uO6rtx2222yZMkSCYfD0t7eLh0dHfLss8/K+Pj4LNaWvJbg+EOmw/z58yFuaWkREZGxsbHa3EXPVbq7uyWVStX6xovoviMi8q53vUvOOussueaaa6Srq0ve/e53y5133gkT6K1bt8oLL7wgHR0d8N/SpUtFxBg0/LHyutU0T4X9aw4hrwSfzzet/aLR6AzXhLye+OIXvyif+cxn5IMf/KB87nOfk9bWVnEcRz7xiU8c8pcdcvTB8Ye8FPaqgo1nmRm8mr4TjUblgQcekPvuu09++ctfyj333CM/+tGP5Pzzz5df//rX4vf7xXVdOf744+WrX/3qSx73j103z5nj/8+CBQtk//79Mjk5CX/ftGlTrfzF/7uuKzt37oT9tm3bNjsVJUeErVu3Qrxt2zZxXVf6+vpe1nFe7Ef6eOVyua5PkdcXHR0d0tTUJM8///wh9/nJT34i5513nnz3u9+Vd7/73XLhhRfKm970Jkmn07DfdB985PUBxx/yanlx7qLbfmBgQNLp9LQTvzmOIxdccIF89atflQ0bNsgXvvAF+d3vfleTXSxatEhGR0flggsukDe96U11/y1btuywn9tswknz/8/FF18s1WpV/vEf/xH+ftttt4nP55OLLrpIRKSm8fnGN74B+33961+fnYqSI8I//dM/Qfxie7/YL6bLqaeeKh0dHfLNb35TSqVS7e933HFH3cSIvL5wHEcuu+wy+cUvfiFPPvlkXbnneeL3++ssLn/84x9Lf38//C0ej4uIsM8cJXD8Ia+Wiy++WEREvva1r8HfX/xFeDoOYKOjo3V/ezG50ot2cldeeaX09/fLt7/97bp98/n8H71f+FEpz3gp3va2t8l5550nf/3Xfy27du2SE088UX7961/Lz3/+c/nEJz4hixYtEhGRU045Rf7kT/5Evva1r8nIyEjNcm7Lli0iwl+AXq/s3LlTLr30UnnLW94ijzzyiPzgBz+Q9773vXLiiSe+rOMEg0H5/Oc/L9ddd52cf/758q53vUt27twp3/ve96gpPAr44he/KL/+9a9lzZo1NTumAwcOyI9//GN56KGH5JJLLpFbb71VPvCBD8iZZ54pzz33nPzwhz+s6xuLFi2SVCol3/zmNyWZTEo8Hpc3vOENL6lDJH/8cPwhr5YTTzxRrrrqKrn99tslnU7LmjVr5PHHH5fvf//7ctlll8l5553X8Bi33nqrPPDAA/LWt75VFixYIIODg/KNb3xD5s2bJ6tXrxYRkfe9731y5513yvXXXy/33XefnHXWWVKtVmXTpk1y55131ryf/2g5suYdM8uhLOfi8fhL7j85Oen9P//P/+P19PR4wWDQW7Jkifd3f/d3nuu6sF82m/U++tGPeq2trV4ikfAuu+wyb/PmzZ6IeH/zN38zo+dEZpcXrXw2bNjgXX755V4ymfRaWlq8P/uzP/Py+Xxtv0NZPr2UtZjned43vvENb+HChV44HPZOPfVU74EHHvDWrFlDy6ejgN27d3vvf//7vY6ODi8cDnvHHHOM99GPftQrFoteoVDwbrzxRm/OnDleNBr1zjrrLO+RRx55yb7x85//3Dv22GO9QCBA+7nXKRx/yHR4sZ9oK7gX+8HOnTs9z/O8crns3XLLLd7ChQu9YDDo9fb2ep/61Ke8QqEAn1uwYIH31re+te57fvvb33pvf/vbvZ6eHi8UCnk9PT3ee97zHm/Lli2wX6lU8v72b//WW7lypRcOh72WlhbvlFNO8W655RZvfHz88J78LOPzPLUWSF4R69atk5NOOkl+8IMf1DIMEkIIIYSQ1wfUNL8CXioH+9e+9jVxHEfOOeecI1AjQgghhBAyk1DT/Ar48pe/LE899ZScd955EggE5Fe/+pX86le/kmuvvfaP3k6FEEIIIYTUQ3nGK+A3v/mN3HLLLbJhwwbJZDIyf/58ed/73id//dd/LYEA/x1CCCGEEPJ6g5NmQgghhBBCGkBNMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIA6b91trbL78EYsdBKXQgaA4VDAahTMeOg3N1W1btCh5XC64L2SL+wcFTCIRD5liuC2U61tn77HrpOvr9/kPWWUSkWq2q76qYbQ/LPA+/18Nqid+P3x0KRWrbgUAYyuozEGK93GrZ1NHFeug6/9t3fiAzxb/9AWPdFgKngWW6D3j6gtmH8U3970BXfVZfvak+3/Czdp9RlX5Zn32Novu8T53FfztrZl+C/ciHLoW4UilDXK2aey4QwOvpqHFCt3O1atonl5uEssnJcYjDYbwHk4kExKGQ+S59v1atcUFEpFIuQRwMmvErGMBxU19v+3xF6vuYZ/0moscJPSZVKngsERzvAn77+unxDL+3rM4J6qXq4fdju3z7jv+UmaJQGoS4UlX1tMakuvFJP5dcfb8e+lo3iqei0TNrKuru1wafLRQKan/TB/z+oNq7qvYVFav+BuehR/RDP4dFRNyqz9rGfik+PFZHe4/MFP/6wCasl6uvge8lt18qfjkczs+6qo3/884fQzw4adJkv+mKK6Gsp2M+Hktw/PXq2nX6vJpX66rqs3VzSKtcf49fGTdcvXp5w+977T+pCSGEEEIIOcJw0kwIIYQQQkgDOGkmhBBCCCGkAdMWISrpWZ0m0NYth0IhKNN64Kn1Tkg2g/rC9IG9+FkHj93ctaC2HY5GoMxxtDZIn4M5yan0zi+JPqeypRFUcp1GetapNEyeqw7mTK2dsnVGWrc41XU/3Cj5V50eDLRpdZdaaZb0NbAP45taG6U1TXpvkCXrfRt9dqp9X8ZnNa/WSv3VaOKmqodX15NnlnAkCnGgqjS/Ptfaxs9WylPrsR2r39i6YhGRWBzHkWgkjnEUNc0+2DcGZWWlQ9by/FDInGNAvdvgqXcQHMF65ot5PJhjDh4MorbacfCzFQfrVa9hNXVxXdQyViqoDdYJnuwxKBDA8ToYwHrMJFrzPdU7L/p9j4Z4tp51ai2x1oBXVT381jPt5d679jlUqthOAaWR96vnjv1ekohILmuevcGQenfIj/eEHpP189I+D/3YqdPXV7W+3j6Wet7NYpqJOs2u/m7rHF/umD1VK7+aM9RtnB0bhnj7M09A3D82VNs+6dwzoWzu3HlYr+JU7yUJVLzxOehrO2U49Wen3HXq5/J04C/NhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCENmL6m2a81SkoPFQi85LbIS/gyK+2LZ2nAKiXUN6WHxiBOJVDX6PjxYHt2765thyKolwtrrbXS+fnDRkuWiKNOse6c/OpYyrfasXxiq3XS4boLAKFbp4Ez21qn5lN+oT6lcbY9U0vaP7U6e5pUrePzROvWLD1qXbec2osav+fwadzqtYjTP3ajz74av9WX+90zxuxKmiWo7l8f3gqgtdUezlp/rS+prclUslsJBdVYp8bCqSR1PvW7RDiIWlCtyfQ7Rndap31VWk9HjcF1Ps4VM5ZWHXWx1Phla6lFRBz1rkipZPnjN5B26h3selXLSkdcUb77M4h+LaXRewdTldX7u9vbU79nUijm1LGxPBSLH7Ks/t7WBsmmj3ie6i9Kx659dus0z9YwPDE5BGWppl5VC5W3QMV79h+obR88OABlnV1tEM/rmYP1tu7lgHo/KhicWW94qIeex6jyI+XFrIG+qo5bVvOH3rnoa738+BW17bldXVCmteeOaosp69HwGab7cd3Bpvikfj/l0PXQc8+G76q9BPylmRBCCCGEkAZw0kwIIYQQQkgDpr22oZdu9HKCbSvXKAW1q34iD1rrofk8Wsy5Hi4nOCot7WQmC3EsbKVCLWagrKN1LsTFKn52eNSkyx3Zj3Wus9BRcSR26NS64TgufdppsV/qWK76t4ztzqaXnev/3YPLGOWy2V/bAlVmcX3dU2vpjoNSEZ9jTlK70Xmi7a+mL9eYWaawBmzwySnciqb1+aMSnY7ePbSFol6y0/dYUMWZSWPXVlGyiHBQjQXKUsxzdd82xy6X0QbOUd6dPtG2Z+a+cD19L2spg7qflfWbbZuml88DEWUhpoYRux4iIlUr9itZiF7hdHxanmfikF+nFdfj2eyhx/SXYzM3dSJoVaZubi2zCapn2lRHrrcJ1eWmZnXno/qTrodXZ7Nq2q2kZJPZLKaW1zKk3z/8MMQ/+tkvats7duyCst75KMe45OK3QnzOGW8wdQrgOQyMjkC89qxLZabQY8prdYy2a6ltFqMdKIWJtLRCnIgna9vJWDOUeXriNsX3irxWr49vimh68JdmQgghhBBCGsBJMyGEEEIIIQ3gpJkQQgghhJAGTFvT3EinbJfrfeutWg6dVzoax7SzyVQK4tFRtKvJZ1EzaFuunXDCEig7bw1qpTZt2QLx9t3ba9sH+w9AWT6H+udSEbV4o+OoHSpGjW1QMIxWPwGV3rulowPiWBNqiWw1WbmMOjStca5LFVs111rbBDqzZU0mIj6lS3Z8aLuUjBqNXEApjcYyqMMquNhHgpbNkk/ZLJUDyupOWWk5LtbLtibzRNvkaYsdrUWfyntM6+EwrqhjOdZ3aw2tVovNdjrrI4VOIV9n62fpPW0tv0h9quKIusfCVr840I/vVXR2ouY04NfvWeAwWrVE+cGg6vfO1P0gaGmetSY1UyjgsdQYrO/vWMTUu6cHU+A2N6cg1npXrZ0tWvZ1Ot1yqYhaa20D5rfeWYmG8d6tzKLlnB5XqlO9k9DAIlKnyrbt3SplbDe/tnqrcxzFP9j2fj7f1LZefmUdWHXNZ6tqLKwo79NsAft5LNQCcb5o+ptf6a6zBXzu3nPPPRD/31/cC/GevYO17cwkfu/Ann0QH9izAeLnn3tjbTuZQhu04489QWaLqUdh1MfWj8lKLy5VVWq1jWrzRkp7rbW2XzKos/dVz+HjTjoe4ljAsixU74QFEu1YL9W/9HTCHo3qr8fhUzzXvdU1hSWmq6eer6Aa/KWZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBr1jTrLE1X1r/5SiNm04PaxNTqa2zEYzLYTzWokUnQzxZMDqblm70IPz9oxshfvChxyFevMhodmKWJllExPGh9m5uEtNs7909AbH4zDlqPbSXVXFJpbcuKZ/YZMqqh9KHK12RpxRQtpYzqLSXoeDUernDiU7v7VZR21jMGp1oSytqqebG0hCPTmL5/qLpI+UKemKLp9Kdq7TjgTqRk7l+Wntfn2ZX9XMtIJsC7cVdqTNqNuXay7eOWdSmH0n8ftTjhUPKs71q7sGJiTEoi8fUuxJJ1G/2tHfXtjdt2gll5eYmiI89YTHEra34TkK1YtorpN5n0ILWstYDh8096SrD8sGhYYgTSdRl6/1d630Hv/KHDio9tKc0zK7qU6BxVv7YAR9+1q/iaNjck46D91A8juPoTOLXt1GdWfqhP1unaVaPw6r1rkm5iuNTJovj+6RKo93eMh+PZX3eJ2r8qnuXCONyxTxbckV8JlWqqEMWD9+tcZVn9kTGpM4OBLGdnln/HMQ/u+sXEE9M4HetWLG0tr1wYR+UPf4kejon2zBld6Fw0Byn81Qou3DN+fJawe5NWqeuO4z9Ho6IiGPdU/kSjgleENvJ0zkj1HzKgW2sR0wJpBefvALiJQtTte2iH8eXjf3Yj8dz2F/qvPHtuC61tY6nFhfX6bZfxmftYjX81MXTgb80E0IIIYQQ0gBOmgkhhBBCCGkAJ82EEEIIIYQ0YNqa5jpv5Sk0KVr/pTWX9f6iprys/I/9HsZz5x0DcVMr5q1fMsfokgs59IN84LnHIE6mUKcVT5i861JET1SfoMZ5zhz0i8zmUKM0Mm4+X1G646DWoRVQ43Zgzy6IbU/ZeAK1mf4ganh9SqQTCZnv0nq4QGD2/s3kOahxq1SxT+RLRhfaP4r1ireilnNlL2pZWy2J+J4hbLfJrPK8drAdPb/ymrR9mpVG2RPUdGkHTRf00410xkoH6up6vPaZ7Tr2dHVCHIth38/lTR9bNH8hlC2Yj+NGrAk1zeW80X9uehb1mvsGcRyRitbJY1sGrAsTVjrjkLr3JY592bXeOxjPoDa2qvpIXnnleuq7ipavcziM3+M4uG9FeUJrg1d77PCrc/DUmBMKoQYzHDFjVrWC3xMIqXcQZhFXezFbPbruHR79vFPvQoCeXL1HEVbv4ewdegFivw+1+vGI/Xls80gEr22xhM/HbM70mWIF+8fk5DjEna0rIZ7I4Diby5t+X57EcfX3v/8dxKMjqJ++4E1vgvgtb3lzbXvdunVQVlbv8AzsxXvzhJXGS3jVSvQVDoemPYV51eh3S+pju8+oMnWPFDPYFlvWPVPb7u7AOU3P4mUQF9Q4EPSpe8oq13OLsKpHOIBzoELGXM/OBfhO2P40+mmP59SYoT3Fp9QLN3K9fhlos+W6Q9l/mKrNpgd/aSaEEEIIIaQBnDQTQgghhBDSgOlbzmmPHYUtsdC/jmsrpLq5urUSmFNLklFlVbZ0KVqkBAK4FJaKmVPymlBCcdHacyDWNl+T6ZHadjWDy02ZEC6D6bXplauWQvzww2aJN+qoVLrq/It5XEbTLmjuuCn3uSgvCMdwCSVm2dOJiAT85rvSYyNQFo/jsWYW7AOxGJ5zoGo0FpkCLtmuG+uBeLyKS06rWo1soncBttO+MWyoXRMosRjGlS4Rz7RVQEk5dMpaT5Q1kJWSu84iR/U1v15SqmC9YLlcL+kfIYu5+lTCs/tvbn9uFOJKAa9L2OrrTQlcdpwY2gtxuYTLzdGw2X/JkuVQtn3P7yH+9X8+APHqM9D2sqfTSMTcCtpLOhElPVL1bLWs75qbUlCWL2AfKSmpg0+NhZ6VNtm2fRMRCao45OKxdQ8LRU09I0pSUSjjZ7X8LpY0sjdHjYVa6jGTaBs9bceFK9dT32MVPUh75jyyReynOj11UxTTEQ8OboI4lZpb246GUI6n7Vo9D/tANmusFsdz+AxrTeI4Opo5AHFeyRnLZXOOmzahXWtmEse+9773PRCvPB4lBf/xH/9R2/7Nb+7H71HSoEvffhHEnZ1tte3WVryWU9nXHm4c0XIe3QeqUGoTUO301GN/gHjPC8/XtgudmPI+PYyymQUr8NpWyziWZdPGsm9seADKIhG8/zbh8CRLjzGSnfPnoRViJKxndo3mdVNJLg6jPKOhdaR3iG0Ba+Dpwl+aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIa8IrTaE+VutCt1uUrxWMFUFdTAcsm3LfvmAUQz+9ug7hQxv2brfTWu3YPYi1KeA7pcSwfHTX6n6W9aFUWC2OdRyZRx9fahal0+3qNNjFfQK1YZlKlvlZ6wnIJy6uW5qugUrAWy7iv30Fdo33k8TE832IO7YtmEl8Vr18yjPXu6zZ9YHwcr9euMdQW7xpCTWU1b3TMJy5Aa63l81Hg1JHB67drFOsxlDHaxPQo2gINDqYhHhhEnez4uNEQVpR1YlNLCuLWVtQ1zluAlmiJFqNVzxdVf5k6m/fsMcvfO7F/B8TRGOqBOzqNZrM5jlrQYBTv57D6bMVKW55oTkFZ3wLUGO7ci2l+B4fSELtFo9d3lFa9qw3roW3imppMvWIB7MuLu9Fyb7yAny1Ula1V1Nwn+ntEpe+ulPC+cMJ4/cRnHhUlZbFX1bHqoNmsObZf6a59rn6pYObQMuQ6eaP1B/0ejk4z7lNabPu8ckobPJbGlO7lCmpQQ1Ec30bHjdY4HlfPoSrGWlc7kjHPsLwag+Z2HAvxnsHNEFdLOEZv22zKt27bDWUnnngcxBWlr//mP98OcX+/SYVdrWCbd7ahTvnkVVjPtPU8aO/A5/9sDkKOsitzlZ7afucjoPS8Gx5FDfPjv70X4mOs+UP/dtS4r3/2KYjnbOiDeOExiyDOTJrrFQrh/RaJpCB++Ams185+01dbFqIGXsLKKrj+7TUVvxyd8qvRpjf6nik0zbScI4QQQggh5PDDSTMhhBBCCCEN4KSZEEIIIYSQBkw/jfYUGmZdXq1qzS5qYQp51M+NjaZr2z6VirE6F7WHviBq7Xrnos6vudlovgIR1Eo988wzEDc1oaa3f6/RH45mUAuUSHZD7Js8CLE+J9fSSLY0NUGZI+ifWSyiLiuodH+5vLmeuYz2BkbNZGFyD9bTb7RmPpUGOqt0jTML6uUmla57yG/0d4u6sA8c04LavN0oEZRtGdMnHt2F57hiHuoH56XwWrcozddI0VyvL/zL96DsJz9Bf9FSGbWLpaL57pJKbRpTGsigSofbuxTTw55zwdra9qo3no2fTWK/ditTpwZ1rVP2lC+l/1XYY842iXgS4rm9+L5DzwKj7WvunAtlpRK2Ry6DbRe2fIsDAWyrhErX3RTDPjM8pvyj82ZY7e7Adx0CURzPihWt/zX9NRLBsqryc5eSajz1PkPFejeiUsAxJ5fGOld9qJ/u7EXNvZ0it1jCe0zrfQNB9Vix9MGlAhrD+qo6Nf3MUadT1mm0rXP0VPrqUhXrnc/iZ22taFzpwYfHUIs/MoF++ak4Xmu7/01kcbCresrXuoJj457B/bXtpQtOh7LRUfT73fDCdogzE3iOwwfNOx3BAN4DxTL2xSceR93tnj3oAV2x6llRn116zCkQjw3hOwPhhBnvguredOuE6jOHT3tCK+9l23P84G58Dj/0y19C7I6nIR6xnuPjWbw+y45F/fjAAF7bx/bjXOSCiy6tbafacd5SKuD16pi3EOINu42O/XcPPQ5lx65cBbEvjm2hny2OpfHWKeu1v/jLe01HlzbyfD60ptl7BVpq/tJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENKAV6xpdpWOzY79fpyLF/KonR0eRT2ha+ldI2H0rNywBb2Fyy5qq97U1QdxV7fR6CxajDrRvsW47/DQPohLVjUHh1En5A+i9i6mPAsnc+jpW7T0T3FB/WrffMzpPjm5E48dxWOnUua7BwZRd+a6qO8JhbT5qO09is1dKs+ex6XnKA9ZQf3lznHTZ8aU/vTEHqznccp7uTtvjr3tAGqnt+9VOtAyajfntmFf7UmYY0cD2E8HD+6HOJnUnrvWOUXwuBWlUyuUMxCvewj10pseM/6Zbzx/LZS944M3QNzW0wexizJHW44qntJaHzmT55dPsgmvd/ucORBHEkbzXCnj/ZpJpyH2B5X+1/I4tnXFIiKlovJDLmB5i/Lc7rD8lLU+emwC330IOnj940nzXRUXx82i8m/PqGMNTWK9snkzJlWK2P88NSY1t+K4q6olJev9B60N1n6trtIJ+jxzTzpq33AI79eZRHtCF4ppiP1+c018Dl6fYgXHgmwBtcY5SzMe9Kv3cirqfRfVrgcHN2A9rb6ZTGIfdwSPlc3j83Eya+o5PIB13rEFfZl378XnXzSKz1YnYD0v1M9rE5M4fi1fsQzi9s4uiG25q0/5NJ995pkQ//6h30O85s1vfukDiYhbnb3xy1Xey456ISQzYjyyH7oXNczDgzifCKvreWA4XdseG8O5xNyF2F8WKF/m//jF/4U4Z737MHcuvtsRqKp8Gx29WK9mM5YN798FZXmVIyMeQx/nqovHtserYAjLAkGd9wPb0VPtCuVqzqP7hPdy/KEbvKv3UvCXZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBkxb01yuTO1xCfuWUVR58AD6Llb86Lfa0WV0N9qjWHs6PvMs5mUfGMRjrzre5K0/+QT0Nzxx1YkQd3egx/O+vUaTFNiE55uKYdyfQ6/Njnala5xjvCWH9vVDmav+rRKOo54wGEDNztzulClzlG+n8j9uSaFmd3zMXL/xLGqjspNpea3gc8x5jBTQ1/qR3ajVXNaG/Wt5h7merb14LdPjeK3HM6gX26u0r3M6zC1x5tkroey73/81xIUS9tWqa/Tm4bzSWSkdViWG9fSpfl/MG83gfb++C8oGxrDvvf8j/x3ivqXL8bus+zGgfE2rvj8eTbPnw7bMTKK+Pxg1/cRfxD5SVWNSTN1z4wXTDxIpHBeWHottE0/hvd6UxP7a1GSOfUDpRiWGHr7VEA7B23eb/QN+bBu3imPQ5CTqWycyqDPNFM31iMawjuEQ9s94Eq+H1rfmLU1zWNVZ65S1B2vA0vj6VT8PBpXv8Azid3CsDAaVd3zG8jH24ziqf18KBfB6lavm2g+Pq/dwqvgMyysdciiEWv3hiXRtO1PC7+2bg+2SUd7d2bTRkW4fQR/mgYPo0xyNYF/0Ky123hqD9LXS7zT51DjSNx+1sm889dTa9okrlkDZCy+8APHzm/AZf9m7rjzk98wu+pwxzoybZ/OEGqPbunBMSan3MxJR0xbrn8Z8Eg899AeITz/zDRCfdcapEO/Zadrdy6g+jo9SKUdQpxyz+kRuCL2mh7dh/xjsR//xDRswTqeNzr+jA8+3awFqrdvn4Xtec+aiB78TNP2+rF/bEhVP9Ye6eSs1zYQQQgghhBx2OGkmhBBCCCGkAdOWZxTLOnWqtl8xP91nJ3CZsKSWSqOtaOfjs5Y9gsqLJR7Hn/WjqjyXxfSwD93/u9r2xmfXQdnePXshPvMstLpZvmxFbfugsltRWY+ldxEuMfXMSUG8Z59JUxtU9lYDB9F+xqeWfbIZtOQpl42cZeVxS6FsZBSvtV+lsJ23wHx2715cnmtqwpS+M4nuL3pRxLEs+qLKfibvYj2fV1ZKpZJZpj5uLi5X9rRhyunWFmzIoSy2xeiokW8sPxZTjK4+52SI7/0tLiM6QfPdnRG1nCnIYC4NcUTZ9SQd0wfCfvz0wBO/h/j7ZVwOf8/H/wLiY5YbmYlb0jWZ/r+b6yRZs5jCVkQkm8cxaGIc7/2IJUGIxrHP6GVdt4rXYSxt2n14FJdW4+rm7+rEpdaCSkc/aclGCqptKjk1jirJlK9i+lBIybSqqs6joyjVKpWVRV3Z9KFAUC3FK/ssvzP1d4Wt5fmgkmfUWdD5sO/7HNu6TKV4n8UuVFFWZ9WqkopEzFhZyOG1zRZQCpPJ4TgTtCSHfm1Xpyw0Y1G0Y0tncTzzB1tr266q87bdKPcZOYCfDYi5Byp+9dyNKGlHDu+fohob4nGzfySCchX9TPMr+UZ2HOv1/LPPmjp6WK+f/vxnEA+PpVW9LSmMejY42htxBqkWsM3Lqt+3thnZ1prz3gRlxRxej9ZUCmLHOq9yBW+KPzx0H8Rz2nBOpOWcwaqxguvu7ICydTvSEIuD7RixLA1jguebPoByjYEBvEeefPhJiO209P3KgjXUhONRKIX1XHk6SlDe+OaLTBDFsV0/l5ypxpRDO/JOG/7STAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSgGlrmgvKsklrQxxLV5JRKYNDIaVfCaGOJhD0WWWojQqHUEsV8qlUqMpmyRc2n9cpbDdvxjSiYWW5E7ZSY2uNVlqloU2lUFcTVbrH4X6jn+5XWmJ98RylZ9WWTtt2GCu8UAh1aaEA7htJoYVMa5fRCnV3o63L8DDa9c0kdakttT7WdoUR7Gu6k1Z92G7bxyw9mIM2ZMfNQS1ZSxj1X3OaUUtVdY0njzOJ+153/Qcg3jv8dYi3bDafjSdU2lBlnbgQu62srOB3tfvMPRJ3sB/vDeA98Jv1D0P8nb9BW723f/Cjte0z37gGyipa69vASsrmZaUrPQxMTmBbdrRj29nWZo66ZqLSh2fz6L20a4/Riu7chmntW1tRF6/7bmYCtaHBkBkLtKbZLeP3ahu5lqS5v4fGRqHM8eOYFGvGe91V73cUSmlTZfVOSvt81OuHwjh+FZSVWcB6V6JYQu20X41Bul+ELT1jWNma+WbxZxutvS4Xlaa3bPScbgUrplNh5ws4pg9OmP4TCqMdnespLXEJP+soDXQ8YPTRu7ehXemmDc9C3N6C98DiRYutOuM46igLw1gM6xWJat2yaVf9TooeFnwejkmlEvbzjZYWe8u2rVD27Pr1WC/1XI6E7Xrq9Moya+TH0/gH/ey1tPy9CzDVdS6PY3KpgNenXDD31LyFx0BZ+xZMsz4+rmxTd6PV26KFxq5tUFnyVpXdb1Mcr3Uge6C2PXYA3wELzEEbwWhKzeMSqm2sPhNQz8NIEO/FUBnH9nUqlXrX3Hm17RWnoN65VNVzCdU57U5yGN7L4S/NhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCENmLamuaLSaOv5tq1pDgRQexcIoFbKr6bqQUvT3NKqNLlKozt8APWGUkVdVpOlJwtEUHOTL6Iu7Yl1T0OcstLfxqN4abJV1OIVlSYpg/I46e0xXq7BMOqGWptSED+3CbXWWXUw+zS27dgNZWGVlvekXtRDxWLmu0ol1Lj1LTtJZgtfXbJL1BK5VnnJr7RSSosY8lB363pGE7hjFL/H76B4+LhObMemEMYvbDHauzv+7UdQNm/BCoj/6i8/AvFn/9+/r22Pq1S68RL202XKq3SVD3Wi8aopd6p4w3SqFL9aA/+fm9E/+q7bvlrb9sbwHnjDmy6EOKB0jVVbc1unQ5/df3P71bjSqjTNkZh5zyCTwfMsKi9lUe9ZVCuWV3xA6dGVdrFJaYnLFeyPVasve8pju7sTPXq3bN0G8cSk0SuWlQ5Z30NtrejX2mPp/kREvG7j1zo2gNpY10UNqtau1433lqFpVene80r/7FPeuXYK5rzyutXe0jOJTgUdV+nPw665RwtqrBR8VUKqZfVsyZvru233c1CWU/e6P4Qa5lAFdaZPPmb8bp9+6nkoa+9MQbx8Cfr2j44ZDWtIPXc7O/B+yRZwbNy4EbWzpZLpf/PmYtrjYxb0QSxKV7pzbBfEB0bMeLjkGNTTJ5uwHeKteG+2txv/Yz0EeZ72nZ85slZ6cxGRQAS16/6gGTd86v4pq+edfpekYPlxt6h26ujBa//4OuxfZXVPTcDYh9/TsvA0iONBLM+lTd6C/Di+UzFWwmdlWyf2W9dRacVzZo4UUvdashnvgW4179t5ED2gH/vtf9a2U024b3cf6se9KXTv+p0d5xU8wvhLMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIA6ataXarqBPRGjjl4ihThY6aq/t9RnvVN3cBlJ3xBtTgPPQHPNa+rahdDIfMl2WLqNlyVFLygPJynZwwGi7HVbpspf2p5FATWAygxjmVMnqfptZOKAuq743H8bu2bkffxYkJI6jzlI60qaMb4uOOOwHictXUc2gMr0dzG2qnZhKtc/Rc1Z+s7YCSqflUf/EcrY+290Ud3/YRvQfqRPc+dw/EX/6H/1Pbfm7TLihrb34M4jtu/3uIv3HbX9W2b/2f34aydY8chDjjQ81zoYL1gu6mLIcDyn/1RHVv9iiv88dGjd/m7/75i1C2ZcPjEJ/xtssg7lu8srYdC6Muuzp7ckIREenoQj1wJIaawrzldVpQOr/JDMZlpTXOFcx9kivjONFcxXs9kcDvzTahj7PtY1xWnsbxGPbPotL0DgwZTWqz0nq2NWM8mUGhbTKB3vE9c4ymORLXXvn6/sNY+1zbw71PCQHzBRyD4+q7SpaevKT8/ieVt/RM4ipBbNXDc3Stc/ap84/FUMM8kUPN6pw5Rle5fxz14xMjeK8HfKjn3PzcLoh/fe9vattat989B8f7gQN47LGxdG17yZLFUNbX1wdxTxcea3hwAOL7HzAP26GD6C3d0zUH4vPPQv/3TlXv397/QG377Degz+5gP/oBL152HMStTeZZWlW+5t4sGjWXCth3fX6sS75i5gCe0jQ7akwuV/G+r/pMf0s2o1bYUbkZJlUejJjKETE0Zu6pqhqkfc2oFe7K4pwg6LP82IM4npSKeE6lcRx/wup+mrCvVwHrUVTvnEgrjrGLl6BO+ennzJzo/v/4v1C29op3Qdzcjc8Je2xzvKnHvenAX5oJIYQQQghpACfNhBBCCCGENGDa8gy9RjxFdl1x1PKd349foy2cPDE/3U9mcPlgdAiXtZMq3WuHkhjYx66M4nJTJILfG47gskduMl3bzmZxuTyawOW5gkqrvW03LjO2t5iljYCD0o2csqhKRfGcmpvRSqrsmaWd1ja0W2lXS2xdammiaqVj9kK4xKbbYSaZ2nBO7zv1kpu2lIHPenhOVcFlsd3DuBz10DNpiDfvNDY7jh+Xp0ZGcTnqu//rTohv/8dba9tf+DR+9sMf/TLWYzPqRpapcw5ay47+OhmEWvpTacfnKXvETmt579gipit9/u5/g3j905iSe9/ZF9S2l64+D79n0bGqXm0yk0SUZdjwAI4NnmVVGI/h9U9PYLs/swFT9+4+YNo9qKwq53elIP7tAw/i9yprryW9Ro6VasIxZngE09oGlL1dR4u59+NKflKt4BJmWfWLEWtpXgRt9tqVjZVaLZZ8Afu2HsOLOUtyouRBVbXUnC8oO1LHfFkkitKNoBrPZ5KKD+8xz4cXsGSN6YW8WopXsrhyBfvTaDZd245H8T4IqNTp655CS8gtWzFescrYhjYncXzf178f4p5uLO/rM/LGgrJFfeoptFjtfvNaiN/zjsshTg+ae+KBBx+Bsn/73/8b4hc2og3aymPRnvP9V15hjjuK98CC+fMhfsc73gGxrcbT7TCbBNV3V5S0wU6r7SlZRFjJBuMhHGNcy96vqiwKtazUURaspaJKyV025VpmNTa4D+JsN/bVpQtNuw2oOub3ot3voLKFy6sBqWz9Jpsv4jlVClgvLf1YcvJyPLbPjIvPP7EOyh65/z6I3/T2t0McsiweKx62oZZ+Tgf+0kwIIYQQQkgDOGkmhBBCCCGkAZw0E0IIIYQQ0oBpi1q1xk1JZSCdZVWlaNUWWcGATrNqjj2o7HmeehotsSLKbiyiNHGelSaxSVk2NTWhzrFSQS1euWhOatkKTEfd2oafzeRRw/zsuo0Qb9xhtGfL+tBGb2AE9dDDXhri5mb8rhNPNjqjfB7rnJnEuH8fXr9FK8xnewJ4rQb2odXPTKLtnl4N9TZDJvZJXpWgeLPg4TV441veA/HAmOmrP/vx/4GygIMar7t/g/6H3/yW2f+//+X7oeyvP/lBiP/np1HjvGf/OMSOZXMWU/q4hA/PSWvttM1Q3OozJ6kc9qf58EYu9qNd1vb/86+17c2PoK5RPvkZjC88U2aSXA51t2NKp2y/o+CpdKlDI5gSdvPW7RB71r1x7jlvhLJkHPWIzSNol7R5D2qrByzrrtWrlkHZ8DDWI5dBjbnfGlhdNT41KSu3cLwdYm0DmoiZcxoaxDqWmvCcPDVmV9T1Gx01GvykGkd9nrIBE6S5xdRzdDwNZXba8JnGFTynahWfSznL/u7AIPaPrOp71TKec7poNKkjA6jZ3bUdj1WsYP85/SxlE2o1+xN/eAHKdCpsT7DdDhzYa5Xhvb5nz26Ih5S+/pyzzoD4T955aW07FMCx74knUR9dyKpnfBj3H8kZ/euufbug7MzVZ0Pc2aH6tXUadW+zTPVy1WHGqWAfyE7ivWtXJR5Xcw0X29zvx3E3UDW6ZDeD49ryhX0QP//EE1gPZT3pWGO81oD7yjg/CHr43tf+AXMPbNyBcxpReuC2OUsgPuUU1KY//OD9te2RYXyuuOodilTXPIhjLWjTe9Iaky4+o55v69Y/C/HxJ50Kca9lvVhScwd/g/enXgr+0kwIIYQQQkgDOGkmhBBCCCGkAZw0E0IIIYQQ0oBpa5ojUZVWWomaC3nb41LpdyJqbq70cj5LZ1Iuoeegyn4rotLQOhVdbLRULYlWrHMA6+woLd6wlcLWc9Cn+czVp0Pc14s+gksXnQTxho3P17Y3rX8SysqFNMTad3jfPtQ0HRg08cEB1CANHEBd2p496MN46oTRkg2Pow57TPncXvLmd8qMobREWpes9ZhTH+rQmmbPh23qUzpGnYbcC2C/PudC4136+GPox7t/zy6Is8qX8q5f/b62/b73XQJlf3r5myF+9jHU6j/2TfTAjARNP08p/aSy+Zaouo3z6t/CUUv3mNTtoDyfXeVH3j3P6PGbznoTlIUWYKrTmWZkJA3xWAbHimDQXIeJCdQbVqp43stW4P0rjvlsRweOGzt3bIU4FsS+ungephTetWdPbTuXw7GwWx17ZBTvyaLlrRtT+eSDKq3tuNI+5pVv7Lw5xrM9n8eB1OdDDar++SSoPLHjVqrwstY/l3CsjCXwXRK/9T6Mo+7HYh61jTOJTz13CllsG69s2rW9ZS6UJWJ4jiMj6FE7scf0kbzyeJ6/YiHE3cqTNjOE19PnM991+imn4b451IBXKlivkOWtq98j8UWwTUdGUd/6b3f+COK+HqMz7V2I7+WkulFz+oZTToF4eByfQ+s2GX1saxLzEHTNQz2r41MPdQtXDf3Oy0k18SopqndJmrt6IB4aMnkQKiVs40Qzeq7HoujfHo+Ze2b7VhxvtmzHZ0NBvddULuP1ivjNuwxaex+L4RwoEcLrN2Klxu6ei+9jzJmP4/1JbzwX4lQLej7nrDH33n//AdY5i/f9nAmVGjyegjjeY+7H09+M+QIG9h2AeMPTT0HcNdd4mftUyvGSGhOmA39pJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpwPQ1zUoPFXIwLltaPO0bGPKjDrlSKqrY6FmiEfQiDYVRxxdLJbFeup6WRtWn9E85pflzS8rjcq/xEtyydQeUJZOo4ZrTrbTXmTTE23Zsrm0P7EaPwngC9UwVpa1+duM2iPfvt4+t8tCrf/Z0daGP5+//83fmOEPoEbtwAWqy/ngxF8HzoqqkqvZFDZNbwT6Qaje6rB5LCyUism/3Fjx2EPv1MxtN+X8+gj6m778c9cAf+MDlED/7AHog73zW9J8epXkvq44dVd7UYR/qkv3W5z0l4RoO4h2UPQM9ilP/7Vpz3GPQT9YRPP+Z5uAQ6kgzBdSOxiLmvMtaB648tgs5HINaO4z+NxxF/WFW7bt//36I53TiPbdijtEnppU/9Nwu1P3N6cB4dNjoTONK97hlN77PMKG0syHl2Ru2/Fo9V2ks48q/vIB9yFHvrMztMWNFOo3tMFnGzyaTqGkOh0w/0drqw2jf/rIJqfu3bBkkex5en0oVn2n9B/F9kNZO83zojKEeev8w+uGP7MP+0793BGKfdb/2dOMY7Sid++Ag9olAwDzSdW4FTz07sup5WC5hfypa+RX8UZwqJMN47QZG8ZwOpPH6+BzTl+eqvAWeqPlAFftx0PKSd5WoWeeLmEmS7XifRyN4f45lzZwgEML+0z4fzzmifK93bzXP/Ht+cx+UDe1FTXNnZwvEvb29WC9r3Hj0UXyu+JQvf1MCx5+OuWYcXHky+u4nWtA/2wkpzXwA+9uFlvZ445N4Tv1bN0M8PIz3wI4NmyA+IWXOuVeNoaeehO+nPHY/5k/onmveI+lduhTKfGqsnw78pZkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAHT1jSHI7hrQHkW+i19WGYSdWtRP+rBCgn0UA1FLH1UDD0c/aqKfq3XDKKuJmjpGotZ1EoF/His/f2oNauUjSbJ50Pt2Df/+TsQl5QeOpvBc+rtNRq3hXNRg5Qex3+rhGJ4TlrmF7R02n51Dh1KExlUWqqBA0YjGQ6hXrxanr438h8Ljjoln6CGy/WUzk/t71ketJUc6tb9amdl+Sylotn/jn+5E8oueMOJEB+3Ej0w3/mhd0P8z3/xhdp2Wemuqw72kG51jp7ynuy3dN3jbajLm7v2MohDl1wKcXmBqaen7FP9dXrxmf03eCavroNqAFvjnC/jNYol8RoNDuJ7BqPjtv8tnle1ilrPhHonYXwSvXMz6XRt260o3bHyEV80D9ujmjMa6ANK55dK4jjS2ob3c0K9d5KImnGlfz96mYaVJrXiot9vMo5aP9fyA25NpXBfpXeNhPDYuZx5Huw/qDS4odnz2a2o+6iQR715etzocotq33IFnyXtXXit85ZXbjGL99+u59GzuH8fXgMnqPIHWPr7kVHUj+uXEsJh7ItF61q76l2ZpibUmq88+VSI585RY8N8o6cemBiGst37dkOcLaE+2gnjvdlpabOjMdVf1PkHlXd+2bW05q7KFzF73UciObyHfAU8x6aqaatESHmVZ7APFJV+fN19v6htd6n50sVXvhVi7Znd3oZa45Llm35wAPXQUkVv8lgKr/2c3pQpi+CY4K9gH/AVsZ5l9Rzqajbvyyxfgl7l2SEcf5vi+G7NPT9Gz/CA9fBZdTq+W7NyMb5DMLIbr8fTD/2mtr136wtQdsrpbxDkQmkEf2kmhBBCCCGkAZw0E0IIIYQQ0oCXsbih5tcq7XEkbpYKg2rJaHAIUz2nWlGC4VkWMzrNaimPsofJUWUlpWQjfs8sK/rV0nsui8sLm7bgT/Wt7caaZMESTBnZ3r0H4swkLtcND+I5OlWzTJZK4NJDm5XeVkRkSKVknduN5QG/WfpqbsI0vIuX4b5VlWPZseQsrkp/O6kkJX+8WEvxSlajk2QGQ0reozrJ+sdNyvM9O3FpK6j9jfxqWdWyIPrDY+uh7J77MG32h/4Ul9zedMHZEP/r0vm17cGN26Es4eq0qXgPZP14jm6X6SOnv+sKKItdhOm+x+NorSiWdVukilezGpzFtVERiSsrs8lJ7L8jY0YmEUugNWXvIrQPXKhkXjv3GouszVvRWvDElYshTqVw/JoYw/s3aS1Ne3mUbnhqSTPk4DX0Vc24MjGJS96pFMozbKtOERGfsoDyLClSsYhLrZ6y7uruxHGkuTkFcdkao2NKQueLKuNP5SNn2zp2tGP/msjO5hik7MqC+JxqShh5Qnoc05uX1D2XmUDp1r4DRkqzYzsuPafHsJ1C6vnoaos1x1zPlmYc75tbUJ7gE1zm91njv1+lQg+rFMIrlqBVV2sLyn22bDO2q/0TaCFXUBKw5qiyhlXXy/VMOwf8uHweDuM9cGAQpR/BqBlnI6EUlAUqs/e73+iOZ/EPPq3tM/1rfAyfDdkIyp3So2mIC4NGvvHms06HslSXuu8Fx5DhIZRc+C2L315lmzo6hPOYeT1K3uk3/Xpk/wuqDNspqE4/r1KHj46ZNte2eaefghKLPmXJd/f//R3Em595tLbdjZdDRFltLurDsUxcc71CLo7HuSF8tk4H/tJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENKAaYsSK2WlDvWjfiUaNnqp3gXzoezpxx+F+OBBtG5pazW6rWpVp9hG7Zj4UZfmd1FYY2uJJwqo/Xn0yYch9pTV23EnrTKfVXZj7Upn3NqOWrKmBB5LrJSshTLqCat+1DflS6izGVEayW5LA93WippAv/JYK6iUtn4r7apXwTYrqXTmfyz4lJbMTg/rU3ZsnrL82vAcao03b9gA8eMP/L62PT6ZhjKdstxVGl/PskCrVFFP+M/f+SHEZ6jUnyuUJc8pa43G+afbd0FZykW93Lg6x/ixKyA+/9o/r20nTzgeykYjaA/mLyk7REunV1XnP9sZkOPNqGk+MIA6S79lVdXcilrQktLwdqrU13bjpsfSUBRRqVaj6poFlF3b4hOMBnr75o1Q1j+A93pQWdBVLNvC9mbUiWayeG+X1fsLkTD2i3LJSj9cxe9xy9hngiqtby6P4188YeriqDFH66OrKq5Yln0d7ahnjahU4TOJX1mZBZSmOT1hnhfb92Lf2rFjB8a7UHebnjBtE1Kp6dvasC8ePIApp1uTqBE//nhjT9nSgQLOiQzaEGZV+vMFc+fVtifT+J7N6Ai+03NwCK3vii72t2zOtFsygXrn9Bgea7KI9n3RKA4WUSvFctCP7bB/dBfEylVPmsTobh2l540H6wSuM8ZIGp+XrqffIbBjPH/Xh5/dsR37U941U7HRAl6A9F6cL4mH964neD+GrHs5GcH7eqSKU769u7GP+P1WvdVz1q8egKEwHntM6bSffdZooltTOG9ZeMwxEEfUmLriuOMgHho21rl796J9XySiLXux3vPmLYBSm8kM9qfpwF+aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIaMG1Nc6GAmpyggxo5J250JT1K0zw0gpqcA7tVakdLZ3LsCtSchNT3hD3lSZtB7d3AhPHXfPiZ53DfMh7rmmuvgbhnrtE5/uFR1L66FdQLJpVnrKcEn4m40ej4fPjZ4XHULPsjeKxlK+ZAHLL8NisVvD6DQ6iRLFeUZ6Ols9WpYKWiXYz/ONCaZsfSMDlK7/Wr//gpxHf//N8hnkxjW9jH8vu1Zg3r4anr57PSwYZCqINd/+xmiB957AmIVx6PvuCLjz22tj2u0p/vVbetbsVLLr4M4o4zz6ltTxbxJOJFvCcC6hwrjjm6Tls92//iLitdbk6lsk82GX1jxcXa7dqDY9DiRaghb7FSQ6dUmui2zh6IY0p/N660flHLS70cRs3lE6rd4wHldx828bIlfVC2fxj1d/ki9vWM8l0vWHrXhQvQrzWu0tYOD6O+taR08l3dJlWtT4lOXRf3HVPjW9LyzNb68Lj2eJ5B+g+iTvmpZ7At1j1r3m/YsXMvlI2pdNZ59a5NMmXG8CXHoH4zmUCtcLB3HsRz5mHbRFKmfx0cQf1zSY3vg6ODEHvW8zKlUqG3dWE/7uzAejrK53t+1JzTvgNboWx4EK9PPIr9uLUZj12w3hE6OIafDfjwe9tTWE+fpaEP+XEsDMxiHu2Mp575dQ8E690aP44JFQ/HquEi3kMtbeaZP+mh5jviofbeUym4/foSWNWKqbwOLZ1Yj6KHemCfVVxS7z2EVcr7qnoO7+5HnXsiZfr1UuUJrvMplNS17OxF3+YD1v03lsFzaI+mIHbUc6rimPMoqHc1PC2gnwb8pZkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAHTFgTVedIqz8uKJaRJKL3cqaecBvHkIvTo273TaJw3bsZ85/v374I4FkU9oas8kCezGVNHP9Zj+bHoUXvwIHoUDlq6PtdD/e98pQksKj3hxARej5Kldw2qq2zrnUVE4hHUPPs9/LdM3tLhFEqoWwwFUN8TcLAeZUubqPU71ek3/2sa+7x+e/cvoewXd/4I4sKE8hMN4rX2WQKxivJ01P6Pyq5WxPKjrVbwuPEoavF6F6Cu8eAg6sG2bNhljhVOQVliGfowv2ntRRAvOfl0iCsFcx6xKp6T62CfyKvY8Sy9eFWd8Cz/k/vgAOpuy+pckpZ+7+Ag3tsVD+u+J4i6yrDfnLc/gBrC6py5EDen0Fc35OA96A8bLem8PtTyJR96HOLcGPbHuScaf9LWFtQj7t6L57/nAH52SOluT7V08osXHgtliSQeezSN/r9FNa4Ggjiu2Chpo0SUf6vf8uXVh4lGDn3cw81PfoLvMzy7Ad95GR5J17aHBvFahkJYz7nzsE90dBkNb3MyBWWtqr/EmtsgDkRx/HfFjPeBJPat0UHUMPt8WM9cwTRGvojPv5ER3Lf0JLZx2cM41mI0vD0d2F/iyhu3UMhAnC/gMy4RNvfU4Chqy+e24fsc2lPcfmXAUe8HlXQehxmku6cX4rLS/No+xv4g1jNfwuvTncb3lubNM8dOqf7i96OWulRWA68P+0gwZPpAuIwa+GAcj93RgnHQukGLJewPwYDqpxUsj8ewzTs7zDm2pJJQph6l4qn3h1ItuP/YuDlWJIb9OpnEfSvqfQx/1dQ7oCZjhcLL7z/8pZkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAHTFrVGo+g1qazwJOw3OpJ4APXAzW342VUnor7ujWe9sba9cyfmZM9l8xCHQqib8Su/v0LBaHiamlA7Fomgb+XQGOr4XM9oqRYtRs1pcwq/d+cO1Ic1NeOx3aqpt09pY0NKl5Uv4DkW8xhXLR/UsPKl9Cs/4MwkftYmoDxhK5XqIfY8/Ph0h6lzFzZ4dX9QOe+VDvnJxx6obf/4R/8bysol7Itam6h1WT5bl+ZXOe21ple1Y65srn1bCr/ng+++FOJVJxwH8WPPbIT40SfW1bajzej1e+7br4D41LPOgbiivSdtjaA6hapPX23cwWdrmrWGu65NZ5bxMfQp7pnXB3HA8k+uqHFB69H37OmHuKPNaPuCQdQI9u/DfZublYYOJXQiWdPnnBDq75zmDojb21HbuOy4VbXtiTHUfpZ0f9N6PPU+w9CouV5l5cftJvB6zF+A75n41P0ZCpl7IdmEOsiq0qCWysrTP2z0/H41BsViqPWfSRYvRu3srj27IN69e19tO6U0mC0tKYgj6jlULZpxJNWMmvgly/FZUqyiFn0ij/r7cNhoWAuTSmecxOvVo7TV2Yx5N2JiBN+TcKtpiPdZ5ysisn8PekIfe4J5Ti+drzydlTe5KK/ubB7zB/R2mNwNQ2nU2TpKFD+awX7fkTJ9U+c88AdmTxM/tn8TxNqmubnZ3BfxMN4j4TDeTyeo+YX9XAr4sc39QbxeeVfdy2q8D4o5ln5loLkD5wsJ7KriWO+0ZCew/5TV98bD2BaL5+NzynPNOJAI4VjlBPHZWqzimBEI4Xcdu8z0P5/gvSfVCQgDauyPRs1F0PNHT/lUTwf+0kwIIYQQQkgDOGkmhBBCCCGkAdOWZ1TL+JN3JIbLMc1xy1bIj8sJAT8uv5TLaL+SstItnnTyyVDmuWrpwUXLtVIhDXFm3MTZHP7EP6GX6qO4NmGnUE6P4veMjeJyky+AyxyOtjLJmKX6qkp7qZd1fH5VD9Uqrmv+4CobvXxeWYaV8eA+K723I7gUEQ7iMtCMopf26zQYdhEWBlVK0qH9uKx4910/qW1r6yO9zOzWqUJwianomoq6FVymd9S/MQPK7u+tFxurt/e/9x1Qds4bVkF8YD9aR/3N338b4pzV5u/78HVQdvxJp2CdlfVR3dJpnQTD4Pe0988hdxW9q7Yam2mCEZ1yGRtz7+5dte1BZeHX1IS2TUUlVzhgWYyFg3hiExmUhYTCuMTX0YV2lJmSGf8GDuBSs6dy3vYcg5IBm7Fx/N49B/Cc9EASVjZX+w4Y+dmTKo37ccdjPVpUSuWwShVu96myi9cnqNK8J2N4rf3W2Fgs4pgTiuAy9kxy3nnnQTw+jmN8dtK0W3Mr1mtEWQM6DvaflccZa8E3nnkqlIWi+NwZVWnGPR+O/36f1TYRlIkE1b3tqvErFjLWcIkOlEW2JlCuGAviMyzqYJvv37K7tv2CWooPt6YgFtVfCuq5VLVSQyfVvTiSRnlKayum0W5KGElT1adkIAVcmp9JRvbjPZSIK8lqxNRtcA8+owpq7tHcnII4GWuvbQf8eO18VXymNUfw/iupsWzfrgPms0rO0j4H+0ClgMeqWtbC5Tz2+ZZmJTkJ4PeGm1ALMjJs+vnGZ7djPbqxjdvntEMsFZXuumLmX+GQtuRzVYyHsmWp1Qq2Q1SN5dOBvzQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDRg2prmQh71X8kk6rB8lu2Jp9LbOn7UIRVzaYhHXTN3Dzu4b1CURtWHlmplpbVusuxFtHZY1LErSl84PmHKJ1GWDemVRUTiIRTOxFV6yrBlbZKZQD10QaX+DIfx2J7SDHqWtjavUlsWi3g9/Er/a2vCXSXodfyvzTTaPqXB9an0rr//zd0Q79yypbYdUDrXirK/EmWP5VN2PW3Npt1SStc4OIJpjM85G9NV/8+/+cva9vy5aAW1YQtq3P77Z74M8Z4B7HDX/bk51pKVJ0JZUenWnamEyK8jjj/5eIizGRwbXMsTz1XWjEEldCsru8W8ZVVZUvdJOYNj3549eyBOtaGNXN7S7Q6PoK2ltu0bOIA2X+khEx8YxM+WPKUrTWD/7FJaUZ8tOg/ieK3rXFJps33q+sWs1LV6/NLGlTH1WcvJU0JhZTGnhfIziF+Nd2ec8QaId1ua+H0H0GYwpSznTlCWkatWraxthyJ4LTNZ1IZqy6y40uoXi+Z+9gVxfNeWoqUy6t6bLWvYsNbcKpuv8EQa4hNOOwniZx590mw//CyULTphCcRLT1oGcWc7ppzOWWmkh8fwe5viqLNtb0LrsmzOvP8RDqWgLD6LmvgTjlsJsbZsta0XXVdZ46lr7zj4PoxPzNwjn8c21fOBRAx17n491lk63ZJ6h2AirezZ1LtY8bi5P+d0oh2mTledy2I9Jws4TuZLZhyNK9vUaBz19GX1TKsqe9dsxhzL3zT1O0+5jJq8edb7ZVUc29Mezs2mA39pJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpwLRFrfGISmXsQ41O1fIKDIdRrxMPopY47EddTb5qa7xQ36X1KhUPtTBB5RVo+4kGA6htiVZRi5evoL7OtVKBNqVaoSwaxe/VOiNXaY1LBROXSljHSlnpan1KFaiEjz7rGkS0XjCgfDtVqsuSmLbwlMi7Upm9fzM1smm26xZQ5/TsU49C/MDv7oXYhXTC2Pe8MvaBZAL77ZXvvATit1xgUrr3zEMvyY3btkK8fMVyiNubu2rb3/jnn0DZ+ud3QfzMc6iPfufV10O8bOWq2nZe9R9vtg2SXyOcvWYNxDo1+4FB4/d6oB815M1NqMdzXX0vmHtfyd7q3gXQOsFEFP1Jo3GjH65WUNvZpOoxOYm67JKlFz7uRNSyr+1BjeGYSpM8dy7215Slcda6x+5O9GWuVPGc3DoPaHOOuSIeq1lpUItFvOeq1rUeHUOdtlvF+xXfEji86PGvvR29YVeuNJpV/b7HmnMxVX13Dz4f/EHrGVbFfhkP4bXOl1ALun8Ix5Wg5b2cLeA7GV1N2Aci6rk0nja+4PkMesGrR4Mcs2AFxE1Kd/rUsy/Utos+7OMDO9F//MRVqPf1yuhFPTJk+nkqgd/T1ZaCuOphReMRs38oiHpwnZZ9JnHUeDM0hNcgauV9SCj9bySucjHUeemb/lZSns4T42q+lMfr09qGfbGj0/jG77J0+iIi+7bvwH078B4Ih62xq4rztlwW/bS1HjoaQw19V7d51kajOK8rFPEcK+rdomQSzymfN3XJZnF8yU7gGBrT+Tesa60fndWKfiOjMfylmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAdPWNMeiqAX1lN9tOGzpgcMoHAmHMI4GlaLVMccKBJT/sdJSZfKoS3Yc1MYEPPPvAK+KZUXl/Tc2hr6CtpaoqP45kR1D/WA4llIxeqRWLB1kQHk0+tU5usojtaDOsWhrdtV195TuyFM+xZ7leewp/2NX6Yhmkqk0zCIijuWjO57Ga/3Lu+6EeGwQvW0DVfNZ10ONZDiE33Peeasg/tjH3gXxsmVGp/zs48/gsRy8Xe777cMQ//a+p2vb/37Xr6Fs/XPbIL70ivdDvPqc8yEuFc15aG9fEd1uR+bfvrOtrNY6W+2x3ZQwWjanpxvKwiEcRxxH3YOW7jahNJeRCOooDwwcgLh/z26Im1PGO7atBbWNc7vQkzYSxXLPOqe2NtxXj7k7BO/9SAj7gW1NHQ7i+Y6l0Tt4bAzjShmPHYqY6zeZ0RpC1NXmlKd/JmM0vIUC6nm1mf6fyMzhU4LGgNJ5n3vuubXt1WehhjmuNKklpQH3B41ms1RSXrCTqC2u+PAatLVgXy3lLH/b1KG1nSIi+w5ux3qETLkTxn6biKYgbm1CPevEBPaBdkvv2noGtnF+As9p47p1ELd14vU67ozzatstbajx7kihFr+pGb2Xq5buXY/vhRL2tZmkTodbqRwy1u9MVCvKd7iAftthu6087JfaW3hctdP4OL4nYB8rqDTfvb3zIG5txf6Vy5m+qe8XmIeISHsHer1rH+dIxPaexvOt1uWMUPkl9NhuvZ8Ri+G7aGWl+9fPJds/W9/zUaV/ng78pZkQQgghhJAGcNJMCCGEEEJIA6YtzwipPaMxXJqIRMzP6T71U7ttYyIiIn5cNgr5rCXJZvWzfQWXo/IqLbKj7Nomc6Z8NI1LJMNjuKxYrKB1id9vltgyaglSLyd4DlqoxFNq2bXJLGeV1TJOUaXJrBbUgsIkWsyUS2Zpo6yWTZ0GS45ha422rJa2Smp5dyZx6v59hm1jryKte/wRKNuyaSPEQZV2vFqwpQx4Pd5z+cUQ3/SZGyCOqHSe/+cnxs7uW9/+Fyh79lmsRyGH1zNkL7GFUJJTUVZ4PrWUHlapdKHPaFmNlmdotYayRvJNIaTQtm2eSopsL4dqSY07iymQRUQO7kcbOb+ybQpFzDjjV/3AXnYUEUkkcCkxkzNjQTqtUqsqC6yxNNpp5fM4JkUtKUNBjSN5fcnG0capUjHHOnAA+3lmXKWpzeOxo6oPJay+HVN2UEVltTSuxhxxsb8GLUlZsYTjRkV5mWVzWM+cJTeLKGlaNKrSas8gTp3OCetij53VkJK9qb7v9+MzrWiliZ7MoJ2ktu5qic+F2Kdu4N+88NPa9lgal7UnsyiLSCSwzUNWuvTmRBeUJeMoIcwVsJ6TGVx+f+vaC2vb2Szeezv37YR4eBdK6nJDeI8MbNlc246fiM/KdABTlntKchmzUmWXK1jHgH/2+k/Aj/2lr68P4pA15ueUHGFkBO9z/RyP2DIBpWX0OfpZqSxp1Rgesp6P4TA+34pFZSOXwzmQba+p5SeBYPCQ+77UsUqWDa9fXbuwkg6VKlPXy5Z3xNUzO9GCcjqd3nt01MhZ9PwoqM5pOvCXZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBkxb0xxUuhpH2R9VrbTSFQ/1KxNZ1MZkla6mNWX0LflJ1CyVlX2Pv6rShuZQO3XASteZyeJntUVVIIB6MMcx9XB9eA4hZbmn02rX2c8UzHeVlQZQW7eU86jf0f+WCQbs1JbKBqaC1kf5ktZ8mSb2K625LzDt5n/VDBxAnWiljNcrb+kgn3gQ7dmqOdTm+VVf9HzmGrSqlKyrT3srxIO78fr9y09/CfG//dhYxY2kUecZ9GFKZKegz8HcE24I+48vjBra+3+3GeK+Zc9B3NMzv7bteTqNNsZFVQ9tUYRaPG1Lpurp4LGTTabvxeJ4v3izbDp34MBeiB2lBZ3IGN1bIo5ax1AYtWuDyrbQZ71nkRnHvprLokY3nkR9cEhZSg4OGks6rW0sFPBe1xq7imvGCr9K5ezzsO1cpTvOF7DtbPmwTh+bUzZNExNKx6109E1xc85KQimeGoM8VS9bdF+qKNvAUklmC639FKXfty22fKK1/ljvclFpjTNGsxoOYv9oS6HmMqu06Jt2obVlV4dJld3dgtfSC+AYVFIaX69q+mKLsm7zOyodvOCYFJuHFnQBx/TFiSzeP6eeuBbi8ko89mMP/ifE27buqW33H/gplC05binEi449RRBz7EhI1TkcktkinU5DnFDjgH0vT07i/TSZwXmKtpMMBg/9+2UiidZuQfVegKPGcLC+q+oXXvB7ikW8/yLWexHFBhZ7BTWPmZzEcRLfA1D3j6pXWKXZ1nZ3ExPmWazf0Qkq+9BQSM/VzLNgcBB1/MPDaNc3HfhLMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIA3yeNqAkhBBCCCGEAPylmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAZw0E0IIIYQQ0gBOmgkhhBBCCGkAJ82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIawEkzIYQQQgghDeCkmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAZw0E0IIIYQQ0gBOmgkhhBBCCGkAJ82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDTgqJ0033zzzeLz+Y50NchrnBf7yfDw8JT79fX1ydVXX/2qvuvcc8+Vc88991Udg7y24bhDDhfsS2Q68Bl2eDlqJ82EEEIIIYRMl8CRrgAhrwc2b94sjsN/gxJCCPnjg8+w6cErRMhhIBwOSzAYnHKfbDY7S7UhxMB+RwhpBJ9h0+OomDQ/9NBDctppp0kkEpFFixbJt771rbp9KpWKfO5zn5NFixZJOByWvr4++fSnPy3FYhH2c11Xbr75Zunp6ZFYLCbnnXeebNiw4bDogchrl+HhYbnyyiulqalJ2tra5M///M+lUCjUynX733HHHeLz+eT++++XG264QTo7O2XevHm18ttvv10WLVok0WhUTj/9dHnwwQdn83TILDCdcUdE5Ac/+IGccsopEo1GpbW1Vd797nfL3r176/Z77LHH5C1veYs0NzdLLBaTNWvWyMMPPwz7vKhf3LBhg7z3ve+VlpYWWb169YycH5k9+AwjrxY+ww4Pr3t5xnPPPScXXnihdHR0yM033yyVSkVuuukm6erqgv2uueYa+f73vy+XX3653HjjjfLYY4/Jl770Jdm4caP87Gc/q+33qU99Sr785S/L2972Nlm7dq2sX79e1q5dC52PvP648sorpa+vT770pS/Jo48+Kv/wD/8gY2Nj8i//8i9Tfu6GG26Qjo4O+exnP1v7V/p3v/tdue666+TMM8+UT3ziE7Jjxw659NJLpbW1VXp7e2fjdMgMM91x5wtf+IJ85jOfkSuvvFKuueYaGRoakq9//etyzjnnyDPPPCOpVEpERH73u9/JRRddJKeccorcdNNN4jiOfO9735Pzzz9fHnzwQTn99NPhuFdccYUsWbJEvvjFL4rnebN12mQG4DOMHA74DDtMeK9zLrvsMi8SiXi7d++u/W3Dhg2e3+/3Xjz9devWeSLiXXPNNfDZT37yk56IeL/73e88z/O8gwcPeoFAwLvssstgv5tvvtkTEe+qq66a2ZMhs85NN93kiYh36aWXwt9vuOEGT0S89evXe57neQsWLID2/973vueJiLd69WqvUqnU/l4qlbzOzk5v1apVXrFYrP399ttv90TEW7NmzYyeD5kdpjPu7Nq1y/P7/d4XvvAF+Oxzzz3nBQKB2t9d1/WWLFnirV271nNdt7ZfLpfzFi5c6L35zW+u/e3F/vqe97xnJk+PzCJ8hpFXA59hh5fXtTyjWq3KvffeK5dddpnMnz+/9vcVK1bI2rVra/Hdd98tIiJ/8Rd/AZ+/8cYbRUTkl7/8pYiI/Pa3v5VKpSI33HAD7Pexj31sRupPXjt89KMfhfjFNn+x7xyKD3/4w+L3+2vxk08+KYODg3L99ddLKBSq/f3qq6+W5ubmw1hjcqSY7rjz05/+VFzXlSuvvFKGh4dr/3V3d8uSJUvkvvvuExGRdevWydatW+W9732vjIyM1PbLZrNywQUXyAMPPCCu60Idrr/++tk5WTKj8BlGDhd8hh0eXtfyjKGhIcnn87JkyZK6smXLltU6y+7du8VxHFm8eDHs093dLalUSnbv3l3bT0Tq9mttbZWWlpaZOAXyGkH3oUWLFonjOLJr164pP7dw4UKIX+xD+njBYFCOOeaYV19RcsSZ7rizdetW8TzvJfcTkdpLOVu3bhURkauuuuqQ3zk+Pg5jkO535I8TPsPI4YLPsMPD63rS/HKhUTyZLtPtK9FodIZrQv5YcV1XfD6f/OpXv4Jfcl4kkUjU9hMR+bu/+ztZtWrVSx7rxX1fhP3u6ITPMDJd+Ax7ZbyuJ80dHR0SjUZrv9TYbN68uba9YMECcV1Xtm7dKitWrKj9fWBgQNLptCxYsKC2n4jItm3b4F9fIyMjMjY2NlOnQV4DbN26Fdp827Zt4rqu9PX1vazjvNiHtm7dKueff37t7+VyWXbu3CknnnjiYakvOXJMd9xZtGiReJ4nCxculKVLlx7yeIsWLRIRkaamJnnTm950+CtMXrPwGUYOF3yGHR5e15pmv98va9eulbvuukv27NlT+/vGjRvl3nvvrcUXX3yxiIh87Wtfg89/9atfFRGRt771rSIicsEFF0ggEJB//ud/hv3+8R//cSaqT15D/NM//RPEX//610VE5KKLLnpZxzn11FOlo6NDvvnNb0qpVKr9/Y477pB0Ov2q60mOPNMdd975zneK3++XW265pc7hwvM8GRkZERGRU045RRYtWiRf+cpXJJPJ1H3f0NDQDJ0JOdLwGUYOF3yGHR5e1780i4jccsstcs8998jZZ58tN9xwg1QqFfn6178uK1eulGeffVZERE488US56qqr5Pbbb5d0Oi1r1qyRxx9/XL7//e/LZZddJuedd56IiHR1dcmf//mfy9///d/LpZdeKm95y1tk/fr18qtf/Ura29u5NPY6ZufOnbU2f+SRR+QHP/iBvPe9733Z/6oOBoPy+c9/Xq677jo5//zz5V3vepfs3LlTvve97x0VerCjhemMO4sWLZLPf/7z8qlPfUp27doll112mSSTSdm5c6f87Gc/k2uvvVY++clPiuM48p3vfEcuuugiWblypXzgAx+QuXPnSn9/v9x3333S1NQkv/jFL47wGZOZgs8wcjjgM+wwcWTNO2aH+++/3zvllFO8UCjkHXPMMd43v/nNmg3Li5TLZe+WW27xFi5c6AWDQa+3t9f71Kc+5RUKBThWpVLxPvOZz3jd3d1eNBr1zj//fG/jxo1eW1ubd/3118/2qZEZ5sV+smHDBu/yyy/3ksmk19LS4v3Zn/2Zl8/na/sdyq7niSeeeMnjfuMb3/AWLlzohcNh79RTT/UeeOABb82aNa97u56jiemMO57nef/+7//urV692ovH4148HveWL1/uffSjH/U2b94M+z3zzDPeO9/5Tq+trc0Lh8PeggULvCuvvNL77W9/W9vnxeMPDQ3NyjmS2YHPMPJK4TPs8OLzPDrfv1rS6bS0tLTI5z//efnrv/7rI10dQgghZNrwGUbI9Hhda5pngnw+X/e3F3Vk55577uxWhhBCCHkZ8BlGyCvnda9pPtz86Ec/kjvuuEMuvvhiSSQS8tBDD8m//du/yYUXXihnnXXWka4eIYQQckj4DCPklcNJ88vkhBNOkEAgIF/+8pdlYmKi9mLF5z//+SNdNUIIIWRK+Awj5JVDTTMhhBBCCCENoKaZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSgGm7Z3zu3/bhH/R02+9YRXhYn4c7+/0hPJQTsPZ1scxXxe/x+SGsqGOLz8RB3FWkmoVwfCINcTzVXtsOhGNQ5gq+L+k4mG7Upy+IVc9KAb+nf+cmiLt7F0McjLbisfCSKHTaU2+KaGpufMvM/Rvqine+DeJyqYxxxcSuiyccj0chbk5i20QC5hroDj08koa4UKpAHAoFIbavZjweh7JoNKI+i/1YPNNXXVf1W9VO5TKWl4pYr0LRXI+JDPbbat2xEe3DWiqbYxXK+D2jY2msVxXL/UFzRe3jiNS3U/++gSnr9Wq56C19EDsVrKtj9faKh2XBMPaMRBT7lD9o2tJVY0wygf2gmJ2EeHIcY88zny+WdbuWII7GEhCXrP2r6vpWqqrPlPBYTU1NuL91fQr5ApQl4uoeiodVPYoQB6zrU8FuINkC7ltR7VItmvOIBvGe6exIQfyjn62XmaKtrQ1inTLajj31HCqX8Vq3t7dDHLH60+Qk9oeKaid/APui4+C4a9dD11HfczoOWtd39dlnQtnI6DDEG17YCHE+h/W0vzuoHqZ+v364Ii/nnLQXwVTeBPp8JyYmIB4ZGZuyXq+Gnz+zG2LPnfLBPIvo58FUT309X9DP/KMrjbpP9dO3n7Sg4Wf4SzMhhBBCCCEN4KSZEEIIIYSQBkw/uUndEooqd80fPN/Uyxaeh8sJrmuWBJTqQTxXfZGjjq2+y/MChyqSHZsegPjpxx+G+ISTL6xtrzj9XCgrqRUQz1XLU1quYa3+Pvvog1C251mM117xYTx2AuUZXvXQ11PLRF6rrtvJBC5D9+/rh7hQMMvHkQjKIIJqSTcUxqXkQsYsh5ZyKGUQwXYKKklFJpuDuGotgeeLuA4dj+M5+OqUMWZZOlIn+8B/n+qVvfolSRMnlDxAL9Pr5c5YDJfebelLUclCKhWMx8bTWE/ru3QdA4HZzY0UCmBbekpKErHa1hfAdvbUMlyxjOcS9VsSHz9ez2IOpQ3ZPH5vXg0OTUlz8zenUDKxf/8BiP2CS+LxsKlnHoskm8G+GlZ9OdWkpB6WBEpfu4Af2y7oqP4aUHKiiqmMOpR0z2mBOKSlbZlMbXv5woVQFtESp1lkannGoe9HEZFcDiVQ9pjV090NZQNDQxAXlHxK10NLG9TOU1XLVklKcxL7w/g4Sheq6t7X5xy07m8tx2gksdBMJc/QscaWZOhrM6tpJl6GjOSPl9fjOR0a3ytoQ/7STAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSgOmLEhvojgQ0S6qobl/Ukfgcz9pXWdWo2PNp6zc5ZDy0bzuU7dnyFMStMdSsTo4YWz2voiyX/KgrFQ/Pyu/Heo2njf3Wzo2PQdni+R0Qu56y8lIXzG8J1XzaUk5Jcho1E3x2FvVLfmXjpSseDBhNZTiEmuWqtu1S9lnZCaNp9mmxsOofo8oerKB0y7Y2cTI7DmXlCta5rOoVsL4rEtF2dBjWaQJFYf3BUdphbbuk0eX2dwXUDaPvH0/Z2fmsvudX+nm7zWaDthbUBxcnMxCnmpKmrIJ9pKw6QiaH5zlw0OhO21uSUFZVjTOZU/er6ssVS/9bKmJbNCVQr+8XbRlm6ulWVVt52A9KSlvtKg10ZtxoZ5ti2FanH78M66y+a/OOPRCPWALrsh+vXdzDezt9AK3NFs8x4938DrRqe2HLFpktGmlpQS+r2tRROveKuk86Wo2u++RVJ0DZhm07IN69C63L8nnUqtv1crS1mx/b0fFhu4XE9M1yFu3YYuo9i6KykLSfM/8Vm2ug3194OTrk/8J6xqs61x9Lj4Zmf21n2GgsPJy8XC327PFqfvt8rZzDkeGVtCF/aSaEEEIIIaQBnDQTQgghhBDSgGnLMxotoECZll94eglF2cRB3ODncr1sppaMiyWzpL5t06NQlgzivxEqjsoKFjXHqlRx6Sro10tKKnOhH22Enr7/32vbzWFcUoq3d0FcUvZ14SntjvQ6v7xi6jMazZyFWFWlEWtpTkGcy5klyoSyTMuX1FJ7WS0VOub6RUI6sxkuowbU8mY0ouKY6RO62+rP6qVRv1UPbUmls7vpdtSyG3upOBDE79VLko0yatlLULoerrZtC6OsJGBlBNTLueHw7MozEip7XjKIUoee7s7a9vAo2nwdGETJQHYcrQkDVtuFlF1dXmW8C6glvZL67SFXMNepNYmyrq4mjKtqnBm3bOUqFS3hwXHCCeD3jiu5ysBQ2gTN+L1OHs+puw1t48aa8D5yXXOty8quLupiPZJxbJeF8+eZOqpsikPjKIGaSV7OUqxPXWu/+qy2wUw2mTGrS2U5jISXQBxX2fWe34QSlYpls6qfb46SRGmJVGvCSJgWHdMHZU888yzERdWvE8oW1LHHjerU9nTakk7H+vPwPVNZ7ImIPV/Q8ozXjkTiSMJrMJvwl2ZCCCGEEEIawEkzIYQQQgghDeCkmRBCCCGEkAZMX8Sq81vXaTLtoql1t3VWZ7C/1n4qXV+dTRDuvW3Lutp2tYi6xozSz43n0Oqno8Xo7TxlA6dTx3qC5Vs2PgHxhsd/Xdt+4xtOhbKSqLTQsWaIHW1t49jXR13MV2G5o/VyM0l2EjWkWpsWCRsdZDKBll++PF78bBa1mzHLDimhPjs8moZY28Rp7Z1r6XYrJdT8eVXUah577LEQ9/YuqG2vX/88lG3avAHioNI11mnVrXaty1iv2ryidMk6RfJUuj+dajep4pKlRQ8UUFseieA7ATNNVulwm8LYHnZK9NZWtDYrK4vIaBLvubKVclpbgElQXc+69N2owa9Yx/Iq2FaRCLZ7Xmn9E02mXiNqfAqqzzY14/WvqL6dsHTJBaWd3juMY2NrC57DwjaVMr5kNPp7x7AfBJX4//ilfRAHwub6PbtjJ5RNzqJl2MtC3TOuugm1/WLCehfCV9H9FNvtnLNPg3g0g8+lPXsHrXpoGziMy2X8roprNM4V9ZvYyCim0dbPDqfuRSXL+k5buyoL0UqdZvnQ72h4qr84ToNpiGc+m8ngc4Sa5sOL/W6N2+A3Vf0eztECf2kmhBBCCCGkAZw0E0IIIYQQ0gBOmgkhhBBCCGnAtDXN3tSSZlDa1quMlEa3LjZzdz2LV9lLxae8WSfT+yAe3fNCbbs1iHll73/haYg75/ZAnBveVdvev/lJKEvNWQhxIY/6sC2P/Abi+Z2ttW2tOS1mML1pOKyaQWvALQ9ZrRd3tS5Z69TqNOIGreedScZGRyHWWrQmKwVypYztNr+3F+ING1+AOGfp+uZ0oge2T1Av6ClxYqWqNIFFo9csKm1rIIU62KWLsE8cd/xJte1oFLXV+w8cgLhURh/neqtSU89YVGlXlR5ce6BO5XuqdexhD31etY9zqGrKo6oeoeDs+jTni6ilrSrN+YTVXCkvBWWRZtToVgJ4rEI6Xdv2Kf/pSBg9iwMRjHWqY9vz2VP3fsmHx85VlU48Zo7dnEQdcly9+9De0QZxJoNa/0TEXBBPCVaHq7jvjr2YNrtTedg3ialXSLDOjvI0rhSxj23bZNJIb+/fC2USwfH8SGLfNxUX202UL39QeWTP6TCpwsPKz31YeYKHW3C894fwWgeDpq+ODg/gvg76XOt7cs+4adfHn3oOyg4qr3K3iudULOr3PYzOPZHE8Sys7oliEe/FUgnHcNvXWY9f+v4JqnFlbNSM4do7v7Mb310gU+PpyYXKqeF45lniqumhU6dhpqaZEEIIIYQQ8hJw0kwIIYQQQkgDOGkmhBBCCCGkAdPXNGsdstLC2BpVrVet91I8tEC6TnOjNJiOoFbqwE70w41WjeZrs+XZLCIycAB1e8uWLIDYn0vXtv/PN26CskhTC8SpFqXxKqJu7bQzT69t75lA/WBzE/5bJaC8N7UnKGiHtCRJ76n/GTSFDaqn/bRnkIqHuts5HZ0Qu5Yut5jHa9nTidrNSPgEiJ9d94z5Hhe/x6/8kGMx9Mh2lU9uuWI+r7WsorxusyODEMcdo+s74dglUPbkM4sg3rN7E8TRsGo4S2scj8exGqrOruowPke/M2ChyopKe1hVesOwpXF2Z7G/vBQtiSaIU8pTOl80Gt5iGa/RyCS+R+CWlZbP8sONR9GzuKyO5Vea8bqx0LGumdIwp0t4Q+Yr+Nmy5YUdjOLwHPKwL4+MpPFYykfbda16+5VftIPnODCO+v0DlsZbRKS52byjEYlhO+jxanAC63Fw2Fz7QhHvz0oJ7/WZRGv99XNpqvGw/j0B/Ywz5ckm7JfDE6hDfmHTLogHhrG8rcvoo5VNswRUwoDly5ZDbGuJB4bwPYr0JLZxsgXH1Y52fB8kkTTtHI2rsVCRyWI7Oqov2jrmsLqWEaVrb25G7b7fb8q1dnr+fHyGk5eH9lr2W2OGq/2z6/JvHJ0e2fylmRBCCCGEkAZw0kwIIYQQQkgDpi3PqBNYTPHTfCN5Rl36RZ9lc6LWoyqCy8UTA7sg9ibRwqgzbr7rqQEs62jBZbPlC9DK7OC+/tp2cRw/Oza0FeJdBVyy7WxKQdzSapa20g4ubc1f/gaIAyolaUmnGZ1iFUSnJK9LUW4tHdcfZvZS2HZ0dkAcDOGytc817V5SVm9plfL3+BOOV+VGJlEsKqsjJddwlHVUOIpLg4lgyNoX28VRsoiJMbTRK06O1LY75i2FsvkLjoH44P5tEEdRNQK2U8EAXquiTj2sU9yq5U8twbDRdnZ12bwtuYqrpBv1qXNnlnIOl3zHS1gfO810QVn6jQ2PQBxSsomW5lRtu1JQfUhZ2/kd7Bd+1XZVS68wlsU+Uyxj25VVyuVowQzJdQZPHg7XypmxTjbit/pNpYDL50UlNTqo5Bk+P94XrVa9c+MoJwgpy7Cc0msUbXWZWvINzqJtlbZm1HIMW2KhLea0BKqsZAIjAwdr27muVijbuWM3xP1j2BYH9/dDHF5g6nHsiavweyvY6BklC4xFjJSruRXlF3PVtY5F8XkYCaNkp2rZJbpV/N6StntUch5XjbuhkHkGJhP4vdq+Ts8POucY2YgTxKeYtsgkU6OnbZUijpMDe808p7MXJYbaGvFovfL8pZkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAHT1jTXpXaewn2kkTOVbcmkP+tT6V4nJzCN6NjARohTQdTilaxUsq0q9acbQ+uuhNKzlqw0vee96UIoG5lIQ/zUk09BnK+irm8ybzRgfmXX46n0pVpr7KgLaKev1Do8z536WCDTqxNHz56eMJfFdtIJvCMB0xWbm9DSqpBH3ZXW4Xa0Gb30Ost+TqRez6v1c/q7fH5TD6dOf4nXWuvHJydN32tTZ9ihLPZa2zD9a9jBevr9pq/qtPOlEmp79f2mLZxicaNVnMigHjUcRkGuT3eJoDlnR9T9oqzYZpqxHOo3Qw7WJ2L172oBbR5blIa5orTFE/vNOOMprXRYtXNQCQNDMYwDSVOvcBCv75i2CwyqPmb1v4KntdMqnbqH95S2C4xZ1ycax+/RavR8BY+VG8Pr55XN9fM7+OnuHrQq07pb17IfiykbvWwBtbEzibYO1Np/v2X9qe85/W7EZBbvo4J1/cIJHGN29e+HuH8EP+uqVOv2uxJuCevcmsJn2tgI3hOPPPD72vapp58KZX/+sY9CfNdd/wHxqLIwHBsbM3Uax/c39Bijn0O6L/qt1PM+NY7m9LUs4HifssbKkPre4RF834VMjaPGrslh7JvPPv5wbXt1WzeUJSKoRZejVE/OX5oJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhowfU3zFKmvRaZOQaq9AT2labKlZeWS0taNYyrQVAQ1cJUJTI87dMBodHJp1Ht1dqNGZyKL2qlEq9FOtXfNg7LIQfRtlpPxfAcHxyAeGjG+sPNb0aN4VHnGumXlJRw4tK+152kN89S6ZGgXr1F685lj4OBBiDtXHgtxa5PR6gWnMqYWkclxbPOElWZ6v9IP6pSsXVpb3JKC2LX+HVlR2vOg0tv7lR7VtnLVeuiw0qNGlS474leaU0sj71fHsj1P/+u78N+++pxjMaNpLitNre4/wQB+l98yIfYpr9pIZOrUuoeb3jk9EO85gG1dOGj8uhc3ofYz6ENtcf8o9qGApSttSWDb6NhVmt2JHOp/sxlL35pqgbI5ETyWP4Rt51q+9Bkl9w3H8HqnBdsyk8V6NTWZ74oGUdOdUSmVfUXUoJYmlSe2a84xEsU6Dw3j2BcIqnTVVv91lO++31Em1zNIfSpsxPYlDqox2FFjkutDbe2WXUZbO/8YHN9zHo7vherU7wK4FTPulAvYTiedgB7/Jxx3OcT/5P1Tbbu9A32at2/B94EO7EX/6LLS+futsSGgxgX9uG9S74ZM5YmdVSm3R0dRL6215/EmM57VtcNRqqudNnWTL7xeg3u3Q5wfN/24qtrBrfuN9ei89vylmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAdPWNPs87eypvITBENidatc6H2Lbp7KUS0NZV1LpOUuogRsexe+aO39ObXvvAHo4FpUWcd8A6mxDls40r7wj48ofctUJJ0AsAazX3ff8prY9NDiIuzZhPJHGONWJfoiurSV9FdbKs+fKXI+rNG7aDzjoN5pL7Z9dURpA7dvc3m606J2dqFm29bwiIu1tqPOLqnZ1Ld23P6Q8jF3UYypJs5Qr5hzH08rnVunJtU7ZH8B+bOsLC3nUAPqVNjOqzlHr/NLpdG27UsZ7IBRS91dQx6ZdHO1d28iQ/TDjqbrnxvH+Pr7DaNvnx1A7XFJ+yYk+1e6FdG075sfvScZQ3xuJ47EnsnisrbuGTZkag8JJvLeDMbzeSUu33Kb65vgEamUDAewHyZjSBxeNHjbioR66SX02OBff93guh++SjFs61EAQ9avZPN6fYQf104Gg0edXlG+6483e7za6r2vdrX3f6PcZNAGlrd2xy7zz8st77sPjquehp66Bq/r1+Hja7FtBYfvG5zdAvG8vvmtz7pvfXNveuhk1zDu37YRYv3cRCmNbBKx7pkm9J1EoYr1CSjNfUT7Nubzpi4UC3k/FumOpezVu3k8YV+8wVauzOQbp75rqu2fvfaE6rGeN9mUuZPH6TQzheyFtra217UAYx7kjOX94LcFfmgkhhBBCCGkAJ82EEEIIIYQ0gJNmQgghhBBCGjBtTbMjStOs9IyO5f+n5JviqLm5X+1QKBq9XNBT3spx3Hd8AvWsZZWnPhQ3eqiWTtRhBZVGp6I8CwMBo71TsiqJJVDHF0qiD2wojlrF0848s7b90IOPQFl3Bb039+5+AeJkK+pyHcdoNbVSyqd1plMoj7QG1Wvgh3w4mdOFmsm40uFqna6NPseS0gT2WjrmlStWQNmYpecVEYkpnWhA+SM7AaPNC6h9xUOdXkT7aVsawWJBebGqPq+9SFuS+rvMZrWifc3xWEGlJ9TtbGs3tfYwEsaOHlI67qDVLlO10WyQKeHY0KHap61izi3ZMgfK2k86DWK/i+2e3be5tl0cQu/S4gS+cxAK42fnK518KGr69rbdqBlUVrhSmcTxK2d5PDfFsS3aIxhXlff0eBa1odWK6ScRP167LjU2Lj95GcRZ5R3/9MYdpiyH73skW7T3tPLStfykE0k1BpdnTympvYa1b7N93zTS62s9dLlsrv3+/djmITXGtLalID7hrNMh7u/fV9seGcRjRVXfi0YXQHzqKatq23t3Yj8eLeP4lVIe4jk1ZgWssSJkPRtF6r3itfdyoYB9sax02zZ6/Iqq9xHs91KyOZXHIYf3z8zyWtU067wO1iCjfPmzo/geV1XlxUi1m2dpMBKHMp+aLx2tGmf+0kwIIYQQQkgDOGkmhBBCCCGkAdOXZ/imlgHYy1naTsynpuY6jbZXNUs3qaha1ihjitYxtVy1d/ceiDN5syw0oZY+F/ThclS+hMtV8bBZ7o1EcMkopqyiAmoJKZLApYy3XLy2tn3gAC6J9M5TUoUoLn2NqSWUjo5FJtDXUi0j6kWhKY2TZnF9JankLNqCrmLJFcrqJHxKjjAxPo6ftdKj2/ZzIiITE7iUrFOHa8lB2FryLyvrNtsaUUQkGMM2t5csK0pSoWNtQaex06Xr5cq6Nlb11Cm6IY12WVmtKRs9bStnL2HXLW/PYhp2EZFMBu2SwqrtmubMrW13LjsOysqpeRBXPZQHtcZTte1AN96f+7eug9hT9puhJpRntPhNv0ipdNWZcbQiDIexD3mWVVcpj5/NF3GJOxhDyVhBjXclayyMteC+sTCOb63NeD1SKg2565q29qk02aGIuoeUPCOZTNW2q1U8h0Ie7cdmEr9fp4g/9L6N5Bk5JROwd68qu7psAaULq5Uc47//909CPGBZof7v7/9vKDvlFJQZXfz2t0O8dPnK2vaWTVug7Pf3PwCx+PACJJpQsuP3G/mPq5bmS0puUSwVp4wrljQkoKQeWp5RUv18eNhYOIL9qohUlbXdUYkahquW1eTArk1YlsNnp5YrtnWYsc8fmFr2d7TCX5oJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhowbU2zRssZbblLnS2amppXXbRBCTpGI5gIo26mMIhpaPv37IC4qFK4ehWjl2pNoEZrYmQUYn8Q9TwhSyMZTaDGT6fgzo3j97a2d0Dc3ma0taedjhq2YhWvUG9PF8Q7lQa6tW1+bVtrcutUpVqza6Wp1TLaqRPFHl6CKj2zTo3titHPVZVm1C+ogauU1GctDWFbK2qat27F/lIoogauTuNs9c1wXZ11+mrUiXb0Gk1tuYx6sGIZ9aba7q+iHB2TMaMpLSndXln1xaKydwqH0Q7Kb4k3taWcKOs13xTvKui+5fhf8fDxylCSujF13pmoObeyOk+nrO2SUEtbsdIV55UG1a2zxMJ2lxi+7xCPmLabp96bOLB7N8QBpX8NWjrSiTxe33Qe231yEs+hqu4T19KOjuXwnOaooT8UwT7T3Ybvf7RYNnopZTHXFMf7oqK0/xUrTbLWEYdmsQtpTbO2nLNjXabfG8hkVB+xtLaesqJ0Hey4mSzqSkeG8Rl36hveWNtub0PrxDlzUJvfOXc+xP1D6dp2hyrr6MZj2VphERGfehkplzX6e21zqVNh+/1YHvArOz/XurZqQqDfgcrncaxMj6Vr2wmltY8q69KjEjUu5ybNe2Cb1z0KZR3NeO+2tqQgTrWZeYzPrzXNszljeO3CX5oJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhrwihVlU1n2aZ2t9mV2PdSk+l2j1XOUj2cirnxl1bHHM6h/Ov2Mc2rbIwf3QdnEJHqkVpTI19a8haOoU8xNoA4tEVdptB3UUE5OGM3bccedCGUDg6itDilNUkZ9l52iVXta6qutU5ZDuWqz2fwXUyKJfrS5DPonO7buz4c6taCH3dRTXp2loulPdX7I6iwrFfxsIon6VLsZA9oDW+kco8lWiGOtJvbqzKZR55lXabQnMihqXtjTU9suq3tifAK9yyNKw6xvTluL5ikNbSiIItOptJyNdJ4zTUS9o5DN4TV95Ilnatuj4zgunHI69qG4D69/Lm3834sTqDENhfCeCyVSEFeVf7WdbjbVgdpgUWPf2OAAxAFL79mq9Jo+rWEeR13tRAa9g+NRM3YmYjiOjo6h5/VkBsecZYt7sHzCpNmuujiOlv3Y3wZVPd2q6WNBpZMM+JXGfgbRY6fuz3a5fi9Aey+PjuIYbr8bUXdfKA3v0AC+s7L52achbmsxzxadDj5TRB1//7onIc5bOn/d5itWrID44EGsh07/PTlp+oh+F0J7tutYe/rafvhF5cNc0Z796h0O+1ip5hSWqXdjiMj46GBtO+xgX2xrwTE0HI0fMnZ1em4955tdm/7XDPylmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAdPWNOvc81o3aevD6rxelRK5WEK9Yaxq+XhqHY2DvoI9vX0Qj06ipqm7t7e2XSqi9m5sEnW0mRzW4+CQ0TL2Ll2K35tAbeKmFzZDvO6pDRCf/aa1te1ly46FstYW1Atu3Y3aMp+rr60daWHR1PngHcun2a0Xm88ara1tEEeVZrBg+cjmlE9nqgl1WLovTmZMO2fzqOvUsdYmdivNadVnypNJ1LX7wqjrqyg95oilMU0E8PyiUdQXhiPYryez2Dcrli5S30/JBOrQNPoc7XvVUZpS7Z+t+4Rn6VW1p/Wsa5qT2FbtIdSjD297oba9fv16KMtO4Fhw4sJuiFtj5j6Jh9U1CWJb+lTb+lVbutY7CK6D+sz27rkQx6d4d8JT2s5cAce6ZvWegOuiNjRitW1LM95DB5Q38OAQ6lmbO7CeTUlzzuUyfs94CbXVEa2TtzrVxBhqp9vbO2W20Peg7r92965WD62rFRHxKx9iO/YpT+Oqenfm4DC+k1DAr5KspU0fGdkIZQF17L37+iEeTpvrW1Ye7FrTPT6ObTE2hvXya1PtKY6l99We2Pa46lVUboUyauCV1FzClod4cyoFZYFDV/GowafmV+WiuZ6T6t2hkTS2+bwEjqF+q13V6z9Hq4S5Dv7STAghhBBCSAM4aSaEEEIIIaQB05ZnaLsRvVwFP937Dr08JyIyPjgIcShmygMtuFzpqXTEkRAuSc7pQEsen7UUdmAYv6d/BJckFyxYAnFbp0lnPX/hMVCmLeaeegxtgu755d0Q+60l3KWLFkFZcwum3NZpZ5MJvAYha0m96ql/5zh6DUVZrvnspVRtgyazRqtKbx3sxGtgL0Wnx9DOqaxslvTSoC3XCCprpGQS2y0zqWy6xtF6K9Vm+ldVLY9HY7jEHWlGyclTz22tbfe2opQgFsclfEdZFJbUWljJWmqPBrDNQ0oe4Kil4pJKM55Om2XXkLp2MbVkHQhgedmyxnOVNZQ/MLtptFUmbKmof/MnkqZ9fOq+KEzismShhP3RnzLLlK6L/U3LgbQVYVjJdErWZcoqiZirrllFsC09x9jMecraLaw/q8aCuEqF3dxkxpFKGc9Jp0XOKRuwAzsw/fzefnP9mlQq43gK+3pZ8J4ql8191NGmbBqjeF/MJFqKpOUZtm2aliLpOB5HO8CMtQyu01Hrcbak+nHBxedlOGr64p5tj+C+k2msR5O69gUj7Xj4yeehLBjEa53JqP6lJHO25ELLL7QtnLbvq2gJhph44UKUJxYyeA57BkYgbm425RNKUuLUmdDOJPqB2SieHXwuXvtI2LTzhHreDTz3AsS7D+AcaVHetPPSVfiM9qlxzptNfedrCP7STAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSgGmLEpUErl7NYuv8VNrQorLTGt2P6a17lli6ZKXJrbqonaoqvWZTBDXOOzYZXel+laJ20bLlEJ/xxjUQz51vdMwtrajbiyqt7Dv/5O0QlwtKOzS4t7a9/uk/QNnJp58JcXsH2r744qpZrGvgiU6ZrFIb+7TG69CaL98sarC0Bq5cQn1sh5WCOqzSFo+plLUVZa1VsDTPwTBqdB2lAx0bT0OcbU9B3BYwbaE1fmHV1zrnLoB4136jxdu4Ha2gOpSGW52C5HKoKQ1HTH+L1t2l2KZBpUPWdllRS+tal0pY3auidJ6OnR5Yp+eeXcc52b1/D8QRdd7zLX12Wxi1swmlbR8cw/s1HDXXu6NFacbVJfIqqA+WIlokVnKmvKi06sEYvq8wnEeN5sRwurYdVe3siNKVqu8NaauukOk4I+oeiiiNfc7DeqXzeH1SzUbD26reO3HVOywhdcFa2o3WvFjGfl4o4rNhJtG627pU0Jbm2e/gOen7xtb6i6BdW1nrfZUvWlk9w/bs3g1x0WrXSEzZXJawziMqHfojj5h3bXbsOQBlC/oWQhyPYzvq62FrvqdKbS1Sn1Zcp90+88w3mu8Nq2eW0j8vUR58g6NGe72vH60Ro2Fsl5nltaFh1mi9fShs7tXmNnzuDGzdBHHVwet3Srt5r8un7gHx6fOlppkQQgghhBDyEnDSTAghhBBCSAM4aSaEEEIIIaQB09Y0N1Kv2PonR1CTlM2i72KpjDq2eGye+ayDYs9iAb0k88r3NNGMeuBc2mi8TjjxJCg78aRTIJ7bixqvpOV5Wamizkrr1JpbUhCvfevFEA+PDFvHRe3YxCSmKy0WtI4bNZXlitE9+v2ozXSryudVN6mncrRaaC3UTBJWWuNEDH1Og5bur6J0j8kktvGkSoeetlIPx+J4LQsFTNE6MIRe3T1zUPNVtTxWq0p4PJZG/WB+J2oGK46pZ9WPutdIQmnkw3j+HS2owW1KmHb1VZTeOYSf1frKkNImBpssnXZIaeIV2pvasdPfqvTcZaVFnGkm0mmIKxHU47UsMPdzTwj79r4BfL9hyxBqdvcPm/LTT1oKZT1d2Ef8fryG+Tz2MdtLtkl5sgej2Hb6/Y+QdZ+Mjw5DmfZaDinf4Talm49YWvZsDvuuo/y5x1XqelH3YDxi6hlQ701UHKUNVnrWyazxDi6pviq+2dOkap2t9pl1XRNHVSr1pma8f+d0d0FctPyR96jU1trP3FfB67d3506Id2zeUNuuCrbLnv1piJ94aoMqN767J510GpQ5qp1GR/G57KhnR7FszslTbZ7P4v3jqBcc1px5FsRLly+rbe/duRnKCioN+8plfRCnnzSpxPUzS/tBH43ofpxsNfkDFhyDY9nAQXxmzV2AOSR6rf0LHt6bDezHjxr4SzMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAOmrWmud+jDv9hSI8endaWop0smUBMYCJj93SrqA7Vvc1T5VvqV9qx7nslrn2rFnPZtbe34Wb/yi7T0v67yuhU/6nuaW/DYxyhv4a7c3Np2UH3PZAZ12UXl8bxlG3opun7jPX38CtSpxRLdEOcqylvRMUIkrQfTXpsziav0sI7ygLQ9VLX+2VEm4X7lezo+Ya7nmNK9lquoS66qc66qfzYWLY2cT/m6Oi72tbTy+q34jHY9W0HdejqTgzgcwnNsm4PtGI+Yc6yWlO5TnUNF6UQD6vrYkrc6HZrqAgG/+qwVe8rDWWupZ5rujjaI02nUZNp9vXMuak7Hq6jRTbh4/V0xeuFcEe99n4Njjh42s0oPnM6a70oqjb0arqRtTi/E5ZjRn+/tRz/7iPpwV7fuM+r9BqvvR+P4XkBR9e28OgdX6afDSdO3y8qfe3gc+3omh/eFz/KCDYbQH7pQwnaZSWIRbEetcY5Z71l0tGNf6+zAZ8e8efMgTiXNZ3/9m99AWb6ozrGKd+HgQdTb/9+7f1XbzhawHfr7UedeKOCxzzjDvLfztre9Bcru+o+7IR4bU+8aqbawnw/FEvYP7dH+vvf9N4hPPvlkiA/0m7wFVXWssvIEP7B7F8TpYXPOUTVutqawXx+NuB4+42LWu1ktnXOhLBHHXAORCN6PJctX3vWr566o5AJHKfylmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAdP3aW4ofzX6F60HHlTegGEXtVNVSz83XkC9k6OkxXmlN8yUUB+c6jAap2QSdceBAGpDtaa5XDH1KCkdmtYDh+Pot5pUvs2BiCl3y1hnJe+VZEzpfZW38rNPPljbzuzbC2VnrL4I69WGWruS7bV4BDXNVeU1HAgqna5Vt0gUywLK57RQQH2w4zfaxLGJNJSNZVATKMrjuOIpXXvZxJ4P9b0BP16vgIea3niH0ZjuHUCdp9uPuv5wFH1fYyHU8jtWl/ApL9+c0p/6XKxXKIzXr2ppkbX+uao0336/8pS17utKRZ1/QGt9Z5ZUE16zkvJsj8WN3jESR+1jV08nxDsn9kMct95JSClf9aLS6LolvA451cW2HzBtv/UJ9NENRFBT2Kb8u5uCps8Fk81QtmRpH8Sdrai73bkF/W8nRoxmNdGE2k+f0hZrXamjfK6z1rg7NDoKZSMT2Le7O9FzvGK9Z1FUMnitj55JTjnpRIibmvH6xmOmbcIhvA+SCWy3rk7sTyFL/zk5jrrjjZuxXSYzeBHy6iKse36LKSvhvsk49s1z17wR4uuvv6q2fXAY26V/Pz47xiewHbPae9naTih/8TNXr4b49De+AeLFS5ZAnLDG9PWP3If1GMPrNZlFH/6I5RFedfHZeMLKxXK0o5/iVZ/pu1UHnwXap9+vP+2ZfuwTNS9RmmbvKP3N9eg8a0IIIYQQQl4GnDQTQgghhBDSgJchz/BUrC3EzPxbSxv27UHrpGN6lE2Maz6bncSl52JmHOLRMVy6CSdwiS0cNctowSAuRbju1OfgWkvVdWUqrmqNRRCX8oN2mmQHv7dU0KmK8ZwjSkYyuGd7bXvjgw9C2Y4NuPz7lvdcA3HnMcb6p+rOnhxDo+2etJ2bfTn96t9y5TIuC23fgcuMO/ea1LGjqv9klI2SL4p9b3gEl/jntZi2OeBDiUVYcLkzHkUbqmCLWWofq+D3FMZRfrFYLWH7qygXqJYsSYVKFav7cSisbBiVnV+lYq6fT9kIOUr6oSU8tiSjor53NtOwi4gMDKBFVkxJbeJRIznwK2sqfxTPs3/gOYibQ5Y928o+/KzKHxtWMpGde7CfbDuYrm2PTqJ2Y3T3IMQV7WxpLa22xLHOrT0ovZq/ACUDVR/eJ0HLXqqq5EB7RtIQ51TbVkpY730HzTmGlUSgswut7wIqvbdnaY0m0zh+x+IoE5lJ3v6OP4HYp6ws7TF9fAzbVMeDg9gXI9ay9+rTT4Wyrma8P5/esAPiTB7brVQy129RF44xZ5+FMoiLLrwA4nnz+2rbd/78u1A2MYnyi1xOPXeUberqM99obZ8BZR2qzZ98/DGItc3qpnWmvJLHazdXneO8pcdDfGDIyDcO7t0NZX1d2BeJSNV6fgbVOBhW92ZIySRxSNfzhSM3f3gtwV+aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIaMG1Ns6v0LFrdYssoR4aGoGx4+CDEyxYovWfeWIgV86hBLZZQO9zShWkhc1o/vd9oQ5PJFJSFVQrJovI/Aomb0msWy/g9pXHUWqfa0P7J1lP7AkqjO4HaMs9B3VFRWVoNHTDXszyK9jxP/v6XEAeiqBH80xuNzVJ9Gu3Z83sqlVDTm1P2RoGguQYVpUM+qPSDz29FXVt6wmjzqqpLl7UWX+kYR9JYj3XPGbunlnkpKFsyD1MedzWjLrls9a94M6ZxLoypNNpR1Dm2hlSaWstWT99rEdXGOr21q87ZtuzTKcgrynLO1j+LiBSrRttaVVaSQW0bOMNMjOP3u0GlBbWs+PR4lVH6zZC6JxfOM+2VUPp7V12jcWX59/zOnRDvGjBpkQOqbVJJ1GC6Hr53MZo27X5gHL9n025Mt7x0EfbHinoXomJpVPtHUUt8MItafv3OSkGVN1kWm3bKaBGRkNLCFtWwUrJsDqMxPN/WVrQFnUn6jlkIcXosDfGEZZ3X3JyCsoiy6ioWcNyoWs+Hagmfb34X+9qqxX0QF1Ra7VSH6Ytd3TjGaDvSPTtRH/34M0ar/8QTj0OZp2w/j12GtnAXXfgmiN96ySW17e652NeGh/EZPzGJ/aucw+fj5Ij1XlMJ3w3xijhmn7hyJcRLrPlBfzvem/EQjqtHJ+oJYb2Doe1HHf0Ki7YYteYInqj5An9jFRH+0kwIIYQQQkhDOGkmhBBCCCGkAZw0E0IIIYQQ0oBpa5ob4bNSLE5mMD2nP4Ait3gc9WGTk0bjZKd+/a8Do14notJXT4zgd03mjA/q/AWoYUsUUFdbKaMXqa1Ls71FRUSicfQ5DcdQH10p4LGckNGOBoLKi1TpiEpKRxpW/rNJy3t6VApqX6WNbcH0ro6VJrqqdIs+b/b+zZTNoAYwm0dtXqrFeHVGwtg/9g9hnxiYRB1bMGiul99RGq0q6taLFWwn14earwFLe7wvhzq9Sgn1wE0LsR5J63ZKtaKP6f592E/Hx/dAnErh9cjnzLEdJUTTWjMdan1qwOpv+rPFIl6Psk75bumYszmVtjqG/XSmGU+jxjev7oWxMfNeQbmC1z89egDiOSnsJ8ceM8d8Vo0TJRev2fot2yA+MIL6zqpj7ue48tB+24VvhrhSwLb69X8+UNsey+EYpOvhhHBMkiBqafsPmPc7xkvYrhXVRyYnUIPamUpBvHBeT207oPqQToWdGUfNqt9v7ps5c+ZAme6rM8nkBPZf7bUfs8b0agD7WlalUt+zF33Vd23dWNseGMZ7ffOWLRAHqjhu9Kp3JZpaTN99fv1GKBvox/c5Ojrxeu4dMmPW2Bi26bzeHog/9tHrIT7pxFUQl0qmH+/ei+NVpYzj6qmnngJxMoHPvLh1G4yrZ/z4GL7zVCjiuDtngUmV7RXxnZ6YT+WwPwrxqd8+PSsVdlA9S31qvuAFMBbLt1+78Otnx+y69L924C/NhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCENmLam2VHSszotmuUfWciipi0ZQx/ieAz1TtWS0Y+Vlb5XPIydAGqpmpqbIQ5bOku/Et1UK/jZivJprlhewjHlJyplpYfO4/lPqGMHo0ZfGIqg9rCofF71ObpKH91k1WXQwc9Gm1DDfNypF0Ds80wT+yqoa/Q5s6dK0tpZx496Qp91DQ4eHISyTdvQi1RrO6tl89mg8iEOKe/aaBDLS0W8Jk7E9NVCFTWQjz71AsRuUx/EF55i9KqxJtSXeuEUxCNjGyBu96OOz7M0qFF1v5RVO9b5OEfwfitb+sNcDvWUjoPXQ3svV6zv0n68icTsaprLSkcZUINSNGo8kMsl7CO5DJ73sUtRRxqPGW1fRRkNb92H/sgb96OGWZSHb3PUvBtxzFzUnJ54wjKIt21Bj+f5fR217WgajxsN4XAdCmI7ex62T84a3yqu8uNWuu14EL/L1iGLiOwfMLrTlB5zo+g9HVT3XJvlYa918Hk9Fs4gmzZthnh0dAzi3btMW2zauhXKBpSmt6uKeuFB6/psHMVrnWrCc57Trt7pmcD+9cw6c+zhCWyn/CQ+W4fS6rkkph8n1Lix+qzTIT71dNQhey72r7Sl1Q8G8X6Kx/HYAe0Rrkalpg7znOqYMx/KSiW8lrEoXh/PZ2IvgM/SSBj76VGJfjfJej4GQjhGtM5ZAHF372KI7TmBz1XvQNU9aY5OVTN/aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIacC0Nc0+7dHnUx6iJaMZHNiP+q+2FOo7te40N2H0ruUS6sFCSsdXLKCu0RfAef/cOfNq29GI8ij0sM6u0iFHLc1mKoE6Pe1xPJFOQzyZRW2ZY3ktt3SgZ+xEBvetVrBemXE8tmv5iVb96Ku47KQ3Qjxv8fH4Wct311Hn73NnUZOkvqqlGbVpTUlzvceVD3Oz0gcPZdDXE/qmH7V1Ilqzi/0pHEK/bZ9r6ed82AcKytPZUd8VjZjvcpTWzhfF862gXFpcpVOOW77grmq3Ygn7j36/IKM8sW19qvax9vu1hhnvCdvLNhpFfZwzi5p4EZHWFryGzRE8l7YWo50tqncOHB+OBW2tKYj9lqY3nUH9/YY9qGEu+rFf6HcjEpZufsG8LigbH0ef2ckCevq6QaOHDoWw3cvKv3bwIHpP+1U/SFqe9mXlMxxRfTmq/O8D6j4pueaajCi/7oQP+0FSjfeONd7n8nhvZ5RGdyb53Oc+B/HYGGqac5a+OqbyAywIYDy3BZ87zUlzPQ8q7+2IH59pc9pUP06hRjydMfvv24fvd4xN4r3v+rFfd3cYrfG8bmzT9gTu+4P/9a8QH7cKNc5Lly+tbSeTOE5Wq3hO+l2JkWH0Yva5pi+3t+E90b8LvajLZbx+A/v6a9uFKo6rqXkr5GinXmtsYn8AtefHHHsSxNFEG8S2jNnOvfHiXwh/aSaEEEIIIaQhnDQTQgghhBDSgOnLM7T9iEozPTRgllB2bdsEZaeduBzifBaXGQcGzRJUyIdVKuRLEJeruIw9oqQMhaLZv1ml8gyrZVVXpVj2rKVr+zgiIo5KNxmK4HKVq5d0n3/OfG8UbaVyBTyH0TQunT6//nmIh8fMcujy48+HsrWXvg/rFcVz9kpWvXyzl7JWU1HpmcVVkoOCWRpt7+iAsmNUuuqtu9GCzhewbHI8ZRXo6S6O/05MJnEpOeCYdg34sc45D5enoiqVejhk1SOopEDKyk2nJK2WsC/mfVZKd8FjaZs4nw/PqVzGZbWA1Xf9Pm25h/3cdfGcbZu5gLLr01KOmWbhHFzWzaeVFdyzz9S2F8xdCGXj47isXVQpqtutfrC1H60FdwzhMr7noEwlFsK2bJ9jyUTKeH137MC+m83jvd+cMG01qWRc/UoSli7ifWFLnEREWnNm2f9gBsfcrGrnbBaP5WIoYUtu1NPdCmWxBN4HJZWe2rXkRG4Zx8lCAc9/Jtm7Z6f6C44NMSs8vbsFylpKWM+Ueg7FrWdHj8pMPK7ubW3RN7cPbcBK2428sU09Z5ujSoKTwr7Y3mna4sRlc6GsksM+8A//9EOIj1mKz+mPfvS62vZZZ50JZVklx0iPpSEOhZXVmdVH9irpY6GE5zg2jvKfYNRc24B67kZSaLl6dKJteq0+ouSciRZMpe76dApus61thjXeUarW4C/NhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCENmLamWZTtVaWCWr29u7bXtnWq4jptcUjbghnxTDqN+sF8FrVkYZUaVFu/DQ4aO7JEWP2bYP48CJVbnVStelWVVZnnoG6opHSjoQjqtJYsNulyh0bQfieTxbShoqyi5vSgFq2tzeiQVq+5CMp6Fx8HcSyJ9Q5bGt2KqnM4rNth5ggpCyudEnnEukbjeazn+ATaUsXCqNOqlE3fdJT9jrZjc5TlWkjZEoYDlk2Xq3TGfn1tHRXb3wNFUlLazTHVz8sxPGe/fR5KW6ZTIvuU5lmnKnYsS7CKsjcsK625P4BCtYqV1l5rq2db0jah7Mnyk8q3L2W0tvuH0cpt0469EPf2og1k0GeOPT6O2s9oDO+TlhbUuyaiSsTqmrFRp4nuVJ/NKG1/NGz6Y6DuAmO7HxxG68U5MbQyyxfN9am6qCUWbRlaUWnulQY/mTT1jkVRV6q6hUyOYzvZVoXlEl4Pxz97vcgfwXYqVvDGOnmBeZfiw2/GlNPhgro+I3iOo6NmTI+OYt97dDe2U1m903LWORdAXMneW9uO70OLwtN68NqnFqF2/6kJM2bN6emDsoOjaF/X24fjxN5+fBfpls/dWts+95xzoeykk9C6bOXKlRC3tqCVmVhjadnD83fVSFJRFoYdbea+9tTYlx7C9xo6e/B5eFTwMm4hz9doygeec4cqOarhL82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ2Ytqa55EMN89jIfohbrTSby88/B8qCYaUrVZrnlJVSOTuGejBPUFc6NpCGuFBAL9Oc5Qm68YXnoMxTur05c1DX6DjGqzWkNM0lld47m8djuT6sZyhodHypVvQd3rEP098OjqLG+bwLL4O4pdVonBPK41LrLbu6UfPts7yZK8o/NRSZvqT91RIJoZ4wHEYt8aSVHn3Hrl1Ypry6U82olxseTte2SyrFdKjO0xjrlVc+unbqUF9VpcON4LUNKq/W/IBpR6eI/s/+HPbrfXu2Q9zpYP9ZsXRJbbug9JRa1xf0YzsGlPbaTsOu9fNap6b9yauWl3k0qjywZ1nUHFYe5KUiesFWLL16Rl2z0SzGmy0vXBGR0UHTPiWlt4/H8LxD6rbxae94K4Vw81x8jyKnUpwXc6q/Wnr97hbsQxNRldq6ivrggvIkjzeb69XqqrT1qvGKyka9oMa7hDW+l5TvsE4B71PjTNlqi2BEv0ehBNEzSMjBMcgLYF8/4cxFte3VV6HO2Deh3qPI6PTz5hyP3YJpoYe/9b8g3nQAtcXNLfgOywnHnlDbdkfwWXH+yUsgPhBPQTxoefqvmI/HnRvHvnfu//sOiLcNY5t//4cP17Z/8YtfQNlPf/pTrPMJJ0D8wQ99EOJjjjFe1MPj+D5HSKVwb+9C7+VY1JRPjOA4ms7NXhr21yreFL991qfY1uVTHfcoNWJuAH9pJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpwLRFra7Snnke6p8WzDX6qXZl4zmZRZ/ivPLqbEkZ7Z6rdMYT46j33Z/BnPeifU4t391x9dl9+/ohjsWwotGo0Qu7LmqB8jmsc1XpXfX12blvV217bDINZX945FGIl6xYBXH3XMwP39LRZeoYxiaLhlC/qkJxrXbyBbDOgYDWO82chsmnctwXiqgxtf2Dq0oj2d+P7dbR1QWx39LwZnOo29MeoOLHelRUccky7w6HUTMbVzrsjNLf73jB+Jz6m5dBWbychjg3PgTxC5vQy7WpyWhQ41HU/Im69zzVjm5V+zibk3SU/tmnDKXdsvLvtfS9qgklGFCdbYZJT6QhjkawfbyA0Zl6St9bUPdzNIn66MXLjJ515LkXoKyYw74a8FDP6g9rn2ZzDTPKYzykNIYtzahbtt/3KGdR71xRw3UkgfWINWM/KY2Z8S8WVx7Fqo8ERJ1TSfUp65zyJbweYaWhD2j/cuv6VFXfLVZQHz2T+JVHbVMY+/rSU5bWtp0+9Putltoh9kbSEEfHzP3bMYbvXPjUc6Z/+y6Md+yGuLfPeC/v/AMOUNvH8fkXXbwK4hOWmf40X73v4s9g/4h1Yrv1rVoM8dIl59e217+wD8qefuZpiDduRI/n//W970J83XXX1bbnHrMUygaUr3VTE3qZ5zPmPsjl1PmH6R5MZhf+0kwIIYQQQkgDOGkmhBBCCCGkAdOWZ+h01tpCLGbbIfmUjVJQWf1UcUnOs5b+mptTUJbLoiyiqQmXMysuLuU7Vmpon7LmGhtDucawSrWbSJhjx2L4PW2tWC8ngOc0msZl2ELBWP/s2rUT66zkB8uX41L+goW4FBhrMrIAtbopbkmnN1epjn3WB5QUQcsgRGYurXZZ16uqv9v0n6Yk2uq5at/RUZT7hMNmqb2ibeAK2H88R6VsVfKespVqN6LkGEGVSj4zjv3n2cf+UNvuWYj3QHgSJSZNQVxWHB5FG6aNW4wl3YnHLoeygEo9rOup27Vipcr2q06gLfh037SlHp7rV/vO8tKoh+NGQlkPZq22LpZwaPPUiXrq54IW6/6OKI1TOIyfTTTj9Y4peUIsZJaXkzHsy01NzRD7lMSlbMk3QnGUkDRXtTQLjx2IoAyg7JoxqVJUA4eSicSU/aQ6ZclMmtTiIeW5l1f2fiOqL7d3GAsxn7r/HP/MjTma96xdi9+9AWU4b+w2koyyo68tHqtawvTW3rC5v/MZTMM+msN7qsOHbe5XKc7jUTP+986ZA2UVZZvX3ofPDqfNfHbwkd9CWXm/GjeTKNeIJrCeXT1GJnhOqg/K3nDaaRAPDaHc7PkXNkDc22vkT/PmoQRz3LLJExHZvHEXxMevXFHbbm1F68SishglZKbhL82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ2Yfh5lZdnkU3LGsKVbDjpKZ+yhDsuvbIb6Dxq7nlIFtXeOo1IEB1ADF42h2CxqpXv1qQythTzqn8pl/K5S0dSrqLSwwaD6XhXHo6oeVrrYdBq1r93daCm3ePEiiFvaUMsYipl/25QLeOGr2vZLS4VdoyHUOk63QYrNw0lU2S55LvaBnHXtm5K4r51mXUTkoNKi+yyNoNb35ov4PSWVdl1JmsUXNn3C9fBiVnOovQsqa60924yOL5DHvtWp+m1MpYc/qPrijj3G4qlvHvaX9pYUxK5Kja11yVXbXkz5xmWyeE7j42mII5aFo/5sUVmPzTQJpXXPKS1tNGqucTSA/aCrG1PZi7LeG7Xed2hpRcur4SraXEVUOuuItlizdMzhCOpGRyZR71tUWn/H0keHlD2i7ttSRX3w4CAeO5s316e1Bd+TmJhA3a2nrAa9qh7DbV08jjmesttMteH1C1ga6FBQiYNn8XebPzvvYojzI3iO3iaTsrp43GYoKynbUHcf6oNlwqTkHknjuzM+V6Xr7kVN76KFmGq9aj2WffPx2RDtwH4cmTMfYsdnvqucwHaYXHAyxG4Cx1l/Fo89PmHGykJRnZN6N2JeD6bsbkqidt9+DWN0GPXPLS1Yz/XrnoV4wrJtPP7EVVC2cDGmFSdkpuEvzYQQQgghhDSAk2ZCCCGEEEIawEkzIYQQQgghDfB5nsc8lIQQQgghhEwBf2kmhBBCCCGkAZw0E0IIIYQQ0gBOmgkhhBBCCGkAJ82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIawEkzIYQQQgghDeCkmRBCCCGEkAZw0kwIIYQQQkgDOGkmhBBCCCGkAZw0E0IIIYQQ0gBOmgkhhBBCCGkAJ82EEEIIIYQ0gJNmQgghhBBCGsBJMyGEEEIIIQ3gpJkQQgghhJAGcNJMCCGEEEJIAzhpJoQQQgghpAGcNBNCCCGEENIATpoJIYQQQghpACfNhBBCCCGENICTZkIIIYQQQhrASTMhhBBCCCEN4KSZEEIIIYSQBnDSTAghhBBCSAM4aSaEEEIIIaQBnDQTQgghhBDSAE6aCSGEEEIIaQAnzYQQQgghhDSAk2ZCCCGEEEIawEkzIYQQQgghDeCkmRz13HzzzeLz+WR4ePhIV4W8DnniiSfkzDPPlHg8Lj6fT9atW3ekq0ReB7w4bhEyFRx/Di+BI12BP0b2798vt99+u1x22WWyatWqI10dQshrlHK5LFdccYVEIhG57bbbJBaLyYIFC450tQghRwEcfw4/nDS/Avbv3y+33HKL9PX1cdJMCDkk27dvl927d8u3v/1tueaaa450dQghRxEcfw4/lGcQMsN4nif5fP5IV4McAQYHB0VEJJVKTblfNpudhdoQQo4mOP4cfo66SXN/f7986EMfkp6eHgmHw7Jw4UL5yEc+IqVSSUZHR+WTn/ykHH/88ZJIJKSpqUkuuugiWb9+fe3zv//97+W0004TEZEPfOAD4vP5xOfzyR133HGEzogcLtLptFx99dWSSqWkublZPvCBD0gul6uVVyoV+dznPieLFi2ScDgsfX198ulPf1qKxSIcp6+vTy655BK599575dRTT5VoNCrf+ta3RETkN7/5jaxevVpSqZQkEglZtmyZfPrTn4bPF4tFuemmm2Tx4sUSDoelt7dX/uqv/qrue8hrm6uvvlrWrFkjIiJXXHGF+Hw+Offcc+Xqq6+WRCIh27dvl4svvliSyaT86Z/+qYj818PrxhtvlN7eXgmHw7Js2TL5yle+Ip7nwbHz+bx8/OMfl/b2dkkmk3LppZdKf3+/+Hw+ufnmm2f7VMkM89BDD8lpp50mkUhEFi1aVBtPbKY7PrmuKzfffLP09PRILBaT8847TzZs2CB9fX1y9dVXz9IZkZmG48/McFTJM/bv3y+nn366pNNpufbaa2X58uXS398vP/nJTySXy8mOHTvkrrvukiuuuEIWLlwoAwMD8q1vfUvWrFkjGzZskJ6eHlmxYoXceuut8tnPflauvfZaOfvss0VE5MwzzzzCZ0deLVdeeaUsXLhQvvSlL8nTTz8t3/nOd6Szs1P+9m//VkRErrnmGvn+978vl19+udx4443y2GOPyZe+9CXZuHGj/OxnP4Njbd68Wd7znvfIddddJx/+8Idl2bJl8sILL8gll1wiJ5xwgtx6660SDodl27Zt8vDDD9c+57quXHrppfLQQw/JtddeKytWrJDnnntObrvtNtmyZYvcdddds3lJyKvguuuuk7lz58oXv/hF+fjHPy6nnXaadHV1yQ9/+EOpVCqydu1aWb16tXzlK1+RWCwmnufJpZdeKvfdd5986EMfklWrVsm9994rf/mXfyn9/f1y22231Y599dVXy5133inve9/75IwzzpD7779f3vrWtx7BsyUzxXPPPScXXnihdHR0yM033yyVSkVuuukm6erqgv2mOz596lOfki9/+cvytre9TdauXSvr16+XtWvXSqFQmO1TIzMIx58ZwjuKeP/73+85juM98cQTdWWu63qFQsGrVqvw9507d3rhcNi79dZba3974oknPBHxvve97810lckscNNNN3ki4n3wgx+Ev7/jHe/w2traPM/zvHXr1nki4l1zzTWwzyc/+UlPRLzf/e53tb8tWLDAExHvnnvugX1vu+02T0S8oaGhQ9blX//1Xz3HcbwHH3wQ/v7Nb37TExHv4YcffkXnSI4M9913nyci3o9//OPa36666ipPRLz/8T/+B+x71113eSLiff7zn4e/X3755Z7P5/O2bdvmeZ7nPfXUU56IeJ/4xCdgv6uvvtoTEe+mm26amZMhR4TLLrvMi0Qi3u7du2t/27Bhg+f3+70XH+HTHZ8OHjzoBQIB77LLLoP9br75Zk9EvKuuumpmT4bMKhx/Dj9HjTzDdV2566675G1ve5uceuqpdeU+n0/C4bA4zn9dkmq1KiMjI7Ul9Keffnq2q0xmmeuvvx7is88+W0ZGRmRiYkLuvvtuERH5i7/4C9jnxhtvFBGRX/7yl/D3hQsXytq1a+FvL+rKfv7zn4vrui9Zhx//+MeyYsUKWb58uQwPD9f+O//880VE5L777ntlJ0dec3zkIx+B+O677xa/3y8f//jH4e833nijeJ4nv/rVr0RE5J577hERkRtuuAH2+9jHPjaDtSVHgmq1Kvfee69cdtllMn/+/NrfV6xYAePLdMen3/72t1KpVNh3CMefV8hRM2keGhqSiYkJOe644w65j+u6ctttt8mSJUskHA5Le3u7dHR0yLPPPivj4+OzWFtyJLAfSiIiLS0tIiIyNjYmu3fvFsdxZPHixbBPd3e3pFIp2b17N/x94cKFdcd/17veJWeddZZcc8010tXVJe9+97vlzjvvhAn01q1b5YUXXpCOjg74b+nSpSJiXuwgf9wEAgGZN28e/G337t3S09MjyWQS/r5ixYpa+Yv/dxynro/pvkn++BkaGpJ8Pi9LliypK1u2bFlte7rj04v/1/u1trbWxjvy+ofjzyvnqNI0N+KLX/yifOYzn5EPfvCD8rnPfU5aW1vFcRz5xCc+cchfBsnrB7/f/5J/96yXIKabTCAajb7k3x544AG577775Je//KXcc8898qMf/UjOP/98+fWvfy1+v19c15Xjjz9evvrVr77kcXt7e6f1/eS1jb2qRcjhgslOyHTg+PPKOWomzR0dHdLU1CTPP//8Iff5yU9+Iuedd55897vfhb+n02lpb2+vxRyYjj4WLFggruvK1q1ba//yFhEZGBiQdDo9bcN4x3HkggsukAsuuEC++v+196Yxkh33tWfcLfe19q2rqzc2m1tLpEj6kZIoSvJGWTYfNPA8A5YNz5vxCBYebI8BYwzCeENB8HiBnwXIkAX7g3cYloAHC/aYEmWZkkybliiuTbL3pbq6a83KpXLPu80HQxlxTpnMoswqQeL/96VvdGTeGzduRNyojBPn/z/+h/qN3/gN9dhjj6mnnnpKffCDH1THjh1TL730kvrABz4g7extxuHDh9U//MM/qGazCb/2nDt3bpj/7X+jKFJXr16FXyAvXbp0sAUW9p3JyUmVTqfVxYsXd+WdP39+eLzX8enb/166dAl+Kdze3la1Wm2/bkP4HkDGn73xtvlTw7Zt9eijj6q//du/Vd/61rd25cdxrBzH2WWt8vnPf17dvHkT/i+bzSql/m0yLbw9eOSRR5RSSn3qU5+C///2L8J72TlcrVZ3/d+3g+N82xbqJ3/yJ9XNmzfVH/3RH+36bLfbFT/N72MeeeQRFYah+v3f/334/9/7vd9TlmWpH/3RH1VKqaGW9TOf+Qx87tOf/vTBFFQ4MBzHUT/8wz+s/uZv/kZdv359+P9nz55VX/rSl4bpvY5PH/jAB5TruuoP/uAP4HPc5oS3HzL+7I23zS/NSv2b/OLJJ59UDz300NDOa21tTX3+859XTz/9tPqxH/sx9YlPfEL93M/9nHrggQfUmTNn1F/+5V+qo0ePwnmOHTumSqWS+uxnP6vy+bzKZrPq/vvv/3d1rML3B6dPn1Y/+7M/q/7wD/9Q1et19dBDD6lvfvOb6k//9E/Vo48+qh5++OGR5/jEJz6hvv71r6sPfehD6vDhw2pzc1N95jOfUQsLC+rd7363Ukqpj370o+pzn/uc+tjHPqaeeuop9eCDD6owDNW5c+fU5z73uaH3s/D9x4c//GH18MMPq8cee0xdu3ZNnT59Wj355JPqC1/4gvqlX/oldezYMaWUUvfcc4/6yEc+oj71qU+p7e3toeXThQsXlFKyEvb9xuOPP66++MUvqve85z3qF37hF1QQBOrTn/60uv3229XLL7+slNr7+DQ9Pa1+8Rd/Uf3u7/6u+vEf/3H1Iz/yI+qll15STzzxhJqYmJC28zZGxp898l317vgusLy8HP/Mz/xMPDk5GSeTyfjo0aPxxz/+8bjf78e9Xi/+lV/5lXh2djZOp9Pxgw8+GD/zzDPxQw89FD/00ENwni984QvxbbfdFruuK/Zz3+N823KOreD++I//OFZKxVevXo3jOI59348ff/zx+MiRI7HnefGhQ4fiX/u1X4t7vR587/Dhw/GHPvShXdf5yle+Ev/ET/xEPDc3FycSiXhubi7+qZ/6qfjChQvwucFgEP/Wb/1WfPvtt8fJZDIul8vxPffcEz/++ONxo9F4a29e2Fdez/Ipm83+u59vNpvxL//yL8dzc3Ox53nxiRMn4t/5nd+JoyiCz7Xb7fjjH/94PDY2FudyufjRRx+Nz58/Hyul4t/8zd/c13sSDp6vfe1r8T333BMnEon46NGj8Wc/+9nhuPVt9jo+BUEQ//qv/3o8MzMTp9Pp+P3vf3989uzZeHx8PP7Yxz520Lcm7CMy/rz1WHFMegRBEAThe44XX3xRvfOd71R/8Rd/MYzwJQh7oV6vq3K5rD75yU+qxx577LtdHOF7kLfL+PO20TQLgiB8v9Dtdnf936c+9Sll27Z673vf+10okfC9wuu1HaWUet/73newhRG+J3k7jz9vK02zIAjC9wO//du/rZ577jn18MMPK9d11RNPPKGeeOIJ9fM///NiSyi8IX/913+t/uRP/kQ98sgjKpfLqaefflr91V/9lfqhH/oh9eCDD363iyd8D/B2Hn9EniEIgvA9xpe//GX1+OOPq9dee021Wi21uLioPvrRj6rHHntMua78FiK8Ps8//7z61V/9VfXiiy+qnZ0dNT09rT7ykY+oT37ykyqXy323iyd8D/B2Hn9k0iwIgiAIgiAIIxBNsyAIgiAIgiCMQCbNgiAIgiAIgjACmTQLgiAIgiAIwghk0iwIgiAIgiAII9jzNsdf+38fgfR2/SKkO+1oeBw5Ncjz3HFIz4zfC+nZ6VPD443qM5CXcachnfTmIL26vozXitLD4zBehbxCAc91y8kfhfT01NLwmENBWpZNac7HtOM46vXgcyn1xucy05aD3/3zP8b473/x538O6f/j4780PP5fPvK/Ql4UhJB+4J5Tar/4b//Xf4P0zeUNSNdr68PjMO5BXsLDe24P8Nzvfu+jw+Mf+/BHIO9fXzkP6YWFMqR7Pp57ebU+PK5srEPeysWzkN6+hn3g8qVXh8d+gPdQLo9B+t57T2P+GHbFnq99MLsB5l28cBnSS7MlSE+N4w74a1dXhsdh4EPe0SXsE8rG/EQ2OTxOZ9KQl3Kx7v6fX/8rtZ+cvhXHkXzJg3Qmo8uqogjymk18Hr0O7n/O5PS9zEzmIa9YLEA6pv7q9/uQdpQ+t+3gZzvdDqRr1Tqkdxq63HGI383kKJ3B+ndoXIktPQaFMZWZ6sdNYhvLpVN4blufm7eORyH+R5/qo93W6TDEMSfhYPrJZ+pqv/i///t/h3Svg16z1a2t4XEui/ff6WL7ae40Ib1y/frw+NKFc5AXBQGk2V2gUCpB2hwrxiemIC+VwnLxwwhD3X8HPl530MPnEgxwII0i/Lz53nE97GvRCP8AzjW/n0rjOMJeBF2q63a7axy3Ic/xsC5fe+XMG5brP8JOA6/d7WE5oYfFWJdxhONqFPFz0/0gVtg3bQ/nElxfPF8w22ZAfdFy8JknUxlI+wNdn1aMfZPbB5eD01Gsr73ruxGWOZnMQtqhcbPf7xp5CchLeNieggDrL47NusVyRDHWx52nR1suyi/NgiAIgiAIgjACmTQLgiAIgiAIwgj2LM8YhLicHoe0TBToJYR+F+fiufIipKfGjkM65eol83aLwjPmNiGZcGYgPV08gukpne72diAvny9CenwMz2UuL1j89wSuFuyCl0je2P76O7fGtui7hUIJ0sEAl2O++uQXh8cPv/cHIa9UwvrYTy5ewiXLtesk4Uno+yoWcLlldXkbT+Zi/hc/9z+Hx70NPO+t970H0otlfOatHVyuuVa7OTzO2rgs1jCWb5VSqrKFbdPEcfjvUVye85L4nNK89G7p5artCuZNjZcgPT6BcoxOl5YRB3q5yrGx315ZaUE6mcL2lSvqpa25JMoUlm9U1EHS7mE9RA1chuv19bJkMoH34Tg41GULtESe18vH6XQS8nbJD3x8dmEfl/gsY3k1pGXJgY/tIIzxHizbGINIbuF4WK4ESSiSCbynONbX8mlcsHHlVTkJj9K4BOpY+guDHt7vgJZDA156NpKDkKRW/deXsb3V5AoouynQ+Dc1o6VKCS4Wje82PZtGU79rXn4BI6J1SVJQKqFE7NDiYUjPzM8Oj92YlvVJ9lUcR/lGIqf7KMtPWk3s632Sa/jUNk1pUSKBbY/fYDH9j00vTFNGwe1617I+SYcCQ0bI8h6WP+0rFskmLKoFoyhdGoNdKqdN74cw1H3KovfOrnu28bseSWfMsc6mPEvhM1c+DQS+lo/FDo8neL8DkvfwHMg1ZJU23VMcvbHcladPjqPvg+VNMY2hVD3QnvizbySjfT3kl2ZBEARBEARBGIFMmgVBEARBEARhBDJpFgRBEARBEIQR7FnT3G2iNibhoEXI5GGt03Jj1FmlHdR4ldOo4bJcrWcpp+7CvAFqbpJp1KVNLd4C6YnJyeEx2yqxfsUlu5rAsOixyU7LsskGbpRNnCGs2a26emM7u10YAh+b/s6Zm0O9eInsi9Y3bgyPl69fgbzxsfve+LpvIaW5Y5DuhlVIl9Pa3s3xUHd18ybaO80X0b5N9fVzfurLfwdZz30LLQz/6dhJSB8/iTZ7l66vDY/PnUdrt9kJ1ECyVrHZ1OVMZ7CtpTPY1sIItYlRRJZfGd3fxkuoNRwvTtJnUeN97iLWVyKj6+vwYdxPsF3F5xCGqHucmdXftUjTt1nB6+w32Qz2m3QS6ziZMXXxOF7ladxgzblpI0cSQtXtoTaUNYYRWURFhm4u5t8lSI/nJLGcrm/ozy26vxRbLaHO1KNzm9Ji1omSiyPY0ym1244sjnUdxAPUadsKv5tySb+Y0uXsks1lq49te19hSzUqt2u8H5IJfldg3buk+S6O67Fh4RDaoloxVnY2h3sQEqRF31w17Ou+8a+Q19/BvUUn7n4A0ofvfvfwOJfDd/TYGGqpsUWoXT+hOfAOI8tCsq4MQ7b5wnOZ7c/3yTOUi8GiVONkQYjPMGBN7j7Ceth2B8dKc37hk82gZeMzZj2wWT8JF8cErlv+Ls9rzH0TcYjnSnm4DyLy25Q2beKoheyap5CO3WZ9sH42QcDPiWzzRui2bUvXH7ctP8D5wi6Ns2Me02wsfvOaePmlWRAEQRAEQRBGIJNmQRAEQRAEQRjB3uUZW/iz/sQ8LvW4Si9/ZhIoxziyiNHPvCT+JL5R0Uvi25toE1cmm7ipaVzmnxhDKYhpBeTRshfbTrVbuLz84rPPDo/vuQ+XvYplLEccv7HE4o1+9Gcpx+5PU6Qd4/Ns9TM5hfefL6At2EZFL+dtbpJtIC+D7SM/89M/B+lnv/H3kHZcvUzU7eGyc5qKORthFLtBUy/t/GsD7emCAban5SuvQHq7tgLpS9d0W+z2cJlnbvwOSGdp+XNrWz8djooW0HKdT9G60mk8V21b30e3ictx1QaeO1fANhDZmD5xm+4zRxbnIe/q+ech3elgHynldV9eXkG5ytomSkz2m/Ei1lk2Q0vkhoXYLYexjeRJylCr47Lk6o6WH9T7eF8cRZGXQ5M0rtimbRwtB+62WsJzRb5xbVqH9COMJtihiGQR2YA6hsTMJcmETSuvA1rijMh+LDYsE2n1E5bx/+26fM/6C2kbn2Hn4BznVELhEnCC6iSV1u2JI+95SWw/iuQ9/kDXD79nMlmUY+SK+C65cRb74HNf/tLweGcLo5IWktgm2GLUM5b2U1TmXZIkkhwG9Mx3qvp9EZKNoJdCuZNFDSreJWHS3+fok7vefyztMI6579nUnvYT32eLPrJxtHV9J5MomesPsG6bTezLVUMmt7SEkstOG+cptRraqjIV493Rp3mKE6FcY3EapX7ZlGkNSP2YrrPLRm5XdMrwdfN4CrTbopfHSZ2OImxbQUBSMurnSZC7sN2hyDMEQRAEQRAE4S1HJs2CIAiCIAiCMAKZNAuCIAiCIAjCCPasac6nUCfZr6KGqVvRGkFrAnWla6uvQtr3u5Q2wr3WUOuzQfrNW29HDQrbP/mGPYvnoH4norCX//r0VyF94/Kl4fHd994PeTbp1HbZsezS5Ly+VmaXvoc0OLu0RIaejM/K+rldaulY645Ydx3EB2fXo7rLkGztvAbp88u67o8cQU3X0uQEpFMUvfn8tg5v3e5QiGMK8TtHYcebNdQ899u6/XF40otXLkC6Qbq0TEbrkhMJvO6NVSy0nUQ9bj6H2jIn1DrIrfU1yPMd/G7OLUH6wQfeB+nJ2aXh8blXn4O8tTU8d0xGVM++oPtuMpuBvFN3YR/Zb44dwjqaHsd9FWlDw1vGKlKeQv1vbhJtCxN5fd+vXMa2GpJlWJLCV7PFmmNY80UUBnngY9/n0Nd2Tp+bLf6iCM8VkNa628f26IZGOF3SH0akUSV5665xJDDKzd+lCMv/jn5RjzOZJN6Tv8v3bP9IprAOMhQuPWlogB2X7UixrvtdTCeNSigUULOczmG/qa7i3oCV55+GdGpQHx7bWSxHKoXnKs3gHoWJCcMiUiEhPZduqwHprfMvQvrKa2d0gtr4yQd+GMtBVqch7+EIzfsgDbzzxtrYnqEH7tFekd37g/aPiN6XrN0fGPsRLNpfsL5Rh3SP9iPs7Oj7Wl/Hd8V2ZRXSvD+G677d03Ox9RZe1+9g3Ve20HL00IxuP0tLZJ2oEO4jEc3FQmOOtPsZv7F93e6ksa+L2scbWcwppZRl7DGJQx5T3/zvxvJLsyAIgiAIgiCMQCbNgiAIgiAIgjACmTQLgiAIgiAIwgj2rGmeX0B/ZH+APqcdI6Rk6GN4ydoWapgT5Enb72qfvUOTs5BXqaMn4bNPPwnpEydPQNp2Da/EFHolnr+IWsUbFy5B+rZbbx0e+30sc6+LXok2h8Mlnant6jSH4GYpsU36npgEPZGhCVTkibq9jfqnZhM1uilDa1fMowY0DFmHvX/8f099EdKBizrlu+78qeHxwEcv5aSFPoxHplDburaptXkxeZG2WtgW2xQ2emIS/XwrjuGP3EONKEUkVRmUranJBa0BW1zEdvzCa+cg7ZEOuZBFHff517SWeOUGlnlsYgbSVozazLCDermgojXfYQPb8dLhd0I6tlAz2Fc6ncpgvb/nPz2oDpK75schnSJNamzslYi62Gb6FMa2VEKf2Yms7q/pm6ghtPqoIaTo3SpNY4GK9ed7Ifb9FIVnpialQqXL7XCgYzdNn8YGaNOeDdvwJ7Wpq7tUH31SLHZZw9vRfSEYsIczCxAxnc/o5zRZxDKPd984pPJbCfttB6TBjA1/7og0p7ynpVAsYdrwx7dJ67ryEmqWV57H0NgBhWN2jRdETHtnxg/he/jQsdvwu8b4x5r3mPS/W1fOQ/riPz0B6ZvG/qLAxvfb8dOoh07N4Xg3oNDzZvtjTbxPodTZ09jcp8R+4+ynva9QM/eoPjtdPSeqNvG9vLaB6QzNgczX1oULuHdGKewjvKfCon0RoTEOsBf5IMLxfXXzBpbD1XWfH0N/8XEKw75rG1fMe7GM/VQ2j5GYjCL8bhRiG/Bcsx9gn3Ap7DhrnC2ly8F7dsz9FntFfmkWBEEQBEEQhBHIpFkQBEEQBEEQRiCTZkEQBEEQBEEYwZ41zV4a9XQD0pwkM9qb0vSrVWp3zHvXRX1UHGp91HgedYtT0wuQ/sevfxnSjW3Ue9579+nh8dY66nW+8dRXIX308K2QNrUxK5dfhrydbdRAWqSj6fcpHrrh/5dIovayWESP2EwWz+2SP7Br6JKbO1uQ9+STfwfpdht1uGNjuj6jGPVMzTrW3X6SzqCGuTyFdbA0p/VSr710HfNS2H6KA9Q/7TS07r3RRk13Po26rAKZTaZD1IvdaXhEP3v2LORVt7HupybJW9nQRwUK6/qOu47ghW30W1UOaq06xr6A8jR6pHd6PqWxXNXqS5D2m/rc5RJWQHkStdSZTAHSG9UNoxyoW5xaQI3bfpOy8L7DEMeR0KjT2EMdciaFQ53fQi95x/BKf+hO0mf28dn0O6jXtFjLZ/i1RhY+5ziBesQowPYXGnspErR/IZnHcTWOSI83wDaXS+txJJnB8ftGhbSNdbwnz0MtZNMo54B0gexfm6S3SiZhaKvpnlwbn9O+Qj71IXm2xsZ9ZDI0bpAXbiqBY7RjeIRvXDwDeVf+CfdzWLscb7HCBoZ5daKI78OT978H0pOz6KVrakHZw7jXwrHxhWefhfTNqzch7Rl6aovaQ528g8cWUWudSGB7M/X5vS62tTjGNpCgBpQy5gs2xzB4g3gIbzU26XKTZFDuG3Eh0mlsW2PjOK6yrjtX0OOCRx7z3Gccqp8BaXjrLa2tbtfxmXPbK4/h+NTu6/fOVh3HSI/2kOTo3cpxMBxX3xPH0+B76pEGXrFHvdFHHIv6noNjahDgtSJjX0kY0Xgbvfk9FfJLsyAIgiAIgiCMQCbNgiAIgiAIgjCCPcszfFpFS6dw2WhsTC9Ve0kKXx2xBQgSGV5e7TouG9q0zJ1keycKKRkNjCUlsnt61+k7IF2vo5Rh/ea14fHx/GHIW1u5BukbVzG9tbkJ6WpTL5H0A1y2KI3jsv7CIQyFOj+Py8Omrc7zL+LS+7/88z8rhMLyJnQdvHDmHyBv+QYuI374gz+g9ovZMWwDm1tod/Tkq1oqUqbl8PkySnSWKfzrakfbqBXGMITtOFn73HUcZRL9HravYkHLRlL0N+XT59EKr1GpQ/q+++8bHtcCtGR0LCzzu++7E9KXXkM7RNvX5148hm2x2UU7rGMLeM9zY2SHaOsluh6FsK9UyM5uDNtmY0Mv181NHoK89AGurCuFtl5KKdVXuFzYMwYpi+QuKVo69EleZhvShoyHzz1PS9NRDq/Ly+CeYXEUxfjdKoV5t10sZ2h8103iEnchg+Xy6B4GJF+pGzKmb13E8ekahfX1XKyfNEnKkmktIcvlaIyJsE05JBuJLX1PPBbGZGW2n/ByeoIsSbOGJIPbmqL2w8vrrQ0djv7s178EeWwpGtJyep/sWxNjWo41d+o05E2QHMN1KJSzUax+F9vazYsXIf38GRyDB1VsP9m0fjYzeVzG73Sw81c3sH1ls/j5tCHvpKpUyTR+dtAme1fDnyxycSm+3Ua7vv2kT9Z4rQ6mLy7rOrBJgpqi91Crg+NubIS+TnnYTuvbKLFwknjuiCwwXVvXUa9PEguSftIwqTKGjOvG6jrkbVXwXHecPAXpiTJKLs2Q1XQZFUbYfixFkgr6/MDITtB4HNI8zyVrziDU12I5Txi8edtd+aVZEARBEARBEEYgk2ZBEARBEARBGIFMmgVBEARBEARhBHvWNBfJCq5YxPDDps0ca/xYxMy6mk5H2368+MLXIS9HVlHT02hz5ZFO7cwrWnd64wZazs3No3Z4YhytvNbWtS7t3FnUjW5WULPVqdUh3R+gdUl1R2ut2gPU66xt4XfPUzjvfAH1T5YRr3LlBtoC9X1U/7gUzjtf0vW33sb6WG+ibdB+8tILVyFtUXhP31AxzebRgm9H4WcvdFEDOHGLfq4Fqo/mWh2vSyHNsxQLe2m8NDy+dQrb2t2HSpBmy6rxSX0udxz7S6WF7cfbQpu4Y6QhLZS1RV9cw1DyC0XsEzN5sg/bwM+bVlsuhVyt7qCuf6uG7evE0ePDYztGTdvK8jOQfuedqHF7q7HItigIsI9ahuVTIV+CPJ+0603STZrS0IgsixyyRwppj4ZDulLLiBnMFlkDCm3cJ/vAdEr3fTtE3V9AdpLpNI6jXQ/b8j+9okP3XryO33VtDh9LWmPSGHqermuXLK/mp3C8mqfwu76pNafn4DrY7vcTtkJNkGY8Y+hwbbJJ7XVwzClN4PuvsabHt6hZhzwvhdftkZVXsoB7ErLjOp0I8blVbuLeh3QWz903Qr73KBR40MJylSikuzuP70PH0F6HZGd49qXnIL2xjfcUklR0clKPZzNkodltoma3voaWoznjPT13K2q8PW/PU5j/MNtV1CFfvo7vz4vXVobHoY8V4FIc+0wO21etofXDGXoX1Daxfrg9uaTNN9uuQ/rovo/zlEYTNeGGQ+2u9pOieVuVnvlkkWz1DJvKMGBrN9oHQmNoZGPbDIzP+zQ+uxTinsOwd9t6z0WarJNtG+tyL8gvzYIgCIIgCIIwApk0C4IgCIIgCMIIZNIsCIIgCIIgCCPYsyBochL9IW2K9RgZkhSeie9Kk4dhtak9bC9ewdDFs+OoK7VI61Kpo/9txdAL1+t1yFvdRA3OxBR60kaGv2ihifpARd6aPoVf3Omg9qxr+EWH5NXqk7c0yQlVv0Lek0bdWjaWy7LwutkCPtLirNbHWeTvaFsH9zfTIEI92DRp5HOGD2ivh5qlp8gTOzuLmudMQusN/SqFOCbJZJ20rEtTqK+bNcKdlpP43JbyWPc2+eJaRhjebIR1W4+wzNs1/O4aeYZ3W4a3pIs3sXwd9dD1TWxAqTnUSHYTOt+l8N2zMxhGO7JQP5cwfL7rO6g1ZC/N/SZh4xVtCt/sG4alDul7PQp73yFtsalT7pLu3SPf5mwK67DfxWcXGBregMPWFkmDmsRy9OAesP1tN3HM+ZdlHCeuUWjs9W3dF9jP14pxnOiQ1jFSqGecNqqTv+tRJ5spoaa5a+iY61S3QfTmfVK/U1xqA7ZDBreG/rzbwXFCRbx3BMvdN/T2Per7Fu13SaTZwxi1oJ7xHmqvoYZ5nbTFvSbuX5g9qvcV5Ar47lymz86lSWdK77heQ9dBrY/vrO0A7/HyJRwb8uTr3JrT46y/g175neoGpP02vtObNa3ND3y8/7FDGL57P+m0Ude+vYX7VHIp4/1K753Qx/60uoLPNZPVbdGi+UJIPujtBpajYKO+HnyvqY0nHNT0+rQvp2nsm7AobHifgnW0Wjj+RKRbNtMDCpPtULli6l8xzfOUkWaPZwe79S7v5dDoT6x3Tnhvfk+F/NIsCIIgCIIgCCOQSbMgCIIgCIIgjEAmzYIgCIIgCIIwgj1rmptN1Hi55I+YTGnRm0cazJDjfZM2prejtVZWTFrPDdQ7tVqomylNTEDaNfx/+yF+Np9APWEqg7ra6rb2aS6kSS9Jnqkd8lft9PFapgTMcriaUa9jcZp8YWNLnyyXxrqNycczO4N6wsjwufZJl5Z0Du5vpttP4nMa+KidzRa01urmch3yLu+gxu0dJ07iydtaD5UfQy1dsYw67sQ23vOp+QVI5w1tVcElXZ6L9cfepJbhH7ltYZlbbdR/kXW3miyivn7Q0/WzTb7U6QLq0rbWySN1uw7pzVDryU7fh17Kno3nblO7Di2ti1yrYN725jV1kDikYc7nsK1fW9bax1eurkFesYCfrZD3dWho7CZJk3vH/BikswlsQ3YK9dNxrNODHurrTM91pZTK0Hg3MHSTF5t4vy9exzF4pYJ9PyZN6kxRt32rj1pQn4b+zgCFgZGP116aKg2PpzL42cIYtsexJI739ci4ls16Z9R67icR1Y9F6UFP1/3a1fOQ55Jw0iF9dLOm+2DgYX20ST9fyOGeA5f8oj1Xpx0H21ZA9dXcRK/gqflDw+NeG59xu0b+0NT2zD09SilV7el32pUqXjf2sB3bA8xPRph2jfgKgxa2Y5++G5O3uemxvnX9GuYd4MaKkJ5jlrS0xbSu7zS9p20X270KaPwx5hetBuYVSnihHO0haNOeiqTSbSYIyFPexTZRKKLuvb6j3zs8nvi072FjHcfYGsU1yBu+5xbtXfBJmx7TuMjxFGLD55rnS1GIz8UhLbaX1PXXp7bW5/1le0B+aRYEQRAEQRCEEcikWRAEQRAEQRBGIJNmQRAEQRAEQRjBnjXN29voDWuT7tY1tDJegvyAbdTgeORv6w20/vPo/AzkXbu5Dult0lbf+s4HIT07r89daX4N8orjqGGemEM962ZF68NYz8NeylFImpuIfAcN/SXrGDlWekR6H5J0qcDQF7rkVZskDW+cwefSNGLLW3RiN0FeiPtIdQs1zJki6rT6vuFPSxq/sWnU2vVD9HycPaQ9kEtl1ABWNrHd9juoYSpm8Vqqo+urRzrQlQr6cm5so/e0b8S4L+bI05m8fvvkaenXK5BOJ/T362vYB7oK684n38peE8vdMe5jbQM1zF4G9ZWtFtbtpZV/Hh63m3gd3yc/8X1mrYXXjxJYh5vbWgt4YxvLVtxB3V/exTZ1dKY0PB6ntpm28bO9PvabXo+0scaxZWFe3sE0DRvqUkV/+8UV7DNN2s+RtnHcyFKbS7n6Wn6M7e/aGtZHm/xaD4+TbtK4VJDE64yT9/SAfHaLKd0/Ex6OQVGw51fQf5gopH0qfewLpo555eXnIC9B3tyxhQ9ua+Xa8NiiOAT5Mu5XKJSwz3nkSesamsyYdPwJ0s8rF+uzuq7fYck89uUBaV9DuoeAvIQj473V7GLfs3r4Hj5UwnsuFbC+Uka5Lbonh+6/7+P8wM7oMbpPmu7aFupq9xOeE9gB+SdX9bumMIv+/+dfvYzfTeBzzGZ0H+oNaE9TjHXPzuY2eYab+4UGJNlN0160iOcmRtu1Sccf0960zWod0tdWcf/Z8UUjtgfdg0W+8cqiclCb8I09Y7vjS9CeOUqbGvkkzU3D8M3PgeSXZkEQBEEQBEEYgUyaBUEQBEEQBGEEe14biyjMIS/1B4Z1R0TLLxwRMXZoidgI1Zukpa0ULQVG9DP+s8/9C6TLhdLwOIxxeaFSxeX0uRlc6rFjXY4sXdemm2i28LuOwyGq9XIC1x0HIGa7FX9Ay0Cm/QotEWVyuIxq0ZJtv6/LyWFjAwvLvL9ge2nVcLnm+ms3h8fzsyibOXEMQz23OvgczRDJlQ2UOexQyNF4gOVYXr0J6RMzelmNpUErJFFqsnWiEYKUw4T6HewTLQrJWtvBZcbCpA6N2qU1/LU6WhKlsrgUmqAluIQh77l6FS2qkhn87s2bNyBdqeglt6SHtkkD9s3bb9IopUnTGPTBd+jwvJstXOKtbNQhfayI3x0r6H7UozHGJvujCslEfAqTXDas3jJZXIpvtnCJ/F/O4/N49ZqWlQSKLPY8vK5NMq+A7euMr5dzWHcPnMRxo+DhWFkex9DObSP8/PwYfjeXwHLUWlh/5pJwhpZpnRK2v/0kSdKG+ia29cvffHp4HDTQns023itKKXXxuWcgvbyi+8k0yTFmFzDUczJN4y5ZmUWGVCYi6VUiifXV7aEMae2GDmedydfxsw0cNy0aoyIK/51K6zZRzmPddfsksaRlb5aR2J7Oj+m3umod7yGbwbaaLeo+1CCrSHPM3W/8PsoxNm9g6PDtVS3vqVzB+li+ie+OxBjaWC6cumV4bJGlZdgniU6GxvcUPseGEd46imj+RHMRhyQYuayWUvW6OK65KRz/22TXdmULZVm28V4upsgGLo3XDS28x2Iex5+EIdn0aNwfKD4Xpm1fj0c2iVtcT+QZgiAIgiAIgvCWI5NmQRAEQRAEQRiBTJoFQRAEQRAEYQR71jSHZNfDMl0zfHVAnigpsneanpqDtOtrrVBlFbWdYyUMzXhsEfUs+fIspLuGNUlEfxPMzKBW9r/+b/8V0s889aXhcYNCBMekF6yT9V2jgzZftmHBF1PdWWSZEpCmLSArG8ewBgpJx5imMJkBPRjTboVDWZphn/eb8SKWu7qNeqn5aa3xclzU+7KO3XJQT94yNFweaZSypPluOnjd6xXU+bUNrfH1a6hZK5VRh1YhLV7C0vfIuqrtBtqHbTXxu1sN1OalQn2ubQrR7lMHy1FftMhKyjP6wZXrqONMJLGcgwG241739a0TM2nU6+430xS+WVH7TdhaYzfhYZ3FKexzKxV8Hqb2vziWh7yxHIfExXrotPFaBaOp98nq7dkLqLl/4TKWwzY0v+UM6iIt2hew06VQtKTXOzavx845soWbmkDd6MxECdLffBW11otG/zx6fAnyGlXUmebT+FxKhsa7VMK67QUHZ3vpkW57mzSpvW39bNI0jvAYvU796OI1/d1cGt9ZnovtxyFNZmTh2AjJmKxMaW9Ni947tbrWVo/3cBxNpfCZ9zv4nnFdHIOCgb5Wkq3KaMwJYrbUxDbQNkJyJ8hubWsbtbCxOwHp6YxuMynaR9HpHlwYdrYKPHR4CdKe0mN6q4Ia5u0tTN+yeAjSTWM+kS/jdVK0z6tPscNDspUrZLS1ru1hW2R6PXzmfqjrk8NR8z62Mln4djr4Tqu39LPq0D6HSNEch6woLbuE18rqNmPTXCwm3T/vPwuNcTGMyY7uO5gCyS/NgiAIgiAIgjACmTQLgiAIgiAIwghk0iwIgiAIgiAII9izpplDO+8O5qg/4JCmMkMejgXyLk0uHB4eN2qo/ZmZx3N9YH4J0kdO3AFpJ6F1W81GHfLYV/a2205A2pDNqCtnz0DepXMvQLqQJZ3jJvmPGrqakHUzpKthDQ7ZwqrACLls8yMb4HeTPur2usbHg13hug9O01yexpvaqpEHZEL7j/b8OuStVlD/xOGtJ8tar5lIkj9yD/VPYUSaJvqzsWL4gPr0HHx6TpcpvPWdi1oz3/WxzPVOh9JYroaPz+baqg7ZXffxu3ceRt/qBOkLm6Tza7S0trG5Qx7p5NXqkMZ5q6/bdRigZq1QeGO93FvNyiqODTnybV5c1PsbOkEd8lyqpLFZ3FeRz5he8bR/g35baLVQg5mj0NhbDV3/f/eti5C3Su2+M3h9XbZLWsYuhTLukrZxrozP7p4TWnO4ME4e29RmrmyjL/HiYgnSD9572/A4iLDM3R3UNJOcX6XSeqx06Zm57YPTpHKY6HYd7zk0/Mx7tFckaeNNJT3UiC8Y7SmfxbreqdUhncmgptd1aI+LIRgehDhONPvY9tod3FtjhDxQdoD3myPv2wH58NZJk7pjxGAOaB/OxCR6UWepD7QpjsFgVWvkbRobA9pHUalge5qe1vfIoZ2j6ODaj5egfQALS5Au5PXLdvncWchbOopj+Ng4zoG2jffUoIP3lKL5k2djOg5oX0rHeFY21m0igeM966W7gX4/eEmca4S0p8UjnbtDId07xsSnRaHRJ0rYFuemsT31aR/PxS3dfo7P4d4ih+Je2LT3wzfG714P68PnEBp7QH5pFgRBEARBEIQRyKRZEARBEARBEEYgk2ZBEARBEARBGMGeNc1BiHoWm7xzwceStLKpRAkvalP885z2Ybz9rndhHhlCFkro4Tg7NwXprKGzbLfws33St9Yr6Amdy2st2pFbUSu9sY6enqkE6ohYVxMb9WXb+LdJFHL8d8xnjXPf0DRbCnWNmSTe43gGtVJVV1+r0UFPWH9wcHow10ZN12CA2trQqC+P/Hh90iHvVPFcSUvXT5r0XzNTqJWqXEb/2ZX1TUi//6TWubfHULP7r5ewDagUljOV0+n1KmoPt7rY9lqku6oG+Fw321r311Wk/3bJM3WA391qo85x29BTB6TV3N5E/WChlIG0eS0vgdf1Q9RA7jfJNJYtTfsKCqXS8DhTLEFeaZrqMIntZGDUWdTC+otId2uHWA/P3cRn/dwV7ZV7o4IaOpIDK4vGt3xan7tLeudmH8fcyQLew13HsK3nirq+1ltYjq0t7H9OAXW277r7FkgnDM1qo0re0uTn2k3gc6oY1VMlv3LlHNy+Ct8nL33SZNqG3tOhVyO//yZncNy97bal4bFHm1Ji2kuy08C6T9M+AlPjbJOOlHXZKsJxJW343cY0vndC8nsnnWmNNPN1Q/OcSOEznZjG+79+ZRnSN+uoW57I6Ws5AZZjp4WfjaitbhixG1KkFx/Q2LefJNKoYw+yvC9nfnic20A/9hO3YpuoDbAfTE9MD48btO+EJMyKmoQKaI9PsaTHgQ3yh27V8ZkvHVnCcwf6XLx3wfHYUx3zbRsLtlHXXuYO7Q+yYnzvdBv4bnU9fM5+qPtEMIXvZfanH9C7NHQ9Iw/LnM6X1JtFfmkWBEEQBEEQhBHIpFkQBEEQBEEQRrBnecagj0s9HoVzjoww2g7lmZZDSu22r4uMJeNcBpdAYlrK8WlZv1a5Cel6VS+/h/Q3gWNhOXYVxLBfSedQ5pAfn8GPuhSqmNK2bywRUJhURascpN5QLoVdtW2jDmgJZGpqHtITebTFOT6n7ckurV6BvAHV7X7SCnA5KlfE5eCWIV8Ierhk3WvjcsvkGC4Vnjqpl2vmp3BZJ0+hnts72I6funAJ0h9Ov2N47FhYjpVtXFJq0vL5eWOZfquOn61RyOOWj9+ttLFdm1ZkfQ4TmqB2HeHybqWLsgmzb05NYuhTDqPN0iDXsHhKkiRpeupgw2gfWUApVp/sg1o1bSGWznEnwzXOeg0lPqGxVG1H2F/dDi61fuNVfLZfvYbnsg15mkd9P5XE5dGpLFn+GXKYrSb2zwl0aVK3LuBYee8ptNFLG3aCF2vY7jcbuCS+OFWCdK2F91Q1bLBCsoOi4V4lqU0pQ8pXZNszkgjsK7vCV2PdDyKd5iVwj+4pR5ZZ5TGdtmkJOCRJ1IBCcnconLVj9NdUEt8FEX3XpjjAtrFUHUVkZUeywE6frpvCa41N6HSzg8980MbxvNrA9hJncJzpGDKS88soGdgh6VqC1vKzKX0fh48ehTyWzewnLA1xyf6utq3vozg+DXljY9hX6xdeou/qsSuVLuGFyRZtcwPnPPQaUrZhmZlO4hjZoHdDYxvnC6Ehg7BzWOYBWQPaKez4hWIe0t1Qt4mUSxLUmOwO13CMnZk5DOlcQcuBBjTuJyk8vOXh/MAkm8cyFscmXueTr4/80iwIgiAIgiAII5BJsyAIgiAIgiCMQCbNgiAIgiAIgjCCPWuat5cvQJpn2+lcaXhcKKNOJEnhFWO2ZzNslyzSVHpkIcYy5F4PtVUpI0yrTWI716VQqAnUKIWG/nAQU7hJ0s0EpFtjGzDHsNWzSDsXk2DOIvs+h8NqG6Jnl8IeHzp0CNIJsie7/cStw+PKGmqhWqSz3U8m5tAOK13EZ1E19GDnXt2AvB2y4DlyHPVOxTFd95aL+t9Gtwrp6UOopT79LtSEx56u65dfuQF5KxW0IlttYPrCqtalBaQ1TGVQL9jtYTn7A9T1BUYI0pO3YRnveg9qe7/1lauQbvTJVsewJvvAD74D8tp9rNtXX0NLPtsI+V7Ko8aNDYj2myKFSI9zqCut1fVY0N3COvAdHEdCH+v/+rrW1CVIfxeQrdWZLdSCJh3sv7ERm5Uj1U+V8B7G0pje6ekvTKH8Th2dxDZ0G2maJx0sV8pog2GRwrRv4nj15DewDX3lW5chPW9odqdLOG6Wy6ghnB/H5+KFepwJSS+eYf3zPhJQH7NIk5ow9NYe2bWNjaPNVcrDF1G/p/tRkfbD2GSZmaHxP01WikaXUwMfx/MehVhO2pifzOo2EYT03u3X8bOkl56ZwH070ZbW7m/V0J51a5vs1thSrIM2jE3D7o5ed6pLfbHn4wc2a7pf5+tsWbjnKcx/GH7nB2Ql2DX2qeyQTeUkve/CAN+9l85fGx6Xyrg3oTyO/bxLodNj0oCvr+m6j2IsR0ght6tbdUgvHtbzhfEs6bDb+Nk07VXzPBw3Jw0bvT69w3tkyapw6FJrV9HCcHJRj6lVmuMcPXknpH0Xx6fAsFy1bSxzp/PmLS/ll2ZBEARBEARBGIFMmgVBEARBEARhBDJpFgRBEARBEIQR7FkQVL10DtJRjDokN6m1ou7Jd0BeKnkvptOoD+4Z4RptCtVYLqE+LCIdEftpZg1vQdY0OzbqWS0K/9o3tIh+lzyMKdxtRKEaSdKllKFLjriQlI5I/xqQf3Js+Gt6aSzz9Az5R1NY1YVFrf991z33Qd7XvvolLvW+sb6FGqaIqtfv6hqcGkP96fwMPrcStZHaNa2Xuk4awJjteqnJH5sYg/TamtZAX2lhmW95F3pvzrRRu+kb2tepedSDLR5FTeTzz6K+/Nl/QS1xyrjH0+/EPQKlo6RVRKtp5Z/Htpox/jYe+Kxjx8+afrNKKRWHuj0l09Tm7YMLYauUUjs76I9skeaub4Z9JS/PnNulz2LDyGW0Dq7ZRN3ks+fQV7ZOesUENbLY8Pe2SO9cyOLYl6Jw3t1Qn3u+jPrDQ5Mocl4ooBY200QPVt8Qx27VsV88cx41qmerWM5cAtvYzU2to5ygkNsnlhYhPVCoG1zK6/Y3ReeNIhIz7iPNHezPHHsgP669hVMUcrqQx7q2acT3jXHHcnhPCr8dMJ328Dk7hh86hzJutfEe2tUVSCd9XfcxtUv22c1Q/7HY79bS12rT+7BH+vBsGttEsoka1rrhQx+xZy/9dJdMYl23Brq+VsjPN5k4OE2z30cvar9HIc2N+YSXw/dKs70O6VYNn+NkQY8/Hs2POqTxPnb0JKRrFRyfOkYbWa1uQ97c/DFI91PkX9/S/bxy5kXIm5nDvTQ9B98dOxRPYGp2VpfjEr7vwgrdf4bnPDiWlQp6jLEV1vvqGu49ShYXsJyG1jxB477l4zPdC/JLsyAIgiAIgiCMQCbNgiAIgiAIgjACmTQLgiAIgiAIwgj2LAjyyXfR8VAL4xsehlnW7aVQO8WaJdfQfMUKNVzJHOr42GuZPY0dQ8dsk1jKcVBr5weoyXEMTY7jkH9fjDo0lzwuPfIb7dW1Vs9ysa5MjfK/lQO1Zj5p7WKjblMJ8tacQw/fsSzW19iY1lbdd/8DkFdroD5sP1m+hO2nmMQ2kTB0fkXSgU4V8bN2F+uvtqm/W6mgRjLM47nyE6jZdVqY367qup+5DTXM9gTqrJwQ9fapjG73fkC6V5T8qclJbE8eaT2Tnj7X9Cw+0+pOHdJHbsX87g6We+2Cbtfnz6D+676HUB937BTqweo1Qy9HWvxW82A1zVW6Xn0T9Xqxr3WW4wksa6+IY45F/aRs+Gi/dLUOeSvbqHvz6LeGRArHilnDF7uUwXGhQBrmzQa2k3RSt+3ZEpZxbmoc0skAdaWdNo4ja4Yn6d+cRZ32uS3UEKY9fBVM4hCujh7SbX1xFrWNY2PowT5TxnLHPb1PoN3APhQPDs4rPiItcUj7VAZ9XZ/sOWuTDz//2hQZ2v+IdMg27Z3BqyplU/AB19A48x6MVAbHwl4L23UPPNopHgKVw6FnHtB+h0ZVPzeOLZAkb+nIwRqpd9Afv2u88xIUe4E9r7MZmlsYGvn1CrbjsdzB+Xwr2i8UDFC37Rpzjxz1iSzp/H/ggYchvbWp7+v6Jvow5yex3584egTSVwJ8Ni9f0x7HC9M4Pzh6+Cikr15HrfVOS4915159GfKqm9jv0yV8lyZI958ydO6lAn52h8aBqRnc8zM7i/skbGO+6ZDXcrVRh3SYQD25Mjz6Y+6bHPhjD8gvzYIgCIIgCIIwApk0C4IgCIIgCMIIZNIsCIIgCIIgCCPYs6Y5JA0z66FSea0jmT9+C+Ql6LMO+Uc6ntbCeCny0XNRv+KQJtBSqOcxPTItm016yT+TfJytSP8NYZNOKFtEnczxU++EdOCgWe7NykvDY45uzrbNvk9aKfKAjgztXSaDYsOJSdITzqDuKDD8RiPyURwfJ+3PPuKQP+Ia6bYKae1TmfdQAHxzBXVsiQB1bKGRXlhAPW8nRo3z9hbWQdDC9lUzPC4nZlATaJGfdhji35wbhvdkgjSRMz7qvY6VZyH9dBK9Ni1DA1cuo0+zCkkfnkZd1kMPoz7sG/HV4fHZF+qQt35hE8s5jZq3tqufRbuJ9WHqrg+CzTrq4IIQO9KEMTb4NLIFMT7nHOk7X7mofbIvkxdsKkXaT7ruTB7r/+4Z/ay7JJm70cT2ODmObTnr6XIWytg/LfJvt5t1SJ/dwnP/9VXta/3aJupVPRf7o+tgQctF7IOn5kvD43ccx3IlE7TPxMI+5js6f0BjW/470BR+pxSK2C9SOdRZNta0l2yvj3UdZLH/eg7WZ2h4tIch3mM6RbpjGu8V+TqbxKS7zpAfclRCvatl1KdDz7RH+3BY8xx0sP2sGXsGajuYl8nlIE3bdFRrgHXgGO1aWdhe+gNq1xHtIUjpsdSK8UIt8kzfTzbXUf+bTeF95PJayx9b+EyDDraX8ZklSDc62m87H+BzmptFXXK9hu/DTgfrYHpKx25YmMf5wDjNH5KLeG7feGyVlWXIs2neYtNExqJGsL2u32kLk3OQVwuxzJ6HWv0c7WULjfeh62AfyFlYXy75npvFsnjyFfHsbDTyS7MgCIIgCIIgjEAmzYIgCIIgCIIwgj3LM7LzhyGdICul2YWl4fH00hLkhRYtc7Odm7Gk5KVw2cdJ4NJWTMszls3n0ods/WO5+F2XwmrbxiqR6+HP+JO0RJIvlfBcGZQFXFzRy94bW7gEHvE9UGhwm+ztLGMptUTX9Wkp8PylC3Qufa0Jsq4pkO3WflIo47JQo4HPZqehlyzzFC44lcW/7crjtFRa0M04Scuo7R1c9vHP4nXr+GhUuqjrulyisKC3oExidQ0lJoOKPne5jEtGi9NoT2eRRGn2GxchffmiXg4160YppcbIri5B0qlUEtvT6Xv1ct3KMkoclm+gbdspH9vx1LR+Fqk5tKMr0dLwfpPPoywgW8Q6LqR1PVTqaHm1toH3efMChpG+vF4fHpczJBnI4rPK0rhychKfbcJYtl3extDfSZKqJcleccmQF3UGeJ1gG+/hzBYuY//5a7iEfsXIjmkpPpvAezo2h3V573GUfd1zXC/zjpVpaZ5CJnd6WO7IMmRvNJ572ZI6KFiu5yVx/DflDBGFjfbJGi/JMgljDO938bkUCiUsB4VF9kOsL8dIuxRyWtG7I03l8AxLUtfDZ5olOUprB9tTo47L/j2j/XFbHDTwsxwa3CX5j22kOcx4t0PWlRHecyal822yp4vVwcl7MimWIZE8wZTvkd1tZOMY3SIpzGZVS+5SORxPfB/rZ6eO8jyP/ExvP3XH8LjXqUPexddeg/TMDI7pc4a04+EH0aJ2k67b6GG/rzaxTQQ93YeCBn6238VzuR6ON7v6hCF3dMn+MeviOz7NcyRDKtRpYznsxJu3LJRfmgVBEARBEARhBDJpFgRBEARBEIQRyKRZEARBEARBEEawZ01zgUKnRiQlmlnQoR1TpBPxe6h1GThkyZMvDY9D0vf2yfrHJh2Ra1OoUEMj6LCuiCzDogDTphtJTOXIZFHHl86gjugd97wL0heuXhker33lS5DX7aHmLUHlTKbw3H6k62BiAp9DrYqayTOvPA/pe06f1gkKA2ofnBxMJchK8LbTqJ31lG4zYQufeYxJlaJwnU1f63SrpPMctPEm0wnUpjcs1JaNj2sNr0N6eddBXVppHLVUmaTWbbsxdq0uhUovzOI9zJ4sQfrMy9ru58p51B5m0qgPL2RJEx9hOb2MLsuhU2i79cqLaK+2VcP2dN8J3e5PHMNnlkqQFd4+c2QWtX4lCpG+3dVt7OY2Nporm6ihW15DbbdtGTpSh7SL5LVULmB+mpy81gxt6Owk1tmhOdTudfukB/Z1e712E3XZ6TSOm0+tY3++grekTOlfSK5medJtH51Dffo778Dw6hPGNgPbxfuPM9hPMtSnOn1df1EH3wVbVeyv+0lEY7pDlqOOoQe2PHwu/O7o98nCzwjtG1E46v6A75HCefvYVhvt+vCY3wXdDp6LQ1CbGmeXLCHDAd5vmETbr0IR20DZ0Iau79B16X3INqkTZO9nWudttbGh0mNRSRrfxib0XoYOfVfRfGA/cemFGVEY+8iwhEyS7VmP3rWxRXsbjNDiF86fg7wU7fMq0NzjxuXLkD7zvO5jUYhtcX0V93IkaaxbWlwaHs8dxnDdC3NoGzdOFraDq2i7e2NF23j2knid6TEcNPP0Tuc+kjDqM0nWib6P86edBmm+DQ19FJKVpM9B7UcjvzQLgiAIgiAIwghk0iwIgiAIgiAII5BJsyAIgiAIgiCMYM+aZpt0tynyBhwf0/5+Fn02k0F/SJ/Cwaqu1sCxhbPrcthsyiedkWucIE3hb90Q03HMmmZDe0fhS20O90pheKemUWt8+213DY+/9rWvQF5I958yNN1KKeU5WH+FpNZ0nTh+J36WPHqzGUx3jbDQ7QYKGxsN1MruJ/0m3tPaOoaNLha0PnhpBrWygxY+i1oVn9u1m1qHS49FTVEo4m3yza220Gs5V9CfnymhlkyhPEzlyOfbzeqLZy3U5W00UJ96cxnLMVdCb+r/dOfx4fF4GrXTExm8p7XVFUjniqgPCwyf9MkZai85fC4rV1EPduy41o8l0y9CXtLDMt//rp9W+8ni/e+HdGsNNXQba9rrermC2tm1LdSoJhWFMvaNcYM8tEOFerx1Diduo4Y3kdTtoDyBz6pBevMLK2gU3tjW9b9UJL0djYUxjRMehU3Op3T6yDTqAO9Ywj52bAqfZVnRXpKWbvyVKraR7TbW5ckjM5CuVevDY4d85ZOpN++T+p1i23itAoWnrxl9f9DHZxqSd36XPGot49Gw5rJHY0xIOlJF5TL7cxBgGyiPY5mzGerrhrY4jlGzbNNvZIkEaYfLWI7Tt54YHlfJl7lPntch7Q9qdLB+Th05NjxONuqQdzPG8NSzc7gPwDLe8RzjYI7CRO8ru/ZEYbs3vbzdNNU19U1Fmufxkp4jlQo43nd6qNvOUXyFfB73erz28ivD4wZ5J7d3sC2myU+709TtvlLDzx5u4TMdm8G6L5DOfdzQtVukrZ6fx2fMe8R4/mXWgEVzMe5vMY3Xpm96wsP75bgfe0F+aRYEQRAEQRCEEcikWRAEQRAEQRBGIJNmQRAEQRAEQRjBnjXNnoVakGIBPR1zhs9el/RMCRc1za6DGpSNTa2tHZCGq0B+jy7p+CLSyGWzuhyTCdQTxgFqg1jTHITGtUk3Y5FHb0S+lOxbffz4LcPjhflDkNdqoyZwbvEwpIsFrK90SmvPCkXU/tS3b+BnE/hIV9e0V2KlgvpJzzu4v5kuv4Ya3stXsA4W5nS5C/eyZgnTdYpj3+vqZ3FoCfWUTfJ8vnoTtdT5DOr6nnvl7PB48vgJyDtcQD3hBPmadppaO5W2STtcQO3huRv43O6cRf/o7Cmtl1s8iefKZFAfVprAc7d66GWaMfTSx07iPfS72I63b6JOr13T114lv3XLOjhNvFJKtVtYtpUV1GyurOk2RVbxqshmyor8XQM9vsUJHOu2d/C6WZc6e4CfHxj6zsryNcg7s45jzos3sC2HxngWHcYyJywcG0/NkofvAMuZK+jn/qEHjkFeieqjUUf9om2RXtrwZp4oo3bRTeM9tdrYTtI5/d1eE8sY9GijwD5iOficMoUSpIuTeuzYIK/XOmlDJ8ZwjA6N96NPTatTx/0MMWmJk1k8V9UY36pbG5CXK2Ddxwr1r11Dd5ogrWcyjeOE62H7sS18Nree0OPf8k0sx4sX0BvYJW11nbSz3zyrx9UUvaN4DE5Sfs+YT7j0zjpyAsfo/STmvVjsvWzkd6id26SJt2nzzVhZa3xnytj2GrU6pItUX+0x1Bbffd+7h8c7NfRlXl/D946jSNNrmGa3fezX11dxvF+r4nsmIH2w39V9O5PA90wpj7ps3qtmk9Y6Mvag9MIufRjbHnVzOJdj8T420TQLgiAIgiAIwluOTJoFQRAEQRAEYQQyaRYEQRAEQRCEEexZ08wUSWucLxoaFdL+1LdRC+MkUZPTaGmNSr1eh7y1ddThTkygjnRiHHXLXkLruMIY/yZwyX9VcdrQMcdxQFl4rsEAtXj1lYuQbqxrLdGxCdSsZRTqsA6dQL1hYQx9F039ZbuH+jiX1EDpJPkdGnJY1u/Y1pvX83ynnLoTfRl75JldNvTCtkItXiZFXtzTKBrMG23AI//L869y28P6OXkvanzbrv78n/3Fc5D3f/6X90D69h9cgnSlp/VSfhvr1qG2uFjE6762guW0DB33zFFsP7Uu+poWyHtZNbF/dXtaD9Yl/9niJNbH6lXUnmc9raFcmEL95LUbN9VB8rU/+zNIX66RX7Ct6991sf6nprBduAHeS6+vvzvArq9uncG2mk1j/fZJS1wxNOVJ8lgtkLR6EYdRFTm679vkuV4boIZwdhJ1gYukpT1e1vlHDmH/a7bJEL+N41lo48kaA12fZdJULsyQD38bddqB0f5WtuqQt02ez/uJQ/ED0mnUB88sLA2P69u492GziuNuuF2HdD6n62ewugx5vTbqey3SNPN+mcq63oeSIP180Ecdf5O01rGhie/TO8phsSe9/kPaH2TGEzg8i+NVlbyWN0h3uzSBdZsybrHVxbbX7NO+iq0KpMvGfpD7H/5ByDt97w+ogyIIsdyui2OKbfSZAQ0iFs15QnoXJzO6ry7S/paLdWyLF149A+nIxnPffvvtw+N88hbI6/dxDNnYRM3z9RWtea61KM5FAsdMnk/0Wh1IK6P9JShmBvslO1SXLr3HzWuFEc4voxDvKRzQb8FGTJEwwD7Be9P2gvzSLAiCIAiCIAgjkEmzIAiCIAiCIIxgz/IMXorI5XD5xTJW82JaJowo3e/hElPLsB1iqxqPlpROnsTlhoUFXMqwjfCeLi172RbeQxji0pfvG0tsPi659mhZ7OLZFyB97fln8Fp9fU9zObzuVA4t6BRbpES0DJTVyyK7rKCoflxKm0tunQ5JSpp1dVC0yfrt7juPQjrj6nss5PG5eUn8Li9RJl29fNdr4v1bbVw6fuBurPvFI1jOuKttp66/ikuyf/9lDNt8YgnvYWlcL5NZOVy6Ske4DLR2Ec+9uo739J73aAnP8SNoqXPmKi6DrdPScSKJn08a1ordPtZlOsvWPtgnyoY10B23zEFeLvEdq7u+I5oeWZtlsF+ZjlkTGbyvnS4OQitruKSXcnW/OkEhp+fpXMrBcvSpGmyj/u0sSq2Ok33iQxQSt248npdevQp5NyokoXCxzdTIve1qTUtxkucx1HomgbKcmMa7RgvPPT6h7yP2KMQtLXFaNN67Rojc5BjK65LxAbYhehElKCx5Zka3704LJXSVdbRca3ZRgtKtaZlEbwWXvBXJJLwk3rPN4dF9oxGQ1WtlDaUfO3Xs66Y8MUUWc/0uPlPPxXLQYwMJwcQEtuMfoPF7i5b5i6RDShrzh81NHK9euo7StJ0Ojm933X5cH9+HcozCGMqO9pPIxTmPH2B9pj2zBmnZn6zOHBdr2zKkkgWyM8xTuPcqhbdenMc+lbV0v8/mS5BXnkA9WHEM85eOaanoxiZKp9bWUCrbIImO30XpX9IYN0/ctgB5BbKt3C2lxfZjqpRiCrFtWTQuxtg341CXg/uA67758Ud+aRYEQRAEQRCEEcikWRAEQRAEQRBGIJNmQRAEQRAEQRjBngUdExOoHZqeRn2jMnRYbdK69MndqEa65U5Pa2EW5jEM8vQkhoicmkJ9j+ORLYqj9XO2hVqxMEQd0cBHfWfbCPvYpHu4eBZtXl745tOQjnzUYeVdrclpkkbZYuc7CjtbTGG5c25peOw4eL9eAj8bkM6qbVj4bZP1X4e05ftJcxPr57Z7UNNUzGlNc4osrepkZXPhCurnMjldoa1N/Dswa6Pu9ZbFEqT7Hax712gS//lH7oC8f/pn1IV+7gtoSfdjP661d8k8hUemOKGvnEeNZIa0rZNTuq3GpEVfmsA+cukiWhK9cuEcpNNp3Sf6fdSuWmQ7aJPV2LVrWn/48A/g/oGlOfJL22fuvG0R0sd9fNaXDc3dhRW05as2SMtGlkYbVf3gG9TeVgvYYcez+DBji2wfi1r/uVAkHSSFjXYz+NwLCf18Fmawfrtd/GwwwDY2ncL6cJQed6Ie6g1n5lCjGvg4rjR3sF/0mrqdpEkH2dpCjWqjShZrBUOjSePV/CyO7/vJYIDjPVtmOZ4ed6Znce/D8VtPQfrGVdSb1za1TVqfwqqbey6UUipXwjaR5HDXCUMTT/pNj9oa7xcKDGvAVoDtoxnjc3Gp7+fJRtY2+ohD48LkGN7DWBrHpJj2cAx8Xe4SWSkujqG+fod07ref1hZqmVwJz0vPdD/Jlmch3aqg5WZg2JlxdGYuZ9LFvhoEun/2aV4yu3gYr7uDWuPlS69COvR13Z+8BzXgloPtJ5fHd23e6Ku5HFrMzUyXIL29jdaAW2QVmC/o7x89jppmmsaofh8rLKJY9Nm07iO2g23Lj6kNkJWwGXm9TeNgz2YbxtHIL82CIAiCIAiCMAKZNAuCIAiCIAjCCGTSLAiCIAiCIAgj2LOm+ZYT6I+c9sjjuKf1U60Wam62yFcwm0cfwpPHtVnuzCxqpW0Sv0Sk8YoinPdHpo8x6Uj75FHb7KBX67YROnXlwnnIu3HuZUinSbQUplD/0w20NrFPn+2zrpF02ZM51MAlDB1gwkM9mD9ArWavg3VdqWid0a6Qq/bB/c304IN3QvrQHIY/d43n5qRQ4+cnUBO+cHQS0qVCaXh8nbwiF9+F9TW2SOE5Q9RUFozwr56NDegd99wK6We+dQXST/yjTt93/xLkueSpW6+glurdpBfOjutyNkPUIccO3kMpg/0pMUA/zUwqZxzjdXvkITs1gVqyM69qHXerdzvkKe/NhyD9j9CoYPu9vInP+pmrRv/dQl3ysQl8lh9YwDb2DaOPPnMd6+TiBl4nlaR+Q7p5ZWvNffkV1MG/907Uyp44gnpOP9bt9aF7j0Fe0MJyNbpY/23yWt7c0PWxQ2Gyr1y5DulUjN8dI91tLqnHt7BVh7xOG8dRi9rnjlHubhfLMUf+v/uJ5eBzY1/iXlP3UauPn50pYv9MLeBzSyzoMdyj9pAnv+Q8aUWzFFY7Z+xv8Fxspw5pmkPyyG539fhf20Gtea2F6a0qanIHIfYZU8fsUZNnL+4opPchhZY3N/Ikkzgmz02jz/Adt9wF6aWT+t1hkwY1pPnAftKjW2oPsBL6xp4pm97TrHH2fXxukRn+nMZ7h9rHyTtwr83MeAnSVy5cHB432zh2RTG+S7druM9pdk7vXcukKbR1Aut+bgHnauVx1MSb85ZIUQVQMkmxBewY065RB4GF7XRA+7hSGexfttHvOxTSPlvCPXJ7QX5pFgRBEARBEIQRyKRZEARBEARBEEYgk2ZBEARBEARBGMGeNc3ZLOpEogC1Id221guzH3CftHYnT6E+upjX5+60ULeYTKK2LopQ09VpoUdt4GuxzKCP2pdOF9PNBmm+Vpd13jr66CZICzSWwXIFpJCLk1qDkycfznoXNYAT8+hhODmBOltTLxb6qAnskZ5wh/ylW4Zu2w9QSJQgP+j95MEPvgPScUje1Ub1RQrzinPoT3vyFNZXt6H1YGMutp+ZefxuaYo08D62p1Ra131Mz9SzsbscuQP1qV996uzw+C7yFL50DrWtuTye6x0Pos/p5IzWdLH2vEc+ngtL2F5+6IdRExgbfcYmXadL2rtOB7V2v/yLfz48/vt/vAx5//vPv1sdJBcvrkL6Wh2f9bV13Tc6ZN15o471vT6Fz/3Dd+l2cuci9u0zq6iZu1jFPrfexPFtIa/r9L1LqNk9NoVaPS/G/lxK6XGj00Df05j0q7MF0uPRXpHxae0re3PlBuRtreG4WUxjO5glP9xuV/dJlwSaVozfTRWwz2WyulwhiWGbtZo6KPwG1rUKaNNLrNOJGPvJXAY1zbeepHdYWt9zxsPxPqFQC2pRvABF3rlOUmtJLQe/65Cm17HIm9vQPJs6WaWU6tD7sEoa55uVZUivbWsv6m4fPxtEJPD1UHdr0z07rk7HdA8W3cORU7j/JVvWOtsw5LanDox2G32v03nUYitDX23TOywm3W0codbYc/V3s1natxRi/SRoPlEs4BiTH9f9vtbEZz5GuuNqDceB6yv6PZWhvVXT0xirw3awHGnyfLYMv+1+H8fMdJb00i7tEXBxDFHgq0/9xcFyRhbOVQNj3pfLYhmPHT+h3izyS7MgCIIgCIIgjEAmzYIgCIIgCIIwgj3LMzhkYiqBP83XtvUyW49svxyyKhn0cO00SBmSigEua1Q2cFmxRSGn/YCW3IylwyjAJaSQJAEBLXNvberl33YDbfMStDRvUyzsVAqXFyJjSb1NtnBj02iZNjOD1i1JWt6rG1Z4OxzelkJhVyq4jOYbdZDJ0ZJHfHB/M6Vp+bdH6+e2UV9JWqrJ0fKla5ElXUqfqzxGYdUTmLbYZo/swwJzSZPsnQYKlzvTJcx/5NHTw+Owi+uGm1tY5v/8X+6B9MwhfDYxPBs8V4pCESeSmJ/O4NKXbSzxJih8tDci/VM//eDwuFbB+08kcalrv3Fp+W+Cnsf7inqZrlDAJbuVCo5Jr5Bd3WxBL1t6Fubdv4ht6H23Y39d7uK4krR1eoqWUrMutpnVC5cgPV3Q0pCILA9VGmUjbVp+b2+ihVg6revryBQu4Wbo3GNzGCI4ncFyq0D3sUIW80Ky0AwCrC+vZMgzaFVf6/vZVQAAA95JREFUUVjb/cSt45hj2ugppdSYEdK8mML2kyLrN89hiYGuz5Deby2S9tlU9wka75Sl62/g4/geBniudIKXtfV3I7J9cwMcJw7lUBI2l8fl9/rsyeHxSgWlWRduvgbpKMD3jpXCNuAb7Sem+89OYNvLl1F2ZBmft2P8bnCA8oyI5FGDEMtivlscerdm09j/BgO6DyP8eUh+bAOWMtIYjblKleZ12O0cWdsFNF8aJ7vbZkdLGWxq4zmyZ/MSLO/EezZlWwm/BHluAh9cktpxh+w0/Z6uk3QezxXTe6BJkpTejp67Ts5gWytPYB/YC/JLsyAIgiAIgiCMQCbNgiAIgiAIgjACmTQLgiAIgiAIwgj2rGm+uYphVx0H9SympitB+t4gQs3JjRuoU64ZtkMcjrPbQ5sXy8J8mzSqZpr1Tw7ZbSkb7yEzpfUufgr1g70WliMkcV6Fy2loq8cm0RJsdgHtyBzSeDXICm/H0Fc3mmj1N6C69UkPlcvp++Bn1ue4oPtIjaylooBsdAwdd5SgkKwhagQdm8K9GpZFrJfrUf1YpDWL2P7JSCYTFHKbPmpT+xkYGnmbJKF3v3sJ/4N0atTsVWDcs02WTC6VC5VnSlnU7s3QsxbZ9QzIwrBF7fzDP26EsCWNd6TwOew3J+fQUm0zQMunlNL6z5k8PpvmcdRDb3XIqsvQXNZXcXwKdrDt3l3Ac99yAvcorPd0PbXoOoMANbzJPGrZnbIOL7++ivtI7D5+t0h7MmJqRLa5N4IapOtgY3YjtITyPBzD+119rdo2ha2NsA1xO2lu6TGrO6AyklZ4P5nLYHvJU3hiw/VLRQPSr1r0qmSrN9d475CVp0djkkthxlmXbBu65GCAz7zTxz0tYY/2Mxga+oTzxmVuDbD9eDQGjbm6v2WmMXRzIY1t/tylZyF96fpLeK2ebgN2Dt+ti5No3ZlIYZ8IDcvaiAbhAYfr3kf6pL+36N3SNexdPWpbIdnCsW1apBKvl6X8kPYMRFgHmQzq7wNDI9+l9mNa0CqllEdtcXr+iD5vmve7UGhw2ucV0W+wXlK3H4vsbgO2Q6Q9Tt0OPtfA0I8PyLLQ5jlQh/a9GeNkYQKtI7vBnqfA+npv+huCIAiCIAiC8DZDJs2CIAiCIAiCMAKZNAuCIAiCIAjCCKw4ZqWmIAiCIAiCIAgm8kuzIAiCIAiCIIxAJs2CIAiCIAiCMAKZNAuCIAiCIAjCCGTSLAiCIAiCIAgjkEmzIAiCIAiCIIxAJs2CIAiCIAiCMAKZNAuCIAiCIAjCCGTSLAiCIAiCIAgjkEmzIAiCIAiCIIzg/wfFO988ROWoogAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_images(train_data, show_labels=True)" + ] + }, + { + "cell_type": "markdown", + "id": "df819e85", + "metadata": {}, + "source": [ + "If we consider `train_data` to be representative of the typical data distribution, then non-animal images in `test_data` become outliers:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "41e5cb6b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:16.172267Z", + "iopub.status.busy": "2024-05-24T23:50:16.171932Z", + "iopub.status.idle": "2024-05-24T23:50:16.670310Z", + "shell.execute_reply": "2024-05-24T23:50:16.669712Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIfCAYAAACLueGlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebhlVX3ui4/ZrH6tvdbum6pdu/qGAgpEGumxAVtCjmLMTSIYjW30mKum0ScBm8TEaDBXf8Yk5xxN4zm/iIkYozSiiKIoSA8FVL+ravfd6tvZ3D+8rDHed0utDbI3At/P8/Awxx5rzTnm6OaoNd/xfq0wDEMlCIIgCIIgCMKTYj/bBRAEQRAEQRCEX3Vk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIJ+Duu+9W5557rkqlUsqyLHX//fc/20USnmNIHxIEYbX4/ve/ryzLUt///vefE+d9ruM+2wV4LjI5Oan+4R/+QV1xxRXqtNNOe7aLI6wSrVZLXXnllSoej6vrrrtOJZNJNTY29mwXS3gOIX1I+FVEnmGC8PSQRfPTYHJyUn30ox9VGzdulAnneczBgwfV+Pi4+sd//Ef1tre97dkujvAcRPqQ8KuIPMOeP1x44YWqVqupaDT6bBflBYHIMwThSZidnVVKKZXL5U74uUqlsgalEZ6LSB8SBGE1sW1bxeNxZdsnXs5Vq9U1KtHzmxfconliYkK99a1vVSMjIyoWi6lNmzapd73rXarZbKrFxUX1wQ9+UJ1yyikqnU6rrq4u9apXvUo98MAD7e9///vfV2eeeaZSSqm3vOUtyrIsZVmW+vKXv/ws3ZGwGlx99dXqoosuUkopdeWVVyrLstTFF1+srr76apVOp9XBgwfVq1/9apXJZNRv/dZvKaV+vvD5wAc+oEZHR1UsFlM7duxQn/70p1UYhnDuWq2m3ve+96m+vj6VyWTU5ZdfriYmJpRlWeraa69d61sVVgnpQ8JqIM+wFwbj4+Pq3e9+t9qxY4dKJBKqt7dXXXnllerIkSPwuV+kPb744ovVySefrO655x514YUXqmQyqT784Q8rpZTauHGjeu1rX6tuueUWddppp6l4PK5OOukk9R//8R8dy/TDH/5QXXnllWrDhg0qFoup0dFR9Qd/8AeqVqvB556Y4yYmJtQVV1yh0um06u/vVx/84AeV7/vw2SAI1Gc/+1m1e/duFY/H1eDgoHrHO96hlpaWnl7FrTIvKHnG5OSkOuuss1Q+n1dvf/vb1c6dO9XExIT62te+pqrVqjp06JC64YYb1JVXXqk2bdqkZmZm1N///d+riy66SO3du1eNjIyoXbt2qY997GPqz/7sz9Tb3/52dcEFFyillDr33HOf5bsTnkne8Y53qHXr1qm/+Iu/UO973/vUmWeeqQYHB9VXvvIV5Xmeuuyyy9T555+vPv3pT6tkMqnCMFSXX365uu2229Rb3/pWddppp6mbb75ZfehDH1ITExPquuuua5/76quvVl/96lfV7/zO76hzzjlH3X777eo1r3nNs3i3wmogfUh4ppFn2AuHu+++W/34xz9Wb3rTm9T69evVkSNH1N/93d+piy++WO3du1clk8kTfn9hYUG96lWvUm9605vUb//2b6vBwcF23v79+9Vv/MZvqHe+853qqquuUl/60pfUlVdeqW666Sb1ile84knPef3116tqtare9a53qd7eXnXXXXepz33uc+r48ePq+uuvh8/6vq8uu+wydfbZZ6tPf/rT6tZbb1Wf+cxn1JYtW9S73vWu9ufe8Y53qC9/+cvqLW95i3rf+96nDh8+rD7/+c+r++67T/3oRz9SkUjkadbgKhG+gHjzm98c2rYd3n333cvygiAI6/V66Ps+/P3w4cNhLBYLP/axj7X/dvfdd4dKqfBLX/rSahdZeBa57bbbQqVUeP3117f/dtVVV4VKqfCP//iP4bM33HBDqJQKP/GJT8Df3/CGN4SWZYUHDhwIwzAM77nnnlApFb7//e+Hz1199dWhUiq85pprVudmhGcF6UPCM4k8w144VKvVZX+78847Q6VU+M///M/tvz0xx9x2223tv1100UWhUir84he/uOwcY2NjoVIq/Pd///f23wqFQjg8PByefvrpJzzvLyrTJz/5ydCyrHB8fLz9tyfmOLPPhWEYnn766eEZZ5zRTv/whz8MlVLhV77yFfjcTTfd9Av//qvAC0aeEQSBuuGGG9TrXvc69eIXv3hZvmVZKhaLtXVBvu+rhYUFlU6n1Y4dO9S999671kUWfoUx/6WslFLf/va3leM46n3vex/8/QMf+IAKw1DdeOONSimlbrrpJqWUUu9+97vhc+9973tXsbTCryLSh4SngjzDXlgkEon2cavVUgsLC2rr1q0ql8utqC1jsZh6y1ve8gvzRkZG1K//+q+3011dXerNb36zuu+++9T09PSKylSpVNT8/Lw699xzVRiG6r777lv2+Xe+852QvuCCC9ShQ4fa6euvv15ls1n1ile8Qs3Pz7f/O+OMM1Q6nVa33XZbx/tca14w8oy5uTlVLBbVySef/KSfCYJA/e3f/q36whe+oA4fPgzam97e3rUopvAcwHVdtX79evjb+Pi4GhkZUZlMBv6+a9eudv4T/7dtW23atAk+t3Xr1lUssfCrhvQh4akiz7AXFrVaTX3yk59UX/rSl9TExATsaygUCh2/v27duid11Ni6dauyLAv+tn37dqWUUkeOHFFDQ0O/8HtHjx5Vf/Znf6b+8z//c5nmmMsUj8dVf38//K27uxu+t3//flUoFNTAwMAvvN4TG6l/lXjBLJpXwl/8xV+oP/3TP1W/+7u/qz7+8Y+rnp4eZdu2ev/736+CIHi2iyf8imD+miMITwfpQ8JqIM+w5w/vfe971Ze+9CX1/ve/X73kJS9R2WxWWZal3vSmN62oLc1fhZ8JfN9Xr3jFK9Ti4qL6oz/6I7Vz506VSqXUxMSEuvrqq5eVyXGcjucMgkANDAyor3zlK78wnxfdvwq8YBbN/f39qqurSz388MNP+pmvfe1r6pJLLlH/83/+T/h7Pp9XfX197TT/C00QxsbG1K233qpKpRL8UvjYY4+185/4fxAE6vDhw2rbtm3tzx04cGBtCyz8yiF9SDgR8gx7YfG1r31NXXXVVeozn/lM+2/1el3l8/lf+twHDhxQYRhCP9i3b59S6ufuGr+Ihx56SO3bt0/90z/9k3rzm9/c/vt3vvOdp12OLVu2qFtvvVWdd955z/gif7V4wfzUYdu2uuKKK9Q3v/lN9bOf/WxZfhiGynGcZdZO119/vZqYmIC/pVIppZR6Rjqv8Pzg1a9+tfJ9X33+85+Hv1933XXKsiz1qle9Siml1GWXXaaUUuoLX/gCfO5zn/vc2hRU+JVF+pBwIuQZ9sLiF7Xl5z73uWWWbU+HyclJ9fWvf72dLhaL6p//+Z/Vaaed9qTSjCd+OTbLFIah+tu//dunXY43vvGNyvd99fGPf3xZnud5v5L98wXzS7NSP391dcstt6iLLrpIvf3tb1e7du1SU1NT6vrrr1d33HGHeu1rX6s+9rGPqbe85S3q3HPPVQ899JD6yle+ojZv3gzn2bJli8rlcuqLX/yiymQyKpVKqbPPPnuZxlB44fC6171OXXLJJeojH/mIOnLkiNqzZ4+65ZZb1De+8Q31/ve/X23ZskUppdQZZ5yhXv/616vPfvazamFhoW0X9sS/8uUXoBcu0oeETsgz7IXDa1/7WvUv//IvKpvNqpNOOkndeeed6tZbb31GtOnbt29Xb33rW9Xdd9+tBgcH1f/6X/9LzczMqC996UtP+p2dO3eqLVu2qA9+8INqYmJCdXV1qX//93//pfyUL7roIvWOd7xDffKTn1T333+/uvTSS1UkElH79+9X119/vfrbv/1b9YY3vOFpn39VeHZMO549xsfHwze/+c1hf39/GIvFws2bN4fvec97wkajEdbr9fADH/hAODw8HCYSifC8884L77zzzvCiiy4KL7roIjjPN77xjfCkk04KXdcV657nKU9mF5ZKpX7h50ulUvgHf/AH4cjISBiJRMJt27aFf/3Xfx0GQQCfq1Qq4Xve856wp6cnTKfT4RVXXBE+/vjjoVIq/Mu//MtVvSdhbZE+JDzTyDPshcHS0lL4lre8Jezr6wvT6XR42WWXhY899lg4NjYWXnXVVe3PPZnl3O7du3/hecfGxsLXvOY14c033xyeeuqpYSwWC3fu3Alz1JOdd+/eveHLX/7yMJ1Oh319feHv/d7vhQ888MCy/vNkc9w111wT/qJl5z/8wz+EZ5xxRphIJMJMJhOecsop4R/+4R+Gk5OTK6usNcQKQ/r9XxCENef+++9Xp59+uvrXf/3XdnQ4QXgqSB8SBKETGzduVCeffLL6r//6r2e7KM9JXjCaZkH4VYFDjiql1Gc/+1ll27a68MILn4USCc81pA8JgiCsPS8oTbMg/CrwqU99St1zzz3qkksuUa7rqhtvvFHdeOON6u1vf7saHR19tosnPAeQPiQIgrD2yKJZENaYc889V33nO99RH//4x1W5XFYbNmxQ1157rfrIRz7ybBdNeI4gfUgQBGHtEU2zIAiCIAiCIHRANM2CIAiCIAiC0AFZNAuCIAiCIAhCB2TRLAiCIAiCIAgdWPFGwF/biFGm7B4MtRjpXqfz+MvLIlSxjFqHhfQ8D3JazQakG80mpAPLgbQTibSPh8e2QV4skYG018Bz+a1W+ziVyeFnAyxzs1GFdBi0MB0aoS59uqcWftajc7UqGGHH93U5A5KgO3YE0raN9WGWw6NyWNQO37jzsFot9pzUBekGtVsY1XWycQzvaeeWKKTX9WEY0S4j26/jd6ensBz7jtQh/dhxrHu7L9E+Tg4lIC+MxCBdKqHt11JhsX2cSOJ3t29CR4OZg4uQntqPactoqq5sGvIyPUlI56vYXwolHDPrR3rax45v0WdLkE4NY12bPTUMcbpYnMH7n7izrFYX7L/1xQKk8+O6/y5MPg553bEFSIcu3ue+8bz+bBz7Vy92XdWs43f7RnA8K0fXU76Qg6yIG4d0thu/uziry5lfqECeFeJnE1EsRzyK89tj47p+bAvbbuMQnitmY7pUwfGZSun+bLlYISXVB+meHOZnRwb1dQZwTlbJHKZX8Wect/3hhyB9xmkvhvS6Ef0Ma4b4bDgyfQjSc4VZSLd8XX++H0Bes8nPNOxfvoef94zvBwHmKXqUppMpSI+OrG8fbxvbCnlDvYOQjjnYf5r0bC2U9dwwX8I5ptjEebNcw3nEDrHcXSldznQK57OQbqpcxnPNzc61j0uUx8/Sz33oGrVaPLQP+0DEoTES1/Oya2NHtqlPKHqOh46uA4/qzqPnNK+RfEqbfSZKc4Tr4jzgUN0bxVBegPN7EGC/jUbwOWQpfPZGjLVYpyilnG87lLZXvvVu2T0a7cRb+E702SdDfmkWBEEQBEEQhA7IolkQBEEQBEEQOiCLZkEQBEEQBEHowIo1zSTRUS5pUCKmdibgtThpcnzSEns6n6TDyzQnsThquJwIanbgqh5qcNwkav4iKDtVLUMvle7uhryuHtSDWTaWy6NrFZbm9fECCmttn8rVIp22j5VgtYr6sxG8ru2gRtKysO4DQ0sVIU1SQDrs1WSugFpil7TYMUeXLd6LfWt7TxbSG4dQsxtxDe0V9b20S3rCOtZ1rY7Xmqvrc9kFzEuvRw1XuhvLlSppPVQmibq9AulTa0Wsj7iD7VpvGu2Wxj5frOH91xt4j7292LF9ZdxTDOunL4f3VPewTyQNDa4V4Fiz0p31X88oBdQzLt1/F6QP3fvN9vH09H2QtzGNdRanme/wAa3RnE5hu44OkU5+Ig/pk3fjuZJRXWcPPIR5fX1Yh5s3YUH8sp437Hnsq0dnMV2u4nfXpbHchwydvEXt3hzGugx9zC8U8J77s7qtIxb27YMTkFR9OSzH2Klj7ePRl74Z8jK7zoe0kyYB+TPIjq2op961fQeku3N6zq95qOeseVhflQamay09VzSbOIYs0uIzrOd0jDmcpnMVJ43qUF8/pDeu03snhvsHIC+TwHnEVTh+bZfmwqruPzOLM5BXJ/1zTxaflwM5TPd36bQTx3to+FhfxRiWM2zq52FvthfyTN3salMi/bRFe6JqhnY9lcR5NcELKHoWh6Gu+5Dkv5aNf3BJd8tqYd9YX/i01uC+xuut0CjmUh517I0GPrOGh3CfjkW/wZrX4usu0zDb/F1Mh9aTa5r5XMs030Yd8HU4LZpmQRAEQRAEQXgGkEWzIAiCIAiCIHRAFs2CIAiCIAiC0IEVa5pD1r4ET66V8UL2pUR9mB+w5kvrSByXfZdRs+vY6JXLeh7L0L6E5HfInpc+lSti63uq5KchLx4h7UsMy9VooGayVtLaRJ+8pt0k6vb8AO85kemBdMuU7PI9UQ0sk/4Y2qDl+p0VN/8vTbYPdWpBHeu+yyhKTwo1b7Ul1FItOdj3Yhl905aD/qGpDJ5rz6lY92Obse4nF/W5l6qktWvOQbpWx7boT2nNfLGImsf5KfQU9ir4XZt0WUPrtQYwlkHd3sKReUi71AfS5Ou8tJA3zoV9IE7a6yaVq1gx6t5DDV86ubb/5q5MoY/4sbuvh7Q/87328foYtp09h5ryMIr3srlPzyvVZhHyaqTvnZ/Cti304jgq1/T8N/Eg9t3kSTh/1ah/xuO6/ya6sW8e2I/1feQADvaunXiP2wf15xfzOAdVqziGDi3hPRbmMf+kgi5XUqGneGOJxkkJyznlaX9bK42a1A3pHKS7dp2rVovzznkJXntkDNLmKKo0sV16szlIHz6OdR8YusnYMm9crFv2aa7XsP4ahlbWDrEuIzRnu6T9tEyRKnkDhy28bot8+5cq2K4Tc8fbx/lyHvK6u1CzPDo4DOmhDLZzytH9vkbrA/YhdmlZkjbiK8SiOH6i0bXTNFdIq26TILhS1WO9XMNx35PB51/UeXIdbifdLce9YN2y+XnW6LIXN68XTI/o+Xl83rHHcU83nsumk/1yWmJMm+ueTuc6kaaZfatXomFm5JdmQRAEQRAEQeiALJoFQRAEQRAEoQMrfj/PURBbZBMTVvXrdv4Zn98BuBTCNmK8vnLp5/OAi0jnthW9gjLCxbpRtH1ZdrM2W7foc7n0zwkOde3XMWTw0hxa8tQMWzAngZIAm2zyovQKzrLJjsYIZtysc2jdTuElDbnKsvDlJw5t+UzSM4DtNNiN8pZtG4wwqy5+ttFCKcexaXwt1JrQ6Ugc7ynXheeKRfHVTYxsltb16PRQFl8FNookk5jBtmhW9Gt9u0RhUvF2VbWbXulX8PPptC7HgiGvUEqpxhLWB9sfNh18Fd+q6jqgN6MqT6FS+Z/RcVv31UYd+2WxjOnV5vj+ezH94A8gPZLQY9KhdvZIauMn8PXpRsN9rLmE9zU3j/PEYDeO53oezxUW9Pc3bUb7v/51JLGYJpmbMTduGMF5glww1dYxzK8o7I++q889X8EyBm4Oy7GE4yS/iGNsLKHrwK+jPMWxKBxzC+u+YkiVCgd+CnnzwyiRWE15hqKxXvewTszpkS3Voi6242A3yhHShm2o5ZC9H8nzqhWSCnko3fJbTx5Gu0USqXoNn0umJMPmyM0crpvkGlWyFKt6utwxsokbGUAL1tEBrI9chKxhzS5B83mlhvURkAzCtODzSFISkERuNWnVyaKVZBGhUfc+hU73SAraRXKNuCH35DYP2cKQLOiKJRyPDz74YPv4tNP24HWzaAcZsITHWANVqJ8mEzgGPO/ElrUuh4A36CTPCEJ8pkUiTy454VDqtRrWtfl5tjDm78Zi+Mz/RcgvzYIgCIIgCILQAVk0C4IgCIIgCEIHZNEsCIIgCIIgCB142p5jLbJYq5S1njCRRO1Lgm1iyK7NNmx0WA9tszza5jCQmI4adm7JDIVkJZu8dArttuIRrX1p1knDHLCWGtORON6Tb2h2Ai5zA/XQMbINslk7FGD4bzhXk7SKbAVoXDvkmJlrSKSF9blzIwo0d+zSbZVJoxY9QzaDxfFJSE88rMOUN2bxuuEg6pCDHuzyJMdUxRldzoUJrNsYadH7BrD/NIxwuY6L2sNNCbIaK1FI8yb2EVPHvkAa7+1Z1MOVybKqqxvbeaGkrz27QKGYp7Av1htYrmRCt0Usin187dSEPycsjkM6TtZn+XndPnXSZ6a6sO3W92A6ndPtbpG9ZL2IdTITYh1OzFEY5FD3Cz+DtTQzh211bBK/W6rq9PoJbMdEgDrJJFkLHl/Ea83N6DC4aepfaZo3ekhDSNswlJvU1x7sxf5Xq2Jdzs7iuQsVIwT3cdz7EX3sYUhvVqvHAwcegfTgAFo3xg1708Dj5xD2ieG+jZD2jU0/pSpqTBcWKAR1gFrRCD1LosaeFo/2Azk0BrO5HKT7erTVWzqB86htUch2ehw0yc40NPb8dKXwGZQhK9iUg/NsnMNbG5dO2KRLXiS71irWT9Xoqxw2O0vP8NUkIK0+p009Oc+NtTqF3CZdd19O28wm6TnD+7g8ui7bqNXrur5++tO7IO/88zFsfYzsED1jjqlW8ZmdSZ+4rtk21bQhXmb36594P4zt4bkixtqMNcs/+clPIL330b2Q7uvtax+/8pWvhLyeHrT3XQnyS7MgCIIgCIIgdEAWzYIgCIIgCILQAVk0C4IgCIIgCEIHVu7TTPonh3RY8aihWyMvPIu0tC32YYxo/Qr76LE/9DLIE9MxfPYs1h2zP3IUtcN+S2uBfPIgdCh0s0XniiVJd+xqnVZImmavgedu1VBXmukZwLSrdWpl8laukc+gZaF2yDG01SFrjtTaccYpWNdnnoFaquENuv5S6a2Q5xfxHpM+hjmO2doz9PgU3n9mYAuku9cNQTrbQ96tJa0/fPAu1EYdPYSC6f4Uhort7tWar5BCkKYz5HFMYZ6tFvb7qKPvI52iMKmkuQ1JlxZL4rkaTV23ExOoBzt6FNMTk1iu+WNan5kPsZ9GY2sXwlYppYaSWLZgA+oEJ4/oMVkq43gcP4b6vN51pHXP6TorVtkbF/WbjRj25R/uy2O+ocFfOoTXbYboMVrzMF0yQnDbj2Hb9ORIaOxQePki3aOj++NZ68gvOofXTdSwjx2fXIK0b8ylPetRKzt1KA9p26LQ9Av63MUA9av28IJaK2YLpIEn7aypY07G8B5HR0Yhzft2zBFXxVtcts/EofgA8Tiey9zX06LvZrJ9kO7rR7/kmHEun55/XoDjp9RA7fViHuvHN57T2S7Ufsbp+degPU5RB/PNkhR9/OxkGfvaBGnATc3ucAbHdVcS9fWriU8e0ewZbWqPA9Ls+hZ+tlklfbSv676b9mJl6B45hoRF1zrjRdqb+ZZbvgN5t9/+fUhfdOEFkG4ZftJLBfQP7x/EdQn3p2Vey+rJQ1SzT/OyGBK0OClV9Nx2xx3oz/+tb/0XpI8dOwrpLVv0TolLLrmIyvzUV0HyS7MgCIIgCIIgdEAWzYIgCIIgCILQAVk0C4IgCIIgCEIHVu7TTJITm3S6SSOmuUXmt14DtYdsEBkonc86IcvhGOSoRXTIH9Iy9GIR8rSMJsln0MbvhpbWCLLu2qWY5IGHuscI6UpNT+RaHbWJMdJtJ7tRL5YgP8SyIZJzXKxbrp9mA3WNpkc068XDcO1UzdkcljvXi/9eswx9ZrGEWrvKPKYT5IHctU3X3+Q86uPm9qMOd6CI99yVQV3oUJ/Wh+05bz3kjYyS/rSAdZ1M6z4xRL7dbpR8cnPYn+pl7G92S/cf9jVvNPG6ykaNoKOwfmylNeCbB7EPDGexHAvr8Fqzs7rdFhfxvJXq2jo1N0m7x3snIrZuy3gX6bxt/Gx5AetsztL3tuChhvDxSTzXo3mco/ZXaOwbulJXoT6x3sJ7WCzh3JA3+kFXJgt5ykPta7mE/aAVkIet4Xd+yMPrzjdpL0iI95zIYj+IJ7X+t1THMeUpPLdHeydqcd2HDi3h/dbn85B+tVo90mnUw9rkj18p6nts1HFeYG9Y3i/jB7r/lCt5yPNIwxshX103Qh7ZCT3/O6Qd7sriPopsBp8dgSEGrTSprlvU5wuoJy9VUcOaMfrxYF8/5PVk0Gffpedyw8f5rGZonmfouuUKasttGteJtO6bkST2y1a4dnNQYOO1AofShhexH5IPP+3rcgLqe8Yzvl5D//B6Fuebni6cB1iWm87o/nPqaadB3v/+3/8H0iSvVzt36j1ApQqO83gSdf6ROLY565TNNVLTx2dH2OL9ZniuagnH3w9++MP28Xe/izrthUXcP9TwsJ9v3a7vKddD+0KsE/tF/yLkl2ZBEARBEARB6IAsmgVBEARBEAShA087jLZFEgvL0j+vOwmUF9gRtlchCYZhXeJTuEVFr2QDCimZiOO1IlH9CiGVxVdItouvdh7euw/SA705/d0kvhr1yfrHJVlIhWzkzPDfcbJiceP4miOezkHaJgmG0zDCM5PFXozsr3x6JecZ4YT5FaNaQ3nGzTfjq7+giW1x4ctz7eNEBi3log5avUXq+PolntGvDnfvyEHeHQsTkJ6ZfgjSlRLZ5rR0/+uJ4KucHrJ7SibwFVI0qeuzO4qvuxv0SruaR8lJlF7nma+NUmmSIDkoqbCi2L/KZGdUquhXYy16HddLMoaePhx/6w2FSrWKn83n1zYs+9wcSRnIHi8Z1XPByaMoXag2qK/Xsb6rtm7re2Zx/N0zhZVWtXKQjudwPM8v6ter5Qr25RK9im6QtWW2W887fT0oJ5idnYZ0isKpbxlFOVF9Vlt3HS3hmPF8nDf6KORybAlfoTtG/3UiWHe93ThXOkt4LWNIqeN5sl+bxPpYTXoo5HIsguOoYuk5yWviGApreE8NCmVc9XX9FMjaLqRnFs/ZEZ7vjeeFRc+ZaBTbqUXlNKUOFskJilXsiyzPaJGkIql0fYQdwh7zz28ePcdN67yQpEIpklHGE5gOXV0fdSpjo0XSz1WErXM5rcy0TyHJFUtSMd8ynsVND9t0YRHbqV6nEOYp7BOuIZMYXodWiRdd8lJI/+D270L68GG9JoqTxPDAgQOQnpyagvS6Pnw+9nfp+StJYddDkijN53F98P0foK3cD26/vX28zCaOmoGthU/avbt9bJMepUWWvdT1fiHyS7MgCIIgCIIgdEAWzYIgCIIgCILQAVk0C4IgCIIgCEIHnoKmGXUkrMkJDQ0T26DZpOl1QgqxaeilLNIOhxyqkuyMInHU9cUMW7kW6bD6u1EjODw8DOmqoT8cIIsdl+xUpmZQZ3t8Bq3Oto2NtI9706SjsdhyCO+BQ4cnDc1Sg3RpDdLoOKR39W1DL+6hBtcP106T+sijKBYqz6GWcWnpSPv44kuxfgYSZDlnkZWgEYb85GHUd617Jbb5NNnTtKhOkq7+vEd65yCC50rksI9UKlrLmo1huwz0oL6+1MD+06zjPdaN8bRQozYni6+YjfUxsgHDnRYq+vOHj6Hecq6E7dCTwbHb3ac1lakm5sWTaxmIXalyEeuhVsXru0a48Q3rsKzFRWyP+QUcJ4/O6zq88zDqJOcDHJ/VGuaXCzj2qxWdDpI4xlJ92FbdpO3LZHR92z72iW62aYySvaTCvt2/Seu0xyks9uQCnjvv4nyepv0PUcOyLzOPdVu18LOhheMmHui677WxPrrttfvdplVB3WS2fyOk/Zhui8DG545r45hr1fFc9aau3yhZkcUTqPlOUDpK2mrfeG5VaqTNb2I7ehGsPy+hzxWSHVuNLOcs2tMSofDndSPM+NHp45C3SHNSVwr3f8QpjHZgaK+rpEP2XCyHR3XfCvQc3aB+GbPxOquJxZGeOW1omm1eL/GzlqZOy7CGtUMaE/TVUhWfWRXa4xOLOMYxauK3b98K6QfvvwvSP/7xj9vHAwP4HHnwwQchHU+gNv+0ndsgvalPP/NitG9r3eYdkP7RXfdD+ru33Q7pckmPt4DCdxeLOBZP3XMypLds0ZZzHmmY1dNYA8kvzYIgCIIgCILQAVk0C4IgCIIgCEIHZNEsCIIgCIIgCB1YsaaZ1Ys2CW1MTTN74SnSP7NGxzL0ci4Jen3yZWRfPZvC40Zcrelqkndyfgn1YIN9OUjPhVor5FJYbPaWjlKoz9N274R0PGbkh1iOaITCYNK/XdgT2gzRHSWPT8tGbVlAlWsbGsJEgsKbL2vV1cMlnd9CAct5683ai3JyAuv+xWegTnnzBqyv7Vl9X9kI6r1SKWzzIZd9PlGnnK/r+i1FUWvYSmEI24A0zUOjY/o8U49B3mweQ6NuGMZzhRls16qhGcz42E6Ts6hDnphEfapDesK+oVz7OLE1B3kzs3lIN2rYLnVjDFkUcjQaX1tNc3c36hn9DH0gZoRBjnPYaByvnottOzii04PHySf1MGrmChXMb5BvaLxfa6C7yEs5kcS+TVaoyo3o+m96OGZshd9NZsjfF29JlQx//ORYDvI2DWF/SyapnBbeY6KqdaiHD6NftBeg7nYjeX2fMaI1vL1x9CtPdqEeczWZGEefWdvFe/YMX+ImP2eoPhpl9M4tTh9uH7Oet3sYG2bTyBikY1Fsi3xen7s6jdeJ2NTXMngPqqXzA5uFs5j0A4/SeM91ow7yNZxzwmIe0lHyWk7Q+Irbuu+65KMbkM695eMcXm/q/hWl530iiWHEV5OQY0iEJ1gD8d4r2ufFwb9bDT2+Qp/HPV2W0gF5/HuGB30QwbXYwuwkpPtyqEVft057vRcKeTwv+UeXyjiWf1bG59B+49qLRQrJ3YXPv9kl/G6twdpjXSeNBsWioHLt3n0SpM29a1y3AbfpCpBfmgVBEARBEAShA7JoFgRBEARBEIQOyKJZEARBEARBEDrw9DXNpLtVZmx58mW2Alyb26y1MvQqnodalmW+ekRA5bANfaFtowawRH5+sTjmJxJaOxtPotYnv4C+ur296LubiJP+1fDaDBzUe1mkhbJJKxqSRgl0N6Tpclw6N/ueGvpyh7TmMdLsriaREHVH8RjWfTqj49b7PuqdHngYv3vn3aip3LVLn+tVL98IecM51EMrC7XFaQo2b1oe+yX8bL6O2k2vRDqtlO4TEYV5loPepG4C+4BDOj/P1W3VqOJnMynsA7kM6rLqpDWzfF0H/d2kt8ygJrBcIG9XQ7/rtUjTVlo7PapSSg2N4rxRfJTmEVuXPZ3B/jVNvw88MoF1eubpur4vOg37RKmIGstFD+/bTdEeBdfc34FlDKkcIY1nz9TuBaQjdfC6QYT8bUnsGAR6fCczOJ9lR9CDNdaThrTr4j07RV2WRdrf0VrEcgxkUIebG9Z9v0SaeSeF+sTVZGbyMKQD2pfSO7Kxfdwir9xGneYverYMZnLt49o87qP48Y03Qvp7tf/E6/biGMx06fHanUNP57GNWyCdTqGwv2XM6SXaD2QH2H+S5CUfj2M5bKOvtkhf7wXY5raNzxKP6q9pzB1N8otutXBebYWcb6TJw9nz124O4ud26HFMCSNWBT2HWzRmGk18HlSNZ4lD303Qc9omg2ibfPs9T4+p4+MTkLcwhX7bjRqOc3O+Cul+W7Q2Yz1wiea2hUV9j5NT+MxutMYhrcgjnD2gYzFdB56HddfVhWNg61b0izbvg9exrvsUQpX8f8gvzYIgCIIgCILQAVk0C4IgCIIgCEIHZNEsCIIgCIIgCB1YuaCDZciUbca5d8iTkIO0h6RDNnXLrGlmDQrHcLfID9Ex9NSRGGqBfC41xbwPmvoeZo6i9qenPwfpVBY1gJUqavOqDa21irJ2mO4hCE/sFcg+hCa2RRpn0pYFhr4yGkU9q0vp1WTX7j5I9/ajVs/Ues7No/b86MOLkC7kUcf2k3t13f/ofvzupS9H7ebpuzE9SF63iYjWS8Ut1NrlFHpJWqStWjpyqH1czufxs+SJOmdjP+/pIY18l+5f1MWVo/C6kQim55ZQC1uv6nI3W6RTa5L3so310ZUwtGZx1J1l4jgGVhsvwL7drNNeiUCXrziFZXvgcayjHx/CcVP0dR+q17Cdj8yTls9FnXyE6izu6jp1HazfRBLrMLRx7FfqWtsYj2NbdXXjdUMXz53J5iCdn9H3WDyGn51somfxhlPQc7x3A+pbGyl97nAUyzVXmIG0l6B77tL630iS5lyUBq8qvo/jYmEWNc5uRPenvr5RyMvF0Q85EmAdlBb1/oelEj4L8iWcR2Zm5iA9u4h7JzZt1l65IyM4b9ZLqJcOSBO/7UVn67wIVm6rQZ7+9TykLQ/LGbT0mKmQN248ijrSDGmvmzQmlmr6+5MF1LyX6zifNzy8Vqj03LlMg2o9dZ/dp4tPHr/8XDb1wD6tYxaW8BnmsRezOckv0xLjdSJUBfUqPvMmj+ixXVrCvlYuYP9ZLGJd1zyjHFS1XpPXITj/lume5+bzuowtPJnjUBwM+m6tgvtymk3dR/h5uHnzRkgPDg5CulLR496lFeXTiTQgvzQLgiAIgiAIQgdk0SwIgiAIgiAIHVi55Ry7O9EP27bxqprDaDeaFPawia9jbGVKO8iSicoRZ4lBDO2hGoY9jRNlSzm0MamThZh5rWgaLZqiCUzX62y/wjIRXc4IvSbj1y/qBHIVhm1gmi20jGk2MR1L6le6bGu2vHZXj3gPdTUqyv7HtRxmdgpfzfBrIu4Dgafr99AhbNN9k/jlge34GrFUwbp3Krr/+Hm8boxetfdFMV0yQoVWytiGiThZygX8mh7TjqXHAYdgTdBre4fe17kxHEP5kn49ValimeMJ7JuRGFk6Ga8GGzX8bixGdn6rTK2Sg3SjTOPbmJMeexjr4KHHseyLIb5uf+C4rsNjFEa74OMc49O8YpO1V6xLt3Wc6ihJ6dAhqZYh44mzI6SP95RN4ytycupSrqc/v2vTesh78JFHIL33jmOQzq3H+awc6jm8NYevmrcU8cLNDThXlkv6noIGtkMyS3HEV5GArLmqFbyPOcOGMBfByj/15PMgXV7EeebuvTe3j/fvfxTyIjTvjoyNYLlInjcxp+UaU7d+F/JyKew/Z57/MkhvD3W7pSg8d72Gr/HZRrW8gJLEuUltVzZ1DMMvp+I4j27edgqkR7bsgPRQRn++5OJcN0nrAUUWrBEjHHOUnqUuW6yuInV6LrP1WcGQYIwbUj2lcA5WSqlEAuefVEqnIzS/xEnemUphul5GyUWpouVl+QquvWZprAYtbAtTLTY8gFLGeHIjpI9PoPRjegplWo2KlgMFPlkD0/PPorVISOvLZlPXvUVy3y1b0IaRLehahr2f7ZIsRMJoC4IgCIIgCMIzjyyaBUEQBEEQBKEDsmgWBEEQBEEQhA489RiC/x82CU29ptZ4NcmyKaQQks6yMNqGfpP0qhZpy1zSd7Je2NT8sjaYPxuja7UMS5UgRL3S5OQRLDOJvLu60DIsaeinzdDeSmG4TaWU8v0n15EqpVTrBBrnVBq1UUGL7HqM+rBZmP60DFeeHkemUGtdmEfboUpe13c2ifeUjJKOu4H6MD/Q3925YwjyRjeivslK4bmSg2jpZFW0VVktivXTKE9Buk52f4NjW9vHmSJqHsuFPKR7B9dBOhbHay1OaT1hlHTsfvDkmj+llBroR01pxLCKK5Wxf+R60ZotUNj3KhWj3Ug/6OBlV51WgP2C3PNUxNC6zeEUpGZJY+51Y9uVLK2tnW/hnFMgHW6kRZZ/FtlLNYyw0RWylnJRrx/QzxZm/XsBthXrN9Mp7GM8N1aN8MTTcRwz83M4HhsuVtjGDPb1jSndPwML739TBrWzEYW6SXO+8xuYl4jjd1cTn34jiiVwzPm+1vyOH90LeWPrNkG6pwttrboNHWVXknSTJDZv1FAL2iI7rtC0VqQ+3t/fC+lhstdqGmGRG3Vsp1oBNcyLC9jGk+P7IT11XGucF2exzJaPdTeziHrWzUtoo7d194vax+sGUStbo/Dec3l8NsTjWsed68pBXtca2l6GpD0vLKGW+O6f/qR9PDVJ4aobON54W5NtjG2b1kesiY/SZof+Hpzvh3u1ftwnLXEQ4rmz3ahN92t6furto+cIaasXFlEjX6vhfAQ65ZDt+mheXKZNpzWTcZxI45yxYwfq520Lz9Uw5pyAQp8vv25n5JdmQRAEQRAEQeiALJoFQRAEQRAEoQOyaBYEQRAEQRCEDqxY02wvs/RFzUm9qrUwMQqJ6LD4kXXJhp+kS7rjRg3P1WygTiudxnIkDI9DjubdaqLmJkreuJGo/jcE65cSHTxpXYdCTPqGTiskjRtpmBuk82s18Z5do5yxFGq4GlRfrOMuF7R3pEVaKWstRake+1izL6Ou73IV2zgMsCFt8vmMxPQ9jwzhvwMTPurOImU8V/969Ex1enRfDEn3mrBR/xXxUJ+aSmrtmVcnXewieSvHsX/VSDdbM7RnS+S1aYV4jxxJNkXey4ERKruXwoa7IfbFImmeTeFwgvYX+OHaaeKVUipN+ru+jRjq2a/rvh4tof+vG8c6sU6g7/eoTniYhD7WEVm0q3qov1CroZbYcklHS43nh7ovR0nnHougprvhY8EC2jtRMELkNmN5yMt14XXPeGkO0tt34TxTn9DlitBU2EcetJEY6qO7srqdenPY/5ynv63mKVMlzaUboT7i6rK1yIP3rrt/COlTd58B6d2nn9w+5nDnS6TRnZ+jsOMt7G893Vq33JtFXWlPF/aBQgG1w/OzR9vHqQy2YT6P150x9k0opdTcDGqea0boax4uAY2RPN3j4SP78FyGrn3dlu2Qt30j+uz2RWgfitFOw0O4FyRNfserSYSen14Ln9uVsvYltkLyw6c5hOMpNA39OXsal8lLuEUh3Gsl3E/VndB7a2zF+4Fw7hrYMgbpXFrv8anRemmCdNqHDh+EdLVG8RUMOL5EQPewPDw67ScynmFDg7hvafPmzXhuWruFvr6Ws8z/mTzCV4D80iwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtCBlWuaWdRksb5Ha3I88iG2SQ8ci2PajWrNEmuJQ/K45HybtFWpqL6lWAKvUyqh1s4nP+TA0P/EUqiriiVJ41fBc7VIGxO6upyej9ogj7wCvRamE3HU2i33VzauS7pGj/RQ6NNM/0bi9CpSL+YhHSdtp5XUetlmFbul3yBBPd6iGhzSWsR1Q3je0SHUvKVJXDY9OQlp1+gz3f3Yf3qzqKntj6JfZNRo81YN6zYVxX7bYN/gFn4+bghHqz7tEbBQn9uk+qlXsF9boa5br47140Zo/CTxnmzDr7xRJy0+jZ/VJiA9WoN0p4mc1n/GkuhnG0mi7talfQbJqK7vbBrH+kAG+1CV+rJP2kYYgzHsb9Eo9e0A78E1vFCTadT/xlxMN8r4Xa+GesVtI3oO27QJ2zXXh9+tF1Bj+Z2voEa1O6Z1ydsSVK46Xnd0DLXvxSWdn2JtOe3JWE1KpSKkgwDHVa5Lj+847ZsoltGn+N4H7oD0lk0ntY9Ht6Fmt6eI1920GfM98p0vFXXdF+dRZzw/cRjSiRzq+iMp/exoeqiHXpxHTeoSa6tpL41t6TpgDWqtjmW2XfK/LaLWumVculxZhLwU7W8ZHsX6sSL6PrJRHJut2lPXpD5dWqRD7qE9Fuec9eL28eOPPgJ5s9P4nInQJjHzcRiQhpnTy6I2kG9/KqHHX62K/bhZx7VIsYhtMdyv9/hE4hQDIkRP8CPjOCZsi8e9PnezifMNG5Cz5tmm/WahMVa3bEEN/NAQapwt68nPfaK9LCtFfmkWBEEQBEEQhA7IolkQBEEQBEEQOrBieUZIYbP5Z+6I8XM7h3N1KM2hHW3j9QNLEUJ6LRSJnvh1nvkqI6TXx1HyjookUQZhhq+OkUSCQ1n7JLEoe1jOuap+dREjdUEugq+YLBvrNh7H15+mBU21iq9XfJ9f5eC1zKRHVneus3b/ZkrG8FrcR9yYcc91Cv3pk81gHCv05JNy7eOt23KQNziCryjrFLf4+Ewe0qWGts0ZqeFrn8QmsrNL4WvXLsPyy3KwncIQr+O1ONQ8NlzM0XXA9mAxGgOOg6/e43G8Z9+QfiwsFCgPX7OynZprSHisCN4/v7JdbepVHBeLx0mnk9Tle6SE8oKpAt6XncA6M22JFIVHdylMeSqFryEtmmeaxlxR5Xi5JCeL0mvapFHHEarfzetw3ki4KB+qldHyad06fY+LeXwNu38vftYN8Vx2ge7R1f1maAt+ts8h661FbKc5W9dnb5LCuCfWTp6xlEf7SYfmv4qtx2zDxlfxUZKT1eo4fhfu1+PotFPOgrw9u0+FdLWAY/DooUchnc9racO+Rx+CvMIc3sPo1q2Q3rhD22+VKxQ2ewrlGc0qyRXJ+s4MdeyTBKBaxXkjUDjf8cv4qqf7SLOBffHIEexr0TTKAvpGdDqkkPWPPP4ApLdsGlWrRYtCYbOt3Njo+vZxjkLLP/IIyjUOHUS7tqBh3BeFdma5gUXPcRXQnBLR462LbAcjZEu5OI8Si8qwlpzQUkK1mviXXLYf0skYyUSMcN9FkigxHkv9aI2YMObrHTspbDbVV0jtYloeBzQfL7vuCpBfmgVBEARBEAShA7JoFgRBEARBEIQOyKJZEARBEARBEDqwck0zOXPYZNXhGiEmIxQS0VmmOUFdiV/XWqEWi3JZE8hhEElr3DK0xq6DeVHSgibIkq5h2Ma5IYWyZk03SfFqpJc+4mvNYNLH+++O5CAdo7pdFtrRqAPOqzdY/4vlNO3tltn5ecvMa1aN7ABa+E0cRW2eb2i6SHasQgvveXQ7anZ7N2jNW57smxrTqFmaniVN3COo65uc1PWVzKAG8OWXoMb57Bdh/xkZ1Dr4pIO6Tl9hOpJAHV8zQI1pJqv7U4asxyoV1A/Wm1iXbgzzs33aKihBtnm1EvbbRoG0+iU9NnnMc0jS1SZoYf+N2qh9nJvV/WR6CbWzHoUetyn2tWdYv1mkm+TQs6GP2sZMEtsnZUwOVpXmpyZZLYZsj6TvsTebw+9SePliicLWBjhOjh7VY+HwcezngyOodRzqx36wvhv3dGyN6Wvt2Ij1UZ7CdpmbxnIfqGoN78lkR5cjPf5qUq3hOKnV8TmVSOp2i1CI7SrNu16LtJHGM+wnd34f8kzbRqWUWj88AumFApbrob3728eP7D0CeQHN90Obsd1aVV3OuRm0OauXl+iz2H/qpFM29x7l83nIK5PVm2mVqJRSNtnX+YbePqRn/NFjU5COZ1Dvm+0dMMqI3z1y5HGFvFatFh71AdvCsjSNNUOO5tk9p2PY9YAWEAcOHGgfVyrYDmzPpui6Lj0vzXDeXRl8Vua6MJ0n+8xiUV/bYtu3EOe5bBfaHR6YRTvE7qx+5idoD0mN7DGXhdmmWx4e0PrpDaOoWy+XcW6L0N6buLFfynbI8lI9deSXZkEQBEEQBEHogCyaBUEQBEEQBKEDsmgWBEEQBEEQhA48BU0zqj/Y7870cXQpNKpFOpKA/CBNjZNHGmWXdMisrW55qO8pFLV+LtLTDXkO6Y4Dn3RpRrk80gdaFLs5JOFtL4UKHw20noc9rXMURpwsMFWVNKuh6dNMWrIG6S3Z89kM2+tSaNi11KRaMdS8pXtQ47w0r3VJiS7sllu2r4f0Sy5ETdOGzfpcQYD1MT+Pfr0HDqFH6t6H0T+yuKT7W5V8TI/tm4b0/vOwHK+4VPuxnnrKGOQlE3iuRh310sXSUUg7Rlj6CHuix1DL26QOVCRNXCSu9ZaOi9oyX5FPpYXptKHzLOSx7xUXsK5XmyhptQd6sZ80jFCtuQjq73pS+NkSTX2WoRNMkXdwJIl9t0Fho9nH2Te01zHWBZI3cK2OdWr6mftNvM74FLYr62qzWewXh6a132+e5skeCz1WJ6dor4SH42TTaX3t45kSamMtn7TBCexDo0Z1dkXx/svltetDQ0N9kObwxOVKwcjDMWVZ1I40dbpR/dwq1zA89S3f/U9I7zn5RZCO2Kifvv+hQ+3j+Vns89u24rwyNLIB0vNz2gO5UaW6peddjfpxg3yI60ZMgEIe+0NgYTtGbBwzDQqbbJmez7THZ2oKQ27HkkcgPTSi59lKA/vW0XHU0a4mNaofh/yTm8YcUm/SPq4otvH6rRgK2nw+Hti3H/Lyi+hrHZCHcYv2MdUNT+yN/b2Ql4zi/H+8hF7eswtae755Iz53kwncB1Gr4XcLdK5GQ48ZjglhU/9p0XgKaB/cug26LJEIzjcV0mWnaK0Raen68jBLOXH6wwqQX5oFQRAEQRAEoQOyaBYEQRAEQRCEDsiiWRAEQRAEQRA6sGJNMxOQnic04qHbNp42QloYzyVdrunZR7pb1kcvizNOHoaeUY5SCXWkfpzEw+TdGpgxy8kn0Pee3E9VKaUsCzVce2LaGzeVIg2qjwIe1qC6UdRjlgw9WZP14FQO1uKZ2qBYEttB0XdXk+PzeUgn6dqbxrTma2wratF3vHg7pN0erJ85w2PXq+N5D06gF+liA9sxsw59K4e2ad3jwjzqnY89jFrFW7+NOuS9B7X27IwLULO2Zzfqn3ev3wRpN4r9fimvtXqRCOr803HsPyF5YFo+6rSKhiyyK4N9PtONn63SuK4s6rFp06AYIl36apNKYd8vx3DcJKN6Xtk2gH39gSnUBVYs8tE2uk2rST6oJHvjvQH5EupOLV/PWT7pDxvkDx0hrd+Q0bdTGdz7MDVDvuo0z06SxrxY0/cRYZ12BMu1vg81l8Vp1O/vXdDfb0VwfPYpLNe6DNb1xpSuwBbtOQhs9uFfPQIyf63VUKNaMtrR6cP6SqVwnqi38D4cS9dnJIn9o1rC69z7wL2QzqVRXz4wpP3gu8ire9v2zZB2Y9iPQyNeQjyF/adSxDLbFE+h2cJn2JLhzdyivUbROM45nodj06fnlOXo+mEP3nINx89SqUBpPQ97tGSZnEE99Gpi0Z4oi3W4vq6/Ej3TF2exnD79Xtnbr/uAGVtBKaWO0t6jpXkcm/UmXmt2QY+/kTKVg/TRC7TnJ2PM6afs3AZ5yQT2tSDAfm27OG8uLObbxyHNqRy7o077CyLUv4Y36udlgzYUFCq0/4zWdaEx50Zp/uWwICtBfmkWBEEQBEEQhA7IolkQBEEQBEEQOiCLZkEQBEEQBEHowMp9mknPyL6VytTuhahnciIoCgwVaYOMOPUu6YQipGmOkgcf67KqFa1hzRdR07zca5O0L4bONplEjR97A/okzKqTpssz8iMJ1Jb5JKRhv8x6nfwya4YuibTAcTo32WeruuGX2WqiViqZQt3QarL9PPQTTRVRt3bSsNZSVaqosyrnxyHdM4y6vmlDq3f4MPofL/MijZGIKUtx6rO6jjb0YP24EdSm2+RPGxht84NvPwR5P75xH6TPPgf1YiefhvrgwYzWuHVbqEsrlvOQTpDWLOLgubyWLmexhPefSuGYSHT1QDoW0X2xThriRoX2CKwyoY9zQbOGGsyaId7u68KJZGc/3ufkUZwb8oaHraWw3Z0Ar1smDV2xiOPVNzSJ8RTOVy3SJw6kse2GjT53bCGP123gPTR91JkWyd/dcXV/dWnOcX0sc38a55EdO1Fn25c1Nb2kT4yj3rcZwfxFw/ub59V0Dr+7mrAul+dZx4gnUCzifoYG+QPz86BlePSyTp21xZaP7Ti3hBrVF519Svv4pJ278bv03GnUcEzWDa/pZhPLXGtSv63ifo9iGdPm8zBC8RLiCWxHm2Ix1JqkgTb26VgOjoE66W7LVUy3jL6byqHvsEU+6KuJRd7vYYD126zpdJ3iKSzSWFYu1pdjaNfTtPdo21bc0zOVwrqfPH4I82e0brk7OwF55Qq2cYO84It57cHeqON8wuu6JsWIsGntZu4/47lK8fqRFi65XmznTJ/W+S9Wcd5vYLMsi7ERdfS1UzEsR9fTmH7kl2ZBEARBEARB6IAsmgVBEARBEAShAyu3nKPX/vayEMz6A80WvvaK05cdBy9r2sqFLXy1t+wq9HqKX8909+jXimUKr1iokAyCQsua5Qro9YFNVlwOvarh0MZmWPGlAr4SqZHFToOsj/i1ofm6L5nhsI9soYL31Gzqc4UcGnYN/8102gWnQ7r06KOQPviYfsU01IfvTCJhFtIP/uQYpAPj1XHLRXnBQgvlGhFWpDj0yrI51T728A2+ivSSHSJJg9SiUfdF7A/j+/FkX59C+cb9x/Cez96Tax+fM4qv45Jk01Uu4LkHelGekUjpOrGi2H8qDQyJXKJzZVN6bCbJns5NYr9ebRo+jjm2btwwrBs30o15e2rYdvcdwzE40dT3lo3hq8EENbNnYznKDexDSwX9GrNJ1koxkqrFXXwVOzujX00fOZ6HvEIF+1TVO7GFZiyuX2P2Uihwq4JzzMIEptMpsoSq6df+8Sz2R4tC81bI9jE3rOUJ2R7qy0PDaq2I0ZzdiuJr3pZn2qJh3dZJ5mU7aUrr+uKwxorGKzkWKieOn5+cP9g+HirjfHbuWZdAurCA43fvg/e1j0tkhRiQVVcmjXNOiuaGpiH3aZGFnEthoQsllFRYIYWWNyxbQ3pGVSmUvEVSD9dsN3r+J5NPPQzy02XWsOBTSqmuONaBb4RrZikkP2vZlrdqrE28BlmMJnDcj42hXWkshvV1fPxI+3huAWVGm7fhd1uKJXa6bVokv4hHsE1jlObw3nGjflokqWArTrYSzubQ1rJq9J/pJZR2DmRxfWDT+rJpjMcmhXdvsZ51BcgvzYIgCIIgCILQAVk0C4IgCIIgCEIHZNEsCIIgCIIgCB1YsabZInu2ZWJjQ/Nrk06E9TshWRbZxrmXaUwoViWHrnRIVxqNa/2T2yDNEWkPPfo3g2fYToV10hVRKGyP9IMO2eiVjTCaTbL6YXsVhzRcFEVbpRJat8UWfGbYcKWW6+kihvbMdlhXtXZ2PYtH0UbOTaINU263tpEb3YD2dPseQg3z/p+hRVMtOtc+PvOVZ0FeIo6at+klPFeErJNUWddfaQr1T6USarySGdSBJo3+5JNFU9cw6q42bMCw2uUS1s/tN+kw2tmLhyDvxbupgzRJM19GXbJt6LzdGGkx46jfrZFt2bFJbVk0PID9J5GkcqwyhQpZNXrYdjPz2mqpWcDP9pIO+ZQh/O6RY1on1yKNrpXEtqtUaI6K4rVGB3SfCxSO/RZZl4UejoPxvO5zvsK2YnuogELCpuM4F2aNKavPxTJnqX86Pvb1sInnbhhzRYmsPIM89plcHO9xtqTrYCmF1815fZBGc61nFruF99SdQU1vxbBgqzYoNLpNWmzap2NOywHNySHtj+EQyiGFH67VdV/83o9uhrwCheS+6NyXQnpgSM+d85MYujlqYV9LJrCfBxHSFht7ISIRvP8Dh49C+thx1FazLWPT1N/HSC/vYd/r6cY+EQSmphn7eKNMz9ZV5OA43nOW7G97jGdaOoZ1S66Dy6wnzTWQS767JP9VFml2h0bwWZJM6PmqQs+VbrJRfVF2D6QbVT3HWNTHfQ/XROQcqDJ0k56x5yRo4E3kae9MgtYDfX3YB2qG/V0sSnaPNN7qpMW2jMFp0RqoWMXPrgT5pVkQBEEQBEEQOiCLZkEQBEEQBEHogCyaBUEQBEEQBKEDKw+jTTK+YJn2WKc5FLZLIt2AQk47hs7EY62PzVpqzA9J8FMta+1LELDuDPV0IflWRlhMbJ630XzSPKWUcihsqGlFmc2i1yaHYC3kUQ9mk4+lqQnne/KpGThtG+E6E3EOfbp2muZ9994F6V1nj0G6a1jrNx8+fgDyDh9Cr+UE6cdbNV1fi8dRx2dn8bPrh9GnMl9YhHQybnj9eug9Gp9CfViMwgXnsvq7Xg7buJzAvpafQ112cXYG0gN9ul9HFPY928J+Gk+g9jXBWkVLf79Uxr6mHDzX0hL247kpXQexKF5noB/Tq01xHj1Ha0Xs7FNLWmM4U0Dt54U7sQ5P6sf7vv2YPpfv5yHPbeB+hmIB56/BNGobT+nR6XoV+8hMGeerxRJeq2T0bYfmo4iN/TEVx/x1A+ht6jT0WOileTRNnrxx2leR4P0OLV1/Lvm9p2he7UvjPJMyun5IIaSTFtbtahLSPpSA9n94xrMkwWGibfIwpn0qofHccklz6of42YBCmPMeH3P/UEg+uj+9+0dYLnqGvfSCl7WPM7QPZ98jD0Laa2B/6htcB+loTOtMZ+dw7nNoP0fXMN7z1D4M7Zw39llYVQ6pjPefyeG4rjUNfblDHvUUgns14dDgTbp21Hg2x3i/VIuEyeQZbpu6d/L15n7K8N6kVFprmjM0FisVfO4sLOLzMpfSOn+L1nhWSP2U+m22C+MDLCzqNud1nENrjyx5La9fNwLpVJfuy8k4reMobHbI49oYQ03aq+HS3LUS5JdmQRAEQRAEQeiALJoFQRAEQRAEoQOyaBYEQRAEQRCEDqxc0xywnoXijhvyl/n5Ocizu1E3msqgfiUa19qpRh39Met19NFjKXWsifpC1/RttklcTUmftC9uqL/L1/E91CQ5Lnlv+lwOrZVJpfB+G6QlazRQH2aRbtszNODsU80+zX4LdVfgtUj/RPJ90patIukMarhaFdSnVozY8vt+NgV5S8ewflIu6gujfUa7xfCeSEmmahX8i9fEPjBX0ddOJbGyc4OonYqRT+45Lzq9fVyex/N+78BPID09gRrB/hxqz150qu4zW9bh/UYC1CrGkoOQriv0bW7WZ9vHNtXd0gyWc//eWUibzZRMoVa6HqKmeYtaXWpFvK9KEdsjF9N9LLEO+1v/CPa3BkrI1Za01gPvK+Occ3wC57NGE6fN9VtQn98XNTxIyR9ZediXF/OYrgV63ggVaaf7cB4Z6UWf4WYV62fd0ED7ONMkn9QyzrMx8tzOktYvCHVZwgj2+xppVMv03d5urXXkOTcVQR3kamIpLFe1in3CNzTNNfJ6jcXRR9b0v1dKqWrZ8Pgnrafjkp6T9J3ms0Ip1DQ75CsbuFjX3//RrZAuGh7av/H634S8geFhSB8+iHtHGjV+9mode9WjB08E66NG+wAq9GipB8bzErv1Mm1snfYPBbb+QqoL5y83unb7cnwPy5kkn2ZzfqzWcSyWKzjOlYv9JxHTfWDZHYX0FKOkTeuceEyXM+JgGW0HPf/HJ7Gc8wW958Vfh/PLAK0WXdKi92bwuVSr63abm6G9RrR+6idf5p4unOtcQwMdoT0VFu0vsNlA2lgDVemZ3aw/dZ9v+aVZEARBEARBEDogi2ZBEARBEARB6IAsmgVBEARBEAShAyvWNFskzQt98iGMaj1LcSkPecWH0KO3pw91Nb2DOh0l79EWxSz3A9Lwki7XlIvZ9G8C9gokWY3yDe1wPIaaLdYdB6Ql9paVQ1+rUcfvFoqo8Wadckh+iPWW1t245G/YJO2dovqJRY2466Qd6+T/+EzS14UesnG66UZV32NI7WKn8bPZftSDxQd150x3oU7RdlEzue/gBKQjLvY31/DLDEn/1D+EPqalRWzHfeNH2scXn3MJ5HkB6tjv+cnPIN2TxXvafLoeE7n12Bc90gs2yNfTD7C/gYa+hv3j8b1Yrh/diWnL8AifyJcgL92N17nk19WqshSipvpAAeeG09brMZfsor5N49kjD+4eYzy75CM/H5KvroXT5sFpFEhHBnQ5t2VRq5duYJ/ppuG7aPg4V2hjhWvh/W5bj2Mqm8b+WcnrMVUiTWEYIa98mhtz5FPcMrTY86TPrNNEGvGwneI1PY4c2hvS5z51n9Sni9fC+nRsvLZrPA69EHW1pXIe0okEziuphG4L9lZWCges45IPP3kPh4b+NxolTXOIGtTQwXN/74ff09+NYxl/8zd+G9L9pHN//GH0ca4WCu3j/BL6u4+PH8X00UlI12o4vtA7lyd4THrU72NJ3U7xNLVZ7MljKzzT+A16tiZxjLgRfV+sYa5UsT5M73yllPI9fR/xCNaPqXdWSqmQHpA2Pdcjtr62Q/7i1QrFuXB7sVwJ/fl8A/tWirymXfaHJo13TzbXPj4cHoE8i8b94CDuy3FpA1pQNSbKKH43Svp6nlFCoz8FNOanF2hzywqQX5oFQRAEQRAEoQOyaBYEQRAEQRCEDjz9MNr01ajxGjfik71THV9rzBzHVxXzc/rVTrYPbXF6B/CVo0MhSjkktfnWP0qhYjmMtscyCCNMJksmXLpOuVw6YX4ioeUqoaLX5x6+mkmm8PUCh8puGTZyPln/RehVRTqNti+W8drZIzu6cA3DaB/ejzZy6QG8dt0MYZvBdovRa8ZECv+tt3Gbzi9U8DViUMO63EAhzY+Nkx1iVtvsuNTHa3NY910WWvIce+RI+/jB8IeQd8YetCVzq3hPtqKQrIZt2WID7zcexdffTYXv+L0Wpisl3d+K8zgWH96Ln917EPtTxXilHe4rQF4PexCtMj3b90B66bv/CemqpeedDPlazc1hn0pl0C7v7J2GPOgI2hDNU+hVj15rJ+h1u7eg2/JICcd6wsY6GyAbv3Jd38M0yYOqZZxXZ+dQctHfvxPSpbp+5ds/ilKOdBHD6WYaeUgnSfLTMucZkvg4ZL9WrlGocEt/fiBD4andtfvdpkXWVMoh+0ljbrUoPHW2i+20cNxYtp4LbHp4FEvYbtEY3nMXndu0qGP7NUVzeIrkCnVD5vbtm76O5yVrsk1jaBJZpzDRriFByVfG8VwRsltL4jOsSFIuM1S2xVaw1AXiJLmIGyGn2ZJ2LcNocxhpxZJVM0HSBYvD0tN3zRqpk5zTIW0s2x0GtCYIjHnDtFH8eTnwusk4tqMy5rYYyR7CkGwo6Z5CF8dEJqu/HyXLRsvBc2W78bnMwlHLkI/ZZMMYj2N9xEjOspDPt49nq/gMa7Seuu2u/NIsCIIgCIIgCB2QRbMgCIIgCIIgdEAWzYIgCIIgCILQgZWLElmTQ+vtmKc1TCHpRByH9F9R1HNWDb3K5BRq7WYWMNzwEFmTDAygBjpqaK2cCGqjHBdvl63dIoaWuFpDax/WbMXIGi9DocEzaZ1eWsIwvAF5hgUh6opI7qQajcaT5iXjeE9xtqdpmfpD1JL5IYebXD2WyDqwtIB1EDesbiyyMywvYP+ZrKNGsGLYeA0Mo3bTL2O/nTiImudykfS/81pPtmEr2oX5FL6z3sTWOOPkXe3jnizWbWkRNYED3ZjvkA1TzLChCjy8TqlFYbJbqB8slVCn3azpuj28H7LUvmOYtpOose1J6++me7Bv+Wrt9IRKKTXUj2XbMpaDdNDUbekkcUy1GqhnTZOW+CW9ejxvHsG2OYrDVy0uYv+ssSzOGINH51CDGZBt0yD5I/X06PF8tIl9YpH626FpbPfp2kFI+y09v40kcP7q9bEP9dmonbVjOK/4hq1chKy24mSZNkzh5zMxnZ+M45zrOjyjrR6pBGqH80XUhMfNMMhkt1UuYl1bpPlutPLt42gUnw1sG2ezxZrHlnSGftOm+oqQBR3pXRNJ3U4tChH8jRuuh/SmDVsh/ZJzL4R02niGhbRnx6PrpkiXnShgHXieURayToxGST+ewbHpGhXWonZRa2ib2t+Lz5ZMmvaWGGM7sNhWD9stQtZnlqmDJ018hXTb8STecyZFocWN0NmtFq1xqP/EaZxXSrp+Gza2YTOO9+tEcB5osvVdTN9HpiuH3yVddiyJ/Ye2dSnXqBOX9rWxlTDruM31U6HEa1Esx0qQX5oFQRAEQRAEoQOyaBYEQRAEQRCEDsiiWRAEQRAEQRA6sGJNs0/raw7pqnytibNZ/0yaLddDr7xEU+tIY2nUDXkK/VRnJjAMco0EhSMjWuPskoaZw3Mu0zgbJoYx8v5LkubGptCxyRTmm+GtSwXU0dZZc0N6OQ5p6we6blkPXVHkfxjiuZOW/rxtc4DJtfs3U3YgB2nW+dWN8MGlBfSprBXwnjNU135Jt2uRdNoTB2bxszW87uAg6pYrntZLlxewn7JP5+IMttvBQ1p/f9qpeN7+XixXOo19j31PzVCpMfIFblEfKNdRjxpYuGdgKq/r54EjWOaFOt5TtY59dXBIh1nN9GNfsyM4Vlcbi6ar3iTODaMZnT8wgvU5W6K2oxDo3bl+fUxaYhXgdbO0V+LIBO+70J6jW9bjmJudxbYrzmLbRS1d7vVJvO6MhZrCx2p4j3Hqn9GYTk+W0Sc9Sbsj7ASW8xjNSb4hMiyT5jKSxnIkyEc8bvohhzj+nAiO5dUkaGL9WAHtnchr7Wg0ifXRCrBPREkLGppzdHBiHTLHPOBnWMTV/YufUZ6HGvkm7RVxjedSVxeO14U6amMf2fswpGfI93vDpo3t40oJNfCLiyT0p/0ekRSm48ZNhz72n0FjvCil1AClTV9e3+eQ42sXhr23G/ctNRv4nKoae7nqNCc3W+htbpMm3HWMNucgEexrzWsveuY3G7r/+eT1zqdOJShegjEPcN9ayKMe2NyHpJRSijTOjZbuqz19A5CXpD1g7D3t+bzXQdcfa5Z5T4BL3u8Qr4PClxdLT31fjvzSLAiCIAiCIAgdkEWzIAiCIAiCIHRAFs2CIAiCIAiC0IEVa5ptC3VatoMaHd/w1uUQ7SRhUh5pvqyW1spEi+gtGYmhLiueGsJzkZ/y8QltPFuq5CFvbHQjpLO9qLPJFwxNW4g6mUSSPJ8jqKWKxVBf6Ru+p3HSXibJx9NysIJCD+vA83RdV6qoNWy2UPtT9vG7VlxrlizSRrlsvb2KVMtYrpl5bDe/qus7EUetVDKF3dRNof4pYdSfP496p9o8e4aT17CH/Tg0dFyFSdSsJakveotYrkZDt/kjFdS5WjGs7IFNqPvs24jaznhLfz6axHvwPNRlNRrkmR7Dcx2vaW12rQvP1UN+xZEZ7CPJLn2PUbx9tdw1fHXJ9I5humcTpBPeZPs4aKAePUOdPd3bhSc3NIhBGds95uN3e5NY38mNpHVUuo4rpBnvJr/3VC95nS4YOsCQtOoK23XvEupbB/vw3EPGvow6/T7S5bNZMN5j1cV+0m/4/0Zoz0oug9ctkZeub+ly9GRHIC/RN6rWikYF67M7g5r8BXPvBPlps68u+22Hxj6UgDSmFj07A9L/cryA0NBvJkgnGiNffpu99422sUjPmqRnWI3m5Imp45BeLGvdP/v/p+hcNulsM1TOngFd1y4tOwbpOdxP+18cR99TkXz167W1m4MaVRxv8wuoAY8Yz/UaeWS7Lj7TeN+SiUXC4wR5rEdJh+zS3BY2dJ0U8rhesOnZ2pWhdgz1tWbmsK6LFZwXSy32vsd2TRq+6KNjeA+ROKbN/WRKKWVR2jF07axhLpOPdZQ8wzNdeq5P4i2pfBWf0ytBfmkWBEEQBEEQhA7IolkQBEEQBEEQOrBieYbrkkXRMhsU47UQvTJa5pBC3/WN1xHLfpZv4e/pdhVfIUVCfDUa2tpyrlbGVw8HDh2C9EAJX110ZbW9lteiVzEl/Bk/nsLXuza9cjPjQEYcfH3icJhVevXVqpOtjmnX4+DrusDHV45c96Glz+1QmMso2ZytJnYcyxlJ4z1u2apf2/b2oF3bkSNob7S4iG0xENd9oFlCuUV5EdvRjmP/6qYhEOnW5bL5lVGTrLbotXTfsLZ6a5Hsw4njd+dIhjTxML7qc5O6HFYE2y2WwDKPbsD6WiK7sLgRljbRhfXRIqnH4AD2zS7j1V9tFu3oFo/juVabgY07IG1d+npI5x/Vr+2CAo71OLVHs4mvGsuL+hWfZ6HllceuVg5KWioU1rzc0HU4uYQSgIAmw1QMx4FvKLl8kl55PraNi0mVyuYgbTqdjZHFUy+FyHVIkqIsvKeuPv3K06vhnNwkC75Eph/Sc0bVZ/oxdHN6w061VqRJJufQT0Zp43Vy08e+HSUbq6VSHtK+IZGKJrid6HkXsE0cSwz03FCrkVwxgn0vRq/bW4ZkKqCw6ymStXk5nFecBs4F5rzBUj7bwe8m4zhIMhQK2ww5HbWxzOk4WmSGJGeZX8i3jwtke5ZOYl9bTSqVIqQ51HO9YXR0kjC5EUrTs8WUv/LSyqWOarNdJKVbgS6HxT+LUplDsm9LGFaKSXpm+bS2UHHs5wG1W2+fXk+F9PtsvoTjq0oWfRyKPjCeUxb1eY/6YonmskxO9/skfdd9Gj8byy/NgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHVixppltUNi+zFTshKSd5bCQMVqrm9I9th6JkZ6H7disKobDNTU6oUJrksBFu6OpadTGFgpaCzpAITNjpNtrkm1efXEG0n5da68ssldxFOq9lI/n8nyyQTOESEmqd4+0Uj5pnuOGZjLN0jlnxc3/S1Pz0BamZxR1bLGc1sRN5qchb76CmuZEGvtEYISwjVE4zqFh1PtWQ9TEZXrI/i+j+0+dQnlaFAq14aEerHu9vnaF7Ik4grlPIXwjfC1Dczo/R/aOKSxzPkahmSnk7eCQ7m/bNm2AvLqPn01msH/Vpg0LvgLW3ab+tQ2jrRLYtj17XgLp1HqtRQ7njkJeZWES0s0KasijZX1vcZ+sk2hOapG2r7ZE4dYN7ftGhXsfLId0prStwK/ocVJcxPpOkBa2N4oa3e4sXisd1fdxKlmXZTJoy1QmvaaqYf/NGvrFfAPLVWli/4yS/eZAWpdr89bNkJfagDr11SSZwjknSlrjlBEOvFLNQ55l4z1mUlh/FWMPTLmJdeexraVNEzH1r7hhi9mkum3x3pko5pt2dzZZmTokTE5QGOQgSv3c0fMqu5OyBV93GuujK0P6cXhO4dlqTZy/FhfzkM7n9RxFbmMqlcH5fTWxySbO4lox8pc9WsmGMKBnvDL0wE4Ev0zNqCIUhz1KxfCMdovFMbNOOvdKGbXECWNpMtCL65YMhaGvkza9XCZ7O+Oe3Bjp6WnfTSGfh3SEwsdHjPoa6Mc2d2lzR4M0zYGj56tYiPU+1EVrsRUgvzQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0wArDkJWugiAIgiAIgiAYyC/NgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdk0SwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgde0Ivmiy++WJ188skdP3fkyBFlWZb68pe/vPqFEtaca6+9VlmWpebn55/togjPQ+6++2517rnnqlQqpSzLUvfff/+zXSThecAT85YgnAiZf55Z3Ge7AIIgCM9XWq2WuvLKK1U8HlfXXXedSiaTamxs7NkuliAILwBk/nnmkUXzChgbG1O1Wk1FIpFnuyiCIDyHOHjwoBofH1f/+I//qN72trc928URBOEFhMw/zzwvaHnGSrEsS8XjceU4zrNdFOE5SBiGqlarPdvFEJ4FZmdnlVJK5XK5E36uUqmsQWkEQXghIfPPM8/zetFcKpXU+9//frVx40YVi8XUwMCAesUrXqHuvfde+NzevXvVJZdcopLJpFq3bp361Kc+Bfm/SNN89dVXq3Q6rQ4dOqQuu+wylUql1MjIiPrYxz6mwjBci9sTnmHy+by6+uqrVS6XU9lsVr3lLW9R1Wq1ne95nvr4xz+utmzZomKxmNq4caP68Ic/rBqNBpxn48aN6rWvfa26+eab1Ytf/GKVSCTU3//93yullPrOd76jzj//fJXL5VQ6nVY7duxQH/7wh+H7jUZDXXPNNWrr1q0qFoup0dFR9Yd/+IfLriP8anP11Veriy66SCml1JVXXqksy1IXX3xxe+44ePCgevWrX60ymYz6rd/6LaXUzx9eH/jAB9To6KiKxWJqx44d6tOf/vSyOaVWq6n3ve99qq+vT2UyGXX55ZeriYkJZVmWuvbaa9f6VoVV5o477lBnnnmmisfjasuWLe35xGSl81MQBOraa69VIyMjKplMqksuuUTt3btXbdy4UV199dVrdEfCaiPzz+rwvJZnvPOd71Rf+9rX1O///u+rk046SS0sLKg77rhDPfroo+pFL3qRUkqppaUl9cpXvlL9t//239Qb3/hG9bWvfU390R/9kTrllFPUq171qhOe3/d99cpXvlKdc8456lOf+pS66aab1DXXXKM8z1Mf+9jH1uIWhWeQN77xjWrTpk3qk5/8pLr33nvV//gf/0MNDAyov/qrv1JKKfW2t71N/dM//ZN6wxveoD7wgQ+on/70p+qTn/ykevTRR9XXv/51ONfjjz+ufvM3f1O94x3vUL/3e7+nduzYoR555BH12te+Vp166qnqYx/7mIrFYurAgQPqRz/6Uft7QRCoyy+/XN1xxx3q7W9/u9q1a5d66KGH1HXXXaf27dunbrjhhrWsEuGX4B3veIdat26d+ou/+Av1vve9T5155plqcHBQfeUrX1Ge56nLLrtMnX/++erTn/60SiaTKgxDdfnll6vbbrtNvfWtb1WnnXaauvnmm9WHPvQhNTExoa677rr2ua+++mr11a9+Vf3O7/yOOuecc9Ttt9+uXvOa1zyLdyusFg899JC69NJLVX9/v7r22muV53nqmmuuUYODg/C5lc5Pf/Inf6I+9alPqde97nXqsssuUw888IC67LLLVL1eX+tbE1YRmX9WifB5TDabDd/znvc8af5FF10UKqXCf/7nf27/rdFohENDQ+HrX//69t8OHz4cKqXCL33pS+2/XXXVVaFSKnzve9/b/lsQBOFrXvOaMBqNhnNzc8/szQirxjXXXBMqpcLf/d3fhb//+q//etjb2xuGYRjef//9oVIqfNvb3gaf+eAHPxgqpcLvfe977b+NjY2FSqnwpptugs9ed911oVLqhH3jX/7lX0LbtsMf/vCH8PcvfvGLoVIq/NGPfvS07lF4drjttttCpVR4/fXXt//2xNzxx3/8x/DZG264IVRKhZ/4xCfg7294wxtCy7LCAwcOhGEYhvfcc0+olArf//73w+euvvrqUCkVXnPNNatzM8KzwhVXXBHG4/FwfHy8/be9e/eGjuOETzzCVzo/TU9Ph67rhldccQV87tprrw2VUuFVV121ujcjrCky/zzzPK/lGblcTv30pz9Vk5OTT/qZdDqtfvu3f7udjkaj6qyzzlKHDh1a0TV+//d/v31sWZb6/d//fdVsNtWtt9769AsuPCu8853vhPQFF1ygFhYWVLFYVN/+9reVUkr93//3/w2f+cAHPqCUUupb3/oW/H3Tpk3qsssug789oSv7xje+oYIg+IVluP7669WuXbvUzp071fz8fPu/l770pUoppW677band3PCrxzvete7IP3tb39bOY6j3ve+98HfP/CBD6gwDNWNN96olFLqpptuUkop9e53vxs+9973vncVSys8G/i+r26++WZ1xRVXqA0bNrT/vmvXLphfVjo/ffe731We50nfEWT+eZo8rxfNn/rUp9TDDz+sRkdH1VlnnaWuvfbaZYvh9evXL/O67O7uVktLSx3Pb9u22rx5M/xt+/btSqmf66CF5xbmQ0mpn/cDpX4u4RkfH1e2bautW7fCZ4aGhlQul1Pj4+Pw902bNi07/2/8xm+o8847T73tbW9Tg4OD6k1vepP66le/Cgvo/fv3q0ceeUT19/fDf0/0qyc2dgjPbVzXVevXr4e/jY+Pq5GREZXJZODvu3btauc/8X/btpf1Me6bwnOfubk5VavV1LZt25bl7dixo3280vnpif/z53p6etrznfD8R+afp8/zWtP8xje+UV1wwQXq61//urrlllvUX//1X6u/+qu/Uv/xH//R1is/mSNGKJv5XnCspC+sNJhAIpH4hX/7wQ9+oG677Tb1rW99S910003q3/7t39RLX/pSdcsttyjHcVQQBOqUU05Rf/M3f/MLzzs6Orqi6wu/2sRiMWXbz+vfLIRnAQl2IqwEmX+ePs/7WhseHlbvfve71Q033KAOHz6sent71Z//+Z8/I+cOgmDZL9f79u1TSv3cQUF4/jA2NqaCIFD79++Hv8/MzKh8Pr9iw3jbttXLXvYy9Td/8zdq79696s///M/V9773vbbsYsuWLWpxcVG97GUvUy9/+cuX/Wf+uiQ8vxgbG1OTk5OqVCrB3x977LF2/hP/D4JAHT58GD534MCBtSmosGb09/erRCKxbN5R6uebjZ9gpfPTE//nvrKwsLCit6vC8xeZf1bG83bR7Pu+KhQK8LeBgQE1MjLyjFp3ff7zn28fh2GoPv/5z6tIJKJe9rKXPWPXEJ59Xv3qVyullPrsZz8Lf3/iF+GV7BxeXFxc9rfTTjtNKaXaffKNb3yjmpiYUP/4j/+47LO1Wk38NJ/HvPrVr1a+78OcopRS1113nbIsq/127Akt6xe+8AX43Oc+97m1KaiwZjiOoy677DJ1ww03qKNHj7b//uijj6qbb765nV7p/PSyl71Mua6r/u7v/g4+x31OeOEh88/KeN7KM0qlklq/fr16wxveoPbs2aPS6bS69dZb1d13360+85nPPCPXiMfj6qabblJXXXWVOvvss9WNN96ovvWtb6kPf/jDqr+//xm5hvCrwZ49e9RVV12l/uEf/kHl83l10UUXqbvuukv90z/9k7riiivUJZdc0vEcH/vYx9QPfvAD9ZrXvEaNjY2p2dlZ9YUvfEGtX79enX/++UoppX7nd35HffWrX1XvfOc71W233abOO+885fu+euyxx9RXv/rVtvez8Pzjda97nbrkkkvURz7yEXXkyBG1Z88edcstt6hvfOMb6v3vf7/asmWLUkqpM844Q73+9a9Xn/3sZ9XCwkLb8umJt1zyiv75xUc/+lF10003qQsuuEC9+93vVp7nqc997nNq9+7d6sEHH1RKrXx+GhwcVP/9v/939ZnPfEZdfvnl6pWvfKV64IEH1I033qj6+vqk77yAkflnhTyr3h2rSKPRCD/0oQ+Fe/bsCTOZTJhKpcI9e/aEX/jCF9qfueiii8Ldu3cv++5VV10Vjo2NtdNPZjmXSqXCgwcPhpdeemmYTCbDwcHB8Jprrgl931/NWxOeYZ6wnGMruC996UuhUio8fPhwGIZh2Gq1wo9+9KPhpk2bwkgkEo6OjoZ/8id/Etbrdfje2NhY+JrXvGbZdb773e+Gv/ZrvxaOjIyE0Wg0HBkZCX/zN38z3LdvH3yu2WyGf/VXfxXu3r07jMViYXd3d3jGGWeEH/3oR8NCofDM3rywqjyZ5VMqlfqFny+VSuEf/MEfhCMjI2EkEgm3bdsW/vVf/3UYBAF8rlKphO95z3vCnp6eMJ1Oh1dccUX4+OOPh0qp8C//8i9X9Z6Etef2228PzzjjjDAajYabN28Ov/jFL7bnrSdY6fzkeV74p3/6p+HQ0FCYSCTCl770peGjjz4a9vb2hu985zvX+taEVUTmn2ceKwxlx9vT4eqrr1Zf+9rXVLlcfraLIgiCoO6//351+umnq3/9139tR/gShJWQz+dVd3e3+sQnPqE+8pGPPNvFEZ6DvFDmn+etplkQBOH5Sq1WW/a3z372s8q2bXXhhRc+CyUSnis8Wd9RSqmLL754bQsjPCd5Ic8/z1tNsyAIwvOVT33qU+qee+5Rl1xyiXJdV914443qxhtvVG9/+9vFllA4If/2b/+mvvzlL6tXv/rVKp1OqzvuuEP9n//zf9Sll16qzjvvvGe7eMJzgBfy/COLZkEQhOcY5557rvrOd76jPv7xj6tyuaw2bNigrr32Wnm1LnTk1FNPVa7rqk996lOqWCy2Nwd+4hOfeLaLJjxHeCHPP6JpFgRBEARBEIQOiKZZEARBEARBEDogi2ZBEARBEARB6IAsmgVBEARBEAShA7JoFgRBEARBEIQOrNg94wcPHYF04AeQduwnX38v22to0Wch7CKHYHz6IRlDhdcNg+CE+ZDHZeZkeOJyhiowP3ziz4YnLqdtnIvLHAT+Cc9l4nObRaKQfuXZO570u78s/89Pi5AO6B5doz65JwVU1T5/wLhne1lXwz90CvEJPTHkduiwZ9Y4t9WhHy8vBf3lRP+c7TAkll/Z0cedQpwuG6tPfs+ug9PHm/ckTnzuX5K3//GVkC762PdTA5n2cXVhCfKy2W5IR5JY9mir0j7ePrYR8h46NAHpeq0F6bNPOhnSByYPtI/7hwcgb3xqBsuVxHJ1WfH28cDwIOTtP4LlGBlcD+nqwiKkS4vaSzWexA61ddtGSPs+3tPE3BFILzab7eP5Ao7l4hKmU9EkpBMxnU7aEcibnZ2F9Jc/++9qtfi3v3wPpG+/9zFI3/nAePv46te+CPLG+lKQfuTgNKTdUNfP6Ai26exsHtI1LwbpLZs3QHo6r/vi/BL2481j6yBdLlchXSnXjc/2Q16rhW28uIjfTWCxlGPMFSE9ZxJRHD+Oi+1arOC5M136810O9sVZWlv00bmali5YpKsH8vyoA+nL//rLarX40//xLkiXK+hVnOvpbR8X89hu8Rje07JnnDH+4lH8bKOK1wnouWQ5WAfZXFaXY3EO8pamcbxFqS36BnWfiVAbW1TqarUB6akpPPf0lB4jW7ZshbxEJgPpvqEhSDeor3Zldbtv2nE65PWv3w7pfAnno/vu+kH7OBPDe8h2ZyH9prPfqjohvzQLgiAIgiAIQgdk0SwIgiAIgiAIHVixPCOTyUG6Ra9GHVNywfILljKQlMMyP89SBYWvIp4Ky+UZlF4msTDz+LOYz68qlssz9OuFMGQJhUNp+i5JFxR8n8uFrzGCZbISnfbpFVvUpfdxq4jj4j3aWBRle177OKx7kBeJ4OuqaBy7rWe0xTIhjEWvspY1ufWk+ZZPZV72TbyabUgZwmX9gfs8l+MExbI6jYEnv4ef5+rv2yze4A9zvzfrg+6X3gquOtlMF6ST9Gp2sVFoH1su1nfdw3FiYRdTQ11aQlAtocyh0cRXzekMvn7nKp2Z1a9EKwovVK7XIW372Jeb1bK+LjX7Y/sPQjo/j+XasxlfgRZn9Lma9CpVtbAtCyQDqJbLkI7Edf04NL8PDeKr1QjNb/MzC+3jtPEKWymlNm3erNYKnv/pzbSqNXXbBD51EH4lTnOpKQOLuNimoYX10aDxXOFnSyzdPk5kUPJUCbD+Wi6OiSClZSKPTpJ0o1KBdLmMfTHXFYd0OqHn3QRJJmwLx1M0xP4V2jgoWkZ1ThVKkHfv0aOQHkmhbHA4pcdbpIHXjSVXVxJm4iZQorN53Rik5xfy7eOAxkijhf2pt5vkYsZ8dWwc66O4iGMzlcJyJEhXUy/pdq8UUdrB65Z1w8OQTqd1fS4W85DXovHTaOIYaNSakLaM5WW6C/tphOQq+/Y+BGmWWWa7tcwtaOE9HNq3Hz8cwfygqutvKY/10aoX1FNFfmkWBEEQBEEQhA7IolkQBEEQBEEQOiCLZkEQBEEQBEHowIo1zVEHdTMW6XRtQ8PENl/Lrd14rW6mO30WOZHF2jL97zL7rBNomln/3MlubFm5HOOYNDZ0Kk5bLLYD9zqyzQtR/8XWQEGotVSsZ2W7mdUkRtdii6taRdvEeGSj5FB/iiSxL0Yz2jbGipDGjbR13OLcrqYlm22R5c4yrT7ry3Xascmu7ik6J4K2Wp1YPNzZRs+w5OsopsZ7BLk99VN3DfuPUkoN9KOF1mwlD2nH0Lr5pKGfX0KdcrSMbTvapXW59QbqeWt11GAODaHV28LCAqQTSa05rNRR5xc6WC6PtLPdCW2ttLhA1m55HBeLk/sgvWPdJkgP9On6SqSwrVp1nCcW5tCaqtLEazeMfQb1Cmph+9ehNV5XIg3ppqGdbTRQ+5rtzqm1Ik06yhhpH5st3VaWIs2yxfsXsB1NTWo0QnZsMdQKR5Oo76wFpEs29nC4Cew/JBtVtoXzf7mk++70zDzkFUrYj23SXifSWI6woe8xX8EL19NYl71ZTKsIzu91o25D2iuybrAPy9XEPjJj1PUR6qeOj+V6g1o9aBuOOnwEtcf1ui53f38O8izam9WVw/yZaW3PVmvinFDzsO/F6CnGW6Aef+zx9vH05BTkbdq0EdItG/uAuY+i2sByNJq0f4r2RSQT+Ox1zOehh3p6nheDGmqLwxbW9tSCbvepQzjvpbrQNs6j9UJgPD+7aF9Ms4bplSC/NAuCIAiCIAhCB2TRLAiCIAiCIAgdWLE8w3VPLDGwTRs59gtZZht3InnGU+NE8ozltnErl1h0CPj3C6L8cbYRTYk+a7OjHKfpVaBp3xNyeLyAX0WwhVhg5CEdo8M9gyTIn6xOr6UjhlzDb+JrxEIRIw3Z9Oq9q0/b5qT7MGJWlV512aSTyNFrstCwUrQ9fE1fKeMrplQX2gbFU/pVj+fjK8aArAE7RQQ0I2xayzrjiWVG3K5mZMNleR27wJOPTfepak5+SXq7MRrYvuNoNRTLaFs0iyLPhRVsj1w/9pOGpT/vKJQfpDP4ej0MsU/lCyib8D1d3xmKROgksM5qC2iBVCjr9Pg4RgCskF1SrYrleOARfG15/lk6clapRJHBCti3Q7IBbXokCzCqryuDr0P7evD1enEeLbKihl1ZuYiyj0cff1ytFV4Txy/P4WYNsBRr2eOAI40a85tFFpn9o2gFGGnia+wC9Z9qQ9dRQDI2mkaWjeeZGT1XHjxwAD9LcqqRdSgzCsiWsWbYpNXp1byTxIhudoBRIF0P+2rMiB5aaeL4slL4XZ/uqeTo+uzqxrHolrAfrya1Kl6rQFZw6ZSuE7bndEkaVKpiX6wbdb1lxy7IO3oc54FWDb/bTbK1qcnJ9nGMpFJ1enRUHSxXl2HtVp1G2RmH4g0DnH846mE6rp+HlQrVXQP7gBPDPjA9idIXU96STuJngzqWyyWZSL6k66swj/e0bj1a7q0E+aVZEARBEARBEDogi2ZBEARBEARB6IAsmgVBEARBEAShA09B04xiGJ+0tTZ6ZAEhW3X9UprmE4e3PlFep7Qp8GRNEmuHOUzyMn2wESqVr+PTH5bLpykEs3HugHSky8uB57IN6zufyuGsoab58D7UW7pkFeQYVlSl0jTkVSgdj6PNUtE37YxQuX18Fq1suntR/9VLuuSaob16+HvfgLyJo4chvWvPiyA9vF6HBI6lUUtmRXGoRWJom5ckK5yaISKNRUgvGKHw56SxLeZRt+UbOu0c6YJt0rIuCxVu9jfSVjtrK2lWPTkse4qsB1VM94sU2XyVGtj5t+w8BdJpR2s2izPYV/tIoxpxsC1bNJ4rRhhbcnZTfWMYBtmj/Qszi9oaLz+Pfbcvh9phqx+1e3Xynjo2o+2mYhEK3UzeZW6M2pZs05bm8u3jLovC2kdwPM5M4XitG+GbOcR0rYba19WFbCDZgtMYCzZZcfFeCEVhpG0jnHWibwvkNVo4FwSzaAXXaKCmuWmGWidr11oZ93tUKvjdKSOEe7lC/acP+x5JUFW1iuc2n0w2Twykee/t2w7pgPpicUH3xYaF+wuqHtpBOhaO66bhg5aLYkEi2aduGfZ06SF7xO4uTDeNvsyWqi7ZhlbrqOntG9C2jTnaI+DxfqA8tmuc5sH+EW2fmaEyD5KOfXjDBkg/9MDD7eOgjm2YieE4HxocgnS1jPsV5me1vn6G9N8qgfPzS849D9LJ9ACkS/PH28cOrSfzedRL92Xwmb5+gz7X+OEjkHfoID7TV4L80iwIgiAIgiAIHZBFsyAIgiAIgiB0QBbNgiAIgiAIgtCBFWuaY6Tp8iwOo62PWWfL6WW+sie8Mut7O4XGNvJIaxiwuDgg30Ejn88bJz2PRZqtKvku+p6uH5e8EF0SiEVIo8sV0mpq/Rjfg+V0CDse6CamaJwq6pw4PPMzya03fhPS/VSfScO82rNQG5VwKJynEaZYKaVCS2un5o6PQ95SCW96Ooq62EOPoNev3cy3j6fuuhHyVAN1WccrxyC9GNU+nd19qMnqWT8CaYe01MUs6g3N0KmDA2OQN7gO07NT6Mc6vR+9b7t6tY7N7kJ9JdllK46MnUjouvZI1++6aytq5jGWTaJfcCuqtX1zeWyrWATv2wwLrZRStabWhnpN7JsDA9h2eQpv7abQszZR0drGahX1m4U51I2WKGS8Z3g8b9yEesNdJ50K6Xga779YRK3jts263ZNJHOuTk6g7Pj55CM8dx3P39hiPCmr3cgE1qV4D2yk0fMIbAT43khnU668mjo11wDOn5+k+EZB5vk97Jewo6skzg7vbx5E0js/SMZwnWMcd+FgnnhFyulqh50oL+5NP3+3q0hrfeBzL6JKevEG6Wn5euq5ZX1h3Zl39HKyfYZrvzB4ToT0ZfhP10bNHDmK+oZ+ukjfwYB+GcF9N2NPfjeJzvbCgteqVMups4/TZOO25iBhzV6jwHlO0PihTKPopGn99Q1oTnUhiH8h1o156fg6/W5rV+2Gmjh+HvC2b0Ns+TeVaXMxjuqzLGdK+nGwPPoczOXweXnzpDkg/8ONb28dBC/ta05+EdLGIc3//oH62bt66EfKmpjAGxEqQX5oFQRAEQRAEoQOyaBYEQRAEQRCEDsiiWRAEQRAEQRA6sGJNMyvAHAt1JY6RH9JafLmXMH73xGt39kdGghMoojuofdl6Wdmm9pg0zRPjqBu97647IX3nj++AdN2Id76uJwd5/X2oK9q553RIj+1Az8vBkU26zAFqo3wf9U1815at02Qvq+KRtfs3U6KM2qnQQ41cydI6LsdHnecy7Sx5zJq9ydSGKaVUSF6T5QaWo0q9os+QgA2mSPNNGkG7itqpbFRfqzU5g+Ww8LNuFfuAv4DnTiS1NjEVwTZt5lEjWRzfi9/18J7iKa0fc2qokWx4qIm0SG8P9r3kjxkG2A5K5dRqslhEPXAqiTq4pqEzXd81DHluDOv3yFHU6+UXtL/t6Aj6j64fRU/n7hxqh4+SBtMt6DoezeK5ji9MQNoOsU6jxpgMad9IIoH9cWw9eo7v24fleuzRR9vHLzn3LMjbcxrqo0MbrzVxHPuYY3jrRuM4xqYmj0I6m8G6rhhjsFBDHW08TV7bqwg/D/ozuDfiwhfvah/nutH/1ydN5ug21Jun+ja2j/OkWa6TdrhQwHZaXEBdpbmvgPcY1Gm8OqRTjpvhEsjjmXXZAcdPIL15wpxL6bMNuse5SRxPUQf1rmZRynX0MO5eh77WpSX0mXeKei7NpVEL26qjdng1qZVwL4NNRvW2sc8pSs8si+ZKl/T1lQV9z2WKnxBNYF8MyV87DHgZp9sqm8G9CU3SQx8/epTyTY9wuk6IZZ7PY3206Fm67dQ97eNMDstR93BMTBqe8kopFdKjZW5ez/2ui/0014/juFDA/LzhfZ+k/VBjG1GnvRLkl2ZBEARBEARB6IAsmgVBEARBEAShAyuWZ9gszzhBPr9W7BRGm88N330KYbOXf5fSHEaaXkUfP6ptl77xtf8Ned/77rchfegAWpVVKvi6ygz1OJTFV3uNJr4iT8XxlcEpu/HV6UsvfW37+NzLXg15PYP4GjokCyJlhjvnV+9rKM/49V2bIF0KsL66t4y2j396+48hb9v2nZCemMRX3OvXa2utWgVfGfV2Y91WyGbw5FOwrh9/4J728W2P4CujZBLbsbCIUo9WUac3rUPLucYSWnxZDXytODhElnQN/QozOI6fXZrHcjWX5iAdJvCVU8HTfeDwoYcgb7qCkodmC+2OfOO9qhNhyy4cUC/95CfUahLvRjnGxtE9kE70avsp38V2Li2RjWEMX3mWBnTb5XJoIZdO5TCdQPu6bBrzd+/QfapFr7Fzx/EeHqfw8qkefe5GEeeJY8fxVWpvL0p8RkZwLvj3f9fj6FFDqqGUUhdffCGkN23GV+QOvYpdmM+3j1tVbPdMBuvLoX6RjOk+NLIJ54GpGRzLq0lAerwNNEZPOl23W4YswQIK7VxVKEFRhn1noZjHz5JVYoVs5Jaob1YNu7IqvU6fWcA5xyX9RtqIjc1WdjUa29EEzmdbxkYhbdrKxUiaFpKEoFHHfl4u4bxSLOl7miObM2cI22FsM9qNqWndbrOzefyus3a2l+MHcKx2kX1nv2kz6pKNLMlqFpZQvtdlyJT6+1HSVae+Ftioz1icw7DsC7O6fuem8DpLRexrKsT66zbCbjsWLg+dKI4Jn9Z5mT6UziQNi75kFusqRve0MIOSnB/84IeQbpT1mFk/moO8RBLvYT6fh/S0YSs3SlaIPX04H68E+aVZEARBEARBEDogi2ZBEARBEARB6IAsmgVBEARBEAShAyvWNHdnUNNVa6A+ytQ/+RSCtBmcWJdsGdor1koxHOrT4jDapkaH9DqKyhWLoDbojttuaR////72LyGv1UKLlOXBv7EcnlG10ThqtkY2b4X0KS86E9KnnYwWVznDLsuvoh1bhKxrWqRjM3VtAYX+Dn20/llNNqbxWnnSQ6VShnbWwrq2U/hvu3qIdVDxtE6rXkd917CF1y0HqBGMZ7ZB2knqflwjHVqT6r5AfaJwXF97aBj1pV4Dz1Wp5SHdR+FNTesxK8DrpiPox9MiTdeBqSOQDpZ0uRYUnqsYoXukcLiBoWnmocma5tUmkkEd8nwD66Fi2KRtpHCpBdLy+SVsu56k1uX292NoXpf0iX4LKyLioj4vnsy1j50czpN9/TlID/bi3OAYflLddL8p0tR35zD0Ou80+c3f/L/ax//2//83yPvOzbdC+uUvvRjSbM20Y6sOE11pYB9qtFDPemwKtdctpcdcN+mw7TX83Yb77+QSWr/ddae2bjzzFNxHMbblJEi7ZG3pGuHPKwXsa16TQl83sb5m51Hju+/QePs4EqGQ7kOod10WgtsYv4HCvHoT+2LTx/Gz/wDaxqWT+trDIzgm+vvQ7rBGtnpFsmer141r0Xqg0STbyyjqX1tRfe1iQCHaPX4urx6L82gNmCS3xFZLj9eAfOE4bH2EbEQHB3R9BjYuyywbL5SwsSMf3zcO6aOHtPa6K0tzSA7THGo9MGwHownUMHu0frLpWcGWhtGo7j8h5VWquE+HrfBqdUxXDJtClyz4UlksZ7KA312qGs+/hTzk9YqmWRAEQRAEQRCeeWTRLAiCIAiCIAgdkEWzIAiCIAiCIHRgxZrmBHn6RkkgFhinCgLMK9dQs9RiK2FDp8x655B0eqzTYp2y+fXlns74hyBAvevpp7+4ffynf4qesz7pfycm0F90cnIS0rNGWMgrX38l5J354nMgbbVQI7h+J3oH20ZdBx7er0vaaps0zr5jaM3Vs8fjRQz1XAhQizY383D7uBhHrd39ExiyPIyjNu9gQXtRJsi3tFFAn8oGdYr572F467Co67N7AHV7S030Qx7eiJ6Pj/xU3+NPHkRPz22j6J2cjOHQy5dRq9cywqM71MddB9vYTaLGq9HEEMh+U9dntBv7y8gGDG/aIntRszZDj/3X1Zryg5/8BNJR8gX1o7q0VQvrc/L+A5D+6Q3fg/TwOt3WF7/uUsgbGEDdsa1Qr2jTfFc3tNaFPOogUxH87NgQeuMODuo+lU5S2HbSMrZIo1qn8MQ7dmxvH//Gm34D8r79zW9A+q4fozf60Mh6SGd7df30kF/2/nEcQ02eZ13df+fmcQxNTaDn+GoS0p6OIo25R/cfaR+fuou8gl3UTSqLzmXomPNLNKdQeOomaZwX6POOoZce3YDhuqtV1EPPz6G/bW/OGBOkq43HUKceo3DolRLqTKuGh3u1jnXFWtgcaa8X2E/a2BcQodDfrovzWZ1+yrMNDWsveaYXW+Q7vIqMrEM9eV8fliVqeGQ/+jjqw2fJh5j9gZ0ZXfe71+E+m2QM5+jbb8AYEvsfRO/9bL/enxGjdok62Ce4LVIpvW/CIa350DDq2j3qE7aD5+rv0uU+dgz3OUwv4HO5uxv3ZwwM4rO3mNb9PprAzzZpa1YsgfUVN/ZTFcnD+b57H1BPFfmlWRAEQRAEQRA6IItmQRAEQRAEQeiALJoFQRAEQRAEoQMr1jQHHuqwAvLdcwytjE3x4JNR1Lg1W+TvZ2j1WqTZbZGno6VYw8z5xrUt9ofGtN/Ce9qxQ3tzbtu0Cc9LutI6+QpWqyVIHz2sNa3d5OnZN4Bepbd99cuQ7sqhVrN3VOsei0voQzw9iR6N09OoEZya1PrW+Xn87nnnXwTp0dGL1WpxLIVavHqAuuVaXP/7LZLBf8sFNmq+2R/S1Co2SNNcZh9v/KpSHmq+Wnmtf5qpoO6qfxtqpYY3khez0fX2fg91ZkEL9aebx1APnS+hZ2ypaGjR61ho7h8BjeK5JdT5BZbWDLoJ7IvNBmngqbocQ7hskYg5Sj7nq82xCdw3sHsT6sQzg1pneXRiP+Q1C6gbLU2g5jDS0prC40cOQl73II7XLtKQuxb2IdfQCWa7sa0qs+jXOpdHXWDQ0v03mcb6dalvR6OsecaOEI1pHe6WrWOQ9/pfvxzSt/zXNyH9wH0/g/TWXdo7vlrKQN6xozgH1WIoMhwczbWPl0jrWquunc+uFUWfa957M9Cjdaa5XtSvsl9yvY5z0tyCnlvZK79cwLFdK+KzYusY6toPT+p55/hx7Kdl0mGPjuJ3k3GtW+bn3dEJ1JU6FRz7vd05SIctnV+r4P2yxz/PyQsLqOGNxXXdZ7pw/Di0RyPiYr/3E9q32U+hLjtTw+fKarJlN3p159LoJz1+WI+Drdu3Q14sg/NPPI79KWnMy2ET6+Pun+CensceegTPbeO8kDT05i7VpaI5IpPF+SmX1fdUKKPGvY/2+LQqOP9MTWFfnTim6+PuO3E+Oel03LeVieGcUsvg+mDdet3Pa/Q8PDyOz4VUEu+5amj1kwnMi8ZwTlgJ8kuzIAiCIAiCIHRAFs2CIAiCIAiC0AFZNAuCIAiCIAhCB1asaWZvZY88Qi1Do/rI/fdAXjyGOpLRnadhIQzNpYVyHmWRH2aLtKGswVSGpplsOZf5dJIcWvmGf+b04ccgb36W/H7Jw7BUQc3SgqHvac6g5mbDnjMg/cijqFHqJu/WxgP3t48f3fsw5FUaqP3JdqHudnBQ627TacybncZ7Wk2m66iP8n1sR9vQa7LGzSIv6pD05U3jXK0Gau2cOPt8Y6NPLqGmcuaI9tVND6Fmy+1Br9aahbr27vVG/SZxaB2dRY1fMoN6uFwXpv2WbteF+Tzk9XejJjJC2rqHDx+BtFnTGzPov9ur8B7ZfNmse5v8VFMp1KGtNiGNuePjRyD94s1aJ9c3tBXyjszjGNt1CvrwrhvT+uhkCnVujz2C383QOFo3iNrqWETrEx3yZc5lc5BOuuSjaugRY3HSKEdY40yeq6S7tQ09Y6uB/TxD/e3il14C6XL9Jkj/4Pbb28cjG1CP370B/VvHF3DvRGtOt9ugg3rWkRHcF7CaREjT7FLdD/ZpP+449e1Gg/Zk1GlPS13X7+wCelHX86jjzmXw3PVFfHbUq3quLJVwrPf1oWd4hs5lzp3xOM5XmSr220NHjkBa0V6kTEz3Re7zuSy2Y4bGzEKe60vXTx/7ntN8H4vhnNQw5qT48GbIS7bQs3c1GVyPmuZuetbm83qmjaWwfrJD6Lc9N417G4pzus/cesN/Qd4Dd98H6SDAZ2e2PwdpO2LUJ3npcxyHdAbvwQ/1WB0YwnEdieJ4SUXQa/oo7W145GE9by4tYj9+8Ke4jilM5SGd6MVynXPB2e3jjRs3Ql5PP+qyFxdwvbU0qe8pEcM9PensU3+GyS/NgiAIgiAIgtABWTQLgiAIgiAIQgdWLM849OD9mN6LllpdSW0FUyjgT/H33/wfkP61d/8xpDeeflb72Ca7HorqqyJku8T2Pp6R5tf6Hr3WUDae/ehBLcl45B4M2Tu67RRIZ8gOKqBX13GjPgbIXsWhgNa1kzFs5qFH74J0saZfBZ56NtrEbdiJUo90Cl+7mq9szbCoSinlhKS5WUUaLZSRVKponZRO6/pyuFeSdVJA8gzL1mlqBpDcKKVUSPkqiv0p0afbtWcIXz8pF69bq+MryKhR14kcWiMVZ9CyaWoGX8km6NW7Y7wqPTqFoZinybLKIkvDJXp13DBezQ818ZVbYJG9H0mYTPvIho9tWM/ja+jVJhlixzi+9xCk0726HradtQfyRl+0C9JeFe8l06Nt5XJ9FMJ1FtuqUsa2nPQmIJ0y2iNG0rRqBOubX9UPd+nX3Mk4yQloYDQopHKFrAZDw4pqcgqtKGtVvIdMGstx3gUXQ/q4EQa4Sv2grxv7+vw0lmvumC5Xah2+eg/WcA6aWcJxU6mhlGt4RMtO+DV2pcoWoyh3KRl9Il9AKZrj4fzVTa+eJ2dxfFeMtnFoXvBofB4lS7pkUveZCH2X1YlRkvNUyVYubjw/c31Y5mwa2zFN8ox4DOugaNRPLEaSJArlTA5qyjb+YHWjtCM+eLpaK0bX43N8Zg7H1EJZV/DCkb2Qd+pp+N062bnd+l+3tI8r8zjfxCJsC4rrmL4hnK/6DYtM/lW0QVbBdbLKbdZ0OwUhjvNhspyrFvAZvrREodaTufax56Nk6/4fPwjp4hx+97/93u9AevO2k9vH0QT2l2Q3ypC6UK2hpo/rcizNYDk2jqIV50qQX5oFQRAEQRAEoQOyaBYEQRAEQRCEDsiiWRAEQRAEQRA6sGJN8223oAXRrd/4OqQvOvfc9nFqFHVGt+xFa7OTplB7t/4krS0LSXccUBhtdpiz2FLF0Lv69F3PQ/2cTyKv8QM69LWbRiubzCDawIUB6uHWUdjVrqT+90h/D2r+UiTUPvV0rK88WRaZFlhOCss1gxFaVZM0S35T65JaTdQoRWMrbv5fGod0WYkk6pBcI7/eQG0dh063SNfuBbpdo2Qj5dfJGpE6TEC2cVnDZs6KUdh16pvcn1IZ3c5jO7C/LExgny+SnnK+hDpQL9TpyUoe8lwP9V9VstnbsBHt1ryK1s9ZpNX0SW8ZS6BWsVnR1/IUjU3Slq82y7prHtvu8P06/HW6B8fJWeecC2n3QtSBl4u6z3k4TFRXBu2jognsu3UKbVw3NKleA/tqLIfa4Spp+8tlQ2NI9n8x0q6XCnlIz5GFpGlXtm8fhhXPdJGWegjnr+4salhf8pKXtI8fP7YP8pIp1M6OrMew4y3DFnOpinrNlr92odgPTtNk6aIOd52haa7RvBEqHDdVyq/U9FxQa+CYyiXwOr19KLo82cY9LUdmte5y/3G0JqvM45zDuuWlku5PPu33cUk7HKMQwj51fN/Xuu2RAdwrk4ngPTqkf+Uw0XljH4ZDc3DE5n0VWO7A0dfym/hsKBdwXl1NmmR3e4ysZCdm9N6GgSzWV3UJ+96x/bgfY2la2xJmaZw7FtZ1hK0EaSx39+m5Lz+PGl6X7P2KeSxXymi34lIe8spkfzhFe23m5vDz/UP6ebh+x07Iq+Wxv5x7HoYdf8WvX47ldvUz7rF9j0Pe7lMoJHcG55/uYa37rxfpeZ8jAfQKkF+aBUEQBEEQBKEDsmgWBEEQBEEQhA7IolkQBEEQBEEQOrBiUetkAbVTRQf9Em+/U/vuzd1+GD+7+TJIz3uoySkb/pAh6XfYxjNgz17SNCtDZ8mSyyafizTNXUY43HgLdaJL86gXZP2XReeysjptl7CQRdKhRSzS9fG5bK0NilL9OBSOukThOWNJwzPWxuZ2lscgXzWSpMOySdNshsauKxKVkt82h101ba8rVQrX7WE7diVQ/2VT//EM3VozRC9W9v2Okt9ow9N6qd4NObzuIPk2H0MNsyI/39yA4be6CTW1SfL2PXwAvVpn5rAP5GK6ruOk+R5Io6arv4f0qAmtkYwk6H6bWD+rTSKJ/8Z3Pez75WPaS3jv9+6BvKSF+s2d5JsaGFrvyjHcUxAhf+QY9WUOhT1f0f6tjSa2s9uL3t8x8spNGG3lkbd5SPNCJELjmbT+xYKhH/ZxHMxNobd0gvYc5EmDmTF81KMuXufun9wB6egA9s90l/5uyBO6t3aaZg4rPTCAbeEaWtIq+VjH4jh+Q9ovY4aJ5ueK6+I9pins/SCFxs5Xdb/u6cexfeAoegPzDO4b+yxCelaWK6ifr9Wwb1rUNkHMmO/ofmMUjtgnnXK9Qf74xtdt0jDzPfAz3tx75FE4+PgkhrhfTe558EeQtshzfee2je3jQ/c9Bnk//OYPIN1qYf1EjWdzQM9lj57x0Qj24+kpnK8Coy1a5NmfpP0ZvQPo29+o6z5SWcLw7xPHsO9FSBNvxqZQSqm44TO/bfsOyLv8la+BdF8Wn0NTNdz7cOy4DtEdoeduIoXfTcVwfG3dqfeMzU7ivHdoCtd1K0F+aRYEQRAEQRCEDsiiWRAEQRAEQRA6IItmQRAEQRAEQejAijXNbjkP6ZRCjdzEnPbsWwhRR9PTg16BkSL6G5Yq2qPPJ09e9iplY2bOBj0w28iSprdCuqu44c0cD0izbJE3MH5VJci3srdH626iNubZ7LtI52ZNc2joIt0k6nXmjqFn4Xe/+U1Ib9qovUfXrdsMeekMxpJX6nS1WkRIDxySh2g0qnV/gYftFJDqrVIjX1zDf7pYzENeMoX6r2oNNXEJ8lA1O00YYrv4LSxziXwrzTuMk44x048aQK9Euj0HdWuDm7TWLDGKbU7FUOs3roP0j7/5YyzngvYy7cug/utFW0+CdG8KdZ5OQ9eHG8V2SaTwnlabZJL3AuA4qRpa0HAe9ZqP3f4z/Ow8tt2e005pH9sx7DOTh1EHl63juXtTqBNEf1MsY420ssko3tPigtZls3YvTuVyaS7Mkgd0d1G3JeuhZ2fRY/XwkSOQjiZQnxgz9Iq8f2N+AjWVzUU8d6pX1086TZruZeNv9UiSljhCnuR1Y9NLq4H3mKCubpHutmnMQbEoGfHT/JXrRQ1zjnx2X5rRHtmnn45z3X9+9zZIT82h7rRWeXJtdYw0uE3SzMdog8dot263YdJdp9NY5sUyzqulIvone0b8gJCu4/O+Eno2NAy9uHmslFKDw6jJXU38AK/dTTETjhzU/uW33fR9yAsauGeg5eMColo29nWRXpzjEqgmtmuliHPKUiTfPo4ncXwFFs7hPM4dY7/V0SNHIe/oUdwnsudFZ+C5SXttG3tOrDr2tcPHcN/bgw/cDWkVw3tev2lD+7gZYl0ulRcgPb+A2utoXNfnRa98LeQ9/LM71VNFfmkWBEEQBEEQhA7IolkQBEEQBEEQOrBieUbaxldZvd0Y+rNphLrcTjIAv4XvX1oRfCVQNmxRQvaJWxaqF4vss4WRgWXjq8+poxi68jvf+Rqkjxw60j6u1dC6LBMlSx267EAfWnUlDblGnV7njvTlIB0lu6eQQhsP9OlXmq+4/NfwszV8Ffr9u9D+6Uc/0NfOkr1VqhtfuV38Rnx18UziNvD1TIvCkPuGJRbLV5oKK7tMr+jqhpVSguy/ukjO4lqYH3XwVVirZYShpb7FNkoVCp9svj53yZarn0ILN+ex3WIJDu+t66uh8PWbR6+nervxlXfvEEowPOOVbcTF66QcHCMxGm8po88ss15T/Bp6deEw5vEElj1f0u0zO4OSsHgUpQ2P/xBfB1aN0MWnnHYa5HnUD+YoNG2G+lDFCBncRZKJgEKvJ+hVbMqwYnRIutFsPrmNl1LLQ3KbsqVIDOfvGL2WLdfw3ByC2ZwPA/bubFJoXgpt3PB0ft3H+4001y4McjyObRHSb0aNhh5nvke/J1FlO2R72TItSkk2w1KGbA7Ha4q0H/G4bqsYhWzfuXkTpPv7UJ5Qa+gxwvKx/CK+xm7QnNzfhXNlV1Tfo032hskk9qdKi43jsA6axtzZoHmUQ4F7JCsx7fzyBbRCjJLEZjUJKIz29JFxSD/68APt45HN+Gx9xaUYFvr2W38I6R/fqmU3Uepr6WwO0lGSaTkO1nW5qMdqNofPnWwqC+lqGdcmfUO63GObcI33vW/fDOnDEbTVO/L4QUgXu7RMYurwEcgrkKXvzt0YZnvdhmFItwwbvm56vtEyTz18H8pIIsZ68zWv+78gr6cbr7MS5JdmQRAEQRAEQeiALJoFQRAEQRAEoQOyaBYEQRAEQRCEDqxY09y3YSukNzRR/9RjhIIeXr8d8sYf2QvpO2/6D0g//Ii2/ejuQb0XueSorVtPgfTA4CikbcPOxvPykDe7gKEZDx1DXWnN11ohn/SbZRs1bPUG6gfdIurH/usn2uKqWMW8LetR7+SThmliCsu1blDrkk455zzIO+kk1B25cdSZTk9oXVE9ipVZnUGrqNXk9A27IB0lK7hj09rWa7GC7TRVQVulJOkxE0Z4XAqwvczSKu5gmiXzEVtrrVpkbRcjjWmyHy2HbOPfoE4MT+x0YxsncqhDI1mfsg17xEbFe9I8pZQq1FDnF7ioOd28a2P7OF/Hzx6ZRluhLrIoyhghW3syqIeLhGtrORchTf7IetRzVg1d5X2P4v6FOung+ygU+fePH2kfH5/F0Kq7t2LfHexHq0a216pXjX0E2RNrmmencayPbdD2gS3ScLMVl0u60bl5HM9VQ7NaLKEu/hhdt9lEjaFLA6mQ12Ow1qRyUTT1oIGdubykz+3HUEebtfFcq4lNFmE29ad6Uc9BZjhhpZRKelQ/NBd4hr2WR+Hdcz04btLdmOaHcD2vx+jCAuqQ14+MQLq7H+eZgqFRrVZRr1rpw2drfoH6Xh/Vj/fkNnoxsqaMNMgmlGxUS4bVYoHGS4TOTVGkVaul77FCGtx9j+9Ta8X+hx6CdNjAgs4f1WMk24dtvFjCfRC7TsWw0tVSvn184KEHIa9Zx/1VLeqLvoe6bs+w4owkcU5IdaM9ZpS06tPz+h4SWTzvtlNxr1ptAcu1ZfMYpGenptvH5QL24+FR7MddcbynrihZ8i3pObnp49gcHsZy1cu43uob0f3aaZI1MM0JK0F+aRYEQRAEQRCEDsiiWRAEQRAEQRA6IItmQRAEQRAEQejAijXNqRR5FD7ybUj7OS2Cy3WjTqS3iRrBuQnUOD80rvVhcxSCNU3hiHv6MWTw4PAGSHcZIUk3jW6EvM17LoK0G8Nypg0v01yKNGuk0QrqqJupLGA460hcf38gjjqidT2oc2zZqOmK2HittKHZrS6ivje6GTXd7/3d34F0qag1YHEX9TwcknQ1OfeU8yFda6FmacuA1swvlfAeH588AOkHjmJde4YnthdiP62T/lKFeM+pGGp4067pkcqhT+lcFMY5NLTp1Sr5iVIbp7tIh1ZCverxcT0OvDQOUyvA/lFfQo1XxkG9eNPX9zxXRU3pjx5Gv+J0Fvuq2fdS5A9q+skqpdT5l/6uWk1mZ7Bf9MRQ2541PG2HSVMYIy/lY1MYGts39kLMHcK87x86Duk95OPcl0F956LhJZvtwnJU8tjvnTS25bjhFd9i/3aag2K072J+EbWituHBPTmDoWUfP7gf0l1d6H3aR77zvhF+t9ZEfXQqjmPIcTE9X9H1EZRwzDRj7O+7esSyqEUP2Oja0frPegP7mk/ewU3y7DW9h32aJ1xqR5v00CHNUfWanrPLFfKCT1Eo8BTOK6aFtkX9xbXxHuK0jyIZxXLGQ/2B7m7sHw7tFamH+Dxskq67afjyLkGY+eXh4UPq182G/m6ZdNrTtE9pNYnb2F++992fQProXj1vnHom7uvaH3kE0v0DQ5B+1Rte3T6+bzQHeQ/egZ7OSzOoJa4UcR6MZHQ7zkxOQl4yg/0nmcP5qMcIl77jRSdB3ovO3APp2SO4rvOL+Gz5zi3faR9f+LILIG9iAuefRhXXff1ZXOd5xpyyROsWh+ajc888C9Jbt+p9X0fHUQNfKeQhrUbPVp2QX5oFQRAEQRAEoQOyaBYEQRAEQRCEDsiiWRAEQRAEQRA6sGJN8+LsYUzPY5zxwmGtvXr0cdSc7sminvA3fuvNkG4Ma8/CT3/2M5AXtVBnletBHXLIulKl9U8umd9GQtS+nPMijHduu7qcUQfP6/voI2g3SQsbQ+/lK17z0vYxa8W6M6RhjqE2NAzI09fQjvZ0oX5ycgq1dxe95ExI79unNTyOg+V49LFH1VoxMYs60UQC7zlt+AFHM6in9AZRH1dcQs9HT+n8aIw0fk3UwHnsMUtGzZ6hoQ9JB1si/8daHc9tmkRX5vDfowvzqB2zSqSRJ63x0UPH2seNJJYjSpq/qI/30LVuPaT9QJfTsnFMzBfRP3SpiffoOlrryz7ViSRq6VabCHmQK9Kkrh/Wvs010py6Uexv7BVbmNXjaHEK6yRAO2T1kx/fBekNw1jfUcNotlRFTWo6nYN0hnSnDUPr3wpQ5z5F3soBeStbNG/EUvqe80XU2MdIj75pM3qdJkhn2t2ltZCBheXatAW94lsezjP3PqL9bR+fRF/wufq0WitatBfAUngfpv9to4XjMaS+VihgfTabTeOzOB7Zm5u2lqhSGTWqpj46l83hdai/1Ks4r8QNz2OLruPV8DrJCM4ryQSmLUOb7VB/cKn/eFQ/yRR56RsaaPP+lFKqRfpnm+7R1Ig36vjdeosG5yqyczvGqviBjfPA4rQe6+P7j0GeE8f6schj/aTTdPyJi15zKeTFIthuP735TkgX5nGOiaT1vpSeKGqYyzOoAa8W8bsXvlhres85FdcS95FP9UMP4BrwZz9CjXcmp/dupYdRo5xp5SGdjuF+AxVHDX1pSc/X3eR7vnkD+kPHIqTxNvqq7+J6af9xvIeVIL80C4IgCIIgCEIHZNEsCIIgCIIgCB2QRbMgCIIgCIIgdGDFmubjs6jR6dm8C9IZw0uxFMXTdpOX5PCWkyGdO0lrZz7wIdSr2DaeK5dGH9kY6bDShl64h7yWjx9CDe++Anr2nXG+1iGfdsYZkNdooH71//yv/wXpSBzL/earrm4fex7pWQP0GXQdrB+vRVpFQ/60MIuapJmFPKRDC7VS+w5ozU6W9XEN8h1eRW6/H70mNwxg7Pl+w4dxyyb0uBxMo6/1RbtOgXTBqINmjfzEl9Cncq6I+rD+UdRaNWO6Pzmk+VtQeUgfK6L37fyibptHH0CtZnUB23S4m3RZI6hV9x2tkSyQb3dPL342olAvNzw0CGk3ofX2RR+1vJUW6vzZu9Y3dJ4e+ZSGAdbPauPEUSs72DcM6aqhMS9VUJvdE0edW08v7o3wPK1D7evH+vN8vO9ak8azhXNUJquvlR1AbZ6iKluooDY2ldBzVqWIbTPPmuYWaXKpXImc1jPWmqjRPfkU9Fzdvg3H3CMPPkjl0vd41tnoZbr/EOqUx8dxXJy6U+8dWSri/FUmPe+qQlrZZhPn4WJFl6VI+xdKJfIhprqGccP+z4TfwLmgUsRzW8YcnunC591SBZ9DFumn00k9j8Zo/rLofqMKdcqZJD6HYA8H7aOgyyqP9hCwBrxsnCuRwOt6pGl2bBznpkd2g+q92cAxsJrkBnCvzcsuxbgPB+470j7OL2Cb5mdwnCdT5GU+q/dRbD4Z/ZF3nYO+w0vHxyH98I/mIF1Z0mN9LsTx5mSw/5x/KcZPOO0Uva57+Cfo4f93/8/fQ/rAfizHls34LD31VL3XoVLCfUi5LGqtu9L4TEvltkB6Oq/3ySUU9o9kAtcHro1zfcnQ/Q8P4v6Te33UYa8E+aVZEARBEARBEDogi2ZBEARBEARB6MCK5RlBBl+FDp+KrzBtR7+OsaP4mgfNaZR6jEI7psu3t4+jLv70ztIFiyycWk38fL2pX/1UWvgzfauG321U8FV1aUm/IikXMK/ZOPEr2VodXzHNGhZWPskzHB9fuyqyJGqRvV3L+H6rhq9Z/Sq+3lzw8TXIqSfpVyQBWVKdug1DcK8m8S5qC6rPfQ8dah83JtEWJnSwPgKSt3iefp2ZL+N7w3sfPgTpuUUM/XlKC18TZQZ1eNNWFK87cxzLtfdBtKsxwxhHKbRwzzrsx9lustwbppDQUd2P3V4so00Whvyu1KZ2rhr9qUyvdyMp7Md2gOcOfJ3vUkj7SIQs4FaZBbKJi9L0NX5I22Lm+bNJfM2doXDhnlFno2RhNH4E7RLXr0N7SQ45HRhSrsl5lCoszqOd3U6SRQSWLtfMBPbVFL2GrFvYlocO4+vSLk9LgNZv3ITX3bkb0lMTbAmJr/bPOUdL6IplrNujR/G6e/di2PueHi1R2bphA+RF17IPkWSA7cuaDT231us4z7LFnG2zfZ2GLdQqJEEpUd9kCzbL0edmuZQbwT4fi2E7hYalpOti3YYZ7PMRstyzSX4VS+p8h9qJZTVLSygDmJ1FKdHCgn4upSmUc53u3/axXLWqfl5Waf5qkNRlNRmfwnXLtlNx7G4/Vds23n/XXsgrUIj7rh6sg5kJfe6BjWj/uH7LaZA+9SyUyt592zchvbik62h6Fq/7kktRWnXJZRdD+q77ftQ+vvmGb0HeQA/OP8Pnnw7pXSfjHJMwpLL1PM5lO3eifV8yjTK2rdtfBOl4TsvppqfxuTsxg30tGcNnb2DrcsxM4zO8O4P3tBLkl2ZBEARBEARB6IAsmgVBEARBEAShA7JoFgRBEARBEIQOrFjTHNZQs3RsCu3aTEca10FtVIRCXU8c5JCS5nkovHCIWqqlEuqdMl1oX7NhQOv4YhHMSyRR67J9M9qeBSWtK3rwDtQJuRRC+JQdZOtFIbsP7f1x+zgeQZ1ogiSprRpqdB3SrUXi+tyxKN1TFrWxHEa6u9tIkx1dJLLi5v+l6crkIJ1qYjsvGhrCR/c+DHlDA2gP1jeE+vqiYaf18Azqzr77OGqaXdK1W1HUX7oHjrePcxvxupMF1KP2rUcta2+/ts3p60P9oBvHuo9SSOgqWVrZRqxdK4I6vqUq6tQi1L8UaZrrZtpGrabl43cbZOEUjWvtnU/a6UoVy7zazC3h9WaOoZYtNPSNFocbbrAOHs9tGRrVCI314WHsbxs2416A0hJaPk1Oao1vOI9tkcngHHTw8H5Ihy3dHhuG0B6pTrZxFu0dyQ2g1loldHutG8Myh7QngzWop52Ktlflmq7bu+65H/ImpnFc1ChUfdPT5Y67eN0hskdcTXwKN18t41wQjei5NNeDYX0r1H/YVc60RfM9Dn+O9pOT06hz574aNSzZ2I5t2T4C0rWXS3pusMkmjpwTVWuZ4yjZtxl9xKZ7qlJ/YY0z68VNC7qQ9OB12sPjkb1rPq/vqVbD86bi+DxcTeIJ1CEnu1APe8Erz20fjx9C3XGjivfYrOE9Thnh5dfNYf8YWo/a4a17zoF0bvQOSM8u6O8nqH4SZP87M38c0pWq1p6fcS7aUq7bgFrrarVG6Tyknahu86hF2mEH58HJWbStjKcwPWCE4W40cU/YvQ/+DNJBC8d1Iq2f4xxiO1TknbgC5JdmQRAEQRAEQeiALJoFQRAEQRAEoQOyaBYEQRAEQRCEDqxY1Hr6Gaij2b8XtSBhoHUmEZRvqiilXRu/6xjezFHS2T5wAP1D/+sH90B658YhSJ/xmy9rH8ds1O+wHiwSQz1w3NCSxaLof8lpl74biaF2KBbX+bEI/tskRrpt1rSxptnUptn02YB0aT55XHotrQFrUthdJ6SGWUWmZ1CnVWigwG7I8IxuNlErlaS6TlMI7mpF6w2P3Hs/XjiNmt1t27ZBevtmDNc5NKL1q1Xyae720EuS/Vi7XN1HIg7WbalOXq3kN95LobFtQ18YRsi3tI71E5JW06J2DQy9eITy+vvwug0Pz1Uo6HHNmlAeq6tNnsJKJyxs2+6Mbh+LNIM9vag/r5Df6+KC3rNx9Bjq6U7aiWHb/QC1xTMzqAuMG+G+7QTqo0eGUcM7P42+6q7SWr8l8gY+Tl7KaQrFXqlh/YwMa43z0DocM4sT2B95v0eSQtffc5/eZ/DogSOQt0Bac8fBuTKR0TpCj8IgDwygdnh1wTknkcR5ZcOY9ueu13F8TkwchnSZ9iAEhqbZId329Dxq3h8/jOca7Mc66DO06pbC8RrS/O44PAZ13+RQ334T57MGeVFbNp9bH7PXdI36Woyef3EKlR017ilKWvxaHfXifK2lJT0OWEeb68cxsJrs2I46f9fGuj/1HF1/u+/EfTkP/AjXLbUS3nN5Md8+Pn7gMcjbvh39oJM53GOx5xz0NJ7cf3P7uG8E9+Vs3I4e9GWqz55+PU/0785BXqGEe2n6+nFOqRVxziiV9JzqRnCsTRw9Aum5RZzbtm9CP2k70H23SiHuN29GrfXsPHpCey19j9ku1KX392HdrgT5pVkQBEEQBEEQOiCLZkEQBEEQBEHogCyaBUEQBEEQBKEDKxYlJuI5SHfn0EO0WtZelC75xkbYt9nGfFMPFSWP1B1b0Vfv6tdjOXp7UbPTM6Djn0dc1NZFyEuZNZkRQ2vluvjZGJUr4qIuyyVtmalLZhtdkiUri/wzrQC/YGpJmyEbzOKXHXUCvXRIfr/z6K+K6vBnltAi71YH9bGB4Sc9M4PlWiSP1GYD+0QQ1+08th11VkNbUMu6kbStOdLijazXOtC5GukWySO8WsZ76uvR3sz9fXido6RHdcmrNE56e9vwjwxtGj/UP5Jp1KM2yYC1VNHaxaUiamhr5B+azqK/tDL9tAMsc5W01atNbxfqr12ylV3fr3vw8ePokxpxsOwNH/WcEWNfRUha9Wgc55G5SdQwn3Uy+pm6tu6vjx5DH+bFOezbzTrt7zC6QUi+2KkMts3R4+j/G89gHzK/XaviGDp+FOsnk8Jz/+x+1GTe88CD7WOPfHVLZdQ69vRg388busm+IdwXUHOwHVYT2+Fxg3pY2xiTsRrOMXXyHY64OI4WJvSeDZt0yNUyjpPx49gHlIXtlkhpbWiStOatBpbDsfFalq37bp32TbSa7ElLe2nIu9sz/N3nl/BcdRr78ST535JXfNzwC7boWZkvoT66mEct/4Kh963S3LZrBOf71cRr4oRTob03OUOfv/kk3Dvz4E/uh3RhHutzYFivYxYmMNbAwjEcq+u37Yb06WfhfrOffEvHiBhaTzEOhjHdoi5RrOo/dCnUKAdR7C8hrad6Bsk3vlv3icV5alN6ttoBFmT/Y/diOfc91D6enMZn6YZNqGnO9eJKZr2hvW7SXoRm7anPP/JLsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdWrGlmr+VMEvVggZdvH0dI/+uwppl8LE0P5Bh5OG7uRg3crl27IM1x7JWlC+o4rEPG61JSOYZ/skUayFChnikMUQvjh3iPlqfTHmmWA/J3dKluHQs1gzFDH23Rv3NqFdSDzSygzvHYuNZDPfjAXsh76LFDkP6XS69Wq0UsifecTaFeaqKgvUxnA9R79eWwD8wr9PFUvtZrbtk9ClmVCmqY6gX87nQpD2krrxvLiqPeuVbFc0Wpj7iG9rhWxXbpSqE/JMnDlOdhf4rF9DhwqL8kXCxXdy/Wz1IRy9mb1eNrsB99go9Pj0M6Hcd22dCt9y60atgvy7W11TR3JdDrMxVNUlpr6CwPx2uZ25kGXdbQCw/2YB25LmphJ46i5nDzINb/ORee2j4uKmyL8UOoha2QnrNmac1qo45a6nKVBIghdqKuLLZdKq37XIn6fYk8V6encd44Po33OL+wqMvIWtkW6mxHhlFTeHBGaxC9DNZ7w0Gt9apiWSdMB8Yc7tIeg65MDtLNBrZb3PDlr1W4frAv1us4jmqkl24Zul328Ld4AwwRGl7UQYjXtWkvURjyM47OZXi6e+TR3miitrhSW4Q0xwswNc0VemYVaa4sFPJ4LqPcW3fthLwzXnyGWjtoj0ECx2fU8KYe24HPoWQ3zv/FRZwX8gt6fHYP4trqwF7cX5DuQV/vXbvRa3jzDq3x9SLYTjxWoz5q0YfWax/naGwA8jwL55BiBWMvHJ/DZ0nCWLfEI/T8i2JfTHg4lx/Y/xCkM71GWVrYX8pLs5DuG0Qf676eje3jYwsHIO/Gb38d0q/d80bVCfmlWRAEQRAEQRA6IItmQRAEQRAEQejAiuUZNoXYjMZcSuuf11169ekuk0WwPZuWUVhk9RaQDU7Tx3W+rfBnftOybtl1IywbsZ80ny2qXIWvORyLXn0psrAyLNYceq3TpDChHoUuXqzhK8u5Gf1Kd9lr1Am0vzpO+cV8vn0cUhkHU/hKZDVpNvDac3V8TT25qOUZQQzbdK6Sh/RMAb+bSulXTDa9cq2U8VVpOY9171O5/Lj+foZkIRWyWXLpbXk1ocux7BUshSsl9ytlx7G/lT3DpiuDVmvRCIcrxXuamcWwvXFDchFP42vn0RF8jWjRPfUm9bV7h7AcwYnfFD/jxKhf1CkMcNUYk5kcvuKM9+FryK2DaJmZn9KWSD1d2O7VKoX1LeOr6B/edxek3R7dloGDkpL+IZQuDHSRjZXxarrWwnmgm6Qz3RF8TbtYwbFfKOgwthM2zhNNsi47dAilWvNLeI+tlu7PHD6+rxflLF6I7dS0dadatwFfnW4eWU2jSyQMyK6TJXWGFMKmZ0cmy+Hm8Vxdhq1VpXEEL0MyQXZ+823MrxrWjmkKSe66OE8EZNUVi+p2SiXos2SFxzIJlhjG4nquyHbj/VdJUjFPocI9UsLUjWtPT+Pr9JDK1T+wDtKbtmj7th0kz+zpWbsw2i0Kre5R3YeBlmeMjOHYPOWsUyD9w2/+ENLTU3qsDmxAW7jFBbQo3P/IzyD96ksvg/T2U7SEZe8+lHawumfb5q2QHhnWlr1zsyi/qM2j/CJq4/zrNPCZV6no9EQV55ME2XgmyfIy04Vpx7CGbdCDN4PDR7XIAvPYcW37eWTiUcjzfVxLrAT5pVkQBEEQBEEQOiCLZkEQBEEQBEHogCyaBUEQBEEQBKEDK9Y0hwFZyETJjss2tJIBaluiUQ5nTZpm19QhO5SHeieHNKscflGZYTapzH6TrMrIRi4wdMj1BmpQQ9IXNiiUbJn0PNWy/vzi0hLkTU2hnZNDsSzrpFGtG+VmyyFyvVGjWfxDdp3WVsXjqGGORbANVxNyIFJes0Wf0H3CtkgT2UT9pU26Ps+w6AvoQoku1LK6MUyXC6h/qhq6x4A0f6y9i5A9om/k+y28v2Uh3BN4j9UQ7/H4tNaTNUkPzZHUA7KlcmN0rZjO9zy8Do9rq4XnakV0P244WI5h0gWvNqbGUimljo2jTjfSr/t3lML6cujeBumhnYgeN0tF7BPzZGnUUliHDdKk3vXwI/qzJGBN0meHyMpsw3qt8d2wBcPD1n28h7vvQ1umsEw2e2Vta/XI5COQV5zBOWZuHrV9IWlSzb0CDlmX9Q+QjeEMaqudlP4823Q1ycZxNYnHsdy1KofQNcYJzSOs34/F0UKrb0hrmhtkR8ca8GIDnyV2HHXvgdFXWQ+t2DaOzu0YcdhTKewvLbonj27Ko3PFjHLFY/ismJrAUMYcNrtSwzqYW9JjKpvD/rJ796mQ3rhxDNLZrNa3clhxtoJdTRIp7Lst0nVHXV0HGzagVv+lrzob0rPHsP4evlfvKXj8EQybbZFl7/AI7rlYnJ2BdKGox/bCJOqhbQoFHqO1Wml6X/s4GWI/jaZwUuhKkc6d9pwUivp5wc/OJVrjeBG8x64U9reosS7s6ca5PU7a6h4cmurYwpH2cSvMQ94AhRlfCfJLsyAIgiAIgiB0QBbNgiAIgiAIgtABWTQLgiAIgiAIQgdWrGkOyEvYIf/kTFrrW8pl1ACOH0Y9XUAa1ZYR8tb3UVfl+6hXMUOMKqVUkzQ6LU9rdDyf9JstPJdHWuKaoTVjHSlFDVUlPLXySMPqGFqrLOmyexJYd91Z1K31dKF2c+OY1vBks+hLGXHxs6zFK9X0PdYoDHKLb2oV2TiwEdLT0+jrmezV/ccjH8alMuqygpDuwwhDa7PPNwWH9Ul750ZQpxaLaR1f5v9t782jJKnOM+83M3Lfa++9q3rvBrpBzSZANEKAjEAYzwBCPjMs2pDQSIMtjeyxzmAJ+Zjj840le/BghEcCZOvTZzUaSZ8tDULYIBACse/QC71XdVd1LVlZlXtGxPeHPvLe583uyuqGKox4fuf0OfnWjYy4cePeG7cznnjeOHpFhlTa2UQcdVc1S9deUv7QdaUd8wrKI1bptBNRI8yKxlGkpft8rYb92lce4q6ll3bVGKgov96w8hWWoOm7Bw+iVrU2f3JCEREZHELf0EMjOM94VaN7iynNeGQK+0UO5XgSst7J8FQK7kJxEuJsN/aLNetXQ1yzxtWOV3ZAWawrB3Eqje2dsNKtTyk/98mi8spXmvqB/gGIx6fMuxTas37xYvTCXbhY+Vbn8T2MPa/vbn7WfTmo9IjTJfzuqtXGC9Yt4jlFovPns6uaQNJZNa6q5rqVS6jn1PclT3k+91q67rLy9W4ogfjSZajZ7V2E6YpjlnZf66GVNF88NZ/ZKbuD6l0H7T3tqHeN9LsRvnUw3dd8VZGa0nx7Kn/CwHLTN0859UwoW7JkGcRhXU/7/qm8pKcmcWzOJX4Qjx1T78sUreuucy90LcRtz/sQapwjYTOn7Hh5G5S99sIeiLsXoib8sSd+DbHbyDc/L+lD/bNXxvtS4TC+F+JWjJ/y2CjOt93deJ36N78H4kwCr1syYcZQUvkuHxjDOWLvXtRx++q9APDoVzlDxMGx6tSxT6xebMZbQL2P4jj63ar28JdmQgghhBBC2sBFMyGEEEIIIW3gopkQQgghhJA2HINPsxItOajTCkWNf2K9iDq9H/4L5krft1/paCyvZa0F8lw8rtZwaY2qHfq+1mFDKCEHdVdxyz+6J6H9VDHuzeB3u3tQ89WXM22QzaB2LB7B/6tEwsqbWnn6OuBdjWV1F/fleXiSvmc0PNqjt15V13QOWZLtgXh531KID1u65d2H9kFZLIxtWy6jLjccMOUxR/kwT6M2fbqA+qe00guHrfbNJFFvGVX+x40a7qvhmv6WiKOfaFVph/MF1F2lc3ismKWXdqK4r+niOMRVpTEtV1FTGbLkYV1Z1Jb19uB1KU9j29q6yFwO9XH6vYa5xnfVnBPB4w9Z/aZTeQevXrIG4obSgY/kjddpQGs7AziPZHPYx2rKk9YRM95Dyke+qxOvc7YD4/0HjU7b0QLWEB63VMRziKSx3uNjpp9MHELv6cXdqKsV5X9/eES9R2DNyytWobZxqozvJ6xauwjipV3GC3VJRxoP28AxNJfs2b4T4lwv9v1c2lyLaBbvYdU6jv1EQvlNW37cuU7se929qBfv68PyoNJo2u/D1OrKW7mhvKXVFB6wfJ091fd85fEciuI5BFUcsO6PoZjyzU3hdWyofa9euwHj1Wb8dfV0Yz0c7LfVGo6n0cPGQ/zQQdTZvr4N9b9/9KUvyFwxeAC9lWPKCz6Ttd7rmsL3LaKq/d57Luq633Oy0Tj/4z3/CGX5cbyHuQ7OGRXB67z5dDO2O9OoO053Yp+fLqNP+u49e02gcgekM+p9mDIeN53S9wd7TKj8Ed24764sjoloEOejSinf/Dw5jvfO5AKcb+rYXFIqW+/ilPAdgZiH98PZwF+aCSGEEEIIaQMXzYQQQgghhLRh1s9XtX1bpawfTR/d9muyiD+JD42i7UnA2l4pKET9St9S7ijNRcSy7oo7+EggpdKo9sWxnkuzpjk6krhtWskzUiqORrEpY9bju5iy9tH2PQF9kuosA0FzTp6yL3LVdXGVXZZnWRa5yiapVpk/z7C+LKarHC2j5cyu/eYx27j1KEZEJKhkAJ2JHMRJyxouHMS2zYXw+WVeULrgKQvDhJjHaFqS5Ln4OEpf16KVzjsZwUd36TDGuRg+YisrqcfhQ+aRpBPDR2gVZX9V8fC7oSj2ETtd7sQU7iui0jqnY+rxuZXSPJ3COkeUVGjuUXaB6toGgqZdoiG8NoVRPO9gUFlbWvKZ7TvwMf6y5fh4vbcbHwc6SjZStdKv9y9BGdKy/n6I9x7Ax82jloxigXqMX53Gx5KHRjD19YmL1mM9e0y9X38FbalG9r0AcSis5i9lp7hilbEMy3WjXKgeUGnulbxletyM9aq64wwND8l8UZrEPjB6GB+hT1mSqc2nnw5lXb1oCxdMYftM5k0b9CnZh6Ms1HTq56Aag0GJWGVqDlJ2klqeEQra8gx3pk0lJjhG6kr6UbfmGVfNfb192B7aGm/d+pMgttugXMA5eFCl5N6/fw/EBwZNXFJWsKWiehY/h3QpedrQGI4/zzfnGFVWppk4zqspJe3YU3q9+XnDKSh/2rcTpVKLlyrLwl4cj4tT5lpMT+WhzIni2OxOolRmlyXvWbQQj7N86SaIJyew35amlIwtY+QqqRjKIJwE9s3YIhwzFXWfSnSYNpnM4Xc7unDfwTreDwvWuE4KtlVHh/IenQX8pZkQQgghhJA2cNFMCCGEEEJIG7hoJoQQQgghpA2z1jQr+aYEfNT8BiJG77j9qSexrIxavGXdqOexJb1BZX3UovZV1jYRpSVOWCk3VSZdycSU3jWGmpyOpKWHjuH/J6JxjEMR3HlYNVDI0mmHQ8rqR5+jr23jVGpwy3aoofSrFZW+W+sJKxWjZBsew++OTB97CsnjJZlGPexze1+F+ICVstNRlnyOsl1aruyybI1ziyZXaZwPHEYNaURpOeMRo1U8VEDNWnkKbbtiWTxW1NKqO8pGKRZUaeezOAbKDbwWtl2itlYLqtTpgyOoCQwrDbiTMn1zcgLPaVBZOC3uUfpLS6cXj2D/iYTnV9OcTKCOdHU/av8mkkYrWc6jxnL3PrSm0rrcjGUF19eB+rqY0if6dby28STaFtY9M98tWoz655LSyeeVLZhnWVP5MaVVXIj6w2QmB3EwiDZpjhit3+JFaLk3NYGaQU/ZUSbUOxuJrGmDstJW+8rmsqT6snSb9hquYyr2fHH+3qvQr46UVQrmof3GsnBRN7a1W0IbtHQ2h3HGvLPRlUONZUVphWsqlb2nbEN9z9wv1HQuEe2bqgCbVaVDDqq+F1R316jSWjdcU0+dRjyTy0E8XUZt8bCaVw4dNNd9/35MmXz4MFoWBgJYT983x9b6cJ0efi7JqnFerOJ8OD1pLB4TGdw2G18I8dgo6uk934yZZQP4HsTIQbQYPbQH37nY+xr2zfoJK5qfV63FfeWVrn8qj/ryRNLotgcGToCyWgnvWePj2I+LxTzEkZC51/Qom0FP9bWquseHHLzHjVk+coeG8X0o/T5Zo4bzT8qyWdWp44eHsZ/K2dIW/tJMCCGEEEJIG7hoJoQQQgghpA1cNBNCCCGEENKGgO/785dLmRBCCCGEkHcg/KWZEEIIIYSQNnDRTAghhBBCSBu4aCaEEEIIIaQNXDQTQgghhBDSBi6aCSGEEEIIaQMXzYQQQgghhLSBi2ZCCCGEEELawEUzIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbuGgmhBBCCCGkDVw0E0IIIYQQ0gYumgkhhBBCCGkDF82EEEIIIYS0gYtmQgghhBBC2sBFMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG7hoJoQQQgghpA1cNBNCCCGEENIGLpoJIYQQQghpAxfNhBBCCCGEtIGLZkIIIYQQQtrARTMhhBBCCCFt4KKZEEIIIYSQNnDRTAghhBBCSBu4aCaEEEIIIaQNXDQTQgghhBDSBi6aCSGEEEIIaQMXzYQQQgghhLSBi2ZCCCGEEELawEUzIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbuGgmhBBCCCGkDVw0E0IIIYQQ0gYumgkhhBBCCGkDF82EEEIIIYS0gYtmQgghhBBC2sBFMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG7hoJoQQQgghpA1cNBNCCCGEENIGLpoJIYQQQghpAxfNhBBCCCGEtIGLZvKu5ytf+YoEAgEZHR19u6tCyFtOf3+/XHrppW23e+ihhyQQCMhDDz3U/Nt1110n/f39c1c5MiOznZv6+/vluuuue1PHOu+88+S88857U/sg88+Rxu2/5f2+0+Gi+TgYGhqSr3zlK/Lcc8+93VUhhLwN3H777XL33Xe/3dUghBAyj4Te7gq8ExkaGpKvfvWr0t/fLyeffPLbXR1CyDxz++23S3d395v+de/fEueee66Uy2WJRCJvd1XIMbJt2zYJBvkb2LsRjtv5haOMkDnG930pl8tvdzUImZFgMCixWIyLr3cg0WhUwuHwjNsUi8V5qg2ZT2Y7bkul0jzV6Lebd93sODg4KB//+Mdl0aJFEo1GZWBgQD7zmc9IrVaT8fFx+eIXvygnnXSSpFIpyWQycvHFF8vzzz/f/P5DDz0kp512moiIXH/99RIIBCQQCPBR7W8B+XxerrvuOsnlcpLNZuX666+HiabRaMjXvvY1WblypUSjUenv75c/+ZM/kWq1Cvt5Q0P6s5/9TE499VSJx+PyzW9+U0REfv7zn8s555wjuVxOUqmUrF27Vv7kT/4Evl+tVuVP//RPZdWqVRKNRmXp0qXypS99qeU4ZHbs3btXbrzxRlm7dq3E43Hp6uqSK6+8Uvbs2QPbvaEf1dx9990SCASa2/f398vLL78sv/jFL5rj39aC7tq1S6688krp7OyURCIhZ555pvzkJz+Bfb6hF/z+978vX/3qV2Xx4sWSTqfliiuukMnJSalWq3LTTTdJb2+vpFIpuf7661uu/2z74xvcf//9cvLJJ0ssFpMNGzbI//7f//uIdWqnYfQ8T/7qr/5KTjjhBInFYtLX1yc33HCDTExMzPg9cvyMjo7KVVddJZlMRrq6uuQ//+f/LJVKpVmuNc1v9Nlf/OIXcuONN0pvb68sWbKkWX7nnXfKypUrJR6Py+mnny6PPPLIfJ4OmQWznbeONG7PO+88OfHEE+Xpp5+Wc889VxKJRPM+88b9qd18cCQeeeQRufLKK2XZsmXNe9Mf/MEftPwodN1110kqlZLBwUG5/PLLJZVKSU9Pj3zxi18U13Vh23fafPKukmcMDQ3J6aefLvl8Xj71qU/JunXrZHBwUO69914plUqya9cu+dGPfiRXXnmlDAwMyPDwsHzzm9+ULVu2yCuvvCKLFi2S9evXyy233CI333yzfOpTn5L3ve99IiJy1llnvc1nR94sV111lQwMDMitt94qzzzzjPyv//W/pLe3V/7iL/5CREQ+8YlPyD333CNXXHGFfOELX5Bf//rXcuutt8qrr74qP/zhD2Ff27Ztk49+9KNyww03yCc/+UlZu3atvPzyy3LppZfKxo0b5ZZbbpFoNCo7d+6URx99tPk9z/Pksssuk1/+8pfyqU99StavXy8vvviifOMb35Dt27fLj370o/lskt8KnnzySfnVr34lV199tSxZskT27Nkjf/u3fyvnnXeevPLKK5JIJI5pf3/1V38ln/vc5ySVSsmXv/xlERHp6+sTEZHh4WE566yzpFQqyec//3np6uqSe+65Ry677DK599575fd+7/dgX7feeqvE43H54z/+Y9m5c6fcdtttEg6HJRgMysTEhHzlK1+Rxx9/XO6++24ZGBiQm2++ufndY+mPO3bskI985CPy6U9/Wq699lq566675Morr5T77rtPLrzwwmM6/xtuuEHuvvtuuf766+Xzn/+87N69W/7mb/5Gnn32WXn00Ufb/uJJjp2rrrpK+vv75dZbb5XHH39c/sf/+B8yMTEh3/nOd2b83o033ig9PT1y8803N39p/ta3viU33HCDnHXWWXLTTTfJrl275LLLLpPOzk5ZunTpfJwOmQVvdt4aGxuTiy++WK6++mr5D//hPzTnKJHjnw+2bt0qpVJJPvOZz0hXV5c88cQTctttt8mBAwdk69atsK3ruvLBD35QzjjjDPnv//2/ywMPPCB/+Zd/KStXrpTPfOYzze3ecfOJ/y7immuu8YPBoP/kk0+2lHme51cqFd91Xfj77t27/Wg06t9yyy3Nvz355JO+iPh33XXXXFeZzAN/+qd/6ouI/7GPfQz+/nu/93t+V1eX7/u+/9xzz/ki4n/iE5+Abb74xS/6IuL/67/+a/Nvy5cv90XEv++++2Dbb3zjG76I+IcPHz5qXf7+7//eDwaD/iOPPAJ/v+OOO3wR8R999NHjOsd3M6VSqeVvjz32mC8i/ne+853m397oB5q77rrLFxF/9+7dzb+dcMIJ/pYtW1q2vemmm3wRges3NTXlDwwM+P39/c355cEHH/RFxD/xxBP9Wq3W3PajH/2oHwgE/Isvvhj2+973vtdfvnx5Mz6e/viDH/yg+bfJyUl/4cKF/imnnNL82xt1evDBB5t/u/baa+G4jzzyiC8i/ne/+1047n333XfEv5M3xxt98rLLLoO/33jjjb6I+M8//7zv+7+5xtdee22z/I0+e8455/iNRqP591qt5vf29vonn3yyX61Wm3+/8847fRE5Yp8mbw+znbeONG63bNnii4h/xx13tOzjzcwHR6rTrbfe6gcCAX/v3r3Nv1177bW+iMC6yfd9/5RTTvE3b97cjN+J88m7Rp7heZ786Ec/kg9/+MNy6qmntpQHAgGJRqNNXZDrujI2NtZ8hP7MM8/Md5XJPPPpT38a4ve9730yNjYmhUJBfvrTn4qIyB/+4R/CNl/4whdERFoevw8MDMgHP/hB+FsulxMRkR//+Mfied4R67B161ZZv369rFu3TkZHR5v/zj//fBERefDBB4/v5N7FxOPx5ud6vS5jY2OyatUqyeVyb/m4/ulPfyqnn366nHPOOc2/pVIp+dSnPiV79uyRV155Bba/5ppr4JeUM844Q3zfl4997GOw3RlnnCH79++XRqPRPI7I7PvjokWL4FfuTCYj11xzjTz77LNy6NChWZ/f1q1bJZvNyoUXXgj9c/PmzZJKpdg/54jPfvazEH/uc58TEdMPjsYnP/lJcRynGT/11FMyMjIin/70p+HFseuuu06y2exbWGPyZnmz81Y0GpXrr7/+iGXHOx/YdSoWizI6OipnnXWW+L4vzz77bMv2R7qn7tq1qxm/E+eTd82i+fDhw1IoFOTEE0886jae58k3vvENWb16tUSjUenu7paenh554YUXZHJych5rS94Oli1bBnFHR4eIiExMTMjevXslGAzKqlWrYJsFCxZILpeTvXv3wt8HBgZa9v+Rj3xEzj77bPnEJz4hfX19cvXVV8v3v/99WEDv2LFDXn75Zenp6YF/a9asERGRkZGRt+Rc302Uy2W5+eabZenSpTCu8/n8Wz6u9+7dK2vXrm35+/r165vlNrrPvbFw0Y/Js9mseJ7XrO+x9sdVq1a16LXf6FNaIzkTO3bskMnJSent7W3po9PT0+yfc8Tq1ashXrlypQSDwbbXTs9Db/QLvb9wOCwrVqx48xUlbxlvdt5avHjxUR01jnc+2Ldvn1x33XXS2dnZ1Clv2bJFRKSlTrFYTHp6euBvHR0doFV+J84n7ypNczv+/M//XP7bf/tv8rGPfUy+9rWvSWdnpwSDQbnpppuO+ssg+e3B/kXGxvf95ucjvSh2JOz/kdt/e/jhh+XBBx+Un/zkJ3LffffJP/7jP8r5558v999/vziOI57nyUknnSRf//rXj7hfag6Pnc997nNy1113yU033STvfe97JZvNSiAQkKuvvhrG9dGurX5x5a3kaH1uNn1RZPb98a3C8zzp7e2V7373u0cs1zdJMje8mXmIvDOY7bx1NN7qa++6rlx44YUyPj4uf/RHfyTr1q2TZDIpg4ODct1117XU6WhzmM07cT551yyae3p6JJPJyEsvvXTUbe699155//vfL9/61rfg7/l8Xrq7u5vxfN+oyNvP8uXLxfM82bFjR/NXQ5HfvPiVz+dl+fLls9pPMBiUD3zgA/KBD3xAvv71r8uf//mfy5e//GV58MEH5YILLpCVK1fK888/Lx/4wAfYz94i7r33Xrn22mvlL//yL5t/q1Qqks/nYbs3nizk8/mmlEak9ddhkaPPAcuXL5dt27a1/P21115rlr8VHGt/3Llzp/i+D/Xevn27iMgxZfxbuXKlPPDAA3L22WdzQTaP7NixA3413rlzp3ied8zZGt/oFzt27GhKvkR+8/h/9+7dsmnTprekvuTNM9t563g4nvngxRdflO3bt8s999wj11xzTfPvP//5z4+7Hu/E+eRdI88IBoNy+eWXyz/90z/JU0891VLu+744jtPyS87WrVtlcHAQ/pZMJkVE3pLOS94ZfOhDHxKR3zgn2Lzxi/All1zSdh/j4+Mtf3sjOc4bNmFXXXWVDA4Oyt/93d+1bFsul+m1ehwcaVzfdtttLb8gr1y5UkREHn744ebfisWi3HPPPS37TCaTRxz/H/rQh+SJJ56Qxx57DPZx5513Sn9/v2zYsOHNnAocR2T2/XFoaAgcNQqFgnznO9+Rk08+WRYsWDDr41511VXiuq587WtfaylrNBqcE+eI//k//yfEt912m4iIXHzxxce0n1NPPVV6enrkjjvukFqt1vz73XffzWv3b4zZzlvHw/HMB2/8cmzXyfd9+eu//uvjrsc7cT551/zSLPIb+cX9998vW7Zsadp5HTx4ULZu3Sq//OUv5dJLL5VbbrlFrr/+ejnrrLPkxRdflO9+97stWq+VK1dKLpeTO+64Q9LptCSTSTnjjDOOqGMlvx1s2rRJrr32Wrnzzjsln8/Lli1b5IknnpB77rlHLr/8cnn/+9/fdh+33HKLPPzww3LJJZfI8uXLZWRkRG6//XZZsmRJ88Wx//gf/6N8//vfl09/+tPy4IMPytlnny2u68prr70m3//+95vez2T2XHrppfL3f//3ks1mZcOGDfLYY4/JAw88IF1dXbDdRRddJMuWLZOPf/zj8l/+y38Rx3Hk29/+tvT09Mi+fftg282bN8vf/u3fyp/92Z/JqlWrpLe3V84//3z54z/+Y/ne974nF198sXz+85+Xzs5Oueeee2T37t3ygx/84C1LHHKs/XHNmjXy8Y9/XJ588knp6+uTb3/72zI8PCx33XXXMR13y5YtcsMNN8itt94qzz33nFx00UUSDodlx44dsnXrVvnrv/5rueKKK96ScySG3bt3y2WXXSa/8zu/I4899pj8wz/8g/z+7//+Mf8yHA6H5c/+7M/khhtukPPPP18+8pGPyO7du+Wuu+6ipvnfGLOdt46H45kP1q1bJytXrpQvfvGLMjg4KJlMRn7wgx+8KT/ld+R88vaYdrx97N2717/mmmv8np4ePxqN+itWrPA/+9nP+tVq1a9UKv4XvvAFf+HChX48HvfPPvts/7HHHvO3bNnSYsXz4x//2N+wYYMfCoVoP/cO5w1bJ20Fp63G6vW6/9WvftUfGBjww+Gwv3TpUv+//tf/6lcqFfje8uXL/UsuuaTlOP/yL//i/+7v/q6/aNEiPxKJ+IsWLfI/+tGP+tu3b4ftarWa/xd/8Rf+CSec4EejUb+jo8PfvHmz/9WvftWfnJx8a0/+XcDExIR//fXX+93d3X4qlfI/+MEP+q+99lqLTZfv+/7TTz/tn3HGGX4kEvGXLVvmf/3rXz+i5dyhQ4f8Sy65xE+n0y1WXa+//rp/xRVX+Llczo/FYv7pp5/u//M//zMc5w07p61bt8Lf3ziWtsU8Uh891v74s5/9zN+4caMfjUb9devWtRx7NpZzb3DnnXf6mzdv9uPxuJ9Op/2TTjrJ/9KXvuQPDQ21bEuOnzeu+yuvvOJfccUVfjqd9js6Ovz/9J/+k18ul5vbHc1y7kj2qr7v+7fffrs/MDDgR6NR/9RTT/UffvjhI97nyNvHbOeto1nOnXDCCUfc75uZD1555RX/ggsu8FOplN/d3e1/8pOf9J9//vmWNdC1117rJ5PJlmMfzdbznTSfBHxf/f5PCCGEEEJ+6+jv75cTTzxR/vmf//ntrso7kneNppkQQgghhJDjhYtmQgghhBBC2sBFMyGEEEIIIW2gppkQQgghhJA28JdmQgghhBBC2sBFMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG2adRvvcM1dD7EQiEAdDjikL4FrcV7nSA4EAlvueFWCZjn2/AbGnYtc1+6rW8fQSiSTEsVhMjkalWoK4XqtDPDExCXEkEoc4EDDnHAjiu5ahUBjr3PAEwXO2c83X6/WjlolIS656zzP7dj08ju/icV7fNyxzxWnnr4d4elq1b9Wcl1/Dc3BrDm7r4jUPJ8znnoWYYnThgmUQX3fNZyA+56wLII5Eo83PoRAeV6NfobVD1cXbM8O+dJnmWA91vOjj6Dg569nk+PjQRadAPF6uQjw0lm9+DgSwMsEgXstwGMdgrVaztsUzSyZx3tDXdtUqnBunpgrNz6MTh6DM83H8emoMhkPmWI0GbttQ49dVHdCJYnkua+ak3lwayjKJBMSjE9MY5zEuV0z7VCvY7hUV5zJZiCNW6vCa4LyZTON1euyfdslc8b3vXAtxrY5tXxEzlx5OY9s7ETzHzjR+d7pqyg8ewvvf5EQF4lIRr9PhgzWIp6fM/OZ7uC/dryMhvIdlAuaahz3cNiTY51Mx7BOxqLqHWfNfMIz7qqn7bskvQhwMYft4Vl+Nq/tuPIL18lU/r1RN++n7n+9hfNf/dbfMF/reS975OM7M93wR/tJMCCGEEEJIW7hoJoQQQgghpA2zfqDquerRfg0fKYUD5rG2q58nK/WBE8K1uueZ7fWjmYD6sufjIxFPPZ6xJQj60ZbnaRnEDLQ8EtcyEVWqHtnaT26CetuQfuR2dEnFb/blHrVM02q77R/x45G3nTvKZZRj+B5ex1jMPBqcLuPjzLD6v93yzoUQ7500j8AP7keJSSbRibF6dOyqethP5l31eDyg+4AobCmR6hAtEoo25TPJO4JtrttMcg39QNHTW6t9232kpY66Gm3kLG+WSh37fiSCEoNgYKr52WsZn1j7RgMfL9uPfcPqUbTr4lwXUtKO0dERiGt1s70eY0EtTVNSEHuc6Dk36OBx9VzgoGJOgpZMTneZQmEK4uFDhyGeLuO+G1bHqddRqhB0cOeRCPaD6Qnz6D4Yx3bv7sHxOZdMjaJ0a6qo5C0JU+/OrhSUuWGcC0pT2H5TUxPNz4XxPG5bxPaoVbF/RaMYJ1NRK8K5r1HX4xP7T8iSOsSdKJQF1TV1BPu1RNX90jFxIIqdS9+Xw+qeVlVjxh5foagai0Gc7/2A6vdps+9wEMeAHtfzyWwe5ZPfPvhLMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG2ZvEtXG7ijoGK2atlHyXNw2mVR2dZb2zhVlyeShBs5XWiqtGfQtMWM2l4Oyel3Z1alzClrWSJ6vj6O1xHhcbUlXLBptYiSKOqxwGLVmrjpHt4HKU9tGz5eja07bxa0a5vnTg9Wq2H7FIurYxDM6yZCg9VE8jBZF6/rQRi5oWYINT+ahLD+G1ln/9/fuhvjyy9Eq6czN5zQ/J5Ooa2xtLfyL/T/QFlvFlu8evy7Z15aO7aTp1gb6f8kB3Z90bAmXtYZ5vuWEw6N5PH5Y6yxNhXRfD4VwqtN6RFtz6Smde2FK2aSpflGrY1+255WW8ai1oKpvT4wZbawWoAeCeA4NVc94AOcZp8vo94MBpauto+Z0Io/n2HBV21r79tV8Ho6oetVwPqtY1oDRyMz2mnOJ7+G84jewTRwxcSKI7z74cbxO1Qhe80jUzDPRWB7KClPY1uNjqIeWnLo/5kz/0ppl38cRXFc6/6pn6enVdfCLqkO5uK9SrQxxw77vVLAeVWX7KXhLk4rSvYM9WxjPNxpXlnPqJaBoxOw8mlA6bWXfOp/osf126qvJ/MFfmgkhhBBCCGkDF82EEEIIIYS0YfbyDPVIrsVHzXokqZy6ZHh4DOJsBh/d2Bm3wmF8ZOb7OsZ9a4s6O/PXunXroGxqCh/VDw0NqX3b9lrKEqwliyFWZCKfh7hUNOe4Zs0aKIsqa59xlX3L97TEwg5kRmbKCOhpHy5//v7PVCljpyhPanmGqcuCTrShWtKFVlFF9RjRVt3kkt1QVqqi/GL/3gMQP/vMExCfuHpT83NaPYbX10U/WXYt2USLHZv+g36015IRMHDUQi2haGsbB7aDM2fcbH1cPlPnmz/LQhGRfAGveyCEj70b/tFlTLb0SkQkoTLi2RIopeSQdBr7gc4mOD2Nj9vtMRhW0iydmVDLuhyrvFFXMi1lk6cvnace1U8VTN9PKBs9bQOqs8GNT6BFpGPZgEWUHCOgMs/lx7E97HNOxPE4gwfQrm8uCYZxLognMSOeEzVzkqOlLnEt1cLzEEuuEE3gHJRK4YXKppXFWlDZs1m2quN5bMuIkiTFVBpOb8pcp+mq2q+j7FuVvKehJDtQa2Un6Tvq/qizUyo5UMCyVoxFVEbABLalnQFQREtUlC1ei2ySkLmFvzQTQgghhBDSBi6aCSGEEEIIaQMXzYQQQgghhLRh1ppmrR2eSVusLeeK0+UZ41jMaJxiKl1nKol6p2QKtYitti/m/wHaZmrlylUQgw2OiEzkjd2TX8b9ujOkthYRaSgh97p1G5qfzz7rbCh79bXnIR4b17o+rUs+una0neWcrUzTjjjePKbRrip9XUP9fy0RM5rBqKfsjQoFiF89dAjimvXdVCqDZSW8TqU8XqfJCdQMhq3+19I8ql4tUuKA0TX6LZp4tS+lJ9caejtU0sMZbeH+/w2OGmqLOb3xjD2iZb/z/H9uZbmmh4WtS9bNWa3iexQt6a0tzaXWeup5JJVKQjwxMQFxrWb6uufjvsIRdd21dtaywnPVd4NydJ3ob8rVuLHS0bsujgv9SkoioWz0GljPmmUbp3XY01M4n0ejqFkNh8zBKmoecEt4XeYSx0EbuYh6Z6Him/No1NDazHExDql3b8JBM28UvVEoc1W66moDz7lYGsd6WP24OK1TTGNbB5U+uG69S9Oo6FTxeA+r1bB/Oeq+3bC0xaEQdpgFC3shDsXxvl1T+vtO670UPTeW1b2zru6tYft9BPW+VL2qJkdC5hj+0kwIIYQQQkgbuGgmhBBCCCGkDVw0E0IIIYQQ0objTqOtRZp+w5S7Sq/pq221RrdYMTqs6SJqtqpV1EZF46hpDiqdo50u1gmg3iubRR3WuvVYXpw22tmRUdQZj4+j7izX0QOx1j2eedq5zc+pFPqBvvjysxBrbbHWv2J6YKUt157OLV7C9ndnvg5ziac0bjH1/7Ul6Y7mZ6eMmr/JMvqrjk5hHEhYujZ1jtrXdGIUr+P2V3dAvHvv683PPT14jVuukyAh26c5oDXLiHYXnSpjvTzf6CBTCfStdgJ4Ti0+zi2p5W39pe4fbVKrW/vyWjrm/KaNdbX3smpj+92IgPJl1qeliyMRoy0OOKgzjsRUe6ur1+JRa81/DZVi260rj2PVX4uWF3W1hFpYT83B6vTFKeG+4mlz3TuzqN+Nx5TuOIzf7ejBPjd+yPTP6mF8D6Bex4qEVUrlcNrat/LWdn0lUp1L1EVvBHCesW5hUq1ivZJKTOt6Si9s3cMmC3jNDwwdhrikdNy1Bs5nFWuuTITxflevq3dtXOwTUUsjn4ipdwDiKm12CeuZL+AclLD8yPu6clC2qBvnRtfBfU8UsI8krDkr6GC9ilPoCe4qn2b7VZKqi/3HDzF1NZlf+EszIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbZu/T3CJ/PbqWtqF8FustCk6lh7Z0fcEAVqmsfD2HR8cgdhylJ7Q0zsUp1J2FIujTuXjZAogzSUt3FUEfznIFdVZTk3mIi8VpiDst/XRxWmm2VHPouMVL19JI+r7+f446fwfrHQwZgWE8hNrMSBh1jXNJIoHHXpRErd4Jnbnm552DB6Fsz+QkxK46D7E0gJOT6OkcT+BxtPb8wK4hiH/w/9zb/NzTjRr4vsWLIC6XsU/ULP/aegP7bUBphz0f+8Qjj/0c4kMHjaZ+40mnQNmaVSdAXCziOWupcU/30ubnUBB9z/VY1LpZe2dl5XU8VcTrcsrASplLGi4eP+xgP7C9070Gnlcsjn09qIyKfWuOcpSmua70+JEI7ruzA+cVe7xOlrCNnAC+3xAJ43dzHaZ/ppSPcMv7DKJ8nNXUEIyY7RNJPCfR/dPHeWN0AvtUtG601ukwHjcQwO8mEihq7uox5+EFsN+rITSnaPWrq+4tiYTx346HVH+pKg9s3X7W3t0S9q1QA9s+q3IRJLo6II4kLR9wta9qQet9sV7ZDvPdsNI0V1zUZWu/6Oku9PJOx02cTaLGvVxQevBJrFe0iH2gbGmcE2osRivaaxnPaaJsvltUv/NFk3o+I2Ru4S/NhBBCCCGEtIGLZkIIIYQQQtpwDPIMfDSoHwvZkgJtzaWtzWaUeqjCah0f3VTH8bFQQD2ibLjm+yNWWmwRkXgGHz/19nVjufVEyfPwOJkMps5d0NcHcV6lY560Hm9O5PNQ5qnHT5HozI/Mg0FTsWgUH3sllPxAx44lz9BP3rWd31wSVCl/15+8DuIFEdO+O4dRMlFW9k49vUsgnpw0lk3BoEo1rPppOoWPvMXD/ze+/MzLzc9/982/g7KBEzANe8XHR5J11zx6rtTUY3kHG79aQWvFbS/vgXjogOk/jz2BadeXLsW+57q4r3gSH38u6DWyiUgE+5qrHjPrsRu2/MNGxvJQNpbHdObf+trtMpfE4soKLoKx2zBzga9STjvKEstXKapBlqLmJ52COxbTVnc4Ju3xGotg2do1p0K8ZtV7IO7ImnTDUXV+YQf7clS1R0DJ4IpV0y98D6/z2NAeiH/54P0QSxFlcN1Rc+zOHPah8iElmxGs1/iQ6ctanqGaZ07R6b/zo3h/6F9pJAgdaZQjxCM4/9dDSqISsWQ1Cdx2cbe6ZympVjiq5Al10ygHx3EujFVR2hEMY1t3RU29o2mVCjyN29ZUem+3F9tnasz0n+EDeSgrjOGcU1eyEanjvhJW+nhfnW91Gq+DLSsSEVnSa+7TY2o+r/tMo03mF/7STAghhBBCSBu4aCaEEEIIIaQNXDQTQgghhBDShllrmrVpnKtTCoPmWeudEa0zhZTDOstvS020dRdu0d1jNIEnnLwJymJp1Jqpr0qlbHRaExODWA+Vrru3dznE2RymFa1WTXsMHkRdWr6Adk6RqLJFiyi7I8doCMNKw6ZTlJdVVlo7JWkwqDSS82g5NzqGqWJf3IntO5IyevOhMrZPOIvavEIZNXCVutEMdiTRRjCXQ21iOo3nnIyj3ZPvGY3ci0+/CGW7Xt8LcbYb7cMyXUZHW3fxHKamMK4UsR/Xi6hV7Isae7u4i9dtbA+2pYRQM3mwjpZ9+3aYttZa3piypTrllNMgDlv2fuWpYSibLmC/nmvCYaxrVFl31QJGo9lwcVw0Gnjevq9s5KJm38mE0n2rbWt1HaPdZDRm+sGCgfVQtmI9apoXLkZtv62xrxTzUKT1q76D40LbHNrpmKcLWMdp1f8ODWEK5bCDc2UsaupV8rBealeSCWK9pvNGH12t4zhIpnSK8rmjqmxDJw6jbnvpwmXNz4kwvvuwOIfzSlG9kzBeNVrtQ7uwbGwU328IK83uqpX4jkKH1X5VpWEuqAk+Gcf3dMrD5hz37twPZevO2ABxUI2n/CC+lzM2aOpdzWPfCpbVPbyO7xCE1IrBnnUjysKxOonzWa2K9UjHrPujumeHQ/zdj8wv7HGEEEIIIYS0gYtmQgghhBBC2sBFMyGEEEIIIW04Bk2zTjur0u9aoa99mrUxs3/0tNo6BbD2tNSiJtfDeMWqNc3Pq9esgbKgyjM7PYU6P6dhdGm1EvqJhpSXsk4VHgrjvpNpo3eNq1Sf2SzqaLXPazyJWtlozMRp5TUdj6mUpMrHOWQZodqeuyIiMaWlnksiIWyDPYNK553MNz9XI9iWCeWtnE0rL2orD/nYMOp7E6p9OnK5Ges1Onq4+bkyjf3DUzl/GxNYPrbTfC5X8lDmqlzpiQSeU64D6xVLmNhXYyAUw++WlL5yyULUX65Zb/pMpYKa0moF9YXdCTzW2KjRRcaVtrcrNn/9R0SkUlG+sqpN7TTapRJuG4vhdQ5Hju7nHVA/JUTDqCudKuLc4HuoNe6xtLHrTjwTyjp68F2IknoHoWB5uncpX91ESrV3QL9XghW3faxfegn1+aXxEYgLRexDvprvAxnTBuPjOPdNudiWEQ/bZ/EyM9+5Hl6HojruXKLTe+v7VN3KCVApos62of3MVd/b9vKu5ucf/9MTeOAGztlZlTZ7dALb5PIzjQ5+cQeOuWAdr1vPkmUQv/TKq83PO606iYjkujEvQTSt/LaHsTOGSuaad+ixrlLJF0qoia/XsN6u5RM+Noka77zKp+DXsE+Ux82c5Su//zp/9iPzDLscIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbZq1pDjioW3OUtshWh9UaqI3SvsxaD21/WWvpWrR1ap3vC9aro8P4JXseftdV/qp7t2+HOB4wmraePtSNekqGfeAAemCmOtBrs6fL+AOvXL0KygpKKxsK4WXQWuN43HimtmgzldemFoVj+2HbuXXU6c0l0SjWK6U8szuzRrd9eBz1cQnl5drf3wvxaScZDeDP73sBvxvD4zRqNRXjhQ07po2CSvNYm0ado1fF/hSwrmPDxe9OKx1sKIBa6wDK2CVijS+t40vGsX8UJ5X/7DD2r03/7vTm55zSSDZqqAHXbxAUrH3n87htT2+XzCd1da18NSjt8e6EUA+sx4Wek3A/6rq6OG56uhdCHI3h2N+0aUvz89Il6MMcDuG8MjiE3teea9o72oXtG3LwfNWULMk49ql00mxQGMd3CMpF9MKVKLbXyLDyqfdNn4vHsV4LU1iRbAb7ekeP0RKXK7htuaZ73NzhKH9kX82d09aYnaigh3NSabFDsSzE23fsbn7eufMl/G4C5//JBs5J+Si+Z7B8qTn2xm7sL+kKXrcFPehDnzv7jObnahnngdohnCcyDTyHqPKsb4TN/TCg7lGlKl7jono3olzHY41OGN3y6CjqsqeKON87DvaJceu7mU6sY0c3jj1C5hr+0kwIIYQQQkgbuGgmhBBCCCGkDVw0E0IIIYQQ0oZZa5q18kzHpZLxVpxQ/rVaPaj9kgMBS+emfZnVst5zcW+5dA7ilZZPc72Kuqp4BDV/i3tRD5UfPmAO6ys/SK2H3o+a5nUZrEfV0nRpfWW5jNpQ18N6hh2MA77RfAWDqAkMOthAwaA2urY+BrUuXek+55C+PtThLluCuuTezlzzc7mIZeMTqPnry+K+Nm8y13x4CDXLL7+IWs7CYdTPRcLYJxKWfjwUwvZqKH/xYFj1Eddc10YD+0tR6diDDg69aBLPqVw3msGQEq+ODKNPbqGAvqb5wijEP/qxuc4fvmwTlIXDM/vkemKdcwj7rYRQ1zjnqL7dUF65IWuy8NX7DL6jvltX1zJorlelgucZS6Ku9Jxzzoe4UsFxZGvOq1PYRrUA9otqAT1qHcdc28kxvM6NovJZV/7uSeXjbHsLV0t4TuUSXvdoBN8bOGUT9pPCYaNDDShv/I4uHEPxJL7TMjllxlxN+VJHE/jduaSm7i1Kqi4Vz1Ru/xTOE0Pb0Vs47uQgzufN9r0p7A/VMM5f5Sl8lya7G6/jqwHrPnRSP5QtTOPLD/XBwxA3QuaklvWi9t5t4PnH1c3VU6uBqm/6nxdQ3txT2G+np7F9xsdxDhocNBr56SLOhb7g/S4WU77o00bH3dmNevpVq1YLIfMJf2kmhBBCCCGkDVw0E0IIIYQQ0oZZyzNq+lkWPq2RSsX8oVrSlnP4eNnXXw6YR6U6ZbAX1Kly8atLli6FeNUKS55RRnueySo+FlrYizKAWtE8VpsoHIKysErHfMrG9RCnMvjYrFAwj+RiKrV1Zw5tc6oq5ahO/Ryz0uGG1SPZiLKgi8aVJV3IPOrSNlsz2W691VzyO5dA7ATwuqbjpn8lI/iYuaIe6WYy2AZRS3ZTKuE1ni7kIS4WsE/UI9j2jiXJcFU/rbk6jbNKcWvlX/aUnEf/7zSipB81lQq7NG3q7Sqph7YsrCqpQVXZ6j1w/+PNz6edimmc167BMVBXKWwDQSu1cBDHZtiZv0frIiLpDFpkFaexrnUrdXZdyy/q2N6umkgSlm1ab99iKFuzHqUKy5ashTiVwPGcSFr1dPBRsxPENluuLMMKU8ZurFTAx/qFCey74y4+Ik8pGUnEklwsX4K2Z9teex7ik9ZvgPiC88+D+Kc/+Wnzs5aTxRLY34bH8hDXauY2EwypsavSyc8l08pK0I/iqJwsGYnB4CRazpWUhCAlOM/G0ua8TnrvCVCWXTkAcTKE33Wf3waxt9dI/365D8s6Vi6B+Jx1J0MsdTNGleulZNQ9qlrF/jQ6gRKLqmUdW/NwvBxW8otxlZb90DDK4qaLZt963lRKtRb5ZrlsxnmlijKjeBLt++YVZUk6k3miLtN33oD1F7/dbbmtS6N/hE+txxERCaj1FqaWP7b1wcznqPelrYTVt4/uStyi4G2xMJ4BvaWnJZdKwnok+EszIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbZq1p1pZrvtLzuJaG0AnqtfgMAhVBPYvW8+jjaEu1JUtQ45VMZZqf83nUfo6Oo04tqzRevpUqtF5CDVc0gE0VV1riyQm0KKpbllcJpTPu6FA6xoKyIxNkytawljCVc0jpnyNRFVuWamGVCtXReXjnkAvP/yjEE6NoldTZYeq5ceOpULZjN9r7PfKrBzF+em/z8+AQau3qdew/deV5NT2FbZ9Immulbcu8qtLqK/2Ta4mt8vk8lEkIr2pSWcwF9LEapv+Nj+E5jeWxr7lq0ISVbnRs2GgCn3j8WSjLpk/C43qoGfSs9itO45hw9LsJc8x7NmG/2LZzF8T50XzzszeFes2aem9g3bqNEF900QXNzxs3oSa1uw+tu+Ix1OEm4zmIo9YYDKiUwE4Qr01IjUlPTB+rK+1npYraYU/pTLVe0e7bOm32xNhBiIcO7IP4hz/8AcRFa1+hCB4noizCwiGcg+qu+a6r+lckMH+/2xTUuwFlT80FYyal+VgV9eRjZRxz3Rm0PuuOdjc/Oz14jd04nnMuhfed9R84C+KDD5h3EF596gkoe72A9zA9n63uNu/4RILYtwrTqIGfmkIN86S6D4Ui5jxKyr51fDIP8cQkzlHlMt6nXFe9mGLhqHlUv2tj23e6DaWtHsVzmk+0HhbH38yKXr0I8my7TLWl1vDqV5Fa1MLW9r7aW1m9OzOl3ptIpczcFonocY1WinrfLRVTW88U67bUenHc98wa5rp6X8XuTwG130DLWrU9/KWZEEIIIYSQNnDRTAghhBBCSBu4aCaEEEIIIaQNs9Y0V8uoaWrRnFgpbZNx1LQFAzNrZ8GXUclVXFFaF2Xq2K3Saoqlj0p3oAfttEol6yuf2UyHSatdraL+rasTtdNB9d2R0UGIs5ZuWftODgygb2dA6fp00x46ZDwv9+9H7WGlRTuG9XZDRt9TD6MmqVV7PndEE3jsKaWvK1vXZt/ePVCW7cJrXHNRizdaMFrESBw7UEX5DlcbqAstqfbLjxnNoE6jrWyKxVMarpKlFytM5aEsFEV9WL2uPJ/rqMMas3xQ83lsq2pdpb5W9XCU7r9aMdd59x7UkhdqmOY54KD20E4dXlL+vJHG/Pl8i7T+Dz+m9PzJjNHjpVN47Tpz+B7BF/7gCxCfcorRS4ci+N1wBPuuTkfcULFjzVG6zkGdul5Po1Ycjeq02diHajWcz4aGUKf8zFNPNz+/9PxzUFZWfubFaaXhPYzvETjO0eeKZAI13x1ZHK8T5bzZNoO+ur4eVHPImDrHqq/e07GGYDqM7xzkJ1HTPKHeYWlEzTjJhNBPvK+IGuY1SxZBXJ7AMZg7zfiAx/e8BmXuHvQ/3r/9dYiLB029tH6zoxPrEVRe+Y2K8pa3NKwNdR8uFvMQl8p4DvrdI8dKYx9QZelcRm2rNM72flXZ9h14/nPJ8CGcO/PKL3/fAZP+PK7m+w3rMN13JovnbLdXUC8AFL6nfPnrOGd7VnlM1ePgEK5T7vnOP0C8eo3pexs3nghluVwO4p6uboijEZyvqg0zP9UbWMeYevdKv9vRsiayPrsNPP8J5S++exDnrpC17okpXfbUJM4JZ52xWdrBX5oJIYQQQghpAxfNhBBCCCGEtIGLZkIIIYQQQtowa01zUImNtbbI9vQLh1BH4ygdstb42hom7dGovQDDCdTEdXR0QByy6pFKom7IVfLokvLdjVnaxWgsB2XxBGoiW3RZGdSxZay4WsHjpFJ4DokE+r7qXOqptNGiabnT0EGlPVSmjgFLixZs8ZWcP358/50Q+2XU5SZjpt4HD6Jub9FC1KaH49h/XN9sn+lBbXAsjfHIKGqYtR6sWDXavFAd+7jWgHvKD7JsnZPWljfKGE9Po2+uh8UyZfkMV5VHqu/hlQtFsF6JOOq2yiVzjodGUMM1qrTXiYz2nraOm8K+NenhvuaaYhm13fGE6sGeOe++7hwUffCCiyA+88xN+FXregWU/7Sn/H1dFUfCON/FoqYNHaVhbig9XkNp2YNBS0OuNMvT09h3X3sN9a5PPomevtu372h+rpRRfzldQH2mE8RxEI9hn7L9gF1tz+3itqsGVkEcy5o2qPs47vPT6Ds8lzSUF3pA3ZecuDmxcAi99VPlHMSVKl6LumvOK1ZH7fD5m8+FeGnHAoi/9X/ugHjLlvc2P59z/hYoe/3bqEE9NDICcc16V0Lf3Ks1nHMyCdRt63klEDL9rxbA/lHzcU7S/dpxsN9ncqaPrFuP/aN/PXrF73h9L8TVsqlHOIr3zmgcz2Eu+fKXb4Y4lsU1QaYj1/wcjaG+96XXUXu98cT1EG9YbTTPcaX3nVLvH4wcxjEzMoL6ent9lUpie+n11aKl/RBHYqY9ixW8xq8/hx7//Wqcx9W1KFt9Uft8p1Wei95ObMt0GtdEDWvS2b8f1wd7DhzC46r3lipWPQ7uOwBlLz/7HMTUNBNCCCGEEPIWwEUzIYQQQgghbZi1PCOXRfmBtoUJW7YeIWXroe1ndLpX+3FCsI39WlDZTGkaDfsxIj4i0dZ3r217BeKebvOIIJfCxwMHh4chDoZVWuQ0PpKzbcC03YpOc6zbsq4trKzHvwsXoV1RPo+PWRvq0YSdvTmo7J1mcJF6yxmf2gnx4h60q7FdvfqS2PYi+Cg0GMFuu3TASHRCq/CxT72Cj7KGh5TV3TQ+Ap+0bKniCWWD42GD1Ur4mL5uST0a6prrkVZUj8sbNRwTdtp6T0lu/CA+Ck3Fse8t7MZHXYMHzeOrQkE/HsdHtkGV3ltc0zeVK5A0PP2cfm4p1TFVr34EmombOB3Dx5LLl6LlUyiAkopfPPrL5ud9+9DWsVDA/tfXh3KhiLKkW7TYWLAl0tieDWXTF22xXjLXelKlS3/xhRcg3rZtO8RlJXkK+KZvBwLKMlTF4bCyG1OSH1tyV5zCOebwMI6xxQsuhHi59Ri3UMJt9x7YJvNFNIVzQ6mEYzRpyRWcMF6XblHp5X3cVzplvnva6vdA2amnnAbxrx56BOLRUXy8nLIsD0/fhI/xX9i0FuLHnn8e4glrPDvqXjqh7LWyap5NqHtrImXFOFwkFFYyLqUv07LKzacZOdS/+/e/C2VLVmyA+MAh7CNDw+Ye56q1QzQy6yXMm2btOpQj/PJxlEN1lcy8sLi/H8qmizjennzmOYj3HTB2kb3dOL9MFXGOLinZhCN4LWyryvEizl2dSs66YeNGiNPWfJVOYn9w1Xyv70tjar4K2ha3ShYyXUKLwmoFx5cWj5Yty2PP15JdvA+Mqf7z6ovPNT+PDqOc6aIPoHRqNvCXZkIIIYQQQtrARTMhhBBCCCFt4KKZEEIIIYSQNsxaENSltDBae2zrcoNKLKutzbTtiR0H1DreUzZBXlhbOKHOZiKft8pUSuCaTgWO382PGy1MxMHjjqtUxqkM2tklMv0Q12q2vlVbVKk04zqdtUpv6lptoFP65lQKUvscfrNvu23VYWT+WH/CcohDug9YGriktixsSfet+48p91TbLVyJur30E6gxLUygXqxvidHun3X+GigbOYiarf17UU9esSwME0pv270oB3EoiJrIl55AHa3t/uSrLPQnnoptWR7TWlZt/2Tap1RG7VhF2S76SpsYsdLSh9WY93QO6Dmmy0pzLyLSoS2fLB1zdwemvV+zGi3mQmHUPGetfXke2hK98By+++B6qC3WKWDfs/nk5udtO16Cso0bT4F408knQ1yzLQ8d7OfDKgVuaQrHeiqFfdu2xdyxbReUNeqodezuRl28Tj9fr5m5Uk1nLXrEShE3SAbNGMzG8J2MzgzWY06J4kBKdeE5Jy19udbvl9U7B6Lej1m/rr/5+T0nYl9LKWu3yTGcR1LKqisXN/vuVpr4i847A+Kah9rQJ181dm0lZQXouzheyx5e4w51r61a1oupjOpbLTcP1LlrS9qVK1c2Py9duhTK4mo+P3HFCohXrTJa4lGVurpWwvl7LvnDP7wJ4vNfeBHin/6fnzU/H1CpnBsVbOvFS3B+Kk+b9jtUw/tKJIadMRHDa5FQqbLt1syk8T7T2YF9fmwU3xOJhMw1j0Wx//R0qzWP0sTXG3is4rRZb8UiuOZpKP/fSg3vQ65a14Ws/pSfwLXY68rOb9++PRAvW2reMbn+9z8KZautfjlb+EszIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbZq1pTsa1pklrvI6ukG1Nm601z5aWysf96NSnIZVGO610fNMFo3epTOehzK2j7spR/tETlm55fBJ1M7lO1HQvWLgYYvHxnMplozVzlX5Ht0dL0ylNqp22V6duzqr03dMF9OL0LU9DX/kbut78aVJb9LBKX2dXxdf/lVP9paZElZ5ntZdqy84lqC3uWoqa8KFB/ELPIqO92nTWQihzA+gtPV1cpipqhlM6jvquaAyPMzWBOtDxkYMQ737F0nh5WOf3nncCxEXltfyvP3wO4pKlx3Qc1PUHXKyXo7T8vpUut6z6pR+a3/9zb17/foh1+uqQlRZZd+0Dg9i+UaUL3HSK0aEu68frun7DOojtFOciIjn1voft97txI16rXC43Yxyw5obhYfTvTaZxrGfV+wyxiNIJWnr1sRHUSWrP9nAINai1GmqNM2kz7yYS2B+jEezrAR9vKzWrHo0azsEHD+J1mUsiyls4pCz/3Zppv6DyQs91oH6zoxOvRdLyNPbVHO3Vcb6qKQ14WmmeG3VTXq2ghjes7tgXXYRjohZ6vPn55W27oSyvPNorqh61uqpXzYyvskqDrLqL6NcbUknUzgYCps8cHEQd7aIePKmQeqclZmlnF3d1QVk1oz395w6dT2HTRkz/vcbSXj/51NNQ9uSTT0G8Zzv6k+c6zL1lzRqcbzrSOM6jypc4qu6Po4eNF3FB9Z9ulZ7ar6lrHjX9Oh7B6zBWUv7Q6p5+SM1Xsajp1z1qjtTzc0qtkQ4dwrwYL1opvIdVWa/qE79/xRUQrz/BtGcsim2n10Szgb80E0IIIYQQ0gYumgkhhBBCCGkDF82EEEIIIYS0Ydaa5ngs3n6jN9ByZ63hbfF3NbHWumjtazCMmpRYDIVpZUvDU5xCPU+phDq9oaEhiJcv729+7luMukbtq5jJomarOIVa4orlhxtQOdq1r6uSVrfoDcUzmkDPRT/DUAj1hbrxPct3N6gO5IsWps0drq91yail8i1/ZV/pm1zlr639Rj1LQuipto4or8nVGxZAvOM55XVr6ed0e9WV73c2hpqvdNToPsNBvMZVF88hl8W2P+9C1MdNHDSauNER1IG+8jT6Ul7x+1sgnh5B7eJ9/2S8gutT2LbjB/E6DKxC7+N6w2jz59eVuZVUArV92sPdfleiXsU2+/Wvn4B4586dEK9dizpCm4WL0Ft4mRaWKqKW329ndy+UFdQ7BwWlExyxtMfPP4s6yL3Kf7RcxPcuEjHs6/kJc6yo0icGlQe0fpcklcS27u0151EqYp8JitJYRnFOdiKmvYqFPJSNj43IvFHFeudHlKe9ZzSYsTRe41QGzykWxfthtWL623QBNe+F/CTEE8obV+c8KFYsf1t1r5hS/SXRjXrOTScab/kOpZffsQvvd+W6en/BQy22b91ryur+FlH9J6z6VyKOxz48bNrkV48+B2XLl6H/+rr1ayEOWeLzSAzfaepciGNzXlF62HTK1O3883BOPmUTenc//QyO7SeefLL5+bFfPgRlK1ZhvoATN+G9orMP+8DoYVOvA4N4zXt7sa0P7MPygDUPxJPoAb77dcwlcMKJOGeOHcbxtHy5uZdmcqilPjyM71g88Wtsj5dfRm/8rk5zjhdecD6UaW15UvlH2++I6XtYy7t5s4C/NBNCCCGEENIGLpoJIYQQQghpAxfNhBBCCCGEtGHWmmatiZtJG+Kr0hYtpNIC2V55ntLk5jpQY5nKYazNNqOWF2cghFq7cBy1Ls++9CrEWy4wGp33vOdUKCuVUQ9dUto8Tb1u9GDxuKqj0vzp9vG0H66YWPs015XPYkDr0ixPY0fp43zBbeeSsNLElz3U5nlWXXylVdX6YEfpLx1LM18P6L6H/y/s7UH9VzaJ9Qp6Zt/BKuqOnQrqx90GXidLEileFLetuMqr1Ud99OJlqH1df5LR0D/8APbT5x/ZD/GmtahxPv881M+99oLxwn3tZfTFffTBlyBetAK1+j19pn1CeLriVvGc5hrtb65CCVpzkB5zBaXJHBlBXWkoZNowoua6Ugm1fdrb8/Bh1Oclkkbb+PK2HTNuCx7jIjI6asoPHUCf3XoN39EIqD7UkcX5bSJvdKTZLPqkihr76QxqRUNKs1otm3oWJrE9Fi7EMaWxh2Stit9NKs/ZuaQ0qbTYWBVZ3JVrfo7Ecc4JJ7Ge+t2bmvWeha1JFhEZObAX4ngA2z6s/KNd6x7oOViPZBa15vq9i4U9xmd36eJ+KDv5PTjXjUxgf5qcxrhheTM/9atHoCwRwTr7HrZtQ717c2DIzDtOCMfA2CT67uYLqI2NW5r4DWuV3tnB4/QMzNwX30q0b7OdcEGPa+2pfsEFF0C8cePG5uenn34Gyn7x0C8h3vbayxCfefYZEK+12mj1QD+UdXTkIP7e974H8Q9//OPm53AY72FLlmDegks//DuqHHNX2H72jz/6Kyh78MFfQJxQa7Pz34/+4yeffHLzs/a2123t+0fPi3HsCuZW+EszIYQQQgghbeCimRBCCCGEkDbMWp4RUekH9U/iNvrxpZYbuOrxejBoHnMsW4JWbyvWnwhxOIY/4xfKaC0ViZvHjNomr6ZsqCam0Jpr8bIBcxx1vlH1uMlVEgudHta3HxUrC5SQ2ndDpYV2Vdt6vnmcZ1vIiYhUiygbCWj5hiUrcZQQJBQ9BhvBN0nDxWehYfX4t1G3ZDXKUk67wug02w1LvuLWtW0SfjmqpB4DA/jIacliI5Nw1XdDQbzm1QD2iYJ17EYNbabcINZLSwB8dZJnnre++XloCK3Ftr2Ejzcf+PkLEK9YhfaIuU6r3uo4g3vRHuvJR1AS8MHfNWmgo2F1IerzZ1l4JFoey1nnpqVIzz//PMS7d+N5dlhpXjtUytfOTpSEpdMoYdEWkiH7saZKcZtO4Zhz1Xj1vZxViJKdWhnTLUdCah5Vkou9e42dVGc3Wk01lOVjQ0mNqmXs2yXL6mx6Guecnm60/RpRKbuTIIHC/UYj8/e7zdgwjslFGXVdrXTgvV3dUNZIYD3HK7ivimVnWo7jfSWWw+t0wrpVEI8+gbZ7Zeue1kjhdYnHsf/ElAypt9c6pxCew3QNJTiug3ZjDR/r0bDmqFQW04Y7ou9DOL8XpvJYb2vM6PufN473ziVLsD8tsCSZRSWVKu7Dcdwz8B75t4CWkuk1kS3fFEFLx4svRtnDqZtRKvrQLx6C+Cc//QnEzzxl7Nsuu/QSKFu4EC1XFyzA+99Pf/p/mp+1Ve77zr0R4rBKd/7Si2gTt3Xr1ubnUWWzeNllvwvxueeiRV8mo+1FzTjQbafnX20jZ7f98VjMafhLMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG2avaVYaTK0nxFhrmNXa3MO4o8fo7Vav2wBl8bSy2ImgpqugbK8Clj46rb4b7sDTfd/73gdxLG40g9MqBbfWABZVSm6dojtiaZ6jCaUlU3LwmtITNnQaaUtP7StNc1Gl5Z04jLq0oKVL0rZnYaUNmkuqJTyWV1O694bpEy0ab6UdrvpaP272lVY2gyHV11Jx7MeX//uLIK6EjXZzdBqt3BylcfYDqOlNWBZEjTqeQySE28YE6yEqlW5njyl/3wWboWzv3gchbnjKHkz1p2LJaCx9laK9oTS1w0Oo1SwXzXmEM8oaS3fkOUbr0bSWzbZIsseyiMill14K8cuvoP7u5ZeM9d5rr70GZZOT2CaNBraZ1i86IRNHlGY3FkMNqj4ne1/hiNbUQyh9PahZDap5t1oz107rkLVdn+fhGJsYx3OetOzJ7HcsRER270ZLtaiao5csNrrJQBTnq8lJ1DrOJcUxPHaoB7WzbszMHWUXG6hWwPapT+MclA2Z/uYo28+G0oZ29aGONKLejxkbzzc/57I5KKs21LxZwXo51ns8AdUfykpnLA28x4WC2Ecm8pY9ZQBt9BoNPG5Aafdr6t2SitUXHV+PF5xXCtN4juW60VOXDuN3D0+PQ7wZpbFvG1rDrNFzl/1ug15b9fTiOL/yyisgfu97z4T4Rz/8YfPz3XffA2XPPIN2dh0duO+PXn1183Mkitcll0Nd+21/8zcQv/gCzqmnnWa02J/97OehbPHimdOfa90yzIvKCk+3tY7fCh0z1OUt3RshhBBCCCG/hXDRTAghhBBCSBu4aCaEEEIIIaQNs9Y0z6S9ExEJWOk8g0rrprIsQQAAEjZJREFUGdQ5R0VpZbp6TEkYtZ6HRw5BnEijh2pF+TaWK0Zr1qG8/mIR1MKkUqg1rleNbrk0hZq+ahW9NwNKH6y1ir6V/jSgvIHLyi9aayQrtRlSkirP61oF61UvY3tEwuY6edorcgav7beaYFV52fpKH2vp/pR0uKV9fNV/fMd8t6o8wKvay7eBvsSr1qN/7fi08UQeGcTjBgT7T7mE18n2iNae2E4U61VqoEYwGMJ9i2OuazKHYyIUwXNaf9JyiOMZ1PPaftNBB+uVSGNbVpQ/r1sz5Vpr1/DmLw27iEiHSp+q09hGo6adtE/z2nWrIT79NNSJF6yUr5OTqH3Vqa+HhtDfdnBQxUMHzL4m8LvTKlVxuYzj12uYucFVKZKjMdTrh8N4jiWlW65ac+HCRTgXHh7F1MXj46gtrpRU/7T6fs7yzRUR6erG2FX6aPs9jIDqM/Opiy9M4NgfOoTXpmqnwlbjwFP64KRKfb3Q8tn1XTV/q5+muheij/rSZf0QHzywr/m5pwf3Vapg+40N4nXs6TPXPJvDOSWo77sJjLMpTEGdjplz3r8X08GXSngPC6ucCL7ypa9bawBfzdF1T93z87hvd5/lU+/jfbbkzqwdfrtop6PVult7LtPzmvZy16nTlyzB/vSZG42f8ivq3Y2f//znED/xxK8htt8Dc1QuBf3uwooVKyH+gz+4CeK1a9cdtc4z5fkQadUt28y1Zrkd/KWZEEIIIYSQNnDRTAghhBBCSBu4aCaEEEIIIaQNs9Y0B5VupKE0KagrObpeR0TE04e1NNBBtW2jhtq6w8MHIQ5GUb9ZrRgNWLWIGjbH1/7HqEuuWppmX/B840qznE5iXFXaxGmrHrUaarS0BMfXulul+wtZeqDCFOot60rTHFN+2iHLl1dZAUtA5k8PFnNRjxkIYSOUHXOdI2Gln6+hvsmtY//xrOtaVR7PjbryJa5huTjYXssXGJ3W8DD69YrS8QWVJ3TN0p4FlX5+Wvk2ux7uy3HwnIKWF/XoMOoaV65ADdu6k1CXPaG8S+0micawbftX9kAcFHVOli62MIV6+Rb/9TmmM5eGWGvbQrbGVw2yw4dQd7x//36IDwwaHXI6g36k2Q7Ueq5YMQDxxk0bIbbnO1fp8WvqfYbxcbxWu3YZb/DBA6gjLZfUfKbmylIRr49t6RtRmtMJpdsuqzkqmcJ5tSOTa37u7ML2WLAI+1AmhXNjNm36VNXH+cr35lGPqN61GR0Zg9jW/E4r/3tHedZ2ZLEv7hw081cug3NKeelaiGMZ1ICvWb0O4n17jHY0X8D2ikTwusSTOYglYOYd/W5RMqbeK1HlDfXuUcXqM2E1Pzlq3oxG1PzuqPdBrPd6nDBuG3Tw3aJAOAVx2fLad9U9q96Y9RLm3xTHosPV41zPe1rzbG9/0kknQdnAAM5dL774IsSPP/5487PWHX/4w5dBvGnTJoiTSbyOdj1bddnqnbhjaI/51jBr+EszIYQQQgghbeCimRBCCCGEkDZw0UwIIYQQQkgbZi0ICmldjdK72DqautIOB5WYNqx0bLWS8Rd1lNa1u68XYk99NxZHbVkgaOoRi6HuqlFHfZir/JBtH+dUCnWN8TjqdWoN1ABWlP9vxdKwan1XUPmYTufRI3VqfARicY1ebkx5xtZrqGN0lH+o3fJaR6S103OJ6yitcQDjesDUxdUejgHspuEwnkfDuhbaB1aUTq87if1pcQbjffuNnnDiEF5T31Wa5ihq8yqWl2ugrHxug1iPSBC/6wdw39GE6btnnn4WlJ2wHv14DxWegbiodNsN38S+0oP1LsR+ftllV0GczpntX9r2AJSFlY5xzlHzSou2zxJvV6o4tg+P4rh57rlnIX7sscean8fGJ6As6Ch/9zRqLrV/dC5nvOQzGSzLpHG+0t7po4fN2J8Yx/c3yiX0eK7V1DyiPKBtHeHg4CAeV2kMs8rTvqcL/fB7LS/9XBY1zT3duG0ijnNQIGjqGfCwb6bSqLWeSyLqvRRRHtFFW+et7owlF+8dhRJex2p3rvk5EMGyQfUezvKF6Bm+ePEiiBMJ8/0x5S29eNECiBf2oZ7czpcgPra1r8ZPSN1raxWtlTXl2SweR0JKP6/aMiB47KClY9bvQgSC2AfqDayXXzNt7wexz4dEXdN3Ae1yZthaZK1L1vkkzjjjDIhtDbSeX2fSLB/pWDPV8Z3Mb8+ZEEIIIYQQMkdw0UwIIYQQQkgbZp9GW38xdPSvars2Rz3GTieUpVNXzmyr5AWZTtxWVArOWlXbrZhHqVpSElGpGRMJfCxkPyqtq8eIXkXZbSlrM9uaS0Qkb8koSkpOUJ3GFN1jhw5AXC7g42EnYD/20FdCp5RUNnL+22vP0iSoH/2pR4dWaEtsRERqKlVqXT12rFuyiZqr0t+q0y8V8THr2DCmod2zx6Sw3XcA7cDCMaxXKKxlEKYvRtXjqJDqA3V1jkEH6y1B8xht/Vq09nnupccgLo9i30vH8RFcKm1sqrSkIhzFtl28JAdxb5dJ0f3qa49CWSgwv3ZPdTXmZnoc2HC1xR9um1FyBNuKSc9to6Monxqy0hyLiOzasR3rWbev5cyPUgMqDlvHDoi2olSWmW3kVWHLfnK6kIeypYsXQpzL4TybTqO1WTZpJAN9PYuhLJPCx7bhMNarWjftV66ibCkcmb/5STtVTRdQ+mDXLaoeRVcbOD7DCRxzRWveGS7hvSI1hnaHBwZ3QpxT6dCXLjLX5tXXsa956r4UCyhZhHWP87UcL6isOgN4P/Qd3D6aNHPD6nXroUzPybv3HYK4Ujv6WFVP9aGfiogUJpVl5rjZl06v3NWJ0pZ3IzNZsGm7Oo2eQ+Px2cul2u1byzds3m7buDcDf2kmhBBCCCGkDVw0E0IIIYQQ0gYumgkhhBBCCGnDrEWJvtLOat2frV9xlHaqZxHq5xb0Yhyx9GNOCNfx2qqrVEJNarWCWrNoxGhyQiG0/tH/R2jRZVsym5pO16nS3zpK0xVV2sXJYWPxNF3AdK21srKGqqIGLqittCz9j9YCtaRf1jo26zxm0oDONa6WWvvKlsqSQUaURaFOfy4OtkEgaDRxXq1NanDVti/teQniUUtvHk2gfs6JYL3curISrJp6lpUlYbmBFmi+SrMdVXrpDWtPb34uTKAGft/uPXjcAOqUC5OoG41YKYBzPSplbQjrOTKEGsqBng3Nzz05TNedL2K/nm9msjGKBLF9F/Rh3bX12+rVxgZsYgLfKRgfx/McG8N4fAw1mBN58/1CAa9dWc1fFaXxbdi6bdWVHaWD1/NXVL07ErO07b193VDWtwCtFlMqbXZY2ZHZKZfTMZXOXPXtellZNYbMHK21/ZEg6lnnEv1+g7agc63mLbp4TgFVTVfFlaC5bjE1R09O4/y+fy+mcI/14LVY1mss/YrKRrBUxLZNhHE8x61ur99vATs6EVGugxIKqbTbCdMnenvU3Kfm73pD2bs29H3b2GROTRVUGb4zUCnjGAla2tlMOod1Dsyfbeo7hTeTovvtqsc7Cf7STAghhBBCSBu4aCaEEEIIIaQNXDQTQgghhBDShtn7NCud6Ux6lXQaPT/7Fi2BOJlGHdb0lNFtBYKoX62qdMteDTVMEaWfDlk6rqij9b8q3aTy+7U9jaMR1Po4ShBXL6NObfwQpqmdOGi0oeVSXh0Hz0HJ/MRVqZ/rntlAt3skgttqnaetWdLfnU/NUaWK2vOGEjl7RVMej6LWMKr8RGtK524r4KJhrZFUfSCG+8pXMGW5HzYa3+XLc3gclXa9VFIpXV2z74pKox3xsV4lD7XEGZWmvX/Biubnx5/8FZTtGdoNcTim9KdRPFY8Z+rV5aB2teHjORSmUE+4Z9+u5ufxSdTyTtdQbznXtOuvdrn2P9Z6Tu33mk4b3+beHtT/em4/xDp9dbWC19rWb5bKRVVWUrF6R8PSOGt1fss5qXL9foPt+RxX3t3RqNLrKw2zo9rLsX5fqU7jOU2OYr+oVFET7ltCW1fN7416m3cQ3kKcgG4f9f6HlSOgGlL+/yo1eES1X8PyzD40jO1RUO+sZMs4BhfF8H5Zt/rP8gWdUDam9NGFMs5JnuXtHY5gWwfVjcZRnu3RqHpPadr0zZDqD8pCXBaqVOoBdV+2tdmH1arj0Fge4oZ6HyQSNu3V14vHWbIY31UgZK7hL82EEEIIIYS0gYtmQgghhBBC2sBFMyGEEEIIIW2YtaZZU6+jrs/2AA4rTW6jgfqwktJ7BlyjLS6MoK/phIfHcRzlbxtFfZhtRVxwDkNZSOkYte60amlWW7Se+TzExTzWszCOOr5yyXhRKvvLlpzsrvK01NpE227T87Aty0oj2aJptnSNWhPa4lM9h0SVR3TE1X7cRnMZcpV+UGkRA0rtGbb6RD2g+qXqe2FH/z8Rde0R62IllZeyr88hF4c4GTMaQd/FbcvKT7xUQS1rXHkt33/f/9v8XPBxWyeudKBKbuiqc+pcYMZIPIttq/14I9EUxIcnDzQ/T1ZRqxlV3r5zje6v4GksalypMeZ7M2v/Xde6Puq7IT2mtGZcxbms0Ud76v0FPX71OTQs81xXbespv3JX9W3tpR8Uc631OWhRqq6nrlfN0s4GBPtyJoPjJFbHvly0PH1r6r2Aek29VzKHbDn1HIhLag4fszy1hybw3qGN5h2UdUvAujbhBrZ1YRS9lfc5wxAnlKd4h6WfXtCJ7zos6c5APFrUvt8m1n0tqN7LCWnv/KC6FtaY0O/dOI728Vae0ILHDlmTVCigvOKdHMRjE2pC801/SsRwzk0lsa+RN4dem9j8tvouHyv8pZkQQgghhJA2cNFMCCGEEEJIG2afRlunMlbYP90XJjBN5t7X90CcSOMjlnDDPAYq5jElbd1F+xkRfLwcDKh0zFY84+NbaZWY2LHnonTD92belz6WEzDtFVD/N9GPUUXZ+Wk5i1e39qUekbQ+TsHyatV6rKq+q89/LvHCyp4tgBZYdasn1tSjvXAd2zadw0eUcfvRs4+Pf4PKvsgvYhyrYZvYjzQdH8syUXysKEq+YUs7gmG8LpkEnm+5qtLOaslJ2rRXKojHdUTHWM+Kuq6NnDmnoNIKxR2sR3l6G8S+b8bBilV4Dt78uYWJiEjdVVIGNeaCli2WtkwLqDbS37XlZdpeU/Qco+ql09PbfchT85Wn+pSrpVpWo3qqgXVza4lJizTLOg/tGOZqWYgaY9Wqbh8Tu2pOrrnKgk/Vu2ZJ7Koq5baux1xy+oaTIc4mcByVrfvQ3v1DWFZHGUTNQ1lcpsNIlaIqPffQXkwTXZrCe8vBSZSJ2I5+nRmUH3Rkcd/xJN5Lp63rODGJ9+FpZY3oNJSETN134L6kLWd1ivcA9gktDQkHTRxR94JcBtOyh0N4TuKbc07F0Z4v2DIq5o/fRrnCb+M5vdXwl2ZCCCGEEELawEUzIYQQQgghbeCimRBCCCGEkDbMPo22UvKFwvqrlraohlqpwmG02KkUVApXS//ka52tWtZr6yglJ5SYpSdr1FE/V6spfato6zejB/OUbk9LfbSSynO1Ns9K6XuMmkidpte3tGd2WmwRkaCyUHO1vtLSouvjzKd+qapiV1leOQnTJ4pV9HNyVGNXikqLbp1XQ2nvtVVSPIIa3mwn6qNdSwOuMulKWFkBNnT7WemCKw2liVepv52I0rErXWjAsh5TX5WgOm5KaTNjyvKqYbV1qgP1gwFlZ5dNoT1WttOUK3cr8avzaznnujNbrPnWyGrVGc/8TsZMVku+GrGe3laHvl2Po2uWRURcrXG2q9lSJfVuxAzH/c2+bPs6PP9iETW55TLGTlhbE5pj65Tk5QqO7skS9qFS3cyl9SD287KyXpxLfGVv5ySwPRflTPr0JV0L9LchCquU0yWr/canUEvct24hxFrvG4tiW1enjX1pIob3yrDS/8bUexVipWGPJHFuS0zidamqFNxFpTevVq1rFcC207J/X1srKn20Y+nt4yFl5alSlMdV24plRxqJxlTZ26fB1fMReeej11dHgr80E0IIIYQQ0gYumgkhhBBCCGkDF82EEEIIIYS0IeDPJOYjhBBCCCGE8JdmQgghhBBC2sFFMyGEEEIIIW3gopkQQgghhJA2cNFMCCGEEEJIG7hoJoQQQgghpA1cNBNCCCGEENIGLpoJIYQQQghpAxfNhBBCCCGEtIGLZkIIIYQQQtrw/wFeuk1s1UkGzwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_images(test_data, show_labels=True)" + ] + }, + { + "cell_type": "markdown", + "id": "92caec8a", + "metadata": {}, + "source": [ + "## 3. Use cleanlab and feature embeddings to find outliers in the data\n", + "\n", + "\n", + "### Represent each image as a numeric feature embedding vector\n", + "\n", + "We can pass images through a neural network to generate vector embeddings via its hidden layer representation. Here we use a `resnet50` network from [timm](https://timm.fast.ai/), which has been pretrained on a large corpus of other images. Note that cleanlab's outlier detection can be applied to numeric feature embeddings generated from any model (or to the raw data features if they are already numeric vectors). Outlier detection works best with feature vectors whose values along each dimension are of a similar scale. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1cf25354", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:16.672745Z", + "iopub.status.busy": "2024-05-24T23:50:16.672355Z", + "iopub.status.idle": "2024-05-24T23:50:16.676030Z", + "shell.execute_reply": "2024-05-24T23:50:16.675567Z" + } + }, + "outputs": [], + "source": [ + "# Generates 2048-dimensional feature embeddings from images\n", + "def embed_images(model, dataloader):\n", + " feature_embeddings = []\n", + " for data in dataloader:\n", + " images, labels = data\n", + " with torch.no_grad():\n", + " embeddings = model(images)\n", + " feature_embeddings.extend(embeddings.numpy())\n", + " feature_embeddings = np.array(feature_embeddings)\n", + " return feature_embeddings # each row corresponds to embedding of a different image" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "85a58d41", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:16.678213Z", + "iopub.status.busy": "2024-05-24T23:50:16.677781Z", + "iopub.status.idle": "2024-05-24T23:50:28.981779Z", + "shell.execute_reply": "2024-05-24T23:50:28.981166Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "436c19103ee14804a95eba5477342d8a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model.safetensors: 0%| | 0.00/102M [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ood = OutOfDistribution()\n", + "train_ood_features_scores = ood.fit_score(features=train_feature_embeddings)\n", + "\n", + "top_train_ood_features_idxs = find_top_issues(quality_scores=train_ood_features_scores, top=15)\n", + "visualize_outliers(top_train_ood_features_idxs, train_data)" + ] + }, + { + "cell_type": "markdown", + "id": "756333f7", + "metadata": {}, + "source": [ + "For fun, let's see what cleanlab considers the least likely outliers in the dataset! We can do this by calling `find_top_issues` on the negated outlier scores. These examples look quite homogeneous as each one is similar to many other training images." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "089d5860", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:31.055879Z", + "iopub.status.busy": "2024-05-24T23:50:31.055567Z", + "iopub.status.idle": "2024-05-24T23:50:31.300107Z", + "shell.execute_reply": "2024-05-24T23:50:31.299514Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIICAYAAACVatOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwN0lEQVR4nOz9Waxty57mB41+jNnPufq1+7NPf26bN7PatMoll6kqJMvUA8gP8IYQiB4khAA/GAkbWUiUkC3xYAuBhJDfkJEtLJVdJl1VVObNun132n12v/rZN6MfPJS0Ir5vc3Ouk3nXhofv9zRjj7lGE/GPGLFnfPH93aZpGkcIIYQQQgjxW/H+f30DQgghhBBC/P87mjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWgpt+8X/8f/h7UA5Hu1COO3evP7f9CI7NX/4Iyq28B+XkKrz+/OrVKzj2dP0ayg8/eAfKUZhA+Xx+ef15+ADv0el2oLg4O4FyuFpcf/Zi/O7g7gMoxz0fytPzcygn0+z6c7PO4FgRV/jdbgjlhv4v8/jBY/O38zUcO9ofQXmR4bWC7uD682Q2g2MX51jX/5v/4f/DuS3+Z//a34Lyp19fQXlVmBw7dZPCMbfJoRzFXSh7sYm3db7EY04B5VEb42VEMTFsmc9/7b0DOPatBztQnmzwWv/kqxfXn6dZCceOdwZQ7nqYUygo8BkD18SE67Xg2GyJ392UNZRXGF7OF6/G159fX+F9bcoYyn7sQrnVMcfDEON0vcJY/Af/xY+d2+Tf+N/+t6GcU6yPhsPrz+vlCo61W9jOyzXGWBiaodCjnxJS+u7V+RTPtcR6iFrmBP0BXvf47iGUe/0+lC+u5tefLy/GcCyb031c4n3kGTZ8GJp+4fs4Xq03WD9Rgv1i/2AI5dGgff15NsW+205a9F0ck0LP1K3rYuWeneK4+b/7d/8D57b4w7/2PShHHtZJnZu+0e3hM3V6WD8PH96B8toaC6arKRxLa+yf2RrbaTHG+EnX5j7Skl7ReMtOQWNjf2Ti6WAH26FNbcxZzZaLBZSn883158kU46Uo8JnyFMcVl+6zcc0zr1fYb3ka0lQYI01u7jQMcXxyfRzfT149c26Lf/3f/m9BOcs2UJ7NTB0FAY6rd+/ju2R5he/ixJpvjGfYDlmNdXtEsZevsW06mYmJbrcNx9wQ52Y8TtpTjzqhdgiwUcMU22LYG0J5kZr6abp43cnVFL97geXax3Pbw1evjc9Ul/jd9Qrb5Wh3//rzZo7vbKfEuv1f/5v/J2cb+qVZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILN9Y0P3/6FMqdDWpy+j2jdxze/wSOrX3UUi1WqNlZfGF0y+spHjv6YB/KYYwalFdXL6A8ODbfb0JUbV0+/xrKQYXnalyj0/Jq1F2tZqgv9GPUS89r1Kl5PaPhiaiW0yXW3eocdUX9NuogJ6/Prj+HJLhc5agztXVEjuM4+dxoJC9eoYb7/uGR87a4nOMzxn18xnZoNITTK9RMzieo+XMc0qNa9Vu5qG8qHayfixW2+cXkAspHQ6OX2sfQc86fYWz+6inG00+fnV5/HgxRT5j7WD4kjZdLmsDFxNRBt4d66Ig0y06Ncc46/8A3MdOwkhGry0laqMWzw60osE/UDd/I7bJJsf7rCnWVl1emnzR0rN3m5yKdaW5irNPm+sP76HPstvD7ScdUakHjSE6a+6rG+HRd03836ykcW87xXBcXGLsBjbPdrmm8Neke8xz7UNTC+6hJR1k3RjuaJPhdjosoJO2j1SdZQ9lUqMm9XTBe4xjrK2qZMaiocMzxA3xmx61+a5n1vmmGfS5bY3m1wLpeW3sWshrrp0sa+W4XNfH272BjGnNnK2xzj94lrHFuLM13SdpPet053R7uUyoK/P58Pr3+HAeoFy9LvHJBsecFJn4yOq9TvL3f/Y56+M4fNzgnmJXmXVs42G4VDSJNTPtDrP7Y7mBctgN8xqSF7w6f9u20PVNf9KeOF+BkhPX2oXXt2sG6DipspzDC+0wrvA83NBfPcqyPLMUxo0U65ZLeLbF1roL2mFxeTqCcxHiuPDPfr2jOF/HgfgP0S7MQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBZurGk+6KG/6GZF3rBLo5e98lFT4iR7UMyCMyh37xhdVryDGpPRHdRsTRaoX7F1M47jOFFktIunz1/CsThCAadH5cLSVvVIDLR8jZ7GKWlygn30Dl7ZGsIGtT73D4/xuuS9vJxNodzaN/qnKkBdEXsFD8k/e35udKCjELVk7fLt/Z/pck7ek/T/tSA3dRR4qPfyGtSjbsjnNLO8SmvSqrKO0SUNVzdGfViYGM3gkwu858lTLH/5Ej1mV7npTjH5YRYZxnXJXpN015PC6LAux6jDCkvSz5PAcHiI+sK+FRP+5SkcK8jT0unhfTW1ue/iDV3a29U0r9dY/x7p153G9I2KtI/LJelwK/xb23N11Md+4rPel3yxG4qphaUl9Xzsr+MSxy+fNIZZatr98BC9Xcs1apj5uhVpENPU1v6R7j2KqIz3saJ9J63E8sqlsbEmrWPdkBbSM9dqSPfovUVdPD9zkpBHuTUmFRu8r4rue0na7NLqk+mG9LxLapclnovfpU1l2iIj7XlC+t9uiM9QWdrq5Yauk+K7om7wXHGM50osc9yc+n6RU66BBLXWHfJFt4fhqsK/LWivQkKxGHdMf1wusD6q8ptrUv+8HPdxk8vekHz7Le/haYrv9MVkDuV+C8dZ3xpiJhe4pyfu07uCNd80DDqu1VdJO73YYP1lDe3tKK2YyXGO06HpYryLzz+n+CqscYDjpdrwXgZsR4/mdWVm7quhsb1He8B2RjjftN8TqzW2y4aF/DdAvzQLIYQQQgixBU2ahRBCCCGE2MKN5Rm9cAjllCQE85Wxjev3cZln/5MfQPkixd/EG2sZMdnFebzbxZ/t2z7KNXbIBmZyYezcvCkuCeQJLdXTuSNrOarjY9UkLpY7NS7hZgUug7x+bdJ5R7Q0kaa0vJljfSwu0JKuum/kHOMclwWzGaWcdrHuYys957yawrHnL9Gu7zbh9J0rStla5mZ5PKiwLtMMl5BKSsVrZ9zk5fCQ7Hh8tseipWZ76fCUUp2eXKHF0PQK6z5wLYlOm5ZkJ7h0tWhIHkBptF9dWPIMSpvtuxw/uOTUucRyackJrq7wPlJKhVrUeO5W10g9eHm7yN/e0ug/h9qW0np7Vr2wldJyifHW6Q6hvLbqn6UJoU8WT7Qcupjh0qudcrhLS6txi6ynSnyG0loGb9ESrkv+gGzTxLKAojCxz0oWXuLNzjGWO10cR3Z2zLUqsvNj6zK2Jysbc7ymdmmaP8f66J+TnV1K7031Obk0/ZvtttZrHDeGQ/zbjZW7fkHWgBmN/yuyfqtJKgQWbDROVCTPKMneLrNkJCuSZ6QZPlOL02pXJCGz2qZHlnKcCpvblS0Nh30zNtYkdYlDEqfRT3lBx/ztnFLWp8Xbsywcn1xCub2LVqCj/vD683yJY8LqHGVZdYKyuE8++OD68zGNTS8u0Cp2eonvocN9nAN1LYmqH2GbzsYo8cqprzaWLOmNORBJgc5OUGabB3iuuGN9n+K0R/aY6w3WB1s8FtZ9dlo499rfxTlhQOO1LXnr98misWZh5Hb0S7MQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBZurGneGaB+p/KnUPYGRkfiRag7ymZo/TbsolXJRWXs3CZTtMTqukMo33/wDpRnlGI5uzJaouwM9b9Lyj/cP0Crkl7b6H880k+OyHKvl+AzTEvUaUWWVrQiX5NL0nttKIVysUGdzfm50TDlXTzW91H7c/411vXaSiN9dHwfjnkFp2C9PeoGtVWdFmrkUs+ybEqxLov4t1uLOY7jeFZa0U2B2qhFSumUG9I7rel4y2j1Oh3UTkWky65d/Nu1Y/72KsWuNc/QkrBH/19d52wPZc5dUqr0DaXNns/wmeM1aaCtdLhpjnXJ7RKSf5EbutZnvGeP7IxuG9a/+j7ZFFmaZk7jG3jBn1m2Pf8aqt9uH2N106CeM6W0rhvLYiym2A0pxXRO+zs8Kz5zsvRbLlGPzhZhvofxmee/XdPs0vP7lE62TZZhSWT6wor0mpx/eT6n+xwYLbFLOsnGvfEr6HcAp76m+LHCu64w1lkvnkT4PlxY+wYWc+yPbkzXYVE8bQ3wLI1zTmPhaoXvOy+m372sc5cUW6GL8VFReu81tdtoaHSnUURjEFmGrcnKi3c7DKz0zBGlgeYU3OsM+1Nq2aL1hhiXUYL1c5vMZ1g/r6/QGi4ZmDoakA3a2Rlqmi9pT8HeyPSRD9/BOc75GLXU8w3VNfWh0rJ6m1O7LEkDHoeoLbZT3icetuIuWblNp7gnisLL8a13Scz9nKzu0gL7ZkPvqW7PvD/bpMXPab9BwP3N2rvg0/4Lz/vm+3L0S7MQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBZuLCjbp5TT/gh1SKXlCVlk6HP68otfQPngzrfwJjpGW5XNUc+030L9yuQMfQaXK9Jvto2uqHUHfTn7A9QARqQHKydGA71coeaocki3uIt66eQBaty6lmdjOkc9E6eJ7g2wLi83WH8XE1PuJaT/GqO+sJhTquPI+KtOXPRVfPT+Y+dtkWWUPpfSB3uepa/z2agTYy8gf9XA0vFV5Om8pus2VPcN6Z9avomRo+O7cKzTQV3yhNKfzywN6mSB8XE5x7998BDPHZAmPrA8iF3STq9WqK0rSYPbCjDOA0uLnZMu1qP6SLqsGbRSuJMfdDt6eymQHcdxmgbjoiFPac/y9gy5Dkjvu1lT+nDLD7fMKYbYG5b0rQHtK8hz019T0hRGMXor5xneR6tj6r+gdN2ux8/PfsmU5tYa3wLSLFMXckLSR7P22q77jPx+K9Ijhh6eK21bHsakP3T9t6eLf/UCx79eG98tLasOIoqXMY2zrFsuclM/lH0YxzbHcQryueY9GrY/95T8azdUbpeU8t36HSyj2AsDfN4sw3eFS/7vFydmrKDh2unTO6s3pP0f9P2dofkHlpH6PsZLPcVnnFnjLO8racX4TLfJcIR+yJvLcyiHVv/78L334Njp2Q+hPNvg++HV2Jyr1ce6XKzwuw6Fz2qOx+09PkvaK7Pm90yNDVUsrDbv4zvLQUmzM+jhnqg8Js9s6721Z82HHMdx4gT7fSuh/RgB9ona+npJ496cfPJbuxgTu1a67/NLnD8W6Tf3+dYvzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW7ixpnl2ifnPly3UtYWJ0eHUOWpy8zVqTsaz11DeGRiR0zBFnQx7GC9JK+qRTsvW4TSkm+mQVjYpUNhXNoH1XdQVuXgbbwizKvIADWNzrheUdz6IUFfU38dnrkPSSFqul2dnMzi2Rwas7Id4NDQ6rMvpFI69fPHEeVtkGQr9qhQ14nZq+ow0knnGuiNqx9Bo4trkELokTfOywXMVDjZsdmaO7w1Rpx6R/jIm3WNiabhy0pJdTVBL/OVXz6Bcl6jjmy5MebrE+mBPyyAiXWOEGsHVxtQ1yWSdgPoEe6Q2rqmPDvk0HwxRn3vbsCaTNc62tDsk/9GM2uMNnalVpzVJtUuq7yRizRxqHS8urfGvwb/1fbyu65Eu2TXfT2LsywPyi16Spr6ha1WWdtalcYJ9mwuqnzhmTbP5A64f7o9Fic+YWucOKDb75Lt7m6QL9sPH91S7Y2K916PYJr3vhvyTa0tfX5XYbhn5bRcN7Q+in67C0Pw9e5Nzu73hMluZa1WUDyAnHX9EbVEV5NtseUK32/hdp4112erhWDikcjcx5263cbwqSGd7nuI7vs7N3y4XOI4GPpkD3yJPnqMmfrlEfewHQ7NP5d7BPhwbDEkf3Kb9CZan8eV0DMfqiPoiv9Povd40pn7dFsZiEmF9lQuMkcgKgXZAOSDOMIfGFemyuyH25XZgruXTvqRkQGPoPo6h8yucM758aeaMUQvjhzdorGmfSD62xh/ax5a0vvk7TL80CyGEEEIIsQVNmoUQQgghhNjCjeUZRYI/gb+gJYF4z9i7eXTaTYVL4nmKEoNhxyyD12tc9pmeorRhNsVl/n4bpQ2DQ/Nze0JLNx8OjqDcxtVNZ/cDs7zSouXdTYpLeb84/xzKF69QvtK10o7u09JDXuF9xbTcsHfvAMqZY+qvqPD5owiXdw8GmN47sWQm+RUuv+UkCbhNqorSZNI6Y9taJvEC/G5GtjAuWax1rGWgoMJj5znG06rE+uOlr05oltE2ZI/lk+3i/gA9eNKlSXe6pvTdV2NcytoZYJsPe2SH2LKWMx0koaXPlJajCqqfyvq/8Ybqo8nwvgJa+WpZsquGLM/WBWuWbhe2jctLjIvGNc9dkS0RWx6GlAK8tsYstqtzKKZiioN2gvXSsfqzH+Ax18FnCANqXWuZ36Ol+U5IMcLZ5alPbaxlbYfug+3GfIdTP5Oto5X2drPGmGEbPVIAOXa2czstu+M4juO9PdtCl8QMVYnxOxmb99KaUqN7lHI7oveDnXp9wzaDtBRdkeUcOUo6LctmtaZxk1NwV9QHk5Zlm0c+cVlFssAeLqefn6Pc4OjQjG8e5UrPKJXzao732aGl+lbflCOSEFac2pmOdy1ZWONzvHzzNMh/XpIWjhmrBdbJuw/ev/58eYp2dHtDtL8d+Piedi2PvgVZyI0GQygHJN9Mc+y7sZWynPv9XgclXlmO1+pb14rIBm7tYPyU/Jsr2QGWVlN59H7LYwz6kGQjd0KUt/QT816eULr3cYVSDo/ua2XZrGY05xkOh843Rb80CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJs4caa5ucL1DDVHmpjio3RFk1eTuHYeoVamDalW0wt/efiHI9FDV7nMEGt1CCmlJMnRgNd+qh32jn8AMo12cS1rBTVbomaNifF5++SXd2aUth6ltVLMkLrspc/f473VaDmuUspJ4uVuZcWpQIvK9KzzlDjtlkYnVoyoHuk1Lm3CWvzWJnWWLlnG9K0haThGrXQvsd2D9uQJVGb7MGcFmqngjbqMQPL1my1ohjISLeX4H0E7tR8dUMWXglep6wxNtekNa4sPWtNKtGUNIBTemauXc+yy1ptSNNN+w0OjrB/dbvmvlOyDTyd8nVvlwU/Z4iaQj80Y0FZki0f2Sf5b6RqN+1xeorWUke0JyEIcUxiK7jDXaMTXG443TKWSXIINnMhjSkdSnEeJ9h/M0r/7UPqbByvSC7teB5Z0uFhx/fNvaQbToWd0Hexrm0dLlumrdZvL4YasnpLyc7UtcadTUWWqmS36JLGud0240pIWuI4wDFnNkcNJtdXr23a2Seru5r8/nzaZxBYVqhtelc6NafVxmc4PsI9Gr2OGd9SSuUchLiXiPW+V+dom9aqTd33ethfchpXDka4p8eZWZaZlNI+id+e7aXXYKx+7zvfhnJZmLZ49hQ1zQm9Z9Zkd2jvoQpo38PZSxqP7uLeLL+F/W+VmvrkJOPlHOu6Q/On1NK9n13gfrKa7OuaLj0TWXM2tt6cxt+avE8r0ttXBfUva5/IbEVxTPOFdMHWiva18bqbxTff16VfmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtnBjTfOzl1dQfuf9D6FsW6imMWo92wUqa8qcUkhWRnMSxuRpPEHNiUe+xEvyUC0tbczdwV041q5RV/NqjJqd+4+MRufs6Us4FpKf4a6LerG0QQ3cc+vc55T6e07nWp9iuWqhNqhtCRDbCdZPTJq21oa8dC0vyWWNdTl6/13nbdEi/WnlYnlj3VtWYVhSdlcnI5/TojZ1v6KUrB7pofdJhzUjP9aF5ePcckjzHeC5kwTv01YHVx57YuM9n5Fvc5xwmmPz/fkK9W/TFenBGtR/haSD9C0haTtBDRtrzdek5V9YGtyE9G+Od+Ph43fCdDKF8mCPPEctLR+Ldl3Ss3qc9j4xcVKRF67LmlTa39Fp4VgwGpjxb7rAcTMkHXLloKZ8NjdtPSJv17CD42hvB49XU9TKRlZ8VpTauiaPa1uz7DiOE5BvqmPpbmPSygakya1pTF5bvsUx7aNYLbEf3CZFwQ7S5He7MXXCGl2fPMIb+r0pssYZOw224zhOWZA/chffj02G7w5bxxyQCJzHkYD6ul2KSEeaklK9JH/3Dz/C90FjjbOvU9Tzsgf00T7qkF+s8Pu1tYeD04ovSFfa6eF45ln3HdF4bmu4b5sixfu8dw+1xT/68U+uP19cYsrphPYiOT691BpzvN3BZ7x8hf16QmPI6PExlJdTM+b0af9P6PM+JmxH18pb4FJOg+kc30MVtds+5YhIrXHgs9NP4Zi9B8BxHGd3F/d9Dcnnez4z1x5TjpCQ3tMF3VdjefInlMI9CL/5O0y/NAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbOHGgo7DHmpph0P0aXx99ez6c6uNc/Fqjbqjkxeo80tTo325e+8ennf9BM9FmsuQ/G9brtG3HER4j0GKerBhb4j3YfnyDkb4vJsLvG46wWeo26hb21heuoN9zKP++APUjj158isouz5q3Aahuc9WRH6/5Fv54OAhlC8jc5/n6Ws41m3ensdlO8S6H+yhHvN8YjRLr89ncIw18LMS66e0dLkZ+T365NVdky6tJn/kwPLabI1IG0w62fkMtWap5TVdk6Z5WWA7OVRsOai1sr2pKwfbyXUxFt26puOoXYwtfWrl/NletcsFntvzTbsM+/i3CWl9bxvWX3v0LEVu+pxXkS6Z5KxRl7TF1rl91qQ2+MfZhnTIE9RvjnpGn+eSBjOlZ9iQBj+ytMUu7VfwPPzbLmmca9LOxpYOtyGd8YYMotfkH53EeG7P9iVmX9Q11kdI8ZlZ8eeRBnWz+uY+qX9eqBmdusI6yKz3UJJguzkNvSprjK/M8hpm3+HAw3O99x6O/+NT9PTNLG/vg118d0znuA+nFWEcR6HVJ8k3Nw/Jo97DCmnF2DZlbv4+CvB5A9L9+9QXaUhyPMsvv9VD/erVHPtPtcb6q6yYicmTOAzYifj2ODrGuclqjeP/ePbq+vPuIWpy9w6wHXMKp9TaY+HR+LN3hHOR+RL7TEx7pnb65t3apnGwqHGMWOeUM8M174NiQ+8Z6ue9AJ/RHeNLzdYhP7qDdTfapdwUQ3zHeZTbo2Xtm2jRXhqOvVEPddx2Lyhp/0BR8j6H7eiXZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILdxY07w7Qn3w+cUJlC/PjF52v4NaF9YPthZ4WVuqV5Ke9+CDO1BO2SswQ+1LYZn6VqThuiAN1zpBDddgYN13ht9djaHoeG3UUlU56rASy3dxNqF77qN+de94D8rLsymU55Y/bdBC7U+XNN2LKV7L1t26CdZHp4M6q9tkh3wYB8MefcPoksoN1v1kjnVbktYztHTLVY06vrpGLWdGeuj90RDKe4Fpm5hEkD55k47Ja7kozLld0vx5ZI+Zk6+3k2Mc297AtYvtFnn4t56LzxxF4W8trwqsy5zK3Ta2S+CYa+cr0q628BlvmzzFe003pO2z/EvZGzckHS7rwBur3JAmvCqxfj94930ovyJP9yg248jeIWr5XtK4uaFYj9vmGYIa7znJUTMYrNd0HDWIOz0zRvUGOCZPKT4vl/iMPsV+Y/k8p6R1bPBPnRbFX23542c0Xr/V323I0zgj7bFnxUi6oT0qG6zrNdXBnTvGszdJKC8B1eXREfrqrieojV3Ozbhy5/gQ75H8fbkH1lasbig+SnpH7dG+kk4bB6nMGlfadMwjX+80w/qoqH9trLGRd9KE9E5rk5f+2hobaTh/Y3y/Td7/1gdQHo/Ri/mjT8y4sDPCunWovk7nOKGwvfjXG4yH0SF6YDsBasDTGZZ7A3PtYQfnGss1zg9WC9w/lLTMfXZI87/bw3lKv41zwgXNzXb3zPzi/Ue412pCe3wm1AcGNDWNLR3z0Yj8oKkfNy2M1dzS9me0h2mT4jvtJuiXZiGEEEIIIbagSbMQQgghhBBbuLE8Y+dgCOWr12hfdtQ3SwgtkkFMaFlxuENpRBszdx+PcflyeEwSghJvefoCv9+PzNJEvYfLBzVZkfgkwQhisxT91a+/xuvSMsac0op6LUrPuLDsxyjt4+sU66O1g8tRh31ckitrcy2fUjfHlNr4q198SX9rlrY672Daz04H6+NWiXDJcknLtJ5lHdSiZZ/ZDG2WCrKpsmUTHUoT6oW01E7LeXskbxlaFjST8zM45tCyT+CwDZO5j5juI4zwur6P/1/t97F+OpakabnAJaQ12cQ5ZJvjkUTFsaQgQYjXTWjZNSEJj2OlKM9o+T9+i3ZPjuM4Aclj2FovsVI0b3Ksg16H08mihKBqfvsSMA+SBwOUGo3exXq4mJrl9TVZHA4o3nJaWl1bfxs72BYjsi7r03jWplTGsSVPC8h6cdXCc7+c4lPOCrJ1tKQxb1j9kc2jxz/FWO20JIvM9Yq8F2+RNcWv65FtmlVFHkkqVmuUYk3GuLy+f2Dqvnwj9TUG1GJOdZCSZMU132938G8HA7ICpJiwU187DY4bdYOxOByi9JHHoLUl4QnJgrCi+tlUtMwdYrwVVtr2KY3nvQFKwvbJnu308uL6c0kp7FsRvv9uk0l6AeWX5zgHsm0uV3P8bkF95uUEj2dW91tQrO3vYV9t97HfF2R9Oj81NrOtPZQyhCRZdSpsx6QxxzvtIRyLSN7U0EAZ9UnaZ8nl5iu8x8sVzqcKOlcY4jgZW/eZk01eE+DfDnfxmdeWRWi7obHrcup8U/RLsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFm6saf7TX/0ayncOHkB594HR+W1WlCb7S7QiKSkN7fCOseBZb/C7NWlfXZRKOXc+QBuY+wNj8dQn3WK/xD9O6T7yE8s2j2yDzq/wPs5eoZ5peIR6wgAsrFBzUxd4H4uXqLW79yFqmleH1vc72GQ12bGlDekLI/P9fUrJOitQV3SbfPkK9cFZis8cWfrYgjLrZjnqrqoVWUUFRr8ad0mrSnpftiJrDbEtYksP3JDFWeVgO/Z2MBXowupOKen2SFLq9EhT2iWpWScymtLhAer2ihi/vJhgheWU7tvWlFakNexFqI8LSJDq1qYOWm08Nhq+3TTaIWmaOdWznWbbI/1dkmAddltowVYtjeaOZG9ON0bd94vPP4NyQHsjImufgbfAOBhSGts+nfsoNlq++z5pGeknjqxDezZIy+5aWvaGrBYP+vj8RwdoJ/Xrlzi+XVhWTRHFUEgplmuyU/StNMhsEdbvoz78NmmRfn/YGUJ5OTNaUk4hPBqghVhAqXxzyxbNpRTbPulG0zGOuyFpnltWbEYR6fjJ3+/hnbtQLq33ZUaWjEVJZbK5XNNekc3KtGNN6Zg90sZmFe2zcN8Qtl9/CkNsh80a63pO1mVTa08QdR/ncB/36dwmXz55BuWTl/hOiy1r0E6AmtyaLfoKSsNuFeMY+2aaYbu0Y3zH5RSr84X5flCQRWGB7TKbotbYvsuY3jMx9fucxhvWS8dWine2qeyQB2tB79YNxWLfsvBb09xhucB9IQ1Wj1NZsddqke6aX8w3QL80CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJs4eY+zY9Q87bXRS+8IjG6kRcv0IOQRap+SFrjQ3OuoYsapYCm9VFE/rdXqA3aSY3Ocf7iBRxrHeO5OV3u1dxozQak+SNZmrPbIa9W0socDM21gjnqm56eo+Z7vUJfxoC0RLblb0Y624L0vZGDOm13ZO4z2kUN5JzS/94m7S7WZ8ztaOkemwQrux3hMxUJ1n1uefKWNWrrqor05Pz/RPI59dumXAV0j218hoDSBT+y0r/e2cF4oOy3Tr+LetwwoFTY1h8cHaCe0t3DuD08xP0F6xp1Wn/0w392/fnFmLTl5LFbkQYujs0QsdPD+hh1355HquO8mTK4JE1m4Jl+w/rnGXml55QmObQ8RV3yoOV9FT3yI/VofLu/b+IzKFAz6JHWca+DMdW17mtA+tWgwXbNaPxakIbV/roX4N82Dp67JO/TFvmI99qmrQ/28V3g07nLCsck39JzDofYd7vJ2/OKPzqk+6Z+EloRdpVhfUSk12yRP75nCeFbEX63ojT3eYrj/Q757j6yUg63KKdB4uE9v3OM+yp6XTPG7x+h3vmP//RPoezS69/38L4DKwZK2lfSJr/xgnTZJY0jhfX3fJ2yoL0jFf+taYuqxricLlH/fJu8+BJzQsxmqE2/Y6WNXq6x31+QH3vRpf0Ze2ZM6dC7sqlRwzsYYEzEWH2Oa+WI2Ezwuh3qb5sF1t/Men8O7mG697zEPhG3afynDWeu1eYD0mmPZ9RutJGk2xvifVq+8QHtN/NKrIAJtUtm7bE4oH7co3neTdAvzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW7ixpvnuDupImvNzKIf18Prz/SFqh2PKLZ+T/2i8Y3RYexFqpV/8/CsoT85Rk/mog7qtsG0eae/xYzjmuOQlmaEWJu5Y/qrkJbmzh97J88kUyk2K595cGk2TS36GB+SXPA+xbp+QFjvcMffVD6gdyAN6s0EtlRMZPeyzySkcenBB9XGLHI1QS1WTb2wUGH1wU2F9LedrKG/IsHaxNJqv1RJ1nS55Frs1avPyAvWFHUsDvruDeqekh8/w7kfoEX5leTNPz8dwbJjgudot8trM8D4Wl0b33mlhm/st1JKxJ/Rf+sO/CeW9Q+Mh/h/+g/8Y73mB+nrXQV1aEDTWZ9SdLZeol7ttggb7pF/5VDb3V5Oha06a3Zh1p9bhYRd1ty3Wvbdwb8BghP25KE1bPj7CY84K66wmTaE9RJXkLV152GfaI4yLuI/1sVybfsM60Q31sWRE8Rniq2FhaQqHHj5/vsH+eWdAz2x5f/vsV7smU/ZbJKSNBTVpNF3HPGMc0u9JpC9vaO9E4JvYSzoYp2uKvcLHv330GPck+NaelpPnuO/kzpA08W2M4+Hu0JynixruL548gfLVBDW6WU7aYkuXXJG/PY+rTUmevex/a+vvaXMC+4uzh79N6eEfvzw//S3f/N2z3yF9OR2PLA/yGY2N6xzjPM6xHUNL/9tu47Eu9aeiwHfYJsN4iq0NWLMrHN/bu9guow6OMfOF0QPnGe6lYU3zPMN+3ybv+8mlid3DfZw/RbQngNuc3y0heERj7Hk0n4x47FqYd3HZcL/95r8b65dmIYQQQgghtqBJsxBCCCGEEFu4sTzj/KvnUO4vaXlzZn5e9zq4cFHREtKK7bcs+5rsBJe1L/7kV1AOajz36h1cQvAHw+vPD9+/D8dOv/gUL0xWUcuVWSbKSG7R7w+hvKFl/i6la66sJZQVLc34I6yP9x+9A+VpgcvtaWL+b9MOcQnk6uQplPMeLp22LWnMZoMSAGeA371NuhGl2qVlkcpaTmeLpqRDy/AtXP5s9a0U3CnWz2pBbUzWPwmeypktTfylKS6dv/suxtNhF5fRpq/NclRY4tJVl5bc+gN6BrIsPD0z8bMhC69hiMuEz5+ihOnnv8SU96NjszS218J2YCkCqTOclWWHyGl33ebt/p+7yLFP1jml8Y7MwNKihh2yTRNZL2Vrs/SYkOVjQ/ZZF7MplC8nGK93h5Y9W0zWUiFLPTBePcu2qaZUxClJrxqSy/RJPlRaS5wppfoOWhiPfhvH1YDkCOnG9AVSqzgBqby6ZEUYWGl/aeh3GrLIvE3cGq9Vk0TFlpmwJaRPFoZljuNIlpq28UhGk1P66jTHc3355HMoN5aF5ihk+9EhlHf7KO24suQ+pxNc8l4s8b0yGGDsjcgmc3ZhnmlniLFVNViXgY912W7hM9rV59N3qxrHt80Gz11ZKbqXZLmakxXebfLwIUpB13Qv0wsjhQjJFm1AUiuHJBWT5fT684Ls2NpDnOPMpjhH+tM/QSvB79wzMfHJe+/BsZjmLR5ZjnbaRgrik99viySGl3Mcj4oV3ndt2VquKDW6E+J1Cw+vVa4xBvrWPCaiNOJrei9kJIeyZSOnpyjncT2l0RZCCCGEEOJ3jibNQgghhBBCbEGTZiGEEEIIIbZwY02zQylH26TZGbtGK7MgK7eHD9D67Zj0YvnGfP/YQy3iUQ/1PJ+dXUK5yjBl4ru+sdd68otf4j17qOfxQ7LX8o1WJqfUuT/6yc+gPCc9E8nDnNKyn1msUN/qk+VOn+xXVmw/tjH33T9g+z6sy9GHqI92uqY+symmN/9V8fbSaOcF6Y7Iwqi0bYfIVqgiW70gIRs569QRaUY7CYb4iPT1LdaYOqa+Jq9ew7HnVK5IS7W4NJrBmjR/c0uz5jiOE3fwPkY9tIcaWRZNK7L0SmLsI/ukN/zqK7SWOjsz+xE+/u67eK4u/r+5cTCuV3azdNAOMitYoXq7NKSIpaytjmfZXLVIsxtFGAceaeg8z5y7R53ZqzEeN0tsj7NT7Fc9y3LTJyuuVolx3yVrrsA191nRPolFSrZnpC2OSGPuJWasWMxQB9mnfpCRFR5brO3tGe27S+lzI9I+NvSMdobchqzK7u5gqt7bpK6wTyZkOxhZ6az516Q4ocr2WPNt6rcXYrwcHKAF646178ZxHGezwPF+aNX1wwNMk/1wH8f7LMVYfPra6ExfjlHD3Ka9Ie+8ixrdnV2M+3xhYuLoEO85JfuxtMQx6fIKYyCy9hjUDWqtd/dw/ApoTC6smLlaozbWJ33rbbJ7hGN0t8L+2bO1x7Qf4ewK+59HGwEWVurn8dUUL0wpyy9OcA60zDEWX1+Zdv/gHu7Defc+tjnvg/jFb8x+mIKsALHkOJsGn/+QYnVlv+NpvGULTJfe+XWNxxdWLMa0lyWj93BEe+p61hyI31jrDeUgvwH6pVkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYgs31jQPx6j9GO2j1rj/ntHOrAfknZzj3Pz86y/xJizP3pMU9SgLB3UzO8eYjvHehx9C+dlroztNSYP64fEdKPfIT7SwUqNOJ6gzW6/ZlxL/9op0aTuWvmfHxfqYpvjdyRj1Th3SGwa2pmuKeqY8wXN1Z3i8HZln3rmHzx/UqAe/TYoGNUuse3et1Jc1/V8uojTSLfKUTS0/2pI8Pj1SMYVkl+mS/2rjmXMPjjDWvnr+Csqnr7GuHUsH7zuosxpMUC/YrOm+KmzzseVreXKBmtnNMWqLWxHq+nYH6L2cWj7h/YR0nORTHdJ978bmXMMd1MvPl2/PY9dxHKdDeyFcTsdr6XADSqW63qBX7oB8stvWWJCRf3tIqZ9bPfzbkYP9e2N9/c10zNhWJfnBLy7Orz+7lG+4JI3hfI161olLXvGWbrCg1Otr8klvSMNMslKnZ2nwQ0rlvFrjGNQnT+zA0pNX5I1clWTyfIvs76Iv/WiA/ai2vPU9SrkdxKgHrnlcsfYZPH6I8fDh8UMoT86w3S7PsX8PB6Z+B21siAvLC9hxHOfJKY5BjaWnv3+IGtyHxzguRC2Mgc0CNdCdrrk2SZadmMbzI0otf7iP411dm2vVpIXt9nCfTkW699DSk3ukLU8zVtreHk+efA3lRcpp2E2cP36I+7i6MY5dBY0xu7tmvpBRfoDZJbbLBaXGdml/2dzaC/GrrzG/xv1DTMl9eBc1zvZerZOTMzjGumSnZo/s377nZEVpstsdGkNoPhDQeznPrDwgdB+jEcZ1SX7ssbVX7fgA50CX428+B9IvzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW7ixpnm0g/ooZx81TNHI0jCxf+2XqC2evfgKz/3evevP5y76Oy5RHuc8IH3YgDxVJ+eWkIbyvbMn3+6ItIgr43EZkgawt4e6odkF6pBL0tm4gfl+J8G6Ksmj8JzyoUfk4Xv02OjFJ3PUv3ku6ndmGd7XxrqvvR3UL3X7eF+3yUfvo1fpGcqynNIx7TZboVaq1cV26pA3Z215QPfJAzXboJZqQ57HGbVFbWmr9u5g/SSkA331BPWEvuX7uljjdS9IO3VBetSnp9hHSkvPOiE92B9/hnsCdtrYSYYeduu6NH//5Cu85zsfYLsMunguPzDtUrexrvZGQ+dtsn+EcbDeoLdwYu0F6PRQMxeSJrXbw/7tW37JgUcG0KTdi1rYP3shXiuzjMNL8oKPexhTLunCz59b3umk7ZwUGAfOBuPxoHUA5U7HaEU3Ff5tTLrjQQfPFQT4zEur3NCxDmm8HdJWF5XpU6021tVm8/Y0qd/99gdQjkK8b9BbR6TPpDelS+N9YWmz7wxRo/toiDrSrz/9Kf4tvS8nE6NrjzzUXa9z1BLndGNHlm67S3tBPB/rOkjoGWqMES8wfSQl7Xnj4Hs6IW/qMsX3cmrlGnADflfiM5Skr0/a1v4g8pKeLVEbfJsMYuwz0/E5lifT688eddVuB2PN9q12HMfpWOPsoz1s889ePoNyb4BjyM4Bep1fvTBa5J99iZ79Dw7x3N//GPeEffjJt68/Hx2ix/ML2iP2+hLLLmmaOz3TVqev8P2XN6jb5v6UxDhOBG1zLvbrDwMcYzsxxohrj98Ytk5D+Udugn5pFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYwo01zd2PH0F53kEN08XCaCX9JWra3Bz1LO0Y9TzFyug7h3uoy5v2UL86pbz1rfUUymFlNIIl5X/PKVf8JkeBi++Za1Ue6mZGd1CX5jmohQlIp+VY3q5Bg989GmGO9pSeYU1eufOVqb/VbA7HZhPUqH7nB9+Bcm/X6Ot8yh5/PkNd0W3y/ceonb0ijfh0Zdr19ByfsSav7ijGsA0tjVebNJPeLun2CtSQrhaoLR51jI4vKFEvd071NzvBdj28a2L363OMn+4QdWiP72M89UjzVlm6rZML9On0nmGbX52gQPzwCM+9Y/mmn8zxXPdC9F6++z7uGaga00ci0pJ3/RsPH78TRruoKQxJ+z606jiMsd175B3f76DutCituCAtsUtjgUua3XaMGucyNXVWutiXlxR/8zHuUdi9b/SJ6w36H4d97EPxAGO9t0Ma/MRo+7Ln6Ln64y9/A+XvvvMIylEf49Gzxre8Is/6gEydyV/a/tumwfoI2cf6FrE1lo7jOCV5RoN3rFvRd/Fd0SK98NraO9GUGC/0p86SPP035PcbRVa+gDmOQW4b2+XBR9h/HUtbvNzge9cjX/Mu6UY98nuvLD/liLT51MSOQ32kcPCZ1rkZZ30H+4vnYX8K6T7agfl+Qp7EQ9rDcpvc38c9QbGPY8grx/QxewxwHMfpks69uzuE8mZqxoEjyg9Q+VjZX5zhHqhlgX3q9LU5nl7iO/6LF/i3fK0oMjGRtDA+FuR1v6F9O16DY2xoxZcXkfacun2X9pAV5F/vW+N5HWKsrda4t6XTQt12YvXVvKA4XeE+t5ugX5qFEEIIIYTYgibNQgghhBBCbOHG66vjagrl+SUuXzW+WTqdXuGS9zGlydwfojxhai0Bk6OO0/RxiaBPywl9sg26zMwyAK0YOVNOdT3E9Iuz6fT6c0XWW60Iq6o/JJuvXUpdbNlDDciS6eIM0zEndO4H77+L318ZG7kR3dfuLtats4f1NWtMW1S8EjGknNK3SBjj0k0d4XKfV5sYePTeIzjWb+Gy6nqOtnpZatq85hSslA/YJzuxELNqOkFtlnqaFJcNa1xJdx6QJV1vYJYRsxrbqSZJycHdIZTjN5rCPMfeMZ7rPvWBn/7pL6D80UdoFfTtb713/fnzr9G+aGcH26XXwWv1rBhJ6Bk2l1Qht0yUYNs+2EO5QqdrxYmL3z06wDoLXIyLsZXKfk1p7kPqn1VNKdJJetOrrOXAFS7TtgOM5eM9lNKcvzSWcw05ue29/wDKXheXuTOSdVWFGaMPSQ5U57h8/uT1CZS/dfARlKOOqYOIZEo1rdW7LvVtSzLAdReE+Ay3iUu2gyFJ7DxrbFgvMQZcsh0sSPoXWuVsjW3+aonWZOsSB+KX51j3cWTqq6gxjntdfHfuHOB7J7ckZQ1bJ1Le+TWlG24KbkdTdguSXJLtV8kZlsmeM7IsIHPSq6wppXSH7OsiK2V3RumWi5p1IreH1+A4MOhg3X+1MGm2797FMbjXw3E2p37QtsaQyQplNX6DdemT/CcJ8b66vmV9ShOqGb3TFmS5+urExOJuF5/vitKsVzTGliVey7esBHtkT+rRmNH2cLAbL1GimVn9j1PasxTm5QvsT/v7RjbZ7eBYPSCZ3k3QL81CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFu4sab54iXqF8Mu2nr4lkZ1J0bdyOoUNbwRaWV8K2100MW/vfc+Xmdxhrqak6/w3N+5//H1509/iem6WdPsk45mlRut3vER6iVnS9QZ7SaoyVmt8fhsYmzArk5RY9Mnq5+HIxTWdvv4zMvC6JKjPWyyaIQa1KsStUCrpbmPvI16yqSN9n63yf4upvrchBgDixMTXzsjTNn++Bj1qCdfo4apsGIvIA1zzVrEAv+2QxZG9cZozfwW/q3/ANvJpZTlhw9MzDxc4zNcXmG73B1iW3RHeN+25DtboOYvmuIz/AHZQX7ybbSN29+3bAcb1MWuV6hPHZCdWL82/68OSP/mkn78trn3APtkQ1aEjaX/DMgia5OhLRGLML3A9Oe9fdSN2rZ7jvOm5WG3g4L0fG6u5UXY1yMPy35N2lgrRXeX0nN3ErJ2I21fQDpS2xYzrMimMcO2O3dRW9wirZ8bm+93EjxXusH6ick+KrCCuWmozZy3B0lS39jfYHuyVWxzSbp2l8o4rmA7nE5wnEg91OX27w2xbFnj9Sh+wh0cN6Y1jg2hb6WrblE8UKritMS+X5DO1tZpt+l5Q0rfvWLHVYoRrzbXalK0KstzLDcxx7FlN0bjU/OG993tcTXBd3xBOm/fsuBsyN+vt4vzmhPSuY/n5ty/+BTtINfnOHZ1d3B8Gj7Ad+ujd8wYf3qC87ZTK9W34zjOjFK4h9YjlUu0qUwo9XdWY7+fkyVdZFnhLanNY7YdLrFdwxaOdbEVTyXlwo4S7CPFhmw+16a/lQ3ut1tleN2boF+ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2cGNNc12jbmRCKalHiZl/x5QadXGCGq5d0iyFlrRq/BJTAtekw/r8R+hJ6y5Ql9VzjMaXtVEJ+SU/ffEcypnldxgPh3Ds1QlqkCJK9ZmQdrZVGr3cLvk53jlAbex4gaku/9//6J9C2R2a+zp6hLpOp4VNGJCep+NZ9UP+s+Xl1HlbHIakQxpR2syxqb/i7CkcW9d433GJ5wos7R37qcYRmd2SlmpOOrXU0qMmAaVLpnP1EtRE3j8amnueYXzsOlh+fIjt6LcxjkMrtex0Q6mXSdd3+A6md/0+pdbNc6M1S8ohHKsHeF+9EOOnZXny5pTWuSRN5G1z7x5q9xZz1PrVlqY5JQ1d6KNm16e092Fk7asgbXBV498mbdTB53StKDSxHdF1XfKVbWgcTfrm3E2DbeNRX2c9cJuuFVjDe8C/j1Dadm8fx6huC4/XVl/o91CfmbZIF0hjdmWlHfco9XpVvb0YCkhn25AmP7LSoQ9D3JNAlrSOH5CevDT9xqPqWK0wPu58hOP/6A7uLRn2TFuUlzg+zWkvjdvDcTSywqkVYN26pLNlj+Oa/LUjK8K65BWcLymVOqX39uhdG1j61zaN3z0qJzRGJ55pt36O3228G09h/sJ8+RTnC3GI40DSMXrzmnpnlqOW9vIK9cKzhdnzktB+i6oif+0L3Nfl0R6Ldz8w4/98jntp1qRh/tOf/RLK39ox+6k+OsY4DUjHvqb3UrHBOdLDO+bvO5wvgfzZzyaova4oJu7eM++4VoQxX1P9+G08bqf/fn5+CcfmK0rvfQP0S7MQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBZuLAjqUO7wkjSqi7XRimxIdxQcopfwmHLNN5aHaBWgTmhB/rabCWqD+n3U172YG9/mxkWtS5riuWYZHt979P7155q0d7/65RdQPmrhdQ/76Gvab5u/H4zQV/FXJ6iN+vXLr6E8PMJzf+/7377+nPRQG/Rk+RLKi3QK5U5jdGr+CjVrxSVqVG+Teox6pxbpwR51zXOdr1DnWc6w3frkAztdGI1XnpPfYwe1+GmK+vqSdN51bnSyC9LtlSnqwRKPvCct7ZTboJ5weIB94MEANaSTKdZPZt1Xz8M2b0eol7uzh7HXIz3dJjfPPNzF+jgjzWSR4v+jO4m5by9FDXGrwfq4bTZrHDfKEq8/vppefx6N0Ou8KPC7Xoj927f0nuztzbp4j/Sdvkvt0zKxXdM9+j5pUkMst2zPZ/pu0MI+Q8ObE9Jw7luaVZKzOj7pttuk920nqDlMLR9Vn7WvAXn2ZthOhaVnZa/gNx7iFnn8wXtQ3mx+ezxFIe2FIE1zQM9sP0dFvtURaSy7+9hfA9Il15kZO1KPdMkt8tPexXdLXJn6TQISV5Mwu+bXP40zkdU0ffp9bTHGcXNNGvimjecOLW/dNe0BYE/jhHzPPWuvQkP3UTRvL36mpE0/2sExvT8w723bm9xxHOfk+TMopyscdw+H5n1wv416eucettsXL3C+8OIC94E1Vo6J7333Yzj25DnmjHj6FHNZ7Fhzt7/80bfg2JRyHDgnqMvu9/DdcrRjj8HYblPyRz5+eA/KL158CeXKta5dY3zMZhiLBe1VWFtj/3iJ88fxDPeT3QT90iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsYUba5rLErUgeYnaULcympOEtFF+jFq85RK1kZ5nNCh7d9Bz9tXkFMqD99HTsmFNk+UlmC1Q67JzZwTlk6eoI3UyozM6I43p2QTLr8eoJe5PUWcz6ht9T3fdgWMu5VUfvIOevQ8eYDktjZbq4gx1RKtqCmXWGyaW9jr2UA832EFt3W1STFE7tGkwBg53TbsePkS974snqAdbztCn0rW8XtMZasX8FOu+08Hyms51MLDakXSL4xV+NyLNaXppvCZLOnZFOs/RCPtEnWN/8nLzTLMpXrdN/qp9avN8PIVy6FuaQNKlkbTXqTLU885PjV6uLGkvQonfvW02a4yZNXls1tYYlKU4XnG7N6Rbrqx6iZPkz/xuSeWIKtHWRAcB9vXAw7YKfSxnGxMHHumOPfpbxyF9NI2FjXWbLsVIQ3/LvqkV149VXq+xbgvStnsU+5Fv6qCpUW/49hSpjuPFOEbzeyq06tel+/T49yXS4VaOqZ+G9NA+6X3ZW5/xrfehRx7OXk117ZD+PjbP5LkUxyTMdqn7ui4+Y2l9/5zGJ7dL3uWkQ84rvM8oNO/DJEEtcEle3TXd2LI07w6XfJld2k9wm2wKvM/lCvuBY/XXKMH72ixw7PJD7I+jnnkX70f4/iton07UwtjbfPo5lM/PjG753TuoFe4H+Ld393BO9N2PPrn+7JG38jLF+9jbO4Tyo7uoxQ6tOuBXRb7C+Ojt4TN/6/uoxd6sTPylc3yHvTxDj+c1eTw71vjDemfX/+bxo1+ahRBCCCGE2IImzUIIIYQQQmzhxvKMnJamaw9/5m4HZnlmp40/+V+QTdxqidYt735oJBmTbAzHmhal2GSrqJLKc2spekL2Y0e4LBSPsDy8YyxSSpeWywO85/vvodXP/t4+lO1VtJMrtIQJS1yu26O0tDXZlS035to1pXYehrjs7JGkwG+ZZ6x9XBIp397KltOjJbnxS5S3tK1ltg3Zwpx9/imUC1pm3Nkzy0JttrCipeQWLdPvttAmp23ZiU1mUzgW0fL3iKwE7RXdyQL7S0b95TXJbDokYWoFZvnz4hIt98IO2qmdn+N9Lmd4raNjE5uXY0wj2hnguWqyg7TX1aoCz8v9+LbxqW1ZFtGy6jCOsV2TBPucSzEUWDKJFn23YKulhpfuEdcSHQSUbpnlUzXJAGwrszSjJXFeDSZbTLbjagrTdnmFz/CGXCMgOzKqa9+6r7rhumPrMuqD1vdLkhe4b9FyrqQUwk5FS7X2YxQ4zjZk11bQGF1Z8eST5MaPsH7o1E5D8gTfaseAUkpHBdZXRvZtqW+1M1kjcl3zfToOtY11PCe5TuOQpILkZxzXm9p8n9OXs51fTefOCvOMYUCp4oO397vfa0rBfI/kCXlp7nu9xL473MFxtnJQOlpa/S8rsKPXNc5jdnfwHfbJ+2il+M++NjZy1Rrv4/4IZRCjDsbme48fXn9eTvEe/+lPfgLlKMJ3VnuAE4qV1aFyendeLfCd1pCCqbeH7dxYEsMZyfKekfVd2MX6cRpTf5MpyjdbbXxP3AT90iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsYUba5o/evQOlL+coI6ksOxt9u+9D8dOJ7+GcmsPNby2nuXlz9FeLCY92KiPeumahLm7B0YLs/sQ73lMllU9uo/BkbH3GXVQ+/NXv/0hlMM+2VCRJU+6MfqwFom2GtKN1iXqfc43qOmyZVv7EWpwuiv8f8+KdGmbobnWxZysywLWtN0eLplLdSi1bGalFR2foM2gQ/XV7pN+vDbP0SWNEismT1+jPQ3rVxeVadcz0nQtSUv17g5q2irLCq4kAerRPt5zlODzL8jO52JtypsuWvl8TvZ9hZU+2nEcZ6+Dz/Tjr41+fLPBOD06ugPlXepvXSu9cklxfLUg/fMtMxpg32ddbmDZB5Ul9qGILNU4nbVtK8dWXOEbNlf0t6TR9K3vVyUJNunkbCdl23512rgPoCBdPNu38TPbFnQVHWNtaKeNOsCY+kWam7ZmS7CYYpk134WVMrfK8T5y1ovfIm32V6T6tNM1F6S9dsiOzW3YbtGUPdIKe6T5fkPXTaMUWt+R9R+FEz2C40A749/yfhe3xrbglOYda79Hq8F4qdkmju6TY9XeA5WRVp8HaZ808b5V1x5bAdbcDrdHl/bD3HuAdm4dK430T3/9Czj286++gHL7EPtMYNkQ+hWnP8d46cY4b0nIGi6x4ifaMlZ1h0Mo2/upTsb4rlxVqJ9f0dj19SW+t4elqQ+2r6tpD8WGLELdJZ67rMxzbEq8j5JSzXfI0ne1MPG2oH04jfvNfzfWL81CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFu4sab59SXpO0mL5lta0gVpLsMUdUcH91ELmlk6k1aBWrp8jH5+VY7egJmPehbvwNzHGf3tLMNn2ExQ43x8dN/cM6U63X18jOeav4by+SVqvLtDo4m+8xD1rJsF6nfaLj5ztsS6LXNTnrmsgSQ9IelZQ0tPl5DO7KCPmsnbZDLDmOAU1WVpnivq4X3tU/rv2QrbfLMxf7vOMdZenmD686+fvoDynSOMxYf3TArzr19N8VyX6CH+OkPtYm/HaM0CTr18jrEYkZXk6QSvdbUysRmQl/RPvkSP65q0iXd3sP4CK+U9y+VeXT6F8vffwTifWt7eHmlCvYDMNW+ZwEGtmu9jXNja0IhSJnuk7ctT1GPbh12P9c6ko6T01jULTa3bfCM1MWmLOc12ZGn/fEqbvaZ9E6wjbUL2RzZld4ufrRfytTBQCiuFsOuTZpm+u6L0wra2mi16C/ZOvkXqksZOksNW1n6GMkftI+uBWf/rWT7Ooc/+yFj2PTrO6dCteGoodbND5Zr2QtjpzoOEdfz4DBWlG+Y07b6liY5Ip1027GPNfYLu09LKBpTKuSwxBt7YB2Cdqyqx375RP7dIHGP9RaSdjdvm+HSB74pViX2iISn/dGbG+zV5KxcO7UPZI3/2Euu+a3l7t2JK573GdkxJO3xp7XvKI6zbh+/dhXLF6c5pTM3OzH3fO8b3bJzQeBTzngGM3XRt5m6DPXx5Ht/DvS5RTO8Fa/xpt1EP7t54BmzQL81CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFu4saJjRl7CUYI+xlVhdEkvfvMrOHb12QmUd4OPoHw5NrrTaoran04bdZNBBzXNAWnNornRBs3HmGc8Hu5COVuhsCi0tDBNG7VAzhB1pfUYr5vEWB/7B0YbezJG/8Kd0QGUyzHqivKXV3huy9PYO0C96lWFerA4RD1Yv2WeqbXE/yPlC6yf2+Rsivpxkik7tfX/t9zDZ1yU+LdVinqxwtLifXmB2uEf/uIrKH/9egrl+69Q5/57Y6PDenGC53p2hffxfPEcyq0dE6u9CLVjOwlqqc4uUeM922AsFpZutNNHDVc+haLjVagtu8yxfu7eM5r6nPS5r17id1vkfewVpj/u7KF27O5djOPbpiIdYEPP3VjatVaCz8F+wIGH4wpomkljGpHet6BzNSSrzGpzvMO+4eQP7ZLItyqtZyJttdewLzWOQWFI3sqW3rUocJxoSJPrkD46iCIqm2vVNOYE5PfO2ljP8q1mDbfr0zh7i2wK1Ck7JfkYW02RbnBcCEjT60d037aOmfYYNPTblE91z17yeZpan0kLS3Lf1QzHKPtwL+zBsZTedzXpkqOI9hNtzLVbMb53/TfiFmOizlDfurH05CHVXZmiZjcg/b1v1afdx//5hd6ez/d4hnkOfvPFZ1DeP9i5/lxUf7bPd1mzwbapkyjB+pnM8L3z5AXuyzkaHUG5sLTqS4qfwRBj4vUp7s26mF6aWyZN/PER5gtIC5y3zGiP2Hph+tB8jnG6s4/vkpz6TLXE/pdaOu/hHj7D8SHuGZstcV7TtrTm3R7GcVp881wD+qVZCCGEEEKILWjSLIQQQgghxBZuLM84PEJpw+UMl3XtrIh5jj953znegXK3RbZo1gLVg0NcArj/+AGU4/toiXX6GpcqgudPrz/vtvFn/HwXz13T0uDggUkpvFnjssbsK1yKH8QoIfjBH/4elKcTUz/jz1GeUeS49NAaDaG8aOOySGvPHB/dw6WYqwlKOfYOaAnFeo7Za1wiCfsoKblNXr7G9Ohvpqk1EpTzc6z76RiXfYZdsqCz0rI+uZjCscs52V9RSuSLObbFH//GpDsNKPVyRVZR6YZSfV6ZZ2raZI24QjnG63O8z5RWGVtWStaQnd3I4qzKyTqqxqXk+aVp98Ucl0IpA6kzm+DSVpWauk8zsiHL397SqOM4Tiski0Ra8mxb1nwsR3Co7UKWSbi2LRrW75isBj06F6ec9ixLrZqWYTmdd0PWXHaduiHbMFF6YY9S01JcoMUYnotXuX2yfGpIrmE/B1uX8TOybMSPTF/gv33Dyu0W2ZDfYkXLy75VRwXZZznUTg5JUnzbjpG/GpO0j+Q+nBq6tqQO6wWOfRyb+YZSUlsCjc0K2zQr8LtvtAW+Lh27dmrq+90u9sWI5DwZWfaF1n0H5Z8tC4nI2s33zXGPxu908/bGoA6lnD6foFwjd829JJRyey/A+kojstmrTVvVDVnI9fC6K3qnBTSf2rVsVDcbjJ+4othLcCBIrVTZYYXHZmN83n4fA+ZgFyUXzyzb1LPJJRwLSSbR7mAfmU7xWrFvvr+c4Dt7b8jyDJwTlY5plyDAzhn9ORwv9UuzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWbiwoq1eodSzJXqTVMpqTPdIdD7uofRlTeuv7D42WuO2gZmtIVjYd0vssyZ6mGhhtTLOLqRtbZPVW099mkbn21a9Qg+tdXED57t/+AyjPa9TgLHNTfvcB1sflDOtyucb6iO+gNig5NHry3CFd6Qr1PTutx/i3Q6OBXj5HXe3Vq7dnObdaYbxckD4qTU1bnJ7iM52dUf2QDWFpSTsnpDN2KZ56pN10KJVuaVlHdXqYijkkiyZOc2ynNa5S1E6tXNT4tWPUvJVkh9UJTRyzfn5BfZHtejZz1PnNz40m16tRp3a4h3qwhHS0rY45zvrT6eSb2/X8RahI+9mQLj71jGaTU0zHpJv0SNNcWX52JVnK8d8mpFENAtRzlnZ6WdIZl6SN9UiXbWsbIz+hYxjbCcWFU5Mu2UpHTDJ3sKVyHMfJNliXIe33sFNls67WJzu2ThfH3cu5Pe7g37Y7aMV4m2SUctol3bvdNpwaPFtirHNf6PRMfy4CsnarsW/7FdvskVbdihmXYjEjezaf9MF2FykWtOeC3qUe2zK6ZMsYW/dFz9vENBYGGKuDLr7D2nbdkk1cQ+mYY0qDbKev9sgSs2L/zVvkzv37UO6Q9vrojplfnJ2fw7HuCOP8sxO0Qk1aJn4OBrh/rImozXlDAuuUKzM+raY0JpBvJ6f3djPz/cPBEI7tjfC+OA17i+yAB0MzPi3IwnFNGvkrmhO12ErYGq8vaT9QRdPYwyN8p8XWvoCa9ttt2HrzBuiXZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILbgNC9SEEEIIIYQQgH5pFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghthDc9Iv/3v/9/wzl5XQC5YO93evPV1dTOFaVeK7dwyMoP3txYo71+3Ds8M4elN0QT3ZnfwDlH3/5k+vPuVPAsfHZAsqhV0H55MX4+vPZZQbHOsM2lA92h1DOrzZQvricX38uXDjktFsJ/m2Z4335+Ad375q6rWu8zi9/9msop3jYWazMP7z//rfoPvCZ/v1/++87t8V/47/5l6BceD6UfdeE4tmXl3CsvY8xcfwvfQzl+eWr68+bS/zbMImhPBxi3eZTrLDR3vD686tTPPbFP8Zzu/gITt61rhuHcGxyscR7fpnifTp4suNvHVx/PvreARzzE2y31RjPtZmtoVzXq+vP63O8D6fAPjA6Poby1YXp58vXczjmVPh/7le/eencJv/m//JfhbIfR1BOc1OHp2Psvw0NdYMOxkFo1eksw7+dXs2g3EtqKLs+jjO7QxMIq3UDx4oC66ykweGLr8+vP7//Ho6TToXPcH6O7VFUeK12x8T+Bw87cMwr8RmevriAcl5h3RapGXd7XXyGfg9vM3BxjC4yc99Ulc7rKxyT/+Ef/VPntvj3/1/YL1wfn8N3zH1HDsZA4GHdNi61o3U4pO8eDrEujwbYjsM29v24ZcqTNbbTVy+xvhYp9t/7uyaOux7GZVbhe2ZV4XVfT/GZxgvzHH6F91HQeFU5eDyscJz56K6Jv3fv4dg4HY+hfHmJ7bRcmftOcxzrfHqH/72/8y84t8V/6V/7V6A8WeD7YFOYZ2618b0zn06hHAV43LfGp3cevgPHBl2c4/S62Jc3GcZEU5t2Ozq8h/exxHZpJUMoe66Zm+Q5nvfJ059D+fvf/TaUv/vtP4TyL3/51fXn8/NXcGx3B5/hwZ0HUP7wo+9C+Y/+8X9x/fmzL3HO8/4770N5b7QP5S+//PL6c0oTpMbBvvp//Pv/rrMN/dIshBBCCCHEFjRpFkIIIYQQYgs3lmc0Li71FCUui6SpWZ75za+/hGP37uFP75MvnkA5s8519+gQjl1McQnEi/Dn9H4PlznKxvw/YDzGZcLXJ7jc4Hn4U33SNsuqdx+M4NgmW0H5/IyWM+e4nJd0zbmyFV734gqXSIYjlKBUtGQeB2Y5652PcKk+6ePy7myG/w9ar8x9zWf4vIODrvO2KEjKENOSZLE0S3DdDq73hiHKWTwHl+8Ka6nZH+JSVtLBugy6WF+jaIg31raWaGmZdXKG1w17+Ay7x0ZGQ+oTZ1bgsiKt/jp3voNLSp13zPLV5BlKoQ6/h7HZO6I+kOK1CqtvljVeuNtvQbly8XiemzIvZ7usT7llnp9h/AYR9m8/MM9yfo59zvHw3qsUl8z7fetZqI7aAT5nSPXQGWJ7LNbm2nMaF/aGKDXaPcR4fXlydf15MsV2zNf4/OsVjsnDEY4NTm1ifTzGfnCwh0P/naMdKG9I5rWyrt0f4NJq7eCXC5J+2FKl0QBj9eUZxvZt0o3w2o6HY0HgmTrphFg/RyNs88THZ1xaMrhOC2Pr7j7Kqbo4nL3x01Vp/UNe4z0e7uK5ghnGyPnUGu9JvtTvYV/PK5KgxCTvsa9d4DH/DXkGHg9rulZtnun8Cq+7pGcoSc6ZhCZ+2jG2S4dkELfJ1fIMysuUxhgrJiKS73gBxkuni20TuOYZu3SsKPG98/zlKZTDEGOksqQ0l1c4f3IcHAfWS5TsxOHw+nO7g7G2WWK7ff7553QcY+DizMjHzs9O4NjyAN/xZxcvoPzlCzz32ZWZb802+ExPSOr49CXWR5pa7zBqF9+/8RT4Gv3SLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixhRsLOnyyQSty1NNdXUyvP5+fouZkMEC9XJhEdNzoWyLSLGU5aoFy8q/Do44znpj7WC5QC7R/gPcRxKiFabeM3nC9IkumH6MOezUnS50PPoLyzq651o9+8hM4VpL+a7XBc416qHPMS6PJefIM9eLdXXymRU5WW9Yj9ndRR7TIyP/pFskCtBlyPGzH9sjERO2jXs5t4d+mZ6gvbw2G15/9FtZty8dYbEhvmQUY1+uF0ak1KeryipzvGTXhgaW921ygzjOirhZG+IwRycsfftto+3/1H2HsVUt8/oS0Z1GI515PjI4t8lED2OqiHnd6jjFRTEwAuS62Q5h8cz3YX4TlBsWgDfVR37J+yzLSYNJeiPkS+76tz44T1P0l1FZpgeNKlFJbWlrS0RDrqCkwhs5O0DYu9k0fLTb4t/0uBslwQPfZxu/P5uY+V3SPV1MaG3uoU+6R7ja6Z/TS0yX+7XyN99Hu4H2OT4weMS9w7HddbJfbZNhG/WZZY/zY7bw/wN+TDgY0JtF7qW1p5gc97CeRi9fNUnx3pgUezyszJi02FLdXFLcNaWM907/ZgpDHrxHtK+niMOKcj007bzJ6L5Pu2KU9A0mAAbTOzHhY0X01DXsWYjyFVox4Ltb7muYht8liNYVyWZOln6Wd9Xx8xrrB76433O9NfY1pH9dyivOD9Zps4+j92FiX3mzwuiN6Z21SjL21NS5eXmKbNg22SxTi8a83X0H5/LWxEgxp/8t5ie+woIfv4dOr11CGPSn0U+8yvYLy3miI57b6dVliu+RkYXgT9EuzEEIIIYQQW9CkWQghhBBCiC3ceH3Vo+WXNdkfXZ6ajC/vvf8uHBuN0Gap1cN1oNzKVOTRsn0S4S2uUpQfbJZ4H33LNi5b4xKI5+BP8UOyTprOzLLHixeYpYgz+IzuDfE4ZckqPHOtv/LX/wCOXZzjckIcowzgLmVlqypzrtMLfIYgxfppxXgfk9LIDZKYs+Ph898mVYXLREuSkQx3TB1sNpS5akKZ6FyUpCQHw+vP81dfw7HuIWW5Osd4iQe4tOUXplyu8T5aHay/qINLkJMTY5/lprgM1CVrxAVl39qcY9w/+yMrgxKuZDn5Av9hRX0giPG+grbVzpTFLyRdyGaCVoq2vCdKyGKuxuW622ZF2Zz8Gut4d8/ERZuWj7MKJQU+WYo5lhXRYID9cb5Aa6mClvXHpyhpCax+1iLbr90+xu6L1/i3rmOWKd0K69etcAmTs47VNT7jaMe0V1Hi3y6W2B/v4W05rYDsFueWfdQlLg8XLp57SOPMgdUu5C7mRFPsY7fJY8pElxVYB4m13NwKMIAq+u58TvHkmrbqUOZGWhF20gzPNZ1gDGys7ItlTdI0qj/OTNi1Ytf3MX52Sb7TJou5ssFn7uyZ2L1c4d/O19TBSHLItnsbyx4xpzguG+qLDVlmWvKMhirTJ0u+2yRbY5uzZWFtyU6WFB87A5LQBVg/tpzl1UuUJpAqwumSHK/dJimMNTfrdXHulYQ4tjkRWXFatoukGnIqenfUJb0PSMLb5ObG9/dxTtMZ4T1/dfYpXqvBi7d75j1Vk93hhiz5OiFZsFqhys9UFBzH29EvzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW7ixprndQu1ju43amNnc6Dnffe8dOMZ2dXfuYMrgdW40Kes16rtWG0qZTJZzZR9FKrVlBUSyPMcl/dPsCs9tp62ta6yae3cfQXl3B+tj2aBOuSistLMhWuq0u6Qt66BGp45Qu3n62pw7z/Fcc5ReO9PxOZRPnht91PHxXTj22evnztsioLTRVZ9S8Q5MfY5focVasySrt/uo07r8wjyH26DedH6M2qmaUl+7EaU/z03buD1KNfx4F8pj0jxXY0urSLZK+RSv20vwGe7/K3egvDk156rGqGEePKQUpC/weBThM7u+0c/Z+njHcZyJZdHoOI7TaaNezrceka2ics53e8uEAWpBWwnGkG/p8xoPhYCDPtYZWwCuLBunFaWQzklb3Olh29F2D2dsWURdUproeY80maQxtLWPZY7tmlJu64o05V1KsRx3jbavS6nAqzaOXw1ZYs1nqFs+OzfHwxDr3SUbsNkUNeBty/KJM1kP3uK+iohy1ycJpTp2zDO6ZCs4m+O+itNz2vNincqt9uBYn9KbVy72z6g1xOPW3huXdKQj2ldRkT44apv4CqkPxKRxLlY4FmwyfObKCuzAwev2qe4q0hq7JdmTWeHXJw1uQ8axFb2nPc8cX9E9vyEYv0U2pFP2Apo+eXaZ9jjleJ8e7cdYZ2agXa8xTlsxpbNeY18N6D6yzNS95+IYnZO97WZF9qXWfpiCbBU9D3XY0zGea0la9CS0xrINnisYYgwkHo4DT0nX3bOeudvDDRjtCMfQyRnOIVPLfjTdUB+QplkIIYQQQojfPZo0CyGEEEIIsQVNmoUQQgghhNjCjTXNrQB1Nf0EdSXvPHp0/XlEPqdnp6gHW80p7Wrf6KUW8xM4FrconSml/R0O8T7Ofvar689LSpH44OEhlBdL1N7NLO3ovQf34ZjXoM5qtSHz3BifaeSb+05PzvC75GuaBuSdS76DjWs0ThVprVNKyRpRSs09K3X4eoHtEHqU2voWqSrUQy2ekPft2GiL+o8ewLHZFeoHc/JHXp6ZtKOtAV7n/CW2k09ppNM1fv9oaGIk76Nn8e4+almrCzz32rqtLEMNV+8Y43bwHmpsDz5BHeSVZ3RZXojt5LbJf/Uu9s3x16g1Sy0f4ZhSQs/J+DVfYezZGvGUvGrfokWq4ziO0+tinZUutt3S0uANRvjdHmnoL0j31uqbtp1RP+H0se0+Xrdpoba965j2qMmPNSONqrPEv40tn3XWerZIb55TCuExaQxra4w63hviPZeom5wvUWNZUfpm33qONulqQfjuOM6Gciwv1uY5ju5ju1zN3p7Xd0513ZDPrlOZOplfoqbyyVP0kZ2tUKueeKZfTfu49+Hhe9+FcmeI76Go9dv931lzWVak/6U9HGFknonfWTV5KTc+xqYbcnprc+42W/L6GMdvpCcu8L7sSO24GHsu+YvPVphGOqtNHfgueZNXb0/T3NRYXwXpdB1Le10XFNe0/2OW4bibrU1fjWiPU1ViXa/m2O+9c4zFKDFzhFYL35Wspa5L7BO+FQN+RGOAg8+QjvG9FLi0x6Rj6mNBbRwvcU/Fe4+wj1xcTqGcr8yY3Oli/TzsYX8b7A+g/Nlr05fTEs/LcXwT9EuzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWbqxpvjw7hfLkCjWBH33rg+vPd++ipqRpUFdTFXjZTsto9d77ED2e4wT1K6MYtaGnp6gNuroweqnOPvpj/uJXv4FyXaImtdsympzzF1/BsSJFfU9Zoa7o3gPUpO7umnN9Sn7I0xSfaef+EZTXM6zb0Y7RJacF6i3XpHn7zu99B8oLy4d3eT6FY/0+1uVtkpJfZFLQ/9csndbyNeqsQtJlZReky/KNhn5VoZftKCYNL3k+b2osz3tGe7VakDZ4iRqujz78EMonE+OnPZ+gzuz++6iRX6TYjk/+r19AOdwzfWLvrz6EY/kZauTrDZ5r8RWW8/n0+nNAmtJOB3XaLoa1U65Nffb6+PxlTZq+W2ZNMRO0cBxxLV1p02C7LxcYF90e6oPr2jx4Qd63voc6ypLqyHPwWmluxqD1Gq/baaHuLyZ98GZlYr+g512nOF6xPn24h+fOGxPbqyXedL+L544D3IcyXWG/WFme0fMrfCayb3Xa5MObW3Hy6uUUjqWLt+f1HSVY17MZ7pU4ffXMHCNN8+npCygXBY4NTsdoNEvKYfDyOb53hqSHPnrwCMot61wBya7Lgv7BpVc47Jch72QHY8D18Xjs4blCuw/xZWlfTu3jWFCTPrqyYsClvUZPnvwIyp8/+TGUF0sTb7u79/CeE9qX89fw/fe7hOWvJe0pKHOjYw5on1IrwvqJqL46fVP3hYd1F4TYR47u4dgVUEKKdtucKwxpzHSxvpIQ50ihpRkvaF/OyXOcA+YL1KZ3aH/ZytIhL32MeT+hMZbG8g8/+DaUW4m1r4vGjNk59sV9mvd9+IGZm7bPXsKx6s+Ra0C/NAshhBBCCLEFTZqFEEIIIYTYwo3lGWmJP69vHFwCPrNWDndp2bCIUG5wdo4pp9NmeP35wSO0D6koVfHpGJexixLXBu8dmRTdT1/gEtveaAjlwyP8Gb9tSUG++vUrODZq4bJ2QpKBmlJfrtrWMj+lZO0EJOUg+UpNKUu93Cy7ujnJCyhl7cVzXKpYLKfXn99/5104dnlBObhvkZNzTO+9E+MzD6y2WGRo1+OmZLNU4jO6HbNclRVTOBaQNeLeLsoRLn7+OZQ//dr8fa/C7+aUJvTOMVpHffDB8fXnzRwlFC/OsU+cXOFS13KB5+5ZNoxVgctvi+cYa02Oy+XxEK8VjUz9FB4v0VJ6b7LV25yZ79eUtjmgv71taChwIh/7QtdKG72hpUPXJZu+PYy/qZX6OiJ7zZQkFmen2OfyDdbpzDqXR7Z4oYtt2UIlm7NOzX03Fd5HRmMdL01XVD9+aIb3zRqv2yFbq8sZSj8Kso2L2+baG4rH6RLrZ7bA8S7yjFzBb3Bs85u397tNWZO9lsfyInO81UWJxWCIDXVBdpMXE/OOa5Hs7WKBS8KTFb47hzs4RnUT0+5sGxd4bPVGqY6tr7OdVuNwgODfNg3GU23JlFiOyOUooqkEnbtozLVfvMYx98c//k+gfHqJ9n5Fbp7j8vQJXsaj5fX/+n/HuS0OD3DMKHLsQ7ZkJSEp0KCHdTvoYn11LZlclqHMakXN5pH0pRPjubtWOfIxfiqyjZtNsK+evzKxuZridZdTfF6f5T/UFgcHJo53DrD/5DnG5nSG84O4hWPdo/t3rj+frHD+OFniM1xeYWz+1e987/pzr4X9mu1Fb4J+aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2MKNNc1XU9RgziiNtG/JSJ5dUbpF0oJeXGJ64q+fGB3fk88wveKQ7IvSDAU+dYOPMJkbPaFfotbucIC2X10XNTqrK6PbfnDnLhzzKeX0YoG6Ro9SksZWWtEffPAx3uOEUnKTJme+nuK1UmNZNzx8BMd2BqgBX1EqXS802qrLK9TvcKbP22T6JbaFf4R139ox9TWfY93Gu6iHCkI81/RrUz87Hw/h2PiK4uX1FMrFBcbX2jf113tImkeUmDpPn38N5b/7+59cf271j+HYp7/+KV6H7J8Ov3cHymlp6qCgNt2M8fn7j1Ajf/QYn+nyibFPXF5iv3XJOout2PKVCRJOJx31324e7YIC1k4X6ziOU1tpvsOQhjbSa65JKGi759Wks51Osb4zTmXMNmC1pSHP8bvrEJ+h1cG/zQpzX76HbeFS2ucsQ912FJBlmDUmLTb4DOMpxsGAUjkfUKp6z9LCBz3c3zGlFNxs9+dYdnaxj3rflkeCzVvk1YtfQnk0wHHlwNbz1/geOtzH8hOyEPuHf/SPrj8vNjieP3z8HpRP6P3n/eynUN7fMftyCkpz3FDa7IzSMUdWuvNBn/fhsI4WtbMOWScGdvwsUUd6QtZdMelqK9I8n56dXH9+9uRXeOz851Aua9wD1Vj9aTnDui3oHX+b/JXfx/d401Caacvykvd7xGz9Rk55y7kZF86meGx6jm3ckK49T3DuUYbm5C0aB7MK362XpGmeWe8Hl9KGJ/RMXkDv8DZe6+NvGXvAo3v4jprOcI64WPCYSntQhmae89kC96p9/hT3D9Hw7Hz84ePrzz0fx7mMyjdBvzQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmzhxprmH/4pprr81nd/H8rTqdHLVi5qZ4+6qGO7S+leLy39b4IyIWd6cgLlE0rfnXRQa9ZqG53N+++iZq0T48nzOWoC55dGH5UMSD/ZIo9COtf+HqbC3rP+O3L5EvVgP/xjrMsNpcFMUE4IXqbH5LWckp6yTFEDZ6fKnpN2OiEt1G2STVBoNHVQi7aYGX1wvSaP2B1sp+AQz9U2EkCnpPSliY++jN4a29U/xviJXaNrnFkpyB3HcZoc6yu7Qn3Yi9PL68/Huxgvj789hPL5c7yP4go9s/cfGx3f+CVquNqHeO6QUjP7MdaPa1WBT/UTuawTxrrP/wydcBR/cz3YXwTXoToj4+bUSolak96w28ExaD5DLfd0avpoUGMdpWvUZ9Y+1kND3qdJZDSFIaXErUlwNx2jXjGwxI6ui98NSc+6WeM4G/gYy66lMSwKfIbFHMeNFtvskizZfowZ7edYL0lbHWE/mWZWX4/RB3ywc+NX0F+YP/qj/wDKowH6I8eRGXh73SEcK1cYL2cvnkF5fWX66Pkr3OswH+M7bDDC624m6FH71Kr8usF2W1Ob1w3GXiu09OMBvkiimPpviMLakmIzsbz0J3SPdn9xnDc9oUsyDd9Ye6AWi0s45kcYT3VD+vtL88xNiWNOlLw9r/gPHj2EckX1ZdeBS3nHXQ/vc77Edvv5Tz67/jw+wXEuzbEu3RCvm8+neHwwNMd8bOPVCq9bFjhmdKyBIE8x1vwInykmk/nDI4zrO/fMi5m2jzk+7b/oDWhv0QRjorBSlm9Ixz+bU998jfWzODOx29rB64QRzg9ugn5pFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYwo0FZbu7h/gPpKX9xY9+cf25f0D+jw8eQHFUoWbn9HOTi75PHqA7O3iudoIanbv30A+33zV6utpFDe/U8mF2HMd5+fQVlDsdc+7H76J2eECam14X9TzphuvjZ9efn36FmrZf/vrXUP6bf+dfgPKwj7ot22L14Bifd75CzWQ/Rm/Xk3PzjEVN2qi3aNR8eI/qy0WtXmVpUOcbvM9H91B35SSoaao9U97rkbZuhfqmM/I8jnsYTxdfGb1dTZ7gO6RzvPst9PJ+8MhouPoRtsuBj+c6JH3qYobl1r7xpfSePYdj3fdQn7si/VdTYv10EtPOwYj8Q9sYaw21y86xqZ+6In9Q8iC+baKQNOUr0ulOTNu2W9iusYd1UmWo7XMK82zzFWoq6xLbMiIBsMcCYEsnfnhMXrnUP68use0ya2xM2vgMRUHPQH7SK4rXwhruyhrvMWrwu8cD7GN1iWPDeGG+X7I9NwkW8xLjYj4343DQw/53OSXD2lvkyRd/AmX2k/YtX2Kf9MAdh/S/Y2y3xanRNCcd1EkuT76CclTivpyqi+841953QHsO6pp9m/F4vjF/G3r4DL7P8URa/Zr2e1hxvaE+4ZNXsOtiHylL1LkXpblWye8dF++LtjU52dr8S0P7DcLo7WniA8oJ0dQFla2O4dEz+tQnsBs4l9aeH26HMKA2znEcWFK/Hw7MvgGPhybqbq2I9qVYfYL3VASkW+/1cMw4voNzxMDycc5yHG+znPaX5RgvHG/5xvTNXg/7V0J+/Y/vYc6DtnXfZ6fo6ezt07z2BuiXZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILdxYEPT8Oep/Xz9Dn8aDHaPn3CGNVnW1gnJB3pN9y/8vJC3QgLR2o2PUcwYR+n6+fGn0Y70+6gkfP3wPyp+8/wjK7Za59vwK9dBnLy+g/LpCnfKrr9FL9/mZ0c5ULuqGvv/9b0O5H6H27PlXeK4H73//+vNigdqgKXlNlzEeryztYquD11mR5+dt8tH3HkP5ZYrxs7I8pMeneF/pBWoAjz5GTdPF2GivVlcouNykqP8qG6yDzVO8VjU29Xl8/wCOXU7xu58+O4Xy8MgIxr59ZwjHgjPU08cL9D299wH6fI8tr+p7D3bh2MQh/9UABXK+i7pZL7T8MhPSU/oUPyn21bhv6jPwUFN8/hz/9rZhTWZNmkLX0uPFAelKSURYlvi3haVxzknv7LoYU1VBx0kvnFl64DHpzQ/3cCzokv41is215gscg7Ic79knjTdrVMvS8p1PcExOYvL6Ju/p83OME8fy6K5IR5tlqD8sSJNZV9Z+hTn2g1aI3q63CclKnZrUs5m1eSQrsR+sSvKRPcfjm9ScPCEP/ybF+pmd4bu0nOJvV/2dobln0g5HMbY5habTWDr3gyPUdt67iz7DmzWOjecX+E5bLkwM9Nq4JyUiLWwY4n0uFhg/k6nlQ09a69phnTbG8WjXxEhdY926tFfhNmlIl9vQvThWl6orbJikxvrK6N27Xlp9lbTDgYt9MyswBmrSiC+tOYFHmvggIE95iqfa7iMkiG5o7wbro4e7+N5xrcdoKvzbkr2n6dyVh501tcbUPat/OI7j/JXvfQLlD+6hTnmxMePolDzm9w7wHX8T9EuzEEIIIYQQW9CkWQghhBBCiC3cWJ5xdID2WtmGLGYK83O6O8WlqyzFZcavp5gyuDUwS4eDHfy5/PQKlzHiDS7dvHyOdj6LlVli+v0foAzi7NVTKC/pPi7OzHL7i9dTONY93MfykJaYFpRysjLLRru0nOC5KBt5/pLqY4jLaKPDd64/r8lm6/WLF1AuyG7s4K6p23SNbRb33l4a5K++wvss93D5arU2y+cBWVjVFGvLKdbBZmyWep5/hpKJnRHKeTxawnbIYi3zTDktMG6Hu7SUldAS7cg80+gQr1s8wzj9aIFyge4XL6E8yK0UyLTE1qU06y+nZEE0wqX4/n1jU5hsUO5UZhi3V8/xvuxMsR7Z5LX6by8Nu+M4zpzkMVXO1kwmblZrbDuPlhqTBGUR6xUuF9qwPKOscIkzILst30ojPZuihMWtcXmwQ/KM0rLUyku8p7Kk64ZsAYXjii1f8Ru2l8S/ffYax6DlAmP7+I41LpMsxqeUwTmlF44tGUn4xu80b8/2st5gv2g8lt2Y56qprnMP6/bVnOz9UrNWPTxAOVXSJenCHNNIFwWeazAw54pCXPL2a1wT9zx8hb/34beuP//gL/0hHLt3FyVyJdkKTqcoQZzPzH36JGUJKQV3mmF/W5I847PPTZroL7/GFORuiHW9Wk2hHHestOI199O3Z3uZZxgvDcnFXCs1tE/jTRTguzZdo0RnszTjbme4B8eqBsf3gOQ/JdXJ+dnT689dktW0Enx50NDlNFZfXqc4dgURPlObYs+JySbOapqMfCorGkNqH2NxTXbBq8KMk59/9hkcu3iGsqIk+QjKvX3T790u2Ru631xiqF+ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2cGNNcxAOoXx1hRq483OjJZ1HlOqSLHd2B6gte/e+0ewGLTw2P0ON5XSC103I+ma9NkKaX/3ix/S3qJOZjFELVBVGsxO28BniPdQGTSaoM3r/CG1OMktLlKV4rpMTtF3aJa3Z8XsfQLndM7Z6CaXOPdjF+5jOsX5iKzVsuiF7sQ2lEr5Frl7jMyc+ajkDyy6sv4O625DSisddFGIN5saSKOG00Bl+l9yOnPYBWha6XXNfy0vU0B6N8LthgjqtaWr0qtFoCMc6PdQm3hvg87vUFbOxufY+2S7e2WBdlnPsX2cd1BqHljeQl5DulfSUrkO2QZbNUu3jebuH2Fdvm5Qssnptulfr85rSsHpk3eW5v/33gm6XdN+kb+WyR7rA0q4zh7SNCZ57Ttr2+cqMUe4b94znetNiDmMojiz9HumjV1SXUQvjsSI/qZllf9fU+Pyhj/0g4hiz9IzdGPtn9YZG9fbINlh/bEfpWs/R7eOehNqndsvQMnJybs714Ydsi4r106W9ABUJS5vKxDXfc0E6/h/83u9D+V/8G3/3+vNwD99JnR6+w3zSdB+S/VZujWd5QWmOqe4+/fRzKIcx6rrv3jVa619/ge+oqiRLvhk+c7dtztVusVXi27O9vHsf90gVOd53ZaW5X2eo6U493MuwLMlWtbDsDjNKQe5Oofz4o3tQ9klv//lvjOZ3ucY4XS3pXZrhGB6F5nieYax1Ahxvu7s43qwafC9llhVe5ZEGnvYylCUe99ukgbas8q6WWLfPxqhpbl3hWPadd8x8KurgPV+mqOO/CfqlWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiCzfWNP/JD1EfXFEa2tDSbc1DFI4mpHHuBajhmqdG3/PxY/SDPqC02S9eoL/hz372Kyjb6XK9GrUtR3cfQPnwAaXDtdJXbiiFbZe0MIMh6lsbqsqLpTlXTfcxOEK9l98ZQjkjn9PM0kpFMWqQ9vcO/szyZm00OwX5Km5S1FPeJhml+vTWWPe2Z3R8RJp4DAEn7lMq1bX5/vgC/WVLshJOyF+7TxroMjL3uSL/47yLbd4Z4MnLxtzXOMJ7vPMuem8n5A+5WmN/ai6N1rNPmu69PayQjYP6uICsb19YvunrDDWk489R01WTRLAVGL1cRpraKnt7elTHcRyyinUc8o2OLH/kRYVfLkpOjc2pe83nIMDnzDnlK91GQjrd5drUd00ez2tKOZ1Syu7Y8lEta3y+NzxVS/yHBaWI9Yem7djP1w/xnl1qWz9AjWFl7TlwyN83CkjbmLGHsXnGHfKlXq3eXhpkp8G6HvZwLG1b99YiH+/JGjtGU1E7Whrxp0+ew7H+J6hB3Rmi539Gum7Peg9dXF7BsXv3cP/LX/nrfxPK9vvBC3AcncxQc0rZmp2Q/X5PjHf8ZIXvivNLPNf4ijS8NL4/f27e26eneC6ffJrTDd6Yb+3jOdq/D8dGfe6Nt8dnP/sllN0CY6Bl5WmPevgMLpnreyH2N/vny6zEucfxu6hZfvxdfMe3W9hX739g3g+TCxwTFhOM43TFPvLeb/1ukmA/v/8+xrHXxnHB9pfOK3qXevjdvKbxKcZ23ZQmZpaU9yOKOcU71pe9x2S+nMKxMMK9CjdBvzQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmzhxprmLvkWP3wH9cGBpeGsSR938eo1lOcb1GnltdGKvj59Cseef30G5cUC9ZtJjLq/0b2j68/7u0dw7OH76Fs5I7/byczoZoIGdUNehRqckxP0P3z+cor36RhdUdRBPdMopmrPUKMzuzqF8qOW+X5UkGdsXlMZtbFBYHSeYYDfLaq3pyd0SfdZkh4ze2X0Ye176AdZJnif4ym2xfLCxIRX4996pAeOYvJIzUlLZWk5a/KqXaNc2jm6ixrn9kOjj/rxy0/h2GPS4t2tjqE8m6POb2nJ5Q538T7e/9bHUH6Zo0/l9OdfQjkNzcnmE9QeTl/hdTuk8+zcNXG8OcP+slli+bZpSozfzYa8mC3vZVY6BuR5HEcYBy1LSzydTuFYSX7I7GdbZKyPNvdZO3TPFEShj2NDVZvYbkjEHVMfokdyXBI9l4W5dp5jH7Kv4ziOMwgxxmrSgC8y8/c9Gs/8AGs7JH3iwto7MSXddUYa79ukKjH2494OlJPE1FeWoZdwv4+6yQ55tNeW13CRYRuPdlAfnUQYEym90zJrbOz1sT/+wV/5AyhvyOP4xS9/ZL77l/G7v/41jgtuQ89AWtGz1y+uP8/o2HyJz3j/7iMoPzvHvUc//NM/uf5cUOztHeGYfTV9geVLM75dXn4Fxz4gXe1tcvIMx/Q+aYn92JQDH5/puP8Iym6J9RNY/e/wHr5XfvBXcT9M9xDHgbpC7fF+z2h6j+7i/qmK9hY55LkeuWZc/Po3OMf58suXUHYCHBdXFCN5vrI+09yjIc903ttBvs55ap4xJY/wwMH+1fGxzzRWPgo3w3t2aGy/CfqlWQghhBBCiC1o0iyEEEIIIcQWbizP8GhJ5Q9+gEvEJ5asYjzFn+kr+tn++AiXN0cDs4RwfopSjsUcl9R2Rmi39cl3UCbSae1df+7TstgVpVusxyS5+NIsk+1ReuX3H6K0Yz3GZ2q3KV3uwNzX+RUuv7UrXBLwArJo2uDyQ2ktoXhkpdU0+Lc1lV3PLCv2h7jEGNTs4XV7VJT+td/H+k2t5ZckwqWZ7JLSrJL90/q1qZ/jh/iMJX13OsNloGyFbdE+NjHjD/E+nC6lC6Zl6rMnJnZPS7zu6x/gfX1nH5eGM5L/HNw18o2DAS5tNS52289fYP386GfYh4a16V8+pfD1KDV2RjZ7876dPhnjpdXDZcLbxvewj5W01JhuTFuyHINTUpdkI/fOPdNfRzEurS7X2NcPd3BJ+PNnX0O5sOqJr1vlGH8JXsrJrOXCnGIiJgkFW+PVZFFn96mC5Bk1OV5xLnCWpNj31W5j/DVkT1djdTl1bfrNipZpVymWb5OdfbKb7OFzeJ55xrrB/ttuY/0cHw+hfHVipErk5ueQS6jjuihtGO7iuHJ6Zt4XO3sYa36EDffH/+yfQHk5v7z+bMtNHMdxnr5AWeSzpzhOODmlb86MrCYlOzpyRXWuyBrv5z9HK9izMyM59GKM66OHKKPcO6T08dZS/nKOspnxjILtFnnnW+9BOaLxqLJkA4sVjsnFLy+h/OpzlD54lqBsRPKL9gDrY71BiZPnktWb9Vto6JF8s6G5h8djjPnbnX2ca/lfo2x0vcI49kI8d25JSSuyqeR3fBBiXyyp/61TE38NSccaF+unu4Pn7lqPMWTpRvPN32H6pVkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYgs31jSXK9SRnDxD+5HGNdqZUQv1qu4h6o73yL5ndmW0QN02Hus+xHNFMeqU79xFrfGo/+7156sJ6vhiHzU3u2RH9v5Do+9sj9gmCPVwJy9Rw/X6FDU4+dRULesaI0rlnG/Q9ivsoNAxL42eh62yXI81u6g7mi6MZd+dB9gOlG3yVmm1ULfXJW2e0zLP1e3hM06pHSMP28ZJjN5wcol1GfTxOo2HcbxZUQrbmbnPAaXJDkgf9uLTZ1D2bd0jif5OH6AO7TvvYrr4rMZrnVopb0P6r+2yxtibOVg/ve+hFm33u0bT3N3fg2OtEQbB1RPU/ftD8xzlgjRri7eYAtlxnIJ0ti6lqC4t3RwdekPDXJEuLl8bDeLDwztwrGlQz3o5QV1lXuJ9WRJelgo7RUXxV3AKZTNukKLeqehvfdZp0zOVlW1fh0N9Qfd8OZlCmWSSTmzpvLOc9M9kebWco57THv/sNOGO4zhp9vZiqL9Len6P6t66z0GPbPXwT52PPsZ01htL3hmGWB+Vj/URJthONelM945N/x0O0DLs/AItWJ8//xzKbcuC9Uc//Edw7HKCjfr6BMcRypLsBNZem8Khvk+WoSevULN7cYF7kSpLb88Waa0OjpWHxzgH8B0Te26N9dFuvb3f/X5zhnZ3JdmkLaZmjPdJ8915hePqxSmOIZ5l/9dUvCmAUrjT/jL+6dP1zLnYWrJkMbqDz1AV5v1ZB6j/pW1JTpHiILs/xLlaXbesz9xOGGxpgc+c0ViWWjaeTkP7ROi9HFBm7Pa+GUkrqtsy/+aWl/qlWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiCzfWNO92UNS1HKMeyrd89x4+RO2sU6GudExpavtto1kKShYjsgchcnKB5Scvnlx/fkpeiEfkrZmTztGxdLZt8qD94mtMe3m5RM3NxSXpHNdGk9o5QI3WJWlBPUpvfXQPv78pjFaqXmCTDTuchhfPNcmM5+egRo1SEpFJ7C3itUhPGOH/1/p3LJ1yjPq50QGKlFLSTC7PLR0zhU+7S/p6klJ7PipHF69NfcUFxoBLGsjeQ6y/uGO+/+wL1B7+8glq/j4ZDKGcu9iOu+98cP25zDG2ZpSK+N7De1B+5qN/ZrWy0gMPMfYG91DT7HOW1cbUx6zBv00Xb8/n23Ecx/fZXBix007X5Cldky6ZRc9PT4xn7fERpjjf30Ud+I8+/SWUC/JThjPXrCHEuLdTbjuO4/hWgHoB6ZBpvMro3Ky9tu+EvUxDl0S6dB8VlW0dYZaSZpf00Q11QltjuVringP2ur1Npun4zzze7ZpxpnZJUV7gM73zAeYpqBozzpydP4FjswL768bD8Yv3qTRWCubKwfq5usBxxKM+2U3MudyavLlJJxpFGC9JC8tFYY2FODw5e/09+i4+02JBY5AVI2GEcc25BXLau+BZulu3wnZpmrf3u1+0i/fZIb/8wZEZS0e0b2tygVra+AXW9U5i3s0tF9stZE0zbXJpaBzwXPvcNL5Q2SWf5sbS1/tt6gP0Xk6XWB72hlDOLE/2KqcYd7Ackee8Q+NVUlj7ImL0F882lJuCxnbXqq/Gpf0Y5E1+E/RLsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFm6saX74CH1lWUczHxtfxvoYtVPDIXorVhlqUPzY1o6Sfyrp+M7OUCv6+UvULb/7gdGC7h3idVlrtylQR+NZXtPrGWqyXj5H8fRkjfcVoITJufPQPFMdk1fiCjVuu4MjKGc5aoXmldHiJT7qaBvS5Nj6QcdBn+YnX6PuLAgeOW+LxRrbtUUel0ePjKaLPRujLgmVyfNx757RIjYunjcYkpctWWCul9jOgXVutnD0Y9RDRQHqsgrLTzpIMbZ++NOvofzdEWqtR/vYvx5++29ef7548sdwrNygN2u5QJ3ol//ZZ1DOGhN/j//uQzjmBli3L/8YNZNxbNVnhHHs1TcePn4neORLzBpn28e5drCtWuR9XpJucpmaxv7sObbV6RjrZFaQVpS1xdY+jNjDOrp3iHppl3TL9paO8wnuG+Gx8A3tHnUT19JH+3Ssk6DXedzGWL6iPSvNG7tJ7GN4cj+kuLC01iQpdLrJ29tXsSGNr0u6ySY3/cgrMbbqGus+WaAPcdSx9ovEqAWdZViXXj2HcqvGfQWPjo1e2stQTPzq+VP87iP0ZN+xfOnTDVb2k2cvoJwk2OYPH6NOeTI195nV5G/boD58MCSNaowxsZib+Ol0cI9KRJpux8W6jq39Uk6JdZtlNKDfIg/v43035FXtWXEeUb/+za9w/nD3Ae4vumvt26kLnNP4VPdBg7Hp+vSOs8a2KMJ9OR61edO4VDbn4n1Hezs4ZuQrek/TAGSfOndo/5iLY2ZCfcZz8b7XjZnn+DRHjEM8V8QG99a7wKM9FEn8zd9h+qVZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILNxZ0JOQ72BSojRlfGY1TSlqXB48/gnK5Rh3uamW0U90u6mZsrbTjOM58TlrjS9SLrSy9dC/Ce3bJx7SuURvznW+b+6w3qBOdj1HgejWbQvmTv4He1K5j7tvzUAtVsoaLfE7PT59Def/AaLO7LRTsLDeoj27It3N/ZL7/8gVqpR7dfcd5W1Skx1xeYf0Wd422MSTNVhBguy1JX9k5NPqnTkiezqR/uhpj/BRTbFfXEkTVZFrcauF9nX+NWtfpmYn7fIHPW4zwea+oj1xWUyj/8df/+fXnky//FI791/4y6mL3SPNdbVDjlVbmXkrLP9xxHGezwr549hUe33lg+uPgDvZNz3m7Ps2sHWYKqx/5pCnkv83Js7bMzN/G5L/aJ91tSL81uFTud41G9XsffguOvXvnPpSXa4y/51dmD8L5FcYXEwTbhm/TPjHpvwcJjiM1+bcG9HOK/ecJ6aGzlGK9Jv2zFSYe6R4HPdT23yYZ+WkHHvcb0xdCqluXdNvLJeqSN5nRA9ekvY8S0k7TuUra4xP55tqTOb7/0gzH+7LCPrjKTNkPsG43Ob3TJhh7g328Ly8yZZ/yJ9SUPyHheCJv4Vbb1EG/j++/gGLTd9nH2fRV3sfQuL9da/+7ppjT/IHqvrHivgrxPi9Ocby5fxfb5uDAjBn5Ep8pW+C5MtqgEJDHsR3mFfdjik3PR818Y/nb1xVeJ2xQh311grG4HON9RMnQ/C3exhte3EWB9xVHOMbMLow3s1vR+NwljXwwxOMtM3+yfagdx3G8muZiN0C/NAshhBBCCLEFTZqFEEIIIYTYwo3lGcsMl1v2+2iRFcXPrj8vprh01RSckpWWpwprWYO+GtLP9HZaX8dxnIsrXE4eWymGy5RScOdY3t9Bi50/+P4fXH+eXZHsI8Wf9SsPl2Y6O7gAUeU715+/+owsh0p8yDDB+ogP8VyH98xy/MGQ5CuX2C5xgMeXqbnPvSEuY9w5OnTeFqMdXAYpSRrTWMvDox1cBlqtyaKpjXY0eW7OVW5wuangZfg51le3g8tkTdtqV7pHTkOb4m051cpaDicLr94ult0WttM6x3P/8tc/vP78T/7Bn8CxB+2/DuW//lcxpe/dO2i1+JuXxmpqM0V5SjbDOI7JkshOFc5WR3VFNkK3DNuescWavdrOy+lsMZennD7VSjnN16WU3Mc0buyNuDyyvottka1RlpNTbO+Epu/v07Lj2Rzru0/9oEWyiYuJGRtLkoAx6wXeR1VhPHq+uVZAS/WJh/exKnHZf1Oa+z7aR3vN2v2zJTe/SzIa/wtKFd6xckVHPj4T0yKLrDgyY+nFDNNoc/b3yMF2KguMrxBkIyR9aTB+TsZo/dbJzMUCj6zK6D0zO0fpx7PXePzg0Iq/kiRING5uSKrQSnBq0etadRtRKmfqcL6HY3ieG8lhU2Mcb5Ns/S4ZJp9AOQjIJs3SNM1nNN6sn0H5YPc9KB8emvgpevi3bkg5zEneyeMgqFDZlpKmfC2SntmWbB6lkg9LlIv9P3/9n0K5Lg6g/ODR+9efK4oPx8N2q+ndwnaun//cyBVD/wS/S/Xz8M63ofze/UfWfeC4FrpUtzdAvzQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmzhxprmnT3U7fmUjrC2tHgl2dEsp6g7vnuMWlo75WavjRqT8xNMP/n1U0wFSjJTp7DsaaKQUkiSeIrTe5+eGn3YJaWR9Xp4rvsd1Oa1fNQfjmdGhzW/RP3O3UNMm/rJ99CGKu+iJvDgjrHOW09Qh1bUZBvUGkLZ1lQ+vIsWfPv7b+SbvDV6HWqLAHXL3Y65F49Tqc9Q11eSJj5fmHi7eIXtlvTxGUusPsf1MSYKS7vfpHisJP+e/g4+0737JnZbu/h8DWk3m4B0e5Rm3LXSOkcO9rX/9Eeoj/u9v4warr/2+5gq+zefm++//jHqHAvSKrKmOQpNefEULYYKlgXfOpymFe89s3TLLR/bndwm30xBbaWiPZ+iTnS1Qquuw10cC5MI29K2ELu8QJtH/pkizdEist8xY0NM6ag5NW+/jXrEmPLHTuwxmjPRk06bx/OGbrSwxvR+bwjHEnL9qivUZMYdy7aQ/vbp65fO2yInyzmWU8dWd96QRaZHqYpbPaz7Ijd1XzX43ZLsWbMM6yciXeV4Yvro0xeo38wLHO9D0urbmcJDsm4rKoy1KOa09Bgk6435frnGv+VUxinZXAYUi7Z2tihxDFotsa5D0jwniVU/FKeu8/Y0zR+/97egvKF9Xq5l/TYaYjt12z+Fcr+H7/zDO9+//rxaYV0HtE8pjjGeODV0Y+3K4P0YLtksei5PAa002i6et51grH3xIY5tyxV+v9t7fP25oP0EXkjjr4vPdH56CuXTMzMGt/v4bt0f4Txufwe11a3I7C/LM9I0O3/23oX/b+iXZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILdxY07yhtL8lpQbdu3/n+nN+hlqXiZUa1nEcpzfAlNO+pSsdT1CT+uo1/m3SRj1wXKM2pjsy/pFxjHqV189QP3d+gb6DP/vlb64/ez3USvX2UFcUUSrHbIz38at/8uvrz60WelrWE9QGPf0x6rQPv49pkieJ0Thx6soHh6iNakh3Oz4zetY/+MN7cKzbf3spSC9foy50tD+Ccn5p6mS5QS/h6SXqw6IO6seT0GicLpaogU9ibKeAdKIOlavG6OuiER7rkK69oXTBVWj5NHtDOOaRznFG6bufPsNYbHJzLZc8LL948hrK//iPP4fyvV2KN0t6N36GOrz2ET7j8CH2r9Rql+kJau06R9iGt43roU6yIL9z27K1JD9O9ittyI05tvSISYR1koR03Q3W4aTCPRstS89ZJRgzMXmsej6W7ZEhK1HrmZCmuUfj22aN/aZj3Xe7hRrcaoNtebSH+0w2Fzju2hrf/gDP1SbBdDDAZ6oC6z5z0qTmb0+T2pCeMyTdbWP57G7I17rM8D4vpzjO+I7pN8sFjtErapcipX0FKX7/88/++PrzZILj5u4+6p83DcZ5Epsx6WCEzztdYJwuSasfjDHerq5MHVyd4WaQfh/HK/ZWfvYcNakdS6vfanMKd+xPeYH1M7Le6VGEetaY0lXfJo2D752qxmuXVixX5PH/yUfvQzlJcH9RUVl++DTHYS/qnNNb0zTOA8N6HOc82gfCemj7UhVdN6b9Zn/3X/27UE4pjjdW/g2HPf5J49yQRj6McYz5W3/7X77+fH6B86Xd/hDKvT7WX2HlQPDoHfKmpns7+qVZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILNxZ0vCK/yI8/QI3O409MXvbPSVcbUn7zU/Iu9R2jb7kinXFMepX99j6Uow3qsmzNSpahxubuu6jB7A9RozSbGT31oIu60L13d6D8/FN8hp/8w59CeWl5Pt95B7WHVQv10a+vUC/WPMNr7zhGS5SQD3PcxbodkE4vsPwPz0/IezV4e0a76QY1TNOrKZTXK1NH7RY+w3SCWruP76APY9wyeqnzPur2OqQB9Bwqe6i/XG9MHXV3qC6pt6xXpJu1ijGd1ycN7XKOmubzszmUhy3jBRwnGC/zc/zuL379FMqd7z+Csi299hLUw+2+i+dOdkjX+Jn5Y9/DOB7dwT5x27B6kT1IE8tTuhVjO1fk0VvlqFndt3RwTYV1MF6iJtXpDKHYJn9b17rTinTJa/L/bbVQo7laTK8/R6Sr3enidw/Jr9Wl8rpv6qdNf3v+GjWnvQTra0B66cQz/aJF3riHA9QQDn3sKKVnxqhygnrV+B7u37hNouDP9qXPLR18FON3KxfjZzLD99SgbcbsusB4efnsFf4t5S2oMja6NnUd031EHWzHzhDH/9GuecdFCf7t7j6+7zpdbGP2aQ4snb9D7/SG9LxNgzERxniuqjHvmtUax76ixO/WpG+9st4VroPP9MF7j523hU/xE4bYboFVf60Otsu/8Df+y1Bu0R6D0PJ6r9lTnfobey37pFP2rb5aFViXPu8/8ElrbLVj7VBc0n3FEY7/rot+yeD5TPecFzgO1hU+4yDBOdDBjondd99/F44FNN44lMfBtXTb7M/P370J+qVZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILN9Y0V+Sz56Hczjl5aTTPrRHqjnukS07clMpGezebo872gjTLFQkbHzzAc0/OjI754ivU7f2dv/fX8L72UVf0wx8Zb+V330dNzfvfQi1ZmuHfPv0C///RtvU+XdTrPPzL6FO920WNboGP7ExT8w9FjZrA8QK1dRvSg733yXeuP/8n//ArOPZhhde9TTyPdFek8fVrW4eF9cV/m5G/aF6ac+0cov9lm7wlc/JIrSqMt1Zi2rlLnrpFhVq8DunS8pWJ68kcdeq9IWqHW128ryQhHWhtdMsHh6hFXG3w3E6f9Jd38NytA/McPsnUkh5etyCdtpcbzVdD/qBN+c31YH8RYg9jZneH/KgtjfNmje1Kt+5ULg4kHUvb1pB4fUz+o1mEddQlbXW+MprWbh/v0SHtJz+TW5j7fpf8Rg93cE9GO8CHSkiXvLD0jCV9NxzieFaSfvGY9nQElp7zuI1xvxNgXS5IlAmeq23SgQ7fni6+R3sDWFubWuWS9OSei31sMUcf68Xl9PpzsZrCsVZEOtI9bNdWSP3V0qZ7PuUL6OOY1B+gLtkeK3267t4BtqlL3vEe6TvTzOhORzvYTg393lbSmP3gEWrVy9K0e0G6/po8jasaj+fW/oMix+vev3/XeVuEDd5X4eF9u5a/e0Pa2U4fx/DQo/wB1td9+lv7/eY4jlM3XKZB3co9QFJix6O9HTXt37D10yU9r0f6Z68hP3byxveth6oc1lbTfdEz0dcd+zBr750S55M166Vtv2l+ZUnTLIQQQgghxO8eTZqFEEIIIYTYwo3lGSn9zv+bl5iSendllsX9CJfBnv3mMyj/jb/+B1AeL8yS+dUCl1U9Wl5/lyyKsgolGKORSQe7nONS/I9+iPKE0SHKSNKFudbuaA+ORSGuFxzfQxnA7/3BJ1D2LLlBOMTFiKzBZ8xSlBusl7Q8Za1VxC2sjzLHdjmfot3RPDLlDqVMDtq4PHmbhLSEWxS4HNNY6WCzFJdGa1quKmk5r23ZMPViXCZMfPx/YTfAJcpXp2j/9PEnD68/H9/DJckTKyW54zjO1TnJNQYm7r0E76MT4TJqmyy9uh1c/v38V6bPzBYYD/1dSiW7h+dKacV75x0Ty+NX+LzsbxRGuIzoh+baDS1nT56i7eJt89FDTAPPaZDn1jgyrShNNtkSVSRleGc0sL8Mx67WOI74lJrdI8lF20pfnVDsupS2PSF5Rq9lljx3R0dwbEi2cWyNF5CMqW+da+lSPLoo9Shp3bKzwCXPnb4Jqq5HFlgFxoVPcoPAksIkbVzSdWgJ+DZxC1rGLrEcWnXg0e9JLeqvIcnLHMeMs4/v47vBizFFeenj+B9RKt/ISuedU90GIUmkaFk7tywONxnFLUmS4gDbomavM2tM3tB9eDSu+pRqPqL198iu2wbjI6X+1dC0xLVsQl0X5xaYeP52Wb/+FZapHziWPWBD/al+I/U1lS2ZAMdpyfIMkkk4bBVoyQoLkkywHKMhWVZpWSt6Ecl3+LolWdiWGNeN1TYrkiwlJG0MSP7kkFWeHed1QLFHqeSrjKR5liQlpDgtyerOcf6rzjb0S7MQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBZurGkuSO50SallH+4b65c8R53MJkUdzQ9/8nMozydG01sFqKU7eAd1fXWIehW2DTo4Mvqxb//ee3Dsl79CTfPzp2jX1u0ZzeD4BHVEWYbal9Wc9D0NaqCvZlNzT7uow3JJzzSdoqZrSHZPg57R083XWJdTSkvrkiXP9MpYI/F9PL6Dmu7bpE+WO5sM29m39FJvpAUljSm7xCyslNQeNUt/H7Wb7z/8AMpPvvojKF+eGc3v/UfYpk6N3aVLKZDtlKRt0m6uV2QTR1Z38zlqjV3H/H13gA8c7aAm0E0wBtLVFZS7u+bvkx28595d0shnWIEXvzH3WVIq9MUppvO+bR71UCuak07Xt6ys9o5Q2H1A6Ycj2qMxslJwF2Tz9dlr0msGlDI4wLHiwNIet0jLX7r4Xcpq7iSh+b6tb3Ycx2lTeYldyEkr1Hf6vrmWy65UpE9ssbZ6F23REksTHpAdW0rn4nNH1sVZf+i7N34F/YWpc2y3ivZOxG0zPvZoDPZ4YKG67gxMP+q3ccxZkcXaxRQtDOlUTtg28TPsYP+MEoyBBemBS0sLmmXk20VWbnWAQRGH+H4IbOuykrXDWJcp2TKWJV57OBhef25ISx5Tym3Pw2fMbTs7ip/ZYuy8LZbnOG+Zkj64sKzfXHqHBTFZjPr4jIFlW+mVpLOlc9UUiz5ZZFbW3oaSNM2LivTjMemSrf1TDennWTttp3t3nDct50pL41xRXfkVjxmUopxe8o21h4Dkzo5PKd4jD88VWFrzgvZ9VC6d7Abol2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC3cWFAWkzfp1RVqMM8vjT64pvScwxHqC0uPNXFGr/LgXfRh7u2Srx55SXYL1N6dnhjf5rJC3fWI0u4mLTzX43eNfjomXWPoogapR6mLf3OGvtWvT4x2aFaiD/PDx5RmfESpdkkvNhoNrz8v1qjhurzAduiSh2GzMedaX6Gudn2KOuPb5O5dTHf65VdfQtlOdenSM4wo7Wy6wfjJFiZ+9o524VhZkf/xF0+hPBig/vDsxNTnP/mHP4ZjPulTP/gQ06GXlm/lZILt1CI96qWVdtdxHGezIr2l1YfCNnrEBh3qA7t4X0GMurU7H5lr1yG2+ZJi01lj3bZHRovHqWCXpM28bTi2/RZqMG3P4xbp/IaUQvlNjZ3lA0q+yyPydHYobfYBtc/I8jftk6+6E3pUJP9yO8076X0L8hQlmbLTkHeunZ64XqN2LwopJS7JFd03UuaaZ2YNpU9pfBPWWFr61oZ0kUXFfse3R03aR6/BZ+y3zTjTp/0K0zmOnVlBXsuW/+uGfPjXGb6H8gxjLyHf4r2BeT/EMY5fm4KE7KTfLKzjEXnDF6RLXqR4n2WLfXktTXNA3tsUawWNyT79HmdbGjfUfwLew0J9wk7BzH3zDbH+LZL5WPeZQzklrL1KDXuCe+SHTOcKE9NWZYF1mdeU+pr6akQe9LFV9y79reeTNp287nPLN31V0/NSeup1ivvJ6FKOb+m229SfSuojCbV5QmnG7XbPKQZ8+m5O46ZnxVdJ7cIp3G+CfmkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNjCjTXNHz66D+Ufvz6H8qo0+pfxBDVcOy7qRqMBztV7B0YrOTo4wPMuUTe5WmP5nQfkiTkxmtTzKWqnxmP0la0K0t5ZHoabDepCB/vo2dvfR41Oq4fXal4Zjc7pqws49vA9PFcyQj3Pao5aoYuL6fXndIManIcPH0G5F+Px1dhcu3Iw3/uPfvLMeVt89ukXUC5JB+l5tg50CMeqEutnTlra9crEXuyjjm+nhd6+boPttDMk/+iNOddmRfrTCNvl1evXUO60TbuybjFdoZbs/CV6Kc9XqPEKk8D6jHropsT7cEnXmJJuK+6a51hNSNNFktJuD+v66GOjBU4GuDfh5PMT523SoX0VFenRdiz9sEc+sR4J7lbkEw5y4Rrb6sEe7kHwSYd7Z4Sa+6GlJY1Iw9vt43fZz3Zl+TjX5IO63pAvrIP3EZNuPraH9xyfiaxwHScgbSNJ/UorUErWAVIMsabZ1iBuyMOftbG3iU/PONzB/Q+DgRkrAtq/0NC40ZDX/saq33WO+0z4XdImz/BegmOU3ezrDPv6eIHnTtlnFsTpXLdYjlv4PihJM59b+vpWF+O2pvpodXBfTk1xXVnNHpBevq4wJjLSR5eWb3FFHsb5G/7Rt8eUvPdzetfE1j4UHn82Pmma6ZlX1h6q2sXYwl7vOD7t7YioLWJrfxBbK7s+atML2j9l12ZDWumafPEr2hdRkwdyVloXr8iXOsL7yBysr8bBc9vtXFDfc12MgbrCPmP33Yb00Jwz4ybol2YhhBBCCCG2oEmzEEIIIYQQW7ixPGO9RGuq3T1cUhocmqXb9i4ue12d4zJ24OFP852hOdfFJUooyjX+fD6bT6G8t4fLHO2e+X55jj/F1wUuY3guLgHMJubcYYTfLR28r94Kl2YWS7zPu/fvXH8eHmAq8EfvoP1a7uHy3c4Qvz99beQINVm1dLvYDo/u4tJfdWzkB2eYNdx5dfL2lrYWC1wy6fTwPl1rSSonKyTnCpdu1nOsr9xaGr2ih6xpWXqX7A8bWoqvLLufhO4xoiW26QXKkJqBkTJ0Od3tChfZONV8QvmUWx3z9xmloefl8MULuq+v8Psrx0gRwjbGfPsIn9EPsO7dtilP1igzig+wD9w2Pi3/5RuMqdiybeLl4/WKUo1TLlbXkhS0aFlylJClE1lkjdo4ng2t5Xef0mZ7lK66oLTA9qlrWooOyR6KzLecku3bbBkF3ccb8gMaCxs6V2Utaxa0tMz2fjVJr+A+yR6qqHnx+fbw6JljsgNMcxPrLr0rOB0x12cDshpuN3zmiGQ06xLHkXRm3rVsGVZ7tLwcULrh0txHVrA9GxajGG0Yqcs4lTXQrKivOZTmuBXjMxUkf7KrnicdAcWeS7/l2ZZ0bbKZHE+nztvipDyDcuDivdj91SPJgOfjOFtT7/Ws+IpDrEtO4c6SupJeCGtLssNZ6msX2yUnezu77hOy0vRJLhaSDWFFY4athIjIOtFjiQW1OY8h9hDD7wGXUpJXFVkpFiZ2K3pez8X7ugn6pVkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYgs31jSPZ6gJ/PAH34NyYeldxmO0oxuS3cjoiNLxWrrSySXqu7ycdIxr1Kuckq3cnSNj+5WEaKmz08HvTjeo7/Gt6jg6Qu3rZIPXvThDbUyL9K+zqamDhzvv4rEJ6sO6A9QGlRlZafUtjSRpX2cz1PA2Nda1a9m1XZ2gtvzjx5gG+jZJWpTulTRvtkypphS1VUl2NWRT5cbmGcnNyAkissHJse5nZEO4sO6LHHaclLRSJOlyqsi00xLD2GmTlrgVU4rbijWDJlYXC9R35eQHVk3wGTZ0fPDQ3Kg/pPS2nMaZBXPW4Yq05eXNh4/fCRnp0xvSVea2Tplsm1iz69FxO9Wq3+B1OMVrizSqCaUrri2fJ4/yU1d03Yz0wbY2NiaLPU5tXbKEmXSAmVUfIWkKG2o6t/rt2th/fgJTPzWLY0njnVL/XafmPjz6naZq3mIaZIofTskcWmNFVbEFFuKSl1dqWcP5rJ2mvp5z/WSUkttqZ5/00Sm9s+Ie6mrX9nGq2jDE+7iaUOprTl1sjQWzBb7/XQqgdUAehrRXpNMx39+UqGPvtdDOLqb6Cy1Ba5/28MQBPv9tktZYByXViS0/Tzr4DJGDdf/G+GO9ABu2diOtcEjWiSXVJwxX9LMoxzGnWndr649JT19RGu0kxvlV5bGm2dZ4k+Ue9UUWansh3nhk2+zRM/F45NJ4FISB9V28zp8ji7Z+aRZCCCGEEGIbmjQLIYQQQgixBU2ahRBCCCGE2ILbcH5QIYQQQgghBKBfmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC1o0iyEEEIIIcQWNGkWQgghhBBiC5o0CyGEEEIIsQVNmoUQQgghhNiCJs1CCCGEEEJsQZNmIYQQQgghtqBJsxBCCCGEEFvQpFkIIYQQQogtaNIshBBCCCHEFjRpFkIIIYQQYguaNAshhBBCCLEFTZqFEEIIIYTYgibNQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBb0KRZCCGEEEKILWjSLIQQQgghxBY0aRZCCCGEEGILmjQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmxBk2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC0EN/3i//x//y9DOWq5UHb90py0aMOx0eEulHN3A+WkMHP3dLbCCyd4i+PZEsqxE0O540XXn9997xEcez59DeXZ8hKPf/q5ObbK4NimKqDcH+J1PT+Ccqu1b+55gs/76a+fQHl/twvl2sVr93eT68+HB1iXJ6/xmXZGPShfjE19XVyu8bzDBMr/+b+3cG6Lf+Pf+ttQ3u/ic/T3TX1dLc/gWJZVUA7DEMrv3L1z/Xl2Oodjv/j5V1CeLbAtRkcDKA/v71x/TkKM8dkFnjtLMSbyLL3+/OjhMRwLAjzXyRjPtVzifXlhc/2516LY6mL/mpb0TCHWbcsx9VVb/dRxHGe4O4LyYp5CeXp5cf15dwfrqtrkUP4f/Pf/b85t8t/7d/4nUF4usJ9cnpxef3ZTPNbxMNbb/T6US2uYiRKs73yDY9J6PYVy5WE9pFVtjvkYu5sCY3t1hedqPBMnQRvHPs+toZxEeJ+rNf4GMn9m+nO7xPtoDSimehgHqxWOFVlsYn330QEcO9jdh3JY47l7bfP9Vv8Ijl1OZlD+v/xP/x3ntvj7/4v/CpQ3K+w3vlX3UYTj+2KD9fHsNY6Vm9z01yTAdmvF2C5BhOXYxWtlpYmn/gDH87LCcSOoMc5931x7ssJ4WTcYA4WD5TTF79eOKd89xvtwmgaKZY3jSrvdgnJuHb46wf5UrvE+XA/rp2e9px48xPipSxyD//V/6z90bov/0X/3fwXlJMZxuLbqxK47x3GcNMVxtRXheOS65plfnp/DsfkS5zzDAY5dYeRDOY5NPK1WODZ99fUrKGf07ghjEz/tEOPy7sEhlPMcY+/Uelc4juNs7DHHpTam+ikKbMfIx2fKc3N8PMO+l5cYe1WJ91Vax5sGr9vu4DO++uKnzjb0S7MQQgghhBBb0KRZCCGEEEKILdxYnjGdTaE8oJ/uvcj8/L6iZet0jGUf/9TpBtZyQj7BgyUuA+3t47L31QkuXZydmiWCzj4tbdGS0nSCy0R1aZYE7vT34NjpKS6ZHAR4PGihxOJPf2KkHh1aThkNO1DeVLQ0j6s+ziQ3yxFnn07hWLHAZ1pPsDywlraqFOsqCnGJ6DYJG/z/WZnhslG2NstXRYbPUOHqi+M41I5LUz9eF5df+kco5agDXCZyPCzHvvl+UWPc7uzhEnZT4jO9PjfygHmKy7l3j3FZ8ZiWf+dnV1AeT8fXn4MAl7t32ngfiY9ln5ZZ07VZAi8CPHandQfKTo7XOivMcl6nhUuuUQfj+rbpdOl6LsZQbi0Hxh7KYaox9vU0xT63e9dIDBoX48upsa3yDJcOG4oTx1qqHk/GcKhoaHk9oPi0rl3UeB9hiNd1EryvssC2rSIzvBc1HmsyWsJscMmzyrHT5Y0pn0/xmZweyTESHHf7vrn2kJ5hkWE73CYVSRlcl45bQ0FK8h7HYTkiPscys+sP26XXxndDK8bjoYf1ly5NPE0m2C6eh8v8O33829iS7CQFfjfbYJy6Ib3+6XXw+bPp9efd/R04tjfEl9TZ+BTKLVp+L63KrQqMrU6MF+7vYv1UoTnXpsQ+X+XU926Rb330EMqei+N/Y/Uxz8djPkkKHaqfLDf9IGjjO+nVS/zu4/sokxgMMb7aLTNORgGO2b//MY4/8yXKowpLyhDUGPOP796Dcu1gO/7qs8+h/OLUyF9naxx/Wy3qPyRfWVL/u7NvJIePHt+FYwHLU0jOaEtfPA/H1FZCY+oN0C/NQgghhBBCbEGTZiGEEEIIIbagSbMQQgghhBBbuLGm+cXzZ1Au3SGU3dLobmrSem4mqO/0fdTK3D0wesJeHzUmYYDnSivUFv/i019DeXxmNDvLGPU7h0doxfX5559C+bhndFv3d1A383iAeqaUbE5ez1Dn51vWJnGEep07u6gHy1zUOyWkF8ssbdr5c9R8NyTJWc5QD3XvzvD68zsP8TpR/+1pmgcB6q7GM3yOifWMgY/3lbpkKbMmHZtl6xWEqHlL2ljevYsaL4/0wq5lDRe6eB+tCLtL4JIWsTbxNRmjRvlqgbGYtPDcox7qQDfW9xvS9Sckj2tH+EwVxWZt9bcr0rBlG9S5d1tDvFZizl2RbVl7H7XUt029or0SUxxX0rnRBbpkG1fkGAdz0uXa1oOtHsaq52EnS9f4tzHFxdDSsG5KrN+8xv0MHtmTpZaNU6uL2s6GbJsq+skjaJNWtmu+n8QYNDFWj+ORrnbikL2iZXfXQomlU5D1VGsX93uMp2afSbfB+/Bzshi9RVLaa1MVpDv1TFtsqF9UpF9lbWTftq4qsYI2a9JHk5g6j/Fctq1qRJr3VgfvI+zSPovK9Imwhd/Nl3hfS9p30R3ge+fI6hPjKdZHv4/v0og2KsX03rYl8q6Dz+RS/0p62Ccay/qzqsgmb8Ha89tjVWF9JQmO4aH1HC5pmmuf9ulQPFWWVeCDx7hv6+593HfS7eK7otXGMWW9Mm1V5Tj36O1hP2+PsB09z7RNO8T3yqCD13E8fM98t/8dKH9Sm3NtaPwtVvh+rGs83lD82O/4yqe9LA2WywrjPLJ0/h7tdSmLNzZMbUW/NAshhBBCCLEFTZqFEEIIIYTYwo3lGTtdXIoo17hUUUbmZ2+2Vykpm16Z4c/nF5dGcjGhLEVHh0O8EVpGfPdDXF54/11jx3J6jktKI/cBlH9w/1t4PDHXaju4RBvRUnyT4zK3Q3ZPn3zb2LOsKlyCHK9w6XOHZCO0+ukkliXPve+9D8fmF1hfP/0hZsC7vDRL1gd3cXnFb5H92i1SU0wsKZNTx1oKYjuwhlQkOS11LS05QrogaxvKANRJ8G/Tipb3ClPebWMGvBbFXrfPmRx/u+VQn2ymmgqXichdzHGtrulTVswqwrrzyE4spmbtWXX/fIHLUecvTqA8PKDMXpZ9z5Jsg8I5rfHfMk1K9oAVLuv2PEtKQpZp6w0uU16OMXtV8sqc68G77+J1Orgcmpc49rVaWHYti6wRS7Eq7AcXY5Qp2cnQuiThQVszx6kotvtkydc6NH+fUH8LGizXtESeD0mOYPWLiDIR1pR1rFxhXReW1ecXL34Dx0YRZZq7RZqa5FWU8TOw+mya0yhMdqXrnDImWtKPFsnLVhm9/0ie0XKx7mdWVs6alp4f9tD6bUVStcnUvJd8yih5RfKUp6cYTyOSOnzw2Mhs0jUtia8ps2iHsv6u8R23sMadmuz7ao8sMhcUT9bSvOvgu6HM3t477GCHMj2SHCoITDtyhruYx38Xz1XWJmYCkhBQskUnjvC9E1J2wU1orp2mWJdrkgpFNMZ4lizCDymDZIAxX7BkaUTnsqQ0Q5JnujnNJ3Ocq2WUBXFlZcwtyz87G+Wa7GzXVoblKKR3VkO+kzdAvzQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmzhxprme8eoWcpK1Ba9XBltXh2QvcqaUpCWeNmplTKxKDi1Nd5HST5L6QLv47BnLHgexmjV8m70DpRbe/T4mXVuSu1ZkDao00GNTtbB445VXSnZqaw//xLKTz+/hHJIaSHvHhvd3zvvYTrm1w1ZNpGd31fPjF58kaGu6oOP8Rluk1VB9TccQjmxtbPLKRxzC3wmv0WaptQEyWaBuqsxafH226g167ZQc9qxJE/FBs81pHToHfLtmlta69UF/u2c9MA+2cbtUlNUltZ6TDrt5Bz7wOEAdY5pibq1VWn0hf2YYx7r5+IE0+Ha8sOKtNUnl6iHvm3iIWrMO12yerN0hCXtjRhSvM3naF3ZWAPNG7ZEDZ6r9rDOVjmlyp6ZczUeanYDSp/OmYxr6xnyDWpOm4as3bq4R4GaByzE4pqsutZTKK8z1CHHEepMbWvGxsHxaUPpmU+ucDwbWilwPfqdZk5WjLdJFGFfL+gdVlqpwtsdtNvKyepsvMS/nU5N2wwjHJ98HxvGo3fJDulbI+vdM1tiu3ghDhTnlxh7ZxOjBd05xPgIKIX50QiPlw7ed2PtGdijASqsUHO6H2DdXuFtO41Vtx2ylXUKGs9JLx32rf0dPraDH7+93/0C6qychn1upaYfk6XlMVm77e5gmdPc25Rkb1hUlB6d+rJt6dul/RjtGNvcfaMpzDMEAVmXkr4+cCklNdm3rlbmvcW2qZ6L/SsJsR27u3ifu7tm7C9oPK5of8abNnKWZSGPg9nG+abol2YhhBBCCCG2oEmzEEIIIYQQW9CkWQghhBBCiC3cWNOce6gb6Q2GUI5OjYbz6gr1PNUGdSR3D+9DubDSJLshal+mE/zb1QXpwSjV4/HQpKDsOahpbuaoU64K1LMElp/t0RA1Ry/IX/TJxRdQnvmoN3QX5jkO9g7g2Pfvfgzl/+zsp1AeUHriw92hKSxQ+xSw3jdGkVK1NvV3dUX+2JTe/DbJNqjLHT3ch/Lz58+vP5P82SlIM+nmWA4tz2NbO+c4jhN1UGe1oHNxOmHH0iNeTFGb2etjuxTkzX11ZnT9//F/9HM4tqIUtt0exu2/+HuYpn1p69bIBzjZQ21vTKmJV+TjfGql9OY9AqFHesuSPHgDK0V5F/+PvZijrvG2aSL2d6V7t1LAOuSl3Kb63jvA/t3thtZn0meSrtSJyJ+U9HiF5WnckGdvnWH/9Nmv1brvLnnfRhXe14qEo598/B6UJxfGs3dTUNpaj3SB1Om4H/lW3XrUaSoSd64oyOLaxOPoAPuQG35zTeGfl4oc8NMC6yCz9P1DGjfYRz1y8Hjim3OzD3FJns/VG3t+SLtuaUVzaieyxnXSHI/nlna000L9/OEu6lsnU8ofsKF3mJW2PSZP8Bbpe9sNxmLjU123rZTK5FG/Jv/oRYb3sb9j9NS9HvaBfPP2fJpjSktOWx+cnm9iItnFOE9alD6e9rQ0lq6bPf4jGvdoS4HT1JRDojZ/H7sdOkaa3hrbLQpa1nfxOlWFcRvRuNdQJ4ktnXtB+RBK9o2nsZz3AdhZuMOA07Bj/XgNpWG3+r3v43tgs6YkEDdAvzQLIYQQQgixBU2ahRBCCCGE2IImzUIIIYQQQmzhxppmstlzJvMZlNO10aa1SI+yIA1qQz56x4dD890U/3Z+Rd8l/+R/6ePvQ/mj+0bTfDomvZOPPrtJheKgq5nRpHoJ/n/C76Ju5tWL11DOI9TK/OrnT64/7/SfwLGjEep53+2hdnHU34NyuTK6o7M11vuUfKof3sNzn7rm+3GMzz8fT5y3xfkF6tzjfdJ6Wv60b1hWsqCQdNxzy9ezCvGPjw9Q0xWTLnd9Rbp2x9RJQwLCV+Ovoez7qFX/zS+N9++rU4z5PmnxPrmPvqf7O3g8yqy2SjBOdzqoVUx89g/F768tj+i6Qf1bkf1/2juTH0mSM7v7vsW+ZORWmbV0VXezmzPs4VDiSBpoqAE0GEHQQRcJkE4C9OcJ0FGAoIEwEMHBUCSbTXY3u1h7VlblHruHe/iqW5m91xhF9hBRp+93SiuPcDcz/8zcK+zZ+1BPGRl4bjPQtKwRjsXV9fvVNDsm+YZa2BZT0w+XKbYrI1/ZsIXtrPSgq8lX3sSYygusR7FCXaDdUH22SumzMel9XdIcOkr7t4xRZzzooO598fsrKO8+RB/6KFQ65i+XOF/lJsZnRVrHqEk+9Jrmuab7YDu0j4I0hmttbJMs0jA99lTdHuxvy/cx155LRYFjvyRPWoOLZaV9FuOFtffLjHz7V+TDqz0vZzOsc/fkNZRHXYyfdkONgfkcr+OSFr07wDnHilEr6mnG3/vkiR6aGB9dC/XRAwfjqVmo8Xa2wPbOyBM8ifDcYaTq6ZKWmvWr26QqsH8qm3ytLTV2/QjfB0IPn3cm+cg72rlsOq9JewYsEkTXDp1b2yeRxXhffNJH19yGWpVd+x8+r2EYRlnyPGDg8Updax1j7PkRzhkOeZtXNQ0wQ7U5pX1JvDfBdGiPSabuy4LenxyHNzVtRn5pFgRBEARBEIQNyEuzIAiCIAiCIGzg1msbFUkZlmST09WWl2c3uCTgmLQknOCyUXGjzjWgdJz7zS6UP76Ptkp/cgeXJKeXavkqWZHNCaVfbDZxCaXTUumIT87fwLHJDH/W73VRBpHRz/wHx+ra37K2I/nBiFJKPojuQPnLm5fv/r52MO3s9QJlD4Mm2grNtGWyt6eYInlnH/t6m8xX2Ad5gssvBwcqPfjjp6dwzKd1nxalDy4NtYTpubTckpNNEC1R1tj1xuVULeP/6Ad/hMcS7L+XFxdQ/t03ajl8hK5wxn/5j9j+n/wzrNdvfkdyjpWyLHp+PoVj5EJlzOcYE2aE0oPIVVKPlOzAKDSN6QplDK2B+m6P0lj7OXkfbRnXxaXFnNbI4Sh10jrH8es1aIkzVfcjiXHecGjecEkuxJaatfb5kuzG6gTb4I0of3ql6lVQemG3xrj/YA9lXV/+n19BuX+k5gI9ta5hGMayJIs5ehK4Ho6TtSZlcEiOYXrYl36I37U1K888J/tIsrzaJoMezo2eg/f5PFFzaWmynRbe41VB9p0rVXZMbFNAFoU1L7fn/3C56WPfphnWOQr6UNaf6OMYbRezcxzbzTbWa7SD55rN1HM8czBA+i2aOAqcg3KSqOxoqbAHlO/9JTmqXbs4f/m++vxyhW0yqe+2yc0c5875Cp9ThaHmmA/u4LOjF3ShTFOZUWspzkvyeqtIymGRhC4I8V3kanL27u+nj38Px4ZDfLeIjZdYj0rd873hIzjWiDA+WJ5RlhgTZqbmr+vLKRzzOvjdVhvnDI/eiapcSUUSSn2d5HjuzMBzrzPNkpbmH90O87bIL82CIAiCIAiCsAF5aRYEQRAEQRCEDchLsyAIgiAIgiBs4Naa5t3RIZTX56jb8jV5bB2jYGdGaTHnM9RW3dW0Mn+6jymmrRj1O+k1apqeF2gDdnH5StUjQL1gkmGdjzuoh041y6FkjnZsQx/PNV2iHti2sZ7/6id/9e7vVUxaH9Iqnr1E/fSArPG8tTr3+Q3W6+gj1Cg1WGt3plJBNygds1lRvuot0u6injCjtL2j7u67v/0GpbZc431bkwwp0HR/HbL+s8n+qmGhLnT/HqZ0P32jNPEZaRN7ZA34zROMvbJS/fsvf4y6qv/8bzAGbpa4J+BiifZ1DUddq6K0s1VFtnlkpWWRHdQHdz599/ez86dwbFGRPmyF9b5zX9Vj2EcrxNR9f5p4wzCM0mDLObI80qzQLLIyK3PcZ2H5ZCtXq5jL17TnosTvlt/SlWI/JLWmBU3xXGZBlppzTG8daXrhQYSpeLshagqdCPWuryZPoGwPVZt2D/HezSlFfEJ6xOyabJw0m6sGtZd/eYnIbivX9LBJhnPQbvf9xpCO8y0rL9X3Ncn1OWWwYZENoaZzN2kPBtvsUTZvo8opRXWg5ii/xvtyfNDFLzsYXy1L1bPbws+OyRrx2Qvck1HRHgVdu8+p4q0ax0RqYSMzSpvsaTsOHAvjdk62lzFZ8pW1ipHLmykc64a0KWWLxDGO1ZKszwxNh5sssf3jEvce2WQbZ2l7CDIbz5uUuB+DrRPDGO0kJ5fqHeH6Gsd55WFfJxWe29SsFVcZzieui/FhUzr4dIVzRjlV46C28bo+tf9sivEV0N4kW9sIZpr43XgxhfIqoz11mt2fk+F8s6Q4vQ3yS7MgCIIgCIIgbEBemgVBEARBEARhA/LSLAiCIAiCIAgbuLWmOafU160u6u3STPk0eiQI80iDQtalRiNUuklzjRql6QVqeH/5219D+Xt/jKll9+8o7d7DR38CxyoDdbWNGrVTqaZnHZAX8IP9XSh75Pdbmajn+bilfIfzBjb4hlJb7v9wH8qNJmoXzwtVz2evUL+UJqjJ8Ruo2Wn3lJ6HZNnGOn9/KWzLNaWKJR2fraXJDHwMy8UCNVzlmDSDhroXfgtj7XCIWk6D9MG9AOPNHKr7PCfdcdTCmDATrNf3PlB/d9rYvp/+HKtRkW/uaB+vNV0oT+T9u9iGjDxk15QKtUmpxAcD1aazxRkc45TkQY16+lFbjc3sGs87m78/j13DMIwV6ZIryrceaCl2K4t0yQXp+SmduKuncSWP58in1OKkJV6QDjzsqj70KUVwNiMd4HwK5f2dA/V3F/eRHAxQf//Bww+g/JNPcT9IoKUK/zr9HRw7/fIE6+VjfzmUojzTUuIuFtiXfkRp3CvSPFu69zTNOeatH0F/MBlLUEm33NTS05ukWa4prW9JsaenvrZ9PHFeU0ruEr9b0p6frrZBqCQv8jV5hvsBjt/JpdovlI9Zg4r1OBx1oVyssINCzU+5tPCev51jnV3SoHabWE61/lvleK5ZidfNaNPKbKZ03TG9PEQW7X/ZInyfLHqvcSzV3/ECtcIZPStcF587QUP19TxD7fTV+BLKRYXPirCJ85On7dvxAoyB1Rz7vo5Y06t5Yi9xvk3YI5v86tdLivtC1bM1xDpa1/gyspihdr+gGBjsqnmjEWG+gCgiP3sD57Ik1bT55NPs2TQJ3AL5pVkQBEEQBEEQNiAvzYIgCIIgCIKwAXlpFgRBEARBEIQN3FpQ9sUXX0LZ76OWyNI0hPse6iLv3t2D8rJGHdaLE+UX+dunmCs9DFEL89kP0Fv5/jFqjRuB+nxCvoFhEzVIzQCbf3SstMUV6dBmV+iz6JMfsEXmm2/eKu3omryCl6Rpe3AX21STJvzOvtI2/sjFnPZ/d/JrKC8S1AZ1NL1T08N6eKTN3CYNA6+1mpMXp6ZV65DP67rCWIvIh3il+fdyiw52UC+eZah/Ws3mUO43lVa/TDAGJpcYA2evUB/ciVT/pmvUpf/sd3iu3R7qw+49wHr8UoufYQvH09ghnayJbbJJiz021ef9DvatQ96bVYRaxJPlY/XdFLVkXRfH3raZLsjr1ME9CpbmjxunqClcTlGfZ9s4ThravStq7KPQw+v09negHL9GDeKyUPNO1Me9H0WK9eitUa8+tJVfd4v05U0Hx0Grhdrh4X4XP6/FzenzKzhm1zhS+h28t36A176eqnidk7YxpPmq28R6rXxV73XFHrxsYrw91hnqqeMV3gtT2xuQk3a2pn04oxHGxHil2pUk2KZl+v/fO1KQt76t+SnfPe7CsSDAc09pv0fmKT1rYeJ1l5c4x+zuYWxapOPu76g2Tiu85xV5548c8kUvcL671HITjGN8LidkZD2P8VpZqWK13cM4DdvvT9Nc+1ivhofX1j2OgxDbz9LZIsf+S9aq71cJeisvKWdETXtYTBfrMdF8i+Mp5sQo5vRsJf/kwaE6HpAP//yS9rVFPGdgm9pt7VlC70Cr9SmU0xT7tljje99sovozjbFviy5+1iaPfkeLTdOkvWjVd38Hkl+aBUEQBEEQBGED8tIsCIIgCIIgCBuQl2ZBEARBEARB2MCtNc0WeZU6FpYNzac4jVCz1HZRt1e+RW3iYqk0OzZKxYxPPzmG8rCPOprXby6gfHOjdFuvF0/h2M4QtcN/8Ufo8VzWSt9zMSXdHmk/3Rr1O3WCejE9t3pKWsTG6ADKJ+RFfTNFnVGpeZl+OnoIx7I16vLOLezb3ZG6T/PkDRwzSMO2TY53ulB2SbfsV6o/RwPysIwpftakx2yqe+PXqGdKKC99d4Tnur7CPtjfV/r74gJj/Kd/+ysom6THNDXhWhCQfr6BOuyPHuLx7g55/b5QmtL5EnVpNfmtrkvSLl5hLIaBKjfu0AALMa4XY7zWLFG+ls0e6lHjCXqGb5sntN+h1R1BeX+k7sdkjLrA2TW2y/XxvuuyQMvG+as08N6NdlDTnMaoF55pYzIKUBdokNbxyMf9Hp1K8wrGKhuLa5wnniTovfy2iePm4f2P3/3diFBjny3Rr7QyUOO9u4tzo+GoPsiusL1lgd+tCowTI1A6QtvBRw7v39gmZYHj5OwUde+WVrVWg+Yg8h3e28NxtHaUZvPxY7xP8wX2j2mivvNbfuOal2yDnh3XU6yzg9Uy9jWd8r//67+EY//7b/4eyr/+BcbPjz77GMo//pNH7/7+v4/xs/MF1vntDIN1QiHga3kPzGYXjgW0v2BG/sd2qWLEJg1zFr2/+KlKbFRl4Dzh+aqNuYn+x/MY56OUntuBtofgYozxc0Fzme1gvoCYcjXcvNTuDT0rHx2j93s3wr0Lhfasma3wPSShergDHE+mT3trQnXt2Zz2lPjkw9zHOTZPsY3X2txnOTj/JCl5yqc4vopKjZluH+djz8T3ydsgvzQLgiAIgiAIwgbkpVkQBEEQBEEQNnBreYZH9ioJWd10+uon8lWBywXra5QM3A9xifzoz1X6V7bxMsii6dnvadl1hvW4HqslhcERppUdDtEiK81xaWcWq+WXMaV1HHZxuaBJS6E1pTt99VbV8/UU02DOPn8JZU7xe//eHSg7rlqyjclupbeDtkHDfVyyfnWhltUWlMrTD2htb4tkBS7f8bKQ62v9SfltIwf7p9emFJyaTMJ38L7kZL+29KdQtjzsg1izOzp9jqmGb85xWajXx3quNauxhCx0GqRmivwulIMWLvUN+koCcH2NsTilFK3rGJe6bAfrlZbq3M0U+8e1cQpwcoyvHVst6ycpxs/ZGVqtbZvzMxz7cYLLg5lWvzxGiUqZ4tKqRanGc1N916Ql8ZTSsjZ9Sp9LVpa+ZlnXI9u4O30c24cuyiYizQLJ8fFerWh5+OrsGZTLIUo98iPVxl4H5z6zwnNfTzC2P/iIZBSafCpJyBKM5i/rAu9TW1tuLxOM1TmNk23ikDTEplTqK82W0KVHo0ljKrOxHYEu6alI3kOWarZN8gySeelzxxVZJa7I7u97H3ehbJkq7k9fP4djd/bwufuK7CWPdjAWT8/Uc/sXX72EY70ezSM+Ph9Ln6zgNO2LQ7/VhS3s25GPS+hpqvq6Jhu9yxuM221SkXNgUeJ9trXx6ZvYhkaI/VN7OP/o97UkieEqJskcjdWaUquHrnoHCAycf8wMH0RRE4+fanPsZIH1mM2xznGC8//gGMfM8lo9pxptmm9zkuRMsV7JCueQ6ViNg4LeLzs9fB8wqO/HNyp+HBfn0MEAx+JtkF+aBUEQBEEQBGED8tIsCIIgCIIgCBuQl2ZBEARBEARB2MCtNc3DXhfKJ69fQ/nijdKO7u6gHU+zRn2Tt8Z3dXOqNDlhiZ+dxqibyVG+YyxJ47U/UvXsN1ErVizPoXxOur5ZqnQ2kxv87DdfYHu///0PoVyW2Kb/9j+VvY8ZkkaLNEo//uNHUP74+AjK40Rpg355itY/z75C26+De6hpXlXKqsWMUFdELmhbhdOGVmRTVWu3cUUyI9NljTOluF2r+5yRhZVJ6dBXV9j33hD763qiNIFff/1brIiBGq90jcOn0FLHZiv87KiP2rGohXrCokKd2p1dZUs4m6LOP1tjXHd91LVXEWq+Ck3zVqf0XdKDxQ7ZysXqPi1J09wb4HW3zeEQ7ZIy0radvXjx7u/Ixf4NfIyD2qO5QbOPsis872o1xeuusc8qD88deUqfN7LQ0mjYwLTuPdKV6vFKDmmGuaTU39SGD+6gXtpzlJZ4uca4b1IK3JMLHFOnp5jm9maqxoVp4AB1SL+a5aTh1eZs20L9t/v+HMOMosb7WtWU0lurS9gh3Tq1uaa82qGv7uNwSPM9pcl2yTKypL01i2stJXeMdd7pYOzZNdlruar8d199gfU4x4A6OsK5LwwxFv/Hz9T3n52ixvQHTbRd3DvCspVT2uQr9X7AGlwrRD3r1QRjdTxR887xMaXRtt9fGu0u6bgDsutMVqpd8QLfS0waqwvS9i/m6rt5TpaqAxzXtovvRBVp6Hf3lV1kQc+Ks9d4Hy/OsfxCe7/IaQIa0fy728F73g9Qt1046r4FHo61zECt/myJY2ROz+lrzQrVDbHvDnt03QL3s9xrKdvidgvHT7pAe7/bIL80C4IgCIIgCMIG5KVZEARBEARBEDYgL82CIAiCIAiCsIHb+zSTT+WPPvs+lM8vlCYzXaJOZHmNGpNL0vTuPlBaoR989AM49rMvfg7lZ+Q9yZ6Ye676f8B8jGmjX1+9gPKj+6glbu4ozY5FWjuT0mLalCb58y9fQfnlhWpzlzwK/91f/hjKf/5D9JM+oXTB16XSg40z1DNdLMiz8TVqmDq7qm/H56gjmnpY3iZzSttrvUHv7nZDdXhJKTXjmFKWk2ayH6jPjyd43uVyCuWmgTe2beEQGGseyMslxm2zhZ91yW/V1PSFDRKMR40BlK+vsJ4B6fxsW7WxSynrWQfabXWh7IcYm0tNP27a2Hdxij7WnSa2cXqutHlVgfdheB99XbdNRZrqlNOLz9UYNSlddR2i9rGgFLh5ovooDLCDHRO1nukcy06CcdDVfJ57FnnS0s8UM9I+ZpqfdJGTtzRpcvd2UVPokBdsvFafX6RTOBaRHnM0QM39zSXu6Wj3VPwGbdSVvr3GfRWhi43MtL0itoGxmbH57RYJm3ifDu7wnhY1zvwBjrmMNtNEPh5veqo/ox08dn9JfXuGY86qMJ5eNlR/rej5llfYt0GI525qce6Sf/av3uA93evg+HVtOrej2nEzxWfYF0/x2XE1weP3uziPtLU05GWFc9CKciIkC4xzV8uBMD/HMR80MOa3SVHi/JOtUbtuaXsIyhLjWvfwNwzDKAqMvbJW/cmxtljRc3uC5ZrO3ekm2jG8p09eorf7coyxWGn7OSya95pNuudvcQ7peuQ5H6k5I5uT9n6NfenRHqcPGsdQPgy13AQj3G+xcw+KhlnhHJOuVPxM6J2QcxzcBvmlWRAEQRAEQRA2IC/NgiAIgiAIgrABeWkWBEEQBEEQhA3cWtP87PePofzpJ+hT/OGD++/+vrhA/eBkijrcro8+zp6nqjHooS7m+PghlN9OZ1Cej/HcC8232SRv1tHREMoueQeuV0pnmpMP5/EHd6HcIr/MiylqgxytTffv7MKxH372EZSfvULv5aRETVd70H33d3+O7f3kIWp/orALZdNT2qpOH3VUYfT+/s/UP8J6JgvUYZWh6q/QR03S8zPUTKbkLWxVSltVrPCezudYXpKWqjJQ03Q+U7ot08Y6Nho4XJIl9l9T0zEPhhhrBvmphiGW1zF5u65VHD/cw777+sVTKOcpjgknQy1aI1D3vdXFGFiRT2WdYZs121cj8FHDZpWoTdw24wVqzG36P3+70333d73G+26s8T47Po5vq1ANNS1slxXgvSoT/K5PmuZBoOKkayCdJt7nb16hxk73sK0z1Pm1Q4y/Xgv1nGmGbfS1ek/pPk8mF1BuNnHM1bQHodtSc7blkYcx6fFN8s+eXCkv2DX5xu7uoSZ3m/CYC0bYf21XzZW5jW2cZ/jdqsQ2e5pmt0Ee4cfkxW2Tjruk/vtgT2lBT17jfevXqCvdmeN3B45qU2BiG/6e9JvTBZarGu9NS/OqDmkvRDpDvfTXF1hufx893NtNpY/2XNK1ZzhWkynGz8Ge0tDb1O9Z/v408SntqShJL+xp7zUFxUBCewqWS2zj61O132q+xGe852CcegY+/84vUON7eaVyRDR8/O752SWUr67w2WFqeQ5sC9/jFvRs/eT+x1C+vplC+eaV0tAnFFtJjO9LTZpThvSMb/uqHCzwnfCadNqrEr2ns7XmgV1ge6vvLmmWX5oFQRAEQRAEYRPy0iwIgiAIgiAIG7i1POPe4R6UA1pi+eKXKuXwLMGf3o87mDrWy9GSJ87U0s75JS4fdDto1bV/iCmmmxEuIcTX6vsZ2Ym1yWYpy3G5N56pen/5DJcvf/Iv/gjKaUZLkDNs82d/+sm7v3/8GVrbPT1HOcbTM7SYOz5G6cv5W5VGOSvxOvceHEC5OcDUqEWlLfHSkrTjvke7JweXpdchLvWcaRKeozbG2qCFUof5DJfJ5o5qY5VjGwMP4+PkBOMr9DFGKs3PLcIqGx6nXqZ0uI7Z1j6LdW53cR1oMMR6fPErlCWtHLUMuzPA/hi18Z5fTdG+Ls7Qlinqqnrf/wClQilZot2Q9U97X43z9QyXihfT92dZaBiG0dvHdrfIbirS7t3ymmRbNyiDsFZ4L03NQqwkKQ2tzBtRhTHTyLEPO9rhyCSph0GSFpJiebaK37zCJe9hl8Y6zX0pyZpcLbYnM+yP8QyXMHt72Je1iXPlxaX6fH8HY5vt1/IU25RpKZWnZC92cITz+zZZlyzRwfum39aLaxxDizmW202UOSWmOtcxWbd9lOI4ubOPE0teY19//lLZiI5s7K/FdArlwMT71mqoGCDnLSNPcc79zTdok3q0j1KZO3uqnv/pr+7BMafC2Pv5U7Szq8iOc6qlA98Z4NJ74KHkwifLQl2G1WqSdaSD8/02qU0c92VNc+dEjdcljYH58gzLFE+l1gyb/G5XK3zmR/TcCWke1N01fQfrbNp47mXMEh31bLXIZrcboqx2b4jvGjnNGR98qGyJoy4+367oPe+br34J5bMrfP9a+OoZF85x/IR7WK8sRAlGXqn+W8Y4niwL7TNvg/zSLAiCIAiCIAgbkJdmQRAEQRAEQdiAvDQLgiAIgiAIwgZurWm+fwe1xKcnmL55rVmoLJeoG3kbo36lNFA7lXlKk7NcfgPHdu48gPK9Q7QbMfZQ73lzoXRabxaobUnHqGFekeb5xVv1eZMsUlwXNVoLskzpUorlDw6VsOjy/Eu8rokat7MU+ys+Rf3TQBMpvThD/eoFpdpt9VB3arrqeEQ6vOHO+7N7On2L8VKRLmt+rbRUwxH2dWeIGqaLS7yPV5YShPVID+e7qLcMGqhhmsxRH231Vbnfo3ScCdk7dbtY7imbpU8/xRTHLf8JlEtK5/12jDq/3NVilzS1x7uoA7VIA1eT1VSsWSn6JNQOyM6ozlHr6rVV7BUWauBnFIvb5t5d1PpXJtnKaXrsssR2xgmOz4xS4q4vp+q7JPW3yaavNlEH6KVYjlx1LdNCzeXTFy+g7FFqbCtXbdgZYawOyIYp8tHWyiBLwELzU3r95jUcS0vsu9JGXWBC1oOZZuEXURptP8C+9izsj0zTTZYl9kdOKYC3yTShvo6wv8qVOn76CjXgjoN97UX4fOhozXrkY3+0DdSm5/TYPTg6hPLLczX2n13is+BmRXaHbRzrzba6j+ym9Wc/xOssTLa5xMDvddTYPxzRBo8K59Wf9PHcE9b0LlS9swrb0G7jHPThPezrRa6NVXpjaTdQ47xNKrKhNalclOo+5/RMT2bYH3VB8ROp+zbs0rOA5irPpvTWLex7J1T9Gcc4n/fpWVpSquznT/T5CevY7+K4X9P+l+MHn0D57gM1X794hc+/ZhPH3mgXz/3qBe5BWa3Uc91zsX8GPs7PUYT1yrXfhtMUx0uvQw/XWyC/NAuCIAiCIAjCBuSlWRAEQRAEQRA2IC/NgiAIgiAIgrCBW2ua0wx1NeMx6nJdLVXvwEWtj53Ruzn5nE4WSgs0TlGvengfdYytdhfKCWm8ThOl5Mpi9EIcdVA7ZVmohWklStO1H6Fmq9dB/a/joRbos08wzbauH/7qCeoJ38ynUC5D8jDOUIt9dKS0ssU19t0sR/1OjbfJONpRmm/PxfYuF+9PT1hRWtp8QWlXfaVNS2JsROZjf/R28VzLWPVJZaFGqUl9+9kPMPXn0+dfQNnU9OaDPuo8xzd4z6uii/XUNF7TK9Rw7X+IqcDHN3gvXA+vZZoqri/mqFMftbEewy620W6i5mt2rfnkkj9oL0LP3TCiGNHS1kcBXjcmr/Zts9PBup5dvYTyZKL2TlQVjguzh+0qYoz95Rulz65inFPcJbZzRv7mu+Qza2t7EJo9vK+Xz1DTvNPCuVHv/t0ezleOQZryCWrKa9JCXk/UvX55gtd1yFu5pN9PKvJc1ee7eIX6zHYXdaUe+zZr98K1Mf5mC9wbsk3mlFrddbCNTU0jHrWwDQ3SbZukyx1oHr77NIaSAssN2qdzQz68X79RY25Jmu9lhfPbzQyfw6aWontvhPsqCh91o2dL1KxeTqZQXngqngoD77lpYV92IxwjDYpFfQjNqM6dJsZ5H4vGhVavmtJmh85316T+Y1ku8d3ErPDehFqMeB2Mn24T5wGy5jZKS/WvY9D7E7XRpLGZpqSt1p5DLfJubxxizozqz3HsVoYan5evsb1Tav8led9755g6/WahvLs//+Jv4diwj5/N19iX51f4zhToYzNAz2cDq2XUA3xfcLX7MhrhM6zXwTi9DfJLsyAIgiAIgiBsQF6aBUEQBEEQBGED8tIsCIIgCIIgCBu4tab5ZjGFst9CXY0dKu3MOfm3Ogbqe7IcHSSbmkdhnKB+84K0LWEb9WHpCs9lWUqjskpP4VhOOmXPQh2Naaiy62H7Hj1Cf+jdHdQGPX+Jvp6nY9UHL25QD3ZyjuW9B6grCprYpqRS+t/+DmqjrmZ4XYN02qOB8vQ9e4OfPTlBD9BtUlWogQt91GlNNY382WOs59FHqMXbH3ahrGv3rk9ROxzHqJ22IvJxbuAQCFujd38HAWne29j3kxvU1+laq2YL+zYn3+9nL1Ajb9YUm4bSpc3JH/r1BDWB+yH2Tx6jyMtqKh3X65NzOLbqY/8Moy6UHUfFphfgPSuK9+vTXNvkv1mgFrQy1f3w6F6xx2peYbu9tqbfxEPG9SVq5KIBTZsVabttdW+nS4z7bIrnqpsYBw1ND1vE+NncxIrZTaxHQZ7QP/3mZ+/+PlvgXOi1MKYKA8tt8uXNxqod42u872WJbRgNUCe401XHE9LoZub706RaHgtJcUxWtarLg4fo/++V2NfOGr8bX6nn1omJc8zD/QMoH332z6H865//HMpfvFD9e6dF+xdcvK5V4xy00Oa7fo31sEiDW+YYT1GAbey1VAw4FsY4z+es+bbo8/tdVZeS9iW5AT7/zArbONDyOCTkf3z7N5g/nGYD49yzR1C2tRwB6xLn/16D90ThnD2L1bwcuhinqyn2x2xMfuMWHs8TVa4KfK7Ml/jssGrsz+//UOntn0c4Z0zfTKG8pn1uX375Uzyu78Ew8bNPnuAei9kUjzeCLpRTbb/ZLHkOx+o+xk9yhnNKnqv+ajZwbppcfPc9FfJLsyAIgiAIgiBsQF6aBUEQBEEQBGED8tIsCIIgCIIgCBu4tSIoJ+1U0CZ9mKt55VZ4rMhQ37TO8LivefatA9RKvXj1DMphhCaOh/vHULY9pQm8ylkTiPqdKfklZ1o++Ii8I9nz8uIcc7p/8fVjKN8ESitTdVFj03e6UF6XWM9GdwDlaazqPb5GHdr5JWqBHAe1nPOpqsdvf411bLVQV7VN7Arjpyjw/2uB5q88JD9eN0Ot5hX5OD+4p7TEu8cY0hb/v9BB/ZMfocZrd0fdd8tB7dgyRl3azg5qBB89VDGyu4uXvTnD+EkT0rIOulCuK3XtnTX2XemgzvF0jBrw8Tnqlu88UprK8QXuGXDIH7N/l/xofXW83cY62957FBQahlHS+HU8jAvDUv0Up+gH7IT42drCPq20c5VrHK9lgd8NXOx/l/SbmamOf/kc9XcZea5WNp6r1uJzlmEdrQjvTdjE8osJXuvl/Om7v8sQYzktcQwFJfvSd7Fehpqzp+SlP6F5tl7hHD5qqflssI9z2zzDz24T36D7WlJMaN7LLQ/njX6Iz4MdGguPr1X/Pr/Gvt7fw/goPOzrhLzS61p93iMvdNvCc3db5PFfqphJqG8dG8drTRrnXdoHcH+g5lXXJC21h30Zp1iveI5lT9PphqRhtizs67zEPT22Nr5Cum5u4Ge3iR/hePRs7F/LVvfVKtBLeDzG94XJFDW9nqPiy3exf+qC+oP2AaT0fJhrORDKDD/rkW9zkmEMJCs1b3Z3MLbqNdbrZob3eLHENi4y9e4RNHCsLcireznH+PJ30Mc56mgxQPkTmn2s52yO556M1fx0VuJzodXAsXgb5JdmQRAEQRAEQdiAvDQLgiAIgiAIwgZuvb7qufjRipYM3rxVFithgLYeIS2Jr2L8+Xy8vHj39+ERLmMnM7QEOXmBco1HDx5hPcZq+fkqwWXEnRH+H6FHKW4P7qtlsnsHh3BsRqmMP//qcyiPDaxn2lBLJN0RyiAiWorIElxCCQNcMoiXahlkdonLC31Kz+lauNy70pZuahvb36Y0vdtk2KQ2pdgHtauWO3NaNr2aYpsXFbajOD1593c3xL60yOrtZoLnGo8xFejhSC0DWQWeK1nidY8PcVms4avYvJngZ6drTJ0bhDh+6gDj62qs6umaaH03JTnGlJb+0jOM+6ZmHxbREm0+wyXGdI1LbmstFX3ZxvvS7eCy2LYpDJQUlBXWdTq/UgUH+3/UwXGSRSgRS+aqbYWNMdNp4Xc9SglvmjjmvnqlbDJvaAk86OOyfkxT8DxX5y7JEs2mZWxrhrH8/OxrKIe26p9dknZUGaXvJmuqdkESFF99Pu7hfHZDS55JgfdpMlXx2N9Fq85GSDK/LXJg43yXFbTcXqq+93OsV9smWQClvu4E6twvLqdwzCF70oxiIs9xXLU067IgxPtimVjnfptTmKv7lpI8o6T0y4M23scupT8vEvWctuiYkdMcnOC1crKVXeeqzSnLncgKcE1Sj1qT1Zjfsih8f7/7rVb43pKQBWRZqj5okMVcIyRpW43j0bHUPGB9a0jgeIqXGHueQ/OVJlFdpxgvNVlvhvRO0CpV/OzsoGzooIcVe/IbtJ6sK5KaaRaO4ynWuc7p1ZNu43SFz8PuQ21sdrEeMdkOFwVZ8mkWkCXZGSZk53ob5JdmQRAEQRAEQdiAvDQLgiAIgiAIwgbkpVkQBEEQBEEQNnBrTbPvsVUJ6nnMWulKHBLlhA38buMAtS9epdmz2ajf9APUofUGqOFKU9QZXU2UPtpooUWVv4vXjch+petotnkl6mKePn0K5ccnT6C89PFaVlP1gemRdZSL+q+Ow5pJrOc8VZrVwz3URh0cofb6aoF61lzTjzVJg0ry563SaJLtIOnWLiZKtzVNUf9k91DHNiQ7mlLTUD5+gelL+xHq9l6TJv7OXRwCR1rG26+/IXuwegrlPMdznZwoa5t5fBeOtch2qiL7tMUp1ntxo+7jxYz0gSRFb1B6+NYexpOuJxySzWC6xPtw8hb10juaBtckh7deD/cubJt4jXGxoDTThpa2td3GugVkVZWQDtB01XGbNJYeWco5pA2NE7w/L2/UeHX2cY+GSfPoVYqaupunKg7SKWoGlzHNZ2Q5l1lkJ6i1eT/HGPFN7B9rhecKDIopTRPtN3AOvihwDnYd7J9yrfpnx6T4a7y/NNp3I5w3UtJ7wm9IOR6jROlGRbrktqYtti9pzwrt6Tk/u4JySXt8dDu3NWkwmxGO7aiFbWppcT9bUIrtGp/ZPbLNq3NsU6rZkdU2Dn6H7PtqSh1uk1bWMdU8a1Z4roxSkpvfOpe6FtvmsUZ1myQJzpV+iFERtbQ22vgczlKyxrNwEk+1VM/lmsa5hw9qi2wIIwfvWy9QMZGR9ryseQ8LafeHapybFt7jydUUyl4D27Tjop1kx1DnenWG140CmgfofcBsYB/oNqvxgtLBF7inwqixf4JAvVMW9NnSoLTst0B+aRYEQRAEQRCEDchLsyAIgiAIgiBsQF6aBUEQBEEQBGEDt9Y065obwzCMnPRRO0OlpZq8Qe3hfILfPRgeQDlsKF3N+TXq+A7bqNka7exB+fL8LZR//du/e/d38zPUDS0q1NW8foV6lk81/9GK0guvSP/22wtMVezvoyYw13Rb8ws4ZITkNdkbobasTV6upqv6zyqwXsMe6uWKFO/LaqbKrok6xXTBmr7tUUeUwpXSGCeat2K3T3rLgFKBko9zoOnn/Ba28cUb1OgOh9i3H3+Kn//8a9W/J69QS1aaqKEta9TfNwOVOjWJMfYGd/Fc8QJjcfYGdY2BpeJp10Xt2CIin1fS64YDUmCa6vOnc4xbVmuOKkz/aoEnMV632fnuKUj/EJakdU8znFeaTdXn7Tb2v1WT//QS+7tM1f0IDdKNkg+zTT7NT17ifodLTZ9n0+8SRXEJ5fFb1CH7mq/6kPTPVUY+1TXpJCnte6bpPaMKz2VVOB5jSu9tuFjvodafPo3Pf/IXfw7lnS7GUKL5yvbv4tz/2wvcF7BNInrcmRb5YGt7WuoatZ4ZeR5X5PEcaN76oY999+bpayiTLbOxmqPPut9U84rbxDmmQ/s5Wof4PGxqfr+n5N++pp/IfNLu26QPtj11rrTM6LN4spq+a5Ee1tL6uiJNc5JiXLOXsB+42jGsc8pa4S1iWqR/pTZWmha7qrBeJu1TClr4nF5r+yJcmpNd0nGzl35BsRhqt8a28bOsl9a15oZhGJGeI4KmhHUDdciGhe9qVYX3Ubf2Hg26cMzO8TncH2Ab7AFqwn1tOvdcnH+yFPtrTum945Vq83qNsWX+I342ll+aBUEQBEEQBGED8tIsCIIgCIIgCBuQl2ZBEARBEARB2MCtNc0x6V9ZWxxp+qdsgXqeixnqB5+coq5yslR6KYv8Ux27C+WKfGUvTlAvdmd/X503weu+eowanPkStTD9ROloJmP00jy8ex/Kx3fRh/fl6g2U7VL1R3yNdX5wHzV/kY1tLueo3dxvKv2P36Wc9Q6W/QVeK9H668OHH8GxjLRR26SgNuYR6ZT3VDtK0lKVLv0D+Uvn2fTd336FGsCWh9e9/wD1UG/eoLbs6QulfxoNUBd7fYm6viQ5grLpaPEU4j3U62gYhlGTTq1uYKNWhap3tsbrOibGbUlWpXmKn7c07XW7xvY7JEseHeO4DrX/Vzuk6WtS/2ybhOI1IW/PZqT60CcvU4P2ZGRL1N8Zml9ygwzM7/ZRh1uTKHWyIJ9dV8Xy+AQ1zBl9dhXjuXTLWq+L+xV6+3jv1iV6juaksaw17XWcYpCsyFt6SU8Cl8rxaqrOG6MOu/nNcyhPGhj7j+598O7vaox1nH2DutttUpKGudnC/tX9pV0HO2BFHtl5jv1na3NUKyS9+AT3QhQ0wf3mdy+hHDXVff7qBfbPgrTppYPaz8Ou0uO7EX72gLTovSa2P7BZu6/NQSW2t6ywDSaNGdYtG7U6V7rGsWcb5Ivu4xzuaHtWaprrfBu/u00cC5+1Zon3OdGevY6L9Wo2SZec4V6sQt9/4D+AYzXrow3sv6Ig7+V4qn0ZDhklfbaqcZ+K56i+d8hfPDVxvnEsbJMd0rN3qK7VzPFZ8eQrPNedI9JL096kJFHPabvG33rNmvZqJTje8ky9u1YFxiXZrd8K+aVZEARBEARBEDYgL82CIAiCIAiCsAF5aRYEQRAEQRCEDdxa01zMUR+V+6h3WXlKW5U5qLkZPRpCOR6jkOSrU6Xb6pD36+k1an/CLmqJh/uHUG6PlDamXaO2pVGjrmYeolZoPFOa53BBXsoT1CJ2SM80KlHP09tR+rFlgDqij4/2oRx4qLOJJ9h/VaaO++SrWPtY3r2H+su7fvfd37pmzzAM43rMnr3bI6ac90uPdG2abWNCGt6cPEAD8gi9uVH6KHuKcXl0jH39zdMTKNcZxkDLVfE3bGHfBu4IymaO9Yy1JvUHGPMG6eftAs99dwfP3dG8bv/+y6/g2GSKOsZ+G7V2NUnAHc0ws15grPU6GLeug3sXUk0v1jAoxtm3c8tkMd6rinS6maHuR0G6SaPGdjmki2sZKm4GDvo0N2rUa96ssP/3j3BOms1UPC6XOAf5Pp4rdDAuEs1H1R1gLO9/gnNd5mP83VSoE7S0WK5w+jLSM9zfEZG2vdsm7ftS9X2ywL59k6AR/TVpCu999L13fy8u8djiNdZjm/g0Vzo2eQmb+tjAvvVoX4VLmwF8X82td4ZdOPZ6ivfljx/gnDS9wXjLNJ/i35/gjfvvf/MNlB8e4d6b//DX//Td3wcDPO8RaZoNC58HDXqm19qYmS7JCzjA9jdJH11QPoFC26ORkCf42uP7Qn7a2jOvIBGqRVsXtsn0Zgplx8b50HS1fRH07FiRDnmd0SStPdOmKxwTWUqexRbN2TbeV1ObJrMC46ciUXhNmuZlouYfi/aFLGk/RruF8TUY3MF6tVSOhCLBd6/LM9Tquz7GV2mQV7el4i1PcB9SmmPZsrBNpjauGzTRufZ3/91YfmkWBEEQBEEQhA3IS7MgCIIgCIIgbODW8gxjjT/V35zjktPRfbXsuL+HS9MOLXdOaRnxowdqKdr2KN2khz+n//4NWsw92kMruMmbU1Wg9MPHI1zeXDZwuWHWUlZJ52Nccry4wWWwVheXG47ufw/Kqa2WIZMmLjXsDnFZO53hUkW0g/13vVb1TEkSMPLRvq50sf9OLlS951NKq0r3YZtcx7jENFnjvcnmqo/IKclIxrh0Q181cs0vqz/ApaqnZ7icaZOsptPApa5ZppanojlJcjp432oLr9Vsq3PFMdnTNUhCQSlHOw2Mp7RQx/c7eKxLnnuzDJenYkovfVGpuPZjXLry51jPMCdLK1ON3VZrAMdIybF1VmOM1zqhJWBTWwKmJXGLluLbNo4bR8un2rPxPp88P4XyjORDgY9z1Gql+rsR4b1KKBU2W5vVpfp8ew/nzd4Iy4scpQ6zAn8D0ZUfixn21XqFbTDIvi+3qW+1HMwVWbe5OxgzIaV+7h2p1M8zcghbpRi728Q18eI12cblmq1aRRKCIifvLsoxbGs6gV4X2/+G0vpmOc4rR3Rf11qq6P/6b3fg2P/6AsfgnKwDMy0GCpoob6ZoFejSnLOiZe9OS0udTjGuS5AMwzBM6o+SJHWZlh4+yzG2UkoDnZeUBllrB6eQDqle2yShvmYZQKA9uBJK713Q2LRM7HtLexWrSIJS01hM2WoyxXIjVDHCcZuv0DqxWOO5V5WKgdzCuWo1p/TnCZavJ0+hPGyqazkdnG8f/WgXyoaJNpWVQTZysbrv8QLnLtfH2Gu2sa9LrZqtJh5rN0mydAvkl2ZBEARBEARB2IC8NAuCIAiCIAjCBuSlWRAEQRAEQRA2cGtN84cfY3rdmymmh7W0vKtt0vFNrm+gvNNFDVd4X9nVPH2FFnOXpCudsx0bWUnde6D0wFfXZ1hnqod9B3VHqWbJ5txDzVFGWtAyQY3uvQjtVlp7Ssf3aoZ66MvFFMpNskFZpdimTOtbXetqGIZxfoH9ZZMtWJYo/Y9rYHvd4P359RRr1D85lGXVXSldkkPtnz6n9J2kc9/RNOIZpWyf3KCG66N7qIF/eAfj+nSubPhy0psaAaUpJtuyeaKOL+ZkZ5ijFr92yL6nQVY4har3zRS1hiHZgZke3kd/jfVc2aqz23tdOJZXZDFHmltb0x96I7TFK/4RKUj/EJKE0lV7WHc/UrFvJZwHGvsoWOP4jmzV/9c3qJs8fYvj13TxvsdLHIPHB8pSLCtRf2dmGI8GpUQ3tBTdDbLfzCuMg+UKNc1s1ZWvVAwur/C6JVkPej5qHytKM15o+b2XSzyX08f+2NvFODkcKI3ljPaGXK5xTt4mOfV9lpGWVot1nhtN0kNXNdmELpQmk1M9e6SPnkwxjuua9hFoqX5rE+v4r//sIyg/PcG9N3rK5Zq8JytKV72MMZ5MtiPTbmuSYD3qAj87m6ImtaQ+0K+VZjgmMrIjrS3s20xL2W279KykvSHbhG0GbbIrqw01byyXOIdYJva17+O+iYavp7zHvswNPJdH+zMqSn+u7+2oKc14YWPfmhG2wdX05XmOfRu0ME5HB2QzWOH4WteqPJ+jnr7ZRE2zaXpUxjb6DVVu71CadY803fQ+1Wn84N3fSYrzz2yG+1Vug/zSLAiCIAiCIAgbkJdmQRAEQRAEQdiAvDQLgiAIgiAIwgZurWm+mqIHX1ajzqZhKh3f1Q1qTFYr1Ma0d9pQ1qWJQUC6qyUKJ0dHqAXSPVENwzDmmhamcUgpak9JVxuSKNNX/4dIKcX2W9Lk9E2sx5L8I+21akftckpN1HBV5F16eYVpNHNNZ5pRvUZ3MSVrSTrbhub5+ehD1MNdTN9fCtsjSrG5yDFGXC2t9OoG7+mwgXq6qNeDsn60pvSkOy3UV3qkQxu2UB8V2t13f/s+HotN0vtGqIutM+XFvE5QqxmTPiwivbQ/wfs61fS7i5I8Pz3SxdIwjkk/HjbUOJjbqKdcrcjn9QKPO1P1d2+AfdkaYfrobeNSul2P5opmpO2VOCdd/BOMKYvGiTVUMfX8Dercml2cr4Y76Dl68QY1zVFHfd4tsR6LG+zvOMF7aWrm1x5p6JMS703Uw/hrNXBcnL56o65L82RAur+ArhV62D+5pndNbYzlmPad2GQBncRKe/35s1/AsRRth7dKRT8RzTO8F7puOUtpD0uFjYoinBvWmoi3zHD82RbNyQHuSdA9jA3DMHJtRvMpxouStOikr4+0sd5soE7UoD0ta3ouFxUe14fIfErzV4Dtrwzy9SZR80JLa58XeJ2Q6mk5lCpb03g7pNG1Sfu6TfICn/FFie8X+vQU0D12KQ27RYNE16I75OFMEnCjov1AvJeh1HyuPUr17VG+gLxGrXVgqDnUN7pwLCV/8U4f55CMUmWvVurayznGz6LG/WaNiPbp0DuRoaXVjkKsl0NhXtM+nVWq9inFtFejLL/7BCS/NAuCIAiCIAjCBuSlWRAEQRAEQRA2IC/NgiAIgiAIgrCBW2uaE/II7Q9R15dnSoe0orz03f0ulG3yBmxqOqW9QzyvQX6Q7SZqcs7PsF7zpbr2vY934NhehJq/8/U5lJsNVa91QrpsB6/TaqPX9O8XL6FcXirtTOsQNZHdA6zHakW6oj76H3Zd9f2Xb9Dvd0V6woz1YpUS/Jyeo47oaok+r9vksD+E8s2afIk9zWO3h59t76JWKpmTHsxQx8Mm6Yzp/4Wlj7q0Felkn32jfE/v9VC37g7wszsHWM+7Owfv/h61sY6np6gf9wIUYq2uUXO61NqYxnhPPdJldT0cE0ZE2t9C6wMb9V7sc960sc1rbVyPz1HXP2wdGu+ThkvtJM/y5aUaC9dfo3/t8jXG+t4Batmul2oM2k3s7+NHuG9gZ4jabrbz1rWiAWkI6xnG4/X0Gsq9vooLL8QTk52vYUY4T6wdjDm7o+ZVv49fDm0cf56FmkuXdJOGdrhRYZs88k0f9dGDdbxScbNyMc6r/vvzil+SdrjySZOqzRUueRzPacylKYouLVP1QW2RpzH5EFcV66VxTspy7fMh9nVZ0P4OH2Mk0DyhWe5rmRh7nk++wzW2ifXDOrMY7yPbjQe0H8QOtWsVWGf2P/ZJX9/R96HQIFin78+n2aD+KwrSrhfq2WPaOIeUBu2Hoe1UtuZT3PRxXDdbqPet6bvrNZ7bc7RnaYXvT8sYn0OlhbHZbHbf/c3a6ZK8yZMM3z1KA6+l20eHTcxrYdbYJpv6dp3ifK3HSFninFmv8bprGue2o97l6oq87At8X7gN8kuzIAiCIAiCIGxAXpoFQRAEQRAEYQO3lmf0u7gkGbi4/PL4d6/e/X3vCGURnKp3QSk37VT72b8gex5aQuuElHK0gT/zW9qSZoOWthZn+JP/YoX1cny17hF5lDK5TfZjZPvlhrikcnE6fff3/odHcGx/H5cvp7MplLM2rr942lLXiJZifLIzulyS1Zm27MOWOY0BLXdvkdklpl3PHVxSaQw0iQUtT01pSWW/g9IYS7P3Kyil9GBwAOXUIjkL2fnYrpLOnE7xHu9FuFyZ07LQcqGW5BohLvv88Ps4Jl5eY3/UTYzje0PVB7/4OS5tTVZY6TV5abkW9p8xVp+/+/E9OOST5KSY47XClmqH3j7DMIzXJ6+M94lX4b2dnkyhfHWhlh7jSxzrQQPH8zrCOKhcdW97ZGnY62O8LRO87s0C72XDV33mklTGIiu3wsSx3mirMdnuolTm1QSt7XIKXivAc/c0G73AwnPlMX43X+N9TxYoGcs1yYAXorTo3uExlB/de4Tn0pZxHQfnoD7Z+W2TfM3jhizYtLzwIUkGOKUwP9McT405mpINl6QLjonzRkH6HkdL772mXPWVg3NQSNaBpSbP43TeDlWkJrtJlmPotbIc/KxPNqquhee2LJKvaH8XZKGZpnhfGlEXynmhYpFURIbj3foV5g8moXnXI2lMpfW96WK8OCa9L7gY97bWQ2VO8sMCy47N6bwjKqt6uS7eh56N73FZTXIpQ9UzyzGALEp1Hbn4nBnH9IzP1bnIndVwKfW346D0Y+CR9K9U/cNxPWeJakbSIVvVwzK7cCxJvvvvxvJLsyAIgiAIgiBsQF6aBUEQBEEQBGED8tIsCIIgCIIgCBu4vSAoRs3J5eUVlDuB0rfYa7IPIeuSimzkFldKg7JLqXmdEDU5bbJZqkn/W1jqYmlMOjTSpbXaeK6VpWvv8LplTumGC9T8GT5qlG60dMQvn6K1XdBDfXSnhxqlMELh1ts3SqtJDjJGTdqxzgD1mLX2BbYUiqL3pwdbz8nqjfrTsJTGaZZRqks6V9CiVOqF0q8uUtQ3eRnqvVpdFFf5pDH98Y8+Vedd4rmWZNGXkC70wpi++3s+xc82XDzXPEONW39vD8q9obo3Tx9jWud4jt9NSRfrUkzUpSqHPvZdSenff/8cdWmhplVskn4yW79HuyfDMPIpxszNY7RP0u0muyNsZ+cANXRhD2Pf1IRyZsXadezf2XIK5doiCzFT1dPjMUbaPTfA452u0rb3+9iGL09fQNkP8XiLUhsb2l4Rh6y6Ato3UFF6+TzHeq5L1caGg9e5S5pmh/ovXqj5PSI962HQNd4XJo2LijThrpa71yHNbsPGeaOgiTjXrOCKktJAWxQDFn63Ig8xU0sZzMcCuk8OnVuTfhpNsjtc01g3yVbPqrBsajZggz4+Vwx6llglxU/JY0Z7trIVHqXNNr41n6l5pyIftIr04dvE8Woqk71rqFm92Tje2FLNJsu1tTYuaho/NWmcC9qbZFKq7EQ7V0G/ixaUDj7NplgvLd23T3sXigKfYSblum618R0o1569lol1zMku1LLxvlo0T5ZabFY0NzV9SsFNr7UTzU40L2nvRsJvF5uRX5oFQRAEQRAEYQPy0iwIgiAIgiAIG5CXZkEQBEEQBEHYgFnX7HonCIIgCIIgCIKO/NIsCIIgCIIgCBuQl2ZBEARBEARB2IC8NAuCIAiCIAjCBuSlWRAEQRAEQRA2IC/NgiAIgiAIgrABeWkWBEEQBEEQhA3IS7MgCIIgCIIgbEBemgVBEARBEARhA/LSLAiCIAiCIAgb+H/8Iqpd0Pg51gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bottom_train_ood_features_idxs = find_top_issues(quality_scores=-train_ood_features_scores, top=15)\n", + "visualize_outliers(bottom_train_ood_features_idxs, train_data)" + ] + }, + { + "cell_type": "markdown", + "id": "2521aefb", + "metadata": {}, + "source": [ + "### Scoring outliers in additional test data\n", + "\n", + "Now suppose we want to find outlier images in some never before seen test data, in particular images unlikely to stem from the same distribution as the training data. We can use our already fitted `OutOfDistribution` estimator to score how typical each new test example would be under the training data distribution and visualize the most severe outliers in this additional data." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "78b1951c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:31.303112Z", + "iopub.status.busy": "2024-05-24T23:50:31.302640Z", + "iopub.status.idle": "2024-05-24T23:50:31.984765Z", + "shell.execute_reply": "2024-05-24T23:50:31.984239Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIICAYAAACVatOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVGUlEQVR4nOz9Z5RsV37dCV4XPiIz0r983uIBD74AAihvWFWsIqliUaRoJFFqSi1p1OpRS5o1MiO1WT1reqbXSEuakdZIo5Yhm5ToXZGsElksxzKoAgoeeACewfMvfWZkRoa/Zj5QE+fsfZFx8wHIrCK1f5/uP0/ENeeee+7JOPvsv5skSeIIIYQQQgghdsT7Tp+AEEIIIYQQ3+1o0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZBDs+pP/t78IYdfxIc574XDbjTFfiuu5ECcYOo4VJ/Rdh2P+LhV7kflD7Cb0UfxyPKBDbZo/dBeXoSxsbeO+ymWIC2N5iP3Q1Ic3NYbf9bDaGwsbEOeKWLfVyGx36bM3F9YhbjohxH6tMNw+fHAWyibyMcSln/+ms1f8q9/5EsSjMuqkbjHl3/E8+l/Pda1N/DbvK3Us2lfge2+67TiOE+RyEOcoDnz7vlGbTyKK8Zr6A7xv9v+zUYj3KcbQSQZ9iEOKY+sLqXrnP6QqzH446Xmi7/6VH/oQf/kd5bPfugaxR893IWffLyyLuB8h7Gvhz6ariCqJPpAk9g2idkCxm6rvnc+T23YW9sf5m9SEHIf66OuXzkNcyJl+5MSZe6Gs38P25vDzaR09K5fWxx45NLL87fATf/dX6S8732d+1j0Xrymm64gj83zzffJ97M+xfThOEuOzH1n7CkMsc+k8Un2hVdfpR3n0eXnuzm3Vo9/X+C7yNcXUSdmP1CB1TakT3XFf3H64rn/9n/4472zPsO+T+JMBPxNvhn5pFkIIIYQQIgMNmoUQQgghhMhAg2YhhBBCCCEy2L2muYia3d4AtR+RpTUq9NtQ5uXwMEmOdCOgHU2p7QjSt9LnY8fojDLkc45bpMufmx5uludQsxxfXYK4dW0R4uZqF/d9eGq4PV0qQJkX4fWXt1AbtfLKVYhX582+Jk7OQdnZ4xj3L+N5Xb1htNmvrt6AsvxkCeL3O3tHtVyEOGYNXGTilAaeNKas84stvXDYp7IY65Y1cJ6H96Lv+nYhlDkJtmsW4wW+aU98DQHpb3P0DLguP4rm+6xhZk0t67BcB/WYg4HR6vf7pH8OWUvN3JmOdi/JBXidvod1mrfqNIyw0iJqb6xRtfuVxCXNacJaT4LXcLg76+JSemguh+LR+s0s7E8n9PsINU/n1eefhPif/y//I8Tv+cj3Drf/67vuw+N4rI3FfYOOm9cc3OE1vS18fIe59O4IrOedHteURpefb9QW87oKvmbSB/v47Nt9EvdPYThaR+tb71Ku27QeGL/L1+SPaMepa6TPcr8bxZY+mtb08HklrDW3ni9+b+xr+yF2o38Vf/LQL81CCCGEEEJkoEGzEEIIIYQQGWjQLIQQQgghRAa71zQHqB1qRzjeHrRNfGS5hd8lgVhMXsJuwWgwE9b/UpyQjpH9b+1jeRma5oT9IttGl5zUUe/rn5yGuDaDmufq7QbE/b5lAt1HQ+gOefK6pJ8+UD6Mn1803sybT78BZY3pCsT1gxMQnzxivJmPkMfz0q0VZ78oFrCpsc7Ps7V47NOZ8jVNdixP+YOytpW8NT3SpdmWyAPSD/K+eV/9XmfHcwxD1BKzrynr/Gzdo8t6VNJAFljrO0I3Wijg88TXMNp79Durb2ZfZi+lfbTWM7AGNeE6cSg2+/JJcxrFrHEe7Vc9stvJWGhxZ5rmDNN6qzwKcc3Fy89+A+Kf+Zf/FOLLb7wK8cGjR4bbzU3sR8qVcYijCPs3W+/LdZf39+93m4BeCHyffcc+T7znYWoNBt8b811eCpFqt95oz+N4hKc4twHWDjv2M8Drf9jjmQ9DfWXi2t7TO68BSEdv4lVtaZ5T7XiUBt5xnMTSnlO1OxFf/z6S5Rkt/mSiX5qFEEIIIYTIQINmIYQQQgghMti9PKPdgTBIcJr3xpaRZLy6jdMW765PQjwW4VRhvLJqtsNVKHNqNQi9GlqXJUWaErHs7RKeBiOJicsyicjIKJIKyhzcrU2Mqebco3iNOWvqJnZJErCN57H1OtrZJTWsv/IZYyt3uIdTaJtXUWKx9sxliJdnjHyjdvwglB05gpKTvaTbJhtCtkkbMbWVSqOdSmkb2x+m7+K+Ypo6jkOUzviBubFBgMdhWzjXRWs3G07Dy3qAAckgel2Ub/Qt67xuuwdlrVYT4g5VXTjAz9uyksnJKSjjadeYUvpCivLRwoM9hy3nWIJhz/Tnc2gvFtG8Lhtb2uVRRnvjeojSSYXfdPOPvpw1hWu+cKfTvQl9PuybdvDklz4HZf/x3/4LiBdu34T4wDxKxN71hDGkDPLYB4fUlvmSfeu02KarWtr5GXqncfsN/ANLonzzTktitpvk3PVsdWqeG9chK7KUHRtN63M6a0s3kbK6Y5tLtvtzdu4L+cb4bDFH52FLteIE+8mUvC6VzpsOZpXHLMfIkCzZyipO583WgELsNfqlWQghhBBCiAw0aBZCCCGEECIDDZqFEEIIIYTIYNea5vg26pCDOuqfvnDx+nD73z53Cco+fnge4p+46yzEj0waO6NCCzXNyRbqN50Gxm6R9GKlvFVGaVMrGIPYznGcxNIAOlvb+N0AdXxOiBpvh2z0QBJHGq78OJ7H9FHUT7duoMZ582WT/ro9OwZltdOoUz7aRu1Z+6pJo7309EUoa87hvu539o5uSDq+aOf01mkpJ6el5ZTI9jZr3kj3yilsybIwGthp2MlijuyNOKXtqGvwyFqrkEctZ4U0uHN10yYGlBq818Fn0c/jvpeWsf2sLJp4c40t90ifSim4PdB1j9Z17jWlAumv2W3SqvQ8pSnnnq4fkqVYZN/3Oz0zatt2Su530KYvZXFFP3l0mlsQf/WLvzPc/tWf+7dQtnwLNcyHTxyH+Ad/5M9B/NEf+DFzHiltP9vIcXp5s12h/nqqhmtj9pK5Gj5H65tojToIjc2ol0MrT5+0w2xl6UJZuGOZ4ziOT2trYrI+hdpMrdEYoZ930IaR+xzeF1sDxhG+OzyrY3X5u/TwuRlDCdB8e7yexaF4hCUdWUd6rD0XYo9RixNCCCGEECIDDZqFEEIIIYTIQINmIYQQQgghMti1prlHGq5F0hZ/e2VtuN3oojbqP7x6AeJV8kD+2+/6/uH2qSamaB1fvQVxbhM1z1FrDWLPSoXtkg9nVCQtXpk0z2XLp/nAHJTFB9CH2Wmjb7PXJ40XeHGywBV9dHPHqhCPz6GerrRktHedm3i9jdtX8TynUCNYO2uu40QPdWlt2tdeMgg5bTSldLX0c6zby0qj7dhepgmnT8b7kiOdH3v/unaKatbP0X3MkW52YPl+9wfou8xptNf6pEum/1/LRaM15rqqlDDF+9FZXDMwVUVdcmvaaNeXlvD5WVnH5zhO8BnpWHXgkff0fqeNrRTw+H3SevctjXmf9OYsv+6TR7vt05zWNGfpSpmdte13opdO+ZOTj+7mBt7L3//ML0H8mV/+34fbzU3UO5+65xzEn/qxPw/xhz7xp/HYrtVX0nmV89hmAp/SVVvnPV7C/qlS3H2qgLfLhx+/F+KrCw2IL1ie9xvbqHdOPDzvXIBtMbLej+kU7uy1jOfFPs22JjrhV0cq5zSns7Y9nndec+E4juNTX8ga54HVh2Vpqfukh2bPZ9c6VhRhX8j7znE/Y/dBpKfPBbROSYg9Rr80CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZ7FpQtlBDT9/la1chfm3R6GPnDh6AsicefRzij//AJyFesfb95B/8BpSdIc3lB+cOQzxG5xWtLQ63ky5+19smY9c2aqtcv22CLnoau4fq+N0O+jS77Bdpmwezv6ozmqSIn8gfMxrw/AE8j8rNdYg3Li9AvHLbeGa7x2egbO7coYwzeefodFDHHQTs9WquOYrYDxm1dgxo4li8mvJpxuJCjjRyOevYZITrZWp4zXmwr2uhjDr1WgVjPs+8pbX26LABNbXGCt7zAvkpT9bMsSoHUZs/UUWtZjciz+dN085bPdIB37mh8dsiRxXRpcPb5zOgNQZRTN641ExAFk96TQ4ZbhXJjsGbsbNWlLXsK4vorfy53/iPEP/eb/8KxNtbRsf8wMPYB//wn/tpiB985H10HqSztfSxJdIwF8h32KP7VCnl3nTbcZzszvAdpLGC9XfvyZMQnzlq+scLl69C2Ws3cA3LFrUvz3qV8n1zSSucRLRmgzzaA6v+YjqOQyH/6uVbx06tDaG1IHyf8nQesdUEBrQmI9XNZq07cez+jHz3XWxrCa1HgH4mIQ9sD7XUQuw1+qVZCCGEEEKIDDRoFkIIIYQQIoNdyzPWHv0QxJdu/BrEjz72vcPt93zfx6Ds8GGUVOTJOuriK88Mt5+/eh3KXqNpoTduY/zusTrE5+ZODbdLbbRUizYWIfb6JM+w5mi9pQaUJZsoxyBnLifycdrIr1rpicuYqpinn1yy/vHIzsieC0scSnV6eBzimSlKs73YGG5v3Mb6WLt9GeK6s3d4HssxWPrg2QF+mfQIyQiZBNs7cZpsLmeJQdI39Zu2xdv9/5gRp8bt43GqJUrLTtOZZcuKq1pGCUWJnp88W0nRNRdyprxAdmAlsgBz8mhnN9Yw1lvtLu632Wo7+0mW7VVk1WEU8WczdADJm27u6qucXRyy/mZ8lbGtum5dw+fzN3/x30P8lc9/FuJOB23SHnzX9wy3/+xf/htQds+DKNdI2NssJRcybZ9TYRfIerFI8o26JQHiFNKdHukN9pDbt1Gesb2NNnzT09PD7buOooxpvF6G+OoiSv8WVs2z0OpRP0G2lj5dcnEbY9d6RiPSEYUxvrNSEil4MbEMAj+akr2FnKbdnCg/AmwDmmU/GVnvPP6s647e1yiLxyTev/YjhOPol2YhhBBCCCEy0aBZCCGEEEKIDDRoFkIIIYQQIoNda5qjUycgLn/iRyD+RMWkgi6SXrPTwZTBWw1M/9ppLg23D1P66vU1tPp5qova4pdvok7tXZbe82PzuK9TB89A7KyjxjncMufhkrWNE6BWOMnhNbqbuK942zrPOUwb7lBK8phir4q6UjdvrimVCpV0aEkB4+IZo9ObP4SWc/19TKPd66IWj9OscgyQpi1yd06zncR03zilLalMWYrnW3/wOY0x7Ystm/CwlMa5g1p01tzmc/j/a9VK531kahrKyqRD9kgfPuijvZ+TmLoPSB++TdaJsY9dQsUz9Rm4uN/E3V+7p7TFHd0fe5tubJzSfu6XXR4dh1MoU3zx/AvDbdYwf+trX4K436P7Qbr4I8eMpdpd9z0MZWzrGNC6ijLp5m1dfKngURk+u2Nl/K79+TbZFjY72C84DlkxvoMcOXIE4o2NDYjX1kx/2O3iO6teQTu2R07jWpKFORNfuYXvrPUGas3jBOuvM8A6sLsVehwdn6wTkwHeR+x3RpohptaVpNYIWDrkiPrVOOa1I7xvPHYQ7PwOy8L+PH+Xz0OIvUa/NAshhBBCCJGBBs1CCCGEEEJkoEGzEEIIIYQQGexa07y1jPrXwgSmyo4io43c3kIPS06x2dtGLdnBSaOHPlCvQdkL569C3F0kr1gP4y+2jM7v0uUrUPahcdShPTqJXpxTFePF6a0vQ5lD5+wW8TxdF6sytjyg3RX0A3XJd9f2BnYcx4lJ5+dVjMbZHa9CmUN6wpi8N11Lu5iU8X8k/wxe/14y4FSyrJ+zz5N1yCSBixKsr8T2+eT0rRRyemtW10WW9s4j7aFHOmWf4sAy7HXJK9n3SA9NesKQtJ5XXjepsfuNBpRNT9QhHoSobQ1D1omaSpibRV07awL7fWyrE1be3laMx2n2UA+914QRtxnS84/4LqcQTqXKvpN8zhlyaFvfmVqDQD9TvPDtr0P8Kz/3b4bbLz//bSgLB9hGWFMfR3jfL198dbi9uY7rSA6Rd36NvJfrFfKWt+ovpLospPTQtF7BKu6TBrfd3T9d/PHjxyGemMC1Js2mMUwu0bqcuIPPRXdzHeL5ulk/M+ZhH72aoMY5mMJ9X9zG52p12Xw+CvFd4TvoFx0EWB6DjzO1+VTXSB729Az4lr90zhs9VBhQ2wxDeqfZORA89mke/eyNKr8T73wh3gnU4oQQQgghhMhAg2YhhBBCCCEy0KBZCCGEEEKIDHatad7soq4oClG3HPaMr2UYolaqP0DN1uYq6sG8ihFbxQ7p9si+txCgMGtAfsqRpem9EeA5/+rWNsTPdtoQf6+lcX507hiUFdvotRmuLUHskNemawn5vA7peQesd6X/XVzy3gwtH2L6rkcaZ9dHj1Tb0tjr03ncmV3m24J9PEP217R1a1QdrD+N+bytXXmk2wvoIl2u+5RezmjxXPIlzmd52QbBzp8lX+9eG31gu9uoARxYHryvv/YqlN0kn+YwxH0Vi3heVctDfX1tBc+5gPuK6L6Uy0a7v9zA52W5ifFe0+7hvRuE5HdutZMMafsdNv7R3t4pD2hbs0n1+c2vfAHiX/65/w3iS6+ft746WtvPa0U8MvW9cvH14fbNSy9C2ROP3AtxJUf+7jncV7trjtXt433I07qKwB/lX07P451oyd8mV69chbhaw76zWDTPQi6Hz9BggFriGq1Lse9NMcBnueThu7K0hc/NgRiP9UZsnueFAd7j1QjreuCif7Rr+ao7yYg+9k3gdmyv6eAmHgTYPopF7N/YB9zO1cDrCxh+V9hxlh+0EHuNfmkWQgghhBAiAw2ahRBCCCGEyECDZiGEEEIIITLYtaa5OyAdUsS+jCbukla420XN5fo6+lZubhj9ZruNfpirC+gvurSA/skN0lUemhkbbvukrV4nfVh/DH06lzeM5vlSFz1o31+fgvjYPGmHlxYhTixfT9ZduQ55K7t4Xgn5nLqB+d8mbmFdssbLm0Av6sTyA3ZZ4raPesKUTo01zZYOlPVzccpvlHRt1r580svlyA/Z7aP2PKB7U7M0vrUx1DGOkQayVsHyvqXr77axXXZIE7+6hNriTos0833zTOSK+Jj2Y9JMksb54OF5iF17YYBL+tM8fneribr/16/dGm6vb6I288FHHnL2kw55wSYjtJEp3SSHaZHzcMvltkpthLXErk/Pq6Xn/NLv/xaU/crP/1uIb11DL3lbv5+Sa6YuCT/gkZfuVtPcr5ef/RaU/fRf+EmIq0Xy+6U6CHwT50mznCP9fkR1b/s6RxHWXYH00HvJ+sb6yNh+h1UrFSg7efwExPNHj+B3LR/2hDyc/QrqjnuvvgZx6cY1iN286cPr9TEou0xrMm618ZmMHPNecmmtDOuMU+8l1upbPvQJedYn5JXP+/bpmbDXTvCzydp9jkfB7wIh9hr90iyEEEIIIUQGGjQLIYQQQgiRwa7lGT2SK4RdnH4O+2ZqejDAqZseyTNaJN/odMzU9PYmpqu+fQNlD7cWcOqrQulOC1UzrdYkq7dri7chrjZQClK86/Rw+1s+Tqm9fPsWxO8u4/Td+2YxLe3MwEybRRuYgtyl9MM8vZuQrCQJrDhH06hNtEXzHZS+uAUjIUgofakTjE4p/U4Scgpq+n8NnJLo+nM0b+iRLWHPmqKsVFEyMVHD+xSU8LhjJLGYnKwPt/NsO0WpYZvr2FbX1sx93t5GmcOA7P7ikKcz8RorE2ZadmYWpUEBTYdz/eRy2Ha3tk17W1xBedPyWgPiWwtopVi02sgD990NZbNTWLd7TSptNst0rO2UciMz9fWb74fLHMdxfLJ267Rwivx3f/3nzfav/SKUra0sQJyeIresKklPFZFdW0qeQj+BFAqmHeTIfjNHn2XbyyRiWzlL5pWqTDzPMMJj9SxrQJZ9cLvfS2Zn5yBuNrH/71u2oWxzOTuHUr7pOZTBtaz7VpzH4wxWML65je+/wizu++iYsT4dJ4u56Ca+D8vbWPdvrJr3QS+kdOYB9mdpD0OSSVjPW0qSRDIv3hWPAWxJBssCXXov5cjOzpaZsAwky75uT2EZ16iPUsyt3q6TTDfMzEtO3mQrfRzHcRzXHdWn3tmzOfoaR2vNUn0KN027KEOmNoqUWy3bdrLH8ZugX5qFEEIIIYTIQINmIYQQQgghMtCgWQghhBBCiAx2rWnm0fWA7J96PaMHa7U26bNo8zUgu7pOx5Rvk6Xa+gZacfXINu59901D/OPvfmi4vdBE8csXptEm6BvffAri5PLV4faHH38EyrbyqBP9DzdRm/j8Jl7znzthbL/OHkNNarT0BsROCzXOPtswWdqymAQ9Lmlykg3UV7qelb6UrI8cslXaS/OniO65S1q0omf0doMWav76FPfaWNfbTaNzr59Ga6hJ0iJyyuntJloarq8aTe9mA+tym2zhWFNrXxKXlcjS6/gR1MDn8vgoepbN4MREHcoC0qJvN/C8Ll28AfGFK8bS6tYiWt1ttVETXyyjrd4D9xodc3X6AJStNLEu95qUi1xK02wp1lK6vwz/NrvEZd0t3ptuE9dV/MK///9A/LnP/Npwu0NtlzXMaStGo9kMyHoyn+fU1tiv8r5/5Ed+dLj9t/7W38Z9kV4/JK0on5etifbJ2i4M2ULMoXLLjg2LnH64e3uxt8vaMvYbQQGv+eRp80xOT+N7ZXpuFuKcj89z1bqMAtVPVEPbuIkzZyH2yFLStd41Aa3/WdvG/qoSY/ncIXOsl5ewfSxiF+wEHraBfIKfdzw7LT3d44htF/HdEpBoPrHf22wpSm0vovUeoHn2WJf9nfvdj/WwqBcerejlSoitEVZKG8xyX9rZqDUYrM3v0Nq05hbq+qtV0//nacyTI00873t0mvbRi0y4LlMLSdyd65YZjLBWZDtRtmXcDfqlWQghhBBCiAw0aBZCCCGEECIDDZqFEEIIIYTIYNea5pB8F7tt1DPavozs0ch6OY90SLb/LX+3PUDN5aES6ln++n33QPzYBx4fbneefB3K7m/hvurvfTfEX33ZpDe9eB19mR94AHVo7Hn8yiJqzf5fFy8Ptz8xhZrmd88eg3hqErVkUQ99nW3ZDfsIJm3S/rRII2np0hzSVzpt0rDtISXyVi54dN5942s8jnJBp1BGLZUfHIQ4lzc65iJph5tb6Je8soKaXtZa21rFchm1iJUqasBZDtW29MG3bqHmndNok9WyE5KPs+0pu7mG391soDbz9i28psvXbkK8ZvkIV8ZIXzk1A3G5gL7nXSvtuK2NdhzHOUB+tHsPi5p31imnLGgzdmXj+djeFm9iquuf/Vf/GOIn//DLEPMaDjjsHfhFe+ydzDpA0pXmC9j2P/CB9w+37z6LHts9OsdU6noSkHtWhbK3suvjZwc97O97fXOenT6ec6uH/f1est1uQHyEtMYVS+85S3U7Rr7EnCrcXlsS0bobn9Lczxw6CvELL70C8eWbZk1CQP1khdp8jrTD8zXTdv06raW5gfrVDfL45/aE7216oOj91++SLzPrfa368lLp3/EaUopV6zRiXnnj718a9iVaD9IgL/7rN02/WyqgHvjc3WcgHhvHtudZ9elldBIJLRropTyxTXmRzmOB8k387P/+8xCfucuMcx544D4oq9frEM9Moe6/kMd23gtN++IcB0V6zwTsze1y32eIaB3Exga+D6/cwjU9gbV+o0i67OYmPhPvobVsb4Z+aRZCCCGEECIDDZqFEEIIIYTIQINmIYQQQgghMti1pjkg7dAoG1SfNIGDAXtx7qxhYr1zkqA+7mHyDrw/hwqo0PIpzm2h7vpdA/xsj/Sv23efHm4/f/45KDt4GH065+dQC+rEeN4ba6a+fnFpCcq+fAXjP/vEo3ie83WIk7bRxyasl/RQG8Raa9fyfHYH5F+4iZ6Ne8ljZ05CnCct3vZWwwQxXmNMeqjtJmqzc1Yrbm9vQFmLdNylPLbjyUm8j9XauPlsGevW9bD+fBImX79m9GKNRgPKWMOVI/1XFGFbPf/axeH2DdLXb5FOu0N+vblSCeJStTzcPnTsEJTVqujLnCdP4vqE8bl2qW1truN57D2ss8XSnOVt7ZK5KUnGUxpe25e4UMT6e/bpb0D8h1/4PJ0H//Zg+RKTBpW9lBm7OCQv/Ij9R0kL2iIf8d///d8bbn/60z8EZaVyDeIB9Q3syxuAbhmfoZA0hh3SNHd65jq6dCPY03kvKZZIT72G6w5u3DSa/cEl1O9H78J+pHIU11X0rTrJWX2I4zhOq4vPdo/WAy0v4RqWf/dvfna4vbmBZTM1bJv3nEB99Mc+9rHh9skjdTznSbznz7yC/crSGmqc/bxZwxGGeN8Saos+PYx5WnsTJ+b7/T5pqUkfzv0qaJ7ZvndPswsg//Af/g8QF8cnIR6z/PQLNLZ4+fJliB+gtVjnzhjNc4neFc029rPLK9gmlpfRN96uryrlYuD+5+CR4xDni+Zdwe328vM4Jjp+4jTEpVIZ4o41Vmn3cF816mNnJ7EuazV8L9n6+hs3bkPZ1ZuLeNwQ34dd6zwWruN6n1eeex5iaZqFEEIIIYR4B9CgWQghhBBCiAx2n0abUoMGOZRJRNY8mxdgme/jtFiBrJHsaV83R8chi5ApSiHsr6DdiPessY3zGyRlILujR8ju6CUrxfK3aBrxtfOXIJ79IMo1xutoIdPaNtKHxMFUzl+5iVM1z332yxD/3fc9DPHH561pj5jSUXP6W0rJalvyeBWc9nHyu779b5uzh9CebJumnGLLDmp1HdNXr9MUZY8kFwdmzL7nZ7Cuc3Rcnhxvd1CiEkcm3iQZRLGE7bpWxenO2piJJ2m6aUBt7zpJLi5ewjaxtGIsDBP633Z8Avc9cwzbItsZ2VZkFZr2qtJnJ8keMRqY+dDNdbTnaTZRDrDXeDQFnKOpxnLR6itInpF08Lnpc05ui7CP/ca5+x6A+PARtIy8deM6xO6IlK9Z8gzbVm7AqYppKtqnKXDPw/6s2Wxa23ivghxOj/ZZukXSD3vGfEBpjttdjLu0r9C2Y8uw3NtLZqaxrXfXsB+JLDnMG4toM7j+JL5n6lcwpXx1Zn64feZhlNsFCdZlj+SK99+L1l5nrGnv//CNb0LZqwO8j6+88hLElan6cPun7kFJ3MQEWWaSrOjpV1A2uN40z0GRZJExtYGIpEQ+tZ/Amo4vliiFO+0rJDmebYWXUKpvd/dDmLfN2btRjvC1bz4F8VTb9MOHjh+Hsu0WyhOefvZ5iK/fNFKh2Wnsz5stfB+2STbhU79gj6/WSbI1OYHvx3MPYN9Wq5mxRo3GC1FMEi7qY9caJBPJ2f0x9nvbbXz2el2U7HC/2emYa2bpWK6M48m1RRwvvPrS88Pt1aVlKPv4937AuVP0S7MQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkcGuBUExeQOxNq9cMnopn+zEel3UjbKWyrVSlAY+aqfKVbIxIZ1fvIlxMml0N50EtT95svXKkR74eyyd40k67u0l1LQtL2Ha7DqllAws2y/WYU3V0ZLo1UtoffRP/uBJiOc+YlJbPnwCdbRhj+x5WljXfn7n/4uSItb1aLXl2+OZZ56GuEWaJlunxJZDB+cOQzw1hbqsqqXTzZP2jtspW41xGu0+6OsoVS5puOy02Y7jOEsLpk28+MJrUPb666iJX11H3VVMtT82abTFrGGenkPNW6GMWkXO7x1aQlLPIZvFFuoH17bQkieKzHklEetz9/d/7oDuZZ7WN+RszTOdm+fis56+t+a7vR4+Q0eO3wXxw489AfHiAurT7TbG/SaTJGyjBwacWEbrSnJ51IZ+8ge+D+L/4b//H4fbk1PYZvqUejeVE57aY2SdJ3WbKe0178p+tiOqj3Jh/zSptVod4okx1HWvLpm271XxvHotfNYXr+IahPyq0XMWC/juOHgaU5jnCnjfvAoe66f/3E8Mt9+4+CqUPf/iM3he1H997vf+03D73D0noOyD73s/xHcdwfULk5PYRl57w9TH1WuYmrjVJltQeudH1FcMLLvXgNYt5ckGNE9twrZeTBxa07OXLy3i7/ydvwXxR15EPflnP2csHm9SKueQxkCHDuM7rbNt6nOxj+m687ROqVzE9lUu7PweHyOLwskJHD+sreI4Jh+Yh7tYwHvKawLKFVwfMwjxWK1tM94q5lEfHVKf0e1jfxSRzt22PG5soK3sZbLzu379KsRHj5j1Bj/9Z38Sys6cOuXcKfqlWQghhBBCiAw0aBZCCCGEECIDDZqFEEIIIYTIYPeCMhIPBQF+1dbm5XKo2fIpBXeR0i0WCkaT2eugtqVCuplbq+gFuJRHPefkuQeH243XUf81t41+h/0Ej3XE0h7fV8Lre3UJ/Q5XF9HTcmIW0zHnrDSaW1v4v0mhQpqkItbPy+RT/NuXTNrIh07fC2XJALVSSYTX5AbmWKzndUZ41b7TXLiCvqfT06gBPzRv0jvnyZu7SCk3A9K8RZZ+tZNKPUz5kx32n8W6D3yjvdreRp/my2+gdurrX0Pt+XPPnR9ury6jBj5KUMNVGcN2ffgY6g9rlo65RyLSHpndbjfQPzlPPulHD5q6PXQYj3PhKt6XW6uotfasNQa5APXQnre/prvVIraLQoD30k6j3SUv3CijrY/yVg7ouj/wvd8P8ZNf/RLE6yu2JpF04HRcz8e/FCy9J/tzt0hXe/8D6O/7D/4v/wji48eNryxrmD0SHqerB/9ga1R77MNMabQj+q6tX6yQnneiinW7l1y8gn320cOo0Zw9bJ6TdrMBZckm9skOeVO3Oubdce3qRSjr9PC+HTqGqa/HJnGNxn13GR/w/+t///eh7OWLr+C+u9hHhdZ5lCt1KOuRTjQeYL9x1EoD7TiOM/+4OY+bR/E9+9L5NyC+RWt++hGlWo/Nfe8PUA/Nun5eh2Kn8OacD66/f7/78TjmwQfuh/iu0+Z5e/rbOPZ4+ulvQ3z1wusQ1yfM+/Cuu1ADP1HDdlogX+IC1cHqivEi3qL2MU0+/QmlNK8VzHqrEq0PWqP07z6tG1lcwnTWtrZ/hvyhub+pksZ5kcZXL1kpvJeobJZyC/zZH/1RiO+519RnkXKEcNvbDfqlWQghhBBCiAw0aBZCCCGEECIDDZqFEEIIIYTIYNea5iJ78lEe8k7H+O66MY7FWcM88FDTZPv9bTW3qQz1PNeX0Vfw5TxewkPnjH5lMEAdWvc25h2PQ9QDO4m5piM+eUWS9mWVdKQnSRsUWFrFmH2pc6irCVhn4+O+Xt80cWsTz7lGueUd0hvGls7TJX9HN4carb3kXY8+CHFI2mNbm2fr3xzHcVo9vI/FHmqcx8ZNGyGJsjMgLWdI9rSrK6jFe/554735AvlwLixi+1lbR79IW5aVL2NdT03WIa7VUeMVVNE/c71l9GMRPWsHqqgvHKthXKV9FWvmXF68iFq6ZgefRS/A87bXMgxIW+0l+2iS6jhOpYTtwiXtrGOdD/sBs3RtlJaNf0lISI9+5p4HID5338MQf+UPPjvczvEzRoflGowtsd+AGmsU4b3qtPC5CPv4TA0srTH7orKWmh5HJyHRYWKdOGtj+xHHeCz72NUi1m6psH990EYLz6v12jWID02a9QwHp+tQFszic9GlfiWxfIu3tvC+dG6iR/sgxj57ooE+7LW6WR9z3z3oI3v2vuO4L2ojRdf0jQ3ywt/cakDs9rF8YeEqxHXLl/fuo4egbG4a9bzPvoJ1ef4y6lubbdN+SiX07I1ojQY/u/Z6hJCeASdk//V9hPqQmtUvf+RDH4Syhx/E998zz6LG+amnTR6DJ7/2ZSg7eRp94u97EOt+cg41vasr5rxu3roNZbOzcxDfvI7lrtWHlirYPq5cvg7xvfeh9nptBdfDHDtmxnVjdRw/riyhF/VT38L6eOWV8xBPWXkLPvbRj0AZa8t5HZxj9d/c67N+fjfol2YhhBBCCCEy0KBZCCGEEEKIDDRoFkIIIYQQIoNda5pZG+qRZ2HJ0nD6pBzxPdSNNMn/tjphvAGdNdTFFMuoz9yaQv3XV69hjveTq0Z3Gs5jfvcaaadc0k8PBqa80Kbrpe82tlCX1mmjDjklnrGPS/Xhky8xScKdtZ7RbbXJH3TMwThJUJyYWLq2hO6ZTznr95JKGXVGrCWyI6461p/aXsqOgzrQtQ1sPxdevwDx5Uuoy7p0CbV412+Y8ojqdkBazRz5Bh+YMXqxPOnUXQ8/myN9eT/G+hifmh1uU3NxquTxXKnivlo91P3duGyusdXFdu3nsS498nj2HXPNnoPXH8f7q2l2SNs9IN2t3Q6iiLWOo/04bc3uKJ9Yx3GcUnUc4sfe+yGIv/X1L5pzJI9e9nrl0+r3rfOm6mUtaK6E2v61TezPjlm3i5puat+DcGcdsuM4cOf7IT8XeBHdPvdJZpuk1E4xv3+a5iSoQ9zpY0d7ccHU3+XbC1A2VsHPHjmCvvwzUweG26wFbTdx3cTCMu67S1r0des+ejl8HqcpHwCvndhyzfNdKONah9k89kmtDVwf1HNwjcbKyy8Ot9vXcC3E7F2oI33fw2cgro2hD/9TLxhd98YG1k8UU19J1xyUTZzEWBb3SeO8j6SeZavfiEmXPV7HtVkf/ehHIX7gAbNO4plnnoWyr3z5axC//hp6dT/x3schPnv27HD7zInjUDZBXty/8Au/APFv/NZvDbc538bhw/MQ/+Cf+gSVo+692TTa/m9+/RtQ9qUvfQXicgnfaR/58Ichfuihh4bb9XodyriueQ2K7Un/Tryx9EuzEEIIIYQQGWjQLIQQQgghRAa7lmcUipS6sYjTJD3Lci0i+zWWH+QoPWOxbKYZy2Sn1evhdPLE7AGIn7qFU133/O7vDbcfPXkSytqLOP3U6+B0ZmJNN290MWVkl6Z7B5Smt7mNVnCx5X3GUpaYrLp4mqdAKcrX++ZYazTNesAla6iEbMGsa0q2cVqMZ2z38j8ozyULP5rytutgcxOnMzc2GhC3W9gmbHua1y+8CmW3bt6CeLuJ9zWK2A7Q1OfEDNrCTZGVTYXSm45bqa9dF+9p4uIz0I+xvJ9gXB6rD7dbJGdaXsf68ZrY9nopuzCrDXj47IUksfBT2hirlVDb2t8k2g5MfzqO44Q0LWenc45TqXlH7gokBPx8srXUoI/t79yDj0J88oyZHn3ZSv/qOI7jkidikkqzbY5VLKIc46FHH4P4x/78fwXx3NHTEG9YfVIpx2mNOdV1NLLclsKEIX+W7wuETs5K82unCXccx8nn9u93m8YWPvucbj7I1Yfb2220jWssrkO8QPGMZVF38jhOU4+RVKFD6Ygb2xg7VlytoTwxRxKLCUrxXhgzcYGm1z1Kt1yZw3fpJNlgbk0ZGdLa69ivLj+HlmD1U3jT7zt6DOJa1ViuPfUsSj2u3WxA3OnSs2tdB6eWzwUoUfpugdPUs8SQ5a6zs0aO98lPouzh0Uewf/nyV74M8e9+9nchfvbbxr7tUz/4A1A2P4/3/MABlFx89rOfG267NLZ4/wf+G4hz9Py8/BK2iV/5lV8Zbq+uohToU5/6IYg/8AG06Bsbw3erLcHgugtovMTyOrvu34rFHKNfmoUQQgghhMhAg2YhhBBCCCEy0KBZCCGEEEKIDHataWYLItbO2tpj1rz5ZL9VJl2JZ8UH5mahbHMT01XnfNQ8Dw6gRucXvv7N4fb2sy9C2fdQytEC6fhWrGt8qomWcrFDdm2kLWt2KR2xb8rZGqtPoj83wP9dpmbQVi8ZmH0vbaC+9d5x1k5R3dqXSPY88T6mIH3uuRcgXiNrwaWlpeH2q6+Sfm4ZU272uqiH7tt6+hjL2Hos56MGrlxG+7DZQ0bjVZvAsh7lGvZ8tuwzsU+p0h367Ooq6pJ7Cd7HTmzqh1VYvkvth20GSU8HjxunjyZdMKdht/3uUq5l++w4x22brYYw/S7WgUf6PMfl/mzn46Ys6EhTN3PgIMSPv8+keb1AbTkmOyROBT5m2Sm954OYLvbH//xPQ3zizD0QsyViz7Iycx0+Ll5TlLDGeec+i7WOnot1zRajBctWjtNm+/7+/W7juvgMsjbSsdYVFAqoqXQ8fFUOeqh5vr5o3hdL65g2e3qK1kbUUadcIl133lrz06B1KOuUonuK3lMz0+Z9ODmJx63W0J6ONc45iieP3zfcHp9G+9bmjSsQd9ZxvZBP7Wt+yvSrj5E9XaWMqZwvXcd9bQ/MviLqA9ju8LsF1jAzrMO131Pcr83Moib+z/yZH4X43e9+AuLf/I3fGG7/zM/8LJQ9+yza2U1M4L5/8id+Yridp2e1Xsf34T//F/8C4pdeRE3z93yP0WL/jb/xN6Hs0CHsM5mUxbH1TmMrPK5rjt8JHTOcyzu6NyGEEEIIIf4EokGzEEIIIYQQGWjQLIQQQgghRAa71jSzNjSfx6+WrJSugxC1MEGAcYf0Tp6lFZ2YRI3NxARqXxcXMR4fw7SiG9a+/+NN1F29Tl6lh0m+ecHyX32GrrdSQo1qvoS6mhZ5S3qe5VUdoT4nnRYaz8sjjbOXM9e0to36VaeCOjWXjgVuunRcr8uf3Tv+yT/5ZxB3OqjV61t175EmskZ+yL0u+oAHdm7eGMtK5Cc+NzcH8XgdNfSx5afc7aK2rFqrQzx/6AjEa5af9JWr6B8elPA+heTj7JJOK7J08OzjnVD98LPpcfuyvXHp3+SENc0pP3LrPMhvnb1I9xr2DuZTt3W4Caf8ztK92RWToUdkiZznY1/4+PtMitwv/d7vQNm1K5dxX1SHj733A8PtP/9XUQc4N4c6wAGtSWCdMnibRqN1ff0MH/rAanPstRxSdVWovU5UzDNYLuJ3OUX8XhLFpL0mjbN9Y1O67Ty1/YD0wQWzXqQ/QN/lmysYL66hDrlCyx+qVp8+VsXjjNXQK35zC/vRXtvog1dX8V05Rqmc5+bx3VmmlNyR1b4C8qgv330XxH4LrylZx2u2151M1fCC770Lfa1j8qy/cNWsaQnpHvbj705Nc5aOlvsfu4/n/j7Vv9NDc/gw6s3/+n9j/JTPn0ed8ec//3mIn3rqWxDb71qfct5fuXIN4pMnT0H8t//234L47Nm7dzxn1m0zrFu22WvNchb6pVkIIYQQQogMNGgWQgghhBAiAw2ahRBCCCGEyGDXmua0fpF1JJafa8yen+SJSt+1PW3rk6h3OnMXejq22+g1vN1GDeukpVFNxtFX8MWbNyF+fhs9oLct3U2OfJh90vEVS6gP65PUOHAtHVKMmqSYvCYd0kQ6VF+RVT9XO/TdDh6Y9+1a58FSTbau3Uu2yF+UNU45q3490ijlydOyNI76ugOzxtf62FHUKN9F7WerjXV7axH9kr1ccbi93sD20SYv7ktXsD1tWxrxmDSP3Rh1ag55ouZT4k5znvw8uexB7JHmmW70wPJeZl/clLSMPdTtfVPbivbR59txHKdPHtLsS2z7obNmLi2ho/oe9TDwc0O+xKw5PHzi9HD7XY+/F8quk6aZ71WhaNpfdRz92rt0/T7rbqmP9uxrJk0z+912uQOjay7kLA9y0jpyuyiS7/C4pWnO575zv9O0aR1FjtcKJLkdywp50j+nPNrtPgr1mK6L3vBh1IF4rYV948Kq0fDCe8RxnAKtD5ok79zpSdNmJqhsu4drWNa30PO/UKDz9s2xx8mzvlZCr+lCDttqeBD3FXcaw+38APvRiRr27+dOY+6FxPLsvXZtEc9xf7ugd4w70eGm1rRQn8H9j/35+++/H8pOnDgB8UsvvQTxN79p8lxwH/qn/tSnIH7wwQchrlQwh4Z9nmldNucS2H197LeGmdEvzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBrvWNJMs1yErRSewPFx7fdQs5XKo6fI8OqxrNF4BaS6nZ1Cjevou1IM98+zzEG+2jDZvrI4am8kp9OjdJl1NvN0YbvukWauQV3C5XIe4T/rO0DHnkZCeh/WDLmmaWfcXW/rLC9u4r7U87muqQFrOvNlX4pE2Ntm//5nydF8D8vwtW96kc3OoaZuYRL1croCa5pkZ4+1dH8N7Pkjws7cWlyC+cAW9TLuRqc/YJSGsj+fMskY3MH/wAir0WDM72jfYFqCzhos/m9bv0hqCxNb6kj80a5hJr5tYOuHIiahstNfmO02nj5pM9m22va0T9nROuA5HaZr5XvFnaV/UOeYtXfIj7/4glH35938X4tVlbI/PPW00hdcuX4SyU3ejPnEQYn2wP7d92nFC6yTY35ZCnzT2ifUB/qpHXy6SH37O6s9ScsR9XFcxiLG+Yoqj2Dz7OXpHDQZ44iX27S+Yd1xM3408uk8OfjdXxHeLnzNa405zA8q21tYhXlhqQOwExku3Sr7Lk6RLPjiH79a5OcyREHqmPspXl6GsXkBN85F70Lc5N43HCvLWGIAaQezgeGESd+3cf8a8t+MmXf8K6rL/SyDVZ/M4Jo7fdNtxHKdo9U2O4ziPP/44xLYGmt8zozTLb3asUef4x5k/OVcihBBCCCHEHqFBsxBCCCGEEBnsWp6RpKaTsdy2skpbgoy2RgosSzGeVvVcnBKfnZ2H+MEHcUrg1ddM2sitTUztmSMZRG4Cp6Ps6awK2VnxObPdFafpda1rDkmekZrGYAsZmkp1rPTAF8j67ud6ONX3qRAt+I52rFSoRZpOoUyVe2nk8uM/9hMQBzk8b9eWPpDFzs1btyG+fAOt3q4uGoumbbrnPK3q52nasIxxbE8tkwQpX6B8tzmUYNgyG49TTrssoSCrwBESi1EpV//zB/A8Rkzf8XH4sxzHVjtPl+2v31N3sLPshOGy1CdTfZQdj5bSsMUaW9DZKeFPn70Pys498DDEX/vC70G8cPPGcPuZb34Vyk6cOYensbOix3EctPrMulV+hqWoLecYUN7sAsnJ8iTP8EAmwkem/n70ab4tyhWUCbL6ypYmBXRP3QSf13Yb+xnXsoLjZ5+fV9fFPtx3sbxYNJKyahmlG808Si6alqTQcRxnOzTyxeUtPMe1dbTXvHV9AeIK9W+zkybN9vxBfO8u51EmudhCe867D2Nq7Ik5I7Hwythv5n2Ur+SLZDlqKeyqA5Rn5Lcazn/pjLJgS70rCH4flEqlHT555/se1T9/p23j3g76pVkIIYQQQogMNGgWQgghhBAiAw2ahRBCCCGEyGDXmmbWnoVkd2TrV9i2isV2XO5bWlC2RcuRPi4hLcyRY0cgrlSNJufF589D2doq6qECSs9sp1COYrTBcVlnTJpUj847tFKFDgb42SJpxwYZ/7oEBVMHgwj39TshXsPLPSz/hKVr/N4OpS8t4z3cS9p0qAZZJ91eNtZvqxuojxuQELJP+sLAsngqFFADWKqgxY5XQM1WTG0AmmZK9rpzqmvHcRzfagNeQhfMz4TDFmi7994aZe3zZozSj2XZ1cFjn6Wt3mNYl8vrLOzrzK7OEXq7OzyvlIWWZUFXqdWh7N0f/DjELzz9JMTNhtGdPv2Nr0DZBz/+gxDPHTwGcRSypZrZ5qv1+ZxT+miqBWtdhUvtvpAnzS4dC+4b75ZSgQd38Ea6U9ptWqdCtRLYj2ie1t1QW/f5vWRb8vH6H37GIlx34tFaG+zd8DjlsSksLaKlZr5nLNjCMqYN75PueNBBu7bmNpZvWum9Ly7jOpIxatdzdF4L11E/nS+Yd/HkNPbRs9NoKTpZphTclu1ecOVVPO7WPnoW/jHh7aTo/k6dxx8n9EuzEEIIIYQQGWjQLIQQQgghRAYaNAshhBBCCJHB7n2aOUMr6VXs9IyFAvow9npdiDmNtu9b6W8TFC7mUl64eNzeJurDpmeMn+QDD6Je59VXUQ+1vIipQcPQ8sYlHRpLfwJKM+uQhjWxtHo++XbmC5yOmTRtA9xX4FkHD/H/nHYPr/9l0sC9ZtX1KxGe809uocYZE6G+s/zu5/8Q4pi8SV1LT54vYR7VgDTgBdKP23rDPOW2TkhLHPukN/QopblV1+y/67os/MS26llpyVm3H5No1OdU8ikdpPVM0HFdEoa6Hmtqd/YBz/JlZu31KI/nO9VWv11SXvHpDxhG+jA7uxE9755U37izMP7BR98D8Zl7HoD4208ab+al27egbHkB/coPHT0FcUzrHaAOOOWtQ3B90L3NW89Y4GMbCcmzntOb2572Ebddui2UnfodJaHXXURrI5LQPM8xpUb3qd/gPjyXM7HLWvvU+gU8bp/6cPguVVDAuQaKGFcsH/+kiOs3+vQu7dBLbdBD7+W+a86zTwsK1tYwvXd7G98ltQr631eqpn+/uYFaavcSppIvunisMd+0n2IR99vzpGkW+4t+aRZCCCGEECIDDZqFEEIIIYTIQINmIYQQQgghMti1prlWrUPMGl9bxjfKw/mP/uDsWM46yZSmi/TBhUIFYs/Sdx48eJA+i4K5xQXUDC7cNprBjXXUbLF7ZkCaXN9DP+BczVStS5/tkYbNjfGa+mELj2zVV0A+w5GL+yrmSB9t+at+vo91eaWPn/0ZZ+/IV6ch9nN4zV5g9HYu6X09Mm/l9uTZ/rz0XbabTUhf6DmsW975/8i0xpm0nbHZN/vgeh49MHQNqWuydcopuSlq/tyYNJP4cbjizOeL/GdjNkcesa+9JuV/m2oHdiFpZ0f4Mv/nnZnNzDMZ3Z/ZFR6Rznhy5gDEj7/vQxBfumD8bD/xQz8CZcdPnYGY14qM0mmn9d8sxMaQPYyL1vOaC/DDEe1rEGKbsdd/sCss6333kpCeG75Gu5biEO9bTOtBHHrmYuuVl6O+jd9ZDvfR1IdH1jMXc93S82ivOXAczDXgUF+Yp9r3aP1Hr4vvHWdgNM4uvdOjAWqY++Q9vb61AnErqg+3S+MzUOYH+F7eIk38UtccK4rrUNb39i/XwH8JjMoX8CfVd/lO0S/NQgghhBBCZKBBsxBCCCGEEBnsPmmpy7Y5ZDPUN9NZEVlx9WlqJ6AZgFzeTF8N+my9hZ/lqS7b6o7PKybrmloNpRyOM4/lYya95+oqTi81m5gWtED2PT5dc2hNXfdDsupycRosomnuSoD77vfNNFmejmvXneM4TruDtkF+YE3J0bTX+X2cXi+QjZzDlnOWlZLrjU6d7nokMbAssJKA/g9MfZdiTo9rSS54MoqnQnm6yi7nsmiEzMFxnNR0uf39lE1cxpS2P+I8s9J1j5JjpD67z/IMl66L68x7O1P9I6YeR8lddlM+qvSRd38Q4pnZueH2A2RPV6qi3Rb3wdw+7WN5qesbIQdyHKdAMp0gZ/bt02c9mvbn1Lx2zG15P5uQR+fFDpL2y4b7nIhs9RJ6pzl56/Mk3Rj0yEaV046TjZxv9Y3cb7Bcg+vPt2wvHZde7yTHKFQwroxNQNwPjeSiP0ApUJ+kHJ12E+JeB1N4b1kpups9PGlu16Uqnkfkm/d2NyYZZP47Jxn4kyhX+JN4Te80+qVZCCGEEEKIDDRoFkIIIYQQIgMNmoUQQgghhMhg15rm5naT/kJpRfPGNiYgi7CxGmqUWJuIlnOkBxtQqlPSoQ0o5bRt8VQpof6J9V/dLn53YsLYudVqY1C2vr6Ox6GdzU3hNY5VytY5kU40wevv93dOwe04aOezvorn4ZFOOU8pzLdbRns2oOOMV6vOfuH5qL1mHR94FpKmmS37XJ9slywLrJTulfSXrFVMCVCt8jvVyNr3+U61Yfx5+5lI2UoFo7XVjL0v1jRnpcYetW+2vttrRqUHdxzHid+Gphl3tXepedlucmruMMTTVsza/pDtxlK6250t1NLpmPGTvC831U6sPpqO4tMag4C0w3ZfGQ1wv5xWey/JkeVoHOK9sFPb5zz8bED1EfWwL40tPTRrvrk9dWjdSUKpoAPLsi5rDYJPKc1d2KZ7nsf3Yb+P1x8O8D76OfM+rJbwXZGQDrnSxdTY7RaOF7a3jKa53cHPdjfxPBKyaUzy5tgeaZrLLr7v9pPMdSrijx28HuPN0C/NQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGbpIlmhJCCCGEEOK/cPRLsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZKBBsxBCCCGEEBkEu/3gb/7ub0Dsui7EuVxuuO37PpQVfDyM53k7xqPK3izm84B9ufRZDz8bY+i4d3AefNwkSXBn1v8jScyfpX05HCNREpttB4/DcUjnEUYmjqIIyuI4hvh7v+ddzl6xtrkO8fjYBMRRaM4tR//KbW5u4h/oGsfHzb6iCK+JqtppdtsQF8s5iNdXbg+3q6VxPMcE23EYD3DfzeZwu9/vQ9n0xBTEGwuXIF6+8QrEcWzVx+QJKAtmTkGcKxcg5uctF5jncbOLdbd89SLE45tXIX7jtSeH20vLy1DWb2Nd/8N//mvOfsLtmZ/Jt0r6Wb6zcpswDCFut1oQbzQaWN427TOi73Z7PYi5jUURfj4ITDvgU87lsI1UK1WI3QD7cK+YH26XCkUoG6fvVkpliH3P7Iv7YH5X7CV/6a99GmKPzqVYNNflUi987ep1iOfnD0J8+PCx4XY7xHbpFfIQB1T3MfXhBeu+BQmex2CAfU5/RJuolCtQVi7jfbGv13Ecx6d3nO+a5zug+8Tnwc8EnTaMD/iZYGJqq5H1h5iOw0/83/xr/2Dkvt8ODzxwkv6C/Z/vmnPL57EuA5/GKbSnxGqLW+1tKOsM8B67/IIcEVITT409HBfbouua+5waA/kJxXj9nodxYO3r0OwxKLv/3gcg5n6A2+rBgwd3/Cz3bTyuwRg/3O11If4rf+kfOlnol2YhhBBCCCEy0KBZCCGEEEKIDHYtz7gT2QT/fO5RzNNAb0eeMUo2MUq68UcxltvyjKzv3pE8I/XZLHkG7cua60qoLOEpIp4mG3GO79R09m4YdHEapOmg5KLd6gy3x8YnoWy9gdNVnofXEeRKw+0eTVH7Bfq/kM4j2WxCHDVMvBp0oKwX4XF7NLVTtKaUPJrebrfxOL0+Tm/GDspEBtZ9LdBtmhnH6fDtLp5nwad9bZu6ztEjX6GdtwdbEHu5seH29CTudyW85nwn2aup/Uz5BU950nxyq20kGJ0O3putLazftTWULfV7Znqdp6J5WntA8oyQ5Cr2vGWBpuJ5CnxlFeUH640NiL2CaTfjtTEoq1N87z3nIJ6cMPIp7kf3k34f66dIMpNOxzyTiYv96pGTKJGqlGv4Xet59gr4nLAkhbv3cEAyo9jUUezRVLSLca6EEoy8FZdIBmJLJBwnPY3N7wNbJpJ6p7OUI6ChBF2yLaXKGg/0BtjOO9a7ga+Bv7uXRDE9X/Tu9WwJBr/C6VnGbzpObD2QfZa+jG4+KdydT8NxSWLhuHgs1wntYOcdO28iyaGP53JGNlgfr0MZS8u4b+P21rBkbLkcyp1SbZHkiUFg2kw+j+3H8+78HaJfmoUQQgghhMhAg2YhhBBCCCEy0KBZCCGEEEKIDHataU5pckgPZZdnffZOlLRZOtxR+sNsbSL9zzDiGu74PGBffMV8XmTlQjUUW5ZzbE8UkzqKdZB21Wfdl71ku4lazgHZ6Kyvrwy3gwT1TnEP9ZWRgzos20WuPcBrihZRdxzfWoP4wquvQvzKtTeG20sbDTxOD/WpEVnO5ctGW+3md7bycRzHqddQE1mqoG3cwDXnfewY1tWANJAs7e3ncN+B1UZYl51nm7LJoxDnekZf3kG3PicuoG3QH2dG9V8csyZzq4V69ZUV05ZZgzlg3THp8ULrUGyf2O5gO9gkuzrWCXYs/X6lgtpXjttttMLr9nBfgbtzX3Hzxg2IacmB8+gjjwy3WVu9nxrnhOy1vBw+c7bGOVfGzxZI/xyTjWjJst0r1XDNQbOFazJKRbTTCrpkBWrdd591yaQdTmmJLd0tL+fgdsy6UX4fhHb7o3cl60pT78OUnav5A7mvgc2i4zjO4vIKxC1L03zw4DyUFatY13sJr11IrYly7bVH9N2M8cPA6ocjfi8HXJnOyBjqnr+aui98TYlVxt/ldV50/fQbbD5nnpkq3ae0bRxZ6VI/ub5u1n7wd7kt5gJ8rvMFEwcBWydiP7cb9EuzEEIIIYQQGWjQLIQQQgghRAa7lmfwT/OjYs7Ex7wd6zO2XBtFar8cj7CFueNpwxHXwNml+H+VlOVcKuuR/f3dX/8fndb+2cqNYmtjCeIkIes3awrz6hJN947jVHKfpo6//tRLw+32Ah7nRIRTN20Pp8tfXMIsd3krU+Gtl1+Dsq3Fm3helLUoyptjNTZQUtKlqfQizZ2WJzH74KZlZzdeR0uv6flDEB+Zn4P49Nm7If6exx8zZUcxq1VMco2XX3od4ks3TX0G0/dB2fPbOA32J4UsWVdjC+0SGyQ9su0Gm5QBcJO+29pGyU+7bSQY/X6PyvCzXbJP5Nie0pwPyKqLpjQjmk8vkJWZLYnivnFyCrNdXr16FeL5A2ZK/cQJtG7b159tSCLV6ZIMzKoDnyRgbepzxmr4vNpSBt5vs4X3zaXMoh5JPezseyzvCUiOwb27fV/zJNvKslEdJdeL6btdtsyk73p0no3NxnC7UMB+g20Z8ySFcTyzr5AkEoOQbeD2DrZ0DFISTd8OoCxmj0cXY1talVJzkgyCLWxTr3h358KsIZFrnZfr8jiNjpOwtTDe17GaeZdWqyQZpPaRJR9DuQa3YzyPwKcMnJYFK2dN7Xaxj90N+qVZCCGEEEKIDDRoFkIIIYQQIgMNmoUQQgghhMjgLVvOjdLK2hZpjpO2UHM9POwoDWHKyoa0QWy5Btpq1iWzTR5bpljprd+O1d0ffWCUlni0pRXroRKoz9GpK9/E62bns8i6hneQ8dkjEEcd1Pw220YjN3FwGsrmD6MO9+tffBLiX/hXvzjcfoL0lfW7T0P8lVu3IH7ofU9A/OD3PDrcnptBjdaFp74G8aWbqHEemzfHPnE/WrfdvHIF4pKH+rgC6S03XzG2Sxst1GHVajMQX72CKZCf+tofQvyZX/7l4fY9Dz0KZT/ww5+GeHsTNd7llrlG7iymS+ecP4kMKI3t+gamuu6QTVHiYz/TtOzbmltoR9ch374OaWVtrWhK70zfZYu5rU3UVm9bWlrWLPfJtjAIyLaJBLG23R3bQVWrqO3nfndxcWG4fWD+AH13/yzDJqYnIeb6wz6e+kbSHXP/nrfs60LSem5u4n0bK6MeOolJW22lMo6wKTruiPed4ziO55hjhxndO+tK2crLTkfM792ErMpcerem0kRb22xnyProGqVlH8ubuuV3Fmuc9xKXxjUJyalD+yqpffg+x/iM2FaUPC7hLOwutU1eM2V/3mNdMj2bqWGcVcznwVpin95ZebJ6m6ib561cKkGZS+ve6uP4TExMTDjIzs8mD2MC0lbb7ToMsa2Vitjv7Qb90iyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZLBrTXMWttYopvSvnOfXG6EPzvKDHnXcOyn7o/Kd//C29b7w/dFps9MaZtJt2+d1p7bLIz6/nx7OxQLqlDdD1Okm4yZ2ffQmvX4VvZf/xb/8GYiDvtGQPnj4QSh7mbyVwxbqC9sbmLL1tZdeHG5vrDegbLyGeunJMmpOB6Fp5yeOoQ776Bymf126fg3Pg/x8x6aMHqzdQfHcdgM1tgcm0QPz2Bjqw15/4+pw+5dfQR/mb7/wLMQP3XUWYm/DaMCXl78AZeMPfsJB3u18t3Cnz6/9LGyQx/ar5zHVemkMdbiFEvrKNreNjnm7iSmUt7ZQd9wjT9+wb+51f4DPSEha624PfZk5HXG5ZLTGCflx+7SuxPZSdhzHaVAbi3rmvOIBpd6l18iBOfQRz1npdBsN9KnO5/Mj43eSUhm1juN1fG5s/+CI6z7Ed9rWJt7Xes08r8UC7ndm5jDESUKp6326N5YO1SPhbEC/cxULqBXN503fGWZ4KbOmO/XMWLpTn9cHZb2n2ct70vSdvGYgl+eU3Phd1KTSe2Mf1+XkKaX5qJTUnE8i4rVYpI8OnZ3f8WnN8mj/ZNA0s/acvpvygLZiTrHN+SQ80jQXyfu9bmnTfbqnrKefJA1zmXIg2O2L11TwGgo7fTeXpzXNdz4E1i/NQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGuxZ0uKQdIrmLk7M0K+zLnGPPQpI8R7b+xx2t7+U45cU84rMp8c8If+Q4LXimmPdF/od2eaaZMvk/sqbZsc+Lv4nfjVI573c+bhyT0eQe8m9+9Q8gfuPF34P4ifuN52/NR93ac+dR/1tqo5b4+86eGW5PdlAzem8Tc8vf46AG0HkN9dJFS+Jc38bvxtuo4TpTPQ5x4pny+FnUUjtd1J8ep0cvyqGm6/Gzxot5K48arTUXvxsXyZfSwzYRTJrzPEja6fVVvP5nv4Ea54lxc+y1dfxu7YVvON9J7mQ9A2suWd/Zte7P1atXoeyFF16AeLuN9VCuVjCumLjTwba6vIw+2F26HzXru2Pj6CvskpdyRPo87guPHT0+3L586ZIzijzpEVtN9JeenZgbbk9P4PqEYgHbZyvEa1pYMNe8sHgbyh5//DGI5+dRW/1OMhjg88z6RlsrWSniPS2SnnVtGTXft28Y7f+h07imoFhEfWYyQD00v5Z817RNzyH9poN9UCHAe56z/H/dHK4NSa0X8kbrTO36YB1yh/rgiJ4n1sra6z0S/izBmtVOz9w31vfu57ocfn+mPLKt/j+lHabvhlFIxZaO/Q714ykfZ+vYmWvEUvGI49B5sU9zrYZa/rExo2kulfG9y31GsYgxt8VR+TdGaeD5u7k8PhN+cOftR780CyGEEEIIkYEGzUIIIYQQQmRwB/IM+iL9JF60bMLikKaUIpYF4NSEa00xJXSgyB2dNpRTY9tTTiwp4c+mpkGsj6dkIc6OH/2jfcUeld/J/yNcP5SS1LrkiOsnHi3PwGviabH9s+u59s3fgvgPfvszEN/65qnh9sOP3wdluRCnW35kZg7i2Qs3htuczvUgKVAKebQLa5J0aMFKe7x6EWUhY32y9CrgVM8Bz0xxB3QeayFODTcHOL2ZK+D0+JGqsWgqjuP0bo9ShTe7+Dy1aWrr5JiZ8u6X8bMbEdZts4XT8t3QsvqZR+usTVSFfMexp3V5io6tqlZW0GpwacnIVDY30RbtzJkzEAdkkcX3zrYu42lHfjzDHrYLuzV6Pu43pj6lQ5ZiW5t473JWGuSLFy5AWaVCkhKyeJqbQQlGYtXf6soqlDVJyrG6iuXdrmnr5Qo+Mw88cL+zX0QkR0t8vDc5z/QNG9v4/OY9kif0sPxFy5Zw7thxKCtQqt64iPKNvIN9kjcw8hZOmx0l+Gy3W9h+AsfIjHySbbEcIxfgvfDI6tNWfuTodVbma6K67fWprkdIH3v0DIQsZbBkNDFJN1KykD0lSxpiW9bSN3nYQtcx6k18pwqUkZKVDLmGHdIQz/EyZBDVKrbjwOp/IhoTViax/2GrSd63PVbj8RHLM0bZ7Nrn5DiU+nyX6JdmIYQQQgghMtCgWQghhBBCiAw0aBZCCCGEECKDXWuaU3oWEo4kVupsn61KSJ8yID2POyp9dUqHS8el87I1rfxNTt/NF8+mcXgcOi06Luu04JoyrGqybPWSEWV83NR3Y7vMIfbPrqeztADxp3/wByFO1kzq4lkX9U5TlPK3vHwe4mhg2bmRztOlG0fOSc76EpZfu2XO8y4XbeAqLuquzm/cgLiYN7rQHrWumy20qJoLUE+5mkPNbWNtbbh9X6EOZTn3OsTT9HzFebKOsjyJIg8/2+PUsCGm1u1bDSjp4Dl6ZdSwfacZlQqb4xZZvdkWR8ePH4eyCUrxWqU05ckIOzteRxBzOt0B9oVh39Rxn8raPWy8m028BtdBTeqgZ7TEjz76KJTlyI6M4/V1rK/VZUvz3WhAWY/SeUcRXnNi9cTNbXwOOJXzXtKhtREVK/W14zhOUKwPt/uU2rpPmt2ZY3WITz78QfPZAdpeJtQn5cpjEDe2URNey5v+r0hi4jylzQ7INs+PzD2PyNaM+75eF7XEnM46n7NsvlJZsjN+b6N2P7DSkrM1WZX09SGND0LrxcVrE9gKbz9J6YEhyFinRP2A64PXG+13Z93xm8VYxqmwqXzEvtOZ0UkTT+8O22LOcRynXDHvw3yA+npuA/Y6EMcZbTnH+KRT5sGaXfc+WTQG0Z3/bqxfmoUQQgghhMhAg2YhhBBCCCEy0KBZCCGEEEKIDN5yGm3O55xYOiT2MU18HJsP+uRNaqWgDsgrkoXJCYmrRqW75lTfKWFySuEzwi2R/73I0hKntNg7fzarHDTNzujj8GETq265LNq/LNrO7XVMHfsjP/JpPJflxeF29zrqHvPLqBGMSugp6xw1/sHhDUwL3VtFz11OO764tgjxqQPGL/rjd38Cyrobb0B85es/A/FSx2g741n0uX3XgfdCfP+hhyG+ehlTUv/O1T8cbp/2KT2pz3p68j0n/VzJ0ilvF/G769OHIPY91HmO5Y0O1F/Auspfv+x8J+HnZH3dtJubNzGNOevtZmZmILZ9itkzNJ1CGDW8fdZgWrpLW8vpOGmdqROSJ23f1v+iL/h2B/vNAXUjrDu1vU5Zs7ywgGsMtrfx+exS+u94YNoQpznuD1CXzDrJZtM8vxcuvgJln/70p5z9IgpQm764jvfi9VfNM3j3w++GsgKlsu9RKvWZqmkzteIUfRb7L7+H2upbC6hpLlnFp08dhbJWG9tAxcW2WQtsHTKtLaL8CJzaOKS2asu4B9Ru0165/F7GfsbWuW9tYX2wZ7iT0s6atsvP5v6S8d4e8dGUpjkZUX934KWcFafL7sSneXTa9RKlh69WcI1LyXpP12j9C3s6l6kNcH9l+1rzOedz1CZ4vZmVJySXp/U/3B/vAv3SLIQQQgghRAYaNAshhBBCCJGBBs1CCCGEEEJksGtNc4N8O1njfHD2wHC7vY16r6X1NYyXUXd66KDRVbInar6I/n1uwH7IOO73LB9asih0EvLadOl/hiQx5SFpDR3y92O9j0dxYun6Mn2YM+LYtbfZ/5F9m/G07S+nZOnRaI3WO0lCueev/yFqeA/PWLrdKmviUdObS1APtRabe+6No0ap0sNrzPexvNBYxvLQituoKW37qB8skkZwYso8A8tdfAbm66hxroyjVjEKsD7mA6MHK07PQZlH2kOPNM0Jifn9yDxDBfK0LG6jHrV3HM8zapjrKLZQT+n7O3tn7gesNV5aMv0Ka5jZ95M1htuWV26rhffdJx/sIIda0AE9R72eqacOaYNZY9gn7+t203y+RRrmgHS1Xh77RrbOzVn61tXVVSiz68pxHKdHfskh6ZQdeH7xell/yP1Xt2s04Hwf2Hd3L0lyqNdvbOK9qc+eGG77pTqUtbrYJpptbHut26Z+Tx09CGXbbfKKb6ImvjQ2j5/fMuswXr2K6zsmqlh/XZ/aatnUfYHaB/vqJhFeQxCQhtVq9zG9O9lXl5+R3gCfr/7A1DV7c7NG3qM2Yq+RYj0rt729JKH1MAmtkXLhs0hIz0TECxCs6+I1AWkjZtr7yI9n6KG9nbXVHn03cPEeF/PYD0b0rt3aMH1qpYSaZZ994kmrzu3Jt9pESqtP7zReu+VabZfHPHG489qzndAvzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBrvWNMekO+o0UbN5u2/Ku6QFZZ/m9hb6Up5ffmG4ffb0GShjjbNXRl1fkEdtTBCYmDVcrJOJWBtqnSfnWU9ILByRHsxJ6fp2r2lmfSUDmmaHNcyc0x6/m1h/YE/rDLvod5RiQN6kz7wIcadv2sx6CbVS7jxqeh89cRfE/bbRy5FVpBOto35wsIa+zdMV1EsvLb4+3P7qN/817ow9Uem7JyaNHjhZQg/jly98BuJW8xLEq5sXcF+n7h5uVw6i/tnfxGvwItKfutQmCqZSygF6a57q47MYNXBftlzaH8PrjfO77j72BPZ7feMN46M9NYVeuV/80pfwy9T4jx41ddxuo9a1UGT9JsaFEtbL5CT2WTb1OpZ1u1jfsf2w03oNlzSFHsXr66hbvvDa8+Y4PXwOej08bp+887m/t49UKmEfzLrJRqNB5aauT548CSX2GpS9Zn0Tr7FYRo3zo99jnrkLly9C2eriLYhL9N7pt8xztLiE98EjLWwuwPobq89C3LFujZunuiXP53wZ62/N6htKBeyvKiVst0XyrM3Rb2iR9YzwO4rXE7DWuJDSqAY7fpY1zT3at62J58+yRn5PSUmLWeNs6ivhtUcJJUWgdSe2tbDLZeylTD91pr2Yk50/m/Je3tmLmbXVqWeVxg/2Wg7HcZymNc7rUv+yTetGpqdwLU25gu+pWs30sbanvuM4To7WufHYLWe9pwLOGeJK0yyEEEIIIcQ7jgbNQgghhBBCZLDruY3pSZzufPHaDYhfv31+uD1O07h5sqdpNXB6ObSmCjcXVqCslJCVzQZNTRdwmqxcNFP7RZpGTE1z5MjWxJpyK1JaR04xmnCqRofkGiP+H8m0nONU2dZ5RzTVF6XSc9I12lNGPBORSiu+d9SmcCo0R1M70W0z/Xkjjyl9vVlMefz+M0cgjq2pUadJabPfoPtClnN2e3Ecxzl80kzRtrp4HpWxwxAfcMnGzGrH84fvhbIbK/i8XN28DvHkqfsgnpo209jBKtpOsbVY4uEzwFZBsdXOE7IYios01V7B++QkZlotT3Y9UY6n6feXZhOlJfZzdP061u9LL7wE8YWLKI+pVU2fxf0E28YNqH6feM/7If7ABz403K5W0Pqu2cL2GCfYhrb7RvbGU7xOgpKKTgenOD/zmV+B+LOf+fXh9mOPPQZl586dgzjgKXM69sCaXu2S/RpbiHH92XacLLfjdLp7ST7A56RI8qqtrcZwe3IM+//2Gj50gcN2k6aPKo+PQ9n6Glqu+gE+g2ur+M5zrXfLIBwtCStSBurOhiVVo8Iu7Wt7G/vKgGQBJesdmLIAo5itA2OynHNtK1hqHyWS47HkcmCl4GaLuf20LIzJhjYmy037slg26ThkdztCYpGdJnv3abXvfF+WPMPjVNZ40q1tlHzl53GcNz1tnonbtxegbHXpNYhZcsGWhkXrPcV9RoWkHOUKvpeqVdOOiyS14zTa9z3gZKJfmoUQQgghhMhAg2YhhBBCCCEy0KBZCCGEEEKIDHataR6r1SH2abx986KxzGqTHtgpYDw9h2lDjxy0LMVGZ4h0bl27guU+p9w0mpUB2ZzkKBV2bRL1m9Nz5jx6bbJP6WJcI+uofJmq0hKeeh6WRWw5F6H+if+TiS1bFNY0s40cWFb90QfMJu03otSoe0mJ2kR7CXV+oXV2PdKaz1Aa6W28FY5bN3r77iZaITqbqLvizM8eWc64lt/TtIuaLk7B7fVQUzvwTNuLx1HLyhrnYkQWYDHqDa9eNtZ3A7Y2cskOjG4sP9RRydg/lSn1qU+pwH06Vs665mIHzzmJWce/t7D237aYcxzH2d42GvTpabQw+tjHvg/ie+9F8Zqty2VbK7bXCkgHfzftC23lsC0PBqRtpHLfsskcDLC+W2Q39uqrr0D87LNPQexZuuTbt25C2ckTx/GzJJRnvbhdJ/xZ1inb9lCO4zjXr1/bsWx2Fu3W9pJzZ09B3A3xPq4sGx38BLWfhx56COLm5gbEi6uN4fbkLNqtNTdQs3zw1AmIN7exfdltgK0ASyU8rz7ZTeYrpjwoUqpiWs+Qr6E2dNDFvrPX61jb9C4lbXGeUnZzyve8ZW/HzzHrkrt8LEvf+p1Mo73dxLouFfE+5wvmvvlkscrjlMSndUu25VxKeEzvKBokcYxlHNN6A35bJFZ9xnRPA3xeigV8xxVonDczZd7b0QCPe+3qNYiXF3A8YNsMOg62mRxp3ot0H4Ic9k8Fa93bGL2XSxW8pk9+v5OJfmkWQgghhBAiAw2ahRBCCCGEyECDZiGEEEIIITLYtaZ5Ywv1TsUAdSRHykYbkttEX9mVGH091yjrr2N5II/NoM64PEB90zqlEG5so4eqb2mpinR1k2XSP/XJZ9DSFlfG0Zd6cwuPE3VQR5QfQ0/fsqXdK5RRxxemUl2ztzLqHm0dc8gpkln+RBpJWws0IFXzINk/j8vvfQRTQd92UMN0/P5Hh9vhMqVopf/tLv/270Fcsa5rkjxjKw3UEyZsckz6qLht2nkUki+uRylsR6QkTdp4fV4e9YMJafFypCd0LT3rUx1s85daDYi3yTM2JA/VXtnSmlHq5TynpaVyWwPuJnhfiqQ9RJfgdx7W+l2+jKnKv/nNbw63z549C2VBgPo81kLOzBhP0Xq9DmWckrtG5R7tOwxNnQ76lCK4S/rNPvYrti670cA21KE28uLzz0GcIx3lqVOnrX01oGyT+lHWmXJ6YluLzD6prFN+8cUXIb55y3iUP/b4I1A2NoYaw72k1yJfYkoDn/PMvVlexbq/5+57II7pOekvmb6BU5A/cO4MxBXKLbDZwH7FsdZSTI6j5nLhFqbzLufwPby1dnu4fXAe79NdJ9DfPiTf4RxpUu08B+EA+0LWOEfkAd0n7f6gb8rzlGKbYR2uXZ8htVOX+/M9ZG0NxzGlPNZJtWZ5CY+R9zT1EV4OrzKw6sSjVM8ueaZznDi8Nsl6z9N4wWO9NK23KhTNs3zqFHq5330a4zHyAe9tY/+0bY2Z8j5ef5XGRLzgqkblts59QG1x0MPr7/c4xbulNffxvrQ7dz4G0i/NQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGu9Y0L62gxuuNq9chji1d8pkD6Ks720Pt8GoHdaarF5aG28u36lB24ypquBpd1Kv0aNw/OWn0YEfn8TzOHp2BuE1asqtXjO+r599wENQCRduoc3THyKNw/qApIxFzmOA55yjPekia5tAzGqaEvKYj0jf5pLMNrGN1yW82Sti5ee8Ym0R/0eXKOMTlw6Y+Z8dR89eOKA/97WWI3TeuDrf7LdSd5V3yIXYDilFTat+riLyUExJeuRFpmi09eRCh5tHpoc6/T5raEn1+Pl8ebn//DLa15QP42fUYNV5r83Usf5fxiN7qY3uJSHPb72P99R2rzTTxGvLffMH5TsJaWlsP/Mwzz0DZxjo+64MBtovpaVPHhQJ6zB4/fhziu+9BfWuefJtz1nqPXg+P0yH/d9aGrq2ZfrbVQq/khLTrS7fRe/no4UN43kePDbefego9nAvU5xw9imsOWLds68fZH7vTwWfoqafxWJWyact18rcvlbDu9pK1q6i1HptGv+Rzp4wO/uIG+jC/fOFliP2Q1gIk5hm86xDeh+lJ7OtyJXz2X3njNyGuVix9K2lhXz3/GsSHj56E2HWNRvzWBr4riuPY91XydYjHyuQ7HJv3dI7030XSEvv0zvJc3Fff8mLu03hg0MX+K4ywnZcqpv3kSUe7n++wKMZjtWn9TNi03h30Xq64eB/ztPbIzqfA6y2CPH42F1B5DvsrzzOf9+k+eT5+1/XxPh0+YrzMP/KRT0JZpYh9QmOFxnG3MG5Z74uE/MTZ479WLUPsuHjes+UDw+1uD/fVaqGWOiBNeNXyI2dH6wsX33DuFP3SLIQQQgghRAYaNAshhBBCCJHBruUZvT7+nL66idOdzRUznTVHNl7HaVroIE2/r7bNj+YLDfypfeMaWrkNAvwZ36uQlZeV7ppmU5zIw6nAJI8/1rf75gt5H6eQynmciu82FvG82nheYctMWU5MoTTB8/D6K+M4fdf1yGLGspLKU9pHn1JOp9J3WqmyY7IFStyd02++0zxzHaehX38Dp57bfTOtOKjiVFZhBuu2NIFTdLUHzbRqZEk1HMdx4kW8T1GI/yeyfY1vTeCwDZdHM2pRhOX2FGRI+bp92pdDtot9cgIKBqb9VGkqvTKH1lFHapiWvoWujc71Rx8zx/HJViqHz08U432Ke+Z5LKzjlPXRdZpS22c4BbNtZdVuo8zkFll1dSgl+I2bRo7l0dTg4hK2ofV1lKpNTqJ8ZsKKI7L16pM9Essz7PSxMVlCtimNdquJ8b3n7ob4kCUTYBu9kydxWn9+HtvQk08+CfHTTz9tnQf20T6lCH7i8Scg/vSnf2i4/YlPfALKUimD95BecwniF69gKt/rljzvPR/F8zw8Xof44sUrEN+wLOp6NPW8PUD5SruJ7eddD2Ma9saGua/tNu7r8CGU0fQ6WF6qmH40pPfM5Zv4/BYDrPvZqTrEM3VLFkFtMe/htH6B3lleTLH1ri2Q41xCv90FMR6rZ03H99pY5vr7J8/w6N3qk9TBtvNsUmr0NklQamMoqZicMP2w65M8kySpDr3D4gE+f4EluXBJupFKre5j+cSYGascOYTypa0NfGdvbZJNKkkfyyWr/eToHVbB95DrsSQFxznn7jXPyK1bC1D2+oULEIfUp/Yt2+L2Nvb7vjfa/vDN0C/NQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGu9Y0O2RdUhhD4eSyZ7Qxry82oKzXQu3UoSnU8E5baX7nSL/Z76I+ZTFETdNqH/VhW6smVeoF0o5duXgV4rExtD8aqxlLutPHUONXLuA1bG+hPmxlDfWFW5ZFX2MJrVjKZLM0PkkiVNL/1KqWTm0TtZoR5Qr3yIbLC0zdeqSr7ZNOfS9ZWMUUti+TbdVYxZz3iQOHoYxThS/cRG1iJzQ6pake6qzypHlzfbbswzqI7ZSbdOA82Rtx8lLQj1Ma2ZgE0QGlvw05Hbplu0RuTs6A7Jy602hxtZ1D7VnfskYaFCmNdh51wVGM5Z3Iqk/S9Sfe/mni3wxOb/2+971vuD0ge8VqFfucpUW0LWw2TZ1tbmFbvXkDrd1u3UQ7SrakO3PGaOzbZDHnxPQ7BemnE+tmV2uoGe+StVtIaxRisuqyreBC6jefew5TcH/5y1+G+OZNvObYWiBy1LKycxzH+chHPgzxxz72cYjvu8+k3y2XUUO5n8wfwH42itFC8fbN88PtL/wc6iY/8n0/BPF7H8Z04LOW/nOV0p174/TMFTAeD3BdQWyl9u1uNqCsQlrPMgmEI8salfsnthkslzDuUJ91ddWcRzFP1q41fJ4CStdcIKtPzyqPabERL/eIqQ/KF82xkohSJCf4TOwlVbJF83iRi/UbJKdS7/VRS7vZwLhUNM9FocgpuOkdT4f1yGY2sd5TvGYnIdM1XrfT3GqY88jhcR94ALX3Bw/gu+Py669CvLxg1gzkKW04p1IPycLx1OmzEJ87d99wOwiwD+mSXpyqw5mwxldjZHkZRneuidcvzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBrvWNLsefrQ2RR6pkyZl9UajAWXtLdSN3CaP1KMVE5+po15llrKsTge4r1aCApblnokvb6K2c2Ed40YOtcbjE/XhtksawGMn0Bu3Pnsc4lqdvDktD9WLr2Pq0z55k64toka320KNzmzdaHKKpHeqHsLU4BHVx1bfnEdxGv2i99Gm2amST2zdSjPuOI7z2pLREJ545FH87NQYxFdIAJxbMtrEeoR6wtgjzRL7egbkiV0y+sIBaUS9LurJXdKDJb4Vk/7ZZd9SlsNRm3AtjVeRPuyRXjfsogY3pn15F4wGl6w0nXiM9IWshOwYj2KfUpRH9BzvN2fPou5t2mrfv/mbvwllnQ6e+8QErauYNs9Yl3w+OU30oM/eudg3HJgz6yF43QB7exeL2N8V2MTWYiGglLjULrpdTtFtznttHfu6K1cvQ5wnjf3cgTmIH3zgweH2Rz7yESj7wAfeDzF7Qts6ypieC/bE3kumaC1NkdITT9fMw7F5C9eo/M4v/muIH/oQphi+9z2mTrrUxyT0LrH9fP8oxLhgrfFZXbsIZV3SxpbHyCvd6v8np1HDHZDPcLOB63Ji6qOcvNE8t6nP3aZnYqpOKZY3UC8+6Ju2mfBxEq4fCq3qrBexnR6a2T+v+ENHUA/LFuP2VcWkle128bzbbay/VsvkoxgMsK+qjeE7v17HdUt5SnHuWr+FejRuY300hU63Y85jdRXHJUePHIf4GK3lmJzA9/SlC+Z5W1vBNSQRPRPdPubj6JKf/fqaecdtrDegLAiwbs/eg371J0+a1OCsF+/3qe3tAv3SLIQQQgghRAYaNAshhBBCCJGBBs1CCCGEEEJksGtNc0QanaCMuprKrNGoDgLUGfW6+N3FLupX2puWXqWN+sz5McxJPjseUIzHOl02OizWQ6+18DyW2qg3XN+4Pdx+YwP1PEu3b0NcmkC92PxB9HUetzwdD584jd8lLd3K8iLErW3UNG1bvrEt8u1sB6jJmSiix/HlC1eG2zP9k1BWnUd/373k5HHMY++973sh/uY3vjrcXmusQplbwv/tuvSvXpIzN7pNerA8aeADhz0dsX35lla/h0WOf/MaxEGI+4oTc2I+yfY80vF1ItS0BT6268Qz+44jfF5y63ge4yU8jyqJAiffMG0kJC1dHDyFMdfHwFoHQFrqsTae135TLuOzf+nSpeH2Zz/7WSg7f/48xJVKlWKzL5/vBelwnQSf36vX0NO40zX1NDuLaw7GxlBXmy9gfbfaRpN//Tre59dfvwDx8gr60Lvkpb+6ZnSEm5uoX50kb/j7778f4k996lMQP/HEE8PtaVobkcvRg0Lsp255FAXyRy762H6ma+Y6OjP4fiuS1/KTX/hViG9cNO3rgx/Hups6jL7WbfLK7ZIffGQJTbk/i3hND/Ujrm+u4daNK1B29OhRiI8dx3htDdvI6lpjuN3voZa6QProsIvlHfYMtzSqboTXO1GvQDw1VYe4VjLl8Tae4xjpffeSHF0z64HtJQa+T8+Ei20tjvH5i63qIqm049E95z4jRx7IriW25nUPdAlOLqC2NzD38Zlnnoay+gSuYzt7F64pmZjCfuGhdxkv87VV1Lgv3MYxD+vDfaqF1VVz3yfreJwyjUXn5nBc4wVmTJjQmi/Pu/O+6bujNxNCCCGEEOK7GA2ahRBCCCGEyECDZiGEEEIIITLYtaY5l8M89XnyuyvXp4bbsYefjfuoyen3UIPS3jZ6n4tt9FK+3EDv0bEt1G+ea6OW6v4po1mZiVGDeaCAepZTFbz8RmJ0jjfaqDu72kCfwasLCxBfegP1Y9Wa2deRgwegrFZBb9YcebPOnD4OcdkxQqRt8p6+td2AuN3A+5IvmHvRbOJ3kzJ6ke4ltSpqugp5bCOHDhsvxXwVdZ+bTdTOthL0cExy5j6uY3Nx3BD/L6zk8L76LvkpW2Jkdwx1rxHp1KKQ9ISWVjHnkXaKdIwueZPGZBcZ259vov7L38J9hWvoueuSQCywdFw50k8GHu7L1mU7juO4ljYxJF/q1Zi0vt9hClZbP3IEvZOXlnCNAj8Lq6uoHR0JaZpXVlCvd+XKG8PtfB7bTJ7avU+aur6lG9/awvUdt2hdRZJgY3/uuecgPnLErLP46Ec/CmUf/OAHIbY1y47jOCdO4BoE3/ISjiLy8ia4/X23wPrFPHn+BtbrsDKNz36e1s7MTKEm9YVvvTzc/qV//o+h7J5H3ocx1XX1MGowE+uZfOA+1I0ukDa072H72tg0fXrYxHfj7etvQDzoYf81MTmFcdWc19oq+nxvrON5tLdwX1GRdbem/lhfPzGG98HnvrFvdP45WiziO/iO30s6LtaPT32nZ62X8WN8RvL082SJ3vn16fpwm9dBxBHex+Y21n23h32XfVYuaZp9Ss7A1xBa/c8Va42I4zjO14LPQzxewr7s2AlcM1W0tMaHj6CH8+Qk6qObWzgWWaC+zrHeNRPjOD7oh9gGiiXUyAeBaYusS38rXZV+aRZCCCGEECIDDZqFEEIIIYTIYNfyjF4fpwI9mkKp1ozkYJDDsXg8wM+WYrKka5uf01tbOG26udGAeLuDaZK3buPU/dqmOc9T4yiDOFgh+zofp5SKljXSeA1lDkcKWFWreBrOdZKJNDbNVM0WTQm81sa6jAo4zXH8KE7XjVfMNEenh/MJrRC/u/AG2lANrDSRYzX87snq/k2vbzQbEOdKeC+mZs10zem774GyxVtXIb4Q4tRXy7o1YRXvebuNny23sC1WKC1t5ZqZhux2KI32GE7Jej5O18UDa3qO5BgxpafmdMIOWTp6IIXA6aeEZBIpi6IRdnf8WU7vHZH0JbakQTHJMXoD/O7Hnf2F6+H0aWPt+Pf+3t+Dsq9+9asQP//88xDfvGls47ZoqrBHabU59WoYYr3YKWLDkD+L8jLKTgzprA8fwX7gxInjEBeLND16DC3EPvn93zfcZvnF7CxOj3J6Xb7X9nX4Pk9xfnfKMZheD+9Froz1Z6tuAh/7kSq9O2onUWI4ZcnxXnweU18/843fgfipb+E09/G774X44cfNvZo5hBaipRnsc3qUknvCahPtEkoAmmRl2mmh/Ke51YC4YKUnHh+vQ9npM2fwuyR36pK1Z61i+s5BHdNRV0t4XwoBpYNvGjnCWA3HDt0WHncv2TrxHohdSmvvJ2Y84bZRgpJro41qJSI5WNf0u+NkyTc5hvVVIsu5jXWUznSt91BCPX6eLedI3uNZdpsHKEX7kSL2t/3FqxB3yMayNGGs4biHqFZw3/kcnliPpEOtbUuiQ7KQcp7TipM0yBp/cT/H75DdoF+ahRBCCCGEyECDZiGEEEIIITLQoFkIIYQQQogMdq1p7nRQY5Ij65KqpSXtkNYn7KMmM0dpVQuWRifno/olR1qXRot0Wpt4Hucty7qbpNmaLeLl3jWJurVDE0ZnM0bXcKCI1zBPqSuPT6CuZiMxx9qgawpI492g9MQ+pSfuWOU3Fsk6q4OaXJKZOrFlcXXgcbSESUp4/XtJl9KsOmT/5BdMXCOt4S2yDlwjXei4b77bclGT6zmozZyMsQ1UHGxPdn01xtG6Jp5C25ygSJZ0lu4/pjUAcUK65Biv37bFcRzH6XSN5q3X43TdpEMm3WxEmm+0CMPvsqYrJu+7yLKcY53rgI7zD5z9hbW0ttb21KlTUHboEOqDP/axj0G8tmbWAjQaDSjb3CTtJ1kgct9ox33q+1jjHJA+uDZm2tjUFOpXp6cxnp2dg3iKbNAmJurDbdYhM9wO2J7traSb/W6jR1r0hNrPpFVfThf7oKKDa1ySIj6T9UOmX3mYLNSOnEH9+PULNyC+ceFZiH/z6W8Mt2tHTkPZ0TNoQXfo1F0QVy1daWUM+696DePOAJ/nTo/62YbRkb5xDc957sA8xEVKaV+hNUCdpnmG2hv4PAVj2PYqdXpf5s19W1/G1PJrg/2zTd0uo3WsX2ZrM/OMeCFqlrtsE9fF8252GsPt9UXsTya3sN3W83jf/Jgs+ywb1RwtcMn5/N7Bdj5eNe+0B8/geOHRe8/hd+n912/hO75YM8f2KF03a5wLBV6fgannWy1aRDYCj+xeR625eCvrMf7494RCCCGEEELsMRo0CyGEEEIIkYEGzUIIIYQQQmSwa00zaz/clObN0q9wGl/yxsv5O8cpH1nyOA5LGCeUFjmxNM8bLdQerndRZ3p9GY92sGN0avdMoU7o9DhpYV3U75QT1CFV8kYvfJi01CdyqF9daeF5LW2hbrltefgeopSRHdyV0yO/31zF6I7GxvA8Nhw8572k38JjheSZakvIlxZuQdniMqbUXCIPx6NHjX61T565LdKbruFtdaIJ1CrmDteH26zDmi+jBjzifVkfb5OmmVPH9rr0jOTwPC5eeXW43Wrhd1mGxXEujyfW7Zt23Sf9vEsatySkNKt2OR0oYa/p72LyVCcHDx6EmDXPNqz35TTSHMfWMxhTOt2IdOGsFc5ZfQP3m1m64pR/9zus5fvjzvgYrklgL9jNDfOc1cuoD3coHTE/Y4mVqn6c8hSMkZZ4oo7nce99qEu+eXN5uP3CK5j6+pWn0eP52Sd/H+Jxyxt39iDqQmcPoo/3xAw+AxMVXJczecjUwWYL+6elNfQGbmxSbgbqG25cuWIdh4Ydfazbko/nUSsYvbTv4X4TWguyl8S8XijBa448U0d+Ge+xV0I9dET9cNRtDLe7bdQ/N0PUP6/2MK5GtL7MqqKqT3kJfGy3RR/v6wHrGTk5j1r8Sgl167ka+kcHVdQ427kKXId1xhA6bJfM/VOlYp4hXhfC/d4oH/l3ot/TL81CCCGEEEJkoEGzEEIIIYQQGWjQLIQQQgghRAa71jSn/VxRWxRHO+sb2YuU9YWxpQnMJagbTchzr+qTfoW0Mv280d1se7ivfg51RK0+6g03m8ZbcaOLPou3tvAa5klbfZTywU9Y/47UqK7yEZ5HmXRaEyS76efMbWoX8Lgdui9dMmqOLf9Dl47bitBrdC8JSVvc7+K5xANzLu1t9GTsd/A8t8jz+eKG8dgdJ/3gdh91VgNqi5VZ1Jqtra2ac+7jcbbbqxDnyKvbs+4Feyc3yWcyIm/NOEHv0s0to2srFdHDskyeqO027rs+Voe41zPXsbVN/qDbqPv3XGzH87NG91ig5zYIvrP/c6c0vFZfkLgskuPvYhxZ2mP+akJe3wl5XXukC/esenHd0ZpL1vo5ia2HxjYUx9TeUutKdtbyCcdp0RqXKduX2XGcTst4/Pci7P/HqvhZ9kr3rftcKJDeuYD9F0lQna0tfCbni8YD+dDJw3iOHVwrsXAb17/cvLkw3F68/BKUXXwZ/aDdPPaNY9OoYZ09aOL5o8eh7NgkeoQ3u9hWN9t4zXedMHrqWhHfu62tKxBvNai+8qb/GoR4/QcO4HnsJYHHYyBaH+KYftoPyDuZ1qy49HtlUqkPt3vFOpS1O/hu6PSxvXQjjNuDxnB7O6Z2TDkOKmU8z2OHzPtwbgLbR5DHvswv4bs2V8L3lGP5RXN/m/V7bWoNnRWnxo/x6LU19nuC3xkc7wb90iyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZLBrTXM4YH0d6fxGaENYt5fSlVjFAenBSMbnVMjfsEAa33Zivu9GrMFEjWqrjf63SWQ0OUsR/j+xtkVeiNt4YncXsX6OWx6OB/OoZ/LponwHr4lSyzueZRDpUV2STbVTJR/G0Dc6pDbpzqq1Xd/+t02coJaKPX59S4+5ttaAsgVLp+c4jhNHqGu7dP314XbK55vbTxU9QFdvoyf0+obREvcH2F4uX8dzHuU1yZos30M9WLWKPp5hhPem1zX1VR9HP8xDh9BvtdfD+mCt8dKS8bk+fBg1kgPSua+ton5uYmJquF0uYzv2/DvXg70t6L5TlwSawkEe25tHfY7Xx7bfzZv2V0XJpeP6+IfQp/Jk598eWP/McN/oe+a8fJ9bM+9LmuU7gd9Z7TbqPScnzHPWJR/5ThvXZIyPj0Pct7zQPVqHE5KIuVQib3jy7d9smGcwpnU3E5N1iKu0huOA5a07GOB315u49uHydfS/X1i6CfHL33xtuP3iN76Oxzl6AuL7HnoUz6uI64mmZ815rS3jcfIuPVBkiNzYbAy3KxWsu/Fx7Ef3kpA8jRMPNbyu9V7n97TvYh/h0vvAsXJV5Au4334b31n9Lt7HzV4T4s7AaPc7MbbbnIv9+/gc1v3MrHkG/IDWjOTxszF7lQe8xsLZkTvVFo/yWr6TtRt8mLcgadYvzUIIIYQQQmShQbMQQgghhBAZ7Hp+fkDpm2OafrDTw6ZTIo7el/07vss/8Ts4jZEvot2W71I6Svv/AJoS8ckizPVweq7X96xtnHrokFyjxZZVlAp7MTHxwQTLajTNUaT6KZHVlC1doCzRDmXwdTya6tvqWHY9azg1k6tNO/sFpxNOyKLQTcw1XrtxA8ouvXER4m4fraMGlr1bGFJKY5qS3djGqSye4natNpOeMhod29NE/N2QbMv6G2hfl54mMn9od3A6bn0dv9vtUUp3mt5zrLq+du0aFFVpetMn+7QbN68Ot/m59TPSOr/T9Lfw3kUkc3KtOo7y+Gx7Dj0oIdbRIGemuSOeLuapVTqvHMkz7mTG785s4STHeDsU6LnodnHqemvT3LmxOqbRbrWwPa2v4TNYt6Qd3NdxH8T3vEhShmDKtKcOWVX26VkvlbG/TxwjIQjpea1OUDrvmTrE2y2sj+0l875ISeaWMY32lz/3qxBHdI2HLcu62jjKDaYPoNTFLZI9myXl45TkSULP9R5Cbq6Oz/2EpTMd0HvIIx2lT/Vj21b6JLEs5MmGN8L6C7dxTNTbtm1m8Z6WaAx0ZAbbT9myleuQTWxCMsBaQMNHrg/HxCmLPZZnxKy1o8q2ZGsJy30pZmkM7JalHW/hd2P90iyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZLD7NNpkAzMg3VYY2elf8bsR2YvFpPqzU2UnrA8kPWESoG6G02zbTi5+AY8TdPE8cj7q1mJL/5u4qOfxeqTpJnHxGul52pbeklOM5nr4Xc/F8oAsruo1o/niVLkR+W4NKH3pysDo0sZLqF+dGsP0m3tJTJZqCZ13YjXFXI70plTXHU7Bbe2bJaIpu0PWSnFbhLaaMrDDaJS/XYYe+k7SdzYaayNjJp9DTdxYzaRD7bZRE9kkG6pUfd2RQndvWfzGNyAuudh9Bbn6cHvg4XXFZJ+U91AXWHr4PhMUMH2s61CfQ1UyeBvpqlkFqF8x9g6X3iWlEmpBY0sf22o1R362R9pie51BfRzbT0IvRNZWp3Xtpl2Xa6jvLZLlWmubLMUi8wL0A9Y743EKRdQHF/J4XpWcOY8DRzFd9Wmywrt+C607r1y8DPG1Cy8Mt6ukF3c9tK/z3Rk8b6v++PnotVvOfuG79N5OSIdrj11CLOt3sb0USvjke6DZJXvMHH7WDfA+Bi7pvD1zngE2D2eCUl0fqOC+y9baj6SLOv7O+jrEQYXs6yj9t2vptDntfExadJfeyx7ZbdrDPB5f8tg04THAiO45obVGu0F9tBBCCCGEEBlo0CyEEEIIIUQGGjQLIYQQQgiRwa41zf0eimN6lKIzsvViLuuO8TCsm7TjhPUqNKzvURyTYCWyBC0x6WJi0kN7edSp5WJzni7ZPwaUCjVMUFfbJX1lz/p/ZL2zswb3zfYV5/G8y6HRbeWobuM+aZpJS9W16iChayh00XdxL+mQPsod7KydnZ5B/+h77n4Q4kIR9ai3bhr9XLeDOqtMTW5K75TssJ3+sJcSUJuY3UPdt6UNTgm1R8IpuQdWit9aHnWOXkTPRMpz2NITki/zgHPc7zGDL3we4mhjA+KgZLSSEaWP7Xuo83YLsxBPzRgdZe4kaQRJuhiS/i6ifibBfOpQxm0mJYsfkYpdvD3WSZN58AC2gdh6p21v03oPuue1GvZB29vGO549nCcn6rgruq++n8rLbs6JtJ/s7ztex30Hloi12UAdbUJiz8DHd1atjM937Jnz6JPnc6GM3z1ZOw7xsSMHIN7eNOfVpz7m1gqm815axHh2yjybdar3XLB/v/vx+9PxSYdr1Rf399EA37WUqcLxHWssQuu07BwGjuM4rssaZ+zb/LLpvwKP9PQBavULCa6BCgamzRRo3NbZbkC8ev0NiJME3y3jc1Yb4PwbpMvm9QbplAjm81TtqbpO3J3X0CUxjzuoc3fyThb6pVkIIYQQQogMNGgWQgghhBAiAw2ahRBCCCGEyGDXmmaX/Ox8b2e9XczedxmetL41dk/lKKddhcloTaCd8j1i4VDE/oZ4LN/yqfTJ+y+iqgrIZ9iPUHsWW2aCfI6p3Omks4npvLcsTSrnaPf43x7WQwVG3xSSJqvTQZ3xXhKR1prvcyFn9FDzB9ETdG29AXGSQ13b5PT8cHtjbQHKNrdQx9jpbEMcRag1s2tvMBjQZ/Eec7O25YbsM5lwQybYy5VKR4bs3c062m7PXGOV9HABe6qTGtt+3HLk/5z3UcO219QaqMeLl/Beh2Wj/S+RBtNzyGe3iPtutRrD7TUX9ayei9dZ5j6JPNzteooj9rPHuErrKjx35y5ZGue3R6WCdb2wgO3H1jj7MT4n/T72E90u6YEtL/Q26Z8bjQbEMzPoQ5zSNNtrfOhZ79MalkoZG3K1Ztpezsey1RXUWnv0/stT0wvyZl9hxrKKXI7WSpDnc33SXHMvxIuqTuIaAjbibW+b53pxAf2gDx856OwXUUjv+ATbhGflE/Aot0BCL+qY2pMt8eX2wN9N/J09nh3HcZycdd9JE789wPu00sbzOFg15110Ue/s+TheCLewPa1cI423a/rF8VlcP+C6+C6JUut2WMe9cw4Ebosx/cX2iOYuNLpzm2b90iyEEEIIIUQWGjQLIYQQQgiRwe4t5/r4U32fph8iW2JBVjYD1knQlFMQBNY2WarRZ9nKy6Gpafu/AJ7mSP+MzxYy5tuBg1NbMR0npKn7gOQHoTWVwxZgHk0veDQdlZJvWOfJs/gpKQzbolnTwRFNWbt3kMr57dLvYftxQpZnmPou0zQqN5gCtZGZ6cPD7fExlHZ0Ol2KcYqpH2Ia1pyVOpZTXTebOG0fk10NfJy+G8U01UUyGm6rzS1jnddu43HzlGa8WsX06DOHDuGxrTYR9fAJGlBK8jbZCvnWs1wu4zRqpTru7CfR7FGI82Q/FY2Zegiof/IDSl1MtoXPxcvD7V/+9gtQNj6G9VunbnOFrO+mp41lIltArm2gXOhjhx6A+AeOvMs6Z5qmdRCJNe6MahXv+e1bNyAeq5p+pzaGqbBjklf1ejitbT+/1Sp+d5s67bW1NYjn5rDPsmFJXaGA76UeyTUKeVNeKGEfO3cAn9dt6s9abewbA9fUR4EsG6vUR3Nb7JEMqdM151mt4/NUGsNnM0/jh6L1bmi1UaJ1+zba0+0l/L70+Kqta2bphuvxuAb31bX25ZHsLfXLJqniWAroWLIbtqNb62FdX2ziPZ8ZM+dZCLBtFV28ppyDUsfBFpYvXjTlUe8MlE0ewr7cK2J7ikiSEloDQZckJywzimKMmy1jd9jpoBVpl9KbnzmB5/Vm6JdmIYQQQgghMtCgWQghhBBCiAw0aBZCCCGEECKDXWuaI079nLJUsXdF1iykb+KRemj5fpAE0CGHOSekb3ukBY2tfaW0L5xukU7E1ih5lPYxjlPebrQvTm1p7Yus7jiFJOfUjGjfdsZyl1JEJpTjN6XTjs2Xe5TKukep0fcS1nWzh1HP0sxvbaHWjiVbPt9Xqz7Zlsul1J75HOr6EncSYvv75TLqrPpkM9gjCyJbx8wppzkNLzs2sqY5tPTngwHeJ7Z38n3UrZXKpBEsmvJBH8+53UZNVxyi9trWdUekrxwM3oJfz9ugfQZ1cSGlgE0sjXPIVnoB1lk7j/V93bIefOnqJSgr1FDLHRRwX7ebqGke7y4Otzk97NLaCsSzAbbHTxwyKeN9Z/SaDHFn8DqCc+fuhviNSxeG28XyKSjL51FLHIX43PS6HbsQyioV1Djz+qDFxSWIx8fr5pxJwOqxFRflFI4T028kbBNLlpFj9QmII9JtN1Yaw+1SAa9hqlaHuEtrfHyyRh3E5vliS7AarY0oFbD/sl5hzphVN47jOLMzaGW2l6RsU/leWH0+dfcp/TOnfg7bRv8bkl2f7/O7BMM4lWbbeh9SH9Kg/uZyD8cE8w3Tjqd8SuFOXptsdZqjsUjf0jgvXMQ2Hw4wnj6OfbtbwvUH9to2XtsRsUVhF/e9vW2e1Yg85uL4zntV/dIshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmTgJmxGK4QQQgghhAD0S7MQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBho0CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZBLv94DOtBOJmfwBxrZIfbiftNpR96xsvQHzp8m2ID8xND7cPHpzHsgNzENcnxiAuV1yIfd9s9zo9KMsF/Fn8n2GrY65xEEKRU8n7EAdJjB+IYyqPzHE8rLuQ/leJPNx3j3Ydxea8kxCvIYrws90B/iGy9hUEeLtdD8/jgwedfYMu0XHf9FNvXsbftWuXPztqv/tJkv2Rd+y772Qd2Mfmeu9TXH4bx9kNf/df/jrExRI+N/l8Ybjd7VB/1WxBHIZ49uVy2SrDh9+j56RYLEHcbXUgnp+uDrePHZmBso1mA78b4XkmA3O3Vlc2oKxQHYe4Nol944D6lfW1teH2+Bj2m80W9tHLa3isxMW+wr73CbeoZGToOElibVIp7epn/ub38bffMb7Y+U2I11Y3IV66ZuprdQnr59DZByDuJNsQ31x4bbi9fPt1KJuYmoZ4Y3Md4miAcS1fH2673TqU3XXwLMQHD09BvNUz93GqhGVnp87gcdfw+qNBA+Ji0dz19fVVKGt38Bmp0DVue/jurVRM+ytF9Pz0mhA7fhe/65tnqLeJDWa7dRPiD334/+DsFV9/EccxNJxwoJvw8D2cD3IQF32MXdfsrEcv9X5I7/SExgD0SMXW2CSmcQk/fy79bGpfg0uFvo/9rU/X7/KzbZe5+OGArqGQw/ooF/MQB9bB4hjrY0D1NeAXldXJBNThcN9+7NAJ/nIK/dIshBBCCCFEBho0CyGEEEIIkcGu5RnbMcoxNrs4PdWNzM/r/TZOr6yt49TfrYsXIP72158cbkc0ji9UcFrx4DxOSd51/ADEZ+8+Ptw+ceoQlAXVIsSuh5c/W7COHfBUA05HJSzHKOB5x9bHA5+mOmlKoBfzlAnuu9c3OwsTOg7pSIo0rRoUzH3haY0wNZ3iO3vFgOQsPAVuT9/wVM7b4Z3c150waor6j0K65+/gecZ09MjaNR8lPaHGc+0mZhlRm56Bso9Tau80+TzuP4pQYtHr2VPCON1Xq1YhjhN8FmzpEt8bnuLM5+h5zmOtlsumnwnp+QwHdG9IXpW3rmm6VoCyToL7InWZ0wtx372e2Vcc4XcHA+zPOx2UmCQu3mt7z57DbRnPI9WS3Z1LPW//ns9f+dlfgfjiK9cgfulZ8146fd9dUPZYEd9h2+tYn7mBeU8Ve6ehbOMC933YFvu9GsSVupE65BIs27pehzhaxbaYq82a/eawgeTb2NgmnAmICy62t8h6j88W8bidPLaX9T5KPZIAn81Wx0hfutRPXO8sQuw5OLY4UzPnXRnD938rxHf6XsJdtEf6hHLBXFeeH06PJRXYJuw7E1PfFcck5+Tnjc7Lt97z/F5JvWdc3Jn9PHr0WY/kGQHvO9UvmJiP65P0I0d9u09yDfvQQYLn4UYkQSE5i13qeqOvaTfol2YhhBBCCCEy0KBZCCGEEEKIDDRoFkIIIYQQIoNda5q9GDVcc+OoJQotq7OwgpYyP/ipj0L8E3/64xDfvGnsbNY3UCv1yvmLEP/uZ/4TxL/3q78BcW3caMvmD6H+6eiJIxCfvgsteO65y9iNHD44C2VzM3WIq2XU4Hgu+ZxY/454ZPVWDEjPQ7rHSoTlXt7UdT9hTSTum2SPjm9pCHtd0le+BT3PWyVlNXUHn70T/e93SsPMpHWdo8/rTuonvWvWqbGObed9e3Sm/MnYOq+YBLh+wmK60ef5dlncxLUSiYO2Vr69doDq0yeLp5SUtm+uLdXe6KMu2W0W86gF9SxruJUWWt2tN/EZ7NPzOuOb/o9tLre20QZtYx2tynou9slBzvRRbDeZI81gQH0B2zbZazjimNd3YLvgpjyqbe/n4/q7X/oixF6HdO/z5r6tdpeh7MVvPQ3x4eLdEN++YDTPt66gRrdYRg1zoVSBeGICtcXV3NHh9ngV1+wUEny3Oj28b2Hf1HWPNP/PX12BOM+6/wrex6m6uTmH5iahzC3gebhFslAbrEHc3DDHZpuzsSK2zZtbeJ4vhKbd5yO0mDtQw/PaSxIy3YxT7ylzL3xaW+TS8xXTizqydLlJSqSMFZYaanjc39tl9F1+N6Qs53ZeW8T7Yss5L7W4Yed9+bQ+xgvo5UHnZdvjsl7c5+6FOi97jQ8PedhGbzfol2YhhBBCCCEy0KBZCCGEEEKIDHYtz+ht0zSQh9MLJctmyffx5/EtyszXoZ/mS1UzXTVYwKmtN157BeJ2A6duSpQVrLltpkPXXkVLoVfO34A4+Nw3MC6Z6czxScy+dewITpOdOX0U4rvPnoJ4cspcU4usoMZruO+HTqAUpELyFvv7AWUXDOj/Hp5C8qz5F7bK+k4KGdgWDRUEo1OMjbLRSWfDw7+kMxHyVLz5RJTSG5A9j8OMyk2Yddydp7Y4A1uWJVra3seKU1Noo2UhdvvhbEolntvbY167iplEeYrTs/oVl6wZPTpXnmq05QssZeDPRhHKM6YmcLp9cqw+3K5SE5ogKYdbILuklrmmTg+ny9kiszdA6UcvQWlbPjDH6vepD27jd/s9LCcnPGjaHrWZVAvi6WU7I2Dqo/vXCz36gcchDpskN8qbuFatQ1n3GvbJl59EmUC4YaQQ/Q2UzWw7mE3vwOFjEFemsf9fvmb2vRgvQdn4JGaYrNVQ+tHrGLu2Xhfbg+uRpDBAO9c826Ze2Rpu5/JXoIxcVJ1ebwvi+Vmsr/Ex0xb9HD4U1Tq2vZVFzBC47ph3fpigDOTUPEouP+nsHfzc06vYsRweHZdsZHMO1j0r22LLAjJ28DicfNghO0gneev9ML8f78T6NUuCOGpfCfUEIb3DnJD1Yeb7Pg1bE2e0BCWwJCcFksayLG036JdmIYQQQgghMtCgWQghhBBCiAw0aBZCCCGEECKDXWuaB2Sh0qdcjknXxGznNOiTBjNEK5wLL7883P6dX/t1KPv2N56EeHsLtVMx6U6D2tRwuzA+BWVsr1UpoM5ocrI+3G7QcS5feAPi61cWIP7yF5+BuFyz0lcXKB1uGzVLB/IYv/u9qL2765F3DbcfvucwlNXKqB0L6b7Y6TpZvrqfmmbWcPXpZHzb6oY/TIzMBJoSgFHbYw0XlQfWzoKUxdDofSeWbjbJ0PumtWSkSx5RB1yU1pRiCGfC2rIMOz/bsjAlVWUd2j7/Dx6MSNvNmjlu/C7d2ygcWNvYP7E9UkBrA6Ym0PaqaAk+cyHa5BU9smeLSHdqtbFyrgxlJ2axP4tJH91ooza0YfW7EZ1zwK5W3DlQaGsOB2wxF3ML3NkyMo5Ht7e95MTduC6lFmCK6o1FYxu3dRv75Je/8jrE7WVMG52ztf95rOvxcbSUm5lBXXJIKc1fee289Vm0TS2WsE30e6hNX7h9ebjd2sZ32OQk7qs2cRBiv4OWhba14MraLShbX0Ot9foSrTcgjfOpMyeH23fdew+W3YP3oR7g+qCtFbMWqT3ANr6af+tWnXdKai0JHdq2oOvTMxKHuP6CtbTwPmDf2Iz3dtY6ntGkVhns+Mms46RsPK1nm1Nyp99D1B+zxNk6Vsiee6lT5vUs1nnQPXwrbyz90iyEEEIIIUQGGjQLIYQQQgiRgQbNQgghhBBCZLD7NNrkUZgjDZytrHVJV1skX8FiFbVTDz/44HB7axk9La+dfxni3ham5/Sr6FNZrZszKY+jp2NE5+GRrsizfDqDAHVF26QX9MgzNaTUjQPLF7VQQo1kcx11aNfWGhB/6zn0l/6zP2k+/8Q9fxbKyBLbGYSkN7Q8ZkMq80K8p45TdvaLlE9jZNU3p/4ksVRKFwkesqzJxbrPkx5qM8T7uNY2dTRTxrIS+Yt6KbNNs++Uly17/bL3sov6XFtzm/JwpuP6e6gLHbnnfTb6HvTa9BdOlW3ul0/1zV7XnD/W9mJmn+Y4IT9f2letjNpi2ws0R89nifSuY2PTuO+kbs6Z9JuBj23ZIZ3yUht1pGFkylkLWyqQ1ykdq9sjT1qrr/RZvMhtPaX9NJXA98Xx7twn9a0SOagf32yiH/DX/5PJCdC7jd7bPhlXT5JOebPRGG4PHEqRPMB2u3z9KsTdHn5+YPlzHzowD2UzM9heFpZRS9zYMO/HWhHfs4PWNsZljH3KeZBE5jzyAb5L+1387mYD8ytEVP7Ki+Yd1u7i9U5OvRvixx/HNT1H68bXeruB9+zAHPo07ynUz0as+7d/g6T+hZfDxPQYJNZzkFD/nrbS58Ul7FOcWNtZXsu8xsfdVdmbnIXjsV/yyH2N7jNcrj9r37yejt+1nGc8tvaFvdxbe4Xpl2YhhBBCCCEy0KBZCCGEEEKIDDRoFkIIIYQQIoNda5rjLupGcijjcyYtPVSedDTL6ygIu4UWj87NRaN3ev0maunq8+jpuNlArdR2axni9qAx3O41UJeWlFCHNvBR57di6UirFfQ/LpZRH9YnfSV7lXqu0YA1l1HvFZMmJ1/D83rssfsg/ss/9aeG29M11HBvbpHOk7RBjmdi1jsXWV+4j6S8JG2bSvpslLD+Ga/Dtere9bFJ50m33u5g+/r5338a4q9eN7rHsw89AGX3HBiD+MFZbBPHJ8yxign7LpMuNmZNF4ROaOlG2fM5YH9M/GpqX7FVo6wdY1IarxGauP302HUcx/HJW5m9PeOB0Uqyhyr7orKmPLLCOBzhoeo4jp/HfqVcRD26Z53nyy8+B2XTVew4f/THfxjiuGD6jYC0sfkYNc1fffJZiK/c3IC4bPnylsg3dnoC2/JyBdtyyOsd3J393uOUbzO1fWvbo+dz/1x2HacaoM91lMO+89SxM8Ptb9JamrvvPQFx3MQ20nzNvJcGEXpzl6h9HCDv5eU11KKfuee0Oae7sQ+KXNaNYt23thrD7UKE7TR08bxC0qYfPITvvHLBxJ0WafEr6K3cGsP25BRpaGH1FTdI0/3kN6hfve9eiJ946NHhtt/Ha4h5mcOekuE1bJXzGoqEPpuyNnd27u+5g3dZw5xxmqPgPtxeEzSq7M0Ow+X2OpGUx3/qPFiXvbMbdbru2IMfia3+iO9LxML0XaBfmoUQQgghhMhAg2YhhBBCCCEy2LU8w01oerOPU4ebG2bapOjjT94LyzjVd6NBUxW+SUP7wHs+DmVzBw5BvLGGUodbL1yEuGRZK+VinAoNyIrEoyy8rmX70tqiaaAE7Yo6XYwjnpIcmDookF1Rnqa2zp07DfHf+G9/AuLTp43tkEspyfM03enQVKlryTMqZbxg390/u6cUqVTPO///xiUu2VTZFlhBgNf4xi20MPw3v/oViD/73ArEyeGHhtuXL+L05hdfJhuu1csQP37OyGze9+AslJ0gKcc8zoQ6Yy5OvdvVk8qozalAE576I+nHHcgzUtOIsW19t7OkZj+IKb21R9PLtp1ZyvYsZAs1tNCy9xQOsG9juUHLI7kQTRmHA/MMrq/chLKDM2ch3trEqflcwciv+pROl6fi43Xsg9rL2JYnpi15BtnTRSlbK7ymfg/rGiRRqZTbO7c3Lk9Z/3EnvIc0btAzRjZqiXVdD7z7KJT509gGFl9HKUzbNfdxdgqffbbvG9D0+rkHHoX46Klzw20vhx1FMsB7HuS4D7dSp1Pq5qlpTPfe6OG+Fm5ex89PmOvoNDFteEjXFJBl5tLqDYgT13w+X8Z+9do1TNH925/7Iu7bN3KN+05hCvKpyXFnv8iSo6VSRd8B2F+x3ID1GfTspmQTthxhNHckscuQZ6TOY4TUwyWpnZshFQWJF9vXZVwDVi3WiOQZQgghhBBC7AEaNAshhBBCCJGBBs1CCCGEEEJksGtNc5k1cH3SkUSWnjDAsqkq6QdzbOFkyuMItS6Nq6gXrM+gXuzYOUzBObC0d5yeNCLLNSdEvxpb3xLSeaRiTouJoePFtoUM6s7uu+9uiP+7v/6TEB+bQ93WworRy7G23HEw5hTTiaU9z+XJ1iXG+tnTNNopCzZOM53YAZTZdek4jpOn+rTvzde+/RKU/bvfQluub91AbXH+0PtwX67RELY28fFYbWB9LVzGdv3SDWOd+PzKApS992G8p3dP4TXcNYbXXCsaDWCpgJ+t5VA/WEylDkc8W9NMOuCE/2+muo8sHW1CFmh+RN/dY4l8n9YRsD7NTn8dkF7VJ+1/zGsQoA5JU0h6u/EKWmRVHbwf0cq14fa9Ie7r4TYet/kSrsm4VDTrHQ6fxBTKpwL87ixd/0SISWJrvrmmgo/XsNWmhLLcv7tUX1adxDHZ0aXglLg7axuTiPugveP3/hNqZT1qv90N074efeQhKHviQ++CuHEv6se/mPzhcLt5Beu26NUhnj+MqZ+PHzsFcWA9SN0Wpo2OqM/Ok23qoSNGM18uYbvMUwr3cqsF8RbZuV60rFK7HdRwR6SvDyl2C/RM9E2bcRNsP+E2rju59gbW7Ze+ZmxlvT5qvN9/3/5pmn2yrUzpdEfocnmNRSpttNUvpy0daS0WHccd2afz+gIMR+mQs8j6rn2NaQe5DF32KKvTjHTeo8+T0nOnFgxlo1+ahRBCCCGEyECDZiGEEEIIITLQoFkIIYQQQogMdu/TTKmL8z7qbIp5E5OcyckX8LNlim0vyi6l637Pg5hS+sHTxyG+fOs2xFevXhhuLy1cg7LbS/jZ5VXUUjVWjaYraqF2rEA+pw55uUac29HKM/7AQ+eg6O///b8I8SMPYIrWxjrquB3LAzMir2lODxwPdtYV5Uh0us26xj3ETyi9dcwqcBNH5DXtBPjdhQ6e969/yaQq/sUvoC/uYhPbT2kCdaI9B/V1UdvUvRfgPR1QyvJKnrRVVhu4/Drqb0sB+vFuH8b/V1dr2J7GfBMHlD75yDTq+OYnUOc3WUF/ct8z9RmRHjVmjXyMdW2nU44C/G6hh7rhudk99tylhQQx6eTtZzCm5zOgNsSaZ/ZZt3FJDzw9hvVfpm60bXkvPzjAshPnsU96fX0N4m/UDwy3v/8setQHXfSoLzVQN3/EQf/bQdvc91yedPEBfrZYonUn1M8k1jOZWo+Q4QZr3yf2vE7egk/qW+XsA/dA7PZI571q9MM3V9ah7MVvX4X4fe9Bb+XjJ4wO9/pKA8oeOPMExNNT2AetLWPf4LrmPApFyo9Az6uX4LM+OXVwuN0iPfQG9V/Uyzq5EraJbt/0Oz16H4YhvqNcerfUqhNYHpl1AB6tADo+fwBiO3234zjOyoo50y99Fb3x7z2OenDMgLC3sC65YA18eA0Fa3RD8tDuWXXN/Vq5VIWY11ex5tn+KTStu87SEjvf/aT6HySV1sBK0e2l0tDf+e/G+qVZCCGEEEKIDDRoFkIIIYQQIgMNmoUQQgghhMhg15rm9RbqSPM+6hvrjvG/Dcnr1Xfxs7UK6p/aA6PJCUkbXKygD+X4JKqWalPomfrud50ebh+cwe9uNDch/tlf+nWIf/1X/5M5py30rIzIT9QjGZHr4TXdf685j3/0d/4KlL3r5GGI/W081oEaapgG1v82/QTPg6SHTr+P5ZWC0SqWSLd4e7B/AqaElEY+6bYC6767Hmpjn75+C+J/9zX0Xn7uttHADQ6in+qDNWwvp2ewbX7zZfQfPX/JaMsGvTegrJjDtubnsX35Y5amljTwF27gfVnewPgZ0laPF0x8eA41fsf6qEY8TRrByR5qoG1ZZODjd4vkmb7VQH2lrZfzAn4GUE85hxbq7zge+1GTX7fto8p6w7CPdcL+wLbHKutuq0VsQzOzdYj7HfSV9baNTjk8hG15KUd9H+lOZzbNeQdr16FssYVrMjYi7DfapKNMEqOrz5M2NuyRry51JD4v4di2tP5s/Up1zRpLLofj7FjyznP3vWfxDyEefWPVtP2oRxrUFl7Day+inrzkzw23HyHt9L1nsE+iqnc2G+iXvLpmfIkTl9bWUFvM5dB3vlI25YM+9ikbDezrBgk+E6Ui9mdjk/XhdquD6396m3jOboTHKuXJI7pk+orjR1Gr/1f+wo9B/NSLqFu+sGDaXpLg9UcuXv9eElM7fulFzAlw/tXzw+3JiSkoi0jDvEbrqVqWZ3a5ivfh3nO4LueBBx6EuD45iedpveJSzybrgVNDAPdNN/8opj9QmNIWuyPKKL6TlQ2pa6Byfk+49poKvuAR3to7oV+ahRBCCCGEyECDZiGEEEIIITLQoFkIIYQQQogMdq1pni6T/om0eWNVo5eNBqSbJE/UYkCak9B8PnZROx2Shre5hl6TAe1rsmr0n1W6us8/+XWIv/GVr+C+LHWMT9KXdhd9KYMcarYevA91R//o//RXh9sffPAuKPNIc9rpoh6sF+E1blm+jM0OeTSGeKKBi3U9sL7bJx1xt7ezN+07zWaM+ssOaeAGoanPJ1++AmWff/YixPHYEYjPHjdi2kEH78t8HtvTyRnUB//hNjaS5pY5LzdsQFmphuopf4DPQCE0ur1iH+u2RtrEPJuk0jqATce0gdUbqG29kMe2+NpBvKa5KfQRnp4wOsADB9E/dXoa41ubWF+3Fo2vcK2Ibe12A+/pe059v7OXuOTp67HnqKWL91mrRnEcYvsDv3P67OHDuAZhbhzXHNRvYvs8MG78bssPnYayRoA3vvpt9BV/14LxYq7dwv1uVVG/mTuLHrWHc+Rv2zfXwZrumLxewz7e9wHFjuXTHNN9SGgdCnu/osaQPpvsXx909AD6Afse1udU3WjAQ8oX0FpB3/Vnn8Z1FY4lTW9feRWKNlfRi/vAkeMQHz50BuKVVVPXm/SM1aeofw/xvvb6RhsbRnjOiYOfHXRxjY8fURvomT6o00QNbtRHTTM/T9Oks33kXeYd+KEPPAZlp05gu721iH34pWtmTcv9J/FdOlvZ9RDmbeP7WPdT0zMQv/yS0TQ/+8xzUJawL3MH+3C7LyuXca3I56rY3zz88MMQf/B7vxfis/eascjcgTkoK5dRL+3SepjYWusRUR/B6x7ilOczfd76TZbl0KlfazNFzcmbbP3/49EaZ99SULvc/7yFn431S7MQQgghhBAZaNAshBBCCCFEBrue28hzykgq39owUz1dnIlwqjTdcHsNp4061sxOnmxwul3+LJ7H/CRORd+8YaaR/vW/+z0o+9wX/gDijS2010osqcOAplOCHE7NPHQOp4n+p//zX4P48QeMvVG/icep1+sQ98iiaXUNp+T8vJlGnCGbM6eA//d06bwTK1nqVhunhAZdnsjYO/ue8zfRluvqFh77yfOm/fzuU2iNVK/hVN97ptGy6MIl04Cu3qImTdOIxRJOSd5ewfbjR2aeNaC0zY/fg23zkfvQgm5rfWm4fe3181A2WEDJSXMd463NZSy3HoptktG4lK36BZ6GJSstNzJtd/wAWiEdOYPtePIIpnSfPmxS/n7y/TiteqN5wdlP2NYqIYlLYs0BxjwfSHIyn+flLIlYcQqnQ+cPYnsb65Kl2hq27c4xIwPolaahrL+JfYHfwn2VXDNVXfIwrXHPx2c/KGBDCPPYR62vmbafI/lPgezFxsto5bWexz6ob1mMRjSNz9Oj3ggbJ5ZyxPGdmE29Pa5eRQvJuZljEB+eM7Iv18O6XC1jWu3c17HxdTbNM3h7iawCb2Psklzx0EGUZ8wdOD7cnpzE9hM7WPdXr6EUJLCmzNtt7Pvamyix8Eiu0eth37ixbj7vkUwyT+9DP4ft6eMf/ijEP/pn3jPcTug5zlOK+3vvxuet3zPHfvTsQSgbhPiu2EvYSvH48eMQ/9W/aiSZ/4//+/8KZedfeQV3xpaYlmSz38H7trGC9+3GlasQf/lLX8LzOmUkYY89hn32E09gSvdDh7GuJyaNXK9KspA8tdtUym2SWkF98XPPfUbKCY76EOtg6VTYfB5sq7dzHxNFrJPMRr80CyGEEEIIkYEGzUIIIYQQQmSgQbMQQgghhBAZ7FrT7JGOLSKt8dS40Xe6OdQwL62hVqrRRh1J0xJBF2K0W+u0MW6TxdrlK6hT+/JXvjzcfuFlTHPZIRulDu2rZ50Hp8Xm1Kh/92/+VYgfPHsS4mbbaJRaHdTUDBzULAUk6KmXsP5KY0Zv2CcbmF4fdcq1CuqOyiWje9xq4nFz7v7Z9fzyV9CC5w8XUFt7bak+3O6HqK/cWsH6uPkZsuSzNL9RgHo5x6O4iTrQYMC2OaYNeDF+94c/jJZV3/8BzBv9P//Dnxtuf+bn/zUet9cdGfuUt9gNzPNUP4O2ZXNH0XKvdhfqkjdeQZ3j1We+NdzOHUCd7PnbqLXrXMdnZiZv7hOnl27uXxb2/3x80utzitiRX8bfB3Ie1ndk6dfr43Uom6DncW0BUyj3+mQ9OGn6gp6Pln6FImroNwY38Dyapm0vPo9aWL+O1lylIl5DN4c1ENVN+2QNauLjOReLuJ6BPx9YGsOYNYIeHZd0gna74RS4+8n1i5ie+YVvYJ90zkpXfO+9D0DZWB6fm6qHbaJeN33WZhU1qBurqIeuV3EtRDTAd6nnmvqbnkZNM2WOd8pFbBPrq2ZdRbVMqawnaQ3GBmrxV601GY7jOJ220d+XKH13QGtrJqvYN87WsY/yCqazyOfrUNZuY0eSTGB7euxD5t076OE77HoX6xaftncW7m96PRxPnDhpnvv/6i/9NJT9k//nP4b49k20moQaYAvHVL5qLN9aQUvDF5dNfP5ZbOO//Su/CvHswXmIDx419ppHDuM9PHbsKMRH6T10YB7bgN2PVirYXgp57Lt86o9c0i3bdR/H2L+k11BQe7L6nzDe/fqLndAvzUIIIYQQQmSgQbMQQgghhBAZaNAshBBCCCFEBrsWtXYojTRJAp2wZ3RZUadNZfjdLqUYtnMZkpTYCXI4rn/+WUxf+pWvfAHitTWjJ9tqNp1R5PKoS3MtjeB9d6N35v/09/5biN/zLkybvbqIerC+Zabb55TcA6yPCul72Itza7sx3O7RLWOb02YX637M0nImZPDb6+FnHafi7BW3G6gPXnBRfebPG73UWAt1a90N1LJuUhpfx7XuY8h6S9ZKYf15LqWWzVnaO6qvSg5vZLSN92n1uqUt2yCv7RxqRscPYgrkKfLLbNwy7anVRC/SjTU8r3oO9fYOaU5n7jGa5/v/wk/hOXdQ1+h08Zr820bXeLGF1+QG9LDuMYlDPs2cPnWUXpb83aMYNbuVcaMdHaug9jPo4XX3trDOPNJAuzWjJQ5zqGFOYtS7trH5OYmV+rqzhoWlAfaFkYv9yEKvAfHUfeYZY5/5mMSx+Ty2qVwO48jSEfb75AvO/qycGjt5003HcdIpt/eSS1/H9S/FItbJU8vfGG53t7APuvceTF28Qemr89umjzpM6brdGO9bpYR9X30c13ecOm60sSfJC3iriff8xBHUd/p21SfYv7sFWr+RYNtcb+A7zL43rRbuq5rDd8VkGa8h52LdXuuavrFWwP58QIbrrTK+t8fLZl9tSmceU//9oLN3cP/C8WBgzuXx97wbyv7cT/15iP/f//Sf4XettVv8TMS8RoCOy5+3Q07fvUzrMZZuY/zSt63xFf2kGhRIxz9Zh3iWUnYfOmg8tU+cQP//u07jOp3jx9AzfZ601nZuixr5R3Onwn7aiVUf7Mo88p2xA/qlWQghhBBCiAw0aBZCCCGEECIDDZqFEEIIIYTIYNea5nYftR8BSdFWVo1mKU9a4fEqevQtk3Yq5xvNkhuRZok0um6EcaWE2ql1x2h42P/SZ61QghrJhx40iqj/7q//JSi7767jEG+sozdiRNrZvuWfzN6SedJMFslbOSQf680tc80d0jUOIow7PbxPF28aPaZPOsW56v5pUsukoeQ20bTagO/XoSzZxnvu5/C+gqYpxOMkMTVUlz0csa5dq/2wZJek504+wLo/PG+0rD65BkekY++Rrn+lgdfYXDO62dI4Pk/9DTyxtW8/BfHCefReHj9n9Pm9CfJ17WJ9VBw8ll+w7gv5Vhd5YcMeE5FPM/uVjtLHJqQLDEn7XikbH9qZqRn8bLMB8dq1CxDPHUc9Xmfd6AT7tL7DJS/cweYixJ51nm6E9yo/wPueS7D+az76hpcsPbVHXvAxLYbY2kQv/TDEe+375vthhDpS1jRnaS6R/dM0X/jWLfyDh23ikY+9b7h96MRDULZJ51kfQ83l9Ia55lwN97uUa+Bxqc+pj6E+uFIy97nbxvUMYR+/mydv7rtOm7Z48/pFKFtZQS1+QB1clbSinY713iLpZ7WE77CDJWx7p6YPQ7zsGz/y1gDfnUUP3wVbAa2BGphnJiY/3wH3CftISg9rtfOQtMSf+P5PQnz9Gnqw//ov/ZIJqK+KSYmbfp7oPKzzSj2L9DOpy8bftm8xfTfs4XO/uoB92eoSxueff3G47dOainIZ29rExCTEc7Oojz5srfl58KFzUPbJT2Ldzs1iW4zs/onf/9I0CyGEEEII8c6jQbMQQgghhBAZ7Hp+tdmmFLZko+NYNh8VHz87VcLD3DWPP83bU9WbNE1dIFugDz+CpjJ3k5XJZWva4+Ibl6Ds2lWMJ2s4/fk3furTw+13n8Mp17i7BbFtL+M4jlOpYZpR20YuJrsxh6ZuNlcwFagXoIyiak9tDLB+vIimzAt4LDv9rZPDqRjP27+UtueO45T3S9fwvm50rGvuYv24JAsIfJrytmUSlC6Z1Rmpdst2PqGxXAtyeM9zBZqWLuDU6F/8P/6V4fahc2gh96U/+DLE3/rq0xA3Xn0dYj9v9u0HOH3pjWG8cAXbtcs2etZ0+sLVq1AWkp3arZvLEOfaZqr07gJOycZbOKW/10Th6PSp9rQlT7uFJE/wCvSMWdODRZKXbd7EaceL3/46xMcdnE6eSEz7rbLHEdlv1j1sy1HVnFfkY/saK+Mz0/dImraJ7bUQmPJ8Ea8pF+EzNlHFPnp1jfp7q58J+/g8svTjTmDbwL1kvIZ1MEjI+iw2z0l3gNaLVR/fWT/x6KcgfuyksSx85vq3oaxPdfvGJbS+K+Wx/laXrw63V1auQlmY4Gc7LZIyWHKgrQZKOyZpCny7i89+i6bfB5YUJKBnophg2/ueo2jBes/JuyG+2b863A5z2H7CLsZ9n/p7y3Y2R+OBAdmL7SV8JI5tp0+Wg7HlI1vQLdwyabX/8PO/j/vl5yu6A1layo8NQ5fHABF4FuJnSaLk+tT/ktzHTncdUZ/RDNFWsEkSzOs3b0P8wksvDbefevpJKCuW8H344z/2Y3geVn1xXcZvof/RL81CCCGEEEJkoEGzEEIIIYQQGWjQLIQQQgghRAa71jRXSV/XIyulUsVoaZsd1FndXsLUsWNFSudsfX6LdHljtTrEAZ1HIY86ywNTRkv1vnehNUlzDfWaU1XUaT1493FzXA81OPkS2fF0UaO0toS65Lyl75kYx3OMOMtsn9JZk94wZ2mH6tOUQpI0XX3Sh21a9nVbXdQRNXosuDzg7BXvefhRiH/j1SsQR1tGw+R2UWfkk+1gEFAaX0urHVB65Jisxfp9zv+OYWKlkfZJ7zXAqnVevYIWTssr5l58+k//BJT90A/+EMRf+8pXIP7NX/t1PE/X7Mujtnclxuvv5NFKq93A895cM20zevo5KKtNoa6/u4rXNFkz6XE/cu4slP3B51B7t9ck9OCwbZpj3a9Ualn6eaBSQR1cztI49yhd9/gsphu+735MW/6QlYLbcRxn3rG1fdSWC3hc9zCuhYisNQkdltuV0ZpszcdrXHZRw5p4pi2zxjsgPSLbJ9bHsc2tbBj9ekpBmSELBF0lnUf8Fiyf3ipulVKnU1rg25dfG27/wS/hc/Dhx78P4nN3oc3VmKU1XmhiP1uYxBTTH/jwGYgniljXr79iUhm3u/ju7FFldyk9vOeZdjwzh/35ZgPfrddvXIO41UIdt2/puOt0jh+efwTij594L8Rbq7ivtQ2jny6fo3POU8fawT46ck0fRc6uzvYWvTv3EO5uYtb4Wm2Z11uwBd3kNLaJ//qv/7Xh9q0bV6Hs8vlX8Tj8BNKJsRJ5JDu75qW/69Jx+NGlcU3J6q+OUjr4+gz2meNjdYhn6Zk5YNnIzc1i2d13o35+EPK4xs4rPvqcd4N+aRZCCCGEECIDDZqFEEIIIYTIQINmIYQQQgghMti9pnkb9U8e+VgWIqPFC0g40mvh2HyZdKax5Xk8mUfR0piL+rB+jMfNu6gVKlqH8hPc17F59Kks0b8M7WWT0ra3gak+vQD9jwchfnmridqqoqWR3Kb0pWS16fjkn+zn8LZ4lv4wbFEaSE65GZGPZ9PoxZot1I6lPVLPOnvF8m30Ju1c/iLEuYbRP+Vc1JB6AWoP44A0b3lzb3KU2pmvMHFIE16kVLJjRuRU7KI2P08+lB5ri5umHV+7hlrE4+RN/kN/CjWS733PwxCvbDSG2+OTmBb0egP9kV/89rMQ/7t//79B3LhlNM/e7QUoqxSOQ1wPSRO+1LA+i3rch87c6+wnbkp/lqFxtiBLY+fwHPqG53zbyxP3W6ujlvj0Q+hJW2lB6PQs7XWQ0jZSGmQSadq9TEwe7H1qb+VxvB9n7j8C8ZJ1TRsbqHcer6KWvdFoQLxJabVBo5lKRU/3YR91yndCbQ6vOQppfUzB3OfNVdT/VpvY/x9s4L6Ki6a+HjmMz8W1W9+CeKPXgHi7iv7I+bp5T4138Tjnr74G8WobvZYLRaORX93Asq029mf9Pt6ncfKwL1RNP/zBI++Hsp9+4qcgnq5jH9Xo4njh5a+a8z6VOwhl83fje7kzwLYXWf19t0dji826s1/wugBu98mIz/Iai14PxzHHrXwTP23pmx3Hcf7Z//K/Qrx6Az2MUxrnO7BNT12TFY/yf/7Pn+adQViwvL1/+Id/GMre/Z4nIO52sW9rN7Ht5nzTgd919i4oq1GOjCjaOe14aq1L5jWm0S/NQgghhBBCZKBBsxBCCCGEEBlo0CyEEEIIIUQGu9Y0r5Iut1xBr+VqYDQnUYwardU11Puub6C2amLM6LYqHmrHwm3UugQu6lVqlNM9yRkdzYC002EHdTIdZ4QmibUubBBJWkUu77XMeYfsy0ziTC+Px/IC9pg1+46Tncscx3H6ZEh72/Kx3MLb4syVdn373zbhOmrccjf/EOLuK0Z3O3BQQxp7qGn2KqhhKowbTVwwhlpVp4BxzUN/yEIFtcZ+aDwxox76H5dL6E165Ahq8Q4cMn7cX/siXt/iNWzHH3o/arpiB+/j4UNGn5rP4fUfOoCawEPkZf7Z3/pNiPttc+xH77sfj3MKdexLi0sYX7o43K5u4nN7bhx1jHuNm9DzOkI3yGUDB/uNHnl/+5aGt3oYfUArffxugbzQnRDvXWhpHT0fy1gHyeV9S5Pf8fC4CXkph+Qj7gTkSW6tO2GdX0DrAnzybe52UXNpa6Ij8pxluO5H8hY0hW+VycO4ViKh9R/5onnOajH2Me+d+B6Ia9ewDuJF057OHp6DsveVj0P8SoTrO3pl3NetbdMWL5Fn78uvoWdvo4X9SrU2MdyenJ6HsrGxCYjb9N1ivg7xRw++e7j9l9/9l6Bspo77jqvUvor4Xr55yayl6Bawbc0cwD469unZ9Uz9DNrYTnMRXtNeErN2P97Z5DdLO8tx30oC8MR73wdlP/lTuA7l//vP/jl+t4192Tv1RI26vjc7EF9Tw+ozfuPXfg3KvvX/a+/cYuy66jO+9z57n/s5czwXz4w943vixLmQmJDgAE2hSKUCBCJURZUoKoKiQqGP9Kmij1Wf+tCiCvUBtdCWSkChKrRQSJrEiR1ytxPHl8QeX2bs8XjO3M51X/pQ6az1fcc+e4w9Q9V+v6f99zr7vi7bs771/Q8/DfH8PObQWFvDbzW7S3nkkUNQ9oUvoAZ8YgL9ye37kKZZCCGEEEKITUAfzUIIIYQQQqSgj2YhhBBCCCFSWLeo9fg51JzUSqhZaraMYLZC3rf1a+h5udpA/VMYGj1Pp4v6rgr5iVZLqHctkqbXs7R6PudKz6B+JSZtni3h8VjDzN7K5NnLnsdhYu4xZt0MhezdGrik4bWuK0vawzrpti+uoK9109JKlXP4zgo+mdduIHvuOADx+w69A+K1i0ard+3SaShbWkbtXSZAPf1qZJ5BUCEvbtbduuht282ghn750vHe9vAYvodwAb0mvXHUPZaK5llvHcZ6ungFNVqtLr7zRkiVwpLNkvW00+qQRzr5fD9yED2fpyaMxrKQwYM1z6HWvBBhm3jn/UbzfHDPDigLyAd9o0m6qCVmPRqsSSA9XibEfVt1bCfjW3f2tmt5fDelJv529iR55Z4+D3EuMW00Q2sfWO6bK5Lf76jR3Yak5XeKqMmNp1HPWX5gO8SedR3FLLaZ+iJ64c7Po49zcw11kmt1U87acvZrdQdImrko7vuXDSRH9TUmj/9hU5/uHdsLZTsb2I8kV3CBiL3WJHcR69qBRg3iN1/F+nJ85RTErzaND++5Fo6dHdKmF4vYz1SGTJ3I03qNboz7Dvu474cmUUv76Ts+3tve7uE6iiUX7788gf3q1fO4BqprjXEzp+eg7PyZCxDvu2cnxI1FU0e6LWxPhSrW041kkKfxzdLXd1mHyiR4jx/92MchPn9uBuLv/9N38NhW33cr1+h5N75Gx7mOHphPZfnVnzh2HIpOvHIMf8tDSRbHqS3DZlz3eD0ZMeiepWkWQgghhBBiE9BHsxBCCCGEECmsW55R8XFKrkS2aKvXrOm9Ak4r1mgKMhfg9FVoySQimnpurJDNC01rd4o47ViyzsXT1py+OqZpxtiaTuDpXYbTV/OUQGxZXCVkDUWzZA7PdiaUDjhjWY61yL/u/BLm8G2R9qNkSVKGPZyO9DqU/3cDudzE6y5O7YN45A4jA1ioX4OyhNJ/ZyjVetQ0VmhxCx+u5+H0Jk/HRD5OK3qJmVZcrqN042t/+mcQ33EX2rXd+6CRnNx1D0okHn4PpqEtUr3N5LCNtCyZUrON761KU+0ByY4KnO67baZSo5DrLYRORJUxrJpzvXQG7a4O3L25abQTbjiDptb4PmKsQ/UO2uftGjLPf7mD9W91Bu/75IlXIF46h9Pt+/ff1dvOkZwsJou5xSU81+XnzLE8H6VGQQ3jEbLjfHgSyzMVqy8ki7lOB5/H/FW8jnNnUbZj1xP3FiQVfW9sE1Nu2ymmHcdxShU8d5Az9SsfYnushVWI2SowtProTBvr3s4symZ+765PQHzm9IsQXxgzfdDhFbSne+LKSYiv5fBcq20zDrdmsX/fXUSJye9Pvx/iD1c+CHE2MrKutRyl3K5ivV65iBKmJ3/6DMTNNWtsxW7VWaGxIfCwfxuvGJvQuQbKihab2DY3Eq6qtyJ94H0zdl8WYVm+gGPUpz7zGYgvXcS02kefeKK3zVKGm7nmOB7825u6f5KVOvRtlqVvxAceQnvXxz/5eG/7sXejXWuljDIkxn4G/DwkzxBCCCGEEGID0EezEEIIIYQQKeijWQghhBBCiBTWrWkeylPaVdKzeJZard1G7aHroX6Orc8Sy16ky7ZSpEVMyJprbRWtb7qWJjpP5wk8tkjhtLzm/xBpUpcwJZWsZ+luuxGexyXbL1JqOo0u3tNaw9zTYps0OeRHVsli+bCVKjuboF48s4kpbENKrT68De3LHv3Ib/e2a6OYVvX1o0cgPn8GLelsK7Kt2/dAmZtBfVyB0r9v2XMHxHVLmz82sQvK1pqop/v+M89B/LMXjNZ1bPQnUPbQO1D/+8df+hzEo8NoJzZzwWhbWW86RWlnSeLtVEkfFlht0ydtWcSpqMnCsBibgy+soj780iJe16+aeIDVUobSyy9dRkus+oxJVVteRK1w/ZkXIA5Wse13A9Qc1gvm+WfHMG17cRjjy29jqvYXTp3pba+FC1AWhfi8d+XwHtyjqGHd/8Cj5rwlvMZjb6Bt3tmzZyHukvVnxuqz+rWMt6BL3kRNc3sZbR+9CBtOoWq1wTXUSQZZbFNOBscWzzW/93Io2o1XsN8YzmP7re1Bjeb0nLGg21NFnfrOAHXZzy+T9rxtruMdY/dD2XvHMRX4gcqdEAeUZru919xjYQeOM14Dx475uasQv3wMddq2rWylgmnqa9vRYq7t4XjZvGr65JyP72U5ZRy+nSSkyE+oT3FvsO04juPSgqo+W0Z7zQCNyyGt5dg2hRr5P/ijL0I8a40d50+fgbKMy1a6eCF+1mjzi1Uck2IPryNfwHperaDuv1KtXnfbcRwnIE3zzm3YJj7x+OMQ77n7vt521MLvGH7avN7Afpz8ycO2eutBf2kWQgghhBAiBX00CyGEEEIIkYI+moUQQgghhEhh3Zrmq8uoHRqiNNoFS0sbcGrrhDTOpPHNWumc8wU8bkSapYg1zuTpaOsa223UvkSkX/FITxda/ogu6ZUyA3Qy/3MhGC5auu7lmHSkLj6PLvkhNshD1bXOHbjk2UvPdiKH/pkF69QRi6c3MYVtRHkyPXqAY+MTve0HP/QxKJt+4CGIz7z6EsSvP/dsb3tyfBzK2iuoTy2VUVs1VEPd1lvHjNaz28RrLg3jvnlKI7108s3edmPmLJRdm0Xt4dQ06tI+++lPQRxbmtJWA1PFnp/BNKrbJlAjWB1C3V/G8nGO2C+T7sF3sT11Le3m+x59D5TtvwNTDW80aWlsB8ljPdK9uR3qkxpGc7+ygL6nV46jhv7TD/8anjeDJ57Pm2e6RjrRoW27IR4vTUD8gYLRPLvLqIVNCvhuzl5Ef+i5J45CXLr7UG/bD7BfvXQJ77HRQD207Q3vOI4TWZ0H9323tDIixQv2djIxjLrurFfDS1k0fecaeQeHmEXacTKU4tzWaGbxifiknQ5X6hBHNTzWSMH0M6V51K1P5XDNxke20FgxZDTQI0OTUFYOsC6GDp43jrCvdM+fNdsu9leLNB7+4IV/g/jt+psQR5YvfZn70RrW61aGxkfH8qxfxLUxY9vQK38j6UvBnLDnr9n2OLU8H2vAeeiw/bkF6Jto/4G7If78l7/U2/7LP/8LKFucvTLgzI7jWd9in/9D1Erf9857IQ5oMU2piONOwVrbkcuj/tknv+Sii99quRzWTXuNBX+L8bcEPy+7nIe/tJTc10N/aRZCCCGEECIFfTQLIYQQQgiRgj6ahRBCCCGESGHdmuaT59EjdKiCvpW1gtGZTA6jrjbwUZ+S9PkQGp2SG2NZEOAlst9hQvrpwBKteKQddtkckfb1rf9CJHSekPLBt9qoK7pwYRbiFc9oeLxh1C0mPimafPy/S1DA5xXErd72sI/nnayQjog8LuPI/D5hX+p48/7PFJOKi3VJtkzLpWo5uR09nbcOo3fpvv3Gb/Qk6Z1fe/K/IPYiql8XUWvsLBod6bVrqCmde4ueXxt9X92m5WPcRp3eaoTP+u+//g2I3/zF8xBPbJ/qbY+QTnvvPtQ1LpP+cn4F447lC+v5qOvsNPC3KyuoLbtWNG35Shfb08gyerOOlvA93W5i0u8PFDFTH9OJsd2EPr6fZUvTO3sK68R0FTXjZdKMe9Q3BJan8UXq+/JV3HdLjOXbxs11FIrYDvJl1N+36lg/j5xFz+fQ8vidv4rv6tIs9ldZ0jxH/KxtEg7Xr2p2eedN1DRP70RN7+oVHKcWLlqe5Avokd0cw3UFThaPlXHM80tC6idIH+5U8LzdJvYjvm/ee2U7aonj7i6Iy218fs2W0SXHyy0oa3uoY8/QeqCIxh0/NNfZfXsFyr576kcQf+fEP+B15LG/ywZmPMyh1bQTJlg3V1r4/PyiOVZjCTXN5+foYBtIn8fvAG1/mv1v37qAW1gYENG4/tgHP9DbvnIZNczf+Ku/xn1p3Vezaer5NfLhP3jwIO4b0foyasruAINkl/5e6yf4XrlXcD3TvjJUys+adcoZK5amWQghhBBCiE1AH81CCCGEEEKkoI9mIYQQQgghUli3ptnN4E+XGqhnabSMFiZxUWPjkW9l2aM89tZ2hgQqBdKcZEmLmAtIDxxYXsuUZj2hY3k+egcudc2+i+Tvu9pATeT8VdSh1dfwuos1SztKudLzRbywLQXUh/sheqbmI/Nsx0lLXsqRNsjHZ9u1XlOnhe+s08F72kjYO5G16l7G3BfXtRy9xy7tWyyafYtl1AvmSG95/MgvIL5wGj14A0vzHBSwfgQu6wexDuy+22irH3jwYSh7+mdPQnz1CuoLf/gj1KMmidFw1YZQyzq2A01ji9VRiJ3cGITLLaNVXJxFj+dOC+uAn0PN7X3TxgN0idYb1FvYRjaamDzaGdu3metbEqNGN46wTS5cMX64RRd1knEGfWV/+tKLEEcetknH0jF3dm2Fop2T6J27cgL10+fnjb6z2EFNarWKz3uePLaTUVw7ERVMW5iduwxlFy6gx3McoaZwsK/s7ftbC3ttbyRjE9guOigJd2bnLvS2Mx2sH50YNc2tFu7sWZrmoEua5g7um4nwvRbW6NjW2ohrMb5zj/r3QhG11eVqrbcdBbj2w6W1MyHlIgio3nuWX/K3jn0byr7+0t9CXC/idWazUxDni+a6tk5hH+MkdQjjLvkSZ8zzLI+j9r696GwaXOsTXiOFpQOP1a9hvvHvuY1w39Z3bGt8/MTvfBLKZmawv/nRv/7whhd25OgRKJonz/DhYax7g+7BZZ98epquh3r6fl2yuaeMQ2vVWONM66Uy8mkWQgghhBBic9FHsxBCCCGEECmsW54xRK45NFPrtK0pqYVlnLYOyGItiXB6Jp8zl1GgufgOpbv1HZxG9DySGNjWSZTqNAzxz/jnZ3CK8sySOdcq2bGFXdw3n6cppjKe6+R5Mw3eaqNdz6GDD0KcWcV7qlBa3mFLctBt4lTeElnGlEooT3AtuYtHNno+TWNsJn1yDd9+bzTtHOLzCVyyRnLNvtum0I5t/KNo13b/wUcgfv7osxC/9tTh3vbCJZQy4MRgf2rmHXeaNKN73nsIyo6fOgHxtXMXIH7PY++H+NKFud72UBVlIrvuxbSpYaYG8Ssn0MJptWHqddSmtLsetq8wwn3nThsrvGj1AJQ5o3jejeZmpikjyhnPdovtiGz5LKvGiR04tXzi8imITy+g1CEkd7bZnLnOKQ/bZ2EMpTX//txTEOeXTV+RI+mMF2Dbdmpohbf/PZjee2zbdG/76SOHoWx1FfvofvpMn1J+/8uxmfKMmTfwnmdex36la1mddWjMCun2Ly+iPKMbGUnFLvrtGj3rmNIg5wJs34WKkWMFMUqzGnW0AVtexjEsWzZT6CH3kx6OWdUKTq8v+nWI//GEsZX7mze+BWXXArynoo8Spoim0LNWank/h/cbxdjfZ7FpOpY6w8l7uO/kNFpobiQeyTEG1l2SqF7naPT7QcdKuy6SPlg2jsUi9hmf/dznIL4yj33ZkcNGkjFzAceos2fPQjwxgdIzO9W142D/zNfIXx4BSTLdAbIJlnr0icf6/PxueKhfCv2lWQghhBBCiBT00SyEEEIIIUQK+mgWQgghhBAihXVrmstl1BJlM6jZWWsarSRJh51OB7Vja2SxE3aNwsVz0FKuNHxj/bPjOH3616XIlF9dQP3m3BymRp2fRQuVXM3YQXXJnm1hHtNR7ttD2mHSN/mh0TLevWcnlGVJ4xw3UPeYrdUgtmXcPmnt2DKl3WxRuWW3QrqhPu3PBuKSxs0ja0HIuMmaNrKY4wpmW854VKVbAf52dMduiH9jCtPU7jtwT2/72f/8MZSdfhFTdHfrqOtbs7T8b55BHexKg367WIf46M/Rki5MzHs9cPBeKMuVUMcXhVgHch7W3aVlo48u+Vj3RkewfV2eRx1bwdLHjdB5nYRV3htLHA/WCdptoU9vSLv6pO+/esVo+3ZOkqXfvnsgbhXwmW2j6rk6+3ZvuxBg/1QskV1iB626hiwNoj9Sg7I57Eadkb13QPzoRz4M8eyC0acfOYL2USHpam/Oemnwe0izxPpVcezIGYjdZg1/YOn9i7RGpdlCG1CSqjuOpYn3sjiG5WmdyeoKtsHFNVoDZPmEVragbr20+06Ii11sk5nQ1Dc3i++4Q23/9atot/nNF/4Z4u+ef6K3vURrmrJkEdbo4gMZKaIN48ioZbWY4DUvN5Yhbvg4hmWsdr+1ht8hy+wbuIFwCxmQaD6Vm1kx0GfX1peSmvTCVt+W0NqNnTvxW+TLX/kKxPPzX+ttnzn2BpQdfvoZiB9++KGB12X3Kfyt4aekwnZZ422vSXFT+ip+PpDNm8tkOSeEEEIIIcRtRx/NQgghhBBCpKCPZiGEEEIIIVJYt6b53CXU/+6eRP/I8S0mBadHuQrZDzibIX2LJY10M6gUimLUN3U91FFebeOxzy0avXS9RfqVDKYVzQyjPmpuweiW223UXeeK+KhePYbpmIcqqFsbHzWpjfOkHyySS+HoEOmjKV1wbHlGZxJ8thEdm3XLtr90q43P0vXX/fpvmSzrIBN8zxnr/29Fyn8eu3idSYDHilxzLJ90rxXSE8ak8Qq6KBSd2mc8kB8bRe/Rqf37IX7tyachPv7i0d726TPHoay5UIe4OoTHHt2JftIX3jYa2yOHX4ay0zOYcntsDNNoz53BVKmRtabgAx/7TSh74NfRH7qb4LPeO20034Ut2OY7SZoX6cYS96XGNjH3QbZ3qeM4jh/itbfaRlf56suYJvtd70LtXr2Ies78ZUyJ/ti40RovuHiNl+bRV/de8lrOuUbvednH/unA/ahh/t0vfRHimVk89re/9Xe9bfZlDoKb1aMP8lPGfjZNe77+495eJsZx/cLsW+h53LV0uRkao7oJ9hP5ANuCnfbepTEqW0INfK2A41Cb0tE3LS/+lVVKwd0ljXwZ+7dO0ZRfamE/8czbqEn95qvfg/iVVVyz0c6b8aIaUT0l1/rCJN7TyFZ81oFvrjPqYNvsNnG8K1WxDyqVrHZAuRe60eblGmANczww9TXeY//6IY7N7/stm+k7htYfuH2ux671W0pJTn32vffdD/FX/+Srve3vfe/7UMba/G4X31tAa49sXTJfR8J9hsvrlAhr/35dMv50kMdz35GVRlsIIYQQQojbjz6ahRBCCCGESEEfzUIIIYQQQqSwblHragM1J6dnFiEu5833d62CHo3D5K1YyOO3ejEwOr6VDp6nsYya3dYSek0udPHYiWduqVjA62DPwqjNXoFG01Yto9fm1hHUnIYN1AdH5KFa8Mx1tUmXtkr/VSmS/rJMXtRJbJ6By1pE8ptdI5/mTtfcc0g6zmx+8/7P5Maou/JIE2drmhMWdfVpmOi9+ebYtq71er9lrWJE/28sWBaiNQff+T0PHYJ4ehdqTI89bzTNx8l3ubuEPq8d0mkXy6h7nJ4y13Xq2Ak81hW8x4UV1Ga25lmraerP0edRi784glrFu9/1bognfdMO6m2q5N7m+jTb7cBx+v1JY0snn5CGOSINfUIKxWzG6PMWL89B2VP/8TbE0zvR69utjkFcK5nn0lhAnfGp596E+M5hrGNDE+bYkzumoGxs5wTEP/gB+uoePYwae7u78wuoR4z62sn/Tm/l20mYIe1wjGOJb2k2I9Jgtru4b62C7XW5bsaObhu1nq5bgdgPMC7i8ganuMVsJyH258sNXFv00rWfQ/zjOdMHPXfpGJS9RXVxrnsZYi/AOpGPzBiWK+FYOjqOdbM8gd7mhWIN4tCqjNwHT0/thbjVQu9lLzJtuRhsgbIIu4QNJSENc8xe8ABpeFP9gd0bbF/vyCn6aPvY/YJfCPkeDh0yY9z996PemfsIP21N1EB/5ME67YGHZVPnAed1HFw10S8Xv/l+T39pFkIIIYQQIgV9NAshhBBCCJHCuuUZGR+nbkL6c3orMFYwKz5O5UQR2sQkKzh9lWmYmFMme+Smkng0H5NB6UNi2R11aNqa5Rkhpfcu58x0FNvkNZZwymhyDKe1m2s4jbaybH4/VMW0od0IJwmu0tR9WELJSdGSNlToPVSrOE1YLKCspGXJSNo0vV4Ywn03FLIHcynGqRx8PgnZ5PD0lF0TI5qv61LM6ZUTssfyrGNXCzhvWs7hexwZRau3sWkzRTm5dweUvXb4OYgvnXwL4hefRdmEZ11X1MG6VZ/HtLN9UKt2q2bauRFh2+vUcYo6XMA2s1wyU8lFatfFzXN7ui48s2anbe2TH/DE3IC0rTx9PD+P09iXL89CvHvvXRCvVky9aJAlpF+ehLhyJ06Bli3rzqMvY51464coE+mQNeXoCNp+FSvGFo1t4NKmS/8vkgtIikWpoVttU2daDXxvi2207HNL+Oy316y+oIFjUkjt16VxqJvBY822F3rbx66cgrKfXHwK4icvYXr0s20jLermyPbMxwbLqeTdBB9IuWTGuOFp7M8K1RrE7MeWiXEcCrNG3pLJYweVj8k2r0nSqthcZ0yyyYy/eZ0Qjx391ormOj2Px7DBMZT1pZhmGVqKPdvAssEJvO1+s1jE8c5jCYXL90/Xldz4yjayvxn0bGPu9wZKbK6P/tIshBBCCCFECvpoFkIIIYQQIgV9NAshhBBCCJHCujXNfoBakKFhtH7JWalCvQB1R21KVRyihMtxLUuspIGFrOfJki4tk+H0zFZM2rEcXRfJjhzfstcKfLTTCsgWrtVAHXJAabZLZaOH5fSbq03ct03/dfEC0nRZGsvVedTLLa+h9m5sGNO7li1dUonS/2ay+Dw2knIJn89qwpZz5h59l3VW+B5Z02XbzIVkqRP5GLOEyX7njuM4niWiJ+m5E5KvYJLgs99SNprfbb/1ISg79L73QvzWa28MjC9cMKmwV+uoM/YofalHGtyhbWiBtm2/SQ2+e9cBKJsgq6hKFfWFRUv4WQ5QP5gLNlfUPEirlkafxVOfa5P5B04xXSxS+tg22o/NnEUbuYvB2d72RAUt5Xbv2AfxyYuY8vysZUnXWkXtejbA9rulipp77ndD63mlmQPejOb5Zt/DoN9vppb6pSNnIO7QOhU3Mnpyv4b6/X/xUEv85hwea9wx/a5L62FWumjPerWO6a3nVlAzf2bZlJ9bu4K/jfCaOYt0Lm/Ww2TpOrgf7dKYliuhFV5lzFgc5gJsA3GXtPqky45pzC8Om3OFCbaf+gLe/9gotpls3lxXSOmp/RwJ0zeQm1kHwP1Naj23yvvOQ++JLdf6XOWsc6f+li7D1i33XXPfedxBxXDutPvvK72JfiHtvXiDnofSaAshhBBCCHH70UezEEIIIYQQKeijWQghhBBCiBTc5FaEgkIIIYQQQvw/QH9pFkIIIYQQIgV9NAshhBBCCJGCPpqFEEIIIYRIQR/NQgghhBBCpKCPZiGEEEIIIVLQR7MQQgghhBAp6KNZCCGEEEKIFPTRLIQQQgghRAr6aBZCCCGEECKF/waIIWclnvT9dAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "test_ood_features_scores = ood.score(features=test_feature_embeddings)\n", + "\n", + "top_ood_features_idxs = find_top_issues(test_ood_features_scores, top=15)\n", + "visualize_outliers(top_ood_features_idxs, test_data)" + ] + }, + { + "cell_type": "markdown", + "id": "2c645c58", + "metadata": {}, + "source": [ + "Many outliers identified in `test_data` depict (non-animal) classes not present in the training set. These non-animal images have very different feature embeddings than the animal-only images in the training data." + ] + }, + { + "cell_type": "markdown", + "id": "0b5de6f6", + "metadata": {}, + "source": [ + "### Deciding which test examples are outliers\n", + "\n", + "Given outlier scores, how do we determine how many of the top-ranked examples in ``test_data`` should be marked as outliers? \n", + "\n", + "Inevitably this has some true positive / false positive trade-off, so let's suppose we want to ensure around at most 5% false positives. We can use the 5th percentile of the distribution of `train_ood_features_scores` (assuming the training data are in-distribution examples without outliers) as a hard score threshold below which to consider a test example an outlier.\n", + "\n", + "Let's plot the 5th percentile of the training outlier score distribution (shown as red line)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e9dff81b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:31.987295Z", + "iopub.status.busy": "2024-05-24T23:50:31.986936Z", + "iopub.status.idle": "2024-05-24T23:50:32.327283Z", + "shell.execute_reply": "2024-05-24T23:50:32.326717Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHDCAYAAABRfvt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABam0lEQVR4nO3deVyU5f7/8TcgDMgqKiC5oZm72cGNXFMTl0yTMstKzbIMNaXVTuVamFnaglodQzvlsWNH7WSJu3bMJSU9pRa5hqagpwRcclC4f3/0Y76OLDI4zNzo6/l4zKPmvq+553PdjHNdn7nv67o8DMMwBAAAAAAATMfT3QEAAAAAAICikbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0o8KoW7euhg4d6u4wrtqGDRvk4eGhDRs22LYNHTpUdevWdVtM17PLP1dF/X3Ky8SJE+Xh4WG3zcPDQ6NGjSr395ak+fPny8PDQ4cPH3bJ+wHAtcyd7QnsFdW+uqofefjwYXl4eGj+/Pm2bUOHDlVAQEC5v3cBDw8PTZw40WXvh/JH0g6n2bx5syZOnKisrCx3h2IKs2fPtvvCxrXt1Vdf1bJly9wdRpHMHBuAistV7b6ZvsPo61xfvvrqK9Mmv2aODc5H0g6n2bx5syZNmlRuDVlaWpo++OCDcjl2eXAkaf/ggw+UlpZWvgGhVDp16qQ//vhDnTp1cuh1ZelUvvjii/rjjz8cek1ZFBfbgw8+qD/++EN16tQp9xgAXHvKu90vYLakvbR1Lmt7gvJRln7kV199pUmTJjn0mjp16uiPP/7Qgw8+6NDrHFVSbH/88YdefPHFcn1/uBZJO9wiPz9f58+fd+g1FotF3t7e5RSRe3l7e8tisTjlWIZhuCQRdJazZ8+6OwQ7np6e8vX1ladn+X09FtS5UqVK8vX1Lbf3uRIvLy/5+voWuoUQAHD1nN2emK29LMn58+eVn5/v7jDslHc/8uLFi8rNzZWHh4d8fX3l5eVVbu91Jb6+vqpUqZLb3h/OR9IOp5g4caKeeeYZSVJUVJQ8PDzsxsoWjNP95JNP1LRpU1ksFqWkpEiSZsyYoVtvvVVVq1aVn5+foqOj9dlnnxV6j8vHIhWMx/3mm2+UkJCg6tWry9/fX3fddZdOnjzpcB127typXr16KSgoSAEBAerWrZu2bt1aqJ5FJTiXjw2uW7eu9uzZo40bN9rORZcuXYp976LGtOfn52vWrFlq2rSpfH19FR4erscee0ynTp2yK1e3bl3dcccdWrlypVq1aiU/Pz+99957papzRkaGhg0bppo1a8pisahGjRrq169foTHOK1asUOfOnRUYGKigoCC1bt1aCxcutCuzePFiRUdHy8/PT9WqVdMDDzygX3/9tVA9AwICdODAAfXu3VuBgYEaPHiwQ/XdsWOHYmNjVa1aNfn5+SkqKkoPP/zwFetqGIamTp2qmjVrqnLlyrrtttu0Z8+eQuWKGoO4b98+xcXFKSIiQr6+vqpZs6YGDRqk7OxsSX9+vs+ePasFCxbY/t4Fn9WCz8zevXt1//33q0qVKurQoYPdvqJ88sknatiwoXx9fRUdHa2vv/660Lksah6Ey49ZUmzFjWmfPXu27d9pZGSk4uPjC11V6tKli5o1a6a9e/fqtttuU+XKlXXDDTdo+vTpRdYHwLXlSu2+JH388ce2diE0NFSDBg3SkSNH7I5zNd+vpXH27Fk99dRTqlWrliwWixo2bKgZM2bIMAxbmaLGIBe4dGxwaep8qeLGtG/btk09e/ZUcHCwKleurM6dO+ubb76xK1NS21Ea77zzjpo2barKlSurSpUqatWqVaF2+9dff9Xw4cMVGRkpi8WiqKgojRw5Urm5ubYyBw8e1D333KPQ0FBVrlxZ7dq105dffllkPRctWqQXX3xRN9xwgypXrqycnJxS1/f06dMaO3as6tatK4vForCwMN1+++367rvvrljXTZs2qXXr1vL19VX9+vWL7QNd3o+8cOGCJk2apAYNGsjX11dVq1ZVhw4dtHr1akl/trNJSUmSZPtbF7SvBZ+ZGTNmaNasWapfv74sFov27t1b4ufp4MGDio2Nlb+/vyIjIzV58mS7z2Jxn5nLj1lSbAXbLr91vjT9XGf3reE8/AQDpxgwYIB+/vln/eMf/9DMmTNVrVo1SVL16tVtZdatW6d//vOfGjVqlKpVq2ZLON566y3deeedGjx4sHJzc7Vo0SLdc889Wr58ufr06XPF9x49erSqVKmiCRMm6PDhw5o1a5ZGjRqlTz/9tNTx79mzRx07dlRQUJCeffZZeXt767333lOXLl20ceNGtW3b1qHzMWvWLI0ePVoBAQH661//KkkKDw936BiPPfaY5s+fr2HDhmnMmDE6dOiQ3n33Xe3cuVPffPON3a/FaWlpuu+++/TYY4/p0UcfVcOGDUv1HnFxcdqzZ49Gjx6tunXr6sSJE1q9erXS09Ntf5/58+fr4YcfVtOmTTV+/HiFhIRo586dSklJ0f33328rM2zYMLVu3VqJiYnKzMzUW2+9pW+++UY7d+5USEiI7T0vXryo2NhYdejQQTNmzFDlypVLXd8TJ06oR48eql69up5//nmFhITo8OHDWrJkyRXr+vLLL2vq1Knq3bu3evfure+++049evSw65wUJTc3V7GxsbJarRo9erQiIiL066+/avny5crKylJwcLD+/ve/65FHHlGbNm00YsQISVL9+vXtjnPPPfeoQYMGevXVV+0a6KJs3LhRn376qcaMGSOLxaLZs2erZ8+e+vbbb9WsWbMr1vVSpYntUhMnTtSkSZPUvXt3jRw5UmlpaZozZ462b99e6HN36tQp9ezZUwMGDNDAgQP12Wef6bnnnlPz5s3Vq1cvh+IEULFcqd1/5ZVX9NJLL2ngwIF65JFHdPLkSb3zzjvq1KmTrV1w1vdrcQzD0J133qn169dr+PDhatmypVauXKlnnnlGv/76q2bOnOnUOpfGunXr1KtXL0VHR2vChAny9PRUcnKyunbtqv/85z9q06aNXXlH2o4CH3zwgcaMGaO7775bTz75pM6fP6/vv/9e27Zts7Xbx44dU5s2bZSVlaURI0aoUaNG+vXXX/XZZ5/p3Llz8vHxUWZmpm699VadO3dOY8aMUdWqVbVgwQLdeeed+uyzz3TXXXfZve+UKVPk4+Ojp59+WlarVT4+PqWu7+OPP67PPvtMo0aNUpMmTfTbb79p06ZN+vHHH/WXv/yl2Lr+8MMPtn7BxIkTdfHiRU2YMKFUfa6JEycqMTHR9vnKycnRjh079N133+n222/XY489pmPHjmn16tX6+9//XuQxkpOTdf78eY0YMUIWi0WhoaHF3mGQl5ennj17ql27dpo+fbpSUlI0YcIEXbx4UZMnT75ivJcqTWyXcrSf64y+NZzMAJzk9ddfNyQZhw4dKrRPkuHp6Wns2bOn0L5z587ZPc/NzTWaNWtmdO3a1W57nTp1jCFDhtieJycnG5KM7t27G/n5+bbt48aNM7y8vIysrKxSx96/f3/Dx8fHOHDggG3bsWPHjMDAQKNTp062bRMmTDCK+mdTEMuldW/atKnRuXPnQmXXr19vSDLWr19v2zZkyBCjTp06tuf/+c9/DEnGJ598YvfalJSUQtvr1KljSDJSUlJKXV/DMIxTp04ZkozXX3+92DJZWVlGYGCg0bZtW+OPP/6w21dwznNzc42wsDCjWbNmdmWWL19uSDJefvllu3pKMp5//nm7Y5W2vkuXLjUkGdu3b3eoridOnDB8fHyMPn362H1WXnjhBUOS3efq8r/Pzp07DUnG4sWLS3wPf39/u+MUKPjM3HfffcXuu5QkQ5KxY8cO27ZffvnF8PX1Ne666y7btss/MyUds7jYLv/cFpynHj16GHl5ebZy7777riHJ+PDDD23bOnfubEgyPvroI9s2q9VqREREGHFxcYXeC8C1p7h2//Dhw4aXl5fxyiuv2G3/4YcfjEqVKtm2X+3365UsW7bMkGRMnTrVbvvdd99teHh4GPv37zcMwzAOHTpkSDKSk5MLHUOSMWHCBNvzkvo6l/dTLm9P8vPzjQYNGhixsbF2bdG5c+eMqKgo4/bbb7dtK6ntuJJ+/foZTZs2LbHMQw89ZHh6ehbZnhbENnbsWEOS8Z///Me27/Tp00ZUVJRRt25dWztRUM969erZ9ekcqW9wcLARHx/vcF379+9v+Pr6Gr/88ott2969ew0vL69CbeHlf5+bb77Z6NOnT4nHj4+PL7LfV/CZCQoKMk6cOFHkvks/TwX9n9GjR9u25efnG3369DF8fHyMkydPGoZRdB+xuGMWF5thFP7clraf68y+NZyL2+PhMp07d1aTJk0Kbffz87P9/6lTp5Sdna2OHTuW6pYoSRoxYoTdLUEdO3ZUXl6efvnll1K9Pi8vT6tWrVL//v1Vr1492/YaNWro/vvv16ZNm2y3eLnK4sWLFRwcrNtvv13/+9//bI/o6GgFBARo/fr1duWjoqIUGxvr0Hv4+fnJx8dHGzZsKHQLeoHVq1fr9OnTev755wuNvS445zt27NCJEyf0xBNP2JXp06ePGjVqVOg2OkkaOXJkmepbcMV++fLlunDhQqnrumbNGuXm5mr06NF2n5WxY8de8bXBwcGSpJUrV+rcuXOlfs/LPf7446UuGxMTo+joaNvz2rVrq1+/flq5cqXy8vLKHMOVFJynsWPH2o3BfPTRRxUUFFTobxkQEKAHHnjA9tzHx0dt2rTRwYMHyy1GAOa3ZMkS5efna+DAgXbf6REREWrQoIHtO91Z36/F+eqrr+Tl5aUxY8bYbX/qqadkGIZWrFjh9Pcsya5du7Rv3z7df//9+u2332zn5ezZs+rWrZu+/vrrQldpHWk7CoSEhOjo0aPavn17kfvz8/O1bNky9e3bV61atSq0v6Cd/Oqrr9SmTRu72/IDAgI0YsQIHT58WHv37rV73ZAhQ+z6dI7UNyQkRNu2bdOxY8dKXc+8vDytXLlS/fv3V+3atW3bGzduXKo+UUhIiPbs2aN9+/aV+j0vFxcX59CdFpcu6VowdDQ3N1dr1qwpcwxXUpZ+7tX2reF8JO1wmaioqCK3L1++XO3atZOvr69CQ0NVvXp1zZkzxzae7Uou/aKWpCpVqkhSsYno5U6ePKlz584VeUt548aNlZ+fX2gMXnnbt2+fsrOzFRYWpurVq9s9zpw5oxMnTtiVL+7clsRisei1117TihUrFB4erk6dOmn69OnKyMiwlTlw4IAklXhLdsEXeFHnr1GjRoW+4CtVqqSaNWvabSttfTt37qy4uDhNmjRJ1apVU79+/ZScnCyr1VpiXQtiaNCggd326tWr2z4vxYmKilJCQoL+9re/qVq1aoqNjVVSUlKpP5+XHqe0Lo9Tkm666SadO3euXMeUFfe39PHxUb169Qr9LWvWrFloTH6VKlVK/W8PwLVp3759MgxDDRo0KPSd/uOPP9q+0531/VqcX375RZGRkQoMDLTb3rhxY9t+VypIDocMGVLovPztb3+T1WotVPeytO/PPfecAgIC1KZNGzVo0EDx8fF2Y8hPnjypnJycKw63+uWXX4rtGxXsLylWR+o7ffp07d69W7Vq1VKbNm00ceLEK/4AfPLkSf3xxx9FtpmlGSY4efJkZWVl6aabblLz5s31zDPP6Pvvv7/i6y7lyN/H09PTLmmW/mzbJRU7L4IzlKWfe7V9azgfY9rhMpf++lrgP//5j+6880516tRJs2fPVo0aNeTt7a3k5ORCE6YUp7jZOY1Sjv1yRHGThjn76md+fr7CwsL0ySefFLn/8l91izq3pTF27Fj17dtXy5Yt08qVK/XSSy8pMTFR69at0y233FKmY16JxWIpNJNuaevr4eGhzz77TFu3btUXX3yhlStX6uGHH9Ybb7yhrVu3KiAgoFxifuONNzR06FB9/vnnWrVqlcaMGaPExERt3bq10A8QxSnr36g4rvoslsSV//YAVBz5+fny8PDQihUrivyeuPS72hnfr1fLlW27JL3++utq2bJlkWUub8fK0nY0btxYaWlpWr58uVJSUvSvf/1Ls2fP1ssvv+zw8mWOuDxWR+o7cOBAdezYUUuXLtWqVav0+uuv67XXXtOSJUvKbY6UTp066cCBA7bP3t/+9jfNnDlTc+fO1SOPPFKqY1yLbbtE+25GJO1wmrIsG/Wvf/1Lvr6+Wrlypd2SZ8nJyc4MrUTVq1dX5cqVi1wn/aeffpKnp6dq1aol6f9+aczKyrKbXK2oX+uvZhmt+vXra82aNWrfvr3TG4Si3uupp57SU089pX379qlly5Z644039PHHH9sm+9m9e7duvPHGIl9fsMZ3WlqaunbtarcvLS2tVGuAO1rfdu3aqV27dnrllVe0cOFCDR48WIsWLSq2kS2IYd++fXa/cp88ebLUvxo3b95czZs314svvqjNmzerffv2mjt3rqZOnSrp6v7elyvqVr2ff/5ZlStXtv2AUaVKlSLXCb6az+Klf8tLz1Nubq4OHTqk7t27l+o4AK4PxX231K9fX4ZhKCoqynYlsSTl9f1ap04drVmzRqdPn7a72v7TTz/Z9kv2bfulyqNtl6SgoKBy/z719/fXvffeq3vvvVe5ubkaMGCAXnnlFY0fP17Vq1dXUFCQdu/eXeIx6tSpU2zfqGB/SRytb40aNfTEE0/oiSee0IkTJ/SXv/xFr7zySrFJe/Xq1eXn51dkm1lU3EUJDQ3VsGHDNGzYMJ05c0adOnXSxIkTbf0JZ7bt+fn5OnjwoN2/iZ9//lmSbJP/lsdn0ZF+LsyL2+PhNP7+/pIKf9GUxMvLSx4eHna/IB4+fFjLli1zcnQlx9CjRw99/vnndrcnZWZmauHCherQoYOCgoIk/V8DdOnyWwVL0VzO39/foXNxqYEDByovL09TpkwptO/ixYtlPu6lzp07p/Pnz9ttq1+/vgIDA223m/fo0UOBgYFKTEwsVLbg19ZWrVopLCxMc+fOtbtNfcWKFfrxxx9LtQJAaet76tSpQr/yFvx6X9It8t27d5e3t7feeecdu9fPmjXrirHl5OTo4sWLdtuaN28uT09Pu/e8mr/35bZs2WI3p8ORI0f0+eefq0ePHrZfv+vXr6/s7Gy7W/mOHz+upUuXFjpeaWPr3r27fHx89Pbbb9udp3nz5ik7O7tUf0sA14/i2v0BAwbIy8tLkyZNKvSdbRiGfvvtN0nl//3au3dv5eXl6d1337XbPnPmTHl4eNiSwaCgIFWrVq3Q0pqzZ88udMyy9HUKREdHq379+poxY4bOnDlTaL+zhj8VnN8CPj4+atKkiQzD0IULF+Tp6an+/fvriy++0I4dOwq9vuBv1rt3b3377bfasmWLbd/Zs2f1/vvvq27dukXOU3Sp0tY3Ly+v0LCAsLAwRUZGlti2e3l5KTY2VsuWLVN6erpt+48//qiVK1eWGJtU+DwFBAToxhtvLPTZk8r29y7KpZ9FwzD07rvvytvbW926dZP05w8hXl5eTv0sOtLPhXlxpR1OUzBx1l//+lcNGjRI3t7e6tu3r+1LpSh9+vTRm2++qZ49e+r+++/XiRMnlJSUpBtvvNHhcUVXY+rUqVq9erU6dOigJ554QpUqVdJ7770nq9Vqt+50jx49VLt2bQ0fPlzPPPOMvLy89OGHH6p69ep2DYb05/mYM2eOpk6dqhtvvFFhYWGFrkQXp3PnznrssceUmJioXbt2qUePHvL29ta+ffu0ePFivfXWW7r77ruvqs4///yzunXrpoEDB6pJkyaqVKmSli5dqszMTA0aNEjSnx2ZmTNn6pFHHlHr1q1ta8X+97//1blz57RgwQJ5e3vrtdde07Bhw9S5c2fdd999tiXf6tatq3HjxjmtvgsWLNDs2bN11113qX79+jp9+rQ++OADBQUFqXfv3sUev3r16nr66aeVmJioO+64Q71799bOnTu1YsUK25I9xVm3bp1GjRqle+65RzfddJMuXryov//97/Ly8lJcXJytXHR0tNasWaM333xTkZGRioqKcnipwALNmjVTbGys3ZJvkuxuaxw0aJCee+453XXXXRozZozOnTunOXPm6Kabbio0iWNpY6tevbrGjx+vSZMmqWfPnrrzzjuVlpam2bNnq3Xr1naTzgFAce1+/fr1NXXqVI0fP16HDx9W//79FRgYqEOHDmnp0qUaMWKEnn766XL/fu3bt69uu+02/fWvf9Xhw4d18803a9WqVfr88881duxYu6XjHnnkEU2bNk2PPPKIWrVqpa+//tp2FbQ0dS6pr1PA09NTf/vb39SrVy81bdpUw4YN0w033KBff/1V69evV1BQkL744osrHudKevTooYiICLVv317h4eH68ccf9e6776pPnz62Ow5effVVrVq1Sp07d9aIESPUuHFjHT9+XIsXL9amTZsUEhKi559/Xv/4xz/Uq1cvjRkzRqGhoVqwYIEOHTqkf/3rX4WGupW1vqdPn1bNmjV199136+abb1ZAQIDWrFmj7du364033ijxPSZNmqSUlBR17NhRTzzxhC5evGhbo/5K/cgmTZqoS5cuio6OVmhoqHbs2GFbdq5Awd97zJgxio2NlZeXl62P5ChfX1+lpKRoyJAhatu2rVasWKEvv/xSL7zwgu0uuuDgYN1zzz1655135OHhofr162v58uWF5jJyNLbS9nNhYm6YsR7XsClTphg33HCD4enpabckiqRil/KYN2+e0aBBA8NisRiNGjUykpOTi1y2qrgl3y5frqS45TKu5LvvvjNiY2ONgIAAo3LlysZtt91mbN68uVC51NRUo23btoaPj49Ru3Zt48033yxyybeMjAyjT58+RmBgoCHJtvxbaZZ8K/D+++8b0dHRhp+fnxEYGGg0b97cePbZZ41jx47ZnZcrLVlSlP/9739GfHy80ahRI8Pf398IDg422rZta/zzn/8sVPbf//63ceuttxp+fn5GUFCQ0aZNG+Mf//iHXZlPP/3UuOWWWwyLxWKEhoYagwcPNo4ePWpXZsiQIYa/v3+xMV2pvt99951x3333GbVr1zYsFosRFhZm3HHHHXbLoxUnLy/PmDRpklGjRg3Dz8/P6NKli7F79+4rLtFz8OBB4+GHHzbq169v+Pr6GqGhocZtt91mrFmzxu74P/30k9GpUyfDz8/Pbhm5gs9ywXIulypuybf4+Hjj448/tv27uOWWW4r8PK9atcpo1qyZ4ePjYzRs2ND4+OOPizxmcbEV9bk1jD+XeGvUqJHh7e1thIeHGyNHjjROnTplV6Zz585FLilU3GcZwLWpuHbfMAzjX//6l9GhQwfD39/f8Pf3Nxo1amTEx8cbaWlphmFc/fdraZw+fdoYN26cERkZaXh7exsNGjQwXn/9dbvlrAzjz2XIhg8fbgQHBxuBgYHGwIEDjRMnThRaOqukOl+pPSmwc+dOY8CAAUbVqlUNi8Vi1KlTxxg4cKCxdu1aW5mS2o4ree+994xOnTrZjl+/fn3jmWeeMbKzs+3K/fLLL8ZDDz1kVK9e3bBYLEa9evWM+Ph4w2q12socOHDAuPvuu42QkBDD19fXaNOmjbF8+XK74xTUs7il+65UX6vVajzzzDPGzTffbAQGBhr+/v7GzTffbMyePbtU9d24caMRHR1t+Pj4GPXq1TPmzp1bqn7k1KlTjTZt2hghISGGn5+f0ahRI+OVV14xcnNzbWUuXrxojB492qhevbrh4eFhO2bBEmxFLZtb3JJv/v7+xoEDB4wePXoYlStXNsLDw40JEybYLbFqGIZx8uRJIy4uzqhcubJRpUoV47HHHjN2795d6JjFxWYYhZd8M4zS9XOd3beG83gYBjMKAAAAAABgRoxpBwAAAADApBjTjmvamTNnipz85FLVq1cvdmmLiio7O1t//PFHiWUiIiJcFA0AAM6Tl5d3xUnbAgICym0ZUHfJzc3V77//XmKZ4ODgcl91BoDrkbTjmjZjxowrrkl66NAh21Ib14onn3yyyBntL8XIGABARXTkyBFFRUWVWGbChAmaOHGiawJykc2bN+u2224rsUxycrKGDh3qmoAAuAxj2nFNO3jwoA4ePFhimQ4dOsjX19dFEbnG3r17dezYsRLLsOY2AKAiOn/+vDZt2lRimXr16qlevXouisg1Tp06pdTU1BLLNG3aVDVq1HBRRABchaQdAAAAAACTYiI6AADgVnXr1pWHh0ehR3x8vKQ/r6zGx8eratWqCggIUFxcnDIzM90cNQAArsGVdkn5+fk6duyYAgMD5eHh4e5wAADXOcMwdPr0aUVGRsrT89r/ff3kyZPKy8uzPd+9e7duv/12rV+/Xl26dNHIkSP15Zdfav78+QoODtaoUaPk6empb775ptTvQVsPADCb0rb3JO2Sjh49qlq1ark7DAAA7Bw5ckQ1a9Z0dxguN3bsWC1fvlz79u1TTk6OqlevroULF+ruu++WJP30009q3LixtmzZonbt2pXqmLT1AACzulJ7z+zxkgIDAyX9ebKCgoLcHM11olEj6fhxqUYN6aef3B0NAJhKTk6OatWqZWufrie5ubn6+OOPlZCQIA8PD6WmpurChQt2k2c2atRItWvXLjFpt1qtslqttucF1yho612Ith4ASlTa9p6kXbLdJhcUFERD7ioFt394ekqccwAo0vV4G/eyZcuUlZVlW7YqIyNDPj4+CgkJsSsXHh6ujIyMYo+TmJhY5JKftPUuRFsPAKVypfb+2h8oBwAAKox58+apV69eioyMvKrjjB8/XtnZ2bbHkSNHnBQhAACuxZV2AABgCr/88ovWrFmjJUuW2LZFREQoNzdXWVlZdlfbMzMzFRERUeyxLBaLLBZLeYYLAIBLcKUdAACYQnJyssLCwtSnTx/btujoaHl7e2vt2rW2bWlpaUpPT1dMTIw7wgQAwKW40g4AANwuPz9fycnJGjJkiCpV+r/uSXBwsIYPH66EhASFhoYqKChIo0ePVkxMTKlnjgcAoCIjaQcAAG63Zs0apaen6+GHHy60b+bMmfL09FRcXJysVqtiY2M1e/ZsN0QJAIDrkbQDAAC369Gjh21Ztsv5+voqKSlJSUlJLo4KAAD3Y0w7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASVVydwDA9aru81+WuP/wtD4uigQAgOsX7TEAs+NKOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASbk1aZ8zZ45atGihoKAgBQUFKSYmRitWrLDtP3/+vOLj41W1alUFBAQoLi5OmZmZdsdIT09Xnz59VLlyZYWFhemZZ57RxYsXXV0VAAAAAACczq1Je82aNTVt2jSlpqZqx44d6tq1q/r166c9e/ZIksaNG6cvvvhCixcv1saNG3Xs2DENGDDA9vq8vDz16dNHubm52rx5sxYsWKD58+fr5ZdfdleVAAAAAABwmkrufPO+ffvaPX/llVc0Z84cbd26VTVr1tS8efO0cOFCde3aVZKUnJysxo0ba+vWrWrXrp1WrVqlvXv3as2aNQoPD1fLli01ZcoUPffcc5o4caJ8fHzcUS0AAAAAAJzCNGPa8/LytGjRIp09e1YxMTFKTU3VhQsX1L17d1uZRo0aqXbt2tqyZYskacuWLWrevLnCw8NtZWJjY5WTk2O7Wl8Uq9WqnJwcuwcAAAAAAGbj9qT9hx9+UEBAgCwWix5//HEtXbpUTZo0UUZGhnx8fBQSEmJXPjw8XBkZGZKkjIwMu4S9YH/BvuIkJiYqODjY9qhVq5ZzKwUAAAAAgBO4PWlv2LChdu3apW3btmnkyJEaMmSI9u7dW67vOX78eGVnZ9seR44cKdf3AwAAAACgLNw6pl2SfHx8dOONN0qSoqOjtX37dr311lu69957lZubq6ysLLur7ZmZmYqIiJAkRURE6Ntvv7U7XsHs8gVlimKxWGSxWJxcEwAAAAAAnMvtV9ovl5+fL6vVqujoaHl7e2vt2rW2fWlpaUpPT1dMTIwkKSYmRj/88INOnDhhK7N69WoFBQWpSZMmLo8dAAAAAABncuuV9vHjx6tXr16qXbu2Tp8+rYULF2rDhg1auXKlgoODNXz4cCUkJCg0NFRBQUEaPXq0YmJi1K5dO0lSjx491KRJEz344IOaPn26MjIy9OKLLyo+Pp4r6QAAAACACs+tSfuJEyf00EMP6fjx4woODlaLFi20cuVK3X777ZKkmTNnytPTU3FxcbJarYqNjdXs2bNtr/fy8tLy5cs1cuRIxcTEyN/fX0OGDNHkyZPdVSXATt3nv3R3CAAAAAAqMLcm7fPmzStxv6+vr5KSkpSUlFRsmTp16uirr75ydmgAAAAAALid6ca0AwAAAACAP5G0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAHC7X3/9VQ888ICqVq0qPz8/NW/eXDt27LDtNwxDL7/8smrUqCE/Pz91795d+/btc2PEAAC4Bkk7AABwq1OnTql9+/by9vbWihUrtHfvXr3xxhuqUqWKrcz06dP19ttva+7cudq2bZv8/f0VGxur8+fPuzFyAADKXyV3BwAAAK5vr732mmrVqqXk5GTbtqioKNv/G4ahWbNm6cUXX1S/fv0kSR999JHCw8O1bNkyDRo0yOUxAwDgKlxpBwAAbvXvf/9brVq10j333KOwsDDdcsst+uCDD2z7Dx06pIyMDHXv3t22LTg4WG3bttWWLVvcETIAAC7DlXbgKtR9/kt3hwAAFd7Bgwc1Z84cJSQk6IUXXtD27ds1ZswY+fj4aMiQIcrIyJAkhYeH270uPDzctu9yVqtVVqvV9jwnJ6f8KgAAQDkiaQcAAG6Vn5+vVq1a6dVXX5Uk3XLLLdq9e7fmzp2rIUOGlOmYiYmJmjRpkjPDBADALbg9HgAAuFWNGjXUpEkTu22NGzdWenq6JCkiIkKSlJmZaVcmMzPTtu9y48ePV3Z2tu1x5MiRcogcAIDyR9IOAADcqn379kpLS7Pb9vPPP6tOnTqS/pyULiIiQmvXrrXtz8nJ0bZt2xQTE1PkMS0Wi4KCguweAABURNweDwAA3GrcuHG69dZb9eqrr2rgwIH69ttv9f777+v999+XJHl4eGjs2LGaOnWqGjRooKioKL300kuKjIxU//793Rs8AADljKQdAAC4VevWrbV06VKNHz9ekydPVlRUlGbNmqXBgwfbyjz77LM6e/asRowYoaysLHXo0EEpKSny9fV1Y+QAAJQ/knYAAOB2d9xxh+64445i93t4eGjy5MmaPHmyC6MCAMD9GNMOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJVXJ3AIA71X3+yxL3H57Wx0WRAAAAAEBhXGkHAAAAAMCkSNoBAAAAADApbo8HAAAA3IBhegBKgyvtAAAAAACYFFfagQqqpF/n+WUeAAAAuDaQtAPXIG63AwAAAK4N3B4PAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIs+QaY1JWWbQMAAABw7eNKOwAAAAAAJkXSDgAAAACASbk1aU9MTFTr1q0VGBiosLAw9e/fX2lpaXZlunTpIg8PD7vH448/blcmPT1dffr0UeXKlRUWFqZnnnlGFy9edGVVAAAAAABwOreOad+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/f31bu0Ucf1eTJk23PK1eubPv/vLw89enTRxEREdq8ebOOHz+uhx56SN7e3nr11VddWh8AAAAAAJzJrUl7SkqK3fP58+crLCxMqamp6tSpk2175cqVFRERUeQxVq1apb1792rNmjUKDw9Xy5YtNWXKFD333HOaOHGifHx8yrUOAAAAAACUF1PNHp+dnS1JCg0Ntdv+ySef6OOPP1ZERIT69u2rl156yXa1fcuWLWrevLnCw8Nt5WNjYzVy5Ejt2bNHt9xyS6H3sVqtslqttuc5OTnlUR0AAACYgLtWZGElGADOYJqkPT8/X2PHjlX79u3VrFkz2/b7779fderUUWRkpL7//ns999xzSktL05IlSyRJGRkZdgm7JNvzjIyMIt8rMTFRkyZNKqea4FpCYwsAAADAnUyTtMfHx2v37t3atGmT3fYRI0bY/r958+aqUaOGunXrpgMHDqh+/fpleq/x48crISHB9jwnJ0e1atUqW+AAAAAAAJQTUyz5NmrUKC1fvlzr169XzZo1Syzbtm1bSdL+/fslSREREcrMzLQrU/C8uHHwFotFQUFBdg8AAAAAAMzGrUm7YRgaNWqUli5dqnXr1ikqKuqKr9m1a5ckqUaNGpKkmJgY/fDDDzpx4oStzOrVqxUUFKQmTZqUS9wAAAAAALiCW2+Pj4+P18KFC/X5558rMDDQNgY9ODhYfn5+OnDggBYuXKjevXuratWq+v777zVu3Dh16tRJLVq0kCT16NFDTZo00YMPPqjp06crIyNDL774ouLj42WxWNxZPQAAAAAAropbr7TPmTNH2dnZ6tKli2rUqGF7fPrpp5IkHx8frVmzRj169FCjRo301FNPKS4uTl988YXtGF5eXlq+fLm8vLwUExOjBx54QA899JDduu4AAAAAAFREbr3SbhhGiftr1aqljRs3XvE4derU0VdffeWssAAAAAAAMAVTTEQHAAAAAAAKI2kHAAAAAMCkSNoBAAAAADApt45pBwAAAMys7vNflrj/8LQ+LooEwPWKK+0AAMCtJk6cKA8PD7tHo0aNbPvPnz+v+Ph4Va1aVQEBAYqLi1NmZqYbIwYAwHVI2gEAgNs1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAADX4fZ4AADgdpUqVVJERESh7dnZ2Zo3b54WLlyorl27SpKSk5PVuHFjbd26Ve3atXN1qAAAuBRX2gEAgNvt27dPkZGRqlevngYPHqz09HRJUmpqqi5cuKDu3bvbyjZq1Ei1a9fWli1b3BUuAAAuw5V2AADgVm3bttX8+fPVsGFDHT9+XJMmTVLHjh21e/duZWRkyMfHRyEhIXavCQ8PV0ZGRrHHtFqtslqttuc5OTnlFT4AAOWKpB0AALhVr169bP/fokULtW3bVnXq1NE///lP+fn5lemYiYmJmjRpkrNCBIp1pdnlAeBqcXs8AAAwlZCQEN10003av3+/IiIilJubq6ysLLsymZmZRY6BLzB+/HhlZ2fbHkeOHCnnqAEAKB8k7QAAwFTOnDmjAwcOqEaNGoqOjpa3t7fWrl1r25+Wlqb09HTFxMQUewyLxaKgoCC7BwAAFRG3xwMAALd6+umn1bdvX9WpU0fHjh3ThAkT5OXlpfvuu0/BwcEaPny4EhISFBoaqqCgII0ePVoxMTHMHA8AuC6QtOOax1gzADC3o0eP6r777tNvv/2m6tWrq0OHDtq6dauqV68uSZo5c6Y8PT0VFxcnq9Wq2NhYzZ49281RAwDgGiTtAADArRYtWlTifl9fXyUlJSkpKclFEQEAYB6MaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJg9HgAAAKiASlrW9vC0Pi6MBEB54ko7AAAAAAAmxZV24DpU0i/zEr/OAwAAAGbBlXYAAAAAAEyKpB0AAAAAAJPi9ngAAADgOsNQOaDi4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACbF7PEAAAAwNWY6d9yVzhmAioMr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJuXWpD0xMVGtW7dWYGCgwsLC1L9/f6WlpdmVOX/+vOLj41W1alUFBAQoLi5OmZmZdmXS09PVp08fVa5cWWFhYXrmmWd08eJFV1YFAAAAAACnq+TON9+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/fX5I0btw4ffnll1q8eLGCg4M1atQoDRgwQN98840kKS8vT3369FFERIQ2b96s48eP66GHHpK3t7deffVVd1YPqLDqPv9lsfsOT+vjwkgAAACA65tbk/aUlBS75/Pnz1dYWJhSU1PVqVMnZWdna968eVq4cKG6du0qSUpOTlbjxo21detWtWvXTqtWrdLevXu1Zs0ahYeHq2XLlpoyZYqee+45TZw4UT4+Pu6oGgAAAAAAV81UY9qzs7MlSaGhoZKk1NRUXbhwQd27d7eVadSokWrXrq0tW7ZIkrZs2aLmzZsrPDzcViY2NlY5OTnas2ePC6MHAAAAAMC53Hql/VL5+fkaO3as2rdvr2bNmkmSMjIy5OPjo5CQELuy4eHhysjIsJW5NGEv2F+wryhWq1VWq9X2PCcnx1nVAAAAAADAaUxzpT0+Pl67d+/WokWLyv29EhMTFRwcbHvUqlWr3N8TAAAAAABHmSJpHzVqlJYvX67169erZs2atu0RERHKzc1VVlaWXfnMzExFRETYylw+m3zB84Iylxs/fryys7NtjyNHjjixNgAAAAAAOIdbk3bDMDRq1CgtXbpU69atU1RUlN3+6OhoeXt7a+3atbZtaWlpSk9PV0xMjCQpJiZGP/zwg06cOGErs3r1agUFBalJkyZFvq/FYlFQUJDdAwAAAAAAs3HrmPb4+HgtXLhQn3/+uQIDA21j0IODg+Xn56fg4GANHz5cCQkJCg0NVVBQkEaPHq2YmBi1a9dOktSjRw81adJEDz74oKZPn66MjAy9+OKLio+Pl8VicWf1AAAAAAC4Km5N2ufMmSNJ6tKli9325ORkDR06VJI0c+ZMeXp6Ki4uTlarVbGxsZo9e7atrJeXl5YvX66RI0cqJiZG/v7+GjJkiCZPnuyqagAAAAAAUC7cmrQbhnHFMr6+vkpKSlJSUlKxZerUqaOvvvrKmaEBAAAAAOB2ZRrTfvDgQWfHAQAAKhj6AwAAlL8yXWm/8cYb1blzZw0fPlx33323fH19nR0XAAAwOfoDMIu6z3/p7hAAoNyU6Ur7d999pxYtWighIUERERF67LHH9O233zo7NgAAYGLl0R+YNm2aPDw8NHbsWNu28+fPKz4+XlWrVlVAQIDi4uIKLfcKAMC1qkxJe8uWLfXWW2/p2LFj+vDDD3X8+HF16NBBzZo105tvvqmTJ086O04AAGAyzu4PbN++Xe+9955atGhht33cuHH64osvtHjxYm3cuFHHjh3TgAEDnFkVAABM66rWaa9UqZIGDBigxYsX67XXXtP+/fv19NNPq1atWnrooYd0/PhxZ8UJAABMyhn9gTNnzmjw4MH64IMPVKVKFdv27OxszZs3T2+++aa6du2q6OhoJScna/Pmzdq6dWt5VgsAAFO4qqR9x44deuKJJ1SjRg29+eabevrpp3XgwAGtXr1ax44dU79+/ZwVJwAAMCln9Afi4+PVp08fde/e3W57amqqLly4YLe9UaNGql27trZs2VLs8axWq3JycuweAABURGWaiO7NN99UcnKy0tLS1Lt3b3300Ufq3bu3PD3//A0gKipK8+fPV926dZ0ZKwAAMBFn9QcWLVqk7777Ttu3by+0LyMjQz4+PgoJCbHbHh4eroyMjGKPmZiYqEmTJjlcJ5SfK00Wd3haHxdFAgAVS5mS9jlz5ujhhx/W0KFDVaNGjSLLhIWFad68eVcVHAAAMC9n9AeOHDmiJ598UqtXr3bq7PPjx49XQkKC7XlOTo5q1arltOMDAOAqZUra9+3bd8UyPj4+GjJkSFkODwAAKgBn9AdSU1N14sQJ/eUvf7Fty8vL09dff613331XK1euVG5urrKysuyutmdmZioiIqLY41osFlksltJVBAAAEyvTmPbk5GQtXry40PbFixdrwYIFVx0UAAAwP2f0B7p166YffvhBu3btsj1atWqlwYMH2/7f29tba9eutb0mLS1N6enpiomJcVpdAAAwqzIl7YmJiapWrVqh7WFhYXr11VevOigAAGB+zugPBAYGqlmzZnYPf39/Va1aVc2aNVNwcLCGDx+uhIQErV+/XqmpqRo2bJhiYmLUrl07Z1cJAADTKdPt8enp6YqKiiq0vU6dOkpPT7/qoAAAgPm5qj8wc+ZMeXp6Ki4uTlarVbGxsZo9e7bTjg8AgJmVKWkPCwvT999/X2g22P/+97+qWrWqM+ICUEExOzBw/Siv/sCGDRvsnvv6+iopKUlJSUllPiYAABVVmW6Pv++++zRmzBitX79eeXl5ysvL07p16/Tkk09q0KBBzo4RAACYEP0BAADKX5mutE+ZMkWHDx9Wt27dVKnSn4fIz8/XQw89xJh2AACuE/QHAAAof2VK2n18fPTpp59qypQp+u9//ys/Pz81b95cderUcXZ8AADApOgPAABQ/sqUtBe46aabdNNNNzkrFgAAUAHRHwAAoPyUKWnPy8vT/PnztXbtWp04cUL5+fl2+9etW+eU4AAAgHnRHwAAoPyVKWl/8sknNX/+fPXp00fNmjWTh4eHs+MCAAAmR38AAIDyV6akfdGiRfrnP/+p3r17OzseAABQQdAfAACg/JVpyTcfHx/deOONzo4FAABUIPQHAAAof2VK2p966im99dZbMgzD2fEAAIAKgv4AAADlr0y3x2/atEnr16/XihUr1LRpU3l7e9vtX7JkiVOCA0qj7vNfujsEALgu0R8AAKD8lSlpDwkJ0V133eXsWAAAQAVCfwAAgPJXpqQ9OTnZ2XEAAIAKhv4AAADlr0xJuyRdvHhRGzZs0IEDB3T//fcrMDBQx44dU1BQkAICApwZIwATYTgCgEvRHwAAoHyVKWn/5Zdf1LNnT6Wnp8tqter2229XYGCgXnvtNVmtVs2dO9fZcQIAAJOhPwAAQPkr0+zxTz75pFq1aqVTp07Jz8/Ptv2uu+7S2rVrnRYcAAAwL/oDAACUvzJdaf/Pf/6jzZs3y8fHx2573bp19euvvzolMAAAYG70B4DyxZA0AFIZr7Tn5+crLy+v0PajR48qMDDwqoMCAADmR38AAIDyV6akvUePHpo1a5btuYeHh86cOaMJEyaod+/ezooNAACYGP0BAADKX5luj3/jjTcUGxurJk2a6Pz587r//vu1b98+VatWTf/4xz+cHSMAADAh+gMAAJS/MiXtNWvW1H//+18tWrRI33//vc6cOaPhw4dr8ODBdhPRAACAaxf9AQAAyl+Z12mvVKmSHnjgAWfGAgAAKhj6AwAAlK8yJe0fffRRifsfeuihMgUDAAAqDvoDwPXpSrPaH57Wx0WRANeHMiXtTz75pN3zCxcu6Ny5c/Lx8VHlypVppAEAuA7QHwAAoPyVafb4U6dO2T3OnDmjtLQ0dejQgYlnAAC4TtAfAACg/JUpaS9KgwYNNG3atEK/ugMAgOsH/QEAAJzLaUm79OdkNMeOHXPmIQEAQAVDfwAAAOcp05j2f//733bPDcPQ8ePH9e6776p9+/ZOCQwAAJgb/QEAAMpfmZL2/v372z338PBQ9erV1bVrV73xxhvOiAsAAJgc/QEAAMpfmZL2/Px8Z8cBFOtKy4oAANyD/gAAAOXPqWPaAQAAAACA85TpSntCQkKpy7755ptleQsAAGBy9AcAACh/ZUrad+7cqZ07d+rChQtq2LChJOnnn3+Wl5eX/vKXv9jKeXh4OCdKAABgOvQHAAAof2VK2vv27avAwEAtWLBAVapUkSSdOnVKw4YNU8eOHfXUU085NUgAAGA+9AdwqcvnoNmSfV41JB3PPq8Y5qcBgDIr05j2N954Q4mJibYGWpKqVKmiqVOnMlssAADXCfoDAACUvzIl7Tk5OTp58mSh7SdPntTp06dLfZyvv/5affv2VWRkpDw8PLRs2TK7/UOHDpWHh4fdo2fPnnZlfv/9dw0ePFhBQUEKCQnR8OHDdebMmbJUCwAAOMBZ/QEAAFC8MiXtd911l4YNG6YlS5bo6NGjOnr0qP71r39p+PDhGjBgQKmPc/bsWd18881KSkoqtkzPnj11/Phx2+Mf//iH3f7Bgwdrz549Wr16tZYvX66vv/5aI0aMKEu1AACAA5zVHwAAAMUr05j2uXPn6umnn9b999+vCxcu/HmgSpU0fPhwvf7666U+Tq9evdSrV68Sy1gsFkVERBS578cff1RKSoq2b9+uVq1aSZLeeecd9e7dWzNmzFBkZGSpYwEAAI5xVn8AAAAUr0xX2itXrqzZs2frt99+s80c+/vvv2v27Nny9/d3aoAbNmxQWFiYGjZsqJEjR+q3336z7duyZYtCQkJsCbskde/eXZ6entq2bZtT4wAAAPZc2R8AAOB6VaYr7QUKblnv1KmT/Pz8ZBiGU5d16dmzpwYMGKCoqCgdOHBAL7zwgnr16qUtW7bIy8tLGRkZCgsLs3tNpUqVFBoaqoyMjGKPa7VaZbVabc9zcnKcFjMAANeb8u4PAABwPStT0v7bb79p4MCBWr9+vTw8PLRv3z7Vq1dPw4cPV5UqVZw2Y+ygQYNs/9+8eXO1aNFC9evX14YNG9StW7cyHzcxMVGTJk1yRogAAFy3XNUfAADgelam2+PHjRsnb29vpaenq3Llyrbt9957r1JSUpwW3OXq1aunatWqaf/+/ZKkiIgInThxwq7MxYsX9fvvvxc7Dl6Sxo8fr+zsbNvjyJEj5RYzAADXKnf1BwAAuJ6U6Ur7qlWrtHLlStWsWdNue4MGDfTLL784JbCiHD16VL/99ptq1KghSYqJiVFWVpZSU1MVHR0tSVq3bp3y8/PVtm3bYo9jsVhksVjKLU4AAK4H7uoPAABwPSlT0n727Fm7X9QL/P777w4lw2fOnLFdNZekQ4cOadeuXQoNDVVoaKgmTZqkuLg4RURE6MCBA3r22Wd14403KjY2VpLUuHFj9ezZU48++qjmzp2rCxcuaNSoURo0aBAzxwMAUM6c1R8AAADFK1PS3rFjR3300UeaMmWKJMnDw0P5+fmaPn26brvttlIfZ8eOHXblExISJElDhgzRnDlz9P3332vBggXKyspSZGSkevTooSlTpth1BD755BONGjVK3bp1k6enp+Li4vT222+XpVoAAMABzuoPADCfus9/6e4QAPx/ZUrap0+frm7dumnHjh3Kzc3Vs88+qz179uj333/XN998U+rjdOnSRYZhFLt/5cqVVzxGaGioFi5cWOr3BAAAzuGs/sCcOXM0Z84cHT58WJLUtGlTvfzyy+rVq5ck6fz583rqqae0aNEiWa1WxcbGavbs2QoPDy+PagEAYCplStqbNWumn3/+We+++64CAwN15swZDRgwQPHx8bbx5gBQlJJ+uT88rY8LIwFwtZzVH6hZs6amTZumBg0ayDAMLViwQP369dPOnTvVtGlTjRs3Tl9++aUWL16s4OBgjRo1SgMGDHDohwEAACoqh5P2CxcuqGfPnpo7d67++te/lkdMAADA5JzZH+jbt6/d81deeUVz5szR1q1bVbNmTc2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2l3VewMAYHYOL/nm7e2t77//vjxiAQAAFUR59Qfy8vK0aNEinT17VjExMUpNTdWFCxfUvXt3W5lGjRqpdu3a2rJlS7HHsVqtysnJsXsAAFARlWmd9gceeEDz5s1zdiwAAKACcWZ/4IcfflBAQIAsFosef/xxLV26VE2aNFFGRoZ8fHwUEhJiVz48PFwZGRnFHi8xMVHBwcG2R61atZwSJwAArlamMe0XL17Uhx9+qDVr1ig6Olr+/v52+998802nBAcAAMzLmf2Bhg0bateuXcrOztZnn32mIUOGaOPGjWWObfz48bZVaSQpJyeHxB0AUCE5lLQfPHhQdevW1e7du/WXv/xFkvTzzz/blfHw8HBedAAAwHTKoz/g4+OjG2+8UZIUHR2t7du366233tK9996r3NxcZWVl2V1tz8zMVERERLHHs1gsrBUPALgmOJS0N2jQQMePH9f69eslSffee6/efvttllwBAOA64or+QH5+vqxWq6Kjo+Xt7a21a9cqLi5OkpSWlqb09HTFxMQ47f0AADArh5L2y9dUX7Fihc6ePevUgAAAgLk5uz8wfvx49erVS7Vr19bp06e1cOFCbdiwQStXrlRwcLCGDx+uhIQEhYaGKigoSKNHj1ZMTAwzxwMArgtlGtNe4PJGGwAAXH+utj9w4sQJPfTQQzp+/LiCg4PVokULrVy5UrfffrskaebMmfL09FRcXJysVqtiY2M1e/ZsZ4QOAIDpOZS0e3h4FBqjxhh2AACuL87uD1xpBnpfX18lJSUpKSmpzO8BAEBF5fDt8UOHDrVN7HL+/Hk9/vjjhWaLXbJkifMiBAAApkJ/AAAA13EoaR8yZIjd8wceeMCpwQC4vtV9/ssS9x+e1sdFkQAoCf0BAABcx6GkPTk5ubziAAAAFQT9AQAAXMfT3QEAAAAAAICiXdXs8QAAAIAzXGmIFK4dJf2tGQoHFMaVdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMitnjYQrMGAsAAHBtoF8HOBdX2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJiIDkCFcaWJbQ5P6+OiSAAAAADX4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSldwdAAAAACqGus9/6e4QAOC6w5V2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkGNMOl7h8DNyW7POqIel49nnFMD4OAAAAAIrElXYAAAAAAEzKrUn7119/rb59+yoyMlIeHh5atmyZ3X7DMPTyyy+rRo0a8vPzU/fu3bVv3z67Mr///rsGDx6soKAghYSEaPjw4Tpz5owLawEAAAAAQPlwa9J+9uxZ3XzzzUpKSipy//Tp0/X2229r7ty52rZtm/z9/RUbG6vz58/bygwePFh79uzR6tWrtXz5cn399dcaMWKEq6oAAAAAAEC5ceuY9l69eqlXr15F7jMMQ7NmzdKLL76ofv36SZI++ugjhYeHa9myZRo0aJB+/PFHpaSkaPv27WrVqpUk6Z133lHv3r01Y8YMRUZGuqwuAAAAAAA4m2nHtB86dEgZGRnq3r27bVtwcLDatm2rLVu2SJK2bNmikJAQW8IuSd27d5enp6e2bdvm8pgBAAAAAHAm084en5GRIUkKDw+32x4eHm7bl5GRobCwMLv9lSpVUmhoqK1MUaxWq6xWq+15Tk6Os8IGAAAAAMBpTHulvTwlJiYqODjY9qhVq5a7QwIAAAAAoBDTJu0RERGSpMzMTLvtmZmZtn0RERE6ceKE3f6LFy/q999/t5Upyvjx45WdnW17HDlyxMnRAwCA0kpMTFTr1q0VGBiosLAw9e/fX2lpaXZlzp8/r/j4eFWtWlUBAQGKi4sr1EcAAOBaZNqkPSoqShEREVq7dq1tW05OjrZt26aYmBhJUkxMjLKyspSammors27dOuXn56tt27bFHttisSgoKMjuAQAA3GPjxo2Kj4/X1q1btXr1al24cEE9evTQ2bNnbWXGjRunL774QosXL9bGjRt17NgxDRgwwI1RAwDgGm4d037mzBnt37/f9vzQoUPatWuXQkNDVbt2bY0dO1ZTp05VgwYNFBUVpZdeekmRkZHq37+/JKlx48bq2bOnHn30Uc2dO1cXLlzQqFGjNGjQIGaOBwCggkhJSbF7Pn/+fIWFhSk1NVWdOnVSdna25s2bp4ULF6pr166SpOTkZDVu3Fhbt25Vu3bt3BE2AAAu4dakfceOHbrttttszxMSEiRJQ4YM0fz58/Xss8/q7NmzGjFihLKystShQwelpKTI19fX9ppPPvlEo0aNUrdu3eTp6am4uDi9/fbbLq8LAABwjuzsbElSaGioJCk1NVUXLlywW1GmUaNGql27trZs2ULSDgC4prk1ae/SpYsMwyh2v4eHhyZPnqzJkycXWyY0NFQLFy4sj/AAAICL5efna+zYsWrfvr2aNWsm6c/VYnx8fBQSEmJX9tIVZS7HSjEAgGuFaZd8AwAA15/4+Hjt3r1bmzZtuqrjJCYmatKkSU6KCoCr1H3+yxL3H57Wx0WRAOZh2onoAADA9WXUqFFavny51q9fr5o1a9q2R0REKDc3V1lZWXblL11R5nKsFAMAuFaQtAMAALcyDEOjRo3S0qVLtW7dOkVFRdntj46Olre3t92KMmlpaUpPT7etKHM5VooBAFwruD0eAAC4VXx8vBYuXKjPP/9cgYGBtnHqwcHB8vPzU3BwsIYPH66EhASFhoYqKChIo0ePVkxMDJPQAQCueSTtAK4ZJY2DYwwcYF5z5syR9OcEtZdKTk7W0KFDJUkzZ860rRJjtVoVGxur2bNnuzhSAABcj6QdAAC4VUkryRTw9fVVUlKSkpKSXBARAADmwZh2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkSNoBAAAAADApknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkKrk7AABwhbrPf1ni/sPT+rgoEgAAAKD0SNoBAAAAVAj8CI/rEbfHAwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJMREdAAAAgGsek9ihoiJpB4BSoKEHAACAO3B7PAAAAAAAJkXSDgAAAACASXF7PADoyre/AwAAAO7AlXYAAAAAAEyKK+0AAAAArgncOYdrEVfaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkmIgOAAAAkpjEC9e3K33+D0/r46JIAHtcaQcAAAAAwKS40o5SK+nXR355BAAAAADn40o7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUE9HBKVgiBtc7JmoEAABAeeBKOwAAAAAAJmXqpH3ixIny8PCwezRq1Mi2//z584qPj1fVqlUVEBCguLg4ZWZmujFiAAAAAACcx9RJuyQ1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAAAAAADnMf2Y9kqVKikiIqLQ9uzsbM2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2rk6VAAAAFNjDhoAqHhMn7Tv27dPkZGR8vX1VUxMjBITE1W7dm2lpqbqwoUL6t69u61so0aNVLt2bW3ZsqXEpN1qtcpqtdqe5+TklGsdAFzfrtRJZqI6XO++/vprvf7660pNTdXx48e1dOlS9e/f37bfMAxNmDBBH3zwgbKystS+fXvNmTNHDRo0cF/QAAC4iKlvj2/btq3mz5+vlJQUzZkzR4cOHVLHjh11+vRpZWRkyMfHRyEhIXavCQ8PV0ZGRonHTUxMVHBwsO1Rq1atcqwFAAAoydmzZ3XzzTcrKSmpyP3Tp0/X22+/rblz52rbtm3y9/dXbGyszp8/7+JIAQBwPVNfae/Vq5ft/1u0aKG2bduqTp06+uc//yk/P78yH3f8+PFKSEiwPc/JySFxBwDATXr16mXX5l/KMAzNmjVLL774ovr16ydJ+uijjxQeHq5ly5Zp0KBBrgwVAACXM/WV9suFhITopptu0v79+xUREaHc3FxlZWXZlcnMzCxyDPylLBaLgoKC7B4AAMB8Dh06pIyMDLvhcMHBwWrbtq22bNnixsgAAHANU19pv9yZM2d04MABPfjgg4qOjpa3t7fWrl2ruLg4SVJaWprS09MVExPj5kgBwHlKGhPPeHhc6wqGvIWHh9ttv9JwOOavAQBcK0x9pf3pp5/Wxo0bdfjwYW3evFl33XWXvLy8dN999yk4OFjDhw9XQkKC1q9fr9TUVA0bNkwxMTHMHA8AwHWO+WsAANcKUyftR48e1X333aeGDRtq4MCBqlq1qrZu3arq1atLkmbOnKk77rhDcXFx6tSpkyIiIrRkyRI3Rw0AAJylYMhbZmam3fYrDYcbP368srOzbY8jR46Ua5wAAJQXU98ev2jRohL3+/r6KikpqdjZZgEAQMUWFRWliIgIrV27Vi1btpT0563u27Zt08iRI4t9ncVikcVicVGUAACUH1Mn7QAA4Np35swZ7d+/3/b80KFD2rVrl0JDQ1W7dm2NHTtWU6dOVYMGDRQVFaWXXnpJkZGRdmu5AwBwrSJpBwAAbrVjxw7ddttttucFy7IOGTJE8+fP17PPPquzZ89qxIgRysrKUocOHZSSkiJfX193hQwAgMuQtAMAALfq0qWLDMModr+Hh4cmT56syZMnuzAqALDHai5wF1NPRAcAAAAAwPWMpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCkmogMAAACAq1DSJHUSE9Xh6nClHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTYvZ4ALiGMZstUPFc7b/bK70eAFCxkLTDhkYeAAAAAMyFpB0A3IwfzAAAAFAcxrQDAAAAAGBSJO0AAAAAAJgUt8cDAAAAgBsxcSxKQtIOABUY4+EBAACubdweDwAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxUR0AAAAFQgTUAIVD/9ucTVI2q8jfFkAAAAAQMXC7fEAAAAAAJgUSTsAAAAAACbF7fEAgCJdaUjN4Wl9XBQJAADA9Ysr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxZJvAIAyYUk4AACA8kfSDgAoFyUl9ST0AAAApcPt8QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASTGmHQCuY1eaTA5A0a52Ikb+7QFwxNV8Z1zNPDJMOmsOJO3XGDoBAAAAAHDt4PZ4AAAAAABMiqQdAAAAAACT4vZ4k2HcCAAAAACgAEk7AMDl+IESAACgdEjaAQAAAOAaxUTVFd81k7QnJSXp9ddfV0ZGhm6++Wa98847atOmjbvDAgCUAVfiURTaegDA9eiaSNo//fRTJSQkaO7cuWrbtq1mzZql2NhYpaWlKSwszN3hFcKvXQBwdUr6HiWhvzZVtLYeAABnuSaS9jfffFOPPvqohg0bJkmaO3euvvzyS3344Yd6/vnn3Rydc5HwAwCuR9dTWw8AwKUqfNKem5ur1NRUjR8/3rbN09NT3bt315YtW4p8jdVqldVqtT3Pzs6WJOXk5DglpmYTVjrlONey00a+/P//f/Ot59wdDoBrSO1xi0vcv3tSbJmPfaXv96s59qUK2iPDMJxyvIrOjG39ldquK73P9dD20dYD1z5nfader0rb3lf4pP1///uf8vLyFB4ebrc9PDxcP/30U5GvSUxM1KRJkwptr1WrVrnEiMIaFvzP2VPSrIHuDAXAdSZ4VsU59unTpxUcHOzcg1ZAFbGtL8/PWUVBWw9c+/iuc44rtfcVPmkvi/HjxyshIcH2PD8/X7///ruqVq0qDw8PN0ZWWE5OjmrVqqUjR44oKCjI3eFUCJwzx3C+HMc5cxznzDGGYej06dOKjIx0dygVFm39tY1z5jjOmWM4X47jnDmutO19hU/aq1WrJi8vL2VmZtptz8zMVERERJGvsVgsslgsdttCQkLKK0SnCAoK4sPvIM6ZYzhfjuOcOY5zVnpcYf8/tPUoDufMcZwzx3C+HMc5c0xp2ntPF8RRrnx8fBQdHa21a9fatuXn52vt2rWKiYlxY2QAAMAZaOsBANezCn+lXZISEhI0ZMgQtWrVSm3atNGsWbN09uxZ2wyzAACgYqOtBwBcr66JpP3ee+/VyZMn9fLLLysjI0MtW7ZUSkpKoQlrKiKLxaIJEyYUusUPxeOcOYbz5TjOmeM4Z7hatPW4FOfMcZwzx3C+HMc5Kz8eBuvJAAAAAABgShV+TDsAAAAAANcqknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2k0gKSlJdevWla+vr9q2batvv/222LIffPCBOnbsqCpVqqhKlSrq3r17ieWvVY6csyVLlqhVq1YKCQmRv7+/WrZsqb///e8ujNb9HDlfl1q0aJE8PDzUv3//8g3QhBw5Z/Pnz5eHh4fdw9fX14XRmoOjn7OsrCzFx8erRo0aslgsuummm/TVV1+5KFrAtWjrHUdb7zjae8fQ1juOtt5NDLjVokWLDB8fH+PDDz809uzZYzz66KNGSEiIkZmZWWT5+++/30hKSjJ27txp/Pjjj8bQoUON4OBg4+jRoy6O3H0cPWfr1683lixZYuzdu9fYv3+/MWvWLMPLy8tISUlxceTu4ej5KnDo0CHjhhtuMDp27Gj069fPNcGahKPnLDk52QgKCjKOHz9ue2RkZLg4avdy9JxZrVajVatWRu/evY1NmzYZhw4dMjZs2GDs2rXLxZED5Y+23nG09Y6jvXcMbb3jaOvdh6Tdzdq0aWPEx8fbnufl5RmRkZFGYmJiqV5/8eJFIzAw0FiwYEF5hWg6V3vODMMwbrnlFuPFF18sj/BMpyzn6+LFi8att95q/O1vfzOGDBlyXTXihuH4OUtOTjaCg4NdFJ05OXrO5syZY9SrV8/Izc11VYiA29DWO4623nG0946hrXccbb37cHu8G+Xm5io1NVXdu3e3bfP09FT37t21ZcuWUh3j3LlzunDhgkJDQ8srTFO52nNmGIbWrl2rtLQ0derUqTxDNYWynq/JkycrLCxMw4cPd0WYplLWc3bmzBnVqVNHtWrVUr9+/bRnzx5XhGsKZTln//73vxUTE6P4+HiFh4erWbNmevXVV5WXl+eqsAGXoK13HG2942jvHUNb7zjaeveq5O4Armf/+9//lJeXp/DwcLvt4eHh+umnn0p1jOeee06RkZF2/4CuZWU9Z9nZ2brhhhtktVrl5eWl2bNn6/bbby/vcN2uLOdr06ZNmjdvnnbt2uWCCM2nLOesYcOG+vDDD9WiRQtlZ2drxowZuvXWW7Vnzx7VrFnTFWG7VVnO2cGDB7Vu3ToNHjxYX331lfbv368nnnhCFy5c0IQJE1wRNuAStPWOo613HO29Y2jrHUdb714k7RXYtGnTtGjRIm3YsOG6nAjDEYGBgdq1a5fOnDmjtWvXKiEhQfXq1VOXLl3cHZqpnD59Wg8++KA++OADVatWzd3hVBgxMTGKiYmxPb/11lvVuHFjvffee5oyZYobIzOv/Px8hYWF6f3335eXl5eio6P166+/6vXXX6chBy5BW196tPWlR3vvONp6x9HWOw9JuxtVq1ZNXl5eyszMtNuemZmpiIiIEl87Y8YMTZs2TWvWrFGLFi3KM0xTKes58/T01I033ihJatmypX788UclJiZe8w25o+frwIEDOnz4sPr27Wvblp+fL0mqVKmS0tLSVL9+/fIN2s2u5t9lAW9vb91yyy3av39/eYRoOmU5ZzVq1JC3t7e8vLxs2xo3bqyMjAzl5ubKx8enXGMGXIW23nG09Y6jvXcMbb3jaOvdizHtbuTj46Po6GitXbvWti0/P19r1661+yXvctOnT9eUKVOUkpKiVq1auSJU0yjrObtcfn6+rFZreYRoKo6er0aNGumHH37Qrl27bI8777xTt912m3bt2qVatWq5Mny3cMZnLC8vTz/88INq1KhRXmGaSlnOWfv27bV//35bJ1GSfv75Z9WoUYNGHNcU2nrH0dY7jvbeMbT1jqOtdzN3z4R3vVu0aJFhsViM+fPnG3v37jVGjBhhhISE2JaQePDBB43nn3/eVn7atGmGj4+P8dlnn9ktOXH69Gl3VcHlHD1nr776qrFq1SrjwIEDxt69e40ZM2YYlSpVMj744AN3VcGlHD1fl7veZpM1DMfP2aRJk4yVK1caBw4cMFJTU41BgwYZvr6+xp49e9xVBZdz9Jylp6cbgYGBxqhRo4y0tDRj+fLlRlhYmDF16lR3VQEoN7T1jqOtdxztvWNo6x1HW+8+3B7vZvfee69Onjypl19+WRkZGWrZsqVSUlJskzykp6fL0/P/boiYM2eOcnNzdffdd9sdZ8KECZo4caIrQ3cbR8/Z2bNn9cQTT+jo0aPy8/NTo0aN9PHHH+vee+91VxVcytHzBcfP2alTp/Too48qIyNDVapUUXR0tDZv3qwmTZq4qwou5+g5q1WrllauXKlx48apRYsWuuGGG/Tkk0/queeec1cVgHJDW+842nrH0d47hrbecbT17uNhGIbh7iAAAAAAAEBh/NwGAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAm9f8AHVFEjxwb1a0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fifth_percentile = np.percentile(train_ood_features_scores, 5) # 5th percentile of the train_data distribution\n", + "\n", + "# Plot outlier_score distributions and the 5th percentile cutoff\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))\n", + "plt_range = [min(train_ood_features_scores.min(),test_ood_features_scores.min()), \\\n", + " max(train_ood_features_scores.max(),test_ood_features_scores.max())]\n", + "axes[0].hist(train_ood_features_scores, range=plt_range, bins=50)\n", + "axes[0].set(title='train_outlier_scores distribution', ylabel='Frequency')\n", + "axes[0].axvline(x=fifth_percentile, color='red', linewidth=2)\n", + "axes[1].hist(test_ood_features_scores, range=plt_range, bins=50)\n", + "axes[1].set(title='test_outlier_scores distribution', ylabel='Frequency')\n", + "axes[1].axvline(x=fifth_percentile, color='red', linewidth=2)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "74c39ab1", + "metadata": {}, + "source": [ + "All test examples whose `test_ood_features_scores` fall left of the red line will be marked as an outlier.\n", + "\n", + "Let's plot the least-certain outliers of our `test_data` (i.e. 15 images with outlier scores right along the threshold). These are the images immediately to the left of that cutoff threshold (red line). The majority of them are still truly out-of-distribution non-animal images, but there are a few atypical-looking animals that are now erroneously identified as outliers as well." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "616769f8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:32.329520Z", + "iopub.status.busy": "2024-05-24T23:50:32.329323Z", + "iopub.status.idle": "2024-05-24T23:50:32.567365Z", + "shell.execute_reply": "2024-05-24T23:50:32.566750Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIICAYAAACVatOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgFklEQVR4nOz9WYxtWZ7eh+15nzHixHznMeeszKzKrKGrqruqemLT7SYN0hBpirYGwxP0YAiyZcB+MQwTECzDEAhZDxIJC6BtUZRENmWCQze7ye6a56qsnDPvvXmHvPfGjfFEnHHPfmj7rPV9p2/suNUZIWb393va/1jn7GHttddecda3vr9bVVXlCCGEEEIIIR6L99/1CQghhBBCCPGvOho0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1BMf94KtP/zLEnBPF9dzZtuf7UJZR+pTKxbG6G0Rmm8bxbklfdjF0qDjLc3MeQQxlfF5lWUBcWMcq6TBekUG887APcUInsnpu2Xy3wr25Je6ryjHOsxTiLJ3ahXhiZUpx7tAfZlsF1VXu4u3fOrzhnBTf+Rt4L/i+hdatKfC2OIGLf/B9aiPWd8sU67qssMFU1J5++OASxD+43Zhtf/Zrz0DZV//ivwfxxcuvQDxNzHndvvVTKDvcvwnx+N73IN7+4X8N8f6muefxSgfKBn28pgfv7EFcUJNIAnPNm1N8Bl66jHW5MEggbvjmWBNqQGGA5/G/+x61zY+Z//s//jHEVUnPlWv1QR61EepXuB24VsdyVN/mOI7j077LAp856zQclz5b5PhZzizlWvWdF/wsc+eH8HOR5+a58elZd6gPTjJ8xub6aM+0mzLHNjJ3H/wQ4sJ6BqcptZEIj/N//MufdU6KRrMBsR9g7ee5iSvqg7gNUPU4nvUHvktc9xX1ZxV9w35N+XTcojz6dy676XouPx8VfZauiVpj4MfWZ3FfBd3zJMP7Whb8fFnHpeP49F5uRNh+7NPMaDCRJFOI05Q6v4+R3/4P/zcQF9TR+lZ/2GzSNRzRVzmO4/i+GQPFcQRlBwd9iEdD7Bda7RbEpdV4596VdNwowmONp+PZthfifel28D0UB/jdYTqGuLTGMUWC1z+dUJ9JzbqgQUBptT+unyimcZ6H593fP3QeR0zf/Uv/2//bYz8723/tJ4QQQgghhPgzjgbNQgghhBBC1KBBsxBCCCGEEDUcW9PMOr8jP1v7CdZSmZgkN3MaHKZkvbAljnnS87D1vy6VhR5qlBYXsRyVVaR7ZP0kXxPr5agYq572xXrxo+6Ty/V+ehQTUon7pI+1/n8LqqO1dzldtGfHc5dPmkCK794aQRxYN3KCRc6Z889D3AhZt2a0nhvnnoKyhTXUR9/3UZf13h/8Q4ib0cScc4mfbV9fgbjcRP3X4b0Bxpae7GCMn11sYxewtE76uB1zHl6KdVc+QZ/wcZDTvfMCrH9o3x7/HkCtvWDtu6Vn5WUUvC+Kc9aGHqGtzugZnNNWW7enLOl6aV98nrREAzW6Hl4vnbKTUX3Mdw7mD7zeg9dK+PTd0rrmnPq6oEaj+3Fy5lwX4vNXUYd790NzZckEnznWUbYWUDfZjE0l+AXqJOMIYzecQLy+jFrrJDPnEYZtKAt8fD5bDTyPw4HZt+uj9jwOsK69Bj4/HvUzjnUdsYc3OSO5/a0HQ4jv3XsIsa2X5rUQa6tLED/91Hn8bmWuY2sPG/mPf/Kuc1o8uH8A8WCAWln78VxcJP08aYvjGMsdx7xsKgevMc9RO51M8F70D1BLvLC4MNtuxEcP8XjNWNN6L2XUCRwm2Namh6Rrp/K2b66xv70JZQWtvVrsYTsPQ+pTK3Md0wTrZzTG9x2PgZLk8Tr34XD82LLHoV+ahRBCCCGEqEGDZiGEEEIIIWrQoFkIIYQQQogajq1pntfTsZjW2iSdDCsfK/aLPPLDNXrgOczn+bPz3z1CM0iiv3aEWrK/9le/irtqoG7t7/03X59tD0n7xNc0V19zmt7SDo7e15zO1Ipr6+7kKMlfk31Pp1a5S/pL9ot0fCyPA/u7pLvN8bjTFPf13k0ULk8sz9CXfNQOt5qou2IZaGn9ISCjVzdD1fvho1tY7qKecDQ05/3uu7tQdn9I50yi0vEA6yCxylskWzxM8LN3ErzGDWv7TAevIWdx6wkThNhdzWmNLY58Dpz5Pqi0ytmTlv1rmZLLQR9NGmZun3Sevr2+w8G26pGZqRdg+dzTbV0Ge0uzD7NPbYh1yqXlm8rXm7GpMb9WrGtmLTWvHTlJlntNiM+vYp9+aOll3SXUnIYh9u+9NYzPrJjnpkjx+iMXNZVhiNrqM6t4LM9617RiWmNA9XXxEu5re8e8a9pdbB8FaeQd0hZXKfrweoXRGrd91KD69Cy+eRO1ob/3L78DcWR9vEk+zE+RhvnV167jeQyNZnWUL0LZ5hZ61J8ke3vbEA+H2B/afU6eYVtbWMD7lCZYX0FgKsgPeFyCnTb7bSfkeTwNTTseDVDvm5FPfDLFa/AsrXF77SKUDanv2t5DHXtMfcprz56dbTdiPI+79+5CzOsxPF4YYfWF7MM8pWtIyTMc9eS8puTJX2L6pVkIIYQQQogaNGgWQgghhBCihmPLM1jawNOfpfUzN0+Rz00czs12mj/wT+88NTqX4nZOgmH+D5iTlPBh2b7NdqyiecQGTZN96Rc/BXGrh9NG/+SfmpS/4zFOp7s0ncmTm3NTCNXjSp6MuSnrU1RrLGxg7IdkG2dZT3EmcC9muyy2zjPf5czDPlnX9FO8jzu0r1/86udm25deeJGOg22zcjjdubFGSjm9K9X9sL+D+ybrKPsx2B1hC3n7Pu47oKnTtUV8rNvW1F82wH397k/xGtIU9/XrL5i6v9TD74aU/vak2X30AGLuK+w+qOD5PpqGm09ra9pQTlOYnsfTpXjcjI7F04OPO8c/7jwieyq2ZubQJ3nGvErE7GCuS6ZrmJNjsI7C+nxeUcpkkrPMWQH6pv3ldCB/znrr5EhTfB9sPkQ5QjMy59Zsko6JnrGMnpNGuDzb3hqiNdlkihZzCx2cur95G9vPV79wdbZd0TT1/U2UdWUpfrdrWeEtdBagbFL0IXYqlGJt98m6rGnqp6B31voZlBtcJGlHu4Wx75n66rSwD15ZxvrotDDOJ6a/WzlzFsrWVlad0+LZ569APDjE+ppOTV/aIzkGp4V+8AD7stwq55TSLMGckn1rmmHsb5kdZJzenJ7zlDR2bm7Ooz1dhrJyAeP+AJ+Bsz28r4H13t7b34Ky4WBKMZ5nSrZyE+vduriIYy3fx/5mNELZiG/ZJcYkow38Yw+BZ+iXZiGEEEIIIWrQoFkIIYQQQogaNGgWQgghhBCihp87jfZRsTunna0Tz1opWllryCKcuRPDz184d2a2fUgpEkdj1NGw3RFcA52zz9rqDG3kFjqorbK1M3O66zmNJP7vclrOcKeZBDmKKH1uA6+5tHShPlkjuaTrY+sk39IlhU1sDwVZzi0tXYX43/43UTvVaJl9XX76s1DGll8J6QkrS5dWFKjRKgrUXU0m+7Qv1FB6uTmPlQg1kTFZ8PWapIem9nV5wdTB7zwkuyLSzf7KFfzDS+ettQp0XDc4zRbkOK9/99v4B3pQPCtOU9RqB/SMscbX1jFzH9RooO7WpXYwZg2ztW+2kxyS3o4f9dA3/UZJ+l/WWlf0BM9ds6U5pyy+Tk7XGNKajZC0xq220ajmBR6HU+I2Wl2Kzb4z0lB6IWuav+acFJy+ebGDz9xyz9R9q0vaxyZaZo0n9CxYusrhAdZHSpZYrKtcpgUfRWr2tZ2i3WTukbZ6jG1vYcXUfeDjfWhTOu/DPn53PL0P8d6mecc1Q2xAy+ew7a2sPg1xHOF9nU6NzpuXG4yHvEYD70uwZK6jzDA1eETt9iS5eGkd4oxyidvjCc/DoRXbojU72H5yazFOwQtziIK8TgMf72th9Tl7u9h+/AA/Wxb4TNhWeIdNbD8Z2S5evvosxNc38PNJcm+2/WATNc2Vg/tKU7yvbMU5zUyfM3hE+yqwbbaaTYpNfU1IS11WT/67sX5pFkIIIYQQogYNmoUQQgghhKhBg2YhhBBCCCFqOL6mmYVIcx7HVupYKvPJzzU/wk90TuU3Z/lMelbSjr5w2Up9TKksf/gT9LhMXUptaWurK9S+9Lqoj95/912IO2EPz8tOM8qaZU5nymm0SW/o+XaOck5HfbSZK3o8H+21fZLkdNO5DjKrec1l5SV/5LCBOrbKN23AL7BJJ6QLjZfPQNy9fxPi27dNWtZnHdaac4pu1J5NrPTWacp6eoxv/uxDiO//BH2bz1l+q36O159WdNwM9WG2X6jjOM7XLpvt15agyNkbYft5ETOHO44lLwzxcXLc7HTTsp9dRO9X9iBNEnPdnQbqIlkHHlMa4Cgyn7dT2jrO/H0PI9x3Tu0E9XhH647zHBt7Zj0nfB9ZH83+yPx8Z5b+s3JIJ+ke7dPM/q1BaWkOU9TYFwnqERPyJb79rkk/HNGzu7ZMBu4niO3X6jiO027hfbb9bhfR4thpd/HB2N4j3XJlnu+LF7CPiUL0Fu42sb6WOvhQ5pYAvRFhG790BVMbXz/zMsRNS3t+sIcppqd03/rZbYg7bWxv3tj0K9Mpnsf9O7im58IV7IM6HbzP9hoO1uYXBfaNW9t3IL5+3fjlF3Qec37aJ0hC7Zyxn+2APNQbTayfs+fWIM5zu+6PXhPG7+2I1gVUlk734gXUYYcxnkee4T0/GJj4YfkMlC2vY3yNNN4tB3X/j26a9vfCC89BGXvdc5vgdV9pau77/l4fynZ3MW41se0tLJprntA99KMn94nXL81CCCGEEELUoEGzEEIIIYQQNWjQLIQQQgghRA3H1zSzTzFra23dzZzRMH32iLH6nKcx74tD8ixs+kYb8/lPoXfk5q17EN/bRg2OreNrh7jfV65dg/hCr4cnQoa34C1Ml1unJJ6vHds/uu7bc4Jxq4S/e3qa5rhJ+uAQNUyhZ+vJ8bsleYT6IWuNjWYpJ8vcqH0e4hF5lz68jbq/7/ygP9v+8l85gLKCvCRHB32I88yceDpFzd/2w/chvnUXj3tzE/WGzaXF2XZvBXWvzUeoQ2t7eNEd8rU+e9Z8/79P7Wf/IYTOWojlXdB94nkkp6xp/p/9j/91iFPS4yVTc3+KAs+1RdpH9vK0vdK5zylIb5fRvguPPcdtXTK2GdbusddrZrUh9jTmvo81zez3Dp936Zxp1xX1OhmJnAtrnYVLPrIlrXcZkh/+w0dG0xyS53XQRJ36SZJSfaU5eqcXpWnrQYQ64z7a3TpFic/rgnlcnWqCx7l+BTXN6Ri/O03JZ7Zr6uhTl74CZRfOXYY48LA/yy09a+RjH3Tzg29CXAXoFb+0jM9EYVmKN9qo6W6GeNzJEI/F4wO7/Ti0Dofb3s42ru8IG2b9UORj+/Hdoz2NP05C0g7P6XDtZ4ye1WmCz4TH62Nsj396ifFnuc8oY6xPu88Jae1GRethHPL9Lq32dO7881B28RyOgYIS71MxxfYUR+a+Li/hc05W9+Ap7ziOM5ngM5JMzTV2W/hsXji7CHEUY1/vB+Zg05Tqlrynj4N+aRZCCCGEEKIGDZqFEEIIIYSo4djyjCeCp9d5vp2mLqonkhDwFCTubDQ0kosrG+gb9MJlTHV9uId2Y+7Usg3q4PTTp86jNdLZtWWIN2nqGmdKa6ze5mzkjkjvjd+ci7m2SqhbmhbjOZITJOhyG6C0xtaZe5ye2cO6dR20KKosm7nIoym01acgHuyh5GK4j3Uy6ps5yX1K/Tme0NQOVV+RmH2P+piS1ifLr5Ue2uJ8b4zX/Pd/YKa6vnIGp64cSv3Zn2D9fHGd7MLsdMGL+NlwH6+psUhtD6RBlLY6Or2pUcdxHNdBqUNI7cQDCRC1L5KsJA5eN1gilnRjU5Km0bRs4uHUq2s1DJ+s3bjdk9LDCa2+MqLc1zk93aVP9oqUztp2dSypPnLydSyoD+Ipc9uirnT5uFSXDSxfuWb64SlNPSfF6Ul8AjrvpYU2xivGBqy5QGntyYL0/CJOESeleV4HJM3a2yeLyEOs+5UltKg7v2LkHO0A30M330Xb1HsPNiEeTc19bNM7LKfzyhZQIrbaOAdxaKVc3hv0oYydTptdlLrMvVrsP1A/EvkoC7lwjqwlEzNVf0Byp8EQJQEnySN6H7AFnW1bWZBkKSNZANOIrPrjToElq/TdhPp/sPCl52syIntIlouFRobjTlD+9s5bP4LYn2Lbu3gW20AcmmMPD/CdnZBcJQjwu8PhEGJ7COlSXx4EVD9kZ5clpn7GZOOZlxgfB/3SLIQQQgghRA0aNAshhBBCCFGDBs1CCCGEEELUcHzLOda8HZmCmbR3Jduxkc7P/iynhq3Ygo50uXQe07HRwuRT1K9eOdOD+PYCXn7H0hK/cA71bqttSt9N59HfQ71TZaX3ZsuqOc0S1Q+ny7W1pLUmcUd8YE4tTnV9kvB98itsA551LlVB9lcp1heftRsbffD07G9C2bSDmub08GcQjyaopcpH5lilg5rA//q/+X9B/NoLz+KJlEbjlWSkvyXrn617lOKW6uPQaiM/3EE93CoJBm9T/ThNqtvY6LwXNvC8uj5+t73AQm3Tdl06buidnh71j06A2hCdqm9pfOf01/TdUYKWRqV9baRp9vjBoX0VrNEMQ+ujuK+A9HhNSvnqHfFMptRP7A7RMnNAOkDP0gkGIaX+pueR7bM4zbbdJdnWbI7jOCm13ZRUl2lm2ti0YLuxx78LPm48B+2lYkqHvrJk4ows+q4/jdaV3QbqcD+4YfTCqyv47qCm5hRUXwuWvaTjOM7tj0zf8PVv/hDKogjb0+YO6pTz0uw7JRvUbgvvy8VncM1P4uJ6kF7XnFd/gPZiJWniQ3oYmy2ydLSeL7acjcjmsrOA8WRg2nEyIA0uaWNPkj1K31ySLWOWm/Ii53c6rb0aoca30TBtLw7xneRQnxBRiu4pWaHGkelTfE5XXdH6Awefgaxp6vPOR9+AsmLwCOKXrqAWv3X1CsSjfXONu7ukp09Ih+2M8FjUT0wtK84kRR1yFNPz1MXv+nb9edh35bze7hjol2YhhBBCCCFq0KBZCCGEEEKIGjRoFkIIIYQQooYn0DRzfEQa7TkNIIasn/Ojo3Rt7O9LKW5JH5xlmbWNeqeqRO2PX2F8ZsVoga5dRR/OZpt0jOS7++g+pugeWWlF57TEpE3kymUNONT13HcxLo/UmvOJHP+jf1LKAu8xpwN3LV1bTr64HqVrrkhkOg4/O9t+40PUIVfVA4iTLfT1vPgaap7femC8u/0u+oW+899+G+L2IWpKn/uy0Tgvdq9D2WiMGmbnAqZ4H/3sDsS92OgvPVJxD92jPMEdpxnz/8LmMW+sol4uJP/ZgLT6dgrXuXUNpyxpnofXO5jYp3UTPmkwYzr37QPTLhJKU7vYRs1pluG+UtIYphMrnTel+mbtZ7eDbSy2zpsf5TKn4+bYf7ncECr7mZo+ruiPjhuh3ncujbad5pe6IPZ45mfbTpHLTfNJuqs/KXRb57SR6dR6nuk9MxmjJrO/i/2I7xpNZuihTt0n3+rFDqdwR13p937wzmy7R37RG2cxnfWDbeyDKuuhHE6wffSHVAEh3ox1WuMTt43GOYyw31haxfNqNPFGxkekJ+Z8AfSIOAf7vH7KbJfs2R88uc/uz0t/F3XI/K6dJqacfaqLlPoIaoz9obmOkDTNVYLH7TTxPh1y/gBrXOPzOpQOxkurmG8itd7TG4t4D5tL2PbWz2C/GIbY7u/dMzr4R1vYTj1Kh84LRw4H+LyllgY6mR7dl62s4tit0TAfaDTxuJyS/Djol2YhhBBCCCFq0KBZCCGEEEKIGjRoFkIIIYQQooZja5rrsPWO81LHo4VrtoaXvWDn/Fb/mL3bDMZG/8NeiJMxxnHA/n5Ga9ZeQF1RUqDnc+H0ID486EO8/fCh+SzreSkv/bwuGYtL+w9U5pG+0K1YD20XOsTpCQrdALVEVY5atNKSZbEOqwjoIsnrNjk0+sK9H6MPc7VKnpaH6Ad59toGxFHTaExXVnpQ9tf/rf8lxA83P4R448Krs+3DIR6nEeA9/3f+vX8X4myCn/8X/+K7s+3nVvAa7qJU0WnRv74eibyCtrkmfwl1auUuaq09ahOe5S8akH0o+xWfNnPe30f4vycZfnZMUsg7D7dn2yPyfn3h2R4eJ8Y69MnTOAFjXroXIfm9h/zsG40de73mJCZuxNh9Z7y+IzUPFfd1Wcner9iIqgq1fonlBcseqnPLLLifsarApfrwT7EP4m53sbsKcRSbcylI7/zI6s8dx3F63R7EC5Y2nSxonQbf8wb5znv47C8tmb7yF157Gcp2tjchPiRvbltXmhd4DycJdhybD1ELW71wEeJlS8M6GF+AsnGCx2VNakSaZruNeOwBjntyyim+KybWu2KS4XErF6/hJDk8xPosSl5PZW2XeF5ZgffYIa9uJ7fbCN4nXgM1GmNdp1QFoW/6H37eGhXqfXPSiLfPmDVBZ9fPQlnLR51xbxH9yKdTPM/bd03uir0D7FObLdTEt1u4r8EhjrcSax3cZIrPZkZr5EofX1SWBbYThli3nvvkC3P0S7MQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUcOxNc0s/TjKX5M/6/F32cTQBdEbFeEfgpy9YlG/8tGe0Ty9/v5dKLuyjL6CV85j7nR/wRwrXlqAskaEupnB4TbEB3sTiM9Y+srMRw3OYUZ52Kk+EvaxtDxm8wo/61HskyC6sv1pSUt2mv8xsQ7Syzn3vAV5BVflnGgXwrAw2uLW+i9B2WgH69pNsD3t3NyC2H+wO9vOd/tQ9twXvwTxxv4lPK/E+FJ+/bf/H1g0QS3eF3/9NyH+rT//WYjvvvnmbPvpMyha++gGXv9CTHVLD1ySm/oL1p6BsjhCX2v/nZ9AHFoelznpgifT0/2fmzXMjO3/zp8dkYb54T4+r5sHRuuWk4bwzibqvlcXexAvtrEP8i3xd8V6X9LKTkkn2YzNd33qSFukOy5IU17Qc+E1jZivFaGGMGdvZfJpbuT4arC9whPSR+e8RIPXoYSP15qz5vIkaVAdBKQnD1rW2hp6NUYjvE/rXdKxF0ZLHER4/fkIPWrdBO9jFvYh/pWvfXm2XaV4jjc+/Aji3X3UfvqB1Y5rtOdRjH7RU4d075VZA9RsouZ0v4/HjXz06G23sT25jmkkFWmBB7TWqMjRu9zW20/J1LnInlyT+vMyGKEuNyPNuGN5mwf0bPrkc11l/NCYz7NHejW3ZoLyOtD6g8pq180G3pcp+RJPSed+6azR+U8n6EW+uED+9Yvo8ZxMsH7OXzk327781FUoGw2p/72PawYqyh+QWfWT0pinoHbbH+J323YekArbTxw/3k/8ceiXZiGEEEIIIWrQoFkIIYQQQoganiCN9hFpsykuaXq9IM1FRT+vu4WJKx7Gezx9R9ZILv68vjs2Uwjv7+LUw7XrOEXydBen10vLwqnwcSricEjTZK+/BfFoF6/xC1fN1IXnoN3MKMVqPxjglMF7H96H+FFhphumFdrxlA5PVQQUV9Zn8RxL9/HTph83jRaljnVxqtSxJCwVWWeVMaVADrFNtKdmGunSR5jq+ge38L718zWIH9xE27irsanrm9/8Z1D26a/+MsRjqs9/9vf/i9n2f/Cf/FdQtklpRP/SGyjv+Yu/jmm1v/JSb7a91sLvfvsGtutwAdvEpV94HuKNz//CbLuxfA7K4ss4fVc2UMLkvfOHs22aBXQ8stE7aTi9/Fy6WauPGtOU74NtlMc8OsDpwdSaBk9pCvjuLUxxnvRwanpKU9FFZu7Pt7/1TSjb23kEcejhM9i2UxeH+CxzT5iTLiIgGUSeWuUlttVzly5D/Pwrr0DcWcap141FM2WeVXheOXtk8oy5nYqdi04xjzbbQG7270F88flrs+3Cx/7pjIfP2PgAZV3D3JQ3Omhld/MePr+/9Np5iL0mtuO2NbX/7Z+9jvu6jfKMEaXKrqzp57hBqYrp5dpeQvux3jr2jf3EyJLyCCVijQj3zfZ2lUNt05JYcLb3lCQC0xSf3aA09dNu4nuk3cT+6ySJ23jiQcHvT1O+tI4yuK1DfGYWmtjHPHXJyF/6/T6U3f3wJsRuid91Gyid8dtGdrq0iP396hLK8Q5LvI/7A/P+WyIv0wtnUc56eIDtekTylZU1M75iycnBAMc4WU7tq4nHng5NOQ8ROcV7Rv331BqPxvxZ9qE8BvqlWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSo4dia5pxSFc6lt7aESuR0M6el9UlbFVq+TGxPVJD1SEHaGDdETZPrG6u4YYr6p8TFfb383HWIH+0aneNHD1HH2AlXIH7/XbSharfwPM4vmziZkBiULKruj1Eb5K/jeS+PTf29eR8/m3qoUSpc1kFamma6Z8Up/s/E6YMdF3VHXmU0S65LbY2stgLWQTZNfGkVtcLpOTzuYIh61K9dwn1tWDK/pPlDKBsN+xDvbKEe+palP9w/oFSflNrzvZ/8FOJHF1Bje2HJ3MdD0stf57SqbdQhX/jCFyDe7xvN4N7+e1DmeWjv1O6iHrrlmWtaau9A2bym72ThPueoPikIqGsr8H40qI1dWjV1ePPdd6DsTbpX77N3l0vpdC2N5mGfnleyZeKU8VVpzisvUOfHl+RUWN4jveLUSjfb38fjDp/H/usDuuYv/NJXIH7xM5+ZbXu03iMgi8wjsmjPi5pP0XIuJ93khYtYX4N9c69GQ/ysl5CGd4g69qhjp68mTS7Zfk0CtDNtbaHO/eE735ptlwVqqzFFu+NwEmpYK0LNlC3ohvuo8/cL7KOCltFmj/rvQ1l3CXXbgY/1wUuRfM80Xl6L4Pv4DLB9XbNt4nGBNmhpinrok+Szn3sB/0Dvoam1huDewTqUlT6mIb83uAHx9UXTJl65hjrkjRWs226X2m2K5W++b+7r/gDHElefRa11k9YWLa6YY5/tkW3gFPv/P/jGj/A8yOots2z1ppxbnqzfXn4G62ehiZ3d4chc0zQ9eix6cIA2s2hhy+vrnCdGvzQLIYQQQghRgwbNQgghhBBC1KBBsxBCCCGEEDX83D7NjO2h6laodQwprW9M+sKNrtHdFGQGG7ZRc7PcQ0/Ce1t93Lel0cz7qC3rVOhLefgAvTbblkftlYuY9vGje6iTuXId9dDOFLWygSUHirroeToeos5xaQXPa4XSfXd2zXneuIf6t6zAW+hSWnHX0luSffZ8jt8TJHAolWxJvp62Vp007yRhcqZTbF+VJaBbWMRrevlV+r+QLWUpTfvUSnEbXMT7kIxRT9glHfsv/aZJjf33/iVqRCc7qMX73GvPQbxxpgfxg32jeVtu43FeWOpDfFDheU0y/Hw6Mv60RYAat+FN0irGqHFe3LJSw3awLksWr54w7NN8lHc8f/bGmz/F+H287qmV5rwYotZzdA89RUcZaY07WGfTienfAvL77bA/OVVikpjG3o5RR1uRDpDJ+tjGXMs/uUGp6D26hvEE29A/+4e/DXFspc5+7lX0dE4r1CvOWetbMTeZ4vQkzc5SD+/TchvXqfiRue/xEtZPukdpxi/1II5CU7/bO6gXX2iTLz95dW/fRX3r1XPGs32jjd7JwZvvQhzSWhHXsft/yodAqZ2nU7zG+3fRD3jjoqkvN8fv8nEDn987/HkrPTylYV9ooUa31cT7lFh+5FVFZdPTe4f5NDbxfLwO38of4E52oWx59WX8bvMpiL/1/Z/OtqfP4HhhuYN633ET/ZLfvYXe3fsDcx5FRP7INAZ6hdZ1LVle1K0GXu/v/8FPIX7zNvY3CemWc6uPyTPUO59ZwXfU08/jNUYZvnuHQ/NMlXPjFrwP0yn7fpvzmCbY5jmd93HQL81CCCGEEELUoEGzEEIIIYQQNWjQLIQQQgghRA3H1zRzTHrCwNL3uKTTC8gfc7mB5VeWTPzwPuqML25chPiXvoxa0DxCrdk7HxrtsZ+hxqYiz8u791GT88IXzs+2GylqtDb9Pp7zc6g127lN/quWvml1g/1A8X+VOEBdjc/+s47xcFztsF8ofjYhrbBrac+8AK+pcE7PZzfP6dg56WOt8w5IA8++33NY2s00xSY9SfHLjTZp7SI8j1Zgjp35qG3NPGzHLumDz1na9KtrqL0rUvzuygrq1rJyBPHSqmmr936M+rgm6dT8HLX7O+/chTic9M13r12Dsvwe6i83c/SePrtstOihTz7J7ikKUp15LZtLcZmZNnT7JupEv/FP/hHEWR/XKOSJ0QsvkK9uXGAbyVKsh3IL711k+c6WPurr/A4+cyUJgIPMXBP72acJPttFQd6nJBj2LB1qQB8tyFe36WK/sku+zenmw9l2HKAP+DTDa+TH1daXF9S3Oe7p/W7TbuHzWowxrkpzHYtdXDvjn8HP5j6uYRntm/vaIY27T31QVWC/4i3hscKVs7Pt3fvoO++SRn7O/976HaxgHXKA5zGZokZ+7wCv6ewF02c1A9Lik449oHwJrSbWV2DpmHl5VBSTl/4E29PE8mLOK+zrKtIZnySPNtGn2PdpPZHVlKcZXn82xu8OHz2EuMpNm3nzHtZH6GJ9jF3UxK9Y7cVxHGf1KTNmai/ge8aLcSxy+y7qoYfO5mx7eQ11xd//6RsQHxzg+KkR4+crS18fB9jmF5uUfyPF/pi94NtWbouEvLk98mnudnoQZ1Y/mWXsF/3k/Y9+aRZCCCGEEKIGDZqFEEIIIYSo4djyjHaE0zM5yQB8a5oxpqmcToRTN1986RLEG7GZculmKM8Ic7JyG25C/PQLKNcY7Jvp5jubOH2wN9mA2It7ECeRmVLZvIVT3AuLKC8gVxwnPcApttiahS0znHo43LsH8VIHU5K2I5zmcH0zpbC2gNOoBQlnNsgqb2HFSDviJp7jacozxjgb4wQ0LR1FZoqlID2GS3INj+aa7TSsbkDSBZpVDCl2aLo4taZSy+03oazYxzbh+jQFNzLTZlcv4D19+ABlEL0Kp/TTMd6LbGSmTqMMrymO8bEtaUL8vd/+ZxBXK8Zaa+97KL9opyj9+MJlnP50rGmyqI33waeZrpMm4z+UeAK/+zvmut+yUpo7juOUlH64S3ZRmSVd8klfUNJzUhYkHyLrrspqr1EHZRCjAfZnrQV8JpvWvc1pmrrKydqNzsslqYNv2+7leFGHO3geUY7XFE3w89//xjfNOT+Fdlnnrz8NcVViey3tPspnG7TT+92Gp/KbXewM2l0zzV2OsG69LtbPQhPva1CZezWZkPyO+q9GC18e8Rq+l7a3TF9xn+SKYUjpqqnt+VaudZfeDT5NeedkO7i3j3KN0rZ3KyhdtUvPBD2LaYr7si3o2JIwp/byaBulDHHD3KcJPRNOeXrvsOGQZEiULt23JCqTKUmBXJRjvIgqOafhmM8fjo5ODb4/xD77wiK2p6BpZIIeSXKcEdpn3tn7AOKNK+Zd8eENvL7NB2gbe+UcSj2ciuxMrS73qQt4jqtN3PfBNkpOqjaldLc65YLaLb//xgPc9zgx9VlQP9hoYP97HPRLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRw7E1zV966RmIM1IYLi8YbVHoky1aiYeJybrLs7Rmz15FK7eSfJT2HqH25d49tExZOXd5tu1PUINz9xbqrDqdBYi/87s/mW0vr+E1PHPhHJ5zjrqjcB3P+86dB+azMequljfOQ1yl+L/LwYQsrBpGh3NlA/XhoyFqExebWH7+zPpsu9UmG7RT1DQ3yFbIYU28pb/zPEqTTVZnrJl0rFTY5VxuZ4zTBL+bjFE7lUwtm64Y7/HoO/9niMtn/12I//D7b8+2dw7QYufi05j6dHuKGsCFMR7r4Q3zjKxWZFe3gbosv4n1lbyH7efmHSsmTVe3SVr985RW3NJak0vSqf/HzUq/wSGuFbj70DxzbojXxW2KMvk6ZWCuJs1YPU31HeKXY9Ko2rCONqQ0984Uy+3UxskEFwKwzSfDLb+y8s+7pIufvn8H4iCjb1P9vHvLrMM4+8F7ULZxBW1B587DLuOs9vwsnyCeh89c1CJrLytd/XiCz2/oYb+6QNaBoaXnLEg/74bYfiKfUvnuYx++szm0PgtFzgpp4Pd3yAbNatgR2bEWpEteWMCdb21j+Z27pt9oRXjOzTaex5gWrUxTslG1dN0lp10nyzDXxfoa2Sne2THsFNvP4AC1slGEz3Ju9RPdHup91y/gWOPiKo5FHr771mx7ucCylK65FZJN5T6u3YoCs+bAj3DcMj7A9rIY0noMa13X6++ixdyldVwD8MrTuG7n0Q7ua3dg7msnwDbOtsMH27jmp0zJ9tOq6oSsEn2P3uFkzZnY6bxpXch0+OQLc/RLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRw7E1zVevondwSF65n3v5ymy7ylEPduse6mgePUDNycP7RnNSJqhXuXQNtaCc0HtwgBrna12jJfqVr1yHsnffw9S6D++jSDOKjY753AX87uICapT2N1E3uruN6U4nlh7xYBev/zJ5+O7uo54nm6J2anhoNEvTEZa1GngLb1H64JHlER010Eexu4gpNk+S0R7q5VhTmnvW/2+U/rUgHVKRkI+zJZQsOS0m6UAr9vUkTZxnxdUAj1tm34b4ztcx1fD3ft+0iSBGzV+X0nX/6O4DiPc3UOP1tGd0fItN8tBt4b566+TjHGJ58yM7zTjq0taX8LtLPazbGPxpqS7TU06jneG5/eQHP4V496F5zp4nL+E33kd/6pzSqdpNrru8AmUHfdTjVRXdjx7qFUtLQzcmvaFHbdklf9vcSrceB/hss0bVdVk9jOSB6UvTQ/KUHaH+MHRQFzigNQgXn31xtv3ZX/glKMtID105x28X5Sl6fXuUKrxNz2RoCWa9hR6UBQ18L+Wkq8xys68GPZ9RQPp6WuMzpL5xcmjen1WC9ylu43kltEYhH5t+Y2UF31mjIR6308F4MMR9bT4w13hxHT+71ME1PIcDfB8eHKKXcMN698Qk1O71sE+ajknnb+nxowDbWkBrF06StMT6SakNnN8wY5XWBt3jA1xD8N5H+M4fbZlxjOtSanCP1oRRP5BQX7axYp71wR6u+draxfaUjzH+6COjrX7hBVyrsLGE53Hng/chbpG38saKeQfmfWwPCWngkwmtA6Au5NCq+8MDXMsSUntqNLB+7HVO/T72g3FTmmYhhBBCCCE+djRoFkIIIYQQogYNmoUQQgghhKjh2JrmLEfty3TYh3jnI6MbubiBWqrPPIPamK0V1ALdXzEawoMhaqN2Bnic6RC9l7tt1Fq//Z7R2fzWC6hrdJ1LEJ8/i9pFz9IOVeSN+/br6FmYjFC37aak01oy3q17fcz3XqSoWSoy1PdskRe17UXJukbHRS1Qs4n6sKUlk4f+YIDnvLW15ZwWWYJatKTE8/RK0yYiD/+X812sW581k7Y3M8k8K58+S3FI4qnCeiIK0lZ3qW5ffAa1Vf+WdfCDA9SspTn9f0r7bof4KHYXjIarIOFnTFrEqEWaZvKfXT1jjs16cC/C7+ZU16BSo0tIjpbUfuyEGZ5ANSCd/NhcS4vaVznB6z4kTV0ZmTod7NG9m2B/5blY//1H+BzZdRaTDtJLsV/xSY9oi3xL0k4nOT7r7DlaVXis0jp208dzJpm8U9CxnC724c9+9kuz7bC1gcfBbzplwX8xpBnW5d5e/7Gf/dihS+zEqEVvtsz7oOjg+o+82IR46w62valjdO+NkHxk/SWIFxbROzeIsa3+7O3vzLY98ixeXcLn8/lncN8726ZdtxuoMS0y0jiP8X2wQPt+tG2et+eu4LvyqWtXIb63iW1zNMZ1AGFg6nptmdZH0bqcyQjr1l6K06bXXxCdnqb5cMLrcrC+9vrmfXDvEa5j2n2Ea54CekQsm3jHo3YaRdg+wpD6jBDHE3l1c7Y9dbCNPxz1IN7a6kP8wjWzzunqWVx7df/OmxD/7AZeU+bjvq8tmzbRTHFc55JhO3srj8Z9Kjd9e0ne9z16fsa0JmxqeeFPKCeGEz6+r3oc+qVZCCGEEEKIGjRoFkIIIYQQogYNmoUQQgghhKjh2JrmokCNl+uj8Ob9G0YH+N1voPbl2WfQ8/jFl1APFV81QqVhihqlvR301tzbQh3RuTXU121tGv/b99/G8yjJs9ejnOVeYM7j/kf3oGx5CXOhpwlqIld66CddlEa7uLaMurODXdR7LS2i1qzTROHWaGiO5Xt9KOun5LV5gJrJTsdoq1vtDpR5IdbtSRKQiDJJUZflWzpm1mp6IX631cZr9iyx4pzvK2mWXYdjxLLYdfKENLQlaql8lIs5zz5l2mY+wXs4HLMfL+7b9chv1TrNKiB/XtK0RQ28Co+9ql3z+azAz7LVb8znYTXzZET65/R0Rc1bD1A7PO6jjrK/Zfqgt374MygLXKzDirx0q5Z5FpZXUL+ZjVGjOj5ALWgQYp/kZqad+KRhZq/posByu7kW9IyUBWmYHaSi/q201MZTB68hyPHejcizuHXtCsRp2zT2b/wA+1WnwuufsOeq1cjSFM9jt9+H+N/5K+gB/XFCryyHunBnmBstZOWhj7pfoiYzd9GHvWEJUUdDvA87u6iRz9fwXbq0jNrR137h5dl2NsG2djBAvebli9iHx1ZbbJFf7dll1H6+/xG2vfVVPK9RZN5LcedpKFs9dxnizf2bECfU7r3AxO0OnkdVoVZ4eQnfUxNLq+/n+Fn/FH/2G9MaCp80zf1dywue1gjw2OOQngPPapwReU97E6xLfs4X2ngeA2u9RuPMeSg7wObjLC7hS+zKlfXZtpthm//w/Q8g3utjfzQpcF/5YX+2fXkZ353NANvAJMNrGg2xD/Gtz3dovUVKfWpK60Ts8VNCuQWGU7ynx0G/NAshhBBCCFGDBs1CCCGEEELUcGx5RhnwT+A4JRB3zc/6u/f6UPaPf+9bELcinBe7ctnYnKzHODWxtI7HWY17EGc0hZla6avXVzDV54OHaBtUkq3cwpKxwllooByjQymo3RZ539BE/8G+sZw5d2Ydyj68gSk111cwnfU772B65rtWGvLhCKd1UppuYLunzLZ4cnkaB2UiJ0nYpNSybZIr2NMz7KhDObc9H6/RttryaQ7WJ7mBT/eJUyJ71v+RPD1OrotONsFrSq1p+YLugxeTpCQiqxu65tiSs+SUVjXGpum4PC1f0MS99Ug1SSaTTkkCgM3LCa0UwEFA50GfPWn+07/zdyAe72BqVs+yMdo9RDvANlWaT/ZsqWVb9Oovfg3KbryD05KHg/cgdgusFzsVe0n2kiWlPebn1bfanzfnn0iSEk4Rz3oNy2auJGO4iY/3/bCL7dM9g33SG3eNbWZFcows4+ljPI0wtNsQ2SU2sV89SUKydWS52taheXeUZOUZ+pTauNihclMnnofSDZe+O01RclEkWAe9npEHlVQ/0ynKRg76eFrNljmP5QX87soyHWcFJYXtHt7H1U+Z99bFdZRUJlN8h99/hOfF7+WWZ+ogJClQZwElJhFpLqY7pr4GlGLbPcXf/SLPp7+QBMOKs5z6BPquRw+J75pnpCpxvzn15yXZWB5mJGVYMpLVykF7vzTFdnt5HfvFCxum7d67cwvKdjfxu8sefndS7EPsjU28ldA5htgWuS/jcU1QmJcNKzAnY5SRsEWrbVmbU78/GuB5HQf90iyEEEIIIUQNGjQLIYQQQghRgwbNQgghhBBC1HBsTbNHGq80Q6uO0kpn/fSnn4Oy4TnUeE0ppfCjB2Zf58+gvmmpQbpSEl2OWL9iaae6C6hZ601Q3xNFeF79faODXF5A+5T+HtpdrW6gXrokvXDUMBrJgmxyLpzF7/b3UJvZoHTNna45zzzH40z3ULtJkklIUxvGqCOaJKcnSg1jts/CE21YmufQZws1sokjzaQld3IoA7fj0R9ScpgpKBe0nbKcdVYR5x4m67e4YY6VoMzK8QPcF2Vmdjy6cZWVV7Wiz1Y5nzPGWf54nbtL1xuR1rpBWuvRnnmeXNLwuRGLaE+WSy+/AHGjJGuvO8Ym8uGHt6HMZ+1/hdedWF3hw/0BlB0m1AdRGm2PUkPbOuaSnrFGgGs28oCsuax76VZH2wPOW86RPtrSD1eUbdijtrzxyrMQX/vlL+OxA8s2kzTclUP6TbLisi3nKtJjsvz+JPFJK5uR3Z9tledSfcUBvkv8uA9xYu0qpBtV0GKIaYbtZ3SIWtCqYd6BHmnPWx28hsaU3jtW+vjlHr5HGi20UnzlHF7TgPqGMDL+ZGmG77/7KGF27tDzFpKGt9s2N7rdwjbQaqB+vtlCX7T+wHSmEaUCD3y8xpMkjui+UltuLJr362BMGl56L8cenrdr1VdFKaZ5kUDBol4PxypB98ps+5AkuwtN/PILV3oQL1r35luvvw5lwxFprXNst6WL45iyNNcxZqtNh63e6J1PucTt5QgRWcpl9O5MKSV300rTHtCaOT988t+N9UuzEEIIIYQQNWjQLIQQQgghRA0aNAshhBBCCFHDsTXNTfLm9EPU5MSWFi/N0cOxR6muS/I83rU0Krs3tqHsOqUcPdhGDe+APEKvPnXJlI36UMbpmCsPtULTzEpXTULS1SXUQ3ukWxtPKT+lVZyTj2I2Rs3klNJkrm6gr7Nrpbve30ev6f4hnqe/iCm7p6nR++yQLrvROL002gXVdTEhX9jCaJzY07Jk9SbZZdo6SdYtFmwaG+B9CzzSxFs3Li4o1TV53eYZeR4HZl8haWan++TPyymoSfTWiC1tK1uCB3jO7FvdpAqyj5VNsCwd43ejBtWX1c6zjNcXsG/pybL01PMQJ4f4HIWF0asVQ3ymkjHGPqUTLyw98I9fR1/mijRzbkz6VtLF5a7pCxLS1+W8rwD7N98SLLqkmZzTOtJzwRr83NIFJpTq24+xUbVpTcZ0B1M/O6GlQWzh9Tuk03b4vK3zLEiQ6bqn14ZcH695f4DtZzjsz7ZbHbyGoIfXnJNIPGoaz9rxgNdvoB/+NKU1PdQ245aJu+S13O5in73mop61tHTJIbWPzYfos5sX+J6+eB59m/tjc28++gi9yR/t4ne3aV2OTwtPelaK7vYi+fuO0Lfap7GGa/n0d5fwHkbR6WmaQ59fPLTWxmr3rQjP06M1PHHM/Y/ZnvL6FlqrEFJ/4y9cgHhsrT/oU5r6a2vU3zs4bvnR90zft72DYy2nxDZf0dqOJCP/cVi7hvVBlvNOwf71tF4lsN5xBa3hiSmPg095DexU2R6tB2IP7OOgX5qFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBqOrWmejlCXO+cRGhkdV6eN/seTBHUzk4x9Go3GqXRRD3a7j7qzgz3cl0d6lkZq4u1N1NiwbzOnkj9/ZnW2nQ5R05dM0Xi3Q57HZ5ZQS/zuO49m2+wtXY7wmtY2UJO0d4haols3PpptP9rF62dNd0R3JrK0ixttvP7xmHTYJ0iZ0f9n5D/asHxjQ9ZwseyRPByrwjRjz0c9E3taFuQRnk8xLi3tFPtDh+TTyU9BOTb7mu7jeUQhPmp+kzRcpJEvrXKP/rdlm07XJ304abqC2FRgVpLGlrS9B+QJ7VsyttjD4+SHuK+T5tEhmV+nVIeWV/zll1+FMi8lHTjps22tLetuWStckbbddbHSCsu3uZximUd9n5PTsey+gp4Dhj2PuU+2/ZFd0mMm9OmU9NJ3bn4Ecdg2/rhlt4dlLezvwxC1j7Y+sSxZ03x6v9ukKd6LZrsHcWNsfGeTMeUhyLC+FpZQ/1tYr8ewxH513Ufd8Q5pRYcjvI+LOT/hht4C1nXk43klVj6FLKd2Sf7tH7yPWut0irrkhZ45790D1EPfuYfv1or6lV4X20BrybwvkwTb4ugAzyObYH35vlnjE1EOA8d7ck3qz0unjVrsuIE63enE6LwnE2w/rQ6OF+IA2/3Q8nVu+aRjb6OO3aN7npNeeOSZ+7iyivdlOcZx3M238Tm3c1V0aN3DlPqyJMV9+w57T5t2XJKXe0Ee9B75NEcxXrPtqZ5wMgp6I2bUfyel/U7Htsdr046DfmkWQgghhBCiBg2ahRBCCCGEqEGDZiGEEEIIIWo4tqa5rNHPJYnR8LAHn+vhHzzSvGWWds8nD9BJihqUagW/y1rrt997ONte6KK38lqKl5slj7B8zWipmqRXqkhHNE3xuFET9722ZvTR1QQ1biFpi7e20Jv64RZq3qJwebb9YA/PudFDLfXGhXMQDw+N9mx1ZRXKrly54pwWQYD155EfsK0t4raWk96JtZ72vj2f/C9J/hTE5P8Ys37Q8pSl42bkSzzap+9a/qtzzwd5KwekpfLJEzq0rom9JCPyQM1J2xuSB2jlmfIwwHbaJYkge2BODs13+Zqm09P9nzumfsQhnXjZsdpQdrQumfskn9sYfBhD9ktOY6zEwD4WaZg9upfsxVxYWv/CO1rTzD6xfH/sJtdCiaVT0YKO3OU2Q165lrg9o/Nyfa4gDG3vdPZfParaP24CWi+TTWk9SGz62dUO6ueXVvBdsrWF/X+yb9apVBGuWSnJl3m4h/pOL8I66TRN3VdUQQ/v41qbKMb34fbAvGs6HdTgrqzgu+JweBviG7f6EC+t35tt5wV+99KlZyHeeXgD4nnttbmOIa3Zyca03sBB7Wyra96XPv3Ol1ent67iytWL+Ad6ZtLUPGQlabwbEWlpK7zm1MrV0Gri+CCi7+akVfdJ0xy2zb596t/LMf5he5/82n1zbNbAJyl+tz/EZyBN8XkqrXdaRv0cxyV17Z6H+6rsfAF0XhNab1DSO8y3+uuIxp4V90fHQL80CyGEEEIIUYMGzUIIIYQQQtRwbHkGT0UweW6mI4oxTSdTuuaKrKsKy0KMp8SnDv6cHi6tQdxewX1FlmVKOsFpjPtk9dNge7Lt/my718PppVYLpzGGA5wmi2mK1reu8eEWfjYbosVOQtPrzfYyxDcemPTX+wlO66yfxc8udroQO7GJBwO0CQqC49/+PynTQ5xucak9hdb0XWeFysiex+X5X1uD4dKUNmmFCkp9TTM9TmRZc3lkx1aWeA0BOiOBLVWjQTIRrPo527wp3dd035Tz7HdAHnzTEV4EnqXj+Fb9keOXE5GNXkH2PVNrqmsyIUlN/ORTW38SFhpoxVS5LJ8xzzPbDvF0IEss7FTP3NPNycso9XOjwr4B1DMkZSCV15xjVhZY6WL5wxSWNZZ09qNQtsjiifpgvzxavlJaspKILPb8uW7k8e8Kll7Ni0pODn5ustEDiIdW6vUzVz8FZbGH/Wq6/wbt3bS3hKQwDtkddpewHTci3PfUN/KOs4v4HhpNcefThKaxS3MzWNa1vb0FcauD72W3QFlAKzb7zqkfvXjhPMSLDUyrvfVoE2I7BXPgUTrzCb4PPR/f+X7L1F+vi5IT3zu9NNpxg2USOH5oNs15u/R8hdTfh/Tgex1zn12SATokK+L3tkv1VXrmvEqScHkkO71wDsdTSWKe7cEAZaWjEd7jVgvbD5+XncJ7nOJ3A5JJjEZk8UgSi5EtpWJLOZLihZRavWHJ+PKcxiGV5BlCCCGEEEJ87GjQLIQQQgghRA0aNAshhBBCCFHDsUWt7RZqiXLOT2xrQ0jzl5Pt0niM+hZbZxOTLqYZov4rj0iLSNqYbmxSbrp0HhWl804OUGs8GBlt1XCKOquFDmqBlshSJyX7osO+EbFy+smCrFnaLRTHfriJ2uvXrTTaTgM/W5HuNqNUwyvrZ2fbYYhan/v37zunBmXsZiu4yvr/bUSWar0N0mWR7taz9JdFTk2aRLw+aUwzOq/c0lh6Hn63JF2fX5Atl6VLjrDZOv4S2eIUqIeLE2rXU3NfK64sSuMck7Y3p2uajs3n20uk66RUqF5O2jtL61oFpDMbnu7/3JzytCKdoP28+6yDJ81uRZq5ytIHz9nT0XFdh+sI6xCbL1nO0Xd9uobSan81kmVnzi2J9dHWHzLu6UknGdK9dUi/71rnWXqsuTz6PO3649eGd4ppkAdDvE8VnUwYmwcnzfEdlY2xAuOYbfesdQP0WFSkfa0GpHOnviDwjb3bcILnmFMK4cmEdKYN815a663gd2NK351g3S8voq1cZK3LeLiPGuXpGNNqxw18t8SUBnlqWao1QrLY69I7nhq2H5j6qUhPb6dXPmkCHGrAM+E4jlNY/TS/8ytKYz9nlWellfbJJ86nRS3zmeexDVSFpR+vcF+lj+2pyLD+EivVPK+Z4DUBS6RpbjbxPi5b68KmGWnxU4wHNG6J6QV6cGDK9/axHU+pr+dFFkFg6+lpjRN3SMdAvzQLIYQQQghRgwbNQgghhBBC1KBBsxBCCCGEEDUc36iXvAAL1llami7POzpVIXuo+pZ3XhyQDpkkb1PyqWQfwoblj8gpRhtN1AO3F9GXcjoyOuQ0Q51QUaBG6cHOPp5YikLSRmSO3e6itqyMUB/+cAv10+/dx7Ta3bNGp70QoJZ6MkB9zx6dpxsYLXZvCTVra2vo0XiS+E3yoibfWFseFYYkkiQdH2s9bRvUhDzCy4x0yKRpigLSF1rFGaVdL6nNe5QaPFi2dMjULlM+D3om5iSl1qFJHjenca5y3HfgscjUimlfvstdAOk8rXvB9qGs2z5pKko9O6+LN3VaksDX5dSq5GFr3y++d3Mx6YGn7KdsH9d/bNH/f+f4eSvmXzT4KN6cppvTWZtv+BU3MNZtY7FLD5mt464qehdUR5+HfYkV7ffnyGL7c5PmmPZ3kJA20tKObu3geo8gvgSx28Q+PLTeaVWCa2UmY9RrRi76Mpf0znOttMgJrcNptciDllJlu5V5P1YZXu9CF1OBe01azxDjup2FJfPeOhzjvsoc38MBaZpTF+s2sLzMfdLEN0j/PKL70opNH9Un7+DJCOv2JGHNbkbprLPMxG6F/WqWct/FawrMMzUho2/2VK/mnjdK2R2b+i0D7l8gnPOrj5rmPvIaKLpcZ0ztekpr1dpt0zZLOme+j802tuP1JRybLVrtPI6w/0lojVhG44Xc8ghv0HO7tYPP6nHQL81CCCGEEELUoEGzEEIIIYQQNWjQLIQQQgghRA3H1jT7pDvi3OF2bvEoYK9cFNKEMWplXMsPd5qzZhnH9ZxXPCL9tK1ZnZPGkiYyIO/plqVxjkn8U0zwvHIX62P37gOIq6HR7AQl6sES2teDQ7zGjWdfhvi1p6/Otn/w7Z9Cma3DdhzHSUgrtbdvNDtcd71ezzktGuQPHMZ4c4LI6LJ80nlOh+RxmZBhZmCu2Sf/1DmxJnmiZiPc99QupjbgR6QlI71YVZj7mJG/KtnezulxnSP0uQWpWYOIvJbJBz2M8Njtpvn8FJuiM03omuh5y61Dj+iaqup0/+fO6N7N+QNbGl+XF0OQn3nJ9W31Uey/OqfRpeMmfvnY8np9ND0Htl8rHmZO0zynXPdYt23ikDzFK2pwFfnGVqwJd229OLUD5/EaZsdBH3WXfZlPUdMc0HtpStraojTrRQ4mqNdcLbHPjknHnk7Mg+VN8GFf6eBnJynW19jKD+A4juNaRs8k9XSmpHH26D2cj8x7eEReuGPS/6bk/1sMcJ3O6kZvtr28jOtyHu58BHExRMFrXqG+NapM3TbpPRTG9G5IHr+eaER+vllKHdoJ0u/jsQvq1Evbr506mJKevzSj94O1Pdd1ZfyQHL3uK7XWV4UhnmNI7YXX5YTWGp8yx3McjbA97e1he+l2Uas/nZr7+NFD9PU+GGF/0+1iQ19qoqY5tXTLJfniLy/hcX3yaR6OzecPh/j8LHRxHHcc9EuzEEIIIYQQNWjQLIQQQgghRA3HlmccDgYQ5zSvllrShzBA65qY5BiNBpbb6SmLOXs6mj6gVI4B2fVMramdiqZPOO1uQOfRjs0Ugcf/TpD9SifC7y6vrkI8PrRkEWQJU5D9TLuP0x4Xn3kGYluy0u58AGU+pefktLwTa9pwbw/tVeYsqk4Q16X58AIrOBub6xhPaSqd5p/iDt5Xz5o6djP87nSCx0lGZFEYUfuyplJJgeNkfUpZvkPpvS0rsuYiTVkvcBpn3Dcph5w8MR/waDqXU3B3FjltKB3b+viUrO+mA5qipbZpS1B4v2X55ClI/yR4fF1Ubj8JbK1ErnxOwZICK+T0sXMHIn1Gg+RCuC++77Rv6mg8ywKq7vkseQqY4sSaAk74sFSXLvUjHkkZXEuOwF0jpwafx3qm2PmuJlX4x8nOHkrZ3n53F+Jm05IBDPpQ9mgHp+YXGnjPR4fGJq0o0DLNcVFCkCZ4HhVJP8LAlK+soU3oYIpSjuEQ95UOzb5CH++US/6HHk2BF3Qz7t8z7/yogVanW3toyVcMUVLhx5zG3qThjhs4logb2ChSSrnsWGMAthfr75+ePOPhJtZ9EJFdmzU24f5nSBZrWcb2bGZ80Wriiyei8dNkzPvCYyVT+w8k7aPn2ieZ0cqyGQNFJF9qtdByLyTrt4hkN2PrPJcWsf10FvA8WgvYFl0a5zV9c+wl6kN6PbRS5DHRopXGPsZH3gliyTOEEEIIIYT42NGgWQghhBBCiBo0aBZCCCGEEKKGY2ua8xx1lCmngbTyIM+5fFHabI79wIzdG6STCcibq3Aer7l0HMdxLHsWtneKQtQhe6QntE87YAku6Uj9GKsujlGT014x2qAG2bxsbaGw5vJZ1AotLKFGZ3Nza7a9uoLa6Qd3UVuWTFAvZqevtPXNjuM429uYrvskySnbKduo2SKwirR4UYN0yUPW4Zqb5Zf4WU7b21qkcrJnszMkFwd0nJza0wq1H6stTiaUhhhvi+PlbNNFWmxL8lZRCmiOPapLthPLrM8P90k/OMLrb7XIcs7aHg2prsJT9AtzHCcMOZ0slhdWX8FlbKGWH5m/mfS+bEFH9yogfb6tY/ZpX/lc+m7ShXvWNXBWbO6TSraNcwgr9TVdQ0nnNZcinvbk23+Z02HzgVnrbnvwcV05p8aHt+5B/ODhI4h9y76Uba1Yth2SrZWt76/o+suCNd9cu/h5Wxva66GmmdcH5XO2YEbj7JOlHGtOfZ/s6ugdv79nNLzc1lj3X9B3+djYNo/WwHM7ttfpcH8+TSi38wkyp2kmT9sFS5cbUfs4OEDhcZrieZel0eHyWIOWU83p2KdkBToZG034mN75nRZqi5cWcdzSaVvWr3Rcn+x9O5TCnfXSzaYZb62v45iGni4nmxs0UirxyowvW+TD6JH2OknwmiPrtM6eQevE7OfogPRLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRg1ux8FcIIYQQQggB6JdmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghagiO+8F//bf+3JHlrutZ2yWU+W712M/+0R/sz2IZj+pd+8OO47ju42Nv7st8Ho//Lh/Ho53xd3HPdFh37i8YVvjtivbm2Z/nz1ZHHRnLyxLvi+fhefzNv/uPjtzXn4QXf/l/DvFfWJtAfDYez7bLaQ5lSe5DnFL1RZEpzyr8bhiGEC91lyEOnAg/DwdK8UAJ7tsPsE0c5sPZ9rCaQtkowvv04WAP4o/yMcT71onsTXFfSV5AnA7xvIrtIcRX273Z9oWVVTyP3fsQ95u4b7/bnG27Pl5vTr3HR//wbeckmdB15wW25zwz5Z6PbcalniQv8H5kpflu5eB+HSenmMv5WKZiyhLLpgU23n6BbSwvzbFadI5ten4jbNpOGOPnfc8+bzzuZJJA/N6770PseXhzr169bo4TdfCzYQvijPqvJDPXyN1VQP3q1XXc18fJmf8L3ceyoE/MddTHxrPaiEftI6PXbEFt0aV+2K6jsOJ3AZ5zSfuq7Gug911A7Sf3+D1EDco1/U5F1+BWP39dnSSb//uo/kM/J3/j//ofQ+xTHxMEgbWNdekHwZGx/V0ea/g+1b0bQ+z5NI7xzH33qA14AbaBNOtDfPPmW7Ptu3c+gLLpGN9DcUx92WAX4o1zl2bb3WYXyu7duAHx6ADfh36EdVsE5ljD0QjKGlTXWYJ9amk9j424AWVPXX8R4v/kP/q7Th36pVkIIYQQQogaNGgWQgghhBCihmPLMxohTwE8Xr4QkMSCZg/mph/s2Ocylkmw1uEJJBa1wHdpHtFlWQR/mf/gPmbbcZyKpR30Xdq5PaFSPqE8AyQZbk1dniCDDKcVb2w/gngnPJht+zT9lBY45TbKcZrItSUZJU7BLncWIS4q3FeLjtXxTDn/R1nwfcpwGqjpmX11/SaUFU2cQqoSnH5y0n0I3Ym5xjHVXRngNWSTAcTJNkpfbn5k4rvOJh42xH1HG22I2/bUexvPuTy66X3sDCc4LTcmicFobO5HUWLbLklC4Xh8LaYeijKjI2Md0Vcdl/ZdlablVBV2sR49+zG15eBge7Y9GeGUZcpTraQSmSQo8ekPTZva3z/Esj7G0wk+N66L7fXd7/xott3pLkBZbwUlT+2FxcfGPk2P+g2MnfXrzonBcoyKZTY/P3Y/nLp4z1su3uNXWw8gfjTFz98ozs+2S5caG0k/5t4dR0j5iopkISRvKlxs9z58nyVKf/Z+b6uTaMLYY26YcrSs9Eh4KEL9EY+3PKtjGE/xOb/7Acoi9vceQvzwwU2rDN/RIclEuh2UaeVT7I8/fP+d2XYyxrJ8iO/OFrXzijq3xJJnuA2SEZE8I6ywfuyaLnM87htvfMd5Uv7stXwhhBBCCCGeEA2ahRBCCCGEqEGDZiGEEEIIIWo4tqa520btJ2tpbRu5gOQ6fo0uGbVA/FnWER3vfP9/n8aQtUFHnAfbTs1ph92jNMxPxpwsmc4rtz5Q/Qm0Ue7cPTtFTfOgD/HPDlHX50TGJi1aRnuanDRMqU863MLEDbrJy2O8j4Mcy9ejHsRrTaPX7HVQ3xtE2BbJNciZJka3tX+IOuMHB6g3vVuiPvdujp/vh0ZDWDZIs0bWa1WK+6pcLC8io4Eu6Xkq6ZrcEC/KluT6VLftKVt2nSxphrq4NEedZWrp97OKLItIS8wt37ee94o1zGShOWc3SRo6W2da0M8SbCG2coha9tFPfzrbvv3Oj6HsJw/uQXzgkbadLmqamHaRpWRTmOB5sKY5z7m+7IZAmsqIrbfwXbF+7uJs+9O/8EUou/T8c86fBnLQgGP9fD6+BfH19/8OxJPsAsTtK//T2fbQxT6I7eq8I9cV4D1MyUZwxcV+Yz3GPujGxGjVK7Z6Peqwf0oJqMP3aHFDZHlAcpl7hD0dxy5ppwO2z6R1O/v72xBvbZt+YncP37N7u/jZIiU706lZWxTRc87H3dlEvbQX4nna3ZNfoV6+2URryQbZmboRrTew+35q9O2Q3mn0jOxsm/OsChxLBCH2VcdBvzQLIYQQQghRgwbNQgghhBBC1HBseQbbmszJM6wJG5ZfzEksjsrqx/M+c94tj88mOE+NJ9aR6g0u/Pn/v+C6mrMJqpvrsqaW51QhNcc6SoJxmlNs6RSn/rY5a481++K7aJnWOkt2RzFn3DJXktB9Ypuy3QHu+1wLp/wHvjnW2hSnlNY7aLW1GKBdVrdhppzaC/jZiK4/28RMfG36/7XZMzZdt0doE3cnwyk2fwmnxRZitACLrKx0lBDKadJUYC/AfS31TXuKRlh3fsI2VCcLTxE7Pk612dISn2zgPP59YK7xm2uJyYosZnmGj1N6GWWVtNRCTkrPekBZtapbaAG1d/PN2fa333odyg7iHsSHKbbdHZqmtbPH8RRvs4V2UQFlzmTpURiaaxxMUGo0mnKmRjyv9cvmWWgvbkBZUbGl2icT15LofKaBz/a5N/8WxD/65v8H4uFLfw3i8pqp64pkRZwRkLNRIvxGw+d1JfsI4iv9r0P8YOGvmHMkmQhL/f4s0N/9EOL9fZRWpYm5N+fOXYayixeuQJzQd8vA6meb1L+Q3Mkly9Fbt9+F+MYN04ecWTsHZd02vpe2xmgrl6bmPRWTrXC7heex3EFb1STH5760rGD9Bsoxui06j108j7hLWQ9L0yEVBVmwFpgBl61QY8vmcmcb38OcFfk46JdmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKKGY2uaWSNYeY/XzrJlisPxnJb48ZZzczrGOcs1PlNbH836L05B+vjTYi1ZndfdvMLL/AVSWf9xzOm2KSzsohoNzlFaM667o/f0seJmqDvyKE1mzzOapw61tV6B19RCObST51baUNJTphnq+DxKrzxNMFXxTmV0u+kYdZ7jIer6ItK2Hk7Nia2evwhlz13D9MCHlBp7JcZ9bVwx309v/BTKgh7qUQ8P0fqneoR13R4ZbXZMgq84w7gxxPoKLZ2eQ/fhyLZ2AjTIHohtnOwsr3MWWXTdbBNXOuZeV2Osz70HqP3c3MbyqLMG8dm19dn2cgPPw7+DGubhrXcg/vGN92bbkzXU/66duQZxdvMmxFc76xC3LcvEjJ6DNEG9foM0h0HAGmejoxxNUdveH1Iq8AjTaL/80kuz7WSKeuhk2Hc+iXDLD63FAi9Pvo+fvfc9iA9S/PaENPGJ/b6kV5hHazae5Ankl306Rl1tfvsHEPde+fOz7WGFfc6THflPBz/9yTcgPuj3IS4tf8lGjH3TMvXZSx1cD/PsdaOB/uAGPtff+tbvQTykd9bVK5+G+Asvf2W2/e4HmCY6KXYh7vcxjq11Ii6lg8+meM9TspHj9WaeZ66x00Ib2RatqSh2dyAejGjf1qHZri8rsG8rqW8Pm+ZebFxYgrKULPeOg35pFkIIIYQQogYNmoUQQgghhKhBg2YhhBBCCCFqOLam2XVJ00yapsrWYfmkd+Jcn3MpbY0ezKPjHJ0m1JmXVh31bwCLeElqbB+Zd1vO6bD5PNiL2d7vnPn0UV+d2zmUU1lJPoMup++0tJysrHbrtNYfI8s++iWfW0cv4TNNo3FqVKhRKkbkh9lHvVOembhFtqURpfYkGazj5yiQ9kpr36QBn+R4DQsXUWN6+Qufn23vl6hTHLRR57nxyqsQpzE+ir6V+voXV38dypaW0eNyOkUN8+uv/wji779utIrbBWpKOd1rg3Ixe1b7KUhgWbEh5gmTkj/w7h55f28brV8yRt2txym3aV9pYj4/HaC+7tFD1DQ/2DqAuNOhttw1WuJnO1ifTzXwmbu1jR7cN8emHXTPXIKy5155CeLPf+5TEBcJtoO9Q1Mf4zFq/aMINcytJrYpyJ/uOE5p3fqI0tp75PEcN1A36PnGz3W7j8/y2Q3Ug39SKOkddjE02tAXxj+Dsr1l1OIXjRWIq/Uv0L7N570K+6cneeLm1qzQl4NF1MBfPYca+g9z6/ny/ywmzkYePED/bZfW5Sz1zH2tXNTK3rzzBu4sw/v6+c++ONv+q38Vfbtf+Qy+K77+B/8I4vc/eB/isZ3Wnjz9ywz7xYUO9gNFah70yZTWB9Hgyqc1PZ6H77zU6nOabfR0TjP87HSC76GsxGPbo5eY1omUlN679HB8EFge835IqdB57dox0C/NQgghhBBC1KBBsxBCCCGEEDVo0CyEEEIIIUQNT6BpLilm3bLZ9FmXTGNzj7SioFtmbbDPulsqn/NtNrE3Jw4mLQzpOQtLx1eQ52BC58XX4JMXtVvZWtCcyuiayuLIcs+qa7LpdEYJaqMebqIeM/TMNZ09g/rByD29/5mebqHGa7WDGsplS1vVJDXedID36TBBXVYVm/pbJL/jBmnxStIITkjjdZiauOigl+S5l16D+Iu/9psQL54zXptVhBquhRB9OQvykpzSOoBmZK4jpHY7Jp9cn9rx1WdfgXhvwRz7H73+L6Fs5JJfb4n7iiwxf/Xf8f/YMQnSm6TnTw/6s+3tj1CHvNpBj+0P33kb4rfeemu2/fIrz0PZ808/gyfi3YPwpedQWxz0zTPY2MbPHrrYPr++i56rmw3T5n7lqafwPF5EDX2L2qeH3YxTWP0K+y6HIWoKfQ/LM/IRt7vSOKa+jvq+R5voY/32O8Z3tiywvTUjPO4nBc4nkFn+07t7j/CzbfSodZZQ8z3ZwH6ltJ65kNYRFPQMHqXInMtxQK/Dz8R3IX42Qn39t4YPTNB77sh9/VmgKPDd4dJ7fZqYdr+9jXWbU589OcT1GD/8wbdn21eexv7nxVdR8/7cp7B/v/nBjyH+7rf++Wz7R9/BZ3G0h2s53BifR98aL1Q+Dg9T8hefDnGNj+PgO97OT9FaQI1ye6GH50VrLlwP232jac4lbtCwlZ7FtMRnZDgy+84zXiPAuTzq0S/NQgghhBBC1KBBsxBCCCGEEDUcW57BabOLkiUEZvtghD/TH/TxZ/xGhFOUyz0zXdVq4TR2WrH1CKXvplKwEKEpcE7zmHuUljc0U7idFbTf6cQ43T7Y60Mc8bRZYeqnKHFqJk9xiqSk2KNpIM/Koz2kaZ4fvPEuxLfuPoS4EZn6/Fr8GSg7t4LWRyfJhSbZwpR9iA/6xi5r7GJdL7dRVrJBaXojSwrTJksZ9ixMcFba2dnFKck3No2tUO8K1s8Xv/AbeNynPwvxYWLa/flVtCFbW8RzTkmSM0rxvoZWOtOCrN0G+xhvb/chPtNDK6m//ht/3QQJ3offff2buO8QyxNLNhKQqoinqE+ahQWU9HQaKLlwR6YOwwO0hYsznIbcCLAhjHo9U0ayh5Cnoqf4fPoT7KMu9sx0vBueh7Lffx1lIW9u43k+96KZen3+pWfxPKhtj1O8V0GJ/VkYmGe/otT0E2oHVYl9dkUSMT8w3/doXxlZU+3v4zXt7xkJyspqD8rGI/zsJwW2XF0NTftqxig5SUYkvVrDNvGgSe24tN8HbM9KnplzRqJHQPd0OsAUym0P+6DWxNgDynBuvr9z6Z1fWOmcp2OURURU9xF1Kt//8Xdn25//2p+DsgtX0BYujrHveuGlr0L87NNfnG1/7StvQdl3vvVPIf7291Cu9+jR1myb1G+OG9DYK8K2GDbwPP3I7GCBbOIWfHz/nVnFZ2CUY39U5JZElcaeUQPvw3RCz4SlaQ18GgNmT64z0i/NQgghhBBC1KBBsxBCCCGEEDVo0CyEEEIIIUQNx7eci1Fz0owoDaKl5/zW62iBcn8LtVMx2R2tLRvt6GuvYsrI555GXZ9HuuSKrJHK3NIu5qjRmuaovSvJ/qmxaM4jC0gfSGlnI5Q9OsWEtdfmvNwIqzmMULedT0OKUQOeWdfx7q07UHbzHqb2TCqyjkpMfewP0ebm7PrppbBttLA+04j0dZYVzN6AbOFS/G4vRm3rStPcm4AsrEYjTC18dxvb4i2KDy27mvMbF/G4Z69APBjhPZ9YaYv3tjF9KadS7yziNQSURtsrjNZqOsR2vE/X1O6gXtpzsA5W14wV3l/89X8Nyu730fLs+5tvQlxZOjZeInDarlOsIYSU547j2NK2DllijnfwPq95WN9nrxp7t4DWOozu4728RvXbeIAWY60LRs/+5n3UzH/37ZsQb9C6gldffsHsl3TxBdd4TnZktP6jKh5vp1SxtSfFc/pNK85zWidA+uiDfexnhv3+bPvMOnacjeiTqZZ1eX3MxPTZbh/XlSw0qP+id2dU0G9XlgaTrU/dJ9Awc82yTaxL7yG/pHY9MLpc98+ixxzhkt+r72IfkiXm3oyoz65CtmnE+vxo8/Zs+4P3sQ++ehnHQGWGbaDw8fnzLM3ztRdwHdOVp1+A+Ktf++9B/J1v/sFs+4c/wPUum5s49khcPG4WYIurrPUxjQo1ypMt7DN9hy3nsG8fDBKrDPuQIMK6bdDaj8JajOOSfavv4zNwHPRLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRw7E1zWcuY2rH9gKmBn3v/fdn2w92UNM2Ii+8pEAtzNDSBB6MvwtlzYVViD/9qZch9grU91SWzq+q8Dg7fdQ1bpHW+mDXaHbub6IWsSCf114XNansPb3QNfXTaqMevNNGfbQTY13a6bwdx3F29o227NY91AIV5NsZUOpLx65rKgvjJ9fz/Lz8JCCfWEqTOYrNfZyQFWlVoqa0k/UhXimMr/P5NqaoPbvYgziO0cPYP0RNby8yOtJnX8TUse0O3uOqIP/tqdEa/9N/gn6YRYrt5y/9D/8yxKtreF5J39zz7/3h16Hs7n1M0foX/8r/COIgwH2lVts9exZ12l949RcgvvEvMf10P7WeZZZenrLMsaQ1CekUtd1ZYnSlAWkG2b67dLHfyC2P5/EY1xTw87pOvqBnFnDnj3b7s+1//t3X8Ti0VuIzn0bN4dkLl2bbCa3XCCglfFWQRpX0rqybhPPIyaeZbmYYPj69dU7nxT7Njx7iOovhoelnH23ica5cRc/iTyqJlfp6PMVnfWkR+/deie3W43th6Sw98vet5rzRH3+PucSjvyyV6CW82MJ2vWGleI8p3fCIdP0O6aV9eve6fwqcnue1/KjTdaw+hd/D8RLqcGNa51TkZh3PjffQW/lrv4S+zVGM+2If/9LKAeB5nLcA9fQXnsb+51+7ZjTPX/rKr0LZD77zhxD/kOI7D29BPAHvd9J/k/45IN1/OMV232qYawqpH/RpDJTT+HKxa8ZfrGkOjj8EnqFfmoUQQgghhKhBg2YhhBBCCCFq0KBZCCGEEEKIGo4t6OitX8Y/0HB7nJtdFSVpZ0k/GHqohwo8s7PdbdSY/rf/+B9CXDmoF7t68RLExdRog0akLXv/5ocQv/vBBxDvHhyY45Soi3FIT9lstihuQry0bLSxK8sbUHbhAupKmy3UPBfkHXjjrvH9PBihh3EY4meLnH08jd6p00VtXXdh0Tkt3iWdMgvuSkub7lOZ5+J9HIZYBzuFiZMAteYLZ9CLukP7rh6hPricGs3T8sZZPA8PG32LhLKLG+Y+/7lf/TUo65KufUBey1//A9Qtv3DN+AZ/5jOfhrLPfO4liJ9+9grEE2oDleUv6pMH8ZVz1yDe6GB9HWxZ50m69OoJPGM/DmzNsuM4ztbDexDfv2s8kN0x1q9TYptJUtxX0DR90miMz/oBtZFnu6iLy4eoDf3nPzO68DcPUPf+8mvoQ3/16WfwPANzHqxpLktsfx5pGV3SJReuuWb2XS7IwznPM4ofr3n2XPzu5gP0JX54H/1cp+N9axuvYToZO59EWKE7yU3//3CK/erT1T7E5zuohfXcA4gL12hWQzJH5zUsT0JGes773U/heUQ/wWNZ3vGVj/dphdrPoMB+t+J8Cu4n3+e5cvCZiGK8F/Yz5tFLrGQtOulym9a+br7/NpSxxvmp51/BXfk4nnIt/bnvYR/tUY6MjPoU3zX7On/9RSg7fx3XtX3pq78M8fd/8HsQ//Qn355tJzu4LulghP1vRO06yvCaFjqmvniNCfdVTVpfZvddgU/3rHzyd5h+aRZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghaji2pjknv8iSdJOepXf0PNTruPRdkpU4gfXdlo96lb091IP989//FxB/8fNfwH1barP7D9Br+cEjjPt90pJZ5xmSfpNPOs3IMzZDzeTY0urt7uA1HBz2Ib5EuuyDQ9RI3rpt/A9ZGxWTH2SeoV7Ot3S4rZi009XPr497Ujz2lCUpUVCY82Q/UY6bMf6v124brfbK4gqUdbro2+xPUWPabFMe+yXjC97q4HedEuu+TFFLlVs6v5deQD/xrEDN6H/6t/82xN/9wY8h/jf+2l+fbf/5P/dVKGt08Z4n5CEekjfneGrOazxAbWK3iVrE8yuo437/oVkHkJPv72n7NA9H+LwGIbaD9XXjT51R1xYFqP0fkOfqo0fGS3h/G/uJtRDv8/l19I6/eRu11W/feTDbXjqPXt/PvYR69N4qtldbduqThp66UcdzSWNO+lcE265H/UZA/UoQsP+7KR9SG7r9IWqYhwO8Twd7Rs+4tIhaxVvvoX7zS7/+G3Nn/q8iLtX1/faV2fbmxV+kz/5DiNdb2PbOJLjWZtwyz+DERQ2qS/724ZGSTDxORu2lDHDfKz3KNWDFV33MaXB2egPiP/DwPVy5uMbH/VPw+9ziIl5TFFF9Wm3C50EOSZqThPtscy8++gifp2984/chXj93AeJOtwdxw3rPF+SXnScY81itCqx+Icd7ltM7vLfxLMS/8VvXIf7iF39ztv37/9V/AWV/+HXUP/tUl502+Tpb462CfJjL4mh/ervv4nwJRXZUn/nH88lvyUIIIYQQQpwwGjQLIYQQQghRw7HlGUVGFkSUVrNjpUFsRDjtk07RXoSnjYLQknaQLY4/xZ/tH9x/APEPf/gjiBtWauidXZxSKml+M6NpbduGKU+PTvvJFk5MaVmZFDStcffubYgHNJ05HuP059CyJwvJ5qwky5Q5+xXL6qzT7kHZacozSpcs/Cq2y7Lsely8xkaM04Ybi2jptNw2Vm9NH2319snCcDLAOKHpz41LxgKs1SJLPpJ2TEpsP52OkXqkOcp1Nrcw/fmFS2g7+FWyMFxeM9KQYYLH7aygPKDw8D4Oh/j51JoKzEkmElC65MtnUSq0eOPN2faOnVLbcZziiBS+J0GSoGxpMkHZU5YaaVJVYp2MR/hMHZDUY+fA9BWL5RaUvbzSg/jeLvZnf+snaKd0Pzb37svPPgVl167jfY+bWP++NV0asjyD+i/+xaPgqXqrj3LJloo/GwcexZwW2bSbnUO2/sPrX1zA53WtaWQzL1w4B2Ve+Mm3InMcx0lc8/y+vYhyqvdKTCt+1sF31tURxh90jdThqodt0Z9g/3XHxyly+71UUQt5IcTz+PT2P4Z43MO+8C9/wdimXngDLTH/6QCla/kyShc8OvafAsc5Z3SAfUhCEqbQkhi0Wvi8xfRZtonb3zN9K9s/vv7GDyH+yte+hvsmG7k8s+wh6bgsx2CL2sgau7nU/7AMIs9xDJiSFKRomPfhElmbJvh6dCYZ9ilhh2RJloVhRhJUHvPEQUjlpj6mCVk4YlUfC/3SLIQQQgghRA0aNAshhBBCCFGDBs1CCCGEEELUcGxNczpFEUqWknWXZVXS66CN1/7+DsQu+a/YaQ59jzU4lDqWtMT7/T6eqJVadi5VLGkC8+zxgpY6zXLFmlz6vK2XjiLU3LAdzXSKWim+ZlvHzBpmvkY+rygyGm8/RN1ZEKGO9iRhi7mKdN5eaWs5sVl2I9IwL6Au9NzaVfPZJmrtBn3UWz7aQk18RSk3l9aM5jIMsCybos2gF+BFNSwdG8mqHJKiO6+8/ALEJaVEttvAIWneuyO8b0HEmrbHp0hmjZtb4YmdXUfNac/Sde8M+1A2Z6t0whQT1DRvbmF66/0tU09BThpCDzVz1Rnsz64umRt2ZQfbUDHF5/fv33wT4u0lTD3+zGVjK9eI8Jnj9RzNJt67wLee/RrBHXdREf0GYltgFRVer0tpfrnfdVmvbtk8bd5BbWyDtI7PPnUG4pWGuY4zS8tQloc9508DsaXv7Aeo39wMMVX6xuF3Ib46Qs3qX+r91Hx2/AGUfX0f363uGqY2tu9bxTaCA7RS/NlDfCZW19CS9LfOGCvFf/oRrsm41f1fQRxW2OF5cyndnzxd8b9qNBvY76YpamsnYxPz2qOcLGk9WksTRfa7A5/Fg0Ncu/GTH3+fzgvX8UQNYyMa0rvBp/NyaQhYWs85y9B57FGR9npMNryJ1X/16Rp8SiNOS+ScEa1BSS2ruIjW4bA+3Knwmm17v7Igm072AjwG+qVZCCGEEEKIGjRoFkIIIYQQogYNmoUQQgghhKjh+D7NpFEajVEPZacqPHt2A8ruPsA0szmlQfQyK4WyT/6OpO8NfE4dS8obK+aygvz8WKMDxyU92Jyep3q8BpXLM9IzFQXraDiFLd4WWztap2nm85hY3sLf+g5q6a5cueKcFmVGqS5JBxn6RofUJX/k8xtXIL54Hr1v11eMxrnTQn3X4gLq9LZ2H0LsRXgeC4u92XbBPpQparbWlnoQt9pGP96JMG2zu4HeytyuWaB6cGj0ubbXtuM4ThiwpgufiUYDtdjjqaU9Ix/0gLqA5TbqeZfa5l5U2eOftdPgZzdQV/nBTdQ0p5b2OJhLeY4e0wsBauy+tGTuddjG+vz6DdSC3qb0ss9/7hWIzy0aXfjGGt73gPyQyxL7pInVxvJsQp/F9kddpeOTGa6dejbJSY9PX2ZNc5d0koNdU3/3bmMK5QbpEx/dvgVxEZtnLNtCXXraRD04ug5/cnBdS3PpYV3fPcDnd9P9ixBfcFEj/8UP/+PZ9sEYNcyHLdQSpyU+v6Fj2pPnYv91o4G1u7CM7TrYw9TGHx5cmW2/6b8KZdcDXCtyM1+AeBSgdv1PA3a+BMdxnJC0x82mWb/A6w143VIU4fPX7pj3xXSCWmleP/b6T34A8cXzlyFeWzfvQzfg9wwdt4v3ybfeS9y7VzT2KEnTPC1wnGP3Zf0++otzng/WXpe01ia36jPLjh57TWi8NbVTZ9NFxbSm6Tjol2YhhBBCCCFq0KBZCCGEEEKIGjRoFkIIIYQQooZja5rDFnoUlofovWz7EF66hD66b733LsTDIWqDbE1mQboZ1jCznpN1lZUlWmH9b11sa2NYs8yfrfNxxlOkfOfFYz442zeriTyr7PEe139ceWr5RX947zaUbe2hLu1EyfE8+b62LA3w2tI6lF04cwXiFfLFtfXB/cM+lA1HGLPzbbuHmq5W19IfuvjpktsE3dckMc9Aizye2zFqnOMmtuN2t0Xl1v+zLnmgkuadNV3zun+znZGW3Cnxu80AfYVXl01dez4eNztlTXOn3YP4zBKuneha5x5Re3v7J9+G+NoqXucZ6/n+0S72bd/so0bu2tVPQ3x2Ddtjo22ewfMX8Zy7dJ8r8o4vq9zaxuNy660c+i7FvmfpbANq+dTzR9ReA2r7d28Zv+C8RF1yRLrAZIx1fzgybWzrHvY51erptqGTorK0okPSGb/tvwTxaPkrEK+H70E8ffM/nG03Enx3PvML+NlW5xLEDxKjDd0rsc+5GmB7unz4h7jv19BfunPBnPdLK7eh7N3770A8XnsR4pxej8GfgtvcaaO+PM1Qe5xba6Zcj953Ia0hCNnj3nzeozUCnE/iwQNcy/HDH+JapRdfNPc5ovUtHo2feuTpH5IHss3cmIcGMhn1P4Oh6SeGI+4z8BnZG+Gak+1Dyk1g5f4I6BwTyp/gUv01GuZYPq3lKMqjvfD/OPRLsxBCCCGEEDVo0CyEEEIIIUQNx5dnNHGqp7WAFjO7m+bn994yTnmfO3ce4hs3MDWo/bN/UR5tRRJQGmBOx5xY9iJsbTdnT0ccZUFXx5PY1/E1MDxla/vX8FQ8w3Z1tiVdmtA0RvLkKSR/buiSogDv62KrN9teW8I0vAsdbE8u/a+XJMb+ME3I9maKU2iOg3W/QO04sqbNXLpNJUtfJpQ2NDDnUTZxGn6hjdNkOaVIZns7O4X3JMV2PGUrMpJcHA5Q/pTY36eUo2x953t4X5YWjWWaT1P4ScF1e7KcP4MyiGaJNk7xyNyPKaX8XnExfn4Jp7X3U3Nvv3sHLdVCkl9cevoKxCXdy/NnLsy2u8to3eaHbBlJsi/PnEdAU6muy/IybH+5i+0ktPq7LnX1Q59kcA08Vv6wD/HgrkmdffE69udXnn4O4vtvoeVc15Iu9A/QemprfLpt6MSw6nriocWc00S5YkEdy73FL+HnX/k/zTZffPs/gqLOt/4mxL/43Lcg9p7/tdl2v4X36ewI37uHD9C6rHsGz8PbMfdx//03oOzDs/8GxGsNbIujHNvX0DHT63Mp2j8hLJD15+4+vWvGpg5Kh+R5CxjTsAX66PEY65LHFnmF/f8b76JloWP14VcuoeQmCOk9lLOky7K3pXGIbannOI4T+/iuyEmCMrJkbilZ7nlkuzskm72SrFETS/7rR/RiJilMSuO+0pLqxTFb2z15W9QvzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDcfWNPuUjrHT7UGcpUaT2d9Hy6ZrVzHt8eYmpsMtrPSLLum9fEr76FE8IX1nYqVuZL0Ka5rrNM5PwlEWdKwb8ihlbRSjzqgkK5ejTpOvYXERU1Cnqanb7dEWHufnl3A/MSHpn7oN1BIvLxr7sMVFTD1c0v92k4Sstyzrt4xSe6YJ6ptcD7WbnKI6tjT0roePh0t64LIi+xpLn5rSeeQVa4lJe077svedUvvJSRDnOtz26JnxbZ02luX03crDuNkw9RORbd4oZUu0k+X8GbxXqz3UbI6Hlp3ZJloYXc2uQuyRZu5fvnNntn2QYtkzn34G4srDe7u0uALxspVe3Q/5vuKzbdtUOY7jFFbsz/UpbDdJlk+Uktuz2gnbXHqUxrdD7fPRrfsQBwOjOXz22tNQdndrF+J/9rv/AuKNRfOsL63gPTxP74ZPKoGVFrikFMGpi89NUKF+s/DxOfqw89psu3r+/wBlqzf+HsTbb5Pd2EOjPf6FSz0oy2gNQNKktTbjjyB+/WfG3u5e+AKUndvD4/Y2/xHEb1/+NyEeBEbb/0nVNI9HWH9VidfRsmx5c3oWg5D0v2SJmVrWb2mG/X2WkUaX3hX3H+J4ajI0WnXfwed6dRXXZ4wHaO1mjyf8gNOE4zqdxQ6+w50WXuPeo4ez7XRK4zRaD5SXpFOmZ+bw0DwzoxH2v1GM11hRv7l/YNbb+TT26nbRRvA46JdmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKKGY2uaPdKJhJQ6dbG3NNtOSL+ytoZpkbtd1N3u7BhNDvvoMSnpKDnmNNw2dSmnj9IlP6n++ajPF6RJZW2US7rtsnx83u2682pbmt1H9NFr168f+d2Pk1ZIetSlsxCvrJybbfsh+kGSxMspKfVlZunY+RZOSQ/mkbYsJu/JRsPEIfkSu+SBndHBEisldUo+lJPs6DTiGV3k1NK4TVPSRxeP99Z0HMdxKQ4s72nWLDsl6ZIphbvtiRnQs1kUp/s/d397BPFPfvJDiB/c/sls+4uL2N6uxUsQf+c26gDffmi0fRuk2Y0XUPcW0r07fw41+M2maSeVy77MEM55sNp9EHtosx83P/te+fg1Gxl5mcYRagbdPtbt5rs3Ie60TH22Wug9/Y1/8DsQv/0epvm9b3n8L6/g87ZyAbXmn1RKay1OUNHz6nJqYuxHPEq7XTrmmbzTxfrZ/My/D/GF8fsQP3vjP5ht37yJZS9eRj3r5z+FffD4LqboLvb3Z9vnHv0elN39GXoDH3z6tyDev4Zt5JOqY7ZpUq6Kgq4psdJdV1R2eIjPF+diCC3/5IDfO6RLHtC+kin24Ye7Rnu9vEg5DqjPaISc18G8Lznnw5jendUCnkfUwz532Dee7Hz/uX76hzhmnFJ26yw1mmZ6vTmdDq/hwdi11mv4tKap/DneYfqlWQghhBBCiBo0aBZCCCGEEKIGDZqFEEIIIYSo4dia5jrtrG/p/Lpd9O8rKRd4r9eDeHvH+AdX5EXK32VfU8azdIAFCwgJ1jB73uP/h2DtIXOUXnpeK00ejaTL5vN4Eq01X3Nsac+vXkNP1N/4c7/x2P1+3LCmudNEjanv2R6XpNGlpjceo/7Jc8y9YW/JjLRjEXlNNtqoV/UtbSJry50A9VAZ3afU8v6dkobZS/A8Wi08z4p8Owdjo+FKyJeadfsu+cKW5EFc+YH9YTznnNYEVOQvatWnH5EfZk7ishNmc4DX+ehmH+JL++bizvdQO/vuPvo2f/M2frdaNPrOpQuXoSwnXfL5M6gTXF7Gtu1a0r8p+bVW5LHqkz7ase6dR/fVC8nru8DuO6C1Era1fhlgWbOD57z1LupZ9y09q+M4ztUvGq/qD/e2oeyHb7wN8ZCe39LS9+dT9Gf90PJy/SSTW69Svm9stF849OxT+4qsNpORn/u0ori1AfH+QX+2fesRak5XO6jJXU7Qd/idH6MGutsxfXRjgvc8XbsC8f3n/m2Ixx56l7vVKSYFOCHyHO/raIT1G1jPJ69HKGg9QpPW0gwOzb1I0yGU+dQGghDv40IXn2XHGjPdunUbilaX8L17ZrkHsT2+KknTnI7xer0U38ONAt+tWWI+H1B9xA1at0TjurCB+5pYbTUZo8+5ve7GcRwnprjZMmOgmHJiTCb4DBwH/dIshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtRwfE1zjc+ircNttUljQ9+9dAW9J298eGu2PSHNWxQerZtkL0H7PFjvO+drSjob3pcNa4XrNM62VvEoTfJxzvOo4/JnWbNz7vz52fanXvwMlF04d+HI8/o4WWihN3cw58VsaTlLrK/xADVeHunjmh2jf3LJh7giXXKH2ma3g/p71/o/0iUBcEQ6LPaDLK3PTxJsL0WJ7TqlW8wtZJJaukb256Xnib871zQtzWRJ7ThNj9ZL+5ER6IYN8vZNT1fTnAy3IH5qCc/9xUXjQ7u1uQtl//L9+xDvOugj+8zzljcz/ZSw0EV93dIqfrcK8X7khbnXJWlQC9KBV3SwwNKfZ6xdp+UcLvn7unRvs8qcR9xCj9XGGOtu663bELN+ffGS0UL+4Xd/DGU7W6h/9ln775hj+XEPy8qj+8ZPCva6Cn4ivbl3J2ueqdRaV8He2w6tV0hcWsPR6M22++S9fXcP+69nX8T+f0ya3bQy6wC+9MtfgrIbW38e4u32pyBmDfMn36XZcXIH13/4NFzIrXwBCws9KGt0sO5HlMtiNDb7ThJaV+Jj7XWalC+gxH3Ztb13eAglvTvov77cexniyFrTEubYR/ASn4q0+WPyi7aHl5WL59xcwHUhMfkn7w2wT7G7yeVlfGcvLuCYx/fxGZla9dnv41hiPEJ99HHQL81CCCGEEELUoEGzEEIIIYQQNRxbnlFyqmcqR+skmgps4ZT4c8+/APH9hw9m22+/jek5Od2ww9M+PLVlTVGyLIKlDSzHiKypaJZjsAyCre/YOsqWftTJM+rK4bzpPOxzdhzHuXYNpS+vffbzs+2VZUybWqMw+VhxKzzPhCzZQuu68jHJMah6lntom9PtmunyjCwKfbLp6i2iTKS3gFM9kW8+71G+Tp/m41yyt7NPk+UXRYrnxWaIAU2HO9Z5ZPnRbTGi9KYlfb7IzY1OpjgdlU3pvGjfQWD23SC7Pmd4uvKM9vYDiM94eC37hyZt6+99iHKM9/awsV97Ee0XW03TLkoH97u6tA5xEGF/lpGNXDI2dcpyF8fHe+XSVGJq9bMlpWJ3C2qPFVkAOmRvF5rzWl3sQdnmT9Be7P6HH0J8/blnIZ5kZur59R//DMp47p0y84K8ZW0ZrcgW2/g8iqMpXZZn4LS/f8XIKFbe+RaUhU2s650Byc9a+Hw/c92kh9948RUom7yNcoxsgn2Oz6+06pP/+1xR4TVGMT6PvRWrnyjx2dzaIss+lj5Yz9CZNZQuzElDuX/ncmt7ZR33tX+Asof79z+C+NoZY2Hok9er69L1+3gNZU7WiZYsa1rgZ5fJdvjVF1Am8qMP0AJzMDFSo6UllMctdvE+pBnKRGxpyOEhWo9OOV/3Mfjkt2QhhBBCCCFOGA2ahRBCCCGEqEGDZiGEEEIIIWo4tqaZtbRsXWVrj1nfG5NV1crqGsS//Mu/OtteII3pG6+jvVFVsJ6HNJnl41Nn83mxpvkoG7mQtLHMUTZxdSnIGdY42+mcS9rXIul7n376OYjXLJ2VR7YvwZzw7OQoXLSF8chiJrWsBiNKg7myijrIhQXUNMUto+srKdUna745fWlA9li2jpncnZx8rs3j/5z2sSpaA5BmqJ0K6fojekZiS8gdZVjGKUdd+t+3mqAmN03SP3bbcf4YPRytGfCtfceknXa909U0r4d4Q5pk3/aBZaNWXb0EZZ/+zHWML6Mm0/GMbVN7Ce9NEzOtO46H9zInO8F2bNWTi/cup0ZF2dOd3Oq/KurL8gzve0Ypz3MHz6PZMOeRD7CNvPX6OxCPXEwne+ZZtCP72d1Hs+3NB3tQ5vms/ad2Yeu0SdufjtguSxwJ6UzHpJ1tXDLa0E9/9mkoe/cGrgn47Qf3IPZJM//qnYPZ9meamFrecVAb6pKwvaB3jf+E78B/FfF5uETvh/HE9K2cYns6wXa/1EN9edQwdc/Ot0WJz64foPZ8n6wFt7bNffMC7BN8sqvbvIttoGn198s9HIt12mSlSM95SWssfGtxgx/hd1utHsQrBZ7X8n20F51Y7zQe4iUJaauxGN55QYB1ubSy4Dwp+qVZCCGEEEKIGjRoFkIIIYQQogYNmoUQQgghhKjh2JrmnP1vKaeirQfm9NQejc2jEPWtG+vGP/jzn/sFKNvro6/gh7duQMwaZzuNsj+XJhs1N/PaYfdYZY5T79v8JDrmuvTehaWDvHT5GpR99tVXIb54AbVnkW/q2i1ovwnqnU6ShHyIB6StXbD8a5fJy5W15/v7qKnsuebzLrXLNnmPsr4+yzg1qpXOmzVbpNurqE3YHscB30Mym3ZJDx2Ej9eDeVTm0TnPZeUt8DynE3Of/TlvadL1k6a5GxsN+EKIdek7p6tp3qd+41FMes5rRrf8mUVcN+FFqF1rVgcQh9alNCrUyEXkP+pz2mxS0TUsTXPcxHN2A/R4Lj3UiWdWX5mSl3masFYddciTlLxyU3NeW++hH+sjSit++Rn0cA9X8Dl58w9vzbbHY+zrwph8+Rt4zZH1HFWkyx738T6IOrCtpZSmvWuleP/il9Gzf7mL7eXtO+iHP+xj+xns7pjtW69D2fNP/SbE743wPHLOuTznTP/JI6C+0gux/9u3UjTv7GLdBrQepDhAHfJk09yb0RB1/g3SIV+/jr7x4yH2C+ORecYm6Q6UdS+tQtyma9ja3p1th/QcnzmH3+U8BQ8e9CFOB+YaJ31M512l6As/KbBdXzm/AfHDnc3Z9s429hm+R2t86F07Tcy+JxPSP9O49jjol2YhhBBCCCFq0KBZCCGEEEKIGjRoFkIIIYQQooZja5rTFHWUAWmWbPtI1qCyRpfLbb1wbwlzpX/py1+GeDpF/c5Hd1AbY/vssqaZz4OZ8xe1YM0yU6eBtqnTO7OX8LnzxnP2V3/116Ds4nn0U+WjllaO+2KK93A8HjinxW6GmiaHNL3rXaNhKuh/ue091DBx3vpm0+gvRxPUgzUbWJcetVv2LXYtaVUYoaaL/ZGLI3Tufoya0HDO4xjPIyGdcmBpi3PyD09T1GVl5FOZ0n22vct98lYOYrxGWiLgdEujY764hDrhtx5h3Z40P90mLftSD+J8ZHSE5fYjLMs2Ic5IW9v2zXWGAdZ3UaH+sHJxLUBB9yeytN8RmTw3O+gx3mmjz3q7Y/q/xsIifZY8xltYXpR4Lx9+cHe2ffNHb+I5km/45UvnId4+6EP84R1Tf0WFbajbwvOqMqyPqfXcHJKH+P4p+jTzGgRaogB9p0t+2vxdd84NtnrM9vy+XOqlizn9b2Vt0UnSvjwqX2qatroQYxu//nQPj7uFbWA0xrjqmfu8RHroX2v/IcQ/HqF++oPpOYhPMSXAiTGlZyahMZHvW+tQqL2MRlh/A2r39jKUKMZ1D0GI7WNEawpKahO2n36D1lQs91ArnOXUFq1d7+xiv1eWtG6L1noM+3hNKx3TL5xp4ftwc/s2HpfWdiws4zhw0Vqb9HAXjxN2cK3NZIr988GBqfuUfOL9n6Nh6pdmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKKGY2uaWYbLvs2hpecpSeNX50Nsl7Pe+dw51Oy+8sorEO9tb0M8Gtj6V9Sr8Hmx7tjWbfM5H6VRdpx5PbR9rKpkjRt+d30DdUaf//znIH7qqadn20tLqIH0KhKhsv7V0mEN+6gJvXXrpnNa9DP0226R92TYMfUbU9lCZ4Ni1HzZur44QG1Ut42a0jjGfVc+3ozS8hMtKmzjU9Idu+RpnFtek6wNjskP02EdcoZfiC2tMbdb1tKNSSeakE7b9qJ2aV9xROsPXPQ+blv61c9evA5l4/L09KiO4zgx+VVfu3QGYjfrz7a9HOvXSfE+FyV5X3eNPrgM8F5MEnxuphmuBWCte1Va6yoC1BRWBZ7X4QR9VA8t7WNJGu6wge2e9fpFiVq+9958Z7Y9mOxCWXsJNYaP9vD5fLTVh3h725S3SSfZIH2vR+8G26PWj/A5CDunp4v3KtYh0/ugsrXE0WPLHMdxKpfecUd4lrPuuO684NOsdyb9atND3elZ58Fse3qIuv7Sx+O013Ff2QSvYbdvPv/2j7DNXyq+C/FfeA7zBfzn93H9w0FmnrdPqrw5J//7hQ56v69aOtxr53CNQEY6/0f7WJ8Pd/uzbTtXgOM4jkPvod097O9L8jh2XPN5l9YfJDn2930fr2E6NX16fxv79zs7qMuOSA/ca2Ofstwz/fPSxYtQ9vKv/w8gZg3ziN5h9/fNmqgH29hnTqfYp+4fDKnc9IsF1RWvHzsO+qVZCCGEEEKIGjRoFkIIIYQQooZjyzMSSuHKlnOV9bN3FOHUFksXCp67tvfr4ynFLv7kf/UqppHefO55iN9+y1grTac4dcXHZcmFLRthCQlbzs3vi+3tHp/O+9xZTFn7hS98AeKnn34aYttSzeN0pDQVWtH0w/6Oka+8/TbaTt27d885LXKy8dqtcKrnftKfbbcX0UprsYltwPMeb/XGU8etFk5p89RXo4nT9E075S9JGZySUnDmlE65NPueljT1SY6FjRKfEX5mHCs1KJ9HSjvLyAqocMiSyJIqeNQ+fHoGIrKkcz2r7S1g+tZrZ644p8ky2eMtjlC+4O59MNtuZJRqleyiPOpn8gNTXgbY17lk3VV41A5crDPfsozyafqz8HoQj7vYPjMrVXizjd91XZRm5Q7Wx517mBr79Z+9Ndtei/EcW23qk2mq2R2RXMg118zPUEhSmCvrmG7Xs6ZxG6s9KHvhRezrTpKS0yCT5MK2kKxcvP6wwuninC3orHTWHqkxSg/3VdC+5+zsSvO+CEjaV5GkpBVi21zKTBs4uIc2nwOymGuhU5cTXMf3VHHfHPtgH4/zaIc++8F3IF5pvAhx37k825636/tk0I3xvdQjadGiJU8IqRGwbLBD37VTVpf0Wybbovkx2cTRGKCwLEl5PFC6JJ2ifS1acsaAn/MQn58o5POE0Hk0MTKJ4eZDKNuh98wZaufTEUostg5NWw4a2HB5rNYim09bcpjxe8B9vKzqceiXZiGEEEIIIWrQoFkIIYQQQogaNGgWQgghhBCihmNrmqeUmrDKUZfVsuyPPNKrzFnOcQpuS6PKliCcbnipx2m2fxHinqWHff+9d6Bsbw+tSpIErwmlZajnYSs8ptNFHU3DSqN89dJlKHv5pZcgXl9HrSgfq7I0SwXpV5Mx2sL099E66q23jK7xwSZaEM2laD1BKtJHHVZY9z+9+/5se4uu4bmzVyC+vnEJ4qWWqftuE/VOTbIpY/1Tl3SjUcN8fjhEW6CCLIfIrQ5aTDVnR4efLUjD5cxpiU1csEYSQycg/bRXkb7e0u9OU9TrDkgfHUX43b3caDk/Ig3xDzYfOKdJh+0D0y38wI7RzcUjfNa5jiqyYmpWlg6wwjoqPOr7fLYfo/7OMc++X+Ez5/J9jlHrmEUmzXazgZZ60wZqhXOy43So35ha2sbtEp+p69QnHU7xmgabqAm/aJ3n1gTXI1Q+XsPZVdReL/aMbnv9KUy3vErpu08Stud05/o/U38+rQtgqzeXLemsz7OlmluS5p3s6UI6r8Kz7iPtLKd22w6xrfZCs45nSmmODwd4vQ/uYP+2eAnX2pz7lLEJu5yQJeEIn4lv/oPfgbj/1V+H2Dtn3XdeK/IJIac1LYMxXsdkauozneIzwi+LlIZeaWHua0TPcSOktuY/fvzkOKj5bUa0DoTW+HTJcjSy4kYDj9to4LvUD3CtETmhOocDo0se0PqpbActMG++8TrE4wJ31uqYYz3zHFqf0sBtzh45s95xBduD/hxjIP3SLIQQQgghRA0aNAshhBBCCFGDBs1CCCGEEELUcGxN8/4upqte6HYh9iw/15z0KCQjcXzS7Ng6U/Z0rlggRiKvbhc1qS+/bNJsX7qIerm9PdTR7Oyi7jG1NIAT0govLuJxYtYKLWC5rdveWF3Bz1LdheQZGwWoHZomRh+1vY0ayQcfoTcra3YKSz9Gss5TlZaRFI9lSE5mpaW9O8L7tPsA29O2hyf+7DmjcT5PWTG7BdZtOySPR1IIbx0aTeCYdHstnz2dUQ8VhkabGIR0gaSltvWmjuM4lYPtzdY8l+QJntJ3S0rBnVC8b6XRvj9B79aHI4z3UzyPB33z3G8P8b70U9S9njRT0hRm1BdErqXXq6iOSENeUsdSWprUuZTIrBEnvbpfYbtwS6tvqLCfyDxsjwH9btGx/JGjCemhA/Sdzz3UHFYB+simVl8Qt/Cz97dQn+5luO9ehnXw6XWTFvlGE5/HH91GbfuH5Mn6mTMvzLZbPez7Iuo3T5JWhe01rfg3I9N5+OTLPHGx36hK9qi1tMXUuTXJ1zsgHWVekRbdeny5j67onM+F+F5ebpvy3R7qV90d1DDffZ36iY1fgviw/ZXZ9rNdvKdN912Ioy/iO26y8hyed2mO9UlNo71H/Z/LKc1j0374/eYE5GvN5baunVK0c38Tu/iS4xwRofWu4RwHSzReajVonYi1diGKsV02KQdCI8bzKEhDH4emDwlKfJf6Lmrxx0P0ZR7Ruon9XVP3BT22HumyXRrolNaCoqNycxwX/dIshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtRwbE3zG6//BOIXXnge4tDy4fVJtxfFqKthH9nc0pzkBeq/5sRBZKsX074Dywe100Yd2tmz6EOZsWefte+S/KIp/bvjsr0fmQO6VkxyJscnn8WCDA4PyB/4kaVjvk/euP39PsSdDurYfEuj5AeoU8zJp/okcalNsF+tY9VJRZU9KFHf9OOP3oP43e27s+2FFt7zdgPbR28Rfb598sAcj02biFzUcK0ukP9sA+u6HZvPR6xhI7PlJMF7HpOuvds0erEmnaNDGud+ivWzTfGDodEt3x+hrnN3gm1tnKHWrLJ0xK5DOuFT/p97OkXd7Q75hoada7Pt2Edtdos0dM0Qy4OJ0cwFJZlqk2evS17pLumWq9S0wSrDc2RFJ8nPncrSNvo+Pp8lfbec4jXkLh6rPzD19dZN9NnlfnOJ/KKvL2D5pY7Zt0trCl57DX3nn7pyDuJz54weOqTjdEgXeZJ85fbfhDhx8BrdlvHFzrr4rO818Zo418C1JfNsXDvTg7IrG3hf4gK1sfsj7Bte3zV91A838TwOaZ3Fl9feh3ilac5r2kL9atjCfuGpDbz+7y7gNX6r+OXZ9jdJr9pbRC11sYBa9TFpwD32pf8E4tLzxR6/qSVADyk/QEx9eJt0uHFgyjuUa6BDuuSVJWwTvK4rDE1/1IxxX40G3RfymLfXm3GuAdZOcz4Oh8ZMkSU+DjPsu8Zj7MsLesUFHtbfkhWXbMQ816dSjoT88Yu35rTnx0C/NAshhBBCCFGDBs1CCCGEEELUcGx5xi7Zs926dQtiOyV1r0fTB22cumm3cVq7KG15Bs5X8nReSHZsJU2Vlra1DafvJnuRkKzvbLs7l9MgT3F6t6Qp3ICmLjLL5ovtZaYTPOe9PbR/evgQ7X3uPzS2cklO0/oxTg0nGdaXbVf2cdit/LzMyTHmYnNuPGPi0X2sKqy/UWamHUdDyuU5peMcYl07NI3mBqY+PR/r1h/iMxDSFFJgSUxCksIUIba1hKRBPtsGWfcqojSpLBVKU5yyTegZGlvThuT+OGdv5FK6c9fa1dys2Jxl18nSIqvGzQOcIk4m5gSLCd67/j5NByZ9iM/4Rr6wvkjTeSTt6C2S9RIrMKz22QnQ0snN8Br8NkrGxqWZip1kZLFH0rWy3cPjjvHeFZaV2cEAp+YjaghJgvseDlC2c8+6yGeewhTcn3rpGYjZmsp25vLItjFsnJ4847XRNyAupthXLBxYfecenmfneUzde/FTr0B86cqV2fbiGl5TI6K04/27EA/2UXL3K5YUZuepp6Fs86MbEF9fQasu20LzYA/7hekhXW8Xz3PqUtu0blxBv6/1y3U8LvUFPvUr1SfWaM6C3gc8vggsyVODJBXNBtZPg94HXSu99VKvB2Vrq2sQ95bR3q9N46vQknoEAY2fQrwG74gU1DzGyemdleZknZjhPc988/1xidc7Lmkc56NsJCApTMszbbVkH0a+BrItLiwZDcuqPO/J26V+aRZCCCGEEKIGDZqFEEIIIYSoQYNmIYQQQgghaji2ppnTWx8eYvpdz9Jz5qTFq0gLUxYY298NyZolI70m74u1oKVVXtBxKkqZ3CF7stJK/z0ZoVYsIo1qRfrCCaU2ziwbuZw0OPv7aP+0ubkJ8fY2aTUtfXRAGm/W9ySkva4skRLfQ45PFPZ2OSI9+lzq9Lnvku7W0ma7c2nYj/4un4itU6uo/WSsJSbtMKTvJIs5J+HU8ZxXHEO0M6J9sQ7ZYc03abysY7Gma37XuO/SqtuKvzvnu3iyLLVQJ/hgD9v6JDHP7P4B3rt3b96G+HCI/VdgpzLmOiC7rDBEjWro43l4Vre60ML+qxGgpt5tUv/WXJ1tR5T6utPGNrQ0xfNMU2yPHavPurCIGsHPvoZpjldWcB1KQW3btq5aX1ulMvKLctjGyty3uNODsrhzemm0PbKBXKA00+HI9MudxR6Uffo11G2vXL0EcbNn6qQknXYyQou5glIGZxOMy+17s+1zPVzfcn2d9JykWR33TXva/qgPZYcf4XEmHdRpP2xjm8gty02PVkN49C7l5Q1VdeyhxSeHgNa40LsmtGxCQ9I0x3F4ZBxZ9qXN1jKV9eg8sN0mpBeuKtMmyorHU0e/S2xYw8yxV2EfUZDVaZEMrG3sb3OyDx1n+N3EYdtPa7/UN5UUOzlbgppr5r48muu76tEvzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDW5VzbmvCiGEEEIIISz0S7MQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDRo0CyGEEEIIUYMGzUIIIYQQQtSgQbMQQgghhBA1BMf94I++/w2Iq6qC2HXN+NtzSvxsWUBcllRembgs8LMOfdeh4+bFEfumz2LkONXceZhPeD5WTVHQt2nffE2ldbTSpe/SOXuVC3Hg+fjxx1/S3HFd3JXjwLHxy0GAx/mVv/BXnZPif/HLX4W4Sf+vhVZYedy2KM5S3Hmam+0SP5tVWD+Zi3GaZbQrs6+syKFsPJlAPJ1iHFiPU2/jLJS1r1yF+MFkCvEbb78D8cHe7mz78sULUHbm7AbEUTOE2AuxEezum33lCV5/kWN9eR7elyAw+47jCMoGwyHE3//e685J8u//hR7EDbxsxw1Ne25FWAeRj89cSk3IsfqsVoP6hRz3lZUYhxE+R0Fo2gH3I56H36UqdXzflFcO7tdxvaNCx6G27VhtP/BxX1XFfQz1QdQ3+Na+pzkeZ5rRZ+lYntXvUNN0/AAv4q/9jbedk+Kv/q+xD8p28Nhny8uz7WD5Ofzspacgvvj0CxD7449m23ff/wdQVlV3cF8pPvsh1bVTNGebbtU98rNpsQ/xZDKYbZcFtj3fbUPs0Xum0aT25Zv+L+E+l9pmUeCNHY/xGl2rb+xQo49DPM80TSDOM3MeKfXJjUPsg/+z//Jbzknxwi9+GeIgoOGTVQX8ni7ovOkRccLI1D3v16U+mftoft7wRLAsmR7d9uywonOO6byWlpdx3xm9L8fm3vC4rtVsQlzmWJ7TezlzTXlG40v7ne04jkNDIsdzzUVFLtUHtbUf/M4fOHXol2YhhBBCCCFq0KBZCCGEEEKIGo4tzxiP8Gf9OXmG9/i5iZymdnL6Od21NAU8femxtKPi6WWSOlhTFRV/lqYIKprKt2c1PJIEpClPAdTs27qmiiUTNL3p02n4NG2WWueZHyEpcRysyz/6gyUTKfEa5qaXTpB2qwNx06Fpat/8/+Z6LKSh+RaaWy9dE7MSpqT2VPoY5zQFlVlTTFw2buBUziTBZyIK49n24voZKEsinI6KSppyoylKPzZxUeBUFcudcix2sgT/UGTm867HU+nOkUSR0UBwG0+TOY3DicJSrCFJTeKmJbEgyQrNyjlRRDIeq8pyej5bDbxXFV12TtIt15KCFCSJykjqMZhieadppq7DCNvf3LQsPUOsZCsrW+qBhWGAx41YjlYVFJvtVoP6aJKFjBM8b7svzKndT4f0bJ8g3UbAf4Bw+872bPvsGsozGh5+dqOHEqn+yEgwqhwlAwvdFTxuowXhJD3A2GqM7RZ+9tz5dYj9APd99+57s+3D/UMoK0tquC7WB9+byOqT4gglFayi5MbXbuLn4TVF7zCWiTSpfsrIfD6i4wSH1PmdID5LlqjPtp8KlkxM6Tmvqse/iyOqa35Pcz+ckZTBs84kpBfiYgPbsU/vx8SWHNL4KSQplceSiwj73NJ6T/N7N6B9ZTQ2ySq8Jteqz8jD4wxHY4gr6hft25ZTf+zNadzq0S/NQgghhBBC1KBBsxBCCCGEEDVo0CyEEEIIIUQNxxa1Hh6ivRRrZ2293bxOlOxDSIRpa5oapItxq6P1O2WBupsgNN/ncyxIS12Qtiq3zov1gRnZqbCWmHXchW1f52E1B6y5mfvfhfSElv4nZwu19GhNl10FrIUKwtPTE3oB3teIYlJDQeRS7EVYX2Vp2s9cTZLEOyONV0D3xpY9su1Ns4mWTRkdzLa+affQjmd3gvsake64s7gIcTI1esSILM3YCshhuzC2koqMjm0yRV0jt2teb9CwNHBJQppusuA7aUi65vhz123aSUiawUYLNeVuYwliu31OLLs/x3GcosTr7PRIcxlgu3ADU2dBSBrCEFv6ZDSC2MmMTj6M2G4T69+la2Tbr8qqn4pdzWjXXkCa55DbnGnsbL8ZkY+cSzrBLLOeX9I2FmWNqP5jJKZrttcgOI7j3BkaTXN7jHrgvXfegni5twqxn+7NtvMp3tOzV65DvLL0NMQf3MV9P3pk7CddF89xbFnKOY7jfOqlaxBvbJh+5+6Hd6FsOMTzWl3Ba4jICm5hYWG2HfrYjnd39yC+desWxCN6WG1drl/hM1Dxa4jXNVl9tE/v9NGU+sITJOR1J9yWrYdqOMTr56VGDfLL7Fj9UxjifeDvlgU+MyF9wLefP9aP87uUvmufl0dtz24Pf7Qv0mnToKnbNtfE/e805fVBWF/NNn4+sNZcJPTubJAG3KV3emmvXaO2FtF48zjol2YhhBBCCCFq0KBZCCGEEEKIGo4tzxiNcIqS5QmN2PyUX1BZRtN5ec72IyaeJGSnleBxWZ7BEgvPMz/7+z5N45OUI2XrMmtfrssZj9gyhq3fIASpB2fjapCFjE/ThGwtFVlTuhVNa4wpuxTb1c1Z0Nmf/TnsVn5eRiTJWepgpivfqvtyzpKQZCVk/VPZ94ruscNTWzw/w/Iey6aLZTNFiHF7EaflH+6aaf0xtcspTQ3nJC04dw4zCK4tmjaxTtKNne0dPK+MbPQ4E6YVxhG2tSw9Wko1Hptpsyllk+IsVydNuo/XtdDEOl60FDFNmmqOmliHwRJahnWXrayL5/EZG+5t4ndJptNZxnsXt61p7QZZDZI8I5ngtGRuWT555G2XDPG+JwOM4wSn3wurbyhzvCZ+MBKy7oxcvLeh1a/MJW2lfbVifD7LyPR32ZyajO0lT46Oi9PLcYA2mDsH78+2L1FGyenWQ4j/4Hf/HsSvPm+s4Jo0PXy4h1KGbHIP4uFhH8ut+7j9CGWR587iNbBcYX3FtOPpAO/D2Q387Gdf+yzui2wH93bNee3vYVsbhfTecUOK6R1myZ+qnCwc6V3Ldq5Ty9pzQllY7+9g3Z4k/C7l87THE5zVsNPF912rhXKXypKhTsZ4zzl7XsjjA+rrWlafE5DMKqN3q92//9G+zHnxuyAhy8IFspHlhzux3vl7uyh56x+izeLBAOVQEVnjtS0bwiAgSz4a85Rz98nULWdf5nHccdAvzUIIIYQQQtSgQbMQQgghhBA1aNAshBBCCCFEDcfWNM9rfMmqytKGska3ojTA7KGSpkZzkpP21SXNyXSK5ZMpa3rN/wGef7RW6qg02qwEZmsu3henugyt2CV9YELph5ucfpLr1taTk2Vag1JOk5MbaFZz0i2yNeBJsnnQh/j8OmpKK+vcWDvGenGHtOqu9b9fwRZ8ZF/E9Vc5pJ+2NE+cpjil70Yd1LZWE6NFe/MOWjAFixcgdj3UZTUCPI9XXnnJfJZ015sPHkDMuuycncqs+nSDozXvvFbB1jEnCWuaT8+y0HEcp0V1FJH1YO6YaytD1DA7rTWMA9QYTqxnstFG3ejSdUyJzs+6T2ldQ0tjyHrDkOIG2TjZ6Xc5FS9bC5Y53Q/SNCdjY0+WjFAzWFH/ldD6junhNsTFwX1zXg6vb8HTTDNsgH5gjtVo0DVx3vsTZCU+D/HceVv66lGKdXnxHL7TDsdYP7Fr2luni3aT0xHqgfv9PsTtBdRv/savfmm2vbyE+1pZxbTZK8tYfv/B/mz7jZ+9B2WtFulbSYMaR9iffXRva7a9T+soOC17xvfcwfpKLWu4hBZ4NGI8LluuTS0tbeDT89QlXe0J4lJbZQtXW5/fpfNqNvEes9WbHXJZSWMPXvMUR7jvlrVupdnB+soK7kOxTQTWAGJM+nEetySk284nZCNnfX//ADXMd+6hHeKE3i0h2cit9ky7X1jAvt2l8VNF/bNdX57D69z4HtajX5qFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBqOrWkuSP/E3sMTK23m7sEjLKP0uyFpTmwdDWuFfdK2FDl7QLMnn12IGpyDPupq+qSz3dgwOltOfZ2RUJT1TKwF9Sxv4UaA1xSSHybrC/k/mTSzvacpxSjrn0a4LzuzpeudXspa5u4j9Lp94fpTEMcNSwNHuquCfL0rTrNq6e1Zp1iyZpI1zpwN3a4v0vG7Hvly0n1zLO/NAWnzp+RTGTcwFXOD7mPH0r7mNSnc+dlk39PBwGjLSpfaIunBornn7fGa+JJzzZ8wrOVz2Q9+Ys51OCS9XQM1vS7ZFsctcy1VhcfhviCKyDeV6swWKJZ0jqyh8+bao4k9uo9hg9Pr4nkUbdRpx4smTXKeHd1/cRtKBn2Id26ZdpPtfwhlHulb53z67W44oHUB/un9brP7AHXKy90exKGlDd3bRw3v888+A3FWUNpf67KKCd7Ts2dQh3z92csQn9lAn++O5WFf0bqKWzdvQ/yDd25APJqaE3n48D6UdRexrm9+iOm7u11Kq+1ZutwMn4E4Rs1yzl7xOa/jseqLfZmpLiPykg8sb/OAfM7PXUad+knCzyq/H+z8ASGdJ6+DiMnL3Lf6ZV5pxP1cTPvmNVFW2gsnpHUnJa356dB52e/HlHJTsD9yRumsB5Q6/IG19mYwwPTveUpjnpLWp4xx30PH9N8xad675GNd0cKuzKqDiBd9lU++rku/NAshhBBCCFGDBs1CCCGEEELUoEGzEEIIIYQQNRxb05yOMB86Gxn7ll7WpRzlfdKHDQ9QX+hbmp2SdDP+Avqrsiq3GeIltC1trJuhcPHurZsQ3/voI4gXv/jF2XbcQX1gShrVlDwLWWvlWzq/vGLtJ/6vcrCHWuucdEiFpS0KSNfZjMkfmjSCtua5IM/rSXp6Ps07lGv+/v4exK3zxsc4Cuh/uYBzy3MrMNdYBXhfKqrLirR2rAm3n4hyzuOZdFgu1v2S5SXZW+1D2Yf3UNMckbaz21h63Gk4gwS1YmnBHqm4rzBiLbYpL9LH+1I7juPEDfT8rCzRd8Be7c7p+jQHfDtI62dfS5GT7/AQNXVBg54by6O2pGc9I7/SqXd0txmDJyvrIPl3CtLr21XKenvSkM85HJPGvrR0yqxZ5mtkP/xGC9vB+pUXZttbOdZHfoD9KN8nuCTyms6r02tDQ7rmG+++AfHenvFeXlxDrWxKvs3TbB9iu28YD7BvO3/5EsSrPfT9/tlPUCP+3e//eLb9cHsLysZDPA9aZuE89/zLs+3lBTxO6eMzkZfojXvn9j2IN5bMu3epjf1TNiXNcsbrUMgP2Hpmch9bbu5T26R2HgXmnZ7SmiYnPr11OuxpzzplXg9iwxpn9pgvM3MvInrfxaTDXV1GjXwywudx+5FZU7axgB7YBa3zcshjPrCuwR3h+KnkvoriB4/Qu/z+pmm7Hn2Wdck+rbfyaQyQW1rsw0Psy89cvAhxymt+KnPNfA991nQfA/3SLIQQQgghRA0aNAshhBBCCFHD8X+b9o+2lLHTM1Y0bXv3Nsoi+js4fWVPI3Jm6+4KTkWMRzilxNN9PSstbbuF1jX3SY4xZ7Nkp+Smn+1Ttm5hyUWF0wu5NVWakZTDSXBf4wTrckKft6edbfnJHxXi9RcBe66ZY6V0z9JTnF1ni7UH2ziVc2bV2B0tkkTA8XEKKacpJXuavuLpOrLNKcjeyPHIAsyaGiuozZcOtwEsty14fLK6C32s+0aM5avLPYjbLWP3NCILvude+BTEd25jWm22pIssS6LxmFOjkl0dtfOzlh3WlGQKd+7idO5J41LK+IrT2lq2RXNOQpS6tyxwmhvaZxelWWGAlkY+pUAvyfayKqy0rXMWR/Q7BfVfrqVtYFu4kjpHd06gQfuyune2heMUuCzX8MgWs2XZ151/5jNQ9vBdtqt7iPuyJCmshirmBHcnx5mLaO12v4/Pjd21ugXKEacTbC8OtcWdA/Ms7FLf9r0ffQu/S/1uVdA0f9M8+60uTq93FzBtdkbntbVlpJDTgmSAU5zW3ttHa1i/wPfOYmyeiaqH/fdggvd8MsWL6sb4+ZYlT9g6RKlaFZLswWPpgjmvkOwe+XE6SViOwQIpW5bEfXBIUr+KLXyt+nHpOW/Q2GJ6B5+v6S7KXyeWzGj1pWehLBthe+nv9SFOLPmeS/1aGOJ72V/AVOGrEdbPwK4favMepdx2U+yf2iSB8z1TX9McpVE7D9BaceUyWjo6lvQjpD7Snxe51aJfmoUQQgghhKhBg2YhhBBCCCFq0KBZCCGEEEKIGo6taT6YoJa4ZPuyidE7joZoKfeQNCfTEelKrfS8rZhSIO7jcR3SaR0OURt0uG/0LmWJZQd91MIsWPpnx0EN4WRytM0XW5ewHZSt+S5Io5SRRpUt1DzSbfmWIMglS7kxnedBgrrT0Ep3zmm0vYi0wydIbxm1eJxaff/QtJluG3V8bIvGwkhb68mplllf74RYBylpKgvL6qYi659Jim0xJ41vbqVLX+4tQlncwGvqtFEPxpZEe5YtY2cB7Z6++AuoaX7pRazLCT2r9+7dmm1vPkIdJ7djTvucpUZPOB5jW/t57Hr+JISUjr7k1KuWHVVGmsvQwzpiu0DQvpPOuGDHSLLXYsu/xLLjikI8bpOs3Mhhk5ZScDpv/HAQ4nF9n6wGrcsIaF1As4F9TH8P23JGmsvx0LSpBulV2ysXIE6GqOmtLAtSj6yk5p7tE6Qd4nqQc6vYJy0tvTTbXt5Au7ZWiI1gMOT2ZO5Fq4P1s0DHYWuy5R6mrw7s+0hrZyZT1FpzyvJ723fMOdIz0FvpQXz+wjrEXdLfr8TmPHu01iGktnbYxbp98TXUvT94ZNYTTX62CWXNivSrpI21LWlZax7x+pcTJKT3AS15cZrWebMum9eKZAXem6b1fgjIVq+6h5rl5jauCVsdYvxcYPb99A7q1lMam+3fR310aa23Sgu83lGJ92Wb/A7XO3gvFq21WmlO63+oPuIc4w1aM/DUVbMeob+C79Lf38P+JgiuQRwG5rxi6rvZ3fY46JdmIYQQQgghatCgWQghhBBCiBo0aBZCCCGEEKKGY4sSt/ZQNxOzX7Dlf8fauh75+d2m1KDp2OjlCtL87e2jd2RKupqkRH2YFxptTMND3dDaGqbkvnLlCsSxpeEak48p+1JXlLK2IH2nnWKyoP9NhmPUnPqkYY5Jf2inek5JD82pc33SxsZWPCKP3jGl3zxJlldQt1eleF/3rNSYvSXU8DZibGuc+trzbW9bSptN2vuK0q5nHtannWqXfby399FflKSvzoWLRge5QN6j62uow2JdKKeEXrDqoNFFfXSzjXGng/WTkW5rdd20+4MDvIbpFHXKI/Lx3Hxk9Ifs3dtbxnt60sRUp5xufpxYfpxjbF8kk3TiLupMWwumjjwf742t53Ucx0kS9LvNWINo6VvZ23Wx14N4YRFjW+9auXgNWYbPa0CiStZLN5vmOuIG66EpjS312Ts71NYtr9wOaXadFM9jMib/WmvXTRc1ugEbN58gZ6n/39m/DXE3NP10o01poUmD6nK/a11jewHr58yc7zzGy8t4Xg1Lz7n7EL3QXfL7dWjf3TXT3rCXcJyA+tGI1rhUlD8gtJrfsxH2X4fsb3sVvXFf/NyrEP/st9+dbWc+toGWj21xLg1ybk4kov46yk8v2UAc4bvV9/g9ZOqz0cT7MqX1IC6tY4qsdV3BHdQwP7eAuSratOZn+11cq3XGWqfT/Aif40aCfdlSgPuaWu+/Q353TnFMtEbjmrP0ecfSMY9pzVcSUVujLmWlgXV75arR3++Qj/56htcUsL+9dV/8FrY1Tll+HPRLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRw7E1zckU9XVT8oINLI9Hr0Tty1PXrkAckSzr1nsfzLbjmPRfTdRDk/Wys9BFvc+5cxdn22uLqOHyybO3QXowWw/rU47ykPyRc9LvuKznsWRZrKstc7oIOtYh6Y4yyx84ImPBTpOvEfVgpaXFzknryjrtk+TCpSsQp2P028wsv+kx1Y/PmmbW01n6wrJG813Rdw9Jq7g/OJhtJ6S77h/0IQ7Ib3VpannZBnicZoj3LQpYD0d6w0bL2kbNe7uL/uLplDxASXtma39X1tCbdTxBDXMY47FK15x3l/yiDw7R8/OkSQuss0aEdZxb9zbPyEfdIS1bE3VxqVVn40NcczFNsI7u3MfrfvMuljdbpi984QrW2dNPX4K4yLFdhJZu0nWxbe5soT7RJc/xNfLhXV0xqtbAwzYT0ndL0odHtK7CtdZdsNa/mqDGuyqw/dlewoVPzy6FJ8nBYR/i3hK2gWFutKGTCd7jNMP6YT39JDdtgOzDHT9CdfHVay9C/LlXPwfxmbZpq9/7F78DZW++8ybEGXmI+7Gl66c+KJ/rNvEZSaa4s3sDs45pGZuxc/YiaphfffGzELu7+A7beGjaCHs8J+S/npGf9jQ155XRuzRJT29dToP6e4/WFNjvec7FEDZpTQENvfwdUz9PkW/1q7Tu4ds//gbEg130vd6wntXpAd5T1vCGbRQTZ4H5/JRyQOQuXlO7jc8PLTlxisR8vxXTWiKUUjthD+unLPG+3t83uT4e7WHf1KV23KChWNqwNM00XspyfMcfB/3SLIQQQgghRA0aNAshhBBCCFGDBs1CCCGEEELUcGxNcxyg5sR1SeNr6WMj8nNtL6L25SHpg59+2uQK39g4C2VLZzB2WRJHQq1m04hlUtKzHhyS9o51yPZxSGznks9gK8b6aDZJC2ofm/LQx6QrOhyx/yrWn+0zOJmShqsi7RR5R9p1EEeo4W6wfvwEeeaZZyE+6KPvd2Jpa9vkcVmQxrlgLbZ1yZ5LdefhfWMd7tagD/FgbM6DvWtz+h8zTUjz3Df72lhC0VaXNG3TBHWfgzHGoeXFvNzBffmkpeOHIi+xflJLt5UN8Tjs+5qX5DlsVW7cRP1bMDk9PaHjOM54Qs86Nd9201x3kmA7yEk7nNNzVOWPZtsprSmoyDfWz7EOkwFqmgeW9Pgs+Y861y9CmCWo7Z8MzHmlCd7HN9+7D/E7d9Gf9cpFXN/xtc9fmW1fu34ByhYWyfubtOxDF8+rsP1wU/KcnaKvbCei59V6bipuX9Xp/W5zMMJnPyctbWn10wNas5OShrmkZy7JTZ145M3t02vmlWdfgvizl1Hnntx5b7b9AumS3Qbuu5lhW7xv9aM5mZMHETbGwsU+aTy3hsO0xfWn0Ev61S/9Ip5zguc5eOMtiL/kG1H0Zhf75PdLbE87VF8jq/2MU/xufHo2305MHv8+vcc9qy8tWNMcow43ovaTDR7MtvN9fK5fv/E2xCmtuWh7uK+x5b3vUwW51IcXPj6rU8fSNJOnetymcUyX1oiF5K9t9ZsVLUYrQ+y8U+oHkhzrdrhn+pgR+cLHHl6Tv4D90dK1q7PtQxo7hP6xh8Az9EuzEEIIIYQQNWjQLIQQQgghRA3H/m16sYnTC8MRTgtVlveNS9MWwwlO9R0MML5gSTAysjNapLSHDZr6cmhKaTw2lmGPDnFfGVnqlCTBsB2t2BYvcyitKhbDNPYfxWbfpGRxApJUBLTvKckRbDlHQNZZFaWMrMjvqLIOntHUBKeBPknOncfp4TZJDnJrmrG3QFZQQ5xWHQ4wHg1NezrYxamt8RDb2v7BAcQ5SR0gDTlNy7skswnof057T02S73jUYlqU1jgkeY9rS0No+q2g9lK5OE0WkJ2Yb9mvpSlNk5H7IafgttO98pQjpyw/aYqKLLIyrP9208SUCduJ2lQnbAtmTZc2G5RalVLeXjqPU4urqz2IK9fYGq1tYKrxi+dwmpuvKStNOxhTSnOHpuIjkpc1OcWyJSkbH2K75xTcnNZ9eZnkGx1zzYHbg7Ltd+5AvH+IlQtp76nTKcrTs730G/gO29rHfmRaGTnCiGQAbojfneZ4byprKrsdoK3Vg3sPIP4v//P/J8TZy1cgvpKY6eXODkpyXqnwvJbb+D78sTWtfYfSYickV2yvoI/c+tpTEK9+6cxs+ytf/iUoc1Jsi3//7/6/IW4MUUJwdcHU3wLZjV1xSNo4Jks6q4nkE3rPeqeYRptTz5P9q51WOyN7W4/eJS2SI/QtScX7996Fspfpuf6159Hub4veh/6iqWB+7lMaL+UkExwOTNyloVavjfeJbVVdspG1T3tEQ839Ep+R/TGVp1g/6+umf7q6ge329kN859+69SHEzXXTB0dkscfv6eOgX5qFEEIIIYSoQYNmIYQQQgghatCgWQghhBBCiBqOrWle7eBHK9I0TSwrqwmJeCkDqXOOUnCGlk3YaIi2cLukUe22URAVkJb4YGI0OwNKAxlNyV6LpIuOpXnzXC7E6x/lpCUm3Wlu1c84wfPouqiPC1yyhSGrl9C6RnJscioH9+XTvjMrpW1OmjbnFPVgHUr97JFOq6yMuHZ9Da2znOo8hJMJtr2DvtEAvv3mG1B29yHqCUNKyb3UxfY0tezGErb3K7BuK7Ih9CzNc0H/jx6O0cJqZQXro9PGa47bPbNNGskoojSzZJHG9kZxYXRbLHvNqB23SfNlN82E9G8tehZPmkaMdVqWbHFkyuMmPq9xC/V4HqWJ9i3robiF98Ylu81FsmdrL/Qg7iyaexmTDtDhFK9jbGNtKwXu6hrqimNKY/tLDvZRvV4H4qZVBx51Zz5ZXrl0Yh1aV7C8bM7LJS1n3r8K8eARapxzy6KuouNWp/i7TUXp0HntTWpp5Dk9dYt07jHVfZ5Zz1iJbWsyQAusP/wuWogd/Aifo//JK2b9x5dQAu94BbaXVoj3qb1xbra9MMbz2FtchnjpIt63z38GbeSev/ap2fa9D96Dsr/9t/4WxK//8LsQdxfw+fvoqtGVXqT6Ya1wSfaQUWXKFxrr+Nnq9GwvPX5P03qi0mo0FWmHA7L/a3t4zQ93TRvptvE4VzewP1ooUTvcXsI+ZmqJxh9tobY8p7VovCxlKTDHXu3ie2aRLfYSWjNGD01zxdzzh2R3uEXvtGQR135s7qAW++KCOa8vf+pTULYYYn+z9SFqmsvMvB8jh+zpeEB1DPRLsxBCCCGEEDVo0CyEEEIIIUQNGjQLIYQQQghRw7E1zf3dXYgDHzU5va6JJznqeXz6bPvMGYgnh7ZGh9JxTlE301tB3d65DdzXecuAdekQtWSDjzYhfrCP1zSx0nnmOVZNQhrnhP1FSS9sa958Ek+PWdhIshqXdY+WDjDLsG5d0ggGAZYnqTnPgnR4nAr2RCFfyohSePu+0WW1OqjT8ynda7OJFRRavsRu+A6UeeTDuL6B+uh0gjrHoGG0U4uk73Vc9Id89OghxGMrrfT+AWq2+uRNnpZ4L5Zzep488/3WmQ0o83zcd046R4e0d62GqeuC/GYPh3j9nvd4nXZIHumdLt6nk2ZvhHXWbeG5BrlpzzGLtykmi2PHtTTO8f+3vTOLkew6zPPdb91auqu7p9eZ4fQspCiKHJIiKTFyYiuWLSC2g8QP9lNgBAYCJEDe8pjnAHnIU4AAFhIECJgF0EOcQBBkWbFkxRRJS6RMcSdnRpx9pvfq2uuueTBQ5/x/i6ymou6n/3uqM7f6bufcc+/U/c5/Guh+Rg08To/6M49cv+1t4+Pd274Dy/YpNzWmcQXtdnv6efMSTrm9sYnTLYch54YTlgPtcR55gNefS9JzGGG5sPx9nha6sYz7mSxuQPnw/kdmP+hnGpcr4iShnGuKyIYuKqLjdzIcN5BQnZeB8UjZyT1/Dvscz8Hr9+cfoXf6318x5yt8Dq/9L15Eydn30IdeXzBzHqTrOHbojUO8Z51dvgzlq49hTvO1G2Z8yP/89jdhWS/dwe2eRSf14LAD5Y9um+9PAjyGFgUCs2ueWfewku4F3NedJKMh9pUJ9Yc1a7/bDRpfQGNpqn3sBwqrX1iv43oX6+4nftdxHCcdUN/WM/u5ytO/Uz8YtbAfSKz5OOaOeNi4Lp4TYmuI606tcXDJZewjAroPHWQ0xqmJ9XzlrBkncri7BcuW2tg/r57F9jWYM8fYWsF2Wkw+e068fmkWQgghhBBiBnpoFkIIIYQQYgZ6aBZCCCGEEGIGx3aa+330wbwAy77l1/kk5eYpuTCUrWz7dlFCmYMknt3fRg/58BA9o7l5k2m4fgl95ycvocN1mKOnduf+PfP55j1YdushejT9HuZJ9yjvtukbH9b30I09dNDTDsknjCfoGo8KU64C3M7CIro/lx9dh/KbP70+/TwY4f+RPMpKPEk497Qkp9e1ZMdOBx3dqsCc6zjCY97eMb7c9Rs3YFkQfHoTd8mJS+qmrnJ282ldHgmavY5pi3GIdbxILv4kx+UjypBdqZl69H32S/F6qtXQS8tSbNeuY7ytMWVrlg4H+KJrFiXGmcwK9LIr57P7YP8/7I3p//jk59Vi08iyCttIzaWcecrYLqw+KSdXLx/icXLmqkv92+27pq/4wavXcNk2nsOQ/M21M6b/+1qKdVV/Gp3Tdht9Vi/E/QqsfGl2iam7cqri03Ob89ycn4ran0+51bU29rsH92+a9RZ0H+EBHSdIRvMHjMZjKnennyOHMmcTvMZKFqKt8SEeXa8+/qnzyCY6zn6A94cbP3tn+vkbP7kLy35/bhPKVx57DMrtS09MPzcb+N0vlTgm48XnHoXyzq2Xofy//vQbZlkXz0e0SuML1jE/eSPF8uDAnNu0wn61T/1sjTJ9u9a4k0lKuebJ6WXF1ynrfY7G5URW5u/2Xay3tUV0aUcd9JLdsbkuLlPe+jzlsw9pPFVI/dV83/QbUQ37wWoez220gD5wGVrPYiFem6GH2z08xPvyoKC8bSvzOQvwb595GrOWd9/8CMovPI7t+nxs+hyfxiZc2MTv/uWrOJatk5k+N6ywT/V47opjoF+ahRBCCCGEmIEemoUQQgghhJjBsfWM0sNX+WVJ0Wf2686Kp6Cm12I0BXduvSscjnG9A/w13clTimqh181j65Vb7cf4qnmtja+nzj+BP+s/esm8/nzy8lOwrDPsQPnhPYwbu0+vY7YfmlcE2/v4SrYzQrXDJ11ljiLFMmt61/EAj//v/r2vQPmP/9kfQvnf/pv/NP38yqv4CiSk16onSauF5z6lNmC/OWUdoaJpxasKy7u75lwP+niuW3M4FXFZ4SunWoKvq5rWtMd7exirNOihQsGqQ2JNv+wFeG6TBu7HuUfwFXaTIopCa9rePMdXWxVpIhzfU5L6kdnTvfr4t35MXQC9RrOncHcoai13Os5p0g7pVVqB101mKQTjMb1OHmN7i2p43Ha7GPTxtaPn4zlJGjR9N732t093o47ty3Oxf8tzipxrmtfNTXodXNHxphyXRFPCVpVpFz5FzrGvEUXYhgKeKtt6LV6QulE6n3z8juM4dvPll6Guf3p6Ri/D64LVLftS8DiersBjTCmSFKZ0p/6J73++j+VzF9u0X0ax+Pm7eF/5wS7+7ebvPgflx3/7t6afXZ+iEnc7WL75CpT3rn8fypdz05dGDilxFba9ESmZIeksiWP6Rpe0o7u7qFzWm6T71E2EGCWXOkvLGG94kiRzFJNa4jXV+chM5/zgJ38Dy8IzqKs0m3iPb1jPQLUMr4k4Jd3H5z4b9yP0zPK5Jbr/1UnRpHi73KrXiKe6zkhDI71pi9SHqDD3y0fp2SvK8X73tSv4vHX+CtZrfnDTFObPwbIbfdyP97f2ofzEF1+Yfg5J/+2ODpzPin5pFkIIIYQQYgZ6aBZCCCGEEGIGemgWQgghhBBiBsd2mneHFBVETlNgTb+bk+uTcoQTxXyMLeltQJ4eKc5OSV6NS+suHOPmDQ7QTby53YXy+7dwitsfJ389/XxlBV2gCxdwOtOVZXSUNp95GvfbcrwP9tCx6VBs3u4eRqRsHaBns7XTmX5emscq+/Vfu4r7tYhu4pVN486+8sM3YVl5xDA8OVyKB/ODkL8w/ciRTWFEf+tRZJE1FXRIbmadHKaYYoJ4+nPb+a3IVW2Rl5WSa9w9MN5nRhFew9H4U8suTdMexcb5imvolvEU3HwME/LFs4kpJ802bvdIFCDFQ1qur0sebFmyu3myzNdw34Y0XbHdRfkjbCPxCH07n6Iby4EZZxCQvxrX0Q0d0RTBKU8BOzLtYi7BujszT75miHX5+EXj8i1RTJXLsXnkOLNrPLGiqcIYr4sauYwco5dOKE6qZ/qkhDztgvr7wSH2sxOrrfs0Fa8bnN7vNn6dpj+nmMfYiuwryA8fDikG08WoMzu6MqlTBCS51CXF7hUTPF8Ny+k999jjsGxijZtwHMeZewSnVo+t/u7wFsYd9t/4Fv7tzVehfLbEtvr1ltn2+yWeqw9oXM7PC+wL91PqG8dWbCr54BtreIytOWz3cc3ciztd7Df7PayXk2RAcXdFjm3k4Lbxz8+QZxv2b0E59bD/WbXujzk94+zuYXtp0tTY7QVsE441Zbd3Bu9ZfNtNAjyGtGvquT/EfdymsWo3C2znBwW28xevmLaZDbA/OXjvJpQvfeVZKNfXcL/GbdMGPriBz0//4Tt/AeXrHTxfj01MH3NhE5/j0slnbz/6pVkIIYQQQogZ6KFZCCGEEEKIGeihWQghhBBCiBkc22ne7qLT5Oac52ooKHc4o3JFmaFDy/kaUYZjkVL2KIWAkiLnBNa2WuTvhPRfhFFOubvWlNw7+5jDfPDuW7gflLUZrKA7tGq5iV++fAmW/Z0NyiA8h9Oq3qnQ/7lh5RAvraJrffWJTSiXGbpmc4nxkALK1k7C05tGu6Qcz4KmqfWsenM5h5L+dkKZu51OxyybUL4q7cdkgq5ZUkM/c2K5eBFlOEcROl0JZStvbRnvs6I86PYie454/HXKcW41TXsa0/HmdO5ScusKukYC63zSrM1HpoLl/bbPZz6m6bujY3cfvxp45mKq3YnVvCPqN0YDPIdBiH5raIX0ZtRGioLPL+4H6ZxO6JrranNtEZZtLKOvmdSwk1peNX5iSX3saID9lVfh9VtRffjWlLgUuYq5ws7R3PTdrYf4B5aH69H1mfJ01F3Mks9Tc8IqcijL9PTGVeQ5+otlgf1haOU2l3xuySMNXJqe+FPGh3BG9mhEbixd35XlYC4k2C88efUJKMctdOS/+73vTD+//b3vwrJL+XUo/1qCY22iCrcVWufgLF17UR3Pjz/A43+PHNZDaxzGXgfvUX3ylLce4n7t7pm86NGIzrN3evew0QD3M4iw78ytenapk2jTvcIf4HwCK00zbqJBTnxJ19vBPk0lTv74aqNt/pamJE/puSWnTP+eNWX5Xo7t8q0+uve397Aen9rA/OTzS6avu3XvHixrruCYgJVV7AfTEI/xwcjU87976TuwrLl2Acpffhb342fX359+zkK+N1LDPgb6pVkIIYQQQogZ6KFZCCGEEEKIGeihWQghhBBCiBkcW0qsyB8ckwM3yI1r1Kyjr5IEuJmSMntLy2lOc3ROcnLvHMoCZKHQtfzXqkIHkK2zUQfzkecqs+3HydmKyHM8nKAPd+ch5jA+vPH29HPv3nlYtuth7mvcwJzFpVX0o1dW2tPP6xeWYFmNMj8dFx235ZXl6ecG5ZSWlLV9knjkMh5x0S3XiiKLnYLaxHCI9drrGdcqTbFe7PxUx/kFOcS0n3Fk6t2nDNmqwv2IyAe2vz9KcR8HQ3TL2IdbXFqHcmHlj9s51I7jOF6EdZzm5IuTT1dY3ppP/im7rh5lMUeBOX9zDcq4rk43pznLsS5dytGurL5iNMaaDQLsN+IatZPAOrYSr4uKtsv53Tiiw3Fc12w7pCDsyMX9aibYN7qVuZ7TMeWT+3QNUZ55UeH3I6vt++RHV0PK1d3fhnK/i17popUF2+tR297B8R/9/S0oTyyn2adsafcUf7cpCvRsXWq/9jXZo0zeigNuKcvbs+5pBd2TcnJDK+qTwjpmxw6ssTW9XXRBHy6hE/+nf4Z+52sv/2D6+fprP4NlT7bw+h1/Du/TX3wEHVWvYRzoUUrjOVJc1xMR3tNqCX7/Wtecz9TDetjq7UCZveX+wNRTr4/Xbeliv3qiUJ1z6HEZm/trStd5SDea5Rgd57r1PFGMaVzXPJ7LMqL9oOepSd+c370D9JDTNZxfYjfDtvrxnhmPEJHvTF2V8+IGPqdcWqYM+sKsa34Znz0Wr16E8vgMjv34i3d/DOX/+D/+fPr5Po1X+UdfeQHKUQvb4vWH96efH+7iM9+51TXns6JfmoUQQgghhJiBHpqFEEIIIYSYgR6ahRBCCCGEmMGxneaA/K8xeX99K9/PozzgiBzAgMJiG6Fxg7ISPZqcHOaQfNeA5NikZg7JL1HYHB5Q/uqI9nPUmX6+FKOf0w7wu2PymS63cFtJ05QfGXAeZgfK5Q45qTewPIpN+do76L5u33kRypu/+VUo12LjfD3/wnOw7Mbtu85pEZDH54XkctqLK6zzNEMHbjjEjMvM8rI8D9frkSDNjvOEHOjmnHHN/BK/Ox7jfkTUBhbaJud0bw/dqfGEMnfH7O7jNWLXWxSit+dH2NbCCZ4vjp7sHxqnsvJwnydHcnKxbGfMsstbVqeXses4jjOiPGrXJU+3MnU9ybDeffIkE3K7XasP8ql/Ksl896jeg5CcZitXlT3sCWWqhgX+bWiNySg5jzujrOmcriFy8N3M2u8Bbnc8xmtobxc95Ab565V1LXz84cew7P41LFc9XLftgkaoNjpR/NlzUn9Z0oJzdvHc59bYgCM+uYvnOqQ6H44sd5Q8dpf8Vpcc+KzC8q6Vc93tHMCy/pvYB7V2l6EcRGZbc+fRlX77dgfKg5/ifem9Dh7j808Zf/riHPZByQhzvKMxurOXIszOPfOFK9a68N76xvUPoLy3g33nsG/O54M7uJ29A+y/T5K1ZZpfgfqfaKk9/dyjSSGGNP9EY74NZXdojjH28SJJaKzCpMJ6GtF4heHEnKO7C3iu+2P01ns09sNvG8f3qWX0jC/N43Z7e3egXNZwHMCedW9tX30G92MdXeL/+mevQPmbf/kjKE9S4yk/+fwXYNmDfcyFX6XrOrE6nQbdS0c0/8hx0C/NQgghhBBCzEAPzUIIIYQQQszg2HpGf4A/69dqNI2mZ+JrygxfmQwprq2iVwKxtS7WL5KcI+XoFSTFLi2tmVco6/R6obeNP+NXNK3q2cycjrkWvs5t0qvhBr2iPTOHETK59fqO3sQ7SQ1fv9QrfO06OsDXZoU1zei9dz6CZde28fXdrYdY/j/vmDiogxTrLM1OLzIs8mjaWZoaO7AqPqDXzAcTfCVXksJjt8WAXm3xFMg0SzS0PcdxnMyK2ckpVjGlKbozKjetabfTBsbelKRf9Pt4TUwoNq69ZK4nnvrapwjHgHQNnrbXniK5MYeRhQXtF0+nXFmKQE56gM95dSeMR9FKPOV3YSkEJWkmFWs6Ea4rs2INRxOKGyODIKlj3dqvxB3HcfzAbLtBddOcQ+0hrmFd1uvmdapH9VhR/OYkxTbkkapWWOrNgK6ZNCc9hWPQqF/d3zLRZz/98buw7O4Wnq8V7AqdqjDHOB/jMWycOcXYQtYxKH4ytRSqoGQdg6ZdpxtVMTD3vDTD85HU8IQEPraJMUVo+jWzX+uPYkRYvU7RlTHuR82678w9dhaW3aWpnO/eRsVi+wO8P97a60w//87jsMh5dhPbS1zHcxs1MWb1i1//g+ln/wIu23jndSj/3x9ijN6ND65NPy8u4FTfB3sYV3eSJDW8dvspqjJBy5zfQYzno19ge+pHWG+h1Q9fuLCJG+7gMfY93I9kCet14JtratfFfayFWG+NHmmBE7Pfnfv4LHG3ong/ionz1rFfzCw1pNtGteX+IfY/DzLcr7OXrkJ59YyZGjuj8z6mKcnvfYzayGrbuuelpEXmn10x1C/NQgghhBBCzEAPzUIIIYQQQsxAD81CCCGEEELM4NhOc0rTivJUs4HlGrvkE3oB+ioluYhpbnwwn/627pOb6JMbRFFe25aHxe4hz5nMkVm5FQ2UUtxY4FPMlIdOUjpBz8axImS8Ca7roKDtUpzfhOJphlZk0w65mTcfog/32rdfhvKtsTlfwwq9vIjzn06QudYc/QtWRl6YNpCROzvoo7PU66Nfn1rnK+DpbomQvEaeNno8Mu28yNHN7x2i85eQD724aBwvnmJ7Zw899dEQryeX2qLt71a8zCH/lOP7EooZsqfspvYTkKvJnqdrfd/1aTzBkUnITxaObysr3J/CivqilC8npSlwJ3QtxJbDWzl0bZMXP+ritV6nPmh+wXw/rpO7SHUV0Dl1rPOf0tgQn3zEgt2+4pPbUEhudT2h2DPyoQ/v38J1H9yYfl5rYNvNWuT3kifftfq/4YT69+j0YgszagNFzk64qbcWTTld0t+OJ/y35hgDGnMwmWA9JtQ3kKrvLFtjcWrk0XKfXRQUb2f1o/MU7VZS39igYzy8dR/KH2yZPqv7E2xr7+3gun7jq+igfvn3/wjKtc89M/2cufi3v/WVR6A8H+O94r9sf2P6eTJGv9dP8F55kuzu0PTwJZ77yqrX2iPok19/H2MZY3qu2bDGRezQ/S2ke0WYUJQuPV/VV037eZ4c+Lt7eC+9cRfP52rLRNoe0jgHh+JKn/3a70B5dxmn1d63omH3aWr5rQ7ux7iP/vSVM9gGhoVpfwU9I9YoHjimMVGFZ66JnPrqLPvskYX6pVkIIYQQQogZ6KFZCCGEEEKIGeihWQghhBBCiBkc22k+ordQZqhvSYRFht6I7Yr9bZnXbVbuk68Z0HN9xdml5MoMesYHevgQHaTuvXtQ/vg2enuVZxylz9G02KRhHZkKvF+Rt2Y5Sst07roFemlbKa780EFH58ByGbvkJm55WH5AsaeZtZ8u5TKz93mSdDodKO/uokv14IGZ0vvhFrp1Dx9geWfnIZXNujjH9EiWLzmAwyG6eoXl6jfIHeN11WJcfvHixennrW08PnaH6fJxDg/w++fOGrcspamXJzkeQ6uF7n5MbcR2r33K3y3oemN/2r7uQ3I1q+DY3cevBpczfbFvyK1ptCkG3On0aNzAXbxe6y1zoBmPdaDrZtjFv6UZc535BdMHrayh59dawLpKqL2Ohp3pZ55Gu1bH8+1TvxpHuLzRNPmtjQZNvc5urI/r2tq+C+XEsY5pibzsAP92dw+KTlxY/Tt1/pPs9NrQYETZwpSV61v5th6NMxkN0CstKbzbHhvRTBqwLKcM2oyu54im5E6sfiWiPibP0OHNyJe2Pff+EN1Yr455vstnMfN4sY37sX3TbPv2A3RQr723DeWb0c9xXb+N/ernQuuYSjzv92/g377xY8xtLq3xRWET741ujULsT5DJGNtAQHXjWtfbyhMYbH3tHj6LbJMT/0jbOLx7FdZxq43HnA/w3MYpjmtaHJq2uExjF+avrEP5wTbuV88z61o+g655v8Lj/eHrOGfEs3/0T6C8YuWTv/q9P4dlN+nZq93EfnCers3AGusxqajOC7oWaUyKZ2XhBxFee33KeD4O+qVZCCGEEEKIGeihWQghhBBCiBnooVkIIYQQQogZHFsoCyj7rkHepGPl3/nk+7KbV1CeaK0WWsvYOWGXjPIxSQ5N7P2ibOmQRMfmPGYB9i1X6IGDzp/vsoiNyw9KPB8X1s6Yz+fa+Kf03d4BOkx7++iidQtzHB3ydXolOksp5UfbZyckJ7Qen15O80svvQTle/fQmcwLk83MOc1FQR5fOqbl5rj6lOl8cID5jy7VY62BLpVjecvjEW6n3W5DuU5/a7cuj3xfj8JY+5T5nE+wrXqVuQ5KuiZK9v5pWxl5j5HlU4eU+5qSD9YK8JrIc1MXKZ13Lzg9n9BxHKei487IK83tHGcaR1BQP3FIXvJkYMr7AxKiKXe44ZFjTsv390w/cvM2tj+PvOOVZfRfH7lgzv8SZZVmY7zWq4gOkohScxzc/uqU5X3YeYD7WXRxeWqOca6O/chKG8/X+hKWBz3zt4MhOc14qZ8oZdWGchSjC+oUHfOR8lt5DEsQ4nVkD3pxKfM65PthQdmwNFYiqZu64Wu7l5LDnFPfYG26S3m/XoEnO6Scec6PXthcnX72W0uwrHMf28/L73wA5bf/+R9D+V/8q389/fzis0/Asm/+t29A+cOb6Dj7dXMdhPVlWHbl8UXntIgp479Ww3MwsgY3cMb65peeg3L09rtQtue2iNfxXLdWsB94/w30yR9t4/IFa4xLn07P+WfOQ/lpGuPz5nf/Zvr5YIjHe/nFr0L5Vq8D5W//5z+B8tW//4/Ndh77IixbXt2A8oP7WOc8pqDhmrbLTndJY8LSFK8n1x5HQQNQojm6/x8D/dIshBBCCCHEDPTQLIQQQgghxAz00CyEEEIIIcQMju00ew55IpRl6lgOSuLjatnBHIzRJQuszFDOr+2OaG558lsX59AJbNmen4u+V0VZy4tLmKHq1My6dslLS0M8Br+GmZcH5MreKczGHoxww2vz+LdnP9+G8iplUT9qheXe2kPX8OMdLN/axXO72zPni+vB9z7difxVsrWFeZBhiG1kdc121dBnyskPG1L+6GBgjnl3dxeWdbt4fmrk9CZNbD81KzeXqsFZWz0D5eUldM9s59YP0Befoyzlu7duQjkdYb31DvbNdtYxL9Mjbz2mDGjObq0K220lN5MC2DPKJPY4VN2C/fATZ8b2SssN5ZbtctA89V/2YS41yXsr8bsR5SP3J5RtbeXylpSpPRpj+U4f62rUN974uXPkkNM149OQhOWVNpSbVtvOKDv/YAe9yM79j6EcUN+51zXbzkpcttjiLHQ8f4mVgR1Trm6/x9nbJ8fOPvV/lE1tj3mhW8WRjHIel+NYGf8pjU9wHXSHA//TxzsEVpZ6Sc4pe8cV7YfrmXtLrYl9TkbjgQZj7EeH1EbmWub+GC9hY0ucs1AOfazzg0Ps71/6k38//fz6kxdhWXeEGfVJG73lqGGyhevz52DZI5t0Dz9BCno2GVHWsmeNc1pcaMOyYA7rwqnQyw1Gpi4OaQzL6toqlHtrK1C+QbnfTde0gfP03cMB7vPSk1eh/OCvjVu8fx8D18O7OF/CP/iDfwjll996Gcq3v/2/p583H8Pc6scX8BnIz3C/0ia289sd009mY+q7HZ5wApf7nrmaeSxCQX3ZcdAvzUIIIYQQQsxAD81CCCGEEELM4PhzmE7wZ+yM4msyK56rRVNd8vS3cQ03a0f0DCnma0yxUgXtRyPFdQc982qsTj/xN/BNvDPfwP20jArncIzbGVPkXpvOXI+iu7a6Rou4OcbYqYa3D+Ulmury/Aq+nnrq6lPTz8994VlYdtXF151vvXsDyt/67l9NP/fptX1Jr/pOkvPnMerm3FmMnFldN8ccx3g+2BAYD1Fl6Bx2pp8//PBDWLa3h6+YSop3ylLUfexXpQHtR0XuEL86bS8YXWNjA1/H+fQKaWMZVY/7d3Fa0cB6VTxHDbfiqeXpmEJSMOxpedlb8FyeSpgjCy3timLKqur0Xq07juO4pEn4dB7s6glIoeAynTKIr2uEuHDOp3qmfmRESsv+oTmH/Oowp3i6Xkr924GJTNweYXxi6lF7ZA2OohoXFs2ONur4en24exPKnZ17UPZIZzm7bK6TIdoHzpgMOp9nubWqLSQlotY4vdjCfh/PQb+O+zJv7Uvg47kOfWz7nR6qDVlu+iSX2lo6wXqsCjzm5SXsC1zLA0jpfljSNRAHuJ+lZ65118X+veZie4nJP7Onq/7b/bC2RXGtFUWyzp/B6Znbyxjl1YzWpp+jBHWzC+efhnKjhUqBG5h2XHmoupTO6bUfVkdrNI023KcoCpCjJuNN1Ex6u0ZnSXyst9dvoxZxJ8DlfZqG3e9aqtAWtp8JTSW/F6K+uH/O3Kdvd/Ce1HvnTSgXc7gfT7/4FJRv9t4y2/ngZ7DMo6i31ipqNjsD7MvWlkz78Ty89kZDPMakTteuFUOcU189YefmGOiXZiGEEEIIIWagh2YhhBBCCCFmoIdmIYQQQgghZnBsp5lj5DyOf7L9npCmDSWB0AvQBRpbU4MeDtBXLWkXgwjdsgnFPYWu2VZE0wmHLpZ//UX0g7sPTQzTt370NixrBujgNFKMjEkn7C4a56sgjygj6W/vACXB926jl/z9t00c1Ooauj9nKDavTxFWvYHx6UqSsvKCg5VOjuefx2lEL128AOVG04p6o3gnnsK9LLEe7Tixz3/+C7DsRz/CGJxr169DeW8X444alj8cnUG3vN/HelpYwDlKm/OmPNfCqU1jutI2KApoY30NyrXEnI+SHeYjgWqIS+3Lnoq3cj/ZA/5F2G5rSA4fu9QnzYSizDhGzu4JchoL4fPU4+TW2ovz8tOvVz+myLUmue6Wx5yOcZ855syn/quwfNdaRGNBKIqxIM90uI3+/tY10xd4Pay7qMJ+NgxoDAdNb23vNymUTkbT1no0vXdhtTlKJnN8znU8QYoM+/A8w2vUta6zIKDYRnKJeSxAZo2tYafZpTEG3G4HQ3KerZjChK65kuLp3IDj68wxFBQhxz5nRWlbXoWVE1rtfkx9LvfRPLqhGJMTv2HGsGxe/jIsS2tYD0eP0T5/uKUoPj2nmeM3ueWOLNnfp4Z+JN61OQ/FidVG5s5hJN+wizGqFY3F2tlHL7nVMvew96ibG45oWvYRNoKNp1+Yfm6sPwbLtq9hLOU7AxyrtTTAdnyYGOf50hcwcm6fYmOrBvrRh/vYl2Xl4fRzLcbjzyhyj583IyvSeDLGfZzQOK/joF+ahRBCCCGEmIEemoUQQgghhJiBHpqFEEIIIYSYwbGdZnaYbE/EcTA/sjdE3zejaSE5GzfPrameyati9TAO0GEKyYmzXaJ0iNsdleiv3Nk5hHI9MZ5R5qFj06Ppb1dW0MN6/kvo7Hz/JyaXcNIn44scyYinx6VjHFvn594WZjxv7+Mx5Bmej4nlsbEbzPVyklzYRIc5qWH7Cax6q8gX5Blr2c2LLe9vZRXd4GeeRZe6NYcuWUFuepKY6T0XFnH60mYLp/5cWkanud4y6+aprWMP97kWYl0sr9P0uHYmL+VyskrsUl6yV2LZVnQ589qlnMqA3LvS8i+PZA6fstNckKdsj19wHMdxLcuQFjkBKYXUxJws/2S3Nqd1cS7x/DzVpbXx3T3yfen8zgfYuPf7pi8oaScbNTpeypNemqfc4dD0DR42c8eNaapwckMLmmY8ndhTxOMybjMO1ZPt4GfUPwXh6TnNVYZ+cK+LWepNa/6Amo9jHZwMT2Do4fXdapiM9rCG53ac4ViIcYrlyqOpsK1rsqJxOQHdKzJyfHNrWy7nytP0wmNq2G5OY0UsN526XCcr0Ynv7aMr2nuA02g3++9MP5/beBKWLV3Bfjajdl1ZDwE+3wtSzOg9SUKS+Tkz2+6YQxoDxtn5To3GdQWmPd0Y4YCCNEIXP1jDOQ/8Fp6DzMrQ3vJoXbQffoTXQFqZ5f4qtvH1M3jvrNM8BfdTfL46sO7p+7vYHrr0jHiuic8H6+fR676925l+Hk/wmI6MEaBxcUPLNW/U8XjbNN35cdAvzUIIIYQQQsxAD81CCCGEEELMQA/NQgghhBBCzODYTvOYfJWCfMbx2Hg1Q3JOyoqFQoeWG48mJJ/XJW8oIFmRcz4ry8UrOTzSQSfptZ++A2XX8kiTJvqqvQ66xGcffwLKv/l7X4fy6x+aPOD9EfpeR/JlyR/kPOWoZlxal6Su8QTdoIKcQdufrtXRjeX9OEliyhtltzbPjV/N2aMu52NS1nBqOfJRhNu5ePEylM+dOwdl30GPz9a8w6iB3yWnzYtov3yz3KU275bonRUkah/JXrbaYkXrSsk95GuC85M/reRQ1q9L7rUD3hq1W3b6Thi3Yofwk3NTPdpXl/sNzgu2s4VpO6xuj1OuD/xCa94sH6W4rtEIN1wjf7Nh+awFe9nUW4cx96vsT5ttuT73OfSntKoaZ+1bdZ3ndPKOqO3U4qyvc4s5zTaUkx+cpXg9d7vmvhW52I/MJfhd32U31MpHdigrf0jjTuj69WiMS2xVNGfQjnNcd3akzk05p+8WPjm5rKJTXUysbQ9TvKdv7WFG7+59vD+WXbov9U05fv2vYNn5MTqonRTvl51+Z/p51MNM4kEP837/5T/9Q+ekCLj/p+WuNY6lWUcPuaTxQyPybhtNc68Z0hiVlNzhkrxkikl3uvbFHFEWObnW/Ixk50m7NBCkonEPtQT94MkIV5YsGE+5n5GHPId/+2CA98dWiWe31zNtYkjPoo0GrovH29nPCzwmIKfxdcdBvzQLIYQQQggxAz00CyGEEEIIMYNj6xmdLr5iqiU4lWFhvX4o6DWYT68E6gm+9s6s7/Nr65heifg0RWlZ0HSnsF3825ym4a0qfN0wsmLlwgBfNfgBrmuni69X3nr7PdyWpagE9F41pDgyfp3JEWs9a07bwRhfR3lHXjtjvVTWC9GM3sVk2Wd/NfHLwq9MAqrHzHplydII6xhBiK9O7dMXUD259Bp1roWvckKf4xDN+XJ91Fl4es4jr6+sdp6NsV369AqW/7fK0zwX1kEV/HqOXqPmRyaxpXVb244iij6idVcOxSFa596j/Md8cHpxT45zVJNgRczWwCq6LtICz2/d437GtAPWySqqrQmtqzskxaJl1t2cx++O6JJzPewb7OY5TKlej0zHPKPf6JvlMakcISlPXsX9CH4/sqLhuI/m8+XR9WrbLh6d9zQ7vd9thiPsO+P6ApQ7h9ar6Ywi5TawLwhpKvWRpWDkLkbKZaQr5vSq3qV7WGi9Bud2zJrkiBQMW2csOY7Ox+s1jPCYuOO173ku7fOAYvN6Ga7bpXquCrP8jbdeg2Vv3sB7Z0rze2eVuWiqEpfFEc3pfoL0+6iNcN8ZWpGuI/KdajG2pzY9P9m9QEX3ab4fJqzZNDAKNXbN8mFOcaTUpbRIm7RTaVNSCscFtuPxBPfM93Bdud0vNFETyce4LrqjO/t9fL7KLZ+MnycZ1hMbDfO86VMf2jlAreg46JdmIYQQQgghZqCHZiGEEEIIIWagh2YhhBBCCCFmcGynOaMYlIg83MBydiKeJtrlaCj0kiJrSuGUp/okh6uW0PST5OwMx8a1CikSJY7xcL2MfCgr44mnFE1i/O77H/0cyndu38FVDc1+sVud5TR9NbuZlAdl+9ExuYY1mo66KvEY+xNzPkYUG1SyBHmCHB52oMwxabb37ZNr7gf43Tgh19jy+NJJTsso/op84CKg71vNyaP98MilKopP3hZ7yFlJU8dT2Y6YcxzHSe2IL9qPjNqmz0Fe7EDbZRLkOP4qzdhTNuv2yEMf0XSvJw1HJHJdutZvANQtOBOKYhxTbFrbugbrMccB8vWJ7WAwKKlsvt9s4d8e9nE/8pQi6Gq2k8r1jn+bZdQ+qX7smWp7JA225z/53P0ifOvc87TZ7IsfnebdWkY5Z251er/b5ORkTqiv8CwXtFPE9F0ch3NxAz3Sj+92zHd5mmzqg7hf4eVjq5/OqSGz48z+ZrdnXNBaHY+horjS4QS90bDEfnViXftBgPeZBnm0Toi+OGeKhpZ7zHGPtQj7oMUmxrVFdWv6ZhqS4VCbP0maTXKHabyVfU9rJngMCd2nazQeZmT59hn1N9mEogPJB45i9KOHuenDg4CiXjnulxxx+3mL+5PY5bg2cs9p/JD9eJHR+IyQxjgVdA+rqJFE1rTjfE+f0JgB7n92d3emn+sJ1uEv0/vol2YhhBBCCCFmoIdmIYQQQgghZqCHZiGEEEIIIWbgVixFCSGEEEIIIQD90iyEEEIIIcQM9NAshBBCCCHEDPTQLIQQQgghxAz00CyEEEIIIcQM9NAshBBCCCHEDPTQLIQQQgghxAz00CyEEEIIIcQM9NAshBBCCCHEDPTQLIQQQgghxAz+H8YDlu/RZkGcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sorted_idxs = test_ood_features_scores.argsort()\n", + "ood_features_scores = test_ood_features_scores[sorted_idxs]\n", + "ood_features_indices = sorted_idxs[ood_features_scores < fifth_percentile] # Images in test data flagged as outliers\n", + "\n", + "visualize_outliers(ood_features_indices[::-1], test_data)" + ] + }, + { + "cell_type": "markdown", + "id": "cb4c0a06", + "metadata": {}, + "source": [ + "### How does cleanlab detect outliers from feature values?\n", + "\n", + "Outlier scores are defined relative to the average distance (computed over feature values) between each example and its K nearest neighbors in the training data. Such scores have been found to be particularly effective for out-of-distribution detection, see this paper for more details:\n", + "\n", + "[Back to the Basics: Revisiting Out-of-Distribution Detection Baselines](https://arxiv.org/abs/2207.03061)\n", + "\n", + "\n", + "Internally, cleanlab uses the `sklearn.neighbors.NearestNeighbor` class (with *cosine* distance) to find the K nearest neighbors, but you can easily use [another KNN estimator](https://github.com/cleanlab/examples/blob/master/outlier_detection_cifar10/outlier_detection_cifar10.ipynb) with cleanlab's `OutOfDistribution` class." + ] + }, + { + "cell_type": "markdown", + "id": "937c7e97", + "metadata": {}, + "source": [ + "## 4. Use cleanlab and `pred_probs` to find outliers in the data\n", + "\n", + "We sometimes wish to find outliers in classification datasets for which we do not have meaningful numeric feature representations. In this case, cleanlab can detect unusual examples in the data solely using predicted probabilities from a trained classifier.\n", + "\n", + "To get `pred_probs` here, a Logistic Regression classifier is fit on the already generated `train_feature_embeddings` (from our pretrained timm network) and the given label for each training image. We use a simple classifier here to quickly generate `pred_probs`, but in practice [fine-tuning the entire neural network for classification](https://github.com/cleanlab/examples/blob/master/outlier_detection_cifar10/outlier_detection_cifar10.ipynb) will be more effective (our approach here is equivalent to only training an extra output layer appended on top of the pretrained network)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "40fed4ef", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:32.569745Z", + "iopub.status.busy": "2024-05-24T23:50:32.569552Z", + "iopub.status.idle": "2024-05-24T23:50:32.649800Z", + "shell.execute_reply": "2024-05-24T23:50:32.649320Z" + } + }, + "outputs": [], + "source": [ + "# Preprocess data\n", + "train_labels = np.array(train_data.dataset.targets)[train_data.indices]\n", + "train_labels = np.unique(train_labels, return_inverse=True)[1] # MAKE SURE to zero index training labels for sklearn\n", + "test_labels = np.array(test_data.dataset.targets)[test_data.indices]\n", + "\n", + "scaler = preprocessing.StandardScaler().fit(train_feature_embeddings)\n", + "train_feature_embeddings_scaled = scaler.transform(train_feature_embeddings)\n", + "test_feature_embeddings_scaled = scaler.transform(test_feature_embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "89f9db72", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:32.653136Z", + "iopub.status.busy": "2024-05-24T23:50:32.652385Z", + "iopub.status.idle": "2024-05-24T23:50:42.842254Z", + "shell.execute_reply": "2024-05-24T23:50:42.841653Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model accuracy on held-out train_data 0.9702\n" + ] + } + ], + "source": [ + "# Our classifier employs bagging to better account for epistemic uncertainty \n", + "model = BaggingClassifier(LogisticRegression(max_iter=500), random_state=1, n_jobs=-1)\n", + "model.fit(train_feature_embeddings_scaled, train_labels)\n", + "\n", + "train_pred_probs = model.predict_proba(train_feature_embeddings_scaled)\n", + "train_pred_labels = train_pred_probs.argmax(1)\n", + "accuracy = np.mean(train_pred_labels == train_labels)\n", + "print(f\"Model accuracy on held-out train_data {accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "03e3f7b7", + "metadata": {}, + "source": [ + "We can use these `pred_probs` to again compute out-of-distribution scores for each image in our dataset using cleanlab's `OutOfDistribution` class." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "874c885a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:42.844832Z", + "iopub.status.busy": "2024-05-24T23:50:42.844427Z", + "iopub.status.idle": "2024-05-24T23:50:44.591523Z", + "shell.execute_reply": "2024-05-24T23:50:44.590947Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting OOD estimator based on provided pred_probs ...\n" + ] + } + ], + "source": [ + "ood = OutOfDistribution()\n", + "train_ood_predictions_scores = ood.fit_score(pred_probs=train_pred_probs, labels=train_labels)" + ] + }, + { + "cell_type": "markdown", + "id": "dcff8e5a", + "metadata": {}, + "source": [ + "We can repeat this for additional test data, to identify test images that do not stem from the training data distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e110fc4b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:44.594231Z", + "iopub.status.busy": "2024-05-24T23:50:44.593739Z", + "iopub.status.idle": "2024-05-24T23:50:44.799317Z", + "shell.execute_reply": "2024-05-24T23:50:44.798811Z" + } + }, + "outputs": [], + "source": [ + "test_pred_probs = model.predict_proba(test_feature_embeddings_scaled)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "85b60cbf", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:44.801766Z", + "iopub.status.busy": "2024-05-24T23:50:44.801429Z", + "iopub.status.idle": "2024-05-24T23:50:44.804527Z", + "shell.execute_reply": "2024-05-24T23:50:44.804096Z" + } + }, + "outputs": [], + "source": [ + "test_ood_predictions_scores = ood.score(pred_probs=test_pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "702aa162", + "metadata": {}, + "source": [ + "Detecting outliers based on feature embeddings can be done for arbitrary unlabeled datasets, but requires a meaningful numerical representation of the data. Detecting outliers based on predicted probabilities applies mainly for labeled classification datasets, but can be done with any effective classifier. The effectiveness of the latter approach depends on: how much auxiliary information captured in the feature values is lost in the predicted probabilities (determined by the particular set of labels in the classification task), the accuracy of our classifier, and how properly its predictions reflect epistemic uncertainty. Read more about it [here](https://pub.towardsai.net/a-simple-adjustment-improves-out-of-distribution-detection-for-any-classifier-5e96bbb2d627)." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "17f96fa6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:44.806545Z", + "iopub.status.busy": "2024-05-24T23:50:44.806237Z", + "iopub.status.idle": "2024-05-24T23:50:44.814180Z", + "shell.execute_reply": "2024-05-24T23:50:44.813758Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "# Verify the top identified test outliers data are mostly non-animal images\n", + "top_ood_features_subset = torch.utils.data.Subset(test_data, top_ood_features_idxs)\n", + "num_animals = len([i for i in range(len(top_ood_features_subset)) if top_ood_features_subset[i][1] in animal_classes])\n", + "non_animal_frac = 1 - (num_animals / len(top_ood_features_subset))\n", + "if non_animal_frac < 0.81:\n", + " raise Exception(f\"Not enough non-animal images amongst top-ranked outliers in test_data, only: {non_animal_frac}\")\n", + "\n", + "top_ood_predictions_idxs = (test_ood_predictions_scores).argsort()[:15]\n", + "top_ood_predictions_subset = torch.utils.data.Subset(test_data, top_ood_predictions_idxs)\n", + "num_animals = len([i for i in range(len(top_ood_predictions_subset)) if top_ood_predictions_subset[i][1] in animal_classes])\n", + "non_animal_frac = 1 - (num_animals / len(top_ood_predictions_subset))\n", + "if non_animal_frac < 0.50:\n", + " raise Exception(f\"Not enough non-animal images amongst top-ranked ood datapoints in test_data, only: {non_animal_frac}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "097553b901eb4c17a42ddb714c269ff1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1560edf6f25249a98612faab039e90a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_097553b901eb4c17a42ddb714c269ff1", + "placeholder": "​", + "style": "IPY_MODEL_c150ee16d8b34a348291c0c6e0aedae3", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 331MB/s]" + } + }, + "1a59b27a79e54630bf0a112dc5595892": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "436c19103ee14804a95eba5477342d8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f8354a76814946ac9ee97f184e326460", + "IPY_MODEL_d960330c605049ecb847b26b00f66989", + "IPY_MODEL_1560edf6f25249a98612faab039e90a6" + ], + "layout": "IPY_MODEL_1a59b27a79e54630bf0a112dc5595892", + "tabbable": null, + "tooltip": null + } + }, + "495779cde25c46c4894d6530cc014067": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "58838ba7f13446b68160a30c7bf2152b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac6265b387b448268d2b8138e31dcc69": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c150ee16d8b34a348291c0c6e0aedae3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d960330c605049ecb847b26b00f66989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac6265b387b448268d2b8138e31dcc69", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f33ac6754a8e4f1683a20dce62f6ba72", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "f33ac6754a8e4f1683a20dce62f6ba72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8354a76814946ac9ee97f184e326460": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58838ba7f13446b68160a30c7bf2152b", + "placeholder": "​", + "style": "IPY_MODEL_495779cde25c46c4894d6530cc014067", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/regression.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/regression.ipynb new file mode 100644 index 000000000..a4f76fa34 --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -0,0 +1,1444 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ea0a577e", + "metadata": {}, + "source": [ + "# Find Noisy Labels in Regression Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "e15b9f2f", + "metadata": {}, + "source": [ + "This 5-minute quickstart tutorial uses cleanlab to find potentially incorrect numeric values in a dataset column by means of a regression model. Unlike classification models, regression predicts numeric quantities such as price, income, age,... Response values in regression datasets may be corrupted due to: data entry or measurement errors, noise from sensors or other processes, or broken data pipelines. To find corrupted values in a numeric column, we treat it as the target value, i.e. label, to be predicted by a regression model and then use cleanlab to decide when the model predictions are trustworthy while deviating from the observed label value.\n", + "\n", + "In this tutorial, we consider a student grades dataset, which records three exam grades and some optional notes for over 900 students, each being assigned a final score. Combined with any regression model of your choosing, cleanlab automatically identifies examples in this dataset that have incorrect final scores.\n", + "\n", + "**Overview of what we’ll do in this tutorial:**\n", + "\n", + "- Fit a simple Gradient Boosting model (any other model could be used) on the exam-score and notes (covariates) in order to compute out-of-sample predictions of the final grade (the response variable in our regression).\n", + "- Use cleanlab's `CleanLearning.find_label_issues()` method to identify potentially incorrect final grade values based on outputs from this regression model.\n", + "- Train a more robust version of the same model after dropping the identified label errors using CleanLearning.\n", + "- Run an alternative workflow to detect errors via cleanlab's `Datalab` audit, which can simultaneously estimate **many other types of data issues**." + ] + }, + { + "cell_type": "markdown", + "id": "612a355a", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn-compatible regression `model`, features/covariates `X`, and a label/target variable `y`? Run the code below to train your `model` and identify potentially incorrect `y` values in your dataset.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.regression.learn import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "cl.fit(X, y)\n", + "label_issues = cl.get_label_issues()\n", + "preds = cl.predict(X_test) # predictions from a version of your model trained on auto-cleaned data\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `predictions`. With that, run the code below to find data and label issues in your regression dataset:\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "# Assuming your dataset has a label column named 'label'\n", + "lab = Datalab(dataset, label_name='label', task='regression')\n", + "# To detect more data issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=predictions, features=features)\n", + "\n", + "lab.report()\n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "f9a290d6", + "metadata": {}, + "source": [ + "## 1. Install required dependencies" + ] + }, + { + "cell_type": "markdown", + "id": "8430ca39", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install cleanlab[datalab]\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2e1af7d8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:48.948553Z", + "iopub.status.busy": "2024-05-24T23:50:48.948145Z", + "iopub.status.idle": "2024-05-24T23:50:50.131512Z", + "shell.execute_reply": "2024-05-24T23:50:50.130932Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4fb10b8f", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.134002Z", + "iopub.status.busy": "2024-05-24T23:50:50.133744Z", + "iopub.status.idle": "2024-05-24T23:50:50.151678Z", + "shell.execute_reply": "2024-05-24T23:50:50.151188Z" + } + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.ensemble import HistGradientBoostingRegressor\n", + "from sklearn.model_selection import cross_val_predict\n", + "from sklearn.metrics import r2_score\n", + "\n", + "from cleanlab.regression.learn import CleanLearning" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "284dc264", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.153910Z", + "iopub.status.busy": "2024-05-24T23:50:50.153541Z", + "iopub.status.idle": "2024-05-24T23:50:50.156597Z", + "shell.execute_reply": "2024-05-24T23:50:50.156146Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "SEED = 111 # for reproducibility \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "2035042e", + "metadata": {}, + "source": [ + "## 2. Load and process the data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0f7450db", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.158436Z", + "iopub.status.busy": "2024-05-24T23:50:50.158260Z", + "iopub.status.idle": "2024-05-24T23:50:50.215243Z", + "shell.execute_reply": "2024-05-24T23:50:50.214774Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notesfinal_scoretrue_final_score
0728180NaN73.373.3
1896293NaN83.883.8
297094NaN73.573.5
3807696missed class frequently -1078.678.6
4678795missed homework frequently -1074.174.1
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes final_score \\\n", + "0 72 81 80 NaN 73.3 \n", + "1 89 62 93 NaN 83.8 \n", + "2 97 0 94 NaN 73.5 \n", + "3 80 76 96 missed class frequently -10 78.6 \n", + "4 67 87 95 missed homework frequently -10 74.1 \n", + "\n", + " true_final_score \n", + "0 73.3 \n", + "1 83.8 \n", + "2 73.5 \n", + "3 78.6 \n", + "4 74.1 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_data = pd.read_csv(\"https://s.cleanlab.ai/student_grades_r/train.csv\")\n", + "test_data = pd.read_csv(\"https://s.cleanlab.ai/student_grades_r/test.csv\")\n", + "train_data.head()" + ] + }, + { + "cell_type": "markdown", + "id": "aa0165ef", + "metadata": {}, + "source": [ + "In the DataFrame above, `final_score` represents the noisy scores and `true_final_score` represents the ground truth. Note that ground truth is usually not available in real-world datasets, and is just added in this tutorial dataset for demonstration purposes." + ] + }, + { + "cell_type": "markdown", + "id": "82285102", + "metadata": {}, + "source": [ + "We show a 3D scatter plot of the exam grades, with the color hue corresponding to the final score for each student. Incorrect datapoints are marked with an **X**." + ] + }, + { + "cell_type": "markdown", + "id": "c8173840", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "def plot_data(train_data, errors_idx):\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(111, projection='3d')\n", + "\n", + " x, y, z = train_data[\"exam_1\"], train_data[\"exam_2\"], train_data[\"exam_3\"]\n", + " labels = train_data[\"final_score\"]\n", + "\n", + " img = ax.scatter(x, y, z, c=labels, cmap=\"jet\")\n", + " fig.colorbar(img)\n", + "\n", + " ax.plot(\n", + " x.iloc[errors_idx],\n", + " y.iloc[errors_idx],\n", + " z.iloc[errors_idx],\n", + " \"x\",\n", + " markeredgecolor=\"black\",\n", + " markersize=10,\n", + " markeredgewidth=2.5,\n", + " alpha=0.8,\n", + " label=\"Label Errors\"\n", + " )\n", + " ax.legend()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "55513fed", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.217726Z", + "iopub.status.busy": "2024-05-24T23:50:50.217233Z", + "iopub.status.idle": "2024-05-24T23:50:50.397540Z", + "shell.execute_reply": "2024-05-24T23:50:50.396921Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "def plot_data(train_data, errors_idx):\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(111, projection='3d')\n", + "\n", + " x, y, z = train_data[\"exam_1\"], train_data[\"exam_2\"], train_data[\"exam_3\"]\n", + " labels = train_data[\"final_score\"]\n", + "\n", + " img = ax.scatter(x, y, z, c=labels, cmap=\"jet\")\n", + " fig.colorbar(img)\n", + "\n", + " ax.plot(\n", + " x.iloc[errors_idx],\n", + " y.iloc[errors_idx],\n", + " z.iloc[errors_idx],\n", + " \"x\",\n", + " markeredgecolor=\"black\",\n", + " markersize=10,\n", + " markeredgewidth=2.5,\n", + " alpha=0.8,\n", + " label=\"Label Errors\"\n", + " )\n", + " ax.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "df5a0f59", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.400126Z", + "iopub.status.busy": "2024-05-24T23:50:50.399825Z", + "iopub.status.idle": "2024-05-24T23:50:50.612694Z", + "shell.execute_reply": "2024-05-24T23:50:50.612096Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAGUCAYAAACMf9MAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxcZZm3fz1nqX3rfe/sOwk7IQTjICjI4KDigjojoA6jjs7gODIuUdDB19d1GBiFEZfo6/JjFBTBEdkNa9iSkKQ7e6eX9FbdXdXVtdc55/n9cbqK7qQ76U46GznX51OQrjrn1FPb+Z77ee77ewsppcTBwcHBwcHhqFBO9AAcHBwcHBzeCDiC6uDg4ODgMAM4gurg4ODg4DADOILq4ODg4OAwAziC6uDg4ODgMAM4gurg4ODg4DADOILq4ODg4OAwAziC6uDg4ODgMAM4gurg4ODg4DADOILq4ODg4OAwAziC6uDg4OBwSrN+/Xre8Y53UF9fjxCC3//+9+Mel1Lyla98hbq6OrxeL5dddhm7du0at83Q0BAf+tCHCIVCRCIRPvrRj5JMJqc1DkdQHRwcHBxOaVKpFGeeeSbf//73J3z8W9/6FnfccQd33303GzZswO/3c/nll5PNZkvbfOhDH2Lbtm08+uijPPTQQ6xfv54bb7xxWuMQjjm+g4ODg8MbBSEEv/vd73jnO98J2NFpfX09n/3sZ/nXf/1XAIaHh6mpqWHdunVce+21tLa2snTpUl566SXOO+88AB5++GGuvPJKurq6qK+vn9Jza8fkFTk4ODg4nHZks1ny+fyMHEtKiRBi3H1utxu32z2t47S1tdHb28tll11Wui8cDrNy5Uqef/55rr32Wp5//nkikUhJTAEuu+wyFEVhw4YNvOtd75rSczmC6uDg4OBw1GSzWaq8Xqa36jg5gUDgoDXMW265hVtvvXVax+nt7QWgpqZm3P01NTWlx3p7e6murh73uKZplJeXl7aZCo6gOjg4ODgcNfl8niTwGWB6MeTB5ID/SCbp7OwkFAqV7p9udHq8cQTVwcHBwWHG8AOeozxGUZhCodA4QT0SamtrAejr66Ourq50f19fH2eddVZpm/7+/nH7GYbB0NBQaf+p4GT5Ojg4ODjMGPoM3WaKOXPmUFtby+OPP166L5FIsGHDBlatWgXAqlWriMfjvPLKK6VtnnjiCSzLYuXKlVN+LidCdXBwcHA4pUkmk+zevbv0d1tbG5s2baK8vJzm5mZuuukmbrvtNhYsWMCcOXP48pe/TH19fSkTeMmSJVxxxRX8/d//PXfffTeFQoFPfepTXHvttVPO8AVHUB0cHBwcZhCNoxeW6e7/8ssvc8kll5T+/pd/+RcArrvuOtatW8fNN99MKpXixhtvJB6Pc/HFF/Pwww/j8bw+Of3LX/6ST33qU1x66aUoisI111zDHXfcMa1xOHWoDg6nOJZlzVipgsOpi67rqKp6wp4/kUgQDof5JuA9ymNlgH/Drhc92jXU44kToTo4nMLk83na2tqwLOtED8XhJCASiVBbW3tQ/ebx5EREqCcLp+q4HRxOe6SU9PT0oKoqTU1NKIqTY3i6IqUknU6XMlXHZrM6HD8cQXVwOEUxDIN0Ok19fT0+n+9ED8fhBOP12hOt/f39VFdXn7Dp35nI0jVmYiAnAEdQHRxOUUzTBMDlcp3gkTicLBQvrAqFwgkT1NN5yteZI3JwOMWZ7nrZvffee1AR+2T09/dz7733HsmwHE4AJ3Lt1OHUvRBwcHA4An74wx/ywx/+kHvvvZe77777IP/SsfT39/Pxj3+cjo4OhoeHp93KyuH0ROPop3wLMzGQE4AToTo4nCbce++9/PCHPwSgo6ODj3/845NGqmPFFCiJ8MnAunXriEQiR32ciRpROxw92gzdTkUcQXVwOE245JJLaG5uLv09mageKKYAzc3N4wrnj4brr7++5FBzMnP99dcjhDjodsUVV5zooTmcpDiC6uBwmlBdXc3dd999SFGdTEwPNz38RuWKK66gp6dn3O3Xv/71pNsXCgdPVh6p6capatZxsnn5Hk8cQXVwOI04lKi2tLScFGL6ve99j+XLl+P3+2lqauKTn/zkQX0xAX7/+9+zYMECPB4Pl19+OZ2dneMef+CBBzjnnHPweDzMnTuXr371qxjG9Aoy3G43tbW1425lZWWlx4UQ3HXXXfzN3/wNfr+fr3/969x6662cddZZ/OhHP2LOnDkle7uOjg6uvvpqAoEAoVCI973vffT19ZWONdl+v/3tb1m+fDler5eKigouu+wyUqnUtF7H8cQRVAcHh9OGyUT1wx/+8AkXUwBFUbjjjjvYtm0bP/vZz3jiiSe4+eabx22TTqf5+te/zs9//nOeffZZ4vE41157benxp59+mg9/+MP88z//My0tLfz3f/8369at4+tf//qMj/fWW2/lXe96F1u2bOEjH/kIALt37+a+++7j/vvvZ9OmTViWxdVXX83Q0BB/+ctfePTRR9m7dy/vf//7xx3rwP16enr4wAc+wEc+8hFaW1t56qmnePe7343jGHtycqqu/To4OBwFRVE9MCItciKneW+66abSv2fPns1tt93Gxz/+cX7wgx+U7i8UCvzXf/1XqbXWz372M5YsWcKLL77IBRdcwFe/+lU+//nPc9111wEwd+5c/v3f/52bb76ZW265ZcpjeeihhwgEAuPu++IXv8gXv/jF0t8f/OAHueGGG8Ztk8/n+fnPf05VVRUAjz76KFu2bKGtrY2mpiYAfv7zn7Ns2TJeeuklzj///An3e/XVVzEMg3e/+93MmjULgOXLl095/CeC07kO9VQdt4ODw1FSXV3Nbbfdxoc//OGDHrvttttO2JrpY489xje+8Q22b99OIpHAMAyy2SzpdLpkXKBpWkmEABYvXkwkEqG1tZULLriAzZs38+yzz46LSE3TPOg4h+OSSy7hrrvuGndfeXn5uL/PO++8g/abNWtWSRQBWltbaWpqKokpwNKlS0tjLr6WA/c788wzufTSS1m+fDmXX345b3vb23jPe94zbtr5ZGMmymZOVWFypnwdHE5T+vv7Wbt27YSPrV27dsrmDzPJvn37uOqqq1ixYgX33Xcfr7zyCt///veB6SXpJJNJvvrVr7Jp06bSbcuWLezatWtcy67D4ff7mT9//rjbgYLq9/sn3O9IOHA/VVV59NFH+dOf/sTSpUu58847WbRoEW1tbUd0/OOBUzbj4OBwWjFRNu9YDleneqx45ZVXsCyL7373u1x44YUsXLiQ7u7ug7YzDIOXX3659PeOHTuIx+MsWbIEgHPOOYcdO3YcJIbz588/IU0ElixZQmdn57jEqZaWFuLxOEuXLj3kvkIIVq9ezVe/+lU2btyIy+Xid7/73bEessMRcKpeCDg4OBwhk5XG3Hbbbaxdu7Z0f1FUj8Va6vDwMJs2bRp3X0VFBfPnz6dQKHDnnXfyjne8g2effZa77777oP11XefTn/40d9xxB5qm8alPfYoLL7yQCy64AICvfOUrXHXVVTQ3N/Oe97wHRVHYvHkzW7du5bbbbpvyOHO5HL29vePu0zSNysrKab3eyy67jOXLl/OhD32I22+/HcMw+OQnP8mb3/zmCaeMi2zYsIHHH3+ct73tbVRXV7Nhwwai0WjpwuFkZCaydJ0sXwcHh5OeQ9WZLl269LB1qjPFU089xdlnnz3u9tWvfpUzzzyT733ve3zzm9/kjDPO4Je//CXf+MY3Dtrf5/Pxb//2b3zwgx9k9erVBAKBcU5Ol19+OQ899BCPPPII559/PhdeeCH/8R//UUrsmSoPP/wwdXV1424XX3zxtF+vEIIHHniAsrIy1qxZw2WXXcbcuXMP6z4VCoVYv349V155JQsXLmTt2rV897vf5e1vf/u0x3C8OJ2nfIV08q8dHE5JstksbW1t42oWD8VUTRscc4dTl+l+J2aSRCJBOBzmceDIVpBfJwVcij2TEQqFjn5wxwknQnVwOE148sknpySSk9WpPvnkk8dtrA6nLsUs36O5naoRqiOoDg6nCe9///tLHWMOF3EeKKo33njjQSYEDg4TcTpP+Z6q43ZwcDgCbrzxRsLhMJdccslhp2+Lovrkk086YurgMAUcQXU4rkgpMU2TXC6Hqqql24koZThdmY44VldXO2LqMC1O5yxfR1AdjhtSSgqFAoZhkMvlSvcrioKmaWia5gjsEeDkFToUORm+C471oIPDMcY0TQqFApZlIYQoiaaUsiS0+Xy+1HPSEdjDo6oqYDsIeb3eEzwah5OBdDoN2HW6J4rT2XrwVB23wymClBLDMEpts4oiKoQAKAloUTCllFiWRaFQKPWWLG7rcrnQdR1N00r3nc5omobP5yMajaLrunPRcRojpSSdTtPf308kEildbDkcXxxBdThmFIXRsizgdfEsTkuNFdYixei1SFFgX3jhBRYtWkQkEkFRFFRVHRfFno4CK4Sgrq6OtrY22tvbT/RwHE4CIpEItbW1J3QMzhqqg8MMMjbKLIrmgYI3kZhORFFgi/9XVbV07OIUcVFgdV0vbXO6CKzL5WLBggXTMo53eGNS/P6faJw1VAeHGaK4Hrp161aqq6uprKycEXEbO0U8UQR7oMAeuAb7RhZYRVGOuyuOg4PDwTiC6jBjFIXNNE1GRkYoKyubMSEbO1V84P1FgS0+blkW+XyeXC53Wgqsg8OJRFNBP8qflyYBc0aGc1xxBNXhqCnWlhqGgWVZKIoyqQAeS4oi6Qisg8OJQ9NAcwTVwWH6FKd4TdP+9hfFtJjNO1MciUBPJLDFWy6XK607OgLr4OAwEziC6nDEFCO/sVHpWCYSQCkle/bsob29nWAwSFlZGWVlZQSDwWNe9jE2OUpV1YMEdmwEWyzPKdbAOgLr4DA19BmY8tVPvD/FEeEIqsO0KU7xFrN4JxKciSLKbDbL5s2byefzLF26lGw2SywWo7OzE8uyiEQilJWVEYlECAaD4455LKaQDyWw2Wy2tI0jsA4OU2fGpnxPQRxBdZgWlmVhGMZBU7wHcqAARqNRXnvtNaqqqjjnnHNKtamNjY1IKUmlUsRiMWKxGPv27QMoCWxZWdlxWY+disBms1kMw6CystIRWAcHh3E4guowJaZSWzqWoqBalsXOnTvp7Oxk6dKlNDQ0IKUcVzcphCAQCBAIBGhqakJKycjICLFYjMHBQfbu3YtlWbS3t5PL5YhEIvh8vmMuYhMJbFH0A4EAYF9QHLgG6wisw+mMroJ+lKs3ujUzYzneOILqcFgOtA88nJgWt8nlcmzYsAHLsrjooovw+/1Tej4hBKFQiFAoxKxZs7AsixdffBGPx0N/fz+7du1C07RS9FpWVnZcvGyLr1sIga7rpejVsixyuRzZbNYRWAcHlaPvtH2K/lwcQXU4JGNrS8d67h6ObDZLNBqlsbGRRYsWHZWDS1GgqqqqqK6uxjRNEokEsViMnp4eduzYgdvtHiewbrf7iJ9vqhx4YVEUWNM0Sy3qxq7BFu0Sp3JB4uBwyqJx9ILqRKgObyQmqy09HKZp0traSiKRoLa2lqVLl87omMCefi0KJ4BhGAwPD5cSnFpaWvD5fOPWYF0u14yNYzImMvof+z4WH5/Ih9gRWAeHUx9HUB0OYrLa0sMxMjLC5s2bS9HkVKd4p8Khnl/TNCoqKqioqABsgY3H48RiMdrb29m2bRt+v78krpFI5Li0t5pMYA3DoFAojBPYsT7ETtcYh1MaJ0J1cLA5XG3pREgp6erqYvv27cyaNYv58+ezbdu2Gc/MnerxNE2jsrKSyspKwO4XWhTYPXv2kE6nSzWwkUiESCSCpk39p3Ck0aQjsA6nBY6gOpzuTKW2dCIMw2Dr1q0MDQ1x9tlnl0RsputGj2ZK1OVyUV1dTXV1NQC5XI5YLEY8HmfXrl1ks9lxJhPhcPi4dO04nMDCxC5OjsA6OJycOILqcMRTvMPDw2zatAmfz8fq1avHJQIdCyOGmTqe2+2mtra21DeyaDARi8VobW0ln88TDodLEWw4HD4uIjaZwI7tpCOEcATW4eRGwc70PQ1xBPU0xzRNOjs78Xq9hMPhKU/xtre3s2vXLubNm8ecOXPG7feb3/yGurq6UrR6KKLRKOvXr+eaa6455HbHMmnH4/FQV1dHXV0dUkoymUwpgt2/fz+GYZQENp/PHzfT/4kEtph1XSgUSKVSZDIZ6urqSgJbzCJ2cDhhaBy9oJ6iX2FHUE9TxtaWdnV1UVNTQyQSOex++XyeLVu2MDIywnnnnVfKtC3yox/9iJ/85CdEIhG+9KUvTXocIQT9/f185jOfoauri0QiwQ033HDYMR9rhBD4fD58Pl/JhCKdTpci2MHBQaSUbN68uTRFHAgEjouIHdgLNpVK0dvbS2Vl5YQR7NgsYgcHh2OPI6inIcUop2j/N9Upw6GhITZv3kwkEmH16tUHZcr+5je/4Sc/+QkAvb29fOMbX+MnP/kp1dX1Bx0rGo1y0003sX//fgDWrVtHKBSaNFI9UaIghMDv9+P3+2lsbKS9vZ2hoSHKysqIxWK0tbUhhBhXouP3+4/beIsCCpM3Wz8wyckRWIdjihOhOpwOjD3hjs3iVRSlJK6T7bdnzx7a2tpYtGgRTU1NE56U3/zmN/Pb3/6WkXgby85OMH92P+sfupK3XfVZQpVXgmKXtfT393PTTTfR1dVVOk5jYyNr1qyZdAwnor/qZOPQNI3m5maam5uxLItkMlmKXvfs2TOuTrbo4nQsRKxoATl2bGMj2MkE1mlV53BMUXHWUB3e2Bwq8ehQYpXNZnnttdfIZrOsXLmSUCg06XNUV1fzX3f+H/583/vwu1MMxlVSqThbn/sq5y17GrfrKgZz5dz05dvp6tpf2q+xsZHbb7+dqqqqGXzFxwdFUQ6ySSy6OPX19bFr1y50XR8Xwc6kTeLh/JSdZusODscPR1BPA8baB07Wam2iCPXADjFTqdWsjvTwvmvOZt0vCgzFEswtM3EPphjY+zvCopsNj7axRJp0K2FyppiymJ4sEerhUBSlVNs6Z84cTNNkeHiYeDw+4zaJB0aoh2KiZuvgCKzDMcCZ8nV4IzJV+0BFUcaJ1UQdYqb2hBbCegmvd4R3vms5Tz+2gWbSGIagP2HxattG2vq8LCvPsT/lYtC78JSNTKeKqqqUl5dTXl4OTG6TONbFaao2iUdzgXEogc3lcqVuQI7AOkwbldNWWU7Tl/3GZzq1pWOjv3Q6zebNm7Esi1WrVpXalB3+CQ2w/gA8A0ob4YiXKy73EtsxzI6dKj7VIp8XZE2FnKVw7mw3V35h6mJ6qkSoh+NAm8RCoVBycdq3bx/JZHLKNonTiVAPx1iBPbAXbC6Xm9To3+mk43AQM7GGeor+1B1BfQNSdDyaqn1gMSmpp6eHbdu2UV9fP/0OMXILwnoaKeYjRAbMPIqSoX6hl8FkilxGYbDPjrwsCe+48grKT9HIdCYFRNd1qqqqShcWh7JJLLo4jZ16P1ZiNpVm62MF1mlV5+DgCOobirG1pdOxD5RSEo1G6ezsZPny5dTU1Ez7uYXVYv9Dm4uFBF7FkgZZM0YgqPLiywHiQxp+t0FTRY5HX3iIK1ZcQqT6fKTQgTzgQkxiAvpGiVAPx2Q2ibFYjB07dpDL5UoCO7ZJ+7FmKgIbi8Xw+Xwl0XcE9jRF47RVltP0Zb/xmKi2dKodYnp7exFCsHr16qPIQM2BGP06afMYSBo89/QfWNqkk9ytog5IllSnmFuXIedW8IooLzz2ad58xdUoVXOxVBMhw2jWMlRrIWKCrITTQVAP5ECbxEwmU4pgo9Eopmny6quvliLYUCh0XG0S4XWB7e7upqKiopRkNVGrOkdgTwMcQXU4VRlba1hcU5tuh5hgMEggEJi6mMo2kC8AbUAFiPPsqV5rI5BnJJnjwYeeIJPOoWo+Nm0O0OCK8NdX1bBxzzY2tEFWKjQ0p9jf+Qtq3W9FiVyEJfow1R7cmGjW+D6qzknYxuv14vV6qaurY+/evSSTSSoqKojFYnR1dWGaZskmsby8nEAgcNwEFiiZSBSj12KSUzabRVGUg5KcHIF1eCPhCOopzIGJR1MV0wM7xMRiMXK53BSfdCfIn4EcACJAD7AVeCuIZWTSL/HUky8QDsapLDfYtiPC7uHl3PS9fyHkeYizlryFLb/4NebIIBV1kv4hk+iGZ5h/4UqC4UZM0UNB3YRqzUcwPtv1ZIhQT4YxFBFCoOs6DQ0NJZvEVCpVimA7OjqQUo6rgT2WNomWZY2rbR77PGObrZumOWmSk9Ns/Q2AE6E6nGocrrZ0MoaHh9m8eTNer7fUIWZ4ePiQTkklpAT5OMgYiDOALJjdIPcA64gNf4C779nFgvnD1NTnGRhS8YWq+M///CoVEQEpSSgU4e/+9u+47/c/xe3pJ5NWEKT59a9/yQc+eD2BUBlSDCJFAiFfN9d3TrIHc6C4CyEIBAIEAgEaGxuRUpZcnMbaJI6tgfX5fDP23h4q63iyTjrFsq6xvWAP9CF2PvtTjJnoNuP0Q3U4Hky1tnSi/SbrEDP1hJ8E0A7UIOUIwnweYQ0icSPEEKmhO5k/ay+GUNjZ5sXt9nHjx5fh8z2GZb0DRSkDq59gqJZ3Xv0eNm7/KW41wd4eL33RYbZv3865FywEdJAHmx2cTNHhycDhymaEEASDQYLBYMkmcWRkpLT+unv3bjRNO8jF6UgFrPh9nArTabZ+4BSxg8PJiiOopxBH2rf0cB1iJnNKOhgdiYYU+5DsAnU/aAGElChmiMbmBt7i6eY3fzIomOWsXn0JPt8ioBWpdGC5LkLJPgbmTkKuNBctqqC3f5j9UYvL/+pczrvgDCylG808G4XgQWN0GM9061AVRSEcDhMOh5k9e/ZBNok7d+7E5XKNq4GdTpLa0dTFTkdgxxr9OwJ7EjITU76n6LWzI6inCJZl0dfXR19fH4sXL57yietwHWJgGhGq8GERAvkQUmYR0geoSLox1WpUK0RlRYi/ung23shZFPJ5BCoSP5I2pPs6LLUCkXoYpbAdF41UVFWx2rOf8pooucIONO18XOb5Ez69E6EezNFcaExmkxiLxdi/fz/bt2+flk1isVRrJjicwBbH7zRbPwlxBNXhZKU4xVsoFEo1iVOd4i12iFm4cCHNzc2T7neg9eCkx8TCUhSQNajmPiADmEjCmIoPRRiAZNGiRcRSAQaHhkb3zCMIghBIbS5YXizlTCxXMx4hcfuHUQq7UZPlmIHLEGJi0XcYz0w6JcHR2ySOTUqaaSYT2GInHXAE1uHE4wjqSYxlWRiGUZriVVV1SlOz0+kQA1Of8s0RZUjtJisX4idI0GzDRTlQDmIIyCKVMJaaByFBWkj6AQ3BaBmM0Y9iRrH0OpAgUBCyDJSlqMYQ0hpGqpUHPffJZOxwsoj7TAvqgRzKJrGtrY1UKkUgECiJ63TWUI+WiQS2mKhXjGCLBiehUGhcFrHDMWYmrAedpCSHmWKy2tKpCOqRdIiZSoSaIUqH8gRpMigiS0KvIqoo1BlxwlYfyATCqkNq1yKVGJq+E2+oF5NZKLwFWGwfSKj2TZrA2EjUBKEgT9U2EyeAmZxinQqHs0nM5XJs376dysrKCW0SjyUT9YLt7e0lGo2yfPny0jbFCHZsFrHDDONM+TqcLIy1D4Tx9XyHagR+xB1imFqE2q9sJCsGCcqlSGUTSEFGqaJXV3FZe1FlkJy3FqGUoVmLSYlhUiKBVwmB6MRjPY1XrkaoNUitESW7C0udOyquBorZg+VaBkr5pGM8GSLUk2EMYzmRgnCgTeL69eupqakhm82WbBJDodA4F6dp+UMfBWONJjRNm7TZ+oFJTo7AzgAz0W3GiVAdjpaxtaVjp7OKTCYqR9whZpTDRagFUqRFNx7KUfBjWQWkaMPNMEklxYhoIGCtBnwUxGuk1D4KIoSZLEcLe7C0BBntWVQzhJv5WN4LoLAdtfAkQriRRJD6PEzvGnBOaFPmZBN3gKqqqtL3L5PJlGpgu7u7MQzjIIE9lhH22CnoiSLYiQTWaVV3amKaJrfeeiu/+MUv6O3tpb6+nuuvv561a9eWPkMpJbfccgv33HMP8Xic1atXc9ddd7FgwYIZG4cjqCcB0+lbemAkeVQdYkY5fPRXHItEoKCyACmbMNmGJfagWBeiEBndJozFBtyGF6HkULMDqAikO09ea8Nj1YPowAwCOR1F5rEUL4Z+CaiTd585WSLUI+G+++5jzZo1U2pVF41GWb9+Pddcc81htz3Wa6jT5cCkpKJNYn19PVLKcQJbtEk80MVpJgW2aHoyEWMF1mm2PsPMxBrqNPf/5je/yV133cXPfvYzli1bxssvv8wNN9xAOBzmn/7pnwD41re+xR133MHPfvYz5syZw5e//GUuv/xyWlpa8Hg8RzlgG0dQTzDTqS0dK6imadLa2kpfX98Rd4gpcrgpXx0fAdnEkGhBJ2AnEuEhIzK4ZQgvr0fEQmbAGkEqCjmrAqnXgtmJUmjDIgdYIDtQRATDfQ5S1CPYg8LLWHLWGy5C/elPf8q6deu4//77D9tMPRqNctNNN9HV1UUikeCGG2445LFPNkE91JquEAKfz4fP5xtnk1gU2Pb2dqSUpQSnmbBJnGqS1KGarTsCewTMxBrqNKd8n3vuOa6++mr++q//GoDZs2fz61//mhdffBGwP9Pbb7+dtWvXcvXVVwPw85//nJqaGn7/+99z7bXXHuWAbZyc8hNI0Ti8aL12OKOGoqAmk0mef/55kskkF1100VGJafG4h4v+qqyz8ckaRuggKbpIsA8VP2XSjzrm1yOMrN1snKCdVyBzCDGMqbpwZU2QaRBzkJgI8SKSrVhkEbQAg5M+/6kYod53332sW7cOgK6uLm666Sai0eiE244VU4B169Zx3333HfY5TpYTerGM5YEHHpj0NY5FCEEmk+HFF19kxYoVvOlNb+Kcc84hEokQi8V49dVXeeaZZ9iyZQtdXV2kUqlpf/5HmnU8mUtTsdl6Op1mZGSERCJBKpUq/YZPte/nqUAikRh3m8xz/KKLLuLxxx9n586dAGzevJlnnnmGt7/97QC0tbXR29vLZZddVtonHA6zcuVKnn/++RkbrxOhngDG1pZOp29pUVSef/55Zs2axfz582dkimwqSUkeyplt/TXDYi85EUPDj9/0YKh/xhDtqLIOkEgSaKYfU5GgZzAVFVMkUQ0P7rwL3BamTJPJdKKoKSwMNJeGpkik3IPg4JKZIqfaCWvNmjXcf//9JZEsiuqBkeqBYgrQ2NjImjVrDnn8k+n9kFLy5z//meeee44HH3zwiKLxqdgkjo1gD2eTaFnWjCRBjY1gD+wFm8vlxtXBjjX6P2076cxghNrU1DTu7ltuuYVbb731oM0///nPk0gkWLx4MaqqYpomX//61/nQhz4EQG9vL8BBwUdNTU3psZnAEdTjzJHaBxqGQWtrKwBnnnlmKbNyJpiqsYOOn0q5fFxKe95SyIr1GKILUFCVuQTjGinLYMTqQSJw5334UhLVtYCcMUgmswnNVUBaIYZHvEAM3SXJGE+h0UwkUnVQucWpeGKqqqri9ttvHyeW+/b18YEP3MLll19LfX0Fs2e7+MEPbj1ITA8nSHByTfned999PPLIIwQCgUkvHIpMFI2HQqFx68YT2SQWTSZ6e3sPskksKys7aB3MsqwJncGOlqk0Wx/bSee0a1U3g4La2dk5ro5+Mqeu//mf/+GXv/wlv/rVr1i2bBmbNm3ipptuor6+nuuuu+4oBzN1HEE9jhSj0umY2sPrHWKKJ4yik81McTTTqS65BF3OxaQXUFBlDYr+BP6hR/H0eYm456IW4kitwFDWy1AUGhsMdM3EIkSNV2DJWkYyc1CJ0773ZbZsCZSyQcvLy0s/qJMpIpsqY0W1rW2A/v455HI+urr+zKJFS9m1axtud47iOWOqYgonl6CuXr2aqqqqkqAcKKrFxCzgsNH4RIlZiqKUhBOY0CbR4/GMi2CPl9GEI7DHjlAodFhjGoDPfe5zfP7zny+thS5fvpz29na+8Y1vcN1111FbWwtAX18fdXV1pf36+vo466yzZmy8jqAeBw6sLT3SDjHNzc089thjUzSynzpTN8efZH/caMwq/oEMvJVcLkiy8EcUtZ6CvpzuoU0YVjf1dUF0dx2W6cOiBkQ5UmnEHwziF91Ulp1LNl1WSlbZsmULlmXhcrnQdZ1kMonf7z+lTkRFUX3Xu/6dXM6Fx5PAsqC19S/k8x4ymTq83mHmzKmespgWOdL3QQ4OItNpRE0NwuU6/A6HobKyko9//OP89re/Zf/+/QD0t7dzx7XXco7bTduOHWysqaG9spKu4eHSfgdeQEw1MWsim8SxfWBbWlpQVZVsNluySzwW0epEHEpgOzo6GBkZYf78+RN20jmVvteTMhPt26Z5HZROpw+6eBprhDNnzhxqa2t5/PHHSwKaSCTYsGEDn/jEJ45ysK/jCOoxpljrVvxgp9rfcaIOMWOzD2eSqU75ThmhYrlXsD+TodG1kk2bNuHxXMWZKyrQ9QKW8jyG0o205iKEiu1B2A6yBmQVXq8+rtwilUqxa9cu0uk0r7zyCqqqlqKV8vLyGUt5n/LLO4KTXihUxvLlbyMef4bRJTcAdD1LNhskHJ7D7bd/fVpieiSfmRwYwLj3XqyNG6FQgJoatHe8A+Xii4/qZF5sZH777bfzmc98hp6ODi6KRqmPx9ljGLi9Xuq2b8dSFHrmzqXg9R5STGHiqeDJ0DSNyspKKivtNfhCocDGjRsRQtDW1sbWrVtLNonFKPZ4ujgV39tieVwxwTCXy5HNZlEU5aAs4lNWYGdiytec3ubveMc7+PrXv05zczPLli1j48aNfO973+MjH/kIYH8GN910E7fddhsLFiwolc3U19fzzne+8ygH+zqOoB4jxhaOT3eKd2yHmIsuuqhkQF78YZ5sEepkxzRNkxdeeIHZs2czf/781x2fKEPwIFLsAuECUQBZDtZqBPpBxwkEAkQiETweD4sWLSKRSDA0NERPTw87duzA4/FQXl5eOlker0hkuvh8Xs4991yef/7Rgx67/vrrpyWmMP0pX5nPU/jBD7A2bkTU1UEohOzuxrjnHjS3G/WCC6b1/GMp1qBWV9tR9v/98Idp3rePAZ+PwWQSM51GkZJZhkGkvR3e9Cb+43vfoywUQkrJwMDAESVmTYau6+i6Tm1tLXV1deTz+dKsx65du8hmswSDwdL0cCQSOS4uTqZpHmTaP7bZummak5bpnLICexy48847+fKXv8wnP/lJ+vv7qa+v5x/+4R/4yle+Utrm5ptvJpVKceONNxKPx7n44ot5+OGHZ/SC3BHUY8CRJh5NpUPMoewHjxShCKRrhBxRdMpQjvJrYZomu3btQkrJWWeddZBQCOoQ1jVg7QAlBoTAmnfIDF94vc6x2HIMXp/qGxoaKkUiwWCwJLDhcHhGT5RHGsm73Rrz5vl48MGnkFIghH2cQsGLpuX57W/v5i1vWTBtUZ3OCdbauhWrpQUxfz5itM+pCASwduzAfPzxoxLUseJeVVXFP77rXWzYtQtTCEKhEIlEAtM0yUhJs2ky0t/PS7fdhpLPo1dXc++rr9KVTJaON5215Elf75g1VJfLRU1NTSnLM5vNEovFiMfjbN++nXw+f1xsEouCOpbJOumMFdgPfOADXHfddXzgAx+Y8THNOCcgQg0Gg9x+++3cfvvtk24jhOBrX/saX/va145ubIfAEdQZxrKsUhp2eXn5lE94U+0QM9OCmqWffvcTaAteol1tx00VFdaFBOSR2XGl02k2btxY+nuyE6IgDNY5iCkulkz2Ph441VdscTc0NERrayuFQoFwOFwS2GAweEKu8qPRKE88cTdSeslmgwhhIaWCqhYoK+umv3/gkJmxEzHtpKT+fjCMkpgWEZEIsrMTaRiII5wGPdAlKVxZyYIFC2jbtQtFUUqiqpomIZcLfc8enu/t5Yyzz6bl8ccJ5fOUVVcT8/tnREyLY5osKcnj8VBXV0ddXV0peehAm8RwOEwkEqG8vJxgMDgjCU4TCeqBTCSwvb29x22K+qg5AU5JJwunyCd08jPWPrC7uxu3211qe3U4ptMhZiYF1SBFr/q/pEQXsuBGlxGySi+9yp9pMH14mbrBPtgZc1u2bKGhoYGmpiaeeeaZSbc9ElGbSnTodrupra2ltrYWKSXpdLoksPv27UMIUVp7nUot40xQXBuMRruoqdFIpcrw+ep53/veyRNP/IJ4fACYvE51MqYdLZeVgaIg8/lxiUhyZARlwQKYQkQm+tpQO1ogn8WqasKavQJcnoNckrKNjWzbt49QoUBC11EUhVqfD8UwSGUy5IJBEpbFX155BYCAZVEbj+NfuHDqYprN2s5abveE9o6TCeqBWcRCiINsEovfm6JNomVZhMPhUgR7pBdmpmmO6yE7FYQQpNNpfD7ftJ/vhHACItSTBUdQZ4ADp3iLhcWH40g6xMykY1BS7CEjuvHJZjDaUKQHn2wiKfaSUFrwWlMT1OLr6Orq4owzzqC2tpZMJgPMXGnHkRxDCIHf78c/GvWMNQvo6+tj586duN3ucQI73ZPd4Tgw0UZVDZYudXP77V+mqqqKD35w+bjHpyOq031vleXLEXPnInftglmzwOOxo1bLQr3kksMeS33tSbTn7kek4oAARcWcexaFt30EaZlE8rvQd+4gmRjiV794lE6fxuI01GWzSKCgKOyNRMjF4wykUgRHzQ8AcppGhaax9qtfPezr/tM9P2TNSIzg7p0gBM8VLH65bXvJ3nH9+vWsWbMG0zQZGhriqaeeKonngVnEV1111UElOgd+byaySQTG+RBPNfP8SMwmis8fDAantZ/D8ccR1KNkotpSVVVLJTKTcaQdYmY0QhUJGLW7h9cjHk36yNKPRR6Bdshp2Ww2y6ZNmzBNk1WrVuH3+4HXBXAmBfVoLyQONAswTbNUatHe3s62bdtKmaDl5eVH3c9zMgeksWI5kfnDVEV1uu+t8PnQP/EJjHXrkLt22ZFqRQXatdeiHCb5Rwz1oL3wAAiBNdvuL0o+i7r7Fay6eXg8XcxL3I/VprOvdTuX12fZ+mYff3i5hnmuENe+97389x//SGd3N/OzWchmGUkkCI52nFGlZMU551BzmIvKX995B8H/+g86FJh34Sqi/f14W1v4O5eHHwnBu971LizL4v777+fKK6/k9ttvp6+vrySeY9/ne+65h5/97GdIKQ9ZolNMjAsEAjQ1NSGlLF2YDQ4Osnfv3tLaflFgfT7fhJ/NoQz7D0UqlSr9tk56ZqJ926FPnyctjqAeIWNrSw+0Dzyc6B1Nh5hD9kTFIEsUEHipQhxmIUKTAeySFVuoJLZ5YFb0UmCEfeo6dBkmLJcTlIsPEtaBgQE2b95MdXU1S5cuHfc6xgrqZJxoowZVVamoqChNzY/NBC328yxO8xXX0abD+vXrp+SANJmoTqXrzHQvVpRZs9DXrkXu3QuZDKKpCTFqljARUkro6oSHf4O5qRXOPBdRFHKXB+kL0fnIXVSfo5I23Dz3UicjIwKX6mZFTZrB85q49gu/pqqqilve/W4+ev319OzZQ5mUDJkmI4kEZX4/bsPgmc5O3pJKUTXJ1ObNN9+M5+GHeHchx3aXh45t21h5wUpa+vqYPTTI3Ggf/xMfweVykcvleOKJJ5g1axZut3uceIJdVjMwMEBlZSW6rk+rREeMJlqFQiFmzZp1SJvEsS5Oxcz3I0l2SqfTp06EOhNTvqeoMp2iwz6xWJaFYRiTZvGOLSgey0x0iJlMUBNiDz3KejIiigC8so56680EZPOkx/LLebhlNRmlE9Q8ppUjqe0hS5SACCCkQlbpJSO7Ma0cZfJsYHw28pIlS2hsbDzo2IcT1OmK6fEwxz8wEzSTyTA0NDRuHc3tdqOqKqlUatIopMg111xDIpFg3bp1h020OVBUr7/++sOe3I/0/RCqiphCD0g5PAA/vgtr/TMQG8RKxjC29JOtLqcwqxZ/XRU9+3cwnG0h6VHYMeDBGB1T3lRA9/HJa85GHX3NAwMDtOzYAVJygZSUAcIwkCMj9JeX0y7lpJH5T3/6U5555hk+MBwjqwosIUiOJNnw4gbOO/8C9j35OOdionugrJCkf98w0QJYO3Ygq6rYaZpQU2N77eZzeAf6qSqvID46A3E0JToTzXwkEglisViptMvtdhOJRMhms9OeYcrn8xQKhWn3OXY4/jiCOg3G1pYWp9um2rc0mUyyadMmNE3joosuwntApuVUmejYaXppVx/CIIVbVgKSpGinXX2Q+cYHcTNxBKITpM68kqjyFMLzEjmlB4MRPLIGN5UIFDyynjxR4spGQuZizLzK5s2byWQyh8xGnkqEOl2Od0Tr9XppaGgotRtLJpPs3r2bVCrFSy+9hKZppbXX8vLyCX1Gb7jhBkKh0JT6oRZF9WToh6psfg7lP79OYcNWFK+O8LsoGGnS+9PIrj4S3VHa8nm0kX68S1VqqgvIaIIhf4A+j4dAKMjy5fPQfV7yQGtrK1dffTUjIyNIl4vH8nkaNY2m6mo64nEsr5eIqk443X3zzTfzzDPPoOs6ZiAIw4N4XRpSCKLRQR548E+UCQgUcrxVtUgVTBokZFRoM02M3l4aAwE60mkWiwIXj0Sp0zWMVC8teS8bFqzg1iPMKp4oGWqs8QhQWlrYu3cvjz/+OKtXr6ajo2NcBHuotfvkaDnRKSOoTpavw+E4MPHoUI5HiqKUtpNSsn//flpbW2ekQ8xEJgwxZRt5hgnIWYjRZuB+2URS7COu7KDGurC07W9+8xve/OY3l8z1vdTTZL2f7btVyipqiWr3Y4lhRsRmjDwM9RosaFxNgTgDiXZaXukpGU4can1xpgX1RBe0CyFKRgAej4eFCxeWDCaKn6/P5xtnMFF8f6YijkWqqqqmtf2xeF+UjS/i+fd/JbezHdIGigDLlJAv4PJoWDkIyQKqmSM7aEIbeBdLmn2S+tQI9Qo0nb0a796dWJ1hBrZ9nc9960fE4ylM00TTNIKVlTQsWUI8keCGj3+cDRs2TLiG/NBDD/HMM8+UpmcLfhcLAZ1h2nIKsZREsQSqIrHcHnaMpJESVAWqVMgD/SYEkknONTOs8koSmsaAquEV8GaZ50OLGlFH65oP5FAN36fa67Y4Y3X77bezfft2IpEIH/jAB8at3fv9/nEuTmPNSZLJZKmf7CmBM+XrcCiKUWkxoeCw2ZCjPyDDMNi2bRuDg4OcffbZpVrJo2GiCDUrBlFxlcQUQCAQaOSIle770Y9+xE9+8hN++9vfcuedd5ZEVaBCpoyc2I8phlFlBJnV2d76Goo7S2Ffjtrypezb1MqCOWcza9asw74Hb4QI9VAcGIUUCoWSwcSePXvIZDIHGUzMiFG7mQdpgeY5NhHqSALXuu/D0CAyEAYjCcJEGU6ge0C6oGC48eSzFBIpNJfE7DeIblcpXybxhC0aciN4/vS/FPJuerMxuqIP8M+VJv+dkjw6YJc2Pfjgg1RWVpbE6sAErq6uLt75zncSj8dLdcblQ71cHMiRcavInKQraeAD/C5B1hJE02kEYI1+TRIW6BK8QA5YpppoliCdLTBspFBra2leuRJf+15yra9hrTh33FtxKF/hiXrdTqW7jpSSe++9l/r6+pJIFwqF0tr93r17SaVSpeS4trY2IpEIPp/viL8/69ev59vf/javvPIKPT09/O53vxtntyel5JZbbuGee+4hHo+zevVq7rrrLhaMWRYYGhri05/+NA8++CCKonDNNdfwn//5n6dO1HyccBqMH4Ji4lE+n5+ymIIterlcjueee458Ps/q1atnREyLxz5QWNyyApMCckxfNYlEYuAmAtiR6U9+8hPAbon06U9/mv7+/teP60mTV/twyzryRootLa+RTGTJZyRJax8bn9vDecv/itmzZ0+5dyu8cSLUw6HrOlVVVSxatIgLL7yQVatW0dDQQCaTYdu2baxfv55NmzaVzNGnvYacHkTb8mvcT3wJ9xNr0Tb+BFemb0Zfg7LvGTy//ReUwgvQYKEEXVDIgJkFRUDORBh5tPwIlpnFyObwucDvhuhLFrsfV+jeBkY7ZPbnad2dY2BHD96hAosti1vqJCtVCVLywgsvjIvGi9PdxfX4QqFAe3s7g4ODDAwMoOs6V4Y0gtkMPWmVfBIaDagGNCFxY42bJZSAJQSWhAJ25BBSYciS6FLiH70olR4vmCZioJ9oNFpq6t6zbx///oEPEH7pJZb09fHH//ovfvs//1M6/po1a8blDkzWQH6iTO+GhoZx67W6rlNdXc2iRYtYuXIlq1evZtasWRQKBT73uc/xtre9DU3T+OIXv8ijjz5KOp2e1ueaSqU488wz+f73vz/h49/61re44447uPvuu9mwYQN+v5/LL7+81CkH4EMf+hDbtm3j0Ucf5aGHHmL9+vXceOONEz+hNkO3U5BTdNjHnqOxDxwcHCSVSrFw4ULmzJkzo2IwUYRabi0lpmwlLbrxyIrRTN0BPFQSsRYB8OY3v5nf/va3dHZ2Aq+LajFSVfQClsyhjNTTsn0jqjdLoAIsKTGyOpec+ZFSNDYV3qgR6uHGoAzvRO1bjyvZRtBbS0PtaswlF5EaYxTQ1tY2rh1ZeXn5odfU80n0V36IEt2G9FeCUND2PUFjyoU6dwEcxrLxsFgWrodvQX/6NzCSgEIW4Ze45wxj9ViYaYFlSoQJ0gDVBzGPAULBMk0KukKlS7B7l0Vij6B8qSQF5HN5KgAdSGSh0Q+fCQp+lJP88Y9/5KqrrhoX0RVF9ROf+AQbNmwoJfp0dnaiqirz9TyVI+DOpmzHZwnlJsSAXgXqFGiz7FaaqqKgWhZZXhfUIQlhBWImeDWNoXicDeuf4uJZTcSEWhK+/Xv2EP3Vr6js7cWwLHRNY04+T2NHB9KyEIoycWZ2Zyef/+hH+cR73kOkvBy1sZG13/526XEpJZWVlXznO9855Hqt2+0uJcdt3ryZ//mf/+ErX/kKfX19fOxjH6Onp4f777+fq666akof79vf/nbe/va3T/iYlJLbb7+dtWvXcvXVVwPw85//nJqaGn7/+99z7bXX0traysMPP8xLL73EeeedB9jeuVdeeSXf+c53qK+vH3/QE9Bt5mThFB32saXYBcIwjJIF2FQ7xLz66qv09/fj8XiYO3fujEdWEwmqjzqazSvxympyIkZeDBOQjTSbV+HGbm9VXV3NnXfeSVNTU2m/zs5OPvXpT7NlsJd+vZxYWuOxJ/7E9udT7H6pwJ5XcyR7PZw162+YVX3WtMZ5ukWoAMrQRvSW/0DteQyR7UeNvoCr9U603idKNYwrVqzgTW96EytWrMDv99Pb28sLL7zAc889x/bt2+nv7yc/th0NoPZsRBlsxapcjAzUIf01WFXL8GV78fRvnGQ0U0fd/Rj6+nvtsqmaevD4kCkVMZDFM8dCj2hoAiwXiAjIWvC6C1i6oGAI9lPPfn0OQipg2fMk0oLQ6EefB0wBWSFAUbjK7SbR21uK6Cb6jpSVlZVKWlauXMnChQvxJwsEcgaWAnnVvmUllJlgmHZUGgDCGgSkRdaCnAQ3MAI8nbUrxMqFbVGppVOEBvp4dG87n73t/5JtbUVLp/njd7+L0tVFT6HA/kKBuNvN8gsvZOjZZxncsqU0xrFRtZCS2QMDVLz6Kn/8yld4+tvf5ifvfS/m1q0w+voaGxv5+Mc/XurNOVWKa/M//elP2bdvH62trVx88cXT/6AnoK2tjd7eXi677LLSfeFwmJUrV/L8888D8PzzzxOJREpiCnDZZZehKAobNmyYkXG8UXAi1DEU7QOLWbxH0iEmHA5zxhln0NraekzGOFnZTFguIGjOtstmpMBDdcmwoUhRVD/96U/T2dmJVRFm10VL+IdNT9A4dzYjrSEWVzdTPvIa6WGDuqYy3rT6Yupcq1Hl9LOSD1XqcqysB08YlonW8QdEYQQrvASEQAIi1YHW9RBm1QWg2xnRY8ss5syZM66X5759+0gmkwQCgdL6a1WiCxCgjumiIxRM1Y03se+oh661/AkyWWhogryJ6LBgyAQTFEw8skC6wYe5+iwyLS/jzWdJS52XqmexufBe2sQSFDPH29X/Q2W+nVTcoCIIqgGGas8Wl/kVUqqXRLCMsqEENbkcye3b+ebll3PhggVE6uspX7mS7z7wANFotDQbUiw3Aug9/yykALcKhgV+FTISFBMsAwYUSCpQUKFbKHSZFk32O8cAEM1DlYDlbihTIC0tXk0bbBzqwWf1Uu52k8jnCUpJFvtCoNjPdCCdpiybZWjrVirPPLP03hVF9ct/+7dE4nEKmsaAEAx0dOApFGjOZBjxeIjMn8+3vvUtduzYMe210HQ6Pc4wZd68eUf9mRcp+o4fWMJXU1NTeqy3t7eUb1GkmOFe3Gb8gzhJSac7h6stnYyJOsQMDw9PyXrwSDhUqzUFHb+sn/CxIkVR/cfP3MSuNWdgzm0g3dXNlpadaLUVxBrPZYUvyRmhQd76lndQ77qIkFx+xGM9XSJUke1HSXdheWttf9lRpLcOJbkXJdmOVTbx+3igwX8+ny/Vv27fvp3+nr3MTgwitThenxeXy40QIMwClmvisqVpkc/aqiMEYm8cRixkwIMwMmBJCgUYcWVIlG1m9ttdGP15Bvb4+G3nJ9nvWcJSs50F0SfRZZ5GjxtvzMKbtQhqYLhAlkHSlJiN53FxbYSOJ55gzf79JHM5ckKwLR5n9pw5PPO736H6/TD6Poyt3ZVSkiqrINaTISQNXAJUAaiQM0FTocoHP0xCS04AksVCYam0qAQasaeGn1U0njq7CU91gJ5okshz7fgNSUyAlc0SVBTKTJOMEKi6TiAQIBQKUV9fT6atbcK3r6qqivecfz7P7NxJasxnn9V1gtks89xuvnz77aUEnukKajKZPHVcksAR1NOZqdaWTsRkHWImM3aYCY7WetCkgFEzzN/+5Foe6NlN3/Z99BcEecPE6OpnRG9gZ+5Cbr30Smo9zShy+l+RLHFMsuDOvuHWUCdF0ZFCRUiDcaO0DEADZeoewS5doa5apc6tog5uQSQ2I6L7yI4M0RdeiKV5CIkUBir5yBLKjjLb12o6E5Q/QSoNXcNgGoishIKFqahId4GqPAQ6R4jNd1HWFGZOSGWJEsffvoOcWkBm9hJxGVSrEmkK4inwusCVg2wKkoYg2/EiwhBUYxE08whpUSnAzMXo7c6Sk4La4WH6QiEq5849KGs2UVtH+cAAO1JJqlV7rVSa9rWA7obXJLSa9vfkQuBqKdGxI02/qjJvbhltn7+U+KwyDKDs+X242uIM941QkzPJqSoJIAmEgbDPhz8U4uKLL0ak02heLxXLJ7koMk3mzp/P4J49r985+plc+ba3UVVVRTKZRFXVaX9WxazfY0Fx+rmvr4+6urrS/X19fZx11lmlbcYmMILdNnFoaGji6evTuA71tF5DHZvFO10xjUajPPvss3g8Hi666KJxBgfHomfp2GMfqbCYGGxXNtCqPk/eH2des49FC5MsXJpC0yw0VUXL5ll5+eVUVs4p9UWVSDJEGRItDIkWMgxMeHyDHN3KBjrUx+lQn8Bs3k5UfxWT3EHbTvekcrJHqNJdgRVZhkh3g1UYvdNESe3DCszCCs6dwkEkav4vuEc+i2fwo3i7340rdTeqW6CGG9EGupgVfZUmbRCXy8X+8tVs7oPnnnuOlpYWent7yeXs93psxurhKJx1LdacRYjOHkQyDUYB8gWQoKAgBFgmmF2Cfbs1Xt6q4+/w8be5/4+m3BY2FTRMI8ssNcMQPvLoZEwYzEAsDSID7pykMp0hn80gy1wgIOgHfxj8wmShnmJRfY6wkmd2KDRuTQ/sz79j2XJ2jCTxWZA3wWXaEUEb8KQJd2d1JIJqYA32Y0lAahoFJNv/8WIKTWFESy/Klm4qHtlBOJamzqVSISUNhkGjaRIHCrpOlaJwZm0tmX37yMViNF9+OeVnnDHhe+iZPZu2XbsQY36bimUhheD369cTjUaPyBgf7CnfYyWoc+bMoba2lscff7x0XyKRYMOGDaxatQqAVatWEY/HeWW0MxDAE088gWVZrFy58piM61TltI1Qx9aWju09OJX9DtchpiioM1knKJGkxV5ylU9RUOL0KW2ErbPwcOgp3rEMim76lH0EZTmpdIG23n4KcZWq6gK1DQq93Qoy5OfFhx4m/rb3U11djcQiKjYxqGwlS4KCyKDgodo8m0Z5EcqYa7IBsYW42IVHVuKhEmH0M6ztYUAEqZHnHDSe6b43J3WEKgQPbPPytrpmAondlJyRfY0Ycz8Eij5u87GGARKJKXpQCk/hSf0CIQUkM4hCEuZqiMpetj4SoL1LsDQSo+zMc/Gs/gixjTs5+4wzsCyLWCxGZ2cnLS0t5PN57rrrLqLRKLFYjI997GOHHrs3Qua6n+KNfhB1z2tgWeBWkJYbhIKeNshqgpQumL89jZnL4sooLDLh5lwnb8nX8jTlBGSehOJBRSIUkIogh8SjAToUsgppCbqRQrgVUOyLTlOCkpL4/CYVfgvfombWrVvHY489VopSW1tb+ddf/5qVFlwg7OxeCUTdLp40TJ5MmwjFbo12di7HbMCF3QXMNE08C6uIzq0g0h7DY0kSAylE1zBCSqyIl0zGgIJJUEoUIdii63x67Vr8iQSq2031eedRdd55iEnawd31yCNEgGA2S15VEdhRa8znY2cmw0033cStt956Qozxiw5fRdra2ti0aRPl5eU0Nzdz0003cdttt7FgwQLmzJnDl7/8Zerr60u1qkuWLOGKK67g7//+77n77rspFAp86lOf4tprrz04wxecKd/TiWLi0b59+1AUhfr6+imf2KfaIaZ4FXqkV6QTMSxepU99kHxoAMtQGVAGSSibqTffh19OLUkhIQawsMglDZ783e/JzqpC1FQitQRlddAtqlEsi9STL/DpB5/hzjvvxFuTY0DZTJYcSZGlQAGLEYbVP5M1TRbINyFQyJNkROnCLcvRsR1dhOnBZYYYcXdSbi5C58hPCid7hGq75vw/7ptVy+1f+jvKvAWkHsIsPxvc5eO2HVubmMpGeef1IfJKC2WpxzFEHEufizuVRua9oHvIqu30xCVpUyOWzvDYbx7k8rM/WkqcKzbBnjdvHt3d3fzTP/0Tvb29GIbB97//fWKxGNdccw3l5eWERru7HISnHBlqwLpqGEXpsg0kEnlkC4gE6I0+KGTxjUhSeRPDtMjpLkakj3PUHgqYZBUf5SRRKKDpIBSJzwtuD6gVkug+BTNn14GW+U264/Z1hpQgBSSHJIFyeHbzgxQKc0u1nZ/85Ce54YYbGDYMntA0dhkG9arK297xDu5fv54d6TS6oqIIwaWWxbXYhUQadp1qVEqyqkCqAsu0UHUX3t4UKAIZ8aKm8uhSYmJP2bmAWF0dP3jyyQnNGsZeDBU/y95oFKumksLwCGUIVpx1Fs/s389Oy8JUFLq6uvjCF75w+IubCUgmk0dljP/yyy9zySWXlP7+l3/5FwCuu+461q1bx80330wqleLGG28kHo9z8cUX8/DDD+PxeEr7/PKXv+RTn/oUl156acnY4Y477pj4CWei28wpOuV7Wgnq2NrSkZGRaWXx9vb2snXr1il1iCmesGZKUE3SDKiPI5Ho+UYK+Ty+YBUZ0c6A8gQ+c84hW6wVEShksxn+8Js/E4/HcGXSSEviWhiicdFcOjtHKDzyAlprG53Apz/9ab56z0fIliVJiCwKAh9hBGEy9NCtbiJsVhCREQqYWORxERzzfKBINyZZTHJHLagnS4R64Hem6Jrj8khCze08sPe7vPWtbyHkOR+3oYz7ZMYX+kvahtbR1jeb5urluAoSSwQwRT+Wlkczc5CReH0Fmps0Ej0WCtA9NMxNN93E+9///nFjiUajfO5znyMajZZOhnV1dVxxxRVkMhm2bNmCZVmlNmPl5eWv9/FUQKnajVAHkDk/DOShykBcCJZbYLgzBPdZCAmiAJZXksoXiBkCXXMxy5VjjzKP5XIrPt1CdYFHAbcCZgCCDZDCpLBHRcuZNNZDtgBDCbvkxe0GV1ih8QIdTyt07u2kqamJtrY2rr32WnK5HEII8rpOp9/Pl+6+m1/96lcU6uvROzuR+TzLFIV3S4lVKDAEBLHPy7XA0J5B9O5h8k1lmJ0jSNNCEYLCslrSuwcxhzIoQAYYdrvJBoMTOiCN/fz279/Phg0bqNq7nb/LDlFrFnCFvcx/1/twXfcJ3qK5x9Wpdnd3c8cdd3DuuedOyzc4lUqNW9+cLn/1V391yN+OEIKvfe1rfO1rX5t0m/Lycn71q18d8RhOF06bNdQDa0unmjhkmiZbt25l69atLF++/KA2ZRNRFNSZyvTNiP3kieGSVSVhEQhcspKs2I99+jg8+R54+olnyJLCpbtQDZOaWIzVFfW8aaiSOxavZu5QprR9Z2cnP/35PYzkEpgUcOEtmRuqKOTopUP9XwbU3zOsPoJFL3lGXn9CITBECk160Y5CTE921qxZw6zZ9Vz5gTRvfU+WYHmMjVv/l4S8lxHXD8mLTiTmQa454QrJGed7qIwsQogIUvGgSImQHqSSRBRGEPlBLG+e5stN3vyVHMEPg1ym0NXVyV3f/y+SrS+jtG9loKt9wt6rd955J8uXL2fZsmVcfPHFnHvuuZSVlRGLxXjllVd49tln2bZtG0N7HkNGCpDRMXMaplSRGQWCArlYx5JuPEiEsH1ycwYMpSww+sFMEJADVORfYZc/hV4Jfg+4RjN88xF7WbayCipUE5kDGYUFAZhbDvMXwpuuqGTBlZV4Kl0U3PY0YkdHBx0dHYhcjgWWxbn5PBfoOj/9znf41a9+RVdXF7qu09TURDgcZk0wiBeI+XxkgRS2qYML0HMG1b98FTNrkJ5fhjy7HqvCRz6ZpzOZow3Yh21R2K6qDAwMlC5CivWyYz+/QqHAt7/9bazNL/O3yV7qsimMQJCl55xLeMvLuP/7u1T5fePcn6SUpWMc6Kh0KNLp9Knj4wuOU9IbmclqS1VVPaiA/kDGdohZvXr1lDvEFKOGmUpMEiijPr0WgtfXEiUW9jXR4a+Ldu7cyT9+4l8InyOY81dVaA0qPr+PC869kHmuZQzHBbW1FePqVAH2bomypWUT85YvxT+6DGhhYIg4UrpAenHLZgzi6KKLnDBAgoYX6UlREBoRuQKNgzuxTOs9OEki1InGUFVVxXfu/Bhbur5Exx6LfE6g6nmU0B7mLOtF1bYjU3P48Y830dX1ekLXnPk1rFzVhE+vAFQy3sUERp5DyxZQrDRWyItRliVTZ3vXurMCNazx1roRwhGTyj8niH/3Y1TPn8fePV00D7noIgSICdvFjW2U3dzcjGVZJYP/VGcLCUuguMrxxLvstXEBMm9BBKxCOQW/SSGWoy9pGya4AFXCQMEilbHIuGG/D0YWgYjZ9aeqNvoNHQSlALMEdAgwLQgthYZmqGhqQGuYRZOlcN8fOonvSLCgspKWnh70bJa/EoKKUYei+bW1rF+7lrzfD+EwhUIBl8vFAw88wB+vvhpDSoYNg7wQmFKSx37+OFB4bg9v6+mB+RH2rqhni0ch8/J+Aqk8VUAVo9VDmQyis5NNikJG13luZIRPfOITACUhLHaAeatSQM+k2W4pnF3XgLu2DquiAmXvDtRNL1J10SUlR6W9e/cCU+91W+RYZvkeE07jLN83tKAeyj5QVdVJI8ij7RAznQh4KnhlE25ZQ070gggjpURikhdRQnI5+iTt2cB+LW1tbfziF78gMZwg+6yLzP5+5p7TyAf+4e9ods2nzKplo9iIZVkHmT/07yrQvnmEmnm9+MM6CgomSSQKCuWEiCBQ0CnHJ7NoIo+JTkGkUEydsuxyyl2LZuR9OBkEdTIC5cOcEVlKX+de8rkRGlfoBGtNhhMjBDw+2jr+wtlX5enthT0bbcH70r99DdX1ayyGUWUVGe8ZqGYC3+ALKC4D6QmSq9WwUFByfoRiEHGV0z8S5V1vj5PdkmdwxOKZbdsJYvFeHwxbGsM1iw7Z/aRIcf01Eomges9Eb32YbGUTI0NphJnCUl243XnMrI9cwMNwb549fZAdTdq2FDuiS1mQNWwjeisK6VmQHYLBQZBSME9IIrotsB5TIaBatA/Dg68Irr/i7ajNPgY2DxN9tJ05XUmuScRoGxhkVmUV0VyOCtMkrmn4gkFaBwbwFQrMymaJulwMxOPUlZfz2899joZkkkgmQwUw4vEQU1VkKoUHmOeCeV5w9aehP03zq93oVfADC2YB87ATmPZjZ+eeD6ywLHpzOdpzOXY88Th6QyPBcns9vBj1V/34uySEIBAIsmfvXvx+P3PnzQUpEVHb9KBo/nDjjTeyf//+KfW6HcspJ6inMW9YQS1GpZZlTbhWOpmgzlSHmJksnVFwUW1dQY/6OzLu/VgyR0bJ4LUaqTLfOq7LzFgKhQKvvfYaIyMjfPazn6W5uZmf/OQnhM0qbv3wd6gOVlMsmhRCUFCG6VdeIF3bxy0/vpY7//1XbH56P4v4G+aGyoizGxUFQQU5oFxGCMvX10xV/HhwUWGtQSLo7X6ZYGiu3c3mKDnZk5IEOi6XzqWXXcZzLz9KsKpALmkhvJJ93T107tKomQ1nXwq5aIMteBVVpMzzSGuPITFRCBIPLcTq6SPYO4gsX4KptqIYLoTXBYURNFVhYaQOWYjjWmJR2ZZBVyU5S6GQELw/kmPpt6ff29OsuADd14g3sx/q68i2d+GOuFAUGOypQUnsZPsuSdqyp3N9HugZsatrfF7wRyA2AiThtRdtcc0CYSlJKXaXmqALUBWyqpsmI8PlK/+Gsr/7f6R+93Pyv/4SVUYOPwYNtQp7Rkw80T7qXB5i+Tya2126qE2qKr50mnxnJ5UNDbypu5ualhZM7JrThUDKMOg2Tco8HiqNHHPdEssH/YYdKQeG4UIJYi7sbxH4hCBrWdQDaeyfhRdbbJcJCGJSmYrykkthz6JlfHHtWm677TYa3V7mKSZJRSEQ8FNXXw+mPUsjw69f6FZVVfGlL32J5557blzXmqlwLMtmjglOlu8bh2JtqWEYwOSOR2N7lhYZHh5m8+bNeL1eVq9ePWHD6Kky0fGPhoBcRLPxUTqTz5GNtVMbPJ+gtQydiZ1yhoeH2bRpE4FAgIsuugiXy8XHPvYxwuHwuH6oRSx3gqFQCxlhouFDhvN87N9X075B8O43fZKCmaNfdDAo9mMwTFiRVMow+pivkClGcMlaNPwIFBS008bYQbcWk+MJPL40565aQW9mM1Yqhy9hku8X1KgWuWGdxnle/uM/v0VVpS14PuNSQCenvoylDKNYAUTgGkT6USxXAKSCFBZCmiBNpB5Ei+/FUlWkWcDrslAVcEsTww+XVRlYcg8m02yW7Sojv+hfcO38Tzxle1EyJkZyhPhgI0a7jkhIcgVw+8DjglwB8haoqq0fIR08EegfgL1xcGuAAkMW9AhYmIclbnD7BDLoowoIelREdzuxu7+JmRyhV3MDblRZYGEIBnMmm5M5mmfPpnt4GLCXUZLJJJphkDcMavbvZ55pUuy7EwdCwFzDIOhy0eH3MT9vgrfASB7UNGDaU9a+IVggQPFIsgWwVJVswcSNXb9aKSCo2PaGaRNC2Tw3JPrJuc9g3Uc/ij+RYK87zDlGjNkuhUUrL8SLhdK2B6u+CfOsC8a9xZFIhCuuuGJaH4uU8qjLZo47jqC+MSjWlhYjw0MZNYyNUKWUtLe3s2vXLubOnTsjpvbHwi3JTRXB7IX0d1dRPnvVhNtIKens7GTHjh3MmzfvoG43733veyfczwjvQ2pxAnJ5KeLVPTGW/ZVF3hzGRZgGuYAGuQCJRZzHSYltFKSJggdDxAHwy2WljOPTyXpQtebjNt5KTnsMlydGWKio+7KIYYmeE1SqkA2Y+OqWU+3SEakupLcGoej4jUvxGhchRRIhgyhlCmZNBq33abQBlUJ1HJnRwV2BFCoylMHYZeLvNZBSIVMQuISFYkBfZphw669QK889qPb1cFhlZ5E9979Q45sxm7tJvNbHcG8PoiZKrmcjqmZHp7qE7OhXWyigeCD41x5cfkHsqQL5zQY+CR7ALyBtwfYcVKsQ1nV0VUOzTNxlQV7+8Z00R/fTn7RIGxmkUHB5VLxeWBBSeS0joKODCzSNsJT0FQq0WRYDQI9lcW4qxQigqSqmZWFKybAQtABZy8LMZPBKA02AGBVTRbFPfIqE1LBtZmUZkrAwyWCvo/qwO9PksI39FQmJvEFAtfA8/CDLMzCi6oy4XWyrr+D9Zy/D298NmoY1byGFD/0DRMaXSxWbq0+Xoy2bcTh+vCEEdax94GRTvAdSFLx8Ps+WLVsYGRnhvPPOm1aLskNxrNySDnXc4nT10NAQ5557LuXl5RNudyAmOUzvIHohMG762EWElOggI6K4ZLh0v0AhZF2MInxklN2YDKPLMvxyBR45//XtZjiR6GSJUCf6bgkEHuPt6OYSciPPkm/7T7SIi5FBE2kJ1LDA75Go9z0FjSO43RqWtxaz+R2Y1atQhBeKDQhUKCz9R6zy5WixpzBDz2JV5LFcHqxMN+kBA/mgSW0aMppEATRDYmiCDgHeF/5I1azrKJ997kHjPCyaH7PyIkQlRBZJXDU/JP7Qz6idn2d/GxgGuFT7JgQoZYLQuS5q/9GPogrc75aE702TuD+DyAiMjMQvIG7A1gzUJEyq0nGEW0UGdRo2PM3+fouBzGhCkGInOBlZQblfIKTCpYZB0DDow7YbDALbgQj2tCxCIFS1dJGsYouXlJK9+QKDqiCSlmgWGIrtAeyW9hpwSgHTNoUiL+1cGBM7ylWwBVWXgIA6D5hYBHSY64H2tIlqSSIVDcQ++EmUsgC43FhzF4F+8MWMadrGE9PllFtDPY3bt53ygnqkfUuLWb7PPvss4XC4NC06U8z0lO/Y404kqMlkko0bN+J2u7noooumNV1tZxErWBx43NFIf4Jfh4qXsFxNwDybLF3kRA9JsZOsiOKz5uKh/rSKUMEW1Vh/gG//82/4cEWU9PvKUBt0hCqQKQvPS8M0PD/AxtqXWPGWt+BPdaHsuAeperAqD3CSUj2YDW+DhrehkAI2kIrt5E+/+DnzuyE36CYcKKBnFDweLwU9TS4Ac7051EKOTT+4jjOu/0/CSy894tejb/gh4eduJRxKo4agaRG0tcBIHjQL3H6BVqcSeYuLzF4TRQURVJh/nZeehEFqc4FsH2SG7PNrSgq6kgUGkAxV6KiP/YVkRzvJHHg0SpdyJpDOSNKW5FJdogvYVLDFTWJnFzcA78BepzWltG3+FIVwKEQyHkcCadPEryhsNC3qJPgkGJotkArQ74LhlP0tz2OP0T36bwu7NZyGXXoTdkGNZnfQMQUoGtSEJT58WLEYg7t2U/bRjx7y/TRNc9p16VLKcd1mTgmcKd9Tk7H2gdMxaZBS0tPTQy6XY8mSJTQ3N8/4CftYGeRP1G2mu7ubbdu2HVFGMthdavRMA/mynVgUUNBt/17Rj8uKkMVgQHkBC4OQrKVMNqJjGwfkRZS48hIWGVTpJSf6yKhtlFkXvWEj1Mko1hi6entQkwUGvhvDuyLCohWL2P/8a1QlBshlBdF4jseeeoFLL7uMQL4DtefJgwV1DAI/Q73LuemmH9PfrfK3C30sK0syUOFidkUIxVRxZwSpZA4Fk+6Egic/xK6ffYp5N/6CsnnjI1WlrQVlx0ZEPMqwN8zTQzkuv+Hj45+0kEN/5S6EDhnLj8ylWLxMEghA+07Ix6DuTI3gh73gUwh4IeCD4ZSFWa4SOsNF9pUCZEEqgBv8IbASFmkFumWeSNcucqiYAvya7XhYFMykBeVBmJWXDKt22Y00bJvCAqNTstginAT8hmH/O59HYgvmQsBlWajAzjw0KeAWkHcJhoRkd8qe7jWAxOg+HuyeqhkgZoFXgYAKF0TAm7UFd0DAsAkBr4JJgXQuh3WYEjw4MqOXbDaLaZqn1pSvI6inFsXaUsMwpjzFW6TYISadTqNpGrNmzTomYzyWU75FYTFNk+3bt9Pb28uZZ555UKLRdPAm5yPdI6TDPaPGERKdEBYR2hW7ibWCwpDoJCb3M9daiYbGiNiCpIBXNtsHkpCjlxGxBaFUTSqChmGQSCQmt8I7gJM9Qh1b9O/BzaCl0eRRmV95IZ4hL1VVafLxKFFFIampaJlhWl/8PWctbkQfeoWCZdmLe4c5Nij8dk8lhWXVNFd4UEIxRHIYcoJwdRU7OwZ5pSNPxsxxTv0w93/vM/zNrfeVsn7VrS+gPfU7MPKkLMHGxx9hJJXlgXiMqz/zhdJzKn2vIXJDoAXw6hqmmUfFZNY8k9mLIdcBmfd7yC3TUXtMcIM6bBHcnMd8QjLcbxFPQCxjC2rYC4sCksqALVxDORgsQBYTU4G0AG10rTJjQlaF3mGI5GFAt4Uz7IL4aMmOrmkUAN00SY92lZGAJgRISR32lPAAo6U9QMYCVfOhz1/I4NZNWIZ93Dy2iDP6fz9QDgy6dMpcLpaQotm0j9NvwR7V3q9gSpAFFK9OeMmSw35HjiRCTaVSAKfWlO9pzCknqEc6xQv2iem1116jqqqKxYsX88ILLxyzcR7rKd90Os2mTZsQQnDRRRdN2XRiMjR8BAbPp7HaT07EUaULiYc2ZRNeGcZlr1ZhYRIX3QyJDsplJQUxiC7Hr9XqlJMXUXD5JxTUZDLJq6++SjabRQhRssErLy8/pCPMyRqhHuiAlEXhpeBCbl7owTXYjvQEcSeGcIUCbFNdVAVznNmYxKdbWLF+ZK4M19Yvk1/6JdAOfv3r168vufMkk0kaly/nrz//HVq3baL83MX4X70TpeslutJuNvZmyJgmpmkRT2VRct2vmwhkkqgvPYZUNUZCVdx3//3EUxazseh44Ofc3zifd48mrUnda2ccWSa4vChuHzIft/uwCsgbCnK/Rf48DbdHovcaBH+fRh2ysLwCX59FKAKthh3Rne2xRcpSoGBClQbVPkgHweUGUwo6BwVt+yzS0q5ZTfmwWz9k7Glgr26v3eom5DWNefPn07JzJ6l8njCjy3bSXlMeGf1bYJ/kVGBQ1wlIST6RwBAaEgNTQMhnL3kWMrav8JwmCHoh5w2yaV+efTEICTBNSBig5WFEB8u0GMnnqHrL+VReeOFhvyfFmbTpkEqlUBTlqH/fxxXH2OHU4HC1pZMxUYeYbDY74x1hxnKsIlSpWCTD/fyp89eUzSnjjNrz8IijcyGC0QjQ1AjJeaXa1B7RioVRElMABRUNF8Oil3JZA6jYtuJjxoiJQEVwcKu53t5etmzZQnNzM01NTWQyGYaGhujv72fXrl243W4qKiooLy+nrKyslBV5MkeoRcEr0tjYyIf/4z+Q8X2Ymx5HRNsx5ixD8e3jLK2XdPQVVGGRzVlkkMTjaeZ5HkYPLqAw5/oJn+Pyyy/nrrvuAmDlypVUVlbSqrgh2IRZtxolupfyijl4dvThyuTJ57O4FZNo1sVVa9aMGg10I4YHSYRrbDGNxwGIojMv4Oacc17v9SmrlmCVzUcZ2AKGmxQaihT43BIjBz0jXsIvpHEtdmHOUwg+mEeJSwqzNERW4kmYuMthmQI7h6AMu/wEYdsWuvxQVQ1+BZIF0JAsrJUEVNjSBcFq8KnQPQLNQ+AtQCZnT/MamiCGpLB3L5GFC0lt3WonFY2OvdgDdQh7exPIu92kXS4KqRQ/2reP5UKwDKjwgccL+Tx4PHDmeVBVYdsrGuYQNVWw9RXoykBVEDxpqCmAxw1JN2z1htk9NMTikRGqxpjJT8SRRqglv+VTBWfK9+RmbG3pWPvAqTBZh5jiF/tIU9kPx7FYQ81bWZ7LPER8TjvhcJCcx2ATjzHLOoOF1nlTMsifDEVRKBQK4+6b/HgSgYJGCI9sIC12oUoPYlRc86Ifj5yFMIKv2yRKWbqoWbFiBVVVVeTzeYLBIMFgkFmzZmGaJrFYjKGhIfbs2UMmkyEUClFeXo7L5TpmPWanw0RR8jXXXEMikWDdunXjLP+s6mryC1+vRRQj+3BvWosnpzEUL5A3JYMZneGCC31/P/We38Hs60qNqcHuYnPPPfcwMDBAKBQiHA5z3333UVtbS2VlJUIIzKZVqG2Po8f24FEMXEqGxY0K8bSHDsXLw7+/mr+7di7ukEVh3iCP/H/ricdf92wuDwW59MpzcHlegv4XkO5GTP855N7yNTx//CRKqo+ACkZAI5sx6N3nIRPLMTsvsX4wTPKtXlx7DawAaEMm6pCJsEC47Uiv2mWvVeYlCNMOfMMVIHSwsragKghciqS5AWoWgvDaGcU9g7BrD/ijgLQdmbAkZWYOlwRr61bg9cQiN69HpSb2WmjdggV0JZOofX0kLYt27LXSxUBAtzfUJCxaChUVkE7amcBG3l73XbQCnn5GgKbi1g28AhS34PuWzi5viLLe3oNM9CfiSAQ1mUyeeoJ6GnPSC6plWRiGcURTvIfqEHOsBXWmI9RsNsvTHX9isKYTbcRLXfUckIIsSTqUbVTJRsrl1HujHshECUQBWYmGhywJPKMGEgY5LAzKZAMCQcg6G1NJkRX7sU9rApesIWydiyL2IaUkn8+zefNmstksF154IYFAYML3RlVVKisrS+5U2WyWoaEhhoaG6OjowDRNtmzZUpoePpmmwW644QZCoRBr1qyZ9KQqg7MxGq/AldqKy1PG9m27KFj2dzmZKdC2YzO+Zb1UVdudRe677z7uueceOjs7yefzuFwuwuEwjY2NrF69mh07dowet57++R/g1R//I4sWDrKqQWKoBTqGBTdGevFWmmzbEmXRogVkGzdx3lWS/p+XkcuoVIRDXP3WGlzLupHZJxE5F4zkUUeep1D7UTIf/AP6pv+HGNwJwUZ+8ZrBHzb9mpVqnuYgeIVF8LEUrj67BZvQsRdJhX3TNKiqAy0KhrT/1n32NK9l2PcZAqQl8XnA7YKCASPDoOnQVGUnI72YgBUKkIacZU/BBgTszUMv9vqmQrELrf23ir0mmu3ooBpQLYtOYDXQAgwLGM7ZkbBLh4pqyGbsNq3CtjImPQKREMwLSWJRi6Sm40HSabrZP2sWpNMAE3amOZAjSUo65UwdwGnfdjIytra0OC07VSEtJuv09PRwxhlnUFtbe9A2xWMdi3VOmNk11MHBQTZv3kx++TAVkUri8XTpPfEQIM0wQ6L3qAX1QJHzU06dtZgepZU4++3tUKmQcyiTdgcNnQiV1lvJii5M0qj4cMsGVDwI0U46nea5554jHA6zatWqaV28eDwe6uvrqa+vL7lYBYNB+vr62LlzJ16vtySukUjkmFwYTYep+LNaoYWgBfC5g5xz3kpe27KFTCZNyG3yYqfCw1/8FN/8/HsJBxRWziuQSvSXmjjk83kGBgb48Y/uoda1E8n/4N3zJxJWPf/+n09xwewM5y60kAGB7tZZ1mSgijyv9flpHzRp79pOWHNzxtw055+RJNFSxkUXLca9uA+ruhnpW2TP9ksTkWlFHX4Eo+p68m/+EgCtra3c8o9XMzyco7ZaQaomqKDrGpbHQEnZogp2baeQIFzgaQAtB+7MaDNxyxZJBOSF7aqkWLaFoZSQHxVa0wAsqC6D+fNg8TxAh+w+GGwBmYEqBVyWnfmLvTkWtn2gjp3BG8zlSq3ZFOACoA54QMKX/aAY4HeBW4ds1k6KUszR8UvQFFt0U4C/qhptZISI18vCsjJe7OwkkExSHgiQTKf5y5NP8p73vW/Cz/5I11BPuQjVmfI9uZBSkkgkGBkZoaKiYlpiOtUOMTNtYH8ghzLfnypSSvbu3cvevXtZvHgxvTVZhugZfez1mUE55r9Hytjs4SICQa1cTNCsYkREkVj4KCMkq1HGfHUU3PgmaHKezWaJRqMsWLDgIMem6SKEQFEUZs+ezezZszEMg3g8zuDgILt27SKbzRIOh0sCGwwGT8qTkFV+LmbVRah9T+LW/Jy1uIFo1w4GRjRaB328c9ErdKzfzIIFC0ns2sUX3mXxf+/T6Bk0cLlcVNVW8ci229h9RROp80O0Zw3cz/4/3ndmlDlzs3jKLTSPgkf3IdQcMp1hnpWhf0AlVa4xbGj0S52BRRVccPmtuBoKSO1hpP91Qw6ECnoNaroFw0yCai+T/PSnP2V41AKwJiRxq6AEm1FdYGS60TIGImt/N7MZu6MMXpAdYKYhbNgRqgDyOZB+ez3VsiBUbteHGoAMgG5AIWt7BYcicN5bwRuGva3wahyGXWAlbQMGFcZVUBd9BUxgePTfQeznbQZi2L+WSuD/ScG3F6oYgwaxBITL7DEZlr19md8WbisOPiFwDQ9jBgJ0jYxQt3077xQCYjH0ZJLmuXOZ195OIZVCPyCqLAYIp0WEehpz0glqMSqNxWLs3buX1atXT2m/I+kQMxOiNxkTrUlOh3w+XyrvWblyJaFQCJM4UdGBVMyS+OXIoKERkTVHNd7JakYFggCVBOTUmwRYlsX27dsZGRmhoaGBuXPnHtXYJhqfpmnjpoeLyU3F6eEDs4c9h0kYOW4Ildyyr6D756P1/gndyBBedDV337uXs5p2EnSbbO3Q2NqxC021WFyf4+8uDfLff7aorKzkrE8vxrqqhj1CoCsuunQL9YI1XLr5EWorRpBegY6KMPMUthdI/xrMfSaLC0lydSrmR3TCK6Dm7Nn4vLOxRhToffTgcUoJVh4K6ZKgfutb3yIWi/GHP/yBZNCHt1pHy+SQehDTF0aEhlAykoICPX22MDV4IRO3p1SzC8Bn57GRc4EyBKFBOwrUNTuqzbrtKFd32z7BimX3Ut38MAwNw94eW6i9fvAE7NKa1Jhhj532FdglMEnsbQKjj5dhTwk3uVzM/dhn+N1LjzJr50bqkJx9FlREbMFntDY2sQsCedAVyZBpsC8WwyoUWJbJYGga7bW1NC1YwMJZs+h++mlC8+Yx793vHvd2Fs8zR7qGekrhZPmeeA6sLdV1fcpid6QdYo61oB7psePxOJs2bSIUCrFq1Sr0URuzems+UaWTqP8VhkXfaAQmaLIWH9V0b3G8MxGtZ7NZNm3ahGXZAjCTjZEPVTbj9XppaGigoaEBy7IYGRlhaGiInp4eduzYUZoerqiosNuVTfPENpYpRb7Ssm/KBD8xLUBh/o0U5n0UrAKK6uEf6x+l8/FPsqOrWOwBhqkwlNS5aLHKVR//Fd/81Q+oWlODJ5smnyiQlxJNEeSrytg26wwusPYjhYZQXJg9Fsn/srD6QakGVZEE+wzEPSbGXDe9ldup934Dn/+j6HoVIt+FdNs12SLdhzL8LBQiuPu/h1lxJkbT5eAu55577qGsrIyPX7UcZftPke0piI8g8qAEvBTCaRIWpAd19GwBVQWXBu4K8Jxl16QKC4wUDJdBpNo+CQ3HYHg31DfY0ak5OtWqadDeDm2tMGzYiUdetx29Ss2OQotGDmOFtPgJFTsGF4r/FgJLCKpVlRWrVnHWm97ESGUlOza0onZk2JiGWbMhEMaeI+4EtRvKXGBKi5iZI4qGKgRCSiKKwuy6OjxLlyKEQA8E6F6/nrnvete470nxt3UkEeopV4PqTPmeWCaqLdU0bUqCdDQdYo6loB7JdPJYk/758+cze/bscT9KF17OtN5C174hKsIVeISXKtlEtZxtN4Q+CmbC1SgWi7Fp0yYqKipYtmwZ27ZtO+QxpzMlO51tFUUhHA4TDoeZM2cOhUKBeDzO0NAQO3bsIJfLEYlEStFrIBCYuenhQhq151nU/lfAzGOVLcSsfxMy0DDBi1LtMAwoiwTxLVpAa+fOcZuYUnDO2StwL5rPR9d+jCcKj6CmY3bWzOgan5rOMtzQhNWjo5kSC4vcs3nMXgutGaRP4HIJrHKJ3CEZ+v9g6xqFVHobbu37NIobqeIJRHorwsijxFvA1DH0BQgLtK5HEeleeqrfy1+e3cC3vvUtKKSxsptQvFuQZgPDAzHK/cNY3Z3EXpIUsgIhwRLgdYGot7N+5TCgQTAG1hCIWhArINkJu56zbf3qa0BTIZeF9i5o2TFaEqvaWcJS2klN+ax9fKQtpLoQFIpZ5aM3g9EG57wutH5NI9DYyMVf/zpi9mz2jIzQ0dhM357dWFGLkUFJQMJidbTkRoI07TXZRkXSZVr0KgqqolDW0IA6NASpFAQCqC4XRiYzfk0GO0KdztJVkVPOdvA054QLatGg/sDaUlVVSy3YJmImOsQcq1rRIzm2YRhs3bqVWCx2SJN+Fx4CgzUszawioM7cletESUlTRUpJR0cHO3fuZNGiRTQ1NZVOHocT6enUAR+p4Ou6TlVVVSn7Mp1Ol6aH9+3bh6IoJXEtLy8/8rZ9loG2617U3heRrjAoOur+9Sjx3RSWfRTpr5t012g6zO4t+6gMGESTRWN1SUWgwEN/2cua+Vki9REishIz1YffbTKSsSVCqAoht4IsVGLmYqhtGdtRQQVTFxgICoaKSwuRkgnyuwSsgfa2FP7gK9z5s7v55hc+QYV3N8rARqx8LVbwIlD8tjC5IhR6N3LnXY/xVEuSRCLBDTfcQH7Vv6JvXofS9xpkBGbdmbgqy6kRuyjfncJTAJkAsqB7RvUlBWwBbQTKDJC7gb1QuRpqr9Bo+ZNkX7uJS4OhqC2aqg8QoCuQNe2pYd0zKpDy9WhUSIng9fVUU1EoWBYCO9tXAiNSkjFNmmbNQqmsJBgKUXfmmXSmUuiajlUo0CAtZgnbIMIAKjQYtmDEhLCAWl3QF6qgUtft73ihgMzlwOcjOzRE8+WXIw5YbpquPWqRZDJ56kWoTpbv8ac4xVvM4j3wy1aMHic64c5Uh5hjPeU7VYEaGRlh48aNpSj7cCb9x+JCYKKkpKlgmmZpuv3Az+JwgjodMZ3JBCOfz4fP56OxsRHLskgkEgwNDZXW4P1+/7js4alO0ynxXajRTVihuXZtCCB91ShDLai9GzDmvXPC/aLRKDd97jYW+DWuOMNkTqVBrqDgc1tER3QeeAl+v+2fueXLF0L9fsyIn2BuGI8OaUsh7dMwXtoLT4dQdsewsibeBLi8kFIlBUPDX+bHMHz4NZNonUoul8ftyWEZsKjsJXY+u4sLzl2CbvUgveFxU9XJrMGWl1/CTLiBMOvWrSMUCnHNNdeQX/15SPXz2tNPcvaav8aXbSPY/Q8oA7swFEHSkAztg7IeCMwCWkDG7DVKq2CLrGs/hF6GuQsNwkHIDds2gQkTAhG7d2k+CyE3pEczgK28XXajjDonARz4S85hZ/uGsEU3jt3mzV1Tw/7ubp76t3/jzC9+kS/cdhtxt5tG0yRpWQwqKjUY1AjbsalfwqCi4bZMDCS6pnHuJZdgtLeT2rULoaoUhofJ9fTgb2igeYKep0dSgwr2lO9MdcA6bjhrqMeXqdgHFksgDsyMGxoaYvPmzTPSIeZkWEPt6uqitbWV2bNnM3/+/CkJx5GK36E4kgg1nU6zceNGVFVl1apVByX+nArm+IqiEIlEiEQizJ07t5QQNzg4yPbt2ykUCoTD4ZJ70yGnsFM99lleH7NuLBSkO4KI75pwn7G2hV1EGEi6+KszVC6/9Hx+87+beWRjgZ5hN2+q2kz+6UdYtvAMWs86n6i3ElW1MA3B4KY4uW/vIJ7rwus3ML0CLQj+SonLD2FdASVFPpZkpCbC7I+tojexhUAkS6qrwMp5BTq6Bhkc3stfX1CGW2tHio1Y8kKSqRQPPfgHqpQ0qYKdMd/Y2MiaNWtGX5/A8lWRcVejkEMdeh6lahi8HpT9HlzZFGXLTEa6QdkO/iHIp2xBRIBU7b+VrTDwBKRGjR80C+YCMdNuXr44BOU6tOmwOQkjObAkVOtwYTlkMvBcGlLW6/1Mc8JiXwg8FtQmRzvKBIOomsaipib6W1r4zo030maadA4M0KqqzNJ1akIhmlLD1Fs5OgwLA7utnKopaKaJ6QuQGRhAmiZaOIxRVYWIRJh1ySU0X345oTlzDvqcj1RQM5kMTU1N097vhOKsoR5fiqJxuAbg8PoXUUrJnj17aGtrY+HChTPSIeZErqGapklLSwv9/f3TSqSCo5uenYzpinTRF7muro7FixdPmFFdFNQ8BlERZxC75KKCMJWjRhFT5XiVwOi6TnV1NdXV1aXWWcXp4ba2NqSUeDweent7Sw5OJdTRCwo56gxQHLuZw3Id3C3kQA9gEMTEIt7897cTrKriHXOjPH7TTQTTO7nhzG5qdYu6XZuYP7if7qa5mN4QvmgvzzwwzAWJOIMFk8G0pDaiU1tXwPKBmgMzYderuMosQhdYZM4bYbXRxPPrJcr+/fQMCmIJiypflL62AerDBTTPc2STJg8+upGwWqA/62J3zDvOCaqIlBJV5lA33Uyh50nc6STsKaDmJb6wRsqECq+JsQfMEVtMZfFtMu11UKGBZoDHsF2S0CCdgeoCVHrBI+zodI4H5nmhK2sbPKwot9c2t+egTLHvCwDzdMHyJjj/TbB/ox0l91gK8UQCKx5ncGiIciEwNY3O0WUn3G5yTU2oc+YQjkTo/M0vqBOQliClRdCCPhS25U3OBFzNzSjveheFCy5gOJUipiiIdJqy7u6DMsuPpGQG7CnfmUzsczi2nLDrgMOdwIsn6GLW72uvvUY2my2VkMzUGE7ElG8qlWLTpk2oqsrq1aunXdJxLKZ8pxpNSinZtm8bu/p2s2zpUhbWLTzkMQ1MdolO+kQc9+jXbYBhhpQwc6hFn8ZX8Hib4wsh8Pv9+P1+mpqasCyLbdu2kc1m6ezspKWlhUAgUJoeLgsvQPVWIhL7kKFZIFREdggsA6vq7HHHPlhMOUisqqqqWLt2LX/4v5dS57cYzEI2L2kq9LMkNmRXHus6C+cJUAr0bdLIZCUDI3ma5oCKAsJEDZgUdIlaHsFVCGD0vR2t/AzOm2vR3v0RerpjnN2sML+8gNsqYKUAJY9n3yNcWQ2b8gq/eXkWoerZEzoBWZaFd/g5jM4HEckCMioRaQkeELqBrybMcG8ab2Uea9DOw8ob9von2H+bJmRHU3FFATxz7CjVNwxeFfoLtoF9mdc2iTjTPZrlK+G1EXg5Y0esLgEpCS1CsjCvYA0IhGXhViTNQYtM1s4yFskkBhDTdfKahsvloqmpiTlz5rB27Vq+cdNNVBsK52AyVwFVwk4Jz6DwWlU1z0vJbbfcQk1zc+k9KC4dFDPLPR5PyZPaMIxpmzqAk+V7qnHSDlsIgaZpDAwMsHv3biorKznnnHNm1A3nWBo7TCbWRTvEhoYGFi1adEQ/smMlqIc7ZsbI8r/9/0tvWQ++uV5eVV6lT0Y53zoXDxNfFCT0NFmRo4Ig2ujCiIFJVBkmrPipkVNbHzoZTBoURcHj8eB2u1m4cCH5fL7kPdzS0oJhGDTqZ9CY3YA/14KmqkhXALPpLVjV43uSTmSof6BYRaNR/s9t/87fL1JJ5gWaJgmbgqACBUVFUywUj0qZvwqj0Ik+kKcyLgj5LdwqCMMWmbwuwCUxknFcmRzuB7qxGusoW7GM8IoLmeN/DVeiGyVXwKUDup1ha+RAT0MgazGneoCr//lLE9rq9ff30/fyvfgW5smZCkbKQlNHPzNLolgp/CEf5rBBOqwQGDLQR90YlNH021jCrvn0zYfqt4E+OmFTGIHtf4GuFjvoD+iwImhnDkvTrmzZmrDXOsOqHU3mJeQK0Nlr8aZ6lcZqnRf25zGytkMS9ku0e6YWCgyoKsnGxpKYfvnLX2ZDSwtVikqvCYG8iVAVBlWNTULgyeUwBwf5ly98ofSZjV06AErGI8WZjVQqhaqq7Nmzh7KyMsLh8JQiVkdQTy1O2mEXO8Fs376dZcuW0dAwQdnBUXI8p3wty2LHjh3s379/UjvEqXIikpKSySQP9D/IUH0/5d5K/IqfLDl2K9uRWKyx3jThMVNqDh1/SUwBNFQUFEZEesqCCidf+zaXy0VNTQ01NTVIKUmlUgwNDbGrvxYz2oouwVO2gIB/CWWGxdjZ4ckM9ceyfv169u/vQl0iGM54KIvkKANUoaDqAmEagIruTqNHVNwNObyDApnDztARgG53Z1EMcOcsMFOIP/0KXX8ArSGEODtLwOizG2SPVnpIHXLdkEuD4gJPj+DcuQo/uuOLfP7f7zlI9P/1X/+VG2uTqEhyCLyqgjAYTes1oWBiuTVUHUzdIFoQBE2JS7OdkIaTEBsBVyXUvhM0vy2kBROUMMx7GxQSkIjCcB5eHoQ1leBxwWDOtgoMCrtSxZCjTkkSkgb0t4K/wqK5Hna1gdsc7/frBy7J5YgmEjSHw9z22c+y4bXXyGSzdCkKgx4PK5csQXO76RocpFpVS0JY9O9du3YtLS0t46wnDzQeaWtrIxqNksvlaG1tLa3NFyPYyZy9nLKZU4sTJqiHijjGdog5VmIKtugdjZvRoRgreplMhs2bN2OaJqtWrTrqH8ixWEM91DF7e3t5tfVVsqvSVPqrCBEBQMeFkNCldDJkxSjnYHEUlkAKeZAzosRCE1NfUzoZItRDIYQgEAjY0URzM6Z5EcPDwwwNDdHe0cG2lhaCwWBpejgcDh/WUL8oui0bv0lTuUKk9izc0dfQCjmQBaRQkO4qUNwIJYFSr5HtUPAk8rY9UIVAcYFLCtSciSLAyML2iJ+uhpVUeDo4s3cXPZg0lNknA5EFowOUqB0NpnPgQiekQ2qoiy/ccAP/9LGPUTNrFrK6ms/efDNdXV3sMzSsZQKvT6DXBKEzZYt6AShI1GwMTbMINEB3RqWv1cBTsBuKS2FHqsEVoAUgF7XvK0gwhyBUDTVnQPpRCLlgOAPdGZivglvax0DYphEeF4S89tP2p2A4Z6L1QGQWVPkgnoU0gjiQk5IgEJSSYGcniV/8giYhmA+8KiWqpnHmhRfy/R//GLAvcNasWTNuqr6trY2rr76aysrKUjnRRCiKgt/vZ+nSpaW1+eLsRnt7O0DJ2ausrKxkmZpKpQgGD15/PxJM0+TWW2/lF7/4Bb29vdTX13P99dezdu3a0u9LSsktt9zCPffcQzweZ/Xq1dx1110sWLBgys8jFTvZ7GiQR1dWf8I46SLUsR1iio5JxwpVVclms8fk2MUp32LyTk1NDUuWLDkqh56xxz4eEerYlmuzz57LYGAQtxzvjezFR4xBkiQPElQhBP68i4JUSZPFNzotnCaLikrEmvpU1tgf/IkU10ceeYTzzjvvsNsVZz82b97MNddcQy6XK51At23bhmmalJWVsXLlSvx+/6Sv64YbbuDPwTzN1c/z/7N35nF2luX5/z7vcvZlzsyc2SeZyb4TQhYSEAFRtIKoYLWlFtGKRatGWpda3CjVKq0G/LVYN5ZatwoiLqCAyp6wJJN9zySZfZ8zZ3+X5/n98c4MMyHrZAaSysVnPhPO8rzPvNv13vdz39cVdDohPgN6d6OkxPZFMAw/ODZCSmR5BOstftpe6Gd6uSTiMxB5B7+roWwXO6Xx9aqP88P6a8n44wRNi5nFPVzX/znKxTY0E28NU3kCCz4dzCzYmktfShLaNYA20MVP/v7vKUsm6bAsegMBlKbxaEuEdzUXqVhgIGIuFDTotsAE6fdCx4LSwC+omeMiuyDf57W8iOGQ0Vfi/dY0TyXJGhaukC4ES733hOsFvjkT0KFSQsKAXhfqIrCo2jMMV3jfs/phoAOMViizIS7BFpDXNJqlJKDUqNuvBGJKUQqkhKA7FBotOisvL+fNixeTfeopvnjppfy/++/nxf5+WlpbsSyLQCAwrp3oSIwVxh+7Nj/SupVOpxkYGBg1fvj5z39Of38/gUBg0h76v/rVr3LnnXdyzz33sHDhQl544QWuv/564vE4H/vYxwBPXvKOO+7gnnvuobGxkc997nNcfvnl7Nix46RrPVzD+zkdnO73Xy2cMdM+mkPMhg0bpiwlC6+MsENTUxPz58+nrq5uUsceS34FirSLDgbEID58VKlKkqrslMY8sijpSMs1ERFsUU0UKeLnJeGDAgVMTCK8nByFEISKPuKqklbRTYZBFODHYJqsJK7OrlTWXXfdxb333svvfvc7vvvd7x7X+3Js0dFI5FJVVUVVVdW49HBPTw/79u3D5/O9VNyUSIx7kLz8mg8hcldidz2G3t+EcHOITBu4EpEZAClR4SjFQoF0vkCPEaLUzWHoDoFSHZWOIjb18dO693B3zQcJWHnqrWZk3McOcyG3V/wbSwauoU5l8BvD2vgm2GmBSCtElcmWRy20XkXG76dlaIh9/f1Umyb1JSXsSibpjdfhm/9u2P8bCKeRZgGtpBclPO1dIcBQEjunEQwr6lYI2jYpigNAcZg402D4h0UbXCgozxNV0yHXDwiQhkeWwUpwy0HmYWUcnmuHxXUQD0DG8lK+lQHQKqHchULKm8cBe3i9VUlmK0Uv3ng2XlCvgFLgdZrG89Omecfx4x/nS296E8U//AEnnUYIwbuFwDp8mGbbpjyZJJFIjG8nOgLHa5sZq+zV0NCA67pYlsWDDz5Ie3s7b3vb21i0aBGXXXYZ11xzDatXr57Q+fvMM89w1VVX8da3vhWAhoYGfvSjH/Hcc88B3sPqunXruPnmm7nqqqsAuPfee6msrOSBBx7gPe95z4S2+6eEMyLlO9YhZs2aNaNl4lO5xjmV4xeLRbZu3QrAypUricfjkzr+2AeBHHme0zfSI3rR0JBIDqiDLJTzmaVe3g93MmOmUik2bdr0Msu16aqBnfp2hBQECVKkQEakaZSzjp7uFQIUTFMVlKooaZFDATEVIqwC2Jz8k/erHaHed9993H333YCXRTme9+WRFbxHRi5j08PTpk3Ddd1xBSzf+ta3WL16NTNnzqS0tJRYLIYWqsFpfC9O43vRFm5G2/MJ3EMd6HYBC4k/6iOQtglkdVKuzsGcH7+vgJQuoaYUDMFP574HDUVlttvTvPXlqfcf4qCvgT/ql/KGoQepjIAhBfpQCDddIBNRPNwSofuwRcqxyFgWfp9LwwwI6Bbh/hRW6VzedcMNpFYsZ+P/ulwULWJ23o/SdfI25G2JXyhCftB8ElUArVQx461elGr3gVEN5jV4rJYE1QvBIdD9UMhCxxawJORtiEagrsxbIlZBqDHgyhJv3+fyENM8r1TNwZNIigEpmBWEfgcGXYUQEBQQVJ54kwWgaRi6jnRdGgMBtug6Eijs38/vb7mF2ro6RCiELxRi94EDLAF643G6y8uPuQ4+Atd1Tzrbpus6l19+OW984xv5wQ9+wPr16zl48CCPPvooL7744oQJdc2aNXz7299mz549zJkzh82bN/PUU0/x9a9/HfDS152dnVx22WWj34nH46xatYpnn332pAn1tQj1VcJYh5hp06Yxe/bscVWvJ5IfPF1MBaGO6NmOkOhUFBSMJb/9WjPdooekKkcfLvwZIs1ubS+VbpLoUSLHo2EkQm1ra2PHjh1HlXM8Ty5DIjmsHSLFAAYmM+RsVskVxx1TIIgSIqpe6qdTE7Sbe7UKky666CLuv/9+9u3bB4w3lC5NluOiMBH09vQetR1mXORip9Gy+xDWAEoPIyIzKSsrp6ysjLvuuotHHnmEzZs3s3btWtra2pBSjq6vlZWVEQwsplh6EYHeu8hkMmQcKBGKUDhEVbXJ3CGboYzg2cEoc6flmJkqYjf46Y5WEHaynnm2C2TAH3YwBGRCSUoFDNmC3lycmbMWMdTbzA/Wd/GfTxa4DEHecZg9w+Etl0BZwhOadws2gUVVDMoXuP8b/8b2QxmGLnkTV0ZCZLt0/NjeNe26YIGugRo2sFE6+JMQqAPNgkIpFMLg7/eiSJ8BbiccfAz6W70q3/ISWNTouddg4aWIdTDFsEtNwGu7EZ7XPUivPbhPelXAIRN2O55VXGL4I+FhPWBNKWwhQAiUYZAsL6erv5/G/n7yAwPszmSIl5SQGhzEUYqwaTJPCHwnIFOYWB9qLuf5Hjc0NLBy5Ur+/Bg+qyeLz3zmMwwNDTFv3rzRe9+//Mu/cO211wLegyJAZeV456rKysrR904Gji5w9NN76HX0kdKxswuvGqHats2WLVuO6xBzsgL5E8VkEqpSioMHD7Jv3z7mzJlDXV0djzzyCK7rTrrx9QihSiTtopOQCo2SKUCUCN2ih34xQFSdHKGOSEHu2rXrmMfDh48L5BoWy0UMkSZE6KiR6QgmUynp1S5KSiaTrFu3jr/5m78Zvbm0drTzke98jTf/wwcRkQCBoRwb7vlXAsZeIiEfmZz+sshFFHvQO3+Dlmvx1AyUjRosw6m8nJ/9tom7774bTdPo7e3lW9/6Ft/4xjcIBoP09fXR3d3N3r17CQQCVA1lCXcWyOs6hi5oa5aUVSykIWFTdcmFrH/yt1w+dx/Vh23EuWAULd6Z+RnfK/sAZYU+0L2q2KzuR6CYaRzC0cHnCGrLhpCRp4nWwJun+bHNItnHbMpj8MbLIByE1k5BUDOpKJOUF39Ood3HgrjBgsWQ3fdjUjGLvqJOjc8holyv4Gn4VBAW6F1Q8IEWBqPEE3soALILfO14RUZ58HfAUg2mTYP+JITqIJgHLCiKYdH6ADi2QPgEdligpSRG3tuY0DyCLdM8wo1rXmVvFkhrENVAF14PbFgpbMvC1XUOBYNIXaeqpITY7t2AlxbuHfaD1VwXByiNRPjYCcgUJqaUlM16xnST1Tbz05/+lP/5n//hhz/8IQsXLqSpqYm1a9dSU1PDddddNynb+FPHq0aohUIBx3GO6xAz1SnfyRJ2sG2bbdu2kUqlWLFiBSUlJaNEMhVrtGMj1OPR1clGgYVCYTRFvXr16hMqs8SG/zsRJlt6EF7F1hmlqCjJ8i+f/0tu+cp/09WTRn/dPAZW1PHgU49x5YoGAt3f5T3XtKG/boDBNoft+2Zw7fVfH3ez1frWo+VakJE5w44xCpE7iN77JBddeBn33183Gt22trbyiU98gnXr1o0zVt+3bx9bfvsbGmJwqN+HJgThSISZ82qBTqKlu3jvygH0P9iIAqCD5ld8OHUnrqHzg9L3UprrwzL99JhlLDI2sSj4BLYBbW0+Khe62BFJrkUy44Uif2cphmZ52ruBHmgKQEDTMYWXknUcm6Gcw57uJAETFtcI4oEYmpmlrRdmGgWEJjzVBQuU5aIsCGRBZkGkwZ0DwR6wDnrygWbYm7cehl2lsDkN+W7w5WDe+d56qbEBDrdDeEaE7J+XUfFwL/5um0KlD1+vjd7loEmwBsGnefKwGRf8cQiFPKH9iij0tXukq4Ag0AJsDYXo2bOH85JJNF0HIdCVwh2JYDUNXSku/9CHTkimML4o6WQx0rs6YbOGI/DJT36Sz3zmM6Op28WLF3Po0CG+8pWvcN1114228nV1dVFd/ZKRQ1dXF0uXLj3p7biGgWuc3gOwa4ysbJ9deNWKk2OxGOedd95xT5ZXYg31dAlvaGiIZ555Btd1WbNmzWhjtxBiypSYRlpcNDRqVRU5kcPlpb8jTYagClKmSk841sDAAM8+++xomf7I78ma5/+FCFU4h/EPfIpA39+yuPQO7vkXm6vfEURbOh3Vn8Haf4Dy3V+hUe6h3w7TptdQkgjyiRtLqSrb99JAdhotdwjpr3xJmlAIVLAOUeikIipZt27duAK2tpYW/vF97+O573+fnT/9Kfsef5x/u+Vm9HyGasOhKqiIRiOcs2QJ2XSGTK4Tx96CtnEILIGMe4pCIgRhf5Ybe77FktQWhswSnIjBmyMP8Y3qtdTVWMSTgmzYJpBX+DYq6rcqwkoRqYTKc732lUQnLLJgzpwAVXN1ohUu6bwi5JOkUoP4glEWrXoDonEeJYkyppeaGAEDQj4wQ0jRgHA1NNtLt2opEP0gusFoAb8ExwTNBNcWNG2Hp5sgmwcjAIUheOFX8EIzuG+BHQGTzusqSdcGOHBunEypiW5JVExDxXUKXV6xk8/wFJnqIlBdDr5ht/GGpbDsEjDjgqzwpCcPmSbbOjro6uri0KFDWJrGkGHgk5KA6+J3XQJSEq2spPZNbzqpc2iiEWo4HJ6Q+MvRkMvlXjbW2HtgY2MjVVVVPPbYY6PvDw0NsWHDhlNat3V1fVJ+zkac0Uu/hmFQLBanbPzTIWylFK2trezateuY9nFTpcQ0NkKdIRvoFf30ih50DCQupjKZL+ced/10rOXanDlzqKqqoqura8Kao0fD/4kIVebwD3wJzd6J1KuwlUHIN8DfXaMz2NXP488bzEn2Uh9LcTCVwDE0/LE4i+asxO/vQLp/xNUuGJm99yOOvEGK0fdHUstr166lraWFmoEB/K2t3LduHStXruTwnqf4yLmDVEVdypVLVUkeo6wCURpGs7twAnFEMQcDLiqIV14bUGB5GrklQynufeGvOTC/kdjyLElfN64r0R0QEcWsiCJ60MXsB10C/mGhBAl6LWiDUFME0kWyNRKVVKT6YV+nGPf3yJqZ2PM/ivn0f8LOP6L0UqSo9dLc8qCX0hVg+0CbC3rQc6FRQQgFvIrcnjbFjmbQDc91Rprg80F+CPY+CYsuBf/rQsi4Tvw3g4Sb87hS0FsTIrsqgmhzqP1iB0Hjpb1fqUE0C5vxiLtUh+A8eHNEY+vzoPp0ZpTEmZ7NcShnsy+VYqbjEADyoRBR10VIiSMEbT4fbwmHOZku0YlcV5Nt3XbllVfyL//yL0ybNo2FCxeyadMmvv71r/P+978f8K7XtWvXcuuttzJ79uzRtpmamhre/va3n/R2JDoup/cALM/C9VM4Q6p8j4UztcrXcRx27NhBb28vy5Yto6zs6C0qU9WWM7ZtJkyI1e5y2kQn/WIA/3DbTIU6ttj+0SzXRnrdJpOwJjOqfLUiVL34LJqzF2k0gvChSGOpGoJ6J++sa+fxLTOI+wuAwpE6Qteor60l4guhVBShul4SyzeiyGA9+tB2pBEdJVZRaAd/EuX3ikFGSPUfr78ef2sredMk4zj8Zv3TfPjiAeqiFvv7AgzKIOfOCGJkO5GtL+A2XoiqXYrZ/59oSqJc5V3hGl4u0waiYKxxmFW/F83wXJ50VwdHIkqgDImR84p6lGRY7QFwwTC9aFe5oDptAt3AHChWw8EenXi8hHwuw5bnHmPOGz9FaPqFuJXnEvzqXyG6W6Eiikh3eNVImosQoC8D7RwQ/hGVJo3edDn97SHyA11EVJ7yKFiC0RaXQASGeqGvC/wlivr/7SH2XMbrodWA/UUyKYdDF5WQwSv0LVren+EIr8d1ngaJOq+adM8+GBqUhDIGEV+RyxMZViUNHuuB73c4bNM0lroutmUx6POhC0HO72eP3z+akp+qNdTJLGr85je/yec+9zk+/OEP093dTU1NDR/60If4/Oc/P/qZT33qU2SzWW644QYGBwe58MILefjhh09Zb/xPFWd0hHomEupIi49pmqxZs+a4J9pUEurYZu8AAWaqBmaqhhN+91iWayOENZnznQpFp1dcIN/tHCbE8TaBygli9m9Dq19Bf6YDqQQ+v8IO+GjbsptFC2KYgRSutnRceleWrkKzehHp3aAHEbKAMuO4ZRe85FaDR6o3vuc9/PRrXyMzXOneUG5TFXfpSen4fSZVDedARRI3fRgEFOd9AfxhfD3fQVVI5GHAGLY2VV6Rj1OuIy+TiA4FOYleBIFElXlk6bM9DWBl4rlrS0AfrgrW8ATvEyDi3tqnbAWtUWfRrCjpjI1fd9l0ANp2Cd66EAiEsd71KXw/vAXR1YzIDIFQKEysUgfjHIXrgBoEKxxAVCjKYyn6+kppsPzMKctjaCB1GFCwERgseoGurSC42SKeVthRHcfQEAI0WxI5VKTiyRQRAY7tTV2JYcEHCWU6+KOwcRd0dIGGIqTbDJqQTruE4iZviUuy0uSHfQK9tJTzkknecP75PPLCC+x2HIqmSXZMtffxSHUia6i5XI5QKDRpD5PRaJR169axbt26Y35GCMEtt9zCLbfcMuHtOOg4pxmhOq9FqKeOE6UEp7ptZiTSk1Ke1Mne0dHBtm3bjtric6zxp+KBYKJE3dvby+bNm49quTby71cyQj2VlPCrFaEqPYmXn7RBeH2EllWkt2Mnh1uDyHQv++vn0kwnc0rb6O7KUWztZ5vTxrlLz0OELx0/XrAau/adaOm9iGI3+OLI8CxUsOZl246XlLBy+XIeXL8egIAhMXSF7Qrqams9FR9hoMwStO5D+G/7B8SQjRPPUzxHEEyBlvaIBAHSp9GyuIRKYwBjukLmgSEgrKP5FYXtUWRukMhIVnqkNQU8YtVAlALhYWm4KOgDEHdN6mdfxO+f3cVjL7Swu7+Evzn3pePlLlhN4abvozf9Hq15B+IPD9LW0UfVGhuhe2SqdIPOWCUZzccsWpi99SDGoEtf0E8xXSQQgHJgkQO/6YfqhZ7eb+nmAlqtgawKIAoKgYKIjuiQJDdnQfMMAsBrxdEN7/lIU1Ds9ch07myYVgGmF6jTM1BgY7vE5w9xeaXgWTPK9EXncPMwaa4+os+49SRIdSIR6mSnfF8puOi4p1meM7Ym5GzCGa2Y+Eq0zcCJozIpJTt27GD79u2cc845J+0S80qsoZ4MRrxkN23axLx581iwYMHL5j9WOGGy8H8hQnX9a5DmDDSnGWQG28rS3b6JYsHm90+FcH78NLE/HiIZ/iQ7n4vh6+ymNGpxqMXhy9/oo6tv2ssH9ZUiy1bh1lyJW37RUckUQJaU8NyLL2IMXwPtKZNsQRALKg51dWHZNiiFfngrorUX0dGPnRqk+EgH+e/BVitEc8jPQcdPfnYN4vII1fOnMzToR0mB0IEIKOXidppkB3OoaoHl99pYbAG2NlxJLgANVADcPDhpL9JTOli2hcj286u9dbzQWYERruTuu+/mvvvuG/1bVGk1zqXX0nblx/lhKkjRdnHCmhedCo1stIS2RCUZLcxgLorVY3I4WkXzzIW4gSB2ETI2lAuYPxMuXAGJJ2BWBPQBB+dQkdR+m8EDDnarjd5lYfS5ID0JxZHnMeWCqXki+q1ZqErCzDowdCgUwba8HtvVsyVxKVmQK/C5Uj//9RfvJBn2qt9HUvJji8dGSLWnp+fox3ICa6iTnfJ9DVOPP/mUL3DcXtF8Pk9TUxNKqXEqTieDqUz5nuy4juOwdetWUqnUcVWbpirleyaONYKcyNKteT2lFbKK0NGkELUIxZLP4Ut9A5nfzkD3XgaHJL9dn+SZLTHq6qpZd9PnSSaT9Ph/yhc//2H6etvoHTCw7QLbdp/cGtuR6Onp4Uv/+Z+4QJnjIGwbuwBb9pmsXGgTI0v7viaqrCSks7hyEflEFRs2rKdO06nrtxDPwvZpNVx88cX4nB5Uuh1zznTiMsrBw5sJ9WWpyNs4AUU+X0Sio6KgTQOawSxoSE3iyuG1014ovghun9fDqkfBXAlDQWjf9SxaqpFEwutLrqur46ILV6N3PYvWtxWQyMRCnn66jf+XCvA8NXygs4M5dRbmtJkcqqhBaAbGYCcip3Bcg2wohDRNtJIE8bY8BCBowEUS7O+CjIA9Dbr3Qf9OG6W8eaUAO+5JD4LXLuPXPe9UIbwHgZTrOdfU1Hnrxbmc954rITUI1WUulb4sVtrkyuk1+H/xP7j7d2J94OMQiY4rHhsbqT7xxBMv0/IdyYJNhFD/dCPUM9sM41g441O+U0moQgiEEMfcRnd3N1u3bqWqqmpUXeRUMNVtMydCJpNh06ZNBAIB1qxZMyr0fSycyMLtVHGmRqgKxV5jF9uMJvJaDoCgDLHIWcpsZx7iiItZmbNolZ/n3/79g/R0lXGow4ejwkcxBK/gi7fcydq1a7Htk08HHolR6cK2NojHyfj9TItG+fN3vYv/+c2v2Lb/MBdWDxAzLXbsGmBBJgnVM+hsPUQ2m6VN91OqOzS6NnPOmYE/dQgMP3b5x3ESlyNUHr+yuOf+v+LvlryIk5YMWApdl5iGghC4F4QQuxI4RZfnm3uJRR3qNnttLtZ0P/k5YUTKJbx1CGe5pJBVpAbbWbS8gobpRZYvm0ZN33+gd+wfDXH19j/yrrnnM3T9X/G9u/8Hp286t1WlyBfaSMgotmVRpfVwMF5FiT9HyCqSlZJIJoNheM4ywoJ8j2crp2dg6DD0pbxCI10HhvV/u1MQMjwilY6X7i26YLmerZtIQtyAYMBbYx3OiiMU+IUgKBRuWBCe/XrMhrnIYgF964vozz2Je+mfDR/v8aT6vve975jC+MCE+lDPxgj1NUI9QzHVa6jH6hWVUrJv3z4OHTrEwoULqak5ekruRHg1U75dXV1s2bKF6dOnM3v27JOK8CabAM/UCLVH66LJfAGAhPR6dTMiQ5P5AnFZQqWsftl3nnjyKdZvSlEoeH26s2YdXW7uVCKXo87tiPU5hCA+ezZfGt7WwquvZu3atfz6mf0I6XC5YfE39FETy9PQ0IBtWezdu5d+PULDjJlodYtwImW4M1YjlIvv119FGzhMbWI6N777TfT1byay2aJ+P5g5iQhDZjkMzZFE89Poa95Ol9+gc4dDqQ2Dn5pG75sqcWImwlUEmvNUPL6f3oE0b3hznup5hykWBU7Hr8hlokSqzkX5lgIaODn0rvVc/+YPE459jAULFnDznZ/kgvoic6btRuXKeDI9hz9WX8y08/v4yyd/SX3bQWLZIXTDiyz7BqCr15MaTJiQdwAH9GGZXKG8lG7ehlQB6uJgZT3nmSEbBnPgi0LVTDCykCmCiHqfF3jrq/EABE2w6heh1w3blvkDKH8Aven5UUIde7yPd3xH7i9/KhHqnzLOaEIdWUOdSkH0I0mvWCyyefNmisUiq1evPq0T+pVomzkSSin27t3LoUOHWLx48SkZmU9FhHomjndYP4glLMrkS61FURWjT+ulRT90VEId8Sb91re+RVVV1XEjzpONXEZw3333jWr9Hk0H+MhtXXbZZfzyl3laWlrYqoXpLvZjPf1HGi64mNlz5hBSLtW4qKs/gnX5NQDo2x/C98SdYBdQgQj6wDMkWgpES8vQnuhCL8jRmCBSgIBeIJNfTyIMb5iv6Hahb14l3e+sxSi6BLpyKEMj3xiio2Q2C5/awsqow7ZOeLoLymKC7pIUxdAeSsunA2UIFKLQgbn9a7xt2lLu+M63WN+U5uf3OdxoZZlLgYi/nyvje0k1JNnbGObCgy2YPijmoTcFqZSXwnV16BfAGCKUgDHm9FDSqyPzxT394Hgcst3gWGCloSQJUQOUz1s3zea94qhoRCEsHaN8FurInmHt5fehZDJ53OPruu7ow/upIJPJHFUC9EzHaxHqq4QTkeTYoqHJEhs42jZGniD7+/vZvHkzpaWlLFu27LQ1eF/pKt+xlmsTeRg4UwlwspEXObSjOBhrSiMvcsf83vXXX082m2XlypUnTN+eTOQCniXc3Xffzf33389ll112dDItL0c4h0n3buAH3/4vNm5Pc+65b8WyLHrSaX5sJnmP1UNhRxOhslLqQwHc8y7Efr1n00Uxi/niT1AoVOUcAFQctJ69+O/rBkthhTQ0IUEHYx6IIRgqeOakZT6d6TMdNq6uBBfEoI2rBJqt8Kfy5OeEEAuShA92sDgyrINvKRxHMJTpA/9G/KKKUKoTo9hLQWis/8MvWJ4YJFNbhG0WixxJn1DkikP4h4aobuugtQk+2gAfK4J70BO0D0ahbK7nj6oEFAahczcU0976KQI0d1j0PgYi4rUBEYXolTCtB3ofg9Qer682nIRMUcMywB/RUErQPaRR1qHQ6ccXHc5OFfKIYhF3ydGNII6Hid6/crncWRmhuug4rxHqmYexRUNTSaiO43DgwAH279/P3Llzqa+vn5SI+JVM+Q4NDbFp0yai0eg4y7VTwVSkfI9FqFJK2traCAQClJSUnNTxnSyCLpXlHDIOIJUn3wggkUjhUiqPHxG88Y1vPOlz8USRy1hLuNbWVh599FGuvvpq7rvvvnFkqucewhn4KYe2PM3rFhU4b7bGU5t+xOrVf8GOHbtZ39rKee+5jhULZ2IXcsjGOci553hO3YDWdxCR7kbGxy9dyLyJ7nNhlsAXUaicF9WpIGhDUBcDTVeoosQxdJx6P0a/i8gpXJ+GcBXoAhnSKIuYVLogNXh9CTw7qJOYIYg3FtDkNkxjFyImsZr9bNhqsb0VnHyecxM2QU0xJAQ5QGgajqbRLwQlWZe2wRp2GR1MM11CIaheBr4wuLaX3o1XQrwMcrugvx+6M56qU8QPiSCe4r4fWAbUQLAG6maA8yTk85APCEQfHO7VkY6D4w+go5GWCmvjVhbkHPz+ACiFu3QF7vlH9zs9HibSgwoeoZ6Na6ivFtra2vj0pz/NQw89RC6XY9asWdx1110sX74c8LJ3X/jCF/jOd77D4OAgF1xwAXfeeSezZ8+etDmc0YSqaZ6Si+M4JyyomSiEEOzbtw/btifdu/SVqvI9nuXaqY77SkSolmWxadMmCoUCUkps2yaRSFBWVkZpaelxK6knY34N7gya5V4GtH6Cw5ZyeZGlRCZocGec9vgnixFLuLFrrQDve9/7uOKKK0gmk2j2HtyBH7Jh/SYOtnv27CURlzevsTGqKrnhhhtHo+BjVRso0++pO7i2Z80yDKF1wTl4ovVKICISIZRnxxLxzL6LnYr2bYp8Blw6sN9US1AINBeUT6fY4EfGDPJlIRzNW+cMG4I19RqRuIO5GyhI0C1EJTj1DvEuh2CHQXvBxScUIQ0Geammwe/3U7QsygyDMn+AZ1UlNXQQr1X4ImBnvQjUZ3hFSlrAMxyvkhCLQDYBleWg54FKYBZQCwyrmIoQ6OeAb6CWAbuL2KBDgyHpz0NIFshrBv9DJYf1EKs7BnjXO95BeOly3HNXQeDUta4nGhCcvX2oxivehzowMMAFF1zAJZdcwkMPPUQymWTv3r2jVecAX/va17jjjju45557RmUVL7/8cnbs2DFpSlBnNKEKIaa00jeVSo0u/K9Zs+akDYBPFlNFqCORpJSSXbt20dHRwdKlS0+5NeNY404WjkaoQ0NDbNy4kXg8zpIlSwCvNam/v5+enp5Re7IRck0kEqM3o8laRw+rCBcWL2WbuZkuvQNQNDizWGSfQ/gk7e4mA8cqYHp0wxOc+85LUSJHuOdpDm1dz8H2kTpUkKKUBQuqyah2yk8QBQOoshnIyrloLRuRyVleBY+TR490QE5ARoHhAxxY4HgKCkDfbnjxXigMa/6569uRD2WwvjEHs8KEiIb0G/iKFvmIj7wep7IrhWZoBGIOqqiQpsDVQZcK0Qp6OZSVW8yqDmBTTjCaww4WSbiKfsOAYQu1Ul2nIAQ9fj/2tNlEgiGM6D40PwTiIPLej1JeEbEe8QT1E1GIzwDRCMSBGrwoVTEqTkERtDKBloigdvTTX+mwqwOEa5JzTFJpQcpw2V4RYntREKpo5OrVF0/4OE+UUM/elK+Gy+llFE/1jv/Vr36V+vp67rrrrtHXGhsbR/+tlGLdunXcfPPNXHXVVQDce++9VFZW8sADD5y0efqJcEavocLUtM4opWhpaWH37t0EAgHq6uomnUzBI1TLsk78wQmM67ouzz33HK7rnpTl2smOO5URamdnJ1u3bmXGjBk0NjbiOA5SSiKRCJFIhGnTpuE4DoODg/T19bFnzx4syyIej1NWVjbazzcZKFEJLrQupjgctviZHIusU8U4Uu1oI3j5ArIXzuS2zkeZG55FsX0fb1R+RiSLYtEYb3rTmxD2PjQrf3Ib0TSs130I3+++itZ7AM9NOwcRHWnWo+XbPEWDWgWlgAuuBZu/D4V+CFV5kaDMSVI7MhS+fgjzW/NAU4TyOWI9QxT8PrJVEdx9QwgMtJ4i5MGepeG44HNdTMA/AAlDMT+UZ83Vl9He3ov2twvovet+GiJR2lIprFQKv+PwVDSKXVbG2s9+lmlP/JDYof0YUkEAyAHGsP6veKkACfAs6/y8pEM8cpvRvD/dC291itkc0i3Q0Wuw56CG5hjIcJjZS5bQsGcPL0jJX37gAydVnX08TJRQz+62mckh1KGhoXGv+/3+ozqUPfjgg1x++eW8613v4vHHH6e2tpYPf/jDfPCDHwSgubmZzs5OLrvsstHvxONxVq1axbPPPvt/g1BPBpPdOuM4Dtu2bWNgYIDzzjuPQ4cOTUkUCVO3hprNZikWi5SVlbFw4cIz1h1mZDylFPv27ePgwYMsWbKEysrKY27HMAzKy8spLy9HKUU+n6evr4/+/n6klGzevJny8nLKyspIJBKnXTg2ESKd7IrzUVL90b+Tv2QaMl0gva+DF9t6ScysYWP5G5l26NeEAh6ZhkImxVSBgjz59LRKzqL4zn9Db16PyPSCnsPXei8yWAGhUkTHIUTVoEc2NvTvgmwXBErxFJWEV+AaMCSF9YOUbGvDV2+gWxItD1YAXEMwZOtoGpQaIPICo6ChhI1mgxwuGNIlVIcN9AMbmanmImsHib1tKYObe2gMBumOxfh1Ps+eRYu45bOfRUpJOtpC2TwFe/GeLUYyiqanfiQynmqT0IGEp/VLDk+P2I+X7lV4d+owqKKGne9ABhTRWpeVl0m6dmoYQz60/ftZvmAB5e98J1f/xV+c9vE9WWnTccdLKbLZLNHoyXjZ/N9FfX39uP//whe+wBe/+MWXfe7AgQPceeed3HTTTXz2s5/l+eef52Mf+xg+n4/rrruOzk5PwKWysnLc9yorK0ffmwyc8YQ6mfKD6XSapqYm/H4/a9aswe/309raOmUp5clO+Y5Yru3evRtN01i8ePGk93pOhTj+pk2byGQynH/++ad0gxBCEAqFCIVC1NfX8/jjj9PQ0EAul2P//v3k8/nR6LWsrIxwOPyq+qaeDkqTZaz5u2t4ZsdG0r0ZAFSmSGqvw6GF9SxdWsuldfX4/X0Ia5CCmklaLj21jQTjuAsu9/4tHYyhp9EGdyOTM6BiGrrvEYTwol43P0xUgpfSpYAhpUdKh1wCm4to7UXMEoVxrkW8YwhluQQNhTRAuAo1ZBOwQQyvXyoBeaUxlJeURzOo0jj4Sylb7FCyKEFxyXuom7+aQ7/5DR++6KLRZYxA3xBiUEPVgGiXnoWM9H5EQUBeeXMNgiiB0QXlXrwUdgDPbUcHxzU5GAqh6XliEYeApShfqDHrddD7ZJruJwv4s1GuvuKNp3gUj47TiVDPxpSvJ45/eg/5I4evpaWFWCw2+vqx/LOllCxfvpwvf/nLAJx77rls27aNb33rW1x33XWnNZdTwZ9MynekcKehoYFZs2aNbnuqWlsme+yxlmsLFy5kx44dk04ek53yLRaL2LaN67qcf/75p11Ypmka8Xh8VEN1bPR68OBBdF0fJddEIjElafxjQaFwtQO4WjNCBTHcc9CO40d7JIq4uCGDxbPm88yBl56Y3ZxLx2AQo+E6fP79KBzcwJvozjYgxWmkAzUDa/HH8L/4JbShfaAUIuSgSgSupSiZDmYIrAwEEoDrrVdaWQgkIfbQEJEDWRKrbHwhidjYi64pqBPYnYJi3sSn2+gDoOle9IgL0gbdgkLRoVtmiZTpBIIxZDCG3rET/8BW7OClL0uzCpH31n7rQlBaRA06sFsiWhzIe8INIgBcPByljqybpj1xfDEd1H5wO6BrQCP0VhtfTNK7UcNAIx4QBMsLTF9ZoHy/Rr5vL/p/rsX9yO0QGWPP6OY8oWMj/pJA8AlwOmuoZ2PKV2Kcdsp3pCs6FouNI9Rjobq6mgULFox7bf78+aN60iP9+F1dXVRXv9Rn3tXVxdKlS09rrmNxxkeop5vydV2XnTt3ju64Iwt3prLoabJSvrlcjqamJjRNY/Xq1aMFSZONyYxQ+/r62Lp1K0IIzjvvvAm1DRwNYwk/GAxSV1dHXV0dUkoGBwfp7++nubmZ7du3E4vFKC0tpaysjGg0OmXRq8Iib96FZTwDIgdKoKkqgtYHMOU5JzVGAAMz57L1wK5xr4uQDyfv8l/3vsD8m744ev663QcQ4vTW52X5MgoX3one/nu0bAdq8//isBflcwmVwsw3we5fQbYD9OF1VV2HOXqRyOM2JX8NZplCphQMgIx60WGx30T2gQgrDEvimhLpAnqQHgsiyiLqk3QWJBv+uJ6LL0sSDodQoQRaf4vH3EccK5lYgp7eCjqokjiUAPUFVFuaoY2QOuSQOAfCK4E+EAOAAzIIqtxzxxHbvP7asGnhVw4io3CiGlqwjGi+Fz0l0CoE+nQ/kf3gW/80zvz/wX7bx8Dux+j+JXrzHxGFAm71fNzp1yAjC162X4/ERAhVSnnWRqivBi644AJ279497rU9e/Ywffp0wCtQqqqq4rHHHhsl0KGhITZs2MCNN944afM4o91m4PQIL5fLsWHDBtLpNGvWrDlqFexUrXPC5KR8e3t7efbZZykpKWHlypUEAoHRSHKyRRMmI0JVSnHw4EE2btxIQ0MDmqZNGpkejxA1TaO0tJRZs2axatUqVq9eTXV19aie8VNPPcX27dvp7Oyc9EIxy3gEy3gMoUJociaamo4U3eR930EyeFJj9PX08tQ3fkzeLqJXxxEBE60kiFFTgrWrk9Znt41zM5ks9TAVrsGZ/Ve01b6P//x9kJaHDbr2CBwHZl8OS6+A0lIw/ZCshaXLoDQLoekSf1Si+hQij2eTNgjCVkTq8ui6pHUwjlUw6BsIo/QYejhJMBRBaAK/ruhKmXT353j44YfIZnOIYhoVTY6SaU9Pz2iEYc/8ADJYDRQRdhphD4Eq0Bkx+e+D0J2HwmFQA6CSQBQoAeEDbS9oPwDRAuQh5dMoaCANQSIIgWwfunKRQkMKge2CjMfQJBhPPQyyiLn96/j++3b0+15A/8VWzHt+jO/nn0Kkdx1tt47DRIXxgbNyDXWkKOl0f04Fn/jEJ1i/fj1f/vKX2bdvHz/84Q/59re/zUc+8hHAu3esXbuWW2+9lQcffJCtW7fy13/919TU1PD2t7990v72Mz7lO9E11K6uLrZu3UpNTc3LvD/HQtd1CoXCKY9/MjidlK9SiubmZvbv38+CBQuora0dfW+s1dqZtIYqpWT79u309vayfPlyTNOkubl50uYHJ9+HGggEqKmpoaamBiklQ0ND9PX1cfjwYXbs2EE0Gh1ND8disQnvR4XC0h8H/GiUDL9qoKlpSO0gjt6Ez734uGO8JIbfSiA1QPDi2URqy5k/ey47f/44fT98AdR4of2R/TAiW3gyLVM9PT3HVG667bbbeHZXllwQ3tChqG/x0rSVQUhcqaH5dMyii+iU9DcLfDHlFTC5LxXRymHbWAIatt8gZhZBQdquoKw8SarnIPl0irAh6C34sQcFASHJDKV4/nf3s+a8c9Bnvw7wFKR+/etf09PTw9DQENdffz3Fpbfh2/11tNxhXCnZeTjH539W4OnNLnc0wMwBGPwZxK4ArVKArRC/AvaCSntz1QoQFIp8j0akykWgMDSBcMCIuzAA/k6FryoEhUFE+yGMpu9g/vKX0OWikgmUaUA6i75+F77S71B8678fd7+7rnvKyw8jhHo2pnwns8r3ZLFixQp+/vOf84//+I/ccsstNDY2sm7dOq699trRz3zqU58im81yww03MDg4yIUXXsjDDz88aT2ocJakfE+FlKSU7Nmzh5aWlpPSsj0TU74nslwbeTiYSPXg8XA6Vb6FQoFNmzYBsHr1agKBANls9pjjjTj9nOr8JgJN0ygpKaGkpISZM2dSLBbp7++nr69vtP9zJDVcWlp6zMIHOBqhK5QYQhxRLSzQQSmUyBx3bkeK4Rce30t5i8XNX/8yNf4k1qXzWfvgLlrT491rPvaxj/GHP/yBhx56iPvvv/+EbjZjtzNCUCO46667eOqppzjc1sm/WCBDfs4xLfJKJ+PzYQY0/EULn1CIABSifkSPTUi63nqlekn2TwRBWVDMmfh8RVypEzQHOdgdZv9hi6qAQS/wq96ZTBNZkuYAplCkMg7P0cjKxvO54447uO222wCvyvPuu+8mFotx9dVXky+7AG1oG7/+9a/5+Ne+T1/KxbYV9/TDnFKwMmXUPF9Pbd0g2qEu2FJAucozMtchowvClqLwImjnK7Qy0IvKeyjIg3pOEM45iJYWr5ApZuL77V2IPZ2ohukQHD7OiRiqkEHbuAHe7A5b3Rwdruue8k07l8thmuZxz8XXMB5XXHEFV1xxxTHfF0Jwyy23cMstt0zZHM4KQj3ZNdRCocDmzZuxbfuktWynSnxhomOfjOXaWEKdTEw05ZtKpdi4cePL2nimQst3Msbz+/1UV1dTXV2NUmo0em1ra2Pnzp1EIpFRco3H48d9aBFo6HIOlv4sgvJR6zdFFjDR5FEMxofxMmcZhvV7v/bvJBNJr6jmGOIPH//4x7Ftm0gkckKLuCO3M5agRuQPM5kMtm2jaTolpSGyZEgkQviki8hkEVKi6QoZFITLXIr7FcUnQTcA0yv6MapA84OblkSMPFgag9kQwUiaWGoXJXGNgzmTn7Um+V2HTmVyJtV6juxgH5decx1v/uBHuOuuu7jttttG0/ItLS2sWrVq1DwAI4wsXUUu1Irmi+C6GYQQ7MpBu9SZXV+LW1KLDC1BtT+KsNopGIICEDDB9usEsi6RQw444FR58zcyoB0A0aVAeYVOytVwG2YjggrhHEIMDaAiERgRzA9okFNgFSB47EhyImuomUzmrK1anxxhhzNPA/xkcFakfIvF4gk/19vby5YtW0gmkyxYsOCkT+CpjFBPlVBH0tT19fXMmTPnmPtnqgh1Iinf9vZ2tm/fzqxZs2hoaBg356noa51sCCGIx+PE43FmzJiBZVn09/fT39/Ptm3bkFJSWlo6GsEeDX7nzTj6DlyxH41SFBaKNKa7EkMeu2jliSeeOKGzDBxdUcm27XEPW+NINVZELzyDpreSySruvP0x2tsyjCRn6+rqRglqRP4QvBt/b28vPeki4bJahKnhGzgIBjhK4EiNFieMhUZCFbAeszBMBTpoCTCuBFUELQNmlYvVq4Gdoz2oUVKtCGtgthts7Q0Bgq6eXgLVcT7+3oWsPqeL9PNfIff0L3nfvCKHU5JnOzRipuQc1Udw2+NosxYha2aDrnPRRRdRXl5Ob28vgUAAGY+zJxHj4pIwhVQbtiiQHhwgIDW22GGyjmCGlqXCkgRdb21V2eDuAq3Ha+UJuRIxHGkrXaA0jULHQazADEpMHyI7hChkUcEIws1BzkbOmAv+48sRTmQNdYRQz0ZMTtvMa4Q6JTgR4Sml2L9/P83NzcyfP3+0pWKyxj8dnOwa6qlaro2kS1/NCFUpxe7du2ltbT2m7OFUrPVOtXuNz+ejqqqKqqoqlFJkMhn6+vro7Oxkz5496LpOKBSiv7+fkpISNE3DkAsIF9dSMH6Fq+9HUxFM93L89hWI41xiI5Zwd9999zHJdARHkuo111zDG97wBm6//fZRkh3sPsgf77iCt507QEnEQgU0ClqOd10miAVK+fljZdTV1R/VDu7RRx8FvOthZ1GnubOf2VVxkAZZBMpyUFLQmosyrWUQf9qmP+Sj1F/EKILsgsKPwL8MdBv8/Q5GjUnfW3Sq5xXQhn3VZrgZ/qGxl0/eVcPSqgxfeOt2yhMuRodOiW3zsUthX5OfVMrl/XMlxQE/gdwBtv7Xl6h74+X4561ANa7hpk9+Bl3XqampIRKJ0NjYyDu+/u8UD22k67c/omVbE4NumKXScy7xR2KUL1yJb99zaMUCKulDRTXcQgZDkxhCIod7brWAD6RAhAMElEIiyCYqCHW04PR0QjSIVhBovmqci/561ITgWJiIOP6I7ODZGKH+KeNVJ9QTRTHHS/lalsWWLVvI5XKsWrXqpPqVjjb+q7mGOlHLtalIVZ8sSdu2zebNm8nn86xevfqYT9InItRXag11ohBCEI1GiUajnnm3bbNt2zZs22bnzp3jRP3LymYSDn4ayAMmgpMrQrn++uuJxWInVVg01hJu0aJFGIYxSrIdbS1cu7Cb85N9COmQK+poWYiiqK3UuPpNvfRlp/Oxf3iJTMemgscWKmnxHHZlEVc7hC+oCEtBQTfZNxAnb4WIpbpxdEHvUJHyUk/9SBqg8ngqRgmgF6QoULMqxkC7QTYzfF5FXRauHOSiXdP4u7ktlCdsUmmdqOZgGApfAirnOnQ1JVkV66fTZ/Pj8HL2v/5C3NoqauIGhzb8nEPCRgcSicS4h5FU4AL+59EmfttxGF0leK/WxWVGgRmVJZjdhxGawF0wCxHLITQdv9SgfxBzuPDbFgJDueiOQvkNdCtHSAO1fDFqVxTphHDyFmlfgpY5a7BEjNJDhygtLT0mAU4k5ZvNZidFTvTVgCeOf3rUMjV35KnHq06oJ8KxCG9wcJCmpibi8TirV6+ecBP/VAs7HI+gTsdybaoI9UQRYCaTYePGjYTDYc4///zj7vexhPpKzW8qYZomwWCQeDxOY2Mj2WyWvr4+uru72bt3L8FgcDQ1fLKWdMApacWOWMLt2rULIcQoyX7z8+9jVnw3IuwgAjCUd5FKEJUasltQvkDx+X9YjnkUMgX4xc9/xvuv/ws2PvMwn7l4B1UhC8dW6BJkUWGZiqwKEOnR0G3JkCspuODYnuE3Ot6aZAEKUiMgJJpU5OwssWAVbqEf23FQWXCjkvdfJqjMOqQzOkEhCejSK2yyoTTpsuac6fjaBQOmzcHXvZ6hWDmR9m7SXZ0Uamqwr7kUcdcvmRYpGRdxSym55JJLqK6u5u677+b3M87j6g9dB50HcXub0fqeQy5cjrbvRbSBLqiqQLo67OlDWGAIDR0fqkR5bTeFHFrqELI2jnPtJ5G1q9HyWaKlFTRKRpcHRoRFEonE6BLBSEHRRNdQz9YeVDkJVb7ytZTv1ODIthmlFIcOHWLv3r3Mnj2b6dOnn1bkMtV9qCOC7kemfEbWHidquTYV5HKilG9PTw+bN28+4Rrv2DnCsQl1IvM/UwzLhRCjov7Tp0/HcRwGBgbo7+9n9+7dWJZFSUnJOEu6yYywx+6HZDLJpz/yXloe2oFuFtA0hSsBFEVcQq5OtKQUQj0UGU+mhqY4Z2aaC5cavO3CZq6fcQgtZZHKKRwXlAGBMISlzdxgF37mkdF0pOVJ/WVthV8HMSzrZ0Y0TEchhcCNgCFdBgf7SZQkyPf2YEhJwPQTHDpAMKAhhYNfH27BUSBc0PwKP4MI3SBQX4FIxEk0e8RvCoeKgwc5OH0+0dXnclnlzHGR/ci1NjbyjyWT2IBId+P7xT8icn3ImUuhbQ+irxO9wsCKNaJ2d+E3/biJBCIIItePivhQwSj20r/CXfhmr0c2kUQAISAUCo0Ki4wUt7W2to4Wt5WWluI4zikf+7NVGB8mq23mzLjOTxWvOqGeTMp3hFDHtpMsX758nNfdRDHVKV8Y394yWZZrr2TKd2xP7MKFC6mpqTnKt48+3sj3J2t+ZyoMwyCZTJJMJlFKkcvlRltz9u/fj8/nG2dJd7qi/kem0WPldcyeM4dD3ZvQtAKa8CT3dAV6SCK1Ajmzi878//KVf/lfWlu7AFizMMUbV0rWvO4yQprEzHfhCoUEXAVp25PM9RkC/+wavvmkD1VSwbt7uqlWDrY9rPkL6NM8MqTgKRP1VPlI6kXi/TmM7XlKbYE0wbEL2N0FqIZwcLh3deQU8XmFTbQ0o3WAUGEafQEOaxJXCgJC0e4aSNelGDBHDdpH2oDGXmtHRv4qWoG74M8wNv0vWjGNKilFmQqC85BL3oXxm3uRmSFEZhCEQE4/F7d2BiKXRpbPO67U4JGtWbZtj0avtm3T1NQ0Lno9UQXv2Uyof8p41Qn1RBghvHQ6zaZNmwgGg8dsJzmd8acCR1bjjrT1OI5z2pZrU0GoR0t/u6476s5zqgbsk02okz3WVG1fCEE4HCYcDlNfX4/ruqOWdPv27aNQKFBSUjKaHj7WzVXh4urP42rPIbV+NLcOnz0DTTai1Piop0vVsXNrO9UhjWJeJxx00Szw6VCoUHRnLHK+Ch7f8l0aV2Zp79BQaZc1S3RWX3Qlwdh0xMBObMuLDQI+sB1ACGw0/LrkoZ1pftIRxownGdBM3pEdosFO4QRc/OXgKwelK8R0DT0BJREXuVsQbFNIV6FM5c1pm6cTzBCIUkDzSFkzQChw20A6FuhBIu09XP7QPayftZBUIEKXbdLqmuTzBQY2baHKtse1AZ2oAMhZ+g5UvApt/5No6V7kjDU4cy9FhSswnv8DstRGRRNea4wvgOhthUgCFT+1B1/TNKmsrKSyspKOjg6WLFky+pB14MABDMMYJdfS0tKX3c/OZtlBB20SqnynJms41TjjCdUwDCzLYv369TQ2NjJz5sxJjVR0XT9mWvZ0MZZQBwYGaGpqmjTLtVciQs3n82zatGlUQ/hUm8z/lCLU42GsaD8wLnptbm7GNM1xwhIj0att/BrH+DUg0OQQUjyCZUAoN4OaSCU58XagwUvh/sM/oadDXDMvhN+vqCi1wO+SSeq0ahqbN+lsa29CoVMzC2YukehdZVx+WR3+qGeRlbUFFCWmAT4T/CagaYRMhaMEj27zqpptx2HfgsXUfuMbBH73Eazm32IKoBJEAoQpQUBYGAzuBGyXQAI0W+Ea4AgDpMZgXZBkWwoRAOETqJzCaQGr2wtYh9w8mDpVne2UVNTTPrOcPD6GKMU62E7++a20pPPj+lRPeB1rGu7MC3BnXvCyt9xzLsF46mfgOqhwDDHQhbDy2CuvgODEyG3kehrpba6vr0dKSSqVor+/n5aWllHlrpHCplgsNukRaltbG5/+9Kd56KGHyOVyzJo1i7vuuovly5cD3jX6hS98ge985zsMDg5ywQUXcOeddzJ79uxT3tbkFCW9lvKdEI53k3Rdl3379qGUOq306PEwVapD8FJ7S0tLCwcPHmTOnDlMmzZtUohhqouSBgYG2LRpExUVFSxYsGBC++ZUCVVqe3HNH6C0vQhZj26/B02eO+4zr3aEOhkYsaSrq6vDdV1SqdQouY6I+pdXQmL6Ixgqiu6C5u5FiQCu4VAIZAmY+wlq99HbU8PatZ8bLi4KcPvztaweivGxG97Ek9v+m0BZP1uekbT0GAiRIpFIkB0UzF4c410fuIUgP0WqHIWWVnb//gFmVbiEIuDaEAjqBEwvg7PFKYWFpUQHHPIpuPnmm0lWVOCvrEL0GhTCLlQopAuaPWz87beJ1QhSbX78uSKOoTMUDePqOqFUgc7aatrm1zHvZ/swRQnFzm60gsIIgl0EvwYDHRlMN8fslj+w/hwN8cZFVO3fx5bvPoLsS8ERkd3pXMfOyrei/EH0LY8jsoOoeBLnnItxF1884WM9co2OfYDWNI1EIkEikWDmzJnjep9/8Ytf8JWvfIXZs2dTUVHBzp07mTdv3mndMwYGBrjgggu45JJLeOihh0gmk+zdu3fcktnXvvY17rjjDu655x4aGxv53Oc+x+WXX86OHTsmVZrv/zpedUI9FrLZ7KjDCnjScFOBkRPddd3TXtc6EiPp08OHD0/amu8IprIPtaWlhV27dk34AaDAEFnRT1CVACdHglJ/EjtwI57SukLpG5DmAxiFr6A77wTO3gj1eNB1fTTtB96yQF9fH1n7KVJDh9AHgiQCrRTCDr2xamzNJeQromv1+MUh/vWr76G52Rittq6qmcbH/9mrel0zawUPv/BPHOppRUlAOfT29lJeW87Fr7ucspIluAMbcZt/Q+eTz+EvWrR1+2gwivh9YAQCOME4/aXn8NsdFjULcug+ePEXNrfeeivr1q2jNlCOhkakTOJK5RlZasNe3hboPoU/5KIcyERDuKaBmbc8DV3bIZWIc+DiRup+vp+g6d2QhgqQ6oJCF7gOREISMzPE9J89QvCp39NY6Wd7Sw7d56O+vn60yGrdunWn92Cs67jL3oi75GIoZCAQAeP0LABH7gHHm9PY3ud58+Zx0UUX8c///M8cPnyYZcuWUV5eztvf/na++c1vTmgOX/3qV6mvr+euu+4afa2xsXH030op1q1bx80338xVV10FwL333ktlZSUPPPAA73nPe05pe5NTlHR2pnzPSLeZzs5Onn32WcrKylixYgXAaVm4HQ+apiGEmPR11BGnG4AlS5ZMKpnC1EkmDg4OsmfPHpYtW3bKFdQORZ7Xf8CvfZ/nMfPfeMj/RbJLNmKro5sPjEawuDj+Lwxbn4VARbzfODj+f0bxkh7u/4UI9XgIBALU1tYyqy5Bw+BBZgytJ9a9l2hrC2WHd5KzLVp0k33T+3ku5jL7/WU0Xq6QwnmZOIRm1ZIdNJk2K4AmhjVlwy4Fa5DvrHuUnt4+uqzVbHt8Mzp5tAjYmkbT4QoyJavIGzPoXngj2aXXc+WV1+IORSmfppGo1UaVmXKFDNKvgSbRGdY4EJ6fpYvAFQJDek4ujmlgFG38GZt8SQAr4SeQKzJQEWFwRpB00odd0FBFHTcHOJAIeTK5Bc0lqBfR2oYo9CouWLmCD66YzftD/fyNr4OZndv43MdupKen5/QzTYYJkcRpkyl4+1wIcdJz0jSN5cuXEwwGufHGGxkYGOCuu+5iyZIlE57Dgw8+yPLly3nXu95FRUUF5557Lt/5zndG329ubqazs5PLLrts9LV4PM6qVat49tlnT3l7r4bbzJmCVz1CHXvDllKye/du2traWLx4MZWVlaPVjFNVOASTX5jU29vL5s2bqa6uplgsnvZ66dEw2WbglmXR1taGZVmsWbNmQgVTLxo/5qC2AQ0DHR8SB7vuIFvcn3EhHzzm95S2G6W1gPLzkneJABUAMYTUN6C7b/g/GaEeFUoS7HgAfbAH13ZJl4TQlUvZ4CC2aGX7jHlIbAzDwVGCFX9eiS/Qz6fedvM40Yab1n4Wxyyw+KIQ9XMclNLIZxXrHxlix9M76Ny3lj97w4XEm11afRGKSmAGSrj0TVfhxJoxettBeuduNBrh6ne8h0ee/RH+UD8AxtA+nMNb0TSJUibC8Mp9lZIIqRCGhqOBjcBvQWCwAK4ilwjQsawCZQpwJK5Po9gQobPfT72TIbLPIW67yBg4S3z0lOuoTsn0Pzgc7lYEfGH+422LKKx/klY0UpkCM40Ch3o3s/XJ37Pq8mMLpL/SmKi5+EgfaiAQGEd0E8GBAwe48847uemmm/jsZz/L888/z8c+9jF8Ph/XXXcdnZ2eoX1lZeW471VWVo6+9xpODq86oY4gn8/T1NSElHLcDV0IMaWVuDB5hDq2vWREBrGvr29KIsnJjFDT6TQbN27EMAxKSkomRKY5+mnRNqJhYAw7r2jo2NKiw7eFjN1LhPJjfPtEDwYv/Z3/1yNUAK24Cz3TBAU/dlihDA3lKCzDIJZLEyo4FE0d19TpOJQjWKKx4A3l/NM//wP/cNOXkGXlfOMrX6G3tRXbdti0oYOaGTq6Aa0H0gx268ycOY3W1lZ+9/sn+PvlC2jZvwPbl+TNb7qScCRMxtGQukL6Xlo/C0UNLn7dG9j6yydpp51/uGoGpbEDpNPVxHJ9EMshdAUSbF1DGYIhN8CvwrU4VXFW1qdQAZAlOhgabgEGA370oGK7E6BMd2GGgc9wOTCoYV4fxZxjomlQLaH0rS75r2S45BwXf8+3adF1jIaVZA+30Zka5I0zqzHqYwxMwQPsRDERHV94SXpwsuawfPlyvvzlLwNw7rnnsm3bNr71rW9x3XXXTco2xsKdBC3fszXle0YQak9PD1u2bKGyspL58+e/7AQ8FceZiWAy1JKOZbk2VanZyRq3q6uLLVu20NjYiGmaowbWp4q06EbioB9hY4arI02XjOghosYT6kjEKeRchKwZjlINXuryL4CKormrxn3+1cZUz0O4KXCHEMpAEARVADSkJtCUi88qUjDjmL4IkbCJchShpI/Moired7CD4mAR58pr8M3eQfHe76FnFNZANQDlsRoWz60ePc4HW9p5NGbw7oUNVM46l1A4DE6BUCpHKpkkndAwKSCFhSX6KQvM4Uv/eDVPPvEUK0ofRg0GyQZKCEfq0JwW0PuQWp60GeIROYtH7DlYtWFkUNL52w2c+xcx/H6g4FJUBqpXEt7QTqLRxgyE0Pty+AIWsQ/FKDSa5DocTzRCgVFrMPsTEdofaKMioJg2U2PXnheYNet1+P1+GpIxetv3oJ3zhik9PqeCiUaok1nlW11dzYIF400a5s+fP2rePqId3tXVRXV19ehnurq6WLp06Slv70+5yvdVX0Pt6OigqamJefPmsWjRoqOefK9EhHo65JTJZHj22WdxHIc1a9aM69WcKmnD0yVUpRT79u1jy5YtLFmyhFmzZo22EE0EIVWKQEMdqcKpSwQaIY69hiww0ItfGE7x5kBkvd/oGMVPI/A0ms3IIVTie6T9X6FgPITCmtBcTwnKRis+j1Z83rP1egUgfQ2esaiwMR0fmjKQmoHhgm34yPojSKGjq3Je//pLKUlGKOoh2i98G32BENm2FoTjMLj0PKz3/y3xZJJisUgymeTuu+/mP/7jP8aZSPxmp8UvthU4vG8nWt8ORLoVrXQlYt7fYWoJbDGEwiHuLqbMWUNFspKrr74aGaoGtwgIVLCMvG8h67dGaGv28+DgPB6pOh9tdhm6Xyf/mzZy6/aR+k4z1o4MVkqidg/h3NNM5u5eKkIO0YhNISPIYxCYZ2AUJTIPVh7sAjhdLpE5Onq9IDvkki8IZsxQzJs3g0WLFoGdxbTaSO76X4ym/0X07X9FjtfxMBFhfKUU2WyWaDQ6KXO44IIL2L1797jX9uzZw/Tp0wGvQKmqqorHHnts9P2hoSE2bNjA6tWrJ2UOfyp41SPUZDLJ+eeff9yT50j5wcnG6RD2iSzXpkra8HSqfEei6aGhoXH7/nTGjFJBlZxPu7YNAA0TiQO6S5k1l5g4gdG7eyki/1Nc879R2m6Emo5u/+VodJo17yW5dB1okBMCzJ9iugspyf8HGicvNnEqMHK/xOj/e3S3BwUU9CQqcBNw+ZRsbwTKrMaJvAmzeC+aM0Ao58cxciAUXYka3ICOtPzoViVa0GHOkuk8uDVCrx2F5u0oIJsaRJk+1LwFGEvPoyHVz0033URXVxft7e3ccMMN3H777fT09JCzXb7yqxZ+vmmQj//N+Vz5zr9AlTQS1gyCto0jMmjKxGB8CtKddjla+xMEnD6KhTDbt24hoQ/Rk9J54NE8/sX9fODGD/Dtb/8X6Q2txIMmcmcfQ7v7KQkIXCk8VSTLoGTQJlbI4y8popIC4RNEdYk/Co4jMDTAVAz5IatrFFzw5R1q59Si+zUY6kAf2kgg6CNwqB+z/Y8Y2yuwV38Id8aFU3q8joeJRqiTmfL9xCc+wZo1a/jyl7/Mn//5n/Pcc8/x7W9/m29/+9uAd92vXbuWW2+9ldmzZ4+2zdTU1PD2t7/9lLc3OX6oZ6c8/qseoZqmecInsTNxDVUpxZ49e9iyZQuLFi1i7ty5R00Fnmkp31wux/r160dN2Mfu+9MtdFrp/DVVch4KiU0OhYuvr4pFQ9cc8ztjt6fJRZjFr+LLP4BZuH2UTB1tH1n/NwEF0o9QQVB+bH0HWd93JzzfsciJftqMTRw2nqdfa0YUX8Dfcz2a24P0tkzA7eZc/WY6QlsnZZvHg1X3eZzQ2xBSJ5DL4s/6yKrpCLmMuL0CO1+NZeaQwqaW5WRqPkRC1wkEg0ilUFKhOQ5SCAZMk1tvvZULLriACy64gGXLlrFr1y6uvfZaDMOgubmZYDBITk/wtXsf5Wd/2OLJFgE/v+9B9u/o5Bf3/fZlc3Sr1lCY90EsV6N/zzPUu32IIYff742jRRv56tqvcEHdav7t87cRrKpiIG/jpsBWkCkoDKHQ85LSKouyfBG/6+AaQMFFs1xUmUbAD2ETAgGFU2ag2YpQwWHQ1AiHNVJtHdh7dqN3Pg9BDccfxLAGELk+tM4mfI/dCumuKT9ex8KZkPJdsWIFP//5z/nRj37EokWL+Od//mfWrVvHtddeO/qZT33qU3z0ox/lhhtuYMWKFWQyGR5++OEJ9aC+VuV7huNMW0Mdaxt3Isu1Mynl29fXR1NTE9XV1cybN+9lqajT7W31E+Ei56MMijayooewKmfTpr34lh79xnCy5F0wHkXhoqQPoQ2vu2KglE3B/DVR6+8nPGeATn0HB8wnsYRnwq1hsKL3twS9xg+GN4lSoCmXkP5jLK7AN5XPo7qf4txvYvdvROt/EaRJPD6fSHQZWH4Ku/5AWW2EmtJGgrKcmoCgcdFi9rR5IvLFYhE5fHyjUo72jSaTSX5+/494+vffp6yslNKS0Ki2bKFQoLEqTlWJj5aWFn7zm99wzz33eL2r5eUMDQ2NauYCIASHw6/jnoe/wQ3VDqZwCTjwrtJeblwVQcReMt62fD72Cp2lGYfSuKC7CLlegc8WLPpzKGQUpi6xpcAYgvDmPOmVEZwaAzkksX06hh8iW4vMikqCZTq4gj9sDtPS18XfXVKCTwn8Q93gj6FCUYSdQ+vbj/n897Av/ezUHavjYCJFSa7rks/nJ1V68IorruCKK45d/SyE4JZbbuGWW2457W1NTh/qa4Q6IZxMgccrkfI9WSI50nLtRLZxUxmhnooZ+OHDh9mzZ89xTdgnoxVHIEioOhLK24Ym9p/2mIocXqHSkeeKQFFAoRAve+/kkBcDNJtPIbGJyRoEApsCprULDXfcJoUAXbnUuTs5qOWYI0/thifyBzC77kErHEIGZ2FXXY/y1x7nCxqybDmybPnL3jKKMaJWHSFVDgLOSw/y430HscvKCQz0Y8ZjDJWUIQ7sY/Dx39NcXs4/fOrjvPv6esLx3/FX70yR7dlHR1KjJFhHblDj7Ys03nlxAxR/znM/v5cHfrKN5uZBXNcll8vx7W9/e1QzdwTP//G3vDtxCOHY7M4AQicR0kjufhTzubton/ce1q5dS12xmWuv9DFds4iYCssV7O5XdMzwMxTSCQzmKSlxCUkwsqB2F9GFIlMVoGgaWIddrC1Fonmoa5xOR2cf6YLDTjtIVyBFsdBN0M7gGhrofhBRlBlC6H70ru3Y+QEIjlnH7+yAdBoSpVB+rOrz08dE1lAzGa/verLWUF/DK4dXnVBPBmdKyncilmtTtYaqaRq2bZ/wc1JKduzYQXd39wnVmqbCEu5EY0opT9j47nPPI8cPQDiAJzWnUCAkPmfFhMkUYEA7TFFkiMnq0XFMAijD9syyFS+R6vC/dZ89bos9PT088cQTx/U11ft/S3DnXzIsWQQIfG3fJL/wAdz40Qs/8iJDv9ZGQWTxqxClsoaQ8gq0xrrN9PT08NNPfIJgwyzs1RdSrK1Hc2xKWg5TvOe72KkU/kUaF300SmjeAGFRSbo/Tuq5LsrsDt5y7mEq80kuWrYEX0k5oFhR18dfLhjgUJtLb05QLBZpb29HCMHhAwcoi0QIlpZySZ0Cv8uBlAKhE/D7wRfEF00gtzzATd96BnqbuXFWOzHdpY9S+pWi1Jdl0YI4B/Vy7PxhKuskwgR5CCiCCIO/28J91ia3WSOaUTzZarD4+kvRp80lUQlbHn2Q1TMGqDtvHrFUHvYOQMCPoQYRjga2iQpEUaYPUUihgglIDyEeuA92bkPkcqhIFM5bifqzK+EUtapPBhNJ+eZyOYCzVhx/ctpmXotQpwyvNqGejuXaq5nyLRaLbNq0CSklq1evJhgMHvfzUyFneCxClVLiui5KqdF0vqZpoz9j4XMvwOcup6BvQIki7jD1aSpK2PrQac3PFd62x5Lyjp07mVYNiezwC0dMP58IMV16vbpjvUWPTIlKbPJaB0rmqdzzQVAOYsxgShYJ7LmB7PLNnrvJGAyJXvaZL5ITKTQMJA5dqplZ9nnEVcXoPh3ZfltrK4mWFqJNL5JYfA4f+cD7+e/v/ycHkaTrw7ztpkoSVS6kCwylNVRQUH5BNYf7LFY5A5jVAfZOX0SZGSDUk+F3L7Qxu0Jn9Qz41XaF3++nrqqKF//fN1kyfx7duSy5QICdvU/zhhowTB8o8Pv9zJk7F1UYpO3AHrrbLa6sGCJhuHSLOEuWnANAZ3s7MXGYv56bpSvpmZHr7aD1M2o0jg/sQUX/oE6tsIkF4YX9e6lZcw7hWISLL76UYu/jJOYtxE2H0Fo60HI58JuIQjfKX4EsbYRwGSrkSTuKB+5DrH8aVVuPqq6BgQHEY7+FgB/1litP61w6GiZCqNlsFr/fP+lSqK8UJqdt5rU+1AnhZKO8V2sNtVgs0tTUNGHLtVerKCmVSrFp0yYSicQx25GORFG3yZvWaaVQj8SRhKqUQik1ur99Ph+u6yKlHP2BlyQhvejVIO1ewpDYS0wMouOSI0xOzSamkpyOQFxUVqBjYJHDR4h9+/eza9dOzq0vobQ6R6TLQgzvZqULMlV+HLUAn9DGkSkwzkYsqx2m23iCough1r+Hamfw5fsGiSgeQstuRkZeMgGQSFqMneRFhsRw5KxQpLRuDhs7WGiXoZSir6+PW2+9dXT7AA3xGOtu+jjJZJLl3/g6/3bHDSx8vcWcpXkYzIBjYgs/hbyG8GuUnlfJAWMZA4lqUhSpiOuQOUxtZYaoq7j43BDPtOskSpNckM+xoreL3f19LLv49ex47PeU+gYQlRAULkO2wpUS13FwBrvYOahRkIIKn41umixZcA4+nx/LKpLNdOCGMxS7fSTPnYv1/BaCPe7IjgHbk3UWtsAZUsgoGDU6KfL893//gHe+4+1U+fqJ1Nbh+ishFMc553yczesxdAMRABmtoyh1nu8wWe6PQXsb7NiGqquHeIm3rfIkynHguQ1w0SUQntyo0HXdU3ZpymQyJ/RLfQ1nJl51Qj0ZGIZBsVicsvF1XceyXt7TOGK5VlpaetKkdLSxTyY1e6o4XjQ5kpqeOXMmjY2NJ7ww+0jxiLGBvckWrHiRw0aaS90VzFRHX2s91XmOEOoIkY78v67ro0pY8FLUKqUctdQDyOtttJi/wpUVDLp16JqBwjPNPuT7CXOLfzfh+cVlLUlnLp3GdiyVoWxamBo3xvqdNcxY1UUxFsDIKjRNwwlrIDT0/dfQo48nU4C6ujouuugibIboMB7B1lIEZBUB5/jybcIdr3VcEGkyYoCwjI8+2AgEEZkgqw2SEykGBgb42te+Nk6IY6yWr0IRrXmET30FcoUsekggYhI7b9LfDhllksUgMreKg8VpxHtShNwUSIP8vDL0yrnM3/M4JTMNrrz+ndz673tZ8vR2MrpBv22z/5FHAUgO+uhsL5CsdYkFTGyZZ+hAE8GyKtoaXoe9s4lcsIKaqjwdPT1EY3F2795FWSiDX0gs3wCqp0A4rSjoGrot0XJQlAKfqQhEBHPmJOnJD6Fm6dS4gwymizz38PdY88arKauuQMgsygmgIlXk4rVEyUFAUvDF+ebvWnhgTzt/Je7i+jWrEfkcquaIdetoFHp7IZOZdEKdiFj/CKGerXitKOlVxonW2V5pYYcRx5Xdu3eftuXaKxmhjrTytLS0nHRqOkeB/zEfpk8MYkgDlKBF6+Yn4lHe67yFelV5wjGOh7EWbiNkeaw107Hp3hFSdV2XQd9GTzDCNfBKbhUCDZRGv/E8qugiJngBCjRm25cSVZV063twzALnV17Ff3zjJ3T8tpob/76LUESC0Mi7cb674xbcrnPY/J830T5MpkIo3vjWMB9eu4RI8DEyqh5L6yckpyHQyJXMQwkdoV5+Dis9ihtZepSZHT9L0NTURHt7+2hR3JHC+K62A8v4Bb6CDXk/KUOBZRMMWYRLDUwE/lJFSPYwy2qhw6xgQCSQ0sVfHKQ9UkvKn2BazWzMYDv/+pFGfr9xH3vt8X/DoG6yY2cJKhZnUbiTkCZ5IRXg8Z5K3vrR93GV7w9UTy+jees6tKHtbMsqygMa08MWugsyZGA6AXCymH6Fo4OyBEZBIS3wG+CvdAnMmEfH4T30DBY4PCh4bJfLP//2d/z03n+kcegptKbnEAN5fJkUms+mUDaNv394kBcOu4Dg7rvvJoniykgEBgdh2JvW+yMGIRaD2OT3M090DfVsjlAnpw/1Ve/onBDOCEI9EaY65TuWsF3XZceOHfT09HDeeeedtm3cVD0MHEmotm2zZcsWstks559//kkXNGzV9tEnUoRV0GvzdB1CKkRG5Nmgb6PeOX1CHRt5jqRyT4QRYtV1HTSFVBLQxxCxQgASF8d10E/B0eNI6JjUOkupdZZ6LwTgK/90PmvXruXd76ii9BPvpxivYX3fBRRlBCklsZUfpbH1M0SjFv/6X/00zjmMYDcWEoMAAXcNQsuAiuGa9XQ3XEll8wPDNKlQaAgkxYYvgT5+bTugooRVgpTWQ4msGP1GVhskLBOEVJzXv/71hEIhfvazn72MTAFcvQklcqhUAasvgzSCiJCJi8Jf5pAhiOk46LkCJWqQstJBNvbOx/FFsG2LTDCCUzkDnx9cvZZwpJ0Vb1zM4V9tJDeGIAJSMnfpMio/91XWfv5zdLa1YCsNsNl3+zq++ZV/Yv0Tj3HL84q3J1xeV+5SYoKeAzUApQMC19VRariKukTgxsApCrQBkHlFX2MplXPrWVQeofj0Mzy0Q/HLnQaQ4S3v/leeW7uYRH87RBS6nsdyStj1+B6mDQR5YVg/uq6ujlVXXAlPhBF/eBTl2F5kOjiAyKRRl10OJ6gxmAgmuoZ6Nkeof8o4Kwj1lVJKyufzbNq0CU3TWLNmzaQY674SbTPZbJaNGzcSDAZPqpVnLLrFgDceGhLp3dgQ6EqjTUxM13cshBA4jnNKZDoW2WyWtgManCfQTdCEQCmvylcJlxJrMcoVOBy/sOlUkUwmWbduHW+5ewPP5a+GrBymtQJKaKTmXMTgvEv43Pt/QeOcvBcxI5AYpDEw9I0oNuHZr5TT3XA16TDUHdyKv9CHG5yLXbcWp+ytL9u2hka9M5+imWNA60THwMUhoMLUu/PR8CQir732Wmpqarjoootelo1QOLiOS097O2HNQbYWEBUmlAs0QyPYk0Mc6GWgpJSMGWV2rI9pyQ72O7NJ62GkZdHf2krN9EqE4cMSNo+37KPSKtLuD1DUNIKuS5lj8Yvmg3wwFuMb624fTYNHTIclYgsb/t97WbVsMS3lA7R0KAZzkIp63SqRWAR/roB4vgfrfB0zp7DRcU2B7rj4Qg6FpE55ZZ58eBtmRLBKb6Qzd4iH9yqKjiCUS7H7d8+xfH4ZZnsGoytHMd3PNCW4TC/wey1OpKZx1LFFvfUq8Plh43PQ0wOxGOoNb0K97uLRfXcyVdsni4kQ6ojTzNkKZxKqfE/3+68WzghCfbVTvpqmUSgUeOaZZ6iqqmL+/Pmn76k4ZuypTPn29PSwefPmY0ofnghhvIcGNVp96v2WQhKVE39KHik+CoVCbN++nba2NpLJJOXl5YRCoZOaZ39/P1u2bKGm9hyk6qJLPI5DfrSNxVARGt2/xO/3j1t7HclmjKSWT8WPciySySTq/KshqyHGSKEJJUHpmCsuYfUl9wxX7no3gAwBnCMvK9GH8v2Eocp3M5T4GkF1fBlGgLhKMt9eQ7/WRk5kCKowpbKWsPLSkiNtM8e66Wf6q2jNtGO7kqgOmu2i9QiiCYNgNsfMjhwv9kqGBvuoOidB0QwS13P0mwlcw2ReagtRBti+y6auvpWmpu3cl4qwLBhierGAIRVFTWNbMMzDrmT7sMH3unXr+MTaj3Outpl5JXna+hx++PDzRIMh3lSeQ2YFaUujTINUyqU8EoNshlR9mGDOJtBlYTgu0tTIzAxjLdUZCgSwgzoIhTHX5rKa2VQ/1cXBrjQrZkWZUzeA05vFHNJxDQcZEfiHXOY6Od5ablJYtYq7776bRx991Ivkr3w7XPIGrw81XkJPNssTv/gFV1999XGrtieCiQg7jKR8z1ZMTpXv2Sk9eEYQ6okwlYSqlKK3t5dMJsOiRYuOKXowUUxV24wQYtTybuHChdTU1ExonEVyJuv1bWQpEBT+4RisiECwTM6d0JgjBUVSShYsWEBjYyN9fX309vayb98+/H4/5eXlJJNJEonEUcmura2NXbt2MW/ePGpra5H2TOJyPl3GH7BFmri7gDrnCkLUgsa4tdexP2P3/USiV6HpaLrgyOVPJWDZOdMQwlujA3AR2GMuKS9V6yWmNTFI0m04IZmOjY5CKkbIjZ30XMeOcdPf383FVwmWrhLYIYN4CMyghpGHaDqPG6hn0B5Ez3YTzThoukZaL8fnFljQu5lFme2kAhqtrQXaW37DUzuSHM4HaC3zsyyR4O+uu47b772X57u6KNr2qOH4unXr+Oatn+T5b72f5h6XguuRScrx49MMdL9DnxPEzOaJ2nlEJI+YIcjPDZEqNQh0FMFR2GUmxUqvOlZPO5g5DSE0HFMwtMThnge/xofffzuXvfkwvl4X9kG6IJEOaGGFMkAWFZfEBH97388AMW6OyWQSItFxBNrW1saGDRuOWrU9UUxE2OG1lO/Zi7Ni5dcwjClZQ3Uch6amJvr6+ggGg5NOpjA1wg6u63L48GEsy2LlypUTJlOAClXKFc6FBPGTE3lsv0cQ57uLWSJnn/J4Y4uPwCOxcDjMtGnTWLZsGRdffDFz585FSsn27dv54x//SFNTE62trRQKBZRS7N27lz179nDuuedSW+tVZAoEeUroVrW0q1p6SVA8StGOpmkYhoHP5xv90XV9NEXuOA6WZWHb9rh5HgsXR9JI1x0mxuG/UXjp3b2/fBjplDHi1ypfNh8NJcF1vP2SH0odd1sjN/c77riDu+6664T7+VhR/hNPPMHhQ+38+L9ibHouiB3yo8XDSC2MZSboL6nhQLod285RVmqScAeQXQP0vdjL3Od+y/y+dpy0hl2AnQcs7v615PsPDmHbNjX19Xzmu9+l8Z3v5J++8x2qxpx7I4QlnCwXrDpvlExH39f9VMajVJg6elah1YBWCZnGIHbcwJ+2USENWWmgSg2UEChNwxy0UHkLmS9ipF1cv05ixk7uf+BGZqwwSR/SESkgA1ig+oAU5FydXHsLDWXxl82xp6dnHJnats1tt93G1q0v6TSPVG2fDv4UU75yEnR85Wsp34njROm/qYhQM5kMmzZtIhAIsHDhQnbt2jWp449gslO+hUKBTZs24TgOgUBgnFXcRLFEzmaWrGene4AtO7dxxcI3khTHVlQ6FsaS6bHWS3VdJ5lMeulUpchkMvT29tLR0cGuXbtGbz7z5s0bp+r0gvlLdhtPeT2ySjBk9HBY38Kl1geokI1Hnc+4wibGi0mcTPTa09PDwTu+iO9Nt2LFqpBCAxQoiLQ04T75U37wrRjv/bteBDb6uJuAQEo1XNXsiRXcdutP+MdPXHLU6uvj9bQea18f67q5+uqrGRoa4jePfI9Zi31EwwvRRT3CFBRkH4f7n8NxdGqq8pTEJT6/n32HYjgHLObXhIkXAji2or1tgD8+rfHQZhOw6e3t5Xvf+97o/JPJJF/84hf5zGc+w8DAwKhk3me+8K9cWd1C2HDJOi/tk/aIj45MkRk+hYVAxEBZ4EY07040rEQlimDYDrahIYWOZkmEslC6jgz5cIUg7TyB0l+kbqYfK6OQxrCVrgIpPFEtUVQMKIdCyCCZTI62GLW2tvK3f3sjuVyAvr4UQija21uAl9SJjlboNRH8KRYlvdY2c4ZjhFCPdxM5FYy1XJs9ezbpdHrKUsqTmfIdHBxk06ZNlJeXU11dzbZt2yZlXIAQARa7s+hpPUxiXvSUz4yTIdMjIYQgGo0SjUapqalh48aNSCmJRCLs3r2b3bt3U1ZWRqBasKfuGYTSMEekB5XCFgU2mb/h8uJHTmqOx2rLOZqoRG9vLzfddBM9bW3Mbn8fvSveQ27BG6hIxBDP/ozQU/+N5tr8+C5QaiZXX9dNOJbBj0MRHyDQtOECKgXbN+i8+HQvaw+t5eabb2bP3he46m2vA2ro6Umxdu1a+vsO8aY3pohGXTo6Z54wOjrePr7++uuZeU4zcxdsw6/Xj7bgdHVk6Bty6eqJ89RPS5k/P8qNNzSybHYGaTURLSlF+U16OntJDSj+co3D3k6NQwNBysvL2bFjB/Pnzx/dTmlpKX/zN3/Dpz/9aVKpFJZlceDAfkqX+bhgGvQVDPKuRonPxdI1/jNXxkdDvVQkQkgjTd4RmK6NcBTS1NAc74FFuSAkCKVQmobQTIR00Yo2mukn7KvHSVXT/uQLxIpQiAsCWc8hV5gg86AXockJ09rbT2l1DeayC+m1JHb7ENuf6kfaIQKBcorFAQxDMWOGi2mak0amMPE11LFG32cbXmubOcMxckK6rntaclwj6cRDhw6xePHiUaf6qVrnhMlL+ba2trJz505mz57N9OnTSaVSk667O0I2pzLuSPHRCCFNpJI3nU6zadMmSktLWbBgwWh6NpVK0dPTw97cs9jSQnN9oLnoI4VGyqBPa6FIFj+n9kR/rOhVSkl3dzd///d/PxotGtkBlu/7Jbd/9DK6u/dTeNt8vr6vfPT9//i3Tv71C0O84Y3L+OpX1xGp/TEZ8wHAQdd1tjwV5j//ydunfX372Lv/Yq54m4U0BY4WpT0T4q1vl/z527oIBocrrUUrUn0SV32bEf3iI/f7ibBi5TnkzN0I+dLxmN4wHb2jj4HuLgYzc3n3teswg3swO25BDytUwGIoNcihFtjbEaIhkWN5o4sVqOaDH/zguIj5vvvuo7S0lO9973uUl5eTzWbp7OwkkUjwYroWo3uI5fUm73jdan792DPcvz1Ni1PC+WaKGZk006SOFgBff5FQa47s9DDCUWiuwvEZGJYLWYFVFsQsgFJ+nICNkRNochoP/+4xpvfqxIRgqBxcFwK2AhcyRY0D/YrfhAMUa8rZdv47UNPn4ORsBn68E6r6EN3byOfb0bQYprkcy2pmxozwpJKpUmpCEerZnPL9U8YZQagnugGPkOjpEOrxLNdGSG+yIuCxON2Ur5SS3bt3097ezrJlyygbbkifiurhkb/9ZMcdS6QjczrV/dfT08PWrVtpbGykoaFh9PtCCEpKSigpKUHpPfTpW9CUhpISy3G8pkVDogkN6cLpZohGotfu7m4++clPjgrBK6Wora3ltttuIx6P09XVRWlpKV//+te56aab2Lp1K729vQA8+ruNfDj1Se68805qkzfiaG0YqoJgLfyoZC2pgQN8/fa9LD1XIk0DyxcAXGYvSrF8VsaLzIb7MQE08QCKuUj1jy+b78mcq7qciVAmkiza8AOHQlJVGyXVsYB16/6RZDKJJIlyzkVpNooqDL+PvoFN+P0ZDNOlsS5GUyrEFVdcgbQscF3u+fGP+c53vkNXVxfxeJxAIIAQgkAgQHV1NQVXY7+xiI/d9M/YTpFf/KCNp/Y8Tzjcw4/SFmsbXXKDkKgQaA5UPNPHQI9DZlYEqWuEDhZJ9GURg+fRt8CiUJIHFIE+i0ir4kcHHkMW+iibbWMmFVqnwpkeoLXL4fAhH3S7HKwwuXhuO9nzzuHFSpvdB3fh7s9BWwbVWAHRuRi7XyQeE1iWhqbNZN26z0wKmQKjD+kTKUo6mwnVQT9i+WNiY5yNOCMI9UQY0XSdaBR5Iss1XddHI60ziVAty2Lz5s0Ui8WX6QhPBaGeSoR6pIzgqd40Rizl9u/fz8KFC6msPLaARI2cj44PqdsYuh+BwJUutrDx9yR55vn1JBKJ0bacE5kAHA9PPPHEaOQphGDatGmsW7eO0tJS0uk0g4ODxONxEokEt912Gx/96EcZGBjAsiwsy2LPnj1jKkkXApBMws0338y/fPktLDtPIhHDZOrB5wxLU4qReuGRc1Cii++cNKHed99943pSTbkIn7ucorEepXyAgRIZdFnPrOrreeL3L/Vaysh56P1bUaqGQEDn9Re9nqee+AM+M09XLkLQtvneVVdxRUMDPZ2dNB8+jJ3LkXYcstkshmEghGDGjBnj0qYK+OgnP0d7dx/V1dXs27ePBzWBIX1cK22WaVAZNdAzDsmnBok/OkgxrRNKS4yQD/e8IDX5CpygjRRgHF7Pbv8gqVSUi+cMURl1yP9ZlJLfaTgHDAJ2nrgDhXrB4jcoZkbDWBUHucT5Pr8yF/GT3EJ0wCmkoTRJJFmFZhfQdYdFi143aWQKLz2Y/qlFqJPTNnNWUNPLcFYkqkf0XidCqO3t7WzYsIG6ujrOPffco4oejE0pTzYmOu90Os2zzz6Lruucf/75LxPlfzUj1JORETwepJTs3LmTgwcPct555x2XTAEiKsEy+y0IoWOLIkWRw9VtIqKUN8au4/zzz6e0tJSuri6efvppnnnmGfbs2UN/f/8p76NrrrmG97///QDU19dz++23U1lZSTqdZvPmzdTW1lJbWztaXHXHHXewYsUKfD4fZWVllJSU0N7RwrfvvY7+4v/D1h+jp6eDW2+9lZWr/CgFjj7+ZqGNfYA58nlO9mK0/IjAhncTfOYdmPvvBMcr/hlLqHfddRd33HHHaAWrN5RB2PoQIeu96LIeTSUI2H+G1XE9n/i7fx1XTeyWvx4ZnoGW2YUodBISg1y6vJquQpIdh0K8obOThuZmtrzwAgG/n5kDA1ydz5NUCtu2yeVy1FRVEQWmV1Wxbt06gHFVtB0dHQSDQQKBIL/o0PmbjVE++MxMXrCvRnaWkOszKGY0HClocU0K3Q7s2IhwbcyMQG85zMG2HHvQWTQnR3W4gCqaTH9THYnPLSf03hXofzaN+R+tJ/7OMAesEAdzCXaJGaSKgrdEtjEzOYQrJRQ9wX4HT2XMsnS2bXuS7u7uUzpfjoeRlpmJiJmczYT6p4wz4jFgKhxnxqZKT6RrO0IIruueksrQyWBkPfBUot+uri62bNlCQ0MDs2bNOur3RtKRkx1Vn0hk40i7tVPd9ohE4kjLz8lGk/Oc11Em62nWN5IXGcpkHbOcFQSIQhjC4TANDQ3Ytk1/fz+9vb1s3boVKSWlZaWUJWMky6rw+8Zv72c/+xkXXXQRFRUVo6+9//3vJxaLjb7e0dHBjh07SCaTNDU1MWvWLMA7x2pra7nzzjv51a9+xaOPPkrRPcgXv9lLXYMDahc5Q2PAZ+KKBIODfrxTbfw+czWNl/exK1ACc0MYvfNDKLwKY73n95iH7kYXnx/95H333cfdd98N8LJeS0GQoPNWgo6nyNTT08MnjlFNbM3+FEbHg+ipjYCGmPYuzpl1IfN++3Gq8wfp9vtxHYeu3buRkQiVQ0Msc10e8/tZEAzS2NzMjNJSVs2ZQ8tPfsLtTzxBa1cXtm3T0uJV0U6fPh2A3t5eysvLufy6D3LONIE4uB2ttIJ9u7eQGrKwHA3pK1DW2k9o1gFMQ6d7yOXOjQk69vr5UEM71TkHnwyileRQKwK4F9eRH4TY4C4WZBuQuw4zkOthR3GITr2CczhAY+IwWxMzEFkTv56izsiRM0KkpUU2u4u//uu/5nOf+xyzZ88mkUic1v1gIj2ocPZX+cpJqPJ9rW1minEq8oOnark2QgxTpWgEJ1ftp5Ri//79NDc3jyuaOt64k02oYyUNj5zbyJqpUmpCZJrL5WhqaiIYDLJixYpTXg9PygaSsuG4nzFNk8rKSiorK1FK0Wo9RJf/dtrMblpsH1rXcsqy76SivIb//d//5a677uK+++7j9ttvJ1YJDjlCqpZrrrkGpRTNzc00NzdTW1vLl770JVpaWhgaGuL973//6DGoqanhhhtu4KqrruJQ7lJqpznDvafeTbWswuVT/9rLTe8t4WMfF4QT489jSzcJ2EW0I9SqtDaF3jkcjY7xh9TSu5nh+zlCXALARRddxP333z9KkmNJtby8HGlZaD4fvb29x3TIAVDBeuwZH8F2i95CruajFPjglVfStGePR/wjc9B1CAaZ7Tj0lZayKp1G6jqOrlPM53n8G9+gxDAQlZWj7TT19fWj6eDvfe977Nixg6uvvhr1xI9AKXz+GLPnraSpaROWk6fgamwcMCkYb+WSS15Padl8Zobuo+yuf6O6Q8O/oAwtHIY+EL/aipG3CM4dRFgZfMUiC6eHaG1tQci97I4swXWDyFgM35WziO/oJ7lzB+V+g7KyNLOrDrAvW2BPn4+vfe1r3Hjjjfj9fmKxGGVlZZSVlRGJRE7pnJ9Iy4xSimw2SzQaPaXvnUl4rW3mLMDJpk4nark2lSL2cOKLy3Ectm7dSiqVYtWqVcRix1fIGUvUkyWTCEe3hZuM4qPBwUGampqorq6ekETiRNBrPEpn6FsoXHQMNN1CTX+Kgb5B/uffwtx///0YhkHKOcRvB25g2jQTBJgqxnTrXaS2TaOnp4eGhgb+6Z/+aTTK+v73v08sFuOaa64Zt73yqhRmII/jCFBeHKqUF/E3zLLxhzu4aW0t37i9A1+Fi9S880EhSPkiROw8pnTweljLSW8LU87hcWSK9y619pPkhvfhiO7wWLJsbWnhq3/5l7xnzhy0dBqV+P/snXl4FPX9x18ze+W+s7m4AiGEOxACItb7RgWPqq31rra2ntWq7a+ttrWt2tYDj3pU0NpareJR71oV8ETIRSAkQCDk3iPJJtnNnjPz+yPMuAk5NxuS1Lyfh+fRTXb2u5OZeX8/1/udyD9276be49G6nvodD9H19O+MT09n+vTp1NbWft0xBRiA5SefTNfOnehkGWdsLPj9fFRUhF6WSenqItHjIWvhQlasWMHGjRt7fKY6fiPlrUT5+G8ILQ2YkrPIz19CZck2TH4P8rKzOO6S27UzcNWa1dg+eZ5U8yKElE6QaiDGBNYAxm3lBKZHowjxSPioaWiny2siQ6olARf7pTQOijPJUyo5Z/qHiP56fLKJjBSR6XFOZrQFaHSm4XA4eP7557n33nvR6XS0tLRw8OBBdDodSUlJ2j+j8fDu62CEQqjQvfEcru/yJMYHxgWhDjXlOxDhBVuuqaMlw3lojxahBo9l9Ieuri5KSkrQ6/UcffTRg96o0JNQw4neEWp/zUfNQhd2wU2KEkm6MvDN39TUpI38TJ06Nazr7Q8KEo2Gf9Ld3nBofQLI+FBSKrnqxl+wY8cOmmy1XP5IPAmZAdxdEqaICHw6B3sMT6M3riY7+2TuuOMOjUyhO9Lqa0ZUFmwIKOh1BnyHGo0EQJZBFBXikwJ88J921pyVw7cvMvGd78cgmyowRkhUV5n4x5OZuFqns/Ko+bz1djk/Xb6NE3KUw+uqgICEIAg9pAqDSXWOw0F2Swul+/cze9Ei9n76KTO9XtpTU9kXHz+sWUtfTg5VTU0k+Xy0GY0ogMntRhYE3qmr41szZlAdCECQp3BAp0P0+5kWH88Pf/ELKioquPHGG/sW8jfPwH/6DzG89wRi014igQVT09gXuZSVP/1zz+9ta2BqQiyyOQNZl4komBCkBogNoLQp+GsTcSVM4WDdJmJ0XZgiFaSARIJs4csKhYgdG7h5RQeCoFAXGSCaAB43NOmjmJrUxdQ4L3vbIqmvr+fOO+/koYceYuHChciyTHt7O62trdTW1rJ7925iY2NJSkoiOTmZuLi4w543ocygAhM+Qg2gQ5zs8h3fGEh+MByWa6NFqGqHcn/E19raSklJCRkZGeTl5Q052hwtQg1ea1/zpS78PGeoZIeuBb8gY1BEFsrJXOHLI5qe9SZFUdi/fz+1tbUsWrSIlJSUsK51IPgEO37BjhC0JgXwYMSFQmvm49z42hxKPxRIzPTi93SntAN+L6JowBAh0RH/KX++5h3s9q8NwtVGpeCaqwqdnIui6JFkX9BnKog6BUmCXaVevF6JxsY2Tjz+DeLFXCz1Fm687SfU1TUAYLPt5KWXPupOiyfFckLO4XKFiqCjSX8UPpuNO++8s4eQ+0MPPcRPf/xjcg8cwC8ItCoKTWVlAMQLArkOB/45c/jzEMnUZrPx3VtuYXpEBEd7PKR6vQR8PhyBAP81GtnV2UlCSwv5M2bwxZ49SLKM3+cj6tCmcM1FF3HPPfdQX1/PFVdc0e9nBlasQcpejK7yCwSfB3nqXKbnLINeDVxKdByKKQI8LoSsLkhqR9HrwZKANxCH02Nk1xdFNLQYSI+JJkbfRZdHJCE2guKmOKZlZnL66StQBD0b396Mw+EAoLPThRAjkJKUwN42L9CdOlc3K6IokpiYSGJiIrNmzcLr9dLa2kpLS4uWFVDJNTk5GaPRGFIN1e/34/V6J3RTUnfKd6RdvhOTUCdEly/0T3hut5utW7fidDo5+uijQ/YvHU1xh/6OXVtbS1FREbm5uZqgwVAxGFGHiuBmJ0mSDutUfM5QyTa9FQGIUQwIwHadlecMPaUbJUmivLycxsZGCgsLjyiZAuiUKLov76/PjwuBDkQC6FCQ6DLVM+9MoVv8XgFZ1iFJevx+Bb8PdAltfPLJDNrbPUQvjGbJHfms/ds5HMjcT6vQcthn2q0Km95OAkVBp1cQRAWdrlsF+NV/+Kg/KBEIBEhISODRZ35Dc1cRGVOTWbfuUaZOnUpLSwsWiwVJknC5XPzl3Q6q7HEowdVVQYdiNFPsOZHbb7+9R3PRxo0bSU1N5dc33ECiXo+rV43apdeTpNPxu1tvHTKZnnvuuezevZuP2tp4OT2dj9PT+chs5tnoaN4XBJqsVnYGApR+9RV6j4fO9na8LheRnZ049Hquv+8+Dhw4QFtbG08//TQbN27s9/MU8wwCx36HxsVn8a+dDYeRKYCSNRN51nx0idvRzdqKmFqLGNOMLnsfulNaqXIJGGUHkixQ126i0T+djJlLaeqMJBA1k/seeJSI9EXECE7OXbuWhIQEAJIjA1jb/Sz+1jmapvcVV1zRr/SjyWQiIyODBQsW8K1vfYvFixcTFRVFQ0MDn376KV999RXNzc09SiVDgVpvnsgR6jcZEyZC7YtQ7XY7ZWVlYbFcGw0R+/6OrY6NWCyWEZmYj9YsqkqkvZWPrEIXO3QtRCg6Ig9dOpHoQYEduhasgS7MShRer5eyQ1HRihUrhpTCDjf0xJIgHUWb7hMUJBR0OLurmoiI6IhE6Lb4RqcHQRRRgsTcRZ2Cvc6I15uMfsoqCm6PJC0zDWvAis1rZbeyi2M8xzErehaCIGC1WrnppptobNJjtcRx5redRETJeN0i/9og8ee7uutpWTlRXPdMJLmFDhzuW4lubSNJyOKRu4/nhPO+1D5fURQEQ4CXHDncWDiD2Ja9CLJEIP1MGuIu4sHv34rb7dau+eDmopSsLGbNmYO9ogJf8DmRZWYvWEBqfyYQSgCd/Bk6+Uu6ulp4ct37WC1NgIDP56PW4eDXGzbw+OOPE3ngAMa6OjweD1tsNjzA7M5OUgFJEKgLBPiyq4sWQaClowNFUUhISGDevHkD/t0GtU8TBALnnIF+3yvglMClR9GZUBIzwCwxN2kqlh0yOWxDZ4yhcFkOpqgEWmO+xa+v/zGpqalIEcchOg8S11XLt08r5PNPP6az04tx7rc5+crrOfmsi4blhyoIAvHx8cTHxzNz5kx8Ph+tra3U1dXhdDr59NNPSUxMJDk5maSkpAF9lru6ugAmdJfvZFPSGGO4YzNq92V1dTVz584Ni0vMaFrEBROf2oEsSRIrV64ckQhBuCNUtWPY5XIRHx9/WPNRi+DFj0xMr8vGiIiTAHbBQ1SnTElJifbwDKWGFC5M812L19RAl3gAL3oUukUhdERr2rYQDXgwRoIkKSgyGEzd8eB7T5lBELDXp5M7M40kQxKyLOPxemjVtfCpawt12+vQiToefPBBrFYrgiDw98cT+Pz9efzpwZ/z0Vtf8vIzzxIZaeOs76dx8W+iMEaIzLDUkWOtO9S5VEeM7kv++7iRU38UycEGN9+7VMf9fw4gCzU88e4pvPnFnaBM5di5Jkre/hE2m42YmBgURWHq1Kk96qGumBi2NTcT7/PRajIhiSI6WSbW7+eL5mbm6fUc9khXZAyBJ9DLb+P3e6ivOcDFa9zMni5x1/06XO5uy73HH3+cX919A2++fzeyGM++PT62fgIl9RJSBqQIIn5DCpv3O1AAWZLw+/3odDoSEhK45557+MWhmmpvwhqqQYAYZUWZkobsSQO/HyIiUaLj8HfuJ1p/gLzznuTLtx9j0cwY9ElT8Cfkc9Syr4lciZ2OP+/7iNbtRDgPsOzMPL6o9nLit28Gupu8RmLZZjQaSU9Px+12ExUVpWUfmpqaqKqqIioqSiPXhISEHoGAy+UiMjJyTO+bkWKSUMcBhmIyHggEenTDLl++PCxuK+rxR5tQOzo6KC4uJiEhgYULF474pulvxCUUqCnelJQU9u7dy4EDBzTP0qSkJHQ6HSlKBAZEvMhEBVULvMgYENG3uNlWWsa0adOYOXPmEenk7QuvvPIKS08opCatmRqOI1nOJU1pR9RVImJCPHTZKwoEJAm/HIHcIWKMcSMICgGfwHtPmXnn8TQEEZANJBq6nW9EUSQqMqpbrWmqhLnLzJ03dtcx1a7OqVOncvdd95KamM3ll+UTHZVC9in76TJ/iCAqxLhd3WR6aA0IAgoK09J9/OGmKF79Kp11jx2gyxvJGXd8zI79S1CU7nP5ZYWC0fdrpui+B0BWVhb3338/iYmJyLJMS0sLt9xyC+0REayIjCTZ4+lujBIEmqOi+MpoZOcttxzWkCQqO9DL76EIydQ1Oti7X0Cvj2DZEg/nn23g4y+6R1681PNq478InPJd2qz1FBZsYc0FO2jb5YGWAHq9gtvnYFZDKi+804nb7UOn06HX62lqagJgzZo1pKSk9IhAe5Mp9G+f1j2TK6DEJfXoOhYUGQQRTCkcdf5vAOhvcl2JykCacTYSEAmcWDCMC2yIkGUZvV5PXFwccXFxZGdn4/f7aWtro6WlhYqKCiRJIjExkaSkJARBwOl0Eh0dPSr3zr333svPfvYzbrrpJk14w+PxcOutt/Liiy/i9Xo57bTTePzxxwcVWxkIk3OoEwB6vR6Xy8WXX36JyWQacjfsUDHaNVSbzUZdXR0zZ84MG9mEK+Ub3Hw0e/ZscnJyaGtrw263U1VVhdfrJSkpiZSUFPKnJ7HVZAOlOzL1IeMTJBY6YqgrrmTevHmYM9I5KLhQgGlKNLq+2lRHCevXr+eF/7zEkpOqidbHIghQhx6BJAqIBVzdHYiKgM/vwy97sFX72HrvKva22YmK87FnazS2WtMhsoOpqzy4PW6iIr7uZpbp1hHetWMnbW1tREdHI8syZrOZG2+8kQMHDtDQ0EBKSgorT5rNwfQNiAgoQFp7CwhfkymoWRqZ1as6OfGKUxHFWta/cw079i8BRUEUujdOsgJew1y6Ei9lnnkzDzzwAMnJySiKQlNTE7fddhv19fUIBgMfZWayKDaWy849l+def53yzk5kUcTV22gbEOWdgAdFSGRGdiI+n589e/egEM0v7lhFzS0yBy0tOM69nr+7l+KpFEEQeVe+kO9Ne4Y1Jz7Ha4+58HRBbnYsxy3x0OZM4aOtXSQkJNDU1ITX62Xfvn3d88dGP//d+XcSijpZlLuM3/zsscPItL8uZNm0CEWXiBBoRDF0++Wi+BDpwCmsIkkYHw/jvpqSDAYDZrMZs9mszZy2tLTQ3NzMueeeS0xMDBEREbz//vscd9xxI8pgBWPbtm08+eSTLFq0qMfrt9xyC2+//TYvv/wy8fHxXH/99Zx33nl89tlnYfncbxomTFNSV1cXNpuN1NRUCgoKwl6XG60aqnJImq22tpbFixcza9assO0+w0GofTUfiaJIcnIyc+bMYdWqVRx11FEkJibS3NzM9A8t5NQLBAIBnEr3aMhcWwTzv+qioKAAW1YEPzMVc7epjF+byviZqZgysS0cX3dQvPLKK6xfv55pV81FTNTjbnNhlAxEKEZERUclM9ARiYQXn+zCL3fhapV48247b7/5EDs/8vLJS6lYaqKQZR2Kokev95J3Viu76nfh9rgBkJBwC11kSVO4cM1FmlTh9OnTeeqppzjxxBM5/vjjmTt3LoIgcKDzQ2RFBqU70ayTZfrKKyhApEkkMtKCgMRbX56HogjBQZimtOSJOYN169aRmZmJyWSivb2dn/70pzQ0dHcLK4pC+tSp3P7Xv7L4qqv4vw0byJw2TTtOsNE2AILQY9uTOyeXBfPnMyd3NgmJyTz00EMYj7+IuqjlxMhWkqRqEgN70esUXrdfxX45j+QsPXqdjtpGF16fwrEFkbzxxhvMnj2bjIwMAoEAkiSROiuSs34+ncUXRhE1z8qHDX8h+2wXsWndRDjYSI9iyCIQdzEgI3orEL2ViL5quphNh3DKsK+b0cJgc6iCIBATE8P06dNZtmwZO3bs4JJLLsHn8/GDH/yApKQkzjjjDA4cODCidTidTi655BKefvrpHh7D7e3tPPPMMzzwwAOceOKJFBQUsGHDBj7//HO+/PLLAY44MALowvJvImLcRKj9pXwVRWHfvn00NTURHR3NnDlzRuXzRyPlGwgEKCsrw+/3k5OT0+eoxUgQDiebwWzXBEEgOjq6h7Rfvt3OgZ0WDrpbiHL6iQso5OTk4IgTedS4iy5BIlrpviEaRTePGiv5pXcR05TRbbQ49thj2fjqRpKPyUAJKMgBCYfDQUJCAnpRh5M4BM+FyHvKKKncgqXaTfk7HezZeRBBgJkzv6KtLReXawYJCanodAeIjCyldVMUiTNmssu4iylZUzDoDaQoZhZL+cDhUoXQfT2lpKSQkpJCo66SGkE4lLaVaYlNYJq9ASWIwmSp++9YsjeBadOyiYr6nL5YV71Fpk2ditncfY6tVis333wzDQ0NWvf3lClT+POf/9ytlCTLbNq0iTvuuIN77723T0WltOTFKEQhKHbcnmiam5uZMSMDUTmAXzya1NRUEk+4DFtnMya8+A7dL/GCFYc8kzLXMaTpy0GQCcgyNklk+elH0T5/Jlf/9lf88Mw16PV6TBFGjr9yKubpUXTUw2f15Yg6SMo2MP+saOrfjxvSfGwgZi2ycTY691aQXcjGHGrrUjGYkvt/k6IgWOsRGw6A3oCUPRdiEwa/sELEcIUdEhMTycvLY/r06WzdupXKykrefffdEXfI//jHP2b16tWcfPLJ3HPPPdrrRUVF+P1+Tj75ZO21vLw8pk2bxhdffMFRRx0V0udJ6LSySqiYrKGOAoIt12bPno3FYhm1zwo3obpcLoqLi4mIiCA+Pj7sGsEQOqEGj8Woxxlq1GwwGMjIyOgeNygpQWfUEZ8aT21tLR8KHtqzdcRLevT67kjXoIi0CT4+1jdzuX/WsNc6HJjNZh566CEe0D2vcZEkSXQ42oiLigSjwP69Dbxx03/p6OjooTE7bdo09HqBwkIPDz98HWazWevcrfuqDld9F8nLkmib6uDSsy9lUcxiIoJae3qrJgUjST6KGv6KIMgoio6W6ARaYhNI7mwHRUaRQZHB5xd54IUEYj88yJ8e0nP20W+wtXJlD0s3WQFQ8De/jNV6ImazmS1bthwmPBE8K/vXv/6VDRs2MGXKFH72s5/x+9//nvr6ek0MZfPmzVxw/vkEdOcge/5FQ+3neD0+bM1mUjLO9or0PgAAiUZJREFUICCeDoCiiybKGI0RkALdyS1BUBBE8AUicDQLIAjo5mSTNN/A83vaUJIOUFyxlbizT8T0wedMnxdP1pwYPG06xEMbClmCTovEtAXx3HjW3aQmDcHxRRCQTQuQTQu0lwLyLkz9dfpLEvoPX0G/7SNwdQAC+uQ0/Kd/B3n+8sE/LwSEIuzgdDo1icO5c+f2MHMPBS+++CLFxcVs27btsJ81NzdjNBq10SEVaWlpNDc3H/b7kxgc4zbl29HRwRdffIEoiqxcuZLo6OhRq3FCeAnVbrfz5Zdfaulpg8EwKunkULp8g1O86jGGm4Jub2/nq6++IjExkcLCQvLy8li1ahXitGR0goAsSXR1ddHV1YXP6wNZoUHoGtZn9Lt+FPaJe3nD+Br/MD3Ph4YPsAs27edp5jQW6/PQGXQgQIwiEe/3InldiC4XBXc/SHKrpQ8y1R9GRGazmYcffpipU6fibnRT/+8GSh4r5cFrHqLD2jHkNUco6Uz1X4JCN8HLCpRkzaUqaRq2zigkEvms3Mx3fzWVreUSH39cz8/vmMWZS59jYXYpggCyLCLJIigCkdIe9JZnuOmmm7BarX065Kjf4ZVXXuHZZ59FEAQaGhq49957+dWvfqUpVl166aWcc845+Px+am1ncM/DAlt3R7CrLpaHnhH411uLQOiWwVxk6qTBJuDx6IiMkomKAr8+ClHxk2HZxjRzJBmzE5g/34SlVeSTrR423vcA7dUHYck84hbmMW36FJYVFvQwPQeQAwrzF8wjMTn0JsOBZDh15V+i/+QtFKMJOXsu8vRchE4HhrefR7CPDnmEIuwQTtnBuro6brrpJv7xj38MOKoTbqhdviP9NxExLgm1L8u14brNDBfhaEpSFIWamhpKSkrIy8vTlI9GY14Uhh+h9mW7NlwytVgsFBUVMWPGjMOUnTJ1MYg6kYjICKKjozEYjciKjF+S8NXa2blzJxaLZUR/x636L3jL9Cb7ddXYBCs79GX8y/QiDeLXDS2n679Fsi6ByBgDxBrxxEUg6UUWv1jE0qJ93OeswdfZTYj9kamKYFJVUVdXx5YtW4a1blPjSbx+VxRlHwTYXySx6R8S99y9APeUXQTm1JN9/FaEyMXExsYiiiIb1h/gmEIXyQcvJs94H/FCBYumu5gX8Ryznd9Hh1t7YFqtVq666ipuvvnmw77Dscce22Pt9fX1/O53v+Ouu+7iJz/5Cddeey16vZ6WlhaeeOFHZJ/cTsTiRHTzk1h8fhKFJ3cLDNhsNsoe/ymK5SB727LZb8+ipnMKje2pxBz4kIzOLRR8q5O1F2XQrEvg72VZNDijCAQCtNbWIwFJi+bx4ytup6JkPzGpPZNjMak6ij6toNMa+j04EKGK5V90d1MnpnaH+zodclY2QpsNcd+OkD9zIISi5RtO67aioiKsVitLly5Fr9ej1+vZvHkz69atQ6/Xk5aWhs/n09SiVFgslgGNOQbDJKGOA6jR1u7du9m9ezf5+fk9GniG4zYTCkbalKQqAx04cIDCwkKysrK0n40moQ51bCaYTEMhUnX2d9euXSxcuLBPreTjAmmYFB3tgh9JUBD0It5IHbF6E2ti52AymaiurmbTpk0UFRVx8OBBbZB9KOgQOthm+ApBgUglkggiiFAi8AgePjFsQTmU6E1S4vmB5zxOfbaIGV/VkPNBJWf95FWOu+8D3IJIhuTjiulp3H777QOSqYrepHrVVVcNmOLtDTV1/MVbzbz0Cy9/vc7LrjfS+d0vHz0sGk5LS6OhoQG/308gILN9q5WEjnd58gcV/Pbcj/nDdSmYk6O06ymYVC+44IIhbwju/tP9ZJ+4imadREtbK3985EYWnWTFFCnQdBA67NEsXJyLkvJf6uyfcdNNN9FSVcy0//yOuG0b6ayuxVe5j7xdf+D/ptxJYqKM12Yg4kAN34s7wMUz6kg2dEv4BQIBOjraOf7EE/j9b+6n5E0bCJA000Bsmo6UWQYCXoXtr1n5yc23ft0oNUwMRKiCsx3F2CtKE7pT1IInPNmT3hhrQj3ppJMoLy+ntLRU+7ds2TIuueQS7b8NBgMffvih9p6qqipqa2tZuXJlWNbwTcO4qaF6PB6Ki4v7tVwbzTnRkR7f4/FQUlICwMqVKw9Lr4ymk81QiHoozUeDvb+iooLW1lYKCwv7lUWbpcRytX82LxgO0H5IoydeMfJd/wyWRJthNsyePRu3243NZsNut7N3716ioqK0mVdVUKIv1IoH8RMgMqh2KSBgUAxYRQsunMTQvbaYdi8nPfYxx0oy7R6vJjAvCd0yg5ecdBwpN9+szToO1jCmEtOWLVuGRabAoDVOFeoYRTAxCILAxRdfzFlnnUVXVxd2u50bb7yR3//+97S0tKDX6zlw4AA33ngj69at6/N7qGu/6aabqK2rQ1oxnwNHzefW3VtYtjifHR/+h8LcNiJjFBqrRWJiYjh65SoiTBE4A1W8+Z/fUVfX2b1G+0Go+iOzU1NJToIfX1uDEpBIdZmYog8g2XwY41q5NMtBis/D/fvzsOsTkAISf7z5NqZ5FSLrI/G0yyw8KY3jzljOx299xY4PmrHt9QOHj/QMFQMRqjw9D/3BPShyVnertCIjtDYiuB0oell1MBjW5w2GsSbU2NhYFixY0OO16OhokpOTtdevvvpqfvKTn5CUlERcXBw33HADK1euDLkhCbq7fIVJcfyxxf79+4mIiGD+/Pl9+mSqpBRu/8/exx8uHA4HJSUlJCcnM3/+/D5voLFK+Y6k+UiFz+ejrKwMWZZZsWIFJpNpwN8/WkplqZTEHrE7pZorxxHR6+aIjIxk2rRpTJs2jUAgQEtLC3a7nR07diDLstYdm5KS0qOZS6DnaIcCBPDjF/zo0CHwtVVeeU0tCyOjEVus3cP+h6BXut1bNnz8CZdfZh0WOZrN5mGTKXQ3LHV0dLB+/fp+yVSWZf75z39isViYPn26Nv5y++23a/XRqKgo7bzNnz+fH/3oR9TW1uLxeNi9ezd/+9vfuPjii0lJSTlsU6eS6rWP/ZH6o/PA7cVVeYDNB+pQMlOJSpmKJFURExPN0atWERkRidvjpvrAfgL4MUUb8bllIiIiSElJQafTkZHeRZrZQHbicnSVX9LuFXB5fJhMUURE61ic7uOUCJl/udPxfLUDd8U+ag0GZs6cib5jCj847kFSo1PJO9HGzf++GTi8+3g4pDpQE5BUcCy6yiLEA7shOgahsQKx3Y6SHI9hz78RfQ34V14OkQPbJg4HoTQluVyukKVIQ8GDDz6IKIqcf/75PYQdRgIZ/YjF8eXxQ03DwrhZ9dy5c5Ekqd8HvnphSpI0bGPqoSCUGmpDQwMVFRWD2sWNlmjEQE1JvT1MQ2k+crlclJSUaDvdoT4cItCxSE7s8dorr7zSZySo1nJUQ/COjg4qKyvZsGEDy5cvJyEhQYteZ0TPwKgY8eJFhw6P4EY6JH6vQ+Qzwya+5TqRHSU7aG9v5wVDEpfIFqIECS8iehSMikK1PoK3HF6Kb7ppwFRvONHXaI0KtVywfPlyIiMjef755znqqKM466yzNDLtjfT0dJ544onuLuS6Or773e9yxhln0NjYSGVlJTExMdqmJD4+HkEQMJvNnPKzG3l5+6d0HTzUiNMlQU0TTelTWJZUz6I5RxEZ0S0m0NhYjzfGSFRBKqfn6RG8EZy9+Pt89tIeNmx4lojIeKZPjyPZKyPEx9HcaEeRZQSnE79kpKsrju/NMPC3376Pe0clerqvS7vdzjPPPKORZZ9+riGQ6kARqpI2Fd9F16P//D30n/4LwdeJtHAxcu5cwIeu+nOUyHgCKy8b0mcNBaE0JYUzQu0LmzZt6vH/ERERPPbYYzz22GOj9pnfJIwbQh0s2lJJdLQIdTg1VFmW2bNnDw0NDSxZsmTQOTFRFPH5fAP+Tijo75z11Xw0XLS2tlJWVsaUKVPIyckZUVZg/fr1rF+/no0bNw5IYIIg4PV6eeihh6irqyM5OZkzzzwTu91OdXU1ERER5MzJZXfWLrpElzYaIyJgUvTs1u2kzeogzZ3F+vXrafAY8EWlcaHHTgwKpqhoisRI7hJTugXcD9UfQyVVGT8dui9wC/sxKEkkSMehp/8u1b6iW7/fT2lpKYqiUFhYyNFHH01ycnLIaejs7Gx8Pp8W9ZeUlCAIAikpKSSmJOPJNHH0oqX8t2L/1+c9IFHRMoXvzV6ELqqZgNI9yxkxGxT3FKR2LyajkXnLc2k2fs4p1x6P0/ltZs+eQXLqpwj1W2hvd6DX6xAEmegoGatNz7Lps9jf4mOq00edwYCiKBiNRlJSUrjnnnt6kGV/pDockfqBCBW6nWoCx5+OzrkdKaYQohMO/cSEEmdGV7OdwOJzICqh32MMFeo9GEqEOtGdZqQwpHwnm5JGGWq6crTqqENN+fr9foqKirDZbBx11FFDGroeLRWmvgi1d/NRKGRaX19PSUkJc+bMYfbs2SMiU1W9CHo20PQFbe7zUL3x+eefZ+vWrSxZsoTjjz++26DcOo3U/akIMuhkEZNkIE6OwiQbkQIS9qxmnnjqie45S0FgQ2Q6N80/mfbHX8H/2hekvfklphlfz8MOtqZgBOikWf8qe42/ZZ/x9+yOuJwa42+xGl6g3vgIuyMvp1MsHvK58Xg8bN++Hb1er41XAX02F/WHvtLQRqORjIwMFi5cyHHHHcfixYsxmUzUHqjBsqOCj4u+QgoEtIY2xWSgwx3BUw96oGMRAjISATqUJBIj5pAZM4eCBStJMkxBVAxUOD9m2cp8TjrpdByd5/NlpQPRGCAtViIpUcTpjCIv92RMBshecSnXXnstM2bMID4+nqlTp6LX6w9XauJrUh2KfVpfGIxQAQSfCxQ/RPYkLcUQhRDwIPjC06Ck3pfDJdRwjs2MFSTEMHT5Thhq6oFxs+qhOs6MJaE6nc7DZmOHgiPV5RuOTt49e/awb98+lixZQmZm5ojX2Htsoz8C602m0N28o4qj63Q6zGYz8+bNY/a0HCIEPdEBE3qfgNftxePxIMgCDq+DJmsjAIJeYNYxufzsifuIP+5klCkz+u16HYxUfYKdiohbqDM8Q5vuC9p1/8Ur1KMgHxLcNyLh5KDx90i4Bz0vLpeLbdu2ERcXx+LFi0fNXUQ1xp49ezazZs2i6vnX8HY6kaek4tOL+CKNBLJSYW8dVe/s5s4rtqJvuJ5Y/w8RSCVCSSU7O5vIyEgUWcHV4sevc5FXMIOIiAg+2tTAr9YlsbEomaZmI15bDLPSlhAteCHtBMTMU7TGl40bNzJ9+nStHKGKSgRDJdUbb7zxcOu2QTAUQlXiM1Ei4hGc9h6vC047ckwKSvQASkvDXAsMn1CdTueEj1C/ydKD44ZQhwK9Xj9qs6iDEarVauXLL78kPT1dm+saKkarhqoStfqAGgmZSpJEWVkZNpuNwsLCsDVG9Edgl/zoKa76g8TqO0388I8BLv/xI0PqhAVIVlJAEBANInq9HkEQuq8NxY+jpoN2ewdJJ6Wx8uXTyH1wKRuz/sPfTK9iPWQKHspsaYP+n3iFJgRM6IhAoPvvqRBAQUJARMREQHDQqds64Dlpb29n27ZtpKenD9tYPlSoG5aWz4owvfslhjYXibOmc8IZp5FQVU/g5Q9wtjmoqqriB9fcgr3Rg6gYkOjWa5ZlGbvdjiwGiI9JJMrQ/dC/4IILuOiia3n6gwye3HoUCYW/RZdzJYG5PyMw+yZEQxQGg4HvfOc7LFq0iHXr1h0mKuH0O6gXitir/y8HdZ8TZSYk+7QhEWpMMlLucQiuVoSWgwiuVkRbNYIsIc07FQwDN90NFcGNgMOBy+Wa0F6o33SMmxrqUDDaFmt9dRErisL+/fvZv38/CxYsICMjY9jHHs2Ur8/n69F8FAqZejweSktL0ev1LF++POwyicFjG3V1dbTqV9PYcT3bt8jExMh8VqYgSLcyRecjXvps0LnQGfIsUmUzzUoTyGAyGQnoJCKJJNuSw5STDzL//woxRZlQfDKSTqFW18iLxje5xnsxkUQctqbg2VKn0IaEn1glGREdCgptuk/o7jMWgZ7XoEwAHTrU2ZwAzn7PhdrNnJOTw7QgsfrRRO/oX1dezXSnxK8eupTM5FR8307nxk92UeurJRAIUFtby3Xf+wnXrz8Fw9QWYkijq92DYJCJSFJIkrKJVL7ecAU3XMWYzfR3h4qiSHpaGn+59yfs++pVVqxIo8NXTmViGU6dFQ5NEjcoRczynkyqPGdYhDQUQgUILFmLEhWPrmozgrsdOWkG0tyTkGYdPeTPGgzBZhNDhTo2NdEjVAk9woi1fCcUNWkYN6seDylfoAehqt2XDoeDFStWEBcXWkv9aKV81ZpyMJkOFx0dHZSWlpKcnMzcuXNHLVpSCexHN95JRctVKOgQA1a6HN1pkoCQTLPxWuYlN/Dwww8MXEOUYFbJXDyZPrrSO5EFhVgljkL/Ucw/bjGuBTq8sRJRQgSKCJIsIfkCtOkdvFX3Hwr8C0hNTSU1NbVHU49DsPCV4VWsuoN4EQkQR7o0i0WBZSiChDbMinjon3otHqpFEui2L5f71l9tamqioqKCefPmhbQxCwX9pdIf/vMDmJMPnWOzmXXr1mm/ZzQaWFnYzNTmp8gzi3SKMdRE5tKim01s5zSmC8ciGHrer0MaJ1JkdNX/IL3u32QkdsKeMhrzkumKSyVWXIiIDlmRcQlWDhi3EOvMQk+E1gsw0LWpZmqGdP3qDEjzTkWacwL43GCKBjG8KcZQRmbgf6OGOumHOkEwmvKDwWM5oijidrspKSlBp9OxcuXKQecvBzt2uAlVURQMBoMm5ZeamkpKSsqw1mm1Wtm5cyczZ84ccOwnXDCbzVzyg4f48P4IdIFWjZ4EQKd0Iukz+dFtj2A2J/Z7DJ/PR2lpKSBwSdQV+D1+fIKXOCX+UJQI+iwTEj4ERASxe6Nh0BuQcSOm6ums6qSmpgaDwUBKSgrHHXccLqmDD6OfxiU4aCcGJyYUZFp0+6jSHWS5kkmUsB8FBQGh25mFTlQylfAAkCAdS6RyuAnAwYMHqa6uJj8/n+Tk8NTphoL+RCVSzcn4cCBiRE9Uj4h9WX4x37nAhiAqeFsTMCd1kqYrp7FjAfXVC/mqo4y4uDhtLCc2NnZI145oL0J/cCOKPhY5fio+vUxrQhuR7Tb0cQ4UUyo6QSQaMy7RgsvUTKJ/JoqiaPd9sGRmMHmGtKnUGSAy/KYVEJqoA/xvdPl+kzGhCHU05QeDCbWzs5PS0lLS0tLCErWFu4aqNh9lZmaSkJCA3W6noaGB3bt3ExcXp0Vf0dHRfT7oFEXh4MGDWhr7SMxhqkhJTiAmWoervbdHqkBcbCzm1Cj69C2je/deXFzcYy7WiJHoXrZw8UosTaK1x2EUugUdMmPSWbx4MbIs09bWhs1mo7KykpaMKpzzW/HJ0XTqTKCZq8koSOwUUimkGYUu1K2RSAQGjEAAnRJDcmA1aYFLeqxFtR9saGigoKCA+PjQxd9DQV+iEpHp7dSJm/ELDkTFQLQyiySpALPZzLp1v8bVcgL+AMhKGsnJmZgMUUADM+I/Y0rhbXh9Oux2O3a7nZqamh5WdcnJyf32F4i2rSB5UWK7NxyyKKDoTIgBL4LbimI6ZHaOCALo9CIm0dRD6UvtFVChpw6DXIwgtZAW70DHfCBttE/roAhlBtXn8+H3+yc8oXZHp9/MsZlxQ6hjnfJVhQ/q6+s5cOAAc+bMCVuNK1wpX1X5KFhGMDY2ltjYWLKzs/F6vdjtdmw2G/v378dkMmnkmpCQoK2jsrISm802Jg/46UkWAm6ZgBCPXmlBoJu6JCEWuWsPiaYY4HCCb29vp6SkhIyMDHJzcwe8XgoCC3jb+DFevBgwoqDgFbxEKCbmS7kAmom6aqT+iVBHOwIuofuW6PkolFBQaJZzyUYCoRWDEk9y4ESSpZMRkBEwaEpNKlTJxra2NgoLC8es2SS4xhmV5qRZ9xGgYFASkPHRJhYh4SRdOhVzSgtyTBwNDTFkpmd1izwIgJIE2BCoxmRaSFZWFllZWciyjMPhwGazsW/fPsrLy0lMTNQItsd3lrpQhK8fOSa/QJxbxB6lwyD5tdfdggOTEkuc3N1lHpzuVVO7kiQhBrZi9P0NQWlFkEWmJ9sw+VrxCdch6LOPwJntH6HOoAKjKuxwJDDWhHrvvffys5/9jJtuuomHHnoI6O4TufXWW3nxxRd7KEKlpYV38zVuCHUoGM2Ur0p4NTU1FBQUhFX+KxyE2lv5qK+GB5PJpD3oJEmitbUVm81GeXk5siyTlJSEy+VCEARWrFhxRC2doDvFfMdPbyLFOQ2P6Q4CwqEZXgH0soPkjj9xyy1thzUkqanpoTbyLJTm0ubvYJu+DI/gQUAgTonhLN9JxCmHP6wEQSBen3zood2TFBUUpij1xAkdCCI0okfEwJzAaZilkw87lgpJktixYwcej4fly5ePqGQQDlxwwQUoKDSKW1GQiFKmHPpJFDrFhEuswSM342vzEykqZGSmYDJFBh3BD+hR6LkpEEWRpKQkkpKSmDNnjqY3rOo0R0REaOWIlLg56Jo+QpH9IBoQEMhuEnFlSbQniegEG5LgQ4eRaYFjMHF4pKYSq070YPC9DqKXgDIPe1sLASkeQa5B530Nj/RjRJ0u5FnskSIUQnU6u5vZJnoNdSyxbds2nnzySRYtWtTj9VtuuYW3336bl19+mfj4eK6//nrOO+88Pvvss7B+/rgiVEEQBnRPGa0I1efzaeL2CxYsCLuW5kjXre7I1XMzlAeETqfTolNFUbBarVRUVGjEvGvXLu3nkZGRgx5vpAhujomnDpP7JuTk88lbfCp7dryDYH8Jk9JEXR091Itqa2vZt2/fsFLTIgLHB46iILCQBl0zBkXPNDkLwwCXe7a0lArDFoz46EKPQndglkwrcUJ7d+VU0iP5RWSDj926fxDlnkaqIfewY6l1XlEUNUeP8QCFAD6hBb3Sk6h0RCLjx+qoZV+xh2NXzCHCuA9FiQVBD4oPATuycDQwcOQXGeVh6nQ/U6flIAWiaG1txW63s2vXLvAJLAqkkWDdgT4qGVGnI6mtnXzmU590Ip2Kgwg5nlQ5jyR55oCfI0j7EORGZHEWdmsLgUCA9PRMBKLQK3sQBQeynHjYBjRU5bDhIlQd3+jo6DHZAIQTAUSUEUeowz8HTqeTSy65hKeffpp77rlHe729vZ1nnnmGF154gRNPPBGADRs2MHfuXL788ssRGQH0xrgi1MGg1+vx+/2D/+Iw0NHRQXFxMQkJCURERIzKw28kEepIxRqgW8B/9+7dZGZmkpubi9vt1lLDe/bsITo6WiPXuLi4sDcn9dVpOntKgIcfPhqzOQqr9Vhuumkj6o/r6uq48cYbuemmm/B6vSxdupSEhIRhf24s0eRJhzcI9YU4JZVVvov5zPAKTkE69FCABByHfkNHhBgJxu6uYRkPRZZXSag/XtMajouLw+v1UlxcTHR09LD0j0OC3I4g7QfBhKLL7Sa/ASCgQ08MXqEVlK9T/TI+uro81FXVsnDhCRij/4Ai/RSBWtT9rcIcJPHn3ZZnfUDBiSz+HcRPUPAgEIcgnkaq+XzMZjOKouB0OmlryqKj5k2iHMXo9SClnoLBfB4zlWwE/3Cuu+7yh8VqQ5IgIyOj+1zLIqIiYjIZkTFp9466kYT+G5vCiVBqqE6ns9++h4mE7pGX8IzNdHR09HjdZDL1m+358Y9/zOrVqzn55JN7EGpRURF+v5+TT/46o5SXl8e0adP44osvvrmEqtPp8Hg8YTtec3Mz5eXlzJw5k5kzZ/L555+PugDDcOfSRkqmjY2N7N69mzlz5miSbsGuJX6/XyPX4uJiRFHUyDUpKWnEhNDv2EZQWrf3TCjA3r17ueuuu3j66adDItNQME1aSIY0m2pdOTt1e2kS2zAIMjp0GIns9roRQK/TExBEMqYnY9ZNx263U1xcrI0xJSQkMG/evNEjU0VB5/03Os9LCLId0CPrcwhE/QhFn9fv2wRE4uR5WHQf4RNaD9VQvdi7qmlv0LNo1vGkJptRMBPQvYCgfIRAMwpTUYTjQeiVLpdaEX3bAZlA5DYU3eegJAOpKDhAfB4ZEZ18IYIgHKr3F0BuQQ+9YXvFQYTdtVrddfPmzZxwwgkDZiQCZNPWqkMJ1OBoT+j2H1ZkBLkJWb8chGTEIMIMrr32bmwayljOcBFKyvd/YWQm3AgWXwG46667uPvuuw/7vRdffJHi4mK2bdt22M+am5sxGo2HPUfS0tJobm4O53LHF6EOJeUbjhqq2nlZU1PDokWLtML0aCkaqTfWcNJAI/UwVRSF6upq6urqBhzVMBgMZGRkkJGRoXW+2u12Kisr8fl8JCcnawRrNBqHtQYYuheoSqo33HADe/bsAb6W55s+ffqwPzdUGIggTyokTyoEoNT4GM26r0AJEvs4NH+aRI527tra2jRnHo/Hw+bNm0lKStKi13Cm1UX/p+i7ngRBj6KbDvgRA7swOO/FF/cgiP2PHcXJcwjgokPcSZdQR2eHm84mEwtSziM1LqhBQ4hHEc7tp98adF1voe98BEGyAX70HW3443IIxKQeimKjUGgA8X0UeTVCr9qrqjesXnft7e3Y7XYeeeQR3nzzTTZs2MA999xDXl7eYVFbIBCgtHQvgm8ZvtYn0Ikd1OxtIDs7A0WcimRae1gkrdVeg+7F4Oh1sLGc4SLUGur/RoQavqakurq6HvP/fUWnqnToBx98cMT7QnpjXBHqYAjH2EwgEGDHjh04nU6OOuqoHi3qo2kEDkMj1KE0Hw0GSZLYtWsXHR0dFBYWDrlrMLjzNTc3F5fLhc1mG9ZITm8MxQtURUxMDJdeeimPP/44HR0dPdSLxgrZ/jOx6XYgCW4ERQ8oKIJEtJJBhtSdKlIbv2bPnq3tqF0u12Fp9WAT9ZE8NHXe9wE/ik6tZxpRdDkI0l5E/5fIpjP6fa+AjmS5kFgpj311pTib21g69zjiYofe7S34dqHv+CMoXmT9DKAdZCuG9v0o+gykSFW0Ih6FVqAF6L/DWdUb/vDDD9m8eTMxMTG0trbyy1/+ku9///uYzWYteo2Li2PHjh04HA6eeWYrOiWWhbki8bEWClYczfJv3QLi4KIZvTuH+xvLCTV6DbWGOtE7fEEVZQiPsENcXNyggjpFRUVYrVaWLl2qvSZJElu2bOHRRx/l/fffx+fz4XA4ekSpFouF9PT0Ea2zNyYUoY6U8NQ5RpPJxFFHHXVYxDWaEoHAoMcOpfmoN7xer9YQs3z58pCiSujeqcfExBATE6ON5NhstgFHcvrDQF6gKtSxmNmzZ7NhwwY++eSTMSdTgHglm2Xe29ir34hDtw8BPWmBo8gNXICeSBoaGqisrGTBggU9WvCjo6MRo03YZhqxKEZcHjcJdjuxFXVE+kSNXJOSkoZdtxekhsPTr4fqp4Js6+MdPaEoCvt219HSAsuWnjTscR6d50MEuR1Zn3MoEoxA0Uch+t3oumqDCNV5KDJNGNJxjz32WDZu3HhIrclIZ2cnL7/8cneKTw5QubsCj9eHy+Viw4YN2Gw2RDGCgw0RTJ06lfOvuA3E4c9U9zWWo5JrqNFrKDaT/ys6vgF0iEdQKemkk06ivLy8x2tXXnkleXl53HHHHUydOhWDwcCHH36oaURXVVVRW1vLypUrR7TO3hhXhDrYrn0kKd+WlhZKS0vJzMxkzpy+NUJHK0INljLsD73nS0OJYFRBisTExLCLrptMJqZMmcKUKVOQJImWlpYeIzkqQaSkpPT5IBmIHNWxmFmzZmnp3fFApioS5dks992pqS+J6FEUhQM1B6ipqWHJkiWHdYb7kPhAf4B9YhuR6BFi9NTFKGRNS2dRSypdVgfV1dU95jZTU1OHVEOTddno/JuBIDcgxQ+IKINEZ2qHd0dHB8uWLQspFS3IdhTEoLRqFALxKIITQXKg4AccILSBdDECQ5Ps7KuW7rXs57/3XsPVq48hrsOFJWIKT/9rM3V1TQQCAURRZOrUqfz613eRkmIHvqB79GkhMJ2v5SKHhv5Sw8EGFMG/21/0Guoc6v8CoR5pqEIvwYiOjiY5OVl7XXU8SkpKIi4ujhtuuIGVK1eGtSEJxhmhDoZQCE9VBdq7dy9z587VGnP6wmjVUAVBGDD6DUfzkUpuM2bMIDs7e1TrMKqVmtq92d7erkWuO3fuJDExccgjOXV1dezdu5f58+eHfcg63NDRHe2rNnfNzc0sW7asT2WbGrGd/aKDdCUa46HddiIy9aKTpqRElsXPZvbs2bjdbmw2mza3GRUV1SM13NfDWo5YjRgoQghUo4hpgB9BakLRz0E29P+ACJ6NXbZsWcizsbI+p9syQJFAOEQa8jQEuRXZGAHUIBAL0hpE+aJhHTuYVLua9nNWcitpXh//fs1GYcESOir/yzJkrFHJ+JXu3//JLTcisJ62liIiImQMBgMGQyqC7tvAGoZLqsHoT1Sid2mmd/QaKqH+L6R8JXQoI6SWcGv5Pvjgg4iiyPnnn99D2CHcmFCEOtwaqrobt9vtLFu2jMTE/ps1YPTdbPoi1JE2HwHarOa8efPCXhMYDIIgkJCQQEJCArNnz6arq0tLDQ80khMsyRfqWMxYQL2m2tvbKSws7DeitAouFBSNTAF0iJjQUS90sozuSDIyMpKvvvqKY489lkWLFmmdrzt27NAif/WfwWDAarWyZcsBLjz7ZvSeFxGkBhRBj2xcRSDqGhD7lq3rbuQpRZblEc/GSpGno+t6DTFQjSymAAKibEfRzUOO+AU6KRaUNARCuxZVUv37Ty8i3dfELoeAIPpo+qQYkyAzO9LH1AgPgdTcQzX5SgRlHz7/NLq6IujsdCGIzZiMT9DpiiE+fvmQ9YYHwlCjV0EQCAQCw/48p9P5P0SoYyuOv2nTph7/HxERwWOPPcZjjz02ouMOhglFqMMhPI/Ho4k1rFy5ckjdX6NVQ4XDo19VRjDYN3G4N6Asy+zZsweLxTJuSCkqKorp06czffr0w0ZyVM3X5ORkmpub6ezsHFNJvuEiEAhQVlaG3++nsLBwwAjPgK7PDlkJmYigh8X69etZv349Gzdu5OGHHyYtLY20tDQURaGjowObzUZNTQ27du1ClmUee+wxbDYb7e1Xc/VVjyBIdSBEoIiZ/c6IqsIler2egoKCkY/z6Mz4E/+EvvMviL4iQEEyHUMg9lrQL0Lov1F/yDCbzVyz5njef6UBQQxoGwCvImIQYG5mIt//U3eDm8BzIMgYjWkYjZCQEI8UMBMIlNHZWcT27aJ27al16+HWN/tCf9Gry+XC5XKh1+vx+XxDFpXo6uqaMPfCJPrGuCLUodRQ+/Is7Y329naKi4tJTk5m/vz5Q36A6HQ6vF7vsNY8VASTde/mI/VmGw78fj/l5eWatN2RUDsaLvoaybFYLJSXl6MoCikpKbS3t2MwGEJunjpSCCalZcuWDfpAnibHUazT0yq4SVS6N3NO/AgIzJS7MyWvvPIK69evB75u/Ve7oAVBID4+nvj4eHJycqirq+OGG26grq4OSZJ45JFHcLlcfO973+tuCuvn+vF4PJrQxMKFC8NWV1cMs/An/QmkVkACMaVfQg8Fbrcbm9PL8oJF1H8S3HDSfc9878rvBzW4OYGeEbdOr0enj2Da9DSyph6v6Q3v3bsXt9vdv95wiFDPq9frpby8nMzMTFJSUnrob8PAjU0ul2vclz2GgvEQoY4VxhWhDgb1ITZQB11jYyO7du0iJyeHGTNmDIuojkTKNxzNR6q1XEREBMuXLw/Lbnu0IYoiUVFROBwOkpOTmTlzJi0tLdTV1VFRUUF8fLyWGo6KihpXs3hut7uHy81QSCldieaoQCZf6ZuoFzoBMKEnXzKTc4hQg7taARqa6vnFQz/hZ7f9HzOS8rqFJOhu2rr99tux2+1aitlsNrN06VKtKSw5OVkjCHVz4na7KSoq0oQmRkUVSBdemU7oXvf27dtJSJyNdcsbxOsDtAf0CChkmXy0BvTc8/TL3DP/xEOkuhAoAgJ8/UhzIyAiM3NYesOJiYkhn6euri6KiopIS0vrYeAwVFGJ/5WmJEnWocgjJNQRvn+sMP6fxEEItljrTSKKolBVVUV9fT35+fmkpqYO+/ij1ZQUfOxwyAiWlZVpN+1E0f3s6OigpKSEtLQ05syZo0VgM2fO7DGSU11dTUREhJaeG2wkZ7TR2dlJcXFxj3UPBQIC+XIaU/1xNAhOZBQylGjSlGiNKOPSBO565kL+8fd/Yvd7WHBJGqJJz32vb8CyLYU5cQs4/fiZPPnkr/sVx1AUhc7OTmw2G7W1tdrmJC4ujqamJtLS0sjLyxtXG5SB4HK5KCoqQq/X84d/vMf0DoHFMTIpkR4UoM2vZ1N7AnvdlqCI/ngEvgR20z2iIyHgRGEFUHjYZwQrhQUCgR56w4FAQBPkSElJGbJQgLp5MZvNh7khBdde1Ui1L1GJxsbG0ZWqnMSoY1wR6mA3vUpCvUnP7/dTVlaG2+1m5cqVIe/yRjtC9fl8IyLT5uZmKioqhuy6Ml6gdiD3Z2Q+2EiOGrkO5LU5GmhtbaWsrIwZM2YMO9sB3aSaokSRovRsXFJQqNFv5KDhdeQIPytuNNIqJNPeLPLIKek07TYiCAqb2MlfHtxBeroedX/YWxxDEARt+H3WrFl4PB7q6+upqakBwG63U1VVRWpq6oiiryMBp9NJUVERJpOJhx56iPr6BmpJoNIdxcIpSVx1zQ/4zRP/YK+7Wy6uZ5r8pwj8B9gGGFA4GoVTgYFLIXq9vkfHutPpxGaz0djYSGVlJTExMRq59ifIoUbUqampg1oLque/t6jEJ598QklJiSbePpEhBXTIgZFtDJQRvn+sMK4IdSjQ6/U9ZlGdTqdWIzrqqKNG1L04Gk1Jag0lNjaW3bt309DQgNls1tSGhnqM/fv3U1tby8KFC0OKvscK9fX17NmzZ8hjMf2N5Kgzm0lJSVp6biR1Y6vQyXZdDa1CF6lKDMuk6SQHWbtZLBZ27drFnDlzunViwwi7bhs1ho0A6IjAJUQAAu/9PoHm3UYMJgVR10283gA0Ns4lNtbK7NlJAypNQffDva6ujpycHKZOnXpY9BWcGh5rS7lgqGQaERHBgw8+SH19vfaziPRZXP/n7u99b96qHnOqPUn1UuDSkNfwtd5wLDNnzuyhN1xSUoIgCD2M1A0GAx6Ph6KiIlJSUoaVwVAhiiJbt27lO9/5DuvWreOHP/xhyOsfL5ACeoTAyKhFGeH7xwqCMpB47hGGLMuDusls2rSJxYsXk5iYiM1mo6ysjGnTpjF79uwRp7UsFgvV1dUcffTRIzqOit7NRz6fT+t6bW1tJTIyktTUVMxmc78uL5IkUVFRgcPhID8/v8+Zx/GI4LEY9e81UgSP5DgcDmJiYrTodThjEbvFJp43bsUj+DSbtmjFxJW+o5kpp2qbgOFYxg0HZcZ7adGVoD8UPdUSiSQL3J4xDZ9LwBBx6JYUIOCR8XUJ5OVZeOednw+4HjWqz83NPWzeOjj6stvtdHR0EBcXp6XWY2Jixiwt3NnZSVFREdHR0TzwwAODaj8PxXAh3AjWG7bb7bhcLmJjY+nq6iIpKSnkhq9t27axZs0afvOb33DDDTdMmNR8X+jo6CA+Pp7opv0IcSN7TikdnbgyZtLe3j6o9OB4wrjaBgzlYlLVkvbv3091dTULFiwgI2Nw7c6hIJw11OAmBLWjLyIiQkttBgIBLbUZ7PJiNptJSkrSUsRlZWUoijIuTKqHit6zmuFqtOhvJKe2traH/2tiYmK/tSg/Eq8Yi/EIPmIUEwICCgpOwcsrhmLOrZhFfW0dS5YsCcsmoC94hVaCxQb0KPhlgYBXOEyDQFG6m2ePOeb4AcmiubmZXbt2MX/+/D5nkXtHX16vVyOHmpoa9Hq9FvmHw2VoqFA78mfMmEFRUdGwjBR6R6pbtmwZNYUtVW84MTGR2bNn43A4KC0tRa/XY7fb+eyzz7Todajnr6SkhLVr1/KLX/xiwpNpMKSAiDDilO/4LU0MhHFFqEOBKIpUV1dr4yLx8UMX9R4M4aqhDkX5SK/XazOHsizjcDiwWq3s3r0bv99PQkICHR0dJCQksHDhwgnTrKDWsyVJGnRWcyToayTHZrNp5091yQnuegU4KLbgENxEKkatOUhAwKQYaJIdVHTUcFLhUaM6YB8rz8Qp1iAhIaIjlgB+vZGcY9xUfhTZTaIioEDA202qO3e+g9V6dJ+kqkbUixYtGnI5wGQykZWVRVZWVo/zF+wyNNzGnOHC4XBQUlKi1dazs7OHbKTQm1SPpJGC1+tl165dpKamMm/evD5dmoIbm/oqTZSXl3POOedw2223ceutt/7PkCl011BHTqgT43nXG+Mq5asoCj6fr9+fu91uPv30U0wmEytWrAj7w7q9vZ3t27dz0kknhXyMkcoIKopCfX09VVVVGAwG/H6/JuVnNpvH3J5oIKjjPJGRkSxatGhMNgHBqU2bzUZnZ2ePkZzamA7+GvEpkYoBHd27YAXo8nnwixI/6jqOOcbMgT9kBGgSKygx/h29UIWADIiIGGnHRPmXCTx2Vjq+LgEEBckHiqwQF2cjO/srpk07nGRqamo4cOAA+fn5YYmoFUXRXIbsdjvt7e0hp9YHgmp3F+zQo+KVV14Z0EghGN3KUaMXmfaG1+ulqKiIuLg45s+ff9i5UM+fGv07HA6ioqJITU2lo6ODBQsWUF1dzZlnnsl1113H3Xff/T9DpmrKV9jbiBA7sjSt0tmBMjtzwqV8xxWhAv0KK6g3oCiKZGdnj4pHptPp5IsvvuCUU04Z9nt7Kx+FItYA3amrPXv2MHfuXDIzMzWtV6vVqtUN1aamsax79YY6FmM2m/s1HxgLeDyeHnVrMdrI+6ss+PQy0YIJQRHweN14DDLJYgw/956JYZSGytuEBj6MeJAAPoyKRJTQgkj3BtJWJfDOww7anSlUfTmV1vpEMjOTMJmqMBqLEcXuZjk1cktNTaW6upr6+nqWLFkS1kxNMNS6v91up6WlRStNqI05oWyaWltbKS0t7bPWO57h8/nYvn17v2TaF/x+P62trdhsNr773e/S3NxMbGwsBQUFrF+/ftRqvmOBSUKdIIRaV1dHZWUlubm5tLa2kpCQQHZ2dh/vHhncbjebN2/mtNNOGxZR9SWUHUpkumfPHpqamvpt4vH7/VrkZbfbh2WhNppQtWf7G4sZL1BHcjYrlXyW2YAkKIgKKKJAhM7IRf5CCqTRG0faZniR/frP0SsRh9LNCpLsw+N3Ur7RwecPdI+DBKc7+2rAmTJlCjfeeCOBQIClS5ceMf3X4NSmzWbD6/X2MFEfSvZEvVby8vLIzBy9TEC4oZKpKu4RyjW+Z88eLrvsMmJjY/F6vZSUlFBYWMgzzzzD/PnzR2HVRxYqoVJphRESKp0dkGeecIQ67mqogiBoXbGyLFNZWUlTUxNLly4lOTmZjo6OkC3cBkOw6PVQd959NR8NF4FAgPLyctxuN8uXL+9XcN1gMJCZmUlmZiaSJNHa2orVatWk/ILnNY9UulVNT8+bNy9szWGjBXUk59uYyXEf4L2uElzRMnEuPdP2GxGwU5cqDJkchot2sRFAq91KskJHRxe6CIHEmd3li961w74acPbu3cvdd9/NX//61yMqpt7bgF7turZYLFRVVfVrhKDCZrOxY8eOCXGtBMPn81FUVERMTMyQI9PeqKmpYc2aNZx99tmsW7cOURRpbm7m3XffnVAbiyEhoOv+N9JjTECMO0JV4fP5KC0txefzsXLlSo1khus4MxyoZDhU66Vw2K6pIv5Go5HCwsIhz9EGd7Wq85pWq5W9e/dSXl6uNeWkpqaOik6uoihUV1dTV1fH0qVLR60jdjTQ0dFBe/FBzs9c0D1ulSDQldeTHEajbhitpGCnBgUFAQGfz4skSYiIdDb5B+1qvfHGG9m7dy+SJOF0Ovnqq6/GTOBDEASio6Nxx8i0zVKIlmLRt0k4G1zUFdchimKPmc3W1lbKy8sPM2If71DJNCoqasiyk73R0NDA6tWrOf300zUyBUhPT+fKK68M95InMYYYl4Sqyr3FxcWxdOnSHuo4Op1u0FnVUBEcoQ6GcJBpe3s7paWlpKamkpeXF3LKtreFmtpU0tDQwO7du7WmHLPZPCQD68EgyzIVFRW0tbVRWFg4oSynWlpaKCsrY+bMmcyYMUN7vb+RnIMHD2ojJapTSah/p1mBo6nTlRAQvOgVIxERJhR9AJ/HT9uXRh5++IF+a2rJycl8//vf549//CNOp5Orr756zE3YK8R6vtLvw4UX9KBLE5memsJxvqPxOLobc1RBDkVRyMzMnFDpO7/fT3FxMVFRUSHPmTY1NXHmmWdy/PHH8/jjj4+b3oJRxTc4Qh13NdS6ujrKysrIzs5m1qxZhxFVdXU1LpeLRYsWjcrn/+c//2HVqlX9zk4Gu0eMhExVJZ7Rrjt6PB6t7tra2kpUVJTW1NSfmMRA8Pv97NixA7/fz5IlSybMbCx8PaupNnwNBcEjJTabbcCRnKGgWvc5ZYY38AtuAAxKFP7PszhhykX9kqnf79ca8rKysvjss8/GnEwdgos3DNuQkEk8pE/sI4BN7GRlYDZLpZlAN6FUVFSQkZGB2+2mra1N63pVTdTHY83d7/dryk2LFi0KiQgtFgtnnnkmS5cu5bnnnpsQJhYjgVZDLWqHmBFunJwdUBA/4Wqo44pQFUXhq6++IiMjo9+0UE1NDa2trSxdunRU1vDhhx9SWFjY5x8xXM1H6qjDaCnx9IdAIKBFXna7XUsbm83mIem8qunpiIgIFi5cOKEeEKoJ+6JFi0hJSQnpGION5AxVwMKHG6u4F4A0eTaGAfRmfT4fxcXFmEymMRtF6gu7xDo2GSrIlBO0mjBAi+AkVonk2/6jaGxopKqqisWLF5OcnAz07Hq12+0Ah8n5jTXUyNRoNLJ48eKQyNRut3PmmWcyd+5cXnjhhXHxvUYbk4Q6zlK+giCwdOnSAVOuo1lDhf7VknrLCIZyk8myzO7du2lpaWHZsmVH/ELR6/Wkp6eTnp7eI/LatWsXkiSRnJyM2WwmJSXlMLLs7OykpKSElJSUEaWnjzTUWm99fT0FBQUjGi/prTYUPJKjuuQER179nSMjkUyRB8+whGIbd6QgCXKfRuIiAgEk6urq2Ld3H/n5+SQlfW3xZjAYepioq1rN+/fvZ+fOnZpPqWrjd6ShZgNGQqZtbW2sWbOGnJwc/vGPf3wjyLQHAof+jfQYExDjilBh6Cbjo4W+jh+OeqmqIBQIBFi+fPmYCzQEd2zOmTOHjo4ObDYbBw4cYOfOnZoIfWpqKi6Xix07doTsujJWUDcwra2tIUsgDiQyECwlKUkSVVVVvPPOO+Tn5wNoxBCKS47L5aK4uJjk5GTmzp077s65WY7HqNPThY9outP+Mgpdgo8Um4nqfdUsXbqUhISEfo/Ru/avzlyrPqWq1nVKSsoRGQsLBAKaiXyoad729nbWrFlDZmYmL7300qg0BI57TBLqxIGq5Tuaxw+OkIP9CkMlU5fLRWlpKdHR0SxZsmTcpO1UqN6k8fHx5OTkaOMQzc3NVFZWAmh114kCSZIoLy+nq6uLwsLCkDYw69evZ/369WzcuHFQ4fWWlhZ++9vfUldXR2xsLOeff36fLjkDjeSo5B0ZGUlxcTGZmZnk5OT0ec0daYWg3khT4pkjZbFLV4sTD3pE3PiJaBfQVbhYunT4sqCRkZE9fEpVpxfVxk9NDaekpIQ96gsEAhQXF6PX61m8eHFI92hnZyfnnnsuSUlJbNy4cUL1F0wiPJiQhHokItTg5iNFUUIm09bWVnbs2EFWVla/D8fxBtWAORAI0NnZyZQpU+jq6mLr1q2YTCaNXBMSEsbl9/H7/ZSWlgIMaxQpGK+88grr168HeluEHU6qvcUXNmzYQHx8PBdccIHWdW232wccyVHJ+8UXX+SSSy4hPz+/32xA8Od1dHRw1VVXDfv7jRQCAkdLuZiVOPaLFjyCH2NzAHFPF6vmLx9xOSNY61pRFC2DUlNTw65du3rUrqOiokZ0HaqRqU6nC5lMXS4XF1xwAZGRkbz22mtjnoEaU0xGqOMHg90Yo11DVQk1uPkoVDJtaGigsrKSvLy8sHtqjiaCx2KWL1+ujcUEm3+XlZUB9HDIGQ+Rt9o4FRkZOSJTgWOPPZaNGzf247s5uJXYscceq/1/dHQ00dHRTJ8+XfPYDB7JKSkp4Z///CfQLdrw3HPPsWrVqkHJFLqj6Li4uDGJVHWIzJEzyZUy2L9/P3V1dRQUrAi7xWDvDIraua6O5aiKYSkpKcM2UZckSeugzs/PD+l6cbvdXHjhhQD8+9//Dpu70oRFABjpZOMEJdRx1eUL3Rf4QCndkejtDgVFRUUkJSVpGqOh1FFUL9D6+noWL17coyljvCMQCFBWVobf7yc/P7/fnbbqD2m1WjUZOrVmGMo4STig1h2TkpKYO3fuiGtufZFl+rw8vv+n3zE9PokkSys333Qz9U0NxCzPwmCOIt4TwR+v/RXp5sHFCwKyn9rOg9Tuq+WeO36P1WpFp9NhNBqZMWMGjzzyyJj7gA4G9VpvbGykoKDgiM8kq5s8tTlMluUeTjkDXYcqmQIhl2I8Hg8XX3wxHR0dvP/++6OmqTwRoHX5/qcdokfYcOnqgFMnXpfvhCPUUPV2hwJFUSgvL6ejo4OsrKyQ3F0kSWLnzp10dnayZMmSCbVbVaM7dURjqI00qsOG1WrFarXidDpJSEjQote+7KvCjfb2dkpKSpgyZUqf88uhQiWx2oYGnFedh3vtSYgxUcRERiHv3EPsX59l5o/mY5wSh6jTER0ZxQxSuNx7DLEDjMNU6cr50rAZl9CJLCvoGgxs+sVX7C+qIRAI4M7KRj7vMrJPOJUFcVGsCbTxl5t/NO7IdM+ePVgsFgoKCsb8WlcUhc7OTm2syel0EhcX12OsSb0uJEmitLQUWZZZunRpSGTq9Xr53ve+h8Vi4YMPPphQamGjgUlCHYeEKsvygEpIfr+fDz/8kJNPPjmsc5BqJ6/X68VisWCz2XA4HMTGxmI2mzGbzYM+MDweD6WlpVotZiJ1+KljMWpX6UiiOzUlZ7VaaWtrIzo6Wqu7hkvGLxiq4HpOTs6QpfhaBC+f6azYBC8piomjpVRSlb43T1arle+89y9qLzoNJAmhywN6HUp0JMv1RcTIHQhdEilJySg6Aa/gZ6E0lct9x/R5vAPiHt41bez2Q5V0BCQ/gkEgJhDHh5dtpTwyi5obfo1iigBBxKDXIXV1kf7Q/5FU8hk6nW5ckGlVVRU2m42CgoIxGXEZDOpYk+qUYzQaNbWr2tpaFEVhyZIlIT1H/H4/l112GTU1NXz00UfanO03GRqhvhMmQj1z4hHquKuhDgZ1JylJUtgIVa2XyrKMyWTSJOh8Pp9GDPv37ycyMrJflSGVkJKSkpg3b964mhkcDC0tLezYsUMzeR4p4UVERDB16lSmTp16mIyfwWDQIobh1rv6QmNjI7t372b+/Pmkp6cP6T1VYjvrjJW0C/5uM1QB/qNv5HpfHnPlw1N2yeZUjFd+G53HieLo7H5RkokXO4kySyidIuakxK+lKxWZSrEJh9BFgnI40RQbvkRCQufXIwUkIozdkWyXwcl1637I+fvmIUdEonM5EQAJkKOisXz/dkzXnok5OprrrrtO60A/0gIbiqJo40jLli07IhmIUNB7rEkVlAjuGrZYLKSkpAyrIzcQCHD11VdTXV09SaZ9YbIpaeJAbRAKBAIjbkvv7WHau/nIaDSSlZVFVlaW1sZvtVopKirSiMFsNhMIBNi5cyfZ2dkTak4Tviak4cjxDQcGg4GMjAwyMjKQZVl7qO3cuVN7qJnN5pBmNWtqati/fz/5+flDfqhJKDxrqKYdPwmKAREBWVFw4OdZwz5+712iGY+r6EKhwyASL0TioF173ST4EFCIiIrpkTLUIeITJFx4SeBwQrULFpBAlro3cMHXS2VUBKRnYejsQE0dCYDo8SAlpJB26jn85arvaoIVQx3JCRcURWHXrl20t7ezbNmyCdPNqtPpSE5Opr6+npiYGObMmUNraysNDQ1UVFT0SA0P5DMsSRI//OEP2bVrFx9//PH/lJ/pJEaOCUeoEJ5O3+EqHwW38avEYLVaKS0tRZIkEhMTiYmJGZb121hCURQOHDjAwYMHh0VII0GwA0leXh4dHR1YrVaNGIIdcgbaLCmKwt69e2lsbBy24tRBwUmT4CYGPeIhyTwRgRj0WAQP+0Uns+Wex4tGIN4vs9/j7vF6pxyFjIjH40KK0Gl/dx8SkYqBZOXwBh1FUdB3GXCbuogyRmgPbuUQfRqVaM3Jxenz9XyzAJddeSU5OVMBehghNDc3j5pLjgpZltm1axednZ0sW7ZsQs1ZyrJMWVkZPp+PpUuXYjAYSEhIYObMmXi9Xi01XFNTo5khpKSk9OhelySJG264gW3btrFp06YhZ0S+cZiMUMcPhvIAGOks6kjF7UVRJCkpCavViiiK5Obm4nK5qKysxO/3a92uqamp41LvtrcEYrjHHIaC4FGIYGJoamqisrJSixh6167VkR6HwxGS+pFfkNUsbw+IdGd//Rwue2m32vC+8y+k75wOsdFaDbUrKh5bWwPpBid2VxvxMXFIogICfMs/hwh6zr/KstytQhWXjjvPRQA/egwoKPgELyYlgtW6qdyrBKj3BRAOrVMB5IgI9J3t/PtPv+C0P/1Ri4zUkZwZM2bg8/kOS6+r1+JIXHLUtatCGQUFBROOTHfs2NGDTINhMpm0TFSwJGdlZSU+n49nn32W/Px8qqur2bJlCx9//PGEGoM74pAYOSGO3mTkqGLiFPqCMBK1JDUylSRpRDKCJSUltLe3s2LFCqZMmcKcOXM45phjtId8TU0NmzZtori4mPr6erxeb0jrDTcCgQClpaV0dHSwfPnyMSHTvqCSQmFhId/61rfIysrC4XDw5Zdf8tlnn7F3715aW1spKSmhs7MzZCnBGXIM8YoBFwEtKgRwEiAWAzPlnudD7fL1rH+Z6L+9geDxIsbHEJeaTNy+Wqw//Cf2F3fi7/TS3tlBdMDAav9iTgzM7XEcSZIoKyujq6uLMzLXslgqRBAEvIIHv+AjWonhNN+5SFYPqc8+AH4fclQ0UmQ0clQMgiSR8cJjNO2v5qabbsJqtR723YxGI5mZmSxevJjjjz+eefPmIQgCu3fvZtOmTZSVldHY2Iivd+Q7CFRCcrvdE5JMy8vL8Xg8fZJpb6iSnHl5edr9PHXqVJ5//nn+9re/ER0dzYYNG9i+ffuQbB6Hii1btnD22WeTmZmJIAi8/vrrPX6uKAq/+tWvyMjIIDIykpNPPpm9e/f2+J3W1lYuueQS4uLiSEhI4Oqrr8bpdIZtjZMYHOMvfBoCQo1Qg5uPQiXTrq4uSktLiYyMpLCwsEcEGiyePmvWLLq6urBarTQ2NlJZWUl8fLzWMTwWjRxqF7LBYDhs7eMJwRGDWru2WCwUFxcD3cbMHR0dIYlJmNBxfmA6zxmqacOPHoEACkZEzvdPI4Kvjxc89ykAMc+9zuyvdvODP/2e6cZk4pJFbvbpqHuiCOuGUnRxJhwxKfzoz99CNH+9V1U3MbIsU1BQgMFg4Fv+U1kUKKRZbMCgGJgqZ9NmdXDTTTch1dUxq6oC+8nnQvYcVmWl0vr0n+j69ANgcOUmOFyr2el0YrVaqa2tpaKiYsguOepGwO/3a2ufKFDJVN0IDHftgiBo9VSXy8Xnn3/O3r17eeutt3jwwQfZtGkTS5YsCctaXS4Xixcv5qqrruK888477Of3338/69at47nnniM7O5tf/vKXnHbaaVRUVGh17EsuuYSmpiY++OAD/H4/V155Jddeey0vvPBCWNY4ZHyDU77jbmwGGDSa++qrr7QH7lDQu/koFNs1AIfDQWlpKRkZGeTm5g7rGL1HSdRal9lsHrAJIlxwOp1aF3I4RA+OJNxuNyUlJURFRTFlyhStOUz1JlUdcobzwCwT2/hQ30Sj4CZDieCkQAb58tcCHEMVURjs93w+HyUlJRgMhgFl7QY7TjhFHfryyFVTw8FykuqspiRJLFmyZMKR6c6dO3G5XBQUFIQ0wqYoCr/97W959tln+fjjj5k79+usg8/nw2AwjMp9KwgCr732GmvXrtXWkZmZya233sptt90GdM9dp6Wl8eyzz3LxxReze/du5s2bx7Zt21i2bBkA7733HmeeeSb19fWj0nDYG9rYzPPtEDXCUZeuDrh0cmzmiGA4EWrv5qNQyVQ1Ss7NzWXq1KnDfn9foyRWq5WamhpNH9dsNo+K4XJraytlZWVMmzaNmTNnTqguZKfTSXFxMampqeTl5SEIAikpKeTm5mpR18GDB9m1axeJiYla1DVYBmCxnMhiX/+D+Fu2bBkSeZnNZh5++OEeZFdXV8eWLVs466yzKC4uJjo6moULF/a7iRkKWfb3OYNFqn0h+FpUMwDBcpKqN2l9fT0AS5cuHbfZjL4QLjK97777eOaZZ/joo496kClwRGfMDxw4QHNzMyeffLL2Wnx8PCtWrOCLL77g4osv5osvviAhIUEjU4CTTz4ZURTZunUr55577hFbL35GLj040vePEcblXSIIAgMFzkMl1HDYrimKwv79+6mtrWXx4sUhm1MHI3iURJVOs1qtmqaoSq7hmNNUNwKjNRYzmmhra6O0tLTPjUDv9Lpq/WWz2dizZ8+IMwAXXHABHR0drF+/ftBIsDfZXXXVVZx55pls376dxMTEQTMC4SDvULV8e4vQOxwOLBYLFRUVmoxfU1PTERnJCQfUsR6n08myZctCJtMHH3yQRx99lA8//JCFCxeOwkqHjubmZgDS0nrKWaalpWk/a25uPux60ev1JCUlab8zidHHuCTUwaDX6wdtSgoHmUqSpM3cFRYWjopOqU6n0whU7TC0Wq2a6bcacaWkpAyrXjgWYzHhhNVqZefOneTm5mq6ygMh2PorOAOgdrsGO+QMdZNy1VVXERcX168fajBUstuyZQunn34627dvx2w2M2fOnEGvvZGSd7iE8dWa4Z49e0hMTCQnJ4fW1tbDRnKOVJliuFDJtLOzc0SR6aOPPsqf//xn3n///bDVSL9RkBh5l+4E7fKdkIQ6WIQajuYjr9erpcBWrFhxRFI8wY0kwXOa+/btY+fOnVq9MDU1dcB6lizLVFZWYrfbx2wsZiRQXXoWLFhw2K58KOidAQhWyFEUpYeI/2CblOGQldls5pRTTmH79u1MnTp1WOn1UMk7nC4zPp+P4uJiTCYTixcvRhRF4uLi+h3JCafi1UihKAoVFRWa4EQonciKovDUU0/x+9//nnfffZfly5ePwkqHD3Xe1WKxkJGRob1usVg0M/v09PTDOr8DgQCtra1Hfl72Gzw2My4JdSgp3770fgdTPhoq1AaehIQE5s2bNyZCDb0tq1TxebVLMzExUSPX4FRcIBBgx44deL1eli9fPiHSdCoURaGmpoaamhqWLFkSFpcenU6nPfgVRaG9vR2bzaZtUpKSkrTzONJNk1qrnjlzJtOnTx/2+4dL3uEm06KiIqKiovqs96ojOZmZmT0Ur3bt2kUgEOixSTnSzUsqmTocjpDHehRF4dlnn+Wuu+7irbfe4uijjx6FlYaG7Oxs0tPT+fDDDzUC7ejoYOvWrVx33XUArFy5EofDQVFREQUFBQB89NFHyLLMihUrxmrp3ziMS0IdDDqdDre7p2pNsFgDhN58ZLfbKS8vH1cNPGoqLiYmhpkzZ+J2u7FarVoqThVBSEhIoKqqCoPBwLJlyyZUV6Yqtm6xWEYtqhYEgYSEBBISEjQxCavVSkNDA7t37x7yKElfUCPgOXPmTLihf6/XS1FRETExMSxYsGDQaLO34pXq8KI2h6lOQykpKaPuQKPqCre1tYUshagoCv/4xz+48847eeONN3p42R4pOJ1O9u3bp/3/gQMHKC0tJSkpiWnTpnHzzTdzzz33MHv2bG1sJjMzU+sEnjt3LqeffjrXXHMNTzzxBH6/n+uvv56LL774yPdOTI7NjC/4/f4Bh6ZrampobW1l6dKlQM96qSAIIaef6urq2LNnD/PmzeuRWhnP8Pl8WK1WmpqacDgc6PV6pkyZQlpa2qg4u4wG1K7Mjo4OCgoKxmRG1+v1amNN6iiJWi/sbYTQG83NzezatWtYAv3jBR6Ph6KiIuLj45k/f/6Ir5e+RnLUTUq4O9gVRaGyslJT/AqVTF9++WWuv/56XnnlFU4//fSwrW842LRpEyeccMJhr19++eU8++yzKIrCXXfdxVNPPYXD4eCYY47h8ccfJzc3V/vd1tZWrr/+et58801EUeT8889n3bp1R8yjVhubeagdIkc46uLugJsn3tjMuCTUQCAwYI20vr6epqYmCgsLw9bJW1VVRXNzM/n5+SQkJIxg9UceaqpxypQpxMTEYLPZsNvtWjOO2WzuMV84nqAamgcCAZYsWTIuLO+CjRDsdrvWed2XhF99fT179uxh0aJFYekAP5Jwu90UFRWRmJioqSqFE8EjOXa7HUAj16SkpBGN4gST6Ug2Ya+99hrXXnstL730EmeddVbI65nEJKHCBE75BgKBsJBpIBDQ1FRWrFgxbq2o+oM6FpOXl6elGoObcaxWq9ZcpUZcycnJY95EAl83wRgMBgoKCsbNrGNvIwRV27WioqJHvbCrq4va2lqWLFky4cylu7q6KCoq0tK2o7HZ6mskx2azsXfvXjwej+aSk5KSMqzoUt0Aq013od6zb731Ftdeey1///vfJ8k0nPgGp3zHxxNsmFC7fFXBhlDJ1O12U1paitFopLCwcMLVHGtqajhw4ECf87G9m3EcDgdWq7WHgL+qMDQWRNbV1UVxcbGWahwPBN8Xekv4dXZ2YrVa2bNnDz6fj7i4OJxOJ5GRkROmAczlclFUVERaWtqwFb9ChSAIJCYmkpiYqJlJBJshxMbGDsk+TVEU9uzZg81mGxGZvvfee1x55ZWsX7/+yIoefBMw2eU7vjDQDa4oCgaDga6uLioqKrSIa7gPhfb2dkpLS7VZwfH6QO8LsixTVVWF1Wodkn1Z74eZSgr79+8/bBznSKRcOzs7KS4uJi0tbUhzmuMFqphEY2MjgiCwZMkSXC4XFouFqqoqjRRUh5zx+L2cTidFRUVkZmaSk5MzZmvszyWnpqam35Ec1bZPbVwLlUw/+ugjLrvsMp588kkuvPDCcH6tSXzDMS5rqJIk9SncECwjqKaPrFYrgUCgRzpzsDEXi8XCrl27mDVrFtOmTRuXD77+IEmS5vyxZMmSEaeo1U5Xm82m1UBGU8BfrffOmDFjwpmxB1vH9a7bqaRgtVppaWnBZDJp1+R4qV93dnZSVFTElClTmDVr1rhYU29IkqSl2G02m5ZiT0lJ0eayly1bRlTU4cbtQ8GWLVv49re/zcMPP8yVV145Ls/BRIVWQ/1dO0SMsO7p6YD/m3g11AlDqMFkGjwSoyiKdqNZLBZ8Pl+/6UxVPaimpoaFCxeSmpp6RL/XSOH1eiktLUWn07F48eKwp6j7EvBXyTUcEZfFYmHnzp096r0TBapziaoPO9CsoyonqZICfN2MM5QN32igo6OD4uJibRxsIkBRFC2b0tDQoKXY09PTSU1NHTapfv7555x33nncf//9/OAHP5gk0zBDI9S7w0Sod08Salggy3IP4Yb+yLQ3FEXRBNMtFgtut5ukpCTS0tJITk7WPDWXLFky4dSDXC4XxcXFJCQkHJGao9/v18i1paWFiIgIjVwHGyPpC3V1dezdu3dCbmRU15VQOpF7Z1O8Xm8Ph5wjkWJvb2+nuLiY7OxsZsyYMeqfF04oikJ1dTUNDQ0sXLhQq70OdyRn27ZtrFmzht/+9rdcf/31k2Q6CtAI9ZdhItTfThJqWKASqqp8FKqMoJrObG5uxul0otPpmDlzJpmZmeNiPGOoUEXip06dOiapOkmStBqXzWbTGp6GIuAfbC6wZMmSCTeSpJrJi6JIfn7+iEc9glPsnZ2dWoo9lIhrKHA4HJSUlGjljYmG6upq6uvrKSgo6DFPOdBITu8sQElJCWeddRa/+MUv+MlPfjJJpqOESUIdx4Tq8/nConzkcrk0L83ExEStVpiQkKBFXOO5O1MVDZgzZ86QROJHG8EC/larFVmW+61fqyo2drudpUuXHrEB83DB6/VSXFxMREQEixYtCnuqtrcIQnR0tHYuwyHK0dbWRklJCbNnzw7JcnCsoW7Eli1bNuC1I8uyJilps9nweDzs2rULv9/PokWLuOqqq7jtttu48847J8l0FKER6s/CRKh/mCTUsCAQCODxeLT/DzW9GSx4ENzR6PF4NEJwOBzExcVhNptJS0sbN3OoiqJw8OBB9u/fP27TpKo2rnouvV6vVr9OTEykqqoKl8sVluapIw23201xcTFxcXFHLMUeLCah1+u1yDUU8fmWlhbKysompBQioDklDUamfcHlcvH888+zfv16KioqyMjI4Ic//CFr1qxh4cKFo0qqkiRx99138/e//53m5mYyMzO54oor+MUvftGj7+Ouu+7i6aefxuFwsGrVKv7yl78we/bsUVvXkYBGqLe3g2mEJOjtgPsnCTUsuPzyy6murmbt2rWcc845ZGVlDfsmqK+vp6qqatAGGFW6T5WcUxtx0tLSRl2HtD8E69ouWbJkQlxQwfVrq9WK0+lEr9eTnZ1NRkZGSILlYwW1Xj2aogcDIVh83mazIUlSD/H5wdLOdrudHTt2kJeXN+E8cOFrMi0oKAi516GqqoozzjiDiy66iCVLlvDmm2/y/vvvc8UVV/Doo4+GecVf4/e//z0PPPAAzz33HPPnz2f79u1ceeWV/O53v+PGG28E4L777uMPf/gDzz33nKbLW15eTkVFxbjOlg2GSUIdp4RaX1/PK6+8wquvvsrnn3/OsmXLWLNmDWvWrGH69OmDzqnu3buXxsZGFi1aNCzHkt6NOJGRkRq5Hin/R0mSKC8vp6ura0JGdmqa1GAwkJycjN1u124KNcU+GrXCcEGdkR3rOU0Vahe7el12dXX1cMjpvVGx2Wzs2LFjQuoKA5rb0EjItLq6mtNPP52LL76YP/7xj1p07/F4cDgco3pezjrrLNLS0njmmWe0184//3wiIyP5+9//jqIoZGZmcuutt3LbbbcB3U1jaWlpPPvss1x88cWjtrbRhkaoPwkToT4wSahhhaIoNDU18dprr/Hqq6+yZcsWFi1apJFr7weeSkYul4v8/PwRRZiBQECbK7Tb7RiNRtLS0kLuch0KfD4fJSUlozYWM9pQIztVG1Z9kPUWno+OjtbIdTwZVasNPDNmzCA7O3usl9Mn1C5Xm82mPWzUZhyn08muXbtC9pEda6gljoKCgpAfojU1NZxxxhmcffbZrFu37ogLtvz+97/nqaee4j//+Q+5ubmUlZVx6qmn8sADD3DJJZewf/9+Zs2aRUlJiWbFBnDccceRn5/Pww8/fETXG05ohHpDmAj1kUlCHTUoioLdbtfI9aOPPiIvL08j14iICH74wx/y05/+lOOPPz6sZKTOFardmTqdTotcwzW0rzZPxcXFDclCa7yhvb2dkpISMjMzmT17dr/nxO/3ax3D6kZlpAIIW1tF/lmvo9IpMiVC4YKsAKeZZYZzKLXmOJEaeHw+X4+MiqIomM1mpk+fHnZnl9FGbW0t1dXVIyLT+vp6TjvtNE499VT+8pe/jMk9JMsyP//5z7n//vs1idTf/e53/OxnPwO6Z2FXrVpFY2NjD0erCy+8EEEQeOmll474msOFSUIdp9KDfUEQBFJTU7n22mu55ppraGtr49///jcbN27kvvvu0zoxExMTw96NqRKo2WzW6luq6Ly6rrS0tJCaR6A7MiotLSUrK2tcpBmHC5WMZs2aNaixtsFgICMjo08Bf/Vcms3mw1xd+sN/rCL/V2GkMwBROqjtEvjKYaTeHeD7M4YmKGq1WikvL59Qtn3Qbfqt9he0trYyY8YMPB4PpaWl2rlUnV3GQkxiqFDJdOnSpSE/PJuamli9ejUnnHACjz/++JhtSP/1r3/xj3/8gxdeeIH58+dTWlrKzTffTGZmJpdffvmYrOmIQ2LkWryTWr5HDoIgkJSUxBVXXEFCQgKbNm1i9erVeDwezjjjDDIyMlizZg1r165lyZIlYb25epsrq6LzO3fuRFGUYTu6qDKIEykyCoY61hMKGQUL+MuyrJ3L3bt3a5Jz6rnsqxHHL8Oj+w24AjA9UtEiUotXYP1BHWszAqQM0gvV2NhIZWUlCxcuxGw2D2v94wENDQ1UVVWRn59PcnIygHYubTabZoaQnJysnevxVEqoq6vTyDQ+Pj6kY1gsFlavXs2KFSt4+umnx3Tz8NOf/pQ777xTq4UuXLiQgwcP8oc//IHLL79cq99aLJYe94vFYumRAp7QmBTHn5goKyvj0ksv5W9/+5vmGOF0OnnnnXfYuHEjq1evJikpiXPOOYe1a9dSWFgY1ptNFEWSkpJISkpizpw5tLe3Y7FYtIeYSq4pKSl9fu7Bgweprq4et2Mxg6G2tpZ9+/b16XYzXPQ+l2ojTnV1NTt37uzRiKOKchzsEqjrEkg2Kj3Su8lGhUa3QFmHyEmp/RvVB69fJaOJBFV9qrd9XPC5zM3N1bqva2trqaio0GawU1NTx7Tprb6+nr17946ITO12O2effTaLFi3i2WefHfNIvKur67CNtE6n0+bps7OzSU9P58MPP9QItKOjg61bt3Ldddcd6eVOIsyYMDXU/lBXV9dvZNfV1cX777/Pxo0befvtt4mOjubss89m7dq1rFy5ctRsy1QNUovFgtVqxePxaNFWamoqOp2OPXv2aIbmoT5MxgqKorBv3z4aGhpYsmTJqK9fVReyWq10dnZqhOCLTefi0jiMokJcUNDllcHmFXgy38eq5MMJVdV0Pnjw4IRUb4Kv06TDXb/b7daamlS9ZnXjdyQbxFRj9pF4yba2trJ69WpmzpzJSy+9NC7Uz6644gr++9//8uSTTzJ//nxKSkq49tprueqqq7jvvvuA7rGZe++9t8fYzI4dO/53xmaubgfjCOuevg54ZuLVUCc8oQ4VHo+H//73v7z66qu88cYb6PV6zj77bM4991yOOeaYUUuDqXJzKrm6XC7tsybKjGkwZFlm9+7dtLa2snTp0iM+qxssytHW5uBRZTk75SSmRYFJr0NWoM4tMD1K4fUVXiJ6BSzqWFVTUxNLly6dcJrOgOaDO5LIDr5uEFObmlTbNLVBbLTqkGqaeiRk6nA4OPvss0lPT+fVV18dN3POnZ2d/PKXv+S1117DarWSmZnJd77zHX71q19phK8KOzz11FM4HA6OOeYYHn/8cXJzc8d49SODRqiXhYlQ/zZJqBMCfr+fjz/+mI0bN/L6668jSRKrV69m7dq1HH/88aN2c/p8PoqKiggEAhgMBpxOJ4mJiVrD03h5KPQH1TrO4/GwZMmSMd9N+3w+ttW3c+e+BOp8BgRBQCfqMEfA/QsljknpeWmrUogtLS1jshkIB1Q5vpE08PQFtUFMjV5VSUlVGzdc2Ry1Zp2fnz+sGfFgdHR0sHbtWuLi4vj3v/895tfhJLqhEeolYSLUf0wS6oRDIBDg008/5eWXX+b111/H5XKxevVq1qxZw0knnRS2GlNXV1cPKTudTofb7dairfb2duLj40lLSxvz2lZf8Pv9lJaWApCfnz+uGlvafPB2k8DuFg8Rnjby3PtJMwS0jYqaEt25cyednZ0UFBRMuIdwsOvKaEfWqqSkSq6qa5NKsKFu/Jqamti9e/eIyNTpdHLeeedhNBp56623xrVIyDcNk4Q6Sag9IEkSX3zxBa+88gqvvfYabW1tnH766axZs4ZTTz015IhGHYsZaEbT6/UGpTLbiI2N1WZdx/qh4fF4KC4uJioqioULF45548dgCB5tstlsKIqCKIqIoniYMfhEgFqzbmxsPMx15UhAFZOwWq10dHRoqlepqalDvidUMh1JA1hXVxcXXHABsizzzjvvTDizhf91aIR6UZgI9aVJQv2fgSzLbNu2TSPXpqYmTj31VNasWcMZZ5wx5AhBHakZzlhM74F9VVlI1Rc+knOqTqeTkpISkpOTycvLm3CCE36/n6KiInw+H4IgaCMkavf1eIq0+4KiKOzZsweLxUJBQcGYp6lV1SvVIScyMnJQT9Lm5mYqKipGRKYej4eLLroIp9PJ+++/P6Eest8UaIR6QTsYRvj38XfAK5OE+j8JWZYpLS3VyLWmpoaTTjqJNWvWsHr16n4fJOpYxoIFC0KecQxuHLHb7URERGgSiOGw+BoIamQ9ZcqUMfFhHSlUKUeDwcDixYsRRbGHgL/L5RpQF3esoSgKlZWV2O12CgoKxjxT0RvBnqQ2mw1RFA8T5rBYLOzcuXNEo1Ver5dLLrkEm83Gf/7zn5AbmSYxupgk1ElCHTYURWHXrl2aeH9lZSUnnHACa9euZfXq1SQnJyPLMhs2bCAnJyesYyWq0bfFYtFk+9Q6Ybil5mw2G+Xl5eTk5ExIY2o1TR0dHc3ChQv7jKy7uro0clUfBiohjDV5KYpCRUUFbW1tEyJNrfrkquTq9/uJiYmho6OD+fPnh6xA5ff7ueyyyzh48CAffvjhhJwX/qZAI9Q1YSLUN4ZOqH/4wx+053FkZCRHH3009913H3PmzNF+x+PxcOutt/Liiy/i9Xo57bTTePzxx8Oqez1JqCOAmo7buHEjGzduZMeOHRx99NG43W4aGhr49NNPR02kXO3KtFgsPfSFVS/SkZBrY2Mju3fvnrCOJWoDWGJiInPnzh1Smno8Cfirm7b29vYJ20B18OBB9u7dS0REBF6vl8TERG2zMtTvEwgEuOqqq6isrOTjjz+ekOIn3yRohHpWmAj1raETquouVFhYSCAQ4Oc//zk7d+6koqJCK5Ncd911vP322zz77LPEx8dz/fXXI4oin3322cjWGoRJQg0TFEVh+/btfPvb38bpdOL3+1m8eDHnnHMOa9asITMzc9Qeymp0oJKrKpI+HE1cFTU1Nezfv3/Cqgc5nU6KiopIT08nNzc3pHPeO81uMplGLRPQG7Iss3PnTpxOJwUFBeMuDT0UqBZyqpyjKiZhtVpxOBya53Bqamq/mxVJkvjBD35ASUkJH3/88YTc2H3TMJaE2hs2mw2z2czmzZs59thjaW9vJzU1lRdeeIELLrgAgMrKSubOncsXX3zBUUcdNbL1HsKElh4cT6ipqeGSSy5h2bJl/O1vf8Nut7Nx40ZeffVV7rzzTgoLCzUJxGnTpoX1oSyKIsnJySQnJ6MoCm1tbVitVioqKpAkqYe+cH8dusGCB8uWLZtQdQsVquPN1KlTmTlzZsjnuLeAv+o0FCw6H8pmZTDIsqx54S5btmxcKP8MFyqZBvcNREZGMm3aNKZNm4bP59Pchg4cOIDJZNKamlQxCUmSuOGGG9i2bRubNm2aJNOJhgAw0sfbIS3gjo6OHi+bTKYhbTLb29sBtPGsoqIi/H4/J598svY7eXl5TJs2LayEOhmhhgmNjY0888wz/N///V+Ph6yiKDQ2Nmq2c5988gmLFi1i7dq1rFmzZlSbfVRzalWlyefzaRKIKSkp2rC+LMtUVFTgcDhYunTpmNcPQ0FraytlZWXMnDlzUMebUBEs4G+1WpEkqcf5HMk4kSzLlJWV4fV6Wbp06YQkU7vdTllZ2ZD9WIPdhmw2G7/97W+1TV9ZWRmbN28etb/lJMIPLUI9OUwR6n8P7z256667uPvuuwd8qyzLnHPOOTgcDj799FMAXnjhBa688kq8Xm+P312+fDknnHCCJgs5UkwS6hGEoihYrVZef/11Xn31VT7++GPy8vI0cs3LyxtVcnU6nRq5ut1ukpOTSUlJobm5mUAgwJIlSyZsirG8vJw5c+aQlZV1RD5T3ayo5OrxeLRxnOE6ukiSRFlZGX6/n6VLl477UZ6+YLfb2bFjB/PmzQspolQUhQ8++IB169axdetWJEnitNNOY82aNZxzzjkjNl8YChoaGrjjjjt499136erqIicnhw0bNrBs2TJtjXfddRdPP/00DoeDVatW8Ze//IXZs2eP+tomAkaDUOvq6npky4YSoV533XW8++67fPrpp0yZMgU4coQ6mfI9ghAEgbS0NH7wgx9w7bXX0tbWxhtvvMHGjRu5//77mTlzpmY7N3/+/LCmEwVBIDY2ltjYWHJycnA6nTQ1NVFVVYUsyyQlJWl1h4kUHan2cUONisIFQRCIj48nPj6e2bNnH+bookpKpqamDtiEI0kSpaWlyLJMQUHBqBk2jCZaWlpGRKbQTVabNm2iqqqKkpISAoEAb7zxBk8++SSKonD11VeHedU90dbWxqpVqzjhhBN49913SU1NZe/evT1GdO6//37WrVvXQ9T+tNNOm/Ci9mHHSK3bgo4RFxc3rPLT9ddfz1tvvcWWLVs0MgVIT0/H5/PhcDh6mElYLJawlhQmI9Rxgvb2dt588002btzI+++/T1ZWlkau+fn5YRdUcLvdFBcXExMTw6xZs7QmnI6ODhISEjQJxPH8oFAdSxYtWnREIpihoncTjqp6ZTabewgzBAIBSkpKEASB/Pz8CUmmra2tlJaWMnfu3JBHYxRF4Te/+Q3PPfccmzZtIi8v77Cfj3aX9Z133slnn33GJ5980u8aMzMzufXWW7ntttuA7ns2LS2NZ599VvM//SZDi1C/1Q76EUaogQ74ZOhNSYqicMMNN/Daa6+xadOmw7IGalPSP//5T84//3wAqqqqyMvLm6yh/q+js7NT83R99913SUlJ0ZxxCgsLR0yunZ2dlJSUkJqaeliaWXVzsVgs2sWsCkmMp1lI1XElPz9/XA/691a9ioqK0hqa9u7di16vJz8/f9zLOfYFlUzz8vLIzMwM6RiKonDvvffyxBNP8PHHH7NgwYIwr3JomDdvHqeddhr19fVs3ryZrKwsfvSjH3HNNdcA3aYEs2bNoqSkpIcR+HHHHUd+fj4PP/zwmKx7PEEj1JVhItQvhk6oP/rRj3jhhRd44403esyexsfHa8+t6667jnfeeYdnn32WuLg4brjhBgA+//zzka01CJOEOs7R1dXFe++9p3m6xsTEaN3CK1euHPaDuK2tjdLSUqZPn052dvaAO391NtNisWjemSq5jpUEnioSX19fH3bHldFGIBDQhDmsViuiKJKZmUlaWtqIZ4ePNNra2igpKRkxmT744IM8+OCDPQy3xwJqJuYnP/kJ3/72t9m2bRs33XQTTzzxBJdffjmff/45q1atorGxsUckfuGFFyIIAi+99NJYLX3cYCwJtb97Z8OGDVxxxRXA18IO//znP3sIO0ymfL+h8Hg8fPDBB5qnq9Fo1CLXVatWDdrMouoK5+bm9qgvDAV+v18j12B94SMpfKAoClVVVVitVpYuXTohxdF9Ph/FxcWYTCaysrK0VDvQYxxnPEesKpmOpAlMURQeffRR7rvvPt5//30KCwvDvMrhwWg0smzZsh7Ryo033si2bdv44osvJgl1CNAItTBMhLpt4kkPTryizTcYERERnH322Zx99tn4fD7N0/WKK65AlmXOOusszdO1d2ORWm8MVVfYYDCQmZlJZmZmj0irpqaGiIgIjVzj4uJGhVyDR3sKCwvHVfp5qFD9cFXXHlEUMZvNzJ07VxvHqaysxO/39zneNB7gcDgoKSkhNzd3RGT61FNP8Yc//IF33313zMkUICMjg3nz5vV4be7cuWzcuBFAi2IsFksPQrVYLGMaWY9LBICRhmlSOBZy5DF+7tRJDAtGo5HTTjtNS1t88sknvPzyy/zoRz/C7XZrnq4nnHACv/nNbwgEAvzf//1fWOqNer2e9PR00tPTNeEDi8VCcXExer2+hw9pOMhVlmV27NiB2+2msLBwQo72eL1eioqKiI2NPayDWxAEEhMTSUxMJDc3l87OTqxWKwcOHGDnzp2agP9Yd2CrZDp79uxhZzhUKIrCs88+y1133cVbb73FypUrw7zK0LBq1Sqqqqp6vLZnzx5tDjY7O5v09PQeqemOjg62bt3Kddddd6SXO4lxismU7/8YJEni888/15xxnE4niqJw5513cvXVV4+qaIMsy5qqkM1mQxCEHvrCoTRTqWMlgUBgws5oejweioqKiI+PZ/78+cPaZPT2Io2Pj9fO6ZGM0tvb2ykuLiYnJ2fINoS9oSgKf//737ntttv497//zQknnBDmVYaObdu2cfTRR/PrX/+aCy+8kK+++oprrrmGp556iksuuQSA++67j3vvvbfH2MyOHTsmx2YOQUv5LmoH3QjTtFIH7Jh4Kd9xTaiPPfYYf/zjH2lubmbx4sU88sgjLF++fKyXNSHg9Xq59NJL2bp1K6effjr//e9/sVgsnHLKKaxdu5bTTz99yJ6uoUDVF1aFDxRF6SGBOBRy9fv9lJSUIIrihB0rcbvdFBUVkZSUxNy5c0cUsXs8Ho1c1Sax4HGc0apjq2Q6a9askJ2HFEXhX//6FzfccAMbN27ktNNOC/MqR4633nqLn/3sZ+zdu5fs7Gx+8pOfaF2+8LWww1NPPYXD4eCYY47h8ccfJzc3dwxXPX6gEeq8MBFqxSShhg0vvfQSl112GU888QQrVqzgoYce4uWXX6aqqipkb9FvEq688koqKip46623SE1NRZZlSkpKNNu52tpaTj75ZNasWcOZZ545qqLviqL0kOwLBAKkpKSQlpbWr76w1+uluLiYiIgIFi1aNK6bdPpDV1cXRUVFpKamMmfOnLCeX7VJzGazaQL+6uxwOP+WHR0dFBUVjVjS8dVXX+UHP/gBL730EmeddVZY1jaJ8YVJQh3HhLpixQoKCwt59NFHge6IZ+rUqdxwww3ceeedY7y68Y8DBw5obh69oSgKO3fu1Mh1z549PTxdk5KSRl1fWJ119Xq9GrmqDTiq6ERcXFzYFaOOFFwuF0VFRaSlpYXsejNUBAv4q1Z+ajYg1FQ7fE2m2dnZzJgxI+T1vfXWW1x55ZX8/e9/59xzzw35OJMY39AINTdMhLpnklDDAp/PR1RUFK+88gpr167VXr/88stxOBy88cYbY7e4/zGooyiqp2t5eTnHHnssa9as4eyzz8ZsNo+6vrBKrm63m/j4eJxOJ6mpqcybN29CzWaqUC3kMjMzycnJOaLfoXeqXZblIbkN9UZnZydFRUXMmDFjRGT63nvvcemll7JhwwYuvPDCkI8zifEPjVBntoM4QhKUO2D/JKGGBY2NjWRlZfH555/36AK8/fbb2bx5M1u3bh3D1f3vQhVNUG3nioqKOProozWB8tH0dIXuOdny8nL0ej1+v3/cdLcOByoRjdRCLhxQFIX29nat7urxeEhJSdHs0vpr8FK/gyr+ESo+/PBDvvOd7/Dkk0/y3e9+d0JujiYxdEwS6uTYzCSCIAgCOTk53HHHHdx+++3U1tZq5HrHHXdQWFjImjVrWLNmTdg9XR0OB7t27WLmzJlkZ2fjdruxWCw0NjZSWVlJQkKCRq7jtaOyo6OD4uLiERNRuCAIAgkJCSQkJJCTk4PL5RpUwF+NrqdNmzai77Blyxa++93v8sgjj0yS6TcNEiOfQ5XDsZAjj3EZoU6mfMcXVE/XV199lVdffZVPP/2UxYsXa7ZzI43EWlpaKCsrY/bs2X2OZKj6wqrYfFxcnEau48W7Ve2EHWm98UjB7XZr51SNAuLj42lqamLq1KnMmjUr5GN//vnnnHfeefzpT3/immuumSTTbwi0CDUrTBFqw8SLUMcloUJ3U9Ly5ct55JFHgO7a0LRp07j++usnm5LGEIqiYLFYNE/XTZs2MXfuXI1ch9vNqqZ5582bNyS3Ep/PpxFBa2trj9GRsZIiVAUPRjJWMpbw+XzU19ezf/9+FEXpISsZGxs7rL/nV199xdq1a7nnnnv48Y9/PEmm3yBohJoWJkK1TBJq2PDSSy9x+eWX8+STT7J8+XIeeugh/vWvf1FZWXlEfS8n0T8URaG1tVXzdP3vf/9LTk6OZjs3b968ATtM1XRuqHKI6uiI6uQSGRmJ2WwmLS3tiOkLq44roegjjxe4XC62b99OVlYW06dP1zqG7XY7BoNhyMpXxcXFnH322fzyl7/klltumSTTbxgmCXUcEyrAo48+qgk75Ofns27dOlasWDHWy5pEH1AbYFRP1//85z9MmTJFI9fFixf3INfq6moOHjxIfn4+SUlJI/58VV9YJQKj0aiR62jpC6up6pGIxI811PGejIyMwzqSJUmitbVVG8cBtJprb3GOHTt2sHr1an76059yxx13TJLpNxAaoSaFiVBbJwl1EpMAujtF3377bTZu3Mh7771HSkoK55xzDmvWrOG1115j27ZtvPbaa903YJjR11xmsARiOB72drudHTt2jMhYe6zR1dXF9u3bSU9PZ/bs2QOeF1mWcTgcWkbA7/dTXl5OTEwMCxYs4MILL+T666/nV7/61SSZfkOhEWpCOwgjJEGlAxwTj1An3sT8JCYEYmNjufjii3n55Zdpbm7mT3/6EzabjbPOOovnnnuOefPmsXPnTiQp/LYSKoEuWLCA4447jnnz5mkC+1u2bKGiooKWlhZkObRWQqvVyo4dO4Zc9x2PUFWc0tLSBiVTAFEUSUpKYs6cORxzzDEsW7YMl8vFn/70J0455RQSEhI0O7qxwr333osgCNx8883aax6Phx//+MckJycTExPD+eefj8ViGbM1TuJ/G5OEGoQ//OEPFBYWEhsbi9lsZu3atYc5UEzeoMNHdHQ0a9euJSYmhtTUVP74xz8iyzIXXXQRubm53HzzzWzatAm/3x/2zxZFkZSUFObNm8exxx6r2abt3LmTzZs3s3PnTmw225CJ3WKxUF5ezoIFC8JqTHwkoeoLm83mkFScBEEgLi6OCy+8kEAgwBVXXMHVV1/N008/TUZGBj/96U9HaeX9Y9u2bTz55JMsWrSox+u33HILb775Ji+//DKbN2+msbGR884774iv7xuFQJj+TUBMpnyDcPrpp3PxxRdTWFhIIBDg5z//OTt37qSiooLo6GgArrvuOt5++22effZZ4uPjuf766xFFkc8++2yMVz++8de//pU///nPfPDBB1rzjs/n46OPPmLjxo28/vrrAJqn63HHHTeqYg5qzddisWgpzGAJxL4UhZqamti9ezcLFy4kNTV11NY2mnC73Wzfvn3E+sI1NTWcfvrprF27loceekirpzY0NNDW1saCBQvCuewB4XQ6Wbp0KY8//jj33HMP+fn5PPTQQ7S3t5OamsoLL7zABRdcAEBlZSVz587liy++4Kijjjpia/wmQEv5RoQp5euZeCnfSUIdADabDbPZzObNmzn22GMnb9ARQJIkOjo6+vVjDQQCbNmyhZdffpnXX38dj8fDWWedxZo1azjxxBNHVcxBURTNg9RisWiKQqrBt8Fg0DqSFy9eTHJy8qitZTTh8XjYvn07ycnJ5OXlhUymdXV1nHbaaZx++uk8/vjjY661fPnll5OUlMSDDz7I8ccfrxHqRx99xEknnURbWxsJCQna70+fPp2b/7+9ew+K8rr/OP5eboLKJaIsUCEQa4qXRAgoQRptDI1VihJv0VFj1IltvCRiEqttNRkT66WNMqLV6IxGa8Q0uoiKGi2i1hvigqk3MGkRiRHwEkBQl2X3+f3h8Oj+vKEs7G74vmZ2Jj67wNmJy8fnnO/5nqlTSUpKst2gf4IkUKVT0kNVVFQAqFWoer0eo9FIXFyc+pqwsDCCg4MlUB/B2dn5oYebu7i40KdPH/r06cPSpUs5dOgQmzZtYtq0aVRUVKh3Q7/+9a+t3syhbgrTy8uLDh06UF1dTWlpKefPn+f06dO0bNmSGzdu8Pzzzzt8mLZp06ZBYXrp0iXi4+Pp06cPy5Yts3mYbty4kdzcXHJycu55rqSkBDc3N4swBdBqtZSUlDTRCJshI9DQujQHvc2TNdQHMJvNTJ06ldjYWHX6Sj6gTcPZ2ZlevXqxZMkSzp8/z65du2jfvj1/+tOfCAkJYdSoUWzatInr169b/WdrNBpat25Nhw4diImJUdsgenh48J///Ae9Xk9xcTEGg8HqP7ux1B1w3tAzWUtLS4mPjycmJoZVq1bZ/Ei94uJi3n33Xb744gu7bUfZLJms9HBAEqgPMGnSJE6dOsXGjRttPZRmzcnJiZiYGD799FO+++479u3bx7PPPssnn3xCSEgIr7/+OqmpqVRUVGDt1YuioiIuXLhAZGQksbGxxMbG0rZtW0pKSvj3v/9NTk4ORUVF3Lx506o/15oMBgN6vR4fH58Ghenly5dJSEigW7durFmzxuZhCrdnjMrKynjhhRdwcXHBxcWF/fv3s2TJElxcXNBqtdTU1FBeXm7xdaWlpQ5bUCbsmwTqfUyePJnt27eTlZVl0f3G399fPqA25OTkRFRUFPPnzyc/P5/s7GwiIiJYvHgxISEhDBkyhHXr1nH16tUGh2thYSH/+9//eOGFF9QZCQ8PD55++mm6d+/OSy+9hL+/P1euXOHQoUNkZ2dTWFhIdXW1Fd6pddSFqbe3d4OOwrt27RoJCQl07NiR9evX4+JiHytFr7zyCidPnuTEiRPqIyoqipEjR6r/7erqSmZmpvo1BQUFXLhwweIUK9EIlAY+HJQUJd1FURSmTJlCWloa+/bto2PHjhbP1xUlpaamMnjwYOD2BzQsLEzWUG1IURTy8/PVA9NPnTpF79691TNd27Vr91hh8t///pfi4mIiIyPx9PR85OtramosWiDW9cLVarW0atXKJo0OampqOH78uHpI+5OOoby8nISEBAICAtDpdHZ/jN7dRUlwuyp/x44dfP7553h5eTFlyhTgdgN/YV1qURIVQEMLiSoBxytKkkC9y8SJE9mwYQPp6en84he/UK97e3vj4eEByAfU3tWd6VoXrnl5eRZnugYEBDwwXOq+9uLFi0RGRj5Rs32j0WjRAtHd3V0N18dtNP+k6sLU09OTrl27PvHPrKysJDExEW9vb9LT0x1infL/B+qtW7d47733SE1NxWAw0LdvX/7+97/LjFIjkECVQLXwoF88a9as4c033wTkA+pIFEWhqKiIzZs3k5aWxtGjR+nRo4d6pmtQUJD6/9xsNlNQUEBZWRlRUVHqvuOGMJlMXLlyhdLSUotG81qtFm9v70YJ15qaGvR6Pa1ataJr165PXIVbVVXFoEGDcHNzIyMjQ/0HpRAPIoEqgSqaCUVRuHjxonqm66FDhwgPDycxMZGEhATmzZuHwWBg5cqVjXLG6t2N5svKyiz6C/v4+Fhl+0ldmLZs2VLtCPUkbty4wZAhQ1AUhYyMDJsdiycciwSqFCU5FOlV+uQ0Gg3t27fnnXfeISsri+LiYsaNG0dWVhbR0dHs2bOH0NBQiouLrV4tDLe3ArVr144uXbrQu3dvunTpgtls5uTJk2p/4StXrjxxf2Gj0Uhubm6Dw/TWrVuMGDGCmpoatm3bJmEqnoDRSg/HYx/leuKRHtarNCMjg6+++kpthTho0CBphfgQGo0Gf39/JkyYwLFjx/D39+ftt99m3759vPjii3Ts2JEBAwbw2muv0alTJ6s3L3BycsLX1xdfX18URaG8vJzS0lLOnDmDyWSiXbt2+Pn54evrW6/tKUajEb1ej7u7e4PC1GAwMGrUKCoqKti9e7dD3RkIYQ9kytcBSK/SxrFw4UJWr15NZmYmP/vZz9T+vlu3blXPdA0ODlbD9fnnn2/UzkCKolBZWan2F66pqbFogXi/7Sp1d6Zubm73nDn7OGpqanjjjTcoLi4mMzPTKmfUiublzpRvCdaZ8vV3uClfCVQHIL1KG0dVVRXV1dVotdr7Pl9ZWWlxpqufn58arpGRkY0erlVVVWq43rx5E19fX/WAb1dXV2pra8nNzcXV1bVBYWo0Ghk/fjwFBQXs3bvXYRv/C9u6E6jFWCdQgxwuUGXK185Jr9LG07p164euEXp5eTFixAhGjBhBdXU1O3fuRKfTMWDAALy9vRkwYACJiYlER0dbvXOQRqPB09MTT09Pfv7zn1NVVUVZWRkXLlzgzJkzPPXUU9y8eRN3d/cG3TnX1tby+9//njNnzpCVlSVhKkQDSKDasbpepXv27HGIPYA/Za1atWLIkCEMGTKEmzdvsnv3bnQ6HcOGDcPd3Z2EhAQSExOJjY1tlE5CdeH/zDPPcP36dU6cOEFtbS23bt0iLy9PrRh+nL8nJpOJKVOmoNfr2bdv3wPv1IV4PNY40NQxD0SVQLVjd/cqrWMymThw4ABLly7l66+/Vlsh3n2XKq0QG5eHh4e6l7WmpoZ//etf6HQ63njjDTQaDfHx8bz22mv06tXL6p2Famtryc/Pp2XLloSHh2M0GtVj586dO4eXl5e61/Vhe0fNZjNJSUkcPHiQrKwsAgMDrTpO0ZzV0vAqXccMVFlDtWPXr1+nqKjI4trYsWMJCwvjD3/4A0FBQdIK0Y4YjUb1TNf09HQMBgPx8fEkJiby8ssvN3iWwWQykZeXh0ajITw8/J5pZoPBwOXLlyktLeXHH3+kdevWaLVa/Pz8LBpVmM1mpk+fTkZGBvv27SM0NLRB4xIC7l5D/RZ4dMvOh7sOdHS4NVQJVAcjvUodg8lk4uDBg2zatIktW7ZQWVlJv379SExMJC4u7rGbR9SFKUBERMQj12yNRqMarlevXkWj0bBz504GDx5Meno6Op2OrKyse/pVN6Z58+ah0+nIz8/Hw8ODnj17smDBAos2n3WdyDZu3GjRiUymo+3fnUA9g3UCtbPDBao0dnBwixcv5re//S2DBw+mV69e+Pv7o9PpbD2sZs/Z2ZnevXuTkpJCUVERO3fuJDAwkD/+8Y+EhoYyevRoNm/eTFVV1SO/l8lk4sSJEyiKUq8wBXB1dSUwMJCIiAh+9atf0aZNG/Lz84mPj2flypX069eP8vLyRmli8SD79+9n0qRJHD16lD179mA0Gnn11VctTuhJSkpi27ZtfPXVV+zfv58ffviBQYMGNdkYhTXUWunheOQOVYgmZDab0ev1bN68GZ1Ox/fff09cXBwDBw6kf//+eHl5WfT4NZlMfPPNN5hMJiIiIp644ElRFObNm8fq1auZPn06x48fZ9u2bfj4+LBjxw66dOlirbdYb5cvX8bPz4/9+/fTq1cv2Vft4O7coeYCDe2wVQW8IHeoQogHc3Jyonv37uqZrocPH6Zbt24sWrSIkJAQhg4dyrp167h27RpVVVWMHj2aS5cuNThMFy1axPLly9m5cydTp05l/fr1lJWVsXz5cp555hkrv8v6qaioAFCbSOj1eoxGI3FxceprwsLCCA4O5siRIzYZoxCPQwJVPJaLFy8yatQofH198fDw4LnnnuP48ePq84qiMHv2bAICAvDw8CAuLo5vv/3WhiO2X05OToSHh/Pxxx9z6tQp8vLyePHFF1mxYgWhoaH07NmT06dP8+yzzz7xPldFUUhJSWHx4sV8/fXXdOvWTX2uRYsW9O/f3yYnyZjNZqZOnUpsbCxdu3YFZF/1T0fznfKVQBX19uOPPxIbG4urqys7d+7kzJkzfPrppzz11FPqaxYuXMiSJUtYsWIF2dnZtGrVir59+3Lr1i0bjtz+aTQaOnfuzOzZs8nOzqZXr14YDAZ8fX2Jioqif//+fPbZZ1y6dKne656KovDZZ58xf/58duzYQVRUVCO/i/qbNGkSp06dYuPGjbYeirA6aY4vxCMtWLCAoKAg1qxZo167e8uFoigkJyfz5z//mYEDBwKwbt06tFotW7ZsYfjw4U0+ZkdjMpl4/fXXqaio4OTJk3h7e3P+/Hk2b97Mpk2b+OCDD4iOjlb3wbZv3/6+56oqisKaNWv46KOPyMjIsKv1x8mTJ7N9+3YOHDhA+/bt1ev+/v6yr1o4NLlDFfW2detWoqKiGDp0KH5+fkRERLBq1Sr1+cLCQkpKSizWwLy9vYmOjpY1sHpydnYmISGB3bt34+Pjg0ajITQ0lPfff5+DBw9SWFjIsGHDyMjIoEuXLrz88sskJydTWFio3rkqisI//vEPZs6cydatW3nppZds/K5uUxSFyZMnk5aWxt69e+/Z/xoZGYmrqyuZmZnqtYKCAi5cuEBMTExTD1c8seY75StVvqLe6hoTTJs2jaFDh5KTk8O7777LihUrGDNmDIcPHyY2NpYffviBgIAA9euGDRuGRqPhyy+/tNXQf3IURaGkpIS0tDR0Oh379++na9euDBw4kBYtWjB37lx0Oh2vvvqqrYeqmjhxIhs2bCA9Pd1i76m3t7e6jiv7qh3XnSrfTKDVo17+CNXAKw5X5SuBKurNzc2NqKgoi19u77zzDjk5ORw5ckQC1UYUReHq1aukp6ezYcMG9u7dy/r16xk5cqSth2bhflPTAGvWrOHNN98E7jR2SE1NtWjsIFO+9k8CVdZQxWMICAigc+fOFtc6derE5s2bAdRfeqWlpRaBWlpaSnh4eJONs7nRaDS0bduW8ePHM27cOC5evGixNmkv6vNvd3d3d5YtW8ayZcuaYESicTTf5viyhirqLTY2loKCAotr586d4+mnnwZuFyj5+/tbrIFVVlaSnZ0ta2BNRKPR2GWYiuZEqnyFeKSkpCR69uzJX/7yF4YNG8axY8dYuXIlK1euBG7/Mp86dSqffPIJHTt2JDQ0lFmzZhEYGEhiYqJtBy+EEI1MAlXUW/fu3UlLS2PmzJnMmTOH0NBQkpOTLdbqpk+fTnV1NRMmTKC8vJxf/vKX7Nq1S85zFaLZaL5TvlKUJIQQosHuFCVtAh7vNKV73QCGSFGSEEKI5qz53qFKUZIQQghhBRKowqGZTCZmzZpFaGgoHh4edOjQgY8//thii4Y07BeiKTXfKl8JVOHQFixYwPLly1m6dClnz55lwYIFLFy4kJSUFPU10rBfiKbUfANV1lCFQzt8+DADBw4kPj4egJCQEFJTUzl27BggDfuFEE1H7lCFQ+vZsyeZmZmcO3cOgG+++YaDBw/Sr18/QBr2C9H0mm9zfLlDFQ5txowZVFZWEhYWhrOzMyaTiblz56p7Y+sOptZqtRZfJ4dWC9FYamn4lK1jBqrcoQqH9s9//pMvvviCDRs2kJuby9q1a/nb3/7G2rVrbT20n7Rly5YREhKCu7s70dHR6hS7EM2ZBKpwaB988AEzZsxg+PDhPPfcc4wePZqkpCTmzZsHWDbsv5scWv3kvvzyS6ZNm8aHH35Ibm4u3bp1o2/fvpSVldl6aMIuNN8pXwlU4dBu3LiBk5PlX2NnZ2fMZjMgDfsbw6JFi3jrrbcYO3YsnTt3ZsWKFbRs2ZLVq1fbemjCLkiVrxAOKSEhgblz5xIcHEyXLl3Iy8tj0aJFjBs3DpCG/dZWU1ODXq9n5syZ6jUnJyfi4uKkyEs0exKowqGlpKQwa9YsJk6cSFlZGYGBgfzud79j9uzZ6mukYb/1XLlyBZPJdN8ir/z8fBuNStiX5tt6UAJVODRPT0+Sk5NJTk5+4Gs0Gg1z5sxhzpw5TTcwIZqt5lvlK4EqhKi3tm3b4uzsLEVe4iGa7x2qFCUJYQUHDhwgISGBwMBANBoNW7ZssXi+Pv2Er127xsiRI/Hy8sLHx4fx48dTVVXVhO/i0dzc3IiMjLQo8jKbzWRmZkqRl7Ape9jKJYEqhBVUV1fTrVs3li1bdt/n69NPeOTIkZw+fZo9e/awfft2Dhw4wIQJE5rqLdTbtGnTWLVqFWvXruXs2bO8/fbbVFdXM3bsWFsPTdiFpq/ytZetXHLAuBBWptFoSEtLU6uIFUUhMDCQ9957j/fffx+AiooKtFotn3/+OcOHD+fs2bN07tyZnJwcoqKiANi1axf9+/fn+++/JzAw0FZv576WLl3KX//6V0pKSggPD2fJkiVER0fbeljChu4cMD4DaGjB3y1gfr0PGI+OjqZ79+4sXboUuD1rEhQUxJQpU5gxY0YDx1J/cocqRCOrTz/hI0eO4OPjo4YpQFxcHE5OTmRnZzf5mB9l8uTJFBUVYTAYyM7OljAVdzFwOxAb8jAAt0P67ofBYLjnp9Vt5br782WrrVxSlCREI6tPP+GSkhL8/PwsnndxcaFNmzbSc1g4BDc3N/z9/SkpWWyV79e6dWuCgoIsrn344Yd89NFHFtfsaSuXBKoQQogGc3d3p7CwkJqaGqt8P0VR0Gg0FtdatGhhle/dWCRQhWhkd/cTDggIUK+XlpYSHh6uvub/F1DU1tZy7do12Y4iHIa7u3uTN0yxp61csoYqRCOrTz/hmJgYysvL0ev16mv27t2L2WyW9UkhHsKetnLJHaoQVlBVVcV3332n/rmwsJATJ07Qpk0bgoODH9lPuFOnTvzmN7/hrbfeYsWKFRiNRiZPnszw4cPtrsJXCHszbdo0xowZQ1RUFD169CA5Odk2W7kUIUSDZWVlKcA9jzFjxiiKoihms1mZNWuWotVqlRYtWiivvPKKUlBQYPE9rl69qowYMUJp3bq14uXlpYwdO1a5fv26Dd6NEI4nJSVFCQ4OVtzc3JQePXooR48ebfIxyD5UIYQQwgpkDVUIIYSwAglUIYQQwgokUIUQQggrkEAVQgghrEACVQghhLACCVQhhBDCCiRQhRBCCCuQQBVCCCGsQAJVCCGEsAIJVCGEEMIKJFCFEEIIK5BAFUIIIazg/wD0D2YkBTH8PgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "errors_mask = train_data[\"final_score\"] != train_data[\"true_final_score\"]\n", + "errors_idx = np.where(errors_mask == 1)\n", + "\n", + "plot_data(train_data, errors_idx)" + ] + }, + { + "cell_type": "markdown", + "id": "add939ae", + "metadata": {}, + "source": [ + "Next we preprocess the data by applying one-hot encoding to features with categorical data (this is optional if your regression model can work directly with categorical features)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7af78a8a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.614902Z", + "iopub.status.busy": "2024-05-24T23:50:50.614557Z", + "iopub.status.idle": "2024-05-24T23:50:50.619028Z", + "shell.execute_reply": "2024-05-24T23:50:50.618603Z" + } + }, + "outputs": [], + "source": [ + "feature_columns = [\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]\n", + "predicted_column = \"final_score\"\n", + "\n", + "X_train_raw, y_train = train_data[feature_columns], train_data[predicted_column]\n", + "X_test_raw, y_test = test_data[feature_columns], test_data[predicted_column]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9556c624", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.620941Z", + "iopub.status.busy": "2024-05-24T23:50:50.620755Z", + "iopub.status.idle": "2024-05-24T23:50:50.626692Z", + "shell.execute_reply": "2024-05-24T23:50:50.626273Z" + } + }, + "outputs": [], + "source": [ + "categorical_features = [\"notes\"]\n", + "X_train = pd.get_dummies(X_train_raw, columns=categorical_features)\n", + "X_test = pd.get_dummies(X_test_raw, columns=categorical_features)" + ] + }, + { + "cell_type": "markdown", + "id": "1ce924cf", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Assign your data's features to variable `X` and the target values to variable `y` instead, then continue with the rest of the tutorial.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "4b14309d", + "metadata": {}, + "source": [ + "## 3. Define a regression model and use cleanlab to find potential label errors" + ] + }, + { + "cell_type": "markdown", + "id": "81ee2349", + "metadata": {}, + "source": [ + "We'll first demonstrate regression with noisy labels via the `CleanLearning` class that can wrap any scikit-learn compatible regression model you have. `CleanLearning` uses your model to estimate label issues (i.e. noisy `y`-values) and train a more robust version of the same model when the original data contains noisy labels.\n", + "\n", + "Here we define a `CleanLearning` object with a histogram-based gradient boosting model (sklearn version of XGBoost) and use the `find_label_issues` method to find potential errors in our dataset's numeric label column. Any other sklearn-compatible regression model could be used, such as `LinearRegression` or `RandomForestRegressor` (or you can easily wrap arbitrary custom models to be compatible with the sklearn API)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3c2f1ccc", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.628771Z", + "iopub.status.busy": "2024-05-24T23:50:50.628387Z", + "iopub.status.idle": "2024-05-24T23:50:50.630944Z", + "shell.execute_reply": "2024-05-24T23:50:50.630504Z" + } + }, + "outputs": [], + "source": [ + "model = HistGradientBoostingRegressor()\n", + "cl = CleanLearning(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7e1b7860", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:50.632917Z", + "iopub.status.busy": "2024-05-24T23:50:50.632598Z", + "iopub.status.idle": "2024-05-24T23:50:58.850211Z", + "shell.execute_reply": "2024-05-24T23:50:58.849555Z" + } + }, + "outputs": [], + "source": [ + "label_issues = cl.find_label_issues(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "43bd6c7f", + "metadata": {}, + "source": [ + "`CleanLearning` internally fits multiple copies of our regression model via cross-validation and bootstrapping in order to compute predictions and uncertainty estimates for the dataset. These are used to identify label issues (i.e. likely corrupted `y`-values).\n", + "\n", + "This method returns a Dataframe containing a label quality score (between 0 and 1) for each example in your dataset. Lower scores indicate examples more likely to be mislabeled with an erroneous `y` value. The Dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating its `y`-value appears potentially corrupted). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f407bd69", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.852988Z", + "iopub.status.busy": "2024-05-24T23:50:58.852468Z", + "iopub.status.idle": "2024-05-24T23:50:58.859468Z", + "shell.execute_reply": "2024-05-24T23:50:58.858917Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_qualitygiven_labelpredicted_label
0False0.38510173.376.499503
1False0.69825583.882.776647
2True0.10937373.563.170547
3False0.48109678.675.984759
4False0.64527074.175.795928
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_quality given_label predicted_label\n", + "0 False 0.385101 73.3 76.499503\n", + "1 False 0.698255 83.8 82.776647\n", + "2 True 0.109373 73.5 63.170547\n", + "3 False 0.481096 78.6 75.984759\n", + "4 False 0.645270 74.1 75.795928" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "id": "4ab5acf3", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 10 most likely mislabeled examples in our regression dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f7385336", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.861394Z", + "iopub.status.busy": "2024-05-24T23:50:58.861091Z", + "iopub.status.idle": "2024-05-24T23:50:58.864726Z", + "shell.execute_reply": "2024-05-24T23:50:58.864175Z" + } + }, + "outputs": [], + "source": [ + "identified_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_quality\"].argsort()[:10].to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "59fc3091", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.866836Z", + "iopub.status.busy": "2024-05-24T23:50:58.866424Z", + "iopub.status.idle": "2024-05-24T23:50:58.869861Z", + "shell.execute_reply": "2024-05-24T23:50:58.869307Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cleanlab found 141 potential label errors in the dataset.\n", + "Here are indices of the top 10 most likely errors: \n", + " [659 367 56 318 305 560 657 688 117 160]\n" + ] + } + ], + "source": [ + "print(\n", + " f\"cleanlab found {len(identified_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 10 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "aa2c1fec", + "metadata": {}, + "source": [ + "Let’s review some of the values most likely to be erroneous. To help us inspect these datapoints, we define a method to print any example from the dataset, together with its given (original) label and the suggested alternative label predicted by your regression model." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "00949977", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.872168Z", + "iopub.status.busy": "2024-05-24T23:50:58.871843Z", + "iopub.status.idle": "2024-05-24T23:50:58.874908Z", + "shell.execute_reply": "2024-05-24T23:50:58.874450Z" + } + }, + "outputs": [], + "source": [ + "def view_datapoint(index):\n", + " given_labels = label_issues[\"given_label\"]\n", + " predicted_labels = label_issues[\"predicted_label\"].round(1)\n", + " return pd.concat(\n", + " [X_train_raw, given_labels, predicted_labels], axis=1\n", + " ).iloc[index]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b6c1ae3a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.876898Z", + "iopub.status.busy": "2024-05-24T23:50:58.876586Z", + "iopub.status.idle": "2024-05-24T23:50:58.884661Z", + "shell.execute_reply": "2024-05-24T23:50:58.884221Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
exam_1exam_2exam_3notesgiven_labelpredicted_label
659679393NaN17.484.1
36778086NaN0.056.7
56758369NaN8.971.7
318418898missed class frequently -100.071.9
30597090NaN19.161.6
\n", + "
" + ], + "text/plain": [ + " exam_1 exam_2 exam_3 notes given_label \\\n", + "659 67 93 93 NaN 17.4 \n", + "367 78 0 86 NaN 0.0 \n", + "56 75 83 69 NaN 8.9 \n", + "318 41 88 98 missed class frequently -10 0.0 \n", + "305 97 0 90 NaN 19.1 \n", + "\n", + " predicted_label \n", + "659 84.1 \n", + "367 56.7 \n", + "56 71.7 \n", + "318 71.9 \n", + "305 61.6 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "view_datapoint(lowest_quality_labels[:5])" + ] + }, + { + "cell_type": "markdown", + "id": "f2be7a93", + "metadata": {}, + "source": [ + "These are very clear errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the final grade that these student should be getting. \n", + "\n", + "cleanlab has shortlisted the most likely label errors to speed up your data cleaning process. With this list, you can decide whether to fix these label issues or remove erroneous examples from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9131d82d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.886646Z", + "iopub.status.busy": "2024-05-24T23:50:58.886261Z", + "iopub.status.idle": "2024-05-24T23:50:58.888883Z", + "shell.execute_reply": "2024-05-24T23:50:58.888445Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "label_issues_cl = label_issues.copy()" + ] + }, + { + "cell_type": "markdown", + "id": "e2761486", + "metadata": {}, + "source": [ + "## 4. Train a more robust model from noisy labels" + ] + }, + { + "cell_type": "markdown", + "id": "043bfb52", + "metadata": {}, + "source": [ + "Fixing the label issues manually may be time-consuming, but cleanlab can filter these noisy examples and train a model on the remaining clean data for you automatically.\n", + "\n", + "To establish a baseline, let’s first train and evaluate our original Gradient Boosting model." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "31c704e7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:58.890743Z", + "iopub.status.busy": "2024-05-24T23:50:58.890568Z", + "iopub.status.idle": "2024-05-24T23:50:59.013251Z", + "shell.execute_reply": "2024-05-24T23:50:59.012686Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "r-squared score of original model: 0.838\n" + ] + } + ], + "source": [ + "baseline_model = HistGradientBoostingRegressor() \n", + "baseline_model.fit(X_train, y_train)\n", + "\n", + "preds_og = baseline_model.predict(X_test)\n", + "r2_og = r2_score(y_test, preds_og)\n", + "print(f\"r-squared score of original model: {r2_og:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "0d01f715", + "metadata": {}, + "source": [ + "Now that we have a baseline, let’s check if using `CleanLearning` improves our test accuracy.\n", + "\n", + "`CleanLearning` provides a wrapper that can be applied to any scikit-learn compatible model. The resulting model object can be used in the same manner, but it will now train more robustly if the data has noisy labels.\n", + "\n", + "We can use the same `CleanLearning` object defined above, and pass the label issues we already computed into `.fit()` via the `label_issues` argument. This accelerates things; if we did not provide the label issues, then they would be re-estimated via cross-validation. After the issues are estimated, `CleanLearning` simply removes the examples with label issues and retrains your model on the remaining clean data." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "0bcc43db", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.015736Z", + "iopub.status.busy": "2024-05-24T23:50:59.015196Z", + "iopub.status.idle": "2024-05-24T23:50:59.126180Z", + "shell.execute_reply": "2024-05-24T23:50:59.125355Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "r-squared score of cleanlab's model: 0.926\n" + ] + } + ], + "source": [ + "found_label_issues = cl.get_label_issues()\n", + "cl.fit(X_train, y_train, label_issues=found_label_issues)\n", + "\n", + "preds_cl = cl.predict(X_test)\n", + "r2_cl = r2_score(y_test, preds_cl)\n", + "print(f\"r-squared score of cleanlab's model: {r2_cl:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "3aea51da", + "metadata": {}, + "source": [ + "We can see that the coefficient of determination (r-squared score) of the test set improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any evaluation metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." + ] + }, + { + "cell_type": "markdown", + "id": "167fca90", + "metadata": {}, + "source": [ + "## 5. Other ways to find noisy labels in regression datasets" + ] + }, + { + "cell_type": "markdown", + "id": "5b4f8e14", + "metadata": {}, + "source": [ + "The `CleanLearning` workflow above requires a sklearn-compatible model. If your model or data format is not compatible with the requirements for using `CleanLearning`, you can instead run [cross-validation on your regression model to get out-of-sample predictions](https://docs.cleanlab.ai/stable/tutorials/pred_probs_cross_val.html), and then use the `Datalab` audit to estimate label quality scores for each example in your dataset.\n", + "\n", + "This approach requires two inputs:\n", + "\n", + "- `labels`: numpy array of given labels in the dataset. \n", + "- `predictions`: numpy array of predictions for each example in the dataset from your favorite model (these should be out-of-sample predictions to get the best results)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "7021bd68", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.128705Z", + "iopub.status.busy": "2024-05-24T23:50:59.128344Z", + "iopub.status.idle": "2024-05-24T23:50:59.619066Z", + "shell.execute_reply": "2024-05-24T23:50:59.618414Z" + } + }, + "outputs": [], + "source": [ + "# Get out-of-sample predictions using cross-validation:\n", + "model = HistGradientBoostingRegressor()\n", + "predictions = cross_val_predict(estimator=model, X=X_train, y=y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d49c990b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.621570Z", + "iopub.status.busy": "2024-05-24T23:50:59.621385Z", + "iopub.status.idle": "2024-05-24T23:50:59.699667Z", + "shell.execute_reply": "2024-05-24T23:50:59.699059Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n", + "\n", + "Audit complete. 50 issues found in the dataset.\n" + ] + } + ], + "source": [ + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(\n", + " data=train_data.drop(columns=[\"true_final_score\"]),\n", + " label_name=\"final_score\",\n", + " task=\"regression\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " pred_probs=predictions,\n", + " issue_types={\"label\": {}}, # specify we're only interested in label issues here \n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "dbab6fb3", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.702010Z", + "iopub.status.busy": "2024-05-24T23:50:59.701829Z", + "iopub.status.idle": "2024-05-24T23:50:59.710608Z", + "shell.execute_reply": "2024-05-24T23:50:59.710147Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
318True1.968627e-090.078.228799
659True2.646674e-0817.486.402962
56True4.323818e-088.975.952758
160True2.422144e-070.060.456908
367True8.465815e-070.055.753968
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "318 True 1.968627e-09 0.0 78.228799\n", + "659 True 2.646674e-08 17.4 86.402962\n", + "56 True 4.323818e-08 8.9 75.952758\n", + "160 True 2.422144e-07 0.0 60.456908\n", + "367 True 8.465815e-07 0.0 55.753968" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "label_issues.sort_values(\"label_score\").head()" + ] + }, + { + "cell_type": "markdown", + "id": "3a0db9b2", + "metadata": {}, + "source": [ + "As before, these label quality scores are continuous values in the range [0,1] where 1 represents a clean label (given label appears correct) and 0 a represents dirty label (given label appears corrupted, i.e. the numeric value may be incorrect). You can sort examples by their label quality scores to inspect the most-likely corrupted datapoints.\n", + "\n", + "If possible, we recommend you use `CleanLearning` to wrap your regression model (over providing its pre-computed predictions) for the most accurate label error detection (that properly accounts for aleatoric/epistemic uncertainty in the regression model). To understand how these approaches work, refer to our paper: **[Detecting Errors in Numerical Data via any Regression Model](https://arxiv.org/abs/2305.16583)**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5b39b8b5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.712482Z", + "iopub.status.busy": "2024-05-24T23:50:59.712310Z", + "iopub.status.idle": "2024-05-24T23:50:59.715006Z", + "shell.execute_reply": "2024-05-24T23:50:59.714564Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai\n", + "np.random.seed(SEED) # for reproducibility\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "4366346a", + "metadata": {}, + "source": [ + "You can alternatively provide `features` to `Datalab` instead of pre-computed predictions. These are (preprocessed) numeric dataset covariates, aka independent variables to the regression model (such as neural network embeddings of your raw data). Internally, this is equivalent to using `CleanLearning` to find label issues if you also possible provide your sklearn-compatible regression model to `Datalab.find_issues`. But you can simultaneously detect many more types of issues in your dataset beyond mislabeling via Datalab (simply drop the `issue_types` argument below)." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "df06525b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:50:59.716885Z", + "iopub.status.busy": "2024-05-24T23:50:59.716714Z", + "iopub.status.idle": "2024-05-24T23:51:05.192490Z", + "shell.execute_reply": "2024-05-24T23:51:05.191947Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding label issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Audit complete. 141 issues found in the dataset.\n" + ] + } + ], + "source": [ + "lab = Datalab(\n", + " data=train_data.drop(columns=[\"true_final_score\"]),\n", + " label_name=\"final_score\",\n", + " task=\"regression\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " features=X_train,\n", + " issue_types={ # Optional drop this to simultaneously detect many types of data/label issues \n", + " \"label\": {\n", + " # Optional: Specify which type of sklearn-compatible regression model is used to find label errors\n", + " \"clean_learning_kwargs\": {\"model\": HistGradientBoostingRegressor()}\n", + " }\n", + " },\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "05282559", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:05.194611Z", + "iopub.status.busy": "2024-05-24T23:51:05.194424Z", + "iopub.status.idle": "2024-05-24T23:51:05.203306Z", + "shell.execute_reply": "2024-05-24T23:51:05.202879Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_label_issuelabel_scoregiven_labelpredicted_label
659True5.791186e-1217.484.110719
367True6.485156e-100.056.670640
56True1.225300e-098.971.749976
318True1.499679e-090.071.947007
305True4.067882e-0819.161.648396
\n", + "
" + ], + "text/plain": [ + " is_label_issue label_score given_label predicted_label\n", + "659 True 5.791186e-12 17.4 84.110719\n", + "367 True 6.485156e-10 0.0 56.670640\n", + "56 True 1.225300e-09 8.9 71.749976\n", + "318 True 1.499679e-09 0.0 71.947007\n", + "305 True 4.067882e-08 19.1 61.648396" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "label_issues.sort_values(\"label_score\").head()" + ] + }, + { + "cell_type": "markdown", + "id": "c1353758", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset (a default regression model will be used if you don't specify the model type).\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks).\n", + "\n", + "**Summary:** To detect many types of issues in your regression dataset, we recommend using `Datalab` with provided `features` plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use `CleanLearning`. Alternatively, if you don't have a sklearn-compatible regression model or already have pre-computed predictions from the model you'd like to rely on, you can pass these predictions into `Datalab` directly to find issues based on them instead of providing a regression model." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "95531cda", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:05.205340Z", + "iopub.status.busy": "2024-05-24T23:51:05.205162Z", + "iopub.status.idle": "2024-05-24T23:51:05.276188Z", + "shell.execute_reply": "2024-05-24T23:51:05.275555Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "from sklearn.metrics import roc_auc_score\n", + "from cleanlab.regression.rank import get_label_quality_scores\n", + "\n", + "if r2_cl <= r2_og:\n", + " raise ValueError(\"CleanLearning did not improve r2 score\")\n", + "\n", + "label_quality_score_cl = label_issues_cl[\"label_quality\"]\n", + "label_quality_scores_residual = get_label_quality_scores(labels=y_train, predictions=predictions, method=\"residual\")\n", + "\n", + "label_quality_scores = get_label_quality_scores(labels=y_train, predictions=predictions)\n", + "\n", + "auc_outre = roc_auc_score(errors_mask, 1 - label_quality_scores)\n", + "auc_cl = roc_auc_score(errors_mask, 1 - label_quality_score_cl)\n", + "auc_residual = roc_auc_score(errors_mask, 1 - label_quality_scores_residual)\n", + "\n", + "if auc_outre <= 0.5 or auc_cl <= 0.5:\n", + " raise ValueError(\"Label quality scores did not perform well enough\")\n", + "\n", + "if auc_outre <= auc_residual:\n", + " raise ValueError(\"Outre label quality scores did not outperform alternative scores\")\n", + " \n", + "if auc_cl <= auc_residual:\n", + " raise ValueError(\"CL label quality scores did not outperform alternative scores\")\n", + "\n", + "# Test that CleanLearning label issues and Datalab label issues match\n", + "pd.testing.assert_frame_equal(\n", + " # CleanLearning DataFrame\n", + " label_issues_cl.rename(columns={\"label_quality\": \"label_score\"}), \n", + " # Datalab DataFrame\n", + " label_issues,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/segmentation.ipynb new file mode 100644 index 000000000..692f34f5e --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -0,0 +1,2489 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d0d2e007", + "metadata": {}, + "source": [ + "# Find Label Errors in Semantic Segmentation Datasets\n", + "\n", + "This 5-minute quickstart tutorial shows how you can use cleanlab to find potentially mislabeled images in semantic segmentation datasets. In semantic segmentation, our data consists of images each annotated with a corresponding mask that labels each pixel in the image as one of K classes. Models are trained on this labeled mask to predict the class of each pixel in an image. However in real-world data, this annotated mask often contains errors. \n", + "Here we apply cleanlab to find label errors in a variant of the [SYNTHIA](https://synthia-dataset.net) segmentation dataset, which consists of synthetic images generated via graphics engine." + ] + }, + { + "cell_type": "markdown", + "id": "07936a54", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab uses two inputs to handle semantic segmentation data classification data:\n", + "- `labels`: Array of dimension (N,H,W) where N is the number of images and H and W are dimension of the image. We assume an integer encoded image. For one-hot encoding one can `np.argmax(labels_one_hot,axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W) where K is the number of classes.\n", + "- `pred_probs`: Array of dimension (N,K,H,W), similar to `labels`.\n", + "\n", + "With these inputs, you can find and review label issues via this code: \n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.segmentation.filter import find_label_issues \n", + "from cleanlab.segmentation.summary import display_issues\n", + " \n", + "issues = find_label_issues(labels, pred_probs)\n", + "display_issues(issues, pred_probs=pred_probs, labels=labels,\n", + " top=10)\n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "1da020bc", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows: \n", + "\n", + " !pip install cleanlab " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ae8a08e0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:08.225334Z", + "iopub.status.busy": "2024-05-24T23:51:08.225154Z", + "iopub.status.idle": "2024-05-24T23:51:09.261627Z", + "shell.execute_reply": "2024-05-24T23:51:09.260984Z" + } + }, + "outputs": [], + "source": [ + "%%capture\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ImageSegmentation/given_masks.npy' " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "58fd4c55", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:09.264385Z", + "iopub.status.busy": "2024-05-24T23:51:09.264014Z", + "iopub.status.idle": "2024-05-24T23:51:51.450767Z", + "shell.execute_reply": "2024-05-24T23:51:51.450088Z" + } + }, + "outputs": [], + "source": [ + "%%capture\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ImageSegmentation/predicted_masks.npy' " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "439b0305", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:51.453577Z", + "iopub.status.busy": "2024-05-24T23:51:51.453105Z", + "iopub.status.idle": "2024-05-24T23:51:52.584339Z", + "shell.execute_reply": "2024-05-24T23:51:52.583773Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a1349304", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:52.586984Z", + "iopub.status.busy": "2024-05-24T23:51:52.586590Z", + "iopub.status.idle": "2024-05-24T23:51:52.589776Z", + "shell.execute_reply": "2024-05-24T23:51:52.589344Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.segmentation.filter import find_label_issues \n", + "from cleanlab.segmentation.rank import get_label_quality_scores, issues_from_scores \n", + "from cleanlab.segmentation.summary import display_issues, common_label_issues, filter_by_class \n", + "np.set_printoptions(suppress=True)" + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAFfCAYAAABa51gvAAAAAXNSR0IArs4c6QAAAMJlWElmTU0AKgAAAAgABgESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAAExAAIAAAAxAAAAZodpAAQAAAABAAAAmAAAAAAAAABkAAAAAQAAAGQAAAABTWF0cGxvdGxpYiB2ZXJzaW9uMy42LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAACSaADAAQAAAABAAABXwAAAAABKIHGAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAB62lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPHhtcDpDcmVhdG9yVG9vbD5NYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88L3htcDpDcmVhdG9yVG9vbD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ch5LRhUAAEAASURBVHgB7L0JrG3HWe9ZZ57uuYPHxHZiZ4IQE5IQ+sGj+wFOghLUiKcmamiQHtODRupmCBI0CEQjgRQpIdCgZnhqxpYAgUir8xKlHzS8hM57iTsDJMEkcew4ju3ra/te3+ncM4/9//2/qrXX2mfts/c599hxm1X3nr1q+Kb6VtVX36qqVWtsTyF1odNAp4FOA50GOg10Gug00GmgoYHxRqpLdBroNNBpoNNAp4FOA50GOg1YA52T1DWETgOdBjoNdBroNNBpoNNAiwY6J6lFKV1Wp4FOA50GOg10Gug00Gmgc5K6NtBpoNNAp4FOA50GOg10GmjRQOcktSily+o00GmgqYE//uM/TmNjY+kTn/hEs6BLdRroNNBp4Hmsgc5Jeh7f3K5qnQY6DXQa6DTQaaDTwNE10DlJR9ddh9lpoNNAp4FOA50GOg08jzXQOUnP45vbVa3TwDOlgR/4gR9IJ06cSI8++mj69m//dsdvv/329Nu//dtmed9996U3vOENaWFhId15553pz/7szxqiXLp0Kf30T/90evWrX23ckydPpm/7tm9Ln/70pxtwJB555JH0Hd/xHaZ1yy23pJ/6qZ9Kf/3Xf+3lv7/7u79rwH/0ox9Nb3nLW9KpU6fS/Px8+uZv/ub04Q9/uAHTJToNdBroNDCqBjonaVRNdXCdBjoNNDSws7Njx+ZFL3pReuc735nuuuuu9GM/9mOJ/Us4Kl/3dV+X3vGOd6TFxcX0fd/3fenhhx+u8L/4xS+m97znPXawfv3Xfz39zM/8TMKxwqk5d+5cBbeysmJn62//9m/TT/zET6Rf+IVfSB/5yEfSz/7sz1YwJfKBD3wgfdM3fVNaWlpKv/RLv5Te/va3pytXrhj/Yx/7WAHrrp0GOg10GhhdA5y43YVOA50GOg0cpIE/+qM/4mT+vY9//OMG+/7v/36n5YhUaJcvX96bm5vb0wbvvT//8z+v8u+//37DynGp8tbX1/fkZFVpInKi9mZmZvZ++Zd/ucr/tV/7NePKoary1tbW9l75ylc6/4Mf/KDzd3d3917xilfsvfnNb94jXsLq6ureS17ykr1v/dZvLVndtdNAp4FOAyNroJtJGt2f7CA7DXQa6NPAD//wD1c5p0+fTl/5lV/pZbHv+q7vqvLJo4zZoxLkDKXx8TA/zEhdvHjRy27A/sM//EMBS3/1V3+VWMZjua2E2dnZ9CM/8iMl6eunPvWp9OCDD6bv/d7vNa2nn3468cdM1Bvf+Mb0oQ99KMl5auB0iU4DnQY6DQzTwOQwgK6800CngU4DbRrAWbn55psbRewFuuOOO7xfqF5Avmaaqiwclt/8zd9Mv/M7v+NlOBylEm688cYS9X6kl73sZfvovfzlL69giOAgETTD5Wvbz9WrV9OZM2fairq8TgOdBjoNtGqgc5Ja1dJldhroNDBMAxMTE60gg/I1v13Bs1/oF3/xF9MP/dAPpV/5lV9JN9xwg2eW3va2tx1pxqfMEv3qr/5qeu1rX1vxqUfYaN6FTgOdBjoNHEYDnZN0GG11sJ0GOg0ciwbe/e53p3vuuSf9wR/8QYMeG61vuummKo834z772c8mHCwOsyzhC1/4Qon6ymwTgbfk3vSmNzne/XQa6DTQaeB6NdDtSbpeDXb4nQY6DRxaA8w21WeWIPCXf/mX6fHHH2/Q0kZs5733ve+t8rXpO/3e7/1elSby+te/PuEovetd70rLy8uNMhIXLlzYl9dldBroNNBpYJgGupmkYRrqyjsNdBo4dg1wtpLeYks/+IM/mL7xG7/Rr///6Z/+aXrpS1/a4PWjP/qj6bd+67fS93zP96Sf/MmfTC984QsTcOyHIpTZJTaB//7v/76PJLj77rtNlw3fOF16A84zTO973/satLtEp4FOA50Ghmmgc5KGaagr7zTQaeDYNfDzP//zfvOMQyb/4i/+In3t135tev/7359+7ud+rsGLfUScf/TjP/7j3uhNmjOXcKze+ta3Vs4SSN/yLd+S7r33Xu9xwrFiRukFL3hB+vqv//qEs9WFTgOdBjoNHFYDYxwWcFikDr7TQKeBTgNfTg38xm/8hk/ePnv2rI8I+HLK0vHuNNBp4Pmrgc5Jev7e265mnQaeFxrQ4ZFJh1RWdWFP0ute97rEsQEPPPBAld9FOg10Gug0cNwa6JbbjlujHb1OA50GjlUD3/md35le/OIX+9V+zjr6kz/5k6RTvL036VgZdcQ6DXQa6DTQp4HOSepTSJfsNNBp4LmlAd5wY1M2G7aZPXrVq16V9NmT9N3f/d3PLUE7aToNdBp43mmgW2573t3SrkKdBjoNdBroNNBpoNPAcWigOyfpOLTY0eg00Gmg00CngU4DnQaedxronKTn3S3tKtRpoNNAp4FOA50GOg0chwaG7knim0jnzp1Li4uL1cFtx8G4o9FpoNNAp4FOA50GOg10Gng2NMBpR9euXUu33XabvxM5Ks+hThIO0ote9KJR6XVwnQY6DXQa6DTQaaDTQKeB56QGHnvssXTHHXeMLNtQJ4kZJMK/edPXpEkd/b+7u5cmJuPr32NpL+2R1neYdnZ20+yMrkpv63hK0lOC293eldc2lra2ttP09KTxk75TubG1m+am4/tNlG8Lnk8LCD1NTvAhS0V02d1JScWiqyt0trdVPuG4Pv5kOpMTrBryAUzg99KO8uENPiXIgozwmBVPeOxohmxbtKemlN7aSeMC35Gsk5QLAFobm7tpRuV4oJZR5ROSDXzSE/qTBkRf8OIjkqIzFvwoF0/k2hSdzz/+dHry0rXGbJxxRFv/TUfAokNuBD65gByUE4gvb2ynTTFC77u5YGFmKnSJ3OBDU/CUj4PkLOo0nqYFu7m5LT3uqO6TklF50wvpv3jz/5juvPsew5hZy09QbS1oyTxcVq7ifqTDF1Q0rgO1otEWGUj3uoHbCBwu71CyDSN9LMSOhUhNUjXm6w3HQKIuwjGTq5PeHz8ks0OCN/kNQB6QXcMdApGLrz39cPrc37w9TY7JRm5tpHHsmezm9NRMunptRbZ0PM3MzMrWyoqr7Oz5S+m1r7wj3bQ4nT73xSeTrHFaly37F//N29P8mTtt52pCpMfv/1B69BP/e5qelM3WQHLh6QsaoyY9NkByamLSY4LMdtqWbd/UGDU1OZkW5sVTtntzc8u2HTk8JmiQ2N3bFs+ttLq6lTZlQ/mDMWNjkn3d22PEIUd5GoMY82y4lcebmZuMIQKZxvaK1/j4pIqzQlTH3b0d0ZBEyiN3enJcY9akxzzwL11dSg89dk5wjEHjxjU68OI/rr8IAoj/HlsUTWN7jF0an7e20vrGpnQ7JflmNCZIDuNDA65ZHmLkQ9D5lCil//DPow2ljcA4IU2lKd3XE5Kd4Zw8xiwCcu+kaet0a0eybG5K79O6NzOC4T5sCpqmoHFeNGYn9TcT+qWOyJDFMb3yg5zgXVtZlb+xpbF7WnSnJMluurK6llbXd9LZJ654VazgjHId6iSVGzgh4VAqQiAMgaW4mVkpWHd9U47GpG7olG4CjW1Mwima9mgjUsqc4EKxwsNZUSPZ1E33TVCNZ5SW9qQUEVYjodFtC2FXGQzq3ERu/8w0dPPgL/onZqdpmx70aQBTcnKmBQtvVEbe/NyMZcQxmFAZtdiUJzcleXFsJnTdU/7swpSdvCRRcLYW5ybThpyyMcnA3yz1l3w4ZXvqdJPK2xYc6Q3JiAOlrDSuuvggc+RQXefUCGnodtykPfRm6STjlHCREXm5Un3zEy4dE3qkAwEV0SHlfAkWRw8HbXVjKy3Oz6gTKE+dsMDjsIoMTUpyWyFpT+Vz0tmE7teG7tOE9Ly3s54+8Te/q84yn17y6jcJp3S0YNv2S6NvDQOyW2EHZA4kcfiCisN1oFY0Dor06PdiA+FHABmIex0Fx8722AleR+X6UXOX6c8+avqYyY0uxoGMm4XN1Ogs9kG2EGrJ6kMbAtFSvDO/mOZnNTBqoJRVtd1nPMBRmZQNlWmyzSwDP+MLtmsm21KNEnog39MYtJBmRasXgtnM7JydjGk96O7syG7K1mKjeQhnfMEee8AWDcYXyuckz/TUlJ0vynB0PK5M4ZDspZW13bS1uSN6elDF9ssW86A5hk3WCJVNu2nzAD7u/Bgr92S77fCIJnU0nmwtVp/xgjFlnKEBHMmD3HPUVfQJa3IeLl26HOOHYLDzxblBWeiJmrtb8qMEl8i1esNBkpM3rXF0Rk7JzMy0dVDGCY/3mUh9HKAcgox/HrORNxLKj3HLDA0mfcpZnJQrRB3lo1qO3THpTP88bmrsYTyWCtPiiUXDbUsuj9FyXqn/pOBnxrctI+2BcayqjeWBWV+QXPDc3RFfeBMXLPd7wsoN+fuwDkxKmtECjtCWasQATyOj4dCYcIjSNjM8eMC1WZj1TQvIIMyAfk2e9zQzRxq4wcOb9Y3RD45PeO1ySJTGkcFB4gZvM8vjCtJQcMDkWKlxoG7SdhgUszKkxC05ATw1TKlR05Bx7Oy0qZNsCZeGS4NEx+tyLpAPBSLL8pq8azVKHKRZybSlm0Y5ZThIOELQxKPHWTEVFZq+6HFzEGtbjhVOl7RlXrPKd6dSmdDcsO0QCUbVNC3w4KuLnB3I8KNfwSCrAypQ2ppQprqgMsJR4slHTAxWZsLoQBGQFHn0Tw7oluo9qU6qnhr3T0ATeyvp3vf/msFHcZRqUoWsmVNPWGVQmSOEIjWoDRJDCxrQDc7XgdqgMyjRo9+LNaWppXogPXK14l7m8cba2PZzOJQYx06wX5qW9Cg8W9AGZR0zuUFsRss/UJhmYTM1GvkDoQYQHJDdR2oA1AjZmKh6m/Mg7ZxArkgoQnwKOyeEwInfsEV1ixTiGVfGFHvPzAm8nAea/mweydBgzxjD+MTMT8y06wFSNhJcHB1mNJjxWFvf1jiw45knrybItu9pxkODkujxh8MlBwwHyZXTeCQaPNB6rNHYxwpEjCuWxjaZGRScpAhy/LKDxLhGuHZtKV29suQVmbDmAUklgm/Q8rhotWDtIw9Ixu11rUKwojOvmTKco7IiY6dHMKF7oKGZr76EniHXo1hgAq78QiOgs4J7CDk/7t3mthxj6W1+btY+wbpO1Y+xUM6faEzjHE2wuoSzXGbIIFa/z/BQFs5aDmUyoKSpBxiuDwPrEcLoTpJurIXXzRvTjWNA1921E+JBWcztjauheWlNXj8zSDM0CgnKTafhOKhSTKghMo4zzgsNi/awrZuJQzEm2G0N+jtMPcoVZHqSWZlpvH83nJgJmlangZJ8I82MRCNjhsiNUMrZ1rIeMtBQYYjCJkWb6Tg/SXBDRBvHjKnNWKbTjQZcvJCRPzoGuDPqOF6qc6OXvJIR2sBP4zjpTpcnFORi+Q66OFB0OBoxVzd030AasJAVp9OVOPTII81MVwmmI96BIBwB4dG7Q0rfaUzeu67wIPi33ojIE/6e6o93XhylSTm4Ka2kj7zvXb7Pd331G3Xt8YXWoIBeIlCvWijZZDUKajBDooXEPvTWgtbMfRxaoUom0PuY7SMxUkadJPerSbaZqlTYRrkPtA3kuPKaMu+nemhRhhHcz+LYc54DIvTqNLIwTcBmqkfuumIDiA7I7mM1AOpw2aYJCn9uW9luOV3F6TthW7zFQfku5yd3HEdJKvCQfPX8Q+ncAx9KG3ogvLK+EstLmtLATkKNQZM/AuMaWw+w2zyUr+oBf0pjBgLZTut3Qw7S8uqmyrTMJhjGWz8U4xjxsOrxS4N5doCCcoxnOChsvZgUzXBMwCGoThrfdjWGYJMdJAtjHCsrxUFaWrqalpaWPDaWVYggQF30zxWBYrG/tV6qKOPVmuoEixMn5uwgMUYQQAUfbMukeMF2OqCisMqoIi7lx3pVdr5lkW+5iAIf94yhjoBzpLWYxOzR9i4rRYy9zDpp/BxjcoLZPpYiGcvlc0CjoicC0Cnpujga60oy9AK3nmYidbjfkZ0kZpHkZPtGsayDACz1MIjzjxsxpim2cTVQ4gzcamaeITKsGsO6vFgP5sqXv6MGFcJSLZbe7ABJKbuaFgu6gslPDsw0hRMhXK3bUm34bMgpQCk0sV2cBRwN8drTzBZ8uSlrmgEi0MAsizLZtwQPpjLpSOCRh4zA0IxZSmOPETee8g3JgEPFvcEBZDmLBGXA4BxSRt23/VQgHtIJdNgP1QvCEWDcztCl0IVHnAiQ/AhCjSacqmiILnIJrMVX+kKPnl3LDyI4bdaD5AMmgjAll3lIXsgz44UxGBvTsqJ0FPKsxoySQO66e3RHKXgEhcxQLIq0yiliUFjLLrDDrgPRWwtaM/exGAhVLyhYR5C5oJZrk2wv1STdTBm3B1pItV9bUNsBj547iijPghhVBUaRpwJ+JiNHFqSJ2Ewds8AHED+gqE+IFsiWLJAGZPfRaybLw53Mmu1E0JAdy2Bhv/2o6ZyST2Jb+5qefPjv0xMP/qd04UufSBtr12R/1RoFxFiBzc1DTkWPYpwdHCTGg+XVDaVj9kJm24P1lmY92NLALBJ7kBgn4ItdR84xLQsxq4/j4QdUlZUx0XyVz8x95SBlm4xjtMOqg64ExhQmEljNAIQVipXlFe1/Wrb8ZRywo+iKMz44YnikGmPsMzX9KMKqB04fTsjiiRltR4llvuKmgQiFIJdpGT/nlsIoMmRghHWHfZEhtFJx91hjYdCRaQYjxqbYA7bh4jKjNTOhSQXpUiOd5UUfZZyEB5QLHQ1lVSBauDqbnxwhvxqHuNlHCCM7SawjMoGzI+kYkIuiNrzMFpynVEk8v5npac+oeAOaimY0m7LtWomABMWJ2JITgdOCY8TMEcEDu+rBhjqcF9agaYjAsY+JG8KN2FKc6uJ5st+HjdHA4LTwT93BN84OmWBjc50QhMSMEXRmtanLjQ7F6Y+131ji42aQBzNNqwqfzX7I6KcB8cQ3mhKRKTlQ7lxKb0sPyAATpmeZ1YIEHXCBjXG64chHHeFHh3SnVdpx0WIZk/pCA/06lmGVKeeRTqtlT/GK2TQaKDqP+0G9qA740IkGRkohF1JO1E6V5PWMGo6SlhdxAtkbMKYnrw+/911gJc8oVabFWSP/RBsB3Brt4Yl/FSxclRopMhC9FDRoktnIaOVRUClsha4DDARqJT00s0m6l2rK0Uy1Eu2h7i8eAX0/0tFyDhLjaBSfA1jXVan9yPtznoE6jsBkBJAsWAtkSxbAA7IHVpCm6eFBkbAZUFAsE6KssmWCwU67lxoJ27uRHnvgI+mLn3xPuvLk/domsWEZsL1jsnGbckSYrcEu21aKsAdq21rsbmwDWV5ZN19vIxEeXHblqKzJLq5pqYqxzg/GQGmpiAdUgLBu7LuBJnHGDJwz/pABepPZ8aocCjkzODCVgySZWG3xJmpsvPg+8PBZb35enI+xCvvMLBkOjkZD10WiNAIjhyVCT3Lu1uTcTctBm9OeVcYvxiF0XOQwclF0oeR0Vn6mBw76cFARaUIPNfNlik3/nXKUWMACPK48zxrhEHF/yFNxj3rkVTLCwCQKRxEg5EumHHn8OsMIBslggdBL9OBHiI3sJDH64sGyW5xQv7lUkMoWr90ODXmCG9PAzwZhyifZ/KZ2xfJaqQwb6aQ2QWvAtsMlasrD4RBHOxCe3hQYDY4FMJRL/6DRwgsngzLPkiifTXGWRzRgFOvYsSaMjJTh1LDOTDkOQ5lt4u0vNuEVGe0QiiYdgA7CsptIyIHDoWH2St1CaWTkZvvtNzVkv6GnBomDtrQsj1my0NGrJyXBwp3+Dm3+FVcC+fjjKcTyZVgl0o0nF9KSnnZWNzaM63IoCcZUdAVN6OZFZ7Kzmg0KdJEXbhFXpy4zStq0yNo9Mk6x9FZ3lLJBQIbDByQrodQyp3sFVcMvkKNcW9H3Ze7LOJB0HboAcq8aYSSgBsahE00WzRTEejL1YgOZ7Edvgo5AoonwPEsN08/Q6jYJNFNDka8fYASGI4C0yNGH1ZcsCAOyS3H7VUg0O//ph+HbhiJfSpMstA0nm23nQglMEs7P3//1/5KuXT4n52jTNtP2VHZuk7TKPS7JKZkYY9ZcfPSDf4Sd88ZsGcxV7UfFhp+Yn/dqCXZ5Z4fNxXKSNIPEfp6yGsAg7xUOBJD0OFnQgR42mwdUZpsYk7wJXQ4SD7fFCjIWQHtPshGQl9kj9uby0M2qyoOPPp4uLV1LZxbmJL9WTGSXcXhENi0uzKSlNR5oCUVnok4h/2X/N7WdgnF3VhMWbHZni4wdJNUdHfAXI3RFxfeBgiJnnXZwAleICgwnHkP86yz/GBeQPN5InOCliDGFj/41xJofo0FQBD3zNu1ebpQEPBCFZuSo1LTJ1z8Kc6hFlWOipehQ15GdJA/6Io1zgbPkGRlmVdSacFTwgpndoCG5kehG4zD4n+DJm1Dj4LU+GsPkBJ49DVmv9KtheHOWarWuRkmFeFWyqAk4GpkubvTAotp5LX3tSh5mnODNPik6BPKAMyW4yelwuGiPyIg3jeMCXNQlPFd5X5YdGuzOYeM2dQ4ZkZUZMsGqvsjGnWd2iY3i6AL5JljzFq75S1Y6DZu2cZ+pC/oQiuJ0Upy20GNMBfs2mi4NEXj/yijQYaHFvycvLqUX3HTK07KXllbcKYEF2suMgg18R3R/mIELCIP5J2gajjKBMqM0v3hGHWxJ9WNzojLTap5R2kt3vuoe6Tgc5EyiR+5QsaibmQoPLlWoi9koqCAOjLSi78ssGYdjULD6BWhQaQNqAPRjX1+6x64X66fYY9+L9cM4PZhED3wIiR7gcyw2St2Gitwj0osNRTp+gBGYjwAyglw1KrVoHXFAdh1kxLjsJo6HCDIW8CY12xrK9gWshMxf2ETZK+whMzlnTp7QSsJMOvvUY364w55Bg9kWnAQcHPYa2TnQnsuwixpMhc+45X2uosp2C17imZ+b89tyXgXIqwhsQ2C5itULAisl43J6uEIPB4m30JAf+4xzZAdJ4wErIuynsYOEnVXwQ73e5iuTDIwvjIc4SdBaW99IDz72eLq8tOwKU5e1tQ05SCHDLTecdP2vyUkySY0PjC4871Mv9sSy/4hxmLe6Z/PbawB7Nk5X5A5tIlG2x8oKCSlH45ECIgLp7KA4Rm6kiRGCriKSo0eNuILzehGSVZbicW8oJ2TewZLCXq6i1JVQ4efykgF0lOmXCDj6Yww9ShjZScLJ0S32rAtLZ7zOSEODsddIVcomZjsQuZI4RFTey2mqGTeOdUZeQ8dJwTmAKjNIRNi0DT3KWEZj3dJ3XryA85EA4g1fwrYcDSpPJcijIYfDwZIYcIWeHBTkgKc6DjKaAj/Kp/FQP5LQQGZwvWncoiF7NBsauSG114glunhyCKeJrVJCtSevPuMGG004+MRGvKgfhoAGLTLWH1WyOAIloANC6XwkqeOano6eurSUbjp1It18ejGdv3LNxgQ90dzF3o2CH+LUDUo2HoIxVf24wyjfaf2qumn56iUbKYwHU7vsAxuTo/Sf3/OOdPHc59Nr7/m3cgSnhZURqWukapGcURVE2h0oG5ac40u9mzVQXBGBNDIDc5TfVvSSCYH8pHNkBlmIOkmTzfnVpR+gFaiCPvZIj30vVmeSW0Q9a3C8nUQT/oj3q0nkCKlRZBuJbO5DI8E+C0Aj1GsEkEMIWqNWixYCLVmlaLRrPwG1F7KYQaGvM8xgq7CVDAvM5ANBO6VpXbi0nJaurcrx0RvSAlhaXvVDHcjYbJwOZs7XN9ZtL+eZRdE4RBmMoMEfzgtTUYxNPKizRYT0sjZm72ojMbQ3tWrA7BJXzIUf5IWnEcNjBDLyNhy2FKKMT8iPo4fD41mkvKohlqLLW3Fa+kNOoTBugl9eaLq2upoeePSsHSXbSxFlTF3T+T5SRbr1xjNpYW46XZDNJ4iEQ1zFW3VZlUNFyaI2aMcbdpJVfKCHmBEUyTJXRCioACrAHhOXB7Yzcc5QpIJ7jFFyRmRHiWnCj7LSt7gGbMHtcezFKjJEatkWXeg9Kg1IJ6DuP1gbnXYRPPdDH5wzspOkJiYXSTc202MjN2LoFug3nAycCouBApUXzowcInAlIIOvvIpKWKYjeRuLgLNRZp7s4avB0XFwrMBl4xxnTECTzdQ0HoJvvhwvlsdiIM5aURmNFkXSIGkA3mieFSWUSkak9r2U8DwVhIwoV7iCUxdxg0YWZq2oD28foPRp7cDf1kwRHZMnkBk6O/wU0EJ0XOoZ+iDPZXRaBcRhj5bpKs70MI2dzo5M4fRFnJmt0wuzaUVTv0/KUbrx1EK6TU8WxAnAm77ouREqgzyCueYfSksnjIZTgORoaoqWTYbMpPEUtaEnslnJ8pl7/zKtXTmbvvpf/rdpQvu5tjdW0+WnvpBuefFrTN2kiSnSaIy5YHNtScuE6+llvDWHUquQeStdOg5FhV7RpcGrTKdG+ulRr9EEsyooda+TOwKjjF6RrZNTvEGxDagB0If8DCZpC8NCabPD4Fw+nNxIZJ4JoBDtOSrgCGKNAHJItfVR7EsWYgOyS/HwawuBehaDOA/Uq5pFwXZgs7D5mEg7IOLA8/KcHJmHHjkvm7iTTi3Oh03WvptdZmY0HuGcQGubWXD9ZxxZ0GwKjg4HHJOH1eWBGYfHD9Yqm9QWEmzeNTlIO9ASb2w9B1XyoG7bLEQ/eIuGzLCdOOgX+bZk/8FhTONt6jg/iRmmqGndQUJhMYOk2SPJzBhxbX09PXLuST+c2j5LWGw049rU7FS69YZTrsuWZNrKYx+Om6lLJiYaVuQg4ZzNs/9IdGN2rmfrgfY/ZNJf2FuuCv4JCCdVjspyaR4veoAuqyESZbSNQCkh0rBjjNOPskpeXAsUdS1YvUiGAa/QUqxujwqVgpvJQ7YWAqrci1rBSNHRnSRJ4UMX1Vg4sBBRCbgq+DkxSyIYNVKXyFdg2cbLZMqb016fHd1IxMUzJ8KBTwKw8mi0HAxWvGroQWdKnYe1WBo2eBxKCQ3zEQBwsR+IjdGc8q2r8j3jY+WGjEIxLEqElvwnHhzcCYJWHPRFY6MTQBP+fnoQD0+hCo/ZLqZwcdI4X4kbhvJXN8JpY4PfnBq1qmwH0gdZ5TrCk46J/NFIuSil/8xgsTzIuUi7cjINBw392XAoAiyy7mhvF47SU5e1Zi1jcdtNp02zvJlnXBAdTKCK0ujdIKUbDBGycyWURoSjNiXnjzOmmFHy6axymh763L1p9tTt6Wvf+N+nrfVr6cnHv5hOvvDV1hP4u9pAubUe08SkSwcjvrr8ybS6dCFdfvqxdObmF0e9KWiEInOvu1Ec0ilSihuZJEYLB6LXC2FUMYV2IzEasz6oBvk2iv0AffjHIEI/xZHT9fvYRGrqpZlqQj4bqZ4Ke7Fng+/IPA4p1iHBRxCjj2Jfsp/AkOJ+8GZ6AHIvO2KMJDwyMcPC8hhOiWeV1Aexe9gmbPI1PWCxhEbwzAgdQqdfb2hv5kZeDpvVrBGvlo9xDErZByT7VtolNpyHegw/Dg3tGjiMLDNIm7Jf3sMkofjaArLg9OB4bEOHgUX/ybODlG3slsYE6LHlAwfJB0XKltu2Cx6a2+xBEhzBjpRWShi7qN/TV66mJ56+aBoGsGrYiqFX5VWnW288FQcZa+xg2W1F+6fk5gk0HEkebDkFnLOP5uQUxtaUsPNV35X8NqC+ZlOa4/BER5aXRA4lbRqgy9ExnKIVXccDwSBEoau/wCeXvPjjnmZuygpqRYwMadjCM8ZLOcDQGBRAFCnomHzmBbij+uFafBTyDxMO5F0nxAzSjG4qfg1eMB4uAzZvV3FTGNZQCkpgRogre4C2dE6Rp/2ET7Nk38zcvM4tspcSszs0GjbgzWbvlxmZNQZqpam89zrhvIgujYEZJWSgEdsxktOwISeFRsVbceygj5O6kTEUZB5WZDgFkUZGOVlyvuhgtHkcKBygWTk6OECsPcPHTx7K5228SeXxaRBmt3hiUPXdaejM09BTo8VZQ/5yTAK64UYRcKqpl/VFRBk4KDhgFNlpA4Q+pQzkEpQDHXUGnjNj6Zr4X7y6Ykfm1jMnrXPjo0/pFxwfIZBxIUZ5FEA30vEbHOBFx2VZksPUmFFC56zZE/+ne9+dVi+fTV/1VZpBWnowPf3Z/1N0ePVVTuzGclpbOu96uQ6iAy06w9rypTR78pWW58rTj6TTN99ZpKmk60UsZRbUKnBR0YETBYREo8ClQ3/q6K0kGgA50eDTSAzl1w/QIJ8LD6TYhlAneiByHfA4402hmqlR+fQLfjQqo3J7RuGuQ/TrQB1QpT6Kfck2pBFA2tCaeS1Emlm1lG49M/A4ERzcu66ZJGw/doYxg7HiwqWrzsNWYVNYBlPUbxbzuvvqmpbVMAAqsxOEc6K/8iYbWxoIMWA7JtvIlQdyVgP0gCuaW3Ji7MzI1uMgsdeUMYZxgsMiie9pPwUzNOAhA5RxjrDblYOEcyanqtSSWS/eMgvnQAO1xgWfuo2Nlm28KAfp3IWnvfUCHGhiMQmLOvTxhTcsemzBiQxHUbJKtgnph/GB/VTIwIwZLx0hB45gjDdFimz3bXGjzAxqP3X9VMKrvMqvOUit5aYVkqtaIGYZekyQoj4L1LPsPZgqlkWnDbBPWB8YyUVxP+syVDjOjHLQK9mVgLdX/HrAI8dGdpJY4vL0o24IU5MxCHqhyjeYxo6zxI1n0MRhKJ6zvWwpjWlC4sya4J0zBUmVmMbkhsvjSeNSCKqkUbLcw2BPBynTkuhhXU4NeQJx5d2gaRyUqdGYvmUUbeEL1DNLaAU8O3JybOxkiSfNksYGDzohy11bO3xPhlf/N0Fz47OwPE1IbhFxfXmDwK/2iwcdm/rhmCAT+cr2zUIv/OGE+TaKf0RCHpww5Io+DRZQ/FEODVhCL+o9qYxFPY3wLbcrWqOnAZxQuoLL8J7mhIrTmSLkFWyIxJDv60HXwbxCRjZz0+FZWqSedlDVEb90/0fS9tP3pTtuWtBG8vvsvIKda2teuh35/nC/dB8l+4P/+NH0FWru0ydu9Bkmt774q3t8g3vfb5YpC1ZPkYV2HOoFVWYpHO1aJ1HHaJBrANUSDaBGok5qaLxG8UDYVg7XhXwgu2e4cFTBn2ExDiJ/HSJeB+pBEvWV1bjUon1AVXIEkAp2pEgLwf1Z+3NoxzgRPIDzYMmKATaT2ZLlVRwV7R9VPk4PZ+N5lkf2lxOjeQBd0ywSb20xG4T9i9fsw6GJjdWMLdFbGDC9KqAHTGyzHSnx4k0yHxGgAYihAAeJVQQCD4kTelnFm7U1uHDmHTZTw5vtPE4ZDhLjob8TJlvJuFYCD/68WFR3kNikHS/w7OoBdyk9ceGix8+Cg7SWWOo6oWUz6slsPnuv+KYcqwUYWJbo4o3ssXRS+498MLBkpJ7VP4w+oboSd07tRxnxPwoLijNzQgJ5wqAHuJ+MKeaxDUq6IYx1AHILuD+EfInEoF/hFZ2BwMxhL8RI1XS24AefOvXAiXyw6zR61EaJjewkwczfLlPDQpTYN9PzqNEEMsZUH+cQaRZFjaoSXPjs4J9XhekIDL40esppsOEMiTD01VhRBQ0SR4V5KpbqOAGbRiMQzzzBC+WP660yZPIsFTv61YCcxmFRGUom7acKIpIFJ29Ob6vRiYqMNH7ORKKMDoOMOHJ+W02dUeKqLOoOGQIb7/xmn+JsANQmJR/YxewQTgZLckIxTeBxydAlwXUWLzKsB11jD1K9MYlTho9IOFLQmBCPBWbVFC/GAEfF9VFe5XhJYe48yuMeERT1FDN7sHi64X6CRzEwsZ5NXfXkpgw6NwYLJ5T4oxeWBDuW7rz5hB1a6JH2f124Z7he3CvOCbGetzfTR//D/5r+xZv/BxmPrbRw8ua0ePrWLI0uBwY4EHIFFNufU8tsgpI6Uig86sg9CXJuA0iJBkAjUSdz5HiDXR+VodyuC7mP2fMpeZBehtTzOlCHUG4r7uPWl+zHGFLcDz56uoVwS5botecGI1uMeJiSEWMJiweqZe2twWbiCHiM0CwPg0LZlDynJbUp7U/a0rfMOJKGWSAMjWe0ZaDJ2x5nxinGJG/d0PICe4+wYatsidDSFBaKfbS8ju+N2nKO7EDJuIq1xwBGHxwfbCRVwTbGQzS4Gsc8JsWbaf0OEmMWCH6gl1yMfzz8M4HwhGaPrlzjsMueyh0VD2tMCb4wwcP7qvYrsQfLTp7HCh2QrCU3eLNBm3p5UDFuyBlUNPaZWCGacyPTjHmILiBkRJxfxySE/xuWrJwb6dov+cjva/lhcCaTm0kwQJNCTZSAqf2ia8YtxtDhodClTUWdwCq5w/EHQ4zsJOG4cHNhzGyJ6yuvnNkYNhT77TAyVULj9IyNUjQonA42enumRleWrLzLX1rwwCwYzp1AKVsM6CYjeOXh3sBzTY17VwqLWRvlIgM3QXmhFpq8PHvJE46M0qLFJ0h21Pi9D0lpOymipwlQdyrkpT44XLF0pyMCVM6nRPiQIfAC0RNH7K/iEynsnaJ1I7udNuFzM1mm26pN1VIhniQ4dylmtFQzcPWfSjI75zhZipY1amAAowy6dnqcDEQ6GrKqSHu25IRpdgdHEzjyoAUus3vOUDJ45gLSClC7tLzuzeA4eujJ4lXMgz+Z1IMZpXCU4gvSj8lR4qypl9x6Sg4lRiX40yt4nnJTVTl8+LYg7WJ7cz19/P/+3fTG73m7l+Cmpmf1YeHTgsgB4AMDdSghgOs5lFQk6gVVZsE9+rVOtk6lYtEAqCUqALAaiTqZ64rXuA2ls0+CwyDXqe8jVC/8MsSPWo8+UY+JTB/VUZM17rXoIOwRQAahjp7fwqQlS/Tac9sY4QitaOaI1+w5msXjBs6RbA57kHjwjQfv2JIgT8EPr3ygdXNDy0vjnCYtfrKJnAe0oNmXBZ33dlE0NnSoJA+B2GhWMXA4Li1p1l00pnGSsoPElgjOv/Onp0SHsWJHMDJnminStg9ZMxwwZMHuMl5g6xjPeADkHD7LkCvIOOD9t6oDmvAWDcnhTeUqs4Okz4xEKerCxgeyNacfrCYz9/Oy7WdOLYYTJxl5cEcvLPnN6wyl+GICj6QEIfq/LK9ohv0Nui6lDF3lhHkqCW7OBcDxIo9B808Ppsrt4ZFVpXJlGIj47/opj3guMnjrj4BqzF2PInMNPkvZqzdlQi1hHOdPvDz6VPlDmRf0xnUUF80IfvOMyuofjQ72OEA0GDYrh6OhgV6NjAZDwwaO9Vd/e0WNjFcxmbqkM+C520HKcjM1SaNlPRWHgkZIHhX1W2rwFF2cIJQ4pVO86Rj8zc6wThydoXj8NMyyNwqd89o/sxnINy0vCgeMfUPMBHk9V/g0wLLhj/rwF/qNqUM6yC7v+YseYkMXfQBjt1HOEN49fMjjyWFCjRkZgfdsiiJuqLr6+3fKx+nR/8qh9LoyGaovdAjgww8Z7CApDR3AOP1bmTFtLL2RRC5woAB98vTfwXpXjHvE09uSvkm0pg44KXkBKvDgO8N8dc/kqAKP08uMEjQfPX8tPaI/sVc6++4SlPtX7q9lANgSaClSb8Z9+N+/U/XfTJ/52L9PK9rQ7cpldpWgpA8MhWYTqDW3ZJZrE+VYUoV0/dogXC/wDalnNCCflUSde3/8UAL0I3+50yMKP0zMEckcE1hNmtJZS1Yfh5Jdv/aBHE+yzoB4DvXskhfXUtLMbU0JFPuwtLymmaN1OTGyrbIhthtCYMELB4qxBFvNzA+OAS+UcGU2e0z5ZSkM+89sC6dLY/v5ygNWlzEAGvy7fG0trWiDNi/HeKlMD76MRX6LV/YPe8oeJD29+qEdW44t9r4kycqYxUQB45EdJM1mcRZSmUFCXm/X0DIhdcOO8dFcXuThAZgjVc6dv5Cu6JDI4iBhY1Vty1QcAl+FfEWb1XkjOD64G1tUqIc3aJcTtKlbrp8uKiWNLc5X0Y48ZSoWoVxzWc4vuWH3MyhYmb5zIF7RYZzhD00XbEPFT8MjshSGr0E4WsmaZS7lsOpjV4par3CoB+s1V4YSbslRwshOEsRxXmCE88CHZdkkzVlBTAOWwyZxBBhkBWrlUoYSyAOZpSsqg1JxosCHDnhs8mamIj5Jopkl4XIkPN48S2XelC0yTMCgbejSMHE2aLx2rkQfP8ZvoeEE6C82hIur4PnbRAbRKEcExGBOB1Gm+FQyZng/CagMtjt6l9SvyYuul6kkB2vD3j/FU49wUKqXCKGlP/ZmcQUfvtH5BaM4af7ceqQD/c9105Wo0uUpBTmRH1jyQeOPcrsn4FJMmfK4iqLhxV6B2TOucS+B4UkER3FZTg+vwNpRChD/wg44eFAPHCU2VuJs2lHS9ZHzS+nhp9Txg6HwSl2NrDTXeNqxGMpZvnwu/d1f/M8+SuCh+z6oWaXLrouZ8oOc5a/KHBRpByy55drALpn1awPgeBJ18sT3hQpAkVC2QKrMHN+H9Yxn9EtwlPQzLeRRZKrjPNPytdOvS6B4uef17BpiPbvEa8XHFy3E69c+6qWoL1vJwSUN2ALGVQFzwYM2MyPYfWxVmZ3xwxhbLeSwMFPDzBGrDczGYI9PaFsFb/baHoo/W0HIHxdRHrY9HogHVhsY1EzgBZ1pL9XFh2rX9cIPJ2pTjCOTLWmkRQ++GE2W5XDkPIMkOThXyecgKV6IszRYNmnDjwkCZoJwsqjjY088ma5eW1YtCcWxgHOMLWHnczq3i9jbCgvGVGTQwywP9Bp/DK98/zNarqfzIBu0XBlz0Y8ThSfXDKb8PERkmCgo+g0e/AYFXXIsaES6+cv9JRRcI0dW4zfG38gqOAXA964kWq74Yf5zmRKkFYc1fwTGPtpWSUfu6L8jO0m8zcYGX8/kSApmMyqHQjcDb9pLZtwYDYh44HQAvpq8Ic8az937W1SMw0Bn2JRTxPowDc/7etQYaaikcSR8iJemzWgoePVUnoYRTxs4ARqMBesjANRo4MfbX5QTCp3ilLjjiT4zRp5y1RMJNMBnOQ1HjalS1AwuTyWQYpaF5URkpMHj3JVZIfRBI+AXHVAvZqjoWMhKfXAPiLtRi140eNhEHZABeg75ygV4cvmjU/BHAJ88cJCPzqOsCEo7qiv4xNF9kRc8kMknbgeXJzN1Zm8E1L0L+VQKgHDdvIg7qY4qxxWDhDxssoT3o09dlaO0lHUumYTFX9wrIVooZIonM7z85StPpi9++j+kG256Ubr41MNyQHm1NUDLVclmRqbj/H0/BasdqF5aj1dk6pn1eAVw/ZE62Xq8Qble4Lh+UHLbX6WxBoXnRGJfNSTVceY9JyrZECLXru0+VXl9Ssj4g/TSIH8ciSGMBhWT3wx1yGZJI9UCVrKwe5wwzXKX7absK22ccQRbin1BbZge7BzWDPuLc3TzmRPptltusC0GQubWtoplu0tX9Zatrh6c9UsZtpC9Oye0h4e31HioxTna0PhDKA5SvOgSfNhegAzwZ4sFNsubtOUgcfUMUhaQt4H5w17CC+eI1/djnNtKD597QsuK8UFX+EWtym/klF+qQm1ZgZnX0iEz90DyoV3GXWyonQd4C47/KIpLXMlzymUuNlxoxGBKN2i4lhVklAXhoAuSQh4GwI5SWCmfvypk3tj/Al/KCpxxSkKFQa1A7b/SVoJ7P8UmbI+k4ITD4zqo5a8JPVpqZCeJWZMZbWqe1YmfNBwaMg2HZUf270Q1NTORnQi8fwTGsZhVY6MRojQvy6lsSg2AaU9mddwhdOOZMuXmwgseeOKcvM1UKz4+Mx7M9uAwuRNwM8QaJ6E4SkxvMuB7Bkuw6n9u3HZs6GkKtDnvvFcch400h0Da+VCcMy1cRxSsP6Zk6Zzc8aiH8JWGPfVjWY0ZMfANpyvTwHwPKN6kiKeAsoE8ZBCyQ1y5nfyz0qRXcr2niFxl00igbcepKkd+aZWbYIyg6FoqyxSVoJP5RiuPayyngYO6Q1beDPHTWjYK0Cj45p9lAx6Hi2llb/oWPIYJER6Rk/TohfzlbeFjXuAtFNcBjp4y1z4kaEJn+fKT6RN/8+/SyTO3pguPPyBDU75JJGAFcPhrhNbMBoQSBWgfdj9gA7JgNYBKZv3aALj+RJ10f/xA6hWwIii6/2+/9g4k1xUO00BWeL+enRYuxQeEjL2vzR2AcvSiNmY1akOKa5D1aMGq5/XFCwjXHFqyXIKdZBaI8QJbjJ2Og3oplh2UXtl7ip0jsNR0Wo5OmUFwpuBwti7qJGqcH0LYJuwx48aUZpC0V2lxVvYTOtgv9ixphUIpeGOteMuaG4id9TEEeQxjVYKHPd4gq2aQNH5FQDbewubhOmwrL/+wxIbtu7K87FO0OSizHsLC15tLPPjSf/mHgcTG8tDOSgoTDEwC+MEXmNpfvc+7BiojBKWok2GgS35cHOcHHTBCmK8KQ7ZCAwjFazhFdkr2hQyHKrmfEXoYFZlahLpAv0AXmq5jSbRe0YMKCq1MgAu8w7EKuuT1028l2ZI58sZt9vSM63trE3pjjeUohGDQx2ngcEnH5V3zIcDiwOS6h9JVEZZodnT1DVcDwEnCqaIxMGiqqemq24VyleGOwXc7FKDPxjucFxwi0kw94qTgiLDJGqdi145EOA8MwigaJ84yKo4XzuFf69rUR6DR4TRss2lZaWRkozUN0vXUHaDTksbhQkY6NrMz3Bt4IjNPQ9BBRtMTPDLi+dsJlFwsGdJpuXk4jHQi9MifnS/lO0gmaLvxCI5s/oqhgH6AwjOcN+oKUnGiqAwS4uiModOMg84pIc0/0v4wotJ2wkTPvDP/4GMU00f2kE6dWFPIbFwEgXpj7B7V0hu3765bTmiWT0V6qwT7Rh4ybuizKns67E3JcNikj6vnH0z3vu/X0jf8129LX7jvA+llr75HjnL+/IngCMhUD+C3Z9ahSrwfu+SbSkk0rkMxhgI0yF1XYhCrNqL7amTkEShUN7qN6j+TPPeNw9d1BO0enuhhMIYIMKS4hdPhMfb1RVEdRgV1M9syozeQeSlnRuMAD+LhrBSxwk7ZlstGsX+UVQps2NXlFW9uxk5i38dlMhb1RQJsLGMQ2wOYicEGb/DgK79GJsu2nJUBQtg87D3SxoPorGyaZ4mUAy62HzhsHQ+T/qQJ0LbdmkESbcYBzsxj8zh2EJmuaGntocf14V3GN8G36aP0V3ThP2VQV69uyKZuaXN2OEgx5jH+QdtjQ74WiywWpuFrnVtm7AtMKMt5MsYRrWWBT8glGTYQ+EXmSm4A64ECPFguhYdTQUbsGvQosumpYAvlgqSCFpxcGpcaSoly5S/GxSDAxM5RwshOEoOvvX3ViJkctWs3HBTBbJAPmtSV6UUrQj92OFTOZjmG63E5NAzOaA8HAa+DWRicHN6eIo83vtzoVcbyGJVEiZ6BwkHKzgf7jtACS3IBEw5DcTY4HZwNzTRuZNwQj2nR54mAPP0KP2TkJqyoU8FoPM8IgYSI8OCphI4Ss1XcM2FLlq2tWIIrN6LQZu06nJd4+mG9HXwCdcHJ8hsUekJwg1c+uDhV6BlYZEZXGAz0YscKTwOZFCiHluMIqjLSMR2rNHAuR1ri/EIPOQLZ+bndhBzRLSxjYSRs0uFURaOjvrhSyMRbiixLglkdD3D+KqXpxToeYExOLrQRsQTKbtIx+7ffctrthaez9c0n0vlP/mFanrgjffGf/p/0ite8yXgFp/9aIxf1A6A1sx+znq4jlHxrpST2XYdiDAXYR/JYM9rY1xkMrB0N6tChRq0WPTSZ40LYV4V9GUfidDxUjsR6P9IQYYYU76fnnKNhNfpbpnwYStgFb2pmpohHJhkJ2zw+U+CBNuyRtwTIntNEeVBc0Ubvpy5eSWef1CnV+QEb5+QGvQXGMhhv0c5rxolZGD6rtMFMjGZ7eOMM54izkLBpxUEa02Zw3K446kSrHhrDCOUkbbZnsIrB+OfxS2U4SNvaHhCzSLLdEo5xgvEMQS/r9f4vPf6kZTAxcIjkqqGn/V0mHqrXNV7iWDFrxtvewCGDFaDHdPRQD/AOYkBSWANwNNKGqxWFMEGpnh1ab5IJqN5vHb5iJ/b766Q8ZeZRqEegxEyInxqmkpahYkKkStTiNZxCL18Z5TSKZt7MJs6mEwsL6YuPXeqDHJ4c2UniJOkY6CS+KyEhNJjjEDAbhKPjsVo3lYbk5Sxph8Y0owaOojjvAEeAgDMwOaWlLG/UVuNTw2RaE12xpwd8kdWorwYCvpoxDQdsmjCNFu8dZTITQ+OEZgnRcLQnRjgsl0ETGcvsDeU4cTRB9lrNZYfMMqoMUsBMCYYpXHcAnCXJCE/yp/TUg6OAwzCWnTvq4/4tuFkt/eGToA+eTLjiDNGx7bwhu/DhFT/oK+CpB7BRp7j6yAODcvOjYwJX4lwjjRpVTkLEPeunq8vNLJocU9ssboEVIlDvcNTs+Dkfw4VzpEQORSaQoMkepSk2OIrSumaK4hyla3Zs77x50cumNXTphw9QbmjpVk99Io4u5qSfp85+Nj2mwynvuvuedOMLXppuuPWllqfwHXR1PXNhxaeeWRCrwpLRdu1HHI7UjwHVBtZQgDY5npm8NlHqnBpy1wta4zVqtWgr6HM48zkr+hDBhhQP0PjRsMKYtJM8IkWbPJlN2zho2DfSFRuNHcJU8ULQvD5FxQoAn3VdXlnT5ueVdNPpBR2iOC9nRG/GyZ6e5Bwh2ZF4/Z79pThCMT6tawkfx4kzmFbX9CIQ44BgeVhlNGF/Knw8JnnQ6TlIjEvVa/6Si8CeJt68ZgaJno5dL6eEM+tzXgdEPnnxUthbFMeA4I4V+KahfGw0lSSXX8ZTtmhgr+d0cGR5U7vYZOQc11kqxrB+JH/G98REpgR9BxRI0AX9RVRce2IYI/KVWcs3cP8P5YgcCP2lka7RyMORZYyxR1HrQaAVXBXJ+KGPQgzwik4PKYrrvwBW9YWmxlohcpbg/MyM3nycti9QRxk1PrKTtK23uiZZOvHd5lV8NRDJ4grQOPFv5BjQYMbU2seBVaEHet9cDfpKc74RJJjx4e0yOgSnOZcB3MtpavRsDN7AmRDuupbCaJ/Qs1OlMvNVXtBRg5V88fabGpsYoGo6jBsiKfFlVoZlNZFUjpbM0KUIIYfPLJKSwcWxQx4cpk3Rpcwna4uGO5SEYfkxeOMc6oYoDQ5xOi1lzHLhFMo9suxxpIBkUR6yISNwyAhP7jE0uN/Q8QyS8r20pzI6i/VpiEj7RguHjqVLJFWOvuIGZafLjSjoG0jlbC6cVR2vqWMWXMqQAVnCUTKhqv3hEJqNdJljSoejxAwjs0q86srs0OMXNR0ufX/Fbad9P81XyDh73FcOQnN7EDOeFnEeVx/+Unr0/g+lF+g0bozQzbd/hfVk3BF+Qtr9gJZ5UCHgBtiPZx22ZTtvIJJkbg8VxlCAdvxnOneQWM8033/W9IcofUjxANUdDWtgw81cjkh1gIyyMep4PBBDF5uF3fGnnogQl33kAbPYJ9I3nF7098xY9sLp4cUgbCPfcQMwbGhcp3lFXw/AV7Q0t6qN2vEyELYNnthl8dUfD+Lww+bxh63G6bKDJJvmlQEsncY43vAtWx+wY+XNOvr2k/oG21OXLlteZHJ/Fy+HfHEeGSrHzgPEeMABkYwNJ+T8eUVFBdAwHcGAPqeHUd5EloU3SecCo3LssIP5gKcUZRkyIJxZgVWlPaAKuhEp5eXaKGxJIK9hewjlHlbQFrfIjCQ5bgDhkdSlmV9hO1JoUnfi/HFPcG5n5RydPnHCYyOrM2zPOUoY2UmCOIMYFccFobE6KM2Njo3RcoComdIIi8MUjkMojClD0gz+OCA0vPgILk5DdjpUD7x6ngS8+U4402qYnrGCrlq1l+GUBx9mdnDC7qbaAABAAElEQVSO6G4SpWq8dD5kFAgSWUYcr1huisYHCW6BWAguGlXM8IS8zDTREdfVCakz9JmKZcpWReYFD6ZhqRc3gaeTGRH29Kjy6B+lzpYXR0t50fFxIqMe0EZQZCXOTY2nHfGFDk5QpuV9RQIsjUfFlh9saFMS18g3D/L4J1UhDziX9TmTk4sLPkxySafcbpHpoHKoQEQR01e63E/ouI+qDIPC/QeG9sHG7DEZFY7Sx3hc0pPe5x+/kr7qRWeiW6s3m55IsKF/m68jK4C3JXjC0qUn0j/+5z9Ld//L79LnS5bSHS//OsvuwiP+WC19uNSxCkMBKshapB+pQbEG14v2Y1DSwGoD6KH3AdcLuvhzVgPD7mlN8EOAXjcW3figMKT4INTBZQ2ikeC36gM6S49BLmZ2wm5j3bF9jBnMHt0sJwn76b06Gie4YlSgg9MDNV7Pn9EgyfIbgQf3S1fXzIcHXQwhdgib5gdkwfCgid3lQZSXiBhnGNfCQYKFnCc5SMAQkIHVAuTlwfj85cv+Fht0CVxy1Gn/kBHVlj1URGneHGfjObJymrgdtkwEE1zxB1UZyOwH/EzK9VbcY5Rp64erYG3DFQ1ByLf1Jkch4MgJi5/zDAyBHGrRktV2RVZCqb9n6gpu5ht3CSCDVj+Alay6PHb+GjJXKFWE+8I4RBuhvnzkd0ftCAfJ47dOLPcSahGswhwtMrqTpBrwnRx7YxrY8cK950iSUTk8ayvaiZidYbqTG5HbcJpUGf4Msz6bqr3mcuy00ChxnHCE8PyZLaLBMt04pnFzS2vKnIWEZ+8lIpVDF+97Ssts3gOkNA0A9jhc3Ckaob1KXYuMSOkgeizvITeK5Y/ZsGnwJAv63CJfMoJBx0AeaM+oMdMpzFfpCX1sFkcEmZnW9YCvhs+Nt3OnzgY9L0FCGwGUEQ0DXs6x/NGopQ/Vlewoo24kqLUcSPFBRl3srEnMHIIWMkA9eEJWcYAB1MUhmKermr4+oc2NpzS9e0UHuxGAt14UB9yNVsS4T9AQ65DLtETbOJHH7I8Nkxpp2aOEo/S5xy7HfjJRK3OuiIAhckDGIG9ZL537fFrSh3Bn50+l1aWL+oTJTQjSkz+wrusXcoNCrlp7sQvbioZSbENytVoLapkVy4NY1OAdrZD6C7r0dWvgMPehxuyIaJnCEbCHoAwprkl+HdE+JtgTAr+2TU4oZdsS9oWXZTbkoBB4CGOG5bQcpFP6wwgsr6zog6+rcjC0PKVxwLZOD7TMYLOXh8ERG4bzsayvCiytrmlPqujJhnsWyTR5OJOTI2cHWJwtHoBJY8O8UVsy0I3sPPGw7DENB4k34HgjWkfE6BiUJ59+WjPyYT+pGXUDjz8/ROrqQIEC4ydC8zDJy04zbGCX7DhIFbyQ7SAJhzywGH/80MtASl7O98XcxNvZXMGpBaWrHGByETL2UsgcJaU8g41+AdFE97teQWQQ5cgHlfuJGOS0QRdfAzjGSBwktxPVkThYjNHj2ibEeOzxclc6O0IY2UmaFDN40/jkEtlZMT9lIiTqpxwnpJxIuiehcNrD747KUhHSOAE4RjS+MV6DEg2cCAbgeR0zUPbt4BxxXMCa9rrQkFE+r/hzvgWvWlJ5nhr4OCKHRuJAwIlpUZ9XhJCiCyJvecGDRsYSFg6Xmrt5IzzKAJIfN0rB0hlCRnUu4fE0Q32ZJUFGHDfKgWfal/Vqynlrw41fTpyXzcSff4jCrUJKO1XlSsWViTEg3zdeGdaX0m7wIBIPKa0rPGg7Xyoi4MiaLgyEjzq8lJfpGyZTmNXu+zXp95pmkeh8p/UmxYQcrDXkQFDTiDiyRxrZiEbaRo4MhcBR45QT6+PytecMI4AjhKMESf8InmjIbsyYLcMACcgNemcrfeqDf5he94Z/K1h47qQTp/SdNxBLCLYldazXOptCuGJ3YGGB7r8eCaki0oZdFSpSyVbPPBJSncA/4/gw3bWo5ggoLVRK1hGoDUEZUlwYH8+1hVmxW3UGBYwrjglOAVs5sBUMbhgwXuH37BJP2Ro9trZkrxTnjVr2F3Hg5KwcDD41wuwFdhknio/CcjwJ9p58HwUgWLYA8IBcZooYjxgPvP1DY0IssXEIZDhpMqjat6olLsYqwbI/l7eqCTwInrtwQXxwkFRqI0d/BJIkV9Vc9JGeNP+w0ThwW5owmJvngMv4kK7LMw3w+cSKxwAcQeHxeS+JI9kyfYBgawNAhLGrjDDmCASMKXIImXKiyi3pvmtB6svuT0KTMctBF6ORdFaPiI+rIa+XFTj1X+OUDKx/kAGl4lGLw5sxg2DYjBDjq8Zw3VN0yIGeRwkjO0k4CNM4Btr8ZoVIHJwDhKax2VHAYRAc05d45ehMIJFWwyUNLo4ATk3ZLOdGo0L2MXn/TW6M9tqFw8ZrlpiQAVwva7FPSLLA3w6PZKAcZe2xPwiF6YflNZRFh6NjeADOcsSMUyi2yGxE4SIn5XROnBzy8VA5G8plosmVt/LsIOlgTF4xpN7k83XpibwxHRmRAQLEFXOg3qRwGKFBPeLYAZ5UgOUJJqDBQ3bqz4wOnY5pYxwk4Kgn9GgqiIvs0CRNiAZDvSiX3CDp/7TSW8Jd1dMQX92+YXHO8MZUWXlyIhPe4Og/KdNC08oNwrpQH0izLwmjxxMhS6p2mpQ/qddoOTqAABx0kAci6A1a/FK0K7xPfuAP09d841vT+upSuuVFr0onb7jdsGAa2JH8Y3r1jOONu559JCuWBxb2IVXJfqSKWgUxaqSfUj9eK+VhSP1EDptuZXpYIgfAP9Py97F+5tgdgfIBKAcU9dXoGJMDmEb2gMLMnlLsLLZzXXYIe8jZeCxnYSuwVVxpTnwGxPuCZOM5qmXxxIJwY7vDmj6vtMLMkT7l4bFB8OOCn9K4ZRuj9J7ecpve0zfdxG98clY52FhmkLSPtOYgEYcfjhEOUpmt4nNYvCTEgyefVGEGiWNNHKpqYhvjr9/aA4JNX9UbetBfWJiRbWRGikmIwMGumVRMiYS9Fqx1hO2kMNvKgJW9zDi20SquG0foOgc72wj96Sgk9zBdl7rWQ6Si5qX+IUMeK+rAOc745mBaEW/IoaxCq1xd9xbehZTHWhIQYrKGh/AjhJGdpJC97BsKb9aHP0oGtS8N8KoEDoMaH85I7OdRQ1SDp1ET7N8Cr+WzaTkB3HQUDC6OCN6xsry0RkMqZwqxkW9K3jt0V+VcMSXJBuwZfbMNHTB96jfYxIsMZn94KoAus0XoCBmBxZmDL84OTgd8y5ovQ3d0pnAA+cabl71yI0Pp8IYNVWKzNktwODbQBFa9WNPA6oTyPnBU0BE0qWe5ScVBQad4/dx0z6pIFmSMo/WjU0h5zotOIK94WjqTnqmPHS/RoH78QoNNiDRI5KE8u4sBQUcUsEAMj1w4QfLlrBx0uLSyLsfLAKEwRaEDDrgwUy2ddsN2QfB0o8zUyeGJkHtRNnPbo5dcOEqxLyAcQ2BLWxDp4CFmY9KttJwe+OT/lf6rO1+bzj30Cb0RJ6Mow9cf4G2nt79gQBqxOYF3cloH01GpI4ZBmNbxoEJ4GaCf6UEIBbYVsRQOvI5CeSDyEQqG1v8INNtQnu16tclwcN51SDgEdUjxwWIdpXQIw2ZxMzWIHf2Wxzu/ISv753OQdPUDuIxsfNEgDohkiOVB9MTCCe1NWtC3zTQerF9L12SzrslhYdYIu4+jMCEbw9iDXcHGcUjtmL4VKauoPMkm0+KTt2XHsXuxvJaX2MSD9usH1uwgYVtZmfA34YTO0tpjTz0lur19umFHVMj//OeEiPHYB01muVa0QRvZ5rX/aFKz+RolPT6gI/BIG1orLDz46/tcwleBnaaKcMYhzX/9ECSniUSqyq9ky/kDL5CxvLrmeCFdxzG9zLKZb3TLgCgExr7ysO0qRHbrr8cUcCh1VSASjEKDkSqOmUtNP5jFb+CCH55HyFQcZUgfJuwfbQZgb26owWpgZhaH2Qv260xo95gdAOHwthdTkLtyXnAGtmmIEzgbzLTotiOtsnzWkK4M3iiOcyAsvDSKUzSlRg1gbLLWwKf8HS29rGzoqgbDwZArckJYOttWI2KmghOy8Yg2cQokF2dj0BFQ5NY2DUyiwFtTm0yV7mo5iL1C7iyS2bNggvWqnyRjOhZcGnYszUEBqdQBt1neE03xxwGi88ATh2Bnk83b8eo/b11wk8a0MZnDyYwvOOCh7Rkt5JUOcNKUZV52tpTGMWHQ56YbVnG2j69I9kVNz7JEaQOCaAKicUEXeDKgR/0i7UznFf7R4EJHTBzvReUDkLT4E0TWRoc0PKKhZabSiHUiZtANhLhwG8lDf9xXjmzgDUE0QX3ZMG4qKt/RXLH3UQkeKuTjUOEcE8Z2N9PH3//OdPfX/+v05EP/bzp14x3SvU7tdmn8cg8xkoTzj9+vt+Je6fo2FeBi/yDulcc/lW5/5RtidqpXdCwx6tAfQtKcOxSgH7uk2xBLWYNDyfyyXA+S8ssi0DPK9BhqO4TEkOLjr90Qhs3iZmpUYWitzIrzgfI5PfhgS5jRYYygfzJ2ePyQvWAlYE5LT6dPnUgL8/Pu60+cv6zzkpY8a4TRYHmMMcgP5qLl1/S3N+Ry6GFW5WOiIWMmrnKCZLNsu7SMz8Mt+5jYthHjj2wXZyvJpiMPwkCXPUhgcwTBl8496T0vE6YXNgsZsLtQLv+EbLuJLWeDNnXDFs6wjCa+DJOGFSL68GiFbEogI/udFjhqBijB8uOxibjy4jdwsZ6R42zTLeWlAB6RlyO6gFPynVsjQr6X8mp5yLsfyZiNH+x/fA0CcMmInTfBfvTg3pO+WRPGncgJviFKPd5jS5lZENGfKfOj8doP5j3QkWMjO0kcfM0nPybkJEyowTBTVKThFk1MMMuk77Gp0WmewI4EAx2K4nwijdhyVLT+OsEnQ5g5iKeFaVWg7JkpzgJ0Ic8s0FQenKlkDMSxjISDjSOBLrxvSIM8jYpGPq7d3uyhwuGAFk8WyAgtGrU3dEkenB32GEFkQ40XGelMC3S0SkYcGYREpzzJhGPoXqwcOo/av5QTm7MBo4N575L46b87CY6l5RV98nB/aPRMs9qRkBxlv5PXxsXfegFIgY4BT76vxlLlGS2LTavz+KRw0aMahEpUxblHlgcZxJQ4Tg5XNOLlS6WRC97juj+7cjjt+AZbxwXu+wVtZA+HhlzqEIBiZbpQjpLgQZynLQwCb7MxDc75WP7UjEBjkTDo+ilCTOCDTtiPRsDJ2l1bSQ/pNO7X3PMj6dL5R9Itd7xKDHjiow3ovgvm1AybOnWWysUpGdPTjlO3AsM9DXmD7u7qLenyhUfSzNximpk/afjqJ0Cq5HFEQjPtlMzuIICCdqBcoxAohPqvBxLuB36ep69Hjy2qGZHciGAtDI6YNYTh/uL9OUfkHGgix1YNxgIOZsRh8oCopsgVWzM/P5dO6KUS9h2Rt6JZoy+dPZ8u6vtsT11aiodd2V7GGs8a8dAlWkkPVnyCBJum3bsaAxiVcJdUJMJ8iJYHW/7GZUfGZ+fEgxkcbGU4SDho8MTGlxmkpatX06OPP6UDKsMmZnNns1edRWSbGHYWgjhImzog0g6h9tvygV14gWuHx9pAumKfhIvcGvMkgW0kNizGP9C4D/k323PKCWHf6vepHjeIsQM40oEZ8f7fbN4zOAIrCgLiZZ6Bk/kUYhjx+l8AVfaXsbqObjTBF/QYY6QHaKh9xMM5RLIMETPVgkOCOJpvku/hGOGQPyM7SV52ksAsN7EfhhtYNi7TyGmgTE/iWNMIOeGaaUzwyh4aJGf2hYow48JbbtTZuGrcnh0RbjgymoGgwauh4gHu6hVO+ODgcDQANBj0NjXoyr0RHZwwXZFRkXAKmIUKfHAp9pOBrjgpzBhpjdAyKktRzf4Izs6dOgEy7kpGeOGweepTcV6VZx2cgbx8V2dMHY1OTV2QcWoqBm+48gSBDpDXwXVVifRBIwjHJYwCzgr9I2aYciMRHDcdeO+tEn02Qi/o+0CLbHLXDI18U8mJpIFj2ko5L7Jdf6Lwo8Ppv8uhjRzwJp+9UTh1llYwlDtwBQciCkAQLcXklTT0gIuOz1Oh7qcgvele+5WYkWT5lIDOMBo2HM7ZS7fqA5Y3Ls6YNnVBd8ylPfWx35UOptLWY7en+RM3SbYQBhmQEz5bl8+lp5fucx2sX+FyN2gDBOrIWywry1fS6Vf9d+mJR+5Ld37FN8iRi3ZloHqlnKGfYFVSx3ptY1cYNNgeBNiKUDKHXUchPIxGvbwhdb3gGOPHLfMRRDuCCEdAOYJgfSgHMN1ftD+nj9r1JTN5LtjUTU7AhqJ+bFvUkenji35LTVsjZO+WV1a1FWDN8JysLYPg77GNq4zArBGOlqbz1dPZNyt7MsFszZSGKg1KLLnBS6sM2GMOtMWu8GCPGVq/djXtzi/owXPGeyEZNxCG2aN4EN5NV5eupquXLloGXBoMjuXWNWxX0Vu+Ch97tK4ZbmzcvF5N5yw5YIWiEGNAQGd7i8Xzf3KxWlhQQBmXxJP6BnJ1LXbfcAGtXxMBM4d6aYXqsuPpqUGFX8e4kfrzMpvGxmCEDAHXi0VR/y/o8VCb6y8A7tegUMa7MiKB3wgWpz+zATEwMbKTpNujmQAaFEsoGtB186kEbJkpYEaAGR1OuORmespUecDzJhhOCx2iHBBJvtqplKgBWftsSuDMIZbQYhBX5xFPqSccCcHCg/aJQ8SshAdP0fISmKThCk0Ov+QmufEK1uvLUrKdHQbsMTYURwcDblYdksYGHM6RG7JIIBmy2DHMN4klvxl1YvKp056mablJvlHKswwavCeVhx5or9DmFkvUaOOIJxhw7HyRr87jjeGCw5HhCYRymglmRKoNh0L6ohOv6A0/9HnmhNa2WdoUL5FR0H1BNnhAV3h0GsosAwUK5f5RgP/gegqC2TQgSMM7oJWhSGzept6SHaRciJxmBmFFS5cn7ixdOR5gfC/uL/XDkPlgNm2kggyyZnKeYr7xZGwiD13EVDz0ONR0b/nxtLpyznWABX84Xhgl6K4+eSl0Bx/JSS2AoU6e2VQ+dfjkf/zf0uvf8rb05KOfSS+862uM05NCCApFJhOIrOZvBdDMPq4Uch8U9rEfhnAQsVK2j2gpGPV6HEKMyus64Y5Z1GMmd/jKHSDA/qL9OYdnOAJGHxsn1Rd5aMV0YD/4LhoPgewPImxqqemytlawT5LTsoE5pZO1T2rJDZvJJu0dnYGzh2Okp0TMkbwiOSILdo6gsaNBhrfhtoQPDraEWeckO8QjGn88aLFP9urlS5q5WtBG73g4Y+WE8YJx5rJO0F7VQ5UftOAjY4xFIeoKFONAZRwYgzj/iAMitWqht9c4rgZLBQh18R94ZJT+RlL/sPV+G9u0YvyLEn5LTGjgGUeXzNtSAeRQRSq4Xn4wBaKwryKmSR2rkkA76FegQPvBVDH2HccZhv1IPZlMPbPIF9cD55XxCXvu+uW61SlRd1PST4XrnJIC+lA1qJOv4iM7SeyV5fwiOyXIoL8QksFYCZwXCcssyua6BmvFvQ6sfAajGMAkMLBquHjWexrsWIbxjIyUgc8yrRkYbT9SA5Pnb2+flSwt06gzKdsOmlAZ7ewwIU8s/cnZEkNeyQwZQ3Pwo/F4ZkmwyILzwfIa6jMuzgn81YnYjI1DMik8ZrRcDzlF5PERXa02atmOGRecw5ARbcbeKOEKjyrS8ahHzJKMuaMjf9xrN2N3WOBL43Ynlj7EwvX0jJiQkLPMyFE3iODEscTJK/ZPL62m22486bf6zF/wGANCvohmpC2D9EfjC07kEAICXsgPV3LcWV2suArsHImUnRxDRTsArtSl8AreUESO4I9zx9MFxiZXxQRML0ACnkLxRwd0VZZRp3R/DSJaXE03X3XREQ5aBpb+0BErddY9UMK1kysYXG6/2qu60FbPP/ZP6XMffXd66Wvekq4+fTaduumOSlZoErJYisGxGZzTA2gWktqPsh/mOnMOYn9k0iL6LIh+ZPGOC/EZ0d1xCXcQnQMEby9qzz2IxaHLDmDRVkT7Ys8KzoPPCNLAyPLXNb26z+v7a3oIjAfF2JPEydnz8zgwu+nKlctp9doV7VdkuUx9fkpLWHoRY1zfYcNOsZ9o00tqcsLEB1swqVklZuixRdhvxiE+SeX9pLL95K+vrhj3pA6sZNWD7QxPPHE+rWgWaXYGi9mriU2aeFd5KnKpaDNW8qYe9ZrWcTDYJI95GR8442Vb5uzIVInKkM8MnDS+KmZ9gUmxfxh2TSNTtAAUVhESDiUHvsavYHop7Hh/x2/JyhTzJdCtdyhPa5lzVoaW+1I4ARn8xV3ygmI06pTjjAHFOQJeRVSuohGxgKecYBoRtbrQm0cu8PQX+IVzBjzkZWQnaUubkqe0l4Rq44lTATs3amQePDUqTekbOwxSIVI0TMrK+QQMTlYPuMqXDq058vjzkpSm5qgbqihLZAxmvCHHDYTvuDZIoVD2rHg2wy1eDVPTtswioBy+rUaAJvj0CuSdUkfxrJNgzDeY2es3Tz05xDY5o4SMooOTpX5mR4rXR5GNU09p+CxN4dT59iGgKKMFdGHHC+dL+DgYdBbkw6FwT81yCNx4zGR5U6Hy0V3kBmikhY8gKvMeJgHgeNAgwQOGmikqeSK4USofcrCJxtMrNxSFDuG8SFTDQY+aZfF6SnEvpiOQRd0yXWgALPwiP1mhG2DIFw5OmhLsSQjORfZgAV2OQbCsJsndQt+YSPHVHzo1XeoLjH6giY79lh9Egrh56nYoGfWTfXQRDtuDn/yrdOMLX5FWrpyVQZtP84s3ilpbgEszhFTNPFKZbeiiv7gq7C94bqX31/a5Jd8/C2kOuAntRe25x66rA9gcUNQQg77KzBD2lFmXK8vL6aqdI94zVp9Wh53KS27Q3NULPNeuXEpLF9k0LedIT+6T0/N6OJ52P+Mhc31j3VswsD3YCgZdDAM2x7ZEYwd2mDHJ9lhl/gyKZMCeYEtXl5Zs98/coAdPHVa5odf1BZZtDLamr4ZO6kc8sIVsAYH+3OxsnN0kOYzPD31fV/8jTXCaK//5l0OGR250he1qWDzDAwuG8HqImUC+9OUfZH7MPcPDi+h++LC6FJQyHkKn5BzN6A0tz9Qhqwor1jWJjJMRGWegwqZ57lVkxy/1iWEmqNQdOENU5fv5GEMCcAU2KMLr8GFkJ4klND7iBzOmPnE0GCF5CvDGXNWIfR4IxayHxjc1lFjOYh8TythSw+EmxKDK6/OaIVJFeJOtVGJVG9zw4AkMvDghilkL7EUivaEZHRTGbAq3K2ZZuDmx3ltk9BpulpG37mhodATLKFxme3Bu6FyxyVxOkGSMwFRffGZjSwRxeOKmM1vF1G1WPlcISg7oeLO55ERGls6KbPAuIfZFKa08mj0Bp8oOjvLcIcysFwfdS4coElT9U9VMH3iXQcjkonmruBeMk5OC91ONePAkB214w9IEdIWmZYMILA2juCIBKz2aJgXk6yfTglBxbuwMIjAw8RO0lMJRpg7cYcp69VcKnsrDkJm8YcgPOXHcgjayIpbqZCq0m+DvJVYh04Sgh+PEPCHBbTDT4u3Jf/iPv59ed8+/SRfOPZBuf9nr1R5keEcKYt4SIhfJ94doL/vzndOOMgC4y35eaKC9Cblqg4sGlxyLTg4gf0DRoVjT1Hkd/pKWzPiwK8ta9GOOCIkHavqpeuzWuiJaIdCS2o6W08Y0YzSjL7pzThLlzBgxtjDrhC1hHMAoYCoxNvR97AvntWHvCdhL7AKF2Hl480IMD9TsWZqcWvdbaFcvXvahjzOaxY4HXOFIAVhHQu83bBUrGdifBW0299lwGjd6+gpba+wwnj06pKGnaw+enJ5BgH8tSWFLaGIXYv1Um4j7S8PqtrDDZoKsnwLD6D2jVY0ZP9QyriJnsc8hD3a7YPCAGnLJOdK98r2uxO7VFza94NEIBZmvyakwq81gFQmE6wuGqwP3lR+UHNlJYmlpc0wbhCUJT/g4G9wzlOEZEzVQlOOBTkrgi87cVJ4QtDfaDYfmgpw4DrytwBr0upaLCHYi5ImytMYSHMthbtB6hZ4lMXj4bSd1FHjgfnHQFzyYZfInU+gAlCOjeoCXlBTXfzteOG3ISCPWEO0ZIOrAPQOWbDsoSiMor+6zQZvOBU8cCw44xKlDHo49KDNIlBVnj8G5NAgv64kuM150ykLHsyDQFB3ynC9n0nu3lHZDg4ri1JFZMM+SoUP9o4EC4z8qQVywBNcRmjmOLaDO1jG4eHi6EoRmHuAYA1mVD19xjDiAGQUoI+US619Z8MrsM1bkgQo9nJLgH7IYGIQ88wdcCchEKA5WwQPceTATTN38MCMUH62kKOouDVnnUceCC8/QW6GL8BxW+ZmPvjf9q+/8ai3BfTa98CWvEXYWxNIc5acNH6n2B6rk0FZYyiqgktFd/3+jgYPua65EO0h77rHW+wAWBxRdtwjYpPN6hX+PmXDZWfbthPOCjdZjkJbSZPlkd2U79NASy2nxQM0eok05VyyVYUuw0zNynuhc7ia502OLWfoiE1vlh3vBY0dwqpj1WdEXB9b1cG4bZSMdVeNV/wuXl4w7pj2s2EhC0YntA7ZEtLDnOEisKpzQlwt46C6rGsAjE/C+VnRU4v9BkfISyxEjuj6ZbyVDA0+FCnW4Cj+KVIbdCeo5q/USlnN/UWDmUtUXXkxRTOve4BwxG1dgPP6YBFCCFTxluljHyMG4h4OUVWHo+DFkL22i0ht61h/3kBAHLyMHo1TckyiJhFeYMq6FFVRVDoFDhJGdJJwevqHGzQ+m+maNGhbOAgEFlD1ELDFNSwE4HqgJR4kGw54SGuaWlsVorDzBoyQGOONrIOawSPb3gEutaFYTWmcmlLfWwCkbohm87aSJB4q3M5BlYrrVe5RQsACRhtkE6LKxm8Mi6Rj+s6x6+4pDKxXnb0fraWyIpsLwtGOj1IpknBUeMJQSGHCR2WcnsSFGTDh1GkRmjpALB4g0NxtdOE90ouFHOY2ASRkfigZdyWhHSTg0idLUJY55+NYrQdoOFwoRTeShXoSC74SI25NH8iCibFOxY1lkArPgASZyYPhPhHNjDR6woe1SHoFYEK/L5ywVQSvKQwdqGjaOoYegwGzltRWdh0Wh4FEdAVTwSc/r7T4caNoC+xdCyLhXbpUCtB6E43NOdG+NC6ESRCvk0Yd1L55Nn/nwn6dX6cO6Vy48ms7c/OJeYeZf0I5+pQb7Q5jP/fnkVKzbUYcgtRd3ucesgUPcm8Ggg0uORdoDyB9QdCys24nIvrKPSPae/sq4wZKa3kBRv+WhUCsD2h7h5TSVe9ZIp1tzDh6zPzyYxuqBbK86CbaCwRO7xaeR/PCszu3tFcbHmQnHiL2cfNaElzg8+Gq84usJcbI2s0vFttP7ZMVQkP6AdRx+ZOnKflvGGWaOOMsJO1x3kIpdwxaCw0N8xOJXWabLFeKGAUK09886B2NDQacIFsjGdRRS+seIQYDmsYQ8prDvSMdbeQyt6wNG6L8YbKIZxVnIVFaEjDdEKOTGDWJvF76HV0yEyP1hSdMnsWtAsz6oqpSG3qK+zu3Zz1psCNtG8chOEqdA46l7sJKQrLZN6K01xGFARyrOpGDJjRvNAM1+E4IHWw1mNFAtxGnGRf1AcAxg+h/l0NSTBM4Yr2cWv5QzLLjVmntq4IAHfb7fxlStPA7T4s2zIiN4c6JJII8OhP+Ec0Pj4uZ59kfr1Ip64Pe+JXU2HdfouiCjb4yAxdJTwbP6oK2X6CCswHQhDhDeNFe/TaUreDhqC3pNnw7NXiJuLrLjVCAAVOFpOpJNxcoXTQEgH7ort9oOIMgCQN56cOcVDkcWlEJkhwYoBd40lXIZBFyA8YgZQpN3TTMM5DINOHOj6bjoU7EgDpkchS7ZyF3JbthSC+oumCBmPZIIvkY1l0eeupo+86UL+T7RrnjaDKeW/Vfo5xu+6oXpltPz6ekry+nvH7wgtkgk2Owwwx/aGK1X33VTevltp0wb1lEWerecWYBH7/+wD6JkA+jU1ExaPPMC4yAv1AaGAwsHYtUKskJqOSVqPZfEqNc+ctct3qh82+COk3lfvdrYPVt5RxPlaFgj12kA+QHZI5O9bkAL0JOCGF2OV+L3dOCjX9/f00yMeplXGaZ0Ej5vC6njMWvEidzsQwIPe8u2hjAa0Tt40MZZwTmCrjdzM0iJHnaTsjUd8MsbcVv6hBT5WCTKGFXjYTleKMLx8rc55azx8g7n0fHJLNstMEHRlV8GapbqZuUccSAlsgNneyygcGKAjDyjgZntTbmaWhAF2MaGbuPzhDJssfrQMox/cMgKIlRyUQDk316uAWzJmjiRP+BXgiALv5x1WJbWYmN20LEItvkGMzSKsvxKcbwKkxIMHDLjRciA8y90gkvJtPlWYkp+x+yMPiFTq+e47v+EVp3WhMNbkOimKiaiv0YNm6QLi5GuIztJOEIsHXFDGKA0Dtn7p2Lwp947Gj2RT8VuSGvrHBwY5wnhONCQmegAHwAGPRokgxRPEdDhyC8Nh3bCOLKdzPhqs67C9TIb2hMjnAuWu3B0WEtGxk29Zo56mKKFYnG28N1gi4zcIbE17RX2QAkfBwrZXRvR8ZttMBQgU6jM6HBkAJ1pQsSA5WmBE7w94CouNMtFNU08/7LGHYOyZLAeDOj60sVL5wsnKGNKzuhsSgscDBytG3Uc/5JeK+X0avL4o15E4ItOY8YqjIBKVISuwyC49gifg+shfUCkklHJ0FPQ5v0Q6g0Wsrjy5sw9ifzIsxi5ONpCBrMM6L3UH1qhwxAE+uZvBvCR06nOwb41eOzqCXJehghjR/04soH75nsjQrz5Ut5s2dW3mebm5uxYMR0/o1d6oUO7iLdbol7u5PBFFsRQfFdT/J/84B+nb3rrHXJoNWM4f0qbR8v37ELW+i+4DiZQEvlaFfblHzrZRryfyMHMRqHQT/G40u5yx0Tsy1mP0arwLEl4AJsDikarwvVAmXlPgl5sP9HpuZPpzC0vTVfOflr7WjcEINs6reNM9PJEOEb6zEheKmN8ZYWBjmrLpj5ftizgPDFrhL1klgKedpo0NvBNyg3+5MjwSr1tDDZL9s7/1OcZN3iQml+Y9Tlu2FNWBPiUyeKJOX+sfHV1tWGwhBYf2JU9mtP5R+WASHAZI8sftVaS3/xXi0VBLq8AqaBDr0djo1zrKODXhSbcyyuxRnYjUSB6VxUz81J4AV3iJQJvphFmtKrCR9HDOZIN7VHBdBqcq+0oadWP2Z8FfX6F/cwse7K8id5HDZDDGdKvUYwrgeGNrhkHcKAtAGRNusmBVFa1aRz2Z2Qnyc6RGhKVxkGPBhoyxbkzmomQJGUwRqoxfb+Mxofjw7rtxKQO6lKjUpu0U0NDlB/svT0IzlMAr9gzy2SnSrNIDIjwYqaD+tP4wcMx8k1S58DBoRQZOZeBpxM22jGrRRGNABoMxMjHTSYOwRk9JUCXV8xZG5/StB7r2HQm+iedjs6Ho0Ng0GUjd8Hf1XkbtA4P5JAUfW/gFh4fQpRUltmOUMETHUUd0IVTxo185DF8lPgGIzNOGgeqndYbIetbE2lVDY7PurgCokjdNAsaugNXZe6s2XEijtzOExPKYW88XXFGQwLRoDynbFgUhw9ykV8ADIcuyc34OGqk0QkBHYQedB8zf+RgVs3lIsIsm9/aUwZY8JnlbUlmL3WPcWoXFuZ1T2N/AQez8XQSFFh6kyOk6W5w2bB/cvGEnzyvSV/+WKbaBJSpIY0CJ5A2QT3Iq/SiLJ5q733/b6T/8l//T+mps/en217yNdJRdFLQ68H06hn1uAqRpzUMLGiFHiHzQElGwD8qyPCKfHkk+/JwPaoWW/EOqMIBRa2kji2zYlxFok8dgcGJU7emb/7ud6QnvnBvevDj/0e6dPYztq/xGj7LaQyyPPwEL1nuqr97rGCcEF9/KF2zTtgpbAV2kgMcl7XCwMMzD1KyKC4LmxjC0nJnNMt/Sg9RLMlxbh0OF/iT25qtkg0/tXDSD0sbm7IT2Ar9gedtHLJZc9qgHTLyxnXM6hhOMJbavDEzUQdyw+qG3clAmKEItqHAw0WZqpP+OxoY2f5m8LZLBt9XBAvK6sFsGwXBpbL5wuCNNcZTxlZbdglkPBEq9KiT/3EP9McYsKjT0uf4uDDjAQispOLMMttWF2JI3LJIQbkZiFRwRxOs3jB54G/zFaqCrfQJ7azLntRDGPYVj+wk3Xb7jfaoYyBkz44UgST6w3FxI9AN5oaiLJwF10VKibLIR9CoNM2WEAM3jTsqprQGT3DKwAVNylC2naeKn9ApFA32QxHlftBYSTA7xZ4V1raRieBBXiOrZUR20YU3vOiBNE7e+OLzI16Wg7pgKPaymCLIxgCLgxf7sAAAjvVvNQBP8wIvx0q0WP6ZVGOZ0HWP5bAc6Pw4EtAWKf2POmMc/FaH8mmY0EVe4K+q829KP6f1hHNGTz5X9tY8wwcJ6hD0XJGoK/mCx1DYJxAP618IXKGN7Dgv6Aa/RWwsCzz5TwDMsMT1By0C+Y0AimhRzP3CKDkAh7JVouKgBT/pJJwV8CjthTP6vhvT2OiCt1eYHWIvAnrg6cSrveY1lk6fnPc3nZg93NjYUPm8DR4n5vIhyXmdVULbow5lNgnZzU/XHa3zMnFZwtq1i+m+//Sn6bX3/GDsT7rlrqr+BWaUa41kBV54Vhn1SF0B9fznbLyths9ZYZ+7gg1Q44DsZ6ceZt6ToBc7PvZ8YPpFr7pH31D8V+nKE5/X4a7/Tge7/qMeMBlcxVG2POwFe3/0QJwfViljn6HtiWwMzg1vp8Xr93r7WLNIfggTCZbnsDG8bcwWDQ4CntLDMasc2HACtpPZJj6UywMxH9G+8ZSOJ5D9XdceWm+XqBm7eIjTNgrsfd05Egw2BqrebKwrzh3B9kb926UA6K/YVAPYPka+oUI0FxlHuFjWyA4eLqz/ZJyAqxGow2QKjaxawuOD+ExqLGT2iC0sjEnVi0EZNkxV2HPsrvHEcloPtid1wDFj4TpveevBNra9MI4NCgNKyNYfNYm/Wp2U76VZOdJbWmnwuYv5HtWgLJe/IUdDOkIY2Um676GnfOI2PLxsZgEliu88DUI3T3mIYQdC+WWGpwyaFFLOuqYbvhTPFXqxbKLGJJLc4BKisuEkAKsxXADRQAIK6EgjihuzYQwZDTaImGpxguwUQUq4lkUw8pWcA91o1tyEQAae6CQOGFn6A466UW/rQRccKZI4G5PZOcPZuri05qcV1q0Z8HFmmDFz4+NtQcGQF/zCWUIwcJlmhua29MQmdYzF01dX9FmSaTtLdG46LX+uka52mIREJ6R+OIzM6rkhK01/pIPjICKznQfxj3sVdETM1cKQoGXouO5clS4dHO1T7lwBiYyCckWG+uAoRV7IY0D92ClzIu6gxSctfGjffusZvSmyYAOIjPP6sKWfIKW/k3ISJ7aWRVszSwo3nzmZbjhzSvrSWy+afl3QsiTO6Yo+Z3BKztbM3rrqylfA4z7DK7iCrZlCZh111eqpjQFVOK/PlZz9/IfTxN33+M2a0/qw7nEEtNsWstraiiLPAIOLu5LnuAYG3XiJfUDRM1+pinkVeXbkEbvgyIrDVLrh9rvTLS/9hvSUDnh1iewnNhEHiP7PGOG301RKb62/us9Sjh92Bcfp2jFjJOo8NStwkjdvnfFxWR60bbNFww/esulsBue7cJsa1LFn8MJe8n1IHDWMGTYJPFYxNPnk8tigTXEup0KuFFTIM/veT04bzIU5I/ftgFee/ttWCxO7lInWrj2SQPTK6/nNeGU+MkujCcR23aBh4yd4yzy/tVacQ+oNWqHB1X/64V7wD8eWGX3P7Og+XLm2pg8Rc7izvlDh7Q5mUqPSJ4hKGEn+P/butFmz5LgP+9P77b1nxzYQABIkTYoUKVGmZDsUkqywrZAdZsh2hF44Qh9AL/wd9MLvHGGHX9phy2s4JDlk0RLN0M5FEkVQXAGCBAmAINYZzExP73179f/3z3Oee29Pz8ydnhmApFDd9znnVGVlZmVlZWUtp44wv42oDPW9I5tJIdstTMCmP4+klv65ThFECcqHv5XaxB7+99BO0lNZ3rCuOB3qdHpmOczUpIutt9gZEI5GuMGYjpGyedaxV5HywCkyu8GTV3IdafyEdpq5JKQBLL1qL4ERr6CzFJep04wU0KiTgYc86MzRWHlMcivMMqB7+1nAyzczUrnhcElPpHQNIo9tDJYG8TijhcQFhyBd4cYRyRWTiey/tCe8q5L72SAIL7hTaVhX0gi9oXcusiR4HX7TV9kE75RjaHUkkjiOknj7t84n47Xs9UqfvrmeWSVHKFxK46+DlDjBZZX1zJqQselmfBakvJqOZnTkdZyCupJPcEFTmQT5WyeNS0RQ4R2c/FAL62AIQKpZYvnpM/KBhZHpYr9MaQulGyTSONfqjGHT8EQeDX/r/jX1ojHQm7Xxdlk3MhYeHDeDGIcwj944cVDZER9mThqeq28tT73i5rF056iHI5HHMhEYvX6Y07j/TjZvf3Bz7dUvbc78yF/KYZNnC/9+/Cj7W4Z9AIu43xL8fUn8thF+l6XZJ7t3iekdZ/82kt7jtUzscbJ3twfynt8tRA5Liw04eeZSTHAGkvfzyZHM6Ji9MCNROxHd03dwiOw18oZy33IOjHa9taXsTNq3rROW5U/lLVhGhBNVuDT7dfXgTJb0qTQHqW9h575HpNRO6AtmGS03jBSrVntnpcFz7Vlo1f4qqDgGq9dc4JvowoaByZN0iXmc0MeJ20bkRvIKgran9XngPCWfsL0sNxP7xt99CFb6k8PMkdOyM6ueMtUmL7m3GJNhuMB77pLALnOO2FmD1Gs+I5NZvb7VHZBTPjumvEKe5Rdct3gb88hPEtn3UswN2PndwzGp4y/og8bGL4jDnz6MkF22PDxC5u0eD+0kpcvJLvLdKKv1v3FwfC/HmwKrQ9PX1aOIOmNxc8T4nDpdJyjF7Pptrnd0iMmvMjg3t9Pxc1w4OJ1GTaHg0SB6KFdKolI0nOMZDTxcpvC8UacyzQQQwryKmRGITj+VZ9cK5Z/GEdh0ytK8BaaRbTvX4NZcdJAcAt6wqdt02dNBp6E68qA8Jr+9SsKR8GjkolzK4iyn++EZj5uc8WQWSKPBx06QB7yvtst/JutFRkPDH2zTAN0JlIIMjvQYgjhVypG4rCDVSbIfyX6wl1+/lu+3xVGqVxL+IwflpZdkC1MVOneNzzOZcUZu5NtIpkLPZvq59VonEh9TL1UyVJfZu1RP8eK15gAtFBBrGFpBXWdkpYuHmcUDLHfKtvAID49qns2IQZSyRY67d3a7R4BR272TQzqNKjPqu5M9AhFOnU20ODi3o59mzOQ7lunXORjOxs0YzJ65kixoBTenUD5heLXfjjHlgOFnEi2Z/tI/+Z83f/RP/3j2J31285FP/Mjy1k1z+oHuWx4qom851RDcR/jbUOx3VOJ9rL6jfH+ggbeFnpvt4/tZqIXIe0Hrkz/8H+bE++c2n/3U/7O5/Hu/EPvaV3Vqm7ys4kwjbzObKbI/VltlL9h/NoIdPnvuVDdT9zDh1Y4YsDK+gQenXzF773wl9uJW8No6oT/Irtl2/Dp9y/AGq6PrriG29DmdkUoaR0o8W1tblriG5bpfLuNMTUxxrrCToe1L6pifJaeRZ/5XEgcanYcFRv5HHkUdCAvoOB6TwgHxfCIzRzvHDcTZfVgHeD8594aVeHNPVpyjkxmI6lM5R75Vpz8zwCRrdWRvrvuDrK4Uguhtwkh1rYMAlzUcJORiy4Z+Zv0rrST414B2R+9Tpok8/O+hnSQK1W9nhc76JXqv4VGkuIwVHGXphrPA2ExnBGCmKavL5XuWd6LMqW0jAwKPvs7eIQq/8G3mRAU4l0lGnafnI2kI/VhuCu9tJktPnb1KOgV1yvXawamcHkYZ4dTDxWMUoSdM15nJrFKcFl7weM0qH97wlcbUtyXSgCwjagDO4cEDJccnHtG/Y1YDPpVU7TPtOKMTTppZC8JxJQuOSacjk//1rH/b2HaqzlKchOCqUxR8aMyM2NBT3WiLo8Rwqvt7eYifVPrKoSnhuCD5AdOnRV/aSBNvhqmJuXc2lVm0C/kuEhngrwoHSYLyU9GWPSTgrxyDPODbUFrlK/ChqwwN7hdGgG+VOQ81NAskEKHX4LmTD1M+fEhF6ZdChp7ltWwkVOYTiRvd5/DmGAhf/65W5ZqlNaeYHjlq1u1OHWDGjrOOAIOpXGuozqXcXF9VBj8+/N3Zvb754md+LssBP7h57eUvbZ75wCcSL6+/vcs8kM8alru9iDXhD8V1Kf0firL8gSnEAaHPw4Go96Mg+wjsu30/KMXGnth89Ht+bPPhHOb6c3/nr2+++Ol/2oMenWtk4G0lwSqCMKsJacVpsDrqM9mzePqMfULsJ1vpjex7myvX8tq/WeK0WTbcK+M6cm9NXb2ab7XF9unf2NbjGYE+RCO2Rf91Z3c2GmeTauDzin8MyO2786YbfO3zwsvce0Z5nvHIRtRUzIMEUdswtwfjVoB1UAlnitK/zp5vcx+8GTr7kG8t0b644BlzxIbH1udpx1trmfxg9wv5iL2qvUdqy0Oco2wb0W+xo9dvjnPUt7jzHDegcmBf7QHTDx4M+/jZnyB6H+39j6K3ufY9rDOLhV35WwDVhBJVWw5Uwn6ib39/aCeplaOyIoSHmQFScaY68cszl15HITFgdKj98nKUkpAxeiRODKemny9JulgzFqbl0r9lvTjCTAEVbp2J8qK7rr+zA6lEy3bw6cjaQbviIT94kFvlawR41PmZbVmXneqEBAy8oGIfpNMNaHncDbxlpylncMfxgYcyGH1Y/pF1VVxK4ORtRwbA1YMt08jqMAWuvCWvxs1BQkfF4tQSnP1EZkFsROZEKadiwJ8SVaZ4ad7mUkJ/FCBOXe5RETfORyMm/zBa3sUOzkQGmPKoI7N9ZKNOXr9+e/OBp87FJwm91CmcM7sDNyojd3WmftBb9YKRAVO2c21dLHnQ7ijODdqpRzfgQyY6scQ1MyC0ONpxYiOjNubkqWOdTN6A5AQfCw+RUFBNA59N7ng1PY8Gh3ec2aOBpXHC6Gcc3tS7gGzloMzJptz212vaa/O+HOfo87/y/21+4N/5K/mw5sV+323kCcPBIP+E5S6XoSx2727/7ZLhO5fvSGBPAltFmpvt4x7Ee3+3EPmW0Fq5D7GD9GKXsqH7e3/sr2x+7VP/aHMn305jjzoiSvNhN2TwlYWzeYPqXN4wM2Nfm6MxL/bF2X5mh2PeNi+9crnt3IGR+iWBnYeXDTYoNhviuAD4te3anwyaz+UNODZy5+SpbG/IyTzldyxwB52BBb/913QUlptc5mm5aWnZI8/yHrAKA7z8rja7kwRhzOnWt5LW/mVFVywyLBEuWzOzAhHcwIhhC49n75FX+k0UEFkht/kCLksiXfW6HMKz2YxlosLzzOplpp88A1MZBE/z5cezPWArW/tuMHLowP7rh1j0ymNbJCspecM7RzXwK4QOfnPbAX1j5mds/77C7Ut7u9tDO0lY0DEh044x0ls/KRLOEztM+qwIz57SdfYpnVUdpjx3WjIIdO4cjr5eH1gfrFVInmykUWdh0ubDhxR5Tr9O55z8HCXkwGgczmMiRHDTkQ6P6BqBYPpoOk4cIkH5lUFnqWF0X06eTdlyADgDCHBYnNUE3gTiyRww2PvkS1Q38FHeneTrFGPiqsyhe5sDGYKeTzuaNPfoVVT4yLOKWw+/vJ6pSrNYZ73NFZ7QxjgngaNnbZ6ywKNcZkRS3PKB59ndnwYHsRBQ8C1Jie45NUtyFc4SqfND2gwC762O+/lOkrxt9MFXulDCt+BCgEMhiCdPtPwAqXPVNFHkisbgKu48lqpCuPOA51wEtJ1fok5Ud4j0Sjat61zBKi/cnLY7gYWuS565dtSZePLj2rbuA5+oPIWCLxQnb/+55i9kirfHRwRWGXMpf7/7mZ/pcQI3PvGjm+/50R8P/OpCJf1tAhQT9u5CuLQmfin5clmhv3P9N0AC+1SiipYiH4h6P0SwEHjf6TzKewgepHnwaT/4Cy/+wObF7/rRzed//adr/zRGs/Zmi3wbbSd7jWa/KBuQhqr9BkHbcGxa7ULstrN0nNh8P1s0nLsExtlG4vVRd/otTrY5eTJj1A3Ivr0W23v+hCNhcpZe6MZyZPbKbPXYiumw514q+v0rhbkXdTCsEa7ySoVxwtr8xddGxTl7kBWVh4xQJid6nwKCV8434pewINtiXaLAJ5Fz1NOyM+NmcD+0k7jkY69XO+gKgINIhvqhG3FafXOPczR2fmTNrrPD5OKf/be1+y3MgnxhbWiufL71dfhJ/kcKi97NLJOuy6wYZduP6ARy1a2V6rIa9NZU3jz1HThJqDpX6MQ4BKk8QsCVGZBu7A3TGDZdqTIotBkQh1BysCzTcWRMk7ZzTnZ1r4Pl+Fge0+kpYx2e5JnZqulkVQh63i7wOufNOEfeRhCNl6Cqg3FyUX4NYGLlD5/xmPEDz72sUXcWYuVx1yxQeIz2SH9odijOm0pWN/jCi86TIDhLPcgyjo2ZKhWpLJSoe5LiLDo9XB7fBcIbJ3CUCoY4JEG8NmSjIp27NwK8rq4MPWU2+cnHHyUQKMfqaHhe1ZyCll+RAa3C5BbNtRy5Da7JU6MQHuojkUYEPwqe7Ao9aDzkTrnnstwtspUSHBA3eEJ+8lcu4X3rICbavTBolWXiimOLJ8tpGQUePTozd2bfUoo4q+on8jiWV/rveWNtdO74CeeVnJxRYSBNJD9o40g95nwuy2/ebrubvEiklvK8NKbwwvhw4stXfuxt4GAf5eSTfTL597lf++nN3SOn4iT9pwq5FUszPsHPSEnG5W4vothWqT4e9VunPj7PY2LfIzSPwfwHO+qRunjywrwR0Rtjnhz7Y3MuBN53Oo8SfyzdJ+PiaAZsJ3bOd9ZiJzPtFy9caD9iQK2/0b/MoDD4Vx3OdUyI1ipYrYhNCkgHn9p0+g9p+qBz55y9ls3G1+92ye6pi+fqeBncavby3bPtI3j8txe29hMC6eu/OmmJa1gybu1mnoVeVsu499y05WeB7BNrpHzHHYxc284WcQbDz2In92Hbj2ZojQASn5vAxyJmac0Kxt7S2pYekMIVWlGLw3EJnEkm+1a+lXcrzpElTKZzQPRp8kxfiz8OqzoyAbDFDx15NCIZKreiOPAjZX+Y/mj6yQPIAmS/6I1bt4p37a/kxVqtdcqMZPsn8I8iB3yIcGgnaWZIzJjM6+a87AdxItqxhpB9OEbsnBAjeJ3aCGw8SpVsg1U3YXdDs7wzAyPvsTgD5Hc30ldIG6LHyYlzkQ5rui+lTJFDA+OW5zoTlCsBmO0BcZ+3H+n4DtuDOE91TJJgQzj+8PkgCB9kJqHrsIH1VlPT4jz1NdETU8k6bo6YuL79FTyW5NBRAZy5OiBRjk75BT43LYvymNnKXFadquN5cyAimIoLmPI9lC/w3uaibEeyznMrU75xkLMEl9cpOYoadpChQ9nN5pCRcgnKOk7KPJdAQPEj3r/CBLbPHIWWQOZxmMpwG+CKq6RSh3nGWEED3KsfcPOArfK+4BRffhK/NSJ4CHiz4D9AnLpCGM2E9hi8gVFe5xs5jn5O/45znNHMfY5rjNqJOEV1fGK0hNNxLHcyFUwnOTtgH3qFOM9gj3I2c88hxK8yjfzWJmTEFn6iF7gC5BTdY/mos8a+Li3fzUbyr33uX25uvP7S5sIzH8b+kSTMhQAAQABJREFUNjSfp+3NNumJb/ahfwyOt059TIbHR70Fmq2ePD7nu499nKzegp93T3DFMES+JaRWku/HdSnAt7wcj6X73nPxzAsf3bzw3LObpy+erQ2+dtPew9DRiBv2GBl7NINV9sf5PGP38nkqS0Sxt3eOZY9i2rmZf4Mg/RgbDc6fPuB2jO+p2H+6ryP26ZEYizgH2dydvsXcABbY4TVfWVo5wps0kdsEij4x0h4NTXkk2kA8hqrg52ILy4cVhsCxY8IW6zbv0qAKkBLk0Xfwuu8ojMNZ9pbMA7385tKeLVd7fr0ZiK+b2Yx9M7NH9vyOjJM5SNhLf5yicYz0ZdNvzqZ5RBKKnqOzlcDE7//d8u9m+FmT16RFekvywzi2NzozaOZvhWmeMNkB8FbOIwd19STh0E6SN4UU8Vg2eRmh3620wm+u1jRt/N0NzBLdgjhTqIIk/CTYF3IscBSUAmJaZ29picPACRC/bqbu21zJx7ma0XyAyU/lJF6RCd6sj0rrfqWkczqs2ZblwOV/RiCzydpBjJ77FzyW09zXuWuFx9FLxi7pIUawyruPRxvqzDp1D5FZpCgyzxqPUcGW+QjvP4jxuOcMGAGtzkHQBj4iqtMmL4ets3Ihyy+/nsaqLDbJIbDus6oDQhQtRG6wmL9OOeexsk5k0DQxJBrwIq7poUXWkxA+UiZwYPBidgxO5dqDGzrItu6W8lHepT0PxuTDW1C2HsAL6xXGte77On8SYpMGZi7hMTfFQ77qcOQ59zDMM4LwAp+01AVYOpK/xi2w4gsfWPcc6zUv3fNmnHTlYVCNNNUHw3IrBiK35elGDpr82hd+aZykRK1hKUJh1rj9Vzw2bG/WiN+/V7J4X8P7jP595f0R5Pfu5IiPV//l5uzJtKW0Lzqlk20HooEkeENW9Yt3Evzu0sbpWjvdpHHI6RzdNQhzJab9ajPxPvx5vB9VvZCDZW/czMGyWToyM3I2S1IxeVVwdlRrNxAxcDB4sow9fEx7D2TpaDMorTR1Nn1LOPaum6eD+0z26OAHqOUrg9huCUh5veCiHUk7Hd4MVOFqyNX+zbbDYOhgVdqS3FfGA1jcwXHl2s3NmeN3NhdyUOz58zlINiPboxlo4pFtWtEO8uSLwXkYua7tXvHxbz8R2faQ30Q60Jde+0c2ZkpmT6K3fc1Ox9aeyZuu+I2DhM5u3pb1MVVp2PU3NYoujhNynTu/+euDH9B9OHhZ0yU/JtSOsUORIx0ir+njxlbvz1JZMLgJQyn3idxJf3M6fZx+BL8rq1gCPVqgr1Cu9M+pZ2+s0d/bGaxfz9vP3bM1BJo/bEQOcDlIc8rHJ7NapL7ZzL3+IQkL0eGrbK1MNmm4xvmbhDXjmhxevPXMSereVPSUegvHIaPrE5fqT8n2+scVzWGvh3aSNDABXa+eVzhhdl1CynJpBbceEQC+x7szDoGzqVbj1KiqVJFqcSwF6yxMkNvM7C0tI32bohkDimEpiuFQla72Q7k63wZ+MAwNOPjrdIUe4fBuW6m5JzB7kNrQAl+DlGeOAXz4qFMWiWtKw6NKlznXws1nUeDYCX3Ki8/OfIUWBUNz15Je4L1tQQEL0wYe3OFZcAHjyjHJ7fAi331v+OXr9NmvZO+Vc6ocRMnpmpKhFRzBk6gaQpqC59WQkEWVpdTAyMmByD4d+4+y6U2AsSEXsoJziZmHJUbDrTNW/smaEUwG0DIkXlz5yj0w9CQmus/kKJ6svaymrim5f3shy6lpoD5w7GvdDJ1KMKtmaezY7SObM4mLmBM9sGd2pkHfNSWeuqRrd1K+27fzwcrAUvZQHDrJJ29DeFGu6mV5pTOZhSKI8Ciezp/sfXIEFg/vNKzkDhQTuhXR9maN+M71D5IEXvryZzb3P/03Nt/9kaeqZU+f57jcjrpHF9Mg1rd/aI63NI+aKc4HVzuzQStj++gIVT+W2Q2vU7MZ1cMksCuezX6EQI87OZY3Uk88fWlz6uypzY3XrmxuZ7ne8tCJOE1HjTzoaXR39oDmZOI4GucvnC5/dPxGDAy7Izhaw5teFNJqgBsL3KezORrI0cyiOAbm5KUczhoezIIHMG/HZpDb41TyqaTXrhVW7ruxexfjrClTmlCcpgymU6bdZWuDgaeBtT2R3rBl0+Mfpu1N2/zyN17dvHL1ZuxGlr6ToK/Rgl3YjzTHcMjG+AuDiXNfpyiQgnaNF1dl65aKLOPbewmXlZGTmWnmGDg+5m7+xJMve3Q8cN0cHNlYtqszy9imTmuvFEyOXOfW88QdvMpTyPWyB5f44krMcAuOaMdW2Sf1+vWb6WfyId3oheNz9Asp0r6Qh+XZpa/0R46OndEfwLuwWjAwBc/Pw8w0gTm9s9M+l3N04+aN1AeHO7wt/JHtvehPaqDwiJvuCEg+CJ8DI8Nb/ic0w5RznvIbQsrvb18oDwciJ2YfyPZWL6HQd+Kwvnr59erBScoifh/e8ks5Ch8eIy/1oy95knBoJwlyG4s5BGm1EVYUJozcTeOwRwgTJ/JnPxJFWhuZUQUHiYw09q0zEViNtB5+cBMNb1fnbtmM0qjYbtwNTfEU/VQaWrLmrKBcg1az6SbpSilOW5RilvuS1+g/PWHaQR2j+fTEOBCQmD2CA086fng7y0UZlBNPUdAjetNF0CoKLzatjfKZCRojlGylveN7cEFmmUbBlE2aP4GyqULyG2cmpc39LAEVZPZ1BcjR8Jw6xoRHb4ToOzr2K5FQmQ7/QtjqI9kpS3FjQXzSxeFLNqrubKW7D05tLqcBOm4BjIAXZQM4zoP8/qV8ydsGB6648lS6+RGkh5HV8TOjBxdZs2PFspY/8TX4C+FVLmAtP56L4d9Jw1U6tDRieG3MsxR3JAZXJ4A+2FOJe3h0d3P8/nxUcfd4HOk72XcgPoac9Y49LnwLU4bh9mfpNg585OVZOj0+kqVhtBkLIQOlcczm8T35Ra5he7NGzHWR7CEiD4J85+lbJwEzGL/5qb+7+UA/E3RpczF7W2J+skQUnV0U6kTepqz+ppfvcR9R3NNn40REp7UbiqddF6Z55giR1n9g/RN09CzIhQsGg3FSHN6XAYVZkWPZaKztcGqu3dJygoMeZw/ftfBzIzbkzlXLRyEXumyEWS3XDlSTQ6eiLdY+J//l6zmpPnbQAPTO3SObb77ueA2DurGvGov8Dx7EIQxeL++0AQXo+q3s98k+FrNKR/LhaSquPc1gJ+2cxxM+TmcQeCrl0gfAzdE5/7GP1DYbkHzp5Subyy1PEATLkXTsGnJfaNGvsNdkFHuTS+3W2HC2LOVXHjLVkUdG9pMirU+CfycO6604rPKGjZDITcL8eh6+ZwAYWvnPlq3lUabaLzT6f65F0p+BXW4H4SO/0kDtp8z+6pOoyJn0K2g87JJjmEzcNiSTfL5mYd/R6TjI3R5SgOlvlE1wCZYtv+tBkGYKX82Zez7v0r4DN6EhX6o3OaJLJZr6zhOTmO6/uOpILPzIgzk0etdn9wvAxOZ30vv4Fj/luwPr7O/dvb25fOVK6nte/CqtlS78y/3wHJ0MXmVxJNFap29B6rFJh3aSToRI6aTDzgCglWF+hOPUEB66oTZcY9CZSl615P2vMzdGEGZY7EsSwI2Xh/84W9FOit39HynY7ANKG4oT1koLDY6CVzLvphHNHpMoRZTHG26W6cjIJuiw2MY4PDa2VbLMIxRuZo0SE545Xzp3h2MSPJzBUB7xxHBpiOLxYu9UR2edCs3HWLuhPTMbaXiUrd8KU8CEOhq5wtFaw06SenS6qNxXoXNvFNhlyuSlkFWCAHv1837yX08DQQN+UjQSMqJjLLuvJxnQY5gZAWWrgxIcnQFyTYLG9vWMPJ++cG7zQj7p8dq1Gxk9jJFooYNbXvKrHHqdOOyvRiG3kvcu4dFjDUboP3S2EZDgIl+K6h7QwChjc8wzmgGTdtWx9tEZBlVg0IB6c9Lo7lhk5TVfbznCYCSsswpg5JL7NCQjTLDHc23ewLmSERrC8BdppyNISuN0YuQEjs7RWQ3TVPKaD579odgG5f7od33/CJnB99jItyf1WPYeG/n2uP7QQjxGto+JOlD8b379czlL66c3X7h3K3pzfPPn/+TT1ZPLV25vXnk9n8+JjKvvi9JMJzU2Qcf7dJaULmb2x2zKK6/fqI3p7Gk1G/UiaFth3+jmB5+92MHaN165UqU2Aw68bU2OtDfkODhszwcCfynOgGUts1R0u39pL3hjM1Bq28gVDbjYvdM74wj5zMRxdAIJTwnmV/717ygPrZjY5pObC7HXeLEU11meRRZpkmlzAU2YGbOxTdMg7XPNGXIG5vqblgFezljoJrM8tSlLfva4eIJ/bBxT4LX+HD6bzlVfY9bsxAnLSWN36jjBGnzsPHi01re+AlYHJSB1KvOUm7ERZAMPmJYdDMB9YZ79himhEfuhxj5ukwq0wOZeneh30800WJ3gnNpDW5UQG9nDcjJ8ncnp1nsHQjax+QZiuKB7atpLWDvZd8k+Xr5yvTNpXojCJLoRR+ThUSVNT2DmqA5SwCS5V3YzgO63EgjP/EyyEaRIC9otSB7fPiRj8eclnZtZTr5+M2dUBdsc+aAuBsn0IYN6vVcUqfpOfMwWmrcn+SjEoZ0kCnTvvhHFNFDKeV+HFyliqocvRphmcThC1t5JhmK6wbATTe/dTfqDdEZ5ppCddQoEHJT8aDxGBeLkeM2QgFrpHJ+l47p+a85FIB94LevZxK0x41PoMlzwe8OsOl3YxUEIT5bWutaKv6QJLUeunKAHGQZyOtpZop046fXqZQhh6TfDCx6MPqyP9sykwJs+7nJg8kDPURlZjOLXEEUepQlBAodSeWWgYMrnYZJDLzen0zjM5lgrNgtjQ6LNhA8yDdq8zYG9wekyI8RpjLjZS3uYb8Bd796Ip85n3T9TzmA7jb6ofDlY+FBnq9KLZ2CUiaFAp41PeQO/Gi/lU5gUVVHmp1fQIwsNctgVM+U20vu13/hCn9fIDz17YfPiC5fCQ3Rl90ZHS2YK8X4rncutK6+1bHR0d1djoktpwDnbxFobvRwew3NSZzp5ZqIY75mOnaYeFCkbHXCNHtkwHroGC/OGI65aEDcNa/FIYg3bu+3NmvLtuR7keOHhsZF7/L0r1t9V5j0eDty9Db8HYB95eBdZH8G096g9/eYv/J0oyu22Zw712XwqiE5/9osvbf6nn/gX1Uv6spPeTrsd5yTaGCB24j/+Mz+0+VN/7Ls3v/fNK5v/9Sc/1Y5rn2naahRYbf7pzFT9l3/pxzoz9Lf/ya/U7sFF3No4/Oxh9T3PH3r+qc1/8Rf+eF8G4cP83Z/99doQes9mkwt+4ZB3Iuj+w82ltK8f/3N/rIORn/i5T7fdzMG1Qw/RaSMQlIH++L7iv/8nv2/zwtOZVYuN/qmf/818w/JG7ca6WbrwgcZHmlnpw+oL8n/2R79n8+ylc/msSJa9Lud8onSS5S/9gKvAvrDXljUdo+JFF+2TTSruFmoG52Dt2cJrbU6ud7K3xVvXcPjn+27nwveZHAEAx06W2zLBVDq15MEhyO+PoFrkRuen//euC3hgAPh13QtTijxPcnFJFe/Piikb1vIuyPBqINkQua1La1Z02G+oViornl6XenW48unYevph31dPyY4shke6Y7CO/jjJ6MjPJZbmPsnVE1doDVYbSnilPlH9lfxIWtl5DOi+XLmNHmfA+8rlLDdGh+i/bSIG/Oueoy2K0ph6IapZgk0fGyx8jYd16g9iP8zToZ0kiqSBl1iYeZDK0OkICqsSXRXC/bnMdFBGkinDuevbRypYD5RgFqRTzS1GcAW+DTTPcJu10RiNkCzb7WT9nSNhponD0LRUtI3NHCifAtkJMTxq3A8zotvyGHo6bjxaknPTz4IEdnRvyuKVxyphykHd7jq5MIFDVO3ID0dMg0tJY3Rs+stdOlS7/8+cPpHnmRF7qFLNvMX7x6tSV6nCB5rw14nQoIMLXbhWI1U+kk8ZlEmeNoLwjjrH7UpO7TaLdTJ/XSoMnADv1EkKnOAXvRU3OX4kTsdXXr2W6fB46VmHfjqvwzLgZku8Q9L8zZzcypt4+XHb+9D3AM615UkavrfZQnlJLg/bBCD5K77gha+yKMA0OnUMyC/cOxHg+fz1ld7EWiLDy4kYkWNZyminUD6SljpQP5VzDMlDI1G8FleuSVgdajBCR7nB1cL4Be+x1IeT7sES9ZZhQRiY7V1vimybc/u0vdkm/b662ZbhSbh6V5mfhOC3Ps/Nq9/cfPXzn6rC0EEDv/yPPmUUGzuow6VHdHztXM1Zajd03oyJ/Zf00yZounkkHYHtCxRone1wD96MJ3jBLNHx2Kwj2dDc72XF5oAbemEiN5bNLmWmqpt32aEQupGZ9xvLJnI8IWUWy+vdtVQrrdA4X96zITe2wajBHiR4W57gC2jbsfYkv2d8ns4ydwsVemh7K9jeopZ7WWUIaJ81AXk6GxQ4b7VubULizz394uab17+UNn6tdhy/AShdqxnkoF8wi6VzlJeNC/aZkbJUHx7OnLVkk6NAfDU+na9Z/9M5qVvQtglCObsUmTLarM2RQk5afsonXscyPRLf9AIPuOdanYnrb9Ao75sHdKIb+esqgAFaeFenk5Ib8s8XBc6knKdTfv2GMLTmFzw6/gxUlatvgoX3a+k3TGRYgZCOS/oa0Uf/xjkqLXH5M9nAVvcv8GC5VWi45osmhcN1xYRmAhnBUy7mpnlse1gem7r+iJscQbgEhy2jYk9uHdPKXhlpKrj8reAp5/gUiYoe2JfaPBXGCrRiPtz10E6SWRcF8DcfiqWgZhLGK2/HGOa7Tp0rxu7ZzY3//FFajotOfnW0CNBHYGEd54oHm+f85xj0FFTlCAINeJ2lqTokrq/8B59lPSK7k1kqDPLdpgNU8WZ/TKGG/iQXTvvhjZrdstY+wk++ODUawNHwgW/4lM3ZThq68itH334KDtxTMx260ZK9Q8oCH57QBqMDlrkjgAUnY8GAbQmFHlolG35taCQrGa3zcwTXvV7Kk8SOgnxz7UboGmHa8EkxkJNPu+cchp2QGQHktnQcxHU2xnY3DoaZL8tvL1w6vznXDxIu+SuEwZH5qkVO6jnygCih/PpxV0ITJ0aZC+ZK3iohYX7JheziAPoa7b74ZlocloVM6ZnJ0QjEGdkok1oh76MpO2r0BgX1KHDKNWRpk7PCyfM08sL2af2paMv4ioPBrRNaLOtPru8orCWZTNun7Y34VTKPR/yG1DdEPD7fd2LfLwk83PzOL//k5tbVl9vhRAtbhZqNv7NZQvuR7/9Ea1WbNQihS9L8eNWaTp/KQA+Q166//5MfDa6xWeNwwRl9XvIbcO3mzBpxjgn5Ez/4XdXN17KfxCciVlvmnDGzWvZjPJvN2lH+BgO3f+u7X+zsqyh4DeyuZlbhWmaoxWkztXd5sMelcGm/3/uJj/RFEvZVeXS86LFTbLT8gjTLHB3opFza/ic/9qHNBzLbw1HyssXJnoM2KwQKzxZa8t+NY+IliZithe6RzSd++C9tjjz/6mb35//m5vqVl2ILvap/qw7PxQvnI7fTm2efjvN341bs+53iTxG6d1Fanc/wde+eD+dmJSJ9k32Y+LQh+lSODFFm/Zc9OWdyUCVbfMVr5rG7TAkZqDZXd2zD9t9iayZxrAzIgV1zyrfGLHa+mOYH7jXoOzzrPywTWU1ZsUQy2ZJxd3M258LZyN23ydaMyTR40kc1buRq2ROCm9mu4ZV++rXypz+7V68lAos8IGCXHb0yNjZR+snE6+tc0QDj6jdsNr4k+5OUQbWUeFIW9FuwoFhFsi3fYE+8tMTaZ3UsEx7r5ApWI/0VANAWh/YiNapXB8o+U53gjRu7m9euXi/oO/05tJPUfR8hzAGgD+ssEYIcG8p2MmkERjU4RTbi6azNsGCeUvmkyepQaVwKo9+0tBEXNtjyxyZAnB8xdqQ43K9ebGiZORFs6qYgZrj6Jt2Cpx1mcnKA0ERbo+735LQcSPODRweWoWsjdjeRK0N4QQt9Bi0yTmPPY2jnwjbVgLSswQFdmlH3Z1Eg5TudWTByMtsz3xiaeHTBwzsyhFFMruslV3JDCP9wckwlK0NpJK7yC2+uFNp+AWUyQ9bl0DT4liP51tBlMIylQEEZnLPf6Wjy9AiHANaxQzv3ysqIaiQ4z2Nxty7z1HTIA+OhjlgekWiR3CQeH/J7xH/Tcpk07KwylyhPk4ZiHuVNUfvHFYKtDTj3azCvpHpTqbKXT/JwT5z0LKhaP6tc85gQ7N42ysGV6oUu0xmjrDXMTJ7cZa3XlnGJQOO9CUPjzXC9IZViHjK8AfINEYdE9G8K2CPCfuSxUrh59ZV8rubvx37Y7MpOMRaSCPdITtA/ufnBT9qAPO3JPhDtlT2ylM+JYQNv35q9FjY4/9D3vDizIonnvMzLKIEPgdPpvG3M/uKXX2pbOpFtBp/8Ix8I/L0si53eXM1LGCufXm44f/Zsnh2xsTfA4fx84qPPh+dpc9I5EbfTed7I2lLPnstzy5K042mb2hGCH/vIc3UizFqJsnTDPpjtN4tUByglD4nNjexzLDOB0yw/9uHn4tTc21wPDQOjnkOW9mY2R9k8u3q+cuVq5IImUZoZOr757j/x45sPfvef3vzWL//U5guf/pnNzW98IXyPXZr+KYfwxpzfu+e8NJ18/lInN+yFTV9J3l7p13EaT7HTNi0b/Jw4a5bF3tbdzdUrGXBmoPhwcyEvjuSstDtZlsuKvfLOmW25ib3tv/DIlpTNXud+GA/vwiTu3S+RjZ7Yx/7SoG5Ed10gUqQ6n94U9GIQXXoUj36p2pe0nZSPc+EDvj4M3P1MiYen8sm1w8x0cvLod9hnvQ0YPR5Zzp/n4WWN02Wv9OlRO8peEwuhAKAXvMIrYeERUOESv8AVeM2bB2U0UyiQx4Slf2pk7pNXOWeywuyfet5sLue7fZz3s3lB4sUPPbX53FdeXvIf/nJoJ6mNPPxxPBRvZ3Fa+op2RgY2TZvp4UQRII3iHJCQfSM9wyK9VAWxVJJ4G+R2o7wq517waMBw2EDmVcfdjArqHeaZcSBgG/fsEVGLfeMiDo6N1IStkfFq8GgjeECq3Hbh6wCdk0ToKtNMjT1QaCd5eAzPrb7AKIeZH/nqIOXerI0awafXwnc9hyZDAYmGDYN9Qvb2dIkv6Z3xWGDgp4ga1xqMjLo0mLgklb/85H6Z5UqkeLirNLmn5JU11cs9Y6vA9ivZ9M4gMwxGDeCQG+cADmYLhUUJnaWRBw4ivtGoMssDbuHVfSNcheCFGKw0j0Lz43iNmNTy0HpM2vCUOkj+ddP55B4kpSXCYx7ACeq41FIHojpTlng8eBU5raVGGSxHVK4HaKSM+EFL+dcygfNJYp9j6abYIk1dcqB9NFc2ki+uyQfnNuThwPM2Ybkhhkfj3rPnt6R8gMobIN8QcQD8MQ97pdi72wf22Mh96e/37WPKczDq4NO7ZYe+ffmzP725/MpX66T4yKpvf33z8jUmIXUemxUb9NSFs+2cxJzMkgG96ycd0tY4SazVnTtsJKfj2Ob5py9klid6F8NkcGifjbfe6LKzlfhh85bv2M9zmU3aDcy9u5ktSh20XaVw9gRdzH6itkH7SYOfBEJpcz4O1O0Tc2Zdv3GWGS0z0eeypYF99aFZ9ohduXubA5cQ3L6TZusFPuGdpakMKOJosDmXdGbojEFP2VAbm3Yh+31OnjSy9z+fxsjsjULrB+wX0aFbRrwbm38/Z06t7XOu7FeW3S59YPPH/+xf3fzRP/WfbV76vd/Y/ManfmLz2tc+s7l+/XLYC54jsXmZGe+gLvLyfUbHLfgQed/ayhJbjzpgJ8KHt9p8gwz/PnWymyMOHLPCccLX8ez1vBXnb3go4xVF7pofDgHt+ZeHJa4J++8fSZIueW02e/drzAKRBPjH1qv7zKqU2pqf/QWbAEnkBMaWA86sU7I5R01Omr5nFnCiSHlWO3B35mjBw8KCE9/9YsnseeVDvH/I9R6epHuen/UKYWP3XZMz/S6f4B2FFU0x7eUN6dr7e9GbljeOroG+A4XPX9zZvHj+6eqrDepPEg7tJD1MR3sk7jdnSeMxEjK60AGbyXHvjCQC17AFy2CdzUld1AkgrJStHl9wqDizRCcdOKbPJrjgURngGCEepCvjQvF1iJbQjK58rBD9+5GSqdr71qTT+ZkSnJmaVGLwrjM7dcDCG3zrNLGzOh7EE0JTZc9+F7VhT9SJOH45KyJ0nAtyNJ3sHUfCJy02cGiQQzrT8uiDOKH9MCd5a1T1fjOC0wDxEwqhMXILRO8ZU0lGQmSqwoe6Bq8cmR9JBGcQDWVwbUiCNHXCYRI818kMrruZWnYSte8O9YyWwoyTtcURau7xa0rX/e3w6w07YRyS3pYvP3gX2MGOMN3nbwxJJVA84lbHhl4IWJCHDrQBKnPodv9F8A4USfkbOvIVT+r4jlf18RscUo/l3lQxJwhu1KV03EEXwBZNRtNJn5FgoDjJwPNDp5SW1iqTzK2n5F9Qln7c3mIPxDsLoVFab5YrRErnzdJ/38TvlWLvbh9zj43cl57bg+U8+LQHeRDRwac9qG/33d28HPD5X/0HnX3QTpWGc3M5Z/tUR0fxqqvapNKvZTFbaYCYSx2p7b6jQIHtLEGgDVja5mN/nEVjdoeTpK3Rd/ikn0hn3reIE9f4pNceuybDvRhYbRtfbRPoMzzR9WOxUWlCwYvH2LnAZm0gfLAvyXOXXV9oLfn6Mk3A29qUs/FBpkzBczSzTx1cLvkg0G8cz+aW2fc4+37IDFxZCQ7ls/ReeYVXZRmtwcEEZT91+vzmo9/zb29e/OSPbm5kNu+rX/jlOEx/b/PNr30uZTFI3MnxCk9tnn7h45uLz3xkc3zn4uYf/t//7eZe9iJ1IJ12fiGneNtgb0+XpUZHiJw9e6anSysDu2CG7nbyNGBhkfnYOhHL3x57S1xStnG5eYNDILGFK4Y8LGHiWu78sEAg9Q21Pmu9JQ6MWFZz6kE/khnA/Nk+ceNaDsZMviRWX/SDHh+kjtjP5s8PO2uWPcnFN3inX5FKZ5LU9DUPXZp+AyP5n0OmJ3hQ3uVx/0WcP0iKcX4fB7o/W+8XoGYXURxz7XlbGZxYTVIGy6P2Xn3oA8+0beynV1zv8OfQTpKGZoMc5eA0EDKm5s0AVaVbUvgIP5wOs/Hmkscsj4YwnzRJow+MTs+sjsZmV1gVahFEZ1RSa7OZUQVGBZJWHOnFVPZu1lZtkq6HnPR7UQqvi6qE4zFYZqXwKr0fvQ0+b+OVR/BGEgE2LadBTsdrTdoILkuHUTQzBz1oTYUEtf00cnFKGDEOGproFHN+LP/ZGuXZ2SV4pDPwj0MxxgqfNX6UFj9kRBYJGjH5VSZ5LvmkaSh1TpPAyCJCFpyCPgYwsQ0mTTgO3hBE1xIcpN2otw8OMF6F5s2D57SjLW7PGgSG/BPQFdSjtF7zvDTXxrkvriWfciqMrI1niFImZ2vxUFb6C4kcdMfdTWzzPNh8+iuvbX7rG6+HDUb1yOaHP/Hc5plzpzZf+MblzZdfyWvTxRv8kR9nubwwCEHxvR9+avPis+fbweAbL9jByJRpHtrVBb5OXPCYSrQMC1496zhiN9/bEHr5/8Sh5Xji3N/ajAfLefDpW8vJu6X2cPOFz/yzzde+lAMko8MGVOyCt2qpTXUw+m1Wxr7LKakuRzPSZjLYooNg46TQXTrGOe+Bu5AkU9PTPgzL4LybpZ+MYJKVPYEitiMzH3hgPXayDAMPO2Tg0T0Z4Umg4f3NjTeGzIrPYCD40MJkCM4lg8fk94UAAd/ydlAZWuWn9lD7CkzydbY9ZTHibesLH/4JZMPhqF1u2YegviJNisCSP51cBpjlOVFyKpPriie3eyH8eXnj3KUXNt/7x/+jzXf/0J/fvJoluK98/hc3H/rYD26eeu5jm5OnzxXm5a/+dsr733RGjtwvnDu7+eTHX2zfcj37mBT+lezpciq372baw4OuL0uQe48EiMCNkUO2wbX3rpVaopfEAVkARU+WA3fbKDcAQmtKq9zqMHqVCQR71qR1G0Ds2W4eDZrpDHEjaRbvRBwDS55Xr+Tcu9SREI5TxuhUZ844pmMP14E1HIb9o3tDfb2f60i+9h8seeAz/8svvtVO5CdKQfyb+0bs/RR277FAj8Y1WeQ+DHlUxpJNdFeSUj66qH/nj9Bds5+n0k+ePnpq82yOtZk+ch+efaTfye2hnSRvJhi1z/6aGY1wPsp5KJqW1bHYFEagCmV0xJFSIR05JV1z11Enukt0OncOgoqUSZHgYkh4wToo8fJQ2DpKgeekdYYnxsmmckYiA57OEJk1wZflsPK4SAR1RszeHYIO4nZ63TcU2COmmcOj+G7W67fdZsRVmOA0A9EOdOHRFLgRGGUz03XbEQepKOV2HSctU5/BWkXL1SwW/vAsKKti1sj0OcpNVugFMcXkhBQHuDybmZMvT1A0f2WWtEWKNTA7aWDax7VsXNOQTpuRI8uFPzwkS+ngBh0SEA+fJoKKxrXyQyGH9jQueSYMrHvp/beFTRkSv0K458hF4FvYPCXjlE/+U/kWmw176sJeguM5BI6eHI9hNPrrkmHg1KeDQo+aJUx93M3SwjlnzmR0wSh3U2yMC9wpbeuK8Ri2MRgBqP+JANY9SmizQp7NCtoXZgO9owOEgo/4+7zvts+H/dEGxoGessPT+sYa4gmtoyR4BitPipp6TEc3IO/ud2H+Scvw7oh/+3MvYo6AD8eLb/j98s/8XxmE5LXz6EbbQNpa23ZwrLrErGlr2hEb6B/dZ/PYOXaih84mXdDeb0fXtTWz15wYlV97lXutyCDOP0GHVcelMHOmF1t0N7TO7MT2gks+ti8gy9+c8camaS+W87onlB2LjsPsPJ7OWqVt4MWgyBUt+VzZvbg1hYeHMzHbBkKNX0YO+adkyd32yDbbI9IDJ4N7XQ7nIFkC0tbvJ722Rj5ts+XNQ8KUeu4f/WUfXngxRw7kby9MjnMXn9187Pv+9OZzv/JP40wc3XzXxz+8OZ+3eYX1jS99lz1ZbIzPkKhDqwT6BCsMbXxLmWozFiIo7OdrrZsleR/UIzHBr5xrICOSOhla2XqWFYBxbmuT6Y7GH/jWhzrJ36nYI06dOrmcc+Xo0/CS/rP1wTpEZ9gyISTEpPtov+Ba7RRfnOxKHgI4z7lf0hq7/QGCYxoJZr91JypcjG5s5RF48VCsEtsvtyWhqX4KlzzCtBlvkOdUdIOC8IhN/cmx9Gm2+9j6Y4nUkvHaX610imRQ9fad/BzaSbIpW2E7yxMKnW4NQzb73o9jYORilkNHzHkxm2OEYXO1Ds6MUtexVWHiNTACNovj7IoKO4U4lp7zgZmlxCgwYTAKysdxoAyW1tBSmbfTQUIZ8gt+HiXRH81bGVHu3IP1qQo8aaQcp7TFOHHmtCLs/FmvVibH0BO8//AYSOFRPkqn7o9mapGpY8Ccz2T9U4edS40kesrqChEe8a9UGuCDGJg2vDAtvgZhQPNEWUXGeKW8SlJVpMC5G6dsjDIlhlXZ3XuSpwoU2jpTziTn1giJsb4S2maVOA6zMVn+yHxR6BIMPrwKNRTDRB3W4SU8pQ7bMSx1U+hhp/Fj5AKd9CmBX/hgnXtF5khOXrCDU3zLsoyA5QFnI+qFc9kTEcNgGfHkySQkEY/PPZNNlklXR/aFXLp4IY7hzUyd76bR5OwTn0cIuHqyByOUkje0E5dHO496OCfeEHf4ZDuOsVOJHN0gzxoAGXHu0lCtWR/WqO3zWnbZZEEzVZX64qjDDe+Aq7dEtf6k539qZ/JUMLkHq55v5ETjG7dj5hB4N2GhvVzeGabQfrfk3xnBx0OX9ycqwOPxvVXsS1/+jc3LX/1cBxM6qVGFRTfWjBGKceSlfAdMfbEhNgKrX4MQn1ewWbmWsPslooPR+efyORPBzPsxg4HAt8PjmPikRnTj2UtnYlNtQciykdnq/DsVY3Uheq5dqg+/nDaz/Tbu9gC+pBkeXtALh6fqvo418VYKHmbZzjYGsxfyGfjdigNjJYE93zGLFY5zqH0dLMcRaJtsiVn5h8k3WxlydECOR3GMS9t1aJ6FPzjPJs5sGaF4WSKXlHUGmjvh6z5blf0lnc2vg6R0ZTe/S3hsPT82shnOnntq81f+2n+3+Z1P/+zmF3/mb22+8Lu/tvlm3ub90AvPdC/Sqcw4XbqYpbX0VXeW8/nKX1DWBqoDmCKDNuD52WOmpFP/hVl/cJ0gcrntsyh4XPsrOXWVuNPpkXdSZ40PSGXHVAFvIx9ZqJvz58/G7h/ZXMkA2PEHAl71i5xq3BzNHi3lENQTu3k1uuCNPvt+DaD1N9C3D+mzJzgk5DqXwniudi284At0zWkuKC1SmPg8S1eOyZuHhHI0bE3Evt+izrM82gk77I1FOjbOUXiI7dbHTv8xVNlz5eMfmGkji1XOKCrHk4RDO0ntcBcKZI7526Z+IwIdz51OKRN6Zm/CpI7IdC7nyRsbHBxFSRtqAXU2FUDwzFsUcE4nyfEwi7QWct7uiJGJkIx0eP4OlEK7Ak3h6wyEMbMuAh4ZmXt3VPI4Y7fzNofXCR1o2bcyEl/HJ/BnglNvpGLk9cfYwGfUxPkwYuT4iGc0epp0yJkx44zZ6GtWC10N3Oa5Tif3raks04SOvGQ0I7Y9pxPPaxglU7bIMH81ermGq06pGrVx6qZzjaxS+00ORKHCezKNUiyakce+FaFRedtQo+o5VClHz50KX7IJ7oZaHnJTZyyJ4tWJUKXv7UJ7iW/i+rPkTRtPCHCe6zMt6Xje6lXuCzCQhehMYu44hms9mSFySmw3sGbvQRnNz8W82XMuU+iWS2/fjkOVxsKseUXaZtNTeQvGaPXetlVzLEq0tDr+yiOfaI09mg5iTkWnQ3F8CVGeFaA515+Ry/rU674otxyhHSfiGghAs9BXj7463pmGAProMlj1jiQZlXRwMBJlIfndw4WfOkoHiH8LH8JC/v8bEx7cv7v51//s/8h3vrKPJbMXgoHSOAfTjqZ9pB1FdzlH6tbm61meTyfI+cjr+tpemmA3TatY+xdvxLlnLzn7Z7JnxuCtA8LAnz6d+k/aBwwKYrOuO4U4r6nrGDgpPuNTexqdkNaZosAblBrAMmytK294GSyG5uW8habFn05bEfqmb/iOVsbepfONnpmxqB3IM9tnH6kNwRy8+5lxNwj1dpw2yxGk09qeM+zCSgI9tT0hZ9nFubuVe+EUpyhlvmqzLfuug0iGfhw3/LYPSN7y/DgbUyxv/bPmPXnq9Ob7/8R/sPneH/5zm1de+t3Nr//8389epl/dfOyP/oXNh06e3vyrn/zvu8xGjidjy830PbjrSIP0CQb9ed5nGRNfzAvxuWff9scefKj425b1D4qjbVtSg/ekds+rDp38T924nc5+4kY/zl48HzlmBSVnXXHq2AFyoiMcCdLqwbhmdxKvH1LX3ix8yudyUrdXU0YOEhrqNVlLS7Wg6a/1nYQk9Q8P+GxMIpVTmji21lYFtJVr4qfewMH/aBA/YRLllvFBlmO1J3poiVak/XUhn342upe60D7KwUorRNl8B2rWuZtUGHtHT8tUn9/Zz6GdpK5pWksOczqsTq+GFieI0Ob8mzg2SzpNMOszQgvMUhgdnuLZHCidkbcjfd1nQpgEMyenjkPS06uDd7zImb4eB2o6kp7hFKScMwLiMLkaBalo3qZnuCnR+nr3OutC2Cq2SpC8DMc0CGWYfVVOJVWWdurBY+2XJ9vzgsKbJRhpAWllJltO7c78BF7QzY91YtLiVJETwDqGhRGfOHzI0Ev4CCwYs1rk9XI+WWAmyB/njeFV7gZ8J3+dKhHDTnUjSY3XBruvJrxYplIGB1EyVOSljALnbm3wyiV/Gw+0+F8hEUxiG7O0/Ot94sleskBH5Oud4hVhiho6dQ7IYwWWIfAaAlHAyam1ef9CXmnm6PYQzxiIhzlQTeA0aSR3suZqKt8BcZxpnydxeu+JfFfqWMoXLiL7oVsekhdXNRa5mjmMu9zQukqqPGTKUcK6DEuxBvAQv2TuC9k7p/IXR0mZKwblT5pOJf+rQ9qEjgiMOGIhOyKjR/SBbFOF5cv5YN4sNWs7DB5kqDwfjPrO07uQwEu/95nNlz77z4PBrEmchTgzdM1zdTl32gAlSRV2dDu1HacgDdCSv/r0NlkPPQ2MA/xUMHvB+akdja1i9LVRNvd+O7sMOClEeri20ZDhIHXWJ/VPj8Ajv5OOWJo37IK9elS+3GMsNO05mlmi4El7kz4zOLmGj+P5OsKdo+xzSpBBRvU0+CZoSylzXaX8Bt/x6Lj84Np2kcm/aGwdtT4F12oLuAf2PrHR+hTxWOty3ELlsJdkO1Q4ltm4Fz78yc3zf/m/Snn1MUdz9tLLm1/+6f9tcy6ze944dOq28u7mQ69HUhD1cVSBNLASWqmt1yH96FOKU3jnGXlt/3QOnbKqol2TdfullNsyJfuiL9O21Z90FBuWmw4yY9+yqWVzJC8KwSdwKu5l8HsvkxXxV+OshnCA9bcXYhvR9NaziQZzTqv90Nd5ri5lBQfh/ku+lYfeILJwgxVjTc/0Cgd8W3U4YWqc/fY3rE9Z2FJ4hbnuldGMkT6Nk9p9RgGQv4OPXOlydT84qj/0KPE95yo6xyFX3mE8ZSx/0adSw9OThUM7SR2Ap3D9DEmuGFc8THNweMHtZPOs4mlGRyq5B6MBtmGm4Byr1UHxrTINIiDBBscIXoOpMgU3w9MON8X1JptGT6EE+cARDiFUEBUUZyDiSUTjg8cUMuyecQisjg7nBY9Jr6OTVI4MHk9lR/HuMjNU3hKveMpkJowRQ6fLjaUb7IxT8qKCjnw1LimHTk7ghK2BvIJuyh4+rRFXGQKDBp7ArI3GByM5jk41NxtEoRBCE1pw8M1zIxbBTMdKnlMH4Sewzs8w2jiejW9mweQXRu7klOcgJCMjxTCXVI1atPsyXxj5RC2xHhMoKFmoYel7qWvZj/FOEuZ3rsA4jmt5KufIm2TXt4k4jvhQdxwp+MiuI4qUQ+PX0NJiKvtykXh51MUqU29kmiUc1vC3V4bynQHCdIDJuMhnoAran5X3vZjBYWaI49PZoSVRnRJjjyVI3IpLOU4zfnGmCh8gaatzZO/Vwxxvi3+GlZMO18gUojdyseJeSL/x8sYsW5i3SNrC/EG7eVt5vAWAqv/tX/3HmTW5EbtjqYiRzizM0t7VqcAUpLW0XnQe4qubS316ZsdOZUnK4goHty584h3dIfedfJxZGx69ow+5Dz36ZFnMkjfcZ7MHY529PxV7oB203jARQvToga0F5W3aIFye6Y0ZH7aZHdYGDCQ5ZXCD00bYJDaYrrGNBo+lkXuOX88hit7CZxM7nsnKs/ajPBy5NbRJYg/d7JexV/J+aE3ZQcd5K4622D3DUEwrlre5trxvDoM3G7+Fsxee3Tz34g9sbt24nDh8+GwHp2OcJnK/313SeJvQ8i/3e5fgDN8cz9M7KVfqw+BI30OmtjzYAsARcF95r9fIvhMQEdyKmwwFViAs1Ja1vS96Ud1ST/qhOGEnQ08WqyXd5J8PEq/23JUTdjUzkuzmajtTDdEnf/1BLsoaLIgv/exEqpWpG2amA0o6mL8zmd3HS53JMGr1Z3u2UXivnWe5I7yiDZ6WMg/STDrYlqO/A1DdCw5tZPpSdUXyI9/uA0yaKH8XM+PaPlN66JDrKsTcJW1Ppnl8R2FPa98mG0Il05vcpZK8Wq7hcJdcCUAnWoOeghMphduNAXBseWTYAt2Nl2sEw1Hg2WqI0HbZKiUmMB9vU2iGgAOk/jpCyvT00EgjTbqRXBt0BINiT/nGCH5ydaLEKq0tj+FtHY1ztlQChfF6eDumZLcklujiqQOWuLWSbKjEI7qtkvDRvUbBgUe00dJBc0LMXOXSsO7F8lzFCV58oqWMVZLE6CzFh0p+3UYWwYeedVYytrZ8Y/do9iGcakOk2Ay2xgDO1b/9QRnqbRdlDF7SLRWavQPJwAV9RiN26YSyRlIGBosG6nl4x8tST0kmU/inrPvpTvw+NM2nHOQ/e9CQSp5mHkiP6LcceIqAGBY8388eBku6A+k5upRG1in7wNnAaOlt3uJJ402c6gzCpTG5empU64seHKeXiTdpvXQ1hXOgHgdlc2SWD5pviMPQ8MjjIE+kIvUv1FqbeQZLluUhz9ui516cJZYTWYJzLxwzKgxvU78TqRNuG4F/wPK7ZNg+H+LmLbI8PmmP2ptiPwTIm+Y9bMLjmXtM7kMDPibvwagrr35l85lP5fDIjNjPZhTfkS5nqXIffaSv2n2Myub1bKb9Rs5N0gF1VjqzGPTLW52OC7CHQh06afujH3gqo/3bmy+/dLn6oCNlT2ZQyCHOnqR0DKM32Xz84nP9ZtlXX74cJjMjX/g5VwnXNrkq+box+SMvPDUDyrSN3/vGa8HH0YF3jk7RMbFbRvMUambHFONBvpn4VDA93Hz1pdfbAWm3+JNHu2GPiicUddTKZIbmw/nWYgcvgf96vktnxp1q3M7ymkbhU1VsvCVJbX1gx/58ODTnJHLtJn1I8r0hPGHVPprNctrpc0+3LKeyMeiZnG11Z/d6N0WbeVLP7T+q17Ek6rf3bOCeU3Q2e8IcidNjbSqjHLCZsl7JoNaKiTrpNfc68rUvY0/XPoP+7A99yg86rXt2I/zMFo9xkMzecUJNGHCY1MuJfMfp5OlYyyNxQGK/Tp89kU9Q5ZTyyNpLTUNzbE/Lk3p2RT5WfMpX4sONOHLjHLXfCGD8vzjX2SydZVNONn1Fm0eHX/0/tFF4P8t/Dpr+M9fooL6nKzyLHOm4fp1jCoeAMqfLLKyywyvlSN4APJtlVL5DIlN/4Sy06F/JlX/6o//YVxhIDxkeq3ePy3sqowSFIkDuiOUwnVoFkjijobgvbdwKsBN4SzgtbJRB5cqvQclXhydXnifHwMhDqcYIzJHwBGQDltBpuHjHnXUCm07DCEbwOQpr+zYE+uhYlSy411HQCDpCDo8am1ERb9+BmKWdSqWww2O6sfBEqlXEkDqaUVsdpdBa6qIjBHmUv8uDwbeuoSqLNePbWeoxMgLHGClhG1rxqPTc7AvjGE0Eh8M/Af+MrrwaRs8xSRI5MmDXMxN0Id9hu5cGaMpSHa0NGgZ08UT+7VTz7H5V+jz2TTMduO/5KHe/kxNEyp22Xl5XfhDg7KEBTwnkQn5obSN6P891dKSkLKsc8MmQtn4IYzIHCm9xECM/aavMskEgcTnYLjL3RfHTGdk5mFLGW7v5hl06rdVJup+9aPLLezsd2ok0nIOzVcm38IJuHbRh1W+Pp3gYOoN/WKNtyjEUC/bWPwATmie01EGX0mJZTmXJrSP8yjD4CSOhYmiZyt409uChKsleGZN5naXEAQ2bvcr/rQlLwd6K2CFA3ir778u0NIRf/xd/e/PqK99o+9ZOhNrAXEeHppUovvbw1VeubP73n/yFtBO2Mbqz1C1YTUd71MH92A99fPNinKRXspz+t/7BL027gzyB89F2pl0E3t8Lz1zc/NX/5E/l6+03Nv/nT/1icc0AT3ua9r/qHVvygecubv7yn//hzXP5YCwH7+/+9K/3u4/wg1MWHay2rTNhp/NQvB949uJ8aDZ8/oOf/2z2MN1sHiqrjGtwb0arlitpl7Kx+C/+uz+wef6pc3XI/mHyfvP160g0/5Rl7smCvfamn3v7CP9iHBX7pNrJIrJHaiX5ttd3kuXDH/9jm9/91Z8sD7d2b7ftn8gMyTrb5P3/Lc/YiaDPxfF47ukzmY3jKM9WEW/VXrueQxyzRcM+Lc9eTtJP6CM4hJ2tSzkJw+VASMSB2BVAxa4htx7ZSXKng3WS0i+fqJMWRyP11RkmDgfnIn2H/vj5p09tXg9/V25ku8LSv6ajbZ2szCC5yn1re8Jr+/6kxS8KLn/2np3MgMFAPc7kYozIBncd2FoCzGSIqA4Wsh5IB8lBO9AG7FUrr8mvb57cU9h5OcDggqETt6Tn3oHRdJcTZHCPb30Kg6nN0O1VfHt3cBw+HNpJqqcXZnT4Dv8bQx2PLc6Kt8TuxoCoLIz4tWxTJq2dh5+7WS8VdGKed+NJa5SERKA8W+3ydhSpxic1xK1RyArAzEoyyu2WRHjl4zzMnhTLTmYn5jqd+Dozw/lyLhNHBE6CprRCO+Hg7N6mxHf5Kjzt7s5basiBVxIdXV4snwoLmiNRMl5sUEdJZyNkQDMTFVrpDE0h2i+C9zXU4IVPeCkIpcADWcBPHj3gMtly26zgyMVVpLzOVyEc8LzsY0d50ItDBg7+QJKrIhdvbtTT1mB7DuzQT3mjYO6vZ5aK8ab4PT08cagqBjkUPvelsqShV94SuTawAiS9kLkageLD8zhgob82jNDeE9MiC8zTueQ5422Z8NTpbNd79onRkzhtaaw9hTj65jT2bv5PGhrq5URwOHfExnUB/2uluNNAZ9lykX+w3koj7lKC1pfAkZmviO/lbcLb/NA50++m3f2dzAyRP50CY0GHcaVedHSJbp2JK+UhX9maNjbr6aWJ67fykdK83Wappnq08LlPiG/D2RuTV1JvTPnDHTNa8dZlvPr6S5vP/dJPLhtEZ2k3ZqWyJ7eqddpjqrH3dNZMSd+6jP5NHQH0X7tU11kiSad2Pk4BHrzt9lTOeOmbldpL6tqJ0LWlwQe32ZanLy2fG8n9pWzkZee0C84NmNGocpW9h7v5PEkOTdSWggOcj+7qH8Nu6cqHfgdTrmmL4MRdyKvybI/n08l32wxU20/aDQGgV8XRZgO38Hk67XXa+tA4niU1y1hdUgpes6XStUVx2mDtW9LsMex9EStNCSTljQGPhw5vAexbd7aMXLl+O593iWMZ525O3Q/2kCcN2fF88fypHFb4dJwk+yDvbV6Ps2oZzdYFzpH+TX/SfaOxI2wL55ON96+Y9vOSciqh+LlbSnSg2Psecks0YNlaMzJsE97YG7Ks3YudXGeYOE8mJ8Q/e/7E5uKZ4/me2Z2UdzZ/owjnsBWbkuf5S1+WBMtqzt5Sb5bT6G0352cWiVN7NLjRh8P+Wzqp3CYw+A9kS2+u5ft96lb/Dwc7aNJF3tL2ExwNuW88xyfpwlzwsbS94KzcwAKo3g4sPO7IqccJSX+H4dBO0sJfhdxZl1SEThQTpm0FzCg8o+/IAPOjGk1nXJYGR0iEpxPLbYQz6+DW2dFgOGw+g6eGIUAaKE9Vx61BGd2D7YbjKN061WtN1jR2O7xYAKKjEIQMp/5xHJGZHtZxCTpptNAUUx41WrUgPYasZQgcXDoySimoy9mno/NzmBenKDNo2VNiBEdGR+q4TMcMnrFZy9fOOqjsEUI8etSOnRxECcpao5Syo0/Q7Q8jF2YObBUpCeDgbwgxU9nUfaTRrGW6y36BVQrQRiJgBMtYPjDpjCHevnV1e3zmw7kD099t/mAYwRVZzHR4CmdBrnzwtwyuyz+RM4uY6ffUmZFOA8QyJCTrlDP3omqQh3zrsQVZgNFh9Ps2Wu5LFWz+1G3+p+HmuSmTMLM3gY1iiKGr5ImuuuzyQeLm4L/wECY6ZYuZPCxs5uHxAXxnj7SV6Pc4RqM/DA09Wvz01qFnexfGUZo6PYBZGVMQM2P9inscpJv5LtVuHCb6uQ1vx9gW8I0326wE8g7DE2R5hxTeHHzL95uDPD7lkBm1qy/95r/Y3Lz2WurS8ksGdBmksS+amz96w1a5cs657z618YOf/GiW0W7WudFZCOB8rsQmYXV+NraLnhqV/2g+WPBsrcoAAEAASURBVKueveV2M+cwXckX29F3NpglMB3T+dgX8PD/yA98YgZ44aEz8VE8LaA2IzyYbbqQDjHgGfAYcGw23/ddH+nSl07Mm7Y6KfjsTTR7r0M1QNJeHuZtPoHGf+KjH2wn11fMg8jmbmEGo1YIls3iEcitlLn586utf/RDz+ftqpwCnbLoME/FIay9D08233IoO5sV+Jt5Y8++y6coVVSbTMP24cMhgfeD7Zx7ZnPi3AfTz3wlBB9sXr66u3nq7HSR2FBnPmPyfJzYndSTt6Vffe165evEbrPwnSnqMv8M0MiUcVEfaNVOp8M3sK4tX/DqD2q7Qfm/MCZ/B5OBIzd/gn6siPvUmN6BH6cpdiGnTuoLOsuU+uUsqV+rG7ZVeH7+4onNpZTx1SuZ/coBzfQOafOB+gG9ghn4k7VLwRE88jqOxYsy6x44jlltcOwQW0TP6Vb/8qyPVOcmSaQZOHhxoTNBIThjV5SnfGWiJfKzxG2fVzuZlCXJhfVe+0ezSXo3/Sm+6O4i0i2Ww96MBhwC2qyK/T6MAUZ4ihRc11bhhJnTMRj26qjgO1miUjmE45wjBTUC7vfdUhojJc6JqUiFi16NwUlRdCx1XFLCu5yb4LgaD51Pg6a3sjgJljnB3YvHLtwO/t1oyCgb5y14Ao+6P7TPpmJ2bzm3KCJMXkZOpUlPVA+s9JFGHRUJw38rjo9Hb/jxeh9kP4wO1exFqKUseEmHVT68Lms5CI9RnBic7o8JThWJDnn13gMPOYFjaa2XkSvOIG05Isw2oFwddlkHKHDNFroqRH2MQUy8e4pe3DAvaRQlPCvkwAKYTlyjEt+yoYtWkh1Eia8eGRCFt9auDih6kASGIsKHSsoFTWibBcMHHKMfwBMnPUE8TrqOHHmKKHxTB19vk8PMT/kLmD1BHB11j9cu1YUq+ZgSvx+d49iEpc3dEOaAcJyyjTR6QL44XPmYkXFyJm/qMEa6DSvwQmegGJbI4F720N0LDafRNCwXfD8aFIfzTdTDl2cHnNnEOY4R3ZJVe6jsck/nLTXYyyD/ohYjs6SDQ5bjfTd6qApqQPPMsEl/T8Mbi/a26N8yy3vF31sSeVsWnxhg99a1za/987/ZelOvbXoZPAlYUp/anZc8emp/U+L0ZJT9/d/1oc0rl6/WXphlUJH2Vnzo+UudMbEEcS1fKNe2dWIf//CzwfFg8+rl45nRiFNklB78ToE+veN7bDv5wsB828xbU9/14vOxiWZVo0cUMIGN0U7p9NP5/Ebmg7e6JA4NbatLQXH28GNGRMdn9oPzpROjWNeuXk3ZWKXN5o988Jk46JlL185CcH2rz9YKbcYLENqmdvPSy/RyKh5vH83MCxs5MwyhlY6S3DrjkqVxzzpgjtzXsmfl8tVbmw9lG8FbBojfJhwCpBiez8bt//yv/Q/9xMnnfuUfbb75e78a/q4lLbYxzuCFs+d7BAt+X4lz9NrVG5vX8wma65l5Uq8GleROUCl5xBPK+a9OyKQObAwDftY0hD2PlOZG3jUciRwB7IdBom+CReYcErPzzZGE6uGCr7KPfdAHW8k5cuROeaFjjmnoX+TNWXrhqVNx2k9srsQxvH0juhTdMXBvXS52iW6YSfRRYH2BcuFLH2EwXYcoOrA6SejSCf3r2Kj2EJ3EMHlg4E2vV4u8lvnRq76hBUuCWw4Zp22knPKl8LTeClf7uPBT+QeYbZdGZvqNJwmHdpKU5nQKhWFTbe3gEMZ1WCIEjY+SjEJwkrI0FYWPrNoJmCxwLgbBEK8OzVokR2J2w8MVbHmecxF0GMkUOmcTT+AVRmgqtA5Doi9hS4N4hw+caLNJOh79Ij5EngqPnBs8SuPkmFHx2RR7PKzZ2pZ7Km8lMIRgVL6JcB1SlSJxioxHeOVXXuFM6MJt6piBQZtcekJz8ijd6izUKUgEvI1TpvzZY6S8wsqrx8k71z4EVkd6JI5DO+PCLBkDjC4+w27A4d7DATd5iJsRSR8TFdr74ChaZ+1yeKY6NFIiM8o9RwaEHj4CtxpDHJDB1JOiIALT0MDPNuS+ssNoYNRh153hS5zG6ypvlyUy0jxhk16QnEpDzbx/dMDWdnsYsi8gfxtnJyUHI/+wjlNGrDk75tjdjGpjiAX8lc89UQcn54+zjXNcc9BAeYohjx4Dcn6lsBaDIXGoZXVtwOuYK+e81bYYxSUDOa4Go1WdPJymOvOLcKBBulxWviUZXeHoO5zVZkeb03WEQ5QI38wIDMTg+Lb9rgL7tjHw7gh/8dP/ZHPl5S9OvUfY2hx7oaKqoW1gBnDpYNIw1/ZnhuZSZow4I9oOm6VuOcLnMhth+SkGMLMu7BwbylHydthygGPsC+eIflmSM5t0Ma+n3+zGg9R50s/anJviBWWu9JeOZZn5fu7Di07xuI83L3XAbjiVGKyZm907+ahs9JvdcgYZneasyIene+Fn7JU9OLGGaQfaP2Ho+KXNjIGB78yM9biL5NeOBOWy5Hfy5LxQAV4nDcnx416wyJt+kQW7uZ4zh9+ZmUvpoBlU0B0IbxJ9AOZtH4okbXnn7Obj3//v9XTul774i5tf/Ht/fd5AzGz6nTgaL2cT/uXsG7uSmaNrnKOsblhOWu1oeY58Oohersqwx6O7fS1Shj5OXOW8MCumdjU3dAaoH2aCU7se/ULX1HdfVMm1fcp+GsU3etd6Sl07M+lkJh5Opz+mX2aXTqSMzzyVZdgLJze7cZQeplz6Zy8VmOE8HZtKX9gq/KC7zgzpy92vDpLK4kidznlTV7O8xsk2CKAv6rdlUb5HJCPfWOcyvYVT9JY9unvKhqiG0a7KPlHkJQVuKXWQ8MrOh+E11+Q9/O+hnSQVg7jrQw0qNzp0nVxZDROdkUm8vT89Hj0ZOBJGDjrzTv0lbr6HA34cDw1I5Wm8iuKfb7GpCQUP1dDmqPCYxwkjBp26xp3mGqWJYjZuHCCnxvLCx9NePNYIy6Fn+PD22h1ruMmLxwqaMBMDj7mm26HnrSlKwVkz0mIYAxYnMftJ6p2zcXg3qqwkqixggqJ/FMitxtIyKFf/yJRSKKo4vDBsuYnR1UlLhwRf4MJS5RSoPpcikIQ6Gbm2SaqnQuS64PG80lrl6ap88oyTMvRaltwaJeCLAUZYwzAN3rXt1VmShM8FdqWsse4P6GBAueqo5Kou1pnGyxmZAcBB//zsR5F7ZakAwJR3BkmH1VInVqAbYOfJ71YGjRu5VrQFGYrwtRyJg6+0cj8yTn2nPOcYvH7kWPwYCoeKnj0TI59ZoEaGxupgwQePWcjr0QMyAIf2dpk6cs12qQ4W+mkdOpf0h2RjJJR7ovSpiJs5XfvG7Vwzs+vP0puZpYoaQ/vKnKcG0e82PAbtu0X5bcn/JLK4n8/ccJKqDxEEnVWBWiT7IpBP7VzsQPUoqcD8cYJ1LpwPuqqu1tkFz3P+y7Szca5mAKeNld/QYmd9l+1IGqJ9crsQR6/wwFHq8m3iFp85dKNjMUlmX0Mecx1w4FVAV26zl44TsH3ADA79RIdNFpBhH2sj8mCgywHI+bjlzSAGbAec6JFP8phJQgNQ/o+NzvMMirwBJd1MNNi04SNzbIrBrV5tZvJbxEDgdPDk8i7CwswjGODeH9Tz7esvb1798s9uzmeju72vnTnKpvMrZo7S6dt75APu2rnyG9Ap2+o0wqls69V9I+Ynv42J7RsoMgO9Xj0JK2988IaAL/NGfaRr1aHoncErdH3TOnq5dVpKY+itSOrc3Eo/HVt+66RDSOMU12HKEhjnJnuulOtsnPJLGXxyyNDSf7Fbq1NcPLFr3lKvo5R7e0MvxJG/lL1s2HaOmPKSTwf+VkQwspRp//2+aLcTyv/ootUq8Kv8ACiZenCeVVQqoRZ72mHiZH+UBqjDhkM7SdZiHTNvtz5jMDMrKoWBtizFw0xBwjJmOUCaIaF0CjV55LsTYZp9sbQkFD7CB62yGYZ6mxp1S6cRBio0Hj7M/qUIWAPLQ0b342RpVBTExjLGB22Ok+x1OnJjaQOPvm7PGSDZos8NZTiVVzcpAENhKbEVGp4q9KQ35IoXhsUJtBSjPKaBlMfgKk1LjSkLG8FjZ2D4PWvHCRea0JJj6zWE0Pe3dqxg/JEbPnj1ln3QTbbmLf3ga55cE42L/A4N/JR+nqfOyDLyTgKDNCOQ9ayqxTELLN7AtOT4hCdXosfTNBIjz8wMhl4d5MSD43DKW+dzWGlePM1jkLgp7OBVwLUshUv+O9ZgwwHceLcHxDeV7mUZ1Z6IczEXMam5z+nC2bcRaeW1agdMhp/oBAMwG8WzVJFDJ+lHEoszHBwI5TsxUoWOfFKelacuI9Cvxg3M+stROR7n5XReuZ3XwpfyuZRk8kV4Zn04NHDGlqRcg4EjZJktqFsWs68k345JZIJ9R95GuXojy7qhZeO2v3UmaTED28tgftzvWsLHpb153HCxpD8ZijdH/n6nHGD+nRP72hd+ZfP1/NEJlaT+1vYL26ojHGt6otGMvUqbTp17VZ7NkMeShcAu0WGfJrE8v6hlrtlLkhnbGv3AGemzD5yG6m80Q54J0952Y5MN1Myzm8VSXPpvljWq1Ebb4zLUG/5TDjytMwGWReZN0tjytLmH2UMpzQfYtG2hE2W57/EA4buyYNdCD/Pwz7KK2SSzBTMQwgvblNJmkKntwo2pzNwmT3uJPPc0/DT327cSl6U2jhPYcJucwptV4r74fbfN8ha51vT9V3V2/fVvbL7+O/948/Lv/mwOmHx1Y6/Ra5k5ej1XzpFTxjlN7JF+7GxmYeoYBdH+ZrHer1d0Iga/fvrbtPyQQus/P4UZwMKQ3QH4fXnpXf8KMT/g9XExOD3jTzWyo33JyUPD3lVfaanQBMDJlOtOylOHycxSnJ0cXrF5eDsb1U9lBjH0DAr6SZPUzeogdak1suO8P/fsuS4h22vHVVHXHGi2rE5xy/iYigpf4Mni0SCeYOyN1RbW9gZOeUcF+QfJHXodeIv3l3/6rf1976P43+750E7SV1/f3Tyble0PP/dsX+m8mjX0V159fXMz53poUFRZR2AvjmcGwWjC/YNM2/Ey6xBoWGtBNPxUpg1wVEWfqFB9gygF5jDoyDV7zpFUQkeHLDlUcGqCxM6ZuJ2NrPL0LSZCa66k4SP/zC5ZU+Y0ycN4EeCsi+MxVLT70slN/jNQ9inpcDkHpzPquZ5nOFd+eNqdMVIhiU+xgsMGYM7j4pjliqbKk4+Myl+uCtS03AlgpKn4GlTX5H/hqbNVziv5crVX/+HBhzDOZAyYezISclmfnbUTNAn5SfyrOcOFYpvi9laheN+3G4iFn/BRTPkZOlO3A5UNlmlg+PMZAYY6QtrSlrM1EHJV0gWRy/7yKT7JDHxZU/DILkdB4DnwaKzr6Db7OT/lGCcoSiO/ZQDr5Ua2cFtuIy+6Jv5InFUKVr0IxnZyCpq8ZMKwP4hhx5swnRzay0Ag5XLwI3k33c8KnFufBdm8nnwXN5un8uZIR8KJtx+Js7iCosWxseH6VmaElM1eJX/0moz7emwcQTqkajlD127ey4bZ+U6bfXrinyysnDxZ7uY6FIonZvD9Zuwd4//a5/91KiIz29UtS1tTtlUM63KKZ7onDER0Jg4wO6YTsty0m5kIbcFbmtq2NAZHtubhjeQuVR+diV2K3ornSLFV0ZB2VqXC6U8onti+TBr1XifRQUuS2cTaIaPSpMPL9cADXTagYSq6VAM2qWDMFox9Cn+BbfvEZOA5Lxy8sb/4D4hyJE2nW5zNkfgkViYpF/sALyoOilR26ZVBaFiG0Wfg5al8Zui17ElSFrOsE0JIWC7zML+Pidqf/Lb3d+/c2nz2l/7+5qXf+n/zvtGtOkUvvXI1e45uxDnarXNkUzZ5GkB7+44j14pbsK88TK3skVQ/DdWfNT5yEd9Ma07yShDvf6LBrDrlWvWQaV98YSdn639wQA2BPs7+nywXRgftGVbviUZo6AcXfbl1MxMEKePunRN7y3Bx0q+mXu21O5O+wf7gDpDTD8pDJy9l1slbft4EpAbrDOjaL3kBoHUcimib0ECfni2MuEso57lKdb/YzTw6rTyqUb1t+wOyBHhoqBxhtStBkugs5e5Aku7uyyP9sOHQTpL1SNP9n/niNzaf/0p2xT99frNz7kKcogjrbtYcQ9H3bsx2CHv8pALSMIzAZy+ThquYOv005rTgvtacitLxclBogtkom7sIt0s+Eb7+m6L0EMs8t8NCOHk5MBTWSE6H6pVFyOqcLQ2XAfA2nbX2k0kO+eojEatw/PB6GScjwGAsPcuKeFQBYFVd+t/wlv1Lyhta67R792oFr1GGetGolKFOQu4Jpo5dEou/7DNUwRnaDAxYpPDDSLQoeb6eN11ei1N6MdOYz144l1NG7/fMEkor6JjXZSc0hJCrk1Yj1ggxYRmdXK9l1GozpdO7yUUj4GytPCDeRhr+xuCHf9wFDf44YxrD1bwZYZqe/LpZX+HRWcqifPKgOxIc3lqH5XJgp7Dr+DVxxQLRerPc5tmM2PYf/GWrCdsMslV+gUVXvaHcjoXFKUCuCfO670wFT7liTLJmofyep6GTg79m6U+SMkMwm7xvZQnsaA5v8+kR9WHTt2u/yxTZnMr+Jc8Xz9kHkjqIPOCaDinOVt5Yc9jbOhLvq/43xznS2JVlvyz2sbHH0Du8g/K9D+8FZ+89V4fB+CjnZy88nfZAcVLvqex1eVi9q7/RYe0vI13p+4jo9J/OLPWlHFBof+P3feTp4Jh2bqbHifnq/gOxp/LRjXNmFYMnVmrzVD7ozNlX6ZwIsxb2Mx1Pe+2+uzgr53z3L522DlAHbmB2Ny+X3Mqr/6eil2wU+zZ7gMbunQ7KE8FBn27FrjyfzeB4Xx0fpsoslnZi4spqAC7OxOk/c87gJV8i6DJK7H5mkx0I64RnHxW3vwXL9+/s9E28tb2cD76zMbxsCyeLPDmY2nGKFjmGjiXr43mtfjdvll3IHsMEzZRs9re5JrwnPxmwXL+8+eWf/V82177yc22n38zM0ddefj0b569lEsDp2ByC6cN8+qJn9YWh/e3GPR7XK9ZqN+emcpTGDm9hUqCWa4GJYvmf9MRKEDxHXs2jspJQe7RPGEtqwVce+rDkXQnSA32qPnG++RaBD+KCe7D5nBPMOd/Zubs5ezf7xLKK9OBUHKjo1fHYoCDoJ0AuPHVmmelkr6cf0CfoA+cEedyOfVuLY8nZ9/nW54Xw9rIXv1eScfLYX8z6Wy5bYDJZ4pOujyEef9WdXPV1K0Tzv4OfQztJv/vVb8bwc1oY6oebL3/91Tbks4n70KU05DQO+5A6esdcYHjeXqPX4GtMeLGB4zSJu9/GPx2EAnE0bqfT7r6flEqnFPA0qnQ8gdf44VHJvHiNCl3TfqS+HmSmHuHqLFTSY1e6u58DYSkDj0FXsRm11LAlgp91N7MTnqecwcnAJIHTQ8z01ImpHD6Cv58ywddlnTwzUgxNDVbpTAe7Npi14sxUUBUbOyFtQwhutNUmOipbTW8rPfjJ+NUrWRvPTNK5KO+z+WDhFCWOWOiNE1IUoyTKpIzBg89Q2iaKa1lDzOndJ/NK2PN5E8b34EY+qxzixKX44OvE4il5yGh1LJ3PpHHZy7U6yupAudMmCou053HA8pDgWVnhGvOBveHRJwHckvxO5H0hH6k9cS9v9WSW5e6dfFzUG2tJvBQDfySO+m72jnRZITjvXd/tffUweU4ENlVTWYmbspeFNiQdXfUAP4kGg7fKduFTHrxK11H5KC0HEUzlkRZZh6hnIKXcKXhpBgBuBoKOGfFL21l2gZMHh4ljZFntVmalrsUxsqy2f3N2yExYmVqf38kV84+Ed4PuEVR/KB//yPf/mc3P/9T/uLkfZ8L+IYa3bbKlnTfEbH6lCKssb2TwqO51rjcy40t3nJl25li+IxggezodeFrHO2kzIIzmR5/YMwsL60esY8hCaWa77/cliqlEr2Z7oaCn42e0zonSbh9y6KJojuywdeBBnaHMEgfGESWOZ+nAij7nn3v86YzkNyhtOXJdl2J2doInMJbbUG+7YieSwesQ8pfvPPvyvPwXzvrA7fHMhI49wQ9njRHBq8DpA2xgZYAWI57YKd8l308rsWmTzfAEPy2LfNubQaIM13L21c/8xH8d2/e12qmvZ/bo63GQLLHdyPKavkbZfDZlnKM9JHt3C75c4IzheJTUAVsypZtSavsrnu01+Sc113pNg6/5Ai/PIqLkzT9gj6EJ8ZK9elVaqR+6po/qMpw6ie1rKO/u6ETOYMvMNZvOjp+5n03beaHpQfJejPP6bOqmL/WEiBKYSMB1++VU8f4ybh9KZFuy5Wn/Zc0F0wSrCd7uZGelVhIpVFmdiJZdykpVHbSfWWLWfOKeJBzaSdK9avBTKUNMx/XB7IYf4z9dXD1uLS3wnJ02ijR4jFM2hbMxTONSavtruhwVD1aHq/IUyvSekP6wccVIUEtlcBbgKnAhbWzVgAlIox1DgAzheFvODJbAKHCuVO/wmDxJgg9foDrrlR4Yz12GgUfm/OCRk2dqUh6vY1IO/AsrjwyU+7BdvKvjVUcycJSWvNDzw6j27bYQKd8iEspTYCn36ZCwPGnvjT9r5ecyy8cgdfYseGBcFQVHq3JUkROh5OLhtX6Nj/LWODMnlhI5OKQ5+ZUBk5xFtzWkQeJeIyKnHLKe+DhyqQd1yqkN4jZQufHR+sm9+mm5ghjtJBYZfOpC+U8k7xpOJfJcOoWdOGOwtL64T6Wb6e/sYyBofBip2yuhM+Mggnf67NRPnoI/kCg1P1w6P4Yh2zAmkEt0c2CXzixZyl8gzuWNog8+E5nzABPAKYK9RfYlrTNJikY+GrkZomk/dIixwmd4zEnyHCKzUJbVXr/m+0oOYx16JfBe/Qy77w02wvj9HN6DsmpHv/WvfyrHhlztEv3sKJp6aWcVGl3ijc5RgmkdmZ2JbaDDO4k/kxkUwbNl6Q6MVO59M69Zjo8SECVa0ewOtMTNsrLOeWxi20z07YRljThBWsK0MwcGZgB53yx5lnoXnPYLHo8Oi+OM0cMbmSG4mNOhzRobALbts7VhoC8eaBPhowPD2HczSAZ+zoqz9NM2HRicdnk997VnySYtl5ZT+wv6HhJ8OW+BOQoBzX6SStvX6BK0Ozywk8rHLutP2EVMJam0RkLN8tgfdBu2N2vE469k/aXf/oXNb/zLv7E5ee+btVkvv3Z181JOSH/9ys187iVn8oWH03nbb5052o9puJ+YksyPIo2NI8LIJ39re09K2zpdEeZ30gfL5Om9QgduW+aFwFwSLz3Bb3VmbhqHPt1ZQ+nhg/Ll2kF0GAVjX62ysde3owN12Bfc8sNtQkBd+OMondp5uHk9tszhzx/MiepmSumVbLZu5Lbl3qNfTH3EVmf/9/G3wiVl73a5o9uncywEGyp1skHivjF7cQMBqnfVKSCFJQ8PTxYO7SR95JnMMIRb3y2zw3xG0BSbczL7gKbCdCgZIQSOYDUW3vh6eCQYBoRAVRgnpU5FEHW9OhtsFUmhFMtbZIVLg5WXVHTg6BcmFzyIYyhUmMpfZaKSOTU8Yo5P48FHMRgfo3fC9xpnnZ88oONsoDix7UopVBUoFNH1dhfDIY6aL/pXRTFTgHOV1HX9JBph1REIr9KUr9wHpg5M44M7z+GwofELHPjVeMjMUbkXD8B5JY4XUEZLXafxVJzhOzBE1Fm4yBCOabShnQf01wbVdW98pZwrXWWWpwwBTgjq4mgZkr4N5INuIvx1SjXPRsIOlzPrYl8aucJfJy6AeBTEDwmyDw7RbtbgPoINls2xOKRt8MlBBn1rMvdm6TlHEHVWL/Wgw7L8J5L7HDXsfX+zQbb85EGzmi+ccxD/f/bu7FvTJDsP+pdZWTkPlTV2dXWXenB3S5aQbQlZBgzGC5YZLljLN7C45Ia/hXvgjktYLGxjXdiAl/Ag2ZZkWzJSy5Ksnru6uuYhq3Kek+f37DfOOZmdqcqq7hZYdpzzvUPEjh07duzYsWN4IzQ98QsRDCBl6x2OkbnIbehhCNlXRMPix+AxiiQn5d1Eal24kUMmu+FjCkTlNhxt6tooEfzKyfD0tcictU1+6hC3oZmXH/J6gKM/JKYt+o+SuB8NRY/EcoheUTlTPtzdrCvs5199e/Tl6sV3d7/3G7+UcksdjL7gZBsWd/I8i1TzEscQ538+nRb3W5mreiIHuBo5TosSmR+ZMupbABfIg3BEPjKRMDJmo77Zj2ZkrtUggGTaF5Xwc+3wBUfbjbyLC6f1l5ZAMF7uWYQd/UDHxTvBQ0uq1NTDLQ461D8nKaBV+rdXPU0ggwhuuo/scsjf0x3BQxMIc5eWrQ50CtC39MvdbE9AZ9Nl1aKhTycFSvFm5N4LXQpi0snth3Z3sznm7//W/7H77u/+9Wzpcb2bFFt/9N77l/ppvy/XtDk1kFh6m0PbQVeaeOB172jPq+cDDmuTiwYKw4OVn2U0CVy8ESjO5DoR8lwewznMbhpwwcO5K3d0G6lWdj/g0BnvwiTG0vEzspTp04wy+kl7XB7yYvTwUnYg144xlE7cOdqy0+l+7lSm3GLo1pAPOL1VWnLdQ1Nq814Ppcvth05aP3g9dfJE6I2cbAThMvpFhWVkbsOkUTvgBnuuy/vA4wGwx3rcl4CPAD9rvUkqjFQxVxHu7uY9heGLDBVVxbFuQiMGwoKt3hNXAWKgTDtElJvKHTQJY3T0CAwVIoAqVKeH3BVumFAhCELp3w2A+WHxLqanwlmk2/VKaBAnfifTiypn817BCX4NknjwrakhYNiNFgucO2KSZwqLXjAKRQF2WDxwpTF5gZN1HJCGM4bkH41+jMEz2ZNkCe2sx5JWUisbcgmhVSB54NX0gidoRiHGD96u9QmAYU7K54n0zm6l9zijT8W4JzgQiS/vcIqPxtILFJ0J47ZbwihAdBFosQhiQIOh3BzwvWcgoFoeEMWjOHNvWolsKsCmnvjMiOjUgEhbZHhTFFt60lnPcy++4Gl5Jk7p2iqinCUbRbXyh96SSY5K3IT7HHrhGlKFAxj4J9OI3u4wktjKlIEvhXlv+gt3IOyBxDC1i/YykuQDD9FgyUWoTSFJd4xUU2rL3Yw86VwA6anuCVA/9MT8hhEL+kdzl5M/Lref0z+uFIdlD6amDI5cf3P33NVf39278V47Q3rO7984tbtw99nd57/wlfA7PeZ7MWrOfG5kZ0MiD//yN//27uL7b6SMGNA4ODI+dSRpppIt2SBwIOiQ0Q/5OCK7Xb/61vvtMJJRIyeDJwZU6gY9xO9cFip/9vnzbaS/+8b7lV0ySAeuEWpGBXln6BgdsjmjdUffe/MCMeoXa8IYQ9XF0ytIGo5/eDIbQT7duDqt3339vU6DSUgHEm3tfCSPYwBFBwYXh4bPJi3ue2++F7qNNE/jiQ/C6RW6rZ3VxKuxGP+XsmGm0ShrPN/IKE0/B4+A98vg4Bg9PDyr0YQ/iSejT509kQXcJ0sb+n4YNyWXjsiVD3e/+0/+2u6Nr/1fadgPZWH2tY4evZ9yupQvZC33wMwzGcGQr+Wk7jd4lm/8kn88FJaCvU9+5i0hieS5MAGr7ADn0bDcPVa+PMyv4XlsvKRBLUhLsLT2nHT5585WYAQpH3oZMvdJe6MgZYWGvTIPlLbClCJZcYwNGR5CJo4ZoatXtUHBnfI7HkNJe0QWnk8ZPXUk9UcbnVhbKnka1/oROjYuLe8H7iEAuVvk047RSQd76EjM+Fc+t1jFKcqWd/kWdy+NeoynK9xgP4l7bCOpc9/pj2OiTzdVxHsqYbiLWaklYXoUfhpChbIagK7dCWMRCa4Lm+U48TQoLNCZJsuIy6Y0biWDjItxKm0yH3ltcvFcBWjUSL6NIPk67UbelyLCVTR2/idArGA9qtsxs9GIXQy6jijVP7ial5mDJqDSmRGc0BJDUD0lFB0ODp4qMNYKmsKK/FeQCezQmPdE6mZjibsqh3v50CJN/ITBwp/bbh3eD8urrIy4RfLLe7BELnW8nWHD8oa+77AElgO0XBAuAYEbz/DmEIZy8ZBfFQXmuQ0CsHyoC9UTD8DxI5ADxW+/gozBTLCN8IyBYKGgEZWz+QoNrhlpTPobArjEG6OzLBmaN2aII6xGyJaJGyFmW087cQNTKjflhlYlIp7J274nrj/lQizLc3lKeKpkYGLQixZHac/C7Q1OyEYvw+hkPvk33GykbEtyCBc5cGnjikuDoSeNbF9VSpvjv2WvRq/RKNN0cFuw3XpeyEddFqWPCn+E/yeM9ghsD/VecvHQwD9GT6MGv/tr/1umY9/NCHjWoFy6GFmdkeJvv/Lq7uTPfbl19ZvvHto9/7P/ZeXyU6cv79659MTurTfe2H3vd//P3c/+5Mu7r3/3zSxSPZZeta93U7Bx1to4IqSKuoIxsiXvqwP4bhrfv/2Pfq9pMEbUJ44M7Omv6MBf/Le+UCPmQhrqv/kPfqfhZJMRMR05OiURE1/d+/xLz+1eyGLvD7Nu5pd+5atjhDHs/UWYxSVb1bHRbz/xYr5KDjy9ejP0//I//cMccpov7VIJ6KpVf0c2R1/A5f+zL5zPIa45iiOdgl/76re7y7Tevcay9SdkNedJb+kZ2XTA7X/+F3+6mxH6TPwf//Y388XaHI47a5PIPzz7fBMfPc9kreWf+fJLu2eyT1GPBQq+j3LSfJSTwofvv777J7/8P+6uv/f71WHvvndl98572Rxy+4LNtgi+7nVGJH4cdN5WtRle5c3/Qbh6Sals60W8gzwRtrHV0+BIfhsnd7D9CTuIO4hKkTQC13LiB2aLJ0pa5SwZCF83PVMUcArcrpQ9H2mCqzeYAFk2cjoG4tUsnCefEwiSzFovme0mpJ9fZSzx3wictb7PZORn2rVmay+5RkYr2vPiN/Q05P5LAk44nibTnO38Jx3509aib+oAZPlf+RIQVy5CvuemfZrc8rwvcA/qox4e20hiQGjYVJQl2IfyzPAhKGFbGwwJKkANh4rUKYvAtFeS+DJsPZHKa9gYI4IhIwy+IDBFlcViiX9722tIvvpVT7giFdMVeksO2tOc2TSyRlrSJbxPhCaKQKPXQo7AUATTDGbenAD5Cx016JIvSuVo4uYxX5jli4/Q1H2VAoduAsEyd7eeyV5FjC49QMpQnoRDVOxRVu29JS6hnTNwxogKIS1cFIGBk3NX1INvK/C847t8END22JI20RUtWQl+SoVFPwvwEnyfAycF+RXW3lE8lJGwJuqi4gTgvuh74UNfjRQA8S8+0fte8czboBtFO+UhXwyyo7Fm8Mi+Uf0CLjgY0iu+B/Fa6ZNADU483ZCaWks97OfAzVPSvZcRSeUs3o2UcXElB+5VFnnuJ/9oDOCR5BHdNdviN5IggcQtyJRV34OkpbmRcDhTJpEowHVjJBkVmHzyhLvge3EG1kijPHeqLbSCS3HWEPK5P/kmuwykQ5kGwucLl271Szd5fbSTg0/gZPYj3SfC/JFY/7gBlNutI8/uvv21r7e+rvSvfPBuFhw/tfs7v5dDST94fXf2uc/tfibHUjx5NNtIBOj82Zu7P/jt/3733juv7a5n4Sh95autz+U4D3vOWAvoSIoZdRnZU1atQylL/oTKF2UvvuAIEAaFDl0+BGldzccSMXCUtY6ihd/ingj8p194pnWFbNERq05AyLD2e+7pGA+h0wjR00+fq44gDeDhFEbOJn5GRtI5Eb/0JS8vvvB0FuKmMTS1tOmr1o2EodUO95OXGDvZMRwtRkRfePZ81omcDH2zrQFdLjH1vOklL2P8m67K6HHwkG2Lvs8/dSabUKbxiz7Tg7Ao1xYiRvbwy8hBYRNmjaU1Slw7RtLv2wOXh3oegAldt669t3vl935595u/9kv5us4am3z8ciFb2GR67WKM0rUxpNE567igxL+HoVaGnTptEqNrpnzi3wibDsUPeHIf3T6wjfbAhY5vVLjFITtxC++6j5biL3Qfv/CW3Za+MDghqxFEj2qbhp1R9YFPcKVE3E0nheGlQxtxOrJxPVPFszWM9MZJx/KOth8rXoLeTX0wOvjCmdMtw8U8GIfehWHhuf99vVkj5atNuGRHevlHWvPTG9qDFN7q6A2uzFuI1guG5nn+xP747rGNJBYiQmdodkZsMHnNbWNsMxQa0KVcZMCLyuUzSsYNYolA161gcv46RBz8pi44DGjjmjucPq/GKBWJcaLSKCS2D9j22rb0Was+tSVoaOgwZMJgVnk9VAYTT6MrX6mTxWNE68nQAJaRVIMld7SgsXdGUeKk2e+UXyt1YDonm3ilMYpDntdcupE3cbmml7tXRmRQ9dfCznuNrfAEFXDrrbmP4ptwPJFvrsKae9+b4YO8m7IYXFu5yFf44EvAl5+Nosy6h3ezYPG97CYruszLN15IV21SifqY8FUuWAlePh50C9a9OAKA5tqTWWB9PbOjFkZSsP0UODgYo/1yZkP4ZHoSl2/fCCcaefdBKuY/f+W9Mkte4f7Jz5zPSdZP7t6+dH33B699OGTEf4gaPoCTqS986lzye2rwFXL4O8HBt6Vbmcb97ouTEaKMzpklQ4cyLYNyPRaDxrok+SJP+GJ3Y++Iq38e8Um+OcYSEVeWnNGlmxldu5mF2/1kNgzl91S2BzBKZQG39UnWMwk/QHzjuwymvdcf2QMJ/JPglNlP/4W/GkP9yO6tV/5FFmDbHi9fXj3/xd0v/JX/dvf0C5/PFEzOVXvSkTf5SnLL953bN3evfuO3Wp9TcJ3KsonjBx9eqv5xztinY2jQYw6htegXXsVPR3m2rse0wc/99Oen8xf/ozESHHarg+VoC4aCztppXz3EnUwv+me+/HLhlQCjSn2sHsi7DofRpeP5yk24qayf+dJnIkMxwiKI3ls5EkYXdSF38D+RkXBy185p0nbArammi/lKltFg+wtp0GN3Anskh/jSE2T3KKWajKl3X/7CS5kyu11+mDqz7hIh2gUjPg6tZUwa2b586Ur4MLoPtV/5fOJmxJ9hZETuZEYeukFj8DAc8dRyho4ybYfqqkd42Xr8cUQy8W7HOLr8/V/ffff3/t7un/3uV2PgnQ3ue51eeycG0jpzTSfbeWQa6FXJDia1dC0/xkUzjK6yxb0U1nuC6ad9DPtP2Ah2c4GZv3mX0xVvQQHXjtCjXaycO17C6Vf+UMR5MY5olFSo+IVMGdJNZEMbs/A3RTglEJg9PHluvITZC4q8rB2zG8clcRi2jQN3flnPvbucoGORo/OOrlnAfZg3ND3KgWBDOEJqRpCG17I2bcjkSfzhhfueYn042vsSlPeHg32U72MbSRihIliI60sHB4Z2+iw9ZBVF48967W7BgW2PKRUCtzTkFm4zAFpIIV7De2tbhGukhyJgmGBFpy8Sz6iNdBk9GEhYxPdHsZjGUollfqz7GBWEIbCUYkeaUgE0wB3qDje6IDB4NNAUVLcj6AiDNVTOCgtQ6INTERAGeaALusg8LxSAgyUJmF6RiscITLIbLRrA/MInI2MhqY7SaS8qbweFNdluPlv4CVuVQF4oROnj4X649xlal6bREmRzFagQXwEuJvgO8D1pSQ/cz//sn8pw9pnd7/z+t9MQfz+GS04b39JpotJNHmug5b7SGH5Pegefm37KRWXs6NeWDtrJBppCSsrAkKrTzLMfSmSEfxsD/A8S6Rx+IuvNYojYfdcomYXOH16Lco5ydQo7GZGGuIbJr8WQUO5glZme+az5yKijwgihIWFG4YJ/8QfN8qgdEI4ANKCEvN2+S4riF34buRrqEp58+nnvCGhnDsUJvlzg5Bp3HvdkQ5BpumPZrOZ28shIUm/WqJJ4JzLyZrTqcrYCMKp0OfsniQevNB7LPS7cQ5DJ2Z8Il3I/evz07mf/4n+1u/5z/9nu2uX3my1+p849l9Kz789T92VVfXnlD39jd/3im9UbAskLnqh3He2O7BlN6prDLF59+cXnKs+//S+/s18+iWCd5UtZa2RqTrwaRZFdsv9Mttsgp+TuyqUYb9ETjITPxviin+hC+7oxqHw+L20yfjwG1R09jTg66/Ofea6jkve671I6b/EnKwwPm66qbzevpW7Hc3XCpH02dF/p2WM51y0jbvSt/Oi40J90CyPwdqZeOLL3bKa/yOrVxDOi5qtRukwHh3FoStLXfGYG3tBgJ29o8fDs+TONezl7vV3PAb2nT5/KlNzJroGx7ciZ7P9GL8B17cqVrreS7ox0eHq4Uy7LKbu7Oafx0nf+we7Sa/8kI4Fv7H79X3xj9/wzGcVKht55/8McNux4EeuPHApsF/QYyOFx9WQQ7VWb7QHfOHlp/XfPi/Lpe64FyWu0RF8GNDB7xIEfaLGkJdLAQ7cffiDSXhqjoxi55DCYAg/PpBNUUQrotLVEjakNRhp0vXSqh5VJ+CCe+E0rMNJHU/EksLowUORX22yd0kwzbzETRzldyR2etrnBeyFTuNq5c1mHe7CNQ8dKc90lvxzYEyey5QOPDTbiXplD/6Qib37oi3AWUWMMmr4P9gO+DeM7uR7Qj3N9bCOJYmZgdMHdxpgaCqFYI+qQWNNKq/F2JITMMXxq0ESpKNwaVoHv3hlhvt5We0qJ26mtVDQsqUEVuNtpQMqM4Jdx+NFimg08phGgVn60hHk1RDSg+bNeRzyl7ky5gQ2t4Zphw45oBUDBCpdWqKrRx4K2pspoQuydCtneF3KwK0V5gn/KpqNbpRFdNeKGPx3+DBhjby20FiVg3UQzTCx+tM5iRoK7Tcfha36rsqLVqIR38AuPOwGrXxAzXNHCT0LSakXKKy/lM8KtZA51Z9m34v/C2dlYrriKr5iLtyNhW1z4lgFUhPAmudu55DEvphij6KXrNWWjtyoOoqXdMle2CJJWfirxlSs5fTuHZXoG92Tino0SZQzrrVKmFDrE5O+lLCyFgtLXEz0TBWy42HC/dSNncrYaWZRu/vPLM5r6F5rj43DjcbkHGRlRxuC7hitpe+aEeVYu3PCV0RzlkUaEN7oAHU66w2vGM05PmHI+eXyMLCNG18MoBhc6rXHDX+/Xs38Vv5vWKYW/DLrHcTX4Hwfw48A8ZtofB+UfB6wRpROnnuqv6SmER7jbacC/+qv/a4yYEznQ1KjwALYO5pGxYxqrU04pk/dvXcy0zdUcDnpm99NfejmbvKaBCJwfEVgj6Opt5SghRmxMR1l74biRm9dyAHMcmB4CnkP86CZ1ht5lEtE0RJhhZH0fwujOU2nkHYgbsz31afusP3Ji0z771Nnd+t7NGekfPTJ66Eh2eU9QGrvopOi8mzdN9zmYu7U2OMdIupGDoT/MxzEvMLhCt1ogXSNGRqrUz5t5xw/Tf0Yg7h65s/v0c+cq9/gXVOmsRBfnpdsI3PPRjY0xjaBFfyfMVKO83Hoy+6NlJG+MGBmfBjZoHunU47u3M3X25ld3l1751d3VC99vmfz2N17Znc2ieNsPmB59JxtEWqBtI0w1UXrtBMKcStuUsNY7wrdE1W91OqnkMnVYWBvtDVSUodQDXLkpMG7D03u8YFA/ea8g+PdHjcYXvzrakzsaNFHKTLrLeVqd0KYnDiWxD5JHkZAVulJO9FHzJ+6Ge+FE+eh1USJD0aGzTsnIoYUQ+87gw/VM2ZIHbRtevp/RSWXcj6YC2nZoS2PjRnkzWHAsSw1SDkPPvDcsyo7cDI+nnZWl0tnsDA9bMPEvbgAe8nPz2usD/Kj3Y14e30hKcoyPtd+QuduuI0qFwjgVwPQRwliYGObQVxXdompCypBRgXwWq8cE2iema+jOKMEqTPTDk/IsrHc9Hblu5vXEE1ejmaIp4zQk7a3Fv72i0EggHGlyOyMRyxgLyoZLK77pRcw2Bf20NshLa3phaEsb1SMBKBdGlMXqFWRTKyl4I1EEpcoieGs4JU6FMDQ6q8nUFeMA7Yh3azh+5R3da78dsrsqJGFAW6cYGyvxws8JT8Q4uFxUDvlaFQjMuOQy4fwDMgImIOF7n+cLqIuxGzorhBtsRwgbNxcuyFYa0zMJPVt86YAqtg0lWGJf4znPQz+gUSc1CAPUNOHnNtoHv4ZhjI7TWRuiF30yPY6TUdAnjmRTz5xZQNmeTw9X7/daetiG8k+fOp1h4usddRLv1BMx2u85WiLpVumOIVwZiIxci3zcjUFs7fuR5n3oUEnx9VCtFvkbfqK3eWngGEEpqu6zZGTPwms7EA/vwU4DaBt/X7PBizMRjdYLWSbrtgVQT/C0G0yWtwnMf40n6T2mUxafxCWpR7tPivTRGP8/DXlYdr7z+/9o98Yrv9fjlxhXRjvBMQLGsB+1OXVDg0IH3M4i4IxSZNr6C1lUfen67RwMml2VUrDqdsyYljmpJyd00fEYCMKMKtIH9zZFTmceyiiir1jvRJbAHM3daIfzKukEp7eNwRP8gS8OepDeRWfkuM+VOx2vyem6jn5O5yN629YIRvMZ8NI2cpW9MIuX3Kovpsgq80EQkIYVB8GUxwAmWsOEh23Bp+N3QGCTHzjU+cPRrYXLew2uwOKL0fonMoqKXu0DHTAN/wNikjSMeF2//O7uyoVXdrcvfm9358LXdzc+fD2d35tZeHxz99VvfK8fdvi62PS+KdEZQZov2Owvpw5zlfnQ0ofkZ6hWWhPeay7eD9YPtE1cYXHyeOCujVj6jPfSlXtwPDcHFJbqd08bLvgFefc8epEei68f5bGFy0Dbp8QoJcXZ4D0Y+MlOcbr6L57Erm6cSNOGTDpkjEFpRGnO1JSSqEbBM/K4DKUUIlRvph58Jov9ySpZOOia1qbXaEKGNeN+42Tjg++aZnK1ldHIy9A69CZG8uEPxZJB03BjaMtrPeq/Aur5+JfHNpIuZYj0qWyRj4L2HDIvzZjAbDu/KjjCz+Ah9EZ0utYotHRTs/gFPJmK+CVsNhNb57alQqWGwdX56GR5TdewtssB6cAbTmGMs7YUBlo0KhgqDj8VE6yt1Y02UHSdHgwMq/huhqUxWdxFI8uXotLTE99IjXh5bWNF8NDIxSYqrXhuvdGeFZ+0kWuzTPBdoExJhOZlHLRI0UqwSkOUQhREvIoT3+DFixCSf0gDEzr4R+TaA8EXSnurkqWhYYDyq+AkfwQLCR1pS1CFC0jo+9o3vxuj4Mndm+9cGN4FGP3LVQCDC+3wiIus/qTtvVSVxPFXyeKf//IAH0tQPNQLbxSqBa2dyvSezEmDPxew4AIc7Ft6jRPD6Fx2elVmep2mF+QLr1TGowmvXGXk6FgW4JJHFJLTw1GopWTDZ7SL0cGRA9PBlG4blgA2+YYOPUf6dSOjespK/ojDyiuikY9P1iapD9YSVcknDI3yqCHyFZuptJ7FtdJyz59pRfHcL13J+o1sMGlkqmtOgke63FB+8KHeP5LLlsSPBNe/akic4fV7v/bXIispu8iIOuboJeWnLJWxMlcCrZOqd8qVn9Ghi2ksXn3j3d3//ve/uvsPf/5L+QLtdNbmXCsbpk5mQ9isA0yVjw7IgaL53Um81vfUFSPtPcBWAROm6INoo1ZijZGRxRulaxoGuurKlZhMAVV7fNDCD92WBdCJ9JCNZtWpyYdjJ25UZ1iyAH20ZN/FoRvaqUtmfT3aaiLL+V1JO6Ajaqpt1kdFqWdvMY3/3UyN301HxEhULrtDmz6WefXwypUs7iXLiYuFlkjjifMXbyTOvRs6nTOtiA+SHONx+AvP7Zv5VP/9V3YfvPWHuw/f+fruzqVXcywL+tW34MnsgE7pN7//dgy927vnnzrbGQNrkC7kS8NrGWlupz6FJzykh2+jf0YfJ8N0f/BxveJbnvmWqIZsF0RuDuyMPA8c+IpKLsIK6jKoWxZeK08FzLNyAr+VF5oasQiGLu2NcgSjzEcegzbvnjtyIzxlArZiFDSVmPiXqC0cbnHQ4SK4jn+elb00hKHF1OQu5cRQEt7MJBJ5eOKaDmAkCX0Zm3wzJ0N8Kl8pxqN7NxVN24Om5jW60Ghkjj3BlOJLOlv+pDdG1vBDrFK6pSu/jdMbSTpAP+RxA7KFjdfHvj62kfTKWx/srtw6W4G2e6qe/I1UFlZeC0uFSsVQACqyHrnTqWd4Nr3iVD5ZlHEjL3oMtXgTX0/t7mak0EIy1q8yku1W6lYYGWU8EdgYOyk66Uubv8LUKGroKLOOFoSrFgpiXg0nuFVghRAYS0wMu2p0W0jBkwTaWDtEVB6atxSydVGOBKBwKmTBKS/22ujoizSSR4YVxYQq6SpFigFPoF+uglneSXIMjipbMdAmLOxsZYjCo5FbGZKm8MG9j3DyPNhrtNFTG94aUwHt3k8BUWZwfee7b2QEJUZt1vhYtGh9QBhTMpNK/hKphkqekyBeMGi4kIDQPsMlPB7jlWh44+dPkKs4sIJ1HhD0RuLksXmDIWGJ1neGcGPGkzwc76JQB0vOGYGHo8EpOflZw/xSYGiuYyIkag3TEzmy5F72axpaIn+BQd9y0rcpoONL0GzsQN8GPg6kzviKkSSb7shHFBNZCc/lxQhQF2NrEPqs0ZIHiyGjzoNSeTF8ihufgs9owImsUZIkvIypOa5k43eh57Lo2CPoQNjjPE6u9iHhS/VQ/KVvP+Rfp6d7u+/8wT/eXX73m11wrS4rB7tPKx9GShsBLymkke1pnMnn2g7gqUzv/OWf+8LuH//Ot3Zf/Ozzuy+9/FxHN+EyKnw7I533IgeVp6Rh9GbJonKBtzou/tTGjE5b95nySdrkKEez1aFEnVS3qCaFJx2SDp5gRkVViqezSEeu+qYOqO/0Mz9pqxtQ9+Jh7x1dDEGOTpkePgJhiHxHgNALhpqli0PK5lbc6Es6tmklMIn601Fp3hL3TuqMtlQu5AuKG1cv7N763b+5e+3r/2B35eLbuzPpJD2dKfUjqSOMo8vR4+7y+NaFfIhy+fLuhWcs1L6b0b0r+TDlynYOW4Zug/RWKiud3kyjED14Gzq0I3TM0sdDY+hASOnxMG7prYe9Kwe/ujJ38opXnLgNDwxu9x0/xAGfe3VjQvfTAUnH4U3ClWXKfckPvJDVUEqY8JW3WjUH8cMUHPdSaPJaIopAgAfpbnlgOAZEOvYnVP5+jQRH0rE9AFlUR3ygcimjTt6fzzKJxC7S2khQx5nJsIbNQEPTk2bAkKxNrEt6w8cJK1xpyrtoeLDi14N3/Fzh8+sliOvh/eO5xzaSTFl9cPFymPnE7p0MpXEYcCYLEJ0h5pwdJ/UaRUnr0op9LwKnt2yUZ05fH+L0TiicLvALoxkpLMbmJ1zSWPDDsX7ajmEJxHyGEXa76JEZqdAbmgILTZnGU5oVmsSx63MNOX5T+4M7BASXgs1OA31XJBqyKkb4QwNrmTGoIMztdxg8ErkUmNEHja1pwRpG4Q26jVD4+ZNW5/mDUnpTMaZBIjgdFg+ONdJDgbRyVmkdHF0xyhbB3LhUhiAzdHZRevImPWMnQOAgEymCOGErxuSTr3wdlZ/0qLozcPyM0MgfHk5PAbc3gYO6ZakXPcasd+lwVdbJI0dwhbXuEXR0BbMr5wBjFVmlwZP9Sr6Pr0TPpVdlNIohXFhfkgVBk0yyMwKY+PkbmeMJ1m/ogagL3cuvktJLv/BpYaA/DR/DNjLpIOQ9l/yU/o3mylXDh2Z5VR4aMSNFytSRNclejWSGMl6JdyLrQeSbH9nlH3GrYeTw23OpROdO5wy3nJ/03sVMD2TxttEleukgSXu0fcyH5uOBOOrgnRS6jsi/js4oxu/8w7/e+pCaExaM/K5OjCmByurGHPKtjH0mfTZTBuRPWePtS1mP81d+8cu7v/Mbf9j1lz//5RfTabyRT6uf2D11/EwLkW6+qgWTAABAAElEQVQz3aXe2D8M1yM6u/M58oaf0WYNiUp0Lxv3Wo6g3gm7d8fHCx3/2Z2JYa3zxgAjf4cPoyUyHMMBLBzXrkcuoxvjXXcqrRhj4F7oZlzcy7vRdHlC18mcK1j8SfvSZV+9hY5QmAUI0RHZIDfhdJUMMxAhNiqGPyFrdyiXK6Gnh3YnTXh9JXcscn8qXxLKG1IYVPfih3b6zXmI95LWldQbB9wa8f0gGzx++zf/evZ1upL0s33BM0/tzmYKHd1XMiJmRBo+aX945fLuG99/a/d8vmTj7IH0ftorI2BGmeiZQ8k3R0/gh3vfU37W1gbd7lo2iACLf/KHV2ukuw3+RBF5L37rFPzFnct4DEzyjwdo9OMYQ55zCx10N3bSiQnnmTsdLJ50VvuVxzr00Z/C6bvmjV9C/aLaOxDAyO57CBI66S8sfPBB+g/SHhxiJKz6M7KFcvFNvTlwfYywgTH6ZzsF7fRp++EF/gPbXCTWKUJxwBmFPH0qXxujP+23dpcL6qZXeuRF2iFVur2mE9tZnrxNWAKblSlL8XjMLfeJVT/185M4kv9YrseDJGVK31SJRc9XI7zmqt/JWTdPHP6gU1tOk38mO6Xa58K6I+dVobQnQ4cxRl3mENJJVsFTym0Agr9fLaUnMQZLjKnEB0NIzfsTBEJrZOpyTp6Hm4IISAvM9FS/pEs6S2kYURGfQUNcaqW2d5hIwYcmfv1cNjTX4Al5acahr1CgVsOpwS0tW+Pm2X4/rVDyksqqoCgmFvK18Mh8+DSoU9SIJXQ+tdVgy58KKPRQ8qLijrCEhuAQt/lMvj2jjxHGm2vFyrsRJM9LwBqp+INTRQkuuMVbcfED7VVWCRujtFWjuOVfeHFtaTEWl4AKa/oJU2HAb2TVXxgPlV0+Q0Jh+HlfX57BJ2TSGgw3c8CtPFGeoTyNzJXd9SwIvZsKdyfHGpx+IuWaENAXoxxP3T1WwxaOOxk5uqZRSdilezd3J7N2KV/VB0toCU58zP/QFgxd8MqgoaoS/3BGn/DCwtlQHcCC7j8lrqwxiNy58jYXfn7SIM94gKZ+vRbZdk7bSY1Fvm6ztuROPk7oCGmS0Xlwdp74Ohin0mDKoO0xfOl2MVNwj9oOoERsl6H4oM9HP/tqyXRgBkxT/z4a/k8axOUP395dee87yZYSV07WrmwKl+9W0FtxTz1LGfuQgJJXduo154w0o5n//p/53O7v/fNvtQH8yc8+0942+VNXbsaIOXo0X7zFUPG1m5F49UCny2TU6BJ1kp6YNZrkaIwjsjcj3BY4P5nOXA39qFv2DDzqjTo2n+ozWJ7YXcp0E2NY3p44bORlRvJl7dCh5CMp340cVOiCSL1lIDHmCL/pqhs6E3GtH0nH4vMkU10NDz0Lb5KJkRFj6VqOJ8oLQ2XpG7Thwa3oW3G830lnrfszBZl4IWf3SkaANLSX8vv0M+d3Lz37VPhyt/sb0a1tFEODuymfb772VvZ1Olne2IfKQbW2GejB6cndqWwzID1OSVVnJa5nbRvdqtMCn5kOvJBPkfB+GUzd/yl0tm5DFpcojQeXJJTzvtvXmQCNnGGaOKNfRm/XcNraAnggoo0BolV6fg1r8KSmvKv3+e2Fi5nw4BNe2UyYnLv1MW9SELbKpvERtrn1rg1RtsjBC+uLrVEaCgb4dtrCK1dyuHjyxk6gSy5kIfehGLUno8/kgyH/9LmzXWbCjsCntg2hoW00Y2ZDim7pI3b44BmaAGy/uU0Z8vMOQe+rLMla5OOTuMc2klj0adVDa3rXEWwV9E4yi+LJ4K4V72IMlzfyiaUQo0zPZCMyCuBciDTi5Fw1lcemebfy2TwG+FLJguh+XSYX8SOoRhoYDyzT5jjMVGk9+9rJdJj41vRM71cxRzkEl4LwCT4L+14S1GDpKTHaMO/OHUJPfhSc/+n5H0ql6CLsQ7c6GqBCEs7jGbW6rceVNOGs+CWesKFxBIBp3DOiAoO5eHXt8CiJgO5VwJBd2glbvFMRp1VCkzwJr2AnVDw0M9CsdxHWePVESxz4ABoZ63v9wsfAxKu4RBSXk6YAU0T8xh/NKzbPwTlMD7z3pjnxh86tcg/4Hv6VrybUxCQ4boXJl/yOI9Rbhdh8yJWenNTI27GM3FljRmG399q9VAaBqakTOaX60A0KyEgOA3d69srgcGClt/I5RmNR5xK+5I+CJj+yiMbDiXcsRsP1jODYzNJmlPc7/ByjSJrhROWqspd4DA5Mjnin55VR0OBhIOkAXIrBA5sRJ4aUtVT8yRMdcTN35wfyq1GcukfG9yjY49v9FK23jwieAlzAB+5NI4k8LP5KGw9rHCYeXnVtV+574fAtBJvnCjuQ1Ec+FsUDeET6JLgOJrZQHvTrcyrD0+ngfXAxU7NpLK8YiUlmja5WmTfiVgYpFw073aRBR9XogpExh09z8P2lP/v53d/9rW92ZOQrL89mlPfSybPAGko6MeJVp04ZjYeXZujay8iWuq0B7TogjR4uiJOfTiHdditx1RP0dOlDt6/YDPWA0mWX0tM/kwXlOkXqFjlfzppLrx15CHph1a+BGzBTwEObMjBSQAAYbRxVSnY1ev7oRTz6MJ3Es9IMjRDBqf6R69bNvOvQ5nuedizR+H4a30uJZx3R8XRYvvKZF9tOMJYYjQwX/LaGsNORuX/rtbczk2BjzmxSCUdGkOaokewSnbSMfignGrO6K7RXv1SgRseYCKGHGEg1mIxwJZ1lNKmXihY/lJGycw+H6ld+Jn7+kyb6pp1pcSUSfxRo37Q9uG/kaE2xVeeTC36lNhdOguLCndf9cpt01zqm8iS6RPzlPJXnUk78CUMLTOPQScYG9wa/wjdUXkEMZZGryIt9vYzmDX1ihz9h0NWriRQafPzE90JGnY7EUDoWWTpz8mQNayOjaDA7VbpCA4fX4pCfGmV5njSFlghAAwd2g3dvXCDywshNuVenJsxs2Cdxj20k6U0gICmnssVYSEF2Lj0ZI0Q3I0wdmgxjVAAF8UE+G/XzrPKeirKxz8b5M8djMMXKTFwZUJFksFKRXLSBi79P5ePbo0MwbAQghZnKPoU1UxesV9EJtYJ5IuZr57WDA1MrUPE3LG40qHxOhBZCErXmgDHB/3BGHHwdNTt+KrSpMDdv5i5fCjL/thYQyrhBiy+Z5FHhSXXiEUhGVVEXToh4HDi8U1ny3/yFulaYJFU/tikcIk12BlkFPQHiCy/7Qpu8lpcBW/ESuy/1355F2KuGUCImEeBVzp0Kq6cKPRSPX8DGboFpYOU7sGM8qsCjxJWXNEsTYPg2/BuT4rkpkZpykw7Q5dBoh1ghDHRPS0HI3/iD7hOg8pPytL1E0TaYoo9iyrOs1okSpzLpRR6uUTN+lLbyBIvv16KYHe58jId85F/60p08juHQrz8T4U6MH6BVsAo1znokxhxjSR7mLDfKcspROuLAS5TJFhi/61nAfeU6I6yoPsZly+SDMR7hvS8jD0aQU07jh8apu3xajxHutzny3LJLpAbhWVxZtwe397DFcht5YGjCq7qVfQEVtw3X8jgQ60fxOFI2dFOu7XQwglPu8osWDhyd4QuqM0ccwjn+MqqOcDbUw0tTeC/mOJBf/NOf7ZEejgY5fyqjRAFjXPRrruS1Zb/xaBqGcq/p9liS4IaZrOggaGTRhEdReJV5HfWpG6lzgRUujtFasmzUmqEiyu3ki/7jutQhaU+DTn8aqdV7EjrGQ8s7MHiBbjoikl+dhSauOiuPbfpzVwcj7rtns6UIOqFEn3psvZLU0SW246IuBeDSxTGO7GVkpOhLn3kh02vnOrXmE/7KZyJoMxiQOsT48fVX39xdvnlj91y2YTCtxri6mAXz1skwDjXm7RAjNLxkBNUlH8MzdE2WqzbSGy5/wjtp0mXaBEsw8lq/LrNI21NjKZ3oGpmJXKMHLukkHvWJR6NxRfa8tSdJVPqNE4ICOvgJRHlVnyHVIwj0oHsrv8235T0L7UfvKrPlPHlvXsQV5ieZUgMAanEHlvT0fSHJfdqGgiYWAzw6MVPBFssPvok/nYpgCK4MCGbE/F4N35fPn8t61GwYGV4qwyWjklj0SV89avuM8Lp4crlNeUwZzvOUz3oGtIwkuNpCN18bjsH02NfHNpII/PEItPqAbgaDSjENIcNmjCgNJcYhp8OWtH0cYp1j9Fb2qSAwrHqfZj6dRY6m56z9YWT5EgmweePDGRaBwzC2YbsqoDDP4bazASUlYxQptCSO4eQ8ND10oZVAYr53MsFLQ6aOoEnhUhwqcyuFPEkPMJc7WhRAlVe8u/EhoQ+sk8EVdufn8z6Cm7QSPptdTo9N/PIjaVIOFQ50IcI7fHlmfOKDZ5DI8IR+jlJpfvNemhovAQn2biSpEcIjQl7/3FoRIYi7v4INDYUNcI1F8YKnZSv/iVMBzj2pJh0+8cufxz3e1jt++RPWRX9gCi2PQbrll5dHtDitnEysNAb74E1/cUYqYmnasPOG6bbEjbjtjiWOQpYag8Jn974M0wDczUhhzw/MXWbYP3s6pfTznzT7FAOKEj/U3i78s/OvJGr8Z6fkUNTyyMMPOMVjkTY68KPxXOLaeOW5i/czAWiqbfI+efTsJ3zJA8PI9By8DK21Izd8ePvDuKD8I9yjcQvpKFnKqzhywdNlJJG/NRKlbij/ZewMryW7jx+v5G05eIxQGVmb6Uo4NvjcKL5bmWa9Hd6I57eX3oZmH9vC+jHuSUNyGsIq/eQSjb7A4RQn3k8dUPdn3LV+yftKGx+MRHEa6jezgSGjKwOdu1/559/Y/Ue/8Kd233/97Tbe4loucC4fTehAXskIyps5CBYyOla9Hd0wBqJ6Qh59MfxCjAcfvbz+7gcjPxu8cB6zZojOGMPm2RxfYr2nNTyvvf1BaUIjnYPaxgs90/vO1CtdvDlnqdE97+Qz+uKNf/WN8sOX3FrvQ29HeYXnZ7NaI7905DsxfIwyhLrKuU4wnFci97dzv5q8OC7E7+mc+/bzX/7chGdESZm0XkXgdIrpfQaS8no3u6B//933d596LpuCJlGjTXYzZyCZrZjZCzyZ8i29LnFo9Ksy70P4LSh89iePZJCcy5fBArSMsVRJCD9Mgc+JEsd9/BG4ogqapdfJKvmBfFJOkuQkP7yv0ZL7GEtiT9pSWGErHhzD+83IKMGJsqUKHq+8L526R48w6SYcbQfdwI4OUkZo2P7nOfgSdSuHyQfdeyLTrXCOvCUOmJTpMpTgyEf+u+uHskloyuxslAMjHI1kDhXwUHbokoi22BYY8DJyBmbS1o6Sp/IvzFNPPJe43Dh8mz/PP5zbrwUfgUfFcTBiiU/GcI9BoMFeDZzRLIpRPvGfsNgLknNTITyJ84ENvSLsb75/uThNZxmaPp8F4E9npMkXdDZTNOWAAdeyKNAwqtErBgxMBJdBQwCl2XPZkkYredLQ4KMtIFW8aDZNpzEiIBXc3K1J6gJzeQlei/cqRNJBc/KiKPUerV2p8RO/EaqMUGX9QRUNGhhcUXoUvum+oJjKEbwsiuioPadchctfzL3kLbRv4W79BU8boZCBb1PZEhJ/IyBElRDB1Qju5fYgUmF4NXwDqF880A+q4a6hb2KlAQqPavAVboBWhVvow8oKuvjKxB3/uOYrAhwyt7T5BiLv1rfBJQBPV6wRdK+hI+F2Cy6iKE+LTo/nzKijGYHsV25pJJ64eakLwOXn3Jkz3bH1UHYN17PTsN09nEWDCfMFxZHswnv3TkY1kRHnjjZunl3lwHue80/WtzpbeuQx/z/g0BqzJ+WOB8MBVZthT0ZX468MTuan4mvclaUG35dwnuWfkUdmvc8oku0Axr8JPyR9/ge9Jxc/QOaex0HYPc8HHx5EkkiqgrVR8inP8Mif1NFLMR7JJlOMTe/g5V1+OHHVs07VJT4lCe4gT+EVR1zxJn6jB354h49+a5dyOIgRQ3IZlnDnf9y6hwxpoaZeuaz7Btkb5a4++1rNupZh7tBZGQ0Cyv2JGttoSeJbJtoABSm9IZ130jH8pV/9F8UXpbN7Kmsxvv6993b/4uvf333r1bfLR3rx53KI7n/yF34qB8Be2/2Nv5cDbpNBnU042lCUT+F5eCJvL2dXbofH2r36b2S7AeuXODzDQ3TCq2H37IDa//Tf/emM4p9o/L/7T7+2u2iNEF0XesuXxpOf0Q2jx8aA+7d/6uUcknt+96u//a0eUtuGKnFHl0ycFQ8uOJ+NgfQf//mvZHTndOv5P8wBtx/GaMTzjiKE1ueef2r3uZ94fnc9htD33ng/Sxru7H7qcy/mMN5zXZvVT8uTj8KHf8vwW4ZcKN1989W3Mn0zZ65ZI2u7GmV4K3qjo7819oYn0l4Ob/3qEL25wuBL3kl5g1zyby2Ssmcs3WAc5SffMtyRpZSDMEZsO90JWvxQjlJp3Wkig1P8tlUBbNm5J/VVjspbuYtbZAnDd/K9cHovgUU57Z54dY3Y0HZqVVnxMmky6CbmXn7R4w9KNAjwDkM7vt7z87xRmoX+R7PYPofihm8lNOG+XFYOZFJbgsY3P7iUZTjZNSzPlVUEokU627P3vpWOBAel9OWnI1BJQ/lro1FVYhrZ88AOguWZe/A3Lwe8HvfxsY0kCBE0c7Wj3KKTagW3h5ycYLzCNqrUxYd5jjzFnxKdBt5ogsajxk20KUGC93oqxxvvXd699k52Wo7P2TBShT4fw8naJrvTGrqG0Dw2fIyo7jGkwQnTGCAVmsAo6I78hC5fWCg7jLOYuo1fGNxelYoUgaZQjFEweLpGJENLmr4q4NCjgBQk61YejG4pPbSYHrxrnDMZoTD11E7loFw01vBJmvJIKAoUzEP/yFM8Sy+aF23dIoEQoDv+FKZGE4zC1nObgg/e4GNcLeFuMoFBL37wn5Qm7sIx9EyDBgSV4q7KXbjElL74g2dQabz4qnDu7QHkzkMuuSX48KK5dMXfO1xhY14CjXYR6vKUfzjEKe6FsIDgN4/gaP4CSw74Fs/WeI1GUDkmiuRWXOkvJSIOPAfpI2veyRC8GpOuAofjIQ6tKaKWMbliDGjEpdGREQZUEjIywUA6nLJ0r9KJ3KkjZMgxpOih8vE4+r6ywjABPxn8QQLkUZrqm+m8JPPDOZneHD7A7bw6dCi3cLV3Bg+HPehrnmeJSsOXDOKPuA7xNeXoV2NrS8MNfzqSmfuU2aSBn/5GbgaOQbRGoqSt/G4xJpN3/mNgNkZpgx8/0Vu5C75RuokXXFO/k370CELc+XUBscibU28pakY4GrmyQNGkUo5cT72TdzsJv/CcA2sZI2Ts8O5rr7y1+3N/+gsxoLKgNTgc/TDnZOHPk7tnc4is8+DoJDzB/0hKG2fv8trjQKQdI+jM2dM1kuDv13ClymXol+8zOUMOHk5ZHLOQNvoTXRJhTPGvaZB3hoBOLhzWZClxDd0zMV7uZW81Z76pEzNqBPHKu3itabtTmSmwrsgUo7gMxEPRiww6I2bPPX9u95kXn+7Iz2tvXdg9lWNSvvzlT1X/aFzhlz/6VPmbElcm6Ky+T9hrb7+fhd3XshD4VPFod65lPRIDKSSVH8lO6duyP8JVv1Kdy/YSvGDKp5QTfgrpPc/KU9q5lD8nD0fHr5GlLDpvox24G9tyDZ/KT3kMfyrDcOY3eNCFsyPbypVer15OGtKWnAdxOK9cw+ZRYJ7Qtjw8xy/vK629ICABhF1brsN6n9sAN5TV75OogJXq6N3yI36wyY89lC5FbtsWbOCMGVstHDkSfRrGKss3Mhppo0ntDLlYeROvejaJS2m+EmcMsR3ya51sZZ84W4aHNWLsOzSNw+vtaT3sgz3W08cykqSFGQene1ajjhLK4nAyMiMtU8jXIzByTNjRjbHd9C/MYR17d7iiLLbCpnD1SH3RcDlz0t9+80KVxdlUOIv/nk1lYDRZEDa0TIEZPdDLUAFNgRF0Q3oKpo1S7gqg4uGecIYZAXNEytF7plfGnwGUWfzQMb2EGmKhjziBiXSVbiNOl1MhgyqVIYWdJwUuzSv9eqTi0/yr3KsYCXCNjHjIg/h7gkJA/OLHH52S1OoZlveOv/IKRw2aBLeCFT4A+YdDNPCDKTfp1W+rgNszQV28Cco6FDAPhubxHBqnzJIdiTQBcRo2wI0jv8I3r4anWPMu70kv9zESoAgPGCO5L3j5uRPZwZ0Oqye561lzYL1ZcptyTm8tSjPjRVWcl9JDvX08Rm56kjezUP7WnSy2DTza5C0fE++ObXQiG70a5JUnu8NbGD+0aBCmobwXueA3jUHCy51HX6R3KMaAxphRwSkD8VCuzGZ0tOypP0XF/0ga+Ds+gS59KfcnNV7KOI1DPE0nCnuY429EtCMcibOMjYfBfhw/+ZEPWxZYZG76jCPjjBfvDHkK7UgK2GiRMPHWVFs7UYmzeMJQ8jw/irIomzedkhRX4+soSA3/5I9MESt3a8NuZ+oNPPz1j6eROXzodGWeJ84o8oPpTIqDlxzSaddD1/v5ZFyC+Nc6kWdGEVeZ9rA1LHQX5x5y2jgop47qIDj+J9PZcwAt/Pzdv5ONDrlf+JnPd6TqRAyjU/bPit+xjKj/1Bc+3WkthqkGhvxhhK+FGFnq6+Fu3BjjNXrwSy9/qp02jYkvzYCjlWxbvtB1SJHt9zOqdTYj9crncznvzailaSP1y0gM2dGoJSdt3H2dZ0HxnXxlCpcsff4zz+f4lRvdi0h+GItkd0bzoqPSafQhDudQ3bWAXZpfyJ5RFmV/mFmEOxnGOB1a5piQ61l79Kndcxl5YuR0jWjoID/DSxRNGck/emXycnbXv5Rd9T8VY4tBKc/9qCP6/2w2Pl6jPmhRUuiHp1KFpRglXwB6mXCvDfOw3MG4/ER1dwkO+oxOrow0MTiMnvpQSdsAgQDgjflAGsIb3Hgr/Q208T3D2cQHdK4Ln0rHweMx90VPs/pAGDqkc18YmLiNK5XthWzR0nBxJbIl2Ui5nL99qjK+3pW79pP+1H6RMYbC9cjjsdwpj464B9HqSIjr2RSmNvyg8dRCDGxZdZCglWDui3cHaSutjXQA8DEfH9tIcrSDwm4PIompFMqEnx23J4MozI/WjH8LKE0thq8CQSd/FZfCgOdQ4lvncyjrR2wodit+FBRcCpCSUrFM0b36zsUe9WFK7pmMNPli7lwqhGSP6vEkHpyUVYeri2MqsQqPrzV6AvNkFD+6y9Qk5OsmFT5BzRe6VVpD59bhKPA7UVrUCKfgfbVESfq8kBFwLPRQYhYP6ofhjwKqApKnwKCBEkYznPzksxY4aM/x41Q+cfHPtAylQwmZesQ/aydqaCYdbirgwjH5XbyvoMAp7SSiHPqXeytLKULgwMC3J3Dbszj9LiswkzfFJL3gEzH/3GRLDuPqPQFtUJo+uQgfoli0OeJ7l29xva9eGHoZwcez+NJWEj4AsAHmIZ+fRjYCmj03ckhldtluYx3ZMlUnb86tOpYezhMM4nzhBj+q0Iov0mwOND4qcN8mfbSWrsjzwO1lb5AUev8Clus1l8G2Hy49+8DMeqeZGjKKgSYjMDdydpZGXh7w2ehSjSfKJBQwBpzxlqCHOv5kxAhNWBAl8wjAh8bePFeUJCk7cI2RFJ7GiNgvmzFyyC8j4wn5CAEato6c9T70y/eimWHUEa/QJ2/9xU8O29AmfenipeJwV/6qzgpvuQWOvza9MpkEqB0wfvvrwyZf4oAVJh5YiUo3r/FLnT2VEfDIozwaXV5lL3+ThzHwQ27dSCwkeUJg7pczcuIOMVbSa5/NuYI94HYzeEyRfff193Z/PkbS+1k7o8N35dLlpkFngUcDHWl9DUxk8VR08JHIvT2Vrl292k7m8eigz730bD9KwaQZ4cooZuqFTMqH40/Ad5fsYKNPPvfpZytnFkf7yuhYFzZvRonOR4yf7q6ctNFmV+yQtHs666ZOZVTqqK99wytwHYUPc33QczT1Tv2kv+/kqyef/deFGUZ7rqmv6a2cyAHW72UX7KPpIP/0T7xUfbYWi6/GEt91SuGvHo6OM71lf553Mm1jx+xPf+r84M9VOe65Pu973BcmIwfcPtTy3Hzuv63A++5QFV1h78c0pvV94HsvIGewZxHD5/74gJfvXsjeg9D73dCy8N0f1lbrQNwDj/cDbm8T/gDU9qq2rg50uqj3xQeCgvJ7vRwkacNxKe2WH6c+ncvoJP0x9SieDM6t0NQ9COd1H5n6ud42tMWn+m1U5LYgHsbdgn/k5bGNJASpcKdDDcH1BRgKZYTgrhOV+RFq64004ovI5L+9Eo2dcBlnTKx1HnBSuD4HVMFkuo04xnnudQwVm4hdyNz9rBfIIaGpsOY5rWPy1dx8DTLGRRmNu6GfHqOUzSWvBt4cKjZKi/FUmgLTHgz2JXDt5CouPBp2Bcoybq9mM1CqCKMEirvphTdZENwDX+VjyKiAQbVGMvhL39RciUnj2OHSJD9D3glPjTM8aofsqzGUpEG5OkRw0dFeVvIDVytgaChp0s0fTiao6VfoEl5BQ2uJS+AGJ+t4AW7CBsfA5xnT4uSh5g6akyn+FDpF17C8F2v8KuyJs4Rb2atiKFt+oNHIwbX3HKj+88xvGTB9Daz3FWeehxZ4vScFbUbTWvFbno2VNEPvGEm4RFZG7pBSvqVczag2FZeNxkZ/zAtauKDJFDADxHQHfRDZy4Gl6JGu9xkJidSHv0cyl8pAMQIz00mPTryGRAytyWuT+3iXkJjqmbLHN8aCnc5nFKlTZTGaGEJj6AyPiQ6a0Y7XzqYT7j5fwIZdgUEbhw3y6icd7342NpXmnhwFVgzxOloUPngH2/LJC5TkM8VXv76Dz0+a4I1Md+g+fOEPHn/qpJcHcDeyiWd1T15WWUlxlPToAVNPobgxSn+IWR2tllWmXyZuYiad5ivGjhj0HvcTMVB+5w9fCc/udMH28YzQ3bo+R5eIa+qNDqPXLmfPGfIIUUeEUiftA3TUTtnBr46eifH0ZPRC0KTO4Wt0bHRciiBlFeM2D/duZ9oqeqN5D8yZGFqM8CNHbsQAynE+oVvZGVkyrm9/MJvgYuKdG0d2V2OQoIGBL02bOQYqfsos+KOg7t0LnqTHuLqXka7bodG0IUcXfPet93Jqw0xLWTf0Yr500vmGBl1tL8CmUuBDp2nCs84QpNwuZhftN977YPdBDEv7HjH28PU+pyAf4u7zXi97kZfHRFxv6/4D6BKwF1UgwAMeK96608X77r6XRt0P29DcD7IfvKXxqGCAwu5Pbz/6w57A7+Pbf3oY7I/K78FUdGRPnM2UbMr8QWbyimiEvZuu2YgAS0YaJWFkkQwNAxalB8ODI4Mxn8Q9tpEUGa2iUfFVFBV+NSzCHP2gEs7oEA20LzUqVaeK4qvRp1RkSHwKcTbmihJJowH/7cAHKDBTWXAp/60UhdniUXimRa5kiuV6DKd3P8SqQ7sXslDw8y+cKz9M41RhJsT0wBgiM7VDQR+nlUOuEZr9Q/aGPoaIbNhTxDoHtFHGSsYXWVNATSY7FUeJxWjR6CkKa6hQozevQD1zlDsIBdyCTgIhsYaLMAIOAm7h9cu9CgFy8AmTp6tZP3U1I1YMxKeibPrliMD8jzKET9qNlvVUNWf6XkXEf8MXEgYu11HuQZJneKAEx5+b24T3Gm8wwtEsnuveppONM3HzWIcqja39svCiuFf8vPOrMRpoptSRlHO4m9HGTKVlL6R7Wch/lOUYtM5zu51NVtoTjTK/m2H+W1HSsXRbLjfyfjRnStmLCAdRgj4PQy36k14arbuMgPgeTs/mTtKQn/4wqBFCW54an9cncEEZNxiMwsKfVGqcmAKpiCSta/nk37lhxNBU1+mT6s69TDOYVlZO+4mD8e5XGd2CpHUQbj8G+RoyarCkLDhXoz0tx7x0VCqNLPzgZy3RGE1GxdaUGJoZMkt2xFO/yMDRGFnwot0PG2uEJQx9wtgPZFwaPNw4tDde+CTq6I2EbzDxCtDIePPuwjPhjctAyg+OJp3LeoZDXv3Be/XCJouiJ2yv0Q5DGQLdcVt6CeNq5EdHyTPaBXRZQUPn0tG1MM8ULBxRIx1RMQp9IZ+0f8aoEbku0YOavFdXBaaGe/Dj8/EYrNGIoRl9ZHn4Ta4ZQmq3+q5eMYAYTVNu5VIICnz+3JGrVI7mAR6Mp4szeWahQeMHTeBCt6wEpGWbR3GVLzlrfQoPwJUtuUwHb1KyW9Sb6dB+LYvUIwxdyHsiX4o+//zZ5CPyHJ2mfegaosT1Tu8yjCBktL2VNSy+YLuYmQRrlYzSd51SCknn/MfhFscehbt5fUTgg3H/KNhHoPghvFdqD1LxaJQfCblQPhrFDxVicf2L2X27lT9preTUwc7g5MEzh9a2FeD6mwB13ZOvA7nmqQAbPgCf0D22kXQzwshYMHx8O70B5w/pHRzJfhIqP/9RIpTQrEuieLqnUohbDaFK79fh0+CL/qoyinpqIxUOREGkugev+Ksx75xmemTDoFEp0wtVOfcZFd1Qgwk/jhqVCrtWr9NIkXVIFD285q/v5l1BUCyG+ii10Qp6iGNYwS4tYfbcMALg3ZoklNwLPygYJWOKzV2+KSr0rvQFleaNXkZiUq+CEdYRNg/ynV/+64x2abS8o3MahQlHLmmhnEORpMvrKsz44Ht5H0Bfw1NdcC0DEI/lD3K4+jwo4wU6QdGEiVI8G+hG24TLOiefmAeW4gPUtMNr6QidndvRMQ1e6cvzpDXweY2ipjCp2En7RBrJ47dvRN6ywV9GXTS+PSAoib2Qqde7N/P1mjykfLrVQPyP5teRjExB2QMpS1hKT6ddQ8H6i2/9jWJS+/BwBxu8egWfe3+F+OEv8o8bT8bgWPtR4WON8vgbjanBEiizydePWkeSAhkSy2soIiKVVw2YBktRKALYx0jYi1I/Zw72A4XA1FAIEiydOjXxAEp7GuypI+SPwdYv1XqfESMGA5KWzEgXXTXANgFB06oLwqTVoDyD54Yf8zzX8CBp+uH7Po6R1/sgt3A0wH8QftYtpcQRuTkwdAcvcexurhN2J0OGZMBIT+VXolk4gV6O3GyP1SPLmNJ5hLMwiY939gP6MHvFrXpvhMazkRz7/nwq54vdupXRohIxZWg6rgZQrhoQ6eGjemjU/sOsm3o3yw7oC52+D7POh/NM9umiLpjNPk5oO5m1nLYkMNL9xhsXQlN2rM5IjDStv7RJrk0Ye1Zi8ooj1e3BJV2dL1sNfDPp3N4yCG8fkx90lb4Ya0cipB9cu8ojI2HHdi99+vndV7/xao08SxLOnvAF88mmjb94pC0IitIsT9aioPWDy1fz9fMHnXJcxpHRpdZP/AqdV+5ketNT3/u4d9lI3Xt/EGQrqr3w+x4W8AJa7/cB/ZAvC/cPieb/D9Efxv/HpeuuAYUiCEPweY8v9DKdANN4rqDWy/iKJoqWeMWbotrgN3zg2y5A9THdYxtJFuQRZoZDRzVU9pDWodYkqlKCIeQMCf4qwOEnTjQTs6htGqA5hFavSoWkpK13sHA6IwDBM27C4GgPU+VPAAUz0xEzV20hL0YJY5x5VmH5mObqUy4WR2LU8ZxNAad5ekaRHVTHpZEKPPxwMIRYpXos0BnqrgEVv8nzKMEqiC48tz1/Crs0DEHy5dBbCMuXhGkkgqLpVCFv76igvBY185l8PBN3hRGHGh8bxTVKEke+SmTundNNePkWnlEobTRqIMAnn5NKN2kUxzscW1rSYTjyhwdu94VLbO/jV2imUVFM3JEHZFZhF/3AQ9cMxU8J462Giren5SJGyct6i4wk6OyJLEJNwKQbXjVycEBYAyflnMXOzQ6jMQ81XvE9sPMF4BicpLdTvUnCF4n37sYgq6E5aZJFtO5V3tIm7j5NP6qnll9obe/cnF6cPMjn1AcybyHjjCjdzohCBg87DUZeOUaVhd2MQvKvbnXEJDw8nDBrlSoHAT/p/LAcnc7gAcOA4MSLyNSVh4FlnPRrtHQw1rRbqkbjio9m4RsZifswBvGL3sht6uaksa7N/3p54H4wTHkoUzjIjmm0kK/0p3Ty0E5K3uTjYFx5xEsyVfiNzOKcgg5PR8cgYYKnDlCu0qt/bhuLqm8IifMkLXwGosyWC8crY6dPmLZa9TvhMSbsD2cEXJl0TVLyJKq8+TClB2+Xv6KSVSPaKdsYYlczBfc733htdzNHhNyN8dL6k/BVB+U7r8XnSdnoFKHtte+8tccXfJB+5SR372DUC3EW//ir+/RNdUeeyR0dVXiyce7k7li+YrubRd6nDh/fffrcOdnc/e43X40shj+pW/58wVYDKzglCN9KP8l2ZPy1dy7kUNpLmaq70ZGjmxk5svwhoKVR1OXQsehcftWjiH7A4ckPIHgA5gdeH4LnB2Ae02M4PMAtoR8h7o8i4Y8xqR8gRbm2U76FoIWcP50ZALMA50wXUypxYHPtvXLcd8W2HhI7QNM00APj5j4wnj2RDTNXZrHaFhOgT+Ae20hiADTRpMOa9wXZIXP8aUz0QCyUXZmS0U6phaBuCJVGimJ5MoqE/5Es2mNw6MVYTMiAQH7agDqVkWFktIejCCnHMi9XCqPwNRBGsSmEQ6GjxlhgVX4mkrsRMHs2GEmqYZHa63NhNMiLvFGgHfaNUdR1QJIOHBqPx/ijkHGesqCAl6J08C2+qOxV3Z4p5KSnsjoqowom4R1FiSyAF7Z6YwwSbnI4igP1GvJEK19nBEkjHVjg/EPEKEFKTeOoFzaGIRhGn/iNI0pe9tZ84V3il7eBBSd8FE7oS9zSW8I25ZhEkxIZLeyWEp++b6BugYQrD+FjG0bPSYOr4eIh6XVxcgp0KTogeLtPD0C5DEbyEDwW93MRv/oXOPzG18ED1qLAwDXNgZ8rL/nBHyDJURJzrK9yux2DNzZI5I+Bm/UTEoo7HP+UbJ4Wlnr/yC7orvERY09uLTyWFD6McaqRNOVmndAYJYwT8mz9EqrEY7QY+THNa0quAWmcZjsCspBF7hkxOX82C3qTUdN5l6+l85OsMYiMaEkHXOu7hjn+yhDeGkzbCNIaYVIcq/wezRAU/vBuL50wBl0aYpjRgFfLeR/nIXIfD/X7QZiFr3oi+fJO7wzP768/+zhTJuGvP3VuvihbCe4TARdePplE4b+RXdOPRx9czOJuZ6f5GOWV7A300rOnd89niYCYDJRToeNUpqNMJT2TRkRnir6wwNrC7N/6g1dbh46mcbl+6EbWM8XAV+8TV7mRA7Tu3flHThjQD8Lgx+QkeQqMBb6WDuDXQRwLDk/pDB3hVJHdqayPeiqf8dtB/Fp06cvnn8nC8hNdM/S9N9/NSfDXu9+UNUSffe7p6qcWQhAyPrUfjCQfBL2fA2zfuXCxR4rcCLy2gY7EmMVd6e+5eJ4Jf3zMsRwe3sxZcWsGwrv48ijv/vq2BViOMU4ZzZN8T4rjtx93+eMB7Tc8mljBuiFYONe7+Jwz9LR/dUnD+jZ76a100aUMSmfC6z/kFnc7yH3fMMpXgJbeGzwrbNKEa4zQ0dZgShdewHXQPRjmfYVvsLCT/bbvBOExHPk9FyP6YCmeSd6/+Pz5jYahBa3LLR547xTaRhtNJ1W/Qm9xPOOD0VQGl19tgr3ytaZwZiYC+rHcYxtJciPR9rBDoik301VPxk8mzCmbRmPcGD2xnsT025xEbXO/SUrm21BnnYg9QYzwGP3Q87U2aZfplFv3MvxKCYUT/eotWcIaCoCyPqLBCp4O1yZsGQFgrAVCp/LDOOca3dWI5MUPIw3dVrjiwUBjCNV4irHCQFIAcBNnO6jCS9A60iR/BBOuxCc07Ynn2TAxmtEGZtHYSgxp4lB2fcg7OsXfq0xbXMqs9GgB8i/tNghiBneduh1UDA5+0kWThzzOez2KYmjdAqQL2BC7KAxIdN0zigFRHJx45XV85Ic5NO/8kICcpr2lJd97Fb3Q4PO36QbI4OXEs34IBLmpK+KEz3+8wA4vsUN8FzIHjVDXQDSoo0dbHCGjENwD1XQHn8e+whdc4sUeUECBxYcxmuGYPMWI4C0l8JOw4B+Zm7KFvySVT7O1xEZrUjKKat2S/DBo/KGPDFrUbcTI+6kYUmD8OPEUO0PIiNC5HI3BoMKfW1nUezsjsoweU2nHM6KyRo3c1ZGDNMn6vC8+/BiYUaoffRleMSr2YR5dJoCM5h4A3o+2PY0hqHzVN/B0gdEeuqv5Da/aACbY4dQ+TjkZZb/0T2UNTGJfzNQUiT4cOfLhhzIxKk1ur2Ut4fk0Gl/6iReqzB3sWr0Db+TvYhdrK2fnRyonH0EET/TW+9lb6TU7cseh6XiGFG+kYK/G4Erkps1fTS3NuaAHv/Lx5J6/+GMITbj35po87FXWxHsADzi4jmck7Gw+vT8cA+WdLKQ+e/LE7ksvvSA004FXd2/H2Hn13Qs9r84Xei/lcNqgrrzR93QQo8+Glm+892G2Xrhcw+p6DAm7ZJuZQM+DrnU2ni0igfKXXzPpPYlUv01mps5Lt0FTd9fsh/Lym/Ib/QEFHKMrlOBGM7+VVvxsJKpM8bY0uMfFK2k9gDOe/C3Itz/UStd6qydjNOt+Lec0iRUfzXUbTs97MwkQxqGBa577tNFQ/6F5yf2Ajn5ovlMGLf2tnYFpZiLiuzFaKawOPcOTfBpcmFQl6Gmf/j4+4AWqMBuYG57v6fyGA9nHU8Noey1dIX7LasEmfkaJUkfHIBr7pPkJKiJMhm5mXan6Z1TSLuyfxD22kWRzvSPZPCs8isKVOPaZYoqRE+oVls+xEXwiFbf+CY9MlKm3owjayCbjt1l0YYhy6Nqk2EarYfVVh6k3GVxMUzAzf11WNx6Rjj5vmWgsPGFiG88UPgPOCBJNdd0i3oRlWUuNr65FSkF3EXciWVtEgTHaaniqDPAzCoJaj+fGdV93JI8xqGzXr5c+PTMKM8KYStPKqoDyZySiPdI0Tl1ciMSGzUjcVLh4NK0GVdBHKInFFLJ8oQH9XJ/XA9qaboOAbjSovJPgSmf4u6EJvdJ598KVlJe1A9l3KnzPPm/d8r8KCkx+kp18jRLxXuUfQhI8bpIqfBVOy2WMrDW0PoooeYJziwgjFJUfla/pCa9nw7xs6MOf5Cq/xg+MEBiYtavD0JwHhvkHzVKmfd4MNTLMUGsY5ERtowM/tKVPRGYsp83TpkTHkJR7acL343KMl5PZN4d8TYM9KSkH5XjzGF6NwYMnDCAOrFElBpNnP+HOjDt21AjJ8J8hRHGC7ajU4kVwKFuGka0tTMt53nfl0v7rv0JPI8N/NMGp5tVVmEvf2M5DR2+51fhW/pQF+fC/KmXiWU/p1UgySTmJl1kTROZM2RsJuslgzQiQrTzAgpxGjn+mlU87iDVGzY3IgHoZXaLeMFa/9+YHwW0l48is+MfyFZoG52qMkdMx2vjlvxd6wDMa9/1GDxz038uDeOQ7CVSqek+tSnz5Nj779Avnd08kTfsu3YtB95WXX+xWLEbHdI4vZVToe++8n1Ge490S4YytO6KLO7IdmdTIvvXhxRh7FzqaRj8yAO9fb1RCekGn+mon6y5RSNvg3LxHukQovQFQX+ielT95iFf1yEE/zMK35lleC7TxbYtf4yCtbw2IwDIx4OO//NBEJyuvGjS5QywPRub3DoSNv+NVrh++mY799sXkgJYIeIszfkGHukkLXvTlp5A8S4shs2dAFb7BQ0dgyBUX0MbRZjWNzb8ECi++GEORX6OFP2gUFc12mTxqr31haWsKX6p9K9tbGHg46JC70qj/orEBSXcBL3q295ZRaMUL8m8gRYeCvPuKs+WcyDXk2kn0pf2tbD1xI1+GXt9dydeV1/JRT2eY8rXlJ3H7GuAjYmvsjkRxWDiI4Qi2JYB9Ks7lnJ2nsn/Gu+9e3F3IYrtnspumAnjtjfd6SOHzOWNIhWqPNJqIctBLokhknhpGvoJTGSyAvJvek3B4HENhXpHDDHzswmiCkRfCUSZHWMXxpQdpYPjcDN0hNa9pFPo1VBqPxDdHDoYh49PjJ0LTGuGQEpxoM0KmYva8N4WBxlCgESNAEhbPKNqslbIBVobVwxsjXnDt7bmiMhHYwC5ZqPGS+PIJd10CKVuN3fLDG40eiKlyfWgFXNIHJ36s6Tu4oKw/QraY0vJM0ND8QRQdGKeDn4rA9xDg0DkCuFUmcYs7NAW2ePNOuYesLZ1ZOyMe2PLKg2dAccLWvXB5AUexoGtCM2Se9wyY7LlDefnWhWvlHSZY0PyZp3O4aCDevnIrX3xtU2NwSD/+UvSjSD59nqKe0ZWOeMYPrzhc9Xjwx/BiLFUGE1Z5CO78/9gdA8YiYmtkVnorWQp51vINjxGDf2MYDWnyhQfyJT5DiYzGq3WB2Cp36/nwEYy8u7ibUpP26oGuMhvshZzHP6HXqRcZzQhjJu/DfTlX593JPd6N00h5Aj8+51KXVLnb6cl2jU/43w7cipKwJadikP2pt3rEA0TvTAOf9JKq0fXXt1GkF5850yNM6DjQOn6fe/m53b/3s5/bpxlOocjf0u36u8oE2TL6eKfrgD6MDuDOZb+xp2LcSHd9MEJ26P+vZ9H31cjf29nf6L233s/02TO7L2ZzSfpOT51+snbo1RhINsU0Yh8mZgPgM21w7d1kxMhZdva8YxxZb1Sjb1g8tJaSIVmbYSSPobjkUBvwRzkbGDvcWhyu+i74pyOFH8prGviFE0y8mu+SoiDzgF86ydinPQhY4+6VXeBa0xKAZ6i283rjNo0xYoog3vJjdmI2WU4blfaFLDlfbnKca/CQPTighK4uL5UTyJqUS2jOD7zf0MB3g4mf0aF7SaMu3lBPXqYtxAszRB9tFI0uMRByLlOqNnY+n5/je+RLG/VevkQsGya1vTTvfx3arBPlJnvzXLKDQD60gcrQYAb9u/grAlm7kRFZo0TXInv2J7sc4/xKRnDteG6GwhehDLizZ7M9kIGbyOTbv/3tg6Q81vNjG0nWFoXbafyP7D7/8gu7X/jZLzYDf/it13d/8M3Xdr+fn8qC2d9//d0QOQKnd/BWKoXM6p0RCnPXBJ3leSWAzm17QoQYTlilAG0s2cLFkJo1esUxZjAtPwsYx7KPyZPCafQwpr2RvFxPGkynRIewzFDRFQmGV9klTxocSgnc+tF4husCOJZ1QlR46VdhSC/KAJ1LkQonKGMM6KUHQTJD4GvgJO2GxQ+eSQ3plGNeAyccmzmN3nhP4yasDV344k5Ixoia9RONlMhwFYdLXuY2aWj09sIDp1crDTRQVEkyeRraVP0apBAUoYYVU7BlaDpYmeXRO97KW/GGxsJjhPCESWtQjpFmZG5oAImf4U/AyVHM26alIbhxOZXgxnsdebQT8InIzAs5Xdx5fa/nsM7vX3BOG6MvX14m7rEY1uJp8FTqZ05laiNyk+RLizUU84zaKSPpckM9asLzALWM5T1Zk8YQPLA/6isecmRXJf9Bl4r/gKcskQWGjzyleCqb7lUsG5o9+Qre2PB7Tpnge+MpQ/H72yLuQf7Jf8ALBWwkXFmUD/GqrIdJdI7GvrtR7zWG6axFxtQZDp/9tG7vfnAlO2zTh6mv0SvqAFE699TZwrq8memmDz881E0h7f32zXwur+6pA0HSH5m8mgagi73jw6jRiBiUX87GkOoxfbriLZpG2OUsWw9kd/rX8nXc9/Mztfcf/NnPZV3UmUx93dz9zjff6skGf/ZLL3b0B25Th98K7PXQo67dzDq2n/3CZ7Po9mT1rXzhG9587dU3pgLn2fEgpuDQ/E4+4dcO+HJPT7+LsTECux9w9ItRo06jjCBunB3Ah0S5DwMe6NwyrjpKQ++EHj/lyFhVdEu/rXJGy9LnLcnt0ikocdYvqY0em/ImJPt1KOkED74rs3mebIL23jWueTDdJp62g960RcuKqd6WFjlvxLm5Wg+VlqgepQBdwVsaYMj7pLg9Jw1h8Cw5VGaPYxQpC4MaT2V69emzp9pmm2LuocFNZ1KqvCe/eIqPD3N4shyQBSbv6oX2s2uKtO/8Fv6UG/3GsJxRouy03lGiG13nhY8YYH2wvb1eeDobnsYosubLzBR7QT5upW34JO7xjaT0Lv/0Fz+z+6//i7+4e++Dy7u/9ff/n90f5NNOTNF4Esj2WKMsGEv8l8ApH34IpfcJnUK1uJTRcymVRg9EwR0Lo04EB00NXws1cTGQ0Pk3mjUGE6MkuDNCBNbqoav3MucbpkoHc8RROODvBQcEmN9CDS4VURp6e6tgiDd8aEOXHpWpO/TDlggVuLy0EBS99ELKXkM8sKW4DZX4+CQtApuoxQOuv6Rfv3ijD7+8V1ACr9J87qXndz/5lZ8I7Xd2v/Hb38gnxFeiOGezNhjlIf8lrzzOC67BsecfXGWisPJUVvIXOvDL22Rv0mz6Gx2+Jmv0wRA0+ETAE19B1D/4+19ONV20SXVFbnqh0/Rrk0yCG8RgSC9QxTmWvbcgEFc659MjvZWe+amsfzjVkT+KIjSE+Q7w9AGB6VvudL6iuXLtWt7tOjxGtbwETclY+QArbaNWXZOTxPRClamE8Y3UOP7EJ/qMwR+3W/JRGpLYKoNHphuaGMBr5GfBPRgvxbTnDobdn6UBku9/HR0dxKlveyzIA53CaCGXkdo9GA+mRfGwbVxlZuQXDy/k8/9f/s2vVbcteTob4+Iv/+LPFIdEXo8Bkl5XjSQGhUNk29gEgh7S6NMdz50/U+WPLnrp2adO1QAZRPqYt3d/+N23O6q0/NzBL0f/fOPV9ztarJd9Osc90TV64Abgv/jpp2ooWU7xUy8/k47Jrd07CbMf2zsZQXrmzOndZ77wdOnTGenodnDS56bPbsTvZPZBuhhDzAjSd99+L9P6l7rzdo2jGC+Lx+VHCFOj0KiOa0fo5Br3iC7xuSQNcEuHeHyUg+dmgM1WyJvGcta7ij6pjXwrt+DNr+UqmSAFIrVVR9zxbcnEwbhVEIlDWsjIGh1B9960WwRDNqJWXIvfWlzGTtuExLMWy1Sc8jaimGvTX21T44aupo2+xO36OCjjtCF7ZTFezYO8NJ2UJ17gPTrj/VCnnWVgPOWrs+1Ei1P52pI/PsiCK14URxJAo9/GuIfifdBTZ1N+O+AR3Ogv9lQ/bfOtKGTl58Bi02amcK/42jF+6oYtXXQGzpw7Fhk+W5qdQlHDGq4ppNJomlNn+ZPq7sc2kv6bv/qXdv/On/vy7n/+W7+++5V/9gcdKpUx84IyTDA5xLWBT0YsujZ0r2BKNMamoNaIxvVkmgua9ooom3AgghNlFFhGCjPHugmuhZzRIve7CfNVWtcuNZSg5CEoCJRCiw1Wy3RVhBaqsArL1rNLFAvJTTHpXIeXdbfSIB6GIHjQgxZmizlXiVBIBrhYvtRqCyDghr2NZjVecB4KQkeHVDgTf8qu4tAdnCVGvmxXIM8qKw8GD5ySa6XJ3Zl353O+EfE8HUPBPP6FDy8HIMZa6DubKUDUqWgqzKQl/lQKuITR5rImH/2LV1V/0lZOYEbwA4G4uPWFk2decLask0494MiPP7z7acaTj7yVoMEnnLALleU8ila4dVeOKB+cORcoU7qBTOU9nU/9fTQQ+amRdGT3Ur6cMbp4I+e1qWRnTp9OL9lXlHpC5DDpBtYfksmr3kvlMgnhv3n4U8dVMOmWnGatL3nXNG7ikacfr8OXx3XNw2MAPwruUf6PgfJPFMjTTz+z+/RLL+1e+94rBHFPBmRS/dWgqWf03jiySe7z3n91dmuIAsBwsPv0Z7JXkOkouoVs6olzS8bOncln8fl0HhojVF/8iRej4xIaBBoRh8RezQjMiehSZWVtk2mGt95P3d9zU2fBOqbpB1zQkX2EOh7E9kkikQAAQABJREFUSLsGxZqp97IUAt4JzeHimSp858Oruzuvpq7EcjLicCtTG0aFrF9Ub+X74F1j9kp21D4fw82zBcq+WDOatLcYWySJHHA4iQ4L1Ec3jW4sCIYkjj9wi8YHcRxA10fTWfZLc7IC3a1xNRrypA9+Uuerm9AS/JX9LS/Kse9S5JfLvE8Zt+NJZ7SwR4/0QxG8C4H8GSBLPuoXPPtTdnKxyiFfBsZIcCAsmcHja4eyfUL8ms9Etiln6QhOHdGJO3zYM0rwaHPiLfnTRpLX+42iEIP2Pfi0KdGZDOWnIoNncvcz+tL2PKDyNHo7z6LXyTvalEyLqBcShN49sA36YTf4GUnNX+i8nuUSRtSUlWkzI0W+BtRBaD2InDJ2z6cz7CiyjhKl/Wf8LPo20nIbWV7pOpdTmXRgZHl+jPtjG0k/+cWXdv/d//S3d1//9uttgBkN02v3KWiISKKIcEc4x5BgQLFkGxZCrTeyuE+BGuXAJcw3WsO5MgroCA19LcCEYUTPXIv/0eyGrIISBA3jLbstJw0jCdIDO4u7wqzAdw1QcKKqQhQ/NOu1EM45jiThGyNZzf3aLpUX3b7ga1pbBVOp7RTNVVhCtMphsdr10MGiza34LAS2oDFJVnrc8YMjrviw+IXYvQpciIFBF1h3Q+zSqktc9MF/82TWJmShbRBuwjxxwJXXiYsIUZcwr56I8ELnjoY95RDYLaWWBRooslaNomPEMRIHqriDQx7g5I3/4nGrUpWUhm2VDOAGtAQerN5yQlrWdxl2eT+VPWdmdKwoG01SykQ530m52t2YQrPu7Egql4bniSyUlQT8QVW36ELr0fR+7VyMNvnIpt5ZuL9B5OYJtftcHRw/jmt59+NA/G9w/pEcOHEy0wlnz+1eT7lX/qJfiACDpKOsXkYQgkdHJq/e48iNBunDrMl8Np/z81aOJ9PofOVzL2ZN5qX4bVMrkcsC5N3DU5nGuHFN420K/Il89fapNA4MkeloWoT6yvffir41LRP49PLfupDz1JLeQQeb8M/kqzPP97l48EPXS/k5ocDSiY38CQhdV6OzD6UDdiRfAtF5jKNTR4/tPvvpp1vH+LXh3fDNRx53d6/kc3/IrD3t/kYxjroYWx2WsN8eVdMR00DTwQ/Ke0ELPnoEjcoDIrAPwgM96NRxa0I1xBbt4hPD7dhR61tnGnXIyVUB9n+MTGktHVTCpQtmgPZ14wZH/+4xcVCV1j0aE3fRXrzFlawkHphTMaKdRScZ+u7GkZSLcymDf5Je8bdkAlfjq3iiq4NHZ9oo5w8aRUFywOmAK3MnNFhofT4jReRTWymPQZ22g46Tdu48POehfp7rM+Hoq7G25RuMrYGGXxvgQ2+j299591KnX9fUWUeJ8mW79tBWGU89dbwG3ElHjR0YJcKJYaMU4zDkAVc697y1qzNw8ADYY70+tpH0P/wv//fu9TffC3lGYKwpCuNohlCj0tzI3hSEQCVn/WEyQq0RWdsBFDaFKYfwqGDtnaWiEBp4Vu++wpf4elT9FDaFe7gb7aUhi+Exhg8c5iOnkWRUkawpvHjnAX7Lp2cIMwg3xnXNi3VP2LRV/B71kFe9D6jsEGvxZI0SQhR8lFAPe9TS5t3oV42KCKCFsPb9IbRGXsBTsLWGJVQcY/CpIMJrZCV9rMQ/I1M4RxnhLzqEld8hXjyL0myzsCqaLDUuWgMvfntl8ecaJ4jcwUq3jPACJ1//6z0PYMAHVfMsLbKIHvgH08AxKtG38K6pRXDwyhOjk7LCP3irMBJYg3FLo8kjaXNGIktqLkYNj0ehnEzlnq/xknbOuxIuXTsYH8qBaPLNELd3zZVrmY/O+0lnUKVXotFhfOdfpNLcpDwnrKNLiAh9N/Ll160oh6M5jNO6JHEENW5hGvPfXP6EcaAy2ILe6mbKfqshldsWfS5kbmQ4z5FrFpMwBy+3Fx5JUX0Y7y9lP5h++JE67dwxdaiCtAlVv3LbDl8W12LYG/kMvlsDxHhXt9Y0Mn1o5OdBR0LXtil0MFrW9ItGZ+nTFe/Yk8fSiTWadDjnqd3ZvZM1f9dDny/R3sgHOKO/YlA983SXGoinEyivyXrzT3dZ+vB2ptPscWQ67VqMkU5zZZq7dWUl6B6G0AWdUkvDXP2yhaO3DAtO+PGOqx7KfbibsD090+BeNjbueySuspEOfbP2J9II45N1SsLFq+7O86Q3+qxfjvHbwtunygujYXQc+sRPGQd/9XDunI4nPbPwjt+GF8YBm/jJqPJmLBr1Qk/DY2dsy3D51KvpJi6uKtcaqymvGqx4Usj7LzU2ojdN7T199kQ28jxRI7FTZ6HXX3U6+YVgy/NgiTyN1x6t92PHi4m2EofimYz2H2x77o+zT6fps6++90ozZ5seX4A+nY8RupYonVoyjP5VLgtPS6WeGyNXQO+hYPE37+hZbkakHhZnQTz6/thG0qtvvFMGS9qftR6+OFP5GBI30vXWOxkyVJ7phSlMgsooiVrpgq+OEITDnY+MkIjEODLFRLjEITyddmNVxorEMHC1CBNOaMCYvtPASWMo2wwZ+A/59Dk0xi4jTJzKPwKexjv01y94zJ4FvA4NDDif38of65ixtQpNBcN0FR6tAS9Ow+j2/bDVwPIjADUieNRtHMq7Ale3lrJIUpsS2mADIy0xTNu9//6F3a/8+le7IdvF9FjxgCKoAIBJNLabGOhe+Wx84R6Keiqt5/Is/nvkxUf8wgY8j1UC7mjhMXdxhs5JC/7Bi1fwKhN5ak8n/F/xahiBDbZOTeZpzyCS5n1u0uC18Es3RV6DZ7CsCBtscQvR0KGfEph8jRSIO4qseQAPHwPeriV5tzkqQ9QUx7XMj1vj0J0mSnXA4N1n2h5tixJ3eP6N+1ePA+SZwdF7ynh0z8h+i5yY5VXxaiDpC4JmdDozPXVAyAgYa3984WqLFDowMQZou9IP6ooIZEo9kebhKCSNsLpeZIWX3hZx8xWHHuJfmkpkYuRdJ41e8pNCz1UTP4ri3csXs0P24d3bnW473K/VXs2UGR3JgPp09jZCG90Jdzs5SYD+tnjdXki+VOuZakaOklZHlvbJ2yhswtX9+EDPc8hYriTnIqh5SMDQm7op8EBYA7aIhVlItjv4ZjGBRkkOp3PlbE4GndEt4UZwpKAFKP6NJrpPmbY9iR/8wpXJ4Nzo2dISDmgfZtO7q5AKAGQ6hCnV5A8u+mjiGd2yx95qdwwACDS4UL8oJzrVzuWM5NJ7kHlICLx22FTZU+kwPp1NPo0WrZH/fs0dOPjKndBXYxCeB3AxnAJWN3fyeqBNyHNx1BeYnIy7t9cLXT77oQeT8aXZS/ky/lTkUvvOFpg6gJxA+s9vsRG2th8tk0XLVhZb8vCL09fCDQ14dy3l3vMBx+tjXR/bSLqZng2KZ7QmhIQSDZxGWqHNuUV68YybnBeUzCNaZbMmB+GEg+GjkkHQHYMzKtLRI41ojA49f/oCrMo6jEnSwdmRK9n7f9m7s5hNkyw/6G8ulZmVS2XtW1fv3bPbM+4xngHbjBfAloXAMpIvEEKWjIyEhIRAvoIr7oBrfIUsYxuQBUKWbZAM2IB3z9izeGZ6pqf37qru2res3DMr+f/+54n3+3KrzurpGXvQROb3Ps8TceLEiRMnTpw4EU88KY/FvjwTt8z6g1N56FOGHe9jGGX2Enw8Gcq0mc5rr5XDfB+u3pqtYTWOE6vhSNHt9GhzRhSvlEHUzJDI6HwMEp4jszzGmrdAfDqAwnKit44BWMMJriGhdKpXO0vKUo+GxPUNBzCBXXyAD51vR5ldzyuW0Km/pcZHsv9A+QxGMDapKZYizqWKXnt4sJougKmByriNMQuh8gwKLbQRAQy4OkBZ2hPVAQESaVu6x8GR/InL77Rbrq1v0epYyR9eo5PMtLODDwkMqeYFu6VbRoWA5zIrDbuLF98L3niM8rHaG4E5zQ2c/Gh658J7NbQs8V7P/g5fNzeDtP/t/ZvHdmePZuliXw9lTz40KbidlJW5hc4OU/FRjjmA1Mw4s5szKTBFRsbI3JSPXkOf0KYMQKJ+O/wW5IBWHGNZW8Y4yB8DXiBrpHv1XU1O9t7LPgpfswelT5MnoX0lMPTYKR72CHr1g+/jHA53PKYrd++jk+WheyKepW9+y2Rv9ET7afKTYdsU5hnl0VmR/5ffmL1K3vS5kuUyb8LZx1E9EKIfSvyF6POXo0/eyQZrBz0+98SjOdTx7RwHwkt1pBu06aLq0KBek8wL2Wvk8EcGkg21fY0/ZZaGIaF0YAGdRE/q54wAtLkaMxhL1UdJU4/hrTrpU+q9DYCeg3EN3E0TIzLBWHL4xG1x00MP8KJjeY+8Hm4sO3r0evZj2Rs2iKa/p8wWNm3XsScQqqUtRxdMjvWMcLTLD27Lvqd/5OEgoRN6CvWOwFBy9pPxsgZv2pVXTptVT4Ivf/tT/AxYxp5ls8eyBKuNeWBM3hGCc8ZBMjz8TDQCExad8zS/TVIfBW0A2tW/yTeZ3c+d69wNVTmOJUdUrEn7YdxD/JYrwAyjZ5/MG565l9ef4Qc644Hbg1LUBFVzVX7bIkBj6A2NzSP/lrM058E4cCVyW7ujeD/czwMbSX0lVuF5C6OkooCFuxk8imVQ+PTIrVjtRgmb506n4ZYHBkxdvJmSr4bvRuXEE560ZZfGWNLSa5CkkhrZplqDkcG0wpsBbTw5szS23MA6hKUZbjtwobL5prFLcj5BESUUY27N4BhNTApW96mUzWvDSBLsWSIhBnevGC7G6xQEUmeBK5fdmeDgIm+52JMex/L3PAM/BTyKbj7RhZP4hh/gzRKlT+HilIdHrsSkpk/u1ffG1dn4HmdZeJQPaWbvwlKaQck+a+jMJHf4iD9oZvSdibfk3OkxalnawVr4dqjtXgS60JKK7HlKLIXiQlsI9E89haVcES6qwpx0JxXLCr4z9GyHRteUsQl70xW3+MaImUMR+2HVVJjhe6wVxF/tOekpue06LwyMt9Bba0cyMHGDU08oTxP3D61iVn321wBZ1jxyJPuZAnwiyxBH84wmvPCh5Mv5IzND52BC55opT8xv//5W4sCSdeew0SEXs4Sk55GREW33fazMkmMHTlaPJcnzBh6ZHw/PhRgp+qckL3Yccf7EoUCHTh+Y/vRezhCiJiq3Me4ZFB1EY4ytsJZclryueB5+OlZZ19+bySgZfTOnYNMN13J/MccSvJ431c6eOpXN2M92OYbh8428idaXbaIj1gZt9UHfO5cu717N99SWceSzITwz1Qs61BaUa8Jh8zRdU14kzVbyenIyNtjIbTLDw3Yiy5PtU+2Vwz9tICh7tUfxBPf01K3AXJY+3bI3X/PmB9SGqmWgSX5l8yihk4eF3gK3YS3NLbeIpq3Wc2kKXWLlSc7Cq0MNxRGSxsku39QvUerD6GANqIu/pLctIQOftHdivG6PjQOrPPyysZpB5Jwib511L2bw3hbgbYTxZcYYjwMW2jd8sCp/Hw7FL3j2HPq1JVikT5gyPfZu3WyrMQvKdZ9lfzP1NMlc6coYcdmIKF0HGbTbcH0rT0YF46f7PhzANyqPYkyyTXx+w42k5UXR0BrmZqxc7uUKaZSBziWtr3lGCC1lybMqUEaW2azazYVb4r3ttiz6CLA9PKnY+s5asrRxyqBIlY3C4niLfBepa8ApRQMqS5obnp2oiBoKBi5hG59rlPCg9Cyl0jTGDSOvg3zirhi40wCUVY2poOi+AKgUkjJu5LyQGmcaKHRpaPyQXAMgMJQfWgXxeKQfSa/QSUB7/hJdvHMD5Qi0aOXV0Ntgx2PE8zQdDw4zD8K8hG3Pk+SVjofLWDOjezleKW1JAfvDz6sxvChVxzMMQ2Ue2qsEtvvSmp+FL+gT0onCr6241nXqOJ0RXQYTfKIwDURo6sb/LR7ercSkpNz+m3zjqp/8eAmgNiUYfMWv/MPbPsckUpb78jdyigvD6bmf8gxmkTpIb2XekAvXdV3bgZ66TV0LkqKv5Dtcly779A6PJu9ljOYYar6HdiJGXI2nrLvCr/z7BXTdHdAcUu5I+yA8d+P47ZjvhgNtr2Qs6/OgD+apz2uGDq829yYOQ2p5msSTrsmctk8jRozyAc+TkXdvpOX15eiHy9FxhwP9VL2TSAb2I4GndzLspvyZmH0830f71a++PANqEk1O0HUQhk5eK4MnfDPwjPx/+Vtv7m6lj3vb7NU33t19Jm+qPfv4+eB7PwbUxd2Lr7/ZbQU+CfJClkGq+1LO2xcv5QDLt3ev5y3aS5mEeQOpg83hotGdck/k7bHuA7pD3oGiztk69t8wUpx541ynq0dv1MtjH2NrVOBA5zo9dDKvrnAH6iQOF+BvkA9wItLdyyd8MEkDcyp7vMbAzCGa8S4cfThLUsaU8Isu3/exwOPx0h/y9jnXwsC5EQVzNzcXR/K4bnD4mJGkeNQH3HqTthPa1ZYybAFaOOxVO5+ls+UlsjRlLErRCVOflW1P90YTiEWfDODUpVz1kPui8ev/XGZiLT1/aFVnxmRXbpoqcdLnMkaesjgbvDy1IS7Y+mmR6yFXZOpDJUl8yq+23OjPY2meH7RMnsKVhOmTbldfMPZOneVOB0pQS/HG4RoAjf1wPw/sSbKcRhmomI5lEKkrMOWJtx+J25PX4qG8+dUOGg6AN2jJ04aIQKpIl13CgSR3rbCNAacI8anY8rAQ6jF0kpb6K7cVBykqcRqRoPDqGOzXQNlEXqpw+aG8Is+bgHHLjYmdZnfHjs15IWW0uDZ2kGeNhuFxhKGVwuD1p37j9dFIBFC9GEThT+B8+gH8jSy7nbIfIPA6TDtQ4rkk3Ws7A+peAScNvgpQ+OCkVPflJ7jsU2B0EZoC5oInoXBEOPkbxGHMFsSqN2ERX29HSPQFcwaTvVSq+GgUNHxodVVQseSnd7mGjNZHmy2hVNTwAO0joNKVMzAs+jEaSnviVxswknpYaWEHvzw38md/F2NFu3SfW0giYzxJx3PMfC7FT/6SkIEovEkBWWGrMr6ZJdX3s6H+RBANZ/Kb/0M79SVWG0PU/8Un/XBQp/eLY/hxKQbyK2/Na9tddgvwudNmeqH5qsHRhvEYTJHFoyqxD8mP6AR1vJaZP5kRyIg0eSsvSZcCvHIT/qFT2m+H3xgO0FPku322Ep+HJQuHbsnH1mz79hjDYiZEZNAf+c8Lmbuz8URei0549tHTOTvp6u7lt+d8M7WwrPXs4+daoZad9j8eXXUtRhU1RNd+Om+XfeWbr6Wf8iYdlqdm2+LGQPp4jJwVfHHgtSyp3coS27s5s8l3LH/XZz/eSVG3JCTdq/u3IqPXLuWspmeebF97JSdjW37ztpoTjZ1uTCcfLpkU1hsT/el6t77ZqMC/QzJrssOYsvRlM/XFTMxuvJ8XM7L8VbAl9MmOz+R96c3VFKt+97uaPK3+BEfzBxjNvGSOKKjBGq+WYxpsw1h9buUDrU1rKCdjdWxwVXfClbjizo1/2iVohmYNmXrUmxiZovsYRR1fViV6lU8b896NUfRIlm7Px1vkmVFUOgpLfw58Mx36WTq2UW2kpe/US2zqEjljOR4JLUDWn9RN/YX21kLUiH3y0ubGum6JSLqqWcJyyrWT0y0TWomwsb/jMsR3knlHHB4b10yUV4mqCLe8DNx9yHMsgCbMJHuf0jpcux7jPR9SHm8XevPG96VLHVPYJsaXX094YCPJEpTB6UQETOddBgKDgbsZc32LZm2GbmOGEe0MYaKgE9kMPe5lBofZTuLzw2jiqcFky2Vt9MC78nJUUHPPlSzgIa+TU6O5sjG2BkDctyfzCuvJuCMJGE/JSAlhjyikxQm2BiEzxGXccFFojU9zpD51JacMBkyobH3bYdGaGAK/dnrDw3N4NG9XnYpyI3E1ZBKnfY6kzg9RAClL/RQ+wmQJ0WNoC/2B7J/7GoWNcz9LZIwFNLRjgtzyJgpzK1iE73CAu+ngk9Slu9z7lhJDkPWvLgwW/Cusnu5/MujceNCI0O9cLOUL08ZDP3aotyTtuToB/mo7Qi/f4B/c5AH+MQIHH3iDCxwn42FM7jzHQ6ZdTz5cmTmVZQInbR+/8k7rhL7z5x4pj3e7S5UJcnY9eMhH9z9cfScKj2eTwZm/kEvZqZk4xNvUikfC+/EsoQvNojoIxDfpHg/fy3e1XnzVq7tgnDeSZYwrN7M/ZV4WYCTXu1QjGz9ibweGEa9sQan4QSTw/1qEqMbpllbjWT3zV+N/+0ahvL8dfmM4wEjSWJ0YkQ8NnjYiq+Sky9xpK4bL6muuvQ/s7Kk8kgNyvU0ZD3uyX4lei4hGP0a/BdfSYasGI//Tr/QHp1KTMRMp+ovskUN6MUI22dC1DwcPJFpXfDOGzds5QfvVLK3ZC3Qt59A88+j5fogWNHmjg7700ivRXdkvFAPp8Xxe6s0LF/N229u7t+Jd4nWiY9F3OOibdIezjdrXkwjCH9y9YhzhFpe6VA+5z597dDKKeHEuZe9h34gL7+dAxYFv3uKhtvVNuYJz0Eq+dwhcemXhZFfq3kuUCP3PHqVLMc7sq72S/UkPpy4N8gb/5JuoZSiJg46e7FiSezR57gCdRHnJUL995hoeq+8BzVMP7cozZB+RPUVn4/2zHDieohI9MjUkbPRsmgO+O8LosINIEOQAnSPLJtvjIJitDxJDy0bbwuhaPqeo3jupkPJOWEawVvjiS6/vXssxFBOmPTHnHqQdqvsGfugychHqW8To0jL5EEwP5Qw1w5XwMzwfSRi68Nt4HeaFxs0JE6OumysCMryp5BzC+uC3D2wklWNoSm10Wh+F7V4ckpM4nYWhw+DgUcmo1gaftFl64xm4HguegrG/Z1rBctvsi1FxikCjcuvy8FAuBM3QgqFr0KpQ5vlqOth0nlEO7+TVwm+99k69CGnudMLQTJAD245TVo9gY+i11MNMTifMbVNByle8yUtxGUCdlzRxEcCN+YQMW+qOLH3pGMWD4uRNnBN1X8+MbAa9vOFn5sVwUjl5gkwd3VdJoztpSIdbWfVeJW55U1of5SSugpa8rWFgCbNmUZvyax6Gf8kDN8zX0hbJlgE+Ci/tpawlSviLFqBFJTV4lAUdPqDJ/YGBFQogSQAnp3/oqZIrpuFXWrPtDjcDnGGEptYafv9SuDZpp0gbjWISnx6s3gqXJ88jK6ifdG0boKZJXzzZyFNqYVuBRGoDMdrBacMmBLfsSWoJI3cWBPw7ltenn/jID2a5JQPIhvByABk5PFkP+zhsjOVLMZoE/QTP020OZCAfnF1KR9lX8gYdOTPJOBljygQCj1NcjS2yOwe3whhaW3f3HxymHQZma5LW6UHzfzD2//+kXr18affi17+0O5fzWZxsTT7I/sOnYuDkSTN7fZ98MHScobU1fRJz53+u07emT4h3Ls3D2j5/1yNTXrY4Hi9k/Of5m+DzM/QnHC4249ZIioeXPLT/RDYqL0mf4GZPQaP0Ry8XfP7lt/o5FMuBVgBO5e/jzz7Zft6+GrrI3BvxFr1XfRyjP4aZt9RsxmYc9WUU9WqYQtXhXmcbgVrUzH14k7wrDh96n8Sm56FaIA+MhbNHT9Vgsf/z4q0r9ezMCdmBGoSlooZO+vLW7Ye0+/xO39kyb4RM2R5m4lmPUibwDDS8xacNtOX2fuVFSGCUHdbtjS76lZ5cB1fqw+1zCtvaR1vaT9TPe2T5zDlX9oN687n6G8KEykDvWtR2ty4IuXfAy8FA95HbyFmUjT+6Z502bj/oHi6o1IX9I27iB/+UpK5it3JdDgEV54AfwGx3h8AKoc9UHhS4hfLIozjycZC0QPZXtZMMb5vBdTPcVs1vL3OewGb4aB1bzJYnUR8qPLCR5MTX4zmVU4NzZc0O9iiFCJZAWGzu1tCs8xoxqRZmIJl3xnUx60iWSuQBh0Mz4DKWMjAFx7jJDFTp0GXyGEvgdfQj408t53iSlM1AcybEI7HOH/eRxiiNtkM4VVdhHjw7YZsAsPYJuA4lnYDrAcrXGspCx2qhbvwNLIYLPAU8at1AHjzqoDOIrzETdF41v3zpZGZmlvqCNvgv5UypDMVFy0DkbeuSH14gQX3dyKCsXCpoud2KHv4WZOBqTCQ9HNvoHwMpUcUVqlvP0pA4Xin4OwDECr++dVRvjWUsr9LQ2ShpZfdQvBwoeiGK1L4F7X8mbmHnE5kJ/fyvfD2fSckBd8GpDGF1sj4nDu3lba5A/E27JyV8UuelKNx7BVZeMyByMcsPeTvxWmbWIfwMDAGQbkng2LHAeA0uAc0O39NDKNfjgaMIDW1oHCNBfnTO4FWZ2vClF2a2PAMUfO/nhYX6oQo/Bs7GMsmlk1Hk78g7Dv0bHjofxwbcxRdLc+55mh45Q3GOXIiz9FZlnY/L2tt0Nh+59aHb0lpZS+GbBFTJtOT5mfqgA8xB8OT8rzH0DQ4zYB9A/It7py4340q/fvXy7sTpc1X+U/2R5e8V5TciJ3/5z/1Xu3/w//6t3fXI0TM51XcfNpbTex9/9ondL/gUU3c7HlbcA0QeVjs8djZLOEFimaoey8ge2W4fuENZT5wSR0brYQ+s3tmlneT1NXPfdbtXUOa5nINzJm/BXczk8kg++KwkBsi5eF2ffMRJ9TZObxvE3UdHfyPLbAb3S+9c7VfTr0Qvtc/pFA28mD52bM+oQ2vzttXWl7o9IO2zsafyr3LqInauC4s4vJnnfR6weWB8nc3eIPgtATLuvB3dE7KLbeEd42ueBte9fvd9IAX2XsH+FJbraiOTfa/MO7rAPin8Sm8r+n0+Bezpnr5Lp48nDj8nrhXciNHODCDLZrPJ+lR5SJ9MGA4gSX5lka9KR8nc0iENELIbNjoQ1Kg8q4txSl36lzq0bQJDL2rnC+k/6FXXbS46VdrwKr/1TSG9n9Qpo2lK32CSBw6ytCenxBVk8qzn7Uoe9nU4lNYyg6SeujuQrcdVddnEwSMO74StR81Df6XO38HdJN+LhkMZ73v7wEaSwYwgCd5gW8KhUzlHSCOjvI0eGLCYoxr1SCSdEIKDi2BmcbQNaeausRk1Zuv+E7RpvNxHAAyQM5Mag8ogiGOYJN7MZ/bqxLgJ3lgaxZ0xobjAK6P0HZm3kipqEaShMgOIyhlUIwWMA3lt6CVsZvEGXQLJ22VQYywIt4JP3Xy/7JZ6pywHEBqYdIvjwWmlhHAZkDXWEhw16Ed/o9zEVeCDizubYRkyAAdqGQspI6zroDtJRuPyQX2GbxvvZEyQN8VOuejKgLs6pTLxz/JVLsEb4yNG5sOZzeJ/FePNrDlnk+UXvvxS+cdbcjbLmTa/v5G3Zr74jSjabPBsaUGC5BY6xXvaP+O/dsADAb1Cnw/DN42LOFnhzB85o2fwuod4Zu+PjNJ5J4/GG7b4dywzapv/wTJAs2I3hnLKGJxzbeEtf/jAsBv6cDPAKQKFFDmvIXKjI/fxK/+dV2Uwqsjk5TsT83w0MvruxRvZNJuNsGmPGuhb/U/FSHruiRycmSvDCT3K523CJ2/u4YMyVvu5E7SfGTmcIwtYFKjEM9jg+a0SvvX1L+5+7m//z7sLb7+5e+faQ7uPPPPY7ujZZ3Z/7I//8fDr2O6lHG7LmDz/2BPZBpCjIQj5dxFef+Xbu1/5Z/909zOf/2onWjyPdBbdpvENPiYMv+eHP1lvALnHU/wlJWQRf9NMDSZOdABPp03Rn//Si20dOIW06O65Z5/qvZ8XX30ruuPm7vs+9nT2eFza/dKXvlX8zRQcmqz9vfkP2k/pJ7JMc/b86e4JfTufEvnY04/XO8TYsEzxWL4TZwJIh8FHHt+Ot93bbK/nbTUfzb2Wvk0/JrlBH3o6hwI+lOUfBpLXtX/8s0/vvpIllp/5wos9IVqfstzGC998G1nu3S5cbqr3yqmJPZyOZwuWYXQs5zbZ70LvnDkdQ8/hdaG/MM3ofuUYeof52/2hKHzTBtpKH0IZPhzWfb4PacAvzoiPNJPn0QFT0mGjSD+Fb0gYvPoUPp2PUfRoJueW0XipjCHaaIJ87vyMPsNxT6UHfQWda4vYsjabrAlkbum4hzIm8RbVax4g8uWtwzezV4hnkGF9xVJmxi1jFTluOIRXOR5b/MYrMetZ2kH5S0dmU0NwCwdpG/mNvePnMNA+iXE5/aE5hzktdw9y6Gah2LRyCh4aD4Hcddt6iV2Z1/UuyA+OeGAjyfIYj4eG4Okw+Kikztt9RomTbm3w/TTI6nQEsANYuE7wvPHm2o4f2mbQHCNkpenIKkh4CBoYGykpLeWp9DQiQ2Y6wTKCxNcDkrzdbxMaCRVLGh34xLPQTZUhYspnGXON542m4FeG80XUByx3eJVMFAKDLkPfdJSNtzxT8BiEBt+8NmvAQqz6lO48uXZ2KCW04YUBj7IR5NFJuxdAXRPM5tBuHxFeW55CT/dxhd/qot4jbLnJQG82Kl5blZlBleiW104euuRRxCj8bByMYWTPGXp9Ew5Ph+7wJOPFxa3t4LuQc4kgVs4Kq+6eQ1HkGHL/NwWx1WeLbNmUjplPPUxTiaLDF3HJXlkhC3Uhh00MyBotYJSVaw2h8JABjlcUQt3NuS7lALb4AiPnMtDQTRFCJt0Pw7yzytzjj3ZpnXoN78D1x829wwclW5qz0fG2sGXABqx6+z2vSTsLJXXIEtzNK3mDMUs1NoM/HAMqIJU3BqR0edSl19zjLZRhXdP1OQG/fiuE8088t3vp4sndV79xcfdoDKEf/czvSTuF8uOPdEJiEnE1GzZ/6Rd+Nif+X9w99fQzu49+4jO7kw/nMI4PUcerV6+kv83r9Vrkocj5v5wB73QY949zmvQ34zlnbOgLil8B30cC015Y2kQ8zz9MT/p7Gex/7kvf3vSC9slni9LPnnvmwEh69a2L8Zhd2/3AJ56Nznp/93NfzKef0veKP3hdlXwuey3r2d4IOHnm5O6RfCvt29le8PT5R3af+thTu9di+LxlwhJGfTybsNt/IwdezrBc+M3X3swHyn1w9uromMAtafB1+k8899juJ3/4YzHSH9n9vV/8RmRwPufz5Zfe2L3yxoWcqfRID1d9xTlJGYgt5/HeH+Y3+cP+4dXwA/0tR10C4F5671u/qRRvhxSHP/Zt3XiYWn9IhQPE83yP3+EXPb1qFiDZ88hw3O8x0mjRUT1eIYaZMcInjPBszii6t6fIEpa9RF7Dt5fI24hwTHsdKnOjrSSn/LmOgbQYYCyg21q7LevSo/Rf9V7S6bROnK2C5F+N+HiJLI/6rIkTrBlE4umCkz7++siJ3dMnz1YfcFrYm9ki/OSvsrv4EjrQt0LTCrNimmUqkaiLv/LN7CU72JM0UIcQHGTrXVO2skRM24wO1h6VmX2eA/mYqAO85dNwK0hup3lFF1kAO+FdcrPH/eFvHthIYnjMLDSdPx2OCFoyuBlCa8FGyGqlh9MGKrBcsz4VYZBSTQaHQfvKDUsjMVj6HK9O4A3MyyjixRgja2NeGzAYIpysZ6FGSxlh5hyjiqDl6jMoOh7eGEyO5O2mziYyr2dsMMQyPlUgCPV0yrzNkj0iM1CmjMTztlBNDJI8tuPYu3M0syr1RTvPgroxVjpoO4snnS7o02HCp3DJ7MjH+NQNHnl1QmU3bLSgWdwJNOZehxByW147AI03Rwiq1qVvHG6dEyAci29LYGpoJF5p7HZUifOvCjT4H4pn7OyZfGQzbWPJDI/QoiZDpXol4xZqmOZePQeHuxFY1WpedEf4G3JpfZXr3jVw004xQPLQ9ADLsfIHeWFEhtrwOUdLpPLOvUBQVUuu2rVLlPHopWEiB5GBlsVDk8HGgIOR+e8tx1YlhKwq4Ud8UKENh1CQX/ClC73TdkfiwkP3Cjj0weE7Q9wrv+MFvvHK5fYvS3LXzzmiwVENUZYxStPTKgNkDotNtveKtQRu7Z064KUBTHVWULfDg9qKP3xd8Ifrezj9N+P+TD5S/Kf+zH+cN1cuxzhIP3r44T3d+uXzH3mhZLzwiU9HZm/sXn/1ld0/+Ud/t17Q3/G5n8zbrAfwD0IveTeY/EiWkP/tnFiMpz+R+//may/vLqdPHGr63nv7SBzWpikia4zYGajK3zDPYPqZTzyfZWovFBzrUtLibWlK5nMZbK/HKwoXffTR7B+6kHOJLN2vpQgt2k8Rbe14Jt6jhzKgv/Pu5d0PfPS5LN0+nCX9vK7/5tvVAS88mQ8+p3z1YdC8HM/RG2/nNf4sZXW/EVFPUOaTWab7wU88vfuxzz6/eyL11j/br5tasOjo8P/02dbhifQdb+xdiTfvW6+9HUMwH9/N23uzzDNIW8cgr+xt5RRTEsjk4JcwfQQd8oB3VAA9ZhLh22sOfWz6wuNhCxs77uqJ8CjDtTS4h2UrCF9btkK3cCVeNd8J86aft+4g1ceqw9PWZ6PHGcuMImMBvIBgGJLmF7omuVkBHds9+NVf6dU2Ra5d9o+CtlJRb7nxxjiSDLzDV7IH8kr2zjGIGKjGOslOrz6dBnkse+nm9OpEJkGN5SeXD6u/gQMyBNwRsGFqkoR7pANv+pZmewuPmUd7rfDokfQVY/mv5KgKRvnhcE+UdDE9HN5U3yojgHfxbkO0x5EbtKwxY/EV2B5my3NwuX/KAcy97z6EkRRSwuT3b2S9O4z3WjNDpRauc2HCHBXUwRgtrkczWKXKXRdF4hhB27fdDF4xBBDA2DBA+yZbrWeDXhpWR1neJbhxL0XViMANZdYwS1kEQMOsgVcH40GKZhkjKfiMgTFtMtBA5RTl8WpVerUpgU2ZOkZHnwxIOj6BtTxYgd7wenOKElNp5aQ66Vzc2aMwNSLjTL1mM/t4I9RD2f6WhyMldzBXZxQ2ICFIGUsd2PMa+5Hcg8BHr/ZySYsIqvJ7eZy6wXywlB9rL4IyhZafyoZ9u3Nnz+xOR8G+njOTrkUhocE/LAA3iiaZFDzZ2+k8itPO5XMedcZGT2OVLqoBjgWPhCYH0H3bGfMCsdoOrDcN37+e1zrzwFl17vit3flb2ZsSxXy89Q689k0n+0heq37/3bcUvTuTuKM3L++OX8/MKw1+M17hetNiZDCcZmlEWVOlZvKwdVZVRC1aGM1p3YKQL98OnPRGPcAPNfWdwr0hkMRreSkG0+5IXmLIfqsepJmJiZnsHC0wSlw7aUtePbKrTUJ4+UsmGYg1qBKP1dj2nUMQNNybvu+c/9cPoV4nM/j6+6AA7niWTZ59/oXd088+v/v8L/787q/+lb+w+6k/9G/snn7h05XjD8q/0tRYuz+aVns5vH89959N3//RLD39wwxK5Qi+bswlv9pJnmWM9nyx1eqJ52H41AtPxdvzdtrvaLw52R8S3IeD172v0KeB14c/mjORXk1/dN6RiZFyhHfjCaLXzoYeWxMcK/Dxp55o/3s3A+c3c9YRo+jx9Gl5HA754qtv1nhiANADqxJ02kefenT3I59+dvdDn3gmA16snmSaolRqK3SKLl2Px5jyuQuydv3Kxd1HH3ty96mPPLn7xS+91GVFS042dh8OeAaT68a2Pb860R1uDlAA8RId3ny7eStHD0Tv0i8Mp3TR4llUblhh3oeWkycy0XK3tvEAt3TlmsAbW+is0btJ32DoZaeV/4Ef+/Tukx95YvflF9/sMTW6VQMkvZ/S3B7QtNIWrcqde9Dzx2BJP0056rb3EuVZPHif0Hjv3Sv5YHI8RWlbLyiF0hqppyIXTzx5ukt8POj6u/oKo3HG8IQn8/fGNV0EmFyq13MvfvGlCYUYOnsLOKgnp8xT1x/85HODSM2Dg04Bw9nxha+/koI3RPe7BC/+W00ZWuC5L3Bww77qOHe089FDcgpGO4Dsn5+Gg7wr5sNcb5foD8jZ1+wdtJfi+y+VbKeLodG9Iul0KklRG9Q77jFzA8eYIQgoN9iMcUM4DQDyZADKHwHhlfHeLFxrE6HNZ9ygYBkc9Q4Ejz1AZkWJ7kBqILiZeDO2kwbFdADl6QjtABEyb5SV/sRZyiMgyvddJZ6ZW7lHqAGq6715rpGRuBvx5qCZUMDpbYEZNgnHagjpvFizXDMejFGihIFA51LjqYKL54F3L5+/LSoPG+0yBEia2SH6GIuzRDcZQPB+XYvbXlCOzq6OXaJLXHMyHAJHMZzPRvxTceE7Sp6XJlnaBorzN0UFFvIEy3eC+Frx87ilD5CoqUvako0cOglu4xWwhXrjksVMp3wgKwkLoqBQJkIbZXzZxdmXU7bN6MlNcKZtw9EYEFp02oWcFqfCQ3gNBLAbYp1SU+15l3hG+jEfGA0NMdVLT2Vyq692Y2i9Hy1dkuTZ/kr0d/EDz4SDuxWzrvh+Ocu+t+INdXxVPWapuva7knqSd3Roi4ey6e14PJnvR16tWEjjdSIH7ol1X08fNrd9lbP4ssr8rX41gfjh3/m7dh/9+Cd3/+v/+Od3P/UHfmr3yR/8XOq5VfwDKhhW6lrdQ3Yx/fyNGBYfi2FwgRyFUWswGYNoENEHZDkcD6/De0saYCOlfrXB+XgfLHUxbk+mPR+KwS+sludpvkX+YIne8IFbX0a3mXk+uh38SeRxfbienqO7F/LhWUYJryrD6Cv5tiajnlH1Tmrwa994OUZVlmCy19FkcxXG8Pq+F57c/USW1J5+LPuOqu9Kjq4WsKGqvJjo/p6NAJ7JZOoTzz8ZObq1e+uN13ZPx8j65PNP7H74k8/s/vL/9g9272byYuBar9PTIZC6zuC/9R/lJLJ82q6Ahm9TKLnlQfKavjN4KuPbKoK8d4WtLPFtJ/hyr+/6HIzJao0ium/LT/btv/S2sRPJ5bPR/mQMJDrExuuXXn4nen90I9assrVuC5ifck2aOqDVakDLRw+i8jBOAvoqn2UxPrQ+Vi3iJUod39q8RA65tG0l4pRxL17+c1k2O3W+XsZjyVtZDj76GO4Z20rRlCUuMrvaUnXRUtg8lJ7tWl4lbWVceUQJrdPcBgl9A9PonGItMnCJLE1Nvvtng1sJxk8GcPfvpX0Y17UBBv0Cu+916hSkGzwdftu/jZ77IvgQCQ9sJFleupEBOPWJ+/taG3yMoQxO6TTm2wR7dUjGTIUxxNYISXqNm1RmCYvvm9WQSeZxC1I2aXijQwKmdbAPlUtJYUrvKS6Wd0Axxz6eekGCX4dgPGn4qqusR8jTpZpyN4OJqzICAYcinSdiIJKCkr7mKyF5zbzgOJKDMgXCoiNEB3qKu5HBpY6zH0t9lGFAhgJtydKrHOpVpRCGVugDuzoZ40Yd0KISo4SVMh2weHR2OFvJIC4tqWMUcQsqLZTmxpfAaQdKUV24Z8/lrZeXcyZKG1U9kmflVYao/jReEW6Eg5kD42Ephn3+QIBVR1mKOjftuLmqr7/WK+k98RbWFNqiet3uNwLgwe+WrfzAMJfQ6affuaJVwpOhk8Ez8Iu+FClH2hvuyetZxcdHF4zVOGjNVCh4/VMWmbUcN/DJ8usM5e0D4AgL02YMpJEZdTMmqzfxQFvEpbUYdJMu3+FYMkimzLzkVWd8cdtHUfcIB21+kCjfv8gBfecffWz3J/7dP737K3/hv9390RMP7z766R9qfb8T3SZzPx+DJqztZ5X+aj7f8cvZ86FfqfbwNdwjZ/mnj16MPtT/a7JXyAKYdtpEaXRYGslbjmuicZiOMWLxdGTNXsjRe3RIpFjbpdFPZjkDDR958rFMBLez3JL40mtvdVnKgaoXYhi9dPnNDEBzzldIjHwc2T2bpRheo9/xqWe7LLL6Jjnw/6BN0ZGI/h1Q+Ui8XU8/+eju0/GKPXLmxO5Xv/jl3fNPnd99JpvNP/Hs2d0v/NL53YUbJ3ef/9orNTIZSjAJw4fIW/VBC2sfHTEKlArmwaWZ5rH6ikdpbyg9jMeBX4iLPMDJyGu/AmORLufVMKFYMowPloY+8vT53Y986rndD8W4+2Q8YY4++C///N/cvRXeeUHIcpe2/fKLb3RprXofaSnDuECPCmt8A1vaE6cK+pr60ONgXencYxmH0GLrxIULV7OkGi9R/niJfALJfjP0PfF4vETZctI8ilK3MLG4t8of1FahUlAxMPNYqvZ0lSYwQIUiOPTcKG1wCMDAmLLhbRZpW8HgCpofeta9MjgU8OvuEJj8g0CqyYWXC4zJvGnkcbh3d84VM7nX01wH5xYXADACmes1Earx6wkPbCRpaBSYGZ3JhkEznKP5rtCeH0mrQIZT9RCFa32FOpVnNZZxEZjFoLZ7GOXqe0PHstkMbkrKYX8EfS+MgdMQHaiCgZdoLek55Zv3AB98n6vGUWAeivu9hwcmgbHFG9UGCZzD3ZRLCB3wRgh0AB4oA4l7/2oYGljSiIw/s7wONEnPbYSeNy0F5L+N1ug18PP22OwdE66bxwlPoioIqVYFsQKm5JaVa/mkEsMvHdAehHoLgmev1IIn6IpPWuHRqID8F9DtmdfMW2vK8uFe+eqJy/3jj57LRsx3u9lvXL5OSUeb/OF/yh7DzuAg56BHb2lPlOLwZiKQckDDMlgbF7hiSN3Bq4s/acrZ3Rx+wjedL/xAtxJkzMDjPKtLMYQtWegABiSeRHiuhl4nh4f7pQnek/Gs9NyitLt6nc0gpz1KRyoAd+sR9PvQOrXULOtllhM8V/M5CXCtRxXVpKPV32900Hec7u1ICccL6CPrLTXsJgM8FJrBEpxNm+SvRw8cj6GdBIMDHrQOrhvR8sPXQTrXqeO0AZkVwPiTS9u4H1zibg/Nn6gDRStvM98O+Jv0dP7RR3f/zr/3Z3b//Z/7r3d/+j/6T3ePPPHsfempzKfSaL8U+v62yUOk5P3Inhca0mXGqA8fVIkeMBDbi+EtsKWb1HeTsvIZPub6+ehMesqylsG7AY+D64BFU37USLxP9r04CmK+cnDhYiamSXjqkRyaGl2sH6Ph7fcu7r768mvdwOuzIZZpVtvJ+6mc1M1r9JEn44nIM9rIsx+UDgGoGWKmtcYYELuCDcpP5piBJ87nY6pPnt09ei5HC+T+ieyNupWJ45no4T/4kz9UfvyjX/56deGJ7EedwoKl8tSf8hifRp5ct1JS+Iqj/0w01dVbdI4qaL8/YNYi7a6rTd/X4hECqn2eicfs0/F4/YHPfXb3TDae84rx7L2ePVr/9Je+lkMR81FfNORvT0t4Q4dWT5VrkhkEdE/0FuM190NOOKkfpn0cicMrYizwr16i0PNuzsmzl4iX6Fq2rOh3J/NCxpmzy0sUo7K6MQNLwpCjHRA1LdU4P1ucq/ZCM9rwbmAKBHDCVqmJrQQUxSROi7tv7iLc7hs5OIcxG/6tnyiMnseLrqy4j4yTM21wW7iDJGn0iLFckfdu1o2YPSJIxG2/G86OlYnDuQODKLS23vcoGIIPER7YSLqZQaOH2cVFWKLCDEbGDHZRtpaq8o8xoh5jrGBEGiWwN8I0QsAIwkgGh9B6BMY6fa3u9isGUZCE6QYHMGZOgrJ1MFa3Mm6m8zBuiMv1CB+WUB423mE8t6YbM41rlFMGVgjB+8ghmNmHNJ/oII6eGfB18xL2wBtoagDlORUqDqjUD94OBsmnfAN6bacospkNpBA0SER//qlfhTp1XDOsNuo2EEvXwSzjyTaiJH/ylfrcJwRzcYLxpD6jgFrkZuiMQbeB7J7cDsu7EX7hsVdEL5e41Cf1MztmOBlo4e+SQtphvbKpjClvyuAVal3ULfRNGyFnOneNZPVNWYKiuuldG+NveJuYluXXE0jXVRJ6zp32sdlwIgnStAdcBpMTx7NkkXvGk1Bj7Fg+f9CN7eofvMlUj5O82ioZ+ieDRAiUv/W0nsBOZuB1VehGVSMPeuSheDDf20AGZjmX8auvjWGjnWsYhX8MHQZkN3eHH7NczFjMEk/6B/k9Fo+voJryhqU18l21OdzYIK1GbmDFTRj+uQ9o4dy3n7oRghi4UuSvEb+1h+QV4P/NCo8/8eTud//+P7L73/+Xv7j7k//Bf9ZB7F5lmwE7n0effySD1+/+mNfbM9vNgVx/7xvZ41bDZPoA2QkHMjgc8LLVLO8G+8jQ9AV7iSynqPZ8rWD69KJjed1xhUw7k843MPV5Xof30k8z/9udyeZ1G8F5ibzF9mI8SG/k7TtvqvnaAb4r4+m88WYj9o9uG7H1nRWU0VBg9OdG5Pa8T9/A1uWr33hx988+/4Xd//F3w5fI07vvvJtvyb2y+5t/x8QxS4jpC8r5wz/+mXrWfukrL++OnYkeQdC+LPSN/trLCpkBsi9/4GmBRZutC7wO9NDRHPb5ft7yFPrrp3n70/hzWaY8cfbY7nPf93w8Rs/EULKx+FRl8pe//K1sYr/QM6eME0sP0Fl3hZAy9FKTMZAC4hmnvTjg47iWzkxSunSWdOPfxfeudeM9L5E3ztSPMWAZ7+lzZ3uQpP23+K6efqfnpCr4k7JKzUbTxrHySLwczLVF8mH45ivMypWHe4QFt65AbEWAs8ObEtABoNekhQH6tU+HdUwI//SbeuzSNgJ+Wv79zkG7q7WrGn24gKzyAW25Hzq3yINL0/I4V4DfRfgQRtLMOqseYigdy7o6hni7jeGDUW3utL14xgHync+gA5/qDGoGphpXYQxr+ggXJFbpAOlkNZaimTV88UQYGU8+9Egh13JNWbOeu4ynKS96qAKJ5xi/XNK+VcNjIc9qeGu+NcosxQWvhmUBa2tr/deyFi6/OpiRdeN27sFR/jYBCyMQ6jKKiNCUEWrlVczitOQ1QiRPj06I9wSdB4PMDHRbc1ZQpTHCQv7US+Y889gJ0npFT+/ym/YQJPlDv45IgTFWxD0WL9KLr75dTxWj4mQ6LIXRxOS1dHk1hqw2UAY+dZYUhYAmJUjrOnCJ2+ihjJOIF8rSqQqHjsCjhOePd0NZcg3f1AnfxnhMNMKTp3f90W4d+BNXxVucw0syw1CWwanu6ohpSNNWZdeQVr6iBT7Ldy1i/eAjvBXy3BdXaApUJKN0TN5Ws3w4oLBIDh7veYewX18ISVHE6VdoYlyqRwbykN6+oX88FA8S+ddWvLTXT2ywKVo8UdWui2L8Ohav8MjbyGTLCV8Ph4EjD/phm6v8xRPio2xh4W3/3p61g+MMDCjkZjFvceS7UZQt7Dv8wPsv/eTv3f29/+uv71755hd3z3/yB++Zo3WIoNA5z+WNwkdPxHuXOn3uuWO71y8d333xTX14ZHp0ReQ4E8N90BT5Z4I1YWpGNz4VT4YN1zzD3oy6GANoQYGlI25cDV9CKz49kT1JXsfH59d6Cva17qE79/ipbMZ+s5ux38gnIWzGRi9+61JOcf7+HAPwR37P99WDAvdqC/dkpephMV2cRk38Xfw/DBOw964dzadOju2eOHU6h8eeyTL9e7urR5yhRGeSvzk3h678oyn/lSxTOkPN6eGjMbaiQhHU6GqZZKH3yBg69E1pntsuuRobnATOeFTnFcpz8JtAqc4T58+Wf7xo58Jv37v7+V97efZnRXCXnJL36vJ97oV1rigj0nhmUn+KUZQVijV+vU9PxnP3Vozgd9JOzg66HoNRu9lndi57iZ45dSbtO57GCj0C4fWjfik7l6E+SdWpyjw0XqCjofBb3onYEpJRnv3T9O0++4F3K0eJ/QdX8+QaYmav5sabVBiPLPGSWR5QdbVH2DjhhRm8Y/g7goBhL9DBnfBveqCR208nyBstB/GlsHQPVw5S5m7S3VdM0Zl/GwvvBN6eW6kyY6gavtwb/31Q3BF9qJffkXLHozX5Kt3MYvDEAGOGiv0MpKvbG0fOM+KhAUvQGQ0Yh7kYbxZMyDMkVvAcZBZHRAQrhlfguh6cesJp9jx4DNxZY5YnDcTgMLiCF3peUIR1NYQ8wjJ8lLeMBOXwQE15lHaMpMAeiyCro2YhMMe6e4MAAEAASURBVIyySGw6fzpncINx/MD7mV2qS5fw0iE6qIYX04izxFhBCSZlElC0LiVURRBc4IemWXJMVEONqSQaxPyjMJSdIhvnXl6I4aqkK6TCg+e5C+wogmmDgm35bIDXMWuUwJ0MVUpQJtQASSFhRYIypsPhZXmTX3nwrbxTt8ThfcsOTuUJrUPaYnl8kGkQcbq3D0zyLMLBaOL58/r0Cl3qqiFJhm7sLudNt3e/kK+gJz/3+8mcVP1jn3yitP/y117dXQ2sctcREF0ajez1wLuU8aOBPc2129nLlNIqusWzqdwkeG48j2U8n2n/hq1eSW6eXiflrt8N9I74e8feAfSAj9rQjC44I5P6Aq/r1RzGR+zwnpHSfpI343w3boyWMXLA6MfaTN4aL1uF8KLuc9Zl4uylofjhuhH++aKGchcMEirXQQZXy89VAAefeJ6utTQoVT9dZc9HgD03W+jaiJnHX9evb/393j/0x3Y/99N/f/fcJ37g/rhTJJo++ZiN8vHG5UWVJ84c2b3w2NHdr715ubxCl72QwqKxcr5RqO6YNv01+PLEwFZ3m+3P5LBBx3y8mVOxVzAwPuENzVzV+ng6sC8GvJg34l7JeWU8ReT4n/zK13ZvZ9nmWvRr+Qo2uBgCT+QlDMcH2HtkiUkwoLQB90/RBymjsXfx9wDW3XSAZuyPfvpcNmp/9uNP7x7N0uGbb7y6O/PIo7tns4x3/Vo+6fLNb7Q8utEbfX/yD/7O3f/wf/5cjge4vn+Ff2Fb5S9dSD6MAco0rtAXyzvRAThyijGOXHBcwaXU/7V8k26Fe0kKnCZV2qjenXgJBTp1jSnS0LJ4WYDtB0668pFsuq/3OnqQx+9Svof32nvv1lPEo3crfY+hyCh69ulzPWeuxwNU/ocyZfibQE9NG0zk9I+m56dp0nWqhNlrNXLRiI3mVed1NQ7NYJT6bKUpBR8ktb/CG9lqfcPjeoNytbJDL9MH9Ktxly65YctBnh106nozzg4q4Vj4ogxGkiVnQXXpF/tLlfudwnijNijgqyL3ydiJVcFa0Q18yyT/KnJd4VH570F4YCOJcPEo6Mi+aeVE2azSNFjS6Lepk0aQuj4frnWPD84nL3L1y7qWIwAnIvDiGUX94GPSGB4DO7Pa5m85y5UcPMm7DncsvqTLU2NiNFQaNKUFH9hL6aQEDwE6x9q/RFDyFIOOwTP5r94Yo0LnISyr43q2j6lLfuhMOfJzwaMMevVCT42K8ijxqQ8BdEJvvTihdAkQfgodxNCdxwpqClWe+vA4gRuhH0NTGdKHVeJgzD9VzM9gHRilya8DiUfb88883vwUuwEKLlyvMYugDQF8bpVT5R0eBV0BSl/4czl1xmpBPfZ/qU/G5ObrG4pg8gwF42yoMugyWhLpf/K0nYptOuuJbNoUlOHNw3PnzmXmdnWOLYjcOMTTW4kk4NFHHykvbIIkp6fjcn8vZ82cydk6lBj8KrA2zk650wpe274cj2eXqzKkUSStbGgrnCd0JlTBho99mqjG3/nzAUl3gn6Xz8N47SToZpZkotaizMZ4QjvlhWZGTg2YxJmoCGSgaWGNq0Cu4SJTy2OpjPavwOf/tPNmdJFr8HArI9ka3BdlopRTGQrXfAj4xOZRmpcIkhYcQ0eA0QnP9zDgwyc+/dnd//S3/truD/9bl3anctjknQHZjPVbMTS++tbN3e9+PntEYhy/e/3h3RffcGjieJzBLZnAC6ETG4ZTGHUysqe+F+L1IM9O2/eCS2U78alq/4ZNxVa5Xf0Frw1QZPJXc4AjD4W31C5eXPuN0ntSrg2+zqV5NH/63dA0WIcq3eowH6fttM+iH9zU4QBu3U38wrSLMfTI7vmc5u3ttjNZ8vryV7+2e+a5J3deBb8RI+lbL32z7fhqlv/eiyFxNkvjP/79L+z+9s9+KUuWmazEC324f+OVsPaz8AbTDTWKkkQeLC3yvH382cd2n8yxCM88fnZ3LnH/4Je/sfub//gLza8uaD2o+aqBZLEkGT79P6HAiQOWe2TQ/4d5Qvejw+GZr2bfkkm/N0fTkt2CwBFw/ryvEpyrl4i+CbLimhLzmJve+0mQe9GJD40G437jxZ1xiybtKH/pLa6i3LDmImP+9DG4jBfd8B9h45GCnvHKMNkbRHQ348dfJqEcB7cy0TR25l2ftuUu3mWZT/TFrNBQfGN0KguPtilyCVLO/YK6Y/kC0Q9Wve+XZx8Pdst/gGGf2puNo7dH5qk0bYXeD+auTHdEPLCRxGocA2iEwYSSK87r5RisQZ3WrMP2vKIUZODtXqVQan9Ll6ySj1AZiG7En63hZvkle4KilK7m+xGUDI4ycjBTY8CPqQY7DWlZxcFZXFI9bymdSn6GlsMRDar1XoVG3iDM0k/g5jGqQDGEUg7LHx0VwlzARjxqCFJG8FCSZsG5DQ6D9nhBwPaUcQkJZh02GVZ8AngmAzT8QkDbWTsQGYgjlOoJfztEABhm0tGFVjxYe5Zi6wecIHszwHhiIAogxFtwK8pf8+e5cVu8t1SefeqxHln/Sr7dtAyx4lk40LHyp4IGwNIME2QJlDrDgakb6PKLsWsDu7D2NpGHff1D9wyWZmnxBqWdhMLE0D6R2fK0k1rCn7+tPEruqScya71xLa9IP5KPUSbxptkkY/VoPlnxeI2pS5cvtw3OnjmTgzEv5KC+vCmSck69/172eEQxKBC9QUwGdRzyeCLLwalk663MK1HaBnHFDwnaBFVVV5CUxt58D362an54TEhKUB8vEZDNhUt/SVe5LRTcT+INRPMXWco9o4jRo/6yHVZiKw4y2VdeMGRn7ZMqnLjgc+SAb1jZN8WTpc+Ei5HpNF3KIjUMiOXxwt6mb2Uo63sVXvral3a/9oVf3f303/+/d//qv/Zv3oVW25IDdH/1nRu7N7Kf5OHQ/A9fvry7EO8cGe7kLzlHDg7aP1kaqJD2ozx34pfaMAhNrtQNj+3fq4f5EAU88g4LhREqexz/cT7/8YVvvLp7L+fk8IRojxV4jPQd+vW1eJYOB8bZmzGspgVhWzkP3x/OseJdBfCja7/x6jvRqfPiQzZm7l7MUSGf/9q361n8ta+/vvv6m9d2X/nWa/FO3YxBd2H3+pVf3b2ZT6P40kH7dOr1Qowbb//dimzezB99Q8YOn1NEhvQ1S4zPPn4uxwo8ntPCH43X6HS9Yssjv6pi47WwKDYWkbuGPBh/nKu0DxI1gP+5tg1SHny8QSbSaBbQ8m6WCYUvvvhKjKF81iW64IdzlpQzoiyfwuGIhpdy0vknPvJM6j86YfrLEII2xXqa+NyU4InsgN3EiXe7AvyeK2fNA8fcwNVsua4JirdujZEMztg8uTJ+MgZFPma5zIst9goZP4Ir/FentEJkOvovcTczvt+8mZUSfbOMIstpl8isOQszkL6Xv1toAngjXrTiC0FD/+q9AbojgHuQgGcp5vaQ55ZzKHaVtzE1KfTWZL4tu7im9vJd/RySpA/OfzKz+jYaDRcqcnRLB2tvUzBcrLsicjp0CA6MhnBuCCOGIgHTpa7Aa+oyI3nqAozSBGcWRZlQVpROuePSBpKLt8om79nLhGqWv2bkqi2NyVSG5RkuiMYwCp60NgUWM6l0I6JvuyXPyRh5CKV8ekiVk/hgFhf6rkRhGIwo+xt544hg5nHgA8PYuxEDiaLUsb1RdsEMMPjQAbb4QpKKweuWaAnot7cWHPqlow8fZLVZXf2kMVqUb5YGC0onDaaBr0ESFIzEVbiSukYePHDLB3c5i42JVn6LzqOyl0dBOevrywChEJSjfmO0bfuR4En9r+ioCkhAH+XZWXkzU5rqYQAxJ9noCHxlKbxEi3riq43myvAiwPs3M6AFHsnlRwDhXzy9ZumO8ki+jHE7PqkhA7eH4w5qWwE548lMjDKOxjiGM4/lARpr604c+O9l+PWi014NueIRGQ1LR+mFwSYBeOlvY0R5j4GiKrPRhowdb65qlzTdwA/m8mK7rfyRQcEQvnndV3KvaHo4/ebGtsx26iSZLnvzo/XSLgFiJPHidTkweVZVCvA9+nn12y/uHj390O6Vl75xX4yrXEu170RO3wsPb17OUiU5CE/JobDa3mBDz+2/3bYlwvNE3gTDPAe03oi84nsnJLlZeIALeF2DPd4K9wbfn8kbYjOQpW0wsjAD71V/f/cK9gF97eU5WPVe6d9t3GvxqNwd3rgt6uuvjXGxjwzZZ2LQLA+8PZoX3r2aqkQONhnlCXsqh2N+NK/lO7eJkfRoPpiNh6Trtuv28Oob3jwUaCSR8wt+/vweBOPKyXig6GfLQfSZ1/7/0ee/3I362iMkNRTTyg51grZ3ZtXJbJwf/Jbychp4DAttaqyQX736F6gaGsmbmMHhl7AU58CLIkurOM/Siyu3+lf/JaJ9LYDKGwOTYUQPhvbQwrC+qp+nbrdiIJmAHHX2Fh0YXMQlIOH7eNXVSUF6obY4GqP7VhSlN8T7Afh2z2xLKb2pD+MrsKU2/LqeP3P8mfYgm1a9f5jyZA+Usu+A3kffH8V9U0rihvFeNODh3SXeF91dCQ9sJPFiOOdB3XrycxqEh2NaVd25ImMExToldFIMOiM0azlqFCOPz2GmeYODx4nbWiUN4u77FO7123ARhHqgEm9GR9n2TZEIkkEXvrq9A6+5zF7TK0ILoZmNvYTBq+ImERq9a82BZkQswTueOpqpUdiFz6ukyj2WPQqR0HYOXFQK40xeA7wZxhKA1k09FBRGUKJoRF+t/00iKER8gn8UZTpDnpUrY68Gkfyl6N1b2ZtwMYO/+BobyQev02Fn+XPEOJnL9xaeey5VNMG6hAgJ6BEPn3jLNYXJDGJgxaYjqUdulzIxvkkBI69rf3OjHlIpI23kxOwJGXxTiW7+SxvggzxEiIzA/U4+3SB4RteJuOirKPLc/QF5M8Ss6WyW0E5G4R7J5xDM4hho9mU4DBItp3ISMVnsZsu0JW/gsfCtmyHVjbIaije5MchnMEyb91/K1iaWSnKb2sSQJi+h8Xzpy0/CvME093f/KuO7C8rsUlSOMRgvTGQstKX4eh15jOo+j0LUELw0PDb4QG5dGR3eqJFfO5h8XM7Ssnx4P0d46Jf2hzlTBl+Krm2I/4xCA8rCq2175EWqpXaradf1ztqKdxhmOFc+3shy9vVj+ox66efexhsPLbrHSPru+XZn+Xc+4+v9ApkjA/Yfnn4sm24/dqoyeTpLc9/62Tdz2Ogsd6sTWBXC24WSIh5hMaCxPEeXfTvel7/zs1/c9280kM0f+b5P7Enx4dir2fT7uR/4aE7Hvrj72V/9Zvuzfnc6cq2v8250Y+yqxEHBfd0aSf+8ApLOZgnOSzx3hluRu7cvXdw9kj1TJqo+ZXE+dTq/lgnDQUagM4os070bD40387w8A+9MerYBGItTgE+k1LtOKTbg/ppkbVH7FHmO7C5dyBtn0S/OJvI2L2PDFwtGDx3Kc3cVJjHErOoB8WfM89FzHQUllQvQGw7lrvu1XC85kHPJb83uNJ6q1Oh2DV5jCxq79Jd7E+7u080E35W+5y3qdoPw+Epk7lrgFZiu36NfjvUzTUEYPcqREU4nPX/0ZGhOr8wYRYdv5ETOfEnCv/mihqNzUkZwc0y8H13RsWIjn8xtt8E5d99ZDldhh/NO+TCs1D3e7WbxvpALcA+00R9q5t/B84Jv/rvgF9wHXx/YSLKrn7LsPqRwwn4SDOTdYCBwcRI4tazBkHJZuQya9bkLg9bxWONRzWn8jDoRvA7SgelrpDGULLlQ6NIpdOF4BgudQvm3aqiNYUQZ+TyHRpzBfowyypz7lNAmqQNOB4c8zx6eIA2tBgEB3UgH085nJr01P+YSyj4mv/rpvI4WMLDXcAgO9UeDQZ3QjYEHFq48F7aqdKM1QEGG1uYJD4JyC4yGxGeAGqEktIRbnqHXLMLGxFtxFVta9DqqvWICMhsCjgdwMOTQ5b51yaV1TTpwcHuFscEtPDpvg+rLnoQhJQ8CXI2IXKQceOrxSRJY7TZxZAOCXDMoUoCtJ5ggWe09uIp5cPdW102YgosXfXiHvMkTnAFSx8Ju+SidgAxMMuG5Z/ngoEAMQNE4yYc+SiHGNFoTaiQwuvLttglp93x/cDIflLQlbhclPFiAgefnzMM+FnosS4QP7R4/70viWTam8RIYG5djqfkAqjrjW/euRFZXexBT5OMBI2sMrOk3D0cbZpxqaH1SHuNbP3n1rasZnPM1eIowePEHg65lbxNkDLRHQhPWX7kWhU3uAsN9D/SDgvQr8bpqE21+M8ZGXoqqHKBD3eGavXza6IOwffdpH0zmpPLkqvuRfH3+aE8wzxLw0/km1gtnd29/dTwpyNvL1yI2eciyftLzyODoTCL4Mii9ncG/y/lhqn582mykEjj1wcee85U2k48h6lMl72azcV8cSBs9maWeRxO3lq4XJ9D7pW+90XZccXddby/uruQPHXEHPgb5j338/O6tK3cPJ+QJfV7KOHs8Hw3OhOXxeorCr7Bd3wxIdWwWFrtlQh51tZfQ0pplOHwg03jv1HDXm9vA3FEiNN3ZxmmFyteFfPD3pdde73fZnnoqbw5uWyhezDlx9OjhfJXF1i9jTIyL8z4qHMXcCfrGqMGa8kInHf0+93/oaby8Su11u89FnSYEPvfNGwZoP8/LGKJ3/NnCwWi3MmOcvZLObSxjHJko8sBm2h0+wJtxWS1CA3wmi7hx65iJI81qAsWLNroB76L0MgkUB99QVtVcZm7kBw3ZNMbRFdC2tOSX171xusNWBkrtKeyrPo/9bZqEfeLcFF8xLeA9wG2xK/We1y3LVvxWhMjwYJ/B3cHTPvoBbu6W6vtk4nWpUvOGF8MkAwYDieGjaCRd9cZSbghUOZoHyrxWrIEqnOp5SYmvoknDicP8m3XzmTGb+W7KdFPGYAk8geE6daQAwSo9Ka84AqHBlqGS5PIETEqOlA4tKbIwQTRGUfDWAAsIBUQIgcOTrEWCHsaVq78eDZACeDrqHYkQWcLrvoXkKzNSLwJLOCfCoAwxnIrYbrZLY1ZaBI5CaIcNrLqqhTACXhKRWSz4206QPMrQ4aYOgU/xim0nDP6KjXJC5/FM51EnXfwR7arTp7zhbwweiID7K335WdemoE3EDNyUXvmF5mSQB35BPHRtjyQYMCbtQJgpj1vpzWIssZX28JcRfSXHMjA6fRYhbx3vTsG5FXAxM0Tt2G8cpQxyCT7Tn9QpA5M3wFo8agOA5Py5TEBrU0qz2TtKpe/5scHfyObxv/bf/Re7H/rcT+0+/Tt+3+7Jj3wmy8qoOcA2OL/zL/INMg9nQHgsH7I9myUhxhKjhOwuY4ihYQBe7YkmwblIjBh8GqOJoTMGvxVHRgkDLMNKDS7KDjwvk/uT8ZBql0fPzuSEoXTRhzTjdYJPMTxV55OOHgM4wwoMflGii5Y7a6tu7UdhZbLGQ5t6xuOAHjTyUvmQxXHfxEu7rnrI95sbFDjtr+zzT+WARN/AiZPgbN7kunLqaid+0/dGdxFkucipliAtIi7EI3Tz1vnyTbq3nj75sefGAHWeUCY0xQN+C+djALGF9XcvwXz0+afy+vzF3bvffLn9BeIXnn0qeu/qIV5P++/dGwvZHdfFy0KHIDQ1JGLDsGLuuK7UfY6D9JW0xYCIqLTf7JGKBLdlnzFji8hlv2x/CD0Zdh7Si9kL5SwjExdvyjGKGDaPeTMwcU/mCBOyQs0dhGRWWUXsw7SNb879K7/r0/UcrYmYz7d0rIkg2hNm+WxtK2jPDy6fXPm+jz1TPcWYuqJDhchFMh2hSDK+3aTkIYAemwn0pk+TTz+Bhy42htUYypjlai8no8i9fOVX4Lu8FpTpdi1H2bN1IGMSWkSk79h83jlSnvXT9OqQkm0uOSsuv4FjUEVPgG8wIQx/Uha+tw55DprkE5e0xNOzDlQ9Hv3k4GWC7dugrV/gQm7DcNptMt0jiF1FH76/B2jLvTO+ZB2OPFzMQaVaOrrnxiU8zN984+1wpsPIPvj+gY2kDviIKQMjnRsjLTdh8PE0hj09nRkwbjbBqTcpabU4I1QGRksufaU8DDdkaeR6QzJoEyCVdHKpV5s9a9y1l4lgn3joVIoPXPITCKwgdB2ENVryr71B0cMDk3J5N0AnG5BejYUEguImoNDpMNIZHg4NM8NUDqFkvBBmuMSbAVsuhONKZvtmP2BZ144LaEcMziS3HtiCCB0BvSmh8TqQJOXCZflvBHfor7EZAPiEBRewwKnLCLUajmG2eNvipmyVU0pgGZzffiObmYNPZ/fnVF0GCF7KDfxWegncDBCFtjMofAsMtCTv61diksbwLZFbreQDN9RIGyTtuHncD7RIFJo8PPJWhRnTsaOMYAqB2C8YN9Dl7cPIjEH8eF55x6ZeM8BTyOoQSgMnp0JGFuQdL5+9ZKknT6W0ynVvp51Uf6NZu3/pi7+y++qXf3V3+m/8xd2zL3xq9wM/9vt2n/2dv3/35POfjvEZg6kNDfv9A5YykMgLw+OVN2/u3njnag2J0zEm8KivMYcesnI6hxwK48lZRYwRxJCx34CnyWZb8lImhg4DCnL0pWy2Kq7KWPqK+FPxMllqlEc5rlfjMWL4mxzAKYy3i6zkHLHEOQn8wqXrNZgMMHBV9sN817WEBqd6ys8467JmgMFL49GtZzHPv3GhkvuB6PUBHuK34jV67DM52ygD2JVXru7eeykfVk483YXmCQzTkSunKJ/OEq/lpBMnTqYdBkj/tcH6Ex95qst4Pfg2ezst0ehfK1hauhXjQEDDR57JZ0diFHw5G4cbF7zPPv3o7rXX3ow38eCYjOkEBbnr5wD7lpSIu+LuyvXdRZCRt96LR9saakJ72OpmrvcLC0b6gsuVnNKPXi+3BOe7auTEGUxWMD76ZD7PsuXp+HjQKFPShmvB0Gtn8hmmfRmBIuNeqvnay29XLn8hh0y+mz2K2nSRQmdYRXCYsPHrSpb3l55ibDHgtCMdHLOm+Ls0Fdy+hWk8wRteIcafMc+mZ8/wTn9Mtg0/4g+3EbzGRteA7C3xDsMZfx2lop+RM/wxHgpU75y3hDCd3JiaOoRanz+RJ/8zeRyDDO7uQ0oaDIud1/O1AfTgiDGvhlvq81B0JD7MsnKKoDfbEGAP1yCZVxB9r6Qh+ba0FSXryoLG8mCLWPETif9TtvIPWhAG2G6PEfthwgMbSVfyOvWxnBlhULzpbYX80zhpq7aK51GQ2UeSRqkiCOPaeGGwzt+GCLhzFuARrjtroq00sATCXqPiTjpXJ4F2ymuKKNM0MFtI0ZjVvUUZJK6z9BOs5c9eoT6GLobOMFHjGjR0gKCuIDtXBB44CcPJDlB5SP0MSOqlk/S4+Yjg9QjT5Qh86xSY9aYJOB0AYnRbxyVwhzveavaQOO3b64hW+RBK5MlvDZMaRaWdV2PiXNv0lRplMLUa0wrLDwNlrZ4tHx1h2OJrkjs7duUNc1Q+z+CZ0K07ySckaR/gbcdNTLpIZhTTNhM/8tCykweftf2iFYXJXlpqGCW9nTqR2lNx0rXV8AG+dNJELiWA3wDbyQMbMSusdHzyB7flXnjsi+oVHR2DhkvJ2jKHosHfZdEa/lEAKcOMb87uAR344DtiWrXRiw8MA58aeO8Lv7z7yhc/v3v4r//F3XMf/dTu+3/09+6+70fHYHoo3w1rxQbNbb/qzBhhNICBz2HCFy7ZeDkhjw2e8XN4SubHOGJcCE1L3e3zKX8bu/3EMJGuTYa3U2dGi9ycJt2ccDhP7tGn7zGIDAru4RAYcY+fH5yMMv2k7ZBy0KY8obKXLPLVY5toV5MNcKMz5gpee//zCGnZ0nT8yEO7i9m/8rWffq1t8lYGQh9aZTtvVSrPOohn9t83NMkp2UzAe5VY1SCzPiR9IhOomxk4j2fZ9lK23h3J/Qp4xcDShfHGG6heeFgBX8/mY6tvtgz837C7aKTbwnreZP3g8W7Q++Sb6FWD24DueBjktNeto/wbCcl2Z85FwgAc+l2NvdVBPfdhizPBIXdWGq5niRtn375wsfK4YOW6VxnjCUVdaMpPJ3SBDMq252Px4L35nsNrpE/ZS77FzRlrB3tlxU0Yw4d3iwfoSt7Itu3jZsYEE8waRBnD6iHqRMPKx3hc2//QEhrQvPay0jko2LpXAKbvkYd9E8tQMt0EPvfGwOqPXLvFIUnjmJAvqU5rBwQ+E2DnOnUiGKT9bFcSTfSV7zNbRQpH/kzcFHgrvL/KoIpMAjkWWaV23At7+ubx7t/SfGd0Mje/n3sCNMNB6sHdnZjmWX3B+BNSP7/5WfSta5M/xM8DG0mWLxg0R7PEpKObFTEcrkWxn44b1GBECBlHDt9DsEa8GsOFh6lCmDizcIrEH9i+opjGPJZZsMaF41ROadVoBJBynhncDJ4MIIMhw8CufjRkW1qXV471O1sMJWWkoTfFzOIOC8WOMEQouhFtpCceIK5XxwBEkMPUy9nISnjNBioktZLNsCNtAVA39bUBHXwVbIy4unJTrmURHdsQlJoWRifBA3mn8Q4G+8UTHaKJqZsb8HDWA5b7IEu9RhnntqAB8r+CoDS4hNZ/u4cHv/B0BAmqzO4zAMDZfCnHLK3P4IMDXt4VdZRPnVw7EASiHSttMe0pDXtauw3ntEORlSo4twE010IWfsraQHIZHtXbpp1Trract33M7sKb5Du50Q6FWSfZsRHZ0RLv1wAO73L6tMnUia28oX2j9aDA0qXWpa94R6nBx3BmwDAfwUwVh8ZWIvDKuJiJxJdiMPn7f/7GX9o9H4PpMz/yE7tPfP/ncojhD+9OnTlf/IeKzbMT3fOyQP7wl8Ex+wBwp82xB8eHkNHyU93I7T5pf4P+GpG5ev38bJbutIn9Scnetjp7Wv3Dp3h3Zt+S/pRKJLTUpIHFc3DjERr60GbwcZK3/WXyod8+KnUgd/cKQdOwFXMXyCr/roTfhIhzj5zfnTn3SEviPfKiyLG0OX4ztO03xHR81I95AdCrr6kPeM/u9WEsADusCP/C+4fyejVHS7RA9VnmWRMCpL2634bRmKVhEyx7+1Z+GHmyDni0MbMYAjWAG8K5HIbYJ9wDbmvwQ5mSU0U+ZChtKxt9uY2goqALO0bmwlMGRY3jJSwr3xBzUPI+XhQE4V/w8hbD1zDRvd2K3BJ2PfWb7J6Kbna2ES9hJ1PaKLiPZ5J3Iqscbc/iO4Q3AD4n43t4vhYxpMwoogBeIMcdHD+Wj+JmLLTSwShimJAb9gn9RQ7Quli6pAKtActS8/DGfeuXK97IR0R4sVYe5QITwNgX1L2wxqV4iC2rgeb/uXU9f4YraSGegaSvW29DVw2qEHUrPDBGCfUjISz/uxi3Fabu3u6mC0yM6VD0wWGEBKZ+G3iuw61E3zNIHYiV43aww7lBHEDlzoPCVmijD20d34sZFxL6E9jmGZiV7cNcH9hIOl7jKMzU+GEQWrhXDUyMGyduOyepDAyYWb7KMD4EMDQoQYqUN14jQqXhHCVgv1G9ARFme5cI7xhOmJKmzICsbIPJ8uLAGVHMuVeUysRbM5VOkKQLLT8QBMvAb4Ps+xGsVmXQ59h5yg5PDTQpKwqrAhVcZE3dWNOCLN7Cs0ZOkHs+UO49y6/TdLNb6laFEBzq2/ZNZgMQQRtM06H2SjDxHZzMUANyeOmtBcsVRDqjK1rU92bqypAQ9qi3AuED59qQB8anyBpe63lrFLBoBAAMrE3E3P2LbrRZCuviVzJUXpOjufKsE6ELjWtDKyDtV/oDSx6Upd0Pgm5rdh3xDP+sp9erlGUem9OPZUOiD/cevX6xa+Zk8PTDTsb1+ZjABo6s7I6SMx8KTRvdvBRa4THQqfPwbZWprugQ0N/0RNQtLkPyzfo92vOYMvESLJa6m/yk8FYPsmQsffnXPh+Z+Eu75z72qd2f+rN/bnf63GOK2Ad5vV3G8LAkNSEKKG2J7/gk1EANjcr7oIAmRqTg1XN7Gob36IxhGblXp6vXjtcblMOAynvq9c6wcOHN8vrMp0UoyeGRPOic/nhA7524tmrcGf0vxPOjjz+5+4mf+td3v/CFr+RbaO+2ru9ZAgu/7CkiC/6cfG1Cpa14kGwJIEXqNq3k6pneGyOnG9Ij4w+ZxUeM6ITL+sAdNe+sv1io+ugx8BsMXPX6BS95MUCvNDSKOwiLkoOYu+5ugz+Uer+s4u+ZZzIovxPEQ6jcMvSERZ8zn9wfiZyfi+48F94ecK6gBz+rzBaxPay4exNzkLd3t3bffv1CluouduO3N1zPZX/ZOoSTIfrGO/n+3Suvpy8zAralJvVsmdlPliU6J/tvzZIEif4m+Nbf+zcvd4yoYbTy5npcW6WTdFITcJzwV90ZGdBuUHXJLeX1caKq7zvGeoYn+XKZkIdkj2NAYKjnkszkk0Hf7Qj238Z6cV9+twLkks4yPmQyCWEQzbLcTKB95WDQkT0ynwkBnVMCgi/tyeBXh47DTQi6yGfz5XZq2ZvbfqQXyLV1WRUS8cEBZPNvYHfmHKqHt1sNCtm+QVElAxV+G5IN14NcHthI8kE+g6mlNG5FzB6XeshCRxhebwnGh5nGKF4erjkDIVi2LuHE5LZR4iyj8SY5XmD2IUUAkvkyRbApAy5Mrk2CoAwz+6PpZH1FMvdCSi0dGCPd362UtYwVTFqMxkh1IQoGDAaRgcAbFBiqc699SXD3QLXEcf1mElOOu1Bci0bGVNec482CDzFmPD5vYoCDv/VOvtlERgjzEBoMQFMD3QgzFcHgi3HRArdBEhTG7YN7lKh96A493pI5HDvQA2PgrXHiUTElQHvlLx0Lf4suyWjt83Yv76m4/H0HyZKipTneEwq8sFNE85ihLaVZAy8Uqc+QjoYg3fBWSXg41NHQiCaeLe2mczOg68GM4eoNydJ2I4fmNS3ex+wJ4UM/eizfuUo6GTp2PCfl5sO3vKBHo8wSleqlntu1hChLnMQUhjR/2qzu5z6hAd0bj5JeJVfYQG/1yWNCGBHeSV8f03UO1ysv+6QKD8RA3f57ILMbhtSvaAZMW7XB8hi8cGD3BwV1qnymHhcvZ/l6e14Z1c83xOx5upy9RfY04Zk85K79Nfdp5q3t1P+DSvzep6WqCYdrem8aBm7K/25oJFt/4t//D3c/9OO/d/ef/9n/ZPfFL32x7c8Qp5vIsP79+exVGrmaiR95EBZbRiam7Yca1Oc097j8yHnlLvJqO4GevgL697XMjZcQLuVQSEE8/Dz3jHTnIL2WT5Xs4aWlLe8ZFmH3TNwiC/MAgAvkHkXp2195+c2Rj5Ue+BfyyZKzNYRSh/CqE1V4AjPotoc9fRO750YfV9wAebo9Bj6FkvB9zt7MOJA9c3k9QFMdf2t0s/1JxiF7lT7z0Seqy76eb1m+F6NHG652rSFcHaQVF+4pK4/Vew5pnMmTmAnooNOrX8Mb5GmihaNy0odJM17o3/SoStBRA7vpYA+HgnRmcje/67PKMhlPvLL9Oc6YY6MTJpXP/75hGfmjXGp8pTzjYGpdj5Dc6n49Y/xDudIJ3esbPXAs40O0QmQ4tMYyo5vhyLpSjN759mlJnCocovb2WzUbKu+q1Fb3oX/lUhdh+HF72qQEW2h6+GT2qQXY91nDya5g2TKB7/2kSRLZSd9NeGAjqV6LNAaDh3tZpyX04V87fxu6PT8kpjMzeGpAhEqGEuYTDvFBU4HglamBZERIRZ3n04MiuUZ5qVKjGhbJO/cMk+DNPwxosyWfgIkGOoziVhwDboSMq9AYyFUoXajVTbhyZjQFVhdwhAoNFKKOr06lOfR1gEO4AAmB3kKN1MDynGgUKtTnVuBg6QP319cmt44Ak/SFZvgzsxloGQboFtQF7kt540gez8UdOtGORvu90DuGzlZoc88PngXrMCp384QKIVcEugvuKongBNMOnat6wa1Dvp+1rNkkzdmaeuF7rp05AYwBPTQlNp236NtMkR+DxSorSdpMvvH0HZQHL97A039g+ocH+WuBAACiL63gf2C0n2RwTqF1uv4xyGByachNHsAJ+F2lVtoYZVQCz9Okw1ucecztlCsphvMBjrRTjsroEnLKFso/dWhZYBcBk4v4ksLDA52U1rugC77o+iMdXQd1OUhzJ42C89o/o4e8iMN395YOr2WjO8xXcpbKzZs5wbke0FkmZ/haQusZRomXZ4XKxnp4wGt5cAfson3Vc9/PD4oqj1ftRePVyqc+dwc65u7YxtwvfgM/nnb7/h/6kexHzH6geIsYRvZi3Lo2eqDtQ0ZS8Cq6ffZQcZ7JHNoKF9ngxXz2sTORmchldCaDjHPirQvxqmx58bdL3Xl2/9wTZ/M8bQbEuW1PnX9493WTvujMNQFpQRuOPVHr+YOuqwIIWESsuA/KJ+0+cB3gFy5wub+zLSRTA8MjiA5nyONdz6ICs8oEnvs7c8kZVh/AiTgUKmN5NokFpH21z+vh8UwMTKa3ybb21YAJp6PDH478v5f9ZDVIDpWsOOp5ZNtEccYj8boLXeJN4enxhu3EwRuA0SXR2anbVtS+j5lUV9+lnY0GKIGzbPCQP4c4XodfOjkJUxkx+Goya0kyzvQo5tCSvmwrpQ+yX4zuHQKSHjnMyn71hO0oDB6GF4OCZmBwnQzubKRJfpNeaTxUHBrBkjzkUD/p+YnBnGzrx81tAekqsXh7kNhMSp42zB1aJiRtksunQ7Hly8BoL2cFersYfOrRtWxEilIrDJjkyfPhfh/YSKL4M0JOI4RB7fSYdNPMPef0xLNTGQgjWJvLugY3xolGHeFRWZ1FBv8OD5yWdHgqDP7y+lseEEK1FArhrLcoSGcgSKM7giD/lHMyQiDEpup3uQwQ4uHVMZwYalmO8guqlpHC2vjKAKtBwQ4dBMQAbMli9nlw8nSZUBvknosVbGrfjqAzSOhV2SkTHf2XMvK/gr3n11YmGo/lFEawMxOYjvdweFzlHfz7JRSDdPDAVX5u1zyNYIh2OxUq7bcnTDoYgPHyl8eZTGyZRIcfQeAfI3aF4gSGbwU/MIDwUECbP8K7CG1bJLPrQ2YkaarBoKwJOjxhx0L8wzty4QC17mULz2OOhK756weW01nAHLueQ+I6i7KRMi8GxKjLiSEtbxWw2kS91IgxRT2l9hvNqTXtExp1QjPDoz3JdqMxhIL2VOXiNrgezoGXDga8njdhTuaU3vVdpLb5qhzY5B65nvotbE3afoBXFvFgMbs5U2riijMkGogt1ZFNBhBeIU4TiOdh9AamwNDAWzNI8WjAA55Tsu5vvINWxRmk4VvqDk57KVi5QiUi5YR1iCmNyJS62h9uoZckkJXKbvKgF37lOAeqy1jRMesTJzDh+36Td2hDAjp6DU1L6SrT8sLh4En8hwn4XJqLKrlb5zEub8cO65SAn5bVwDrTB3/Ui/hog5uRR5Mcx1Ooy+FN28WS/I/l7KDmCc6bgYuyGfQBgONoJm+Y6HX417OEdDgk+bsLSE4VkH4Qbq/l4aSVMnGjI/dEDivKkTu5Dl5bC77H9sy5M5WzRmghwlGkg3ni81uhcc3fHUl7mPvF7wEO3ZSEtG/ytN+HxcYQnyVZEytyW8Mi9H47xxD4rJHDPxXjb0iauiCs/TKR4vUHUH5VV09pXDodHW8SS7cfyVh6lHwExvYIuoc3xKdUGDOMr/ej/53BBBdal5znsfoqvrFiN8oxmrJzJPXKTeSLEj+SzU6XgjeYR64CwHgymbQ1hdGH9tKffF488BmTrcRc5Yz+sOwbWDrmir2e9D+dHZk1bhtHr/v+KdmPPhl6UfkBARCac/G3ftCvTMxsvPuE1r93SS1AHw5+RDeDG4wIjbmll7UDqoZbB1k+zN2DG0k6aRhCmOy/4a7sjCZEaEBnKNjsnNt6BVjSMztNMyayhoBGCZ5c5i+4pDnJs28TUdpRihoSmyhuZVDa3cionBy1fjPl1GujgVKuV5/hSdEDm/R6EOCOoJmV8UDlMeVQvJlhhz5CofNOkyjXckiuIcubDdapzTAMEOqSbeZJ3wQrZXUzL/jUx+CigzlraGux1tkgSYDGK6VeJTVlUKzbffKIF4KiuNTbsIaeGZxyfsuZh/c8lhcO7aFsm9jhIFCueLGQwuHZ39ngmBAoODwkzwwOKV8dmnnKXsjgEAxw2nIDaXm9V0b+Sgu8+NoKBk+0Evzg1EUZeGtmJ4/25SZ1j3Y8KK62I5kJ3rSfFwB8juRMNvYHNJ9uu1SFgp6HsxToO2BO0/VxW541xhRYs/ddvulWngc/stBjXV15ONOytzZpWujT36pRhypgG39Sn5UzcaeyHwo9ThO+LlMeyMTJfD/u/SvZ2Jn+sgYicCsoZ0PT/Cv+8HXx7XC+lR62xeidTd/kk9Fz4eK17IdiXM5ymjdUxiM0bZYqtq7wkWX9FL9rrDBKw+sjUYSdeMQ4FH80cfYwLGW92gf3HHD5dt4Qco4TmVU9dDAG+pBnba481dW/XeEdPs+5S16WIFuMcPDq5UwltMPnbTpnSaFrz8vggFfbVa62+8Uf17YTNit0Cwf3MuzJbKq0tsuGC+7cBkj+kc8C+lF+mIEmMJbu65HMg2VpuuVUBjsTnYhoQvgYNAbBwwFpBmuvlOMLT4dPIK2AJgakK3r2Ifk8RhsOc5MQiNLi56CeSpZvy3Angj5vRCFmhf1tWjrZZyCCSxCRS2AOgXUgXu1TsDt+tBMdMTi2xMN1KrakHqZjA1bOoqE5F5Lb8t9RIPrA5Vrwu2D31MNePW0rgRdByLN2scwvHCapuRJR428eml9B9FD38rhvTnlzH3xATaZ9iUBbkSGN2PGR/kmGRtGxqez6N1WtEBVjx0jI0vQ3Ul496dU9yshEPmlXg8jWB3puVmzGXJCNdDHI4igdxqTsbi/oc+Q1OOrpCo5b0Z969g0ymfSRK4BbwJghcMXcfU36nbILj/rKW2zwzGOvt/1o+HuWobaSJM6fe7xlFE7qfbLeVsD9Hx7YSFJBX0M+EUVF0AkH7xFjBW0dOHNfpZv1DZ19XJRpkAgaZW3ZrcIQZnTJLkoFo2qohFvK0MSMkhkc0tgMrwjMDN6xdmNk9VCrxM+gZ4YWQyRKRF57lxgkBK8DejqkuR1YtAUkHS20pXFGqSsvFn4SeIqcHeHUb+zWZgw1GwzBG8xthj2RK4F3OJ5lO8A6hc5/PZk0ksPK7HEyKChHffANDa0nodzqiW7lMRTGCxCagsusQ5AXP1/MOSmMBTw324EP7Q63PJVy8tg0SrgzBhFbcAvHCtrBWx/TmZPmJOQk+p22nLLx/XCn0OE2fd96Nw1fEyoXCs+jNl0GF+8B4qZNA5jHrmkHlzrmkoFmcLTjlJLpONLyPwGX8i8RzqviDtYVCp9nZbR6ua/XM+UNbMpKVdA8JbjCiOeDGW+obXImBhz+Fz/I4PT6tmdleD7AFbd8ZpsMb9+cejF7MwQ4iyk37smc/KtMqR8mrPIO54kIRc7yUeh4YRgUXhowmAqtUzLh75VowlvcdVvQLlfz50pmtVv5kevrr35r9+ij+bjoE4+1vVb/Jmf5P8bTlof35FjOrGLIXI2RdDl7n3hL+jZraqq94dcHXGtM5NMkiktS5ZG8azt9gUxYRiCnKHJVn95HruSZMPfqLxhM1EU90Jjbsl5jtpz8LFgTGzhb5+TTF9EjizAym1ZKHvG3BchEbte+pBHEwJASTHs8Jmn6wJHoPMbP5MtFPWsAzVI1/Mp0uvoKjiS5nFl7aYMzZdIl4CqgC9AVH5M+HJsEVKBf++yr0Js78+9Tk3HdY9rgue1Xne8MQO+MXmg2WMl3gYC5LXI9SNgSF4zrFrdnvajDoTCHIw7dJ22hOohV3opd14miV+2TnVWK8PAg01130tR/eKCdFkh01CZwiz9kHHz1TOA0ZfVxMpFFnpkyBb7cjVQtfHdcmz8/+W/8Ae/krUh55VCEienE5IFeCyGJSlkZu9znLyQlpO+lfF50bwCn+qVxcEwHI1s1yhRZwkfa8lguJluukB3+g/tQGKBEyDVhZHQ9HVzReQB1EA/F4eCxVRC5PdwBUnBtAOcetrEP/nPQM79Dnm7CZjyE4bVwN6NG4aUwNahXo0sTFPI2m82MCpE6vnSvIgr2Np2O65in5kiMKt3ZjJGkUai3bmXTbcpi1WNmZ1IxUAxeAoaJ12ZsiQpZI6Wu2ZtGn2UyCoaivxLPzpWcmCxIo4B4NQRvnrCa0VmrP2n2AzBycNhmuBCb9KmDPVexazIQUdLZABcjUjk9ciBXcGtwWC3E81V+JULZW0U85ZbgzoDRmbhiAoPF6mfAy1y7ePG0nSBx3th4IR+GxGg4u2yUhpmcJb0dsYjgSl51P1uPDBpEKirGQI5swNcC6YDuE/Z17pOfZJKnmWfABesfiVS1lReGjJP7GbRB4zQPj6ZMnmHDohbuUSDvp50UTw34IvuRa5fj1cimvAtxVwff6cSph88cXL7wrpLjBYmH6mKOSsY39znkLm/D7k5Fxk5usietyqq0D50UTAtLHDyrZuqApz3PJF7MAPW59ZQf8ckgDzOuxvgWISn/pxQ33/MwlBLHSzFQ/K0gJeNs+wsDf30QlVylC6Q9I0uJ1waV0QwM9jC9+cbruzdf+3Zy//DuTIw/h6PWq+QzHekbAm+PdsEbB6iq2vlz+YxK3pT7mZ/+xd3HPvkDGWhOhp4YTjHiKms5ImB5gnBL2XjoRPD3szRgWdCgwWPE+EAT/ulP7nmWunTY/j/5azaHBrTAl0bVCLlusiQ+ifC6CiYFXsRAU4MyUpA2nknJ3EMqS7pA69n7wMqFnsqFdkakmmyw7dO591kNkb5CoGxQlaykkZGG3B8OY+hvkSuPOgkKyH94bguNGBqkAxgMeIDDq9y7ciZF+sTfnTpYbitrg104kXQQFoZEDkChxTZlAffBzwa0vy5Mh+PFHYbN0z7/gh+YGYcOx637Ztjy3R63UbYie4WfLt8Tv09demHjb+BQujXLUJmItj9ZylhVPPIfajtYRvcMYtQNhVtL5CFquDJS/TkVblkbYMWcYaN8FWO4zFtrgww+6Z1Mpi7wHdsYZIuJ/bfEihwb23iduAX+P+LePMbT5Lzvq+6Znp7puc+dvQ/uLskltTwl6qCuSJGoCLYUGbaixLL+MKEkUhADQRAgCGLAMYwkcKwYThwYVhzLMRRZByRFlCVZB0WKFO9juSf3nmNnZuc++pzunul8Pt/nrV//enZmd0QpdnX/3reOp5566qmqp546380ICmUtrZJQDM1dahUS111qMx8KG4x5sA1JtT5V0xL0Jo+Crfwm0s1hRTgCEkTHBg8939wAbgzpCtmBLtrfPOIbQ29fSaJdW14KkklmcTJdSOoySYXHExsaVjq4mZQ1dYExCihnOoRxJkmCrwKrn8sgCi2zYwH0NUmjuu9HY+joNAg9bQlNSg+YTQjwfKgToaNIUNt11OpSYE4mpBBJjwu1tlIhpL0UMeYhqDQRlOCZ5ySJ1G4yTRI3fSuZo/++rJhd/uBTkVDZ8tSZs1wKahVHOx0VOGevqqFIvZsFuanVJUHiRlgCa+V3BKColD9ESz5VzExbHhkvszbAW6GJnu85yS8VFn8Z7YDHfT1Gklca36YXJvnCJB01lcE4+3bqwpV0EBlV429nuJPOKJ1G4gtsA6wGnEbSEzEIu37SJz29s/GNM3xKhyAvSbryVnSK3tkXRzY28t5xRLCA09Lv36KThp14bHezsQ3ZJUzi5EPLwO6mg91+rRRfBcCEC/SmCY4J9hFJn2nJZ6em9V/nFjCmB27juBxbGetLZKUYxM9Y5CvCq+PA7edPvKPrKoqEcOkDteoaeOTbulNiosL+Yp9DggPS7rLOD2MACKh6Je97HZX/7gP0aL9maXG+/ea//Ln20//N/8oMxWFO/AyXvRJmuTpYscxtOyozlqmG7GV/xcXL8+0A7WkSzdQlOA2TR+3aXCn5Mx6rJp4KjwRVG6zyl0e6bUddSdKd5Tvqpm2b5kBiIFThpQG5tGFZSkZ+PLpdsBDGa2RIRPpVHDUBAad1I8ASUba8jW++nRWvmgMUMOZbd/ytUzIVYGVQfvDdwvfzIk8+fyz1wA4pnRk8v//eOws/Tz+0eu7chfa2ew+lTT/5wmvtAh98rXxxXw8XlvqR3AWutyjqRlE3WAyzQyxj7G6kTerW86CrTPGuwo3f/dchBkBeA9PM9yi+oYU/cEYfc8Zv/BH0PEYwI8sApXudhvIc97sRfhz5m9nfirCeLGVJEkllIHOUIpaNlFWIz47ddmX81FEsVgu3fFgB9NctrJxMG4wd2Wk9pvDiTz1303eM5VH/cQY1bvsbqbTeWnW93qQmEGhLuFViIluB3UKjmVLO8ufhoW2ZlFBu03dDVIkt6i192gQduwNy6+kEd0jlJDEzAak5fIpIf/s/5b11LeRBlHSVwXPd0T3rfSv/jVBxiVf+8LoluptEK68hHeMW74rWW8K/RUBpIm8BZLAdqOQuM9NQHaJCCz9yoxBREZC2qzxSUawNFgACMUfrgVM42bFrhNGWSyrxsxP32KudpUc0Ha26Ni/SUm6i1jLbg9BF6tuZmv41OkGBkqZvXBFqCCT0gMwSSXsd41cYwzBoc9ZIuxXCZScZqmJkjROLOBTKKmjOZk0AY8UUv3E3o0wkEhHTYbMMltMTli7GJQhHhsK71Khg1a3JiBy3a77+9ZvIjSoJ4Y2zUzhko0alas8uPnrJnhMrafIOTCmGKms0DeInCeLYCRAl/EyO9CtUozQkrk8LG6qCsMPOSzr4C39whK7wQl4TiEdm2kJ/nMHZlQeVO43lJHhXEHWU8iadlf/uDn/wM7vGVqGQim60zUCbez7ki/FpskncPWcq3YJPMSsR3PDIJia8DVsVvi4VrbRNxT/f8tvTb6ZhTVDITOWERCn13kyrEBLauq8xThhDvPkrs4kze5llk507o/jjneAOK3jZ6/0X/yy6bgdv0VbwKpX9ZI9xr8wtt0N8WmX5+tZ27iJXLCTXb4bVjK2nPUv8y+xR2rrVsqpMpy6Rjp+YcObJWaFdO6bTznMhpSUVZQe+06ZV2qzflrPGOmJbVGEKTrxdbvW+Mz9yStGk7AVf/+GwTPGgKoxoEVdmjCHZepIISUUU0FFJVrzElTZH2D1A4MGuNXgMj+DgNuiFtn/PjqrnIFPcvXJ6NiN2ZZv0Oat+/71GLqPydB6l6FECoba9xueCznNRYWers4Cv8PmMvXzx4NZG3kAM/z7ywrZO6VC/IbPaj7JBv4LobWEj/o5lo++oYutthvKuV7nX48l/y3txSYEEbMCHOEOUN74M7zj6e92v+xjvrTCt47415MaQjn2j7zqedVvnXfcxRqSKKFKWJbed/S9TMt1+Rh0I6VKsxO7+mR7fQbedYxQV5ZfoCmVs1lFXL2w79iFeSDktn+nn6Daz5cM0trGqY1lPTTIbzEGWKPLAuirkEF1R5qEqNLL0txLjYDJ5cG8iYRPE9fSaA/FdW8gJcSIjkYn2MTahXgjS2O1axw05uqkZiz4K737pT6Bftyb4y3rbz8QNkd8oBvrr202tCxuVGjsMbzW2ELPzn7dCrV+xbsdbQsO7h+rIvgW0jIA04yo4ziytrqJw4XafTfzhgoqGYyhhTNOOvkb3FA5+KkzGdT9UKQRUOPycGnSD7DT34jjadfRqlZWzdmyqN+6NSqeMtxMGdntWVvFaFPpFkSE/mYqkZzVfbuKLwgM9up0tSjh4rYTu8I/mr520DcsyIm7TUwjmOD95lQ8Ky1QAKDSfCitp1a4xTDgVuIwGUj3ojLmMzdN0VwU3f+YDWktxMB9FnwE5MSF7qvveAABAAElEQVQyaACh/5W3ipbTCvtZEhCV/MnIxHQBt0zsQPxLGeCn2w5OgzXKZ3fkZE8cBvIPPP8x5n8goWgwsv/8uul1q0cyriwJHwZElo/Lm+GfdmBydxcsE87j1ZaN4OFi5zEzDuJyb0ioQhhBEpGqE1bQJR29OlG8BTFNRZQxPUlnRvpIu2gr4gInQcTzFIj72swzHvUnXmnQS8sGU74bvP4tO0b5Jl2vMPjAd/8V2qSbVW+k9WaEbYTxI6yrV/nYMEfp5YdlKx7bSWaFBmWnRqvyeVB+qPt91ij1mEKqulP8KX5uTN+6oF5QCnVRK76kSTTt6Yh8D2wWpzNTFkmUJFBKm/jNiTVIe+E1C0Uj3gUgEIG2WQd8zjTPsqXAU1seDukjb6BiplkKv/fOAxkoZcvCMKPZw30rI7czBR/U0Hf/3Yc4iDDH99BQlDDKhRkOJqR+O/AYM0O2BvIknEAQWSfLFP05sUX7QUzGuPTpbJ68ctba04UEV6xEHfI9wHdsSY/8D8kUfDwFHCVesXDKy8hXLO71UZ6F+aM4PV5FqaepGbmnemPY4CY4aDbgGofVPuCywEdw3TKEdbAhaiVrGGZ4lQMURBWVxpc/sQUjERMGUNwEpr8gPJABJoQyVslJPOyWgTLXn3/KGLxLBnbcwTHmIE7q7eCfyyuJN5z85wCRChBtK7QMsNqNJxrvBSANiyMHaMRD21RByy5e5KaX8goA2hj7eg8I0QFXxpP7dR4U1NhziKePOMzvuBkLHveO3bDA98SHtN4AeAuPoQTCzxHImyU4Anqj5baVJJeklpgmkslWenNtQSMqIjDSqUJECUM6fsJdotrMPgWNQkUtVUGR/Tb4KaxWPMnBur2zKRorlUIjU9NwKbNIxCPZsEl3lul4eyu3PKyZGSILg4cCeIszPakFPv1Egxu9w/bgAiQVaM2pR7wVjl1JsYIqqLdB01UqhHlWMaultxL4KjrSb9p+BFZ6hVubUmE07SoRFRD55dJERpKE2GlrUmGlGbv58GHTseI6UyPl8lF2h9dDGjhCa8W3LApXcgd8yoLYta+q8ibmpIG/8OZxhT0/jjwMMI75W3STbxQMAUuB6p2VR8HF4WZ2v/dlviS7G3kWN4+uDFofjKOSaZojePw7H9KQDSS/MbH2al6+4klBBSAJZGZIuvW3cWvVpBwG/1Jm4JF8HYSYWTZeTz/xh8immqREFL+BJihXeA5JGJpw3QO58Vqc86PBdAbk57pHuQGQnsJp6W404Vj3vBH/RtB/S6419iS91u6672HKS77dvjEbly6ea2fPnGi79tTN4vLcspMfzujW3iJHqDV4CO+Y7/fyuj5bdPnC6faZP/rttu/Qne3Ou+9rD7/jcYoCJZ2lwG3bd1hCpCTn4Ges1rEqH4PiB0Qp6wJYCLwwlkXkF3bj+x9DOOONtNGAAyesxsGgYaahUQYpp5whts1s4dtuafOA+zaWoL7d03jfXQdQQtgbx2DLD9cuO0M+ZsTh7FLRPtEO7d8N7fC+kk9aO2dQOh29j8XrVsm0ZgWchM13IssT86tMpe16qOQQG1AurphzFSQ6UmYjtkL/zu1bkGHM5nPgxMFQxM/NEgtmZpxZlnEm73KNRjspG+kzfsdBYiqM1oOer07jSBnqsGLrja3nZZSClnHADQG3cAC/Ac8QP6/UgsIYmBtQ4CdYyn6Itk7/WFYCcwNllKG8t/7bD1gu9BKZaVbVtXXVxa3YCHfQniSAT92zgEyfiFW6ODAZlMofnK4hWOO8MkZwVZywTsFON0QIDyuvEfkBo6wczToi6+33JvxoODQ4ARBAaM+MFhGsW2WgD/jaqkKqqY814HerTGgfwQ5RfBHgqkI+izLmfSvremoF0d1DAuueleC6exyh+cQ9ipvI4xHGgd/cfttKUo5Rgyt7b6joCrk1Tvx4skZ7zRjVBtEsS1liGD9jYZgCopPoya8sxZAFlY/MYqD6KixqhOYXoDnq7zQPsSazX8JOtaYIHakrhGKwOIPkfidnfLbznZ3goMBzbYBwkJLZGyMATzlTUatSWLNcMwac2QI7fgvUimS1rAoQoQh+FaG6RBGasfs1+k1oC+KqPCOMyEOfRRLemTcbmJUrHTrpdGGbjppURkoItKRBkc+uFNhY0skw6jPNpAtt5ilNSnxyljx5X4ZV1T+pxzdvHglXyenG0YNKrMY0rAjepC5NUVrww5pZMWGcJdzMEXw7OvdQ+E4DH+hwNktBUHkhgpExKVupEB9uXgNvcQETvkmvAXiZvsIjPBtwVEmIDWHji7flZadqHI+x6k4+TYs/WZTmjoARjanLR0o0+IuvQUZYSAltIhySjX9BGF8olUtslWzS6/6GSXPtzfOG69bmWIYTdmSQXuECflW+A94Ok3yYvpkZzJi1e93y3fHcEqAH3BrQWd3D9zxEOwBmAPP1VmQElMdWLnXbwFv8kMFpV3bIzl70Ddgue1mGVY+CIUlOMsW/a/8d1A3K0WUCgpwFnrtyiY/PXsyHrPejQG3Ztj0ZMqb0CVdY4h27HZN+vZxiL48I+/EInhIbIaEMbGtirpnfSiADg3QyyDxms81rFCPehbuQhwdEcVbZD6lOMcjMABFZOKcClNrJCyOv/cJ9WE50D2Lo7rnpafQl9UQaeyRlk7Xe8I41savN2S4Ng/0CsZRKO+BuG7Mb2UK9dGZ++/bNbMDflj2jS2y490Z25bvxwxqjD8arDdiiQlpd2hAgfn69rhjSjfFVGASJd7fk3aF4d/d61CHCGMyYdRxMe48+BjJmHYce8x63Dhm9GR7rkrT7skzGzc0wB9UApt3aVAhQZZipUaEJR+gbrFdOFFSfUJxLeqNEenq8+VexSX0BaQYitKO4CYwiyky5NLJSBuONA05RhFDsA3JXHJa9ViedngDCKJfpj71521UecLpfyr3I6gFr7PFN39o3eIcjFXVIYPQKOlH24ME+pDQWsu4zBpqIkkryyfcobITQ2t8d/S3awmc8bQ7nq+8YYbhty20rSbY/C6FGTJAFc1UkbGSSpoLivpB+07SKioWloPEjt8LZ0SY+8Gt0tCo9xtXP2YnsCwHO/U3GN8xH2T2xVtmsjlx6nD3AH61Zv8xWSBM/N1WLwYoi7bJSZjkWs9Gn8AnQL+loGYzx/Sm8ImCAEncfgW5DEVMRstGryOnvRw5tBtLq955U3Jy9quUygkyEn/T2BiZPQncC7MDBIE8GGEmykHN3DLToL5qep9hxVzUAN2lLtwoLqANrKNGMpLW/YtHHoBjCFd0aabIRxA7O4MLPfO5AgO/KBx/ljRQPeMWENXnDKq16GGqeqCzBU9ABHdxVf0xLagw3l/Pw13arh53U1fPz7SIbV+WvfHdZ61337U3eXj47i+AvnMJqpMN8KHgsx3fes4cbdFVYpY1wshc7sJaxa+1eFbHVGU3qrCO+dFYsg+zevbOdPXc5nZydeo8XPFJrVjEDizc4epiekBEY6TEPiT/4aU+58zYLck4+DKgL51/Y89ZYHfg8/7XPtP0HDqME8KkXTJXireNYZmbM98OPPsYMpZ+BKHjLQX/zrGKdiy8pO2dhS0Gq0bbhVXcn2v6Dh9r3feRHi58yFeZMMttx6K77wqOlxYX28vNPtp2792XGSwptS0lLeIz28Dc8xK+8N8B0v0QYHlGIqA9Sb/3pbSFlAo2id3+g6Iak8h7ZxUOgGEATeqXNPR0UOfWu8ptCFhYjraAuu25+8qKMSPI/PAbv4WXc/Zws3ITsdSnEC3WNuonlzutcYukg1CsZnL3KLQN0nrs2KwUZ8EHQzHbuFMM1yb6UKb5zaNwp9nnu3DPT9lKO7hOdm+dgAp2lWwkMd7C0ldPHqwsrbad5goZNzJRnHym0+mmk4i3A/I9Mz0f3wD0eHmf3I16VXwfm3cN8j5sx99A3Vih0Jc6NsNJEnI5uPHjcHnkrERhlqoNHFtJTpkYWfegPSMH1/BiWFkz8QqHHYIeJ1oeowQS6dUXY65PIPN+gVZZvJFD8JlhPy87+Mp+48oQo5ZCbtqlfocSDDTHWQ1Z0IlMMI6USkSm3axxYyZUpwFpnK8/W8cpn3KGu5JfLtunpQGItkqKkxKPy2T2S+OgRcdBJEqSyMgofslbucTh9xtw9Qo++zpGNQCmbDtzfG0G671u+b1tJytISBWCDcERkUakgOJpyrdkZo+z5QQCaq3QCsQlKVviX4bnUigoSgchU4GZ30+OvAmUHKJyzMRQT+N3LQ8On0WWab0jf0ZnMkRaVEdGLQ7dvPSxw4+t047gNWJoUeip35sEwTdw27DF39h0p0ESOScUlgorBCpUyChpx7AK8+E3hpxInLmn2unhna6yQtcfHhMRU+LSFVt/k23i6FaiSIW0mbWde33qrmPJBW8fS8yysVda4hlX8wolTn+Rd/1FjqIAAGy8dDe+Kr0+ZTqf+ltuIJ1HxO/w6bKe958vpWeN2usTnKb3NtBzpjyIJ3mRYuMFvBwJcv0VusHYDoSfcl1C4d8zMMKKpOmCVuYIQvz7pVD63wjLytS6psC9w67Ub6KMaSxTGp7yuThW7bpjsMojLwDtmptq5SyvtsjOkrMHvAtciCtvC0EH0vHVai9GFeEgiSMMzErNcOqwzJi57WH+d+dTImcBgd+bROhsZZjzCxGm7sN7ezASMgJuF9jDj3Sz8Zvj8SPDjH/we2kztSSoc1qxUk2o/iThgH72sVRPt0oVz7fKl8+2e+x6qfJlwZTXuUhBrAJLRsG3M8hjKJHIBnJ0nN9Joclu3zrRHv+lb2umTx9uLT32+ve1d35wR7kDKjVE24roVkLGSbrUhnaEpxJOJUacTsIINVwgaI7ZbTca9JZadd2xtZqY8s9dpCylhIKpUenuwiP0JzzR9wsWj3NrNx1ln5/TbaKT2AEtouw7ubUsXz7Ok5qZcTjTt4Y75NZSjy5fazMHdbenSpTbFLN91ZgGuzc8Ti9Liyoft+/e0lYV5BiFn21Zui7dMFrFPsVy6urzAgG+67aV9THEJ7QrxNrPcOb13X1tFUV08/bqaZGb6N3vT/OXL7dSyWxTG6KwsFtHyg7xtR+bPu/WhM0s+8G9eR37Axl0xDeBXyLyLaySThniGrEPowCUzN/jiJ9CAJ9YBLnaDMJUK2xHgVR+YK5Om+T7kEt9361fGrENWvAF5OeCZct9lVnkdwyt9EsVvsqYJK1i2qnAHa/li3xDW44wiD/7GtU/I/khlMNFzO3faWU08WI7mf5UOSBnjN1e96FiumpzSM30N/Ynh/mdZufeLtEdKi/pb/STB0F59qovFyqM68TmiDguIKyvlOXre1LNgDRJ5IsYyiqXFvN7MjKIl8Gb4jcgvCNbb9M1wvZXfbStJCnAT9W6jydX6SCNcVkJEEDjLYAeuEpFlKZbIupLiVG5A6cSk2U5COMNViKxE9YkQ4tIhmT0bgcKTZ/C75qnbDlBjIUVJw+3oz/XuBUZRFYcChVxhrdxeEyAbrfBWHjvo4AKfbtMyTWEtLOmatiPjp8przqO20cGl7uEhjPkg8XSuUQqZIp+lEeXDmPg7q2bCVsJQIBH+SCaClbcNw3TNg2+DO0zRQ2zgpIw6GnrTYeLhZnHtwgW228VhJNw2CK2lumspoy2NZIijr3yIYhN44sl//cDhTyOuNBD99OAR/EOY7iixwNlAdQeOZxpjRYmSY95tmNKoEq4RdxowaXd+SIfLQIcO7EEZX2r7du/iRCJQKFnui/C6hz379uJmKZCbtf2Oz1aE++XZWe75oWOwk0IxDwWdL9JBun52YBFldoE1uxVG3ttYQrVOuGxkPV5aWGyX0c5WqAfbqASWv2ZgUdEIoioDcZpbQgUYcp4X6fpBzR0zLFmitPcrLmq5WT6gNKJ8r/ILiiGu9sx00fFY3/3rxiR62dsZ+5dkBSC9Xi7BV0gT1b0nDhK8APKV4/Pt6Ikr7a47ZjiVta2dOcMsEJeWzr7gHUfyQjyV6TlmDl589VJwVD5jHWhw+p97gY7/y3Zt8Uz71NP7EMx+T6nTWJ297S51VX/oPbhvW3vskf24oL4Ijf19jx3K3Uv6WSe+/tL59vg7D7X779qWfLnB/PDd97H/6fV25KVn20Nv/yYwBAt4h3aE+63MOD9F0Pk5ijfUF3F2fhqmQm0naIqZvXQGEpNONf7QYDXgp+JuXVJc2PG64Xu4cSFxqkTNf9Fvx1o3bpsPfsiGdLbBmygbHte4guIa+wuvMZjYumt3ZpBUhDZv28aHnenk/CwKMaRlC+FX8bOebEERSn6xe//YmveS0U4mULQMpzgjAx0siM89KFMoCsoN24gyf2rvnszyrTGTvtkOlXy+wUg3COW1beiB7WvtmVlTGDMjZ3FjLGSwlr+onOGUbuvGoCMA0+ONEG2IF0foGMJHYD1eoRh549zNSdUdyIf4kR653oBTn1GyoDF/yi6FxJZpDy7Yn6n2GGI6lqdyHDgskd36isa8YH+jqXjd33xblpto72ynJQ44VYB8mz/eqUgKVf5tuhODHK5JCMNLUZJ39l++HKjSNPMznhMTbs9IrqkP7pGjeFPXpf8qDvsj/suM7GL7M5iAi+WN8d7ocyPeW0HcxH9E6I043tp920qSqCwEL0dTQVAw5P4iOHvNCsRvCkUlyhKzSgoCFSGPHvq9l0k6BuMLZ8nZ6U2iRrv5Oh+rFQeVazNHh9334yxM4lubUkDDui2SRjxOHCp0RJdKwYvkiOeRZpfrSBMAq7WF79ea/a7SKjNPGdFRAeg5mf0aOgLbNlIhdxoV0nROVgSTMA07DJU6hYdv9XKXaTxZtcqRsyiHdPb5gjf+ChNnNIpEq3OvyNBqcvykLw2+kgjOuEkvELztJLuRBmk2TLtghlYDKaUoZUBAhQlg+YhhwKNX/+mNSXBZBygBoA8CvYsmaRmOXcXGNORDFJ34V9mmfIloWZimDbPnW6FgQqaVHwARFDiiNIpnMILWyLs6ITt192lMbdqKYrMVRdQ4jCipH5bF3t3uT7F8KBuEusupKyx77mQErDK1iSUGO/HOW/G7vr64vESdsa5K5YhDoaKXi3ijMDvBnPwLCAKMJVG8j5N9MpwYhNYV6vUm6IBbCJe6vHD/3pm278CO4DK/tiOXqas9Vf3ZRLvRyBcVVos+0+qUg7Om8tWUpdUykS7fzpRaFvobqmJZ9iqDZcJPnZlrTzzxVPviF7/U5lcPtcmtd6McbgdvCXIVSXH54/Ye0vHd65hlVXbznlFn3gp3IW1rC23rAgrsjsfaESYZWNmJkQdlxmYYBuqeOzrXPvXE3BA+vMC7adMJU46CUIr0GmX5Ytu89Ey7fumP2oPv+pH2I3/pB9oPfPjx9uk//H/bPQ88nM/DJCnJBkdxqaPuNHR38XFEmlHGHF3R79DjsS1vlfo19k0O2Sgw0s0XAijbcG6YNbznwPa4/a6gMu4yp1QvXFnqqGlLDALwt074d9e+Geq3dbVA/NzN3Xu3tRNnN274HiWKxboSuYhyD6K2yid7NBm4IrPNm3mYRMHo+0tdkitTCV1nAKKSlEoX6KJhE3FWFhaYHad+sOyZzBiRdKb49M7kFDNWXOYajlphN5iq/3oZ4mXj5+eRnNkzcyPsWERJGgWXg+oXv+2cJOxyxhipJ+Pget5grA6VSyziLcdgGSW0niQhdx3c0w7t3cl1DCiIuK3lHXIUfSMyoKpdXlPRpExVKpf9JBIEJFkewQGC4BzckSOJzSOAvAIIXGArxZQxHipIE5mNG+CJJE9UdlZZLjU97UbOys+QXpokMlNdtsveCHJkY67GoPxs/m6yTl+6ejXXC/j9StNz9koaPK2d8jC/A+4iXzr9rb8qw3oMmU3YAKO9w8d++4+Bo8QWV7l67MLe0xsY2gP/jO/bVpJyuovbcNUiVUIsuMye2DiliJ8f7XPUblWK4Ad2mQ/gbmUNW2McC6wqOKMqlk4cecl0iiCVyoLTOFKJcoDbKT+NYfmSNmEKMRcmpCudEJ3i9plpurHWTl2cy6kS2SYOhZDl456IdO4QEj+9wekdSoBhr+nIJOaDMGkV1gvwhHEfhcKMoHRwvIIj0+oAOMKUTt12Nnbsu3duZbbCqVv8jIiRF9JkZ6ZJ+jz0l259xREBqkAGVl4FR9LvUACaHjHEYSVWKSishvGLu+jGVQaATkOQEyMY8XQPkfwfIQGnfNIIk4AhAf3Nb0YiROg4ozzhHzAexTNpqyqtvx2NHa/CpJQp4WzGwsFracHlnjU3/+dLzwgf9wq5Jj/BqNyThdK6M99uIyZ1ZcblOEf2pG8H46zN5tU52FB1TUXHSyW9KHGVjusa9uTPfJOuObSeOiqcRDhYL/xkzcRU0UXwwDxeAzvix0MlaZnOZsLvxjHjtYYSNjdbQnYnSybWhc6L3BkGgugodIpuaF5Z8YqJujcsd6c4IAFv6fQIPKhL3SL/tgHzJk9XWM5B17MEQkqe5gX6zl1YaL/6sa+2T/z+r7aF2TNt/0M/1qZ2PMy+QDpdhTk8J2cRnBkU2IhyIsZyN32x+bNsgpm3VssbLuHlmx0ubWX3R/i0CIqpsODWSEOZstTT+jaY4FACdEO5J2pPU75zqeIC9Fx/Zzvz2mfal7/yP7TPfe1C+/KPfHf74W97sB154an2zvd8KOSZnjSRckd4e+8B3LTkLYxO3RaNdbwvM9tmLYPIBMqHapz0rEPWH5OO7CK+9cPvN6aMkHfZVoB7A23E272DGU8Skt85UGEvNhjzcoC7l85d9t6qjca08vMRgyX5GDLD6xpXMqAZpUhHYDLpBnNdOMpirMCAQP6heHlrvTNKk8jZkRHHOB5Rxj1KJfETBwVfY/3czCWFE1a0mxrjDmFViCOotDVcboRXttJM3mjG6RkLDUXjZI2FbbCSdAe788DudogvGVzgQtCOdgNJHbAjkEAAVExXkU1RKpFdkfEU5zi4OfQiRyuIuG1/2EZZN1yTOAAgosolftydjmzAJtB6ZzutauMkBBjw62KcIVjkKKVb/rRv740zjvRlIAbSanduhVDWIBtCCIhEh5JkfOm1r7EMao+xfcB6fTWJN5ogEk1MsvNGoL9An+KrhJtm8fgbQz9W498cgSMVR0I5bk9DWnUJgxKQAEfyCgWZ5tqoM0ASpwKjcBDGWScFREY817k2wIImvncuKXAcCW9jP4jKlTXATsoRuUqZftMs2SUOuBQ61yccpdO5Qof4hdnqhmk6p8vzSznlVgqRYVWg15hlUomxI75Gr6PQk4We1jKdVCofmChRvKXf7AhniMshPWwBoaeCBUjCxXsVqChS8MK9OM6IbUe5LIUgiEQfI86OV5z8J+/iS0eIxfQ1vsSRuQloldzELrID0BuPYT3OpvFvdkFfLw8ix15J8uTfeClHEgsuPOX5gC44g5tH4AjvCqPUCOvEX8m/IZYJaMSDl/nwLX4hjK+l3NX4DRfQ+qR0EKYrFn7fbpMXnJmQYP6ASx0E1jqmXbjcDM9M5iiNxBCeD8Eu8L0z1jxcPJL3Tifbzi1l4Z2J8oOPcQMv7ydUHGKGTIxcuCVkzFQW5GMoJBycKHql1JjfqpPFZyMKZydLfUJ3cSbUmUmqbAQV0UMnsYChw3aWAppkUYWJc2N9MY0nnj3Tfv5f/F57+rP/jKWYR9q+t/0Es1xz7eq5J0oRINWrV16irS2kbe/k7qyqc7SRlcttZfZIeCpP9jOqdpZ3ZCT5GzB+vicdD3nzW4hT2w63zTPDDdQQfYX2myUsPly9be+7KC83DdsjMjO745524G1/lf0xJ9vJZ36+/XLb3i5fvK/90PsWoiR1ksL/N6FtVKuNIPCYobhT/qvIEpVTZVbq4lBGRpGeUTRotqw0qae8L3F3koNJb7CvEOVByZ4q64DnkbpgIYJQuwOhZaeoB+Pt+CfPzY7thekhw5u6qxFF3rHjpwf/+cg2y8hDj1dA488hXmbGTHZwd4uzRzWLxEb+Ia1Eh9jlyxfbppk6ZbhO8RhyaKh2XKHz8Ol1dxlnOCucifWYlbA8qLxgMWhET9lPnT4XeY9rMB2g4+n+N7yDC9jq+YfAirMh5uD40tMvtSuzh5mFdn/eGw0lGuUl6EJCyU2VZuX3GjM6WX4lEyMKsSBJQKbaoil7RJ12M6/hZcgQHDZ0UeLA0gB51HklDdYbr6zZNk09A2H6S2DELXDBA2iFNC4vYVSIavN2Dcb1d7DtlpOQY91mwMMUAyHK90F201DcsK/g9IMFGuNWW4lz7BEiRBw/XWXKHYISu/v7XoeS9s6LcYhb2oFPHAFIYmS/ZYRbB4xJvFsDGeL+GhUVGe7HUK0d+WAtmrKjcZWcjL5kOn4OW5w/UuBm9oiIjvgV7LLYwslmavzt0KxGChVh3bORjstCorNwVkBlQyZN02AtjyhgxE0nQxqmmVkp4HegLN2xbzsdSQmPLriOnZ1rF5jqNo6VWGXubpY/9u/elk7fGmEcaTb9/s6sSigsf5Wvy5z6eOkUJ57A0Zcp7LjvO7iDO09q02twDDywYpqX6oCq0DKCJ02ylbwZhjPu2PUnXennVQLYOlXO+PkYvMCdCEMc80GoP/KqUb6NQHC7kdj0DJUnVm7zpo9+STdhpaAZ12nYnqL4c2t4oScU/HimY9Ex5m/iI1hpMhwjvH+2205daIQey8h60n/GsX5c48iqfcgUjdOslQJfs4Eqy5ldpApWvaSjU7EAj/RqriJMPM1T/K7cEBweyBB5UbT49je48J+j3G3o/g3oBjzCONsg38SFmwQLe1BEsen1q9dbYTJ4IIK0W2cshxpgmDfyAxax+2dYyop4SWegw7z5yzJzqv1Ee+r58+1/+6cfa89/9h+2e7ir512P7UC5+HUA2atF572HEXnxv5YstefoOXjWzUHSqbqknzDS8uam8/BWUG4q9uRclTEqB/ZjATanfrbIPHqaSn/L/yKjeZWFidVdLGevtpVtZ9qxC6fa2Zd+sf3exE/msyf/wV/xxOnNO7Qg90EC42Uy8tdCtuSp7Xmao2DXmA2wDoaxFZynNJa3fKhw4SKz8NGUfKmUwi1xI1syUyoCTF6Dvbe71CHhxhqRS6VnLszSOcGPIKv4wYG7ioTaEQu++pkR3bxTC6lHCTBSh9OOAQo4Ko1x7BDjMQTcxF7tw/ZEPWUD9wRKxKSKBDjQa2l4psUGe5bFPvj939qmnnq5PfXlZ5PhrTu3tx/6mz/W/uiXfodZzXmgYMDAg+pAx/JhI9L4go7hhUyrzjpht/Po+AO7wVGIwdyz2YnRZxVlDkkxSsHSlJvCytOKM/4kNuitB+4ftA6kyAAZpYpF9ne38GKYsK+C9/oXxlGy8QgMIZU6YfBaZYyaVuHaSc8+WNhSjLW791cZyoyWMlhlmVQE30Rh5T4ulRwGKzW5QWz/+dmfrSFo14bytM6vci9WnCYy/MbzKI+8E3CBgdCbm4EDN83wm8d8q1DJSgZuAIz/DX6347xtJUmmlbJBrhQINGJH1mq1uYWbimGn64jDGRY3ay8wmopWOdQKp5Kd9k3RORKj4UYporSd9hM2yySDMpGpaS8+oyaZnoVkITjFZ4Z7R9IVr/69Gz+SuYd9K9Oc3rAkTWeezZN+Suo6FUVhIy6XWZwxUEmyAmmUE1ZuFaMSOpW+eZc+/6ThHJ9eoJslv7DQCk74muHE38Oyip9W0IhLPOkc0e7Mi27TrxYkFJFwG1eThqNdP9PDI4JJjacbgTCGJ56PeBX+jmtAMgqT9iRgXKKEFtuNdhESXpgrirlIst0Td3DjTodNRpKXikygDVAe8dNuwxzC4gfdChFN4vHWXbyOdwiJEp0PykqudYUOcg2eU5b0oShJYGNhvnhznY5zPvXiGsu7TABwuEBB5UkUlY/WdkU4kCZ0XXWDNIknbuhQ8ar6iLoQIpwuN9+IncBl5pTqJNvluf/jpvhNmoSbL7PYQcxbeF0x4x8/qw0CRT6qIKV+AVh0lRLfFf1rtDXj+O0ljfgsKPmkxfbh7J4jQljUnn3xYvvHv/An7aWv/Iv2bd/8ePvZj/5Ue/HpL7QL5/zGXY38sQTPFHtKrO/LLA12Y303jcpvAZq393/L97RpTpet561iVB6LqOeffaq99MKz4BuGl4IQZOhWkD5InodshNaj5H0pnTP5G/bwBRa43bt3ZylqCWG9bVv/LAffRDt/sP3+n060p198ti1efqV95vlH26e/eKT9e9/xSCVmmjHyBzO8ynHD08QGk7YPjV4Cucjb1mCwv47C91iUxOxKToAA2MMm/TU+r7TMpuoY6yuRenmVZ+GUd/LfemPZJ72xxKRpjgMhzpCOiBgQ0MQwN1LTA/GH0aZrOXaUQ2heo5jAbWIA6uk3r4GQpjLIKhqUstUN4otXLpMJZhXspHfuapu4ImPTlm3sgWI5G7k86WZBl+0wf+knfrB9+w98e3vp6C/E7cO2c98j97e/+d9+tH3pDz/bPv+JL0VGjgCk8kZCJaX78V6nrWL1oHUcY7Yh0FflqOerw9wYez3cz8vs4lMw8/A+ZsSTdXI6lpBtVH62Y7eeKD8Gr5Rrh+1zkEABUPI2qyogyUpLoRnoHWIFUc+FiRA7R+PsVECD2+V6V1ii2k246mM/A07CvQjatFgxZVBGdJUrpaF7w0IHb8khj/mCBPSrhBnXk96uwKgcXcWfdZyelZswYj3oRpvUdzNuj1/3MJ9vZno48JHDY7ApHvyL7x1wDOAbtN62kiRJ/l9jeclRlstn3u/gDjI3zyrMLW7zWuuUWIRHYitAVHhsWBEC5GakPCgcYDxqC0VFceE2s46k3FCbQqJ09MtsEcpVOg6ZRGC0dvzyeRRuS1NrdrP0Tk4RWVk1E2jMZy8v8V2qxQgaaTBMWvfs2JI9LlYO07JzsGLpNnb3L4XGmZbyP3PRderS3O3g/AaWutL2rbvTYfVORs1e+R8z4DQzgFKYpCAtvnXzk+TiIo546zvQgUdRzZs48k1FJEbiEw7E4FdoO27C+TfeECH5LXcRGAwECxF0PigPHUbr5Ws5mUZgCnqwF/8KWGEfTBH+pqnbvygDvBUI6fzBHDpAKO/ljeml4+FtPuWjsxzOKOY2dfzUfnp9sszdc7bCyUvhxLe0zCEAO2TzQz0c0a9iSyrG1ch/dHdFRvIhXJ3sILxAIkC0GsV4fXYuyIOFB3iMqxFOEssFqcy2Hn3xqTZ74UTV3+Rfmip/Haf7kVT+nWV1ZvTCpXlO6bGJGoQHDx3m/qKDjNC30Qa5B4c82b46Tey6TT6ffuF8+ye/+ER76au/1B69f1f7r372p9uVC6dZlmI3Nemm/SARXaqW5vd88Du5ZftEO3HsJeVo8R5+i1/ceshP29aefQfY87UTTzEND8KstyrER199qT337DMlcG0QghBmWSps3UJ8wjSocvrLoyV+1wmvNoMS66wxxjinXj/bJu7Y3775276zPfZN74m/tFzhaLsLAC8d+7029/onWUp8sP1P//iT7T2P3dUO7NsROB+hf+S6wWLebjB62cZrVrzyKO+rLCuC+a7OR7cu4gz88nuT+zlEEN6RV5f+nz9yKvDxA5HK5p2HDyaej0UGlRf4Xts9h/fl+PwLR063i0OZG249cCbNmb8hOb1vaXqe5a+KywS9oifXNJWDG6KaBX7uPZq45kk2NtKPAbpXyXrtTP928E2hHFkG7hVdZiYpHW5wmGCVuSns43oBT7y5d6sb+44HmG1fQSZ/349+bzt35iLK+0sEjyUorjFn4pKerct/9x8qQ9KHGBj49QjrNsMGZHpqHZkNUBuTC9xau2P/rux/Uknq0fu78IJsqBsVpeRY9R8mjS/hcsRN0frHhCbblCHKkpK/mWVUARHZRvIq3pC4exVdWnM5rK05iKOdOuNDvPSjyEFnLeWPfY+9Tfot2pOztIgi+in9aUEAuO/SbyBKrzx2pt066vpOzf7La/sx2qYzTgoJIXklT1r4l2xxqAnEDK/YE4itB/H2YE7FCsRtPIwsom7G3APehGDvyXVIPWzH34i5bSVJIaixIGr9HUuY6quEqCChg4cFv5XZJAlzpimjIMJzsyeFlZkhClGynUaXX1N0blN8okDBX6PiUoK8KM1MKqhMwH1PdojGsSI4LX9tjePbLLNZzMLwH8Ft+nY6567UpsdMQxOWvU74G98/NWXL3q7dhMhScEV9A4eVzJ/4rqIcXuFjnUL0BiEOaTaewj0dL/Dyyr1PxlW5sFvMCQGzwg/vvIeUgyNKBHGMWx3HGKwFQAzj+tS1bqQWqghMOgkVcqPpPpXHchVWcOrEYZn2SlVp8CSs7MBgT/qFpPwLVRLTuxtxlfFdQNlcbhr4hIdJuKAqd5UHODlEJW7yLg7j0YCJ7wEPE69yHGCSngEGVT4omjT6+JKWIOt0BUXgLQ/jFGW8C83Ib91d+Zcm8xB/8JoN+Va801HuRU4H/aP/5e9Qv21yCjmUIDod41pvVOy8BoOEgkx63ffyAsfELnm6hgSm6cS8muDHf+Kn2n/yUz9NPJUYyhxgP0Fzjc7oIoOBX/nXL7YXv/J/t73TZ9vPfPS/BPeW9vQrz4OY2aLrpDO9j3QnmH27mOSeOtLa2bNbUKI4ig++5EihmXxYo8zPsJn8S6+1+eVpTlqtMjrl1A5CU9q8X+meg1Nsqn62zc/vHhiSzGB34EN7JU+ZKSYF8zzN5tIdmy+1XdyxowJhO57azJ6KTdx7RfgO5MdFZqPPnL/UTh15jhNUZ9q7P/hdbZoZpb379rdv/9Zva5/83NfaE8+/0Jbnj7fnX51ov/axr7T/9Cc/TJLrSjAZ2GCkSr7fzKiQyFfboPulVHpsv848WjeUY94D5N6sRTocDwa4tLCdixidPZ/NcixKFnDW0WVk1ddPXAJPXahrh6ZcHFeScvLw4gLXGxwIf45zceoFlCTbsHRSDNlk6/tGo5d1L3UZh8f9nQ1KwUKzed3MNRgrmdEaR1D2PAfvSeA8Lu6skCZ8IlE/r+NlrVt2cRISX68CyL08UOfVGBNeYAmc8P66+dSfPJGN3qvkvZsZZp7e/65H27Gz59sv/5vPtoff9VB7+dmXKe8O0d8DUWYuXNAfO/8qXcrYDTMaPVqghrgjP9uxfuPUjduL9g7eY3cl6fjpiz0ofBZaWS6+Duu7p+CgGdbHWGe2qrDgciBtOW2mrXdl0sGWAz/JMyzSbogbBIPdsk+64NMurpnrKp8qSUyVs5fRlQ0HG+JWNYuMIciVFv6zijLlcrRKFbPp8sTJKJUVFmwUxNR9Z4sc8LN9Bb8twLja4gDJLxssWx8ALRnhWwfP8Hdwl68hMaTUraO3ySkDyoyHj9tH4Mm0IT3GCOXIYwwWa9oDQD24vzdC3Z7rtpUkT1yomCjYZb77k2omR4XHoqWAKBCJdxSskLEiR4gjVBZRhBzVa+qEmiPTiqAAFUVmmmScDYA4WZ4buOGslcJLIeVOepf5FGgaGWCHqSWMx654scA1hnsXjnR6468MtCJ7p4fXAmz2BBOwjnRLESKC6PTkHdxYFNwa0627libZ/IsiiN8aStoMG4FrFqM6beO5ub13ZuLiH2O1qU6+XPWUV06RdigVN3EnDg8bh9mMD3YboEZ/nj5GsKYgbFIiKOJWjwILbH9kVAaSQmcMcXY3dJJQ0hIfP921IbnyMJpVKgQpy6QMcNHWU/ItLgGLPumRr52GgixEpqEya3gaKa3WjpSiTMclbPCLA3yu7hh+FYluGivAuwHWUVylaPZNdyC0EotAs650WuWVQjtFMSSiO1fk8kpsGSIvxSWNA18naQTOal2zk3RPS8LACNheTjDNsE9DUJUCDxlEQcTtVRmWt8mkniWRiXb85Lm2MGo33H4864bgWnq5ulDLhK8e51MdLJUt0RH+n7/05fb1549B+/V24J4PtV/42HHa5Yttnk96qEgtsOy8cPUUqdC+spzJPsBP/gY4OY2TrEgdv+RHrkqRzsH/syhbCTPPwsUBRJWnvO0CqjgF0vC76nLg5CD/jpw9bOE+CWd7EdmNA6rcJ7UDu4cdphmQXGt7t861s18lz1MX29fOHmvvf+wAbZkPy14/1B556OH2zCtnmU36kzb9yE+1n/+lL7Xv/653tLc9UDM1RV5Rn4yAeURyz5dZgB6CMlutHNIov0wnp9roBKyj5i1bDbBPuaEZt99uSxhxtOtn+xGh8uYQMyrnLl6J/PTSXa8/GTd2Qh5rlwjlz313M1t3aaGdvTQbPMoPRpoJl8wbjcqNx/AnkEVLFy8UTSxTSoGfWpmAJggci6b0AZM0Et6Np9BCt/TjKYyDXZUuT4NOcxWAsn8NpWd+YSmKoDdHKw83A1dxOrbWXvz6EcLW2ukzdbeWISoEz790tJ1i0Hri5IX28EOH+R7fNj43U1cWVGzp6njEqsN3mQuX55Jmd7/1u+O4EfJm/j2difaZr369PXzvHegcVV7j9UZMIbGD34BqGuFxVV7hb5B1aAv7tuy7nDSIkmSY9cqpHZBRUjcSuMGddmV5IWy8qmYJ6zS/SQYWGvtRa7rt0lkfJjGBs4/j+pStpbR76EOiMpMbGaYiDxxKkyd40wdCe76lCK5cZEya7jBSMbN+mB/JkJ78gaekRFAnXHq6Ef5mRhxiqwMnQuDxFuatIdYRhFIF75/TbGytb4LMJuCMj9Ola3zXx4arAFGwyzE3dpdgqE60OgAuQUMoKAQSDwZrX3JTCWYrR7ldUnMEpimh5KizZfOzI2kbpd8P0rjcpqKTG0rB5WjNQgJlOkUVt6vz9d0sy9+O0gqjoL0yzwjLkqTExO9lWd5+LM0ucfQNb6kEwFkBqhOw6OjYVeKshFRyR4suCZgeQVGiVbq2IMhUEO3QQy90lZ5lOtX5VQhPPKRDGuOHXWQRiPhE0OLTw8WTKgVwwogvrdqTqbGnp+rilzCsGgnwl3S0JtWkHbvBBbj+xEOlk9nx2rCcRo5nbxFARjQal5/JiUsFtvB3+np6lTig6VTsjEaKrjjER3qWnSMZl1BlpX5+XX2r3+pi6n8bnWjUiewVYOM89WDXjp3Q4uZ/T0lyLw3ELGonjvVqculiynPg9og+U/W0nJ2Jl7Lptryt2xEouom/CUU6omKgc5x/k9Rj64P1aO7S5dDjDMNJ7LXHABwoIV945ghKwOb2ze9+kEsUd6LEeVCB2SRwOoaUH5a3jFRZtoN9js7TZeJeH6TuyGuX28/9H7/Zfv/jn29XFy+106dPU+8WSYsBDOlYKhMcN3mR/Tpc2xfGKsZQIwkbN44kXYZRJXmjqTjVVm8MDZ2Dp+WWTAy8uRFW5efmKTiLbImwfyf89XYm7tFJWahsKAsm2il+ExPH4ctU++QXnoS/tjtw4vY6iF13fji3Q19fPt/OXtyJoviF9nf+64+kTZu3jOzT+AcyYfjyyiJyiJNZ8Pz8hePt7sMu5VX9JDHKe63duZsBzrXN7cwsbZphdLU1i6fgNr6rZkmz8Xt78BDKPXfspQ4jH9gOcJF6rdIeE8ahWAGz3T1M/Fn3DvOBWzdCi188/uxcDR+iVHyeui9SRFfOc08RS80uMVs2UyjQ17njxrsMp9kasMqelJmp1bbLO3sUmCC1/ikqHGquOdskj0wMe2YkUIqWkJ1LS8hhALeDN4MVl5+A8zZul29Uv/we55KbepGD3awyw3SGWZjTp851r3bx4mz7n//BvwLnSluem29vf+QuPi1zZ3vxmZdHMFUO0GHmwqqRJTDKBMnUDK9yDE+5uG5uBtFDC24EPbJUOD3cSEHqMQaCcFZ5x39IouQuPri9L0u55d5Jy14ZolLt/Um28wnX95EXVhd0kxoM9kytJ5b89RyYr+SNuum+2kXKT9mXLxe4yRpcS+zJnLxeKzjOLG2mj3K+egFZaH3yw8QTLr0C7zdRxUcRIx2qb3Nq3m0g1yFKhV1j2S+SF/cjSRDBZTphuLTqHfriGjx4dafWcWN2k+XgK6TW/2wXGcOdOKNExzFo7ynf4A+64Pc9Cqo0Rs7btNxMNt40qo3Cxmznwf1YGbFb+N71YEGr0GQWBpLcPGqnnhNpZNqRl51FpqDT21MANFQZ4of+XIKTuTY2FRNnqIxrB51R9ZBNN89auXIqzk6MyiZd6bCw20CNXz+ZZCm0NqtSx1uBpZgRr4JzL9888pLJLfySvnkhjktysrOUohJM0uF3bmT4eUbz5qVmtTqNTsUPXwaHdpWuzUyHyqN0vUP5pKxFMhR6FDGd/PSWDoO0+4gSoh1TVCUkFb7gi76CKKiCwC5vgtnIIB3SDF7pGgEOxFWqw9M44mtt/45JNi/WrEelWf4+ZbFG0NixJE/6aycRlUpnEvfuRWFBSVikoE+ev9zuPbSPDoP1cOk0cnBVxJAaRgyITATT09BuZxAFiDfFXwpJCCGQd8FicfQUDxo/dtOy/ctPwYvH2vQf4z8+48pAcBiPXz6LQh2c4JCAbtbKuItpNflUgM16gZ8VWnz+8X75+BlSWGsv8r6HvP/o972PDnRP+/Xf/2r49MgDh9uRE2dTj20vh7nM7tIcez4gVoV8bvF6u7ByL3cefR4h9sfMBHEf0xoKFDlwU7uKY91IBn0Z+4WhENHNuluSba85cUUZbKVc9vBx0z07++boyqd5Tv6IauydO7k75vA97dFH3pZ7q+bmZtuXPv+pzA6rzM0zKLLjdeOzbSAzu8Tz24bKjnQYuC9e4bMWdJTz3BK9dh0FjzKx3mykEMAxwxArArxUPTsMZk5Q765PIJAmp9vcqT9sUzP3tF/+zSvth7737e07vvmh9swzT7af+/v/Y1u4dLbdu89TdWyCnr/Yjp78dHv2hV+Hzhn2V863D73vZ9odB9+b1OSNS4GPHGSmi4HPHz7HLB2JygfDRr+U7aiFyakRjIjMjzw+yNUJF67MMcu8qc2RZykfN5Zvv3TWuupy3AzKXxlhx/kyHrPq+OlL8i9gCQz2JU6d4VL2bmImSN15cnmxbUcW7uWuLhWcZXjvIMWB68TMDgYVdqvgZM+ZitM1lKQrxDnHlMV25PROFCIhpNflVb/JKT9nYc7rLBHama669NMNZW6974NGvV0hOPHa2Xad9uEHVBc4bfyeDz7WXn7uVeqGcUPB2NtYmnWe9TZa/rfz7DiF1d6NOMfc60kE4NA+9yRtz36wHmMEraU7fI9QdU/4HSt1IkqRwoC6Aj9cqkwYbbw+1o4yhTweGStaCnTkQ1pD3TLIH0EednCJfop9SUhRWn/VOduaS3wOIGjgkfOiT/siYk7SUU52xeJSrzXM/m4aRT69YdLADoCHJuZRspaNQxoEjZ7aJNV60EP0i9HrTUzhGQMqjzeJ8e8m6PaVJApURcj1c5mpkiB37ASX6ARlUhQDCkdjoTvzk5EybsvdBmlhaHKaCKsKSc0ouIziSHg1ykemdYGrDZFEBoHr3jkGbIWx1HEXNgoTtxc2uqRgRfSHvh6NGxLbfYf3hj6VLzsgZ7GcKVhgrpGckSb0Qot3GlmBxTfvcTiMJGeJj3iuh9th3cWmPoWF05Ma13xro7l8YjmSTkIBKRWZTZAI6SK1onq9RoRekZiQWfWh6SC+zSu/ypvOEs7EiJ+MWMfbBTepk2YqMG9xrMOZQCUhzigKJh+4gJF8YVShrDV9G/6AsxANSByRgEH0NKopGmanc5Y9Je4Hs4znX7+UBurt66fOXGm7Pqiw5kQNEeW3qWYkzjvlj1CWbdYVl4P8Fpu3Q8/zqRBTdHuuaTorOJs9HDRo936Qlr9lhtELwlIOXOtY5VoUR6AQFWPdUXFGyQdGP+lxRs88ZxZEt3VXhR4yrzGLsWsXH729eIkj0Et8U4s9NMBYb5y19C4kFXJnBxxAmDUVQZcmHmApxY3YJ89eCu27uZfIT054EszOZJZOo8+uyQPbnGaSPS8Xl/eQvwVUAzZyXyf+dY9QQ6cAzKpcZybJ5vfIQw+0/fuZvSD+ubOvU6en+BxKKQgPPPRI27lrT3v6ya+0fbu2tfvuf7C9/bH38sHYr7XzZ06Gb1aB4AQtZKfMXRazLO66+/722Hu+xQThT2uvv36qfYW3d1J54eFh3in70OTDUq2HbT11EecDd5bs6J/bsF3PzteMmeDdqHhZvt3MI2tUvKTHsk17JoE1Rs/XrvGJmeVZyuRc+yf/1/72gcf/s/Yrv/Ir7dd/82PtXW+7GyXp4XbytWPt1ec+3Z5/5fPtde7b8Vtc27h5+sjM8+3M8UU67VmSspypg3QM/FcGOkM6IbxtHxr5UAyz/saLONorYDMdj/UhS/0B7UAFGyge8rczax0CW/JHXRyFD2kInuBOiaAj6ZEwaTCayrAiWxok1rSsZ1F0cGQlYIht2u71C9fNAz9nEZa4xXvPoQO1zCgMBC3T3l7nA9PuTTJt08qDaLZRdLSkXQHISdI/eOcB7t+aaxePHG8nPvdE+9Ch7ZkNcc9LReZF21s3IOkIsM1Q9vZBtQtnHerWto5LPBgZab6G9Hx1CIOF8neYyyT3sVneTfMJJ04w8OjvwkNoPCqisDoLmnquTESp1D88inaCDQ+3fDgwl5fCZ/aUNiyJ9huFp3iofHFQaJmvUp62i0UH+fQ108yGX0v7r8jKgU1ReFzZ4AcmphWYFLAP40SigyjwePo3J31VpvjbAn4FlorcqnboWKJfVkFyPQef/DoLcWKKzlgl+FZGBoyZOM3MG4x+NwN+AyAeN4mPV3jP+wYsN0Pwln63rSSlMpC0SowFuo1btBXCTs25XLbkUAvjpkY7A9m2mdH1GnsNIjQpYZcjDLPT8tMajiqyCx88MeTITNmAzbsdnYrGdUrcQqlRKBXOhj64pcUwN8RqtzM6w8203vI9z6jJTniRiqFQtW7mIlJwe9voZQSws0IqNI6kdzOKnuHzIo547RRPczeJlWIXRwH8nIl1xm/EzbE51ny/zs3eKkYuLUrnHVwlYIdr5e7KSS2foVikwtVMlJnrnYV87QpPCVUzr6lOJH546RuBZ2YHYxdui8m7e47CgAdWzpLd+pFWLLjFUjSs+wknMw1zqeueuw5m2njz8gVGiFwGCl8euu+uVAVPutiBqxTYwV9ltOrFmsZ1f4T8SBp82VreWmbOADrDck2lAH58+bmjCE05XDwQnyQaMQq3y202WApOeqxnsnEXexhc9tzkZxSQ5Ar+HRzVBX0U7XxvCUQqVvVZEvjvxlUkf1IjDRXo5JfkVMTXQEwNwkUYcbO0i1uouEljxo98Mj104siJ9hrLCAqfuw7tZbQ5lb1ozoq8fu5yNjg69X6Bjc3vfOdD7coVvi925HJwHYG/1nk7zZePn25vf+BQ9ivArjeYUCgTMWdnWfogD3y2lz0hfvPD5d4t7QPf/G3t1fOH29lzF9rlo7/T/saP/+X203/jr1LfmQXgg6N/+vHfoW0yw4MysIUp4O/9938wHczawhmWYq6mbh9/9XlOpb06Us4qxY1PFb89jKod7XunSioSfNrBZykeuP/+9trxY5EHOZixMeqtXeR5K3ywSm8Dv6fCbsaHjkBWzOzY1b7/+3+AU34H2m//5q+2E5x+O3dpjm/QnWFJnXvLXGKCN5/4w99qn/n8d6YObENJlH7Nn/7Jx9vv/e5vU19X2/vffk9u6T/JfT1//LF/SJmywZoydG+OvC+5RaReNhCQ4pBg8m5bVwuIgi/h+OUUJeG93Vl/vTxzFwqzGd2/e2aYOQ85edgOMxDBpV3FxbIZUqt2lITX43Rb6RJFYF+m6KCdbPfmmYftdqbwoWb0hSKP1HsVzdx5h+Jh60+/RXAGw7R5VxCWOILoloXp81zkuIPhCf5rtNeLnL50n5uKqkZAIwAAQABJREFUgGmk45c44jtjtYNBwGgPFvyx7m+jrbo37/wrRzlRebJd3XSw7YWu06vVhyRvxC8KB2TxrId5sA/pZpRm90jMkeMGC1iNCp99+xo3Iydh2wa5ZfgotcEiXNWRIXQUUTd4rQtlS5maG7emLFNnlEJFM7IA/rtfqUc3W8ob+7KeqGHpP/BXjrrfyBO+foPP39JKLeG610kVuA/oJ5GRylQH/1MqTCBaRn5JgRvx8YrMzL5Zy1546uvoO6rAO+BfYAXHfjVmxAj7Y+o5Gal9ThX8Zs+xqEN+8Rn33Oh4M1TrYePxBxJHzFyH+nPZbltJUqhbgDYYmWPDlyaVk4xGBrvXmycAhnsyxAZC2Vprok2LIx2/fgQ4gjSK08LOylgZrAi02ygbGUXiV3HqsjsbshVBPwb3KEHsBWHjakbd+F1Z4tg0e5O8PXiTe5FMHpoVRFa+WTYdSpu/XcDYydrBn0fYXpBYcDqSXKBjcW+JnajC347/KILU0f4S7sx2gE/B5t1MbYL7Qqhkwpmp0AftUZwGeksxsdLLgIBV3kjUsM4bwMFDl15gQGqpcMDiZMyeSlpSTVyGEzZE0tqXDhPHoMEkDDjhY8cinzS6pW8HSsFOhNnVJRSmyV0ojXNRVIKTkcfKdY/GwlPi0lRilwZvMJdEee7xZsvTejLhbdIeMjSQh9PCXnJmnJ53BY/lW6a/K29RovDSVzjQj2gWfpRHLcWIAdYGjZdxA1SZFo8m6fuOq+MpmgxLOrwfe/x9rPFvba+f/K1SDqmk2VM3tAmVbtGrxHmFwJ333tv+2n/04+2Ln/9X7ZVX2DgNEWfZk5HrCojzhSdfaR9+/6PtILOSdlTO9hzCbr2SfJV2v1Pnx05Pzbm0iIKyxP4OlAAVnp/9L/5Wu7b13e3pX3umXT79B+1OFLa/9iPsxYHfjvBffuE5FBc23SJIk0eUm899+o9THzMzRsbOMBN08fKVlLntQB4Ia1vp/JAttlNnwO4El8vp1gFL4fy5s+21YyhI5C11V+C3MNbroXiSjolvhh/WE4387ia0WHgYU1xmGWmGI+CXLpxj78UqJ+p2t4fYXPsgM3Qf+8QTsGaxbbp2kRN20+3v/9w/a1tWXgze3t5Mt2aj2NBKJ+jFrw6SVPrPMehhyw6m2pF3nXntj51W9l4ahMmXBuBR+dnR2Y6kzphlrAcSvInOR/IXWGbzw9fWkWLyACgYcSMzBjusp1NaxyWiAf16pJGtpzjyGFmkwYMLFtVW9p94j45pjWgVgH9l4grlu4UBoO1Kv6THw8HlDuqf+0Ivsedo4spyO8igye+/se2pneM7bNdcVyYa/0P+QYDrDpaLdzxwdzvOnqRL586HrikGr/e//aF0rCeefJY6Nd+Oc3rz/Yd2tN89eqEQiEgjmkIVZ7efow256qCJDB5SLaBbPIOHR94SW/ZOc0/S2AUy0T7xxWfbw/fckY/c3oj15uWRmAUKgC6NsE4oeF2OnioVloknylSQqr53CvCMlspLBHrzS3vFYj0NJG3ZPlBlbAn7NHvnvBxSKb4V7cePddNtRRGi2lFnadMkNL25ZoSd4hZ2mj1K9u1OGixTvtdVwJj18mqW5ausppDeiiNRjDFMm9YRt/2as3kkjJ9/5S/ZtzJvFnarOG/mP46vUr8ZdPUo47A3g7qV320rSc4UKdxszH3a3FGSQsyKqmBeoqGlMpAaZUBBqUhQCChKa5Peb+NGbWYdgIviocCF0Xam1nkvklNJykc/wV3CFCFDGvkJq/pLbjNyScGoTFC4GdyWpm24M1rXEOrSltkc/HwriGfZ9u+slsaN5RobXaXnKSnv9qjRikdx55j9qLxcy8cpE2F4mH9NKjv02aFN7IJPpFMbT2kYVMYSTMDyb/dTwkhhTAUDhw3JX4qzUAauGgy+SccAgSqe6ZY/fsYcaMlLfALA/whGrOvCseIJL0aKakOYuPy3UdgBTHMvz04K9DSdiO7sNYGv8kuiKw+WiUJANwjBnRG2CWD0CvzgKJrChZSt3kkWAWJYFHGW26TQmQtqAR2gypd7SuZzNHUGux3YFmaZrrDnQ0771e1Fv1hunWB2a54lAtPeQaN3M66UFEkDnfiQWHwtlxVvkxcvHbA266/ffFtiaefXf+NfJ08qEJoPfdND7cPvezQzotaRf/4bn4r/eU7faK7Mv9T+9n/3d8FR9TyePOS7s29HOd3zO598sj1478EoTiwS0uEfKj4CVwMGRtjszF1BgG3meyVrKKaa97znve2dj39P+9v/6Ctt/sLT7PE42T76M/95lPrZK1dYGpltZ06ivJCWwlHjpvFDOyfZH0Odpl57EtN7UnYzspc1lqv9nRcHOmC5SAcmrVVK7jOaavu2c3fRkWfalu3cgTO1rR0/+spoliaJDI9KUdaa142bv7eimEQmwOdZlAaXr/fvZjO+0hzW9v0ZLg8sUYZ+MHqFOgApkRVHX30lnUZO5xFllQGSd+f4Ta+TZ9047xLdYvvKV7/Wdkyfq3ZtCYMgOEg3bQF8ygPYEBjt8e95IDwj+PGMjdmpYlaVKE1atXuC0TbirI58cwP+4T1b28Fdh9LBve2ufbkDaSlnrgtZZiqNE7r4TttO9lihCBsflFTZojdpVJTR03DzlUY3zOYkkwOEbXEaBcltBM6oKYP7knbJ4NpfpPweN6JMhnhaLlEEKUuLaJJ64AzUDJf17mbgc34eWolQEnWIBtzy9PZ28G33t51ff7XyEVyTbQ/3Xqks3fkI39z76tOZxf3otz7cXrjyTHuZqxB6uuZXMnr96/5VJhWatlhAQA4Qg5IRD2KHH4JrZEhlTsR6rLt1jhmvqyhedU9KCHDpEY08UUZabqIxsOwBCqwxJU8ZUB8WLhjrjlGUJMVbLJiQZoDh1olOK0iE09gu7MukQR9aBgoryhFl4uGAaWbnt0yy/D7Q5b5fIYkSfM4QGs/rHvLpJcId4spXL1u2DbBXn49gMwi0Y4WGSssEoSnpiqHw9T1npuLvZuam/h2PyN/CyNdbQVXu1hEIZ5syzzdNdx30tmy3rSS53KEyYofq1Fs2YfKWiBAJUbkDho+A5iv1uC0UC8SRp92cBV4bv2u5zUroFJ+niqwAmRocBJbTsjYA/b1+oI9U+zfgzJ3pKlAt3Elw2NUplP11jqq0jbutXOm06Ag02tXSIS2dSeqh+eJnPJUsadBuZ6P/qOIGQ1UUeZOlJ6YnVQYC790VSZ88mkD9hzSL0FGApgSzimCRbeNIeAL1w5X/gu/VRZQDCvBXgy18xZvEGXCm0nRggTSFLlY70zK+Kz3LoDqTUkakX8Eqv81vRv+cqPF7dpoRnTiDTm9RSQM/y1DsYYV+FY23tUojb60zzFjyu05HoZ/8OLhtsu2frGPqEyvsxTEyI2OV0zt3sqF3cTYd0nZ5h5Jrmc3Q+NdUyqk/k3wXkEjgJJyo/Is69Dh/skkFD+PJScM24y44KQaOOiJxKhKGy5d9dOwPsiRJKhxDP5kRWeoa4fJJpTEniEDhEoHKgHtsMuMpTvA5+7GDDv6977i3veOBO0OY9cx6aloLKF+LnFjydnu/r1YUW+83t3/6y89lf9al47+PcnW4fdM7Hmxff+7ZdvTYCZSgy+3g7mGWzoplTPZSOfp3GTp7ZFCanBXZNMwEaDdf1ziSz+efskTX9wOZZ+8DepWN5VdQnh577N3t9eNPo8AstDsO7EmZDVxNvuSJLDUfJ7kwMAozOMQ/59nkweh2xtdlbOuo9dBrFFKXgJl2VCsixjJO/QPCPqiTbc8eNv07+MLtnUVrlPHbH7wzy6CKxsm1eeQQm26vHWJj67b2/CkulL1yiiqzktGz6Xz6q68wm+RJOQd08Nf6iT/R83b/ZT6kTKKm29u9IDjzk7PZdkB9M1y8huEQTcwyAzHro593sC7bM/YwAZSBu6gDYrR+OiBdGfZDGi4vrE/y6kYjLW9mbKcqx7mWgnQdoGrs2Kyr0uzqgEe+K0cJzsN6eJ7lND8E7UD2AKzaw97Nq9RJaZliSfeAH33mHPo0mfLowDmKlh0LMWfoaR/MQNnyLOOMvCfiNjPweuAD72lHvvZce/7KVWb/V9t//Pg97e998gXZMzKV5fVMalt3jcCw9BRuHjoOOQLd4DmG4kb/wd0x95KVtkm3C9i+/KccLX3rsXyXIsu9bFU3rBeecLO+23fJV5f6aXWVL5Hmvzp4+Wx6emcQA05nJ0kh9VXlxj8veXTT0ARtfNM1lSQVPDlJ/0XcyCVmibxA1qXVCb6fissIxVDlognzdgO/X6iw7Vo/7KcE0/iKkoWlpHYPW+fOABr4HmfkCAZdHb5wrof/Bdg6sQOq9ZS+Mdy3rSR5MqMYxJN/BcNmBJjasYLBhug+CEdjizQilYMc7YXRVhQrjoVlx3qAvTu7WZJQqZrJWr2F6do4hUPc0xfm2xnuCTlHA7WQ3LeSW0HBZSXLjIW9LsYwBQjfK80IuFheAkB6hQrPcBA1Hr0jMx81yi7aqjIaS1hd9TYvCmp/xu1lUBQEHL8SkubVDkjcpufPSpX8E5ZGIV5+lVLF73TrEkZFNDiHeqy/8OKX35r1qdo46yFQBRd+3L2hVeUeS3WMCOkzX2R1MDVjpCPTukOawvhLvghTwbHJlv86bt2lvKYpAgk/FSYxvtcTN21N5av47og1vonCbCT59u4RE85pSeIgFkiDE1d2dAN9lk9mJIhnB2qn5AklR0gizL4A9Z2kOKQxcllW5ccrQMUXOi7q5qEDu+jA3EC+3Payf+bZV0+1546cSr5M9+BebyJmCYJlW08o7WJj9En2LjkLmT18wBg+kBoF3GTcGPqFp15t93GZoLM7Atk2pNGNlYurblSFL6s1Q2WcExd2ovwR99i/QaGZb9/7/ne3F7/22fbcCTqr6zv4sKp393iIoPYQWp+vsKy2MDsbAeiMgvsD3XsVQU7GdcsjYfVb2rWaTtL0pJv/5qWYFoMb6GdYHpxGm3VQEBxVYonfFT3jXmLWynt1NNZF27yKovXBfO6Dl6bd25ADF5pa1TviKFP6jLB1+NKF89yrg1JMmG0giit88qi9e13c67ipcdpqlf1FW3Zwn9L9XP7K988W4D/a1j0zR9g/eK0d3LO9vefRu5Fla+2FY2fakVMqc3Advi3R0Xz+Vdr8tUWUVHhvYZCWPBh7xK5f6h3hgi2giHzx66+Fnh3kdc++3VnWk0eW73HuDXrleC0/ic6yePheNkRb5mRc3pwABnQx1kEVbOOX8W1K5mfw0xk/35hEhr8UljLyPPsol92F3qMKSwNBUqZD378HmcwsWOKRWdFd5MDFpTkP5chnkSKLbUZsEvbupQk6XEawbRsD6Fy7gWI3hQDxfiDN7MsvtWNrc+3K0TNJVhQedHjhDz4BLSttq3uQyO/rnNr81a8daz/5gQfbPj7lco6Zw5gha+UIuZLAz8e60VXZGvw3xMMPt1Hi3cN6pHU0sQ0YbvCtZJO2WMQBf/tgUTlDZQXIsOJ3tQlVGGWKszu0LcovdwIleim+zjg6gLBse2naDjQqISpbtiXRW69N3H1AKu9bWYp3NsgwDdUWxQsl1XJmRiltGzg0IvDb1lCg3JRLHKiHVIeHGJQnV9REv8hKyCLtzxI0nQkKflTHTCP5tr/ENz8p0k5gHrz//zB/RtzjNP95ybltJem73n9f204DV4Yf4Oi8I2035S2yA0zG+jFRNwheZ5rvEvdfZFQG89wYfYWGYaEq7NxIfYBpce922OtxYxrYNAWYG1xZU73C8shhPjp79tJVOqHX634eavhWZg0cAVtd3SfkjnwrzSIar/yz0KyYVVY8iROhEkEw1KKhMlYlHPx4ZdSvAkZsK1a1wcIhTjsN3ypL48a0CovxKn9kqyo39KQikefRDIqRE6kqlVaNb/MgXRG2djoJGcCTig1Mzb7g9DJtf7HHzQMS9TPtISNRuOIWFASjoIGASrvS0ktlRXj5pyBQc+oNN41/CBPOpm0GDAc8aScN8NiBic/fuInbciG+QoPSD3+9DqB3nj1SZpmAMy2FRfD5hiw7TAWENyPrH1rBlaI0QTyz/Mt7Aume2BEQpfCHEdDYjV2DI0OXm/rGy1z8ltOPm9rJ17l5d8j7BRShbsyHpjdMl5Td73Ypy1UhY+joa4akuqAeu8KtI4f27SH/dVmr9Wkny2Bra0dJkk2/LP9x9XHyaWrnTny1bbvvXW329BfafYd2Zj/TybNX2Jh5KHzdPs1xbT4l0GdKXTZcYgCSfTTkQeErMt+OLJ1pME09Kz/M8DDa97MoKiihmYRnuWneQxErHA23w/TyRNuPdaXXEeNbj7ti42zNLFcZlPGm71o2lW0qNdu5hdlSsEz1y3f3EPQqiBbPSNkGp9dwIE6yD3LP9i3hq+FbuKnfjtfvbZ055x4rJD5XC0wwozQxwdlGkWPYlcGG+v1t19UTbKaebodR0LzL5tipYfNr+OJABDpRQheZDZE2R9W97otHvgGSPO+gs5InaS8SzK3GJ9jAf/K8J+Vqk62SaZqBptcsZCN3Zo7EVPk7yP4dZ3TkYdLjWX+Vxrc+/hA3r89xRQR70rqxIpheYuipff2lgrQTHi0iN71gVfB6dKAgsHlTX1dZslRmklc6SctuDgbYPjXV3cNSlerdezOLhPbfltnI7VLdFHvkVlcomEKZOHfs4mDBXdShM8ziXSw8KlZbzhzPtxSv00lLozN2n3rtYvv2+/a3xw/tah8/Qh4D7qMjpC4kA2a5cCWR0WMIjHvcXgAjdB3+Fihu9B7HNLIPPBFVL6/UBUsM/kXu2R6sI1E4VJzsalVwaCv+YLTXPDgxgLiI27qf6mMhkFlEVfDJAgeq0hY5DtAM9c2JCfmTgXdg4JFx8FtNX0G/hZtpBCkDt2kbxYSMCT2Us3KVsR+XRRIPO6FijRwwvXF+J78SKZ7AdevgEd9xu7jK9PfgrNdG0PUg0xgzuiS7p2t+3mACVL7j0W+a7hsi39rjtpUk5afLFsfPzbeXTnABJG4VnzAaiuzELqEQXeA49PnLnMAZSthp3Xk2kZpBp/OnUXYUoG6eNI6dkcqTxgrjVGwyCLyFZ7zAYVGQOxKbnVLIDkwbClPlBvAIM3GlYHGLS4YKH74GuY4yVgaNaaQCGgd3wHikAuKWRukeBQqfToW4ShmMnYPLE4EjSwpW6dDtj2CAwKlFOwklXXhZyo3cFL7wKXQThUfZkpnAdIlRjYbo4E8+C6Tw46MxbvDwlJ4kPcBpl4YiruAFsLN+jdueiw8A4acycvI0mzYBs6zMn3BXaWFpxOaRP4WZmIRzzVvVVg9xedIiM1pBKU8G2nxLB0a2eoJDV7yI6OjU3TjmVyHU6540XCF964V7h0zX/REu65r+IkJZerbxQwcjXAjSSNmVK+kYD7zSRk4rH7i7yQlH8mdnouKRegquKr91OIke+VHWjuJz3QTEeEy36qUplrGMD+7hOgFuVz7GBtfXTp2Hp8w8sX/kez70bg4gkBadyBSKmspkN9evnm4LR/9527HVdrfQfvdPn2t3P/gd7AN5kI3Yl9vzp2eSf+uSgk8FPzM08MZcOxunoO4dv3W56hJ5kTzybp1aWj4w1N2iWZb42/y8lPgtMbHx53v4BQC/blZW9yRt4da9K3xqdlP78jmXQkXVy3yoFyRp+8sMbjpul8UZEdMWD7PEtxXZsn/y+TZ76WiUt2Pw7gKbgJMGcdnRRNukU55aZAloJ3HlH210bTuDr1IE5MF1Zn7m8pmhUDEiUQqdKbc+madQzEOFU+P1BSpI27kOwj1VH/nOxzkttzVy8tLsYnv2pdf4naQ8UVDIh4cYzrKvz/q76wH2HQ3GDeP/+//z8ZRF93PmzbrdzXnyNT+2TBl/aBlaT/LsicqirFigQmz9W5wdlnI6stFb+J4XT6nSjhiAml0V/Zq56MDUF6xr3IKe03/k4RoztGjYKTe3VEAwdbXD2w5ae+Au7tU6yudvXquZMVPztmiXmHfzIfAZPriskjSLPPmdF0+39927v/3x0fPr+TKCDbgX6ijP5aVyohHipqZHNXDcLr6U601jleeANK/BbkDnMiyoqq4f7XhUTwgw7zG87SU3wRuzQW3ODI19RtoeMjWzvZa14UN+4iAl1mqiuKrzV3utvtILmZ3N7VezFH+MVQiEkk5/fhTbthXljbcQzmB5cMY6DCnQwj4zZ43MBx4uDVs3zIf9tnIqZvTCEkSUM3CmvGlEvG7MAFuO23/eNJooZXhMlUB3DZ7Fsu4YwXaPb/x920rSb3/6xWxmVgnYyTS7gkphLvPrO2qlhaodv/+d96f+WagKXoWzRgH3tnsOsiyxY0SxhZCOjwJSKfKYeAoUd8UpUGEixFNwVQgZDVMSChMvp6y01IwpNkCkUSx2WoGBHjtpl0vcZK5xr4idmHmxU1ARM44pOJqycqiAiUshp/DYgtu8GMcNrm7OdFq96OPDjiyzuPFbI4y4vvtb3p2OyjzaWqywmqxLk6Iun3pbUTXSI075oZf50E/qfJvHGMK7dfAJnvQJhJgHcRj1lVOXc7XBd3Oq6r2PsgfGiKZJeDfmrdKxIzXQJaT59qsff6L99Y98gI5ZQWoTKhq0CxT6OlHEsXEdOXUhF7J5cuozT71C3qwTk9mbY3p3cGGbG4k14nn5tXOceOGzA6MMlUWlRkXoEB8kvtAvtiSD5skZEI/ryhA5ETWANIzphWqVN2m1w60sz3hsCXfykSS0V2xpse7qbZ4Sf+CfnY51aY+dI2l6/DmHBCDEsjXMfU0KwD7zCIqh7Ks+KTZrCdMPTU6PeC+8xSDPrWdHXjvD7KnKijTXqShxWR76XL96Pp2g9eY0Ny5fuMJlijuOtV0P/SQd2Fb25NjRce/Ssp9xWMTuYGWoU74Rb544hFLeXHHhtDx10yKXhghlZnrNT2akwOeeEunMzxk8CE4dFR6eG6fKuOInnLD4De/MDnKvE9N7CGsOfHAZXpt0qcc2Q+KWXfKoVusnNbjjye6CvKvoOEp+9dyptvDar8ADrjJYYVaPsEQJa8o2OUEHzAwc10xyrwzXC3CNhXncPb3Y/sPverz95e98LEtu7tN59MHDmeFS+f2tP32mvcas3A9/+F20kXtSJvI4ezPEj90UrBv5jph7okj/njv3Z1nMtmO+P/Dg/nb+gw8NhBGDf8OOMSP55Ess0wZXa4eQhz/4LY/gokxBJMxRYJ544Vgg3JB+9/6d7TTxs0ds7FtiAsiroijg+iR9N2xLWLXlHjb+tqWUMV0PzLj058wQd5SCRYYHOUBSq5ulzMhDlrCvMWzBPTe3wmEJ7gvzdNSAz9ccM1gnuUOp72vTzzZygcH0fq4HGNE8MOLJCwvtr38vPD95sX2VmaUw1UiGUy/z6m7fg+mb5Ls7gN1hBnvEpJNH4e6ZByRtnHfqsm5+tzLmEXJ85s+y1+hvG8gHqJkVVAGx8timtzHjqtK65rUlwKVXoHqvMMPnnX+RswT0EhnxRsQi4N8y6tdvOHDIQZSeuJQIA7j4vVOw53uLKzW01UnbeugBEKPcykEj/FzN8RMkSNRKx/jio7yUVc5G6R7RVSjiJ67IUQGGZPUbGQm6lVknEwgBO+KK0KOu+3bbep+3bhtLZOBZJ6jY1LGNwd2GtXry2wD87z/6w9lLoJLh2r9r5OHJkG4qGXYVBjumdEgymArQSesV0eS0jxeYuPSTBYEnVz1crTvHxcGnAuEoWKCcPMKqAmPDLcFthRuWvghT6ZIGO2k7LkdH3gpsJbPTVQGyY1Npqs5WZUdh5Mjb03BewuYsFW7iarIsQfr1KQo7GisokSDKSpURgp1F/IxReUnHA5gFFr5gScX3nZYnLACiwghXKCqSSmFPi6AAiHMAD8/liXmzsVkGhkKKJCSfpz/+lDFzqeH3f+id4XEpm/KzZmKMZ97liRe3adyv8Xuf+3p7B52J+0e8OFDeOGJW6L94/Cybl09lKfQMR3RVRL29+e3339E+99SRwDn6UWk8iuLU64XLr+bTgwF7mVGZ3j7TDs44C4LyS6eMVEg+96IczaBQuKS+FVgKoWDgN987zXH5EMpDHtmhWRau2ZsfT7opYNaYTppm0zMTNe0umv5mbhrOcit4rTcqWy4HyfcVRmrS6bUw+eQI/s4k+Z0tj+bPoAiztS74HR1fmGXmwsxgMmsD/tCCn7xUGfdepW0uL5GWkN7oqzl4aH+bY4lp207255A3P0h6ig+77tuzu+3keO/Kyu62OPHOdn32WT4xsf4tLJG473rzZpQMjvdu2YJgvvTb4EepoC5Mwu9J8u73oSYpX7/mPcFyUL5HhYKSyoFgZ3qA4SRMYUTZNlnmvA23JsGM/NwMav5SJlZYfuG1ihEM8yfj+EfyJ27s4nAo7Ewf/HTGT7yaPMUnrrxVVoXVj5f4k6TtmPLj5/v68gKfCmHGgQ2o3YjLpH14+ebUzF1YDiftreTlsUPn2qN3TbUf+573tg+8894MbGwfkvwI9bSuRbjWvvzCa1GS3vHAHe0j3/qO1A+RCqdJEeOwfiVN7NbXat/V7qTx/gPc59UORS51WSYfn3jxRJSkwoaizADru973tignBAfXc0dOt7/3Czbc1u4/vKf9g7/1I9SptfaJL7/Qfurv/mLR0BEMGffVjUXhFgXr9MiMGNR9KkOKU5durHfdeAJxegsnRTkGPm4m+W7gBNcwcPtZW/NDuC65sX/rEj+lh22tmwUUgJdOXhk+Bl6+5m83S4B9RUFFyplOzRWuXPnsk0fbe/bNMFBaas+dq+VK45Qpi8uwt2MsH+XYG03hqae42M5BX5Db4nH25FToxBGjJ0qEtPRwC98+p+rD4E9b2sbdYfaBl1EcJzj2L7xtfxPlseZ9bURcI70pltOzD5c2Ou1yHMhz6Mlw/3ra2A2zjaU8dTLTbhmHPt7uN5phyVPJb19FAO8hnLdtatUTkyq9UFQz5tY1wzzNygqOG7uJqwxLPqM0wUPbLB41+57oPMqIDfTDo/z+LE/TikJngoMJvsKKTwiE9cqQdZgOe/tvOfqNmdtWkh7n4rU6gVEJRWiSrG+Z3BUUrFEewmQzpUVG8K4OHXhR4O4wBVKVwkKz07aAnf7N3UkAWEBbGBlZcT2JImobdRQY/Bx5m0ZtRq3CtgImKR4KQC8XFJ8VgeiZFneTWyok6Rl2jYZqRaz8lSK2SgUSd5Qf3ul0yZPKEs64U0vAYUW24iokTSR5DRU8iNPxii9E8FChsOPtQkoeWnlUDo3f07MfUeZleW+I3vcMuAdMI35HLARn1sREggO3QtbNqnbgbtJ8kc2qe9hXZgNzOn+O27EPEK4i4J1RwqksWhaOsD2+/Gt/8BVmoq4gVFSEWzvJ3gvvgHEzqnRadi4vWNbCfO3Fk1F+JhAC29A2Du/Z1T783R+KwiM/7777UBq0F59tR2hc5aKaVQUJ+VjgKP91Ovct7I2RkwrzrXyjzU/TTCFktvu9NnjkUlEEIkqNZhHhnRk/1u2XuUhxmm9RbUKxkr4du3blqonwBfpVnrxAcIX8zV+5XLODftKB9DM7iUK4e+/ejIYvz7uU/P+R9qaxmm7Xnddz6szzqVPzne17HcdOHMdJxzZxnFa6URTRiEAr0KGRLNFIoBYf+QASIPGNL4gIRKuF+NCNBES0RCchaWgaMjjB3Z3YcdKO5+GOVbfqVtWpM88Tv99/Pft931NV166EXfWe53n2sPbaa6+99tprT7vwQioheO/ueLbOASc1bwWGV21IT0gQvKY4zXmFBd0rl5e755+73t26weWlCFHLJ+7me8Bi6ENguCD5hAMoVZAOHXGCn2sZDk6nuv/xn97qptxFuMDFlY++Az9DD67UcGHy5AyLfqdXOHR7hcbDgY+M+uT3IxSIUxSnU+hzis5jG63dfU6R+KMc4GFZz1jvdHq47Seu/Aw3LO0DJhAf+VI6hifxMzzCm6d1HqdfwPRPIeLhl8+pmWXqr5TDSiDv8jMDn/zCzwj2c6w/Y/zGqe8z7qU6B8/zE6bzL21189dZf8W6o1PuYDtjx6P4n3FVi2fCTCw8z31kL3UT858Cfw673XvYPTh7ofsPPr3Q/czHr4JHyQzLo8VT+WKnJK/707n7VlkgWlqwbLOWKzTgTRqUXKh36et5M6MWaOE4mLITlkf95zrKx12ucpJGyg9g32FHYDIm4p37m92v/C+/F1zeYAocEDgxqYdk16toDN68LMzSRlDilY+eBeVaMt2FriaJ6oy31eWZsiAhR9Y3PUGeDRFz8A70zjVQpKSPp0NDjsinZmb5+3xP7XxDH4GWUwF6b+OApRVDRVYKip/wXcu6hjIkLwtO9/e/9Eb3iRuL3atYz77E4vaiuHgP4doHSPt46e2vTy+M5qwHl3UYbhTdaLRRmG6uqLDyFb79hzJwkI4I4XeejRcSyB/jBw2eaVdCM19/8JoW2FhurV0j8hMW40zq/BKbPBYyi7GxieWNAVVciCvOPaxKlqDkNkKHHFHDzsP0bT1+zlaEN8SBVGfZhVy82tpxBojU+UmOPDEnEid24df67MKCMINx/SNlSNmbRwXXXzP9c7qWRLoFZA9X/6dl8X7gL8QdAGrQ3y/V0/2fWUlSoNuQJa7vjVHNVkL68z1MwR87EtpnGEZmMJ2NLUIFgWTECKW+c7cydQqZCHiYSrKoOLjTS9NgVSz9gOmNa0/EbhXhh2l55l8Py4dWp5Z/w9UJNWQe+PKPF8CHL4SWw2kzChZ3PHA+fFfgNCcuo+FRoMjLuVxbgdaIwrfWUJSwpWyUV2GpQBWelrcdFLMt1nK1csWyhak25loyVHkTvvj6dAfgBlNUvoub+Xj9hwVxm3bgUKa7XnrZh7uQ2A7e6VCZ+quY8p1Cy9oi6lVYHjZnoVQwHrGuTJyFZTnF2dGR8coixJQT04paVC5zN5VTDa+89FwOoJQ3NNm7jicH9QHf/I+5nNbFtUuso5kct/M7Z3fWm9Qj7+A5zUhoQrM0aefm2aG1uBiFw8XBwvSnZWefqyN2WGty/927uSohuKMQOeKZwwrlreJTSB85co7LbkmWE9O9/HXn0UYsVPt7LEjmO7vG6IwvoUxMclfVDOnnr6xSbneCUF6e8sUUlohV7rBbYCXkAQrMHguRrcMZDDhHxJtYoeMl3gRwpvFcZJ3KJUeLbWFzrDIqOBvd5v0HXKPCgXgoQ0fQRIuVdWJn7dO2lCmPicXuG2vXut/5U06H32c32tg2h5++RDnnmXLEvMU01ClTaMeb1QlxVCEYlLLqWpwoFTI6iAk3TM5f8aTF5C8U5Wm14+uPaMaNsOTzUz803n38pekoqPEjQgniOgjWgYLWQXes2aGoWDzYsa4ASjnurB11X/ou/KuVKjmLx4gTmd7Vq+2KETUAgrN4I0ugTr6LH/kW/jl4TS5AKxQi+Ol8hgHO+V736suL3e2tZcovX9nGrd/5bu14sfuP/8FZ98++8b3uM69Rf4C2c3E3pBZNreTy7CaHxepuo6h8+Vu3M4BRyZE87lIynuW1rOLp7egGNvylSUqJcmfb1B2yQ876NZ70GnWWswZvFdf692TuOoLD9n/KYONO9/qdtW4dvqtYQGi0A6byj2SRJ7O041nORbId2Za9o1KcVUoGayZ7BFw4rVVHeeUl5MqhbbYKi/bC7ARLI2Y5ZJPpcFAWhgySbPtyCUZ/LbDuAA1uPYKW6x5KkvfVNacMk2ZZpyXvBQ4JULIM2wLHP72PJfqOvFyyzWcPMnmHL/TENRLUV/0VpFb/KDiC5l9hPoTT0G9w21OIviszmmtp/fZ9kOfgBb8oiT6lh7vGgEPxhJPTqj2lFDqNyXS4MwZHp6xD9OgKcVE5dkBkv5nyNdhBlI9KNsjcT4fQCebDNqm12sMm9XSwWv1yPxNi24RHkjfxgxOfyngL5ALvuD4fH8b2uIHWtxpeEOpv/1GeSYd/8uiBmADXx66P0b9BfsSjZTri1Qpu6yqoQOvB98UZwjeji1kPIX2/sGGsp749s5L03/2D34+mG+UAtOzIFeTUBQ2zBGUWRoJkBC7ZKdC8xkTCWRmptJ6IWh+axShz4Yx6bNRq//rL5HaKCgjTqlAYT2K5LkRnByxDGa7gMY74mIUw/GVhMcxjHGWZDUd8XXvU8jKt71U2ygOz5myd4A3dwUPFwHu23FVgrVh+G7v+ClUPs7N8BKX8HlIpnioX+juq03nmk+ZllYZNBJ4nfm9pliXMsti4xFElSEEpnjXCNaxobX7yV5QhgeJ8N700U2lwyk38fNey4XSjFqs9hL1pjStOHiToeiqnT9NwzISW7knbWrckZqoMBF2LZFksU6wHwLbEKi5OvdlZnJ0fcXKvI1iaMFMiBwfV2Xkn0NwM0zUzHhZat5N7vo2LCs/BXTy9e2yfEe8+uO1g1RF/8VaRVGGUNjZYUZT+Ot+t51N21ojHHumioBNXBVl6WGGW1zzkkWMUiOrQKRTwwmOs3dGas7uliV9XAsjy2oE1XpfzVPb9njJfhJ5z/iIibMvgqdAP+MlPRGGWCRqAm4uAxVVcjqhjw8cRqBPgoILn4MAO2+mENx9Mdb/LzOj21tsoQjVlcca82iPmGy8vTOZ8pHMUAjNu7S1I6IMVU56h2CPO8hiXcAS6z8THr+JZk/KYVMYLPH3eunGt+9iPXCu6p5jFu+7mkp8yrcDZT+4q2+bATXmGlh4F2H7jn331ve7Lr7sBoPKMdapy7tGtPMWtnE/iSjj5DP7QnWIVs37teKL+Et8kJ6yLOUqhqqPA+NGtcZ3Q5jaLkGly44df6xZQfsenlrvN0wXgzHS//iWsM299NTxqu/cnMh7TYH17HZGj+9//8ve6L37treTj2iPXLq1ggVV+RKniqUzSX9kQHgYnYZhIHpWGftcSBBYtIy/ucXL9ODj1BGDR/m73K7/6+ZTPosgjHkhqeeGq8NWHX76egdA6i/Qfd9LOOjV22jwwJuFRWlnyllevrXIuD+V0x5rr6FIo4s/TJm0nKi0PHrHAHSWlOIA2iAXIHXmWCyYcKEmD/C0cbpljIKaYCr/PeUfudgZAOZ5b+ycM6nrLCL5aN2RNcVBpU5YMIlMOarjb4AoU/zWesZ7zTsQhn/TJHnuIkgOxU+jcnH62NV1xufDyWbjy3j7jG3pW/D5Z4snPA2eaARB8WxjPYC+jxk/k4QEAjVPWgoqXvOx6JNr8Oe3a+lNuyXfWo0RKWUfglpLTPBomodQge31Nl93iTJ/BPjIUfuTJp8qUtLCOR/EPzw6gFJbmZFxpNsjVIPqH/oFuOwgJ/FGYxIwraO3rac8hjCJ0SDZMTB7J72lJ388PkMHFgg/caD4Dzx/48sxK0onrGPg5BXF5dZXGR8dGJ2vnHGWIys5owAroEbNtWVwrQAawsdrw60dF9kxj/Db6shhWQQTiSPkssGBDrLw7MqNxo3R4ie5ufzqwU3QKmW2sDbtMY9jxhGkCSxjV+MRMvMQhgpJpHYWB4ZbN6ASlk7Nha+15iHXFReviaBzdDrtQdhiFac4mWmDaWdq509sljp2w+LvFV0uO8bx7R+VFmqzmTizFA+Uzf8KX2PmRs3bYMqzyKDzTybQKZeGZjzhTBShbLNRFCIahobXKgcqYDUsFJtuLCbWh8786IZ52OF7u2uop0zjSJXSqUWxSSIs0Nho7RQt9hC8ZiH9Ix27+diZONXpCsunSnMjQTttOQ5pnnQkhOQBNsUhe1SHUe0ZTpInyozAhM6cQG26ZzgM6IOEBS+CHaIBMqgUq6E9eLtRV4bYjcF1bLIdEt+lLHxXZ1DewapBniK7nE4nOf5Vt/WLt4e0I65dO3OV/6ZUenPiH2XXi7s86TsIwQuHVunxXGKBGOsItBP9HNwOss4D1rS++3X0W68jqCsoT8d87vtSt72N548yk0ymuPZlaxDIym0XPQhcP/9WlvEXHiDYFmrj1zvdWvubnM20UfCqMlJRDy/E//uJG99t/2lsvejA+JMvQ6cNZOPglSh9Pwp26HiqR7TyJ4H++k7z/I3omya9PG2U4dZtIJLJspQQIJp2rCe0ICJhk7ccsp/q/MLfdXWbB9ivzp92NGc6zQhdZdmcgUR8dcozD8VT35YPnuudf+ED36o2qY6eZbaNaAMTt4BtvZ+BykytPlmnvygfz1krrZcHi5j+onDYBo/Hmt3Fcx0bnTxqLolwTV6dqxUElyR1uN28Md7fZbh4hv8gCp+I8xjEqXvlTPlqD7mEVNr34PeHMKLmlGZCHih+DNOjndUlzPD2wUD5dYcE0S/96V23WAZ1TYi7iFZStVmd+u+DhTlKaSXmMZm8E3CRt7AirnevEa7gXb9bhTOXsvC2nvLImTaVsggFYbXjY4GTTWZQry19tk1j2DyoYvQulyTM59X+UbbBDj2WLOXwGBo256NWjDU1Fvc0cDMjYvzhArNJUfBOLR9pVC+sjyH89Ksk0cPvsjf9oYyuynZKY4xNxWmJlgEhFSkbOyWcNeA9w8AD/4Oqz2H6AsHHIJqKPF3Ms7uMdMdyPz4ON4qbJIyMKs+CaCpdH5eFHpGvvNwj2u6FJeUPYBOrJb+Ch56gLoFGPPuqIf16F4YtPne8jceL3Pn9aUtJW6gYDaMPX90n8dO9nVpI+8fGP5E4qmSBMSo4+aXvB34qW2E0BskON8hSmN3MKyX8FgP+M5y3eJ3QoYRZG4FbeEWsyDEuFN7oANx0mjO9Tp9nYTm2afGTosf405gmsGAr8nQnuveKUZW9xFq9HHNjnQrrrTA152qlQauQvI1MWYeCZRtHng1cvIMGYbNTOtWoo+OywbYzGj8KIn+hqocgomPd02jyrAyUeGaiwRMCbawrJCwnFx/zEQ/g6hXMEsogRo+FnmD46y2C+No0JrAyFG2UishYQI1bH3qenzox/xshRF8Wqz7xUrIKlYpgG1OdkuYI3ca1XG4/9U+glQB1pygLXKwHUg2ksR87isey8SzeVuybMTHpMuYWrMigdTri2IZYVYKgkWnYtVVw1FHqXpUGMqwwpE+/CVXkOvjRYaa9g8ATjCD2sPhbdd/MjYghvfUbxJXJ2jhAmzFicqCjrwXcJGisdZVBx4xFn2Am7R5qlJLzfl9W0wQOCqRS5Vkg+kJdS1p6PBCTvfo0pngkWJZ8i3TbouHdYzH5G5zwze9q9RNqZw93uJ1cfZLHsg+OZ7sEJ98kdYZE8me52zzjDSJwAnFFpQ1BCWSL+S8s4OyPj4aHFsq6sECd4hJ+WKxWlU6xsxIpfn3IIo3nwFK5llUbNSWKVwT7rgiH8xIfH/EeZUWeTJHXEm/nrG1g8MkUOMO+vs2ZmJ7BisePv6tRhd3Nyt7vM9+VJBw8n3TYDuZM5plzB5QA6T2G1HsP66kh+hgHVNWj71bc+0X30RRa64nd1mbVtwDRP1zTm4D/el5l6+5FXb2KZKOsvaIa/LKjtLJskwgdtE0EpR9JAi2AGKvCVSo7rgkIbwlxjdIfdc81plXrtxVVw6afgycjdbb/z5W8nitvlP8kVOD/xUaYKOXT0N3//K6FfS9+e0tQALZG51JZSeXLyNAO4ZWShcs96lsescynsf9cd7tM+UicNGM9Z2splZMoyh//u5hiBntlb7smwEkyAO0W+4Gzftn3LpbP/NO8bHFz5LabTdlkUHus1uMTSDrwRkANYgrX9aPH356BuNN5j2aZOvYuuuZSV9LoW1y+5sHis2nmFDSErP8U/jE364tqAScoGcegPBDy9nPicDRLyk2ldVqCkMp5c7jNKHmEN2hazCg7wtYI1Koi3rlA3N2VUvBB6hbm+qckBLMMLI1P7Jv2jNFEBxlfOVZ9EWuCdR5D3uDSUBBNqWQbh1Fe8/9x/qryjyZINfy5kN4hgbhfd0+NVnCdjD9NWiYfff5G3Z1aS5hkmTDBas+K9H0ayWS9WoAS3QosZ6T7zjj8CiD+E0wiZyjhiLU0pO8AhzDUhTscpRBSUWXAMTKekXHezjBXF+CpEa5iZXWTs2jPjerWBJuwzpysQbM7BS3KtLzL2KtNKPqsjUxAuoCAtIbDF3UZRHWyms0ST8khsBZnlUjBarnlN8HxbzpSLOIYbpp9wSuhU+AQMl86WeCoEClJxELgdp2nTXEisohFrhuE4hYqjNnGwIy7rj3kZWviZr/iYh3lrsbH8pplgh5KxyDL4WTaRVPGQxtaHSlFTJITqSebWqSeyOvWjlUaRZhzztIG588JdbubtAm79zF9lRNTEz/zbwXC+SxPLY7h4SDvz1sN5bqmQJzxlhxNIxDG+IsX1UaeUKziTL0UmE9Z2YNHRWuUIKfyGdzuEz6kPncLYMz/Cq8Ih7hSdlGfhWIasV6Ks4nnAyN/RtrvQvQxUS6npjWeeKpjaV1Rq3OnjWVHW5zi0Tn2itUUIUe8qc6Gf6UmTqQVKE76BSE65OboWcBP4Tjl6QbBHUVhHTnfcYXHurTmmRqYYSECydXYOylceiGnTW6FMC+4GnIfvFye6F7m7bHd3k7NmmKo4HOvWj7gA9mi+2zyZ7bZPwSklkDBmXfwthvHgr/jZLno2DH71BxqSZ9oqdSdPSpdUEuksx6iTVlpGH/MeRDepifLIn0rtq2lCJxQz86lsCOF9Bt5cmDjkAMLdbvHSdrdwiWnqyVNowCBJ5RF6zHBqs8fu34U/t5yy5cR+FxjaPuZYO7cKLS/R4R9i2Trjepe7d97D+vsy68z6QU8xsUikXkVIHKZYbyavq/xHqSZeFGCe4SM7Q+JWchi057ta9G2bN74050ebkNNVxEaKDx/2bQRfp/ptV7mJQPIQZltawLIs332Ik7kfd0NYw7cWB5aDp+AllEfrLu0ZGZm7JYlk27OtV920VPUUr+AM/la6HFOuvtuXzwPX3Clu4Db/SkflU+QOwBtmtmfLp9VqndO8a6dawQsO5hnA8kmlqm9lEvSLLAn4CzirdPTJ8rBtC8i0Bsn3cc0PT+skych4EF6xhnEDoAEfBkKxfIhzwaiw9CN4RkZa5/FG9uWNvoDY+qmXOOSSdwRwStt3mUHii7uAdYGfP31KPXu4RmnR+qeh0r4Hm3BxUhYrP0MXovg0izx7s9woiMDJn55GvI+GB88WiQC/L/i1sP7pWqkpZNzAjUS2uE91+L9f0FPj957i2XBtT+G09++X9mlhI1g/LXjo9zIXYy7MOZ5zpFJTWFlTYiPjZ0etK4XBOW61/prCUoBs76lsVJHTeSL8dHaca6y/cUrEef3AofZM67bJe1xRopL04vWVNHLX45h+5nKdbXSAomXDc/SnQpIRPd8hCvHSTcsN/Ldx2jDkjuDCu1u3VetjrYBjtSjI4HZoCiUFhSfkWi7TqIDUNBbI867gcdqstm7KdKyPAqbCR2uau7bsrF3H4tMFoOMonJZJFnCLumwojcStrYVSsIqH+GQNFmllfq1ZnhB8hpZgGVUKRaQEkgtV9S3LxTinEEsb60JY0nQyC2hL4BAxoxyFpErhIfWK7pCyCMXO0WcOTgRvF2b6bVnP6bikR9Yh4afwn7AHF0+ceKowqMha1qIfaYEpvxg2g8CbYNoxMPH3HCovq23KmnAcEVO1Fil5OC3lFKsXpGaqlXRWkgqanTQUC38q0UVFRcx41qc8oiIl/7gWqnCxw9JSZf0i4KGrGMmPdo7WkpsGxjkDRtVumk7TKZPUJdvMXStlfVgmp2PEy4w167etyl4HYVtRFnmwangAnLNz0KKR9wlxPNrgjbdrh9vUEmt7oLEd3LjKm+Xv6f/INRcoCfedxniPNVgsDveKkHl2Jr5AGa+B3z7HBBwePMBae068ue7+0RIKE1vSPZ9IBy59VQX31jaDJGEDRyQHObHw8G5d6dKBGa95DPyIY6Px2zzMqHeWM0keS1cyWk/SWg8knOCgnuWxDe4G2+yWZz3lmzaOQuR0dXcGT6H8PWKgdMA28TOs0VMo8SuUe4OfUsqVUXBpLI+H0GmMKR7rbI71M9n9tvdO95U3bnSf/SjWJOpcRVt81eNtSzrr3zqy/Rjo+hythb7PEL+s2tVO52gf+skLJAx/q/hKCZV6j8NQnsgHX+MmgTexFDXnAOSTH3kpsk/lSDn4ZxxE+Su/WnRcom7/ao4IIL201Vty9c5yNSe926GS0lVnafay1f6sW8RPGk9Sp3UJN7TiolqtmsqogSOPSQehyKqxKdZbcoI7Wy8HwSKRvPAxG2WiOydFxW9RVObYjpRBOsOkp9Nv7ipW1rWwROj/iB//E3/UvyAXbP3NI848+w8fyt4pLh8Ujq7hI1DbsK7xZZFO3NlROjQ+JY1tQrkV7POn0gq2wc6zzyD1kEDLXrysXHBNIgwGHeknuI1C/j6DR2AGjgQopVJM/ckz3lPoDRYDN4IAUBPPuPHOC3984nz0r/k2ju1A3DJIJd+0TwJkJXmYaiJGSxWoSZs/eo968R2+0q9PUhj1SRqYYXDeis5DUCPRknA0Cz0eD0+k9ofACm+1WN9B6XFApGle3xdmg/2U5zMrSe588DwPFY2MJgHmSDlMABb6iUSYivdLdJgeoNVGKUusqMwiTNLYcBREjdlucSS/FSghLVDr2IW9wtZIA7IuR6aC+WSg795e677DEf2O9Mw4uxvhO+e2tXwI+5C46YjEB+ZQe1fhqdFu36mSoZV8YmdsC4Jj0vmTRuE4Q3mzvgWAKSHCZYaIKksaRGQ+8RSG9LD8CgsZzzLZiIQ3gXBWSLpgl0FU8LKdSCM7WoWn00vSUX+xyogTAZ5OnbR2VEQjHu3Lc23AKJ0X7SmjLBQIlR2FRCBYISgYKoLCnnEXVnDFjzxLyBEJ/PyZN+Iy1goVKg861OQszRVo1oPCUIEUxcCygewMSKmEWNYDpoNUzsxHvAW9wm4zzyBRaCqMKVryzlot4MlT+lkvJWyrU5Z3VBDDK6TwWxxVniFFrFt7dJDSAM4DPvTjzbpRCZIM8cP/GKStJ837Li5WcdMqZJm8RNa6EVcVNPlPRcn6qynlwkEaS8cxARPuMf4uxqb0+Sf/qByZ/xHKjR2nnOGoUxwnaROn+IMV+Xl3mtYjcCBf8dqng3+de67syCVJ6Adjy3f+zuQtLCFOfslPaGvdFR5jTIedsTZu9+FGt4/FdHphulviJvlJtoFPzKOoslB+ae2NbpuDKXfPlrr3uMssqmBffxPwhfAtqw6QcX5ZZ9ID9HCE8LS0eW8RDYorHkp19D5J1r8XkL7TaX4++0jCXTq9282e3u6mxw5QLLASoSB43INKsNa8NSzSaJrdFDuDkCie+Z06fwgNdpBRu9TZLP6xGFuX1LObVdNBAH8KOMt0oHtH2903WVD+qR9+nmk5ZQ9+g11YVT47rA9w7IXt0cHKKopOtvJDDNv5rPLIqPzxhHT533pUFkg324ZlUi4ovySvcd5jTdKoM+wlzp4znvxuvU+aKXB0tiUtTPr3pIp/PkbrIHmn76XNVF0kIomUfa5VOvKcIw5zlJar8IhKmflf5l0LnOBU6pVr2V1HmGtPw382/NH8iBt8+JMmIePjEoXXKyjti5wJdnAXpZ3pL2Halj0C4YA8IhtldKCYUrqV67/SG1d4+Y+G91H1at6DJ5AG7wW3fRaGfV54Vjzjtxg93AH4wuopRQ8PVP8H1PofGVN+MB1+9Q5slKRLWuOZVrsEI5y5JpUdsOcctXLK9Jw166GtkChwferMvVpM7+GjR7VwthAVTxx9k5qVpo+od++00nqhdUtrDPunqgEj6dPn5aduAKb8i8Px5/N9yDZMEgAFYwB1AK8FPuX5lDhP8XoioXn4s3yps0GmT5TqibTv5/HMShJ1mnMybA8tRmUAAEAASURBVKgKTZ2dVVMgGrGaQHXEng411V8VgahJQ1GA2GDkiHR8faXIULEQINgUcppqFW5eGOro/R0ONNymM/jSN97pvs0UxE//+Ae7F2+sRjPOIljR4qeipBATXuDwPU4HpdIj8WyXWnu8+sKLe2thdQkSpz6sDONpGDGu62nkFMtkOYXLLFGEluXdd0Eu4UeUx6klf+7gUsmxS7TzkWT7pI8ThrBBNkfLkzYWMNLXeilgRqkgDsJSpXCezsIOVeuLJw6rLCjoXMRtHMsdJc3y8elo0nTS2U6LB/Xh9Jz1Vxae1gFaNhupAtqdX9bJ/ORU7sciKGtVtCbFsgZRLItdfxslntPJZIc7mSjQpYV5hj8osDAPtX5Ql06jybxRAAWEU5H1zR12WgMtk0Ld+wGzLonQUr5JS0QFrHw4TaaWQauUlZV8SedQR6VE60zOioFmKkvmr6VSXhJPL8wVntNY8qpWq1He2cNS4cDAg/Y24TsVqFjXoLG8OS7/W5HAtQKMG6sRXk4LWqfmb/3IO1rB3EGlgnqJ0Tuox3Knsu2t3Y+4UNSptut04vKVliSnSg8Jzzkr0Ma1WyeUb5/wKXG2vinrof6WCX7++Y+/0L10bZHzlVgQzMLb3/+zO1xNwSj2kGmqcY4cGLvaPTy/FpzlowMPDMyt8/A+8PxZ75Y17VSSylRxhvFrLlHlOfgCfU+dT1pIV2muAB6mDdjUdZJb6boe3AxrjG5132bN1hFtDAWPBeo/9Pxy94lXr3UL1IEGxS9842739TdRFKEFdo7gon3TM7n3oLc8fgJBvVrBeoEzOReLDKCRXYE66iK0f2+HzR5rd7ovfudm95kfrl2xr9xgoTbrkL72vXfZXbbH9Pw89+Jx/hTJ5RvrzjYifezsM/iBLA4QohyTvzsLZccMWiifFirpcUhH6G5cufSc9hDXl18ab7JDUD5pU+NuBgkRk7ranAvLY6ms1IO/kq+REhbI1n3blFevWA+Gqm/4SpXmG/2uqpHEUZLYSeuibvnu/vpuNqKYImsILSuAOdHgggsbCJdM5BUVSWncnJdBP3eFw1BZU7XPqe9BhvykG5ve8tn4Cwh9sno2fwD6P6E+n9WJW/iYBA1WSXbhF48npyLQU8Eaf58NO2Moe8oW07nppOCYxEwCjffC21mFeQaF5qlsUgY4lebRNhDIwsscgUOF885wzG9pKESzAajtMm9++/Oz4cp74hqhdxW7YdGoWepMQBqPF0GIl1Z35U5g4+87TeT7uD6HPPzTQ+1fG60DMsrtk6AsWw/lsUDr4zGvYQ5PBjyzj0D7HH08PfMfCO2ZlSRP6D1BA/VgLHdmKSxKAy1Tq0xkxaoQWBETdg7gaIdrVdmA7BxVTjIN0dfINiNDG76HErrrwwWOCimF0J0Hm1xT8SA3kW8gRKwIOzdN1x/h5GcXYauwaJ2RcVUaPAhRWoSRie/Iz4yzRRbEVCRUNsTXi0y1PcAzce6Sk4HE2Wkiy2KnZzlPCLMTT6dC+n12g6iALWCVOOMMlCiPlh+8DzzwjrQHHkJpQ8BFgACnOj9EJWlVJyyP9LDT1R2RfzWQipN1HlgdXDujAEo8y0BHjwEkvDqL0LfQKjLVkIoCUR7AyU4KgxR0YrqNTtfO2jM1LFdTem2kTt3J3wrGA4Ss7drOAd2BfGq9jcLff4iA0Mr0TgkpwIWn8hNllHh+ezDaJOsyLGcUQeBqUTxk9420Nn6NzllkyuXGE0w5uTDTfCY58FA8rVc74RSyr0PryD5SbSp5g5PKDyQtnCmDvKECfIq1aRLlTN5oW8q1EqRsxLODc5rUDkprTps2kG92sFqoDFoP5pdp03AYBg0EqBZAaa4VzJG6ZbfOz89pI7QBnQqbXHCsCZG0KoLWo2SlR+/Lf869bdvckr7POU+MOsnMawcmUZTGp6E4eaQNWSfQVQXE6Z1z+FMFT8X5CBItwAt7wL7PSejS1etXbl6e69bubXL1AAd0ns91W90qGTvNWP9C18KmZ59UOHGkuXWNo+wRhKkG/uBpe5YXio+MVK7FC9/hBer8AMALqFcefX4tjc99bEMH41e6q5fuJi8tti9c5QRy2oqWzG0GDirZLibPpcbAVXGVuMqkPQdX4os/LTl00qo5zXqkCc1JODu5GfwWgXl2stH9kz/e7l6/jQJzdgfFYL97Dqu2PAcYprze7X78tee5J26p6hScVXrkW4LT1tc5DNFFt3UsBEsSkAdS1TONPFh0BuXuI6/cjOzYp65I9UTJbXu1IaQGbMaSd5MJZQFrS5W2a76POy2UKqdG9ZcjK5Qv8I9tuPkP0gGkZLV1UkpLlCDyjFKAJ8nTHuRBp/jOWbe3fyRfF1oNVraA04bNR/4sV1hqIX+da4bWadc609qMlK0f/cCt4GB7edgfZOtZTcoTocgnjQCjecpb4S+DR1zFLw/TBxMStmdgKdzieAoUqpas7eP1oe2hr4Omfc5FyxqzZFKyIoKSiJFLPSz7GGWKlmqntCyClkXl3jjl1Ioz1p+yLb2Ooc8ZNJ9jk4FxdA4ODDN9wFYJEibG/nSGVbjxKsSyJDwNs8Ws+JXGRNY9P2iRu9ZAsnC1P7cfK+DiLgR/7W97S9XEv0IGZKXEo2F9lJHH4+FPxn7SZ5hcXN4vvPAcxr3w9n0DL8R86sczK0l20pNUnI33PSw7Hkyo8/C1m6sqKx5WdpLrJ9YR0AoSOxevXXD769eZh1c5ecj5H/e4pduKlcG+/vq9CB7Xc2wzcrfT0d/GssLONBvUh165nkMLn792GSb0klxOb3YUD8Ws4DR4GNAdW+Jnp0ryagBWvOtMIFStDxJrVCTiabHwlmZh8p+TizFpqxzARXaWmrwzDgRXG6aKUuQAsHL2EALTeKk6wrUa2DFEMVRgp0ZhRl4mUDKkIYULkyrctZIceVQ8ZVDWq1i5fkFrj3f6SMNT1kBkYTLsoTIZpYu8PCDPs4coJZ2GCpamfgXQNPm4NkllBMGq5Qb8VY7kFWnlaFtlUYVOWquYSszazVHrBGI1An9IGauIRUlnD5AoH2hOwhujUbu2wfqyyfAaJYtMI0eq4ZUVRxz8RZEmvyhJZNA6W0/tdb7eEbth5uA0hvmpNLv7KtOllNsytLVi4qiQ8VA8rzcx5Qm7oNwAYF1W/coztSZJQeTCa/GQF0xv+VQypZX5K+ClnULPMJU2X/STF4SrAm2YUOzIVYWkp35ajtzybxZaK02Xk9WZwjRCBBN5GT/WD8j3lddPuiXin7mTiDRaP1VslmmlZ1qpqGYv+vV6kVPyHqftzaAOoIvTycNn8Ifn1OxxFo6HfO4yrWJ5NrZZnE7ZjlAE3zj5AFYn2g446gr/vi7L67G/ls54FbM9+8+EWQZ/uuKDPhZ5J179IZQ4AVcwk2AQRhl5f/30A92Via1uiem2M5TaHUwO61jDVEJNv8uU0AQ0uEZZlSfycdoM9F13IMEUph3+Au0ok4iTdPLgwdV1qGBltTzBajYP/xxPsJEDpeUbD650/82/92GmjU+6z3/5O1wZcidTfM9xia5XMN3k3jRaXJWNdMo1247tQWV7matkbFfymTj5/oHnr0XZsuN/iIVwmutilFtaV+WTUQoUkYoP7Iy1Bk54eayRQlboif8k/G9bKDcIzKf8qfItyXWlTPgCb7awhKgAsZsReiqnlCfyMl7hQ3nU9YRXmH47ZRTGMUrd6dY6Z/rQHsj/+IQpe491GGREC0LmsLk45U72wVn0VdKGOImLg1Pb7Re/cS/KtfU6zzSU1ibp7eBbHLSk7XI0g+sUe7UpvJwi9H/6otZX++jzlgP7V4lBHCP0fGkKvGwbBqncPN2VAuKAxjsOB450tmthyPdDUuDBf5cqZFoe4IZbFx7BoCxBmKfcQYfIE9NYm2n7pql6AAB1PNlb3gUonm2wTegTTj/RMZ48Kd0ZW5VTg8l7wcm7OMK/4q3s1i9wwVNZqGzUs5ZY9HAauJHPgO2/zbuGXSMReDXOBZxbooZ0i977t6q4kCZx+rpq8X/Q83EAj+f3g9KPhD+zkvTOPU7yJaECSYXHO7u0rKgk3OFKCgWAjOFBbHZokuYNbuV2BG46Gd8XK1CnguKCxboHjrn/57mza3UBRuFcExYu5kRbOh5HqXaYTmGpRKhIrTOCXwOGcQIfkGSThkX0MKPwm9VDwb3IOUIe3GjHqL8i10MUxdmGrNDztGzzE0utLSoZWhgMd92NlhkVrRJUCGkVIfxNW5wAk5KX8GshaHWCjqKdbrJjVEmQPo5QFKoqVSokGrxUbux4FRzTuRIAixUdhcC1gCgEnTnQ0hJLHv6038BTubRM3h4e65aNBbrYebuTRCVMq45CPXVgMSmruGptsYxaJBQISc+7+bijS5x1Uwh468C4lldhbph0cN2ItISVI+AVDLEwMIJ3hKmCp8BzHYcWDhWSM6wtoSXwFFSx3gk6ZQR/cCOpvWcJCfznZulkwOGYznOCjtGpDgfo0syR+yJbno768k7ZYUI3y2TdGcefnYNCST/52TwUGoDKdKY0Y2FbFnyLp3hZLq0FKscGSzP7Ky8RdTRcwt0pxWrMfqv9qfDacZKEclVHqBIvzyRv8rTAtx9e6r6+zTEb117rdic5j+fw3W7heI2FtrvdDAJ6/HQ3p+JqRVEgbVC/pygMx9TBGFOjHk63Ly0YgLyhsk/eKl+PNva7PaapJ1Fqv3dyq7t/ihUJ1HR2GRFK9ac8B39BTNo3RwHEX9c/6j2RKmLVuZ0ldSf/gKt+zXqXBEUJXkeBV4h/91hR9B0UpU+Mfbubg5fffutRt4U16ebqPMrfUXePG+In2LxxQD24iPsU+E417qMYknG3Qps9pz44CL2bZWAyTn0cji10u2xfvD/Gadrj17t91nPtzt/ojqdvdEecTzR5fIeDW+e7H/vgSvdjr93qvoIl2zp97upyaO1mEfnF+oqcg66WSZ5Vtji1JU1sL/K8MkIev8rWeRUSeVylWzhb7NI9UBaOODtSFXceg/Yg04dC/LG+IxvgRQ+eHbiqjuRvbeqImvY+P+O3bVClfxwrGR19fOqP5yJR+2lXllW3hTKNhpTjAlQEtXQsTdHeoe0EJ9Gfc5r8OVf8nG5vMp3Zw6NdX/LY+Szq7uvUR9ApBSHA/YO/dJqhzeiknWv0bJ9ON971xHgi2N48j+7568vpI2zvLrPwBgHbdrAVfp9dgF3408uoJ8JFoE9HPkFxJF37HiYbvpmXclP6JmPqvvhdKjZXfvK9gzbL6n1osEO+rVHl9CTCWLmfelf+U/HKUetZP4ob2u8zIyFOwvE4juAnTMJVmqKAAdv2pvO7lN4avMWz/QG28HVtYX8sjvZdOGW68Ksv0pplX6A8H5YuEfs/o76+t9+AqAIbjWS6Pn9f41Kgem1RLZsuD8tan3m2OL1XPZpnizgS/zGv1NeFtM/48cxK0n/03/5aOpx0phA2SgUIKgDsaNMhwvTt5GkVIC83tcNVMbnMNtwFGD9TBRBLRnD9jVM8Vm7W8sAomrqtHNd3WKkxVdLZFX1pQIzEYy2AMWRShZbpHbl7NL4doBW9RL5RYvjWAhHrDpmqYato2Ez3GSnJGtI5CgyCylG/AomiAN8FnjUtcs67mrVKmeVRwck9WCBmp+m0EVGCk6Mg8S2FyM7UUZ7KxkQUOTtua90F1dKzrtAwTrHkDuZ7F02raNVZOmJYFqDzzH1Bd8pubK1Ul9D8xcc8ZsnDVqlFzE6S46xTdqdnpLGKgXVng1VhsFx2aLYzGXQWWtnRq+xZD9LVurRRazp2Kk66Gz4zybk8CC/p4CjJjkGBq1LoVJAKxmEWwzqlxGJirBs2eGnjiDkdKfmKppZE11tZHpW6jLqIN41C4Zom1+TAPFn3Ja9lihI/OwHxOaJ8lm1zq3Y/WhjxdUQuH1kH6bQhvEJZ3hARyJbyOVUnH2kSd+2YO1Kkp5dGSn15YRzmidWOd4+GyM5KaOXRC9u73HEFDuEPQHua8Dw7qty9aGUXL/iuQKrdRnZU+qg0re/Qke7e6w6nrnJI5BL5LaOAu6NqOjRARQA/zrk5foBlZB+lgc7/4Ro4cL8deE6cbHeXjjbDFw/eWO/2OItHhXIfa9LxyQQWpOe6bx6/RH1X51BlInNf+JOLa3mTlvxPHelvsPS2wfhIAJ6xhPXfXkSsQpuFvpRVWqt95eRvSmhdBy5hwrP+5RGfvPETkC4Au7vnN7AWdd3Hjr7bnTBdc7i22d2Fn7axyJyiHM9wAe8RU9xHyovpa7UMYJqpuKtXuodnN4DDYO3SXLdzibOHMLMdjC9gDSV+FshSEGMccqL7zjucy4aShBnkztpJ99GXa6r0Jz78YrCKFRGU3NWp8ylPqCx5mGgGXPC97VRnHdsuzugYiZa2DstCvyrl6lId+HpvbSIwjJ+pZHj1kINvJXBgAOtIq3NzEMr766Bwz08GSKvHXAhrh0z6ESunfG1027fvs8g4n8qWDBiglwMAO80ZInlUxjiwWPdPm6Qzhte1FmFqp22C1wSWI+o8MFCexqM41S0A5tGc7a51zM3Pp8eclKsyiLbyyKeCyMX3TmV7gKYxlFOxbPOu1XuC/B9u7ZiiCGsyfrqCyEvvEZ7tQ4p/yQskgxv+4e2ED5L0QAaQgFmy1mjCUF7VeylFxqzseOvrUNziJw0IV2zXGl0GpCxotT0Y17T+/OvTqpqC3vLFyUnPTwIATvCQSLQtI7f6HB7jorWK/ACiSmUW8mhmN+BT+z77G8tOUJ7Ka9+DD09pIw4tvFkZRaG5wlQfY+mEWc+C0/yHMYoYxixnjGGs3pOHslEX8vDeF3WQriA8LWWlu/h3GK/lezH82b6eWUmyY7/FyMpGrLZqxzmHIiJBtfx4K7wdnIucrWALqfVFrdXOynVDMqQCdJvpNw9Qs+Nx9GWjURnawwxuR2diRzKhPGkzrwv1zFsnyzrasEMSnnqzpnQJIT7eAVZrBDQra8lipInQUSGz0rVq+S6rJD15pFMmzMWGuUsM3NCPwE/LkR0sHT4eU5iFtTTIXCd2rOR3KXjpJ/MrpISMUtMrNNVxosiR3nLOsjC3lBWVARQ9fmUq1xA/xk6TuewGC21QHJz2s1P3UlKFXwQx5FFg1JRaKSfi5EjliKm4jChUumB6t75LW/NXwLtOQkXJHWpOX9hwzENaiat3LeW4BN5zXQk4z6tg8ZTGllGN0N0w0maBHSyeW7VHXUovhZr52Rhn3CFH52KnoSKjqX2ezttalB+MryJxed6ySX8sPHzPczGsl79qcRvDImCmsYjxZFAFb9VOODtrhbVWJEDy8xDAqW4DU/0cdWyZnQYVjgdUWj6tash+aE586twF7irHrutxF6c7ohQdB9SfU3ia/YWr5VKlaQv+vYQwcupkH3yzY4i8PQcEEvLN1B/5+FS4S2vxcyecU7buyJTmC6S3c1CIfef2NqNqeGxf4W9xKaf1wvSh98Hdj7RA2WB92til+e5o7qB7b/xHEbisf0ARRLVllx3KCvUiD80e3WHhO7hwN7B3lnlat2f2LLL+wYHG3h73Y+1x9YVzdTjbCFkSR2VfQtLupD1v1mcsJ4lozGCY+P6xQxXfEpCE9kzijizhxF9AOAVsoKO8SwPbIzEIAWsqRoVfEf8uSuLm2MvdChfZXoKXuAWQdTHUGZ3y8cwNlG/WAak8T3J8NHAWJrnXbua0u7eFtZj1bt5pd3J8jz4Xmpzf5adcgZ7UR2jLLkwioVQyaIAvH2w5RckFy9SZODvlajm0CMqjW1g6HDxJnz0UYEmQU+7Bn2qs9kQ9W5KchUVi26O7bj2N3sHkGGU+gAc/wKXOf/vfWCauhCIe6eQ3edMOzuku67E562OaXbDyl1NeTzjB9C4QKapb7AVvGfylDnixrUh3w2LNoP06eJrluqAcKIkMs13OMqBdQU5N8zR/r1FxV5YnijutAnR2vTHAxd8jGHLNBjBHnXCUb+qQkDrO2lZ+GiaMUYeXDDJwDZx09Cfazdkf2Uqf7pQJVW7DA9enFAe+lG2d74UMjYwboqB8ou+CJvYT/JdsA1flkxr8k48JrFqjDYKf/skc7eQS52k5mDG9sllItm+S5Zmo5Vv1Qhx5xvqS71p4sIOPJZ58qTWz2quJC2ZlwjcuiiywxrAMRGEijW3ONbHibBniWqH5FkfxTh2Rl+WKXyK2N+PVe0sqUX0XpE9pPJKw9wyQwR+jPJsbjWm+j3/j1VDjpYU2L8vQ/J4tv2GsZ1aS/uYvfBJr0FwEv5WniU8ylVnRSofpIbodiZ2CDc84CgAbVhGuCO9OLQWvI3qRN45z5NRiRmUqQ+7uslBWsk/XdNjpOGo701hCDWiZsQOTSVRyxjWv866CdQnhphxUuVAIugbIkb64BT44ibvTT9M0ds3hWQwKolppNFG75sfOQTP5IcJ2HmWg4Jk/u5lQ9ByJubvtgA5FZhaWCpxTWyosO24vhxZpGDBorGA8VS4m6PBkxC3M2QoM4Uk3rTda5NydZWPznB6njmysdtqygBRX+OxAp2NGHPrVKbt0lsBQKIqLtIgFhAycqnF8qkVC/c0RyAzl1KLmgYouONyMQsCIkk7C9RTeVZepKdLayGaIR2Ypr+X08EPTa6madkecCoJnq5B/Gg31cegZLUzb6RXEeREvLU2ei6TQzuJ7/FWyNVF73YvTebGcEW49OBKzflWWFLTm78jeeovyTnp5cJdwuUZabkPbMYSUljnXrFlv0sxps0UWSMuDxpEP7KTBILzjrdiXsXxpkXNR8Lx1Cg3e45DCOeBq2TL2rhsP+NZqN2cHqnUI+gQ3rA22i0vUnZ1xdi5hAXHnmx3UERHtvOfgk71DEjUHjmVpoWzwwDQCTnxpIJC+LAz3H7Gg/HSbXUIMDwZJewFHnvIDYEKf87Na4W/5zigvJ8JEeQCF8IA4mp/V05Qk31lTHqefrrIpz/ztwxPY/5FfU/ejnv27ddM6aDMzufUJMZJG/vDEbHOyBNhjuwfctWadjXHeU2HA4qLdNxKeeJwFJaBLs1vd/V3a53ETaSjE+MNKTHnawZYSYpnNJ50LL8ohT2f+0rc3ul/6zC7W7toSr/zR4mJ/hNBgIDCFdbrOZnN7vbQ1jum1vrqzVUUmgxnwtr7MR/6sKVLlSlFQy/ZK3wFafnQiimD7RR7S72cAQ56JHVyBQ/s9R8FyGvX9nDg156Ar9AGudHcwZVLlqIDlRXnLNOKYGYF0nMgN2vwLL1yPglNISDOVb9r/LufWMUWWb/hCbI42WYqRE6aJZ332uosYaBGzHoKNT15WaXduMNhG+W3wq8OVCkTiv65/JM0gYgWFtv1r/zAHYyn3OFLhykp3n6UfDo4bXSqPProPKqilGviWxyBv5du9te3wqTRSyVZxTnuEpiqt8mf7ZcaiB2ZZzNNy+BS0A37bh3Lf72SXF+qCelLGOrC130scwnynecYJK+1LP4VpX7iKr9GglKAMPslZHjRn+zpEVMHQsw+zXxL30IKn+MEOwdl1uw6eTauraOQpRJL404mPPNZ/pt/TL3ArSv1tEfjKKwBGvBJHzJJ5vtqfcIW5PhmYBMZrLwVR/uxLYWDc43k1/x/0bBLlB8Wjo/BSR0d6VjTMj7CXeF56aoVAoxDF83DssByVu3vMBujuI9ePuLsIX0a4jEjogG1QNcJjCkRhAhw7rJx9RLy2ricVoJCjsxGejKo1xIXil4Bb28mxrNCRycC7wHZUbiVGgCHt7bSEJ34e6OeobYWb5p3j39nfy+nes+DpdJ+L2ewYnOaJ8sCR/gecZOz4KacBU1jhOUUzjnBI+fGz3Ao9UMA8HU2u8yA4md2j6lUOrSjTaUkjKoIRq8n8fJQL6QW7IZhR8og4RefoGi9pO491RFbJGVCBAr2BO8WUl/P1M8Ij44x0MVW7A1ArigqoN0/bKasoSGeVTa05nguj4qFC5FTCNtYFeU18zdPfNrCK4RlVA+P4ACWMfFQGVA5UZJzGUoDYQbj2SwVoBvqp3LlE2PuvDLP+2913Kh4zWMKkmesRckAlSpudqBYt0KT+rPMytYNSKYsoM6fc+WTj1jIlP9SCbneaQVwiKmTcmq/JfoFy2lhtMq6pyvQhT6dmFQjSR0VRehzaE+Esi/U8E35DMUPB8aRmO5p5Rtd2YmMcJLkF3bWWqIySJBYA6a/CuEd9KzA9C0n+UPiJq3nIO+JkuFNRLju7v6ngkccoqGVQKtLQrQPbygLbisWriYvjc+7FmuQUe64hac7URMf5V3jUpYoVeMfH8h7sdgcoHOalYPWMJMtQo1vzzn/SV3uLYgMS1ovwhNP+5pX4vWfgORiJ4pPAQVBFsr0buYCUn0DTq/o0jJ8wcQHdfxs6LN8gSuL5Z4KF+senNTgoT2mowFcRsKx2bk3cCbkQz+AJen/lu/e6X/v8fveLf/ljQUOL4ha73WpaGSUWuSEOwqm1VqUIq9g4SHCqWf6Qj1X0rW/bmTQ2qyMGUm62kA9hHhR25YzKIe2StA74XKMXKxJRXKYQDMnUqXRvG7ANKfsGrogSvIx70TWK1SDUabNd2u4+P/l9ibO05Md0uEmo5QtZTbL4wX9e5VMddMUbh1fMJ+1dWkK3Y+7I1JJ0jkVTwlncROIhz0g/j7dAFYu3fpGhxLVuRF5M4wgD5CC9vJ5vvAjKe+t8qx1UsgAYIYBt/M131xJfWRaij+ZjMjMlKMngD1395aX/bpi1NiB9PBV71NmHxQJK4ks9TcLj5GtZUz4e9pnibnvWGzYiSB5tGaOs2E6B08rW8PFpPdj+k5B4RhRexRVIHwceYpQZf/k/MOAxVHHkWMl08XJgULyJp0j4A54P68U2HNhkOabpfsQZRyc8klS88kr5LNsTjniPuyZv9Tc4YPt4F6NL0Ys+fewByEH6+PhVv1a0x+MPEj7DS5MaPzgq1Nin0XtGzRQjpstsK3b6wNufJ7EgTDANMU7HN4e1Rd638530kDqJrrKkJ36x+FDZ0U4J9AJMp62OaWgnXK/g5YCabk/oZEhAx1pWAt8VLpOYd11UPYFgubpM5wvMm5yVdI6ZfpLO3oXUNhKtCApAOyEtMI6cxEOntUNh5zTXNut/Dg8PuwMUpd3tnW7WDo71AcacoUy5/BLhpKBSOKiIHRHfKRnXQ1l5U5adsu4D/4Xnr4LHTDcLHWToJtRqjYqCSQxk+MJHPBSeChPhO/LaVzhzztLW5mZ3HWuTiz2tctuI62Asl6MlYZwwXeJ5OsIIsakn13pFkIOd06IT1M8M0yxz7MJxfcH8AlOjSjPiakmhC+G7LDVav9IICLMRZb1L6gsLCLgdHdIx73EZ59pacPT6GGmrwNfE7y4rhYoN7ZCwMZURhLG8ssjVCrl/DdgS2Lu13Lk0w9SaCtz1m9e7GaY8ZukgVPDE0foTXk2Z2TBLWKiwyWMqnNaNxTm3wwK3zUfr3YP37rPri/UolM8D7bQ2baAQW19eHuzp4godrX+TWO12WeuigrzENR9HmB9efOXFbvnK5W56dpZyaREyb/PBChZ83IGH1QpFbI6Fq9ZjHMQTbjo0kHr44GF3753b3ZgL98HRKVJ5K4ozfiruBxyEdMCgwwg1AipQrWFbH3vkM0s+KqjyzzE4LrBz64IDfoDHsz4Ggm7gRznge2FWavnOBefG5wcO+psu4cbzl/T6y2uDjwrov1VGAqMPNrCw6D0GCRuA0Wf/TgdgmoLTwvv07/NQOVE2QPkkM5t0xjQJuwvrRmUcqqcOBCNfnWoq47/15S0m/9P/+eXu/sP1KErXWMjtcgLbmjfWOz2vQq3F2XYnz+0wUIic4fuIqWfbeiySIOAGE9u0ipnyxkEKmUK7siRaMjeKKIBPsN6Ou5tPxKG/SnSbBpXetuVtZFOsFP30qGWIqySB27x8lryqunKKfp4BrvhFaYRvLYftUpjxo3NtdG9Pj+OIg3Ti7T8rX/5Hz/KrO+PIiubk7yglyjgCX33+Snedtvan377TopicTpfdcwsoobS55tLhk16YyYsXhs2QIxyMb2FVMfpUejXv3ksAegnHPw7KXfKhGyxwFlFdItXr42DKtyKVskGMRBomsiyuXXSjgC5KB5FOgJ/1eeIOzS2DakrDzG7okibO/NdfmD51Pql1cfRVwWZ66ql4SHoIt6I6mBY/XfBMXtRpBZu08pf/iBZ+gh+UXQaaMnzHt3jSy2I9MoeiFyxc2Aknvq2cPPvvpBeHEk3gYeof4IiedESTr1Km0SSPgYgldDT8z/FuGf09BvKZITyzkvTaxz7WXeZgsChENJ6cNIxiYMO3obluJBYkGEbh4ByyisQBZ0ycMIo6VhFB+dhi5IFHt4ECwDiZjvaYDqDOSlK50TrktNYKV1XPMd1xgCC7cnmZs2MYSaOczbrLAoVIZcj1MlZ01XfPNVDDtTOaCcVDbXefhrzNLhYv090j/0O+j+nAte5sYz523cI8nZX3yHlcgSb0M75lTKewnPrSupSRAkrLKgrHMjhNztqhsw2bjtQwaWKaUhAhLczid5nPS7u3omRFz+7ZYvHh5sYmjYzdeizCPTzY79ZREhGlSavst+FZHm8fd5pJAR1hBRwtDO4uJDgd3zjK0DgK2wrrw5a5tHMWC9Viniq0KD82CmBm1Arza0FydOQvLNTnlzlwlAoVokdrj1ikudOtr7EYeGeH+/f2qZ8pbgfnnbpSGFtnKh4kAVadxaRAyl095KlFya3sDHDS0F3HsMhps1euXe2mUIpU3hYW5lOfWqGIFHwihMBJL3krjdhGaxnI18sgL3HM/+7WRnew+ajbAMf9fQ7C45obp0pgTIQ50yHgm1PHqVuVyj1OntYS6do4lcjL0OiAunr+ymq3euMaytFK+FxrgtaALNTNzBk1Z/7BTu5l6kBcSauAkg+1AMnnu+t3u521B92jhw+irGntXOfYDPnIaU0tDdanAvP2A07LdjqySRlysKw6y+qrCr6L5J0K0XJmXKdRXbjuzpehE7vCsegngBbqS4UnjoWBP5urTrC+LJtOGAJoICp1/5WPIbzaNaPgHfqZetRFLAO0YrR47TmC6lNhXMSiwZ0c12KqRa3KIvRBPSmX+o6q0dTCtNGx5bNNuRD/r//Cz3T/5He+QH1sdv/hL322e045h8Kigr7rmjJotYpcEo6Dviu8y++PqFeVAwW5Co9EU5mVak61OVWrwq+iq4xQ+XIQ4EDxBB6wjfM/eNp5ZT0ffCVV5Cnlh7zuWs8cI9IK/tSnvEPbhv9dYyTfWEYVpUWulRKm8A5R/LSCqID5I/fgkVOfieXAwHTCql/xgPg4lTeOluSxAAIkSpzlcLDkQE73wReudh+4ttx98Zvv5Ns/wpyCX1dodwz54i98AREUV/Ukbw95UyRaPnauw9gkaQF9+oaTcM1vGNeI1U5Nk2R9pj5a/gFjWv0KgD1VHyGpKkpwgqOpd7EzvnkaQ+UpChr9l/4OjeyhfHf3I1xXH0S25Yto8jOOL7rAhw7QtekdpVjgRyQHO7a5UInvTHWSzHw88qbFFXysUMRVIc6VVsBO2QiTr6FKeNj+slmReE15RMd6D8I8aU7BMeWzwAkDjvimzsrD9L71wfXOh0l09Wyh5ff43z7qAMbwRQDGfjx9n6uP/tVY/3/cMytJt156hRG/6wNAC4rZsPbpZLwmQcvKAQeGHbmYkgWTRyhGW1uY9WOhYbdROk6n65wSorPTwkTF2DEu0EE6VaQCtLi4QDgCxR+dup2B7JcKooJLGaPkVIQLsxWE7lhxq6oKzxGWKHeJ7GxvB5dxziDao2PZ3d1HOduN5Uez+TJTUfNYe/ZRVOwA94B1hOI1PTPf3Vpe7eYJ9z6sec54mkPRUAlywaxKRc0p20ExHZeF2TAp71ZVmfP5phG4q+vMtUooZEf8VM4eonDMYM/eQDE6AKdtfo48V7jIV6G5ybedp8LBxewRxtBZy9k2I1UbywIKWqZsFha7Geg36UJcFA0teVE0wNEGIc2mUJpkWukkx/iM0sYoRvq1e820Xll3G1hgDrHEbG1sUH9b6dz3wN1ORo5exkTvwXkuYrW8KnGe1+OUm4usXZO0wfqt8XEEP/G1aC3TkUwzJbm4vNzduHmlW+DajEsqc/1UlmUSR5Xsfawpl1ic7plSKpoNXxd/qsjZqI/hrc11Tl5ff9TtbqyhEG0mbxVyO6ZSnGtqbhHF2hHzOkqTFrMVzw6i/rWWHR6PdfPU9a0Xb3YvvnSTy3RZk0V8LZ1Zz0FeLiQfp949GFKBJA0UJlnoQtnTDvGTvIfw0iOsRg9u3+7u3rmDIs7WferWTs9pjWWmIV0MbAeyCQ21FriuIYqu820SFIiAIz8hNxdKJzOFXk5i5+n6l2Om2qbHufLhpM5eSooA4I04sU6Sf/CEzmbSFAWhBjLxAnw0S3x0Caq3Qi/v7//HrKWQ6ZKPoHXxN7/mUd7f/2/h+/Q4F5Gd4/Lbg1MWcJs7WUjzKnWyjn8rd8ELlnlVqdU6uYeSevMDP9J97peXuv/tf//d7j//7/+P7r/49/8a15JcidxbQA64vkW5p5JDTZFXLfC+eYUT2WkTOyhB1rntT6VcRXwJWeIBuh7+6pRprFFO3YGnvKpF1HVt9jxaB71kOQdmpquzDqQZnRvtIhb5Ud7oyXCBrkQ3hZ2hVa76IwiVpEuXHIB6/x18A/+l7RGuDHJQ64CAeYAk0Gosvzk4EZ4/p/plUPldoOeUq0IKEeVErZ1LhPDAPDJq3Q0eDlpwTsP/9PWbDEhudfsT73S332PwBT1i2SAXcQ0f+Qc3qDc+Q3PiRP3sw4MY8cTPP82byLhqT74NXcFt30+jXQAJMECTcfI2jfHFow9MFHEUb8N8ViEKX6OKk8qMT+vTdYGxPvEdRZBnIW4cZZ2KK1SmAs/hibIqVXrrNBiYlg9pUZlXuLmKh/FCp3zp11DWqqpFswbbsU4ZSL5a+NpuYduEuAAGeawSFQhCiVLmDIP8YXlSJvGNNZJ4JvLH6zDV0I+3i864T3EXvAU0yvvG1w8cfbmQj2FPcaD6F3LPrCR9/U/+DO2YEQK/RxwIOcUCMafKnO6QmDY0dzm5K8PdZcucEbJ8aYHOm30pdOSLCIsZLC8TCHdqFz0Hq4uNikZj469Rg1YTTaxWYjVsD3u0E9/F4nPANNTpMQoY1hZ35rD/JFaiyxynv4WC4ejOxrbFtmfN4K52UxDN0hkdgZM7ra5cvYxAQgEDr2soZQvcDSd+UyiAmSIjb5lIJcgpMpUKFzjLtK7f0Lzpu/ieMCXmSb5axza32IJ9ehgF7QBcPT1afLVoqAzZyXswomukXMNQNVxrs+z43CE4C85aLxxo5HoUcQHPOU5pnQfXWZS2GdZRLSJ4VCwVYDWvqwJZViwFnXjaMVNQ6AgTgbO8ZP3t0kE7rbjNYsv9nc1MB+3hpxnITtXIjpydBlKB3N2lk3cqD7e15RED7q6y43cNCI2UVZlajl0q7VTa6uoSyscyFqL57hpWmSWsNJ7WThWn07BhaXGyqalwuM5M+oqjgl3eoAjg4sja6VAsVtDzvXfvsZ2dm+4316MMyyNRVBE4jnzEwVPCT1CMV1C8N1CUVdhzpxy5wRY5T+gKuF2+dqW79cJN6LqA8svUCXm6JsspJ5U7lUeVNHE8PUXJxE8LVwQK5fQ964pAch2Fbe3e3e7N773e7W1zSCqFc+rwAOukW8GXqTvrt9KXon/kt3xP+pXFqe5bdy2+C3UphD+1T504k3e+fOef7yrUto8daLcys9sv3jZdUuWP8aIsENH3WPGAxX+/ElUeFv5oOkONX398eZpLjAsBQhzJnvQX4zz22ac1RbC7AGv4IW6EXxCOF+GafprzAjaPisestqYg2VFE0KfQF7AzgHgKeHKj/hX6Wnl+8mc+063As//z//qPu//07/5m9+/8wk91P/+pHw7/uHhb66gWIY+rUAkStGtsrnN1hfefuTtWRZutldnVqfVPHFTYbTPy/wyWaS1DKlzjrBVa5UqQTOsrB0FH+O4C1YmjrdIjLzKtTDsfuEaKFI0/jcj4W/fKMfPUWzjZ8ICfgw4tXA5ILIAWCERJlDOnAMXXOzMFL75EAoYyGqswgyiP5ZCfS30qnlSGq4Dl+o0ewT/62lsMopEJTF1uqgjithkQKCf+9U//UPfhv/Sj3SPo9affut394Vff6L755nsMBusA1B5E8vVdNMzJokZKidaIa03GkhpJBSFpQpuKmKKkVJS5969+p4A9BnIEOq8mAMCQy4eAS1Ho8+hTBZ8kqcG8sJOCP8Iwjc5NRY876W/HrKJyRr0gNbLRRiXUsteSfgEJiX/ihrN+dAHdw7fe9ddaFWWG/NI1SEui217axe9aEc3X+MEBPo4cDNiCLX0tmwOBNtXXymKa4NCiBpvhH72r1OVnfA0fDW99xalHPWUT/4F/3oYw3iebip/ULS4wRjPu4TzrQ5o8k3v3re8xEkL5ofEsL8+wCJmLZxHSMzR+rUFLdOJIGRocnSsjlTLhUWi+bbCN6C7izrH/5KpgcvcAvXfW4WjxcWvvEaNwLRsHdN5aqrJmiUXUElDFIFYsrUc0QAXSbtaamH2diXQLi4VrcFia1l1eXelWmBobw3TuHLvWIHHy57RaM0crKNJgIKb42nFn0S2N3zNRtJZtYWlZf7QJrnTcrGHap/O+xBY6F2HeX9+KJcJRowcmanFxxHbKTjLN8KCWBqHRQFpoyXHtjWW4LE2h4TkKyCrXIoyzRmeJ6SgtblqnpCdoDJjHMqtEePaLzclv3zxywIs63WliS3BKbAeL0A5TmwcoclsoGNLYheEKT/FykTQGIuoEIUoab6J31Onid9caWecymBaZzLMrYPkWN6exFpeXuus3rnSLKxz8hvLmGjVxVqi7oJmo4ETFAdtpIcvt9KWLxr3c16k/rWe19RqlBPptYsnawVK0vb7W3bv3ILSnL8mI0wWtdlaujVMhlN4uRNVqKW9MoJSqxGeRPHSeha7z4Hjj+Zvdyip8gGVois4tii9KjHRksw78ipKpchTroOg6FaFiK34KBeux1nBpKV2/d6d76/U3uj2n+uAFFUw7Nq2fLnbP6eHAtGwqxlsoRm69t2G7U1GSLFMOYRqfHCCq9VidoIJHelvpWUtBfNM2pxVzfYdLV9nir8LYQo0TvRh85O0onqQkG/5WOzRc4WobLStePJKXAqpg8GLl/Tlci276iy4QL3oNvgxrKRoEA1saniDfOp08RxBzN4/2j6PToltSBpxl9Susl2c6fAoozUuwm8Y8/ebE82/e737qx1/pXvuRj3f/7udmul/7jf+7+x9+7Qvd2xyK+4uf/dHuEofdaimS71xGMH3IRhKUBeWF9a6y7u+AaWqhyqvG3WLA5CoRO4R9lIU9MnMQZ5jWKZVv09mGdcKaYICis7yWw+l2B5BaGYaucB9+D9/k46lZBq80HK8NErZldmOM+FrgWfJ0kNJoqr870VSipJEycniyNgGkEc9cU6JAao5Xbwjopl2jNzzf6TIW8p/9xAeRjdvdP//GW4k9RTn+7h+/2f0WNy0cTM91H/rQS91PfOSl7l/+9Edyi8OffOud7k+YnvsmBxY/YjZCnKu+zJ6MQIP/PaUaAhefYlb1K871Xspei2eMcsIaxm++PA3AtfyTpzQpkBU4+NtHTgLhmakKiLgrW6zbHm88LMYAP4gP1EAqP2V4AdZXLrCf0gk3/4CRKTqeKoMtPQKMuiSxFWojxyWc1wHPm5Z6bvTwyAkQpK7Jix/cIJj8osDgpwHENZbuylWWl/wQpmUiAnkW7mSIX5xlSHiCe89hsB4qWsrsADJ6n7bRpgcRelhGv59w8ewzMn2L5DsA2+cw4AkIP9DjmZWkn/6rP4s1Yx69SHOyFgqYAMTtoO1gqhD+LSYQRwX0EVqBa5K0qrguyRuPt7G6OCXm4uwxRv4e0Of9OJvcg2SnvYTiJcHcEu+uoj3CcmAhBLVtTmNdeYH1LHNMMx1g4nOazmmdMXBT8fDcGKfFFER2fC7ctlMUZ3G1qqpCtFiVkDsBz7NTpuaYljsnz63NLawWW5k2QQvKmiY7Yhd7y/Q5ERzYVqhl1QTvPLTTT9tM+y2jpMk/jpoUNkuMLA9gNBdNq0xcmkYRYu3QKkqceC9QFoWg8Oy8FKAKMAWmilQoS3526vBq4mgatVDuVJCWd999j6scmA7DurGDUrSDxcipUYjH/7J+2ECmUSq0hLggFcpkBKjC5T1f1pms5UWfZIUQr0Xw81hEVDRvoBBdvX6Vqb7F7MpjGCIKmZITd/+d2JBQiLTClPVFiot7OBeFiATUh534sVOkKMX3sBSpFJ2Dv+uytL7YsKWb92/ZN3gYqVN+Wvg8W2mRs12OwEnLigpZs/pdYR3EFfC8wkLwhaUlpnb79XLWT8pXPKHCLn7SVgyLLzR3u/ODBqxmhr/CI0ryxqPu7u3b3TbrjDbXOWUeOiZv+HL3gNOeHX2Dl8LF6RW3nt/nCp9VOgtH7ttMyXhZ7hgLBnahq7g4jXdwQgYoYZfG4CFOhm4NeqC4echM9WQJysiQtCpme6Q1ryNhQC9pZrhceUrbUNnTD4/winVFhAhepzy1Gia8gvlrVIWe0eFH+KVPyrdv5YZvw++seYuyJy2H/u3dZ9INg/EZ/ai8hvHFu8+/T9xwaDGdblxj6/9+jlCoDic8R0aiq4JpGstYtGHkSv2Yr+34BOuvVlfUlG5jC8sw4sFrGT74kY92v0yb/k0UpX/0ha91t++tdX/rX/tU96GXrlOHKuUez+DdbLW70OlcB3xzKP7ucHMq3yngBQYE1vku8s/zz5RvtmctnK4bsn17e4FrnrSMSg7X+KnopwB4qBits3kjlqRRcoUmrSbaswhFkWhDtWZQHivLcoG0TZu3g9TzcVt5DXykl2xmR6ty344sqGwIwD9x7EVHdTUiKG83N1haEakhyLHuBU7M/ihXSmmV1om6sv21j36g+y4XlJ/TL8ywC+3HOeX8EMVylRmBn/vJ17qf5eJy7+r87tv3uy9jZfr663e515M1pbShKHiBVvD614sPUBV/W4FO9vfXXOSU5UyAcOpfCx99yiMmNarQAjF0aLBHAPcJ48MfJYv/m6Uk+YIXVO+BFYzGy/VlkiG/Jt+e7gFvBRieJ69EsN2lLMhc23aVy3jBpHA2Df+UZfbfdiTJz/jWJ/+jV5lh7/QH3YQre8e5u8/BcvqUFkk8SKIVVj5r7dNg82tlM7PkNwQfD+uzxTHr+plSOWYU+heY0m9xeX9n5GEEs/HX55q3v+ifZ1aSZhdWooxEoCBkcpEsAkhLwAEj4S0UnyOe+7s7WCucbtpFKy0L0RaLpi1wrhGgYWpJ0szYCKpG6QJad5C4c84pOvvTcywqM4uT3ZWXGcGhdDi/nRuWyd8FsCof5i8BpW6e/NUqob/MaWOxg/LgRKdvzhFsO+C2sc6Fn1z3UIu4WU/AIuo1BJPTJVonJLg7txRMN7hIV2XOiyQnES6a2j2fyRGai3BzyBvxrKL5uUUsWCpy0yhxKkLLmc67zHPMDglmqrVLoEw5alrQ6qRThoHFVyas4w7AGauQ5QqtUHTG6MAfPXqUhdQzrP05OWSx99oGAt6F1NAbnLPzDYJrCXuHaypyUCJ0f/O9jW6Vs66uX1lCiaqFoG45XqdzcGu+UwPzKEcqwucoMVevrbJWB8XoJgopiugE9SO7OrLJOgYUQhuko4tTrVcUI6MU5K51alynU61v2mTqXGXuEdfYbLBQXWVOftESF4ENPzW6u27I3YPrTJ2KvwtCHeE+5HZ2nWe8qKhCRPCa7lZZbL1w+XKm0Wa1aMFHyRcscqQA5Vd5SUNjmkFrlG1K5dvTvqWxSod45+44wtz1tcO9Vev33+vu3X6323f9E7zhGizPUZpCoXEHpGWe4qoLlSL0uVi1hOHtC5fZxdN2U9rp2ODl1SU6BBe7O7K/u0HHzYGRHdPTiLGEW98KaJV87UtV/3IYTnbhVb/jMS1+D1G6qoM1WP8ISo3n4FAJEpLXEn5axfwN26FpKl3FjYIkHtCk/AVWOAziWR7++y0fUNVimzw9CqFwoa0SrksbrdcC1ZfFMPklqSuLejcgIdUGhN2Sm82NJXG6lbN3tIrZ5ktJcjcm15ew0UAa6pewPrEK6snxXhQaLdkOIr7z5gZtmrV1DCBch/Hyaz/U/Vt/g/ZA+f/gi9/o/utf/YPuc//qp7uf+pFXsJhOZopse9tDKN3divUceXdCujm/UdpVnLR4TnBMxyyKVxZkg/0ySjNkzUDAgWH4h3bieXLyrcsWnFoJGcBXPlDR0K/RMWThT6OF8IqgFaK/a+tULEad/uanoqQsn5vFWgqvWj1eF3KGTNtkDdERykuWHeCv5Yis0xHuoaylTgHb1HmzVr467RhnJjgHYZucRG+b82d+4vPKrVWUoQ+B+1h3jWlK4VlG24ZWV+M5iLuFnPoUtLau3nz3UffH33y7+5Nv3eneYR3TI5cINCcCPX+Vl/wPNfAXdhGyQqRf/okj72VR6RWXijIkqjB6CpvFEA4BfX7x79P1Xg1Ki5JklV0p5qqM5pvlDSPoQQJc/gSGCr7Nq/lF2apIKZdFa3lWOWl8qQJoSSp/aQs+rUCf8Ocku2Jh94Qb3TjJFYDmkXZC6CXas3nIx9aBdWJ/6MYeca8BlOUAFhUsXYNHchohV/+dDNs7T9vywKLlNzDEWUePEnjWV/ABRzwG4cYZxh3STH9d6lniEGkUpwr98/19ZiXJDm2Tjm0PS8sB89IqQe4KO3MUS+PewDRq56x51+3WEtHpGhUTrUf0rBCE7xFFYYW5eCQQZmG2NmNZmWQ6Yh6LyiwddRZzW7EUNCa+UEjzXJn+vAoi0yNWDhWvmVchknuBGHltg6eWq03W3uxgEXK9kLvHnLq7g7LgwsSX2aL6nbcfcJQAa6WoBPF2O/dV5tDXSb+0wAFyKA8qLm73vUKD1jm37w67lRWEIR20O+5WHDGyrmhxkQXV4K9FS1OilWV6R4+pZZQPFylnWy5pVIa8xsR5YTssncy4gdLpdN46StABVrfX33qXNUsqB+6KK0FlWbW2KfAcjbr+yZ1nziMvYfk5pX4+/mEWJSMsX3/nYffB5y6nw5Z3phgNqyB5VYgHXGolnEPRWeUS4SWmJ502U/mTEf0pxKSvZZEl992+SzmsD6fQFGwqfCoyzHqHno6AvVV8A6vLHlN+r7/xNjvlmBYDYh2tULekqzx7c71WSa1+KsvCtINf4i62WgfiLshap2Gjvnx5oVtavdzdeI7Lj8F3whE98ctKoJKpAq/lCJrFMlRHQijatXIdOAVBwVQA6uBK8qEsNsjTo30WsT/ovvKVr3dTWBe9M8zyy2OO9u0MPBlaxV5ri0KCxhALl3x7wLEGTEB0V5me2aITlMYeXPnueyqs1BeahPRDJesmFm926wcbKEnQe+4a9cLicfGgjCp1MXmDo3xkHs3lmw+vqzh69MVu60hLqTVV9ZVKy0cvvPqajEAErumNnzRWKO8RWMKo/3gaoLKo+MORpuXrZxx+JVSNwW+Q1lA7evLvhW3i9zjm/cIf0uY/lVgvI7Asl/B9VgcjvvrMzGHdnv0QWfE1krflmqFDXqDuAw5ePWE94yFngWm5FrNLXG9iWzxFNhxjibL55aoh4MLG8M5p9/wrr3Sf+1t/g3x+o/vtP/gX3X/59/6v7nP/yie7n/vkhzPo80gHOw1xcbRtvvfX69R0FXF3dm4xoHJQMU97t52sMUBR6XFqdZrpXHevOm13lUGVbdUdq5JJmJZS2fEugx3heTZMPh7VAABAAElEQVTXqIsVIbEadQwddjYNSj37EGDvYmWCA+B9edsrb+B7rMmIBfiZdZ0bdWbasj06VTKPYrfN0oF3GFBdcCKpE2HgxfnA/3f++Nvd7335u9C02ppl1Or5d/7hF7rPfvzV7ieZZnMX8wrXtSh/7Yzldw9PdaezYKaRwbaFK5eXuh/7oee7v0nbeeveo+4/+Tu/0X2PK2viGg58JGt50gD87TtGHUED2ibcP7gn+FrPFKcvDI+0Ff2f4tKe9E8aH9XuRqMWpEEE8gRLsheDyt9M/DAvHw03ofjet1ffejCGJGYBGQQktnEQTpaZTiHxBOPVYJ647ZwBrYP6EXLldwpOsSz1356yLp9YdvlcWezgTtnuBeIqT/YJ1q3LNy7SsZA0+6c7IeOS/zCub5YvNOTFdc5jtEV1iJ4MBS4aZLAbKJOmGbgUvIB9v7obxH+fl2dWkr78B19IJybFkdkUwpOAa22MZ4Jogck8OMJ+hZH8AgrDw02mz+hsP/ziYtYtTaNMnMHwho2T1nl3dyS1NTW1A8OOlzNoYG7p0vycCzdvOz2oFlOyW9T32c3mbdX7u1vsGONqBxQjd4sc8LPiNANT60x/cYI0UzilCR9x9xX3OaEoXaOBauZdZ63OBJaifWB6iKRzsB7IqOVHGDeur2Z6TwVikt1uKhVaXTzQUAHo2hVHbgo5lQfELGtN3D5egtjKSydMJ6tlAbCUAUsW1iwXwLszbxtlaO3Bg+6YMq1hHdpBUZMISwjXPS1XgoVL5qCpZfFnQ1KIumjyyspcTpl18aPKiibrKycsmEcJun51CSZ32y+jRYSdxwNcw0K0cnklu/hkfvr9vm4lmdeUYDFDMdC6gXqKFYXGBf6aVlWCbVyuM9LMankyGgTfbRSiPawud96+naMNxrDIeJfeMQpTqhG4TlmMcbeZh3nWXVcoNiiBoNFd4Z6/t9/bpBEyeoFXVLQcELvIfmHlcrd68xpnKl2jg5FPtFY46nBhPdNexHW6xAOaqcLwkmu6XHNFG+e7FFcVyawdI38XWjt1ebS70T24e7u7rTJHfb3xxt3uOher2vl56rr97eIKh/ohqGFbcCpBrvVhA2VIgeyVJU6vqNyt0dGo2JFlFoY/ZKu4mwscKLz06svdBz78avfrv8cC+pN9FOur3fLq89DW6a9SYiIk30fCNG/rYG7xRrfEUhDFmQqh13VYPyovCgfX8Dm9o1vAInjt6vXU1Tq7LLeoJ+NcEC5+2W5wCSOtnwpAhWv8zbh3Za5vClSJdtMlZo9Ds0opzYSV/HqYgQtjtHLL46OucMGv/vdB1N8k7Wv++e6IC2yDLuGFVf0dYyepV7GY3o7/bByr0Pwi26PtHqAH1uFLO3cZOCFD4JWtXRbiY6mcnGDw1gY4CJyFxcvdX/83f5FB1fXuV3/9893f+81/3t15sNH98s//ZBQf8XcN4jZTavMMsvxWGVjjlykyMHbn2yMGNwSl/VpPtl+VLAcfFu4hhzU5FWJbdBquuW8z7fRv/2d/P2lz6Gor7IBOlle6V7lbuno2P57tFRzahx1cZFYCkS3U71V4fAPlSb7RQDyhSRQcT2xAybMBGoAZeQnwgBfNU3cMBF+ikPaYNv011iP5G/+Nf5qrrl7jqICf/rEPdj+OEqTV3k0sspfJlMP2D8oYWdj3F68zkEOhvOD6bPtiwPvSVBiFq4/iSehEUEWHYna0/G/JH4cZOA3GhUDSkCjQe9iBE0AVEB4XhxE8Wj5Jm8QF1Ff9CkaLVX7VdIeR5a9oBb1XK2NLZXhAGa29CxqiVlEcnkFLMvOsOjOG/RNWPCRdbOvKSjPhl//ISAwE9pMOiO0fXJpgv3JqPwa/WD81UCXZ464hiH8P9fEY+Q7uvCU6eBQde/5Gxja6Bgh/Et9ylMcAZqUf5pXvQeizvzyzknSANcjOWXNondkDYUB4immw63RcV9nVpCXoHCG/gHLhbrYfpnP2FnSnb7x+QkXHe7zkUhWKKEJUFdPxVFA1AmsL2RIFzI7eM44Oj7GmYL1ysfT6ozVaHgIGBeLQqSamyLzHy8Wwb2MhcputZmLvVZpDufBsmiPWBzglmAoE5nNX3S5sp4mwRBnwEls76nlHpeB52R1aLJzOzjysXFcx+9q7qyxp6ciZSVSKo55J8c6Phb38c8eLo7MsXJ5w6grcYCjX2GiBYtFQ5uI3mDK7/957GBzquAQXLAMu8RYQnE5derbQEspYrl5B2LiNnO4TzBnpwZxaXLRCeUeZp20/eLST6YMZtI1dzNz+5meZekKpW+bevefZtfPcc9dy3IJHMXjqtcczpJFE+2S0bWshFw/aO+UE41O2V1hXLrJ22sFGl+2pShpHiNSva4q2Nta7d2/fjtVrm6lMRxlatRS621ht3D3mERBaHKU9RUvHtcKo5MHGLrhwaSWdxFWmAx+s7/ONUsu6jzMsJK9+6BWm0lTmlrC0OLJUZntQJlNlDqyZPrNhqsDJo26jzkJr8vYfpA9/aepP/RHXcpwzYj3nnq+772LCf/0NrEfcQo6S5yndNvwbq4sIAgQ0/1TYvPdsDVy1fF3DkuXOThUmlRFPNL6OkvqQS1hdh/aQNRReYHsNmte6IMI5Z+z6rRusyXgtB1WqRP/2H73BkQhYT1F0UPNA1Bruf9BY/P3vn3oX9/qKeEDwncx8pLt55XtMBXuBKlenrNE2uKpmRrM6deQxFA5gTO8UprssVUh8HuxrQbXtyVflzC7v8LvWJbpRCeh/ay6067e2BBcrpIRxwxX8HgOmsFVIC0T8A8/sTIKHv0nXxyRwgMEgXrBLGFHG52gLbCpAed04fw0cmxgrgSmW7Sf2/oOTaOt0DfKsChJZqBiP5+43p8Q4KoI1fOsM7K5dYRMK9FGZVbnSqjG3sNR9+i//bKyu//Af/UH3W//vV6Mofe6vfbKzk1/hRPw6oNEbByawHE7F+ryGYmT7z8GzlN0NC8oBrYtOczlgUgF3ik3rks3Q0XnWfkge0tjeHEyUa4StLym1qjJomXSSuB4Wceh6khpW/lIFqib+kG6A6sYYaF6hbZzRftKxIvP2XRNF5Msonftk5dmnlWMBFq5uyEX1HWT618cfKmi3mXq/fX+9+/yffDd0uoms/fDLN7rPfPyD3cdevcV0nEqTVxcx6KHutDgpo82v5SncwTvoSOtrWNIfYNGz/oq/HMQx9KEMFVe5zTu/lKAHgCgfut7P9KaqQQd5kUbXqFbM3tMhQS18GFcYyrzHnbDEwyDLqPM9OPOURronkqYttLJU+ausxCWJwZEXYBlDATBEW2iBVRHaF6268snhmMgQATQcChipII7TdtoB9pGHysZp5K0K/d6ehwmzyUpFKbiZYf/j8YSr7IKjimrhSiyQNKiBENcBGF6a/5PwkqovXMBUFABIQsteBX8i5Q/0aNLlB0acX7kSa8qNG1dRgJhHZrR+CeJ4T5gj+DIfh/wwprswuoxGJpmPn7rEnUbHLtxFe0VxcBG158qYJtYNmF+L0A67sc5QGk6YFvPwQqfHPDUZKYFwwZLCu4qJO3tcZ2QH4AjDmZ81FCadSpy7lxRGM2wNniJ8gs5ARqRvRUFaYjsqoyTEitNjM1hUPBhyma3hmn6tcJlKHcBRoK4WVKf/LMUIS4wjvuJfOzJroToKOxuvE5lG2nji9B4Wrjc4/dlDGXddDI61aI4Otc5F0oohrFrMaSUqlHaxRmgdUcF00boLbGvbN1M3WL0svyeR2/EpaD1xW61+c4sF4yh3lmd+ZYWt7quUiYXLpC8TKkKGvGQYrT5auzyTapd1MZPc8H2I5Mv6BCjltR2OdHV2cB4iqmVOy4hrdQ7Yjr/24F63dv8B2+C1SGznAM9llNRFlIw3Udi8GsT8eGTEoTlfBdbGbEfhtNLalmfGoHASxzUId7gnaZnF7Fdu3Oh+7MXnWCDOYZMou5I4ogpl0XVBTpOsbaooYgWi88s5Syg24yhMrhmLEg7u6Zh51uimpgzPmIbcRNn+5jtvdbffegcL5C5rtTgGAjp6KKh4etCk7coza25hdbzLjeTea6clyAW6ayh02aHYK21eqrrGVMSsigr1TqWRN3QCp0V4avXale7Vj3y4W+IUb8stDf7oX9zt3rrLcRVzN6gfLQcKJjpymY9fWVZ4UlcqTvJH/VHAUzZ+dvnHY9foGVa4kY21Aigas1dQ2vCfPn8YRSAdg5FNjZQ5wCKomyTN1euLWEM9uR4LCH7T3Rqd4UbC88d8/JfktAullO8Foo8n3sMkT7yNwGgdk/COJl5h7aGWl1JY5ibgmQAfQhCs2VUZfKetTNyiHbLmBf51j3SNdocoBYY9BZn4z+me2q3o9IC4olADU1zGocHZCZC0Xh+rPLruwhPrab+EH9AGlG/jTM3RqLuf+uzPRVb82m/9bvflb74Nn511v/RXPt79pY++lHbsbjUtiEtMT11mUOMgwOkzZaLWD62OGXkjv5y29XYBjyjRKmlBPYbEjsb4fssnuljSeWYwKfGao5zLyBqGpz0BoJjBF+pDeUa5R5JV8mG9+j1Icka7z2CpYg3+EmFpWoUauoDeOtOwu7xnH0ZSP5HBIOnTX4bxrV9p89bdR/n9P3/4DQa8M93LN1e7f+lHX8nU3A+jPLkGNMUfJn0CtAOY/+pv/2LWmP4hxxD80dfe7O7cZ4cv8E3WyikPuLsr381zJFzA4pUn4SpJurSBvNUfvytaJBTh5a9fyd2+fQSUHDmEa9o6k2gEYF4LrwZrNLS152QTmC0uPiTos08+so8+pkkfaHh+4iDUshI3+OY3KA8R/K71ooncW5js8xgs0x9kAwLtwqUzWk+d8bCfqNgN6vd/Br+Wwgz7xK0cPhu8ot73h/e0UNM/yf9Pi/mk3zMrSZ/5K5/G0sKCQ2DYYP1Xa4I0JatB1ryko6ZZOi7Pq/EwPgs4QeeDhQ6zNgsCsW6ss0bFbf6uufHnOhvXOG2xrsZdS5rwnsfyIVO/+3A7Z4xkMbKVCwJaETRrZ5pP7RZ/t5U7T+q9bCpJIuo5ICpCKnOYT1jcu9zdunUFuer2de/CqvGXCoYjcOE4Qj5CwbIjMy8VJDyjhHjKrC67U8DT0Z7WKRWBQ3Zl7Wz+f7TdWZBf2X0f9gugsTSABrob+47BYGYwK4fkcIbLSBRFSdFmSbFjKZU4Valy2Vkq5Tc/6MVRqvygSqrykKqUX1yVVCpyKbZVjqVYFimJNEVSHJKzcPYN22BHY+kGGvua7+d37u1uYIbUkAkv8O+7nXuW3znnt5/fScDIBBScyZYd/HAWhUhe549lsIW5w9SI+3T+cnx10jbM0Z2sAINM+cbwLdIGUiNmwga7l2I2vB2/mHUJwshWPxPJlMqd5kLNNmwcD2lMsMbY7Dc+Ek1RTGjlHI6KBPrgBpFrh/bBfQgAxksKz5GMVdHcXEzcJ5olDKbZwTRlImFUT89MddNZ1XXo0NGY0sLIhLlbma0OzkdjwqSxcSIar6zwWhZn+5kseWZKvRCn66tWBMZ8wGTIIZZ5AYNBkjZmOFWntd3KtRPdhm2buu1PCTGRtqbPTGrM2s34MfHjafVJharGmfgBgAjEHNQz+pKe2Y/fgxV5SyvAn/brI6ZN295cu3guS/eP1NYltn8xUEzuW7cxiYkdky4GL6pmPl4m5cE4jbbAn1lckPrXvnPGWJy1wSrJS4PJt+l2fIQw6jVHktfS+Bg98MS+bnPiMnHyxtTPRivqeOvdENkrJ7LC72piVp0OzIyDhEXIeUnM1iP52YYHgcYIpmPr3GYV2a/NQ5Lb3fR3vHCqT8Wu0vd3u9Xlc1CF1Uysodhu6690qWP/A9noWXsNgTf3HsbCh5GUPHz54aOe9q/miI20/bPGFs5/F73b3E2r2XDbPhiYIRoNhxai5rXSJ5O1fZNnGRgEqHrOHMv8GOFLjDV+lCEXeZ9nYWzv8um6cjaWt2gzs1LuxvULcb4fyxy8GrjH/zFjY/Hd+MjFZ8kKNAsRHszKt/8spuLuX361e/29o92R+Mj8l7/2me6LWe4uYCkmXfBXgUJpNfSPeXcuYULMbxJ4mcNj2gsq7daHqBvbV5O/CPy04TbTxYxgmOTxT//hr5RP5Ov7T3T/8x9+I/VOO/V7Wn08wk0bCQv74r7rpG0H+ORquC9YNkgOKfqEP+L0w1Le/1xBC4+F9y3tvV/M3yHuF6Nhe33/8fqNxMS5MZpdjNLPPPVA5t19vlFD1snC3BuPMMn94NEHtnS//Yufymq6s9mf73jFZDp0/Gzwqk25AzdF+jN8n9u5y8CmmNX+WfjrgnMbaD7sP/VBfvVdnVt/eILXLS1qvZz/vrRSvkjZVYf+PZzXjsy09roVoog8mPtJlPdSy7/ll+v+ozbfWt7VxMAkpK1P375tdzLKIZHMnPo6tLK8kk9rb6ULwlPPoNv6RjDnZmXgzsD3OAy/o/9kyLc9/Oi/yuiLr8/gmWpbJW/taBVsAqKsVamvgrs+ZZ3qrj2ZT0eg/EmOj80kfefr3w7hok1oEZYRfBIRnw0E3koiQE0TSqPAX+eNbBppgo/lGmKwtPtWiKa4NkxKJ6I1sLJobZy1DWwICeMzLnBPIGCi0LTYZJb2AFG1EzsbfvqiOkP+5URWTE6X0ADjFW+DuUu0W7b1a9GwjMX0A1GeOXkqHdkIMGdpZjDdMRZ/KY5pGJ9V8V9CKBE75pVlMRNhjNSZZFkO4iGSVKFMKosTq2VpBqowBhA0BibcR7QOMQmFMSBdikhNCuSkuS5xpjYsGu0OnZwp2HBwUS5nZswZAs/Hocxr+WZdkCin8ZNx3qSFq6CUqRPny/OpHwR7K0hj0eJsgXE2K7Gi9QBv39NA2QBX/dUXQ8dnaXNiBgXfVzRqhF+/CSVAqjkdxmciGij9ShOn3afOztQ+d1bBLc1s0zd2Q4dEjAXMjiX5F6MNpIFiViWBr0uYA6tZDhw7010Pc7hi+Vi3IchOFGyMj/6biaNztLdhqm+kvmGk89u1ZSJjwcqtDPWMq+kgTIzt+Syp3xwGGvFgLr1JxYvwBOZgY7LwS+IQjwFcnbGzbdPa7mS2mjCGMDscrjFXK8JAWXE0EdheiDnBc5KVIJTU+vrRfm8QgLhL9k6DWCv6eaq1JOUdjYnXKq4Hd6wreFYcnfS1rXXCudR4Ofr+oe70keNZRn4+9TTlbCq8tDtz/FIYlJjGAofrVyNJm9owT/qAxqT8v6JhagwSjRLtUmOU+C55PmJVVbS69uer8By5ru+TD41JPkp5TZneiG4QXNrQlv/7tmkWkyhlpuwcA0LscSXwt+dVfuq2ANe0L9p7f+df5Wrups9Z0+qZP5l1cxm1+yFjyM/7Wh0X2BpjLVQHyTW/fMcUpl+ar1UYovSb9LUXZPpPoFeCj/4keGGmBt81RGVhvUfuRPC4G9+4MFMvf/uvu3P7E44jfYhRL/NqGBZBQcXtsTLtRszHEK5xrB+l+V//1bcypq92P//MQyUUgLiVplPnL9aKUg77S6Px8e3l4KS10TBtzSIJMdjOhVkyXow/wkVrfmu3tmurObRl3ViFkQCdhcd1Y2Y4Fl7f08ohwYK09ei++/tuh68+8jzXlwvf1sM8kNHCzIbnQ9p2P/+0pfV3/pm07bk5fiJ+YH5fj0N4GyN9XvnA/fAdmMHF3BAWZcsaLlV7t0102+Nm8fMJMcBX840Dp7JS7ljhJebOjzrk18ppJHyYF+YP7aTDM2lK61sP5v7UcC5mIum1Yi5trudGYMZyqtsf5sRQpkf9XEtZA8NST1OgWS3TyjO5VdurwslbJsODqp/S88C1q7xvSSpRPavM5NMepX25qE9Sh5ovvmyp5FNlS9IeZ6718Kj8h9zqk7k/VfbcXZ/Xffd98XnaMp67V5c8de/c3ubivkO1h3fw5f8fx8dmkqwQuxjGgx9MKFcNNMT8ciR3HUXinwmhQVgvhHk6HEKlSeNja+JpEXt/HJG1kDYBgRMnBsOFCFuPuDISs00YN68Txv9Odzrmmrb0kI9IwuinzLtlouETczcajPjfpGNWxjdhJASMXwsmhH+K30RCByxJvsviUHYrEmPmSgIURmIPM2IFnpVHZ8/GnykIyHczYSTs+m3bik0x+0CQvlvBIS2BLa9kYs2mPFocjmvhr2LaWlkM0yjuOW2aDvNhuxUaA9sS0GKIwMtxemW0DtrdLWoBBM9cyNLkcCmI9O2ZfBcEv7wYG+p55iSxohZlr6g4DpeKOc7nYSYxiqSgy9HErc+7s1HtQ9TSYtDuxPF8OrDYljbcuHInfhNZUZXyb4QAYO5mZ8MUJu35SKyQCWbm2lXmQRMySBxzk44Sx4r252aeTSUgJfMYoiweFE0N5nBlaUbi+5LyaRVn47wsRMK2mDSnoxUUI8Yy4KNxwiaB68NNicTOGXM62qTxEB6aMgq6q1l1tGRNNH8Z1xjmo0dj9kmdMG26teoWbePimPqOHjtVZkETQB6zMbUeOj4dxip7walL4LB0kTrGmfbGou5g8rZAQF/fTv0w4xjgmnEZk22C5yJtpfLHIAHnbDQBtHo26pxNe6/GR4qGb1s2d87r2tB4Z5DvpSBZzA9m0fiqbSViFhwJchEv64KVQsn7ZnyDFt2OP4WiwtxZsYGHwdoZ04h8oeO8d5AKF/EVUljQYos/BSF6kDEYOIkZxgTtE9Ik9X5peDPWBC5kboQsqsw+X4y4EBWDczBmIsnmDvkXIi1iQBhpyBNMlPuhI4/U2/vyDWsJq83SzmfdruTgKqV4Xd/Vue78mf/C9T0lqktSRNdZ9Zqrm89wYGBW5Uul3s6IjPcNZuau+taR55z/zQUa0dXL0/dhXEbTz4vzfGNWsGL6XVupezaBEVcF16n7IzuzzU5w1p99++3q9z/4ykvRVpzo/sFvfi6MfIQMuIDGO3gFfFeFYb+b9OKHLc6ctDE2H7tVYf6VT3NuHHFcngrjpB0EDf28LuYMAoo5yWXgeASmapS2alv7k/M90Gq39b5a2/8ZHvRpnYZHUgzX9Xy46T9deFK/4ARVaH8Wvuy6B2Iq2xQB75X3j2eeN9P9fOYt7ZD7MBbu6+35DPuqetD6dK4H59OoeP4TBgmJ3DlYJaSnExbvbjS4fyLWhEd3b+5+64tPBn9e6t5K4Mr/889e7F585+i91WsNq35QT2OtNfV+E9l85Yq5mKvjUNd7s1UV7a15rVrJVx2HcdvzX/WsjfYG3qHFVa17Wt3KL8ZN3rmFA5qpb0iYElPGcEhT+Q1n9WlPVK+0TgQBNZduKLNKyh9ZVW7qnpf1XOaV8dydJ/ce9ZGyCcXNamLMl1tG6FNlPJ/bPd/61BSfO3LdcOPck7qodOoEueLd8Bh1DOf+9mOePjaTtCKIdVGI1ro4os5YdZWGYAJw5SQgexdlpod4hQjkvGfb+hD0EOk45jEtAcSaEHkIB0NRK4SCiEhQzF22fsChi8khPhEtyPRszB6BglD3YvhgCpRTQdcgoBA8MqQVWFaikdZOnYvzbWBxOZI5xITIWp5PS2Oiiho6Ep+qE2dmqz85pV4tbRBtkgi50Uyk82x2eyMTjVaFNsiEQ/wMGfvBRS4tbQg/povR6FxjIos0Px3tx5qxtpzVJrsYyWJOgihFr/Y9SdJENilWhnFYETPa0phWbDHCGf5oNA5bOJfn2uoxjshX+FwlPcbSxBe48Fwk19oyIwPBVgG0ReUwnTwPnZzOfRjMSL6cusejKZMvSXgy7aexo2XbECd1WiuaF4PrYuqPsN4Mc0fT1vZ5yoa0Y1k5FhhyvJYHZk+wOtKa/hE8bySSMobWSi8DtMyw6Xt9iRE1Lt754HS0M2I5YdxAUWypMGNhvKwsMh5sC2K138rspWfis4mXFiz1sb3D4tQb86LN57L57vqo1UdGLtbS4E3rE5wzcLqYNODHfwtCOjp1PvtwrY+2JVq3lLUiedHwMXtog+jXR+K3wNlc+TRHGGJMMzjr/xHOrGFkLhIAksb4Mz4xVlcDGwysqNur4yyP0eeUeybxZswDsZUIEmI72dB5ecIT2BevEFDqN+CHmsY1yxd3j979oNtxYypjLX5EYfyv3olWMm27IDGNUvxnbtyMBjSOzHeXbQxma/FuzP00L18NEmgyhNUyTlLdgmeakRvpwjiES1Pk/IFhy8wIRuJEbBmw79qR6yHx3LP2RluW0mpl3CfbOhoyHT5ozz70N6+haEf7bEH6+y+HMmPKXnrnfLcky/cZszxelrEwGvOZZf8wQ6BUOjTxiw6M7u6mF8UUnXIaMVKao7WReU7Djp253k0ET+l7TH3bdDurR/Vh4DQTTfipM9MRWLLCNQywyPhfeHpv9+JbhysMx0vvHMu8+Eb3O7/4dPeZ+CkZo6PL4q8RfCJ/WnVEhfB0NuY3+zUyB9PuasO5EO0LGdvHMEF5YC80c+MP//zlgqtQH49s31jCDSIzwDldlD5DEVqfOgOdfpRPMdBJjBg54GwaaGd97FvBLici+NHe6zf7MKov0/hAYGnCl0cTDza2UNobPC9P32gH2BaznzInM++Z4f/JP/9q99Xvv1d5DhqHqkT+6A9H+zt/Xw/rD6g4+vO9p/bqvr/2g/tP/8n/0X0yq+W+8OTuOQfwsVVC0LQ2a9/t0LPlwbM05T9471hjkoa8+nKK6Qls1M+jxhDkLu2sf3kINg0+ddPuh3x805IvSNdegpU8/TDUznX0F4158iTppM3zdoZL0Te1mu/zweQ1VHYY65JJ6ai6tku5tmfD276eHmKwmijQEg/lu6v21OM2a2vu9HmpE3z9kcdQif6luXXuAg2v9ofxLHrZwp5QxrSV73BJa/9H5jn3UOZzEKyn7S5/C3nd+27us49x8bGZJMwFp97zWQHCedWSd6tBav+sAMWKroCnGw2RsAT6xNkLadziUknfyLc0FneC2Di4YhYwNckmkWWvlBbIShVEGXY3oe1SPZl0oXHJNf9i5+TcSBtA5bon5g2EkuS+O5J+OeYh9kFKSVxEFdgqr0iG6i/gn2CKm2Ku2Z8YG8xq4yHKV5Pn6Uj71N4IWvkhhHjq8Fv5dv2WtUGGK7oDh2LOKok/CDhVhRwuBWmpA9QTgTD1i0NpfE74SJFSNmRJ61SIrNgSV6NqF3tlIj43s1ena1DQrEEcE0FE05nc/Hm2xmQIafHdoaXBkCDeJ2LyQpiVK9qvfiBpIvRw3yUagWiO1dv+bWUizPfCA5zLKj9Em5P2lSvTVSatn20d1gTZgw+tDuag+fA0h1WTUdv118HLIdghHhjmi1lVaGk953J18P7oqbO1slEIBciZCXZz2n8l2i2+GkdON4fWCNDVLxiQHZvGC0mfs+otHSZO1fkw4bRJN/Vb6lz+SYEvpC12lfhPaxJ3qAWBzKq+mO5WR6NkjGFYaHuW5vvVYZ4gDtF9V6afjQ3jTNRuGjwqfKp2PmEV+C75lO9UmOETp88neOmK7uFdG+NLkpVqUd+PZ+zwM2GuwajOhDHEgj22Z1MxneeiqTQQCAJFMFIHMWAQREzWzi3jYUgRQ6a4rPYLUx8jcyEujTemGgYy9uJvNbqrm7x+slsax2KvILXLSTRVTt65D929E5Pn1Egcy5etzYOMFQdElXHWEHcyMhFgIkdOFdsEg5pn88xPS1LPkqaQXSqh/1sG8yfZ1DOvVOyeY0H6+597tfDIt0O12uP7EyxM7Hr+/d07VwOb97vNty5GY5xeyCt1X512bcw4QCCkNi9nA5t3lqyfwwvVJG8ru6TLN+2GWZcQF4EleWAIShoPPrIC1tgiBKyLNjS6oDyLA3/m/7pobT+HUYqD8Nnzs907ib32B195JazZkortM5axtzxCEJ+1qfMRBLIi6DuvH+7+5K9eq2eIABwCFgQb136Ai3iax//mP7xRwla1KeltNks7q82DJnHQiOo7Y8W30iNi8h4YpTwqQnYjgGh7xDVyeSnCy4mYpZnAU0ThCD4m/AjViw+n9tuLTUDNp/ZuLSaLZhi+MuYJwGCJ6GnXVBZmpPqFIwwVWx8V8QtnrocqHlLq1oaR2t5/DM9aimqQJP3twtQeSQ338CM8kN8f/YfXi8l7Ys+W7hMPbe2ee2xX9+DWyeAR2jtwikUg12jb/AEeLWL4r372sYQrONkdPJYYgZnX99YmLcgDzxrEA+NqN83twMSoaquZtC7rm7ppJVZ/9Rm3UbugJoFhfa9DckjbCmwph3ct65amOi+JPGtltU+GtMOd/GTreaX2+YJ61XsVzn/tkaE8h0P/Fs6q7xvcZdFXdUj2kechH2dl6wtlNBN55mwvNJh/5cMXGkMra4zB6c6O1qa6/PCfVEQd1b8q7vwTHB+bSVIpDWD6oZHB6Zk0NBsGhoaIGGsiho+I1GXfr7YhJIZJUMbJaF0gn4tBRKExRaTWhpm4soSTY1TcIehMLMmwIm4vz4Tk22MLAEiQBmY8m7xujPbjrdiUmUz2hEHC1GCe4oVQAxkjcyNIBlPFRMTRFsHm24RxgwjEe7gdh+DLlyGj+A6lHgIzIpx8YUIdYr5pzIqAgDMzNFhMNjRXicUT5GGyc9zFFJCstJtPAY3C8TPnC1YXyuy0vCTK82GWfGfJ6yVahMBqejbwCgxPB7li+raGgcMsromaWu+CO2ZA2yEscaNuhoFkiql30bqt37gmauSR7lSWsC8KAt4Y1TyiL9ik2CzqeF6MnsDyVvqJlo9GzkAs/4rgNZLuaLQ7BiDGAWMrXsvdMGA0QyTc0zE1iGNCQ3Q69xgZQStHklaAS870U5GAEZeNSXcnnbYiDNqKlYFN0qQp1QezaftzCSR3IM6Uxm05TAcWNHlMiSYOJ+yzMUnalHg8SHpRltPcjC+UPtgUU+n51Cm2qNwnMnhgpf76jqkS/Ew4Ky9NvrEwO3zSmEFF8MZkGq+VJtc0W0nWPfLA1vJVcr8yTJ10GDn1ob7WT/rscpzAPaQlpHm8GDPzudSH39Sm+Ohh0s5NZyPhtGXLhoz5jE/MN58ygSyTRQkV02Hqk3PaoL2N6ZY/8xgCd275RPfCrt/pVl85WpqvEZqjMIg3rh4sUx5PMr9RYSWs2grDq64kOX5d2udfww1540KC/DDrTeLnA9OQJFhhoOo76fpj/lJuP+LwMmUqoE590qHYer7gc3P63mPBg/6ynYbnC8/RXsTnS9TzG4l/dHPZZBGQaxlnl5dHozoy1t0c3ZZn8flZtSMBPs+lD9sqM+2sY4BPBDCLQYQEwGhPhSnGmOiLPdvXFXym0780SetjakXYaTSXZhxY4m/VmvAQ2xO/5xsvvhumfKqEsP8lDta//rNPdj//7KM1H5g4JyO8mOdP7N1e+q9/+ZUXS/gBL/NJ1cC/iG3GhTo4BqZDB6i9tIPuAXOk33Sw9HDw0A+uk1tetb5r6YxnTFSfTI71nZWnImWHYethBF/XnEydwG0qWR+M4/PrMaHt3rqu+9Qj27tHdm+KYBcfx9SJvycBwpiq3QiCD80jddauPC5t7rNhsv7eLz/bvfD6oe5rgZko2ubI/OGL1tYGgfk3w/N7nyy40/w+kTN89u3XDtXvn//xC2UC/GxWzD33+K7EZ3qg2xQBlvA5HMrzwzz9x198ovudX/hkBQh9LW3+/ltHOnGr4M+humCZ/9Xm4SwD/aPN9Sz4o9qfCjXFhhLakW6od63Fw9PhXBlL0NqUW/lUXpIoOyffVlku5rOu7yrN8Czv2xdJl0OXFNZw0R+Fg+RbZXmoDS2DapN7j/uy+8t0bPLKGJmrmxcLDx/NF9PKpsGtx61W87CsxzUe4fQQpODMCJh9PdBCtIoAzW0ALSSs1/uUo6gqTnsXtK3l+uP9/dhMEsKPUJDATSRB80gX6yJV4MoRgsyRDPRIHJl9l2JewlTdvsMxNcte04DTcShmNhHRuiZi0l/J6i9EDeK5lf2nLoRwgCMiNhW/JMjKiiAI6EwYibPxRUJMH4hdmUaKyvn0WSax7I8WgiyQJGCtWCr0f8x3IZTOEzEx1WRNmfZgU+9LCTsgoJytTqhhMWqQwrUQPs7BGAxE2vfX4gtTavLUh4SYkVXSnkGBUM+G2RoNcqae5gg9kfwhL8zG4sXLy5naZEUQt2VFWk3KIC6IgclmgyCV6XhwuHwzmpqpiyUp8iuBuAOQmISi9QrxA98Lgf+yZfGRyVA4fPx8ty3aJyvgrPrgsEyVru0QF3jcvJXNaKPq4qCMieFbdCbaIAocaYUWoGV7+8DJGmjMBBy0l4YRuRx46TcSpM1YJ7Jcns8Fhll/YxaNBRJy+KhuYnmYlrTbN2ezyq+CMWZrmi1ZXYhxMHg57VtubwJYHaTu/J5oazimn4vD68SqkTBDl7vbiZMiavHVjL2ZSxcCCnGwIs330ugHMWltiIM4QoJBsA+dftmxaUU5VjPtjYZAnQpzbFNem+DS8ukfY01EV460nGjXVLybUsdlNdSt7mxiDpmAfLDsGcdvxETmoE07tDnOtBhckv9kNFR87Jihaato8Fakrrs2r+0On+JDsiRaq9EQncTFCUM+ORZNxcl+JWO+gXTmp3eS377YnbtysTt7lwmwOWiXnL7qU0kqPeITs1vWsN2MOXakX1VSPkbpF+SxpItqZbIGeUXk3pjGVA4IEbzql+f+1ZFTXc3ftufDS+f+XT0a8s7DuqyH9/+Z/2D+akGalN+OBefhsi/M7e3Fa7qjY893R9gN47w+kgUB6X1vYp66GiLPrw/DGNPoldOBXyBl2kJSyUD7FaXNHFPTTUkfH8poKgPWzAnbh6wsfEKYYD6dDAOMWRpLHx4Io1ALMTJGMBS0RPDcJx/bXXjiwJHTxQz9i3///e74qenuP/ny06Uh1icC29K+/NzTD3Z745D9v/+7F2rVFQam8EEqPg/BofGYGuS0gbzqnVSNqJjjQeUapHlOOiBnXzNZ62dbrUBd2p4q5x3cVaOkvmk+kxiwkEJzCWySzrxytHN7Ruh85/DpYhjg40eyp92XPvNQ9+TebYXfwYTgwpWh8pVRDoKwVWpoAE2U1Wp/N7Cx8wGH7O+99UGF22haMc1p39XHf8OfhSn75s+Nw+EdenE0ZvWjX3u1+6OvvxqctypO8RPpZxriBQXkuvBi+lrVCeMPRAP1i8/tKyGbpoqGya/RqZqZgFtMh2/At5H+tKKvALhW3fr3Q4meLizezfBEveQlj0qTP/rdIU2f9ZBVzi1tPchHQ0p5DIkrz/5D40GiobyWkTx8OZ9XzZnce2o8GRal2XLvn0zbyyqm2vzhylX2fbJybZCkfd/yrQT5U/WSU5+Hkzb4lnC6KKFM2h6f7QvzAw1FjzBPZeKey6el+Un+Lvm9HD/qw+shkL//+7/f/dwzjwTJhOlI4QidjR35DqmIzRc5NCLmKiegoknIlIYx4FxrgkkryvGiEF4AsHLJ4AQifjuIrtgh5XeSpzRFdpK+kvKE41dmOTEHULhIE1VwQOYMmE3dEE5MCxOUPZUs48b121uIv4qRhrMkcR7O6jIDga+TlW1rw0hpQy0ZjnaIo6ZlpDqfGllbBFfUGWUzhXXzzrV934qZSVsQZXVAyPnj0GxBtCXQJb22L8032kyjVdoQTFuIJ58Aq6ouhEETh0KEYwwn5krdIQ8O0WvD1Mibj4uyrwa21OLeYTasuqJ1co+A79u1oRi4E3HkptEolXfqvyk2eRowGiUIBDPArLUhxN8SXPlzHrfaB3NFI7MyvldMfzaeRVzU/0aWIVsJdixO2nxSmPcGfyJwxKjZrsGAXx1myibEopWTOjEOJhytJKf5S/F1UmexZjiA08AZQ7SMmJOJILZadVjwi29HGB4EypgoJ8CUxRTJf6OZgRN80xgIPI3JseTlwMQ5IHHM8WwYdGNUXR1WzyFa2jG2Mv5A0SoZk0yp8EFpU9PW2t4lhEJuGBTaSr5ixg0zjY5nwqC94XdWsajUPddvHzUuwuoW1lCqo93U3/Q505yl6nfCqNuGJIbIPIv2KKEhupid7kaTtCRzSh6h8+1c5UOmCB75bziasIMQzhHdlKGNhQSVl6P9XXgx1KqdK9F8qrpV/iAJtvcL/vYVcCq0PlfAgjTDu3pUKL2vyJB4eEY3wiGXlg+TInRFthu5adNs+y8GLt6FQbLUf+GBEaIxqkCSGbsBQ9KKvxackkUan3448bKC56zOpaGcit8Q4BGwCFZTWRQR7r7wmBfGHYGApnfnphDbaNO3RavCNEPjjtEQnXt/VnfuyMIC2k24Kl1fY87YY7oypvjSwCGYJb8KxFtjPJrqjEkmLd3TmJfG6KibYdzA24hxI1w90cobfVLf5U+DIJKUZqcOQ6BBDxrhbd81ApV887xdN7wFjxs75lqNn5RNsDsZoefFt492r71/ouYaLbTAkKujYfvmDw52+8NUquXWDWu6f/aPf6d7PhG2+YvCq3A6R+pfCI35rZ99ovtsNDy1NVPwDxj2Q3KuG1tb2636CFJb9FwJqY82XQ8emz/ysI6FX6ZdeUZYt+WLaPhwrbnPBUJd4eKf+/QjgYFAiUMg2sQECv55YNuGxMba1X0u7Xg8QS/VF+6At+CMqnPaB35DqaCub7wbnnvnecEzMHWuuVnfDl9K366dwb3d51ndtz7TRMmk9NOf4FM4oJIqyexrdaj0/uSQX0FJ/TzIH+f6VWM87PNOWuV43KeuMYk2GZvGKavSwgNcl2ZMyE/dXMgDZmp1aqnlWWhZ3gvKbW+HZ8qXi9zmD2XDv1YxW1lKcFeafyU+5Y9V1b/7u79bC1fmv/zRVx9bk3Q9UvbdEEIE3yoNCL9Wb0W6T7/mPjFtsnKDlsa2CCQUcXTspE7iNpE4AEIe7x85WxNofZz6aDRGs0LnvWwBoeEYIf5IGnjw7HQhHqBAvEn0jANMWpAIacwEqZ3VA1AOyAYQCaDSh6tct351zFDZroTkk5UnJq86cdq1/YWl4JaFG7znEv9nW5blnjwTH6swXjQdZxMg8M1oV7aIKB4ERxLI/yDM0Vrevv/4mWKw7PQ+FglRpG+OvqfPXQrBH6s2W4JP+7It2jDaNHVwYIJuROq9niXLZjf/IxHCOS/T6pB+rwQJyxexx6SpQxHeAGV9tC/46pE47I5GzU0qOh5tCaaFuQsRN3D5vszGNPDeB6eKYNLU0BQxZzLLnUwsKk7mjz24LW2GJJZVXa+EmcAIC6dwJ5oLZkoTAPIoLV6+vXTZ/m8oTYhRCNKu+G9hzGazssyS94d2bEifBBmF8RkJ82yiICR8oDB1i5L3SMbTTEyw11KWcSYUQNsOJea5Wjrdwha0rQma1L9pXTR1GfSLEsNGXCCMislhHz6IlaM/BMGXi8M0DWW1LTCZSh/AqrfDfNBYGkdXr13utsc/Cmz4adxIO+Vv7PLZIrlACIgiTSGJRfgFzBjBwD2mlbAwHb+jldEiYfowZXZDh2jdj4QAp3tqfosPVpQKg2JA5FyTn5aIyO8oXJC3EmQ89Kdc54V3jvq4P+cZxGMOSDLgGWY+R6pb36lPocs88GjIQpq6zp+Fz+pmKE8ix5AwOSmrSkClPP/ItPVV3i/MeeF1/3449elaigXpkneP0oeUfZ4L0qiEOgyP6pzZon4LWixJ+UJWwozzjIVFS9NPYZqM3/V86iKk2YhWX5rny7MC7krMv4iZMVKq/kQ359NIt7cj/X1z346E7hjrXs2KKWPm/Zho/rd/+63uP/rco4km/WDhESEkmOrgny+E2K6PNvRf/Nn3C0dUw4a65wZ8/SlG1mXdtvsiTIEVAgtk8JN0FkY0prURFd+071vGlWdfRus28JFKUZW6XSst/7VX8mLCclHkp+oUXBZAXMtY0k7hPv702291nwwMbGR7bxBHAnHmZXAduK0NTdAujA0hzYKEpx/e2T3z6O6Y9y9l77f3SwvPnUE7VUv5/LkwN/ccfVs865Ug97z+m27gkGsVADaCSMphUvxv/8c/7J7Zt7N7Nozbnmj91Fe9aeuFeBFG5LEHNnVPx98Jg4TRfSl9/nqYxSPxayw/Jp0SaJm98m2QA8DceOecX73K7cBItfq2Pk7CJGlpKp1c6qIxXi6917/tsT5viZyZ4+VRNcncd+2o+7rK9841eFre8pKi9XOfyJM8r1cty6pvjYk+Scu53QzXC98POcmjyujxWntetah61bdJNIxJFeyh1NqZ+6rHkOFwToNbLi3/dGsu8r+Q35Do458/tibplz77eHH912Lu8TMg+I2wQVspxV5oGTn8ruKWnZP2MSEkBRoTvic0NswydnVHjPm3fHAikYEzAWmCrJjQIn4dWyKRIXSkcPZhALUJLa6dpA5kZQIM44XpQRj4H9kXiOaGTxJbtzyYfCz7N3mk5cOEqcBo4PyZr7anPKu73v7gTNp6J8t/EeJb3e7N42FUYloKAp1YE5NK6sbHZ+o86SPxgfIODEiMSwIDGhj+WlbtgQutCk5ajKUdMYth0g4nsiwVvoCXmWtp65pi5k5ndR5Nib3tDGlmxNJCpKc3xVx1PP5MHDZpdEg8GAeq7aMpm3YG04iJYT60FYhJyukd08m3iJYLcwIpqVftxVOwj4NmtCV8cE4mLxuwComAYZtJuvPRVmE41JWT9iRmJIzbqUiQtHyrs18fKZlPDmmRCYqGb0vMlrQ7tCYbI5lD2q6ZJQ1l5SnDlh76V6C3ycBzc7aGADMMjGiuGBBIGsz0JYkAUuXzZQWePkD4meXGw5AifBhl2kT+Im03cpJ/mLPAX6wu2hNtmUpdBS91D0bahanXxxhNK5DU2+pJTDzNpDEO9uBYjHPKw7irmxlK44VwGNMECHFblAXBYnyNuVPT17oDJzHIWfkW4XU0CwuWZYUg94jBR4ZkJL4Pwg7NauP9R6qiyP5oV6YH+EIwqVp/7iVWDFKe++f/cMgnRdTRn+bu29Mf/rfKS0EEprpekO89XyXjhqqHp3Ml1YMPf1YfDIlzzv2Cas9/DZk7pG9PG0PkObj5WaGWWF1hgkTEV0+EF3NPW0eT9Jl9a2vOM18NuwFA8ASYMr/BK/kGW2tewluYG4w4bU/DW7Y9SpYhTJMZ16djOsYg01a8FYHLnpGWxgtFYsVshlH18ZoIQ8/FV8acOHjyXAESjryeeUToHJgU82TQgg7agjnzWMpt/R56l2+AQhMHM49GV9/nDErDr4CXG+nBUVl+0rY8GjNdPGb/nbHvAMchT197zA/yUHDcn3/vve79Y1OFJ81nsHzi4e0RnjZmQciq+CwKmkogCM7P3NBOc55QYk4/uH1DaWqejAD36Ud3xfl6W2fbkm+/erCYJ+2yqXRVumrT+hSdaa3rH6pkHa3Ocx94vPDXp3IyR5nSfhBm6auJAP6V777TvfLe8RLy0B10qFZmB8A0Ulwztm6a7PY9sLn7fBjh5+PMvyNhEBzoAE2T9ldN8qf1XYOxNPrV+/xvh4S5BltpnVW2XudSukrfJ3cviTHpN3w3aJIkq35KHpVVnVu+lWfeK6cqmAftWStork5z33rf17X/uD71J4nBo8+gaqdthEsFJ0V/5MMIGfV5cbV5XC9b/VzWO3m6Th5V/1ZQPavnc1ctjXR9lebL6+tl5ehPTZNkHxwEZ2UiKl+LBFyxZkIPVoWwToxNFgctwB1TiwCCTCTU/GOZ5BCBpeaI0RRflEwGRI95A9Hmn0O7wqRh3ywIhfSBAFpNZFl8LcMv01l8dALYtr8WLVDMcCFeVnDYLoNf0a6ovTlGp/jyGTHZhSo4KS5Sz4RZ4s8Xxf5cgrxdCUMwE0ZgZQjqg2GKGnMWk118mxDkJWmDvYPe/eBsVilla4nUG4NByjwbxmYnKSOMnHrr0tnE9OHoaek3ZguSPRLfGe1vmqRF3cmo8jkVB9emDTHRRIuC0TuXmFSr4z80G2bLRKWRgugEs8PYQTBWi72ciM0nzlzKpM0S5ThHrwi2Df+W+iZmVIirjXuXJ/6UMAwjI9HE5SUn82vR2kDwVpJxgmYuIPW88f5smbWYRKPiyfVozASna7uQ8UjQglcW8SgT0u0wdqvLxIa5pJXh8M7n6Z1DU7Xn0mQ2U8VQY4rKHysUlPMzjr7gwI8s8DZ+r6VTyycpJs/D8eHAZEKSNGdW3Zj0kOeqjEGmDXupYUQ4otNuIXLMqPr1RBhjviMcq6cTSNTeZBDppYwVmksBKIVVSFUC60ul7XsjsVIejNaLjxHEaJIxt9A0abu4V5h8fVsr5wJvY9PWM5fSObSETLzaQvvUpM2YwdIODvPmBMaQVtM1RnoyPleI9d27V7pndtzttsd3CSPO/++msWU8J4p5rbJKyRgkwsFMtHeEboem384upCHPqWMk3LQ1YEj9IVxn2oV8l1+6r94ZU2DWECmmK5VW8TogYdftJ6+/6Whf5i/kRGOVvO7/Tpr2LBVOCe1G5kMBrVREcu4IRRZraslifUvLNpjK2ld3wvSMhuGx55tVmhjLOtJwZaXbwhBhQgK79M3K4KcMtxC3xgCciC/jiwcSYPQGwQzb05zrt66L9jHazWtZlcn3iJC3fVMi9ZtT2fz16KmZEPiV2aYm5vcMIj+aJq4CVqaeOJsVu3HcX5nxu3YszHtyfuXd44WrpoOH/u+/eqO2uPmtLz6VcZOFGqkbPIHBxrT9g9/8bGkf//jbb9bq4KngrFN9vDPdgpBhK6TVl40YAnvrA8/gr4Jk/mg/gIAOourdAPaBoPBsw3AU4HLC4Es/EOeQ6YyzjJt8L13VIXMySdtQSWowb+W2mHCVR57RBvtmXxy8Cdd/9Jc/yLy5lSX6O0rwook1Hgmm+r/mdVZt1jgNzPW92hvn8E/+l3Ci6I86qk73v1C5jzoWPv6oD/tnfGNPB3f7ffOVA4XPd26e6Kya+3z2mRNehGXlVuKy0bfRMAl/8AvPPtJ9Ob9jcX94L+FP3jxwIjTkdOFydK4x7xkhJuuC8qu6YJ2+U8XqW2fTNQ8aw9Ce+7S+79tnXNSKRvfJQ16GgDyGfLxq13JPv+UnHThX+ty3ETT3cVVP6vaFv/Jr37SH7b4e5u39R/ui/1598mBosnL9V6YxpH3Vjjwc6i+/Gq/9A2XLoPJon1eR4OEjY1Qh9b7PvxL8mH9gh491MLHRJPADEkBs+8ZV9R2/j9PxpaEtQBwWxZxAi+Oazw1H4tVhfi5FGmfSwSwhyvblwVQwRXEIlq9tOcqMcfFSCEmWdGeTVZCrYRIiSDPh2v4w6rI5DtCzGXC2vsgoKadfGqy1Y/GjyTLe6Sw/vRZfm4thWMq/JyOMLwLCR8uCQFpKr2wDZlmYsdCsCgh5OczO1WiKaCNoXvgAmbTMObYZWB54YGJIdHaj56/iPUTCVFaTPnUSOG722tVueeouAjiCV9qGvLuVvaI4KGsrJAiGu7fE/yeEknnKhLBFCqaH3xTt0IUwOFMJDXA6qv2lQT7rwuSJCyPUAKdUqsWZMKjUwSJD06yJRL0qjssT66ONS6ZnYhI6HO3dpmxlwmwKmYEbBgxc9akNg9s+bV0YsdlIQtdKKtL3/ChmYoak7VkBDoFR8HyYponSsugLDDWtz6I4HF9JME6MMHOYSYBB4He2NsSHNM1xe33awcxGs4fR4ysmcrhxsmZ1kHHgei0wwZhgECFdfmZ7Eszx3cNTIXxxWg9DZs81iJwGy/gzNujkLocJJu2fD2NKowM+tngZD2HaWFok7ES0jBkvwV0ZI0F16VuaqamME/VUJ5o6Y1j/jq3kn7akmNHmn9eIxMn4a3EkN24wZSYroULAU4sCMJRXMiYEIkTY79y4nBVRMzFTHDfcayzyjxCXjNCxnPCR+oyIpp1Kjmf/rEHKL6IU2C9NPcKaFcYopiD3WRtfiwI8VHfxrK4EHt997WAhmXGLjQAAQABJREFUIKZFSIRGGN6BXMDOGQKzLCAsSqAyh2b6q5r67U/SDQ8rVf40LW//OPfziDlzOb5UxkrhrzorKHGDol2x2OGph7anzso0BlL/MEDmfPihum/FZZxzVs9fZFo/qbd/EKsAnFbu8elJ4O3ucgQDc9NeYy3fVr55tszeb3cTHiBjNkO02zIeoSUwzpRK+xd3O7MhNBjzYbyZNOuXJ7hrxp/QH8zKdoEkvEyUmfd6dyihRTDzkxljqyMgjkT42Z3VpGOJvfT9Nw8ncn2L/P6X33u3tOp/50ufyMbHa6o/CVjGFQ38zz69pxybX3r7SLf1c4+VBuO7CRugHerjsGej9hbjknkNprAlbV71SYBlvoF/QSf3YJrpG8aMtiHjK0x8PUu5ym5Mqo7JF8mbyU4aeRhzRaSSvTLzQT1XlhqVhi39hPku35o8k35JMe53uyPRLNmLbWPwzIE4atNQPxaty4NZJdfGd+qacUuINp7vJsbFBn6igad+Rx8wVIQNQp5DuXOHGwlzGL+qWEAZHtab4U+fcGEO9z8a7odP+rPHmL13P5gK4zPV/fFfvV5+m59+ZEcc17eW9gvTZLW0uhN8NgR/P7D1se43f+4ToRtXi/n+fpzUX8zvVMyGN6PNLJDmD5iBIQ1QO1o/u64q5X31aW70qzkAH+p/EPF9e+9tPaqz/nXod305ACtf5vt2n08LqC0vMJTvkLevcyg3CStvt/310Bd3TdaWrM7+DO/ag/alZ7TxQ1uUmbu+/FZmhmD/7b05VD7qkX++aTlKjIHP24KB25af9MypP8nxsZkky1cBkq8IDclNZjcIPwhoZbCLYITU07RGo0EMtisRY0gzOMDqSr4yo9m6Ym2Cqx2Pgy9i5DgWyQxjQRNkQDExcGS8lb3fDmUiiaRsvGj7osXNUXfFpUQ+ztL3x+Lwd/jU2RDBmyGq9l8KQru5uiTtCjiYuokMPZJAYunv8hliS74yZaPZtgs3P6vVUXXTZMQgE+Ia81zEUDbx9fE9gnSYgxBbTsKYCGYYRN8y2AuJ6yOmETW5Sk5kV3B+CZvCRJCOvv7i/u6OaNkpd1f8Xuz4zUSFIWSuY7IUGRtjeTNttsnltfgp3Qg8wch3GCLM5JUbF7oPoilhboPQBIMbj7ZLMDdmRLs4W2V1NkxUmXuy79dEophrCxX0xmhKILe9mcScs5kjNyY0w4HEEkrx3Z4HN3YvvHax27KJc3OW4Sd+FKTKCb0xiWOZZIknkxhZgktiWLsQbapU5YMJxHApsZgKqab+BqoBum6S87Xl8YkSHi2Q7mfepE26FMSBkOgBWh4hB7SXlL03K0vUMwAq5HQ+2ioqerA7Gc0MiczqQn5OW7PknnM6Rk5sKnUxgwT/owkUBwozpuyJML4rOZGnftuDvK1+w0AimCOBG/8omyoLFLkozI4FC+B7OyuggsJiMp0uxlY5AgvSntqaYkVi4nRZms40R9OprqYxJnfk1kh3Jv5qQhEwF65ekejxWWUpfAPYqauJ7mjzGwrIvf/5YbiMY3XOqRBeIdSMBauXmnYI8ct1fsaIeceUwcxLo7k4c4gES0MCYZaGIGMMEi1CB+n5xT+j0Er/Z7hu5/o7X12VaTV10Q719K/Orc5FQFPmUGftQejtcSg45sWL2Yg0fo7Grijxc3XL+GlhC5w51DcH52KO1L2vswrlshHxXHheBD018lw1B/Ru/q1YnnG+JDGmMiKYTzjVX44WemQkwmCECyY05el7YUzCt6bnG9wRaoyNeUubdDm+aMxtyzMXMAlHTp0LvltaKzet5nomK99eStBJfonm0l+HWbUy8z//lWdq1/vJaJ08r8UqcElq+8uff7z7TpavPx5m4pGdG8rXhylbv2kP+NWYSKtSzeq3gncRN3AI7s11wVvdFzBFeVVz1PfmKjiBu7FRR57TbDuUVwxo35eeIU++QaSL8Kbt7tVLPoDd+j8XOeAfWpQDYSQJdawJzGYPx3wmlMDOrFgmgEjNlEejylG+zJiBNQYJbWhOuZkrP+TQr/py3nm4la/GHz4WPuvTaUAd7odrD4Z86mXdeUvg0qd/+tdvdn/6nbcKt2EGMYBfeHJP93BW/tl0N9CJG0NwSL7R1ofS7r/z5U9VkF/M0g/ePVouG/bwcyhNXwb6+VI/6u8Gd08dQ/+7Hsa5a0f73jhpIx7OkN7ZIT/fwE2Oeu6d9O1Rq0B/X7nkufzad/q9Pk0e/TzP98bbwmO464ude1XjrmcEK+/6VgGtbhJKMxxVP3UZHjhX2gablrQxTRrvS3UdhvPCz36c61goksuPOC5mS4q1a9d2//1/9bdijthYTnk62lJ7DMSG7NhOY3E4NnQIeEOkIhGMayPWzFrSPIYCseGrcigajLu1QszKn/ijhLjwD7qYIIqmowHHzEJ6sdoLgRFvgx+TeDQrE0SQbfdsYplY8cSMQsKgXsSVIjwkeE7AzBO0WupFe4FAk/D44phIGDEIDsGkwRAHAzKhNuVUzjxolCrXapcKChjiTgJ6MFFvDRB1sR0LnGB5PlOV+myYiGN3yjpLexBNFYJZsVcCbhIzXxXmRBqtpl6GlPVstG2ZUOfDNFwNQ8o8iNBZwk5awJicjHnPKitM67pIZRtjMqOJ+dp33ikNDWbE/ncYWlon/la0J8YzBGiiYdS8PxTHcxKPOCfazvfofBzYlbUhMCl/mZR9JFGGMTq0FIJwXsjSfMhrUyQkqxTFFsLc2WU9TSpfjDNhdAxiPhtnosHBMK5JvdbGf0k7xJhZhzkOkRNM0iTYkhWIM8n7RhiurdEUYoAwKxhwjAWkTSsDVCT6YsqSL0SN6TkfE66xMhm/pH0J8ng6UhpzIw0QCb+kNsxJ6kC7iZmwtPeJR7Z0337x/cAk26xGw6bi5xKnyThhCqFJfD9LnjlqM5E09Xb6JWZRGkligBhSiA17vMnNrwLjwWdqRbRG/KFwOM4BZebE7e7bb12Ms+u5BAE9XhpW8NK2OsxMQyLfDHgHihheSyvx3H1/0U5zT/O+ITCEG2yY/+5Ey6RfPNOvpZFIPyBumIIBFembKqdHTlVastYumKOQUBXVl9oXqy/br29DTiKZD1oJuJG2zJhTJmZ8eTaeBl9aJflW/lV4PtbW+VOr3z3P+ptKVbWsK9+BXaunyrV8Ac1YWrEsTvkjO+u5rYx+/Zk1GVM3Q7g31vwQDwzE7V2I0eRkvT3m/ICt25F5Z6/BYxHOBIglbC1OOAJ7LRL2RKc3vpQKFhgJ7f7rH+wvB2cV9N4c+KXnHskGuQ9Gq9w09BZLGPNw1VhcEF7bf7KYcsvVBaJ8KQS1HJ3VPIACR32iXH0KzsOBoHknDe3E0Lfe6/ciRAUjTxoc1dfV0N/a0PIJNHJTmoiWoMrXhwOMlV/fV7ktP22XoTwcw1/5S8sXlRvBEw9u7Z6MEzTGYjxaJIyS1Ez2tDeykdd/F4fql+MgDX7jYKZSfa727/xHf/tnur/43juB1aFEUY8Akvq199INR6vFcPc3nxd++6NSz+fL3I4ZfDQM0TNxZH82K+Ks4CWgYKhVmxWCGVEf2WPy5UT/fiP9zdRLIDcHwchR8yJnd555XM8C13Zuz4c+BZKhv4c+kU4OznP5Vt4tX5n7vvqsSspL7+tPK2fuvn+mIuoiEfwhvAzU4fBYXuOhqa3C9bjovRA2vsvfeqhOwxjxYL7OLY96lj991nXRBAFv2lPNqzzzR7n+FX7LCzEbL1xI3MY1cPzHOz42k/Q//De/WZVfLSJyzGEIB9NGIdlAg1RFi8RJEQFeF4DUoA75sjKB4xr19PUMiJkgGgeGBTrGDG2INgMxeeeDk3kTCYaUlknBJGdCMjlZOWZJOGRl8oj+apJYpm4puUEHOZiwJD/MVcU6ynsrlkgikJol6LCV+ltWbhBjdpg2bLnxwfFzIaKjtXqCahejVf4kIbbi6QigaP+kE2FWSGOQj7ZAgKQAsX9o2UbDbGEgrerje8XMCDGbFCaJXcVJxJ7RmGAIMRK4GWYvS/j541DnM8WxgYMpxouWhaYMwcVU8nNCdDlHT4SR5Fdz9NSF2kJDW/jV0EwFREXEMUvgpO4YWUzUbPqB2Y1zOkdneS8JzIx2W5psjuO49kFoGNKL6QuDGpNX239kQAqjMC0mUkxYxeCEodH/8tIHwgmIao3RM5ibg2WXUARrSg0NHgglnxzMG0aQkzWGrhicaJkwLAY95pv2EVN7Pr5H4lipD8m0SfdxPg9zXOr7aOIQumUZH5gsq/P4Y5lAp8NI3krfFFLI9zSA4PXWwQSNSxs/F+KFaTsSQeBCNFbgUM7jYY6NuzS7GNBUO32QLWMCb2PNeNgaTePLbxwqnzplIaTGvDGOeT9w4mr31RePdbevHg1xDnf5UzwgDrGy6LXuRBuIIbWAQpwuiHQggvpNPxDBGoJW25g38xx8B62Daw3HxBWKSwHt3BqhPA889c84L21p8nbP6TXsWpg2knhCRwRgVzNvCE8Fop8iLGRNaFoeJunWyLZUMvGsNq7ovviEPdKyYjZjjxmymKScmY7HMiZOZeEEjZYxXJrc9KFVbXCbhQ42vRUOY0OCThKAjGNEg38SXMXU4kwge+vA8ZoD6sKca3PcX3/+8TCvCcuR8U2rBKeZo65pYL71yv4yvfMR/frL+2t8D0zJALTql+RpPPsWQ1/965wug2fUXX9Xz6SP8qr6tvov3xqh8jHPHMpwDOOhOjb3iGn1c66lV0+HNspbuQ75KNuY8k1de54L33kGx9EAwW2csy2tF07BPQ2TbwhF4PqP/qf/q3s9/j3KWRucMhB7Zdk78vf/69/InIvPYtK/cfBE9xfZFuWlMB98IWnm7z3a/fB0gMF8mg8/mX+38GrIYeGzBd/mUvuERng0TPgXe5Pq5uAhOFi/aCNcB878F5n0Xs5WN29HQMMwV58FVtUPKWZo99AHwN1qYT63Xiq8lrTyVht5zB+u9Ud75q+xUcxJrou56OGlDONJXw3H3BgyPPJxjYGM97MlOLZnUqvD2vAEQ32lxcYvS171L4mqBvWn5dNfztVNujqG4pNgnkHyTXu9MFkl9Sfv1O1ENH4/LpP0sc1tK1ZlJ/r1kwnBP9mNrsmKpTA0CCZOGXNhsFI9+4V+ZvJe7q5ihm4k4vPM+RD/tmJBlGGAQlyux+xBu4R5QFiPZX+trXGAFfGWJgNS3Rykg6NmypoI8lgaB+TZaJ3sM7Q8cXogERNnJvkSGffu2lyMxIpoNCzDHwnymY0fD63S9ThibomJ7lIYACtdIK8uAaloDGxNsTXEke/BVUQi5juqcs7lJinC8NCO9WGAIPHr2cw2sXtShxMJ+oiJwdTQ7iDAeguSNdi2xg/IijwamFPxcaKxYXbhwIlx3Ll5XZgegSMj5WPwUiVwvZF68R+Rz2QkfjAT+0jQRfU6GWZ0Rcx0YlSRQo6FgcOovZ+6WI5q1aCtOjaEoGN+bO54Pg7hyt+0KnvghcGazD585UMRWMxeDQOoPSFWl6+HqYv2CJFYFCQvpIM+xhTxv8qQD7OY/ajC+NC2kX45Zpe/WRDYWBjAJj/HlJT6MKWScFciPoFTmZaSJ78DgxwBohG0co/PBjX1sYszYTDTX6k/nyqIQzuZa2kNjQ0aBzCGeEZGaDdvdnuiFeJ/NJtJoV8xK2MJUbAsyJmaflmYo11bE9Qy/k1btmzoDhw+GeltOprEVWmzPouTf/ytTmf7COOD0zzHfPvfXQwcp2diJk0aJmWm3ZGsTuRfpU6Y1NF0II1VgJYxETNqxm6qGG1BTHvJ/2S0DuYIAg2BbxrPis6M0StXkshE9ieXcwihn/f/X04DApSruYYYxdBbdSjCFAaS6XU4IEYMm75hfrSaj9bJeLda8nT6yB54GGHjEoPDrLk5TBctbjWgzyyv5w6w1W5+ZQLD0iwxI1yP74l0N+OrxWcPCH6aB3gUfFOOPgZz9zs2jkVLOBZ/vXNZyGCuTIbJaYtICHE3Mu+3ZrHCRBYkWDxgQcds8ASTLQHOD+xOTJ/rPv3Y1sDpUndpUYuVxJyMwBBmCEl7smoLrhC92tywGuzPv/teMdG/kVhBmHR+VRdn49LQM98ksl/9QvyTsns9xv/v/8bnuq+F+NugFbFCvBAjIHevTwhDjYniJzTfM+opof4ropn0jcBhglse3hHevCdQ1SF9vs2pfo0pauZdD5RVTFmyr7Gcj6RthDrEOPD2fdVT+lRCubocY37hElx+tbS/34sPF7OcoJOfSoR+K90IJ8YQHPrhQy7aHkYjMNZ+8/rzn3goqwb31DPL87/5gwPdC28cnmM6ChD5Dtza0fKp69RRn2FgvPem6ps6g5Jr7alnw9mHfZvqA/c58qhw+6EI4X5feeGdohtW7D27b3vt9Wc3hNICpt/QOKEHnsk7+E94Fxsov57dJk5mDrJQYJZafRqcC9gpS12NNzXWf61H3UmXu76xzTSmPxsTXM+rkS0/uCtkYO4oDXL/8XwZVUylkXcxwXNffMSF/PsDTNRPG3zbzu2la0er74JKeJhXRo0kQzqNkkp6R3+qZ3Lqs6t3P86fj80kffL5n+0mExXapGBOIhEui/aM/w7n09Onz3azMc3tP3C4mw3Rj692dyUO06cjvdM0WOGFmG6Z3NC9m+0oMCojcXacyZm6nwSuoyBku2zrjMd3bytEIvLz7qz8wUgJR/Xw9qymi9+JybglqlVbX5DyDmXn+JNZpXUmqnsInZZIfkxVy0LUVmeTV3UX8Zq5aGNMYhiVw3EotET7dPxCONfuTqAwsU3K5yCTjWMyrdC69YLFXYwKVHiB+ClFAtADlvnSfvB3uXA5kZzz7bkwRGIVXbx+uTQ3u2ODpgHB1NBkcYRmAjotInWYChmZFCIxv5WYUVPZ1sQA3bzWiqgrIa6JQB3TmmXppXGKRiUqgG5nmEpRoidixuIwbCIx5VlVw0ldhGx+FrYFMSFETBcbqTRbYYCstErVM1mb4z3YQy6Ythg9aiIuCpyFFaBtE1+JxhCDsmvz+sSxWhcT6pm0KysRaaryHaalAjxGc0SyRoggW0j6SMytTFjiwzDJCpppFdnB+CpAxBwe7cNnLztjDNN6IxwPRKTMRfFb4Zi+eV0LpYBwmMS0SaXRSh4z8Q0xIbbGkfxSxuCSpDkRTZg27AqTrA+On4kP2Y2jYRXuVnR1+2txIKd5VDcRl/mbVZT45Lk25jurKLOfafo7BCzflVSVTlJHJizbN3DYvtb74hlb2jQRZvXipazWvJL9CAOP/WlrgFzm1aCUzIll3f4Zs7ghjEIy6bthspvQhQjM9LR1QHieu597l1tJMDdgbIECpiO0Ns/zJv/V525MbUJV1LfpewwtZsmYp925Hoaapo1fmDnHJ/BQYt/wSzsRZlzEZP4e5iyCr57G5vEIOU8/sqvmLs2h/I0F7zFXxsFSiwjMkzCwRZzR3qSLh1nmUJB+6qfztMOhreWU6jrpjIP6ToLcOwpOw33O81/371qy+gtWAU+OSljjZMiIC8HFy4mYn362kbcI7xg5DLkDM8MEXd+nMjY8tsSbRpdWm/mL1hmc9gcXmVcV+yvPmRPNd2UJZmouwYdg8WYIHwaBSYjGQzTn3/iZx2s1GHNumWXy5WRgKhzFF7KaygbWr0Yz8qVon4TjYHoSH6zglboVoxMiCUeifwvHTBtXtIQRUCKsuDfmnIspKhj35jmMbca4RYuVPgJkSwsirRxX4KoM8Gp+9/qp76+U45uhTuacrjNH8z/vaCdyUWkaQwYHmafwN0byLwOXp8JM/OynHur2ZhUq5uD+Q36OEpyCDwiY3DwIeawPNDi//vyT3a/lB5/+s3/9V4m6/Ur7aO5vVeSeO3XHKNEG6i+x3hoMk2xoRLWl/gTmYQTTl8ayevKvMm75U4FhaZPrnOvA83sJwvnCmx90S//tC6njWLcvpsbnrZiLaVWA0tGUyZJh8Y795zBMBF/WAr6tZ6MJp3Fi5ies2g1DOeZgzffUvzGpQ3VTn9DcYZ5oX3VImqNdCyHrFVrgWeGZXFUaD/JOHgvHVp5WWufhWJiflwvvfVu8XOa//Nr8boy07/OoldsuKsu+6Hbdd/rQH87t17cl732qHS23+uzH+vOxmSSOw5C+qL+z8Vm5OH2+uzgTc060RLevX+mOhDM2mfjQlB09SBZSscSefwh/HvbV0nyEYG5OMECIYTYSJeaIacXySgiI5mEk99SNozG1MLmQzmkC1kSDkbEQhJMgZDkwAaci7b4XdeRjezaX/4q4OCSJbRlgiBsCWMxdntFsLE4hzUYftXCIg8jOnIYR2qVB6tTtJBBEvChw6sQhl/bF5OV7QitgGevDkW4OnTzTzZrQSU8Vj0CRvEl7y5KfbTKuxSH7UqROSGv5SFa/pF6QKVgVockgEYiNlkgcHURMHZYFnmNhgJZlHy+D9EriF3FO5uh6Kysilsb5XFtItg/t3BwJdTMRIoEOs/FnzhiNnVsnuuMxFSGatF0C5F2IyXQmPzA7ncmGaYsCpup181aYHIHx0p8IPEJZBDdth7QQR0P9HD8SUlbaac85o1EsqGZOjB9Oyqbl4zi8JHDm4D8d+LyTjYIficM9baKl1lYG8fNaG2YPg3Q5zNa6MJSYqqXhgGgAn35wU/dillELM8FMBGGpA38OPlLLRi4Xs0aVLuDfMhM7UZcxijQ8mBd+DYdjgsRMMZdsCZNr9dmRU2dLMydekz38kkUx//yZ1GEqmpKjYb5pCsbzoyk7l/4W74ZD+NLUiabUVhgCgzKjGR/MyGl2GIQgssDTMnLMBgLJrAuZ0ip9dt+67tTJI910ELpl5MrXdw4IDB6APBxMW0wWNfPd519J7rl25uysTTSUjfHJisDMGw7kmMzGhFRO3c2riV0mRlC+M7YEwvONvrYJtL7eML4mc3VtaX4w6Nq0fDaMdPoRgy0wJwdUvk7ia5nz5hjfHfMAg8FfTiw06d3TNlzM+8F8px/ryDzTTu110BbIl++Zeg1zmOnduJJuIYIvJO7b/AYCgMEaYOWZb8AYzlwaar5oUTO9A/cj27NSNOMKrhlNP79/5EjatrEYPFiWWYTW8amHd3U7IwW+Heamgk8mU9slrYoQRsgCe+EmrCxFrMCTGdyBaPLhuxUYlDY8YwWDxWmXaZgbwaFosv5Vlsl/8VN7u5//zMM1h+Gd0fQrXAgP+ea5x3dm37P3ajz/rZjpvil2kPAVYODIRRGMumxMUY2rNB7czNtb0d4V3HJfTIzxFljciSYevO+mn/Ooeki+mKgG80FXPBRWBc4xBAQIMJZndFhVhvzgFN/L009/owNymXvXpymtRV44G4vfii+Xvd7Ez7PJeZWokPsOMBcM2D6ZBF1MyuL8mOtpfGmkaZb15990aDONeWn7wnzMREikTacVNybB10yteahN1ep6EHdODHb8rQKzpqlpsJLnMBaHNg4aNjjq5QjJLyWeFoEU/fxMnNqfDJ5+MuEG1gVXGqMTN0dj+RDbzZgOHnnuoYI17T9/NhYeYxGuRleNKS4oIqMPMeYIdfpEHm3e5dwDRJvUseGdVm9Nq77XysCv2ppn2qMvHYMAAy41rtpjgPnQIVd9JW0bYfNJPCq8lotWZu5zXdlUm9WuL7s+a2NdmUO5le1QsPz6ZsyX8vGuPjaT9ObLr3THj52olW3HozUSeXRNJiqgYAzWx5zAl8BSbx3JL2ftGsu508gMlpNBIlZCkVCtxLqe7/iBVCygIADOzONJz8GXZkGDMFSQkCCQJFFMD4ft63lm8CNgiKAVR4jXdOygO7MSit1/RQjzwWw0uT1ao+UJ0nc3sYQgeBofy+BpY2bDcAheOB6CfO16VrKFU5+MTw1kdeVqzFkhdFaD2dKCDw7HYD5GeoeUnWwSeDJ7zeUepy8S+NlokBCxNWFG+CpgBEg042nfpbThaAjyo7s3VkfOhnjV6EpGOHsEBNPBx+itBMRcGgZp+VU7xWeyTIzXjuPLstWCOFVgBBGJOsvPxsSdSp2YMhDDiTjV30469XolK2r4EY1mYrdtTq4HzoFtKv5+JF7EiPTB4fRSzAtWlyVhvmlS5IUQpVSvqrorJqqDR0+HYchqv/SrepdZMGOB1mAiWrU7IdTXI4VjHjAEBjZECK4cu5nQbMjrnToHhYXJSnTy1I+J7XK44HRXQ66ZtmByMJOcRH0hnNy2dRNhSmkiRBOPvxszWmAgVtGxEDEaIOPqavpKBOwnE7zuSEyVFghUqITkfeu2GFwx0YWBIfWRlkpzFcaXqeNKVji1oJyeCygZwpR+QfBsr8IUor9Ib2vT1/pEGICK6ZV0d5L/nfS9cQ0ZgRUtjPlQQQoXpdzA3+KB2uok/WQBgLGV/4W8IIe7RTAC57TVOHPUEn8Io2GBykdekAPN3W//8me7zdGw0m6dCRPzkv5flhWYF2ZrHkFMMgNXzE6FG0heNCmq8NDOTcWk0QpC4jpQ3urj91Di3fDVEvcLE5JXlUbdBuQIOXs+lIXI6+9KkwxLO5T5Q4tAi6TR0jJNGy9Mn3wK90Sr+9xTcWgO03YzsD4eZvWvX3m/THzmZRUdwjAgRmew8AOe6CjyLyaiKqAxCr6pNuV0N9HqVwQ/7NlsY9bL0TDeqLlNeCo/o5RBE7FseUzHMQUxr/EngucQnSZMZMVm5sjM7Klifu11KNyHOcLMdu3a1TDzzUxkIQXcQ+C0ig144Zl9D2yJ8HCqcI3q0W6f+/prpYH6wlO7w2BPZuwwmcXRO2NK3DiM5t/75Wdq01UBdP92lpeL9/W9N49EC0ar5EDoGqOh3RhA/YqAAwJGCczAvkJ2pD8xNg5n32CsC5b+5Fcwz1/nAd4NxvWgnmNiMT2YMmOifilSv9Bu5jTHFKloUGbqmbrma/WTCfxWz/LcA2UZRwfjm4Vpqj6UkdfyqFTGlFhLfFPDsAefMM/Js62Sa7s/EOTk5avhu9zMHQufDXUoF42EkWCKvhx8AG9oFysGoU1w3yhKW1srX+1OltpfJzDXDm1VVNNGu0rn5k8YKo2p9vgibiuB49diGvxGQkGsj0C4JYLGp+KrtSNuKrRM8JEYaMviegHPwC+1m0Jw99qERxGi5PEwWLdvPVBjjsCIvaF1hNPgHCEnXBNaavV2YGt8lkCMQUw7Cw+kXr7WD8UEp4papo1g5LlDzY0dtKFu6un8ZRtBrZnqgkF01Nd93gPu81z+4FyAk861cz4Yyq18giMbpFt6jGmftOqGmfxJjo/NJL38vRdDcEN4MxCsB1uaYIPRBJeG5PpVjp7MG5Pl4Ls82g0xdPgzIDhltw8i4DMDeYIJFTWnbFLdnqhPdTCGx8oumqB34isiGOL4uuxpFF+VSzFV+JaZ6Ew0IHviH3QxvkY4fEijYBgQnQohYg5alJgyJHqE6+7tDOIwEUVIUnasVFmpty7SW5BdBpkYRXx1aAZuJBgYBLQyBATiKN8ARDTpbO+xPiufDDxtOBO/IEyQCUhbwn+BKY+kS5JkjhNg0WBhZyfRQ/wIvoG8PYxBdo+r0bMs9ROHxeA1+RA7W7ycD0H+1MNZpRXmi/MwjVdQR74SPThq4PxoIwzkx7Oay0qOY1l6XMxqJtTFmJ7UTYiCnQk/AMnWPm9hVm3VQUo3dCZ6xvRWCBGTE6dmpjeTZkfadD4mxiIEaRtNFAbWINwV89iN2MdJwPpAzKeDCScQsBTy3xEzo35VvrhHS8I48e8h7Yj7sz72qxrsGVUHs5feaIJfRlGU/LJdylQL9LghTHe6IxJk/IMss4+phhbOeBD76Fa0m0JOUEMjh5cD6y1pK0Kuf/QT/5+x5GPrGpIkk9r2IJrDMbEBgP7ekYCgRxPIUiBSmiiIPgJp+ZxgzBHl5RkDxiDmZzrjMHi8tDT62binjbwaRm5x+nlL+nAycLVNydH4uGyetFO67XtIoF3G9YWYLCeqzFqOP8zo9MdAWMDGY5N/QEIBaI2ZoKViAJyhGJqaJx/a0f2bP38xWsKs4Ayhf/qRnd0nEr/lxfh3WEFqrCJSt+KHBqkvj0+VM6RkNZFxRyNEg4OhfJNzcXI3xqxuhTiPBUaChE7G9IRxPZSIyqNJb45hvBBGZ6E3mOUQS1I3R3sHBEoQILBUu2gT0gmDPxKG3zcizO8Nw/an33y1fNVoAJ/q2/Pn37k4z6AVjEjQzXRU8GogafBxrRV5UUxdylOuNj+1Z7J7cNua9MOq4IfEGAtOYTq8GeKAgRNAdFm02cejZeMfuSHjm2DyYPAPQUWQQLjLvmwbJ63Ki5N2xgDT5cngLXURYHXtWEKFhKmhhdR/tOJWAfMDhBf4NYkR9fr+Y0WgmhB3rfurHxwqs8kvf25fVn5trjEg5ttYNOnrshpPf/7isw/VSlCr3p55dHsCHG7q/uSbbxajZRxpJ0G1jaFmAroeWJXmpmdivMepFEMUaGGeitlMH7nWjoEwFjR7mDLhqw8HfPCi6ZL2bsY5AlZaoqRV1kDo5OMo5iP94p3D6X7CJq/5uSC/RrDbmO/zUMfguFKy9vnSRo+NxgSfsa0cpie0YmVCczC9jYbhsILOAhx4yTz7YUerXSPKTGWUAsMzdbdS16KUOZNcBPaaUz0s5Av2w0fDt/eXp/41TFOXdEUu868AUBkk6GmsOBlT72UsYphXp21PpA2P5vdk/DjRTm29kTrSiDOdy8WzmwE5v1lwsKp4LIqKtZmD+3auDzz4CLe4eklaGnfzpNGi2+UjTCBguhTrikANH9BI+c4cp22Dn4BRedXeXN9/9E2ce1xCVO6kL7ikvSXgVPsHkPUQq4GVxD1SNF4IeOpc0CoA5pukmxtv7VXLyPc/wbHk93L8qO+GDW4/naWLJG1mCxx4ATWEAXGo6KKFXGN+C3PArjoaQuJ52MRiNki/JQ2n90XL3hNpXzBAQfuYt6jvONmaKaIk2wiUuYpGheOulQ60OfxvSN7ytvM97QAYnQ9BvJ1O3BnCdyvAgnQEZFy1Miar0VXd+9lq5IOYnDhn829i2qI54STNaRWCRzxrQ9RkaHKvTlkiaX8QHwFxgLSdVoGJbGUIHeSmM6TleKkPIBTMFAakpJ20EcE3gCAA+8FlDMcBOPbkwIqZjGO4CWb5pwEgCjeCISI2YncmTIFIymzPU/GbwugwkZ2JVo1ZhKlnJnGLMjpLW0eTQvNGk7UyJiQB2iyD5wOBYeJUj2kQ4wqsTJwtsddzXj8T5242cMiAWETrxil8W5gOjAQJzIDkBwF2lku3wJGk7EgnYWJIWlY/goN+t9pkKpqrU9kjjimIGhyiIUGI+YIpNeFWhQFcG+TFdEELxVyzY2u0FiHMk+NrM2kTkTzPK+5WqmeSYIinpiPth5l5IyrqNSH0FWcpWsUao5nc1Y6kNyZMXx1lrGEASUwYPsQQMduS5f2XY8qsfgyicTa2MEbSCU75AAfSjAcqfPG+aE1NTOZCyEO51N5XYmI9FoJKejOe12eFzoWMnU3xabJ1Ct8x455aWZgGyAUjoW6kOuPJn5KqUn8oCFGEwIYDaiFopCphclaGMM9UPRE7WgOrEo1R7Th9bqbKMBa1B5FnllZusi7mBkMvLa0PKRVTb75jWMx/zCnnb/2IKcMcVX1SJf6B8kZwESLpBShVR4yTPLXrSsYJCRacMBMEEAw4R1RSv7SQJ83gd17bX0ybb43pD06eTf0SMiTzC8HElCDOSzPepCkEGZg5gwl43UVxCphOrS5gSvP52Sd2Zew3nHYxKxdFqDcPzU1jXYR3wo5tRIz1RyLQafP5RNjW78a6Pdos6DAP1Z/GAeHgn0QpK46WBQW2DhLyBIyZdtWPQCKYJCK0I3NsRzRGGHsMuV6WxrJlOEewVmMmAE4Z3BAiIAQvWIRgjD0cE/ZbiXZvLn35M48Ehvk2bQHLGjdpMwbFisYBxvIHi2JOUh5YGmd5XLACL7/8qSHHXGg8DO+rktLmJy+40KHPjQu4yngwLipB8immzdn7/JQtAwxWDcSWW+XT+hjunP9O3Wlwh21RLPoYGK+hbP0Fp+sr/WylG8blauY53KoOQgU8nxVmDwRfGjtWPg1Ha23uql5d93D6/cvZhw6DYFzM+USlWeYPTQv/Iu9osWmawKnqrY3VTlCpLHOe/1ewTX1aYe15e5Ynyu8rBYQF+IDJJcHtaOr8Ulb5fSs+TW/FLwmDxMpC6FK2emEOCbHGK06SqR9smAKNNTgQTjXf0WOuILTm8sBYMUvuzC4U+7Io6vPZY5AZ+MvP7UvYin3dr3zh8e6Ln94bOD6YbWN2Vjyvh8K02dCY8DAc4K2fqkF92wlOn9yb+FgRFLmnEMr4O8JLzIU1ztLQoR3aXMAAkNwQ7mtc9c+lK3hlPDlX4gCNSsGBoWep+KltS1IMShCkwjEHgJ52ZFKvKwdlu1wjEAYMx2naGkCBIGajzrNlhFhDnKfPxaR2TsWTlwGMCBcDkZUgzEUC++Fa4TZxmEiQfE1Ez8ZgkZBpIRDQ770ZSSsICYEg4b5zbLq0IEsWia1jJ+4Qn2gSTHuSIF+mQ4kgPZ7YT8yDE1mWSBKguuboaxCdjgYs8zq0NczIubZrvCWpVr3MJNgdKXDLhjAccYCdsoIu6TCFVr/ZpuVCNAfxys1EDIFNW7VZ2ATmDP5WEPvmMHNMduvDoKXIgut4IoXzuUpTu0cjGSBgCMPSEOTZMCRMZ3syAL/72oGo38crINk7B0+GmKzp1t6OH1fqsDYaOx2zJitwzl440y0OMUJ0N4eZAr9F2bvKBNmaJcps1mIWk0CupG7vhBnkhG7gCeXAbwenbuAakDbWBRM+QOqMeEB09qQ6H0aODxXHeIix7P6ZcALq0R5B7LQU20IEMHTHYjbZGQ3VtmjTKt5R1Nj8r+6GceOf5keLB0akJsErqWkxH1YGYiBPheisv4Kxig9a6m/yz0aLM54xd/iD6TK18qkyfoxbjFuGbbRDTZqyug4TkEfdtYw7iIF5TpiLYlhC5BExsFm9Yk2Z8cRw4g8mWCSJTBBSJj++Z8JDLF5yrfYO3L5xsluWlXjF0AVG20PwTXpRrw9mRSQfsAnm6MBKWfvib/CrcSg1id+I9uZPvvFqIfKa3PmDMDQEkIbkUOd2hIDkBlJhtsGYItDhGStfaSBBhHIwnUkPcTJ9kzaNf75FhdBBGTZWTAps5NJqoQv9o54pyxtjuipSaVNOTJcVKbmvHSdeRNdtqdRzDukopIWJcowGp2BwEJgUnDIaQcU48mNUZwi2pMucMXAVtLQndBmABUPjsFW6si1YwVkfdTSCbUjWiCpzLdMM/74b8dEZC8JenPKtPkOMBarl6HsqplxzZUNwhsCk9hQ8lEUoGD31XxHNGYHrdNKZa9qwKs7dmQa1KokgQvtpZRLGkNC4KNupEBJvRitnrK+KhvO57PuFGTK3W7913avvn8x4+1b3W196upih8WiRmmYngmbG67rxzIsw8194+qHSIH3rtcOlVbRa+Gvff7fy1r/GW/VHAGPMYKaNv0C4ngMcXAxHDQ7HvhtMbyBqLOoPDIw8hnvPlmVOqbN3mJ78r3zlYQApK8OgfvJK0jxXfv712idJHVJWfV0nb3NXNxtSQ5pKOPenfWhu/cGffq+I7sMJwGnbEMEdwas26056OxnQgKU6tR+csB1CBKifyuV/HXI0/sbD7P/933q++7u/9JnucPxvv/XqgcSqOlJ+Ttqq7WBpHC7OLgvy5p85E4Fv0DCtjhCKJsKP8q3a5g8QDUeVm2etfFCZP4Y2w70tAQjlJi9omd4KfXo7igD5bUh9t0co257x+FhoBitCSFLSR9MeBk5/0AIvz3ijNebDRaOkQ/gTlqY/JrzSDKZN5i/3BBoz9W8NiGCSdloYJNDq7i3jwXE6tOu+mhhVp0JDFh7apOr1JzcsS//4v/j54gHgLK3FOAWUJTyfDe20EImrBEUFjR/Bw/iSpuax7GQq84JGbiKk1MMkGmDmwpj+SY6PrUn6XDhIxO58JjIJf0MIpEphRGgGmDoMEAR5gl9POuLtQ6dLU2KVmcmkHbhV5ipEf0XsdZ4xxawIxzrBrymIlu8PCZvfiSjBNC2QLcdRE9hgJA1wxKuYNyF0nGotL9dhpVrNjMKRMl0dDaEWFp5xgj8IRizUOOe2mgfBoAVB2KQlDSI2pIWpEE2rVg7H8ZTWA5JjJhjaS2Jxzawk5g9JQggD0px7nLpl6xgcBFnvIqaPP7S5NCZMQu5pZc5E8yMwIf8qB00HqV3bZgJP2guaPYODZoczLgQ1fSFOuakjmKgfhtQyeCYNcZX4GmDyqMDf2H88jMlE+cu8dfhUIfM0J0ST+j3SSSQtRFUMJ5o8ZqkWADQmxzANpH2rKoQfoI2gzl4euIMV/xqaA86eD+/aUtKZ1RYceQ3W2jcuDCa40EhYsm/YKpNfUzlTR+skzyNhePmFLMk4AFNmrOshPGsSBJIpR31p6JhsOdhj5GikNgcxYCw9p8kgIXKGND8gegQNzDjvG2dWH0FcVovcjF+R40wctREcKnyMk/E7nZWb+hlSQOCWhvjxIcHM74ztnwbtgKW9tI6BS/ktZG6kK0r7R3PCnwYy5pOHoTRGmB4hGEjL5PeDHCwRLuIVuA02+EYUYQRHO5s/xoN5J/3nP7G3MT5BaBggS81ppzClFXwwn0H6GDbj2fgUPoNZupjy1PlSfuYIOBIkzCdw5ONEE0RbgClwtiKrnuVdbWKd+YW5MbdKqg7BMp4IK2BsNU79goiZoOEPwgcETMNh7oEZODiezdJtmkRzXniBJyN5MvcKgqodoFCwy3vfuParY+7sbmD32it3DcnWVeXJvFragNRz56a1+SU2T/4xjfNZYxojoNEm0OrS0mm7cmmCMJ8c84150rx6kMRLMxQY0HAa03BSmefzHSZaXC5aqtI8Jb/zwR+bY/4Hh+ngBARYf/MbMS+YQcYyjmjzir3JawxXxaFLX5mHAhZ+K0vd+VmS8jHftFHlxIwJqi8DK0Q99wW3lAFkeeSqhpg541CFIu5JC8+bA+APhpgEh2+l815+3uE5inHwrPJv7+qD/FGP6sekb+f2rMrLPIXv1WEY+9VbeVmaJJmnTPNXGcNRV6mTccc89IOETKBJrz0Xmbq1PZ/CM2iadlkk9I3EoFKuQ1to3u3FR6PCLP7sY7uLvmCUhST40qcejmlza1KnPpkrcHgxgakX5t61H/piLlzKuPCDG9TR3C8NkwI9SaHVD/25OuIjnre+8on0ra4NtpVRahOhJjj2ZOjHO9HovJD2vxaLDOGfBYYFhUBJSALbxrQFz+abOzU2IlAmHaZCXVtbYq4LDSPcaJM26/eaQ0kHH/PTRH/l9/9k30F0oo7UUd/qJ3VXwfwtYf1XP/tYMcLwou/AH01X5q5or2jwnnl0R2n8fiYbBj8af0hj2gKxgTF1ViNH6782lmrsgpHn/Tt46KemSSIFvRuTlUrsi1rXqgjctZUvvOdNfKvIxMDBdZLe9z2wYW5A0ApwsGW6KCkxwL92PaujQmx2bopvTrQvGBje/A/vmuxeeTtOkOnEi0EIyxKJ1wojfjaAMxMHypHkvz2msPezEkDniB+0e8vaIM/zGdTRfKSipM5vHTgWwt1WMdzJ6qP1QXSXMhhoL64FGe2NxmZ9pIypoydCtJojG+nlbt7rKBNpXZbhm6QkU+YxxJJJiO/C1PmZDIDF4XTDiKXuo7kWQ2f6Ik1WCHAIFORrRZzgkBcycXdtSGTqOHNShRsu4/HLGQnTwZHzcpAZc+KJ+KtgJpjeSCXPPrmruzyb1X+Bv20TrEyDqOz/ZSuTgLPgQ8Wjfhyh1dmKQquPJlP+WJy5+edAaTNxWr8bJgADw8TECT+0shDpUw9vC3KZDmJN6IMwi+qDqRyPlmtFJjazG6YEY3QkNvKNcSrfuDYr5lKWpdPj0ZaNpq8ezIBGeK8n5tN4+sfqL0wojSON3vJ+DzLtY1Iw6TB6d0JMMDmkdc6WEMmySPmkXUgGnM5GqtiSkBTgI8QDGCLapCNMEDhgulYstX8fM0iLeE3KEsmcqhlDKio6h/vrt7IFSjCniYW5QNhms12I6ONEM6Y6TNWFjJE33z/WPZRdyffsiENk2rT/yNnS7I2l3QeOnStBYptJnzI3ZEuYazeulUkmrv8F38UZB+D54PZ1Nd7fzcpMMKElJV3ZpoZmFJP8Q49+5hdSCCLQdgjrxThpC6b55KPPhKG+1b178HhMzS28AiRUKmxjOe00vsQ4GpCdvDCgmCIHLRkkyZRjLmEGECN+YJgW2t3hW0hQ/vV9yjV3MG60zqRD6X1PA23cQlvKI2xWf2lPDtfmOeaJD9Xbh04EQT5U33KEPhj/p9feO1rCljyNjUKR+V5+ub3n8A6azKt29BdOrT7p57gMnJmJo37MpcmwNJSf3Lslms7J7vVoc8bDmIvuT2iwCTet5d27CSoaYrMpfnLH4kunPdvDVK1NIFfO3JMR+DBOxhk/O0yjvQd3ZW/GW2H2p2hqM3Yxn6+9l6CIqbi4U+qEuafl2p55CQcSbEjo2gFnXLrybsbh5e5LWfn28I5NgVf8vZY27SdmjoB6/frS7rd/6ZnyRXs5K+d+McToqWwo+5eR8EvYzKAeYAMwaFeyr35DyBrBasAyZxz6NOBp/ZWvB8ZEzC31TncUMZS2GK9o2mVaeTvnW300HNUHGQ/GpDIXMlM1hZNYmbV4wYPqWwSwMXVDPvd1ef+YqakVJmjwd9/4IA7uH5TLxJ4s7nk8mtu90bBYgMQcSHNdx1C/ZIqo/9N/+GslKIGx/j8ZywF6Q2tL0HvuyQe6z0aBAM++Grzw3QSOfS1nztDMqkyw2l3CfbSGBA1CBHcL86KW92ccYHgJCNXIlK1N+ru1eb5S7Sp/Ay9p7j3akyG1dzZ2ZgA9EgbpcHDmX7x+uHssjAcfJj/O31xHKs5f5nULcAyfJJf81mS8C12hDwmbaAq84GzbMfMVfmBBgMNsI1O4IWnvP+6vL5zBfUUjCczgBK7gQqkBt3jnzIKwPjHlMP+YfjSVIIv5PZrf/vjBWuwAZ6qLcdOEC6BqY/D+8u+v3w+7X/J7OX7YS88Hn6Sns0LI8nSaBat+SMbi1dQO7cF5djzGTZMsDRAaBwBkY38sKzdoniCBK1l2LDItqQZhBCiNgjh1kNVlpxKEjdYCU0J1ijhaTnsynCnCbGCbAAgfRGRF1Y2spiKRMh3wW+EzwJzEl0I0aFIFlSvH2zNxgi6/gHT26ZhspoOwaAh0MgZu9YpsvhqC+PSjuwtZl3q8OOu2coAmzf5hyiE9rAxxY0+ldSg/i3QgJkCZZR4IkX43GzrS/GBIDpy4EOR/pmzi7L8mHY0GBLc+hP9CGDHaFZG6IUwmJNq221nFIEbT6PJo2jJoEHISpUEEju9noGyOJgY3zzRGG2A5Mgf6/R+cipmT83f8KKKBcUBsmD4MrLZrD+ZENF9MK8LARLXvgU3h7m9V/JZnn9xbSEpEcWYPPkcTGdCYLH4UJ89GAxRksj8rUOzTRHo2Zpj4MLqWEDOfsX3j6iEfSPJ20mEoEe4LiW1E2sGccVJXB6YQY824mIqmxSRFZEho9X32GeO/dS51115hBYpZCwPFl4jPGKSmHph4bQdjdn34oPUjSSnEI8wSuIMfgoPYg/GaaD5pERaFieHYS8sJQcDFNASQAyoAqdA4rIzj6PWUuwJDmPwwcNoHyWMwhJ5w35bsUtG34I0WSCD+4jbNHf1EhzQWHnlcByEFcqHlPBhtBkbu3TAYCKJPECBzs0lyyCN/QI6dtBCYw6bpLT+PHsuaE+awbzFgzvqvnFcDNDAxX6Br6ZyrL6RVsb5uVWZfjn5rSCuzOuU0hgnYUqPcq4tPzW9z3Rg5GK0RzdG7h08EKU63tMlP/UqgybXy1aeKHYCSsyq0NudiwaGJnm+JOerREEyMGZ80Y+0T0fKOrxypZdO0Y3eSNyJoDqizxRB3syO9fib4cBK2Mldp9p2j+RK242oQPxywKsw638bzMdXa363MahFuHgyxgkMFZKW1RKzVycIVW+YYM3Ac36wzwX36Vvk0gh+EIBBKaJA44GIDxUIzBpNNCRckchpkGtaX3spGudGKPPv47vK5UhfwchTscy6mIuW7d9D+6/PSduS5e/XznbSStZRJk+d+vl04ZuQDLtJ5p38r/3qQd4GtNubTSulbDJrxo+w2jpqWtfo3eTnQGuPDrX6QdjhcMfXWkXzM9VYuAdMiipmYxE9GuJnKvL9WG2ZjVr+aTYe1yaE+5tMX4rPGn8k4hevghVpRFhhggIf2wv3b4q7xmfjuPk/jEZonT7tL6C/zBMyG9rvXHuYrq7FZTeACR4Nfg4G2gF/7V82tyg3wHs7g5FrFh2cLr31fIMr7sxnnb6btL4R59jsdVwl+bXfj37Y8tAP9wLT5Rn3hBGMRzja+aM/hG+3SxjJ/Z+zB+3AlLdVXvvtOjetqUKqlfphOdRoOjOnzT+5Oe+EV9N5PUOrQrsCCkDk4wBsj/GN1OQZOGvNlXYK8ipv1mcd2RtO3o/v0vm0VZ4p/H4Gt6u+jGndZZBN+4qemSeJzQY1rwIlNxFRQq8pKL7GoVlVhAvgksIPrEXu82YMs9K+YHVIyGBnUW9a3FUYceOW5KgRo1Wik+xA6DR9FgIIE90ZrZYUX5IjAX09HbZxcX6YO+4xB2stG1kSzEwYgREZwN/sb2QQWd7l4cWLGBGA3bZ4brt7AtwWGgTQawr4+DBaVtgjAJESdtC6MC33sybNtR+9UrxDjmlVpU+qE4HIC25x8N+WlfKkbr14XlZn0uKQ0ASKDK2cyzAZnTjF1Dh85FdNb9nWLFgoCtdEhe/DtO1mqGgYOoyhwZXeHY+2qEPxE40bMAsPpEDwqdZMUSRO6oGCXQb1qcjTpszt96kLV+ljUwJA+eDI7DhOIjxhNgXd3M9j4yjC/XYpm63zggLhjSCbWIOTR7OSHEVicOlkByM58OMEjN2UZvkCN0tDq8BMS9+WBRIzdGcf4r3znTMISNJ8XfQe2mEHITCRqDDcn8VNnbRBqGT8n2YSViDR/5TqEFN+TEJnxNWFq0/9L04+QDLMoh/XLmai301c0g2XWidOtPfY49W6Nn5ytW1ALGtCALm2zEi2+P2H4MF6HTyVMRBABZmU6jA+/NgyYQJ9nM7bXxI9saTQAa1eb3DbFDYHMl+vC7K+OhhCzhekSGyuK1DBXMe0Frp7xeXJv4i9ehujHVBIkiBExuUejQXty77buRJB1Jko9hzARW4j/xu0bpTEopjGEzveYGmkNBEjU5C8Sl8eQDOdthMPYk0d9k2ekyAGBQvCFqPM+n7Q80n8YF8jer33XkHkxXamXMo338lPJbT5P2yy4AJeGKBFSCFSd1a0EDvnluXyL2IaxIOENBE3+6m7+FBJMxtJS+1eIj4JNQ6rahLA4MGLywHTmaf41GGBwi3AiCAFVsqr2+Ea78knVjZYxZLnqKsL74Qhmj+3Z2E0EbxCerDo8dDymxMgSYDYRPHEtU/BYYmyZAxPRLB2KAznTbWlXUtCKaMRtnGy/PoKhg5tAiw3HCbsxkszKa6NlcpiHhCsaaY7fGqJv4QXmIGMoozwPs/gh/nuESjiWX6C2vRoNE20oPPv5px4oAccCAdrf1aPZaijlazc8vSMagz/L5qsHU+avfO7R7jvRePzgvePVhhqngU1znAY3falfMckYg7Y4RqHDGNEV6gBfOjyX9v+l7T6eN7+y+74/jc4554zUjTQABjOYxKGGIilSYeWS7bKqrIX/Aq1cpR233nnhlatkSVZZKm/EEiUmM3M4Q04AMMAgNEKju9HonMwViO4AAEAASURBVHMAGu336377AWcgcgqcKn2BXz/pG24495zPibd/62nj3An6Msbd952rg17RuvPN+aCLrphfh5+hI7M6rp8ue/AecH4A9H3/4Bi3nn/o1WdtmNMZpQRNoh/P972+Hc7roHDnb33nzU8V75+4zWj7ULYS+oSr+wiyN+dcaOgNSLbG6spsWcA6O2n0sbRCyFtm/6hxFlOjttMf//DtFMdzQ3ag0UIwu/+0Fqw/ChKQdHnw4Kng6nCptsbmIFKfHGjpwZsxjtOHT7+a/zTG4dOxGZc8uK5BcA8ATTww0Gju8LT9yaPHylh+pGzNbcXm2ehdeZXIKDpIMVgenxryr/CKQAg+4K7GhBvY2hy04Z/PHPN5mX+NNwg94B1C/3cbY/zLmlO0kytbfO+0dq3p1lC0yLo9QFwPNg+sSuYXn96xeXGB+FtSQCnQajPeHvGER4vVkgT2H//kR/PHf+7Xz21JUqfD9gmCu1TWZXKzRxvCMTiABhAgmwAxMt9Bm7QqZkTmZPE1Gquq9DDd1UwBiq6xMS7LgAUptVoRSYBAEUeL1sABNYoWsgwt4QbqPv4uh4QtdM/zXNYJNXIUe1zQ95Cw/dm2BjpYXxRHFHTKJVSXhsZ+/PTlBJOA2jsBgFUDhRLSNDgxG9tzX+mfopAAQd0OYHVe7UUo0cgQUjebaIXe9mZ6l8n0VnE/LGFMviMmIcCzqaDpbZnpbdGiSrVMMYRG0N3LhIkRiNdgOmRmtLfVloAdDZR7hMC2aNXkEQtj/NYH7BDacD81pgJxubruthCUJKDpyNC7m6lfwDANlAaLAG0kuyD3z1ef3DXbu79NjIslYx42H7SKN2LGUD5fsFo/BP3STOnrVio8mAUlCxdiFrf1zef2jdRmpk/CeW7GXplJd+umlZn/j0UP1UiqHaxuQIWUc6nRSxI04qtU07YdiIJxV/vMoqMP4rpYFwlVRSTR0Y1cJQQKq4L+sgSoh8VtyyfO6nG6rC7XYkLcHsZ0ZRampx/eNOb7w9q6NiBruxF9Y9kEltARq5RgbcG1QOCdni3IcJS3CHBuWLNmdih3mb6KLeKeBRCIjpOBQ5Yn7hrtYBnUticO7BgV2a/WdhmeRMIQKmmmV1vUf9nu8IQ3YYKBSm4Yv9d3gtMzCJn+H8+dAmRp+pPAMj6YDcZB0GAug0Z/gm/5HmNzeI7f59IF0HG4n+f087gHWvHnPN8bc+3CxLFu9/Msz3ZPWuW4b78SSnNmr08O17rP9JwETdfhE4QI1wZBzZpobYu16+Hj+c631seYdD5LiT7TLNGH9aOYp7boMh7lcB/NR7OCabUPI1Xo0Zra3ivLtfbvLZbraJY8RUTxFDxI2YPjzSkrOu2ZtRlvcF+u9Y2VoQBU8UJrQvYfK6a1SrFEM9ousw3A5Gro44hBU1ds0siVIKj4bevzduPLQolurV9ZQOKWKGkDkDROLG2KgMqaXdZ9ZTChbwkC5kS27nh+1mjxHMD6H7WR847qbHw1LZ51Vn8AE2PjwL+5+4yfMTY2c4DadA26mk6caGdc4/vO9bsno70BBpoL32FwmoQXz+kIjRCE8+vxv3Fi/45r+30cSO7BPfTbAxTcdY77fjYmyTV2CUBb433noAFCeaIJoE07xs/D63Ci9eZ2U+vdtjXT2K/IqmfnBMqk+SLr5vTvdzQ76LH7WQ9AMr4m7hYN8p7YVuWXv/T42JuPwj5VxY5/1z/jat14He+7D8A0LEwB4qspYQLAHZ5D0dLu8efL3szHc/46fvRbhy4+6OZff35w8RTr6GZTr7VfnOJbH5yZfe/Qsdn3Ckw/Fr9HY5NVsXU9eMEEOmUbU1rJMOuTMr8gJbXuzH77O6+Pe80fOrckGdf5dwLG//6XDox7k/vWJL6EZ7D2T6ETk3JhjNAUQhi01Xo3XnCBVU6+kCV444iLcp/mBg+nYDxTtXYbJ//b//K9v7Ml6XODpF968WCDQeuXtiy2AXIrtbKOMmGylij7jnBpWIhQ4NuIW2hkCX0CHCDQcL51vzHvsarMqvxrU7wVBTmrLEtQ3ShuBlInrNVkWZZmzzLCD6ktzKDOFUCMDV5KwGAQtDcBkbK9MDEMRg0bla+P91xVRzGL5zOrq+zMnSVl0YBrM2Yjjkn8DoKTWjtcH/Upfpiwa4PbNMqbxayIsRHXA6AIkLaIMGvEdCOGJVVXuxe3OzhCwnC5QI6dVEOFhphPuIlVruCj7vFJ2vaN2xFE/RFnhaQEjArmrmtDqCNGAteYypYbdaH6DcPnUkE8wCl+clFQfO4ejJwQv/2RPc4Cef22ItDHnDnFlGX+rdHH06Kjv8F4BNKOMejBTMkAIjAmTghDP30x61MxQoibdQuR8i2fKntQ37YFLJmkFTRUTO9+1rzFCxXoXFu7rg03hHYw5fKL9/bBXAUWKlNgwYyMtYDF4zF4VisFKQXwArtrYmCr8pmrd6RD6mkBIxY7q6c2CLoGTO4ntO53vyXRK0uFtiqjcLhimh6s7pYDvaj+XZMCnwI7p/Zxi07a9bQlj2DO/G7du7pSCUUg7GYMclvuzSMVMRXH9kx1bbj0tNu9RmBkJu2bgSMuaYVMtxRormSGPQxjPbmUztSm860jFNC2NIFjxVnNzRBCfTd+07cah3F6xfwJkPG5flp/GNNc0BkLWlesuHMmAKXjkcoYJ+eypAEbznX9AFI9z30BG+f43h+g6zyAAj+gAM2BGSGBkTnPM7Tdc53vz+F1EqT6ic119E/TNw59ddBMjZ9nOHyLvvtirLNJuE/t8/toQ79jkPO1oBlr0u63VqdKQVrnABr4lnaIUfnlLz+We56bX8xjikVu7aUBab+LF1SeggY9ArJ7jiy2odDFR9AvpUemK+vCUBDDdMcqD0HZeyohubV51ssRc9f1tGFryD3NH3AGtFFCgX58kcK2tHGeaHoa04PFkTjXb8bBeOA9LOHsA4/v2z7aABTot7WwOD7IKoHv2fbnsepdKYeC9v7+lw8Oni1BZSR9dA/HNP7my/w/sNB5mMPrg/fT2dN8DtqY/+61i/1unt3PWA6Q8+AZ7us7czhoe9CLC4Hy6TePYd1znnv1Mt5bS3OQ9F+52zpnCXqNbud0NIGZ1kvfD+HbmDuMIXlEsLq3w9hZR+bhfLx9bAVT7JHnKMqrPZSVkWjQKwVA64Ai9DPWSfel1N4NWJORQg6UkHmueM9/8vWn2nZk//gsGH9kbD0YA8orrDjGsnsAkmILueTsnUkJN4baba2K5xTnNNZJ7+ev1vr8N++HxeXB6wg36L7GfYy99er5D/5cx82MzigKLxUD+FdvHJ1J9EkkfGrkQL9CJxz4nDnxHKD8D4p9Q1PjaFyNifH5dJD7Dg/9tejP3DKa8BRRiM0bJQk9cu1ZMw5jAlt4hvcsUACVYHSKKUs+F5vyKgAYHu8ZDDH6BHj+6//8V39nkDQFJYwm/Ox/aGgL2t1aqjT3h+WpvsQPChTl6xaUff6DNO4axYSM4E4L6G4ypfRLK9y4btnshz8ueK7FqTNcZbKXDMZH2R+vxJgExiJiTFimFGElzsgeWkOrDHSwTAE+jXjXp/3nnhD7wYrA4iBFfZNA4c6Ya/a0Omh0e0LnRBMvYO1OqZovHy5lsnICT+zfNVJzpevfqdzzhTYyVZX6+XzMWPzYb+1WAZkBFgx2WxtdLitA+3bAiNZm8dEiaRf7qkp9M9M7y5NYKRYYB5QO7N2+UyHHtDdAJ8ndhpUn6muxSYG4NatzDy0IyFwpXqtrEIHFgOE73z1URI7qxmeMQraQmC33xAzPpH1oD6YrtkcdGC49lpodMXfp/ZsTGBfbyJXFCfA9UQ2jD9v7zfVAJ3/wosARq4KFANQQBPagunm7uLLAgYBnFkWxEDIcxejI+EGwX6/+iDlQ12ZLljNxH+KULl27ONx/exNMFhZ3K00esGWlunrzStdVWbZ2irVY2Xhfo51nzQGC70R/lxsPgohwWDCCYK91D9lIG2tDzKv52rGRZW2qV7M7QAvUL6ovV6MlVsZz968Pa5V9/0iTkcHVfYcm0ncKeyoiuPiumiNZgFqAH2XlY5K2ZcPxtPdVWYgsULWo7jY/NNWdaejvBdAgWgBfMDbwv2X9puazmk4BMwxYkUSxJ557MWvg2M8sa5zihLikOTeHLHFbA5uycD5IsFkr1hS6mDJF1YyZ0mfRu4y/oYl5H2OYCxcc3+8EsoM8oLlPomcCXsWVDgCBoQH3gwk/eJZ7ze87KUm1rzYQPn7DbD1Am11n/Q9G39gCddM9PbWj7xw+eb5r3ce33mOSrnWTITwTSg+aPa4BBtyfYLu3yF6S00bHwA+riz76AxAmQfZQykgbc6cQsOygNYLbs/Ehqcsnslra0kP8kOKnYn64qHxWFsPek6yJRo+FE+CiVInloORcbiPacykkyn6Iz3xoIUva/WisEiPxvtMBKGDHRrksSaxKlCUCgHWcoD4aaN7XusDgudhYvwljsXWKnLJAsyoD1WqacR8MoFCbCKQ/+t6bub4vz76WheipClNKaGgoRz8BTdv5cNexdP/TX35+9p0fvT/7w4TZV57eN7KIfue7bwxlEEAZYKYpmGZqogtzgp7mx4Mp+vS7IXD7Eg2gDfM8xnlcMlmA+abMzQAS3d3rwsbRg+aKwfitaz3be2Mxf65bTb/MWzG9Tt//9Hc+oVnXDvDR+A/wZVC6uWu0c6IF1oilI/nII103eR9WzbYlhw4XurGvuDJAifxBo4DubWEcjS0LNXc0wazNKtmvxRtbPyM7s+ehT2OjfM3B9iV96pHds3/+j786ykP8Rdbj71RWQCKMcbCc3Geyfk3rZ25hAgbwv/nRqWOs5p/nr/pHhpin8ef9+GJ+hlejHCj5ya8efO2X+VhfnF0fwHpT/XuuDNOJPoCprOGDb+bBCbQAdQocj/X72Xv2WZvc12FegBg8biigAaVF0bUafotMQrKdEg8jZEAbABSNGRuKmPE2d+6qJMyguT5RfiaQjQbdJhqL5ig1P8+x8Dc6ftaF88BtdXsEbGPqqg0TviZKxonJj/4GozOBBLmJY6aV9XX2UqbMJh6gkQa/q/RaDGNRWWv8iFvaHwoDImylCUPjikSKK2GZYVUyKdA4IMTyxLxtAAReNoZjk9Gh6UXAUrAbpZh3bqrcLlwoRKf6FuJrbGAJhLE2MV8i4qmKcG4WAq4bmiOA4d2yafj8AR6I/0LuH8HTgsfeaeHQDsThXIhJyZoa7jeLqOuBBWmMLD5iBzDp+7m1Rlpp/UUkQ+ghrPpLaKnX9ElWNdWZBYwzdWL8E4Ke3IkQvj4ZS5YSBMHlI/CaUNFOTMGYMu/qM4HRMKUdiM1iMckik4VL4Tx9ZRUUQwHt64exQ2xWT6Q4BNLVwMVwRRU/NoLVi88xfrIMgCGxXMZP+jIi1n6FLAGU42nV6HlPAJLmxUzL+sBixyVwq8VGeDyyc8voA8JX6PJk7kV+a4BjMMwaS6Dq+4E09Ia6TZTtVB8wfLA4cwINNyt6mLY/qRhi4JhwG+ncjTU/tq1blLRYF/i8GK3RwpZm0VJTSoaZvhpbc831qfzAOKd5FEeCbmQpyfYChM3hsUCiFH4+8wuNiyKRLJrGfGtmXzWvPqqv5nnSgOtpfXIvyQDclMAugAugei5LH5eC+bDWADXt+jR4tXltCj9lEoSQds7BRsM4zvccf7QqDAU9YDJe3cCa9H5YbQbzmZgkQe0XsMLXGKB2YD7eY1x+1SY3Ah4IC21Aj+ZNW8azO9e1AB6GOp0/BZzrg3MGP4lfaIv3rnXeuH4IkIkW3Fv7CR6/axs6135t8H23G3SlndzBgIn1RBD1/yheihcA/V96Yt9sbQCd5dO9acbGXAakTWkP54agIFon7uc3VgJWTXS2q7VuPQONBD8LE9oWgzismfXIunUdpq3/QDkLtIxUdZfEZh5uLR0tXkZ/8BA8QFyI36w3tKkmG0DMimmtoj3rXC0Z8aKsAjKEtEGG4Qg6brH43Ei2Ni8PNzvl609eemcIIxlfeAdFk+Az/trgb9BJ4zUfc5+9Nw5O9IoezNHcNTLm3Mw0B3Ma6NQxXoNmusZ1boFfmUM3MzfuM34Y30z3n86dzv9Jd9tnLUnao9Cre7ijBqAJbmntHuD/Ae159nTK9LwBOvvS9+ZfTItYsFdKo39TyY8UO7Gg+o6GWazxTABhWUrViI9pXsgpHgB/ZAIlyD3Np2Buc8VCZN4YFZ4v8/AXX3g8l+i2cd8h91IOrckxzg/G2hjM1wNwhoYGOLV2H/yxdPnzwDFfXatf/sZv89eunX4HPP76nPHePcYame4xrJadsy+X79boCt/jgtYWvzkXDVNYWEP/P4HbrZVpcKf5x8PGvI4Bb132+ZtlBlIwKQv6zJJEsZlKPEzKIvoH7q0bz2BFlR1s7Fhu+zBArbHFE+d91L5Ga9CTNSJM5v/+7b+7u+1zQyvAZSyAB0SFcfKtEm4Yx8oladMxC9aEkZ6XxUElZi4H1hVZVKwqi2P8lzJns9IMZl8nWZkIGpqY57Bc0M4MDP6I4RkMgkUAMO0Pwx5m5sCJGiMQrUyFRRFt5DL7cYXB1E1afWmqDHyxYoQrCgqGTBUfRLjAiKKX2UuKASnAOpP6o2WDIJy7FQw8letpcQtMZe9D758cAv9azHRnrhGapVeWiQ8L/sOsEMjK7vdGeztJFx/7pQVigD9mfjEzH3fO1dpyNNDAYoPJ0j7PXVDDxDYoakzdShuVUdNWIhHlQy1GJlJxVNxPLGwYPeK8e6dsqsDQvoLV7I0nTiKW09iI/u++BTnbysMYcs2dCsCqNGvhs5DsjrHbvJjwYOWK3EfbBb1bLJuXrhnuNGZP7dE+NYJWlnIsfgbTERhuY1dM0pYSiwJfqzZsnq1J+IhlA94+OHNhMlc3d6yRiBlAYh2bioQJbr0/Aq1v37w+O3/67GDkCF4dJKABvRAMMuEIeanbXHvJpKGR7MrSJZbn4jUFSTcGfE/NrjfPqniz/nFTYlTqTSnTIGZsSyCXFYH7RFtsLHw+rR8gZ03hvkUPrbHZ8Sw5vt9Xn2RnitEjrFjPLlzNqtZ4AtTmUykAwdkLFtiORiD3vdnLpSDbWkW16NhGC1scU4pG4yDbiLXSGgMW1S0CBo2p0hhAPG3Ld8zGc4GESWGShB2GimEItp8A+STcMLBuO9bWEBAopO8ILle4hjAxl2MD3fm3fQY0fO+EuZD6a8bboPSb361Xrw3VuBpjA5Rp5J4zfvNjB7qSYek+jsE4u3b6pG3T/I7nYOR+60/fgSaHdun7HIj5fX4/NNLjx2eC0bq5ch1wzP09njduMXjOM1XyP5CLijXuXvP2bFm8shjfrHr7vqx9R8oCeru1IKje2NnLUaba6ZQLzJogxfdkx+1dsqF5ujj4BeB9pTn9uHWT+Jn9ekG8v1OchvaIUbuYxXznpk0Jy4BYc712VWs85cwGukptrLSGog08Dl1yLVvzrOTA6J1c388kWCmr33316OC5cwvfWylM6nVRHMTDUMru5manTBrjUQplCLprtSGrVJWTbZT7YetDBWVu4O++diTAJNliGntzNJ//8b7vBw01B/rkQGP+odCaMwJ8gCMApd9cp/7d+L3rR3xSDfKbGJ75MyKZB4dnT28968Hb0X+P+tuOcb+eOei+GR/Nc8F4Vp/91n8DjPW18URL1rttgwaROL231hILNqWS0H/9/TPxwOUDzDxbjIsyDSyBrH0LF5bw00Ex1NrrWYaj8gGSgdOliyk5rCes0ZMye7PNu5c17itbP4sWrph9q2rWv/TFx+IHt0YGHuvSy7m7zlRah7LWbmCdlwK0oDixB4Pg5W8dj/HD3/DrfDB/4idv51/rx08dD34ANqxB8tM+i5Hk4GNkzZoUQ3NoTf6t9/mpm06GFVgCRthcMpCemDeJUO5jEiiLlA/0j9bshNF0JXuVTcm62wfxpNzHeCSDgmttjA5vmG+81rk/z/G5QdKCXA2HP7g6TM8f56ZKzg33F+a4s1gkAY0CIpcWeyPbKF0mV1Sl3u9eH/EaOyMksSusM9KqoUWEaY8z8UG7AwPiBui3GCsGceZCC63Bsnv8ks5dVvzJ3kzj7mshK1o5RbZnCWkwno7hIVCDBBTYJkKwLaZj81tutSsFeV9oosWIPLqnfcWaEFaN4b/M1Lc2pnMkJiMFl/AnXA/nJmLvE2RL81NHCAA6VhsIq1//hy/O/tW/+/20isWzJwKFLFaLC2xe2oLgzdmwraDrFswju7aMkgNSGXdu3ZQZXirlBBxX5pGT/fXlUk4PnzibEL6W6X3aS4zF7Yn9O0LekxCndC1otfjPmDI72r/snIKHAUXjClQKaFdBGlhcFlO8EdNc15hg6ph4FDX2/TkdoL2bW2lo3o3/pT7TctSBsah72GB4mIrxlwLtAOpkE9I+MZclAeUvPPfUbNOu/bOlbQdDiLgGU9l94EEmSMwBE7QgWTxoAzuB3Np0M6Fy5si7sysX29surYxVsqEaAOGRAmlZ0LhZR8Ak60z3ItCWplnbYFJJ/suNKZABWMnyYeWSJbll/fKep8qrrVcUJ6wd9evhYjQIKYCcm2uTPeBq97A+FnOEZm59XJmJmODR6MD3Wy+rQVWKfqBpffQsvk7A4r0sAieVQIi2WRNseqsCO0uY0hNcooCy8hD2ABOkvDdLnzi5O30vZXuAgNpFSwW6WT2NLeUAA8LGCB7AyGe0zqq2IiaBMQAg6AHjx1QwGe0BKll2h9DqudO9WJ/ccxKAaBlzIxzGt+N5ab+1w/2sKYVK7T1HE3Yv5zuXBcezhyWyNrm0lgzmNrYO6jr3YAlxwSdd7yTXOm/6jXSchC8hS4kQCOvgjpozXvcmZCZL1GRtciMMPKk0lCj9nfc/ET0Yr45xI4/79J7VUyat8bl/q+cGrl5qM1HgAA+6HrhSLJabGpCn+QIaaqQBgQO8aW/jvTYFQwYtq7L5ZjkSgL13W+C76vcA/q4srGL4PB9vOd8aF3e4PBphoadF2wNOaYiTgSUWHQohVw8Q8WixRNwT6jJRuiinD0WjT2YBeiNQZ/4HbfQAytt/av+2k1lZv/n8w4GhteNerOwANB69ce+WspJTEKLF/+lXnquY4uHZn2VV+mZ1aPaW5fQH33trKoNgrhrDyGMcw6pQL8yZ9Y33oFv8w/yZC7+hDjTBcmnOXI7u/Fk/iYjx+7CE4TOdb0wdzh+v/eMr93GdX1nJprPGKb33308e3CtobWrfELbj5549eI++dK+e4d7A70O50H03Htx3AxB2DQqdu3WsH+tXDCqL77d/9F7xbJsqcbOtJJBtIxVdJuHixdFZ/GCKYRI/meU8/jJlQBPsKvOLNc211G+sJhdSXrnm8XPnCzkRaP/kIzvG+vvzl9+ZvXzog8maZTxryxjQB20cw/VgzOaD8dNjMk6cX2Kop2M+0A8+/vUJ8y9++hVov5x1XJa0BuCH1j5erc3DopYsbrr+xuMnv/ZohYevxbPxaAqurZuMsz/GEvMuhELX4mqj3edS+sdc1YkRJx3t4UvuZZ2x7knsWlqpHPJFuRoxXWTCz3N8bpCEWVhwahgVdzsWsroKNOH7EeTT1YWIbQ+tTZVfwdCDgReIDdQczZIgq8pgYAg6gligc9Ynr9wy0id3bREUOZmru3XMUmBWrrG0/5PVOLLIxYPIEBnadoNnKwdMA/NgHeA/JiD5KglpbRFPQxi7nsn0rbSCzTEpFgb+6HO5Nd599+SwTDlHoDPGaEHLfjPxmMzbBbDR7pZX64Rp+7VX35s9f3B3EzVljMmaY/oTq3L7fvWDrrECqb5cCm/MawStNw5irFguMFjzv7HxQSiCpcXz2BKDRWhLe32xbGHmu7dtqubRueEeWtxOz/dLI33x8b0VDDw7dmU/dbnilrUXCITu1Z0COPe1mI0BqwRzPQ32WsHRx8reUZdJsLnCmCszHV+vlpWaUixuglnvf1K9pSwgVyqUJ2j+bsHlrofgf9y+QevXrJ1t3/3I7OGDBwOZ6wdzEGTIKrgUM4wuBoEnYZihVVf2PCDifoLhxvVqG31YJsXh9yqymcbbFQoJOofbioAQB6T2DC63Y8umxuna7PViuZSKUFzSZsFM2sokGPsjuXkxOPci8DjjD5a5tyQN/aP7VVXvB0HXOUYGU0KT4qBeOLh3dvzE5ebpbnNQUHjlDI6ePh+dZN25XvZEiw84vFDxQane5tBzd7Q1zOqY3OP7ZIEuTqheGe5irhyxIcvbRf5MFeIvRIMKRf6ocecKFhx8KQYKYKFP8TBiWrgK9YNAoo0CQnOGPvFygn8SHITMJ8XAMFkDf/qL+dKehjl+CDLAyWhMbrkpsDdLJGbbMYRXo8V9O7/viA2Mhlw2grETTtYFq9XcksMlOSy7Ne6TTOCY4CQwJ0FlXD1jYo5dN0BZ09EXgKDvCVTPJHCnZ48WjVgPvwNI+IG147r5oT/ajZGO//pRnJL3+j3FIUxxSrRVDNzWRBbyJ123K14xNivt+fbkuxpIt5u6EAP7H7rvG++dHFaCJYFlG1g/VBmQU2XBvp8iY3z3tScb5UxxW4kXK0uRRvd4mtdrbcx98sLZ0u1PDQau+TJ81yxfMbtSAsW2yg4cj1Yvpszgc3t3sS4RkpPVDI/bEZBeEP2j16NZiFhgDlX3jGa8tbIfT1XWgnXq26+82/iZG/Ey0UN08cNDx4cgkcl2MMuY8Ah9Ltpp4IFdKafohcKi6OzrxTn92Uvvjn79z//wy7PvlY365y+/Fy+tnEnjBHyYtAEQa4fPAAXB/nGKG0V5AhbRZu0YsSX12e+umea/8Q8gOTzbHFqo7kNxmQOlobRNJDv6D8w4CMgHX4/P2vPZo1sNIhv3CORSKgao7hbmbU7vwyJb3+c3HPfVhgcNnAMnbXMPNOrpzmMNt1+kDOZv/2jN2LvsYMAGUCJzjIWQFEoqWl+SFXp5CjseLJtYqIl1isdR5vXbUAhH8BwAmPK/PH6w59e/PPsff+WFB9ask4OXU9gBfWsGb9dXPIOMm1zBCgHbo63+Oca9JRNN7n2AYkPttC6MlzlCGw704H4DbDZH2qldwk7Ibu2bQkuAQcDV+p0Cx3mYjNVnD1Oif/PD+lLdf8SC1ZcxJ/FWxYpt9YTvuI9xwSMUVtUu6xt/ZMVlVVf2wjg/tCBLUeTJnbm4NQxMk4FcnmIL/4YmzZvyM18/N0g60n5TGwIffIJX1P+poWtjMjom44j5WYMcMn12Z4a0x5k6EQfaaZjbwk72JlH8hUDru6toIMUpJcS5ZOxyDxBY3Je6p7TMUaSxPc0y8gyLk4HG4DG7d2IUNFNgyzYPqpfa/2dd1oDtWVSgW9sxMKXbZ8vqhk6bm+H+I8ge3bk1q03VrRPYiAkatQS4TC6EWBGf2bobUBALZdF/EsFsDkCwZKR8VozyynAf0NZMHEFlIXDnqbh8oCq7/+G3fzD7oDoZzOYYKDBiAdpM1f4+FpVURUFqW4pHUo4AAai3sb17sHD84I0TEQNgpScRRgBQ5spbR8/FoO/NHsttcD6NRAbanpivbVtskSKeQhXgUTciLYg7j9vsTKAI+JXWLqhT0bz3s5asD6ApnSAe5qtf2Jur7NLs9/7izcFgZf8p3iXuLK/W7Knnvjh75gtPFWvTBEXMmB7rkwwDtEJImq9VKxamJa8flWbRhb7Tmk58cGx25K03Z5cvXup6Fc0rwVD/96fl2hLjtbQnII+FbPuWlaNo2O9+59AoM6AMAZcCQHgo4GghTYUYA3zFGAFjXzywe8RIib06H7BZuSwLT1mTqqMLun+p+xNu2wLmTdvs1WrHmO81WY7SL6PDFlugUPkJzO793Ggbu69MTsxCELxYIlYzwBsdXr2vAGrm3ebaYpbB8vDOdYNJPVGl7hFz1DxuT2u6nqDETO9GS6uyilE2ZEIdTxlZvrzxyc3mwlGpt/G4nvLB6jk00/iQujvGHVBhxaEoiEEZzDwmI7PjU80Mo04Qx4eGAMMUKRkYJCYoS1JbMCEAxPz58958WR8EjTml3bmurydA1m8UCMKFa5goAd7cSxsw8qGxu6DrpJgTUP0wAjXxEaCY1u6EAeh6gDkFymiraKtLx/WElixHz+FGBt5ouZ7ZXcdYGycgwtj409gDuzc2b7nTEmz4FiFyvjk80Lhrj9pV9u471drhWsXLHsmlerhisMaWe5z7fWPrVRS3th2pfpIHnjl3cfZY1t8aNfprw1z9x/CNnfsRXlf7DPzciOcYF8KIFUEG6N5Nq4p/OVUfjRPwmPs3vsmVK9Mt5hKwXhxwv5D14vGxn9y2TcuyJm2Kfj+avZriIA6KcEtejLFV1NWcSff/WvWU8JAxT7WZZcS4IgpCf+PqpbNfffGx2Z++9N7snfps01Jg7K+ysL2fhfzjxph2bn7G/Ot57RczBbyNTMRpBgI2/ej3/hvz2SsaGMBl/ADgNl/Niz83nKw7vY6JnngxIemzcwZQqa1zIDUe8Jl/jDklji1r/lx0NHg3emvO7j9w2bvUOeh7/gwuQe+NEe/BAIZ60TnOHW3oek3UF5mz4i//+AeHZq/ET+yryboELCnPQikCSFixgB7jbU2iBaBVtvC9rHE9cNwTDbOQuIB3QUkciiLX0dr49je/2ObFjSNLKWDCm0M5cF/XzsssCGNhBQZGeG4ANWtjAmAB2OZsuLD6UlvJvqGk1EdyjIw3X66Zxp5VWpgKkCL2LgUopoln44VoemlWUTL9U2DWtT/rEDpBzlE8gS7vzdVoc+2g3PjNd1xuk+yYrNq8Hb4zD773ChCR8UG8QZfq391cNGWg3rxZ7byf4/jcIEksDGGkxL4BO5f76kqL6tEKEQpm5s8dWkQEZrJNGrO1ST1d3AjTI/dNcxgiLFuoBWuiBVPJXAMSRmpiCNvEqd2zs3iZX/vWs7Mfvny4+y1Kg6t6bcwC07FHEuKzjw6XEqF8LgAANB06fLYNXG2ZsiKgdXUU8RJgDcQN9JtW6NlSYW/eqURA7eFyeSqTqWKYb1YnaFvB5bYk2LFpw8hOsm8YkLG8UgJHqhO1LhP687nWbkaINheUyScQXM0IvmMAa/uG0t03LI7B5j4LcBAWinVhvITnmRaWfhlX9YwUQ9TO+SaRu2O4n0QE/OKyYwDG1bnLTuTSUXCwRJbZQVksjQfgiXlaJHt2rE9gKT1QQUqgs3gEIFU5fARMayEQWJeW5R5lPr4TcLC4NpcldivmvSiLz/00md/JZM8CKKhz3452ea8tK/q8cvu+2f7HHmuRV3CsBcI1hGAtMvFnCHYI5O7ptx6X9VEGQlufFNh86NC7s1Pvv5Nr7eJA/ICDBcFaIB308ce2z9ZlhbuRVfJsY7u4PqrW/tIbH45d5FkLP8qaJFuMS5T1RqHHR5pTIHllqPpKwHBzZk/7bIlpQieXW0Csc+8cnTINlZc4f6n+1kAxXTVmgBuC5n4aKCCnsOS9T4rvykr1eMJ0bYJkReP7xaf2DoHxH37npZGVxt3ydDEtJ4s3u3OnYpU9E51ZGxcL9ufqAS735X7dmwWC1eu9DwvQ7Xf0B2QICl6cxXRndbZs+wP4SMe9GZia3DjcdVNhzW48QJZYG8xGxpSDZmYuRqxI409IoT1uL7QOYBGarHoYp21bCJW+GvM2GOmD64ZwifliwHNrAEFhLdDegBMSBdjC+DE3cz+Brqmekza5ZnH0VJM7neUhRtDYTGPE6sOiULxYNOI3zxqgrPeYuh/9ziUF8OyKPzzZetVHW4D02ED0utGfE4H6bt04LikTZ+eIH1P88eGsNDauBaw3RSt7A/tXAs7LAvW3c4/JINsVkLdZs/5xqbAkXwso74gfcLHXmuJTquQf37nbQ/amDC6N5/3JS++3TgMBiearAXRaLOsSq+2eXevbHuZUYGNp7aqhdURcnwrG71YVnYJzJwD8K197bFiVFXkkhLjdgEOV7BPPxbOtHQKTkPpqlbPVz2Gtup/gutQzKUwHsmq9kzVICAM3IF5trt+tLAV+zD3+aOOgLAjL48oEsblPKxp0JaaOW/vXvnYwq9KpMubeKrZu++x/+JVns1Qdmb301gfRS66Q5pvFagIOkyUQvPYZHTjMn3lHEKgCHeK/QxB3nnP7vwNA6QwfevU9wdhSHMKddcnvvkeH7sPd+enhur/hAHKQDhoGZrQCGAIYJiodj/M1XNtdfe7Dg8NtBz03l/o61kLyYW6Fda65GPTZNddz2eJFNvwGKHkb1ElSwBbvZrW5z9JYH/DqLbl6lXoQSzvcQ42NY1gCm3f9nSslPDBaiPYBFf1YsHoCUb5zHvDWyFUtXskX60J9Npaqagm25skb65Jsdo21L7PY2tGPhVliyAfvY/HjfvgIoCSTb0luRPG/ss/WpMCJObZ+yWs1AJ1nC6bbjcOk7Izu/PU/n5kmfaB0S3owhsaF0oE1aD8liDW45gwFaMxd1+iTedEHuAJoN2b4qz7Z/5URBmAHQGXOj/Ce1uLPc3xukPR+JmF7Ye3NZ45J86WzHn2/HekBlY2BEoKI74+WqEw/7X5vZmsDrVgfq47YCoUCZQIsXpwbIsbxWkWrbsRoVDcVDM0kSzhxr7xZsCsXFM2dWRKxnwkkfJAv/UB77yCe5WmGUrIHAXTOzs0bZ6cuXa69VV8u9Xfx4qqDB6JGlkLmc4tY2jx0/60XHis4euPscs8TvEwbXdVzBSkrLrepis/3PioNd9eGYcJmIhVgicG8kqmVNiqDCdEP119MZ0L+LcwITrHDrWXvHcyUTfgjrI8Kcu6nCMEmisVBpWGKV7l6o0ymy1dj4lMxxFUxZfj45UOnRoG6r6QFsl6tjfjtM7c+oCaWJa/fAFMvtxWFomeyMPbkCrqWQAH61Dg6eeHiEKIb7XHWfmMsVh8X/Plx1i76hX7ILATyFM6cYmBaaIEm2V7vHv1wtixT8dY9j8w279yXMJCaXB2sxnKY4qM+BDqEX4QMICH0wWQicprRy69/MDt7+szstZd/NDt65GiLOXNz42huafzifv7yx4cDEpeyIL0/wN9b759NWFRuoU5q09gLzFwVTEn73ZKwwxy4KtSSsohVA99Vn79bzMA7AVQassBIzzJH6mvdL67uw8Auk7V2YhSrR0DtlNnDjep7xdwG3SXU/L4omt27bevsx+++P6qU371WoHU0wQq4tbIQY0wThGKUWJfmi106sP30JsvSR83Hzeih2LDWkew12g+hKQ4NqP0g9+5fvPT2GNNfSbNn7Xvv2PnAeWbj7r8jEGW8WAs/SZMFFgh2QAl44cKzv5eigfZvsmXLN9pShjJxsswmm5/aEkPwJZceYYbpY7bWMTAs/gsoUQ1dvJQ1afsMct5n4H6Y+7vGekBDrEEOjGwEmvYec9NXAsE8WX+TsJyUKbQCJO1LgRDTU2e6V6C5uZJdhIHaJ4pgq6WjrayLgjUxyceyVIsZcg81pb7ROvn9vzw0zlV+gRUZs32vWEPV4O/UFvQDvO5tXQtyvnhW3a4V0e+CgEQ7pjd/BJ1xMKYC9Vlg1eIC4J5I8D3/+I7ZLxXo/J9/9/uD0X/5K3sHr3vr/alGmbm/k6WY1ce+ftxl+q7QKTqUaWlfyo9qmzivN94+WS2jaRNac8Cqq44aZUYdpLcKKajLQ5kDoN589/QA1ImR3DfVmTP38RLlN97MDS5DjoRZmIUQMFF08v/6re/mtvli+/tt7ppqpcXTrVuWA9ZKc0yxZXl9KmuIkgV/8L23x07s36i2j9hR7jfhEe6JVxsjB2HWVCc4JyBk3kZWWfxl/NdvBLA/VOLVQXYCIF4BJQIWQHCIOR0AO2AwLI/TJZ/+Pk7qnwdfj3v4jrLc/4M3mK+Pq2+hn+47P3cAoj6Mz9rVddNTvdHi7tPcAFv42kOZxnzWHvfRNxePPnWOdhPwH+ViZcVW5V9SyOvNxd7CP54pvmhb/ErpnNWtUS63jwsuXtirhAkAwTg0CGVra5iiqJMVcoUx69mUYCCM8sTir+4cmsI7Pm5CF+W+B7rMJ8XRHOknQb8+0AZ0a7ttlazhe/E/h+9A2xspor0dCitLEb7dLQYQMV1ifrnk8ZoLKaEO+6kprOzA74cl0+D/DUe3+HSMtQt/vRnIAXTwBrzceFKIlc7QXldYL1H5OG8a+xrZebbzEj+M//AiSD5a3Tpet3qiS/NGKb6eEcA+sD/PUbyTrv/tx9WCgdeuXTv7X//5r40Bu5N/idXj4Z2bG1Dp6Qkg1p2YFfPdiQIOmbkxQfstGcBoapjjaHBM1raD4AozgYARc6FWhMlHx5nvGquCi5e3GFv4CSGMlCZPg/Ace7OoGG2DXYxaSihTnTgezImfFYqE+rdmwhbPA8y8XszRe5mRh9so5rMhq4P2ncGc6htNe3sCFmNXcM1C528V6Mi6xRwM0CzOGqVStD13bJT43MFdA6jJtvphwI7mjnDUjfrg9PnZF6tm/eyBnSOeiCnf/nGEyPZM9+sCZWKLaLDiEYBRhLF4AKeYeYOjxIB6Rszjxoo1yPXMpNYqSxXNdUuAhkXKRrlcghbTlyuEdqvF+FoZfzIIpdMPn2/jJN1/aPHdVL9efffMQOgbAr1MqLT0LYGO1Vt3zp57/umEdYTc3Bgf1irtlKbPCsSVStuex+n4zk7TiPTNQ8dmb73x1uzUsSMRf5p8Fq4dzYsCo8dOXi7W6UrMvADnmCHf8/lcmMb+eK4MGsW2xt64CGL2fKAYA/VHaIsVUmOGxdPc3m4cjxbwirjFnPFzA0y7CtTeuKo4sRYWFwpL0kJMvZtqN4ZDK+nRjTcNZHFj31zVT5l6GMvOwJDsP/3rsZ3LtTbtc3cu65aYOuKc9e5EblPuHYyHAADkvQdGaOQsR0dLTTee+o2Bqr/FKnChdfBxzOhaAv1W1oazMV1ZSueyKj5ZIL+xFsCPXu2zB0BipG8fPTu2Pfioa60dzwRSWClZ7NRwYdUQT4SpGaR9bbaLSYubsnb5SrgOWSEAJUqNYFRxfoT9ZPkru29PwrYbcEOdiPa5HtX8moK9Jw3xBstVIIf17+DDW1tr18daJVCGhTqBcSbg5qCZEmoUF0KGFdE51j934EgaaKw2R58sP+aPsoP2asgQKkDO96rHptq5NcP6qwzJsq7/Qtanc9UHu9l4AnT4hKr6gLp5QU+b0vq14YPAU9rEsBpKeWapQheSVL7V5rKnm1u1a95v/sSMAToUHm5qLmcbRLMi//N/8uIAPFyqRysia8dzVjwxaTVhgBm1m4D2XyyzSYbdletlwib07uZeZdmRVas0AfeK7LovVEHY2LD2LIwXrWr+AfX32vaIZSrcPJ4NGLHE6BtwTcAD1wcCSV9+Yu+0b11jgEaSyQPk4c1oYT6mNPw/y5pvb8ivP1v9s+bxj3/w9uzHKZz4Iv5h8N17Ogjmwcr7aAXOQUWfGoO5hcu5fp0sICmN8Wt/FGFgwBpyDFBVB+ZuPjz9eGM1uaSSE8kQVgSHFvS02f7GAuyiIOm3O2nmeB6a7zdA3jwTgWTR3BrjVzLEmE13JJ67th+mdd041oYB7OZd7nf30Fb3dU+AanLHTc9npdmevHqhXe3VpnqsNeeexg9sHCCocfdM3+FRnmgND3ddnyh6+gfh6oZn6hSPhHXCqsNyD6R5NnlC4TDurEZT4kT8rXsBEPooG1Q7yKx522vq6DM6EHICdOnvVJgZWJuUoAFAO8fYmVe0ghf8i//9N5MlJzRtHMD02viyB86HbHv0/3/8i/+u8yumHI/hUuTNMG7uIyscxsAT3Ju8Q5tAEiAugUd9Pm3Ht/EyYMl8M1o4R5tZnMyX0IFf+F/+tzwMVwqnqADx5zw+tyVpRxqEfWu4BfyJ87l0Lk2rBkq9A5LUAqKxmiDWpb1dA0UfLK5mdUG/H9+jYazIUhBQqhNLG5zboV6ma4P9ySeYcECqQo6qWt8KTdPIV2WxIDwXh5IN+oksUgYEOBqBXH2JodNooHlWgHtNyr0WrUKPr6VxKSJJS9od810eqKNVsJys+zjhVjuUKhA7ArkaTIyOZozoZBgcDzCNZZtAXFKb9FFskrYbBIua0DSpGO5jxT5wgUHbD++0z9mdTNfvpEmsKc1zf3vPnc3icy7m2ca3teOFmI+qvvfq/+40agHTMvJMMI3z2vXJPLoqwlJPghazeNH9inm+P5geIIWQlsectwaU7hYDhEAstO+UtcJ8zWwvldX3sgq3paVerGr4igTJjjScW5Vo2Norq8bq5nNnVsOHDxyY7X300YKdG6/KDbQsh0CYMgWmLWAICIfYMqnQgkZZmJZE6BcCO9/+ix/MXnn59ZGlWBz/bFUCbm1xZhbah6cnLf3FGMfR4kFYbZSHUB0dw1SIdKSTd08AmxazMjCxO0FxNgvjzVuTmVWcyNfTdL/9yntjGxVC6pnSn/+0LRgwLhoGd9/+LdOWLB9Fi198ak99vtNGvAW9Z7kRL6aAIPfXnVyOGwOHX3/xkdmR907N/vB7787eeo+lbl21kMSdZWkxX9HczdvAv3i7CeTbvw/AfO7xPT174chUUgBQVuOdaNKCNpIsrtaU9GHumIW5oxQ0FIi+L5r5s1w4I/07EC3YdFTe/mQK1sVEFLsDjrjbBBVfS7Bea22ywCyqzzuidUwV2ACKAI11xb1guMP1Ft0DezdqNjeBCvdrswDfbU2yIEjTx3wBhI967uYKdK6JQX1yX4zM5NoacQHN44hN6DrxcOK5bl34eMRlLOkZPy5OY+2KdfGCDyew1jO2ZeGKEGPcq4cVGr2tLzj+g1xch7KEKh66v7kXEM+VzZpFabKRMqsiQHmn4orA8Ib69O4HBb0P5lr5heOXhpWVdZIFhoJAK12ba+zE+bZ5aK3Khnw4d5tg+XWr2uYmBv5+lc6BF9Y5tMntaTuhh7dP8UqifAAh7bh9816lNUoxrg/c0bZFIJDuxR8Ay3WBZm6NhQ9tGXGBYiUICLGGXHCLorHr3WNt1m58UlueycUsjVpB3beLtzxYHNuB7atmrx4roypBBQxQioDF98usVfBSqMI/+OrB2bnm/lbFbh/Ptaey9pEUD0KCm/ydBzFJhIu1TZF8o6QVwoR15vmydfFPxWGJMMCHa47QYl3Hi5QG2Ne8fDteIlD9n/3al2Yv7z0+KiuzhJLU+ArCHoIbfQ/QlEiMFklGigCr1tJCNrhpxbB4pSSPcIuUCsrsnuZd/JY1Al7g9YA7BRZPJSz/z9/89gBtrGGTOPc6HZ77T3/1S7NHUohGQLN+t36WxBMI3gil5+DhKp5nJW094vk/Son8Ye5Ez7C+HeSLfhk7xwBU9ccrmeVZwMiDn8d5k0yaAJN7j3O6j/EWo3uqOfvj+NKBvAsvtDHrwb1tqBxvsi6XRDMDLFBk4iGsOdrDICCcxTiN2L0GVN8a8cGDxERRhCh4w83Z92ScewK1sh3Pp2wBf/gL/mTNT6C0eLfoHtAxDuKgWM+Ak9XdQ+LV6vgIyzgeN9ytDQe+ZZ7wFaEDI9yidnHnD/BpwObHmKf5h+nVvJKv6IDcYIHSHvWeWqLNy1TPDegbz6xvnqUPi5r4j+LdPFeDtprTkeUbzXODm4+Puo5iyjjTo8azfroFn+/T5wZJ0t3/4Ls/HouAJsPfZwsKmT1nYzQytjBsQm5bVWbVfIEQBXA/lkmb5v+9Hx9P89w2BnZ5wYNMylIJdVoqvN2+uQ1MKkvInbbnWNzAiBW5VCmBUcStfu1JUwSEMPVVK1pETezVNC7+dAOrGi1NXBE/jMQCYSWgkamntDZ/6lS4ihl+/YgxgLJpTixKYdkWU4AhQWHHebE8THknC14H7hAjBj7AS6Dwcq69779aVd3iAhSPnN0LADQ+WxMEJs75NIV1jcnLb36Yhneh+Ih1uRakz38UWDo1O88yEmVYUO/GILkmtyZAgBlBnYTK0pg2RqnI5vHmA6HbzsL2H+JWzAXCxVgWLlmeef5URJTvvnuqDQS4qnbOUne9/tFWVpUmub091biqPsmSRQisyXL45DNP9fdklqO0+zJxbqXpjjiWmJW5MaaO4cro/rQkBGyhYc42q33t5R/PvvudHwZmLhXnVGHNLZsDllPQL20B2AU0NiVkThTHc6057RaNXYsxhg+Yt4Yak4BVAIwWPfb2apxOFpBl0W6r/7R55mybNWJEa9PUFTTjIsE0/LcZ+Ou7kV1ZRfXLZRvevH1jLCYbli7eMe18vaLnKCzJnw8Ev50LRPDfssbl3oNtWVa1Z922zVtmf/7DI7VPbZvJHYxh7X+gHYqt+v7rhwcdyPaUcWF/O3PAzbVd9eQA1PvFirBimWMuENXF9wVuBv3WcXXIPr487RcnZZj1y/ViZZ4K2DPbEyDA9LQmYzRNzahQ3rrE6G50D683A+NKEgDYargsCBhsDEicb2uWu8sT8ABwdHD92tXWa4yudklA8Lq64PV7AbFJg7yXO3NSbFg/91cA9L2yvSgO3EA3YlyM48dOnRnu9JUpSOIHny4+6KGHuKWn2LmbxW1hZNxEnypeKQn2WZK8wCJKoLDsrGuOBcmjgc2LFbOTDbYoALMhmp+E59ETl5qzqD/GaB6tB1YsfGBVNHEs99PVxSxvawdvOnL8VHsQpjjFo97JFScI/pFde6qJZKPOMnILMZA1BjAoW7KuOh2EHiv2m0c+TOGqiGw0JkB2/aq27Qkc3Sp2DI265lRWRbR7ub6zHmHUlo11BCy8ffJUrrF9jRfLXC775ujjeylfOdll/VzI5XCmHQEA/PXN2YXG+kSAxNhu6H6EIDd+WHa2vPWkZtKRU+cGj0Zniuk9Eu/90hf2zX7rj18dLvvJwkF5ujN7I9Cj0O31FKcXy36jSLIQEsKstkIPRtXvngNM45H/6BtPzr73+rHZb/7pq1mids/++19+brjjlEnBMwEKPAy9sShSIkfx4fgSYMvijxer/4ZPABiAG9ftAEMBAcoqwGuXBH1Ef5RXFmlhHoTeHLQMJvTZfxpj9egIUTQy1lL8aV3PBwDxx3F9tFRzaqdYz6WzZwOpv5Cr8i/bkPblQ8cHn0VvLMXzfhk/oM/nkosHIKSIABVAoL77rwcMANO0dUzWpfHMLncOmvn+G0fGjhXknfjYJwOftiEy35uB1ubBmgaWyumYlNyucz0gZGyMXXaSZCYrjazgeeHFxrA2qOfHs6OwsDbei365pwBZRRw/TkPSfrLEHDiHweNG8pSCTcHE15dloNi0fkn0wUUfgul6axBIx4vIRXzM67JKSrhmftSs6ajv2jg/ap5haq1kLWp+zMEAlWao5y7Oa8Ba6L09TW8m240974TbmFveDLIHfdy9zfKWXbsxYXWUbYyO0A2L4jWxdz/HsfA3On7WdfOK27/29SeGaVul4dqZ9UNtoQi/CQCAFCjcUZr404+GigMU/ItcNSaUe8cCAK7UDhEYzKphB3VxJr4TzK04oEra63PFfCktnyuLawrzAWAUaHwkcIHRfJjmr/qpPdTic2lHt0Y6psrRk8XLZpRtkdHgaMOjudYOVz2b5nisOiM0dIwTsTNXc9dgjgQILQJKX5nGatLUaiEATOjKrA17Egr2DEMwYrVu6V+DooIz7ZE/VckCtVIezhVHA2XmVKkbEgcQD7TrOMsIJks40iIRmT9E8TErWuwQEULY4qS4QLgMmOYFf/vDACw+2svOtG6uUHUshjUkIqdJiAUh3Fiz3N93LHaEE1fDex+cHxamZatLJ3722dmL3/z6bPuuXaOv4qj4y4HKoV1kWUDrFtSkSTUmCWoWh2GupoCluS/++Mrsj/7gTwNpBe03toKOmXxZ+lgopiDjhFlWPXFWV5un8E0LYPmQRBF+AABAAElEQVTsxeceHSX9aeYA2fO5Ms2rBTD2has9sqvQnlgUe8HRiFmZLFwAhysJk3UPjBWAxxgE4ANKy2oz14rOcCGhR+dxnWLwBNnZaO/NXAoyJoEscUXGedSKyjpzL5Aj1s6K/ebzjxXEX4Bva+BbL2Z9y5J4JvDE1ffCU/tH9gswpW1THFf7BeaKISQIInM4XAO1V6C5LBnWDVQgqJNAEWBrjH/9a08OumSxeihmAByKtxNrY0uXTbbR6FWBTO4dQe89JmrKyij2K4uNPfq4MI05lyzBhXFfiiYINbEw9hyk9GBGwDfGjOmzTInpE1+1I1cfhUg/WDnMCdcwzXJF4FqFdxfR/mmk5to+fTL4aPHuj36s5TNdxxq7tjWGNik8n0R/lC3a9O36N+iwNptbB0stYWCdsjhyQ7M62/vv4d0Vp4vejAumCmgTkLT2c1k4T569MHsuQf/1YpiItFo3+0rZnNbUjxKSQPHaYhIJd20x9xQtIQIsOZQb878h6y46jATHOh/u2tbwxuYBf8Fb0BRhJI4EoAXkuCBu3LhR+YoVWT02DgAkjszGzcdyJQJCNsqWxr+muMat0TkAyoroHkIbKIvKcrBOoQ2WGIf4LoT5UMxxY2NNY2cVwofxb210PqGKh1ln+I65FnYATOCd1jzeweLHlcHyyuruuz8pA05wO2XFvfCEx1s/L1QO5Rcrivj1wNmjrQOyAQDjcRCXpwGnW6csCICAuWPVMLcsGb6zRdHRxpjiaC1SXFivAX2fv/f60cE7zetPbnDrM34vsN2a0SdrHD8f+6RFI4pDcl8bG4CANVSCjz4Ado8X2K4EChBCgOs3Xgc44yHjlv4xvj1Qe9G/Yzxv0EHf9T1rsd8GgGrORzLFg/NGWx+sezL0UBmXdgUYsULd31yhZy4ufeEmFWcEABh/Cgye4f68I87n6sLvKfWya40VK+zgI/UH4KrZQ86KYxrrO9qkVF6PttzDWHmdtpqqtEW0T9ZxxU0WQJ6YybqG3jjv1PRi8bG5s3n8/Spun2vOHPppuHhyAHCf/bFu/6N4Jflg7I0tusYLFSXWT4YRNeZYv8wNHqOtMAH+Qe5SSoTWAEtAWj8Pg4lyKyMbrmdPVsuFs3/9c2xw+7ktSR/GVJl5TTZ0iTBoDgTTwX2bZx+VjXEnU/97TTRmSKN+7f3LQ5tiJjTwiileLR7geoFtK5Ytn524cmmgR4vHnkTDCpJAstiYeE8HIjAGk3yrxcG1wcpzLIuOisoY9ajj04CbVFunACDv5cKyBcrqCGZBE2Fi737S81uw4kQud53K03sSEmWRD3PvawlDDBBy5WYDltau3D57sroXh1usNPMVXID18ezZ87PTEcz+4rKkyfKHC+rVluu3HmyFEgFfuFqMBtdRC1IWn4A67oO7gcRDBSRbYNuKy1GP6e0y6hTHFK+xMuuOeAUCX6DtpixaAma3blgXOLzQNWvbt+lM4MBimAonIqzX3zvdHLGYWTjXhzBmvhR3xKfMqoWQWYu2FIuFsHds2JCw3DA7+IWnZ5t37496+X/vF1uSUGoeMU0LHyHa+wzTHEyj39ACPzhmz7p1plpY77/1xmzRnZuz9bWfNm1hJxEGICCgLIIdMaAVq4t/atPErRvT0Ot3SyRLRtt/xMgPvVugegRuM+TZgptZEIpFi1mJqXmygFkMYAKY0UcgeWQNBSrPnb8xxkxAu4UlIxCoN4aAgJIPD7WQBOWqiaV9XGxAsdgwW5JwLbFMGW/jvr5MtjVdTzBd+qiK743jn/3og0RqmkyZgYuqTyTg989z81moMj7fKrvIZqeCuNcFnI+ePDc7FdO36ebZgJLYL5smG2eAlSBVJ6kRHkqBOD7m5ytpcywZY/PjNFquH+DiavO2PJCIIVwvzXzT5k2zd3JlrczFKsX9uSd3Ztk8mgsxLa85x7Q8o47lAlydRjZtcHwmepVRx7W4YEHMtbFhQVAc1obOI9CxccCgbfxrDLmVN9QmQIG2yFpxOqseaykmR+sHpli5li8VnzNZsyg56M1cPfTQitZgTLf+s2pymdwIWGPYxp3mR4jhrObj8VXupQxEoKpxyWkyhLU5E1+4qnFWMmFZ52wpo5Xbn9XtnSPnxxhTTigNgvpXphFfv2FLmirNBywEwx8+njLVegWyJAoQiNy1+3I3n4lmxCTuzxp4vvW8ZOnKoVAAkbapAc65LoE7wFzW69kAmJpRlCY0QlBdK/2YYolW7geub5e8wUV3u+8f3h7/q323AqmykAgXoPJkLtyT0SkL1tvFUrI0ERTqsOENt+K5O4qTm4LppwrO5oEg+bD4sDPxT+7q94pRe3x3GVathb/KSmJOAD5CxXpmJfv/vv9O86IQr8QN1oz2JYy+lAV5qH4RxBviifgMHvi1it5qy0uHTjT/LIHRUGtCmIKCreIf8Q+uNHyiyRztB84cQJu95ygRO3oesIK/swQPq0DXOk4Hlm2HNOJeuxegSWHV9r/tiGyax5Oz02fafaH3/R93cajNJolITNiUqs7q456eLRiZy0gTxQFtjy+ydBsf8am8Jbezyg451E2t/U8ak3Hn+jj+65XAl2hgzem6Nljr88N7o+B8DRvj01vuP0VBDyULWAKfKswDv1OPjfWTguVpQicAfrKM3AN0zwoHqR/AOJA4+txvgIaxBr6MhHuMwovR590BYqZzKUnaRJ5rhz4wJAA2aNHhunOVjfE8fAtfoKyYU+NEDrJscWfzFPxNh2fMD8/gBkRb5qWPjVVSonb7b8SM1SdrUyuF+DhXH72i9UsZR07GG42hskCscqy2+OdQ3LsXEH7m4rSV1/zZf5fXzw2SABdaENUTM7yca0x8hgYxiQsqtHGfhXWqgTx9KddNmiimSJDTbNxjZBvlppOyzC+s2Nr/89svjyBUYIbmN2omxSSlTQIuNpi8HHV8kEuGVowpCeCV6uvAlH/9G08MgnitYLERfJm5XrFHRC3QkhBf3USK69iWq2NVrqvbw2yr9P+sNpei38JDFAIgCVITfbwYgstpw6tjVNKGMVAp7tqKmakPsixQo7jljszvl2PQxzJ5mzRZRbZDYb1Q34b1RiD6nsoKiIOiCQIt9lfjE6a9AQJH086k6hJCBAdBcovpMeYEUJ6/eDPL2JYB/MKEs4sRgWwmQaiu0Udrt6HsvhFyY325go3zGKs7BQYhxIf3Vlb/4cdmO/ftT9ss0NHiikgxKdo2xg8M0/KMMaIUP1VTmjtMduGo2Hure585dmR2/P0jCYXJIvLKoSOZkDcPLRwh70lTJrDRw7LcL2datIhYwDmT/9Ily0aK9qlqzVzqO+1WkJKwPHH2WNa2rZnq1QRSLOx2fSy7MmEk01BhPzEfgDHhxY8vYP7SlTIaEjzr1y+bvfjUziyTG9J+DxffMTGTRW0jwKdOuzIPhL1FDtzo32AAi5blOlxTLaoTZUiujvYV4ywzqfO2ByYE7YrtEnB7rPcsT1cqiWF8bVlgzDCGRx/U2gEqZT9erNoyFx4GzSUMyOyNfuyJt3f32gK2l/bMC4Hnk8PS9AtVTf6r3BwyPTGJbVtTEgLu6PGWLXcKMhf7VrNG4VP0LGtLcVVW1u2b08Ci7zM9N246hIHA4/VZQmhep6PFUfyzTVkJpgX1cUftF8Mmxg0TvTCEYcHQrVvWpNVZivzWlA9NXGKDeIYF1evhqnktwc7dI6id5e/hXAoTw7o6NGBrjbDC9IkNGw8D5bJ+WHocy+qXQEtxags7d0cp+nZCfzU36CsJ6KcrgaECtsKwu7O6sCq+++Hl2TMP7xjuhB8ECliwl8eD1q/eOCunKDfTqdnt5nFv8+agxaN7Wvirh04GELgnihPLBfdYlhHjciqwRjjTaJMBQ3CYWwL06YTZJ1lYAEnb3bCMrW59Lyh6+llxcm08+8lHNOhKp8Qn3QMgulE/t/Ssi1nQ7+VmG8I6SYG+BmggqBKG1vPRlCNWdiG+t4HVMOSGtWuGArZw+cLZIwXQHy62Dl/iAn6oOXquGkdc2G+nvEheudGcAHuENEsfYY/e8SqKz++X7n88F7gNcrlGrSUWr4+WTJlQhKL6YoSXMdkX8PrFFw5WW+zD2X/6s9eyrJ0eygvX/S9kRWJhJMRlxBHWvAtocGSB1QEWXbzaGIrjHL8H2mUQs94DbNrImmMDWbxDbB/LIsVM4cv/6qi9+NivvPj4CIkYAKQx02fKD+vr9dztxlf8lwxkQM3vlxsToBcteLbAYDRBprGkvF5MophHdMGC4xrzMSxGPXccvQoR4QWo6+NemBZwA2AS7gCAa13RS3NJQQos1Sfn+P1CsuUvetbr750YwfXiwGyuzhWn//60W+0kuyisjpcAvKNGWuCJkgjIuPeSRcmNrMdjnqPdj5Lhvl+61HMnxWY8v7Z5Pte4orbkgM+UVfe2hjcVT1r3Bl9gJGF9ZlAQxuF5wll4gNx3fvz1u/k3Xln+S17YuG70ZV03ZSXzPH3AP4VmUI7xZs+nhPKSMDosz9e5aW1Z8o0Dqxqeho/ISp+XQgHeRghKXhhKIKPKz3Ms/I2On3Xh3N327ME9Q6uVMmyCdreAEM/ZmO6eANC+guTq30hPN/GCr5QDZ15cnUN1BJ9dKVOuzCLwWXYKMAKVEnAYv8A88SGsD6xKovJlPRHuFhs0PYLv0og3bVg/kKutIXrEACQ2lRRAqromSe57W1ZcK3ZpU4sbc2WyvdsiGRapMqeYWaHZKTZqGlTWGARAe/1KbpQFLSQuPNk0OsnCoGij+wu2JmiheGnmkAk3owDo3cVmfSO3IUBAsKucqySChS8VmbY7GGcLAlpnScIIZDsJxFtcevCI0i+zCGgTu+P5COfwh2cCdAtmv5obdEvjxnd+Mu1xuBojXMUj7a3GgnQvZkxgY0JAxYbim77y9a/OvvLNbw632tLALDM3Jj1AUlYN2QDoXMbDmM/em18maId28RNfPnNi9v3vfHd248L5wQC3FCPEPWQDTXVAMBdgUUwSxqBO0NttFIqRiCEbTKLFoDjf+sDb+7lExXIZj80BXa6oFbXBQhgp7o0VBvdoad8AloXAXL5k1HuaLCPqgljg4rkwYXssuZ+gSVlC59PQWRU2FfBLKLAgENbcNBY083a9H1qTAPGJkdybaD4wi3os2jEunWesTmVxwNj51WlrQAXmydJiDljmnn3y4ZEA4BliiWwWea6YN2ALqJC5oQFijswlwaLwn0U/gEQMTko/F6Xg+P3R0PsBcoG4DUM++bbryb32xuFzMZL24GsNiVNxT5vqajP3LuBDY0TfrGiny/zaHLOyHmn+rEG0Qg5OQtezuJvO1FYgnTIBgGuHuB19035bx6xLqDtPbBIlikYMJHMRA/FDc+zZMt1kdXJJY9oYLOZobLVJYPXt5oVgfrztg1idbhYgR5v/qPnGFLnBuJCPnQrk9J8CqLfqNysJJg/gsGCtyyryWNWmVwRguJfNB56kxhaaV8tG+4bm38TLYpOqLaMPL5FppuwGmlZS44n9m8YaBcYfKa5QPOTrAYQ18TFjDeCLETT2YbwAZfGajZX76+f2zblE43/qaV2s/VcK4D4XsEajFAYxHwQPqx0ew7pqDQEsFE78w9pmYRAku6dx3xl4xGsXl8l3vXH0nBOBb1msXM6sk9caz5MBQu5F86z/QxgZvQfEbA9KFiiH4FgiXV+ABjRA2bOOBzhPeLG8sDgonlgTR+KBEIn3A+hKxexL2VMYONQ2YsPc415/xomQRBMs6XjasDxTzqIPSTiUcfNjPrnryQ3zvyRr4BtZW7ghHXN3G17qf2Dgl4otsjek67l4AVswFQ8EPO8GOMWb4mcSTEbf0GJrGE/RJ/EuZNAn1T/bFE9/uNpm3Hj7y6JtquKZYmDVEaqtjQkB3+NH39Cj/wE2fHN87yfj3KcHZ45rACfX+k2fvQKBDmDsg+QO5d8uAlyFrHboZAC11sFQ2uI3Xt1dhX+g93T0ap4UIgWaQaJ59hpakUiiXtYUKI7LBTC7xxy0DUDX/SlEYk/ND4+Pg6VGO401WpXNyr3FCmW+/vN33hy8fpz84B+GATzRof/k5TeqNYe3c9NRHgEi6993ytEMd1r3gw9Wt754BYabtnbymNgZ4XZKgTbYAw8vHtlxxqL2Wessnyy71t+//Z2XZv/yX/7L5NeUbPSgaT/z5XNbknTew/iILRqLjKBkPTpaFWIDu6WaOgJRZcZc7DNUuaTzmXf5tJuVkYFDExXPULMHM0YQR46eb5EVbJvgezQN5WDI+UdlFdkM9WCuCZrLzQbk8hWm9rTbrVtKqd8V04rJ58o4lxWA9WBLA/lUzPHVtFhCUdaRAbYIbVJpUa8IiK3J3bciV0ujO5gagcKcx82FYS6vjeKArrVItmaaf+vYyRGgrmKyJEwEdllQ9P3+omdZN4ebZGBOfNWWNLcTaY03Pzo1ux5hSQNfmGa5psk5mVZ4+MO7s2cf3W3dj609nig1elf7on33lfdjTp1XPAp/767cc9LluQ5ttPlKmi4XEkBIY/yD777TQl80NrG1hcav/b0Ds/MFqP7+996bXUk7FQhM6B3PRbl9+9bZE8+/MHv0wOMBv3Rq1rII53ruFvNnl3F9uZRbQT8mwTVVIpf+/UkFFTFL9UKOHj4ye+vV12Z32oxWsCd3qkJ83bGqvNUIKUPxrVnWxjQ/gg/xAgFXqgW1Avjrfnu3F9Dc+NaE4eZZEdjclwvT4ifAMWjBtNyD0qJZRH63TUIfK1tyecKLRsFCqOLtzi3La/+i9s7b3rNms+9UB4h1BtN7PeuO/a2cz/IHLD/35O7Zlw/unP3ud98qM+r8YJJi0z5uMaFx42IfLcHCj+zY3DxVZ6YYN/Et3CoL+rw+a4PzRnxUdHe5+Rd39PFqabvKCeQCSYjpz7BGBMgsXNakGwl8FZkFTHLFPiK7slikq62VDYttUdBayMKAUT+6f9cIcLZtj7iIUb4h2vijto/AFbeJy6sdrEysdY/t2zQEIEEqjV0sExeMkgG2gXFNDRkKCRfx8iyhXDbA4esxY4xnay6QY92PAuCZGKj7iBWau8/vP5TA7D+gdNeadcPScqz2i8fb3dgQ1h9mrbrYGtR/axuAEEDfNDSOrIRiC3OBpCAIUmfZeDRXPQXsTNathR9XuiMlB4hduPDu7JG9m2ZXE+7PtMVMJDvcmzuj+x9kZTuadZu7RlDwqdydx06/GY1tjCKzeIrNildcj3dQxtAjEMqFyVpwoyzPvdHe4E19dzmmzQot2P5y2WYE6toUInFTs/cDpMn5PVs3xWMutj7FC60pAzSA17ypkG2Mr966WJZaFewDhHcLWFd6QVXti9cz/xfUvbb4MEUsMXXWYskZo05Za0YsICVzrM+SGPBE8UAC3LenoBpH7ljWznMAevMKZBJ+Iwg+mhqZQ1knVy+/NawfBBq+vS8+owacEgIn41EEp988C68glIEGsXPiiqa061hDCyvZNcvRh4AGzyCETgaKWGOfP7B7xK1++9UjWVUvzn73L98aoQ9/7/lHByC629jvCpBynbHGax8eB9ACzCxzsu4oyCzqlKKGdHpW683ciNGh1Iz0fz/9LQccJssP6GAJ0b/rPY/SBNAAL6yWlHduYDKC9cX61I57rVuWGi5c7Xs3ty5FEk+wCTqLpTpaf9rGwLaI0VbzO6xBrZUe19E/Pd/z/AcYuP9cGR1gPt7XV+P7ATj6TJmZ+Kx1AkDlnmyNHC770jMp0gqjPp71kLeFkYGhAhgiS2XwuRfaADYEulv/ABMg7v6MHcYGfxTcDPAZC7TDAsh6CUDjGXHDcR8ZouZt0ErP+VfF94gtcx/y8xeb5y8Vj7Z6+QT0Pjs1Y0h+4ksyxubT12/K/Eu5KZwHCLeugWTzrM3WArr0HP0AbLWBAv9Qg3etZInbd/Ia1dbIKfCVKzD+e4O3qvGj7DBiXLx89See/vnfLvyNjp91+tyS9I9LAZWpAP1fzswv3fxiTF38DBWCW8PEQmy0P1YCk4ZQHi4W6VIuAROshsuFrtN5KJEwRMS0CRrjU49EgAWD0iIFGSuOKACVQKexcfmtiAHLeDt++vyYtFbvYLhL0qIEIGK4mBsCULjNOoOxVyVEEe223Here38oszsf8GO17+EsPEObCSAxa7oGMbJScONg7Le69/0AjwA3DMmO4CiYoIfcZXTxrRLOZ2OUGBb3F0ZA4xgxQQSBSa4/R8rGeTeAKUBOACzt38IGAOwdVcTAcC+6l6DLP684InC2N6EN7BE80tehe9lRYsNYE9TROTuYXxaLBPLu3dtm+x9/YvbUF784271vbxlrU6onZK0t5kDcEmFHo8EsCSl9ngtlNIKpHX7vyOyPfv+Py1x7tWyntp05c35kHxkHu2ELuOQ2VBl87uemwbp2WMrSXFgdaN2YB0YBvADbhDNAdCCt9GQuUtZG48IqdKX5Ph1gwRBYgtQu4g6U1cE90sQ2jpmGiwm5GphalQXqzdLqxx5WMQbjejgATzjK8GLeVzyP1s4qooYWxge0qLcF9BFYC4sVMW8yLy04zBV4S5Eai5PLSBaNJAQBr1zK45w4gvNpSI3osKYYF9XTk6O1q5o5WUGZqwX4Lq0vtuURtMxCY27FHW1JcF6g8dcHQkItKe6Ji9em+kHAA0YY+Q2mUgtzG05BqPplSwmB0kszaeypfhMF4Hxt1XeCFvARfMzCZ39CweKymFgvBLuLQzRerGRoEH1g8rTtujIAhvaIRRHHNFxNjaEyH9y0ACUhJGiWm4l7noCrO8O6SGhjfsaMO8RamxjjFK80rNUBE+uQtvhYFc9ZWQVsUxI25EbYV4V5LusVDyyiFi+my+I1LHQJDeuPQJce/EhWJW22vtH8kpgo7RTD5g7SV1vXDDDc3D3a+sFvbKp9Kss2haJhHlamZfEcGW1Pxre2FpT8YVYtIMCmsc3KyObanTLA6iXWituwQJZh5ZC0wqIq3o2CtrsYGIKJoGJpplhyNQnkNXbA0MImdX9WYRlprAl4I8CC1lhogHi8mKAbFtz4DRvBcGMOIT0bFgnFNAG7SdOeAnvNK2AwFOFo6mh9EWOlPIGSLAADK+6wopqzaAHv5fq2vvGTZ1JSns7VuaD2oAEZfu+V+cZVsqeq5ar7s9Kz6HB1iQ8SBpHNrPlFp1MMzel4ntpPBL2QA1apJdEK+gKUlJb54aEPsaVPLUneo0/t+lZuTjs8eC/5JdYwBD+eZo2y5Mp2k7WlT0CCoHC/idOLFAcPIMfQEsuotXYrOhoGgXjdk/Xz2cd3Z1ma9ttjabEm0DLgM2/PnKf6HiAe7rnGCmD69LfGq5/HtX63vub38fzpXuPf8Xx9ErrC0+L4OJoFBICLEezdeAlLYfEZ9Y8erAkKFk8Q5cdcj3Xc/a1B740/vmwNahvFSXya8QeE8UKb1LNK/fvffymAeGaEkBxr7X87xfT3/urNSimcGCEjgN1PHoCLwG0HwGhN/LNffaGQAHGx66OFdkro/socAMrjWZ7fe/XQRoxU7UPrziF/Ze7pC76NVwz6rT9zgDUBYplzleSoD/+m7cH+rpakzw2Sno4YFE8k0A26QN6LgaXLFQbkBxQfgjJMjAWgYxYVIWhHe8JIx+1+LYXPxN9JoDuXLxjSRguAgmFEFojEAhSjxGwuRuWRCHJByF7sA5M1xmahcU3R6AWbCnyzGMVLyCpTuZpvUjVak8OcLHuEBqk96vu01oew4nNXL4RwoZl7rhgjr6L87etEiJu0mjcRXPdWZwQo3FqbaBXA0uaYEJOg2imbqrkDDXvmyKZKKGuPXY8xRgvmnZiJzBomdbEpFh3TKoEN5slWAGgASBoRVwPhyiSM4R5Oe/vx4TMxQYG092dPPfno7PmvfnX2zAsvzHbv3RMgahwiVG2w4BEQIUEwYHDDVFmnMNUB5HoP8NKyzlYT6/yJ92eH33179sYbhwfT4QJ6NKH1dNY1hcEIEGnbiJVQYmECIAVyEooCagVdK14GcAORhGKP63lZZHoWgc2tQICvbcsTdX82pqmLezMehJm5ZK3EAIe5u36IH0A5zPG0ci4JQfEYBi3L3lwANAaHfwFZLDyCu9+qMrxlq5bXosCEgm93cyWiwaWNt4J8UmIF3gNDXBIA9ZrGMoQyW7t0wWznhmowZY4nTG3u7O9eFi6uYmO9NFAupo0mJmV2aJNmtQUvk/FawcU2V1UnBSg0TxIhbHujOvqK3NSEr/WC0bAqCSxWRoLbVjYcYfLCE/sHuLmeZUSAL42QdgnsYCBmV6DtV6rLNbcQjBTcxhsY2pSVcqzB5n4ARv1L6VDfByPFuJjzCUU0bv1Y18YEHa/PUkKBAoxkgnoGc7755IYllAfAiSAEzW9qfn71Gweb/wWzl978YAgswpAVU5zD+uLAVBUWAA3gTcHbrYGezbKHOXPXCe4FJDYH8naVYcitvidwor36jWlSDjZlvQFsAWExgipho0tKlLHnGnzz8OnmQOxZxSfbkuNWWy1Yuy33wWPwlY1dx1WoDMqerRtHcUpp/HV+mt9oUsC3Ta/vRBPWGYsNS/XaXDeAzLYRj0HoVLE9MLyqmknWhrHtcbO9WQqUjnAfile3Glm6ixsfm3paZ6wfIyu2H7dk/eNO58pUZBd/EtNpgalfBeRSLMRmDLARzxpbtbQGjcEQKK0pwvF+DRBoLrUffahdNOcJQBJFasxp/Io8sM4c4jQfLg7t6QKOBYDjdQD3kVx/9pHcW4yc8b8QfbhGLKZx9R23F16zIvrq7VCqrR8yRR/QESWRdfZHeQr8uXbubuvtaDu58Q++dCAFqjIIfYeXy16lKPFWUDbE8ljzLae+m1ykAILxYrEGZsz5yLaLDlxjfNA4AKEkzpXkn3WK9z8VOOSGw8fRFb7k2T7PD2/JuQER5uNcG/CqOWAawLPvzMEEqqzbGtnhPGsLTxY35BxA+XAehrdy93JzAnrkgTnrpoOOlTBx36GQUgDIsgdAdV5bkLXM+ANQxpQy45VFUOasZwsj8Dt+Apj81rd/PMI69MfhX65d51MwPnt8FiRx5X+9cBT0Lt4PPzY8tvcia/FqcqmmDz6J95mHKe6ujMdoiIcLrcg2R+N4oDWPV6IpgIryzY2nz//+D175bweSfuG5x2Zb0nSuNgmOJREiQSELYDIblmafb5z2Hx0NhqPQG5QNLEHnBIhdp21Fsqd7sbJciQkQYhgZ4oda1RBBfHtz39C+r0S4Fo9Fh0hNkEm9mPYqXXlrcTDHY5aXAmyTebTJ7pnDQtLgsFhZFGI9MFeDj8EwuzPrIja1Iyx8MTUG9HiFDVWunQuSlVlGLCJlCDDP4ROOENQzockDhTSjH5SxJbiMDxgYYU3BuLkexYNgwggCEGJ1U79IaXU+cptJssbQEvVXu4AgfSZINwUYlzeOFjIA916WkQN7NxQjsXlsqsgUCWHv37979qWvfW328JPPtPP0qqHRI0D300dER1AzWxJ8tkHBiAAD2jdwgLg6s7YVb/Hqq7P/8pu/N7t48tTYIPN4+2Axrx7I7Ky8PWuTvaGMg2xAwhGx2hCZMOrrsWi5dnZuTqg3f+I7nitWiAWMiZVFo2kZFkAMg3anfVeLBzna3ApaNZYYKPr6qLbqk/5oK1qkjWPg/OPieFgegPMlWRheq0gcn775B9LHTRoIdUnEPS0pXoUb2SKlSct84nKgWRo3NLe9fQpbtbPtCUXgW4n+S821rD9tkBkGwKCJ42cmMzQBt7Z5AeLQuzHlEjJWhB6rxfoYEuslmvKsDQO4V1Om/qFL7VBbiBKANjcWsKid1spwOdZXjJObCYO8mLsUGAI0mNIxZ7VezmTBVdcIwzQvygWIMSI4jR9NS8VswhDwEefGYrk2y612XStdvZe0552BgpSArmep3ZPgY/14KHp+qt+sM4zsSq89OnoCtgM2PVMqtzEhrD5sXt3XuBNGBEv8bjDGMa/NH8FKOC0oDRXfSHoPAIZGCIznWzP2LdNfGa+YKvcrAYMfGMNRqiQGz6VzPlB8IcGtDhPlw6bYFIrlBaHjaVcaHzFMXHFqkLHyoamlFIvGhRJlbRIJNmLG+AlTfQDkWMwAfvyFwJDBZs8sNb+0mSWL5eqRALVrL6TkjfNaMzdKEMEjATrgC5+5EX3JZMJnxRvebIxk6+kXSxCLsfgtyhUXIXeygF8FJB/KZMlCT1jMy6jIUGqIskavL6Zp7YizJNxlzIpRAg47ZSix5g6vFET8RlZZIM+hXYApNwhNfiQ74Kk9Rx9H3FDvBbQ/nhWKcGLdlFFMEcQbBHMD6yw2YkAJWDRh/aBZvJss0R6AbhKWrJda1UbUhWK8qjxH7z8LktDUV6smTqFyPboi3Fns5i4eVhMCl+ziRrQ2KYcs1XijrEo8Fg8CmMTOChHBG52Hfw9hTQnoecZGQdsvF7NEIQMguXKtH2NoDAYdd642+2f0xD+9961xx68cE58eZ47z9ElbKVVkEhqhaLGuCEcRTygb/JWsOG+n9KFDbSAPjbF+WxNzS45nCoa3vYySI8IW8Jbl0SZe5sk2vCWHjYk+AmAUA3Og2f/lO28Mmaa9Uw9GR0Y/pu/++l/3E5M0f77+WkdfLIxiFB+uLzxR+sQDhJfjSfgCWrdGKI/mSbkD2zlZoxOo42IuFCfQZLzNCws1MEc5YazA29Dsv/vd/4aWpK/mb7TYMPhGaTSG1o/AdMbcSldWf2V51hYdJuiY0IfvO4IzSUbQxNFmxHA8vi9B2UQTtg4aOE3reszeejiaS4LQYiaFeq9kJsYATOpDuUIEaqd8pfVM1hZWHJoV146JBcIwMVYXn5nmFxXUTbO2+KFnWWbaJdjaXmjnWiCIOjWwv4LMAzkWmOu1SSwAdwitmMCd9mAKdWedUimagLHId2YOfKSquWfaN42mbPJV9bXoCPLN63M9FHdirFjWRu2HiF92CHO5TDgbzS7NpE8zEF/yVFab9bXH2P7ylx+LUa4qRmFjv+ffX5U2uuOR2Ze/8bXZmvX2rFMHRBos7Tbza0Q5nlUf9M/3gITxnWsz5qClNGr+nD1a9eqXfzh7750jBSzujeAWj332LKIRwBvB2j4CUP1xWRj6bCd7sSEb1vJrt7lxjJBGJ17MuIhzEGfEBTTRQxbJQNqt2i8zjrDRtjH80QutwNxwOaGxnQEVlibbjIj9gjT0CaPe3P0xVGDje2U1cal8EnF8lFtwQ2P2wtN7Ord6LGkWNNgtMWHA14bCGLXAQOPKzUSIEuo0UAxJGioLir6zYqrMzYID9BNSZypOefhUMXBtmHolWpTpCJBNlqEphRVzc70SACPAsf6y9rj+YvTOXTVVMi8otLaztMmq1DaMAiNwPaZvvnxHUWBhYZEDXCkUsofutaljcCOaanuNQG1T3hhknm7MgC1AiIYvRoE7dDC+xpnQQ3vG6Xw+fK71Q7nIrfHtubQe2bVtuDtZVE+2bgSWP9R6uhYgsakkywbLj2DdI7nXCccdjRWBwzqhmCwhWzcGULX2BF6fzg2lvIJsu04bcVqE5seNmXlqIhN6VbruM3rQfwX4CKezjYGtUlga8BXjBM1tXrs24TEpWiPrJobLwuaQUIBuZNQRmO5nn0UAghDnxsVsjak1j+3hIYTXCB6vkfgBCycBLo6QdYgQsO5G5mqW8g9TtlplY0sjggvNEpZKmgz3MjDVWHMnChEgzMyRoG30x9puXPEa7l+AT5Vh/E4Qr4kFlAFedY24TQlHpSIEKLP2j/VU/7gLl7c+niimjxhUTFBMGEFJOIqVU9fKfSiWdW8IZQKK8JEgQIgBEXty+ePbEw+RWj6tHbxdeQhJE2I2lSA4mOJkTbleGQ71gLiJWKfwVfNuDaBzsY/iYICBsSZzk1jTAuiHByPeae0qhMndhso/C5KImV/54sMjWUUNHuCCcAV4KONoQr9ZucYWQP1OaDvH/KIHcwhguhd6BSI3BrTN3+r6Mlkr5r9Pla3FiqIdrvxnK4j6fDGzXLr4jTE0nubXf3if5wzgMl4nZc/6xoHR47BcNQ8O/QSU/LEsGR982npQKwsfP7B3S3M7lRZ5OxmpIObh1iDQOTJ1u3Y+rtoippjigS9rewyndVfoAFnZNebSfbUZbXCzGU/rwVz+3l8dGmM4GvigjRqqrZ89fPdZkMTC90+++uQAOvpKJmuXf3y2vtAl8I0GPJfRhNLIOj+sxI0DpQSgNrdGi1ubZVsM8kMpl9Pc5kaOdv/Nz1En6XO72158cv9oCOZNA1SLRqAXd9goeBgD4gbBMK7EMKWYMus1nwPcIECpzlwXGCbTL4tD5DDcR4ISr3bdyBBqQQBDTPwpAjGsUvYbpKa4hSdTIg0pQo2X5qevFlGmYprqADFjES+dHSlLioAbYKfRZXKU1j7tGP7JQMeQ9LGCqJkWG+q0fXujZfkAumKYkCcmiSnrL5AoXoQbSSwCSxFQJfPsasyFGwHhA3O7C7gWeClTjUb/blW2D4s/6hmEH+3CgqIxAimsUOKcCD6bThJW4leYLcUkQPnqQOwMlEjDx6yOtIO84N+Va9bPtj58cPbo01+Y7du7e7QBYXCvAQEQ9VwzoQkbY5/tDaeKtzbTfLmzxEi8e+i92Z/+4Z/MXn75tWIsYqz1G0O1XQNGDTSy6thCw0I6XF0qSxYzomksz/QJuYtpeK+gRgxHoU5uFIKJe9Q4oxuCWibRwsDopgL/R+xRcQzcNTejNUGHJhqTBizFr7GWKBSqVhLtwoIFjLka0J4MiPO17bGKdKILKehXEzbcIQQKRrAjsCU2hsXoRt/dauEJ1Mc8t4sDygrCjeyZtHkB3ObMGrZILxbIu7TswoPFJXDzPZvmyt3zH//4lYD4psEY0eWqylAcKBNvRYuda8ziN16sau4jO1ImGZc0rQ1NEhiscMz22zduiP5kyNloViB2xUtbK8DUWGP6kKvZVi2AD0agoKixPBijBhgJeGuLs21XlrM3qiHDAkMTs7m0DDygF01NioBNKlmBstTE6PcGjtT+AbiP586kXCisyQ1lHmWILqoNXIn6/Ea1hvY0BjL9xA2IQURv1tHtAKsAbtYZjJdyIGB6WFp6IkspKx0liOtcnMWKXJV3yzBiuVEDTaCwArUXszKuy6oGpN+P9uZuBXMEdHAXWitKktwO5L2LTmOqwJe6VawM0/NYKOxxNQWvElTABOH2QYVngQhAFO1qG8VrxGu1vsyB1GXChxWAhRAYJqxefGp3tLissUPPtigqVrD3l7NWiYEhnMSsSTCZBOnHY19LgLkWZWFv7uuMcVwcHV+Phik6hIN1wYpHuH0cf+Bidoy6V9EzngKc4cH7u88kHG3tUTxm64GbWaFRoEiMpz4AzDuzkhJErNWAM95gPKw/vMk4mLOmchSJxNetQddIiDAHhCohRrFTqVt7WasUkuQ+E+zLNcT6zHKt9pXYpZEdWB+6/RhLtOw+Q/j1PPTp3gDjK5Ud+FGWJOPzUyCpLwCPgz1vVfyGIiOuRv+BGwCSsoonARz2VsRzAFNr09yRGXixV1ZvSp5+E8Bo1iH+cKyXnsXSz6IxRjw6B3DcG/3Z49RmyGSAtQIQGzu8RF8G8KnNXvVlvPinD9rjPH+T7WboFQ8Umvm5E/BiObfFFZ7I4/Bk1ixFSSkyL7WX6PfzcFDC9KHHDvkrFEJ/zetoVL9S4NGxGENrHf3YZJf1d26NHK7n2vhnL787+LfxmB9a/lPH/IteyRj4YPSzfygCijyTJdoEkA2FtDYB33iRuUJfYww6Ce1RjFiktZF8BKLc13jiK2gR+K5Tg4cC5LCK9fv//uHL/+3cbV9MCJwPkNDAaLJffvrhmGbVfrOeADzQvZgWdRwwcASkYRr81tFTwzxJA+NyQsQDmKRJM4shGu4wVqqrCbJpA0yEOmUFyYKiUV+NyKS7QpeDAWJWETHGoT4JdwctpGYMxsmqJN5olCVP+KizdPO2+7IQyCxaPvaJwviWFoB+s2BNwAe4YCGQNo+oCEuLTJsJnEtluwBEA+A0FjZp5S7iRpNhtqtYmF+uTge/6KtvH2/i3Xf57Jniur6YcOLq4K642wTb9+hChC3oW+FMLkqaFQJSaoBwAl4ISenT59Luh1+6Rb5vTxlaWY12Pf7kbP3mTQP4IRIMbSyz/rFgDbDvgTzaFEKzACFwhM/ahwivXalUwbG3Z6+89Mrs2PEYUIf0dNcJgB3MprlT3JO2DuTQdmm24bDG3VNno1I1N9FzB/cNZn0j4b4uZi59WtzWouYP4BLXZiEAKzWj50yCSYA+ISCQjyCzcFk/xAWN4oQWW9cpWHo+8DJ86SvaqoJg7bnmEBDcG6BkYTDnmxrbhfV51PXJLYJWGQr5tTFDcVMEIxereCVB3uK8dmUF0XYuYTEk2gy1mRPzpTjfzdolxupOLlXxATtzJdszTF2lxT2H9snCaJG6p+c9mhtCLAoLB8sl192wmDY/sqH0YX8ZTfp+pm1vbjaGAsv//otPjLgvbR9xO9HIo8XNPPbY3tnrxSWhJ0J2TUUwrxdQ/PJbx4bLbkduzh0Blm0VW9ycViwoeEfuAS4B61G8AXcrgYj2gBDb8Fys3pkMtW999UBbYGyOOV0tjbxM0gQ34Ow8CsW2QCdBz/0I4Fk4aE6WHsCD2RJ23MEEL1phTcQxbf9yIAvvc49uHcCa625YcAIuNMR17fNHGQMqxGLhITIpKU6yxd4qiNecEUL6wuonUBMvAIq4ShZkdcZEuTXRDoChPaweMtfUXcMXLqecfZDiNPbMygrDai3e4/+n7U6b7ryy874fAAQBAsRAYp5ngABBEk2ySXY31epBo205TiqKX/htXqQqX0JfIq9T5Uo5dlyVlMuxY1mWpZZb6pEDCA6Y5xnERAwkCJLI/7fvhmzLTkdSVR82GnjOc85973vvtde61rWGLYGXwdy7zcG7yvQx2OVepRu0t6Do6SsGXL8t4JLM6qv10ekOUk4GXt2/aZzETga8dy8HhwOCEdgVC4B9sV/pT54wMGfvOiFgAmiz2d6YOCaTkpOTiVUw3sEKNAaNGYWRnquac0Pg1rNiFBS1YPmA5s2rVw6w5HkdmcPAAjv0nDLqFckUJ0U1M0ViTt2HsbLGysHpui9iLKU1uK75UK1oD6saJhf0i4aT9hLwzHHc0TpjolyDo3A0Zl0hgca8KioxwuSGAAF+QMWUSzgxzJK+re+fHzo9O1zishdHzRiNlXMIkP/9WqM8m6yN8DH90R/vi0jQ5ZMRraq2dXmiOQLS6CEsrPwvYFeBBvAiT8wRFwAdIGn/en8Y/JaiSR76FFsEGHJ+rlXlqYiF46INxtaA6teq/OKMPAacQOgw/q2xF2Dwi392/fHWGLNn66NDfr3rV+7vW9M3p/DckP10jMKGUznn1oueER6X40OWf/L+qYqVLo7n84yqVZvwATzc3Ht0wLCJgOS496Tz3QtJAMwYoO7q9jIHmCwNVrHP/GevMdjpHXb6L8Ntxt/9vlafMxhAnjHdbU7YpjGX6e5b6RZFBpgtOpGedA2tI0Y4OjnECJJr9lhzz0U5c/Mauz0iB5YuMTdA4f/1p+/96kDSb76xK0F+Jm85xJ0MOz5CEzdluysypEpfLYqE5n0piNttCs3ysDm9nYBNcXwswisBrtWxB+sTGPFIVUhXE1Kls8JCvDpHJjiz6dnCZliVM5VPY2ZGHkZ/8+wpAPkZqG5eE49CBRRDOiHOKPnyZnxuWSDLYhBKG9Gp54wfqpJikx+0PMPC87vX9eUf2KCSbSkQilaeEtbI9QBASb4SEG060moTKtlfXgJwmn8YoPdOXhvz4gR5RtVBuVgQGxiT5IBMvaNQjYzJCs/MYFWWr3oP5X/ghe1jY0jOpURffmHPbNOefbMXX3t1tiymgfBC+oAjmbQOBI3CsJmG0DdGyscmALK8T/HaPADRn/3xn82OvPdepcTKe6dNQGj1ORHieiUm8WZChkWz/lhAc6+ahtGSK6QztFyxFRqXJcxexiEUZNy8ODHiszFMw4Mx720KiXrLUqaMhFwAIHxb1X2Sgh3iiznaut45eB17EHUvSc/5fRCrtQdcdVoH4jAxlJN1ZVhR+sYg54uRdFzFgubaPDBw8rGEBR2NI19DdaA5l5TOO3zeqfXkPJCib8yzyYjncF5e+26ECPd1/MXbrY3YPuPAS5ZkL2Shr9edjO0nbXYez+kqyHillNcnsUe7YpeAFc7E7hgnShqjgZX5pGcQblaFw+BgtJ5q85sfeQ96mtyqapRx2bNtfet4dYS3yA+gocvy1jw1gFFD1hVLlozE/rN5VljNYx2ybD9QIIONaR6FeBk8uQBC1vaU8HfB2QGYrD32I3yQ3OfgJEcMgjEBzOTJ/pPYzJh8HADZHqu0tJw+DBgDur5wh/2DFRTacb4UT5lBk2sC8HC85KEtC0hiHFLboxoUEKKoJYeSMOHKLVXtbegsOeyfPKq9VZpd777OagMm9b9SRTjl9mVsc+AYRCCT/vH8DuGW0yTPRyGJHDSVhrt7H6PzYoYmQaqlRbk863Jm2jujr1ZrTB8APsNIkIlYGQ7fe3WOP3qmIz96xjUlk3+9LtWugVk5HwDlSDpwm7KXE3i1UJQcQC0uOEgYs5N1AxemJNsbAz3XkyXtJ1akhxWyWC8ODL3KieLl81iOn7syGEWMCQUh3GKvWZMnyu/yeVXH1kEX/2+/unvoD46lY3jk4tGLwC2z7LtYHWOmX7DIQsYjhzGhoM/oPyw58PA4l4cWwnYBHlgCPal2VL6+sz9YXSyw6l3HvPgsHYlxGPkm6QpzTPYB6aZ67ClAx1Eq79SuwgtIGvduHbyU4f/9bz4fo1KlZvpbztrpGHHr7LrWSZEIPcABBAjoTonBnAZ6Uj4TEE5nMNj91WdVYja/jXSo/PYqXWpO+kUyml7tZ+yzXk9CRPaEZHYM1K4A6Z7W9sWAgecEqOx71zamobN7BrrZy9/TH7ZlYuq9P8nZ9DvP7XfT8ScBCGvQ93zGHsaiSHlQtaqNivm3zz6oEadweLce+s4dpRrQmSr/tB5x5Ne6HCtzZu19BtgF8tgrYcWX92ya/dbrz42/6VQpDuy0tRqv6VHGPweTZOJ6eURg6/cCs5oOE1t6d8qVBYCESOUA18SZ05U9/aIu9XS0tYIz2OLpWtPc0MsqhOUmyW/WHsDeMgQOkX33j//VT391IOn1/VsnL6vNfTFAo58Kek/DtP8Y850SprEeq+rtw/PUiE0Vy8t7NwB2vaLAegiK5Eb5G1OuR0myTTDlBdRQjInAMMAftygESVURxuVeRo1xIxwOsmVwykkdSJJRtzm9VmXATYq1Go3+GhNw9HTKWjKmqhjUL8XtyBFAiFEeSLcFs8jiyedjn8Q1r6T4NSejEAExlN+Ua5PyzzB/VEUdhSIuvLQDUHmWqtpUVCgzJbjHYtTeybOH3l/bv214WZr8TUdlqOxIGFvUT1OUcp0c//C9770227tvdwfgfjxbvWbNbPeLL832HfjabP2GdQ1yiqMr2faClCk5ys0mIR026qQY+6H3eLvA0SirjNGZ3el8pOvnZ5fOd9hlc21slMmvVx2yteop1Kv8ks8zPgAFxTgpt3qLJNQ2j88zmpiUZQmw6j/HpqCsbTx5JssCjtZGeI0Xt6ENiH20WXiHquLu5jEAp0qH3Ve8nNdsrUdydZvmTp+Rd+HZPRdGiEfNKDuXbIQD+i7WQU7Dw5QWw+lAV7lxlLL+N5S5DWkT2UCAqpJaIVY9RHxH7tD++vH85IOzPcvUVgCQ/aicCsnqmhpiHJYtq3AgtsUxC7xIyk4Og/WcnzJRIedvytzzex6GmFwc7XDZeR3foSJoW+ceHjpcV+1rKjbL8ej7SzOGDLUEcyEbHXgZE40pVWYdTaaO5SFez6BiOjgZGJRxvECy8NvfemEwBYycIzmGsk3W5VdR+MCCfC3gl7wQG8oJ2KHEyTGDuTVGzX4H4uSU6WnyYR5p9mi0nnhxt2TVqajA9YQMhTTlmJxOdiUfrygEqMJMjpSwrkR6ydHCnfcfzhmh4l3bNww54eGTY04RZousyZ0CCOkKck2G6IQL5YIBQ8KG8nDWrlkSW1Z/rr4HLGKPrsbuvLhnw+y51vOlFLvDRbVV0EMLu3k28IpZBgDtPflOZGTkNsQUAqQ7tqyb/dGPj+QUyAnqvZ7BOJqC5FQoRl5ODlJjudPcU/wAJ0CCXXvnw9Pprwcj9LSiRrO3aiCpQaZ8r0sdAv1qJ8LziAFGVUUYpsGWZbg4K1INzIU9c7Yu2vQk54OzCux+55XdGYlasDRXnMRRaJIcqQTVtFTY0Ps7arVCV17MgGLRPIA1pwcxpNIm5BAqunFdBgcI9mK8yIi9pwrMXpWc7vcMK6ZVwq9rmhd6j+GmO43rQrbDuDblBLMPKpL0nuJoHY9VcvyH8ynlZdLJ0hAwVK6BmeeQmq+3jpwfDTyNiY7R7sCL3aCjf/f1qtuSHbrOGpmrs6V70H9P9lk6x7MAQebQfrbeI7SWjqDje8xhuOkrbjj9Zp0lyWPMmpqeCZB7PCd0h2+NJx86rB+GE4YtBlgAMjLNMXt+e+ecBp6EXgEae9R8m1v625UI02PQ4x1r72c6ZnJ4p/wmazK+0z/83h8vw2E/pbjYb1I3OGiAqnvJXTrUHhDyxcSQEVWNbmSfuSawQVe0tMNxpIs5g0LHbN5UUVqD4uT3Gy9sibFe1joLIU9M5BhI/2dvWMfx6lrW6bsHtpRLWj7aADM9YfpFiF10gHPnZzAHo+6PtAoOj3FaW3mw7B99wd67B3YTMUAOsaPC+9hIIdJ/9u/e/dWBJEcONNeD+uKlE2ALxfChIy2sEMrlJpsXCBxB0SvaBE8/nVfSZF7qfKXVGTJU69z64ixK0NZ3btHDWBNHIKh4wOS8sGvTmEy9eyRTEkz5JhZHCanQxpMpX/SdsAY2Q9xULw8bZmp4V1JxHuz5YrKqSCSV2wSMp01DcNC5vAAhQh43D9d5SMIzAM65DsAUo99Voz+MD4ZCrsMoUzeqFmFUcgSizsZ0YQ4o04udIXY7Kv2tjk5gtLFW5oHhkTthQ/7ovZMjXg84WmThD6dRQ+LyLFZ1ptqN2+V7xLownKu27pi9/NprszVrVw8KcRjDNisvxwYDjqwJGbTZKD0eGCFjbB6ftUVJAGKnjx+f/fBP/mT21FcBxd7T3oGC1JxMFY3DgI/WGZvil3BK0LQdkOsj7MjY8lIfAyQbyFwqT9Y/a2NMD6rz/RMXYhY6hy+AolLp64HDuXlZPEcs3Y6M0e3O83tUTtIbL24f41bxY46wchgySf3P7yh80dxp1ijR+0Fexd7WRZhTlc379bvSOFRSPbCkpwewM4xWygUwoRTl01CMFLaqMkpYntZnzZ88M6eUu7d5Au7lgZFrzIDz7igGzA9vlnwvip3ZuW3zbG2J2ubIswHK9KRQGtkc927TArGUpPkju6hs5xxJCHVG3NlCdebX3sAMySNyBtrqDCpA/9NDZwY4cd9DR8/OjgeQJG4/Atgbm/CKvlj2H5n4LFlOJIdx0HcKuFJld/DouWQemJoSOh9mhByFQyF7ThVTQo/mmxJ07pO+QRQPh+PjZJphcW+f/6zvV9LRnoxlCsQCne5/PnD0/K7V5cSsGPmFeoMJw24qHE35KoffWdjsVuv/ccBDzhMWSviWZ8zLX1eI0x56GABiNISqE+mhb8gtz5ccCjA7mmdDCcXzShx/UBPKOY3DntSx/W6VeU/QN8kUFhSbqZfXN1/cOVgbrO6xs5eHgsUwAwqXUsTH2wMaCKLsnykn6kjOoWIF4QEhJ4cUc/iw3ys67oinDohczUg4Xw9YGgAAQABJREFU71IIFWMFeF2/VYuMdI7zHs/ESgtnYYiWd4iuZxIqe5RMUO6XAsr2sVweeRdfdb8Rim9e7dUlsalCWftjuDDun3ct4eBdOSjC20cC8pwTaQEYbxaOM6cqC/vPAGIszSGWEROG8TKXdMeigDv20/4m7wCU8ZBr8jwxKoHBdIZ9zWBzHMnIYGKbA86y9/TqYaAcTDodTjrpKnuQ7gN2PSPDd6Fn+6hjP+gcjAZmGeBXtWeM9hR99kGf8cdrgKTG6TVAUv/+9Rc4oVPYlzFVwIAdpLcc1wP4eVZgYuyVrgmsYLwAH04Elk37DXrvsa6zR6w7sIHptAcULci1JbtGwRaSWSEo9+FYsX/GDwSOs/2aS2X8mK4DHW4OaMA1HCtrJD9xyifVbRzIiz1Jpwlz+9sJERhjOszvtFPw85pkgT4DEOkZ4IFDDPx5fnMnN4mO4FjSVb4LpAJLx9JBbBobr6IaaPey5uaR7iTTwI55Jx8Ih9M9F0KAvtnafqcfsFVjQsYVAMpfhNumpRqg65Xkl3NlXL5DrvxN/3LcACL7RBGMfNh7ohXd2zwN57rfm2+Az7wBtAPYNZn2NHYQK+iWDgL/f350+G8Mkia+6hcP8cv+0o2YQtoaZXixcBFDcjwUei+PanmJw8DSMy2cxRFHVJGFhr+boFCGwiAUgU2DQuN7PdkxFPpLqPi6cevWaNjlbCGbVRiLkebdSYSGSueUMzdOEE8ZaNMu/GOhgCBhAeAIctTnaOpRVMO4FK+Fkzvl9POnFy0dbILNjRmBenknkDaDIJ4vpEhi165cP/I7fnLwRAMvR6hKsrTuyCEhpNsDP8sSNJtBZ1oJiShwYOHDjLYNYtNCyQ5xFWp67YWt9Ry6MYTS2FGHDnN944VdAQIJq+VkVenTdNV1O3bhud2zdZvWdx+GcsoHg54ZjM9TPISUAI9wTJuXgiro0/tTFSFgtiTvmldKUT24dW129uyp2YnT56N+C/lU7XO8ktEjGVzCz2DrPYUFutA6Uxiv7Ns6PCmswrm8EWHJD2tiSQ5eLM9KC4P8mkIR9QHKYBL4j7vGquRl/7YNY4xa1iutHko0Af9e9L7w1LsfnBnro8EflgG5L9kS+Ps4plHp++fNy5/87FjKIlamn4FUbAnlfKP8MMrhcTmv5nfurxIJcFBoICdg6ZoaffY+ICkXwryTM31ojiV/aFphH4wHhb+3sJ4cqh+8fTIwk6IKgF/pfhTk4u4tnPiwUvMVkonPXBrKz/VV71F2NuenHXZ8suR6YUne8eiVk5KR3K4vDsN6+EyVlHll12/OL/l74/j3oeOFSgJ/FIUcp0RyrL1jP+ylCyklrBcljsYf85HCt2ZCF9phkBFsiAOnVUiRgxOFYL4TQ/hGBsShtiKr5VH3b4pvNgoB0PK+uySvXaibcv/kfsYlIHCs/Yj51Mzw8zbzs53v5VDg9YWSMAinOubniYwLBbu+k+3/3ref74zEHJQly2NCVsx+/tGp2JNuVPfpjwsTbn6qMFtzKLEaqLkQm8LA7+izmBrGnNHk3Oj3dLRnkZiMIdQjyR7emiNkjI/DkPdbd/t9cQYCE6zJHrZaHt329p/9SLlSpFgcjKUKPOyiztnyATUilZj95RdXhwG5k065WsuKm8kjlgz7wlhxqBxyKzlcsvzOZJgRIeuof3lPChjsUUDqmYw2p05+1J48+Uuxj8vSXS9urx9SrAyWFjOKYeRk6FdFj85fUMJvMiIcDdRgDLEr9uDcfo/t0lH/xp0js18vFxI7KjTtbMSzgbHrhZiFgJ6sWePIgerZG+YAfpJ8FQ3MCUhxABhTQPTuvM77S0a3FeZmlLCqb9dGYyQ2p9/oH44C4yQnxOkIwjDSLjhWjpCik+TweI15775C2PYIO7Cg789tjQ4UBnoup+BP365gpA7W2Nb/8O7J8fd3OrOQEQQmhfToTMaP4ftlr4c94Kheax8COAvMa98lHEJdWB36Y2utGAAVwN5QAQF73DrKhwPesEjYH0ZeGH56SSou+pF8jb5vhaWGPkn2yZ12Na7HeZ1YnzRb35UfSwcKk2sO+myghs18dd+WKuI2jmsACcCcucWesFNsCiAF0ADh5lpBDmfQ7JI384SdYc/ML2DQZXomDYyb94aO8fOMGEDhz8cAyz3l3nE2NX12BJefgX6tRbQYME4Vf92+Z7KHhpkcBRXug5VmpxEFbNJffU2S8J+/y5EebUj6DjeoR+ql4ICjOoFMedCJ1WCKMHjyvMbN+5y5RHqYY0AY+63D9mDMu9ic5oU+lx+I3f/bvOb9Qa9f9sXHHbdffX7b2HyXUk5YGwZhYxsBHUwYGWIHzj2ZgHz2eVVGCYtFk3fAaDkU0CaEZsUTeSUqKFBkRzPSaGQbwflmwIDkM0m7kLCEVcYNEyC+e7jFg4ZHUl9ongBbfHlKr+7ZPBobCgFSsMCccJawBW/8RF6chRAmUVUl+fx+VToSH22IU/Xx0NH504wIb4ugOowXUBvKKcECovZsWVd+x6URepHrwPPGOPA6CDGl+VxVDSvbPMCHHBNUrD024rYpQAplXsJ7M9bpRPkTPLeLN27ONm5cN3v+wIHZjuf3zZ6KXWKQCR26lZc9qj7a+DYyjwZgMDdQ9Gh50OYlaIPtafNT0CdPnJkd/OlPZveuXZzNLb6LkXFa/dkaT54rpKgs9njs0YIUyZPNyY0Ap/njcQhv8pJUPF0rJKe0UpdrCpdX/v7RM3ln05EQBJjnTOShBcbI+gOgqukkZDMiQieSZOVQKC13NMf5Qgjmj+FbWG8jmxjzQmZOl4ioOoXCZjCEjmxm4Mj8kyVz4Lbxw0PZOMHd8Q+AMgOs868KO5uF3AEhFzN+Q4k1DvLw4p5OnO+aeudgnW52XWyPuV2Zkt7RQbWPGoN+Lw0jIIW5y4NOxjBe+n/xAG/GjFDOWANhIDkKLd+QKewV7w5o4h3JS1mWAZWnMjy0xggkoYixBeYf2CK/crAGw1IncgCJgqFEecDWS4Iu5UlmXR+TRTbF/62Xsakmspb2xK3uYY1GflxjXFf4C8uleIHCA/R5dJSvz2xdv3qEjuKRm+hyY1LyGAnHgFhvhz0/Mffz2fdf2RojvG7kEWFJVXYBdpwYCZjy13y2rwyQZe+eupj8dW9ss/3NcMnlEa4ayfjtR8rf/mI8GCNshbEKyw4d0ToRgWHogYq8Dc/w2PA4KoXuAsYkwzPe6HnJ1m90phnGgiL+eY0tKX2tIMiKA6eBNqwaUI61th+dITi8+vGM93McbjYOoK5+b42FocUYAjcSSiWeAyKAO30h1/FEnfcxzw4ldni1AAOnTXoA3aUKbWHj2l/FHHY0s5vcTnsWI2auNN60T+Tf0Av0hTAWBh7wB3jpxHz1sUfkCWkA7DMMMOfOGpMnIHt7Cda/8639s7M9D1aEbnTECzaEXABiXsNJS96GUUv+Mdfkzt+cQ0U2WnA49gXAlgfUtIz94BpYJuMiy3sKvzHGwD89M1XACdUGirrmyEPtXpiVg+nev8xJ6mfj8LKe/rcpkIJlAbBHKDC5sk/JOviAYbQfRpVo+2ewh7UvwVpYq5a2z8egpFOWNndCfQCfebVH/c7LM9I78uTsc4UK5kJ+GaMP1NFRnFdyggFhA8y1vW1PYzjooDGG7J09QK9qewAEkRWpIBxHzI4TGegLubqemm6SmqDi2/3cyz2xMoDdY1CJxTOG0a06AI9xMlmAhWuLqKjEwy65BnvtbMbTsUQICHpcwRH2jQ7yMh9+tr9ENwAWOlH14eFA/Bjg+OR/wiT1s3H73vdffW58T4EN4N80jHFbTukYyBfpMaqUvTCMdKb14OhymKyxynQ6DpvEyfA8cq/kMHof403O//m/P/irY5JQ+pIkHVpJadz65PKoekFRMoA8MLQ5BbsqJYfCfbU8JsrE8R8alT2mvsSG9diwWD+tSoFnbtLvt4n+1Z8dGuwSupGRYgCgd4smXLGiBOxlKwJkK5qkJkqcnsG9e5/SLcG1z71dyaNNw2BrAPhVoZzhXfW70xc0fUMd1icpI71904qMb/1yWgTtACjglR1AKdGa8Ag/fVjIiHLS5FFYZHPfEX6DcPUc2Rkl/sP3Tg3jO5iyDCDFbXHeqbJkU8pldwpAKfOiFMLp87PZhfttjOZUpRAhf6LT1x8FBL/7m9+dbduxve01eQR2KwCX6IwN4PBNSp7S8kwoW2CO0aOceHE2OYFOV5aIHVN0/Ojs7bcOxig8GGHFYxl4HuHnAbWbCb8wDTApTwAzuOnJTtouh+h/+odvjuReYT8KQk8YIUee2Ipl6wZokaCvQzWvVY7BrcDg1BOqhN4An/Pg9NeQNIIJEMaQ9Cwsy5Cr6sMIPASs7xQ+WR7FXkWV8lWeOUV5po7nQrG8sqv37hRWKHG2Z3m989e2byxpuvW+07lQZMxBxvt3rp/N3TR39kc/+qAKuy0DbLENz3SvYlOtZSG1QqooXDICcEnP2rzm6aotVs/+9z/6cBgvXg5HwAYT1jstp+H053n5z45nBugcCXMr+aPIHcyLwVoXUDqZ4ZMPsy3At7lwzSjR7yZ6D13t2c/mbHAW/Cx5mSH1H+PO4A/F235LhEoKP5+i/2ooL7mKDzGC/SzP5IXYnGXd+0HPdahKSgmxC+eXoD6vEFa//7TPWY91GT9swoMMltPpHQH0zRil9zI2f/z2mSFjCxYE6CmXQCwAQ+GsXf307MbJKVfF80miv3lHPsq9wEyGt/nTFZ0SB4A6G6O+UxOgb9qGzOtNgiYnk3NL9r51Ty5BFHhjFvL+qDAXQL+wcX7Z969/8klgbE3VS5eGE6N8n8M1Wj2kRSljesZryfz6oaX8eeWLk33hUYD7bIqdl8kwCqfwJkd+UgCFh2ydKOln6uo+b05Nb2OFzxUyuRITx2jzoDkfQOYAAgFvLMBoD5HMywmS7H65FAL5PQze0vb33bvlpDUu7BKmgoOHnQM8fvCzwwNA0aHYtsECJmPyQhb2Jfpk25qVsy/bK4dzKneXn9kUtj9r+Bn4FTqWJ3QyPfW1DhzfUW6J0NhXPeeRQiW3ut+ixiTsK6wquf+jkxeG0fr8YexI15XsioVgxJ2zyaBvKVQM/Kmm0yBUg1eGWbUjUCmMwll8veqsN1/ZNfvH/+LPh/G0Zoy79aY/gCnVakJ8b5SkPnduoC4dJ+w7rGJ6/IvOugRjfY/RBkixeIoj6MwNgeJ/+Bsvzf70reOzH5cLKDH9X/zgUKzoys4F25CRTBY2Nset63/tBbgCIDsq/OBQ6oqt0hErMRyZxml9Odh67IF6dMmfxpxsb245/eZc+IleDc60F+8MJkLSMJAFiHDqyb77Kc7o7T5fCLpn17pCbpzcyfuBWMUj5pUzh9FZ8vTERLNra3KiscPWATHARvpjvgcYbR2b5iHLAM+jL8uTi3n9+EYV4gFdLCnZBoiAK2OjS1ReYv+AEfpVjo/1mmSZA62yuVYw/X5Z682G0if2DDugMfR3Xtk5QvU/zWGQz3S6MKWws+fZFNMpBUd0gbNi/K6PsbGvypzryv/fL3M85jlZFQ43fnLp2ekp+9uzWCf22jOyQeZCNMlRQHq4afJqr7o3GbxbZGHIZPOm1cUI29XmArhnb/82r3l/0OuXffExk/TffO/F2bc7WVlGO8aDkEiYfTGqdG0LvW758pHTYRifNdgFeU0UDuVg8T00pUuB8AQ0kqT4dJ9VPaNpHEOwPoFxrpoT5o/FbJi8R33O4bYMh4q5eKBBPaKmnUB+JiZEpQ02a1VswIDqKYTRY6HrUkjHUjrtya5bAnIxZJ6psJ+QneZ575bjYVNoZrii59qYQcA2Kf1FEQMmt6Ktr6Yg91T6qOwR0BPaw24pC1Y6y3t05pCy6BtRqhJT15ZTsqfu0piIblHY4ULhAcxTVUG9cWD/7tlLr75SOf/rs5WrVw1wIwwARQOkI0+kDcdTeVyhB+QQKuXyBAA4Mx9oV4monzS/R987NPvg0MHZtSvXmv/mrZ2sQkMPKgoEw0TxqhaTB7S8/BoCJzQnAflKeRHA2Mq8Fuvg2WxECH8kvNfZmSfP48EoYDysKcYNm4GpkMBr7XnkvkMx8tyFdOQOHYtdMO7lv2DMsAE2nM3K8BB+nZ5frMoMo8H75qXfb50wMrxL4Qux+NcC5TYFZej5nA2EKvbMPy9pFnCXEAtwOyvOeBxzw9A4RJiS/8mHF+tV88QAx4T1mZ5NlRGA6Nryq4A0ilYljFDZtoDJSka1OcaUXUnZPJmBnTzgnr/7KRiw4U8XPlveNXcGrh3KCpQAwT7DM6JYOQzAJGA2ZCQwa543ZSzXJk/Dw4t5lBRtnXZ0fMXvfP/F2cHAlJ44FIoQotwwrIxwgqRMeWHyI4Se9hfiSbcPsHws8OdYDwzqmkKUeomtLjQtLMlrU2k1wg2Nyz4A4raWaK6yhUI6E8uHAXbw6rsl1Ea19Vwxpu2JD45X/h3TxBwB8NohkFlN/IBMHh/mA2CUXwMVflH473GrEWPcEGu2tRJxB4hqFinUxeoyWI5FaqunZ6aDP4Xn30mpe92OvWgLDfkC0HTUdsbbAePunvYTR4h+wl7K81GtJBfRfJOPrTlAL3d0wsN+tjZT08cKRFpf50gyohhOAEpLDCFbzoJ8juuF56wF1hVQuxAIs4+2NYahA9MRDAq2HNtD7pdWQEDPyXE053STSt83v757drKeY8JEd5pPztF5Byb3n30kpxNTLalYV24hLfK4YeWzY36zjumy2PP0t0a9Qn37tm6cvVmirf5Gt+/fG4nEnz3A4t9p7e8HeK42yx2p1DjAAcn2QLLogL0ggmCsWIQJAExNUumlczlTW0aYpn5kfZYhxXyYLyHIxRkw/5anRt4xFeSaswo07ErHar9hTwK92sLQ8xgbuvv9CkPIeMMbYbTHTFIXHUDgtwrnC5nTneQYm8LAA0H0lf5o9IA/mCHzaQ2sj8pt4Hbk9PQenUQPYXXIKl3aX0Mn+D5nCuuJOR6sJ3CdvFljDiGgeDzWmyxYny9UGrXuYkiAAF1i/xuDqAPWFeMrZGfPmK+RLN57nsPnNAv1GZexzsbgz+jX1ODoQBWTyAZ6aOzTgCC5x4SyxdhsYUtFJdhenfOnViaB6BxOsrmnOXwlcPxc7JIxclTkk2KYrvUZLB1bJXpAL9Nh2CS94OQ4WZ/HL99/3ALAe67/W19/boAy3/E8gKfK4CnM6ADtAF1zizlzkLd5XpDtcCqBuVjcs2PcgX7sO6bMmpgXf4BX88OJA1D/2R+99Tdmkv7aIOnNl3ek/O8NZmRDG1IfodEpu4W/mgALwVBwDMFnAZw1Jftp9DgnFkerfWEbp2hDsECL8ADKGDsUkOfg97v+bvIYVF47KtpG0ilYiTghsyFvVhVyrNJap7ND/8nv7KmUIQTKUKNrGTJlniZcjgGU7AgStJxk4I2Nz2Qfzmi9uHvzYEgYdyDESfIv7lg9O3HmYhUyebYZFl7C3nqPLE8J3gwsnUtBSUDXA0mjN0nXBA+176gRCJ3HpGSSYK0q36GpKLG27tSVBqui2rR9y+x3/873Z7/2nW/NFi2NsejhebiM5ihPzpswHz3yAA0Yp6l8H10NsDidWTVEgKqNbLNh9n72k7dnb/3Fj2a3rpUAmcefEzxeYu2Uo00mnEUR2O2PaVrei2Rdhxaj+hng021uyltY6uO8pDNVJgFllBjlxZMgmHcKXYj5o0WxHIzSADEp3M9ibQCyqzdvN+7aNrRJsQHi4p/kDbjX8jYB9kzlpDDHl8nRhjqSW9MdlcmTjxN18pYHQv5sfAzNkiqmyBbu4kE7QlWaygpejwREYxAmEOIUinqqflU6HQvlUhg2zoVrU7M/zB+2JGJh5NB5Ds9HaZuXx6B1cD59FhO1KY9115a1Y0PKSXAfgHVtSsd8ytVZHTj7ovDtV80n1kj/rWOFmLF/cmn2dLL90pTEOBcxJSGHQCPMvj6UDi8arU8adK8+f6VclgwOGdEvZJwZlZx+mZIAArW7cIDu/dgDYQ8KSO7B2nLGTuZ4yEEC9u7EvjYFrUty3B61h3YHfnZ2SjxZknekHH80QmwPAMmUOpaP7pNDoy3BtnKfeK4cBnuFshaKxghil3j/KzLklODIhWrD67xM8aP4KTVAlU5YklyQO0rPXiSba9urWA0KWSdshvnMhauzp8s/21PfIAxjItRcq4z8pOuqVM0xiS3bF+tr3QBzBkSuSmq3sZUz1xqRXY7SALitnXuuTd+8HnhQOfdeYYNNKeczMQJkijPEUHtmz3a5/SQZ+2aMIN2kwzHge2DP+gEKADjJ+PcCc7tbR0ctOVuOdlAxuiXgO7d5vtFeohvJpXXaX34KECixWX+reRnUOV1M1Re2254kk0LScjo5RgzXucJjKo55zZwUVb6YqrXJtfA23YiB2JLeVKW6ufufCdBwfv7H/+FbY/0+6PxH1g2zs3vzuqGjsXCMoWOCRpi79dKDzvUYO3oIULGHOEp+PlV/J87MtloNuB6m30JxavS9UaAg3+/z5NE5lu4nh0p6weryTtf0R/8k+wBYsrfO93wcEU7qmSoSCSK981dB0t+pk7O8Mk4mkEcX6LcjzEgeVnF0uh9nDUA3f/QooMlp44Saf9+fgMq017RS8LxkGbCQ7sCRITeOvZHDCSjonQf8cU4wWwCXtgn6mAl66uuHDSO3rJ79xjEk28Yof1RjyNHyIrmVCwQQW6fHIS77xn0Bv5HAnRNuXHSj63AOjZWjsbB9BSTSR5LNsS6+77Oq8+hCYwHugFzODF0KuNLz9sremEksPfDqM2cD/XImB3Bvbcii69ARzvyTN2x9Hr8GSJoeeLxvbG8W4vZsjpkCUAfL2N/mfoS+ex6ybq+5p2gW0On3QptkBYiUl2weNXfV98vzcc4x+E3C0F1Yt18pSPqNPBmKmYEQAlEBY3KPRpVL0HZUhsXb2Kbb2JlAvEsPgfgR94XcDZoC4w3Kk5CczVsaZ161QKueWTh6hGxOmdwLfAgHEZ6lLa4/8nomDzNQkHG41vcJs3WwCUYZoFhugp2cDw/atSVmGvupKHgLw/CJ9RMcgOET40goTLwYOoMGoGnKdzWGRW8XDItwFqVI8N0AKBJO5IlIxr1fyEcOgDJFiW8SuQEpJcebM6Z/9vaRjNOns/Wbo62/++bsW99+fbauHA8CDQBRfrwUPzeU4QXoNs6AEQzeAEHwN8+GkPPEbQxeybvvHZ79m3/1b2eHDh5EmQV2xJWdQXRjKHvKi3Fcl9HRV8hGgMyFGZLtgE3Jcm2IFbEqFMfi5uJqay05XUWPzchga+CJTRyC2Dp45gX9bk5HYVBijLwyUscsYFt4K2hU3rl5FGrxKICUOczpHobGeL8q3ILxQ4GPqsWu60R13zefPAyKIvwyKGDFA5rRqaZ0dhW50rIBIHo2YIohkwhq3Xm7qwJjlNCh4+ftnRiE5c2leZUr1nh7fnOJ/n8upRCMGBte7pQjP4xZ3oZqONfkWXIGzNMIGfc+4HAvFgKosG6Scs/3+2Ekug/lx9jtbC53b342o1l4us38KCSIEaBkFTpgQhghwPixTFDSQCEwPir3msilNVtkmA8drTql5GrgBbAAtiWubw1Mmjf0+o7CSooabhbavBY1ff5K1XE9L4p+ZXtEovO1W6oZ7xeqXDcUuYq0e58mf82BuSfTxgc8Ofy2ryb7WDa9j6bzxNY8Wwg31L+88QpbjbB88oX6p9h8SU8iOQXdvj3bPmXIcirmZzxHKKFnYuy1G6H4fmD/JAPODJRTp5JQqF4Oo72DYbjXHpQz6HnjC5vt5DMNIZyA4cVUOH9ynFLfmlhv4WZzcr17WFc5FcIzjIryenLv6JqNGe0bOUjyViTeC6kBxK/XWfvrlT+/3tE9X7aGJ+ptdLv9MfqGNQ77REUmNgkT1XKOajUsOKW/IaYZo6yjuNPQD7eG1j3RG/t8eOytHUbEdYX3yBC9wJA4eoRziD06cf5KTkRNG3MsVlVtpwcdoCzM1jSPNRzFBz2TbtPy4DiNWhRopssoC4NjGV7YU7f1wKA2E1+14TCF2BJVdkszyC8UReAoX2jPk3Ob2n90ir85DXQvp2Rr4Rv6lkwARqykXWf95Qd5D1OjUg9brO0IwOHP2vYbNtOceN+za3AqYd9D/ddA0t9/U58k+bBThR5wDaw4YocuAZjJDNkA7JrqdMfEFHH0jf2LxgVIMdJ0LhlmyO17ehqzzVGhh7GMbBPgys4JXdqfcrDYTEUCHBXsuD0ApBv8ADTNKdDI1nmPLOg3J0Sngk6rBnqGDcNQ2qsNY+h++8ihv+wAlvdxA1JRFOtunELaDb81ao80VveU6qLrOnaZLWFD+mt8H9tvdfxs3rRPQGxwXu2xvVVQ6ii/Owab/vY7+Z56V9HR2ubo6m9OutBfvszLXzJJvW8ef+2lHa3TxMhaC/tWzi17SH/Se4P5a3zs17CpOSoIBcRFFxnjGoA3x99cmEtd7ekpa6KgBUuIXfvf/vXfvE8SLfLXeh2pQ6yXkJiJc1P9Uvx7CMztNkNC9Mq+/U3v/PqPJMCPUggLy8Zvhb5MUYyclDbnshbfIbZi7uhk/TU0mxOWco0jxy7PjuSJUigQPy+m9Q0YPTnb2GamoLRb1zTqWNTflwmIqhNJto+aCCeL36hiQxM+FpeYUjCEVqKlfjlCImLhQJvjUgCE0Vspunt9G9IRBoyDVSZgR9tcTt4WJiFAUDNl4PBK3U0Jj+TmRc3Lq+XBABUW++lye7Tq/7c/fH+2ev262Tfe/MZs1ZqeO6Bh0Smo8yUV22iEghfOqNrAwh5ysoRd0Ks28jjQsjkkYJ/mpRGOSxevzC6cPFqySkzPmXONTi+JqtMyJDz1u5/VNyiP0gnoKtfmNw9L2tyEh9AxGk8+nFiCxQGIJ/q9UuSny9dYlkf+VM90rvlemhJpQlPwNneK8L5cKMcQFCqI3RO62JbnzmM4E+tDYazPK15UGAOY3R5QpDSxh5gk4RYKjxKitK48rMN1+TwL28TK+R1FcaXkUvlfCwO+z+XFfBgLh151evnDRwubuxJpe0Y5Gw+TR1VqmAggBCDcEChr25Tcen2MR7gUmN/e+lzoTL3D5WwIKVEcgC6vRp+rB1/lmWTwlvacS1tDit41byQDq/LshWQXZ3B/XsXPs4VqyJHPz30UiArsM76Lk/H7abMFjd2BjKcvfxxILK+n8esxwwAI/R46eX0oT4pxaYSsc7mc7bUmB2L3gbWzP62yj3JBGV8DxrBxhXAAWwnrP3vvzFDWWBINEXnKmFPhH0b3dEzBxubBPYcxDhAAO309gBet3rXd+4u8W+E5XrvSe9d5qS7YkuePnmmPJC+ffj4l1NuDDMnP6jekdxEvT/Xi+WsZ6cJj8gc+zogs6SbW50Hg5V776dNkZE4gaIQNY4so5307N84uN0Z9mDCtnh+w5gkvwmo2PgBX764VgVzhMfud7sHEASFCGwzZk4XdFz0pod2xLnVOj/0BKvbtrl1E6/xhIQAyxrEhB2R1W4w0wwVMC5cta69gKsYBvD37mar2eKGLSyFYV/hKyMkZk0LEjjc5UlPOO4FO4VBO2QhdF65kPBg2emBxhuZBe3l+YOVUwERqgPChvA6J9M8u+TLA0vl2rdknrROwj7Gjf4SusFQqhZeW4zcnVKl1ht9/kJ4U5rBPJEG/WRuN+TE1F3LSzlxM9pKxT+5+NRpGOuPuwN5NqeUKQFoHrVe+6vmELx+2pz8ONAPI8oQ4DguqeHtqYdas8QPi49y7QkXOSJTr49gg1Vbf+tqu2Z93RMV/CpQYXjIASL9VbziOtQO8OcWAFuYQKACmwqQZ/0CWp+12WHGyKy9oU7mha2LyhPOFN//Xf/0XMaTZltYcWODY/hev3rpcjtXc5oyO4eAAEQCOfBZMGPDrXubXOP2AAaHTsTgAGFDlc8CBwh2kAMAwPdvEdrCH9DJmH9OJPZF8rq8ZcA2cPlFD3PlPyIXkZDxRGLJUjsYk1wtoE1rHrpFfzg5dQr/fynapTHXfm+ltjhHHlrMDHxi7pGW60/UAdsnoqg6FODGFQAxw4HrW3LVcnxPAbnth9O0FRQaOGwJQHsyf2qewQxjuLREfbI3E8cuBYqyvtf/uyzsLu28cjvYPqkj8IIB/onw9p0ksSq6kq/zXlojy4RwBu9g8bDDwCtB5joY7dIBxk316ixMNK3zZ+Iz/7qc1n063Yu383nNaMwy1ExZ8l90BlE+XI6pi9m/z+muDJL1QKC6NDhmfiMiawNXptYlYVNahZEF9Zv787XPTxkzRCpVAtrwdSk4L/A9PX5gdv3Q5ozTFp3duCHQ0Yffmfhn7okdMk9LPEn6/ejSdqP3sgiqBureFlDAq2ZVX68X7s/H6yqDbn0wBSy4mONgErdiFeFbXF+a3v/Niya0XZj9+98RsdUI80Xxtnr5skc59fnO29lGlmy3Kc4VQeGojQ76FXhDzsjCBR8dShMJK6NzVy1Rj1FwvAXKGFo/6UrlYULwO5TpDXwpQH/jW3tmWrZsTcHkVnycgJY2G5ikMNLL8EpUOlDEDZky3AjpeFh0g4skANhQ0uv5m4atjH344O3jw/dm+cnb2NGZlpPKqJNNiINZmWFXqbS4500Z/eKteRxmnORmCwYBlHEbiXJ8lzS9UiktYD5ajdZ6iaVPNuTu3Eu7OH2sOGChKDBuDEbBhJc9TVozBjapzGDUnmi9dpPFm8fU78zNuxYo760w83GbXI+uLBRn1QjtYi5V5WFC/aqt5DG4/X7hyr5yg4ulz2yQBkDNVeG2rZHds+mbgTEbVmFbnMTtCg7elJUESNIzvoeNVbbUmQlWLt9Yzq81tjp0TtkHn7vM1hGvcS7rfhihkFUW6gzukdvRfag7nz3OIpZDv4tkHxy4G1AsR9W+0NMZIF+RtG2PHUr5OvT9zIeDd8ysNJzvpvNi8QorNo/lakLfjkOKDh8+OfD1J/Uue6jT1nAShO32xut0AqTxvneiFqZVp385ofBaAcF0eIdA+AcJFGdKevzV08juDby4oh6cC3dgnQMVhqwyLtUP7U07AlgTfS4FgncE1+8OWyR/5LEX4QR3jz3ZtHmzqcnb3wVcjTLuu+fqoggZGnnIXzloVwMGIAUByuOa0lxg57PLBwlaMi5DPqMrrvudKyF8SeNNI0f75Zl7l9WSAYRvGr+vqK6P0WeVWCzGUKG/TkSi3sIcdY6RKjTHSAFFpMmZ75L80kfbS1pyyX3t51ygSeXnv1sYciGt/nSofTvXSWyW8L+xvFWDYa38c1OxcxOd3rQmECalUudqcMug81UetJYBqHxv7p41ZygGWUTm3OZQsTVdixd44sHv2aeBqXsDoQcm3B4+dT191dl6l88Lb2B25WhKm9yWrjneRP/aUvZaesVe/rCp1fnto9nn3bAwDlPSjed0SW6ip6IXyCDGwDJh5vF6zWLqEfJFRexy4BUiFJsjRw4fligV8vkze5PZ9VWGDMPv8k0/kRFxrf5Zb1TUWNC9aMNB9ZAjosJf9LU9JxEC4kGHtr6HbhF+Ac/KDDfzmgZ2jmtMZlAMkNR5OJ4dKAr59ZV7Hevcb7AQ9TM7k/m1Ont46fGb2TAZ9afe8nEz/1Rd+6E46cFVAXzjM9YF4BtRcAdV0lBdQgkmaLxTYi1H/6iuH2zrLDWs0K/zqyKNSA9Lby/qs6ANQJ+/S6B366pxNOTGS8v0txDm6V6e/gP2F7VXzYgzYswefS/avC362CxhkN55JJ69Yt2iA+aZl3HvuqFrP8HcvObL0lQacQN+cZJ4DY37MM6bUY43qyvY8PSTxHeuvJQPZBEAGY9M8DEDRdQdzkwwbw/FyHbVgcRyVuXJtzjxaEzO9NiBpHEAuBx6btitGST6oQ33/l//zh+WyXRvAETtL39xpT/vTVP0XL+sA6LBxZPNxVAUJQb5Fh/wBgux7egEgJdOrn03TN6cq3m4k074rpQajj7XqIwMo0dnICCHdv81r3h/0+mVffJy4jS5dnCL0oAzwJz3ErliZtQnr6ZKzIXAAR2UVo78+T1PyMwUthLAzz0eyJ1aBANh4SmJ3FG7SxlyoSndt7BSlci3BkfsitwDC1WDtfAZEfhOA5RTq+1XqqPayaUflSR4scEShQOYYAlQ/BWGSVyYkZzqOQX7ExhTl5Bk8NXmsGVsARZgJTd3cD0FA6WmQp3SXoInMXCw8JfFaPtKVXwg4YMUTIRSS0u+kEFX5bdqxZ7Z2Q80Gq7I7XWjys0Io5QXXIbmE9piF2wG+T3vvixImr8ds3LiZwSjI88nt27NPYxl8/kbvf3av5nJtrLuBxKUt+oeHPppdPvHRbO2Skncbt4Tgo1URSkwni9dLqubNnEnJoI8ldwIXqvaEpTa1NhJ4eZwSVB/G2mxIqJ/qMzwgCdUaeal8UUHwbAm9QmA8FMZeKSihFdbB/mFr/I6Xy5PB9AATyuK/9/ruFGUs1+U7I9lSLpqxMFBTmeuULyK3hme0KXkhdw44Fla9HeASvjTH8jP0j1GFpxeMoyiWJke3kjklraq3Pmm9eMRYLoARWwPMCXeIqTs25fM2IKaNXDDwujPvq9uzGPwHhSgwenImhOBWxIZB8m++vHv2nW88P/ushPzLMViu5zgT88IZAMY/b/cKO8mzkOtCCcirwJbZ4J5BYqZFElqYFwAEGrBLXyY7q7uXnJSDJUDrZ4JBAqRpBZV7S7uf/DxhS9Vl8u4YbQ4EJaFVx0gsT5m/1nE2evUwwOPA4AxQmmj87Hw4+VHOw8OKAfVvVYn5bkBQGMYZSO8crZt3+S4H6lTtnDkAfyieFPHSFJvQ9LzYBjkiFKeePg79BWS1X7if/Dzq/REK6tmBaYYDgHH2mu7XjCz5OdR9v2qPba70XLjQkSp/51vPByQCMzG1vmudHGzJgGKvXItcWQcJyZ4f6+kIpMvXCyEHlje1765k4M6Xv2J8GEOAxpwzvK+k3AHIH/z0cPLbPuk69MmHp6u463q81CzQ0G0SRzUO5PkD3sIn1hh04kAyxMq5zasKUNezfqpwHdvzetWEwIm8KfIIACqTlr9jT6wsB++//c7+jGWtJspJe/VrW2KFYir6cyfA9kRnDn6WXB0tpHa6OQGGrQdrCvACPw5r9f7rL+4YuhAwwRQ5Z+t++hSD7HgdCfo9VjqyhPYYKM/C6yav9rUGj/aAnlCeG8gJxkzr3y0ZSCFlToq8sfWra2MRyMSy0Tde9DwgBEQP+e+90R2857UX6ABrRnYnVmj6Dlka7E7va2SJ/RaGdUzGN17YMdbi0C/yXVYlB55dKgRmlg7GDp4oZ5Sd2hJr6B4AAUZpbnbBHgDsNBflnDL4AIEBF8gaYzY+48LGyAVbEzMpt5Bcy1WcmjNyoPpef7AWQsaSiQdgz875lRxQc8xou6doAbmwbuOe/T3yiBq/nE8srmehg72Mg2PunlhBc2lc/u0afp7mTqpIz9KcOsoFfPOcwCw2E5tq73hC4IwCGsCx8VjzLtM7ta4ArgLmji3i/AtlApGKfVyPQyA0CpxwpuVEeh5hW0D3e1XEvV6hg5YNcuSwqdoTrEhvC81iSEV0Rv5qf1/NnjnNwvl5oilSDcyh77AN7K+wnep5QUDPbk8ZM/YMwJLG4G9rIWJEh5t7cmHefU8/N69/+oc/+9UlbusGi8J2dhZhRC1uTaFRJPocSa5mlHjq4p1bKhOkzC5WrvhFntjazlYSr5dEej+jR7mJNcu+V9EhVtuzZEQejW64chHQkkIzFBFhVSbOEN+oRPhsXuiR+vxIrryYIqB4VacwBqhaG21th82i7+Q6ELYLhdUoREoQtS5L//MWWE8KCyiRDqPEqGzpu/vrduy5z0bZSxwDErEe6YuxgPqmYHUoBdV5cnie37F+bAaeHIbs7OkLs3OnTs8+ev+D2a0r52c3L5+ZfXm75oPHjs4+PPj+7P71S7Mf/sXPZu++897sxoVzs9tXLs+Of3S4z12YvX/wg/KLqlB776M+dy3W6Mjs2EdHZl/dKfRxqwqc7m2svFwMwt5YoOeKFyv5JuwS4Ak1owmVy2Vh9LE5FIZ14nW7hmRzzJY1YESUsq4qKVpeBlZADohKA4JM6bRMgaypp4g5A4y/9/q+5mDu7KXKf9fGNJxtvp+MOTmRMVif57h3+8bmZAoJLS2Ut2nz+qj0PpfXel0y/tmPu9+SwXKcyDhvqVKLIhfalZi3LCVE3nAaaxw7McS+SqieScEIxQKkfVZ4cUmJ8Kfa6NfvTlUzmKZXx5mBS5LbFWONLglv9MU9MXDK6iUT2/h7Y3p4eMqi5a4tCIjwqM4F0jcls4eLt5sTPaVsaGDqQtd/OiPxzkfnBvBi5Hmcuh0DmpQVL9vzU1hkdHTezoOigI5mLClLn9GzRu8bCl0fLY1I5UdIQsdwYf70uEI96zBOJoWChF8mIOvQ4Xp/db0jlburspQ7BwSmW1KFGcK0iL0KtBmPZHK9gShpe8zzUzwM7qbYsnkxvW8eqAdZIXGG74NYJN23vXyegyFEp+0ABkQyc8OcvVaezthDhaw4PTpPYziEbTF2OsHv3rx2GHJssdCvHCM9ux6vhzU51BEoQCNDhOrHAIxwQetuj9M1Qm7yMnY194zRotggrQcmprY8s0JSCxq7thUXgbjGvTgjublEauu/PuCpbP9a+QyKBITMde0Xrl+yEHsae1wo9ko6be6j2KwUOGWdEA1mW280IEmvMgwy4MSbV3F3rT5MOnozTKPoolCsNf+1l3YOuRW6Wxrbui1m1aHIc5PLr+535EiygT3QoXtF88t4/G79i1SD2fcAEGDAyxfO2VvzVjoOw8hxvJ7BEP5hQPSMOlbfrh51sKmYxk3pcA18twWirP215PLFnZuGUZY+YO2eLAyruOJ2rB2GRSiK3mCQObB0imN25HbpaTMaYza3HGcsBRCC6QCygSXhcikU1qhHG58DIOgoTgsnl8PtD90qUdh7ogKAwCu1P3h+tDe4OOZ6XbIrN4htATDMB2OqgONCc/RrsVfGz7BjmbC5mpi6t7nFxvTPMVZjnqIQJXU31wAXp9y42Adz6fr0k/e0dxjjNN/NJ3kwBsBKr6KtsdbOHHPkiucF7H1+yE33pEs5QYAH55IdlK8kV4h+ZtfoNew9nWtNMWEwnfwuLI+mnEsCAVpq2FuIAdc3Z1gVYMwfHbbldUkvYRdUHPqMuQIWMXlk2vbkCAA09BRnVa4P0Gwtu/WYb/PWlA7bqtEnwCaUKaz3Wmzq73/3wGxN8yMvki2gw6dxCROCLuWetr5Y7Q/OFDbOBm+OhVbyrzKPw+xTUlOmfT8xs2RofL8xmZch/z2nZ53yhLPlyRIWTfNW7NlgBpOxf/JvfoUg6e/+2v6x8V6t+zLjASHu66gIC6W542vPby2eWbv/lPs3o5Yl9x2tw6+qKIJN4VuAQ+UbqQZYF+Bakfcixovmm7xi1VpTvFx8ncU+lDEYpYopvOc66wYgBNBUIsi4l4hKAci5kDPhhGOeKI9Jh9rpBO8p6RGiJ0RCRmLu29vUNoqKNy+G1GZFG0oUPNixImdLQkNhP1P4RAKdhGQGDyu2bfMzs5spP8//TAvZmg0EK/xHGB1EycM1Ph4K2lAiH8H8siRnVD2mRJ4Khd0bI4GcEpHEKLQInOwNeP340InGUm+WNtHovNuzjLBK29sZdmh6jJ58Drkk8i94rDdS+krOlcIyLjbqhRQ5AwT8qXCjiHZuXJOwLZxdKDz24/dP10k6ANvYVvcsFPfJEvPmJGzAJ2qdV6XhpA7cpi9cHxOg+edTgYgrI5lZf5JBdRbu4+1vDBDZMDxaNDhm4FrPZ7yOj2G056WQn3mWpzOtsz5EAApga0NQRHLTrleRdTJqGKtk0zizSqXa1Y6EkfMiJwtDIQSDfuZRuIbEz/djing9ctCwaZcz7HebL5ttUXPVw4x72sTzA77CgJSBdg4q8yhrXh92EAugCsRxGK+/sHMAcsoC7SvvjcGSTwGE67PFW7cW22OXNqdw5XeQZ4UJEm5fq/fTvjqhn76ULAYkJFV/WtgGA/Hz+sZgJ58rlw/jpFu48nJGieIHXk5f/ng8q7PgKGsgCMOwtH2mYeLNwnbWiJPCUwPyPCeFBExgvcbJ8CkXCtip7S9XqeV5nccoPCN8gBEQ9sMifOOlXbM3+rOgjs4YPt7lqpgKva1OByyF6wbrFmgMT6TEO14oBlm/qWuN514sCWZMi41FyQLZ5xgBvE6OV1UjbGXvYB+8GAwVtr/7nZfqJJ0zErOiAg1w0wFZ1135TCr3sFBYPgBf6Ep1msODhXwpUnLsxQjYqfSUika5S/IeD5++mHFbMHSN44WeKT/nvfQMeZJ/9VTOmfxF4eyWYFSxOdfPocoMjWaE1njkV3Rt4NjPqiO/EbskmXxNuU6YxYcBCaCQU3glEMkxAbJulS/kLDwO2ujFE9ATGtsRILSe2FMVt4wagzSKWLr3nA6z3Rxr96ODJ4fcAxLCvRKv6YE7Oax0M2bCs2guSX9yKuUTqSadjJJGfqVadF8Vd5wsc8Xo0c+em+7EogGvQsGA89B1Y14oxya56wK7QlL2O31CbskRQAJM+c9eByYYQ3PlOvbesYClIh2gaHshRmEvDgG9bu58lnCwHlh/umV7ckb3AXMcEgCe7sSGcX451sA1na30XViVDGB32RlzyvD7o+2B/FWy5Dw2LAfDbA6Mia7nDNgjwE9bfRh40QzX1toBMNCAlVwO0JjOxoqIwgiBSuZvIsa1+2t8zjjNFdsgmuKPQ7c5uMZl7wK5HAG5f9IyBmnRM8sHY689t2IqayY0aq9YZ86QsLR1Mf8YGOMhr/YEO0tvaT5q7smFogNEwzSnOWrJhSgGoCdkKrRvPsm6s+I2JVvkYnXzJAXk2d53wP2q1nRF/16TnnTuJ13rWva7IinOAMfrRhEXYCdxGE7UqDhPhowRoJqAKie0ti3pGfNOZug3MnIpHKJA6Y9/euRvzCRNHBQN8f/zEvtfnyfz03q78FLEwK/USM2GnJNXpWx0Q16HM9JOhZpVfgijOf9qaaW65wNGBIgBEauXFMxzQr0dj9E5F/Cy8RhFDbZU/Dxowb69bPfIOyIgSqY1b/u0kvI1VS45lkNjK5tcPojzxuQjfat+ThZrRaGJE+fbOD0bYbJIUOrGjR2TkPJ/70QdmANflxJ2JcZisUJUdzO4lypfvlnOg826o7CizXEnpef07b/33f1tvCWzH79zPMVSx+O6lG6NLWAI/FEa+bCNgOK+kPHHjvFAUOp6h0S8jEM9hRU9P3p2+eIp0ZR3Qmk8XzLr5gzWyTOBvvLAXs57IhBQP9CAyjSPgKowgmaXlItzgc5ems7BYSQxSzYUT9Pv3/zaztm//MHBYTx31axR3otjLm7HApaHPdZHIqu+Urzgj6psoYT1A5qXF72eh5wyMN8YRSDIRtmS180bJoiUwPAYWmtC+uDBRPd+UJI0RUZ5AmkSVSlcCuXFnvejwMu9Ntb9vBgAirK7fp9X1fr0PdR7k5DiezR7bv/G2fk/uTWuoav5OQm6rTEZWplHtSKZ2xob+GVe3P3PCoF+OW0+R5XMK3xhntatWlF/o0r1U4QUvpwvLAZge6Hnw8xI/HYYqpYJc1Z1NEO9iLA7TvIGPqwf9kaJ97/8wTuxmrcD2ZtmpwOVNzNs+wK4h/OSAGtl3cCunWzTCtUJRWlq2oQVRqm8uX9jUBlXx/boGYYxwIJtLX9pX20o5DAsrl7ffrr9yRcVI6xNiUyMq8adiiLmpTiEfOcFDrABWCXJn/o+2TPHzh+ZPUoRMbyYKqBHhdPW1pFhovjpamG1KwHP909ca90KKbfex8oNA1bl7T2dQiJHDrvF6hYNqoFpSZjJVds/iWu/pSAP3jw/u3b/k2G8tQtgrMnIouYVYzG/vDchjOP1AuJJbwigaIU3txDTwXotKYwAYm+OUOed+jxtKM/h/uzt90+VyBsITPm+fmDXAIxYZmsiZ2ndikLwjfn6nbzhxna1daVf5qYLfG9OwO5QDCblS3E7F21bc3Cntb1eyFuirDyTNYXnGYqbgS6NGp2pl8oYXr62ChiT1Y1/WWcnCedjCFR9cX6WLP6iIpXSA9INfSyD7YDcWJx0geOLAHTVrxdPZwja/wl+c998ZEQAfMCQR74nvfVBib4308WfhZY2xc5/UZjc3Pz4vRON984o8GDYViydX7uIJRmyWwM4fKPQ67LFAbvmYmFsLzZ5QyEyRplRwohbW8mxCgTkVDGgGkEKjWDr5X6taT9cScat1TgxIF2lh93d5B8jqJWFpPQt5WO+V5GFhFkGDIBKGPiB/hqFGQACT98cq8banRwBd+OzrT19NWfBlFjNMTQPXyvx3NluEog1m5WDiFlh1O1ffzBB41zG5hAzhEWZQkMTEJg+i40MoHVNLBNmdTQtTi4Ud9Ajo6K5Z5/GM1WHKcJJLaUb5/wiDJkz2v5k1DFeeuWRbUCpS45nIHeux1YAI/KsgJGRI9TfQt3GuPDJQHpOqRfda57ci2wCsYy+F8YNWKJ7sKeuDeBMNrIUCrmXVaOKJuiB90X2es4AnWRJiAzTNoElLWfksgF09IT8S/OuHyEeB1gHMLXREVXgVMgD5mxvSWbpFW0F6HzOtp8zSePfvufZHcmkuSfgyWkzP17CuuZotB1o/PQiFhq4sm6r083mSyNrF6LLOJj2ljUbeaPd88OYfXLteRUEyWnDcj6RHTE3mNvFzQOW82/zmvcHvX7ZFx/nJP3ed18em8ZhdktSjBL4eDRKzBk0dLUSad7G4iqCeG5Q5PweUv+h6xmluwGNvSV5/ca3XxqMAkDw5HzxfYZWHwxnj6UMbdZYCHSnRSH4gBBkvyq6f1ne891ymL5IuAjjqmXL+q6Oy5+Ms9EwTkqF5RegK51tpTpMTEbzskdzai740cUMiSTTMuNaAEZSUzix3yR4ACq9ZpwvJsYp/DA/12TLuioter5rKdOfH77Q4ixKkOeOxlmERfhQ12NGhnciXsvDkBczr2fwnr5KEt4oIWEDHZ9Rhbx5PSmUnSuFJxDAmc0hLjwMapuRx6cBp82LJl2ZcJsrm0YF0O//g+8mqM8ULlxf7lRzGMigqDTahKohckpOJROB4t0QRhVOY1cmk8ZsXlDUjJl8LMwD9kKS/kDqfcc8S86m/D6qcgi7oJTWJrSZGPTHGxNQPV3oDfLX2wIgcR9VhsaBTcRCPBPrAcwCi77v3oyG/JWdMYeUhCRrnhdWSZhGEv3mVXnjATXGdU6ycXKENyq9bXOjkjEjSmrpGnS7ZMFX920bay0UwruSJLz2meU9U1VGgQyb9a0q2MT1VY6omCTXQn6UGAUN5Innk0/Kzwa2J8BW4JSX7z1zTynf4nU1gQwlul9LBvI5P40xhYGmpqaYEwc+G4tQqATwj2LpKC+gUQ8jBobMAmyUEgUD+MwpYd3RKKMbdYpnhJFjDXyGceIdWteR44Nabx3O1APLHBkbz/VkDpD2CuZpTQr+q/bPykK43b65CNw3N8J479dOQe6b5z/VERpAOxAvPCnkOJR7z8bDA5Cxz0DIweRFdSMlJvcFa2fNOGHGM7eDarG4EjN1t7ZLRxuFhE0vIBVWKr7snzsBB3uFUudR846V4HPUJNgKlX//G/tny8v7cYSOOVy7vDBN71Pa2F+NbzFdPG75NgAOpw9w0Rn/D//i8GBosXA+ozljQ27v6A3maCFH1VRZlPF9P3bZunhe8+kAVMyJebVWA3y17gw1gzNSGJIlzw5McSLIvPEJu0z9akpmzdA4GUBbkg05AfTul2ulttkAAEAASURBVN0HMHJtOsXaTuXi01mMnMO7Je8OxqV7rA+AqtYEsvcG3G/efdhBvReHQyi0DDTBNPoD2f9yloS36VKGEpvJOV7XfegMjq890GOOnBD7FBCf07xPwIWbSq3SV5NhlBRtrGRGOEe5PhYBmAFqFfoAD3QVXcLoPXYSsds+J6LhPXlmntFc0SvCXIy+0Pwwso1LhZbPeh5/yLDPSLXwN/0rokCmgR32S1jdnnUM1wB6zTWQBLDY72wbHeWYI/J6uKgHZ3NV7S/on8cMGD1BsNyfDIscGNfp5pA9MKfDKWkc5p9ONP9cN89JZ3j5DvA0jH6fce+mcOQsGTeA4zPYa/bMMUWX21+qFTnDC9on/tiPAI1xAYyjgKhribAA2pik0TizBRX+J49GLleJnE6NGaeIBP1sTdlYtg9Y48g3mBEm47Sxa5wI4bkmYfy76U++CzW2Ru7nOQFC4Twsp3kABNkaayNcRhfLuP2i/Y9RVVno+9rkiBjQJWS3KerznrN170b2kXnywP/Hv3vnb8wk/bVB0oE9W8ZCmxSGAdJkzB9WcaHCB9X7dO99u8QtzaVQyZ8lYLxZqFvi5zivqcUtLpPSnrrGDiPSZBw+dWXQeGi0T/NY9UkySUrJL3UgrEmDCtF9l0LKgBTjuKx8pnc6O0yipHO1dhWq8EKlHq5tAWRqESkFHcAlugJjDL5r6tRL2HjTNqREY834nomJkNtAEb9/7Gzs2BWWdXihO0owBgzeP3F5sCzrK4+0IaDoTU41z1DZoBr/WVinUTdlCXs9ICReViZJ8MVNF5TrsKtupj8+dHL2o/eO54EtSwlNzcTkcvGEJTHy3FVeEWjl7BS68atAW9Wmk/9A8feR2enYp5ON97mt62Z/9OeH6p9zvvcfRbeXH5Wyx0TZbHpbTeXkhcUam+oaaFzDP5tDt2qCa85eKcxqAzxIwZunJ9qMmjTytr5eQ7DfefOF2cHycXhxvI7DMQInMroUKpZCJSTh97qbYrBxnRfXbWNusDnljGVItLunxGyq3eVYyfPAoGDbRlig+2ITJZU73Fa4jfd5MzC7Mu/YTqCMbxe6AbhWBgyBgtHfqPvsbq49m+8xLBKwHTbJkwSEgRyeOc9kot87sy5wx1DpW6K8myJ02Cwa2yYlsxqqahoo50gOj2Rm9LR5BpJsUuyQ9v6UJEXGsNo35iw8NAwMY0pmfN44KQ9MYFup9dYqI7DW2HbWDHBdcvJN3aBTHbqCb8gw6WG1NQZycWtwpfAag7Uo5a8z7alCdthMCtShu5msMY9zk9unCiMt7/kociW+KHznxNkH9qj5x3LZg1tjGk8FCIBIFawUnwGTj92b1o3QyWcl0O/bua7vPMioFxZtf6jqYcSEK2gye4AsyRkky8Ob7jPmBvOmIsUzsBiAshejwhlYlccuBKlABCMp1wOQsWZrY7wxfsIo2FzrAIhvW7eqMWbE+q5wNFBxJJYPyHDQNTCm1YQ5NjZ6w7MDqwC0feN8yn3b148eQhuSJ5V8np/C5xxomvp8v99VSFR+kvw+QAtb+2RzSGYcW0G+H7SojO/40z0+iTGmj4SiMYf2c4uUnMdqZsyFjIWpOIO8bgZRQiv5kwP3UqyKsK79Ku9ESCmxitE5N4yHwgYGTAsU7LY5UKjyfGfsXUgODzy3sftuGi1VsHlyiIT8gZVFXZej5no765Ej1wfAWbky3dYz6tZOts2hRHX5pnSU3CP7W18tzzz0XvcGDDGWjLVKLW0OsPaMpxCXxHqOhT2MTRMe54QOx7LrmAvMx/FAtftLPPd9+3iUudtD/Qc40PV0PAfAvQZgymADR95zTSyH39E9GEOyuKloySACejYMkeOrhkNkvYcup1eU9mPMK0aIgVQddyzd5/uaSwIhPEj72b+lkWgxAGyILtjr9octRO9jhtgJIfwuMebcd8mIawq/6+U15RFpPop5jPFrLTlAwJrPmx+5qJxhTBd7aF44eECY35uTwdx1BT8rtAGEAZMpnDXNA8dRQjWHnO4xZnsZ0F8ewKMD6G76AYsIxFlH4MffdApgaczyoNgzv+NEmHuAGXBjz82LtQYaOUYiDaNoq2OcOC1LY4QWN4dkku61BzyvtSMznpej5ABsTok8Ms8NwFnrf/pHb//qQNJLtSZ/vCBPlgSwJkaHshVfVD5s467NIDpMFABiqLYV0urZRzKXjHTdbZXo8p70Zki2hlHXwAwwocSe37MpkDFVBaHlMUWYg6fKL9AV9UpGbVS2NBlAF89V5RkhI2CPvppbDHRNHjBKu0Sv2AxVEe7phHqLorycUnZdChEd6eBeRMrS2uXrx8G4UZByrI5XTcIb/dqejQOkCMkdOp6nmK43Fl4bQbha2EAuhedS/jjOkQpkUdxi1wygvIVnCjNuWL2kRMcYkhbZBqd+blSR9u2XO/Cv55SMrGKAd4zGl1D5WXOxt+MkKF9KEE3paBVeFLaIxwvtqwQxCCeXoxhRrhg4zd/WpSiv57Ubs/FQAg23suQYreaPEmSICLSx2biYwNOqyxLurSWyWjTgx2GaJ6L/nbd1b6yZ84Ri+VKePJg7GRYysDR2R9KefkdYCWwSr1EO045yZ4S3TtZBWSXO6ATenFKUFBxjLSdg8VPl7iQ791qrj6+r0khBpH8oRonMr+3bUUXSpeQwZdt86COjJQPADoABJLxb83E9hoVyliR5ulwWeQ7CPtNnAbRi21knlZbWdXug+KXOSCMTNvHOekHt371m5Nooadf6guMwOn+nyIAtFLC8AL2UPLscKYrVvA/Pt/cUMggZL1uM+o5pSRED2nrpMGKAFiN5NwZodJJO+VAK5PbpnhFLI4dqChMsjGW6OCmzPkcJ6VoNDOnZxJDwkCkd4abPAwuHmy8swOYAlzwdPX+E9rBUzw4WYerGjiL3h1dNQarwAUAShMI6juCZQOCLgSJVZeSJriD3HwVC/J5c2r/OZxReG9VS7Vll6RQpIEzGHZGhEgzYswYAg/xAwJ1sUuAAGKUNkGpSiy1yT+AcWFAtYy/qwyY3jANBRo5kvBjB0yX0Mw4Ts/VwAIt5KV0He3ICjZsxkZwMXAPZAzynDxiYFYHJkX/RWjub72xMCCYNsObIXM6o9qvWuZAphd49zd/WHCjMNZmy5/WnOtSYVBoK4elZpWv4roCm/YeFpkAZzeFEpGfpUV3Vye+oLGtOsUt+1jzPZGqPwuBZc3taTlxvDT0JrEiBAEB7a4CWa4FIJdrYg0Wt04c5rHI5z1651v6ajTP+WKKF3QsjiX28QF9akGaePHI6/sFvvFoPtidHTyZdnbeVgsARYgABFoaaDhkgoAGRUXPr994H9OkeuhnAY1/odcafDPud9wGvAXjGHnY8C/tTRdP4/MReGRlwDbhjb4TzyKx5Mq8AIrkc187h4ghJSAfmMX3YSM4uNg1YPl71MNZXMQxWZrTzaL2Ng/1hV+xZIEOahOahGDKNOcnTAEuNQwg4FTbArjwhcktu6B463b/JPHmRuiEnzpg44d4zTt8T3nJvrWEw9IAFm+vZ2AyRFfvV/nY4M3bNUSHkG7DhrNA1GLv/yEy1Tq2LvQFUcMzlXY0igP4t+mHt5RBbc3nH5hFweyIgi90/VeJ2l0xOreHE7qpABrrd+/H4kBeAjYNtzfM0ZvZ6OidytMpJZ3Jk3Mv46VNhTddyNh7wBjhLkscYAcjkSUEL/WAt5NyRKz3w2KX/+4cf/upA0rcO7BheOHaBYV7U8Q7i8xTmY+9bIppwzN1i1wDAvvJheKKUHm+ZF3qzxZPk5niI9GXexq3hhQs3PJUyMyE8Sd7T/BTGhihpyeIEepQaJwhotlWFRGxyBpant6XS9s1ri/u3aCvLNVEKCPxQipSSe+9NCVLQNrYXj/6FkrR5xIz2yL3pcxikZDujXQVMAsHYbKuDLVr9VtT0nx8603OXSJpAA2oaMmq2CGVvT9kLlakYIWwqjyQIy1PgyWHUbNh0wvBAeHXvl8wu/ANtf1FCt47eb9e7BXjk9W7NiAnXodf3Vy00zQPDnxfTXNgQlDnK0UZSDbE6RQ74eG6eEyM99RKa6GlMkA0MnApNQO7CV1r478j7Vq34mApVvSVpXS8ZggYIUloS0/fWn0nuzZk2xzg3p1Dk883p1/dvG2GzK8mITbwmQ/B65elTbxZnpenpMac8nfXNM/bQeXxR+o3HOCUFniqvx1p7hrZ7HqF8h8pJC7c640Xy+LOjMrJQSfNvvOtTCBSDrq/oV54wFogSYzDchwLktWAeJDI+t638ohTSh6eqWstgqOwgIQyiZFpgVA4RZaVXytPlCQmd6lrtGAiKnHXSOZbiAazJ0jDkXYmi5kUbv9wxzAmFJdmX8d6e8ZxfWPR6CoFiZYiEsyRWXg448lTJ0DioM3mkCJwXKJx3NIN/ogR2P/PQNPyUkKsXkBCsnAMmSnNJRoDSB6gde9KkjI7YX+Q8PJ3sYdZUpVpboThhUQB8RWzc11/Y2nXmzP75v/35UDj0wBv1NQKk7SkhENWvGoBqzaE/EuXKKGBXyI0wkCAl9ogmHYYlA28uKEFK3zpggegU4T3K3xiEP27fvTsAO6/X+rxQHhs2xrpgFp8u9Cf3AhCUOAyQY0rkWo02EM0rg+w955cxQDxwJ85zaHaVN4FF1C5ACwxhgg1rYjHTQ4AH44L9kFKAbRBKkjTPg9XPiEJWCLCia526eHWS1e4tDGSPAl4rA0kfHL8QM1bTzoydwgpzsbDnX5P8mxoGQ1sP4PdeunRzuUUSchnm5/dsGblgDvdU1EFfcmI4C0C90us+NtIaNNu0Bhg9zIScspXpTUAfUL6WU+YZtA+hI+nKj3MgpAOsSh9rzCo/TuiCXCgtV2VIVw4Al/wogGHAXROTJQ1DygSQCwwBbtdyxMylsfksRsAaAj1dYqyvtRf+s+/pXIDHnrGvOEyjkWmfp/MwWrYcdhAQcC2yzhHCFJoTssVmMKyYjk/aW4M9aw+M95MzukgKA+bN/ewP3yNbDPww6I0fsKJ3AOPTMagYKAB9ymkqUpDs0y0TgzIl/jveaHm2D5v2eXoWU4WJAQCBNuExidUjnJejsLr14PSwTfFFA6Q0Za1rznz3pdfptzG47m296FWVc4CF8O/iroNxkkvJmcLELO2axjV0WfJAVoEdjic2T3NN90sEx73tN3uJPWG/6GQ6VN8neoyD5zPmyTwLoVlnL8VD9rgXsEfuRZHcnzNlDPa5ggchRowwfWDtvVT0uZZcLXu+W3SNKW3aeIwXK+S91MHQj+RJQj/dw4llU+hOuhcwxWwpwiB/Umf+8MeHf3Ug6ZW9G4dScWSAHAAeEwpYvxwgYV6bdKLyYh+aAE2/jp27HpUYA9HDWvqn8tZNqrJcSnRzyX1Hzl6a/eTQqcJMKwb4up1Q2izOvuqZE+JyWloUNLI+HIAQA0QREDj9VpxCf+7KnVFSS0gIJHaAEFNO4dpQbHkgCZr7WyS5QF5Xo/MlFz9dQrZQhLJfx6UwzJf6HaQKpAAuWA7Jw4froSK0sbdw1gvF9FdVaQRFQ72eFBUp9OI4AYqHd+51PWMinwF6xhTd6+wshla4wxl0BN9GuJjhHdU9zRn2YTQPK/T2MKl57+i52c8PnUt3TEncgCBhXt74B8CMHVlXSbMKNGGXz0PQvDS5JSZtfowc7+NmIFL3XipheWCDcsNmMfqqD9GnFIWE7XT18G7mV87+aeO4khdpXDxS9LrE8jmBFlU0QouXr3YYZQmbtz5pE/d9Z3rxjLvVMDA9VoZT3F3PnhRm19qb1//MEt2e5UgFPExY413aBuDzaqTI0FPuL5Vzpu/TteYcUAbaT8Yo8rZH4mFrBkhSaiv6nZJYDBcQRx7IAboWiNJE0kGSQoev1zPHmXS8o+Md7mkDyhFrhw25MCgJ/mT/Xm0GnHZOuZIJYQQ5GGRJQv6B9gvQ7LyvUdqbslpdSwXe9KgYymArmX8+R+JOoeXrAU3lvSoZr9yqP1RzBsSTH0m2DDRFL77OQwIOhvfV+IAQyoZSZDhR2prbkUfziOIXZtWAkYcL6B3LMHJAdLzHUlFFnA0Kcl4VUetjOikeimtjrRh+/et7BmjSn4aC5F0zUqdiBUdVY2FjfaeufhyAvueA05KWM04LY3p8noxu6jrD4MQKrqzwgndHsTpgk8xTbJv7zPdf31NSaKGInkuO1rSngRJ5aw5bVuFSZ97kSbIwJgENzPhiozCtbY+hLClN83w2psda+Z9xA0W0sPYU5ssa8tBPyROJFVxUjsU//N1vpKdWDMN7ps/pL0bn+P3F7qNn0fmemZzoLYWBUEWo+aTwPjALrAEcwuSOfMHQ8KL1K9u3Z+tY3wuBsvfrE0WH7E4enttVQnzJTjo1a96LweB0AQEq/uhRVYhYKoZecYH3j8TqCudh6emwczk24d/Ckp0zmbOCUQeazaOQvbCFHDvPhKHiXDlzi5HCssm5YaR//zdfnu3L6TmZE6E1A3mjJ73sra31xcKEqNg0x0LEnzcXZwIU+gRJhSCz5JgzRh4AREAccMH8eq//DV0/WJxkFyNL+TiVXhjFdzl0/jDW2E8ASWiWAZYXA+hzbNgioSdryzn1+0XdR76T9+hLvaAABMn6AJyz2ICdZcJqPbdcNfdxTewRw44V1oQU0MCq+t3ElKUb0xuPQ2p+Tx8Lxz4RWOCkcr4GE9XPytrJBIDFcTHf9ojr0TdYPc9vXoyF8+Vv748+XT2L55BTZX6REHIXAUjzQf8/ZqUBBOBDfpB7OcePoyD6o/+cvYyFGSxbwIsuA1JsIgAVAFW88HQ9sZAPwAoQaF7Ns/d9H3jikGtFYTE5UNbCvhY2BXDGvDbW0aqheQBoPLvxWmeA0PoD9wAOcAXoia4AQRgwz2hPkFe6lf5STUenuxaywdgxlfa/a1krwO2f//GvMCfpO1WOSI68k2d4KWP1cZuQYhaXtrgHims7QXhRXjZwcrpB26woZxPBoAgDHaq/yu6MnOqDVatsnP60AX508NSIi8tDwiD5DiWLirOZKKKJMktppKT8zCjeyRDLSTibEpPDIZzBwFOYKswAKsgfrSgcwjASnrHJElr5QZQmkIAWlewGOQvrAVJoPwvgXjur5qGsADdGX18iY+SlyscSzsBivHP47EDd2h8QUL1ghHDcHzBguNCl/CF5OhaPB62KRM4Lgdb3xoamkOStMG7rSsjlgUz9USqjzqA4fR296Lqu4xwn3WGvpIj1yFHxdbH1mlfoSYffqylifWWwI5TT1Qwy74Igy1HiJatQAYgwUYAQ4wrJL3t6/uyFqqt0mF0YE3gvz1S+DPzDA9cmgFHVa4Zn89joOZIBy3EsBSvsYu5sTAplNB3s2W2MOb3nhHNnc1EUEuk3pWR4RpSs0m45UzYx5ezoAQzKUE5tTIwGD9y6uTcloqJESIvSmvIsHlaZ5pDGZY33+lgToTHeMePgGSTGYi4WPBnw7FoO1MVeie3rfu1gWMYRiOQxn0xpurcmgHJKJDNTRBJ5sRzKmzGKwliqLxhkBy/Ky7JHAFFMnUaIqhHNy2gt0KZHocvHwb5oYTGvaizhbfLdtBcC3hTI0vlW89XOFItBwmjNCXjo+h3eSRnenv1ePUv+53/0G7Mnl+ZQtA6ny/XDWInZ/6Pf/XrgbHW5DlVmdigpNnhP1WOq5j6sQSnDylvjge9sbSgnTtCe2kb8sDw6Py9tjexDTsiOSn6xxcIHgAdjQ6ancId8MI0RCyc1Xo1Dv/XSttH3ifMB9UrCX55SlOsYmVTeyRU6b8xbOrtnLwzV3iGT9hhjlCoadD6DRc9giYBh4AZjoafXpkJjAKznxEgYE93F4237FBosdNz1JXk3MbOXO0bj0wea+1UkEQiRH2lMI6k1fQDUYMgcrXAqMLxz07PjWX9Updn5jA8mjHxobQAMANF0w3/3va/174B7TWu3NKaPuw59BGS9Uo7ZjsK5K/rdyD+qslC4QvwOyF/WETn6fEkzeOvDU82DPEm5J4VVY50cwr0n/SqJGIBkUOhUc80h6MfypAo1t49Uh5FJqQByC4UmKSfracxX6122bNHiAWjeeu9kuZ/nhi7F+gvRCTHPS6eMOWv9T+ZYyEs627PTo6uS86ZtGHp6zMU19QMMgH8OIyNG3jk3HAPPMwBT/9I/x+84NowrgwzQyQ2jT4Ax7WXoEkCanvdv18D4uUfqeDB10iWwXS3r+J6f6W7rT0+wHxqF+tl1OSPGBliZDzqLnGFTOIjyaI627zl5nHgsMWeU7rV3fdb1rSkmUs4cgDFSB5IJgM/akOGRI9rY6XbAjozbR5hD+TWcAYz6yDdr38htZOc41EDiIBHSd8gCxUyYbLMgJxbjYl59DvDh9Au1Y0alldBtKgwxfu7PXtsXgIZ1kDcrRYT99D7ghkA4nF5gS0cOarJrg448s7QSAOP52Tc6Sejd/gLEvegRy0JvA9Xs0NB33YetVyDDsaOvHd3iw1hRa+P3WDKAGHDtqgOk+vedihM4akKyrskeAlUDBPY9z/FP/vCtXx2T5ERmi+Y8lgnFp0h6MbgoSwCDkKD7NZTSIsBhqLz5eQ1WPyDnga2K5cACCNXIpvewULaTrCnOzXn0FpVihaopR+c1UUZ6lOggTGmguVF3zodqYL1f9VnfZ5TQwpK95JJYMIIqiUsFnQ2BNZAEe/oXCtRYVxVrpgiFNPZH40PD2vtrP8Ygq6ZxP0JL4dj0lPqRFDhDjwXCNllsno4SZmE8SNpBqT4D8PmeDa8vEaFUTmuDMp6AhiRT4RWJ73f7PNbCJgIKlwZMdsZ08PYpPB4tRaoRpOe1uRYnSCoGbZQlMUXyb778Ej0Z4KoHkRCKZoUkbyiOBG5xf4AEnkVTmZLWCHE6SHVzRkG3Wec8uZejF4AmVRKAx4olPC19XpZXKVPjwIDbucI/1paQorI1tKOw/BvwYqgYKfQ2AbYhKT3tA2wIm0lVo82M3rYRNc3jlU3HR5Qs2Droi8RDICOSM3W5VgVz7VbN/noQilJfpPWtrfi6EIqy6+dqiCpccrTGes8kW9ZbXgjvyr2EOXglQCUvxPlzgNe5EXIrPt58ravCEBCgUD2rMNpIim78GKRR2ZVsA0SUIYUDxKcTRs7M+YAvFkCVDNVh3FsL6UpE1shQcqacPM8A1JuXkYDa54DFdTFq//33Xk1uMzjduylLTvLeM56jVDb5dfivXiryLoA/eS/f+96Ls2difW4Ezhg7fbIA+T9752SsV32GkgHHo7xRx2ZGBWCxf94t/Ks/lDJ/wHFnydscJUn5w9Mvdw3bJZFYXiKFemD3ljF2ciY8hM0F7nSxvvfp/RryXa09wLKJRU7p37x1e7am0BLFqn8ad4KxXZinymEQfrkd48YwckbMmf5a61uLaf9kPNIRwquKFuRTvFA9MrZ3AM320NWOQGFQ7VftOThkdBe5J//jzLv+lnhtvU4kM/SJz2A/hAjoEMATC8aLplew3/b2/h3reu5NsZKbxp4XlldFyhBh9jgVPG6gtAzp2b//yYfJ2ZTjx+A6nUCy++ETVwNaVbgx7K39r7+ya/zOehfpDcg3L/ZN+hXYuNdecSQRIOE5zPnzOQN+hxmhZ5XRD/YuQISdNSY9mDbFCgFw8j3IqXwi4Ef4XQifE2Zv3mvPbKiClL7HSpmHYxWIvFOn9iuxz4QUcMSgYV0UrygGUPW8oX2nRJ2jwZGxXmSBDrAevktHPH4BI0AuR4QBB0zoQGsLLGIf/Q4ry3DSI3Q9uQAehNissW70U4iuO7SnJebTNa7dG4EmYdm5MYuKa2IEG5/v61Xknpgjxt93R6l6Y8YuAy6YChVqZytQsefJIwM/jH6XB4D62Pib/rF/AROHDptPDA2WRL88dgO5IApC13kO33cfrRZEJyYQVR+3fra/zBfmesjzL+4jTUJVN8Dwnq79yQdmCUvs856XPLFBbIvrcJKFyYTpPQ+dNoVtMT/TuXCeqWF2DXiIA1sebewtnUDezLUcOXPg5R4+B9xh5pEpxs+Zn+w6Nn4KjwJ0qnCto7mny/xNvjBDQrBHcmDkopFP+tBzsxvug2Xys38/W1pCkHs46/LIyBhwBXQBZ3+bxO0p4Dce65f/HyMsmUtsfPvG1ePPeVVnCcfcqqIwBzYGQd1Z7o9JRysnwqODLKaExwxIXblWX5Q24eqSic/luV4sf+SVqioYcD1xlqYoJBp/VjLg/Ds8jNlIevwsAXIKNmN7OxqaJ7Y6pcHTWJhi1n3Y5tq6bVXnbJ0fFTiDFlxemWbgCpLkPUPkjz10Cp8ikwtCyX3/tb0DiWKXKL4eJ6UWq5KQH08hML4QO4HSs4VH8HnXHYAoAaUAnOnF+K4svKJy5nwgiGJxfYyI60o2PVyoUczaIppXzfEc2EngRgJ4c8UbITzD20qaKDDK7mIhLwD0d96oj1Qs3amM3upYhOfrlvsffnZ0bDqsUEMb9+uyefL1ism7RVECgzbmpxnW+fX/uRRY21xoQVWDkI12AVNF4uejf5EEW0brWoZ0beXA51IMI3T1xVQtcS/QsqdQEVr8ZOc9qdazeYWyVDnezpjygJwF92myAADMa3Aak936KgOaEcXmrd7Rid+t1Y021Ycnzo9GY5SXDXmueTxWd3c5U0JFwwtNLiXAPsizB4ofZXjkrvD+nHuGFbGxUNQ7yG2hAWE6oYiv7dkyvKIuPc5E+9F7pwaQtKlvf1KfnDuO2+lE6bslkqfAFtSzByt0KNmynjsKL7xRrs6rVQU9GDJQi4uMK29Gg0IVhk5OH55TY+BdKe3mCAAC8pyA8KcWTn2RLlXu/ujLy+M4nyfXq1zsMOAUBNYVe2EsmB15cI+++nT2g3ePjVYPZBnwPHd5CkdiTuRiCO9+PJRIjSb7zB/+2TsZ/Yt5x3ICSt5Nq1hDIUEyZ33WL4jlyptlHJkuZxxiRnTYFk65FtOHdbiX/PalkciPdXTKuaTSkYeQsHEmOC1P1udmSeGhJTVgXBdYOFi4zn6giIVfVJr+h7dPtL4puPbLG/v3DOZDroTme1+VowdIapdgL6p0Mvfy5CS6P5XBcgSP/mhH659D/2A4FCl8Y/+Osbfs39Tv7GDFAfY+p+hUjB+AIURBPoQWf/sb+9pLd2b/roZzvNGfHDyRjM0tjHVl5IZR7ioq9Smyf+62N8eh2Aucudi+Sa7e+uDM8OAZZjkQFPjoYdU6chrIz9GStZd1NM63DmwZOulEhunpwuDmjs4EouhLR24ojpAv9n5nTuo99Nz2ksur0l3Y3P7ed15ujB8FcI+X69lez5DLHXJYsLzALTk41ztL8Z0jZwOJy0tqj2E6p5qv1IEM1oWOQCIr22L+ADgOGgdIlShG2nuMvwrcYdB7X24QMAUk8egdJG5dtCEBkDmpg9FpQe/HzIR7u24pDX2WcTOv9rMKQUBA2FKOXJcgTgO8kEU6DyiSr0K+nXVn3bV8IDfWzJ6kAz6J/ZD3g2Hk5Aitcd4BIX88A50rN8/nOQUA6aQ/fAZAm5Lc51VM8e6Hp0euKwcRs+N5rKfr02kOgTXGB+nnrTmF7MqhWDZ7ELDy4uhpStmvxr2Ngw6ne+W2ynP9i3frs4ft6ZpTflZsTb8fEYRsHGcZSGHTpryddEhzx+ZyXrDL8lv72GBHdeT/4supwMbzmgtV4x8VhtUORpWh7wJiKFv6v8EPZg8J8VyHt2ta+kHM+unadyBDgCnMEQdZuAsrJpQvEtIlGm/6MQeb4371egxwuspCkgNgucv3XXPniJOc135Hv1hv+0EbGKwWXWFN2Rj/7mPDTgC5yBPPgnWXw8xJdfKHI6qshQPX3QM5YazAFf1vzjDK75TjSG+M57U4f8PXvD/o9cu+85d9kt7cP5AiFG2QIz+kvAKxSMoCSgYCJE7Ldndsw5VYDEJzMw9yecppinuW7BqK5qXxaniizuBSNr04RgKd/HHxc2zU/0vbnfXaeaZnfl+kKHEQKVEiKc7zPIqURJWmUsmq8uxqODYSIAgQdHLiA38Cn/VhPkKOEyAdIAfdCNIO4k677S6XS1UqlWaJpDgP4iiS4kxRlPL/PUvbOTNsA9pVFLn3Xutd7/s893Dd1z08hmI5u42z5zBGayjjlGHVpWGTRHciHhtiQ6VDOJMLV6vrafNuBwJEetMDNtGkdRukvP4YXti3I6JwDYzVqlA41A+02KyZ2Q+6NzgVn300Y7ujUQOvPbup+34yw3o7oNewzIqvoXanodsoE0QBGa2hwI4v10Z3E4iAdo56dYKtA2HpAFDOHiNYaE0bu7E6H/ds/L1OPTS+Tg6RzdZoeQXQhzLil7qH3tagx85Za60VW6rNwMq9um999zKlqVGcqHZFokbJi/Q2NNfJJN0xVDBBxIqgc62NeopPc8yjqK4UAeeu7sJaeI/6rnRnCLsuGsXWDKEcNLpV6tK+/LBzzxQBfhF9Kt0CPO0stSS6wXQAnb7MY0nLUoxvJ3/40qbJTw5uHUrncMITKciplFfdmnlHhF5NnPXRPKx7TvS1sVlcpqBrvRdh+HzpoU0dpnwsudItxuiJcLWKmnOyMeDC8I2Ju+0Z57YlUCV9RaPvtUeMK0Ag3au13J6odXFunHsWQ2FjKOtT7Qs9Ee3eCTCIZC7kMe5naM0/ofgzqWDPji3k6KQTMFKMwcVYFEZFysrV6QEnKJ1GhxhihvFS3X6HOonefQJTDgCVhlSEr4HiYMX+L+5bNxiBE2dEvqVKMmKcD53Tvo7e9xxkEXtxOgZP7Zr7IAjkeW3DB7FF0pPmYTH6GDZsgNfZlyXZBIzz7cBUlx2M6II+A1t8p8na0irmYTnXUfoYYzgKZHv9nNlSMrMnv/zo5PiZoxqAW3PBTDc3wR9oGdOZ2x8A81Lg/mb7vLRU56pkR32MvVlQqlRdkCG4dPvXHx8f0fHO2td1ymFwr8T0quO6defm5NXSXGu6L7WGUotq9j4MpLfwowgek0Te1bBgznRichhqTIAGrNxvv7R7AHZrbw3Mf/O8F+v4szkc4NpqvYBJgyLV16kV4xFGI0DrR2cEnAJBA2TtkX3R3CDFdjXw/tnpRoA0fV8dl9/v7jxCgRvDYToxsJKJGcGnIOi157cNwCHlKB0j7X832cc8GQ2BCVAfAzi8/sKOsfZqo16uMP8//OyDAaSBWQCOQ1/XrDJranq+dNQLHUP0o1f3DeD7RddSQqH+hOwLKsk0HTNmQNHthsD2qI/pdQABB8jRsimACxZIesh72cnBqAQI1D05EPrR6hkd0xMuqp4zwJDdpmsCc7rOuWNNB5OdEHouOoZ5w+z6PO3n6oIAIKBLOsxkdEzPRsCnHTuaLQNEEASAkIAYMARi3TeWA/hhN6T16YJaxlQ9eQjAZ3s9L/aRX+BPBMm+ACr2Q+DEBqrvcb9Te5qd8fzpN/s9/rSeY0RF9+ue6L/nwUJiVufHCOr09FypcM9YINT1dTmqtWJDDim+Tu/56WH/6Hv3j20ZIwSyTc67sz4yOfab/bYXAlcNVTPrq5B9UTLDxuiAHrVSvQeoG+uRjgw2KFZMY8GoKev31pnOYehgg1HAnXwA354XC8b3mZP3VHVjxgzwweyPwnaBmrVFFCiDcY+Yxa+TeQCWvXBvqe3QDUyd/VXUDmD+nz/76PtLt/3k4LZhFE8m6A6HNRLf2WXnOL2k1WadjRW5VSGyVl95yLW1YatD0Mr7VA8LMJgjIU0xCjATDrUfL+5bO9mwYkGR+cJOxb44+fd/8/EQCJEb2vfpDO/TPTgD80SASp2BtI+IeCqsivWiS1MyYCn7NIzMzqKVa7EsDCtqfM3Kjn3Yu3bMAhGprMxQza7gGFgRr7pPQ8DCJiOy5NgZRd15WB7ggUEEXFDQWLEjpQk/Kf8v8qYIs3oeRZlAHFBI+BmLd6pFuFL9j7Sj6bZGxzPoezNwPl/dheFlDDSUfCcrR9CllByzUa5yABFpQiMIFLUxsorgr1Q7gBL2TChhYEnUlfwPgYP6HSuhXVzunDIDLNJKWjdH7Va/Uy9EoF2DoeW0OUJAU6TB+DjuAY1uPohCUtEvJdZZw/gaMqfVWiQHoEhvmRsjKvRF6RyvAvByPK75Wc/O2SvewyYRZilNZ/WduHhjrLHnFFV8nYPbWxpBxDETrWhzJ3PGEqQpw5kta+yAmiYpNNS+4l6GHm1sTzgm9wAMGfvgc7eXorFOOg4HgEjWrsdSqEfy/hFVt/5qQO5ljNDJCvAZZI5NcLAuIIGtVI+0MOM9N1l/LOVliL7q3nULOTqGTKid6zFGhI2ddbaauh5DOKURRWlA6ZqVHU6aEZFWG91+3bcjPUSFY6+qE8RWMWy/+/LOwcq+F9UuxbIjUHB6gMvrpbe+CKTF+DSIFZB3DaycWT5oeQ6J4RLZc2LqZ07GGErHAPmiRGAOwM3fDxlnEBnaZzJu/tjP0xeujGOH1IIx2AywmpmF6RFZpLuiaSlTzEWiPaJhzky7suAJqDIKxGwhzkCkOhiWfo6N06q+tFEa+7etGuwkVsj9vdoxHwDx6QzoSJd3b2OGTRE7nTFN+cNA/4ZVyydrS3ljH9f1O/vHSf/y4zOTvw+ksRuAj9TZgc6hOhBgcWDvExnuJzqeRXqaUfY8IxWefRu1T13HngEkuheXlY7m1F7cta7U34qxxqOm8bH5ow6LLqoXhCgXFnwYO4DZ5GzIrQGQitnVAAESIzpP+oGU0wUMx0vNAmJ0H/CZX4r9yeF84/C7v02xRB807BMQAjbmZ0+k2KbFwtNDbj+uIHsMvqSj9iv9O1p6Q5DhqCnNGByl+kbDRB33Yk/Jr+Ge0veze8YlydvO0o0Pe6bN1WsCBFeqsdQcYEK9FPe0bnTBCIDZiJY8EFrdIN+Q3ljLxLDbqAmj+x/sQt9z6mwRxhDjubZyBvWcUlNsgT+uJZBh5zhz18TCcLrKHqb65hDpaQ2X0wLYKKCbHQBSMEct6HDqgN2J1ljxvfUCBAQtdNe92FegDgAgB4IjjvxsQY46MGwGvzPGPfQ+oz28v/9n66pF7R6VcEiNemaBqc/3LD3GeDa/8B6AUVDL5ngP5hNLfjGSYRx71GeZ4wSEqM/RScd+DFDX6/lc/oL9dWYpEIFZYnMFzoA7EAfYAPjYNfP3lKGohRQ8AmFPZWvproegLwAwIDNsY88jBSntNpinrqW2mGzy8/wZPeWY/AzrK6MgbbY02/14zy8Yd21BwgBZ2e8n+0z2yB+f4zoKv7H0Xiv7ITCXOhz3kY9SU8avPkyezAIkS+qT/u33WZN0cPeGgbqdYabwcbAnKR5BURBmEwxiVDd0L2fAqN5r4R0dQPjl5dcHLlB9hAzyZ3AVjq5qvP68InRO6/i56mJKuh+MLpbOUPTsZPEz5y9OllY47JgGkauhgyhpZ+IYA3C6qEqk93jUvo1D5zPg/ZWhWJJiVPtUtIqmHzRcRpDxObB13TBqv/+jfdXT1GGX8F7OCB+qFkFqwCnd8voiiR62aPXJFINBa9J2ovaj0nPrq88guPO7Nykq6RGH7R45da73NjG0TRMx20SMQHFjh7XWot96fdy8JelHAryqei31PTMRm6hndoIkSi4P0yZHPbb5SUZ/dCKhQKcdLhw0JSa4AI7DHYFDhd2chfveEcMibaU9HvWMntcKTQEokw4wLI/zrYAEqT9FnQTRgDgGqn8GaGY1eG71YF9Gwa7ajt5PuXT1EW7KAkwzVopU57YvXbp7jlEr5ae49txlgzwbqpmBAF6ALU/mfrxORK7OZkRH/ZwRYzxEZxwSNmMaZZdWy5lgGtCuUkhkAOshgjCbZkTPvcf9kFVRkBy3lDGFkwr4y59/kGx0QGrF+fMX9EGtlWnd6qywclhSfgTzpTZvbhHOlwEUTIjPvd97Fbzqgjq4a9PkxUD266/umpyM1WLkRVybGuPw7Ja686rxEygwPAq9AT6DUv3tHgGesctpuiJqNQXDCLc3DCmaektBCEYCuykixcbO7nUKZwUkcx7tuId0aqoTj47OyCDJSPVK9y5p4vQXnQ+m0L7tqo5m/TAmn9aiLhqbtrZP19qRJuqKyJTZYAICholeaPEes2vSZX9L1TKAhxv0pxbhfPJGTjlf066BILqgY0YUvKL7ll7GBC5LDxhrMsHxqCUEOgRD53suc1z2VJzMUGMGb/f708kfp/BYwONonVzHS+Gr7zKlV9pP4bVoHaNztLlYaiP2dhAsY6vFXwH9R8cvTd4JWHIO+7o+hkBqTsGolKe6E128UnW6XQ1LlJKy7oP16H2On7neXmxq2r10ofIC+vxaxyQNRmSABGuECdDxykmUMkoGpAmW5eAM/ARo6J86RkIAPJJn0/QBn1Pdi+f5V28+V71j3ZDJpnlnBtU6UwuAEIDdjZW+8mXnXnXfo4wh2wSI3e84o4vJmmJ/82a0SGudp7PWnd7Nbc1E7Zx9bm3YuEPp16bWFXDr9tqTKajTKbaw51TILLp3DYdWc/AYAwM46S7gmjEYMs4GT5kiheJzxzoDKvwKADLqgKxQ17AGnB8ApfaILtNxM6rYQbVq7BbgZm9HGq3ru0f1PoCFTslV34FnjlgAPtL/7qf3kjmfSffYJ2DU9VYlo9bUzDrAFWDnu7Cs0pEyA2yp5/PlOoZEum2dYwAPECblKw1MrlhwflOAA+zyVa47DXSn2Q42aRRtt5iuNQOU6A3m3GwmIM57gR72NBcwgJZaTmsgiGd3XGD4ntZOsEIv2Bqd52y17IsaX9f1HGyycTxTX9PswPRAVkSgpomIjtCpUa5hzVszfwBOzJzPxZQL6DE7Xu8+BLnKLTBGCA1lDW3RkHUzvbrRkcq3hp4HIeF+AEJrpk6st7UPrRdfEcGBATVUFPt1LVAPBJIRe46Vs/5jX9Mf7Pn3Wrj9XJQ9ug34mVar1zre4mFzeuYUoTSYCDCWxAL0LGPwFOZHhw3ECs1JgVGGXUUcFIsBFC2eqW383UO1XccYrA31qxUyONAwwhVLozV7WJSy04gdGcBAS4WMgxQTaHTqM9+l/0TtnOZpjFNoWxU+xUPvq94/UpqNYbOIGCiBHKG9kYNTFMvxrojixzwY7EXARQUieejcteTo1S+YCHzkZGeOJUA273TnRtm0b5sf4rOxM3MCFaJC2j4i5JTL2XTSXL+uhoHB47xGYW+v2V89xdYiQJQ+BRH5eT5pAk7PZGyt0Tdy0BgAoBMin5PCAw5AKSd3oCgYI/PtN7Fa3Y+fqZPAlmi1l0Lsl91Xz98HOadNMR2DxEG5LirTvhL21zpNG8szjlfoGsCUSFhh3cKB9KdtmhjG66UzW95h4B6ft2ByrLQUoDgGJPas2DB1CQpgAQJDBgE8hld7OANKMTyzwXdqlygroPtNA0M5Z07WOWmUE+CVgnO8BZDJGGkf1b1ztfSt1McYWZ+S2jssFqMlt09TgS4H765c2myZbzuLzlys3iMcMcfn6wwnYKCjkPMEwFwb+Jf6BKgYFRT8htiQbzrP8GiF/T+vMPeLQJ/7UehOLi8DJjkua70hQEYGsXWirBmAybBgTwQCgx3sM9zvFEB1VEn7L1hQWDy7j8cAvfLc5sm7HfXRZdOT6ZEFzlfjDHRRSe85ewtzIqol0wotgyTJRhN625NRM1gtlzMGH+RM1ep5fjqPLVZITh7IpVQ5xosecGAYVE5Oi7lITv0gQ/qD0tKbAxbOdtyxMeYqJg3w+Cqd0w10t/TnzFylt6sHwQo6j8+aibJfe27rZEHM4DPZH3IKqX+dgTSTSF2SDkz1EsPRZyztg/vkTKWxMEvvHjk5ItIDOzYEVqepEIMr3/nkzORUwE1qBLhQNI3dknaRlpbKZnjnZGQXxUg8mQwAHTNdmU6+ZxeWFWC8dmDz0FPsqfZy6SEpkivZPOM75rXe1kwaUbpoeYGb/WYb1TJiRA1VxQwx+rht9zXmC7XXfduzaSaY1uKwx1i/wxWoYsIwu4INfp49UmupqBpTsK+g849e3zt544Wtow5RHaPup8OxSKJ8x9/QL/VXUhnSkmuzrz5LOYT0mcn0AkiBy6Pd4xgD0D3ZK6UAgE+7M4IGgGIEq9lZzwj4KXvA9AhesUwcINmXdhrnpfVZd9NhMshh22rggM1tO4edZHvZQCwdULYu0Iopcu+YxAUFpAAmu0deOV5BBXsPQHk9lt0ohqkuscvpf5/N1o/RIX3GlCGNscu3YGpGuj/gRw8wPt1WezRlbOgqGy7oHYXL3bjnE+Sq99MgMBbG3fQ7zyBo4PEFZZ7PwwKpQBcgLJTu1+PLfQMWvqxpb4990bwwHaAI+ABV9sazYaiAGuld6yeAs4/qlwaA7ALqggQA0uR8C99suRSeP8KW9T7rPwWpap2yzcnkdI7ancH+I0cwRa7FRntIttDa8BFtU/+239P0nwsK3tR/jUN8e4d0resIAGVe5g8WqLqvwI/yD3r28dHzA+BgkgTIbIo18kVX+A0BidQiWRgdpwFAvkNac2R4Wk/P8L/85a++v3Tb1oq6Llf7gNLd0YGvWgehRQK4r0nUNztQz7lSMzUdWCLFviJ085Qg3193bMXR2q4twMY637Z3MKyF/NVHp3OCaOppN8XT1XPMD0DJV/bsPezDyftFeQdjL0zNvvRlOfcKwu+12auLdqTwfM6eusgMbQQ4KImCMGwGBREBUj7HUIzNzek7FFN90PGiS5022CAzfRxf4j27i+CxQuqvdLhwxhgXxorh5FjlqS9fr/4qY/VNDwN4Kdw9fupKNS8V1iXuukjOVE9wMqDAwKxu2KUUDyO8KDpe984QHM4+g67dEotlzViHL27U9dP4f0Pakt/xrNqEt/W8zu9SfAoYjcg8QZYfX119xmMVGnOsDsJ9fsf6Ybz+7r1GLcS6adMm1qKiQSUHhnbVOrwiVo+TE+FYP8I7LYIM2BQ9Y0qwfxyuc9Swdyavep08MgMGlDqIVe2P+Sx+BxzcunOnAtInBuMxJ8/+YodungzIimTMoBpOPCB8Jacrutu2fulkRyeWY2q69Cjk0xEGWJtrtSIjRPApOFbA91gVaV/RPqDFIUsHyckDElJFHAgQKNJ5sQGXUiczadsBeBiMnJHDPT+rA04xI2MOiFF4xtA9qC/CAJryDXBYRwBd3Z7C/ytffhmzOG8cbDs9NyvWofu82fuwk2oV0Nyci3EGlB1QAhLQ2uQaw8Cgbkvn6Jvoyp4CnIwBg6Z49LFkQ+Ew4MVwuD+pU9ezLpgajkqKbn4O7CzmNTDJmUnVSTsbNHirmU3SXNI+DIz1A+zXNg1/X3uBKRYtSqEAOV/eMf18Mnk9IPTTNw6UplJb0qDUZIKjkdLTap4fTq/qbOp3WA9sMfBP/hSCD6CfXD0Tw+Z6bIRUipEVZkftbU7PmZyiIAAwpY9qV4xNGBF99wlkbIhdu1M6UX2UdJkBnQYyWivGkuM0w8e6Hh9DFHWKNbYhHXSMgzS5lIkRDa4vCvU+LLl0EWDm/he1joZZ0iX6DVDwWppHnt22egBorKq1U5z8VQ9uPzgPs2SASUXgHtYxTBwhZwngbY4hIxMcpkBQbaIgZXmBG7A/ugILEBwNI531k1d2DkfFqUmxCljZzl3dn25YqUPOEjO/pIJxgaIyiLcDiH5uUvq57KL12tFwWPVzGC56KSWqw/StRj0AfgqAMSxSHaOQP9tn4vGGQLggYDDCOb1purpO5+p6DhcsYJSGjUh2bgiggKhsLafPh7DxgkS2hcz4PbAGLNELOk73pv+xZrEy7eHJbLeOrgHwEzx7di3Z7Vfj2mSQfguKdMndbn90A7sm8I+lc01AEbPBZvSrIYMAgtKCUSzd3xouLiaP6oEExL4wv+xJyzTAj88fE+57Fnoqy6He5ojxEumL9bb2ns3xNDIA/B7QdzEwdSN2j+2YMk3OYxTMBt4KEgEgIJJ9ls0RBKjJBfBkN6Ta6JgxDH42ps3nnwRE5BjD4nk9z6jtSx6lCs0fxJKqZwPFMC4yDAI3oIYNIY/+DJuRrAJTdFMgL1AGgNnYEfwNm2Yky61+7rzC6vnSBZ8tUIUNsPHjDNDWhF2zVnzOtIQCw2aY57TEg8P1ucpsMHijfiv7M0oSuhe+WuCLLaMDUsCDweraJ0tHA1qemZ7++7/98PsDSdubuUEwDIRrpxPwbqybe7R/H4qqnpdDNpVXVEVppMkYhVkVHKD/gQogRUpIHc6ejtfgUC/m5LUiBnpT7orbUiIHRCrUvl0H26ql5j8YG7Bo8kFdU2evOkC3TrYWXrupNl8OdCGjljCJWggtGtx5c1iJzXUcWVA5eQicEHG8lM57OMGHsRPTEeY3m5PCcdwdzJPiPWwNJkvxpBZJikBwKBDjBtliHaQiRbTo3HzNZH+1DH/w288X6U8PByQkBEFNC2NnMrnUhJQhx3s/Y8nBmDh8oyhc4aSaAyzRvliXebXwm/9DwBkYTBdhA5K0Mvsd8PqgPXCI6MoU9JvQNHr9yYW19Pd6qVACrjsMwJFOU3diL3765rNFY9P6HU5OR5GuEZGCNRZlSd/57NHFl0Ph5L/qs4AUkZh19XpD+Az8c7zFle6PEfi6M/tEL+t0LwZWFM7/8oOT43NUFbR07b9W9hxaIGhu15FvNvPFOigGf+XZLWP/3Rs2UYG9qMK6nazWSbs6J/d16Um0MqOB2aF03xTB+Hzt4BwN5V7YiejvdTYf0EEZpULSp8GCPJk8Ypo4I7OI0NvADraUEWP095eGvpMsoqLNOuKwgXSzdq4F9qTDEE2fnPw8EGK6+XT+iPtI7IezHvVEKbaT4Aer1rWcfA2UccxSpOtiVJ9LnnvLMNSCALqGwhbtSqle7744GbJ/x14k74Anh3c1xwHgqp0TdTKi5JGRNBpift2hvy5YcbQJ8M9YqSXjuOnshhystIJjbQA4tXc3O80eKLQOjgjwHFIMjKC0umns6vi4HNHqobpsyPnorGsvrLdAgeHntOb0nFLYipLpn6jV7LWzFwID/exMQBIwk2oki5hREbL0kMWUqtP9KXpXn4Ztc08YKezo08mU/TGUk97fbf+1HjPwiwtWFO52+YIBLfKTkXYFCkXDwOcnsQ+uvzQAIoXLma5MlqVmHEvyybHzreu0bgzbQKeAVfwKncViAOycO9aDz7cGGI0NOWCMirotz4eV2xrgAzwwtUACRuNs9kehtiN2fvbuZ4NpE40/HKnebGNy57WMmxSO2W7W4D+/fagg9XQ6gI1KznOA7MfeumH3FBy5j1PtESAhgGNz6Daw3K0P3QSYdIUCfopplThggwSPZy91JmHlAmQeI6Co27E3MgdAJtZYKtG+sYFScNaEnAPsdBgDjxEi41gYcgw8c3zWzD6yM3TdF3vuWQ/FhnHqQAN9B2783B6P7Eb3osvJpj7oGVzTPim8x2ADLYDa1I5IJXW+YPudWWsZS9e4Vvfsfp5pj2QWTE0HAvgb93s/nbXfbGGXHnLuOX2W69ER17JeABzddD/8BXYKWJIacg2AURA16hj73rpJdff2AQjoPjYK8AFGyYtnJtuyOOwfPTPihPwBzdO5TDrrpgwUwMMWWKceYQRaOhZ9Jn0awVn7M01jVk7Q6/0MiNQsQ79lEtS2dolxXQEgv2Mdyc64x/7Nrg/CJHnkh6XTPCddIG/IAIEdfyoHJc1IJ/h4z2XeG2YXCHQGKRlysLp9wdx5Fn54WlSPf51++Rlm3+eRQ+vxs/eOfX8gaX9nt6H8BtBphs7SIj4PfzFHS9ifiblQGGdRpRNmlW5AdXPeUlKMFAdmoW32meoU3j1yLvQs11tdQsABNe2gQ1NjtTkz+ITl0xNRlg1VY9Q25SzWlm9nTKYGa+FIfVBqBlMKREqiTovlAABAAElEQVTQUhGAa0Ut6gOgVqPVGXzIdhQNdn3o0sGU0jyMociF8ZjXrCGRLsE2X4dmugbFJPSQK13laO2KvOn6lc0UQr8n/Db7XopzM+fr+AuFvxRksGNtqinV0LXcqxTO6wd3DYVSeLlRV1WMy7uHT6WINyc/eXFXEaphk9JNzty62FpPD/MUmTAcaEYggrNRHzQo6JwIwPgwoHqimStOkXdMzPpVKyY//27g3a2cvrSNCPLNV3dPfl0b/Lw5Fd63jg6Hnc7/qfslx4CJoNQcs+ex14ZW6lZQvCd3b9IvR4+Fuds6crYbqtlinNbXwYfNAbYdGInqFZXraADwxr2mMA4EVewI7FF23wMbf/zjvUW785s4fqL0xrTolKMU+ZhYjp4dByDnTDkYrdOcjDWZ279XFH1jeRhxRo/TV9htX7CdhnQCjID60u5J4SpnBWRLnZHvEa10vVulZaSxgMde3hEPHSYbq7K4Y1UWi8Bbd+8zEG+c2t5r1ZaplVEPAYg52PJWwIY8cnoKi2d1QcX1NwM0RzOOGEaR+/GcMOP1fsYZCEEtmwF1J7kACtSXOdgVm4TNEV27B2kSbCnjZ4+WxdJyOPZRUMLZiWSlMzmpP/vT16qpqTYvhwyYzq1WUDQILL1Xm7NGCsX+5nAdqaPOsEHrm5p3pp5J6w2ya0Gm3ZcVeGfU3ukAanV4UghYsgPZEoEPQ8vAAajSp9N0XtO3i6hNq+8iyVPBUMwkh+T4G4BhdQWlWAcOwJEMWMO9FXDrVny+g2HVuJBVtgZjoyifDRAwMfbsEEZya8BP/Rk7tjJQn8EYRvuS9GH3gxF+snU8mnGV1mXgzTm62YiJwaYGuvbEGgErF3uGXc1kUt/E8F+9lo3JDilAJd+QslS+oAQrwLFx4OppMlODhfI8nLwuxserb1SHOEocul+2idMAOOjDfwr0AAXrs4UbO/9QWlLdkb2azsaZzrf68GjpxNJE9kiacfp3KeXWRmrPbLeHD6cTns/GJnFIfobx7i2DIWUbXqtx57Fk5UQ1X3OqTwD4NrbuGCVMAD2TSgM4lGEo5sYObKww/r/68YH0IJve85oR5OuVjrkyA+tYbB5nRs+lrdhlwELwu7Z0ILnDIrCx5Nb9C8I4EaDJmqXGI2DWDv54NhDwd39S4qbxa4YBWq0dRtjPNRiYuaTziw2ni5ws/0DupqmvbGfPoMbH5/sggNrvVmWfgWN6pTPZweaCL7bvyQL2xdkVNZomYisaB/7YIFkM/9YMAbiMuUbZNgy3wmz3zjYq91iWTzTgVrAw7GPP6r7tI5vreVzD9fhXftiz0W2/UwOJ1ZeW9NWStZ7TjjmyTBcwdoJbzwJ0uG82VeCl1V+grVP6qZ5JCr0NaP0riehzkBXkTrbFWro3euyzBRoACjIFkJGqU/P6dGldPxMcYbAAH3WLGFYF35g3z+PaI8ORLvuSZgN2jN7gi9SDahIyFw6Qcs/9NfZDWpHueB4YQJZA8411+15rkv78v/utHEanzWcYtKk7fdl06Gf3bxtCZXCVqcI6aVDl++vmIOQHSvPsiqJdML/ptm0AB+nG75c2YzbXZ5wYDGMC0NCcG+fLCX+aET6f4R3HTbRB5vP8wUvbRzT/yw9PBliqSWhDGA9TaEVMx5omzPAqzv3gyOlhmHZU//SffnF4gChUKUG0sISjZczo6nzpSISEkWFFERM+Q/1OFcWaw7KiuU07SzlC21gyiiw9N0BDwmeIprzs7hyASdfYBsBgdJ9lGDFPDD0jiNXY2MyT33ptR7l9lPG1iTSY6aLA35cZmgcppunSOjEwPqOjz/EVAVBFxIDc3F4LGDAS2C1UpoiIkwcAGOFbrbMZNncCH1dD4LNzWu4Zu0HZAV+KYArS6dgVxhFlOtijnk8ETfGBMT/TOXKuQnM1DQztyYyLllnsA6cCnFI8gxh1+MxOsM1uuhaAUI9BGS6VgtPODHBqwcfKcJQv798w+c0np4c96kcNqnyidetGi7IYq1mBIdH6iT5zQ51JKH6s3dXAzAu7N2fkHhnslI47ERPFwQRhnSiIYZ6iF6CCg1ZM7uBkc5yAC89g1pNho2/+8Nm6LjdNPmyqMQockJJ6w54qHub4KPsYkpiDYJQXtR+YBYGE9MoTdQUBicCeomRGRnGtuhcpI6kmDAujwNgbfzDj2O2lfX2yqN7aq22TyrZnusG2VjNir33POCv+9gzYN0zlNM/fRO/W9UJA2zN59ssBABGnlC5AOejw1kVdzHMdpaIoWreTMQDmpQDxic40jdU9qge8GC0vjQ2ISK+g/zkL7ezLAiKAmZsHFv7mneOt3/30esVgNdQVSpGgzQFkQYg/2E2AjV4pkP9RrejSA1+398CpyHtBrd/Tc6k6uicHiw1xdAsH8UI1k4wnO8Bpi/ovVrQsAANsrCcHAZACY5jSDRXRA3NnCiB0CWFIBFhei6Vk2B1Z4Tw/HYnLA6aCoW5rpKal7p/N2V8CDgOxavF0N/Koh89cGGuCfdGxOGxVdlE6mEPijA3UxZqyDS3xcFCAFBsptVMFRzZTMWxrxNhnY+j+Z9leNlJw9NyutWN+G6e7u+45AZ1gTnQuNYmlB9TZbk0I0lKcz0exs9aCE8WAGuOi7mrxE50x2R4ez44qydOMYpTCoWM1RWRHpKSwB/TbZ31w5OxIQZL5811HSQAGATPyh6/vqsHDPV3s6Qpie05NAmTT+AHAxLgLw4VNZ3dsj9okwy910DnPEvBXzqDmBGtC3q3zqOlpnYEm9t76Oe9zBBA9pxMOgGVsGufJgUv5YUK8GKCgUy1rNnQ69FXGQ8Al/et3XoOtIav0H9vBFgqOPcs0MJ12W9tTOArz6wvg81lsscyK711DEM7euQn2wH7rBBupJmAle+t1ZFRASWbJCJDAntFZwFLmwkHLGjq8xmRsMmGNgAkAEsDUsKOmjc6NNGE/G8/Sgw+GrPfwr95j33S6IgfGnLxsyuUCE+wUFl0t5twYZCCEzvrMAUh6GiCe/dRZJ6izjvy81K6O6NG4AXi1j3RLnZTXqTE2IJgsq+HD9lhL9mkw5L0OC8SG8/NsjWuTb2yx7kF2fXoMGZsuIPpuYCih6I/rWHcd2f/7X32PE7cBBIdYqr3g6EQb5gJBguejSz+qhgbKFrFBjCh0Y9h1s1AQN65DwPs4S85g1BMEJsbGZADMf5HGYXw8nQXYXXQGlW6tM2t1dC7DCzBwyBSAUBK0h6Vy5mRMCID8r3oPQGvUhOT4CILaBHloLAdHLuUFsTKqa4rGTmYYKD2DBDSJipLVUlhPTP7kJ/vbvG/LcTZ/aUyx1hba3IgEFLqenlmToYg1Gx1WrRGwaKgdevvbkC0q+rde2DT5nZe2TF4PEGAzdLYdSej3bVk++emPnh3sy68/PTGeaQhLa8zRSq1QAILPiIaCoozr/mnNpSamCpPTzejIU98qXWcW1Nwi2yWt35c5uAF8er/UkZ9jxBZlULSBj3O1EkjpDGDOZ6J97Y0puaLp8YztG+VijBYESjimbmWAjuVR5IBYjxqAa2ZWgq2uxVA1MiPKYRQ5H516T9VKzTECHAc7mmJzwNF6YgTl2EVRnhFgBc52bW3+TdcFJvcU2atDs3emD2vFd59SgWhfR1AAVs4oc1SDwmD5c0B6NAW09gsDIN9mwNwnJdaC7+uTDvG8nDNy8Ke1EAmi3+kcYwaEAadSWib4SoPMqrB7FMrGjmLIeuRhZBl0Rk5RvTP7yB+jxrAbvbC6CdNSLYyiXLu5HgYSGkOgbVoH2vJAPJ3xRwTovSurHbuUnnDyioBHIWwyLXoDrKU/6KDWWrUzYxBiz6L93EBRoBTLknVrL6p3idmZXyCD9P/s3IUxOVo347FGXDxsL7zGGpkUjonbXhpHQbm0E++gjgIAWJ6sTecHBXBznBzytvUr09/l3Y8atZsDeBzNwYog7bPXM+Bnkg2Oyr0uyoYsTH/+2z96uc9z7mGDW3MSJmiTXwbZe40MmF8EKn2KlX63lNIvPz7R8R4b+pzprDNdmjoBRbQcgcjXeu/csro1qNC/NTGl3rMJdDj6H4x6udKs6ZExHEYFAE+6Fp+qiPxINYfOHzxVQKXEWsBnwr30C13lZOmAz8BIfta+K6x+tiBqxUjR1SDRfdMvKWpgbleMjfbxscf9XFOMiflqHYE1qV4pREGOlClQy7Y+jOhQ46KjjfxL1w9HlXPHSkh9WG8Ay7wp6RL/FoSRJQ5PB5b3YvuwMdLHx2JVAdY7BWdKDaTqd1RHuiDHpzOVncQAmdfkOoAyHTF6w3y1UwUjahLVYqaK2WdNPsaHYNSAoeksNgwUVsrk9HPNt1uZrqo5A4wFaQC+VLHPGimcYSMUQKRj/dt9YIP4FOBF+YGCd+wW57u8ifkYjnvZfzOPPC8mw5caUt8DNOZfYbzOFLipy5ISZWjtEfsFeHG2gw0f+4xpmzcYWMfjeK9UnBoyTpwc2HP+wH2rVZICpDB0yHq5FvvjNYleu8mZm6M3nUEmaBjlHUNOvgpIxiBFNpwogFdHNMMgsXmYNuydZ+U/vRdTLaWsI9VnIgD4COm/4Ud6pc9Ui2sPW8rxjGy/wGV0ssbCCJy/rHxCza9THTwn9toz+PIM/JM9waYKAAHDkW3oveYm0vFPGm7pz9vVJ6tR/iDc4KgyqWB+XfDzq49OTv72N0fHzz6oEUXG6f3+Vqf76xoRPj52ITv6xfj7w4q6rQNc4fQLTCXG3X35bPcAwLkf3//bfwFIitP9J37l+dDxWlwVRu1cX86/xf6bn380okkdM5gVaSYzb3TFKKhS4Kk2Zfm6xUMpUd17Mv4HK5gVsTqfZYFoudtQ1GnJzXDZ1rBGNOz1AM3R0kvvHT1dUfPi9n7WOADVXUO7KO0DUd7bOtVcfc7xs6eGA0NTixAUramTmBODog7EPJr2djh5gguozStaWrG82pFOVNZtplhcBxmQBvRR/L/+5dGE8OsxlVTUpEDTGV7ftC5qV6QhFnf9bc3aOXbyfMJmynOAMgZFmzNKVlH2U8YYFCVduX5vcu58YwFybH/8+u7aeG9O3mlKtYiUoGoNvxfyvX23c52iOjFjkU6tZWfs9HvAQsE5p6jGx0Tx9xMYoPVUPxdtoJazICHphKU/jMHdBNnzXL17e9C5wI5DLc0fejXgdra5IHRMoePmteWAe+2VgNPCQM3j1e9sWKme54vJMzkxgyyvlf5bXH2BtWScgIN56mD6e5yz1vPp/nNg55MxJShgjsQ9iE7UUN3LET3IEC+ohZsxxZztWL+qdNOlAJcx9CngLNHciuEsMTuKSTFJomHKyqEvieV0T2dK12AUv03RATJyiFnavW1dQCrmpn1568NjgeCYuwWxYDkE6R2KNqe9Wtp9naoGhlN2Tp0aAAAGKyONAOjNyYhyps9vi0locvFbHxzOCAXQqs0zpgLDyWBtj/Fh0ETgo9i/fcBi7srZiGwPNVMKW8aBv/Px6Qwx49+BpqUopUcfNI18W2uxpsJpI/cBim8eabBexmR18jT2NGf4jOg+WUeFS8e+vH193YoZmE9PDgOsg5Tjc4/AKqPIMRjtoBYCu+ceb3wZ+5fLx44Ac5nc4YS+iE05VvChboAxBvbo+cpml+1sCvS/+8/vTZ1uE88FMHseXzXapw1tfLS995xAiP3EnDHICqg5c3umVf786auBsaj2AIA0/bFSnP/T//zvxjrvDWw8FQj5oMnL99M5xs/rgFxr8HkAmW4I4gROHx+hC9IccyfX2jcMqRShlBRH93Kg/EwjAc7HsgGmX1xrUvScmMCAPmN6Jh1an02znoCKGgj2BHs3GhNqvT+XjBwLUC8NlGIYLwc6OW3gBqARQDyWMu3INs0LgG6tm5X2mYRujIZATGqTrrpX9Y+9oOMkTo9gQSffhsCZQm6MJ8b96+7tQXsAVGGnAMGv7lfw3/uOnH1/APrdrZVndQaiIy0AJYzS5oDqu5+eytF1ZEhOzv5iHS90DXVaV65/UzPGtLNVsCSQ1DkIID89mNjbk1UxdTdiADE46riUOQhivH9r7C6dNklejY77Bc4cWP0nb+4fAZMawwXpleBuOlbibqm3bemCA5Kv9p5qmVrTZaWtBbjjjMOeVbBlDpdhtVNQqUh3yspgWhOCwTBc/bIAq3//vLKB5wOkAAm2w1qzhQPMVdgvtY8psm+PtRaASe8c2QKMrUyF6fyK2QVuswNMHC8YINjBynYDQ1993rN1Ejv8+b0jn0+2tGebCrpv18ykNIF+uUW64z39fwBAbKcAkj2k/2wURmfUzeVnp0xMgKR9GMHfXPVuAPhjY24XwsAZalJdxg4AdcCd+k+B7KPZIcwK2ywz8WQ6tnTbyhFkHs4mkyEdirrMdXqyydg3P3fP1wKmt7MzZH5JnyHI/OWHRwO3zVzKt+hSx/TyEZirUSvV34t6HuN//IydVtNJBpTOSO0DijOAl+76Yy/ppb20Vr7c96j9bf3tlV/wjdbP98Cx13uveyfPSATfe352hh1W6ye9r0b6X/L1TwZJzsU6Wm4bpb55zYohVBysuglpB+mDZU9Fc2XALl6p1iYWZln06TfNOJJeUEsA1Yv8gCuTo1dHpQIxBu9JW9hsRYSvNB34ZNdV3PvCi7sn77x7bPJ//OVbfWbIOOHRReWQRHnZP6g4GpV89btIw9RdkTvWBtUoGnHui9bCPRU87ty0Zpy4fTODqoD0z//s9ybbYnEuB07uFI1B2Bzvhag/97uudl4G5ZEmQBsE+UTdIViF9GhsylOLYhm6L6+RcrNbNxOQR2K10MSiThODvyyaPBbSXbajtvcoTK3Dp6rL2pxCPVL91v3qAhRCGnz31JOkJFCSkOto4MClGgiEWiFRtohpW0YJ2/V4Z7rdqehbcdvSp6d56a9Demq3Dje7xTEFHKS0DAep9gvqF60crsbFzIlnirY+T5ABEGhsycjlN7+qz5xfZxVnZ3Ly5asxQjFoj89H40/PZxMRKr50RMPiJ6ct5SLBKXNwIwBWNPqtoz5uDWaOgP/kpZ0T7caMtomoDND71bygtHVZqXVTdKwrcGXshEF+f/uroxUwL5u88dKeIQfd2jAwWAHdciaQU0IRHSO/vPWYSWV9lTFalux9XAr20pUp1Ws4HoAlBcrZiPy/aS+lUwEB6k/hyJOBfAzUOAU9Y8Zgc1wiLvUTOiDnNeUZsxW1MLldIe3yolUH3jIIogAHIAMmiubVpmAtHBuB3erHg6VSUC1VgU0AFhnEK9e/jH1YlAzVSZixA9B0hzlAFcv1sEBDZ4kcfX6zvXlk8oc/3NY9kpOvJx9272qrihMGAwH4SXGcn1N6NLm19lJkivQ/Lspzuvy9jgNhhNcku4vml9Lti9xvWr14GDnDT+emU18HitR96JhTC6NWb3vOmNEyt6qHGc/iPjgBYA1w3bRgaWnDqPZ0ynV0YG1f31iQnBlH2W1N/vW/em3yX97+dADToxV9c3ACMYEWoKHTCnMrUqSrjnjQdKG5Qirw8ab3P9b8kTXLl0z+S0e4cMwcOEBCP4BCjNSzOY53b18oeMqOBSiuVXNEz+4/mBXQPDN50Gswr+Tgr96Khf3OaUmNzA3UqT0xX+1agRNmQXellMDcAids9azWdlPOCJstXbIrgPXx8XOjHEGalT6rGyNLy7NpswLWap5O9BxqxX7+xbGxX9Jld7+6N0oeBHofBAQ/Ty914c4qwuRUpmeZFfSlM5ybtcK+ri9AoAv364j1s68qmTDmYXlMpdQ95viv3vq4dVMzY15SG9C6AkpA0HBQk/kFdtcGy4N9VlPJoXKOGNXN3bdZVBjinY16eOv9o8nWvcnrz22cHIj1utGgYQHJrGyBxp2Xn9sy+Tad+Q8N+Dt/KR9R0KLWblITDTCpqJrNAa7VHAogMLscJ/uHSeZgfa9Y2Dw2jpncmp/zdx2a7sggtgnI3lz9mZQ8J60mTfcuwGZ9BgvzUAOBgui6STta69NSklKl7L45XCOSBwkId3couMGE95MRmALIziI8nb29GkCcCc7si/ui+35maTF/mC9gE5DxXqySCJ6cu48edwTxGNwZhsi/ZUm8zwc/WUqfLfm8sR17C1YEHA9jssbIgPZPZsW1BfaANHkD9jGHbMYnERWD0esZ6MJg51M+Mm1tp59bBoVd6yOt3fWbX8SkXhjH15hDxWZ5Bp/Flszq+dk8rDs/r2xlGpyoLZIOM3oEs66DDS3y/wMl9tbn+gIS+QrrcS87Y1+ASK8HqMpGMy9DNr3F62bPztb2M78HyjRpYdsEVFjMf8nXI/+mr3/sjTPHkkgpoMYWxfpgK9yEtAgajtFe0uZwVvKZblYa64kUh7BuqN1/ZUhXzQSBEe310mG0Pg3Riki35ogZ3McCVWqI9jTsDWV6st8POrfPQmG/8cK2GI8tg1ITJS7vc4G1QbEVLUprSL04z0sL8cKO42CUHRxpSJi5StIy6HkFdq8c3D5ZkMBApbe7P8ZA2gRNKs8vkhA1LwyIHC/V9tFnn5f2iMbt2WwyECPddS/nLLd8smJI1yaYPg8b5t8QrtqAE13ji0AS4KOQ9rGc4IZ1da61JgzniHgSApSvTdaOjTHbV9rOgC8ysSpnT1gBCikTBwcbJSAyAUzAFFEmQbU/FM7AOPl892IGypqOq/B6h9dKByrYsy4oajOsgAcADOC73vpejTV7kONUuGxaLOPIYa1vjVDiI42VEo6aje7RidqcLQFdUdQhlSD6v140smIxx1+bf05BbdqT6txyotgA030Z8+G4+wyM3jd5dwDmds+MoaQkPnt0rHRNxbEcMKqVA2BMnRWl9kwaacxUiZW4VOSvJkKdmDOgTMBmlBQLDsfcNaWHyICoDNh6UBpXekN6al1G1nWtPcMshbyx4t9vmkNFSW8kf7fv15HRPb24c8Pk02OnOves1Fl7QPHV8wHt0g3jAFssWfeNKrcv0k9qGDABfo6JMy9Lp9/QtUDp3FkdiVLxN6YgH5LOAaMVGWfM0fJSYICMqfAKwRlEXVnu3wTsNw7uGHKDQTJjB/DTaeK1In/7TUf9TCrisa6vcFVUzxmr8WJoR01GrCDQbQzF6BZNqUf+356kq4ymmS0Ag5QXoGRK8pTqnx6TQ0aBK3N+Vix5agDO/T3/g4KtE7E5dESakZEXiJwPMAIIom/Frtg9IyPuFd0DQ0sWLx4s6Jw69hhUum9KuShYcKbIW80JwGT452bduukHxlhx569j3j6LhcREPxXIun//Vg5+bc6oCeSlBNRFqJtx9pn1dDAyVlfd1KrmLFkPwFiqeOXTi8fzmt+FAbE2WKaVnTe5vgYUDLn3SFHT9bPJp9IBB4MvK9hb2Z+9AUHOXpCDld9SbZdUloYTQVNutqBy8wgaBD+ji4qNUKeW3GA8yJqalnUN4LUGyg6kh35dWvKr2HPAVDH4iuq7TnbvKxo3IsVIXzH1InCp/7ldA3PEcXFmAl96CLi/mlytj/E61/vZkusFRBdac7ZB+jeVHQHB0ew52/rqs+tbh4Kt5MKhycaukLs1rYcjgvYkA/Ozz9Ji7llQAgwrVqeD7kE6id4BK56TgxdgzNjBlmGwJsCtupwBSL8DRRCPFHVvbQWnXwIcz8z2ACHqt+yLFBBZcn3Aik0HQth0YILDJ+fKRZQFuFd2ki7Pbc84d7V7GDl64/VSZkCTWimvlR2wpnwoIkL3ncJmv9fEMhieXsdOOBeUXbVvvleXR8/5F/WWAief5XPIU0vT50pFTu8du2hf2Bg+EnOlNEb5yphsnW/DjvGvWundA731eeqSxmTv9sVz2h9ySU/5LmelKutY3HvVL8kcAEXD5mX32PatAVDF9J4BjnB/nsN6wgL21l6M7/s5XyNoBJrUc/FnAlg++x++us7M18y/vN4aA6gwAt+gHuov/uIvkuVpQfjMe/6xv//JIGlTDkJkogBW4R6D+nlRnMVz4vaKDIL8oQ6nwVhUcLim6JdwKQxUfMVxK3rFqqDNCZH8tbSFQ0O/auMUM94J5MzkNb3uVx+dGoyOKMDGemCOnSE2pNBE5jEvIoe7sGIzU4dPlN9kTQnvl0WmIjILprgca2BuwvPb13bcyaOTTzrX6bPynv/vW0cCQRfGpnJUL3XmkQhX4R7nTYDGpFBOss0SQX2T0MO2S6va9zye82qUMsAhcpSGY+RPxsLJy3q11nSOFqVJQSjOM3VLSIFwBtIzonaFvAYEbok2nxZsXhzCgWGB0gEiSqXYVE5YHcuJ01e6F+mvaR4cU0dodPZwoNYOU+K92rgXF6mtCkApypT6mMnvOw2b4xMRYWFmpl5vCBTdKwpVbAcAS60wcgpUCe+JHIzcOwBBSBUGXwkUApgXYhgfb703l2L4KgdFMSjpmAYcvb6x4mc1EShwxe3qUG62nhzTzH157mmjuJRgc0KavTQvh+/ZGMod1R/t6lgX7MTe0rAGDDKsZJBxwLaN2p8+9/PqKp5uTwEmhnFVCi5azxaPe1NPBPBsa/zFrmYEvTHOn2sAW5GtrhgD+h4pDXg1x70x/bC2Op82rlwx+UFngf3h7+6bvNR7VgRgFabqnjNYUk0Ux6PGQYccdsMRAxwrQwycqqc7X9pQlOike4Amv5+OZPC755PqsFpnawzYGoQKqKtBEE1KaxzPYJp7BNiQTUBNpxc95JDsG11FTZuHsrx/q1MwlA6IJcNky8nzDJrDTM2ZGXvbtUbaLjnAaDGyZGRxz2We1qhbK80uOnXWIcBHDgcwa+9N0Ve4DbxxVnQCa7Ex9tO1RsF49zhAVCBLkwXnBNRt6UgRxluAwok5DsPrZhhJdmpNQRFgKc2G1TSeg+062LwlxdDSqYKY4WyzDwuTS0GO1BOjr3DYtPyf/mjX5LXX908ezQj/6oOTsT+NwEinFHmrbZQKN70dClC4/Hn7BWBiPgB/nYCeURABDEqbLItpMaNtbo0D9FwxPGYQmwNMbayg/JW960aH6+4ClqfSXYGp95pNZqaW1KsvdXECNvvHxkm5asOmC58V7X8UU6yeyRr3oxxGp8Kn/z9oXIvnNJTWSAFyLk2vg9bZa0aQCASAJNeii9i36dypgoFknUypUyIzwAr5P1SgAlTMKe0MQBhaqz6ypRhNA1KQ48iKdP9u9/mryhuwgmQS4MXKPiwYc8YineQs2TKACADiVLEC6rkEUNhAgMafmRQsQbP3gjByqP6Jg3wymQEIMOeyERyueh0K7/V8gt+pW2Kf45EH64tJ03HN2RvcqPSBA8caakYSvAIlAixr4g//hTVSE8hHAgdkzcTpebIC3Rc5xVBJ6wMB6maAf+eBuj4mmd5ZMwGu1K9AATAFurCNgyHpPZ7TuBVM05HqdfgU159brR2GWAF1opi/YF8d9aOIfdoZPcBNOgukYZd8D4jTMfeM8BAw+d5aAOeaCACNuYBVOkC+rI/PgDrtm9dKyQFOgnT2ns7bV3oka8Sf80V0Bc4hR74QAD5Hvdr4vnt1v/wZPz71b9O6NL7B6wEn//flWVzPD/zF9mHuERvfG0j6ndIjHBH6mNKfKI8OKC1KqdzFjKMZ0Vub7QbvmDkTJTamzrbhhHZuCn3wwJao13L2Ucs2ZUlGw2RtdKh2fIWFHIoZHSJmxZOmZQNTIn4D3IxBb+9T0AStBcJgaeMmZBYQiobs0YAiyVN1sFB8p2oTlOfLIZvF4aR2lfHHOvjzzIXOzEIvt+GKYW+nUKIPmyPn+5Mf7JrMz2C989HxlCgquHtQJOd4CZSsuixRDcbNZq4sVaGtkbBoqVajZLIxwTPcT/u24y0o27EKoz8rpSAita17Op9s2/pqcIrSr/YHq1HSPAGvrT00bCo4wXgkqZymeqJ9+16HngytgZycrtShSMA1HZjK6W2NKnd0iSLadXUpqTswcJDCG6qGYqVYACEDJnp62tiHlNUxBZgZEax6LM6CIwL2nOtkraRNFZFy8orSRQIK6x8GKJ4pir9b6habduTU5QxqnTcBrz5q8llHz2iD9TyfVwOjUwlbAEQxboOW7vrzemaRMOPtkErGnMCtqcBep97orEgh1Y4ArWjWBTkkRYha8DkNc338YcCwJK69JdZGpGHPPSsnAjgCn+oN3mpsgiJUX4Aa+VHAeDVgBMADECZ+W7v11bgtzrjMTw5+UyGie1iSXD0ViLfeHBVjp+4E64bWd1o8GZE+XhEwuRvoETMBTGT2tw9urrg0Vm7z2gBS7EQgSE3JxrXLhwGwN6M1Psd7q3qIS11Psf0oxO85gENAFvjReWnEgzP3sCqPdv+6VY+dvTDWZdv6ukVzTG+W7lYPcigmDtg0b0uaWn2ePaOT62KtZuSA8ebMhuPvnhk9XVYv7tow1u6TaihE1osXOoLH3nnCaeqX88GAOIxaMMOoXSJ/rZFieUYaqDCfhQxjO60hA4wxxFxylADWmhgioOpcdL8ghaMmM8AfB+T7FTmww8ng5Z6bk5rzyGNj3ICaC4xz6pRjmhNIvTm5lgxKGwNjWuAFKudLLY0jKJIHDvJycgLgcRqM9HAaXfdQ6U6p7WH4u+bGGJ1VsVac4Oe9B3jyHJev1bVaaQK2RhQPFHF0hk5iF3RysgPSfWRfQfKrgZ2v0mmjU/bWzMAO0uHb1d04GuT3X9k+bOvObIlBmc5VvNE+qr/jxOn4nAKK52LL7mZT2KUP6yAdICid5tA8C4BkoKbUl05koGJa/qBppLR81wKW2O3xlWzYq8+yr+zET3+4Ox2+HQjK7uUH1lVP6GBag0JfavbZlkAlgIqFMI2Z7A1WLPlRBkDvjHyRphJEWAMA1T1JlbUc2e7pESMCDU4Rg8AJK+rmU67wNekdYO21alQFDbMCG3drBmDLARyO1cRp15AVwZ4gBs63xoIQKSNMs7QXveRvvBa7ZK260LBB1mGMw+jvfjquZV2lbgHb0RnN4fcZ5AooANrcA9lZloywVVjDGdCh7oa8pBp9lmuyw2qzpCdjt9v/TTGR6qYcBp6pzac2ysbntNd3S8tiCTHzZhzqNPR+vyfL7KdZWFjxKTs0f5AAghgAjI/BWmGtFahP11lTVGm2rsfX+hk70F99lmYqz1v3eP5xHCXTz4000ZXsvMznK5lBZgiAMZbux59ppdE07WYtrS0wzMfQbdfvW78ZPwPCxhp2j17jPnrJP/xtX79XJum1fVv7sGmOU8QKdRMSkTCBVZMwPZ6gNEYPSkEAHBNhtaKbnyP3uS9wAqg4XG9FtOrlHOmDmAn0vyh/UP0p4OGT5wIuFweD0keNxZFaGpNWUwgPzLGphUL5GUAlQqEY0KrWaoDAeS6zitI4ApEOo+PPnTbTuWyYKJt1o+nQcxIc0aY8s8mqI7UQo6HwWeRvg4CB+20m5UQ/SuPpqqMY6GfGXdE1qnZO9RDOpHMSeyrb8wMyzeSI5Wq/RzrPVFugCeOiwNs5SIqZtZcyCtIzImaf73kpkfbcwzkbmodS5zwWxx4RXmAIKBWVSvupzwBqGDVRx/pqoKYFlboOZ03e/MGO7qWDWQNXooX3Y+5EUX43TscOFOrWupTxEyGivrEUnzSeQVrryww4kKRATmTHiLwQi6JlUycO+dhWfYJJ2zvqkLxQhyMjd/u2AW5FVykHhbyX8hqYuCol/az75vylaLWai64ZK8ZQTYez8jjsC1iZfo66tl6cjlTHtjqZMDCiU0zGglKlgJ+5H4yRazFWQBNWRCRjQ0T7OiQMb2OkGD/yQCEBJw5d/Q3QgT3BAJmKDcgBN7o3yKoo/0ER9qnPO5w3J2xKs4hRtLln24aeP6ecQotKARfRVuKTHMyKil4y9MQp9PZbimZrzJgmAjL9t++fGoZI4IAhtb7kxzqQfzqimF8Kc38zg84UUACLggcWBaMFfDB4wCszgt0RVast2FlB+Z/916/2e9OEnbze2V/tl+60F/dsHszT54EDwAkAkwogz8OhtYYYI85SemjQ6X2WDkUBENaCDWDo1Zw42mJTxcwiV6DDxN+3Pz6ZPEx1zp7qujQTzBrZN+yrtT4RO6UFWSG+ugPB1qMZbakkRbAOaP2w1PilPlPUSkd8qZlSj+LgVoZ01Eplu+7nTQRiUhxmJPndM4F+hv+9CurbhmHXdPaM9FX3I/20KsADdAJumDVGWHv2SAV3ryNtHQPn/m8GSJ0hs6t0g8JXs+CUG0itAMuz08MeKV2vYzJnfjudWBOYME7COAY21TqRMR227JniYn7iVjJ8qb2enVNib43S8Lv/8U+en7yye1WMbINX01XBh2BAE45nE3DRBQ00DsrGsnNWZJ3DYYOw9ORfsGUaNgBH7nwv7Xi5jAJ5xWZLpXFOZJfNudDvsBYc4Z6tK8fanojpWF+amkNmJ47WQcnW2l/7uGtjAzC7L/IpPflpAF2A7roYGbOX1q5YlO3aVUH5wsnlbBI7yaaSrRlwJHgm9/QbcJJKxioBSJ5nOPNkZtp9/J1O9Hq6RHZ9AdQcbZcdmRF6cia/JijS3esaQy6TGWwe/8Bxu3drAPD4vU0apwNkBwAIX9bnq+7N7+gb5lqaS/YB+BFsrXpmyQA0Us9GXmBRgI76FcZzAmbulQ3wNWXeFNV3BFFroylHt7jXs3Vmx40UVN8LT7yXbeTLepihX9vLXPBFIzBK97uVUfuEMQN2PCMGyX3w13TF4t+ONHEfANh9wDV49WVlGnzz7QbPsgsyR4I6TUyyBb85dHqQHsoKXtqzYcg9v03WBQLWBgAcoMkG9+WvfwBLPb8A1J7TZa/vMfrCLk3/9t/x1ff87PfGJL1cSyyjwCFJYRgyCKu4WYzNg/pQl2acl2XYIDrF2GpCABL1Ns9tXTdZt7QzlGpvP9eGQ+DXKjqcX8eU6FGhoagf3WqYHHoRKnVOF8MrncFxXa5lF/VrBRRxcxwnEwRUsX8vqxBRZGkjx1TrFkUHACSso2HMH2khdcKY36STjrFhMMx1er6ISqrGfWCAAEBKdq+6jw+LcH/xzuHR6UKJRc8risafNMskw6guhEBoN1aQaj4OobAxx+sIMzLgiYbvYcPk6Xf3+QCY55V+sq4UluL5TFEcIdTpg+Jn/OiCcfOMvvwtwXuQEXXyNuWe5r9TcHLbn+05WHOMHCmwuQhDpGf+FGeK9bva3CV7SEkAEMWEIleCp/XXnBKnwQMADI73uCf0qmGEABUDZZ8xfFuqLTMAUBru6wymrjtOSTpIhwUQ2Ac2kl+6r1qx2DZdXlrqZ6UMmJjlpW61losURdiMtWcGFrAtQAAw90LsBOp4VtfD2klnikTUVjhjyyBD59QxvI+0Ttgfv9fKzRF43hMNP/Rcirc9J4D5Wt02P+xQUpG6iM/rpLQUBWMZFeKTfZ03q2PBnOt0KDB0s/XSiZafGvKiff88oNjaavcng9IZ0nxLMmDAx+PJF8YUwANK0emGJd6Lhf3VJ6eGYfvB3q05laUFDsBbzra1G+cL5mRmtckO1CVvm80YSwawIjouyRFd0YXULY3UhPqMEY22Nyh5KTvPP8MQY2GkHL9qHR6Z7dDIOvsCys6AU5vnjC7GULS/pbEcI51agwLQNWrfCn5M4nZWm7PQNC9IJ9g/+2CNAU3g0PvJq+4uxhqzJCBY2u82JbPb6wrb0fiCz3KSQCQQwlgKwh7p858sRWtQ69sV/6s90j1k8OD8Uj3OKDze+BF1GoCZoGEcK9PacF7YUQyD6HRW9zBqHpKlU+mieo0x3LZ70SkoZSSNz0bcz0nSFYCAc1D4a/aLGgugmk3C/Goa0RGqq8ah1wt6NoBB6/6WbBlrbnQFhohTYDMEOdKEnJhO3Xu8U44Gk4oZUCzL8Y9gsr2jw3RPm/2tmMWLyQHQoxNPreG+bcvHoFodiwDoByeaeN2zqOlxTNNnZ3u2bJG917Ku3R+7bH9cl7MBdoEcp8Fz3NZLOu8jM7Raa6BRPZv6PrZJV59gS52gYaqb+hzB2Yp0yXli6wOsbP+ZgC2mgy3B/vkwPpG8bl27MmBWKq39sV4mgA/GN8e/LPCoPlPn7pqA3tYA1cwARHsvCAKCABBOllzaTz6J7bKuipyBesGLRg+Awh8+w2vUgMpoADp+LngBdoGcNenmhoYGj1EevVa5gnovLBTs83V2HNMErACR9pLw+nzvZ6/Bmb7NFpVZaS88oy5ngROQQa78nDyx8Wytcg8zCHW1+mJvp/c7BVQ+n52cdslVQN1e+jwlEWyucg3pcusIAJmjZz8FYXzcN63X/PL52CEnE0Ai/Ib04+E6FAWd1pUOeDaZFOCZXo1U+Fjf2KD2zMw2uoUVZFv4FPOQUrTuCUs6HeyJuRIMCGSxlxgsPvi1TpqQ1VDuISsAAPny2eTfc/L/bJr1Rd5Yi2DReC0ZGCCq12GjvJIt9Ezs+/cGkhTzoic59ZNF62ZHiJ5+7+XtRb91ldSJ5Ya08uom8ECciKjPpqM1Cdo3dTYcqOOAc/00AyRtYAOkNExkpTCLMhYmuRJS6TypI5HnPMWVRd+PhrSn0WedMD20qM0isCmmKivaVqgpQno6hT/ZvA/odiCHFoxRIqyoWKzMF3UNGZuuoFL6BAOGIRGtcYiXM0KXv8gABayWpexm7jAWDnzEJHEkjI1U2doUl1KfaI0IP6p27TJDDxm6+yNS4xRFaiIMDJeUh8GLhLrFao0GjpimEVNWAyA/K3LWiXCv7pa97YUzmXrZ5FIOHJAgRkCROgqCp/aHXMi9o0YpyaGckbQOVuBHL2wZbZ8KrQdj0HXeLvrU3i79B+wNwNE+YInQpn/8xv6uvbDPLpIrtaVQVv2L6FE9BCc4WLM+WB0RAIOWFjlxGgwUul2eHO17P8Os3ovRuFT7r5qgEV0lWxSQcQIuYuuHTGmHtkbkRXeNqFJEKKqxn0AlpVVYqxvOM1ARzMmd2Eq1TiaOm2hswJ0RCmpoKBpKGw3/XMDLdHlTZi91VuH15BNbwmBwslgksuYzgHY0s4Ly2V376epe1L84kgG41Cl4JUfLYVxp/50HRzbNb+IQBQJAl8J7aZTsa/Z0Vi3g54bxJjsbV1YMW1pNYTJZfJAOXYgNSPzSsYzqrCldTg90AwHKnIN1xQooOAbuBAIDEHTv5IIe+1pbWlANxILkxbNtKHW2JXbk/cOfB6IqaO7eH8vRWDus5TjAuvvfWZeU4ACbpeiWw9bpYm1HkWzOGqj37HsCOkA92WIrGcAVdb5yIgIgIBQ4216Nwo6OrzidrJshNlLFOTP1FDqpPJdnBJ49P7nXYSmaBqCWPtkxPO01x+hnmEwt6ftjr8kHB86pY1Id1YAlIG+cOl0iLRhvKVZAEkAbYzaSEUZ4pHF7RmtJfxl33YFs2bCNfZ+4tQ7V8FXMf7bnuh1wxrQ+TIjZOoW0bMiH1W/+ojZz7KZOMo7Fel2+fn2kW1enWzMDLo19WJKTVDeENQNGpeTsp5IFaS+F7vu3ryoQyyn2bGrmPm4A5LHT14aDvVIwpGFBK3eLNAIa7M2e1kaqHzsmumcTPZfPsGZ/+uPnx+dIj3F6glkyLzD+o9f2TX7/h3uznY9MXqoB5pls76lsDPaaPPIR2MnEezBbmEfA72/ePpy9KhDsftQKAr26oATeSgQEiJ7dNaYsJSfffLpbDyYHdm0Z+uLQYO/78NOOcGrd1paVoO9kBsM9w6wIBNhZzppdHQ62vTZrjQxJkwqkyA958lpyD0BpqKCvHPw0RdVkcCC5dSNnQK5BhtYRmGSbdAoC4PTQKAkBojq6Ye/7m1/k9KU7yROfQPamDCjwgsH9ukBjWmTsGuQC2+PAbilbxdlkUIpqAKP2ibzT+XH97tFFAS0gCGgQOPLDHzWTCLg1ekAJg4CRn2QPPLexM2wm2VWXSp4VYfOJRulg89lLGQUZGyBzNH/0mey7dQFErDsGGyjSKQo0CXAwcQiGAa56TnVNdFRXuvt5LyJCGQGwtLczBWdsrNfbLzJvvdjg6Z/pv4Ei1/eMU0Da5/YeP/M7a+7P91qT9OMXd2RwF5XrbgMTCB/+RCDALWuFJmhy/9ggB5uKHkQYcp7LzOVIANGd5kaIRI4UlXKeojLRjUX172U5F6PHHeVwvvy3Vn/IXo0RpuZMC+hUZR1JzxSl3coRQdpqgkQHIlLdKbrC/DufMoRMR4vvAS1niG3LIEPp66t72Vfn1dJFzhvrpPGuGVYdESEDfP7KNNqxWaMGp+dTI6J+Y5ys3mfr2sMCMS7SiNIonpNTeKoajoeBgTOBAEphsymi+yNkwBznRImhZHUuhBtAwCptLh2xOor7h89vadbE1QEOpcZQlZyxYzBWxdAR5hu3ipBi5tCOQMbx0lZOAf91hkTECnHrjFgV8DHw83h7MMMitSXDEahpcLENddEsie3SmqzWwx4wPKJ9U15FbWokrjcnSbqSkgEt6jHUFTl4deTJkxdgydRvsiNqXbLwiYz7ogFcFb/fKUVnvof0ipQXcGyvFEiHAfoze/I7r+xp32+MNnfvUSPw0t66elJMiq8zTMSoG3F/BdVSSJ7XcEMF8ByZ8/8orSgKeJOG5WQ8n0muFJBDeynW9E408UcNLftNbM6no44m1iBGxrRp4HhLxdzSq8djTE1I11yK8ftFc0S+6aavlrrgrLWTqwVIBKp9cUTGI5P1MQmKNBtzPrnRPp4tOtzeeuuSvNq1dwRAfvzy7tKPdT61zpwjcCrCP37uYlFush7AoIMMFOPJgdlLoF8nKkPSsg0mz35ovfacAC9GFUA52JRqRuuD5tJwSs92tAcjqMngXNH2D2saWBUYBhpOp4/3OgNQvZjA42GKpUBfagw4VrRM/q3zqYwpMMNgra3NXArUmXCAiVlnAhwOTnAAXEgR/V3t4vbMfB2BCnkG8HQGToe/TmdAKRS+317tq7ECc/i7TeB/vun+0tEtR4yiEQUdyJuMqy9E54tc2Q+g37yfDRlg6VqAQwBGdhSO3i+Y2JvsYII0qgjqThdgKQXYUWef5zzde6SdTek3rFXaCQO4IKAgIKEf9BYTMhxtAIyuSBmui4GQcsX8YmmXZ+uWP40Brfux/bKX/gDQAi02gcMBdunzhfakLR42S2pREKZB5WzXViSNIVrWiBLpaw5NJ6g6pfeqp/vrd1vf1pLuAP1LAmqAwY6Na4YDJDCcCu86Y6M4mz1lAJb1rCO1Gds66idrLMF4OlvSYbXrKjT/qM4/tYLkcvuGVa3x00Me2VN+wXRua7u0PaVn/81vv9B6CK7nTo63xoCXAJisv1224fEAOLYdUALkpObdr/Tqx45ayXZx9BsKItSXSePTD2yH1CWgZU19FnuLefGMM6wE2QRwPLNCdVkIn3UpW4zhxZhaQz8DUvgCMgOcCMyAGHaQzREc2Cv2HCAAAIEW8ub1QDkQpWYRUHctMic4MNxRcMYHYAutvUBDIE+fyY6J50oH2DoMjiBE7ZuObkDBZ/Mt7D5mVuBCTqwFVUqlxxqQTXMCrwXkPm3UB1CCEVWvhVEm34IENlj9mkyOOi4yyJax0Z7Xa524gI0X5LNbbAG74rP93M/Y/2FX87fsAh9JBl3fnrArV/PffA9bLIBRW2jPPqiR6uOaALBgjiLDiLEZI/Dt9748+8yXfw/W7rufk11BkDWcAcrsMBv1z2WSpsnRmU/6R/7WuaJw0WI4YkFu0uJf6oyiI6cPDaHgvBfMY7iniA6rBFUDCSc+r4agZ9sWi6EYjUJbEGemAQdQu6jjUOerycuiyNfVUkrSb7aYF4skUOuESM3OMwGvEbHH3KhL+iAj7H4MFRQFra6dmJFblSE6VmRqXduHeM7m5eQ0KS6H8JODW4uU5S/rIInCNc3TdGnFgvKkWIuT0cLLSgG5P/cG+UL+K5oAPjfj+GzKfzpjJcrigh+mgM83LLNV6F6mXR2chboS90bxPq0t+8nW0Gau6jpPFwUf7xrywADm47EMCll1R2CwRMVSZS92DIFUFiVm1B+ZNR2Xv7wc/avPr63YfMrG/ari8h8f3NT7HD2QACekohARsloaEa1J3AvmL0gYp5+5u5qh/1iUZ/YTZ4ghQq2q37hz79vJhQZQKmpFKadDrWWzaVoLYOE7uc2IVp9WuvLTDPr1Ij8pkw1R7qYp38xoD2c1/8E4KPfUocuBnSj0xWagFIVlOApzR+RzpX87Z21BSvJEoMmogL/P0I86pwAUivhEtQy6IRWNUoR9TWPGOoyBcxS/UQ6YSQWwt1oXSEX7qeJ5+2wNGZetDS61NwZFilzVRK1qbXQKAfKK74fB6Dl9zs0iYHVVUkNA/NKcpPvxvfTbnTvVJhTZn0pmFew2xKb1rzau/7l/0Sla/1xjHgDCxyusVHuFTbn/bWubMfn4szMVhNdkAHD1WYc65gJzs2G1w1d1THVYbWCDs+XgMYgGUAI/QCewwIkeOy3VHLjLEUuXf5sSSG+qSbnaXBqpsD/5rf3jmR3+qNVYzdmbzbBRR3a0tcD+SlVK1UkLX/qy6P+banAGMBEkPTJ0mYH0pf5DQfeqdHBO6XLF04YNAnw+j6PaV2PCRyeb0VJXqPOrhrmrXu9wheMr01nBlxSEtQCYv/q6A4ST27v37wwWBcO4b8uK4SDeLfr8+87z27J6+TTgCsxtre7hR7EbACcbpI6G8TUF+qNDjaEITGNN1ueosWTHSrsaLCttZhwJBkC6nLyyxSJn9SW7gY6cOGZaYCZAwhIvnrd+dFaOcQvtMSegON4JAq7huTE1Cs6PVmsJqDwagPqbtzv3rfc/3r2YVXbj1teVD1QcHXu9KmZGug5TzkEvSg4NxhN1sxOifQZydvfFYRrmeP1mqdgcmOLg34npcSCro5UoKEA6q79d40ZM+bxH5w0Ay+ljAJY9Xvff/rWTn79zYpQbmOF2vDlrGzetGye+A0ocsWDWGBCB490vv5ocKQ0s5Wgw4YkC2PPkutlvJ2Mf5nxeQJUNdaj57xfoGGIoQMGQTNmq2ZP//o8OjunK7zQpfE01ONidg01MvxxDuSEfAPTYO/J0vUBw9qxpsww2hn7rCrYXT/VcRj9Iax/+Jv1OnwQS4z5z3IJP9m8EStlCDpR9V0rwUp8HaBruyfcAUcAIP6chYtxDr5cC02W2dnmjXRKMB42t4XfovwAXCKbzg3mMmeFjgAMy1NsHw/7wYWN0kj9Onfy8e/hMdqD62gJ/tt89SptJv9FFB77TKXoz1qyfa/O3JlglQEqrvSBEET/WyTUAFOyW9/peCtX795SJ2FbpxSfZfWUEWH4ddGSEH+ZjH/ZnpPBaB35DUGcNgDBngw5GKenzWmtsH/wMoEISSH/31rQ4kJYu8MX2Qefg8Tqw2fpVBSv0qEcdQb+64Jk9uhxb/lElFY6u8Xy7IjXUStmrj0rN6aIfmZehAVilrGL3OQOcMGzWZ3Z6NW1QUGoxZc97yz/r65F/09c/9o6ZOUk/ff3ZmICvyh2eTWFvJCCELbSaAYAIMR+KWC36/RaEkOnwMq323c51s0AKajfE3KBDPczJmAIjxR+XpihSUHhqE0eR3aAtIekicRuRwHHYCqLViVzJcKhBUDwOpUP7CrgVX4pOFNyKdDjImdkv6obMA3lQfREqeUudTl9mfMw9ulN098nxUjAZqBXLnm6W0Koc3hNFaRnH3qe4krETKaH7t29c1vN3zEQFoo4nMHlUN59Cwn0VzEoPoME5IvNUCBf2yyDB80VkjOi2amzQ9S1jxmc64h3t7HgFikgoCB5wJyIxW0XBrqGLmCQUJuAm5fU7r+xszVPW1kO6DRVLiBT/6TxUOKwOwcnPIhc/01pM0RV2m1b9XPd9OiB6sloO04QPlnaScxc1qvnx7MCB1Mya1gh7oTbAPWKmOJ3zgaP3iwIedhbhtgAAQABJREFUljZyrIa8M3ZRxCZtKKkBIBzYs2Z0jDFUmEAIn0oRZIXknMjXzXDR8jz2LcZs1O4E3kzEZYQogbox0S2Z8rwMPhCq7mvUFLQW6nOkQKTU7DuZ+Vlj7wEJ8kiTHQLqGltbcy3/IlodQwPEt/6M15IMkWNkrJkUjf15Yee6/NS3de3FgvXZaPWHX2dYMrh0glOhsPaBUX8+lkrRKgaHDswY7PU5UK91ZIUCS4b5ZOnAJdXnuL66h6V9vo4TEefQm4A0J+xnapKMFMDGSU0DZEDujQrkyYL6A47TTB5pTc0JPkPNBR3eUISJnROxGtMhcgO+Usexv4bEYofWPzM9PoJ+Y7fMTGG824pRCI9tNLiPo3k/oEfvgT8Tdx05InVkHhYwJ+IEYKSp1XGQzVu3p0dgWBsshDlc7+dEROPAkn0BTO3dNIBp3k8sBkO6sb1Ux6C2wd8cEEYIe2Kf7Qc9Urzu80Wp7JV0NNszTkvv5w4E3RzIWt+a6FxdFvtKHxV3W8MuM3RSwb4UrwNrPyxI03ELVGJFdlQrg0nwb04T8D5YKlfAcy6wR344Sekhe8eJ0Qs2wsBIgNiB3JoGhvHvQ41r0G1HtrGP5zBQ2eHXOwBbXdU7h041WqAaqJ6B08ZwAXbAi/1SwC6l9WwAVRAkzcIpHguA0y3z7nbGqv/fnaLwyp5NA6QdqSTiw8PTtCD2G7tLZjnVMSiwgPJ6gIt+SBXlRnvmztvLhvEdGBH26fXnNo10tWDEWA/6PU0VTTutFLAfL1VnTtLuUq4m/2OWsD1qP01AP3vxSqCv2sRq2fgCsotBVD+KOVQczOlKez/xRHYuluLud0CKLeDQx+DZ1oqu+3zpcXV8bAYgoKYGOOCsR1DZ74eT7edsbluf3f2ufjS9UcvWFgy7Mjd9BOo1NdG90QHWfbJT9Mg17U0fkK5LB00Lys3ZIivAMoYQSBzgt+vzExiRkWTqOvwIfVPng90hs1J7wAOwgsnH3LOh4wiWXuv9nkGa22sFM4JzTB6dMBEbM8x++72idA1SXyUr9nra8DK9125sahP6LMBk1IB1Lc9EP9Wvef7R/dpnA3qaJax1UfVYYzJgmKW5YJgle8YHkAlAnH6xP4adslU+RyAvDScj9Mq+xngEhPkK68aHdDvDnvafsd7ukw3hcfze57sDqb5/LpP0TwZJ+6Lix6GZGVcbs72I/I1Ohh4F1t3orebVOKzUycXza7eGuKct2NNDLD2sL4bfzRNYSB9SBz6+bXOsPiFGL2NqPJAUhpoZBsjZUhYGqOgSo1IfgOJEGIX5gRULwfABbJ8VBakVGimtHKt0y84coAP3GHGUoAJlRcPvFsVIM3SpGJntk20dzPtZtC5Ujvk6XTSmHR4g4FQY9kvN/WE0n47t8fnujbJhvEzdBVqASY5WIah8++2UyMF8Tu52bV1j8sg7MwycFGDJeDlvTMR3q3WQxnonR3Gi+xPhbum9rx2oE6AaKhGEFnrGGFVMKjiMsxmpk+crnm5N+5ihzATW/QFt2s7H1PHWYWNAZHOGZ33RxbcpL4C5LAf1WFHZwxbk0Yw4ocUgXbxap1vGeXmgyTRxCn2kdaa4lAQda/9F6qarY2ZOlm5BIQcJMmYYuQrec3LWW7SGFRDl2GfKqzbAc+ludPCqORubiihP59zMkOKI3SMnzgmjiYFrRgJ9TCmAAmCIodNAgHXcltMDTNXPiIbJs0hdygRAxDqgiMnuzbulEQKlyzLwqGf3tTlQ7TNG+jD5cp6XWqdRdN/nGY1xvzTd2upJEqtk+9GRwtLtJqVMdt54edcwqAwywOmLI8RG9QRjHccexgxx7p9Wh6aQmcyOgas95+wKqhVw2k9ypk0eiFD/J51G71DzhraK2qVQgQOGM+zaPgBt0/oNaWHpJKDgrYYWDmPWnltj0aG/6ZTDIQ0H1JHEuAIh2DXBA9BzKmDN8ehWk/aQIkDn2wtyC6T85OV9gaomAiejWFEF+KapO/MMQDKN2yn0O4sagV21fz5dp4s9s6dL268/rDbuXMGLmpYtMdPS2thRs4nUTpAHQyPtPQeFPcFkmcMmcAknxxysDQAVfScbHITrf56TMkcIU6PLbUTIPROdU1DsHMoH6cCuujV1KLIhZFy7uknRB7avH0b5k2YTqV/DUiq4ZefMAOMMOe7LfU/fpOPmtodmFgG97CL5w9gBvmzkxWr4BAT02IDLx9ItacZZ1WVuXbeydV02eaGuw8W9nkMla2o7peFOnnWI9FcjCndyAHsnoHTI8AhqcuoABrsVhp/8+f/wk9JW1ybvVpuoHtMIEmyO1CEGdAC+4Wxi09s3qR8yTTe+7Ll0hpLzxGJ87q3eZ4zGzpjaHZueqnboxuQ//uLwALVsFRBHjqVvyA5HDjQeT8fJnHo1k9OlINXOAJGj6SLZJlMKhoFrzRG+gFGzkMYAxRTQ/fvCxvgZJhUI4DuAUnuNReRndB8aVQF8sMdkTgcnwABILAl0YWb5K8F5yzXYMEAf2LFnQAYQjwGl39rxx7yk1tk12RWyjzUaQW73AmT4Us5AB5Ry0HtBzAAY+Q5B2RS8dD5bOjAeoOuoNRQkAxgK9c1yOl2AwBdhmhywDVQpxhYIK4GQ7pcKZK+VFmC+nJuHrRQ8kDN2UTAppgXkgUjrIviiz4gH+z7GR1gL99ezFUunazFnrceoB+pWyYyaRuttncg42+M6WHcpQJ3aOvDUavJ11kednuvKpNAx4wNawnzNpXF8D709ENhnnwGlmWvS9+kXgDQFR8pqyJPP/F5B0hulpUTOa5/JCD4hBeT0anSiyK+opMVYEjOxqPTN1GFXiNrvFKY6AuFI9DCFtAkq7EUeFoAhe6KNMmCPo9NGbqaOIY7oeUcNjJxrC2gx1Jx82++xGGtytHK8oiQoHK1HoEQZWlcZVfOO5EClEUanXcKnNM3GS/2JPs1EkcJqfwejcbWuu2+L5pbEjjhiwRRVIC1+YGw+xef0CSCBI+hP1Gb+eCAttzxYLRs0zj0aKNn8oTqoWicCQDEZa1O3PffGhMUwTrM5KJ2vIxkcBoBxk193wB/ntjVAsz0wYyCZvDDKXW2QE7DnzBblRqtmtNH+LWf7FNXb/9RhOW9OvQPgBiQATNKO6i2kY/7X/+ut0R0jnWifvGak11IIoNB9JGcjvWkwo3oUBe+687B3ClN1sHDIg3Hq/t/+5MRwMJyI+T+P9TOG8LkdGwPbC8fAO0BnaYW81sxzMQKcpKNFnshQiWYAL1Gs4aKYRmfkYZEc/QFUjrqg9kJ0pfYG60IxOIU17bEIXrGsVKoZXRsDXSIsLfI+d9Rw5GwxATqBVuQoHc9woq5ETvixRjls7tgTLfIiRBGyozym8ip3Px16qV4H+AXyHw8kYdIMg/QeHTMc7ky9hH8bOMrYeQ9GVm3X6YKNJe3Tvu3rh6yYXUPeHqt2h5FRREreGUOAgEHyb/wRNgubxKCrrZOu21Ua0gGrzIYIVprOHnif1JZOM0Xl7xcUoLFdSyoc20WXyLdusXudEQYA/fKjM+nitEiUE3jnk6ZUt26cGqaXniZirVVDCvuf1MqmCn/V4Fyoxo9MvbBz47AfQDXnxFFiX5am0682gBNL+psYoqnJ6777PJG4YnVRJIYZKGDM324goc9A84OALzWB+uX9mwfAI7cX2k+1iI4nAqYEZYqLyaP6KaDSuszp+pw3O4QFcRitA37ZEs6ZbAPK0pWMLeYaMN0R68we6pgVtBnOqNYNuNbVtyHgOLt1NHICs2M9BYI76tJaXP0lZkjbt844xzyxn0Dl7QC3fzPuGCMBiRqrb0s3satAnMnWR6rJO1VdDxv36oFtrbHao2mNJPtB/8n1L0pJAoJqZ9QRsl9GcIypyYN9qgkgXfug88fo38v7Ngz7qgCbDNIbdsE9caqvHNjaPWZDAunkBtjvo4ajFMgaFzAvWQWIAeB1MfNfdGYlUA2UGnooVfpeAeDF7hkLQc8EG9rLMU6cXw88AIOgY0Ny5JidbfkijKWzNgH5TN0AJTpmZ5pk1Js6KkkApqbLtQRgZIoz9W/ABuCXDvILjhxDOe0+raP1O7+Rux3+hF4BGEAV++h5XR+LTe6BPWyIoIXTB268Rn0QW88X8UNk+ctYU4MapeOAMr5tT8XKUqvTGlLjAFix3p9tA0at/wgI+9u/BUE+ly8GJJAMwM4UaM8dzBX5IXczNYMzwQ8w5LmBUPVf/CnQqutwHF2UDQD0fa7gCTCasmM1PHTPAJH6QWsoEAGUfLkH76GfxSOhE+xcIDi7AmzJarDpmpWsg4B5bvZdKlxtGEeMqbQ/9MzByA7WXZMtddgxAKUr+XC2XKBiePCGfs53AvzWZ2o3xpa6g7HfvuPzvjcm6c0Kt2da7qdRRbR1UduRblTtiEUZiL3FAppmd6MEAu0DbFjMNRUuyp1zWCO/3QaMNMuQA3nNKQV5YNu6hFAbaYg18RfpQ8weEHUrt79/87rBPJzNuQ/DklKfL49p9IA0CVaCoVJnYGGNunewo+4PQMKGD+YjQyYyk0p6MyCotshBlTcM4yvfbogZxWlfot1FvNG5FfCiCFHmj4f0natGGQC0YnU6MYRbJb1vGB4to2h59QKuebpNNiBPxEt5nTwvEiAUI8WY0Is+AEAOyfNwytIVN4vq/7f/5zcNarw01im8n7NEYfdsrfOpHIMiOJG+ibR7mhZt6OKF2CXOiJPyWmkYVPxzpYDOtG4KI9Xs6BaZzmZakEG7HgtTV1qORLFg2zueicBl91NGtRLSQxXhxvqIPE62hhz1C7EzDngFWHSmuR/zhSjEExVvmxMj0sVMKcrXLcL4MCY3os7Xxlg0v3YM1DTsDYvEaA1jlAGiFAyO1INcuP3U3vrc3o3pWfUGXRdL+PrBLQ1YK21TEbtUDCOvo+dsnyey4rQAagW+omPXUAx9MUcmTXS51tm6ynvkKQA/e777DCiTG4CD85rXMzkeQCHj+pgkBxUDGbrAXN9gSM59zOBKPhUAHyq3brq10QlHSq3ouJOrFyV9G3gSIXJW9ILB0DmDaSEjRhZslxZsQ9T/TAHKk4O9IXOc5JmMHTbnYnqxPkfN+FonKQiGhBGT3tHBdyhQ7d4XZsjox5bkwDpfjVG4WP3T6YaxkhtdUDv7neaJ40Xz6iie27FuNBgA/1KfgLSzCRXpS0cw2lLkaHd1DZ6BLJupJVhxXUDZ8R2i0Q2l5R0BorYMCJSm2139kToNwO7Z7WvSJUMhZ41p/Aq3f/rmsx0QfGoYd3p/sgJ3tTCcsTShNId9sEcKxm8mT2bmbIvRkc4xuVpq0zOQHZH3qeooXUMDip85lDZvEDPaCJPWifxZK6BeyozTkGpQ6yZI8HvvH10/Pffc7MXSont6bm1ut+7KBgR6bIfC9V0BrK3rOyQ7cCYl4VBa8r0tPaIbxkkc2L62117P7l0cugVoYmWk0k7HdnGKnAXZxhqRK4GLGXWcKcApHYy1wMgAMID7u82Duh6IwWYb+aJDU80Lpgw45qgwD2b2YB/otuvSfUMerQ0HPLu1sdYOvrZfbJA6vS8693FVjAdgAKQBFnSEwPzrP/3hYPbo8HTYavOPAqZSjK6BeUmUBqv6bP5he/WTbAGgx0aR8zGrLzsFtGAp7aUvAbVr8B8cORvKkfsSvPIt5M+Xbi12WVG/DkHXBQx0eQLHWJS2eext0pBdNn+OzNd+jzHqZ0afPDJLkXHZkOoKvWFW6Wq/A3YERMMmtEbAEz/CLst6YGGWF6QCwB/nE9wz3R8zidJZQYL6MWyWYFHQDaSQQXZiTe/dFDjks8yfst9ScFLxw/52D2y3oMDrgR/BIlnFuKiZs16HIzX49dGB234JnMioNReoAaV80igOz0dZM1+YMuALE4q/ofdtb0vA9k87mT2/e1JTC2QDgmwRG+Y5EBZsERYPGw6okRm/kzZ1niR/Qv/ZIAOLMVA/rI5SvTKfIjj2fNbKuvOj1vR7BUl7OhgWPScKQU9bKDePRhPhAjVP11khpbS4fPq8FA0AkrZZnbP70Uvbat2cjJPOOS/onYBxAnKRon9oF31OIOTICbvrew0lQdvdz7EuSlEp0oWiKJuCngUk0H/oUDBSzQJAtLZ2ZjU6F643fykjpDqegEpJ6bhw3tdo++1+dIl8nuG881WOJ2aII5kTAwPQaceWuwVGHuToOTBdQ18ECNf0fOpJ7pZ6mVvEejLGw6YPhB9AYjgG7d+aoZRXxxoxDsCQnLtNFL1QUJGI9AiB0aVyIWfod2hWz6rVdWPImVBjBjh8AzOtpYjA6+9WzPt8g7mAD0p5MCciojdEDoixbwQZiF2eY7ic09axo/3d2huOp1PBoEv3Jwq1ZkDEAGIZQ9E4x19Co/VOaXs2NSDq1tYlwNJk0miz+92rz28ejvAMZ5mzcgDluVKBf98Ea44fI7SldA+H+9A5aK0HRmiwfwGAcQzAd0Zqf0PpADBKsbK6qDF0rDUGbhh3NQ0ifwPfOMjsYS39ayY/++WhkVLlePzcl/w2WpzcWE+FyAoxR9Fkb+wxJ08nzwd2rJ68WCfYtcCCIkvMKAOPqRERmSvlWJdRyNy1MKWcu/tkhD5rkjqWaCrrgakcl44tz6UuxswjcvFCxaOMkajMImAeOTzXs19LSm9KvTmwWHrlRuv/e68eKIp6ehh7oJNeYmwZTjWAUogfFK3bn9WxCiOCbm0BW85fnRRdk05av2Jpcu0Mv4YD5rz9MZEaELAX1pzBN8PqZOvL+Tu014nf7AIDjuaXXvrrtw8N9tjnCaAwU7pD3ZfuLmCQIbPXdEVKulscgEZXGhlcV4oKgFJvKKgRNGANTKrHGtMJtUVqF96oy+2NH2yfrCwQOpf+OaDaZ9AJRdsbSp1ywNg7aWZM4P3W1pd6Iuc10oeRquz6gAEHhOo3L0s9jrSkDh+Gu5sZwOJ668aJOdZEmsQVpfqlmS/HvnEeOsDIGH39TUcgkQnDUjkCzIQg0Pt+sHf9iKDdNwNvvffv3jT5VQyQ9PW6nN+FQICz3dzrs4ElthPj9EKNIntLP0gJSjNj8TEDWBmfJa3xRSkxIGHUNnW/7kcanXzo1uKIgOv1y5eO9DZ9PnuprsZSjC/v2TL5ccMbFy0MzKbX7Irn1amlZpHtYrP4Aef0GQ9iDIg0HDuq400X39XW1tDKeXNr/GkP2Q/dpAfTa6zIK3XxnsrOslMbS4+THzVtnpdakH8duoAwwO/IJjbrkxPnRvBgfzH90udSdYdOfj72EiOqhg6oA5jIGoDEbtJhLBY59HnWwNojAdhufzwfMOG9U5DTocCtgwDVzvr319kg8oYpucVRZxM0efBNAyR0/7mW8Rn02juxTYJN4Ag7x2foAgZG2VrAmb0CTpQYjHRe901H+Ev3QrfJoPtTP0SnzMWjOyZbX2sP2FP1c55xxjd5TvaXrFkD/trvgCR+4WqyxieKA1K98Z+Rnek11mR6LY1IBRnJgkXlvxAhAJ8veusPUAZUSTHTBYw3tgthAgvQR1/8Pd/tXvkdQE0AAtKOGVA9J4ICi2ce4saYXaAXqHVg+v/X3p0931llZ54/AqEBzWiehYQmEAjEnECSZDrTQ9pVabud3RUV5W53RF/2vS996f+ioyOqox1d4XB3l8tTe8rZJFOCEAg0ogkJITQhAUJAfz/7pG4qbFemo/OiOn4nLQv9hnPed79rr/WsZz1rbev0xJ7Ng1UTsxAQ45l1DZJcCebPyyQFQX+2F6MxaweSZswyUGj25LlmEKVd2T0ynqZnFzwACZnKyrK2DzMcRzrIZpSEUNAMYQT5Fl5JQ4kBmh+UXTdlY2t3F/RoViBKTl2wEORm9983A2YGiR3JiavV0y+grcd5WC2qAXV0RJ9+unaUmCIAB6OjPdjREOq0VyuJiEYLarcV+CwqUayHqkaqzrswHdTGHOz+tCGO8kBNE1K/F+i6lth8VUF5R3qi98vWBcG9nRd2rfcx8dcDX1eHEOd88zMCc7Mooto7fgCK5swYsmyIwTF0zgeFbx6HmTT0VahbQMLwyd2d9AzlPxAtO3vn+slLZdyyfZv4XYLv1kuZbnaWrSOHuNTG5yA4Hk7bULoX3zw+nIcAaBqyTcJQaaG0bI8yUr/HqGScewMaOvRM2H0vXRLgyCYEV9c3ss0cF3DFOdm477WznouS5xDG5itY2WxrKot4PvRAhiRibjhbG95UWZsVQNY1J1OZGwWPMRpfy2kohfFPH6UbMlp/cev1+ef0GgHUrn15We8nBWJ2yGn98V+8OK7J6APsgecCTKB62Qutw5xs62xgAev3m994pIz8/ViGVZNZnTH2g0TenIxnZZ4N5kV6ZF6KPcFhyMaxhCsE1ADSlEGKui8wOPZEN5GjItznW4EmDN7SWFFr82jlIeMYlNQ8v4tdhwyWfgcQ0SliCrOAo1zk+Y4Bl33v+6+8NflKa/zGsTQeJSnXy16VKR0Lc1tgHtMl+yLsHOLOPs99CTa0eibLy7CmZZrAVxn4+oD4qYL8AO7ZrJklwKSgZNDq4bI3Z5ut29bcqO6H7XDYrn/p9YBhz2RbAQ7DIBFg87qO7G/O7xbAcHiuIC+TNt36UOyPqf0O0WZfLXrgeUXvHcjKZv78h/sD4CvQtMOuMdoruz/A6d//x38YgXNWz1OHo/1yvfszH2ZfIPetgiUg4o/ntaX1XxlI9nN0QA6NpjVzvTo2f/Dq0aF5wdhcuSbwmzWlLJOgvG7Uj0tcNgdOTZqWDZsVtDiGedhc165ZAFthCK31BYyUSF0A2zuZaBVIV2oQYI68pwO3DqCfBgTMgvX7zvMHTIrIn5xrnYXjWaNEjrnWUUaHdXsOadXyqYaK6N/PXMVSZXtsAdgWbJWq6L/eOHx26Bk3OyPukT2JYv/v8WwEeuz3kli6Y5XvPspep0ETGzBtdrGfBPycVsCt87i6RyUaDDa2hdhXwP8oBmX+rMpBPZ+FPeP9x06O4HjpbI09gYBNq2PQ8zd8kgCn5XtxJxJYC8y1Kdu4l5XFGaCMlos0wkdLijVRAN9YA/t3hbJatuWgYn+/VAkY2CRJAP4WlHg+mfbLJHLnhDpaxb0BT/y995r9eZWLMiP27Fn5Pay/a+Iz5s9tBE1xKvP5qS1NO+d6cCN2eCaAF9ABMPTlcc+AKT1YW2D4AgHesxRv+MOp76cTmoyklH0amcNv83/8CZ/vOpWcxNbMcFyXn8EgKseyKwx3fwWMYmV7Rl/r4GFaMd3USl10WXwZMKOlfpATfRabyQiyKQlLQEQs6rOX1cXIx5NlADlAPR85tFs+qP/z9fmto3/KSjFc/vNS/w2Eqkrw3RJBCYb3sID8goSd37evPAvxb7yyaeweIKUKgxlcV7wQS90XlvD21pEvlGw+mGZamZDd/KfID92733h8Rz7sSg0Np9tv06Rp+uY/3///mUESsS8HqRSiPu+msSmYBhNILbwN9NaJC0N7gVHwOwNMtXqCgxdUKPBaRYgVa0KAB3jJ3N4ro3Psyb6oYZmkDhlshGylfTocqiM4iFAJy463YWxUjpk+6mZzVC4kInfyPL0Qg7cRR8DrSACZOiYKy+RJGW0wqwAH6XpYm3SQFJDQlAxGF9byNuoV91uHlc4Xc6Jkr65dd5eMUABValCW8ACNQ1Dmo/e4HNI2NA1jAA1rM3Z2F6aGsWF5gACZnXUyI+rxSkbLGg6nLGSD7ipjenzvlmHwP+4sMC9GLuMQZJSwiGqdjSNYfffFt4eRKXnZ1Ch+m4mGgZOQMftM64N+p0M6EjBwIKZsWTvrg8oogd930g4AoWvLZKZlpPZCO95/OyRVECM6HyWV7n1PJQOzWS4384deIS8+RL+60pz7JRsqd+k5VCoLyBJgGx6ozETgr3wKOAu8At7CQAIHsaAShe4RJR8A+hztWOuAHVTScc3WyubG/Lk/WQT91Lo1K39awkionh7px7FYnKlOC6fBo9TndU9za4v+yx++niOIRcrO5i2cHgNw9Ey18vKZO7OBVT0714PBuzemhqh+2i21KG2O8+cWTH79y2luepMXXj822C7ZmOs59d709HZJwaX3G1aa01OCUh6VQeZnx/O8bdbHrWnHNnx4fuhWHMr6UjObUPvYWqzbvDL1D2MpvvvyWwHbSiDp1XZsXTl5uBPWDx48k+O6Y0yd1hrtqBUB0PpgCGRYU4AS+GkPK6XyclgiWjnPBAN74+aHAUyTeucNJ3z9Su3iLrLXgvkGvnbwbQFsdgFyz5oN0eAra9E9EWtwOeC1begsdF0px5gjpN0YUNWVRGR8qOC/dW0dT/kEmgWHM7OZHWnONEpgBJXKMFlYAOylPWGgJieCYXMkh0DgrEDAXRa9afXykVQp8W2NUeNsadrmzvliDAt18O+JnOojMRiSm3P9rmNwBFNHdDAADN3CHLBy36WCjkQN+3Xtw/xUa3g5QCfYYNAcZIuZXpYfw5BQvmByLvd7NHvsWRDFmAy9ZWum/Om5Cy7WW0auVMdvAQo+S7lSEDWe4vUYn021+X/35aMldbXx97U/rySzLYaYPSqZ0RsuCWSevq2xC/mH97tG/hEYv5TfvrO9YX2NLrl63Rl8jUsJsHxcQqYrTCbu83TgCfb2zvsFmk/SFi5s7xKFS2wlV372esF+XvbDtugjJVqSvxsFNX7u43zA3E+nQ2UFzlvdeYvubLRGjSf2nbhxuK5iQ1z/9HuvB9wD7wG7ue0X4y+gB+WbHZvS6wQYjLt4IR94b4kiRl7n6q70SSazK+k4A+5CDAUWcFXBEigxuPbTAu/aYsqKOqCff+VQsWZqQ2wZIw2wtBXzASXU2SqWAwOHjQFAnnhg69gz1sfP0cPZT3wXdsTXgGHXNOJRX7gaQHCoreD+5k9b7oneDefUTADg8f+6jecVQ83bUj692egMzRJ8wx0bQZgvRuOKBNY0e7aKQPjwerKWEktrvjjfIKbSmRVaRoJtJtJ9yS0kyy/mP+z7wST27PhGwIX9AT5eQJcvKIHxx9bT1wyZ9IxHaa+fw96Jl2LkjWxgSA5aD8+fjMN7AHvK6pnQiJEH6x5HeChjOmUD58X+jBVydBGbwvr2Nr13cSk3AxcAmRLmt0qsjR+6tw5MzStL26vWqsc/mbPkjlFZ2Jk/xkC9nv70T/5+fz402UdJ0kPZyquH3538rb39c75u/4Ne/9zv3BoBIPiO6cQZheyZ09am6uyZebE6SgtHKqFcKYNBS8uIBR/GBemh7xx3IHPT0cLJsyqL2jqOQIBWNWfHAMXWN2dViazPMtdmTwwH9uW9nGPPZICLW4f/YaXm50x0nNzMMTzYLJMNgRgPGvPEyRr+CFhR+HNEHBuKVYfM2Bw9MmIxxrumzNn9YZEWLag7pTlDhNUQPDYI8/LUg9uHowe2dHTQENCoYFT84WBotNRAj+Q83T/NDraD/okI3PdQk5z/LT3DAzkK6FhXkw2yfmWHvLZe5znVHISSFacnAzhf+YdgVN3V/2w494Byl91hZJRTnCcnaCkXHirA6NrQGm19PCubYFEsBNbCML9feWp31xhz06a43GfSYjmuACjiEKyDQAIAcrgyImDLfbt2JdbhsAMGGBGdNgIaNksGpTaOLpZlfFa2KRgI0gLnjuYq0RhcKJDKKmw0manRDRhIoPxav4daxWwoa90qA9rA3tN9yzasCarfTBfZze4t66vZJ2QNtO1MVMw5HGydgUKBRiY/SrutWXt0UMNmflnDLGc8O/errIrhM9qAHkiWJYNUNlGGBL48U1koZ7+rgA9AYlI5nWc69oT+RdAEnh2Yil3htDhVwAP45bYIWZW9AEyiRuu6OgcDKClREnlzdIKIeUimKh9pbg3GQNPD6YK578uMMQXAhiNGdtVBdkSZOnsWlL8IdAoqewPG9FKAs7KB96BVAJg4evsbCFUyBZ7YIs0WhhJ4knUCFQLfhTqjTqf78u/BFi1reGI6F6DMvXu2GiLs31FqyA4kXmOKdd9XoqRZMuYAW3w4J8kO1lU+EoQwBYKTTBWgUpLxb3bpMGuaGp2REjplAwECm4ItMkmbg6YfIeZ3Gj3A9nn3o6S9uPlNGFG6jlfePDlmGj1ODN5e8Txci/KHOUQSHScSvBRLgaF2VqFrkdnq/rvQ/QpzTz+4dfg3Y0IAZusq0F3ueqYBYv4AU33EsE2Bgq+YiuynZYP1yskFjIvWvN/VkPFh7z+mITd64tHdW1rvKRO8MDBD47QnAOHz+C570DPTSNFSxciUHAUwr5VYmdW1POCaKY6XwMTefA6fK/gLwpIS60/vx4dZD0N36UxGJ17rYTaeY3mUnLy/z58Ty6NTznlsblBpF0uNtbeeOnwNhsVwaunf1/w5s8+UV7AVnpv9jVnRFXy8pgrX5PkDDwDX2rRwY5Bp680eVQgk13O65wONr2HvJ2PJrLH7x4p5T/5h2r01bdUfP9Aq+Dn7ho1i7YmjaWwBYTaMjR7loO4HmyMh50em7FFauOx5lMj6+u7GxmAr6RyVujxbmh+vhdan9wI8AS//7q/sJd2r9e9ilea7rYiBC332VFDtefqavUrKwM7GuIP2kuvrW4OJm2pGG4XSDUkoAT1lKjGQrxkNPV2jxNQzFr8kLvaI61Eqn2qXprOM+NppmbmZWcUc7+X+VZIwp3R2fKkjaNiQ+wZugDE6IgBUORHTrcN2YcB+rN1YDVpcpwm4l8Bfvs2g0vUBPTHLnCTdoL7Pt7lmzxBzi32iz1OG5etMDT+YP2Q/99Z08w/p7n7ectvPDpJyoFCyzGl+QIbwERshOMzpmIlj0VkuBCB5JA2MzhabRwYHLABAgsc0iDVbJIPnbLfSybQwhk0qKaD2TftFExN/blq3OFZoUVnE6uGM1CENksS4yHgNPAMKdCShNGkiVuREOfE7Utsa6Oaw0SF6zmKwPPdsbJp0PyejtXkZk40rS1VHl3XZHAb1ERRPJ6JqA55O95aZCjqMFUOj1OXhCYTWg16KcTEEszzMdUHnKptwqE4LF0QxckOND+S0CFtiAgzNcj3Aj/kjHKLjLWZHmznr6kQGboOYSq4rTaCyIWcF/tTq/fyR1sO1OhQS8FC/998EqgSYJt/SiaFe1e+xNcsWV/JoXc0A0anixOvz3SN9hYNJj8QmYd0+BEJjpzj6VzozCxPzcdfLORnoptasFNSXRjZg6q+uN9opfzgmLF2j2Mpsy17b5ECG7BdLgk4WHK2NZyXAqW+PgNH6uj+b8JvN7doRcH7xtWMjQChdWGcAeFDnrbdN7H5R7tbDxheEp/ZyeQBwDu7hPZsGlS/Acyot57BlBzoKxJwFx2NDu7+NAVfZLBsx1I/zEJhtWkEDYBTYXA+nNcrJOVo2OsBC1zpsqvuW+RjhcLgSKAeyqu8B+wKQUgJQJZt1lIUJ3OzGMwXWdJShxcc5Y9m+TMv0YY6PPkTJxOfrEnX6O3DCidijsk8BbVGBi01qhuCwAX7TudlunmrcL6C5Lv2XwOheNueAMDTAOQaNw8QCEUTL2gHZcWxGwUkHDsEzRylRsT4odgFB4BEETPr2t1ldWNCF3bu1vCs2QvlVByDfQW/oWnSgeZb2nZL49OyohMiBMUCaHg7LKjCMa+n+6HHsT/qd/YfOjWAMYNNPPrRzzQCuEic278gb74kZ0un1fskIOwUSgWpr6sV3aLwA2E3F/59+58nJqgKGrOuLNrROLiV6fwiNneUm+dCA8GpHzxhWq8TAZr03zZhnfik74U8wsljoUXrL7jwf7MwY9Nr9OQ5DEiphudw8LMHZvnHf9jobtId06T335O5xgOin7S1+Vvu7tcFmb1m3qmdUaaRNi/0E1pXNK6CMP8ZKuD6z33SD8pH0YQvbS3wVFoZ/d/DslwKCxwOgQLJlYudmrrER/obEwb7AQvCRu5NMCGbs8Xy2h7lzLBXNnSqCtdYY4KB0pWs/a39jGOmcsPsOy7YfMokxvZ0/pE3UUbgo/+vaHc8hHpkBZgo/4DH2ZuttzQVlYGAwQW1sMQAA47P9N1uTEGNj7C8djNZQQqbD03NoSUZi5r2UcD3bASpbz35g+K3lJWxAltI3+xMvJDg+W5XBfsGOOneSNARAY8sSOe/ubL+t+W5xQBefJE1SSsTcR3RtWL4+rv9Hx4tY4L88D/cJ1Nmzki7gEmC2ptgz925djDTpLUrcu6euC2q2hvx2tzVADT/u/q01cMKu3Qtf6BockbK0eCR++GylNXbJl6lOiHtHSkrEeWwRP2xd2cRtMX4IggH22FGf5X29Dx3l2nwtBslpB8bSKMXNK47N9ad14s+Uf++JbDGmRYzSnbu/KeNi0y8MJP33v/bYYIIuteBzWwSiYIsmMGtBl5UKSGPeSyvpwFmg49MeMCGoID3qjxkM9olQ0IKpoQMoymAC64dlHqujqc1KGSPIPzOn4YvEle+Os95MGr6o3l6wVO6icr9cYLCgDkt1zg7Bsw0ja7jcsRCfJcb1sC+0uS/mpOlKBGxaGk6XIJxj+DyggfaDfn3vQp91M23LLVoRQDM7CH2OQjRrxMG7NoOscsvqFYP6kyUQEN6RoTNChlXeMoKTrHXKXnU9bXzHIiiHyAjoWsxr+ixUfrzyiMyIhdjcXquip4+evhiTV3dMxr4yNkEwErAheUFcsFaXxsLoVPhSJY8vygIIT+kUBBtrRayLLraJla1OlvFrq1QbNg0dqPSMsUMAqUDBSTBAJzzbREYxOAtK99oju9eN+VAC95jTlBOwaWxcgRlzs6H1USb7OG2HMp0XZ8fpKue5J07owWZUcYw29caAgXlRgq+sgQjVxvzb59+cfP/FQ6MLZ3dB2yA5wlallvsCj0pe3temA8wNtpzTcR6m8546czHgcH0ECW3Z22OvlIuVoQAlgx9tTMzQeGVLshWBmVZrCNpzcAI+xs5NYmFs5MFi9cw9B4CGbsYfgRDQEwh1Uh0PyBo94TlIJLzYivlVn36qLDudJyKzdDHra0AIg+RgSwICs2gmjmfoBnIS2DZIW+CkNzLwlHiXg7Xmpjd/NX2CctKm3mtVznpDerkx9K/rcO3q+cc71uRG1wN8O2oIkBEABCb7BDPy1MO7sguT9xtrkaPm7DGbkhptvUTpykdDYxCIA65G5tna60wZDjrNyl3ZjeAmy1SWf6fnsq7gticQ79kBzwIUwGZtRoLV2nneALAg4fktjfVxjUAte3aMhUC8sv2Cvfb+mBqDAomHzfriOJ2BSCRqrQx59Rmy/JdePzE5mL8x/NFsI47VPqBRcQgodlrwlwkrXbCDszF6mKPzJTYACpCqtKgPaEEBgMhfwuR5YkGU02gJ3ZNgzg9aYwEN6NgVqNqc7c9qjfkiwVJJ22f5/AGOYrrG2uc7HXLLz1gTJfZv/9Ij6aKmcgDC37+sjIVpXNF6OPrmQMBuPJdKssP+2qcYqLPZM8Dj/qy9Z+g+OVQzoqaBsGcR2FIyxoyb5H1/4ww2NbMJ062Ll2RCA8HrtevvS6f58P0bJnd0j5fad35nME79vgGXWBJShOJqe77xIe0VpTAgaFQfug++72IAmq4QG4n92B7zBAiQOyhLsheVCX4kz9Per7W950wa4YxKySl/wDa022PdF9Sg4/5pEyU3/Jq/R9mp/3a/1sFzwoAL5PSDWvT3Zmf9YGxke6x78qx8pvvJKQzgyd8qlWH5DfxUUhcTzeLyXIjDAVkgxV6VAAJMQBnJgPcBXpTGp6AO6KbpqvPXHmiNJSB0mcCVOAZgANl+z6wh8YDd8XHi4Oy0gON4oPybhh02B6gtzD8CvZ4N27AOwJH3wQqJG/64R/YgsRmdzX3PGAP3iPFhm2KZxH2wQ/2bnIUfE0sBVs9A3DCiw7gbbB8pBh9p9Vzr9My86YiGLnvcnyGXBqA6XJ0eD5mg1O4AdUmEZMa9ixWeGwCoPGlIsHEcf9OJEr8wkOQgQ0JBweWLFomjG+g6oKOk4gFuysGhLS2Yh61OCm0K3tP2w7QhOSPlGg9LWc08mJutEJru9soOph2joV9pqjRgxeCPxmKgxzl7YAKtp8RDTIhGB7BmV6M0TwF6WdsG8NlQLON+M6Gsg10zmwEMZFzqwcR+2rIZhgWG/lGjylOcNEfMYLFOggwjgNwZDDC1pA0GyGFjFs3RZXJjCM45Nef6bEt0CkgREx6NKQMMnmuUgjKWEhHU7gEqJ9hgdxXc1ucEfvfffG2ysM/lnAw/FLTXl+09+8SeNmaahp8ydDRQ2d8Ai8OoW3OgZWUG9Nh9ZV89I9S1e2B8+YHJthwZMau6re97hkPwLiPMEcsgowjafB9OflTd/5HdG4bzYfjPPrxj8vW6FNfmcGSHMgOlJGzI5rUBtj6AUJVjGEPLAok+yyGtl66UsQlSPQcZv3XnAGU2bOJrT9zbs5KZBBzKpD3r150plrPkkK3pLWrZPQloZqWYv8NJun/gDFOgDEnX5efuTewuE17cc3ijoWUc6az2OGd6f8L3rbFzNBaCz/OvHc9RV9oLYC3tIFwba8paNoMrm8dC+bmt6W6uB8pQ1lgvNgoEWDtOBGAmtGWnmdy4X04IiFsWc3H3T532xcT/BpzKuJRn+Nby+cnDu9aO7i5Mp9O8p4dUAsMfda3zRgAXTNTbR4ktYMXRc/H0AMZdsPED6cuAO5kW3RhG0TEg7PFwYOj1o4mF+x0AYEXP1DoPB9lX3efoyumaOHczZzQr0B6Yam/PGdz4ysHjAdjKfdndU/vubt0AiDrIuh5NGmx1Z2wB52VdsCLOq/JZ+dnBxmIRrJUSNi3M3+XIZIHAzeaSIHOODNvjSXvsk0WxnjRAQBCguP/tdwOPdw4nOJhuwbjP3dDBvUrEL1Uuwx7f6AMBAGy1Q2AFiztrvgiv5HvSg3QfslpjKoA2pad9AfZnmtwvkcNGuQb38T/Wsm5kxsudi6ikwuFjQvkjnXofNp/MZH1stP01ZVFjxLrX19PrjRJHYIdv8wyATSVDoIQkgT35GQd9K9V32yNg6w5i59iAezZrSgnsBeaUoj4PJGNdARQJqnlzn8RGsHlB/3gg7nAt/YAi/7W69+aLTLMGVj0r7FmXM4ChZ6l0YVL9K2+dmPzql/cEiDSafDGaRIqB3XcDcnsPz1vydCR2fU12ZjL2b371/tY3EBboW5bd/dbXH0xHmo3ma+m1qoe15zHF10YsYIf2k+AL9Pzeb315aNx2ZD/WHNO3P4H3Vx+/r+adZtiltTHE2PE9fIcJ3QI6/+M5+rc9e6J7Pn6ybszWxrMAfIB4Sb5Sv7WRAEni+R+JM38yEuj2tpdS7WCkem97HONJYsF38dMf5w/EvQEsgJJAC1sUp0a5tN8XP8U0Pq+ly7c0hLhrOdx+4MdvdU6yRZ8PPN1KNIExtg8Is3m/D/hg3I6M8990SkY4/PSz2SlwJqEEsPgBsWtoJ/sdPkvSv1t8ye/TLPoNZxuqVDjlANgQx5EZrlkstVa0c3yS2EGCgxlg3zpcx5Tv/g2MiqWemf1xi6kCmgj2PSP3sIlut89U6h6211exStbae7BBrJD4iElakC76FuPWrw/wa97ZhZITc9BIIGhYgSR2Zi0l9ggBTRL//s9+/IsDSXQ4uiUECxegJkgMBv3JtGgSBHhokcGadWBkACpyVXoeqJCGRMu9m98YbSi4YaEEYEJvL8LAM3WU2JwL2wijo6iH7MG5eZuOQ/BirBbOy6Y0zXnMmKkvYmm/o+1YxogWh/x1xwmA6EGI1oA05RMbxybXKskoOBB0oIdIa2Ve0+cBAAYw2IV+RvfU6iWLY76qu0Le3Z/p2MAc6vPZRx0O2rlmAS4tvJvLKr/+2M4C5F3pH04UoE4PI1ajf+D+exJkLp/8w/6jkztai4fSVB2sNj83Q9FlY74RRHwugOHQ2kc6MsDFCUZmV9HeMOAtlW1ksbQwq9J/HO6MHF1kUwZmOuNkw9olkx+++nb1+dODBbGW7tUhj2b4DH1Rxk38Z5PsNp8lh8yYbdQLOf7jbUpAB8W5adXySkTLJmvXVYLJwXvdneDVpl+SA6epIsa3KThf5QIHl3JS6ugcwT11QskozCUS5AEiToKYnNhWBsAhaM83CVgZ5r/5pX0NW9w4xMwXyoxNt7VJZVmAOocieJOIO0GcTWkrx7yxA7aK+SCg14bLWQr0Tim/mQ5pMFGdE7Wsg4+XBkb8rntQ3vo0R4d5MCZCRmQDtotHsiCre7jxC0CL9zMXZl9zfRYGjoCgbQEsIyd+3LNmg5z4nJwX1m5La/xMZ2fZ3B8EKl+t1IMlxCxwWutj2+g+AAnA2QGft3U9SqHsA3O0dV1jDbJH4nK0vpKKNlrP9VBzdThGuidJjnK5+3+6tuv1HWS7cEGC22zhS2lvhnPs+aLDAYAvP9Q5gB9cTLdWGSrG6WAt15/HLOzrLME7Yr2ebgDkgu7lw5zUjZik7ZWkgVzrABgJxp7twp6Ta1IePRhoxRC63sMFZ6UeDJVguz/7/FETwA9GkQtQEha6OmWX02cr4VaaoQGU2IyELD+jzAa0T0txypLTzjXn/vFVnoGJ4PaDqfjs0efbw2PWWzaHmSFE3ZDdKjHKawFyIEKAo7/AAG7qOZ7WAdZ62RdYIaVlWhxszMla50cponsTvHS+GSpKb7V+zHlZMX72SGDVfWEo2CxA9CvP7B4CcGAGeCYr8DcGBqDEVCjzOST6k65V9yR2iB/g91Z1HuKqZTGvvScJwqn2kLKLUjXGQ/Bnv8DzkfyJeUvf/sa+yf/8u1+b7GyaP9YSKwZwSHD5ayM2BNLFjQBYEOOA3btrsWHAlXPbd4Kh9WT/5AiYZ9e5qyDsbEys4fET5oGd7+y7k4PdMSPMXmSH/BoQs6CgOy033RbIdRZojQGBQjHiG998Mh94afK//V/fm3zErtpHBPQ3OlvQgdOOubDn2Jp9t37VwuznbPuqtWoPY/j5Rz9j5pHgbF+MtW0PtywjYcZ50E4CBON//c3O2CnQAsy5N+tCH3O3ZD8fJXjTdEoy+1bvN/Vhrl3gB/7Y8jiFoZgEaNjrfO9b+WplUz6RH1YN4UR5VASC/S6RsDb8tYGyA7j1s0C/mKt5gy8j6gdKvA+/OcpU/R1eGN+flqCBxCnrJEa6foNVJf0IA4CKcB4xQILBxg1TBa66rKm/6R6v5hOHHrHFw6IjQ1wLrZcKgvsTb8VHa+Z5+lsSZ11oHO3H+wO8knn6RaBcDBUrBiuUHXsW/Vo4AsEiNsW+9t4+s28NBloiNzSwVbV0AvsdYBtwBOL4oT/+m1d+cSDpvtgCrA/Hs2xZYrTQogfhEFuIEjOgXGWc/zTzVdfEyqh9VsNuYTEnXjaYxSRYBYLcLAPDUGGHttXBwZkShDIIToLzETghdUZtczIYi00ACLxwFFdqCwfklPQ4sOmsimnZZlWLrk3Vw9Nir1QhW1PWAdgwDoakCc4Cn446jNcQvPZwr/fwB4jKuGlVTCu+0ZNTwjvc+UeYBaBRUFGuONaxAGcqY32lIVdmh1wquzTM8PV0DT4bCHx0z92T//a3nxvg8O3j76ZJWhcdO6XrndSMmnV/KO1Mb4gWlRqVjaznKA9m/dYCBcuo1b0fqDPus5zHts3dT473eN1Z2tO3b1kxKHkglsPgUDASnDMGxteAT8b3ZMHe86MxOFeJ72q1/5sdKWIysk0kgzAWAEg8UuCkucFu6XJRk3ZsSVF8lGdvdapYvy8/vD3HsKDMIR1O98R2svOcxJQhEpjHWUJdh3vnPA5WHjD/iQ5GxmuSunPUdLII3LJAYxG2bryrjPf+4dSVtTxfdvNAp5mb/9IlTy5nI9ZuTaAazT6cZDZoE44Mp82P+l6QcN+E7fsbf0AvdPid94ejdTI2WziYzgcbNwBF13mpjYkJmNrpVNchOzR5W8BzAK1Ywln7Wdmd4MLpGhFAhHuugHCxYOGFlWDvXu7DFFxOxsuRA3OyY2ezPVqp8xsdZnxf16oFncMjsFcqI+bEcAHR5iaZIcTZSRxWrqjE2fUCF5y4vSbIYlZzR+Nn9lSmxGycSZh78J13f1oq6siKhnNyhjqsPBOTtmXVr1YuJtSVsWLJNpcUyKCt32B2W1eaEMGJNu6xujgP1G1p/94aoqczVbKEnXaWmPdG3QPSGg0MyVQO4+yH7wmcASRYWeVPnXT2oqDXl4cu4UBln0vtcdnq0QS/mC22wNkSDws42GXrtixwf7yyEYEwp8vBAuE0REoXNHbABaaPb5sTiw0o6CRDHZoK73BRz3bMvSl5Eqg47V3p6DZUolsS04CtAypMWcaaEZ0DWlsaMTCv56Kc+cOAIoBG4E+MLki5Br+LxXGfF40fyR9h7R/bvbY98UFBJ2AQUDiTvpOW61p7R0bNX5gmvfeeTYGPq5U6zo6uJTrSndnHzvyDoPnLX9oxhv+++EZT2FsHXUefpO28t1J2rjzf16yskrGf1HGnNNLN1uFYcO0+iNElnkCy45GwuQ7SPpJUgJbEOAIMBLbf+vJnxOeSPrN5AJKdgV1n5vns3nqURP/uR69PjsUWvBNYE0+Ip8fk8e7L5wmuAq4urIPHYsRaz1z4ZFf3daWDf63DuvWNMcEuZByYJOWmqf8nNJ5qJgXVHtXwSUPYna1iQOwZe52UwfP0bMXAH6WLHF3TxTJ2xIcaTWJ/jJJT19A/x16WANqXHwdQgITBrGSkgJKEmpRiUTqrNQFpA4CV1DCEqi8C/rDp7FrMxGApp0GnGN6NJcnuh05W2Y3EAsBUkmSP/JyWeDarUuL6hv30DNiO2EEWgMjQwS028Cd+zrPBdvKXyoQSt3KjcbqDqsOI8V2JTlMJMLvGYNqjLhFBIrkAPv0ut8bfkpRITIB/oB5TSYN4OL0R1lSDD5+EoMCuAqbi8ugmzDAAJqBrSHlaew0tU8a/bssA9Ghuat/Ttprs/5c/fOMXB5LuLTAKLCtyWHNCpRy7mh9U7GEDPhYKU3O9+RoWeHWb7SuVaB7dvXEcdyHQWRAzYm5peUZwjgLHaHAARF0eoLkQMrc7a22f2+YDgMxOsVBmN2CJiN8cjYFWFWDNfFnaRnAshynB2leFGE6OnkIGJcs818NDITIu14M6pW9ibgIc9P1WzsP3ZDruk3ESNwogaMSVAQAOx1EffaGH4dDOOWPTEzfOmW2MQEPeavk1DuBCxvZFhv5uG1nGvGdrHXixGRsa1X9PbI2NhWqWQb9y8J1m8xwa4OTuHDPwo+Sh3dIEXw7SwbnuxT3ZEDatAG/YJoctA9SFqKPlr/7h4ChpoiWBjt0NnXv2yw9OXqgNljGvCTwRxsvcBJlRGooF+zAKmRFb6w057jWVN2wya+F1uXW2tm+1qejOPA/G7ogFToYDw25wDIIx8Gr4IGBLIIulArY/6We21JYPoK7ooFhOhEMfYvrWhANEMQOvtDNq7sTYSncf93PE0GyTsNwUbQ5Q4J5btkUrhIFRE8cCuSfiPkCQg/OMsRjs1RTk23JInDSwo9x0MKd8LKr+eHotwMmk4L49NviH2TzHQ1BPW7E5nYFuqbOtw/zKQZzp3K7XGtns9+X4b7bejopQ+kJvG5SIuSKmfu6x7cO+X37z+HDcLVMmmgPMVtfUhQTILC6L52RcN2Hnzk3LJ1+p5X/3xoY6dv8nzpkj1Vl3Mb/HczTH0vnI6u/MNgEVDmhklosWDTE3IGJ93z2vQYBIOCbXuvZeykfm2dCyDdFl4nq6GloA4Pg3OkPtm88+MHk0puxErMqfff/13gcrMndMXbfGywJsc3PoIo7xGZ4bZ0V/o3TIiS2OwXrs/m11gWmOuBrjujsgvXPyS4/sHKAQsDGv6FxnJT7e0MT7KpNifp9MJAz8aQuW/Xr2NF5KkW90pIoAAD3OSURBVBhgjA2QaXK3YAu437tj00h6FuRXJGFmqTmjb0Gso4BxrUOqvRYlIvcZkrFb2hHBvC3cqxLltTogMwQMDbYMYylTtT4ctht+queyNOZldRoyGpi7Y5/Q/6OxITuRPe9OF+V3TLGeHpW0Nj+qKeZ6IONsTRgXhrZpQfcnscJCAhaSS+30AmC3P7pDP+s92fsvPbJ18qtP7WrvBiK6j4NH3x++9RZzCRRg+U1enzv3tmzIcNpPA7mOm0ozlJ/zbIBRjB8gBEA8/sA9g+3UeaX7Mfc6Oi6Vc6yJPTvAREFsfYNJd5bwmdV2+szlATrZMj0JW8ceWT9dpQIvsE2CIJjyFz4fmDrTXrJuOrv4Jn5D8CVW3pdvvXWAsQGr/AZmnR7Gc7GHlZOcWk/CsadWcAeTL12QSDhtmaRzaMFaQPf//qWpaP9bX9s37Mg1EUC7TraBRfLHfYy/80PTZ35nbFwdxfn90dWaHQKDyv1Dlxhowdza6/YeW+SXJd/uhT6XQF/ShCQAirFG4qHPlaQA87cGSGLw28bDh2EXgW/gAWjS/APwvHaohKZYMdazNWXDPktssCeAPeACeLC3SUw8Yyy8z3Z9rl2s0QTl+jQgSFh9DWPGFjX1SEr87LTJILDZfyv76iyTgJi3JgHTkMK+kBeSJH+TgUiexE+d3uKRdTHkFKuttAwPmKVHwoFtMk3ceoivQLCYbZ/SI7pGCSWfabq+vUl6Yb6c+/7eK4d/bpD0M89JMnL9InSZIQAvMpfBHkUpulGbREZ6KTAjG3OOkiGNAs60DXnOoAV1o9h4VOqLFyTizElijbxsnss9xM9zMhv7GSW6PXW+CICnzy3se9GrLRphKlpwXkDkjtubAFyr6cYcIpr787Jx4wVm9+AYgYzW63RZObHX/Bzy0oVEcmYGXZ883/wPeqN1y5eVaai7TiefantVktHFx9gMs1tRoHMuklrz5HYMQlRo772iLADljZq90YNw/hjNxd5d60YK8Ub11pNd28XYAhmyjosbXefsNsTxnPT/8h/+bjiNzwMXSgg3C+TEi6vKOAVa9W2ALLse72cdMDCAEGP5guPu/QhRZWdzMyjZ4OM5aWJczkXJTOs60Pfo3rsn12fPS1NRl0lr7VnRvixovTfGBnD4Ppcg9pGml5pjcS3mY20AR1fHidby+QOnh86LvmVzuiCO49Oe+8gUClKC8rkCG0E5fZFWclkeQaaDkLF5xM2GB2JHthbsOcY3KkOiw2UKveUAIdqVDRU0U+hv06vY6ES0o8MvB0+cea71MgMKxf3n39k/mKrHm2siIBw/8n42VKbWzwAWBJE26Q9+cmjYJ/0J52BEAmEgwAd8Eo46Y0433Ge975UE5zLL2T2Is+fOx06tHYwEVuyltClE6EZYrOv9MIcAAkAJIOvwOt33nV12+7t1BpWZjyAQqLjYBOKHEqorAdz2Ycf3dJ+6lAh3ja2gnZkdzXxXz8NB0GxX6XnDmkUNUdsQcCppiWVgHsAoR6QUoVFBSW5R+9JgSvPGZvdcDGf7KC+r3m9mibb197Nr+4YjwfICVisqJ29NlwXE/+i1owXN8+NnJRUAm06vR7OPlwtQrtf7E44vaT1khRKYJV3vzeaTbUkcj8lxjtfx1lOGrITApgEcTJCSGof8woGTo43+2Kmz2Wz6hfYD//K73356cl8ATWOzI2vobr7Iv7wZSDeDCbPL6S9bMi0tsCWTnQFSInTskX26sIC7pNEei0q2jDG5ln3TkAFuAoUSnAnXHKxymOA95qF1Pz/4ybGRcctWvSSEkqij/ZxS5lOPbp781vL7Jz+qqWD/4XMjm1eStS+8D3bAa06fdbCZWgOI9e9nA4ULaij5ycETMXEXYuCa2ZQPkoy+2bV53hoGlMi07dNcYU6cB4hVXFaypqzxasBq67rGLGRTHxXYfE1iieHYWlnbc5LUEoEDIMDbb6Q3PVxSCPDbz9iDPdtXjWROQmHavED+1Ud2TP7se6+2d/Lv2YZ9/c2n9gx70lkkAWPXs/s6n8WWMopmKTWEs0Rg17YOF+9ann/1/VFmd7g4NueZvfeMES9H0/hc6pr5bWeuefYSE4DQXKs1lfWv9f1DldAkq5hooJptSDid5YaBliCZtXQ+0PNG7d9LF2Npv8hnnQxwGoLs6IuLo4EBSFwdOHS+3qqjC0epkNbsW889NPnjv3pxgEBGCvAL3gCJKgN7lWD4ugnzfDHRvOTloWKW0Tlri0mE5vaZ+wbgNQUJ6ACmuMIPAQQAPBDcl0cyg8k0FgV7Kbn0e32nWNse7jMdjNyjHaB71lwi8RKg7vFGfgCb8tQDs0dnprWk/6KrxbCxN6BLGWwAyd7E9bgOtkS7OAVLDYXsmn2vtxigr/8czw3gER+MBTDzC7Dh5z0nLJJ1Gcem5OMBxXcqfym1I1qwjtACYOMGXPNgmFsve1ipG5xQZltWlQqLdTSw/mL+VQIgwdRNb/3tV3qvIZnI0dItSaIxbpg9n60Mi7kd5dwY3X/J6/Y/6PXP/eKtOUlP7N06mdUNnSpjfLfgh1YdeoIyMq14gpSNyHh1UNgAqEDiRcwLR+Ihby/DhQhpmj4Iba7KsT24c/NoASf0BBJocYwZWJpA8+l9Wycfl2HqZjoeQqfNuLUQC3KADNC/LaZNqntnzCapDMGoH0+/gyXyTBijLgDslzKWDBqw2d68GUZMv+OIBYtrvsriKGJOxZRpm/WuHAunRbCqxCRQmO4se/q8J8tpoMiBR+fniPIyXZmjjezBEox6uGvbmAKEjM7fQKcsa0nO8HKf6X4GSCvgXUjTAxhwbq7NRl3RRuAwXD9GSUYk63m1sgKQ5PkQ9f7RX744AIkzqt4++e4EVf1u66groRE8YxMAJYKHDYLlgdxlPA4FvafgJlioS3MEdjcB8ZWe1fK7EnYuV9rr+VWiWLdixQAKmDLXKquzGQAFZ2EZ88AKFvfMHHVgtolSig7FI+kiDhc0TLrWVei+vA9HMKaut8k4J4fUet60TM6kw37ZlITY1hCIk1EqnwpsshVzqnTI6cBSqrABnYtkDo5ARGdCyH4gfQE20vMEltmNIyV08dwCx6Z9o4QdVfGNJ3YPUfB3msg9N1uUMQkySoGu553A4M1sDUADmrEtmEfjE9iD97U2np1nOM4gzL6ee3TH2BfKzNaR01Kjpyk5VmAjeF+T/RieOA7ijQX50YFT0dNKh4HAnJ2EwOGhzjUaQuCcohIVpw6gxv9WSlw7DhzGICzs6/QFN3r+Ag1Nluf9Zkd2yAwPBDhou2iiPMuNq5ePzJUdvfj6O2MWFoYYGCNEfrTAZz8YNKl7i5NUjjNEbn2lGlnzomYeyZq/qCwMQFxvPThljJ/nQwdj3zqT6Xfqrr139/rJjwPJs0uOMBEmnBPPCiKSJs5bxonRNrpDWVOJBJhC+3umwO9dgYqbST7Y29vvnBkMiLKf5IvvEYR0PmGuldWU4QnHf+PpveP+ZdCYybHvM2iziwjHv/ml3ZN1MYrA5guVYN6/9FHl7TWTf/Prj6e7Wzn5TgNeF6dxW9Z9K+kdaLieEsv1mh1MWMYsmlF1W8BiaFWys4cCodcLjO9mS5sKuBgDzRnY84W6dPNXWCv3ihl13tmOztbzM+wGuGBj2DsvbA/7uDudzvH2o5KMDPxsPh3z+FTaM89YskVHcjpmkg7QtH/MFOZCMwU930edbykBwNToDF2VzABjjwHh8y+1d7AB87sun2MAJP+pI9pzF1SVhjQDYVrsGV2uv/b0A2Pv82f8MoZECvBqc4qA1pZpgDzlUnOzpmUkTMFnsUt3D6bYkVHKYcpPklrPVQLLJ1SoG/ZwrDMY2Qq/wUcMlqc9dsvHqjbwfa5L/MKw+Wx25r+xMZgNNmutBWe+BchUISFVUF0wckHZbYCqfk83nHWUHAiL1lnynKsbNuc9zATy/obTChDplcdnWVe+wFw9jCkt5VQLFKvS77FZ4Nfe0918W59rTp2Yww/woa5DjJJg8y8DDPnd1pjeUmIpdmIprSnf5b0BI4BfdyUhtz2N1UFu9O0BcuZ3oWyH/8YI8q0aqTxvp24YsmqWHv+tcmL9ZvUHVlBSdHCu8R+9Xb6yikL3K4lmo2Ym0iyRwLgOiS0/cq3k1XX6OlzuHl2PGIi5/aikz+R2Gqf/8IvUJP3SI9tTlqO11UWn5QHlH8MdR1msm0DnE9VudyRBm5Mx+VmlEg4Pkp0ekttRCP3ssozQIY/AiQdEIL20m2ccH/U7QJiMXO383TIDXRJKOD3ZfrognFP3O1fL5tCS0zJJJZQ6Hizsg1Hr5r+g+Uo5x6LZMD4bza/OKkOj1XixDWhDoSV9n55Ai/66QJx5EeYvaRcWzDwEjBjn5ORvDBaDE5gZV18O7F0uICSoy7E43RjLhtUiIAY0VjRNWUstR2AdvWb1gK90r4LnV+v22rV5bUZTjbt1M9PCjBMZ+qBibbB+x5gD1ww42cE6kI7rmOmfjr+4M3ExlgKYxJS4Z471fLVv04ABqUVExb0ZcTthJaHputbtcuvIGLEYgtIAaTk0OqP7o65lPh91Mvz7lQae2LM9B7ciUfrR3rfOwZwEbZHSpWzxzp6l9yLudc8M2DPDHtjkJ8s2PohVsikEbYO/iHYPBIqcl7YkZ7guYbP3lvX4XQsAkLgOz2VWXTfsUfkRQ0KYKZvF8JhNM6VlJ5MvFRCBi688ee9kb+yb562suKzNb8q4wz1tuqs5u6uVPohYOcvVBUOgS32cE9Z6OrfS0uOda/WVSkRfKpEwmZojw6JgSpTssJhYSzS7a6IfQFsDLGzOZG3/TetFvyHIvHboTPdUsAwQsGtOQ8ARZAQXtqQEpZRrvpBDlwncdXF6VqyBPnBlgMRzZycc5cK6uUZbb//9za89FMvTXhtgO2ajzJyd/M7XHx2jFzg6z4ZDNdxTIKWvYtcrYjMGgOx9BalR9upZ3qXbqd+53ntqSgAw2KbRCfYNWxjvVwAxoFT5DDNhxpKyOhum1+BTiIYE1J2tyZn0Z2/UFfZ2nWz7m5x7oD/mE7FnJX0Hxx7KjwD8006cZlW1N+01WouWsH3VME0BC0TMdjavXTnKv9iS040FACQA8PvraLsaI/5J++SJjox5okn3yxJDY/XstU+6Z0Edhcumh+g/X4ZBGIegtkcPVO74YDCEG0e5946+FsfR89Md3CHg3X9uLD+ydGiZPGNsPRZ+TOwumC4rCVmzcmHi5zWNGLhScOoZ50eMFqEfUvLBvGQgk3cb4yGwKoMqNTryByt6tWSGTxaEAcTZ2Ra/ARBcybYlDsAVdh+Tu33LyvE9gdL+w4C91d/0Y3QwW9qD2KlTBd4BEnuzUQYuyTKLjNyC7ZmIrrzjw5QHBTOC7q/n156pjKr5g90MJi1bfK19/nasj8+gOcHOfP3x3QPEnDx3Pi3chRoGzk3ebS/xx+Zyra45hV3RKLIFzQt86bH832tvnco+p12FbGRzAJ7fISWQfPEj7FsyAKQAl1h1JVr+URlNFyuxNb+HPeVTASKBnR+wjzwD+9RaAGX8jeCty29nCabExpBeYH2IoLNtfp/DBQZcj5jGhwnsU+lEJeTskAwCwHozfZWY4KgpbKOkSxyWHLhf129Ypmdp8e1R14p10ulq3ICp4UDLithTU+EZn+txb354XuBmCs51lQFFJf7tE4N0kR/sxz2TW0iYAUf+lN/FaA6GLZ/uHpxh1xKN63VCh5lPu4jb+2yNTRpPvBeZhGft8wFE4N3+wy5h+/nBHlrXiDVrP1SxMU7DUF3labGQJslsKfebWUzjgHvrAlyft+//epspgPo//p8Xf+5y2+1/0Kv3+Cdft5ikbz1738hAbVqt+2aAjCDXTT39wN3jHCMzH2wiGeUZtegyz48T+6mFm9gtVyJY/aKHM6WAW+A21o0ONdUhYzPbnDawGqe6oszngwTPN1oBAdxiEODJhgVhC2QTMg7TtD0sBiY427xn6zKhO4CfOWiAzQNWAkT/OzrECPtVOX1DICHPaeeVmTMFvBC7c4Jog2g06GacDn79Y4JVtd3KKWW0XvAvZ+d/pv1C4AfKxAVyKJ5xdLmDmvw8Ax6ZS/fPIJ2/dNuYalqdu/vR2gssGiIIFHA4gisQhg62SY4WpHWuQPlYD2yJjPpKBo2GzBcEBpYMK1FSOXV+OlxQBkMzcKjuoo8qZezZubmAEhhId7O1AwP37lg7ZlVNu6bmFTBX5og+LjCdG4zK7Z1nhio+fOJSmWPPIkfCeaCb32iqLePkFExLBWIXFMTXVj7gEAUuz9jmHNnYMPA2SUadSbeu2mTL4E+/11rKrU3mNYl7dStMi5T9DMesA2PaKQGwytQe2rFpOGrrKVACb2ryjIbjI2g2x2dkSf0bK4oxcO7gV2rzHpNfC7YChkOBOV7ZDsADONI6sQfDFrVTu8ftm9ZG6a4ez4BjAJrZO2eJeUQPz49t9ezM58F8GbpnGJyOTM+LA9izc+O0Jbu1OVEAUhpcFjh5oU5IejvXbO04+g2tpdESAIGSqRKXZOREItludQSW19K2LS4AsGfjD+wL4AVDOT3NXhnwWtlfSUaJii4gU3I3BKpoVdDo7E/W5xmMjDyDQuVjidmkPWy2ltIZHQ1D25staWpwvI0AYh1Mqxd0dJQBixzh7gTAmB3D3twbptS1YqIBrqlYO8eWDb/4xpn2XJ2dlZLYCI2XwEir98tP3Nf9O54g4J9t2H/ukd0LRp7vAwX4D3uO/JWyA+2ZI498n/Af0/tea/dBwOfh2unffufdsQe39KwEKQ0pGdgYXcAGlE0lRF47s0u2KYiyFYyO+zx8XEKSQDb7ezT/yCYNvqWzM5PM77lHwcKLb8K06eYc3UQFBus/O7+omo41FbAutc5sWaDDJiitXs+GBFHdjC3QYNT3t/7frzP2zYCH4xjG2IDsVbBYGijHhPldyQrfJEoB6q8H7l4/dLYxDEdGhn4hNkzpS/nCmh5Ulmwt+FxlNesNnCiFf9r13Coh8YuSAyAJu2nPAnD8hMTI83sxqQMNm3K598YYARsXem8jKsQYh1WbWE7bxHkCkCZqY3vGpPeShX/7r55sIOiGoSt64cDxfEh6q+zTDKttMeiAsTEtKgh0SPNje4FZ8UUSQJDsOnT8ff3J3aOb9UyMBS2cEuoDdRsbZCnpBxhuASV7QOLh5flafPbus7HfprUrr/axA0BhxVQy+EW+cDBC/ZZ158/5Zb83tKV9DkIBaOSPyFLey749K+BG8jFrVmUlQG0gAf6ztQWCW3trTN8E/ImXALTxF6Zde0lYli1ZXNygLwuY9zt+j86H73QvmGTvR8+lygEMumZ+2Z7VYcp32f+YUOBw+JnsU5JJGwX0TX++CePdG9mE5in+Rrnvtt7TuBy0h/cHiACvwZ73uWKJhEks19FHl+XMRL7njXwc1gyQVT0Rd8XUAZCyM7bpujwTsQII/qNKqL+wOUlG6ncnY9Ofrfzzk9qTBQOUG32Ajh+iXUYBvHwYwvcHUt7XxNf76lKB+rvTNmQzgBhoC/1pCynLABKwO4IHRA79Y0+gcIJJglM1SUHGdUCvaHMPhYNguKj//jkyUcKzK9HEWmA9UJvclGCLRtc0tAn922dppfX6NF0PLY8Sgbq2hwsoMX+zTYxzf6hBbfsPnWiTYwI6VTwwgp0CzIAUgAUrwUBkdzL/UX7qTVCgDEkbuiF1vm6DOlLgXJmXTNEsoXE8CMfXtRGdujeOHlPgQGHBdlegzXwNgUUwkokAlDYQA8JYABeytdVlEgZKyhxlHebyjPO7Mj4MD42R312/atFw5FvqLnx+/ztDuHmjUQdjfkVnCTG6HtSgL2/eVJq7bXI8p+76zwaI9zfbyswSjoR4WMZDYCmDebtSz/FKfajm6XVOZ1nYEOhprIvADASha629Z/hsnXD/7ptPjGf4tz8+ODrUXLssQnmLTcjmOSziPOUKNvLInm09rwByz4yOyCYRgNmdcogDHzcHCL9SVnu6LF23n7IxoITWpTEBcj0/mi0AS0eh36fj2Lhq+XBqK9K5mHYMwAyBYMwQXczaWCeaKaVDe+C5smKziJSb2P04vBgoWaWbctk4/02544PLdA3XamFOeNyfl5sLozUXINPssL1uRSUD82EAl/1vn61scmFyKid+pPOvDte5dSTggvq3H3XEzckRyjinYm/n/bUXcr7aZE+2PkSrWAAMGTCnswWAYveL+n0D61YFngwvBRa9jwYCXWLvJabm3JTqNBcQ8yvLWScbtcc4sr2hCSgw6Iq0bwEEyQp9lLVXFvS8AJxlC5sb1dpwjgCmPYYZ5hMcCvzIfVtG0kXfRKshQDuLDPOM4QEw2Q9t15YcqiG37/e7Yy9mZ0o02Cy6DtFbOQ54AMm/nWhXYPjui2+WtTb+IQBqojydIQaFg9HlqYT03CNGJyzJ7uisKmm0D7U0f9BxLHJjzPnOhMO0ZVgBQyRPdrajpMnZdHOyycvtF+CAPu+uEiMjHwAaoMDZXUqd1nGImlsTWbQ9AuCQBhAXX+xn+BVlQqBsZUmd4ZJ+9b2LDbrMx/ADmg4Eewye1nn7QTClQXM49rKFDhA17y3f+VHsSwmhYGqvKUcL5kaseA5sWbMNlpsPnhMTIUhJfjwXwwpds9I3MMxHv1HC+MGlK3VAHhvXwW+YfebYFM0VO2LM6EMBJmws9pbvIyDn/0ka6Bolq0kERwDFEtPtnKp0rxRjpAyWdRqwMXU1POSnPSMjWhyyvKH33xqLmFuIwTo11sPPA0l0Ta5dKZuPYE9sWdKN/Se/sG5dXqFsKnDmgwELiZ4XKYakgH7M2vOHdEH+W7kf+OCjsSDiEDaFbdlbEgiAix/3PmO4bwCAXAJAsbdHolO8VH8Qg8Uc3ZCuCbAGFPgx79UDGaAD2CCSt0fe6Aw5MQb29xk+31q7NswhhlgyiAQYkpruCxDzTMSaKUicMpDWorcecYi/9vx11NIp9eWR1Ll/mivXptOVz7ynhMEeJdMRAzR5Aaw+EyNmFAKwA9gsyP74TB16ftZnSt7IZ9im4c6A+Eiz+x1MFPuQtCzrs8bv9Hs+/3//i1/gnCQdauaJHGiBPQQo0oNVcyS2QvOjkaFg2dToUOoBPvnApkoIqycvvn1icvTs+2OR0N0yGcHES2boaIW5rTbHpJwgm7UAbsziMRz0KcGdbJThcjQWT3cIR+JhyCYNZzTYsV/tj66LAEobhcEQhrrOpRkk5yiDY+QLEokpiXHUNCf7dq3JkG9rQufhsrHaz3tPSN30ZA93qitqPlCloa82E4kTx5IRrkPw2myd5/RkXTsCN4OR/QNHhJB+9gcp7TlXoEHQGsFDJt9nuR/aDPeum+iJh+4eWYj2Xmsh45LFMwBvzgnKVLSRT7tT1NPLOLun1XfF9txZKVMAbF0EYdk6od62huzdkyO/rzbkNzoG4IOcPHqXM7ZROH3P0/tzdox/06pV6WKatH7pckDF9GAHrSqn6DxcMITcAN7JmJrzOafrbUBAiXEDGpgIf4hBBS6Ad273b0MAdMptPv9Mvws4C8KO67ChOWiMAGBtjd27AD/ambEhbRb3t2H18oDMXZM//e7LraWmgDKw1kcm5hwyP/9k5TGH2MquBK65wENgBLvJQdqsNr5AuKlgS3TOQcjuBC/2dVuZPkbS2VPE07IdJSJMogNDsRI+j8bkJwdPjmetBHcyPQQWiXO1pgTdhJBYTCCa01vVWvpMZ1rRyMnclUDeeudMGhVlh6kW74NYvjPvAwEGDRaIy64sDF2fwI19ykpGqiiAsF+MEPYFeLKvrCWWVZB1j56J0sO51glVD8zbP9bdTCd6PjofgcBwScyCQAYgDVCa7SoPKDtjF2nNPDefy3nTKNAfelZjSnf7GAjXKePQYAHBGAvAdZSXe3bGYGCNxhDY9v9bGiI6DkmpRnuxrhaMojXlKCVXR/p9foZPuZmDBnzfSnB+tJEddCH3xRJc676V94dWqzj3WuVdgNt0cMMk+RVBZFsyAgkGUO/keqCEPU/HPkyzc4zYCc+m98GqG4MBpFlr73GhxE3Sxh+4XmJlYILdYZBl3kDedBxGM8OGPQeIW/OxByUDrZvOIUNjrTX/sThbU04U8LTrXwoc0Xh67j4vdzESuR7RyNIPZ5cSSMmZso29IcjTbYyOrWx22EEM9o0EXNcDGLQnfC2/wJcBy8Pf9/72pcTSs8IsA6GSGUHR3+4X8JYQYLy21VG4LTZvSwDySw/eM9n3wJZR2hZb6J3uDTDl5cb7S5YBMuv14O5Nk435Q2w6LdFdgYyflJxhzsQi2jC+hy71xmfTGU70jjpiaf+8j7lzSo/mhd1d1UNCKcCaRO/PJ8k3lK+dg3g8EMbfEv3v2FwXcrEKEz5liytTtW6SDDcoBoyhvT0Ptj5lmqaiaNIQ3VZ8nsQUEAcu3BO7nxM4BZq9r8QGgwnYSFqs6bXuSdFdSYrN2D/8LbEyZi9zD3A5/0wjFU2oJHZ6ZAgmCdPMj4sNu9KsYbzta+/J/lyPNQKG6IwwXXRAniufIWFRVVrWuiBBAGP/s2esD/bT/XQZww+6ltnF3DtKLpAHQ7Devge6+FSyijtKgBZ2f+Kr0Tj2rPUENcUa+xgw8yyV3+xjdgTowhfdZEl4nbyVcX3vRAm7+0YYWJMpqzUdmwG8iXl/9Bcv/OKYpHuqz+4p6O9KK4LBsDg7Q7ecPyDjZuhQBBvdah6gEo/OgZfSEZxqANzkM8xL7YI5DLV3tV204bMdl3BnTlXrvo4GNPio+WZAqGUCZQ/ewEngRGbv81BsKNfP2oiyK44dOILSOWLXJWNH5WGxMCIMcrFOp4xMGYUOQJlt8+rKbjm4+2uPfy72gv7no64VoLq991PSsQk5BxTn/Dv6u2sW1A5WBrS53UuXNYIk48Mcnc8JmS+iS85kakPt6GNeL6tiMO4H0LBeAJuM1ZEmjFMgcm9MT13+egHkZCAR2gcm4SPMF4Czsc2NdhzTqrsu2gCA4MyFixl2AtzD701+2ERpQZDIGJikhbkrtuNygRVAejxAt6uA/ONOrjc8k64HuOAY57e5AJYFidl3bl47mRc7gU0j7O7SB6sBIJljY+3slqGNCaTu7sBP5QngQhlRNqK+LKChXDldHXSEhjLqd85dKFBWXvB8WnvlQ4J4AQ6rga1ShkDp2gwflvk4Q83kWbS1yckPbNs4Niy2xQaxgwEzzCf2Qpff9uxXpiZrx5TYpPQ7QACA/kTdga4nnzeuU6Cx0QR2dLDPB0TZlDIDSnpkWsO5NTTRM4zxoYtzVIPsFLNFw/ZWtugzBA4sFCf2BcFuG1xRQFeMjiGPX2st5yu7GsxYdk1HAuTO6mvOozJbSwZozIMSk/emQxqt2j0LHZEyL/tCJwpvY11kxl5E+oJ4D2MEYwFZGU4yNAa99qzQ/spTwO7eyoNmpx2tU+1IAGh7JUcBiD5HUM4kEuRXlm9IJcf/G8/smTydKPjtHKLgCngoFwo4HDRb21ZJ3lRc7d6YJpm3R7clptrGkjE71JfdstF52ftzj93rkgfIcbyO8qGg53w3z9nzQbdjejlNh6naI5KVrZ0LeaLSOfGxBGhXyZwM9VzPSTAhsHdcxnjOPW9sCDGvfaqcjUk90zWO0mM/L3k7nv4QWFDSA4wkARK+v/7Rm/kCeg6arCkzMac5cd6bJorfMJBS16YJ1N5zCIF7XwF2iGpbM5m2YOYBWqse/9A3mdGkI85B4JJZxh8/MZg9wMsi3ddhsQAU4K4RhZ/kX/kfTDvW6NN+Duvq+xJLs7rYtvcbc3sExJ9qVvh+ehprB5CaNK7JxV4HBjDDkjlJqHKkYLqj41Z++1cfHtrE23t/oybcuw5Te8REbQw4/ydx9Pn0SYI/lklijrk/1XMEzLE77GThvBLrQI1rlZAZ6cHfiCUCrANPv93nAvnmqrFBMYZMAZt2rATeSAXgRJlrfswku9lfidf+vNE9OzDYGrgWYN66+plRHcgZ88tiGnsf69/PeY5AtGRWMsau2YEXlsO9mg9oH9hXNDz8kBewwD58HjBsTwMI2DzztE5339PKQUCle/DMCLfFu2n1RDI6TWwy2d6nY4X6GfeALTObio6PDdCjDT8f0DPjCQjhH/gZ166kNjtQ4xoweoALEC3hYufiHdAqwQO6SRLERNdkjdgvG6SrnGrlPhmkhJiKXXfP75TcSXJ9xsp8g2G17l+Sh6e80XXeauJxL8gI4nL7+q7WZEPNUtM4f258tq5oiQNGyjq4jn8Jk8SX/UyvdaHg7SHQFxoupqOLMREfLq1U9dRDO3oAt9XlcnRysezu/c8TJXZTykNvn6iVMYNfv8wskrmTO9ssjIGT4ogBHqfcX7SRYldOFdQHAu/9pjSattQEnTlLWTqHipY0WVQAgBQMs7KZbG7HmkCuBjPKkC3wZxkAxL6zTEBJDvi4WXBUDlFvvVhw+TwNzLS1mSh7UUzG5cHUPHP/lsmqkGofP/mrBlG9nqDWYjN8gI6jkVGv735uX94myXCcXQUw3R2lS2D23vnrI+h99kldfe+lA8iZfOsrezPA2uC71j/6q5fqIjKMsXXrumg6BBs08fJKD5FDgz4nIgbShr6r9SGyxJiggv+67r8P2rQL5+vEWdQa3dFnn58sEHQZbt+7mLMZWVaoW1s55uZizJegQeyndBUQH8yJkpMShC6E2zLGswEiQXt+a/nasXeGA0fTnzl3tbV3qGwBP1E3UEnYy5HK6vbUJo8BAC6U+ziR47F1V7MJoFpp4Gz2QDSNZte9ggoXXIA8WdonOTX159k93496H1+j6QJWrD+HYKM5ymLz2sScbSZCYEHbEQoAtUGXSmb0D953S6xAsGOABsGIhk7GKuvFTmJRvv/y8RHMdU3a/Byr7AkYH2WUmAKA1/EPD9SK75BTWQxGBtDFvpwvUBBx7ilA/fpX9w2H9HrDBtcV+AmbPfPbauF9MA0Uh6eE4lksbD2WFABml1x8cDntVAAUS2C2jgnJq5an/Yvd8uzPnAXSp/OXHIWTyU+er+PsR/tPtFYNlSv4KjUI3tjEoXf6vA6V1tP1Cgqzko/IUt0nnd/py5faJ5+MAAdkc1bnK7OzoXk1cOCmMGzA/ezbp4LyfFUBZypQ/TzbuZKjtRYGA2In3i1hMFfFtHqZqUxVCdEIBfcnibg7oPy//sl3ywobPNhacML2EwdAR6I8AvjYC9valx+V9SdsGGCK5uL4yY8Gg6PkQ3viHEIOX8DRPSjjfCL92a99aU9lmia6B1p/tP9UrOi1dEQxxt2zsiMQ/nwdam3H9mh2mm1OO6GaXJ3dLcwmsLSOYgJGv//K2wPcWAPlv9EF1jW473LFURK2VjooOfVfqXV++I5YQM9Q5gx4yZ6//uT9471eaFI/1hHAc4bknQ03nd/cpZXLG7GQ3Z+IjbxW8jcORe29zS/iQwdDWMecAbw0MIL//pIga0fQrdw0t3IHtsA63QzQWDtMkSG8RpTQ83jWyuP8rNlDWK0TMXeC5OquwaRnLMQ9+dU7OnMRgL6R3/o8H2gPfpENXOu+FrfnFuYDDOvscU7++nsHOnetA8uzs2dqeDiY7/vBS0fSMF3Mh3zYfV3ILh28CkQbPPj5OJ6FX1uUDQCuElTC3wGyu3fA5LOcl2Qau0kX5NXHNV5k9eigJWjfViBd3oyw//NvXm7vvje5uuWT5ibd2Zpo8Plo8sP2jUTjjquzxpE4v/rUfZO/+fFbJfk6xm5vn28cw3kxMSMJ71oweZ6H9Ry6otbcfgGmxUUzkyRVSkp/+r39ky/v2zZijZ/HmuqA68eycMDDWXDtNWCh9xzB/WYzlAIoQOYX8wxsnj15rrUww+1Uz+P24uLy7v2T7PxS8/PYl9dgofJX/HjZ1NhvEkq6txFQ+zFz68hIMDtiEcbHfQGS1z7q0OB8Bn9irSUIl68GTtofxN09lmF79jIANCoNxQTaL77K3iXvEPdNmudblLi9v5c1lFRKVNn9vjqTAcmXG4NBNO8czmXtMwwn0O192DMQlomNOAqo0erxt0gH7Cpts8PXjXLBXH8wrzgQqBLf/yWv2/+g1z/3i7eE2w+nA3AYJq2ALhds0vyMePP6RKvd6Ct1EziyArqfIlCTMHOGLdqKKOd7cn5oO8yJYGhzomqVNDxMI+9lgTrKdAGhta2Esgik7r+VW2R4X/SA5vd7WCSZ1RiM1oMylhz9TU/CMX5RC4usUqYvAKld21QyJ0Hb9TAAh/Geev+DhLOLE25uHu8JwNlmJ3Pqf/eSmSfvZmzTgY4eEJYM4HCEA43Kq7Vbq2n7LBsFo3arFq4zy6nU71/pOInP6pgJeD33+M5a6Lu2nN+xsk9D/BiXeR+cMjtSu9VVR3h7vixZOUb78Kgn97NaO7VKW3taEJuB0Vlj9L1WXa3ABJAbOmKBQ1PaZDB7m6R86z5sVhvSbJjrOTUg8LG0V1rG6WywLssK2JzUnETbWLFrtf9+48kHxzEbDsYc7UK5JOVBzIwS2c5AtcxvU9ofgc56AZ/AgSNgxoBEWo+er0zDc1EXx24Qgw69UBvasEfznqbatNik7mtHjAKAq6V+W3NhHokB3LUVM+R8nzk58/fHvaLWgW7AXGapnGo4HYDgfW1ObCOb834cm6CtVMJZczjmHmEeUfTWZmsD2xyLYm7U/DbtqZgh9+2QT1qVNysvCVQO4xXYL6VhOZRDBuqwVKazo+aV2yQa3vf+DgEVUA9lu65Fx5egYwyA0gKm5rH24DWUd+XgX3n6/s47em/yduL7yzk+2pmdWxvIWfliYfd0oHKh5EHg5aitLy2TMohDmjl29H6mHHCgT+i/sjnAnx0DuvbV8j5rY2AMYAEGFgXgJEgYKUD26Yd2pinZMNgDpexZBS9JjYOugVEC27M9c63umIcHmjtlsrYkAlMjm3+jhMa65kXTOk0H0Hl/7LAL9N9bYplGB2JM5IKSDDa7OEYUu6CT7p5s7fH7tsbWXQpQl8gEXGWkjsX41af3DAEuFhUDsOeeNQPgLOxZ6dxiV4C3aeQANSC9rynrNE02iQz7k0CHxGGgptbJeVLuB1uiZAV8mkL9UEFUiR8g8pqKaRul0XUoHT5VWek3v/ZgP7u8n7mjUtGJcdq9feL9BFe+CejnJ42k8GDsTwnFOO8r39cWz07nlzwFZFo6Poet8iOHjmX7NbsA99ZgWyCGbk+Q94effPjeDZP/7lf21b23edgFJlNSoTyqLDOvD7iSLwac7AdByvFCubfB1rNPQPLdNGkYOyyQgAVcGYopOK2s01FpcDBzgSz3q+t5SSCFnwcSadr4f80zjqm5GIuGCbJ6Y1ZQ92dv2QN8v4SIVEHzg/IzwA0UeR58I6aCAJ7eB/vBZ2FrxCLsLIZJSQZL+lplOuzpeyVQYoyftx8lvaW7xYpYvxIEayaw20dAP9G/0h32hU/jX7wANL7X9frbe4qF/vCH/LZnCAiMZpCemevyc8ai8EmufzCt2UAOvTVytEdfb9/7bMcQ+Rm+HnB39AhAgKEd+7zPAVYkEkAthgahYAinvYGxF3fFUkwPP8COvCdQwx/YW96LL2QX3gPbT2Ps3jCF7Mx+0pzg2Bm+gFaKhOVk+0ScsS7ButbI0MgkOv0emQ1Glm/RhIAVHd2GXRfJBrabWB7BgRUE0seZoP0eX+1wetfcA7E1x9p4Np6pz8FEWdMR9/tbZYBWjb0W2Cd/Xyz/hQm3XTidiAunW9m6ed3QXcjE1M8FI/qGT7tQiyog2SzoTRt0aEVyRoK4gCUgQP+ybfNO0HqoW11mjEEg1LmFKkNBc6JE1Eo0zlzzb4DEQzTxlciQwwV6Hq6N25h9tKSHOkoZfR0S52xuRuOt7X6UZmyKHXevaPDjhsm/em5vxjerQytPtvHTYXhI1bXVoT0IgE69XDZ2b7T2Q2mL/nUO73stvBLK5oLmxrrG1I8ZA5p95+b1Y3bKkkUyxF1tbALzgnj14OfLFL/7ytHBrDDYqUNK41XwxFQRPS9PvKvTA+OzPrEwNu3tBLMnW29dLcot6wvo1hKiBxqVyGj97w0Uri3AM3j05JgCGwCZMjsdathm9ZnqycCtc8uwSdig+Tm01xKrm4gN4G7ovjAtp2P61q5wLIkzojrmZMPSfqcuq46qWYM5bOwAfc6WHDFGjhMRYGUULxx4ZzA2gConAaS6Jg4lPzQErAbe2ayu4UDaEed4fe2ZBwsyKyqFrp0828wctL4p18fSPAFbDzWkjrOQvRw+QQBs8vK1WMzz41k5d+wbj+0Ym9YGFQwMcrQupuDKpAYwSShLkGyzcp4GzdGhsIPjAWnO/N/+2qOT3/vWk2V2tweuL6RTWNVzmQJQYOWVN5UqKzkHWrAJS3sWSmrX2vQLc3ZTSprzmJ1927zTybxn0vL4XPZKmKxEAajvKtP85rN7a9OPeem+fxIj4JoBUVm3tQOqsaGGR7oPDMDZSqOcrj+cs/f13wKnPWgvOetQt5AuKR5H0rE6MKxUZO95Tg9VVgMeDeo0lRo7Y/gbUTJ7dH2m43NM9tmW7Me5bcrGToBXCrEvHir5UMp10Cwh8ycxWxcvX5l8KeH8Qx2ibICschtQxcFz4lOW4I7J15ob9dvPPZh9NkbkRlqo1uXGjYBDz3w42Jy36xEshzC+e3quVnPjPZz+DuQ/0yBE50/yN0q97mF9QYaGiqgUw2SNPPfH79vYOIcN+bfE1hc/SUvJD00BhnvENpollmlOGcjWfgkND76qdby3jNhLgsPvYcsW9ZmEswZ/uk4NETQUyo6SAv5FmVFi4fkIEgT2/KASIGCLHXVqvfMwlfawDEo22EDHuiiBODBXMNH16O9dd68bpSJMUZFu+BZg3QuQe+PIe+PeBHH7gZ6NH7dvlY/Yv3Mb7UtlHyDWOBesy6YYXyVgAc8MMCAaK2tfb9/U8UfNdjJGQUncAber82VYUuJ0AN6sun1pjFwngP1h9kZULuAZbqsMid2gcbI+bBCLcH82+Wh7ZJwHV7KObXJ2IKAEoEvIBFBlNMLouwL6KxunoDMZQ2I0w198/7WxfkZoKNEo4WNbdzdAFuC1xmc/qBkpMCDWAH3AgUSTPnCA4ACjmDXKTdn/FCxNT2xwTV6qG17Wl1+jx5HA8jni4IYS83eqgsyK6aEdGseq9OwNG6UZ6yOKA83U6/cNqmWfPpsfAwqU4Rzj4+sY4tWV82h0XC9wy7/z92vIRWoMWtUzMBpkbXt/Q/cO6AFJtH5mvCm1KckakGyfqNqM5odiOB/LbyhRbo0JVyJd2MBoEhKjBdZ3KsP2mGxnd0ruaJeUgP17fbIbvwsQkoiI2faBkphkZFV/L03vJCHCxHof4Oto60RuYK/xX+6bpss+9IwlFPYQxljVo2UbuIPGVRxUdSE/EF+t93f/BRO3f2YmiTOmmF+f0M0kUX/oOxwjsjvxY9c7nEy2XMAuyDHSvs+AGBcnI+uDqnUkODCUZseGAJA4RUYm8B3vz42AjM/cEmrniG1UD16nHMP8cYPJBAq/Q1c0QFeZKGAELGCOOD65nNlLBuSpIRvAhVL8OAdgM+2tdfTph7bHgiViLFP6XoMBtYN+nuMUfJzZZINevHp10KzoP9nW0j7nWzluorM/+euXx2A+avodOSWIeli3jLKuDxqQdzragjbJ4ZAYDJuGI+JgZgkwXZ9MZ9CCAcihvQlUDrq+9bHe5hPdTKyLVs5jDfpSVgU0XOpnF2dEi6ql3957bQnMufcXY5kOVRKC+jlTIHHMNem+WJlBmhgNQz3NEsGyABCEy0pQ/m2Sst+n8whPdQ9aZythxNr8xnM7C/6dMfXy0XE9shdlN6XWtYmwBSUsgnkh7/RcHfr79SfvGxk+u+AUGPLNrplDsYk4k+MBkKebf/M/fPuXJ1s7uuV2zEAlPTbFmXg/m2lh975tXUG5DU7/Iks73+fRvtk8Ztc8cI/BeeejlGPY2vRYQBsH20g3JSuS6TzaIDrrT3gNdCqDcCgCkT+ekTZWzJ77+iCb4JRlyDo6Xqjc7DmsqHyMbTMMVAnrSIzP3TmLbzbZ2P169o770IX3YMyDEpkODoBiZOPdl3PhvDfgh9HCclyISrdXlEfZjv1oqrc/gLyzm4ZWqv13qGB5qTlYHKl7FLieaaqzGUSaJJypprNE1qp0Qa/H7iU579U9yRkBRxhH+4zeSZC0B2XR2Ab3gS2S/RsrcFstyfnF4XC12hM/e+8ROPs5m+Jkmd2blRt3bblr8nvf/tLk0UoPG5yn1dpy6IC00jjRvYOQ72o+kWYIWbBp6trRdWhhNtD/T9ReD1TwA28cPzMOwP13v/3sACof9nuuFaNrBIis0tEofIOuMk6avSoFKMxIfqzV0oLEssW66q6Nic2LCgTzurbL+RMHPwvGyq6YXwHewNp5AUs2lC+f7C3w01pgcgVYtiAI3d+zBn51mTk7kn1i9zhwXWr2g6OEBB+siiCnfEDHpLSnqxVQmpONan0GSuj2HArrub9bl6avYZsI1c9dmQ7mHeWr9j0QJJhIYJUOlcoPlUj4byyNTjVdc9hHwMR7CGZKV5gqe5KN3hdzuD1Zg/V8/vUjfW6HkuYbboGIT5qwDbwKgFhdiZcBhBgR5cBd2bsxMvyzMrpjfIACgMBn0Xp91PEwYy+2bgPstP7TxLjDhQu62NeXKo1J2sUJz0qsYbNsw7lvuwwJLhH++LOYsQDXZ/0N4EmurQW7AbqUcwDzvTs3Df3SlMFp+nv3RHfJJxlfYPbT5dZIsmQN7Qf2JUEAVrxHW2IEb34W6PYz9F6uV+xjN3yYBAgwlAgYg0FriO2ga8QeifYYTHtGQ8QYuNi/+CWsp2SLlom2lw1KSiWjx/P1fCMAPfxXtsFfqvq4L3GYrRN1i5PAnGt21AlxOt/r36uLN3PzrfRfQLNkzr1gITCAWCYMFeY+Mx4Mo+syl4uWbW9sLZCz/+h0gDDmfBAEPUeMp+uzD/3d1h/3YHWsJWAqaQd67kvADwyJhzq/gVTbFc6w9p49Rpy/wsLCEcM/ZQukHQaIqkpI3qz9f+ropP/PmaSPQ9d/+Id/OPn1KOtFGQcdi81w4tz5UQPlvFB5NpeFsMCyJxcmwCqhMEZZNcGWeqi2Sg/DYqP3BS1gyYGubgTKBkyU1DjgQf9mOCNL6MFwmurEDG97VDKticW1KKhyJQ3gg+iU5oPgF+PVvsgw0/3kZDg49Xytr9pyZYfEcBwYvY4FP9NcIYd6Xrl6ZfLwzrWTB7evmXy/4wYwapfaEHvKjB0DQZ8Ckd/fIaqjlTz6mfEKUCtjxj7LkGbfMS0/HUywLbi4BiVGL4Zv0xq6ZTT7J9WgrQ3B4uq0XAvvXDB568y5UbI51tEQNo7M4oOCJScJAAiyuvIwA4zw+HtXJ9/5ydHRWu6sOowcdsu628ycmGzTAYiyTJS0TiozRUa7bBuOU2LEHAK4iaWQXQrc53KMGwM8BqbJyp1VxkHTKRjQprNG0ACsNoz5KGk1ViwcZSwnsdtkKG+2oVwha8Y4unalHyU8QzCvX+zssXc76DdAa67H8/uPN7BSC/GVkSFiOK3FgsDhgq7dZOwTPU/lRxmsjATL+VrlUno0oliaL47vVranrOlzdWgCGhzJgznMpx7cMRwvXRlQxckBi9vT2BzKLj4uYDl090CMm10LbGGiiGi9H4ZUWz96W4amfPKDdC4CDvvjCHSj+X6PJ1C1ZACfwWoAQYGCj1tHrILnwLZlI4aT3oj1EmD31n0lMDhUVqCek+2ivu0Nzx0zAyQAlBg0jpTz+fuX3m4d3xk/N1iCrkcgAfAlE/c0G8s9EIfSByg1mTVzI6CPUeQICVABgTznCDa661yfY2cOHO9A2XyCRMqauf7B1LT+5+rQ3J7dOC4gydhkVj5Aqf31utR++NqR7OHDEUTHERklDAJhPzLsUvfYtEHD4bCCkk7bRnp0bcCc+7ungHEoFtLX2beutnntzwONLTEAdHHPEti5kj1zrhov+CeAz3mA7F2y5fBi9n4hn+AZDbaje5FsFBe6VexGgwzTYcps7w9Q3h9AMjn8pTrk+tLY25pXlASPBkgwXuzcLDn7RcLoufCX++5tVlblGNmul6npEhL7QzA9f7n7S6A/Du/u306H96yV0wEYgFcm7jwzzxzwoe1SKhFp+EHlC75V0ug9+Q8gCVtf6BzBetfWNQ193B4rl260cQD8uQAqyTOSxAGox892LmD+CwuBnWSLkgvPx/N6p3EUwA0f85VYPGsKvBwviTkTeMZ8qBqcy4dJdL74qW/i6wGzIVpvhYH709kTEMJH7R6Ha98xZpPlKMZQUSXU/QFvf7MxYOxkv0OTOSJw90WbiJkxUuLN7EwZkx7We7oWCRC/Oq/Dis+m81He+uRTCQRATXRu7pA9HkPb2lrnT0suVUuABYFbAgXw2j+ABZ/GblRWJD9ABv9LV2vt2YwSlGQFcyOueLb0WOJhPz4SuSkwmrLBmCh+CxgQ7zx/YM7nYn7YrUQA0/h512U9rMEYUJrN31EcJab+qLhOXM0eaHQlXeyfX3btKip0SnSoYhHA6sBw920d7fX+cySFQFymPn7Hf/C9VpNtbC5xdSzWoaofPlc1R8mMbXaLA+S0rAP4TckIeuFp1cdaWfuN7WdJt/hEa1yY7Drbga2pn2HXfIW4RsvLVsQeAMoeU5XB/FrT//i91ya///u/HyiUtP1sr8TyLvGffp061ZkpGzf+0z8w852ZFZhZgZkVmFmBmRWYWYGZFfivYAVOnjw52bBhw898pf9FkCQjPXPmTCzSopBY0HbmNbMCMyswswIzKzCzAjMrMLMC/xWtAD7oahKJdevWjcrNz3rp/0WQ9LO+0czPzazAzArMrMDMCsyswMwKzKzA/59WoKrgzGtmBWZWYGYFZlZgZgVmVmBmBWZW4D9fgRmQ9J+vyMy/Z1ZgZgVmVmBmBWZWYGYFZlagFZgBSTNmMLMCMyswswIzKzCzAjMrMLMC/8gKzICkf2RRZr40swIzKzCzAjMrMLMCMyswswIzIGnGBmZWYGYFZlZgZgVmVmBmBWZW4B9Zgf8X6T/QCxt3dRIAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "9ad75b45", + "metadata": {}, + "source": [ + "## 2. Get data, labels, and pred_probs\n", + "\n", + "This tutorial just loads `labels` and `pred_probs` for our dataset, which are the only inputs required to find label issues and score the label quality of each image with cleanlab. For your own dataset, you will need to properly format its `labels` and train your own semantic segmentation model to produce `pred_probs` (pixel-level predicted class probabilities, which should be out-of-sample such as computed via cross-validation). Our example [training notebook](https://github.com/cleanlab/examples/blob/master/segmentation/training_ResNeXt50_for_Semantic_Segmentation_on_SYNTHIA.ipynb) demonstrates code to train a Pytorch segmentation model on the SYNTHIA dataset, produce such `pred_probs` for each image, and save them in a `.npy` file (which we simply load in this tutorial via `np.load`).\n", + "\n", + "Here's what an image looks like in the SYNTHIA dataset. For every image there is a `label` mask provided in which each pixel is integer-encoded as one of the SYNTHIA classes: sky, building, road, sidewalk, fence, vegetation, pole, car, traffic sign, person, bicycle, motorcycle, traffic light, terrain, rider, truck, bus, train, wall, and unlabeled (annotated for pixels not belonging to the other classes). \n", + "\n", + "![image-2.png](attachment:image-2.png)" + ] + }, + { + "cell_type": "markdown", + "id": "dc888c2a", + "metadata": {}, + "source": [ + "In semantic segmentation tasks `labels` and `pred_probs` are formatted with the following dimensions:\n", + "\n", + " N - Number of images in the dataset\n", + " K - Number of classes in the dataset\n", + " H - Height of each image\n", + " W - Width of each image\n", + "\n", + "Each pixel in the dataset is labeled with one of *K* possible classes. The `pred_probs` contain a length-*K* vector for **each** pixel in the dataset (which sums to 1 for each pixel). This results in an array of size `(N,K,H,W)`. \n", + "\n", + "Note that cleanlab requires **only** `pred_probs` from any trained segmentation model and `labels` in order to detect label errors. The `pred_probs` should be **out-of-sample**, which can be obtained for every image in a dataset via K-fold cross-validation." + ] + }, + { + "cell_type": "markdown", + "id": "6c2202be", + "metadata": {}, + "source": [ + "**pred_probs**\n", + "dim: (N,K,H,W)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07dc5678", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:52.591867Z", + "iopub.status.busy": "2024-05-24T23:51:52.591576Z", + "iopub.status.idle": "2024-05-24T23:51:52.595424Z", + "shell.execute_reply": "2024-05-24T23:51:52.594889Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(30, 20, 1088, 1920)\n" + ] + } + ], + "source": [ + "pred_probs_filepaths ='predicted_masks.npy'\n", + "pred_probs = np.load(pred_probs_filepaths, mmap_mode='r+')\n", + "print(pred_probs.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "f2eff12e", + "metadata": {}, + "source": [ + "The `labels` contain a class label for each pixel in each image, which must be an integer in `0, 1, ..., K-1`. This results in an array of size `(N,H,W)`." + ] + }, + { + "cell_type": "markdown", + "id": "1e625c33", + "metadata": {}, + "source": [ + "**labels**\n", + "dim: (N,H,W)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "25ebe22a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:52.597453Z", + "iopub.status.busy": "2024-05-24T23:51:52.597153Z", + "iopub.status.idle": "2024-05-24T23:51:52.600756Z", + "shell.execute_reply": "2024-05-24T23:51:52.600219Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(30, 1088, 1920)\n" + ] + } + ], + "source": [ + "label_filepaths ='given_masks.npy'\n", + "labels = np.load(label_filepaths, mmap_mode='r+')\n", + "print(labels.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "9b71eb4a", + "metadata": {}, + "source": [ + "Note that these correspond to the labeled mask from the dataset, and the extracted probabilities of a trained classifier. If using your own dataset, which may consider iterating on memmaped numpy arrays.\n", + "\n", + "- `labels`: Array of dimension (N,H,W) where N is the number of images, K is the number of classes, and H and W are dimension of the image. We assume an integer encoded image. For one-hot encoding one can `np.argmax(labels_one_hot,axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W)\n", + "- `pred_probs`: Array of dimension (N,K,H,W), similar to `labels` where `K` is the number of classes.\n", + "\n", + "**class_names**\n", + "dim: (K,)\n", + "\n", + "Some of our functions optionally use the class names to improve visualization. Here are the class names in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "3faedea9", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:52.602760Z", + "iopub.status.busy": "2024-05-24T23:51:52.602364Z", + "iopub.status.idle": "2024-05-24T23:51:52.605239Z", + "shell.execute_reply": "2024-05-24T23:51:52.604722Z" + } + }, + "outputs": [], + "source": [ + "SYNTHIA_CLASSES = ['unlabeled','sky', 'building', 'road', 'sidewalk', 'fence', 'vegetation','pole','car', \\\n", + " 'traffic sign','person','bicycle','motorcycle','traffic light', 'terrain', \\\n", + " 'rider', 'truck', 'bus', 'train','wall']" + ] + }, + { + "attachments": { + "synthia_errors-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAMRCAYAAADFlIE5AAAMP2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAghICb0JIjWAlBBaAOlFsBGSAKGEmBBU7OiigmsXC9jQVRHFDogdsbMoNuyLBRVlXSzYlTcpoOu+8r3zfXPvf/85858z584tA4DmCa5YnIdqAZAvKpTEhwUxRqemMUhPAQK0ABUYAnsuTypmxcZGAWgD57/buxvQG9pVJ7nWP/v/q2nzBVIeAEgsxBl8KS8f4gMA4FU8saQQAKKct5xUKJZj2ICuBCYI8Xw5zlLiKjnOUOI9Cp/EeDbELQCoUblcSRYAGpchzyjiZUENjV6IXUR8oQgATQbE/vn5BXyI0yG2gz5iiOX6zIwfdLL+ppkxqMnlZg1i5VwUphYslIrzuFP+z3L8b8vPkw3EsIGNmi0Jj5fPGdbtZm5BpBxTIe4RZUTHQKwD8QchX+EPMUrJloUnKf1RY56UDWsG9CF24XODIyE2hjhUlBcdpeIzMoWhHIjhCkEnCws5iRAbQDxfIA1JUPlslBTEq2Kh9ZkSNkvFn+NKFHHlse7LcpNYKv3X2QKOSh/TKM5OTIGYArFVkTA5GmINiJ2luQmRKp+Rxdns6AEfiSxenr8VxPECUViQUh8rypSExqv8y/KlA/PFNmYLOdEqvK8wOzFcWR+shcdV5A/ngl0WiFhJAzoC6eiogbnwBcEhyrljzwSipASVzgdxYVC8cixOEefFqvxxC0FemJy3gNhdWpSgGosnF8IFqdTHM8WFsYnKPPHiHG5ErDIffAmIAmwQDBhABlsGKAA5QNjW09ADr5Q9oYALJCALCICTihkYkaLoEcFjAigGf0IkANLBcUGKXgEogvzXQVZ5dAKZit4ixYhc8ATifBAJ8uC1TDFKNBgtGTyGjPAf0bmw8WC+ebDJ+/89P8B+Z1iQiVIxsoGIDM0BT2IIMZgYTgwl2uNGuD/ui0fBYyBsrjgT9x6Yx3d/whNCO+Eh4Tqhk3BrgrBE8lOWo0An1A9V1SLjx1rgNlDTAw/C/aA6VMb1cSPghLvDOCw8AEb2gCxblbe8KoyftP82gx/uhsqP7EJGyUPIgWS7n0dqOGh4DKrIa/1jfZS5ZgzWmz3Y83N89g/V58Nz5M+e2HxsP3YWO4mdx45gDYCBHccasVbsqBwPrq7HitU1EC1ekU8u1BH+I97AnZVXUupS69Lt8kXZVyiYLH9HA3aBeIpEmJVdyGDBL4KAwRHxnIcxXF1c3QCQf1+Ur683cYrvBqLf+p2b8wcAfsf7+/sPf+cijgOw1ws+/oe+c3ZM+OlQB+DcIZ5MUqTkcPmBAN8SmvBJMwSmwBLYwfm4Ak/gCwJBCIgAMSARpILxMPtsuM4lYBKYBmaDUlAOloCVYC3YADaD7WAX2AcawBFwEpwBF8FlcB3cgaunC7wAveAd+IwgCAmhIXTEEDFDrBFHxBVhIv5ICBKFxCOpSDqShYgQGTINmYOUI8uQtcgmpAbZixxCTiLnkXbkFvIA6UZeI59QDKWiuqgJaoMOR5koC41EE9FxaBY6ES1G56KL0NVoNboTrUdPohfR62gn+gLtwwCmjulj5pgTxsTYWAyWhmViEmwGVoZVYNVYHdYE7/NVrBPrwT7iRJyOM3AnuILD8SSch0/EZ+AL8bX4drweb8Gv4g/wXvwbgUYwJjgSfAgcwmhCFmESoZRQQdhKOEg4DZ+lLsI7IpGoT7QlesFnMZWYQ5xKXEhcR9xNPEFsJz4i9pFIJEOSI8mPFEPikgpJpaQ1pJ2k46QrpC7SBzV1NTM1V7VQtTQ1kVqJWoXaDrVjalfUnqp9JmuRrck+5BgynzyFvJi8hdxEvkTuIn+maFNsKX6UREoOZTZlNaWOcppyl/JGXV3dQt1bPU5dqD5LfbX6HvVz6g/UP1J1qA5UNnUsVUZdRN1GPUG9RX1Do9FsaIG0NFohbRGthnaKdp/2QYOu4azB0eBrzNSo1KjXuKLxUpOsaa3J0hyvWaxZoblf85JmjxZZy0aLrcXVmqFVqXVIq0OrT5uuPUI7Rjtfe6H2Du3z2s90SDo2OiE6fJ25Opt1Tuk8omN0SzqbzqPPoW+hn6Z36RJ1bXU5ujm65bq7dNt0e/V09Nz1kvUm61XqHdXr1Mf0bfQ5+nn6i/X36d/Q/zTEZAhriGDIgiF1Q64MeW8w1CDQQGBQZrDb4LrBJ0OGYYhhruFSwwbDe0a4kYNRnNEko/VGp416huoO9R3KG1o2dN/Q28aosYNxvPFU483GrcZ9JqYmYSZikzUmp0x6TPVNA01zTFeYHjPtNqOb+ZsJzVaYHTd7ztBjsBh5jNWMFkavubF5uLnMfJN5m/lnC1uLJIsSi90W9ywplkzLTMsVls2WvVZmVqOsplnVWt22JlszrbOtV1mftX5vY2uTYjPPpsHmma2BLce22LbW9q4dzS7AbqJdtd01e6I90z7Xfp39ZQfUwcMh26HS4ZIj6ujpKHRc59g+jDDMe5hoWPWwDieqE8upyKnW6YGzvnOUc4lzg/PL4VbD04YvHX52+DcXD5c8ly0ud0bojIgYUTKiacRrVwdXnmul6zU3mluo20y3RrdX7o7uAvf17jc96B6jPOZ5NHt89fTylHjWeXZ7WXmle1V5dTB1mbHMhcxz3gTvIO+Z3ke8P/p4+hT67PP5y9fJN9d3h++zkbYjBSO3jHzkZ+HH9dvk1+nP8E/33+jfGWAewA2oDngYaBnID9wa+JRlz8ph7WS9DHIJkgQdDHrP9mFPZ58IxoLDgsuC20J0QpJC1obcD7UIzQqtDe0N8wibGnYinBAeGb40vINjwuFxaji9EV4R0yNaIqmRCZFrIx9GOURJoppGoaMiRi0fdTfaOloU3RADYjgxy2PuxdrGTow9HEeMi42rjHsSPyJ+WvzZBHrChIQdCe8SgxIXJ95JskuSJTUnayaPTa5Jfp8SnLIspXP08NHTR19MNUoVpjamkdKS07am9Y0JGbNyTNdYj7GlY2+Msx03edz58Ubj88YfnaA5gTthfzohPSV9R/oXbgy3mtuXwcmoyujlsXmreC/4gfwV/G6Bn2CZ4GmmX+ayzGdZflnLs7qzA7IrsnuEbOFa4auc8JwNOe9zY3K35fbnpeTtzlfLT88/JNIR5YpaCkwLJhe0ix3FpeLOiT4TV07slURKtkoR6ThpY6Eu/JFvldnJfpE9KPIvqiz6MCl50v7J2pNFk1unOExZMOVpcWjxb1PxqbypzdPMp82e9mA6a/qmGciMjBnNMy1nzp3ZNSts1vbZlNm5s38vcSlZVvJ2Tsqcprkmc2fNffRL2C+1pRqlktKOeb7zNszH5wvnty1wW7BmwbcyftmFcpfyivIvC3kLL/w64tfVv/YvylzUtthz8folxCWiJTeWBizdvkx7WfGyR8tHLa9fwVhRtuLtygkrz1e4V2xYRVklW9W5Omp14xqrNUvWfFmbvfZ6ZVDl7irjqgVV79fx111ZH7i+boPJhvINnzYKN97cFLapvtqmumIzcXPR5idbkrec/Y35W81Wo63lW79uE23r3B6/vaXGq6Zmh/GOxbVoray2e+fYnZd3Be9qrHOq27Rbf3f5HrBHtuf53vS9N/ZF7mvez9xfd8D6QNVB+sGyeqR+Sn1vQ3ZDZ2NqY/uhiEPNTb5NBw87H952xPxI5VG9o4uPUY7NPdZ/vPh43wnxiZ6TWScfNU9ovnNq9KlrLXEtbacjT587E3rm1FnW2ePn/M4dOe9z/tAF5oWGi54X61s9Wg/+7vH7wTbPtvpLXpcaL3tfbmof2X7sSsCVk1eDr565xrl28Xr09fYbSTdudozt6LzJv/nsVt6tV7eLbn++M+su4W7ZPa17FfeN71f/Yf/H7k7PzqMPgh+0Pkx4eOcR79GLx9LHX7rmPqE9qXhq9rTmmeuzI92h3Zefj3ne9UL84nNP6Z/af1a9tHt54K/Av1p7R/d2vZK86n+98I3hm21v3d8298X23X+X/+7z+7IPhh+2f2R+PPsp5dPTz5O+kL6s/mr/telb5Le7/fn9/WKuhKv4FcBgQzMzAXi9DQBaKgB0uD+jjFHu/xSGKPesCgT+E1buERXmCUAd/H+P64F/Nx0A7NkCt19QX3MsALE0ABK9AermNtgG9mqKfaXciHAfsJHzNSM/A/wbU+45f8j75zOQq7qDn8//Aj3efGJbY0XcAAAAlmVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAhKACAAQAAAABAAAC0KADAAQAAAABAAADEQAAAABBU0NJSQAAAFNjcmVlbnNob3Th9RGUAAAACXBIWXMAABYlAAAWJQFJUiTwAAAC2WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTM0NjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xNDY4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MTQ0PC90aWZmOllSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpYUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WFJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgo1033FAABAAElEQVR4Aezdd6wlyVU/8J6wuxM2J3sdZ702NjhHsI2NyTnnbBEENhIC/gELIZCQ4B+CBAgJgYXBP5OzTcawYDDgnI3Drsfeddj15jQ7+Xc+p+95U+9O3xdm3ns7O1s107e7q6tOnfqe2NV979t2PMrQS0egI9AR6Ah0BDoCHYGOQEegI7AmBLavqVVv1BHoCHQEOgIdgY5AR6Aj0BHoCCQCPYHuitAR6Ah0BDoCHYGOQEegI9ARWAcCPYFeB1i9aUegI9AR6Ah0BDoCHYGOQEegJ9BdBzoCHYGOQEegI9AR6Ah0BDoC60CgJ9DrAKs37Qh0BDoCHYGOQEegI9AR6Aj0BLrrQEegI9AR6Ah0BDoCHYGOQEdgHQj0BHodYPWmHYGOQEegI9AR6Ah0BDoCHYGeQHcd6Ah0BDoCHYGOQEegI9AR6AisA4GeQK8DrN60I9AR6Ah0BDoCHYGOQEegI9AT6K4DHYGOQEegI9AR6Ah0BDoCHYF1INAT6HWA1Zt2BDoCHYGOQEegI9AR6Ah0BHZuFATHjx9fN6lt27atu8+DvUPhtGjudb3mWeeL2mu30rWi0/drQ6Dw1rqOt29/YO8zi4+WJzJ/IOS+Ei/ttQeCt9Uk3PJXbdVN8Vr189fU11Z6Md+maD/Y9ua1qKx3jotorZfOIn5Wq2/Hr+OS12p913O9aNvban72dbweehvVtviaoreIr0V9FrWfoj1VN0+3zk9HHkXDeHV8OvSm+G7raoyqq/PNGrPoG6+ON1OnaoytGq9wfLDvtwVwi73mg312Zyj/R48eHY4cOTKcc845w0oGqN0999wzHDt2bDj//POzfU3JtcOHD6eT3rFjx7Bz54bdC9UQD+k9+dxyyy2J60UXXZT70w0kpwvooUOHhjvvvHMg7927dw/nnXfeivpzuuOt1B8+t99xx7Ajbi727NkznHvuuQOdpKv4OtML/u+///60ob179yb/xbM53HvvvWlv5rIk93CVR2O7/bbbhvvuu2+4/PLLUw76LbUpIn1/RiBATnwoOe7atWtTdJMfvv3224e777479eHiiy9OmzgjADiDmJBqHDhwIG2HvcCJLzudwlY//elPp/1deumlSW8zbdF4NQe8iw2nO4eV5m88+mvbCr0ynrhHVpdcckn6wM3Ec6W5PxiunXbWJRDdeuutw20RVAQd521OXuBLFG0SPY5MQmgTvCSSZ3upZPiTn/zkcIxyhvOgoLCowjBheUckJnfddVc6GoYDzwsuuGApUYGXeo77YQ972PDwhz88jauwLnp9v3YE6C395YxhTwYf+9jHhsc+9rHDs571rMT/gcBXwnzTTTclbxybDU9XX331cMUVV2xpAi0ZufnmmxMfeoqvRzziEcNnfMZnpP59/OMfT/yuuuqqTC7Z9plQKnCTLbmyM/ZjPgIGPusGVaIlsTbPxz3uccPjH//4pZun+w8eHD7xiU8M73vf+3KeT33qU7ONwPZA6MZGYnsw5mbO9A0+/BXc+Bo3CpdddllitNo84SkW0FN2hA6/L8mAsSSnAvNG8l+0jE83yZo901HyvOaaa4bHhN2stmhRdFbbw4YOGYtPL7tQzyez0cc85jFbmkibO9lJ5snAvOFfRex1402edNZNL9m4MScrc3ETUDGczNjDlVdemX30X03+NVbt2Rh+6FXt0ecjnvKUpyzdgFb7tezpKrkWvY9+9KPpC1/wghekn14LjfW0oUfwhJG9uZDzox71qOEzP/MzNzSBJkNy46fYkL3xYPbsZz87dWo9vK/Wln7QGfZiHHO84YYb8sbgec97XtprX5xbjOJpJ9DAf9Ob3jT88z//8/C2t70tHQkFUMrJUHgGw7HYBP8nPOEJGXg5NtcIiTGv10AXT+3MuUJJKeb//d//Da977WuH8yMZ/qIv+qIM3BJo1zmx6667bviP//iP4b//+7+Ht771rcP73//+ZZO4MrB74hOfOFwVCfOnPvWpDAbf9E3fNHz+53/+cOGFF26oIS8b+Cw/oad09vrrrx/+5m/+ZvjP//zPPHb+ile8IpMkq6z0cysLvvDwp3/6p6kP9IcD/8mf/Mnha77mazIR2UrnJmj99V//9fBf//Vfw3ve857U55/+6Z/OYCwx4Qf+8R//cficz/mc4fnPf34GF/UPlE3Dj21JdPbv3z/8y7/8S9oWO3vnO9+ZonQTIni4QRWg3BCwxf/5n/8ZfuZnfibPJX6SCcnFtddeO7w2bPiDH/zgwPa+6qu+anjGM56x5bqx0XooeMLn3//93/MGQeCWODz60Y8evvEbvzH9lRuG1fSNr6cH9MReYgk/CTid+IIv+IJBoiOJ3oxC3u94xzuGv/iLv0gdpaf79u0bXvayl2VScHGsGG5EsXjx4Q9/OPF6wxvesHSj8Pa3vz116Yu/+IuHl7/85Zm408OtsAE8SebZJz/Gd0iKjc13kYGk9eu+7uuG5z73uRmL1dNrfLPdf/u3f0t74Q8l2W4iv+u7vmv4wi/8wpzXeldbJYF06o1vfOPwlre8ZbjxxhuHZz7zmcPXfu3XJjYS+rXio51CV//hH/5h+Pu///u0Qze0sH7yk5+8KQk0TNm9uGwO/MVnf/ZnD9/wDd+Q+Ijha53DaronURbb+Z/Xve51qctok5uFMjdlG1n4OosCsGT/fKO843u/93vTbuhAL4sROO0E2h2qpI6QrS4QBAfGaAWXWr3j2Ci+IHxdGDal114i/fSnPz0VUiKtbIWzWQzJxl5hEOb9v//7vwNHCy93rebqGC6cjMTZdcorcD3taU8bvvM7vzONhoGic0sY7gc/9KFMpjgiys1BClq9nB4CEj0rLc95znMyCL33ve9NgpIvMnqgCp4EO6u7kjb82Di+CihbxZubNEFK4sDGFbwI3AKra3Rd0qIOblanJVAPRMGD1Sk3o26KJM14IuNv+7ZvS3nXDayg6AaF/Qko7Mtc2Fbxb44e2Trno6xcs+GzoZgLX21+VtYkoG7WFImVG4vP+qzPygR6KlmoOgsq73rXu4Y/+7M/yxt8Cwf81Jd92ZelHlswkTRtVpEQ7ouE2eqZJ0jGslLJp/KhG2Ez6NAXOvX6178+E0ExDG0riGzVvLXbykI/xVRy5M/+8i//Mm9g8EEG6slB/HHDWAsCFgfI5Uu+5EtyxfyP//iPUw/cUEqc2TU9P5W4zGfID9xI7Y+bWPZIr+rpz3rwqfHZLJof+MAH0rbRcBOwWX7azR7Mag58gznQdfLeyEImMGODZCJPklAbjz/b6OKG2Pzor3Eq7vF9xtsIe9lons8keqedQHsMJEgK9JywO1nBXbEy8/Vf//UpIMKggO6KtZFQuksmQKsS7nitXLnDWm2V40wCcDVeOG6B2124BOjbv/3bM5C4m+TwKK2Vmte85jW5auORsRUaKxj22lUC7U7YHbCgjq7COW60Ea82p7PtOscsQMDaygJH70ZQ4dDKcT8Q83ajJRmQ3L373e/O5O6B4qkcLV6sxuCDDsOHHxBoBW56ild6KlALBNpsJY6CqZtLSY5k0GqOIPjiF784EwXJRD35Yj+16iNgVOLIttogwg6f9KQnJQ0Bjn/j9+DwYC98t5t2K45uEDxRrCeJkkR2ARfzJfP5QrYSCskFP1dt1UnKP+/zPi/1GIabqQdkYQ7k5onoh2LBgUw3Ukbm9JGPfCT9thsuT4PEMLgYR5JY8XAep808Fzcl0Dbj403sESvYLn3F5/yqopsMT4XpNBpWItHgdzwp9dT4VIux2B0e4EIm5TNOVQ/oqqch/LSbBKXVSfI+VdpT84SFFWBJujHf/OY3n/YcpsZRB3+ysrDIf1m5dyOofiPnVOPz155MuFmykPd3f/d3eanFs9r2/ckInHYCXSQFUI7SvgrFk5TstWITld694twYplU1xWqV1SyrWj/yIz8yfOu3fmvSKWVZ7Q6o2iWx+Njo9kXXfn6s9tr8MT5skgmrMYxB8HanxyGhxcm7w3zlK1+Zd34cDWwqyRbIKLi2cLUKJBAJ/K553Cb4tysd650/vk+lz/x863wlWvP4LWrbtptqs9r14qVtp26KVrV1TfDjnDkwuspxrdRvJXr6zY+fxGYfK/Vt++HJCpFXDTi6qZXnRbRaOoZda7spPvVFT7CFD17onvqiy+nWI3867zG+lSJ+QCDdKqeMH8FOAoEHySDb+ZZv+Zbhy7/8y/O9Zqs8FZTwxU95FQqv/Bi7ZFe2mp/kj/+SnJADG6xXe6pNi53jVgZTbVa7XvTaduqmaFXb+f183/nr7bn5kC9slHq6JRG1OuVGE0ZTRQC2GCDJUKpvJQV0Z57v+fPsOPuY4nul9tWXPMmGnyVLfM2XKTpT47X99NHG6hwsrDQbB150g45/9Vd/deqGObeJ6tR4aE+Nuahty8tUP9eLRxi4ecWf13Hg4LhssNoVTfTEGHbBFsQYNlPxfC08FS37lj802Ax50IlFtBbVz9Mr+dJD2LuZqb7tvuWhPW75rPZtXR1XH/taYDEPvmVRmafnvOjo0x63NOb7kQMZiEee8rk+36btv+h4pT7FS8UY+iruKSv1W3St6M3zsqh9tZvvt1L7+bZF44Hab0gCbcKEwGnYV5H8MZ6dYczqnVcA1va7v/u7c3VIIsgI3G1ZrXI3xDCU9QK22e1rbmvZexRstd1Ngrv/z/3czx0e+chHJk71zq2VeO87WbGRHH/FV3xFtp0KUvCj4LCDkT6cSRvk1zv/U8F4pbmvZ/y1tF2tzWrXW15XalvXYAtnW5W6Vue1X1Rf11far6cv22FHnHhbikbt22tTx2tt1/atPrWXKOADP1XXtpeASTI9SZFMeR9TIKf7W1Xw5Yb8b//2bzMRNr4VHTftVskFpXneydtNgfczJUieGKlzk1tPeMiB/7KdSpkfc57Gatfb9utp2/Zb7Zg/Me/y45Iuj9sl0FbzfTluyjeh67UGPlxf/o5PV/DKrqbKeuex1vbmQUdbOy5e2v0UT4vqamz6YEGEnpgXm6AT7GLeRk9lrBpnER9rrcebTXyGwyIZtPS0YR/kXjeHpzKHliZ9MD554MX8puY4VdfSaY9rbmhW0b/0tupW2691THSNNSXfdox5evPnbdv2uG1Hd+kTOZgnH3SqpaW7Eo1WRsZXFvVdVL+I/ma3XzTuVtRPe7VTHHkeqKk7iapzJ+f9Kk7X42DGaiVagslJu2P2qIzz9j6ZO1eOm6DdUavnuOouTb1E0rV6H8o5Z0cJKaRAWitP6tE0Rr1Xip5xPW5SVyso+qp3h+Z4tWKOxvaOlneb8bov3str3weVQHtX0OMgbW2CvEfLkuRyNFNjMSyr1XivgFfYqzN/e6tkRdvc8G/+5XQYJj7MFcZouXFRV5hLKqx+chwwXlQ8MkfH2Obr3BxsxoO98Wts2ApC2lc7TlY7WMMZDfK04XWejrkJYmiQGb4Vfc0TnUqW9MdXK1eYKN6RVLS3wRJPbSl8qw7/MCp69EkfGMEKjuYC07avdmRjTHvn5qGYH37xXnzXePbzPOlr7vAxf3jRdeOjIQg61871akcv1BWeZNwGS2NVH/TNEX7mAWOP6fFe/LTzM3/4Xx2PhCWrbBt9rz7Qo3LOxtiMgifzk0C/+tWvTp4fHitfXkFggzApvqfG52PYlpVqfghG5qcPmbe+wTX07MmTfhVtMih/4xh+pe+wLRmxCZigXbqMjnP15EInyROu+pbNaoeudvhwjYxdx7M6vkRf562cpube1pkHmcHA8f5YVXZTYZWebI1Z9IonK7LeN3dzr43X9RTtCpcag67is/wMG6BTCr7ZDxugv+04MKKPZIyGsV1v8eZHarzao6sdvIyJDvyUig9whnc7t2wQHzVHcrb6DA90yN4xvaHnJXN09NGGTMwPv7ayEfM0JhoKXvFHx2x0QOGnXEPHHMhT/DTn1Upht1q79rr5wwSf1R8vcC++8GOOeIClenPDa2HRyq6lP39c8y4/Diu6YY8+Gymc8NQWGCvGhrWnhuiU/ZQN4JVeVNFPG7zbHKNhvtrSv7JNY+KxNjS0K2yKpv4wKjzKv8Ok4hp+4FIFTWNbDNO39ES9V17UVZyqPmvdGx8WcCmfj275LXNEuzAV8XKOEwOohxma5oceXSWn8j/owa6dn/kUHmWzaBnT2HTZ5hx+5ROMo68xqz29smk7j/0Ey1tSdUKSGzCcia5WauKUWUD1xRQrr1ZiOVx7701zbs4lmXXtm7/5m1P43k/1Hqb3oF760pfmu3uE4R1rq9lWQRzbFM5GMBdEfRNcUCHM+kkq72UZQxvvYXt8a1VYokCAHkN7/UJQleSuVuBA8T1C9vhY4uyxWDlK/RmNFRrfeoWFd6ys2lFCCrkSlq5rS/EomkdjlAqvjM7Kn+Td6yOcLhzw4P23F73oRfmYXVtGa2VJ0DNfDsM7b/sjIMARPt/xHd+RXwYVEKcMmcS9nsOBwlHCZO/cZh6C8Atf+MJ8r9sNEh2ArffX/vVf/zXPGSOM4C9I4xeG+PAYnhHqS4a+7OLY3KxwukkhczdgHjvqS6dsXpmBuxs1gc9cOVl1+yKhgoN3/vCpvV9WgC9jXlS09c6sMemNZI0+cVYcPR35iq/8yuF5seLpvByKsei1d0TpMBmRDTlwrF5/sAIKq+J7EQ8wpEN0DIaedNwZjnJvODArwG5OfVmOPuHLUxDfXMez8Tm6etrj2+R0X4JGjxSOjB1oT6aSPzIyLscG+0Vle7RxY4t+/TpP2Z8kYzMLuUly6C6Z41dCR6/4G0XdfCl7syeH7/u+71sK3vQB1mTundLSId/XQBfGvs9B7+EHJ3Mnx5e85CX5biletCEr19kTn1K/buDL1RJUq7zwplP7Qj/5BTToJr3GB7/ouxDeM6c7goobb3L2rjf9lnzyrX5BwXcpJCJT857Hoc7J2I2ElWSyR7NetcMHLEuvteXL6BUe+Cb6/Ad/8AdFbtkexuXffXGav/GaBRp8TN3AsAX6An9FH77tf8LmPhp9zJ1N0VtY8e2w4seqmLPxSr74s2gBazYBT/Kjn/WFOTZbYxYd9sC3/vmf/3l+X4Vvgot2v/7rv554k6knLei4+WAj/Kp3yPli+kP25AVDT0TogHeP8QdH/gBfdIyP5KfQ1Q8d4/Hh5Fr91iPXms9a9/gyNv3kY+gAeYlZMKMH/C8/qC3/651wv9xinvM4To1b9N8Sc35bbORqDPGDnxcPyJVdTsUgNMlVrsA28ANHtihe8On0mC4VVuROp7XlF8UG8hSryM6XLcVL8yufWH2n5mDuYjEfUHbMRumm/IENmoNXNOmn9oq44WfjPC3Tnt8yfziyYTZhX+2nxp6q4wfNj/6xMbpLv2x8M3/hdSOxqr2xONkzjtSND2Mxi4+im3TCGObj+xPyIzrBnsruxG140B08OFfMiZ9gL/QZTmxKPkSX2IC2ZGIu2nu1lVwcr0WvRs4393NDE+iVFGxqGpyDpIkzoXgAJBCOx2oGR0fB7RmGIEA4rkkcFIGGkTE2hiDoUwhfwpMkMKRa6dXPGJRZ8ommYEXAAmMFXQJDQxsJpnqCrLtH4+F9Uank3FwoBF4kua3Qy4Dxy9EwGIl9q8yL6MOZk6d06HAq9pRawsnRMnwBVDuBzTwEcM6KwrqpYJyMAcbwZwicAP45e85S8sE4zHnSeYVh3Ri4Mn7jwlcfzgqOeHJNYOcYJOjkzQgYL958cUGAwZefWIIHp1UyMAcOTiDRlxzKOeCbU+C0GXDdEJirgEtO6DFeyaCE27xhx4AlAZw13SDvL/3SL10y/hb/cmBwLieCFhzJ13zKwdBX+nhTYMhpkq3XmO4ObPBARpymoO86nOgiXfCLB5It/SXR9H2+4IUO2PBDx9kDbDhoAQBtc+eEjEnHzZUDMke4m8c//dM/JX5fGQl/JVp0nQOT/MINPfprPPI0bzaxsEQ7+ieRN+b1gTf+6ONmJ9D0G34wUWAFQ8GXjBYVc6tCv2xtYQ90EJZ8huBB7wRmdiNIwvPaa6/NBN78JdhWnpRzw3dpR+/4BMnT4x53TeJjMUCgY2/au2klfwkyOVQQYQ/4YkfGwgs74DfUoe9Ye/XsUkAzd4kB/7nWAkcJmkUK/pMNS1bt2SFMK4HmL8iX7ZmX8eg0fOYLnNWj6SZSYGWH/IIklR82Br21ckZfYWJ+8KeTZOvmBBbstr5cSzfxsqjwKcaHLfuDoQAuUWc77HTRjYa5wldCRqfYkzmQp0RLf76An9SOPxOP+CfzYpd0olaw4YVf/hIPMOU/2CW52ip5wive+Qg40GN+crNL2QRZVmyW2JOZWMYHsHF4iOPwJCM4uPGzwcL1qVL15CmBZFfij5tF8uWX4cyXu8HyHQY3ptUPTTpZsZxu8IfqtKmEjU7QJTe77MM1eQO67JhfIld84N/8yAwvYgo7mCroFC98Dmz4fr5C0k8v2KGbPn4WD/RLPBXT2AH9sIBD7nyjeSt4x4cY1uYNU3zM19Fv+sVPsw06KSbDxnjkhF96hH/+vWx5nlad8wcSW/Pgr8xBzKCz5iePoNsWP8U0vgqe5qCPQq7mT6/hDBt2Qr8Uev5Xf/VXKWu2gmeyNJdXvepVmR+QC5tbLyY5wCZ8bGgCfSr8MTAOtxJHSlt3HgQAbArJWRK+gEV4ziXIjJwQJB8///M/n6tunIu7TobMyDlqKweEw2AIgKMnDIpkDMmhcRiWRILDoxyct3ElmZyEZIwRSk4oXzmZdu7oUgb0GEr1a9tW4sOIKBAcjFV3uy29+WN04GUrDCgvxcYnR/KjP/qjqciCE2X9kz/5k+HXfu3Xkl/KyekwNAHInBkI5yyAuTuFD37MlxJPFfM3D/T99BEn6L12P1/I0SmCKhytNnMuFB9dAUPCDCtOsuZDFzgSOJATXrXFp0BnVVVhsL6ohjeGaVWaDDkN2BuL45T4SSLoFFnTh9IB+mE8hmovKcBfOcUcqPlQ7+bOKqLfZubkfu7nfi4dib6cnbmQA7zpFfnji75KnNxI/PZv/3YGA3xzssaEu1+LgBMHJ2DRiakABBu4kxenDDsJnCTEti+SZ44KDbQ4MDc3P/7jP55YcZx0mk1Y3efk8Cfgmcf+CFxsRgIggZJw2xsXPcGMnq1U6Be9J2vyEPzhs9mFPZFv+8Ux8zUvmMwXMqUn/A687NFQ2Bk7p4eSUjZWe231JVu6Ywz65eZIcV4JNNycW/khG3bHvp761KfkmJIlvglmvgMhiJIvGdAx+sbO6SsbwBOZ46GeBPA1bJ3fEjDJh04JoFZ0jT01/2R24gMGZGdudEsSwUeg68bXzZ25w4B98wF4oNPa4tu1qYK29r/5m7+ZGEs2BF78SWrY8KsiYPryuVVlfMAWTrAwn5dEkMYHG6O79JIcF42JD7ibgz2a/By8jSF5XikowxyGNvjSL3MkMyvOfBlfRWfoiGTwt37rt5IfN/dW++BIh+gI2+ML+CM+jM+je66jrV78K7nDlGzhUH5qCtvNqoMNeYtV5Aw/PtmNmcRUEuo6f87n0726mViNJ/PlTyVKYi8d4m/4UbToBB/lmljQxlG0yeZTkQPQAXZV/l4McAP6u7/7uylbuLHlSvp+4zd+I/WO/OgSv8Hn/eEf/mGOCf+ynXm9cl58kB//xn+TD9sQA8nU+OZHp82D/qiHlbbixc/+7M/mz2p6GsHXmg/e+XZ08buWUjySj3nQM/rjhxnIiH6Jh/Rfss+e2HctJIWyLhyGbbmxlUPo42bGGwHsiX8Tj61001M3I/SFDquXj8jJzM385Wr4Mjd+Dn54FyfERjeUZF03z2iwe+34jprnQma38MIDnkBLMIAqIChA4kQkygCUJBAEp8RJuesRRLQjOMrGWbmLcxfFeFwXsBROzQqhJJuAbRImBi8Zk1hRchuH6reXXZckUzQGK4mxMsiYJZv4mCplVJSKcZgHQ8GLfRkcJ8TRUGiFUmjDuKtN7afGaeuqHZr4ZXQ2jl1gEZQEB4ajCLgwhRtFp8D7I2FiHJJlAQVejAR/aHA8hWc7Nr5vjnkK0hyEceDFcZqLgg684MEQOAyJQDkSKxgcDidBxmjhlWM2J6s0DI1MODlypw/auSP2g/zGK+Myb4GKEzFXiSJnTNZl1AyYrKwucHTqOQhYcW7kPHVHDg93zca151zxSVe0p8PqYIgehyAJMh/JJEfCcZkHRw8r/eixVQC6LbHgLK6NlUxORMJlbko5DjKHC1pWwdD4oR/6odR9vJQtcdz0VmAxJh60pZ/kgvdyzoIhmmRqNQSvsGATZEQPjKsP2zFPAQ9PxVcyOfvQFp70hl4KTnRtLWWKXtuvdL6tq2NzqyS3xqaLAr65o932hy3erP4KOPSK7ihw3Bf4C2w2iS1dYdf12g96O4IuGVuFpMuCHzzJBg+uHYq5u4Fie+jQWT6A7UkO+BUBib8yB3TJEk196BtdRh/+/BZ7ostk+dJ4lY2d4U/irr9VbfQlerCHwfz8C7d2Dx8b+9OHruLdzRasJDaSCzqB1xtCb1w3NjszX4mtc9fnC8zNHY4K38gGbOwX5mzwPv4s5nko/IX2xmaD5StgyJfUDQd+50vN15j4hiO8JQ3+WIQbff7N2Gst2rY65LjqjCOWSJb4PD4WJmxJMT+6ZO5snN6xTe34A3t6yhbZl2M+iq8yBr/Cd5u70vKRFRv8gT47Nh5/RC6eGKrj5zxWJ2/6QI58nmM+RCK0UiEbhc/hq9kdGuW/HIspNjKn83xJG4vwRzf4KYs3dJUNubnkt2DFp5IJe4QxG+cX8Y22uIcGuuyNztNd/NAXvrkds50TnTNfdii2wYg88UX3+R46xg7pA9+AV/ogF2Gjkk5JvBskczY2Pt1YoktH1lLgCScyMj+FT+Cz2Spcjc3XkCFsjLWSDpWMymbJSiF/+kg/2c++mc3CXf5hHhZM2Cwc1PHLsDZffJEl+raya/T1EbscG0fcYjNsXSme8uQB/njAE2iCAVQLCqFyNO5SAG4vaaLcVsk4P20URuWaBJAREqTrgFcoDQGo09fjBgmZAEeZGBHlYkCU+okxBuVlMIzDOARqtYADrmCUxBd8cHKMSuAzPv7xU4paimev2Atw+lWBR7WvupX2DJWhe/eMctrMi0PDt4CGBwpOWY3JUcDGDYJ5uplxA4KOBHe1gt+Ph6NHG54Sb8YBu+LdGG6GYO4OXfByg6OvNsbnaDmr/eFkyLFWvMiEbGHOwXBEjNG5gM25MUoOg3MyB+dom4t9zZUemRO9UsiYgzXXtugzhT1e6Zq5GtdY9LFNWNVxyFa0JLdu7GAuMSYfqzIcuTELY3SNR0ckPubO0ZMbzOgevax2xiBPvLhGrzntCtLVzpzIGt7wQpszppOVaAjinD27oQ+u0UPYSta8SrAv7Almpatkix92I8Abb1HhXMuRuoElT2UK36LBH5BxyaHq7Y3FnmxwWGsxnm2qoEk2EgQ3WuQr4JIbWbIN2NFTOJg33aJXNXfvfGu/L7Di6Oky+QmW8NVHsNgf+k0mkmC6qA7W5FNBw9jO8QszY9BdcxaQnONDkgBb5xXA2B78FPrtmD1UMJqa/6I68tafXtZqoKdMxhOABXXYkJOEhGzZEx5ggf9FMjIXTxF/8Rd/MbHkD/Sn76WjcKKLB6Kevgr2xkNbO8k8nN1MkJ1VS/hMJTpkxabKbuDPP9pPtV+ESdVP6VPpF8z4LKt7kmArb/xE+R2Y8BmwMr6FB/KmG+ZB1vSu2u8LndKWX9jqUnMiczZC5+i+Irbgl092jVzoOr7ZUGvvi/hGV0H3+7//+1Pe5ipm1A2oPTshW3KkE63M0KArbIwewYldkAOdEhf4XfpaT5XJxQ0wnB1bEFHIRvvd0R9P7MqYxmcHbYGNseUu5sombBYWyBNPdFbiKKmFF7+GJ33U4Ym9my975RPKz9J1N8auld23408d40neIR6yI75IPKdTeGV37NNTSskozMhsyU5n8mhpl4zMxc3dL/zCL2Rf8zQ3snazJB4p5gcz+JMDfaEb4p6nq2RARuSMDzHCdePY68OuxU669Nxof0Fg53s64g4cl/htGX2Ajh/wBJoQKC2lUgiK4jKSEgqlIhSOh0AIRx3QGZT+BKkA2UYwbaEwlGl/OKpqz7EtGUI4ae+p7ozxlaqncJSbk6CcNkqyUjEXyQkjIWyKQXmr4JuiUAYFrwKd+VZyU23XuoeXGwT8Ghs+eBWg3TQIcmXExjA/pbBUV07SXn0Zj3btsXMF9hyccciFQyK7KsYwNzy5CxZsJQothtozKk7O3biN4QvaMNGW49kXgUQSI8mTnHBanAvMBNQq+IS3pN2ek9Cu5lvz4PzL0apzHWbVrui1e2OVc+TgzLd1rPoaS1JrXIUj048uCKycMb7oIwfRjkf3ORYbPIzFmRireNSXc9EWXasUkucKbMUvusaCFX2FPV7QrDHNV3+yl4iQlZsDbdBnR5yvdlX0pct0pEphWue1V48O+ZEjHlYqdA5OdARW+hVt45q7wFY3fXWtpWkOcK3A45r5w8I8552vufEr6O4LHZNs0kG0BQmJmWSLvPgq9bbCEP1KzekDXbYy7AYEHTd+dN+c+B1z4E/gymfRXXoOJ9fLNmscshe46Gr5IThVMR99ix97Olm+hd+Ee12vfqvtjW8csqbLfCU88EpHro3VU8kTX/e/MU/zkRDCntwUNOYLPtCEk5tIsuFHPCVxQ1Y3fPoZH317foJ/c2Pq8fSv/Mqv5A27p5Tk4ybHnGExX8jNUx3j8EWeMvIvMMXPFJ/zNNZyXpixS7amkB/dKRlpY0z14pGkC3/8tPOSmzZkS6daP1V8rIVnbdbSrmi2+9X6nhfYsR36qpgf2dtL+Gx1raXbHhdv5ugvg+pDRnSMD3IDSidqIapsY4oGf0RHCmdt+FFyhiU9Y4NkIz7aJKj8DP3CS+nCE0LXHxe6TUb8Quv/auxqSz/5aPySHf/lmN+tgjZdL9/EVsyTzI3v6aq+rqOrVN5gb96FVdGc2psHXuiUebJbdkF/FLT4Bqv0xkRTnfnVuFN01aHBF+pXNkvH5RVilRsRpWwWPdjRaYtiblK09dTCqxwWmWBi3vwBXvh19N1YWM1H/xtiQfDz43UtsuSnyXktWCQzW/CxPMvcggHbIYBs9YuyUUTKz9kASkLYBiz9CNoGwAKRsxYc21LXqk4fgpIQGINBMiaBZaktxZ3RLfr2+lI6d4eSAAHJRqldmyrmRZHKMIte25bSMHhGg47gCQt91lOMVXNABx774ybB42jzpJSCH6WnxBRxUan5Fr9Fd1F7MsMzYzU23vHTFjRgTp5kC0Pt3aEfjv7qJZzFF2MUoCUX5oFvKwucGVrGlORwsrDzaNMKtsRknl/ncKZPjmvDH35tbZ16521p50Puxub8Kqi116s/IzevKjAiCzwrKeNmnBrTfDhXc6WbbhL0awOR8dQZHxack8QKBu2NgmBkXDijKQnzKNiNQ+ll8eecfSiwN0eOFXbl3Kpt7YvnOp/aa1MOml7id37stp825O59basV+CcjBQYCrdV275N6ejTFAwzZOdsq2fAPsBdQWrnU2EWHDrnuZkQgkhCQBf2tUm2LdtXbG5OtSZitLFZggb+VJnohaBfW9IgfEszNzSscAg7M2nEcw6FuIIxd1+1rw0Md13V1U7yqX1Ta9ujAVCCWrHr0S0c8fpa4asuveJTPTs1xmV+dGEQfmJK3lVoBk3wkyJJymEhC2gJDgV/Coa2bE6vK2rqhrCdv2pXOVH96pw9c+Vnt6QIdUrdRhW4bi+1VMddWFuqdiykSDHtxjq3rN9+29VHz12qMqb22+hYW7Ad/qxX8kov+rR7q147PSzqvujq2R8O21mIcfobt0wcJIHuAD53gw9jjSjSNW1gZ1zls2TIbJndxh2/jV5R9+/blEwK+cV4PjEXv9ecHpoox4Ioe+vh8SSR7/KyxC3t90XNuHDpqrnhhK+bettUe7dqqv/1KxRh4YSP4EiP4s3ZuaJrXekrhzv+wN9+DkAzzX5Jgq9jmYtwqxmFj/LV62OvDV7BtcvZudi3+4PHqiGMvfelL89d7vBOv7jX/7/8Nb4/FCKvVFiMs9JxJZX1IrsJ5Ab1Ks6XL2kuoPFqjSAIfYdRqGiG0NNvjIkLx2gBXCS4laZWSku4K567ORjjor6UYl0Iq6EwpfEvH2JIZyss5VvIw30ZSLnkUQN2NUk78M/i1lpoD/GApsFBwNCWlHpVSZAquVPu10l+pHRwZKcOCkbtv/M8X7WAiccAjHuDv0bc9ecPByrPEn3Ox+uBRFNkystaJCQTGQ4ejgqPkfL5ohx/t4DOvP/Pn8/3nz8ldgmAuEnvzJdv5Yr7aVnFuHnhV9PF+ZznPth0sbfTNOPN6ak4SFdfgQ94SNzLmzIzRzkt7vOKBg9oXQWOq4MmNLKeoj/b61flUn9Xq8CGhUMgezyvpn2twImu62yYUeDJPwae193kejOGmER4K/OicFU43D1MJND6Nba993Zyg1coRvSVso/180Z4PkwRb+bJaalzzsJJWCUHpgf7mZTMunyHBbnW9xiAfslBK54rnarNRe3RtbcEX+7Sybk6CoBsdWNGVfaFX2sBrCaOWwOwYXfNFw0q9QKq/1WuYkRWs6iajSKALWzwYky7jha/gO9kLfHyZGM5tQYsflODQce/311MHK9Ir6VNLZ7VjczMXelCFDbmBI1PXqpA3X2KvX+3reu1XwrLaTO2NRc/oOxp8Db1ZjR7Z0Ff9+aGW53acldLjed1p+7XHxYtY5YazXmeRA/BxeBcTW3upPi2dqWM82Mii5kDOcK5invRgpaRMQjrvp6t/7cuGncOM/tGrGrfa2ddiH109HDLhH9WhMVVqvmvFdFvIreYo9tH5yl1a+ujSB3TnfVzbzrE2+HTD6sbZog1fRUYWDMinnri0feEtNrNJ+m9V2aIC22e3eMCjL9KjJ+/xZAq//LenUdp6emTRCJ7kCdspP96OvVXHJyx9q0acjUN4nKUkgGCAxnDqjqTYWU1xCElQZQiSRBu6nFPrGCno0VAC42hPQJR9pULA2jM0KwQKIRMevkq552kYVxA3jtUaSjKfwAkC5uuxKKV0h+ZxrsBUyfc83facQqOJP/NghFZyvGfsG/0/9VM/lStG6Ev0JFobXczTSgEsYeROkzPEU1sS+6iDF9wkzIJaGTrDkEB7rMMQGY35wMIjH6sQFVC1dVwGZGWPEasjc8U4NroAf7oB03l5raZbaLVtOAGri2jhzXzNu+alvVLzHc9GncGDBA49ztOKCpmrr4IO7GwcBR2ib+WIqy8bkUzQAe+fcUxWCDkyOGpPJ5zb74+VfO3YBR7aYI1XTtYKiuTCGOaJF+1hqM1KZR7Xaqsf3eeg3eCQD/qL2pszfbKyaSWSfmuv6MNm4KVN1ddYtUcDNuZpTO3oAP1nC3QVPm3/9rjGauva4xpn0R7ekkF+TYInYNTNsVcHvP+njYJXWNNluqCt4JCPewX6GVb0oV6VMq+SzyIeTrce1iWj2sNdguvGhr6RhXei6ZuV3HqFotrjYXkKPnJFJ9i2xPmXf/mXE4Pvj/dfrWCbFzlN4U1H6aL5+04BOyRL77JKcqxYSVYlyngtPuz5G180pIu+XCVBd6POvrzCJMgnvzNdGzld/ye+yZTN0lH+AW+SQDd/lQjiCQ7s154/wUNdX//IJ/dg43XDaRx8+BnNed9cPfFk45voIpttfXS1W8senbWUasc//c7v/E76favBfrXEK3h03ooljCpWrIUuOaBt3vxzJcD0RUwunK2I8nmwIYPys8agS+rxQJ70Time61gf9PRn12KXmETnbHjHjz1czRWuzv3KjOLpSC20tb45L84+2nHb+vbYOJcEr3SJD/RaBX7YijGLhrHNT06DZ3PTVyG5ebst3tmaX85hNz/8wz+cq/f0xLy0mS/qbXwE7PHhCZYFPj6gfh2FvxQb6B79fH6sWvMzfj1KvfzQghqM+cr62VjzKb7nx96q8y1JoE10frKCs8e0AAWmhMKPw7crCNVvHgz1VTgswpFEMRiBi9IQsgSvaHDAFFUyqf2+fftSOARfQrCnPKjrR5jufPBairDSikXRqYSBA6MU5kdh28Lo/LQMA4UDY+PY/RQcRbGKpbRzdW4MdYIJY4SboGyuHk1KojkJeEhCBDpzLzo5R/OMbVGptouuVz3ajEKwMD/BT8JrzuWk4MuBcWQc0r7AvWSDjrE4DbwKxH7+DQ6CjsIRoF9JB2zhyqnp6+7UypebkUrQ9CNnyTg8vebhbllp5+bY1mIxVVf9jMsZcEacj4SnXrGYd75krninS2KgD6yujpUzgdyXKszZ/BQ80F83IHQNH9rDCu2WT05EMkPObpjI/Q/jj1ZkwAx6lwaf7AIedIkeu+MnH7iZQ80ZLxya+eDT6olx1XNcZEJ+VfSz4UdZhJdrZI8OPZHM0lGlxs6T5sM84SQZe3gEgeNzTtl18kdnJRrGk4TyJ24mzc1NqiTK3ODWzmGeJ9eMZb9onJj4Cc6bY2OTDT8EG3ImB3Lmd2yVDNBpyR7cJfmSO/qxL2zk/JAbC4Uhu/E9BkHEnMh5USm5LLq+Wj1dqZVKY9NJ+0oMJaiSHD6WndMnrw8JwjDTfomHwG++0Ac3FJ460nXBU8BHBx5o4KH0Sn8yqC9+8Zl8G71k9/j5oz/6o9QztujGVn0VfdGCGR9g//u///uZmGlDLyswV9tFMkenvbY0z9lgdZ1+uemHI74lVJUgVx/+kg/nm+k7XyAG1PWWf8dFu+oX7Ys/8qJb9I6c8OCn3vBUpcaqeUvixDo88zF8AXubKiTbWMCyJsVD0W8vqqu50Cvxi5+2eGRMsjMuGzcHbelD0WxpOZ6vrzHRhq+bGFiLD/vCruhZxSbYu8kVP70exA4VNOgom6OPYjE/3JYa13X6Q+bkZxWdjbtZR891BQ/mKNaLCXhh6+bKJtgDHaAL1acdz3xWK/oZGx1+1A0C/aaLdKFkKRZ7TUZs5A/95C8fVXKpcQpLOFmAYfNiAVsvmy3ZtPwVNjDks/gH82K75sw/slmLNjY2izcx36qzBSI2Dk9t3ey+5jWvyZsdPHgt5EwpG5JAA+xYKB1wAVqFsdoYBmFIKjhNQEn0Xvva16biEK4kx0vq7jwEIYVCcMjoMiZK6LhVMIYGbKAzfMmXR6ccM8XGGwciUaXAkjG/tEGBvdJRSoNHisLorgmet0WCezSUVuIhGFIQK6TGKf5qnvN7gcA45mW+lYC3SkZhKKJAQIE9FuFMPF6k9Pii3OZQBRaCqbtmBqc9AxSQYSMI74+kWpCAsXO81k0F3MjANTQYmnH0xRv6jLmMosZdtDcHcyQzMmBkNg4R/owYLQbCYNEmZ3NmsFXIiGMzX87Ko13OHNYw8tf1SuawlQAyRMkj2V577bVpbJwk58hBmDt5mz8+6A9eSj8l2OZcdMvoYameLigwocNwQgc/HC7HS6fM1dzpk76SXzrommDgvVHOw/zMmyzovpUVc9W3HDqe4ORGrx6PcVR4xoetCocOd/qQQSjGlIDtjvm/KByW6xwQ50nWdNB1c8MH586WBBirgdpKOumeOvOVeHJoEm+JChsxFsdofvjWho1UclhOGm280Tf66MZzNbsxN3KyLf/Oe816bXtyoB++rMJBWznBb/2gv/mTTeFeVPFM7viGkw0OVegIWainN6VLpUPaGptNGt8qGp/kOp2BUYsB2xZo+QqruvQCr2jgD5b0iU3DGI54xgdeiz96UfqLVzbBphXt5q/nhYmPoksPzY0dsUM6oRhb8McLvTA+3Wbr/IBiruyFrRdPaOFDwYtEl5+1GYu+s1f92JNj/ekO/ZIEwlHwhB/fQVfz5jOwYG94Kjs1rs1YNgVf7IVdsAe6IEGygOMaX8MGiufsNPdR1+yNVbpgDLJXjxbZvTBsEM/GMo5EgPwLHz7YfMjYXCqBRhe9ki38jaPfegq6/GktLMDTzRxb95gcDkXTePwDn4ZXuspe+Qi6qJhf6ZJzfEblMhp0rjChg1UKL/3Rc01/9XeF/PmU2yJO8vNsj/9RxDj+Ugw1Pltmx7AhK6Xki545usZ/aM9u0FDnpk+SLNElB77XOBI8fo0ekhtM8CD5FD/EfLqNb2PkvGNcczAf+ce+8P38uF+GIW836+zCGGxcH2Pxm/gVR2BLNtrRXYsY6jx9s2cb/IE9WbIRcZTe0HtznC/w5HvouTEqgaXj1Q8WeIEr2vguPSBPNqeNrbA1T23xYKOTZIFvxxXv8MNfoQ8XdsyeYVBxmy+hJ27o8GAMY8GofHTJxzzMx/hivbbake2ZUk6Wwjo5K8O6NQDlMDhdDo4yExohAk2CfVuA/5HrPzK86c1vylUzyZbEwh2FH+bmiAGtMESKbAMgJeZMjSGQEAqlJigGT9EloRSY4nFOrlM+zoGw9OconxErERyIayUMwQG/BE6AFNvYaNWXGig3I6zkj8JOFTxJfGrlFM8UjqIoxtTX+Hj3Mr05+u1Q8/cHQjgNL84zakFDH0ZOaSVfnCEcOAbOzry14yAYhES8gp+VRNiYFwOBDcehHYMwTzxTbHTgBQ/0Fs3RPFzjfMxBooge/iQB+kt00eaU8Wsu3mHkwOcxRItjgC854J1MBQHvdVWBD6OXGBobBuZCvuiiwYjNGV9+61UyQy/Ny/xhRB42bfGKdxjjt5yEephXEDeWvjCHkzHIgpHDj1On724A9BE0PVHhCMia7tElzoPTgYngSS70ncNmE9q6a8c/Hjgk+mAO7ABP7Aue8OJYrcRLCrTxsz+SN3Tc9eNF4JQI00W64EYAxmhrV7+vbjxY4st1geTVr351XqfTrpGn+Zvv/ghSVuLxwiYrsOG3/IF+tXJfctzsPZwke2Qp2Hlf12N+81VHt2AgENE9bfDLiXPU9Ix+2bvOduGhrySbHtAl+uKcH6NDCr/Dv1gQYIelM5WI1twFSkEW1grsBDuYu4Eiiwqkbjz95jka5M9G8Ewn6QI9rgRCQkLmruFbe7zray5TRTu6Y/700LmxyRuf+tJx/NJh80W/kgBYwQ0WaBhfEKfXFRz5KTYGJ7RspU98jfHppvH1rblrj3+80zWFrhnf72vb4w9ebBH+8KCDxjaO/hZEyJwf5wv4DY+RtTGeJBZd7edxwjdMtCVz9BX1/Ahe0TCPfZFQfW487fBnqS3miCHsHZ9wIg8YsnWy57dgww7pF95gob1ztPHPZ5pb6VkysOADLTbJT7ph5Jckk+Yr1vAb8FLMxzU/1UoefDkfCwfFHMUGegVTPMCh9Mp52bt29Jge3Bk800mbOcEJvs7N646gRSbGqeRZEs/n8+Pw4SONY+4wRJve0zu2C3OyN545mlONL5bTJXGYP+V/yYecxVbxls3zC8ZC03WJn3loR98rF6DTZEHHyMcc+AD+zQID3WKX+v/SL/1SYqyvtnDlS14aX5LTlnzI3g00vvmn0jH08CWOwtx8yAgWYhkMFyXQ2pL7vmiHX3rzq7/6q0sLMuxxf/hs9T/4gz+YPpKM4ZcyiXHoHRnpj5ZCxuRE98hBLKEDbobFQDEIX2yfDOHnGp9QuQbdt+GBfyY3vhGecIclWxGzYIMP47nm2MZOnJ8pZcfPRTkdZigHAN19eTxhlQtoCgXmENUJ7u7M3vu+8W/OA80KkXffBG8GS/gExVFJTrxjhy7lJmDBjyIRDuA5cY6OYgKX4bnGaeljfCslghiFFFCt9gpOhK1QXsrAMDgBSmNsj2LcFUo8GKVETEBsg24SmPjAEwPhZDkrNCUQZTi6aGOjDLBgrAyY0uFJkkXx8MCQ/EEOewGE4nocDTd0zQXmlN488c9xMGTzoowckiQLfowHTpIgc3d3x0lRftfxTXEldrBdqZiDAMtJMTDjMyAGBftM3EI/rPb7XWEJNCOoxKWlbUwbvjnc7/me78kAACPjVNFXHePmDNwQcM7m7JieSF7pl+BxTximpJajpKPl/ODgmHxrXH8hTDvOCs4wglU5a3omOSIzjpwzqZUSiaX5wl+A8qsKbgpLr40DU1iZI/0kZ/3Zhg0fkm6/NEGf3ZCQj6c15oBf8yNvmHBG5u6nvVxDC890Di0O2vjGE7Q5+I8EZsZ2zIlJzAQYczJPuqu+kgx94WF++tFR2NAX9iDRp7+cIrkIBOSiPft3g+wvzWmL9lYV+ghvvgWP8KobmNa+2ZXkwSNNyStb8Y1vryPRH05fPz6MP7KxFz6mgp5x2IFz48Dehh5cLBAIfq3eawcPeiFoCh4wtcGPLPk9yT6doNN0Du+/93u/t3TDpC1aCrnwFa6jU0mOcS+NeZFxtW3lwE/QIa9QmR8/Q7crgSNXeiuR4Se1p9t4gy0/gQ+vzNRf2eMLSk/oTCVfdMux8dgWndKWr3SNXZs7zOn2vkhIxQVJSCWksGfrztkNHXeTwcdrZx7kSW9rbHHF2tWxsBn+ia3C01h03JzoDB7g1RbzcJ0/Nj82yX5s/AhbQYtvEJckduYBF/7QXMyTbxCPjMl38xFsT3t2i375Kf7c/MlQcsHP00U8Tsmw5dcx/aNb/C0/AS/2CDuvfXnqwa/QfbGGjL1fWjf9xlHKr/gLfeYuRpCfen6o9PxVr3pVxhj1dG9P6Iq2ZTvmxXfBUYy5L+bHbuDFV2inn/hHZni3+IB32NFJcZ+vYS9kBHM0XeP/+VMxTULK9ui7155gTK70iK7w4+SmPX7oLlzwYDx6Lb6KyWzAawR0m21oT+7kQn/NAcZkj2/yNm96iCc+3HXY4gPv9MJc8EN38GFsfegzfuirelizPfrCFvjRkk0KaPZROlH+WzUZ4xEPdN5GL71nLp/Bs7nQA69ViDH0jgzYI5r8Gl5LP/mkirOwwg86bNF8Xefr6Aa50S3z0IfekzUZkS1d42O3Bw7vj2uvfOUrk0c4wEM7/g5d8uCTa/413xaDrT5e7iVOYXSTIExBR4JYCi+QKJSg2ni8fFEIg0AALrABmjLPF4pF4QFmxYCRGkcdZ+NcKdpA5QDUu+uj3JQUHWNx9u4mCYvBKhXsHFMEgQ7/DBcdzopD/owIEJ8XiZ8x1pIA4MnYkhdfUuF4OAZ3kwypVX7H+OMcYcgYKW/d7VNCvOHFvCmyxMqqhcS4cICpOg7Fdcov2DmWwDAi/SVW6mHk3Payl70slR1WxsEP/tdSzJVDEtzJmnwovuIavp4eenF14OrVgkq0p2jD3Zy+IL6Vy3HZ9C9dKpr4NC8rJWRu3hyWIGdu5CiBJTvHghA6vm398pe/PDHCG70zfzJFk0M2F3jRFeOiTybawVpbc3CXrA994VDJUX/YkTEHbBUYPe0UNOgEmuo4tYMhJ3TxzUGi5wYPDuhpR+ZumPAPY23pojldNrumnuPSB4/6GHtfOFzjmYt5cZZ0g3zNyzh4hWfxycFLINExpgCiD93Qh5zoZAUPCRS5l167xlELYIIdv4A+vlubS1A28aPkwd7xTRc4cfMRlOiLYG+e5gYv2JMf32Tu+sEWNuiYC+z1RV+AZrtlh/RKqbZuhGBNDjX/dsqFsf54oBMCuzHhLNh54mHcCy+6cLjzjjtTj5y7xt7hTmbk7BjPkkl2RBZ4IR+/c1/8tTw4Nr7+dJs+WK1T6Cy/hE994WAuEj948d/lK1zTng4bk+8yDzip1750yJxe8YpXpF+EpfYw11eBq6TW2BUj0CIbvt08zQ2m7JwOsnnt2bt5wEDCUtiSm/izd6bfeFHwjQ7+ap55ofkwd3TMlS67uaf/NWeYo6GNja7xEeiZm8RKvfZsk13gme/iM2DgOh74HvTYnDr96RgcF8mvYXXZIRzZPT74fHYpeTUe+nA04omJsAAAQABJREFUJl/Ih4uP/G7JtOzVOezdCJu3+vIxRYPtmBe6xqMnMKFXZEhnjKuv+dBJNBxLcvWn+8bCK33QBk3naBY22sCNjvODEiw3Gephhm7RoANwgL1SczUXPO6PZJVOwRYW5Et2bIzeumaPH7yag6ItOZMLeYn1jsmVjynbxAta9JNemoeCf/JnJ/ITsRl25oAHNm3u8IYf21BnjJUKPCo+GcMNRvk5umQs141BdvSBrymfgh88lHxdM0+LX66xL7anDiZ4k3RrLxaaI9rmSdZ1nR7ohz86iQ/65hymV4csfuInfiLjmDHJ0Xjo+SuT8sBWN1fCYKuubYsJntYLJbqbJABsnNxUoZzlhOwpc22AUtcWNClTS7P6ETrh6FcFH8bWh8IRKKVRKA3h6UP5ajztrY77++72XqXwWIMx4I0SMRyO1pjq5vms8ef3hYs7MN82NzaHLhGi1ErR0tZGufDP8AR4d6bmwQnpw3jxhI+aS9Gp8SRRkknOpBRfH7Rd48j15VBgoR7WVWCj3nzti8e6vmjvFZ0jMx3AMx7wVDzjYTUMCwNGSIbmTG5ThezwDitOF17mYc4M2d48YYUuPYKtPs4V12qujkt/tHOstDqnbdFzvWjCNW/YglePIs3VZnz9C0Pj1hzxbY50tGTMIetjK+zxix9jOS6eXNeOvMwbPTzVeC2dwsk4HDvdMJYNTng1r5bPGpcc6Qy+2QFbMlZhTaalK8WLMdw0evXD7/NaZeAstdvqUpiXvEpm5kRn4M+BC6r2cINFyaB8BTyqL1roKiUHc9O2iuvau2GBK5+C5lRBD570Ad4Cmv5sB1/lu4o+uiUD7dDHBx7wTl9sxaN+xi45T/GgbfUz1/m+JWN98YqHGrd0pzByraWhT/GAD8dosFvB2DldLD/rGh+An0q8jQEfxfWyGzyQm75wgkPxhw/YKjW+6/rUXPNic72dZ12rfclJX2O0GJUemB/6rtnwgG+2h2f9aq7VB2/6oK89+i1+pY+lY9quteCh6OKD7dN72OOFryx/iT7+jYenKmjgh87hz7miTfWp6/ZV0Cq89ZvCjE4qsCFze3pvI0+8sAmbtrCjE+jiA014Fcb8sD7mhLfaCuPiDZ94Ihd9+Cw02Rv6Ym4ryym5oKmNMYxZNNHjX+CFZ7yUbhce+Chc8V5xGz98LJ1Gk5zI27yNo7/6lXQA3ZJ5yRuu+uIFtsUzOtqXPZT81Lfyda4NOZCT/ngSPxybK1s2LvquKerRL6yLD9dhUj5JG23h4Jhc65gewKNiOl5sZ0I57QT6TJjEFA+lFPYEMFUoi8eyEmiPE93l/NiP/Vje6elTCjTVd7U64xIyZfM4yWMISlF32uivpATaMiZ7BkN5GMBqxbjmpZ/2bR/XKLJxGf5mljIc4+B/PQXvDLEc2Gp9zYtx62O+mz23eX6Ma3z6Ynz7tRZzJZOt4hufxuP01oJTzc18yFEf+gXzVrdqvm762JRH0Zz3D/zAD+QqA6e6HlyK3mbt4SBwwd+c2ONa8FgvP7BWYLWSvRdd2OoD3wpyde1s3PMT5Y9afAo3OjelN+RGhvoIwlNtziS8yveS7wPJLz5gDju2jZfVYtFW4UimZY9tzICZrXSh1ZOWN21anVjUru3jGA58wUbqEj6KZ3a8Win9MP9KKvVxjq8Wj9VozV9nS0cCG393Ae3TKaU/+Gn9pfqW1yns8WFjq/iYalO8kQk9VbYqNtbY69mvnpGtkRoA11tWAhCtRTTX0k+bVlnQmu9XTreESgEcV0BteZjvu9pcq73EwWMayYQk2jtolM+jc3e684ZRc6Y0+ralrqkr+u31qtfXprTz1qeMuaWVDec+FtGfa3bSadGdx17DtdIs3k8iPlFR85sfb2qs4m2eTNt2LW3a/trTI0GoSvFU51P7GmdeVtq2/Divto7b0rabajN1nfzndaBt19JHc2pupbM1pv6ChdeOvIvo3XcrBh6d1jvYLd0H6rj4NX6LQ/HTXl8Jk2pf+0VtXW+DTLVftDc+bAtf7dRN0W95LXrVbuqaNnW92k/tT6cveov611gtD9ousttFuBX91m6Kdruvdm2d4xp/tevz/drz9fbV3rhld2hVXUu3jtdLv/qttq8x+arWX+lXYxY+U7Sqzfy16jN1faVr6NR1x61Mi1f18zahri01rnZWjqu0NKpufq8NH2eBqsqifjVOtat9O4dqMy9rbdt21bf2rrU+qXioWFjn1X6te/3YUmtPi2ipny/zPDsv3an26mztGC2dajfPR9umjqstmaxXlkVjK/cblkDPA70RkzhVmlP95usIygqvxwQ2yWw9RsrH8XGHxCDn+613XozCu3eSCcbwT/GqCPoe03hPqA2WaK803krXFvG1qM+i+kV01lo/RXeqbq30Vms3RXuqDp1F9e0Ya2mzWvu10JhqM1W3UXxP0Z6qW8/c2v5uPH0Jzuoznfe+Gp2XSJ8ppeV3iqfVruuzljZTtNdSN0V7qm41Phb1OVUe1tKv2qxn7Pm28+dFs92vpY32q7Vb7Xo75vzxevtOtZ+qq3FWulZtTmW/Et2VrtVYq7VZ6fpK14p+u19P+0VtF9WvNs6ifovqT5Ve22/+eH6s+fP59ovOp/pN1em/qH49tKfarofuoraL6qfG28q6DUugt5LpjRjLe4Z+PcS3a31DVBLtW+e+IW212BfAro6X4xfdVa2VB4KXUPgCht8G9SUXibTE2WOKXjoCZwMC9NkXfnwBzZd32I73Cc9Ux3c2YN7n0BHoCHQEOgIPHAIP2QTa6xpeiJfM+napFTSvTAj4Xty3Gr2RCa5HRPtixfnySKDrvb/51ecHTg36yB2B00PAIzeJsy+n+qa4R/P1OO70KPfeHYGOQEegI9AROPMQOGu/RLga1L404KflfFvWsWAvCbBaLNm1UmxFbSOTXGPUhj/j9RW61STVrz9YEPAeNP1mM12vHyxS63x2BDoCHYGOwKkg8JBNoOubt1aip4pE2ipaTwSm0Ol1HYGOQEegI9AR6Ah0BB66CDxkE+iHrsj7zDsCHYGOQEegI9AR6Ah0BE4HgbX/YO3pjNL7dgQ6Ah2BjkBHoCPQEegIdATOEgR6An2WCLJPoyPQEegIdAQ6Ah2BjkBHYGsQ6An01uDcR+kIdAQ6Ah2BjkBHoCPQEThLEOgJ9FkiyD6NjkBHoCPQEegIdAQ6Ah2BrUGgJ9Bbg3MfpSPQEegIdAQ6Ah2BjkBH4CxBoCfQZ4kg+zQ6Ah2BjkBHoCPQEegIdAS2BoGeQG8Nzn2UjkBHoCPQEegIdAQ6Ah2BswSBnkCfJYLs0+gIdAQ6Ah2BjkBHoCPQEdgaBHoCvTU491E6Ah2BjkBHoCPQEegIdATOEgR6An2WCLJPoyPQEegIdAQ6Ah2BjkBHYGsQ6An01uDcR+kIdAQ6Ah2BjkBHoCPQEThLEOgJ9FkiyD6NjkBHoCPQEegIdAQ6Ah2BrUGgJ9Bbg3MfpSPQEegIdAQ6Ah2BjkBH4CxBoCfQZ4kg+zQ6Ah2BjkBHoCPQEegIdAS2BoGeQG8Nzn2UjkBHoCPQEegIdAQ6Ah2BswSBnkCfJYLs0+gIdAQ6Ah2BjkBHoCPQEdgaBHoCvTU491E6Ah2BjkBHoCPQEegIdATOEgR2niXz6NPoCHQEOgIdgY5AR2AdCBw/fnw4evRobrrt2LFj2L59+6Detm3bttzUbUSp8eyNhb7jY8eOLY2jbqXS0tBu586d2XelPv1aR2AzEOgJ9Gag2ml2BDoCHYGOQEfgDEZAInr48OHh9ttvHz75yU8mp5dccslw+eWXD/fee+9wzz33DLt27RouvPDCYe/evRuSpEqUjXXw4MHhqquuGnbv3j3cf//9w6c//ekc4+KLL15KrBdBd+TIkeGWW25J/iTPV1xxxXD++ecvat7rOwKbhkBPoDcN2k64RYCjPnDgQG6c3kUXXZSOUptaceDQq9TKRNW1KyBV17Z13NYXzWrT9x2BjkBHoCMwIiCRlcR+9KMfHT71qU/lsbr77rvvJL+sB9/a+uTyr/oozmvluq2rdrU/dOjQ8N73vjcT5uc///nDlVdeOdx2223DW97yluGxj33s8OQnP3k499xzl2ICmvoaH13HaNx6661JQ4IveZbgF481VjLWPzoCm4hAT6A3EdxO+gQCVhk46k984hPDeeedN1xzzTXDnj170iFyeOUk7SXYHu9Juq02cIznnHNO1jlW77Ej51ptq56TVc8J1yPCE1z0o45AR6Aj0BHgP++8887hbW9723DTTTcNT3va0zIxVWezCm3lmT/mg61G89d8rwSWD+drHdvzz3wxP4+2Y4UftspcRft3vvOdw7vf/e7hYQ97WPr2G2+8cXj9618/vPjFLx727duX46HJp+vPnzs3Nn4k/nfddVfyaVHm7rvvziSavzeuNr10BLYCgZ5AbwXKfYxEgGPljCXSH/zgBwePC60ccKrlgDlLKxGXXnrp8PGPfzxXGvSrtpyoek7e6oO2F1xwQa5sW8ng6NF4/OMfn48Iu0PtytcR6Ah0BJYjwOfylRLURz/60cPjHve49KnqJMd8qdc4+GuLHnzw8573vHzdY//+/dmeL3ZNcuvVC7Te85735PljHvOY9MmS5Gc961nLkuha2JD4Wo2+4YYbsj8/LgHn373SgUfxQWwwhmvGwJ++ruNRQq69WCBOuN5LR2ArEOgJ9Fag3MdIBKwMSG69v/b2t799ePazn52J8vvf//6lpLnehfNYzmO666+/Pp0l51rOlOOWQFuJsLpxxx13pNPl9B1buZA4a1/v1HURdAQ6Ah2BjsCIgIRUAmoRgp+04syvWtn1Ggf/ypcqH/jAB9IXe9eYz633pbW57rrrcsX3EY94RK4Cv/nNb86Va4mzlWU0rW5XEQOsZEtyvXttDD4fba/1WVH+0Ic+NOyPJN0x/rzmoc+NkVifG8n0wx/+8PTvxseLxRbxgd/vq8+FdN9vBQIb89XareC0j3FWIMDJWUm4+eabB073UY96VK5AWDnwWgenznFqZ3Mukbay8aY3vWn4yEc+kqsfnPJll12WDtMqyFvf+tZ8n48ztqLBeUuorZz00hHoCHQEOgLLEahks16PsJrLf1oBtsIreeWXvcohcbaYofDTEm1JrsUQx3w6f62P1exnPvOZ6dvnnwBaQJEMW1Xm1/WtOqvLfP/HPvax5MF1CTrakut7Y3Xc6yYSZ3EBrxZi0BJLLJY47qUjsFUI9BXorUK6j5MOFgwcba0eW/3gwDlejtWxpNejRI6Uk5dkv+9970vnynFWcq2dzbkVDU60vpx49dVXLx136DsCHYGOQEfgBAISWz7XKxoWGqzkSmbLp2rJF3vdwqsRfKzFC32e9KQnZTs+nL+1Auw1EG3f9a535d6TQYmxFej5ot51q878tDHRqraO0RQPrH4rVqGf+Yxn5Cq05F7xlNKXDiXYEmttJNDm1ktHYCsQ6Jq2FSj3MTIR5tisMkiaPeLjRG31iK6uaVdfXOGwOWmrC/acrkd/EmwOv77ssi++fKKNDX2P+TzWq1WWLoKOQEegI9ARGBHgY/lHPrVepbA4ISlVp/CdfKlVaH71jW98YybQfG4teFi11r6+ECgh9mQQffWSY4l1FceuP+EJT8hEnD83rieGYoEEGC2xAC/6a4/Xx0QivyPoSpbxJW5I7q1aixcSaXtj99IR2AoEuqZtBcp9jHSie8JBcsaPfOQjh6c85SnplK0ycKacLadcj+LUS4K9j8eJPiJ+M/TKcKyct5VpP7/EWUqc/Z4oB+/LiZwrZ3vp7PWODn1HoCPQEegILEdAkunVDL7XCrRV31oZ5mMdW3WWyPLL6vThZyW09hJer3Box0dLap/znOdk4st/e5XDtfa1CsdPfOITB18ylPyiLfHVVx9Ju9fzrEYbz7j4xI8VcWOLC9qihb56bT2F7Asmy+XczzYXgW2hgCd+fHdzx+rUH8II1AqB1QaP4KweS5Y5Pe8we2THiXrvzV69d9y05zz1t3rBsXqU6IsmVj9e9KIX5S9ucKBWpbXnWNGzgqFPd6oPYcXrU+8IdASWIyDixy+9Cf0SZwnsoYPxc3THx5+j27M7Etnt428v8718qySV33bMPyv6WeBwTaLN75b/leC6rki00VG0rT78c/l2/Wqlml/n78tvG1M7bZSdO8+JscafOjWHSmG0wYP2Q2U1/RftErP+sTkI9AR6c3DtVDcBAY7VioeE2yM/DtqKh8eGffVhEwDvJDsCHYGOQEegI9ARmETgtF7hcOfnjrKXjsBWIGBlwcrGeeftytdALrjgwnwPbseOcYVkK3joY5ydCFjtqu3snOHyWZXvttJ37Fgs1+WKXS3bLW/bzzoCHYGOwJmJgEcM4bfCf+dTie3xxDmenmxVOaUVaM7XO0/enfKTN1YGnfdyBiIwe8QVD7rOQObWx9LxCPSHDh0c7ozXP+igd6p3R0Kdj+zWR2rLWkdalsZdjyO3bOA+0JoQqKTZe5bezbf3OPpsLmzHY/QbP/bx4R1veddw26dvH44d8Ws2Z/Os+9ymEVgk9Fliwn9l7Kg9Ko6VRX1dm2qvXql+U3TafmPrxZ9TbYvm4l79yoMfARpUkj56LN6/v3Dv8PRnP3W45glXDxdfcvHSK0ObPdNTXoH2LqrH6Ndee23+BE59CWF73AFs37F92L5tfOepTGXeO59w1t5hYlLVMo5yVdsf3diWK9wc/rag5x2nqUTkWACoGFuxKg7UkU5W5bUdwdfYf4T+6FGrL/EnQ41dw4/N5z7H69UEDTyttbQ8Z69Z37YeraKIuxjCp48sNd6IxYn6uj7rMCMyUvKN5XPP2xNJ5gXDOefuGuc+31XTtq7OF+2XBpwdzLdTXXXVts5rX/XV1n6Kh6V2Jy46Svxjn5igqZxoMp63n1Pjttc36VjCf/TIoeG+e+8cDtx3d+jjViQp85OdP9+kyS4gS4/TvufshQxP6H80KvmVPJfRGyvLBpZdihNdq1t7PK+IS9fwkgZ2PP2Udy+vib9c6U8JexXooZBAH7j/wLD/+o8Of/X7rxve+y8fHOL3C4ajQ3+aOK9b/bwj0BE48xCocBEZ3XBfeK/HxhdLf/Bnv2e4/MrLhosuHn9FZiu4PqUEWiDz6M9vR77hDW8Yrr/u+vwpGcFnbzxW37Nnb/zFoHMjqEk0TSM+4mAMgJEUx/mYuMb1SGCPRCJ7NOhly/giw6GD9+UXCs4JGvcfqC8pnDfsihXHnTtO/FA62sej/YED9yb93XvOz8B48OD98YWHu4bDsVrpixE7IrH26B9fvoAgYFoxv+cePwAfP4ET4+Mt+UuGT/Da1gkvVhQl6sY1B48//YuZzBKCEq3ZxHEEaon/9thnyxwnEcm6HXFNm6IVlcPOqNsRezcNCgiPBb94Nm7SW3YzMY6zBDWeYpwLL7l0eOS+Jw1PesoLhisu3jfsrCQ6qT5YPlo8R57N8+TaNcxnxU4rXlwD8eVNUDt8+NBw523xZ8v3Xzd84J1vGA7GO9tHjtTvop5IVlJuus8O7KjhmGTOdCDkrjLzPm2VWfslzuPgeGzbZvUjSCraZFVHPaqR87a4piy6Pl4daZxol3YSfezZSI25LfSU7vIXJ/oMaYNu8Nhi3mxHlxzxpGGjIu1stDc3IUUbRkpi4ngcNrFz8xLOZbzYzt8Nc9PRl47w+ILnvyB/HcAXW3MOy4DOYc6uDxgc3TbsPn7BcOWjrgLxcPzoDNDEp/TAtGf1qTfz53VNfdun2s3XqVeqX1133h5r47zqq716Zepa9Xe92lddS2eqb9G0X1QW0dC+rlXfOrdXig/HdW3qWF3Ln/O2FD111a6O7VvazudLXa+961M0W36rTY3XXmv71ljVbv687VfXirZ99VvUrvrUmG37qmvp1HHbr2i37auduvZ6e1w0aszqU/Xz+6JV47S06rj6rNSm6FRb+2pfdfM8TfWpttW/eKi28/tqX/V13vZ3TSlajqt97dVVmaqra7WvNvZVWvrqZFJGjfoIjwePHRguirxz+9GdEfvm2xaNzdmfUgKNFQnfwfjm7u3xpzht9953bwbCPXfdE4nurljFkfD6O/YS6fgncPHSMek8Dyft7NjR8Q9nHI09YKwK33vPnZHo7hh2nbc7kuO4v4jEQ69zI0HftWt3rBJFIh3XJZj6HToU3/YNRA8fieAdwfD++GbxPffcmwnL0UhYrFB7zK/vuO2KsYb4i0a3x6PMe4fDVqKDjuRU9BU/vEeTSW8cH8u6YzHemDxLbs1BH1NyXbytFe7jIURBmCx3xIUxGR7rxPWjPqKoz1X12KvLcWd9jB3VwYh+2BoTCO1gb8JjogLRsZ3EPo8TrWG4+74Dw6Gj24dde64Ytp0TgfKqfXFjsztpzhombrqfaWVEaDFX4zznrp9UeVLFXIf50/W2n/XH7KwrPaCL5HZ0OBA6ft5w34FD8fN6n4gkMnT04IFZJztadKKQc9EZpVv8jLqhfepE9hw/aGKWHHg8HPVI0hzn40eRzQbtmGOPE5814lKHbNwwdqLp0tFIj/1E1ax9Jv9hi/SbLZR9m2DeAEqcXXeTWING35HWSJrOH4/km77nsQGqwayP6S3daOY1WI2NimwxqjZvLvSZVfIpbmzu+Mw78vWg0baqx9m7H2UVWMUPGxyLv0vBZx0bf+QgTgqdmv9K5/PXqo/9eq61baeO27oao+pqX/VTY1ebRfu276LjlfrWtepb57Wvevu2bi3Hi/rO05o6b/u21xeN27Zp+1b72te1+fNF9YvazY+3Ursp2tW+9lNtpurm26/Ex3zb+fOi3+6rTe3r2vz5/Ljz52tpv5Y+Nf6itjVO7av9/Hnb/1SvFe2pfdGs/Upt4lpksMcirh6zrspvVXyY6rYJdaecQHMCXtWQIJ8XiemReIdOIhmhbvyrQpHESqLPiZ/EyeQvIt2xDOZmEe1iol64OBZB1CrUmCAej1XjMRG1MqsejcOReRycrRSPAU4Q3hVJsfGtYu1JaKwul3M6duz8uH5O0Ds0HDp8f6xwH43EOhLx4EEfCbUAbgz+7Ni2SFAzSR2Tmhw/shWJTM4r5iapHeutCmoficExq8fRKqp25qsrEt5InjJCVQI9ckW2EmALPY53xLiVXMMju6iLLf5n7mNMB+NKd4waycShw5IKFHAXWzTJhFsCHSc2FI4dPTzcdtMNw4e2vzFuPs4dLrjokpi7FfgSO9pJJvmJo/EkK8eztX8itHFl3dQWdlh4YUOYzQR2hvcSbLMlYK8g5Y1YyIUuHj8eTxBC70bpT3wSabKLKh2blVSMmbzj+tIKc123Tx4cSCDH5Dn1IBRzRGCJuEZL8tZtpqpL7GeDsVMeLjV2ph6pLCdosppMXGfEjF2JsqodO8abU3xuz+QZjyNvRa4S35G0G8XQYe2NycByYAxni5EXGPunOurzUsND1qif1eF/fL1sJJI+ZuYLRrwM9lAs8ADUQ3Hufc4dgY7Agw2BclXj3mfVbN1MKpM6hRElbpFQxisVOyMpOyd+GcEdgOTUY1avXtQrB7lSazUpglj+vmQkf7kaLTgaOfZHrORGcujd5WyfATMCbwQ3SfrhQ4eD3uH88osV6b3xSsbe8y+I35jck4F6DMaZziRf50Q/gdXrG0Li4fh3LBKYI/Hutt+8zGgbgEtyMuGI5Dei9UwEwWdksRIAUTq+aZm0BGnJ7RjKBfZorzIqso3j2LLquFZKCTb2Kd9oMytOJeHbYxuP45qDyJD0Tt6QVDXbu+HYJuePNvCCY44UeKFlXuSij6LNLTfdOHzyxo8MD3vk4+OpwPnD7p0XjBfrc0Z7PM3R6srSHlsPjlIz33hul1Mu0JbXjqNWnTZ0ir6Tlxuuo0uyGTEdZb/EbVaG/EKoIbqQZ3wQPtkGndSDeWEYrq0LO6SXY845fj9g1IhoVKzNBkyyumd/H9Gy6BXNGt74zVAtqXGOM0JxIb8JjX9V0csNsvb4oLMeOG2Lm9a2jCzEZzDjtQ+6m4xR8PHibI8QPkeQUu9VIRZ19pqjkcVJNE0fEcfHYsnCfLNdJPZu+pc6jT0eep8wsvXSEegIdAQ6AmtC4DQSaDEn3teNRPW8eLd2XPUag9fBeEzttYl87BpsWNm9L95T9sVDX9DZGSugktMMeHE91plylSnifiaDuRKkPoLkzkiez404aoX78OF4ZSNeyZCY35fvRo/vYnvVQ7vjlrQzEzgeiX1GzKQRH5GIe03D6xzj+86CrvErgY7DSDricXMkpuJIrh4mg2Oi7PrsVMs8riCcCYeaqBh7SxgqGo01eVlPCVFcclWTCt5SiVxUjr1xjueym8whR1UT/yBevI0JviSjVrLjUpRx3Bwf/ZjvwYOHh5s+cf2w/0PvjAT6gmHnVeeF3M4dsRk7rfqZPK3aaiMb1Lw3kuZaaS0fe5TvWvuu3K4oz6SUOrAkYl1dIPalokdsoZfx/+QSl1QX3TyyKjvF9IlGI52GnkupX3NtssmJj5l26R4Ns9NMv6uNuoZGmgHe8RNtRr3MxiOtJT7zYl53s1F2MnYqgrEf/zOCdhgMxbXRPpKjIDcbMvfjNXTGscdhERvtKPlzuZeOQEegI9AR6AisAYHTSKAF6XgFIhJo7xFaFhWEDh8+GMOKXmNCKGDaDsTPJt199x3D7l17IonzHrNXMOILPBnJYsVV4hqB3yNVK9r1fvD2oC+wZ6IYx0fiHQ9fzvKlQ+9d++tER/YeyS8InhN8eDwrDqKbOWi+oiHRPycS73ilI76gOI6ZjeJYWzxi+USgV+HfWBu7KM60k+grNTd1LmYyPOsjIVYiJY/EfsyItDOP8fWLsT1S6CXd7Bv1wdS2wDPpqvM/TiT94yqzRCH+RRIh0c8E2kR0yCzLO9XGGTeY3H7LJ4YPv+9Nw/kXXhry2j1cfOnDQnaFf7K66sds2qu2m28QXK2znOpIi4dZO8W1t1w8Gq0Zi70NBlU3Xhl1LuuJLS46pgtE6HgpY44KddosK9VH07ww+5xqON83B1hG7ST6o/6faIPE2I321clYexK5qBjrmivq8vREHVscq8aLY+Icx8iah+1E81lV3ViOF0Z71kGB64iXxks2HZboOOeU9UjH9dwmkvGRWP/sCHQEOgIdgY7AJAKnnEBH3MlHxDsjQfVerVRRcueXLyRvywLlLAYePnwkkt+7hnvuvTu+zLcr/tTyhfEKxvjLGPF2cCbRvhx4wd54xSAGyHd1Y78zMsRMuGPl+nAkfd6hlEQfiyTa6rZf3ajEe1v0V4RTAXO7x8SZv/rYMfieTCa+udwr2I5BvRLbYL3CbCSyLo7XJfEZ6iNh3Z5jRN9ofDReaM6AHVfjDZCTikfpric3OZgmzsedo9lZHM0S7TjCXr7akRnVyEO+EhMXMjmPpNhNB5xyjKDihiGTCft4dSUW/IPH+IWTbfE0IORy+603D+9/xxtyxCc+9YWZTJ94HzqqN6mcDMvJNaczNPyWUVx2sojymhot6rxifVKOjxMjnDiqjni25UfqmWRu7CPJy1ecUPB/pqtLBBtyDvMUsVCffK0B3aVCb6OcBNJSgxmB5jzb0/gZj82lGbWsSf7HWTQt2sO4gcu7w1lddBhtYTakCUeRNLupdJZVdDpsJe0tjvN1EFc9vYl2x7f7Qi9bOdEfZs7zewqIxGU2rTrHDIzzfXTXsi58VPopN6Uzf4VELx2BjkBHoCPQEVgDAqecQKMtWcvffPY4NZI0wS1f3fDuoWA0C0jaSXCteEp8JdKSQcmn1zp2zVajd0Rimn8UI1aaBUOxzpfuJIb1pT+rrjaJn1XoDLQZgAXB2fgRGOu3oXNsMTMCeQZkbTJgRsiN42QzPvKxseAcG8aT9ei3NIdZXYZ17Wdb0yAajyE93z+ddUQiSxKEWcR2Hwqe4tClpXaOozLzA22UHMtH/Nc4Drz2ksfREcuSg8QGbtEiZRNJdGThcabt0fgi5r3DJ2/4UPwqx/nxc4OXDI+55qnDhRddHtfQ0ymHcDQeZOXsOCvX8lGdptriZaXrU30m6oIE2R85cjCeKNyfiVLqV7yPvz30Ag5KYeCGy7Ey4peHp/WxbBbtScoH6agsOU+O5Ho1dtxgHyfkmbyOH5MUllWS/0njqZu1MtQy+Jux61DTap8Ho14s6zYj03Kr21RJsg3g4zCzz/FikGGV4zip8+qjzxIb42nWGePEHPWKxiM5l6CWn2P97IJdVPMhyhKmcbB0LNHupSPQEegIdAQ6AutA4PQS6IhMfpVCUMvkNZJiqz75GHYW2dQrXqE4N96VzmjmFYx4R/qee+6On6i7L3+u7vz4QuB58WqH1ex8PzpojuFQcPNFuaATdfnahwQ6ksPjXo6OaonUmHAci4Q8EvP86Tq/lzz++kEmllagonH+MoCsIv6PARR3J+KwQKvenDJYRz8zyONZwpuddYo29cdbnCrJsw+d4sxhljhwLLdDHzc1xth8No42s7EzKdZZX2PJMCTEySAa402DUwhFk9hib/kN/Rhs+86ojFXobXnTcDR/quuTN3w4X+OQPO/de1Gu6GfncSgj5qsEeeBjZHDpdPGBhiuV1a6v1Hd2bUbiSLwqdNedt8TvLN80HImfMTwnXkvZvTeeaMQfjfGKysh0wBXJ8/Z4HSZ1KvRh/AWI8SnFGkabbLJsFksns4Ol8+X85llzLfUpK8dkkbrYskl8jNfHJK/plj1O/pjp6th7drnRPYSXlbZiadSxRZ0aNPQdVyOltk9LbORuTIPb+tnxSGJ2EjTa81Dc1Hr6njcAMZq7wWU8RNfQ3bFEZ/8pepT0LTO2ylaSnvaMQkm6oz1ke8ly0o+PNJixWfYbD/tnR6Aj0BHoCHQEVkXg9BLoCEASWX/4Y6eEdke8hiFWZZQcg1xxINH0axpWhvPb8RHgvPLgy4EHjt+XzQ7GawZ+ts4va3ivWlAUCP3CRQbOiHwZCiVC51SC4P3owxFjfWnRCrRXOg7m+9G+rOh9a7/9PK5Q7si/NFYBuPbJcQbxiLfJyRhwZ3F6nEKwsjSiY1v80kaG6dlH0Us+9FKPbmzjlxUjl434nb/5HInC9ng1xe9Eo3UkVuPxru3OSHqzfswW8np+qTHISY/BkalHHIxfuMqKMWfIMX0EboGf5NFbLMf9sZj86YP4Qmf8ZbxPfOyDw01XXx9/bOXK4cKLL48xxplHxyzB0vJyUsXyy6dyhsv1F/M/Fr/ycu9w8yf3Dx/78LuGe+66LZLni+KvED06fmnk6uHSKx4VZLfFr60ciBu0e4aD8YVTuO49/6Lhonj3e3fsczqAbMvkHCcr214rHDf0MxlFyzbWOwrRjLw0e5ezRfAnMT25zHhyKcQ26t2sLunEcTWZdV+6ujTnpZqGvMbVsaqXp8bLe9VZamN2OEEB73Qqrllpd/MZ/7TMouvskOJmcssQcnNNH/+DTtSpzvZRl69maBr/JMhjvZb+jfXpO2ZnaNe71UlLnyCorVLX6nys7Z8dgY5AR6Aj0BFYjMBpJdBFtgJUhKX8hQ3vRcffAMx3k/2hEnHO+9Hju9JiVyQ38eW//FPa3mOOxM4fPzkcf/b4UOzV7zkWf80wkmnRMYPnSES0y2RU8qqgm+NH8plBONpJSsb3ra10o380E/JzYhVcEm98v06RwTTa5j7qMtxHFB2D8FhvDHTzHc2Yx7g6rHYMwLninq99mDsEYgtayUsezoK/KyaSTWIkg8V51S29fqEuLs0XXSULEuYcM06TnBXnWJX2F3iqZ65ChwwkLcciMbf6eswvjsef69X/SNyo3HXHp4fr3v/W+BPfu4cnfNZzhz2RgNarD/Njb9a5Ka0vaRmRMU+/uuILkZc97NH5Ooqf57vw4isiSb54tgI94iNFhbE533dv/OXJSLy9wnLhRZfl3mtFSwI/aaJTkjip0QoVJ2Sy1ChJRr07zdCrfDIwj0KCEnzPwKFLqSdLRGYaGiTG+jk+Z6fRbanMeszOV2o/6lI2rGaZ/C+nECPPaJ0YxJEUdtTDuj6eVStnZRtIjDzO+lSXahz0RvuY9ZnVJ8U0CAM2jbWfjV6QZkpd/dwkLhuD70imMb50KWp66Qh0BDoCHYGOwIoInFYCPSaW45+Y9k6qd4slb345wwqQP5OtjH+yN/54idczPFLPLb4QGEnNEcldJLji2JH4S4JHj0advwwYCfH5e+Pn6NBaCpZBP9pZQIp0eZY8W16NbRYYvZPtz317Zxr9+w/cn7/77M9479k7JuXoJZ9BCGmbJLP+yp9kOX84Iy4IsBZu/SU17byebRXYsUx9vDYmOPiyUpxlthsbmt1YkWN7g0DAVuUj4roV5xN9ta8tDmtysYf5YbxEbb6OEuNJ6mNRProkwSAZv8cdP1OXNxexOm8MTwDiL/fm72DD259Wft87/jVwPjpcdMnlsXJ7Tf7EHZpbWXC8vJxcs/x6nMV8JMr+0uUVD39MiD9+yi/m6+bIu/GSqAQovox6/Pj4jveBSJ5vufmG4VMfvy717ZGPfeJwyWVXDbuiTb4WNN7RnDTU6VQsm0mezPQg+PclzwA/pjJL4lLeMZom8VHJs7Ocj4MoMwogSBzGiealZR9jXpnEZvUzTAAzV63B2H5smklw8ju2zcPCtO27jNDYd2y7/Fh6vHzQkfUc04fJwCQ2p5lgR4+8qXStbo6NzWZt4WesHIcJBlbB8ay/15zoA91HTPey9zhKPnIFewlJNN2EutZLR6Aj0BHoCHQE1obAaSXQhqgAJej6k7h+EUOCtidW+Xb5ybr4gqDXJ6R8ApcvDwp+Eh3vRB+JVWd/3CT/wIQgGDS9jqFIpA/F+9KKxE6i45URRdCU6hnftSAdfSWT/jrhOfnXEY0jUbTa7HejHfsz417p0EeMzQERzBIBPAkiilr8cx5DjsF8HE/TWkUzN+OgMwbh4EGD6JfxPo99zAaLdg6dKZmsOI/ktxKHrI122aMaRtuRHzcgY1uXJP14jduWGH+WMMTc/OVBP4W3fYe/xBi/WBKYphxgK/E4eijanzfc/KmPDu9+678FnWPDoyKpPG/X3sQQb0oz/Fix4qfJbXKZDUEuO7efG/OjwuZNVicn/+p02RXvRl/x8H3DnvMviVc+bh3uvvPW/JPxXl+5MurPDZ0Y8V95DpNXl1UuO0kwUodm1eTtRidfS8pj6WXWLgEH80ygi5T97Hisr4pqsNR1bHiS0GDTtGmPozrtAIaO4zMvR+VJZJZVLDtZIq52jnxSnRE/cTwbxz1fUjJe3gCOssza5GE2jgn4r/3/Z+/Nnuw4sjw9zxWJHSAI7lVk7dXV1dXr9PRsZjMa6UWad/2NepBJZnoZmUYyjaTWTKuX6emu6tpZVWRxJwhiR+76vt9xvzcykQBIgt1FcsIz7w0P9+PHjx93D//FuSc8ksSEJ8KpF4Acjccdo7dlgOKF/hn38bGGbowXrwPedC9o5DeHWQOzBmYNzBqYNfAYDTwRgBaU+VZAHwS8e/d24i5EG7wsRfcLP4LegFWAntupxVrKNlQF5g7JZzeNdQG01rhaHXfYq9kFVMAtuHanDsFNgDGAXP4CZcldVU03vx4QW4JzAeQaDxTu7NzLrg0B45RRHq2VAskjgTxlCIgeGT2tXCSsTWDRF+7UbhmBG6u6C7sWxTrjfEAjQYHZ/GXdL1qt6K78ARF8xWpGWtxEtIghZzUSPkENlIdRgIGVWI+Fo4gCPpylvHq1jeq/8UPADtZ4LXNaog8B2gfcnBj0H371x3/VLl15Lm4NV57hhmcDGoG5rNPikH4mv+zLjxJ01YjVmhs7t058H51df/8t/KPvxHp9Gd/oU1vnSpUfheGgUeGLcOSk+mWaNPRpGv1ZfboovIhMi5iYLh659r/9nT4fiUePjrNlkH55djyWYZXEInoE6aTolP8kmajlw+MYI09txxAtbe+Vm7wgl7W6MS2JVai+q/hIlyp0nU/mhpz8t0BClzUHdJEb40obJOM4SszHWQOzBmYNzBqYNfA4DXxiAO0CqEX39u0b7fr1D9qdO7dd99p59nY+k72dYc0qpn+zYMwFLZjQPZTxJeBVH6T5EOJGOwDs1c+qukpgdeZdLJ7LT6i6Cwi+fw8UCI8zPGDojh2Cc0G4ofyaBc7dOk1FgmoB9dqeLiBYs3kToQBSjlrBV1drC7wwqGW4otCOn88HwMlCzervuXsvQ5ISnuvuIdZMimXDReBMCl/GfCmML4nx3JsO9WHZ0FiGz+BlXCa0pl6oEn7Fa/xkLR+DWlSHBagiQU/Dqgao12XGBxKjW+rc2a39slOXTPjsY52+e8uHCn/My1WeaefY3i57QytX2dI5fjqhi/3pMDvC5eESHs2x/1bxmb6UV8+7W8u7b/2ivcUDldI98/xpdDluWo5UcOzkKNdjmQ8/7Tc79lfGIndTjo+hF49yPsKdk5GeHneAZJA8rJrBLdRF2hlm3CS7OA7KZHeaEqbyq4ZB9bD6SIekD6cj9S0a0pGzVQTkQrwYg6QtbhhhZHqYWV3GtoX8mM4x3VNjPjMxvEgnZD54kbFi0uNSZjHnLEnVt0Wp/qGArH9MnsOsgVkDswZmDcwa+Iga+MQAWv4udrWX8w6uG+Vqod9zgCw/iQvgyloKneAVei2G8fcFNKe86Xxc3ASjENWfUWIBwWu4I6yWG8I9+AvcfbHKKXbq8Cjgq10ulmBEkOLDjAUwAdkumHz2AJEJWWBdZF20FYG4NOO8r8MuxkmrUvVNG/RdrTJj0YeHZU4IbjFXizoHK7NdrvGmChI4EqENBc5NiCqQp7IoTzkBwZBX+o4maBf0FCrsYF0GHpzDW2OfctnRRPJYondKp1Se7f7YH3qfV5y/8YsfclNyGivt5fbcS1/HX/wCOg+jT+0r7fxUuMkp2vvo3HqR6Bsr/Cm2unvupa/lYcQ3f/XjduP6u+08Dxa6DZ5jbhk+Pakjc+9/+zNR2NeIyAipsWDlVturrm4YN0oPk8d0OY0w6OvcMTzNrpky4XU0ezDheIyvVUyKhZBzk6bJR+KcxEVpKgD0Ga+9VG4qBw/nRMY3UjIRwsu0Ph4zH70RtXIz+Xj9CF3Xb9prPpX453wpHfT5arEkV56kx8RL0vw1a2DWwKyBWQOzBk7SwBMB6MEwa3MWrrIgC6L1Xz7LA1paisea69FFLAtXL5zt2ljkyge4tqLLQudqyGd9tV4VLj+t03tYDQXRWqV17XAbPIF0WZzrgUOLujhbn/tUY4YNM32zBYvmG6znMNvHCaALYJcbhZn8KyiRyFNJSRM4C6DJKF/WtElbosF0DpbtUcuLhUe906NxwcKijjDBaiwn6jF9FZcXmRHNx5oSFzaT5qu/DeXOQF6o6QuOOMu0zY11bjJEH2HeDrnZOQQjSnmITvQ5v/nh++31X/xddrTwwc3nAdGbp/CH/oguEjD/ewpDW8fZPyz9OB3ng3QcTaJd532JDDq+9t4b+O/fjW+0fvnDr3pZ8ASej0myS6xO8Batj07xbCRM5QnthOkkL1zC8EjihPh4lFqHAMezjpw7juEZeY5kHDux3k70UBHI0NKbVh8r/tDTzszBbLl+WoepUGNuncxo1JnxTLFQd3adJeInN8dK87s+qT5fJ/OfU2cNzBqYNTBrYNbAcQ08IYCuhVrrr1bnWIGwBgt27wFIdK3YxF85Ow0EDAoE6+n5ARgtI8h1ufTnVBe/scDpQiCY22SRF9hqMd3dXW33jYNIBdJuh3dq6xQPLZ6Nb+sAigHQMPV13P5EHK4BCy6knvNnPnKV5RkAbY6CGBCion2hDTgwzYwlUflULopUIWil8GNpySul6Oq88kJAcuTQlAyt8oJcQ+zPz90QnfMCPOHKeaRJBbFCUy6v/06OwBsXFh608+FC++gUvwq4m4gPbEbXK7jPUM8BbhxaXe/cut5+8v3/gBX2HPq80K488xLpbiX4pEF5PwvhQTk2uMG78vSLPFT4Pq86fyegepOHXxddfILYds/jA0Sd8Ci5o+JoWOZbxrwpzQDDS6qjpcfZKFP0SxmFl+SRkDEYMnkNeqKD9SSp8kfGqOMjHFNkUk5BwrduAlMZSZEKJXsdMC5ZxrbE0tsBjM0FwPecuWrInBvzo/MYHRY+07zwq3Ipq6VaIkJSLc8Eyy87SZ2/Zg3MGpg1MGtg1sDjNfBEANqFSEvexgYPDJ6qB9ROAZj3sPLeZ9eLAqaCw4P4SO/y9rgtfjof/smKVz6IRoTWuFoAmNfxk3a9NFiHD8Jtscge6NcMKNzbc8HDhxoa8wWFe7we/EAZXBv7Ygz0DKD03CBEtiIXbfnnaEqSXcYJgl/PjfLHWZWijp64AOTFh1qgt6zWWuWxvH7WHgWu8fFUV9Bg8K7Fuudl0zXyUGToE8VarN+0ITpWjiFUypcsqYs8KUkOCEcLbQWrvPpoa1jbNzE1r5Rl3g0rtk6rOz62R2TOftoH6JS7k7x45NaND9rrr/6gnWePZV0aNrDIqoGSRolOCpWrDL/58GhJj8iHTtfZ/u7chcvtxofvYoV/l7H1jZDY8yj/CPknOukswirxnsBgz/ZriyfrpnXVuLNnq9w0r0uhso/JV+z9TmbGjsOmPrbHMj2bQ0KRjrN+HEQnZh6j9XTQL7MWJY0QHKuKVafEmWc1cit/QS8v85gPCRG+15D5Zdz6nEeOYSIWgX99bK8V1bwtSvMnwJlyYz4dHOJKFm7z16yBWQOzBmYNzBr46Bp4AgANMATkbWplxg95Hwdgt4PSEn2wXdvQ1SLFQsZitsPrln11t7tq6JPrS038qbxAp4tbLXL6M58CtGkRkldcCMhcBwQestgJVjd23JVDwJ5CLKJlUdUVwb2OtSjp7mHIq8YFiATJh7/0WIST4Rd5+GewmPaF11WVAkkWcLooIweS1kJNtq4TJiuLeWMRN811PYUtw8IfKzjMVmJFC9eipw4fbNNNo2CqD1Z6XnUHeMAoYAGW6tKXo6Q+66BUADo0yYO/4NhfAVa4kVndEyDDk5sS9e0OJqfQk64vWu9RVvpt/wAAj950kXn7jVfjynGFN/u5e8UpHgp9eLAtFapV4+w3cVzK8pFqh1xrpm3cvn+nffDem3nRyvmLvmTHnv444Rj15DR9SJcdCcfP6ccaMEVl7zN00s9Hyo2TCX+TipTvY+mDPMcjVUjYR3sebjxCOTkZhYp+kjGJThozyEuiCY1ReXTES6xKFV+/02Anz/GQzJE4OUldfKko/5PFV01Kzmt+Rv/GZUFerkucZL6RXrr2ew6zBmYNzBqYNTBr4KNp4BMDaBcrrcG6Bfgg36FvBiTRPZfL8uxCVZYeFzABiVbZW7dutRV27NC1Q6BseeMByixpAkdfkGGocrXwHQoyqdMHAzc32ZqN5U63A+m1bLv4uUBaxw57UfsGRLdyU7ZyIykQq7+0S2UAeOSqelxMAye4EfDBO+XRP9t6xBf6Q1u/ezAXICbHCv2C1spNr8UaoE45E33N+RplwipApcC2vremFy+Ognf5EGxTAWiOFrRuyxKUTefmAPoOBta9cSE74oSKONXEv3mFtzHCb23FLQWVCpcYbnoOsERX/+xzc0Ld0sPYm5DbuHK88aufsCvHs+kLX7JSDejMH3EoKR9B8JGzHsHpEVkfmf0gRGn+YnL75vX2/juvtTts62e7N0+dgeJjVjQhN5o+H/VMj2ZG3ybaayMse3CAvpFz9AgDeTgWiNQQMaFCyhIVKGas96yQJy2lqDlMpOxiDB5TmeQ55Br0pk2D5YvH2PGiBBw0x/kV+SgTPfFV3ItXZHUeMO+tfzreMx+YK84d52zEo0DV0usqpUQ34cXNoTnZf9u64K2enF9eR2LxHs0fYs/HWQOzBmYNzBqYNfAQDXxiAC0/FzDdMdxtY21XK3D5JgugE/paVrRaQDeAaAWwt/Pqbn2l74WHwNYXnGTvaBa0sfKVv263JLPY6ePsYjfq1urtg4F8UU0HDBx32anDfZ+1sm7wEN2CN9ZGF07B49bh6azz7iASqxRya1UOJvbIIuuq6yJ+iIWYpFiHda8ISKGZByuFhMyrBZmj5SyDPrJAy0tWfFax9GKGjlW4yvRygucOAqDOn0mph5aNow89Wk5YYcQWa7HOVnkm8ee/wfgachygiz2T8XmO7nBbwPU3wbL3uOEYb3wsK7R6u5tfDdx2Lwqx0k81fNr8Polw6o8/Le+Mle28bIdfN8b4fRTLhY4fQTQZ/0sq66Nn7A/yTyJJXz+g76EvS1jQ887nGK03Qwb5HOU/zqrdnYrDSB9HeY94US2/hxymTGhKnCXZItaBbVCsiVU+NXS5Q+HY56YySYzZkMG+fnkhYlVkBvgSzXaQ0+oXYoVzSWad/pOUcd/r82BdfGWOJj5ti2LOYdbArIFZA7MGZg08QgNPBKBd5VZ9WQkgTIupvsgubO52kdAXNRevuAJgDd4FqNTbAfeJA3IPeN02O8vt7pxOOcG3r6HW5UAAOMCMcf8KOJdP73iDmEAkFioqdYFVJn2z93bctYNXefPgoW/scz3VhUHLtOBC3+pN6jNdufUdJkpe+VLH+su5xnWgsOt3ytmeiqsB/2rhT3PJ8CjAzS4eIQzTDpgKUJi8CMZNoPIF5OlpU7qOB2jfhHeKlv7Djzx1VICbPgkoQT5AtO1Zoe2C+1V0fKozzxaDjZfZWCcAX/34eu+nnuZV1/waUC0K94/xJbPPclC+ktEbHUGU1vfxq4mSm5vx4Mk0fKymDS4wWJST68mhumRBuCAaKdOSplXfGHMM1tG5YPqC1khOikuifHnsQ4DYCEWzbP1ID/U4OXaseqeJg8uDfJZU01KO7WWZSSkzRoBglMkN7yKrMsbpIs9kPsyG6Ca64hx7Nhy9Hliif0Z01DUfZw3MGpg1MGtg1sAjNPCEALo4D0BZQKRcA5Z1sjKxiglWddeoV2LvAljLEi3YFjTfxwrstnS6XvimuNO8MEWwK7rNXzB5vXzlDK/jFiRYn6C9FkJrdKEUrOumgKsGcV069Ie+x4tYBO++WlxrtJZz+Uq7BeB0h4+VFeSK4PKpFowF2BehmNSTe2ZfoEdiP7oWI1XW5uIzCMjocitzHhTEPGa8duEQ+CAVcqemmM6qqkHjcehbmjqXxhuHktsbGtvnnia727y+/FR1s7ooGmuBtm8ROECjvNbWV3mZylPtS1/5TvvKN38Pd4bnqG8if4mTb9t5cjiZ/mTav+/UR8lSLQjFlIx4muzxY4s3KWF/pPzyKEe13/+PcrfSoWtFW5Qvsom0nUx68xwT4Rq+3szav9bhV/0ZX4bi5fky1pktiR6ITWmPZZrlZ1Q7RAtZP0lxvjg1lNtQJM1NoTe/DEFzkmfMdmU6UMh2xCIdGjIzJycVUdgxHCaW46MuRoUZ59NfFzqN16TI1OWy3jnMGpg1MGtg1sCsgUdp4AkBdF/JshK6iNerufWx9SfxKWzQ/7ZArYvaGoDVfZ0Bt7wR0NdKawV18XNzCF0v9EvMwk+a65oP/9VWeXIdnLW2llvHAL6uhD4spyuIR8GzwDmuCPDRtWMNoC7IdOEc1lrrxsGBtLXsMS2wryU7y3ktzJSvvaH7SkuZIWMp2QW81m/5GfehwQLEFjavbjC0eApwJVrhJ/0pgC5kUa/c1vItBqjt9krfnpcc8B8gIMd+3nViW4DMVCz/srKvapFegyu6Ucfrq9xoIIN9oUyCmNNnz7ELx2WO5+OeE1CirMeCKSXRsYy/p9MHJXhcRY8pQTZqW4YenyYtMx8TS6FjJT3tSd4LRY9dYUu9FUHkqK+qyP7sVS5pF1mJpO8HjYOtl0g0PSOHh3HpBReHQTcSjlV+dMUAAEAASURBVNc60sdR+gnNKD5twyAdxxQZ5WhffFhsZ+dDVnKZD0bCyggN8s8QrZjBv0k1Niu+ANsqO6HPQUuXUsK0NCu/Tjfyeqn5MGtg1sCsgVkDswYep4EnBNCydyGqxU3rptvQHeDPLDzUClqLleuWlmF9m90XGosvAE5XjtV9du3gs6avrdRZNQF0bsW2gguG/s0scIJu95XWvUDQW6GsrqYd9L2OLS6o1i9bgLi/r7uG/sgF0MfP9Fqy/Gm3RJd/uUEI0gXX7mKRF6/4s77g3g+Vxh86C7o7Y9BKgGfcR8gkWvKbL3A2H1kikzL4581Gv1k4CFCo/DC3jCLh5yxA9uUyCnjAUQB9FASoAfOjtSpOvNuukRPdoG/5WL/11sOd6By55LsmeEava+gqD4IimnQ+dBn9yY26qbnXZG1HQ0lwNO3TPZvUMIl+OnXIsDNFJVHLOE8FH7HCE8iWST1mJxBO1KVZyR+l+piQ3q6iVAXTpanzQd0zF+kp1Otb5j0qNjiNeh5Fa96gP0bXkx+SG2LzUkuIaI9njvNFRufZ801n6Mf9aVRbOrCkA/aoDHIsXmqabBUYGnIyOaSQhm8/jH9+HOvXlFR6lOF8Nmtg1sCsgVkDswZO0MATA+gsUmHcAR6LkmBMVwndI7KYme+aBZh0N4kBggWtBwcCaCzF+iCzwrnu72MxdvnLHxX4wOHOzjY7cOBucfp0O40LRj30Br38SHcbCoFvFkYWzbgqAIbjMiKI5U9wuMurvF04lVtAmcVYemhrId/PLhVxgQAR59Xh7qkMrQG4zLe0Luzl8x2wTKr8y0WCuIA3aTTIiA2jHhd0P0oQqUhWDwtwDKk3ALW1XcktA4okeKRIvnI0z3O+wiM3C8SpT1nUiQ9e5gYgTIAdtOUAK7xt17Iv7F7HYr/FuTcEsfSHr+C9gPfwN7eqTzdUKz5dnh+Fm/Uu61aLXZM9fZkXbsdOT6rhOInnlcY3elyeV7r9lrFQyO4BlqPPK4OxQP84EHI0TkjfJ1Z5pjjPzBjtqdG+pLXOqteC8llyCavJV9Uih0FTKQ8rM3IHiyoVYYYyFloXN0/Z2q6MYRPFxuTXHEmk005lh84sxrisQoCe1Rv/SVNNK4z/cdMd/mR6Q+41xGuV9a5zcz70G1bz16yBWQOzBmYNzBp4hAaeGEC7VAUsBozqbuBCL5ClVj55iM3ljFUtBiAXO366dWEzSO/b8NYOa3cMgcY+4C6roPksdPLTCrWDn/LBXUHwbqzbgr968YovWBGEytG6KOe+bgiAYTp1mOXuB3u7BSdcmAXyhrLM1sLsuQspJXngjpsBgKX16wriRyCRRd3GwE/3jEMrWZQzoty9nrRzAIMCxjHsImwWbOoquckT+PRgPQPoVFLVIe/RRmkSYFBggzPBMgf3gl7xFeDwX7iroHddNbKDAf3lntxW7gOe+kOv0962Rj56vnf7Zrt39ybAmhshwQZvJLTdqTuVfryvLumxQsv2Hsv4mKcTPpOoTI6dnsg3vyLYt+gkOqWQ5VDdCeHExBPoZHAseaKERPnKWMt4K+JBUmNilEfzZIdiCJU+HxX0UkWwGE+jtAUHMJXviD8ooAyGBFX66NmC40Mj8o9rBpWmDbppjDCJmpTaIjMnAmb3Qh800YlUJCyQtsSlC3Mqbn7NhNTbyxVbmRFLeYa2N9TM19zIM6YHiJZmAOywnb9mDcwamDUwa2DWwGM08MQAWtcCrcP32QrNRWidrepYmwCtHdBmcWOB47iiFS4AgMWV41i0gN1dTHfyKFCXdRQarae+bnkP4KdbxS6uHbu7dwMK19meToCrv7MPHAqoC+SxWFo/XIcVS9i7H+uUlsBaXgeAtXatxwGsSpJVXIBbu3boL+wLRoZLRwAo9AWSKR1hWYaLrRwItDHfOUnMfG8YKDgS+7EX5GDMcoufrR+glG+vkMOiTuKm5sNXfL7RZbbfY+/n7Gqyym/VVHC4a39gWUancZxBV/h70G/Q0Rd77Kt97b032ms/+367xOu8z5271C5cvsrDl2cQnc79BGG06xMUfUwROVdY6GIkPO6YolrZ+00F+kgwfcl2wuXExEn+JBpSvjyOYuNIkv1kesaD8R4kSV7/lqja1QvnBIoi4miEz6TxJnk6kkIiVcrki7zBt1f8yEOVeSSJmZLxyZyLED2tiy7JMlSiMg5AP+SUxtzU6g8+3nAnkZTRqMo1lRBKjlDZriQ5Szw3z5jbaPochePcm3g/Ugr0HQODh4XnMGtg1sCsgVkDswYerYEnB9CADt8w+OH1DwIot9g9wx006qfRDmJZmwJQsfC5mLmcCSF9kcghgGwsYD5IWPs+F9AOjQ6K0Av2VtyOzocOoQtwx7XCV1br4nEa144zPvSmKwbrouthgWLdKgSILpQuqKUQ69SSHZ9nF1UApHxNG2BaYO+i60JrWnbuoNw2NwveNLgDSDEsMCLPWt89HxUtSCpC8nHQ5NLdl31iCs4hofNYxAW+lSn7/FRvSckstrD26aaB77a+1PqYsyOJ0Lj20C597tBOdXqIH7ptW9vA0qzPOsx27m/zIpUft9d++fP29LMvt+e//I321W98rz3zwiu8ofDSoo0l40f/nrbmo5eS8pOXfHQ96nJ8pKT/ONUtqMI49tPjh8dkF+/jhTpny6bjikmHe0eJyTfXLveeS3LHaMaWv7gQN9RYKyBondNfMtK8UBWdvMpCXHwjQsYUzBfjpxdY6F0djTCNV9oYkzmTzSD1eOTEhF6+t82U/EyEzm1HPU+ANuICFWGrfRHU4oJdCzkXYM+89oVH2UmD1HrYFr2QKZk8nf7KIXjOr06dl3wOmcN7/RO2kM5h1sCsgVkDswZmDTxOA08IoF2kBGsAT4CYixorVs4L1J6JdVghCrxi9SHOUp8/F7mxvpZlVneOskzXGldxH2jbECwAGvYBhHFDYNET+I1QD9kJrAtkaLGWd1w7dLEgw3rjL22hLqeLvwtx+WX7lkP9spcgfdRhvoux9Nnhg1XZ3T1stzQu+JreCnuphy4ZUYGJFnfTrMssF3zB+7DC+0Bl2gWvYR2Tb16RTonSh0hgvKYc3ZBoemlR/nwk6cF8q9/fY+9t0su3WZ0Cpvm5fFcdIrf7XrNpNkfibGOn3/M9Xipy/YNr7caH19oH195q199/s33lG7/bXnrl21ijn2ZLwjPhV60ZNX6Uo60/HqKk44kPnO9x0+Ir4ZWvwBDbHBKiS9o0QNQDBY8kWL/1eTA+PkmpnIjIl8ePJloVfuD7KO/j2akmiaOioqBXJ6T2ccmbsTOyPOlhCmADpm3XoPPIuTwWRY63yXHzQJimhckDFCPhSG54k7LgOfiYMT49zcNyCo9eKbZhwaD1aEmFt7jBBL4CjomHK2PCiNeB5FK/IkQfiRi3WAqHJiAdvexyo3nAZ8E/ufPXrIFZA7MGZg3MGni4Bp4QQMsYQAYQ9IGcWIZZh7TQ3sEqLWATbLpmufuFAFGQk0XN1arWurEegv18INCn4hGLvNAKqAEAgmjPjwBoiAKQ4R0gyiKrFXuXtw8qg2lajQWMBVTZqg45BZxxRVgRFFcblF153enj4BCXDSzb+jybbkg9HYGEZ8xa5VO85wJMntvBpa3QL5fpFM/CbbsFAlrE3QN6A+t6WcTUj29P1JVAoLssn0VeHNHNaN6IxHIMYHAfES3r/ml11IpeKMna9UeXUd0Q7OG20ZqvTK9dTASg6srWKZd9o9KRqsAKaWKRGx++325cf7f98sd/FreOu7dvtFe++b32NK4dp89e6Pqj6EcKD2ill3pY+lGmu4D8e/duZ8/uDXyzeZa0xol69VeEfPRzfRi/kd6PD6WDLyRSiUU/SbBPRqjbmHFWx5KxaEoM4hlfHP23TWN+HJFTOv975pEjeZN6rankGOC5j89RtEQ54Vs+I0g8+D6koPIp7KRYoqR7TKlEJgSDPUli3yKCchCTHh2lXE+3jn79KE7JpIg3gvKwMHVa1pr977pz3tWNRtFYvTHL5ebbBIMs5zBrYNbArIFZA7MGHqOBJwfQLFADeLoibW7yum7AmA+oCf5cply47vIik7t3bwcg66+crdIAkILmWtL4hk6r6Rag21UwgIija2N22ODogihYr1daF3DUKpnlUEZw0w3E3TP8iVugKGje5Gl7641LBlQ+OHcGACjAl/7OrQ8jp24O+gELPt0dRL/reoAQdwfks/76sPByHqsx5QegISnBQ4/mvIyIfXUG90pvXQLoxAXTyLtLfeMmQ81QHaFAQTHCosyrEQXa6mvFNgZU0JUdMIClI6Ng2W26VrU+kube2z4YuZK3R66kD7xBOPTGBn6CCWnypkj9p/Opm5ONrcvtzV/9hBez3KfNO/TjJm4z5+2YiPXJv9RSGvlYFt6oeYPjeFvnTYq1c4pvsdwGWN9J3qYvyclN2yeTa0hy9DjOHiHiCSQZJynSM8eA8KYnN0TpwgnToiN3kmZ0nNOP8PBM3uPXEeOmDpC4kgdoSYI2v45QyL9FCDvPB99xnKZN6KdlF0yMDEmrXEpElMHvCHFVd/yOhEIlvxFdvuTCJ/81/usXGZP469kUIu6cjBiMca4kDnxLM5CTzvXHv0rle1E2ZPWVTDPmMGtg1sCsgVkDswY+ugaeGEC7ZuUtgwBUFzXB3OHhdiQYC56LmS9Lub99L26W69uAWoC2r+wOIAJEauEVB7gQlrVYkKEVlMJ84q4AWNPFIxYjQGG5MLiIF5jIYikwcSGm2B7gcP+AV1QL6Pls4HIxgPs6fsGC5/MX8Omlbh+c21U+y7vsUnYbYOZirBwBujANSGFhFmQGaAqerSylcuixrMyL1CUF6bbT9tIWyyqfFuQC0/KAOmTqQLXyNQkCx7iEkBarN2WPPBgVeoCDPKXlr25DsDTzMOThir8EaJXXlQOdwn5nZ/ifC6JtkwjdYJvdsWM7H+X9xY/Pt6vPvYxP9Mv0IVbualyRf8Rvizgm5KccuWl4TFnHywpW51HGm6EE5FfG7ft3wtObJv3rj+vtZPZR8MlZph7T/cMJP0YObfavgsIT42BIdZM4pIsw4knq/TNt4xBVus5iKX8VWvAqigUV6aMij8fTp+cTFlPBe6nBZUqVeIDzCbmyFuiaZZtG9ab74fwwd3fMFU6LwCOZNFiSRTiqoEXXBYB7U8F8WCRS0rLF8wiXBbs5Mmtg1sBDNODFxl+KWV9YPFg0xnrxEPo5edbAF1ADTwygXYZ0adDCazwPAaKoWhArUqBAsIi1EMu07hUrd8sHeGtrC39arMOTl6QUmBbIUqYDVNMWtiTmLjam1Lfok1ToQljW49rXVSAN2AWo7WKRFhCf2j2VBw61UgrgBK7GvQkQJCqrbhKW2b6PnOQLtDcA3C63guZdLLDuyuF2e/J/MCjHCMalWaYJegSMFg24h2esq1qjSdS1ImAiZuvSW4ASeeq4wHdZWKXXHSR73QL+B6CSTrNzeX5Dg9XZtu7QxrTb3VK6HFp0V9cE0PqQ1yeuI71p1qHfsUBXeX3A8J03f1H+0JeejjV/tPYjH20n7fZhx1iMBVjo5FHBXw38HA/2naBZAK2LhzRbZ86lT4/THjmnSvub/2WYnpv5CcOi6JTFiKNX9WnNdEkJMXSdVCs1g/7uZcY489y4H8fBkL5u9OomlKyMOL+Lxio6SF1yXpQd1CT00IXJWRdgZB07Spmx5lidFut0R5OqTcdYpFi1r89pCzmmOaS8v2TZKIPtj0idNnGze36IzCtaueTmzJu0oczQVH7xnZYdmfNx1sCsgYdqwLmEEYyF0UWsPjXrHlpkzpg18EXTwBMDaFd4wcuw0O7zAF52B2B+aWXL0sTiphVoDZeCffcmJpguYNPVwh0tYjUEQAaMA1h9HbhA6MiaB+goP2MWxViKx8K5XACl1+oa1wzkEhCu8ARdAMao16fusUbfu3+3tevXAjLu3rmtRIuFWEDvrh4FVMpVRAAZIA/oczHuraPc40KW8yUR+hgLfvQSiymWYNJ14xBUCrBifU8prfK2ufjYWssvdUOeieAp0zgLoN6Fz969fV5qo7uDbh9a7fWLhr/uGYK49J2+2AUwfIBSK3Vhli4nTNW7vtc7WOnZuqO99nO2uHvq2fbN7/5Ju8hDhWR//BChayxY/JiWTuZ3IpFuPRvsEHK53bzxfnv3rV+2q89/uV0A3JeeTypEjUsFPljXosjjJVuQDi5JQGcjYyhnoqORdaTRi0QZQbygr0i++XIc1FgYBWp+WYDhs6gXqvR5bjdTWPoxaovnEHl5HOnFWx4jmPPwUQ/dQ0B0ylfVg9UDx7RnKMyKtEoPKtNzbzWRBZ2GYkFE9dxQhE/0vSzvOM84GP3Q+ZrWofaoaT7OGpg18FE04NxxPjkl+Sxn5kcpPNPMGvhiaODJAXTXg2ucL+8QZJV1jYzFrCqrqdukrQkQycjihQ+jW8H5WeGhPX+S38N9wHOx3Sbzc0zSNXbSCHBwkYS16QUw3VkDUKgVlTxdQA7WSItbSLkvlK9sn/DUWUCjXiRy984tQMZBgOEGP0m5Hsvf7fguXDoTC7gAfxc/6yzJ1KsV1voXzYP+44UCQAOQBx8AkG1z6pCZbecvbe4Veb0y5LSnBXMQ97gAOwAZy+nmobVOMOzNikV8KUrK2E/pC47dci2ItoCWdXWpZVr/7wqWto/tn7X25ms/zUOETz/3ZY5sH8gNR8BLEX/E7whdtLKvKo6VPTHxGI0Gy9XsU33t3fsB9/q3X7h09QG6ZQJ8h0IXidUv5U5SYyl9cEywMUYWxYxMxBz5jPrIVQofNBJWR6YfLHtCyLiH6ZL6SBWTEkjY2yE/P5GZfixLraRmUKfVVtWTiDVMw/S84hYx5mdRvBdZtCGVjQoGdSfykILHSnN6LKUSbM+CMWVLDPIeoA5d1daJAparXvVgyByqSM79qjzzB/NF1hyZNTBr4LEacO44i1wH53n0WHXNBF9IDTwRgB5TKGsdi5svpIi1p4O1oTFhgODYn9oFbfsUCHgDy2brNPIFw05FwZ4gemcVvyqCDwq5yAmCBXgCwNQrvYiTPK3FLpICvrEgCgA1Uqdura4EJMxrwk23tuyVzO4UWs2VR75ZpOGlBfz8+QuR6x4PP9aLVHY57mEx3ykQLf0nCMo6AKog+gCLsOf7WHbjRpF22Tbkl5bPkC1H1/xERmvr1DaZLKDyI8/1tL30GyNeQB03Clq0sVCrQ0FyfKLtI3S4y81HflUgvoeyFpbwYA1vbg7YmeO99tqrP2hf/dbvY4G+yucZrN6Ac4X+2MGerzCOJ509im1ezIP893mY8PVf/F17+Wu/03Uk76Nc5aOejqc7Pnz41e3y9vLrh+OmK9pCDw2l7+JZfUbH5aZrt7vMVMfAIKJQM/2zCBPxKJYhaHbiENmXAYEmwGgKmKUrVoOG834jJmYuP/vONBVavsu4EGBEiv8481i4mDLTxEVc+hEUhLgfK35A56Y9KpBvZdWYInQOJ0b9WqSTVzKm75zf6MT5kXLkL8bqqIqsoTvLGB/6e1DGUWg+zhqYNfBIDfTp6gQ9abY/suycOWvgC6KBJwLQ6sBFSetf7a/MIoeFUuCW4CQLjWCuHpLTguki5nGPo8thPoAyf4bf1KeKUqYJyLX2ut+ywFWAPLZ+i4WZc984KEgYC6MvE+G0rSNDQVDX1pGPdVWJOHcRdfcGgbllDVn3E2vtPq4lu/vvFbCNry6WWMpkDUe6AH4b90kC1Y06l0C6/LVTB7pQzLhtwJ9aO4BIcsDXAGARIeDf9tpibyQKFB+usCWdOuLGQ17hDU3AiBrWJYVGB0T74CB8Vn2jI7rzE/o0WJoORAUgvZ5tweovf9ieuvpCO4f7RN3APEwhpeOjuUo/lOhYOInmaImHnVky3JAzD0pWR51AXnXk2y/7vtPqA3/zgzfbB2+fw4f6LFnqYMqiToo8vZJ8/f598NK3aFpGn27nhOP2+rW3293b11NF/TJzhOGU+aKuGo4lpwTjBip90AWfNm+MJdOKZpR1nMNgSqyWpwM9Egz647LJ0Dw/x/Ms6LjwWEGNFC30qaN6NCR9jg3acUzNIy/VDJmh8Jco0/on3KBVxyGtBjMX+XUlVZOaf2nGp+ZRLkkWmsOsgVkDn44GnLdOrMzfMfc/HdYzl1kDnwcNPDGArkWUhU5LMQuaW7OdAoQZfK13FjYBrqAMMBdwzVwbW21l8XexAyi7zZw+0Pon12Ls3ASsggt3dgQnu213dTfuGW5lJ2jXYpo451pR4ZS/qqfAYh6Wk88EBJQFnBQsjq6rLsICSOvLntP6CfOGw2VAaBds8wFI7DlCdBWL591q+5Lw8TGvNT1Yn3rx482CwLVeSSNRX/GpN/rg1NbZyrELx4Sq5JN2wZ8IJ6kDvknmK4APi16ufXJMNbSfPtQ32jLDqmdZC0aCMBbgVL77bb/F1nYvvvSN9vxLX4vetKg/GHo7RsY4hU+2OlSwkTZoTjqWoEdzIlNPgofyIuGCn2cVxnFZXJAraP7g/bfaTfa73qW/P+QV5ud4qPXsOfa4VkHKllCRoQd1EK1wtN92KHv3zk3IV7iZuEh/rgdA3+RFNHfdItGbHE3DI3RxIt+ijqrOrDSV9F6LKSlZ9Y4+G8ykGu2r/km/pfRI77SeTuqr1FG+tGUbHwxTPtP8JcOUVv/pgyWHUXKUqvNRjqPjwEw/g3gcO5viXflmHc22ThM96jaTaG6sx9z3ONJTV+d7YlNH3nycNTBr4KEayK9brFtjjTg2KR9abs6YNfBF0cCTA2gWvXrwbIdjgTVf4y0Y1mWjEHRZ0bKICUoI2pBc9FzwjOiHKyDO1mQCaK1KUAnINzb4aR2Q4o4cWn7vu20OgMU1U+vqKQEt+//m9eGdfyqBVjC1sORyLmiyXhdOXRfqbYKCRlgCwrVK+1rwdV7UsYI87hRhphZvj5Z1K7xhbd3BUj2BRan2sV/WT/BQQKdAdFxUaK/y7vtmNOrzexkCI1Rmyi7TjVWjSqee9UrCobh0ClsRPWKOz41MWcGpDZDnDh32JydUg1x8bJ+uJcUFmfw5HZ90La7vvf0rrKzvtHt3b8UnerG13FHhTjirn9vj9pMa4D5EfoB6ZBTQKp11Ihs8ol1Z/TDht6QZtLZVV5wPr73bXv3xf2pv//rn8YP/EIvx+fPn6AN3Luk3HRaaoC57xfGZ7RQ5FoC+zxsb3y397V7N2Nft587ND3k1+h3olWqMlBr7EwGtwFo4BP7XGK2E5IwWyCZuT73dxde0EFcJaEwPkCU9nDv7JdXxmKNiMPFogXE+jS/LLfuhQDuINXIs0+UweByVMVxgq5xpQ/TTqzWTBoWPDUteb8BUFLLkP9o5jrkxtHz4VL1Mq+KX1M6r5xehJ3OYNTBr4LEacGI5hQTPmxhMMuE4z4SblJ5Ms0nqHJ018IXRwBMBaOeL65sAzE8cJARhzC6Xr3r7IDDYfAi1TLtvsG/cczu7WvwBaeS7F3H2Mh6LZRZKLdruzLEJgANwCaAB0rEeU48Lqzx2ASpru/pI6/5hsqCmHpob7h3SaoES/LrQCoLk56wf55bJriDwO7W5zdZ8p2OFDFimfKzUqdPt+HYAXPVa6bqaqI2PGB64sFTZAgDEyQ+wEKhqwrdu473u3BCoeD6BCZNjdApd/Jq5ARHoHqBzW1qgr/RnD5kmYON3AY4luzraTz3ol7rL9cPs8oVOtfa1fQbdNtvGbe/ci4+4/BNIhz0hX5V25Nt0gDl9KPhcWKEfSk/99j301qGVOzdeSDVuwI6w7yfW0pt1NBv59nir4a9/+eP2w//8p+2nP/yLWKF1D7rGzcDFy1fauXMX83ZDCy552AeVUrrkBHnsGzMc5/t7h9xM3GacbZFU7iTxtUeX6RuKq8NlkGHpY5lGTJa95sylqpiyy8LRm30/kqAJWU9bjCdrmNQ/rWdRNFUqyzTUeepP8jRf0GyifSAFnPwPw14OQH0kmFxkSXYMpqGDyMLhRWrawnhySCW9iLyO2OfWmdsbijhmneeVN5iNYtbhZ3xP25Dk+hpkD8meUM7RWQNfLA3U9Kg2HYsvThOZTA6ihyy3h5vMRTB0pnqm+4TmiJZg0LNymJKN+DgeKTefzBr47GrgiQB0mtUXNBevgDRniSsrn2GhOwzgcYEDZGAKgjSL3gBnLoYumIKygAaLh0+B83XenrdJvmDrAP9eLaQBLdIYUpfpgYS17zOWZPn60KF1GgQ4gmHTBWP6P3seK2gHqJE5bh0C/3IPESQdjjopa7rgpXxaw/rjfR29KvWyBUhoSlql37ZAtjCGurR9oAnzeROhbVCRskpcLqYd8uDfqlsJ+rIUj4JF9Mrryc1WV5Tuui4eavFAZ9PwlBHBuqXjWyv0oX3DDUbSTPRDONjDzQXXD0GM+1F7MxTwU9n1HV6yFACbVAD/PuB7Z5utBDswrp08eq0dfI222fZsr0e7fAlOACFp9mHcRiJ7F2rUbRr1TVOt/j7bF7731q/aT77/Z+0Hf/Xv23tv/iqA2neDf4jLxe1bN9hTmu363Nt8AgIdkwHBNGIAvDomp270sODfZ/9wa83YSttKBkaOHIZ0HI2XdMvYJHsSTVMgsr6hk0l2ogGkzLGoYsJ3SWdd0/qXOY+KVYmTyi3TrHMalHHIPE1P9R1XRxpZDLE4jmiV4Qxa0wY/+8PrhmM4/x78kFaj1ZIw9T+HiqibVeaC43QOswZmDXQNjPngcfpxjnIeV8FMbtYAr4XEXSq8sV2/xK/GV3h77h6/1K5sVjrTzbm3okUsgZnneS78zkXXMI9kupx4nH5SZv6aNfD50MCTA2jamUXJiZVJYsNdPAUZBWoD5jIJu1KI666QbdMyS8VQ0FI+26Yx97IYpoyAlYmKpCvsIx1r3gEAFlqzBd37WIMHqLBOfzq/zb7O0gig19meTuv0Zo4ln3VRmLtnAPU+wIa3ncnDGwGBT1w24G99qTOyCRRxKQFYKZMWy50VwdLHDFQ9rhlV0jODrhXUGfDsGQL0LAGAHxMWZWmrKRZKGsf93KAIuLfamkBbufFQEeSu6ZNO+9RZePejNwI+XOmFbtWro+nqJQpWBt0ZKt1rnpVZXl0cujUh9OuCGhkcsoc0QJvuTP9LHP9f9JgdRjh6vo8F+Ma1N+I3fO/MhXaON0JubZ2RMdULitPhqQNBamxQRh6bgFTp/DVCl5G8hCeguiMzZSR/cVB2QsYGN0fX3n2jfR/g/Hd//f+0t994FVm1amNRh5/bGt6+dZPXzt+hWsHa8OlWw/JwXBv36A2B7asbnLo5wy9++3b45ZcTLezQRWOK0eUillBcj8bt6RD2TMTIuc0YdYcfOi95TCcFgingD5vIqaxVx/HvhySnvqKV4jjVshFVZ+cKmU0VzEZ+Gut1IMG8ZbGRVHl+p4/6NaQaEz7yd07KUpKFpTllGKc9XRGtKbUl4g2ufUMa55Zb26gZZNERLD+HWQPRwMcZCxlon1O9OWe0Grv6+4ZOwiougyt6K7pW4CG5bJ4xr/Zcg7kWHpzneIZ5urXSLr6y3y68eL9dP7vSbr7Dr8S6HTrZtuHJaxVWdinFG25Xb/HZLfNacS6eMC4ZeEfZAY9NeX1gI6p8Aq4lmMOsgc+wBp4cQDMX4mYBwnUHDt/gZ3Ah1yLpChfAFCDq6lrAKwBbQicck1MgIIgJcDo8XeexLmq1g4I7WstI48OCFCROGufb1DuswbXgFh/BuIBrH39p/V3vI9P6BuAY0EXBgHW3zDO473NAc9qjpdr65OMijTXYtgHU72NxdV9o5ZW/bVuGaovnLN1JhkvObOMIybNcAJiplWe6IE5L67gpyB7X1B/AH5alU2VC86qzVCgvYLAAfBcAe/vOXQApb3kE7G+u625xwMNsN7i5EHy69d9W2zp7ljZz5eK8QHXJnS7xapY6FI8+g7tvO1QEt8ALKIbn2bOX29nTvIiFK+b2zV9jfd0BgN7CreN+bmQObAsIvm58KE0Za/Fcn+FbN2/kIdCnnnoa3+OL5BGUB93niG5s64A+yqkFes3XerMKKM+p0+fa+YtX8cG+jC7Uq6mGcZQVfbh30N769c/aD//6TwOe33nzl/i8u2KwAwxjLTdx9Mvt2zfaDSzR8vGB0rCJnpV/9CzH3LiYZjLa9yaB9u7QdseNN457tF2ZqD6hHxJfSld5fo98+6v6GOmox/KeF0Cm7kUbq2zlGx9cB6dxHOlF//hv6UfZKfU0jThkU0q77cRgsS6Cokcflu0fI2OuWa1sYml2jqdxJU1FTZvUAg/nh3qqj2OAfIgW44j+kMNEjGIg3Rz+y9PAdPyM1o/B4ZgY43g6PqZlRnyaP40Pnp+1Y5f7ALvPHvv576xttfWvrrarL91vVy4BiC/iankJg9P51bZ57qBdOLPbrmzttIsbe22T6/8G10nXRmwzbeMM56fZrvMe174d5l7az5dHllVsUlwTD9sO69EOx1s7q+39+5vt1j3eGnub9fcmhpbb++329ZX2y9c22q2fcs27xfsgttypCx6fB31+1vp3lucfVANPBKAd32OMuzSVpUiQxYKfha8sRIIfXRKcFUVfACAgDB6Wdb6sQOOClxeauLImvUqs5k4Z3pyOxdMFN8GEmr0pP/aclhdTFFDa91cm7p7P+2u1lZ5+2C68gqfUAh/lri3yBECk8i+YGeBKgLTbQfMAMQVqlCStKPmMGmRMPLSppKgG4FoDZAkUDnG9EGgJLGtfanfkKH0IIAp2qjcBVYErmx01WU0iJnDR4oK1ve2DmApQ1n7L6LqwfZ+t+9TbmUN8vAHPtN0yA5ytcNWr/grTaov5cqLC7Md96hTeDWfwEz7fLl681E5vrbV7N3iQ8OZ7+P/eBYACoHljoTtc1EOJ2rcL2NrTjhPHyC6+woe7dwGxh+3u2k5b3XMXixobSt5rjQzKpDXYmzUf7hT4r65u4OZywAOrZ7iIf9jOXLja7t26Rl69ptzy4Uf/K8+HH7zTfvKDP2/f/8v/s73J7iHbPohKw/xUEIAdAOqvt3fffj3W6PKrj4Ki7FIz5/4P5VtY1btYAJ7vsb3f3Y1bkUNfec/lu+isXtvxQ82OIcz0SGXT4KmfQWJ02YhQLrKPFJ2eLChC//AvKxnl7L2Tg6qYiiDdtKSljpynenqVRMdDrheMd/7Tlrh7md4/Q4Ji4hgpdZpuP3geEI0VrG5sSp6VvIBJoi4AB0O1xNExh/9iNeB1Nx/GA5fBddwDdRdc3XBdYSB6/Xfe9pBxximX17Z3wPqg7UXLbegG1Wf4SBtXN3GH5Ie+81cO2+Xn99u5F3fbhedX2pVn99vl84cYMci/xJpxDgCNZfnC6dYuU+aCv+Ciq03mY1z6ejPzA5MTm3DSXHJO7uTT2q29lXZtB1PLPYA7Fuq9W6j3zkG7c+Og/eqNvfbWzw7auz/db9ffwM0OUL23rf6L9/w9a+CzqIEnAtDVIH1sAZV8nEBZCF2emGguZFqEnFqCH62Htdi54IW6QLerJjQDQI7lzdW1rHdYTC3LbPV6JsQjg4+xOgZ8uNhC57Z27gLiWw8tv79PM1MfZbHwLuqRnpoFyO5pvMfkzuvD3YWDHEGPVuayngJsvXLatljAFRkg2/mOhT4c5ZuLCl9pWrV3tD3WSdLlp+5gVCBeeTnztyxBeazCtIdLOufJieyH/lSWABNksLIC8QIQJaj63Fptjzc8eqPgbia2XXGsP+CcFeDQflNYXCZIrnqhiV6rkvC3Id5onMKqfeHSU+3qs8+1K1evtrNnztE3rb35+s+y3qhnpbPvBUHukrLCb4VDfvkMsHcKIH5wcMmU8LYNpaPSQ3RQikx6dMxYEeS3A28QeGMile3dBRzf/aDdeO81fJhvsouKvss1duR3lx1C9HP+2Y/+AteN/5u9q39EvUrp+Kg221Rp7fObNz7gRuPuQibzQuhRBY7Q26qc6dOMd28WwjRU3iT6wKK7ucj/5FDp3iQUe9s4aOuXlqrYfnUMKnPdVNnXXUUT1sVFDpkXi3pNH3ynDZkUPRIdtPLp9FMWvZ1J4iv1VaXhsiy9rLZzSb48UV3GuZcA21RHE/1Xk2lBmEevdr39pO6pINeYhcxy5+O1Jm2GgD4JoF4H7djngIiMDctIfkRIE+fwhdaAfe4Y2Cdyl3F2hrFyll+1zgMmtw7bmcsAx0v8wuVY2WHO6lKgQrwx4wHhHUDdvfur7dYdHszGitrucg3RPeEUAxO+AXyPG1PKcFJ4XLmTynzUNERdO7XSTl/A2vzNw/atf3TYfuePWnvlpZ125Tw3D9w4aFmOGx5bxa74QU7nioB51TsMAzIulp9KecwcYu1moq1zPTtNHVcwXh2eRq+XKOalDH5cInF7222vv9fa93+w0v76/zhsr/2n1m6+xzUO48oMooei5+NnTQNPDqAnk16gGWDCxBNsxWoMGBSUuJ7luuFkFBRy4sQJIMhiJ2hgsjLRBR1ZJLEW1yLb6ZlxVjf4SO+ZPrg+cJd0U4ikfhEhYY1Xe2fRpLzbzunGIGiuK6My4PZAmj/Br3bArOVRHtmbelWgpw8xNwpYFP24KLNSp43GDFV/taNuGJTejLJqr9M4XUbkpTzWd7DNQxgAXGUIUJccuVexSMdFBTppV/nNTN0SJQgeqtYA505jjgSDtzSrfHyorQBeFG7pPCRXbaybBml1wTkAwZifOjySLj8/586fb1efudqefubZWJ7P4AIiXx8GvHXzZu1KkhsU28LNBXn1Ehf7T8HhTBtSF3wTrEKwyH9RhCwn+ljXQ6cFotRmLOCAcoG8bjfJp4i6wfkiDzWePXuKm6E72SFEd4/33vpl++Hf/of2s7/7y/YOPs/2XxQeAR78Euxut9KZguXGSXERsNrBUXkVWN3QzqSrQ9uVDPL6uWNtAN8Ha3tYiq0l8CXPwbKnptDQilUaBo0ypyDfPSu8Kj70741UarDoI4N1Dj7LSK+BjOSdyGpRalqs2tVrVG/6zyt7WHQ+HmxX6Y54xg2JZMjVvMVYMoX/XrQ4c7LoK9tJH00UVDRHS/S0+fCF1EAfHBoL9nc22qXvrbSr3+AGn10k8GJopwGRl3Ff2DrPr1ynV9uLZ+63Da5l1+5s8IsjwHMDgH2Kc6yn1wDeXrdvYiW9cR2L6s219uHPcZH7sdc8ru2M1SMDfqrQxSCFZhqWk7dSp9mLMtMCxKc0x7KOnIp9ueQ9RXt/+1/vt9/+3mH72ldX2rPPr7VL52hzx8aZDsdFf0Qdj8hK9UfF5owp6D5Z02uYPDw/hzvIFr+KnjuD28jWQfuP/Dj6t/+ObWXJP9AS/bjKUuP8NWvgH1YDTwag+6AeC5WiL+J9zNck8lviWoql8ePdrg/M8Z/zMbEOSHfJ1rrodcW4/qQBraycgjYS/Q9X/YRN82Oa34JVr2NSuaev9WmBlQBuKZhsSQgCHLMFftLt4lKwoZ8tPMFr8OpWr9BWvSkHQ8sGOJGQNlCXLfCBPC3yPsio64FgMkDPOhBuhXIeR1Cu8LEdthM+pSf4yYc2pR3k2U4/hujIOqMbb1y01o8bF5+S9jJEMJ+D1hdvUvQ3lx/PT0c+GbnDh3z8y97P4VnA9dLlS+3yU1dyw3KXhzT9eBNwF39rAfT9e/diaVV/e1jX5e0DnB4DpmmD7S3gozsNeuu6KI3aXuRb6My2aMHuLeVoH/sLw2nA8+kzZ5C750NiXJ/lLVbDD975VcaW/tE//9FftR/9zZ+2d379i7iYyG2pdRVzNJiXfqDtArhxY6gccT9RP3xyjq7RGHE1a0FvUoa8atG0k2s7LkdKjaKW63Gji9ALLTka64STKJUu0o35mYZS6ZJmmlfxXhEny7KPol9IMaQ5yrKLmMNgyEnk6EfVlDlOjYnz5fQY8YUgFJJFxqmZhM5+Ea/UnC6K1ZmU09xKnb+/wBqwy5meqxtcj/DtPfXSajvPZwMr6CoGjQuXD9vVr61ybeP6s8WzPOxt/KUrq+0s69CZ66vtLg/FnWKlvICF+uDmOu4HXM8Zd+vvcX6KN45Shl1P+bVvt+29ReSeCwl1jmFm/X54FgVTbK5vXEi4THBOOldFQDfXmV3GPUUz6HUNGeVJyoW7X2LCV7qPEuSP5Xn1FG367n77J//ysP3WN9falQv+qlvzyMeA6npQc022uYRRv/PPPOfaNvIdaH7ucmkgW+fDJRAaG1jBa/wedK6nuY6ODI7llljXeS7lXLO9plfzziHny8/yCwDr7a0P99vbrx22935Cvb7PTPa93gm7OTpr4DeqgScD0BG9wISzLCCprggBSu7GMMa8E2zMgYWFmUzTtIQJjKQVwMprzZ+MmFwmOgmTzklAizOO+OLth1yYcEAIcLSsZQTVTn4ns+AXYv4FQ4LdCH70q6d5KKuXFwveMIcfby4Oo0wawVfqEWSWRdk2JS0tsl11kSgrdp1r+dStQoum7dXXWt7KeD9XiXLrsIrwSjV+lY5QCMl1YZUmOq1sS9AuADJXM8H6Ony1qvvgY9qMfJYRWKtvrd63bn+YPZzP8Npq37y3yQOHtj26Um/2Hzz9CU+L71l8ngW3r/7iF+369eux5I8LpEeL1prgLwLFh6IJtnWTF94MwBs9wz+Wf6z+0R+Uo38DhvOgYDXQPkv/pZ668ajdPnSxwXcRoH7+3Ln2wovPt+eeXW+v/eyv209++Df8grDV3nrj5+1tXEx2cWeJlV9mjwzm84nCJKxImsJXtlO0v0lf55cCBl90OtqashYb1ZChf78JI8nsB0Iq6KlhBjWyZvxNiB/kAU1knBAlOig9jniNS7OX1Y2YNJ0TSXluIeUqfehhQXOUiWdFEnZLiWz1qGFBM8Th6FDxSlG/OhFj7JldJHXTOOoec1mdZOxJBPOaC4kQ5zyF4QNzQYk3PupycI0c89cXXgMuI+42wWWrbV5cbRcBj1e/e8gLjg7br/4jvwj+ar995V/st+de3mz38cu9p3UZkP0Brg4Nt58DrhlsqtNu48pxnYH2xjuAujusNWfYgQmwfPNVHoa+zUvDrmLV/v31dtNr2q8dvxnUXrJ52Qhj1RttQOyaHx5kbwJ1TL8BjyLYO6wN+APv3WO8es4DzxpRlN2xvOKPZgBJvdcO2U2mATa9BOHF9vAhTZu9Nq1De/7bG+3rf9jab399rz2Npd0/Z8OuPPg7xfwQGw987FRxV41t/JY31gXEPIB9bR+9ce3dFhljtd9axWK81ra4iVjj5iQTj7m7w84bt2nH3bsYonB7GUGwvYXFX+PWGjcSm8h1mh095LOFadr8DdKf5Ubmm99Zab9+A//ot1fa/ZvVf7m5GMzm46yBz4AGmF6fTgiAYtbpAZoJz4Qci5zzuKYrkSxiAg7txJ66yAlEKZc5WOUilXmm8Seg0tbnxDV0NuGjpbqSvRqM+qlDWYb12QJcBFJwFC5W9a0wPYQXNMqVi1hvi4u3RXXPiHWYNliHQM7ahhWygJ4Wc68pAlqBL9dEADkcU4s0Q+rEOQ1wB5Abxk2F5aMrjvpeC2qsz7RKhxaW8i1dWikM2LKOvYO6bFWvfSC/ADJoBPI+SBdRSKd1AfXemMhL/rZZq+5TV56KJfvtt99p7733Hg8K3qGS0rryhicVC5T9CIiLR7XXet0V5NKly1w0z9IWQDYLxY43FeyEkReqIEhuwvKQoHw24OFNELxsH0d3ebGcuvStkb5KPa9+h/DGjVvRtQBslwXo7r0dPvfaLXyafe24dUxlVu6TQ8ksbenUdqqdHJLmTY9p+44NHiiiOQ8G2YSsl32QIl0VvraPiOOkQqVWwkjsaRAo1wiWWdSQZGfMw0P11TR/yasELlkqPuikkWtxztlS2EG0PIa0aL0eVA313U+SmFmQ/h26hkWnl1rrXD2AXKyryrpG5NcAmKe1Qxb0MtWNHJJlB5U4Sxnn2BdTA72fueS0VdwxNgDO56+2dvFLuBCws8TN11u79hqg+PWVtnP9VDt7dbtdubzbfvw36+19/Jpf+aP99tSXDtrLWKifx7d5+yrXEy4dO/xyhzdfW7990E5f2m33sFy/d5rx9uZeu3Fwut1f5Vex73Jt3uSB7R+CuHmD7gHm1L0t9q0/3GxbX19rF39ntV25uNvObfrwuL90+isb11p4v/X66fbBW1yHP9xu26/utL03XRSQ/RsH7cqX99pTF/RNRm78r99/E9eRtwC2PIB3YkAH0m7wIODVrx22f/rfbbd//Ce4qVzgVzoWjB3A8V3A7Q2AuQaSq1jX7yLyHT7arZwrt9mp450PV/JwoT7MP3h1rf3q+6vt5i9ZF0DeW7T9/IWDduYse/MDoi24At97d+EL6L13kwcB4W845E5m5Qw3Ghf4VdcHGWn7GX7lvXRxv119br+9+DJuM8+jG3f/4KGaL3+5td/5vf3207/EZeYthOGdBu7sMYdZA58lDXwqADogkQXqEF8xwY6gS/BlyHcmJF99cTu+gLvg1UNTtTBaroAL85jJrdUzacIEaF1ga7309t7F3jTyOpUHUvmWb6f11rpTyDPUVUBygnWMhMGr6g2I5UKnj7D1RCZ4LNq4Spspq+VXs0DwNPleiNxRZBMAmvbwE5jyCI4VWb6GWMk4V3eCvNDEkuyWe1gs0KXgOTtQUEY6QbxAVdVYRr9upRcMq3+BqPt26j4SfedGQoLUCE0dtTLsHLKPdvY95pmaMzx2nZsZ+9D+gAeuJ3DkAb0bvKnvGrtK8AZGZfDiT/22TUBZ9PI1RBqO1aeQReazWIkvX34K2X27JNYaLOGxQgOKY/2mffo+66ZhG63HreYCtAH7nvt2RVrFT5PWQ028AMV0d894H/mk1aquTm5cFzz7G+DHCVFO2qXu0kY7xTFCln2XMUdK+rUSHlNB8TyZSN7TIO3xNPNN63PA04eEGr3oZ+Q/pOqRfzx7jP5RfHl8mFwPlzZl1R06cgwpv2FRJ/3mOKh8+ESookt0tKJXPSSIjCErqjCFts/sOvVchvVPmhE+9tccvrgaoIvxS+OCw17FL7X2pd8+bC8BIreu4LOMNfkXf8muElu77Zl/xA45PMj8le+19uXn2Qnib7DEsu3kl87ttxfO7Lfn8Q8+5OO13SFzn/Vtncvjs/d38Zle4TqIVfqZw3b9rXvtnQ9W252DXbb03G1vACx/9hrXTCzNF17G95iH9vRHvPjVw/bi72LtvrjXzvM8zRoX6233uwdQYnJob725395/GyD7/mH7NTth3Ht2pT3z3G57/uuH7fmXD9vTAHqH8M07h+3N1wCXf7XSXvsrHma8j4SsLUeCSwvtv/Bsa9/8w4P2j/5opX3jFYwSpA9Kl0TXqppzueznnMtu5ojulRrDMz3htb293l5/daX99H8gDoDm6ty2nuZm4gLXY/aF1j2lAcq32V3j9vsYSNAP7DXCs9vHarv0jbV2/hUs0FidBdb3b55q+zd22+VLe+3bf+L6edAuAvh1LXmKm56v0mev/MFKu/7+SrvzS/oCHUb40QD4zmHWwG9SA58KgBZIureyNsz6Sb4AnSAullpm6ACbgruAIACXk8sFTt9egaJx84bvLVeAlHOC6wNtnlcQAaXgykU01l8JSPfbGZa/LJIu2S6ipGqpIo25mdeGSx9aJmPFPBs8TFkGAXwso+Q7iQOqkCFHmJdFGt60w4utFrc1LowbAGd3mvD14bpvDHcPr8ZutadlegAwQbDtC/ilev2u/alrU4uuQJuPUgUgENngSig4Vxe32Q7uPp/kI09uODjRry4ykqNsBUjdq9iHKMvKbBmt/DtseydwtR98wU181VJOVxgv7m8CTPHxE6hzXpZmX8wyLOvs34mezJPG3UVsz9BV3RhgzcCPeu/8BQAyW80h0wZvsPKFIzUusOhSnv8E+9bxdJ8HP31D4I3rvCXwNlvdpX62VcI949TWWfZ/Ph9eWqNv37rePvhgN9v1Wbf1Sm/vGkw7EtTXJM348lPjVx2nNF/yG2HQqTeVv+RjL1VITP4qmdSRPnjU0VTrHakjMo4jXd1IO45HZR9UlpKXN2j2wbLOwa9Seq2K3mmWlMozUgffOi5pxnwJ12IGiWdJOVIsbYMmpckeZZzRuYH0po0/1aQ6E4jkutHb7Bgp9w5LWS6H6F0rWuYpZar2oaOiix68uxyFquj8/UXSgB3vVMRYeXgDkMbJV/7bvfYv/81h+/bXuU7ywqyfvrvergAkL50HQD+10z64t9ueu9Day0/xMPR/5fV3u3335cN2hZ05+vCCS41LjNntG0+39lXGkL9sHgAcDzjf/xZGCLbgdMMILbv/ngXgtR+dabffWWu/9S+22z/7N6BFHkC8zMNxX7542M6y6jpekZLxrom2Ruzeszvtzv3D9vYHrf05LiHb+F7/sz/AOos/9hmssmtrZTFwHtxk/+T//epqe/u9zbb9urv89OuSQsNuhR8gZf381/bb7/7jlfb8M/wCWJcpCFxbVtolrtfnkUVRNPZc5KbjPJ+Shh0zqO5LWOz1U97ZXW2/94399uGP99ob+Cmrk30e7nMzkzv8GLkCqPfP4PcqNyGr5yp+Cl399r8+bP/4v8aq/Fsr7Ny00t65tdr+8tXN9uf/U2uv/X+U5ybiK1/i4caXWdtY+zhtz9C+P/iX7B99/aD9zd8yv5+CMfpxGveqiMxh1sBvTgNPDKBdj9zqzQfVCqzU4jYAswPdieUCNkKANZPZSViT1TthwFbOuDjl4lI5Aob6ONEpkYUSYGB652k5F12P1uWCDGQc1RUt9JGBi5ugPnNQHlBZ05AjcQCT7gNajldjCRVIDRBFCWWAMPV1vvrW2oZ1rKEC51iLuUApRQHL9bgwIEXqUj9uDaRMAmxlrkVeiUoeLxS6tgSR8/tV2k69ocD3LTqA6B7A0ReXKLtyahmWSH6C5bzwRZ4KbZuti4/8k6QtAee68sMWHGPVwPcvLicCRoCz4Dn6sw5vKLoOqm9gpB7kHfO7dVQ7PEYO+Ght1mVEcH1mjQcAvQmCTEqPtnX4rEt388aHWJU/5AJdDyy6n/KwJte2cCwE+FWrH/vCkD2/vaofckOBLgbgNa7cR3ygI2K+UlZdJEyFMo1P8XdsqrNqv7Se26e6GQT8UY/U+U6eMkFD3IbWiJPCUN+JRgvT80qdfkcseYxIBFammheDNiAzdMrlSB9h2dZKqflSckzzhhzjKPU0v5cmKSJItiAlMaRdH5Imrwi8uUz2EX7qUzq+xtE2QmNb/HWqn8qN0Hn1KW7fhCfjvfRcNUhXoFrWUsmfT5gVp/n7C6QBLnv61j6DRfmFb7b2NHsbf4cdJ37rt9bac4BQXTDOn8fqi6WYnS4BchvtHqhX4+k5yn33FXUBcATgaQWdBs8cOrguS1KDmDKhIsMhxeiLq8fv//5+29jiVy94v/yV1r7+FYxD+BFTZbtImQXrjMniJW/9mi/xYpJT+Di/9QpWXuT96isb7SpWcH2fXbdGuIirwx/+8UH78NZ2+3//Z/ZX/qkujlxoOo52CThNvV/+zmH7+texxGMxnxSP3J5LZ3DGCKIfAATIa7Cl2D7axSvIgZV4jy3mdm+Rx/z0wfOi8VrjtbhCLoW0qd1t7cWvHbSvf2c9bhqn8Zfe5KblOhfGHwLQX3udmwPWB36njW5G+XN0zHdeOWhvfxtr+1fX291rAHbaN/J7NfNh1sBvTAMPzJePI4mTLgAJ0BSrI0DamehiJVgxLmAQKEuXhZ8yA4DU5Yd0Fz4xGH/mOUPGZA8AsCISRjnIUkbANqx/kdtyqbPXT5nUyazT33cJpoqOb1tgrYkps8C2wPNmHnrz7XuRaVRawGSDAABAAElEQVRQoiiCRSPncDXwDYWCZ319PVJ5wGL56HInD//SRpghTz0AJyOt8H4qlOVUALuP764ASZpY85FPqXc1swAyBe2CyroB0W0DOurdAJxr4Q4gjX4LSLnzRurp/RMg3wG3dfuznQ9+RF90yg5AevgzqwfbWoDN5vVfC+RPnVRWClFaz3swrhy25w7mitu8EVHrenycodHSbF9CospUKzcF99r1D95r16/pb32LPOWn5b39Uqm/3Lzp34w+jFefopq8YbB6Vj14Q7OBFSev/ebmaIBOe19Q7cOdB2ybeO4cb27Mw466kDig1DYhspXLyU3enqh86vHiRX26z0BWdOpq3AjlpgqZ9L/2Cf0Cs7auN5L2lJpMe1zo5ULmOKoFtdx7am6YVRZajplQLuldI6MdEiX0diV+vP5FqU774GFa+ggLMo6UPk6IHP4SVMtsfau70oOyTgqErtog00hJdlEYGTURhzaUNcyLhmmThzedPrbfgmHyYHvmlM+xBuxXAi9Xbed5Kch3/llrv/tPVtoLz2HFfJqt2nQLACie4pJ8HhpnT4aBXwDWEZ5jK7vHhUU5CMeYZeAlOHZ9lu5rX17H9cJrMCAdiy6uv6lTIm/wFjyIGPc5O32s3S5Ppl7uvYZvA1DffYsH8ja9RpEGwjUPKq73lCP+9PPUA5iOyWil0GV2bAK4fvWPDts38Ll+9qoP7/WKLTwJkeVR5xBYxOlzFkD73EtY4f8pO2T8bK2x9X7k3dA/mXzbEGPBlB/X67Po/4WXcUG5Ui5/gmC3znvx0kF7/jkeTvxtbnDwgz4PnS4mQ0R343iB3UK+iQvLb/2r/fbr7+OCgz/0Dq4huoc84LYyqXeOzhr4h9DAEwFoBQyoAkjEjUHAx8JdQEGgVflGAqJZ8Aos1RXHyetFR7oBHsuqWhc486QQyFiPwMSPcQGQP0PFmszFJqAld8M147Vye3UKP7goU4EwTgyUCWpP1Pp4M98qoJmdKPKqaEAXThVcpQokyif10pKyrltnpW1hlrCMLH1tteDK4M90Wkrdh1n3Ai2wgkhlzZUztZaOBHm6ZAjwjKuTAGzp4WsB9WGebhYmCUxNs159pOuhu3ot9SVejW2faJ3OjQM0gkit3T4UWC84UbfeIHAB7nLJT+Cnq8R9fJ0HeFaC9BaC6XqhLhKoPOKZaxr/grjjwTbb/mvXPoh+Tp95r51CFul92YttsTUmKJMA3m3x1Psa8h723UTGDZI1rAigSd9mH2qVsL94YoVczhMoIG/Hl29OfOrKM7iRPA3oPRddqmO343v77TfaHV7h/aWXvwYofir9UG3sfDg4fqT9xS9+2t5//x220jvdvvK1b7EwPBM57Wtddba37/NgJA8CcdzG/eQe/uW+BdK6ahwqXgfaroQnBsd4ZVRT6jx9TrouQvahVny4pY/LRcixVW22nAsuSy8fmfW2EO+sF+kjh4Set+xX044H6WMZltqTzkC+kZvIYoxYuBqxJDRthOTBoP67dF1CD0nvmZ7Km8QaZ85BEvliZlblKQO9tPJmwV4wH4KaNIcvhgbob6ZTO30Ra+8fH7Y//pOD9nvfc3cIgbPXzJoBo7E1MjhznDxBWBRfRIolhm0s1c4xM5yby/k4qhtj1uF5k/H51t0VdvNYw3WBB/NwI3nzx6vtb3+4yZtTcW8DYe/iQrEC2N/koUYuZRg58GbghS4fvtXah+/7TAwJ4ljaeqD7ID7Uf/zPt9v3vgeA5QG/iDiRc8jxuOMoYp26d/zud9baU7zy+5cA+w94SNBw5TQ7PTH3rrO/9jZuMnvcCGiIcZnb22XPfvrgy1/jdeCnuA7bcP41TD/DGxG/xm4buHC3L+MffeEyc7jny9foBnch3/yWbd9vP/j9jfbDv+FBxr/EwPKaBrG61s1TWm3N4TehgScG0F4gam10ISvwY0MCMjtIYB4keOEqcC0YcMHrOWQEVDpjcnUzHx6s/h6dcbG+cm52xaERF5DnxvXu9TzcFwSOshYYehTonj6z284L1KqClFPuVMeZ4EiQe/fOrbYjALReCMrdRJDCKcIo/x6guiyNVVqAugnwtU3y9Fzw5ImWzbu6HnDUSm9eFnXoShbbUXrzJSt+Cghrsa2HBTexmAqsow8FQbYCUj6xzNZwAMwNXU6wfMMtMp/Tz5idOMoK2v2dkU8QXXtxqhto+Rhsl2WVSR0IvGO9Jl3E0snSr1vcZFi/gHjc8FCUtFJbGEZ/iVW6N09cUdWLLhx3eeW3ANASgvdqj/TWZcd6ERZkkhezhgqzgiFLyeqrs7UcmyVA9WZLuT03eLReda9biDcGPmD49NVnsYycj+Vei/ONG9fJv9suXLjUnuLmw5sMZZCBulE+edjvZcVWjzxhz5iyf7Uwu02ebRNE50g8ZeCUN1xCX+NftvXrxC4PcKpiUvxahKFvEyquQt3lpMbKtN+qj/uNq233z4YbCm1WfPI9apPr8TDyjqc/eD4pTTQSKuxUeAt1WczPTRJjgf9li9PfUUIvqvyT2oxbuAfHR52aUdcdx67BtjNwEksh61rkhWT++oJpwK3eDnjByYVnDtr3/gmuAt9aY+eIWjtqzP3DNliw6ZVtj3H4Flban72+0t5/A5cMHq6rX4hw58DaevYyvr48cHjjg8P26k/xa2aLOAHjGczlv/wRW+b9Yr+9we4Y2GS4tjGmsUSv4wriWrePe4dryT7uEbvXuHYLJmms8+bCiwftW/8cS/HXeeDxEoammhpHlOAUieWbo9n6dx+fttMC0mgdvnJpjbUUq/YLbAXYn80+q/GI/LsdPCsDV6PIcsBa6dX8Jbam8zXgow7TztDW7+IT/QJW9Ev01xXeAumPftOgHezyxbX2nW+Qz04qX3kBtw9cc/7yf2PXEnYEya9Z3DjMYdbAb0IDnwKAVmwWKUZ67cpQC7xgLyCzg480jtkjsA7Q7aBR8JBFD4IsjM4YJpHWpGF5dtbVosmRfO9iBbMGD/qfCigEZALJ2u4NHpgeAuShE1DEYgV9wIfyMdHro3V0p7337ps8rPZ+HsiQ1rryJkLBq2YMiL1oCZoC7OSJsFqd93Z5YJCH2gTD5um2IaAbfr/7gKkC3QKdiN6/lMuoYLGA1wbbHxXQXWOLoHPZo/n0ad/61x86BMQJXLUEnwL8bW6exjJxigcWfYV1LRzSykMa2yKIVAfqqzTHkfZ1NVJ/ZQjgy1pe+0fTQIJfdfGzT3yAUJeRQ6ys0WmyC9BmyzFBWw8LIMe5ZEMOdcPL/orzkryXGgn2N59F/TU2FDoUMAxYBbwmwQomoXrHbuNGhv6wXwTcW1tn2gukxRJPO2rHD3TBmPPmxXODfaZvv+DYPnY3EAG41uUaCwftGpZoH3Dc8cZACzP8urhdpdWWjE/HUJbWsI9cAu2Fj28l8z3aT6z3p2nyGHPHpgrO4/OdOkmp/wWXxfkCRMrXkn6qjqGjKjTy6+zjfNc4ovxyQFVx9JxQ1aXWkVTptguaVF1EyqR+w2taPNm97yns2MjNnYxS3gilU0GN9cogs/4lmMMXTANaXfd5au788/vtW9/ebVefFp5V6MNnnP6DHQWo9wC9P/lVa//Lv91qP/6L9fYBO1gceOng0nf56wftWR7wu4g19+4be+21f6toGAu4Bu21U7zwZQ+/YNz3AMZcAmoYw3Qnbh51nrY57uu0diXiwcMXvrbXfu9PcLfgITytv14ejgeT2K4573yBpGUXuuNEJ5x7CTuPK4efMY+9bhpy2VeocXcc2ep6OLUsh5Yveb3y4lp7GTDute34pUM6wyZ3AJe54bjEmwov8EbI+7xk5ccA+VS17Ooinr9nDfwDauBTANACKi2kLOb8dOSiVucA2axagrQCwwLcdayicVEQGI0rAzNHa57puVo4mTI7vG4wPfNTNWDQdECfoDgg2DzK1eRjtprfP+owNE5ieMmuvowY5Y8riwBQ4HP37q08sLZYuF2codkXnBHWD9loiCtG7voBLgbBpLLoHqDV4ZCHU3ZxBPOBO+lkYRsFstazz673JXeKd3lLzmV6AVSBuw8xPvPsi7gcXI3rhTt3QJ1/5RzgVL0tdOdVzQ960NqZXUqW1SW2Ar19lG3w0F+00du2t3cn1uc7+B3rEmAdU9lkLaisukvfVb5EMz4NluU/mcYtb9kC0hEzeWkW+fXrgukFm9MNuZmy3HIlsJZQyM866zpdFnH71SpDlMqhrbFy9epz7dlnX8D9om5I6hXw5qpXC5Rs9ru+zjfYQ/ouO5wIwHXR8BeF27duAl71C9iJa4a6VLZqJgMhkUhQIihLJXKMtIuzZXrpRkotTKbnJqiP9/SnY4ixqjWqrPN1UxSlWtBQRYks21NWaPqRP7+LaBCaVqlDNtl8/JBGp28X48XOruQH2Fl7AjSOh5AGSPe+qI6nPAzMXAT7xzFJwkgmvuKDTCTmb634WUS6yFORSoCfxYtBxXI6f33+NJDuw4hxGde0y2yDdnqvneaSNrlUfOptOjIcT+CuSF6peL6vvfnTvfar/5HtMNiT/5J2Wdwg3GJvlT2cr7+D+wZbt/kD2xoP59U438dAdA/jBOfS2xajfjknjgNG0/tnlR/N1gG2X3rloH37q+wffa4KZ67IYxooU/Oe6wzxjzoLurrD6TjfZR6xKcNpfCoD8cX8PJb+wCk8mPbtXbb4+/4PNtgvmwTbsFwSHigyJ8wa+PvWwJMBaAawwO3K088BoE9lwc8ixqwIoOuzqBYw53/5bMaqyMUgd6XQmF/W6w6MOfcitQRvggkthAS+pla5urOVvoBPgAXgNa+TBvAE8HoOqDJeuzTw0xdXrbgO9KuPrgX6qSZQh68Zd3ILsvMAmKCM2Wo9Ai1lrnZZr4BZUM2FHL7Wo5tHtrHjSYg1wPAOCHubtzPRkMjvtnqpumrMxWxcDNSd1uR6Q+D5WKFNq3ZXvQU6Cnx0FiqsohFcOdWbvtUsLoA841oJcuNAZepkT7/hiMKNBKBRH99bPOQnaAwolNci1A2ErhCGgGCuatGJCaneL2U0oUKJVZfrQVNllkQZA8hX7az+lKF0QrxiWGMgnFIXFGEuXcXtf/Vo/Ys+Qgzj0p4COGvVj4tG0oaUHpWn38zxxrCzPLGfVOi2r70bX2atz1qmlUl+9nXdCFa7U6AaWdETvpet7pkWhVd0QD+rA2/K8utJ2lU3Qhm/9FndfKTQUe4TxrY/O4Mgi7IyEia0Eo7yxtOaSf6jopNKTiCzDUeC1RxLMqH8pyd5ttOCduQIlHOa9Jye6piW4YQuZ5y7wk5D6rXfJcjXhL+ZIZiWmOOfRw3QjSvug8zexF4bJj+AfaqtGUObS/ixgAB96NX1Clsy8nyIa8a1N3F14EUrjZeuNLZ9G3Tefu+fKKiMnK85HB2ivQ6zFsE0ifnoEXf5ZR7OexkrtNvWAdRPKmJZp9ApviiSK0PqM+MzGnoTMWq09vOfb7TbH3Jt1pT/sAZ+Rtsxi/XF0sCTAWhWN4Hv5StP8eDVFUAJfsDoR/eCBA6CsPKTJYX05IzFjKRxUaoCfrvgFTgZgHUAFZFR1kj5LmaOHMsqJYjVH9aftv253Z/38xO8P8ObBkB0R4RdQKP7Zkobl5AOTrfJ2zx1GiCJa0JsCNUWLV6WN2iw9Wlo4E3OlVFfZcGNDzUM67gA3B0StCSfOoULyDYPxuXn+rJYj5+fw4Qv26O1WB7K5KupfWOf4Ld+4lcnS0BXFzyBiHJEq3UdVaF+SMqvAVix3S9ZPgIzVa/bwPb2vXI7IF6Bp5u5ifBlJPcAzwUMC4APV5oAPGTTjcA6bJ/9ZXwpT047z2OHEjNFRp8KBgX2Atp8APoG3S0WQFGhraa+ApTCajJOpNUqrP4O2fPJfii566ZM2ZV3nbrKdaXfkHURM57gF/cb+loab4DcYcPxssGm/2urd8M3eqRc9XUfByUdqcuR2Vk/9GDf5YbBUtRdv96Ub/XCZQg96DLkryS28XEhXd/1HDDbdWdS9dFxDiPH3BGXpjM5Tn7sfFriWNby9CFEVaPffIKUIZxWC8DI/u1dNLPSp6E3keAY8M92TstWLt+OmsqXZBrU1cllplRz/DOtAbudz/pNruu8avoaewY/w8tNzuJfm77tw+TjtEF+KTYpy2WF6wA3zPkAfl0T+CVIu8kBR5cHL4un2T9aH2FtDO+8wQN+77pWcF3nldj9BQRLUQZ/x6Wfk8LD0qe08JGMd1O1F9mT+oUv8wIVtr7zIfuHBQG0G3PwZu3PTVDmPps59l/8PjfSz4J+ETXwZABajTBzHdSCAYGVi3Yc+7kKeYNtHit/Fn+BaCy0HbwGIJknMOYK5cs9TAt4EpBqzYW2gDRVQSdA0v/Wq+awNncxkp/6rdNPDpEO8AMw2XKLObccI8urnUF5s5Jy8cM6KUi/efOD+MraOPdH9oJqyCJNWtpUSalCYBYXDemRLX6q8B8+2T6kZikfMtNiro+tFmFdO3Sj8AGzDa5+An6tvztuy0Y7y4dZXy8E7kJEds4tExeMuHWMpgp46QPlKYGRi63o8Pt1D+XITx/UDY161lob+BEdCBTv3HH3DXYMoUy1F97yhF/dDJzm4buzkT+6Jk9rqfqMprnKRbdlOqRUacvyyjSOWv9vYk7IdnDo4BxvKNTirs+2hNXnAh8KqQELprR5BYiWDPVxLpeLm7xDNj7KUAtON7kRKes7T6bTD/oZunNHHkyc7Hoqe8fdXbbZ80ZLC/w2u6fIS7cNbzjqVwYWKoC1fWg7q+3Vxmgy8sLMMBo8kbtHcygXGpZX+kGQNwrY9vK7rjlQ/fQY8Ezx6Eq99/EclaWm0ro1nBymOcalrzIP0o/8ylmuv8VDGcZ8CmUJ8SA/MiNvfZEf6l51j6fUYGAaVOhqtC9FKZdx53zupKOEdF0VjOFy9UoCBeWWcTQKhfv89bnUAKB2BReJm+8ctB/+0Jc1HbRXnudXnDEklsPJXn9kExfGH0eVN3BQO57uYj1+8wN2nniX9YFdL27w4pBbt9baHXaiuH/zsH1wg+dt2CXjt3//sH3ztwCm2AFefY0XhryNxYV9nWsnmGPVP1qUR8o5zXTo7/PKb20PX+f11y99RRe95cyc0n6+4+zx/Uxrv/f7O+3PXl9t994Gc6y7hn2+WzVL//nVwBMBaP2WT22d6sDvQ9amAgPx0+SW3AVKsKs1c7xJUDAgOPToxSzXEBc0r1K1Ila6GZwLkg0uki6Vgosqazblkk+uwI17/QA5AV8WT9KQSdAqMBuWU/MqLmPLSZdqApjcgeIeu0TIX/ArKLVOwbfgaVgp9YnVmmv7IAFMwaQa1ME/VkN4CODit9mt1mkNcpmuddit87Z4AYtBEC+Atp6z5y5ivT6dPF1kBFy2p9pt25c6sB4vmdE18hjUjef1QGPdnHQB0+Y0GpFdKNa44J49u8V+nM/ysoGzAMZX0mbVm16KLrTInkZGXoKC7EOP0W3XubqeAqgIEmEWsfBVx2/8+vXsC/3Mc8+3S5cutS34prykvT9GqeI7zsyMojsh4wxTkDt7uPWdlmgtlfGrR2fDUiygVs9b6Nj+HmPQutb5pUDXjg1+LXBnE/U2xhKDK4A5/U09/pIQPaOTchkZV/Au01Q8F2FArUljjFUrSk+OmRpf9A91OrYyfxJncbCddnTaK5ceTDZNfZvElzNESsOgPFpn5X28bzkObqPkMu14fYNicVyQDkpzpvF+PpJGY0ZydGfjao7W/YEtJXiSC4cnJeVgkwQGb1Sn/PErn+aqq+PtSqn563OmAewubN920G5da+0HvKb75S8dtBefcV45N/hljW6/zjZxb7/NQ7/4Hbv0nNjzGhdwvdtkp4tX2PXhuefcVg5aPjfYIeM///Vh++XfAZZf59XS8LtzG/DMZ4ft527d5AYNAP3h2+yc8TP8sNk949UfrbX3f4WtFH75QXM6/D4tHfeGnHuBreL+aWvfYlcL9312PfqiBfvhKd4Y+a1v7/E6dm5mfuILwLgE1I/DX7Tmzu35HGjgyQA0gGQdy+ktHqq6dcuHzgCUWFnLVQJfUcGGAI5PAV0vXC5+LoZMcsoLHvIhHosroLz8P8vnNzSC4A7Q1KnXoVwanVGEWL7N58/gmloxTkKTGpNY/r8snqysflxhx0KqlXqLV0OvrZ/qP8+xPR2PJwcscnE9feY8+Vtp3w5uHr7+2rJs6AZvZSzJBFVacH3Yy/Yrg2B5g50ylNF9nNdwqdjwVdSA51MAc/cU1sJ76dIV+AGG0YPgPbtrCPqgc69prcHq1ZenaBnVau25+pW37ROEKYlptjFAcKii60yCEQ09cp5i+6RzV3k37dWrud4XWKegZSmwiVnFG6Z13lhgv6QPrdWbE/sRhqxZPajf6gjVPIJRgeid27qJ1NsPv/KVr7YLAGjbXwAanoIjQrGTr2nFz3jPqDTobKtuO9mZgvZXWeio3JsLf+FQN97QOUbv4e9+sI9F2vHG5zzb/unmkhejMAbUm24TurX4KvFhjd6133UDQu/6j/sLib+UpJ7oHv3bH8g/2l1tKIki2LEv6xo+++OGTHCfm8JFW5dc0rnh0dNGljo6xrsUZbo9OMIylsRFISPm+SE+yNIX5o18jxU65Tg9clxQPYxoyjIlJ/VGecXBHXdUQzCBAwyyqIVjPUtQMzjjg3LqM8U7T9NNW7TniJTzyedeA3083Luz0l79Cz7sxPHii4AttkVbx5XjJtvy/+iNtfYXf77Rvv9nGDN0p6ihtWy6PPBbPuRV0RfY8vS/+e932h9sHrDHcZH8+tf77S/+r7X20z/daHd+ITFjzuu94FhHYl9sxSM0v/x3K+31/9Xxytv6GLA+pJyxCNmnHmwGVuc1HmN58buH7ff+1Ur76iu83IkHCb+QAR36spUvv7Ty/7P3rk2WJMeZXlZ1Xfp+mTsAEiSXlEkrma32g0yf9Cv0A/Q7pU8yW9mura1JayKpJVdaAiSAAebWPX3v6u666XneN+Kc043BkEBhhjWYE1XnZGaEh7uHZ+SJNz09I5Yf/dnZ8vF/3l2efk5LZ3O/CRv/QRpy26jflwUuBKAFh8+ZM/jB/c8BFbxYBZDyhyN/gJI9Y2/13gG2HPEEPgGjQ/uEBpCXNOu5TVbzA/7c5eLw+pjASiI4spHez3rfMsMqBHmRXQH5FpjokfXRvGBF4CLwT/wxwE4wehWv7/VrN/E6PMwqeMbCuoLf+bnHewGogk55dWC2bQBKfqwFvupzCFi2XM/zq5ev41398KMfZdo5gaIe5Sxqwg3IHmEYhgQYYuBHsF29nYLIJbBfZ+aHADVNoS3Cux7LCRhiHwtjL36402Lp575Ao3ZtnQK3Y+Y/fvnsEctwvyaGTzB/PS/bHQLqD/E4CyyN+w7wR7ddZlKZNzQBzoCabKe86Fjp2mKm5PB1Rvudfu8q/LW7oRt7vGy5ekIwT3YqdgAqG89zupJnPjtr9l0s5fzsgHPYZcNf4432pUjB+tEzZhfRQ81HoL1DG97/wR8vd95zPuibuZHxxsdzYlvYZdpVbpq4ebl56076Sc6nBcOwgnZl5YaGc+RLqC49/vDL++w7P3WBfJqhoqNe7WG76jmfHu2EJkEkcLY/mbRezpk7pBUL+PVaWJ3REnzld8GzLJRZroPTChxbccW9+5E5BFu8Kl/3o83SoWkoV1+DQLHzXKnxukfCdRRkM/YzNaVMUr965fH6ptorIZuStcuU5W+C+/we+NvEeQ2/zWZu8Njufkct4PnkPJ8e8cIeC4v82//9YLnPFJn/8l+xZPfN3eWzz1iU5N/vLD/Dg/z0YxZnmg+Mvqq5/F4fEUv8b/9XFilhurQ/ZQnq58d7y9/+5f7y0/97Z3nxmJ57E4E4R/wpyCWhB3TooLfZ+3L73TmhJQwtLfsqWRfNQ8YVHDxXf7C7/CvCGv4nFk157xbjj3zzdVEBl6w+bbrKGPv+OyxR/t/tLP/w95zvj7G3N9Vfd04vWTO26vzhWOBCADoDk55VQMc5A76gz0GqoGodIzpBZenJx37rgXwa0yG1YKBl/CLlR8kBcf4aAFgHjZSVU3mR29EShgIQATQfthxGL+vE23o2gTVgmiuvnmJf1MKTzK/idV4cY6UNHukTE41E2yXAjad7pYtM8w+JO+OYrWDeZDv0bl6Dz03CMW6wEp5e5XraNwD/aOpsj/X00marFxRvtivaGRebUA2BgMJN/oqzG2+vh6qh3WI7CaTzoGmVnUO8JNxEPAf0Pf7ik+UVcb+C5qu033AKt+9gh7vvvLNcv3snL9UZS+pNkO3KTUvA3jxHDireVPTGIfaJPdRCxdSl7Vb8zZvY1+zo4hf1UdD6VVltzeB/0LUvVF7rFYx5I4RxALo+BTleHj94sHx536XAHyzPiLUWOPt5/cIBFG86wPjazdvLbRZN8abFMJpoUAUWZ0UzVW92qkaUTZ+CTg+150XgnGnulJ/2p2pqz700bHWwuYMErxmyvE40hipsptnOKEHBZnHLBnXsO/ZXRN2xL+WPQ7cVor3nxyxpSz+4/MaNPGKbFcUbmiRXTvbFyVH2Us3j7Pxa3gZniNcyrNVzvc5TzDo/ncSskVa3DVO1wU8J2/QHZgFOKbOEspz0+fKLv8YzyeKk93/OTfD1s+XRg53l478UbPHbxO+qvxO/MdFHTph3+Cf/4QozPQC6fyyAPls+/Ycry+Ofc32/4h2Xt+tPdkMH9Uia+b9R2AUKxhBwlbmR//x/OE3c9Y+c99mXJ2d/vwD7y1rVoe8mXui/+K93lp//9Gz56b/p9LI7Tmr9Tdr7shpkq9c/qwUuBKAFlTdZze3VO9yQ40lsmlevvZmhbh5aGDBVr5ADuGDQl9hmz5d0DZYFyGMItB5XTo9kVLq+hFdvbeLd9EIL6KB1sDbuWlDQ+acbCyvAOT3QiyxgAkDzg+rMHE5j13AIvbqsCSuD6LsG6maZJigfh6G1rPBe0F6Pu/UFmnORE4GaujWkADmAPgG9nuVz7GdYhqDMOYj1bGagh+8c8CMPnigm6/5eWJ4Cv4QWlrMfOnZL5U4TxJ6paWvB5pOHD5hy6QFe6KfDzoI5lsHF8/4nf/4Xy5XzP1tu37mFZ1wvMStK8WJeniT4a6b8yOi5POexpgDYt6RNekkLtN1X79pTDeZxnx7Ah3rxrIuW0dMmBNSlgeWDglQdo8eQXS8wgTSEVHgu9TR/+vEvlp/93d8tX3z2WfJQXEWHTrwlD+0Lltj2nO8Dpi0cYtR6TZ46WquV1e8Yt5L1XKL7CTcfep19EmOoh/m50YFuptpnHpWVbbP9uTnjBu2NNNo189bSzVEPc9YpOfJLVr8DjNckVLN9ow3aOe3V3gX9Bf7kovemvq3SepvsVtLeVIW67YGT9u2a83hurV67qx8Hg193ueI5TlYM5n759wUvdZXB4OHOpE+22rRs3Y+ssE1/sBawLzzlBvqvluUv/91YbIPGnt/WOTJa7W/Bb0rQ+ODo6IvT5ed4s39+RIwEFc8PyGR318t68vkqHl9X9lX0v2PeeEC13Lxzuvy3/9qp63QKbXT+35HvZa/mb8Q+Nzh/ShjHv/ivluX/+JP95ZhpAnecwjAX+2VvwVa/PyQLXAhAr0a78YuiZ48RmOwJjjgkK6AJkOBLcIY2GKJgX9f7aTyp23pfGxPtYOcj1740Z33CQASieLodRwWdgndDH5zurasPMthSz7CArMiHBD2DgrLbt28nL55wzx48upy107oVQMi3+hjjil4AIR/1B9zSLh+vdxBue+axAMh8PwL6fVcFJHTFEAH5CeaMEXdquJfMhNEX0QTPA6iMugGPYz9gBnnixAlsDEfJDzm6nPtD6Q819IJxjmJjSjjG/pQJdFdt8+ZjHEOeVPDaWO0XAGeXGleWM6h4s5JH6Mh6QfjDczy4xnTvE2bBa8+UQScwzg0INqKdshVPa0dvdNzOFDAdtbwpwLMOoefbc6jNqovNYR5teY/6jnPq5OwsuUFKiBA3IPhrz6CliI83ILScgwkGDanwZUJtfwK/E9p0zstBCKB96m7/3MUjzZLlfK4RwrGLLhqy51hL0iL4JlONqCtfQ38eP/qSx7tf5rzqgRa4N/Zaz7v9BFkzaY/8sg9Wk2XKtVMNNbeRbx3LoZXc5HFJSz8ootfMSd44SButiN5JqxMigXm0MEVu2cn/GkzPduSJDeW5tks0+Fl5LbmZfv+m/DVFSDy0Oic59hkuf02VJygU5RxM/dWPT5ox2qJOleZ3y7j1of/KxP/+ZX92zlDOr9aeR9vtH4AFOKV6gFlVmoBZDuwLeKVZ86hd85/SxMnDn9zbo57RWIZjXJbULr5cvcXDUlbzu33PsfOyKPfN6uHw50qIP/hoZ/nz//54+elTnhLwxMHrfPXb8s2qsOW+tUAscCEALQgSrN4kJkxAY+fNwC04AvAJ4nIMWBGUZR5evZeCQUZDAaagxMHaujNm2fFRmn1ATTzPHgdAG/4geCoYcmW+eEMFYWPQFKAfELPr0PnqFbMpALBuMUWaemb6MfgWXGzqpsfRJbkBXnqi45EmThoQHaCMuOi4EX6wCaDlh/qj/YJV3g7m0DhYvcqCdW8sBJq++Nc2F7jYFgGM+lLR/xwLDTbzyG5OdgocFKlsU+T77b880VWq8glJfmBW4ASZ0qnTMVO0GfpgOhv83BfMvkBfgehr2nLADBXnuGAKsBlRoLV9Z7xIp/1zztm6r1b9Rk5UVJ66EWN49JJY8ueZDs/p665ws7FPv1C0tpHQumIqz5+eevsaFNyYCGYFqt7wGH7jTCjOjGEcO+CcAum9MXPBF8IQfcUzSTV872dX/nRBPcYv8SJbZxh+TUiWnm37qHOJl5+g/PnyCI/948ePsmKj/WJtMiTkv9syQ6CCTW4lJuvXU4kmr4Tk5CZF4smg1Vt35IXfJsM1bQR5F7YSOMu6nbLkN/dr2wLp80wr6bXdmxPPXfvW1GjK7bmtXr/NN/XlqX6yQq1Vn9lgEyn5CvlKV3UO+NZOaQC1bRo85TQ4F5B74t9ISqq0uX2jeHvw3baApzsX/tvn/Z/YLKsJmgXfly3Zx/kIJHnfmRfPzwk7pBfPH/fLpu/vWx/a7Sx977y7s/zZvzxbPv9PhOf8jPZf44p34N2mrQW+JQtcCEDrIb4uANof05o5IAFQBVJ6h+f0ZgnFwOMaEMpFLmARmJycuEoeXltCBZy5w18FvZIOhgHb7AuYMyoyKDpLRsIIAGiv8A6bBMz+nph80c19eckjAyj1njG37ytmzNCD7Qtx+W0E9AkM4gkdoFrAZN3UE1QBQhOXigpX4Kd3K79c6ufAD41jtXYQARgGoqfZuY0Fb3pBzYsXG0LbaYVTYrAFIpmxBITnPqgTWYLD/mAjIvsTGJjrvuC0cgUNhovoLca2fNr6qAJoLajwxsMkv+ifEAu4IUfvoufET8ARNALoU8BqXuyC5iXn6SXe58xwwTLlpwBoZ1V5HZsxvgBcVdnzcs5y57lpor66KLNfyosaAaUPv3y4/P3f/2x57913CTV/LzObOD2edkwfSTVvagSx1dO27zGf6h7TVXl+nKrOebUDntFHb6Q3NdrBcCIB75FPElDuhLqqInD2DEYVdPRl0lcJmzld9pCTHgONdhE0O/PG0dGzvEjq8t0ub27YR8JrtDd87T+rpJC304b3eVW8qqKdcir8HjXVwnNl4rv/sXFyMkiuaUKHHp6DX0/lYsvk36NNql/PST/kOrqS5bD786C9FRCPL+0ukFagfXedL+fZf91Hra9OVQdiDYEdYeVZ9U6rLSPbBsnAf0VNXnNrljcHObavzYJxPXFJWa2p5W/oRoHSvOboyum3k3q7/QOwwPrk/+6N+X3w+N2lf21Nu/suq6Ac8rrOTabMu+psIN+rtLPcurvLbBwsmkMI6dlpf7NW3pLvlS22jf3nssCFALRKOwAJnvyMsYwtwyFxos7WIP4VCL12pgsG32tM2RbA90IA9CoAWu+ww5nAUB6JRR4DolPKCRKdKeMlntIrx8w9DRAOcIt8ASTgSQ8k/AVhAvgOlg7ugDAA0e7Oy+QL7KUTgClPgKxnWiBvXK8LmvjSX8IwUOYYui6kITh+nn3H9sQqA7LyUh+6unXKM4FzQDjHxsLGo4qeewk/0NwskMLzRYFiADC6CkwmmC0oExCZtwbG5msS89M2tkEWogv/zedP+0lXYCccoZAU8lEorywkwrG0IohzbJyFbACj2iWeaMCh4SwvmEXkJYD0EMCpba0vcE2Ccfl5DrCn7RRAQzM/yjapjW06ZCrAH/7Rj3KTJJ9jPnuA4VAMYvWKAwh9BKwea3N5yqNziVtWG9lAIy4ymwr0rirp4ie2C6IagPNuD7MNtln+PnEwhlm+hgKpi4vJPH78MDN4OF/1ago7QjX0bsf+NoikXm+n2d7QzXJt4GejwmoWjdAIJsc5hG6Fu0d9ryEB34TBzR6F5tIPEnZDlmK0R/WQmRluxg77tnemda4yTOYUXM4jmVWG11tzZTFtMbeRsslQUlJp3Wuh9OHDl08OPKf5XbDvpQx5nC/1GOIUJoPYRlvMJG+09StpAuu2sZTe2HdvrZwrtdlX3brwxJrj5Lzdbi1wSS1gN77GmHUb7/MBziF/PrxcvkfpNq+u/Pg9njC/izPEcX+XOB0v4vUl/j2yxrap/xwWuBiAdqBzwAsAFFg5vDPgOfozu7mPgHeP6yHVoyeoMyzDwTMAmAveutOLGE8snV/PoleBdPIztEMgqjfXi+OVnlySg5/gSvA5echfLzaVKQcoMboKekwCp909gH0GW/kyhRy8DPlwIQ293tY5cfqhM6chI0YYECyAFrzrgXTflEf7hngM3tqhy4bXI6vnV9Cv3t4AZDBHd7cNcSCkRR057guYBQtv/wJkUIcuybrszN8I7TNjoOOJHr+ga6pYMTazftgIuEcKb/b1/p15p3OOvdSJvAknTrDta0Cltohs2uJNk0l+BSnsy8MMzqe/5f1yxwS9/9bl42wkLlriDYZt0DOfc4P9w0MVoU/fYt9Dv2qnbq2nAqstcqWLTUZ/cIn1K8xtbT+RVo8nJlzOOPbQuGdvGh6wuoIrNfp0wps3Y9afMIWhTxA8/7YdZaqHuvwjCRGhVdZM0Y2DmeU252mc09K11JZ0r2fSsmlnY9RbODmlNNUrz3yldRtydt3+prTJSQPleHxlQ10vafmv4rl/E7ORn/My9t/US11kmP/sn/ubgI17vntDNF8uXp1f6rifZvAlrM6RGeg18yNSPYfs2Zgey2MWQENmprsk0ycnyVgXb/e2Frh8FrAj++Enaf/OznKDBWMOrzKWkDdvui+f0t+MRld5mfCdm8ty553z5fB9nDcMzR3pvxl5W65bC7xtgQsBaAc0wameR69q/5zxwrEowJh5hQWYghCBk0Dp2RkLaBg+Achx+jvrvSQm1hex5CfImoOhj+EdSAXelk2AaohE51Dey+P50zNBTsHoq1d4K6kniN7lMbRANprBw5hpPc5OJafXWy+zoKnzHAuc8bbyNoIviD1nSW29jwFPw2oNV1AfwXHBtYtp6P1yMLe+7bJN6htQD/jUK2s6I0wgYQaChXjX+NETmAHiBEiCSKFTvZz8IGCLwjYsolGT3I4PMgI0KCtINL8IYYIL9eA//MPCYsiUl4UAWKo8Zw87CCh3sCONGPYcQA4GnoMsBsM5jKzoIqngEjpAtTT5jFlIKkPrT/nsK3d8zgi/SV29g1EOHiqrjqQzebIvh5bbFmUB9KMjsnfsSz4BwF4Buda3kvoQToS+TjuV+sqIHG/gWDiGF0598vDwyy9YcveXOTd5kmGbVqk2CIA0T/Yb26H2SmeLOG3R2e+cB/NGvaoQgtLklIWjVPzxHabsJIVgHli42g81h2bFbJPNUFA+s2xurSytskycMpL91W15TfmTnfm9oSJnyDKvLMjzf5NYes7d5BNav0LquZC+dm1Zr48Z95288LQfFlgHXGtNrxv7KKnXTvPM5tcofC0PRdqvrb25W7cxlcOr7e1xGK52tztbC1xaC3i5ABZvvne8vPMjxtVDrrVcW5dW49+7Yv566cc5ZKnIe3dPlzvEQz/75RBjYX8ifu9ytwy3Fti0wIUAtGDXQVLgqHfQ/StnjWEusKu30DAAwaEg5+xl41X1+DiIOkBab67oZl6BmFfB9M46SDooK6/hDz5qF4w6UGcgZdDUUy0YPnSOXxZCcW7fGVcrMJqxyIJtQfhzYqPnhdbB2NAAHv/zclke2+ONbL6DtQN/PZh6NgW5hhQYCrIDCBXMxIs2LtwM/NTJ3xjQla9HuuABeluozQTOk5ZMoB/5YkRift0hFdhpBwj8KFGkZrIuH3lZpJ1X+8h0f8f4cW4gvMHRTgLTk+MXxB8fZhXAL+/fJ9aXuaZpVy1f71xucsgwFr2gKAKzH00BqdVQfQStHPWfY3ZTqF7jBgPbmSmtNuo5McsbHGPn0a2oLnVilzSqoDbHbXS+Uw8zpD8BpP1LGA+P5PWeHxPHbKx5ddvNjdd1Fou59d5tFlz8gNUlbyxPmDT2OeE5vvQpXeyEHu77SYvj3in464lLM1M2+5AHkqvuKjxjWGe1KbvWCz0ZypkE9pgyyA2UhOlXqxrJyZGs7AmSB3wmtzrwPY+qk0dFmSO/dNYtF7fVZdZN09MWy0jDFtU1FSucapPPyI305Mkyf9BkX0ZSte+WpW2W/YogDG2TN0FNtcuqP1Ahf27pU16n9nt/d0pjf1EOPGcaT18sf/PcTq0n4Xa7tcAltoCXDq8A3WHR2A8B0IeHXgnfs+RPBZ89APSNu3zuOc83NvBy/94Z43t27i9Rcy8EoLNcMY3Jo3UGJz2mBbXOuOHAJ3DSi1SP8ymxvwGklORls2M9hwXMqzAMgG68mXgxXdlwBS4BW/EUC6LJd6aLeETxYuuNzrzEA+BmOjlimR2kBbgBrvDVW+wj+gl+BcmZgo1B94xwCz2rlQcIBUg2PKNtEFgKzBzQBTS9aWg8rEDQi9Y2ZPDOVUw98h3Qz+IB680CzU0+2SvA4GDeGwHjfDvjRIFbQSMNiU3A6e7xGQAAsFrZ/cUQcK9+PRRE0hYuP379xm0+t/D640HGdr5A9+TRJ2xvLD/+8R8vd+/cAUA/aww3HvwZXnHr1s3lzr17eVqgTnL1W/YFIR7zp1qkgBO3+SMfnaVTz2nT/NzLC33tO/YZuQicT2NjRggZjjbI0/22qDKUpZSKtTwkofFJx7177yx/9OMfE3rDEwKInEHEpw5XXVmQF19vMbXhnbv3sDcx2fQfZThFHT1rOd9XH8J60EW9TPKYaXN/6lRd3qbdqBQea+ooarFZK4ZfUQ7BRu5UIduZH/skB4YRyVcK/VqfG8/7tKnks14krJilisVNYRmm43juu6WSumO7bJTlubIkm8mUjLjIrNP6DWOS0jR1bFlbPPMqovWGLWDbPXa8vnyBagM8C6RVYFCnnerntWtfzE1eZFZeb8yV1+PqtP3eWuByWiCXMardffd8ef8jf9votxuX2uXU+pvRyp/o6zdYMfaG1zx26A/RNyNsy3VrgbcscDEADfgwXtkBa3eHuGQ674xTFezWe6t31vALQhkAfIJdU72PxDoT8UCgRQa5SX9yzNDHZJ6C2evMzmCcotORZcBHhh7Cg33AEKvl3bjFanK372ZfwPr82ZPEsD4lXtl9XyRTQgAq5dPL6KD5itkljF/Q8xlvbgbdelvVzxAMZQVc6Y0mb8ZXx/tM+wP6BNuGpRCKAfH4LaPVDuroDfuARes7SBvkIQC3fdY3uVS4egI1A+TFG2fEkW+GjThRvrr4otwMoxC0d+AXjM6bAHX2xUVWQSRM4e6995nt4gesKPgeMjs/9dOnD4nnfoj9bywffvhBeNhe436d+3mCaVcLvAuAlk/kpE3+UKEu6NjZOjy/bDbSKKdk9XLboNkjJnnlLcUuey59S3v8eDOVJwUwQ/0mG0Jag70cNK8F2dd2NlodjWf/0Y//BOD/TqYk9ImEq0p2jnBXHWQucuxgbPeXD+4njCNeawBWXmDNjZDnltllDC4k1cY9V0Ng81PmuVppbKtX+qc2ZS19w0ijTeo96UtVVl4D9pQ0K1uN/CYHjzbq0GnejFEutfwCWEf91gjn9MtN3ZMrAVXtgzl2v1kjs3wzYEkA32yGLrmPU5dmpgGzTeE022E9dfN48Oh5Jt97KFnzad0yG2RtttV5lJKV4TYKZl+xhqnW7416Yp1X3u8+/ZFmynd/m7YWuNQWyG8Ss1DcOVne5QW6fbyw38dkqwmD5iXK0+UG0YBZ6eb7aYrv4+m/FG2+EIBOC4a3p97XAkHBqN48hy5BnWWCRfu2cc0OVg5yAkpG9pTF88uxw+61a86C4Qt+hmMcAnBcfAVVHWwB4Xq69dR67MwXXz74PIPsKR7mF8xZ7AIqpyzL7aN7PcwB+IJV6llHj7RAKbHZCTlQH4G+YLogSf30mGY2CvQV6FI1QE/aeHsHDdnED+O7FAiBHuYAXo/wGJwFFA7y/DuIRxf5CdZotzay0Dqq5H62kdu6BemEdRCGUVpvXDa8+tAaH+yKh9ev34qH9e6993hpj4VkstreAjB+vDx5zEIgD++zQMpjgCRxZLFxp9jzhuXOndtpu+3NMtecBxesUf22zTZ2P+DEgzQtimOn6rsCJdopwNt2kWBUyh7a5j4psD9YFmaxZcg1hMrIGRurx2QQasm1g9lsD/Z3l/c/uM5NwwfYk5lZ8EjnRcUsQa6NtBk3dU+f5iZJhg0d8YZGgN/49mV5kaceevE9/7M9blXBesrLPmA3KprPXvKyH+U4XpcOkuTMvtK2lSbtkwuHflaJA50spm7WUszpUSus+Zb+nPAWU578ICBAEt15kzVPCTbP66jRjd+ytHrazY4Kjjzr+anOnvmmSPMrNwcz12rsW0d919mjlhmj31vVT/hXZImm7ccRgs/pH5Vvntdy+ZTC7+pVmk3at+nWNbZ7WwtcSgt4TXHd8jx0uXP9dHnv8IwZOPjNupTKfrNKeT3rGDs8dLVfZfkr6+/D99Ea36ytt9y/2gIXB9B01niwBIL0W1ery4uDenft4fzbnQsY9TACaAAk9VA78PJyGgDNWRn0NMvDuZ2np/fUDPjoORXQhiHfToHngiemVwDmhGMA1l+TL52xuzN+Un38KCvzSlMng75bwBv+z+gYYATQ6HLUHXQNLzBfer3GqtPUgTx8/FEbDbWWfy013wq2wX0SDNJmbgis6w2G3ldgg7+LNjX5KFaQTkZBckFoblTw2MtHoNdUmoPr14npvQlgvsPS2/eWe3icb966G3DeZacfsmT3fT5fAKQfETv6gqXYr0ZefnRQICtF4q01PCYvYvLjzNmLnspT5/xFPu3Cfuqyap+lHE+TqJ/Hevptk7vRm+1M8rPh8cjHKx8jpP3aIyBV45Dk7I9m+PPtuQkYnCB78DmI/uhu/X5Ru3w9p695sVVvu08kBNnKFyTbbvuKIT2vCf/Q229fMt9yPzainvdUi1aythm/nkammyq9QWJmP7XLRtEbu2UuzdtJ+yQFjb5Np2XJS73K8WW6PI2xv1mRL3lMG0WG7XsD+Fo31GE1wzQm3/SJDeVyvqPUrDUOBpepjldek72v5zL9cJKHcB6wRdFqwf6Ql/nKk5leNMwJN/PWxlnVs7+8kaYMt3P/DYLtwdYCl8cCvT547+jm/nL92uvlDiN4BnH77ltd+/Jo/c1p4vB0yCIyhywo4+/a99EG35x1t5z/MQtcGEB73cZTq2vMA14YFJDo4RVsdDYMxHhxU64n8DoeZuNx9/AsW+7LfnfuvpMywwheE3bhgiQuXuF8vIJMH7nrTdYDrTfaFxNlKL/ENSNToFnwQ1wrsh0rA44YbPV8O61cwDkA3qE4U9YBpJzrOeCNCrbFhU7mQFvwPV52Q4bgQDlZ1ZCrV33m3MMFw31JUH71ujbMI/G+w8sssDdsxLmY1W+XUAhnBjFPHtpAD7u6qIcyihf6K3mKzqZ6Y8mjnYYl3HvnAzyvDdU4YIZ9p+cTcD988MXyxee/ygp6Lid+gnd+nA7k0TbknWHTPZ6HxVsb8Alg1E60NTY/b+jNJv5Qp4Il9fJjwkbeTMVWDcsw1x9+6V12O95mbJ66KGIbPafeVLndBQzGNrlB6HkyxKVhKwMw2wDPod98VRe1mHo0X6oUZqMOyKdvHjHbii8OOjXivBGRhzJ8cRPT54YpfWvcqMybvhpPkMYLrdgvbY8+CmuKTu7CM+2UeSqqV6yRwmRLt5Gix4ofbZRZUvUPH/KSPcuoNNs+s6a8bpU/bkLY7Y0pbWA/0096nidPruXcFFvFJO/xURPOMN/VS11t5CzvsTzNJ82tu+FvX66u0nZ/gwz69OtU7ld4WZe/tRztH+IQRafBt5TlmbqhUF91GIwje+yzsRlpyjpru7e1wOWywOi7rj90wvR1O8Q+ez+fy+ByafqtaWP7r93iqfVdx1lDG73IEb+9mL+1c/B9FnQhAC1ANExCELKzs0cowFW2Pg4HDOG1CyAC4PoIPC/85VF6X+ay3D6u59jPQ8IwvIMUsGbxChewgO8LtoyaTJSux/BFBlFfBAtoh0MADnUcjAWmThUn3wBmwI1eY1O9h8a4MmMIXvCAHwGsFUlzIHdfGpnIKYN0DsyQVr+ZK93xwlnAZcMBlNMX73onbD3Bq97Os7NXHfxlLo94AQH7KROU94bjCiv5KUpQbd3EVIvPAHOGOcjTjzZSk9kmb0huEQd+6/adePMbuvJ0eQJQfMZ0fA/xOj9+/IBlq5mWD1mwEIrAQUDSWG/1l5/gg18huUcXDyVNnVasHtb1M+yXdvnGILT41evTR2c5ySM3DfKln6Senmt5J+l95mbLX0MZYF8mpm77JeKtmd3dTp/n7+O6orRN6qGNZBt4pg05/7mJiT319jNzCufW1QedgcXlyQv0qWE7RJNhqZ31Nrsyok8IupiONPZpb448D6u2o8KqKRv6uFvzyFQZpYuICgqfUYV9SzY5vbmv+ZvaD2KakdOVIz2onGZPfnaiVp48PO/m9Bxayl70m3T2BHOHtmmI9u1x5ZRD7TDrVfKvfVs8hWe39KVTUlNtNKWatyqJvZXVVtlOFR7lQ68VddSUZjC2fdCmi614bspcS5o1ttutBS6rBc5Ye2yHWOj+ZlxWLb9hvbi2XX341p1d3nfxyTbXOCsSenmvLvtvWIUt+++3BS4EoAUZgok9Zrw4OGR2g1t3BrjQ87wfIJ07wnR06brISYDuAI9Z9e3hA0BrY6YdFPXAMr73QuBYYBcwhNfSi2NOfRZaAE5jiB0g5wt1gODXrnDHbBLwctB0BgaBvMAaWAVtQ00E7QFEiMvgHPkF1g7rWR6cgddx+hSlpFGfgDEA2nyZT52UpU38WB4gLGjzZbAM3oAytvJw7mK9zfWQC9qdM1tdAY7YJr8A2G3qZJ56Cr5TriFAPHxHH3U9Bhg6p3HCUtDVsA1jngWK9dJjH3QXSGjgK85lRwrQF2wiw5cj1VUek1b6fKg7Y2hzIlKbL5UwGQfMi48B/7YfGepl3WjKj50geUfPdvJHNdVQJ89MPNP6Ewt+bD8tDt9dXC8+6IhA8i0zhTbgGTq35ngDQps8L7bLmybnETfsJ6sUYhPPkRysI6B0O5M6x95QSGdfsj2p4E3hiEOXPu1bV41e0yStMLmOrXqPdqTZOZCBmbVXKMlK20aRNoudrD7qD47lkDxypI/N2IybgpyBeTdTAvScfKhiHdsfEYMRQmZ/dY5tu2VTBNRm3aWadTd0n6Tym/sIT/VU9AAAQABJREFUGeTJ0W5NYzvsUppZNuqT2fO9yYHaUXywycZ6rduiN+ltQ19sbZ3MO77SY5PPdn9rgctpAbvr4VU8rgDG73Oy9Y7ft27vMhUroSy8TLl7ktHi+2yWbdu/RQtcCEC79PEtYm33r94h9vY204PdjufZgU4PrV5Nww3cvnhunHK9yoIVwbReaT2Bekk7cA9ALsAChDqeSysgEyTP5XgDpiksyGExFUHbeeNVBbcBxPzKuK83vCEQPrpveMUu4DlgBENnUEbfhk/oCR6gljIB5CnHAgN56b30Rb79A/UDMvBDJjClcviVp+C4YBTuAQx67dTZctvtAiZtl3kF5OpRUD6nsbMXtMwfTAE3JKlX4BFoFdu4FPXTp4/gzRLngj10in5KtxJSEpoCOFaOH0HEVdZ/9QeooLjyiZ9JSIft9dMTQxO9MUietrAlQWMqWVnw1GMej27Am7ItE7DLBf48Ytvd5WYCPuqXD/XVRxtN3VKRfD3K2ql8htzoAUPZBw1Jwz50EwiHF3VzHtJ/xj706UdUiA1hI6NZt955M9XWDTLpP6ZTF8HBtq5IKShnKZ6Eu2gJ5bNpasXUl4vwP0V8TZLNvTRBkDvSGtxJPfLXFctN0w85qTbqS+Z5cXrJrrpYu0pTPSYjbW/uPHYfmvCsPT3O6VdiiH0KMGwFYfsQ9VeyazNZrLi6Q8Yad3dvnnspZa1cLSVP6a3GaWa77mNkDT2sA5FJ8lTpceS2YXIuzeqbY/6ltEu5l7qGybOT/BXtdmdrgctpAa/jPZ703bt1vFzlBcJMTXk5Vf1WtPI3ild2mImL8NBbjK0vuZLn78O3osFWyPfZAhcA0AUXV68y1RezHuwzrZxe5BfELr9kIRK9n8e+SMjQpDfaOFtjm1+xFLZeTueJdmo0gaVA2pHUsU/QFvAcECpY3c/AKvgVxDkKdsqzemQFdfvERyvHl8IEOY6GvpjoQDsByUnCNow3Nm7ZD/JYulpA9VpgzQtjHUbX3UEApz4CMfVGO+oxVZ4LsJBsQ2N2q/Muduj4LdiqN1lgbn2XADc0xCn75tBez3eBWcJGqLwPYBOoW6e2sDnYGlm222S8tPwNARHgBXjHa88LlOR5w1IwYvsL2gW953pwAQvWleYsM2vAW1DKn7YwNrYrerPleHqhz/jR3jH4jrsGAUgAio3F1vXsEgJCGEbANfnxFPtbRjDH9FqfnSF/EcSnGaH3XNtO85SXG4sBhieorgW0GoKt6/mLEdU9XSftlInt6wdeIdZ6tYN6KEsvuLoGGIa+ctVhsE2Z+31ZsDdM8ayjo08xlHHIx74tT0XVJlbiX77sluHmztQvpYOAmhFsvdZNW8mMDtHfvj/KRtVZJ/IGp4Bn99HJuqsX/mbdbMlfVSZjJHWeqcVVak1rebhG39KrsHq1b6b+5J1822tuvlI8KievRRs0o26fJPRanvLzNItam1P1TT3daq1JG/tvtGcIjkz3I5c6acPUt0Tb760FLrUF9vE8/+DeyXLrqr9t3+/k7/8NUMyNG9zgv8t7Og9xeBnz6DW98ZPz/bbStvXflAUuAKAd9ABcAFZnKxAgCpCf8uLfc17Qcno58wSQN5mrWZBxJuiD3o/AWVDoo3CnSnOU9c9erydTkCdg2UtcsLIKZjVEACJ0guMz0J6g8zwvnwmugWjyviIoml7M8s7gWhwSMOiPjzDLlwjVXR19yVC6hiHAh1htf6Xkq+dZ/RJiAvOdfQfsAhXzrR9gDlegWtp+Ba9wBvN4RAmhsAG2BRnxbsaG9bJrD3mcAtC8YUicuMCESoJtW6FugnaBsvZX/pwfmmJ4ckPBnNy+qCcgLcAcwAI+2mTa1ve3YxN4mj+T+zkkn//wKDzxPKg/H+/yBdP8eXPhbBbXuSFythTr8O/9hoQ9Nk9+ZGKKIUDwTJsNTTELffWUG/ECzF/VCw/KvaFJqAz2wdCrJw1XaGTip6NTWPGlLGXCSyNQ162x1uf0mSss6pMyW0CjVp/oaG3r+k19tjlXbGeIynHmKgdEswqYN4DzRkOp9QBTD76e5whCjvZqqrzYY8qg2N3Yd+hUXuRTr2Tae9xEwCj0MtSeG6l2tlx5rasuEpa/xB6v9THn7WSdaYMppDp7pLLeVLUP+OKfqSK7X5mT65Q1j7sNTfQPx2bCJE8T1BEd+rIs9dNx2Hqep+4eQp+bwAiXRRimrd0bepV7vtUGzhs5292tBS65Bdpplz2eBN29x4tzzD6x6vKXXPVvSj1NwoPU5eAqv+vvgANcBGt7WX9T5t7yfcsCFwDQDV9wSrT7D584lgbYCc4c0FzkRJAT0GwoB4IbJyyI7ND1/MXTxTAQAUhiVfGi+hi9oI+rAj7PWdRDULoPEK1n2lhjXvLjyom3UmCEt1nPp0B8V3AOEDOMoR7NyhKYOqK+dNYFgSWgzRX6MoyC2CwXfAqwlCPIfwkwPIH2gNlCrl67GuApOMrLeoJ2LtTXyDH2WD4Jz6CuP2oCg5MzvLJO2wfgFQDbzoSjUE9ZE6D0Jcu+VKnXVVq3J8aFw6zt9s66QMG2OaOI8F+gLaCQr+ElJu1lGwMshhyxh+A1Nz0cGBMcEI++6uHsGMZEK1tArj35p44/USbsKJBzmwZSFrnmC7R2c84PD3ligOyVJ1Sp8vLmAu+/NxSCbIFzuMorO/ChXsA9fUg9lU9u9pXBTrz4Xz56krbKM+U0W2+8nGzTimX49lyUjzpTDuPVS4uwte8pV/lWlsYtRZHpxqPEb3MuT1jVZ9XH0OnggD7CjZd1pMyfypeD1cm2P7MNGK69tLWyItv2SSaNN19hVR2aZ6H/FqAnaVTJfr6G/FnmDUd1mLzDfMiY1VrmkdVn22WeJwBcB2U72jWVodqKlnZ6jtUn5ymsbSN5fJTa7ynLcxqicY7LK/ygtMxzZJLf5Nnm2K9bN1zDnDq9vCmwvsz9VGc2/o88syt/VE3J9mtrge+MBXx58CbOj8P+3m/+zHxn2vB7VNR793OXMbjTbX4evbjHb8zvUdSW1dYCb1jgQgBasJvH94BS55edA59gZcbcOmWY4M7ZCwJS6dgdKAHghk1QZrkjnKASqBlQCrYIaD5+SVjCACyuzObA6kIiynIKvDm1mNPaqUtkAKyc57ce2soLgKPpbrOK4DFeZ3g1HrrgXxBQIIYXFFkBTNQp6G1ohG02dAPIBU0H98rUC4o5vXBJttGp6F67fDifDOXkqbNgUxCQkA5Qgd5LAb1VrSewUvfjsfjFxF7WUaYecJPAW3vUo1995GN9Aao8ck44H5ydVR3b9dKXLy0kJVQFe7cdbcJohgJTs+fM9toS6qFM2+/bz8i8zpMAVhmMhxedVr9e0HloffnnZgIQ7b6chIJVA13pB/L2RWoOlisAnbQZKgGr2VSLPGmVHx5pRstd+MY6ynOrqvKPrhy0DnxmOXk+DcmMKMjcY5YQ66bV1oNF284OabZhPknJzVyoDK3x5qD1S73xnUaGW/jZ16ojdvEmh35g6WDViuhBc6NzMmooFNJ25qubJfkaVcl0ROGo/PItEfRaO2cv5yQ0JUp+yoae8p01V3IqZuhtlaGHZwFi+XsP0n5HRugpg7TJvXKdenstzBS7zzaOzGl7a4Vv7h08jxL4VZ7pHzCtrNH2UR7dNmjtA1OPVdtkt01bC1xmC9i57f9cMgc3cdjo/2mHv8xafyu66Y/ZJ6Rl15Vt58/CtyJ5K+T7bIELAWjHJK/fzPWMC6igyA6sRxNgnAG14Qnx+F3pPL8OngGq7CTWkVFX4Ne5lXcDhD0pDp7ybOgHMdQCHOJ2Bary8AVBQy5eAcQFqc6w4BR3uwJsPdDo4aNdAW90ow7+bhFjZHTWDGRTLrBzUBUYFWhAy2wLglv5+HKh81Bn4CUGLTHEtD9gFXl5hCy6I8/B3Dr5RJZe+YJ0eQqY4sGEn1u98OqXD4QFEvIIWghI9lcTFsmLl3rQ6wU2+R3PKvna2qRD2hsZ2++5sG3OcewNQWKyT64G5HsujCIP7k3N8usunCsieq0O1MainJOx0l/kFvTOX/YVAAotHLMdtuFA1phqkifHwyRECPcC+WIXz/nuco2VE5cdz691/fIfIGwlb0ioNwGy+6WjLIKkXElI/YBhjUV29KWOzORtfYFikuUD+JYnnLDdfDlVrgf7evELomfbZ2X7unmTnQKtE9in8WHqcZPtbpptkFKaybe6jfqQts+xk4prTuWCfZCvTBulrSSL/ULQvpYuR4H2izi+lDfp1FB9zcstENvw8YsbPqtpm6SI8iAUzRqF0sUWGMP9JrgL/lfHzY085J5Dq/yCZWltjV9WUE7Tai98pJgMpa0d1jJRO3aZtbfbrQUurwXs8853fHCN33V/tFd9+/Lq/E1r5u+DU9jdwCN/Bdvgb9umrQW+FQtcCEA7qAo+Otg6nNZL6zV9FW+cYOeEbcIR8BCfM1PGdVbLs3+fMnNGQi4CBPuinYOnHx/x+1jb+XoFldeoI3B5xUuCRy9exgMtkLbMOaSN9xV/HPDCoR8Rys4AjOqWZaiVCdjxB+eKwFiQzfFcSEReE5js6oWEoXXNtz27u+iDV9o2u0CJ3uUdBl69uQJ3bxgSCwuxL0yqu6DcF/4E2XqbjRUWiPtipC8yyitDO1/u+0FQBnzL93gpkUzs17AUgYOpnu4++tf+AjYXo8mCKPJBftrCvp5Ob0y8WXh59HI5OnlGnDrLeTNzx/XrzKJy8wYvcyIXID51UI28fDZRRpSsjmYF5AzAYliGTwRsazzrtMjza8NGNY6TE/72Bc9NmsK2tLaTOma6tQ18criSXX7KuHbtUJLliBunmoQDMyJbewX/rnRQ57CRpzLZ+ue59XPC0wj7gTSWZ7o8aNr8ARApDZ9kNtQFcjBjz43n4RUvz3qzd3BwNfaQd85pNBtfsbM1Teqt6sNC9H3Z2xLbIy6M3h6PNPtoDkdhalPJw5Szsz5H4Sa7USbVyBv0CdUY9QeTUJQ93EvOVptwfmmDVuFUpL8mD7uZ6lmnb/MXYLqyN4WTUSinHl5TlaReb5AMurQv+7ZBGQpusizeeyrWjmpWuvZHD6QdNwGpbx+1USmwcJu2Frj0Fshvw+i27m977/qUHeydLXevvVo+xQP96qt+ONek272tBX5vFrgQgM4YhCoOXGcAYgdAxzYBo4OqF7kAM9AaABqQAYi0IIMdSMfBOI9m5QGI6QCqh5Z8wIjzN8cTzGj9etfYZ8M9MnzHCOHj4E2eoQQOrgJlAa7JY6krT+Cmd7zeXT2zIu96tEpjOWwCUsOLVfvUz/b4IlkftVOHHzJ5IjjlTtenGgGS8LSOXmq9wQJrtye8eGae3vbrV7v4yTVmMXEBmslLXdXHJcldOObF86cBZvJTt3iZ4y3nhiCmUIcmPenGRlt/vlS1CTbcd3EQFyWx3FlLjgB9gmgUiM6CmZ4P7KadaPdM7q6BWXO1izYouOcccqxZ5vl3H84hltTpBncSgmK9FPJNHSmQN8NlrFOYJE05RBT5uekhL084rKiQJNswpamVRYK+7isvf7aLfG+QpDGO3b4ZQvnIrsI8Sp3JwePww36rMAzCeWy/3n56QeqfnzlXdGO9pY+GfG2wHWqrc6XkWxp3TBttacb8LsWK7s3soW/rr4pCvK7R/kYpWWnPlDrplB295LDaKe/oCCEE3gzNMIyec2wKw/B32rvgaiq81RbLcw64VtZJOSrk/+CxIXvStc/1yJ7D5C6REy1VOqrlK7XnzSA5HM9vt02b/Gbedru1wGWzQLq23ZonPSfHjnPp8ZdNzX8WfU6xyasTxj+cTV7l27S1wLdhgQsB6DzOBpQ5EApA/Ph43QHp+MT5hKdXypfHOnPEEaAtMb8BmeBXOv58ocz6mc3AwZMfh8Q0Azate8WV6OArOE/YBGCxA5/gDQDjzBuAGj2tfvRgC1wFq87KoWdwgmrLBDzOogGT2DmzVghS9USah2Vs38mr8jLWOkABUOAPVwFjT5H6pw1BCwI2wiiI83UVuxPjnzlWijGyHLCM+e3lnXc/ZOnt97KCYFZWpK7AXhCmp10v8aPlPlOmMZsJ3uzzEQeOBfLzYFtpGuy0VetN20U3XzSxjN8SQbu2dVGYwyuEbeiNfvmcpayV83R5997d2lAww/nIDxAVA57hIZ9+KGI/ybt8eAsi/cmKPS0Y5bPN/pQFTEksHyCmyfymAjVvDuoJLbCK4iuS9iMPJ7/2N9ptA83tP1vqm2O++ylvTdtgCuga8zobD9+nGEw7qEFHGq3MkSys05cn5d5m2nY7Svja52wD/ec1K08K7vepOGP/K9u61pnc1ZHDJG3Mzsia+ymqAt3l2zItOdlkHuPJUip4cFWsWK9pa4/aJuzCLDcqaUvzYjKESFf7rWUlDAXulOTm11gQp3a0P+ZmVdIoH6m5nq2jNg03kqenpg33vM+mjGrQqZFQtzoMrYbC3Shj8vBGaL5EqF6TPpejepIR3kOQons8eY0q283WApfdAlxfAujXR/zuvp59/bIr/U3rx7oTLKDy5fODOEN2WGtg/VTrm5a95f99tsDFADSjkF5fwybOuZgFIs8AEibBoABW0Bgw5QCLB3cfsFnAK+xiIPPFO5JxpIIOwbEhEg6OCTlg+elrxDVfZblqwyCkOWeZ5ytMW5N6gENBuYBKTy5XUEIZHNAdgJ2Z4vSM1ecS6nEcGsMqTC/gbVLm61fPIjMvgu017jp6ooeDtasQBuBDb7sMQJvgQpBkPHZeTkQfmg7gR0c+QMvkq8shqzW++/4Plg8++hEA+oMcN/QBuIMc5ekVvv/FZ8tnn/1ycYEUGhv5eeGQfTSDpi9l6t0XcKuf7Y2+8BAyqMuOrjlSpvaLl9WXLDtvtC/hPX78hPhr2v4RdiF+LMCH32QXbQGxRyfzwl9PfvblaHlgCXke+uXW//6t8gJfJH/zxz5HqcZXZDacZg2iy9JC6ypisvDY+uE59ku3znP2FG1jEhvW+649FEptbPnCG4gnT+k/hgERekEbFVLug5ftsQpf2uwEwBdes80psm/PsIV6tzM7CmXyM1TJMJdeBzIzm06irBiC9sW+yB/qpQAZwbXcrHiDol69MRk2NgcG82YuvKhfAGr/t449kG+BamS5Cx+VsA3mK2RWlkg6ZUd4b5Bj85CmZsitkj4DN6uUpuWy1toOZA2H4sBjPmkLlXP+zItsS0cax8nfoFPp2Qflv5INjfuVT35bN2TJE1m0M78dybVt9mc/U76abdPWApfYAnZR+isX9HLGEgtnPNHkLrZ53+Pu66+Zzovj1/5ODntc4tO4Ve0PxwIXAtCawes2XiQuZD3FPl535g0Xm9jbNzYZT+mhXmMHK8Xh1QWsHDPoxSss4GYUM45YELp3ANBgcBOQxOvLIN7QCQEelwr1BOfOslHvox7Wep0dFON1ZmtMcgZu9tWPahlAlXl+RhgD/AUIDroOotND7iDrAC8AjVd0gjD0dpDOY391EspSJmjVw4uE6K+cgDHaYeiJnwOA/bVrN1kt6e5y770Pl7t338ULfSuDuKDcObNdgOYF82cbm/w54PnxWN68oEDQhpK42QIgAOYBSQEA619ObX3OgieFTcIXrS1YYGtb48XuIy495tr8yZMnBdLElDut3/H5MStDPl+ePiN0xFlStA91Bes5L8gosCrv6KMB/c92wpfay6wUurG3THWTn0zyeoMSe2P7htiMslFh2kFvuywmG/M9uW4nMLNfaNcJoNX9KnNU32I+8mvXr+Wmz6cQjx7h43/wIEt7T56yk7vbVdvMISNF7M8muS0decggEpw6fRKTEB7Delb1+gJta8PLPikvmNibTOaVeQ7N4SMBtuQc0P2zb2kAOGXKN3ulXBhEM7K6tZ505WVozOBpsSll3c238nLi3DY/9Q234tAs9TFBEVq30ngO2g8o5Di0Q3+PUp/jtJ8KAfNRMOxSR5pULAv4JmfoVLrmRWoySmJfHwrLgMxe4/YZeHBcOrfy9Fpv3swv9+331gKX1wJcYsvLJzhJXrLDr84fQppXba/037JFXrw48M6fUo8lAvLb8Tsx+i3lbsm/9xa4EICOVwcPr/Ml++i6HlcBckGyg9RrvLkuQCKIEaSuvD4Az2M+DrgBrIBQwa+g2UFVMHz9+g1ejtODXX7Ob7bLgGe5L+Q5dZ30jOahiReamGnrHgOQvJLcByvnxT18sQycejr1xO7EO66O6rTPXM8Cf2fzyMuF1E2oB+2CILNXqIc3/PLwU284nsyj5wFrt2/dha83C3odD7K0+S1A8x2WO79z7x3CNe7F6+xLf17fx+hvKMWTJw+XL+9/vnz54HPA7MMs6iJ/4cErQji0z6HhHyPp0RR0VXftgY4w9CYlHj/ngeM/L0EKeNVbfWm3NnJfm9H0zLP9+RdfrOz8imkDf/HLXy7/8A8/R5fHuRkQHHpz4+whnsd9zyNb7eGx+dpZoWQlX1W1caYJNJM0NtnPl0ZoEepXR73l9aQ7OJDnn4r6bxsC0Nr29B3y7Ie5EeGGoDcz0EJX+6AjHeCdd99dfvjDHy4ffvhhQPQRTx++uH9/+eKL+3lKMXVTXv/tO54BdWgS57loy6Qd2dnYDJeat47JNqiXN1MaWl38zBk6lBPuMPPPlHZmTxnmVXJKc1x7hF8rTJLWksaPNkmOX+Y1u1neCK0KsyNtbOURhWVDpehlqfqw9d92QABVdZSMfakksGsJTE22wU9uOsOmbR6F2axUgS684Z+krO7JqFmrjNWOEldlkuXGMjnKVl8/3kSTibBd9U+e9drX1sepuP3aWuByWsAuS5/mJ3x5fJ8ntM/bly+nsmutcqX5NZJX87ikk8PPJOM1Yz4FVyjodTypv37rtasj/uSIp7Nf4DQzrEUBbLZpa4Fv2gIXA9D0UoGqYEQwa78VrOj9dZTKAMqo5eMVL4o9wKUzQhQg88gcsMvlEvCTPs/o6zLgBXkFG3q0BWdeXPpO5bnHwatXxNJykRhy4ecMUJcBER5nXozIks/R6VHyfZxtuIShEEHBzB5xcvIyAHAPkH8cLzZebers4jG3McYv69UVBAq6XZ5cfW/evhUgJ1gVeB8eXgcMEwaALQSW12/eWt4lxvmDj37ItqEaetG1je03HXMD8Agv8+ef/2r57NOPlyO8z1kgBfl6yWectiBMmepXQAJ0IdzFfYGzdNERm7xmNgkRTMpADP5hiHykFcy9ygqRR8tLPN4ntMlFYD777LPlBp5ZQeczlikXVAqeA6qQIzyqPtiEI6fAQ0ja4Vf1Wh/PguRYf4N2lv36dhPY0AzOreBoxZWdPcJmPNfXWNTGE6T+3rT5WzlnQgn4tu8F0FeK5U/xtH9M+zwHN2/erPf5/gNufuhvzvnNOU6fbZWhADU1n/pzrmcMtHaJgnZKkvy1h0fOnrLP7Ckux37ii7XQanf7vNfFITc/3lzFZtaVFecpNgq78inLYTtp6AfeQCirZAJOUSFHI1N7IYh8tmTX7qFmf0JViSt3npbe/CSbalbsvt8Cz8qZ/Mi0rbOyh3wik20SZbmpob2xHZneXASDo7O2UE5ZZC/VcnOKvNyYpm3yVp/xieq2byUmbW97q/S6bPQdsr1OvbHJ412qur+yJ/ZSHz3R27S1wHfBAscnu8svPz7E8VInQa/Ar9c8V0cvkRDO3W+l1yPkBdc1w/JyyM9QXj1SMEqoxwsQ8C8eL8s1hsYPrp8v1w68XlWz2nn9zuva3M3kL+DT453lEdGYx1/4rhAZ/l606ibpdn9rgd+7BS4EoNOrHRDHy3J2WgIZAlRvACIdPB2cE+rA/hkvGwkSAy4SKyxwqPdST7J9vuDavHoOuXQCXvU2Gm8totHLGOIx8O1nbmhCEpwLOgC5dvI6sp7gVzkO+h1s9UrrFZefgyc0zgNM0gsunR43+Qac6jFGuVe7gnvBLVPW6ZGlbXp9b9HWZbkZlXxB8O699/KC4L13PmAZ8zvw4sfDWGzqGq4hiH2Cp1mv84MHnxEy8Zi45hfIsI3O2FG9cvMg8ED3LCIDowz+AL68GIne0TUrB9I+dCQrbbSd6mn7dtBVwO4NQDz3LFt+hDzPizTGQv/qk0+Xx4BM484ffvllQnDeAEk2Ij93fSyuQQqazLcE4exqJ1PL/C3zl5BM80tqcejCMkdf9SVxmclLW9P68B25lQGTzrIg0G1fOh9PDSZ/wZEhRSePHi+fHnwCAL+WlyefscqlU/95gqYXfao567Y9Mzek1SpKrHWcTQsluuaGCUptrP7eFNnPpJN34ujpf14j02a1gjAYgmRqVTj235rDcJqmIDRqWJHjuR8OolH+TZvnsbKktLAEbesgtsJIPYflGiBr/opsSHNwG38WTrulX3r3Mdpn203hOcUnhzy28o8MqvhisdH+tcGGyMjWXpU9txG6UaYO4m9NMI1ilfC30P90y/4m2IKp91Bpu9la4PJZwD5M3/VSevWTc8aOZXnw4nz5wFdy7Otfkcx+zTDw2ePz5QUhH3v8Fh4946ZeH8hwALxdTRnXbvMbBpA9AqTnZcVecm+Tfv0xda5c5bf1+i6rFaM3enz4/rK8e8eVhQlDeXW+XEX3Z7ThJ7TH4eo2vhHVOqPslJhm33X68Q/Plz/9oU87EfdWO7XFc3xkz55C/9SnfhD8Lrp+fUu2pVsLfKUFLgag6an+Ceoyg0E6Lh2dGShu3LgZ0Ohy1E5HdwbNMXeaxxwL2jJXMkBSgKUn2unqCrYMBREIca0w6rkoywnebUHzPuBUD98pYFBaB2m9pl5T6hFPH7zNF4T2cbmeZBWDIhuBR3U2Ptl5mf1Ytofee6ymlwOYqlPqMJjr0bx2/Ra8CLJiZPZFxAPqK/fmzdvE2N4E/C+A5/eX997/aLlK+EnisdHF9qq/wPnl0bN4ng3XMN5ZUG3ssYu0eHOhntpSef44qLLg0cfQ2tm2ecNy6kuXCLzKQjK2VRq97t6cyBPCxBJ7Q3HFuTGR/Xx4uZVTWTDHGj49+PjjX6atytADqBx5lMInC51twiz3NXq8eOEQspDHxOhlm3MefDJgZr9COA8FMYLiJs8PQJOPUiOfrcDLGwvb1hsob0Yam62M6R11XxpvxK5cwXBJBVu56eHX23Z9ire9gLtlkimvoSh4s5HvR/nZUqadPY453FrDu5XZJnerNDvapeeMHpXjhHNAo67aXb6u/L2PK+accydj+5EsKPJ7yLftOcyxdKEZtDmWr88avA7GNRE9oaye8mtShtTyLM3IH8dTvvxM1UVaz5F1bWY1mEymvaJLXMxQyJx+5KI9VrPd3gyWxygPL8ts6yhhJ3/0Zc+RfcHylg750vAxu2UyUqd1mvmehzeS9rH9ZAoemFAn184O1/NvAhNv1N8ebC3wz2wB+/0Os1vtP3u1fPKrs+Unnzkl6vly59CeTdq8FMgw78nR+fJ//b/L8vGvGMP4/fni493l6UN/T+dv72iU1yEV/En64C/4jbq9s3z6k73lJe+y5zczAgbtP7aRF9fftfd3lmsf7S6f/IQx7fXZ8t/86+Plz/6FIYmAf/i+g8f5jPCLn/6fy/LLL/eXJ6dXlscvd5eHn+wuRw+ZdOC9veV/+Z+fAbyPWSgFfdXBNrL1sve3+Tk3B8+/ZJw3DhoA/duo+Y81Y1u+tcDXWeBCANoBrt7kPqoWWMUDDMAVfOr10/N29epBALNzGzs7gaEUzrRh+IP0AcEMbuYLNvSOvsZLar6LnnhFCIKenj1OCIQDuheJYM+ZN/QkO9VbVgrkohIIHxjTPB6d37hxJzZQH4GWi5w4S0NBEcCTX4wr4xbe8I9cmPxIvQKoySMvJJJpm1wkQ6/iK0NWmFrvzt13lg9/8EfLbeKcfdR0eO06Hs4bAXPyF7QJeJ88/pJQjV8Cnr/IvM62x5cG5a230qRcp627wkuOAonWFSQCDAHsGsIbD9tgmw0VUHd1FDQI6j0nlksrKBBcew4McRDEx07xyBt+wq8Y9MawT9DhD9Lct8w2BLwyi4TbeIIFVONHTFrPhbrHm6pkeOwxsb2poRQUSofNDUKQrl52mcx6lvNjCo28A6SgE3ytQDXAyuSUg1LAEntgH/+spg7eSKDfCnyRucOPqpJmu9Q3ld2aRn9KeQopNptP2rc64AdbQSMFL1IWMIat2y/bBttq0mZyKogu0PU8yNe8LrTjzcmmSkqGX4CkuiDExibbtrhDMo+yeY7Mbll2kt9KktbutrVVrbtOaacMoINjCtRp1lfGTBFL461jdsuQzIGfFefslKZ1K3vNy37QviR3+cozMsnwpmaolL7TspUWcycVp+zqW90oWNGs9aJ/mDubo87eIJthY7Zpa4FLboFzHFG7h+fLz/7myvJX/35ZfngbJ84PuGFF780uzHC0PMWT+zOA9l/9m53lP//HK8shff0lYPMY0NppJd9sbK4+6t34a65NvMHPPufmFw/vxlX9ZoWvOfJS3ruJXrdZ9OohDhV+3x/83fnyNx8ZSgfvx4RDsoiX+b/62e7yBM/4a260Txh7T5llhBEcVL27PP4fXzNFneNvQ0AUadtsq+/MfHn/dOFhLmMBuKBD39dotS3aWuD3Z4ELAeiMTxlEuUgAv64gKDAV0L0gXECgWY+moA6PKccOVIK0Oc1dPK2AoAKMgo0OhsROA7d2uKAE5vsCV8CL4DCzcXD1CCqvMjWcgKSgsQNwBtoBipTl2OjX5BtZAGDhnF7iqwBj9RdcPicGeG8Ayy6w0WnxBHLWv3FjPzNq6I2+yUuB9+69mzjn63jcFRUAJyDGLq5Md0Ss8RFe54dffs70dL9aHj74IiBB77fytFU8zvnl48cEIDYfd5sVwIr22k5AIDALhvMHZOW99YcEwA8QnvHT8o8uUGlreWknb3hsvykvBdLuPXhXpsCjP0y21eRWsJuQg9gwmcOWtXcArvoIIvllO3cBDX/h0kHIEwjBWKm7w472gyT497xQT0RK9gRK1WEAHnlZRiXbkwOP/FdpcwYvj3zZtP0Avsh03+2vJ28QhFTtlxCVDzm2S5nR1XYN3aYcaUMQppS75UtZE/xq1z45CFF0MO/8bMyHDf3BwXy5sIBxsKmT2zaVLawjIcfhRlkS2XN3vTP0WBeU9iu+13YZ/FYSPDdWmPlrW8cqK95lOu0idUwz9A2HAdwHpRT51MS13ez3k2byU7zx5z2H4walpijpG9+zIFoMPWqfdSvGHv1NGTYyXvZZ9Q1+24OtBS6RBeyj/JCe41e6/5Od5W/+3bJ89C4Omj8/XVhY1gc/qyTp/Uc7y3/622X56X/ACwztlVs8ZcMTzNA3L9IV/WoHHg8/7rV/5tNbL1KZ/S7Jn1afCPLbu8v19uTnu8vHVw1LxPnGXNZ7+z5x9SmoY1x/pxXDrzHrNLBF/1/93dny138NkP7whPjo8SuoPly3TwHdf/uXy/KL/8J7TIZvAKh/Z10VvE1bC/wWFrgQgHbsEdzq7aW7xysq6HjpfNDPniTE4YBgJ4GkA5WeYUMwjpkezbmb9/f1XKMtdQR2XqeCtauuzgeojfcX0CcwF0DrrZ0LixiDLHgW7MajDBB1ieuAxNeAUlYtDIDiwnWKuMY755oLGLTsJcuCnwHeDwDRuwBOdXjy5DEA+ToXtVPyMVsHA7/g0TmABRoC0/c+YC7nD/+YmTXei56Cb2GONP4InJ4KZE/xNjPLw+fM5/zoATbBq244i+CJJgt4c1MxwKxtM0Qh7Q6gbUjCFeRb5mwc2lB9TFmw4/Q14Rn1DOutc65r48ATjsAzMu3pT9H08uVFuwnEKZlALy9hotcE0ZykyEo5MrWdnlTLlbvDD16Ah20WlCIIKEJZTqacIzdHlFM75WQmyde2q5t8BKbyF4Cb+oIXPH3GDk0awkZPss/drV/e5FE/upBRIFyATXb4NU/t0E9dowkyVxoJoP1Bty3k0sYC3oZzqE9uAAT3SZUnv2iHnLSfurlZUwa8nG/blJUXofVYGbZ7hjP49MV9bagn2icC5WsbzeeI8xpwZ4Nyjhg92U+bI8GG1kQ5RClJ0xZ0clo960/65ntDJQ/6EjSdNrBgsrRwkklbGF7yrt1rB/X0BuwN4VbhY5l1cwMy9Ak7ck3hwNfUMXnjuLZXt1KiXnStJ18TcI0l03M5JUk7+ZW+UmTS680qMu1Zk5gPKXZQX0kjM9nbr60FLq8FvFb4+Xz16HT5+X/cXf63V1eWj/6EMI67gNFe0unL9vlHX+wsH/9/u8uDn+EsulnHSd6Xhu5ru7ugFwKv8Hmt/E4G8Tec3yB/FnsNMu6he2TjL3PIYJhdeY4TKjJksnzDsnN9WX7y14SRoPoHPzgDGww+qkXdF892l5/+1ZXl0/+igwjG/iyQv01bC3wbFrgggMY7CHj0tteHoC4W8Yo4JOOeXxGCsXflNoMdFzqzdAgQrvKabR7zAxQENjvOWexVwIIfAW9cAIYoBNxwxTm+6531ipCf14XgStDubBYeG5bx+iUxvQmp6LUzAYcvkwlYHCT1YAkEBbvWU47e2iNiwtRBPfn5SfjFIaspqp/T8QlgrwKoncP5JmEafUHwfWatuAWo94bAXyz+9Wbx9+IlcznzguBTPoZt+DFUo4/t/fHgx4RfDz3mAghvGCaAk5e6KLvTpQk8YZ7fMgEq9fnltN4mADeMJeEY0NpGwccRi4QIvI259QVFVzZs/K2/MPn5yreAxVjdXYEpe/4qFXTyg6Tt/EMfspPiJc6vofkFrdZUJxlo67ZHVtXTAnWSVypVfOilsc2ytw+Zpic7AI0C+8aUwW54hdAvgaacEVDQaZ4F5SWotT/QZcDe2GYU5UZGnaOvkgutrBpQpcJJ0bq6jhz74GA/SCZt2+HR9PKPKmy4VmJrS41fpyG2G/2NQVcV+e6zKFFALPRps3Q2CH2s2f6mln4c3tyaQp1DeUnvR/v62XxcG1kh8omQyXMW7tDVlsnmK2TyZiefFFS2/XEzKdJzYYpWrRweeWo085URKr/cUz/V9TfBrV+zrFtlD670cWwpzUhDTPSb2ZEfbTy3PRqKlD951itfWXswOW63WwtccgvYXcGLLx+fLZ/8PzvLw3/ok6y3teYh5/ICmmOnvPMVm430td29WHuD+nfcfYuPIRZfK/ctMY43TwhBOX62LJ8Q7uEUsZsJ/9ryjBuJk+e1x2/FfJPRdn9rgd/BAhcC0MoTiBSkMpjzzGUOYI6ABTUFuQK8xKYCEjJrx7jtLDiqd9r9hGIwmDFGAnoEdq7wp+f5VbzN8cByDUnni3GCQj27gi7BqONgBmCAyYxXTYwzwFLlJnBy4MziKcRke+dq+IPgMzHVeFj1NN++fYcXB28udwjVuPvOu8yocTcvEh6yMqKyTBPIunS54RoP7n+G1/mT5cmjLwP61VPPdgA7Oqm/wBDtMngLGgScgsiCakNWzMMA0M8UEAsvQQsWDADT7t6sSBp6MIVtEnzobdYjLXgXPOsBF6yZhB79GSqQCXaCyTx36hOwhE6TruDU+gVlBYgIDjcAGJVdrdETUFCiFIGZNAXJNJUkoKEE+px76NXC+tpmhknIJ/1npYEwaPKWT/VQrwBu6gZrhvcAn4NH9FA4DVUf5U/Z8lS+7YyTeZRbpwkK+ux6CjtKYAUn2bFTG6bNyAujfoVFeMsYWvvXNLKe4alDYtSpGxtzbn03wHNgsl/EFgqLLHRl12wOsx1CETFspFqjXKLBglxl+LEulT2WNvvUdis9eWUsjf00GX6NfLbc/PpiqynV2VZO+4jtNXVTHdIWRbRo9d36s8BtdVEf/0ztf9Xf8jcAdMqplrbZJhRW5+htbXkUpHvU/SnPI6+pbdpa4LtlAa9xQfERc0IfEQN87vz/m8ku7iWqF/i72sHR+4QZNp6ySMpThxefQm4mf4snqP6utnGzPdv975QFLgSgBQANmXjNhUqc8r6PvwWh1xICoafYgW8mgYiPrY9YeESPcgdugQUeZcI0wo/yxO8GoOoFxqMNcBRc7h8AfgA4Z4DG4+PyFXTpVRb4GtaRsA+AZWKGGVADnskXqAp282IjOgmkDggBMf40vy4CAmj21YNb+2vMovHDH/44S2/fvHWPR0eCZs0lGOiVqv6274jFUFw58PPPPubN6F9kejrDOfRQ63l3wI8UgRhT+QV8AYhOeVlCmZbPtuupO4tXuuAkMgMYCrSVr74CMMHNaqYH2hYPHu0yCfAFuS9ePKXdTuMHFBEcbvzIFGiUXyrBO3TQKkd+3nAURAmYSqUKgqHGZSvLEBbkUm47/FCZ80qu5yuNl2XhkDL0eIZ1sqElTEbPojcFPbOww7Z6kP1LHerJWz2SaxkHAVOgytLZR6DzRsMy22wJdQLS1Yl29aYFmqmvBOqSr9pkgjbEpm2SyNOnEhoyIRap0BsExCS5yY2R+nK+7feSaf9xdjyivp5ovfzazacF8Bnts9/kXFAmYE4KY/fICEPKpg1oV/TkKwMrVGmz7Yd2tqVbWWiXMh5qyzgg1G37eG1tu9QlYsNr8h75g94bVmXKVd6RK7NhGM9PeFGWfUuokHM0+EYMX+Z5njw2ee1WJw6o4w1NiyrHfdsRGsv9pCdZPphQbrJsnp/0T2yuRuUQku3X1gLfDQvYbe3e3pt/1Wj+h9Ctbd9s49tnZbbP7TZtLfAtW+CrLrl/sgoOPnt4y4xRDqBiMBfMGkN8eGjcE49eeMYiiBUAH7lICt5ep885YO5kYYWDm2DvkLhn6V8THy0+kd4p77xyBD56sBOHTC1fHjzHIy3YMD7Z6eQEJ4JzAb11Axap7TB6fPwyvNnNgKze2WEghXkAkXq43LPzNt9gWrr33jfO+YfkOR1dQ04E54JGB19DMYw3fvH8yfLFZ5/wFvCnxH0/YmW/J+hgHPIc4Hvt76MnjRjgBmCIaNshyA5Ipi0CM73TtVtnALlyxVk6DMsQ9GmHw4B7Y8FfPH8aIGj9fXT0N8Swi1d4m51b+tlT5nXG5gE2KdWc6uWvkdQFE3MrsNDWTh2YYsiU6SF7Uhd8sKe91CmADN2HM7L8ZU8K+OWZXc4zx2ZTjaS3XaYCGfmQGbDMptkSDbnWq8bmKTOJKqiWPuCx5zn/8ilF5E0mEQFzb1rOuFlKHY5tcwA/1DOMYXCjD42QDxkjKx5O2jo1ah+TR4qjEGThaXuwZnQSCNpwz2tZFSDqwe1H3dWjYT08mM0585x6bcTDrsIyXyXqkGGZnanAuHyThyDbRmHorDb7UPPNGTyy6z45aUDhpMWykLcvh9oGbaQtQ5sq8+zafNoTuS33u6SjwjojfOXjua8+MmN/HHtjcOZNIsfWru5TH2ntO7VruPOV80BeTpH1UzNKSl5eCk3qeVN2+h+03Y7i7WZrge+KBXo5fFe0/e31/ENv329vkW2NS2KBCwFoB7x4iQAaZ4BLAawDfoEIIJPBSbB6iKfXESyhDABQY4xdkc0VCvUE6nEWeMfLzFu50s5B1fGuPPVkWuY0ddAiz6HQuOuEYjBqGubhICigNP6XgxwLkAxp0Lvr/NTq5GwhAhr39fbdvHU7U9LdvWuoRkM2XIZbRJFQEESrkwDdsJFnz54GpD4HNAueHxOyoTfRFQnVXx0Ew+pYAKQ3Tc+oq/8B8tHP2GrbYvu9WUCd0BSSCJgFWMrV0gVY8o1Xm2MXZdnF7SCdIHu2U+D8yBCSAZ4FGgUHAmRBBzwRpm7BxWIshGjdCSa1e+tEcmmlTyof23XKY0Nrtl7rWLd614McPugYGbaFctsaptKmvn1BDXrutbV/EgUQypBjeTW39VsWqtJT7k2A7CVMteGSFQg2lUNkhAAzoJ92qtzWlVZdKRyMzGB/JupWzlo3NfHfHEF0DmwDGe2/KUk7en4Nl9FO0MLPfW/U1CPMiYnm+YzoVLYyzXd3B/hDv4BzS0dx9M6xGX5aW/vFhpFlfYo2E6S1+2Bk2SDKeZTPrCNtWK9pU5SvFAzOLV/L6rF1G5vNOWVfM+fssn/mjZdkGC46U1L5Fd+y2iTfqsUn+d7N+aSH+h7nnFIYPp7nqVWIx0Elz4PtdmuBrQW2FthaYGuBr7XAhQB0Bns8ng5geoyMudUrZ3Js8pG8j+YPD/cDjl022jf+9Uwe4wkUKLiYxB4xTJ2RwLjQrvInsHSgExwLDlzsZAJpmet482uCIPkKwK+7gAmA9AUvLopArKOXGqhH+UnAu0PwGZ7uXVcwBJA6Bd1HP/jx8g7LbhvzLKi3PUdMaRcvKvsOzi4d7Qt5gtNPP/kF8c6fAmJdGKZLgM/5lvVO0zDkCwQYyIMcBN+N5T7CQ+yc1YJZp9AzqbveYgVptwDrA15B1rbw8BG2c2hLd3DE0uVsgYq0VdBXW1pmeIwzoASEScEr13kZD06CNNtG47DMGkxjdSjNRg4f1d2xXgAylNhbYJNmBGRa2wp+pSa78nDfNLfrXXXUlisQUyHhbVsC7EddAZy0IiB1EBDXMzpEwivYRxLKA6KVDp3x48Yaa4u0EhppA0hVmP8mpSDHviSo8qMcapEZeutEPi8f2i+lnW30eBhkxTNTiW80XbmrQnfRVdvUnuqOrsq0rb5YCMtZRZu8PufJCW1lQlSe0DYMCfJVmmEM6q8uyrN+b2bG+RrUbb8H2DN6WGUyi9RJCUXTvGGVf26UR4G8Uka1NQ9kk6++zVsRD24tz0FuQirT8xz7kzd5lU/PQRplJXS1XJXjjY7u0pR9zssQKXtXM1x5s9NfRt8b7Z/2kE36mud9MivL7ffWAlsLbC2wtcDWAr/RAhcC0IK8mzduLK+ZPuc5sz48ZWU9QbSDU0Aoq/oJZp2aLavwgRAcowSSZ8xR4+BluINeqENmSXc6NcGn4E8gx1AZ4CiwExTMR9z7rr7nS4kMvg6qM676KZ5XPbsu1Syo1VOswMSTCsSAIS7fXK/3wXLnzq3oJlj0pb+nTGGn7oIvgfcBU8Fl1gz0ML7akI3M7QyI9oVBPcDqFS849K6QV8+zL4D5KFkgCCgFLHsjoR4FO7utiyzt0sGc+Gvbj+zj0X6aGHClzbyR0Mtsm/R2K+caYS/XCTdxFoenTx4m3tkQkoRtcLNg2wU6+XMf2+zuGoKiLYZnXU09EXy0+G7oBKigOQPrrM/HOm7lIfDLPscQ8BG+UM6fvGyj7ZBGEmpB0xQQBK00gq3w5tyUt+CrnnexUHSHQV5O5Ng8pUUecvhvJpvwgUJ75/E/Wwu1WfrP1FWsSYkpTykGRwGrNdR1lqet9A1zA/Jme2wTH/OcelBwWV3bHu3gTZB2ij7WU5dw4stt8rrvDc4ui/KcYgdv8tRf/up3zvn2Jsy+45SNvi9Q/Ium8pBWm6OnwDHTQNnmadthpGwQ1y0tnO5ZNNMiyosNLRrEbwLt0vVphtXVkfbalnDwfPixlTNRMnjZP7pLvRRr5WkVM+xb7WfSldfoF8iJlLCz51ZOb5ysO3Uuz4J48iyIsXoObaPJdpravqmX1KmRsu3X1gJbC2wtsLXA1gJfZ4ELAWjBieD46lVnsjhdnmfg1qMjUHOYw2vGYLWKS0aTeEMzgDXMwcFOULiHN9hhLYAjAysHc0CWF49kBcpn58xbAzARvOhpFEha33pCOMHqyUnDGgROeogdMA2TEGy84IU/Y7YF63rG9wkBefmS+Z+fdro5Ae0J/PRkHgDUfYExLSEeNV7ytG0Ap+jRkBEH/LSb+TNth7J5PThAILpRzyQI4vWwgAlp5DlBYxZwWYh9Tiw3nv0BRgRigjRBlPZ6AYBXf+fL1pTSu3DNk8eNwdbTP0GQcKWA0puWAjxtlzAHdSQFHLINhOBLACPfnCb2pZVfgIeFsbQAqoB56omgMpHpKkUDmMnXutnNd/izp/yEynB+6EKxd84x+pEVOamrHjJIct8zXj3URfa+2Od5YCfgOXpbAGBMDRlIJ+PBhyPVS51VljvUk295y8OKQ47ltsk/1N+NXJk3P0J6lO/ZduuHX3LVadh/VqW84QvS+WTCFw09TxD4jw47GCkeYXmNeO4oYyOg8Xy5emX6XfhSR91N49hz1TaP7FHcoxLOKqu88Lf9k5gteWgRkub3nER5hLVklpdvymzcRtIm66S+48htHj94bLt6GJnsR6Z5/FU+e4OXx2EjMz/kv33eh5TtZmuBrQW2FthaYGuB38oCFwLQjo6GFgg6nd3Cl+D02p6xFLWD+FVnPWcIe/jg84RR5IW5AMmCTkMrBNeu+PeShVXcd/C7Q+zxzu4Bxy4Dfi2etiMAouV6rAUVDo7GEPviX7x9jI++vGgSVBeMFsxLGxAPEHFI9VH7GbxeHL0EcD9n9cEXAXGd/cMXBG2DHm/BiN6rAhlvCg4OnLmDhWOId1aPpoI1XzgUzAqKUQodXA1QsINnkbZoJz3bAVDk6UFTd2nUqwBXbzMhJwFNRILkRTJOE7SHgG9tlhAR6F8QrvEEz/Nz4rEFzy4YM28mAkqVwafylFNwlfMG/wANgGWXLy/YMU9v+/Se2uY8TSBfT31fpAtyyU2Gek9wcuZ83txwnOC9brv0zGJEyCVbJXjNWRVy8yAC9ZzE5nqhW8UdbTdT9lIoXBpASb0kMJ+P7QU5k1Edy0maepFTD/CsrJKkdurlPNBeCyxPSDZH6qqQQRla9wXqr5kNZpc48NyUCGz504azLWl69JqalE9CTyYwlIgkD2/u1MtwodoW25DsU+HLy5deEw0/QpZ+7SEvhGmppqhO3nDJUBG1pZYYAlOhrXLXcw2r8Js08sknfIfd5ACd505zp0VkNK/tW0kY8lf3K1JTybb4mbxX/Ug55OtdV031KI1ylG+9XptKUnxsqS6SkNpmS/tkwILVTZ7tKRl0oc65UmYEjrLtZmuBrQW2FthaYGuBr7PAhQC0ANL5kwW6GY0YmeJ5ZaBz1gyBbB+TC5jx9jKDhAA4gycA5SXe4AAZh7p4kwUrAFDA7S5v4Mv3BeDFcI7Xr10WuyBaL7aeb2fl8OVAZctnAmtBqoOhQFA9BEABNNAJ7BwrX+qZfuQUb7z4h7ybN1gYxdX74KPXWb6+lGi5eQJKp+fz5cfEVO/Yvj6mN2TCmwDBboA7g7m6OoTvHwCMAZTOjmGM9GuE67nXNvI9E8Cy1WusXEGUcdjq72qN2i9tA7B7sxAQJAKAj4Dc6fMKnAFYPpanPgIDXAX/AezK4eOUeXouA65hISgzfw0whCt6yfXguyiOLzaaQ2Iz9rCFVQrQJhxJGAHApnG5gzJgpXBFm8s9j+mJR3c/TyMoFizZrp43Mtgv2BMs8VH3aqGqKbf9KZNxSgWG7I186dQlUm2DuqC4Oc7uEBBnDYvKNbQBa9JZ12L5+Tf5mp9ybem+HNuGHeUIQuVk3Rx7kP/0Ie3vkSBPulb3fHFAsk9xBgYPaGREsq87paN1rXN+3pAOdSif3oDl3KPDCnRaXzXDhK+5766M+B8iOOetF1IyzZ9gVBtEEIXJzxY7chNQcOo2Nf3KvnTKWE33J0//2JpvP2x568Um1IlSbkLN9zSO6iokeikvWjklNc3gqYM8+aiPMtLnIY633npJEUB5bduyVJXJNm0tsLXA1gJbC2wt8E+ywMUANIP69D77kp9eVsFOACKeUocqBzJBpYOanlNBpKme664uKMg1TeBrTC8VAxqOT19kINTbJ5h19JwDvcdzmXA9nQ6nAj/HWz3BglS9wgJcl4Hep8wBM6D5GBB31hkz9GAJtrMUOEB1l4F5gsyutlYwbtiEbXFg9uUvafKSI1o5s4YrH7rkuIO8tlDXK3sO5noBHbD7st/0LhtWoA/RthUK2IaCcnZiy1e0MQASms440vhWby5cHKouGjkAAEAASURBVEUPtOcgL/0BvtTJJbDDU7nxcsJMcMC+5wTiASrU0QI+5Im/J4awDQWcaOa5SP1RnrJSWrZKZoXPILZSKkpByyizneE35IaLPARTgs/BLhu/ksFO/7O1qtnlAxiTvV9kmpcXN8mwDWdDcVqcMrIGsduNZN0IgaD/qV9yY5Pbv5QrmXym51Mu9glv9IwhT6GZELW+lUiW0UYKshtG2a/eoaF/On0e3VGm8ej3JhRqjvuUpjdE3EJyrfmyrW1N7dGGud/tKBplypoq1kbVwzyOB6i1jQGgbGPnVIIfxzSiO+7HELZoSjHPSmyT1rqFZOTbtwqg5e/H68PCDT6jQs/L4DYb2sOI6U2ZqkCJfeFMqbVWSuR4amluRFFum6VO29+QTeY2bS2wtcDWAlsLbC3wGyxwIQDtwOX0a878cHSEBxUv7AFhG3ppHQY9DtjE4/qShVMML3D88+XDAlBevAMY6n2VV2beYGA1PKKgU619pN+y60x/p3dUgOF80cZdA13D03jlWzfuhI9xz77gdx3w7AuFytTzLFD3Bb3MdgHAdgYMywKN2KrjC8I5IpUBPTcEtMTQDsND9KJnJg146512kD4EVKNQ6hwRm2y+wECvswO5A7XzVOtZPD4GwOOlFgS9Rn7r6jk8X27fuR0A8eQJ0+PxMqMv4a3CVeBj+wRf0y7a3LANwXNCRogN78toSLVRfDKTAwBcfQQPASro3JsYvX/1eBZmrMGG4Ti7zj+NnQVGAVJYid0cF7hit+HZT+OVgQBBnvQCEm6T2Cq7XlP5FYwJ7Ke8AizzDSWxbl/Ia3kATnh5TBv8w14FW+Ju69sWQC51wxdSedhv1iBN8Nk4dOmnHHUP58jojZ3vT+ZlPPK8AaqX0hs4AblAj0/uTTifOSfVJzc6G/pY1sTW9tHXd6xIauu6M+1pfcGn8ryZ3AEcn+7y5IIFVlImORXtG8tibL+rFnpTR6iQdkZMzr1nKaI95+oGeVvZ80O92HX0CyuGXlp45ykCGeZpK6unbWWUuuO2xZqDLgIVRDtrD2X2PMFBfvxNm8hq9pPIQRd/E6Tz/Fpm6rnNLrXTEHOToZyxmzZGLn3Icz5DiCRUh7MsWhT2wx7q3etCHuozmhfe26+tBbYW2Fpga4GtBb7OAhcC0DJ2cBJwubKgnt3Mycyg7kAuiNFT6iNc6RzY1vG1zhstCO5LdAeAWQE0HPk4aHdUqydVUCG4EFjAQzrIjpjxQ9DqQXmxSMseQDM8HFwZwAF+8tB7u0vw88kLdCU0QvCxd/NGwHE84+hpOEq9uQz0hlngRUfBjLpyEhwLwtQ5YIg2njCIy1cPcGJlaecZwGlFgzYHzuULLxdk0VMv0LW+gHKGiuwylZ9A3VkdnK5OeyVURJCDrh43JABgRT0BhnUDOvWOQgMchrZ21nyCpGJK9fNTcKN9drCnHvoJPKkWuwUwwasgjQokafTOW189JlCtB3YNa2QxPZihtbpqUVD26mZfoP3obNKuUd3zGyI2ZAQckbFe/rp9SPmmtkdAJghqnewgc7ZVXQooK0fb2L7UqTHSnmmrAqqhRLnGvgZDh5dysgCMwJr5y+mHqjPtYZWeow3bDtCuDA0ovW1QvHr42WEub28kOeuxl6E4nC25UWZoy17CTtIHqBuZ8M2NBCfYvmBfSfhHQOG6DbVX60Q/i4YOzm7i+QhYp14lShsCyPxD7VGSilMvmc0aEm2k6jnOr/pS1l4i74Jo2zVTqo925caFGharRr9KuRYzNbN8lE2d2fq7Yz37kO2bstZbi9VlbCeTstp+by2wtcDWAlsLbC3wj1rgQgDaIdBBKVOAMYgLBhoeUVAsCPPjYCWdL99lsKaeS3FbpvdU0Nhlnx3QoGN2DEF0vFDUO40n23AR5klm0N+5Vm+brVOegEs+z549Z07nW3ieu0CJcceCXj3cASoM43qf/Xis3juAVsHRCSEYBbX1ZgaQAJLkrSfalxzTHtopoLgCaBYIC3UCMdBTYG9b2y68uAze/KOyS4NfxxN9iJ7kQ5vVFOH96qW8exNQLzfxx/Ddz80C8vlTfrzWrtJI3TlLh6BLEGCa4GAFCpK/Biuz3K00blcfbC1ys4q2cCdeQOwHUUEoNwjazCTd9BDOvHqNBfKeOc+PTDg/8I1sDz13mc9Y2WSYqDB5eYi41MumLMyOTGtAjT6cI3TRjvLWKxzvo8JJ2h1OKXsDFHPjMetMYF3Z1it99zzETgOcek4Fp+qWtkBru/2kf6udhZFfYAaHKK1uFueGDHrlyc+0sr8gz1CTCO9WmlDBtwC3QF0P8UwC9zP6vQsSlacvrfZa8yzIMH/Ki0zbqODJwXrrfQv8M6g4518dBsHUtUqOOpZn1+9NxiN3VVciIXSvFrOD81Nn6DB4TXlhO74qZfKXd/mvaN4+hJe2SVuRkT7KQZrdTOxdruH2Vv0V3+3O1gJbC2wtsLXA1gK/wQIXAtCTpwOU4FgPqiA0YJSBPsAGAJFH0sFehmsAmAGaTh/n3M8OmNbRk3zldV/6u3X9DqBhD9DIwifwFTg/Z8nsl4aJ8Ch2B2+onl/T9RuEPjBYGu4Qzy1yfeHqCqsfGh/tTBUOnbsCZLyH1vKRt3vPKTvBE5oX/wBXB4fXAbaWqDO1+By/rndbz7QA0HzB9bHyM6MeYSvoaJsMyVDnIwE/L0NeuWJ4x/nyDN1ji2tnWV7bNguWrXcVmXquBX3xRjONneBwj3CRGZKhHr5c+ezpo8Q9C6idyq5ebkI3BGDOkBGdY5YANfcEXwIOTBRAIe9AGTK86RBg+tEu2afcm5ieO0MOAG58JZxFDzkfz7ceZMGj+3qiTbZrAqB4R7GXx+FLeUHNANSRm0ob9WiH2Jt22GfiSVR3+HgOJwCKDPIwEKXKLKSSXlUSKiI1x/YtU3lWx/BT0CoV3EkrP6ijc7clytMFd1uM7Y3n18vaDAF2nmQEuHFDxlOE2oW2cA5yk8g28cycvwDvc2m0vzeh/z97d9YdyZFkCRo7YmEwyayqh/7/v6zPmZ7prMokGTuAABBzvyuqiMjqKpKn8WqGcHczXWRT9ZCr4mJqAcOdB5ErZcN729WcD/inqLb5xNXRBV7mxt0tWfzakfsN9E9XvVmtUura63yGBjr7IMu2OZkLc1NtpkSqmUujZvt1zFPX8X6SBLVp1PnE9nvcFj88cNVvbE2mGYfOkVSWZmzYxdZa8LRT3vSdOVEibZOz0XfXmegtmzmkU2l2LhI/5bWPBdhebGxrtuvxdljgsMBhgcMChwX+0ALPAtCcLTAJVNnz2M/aAziT7/zptuX2Kn7x8kUcu+25vnb3i2519gRstkMN+AnWAzA+5ymCA/REo9M3Lztl3N7cpr+Hl7g5z64enjAYB885LkAd19wdLy7SvtFpgCZyXr+4ylMK8+CUAFdRaYCwQCAOVlTwrCkK61HdItYBRHb6uI78nPtNwPYD8J5zTpgO0KW0jP0gFfvzsoE87Vcv89CU0AB1pIYAq2dnw3cADjgwhzQFjzePJZKW8vnkMWD/JED+PA+ikevt4TQ3t59O3r9/2x03AJ4CsNiKDl6A8qQ9oAktQQ5zPgBigGajs4BM+jT6mjHRlDRAi0XG6mW40k5d9E2DpirEbq1IIzTo14VJGjdPF61FP0NRmtr0SB2e6h07tYd8T8CmNanL57Rqw7mOMGy1o7gDatNyke9Cgqy57g1li5aPoUc4/wZE4buPzWsXEZFd8RoQrmN6MkioddFG7rSpTcOU/dM8bWZBhE//LeKdp+mDh1ftlAZbjm0XzVeXqSsZgDALhrA/M04YrUN/88GvGw6LuYlam6uLVk7KB+Mcm1fPFzfy2cxiGSulW4pqXJktIP2SYlGA33zHjDC90B7b4tsof9nFThh9f7Bj2vtT970NOjdF5Ff5tqPr0lS+KOpn3jr0WGSfaA+P1ADLoZnhqu3or6+FT8UuhePtsMBhgcMChwUOC/w5CzwPQMdbbQD9+Dg7Z3BtDw93jRi/ePG6e9aKzM7NfAFAAZxu8uuNg424AZ2cPiA6KRCeKOgAvqU6iEbbAu8idL58CpBO/1cLuBfk5K6vccUiV6K1k7oB+BRIxUNeZ4s6N+rdZfeNmwDx+4BkT9sDpB8CGkUI73JD5M3nD42Gi3y/yEuUmAMXAea88euCITd2OeYJim7wSwQSSE4bNxt+zc1nwHQj3JFVdFHUUrQb+ODubVvX7e0CANwMxqnfBjADy3d3WShED6kjtsRzs6aos0VEgQ4K5RX7hR65Ag0KCtAO+0braoNcGxdAAWigj0VFbzxLOXDRn+wLFlMfuoBIPnCZ6+RX69uFg+KU0xVYBWAKnkMrpdM+dV8j0wY4rFUZCYGn95x7OQDT0WHkLhJtzbQuOKpAzmbB9DXb0ZVUyvWlj3nQhUTJpq0+eOCVc5f0034A/2qjZ9qkRdvEPP3EQPfSTyGyE10vA9VzPTVq81o2Y8SCu8hkjk5GTGjFblYkaYdJzB/Zxu5RYhinvHYlkzbaRubJEXaKxgbRI7vUHmUPD74vcu7n14L2Dw2y0YWenuI57JcM+Xj61SAt7Z5ClGljbukYvqFjP3f0Q6388o3Xo0cXYRFrzy9tZoyn/5Z4ZArJEQjpAlxE9D0Pf3V9KVPh6AlrtEeLpl2qGHLpqXqAdTqw7Wq+9cff8W3RuUi39Hg7LHBY4LDAYYHDAr9vgWcC6DiyODtONXdXxXHnFScuMsgxSXv4lPSFqysRUj8v56mFyW/+KUCWu/rll1/6EBOA8DI3/3F40jWAgKsAypfZ0QOwFZW2M4cbEF8nx7mpD4lqv8pjxF8kVQMgfpedK96/y6O8I8PZeaLLeagH/l6AhCcUPn7JtnUBy6GYj4emU/hpXN40QHB/n5sI5UfH275MxNqTCj81DSQ3HcbzA/F+Isf/S8BwU0YChIB/AOu39x8Ccj9Uh5uA3p9++uvJ6x/+UuAMKAPPP7yhe/ZQEEkHoCOXtI/KKaIe0HWTiPOHD28LjAfgWyBMygRTi8Jy/4BDgQikkwrn/Xk/9gNc0iA07CJy3eixaHaP1RZoK3B2Q5r2KbfrRDq2fBoDf8OrEV6gEJ/Ijtfkrw9wRcLYkcv45zIHueQe58xbjg140qhtQi6V00ebtlLoZPHG0/yQ77tBvAi/w/wrIA5ftPOWbsPd+6I45Sko/S42RlasRmbRcRTZMWXmXSPysWEWd6fhZy5+yVjSsxH4XKdlXivau+VHZh0WT8aGjOYieR4f82tE+ropsd+ftCUzjcjgVVtGkIlys3HKUmFBSd5J4aHz6KTM4nHGgG6zwJuoOZqhkUJj7ntSmWpD8ygLkEZjyYYmoiOzdtVRWa0XDaKL74JFSDZwTPnIS1fjdJonIXYs21ft9LWgs2DtgkRd58TAYf22fOa4NpqUrf7zD7HK1oL0j1XbaOTODZz9NWkAuKbsWrpDaNGl0+xC47NjMEUuj+OwwGGBwwKHBQ4L/K4FngWgN+VxdHaeSOTXz8hxVJ6WZkcO0da72zz17yw3yiWqJPdXO7nMQIdoFufWaFm8pS3fbm4nqirSCwzIDRZd67ZqcfRAJfBwk1SPmzxNcMDLjozlKYS2m0vEmL/0wu/927cFJ/aFHhDAiXPck+Ms4suB//Tzv4SXLepOG4kGsF96ZHbkAE4aMb5NrwBnIOI8Mk6ecaQoAAHwoo+fuQOsgR3b6Yk2O68+sdHNp89J23hR+4RZ0jOSJx1wYUcT4Nmjub8BqzSIIsDEgJkBkwNyAlwCWtKgL3hE5HenCwAVeGurf3NIo+dJAE6PFOLTqDZjARFI5YQ9fOrXQ3nP0QJcXIODAEpOw9zP5AVw6lI2MqZ9/yY6zeaVI3LuCahd2S6aI0SY5R/5tt7RrJHk71qXUfuj8Z90aFRa2ToqR+i13fSs/Xb/iJRjbOPXDMA+/2iYT3QYYOTSspT7BiRnPizg5zuhWU29+Jdn5QNM0SizUpwm5EJ08cF/W0VzIDclSqNCFkaz2wswrN0T/XS324uW084CT468finDe3q0T0ZjgHxk3m02PWP5/Tw01n6N+ZqnjV5mMfDlPPn+K/+a3PoTv3MgJ7PoGn5lmreZL1lkLzX32La+uus/6Um7z4wXHXcJPrnwr0yVTyXejupK53U+tcvG0dnhlwDtpq5Fx9thgcMChwUOCxwW+EMLbPzyhw3/qwbbqQGGAKMcWWkKpy9Ok2LxQ522NvJ/H/JAFABa7vLngFmPz5aPPLsxAHSJ5F6+PLlMZPnicgAgtKAvUO4GLRFcwPljHlkNIL+Pk/3w4cPJmzd/SRT5h+RKXwegv47DP+sNd+SSxwyAv83+yncBFf/yr+vmxTjNy+Rlk/c2+c0fPr5PdPuHk7/+9d8C+G8S0f7t5GPk/MvPf03u9KsCEnnQNzd5QmHoAM3SUl5cvCj4FBUFoD2+fKLUPkXQLSLm5krAf26IfJ/P2y4wgBk3QMpv/hwZqitABBgE0BSIxYZsiz4QBVwACQUGeQeSB3AAZvqkJsAg/2J3Y+JBK4BCDBpaxmR6A6fDw4Nm0BCdbLsI4Hzv6pCrgpdvoHoBMbIFJZIBb+0ck04x0ciCyLJGmxxapL1zstI1+gDVqlBIjUZtr4M+rUsSMPk794ZV5YoA6TcF+s5TCKe/fgXsi14BU4TadHZEGz8Lo4Lm8tQTZLUIya8aEpBjr21LMpm3cK5z+u/8Y8IWRC6p2jRyz9Mmo2fazu8IeJr/oaVtPmPK2CaXXgsyqwbzamNjnzrzex8FjdWpDUvTd6dR3RCUImT+6I9486m3DdgOg7yppx8GnSeE6XWreyr3Gb2rpEWd38lJ3ws048T6s4iaiPC2l9JR05iT95/HhH5puxTqfIi+laVl38a8bRaxjmHqidgFT/rMgmLGw1xGg9ozr9MuOu00KFyn78yHxf74OCxwWOCwwGGBwwK/a4FvHvh3m/3XlRwP53R1lSf+5Sa4y6t/CTC0J/RdUxzk73rMtJSEyUUeoNUHncQJc+gcKQDpMdjArJxnDtZjp6VJjDMUqX5Rpy0ifBVgoI10kUazAYXQcfOeVI0bEd7kC18HjL/+4U3zrd2Y6AmHb3/7JbnQP4VecrEBcz85Rz0yztMLJ+IMrN8lKiwt5Da7fwBnAIsbGnMrJC8cXm7w+xT60SN0AAtpJ7asaxQTstKvaRFJIxEJDnS1jd7j46eksPxH+9iBBO8CKQ49f9q5Jts+OP4+tzgfAz5F6gMopWLkDzgLk9btPgACGgBSsjkKIjpusV+PlKvfedQFQyqC6YxtwaHrEAB4gJSCuIZlc5129CrAT/sBKwGSGQuEv8RGQI5yBdIWlG/wWubo+kt5tS+oTxR4i1i+U9/Ietu6BkSzKFtR34mij9zOO7eS8z62GnCmbOQBcEVuE8nNLyURsOX0IAsDUHEA5YrWV27gVRqFiG7moMTmHK7Nj7aH1nKwPJ3wQ1+dA98Cu7QgZ7ehC1+HSPFEbY1x5tWWJvVjjlItXW/y7Mlh/twPs9LxZv54/LdiPJ8eurLlK7gcO1bG9GFPfLfta4r/NA4WHIC5VCb2tOC0IJzFV0Yw9OlX8B7maPcV+iygvgusGHhmxchoYrCRV0RmMu8UWWJ8Nx9LJ2/Lvp1Xq5XvxD7Q8GKDTY+O029sTu6t/+53fB4WOCxwWOCwwGGB37PAswA04AI4v3z1og6Js1MmyuwRykCFiBxHC8R4yAkABgRz5p4WJl0CoJZ2EbfWAxAp+Imj9smhnqe9XOM+3KSOEijzdL/kNief+bY7ZyQ3NPnNnKHomDxqMqTjyRfgOlHEm4D7848fT14UxJw2YmxrAzwB27e//Xry9ccBenQRwX6ZdBRAB1jPSVIycp3+wItUFfIBEJ4OmGB3dXYj4W0u7KABiWkjtcOWdtI1LCzI3q3rYgMOvnqmHUAEWhTsAc05V6bei7EHkLAYe6YuOd+xVspF9qDfoTN1uUzTDRxqZAzXAWg94pvrFrdteOUa1tjH8Ew/XX2kserKBnSROgUAYPUN3X1M37T1p9E6oskItz4UqyerZrUBfRz45jCXBIO3zVQYDxHPyrB0af/0tRjDUXu2YaMthzZ6uZ5/bD+H9ufpKxXJIqF9ga3C2jRP/W6LOBlKO21LN5Wlm1bVH8GesxGdSLVsta58J+g/dpkWm4vu6FdObZyL2uqTueoR8RZT3x/AYUF+Ok9/oHuAPkJbTn3I2EVe9pKeeTb89dv1HY9I19x9W/XlT/qVxWm+IbOQMnb5Q7xjTe78EaAydF7Q/Z9l/Z7HCNaSttP/SY6UbLrTYuw4Np4FTueQdhqsY/qXkomV8aSnhaE5sVsdn4cFDgscFjgscFjgjy3wLAAN5MwWbmcBj24Y/JwoaBxUnDZH65DGILq8I3TK5EWDCL1xL2DjLI8rBnhFjN3wZqeORtSA49VexLg/wcYjyh3m+KVgSJEQwQVGLy6zb/T1RfOsLy7eBLDOg1r683tkxUPE+VOi0aLFP775IekZP8R5nvbmRFFkj9j+KP84oAR4/vHHn1KXHOZEtn/79ZfeQHYd0Hx5avu+q6Z98NIFM3HEwLFHgr/O/tQfA9R/+eUfBVYFffHS6snbvaojO3c+YIDd4tSj7zj/AXJjR4uRANq82BEoAObJCzNuwAp8MfsAK+AhfykDqqJ+7beBJsDAht7wbX5vCoGJRgjTAc8CIdBoAq3pMKC2J3krQA8PNysCX5U9oBPNvjDy6hFq9AjPJ7BLG3Jo5i8K0bzaZ1w28Bw5Rtd9ro4OaHUP5vYL6A25MyBRf7g+h7ZlkjbDcGQPfE1/OgNeGg9177FG56p5GsHKR1l/tci140nf0LdryrdoZmyesXJDm6PgOhTNK7T3jXR4dmwDgNmJPUfU2GKbLe2Nn0u6st+eT2ODWayOjmmUjv0zlvmbfr4LM76X0deCscCb+Rkx7XDonEp95Uy5UkdFYYMKZbeY28zvD/3+T9qKexOGfm0YvRpJtwxj1vQjOxk3CC/hUKZLZQgz88+XgGy7fiRDYgxC3EnXWE3yMXoOfe3Km017TD+nvhvlj1ZlYe/pN22P98MChwUOCxwWOCzwxxZ4FoAWPf01APF//y2pCLkpUCTq8jIpDgFsAB6QyH1zX8BVo1b5Sd/57KTx8uTNjz8GqCZCHYc5oPW6ey+LKN/ZNSPO0h7N/N2n5AjbLu8q0WTRXzccvvhJBPxVUzDQfZ3zH9/81EiYiPL9/Yf08RP7ZXmKCn/JT85SPQBrN+3lcYQnr5LqgU5BKCcbWhzt50SK7zwBMXIA13aysI90dU1kHZAAxuU2A4wi5LMl39pGLEBCHd1Fyn0W/FRfzjsvUcOLooInZw5QiBQ6gJreCJhzzj4tx56REXAAYNiuoChbu7kxqu1aNj/xozMgsCepz2eRiGvABbBJBNWYJZr9NeCPnNqUVk6H/kTGCdEUg45xCOS64Dt0S5bR2+fbvs0DNsuub5VhoFmaDogyW54ATspcq4vw+asKPS+Bfc0mdCWTzwAni43STyf0vBw7D7iU6ZwxIfDw0AIXx/Bk2xf5xaG/ZCQl6SbjzY6Ib8A9PAPEzZv8GU42mx08Jk2kwpAh8rFP5cnYewy8/vjrE6N27hWkB3ASAxh0ot+kAw39Spm69s8868LnIXp3vnhCZ2xGzjSkfSTs/AMibUJ3eeqhKzM/0C4z6rOHl6IcimZRNjKgOVtF3uT7nnsP+j2wP/u3XwGoQkd0N0C2UHj0pMQIM+lAka+CpRH5/S3cXEC9eJNjnhxoDow+I1PenVRQ/3/QpWg9hakK/7ZuPbXU0WEK1PV82aidjrfDAocFDgscFjgs8Ccs8CwADQx++PD+5J0dLhLRuvxhciJFgz3wZCJrInzzGG6ffbBKdrWww0adYZyevGKpDiLDzYPO+Y6E2Y8ZKLVlHCBrP+TTAJqHhzwcJcD7KtHgsBvQEdD+KVExN0gBsfWscZZk4UwvA7xFwZr2kW3xXrx6fXKazrbIsyc0b87pT+TQDYb7MdsnjWpz8WgC3R7sAoBLRfHkRWXAJ6DRXUPSV961tI4+NTAgO5Aq9SHRtwEYxqggI4AVMGkudFGF8uFXYBa52jZvABM5LRikGDhaRocFCgo16BM7oYMU2ZxrW3DVnhGolWQDKAMrVjsPhsGnr5anbrBHiPmnrgqVJrqO4TcN+55OG6ygtaO0u12vEURchx15LhOaLJqqnOfPp2Poz1VELO1HCDYg0tEybzkA0Ubww8f8GlAYUAp41SbpQ9bo3/mQPmzs6ZltXyp5i81DwcmAw3wCZ4WAAYmEswCzVSJ9ydt/FabdRhH0UjZAb0BldzHBf9sVXfzYJoe5MHWhCljjFR5MX6Ca7+GjR3Gr0La95u3JFp6ASKAcl6f2Wd8gWtl+rbF+ImBsQzXXWpgrvkfs0x10YkMAtgKlXce5fek3ZPtrRXSJoE030aY0h+LoGD0rGX0XrzSaPrmesXHCrvloYw2WbLXTFNYGiKxjj/fQDZ80q11jvNpyNzw+DwscFjgscFjgsMAfWOBZABp4mqfzJYAax+3GsdvsUgEIu0FPrvBpImyAJmDLWf2cXS5++ulfCljev/s13t8TAfPAEYCzqRjZFivO8TqpH29+/MvJm+yMIaXjMfXdRq43ForIBhzEiXOVH96/T9rFp6ZU/P0//j1pE3/PdnT/1h05OPzbpJe42U9E102KosjAPIzlBi4PdXmIvDdpIyfbzhsesV394uRFvO24Acg0dSLAqNHxeGIPiZFKYtuwD5/eN2INXAMzbCBiCWRAHvXte0CAohSTvxHG83H0BbHhiXcBQIrZreA05+qnVz5cByyWbt4AErYrr1AGzL6sm9zAEjQGLAWAr3a1YYRAtnwAHBxCr6CydifojOMZQB4ApP0AoDbvm+ju0FjyplQkFbgkoz5SLdhDO9FduoyexnJSHHIS2kimBp+8SRFBJO/tW91X+ddsyTfRzwFkbiir/Gm76Wx9doSS/uga04lcRjZoLP8AVPanj/253STXXSuGacc2tZWNlJUTI/LRtSac8SvgSz+SR5XQJSOgyYYbaNJz2o+GqdYavYK7ubHQeEZolcMnsnbMU86mo4s+7O+pheZRFnXljEc79qqLyNhAmVQlv/KQiZ3aLOeO2SWnNW37bf7lu5/vrnmvj7nl9bXzba6rE73Wi27munbtE0OJSFdGbfJXrqFXZiNA5UgHQmSQyDcLA/Sm6dhRw027460yx4Du/en70p6USy0aI88wb5fj7bDAYYHDAocFDgv8rgWeBaA5IM6IE/4SoOVmQM7KrhxXeQiJQ5mHkwACAJMo8ufP71MvVcNDSeK8Ty8CXAOsQoNPQ1N6xmXSNPQBSN9mWzl51q4v8/AUESgR8Hd5eMlNor9yp21Dd389O3MAxfW4AZgvk8N8mfxngpLV47nraAOCRHCv089x+u705O2vO/oNYI88FgZyvRPHDsgCgJCyeMi2dNHNXtRzY6AnBgLnItqwTtrmpG48OuGZgvZt/4AbMp4nUffxa3bhAA1KX6Q0gKTRzGlfQIRoDqCJjdgCcAJiCrhTP1HIAXfw1qmc9HSbnu0eORAJ4E6FcvSARnL6JQHImXGdXniLyheIpO3CcKsd4JSeadodLEITHf2/f9HTv30Dmz6Th5v5U5p4jaw5KWCuTpE12oSndJVJz7BFnQjxvDYYHfuya8F0yKVZZCuaRXLpmZ8rymfxyvzY48SWtUVazPxIn+qz5fIp2jsR2w1elT0uEGbM+iCP2JEA8qJr57T5apyB+wDbRr3bRzO2ih6RV6SbHOWjzBiZEx5MknbkatoPmxizXJs/Fg0jD01zaLt+1Zj+Cmc8MQrVfH/w8T3BJk/6zHzCo9dp46y7+mmdrqWzz01dv0BEP3tCW2A40Bzd0p/tjcfSobYIAJ75tcclOsQOZNNuzkpqvWHMPiNDx9aiIHOm9Ntq2jhlg+/nXdXJG41r48rPdmvOR8nWMo3XcRwWOCxwWOCwwGGBP2GBZwFo0Uw31AHBIsLN7w24kJ7BSTYNQ5rDcswcsr2U9SuASrmfuu8ChD3IBFDmIJsrGWcqFeJDItcFUsEQ0y9943DPpHWEp10t4k2Tpyr/WqQ4OdhxuCLLHGzI5ObE5HsCMmnfHN841EZi463PI+fL7CQS7xr+earh5xflzwlLz7DLyFUizKJ614lCf4m8b38LaM6DUGy/d3ORx2snQtn0k/CgI2AIyJ0G2IgC2iGDvlz1BkcDRhaYqJwAwnhwvLobQ2xJAeWAU4FIHP8cQMUAvQ0a2zuF/tgEDaCoYAHt/CuNgmqtgYpNbuQbcDPnm492xE834lQXMhao4Ja6lkc0YJRu1T8VxjI92hYdMiG2QU7hS8o8WlpftCo/5klF6PXiq0YB2vjRx2fboJm/AVDhITK/2rcGj9jT/NopEEQjhzkYiqUHrHVupv0G1ubbzCU0yeWfdjMmYRU6dFwLGMZSBvjhG70eMxdkfVT26Po1bexU4y7HypdTi5+g3pSnPnMVkcqQ+wuyxhxZzeu0S8u2I0mZ7Xd9c06m1rUt+JhjGe3pBrzIFdX7C8zUbRAdWdNjabs+Z96VDlo5iDvzeG7o/XLvv5M8an6BW2ZwaEcW9KJRvpuRn61im5kH6KRugd/VQac5qow+aPl0EhmXMD7Kq2MwTIfn6t92M15KZo44Y0u8o2tto+w4DgscFjgscFjgsMAfW+DZANpT+jxoxM15HGQBQ7wSoAqkevIgICo9w019D3cPJ9cByn7KB2Tef7atm72iU5fyOtYgm8uLbPGWHEs7WXh64MvkKwOf3Z0j7a6A8vx9SToGwCO6Ja3i+sVPzbOOS42TPW909uF9onMBJNIA3HzYVIPYphHmbP52Kmc0TvYy8tpxA+gEZuRev/rBkwulgXyqHBzt3/6//3XyW7a724uBtg8YAJwbgbRAiDMXjabDvlFMX867IDM09WMj4KKRNQCyAA6AGWCXkwKG9llOvgAi5egBIWnq3wKCsX10AUZs4+cGLyBH6sl+uQYcRCgL2oxXgQRuAMYAC4CzeSZgT+gVLOkHFGaMyFHgEX4F/dHZ9mzaLgQ3cyLvMAwZF9KBXQYcwmXolH74QkIaoklIyuSzUcpefidLGpZu6s/zMj/0LWjXFxm6hKZF3NMDbTJXhj7yicR24UN2egHBztM/shVG5nwWRexmrGKL0G4kOp84mfek0Y9N73eUNIZN75Qjt2yT9vQam+KHQilWT4uMr27kTFHB/RovnPQxZXTBr3n3+uYf2Sqfjl45pgwt/KasFVNZuyeGrPt6zw4zeZDRpqVZxzg2qQbhT6PqmfmhznfW/QhSrCwmRaEhcxH3qoZIDnMGUN56t4xhQi8VDJpzktSi+YhcFblvmsdWWRCmXWlEn82fvMaj34c03z0G4M98rs0q0Iy1vuZK502pH2+HBQ4LHBY4LHBY4M9Z4FkAGpj9mLxfkdhGJANaAWGAQDqFrecAVznHnNUAzeQgJ+Xg119/LSgRtQYeAVefnHBvDlx5mV+SAtIodSLUnPZlUkO4V4/x/pRotvaCdWe3nOJ5QPivycfOjYQBs6+yldzsGw2QQGqJBl8CjTlLCgDA/jEvD34RvQYwm6MbAPDxIekYWRTYMo+D/ZDt5ywGnL9L7raIuaOR7IAL4ER/OcKPEE6Aghseyecmqzr64IPrRLQvHpKWkhvTAFhHI+M9gyOArAE++jjmc4OF0E8xG4A9O6KqaUFswAX7++ldRH8/YAKNypC6AcYooOE64L8AKbLUTsNfSgawBLwOMMx0gbTxjdG3fDCJ3RzkwQNN+SG/su16EdVUZAwAmQF5PtMox/CHtAqK0Kag9qodOVdGBjr6lPeMhMNn5VSedpU7hf4cO10Cw8pEnhx0d7CXcTQeG9zhp62/aN+WZJY+MikHw1d/POXoO0a2WCDjjlaliP3mc+madgXc2BOFXuwf2uaXOTB0VNI9uexNjQBIM5eV5i1sKxfA76Q2pQs5Q8Pca6NUoje00knnUT19cp6Lgkj65vX4mLz+LL4KRhcvff2jRxdzosiRyyKUvc0pfSzapIVMrvvkR2+5FsvqELK1231ypvGp/kRRPhqWX6/Iu47aMef6dHSip+qZa9Nu/i+astqLTrVH8070Tn82H6La7PPF5vg4LHBY4LDAYYHDAr9rgWcB6Dr2gOgCnji0OuI4+i9xqsCy63H+G0DPFm9urrMl3EsR2/TT1lZh2trNArjQ1wHkyDW2jZto0cWKfNrWysNXXr56k/r0iVN0w9qXL58K7jh0cl2/eN2fqOUqPz5mC72kY4hC89EFSGnz8JDs5q8c/5SRz02P79/ZXSSgPLw/Z29oUUiHbeyAkx05BFZE3ZRzxHhz5YB/AW4uyC4CR9+dEkAIMmqznX5/vg+9go7Q8Dnn7GERsC0zIAmQZTeMzwMqHXhrBdjMDY0AwkYLUwc3DVDJ9ffnuRzwlvYxiH6zSJh+hoWd2invgIn+BW2Ls9p/Or6jX57tPxRI5VVcjnbsUTCkDWCoLnp3rMIYv863lAJTHbOcs+s+So9YUZL8+rJxiC/gHx3za8SmOfqQQ880K9HCM8xnfNDJ3x7P0tU+bdtewxxkm+6rfAuzaHccUrYB8ug2tA3v0I/cAK9/4ds+IV+TrDJMcroObebUZ8GleZUW7ZvPsY9GfvkJox40+kaledR3Izcd9uJwZEiHykAKarPFzPtZBM82lnbU6eKhC4E2rD2iGcG+6TNEOt7i+X4FIkmpY/7d8TROlTY6lc6aHk2NMdgjT2rDZ+kUMvN/ST5FvksXL23xmHkztvtmh+9YH6eHBQ4LHBY4LHBY4L+0wLMANAcr//nracCp3Rnigzxc5Pbm4eQf//hH6jw9MDe6xdEClQAoZyxS6SbBN2/eFDBL7+DM9OcsPyVt4+tXD2mQvxtHFydZ0CsSmJ9wLxNFfvHyTR7TnV0SsuXdzc3HiYJznprHGXPqH+3hnCgwYPs5kfLb2+zEEZlFykSCX0kvWQ9oGcAtnSOR40SHP9vz11MEEUyZfmgCyoBDAUQcsbbYAvjAKkcOdGuvHL0CDDrkZ3nb8U1FmxZA0BuoLuCrvpz7ACHAZ0fIvoErEfU0aDN2D3gMEXRAIpWq8BZ9bUqA5gWfooab/gCrhwU+4AtAf356DzEQLGkwwBzQtfUGSqpfWnQ3B3WxuYUO3dimwuWjMtUO0YNB1JAvbQYITR5xiE95ZNOb7AWZLR9boCnK3wWD/mnTtqE7dlr9Mr+eZA2tPuLcIiWNtTc+2ltwjU1HN5HziQDPXKwu6WEO9ibP8LQoYg+7VniKXYQOxSUfeVxHv9o+c3XbXBtls1AyUNO30eu0J1lB7pioslWnyMlyxsWBnrla2RZvgHDIRe4ARX+1b/jtRR/eEaD8Z9El0l2KlcuZA/2OafT0Xfbrie/hzDH1Oo2Qs1iwcHQPw21/OfJkTvueP8TGFrkdB2Oa8zMDkGMvHpCho1J8HUukOSNzz9g/Y6RNGpzlu6RfF6KpL0hOOYDcqHv+L6Jr25TuzCU6kGPPDbS+JmUnRXMMu3VxfBwWOCxwWOCwwGGB/94CzwLQ25H6uTbQqzfZXWeHDDtiXFzksdYBr/PgCVtlBQbUWfqJ3QNF3AD4/uTThw8Fuj9myzoOexw/BxlnDxjafSEfgkrykO8CJF6/9tATN1ulLKkUnKZ0DPmXgLat6uy8YfeMAo48gc2uHwXBdsnI3XD3ycX+cpac68CTqzy9EJD+lCjzu+z24XNvqaePJ9EBIIAF2QsFC8IsBuamSaDk40f7WGc3jeWk9ZVCwmEDan6GdwA4nDsnb3cPAEVbgOTL6ZeVrzvpBOgCdV2EAAVpN2CI45/dFwrYIlUXKeEHWHxJVB4wmEhmIVWv8QfG0KhcaSR9wzWZdnSevL0RU454o3fAy7SBNzaYcT5AGPpwRS3n2uYz5xscdReEAiHlyTkHzMITKA7p9rm4AHJQWiAWjYJC1fkFIh2/nlsEBHDnNaB4ABqwtwHjLHYGbONv9w9PoiwYZk8LoYIrIG4i93Te4IrdLDw26CKUvx6xu/JoGBqTchFRpm0aNMKb+lF/2Ux/emU80Y52TFObs0F/zdhtFhsdCgJjk9o010BiQXw66z9zbXeYa98t84lecqRB02nBppEndUr6C0nOanp2DW0He/WJoknF2GPnO1BZtGsr+ppXWXZk/HxnZmGap4l+8iTR2D5/+lgY7u/E9CF7XgyUo++51qZPxJwCDFKX8vRnbzdjEpFMXehk0UZH8z1KpZ591sLAecbZQ4XYtv/3tG/OjV0nDrlm8WTcnxSrVMfbYYHDAocFDgscFvjvLfBMAD2OkRPi/ABZOZBymHkjTk4eMWfp8FknmU8A6P27d80tFrECRIFNNxm58Y3jHeDpZrg8cdA+zAUeAEjqwsuOGJOLHP5hMeBWdFRaSKLUkQMdqR7ytQFgINshMqu9nG1AH3j/GDD/29tfKzO5AayLbs9F7narMy4w2d6WbnkBA+TDDyKgMccOyDgKRAZltZIdCtDSXmpH24Qm5w6s6Ne0kIfZsxq4S2HSNCJLW4dM+GE/194BLjIETCQKt1MYlJNf28q3+hc0pFCfgop8OtK6QA0QLG36pbx0I0NB2Rpz9AYUpV+ZLLCzyksPuFxyeYQ1QO7Qr/nJeQrjXRY5GdQREuDKYmK1ajvAkRQjv5osAPLecrptvaN7j9PJSaaNY/KcRVIDqjJ3NlBGZ8/POdd69NVTP+Oo/T6vntMs7/MdSJeem4jb1kp6hEYPNnMiIps/Mkt9KcBLE3Pf6GpTDVNX27JlykaTWbw00lyySqfHHtuJos9CSS78WWR/WiwAj0lfEaTtwYgj/Fw/vc9CN7srtp4KOxK91ZnPWYi5j8ACcT9UxXc0KLzUqkP69wmZ0d2vFZn1FXtsT5jYIwSr4zJgRcwbrEvEWCr1kSvXBb5rHgU5p+/63mVxo0O/b6HDpg1Io7mOyhNqwyu0zPOMzXEcFjgscFjgsMBhgT9rgWcB6AESol25eTAO9Oa3X/rAEZGoiZKN0wXQAOR8xLkFVC5ga09ojtZWePYylrrB0f/rv/2Pyi8KLFoscugx2z/99a91dvKkRb2kT4gyI3sZ8A0oc+rA18cP7xrhfP2jXTle54mJH+Lg3xWc6wO8ov8h7T4mEg5c93HZAeUOuoEzgBOQ3p+r43JFaIE+8jY1I2DsJukeG5Bx5I0Sp20BwXLcoq9AfXciCE0gp3xKX1R8ImGUsbXepK+kLPQrSxRrhDTtCpSqqJ/Fv4vwhZc2A/8GmGEPtmneCHBsY/Ey0TmpBuyVHh5UkrYWGt+OgXOpKXimOxANlCUwXbr4bz3tf42GnSzYF+SxSMFEP/nrswvDcOjuF6kT/d+LLaAGoCkwzpxBkP7mhZvWpPM8gXa2BqPzaUzabu3B3SgwCbSJPfVhmz4ie5U/0Q5d81CbuQEPTMM6n7FXFypolNbsrtLdL9ghxzd5Yq+UpWV54q1/3kJvwHPBcmiRdfTKGBqktJ0xCoHIU/5D3pSYIyd4TZ2xHtA3OqZ/6irzbhG6XSjqbeFiHCzCYivjoZ+0m+pChnCq5nNannjYTaY6ZK/oHYluZd9Wv+joe0IHejn6nejZvJHdAax6SqNtHqds2o+eJIisMWTPQmvA8NDwXj0iuwMPc4xOxokObKDNEqby7Mi08r7Ssnzyy5kbYLdsaB7HYYHDAocFDgscFvgjCzwLQHM6l3lKoJQNePDxMdHd+K1xVvd54uBfCo6AYOBRZEhuMRADSJwH8F6cLyDK6YXedfJX5TjLMZUr/SEPXfnwYVIwpGZ4QuHZWZ78l905OD7gWlSZ036V1A6g9u42OdHh8fbtb90BxINT3BRoJ41ijE8DNLUVgR6ZOOFEqxP93Xm2nDMdQ7qg8zo3IOInTUB+9N0tR03viXYWmKcOOCFPnXhGwLkt9JQD0MArOwG6oMPX2Ke7FgQIAFpKHx8nHQG4PE85wA5INOi2sAEAVNAUGs3zLa+85XCT3OMDsLWifTkjB2Dqk+AFUUAHMJIispBqopXqgZRVmvYD4CNH2rRlPgpsp8nQTUVTUWLbprdk3HcaSoFxbFrQExtMRDfz4AFQnoUYG5oveyEwICf6FDC5wnPsPmMjii3SL+8ZQB6QTO6Rv6rWThs0DriXTy2VaMauY580D7Yhp0VGI7nsF6CnHkBTZ9yco7/tzx5sSjeHhUL1o7+yzBGR1wFwY1fm/Z5G9UI7uu6IaMdsgfi0Tl1oxQjsYBw6EiZhjg0OnVcP80VbOjnJwY57cYaIng8J0bJd3tq+1Kd5Gow9LDBHFg9Kmnsb9DYiBcRZVTUt5lK6zPyCcofnkg3vkdLJklchIVKjSOkSc5oA0dGhi9d80rb20q1gOX0W0F7TozJ+xzJ0nrjqVQa1B36pmzliPhmT/9S2HY63wwKHBQ4LHBY4LPB/WuBZABp48ECT5p5eBIBmezZOiTO+T9Tq7PWrpFFIvZBjnPQM4DA3Vokg99HIoqEBPNIlOOoX2TLOntKiSQOS6lJzA+Cnk9/OfmmkGggKmdDiTnnBOL4CAXv9XtUFPj7kASg5+xjQLKp9dZUHpORGQ1FpETj5wZ5UWFqk4pxDCrgFlMRwN37YnzUddmnoBYQMILQ7SKJ6eSmTawvl4sEh1zHrkyuRejw5ba8NFh7tnRwZghxDM3nQAcsV4MoTGdkYIAckUBn+JZi3goHQBEEL8sILqMExp3kP6ErdBj85Le8yJ5dG66hukevxPloX/LDtAKR5+l/OI2b7rH47x/Z7OiW3lCMH3bpAWHwASq+YqdHNLRtJKjcsQ1cFxja8zIl9PeCSjjrQQYfR0XxCe8DyjCN7+FcQnnkWFbROX/myZZC6AeK5Mkur/gMdQ6sXeogmO8qzH5VNkUVC7adPjo5XFBTR1j5vi79zdAa0VfZFtiIB6ct2+vSFX8/J9u3YZeRjDf2+jUOI5l8XAYte2z/JN3Rq28xdn/nWxiQWceT/Z1q+j0A0MFup0n5svGQyxuZvOotS3+X/hdHbx0iKrqPjsC9yTaQtN9o9WpizzANjY0wINpqmfaraRztHqzWwCJiyJ5ppowRLr1mo5GQdxmDIqD2OwwKHBQ4LHBY4LPDHFngWgOZMgeWJEHFMIqVTdptIs7zI169vTn7+678kspuffy+uT374wc/1drPIVnFXudEwQPbDh7d1fC9e/uXkzY8/d2cNoFlusqjzRIrd2Jf9nQHcRA6bcpHoYSNn8doikCLJHOHF5YvkYb+qI3335bc8qOW3pmrcJGWjKRRpD/hxsAUBoQlqyeHe4K4/cxeYAVwc89dGs6U46DM/ZUvluGukVXoD8ODgoO1MQNYCbfzyV2AXsAJAcNqAQaOaqSdLQUszHoDOrwH9t42Q2qN6QDcYkD765RS2axoEPuUVkBnwALBuEFa6aQjgOQB8ZbUbWikrKBJRJVvo6EvPGVu0Al9CQ3R+bvKTBhKN0m6Qi+uxZxcSoePTYex2RB9f9NXhq49x9Bh4ktCpNwfW3hYcmZ4pY6/u572Utvdw5x7++ad/H+sdFTXxy8T+Of80srMlXmTBZ4+FeVTdQn9GKOMQ+fyxYW2+bLKBqHo80jE2ncUTWdCuXsaWbgvIt13a4jP7ZMeexiMvgFzKLiX0NTdnvKIUInkpIwe52+epKpX5h48+58kjNx61X2gPVWML2FsYGlvzwzaMboaVurHmRH81mXEfHpiMTcg/Cusa+uHne+nKryMDoiMI3r6P+Q5dX79ulNr4ae+o3dDqufZ5EebpmPHHywj1yEcXTrFNf8XouJN55pGWdPdykO8xCyS/LNQm6fd0bFZpK3jd+RP9z7KI0naJ9tT8ODkscFjgsMBhgcMCv2eBZwFooMCeyfKIpWX4aRcwFt2diByvxdnFka6fy4HneeLgyckPedjKVcDhmx/fNMUCgAN2AhuSKpG7+aWG1MnPQ1heJpfZcR8aBcC9yi4OBeSegCbqy5fPz++fktv84cP7AIabpnngbeeKApICoXjSOlOAZhy9KG48al04h4wWAHeZ1A1AsGAwd1ZtJy1a/HAWIPU4zjraTl+AYoEoNHjo2c/a/tHDoz/xA04LIEl5aJC5OhBjQDfAM+AsYKFtSy4kU58X+t8DCWHKFBc8AXnOYYyd/7rbAlDqqNwGuWh6ST7J5JA/PA9H0STaASXa5QEYxrTtasbJMc7pRPANI0Bj/NJeX2DILxGhVIDuEeeATNulzY7oK6mM+qJN+AAztKfOwiQXSlJQgJw0BHm1zmcEzDvgKvJ28cBOAHLK8vfEg5656BZ8xim80mzAba4DbXtdPYbjkqLcn+S3UOrNsxHp5nNy5gMQAWTA2jG/PgDB6JNt5kvnRrjAmZFw9A4Nsuey9qvckSslseGSj72eXpEltlKvrB3ZLOfkxhuYnXmvf/p+yXdkxbPJ7lD+BKAxb+HQcdVxMCcjbL7ltbV7DyzK0NfXQgUf310739x5EFLKtv1mXoXmkC2L0Yw+OUv5WNbJyKBeSpInizqoWFlTb7Gjk9adM2ljis6B5lCJ2G1Xu6aPVJjKlI5dcJprx3FY4LDAYYHDAocF/qQFngWg8eBMP+eJgPzP5eUP9VYc2Xlv1JucUrtseCqfaHP3iA2Qla7x88//FvD8U3KXf8ijsX+Zx4HH0Z1lm7JXvdHwojf4caqv8ijvudlsInicJmfI+QHId3efCy4469s4bU8qxM/ezEAKh4uOPjtSyOsCcICu6DNgW3BLrygkmhavmxQKjj2NV7nFwkkApDLntg07y5Z4Fgq7ndZkk887LlzvyVWeyDPgNrI0Sr0c+ACMcfyRduRIXeWP7EAninX+tRVQlpP8GwnXddrsSGdFB9o1gygc02VO0nH6rvpcDNBQGn7pw66lF1vR8al9CLGZa2Kw5WZBF4C764XUTb+01L8vwA4vi6CMQWwaKoQY+oN6BohmzjgAYPaKJUojlpL9k3NAavpWx8Vv0loG3DeqnH49lpA0iXYd/4gwshOxEuSE2Tp/jAGu5lGIq88/dqELmV5kb3G8AehUpeUAUvUIzWIhNKKvhRBmAyzJMAss9nK/QFOJMreUz5jhNzqXdvouFapOmqV+7Dqc97vWXnPQizgj03flq6/vhmMWV+EfXaO+kkXGdy6y+oWiY51IdGpZ5iHRXL8oWFihL6XKLxl7IVka2hKAvPOW95GpJeTInzp/bRO798ilubYXjf1MlRH1naKYeWvR1N410MyP0nKd70/Jp8+i2vllbhzHYYHDAocFDgscFvizFngWgAYErkWaEnn+mFzjd7lpz3ZzL16+jlMCrD+d/PLL+zy2+9+7R7SI3Nu3vzTl4Yc3PzYw+OObnwK87f+cx3//8GNoXRdMn8cJAiW//ONvjR67Ue/64VX14pBFvO4DLD/nYSnvfvvHyeebPHhFWaLE/Ynaz/V1qkDOACvgAE1y86VAm0iyeoClkbSnuvsA+ttuy5cm2WUkUcVGMuOsEz0kJ/r6fvkiep2oaBYNsNWAIhHBOHR7+KotMAG4Afpx+PlI28ib/vpoR8aCzpzTU6F88a2LPsBKAW0irmfnVylJfmr1ni0D6TevgJikXahH6+4+2/V9HZAPlDXaXj6PATvSM6buKeUidPDtIiGLid64GXkAlMkbXdHQjCtTi3QCiWRz4G1f8FnI5CmQ0RNt8tC3MmTM8M3GHUlnyFto10Bptfekxn/fqOmmMQBNvq7+9FLPLgOWI0hkkNLRNIEALvPCg37IQTI6Sb3Rz3lBY2gVRBnA/EMxWKz08Rn9Js1Cg6ZfpHzX2clkosnEH7kIp+u7AABAAElEQVS0Qx+tPhEyue52isEP3iefcXLNLnu3i/PcJOs7kRkaYSc9CVitngV6mVn6ZSaQa2Sw/eM8fhstqT0F/AXd5hnNZ2zYftKVRi92cUwb8sRetvtjR18demgAyPYET9Hm1KSvfiLPFw/uczAPsttN5EdHh5kTbIVvwHXm7yxCEM1Rst7ok09DgPHmpQ3CKVDtoHP+5SXi7fvLpuhOty7qDGDa4Pkl3zufyOBRPjm/yLnUs6GP8nEcFjgscFjgsMBhgT+2wLMAdB1YPA9nf3Ul8ihP9jp5zz90D2YpFYCnNAcOjVN3c6F8VjnKHNqHj7mxL3UcOkctveNj0i7i4gqspIfc3GQ7u0Qnr7JjxoA8Tn72dv748bfeIOin4rsTOcMDRpseEYc6x4rwFTCJHAMLQA5oA0gm4hegy9/OUW9dp8pRp/GTPADPuOihKSJawLucMtpkP8vNktM23UOjTjs9HwEaFNoeoAECgIHwWTRyMWWRcTv65raWDkDdpukItE16i/SPRv+AhIwD8JSWbVj6rgowBrQpa9Q2+uPRGygBnnTrvsEEyzHt8AxASSS+RqkGOQOgAvCkK6C9rJY2A3QAUjdTAlcqq3OE3zqj7zD2jgL6sDAmJeYjcgKR7Oq0ICx8HSxJB3nZ+1DfP4A2fx2DdCQLgIWecSdj7ZGy5q/Txa8FbIofZvSsysOvdlo03IDo14XKlDbm3adPcvD1MXctXOYoYB2lUxfa5kzoaNtIL0lDaOgXFsdG0cI40jVzv/M1Zd/GY8a2NNrfryDAqwUPsQnOXgOaAdYB4FOWLt9kCJ+UppPvALvpH7uc2hZy/6Iw3xX2cVTPfJILYK8dLoD97K8eAS5eZ6eOzCcpXq5nwdTJrnNp4OkMvznPlbq8Kn+I+vPvVC545Hs6Wqyn13wA8rq3XXmMTdm7i6S0nej1dOmiuTnm0Tafx3FY4LDAYYHDAocF/qwFngWgeU2OUaTJzX4cJTDp2iN9z85en/wQp3afl+jtbW6Ki1tuKoZINed3F4BtKznn4wqz1V2eatb0iThM4LkRsg+JAhdAr10/AMbs3vFJ/nUcOEdcgBB5OHc3vBVcVL7kFsd3k3Wc/cgNXJC3aR3QRw5tHACOfN1x5RywbfUmygXMAjeigngM8PsGimqDgHIaoXcKsFEubUWvgTzyFgemLNhm+AAIfZFgAYOeAT8BKelQ4FXAOEDDGFxFThFkW+u58dA4lELq0qmgoXJW1+iQrnTfL3VNK/m+nPSAb4+JZOvnAPrw8Ffstfupy2t4RZfw6NgtVTZgHYi2dAlRvwSo82IzYN1hXMnIWGzKln3V7qEf0DMgaMalkdekDJCi/XJGZvT1m0jvREvxQhiodh7KGQcy644ncDcKuykxI5mKVbdsZw5gAMTD3p8/Z2tFsqY9mhOlnwgom1QmtNNvp/uApX1qX+QjDwKdX3St3Bl7xfkjET3kA7PTk3wVa+ZaCtMG6FWfc3IH9AK6k1Ov8dgTsGybXDs8kdLRvnOaPtNX2X4pG4navOX7O3ifnXjmhsqLpmbtxZF5YD6VFRt8d/wz3VWBR+ykDq/ac8mLyD9RSBvzsQu66GlXGxYaIM2kA6BHl1gk7ZFX73vt3NwYvb4T7Dg9LHBY4LDAYYHDAv+NBZ4FoAFPwI2T8/Oz6DLX5nHFbuDzk76f8a8CpuPC6vw51+uXL07eJIXjVR63zbF6IqFdN65z46CfoTl8kWe5zG5GAkQ4UCkAd9mODgAdQJXrtHHsm7IGtAA1gIjI50Ro4yILLHjeiT5P+kY7K0w7kAPtnIZ+0lOya4jzAW0cb1pHN9c9UjlRvYCzgD4yTorIgOdGxSNfHXTsxB7SdD2NbwD40Hn66TmOHKgB1LH6mpsVm3dcQJS2IdRoWvgAi4DS1VVuXovNLBhEoGun72RslDa02EduLboDND3hcGhO1HBA67ZN+UY/sl2kr3FhIX3UdZEQ/n5d0AfIoWf+9ZAOA6DQsxFfhkxlwVLokNPP/D6lN1QwAC7t0HbsxQ6QUxnD7z6Lpq/pU+gXhsCQ1uod6D/eBUARJueAHZkLP1MU8+ZXgLwByOHndI/nXtyI3qf46SjNgOvRc6Kc+ljk2caRDvsXD20B9too0Vu6TF6u/uaQx2RbMKRv7DqHeRdZjXN2sfnaPpnvsav5yHDGzkLLedMV6B56+imjr7E4vc+CJNFwMo1+PgeATpn5K1IMIQ8N49SFRNqhhqaUlDmAT/NczXw30iLnuz7n6xKIvc0ijvXevPnLyY95/fTzv8YGFye//uM/mnKFNnlG7sWiH8rmOtVPeqVx21fXyDA6qP/WlyTKtQWipWScGUODncO83XzNE1ZPq7Q19mOrNjzeDgscFjgscFjgsMCftMCzADRH6LVTFKRmbCDNUdmVgPPkoAEKx3VvtErucm48rKOuQw1YTa5st8UK8HqZGwaBQT//Am4iZwOmOP+A5pWzqX9zL/EQ9QsoeMIky2lylDktwCKTaF961dkCEfWxoVMHvQBFBV3RyAE94/RF01w7CgIQ7mucNAABtHDu5CKzT86doQsow5scV0lBGbBqZ48BpAUHm2JouMbt7GvAf/iwAzDmwBmIaRugLLwsTsjXNgsc7jGqrkBGDgDUHsdo+GWgYxOhN6Aj/4xNaGkf1O8abTYoMAuNxotbPpH4ym9O5K9ARk6zq5Tlo/2MHwOxgfYpXPVtMP2WjfXxIt/XIt8BQhUczdDpHKjdAbAZJ4C7ueV3sX/0c3S8Ik7Hb+mXXJXUGK8WfJMlpZsWEcho/JQ9lZN7Tzb9a28yrHaReYA68D5HRQ5LoP429bPYApQTIQ/o6+ItwNVWbP0rP/Mm5EtlxmCP6fdzsdFkcy9/tfeIPTYue1JMnfkxuvg+TWR+JPQ+0qKx6TcXPcWNJqd9layM00uPsW/mYb5fNyefT3779e9ZXF+c/PWv/5bddt50Z57379+ePHaRPf1iKiItWXo1FX0fOYhTm07TyDC/imwblG/qfE76CYK0GFstdUatgOq5jh16Pjx7M2TosslxHBY4LHBY4LDAYYE/Y4FnAehxbCJUs+0cgOiJf9Iyvl48DihOFPcqL2AYYHqZ/Gjb3P326y9xer9N/nSizCKW7tgXde7WcAFqItoFFwEYcqPniGMMYJxIE2AXUBRnzjFuAKewUajwU18QGxn9RD05kAFwqTtP1Ja3BVwKZgGZAIQCSeGp1Zdz1p7z9irwS0+AaIANJy9KN7m8ygu2EzEbQB1ChcLkDmCJrhYXZKPv/f1NbOin5BWlzI2FaJR6TgpYUxcRcg4aoDf85eHab1uRz4kuJsZWAtNu24XuO1K6c3TvA9zISi+gdkc3I3nlq50DoNXLYQf+yCrCNykGbLZtMtFOMmqfitptVKHH2Klghz3Tr0yqTd4YJC/0nPZIp14nqtxxX+OyavuB10Rq092I6JP+IsSP2XUBYKTbXsTtvgOYZi4pGzm7ZGgT9Wgp797S4T28mNfP/1UovEdmnZzjs3UszVWO0LTddAa8FsDp4w9a1l70uWcuNl18gP6Z6zPWK7qc+Y2nX2/8VQ7WUJaDPUWRI3bnb9NEardpQ2uAv3PNOea5Nnc6Z3REI/nYI5kGXv/8bqzuE0X/9dd/dEEnD9p3/uXLV03B8h3Xo73z1sVR7Pqdto20kwP/YTF86EX/tk1VF82htnUkS3+hSYy532lzkE6rTfuVVM762ZrOw4cpQOI4DgscFjgscFjgsMAfWuBZABp1DuvVyx8CCHMRpyQu+S6O6/On94mwBaAmVUNkGXgDwKQacO5fEh0soEsUjwP8kOiUBzSIPMuBdiOhKLUHPnBzQBCnWgdacAEMBiCLhIUexw2ITCQOdhugoS+5AD+xKxFJP4e/iMDSSwAiucPu0p+odx5BHbmlphR46h5agWjjnHNzIILKsABqt2PGC9D2sz1ZAyVy/9dErRv5jtx+vqdvQeuyCWdPvlTMZzTWpmAmROknCpiiFWULo3AFoDzVsSkQStJuos/0X/ZIn4LHtLd7RZERQXPgMeB6thsESHbuONrDgx3nUezo3yethOxf8rTCAmiyBST9U4Qbr/DPR6PdtUd0oqd2BUe5LhiNEf1KUcCTczzkyuI/NiCsJzuuGw1jWxDKkaaLFn4jJwDp6GIAaMYzY2KHlO7SEvsbiwqXuRoCMeqeKwt4IpwX/ntso2zpesMLl/7iEZtpbvw6N3OBpxtrZ1GE0wDf76PhUiYyodqXfqHW+WVOV6YlQ3tHDt+dyrQAtu+OOjyMmX5d4ETOQsZVn0blYfFBVSlE3uimQLqVR4w7Ohew77n7CPYju/OwmuxFPgcQKzfdWCnpW8q+nRtD889TQP/X//M/T3786ef8quQJoxYdSdnJwtj4dqzTPa0XGWXEMi9j/zIkZ0/SLpX01ycMu+1h7L9/OaGSyurGCmysM3nyws/RcV3XdGb7JyYaHMdhgcMChwUOCxwW+AMLPAtAc0iAg4jzvVSA+CfRZQ7qKvs8c7Ju/PsUQDx7NdtmDYBKCkPynTlBnQDmv//H/y5g5niBwtu87OLRNnGKHB33h0cdYXhwigXNgaoDBEWYNcorfhOIqr/NNfDCwV4GiM4+u/K3ATfNUwG45NO1Y5y4snG8rjdo0U5+qlDZeaLriR1XJjd3AbqAeW7ta0Q9SaGNyPVR2OUDgE0aCjANzE1Uc7aQYx9AgT7AEf6AGQAEHC7xCpgG/0UuIChtADpyajTgRN/JTwcy9K3tgJecu1nPDhZsA3xtAJiqtJsoaXmH9uXFPJlQOcBhXEolhID22j8yh3vpAHHDZcB89YkMxHOwwTztMAA3tHZEVN2Ad+MnejzjUr1GA03WEQ4UUT7/0jdLndpi8qbZcBZfI0+BHwgeWw59QD50YpNGuDOmIq4zT2dcLdIcMydix/AABvt4+vSTc+zQShvz21w5Tbuxy9jHdoe1f2yjfwGedhlzgNFfgW7HefNEWM0ctUcueh1bzvgENDedesbeWKqvzdcc8qAVvJmffJ0rubqP/MrUmYedR5HNd6ffk4yBcl8Pc0g+tCFRZiE1BwpkKqXyNifvvt6dvH33axenr2/fdAGzx8L3shHvdrSQIPHo6byy1i5hNuSrtBbzq8guDJ3MyUiMUo+hRU90UzRi5dzcdZm/CCCNg43OjDmlnhi12fF2WOCwwGGBwwKHBf5bCzwfQCca9SmP2PbwCIcoLucr7xEw+5SbAzk4UacBXYCRPW4DTuLUP+chKO/evT3529/+34DtT3XaO7d0+b3SQRdo5ehEiDlBQKbOHeM0Bkr6c3i85kSBU5h/6VaHLEoHNAMD+k2qyPz8D1CI5AFvjWgVCIVLwIbcY8Doq5+vQ4sMA+iyj2wACiDEaee94AsAw+Qx5dMWsMxfri8SwebILRKaIx0b1ccnCigSy3alFbAyAH/2EPbkOHHPobdAK97h0+h1TEC/ykUWMoQfIPMlAC+4vqkj6o1LQebltK9eCTAaJzKRYYD3PISGLW1HqO9+aSNw2SggdVtnIL4/n/boOrpdXGTrGC1AB7AB0xMxZwkHPUM0Fi3d6NG+aav9t2OAlmvqYsN2A8BtnRg6fgWJhdnoftUNiNbHAiv2Dnidx4OHAF2yqJDK4tj00Gf7Nsg7cNkHhSS1yFZvM2fQJIidPzJfw7OR74759Jyx3uOIWeYVPtVtwGE0WHMi9RVo+po/ZIgaaZ+3VHfhE8XnFxNzdW4i3PL6TuBBxm270vElWMBR2y5Glwwd29hfe/qbE861m/k5Ms/+yWSsVsTpWT6edHLuaaBuLrT3uzltXOS0+1YgioeXXt6Nn/lQkGtRiEje8e8YZ7zOaoS0S0H1ii4l8SQB0ubP9G3U3cJkGkUGtpzUHnwH2JfR8XZY4LDAYYHDAocF/tACzwLQnOnLRJr/8pe/ZCeI66ZC4MhJAUkFFbkWhXaDG4foSYR5b9lbTx/sNnV3eRDKpwCOAWzneRJh3OWTKyyICh2P/W5EMU6Vk437q0PnXDllwMABHAPX9wGd6gCAOc4S2f4GwG6bRjIOGCif/N/0b771AqEcfHihR44+9CN6010ErnqlHLARUXOD423AJvl2VPVpV4ToL/cZsLIgAOAAMaABvb2DRwFLaH+JHdmy6RChDQtMFG10LZgODEnH2hoIqO0DKhrhTB/XtR8ZAxrIdO7n8VwDTeix20RTA+Jzbtx6w2JkimQLTA7gKM/Q0S9mfjoAmfPc7OgA0GcMoln0K4hcKTEAPfpexnJsGF0zLGd5JPqUqx/w7CbSLmxKc6L1w8PiCagDBGfOkckOJufpM6DPHBibkYehyxsoW33IPeMqZSftMzZshiZ7e2eGlrlKYUTLAbxlYVLbS0uYvHVjKVWG/Z2TT505ZIzlv4dYiY8d2DK0rEbyMs8yRGkz4NVisouhMO4MmK7ZGcX3w0vb8AR2l8SXl5mbuQYs9/yko/HHqzzSem5cRCGUV/1pIsz+bBE5oDk8KtC00daC6jK0Oodi1y5+0sa1F/0qVygX3BIxBRbKxvMqC1W2YBvl5ZjPsfeeZ0PnMePxNOe0yL9w7iex2MT31tg/jRvZtNlHm4uqGzg2DkfzCS1y7HbH52GBwwKHBQ4LHBb4kxZ4FoCOB2zUFBAM3ByWdYQpj1PztD4A6e3bt/mpeG4+k0upzM2GADQg6WgqRhyfg1Pl1Xzyxz0AO84uwOHpUJYGjd4BQnGMjgGSK8e2xKZHo2wBNwUsKR/ANqBY2gWHfmaHj7DAhVOucw5PN0ZxwPtnfw9yIZt9lxu90j7XfUreAttYD4Ag18AbkcKhPhFdNY8rBQBQIMf11YuU6usGwTzpLc5+e3ltyKSd826JZscQ/3INzAQjFKCQ66ljGLmaGycX4KotcBrdTmPfaQVcKcuCJby23sA+Gw0wGxBunNkJcBIlHlAIAYZHxll7dWxu7AvKUmcsU9H2c6rN0EejQIzN8Hcd+TvHogS7zgsfoM0HyOQcTeMUcB5bdPGRxuoyWaoewObne7YCprT3op8DjcqddgWcmOnfw/mMK3CKDxrAaHd2SB17OLbes9izzsnYhwy7GNNAuKd2jQq7ihzSLbZsisyrJ+7VZdpdZD6endmlZmo7vy0eI+L3dldQS6Xd1mcAJ+r78F2esTJGALhFx+YbgjlPm8LXvLuBMpF1Dwa6z9Z5/RXDCKW45tpk1yd+vutoew2Inl9v2iQyk/80i4hyIutiPjJHAyzXfJpPqRsB4dpVwT02xhutmQvtWNo4+aLMuBLU/x0PkY1M+BzHYYHDAocFDgscFvgzFngegA4HT6G7DTC6vcnNbH0kdfwTxx5gASQBgCJPAAGABUxIX5A3PeB5O7rvwAtPyY3mo44+ztBRoNJz19MGGOLo0S8IAYbClxO+s3NDHONlIteIDWjQI/2XswTWRAVFEh0+yy31u6982dWrThadOuK84+vctnDaF7Cl5DL6E/E0u0B4kApdRuZ5L+jRJ7LL9RYOOw/6OD9/mR0LXuT8LDdVToQ7wkb3cEm9BUMBbeTcEWUgAD08+qldXxYks5CYyG9y0xeAf8i4oEtGH/OT9gCoDXQaFY8e8qTZUHRXBzuqVKbYCE/6629xIFr89Qrd/PT/pZUdN08k3NFd4yNL3HhpsQHslmWDPLTZ9EtslJOwpGN0Ct9ZHKxcY/xDi3gFkTEW2jCeruiOfubAjOse44cA3/PqwWbmAn3wSduwNL7m7EWfwhjWOVfe+WAHkyxCvo278WHzUKBYmIiSO86MV2TqHAS4Q1futUXcLMbMWDKMLg+epJi+G9RtedF1jovx6c2KkVsk3QLFQtX3Yeb03LCLl6gzvbZtv2bRVRnpiW8+u3CxWAFi+wRC/NOt9slnT32n9phpO3OmdPFoh2m7z/f30veIrfxKQyYL7IuLLAAyV4d2rLp4Gd9JnzIGymdhYIy7D3jkRRcPT420d/bQAPwD1FNmLPp9SMXobVzGxvqRBe3+/7HGqUSOt8MChwUOCxwWOCzwBxYY1PgHjf7b6uVcX758HQcd5/jhISkdr+qYPAjFjYNuEPzw4W0dWHzXcoaFAwWCBSpx4JO+AZBx6Byjf2XQvo3C5jLBowJ0MhXIcpSNDMeZx+n2p+H0t1MAoIkn4I7uY2SUs3txFjCT/F/QBo3uMBDn7rCX9TjWAQNujkxBy86yWwMaUjIauQpQGfDOaQ/YqaMPHcAYmJQjTQ2AYYADcBdHHuevDcc+T6Ub8A7Af04+uZzxPrwicl+7ITOO3qG9HSlECIEXchSUpTwbZEwKA337h1FAXOQFXse2sV/6kZtg2gHrO+pLdzw2L7nBJ4kwAsTkRY/+2uk7QCdnKdcPXZ/qyZiLXivThszDz0W4FBzNuAPIE/mU8sBOsVH6ifRqDOTRwSKl9FZZCRM4ddoM20Qn8Uo6w1OebJqYH174sGks+MRj+JRQaTljIwe9nsCiPvpn7vSVeqp04Rie5Ng2UM+2Yda0JbQcA6bHZpNmMcCZzlG5L+3oi3rpp66Lp9BzY6P85+7qkhb6kMlLYzbWtnOMDmyjXxrOGGk7/Rp5Xuk3hdMFtOyMq7GZ75G++IXAyJG5XcCfz6+XFkxDO53mqOzGfxc40QZvNvQUzfzKk+/cHtunlu3DviMD3mz5kN1fgrqrI9tg0aZ9M7fnqZm1Rfn4nmyqo29apUDhzKduURh7HcdhgcMChwUOCxwW+LMWeB6AjuuqUw042w9Q4YCBtQ/vf0tec3Kf3TwYx6eMU+PM6pAbYRqAlwYtCwRwuhxeyqrF9n4DdLi5ASRaoycFAyhyQ50OeavHVhaEMCVtx9mDjZrU8ZdDwE06FnikigPmswtcAhwa9a7zHoCCNH20L0AMjXHkZY5CGgxfnp19yIXfBtEAPXmVESbQJu2kG+Rx54nMe+S5yD09PRK9UV1Ac9kbgJFH/fg4u5pQo9wXHykPBSm96XFuQrTbB0B1+XXSCCw25oZKIMsCAP8AYwsBgucg+6JcINY9gFsVRjHSPNjF4mRsUyCY/vs6BEqDnmxUEBTajTi20aqv9BmDtJ+9m6UODLDvOIw0ehKqV5jkatWEf8rt8y26LRgpTaJt06671KXxBvs6tW9lygVgFvvmpHKyu3lQRVpNTjNnwPCM94BKILSyhuk3WX0LKm1pILW/J873uLdnCmqbtO+vFxJz9Q7hfl9yVboZLzLVlgBu5LUw2mM0PIZPKdSWM6bajMzDC33zx9HFZ8anIJospm/at0/aMRT9HJ33qattVml5aVM92GS+w3jMgefQU5buPXwX7gOG8bnI3LNwtLBh+y3rtEyb0prxyQypnZTteVX7aKNJFDgPPzJXNrqs7w562gLuZOphziyeND2OwwKHBQ4LHBY4LPBnLPAsAA20AM6//vLvfRw3sMwx2pcYEOQQr3LTHMDEaXGWjQZHsjrpfBawKU9buLNANtfxcPVn20l2N+iUuwYEG6EMiEOvN5oFkPZn7JVn2TaNqg1fgAPZvgDGOHrR4d48GN5kHlAKAHCugEI+8oqLHfl2edqLFI4zTgQt15xwI50Bbn4eb0pIyNCHzH2lHWAnMloQ4mf9tJkIcfbO/vy5L0JOn+EDrI5MkSV9T5ObILI4QGDRj038bE+WHbWtLZeN6YOGsQCWHPKo2Q/Y/vTp86TUsFHqCiUyIHapAPYH8Axg6y4qGmiYN3I0cpwUHnbvYkaVMczBxsCrsSZTJKksxtBBH0eBTnXHM+Mqzzufjval87KNHs6x0I/NjId+Xvf3cnM9Cr1LppaRYaKfi2/ax5xJlSiLvAF7czMnHRCfqCewJwI97fCRAxxu0ctYDd9Nu2P1nTw5rc7kcux5w8jKzBULGKkzX7MoKl89ap/QNtdCw/w6y9wyX3YUvmB/z8Uwmjmcz9pqg/D5zox+A+B9n8g9+1XP/JzhNJ4ZI3ajZ5U2Xkv38OqNmpFbFUCrvfnR9vl1p7tzpPypU7pqU1KU7uH/BP2SdhIwzwZusL3ML0NbJ3bc835H/3VVtn+9qW3ojy7SZDK8YWYMa4csm9mubdpolDEOXor6ifhxHBY4LHBY4LDAYYE/YYFnAei7REl/+fu/5/W3k3fv34XdgBgOjpPnlDhgToyXaqTHWRzeeYCKvFBOFjjyczQnKd+WQ+XARV6vs1+0Q1QWnR3N9smRA1kAdMicfPl8mzSJiXh7eMvVtfLL9M1ezI3YirjNz9jlWeQ04JRzrazLOQNMcfuRJ3RC6+XLlwOyIyun3b12CwroFacPlNpPOHqJbjV/MwDlgq7hCSwAz+d5OEUd9yrH9+ECeJ4dE9iO49/AvgAhDp7uACGgUgDhMxLKtQaENqi4tRCIjADty0SvX63Hotv9xGJnPwbd+Hz+DEAFdMeGaCubI3o4iSx0I+/wHEATdVo/OgFzo5sup6cevjHAJGIvvQHDLHraIG+h60E6BZRp1F0qUpZ/CBTYNyKZRYk2+H/pA1zCK7qFoenU+XSRmzmZnl3SrHMJnQI25GKfLraA3NCbrQjHxrTwJEfx7rHtLEa2fQvwCrwsAgb8bjvoa2/vb8Au9M1n42QRl37fFkHbfrPYoo9fBDqWbBe740VOiwKKdCESeuzge/MlDxkyB+ioPVMBv+pauOTsIiGpFzPHMjfzx1iufZ/MQSlLIupuQOwiKgakFxsUxOfcwmkvXvQxn8lEvzkyx8ObDsYfoPW9PoudThNFB6wzCqVrgTUzJsI7Qn+dsWIuzR+pQcDzvOZXqvBjj+lSWvQnK1v1/5VVP4vCVrZ96acxej0iDhmjQG2GfoVIG229o30chwUOCxwWOCxwWODPWOD/GkBzYhzrx4/v83qXXOcP4cdJT2oCt6eey6rjinMSRRMtnMhXwEEAwDjuBSYKC9I+DrWOcznHKpLOnDJnvOu5RrQBFsDqNjcnAQB1iHGcG3zpMyAtW+EFVANSBSzh09ST5PgC49gVxHD4uaAD4EHegoM43UhQmcfhcrrjdctzTtO3Eqdug4GpoGu9NNoBHgBJ6SZSXuBQZOqGtQFOBSx0LFiYGwoB/xoy5QU44Y9u24RmI7Vpj7ebtDxC+eTk0xNwtj0ZW1WW1MhpvVzXZABm2Es9Gj5n4TI8wjyAaUDUHgvjDEjRW38n6dYX89TW+WzqxnflvQ49+eoGjT4FjgG9ANuWsZVpMDRDIAeIVquGQT9bT8YsvuTJaoPmvOVzj0Wr8jYywpepmbmilL7smM/RiR0yBwD5/BW0DcOZz6FDP4eFjwVPt0fDr/YT+ZxxPg8dc7K/IpTWRGHx9EK/c5scec3cIzeGePt1Y753xuZ8PUHRuJlHvZlu0UmHXLNS/syffJ49rJzoENcfTXX2ZDYf0e9TLVNvK7zOB/WhSYSdKwx8s4+nbLJVo965vqidQjf9+xUaDuH1bb6Ra+vmnGbp2jd01n2nqmZMQvPpO7btnjIW3/p2TFCNTtOEsHkNo+oxF+lUZqinMvZxXfrTUcVxHBY4LHBY4LDAYYE/tMD/NYAeypyQV656Gjdt1wnOnJMLOKvz5X0b6eNIE9XN9ldAgeIBw4nWBViIEnOiaI3TtI3bTVkUjMfBTx36iVxqnwe1OHfAMTvfEVDUEUjTrhHltCPuWaLcm9+Odj88TKSzQCYERRPJANBx0IC5SBvAQYZJl0h00517KShwTPmc5ySMlKVr5ALKgMzpP3ZxLqVFhDTtI5uoM1UAMeDFoY+X6CB5RBEL6HMeDkO7ABZoTu/8E5UE5AqAQsPiofIHKA/YwMsCZh5IYwyAuvP8fK6+UdD0GwAfPtGFnRgaCwsWxywqUhZ57YGtL50nKrnH/lvaAh62DCv4S6RyANosGADLpvekTe3FcAYrCqWqNmBbZukvGQRJ/ffAvaCuZaMPe5CnoDXzgB5eQDbyTWeJrehxmYf7sLPorAjvmSfuRZYOCEt3DKNT/vx68m0xkLFddPeYqbNIS9PajT6e4Md4nZ/JzW8KiHSHjMmkh7BjxmDJ3IVcmD+cTUoQXf0BuIXa0esmvwBdJJXEUz2vsxjFcM/fzrXqmvEMf5a8i27mmF9VZpzy/cr35DzAWt/7e2OX0xzs+vho7Iam9uzB9m5uNR+9fCcsjLvAYC9HV8o9icoWoM7ZnTlJ73Ls4XTSRMZW82vGzNPvt7rr3NZ4HWzs/5HO1xCmL/uTYxYc5N6twzd1fg2qXbVPZUSrvQg0c+Nb++PssMBhgcMChwUOC/yeBZ4FoAtGEo2qM46DnUjzRIw4aekYHFqjckEsgFefnBZHenvLAY/jK4jlWuvUbJk24IqH4xgBgLjZOu+2qQvmkKc/5wwkAQcAfMFDyvASDuR8gbMC1cgJIBX8xaHqZ7MBn2n5RHMcqgj1AIgCNZHE5WyvA0BL82Zk4MgHpMexL3BK6sqyPHkdfACIB6TYPxq/8/QDKAfADjBzTmYgoTaOnnQs8AzIKvBUAgWGVgGzPOP0AZXoSd7Pn/NwmrSR1gKokQdoLqAsWJsor/YFr0teAKSpDeGbZiMfW0UvckndacpNbH0V4CYNgHz9+T98724T5V4653GMrbMo0HeD38m9nTH50rDj2DnC5x8ANYspP+sbK3bosUCay9rGQikHmwwwnzzwRjOTsoJOFyaLNzk7tvqw++qXYaVoyqz1Sjxzd8ZBlXbGsnM19WxWu0cvNEX1u8jIuXagoj70FKXt7hXp93CadIgxCbI5yrljLb/ZpZ1efKfYy7xXyAa2RGQfL18JqUKPAeHa9ZeffDqPdE0RGXBJ37SlWA7A3vwsQGbrVBZgo5m5wib06Vimjg6OAs7ohfrIUBgfwB8b+o6vuaEOv/zr2/AlF1uvOvK0vq0mFcZ1ZK+Ns+Dbc5j9pBnpP03ymXZlEEYzp/YvJ7Noi4KVu9+fyPxt7uhK3uk/iwgLgLFNGRxvhwUOCxwWOCxwWOBPWOBZAPqJfhxawdty0sr5XY56P/CDQ+agz79eNCIsKgp0cJiNgIrY5eAbBxC6BiTkX24wwdGNd67j56wXWOG0d+QUkflDL2eh7XHN4VQgCTAABs01DgD6CijljywFVyFGpnLr+QZMHD4HPvWQd8HH7hfZ2IHjBioGmMSp05GcIQgIOchFXldbluY7r3p6bll2+/2pPSDgIRZSUJwDxbuerncB/p4AOTnPA6qAo+7VLNIdGQEsET8HudEtpCFb9gHedW2w6rVplC+y51/1eJInNvty5yd9EdzVDk0Nqw+bmiupCz02aLQyHwVMiWwqQrhALadkzFv7S+sYGTVqs8qwz/VVb1zNNTbXf+ScRdJc48PypJk+w3YWYmzjej6dzbHtPPnvZCTlrheVncVkbZgu1dEKJCbu4nKV6dNUnFyXR5XGY75H6RjZxz5oNJqd2s55cym/Bjhnj5RmHsXmFoudA1uujA/p0r/k8zY2xwff2Kl7QdPBotJ4pk3kne/U2Hd/p2jJnvMAmgVKN83I22MmT3myrsux88gRi6RE37zawVvkiy6DYVk0LVJvAedzzx0pVv5fMF8EuPUb+sObLeb7S5fYR/uMsf5DY/SZnt4doREiG0iPxFNzvB8WOCxwWOCwwGGB37PAswA058yp9Wdh6QBJg/Czf0FOPdNEy5z6udcDOPpQEgU9AFlOcyJGomLNr81P7Gd15qKJwCInt8DAcnq6c/x1mkBF+kr32CBLvwHv5+U7QCKgUeiuTjz0AiLsxHF2mpvoIpsoYUFlHLD2ffJe+HUbLnLGIStH4SY3Jo7DDp1cb347mjf8ImEWCX52tz0bHe57MxrafkqfPHDn7Mjh6wde2Be7QCDn/hwcPflEi6+u54mG2/lrA6SJ2E2EMQ+sEA1OhBZNAHtHgXMZmZNOcS9n/K6AOB3bZv9iIJp6HrsaqoKQ0KKLsRV1LkhNfYjXDt0WLG3xAsJEusf+fmZPCk0WUBZN6i8ugXc3RE5aC7oD1NYYRz72uLqaCDk7z68UwFBZYpuT+Vm+tll2Yh/masQ3FeTV33g5Kh87F3vSL0CyAHDGdebu1ttnXun3mF9LzFVyna6F00Sjx77K6YkXHoTw7thlO/JvxtsFZsYV8JaalO8CAJzXKWCb6wK/0GJrutIdLePcvqlDpTcFPn7s+GHdxSkQmT83Wfo0Lx2+X1/XUzX7K0DmoO8OeWccchpe5/n1CHBHD8/yQ2DZduZCbKY+8rge/fyKMvJrPgTwnrGdolCrPClPf5YCivHIZe1H9xnLlLJFHwGe/1sWyfabtd+yNzuZV8Y+8ywn3xaVFbs8h8f+Ls/8sPDZCxzyHcdhgcMChwUOCxwW+CMLPAtA837AAvdYMBOny0FxeBzSPQfP4ecaUBNxbvQyDlabghnOtuBg2tVZ6h+nXoAbBy8itiPY/K5+orUAmsgUAKI+SHV4c/h5Ecxe0H1UNiH7imMO7Trn0EELDEFjgARdqDNOVlttCgbJmT9OOlRLsPmWoYv0vilJBFb0d34un8gYYNBWoRWCAQKA5vz8rgaPAZ1XWQgE2D4kTSIyKa89a8dBDID13aJDng2Og5xRqr0BQTspBLoOWGnYjt4LhANrOZoHHVoFEeGB39gCYAyApWlAZOktml+Tz1uZ0p+d79l6LJD+xpNBBpDlTrMBWLlOxcyF3Ox5n3auN2DqecpESY0Du+PpwKv2By7zR749LvQlc+cQG0U/R4rSR16w/ilXlxda2hsb+qHrtfW3iEGTDNpO/+njEu+hoUa7NnlqSw4LCLy+ZIu2yhfbmPfz5L3M55T2Zk480q6/PKTMrjTkwjv/MlYB1slQYROyzo2u86CfswhjoTT2rhVnTocO+foX2g/5JcHRFqHR+ZRa8/9UOglD9V/GLfbuuqI9LG7nu3naBwj5TnU2dGzNOXbT3/yYMWFjtiqBoVIbroVHKowFA5BL1XdN057Ue06UTcY57WPzOfJQodCgt3a+hTNGxl8LfOgwqUF0nLGa8orSXn4JSWuLpyg8Npi5hspxHBY4LHBY4LDAYYE/ssAzATTy4wILsOLFGm2MwxvHCioMEChgXW13H05PdI0j7k4McYiAEafHEZ/FeQKZblADSCaPdFJD0Ad2RJA38AVStMtbaHDqbnIKUEiYrGA8zlU0uLsTlIebA0ea7WgrcN4qQ9pw4JfAQqLEQEPpp57WX7N7BjkGoA1ocV2drgLM0mfr+pAbsgQ6WQQQQX8izkBK+gQU7IjgaQD0ADjAdW4aBFIGSExf9ixYALoil6crksBCQkTSAuAJAIUvHo5CoIKcsYmb1hzG7cuX8EgLYEj7q+uAishJXvQceABzj0kT8Yhy12xiZ4YN5gpmgaTIOHUDd4xBwSH9w48NGNIY174FeIaPHHPs/nh+i4imU6LAYZhGPvuvYzzwK9cL/AGn5tLwXSA6MpMREGM7x04X8IQ/chlT4jlcYzVPxcNrLRJUpvu016et55pN8td5n76i3GxauTRDL22edB0G6YsvQvMdCNTOuMx+zbotJgXVtUf0m+Jwi57o0gmNBM2R6VtHAF0ypMS8Ps0YdI5EtuGpbUlUVnVVnK3TlT4O5R2P8OlciMxdMBvvtGHbtgkvdOltUUF2Ef9+T8mS1vtwtcRbRaQcfmxY+XI5aSizSHnqW1q50iW8+uuI/0vSr1Knnp2f5uc01LSdyOMXpCGg7DgOCxwWOCxwWOCwwO9b4FkAmgOqcwzogK+kPOy784GWiZBNxHCAAYC9Ik/prH5uQpPCMdGsRrI4vjg9gcy5OUv6B+Abmo0YRuzwA7pvbr3s8+wn20mF4BmbKgKo5QW02MuZsz+5JfMGHXGyK6LoIQ7KJ90iDreR03Hwp7mJaT/tcAO6IN7QA+yBJPncwGLskJ+RX756efLzzz+H3nlu5LsZsBI+ddKRTZSUnpQAguyi8OL6VUGH/X7vH5LqAohE7p3qcRlA3keBhw+7WXTMjVsDwAEMMgDQN9nz+eryujQAN4CikfLw9gfc/NNiIOUPudlSf7qghYcxmMNCIhKFtpLrFwM8tU1yecdJn75Sn5Lhl/PaJDLU9nrnH738Fj9bCAbEBdxchd+ArAGAbaPxApmT8rEWDYBbdDKnHF2Q5NNcQgMwpYt54MWWjpGBWgPqzF3nHmADQEfKJ5rmQhctBbSjRxcquTnWHOg8yKcFnEXaPHFzbABMhnMXSF0Qpl2WJ+V19WAfcOkzaxcLbclJyoj5BFpzbs6RT0oGOzq6KEwf41kAnXo15EGDjB6NPTkqX57sbgFBFvfPbdvqh6f5qG4WbWverZsT0awOtc/IR0Z9fXdOk45DevIpC/XK3MVt5mgZpIYeT2k1ZAy9Edl3berb3RuhYpOxypTSz3zZh33e5xiu3vfNgPQ7717kSK2dZdK/NzXn+9bvAurpZIElDcUYdBg2g+PzsMBhgcMChwUOC/yOBZ4FoNEVmQRyAVygEICzzdU3ZzSALa6qZRt4cKiAxl0A4+nNpEgARKJBfQVkABptF+cHFE0UdIAiOqWVPo2YxhF6NDUQzTPKg5RK0Ta5LqBKDYARqVuubpzp/OQeGDB8gtyBE+DIwZ/fZdeQ84sBbGjRD0gXyaOHTzKiDVh4eAsADfSOTYBsTnpAN3Agz/SHNz+evPnx5/b9/PljUz/kcqNZoLL0m0dJT5rHgN/YzwMxloC1B5sGCBUoYpBrYGJSAIJY8RY1plDk9Lnt4pwtwrYHOsAaYIQ2sA5Qar8jnUAS2CSfeKctsAtQEsYgytOBPrZj/+HbnT/C02EOnWbuUEjb5kRnHCY3egCap/6RhQyVK/JYZGFE58fzjAt64Z1E5aHTMcm4RLDKWzlGydFtFj+zcBg6ZCy90F+4tTJqP/aaBcFpFxn4RI7Qt1DxSZcqEsHYIxW9HvA7UV+2oKfDPJ9jlJmHmMR+0aXAN/NY3300YlobL1vFaOw0ppy5vb8vMcvMh9y8i9YMCvlDLew6xvSMTQcoZ+57gueS+ZuMM3fnO6gvnuQiP91HB/OB/eRem794doFDvlxrOzbx3RrQvsew5ZRkhrQf6yhwGX75NE5dMOfT4hIvczxUtcpr5nVOCDay9SJzKDRSq6K21Wf6+v9K/+M4LHBY4LDAYYHDAn/OAs8E0ON0AAYgsc4rgGU71G9AmIOddIdpx6kCJ4B3tljjiBOZi3+r42y/5RQ5PX/Nq031gCdR7JS2wwCEcaYirQO6gZDHgCgHB45vgeCSg7Pd/bUBwtVPVDMR2IChq0R9t0MuuOgDOiaSVucbp1vHDmX5l5co26dsH4feAIjInHN0NSM/Xy1d48V6UuCLFy/yIJqPSb24CVD/3Dbx7aUN4KRb6dfHQ0T4hKaIXOtImUoA0esy0bceytjRK+VjST1Gd/I2+hiZbIN2mag1EGgxJELqk1IFPe018vcmLdfRyfEEQgidV8cAOElEFyg3zn00dGoB09oi+cFaGDdydIx6wyMgBubsMV/8qzwgPQummQfDX27waXR2o6LxaAQ2NEZPbcJpRBs7xR7KZjeNjEtAHmCGNhv4NcR8Jefonr3EU2/OxlQpE+GcqP7XpDeYr1enYztsjfcsqGZ0xh6ZN40kz9wl40RMyTbg02qATcozZUvl2oJsCujqc/qMndKgdjb2+mqrry3mqO2TPlkGdSwsBCyqZu4aGzbwOfMiVzMHWam8fM4CWB9QtmMWvuw2Npqxxth3B9BG94l2erHDXsQ4d1Te5kOHGGFLnxyt/vZGoZSR8yHzxPf5+iq/XCQS3V9Lot90T6P2rSWnf/Vf87Dfw4xZdCUj/sPY53EcFjgscFjgsMBhgT9ngWcC6HG4WHGMwBfPt509sLSjYhy4F8fJ+d3fu6kwaIS/y8+swA8gri8wB1gN2BpnCloM+PSz+dBByxZ1kws6gEf0FnhpNDXAaKJuwEKceSPjoZPyRt44eA57yVy5t6OP4BzzgM843OVoPZTFE9iqjx01/P6bPnXs0Qf/W/sgJ2q4FxBzo549qocfoARAv/7hx9rj7W//SOT5U14fK9t1QAHQ6UbEgtDqO3I/2iYuelcH9sshncMNaiLwUlncoLajbeRWHi2TnpKo3bIdnTs+uckSkGRLQF7ZxzxV8qOIZ0CGyCJdt47pdvIlOdrQyqZRGBd5w6LlXfSkoUXPqWhmyqtHMNOOcmujHKwHdZhRkSOiVJ5iphSy7QCdGavOi2k67ZdOxpRdLss7BEOgcyT0d/TcdRJj2u7hC+AcIL/GFl1RcTpr97T/cOq/Js3jPilDbRqZB3AHnKYdwOghNI0YV6+AvDXWA9KIknYZJzZDv3n/me9AdRdn7OdIOwC3i5MML7k7L6MOXuQylhad0mccygro0xefJ2AYXuREX5mxtz1evhW19bap8aeYnSvQdviO6ouufvQm+3wH8enwdezSuXKqN5aNOqcv2S1k8UlV+6tTrr+5cJqHobhon9isR65nTrkij2tn/tDKZ16T0pH6VF76jya6T/vp0wq9dc5bRpYQtWfeU2hez68GY4tcHsdhgcMChwUOCxwW+BMWeBaA5sQ4d4CgYDMObCJbiUy5qWwLsBykyzo/jjA+juN3NK0gjZXpBEA0LSORKcCcUwQ+RfaAHD+dA+sAibzX8ZBarQipm+jCE30AGBBAHKAL/C2T8k4bgABtjEcHTQEFkU4gmMsOXQ64YH0ekV3a9Cron/YF6yjFmRf0pKenyzWyt6J6aANcbprbUeRPeRR6wV/kHJsOyEAb2CZx7+MSNSNM3gaQrp/Fc9VoaXT1sIoKXGNqmraRhwx+pv8amhMxjl1Th5827CDdxOPVAeZXr149ybKjiO2f9ncE6jG50hYKIbGKZqyM4Sw+6A+wsXHsCEDlmgbk6qKqwC5AkXyhTaaMXO1dGY29McxRMJ85cZmtBzUmNwMBZaL/Z0CbeVWBjF0Ec77olkHodNeN9Ac4x8IzXzp/MUoXi5yr5MY3aloZJsf829xads/gPAJwOuWgQ6Oivl2VLW85+f/Zu/Moy66qfuC3pu7qMQMJSSAkHSYBJSCIiIBGnHCecMIpjmv5j/6hy8U/rvX706Uul7pUnF3OAyqgoqIiURxABgGZAyTMCWTqdNJjDb/9Offt6ts37716VV1d/ar6nOT2ve/ec/bZ+7v32Xufc897VVbj6SFo6b9UjCb6DK7L58IPWcLW4UOW9ku2Zyd77qFVaActpdhmjAvtlfI46NhOhR+lxTqehQ24BzN2zjaUoq+CSaAWm6UL1/EZLwXTkI9u6FL/qTv4rG0BCX7IRy/OwRLKgzb04v/4L9rAsQgRHZV7Mb6KnQR9fQ+eDnAKLLK+VsEH/suENmqTAeZsMQhHjVIp/nG9Rqlc6iuxY1d8Si0VgYpARaAiUBHYCALnnUBH5CqBVBIdlyWAlQBVArcgJ4mROLWBtQS4uKdIUCSIJdmSQERFbQVrAVJw99uuqktyCi3BNW44BFR1JU4+l1W44KMkQRpFsTfXYqqY6hDU28AfK9wYHhRttLfKZ/VNc3Ud+raSNr/Y/uRZ2WUd963c4an0H4mhHq0Ex78lgWhZaBMQ3ZQkN8541u748WMlaT0ZWz4kL5ISyYiEpU0Mi+Cl/3jQ4hN8lgSuJK3tNbomF0tzwU9JXFo8SoISzaDXyj/4QmfkomUi0gLeYqh9yLMQR5mclK0VErnQAwyCXwc8Iv0s+GBIwt4m0K3+so56UjA8lOS90Ii2wU+LS5BpmWoTt0iA3C8rkYXjwDxklEiXes5Rim0MzoV29JF73ckpFyzYRR244KdN1tq3FkWf8LIqG1i3X0aMRlbLowu2WAwmaBX7ipvsxRsR/ZVJkorleZvw6SPS4VYOHMfz9g1Kuwc4GGpttwiPv1a/dE0eR/u7z4i0PBRbiRVmfbNLMmrnvkptonxWJ+Riz8aP/0OaInuLdVuPgLZzxMN2PMb48vvk8GpxioYDOzQOqJpNlCQz7L+Mm5Jsot6OvVwVL5AECP6KY8pXcAna8MBU9lHeGoVccav0HQ9LQat8WTX4G1VSnkIyKtHH6Xgr4w+vLMTY891CfJK1La1duY6rcqvlp8WklT3otITbJvXfikBFoCJQEagIrIPAeSXQGfxLaJKsiIgC0SARlKT4bDUrwnYJ+lbTSjiNAJdbBiRoa0ljUBEAkfGyOZOg8np9tl3V8mew9+wJukHDSt6pWDmVOAqg6tkXqW80JG+S+5KIxFnALIlZ9BGXg+0i7cqdn6trk0H9W9Fqf2NaorM39isfjC0X+D8Tf4Ck/XPWQSuCfllt9II46utbInDq5Om1LwTSAbqlXoFoJbZ5tElz+fPmkeHbD60tniXwSruC27azraVNFNtV6pJABc4S57beTPQZ2wxK8m0vb0wQAh+8S3ZghT58YCYxooeCa/DW6rBNNnKvLgyLjm1RkJPMtvuEYYoeTPHl7HP8X/BdluT5gGrotiStrCNu4bUkVv6Me/AqASoJV3ymG3XUt9XAL4j4a4uZeKGnTkl60AusyKFRuzWlTWg9J1wrd5vQmkhZpSWnHHlP8FEmbkHfL5yws5a2rQvtpOf0TLvX1hdTvSEg5974xRTbJ2BAWWwEhnhwxmvZHiSZjX0pksX47mPUx32UqFcmS7gL+eAGY6VMHqK9e2zFREaf9OitS5yKfsvqdaxZ+4xvcpw65Qu5YYPRXyb7ZG0T7qAdmLA19Oik/R1qTLV6YXdK2x9eJMLkbHXp5/3w6RdjtGl1NFgpDz7KCjg7iGfatfYQD6IUGxpgI4nFt35a/k188TTAQoNgpozfuIy77a9kFMpaR3v/taTVVr3YwWr8SAd59+5t36Jo7RmdOK8VhhPPFP/it/1DR+VW/aciUBGoCFQEKgLrInBeCTTqgmMGS0FV8pfBzStWwSv2P5RIVQJmSY7a+xKBs7+skCth7TOJH0K2HEgKHRIUiaOApx/9iYACqi0RkihJR+kneJMklJ9+02fw4lcwSvIXNCWDeMO/L3RJYYTVti8ykKvdW1y2GkQCoy7ipb9YPZdk+At3viAnCZi1nzOK+1a08IdmSWokUpKI+K/0GQmdeu5ZiZf0kETypZDD6m5JduMejCWa+ItqhYZ6EmjJiAwBJlbt0W9fsdtLHsm/pCfa2Ju9FIkqWvAq/EU7eJK+JHZkjHvBWSSAUdeTkKNdhQ68CbQmA5kg1yYq6JJD8ldwjD3G/pgIXkqyGPXKPtygL5kr/QdJNDLRg7vP+iVLfnm0TbiCTvRBb+WNRvDX9o/lFm8N5wfY4jQaFLniVBLfkiyFvlo68Tj6movf6M6i/6BUdDPjT6KHDflrJnhhQ6UEBvSGp3byFLwGTTLjg40tlz9BH29Z5vcGLQla9tkmc/Z8t0kne2bz+jx76If+TSSKncJlgA16dOCLfaW/aFvsIiacy8ETOuQNVoIGaw27Cn7UxbNzmUChV8aLsTHoO/ikYpKW8Vs+Ba1iy+zVKjys23rlfvQFz2gw0Fk7uQoSA/7a9jAq9+AaPJQ2baWiJ0yXe/ZNU4k+CRE85L/tZ42iP3fL//iJS3ULjn7qcfALHSGjgudS2Qe8DtrrL2U/S1ulS6gUOGB/CclcRa0IVAR2BQL8lhjX+vTtFWnTCbTAIxjv27ev2X/gQOG6fc0s9ErGBsEwA12c2wS4XV0T5DNx8nNwuc9T0EZXcgEY2yOWzixEkIvtBVav42b55YjBn4HW8eLefWUF12poKVFHYmRF9uSJSOaChgRGyYSr8BjBtf1d6fht3vhPgPfrE/rFw/79B0py64YQ7st45IroXBInQfp0fGkw1iFjL3YkjpEIWy0kQ7sKFr8JvbLYBvPyu7oCuX2h7e9f5+txwV3CrP+5WE3HI/n1KYHDu+crK5JeckiQIsnESyQNrUwSsbNJktXmdhUz5Ni3nx2YGgAAQABJREFUWHA7EXj4YpxkA+/tyq9tKKGLwQqtFVMYl4Qu+s2zvabu66vl18p7TDyCL0XyEY8LRrDDt7+oqA98aLcaFSTuEsxTsbe4TdzD7MlRNNDqR6pDLkU7/Za+g0dJpL7aRJgNadtOJOhZfXbSJqUtNvgJ8sVuyNFi2PaoPjnQV5zI57+STLOJkKHQcy/+K/YZMpFFezo1eWmT2ExSw4ZiUrV3z2I8aydy6hIL3vpZiN+URstzNMjVnl23NlgS4KicY6fIXmxgoIuQGRbut/y3WLWfrZB749Pqs0gceJG1/EW/6JtdKWiQs3wfgZx49SB4lRgHR4XWYkzG2rrtW5vST8iCpmQa/6UfApbm0TKufUp8WqxbfItu4pl78KabNtmlh5DLUTgZ0OvKiX4c5V8Xgz599jN6fivaOHIf5oPKcUKrbZkToFI37KvlDc3dXwoCXo/sDYTZfHyhuJaKQEWgIrBjEPCHDfiueVGi9enbyfumE2jJgC0Y/mDIvffeWxwwxksQjiDquQTB1oV4WAJrG2zbFSyJWQZSATcDqWuvxQVRq69t8iKotjT9tNx80JVslhXXSHglq1ZxBWDBspQItNaebANAR9+Skbn8AxFxLXi2gTu2N0R7NP3yhVjrmT+u0v4kGl7aL7FJZv1yg5Vz+7MPHTpUeMeXHtsEoP2lEEFb4lW+ZBmJCtbwLGlBm0wSzXZ7gD8MEv3sbVeGyQLDgwcPlGRKvzBp6bermZ7jX3IFt4JVSWAk++0K3Fk5ImmPPhcX9w94kri1q/74KnvYw/7QL1tcon+JErnJK28pBhoXzNQfatkTuJe+4x7s0NEfXS7boiGhH/yHP6VN5lbjF0j2F9pl/3hgpHH7O95nf2/atKW0CV4k2eR1YCb50V/iiF+9FDsobds2+NFOPSlCmYAFbyY7dJF0YUkH6hX7jDYFg8Cp5aNNPos+o9929bZtI9E7w86irefkaSWO/CRwmpk5WGjgW/GGgj2WNy0wgm/8oz86KLIUuWMSEedMdJMv96KLYk+tfbdJd6FdbGAwXvwsH7li24Lb2sDMJCPrtsm5T+rQWPAVmJHJdh5/XIiTKjgZz1HacdPyTKQyCQr6pX3YvXv6hVE7yQnbDlr498zZ2wgJvusgv2YbaKBXVrdjosy28Fb+11gJOfDQFjqg2VY/8aEkzpLi3NYVnLm9VkipPtvwe+xXhh+zGHDWD61V3bUX7Mwv7txz973xrYbwVWV07Fpxq2AVgYrALkMgomBzojnerN4Xi1jxB+jaCL99Qm4qgRa4rHDecMMNzYtf/OLmvvvuG7zqbgOZREAdgbkE7whW7jlK5CvB61wh26SnDYraqtsmMtq0kU9zyYlkwvOyrSCCgMDeDaYon20vcLbt3ddPG3cj2EaQFoJbuu2rbUmokklVVCoVkpeWbpvAtny2PKuvSJrVsQ+6cB7/RDdr/KGT2JBLstAmS23wz+QtWgzqScaiZrRDtyuL/tBK2c993t4nayaQhb9CxxWxkh5dtZ9b/lo82+fn4hctoqL6rX5bDNxt1/VaftpV4qjYdqQv1/YtuIpLfKEvkSQbIdHM5Bcu6q6VgZwodAvc0WELhXD3Ybk+i0P3ETmV1Jv+Uxb30UweXSuJczkP+CkP/BNV2iQu77ScZmJHtgGZQYWUTb9utc/Vb/vL5231tu8CWmu3baPOGDkrfrbXpiToA9Da+y3ObAI/+lOvpT+gUT7HdYE0XFKMMW2R8W9bv+XLvzgddFFuqot2qVd0iu/4v8jWttCmJNgD/anflrxoe2tpxb32Y1ZaO4PhbNu126V68T8hpzqFybWTPtyMf9lxjPFrr72muf7668uiQGJRKuzCf8hn8eOxNz6medG3vrB5+vM/u0x4W/vYhQJXkSoCFYFdiUBEo9hhcKY5dPmB5klPe0IsaB5ci2XbIXB8+X9Y+Fm/a82snvozyFYpN0lmREediDekhgCwtf3pZESfoyL0EL42dmtEfxsjUmtXBCoC54FA60v8es5CWYG2On92UnUehKe4Kd9p0n78+InmgfseaE6fiD/IVCasU8x0Za0iUBGoCPQQsBTCn83vmWuueNQVJYH2owDbVTadQGMQ47mSt10M134qAhWBisCFQCAT592+Ag279N1lC1V5e3MhEK00KwIVgYrAhUVAEh0vEmMrXmwf9R0uH7apnFcCvU081m4qAhWBikBFoCJQEagIVAQqAlODQLtxd2rYqYxUBCoCFYGKQEWgIlARqAhUBKYbgZpAT7d+KncVgYpARaAiUBGoCFQEKgJThkBNoKdMIZWdikBFoCJQEagIVAQqAhWB6UagJtDTrZ/KXUWgIlARqAhUBCoCFYGKwJQhUBPoKVNIZaciUBGoCFQEKgIVgYpARWC6EagJ9HTrp3JXEagIVAQqAhWBikBFoCIwZQjUBHrKFFLZqQhUBCoCFYGKQEWgIlARmG4EagI93fqp3FUEKgIVgYpARaAiUBGoCEwZAjWBnjKFVHYqAhWBikBFoCJQEagIVASmG4GaQE+3fip3FYGKQEWgIlARqAhUBCoCU4ZATaCnTCGVnYpARaAiUBGoCFQEKgIVgelGoCbQ062fyl1FoCJQEagIVAQqAhWBisCUIVAT6ClTSGWnIlARqAhUBCoCFYGKQEVguhGoCfR066dyVxGoCFQEKgIVgYpARaAiMGUI1AR6yhRS2akIVAQqAhWBikBFoCJQEZhuBGoCPd36qdxVBCoCFYGKQEWgIlARqAhMGQI1gZ4yhVR2KgIVgYpARaAiUBGoCFQEphuBmkBPt34qdxWBikBFoCJQEagIVAQqAlOGwPyU8TMxO6urqxPXnZmZKXX7bfL+pIQ20r5b13W3r+71pH2r16W5kXZZd7P9Zvuddu7iRfbuZ7JcDDz6PIzCNHkbVT+fj2o/bfd3mhzJ77TinPxNqudhcqDhyGd5npTmNNcbhc9GZRxFh+wbpbUZvEb1v9V9d/tx3aXfvd6MDFvVpsvjOJpdfoe16T4fR2danu0GGaYFy63mYyaUM3kmutW9bwG906dPN465ublm3759axRPnjxZnMD8/HwzOzt7jkM4fvx44zhw4ECzd+/e8nyt4YgLMGlz6tSpUl9f2o4r6h47dqw5ceJEs3///ubyyy8vfI5rU59tHQJ0dubMmYI5G1hZWWkeeOCBZnl5uehiz549W9fZBijh4+GHHy58LS4unmN/bIyDd7/v6LVxHDp06Bxb30DXF70qnRibxoSxSZa+nBebSfpZWlpq5oK/ubCbaS/8TPGBwe/+jg/Et2fkYet9P0gP999/f7Glw4cPFz1Mmy6mHfvt4o8OxRKFLieNWxvhz5jUB5sxLtkEm5mmwn/gz/jkP/hJBT7GAH7lAo5uIRt7X1hYKNg577RCZjKQX+6Ssu80OXYTvztuBdpAkRTdd9995ZAQ5cC44oorSjDwXGC48sorm+uuu64YmwF09OjR5qGHHmo++clPlmT45ptvbq699toyqNYLHIz2fe97X/Pxj3+8GO5TnvKU5oYbbnhE8M8E4dOf/nThAZ933313SaAf97jHNddff31J3gzg9fpMQ5PwkfHBBx8s/BtI+ukX9IbdV0/y/uhHP7o4nX673faZjUg02YDzNddcU/Cnh/e+970Fy8/5nM9Zs43tkJ9Nsj08pe0KhIKUyZhgQM9HQ8ePetSjmhvDtnwW0NJutWXH7JYd7YSS44EcdEEWdsyGH/OYxzRPfOITp84m8Wqc08tVV11V/Ec/IF8M7GHJttlR+j324DP/xJ4uu+yyck7/8unPfKaZj2Tisz7rs5qDBw8WttGgg49+9KNlPPCR/Bn/uRMTi64uYER/5OMzjbv0ieSHj+TDeFuvaA9n+ErOFAkanCWYjguZxOjfmDepNm7uuuuuEtPEHXaJj/MtsDEuxSuy3nPPPeWAk3j12Mc+tvioi2kX7BUW6Tdhwd5hz2ZNJjyndzGOv/cs7QB+sONzYMfe6X/S+Hu+GG+2fY519udIW8A7v0mOWi4uAut7kYvL3yN658g4/te+9rXNv/7rvzYf/OAHiwMwiCQjT3rSk4pjueOOO5qv/uqvbr7qq76qDBqJ0z/+4z827373u5sPfehDxRG97GUvK+dxzoGDcTDeV77ylc1f/MVflKT7J3/yJ4tzEVhzIKrHYaP/x3/8x6WNZ+9///vL4Jf0fPd3f3fzghe8oNAwELTJ9o8QdnCDA/hg0Hx9yPuf//mfaw5du+yTQ3GtuM/Rkwsunr3kJS9pvvd7v7fIO0mfg6531Cnl4kzf+c53Nv/7v/9bHOc3fuM3FsdK/+wGnl/7tV/bfPmXf3nz5Cc/eV38twIE9vNf//Vfzetf//rmTW96UwlYbIXDl0ia4AiIdMVur4zAcO+995a6b3jDG4qdk0tQ+7Ef+7EdlUB/7GMfK3ZLH8aCgC2h+7qv+7rmyJEjEyUzW6GD9Wjk+MHvH/7hH5aJzHOf+9zmcz/3c4tvSftaj86Fei4BYEdve9vbih3deeedzUc+8pGyICDh4U8EXX5GcJXg3X777QXjH//xH28e//jHl5U5E7P3vOc9zd///d83//Iv/1ImZMYDv2TRYScXsv3f//1f88///M9rfjcXHD7/8z+/jPlnPetZJfFaT06TKD7DeHXN1/OpkrDnPe95zfOf//ySyKznv9frZ9TzT33qU83f/M3fNG9/+9uLniWB3/RN39R8wzd8Q7HH802g2Yp4Kib+2Z/9Wbnmf4xRyedTn/rU5ru+67ua5zznOcVPXSg5R8nvvjFnkiimwoIP/fCHP1ziLPktNkgm6VjyD58v+7Iva66++urmjW98Y/NP//RPTY4TenvpS19aJpLGxrSXjGPkEM/IbVJPH+K5xb+LoZNpx207+dtxCbTg9rd/+7clETJrfnY4wxsjCFtVMOgl1ByOYC2Z5jTNogUYSQpHyBjN4NXncNcLjJJRhirhMfs1+LRTugbsnoB12223lcH7zGc+s3Ho67//+7/LM0kRJ6VI5BSDokun3Oz8IzBeEbx/9md/dun/Fa94RaFFZomIAC8R4eA5RfLgFT7wMNFQhyPybLcWGJL5He94R/PWt751LQhICjyjR8mblRY4uTcO963AST9WTtgku8WblbBM6jl+b0QELbbNJgV4emJnAoTzJz7xiWK7Ah497qRC3lwVggVZTezImvbofKF1sR5m+seHifjTnva0kmSavLgvmRCUL1aROEsi/ud//qckdBJgfoV/efGLX1x4Tvvm4yQN7Iqv+8qv/Mo1X5cr6eqyTUkZP3mxsd8qXMlBT09/+tNLsssX83/khaGVSRMJK5ejChuADRxf85rXFF+irbH6zd/8zWXCcdNNN5VxOYrGVty37U/SZ0IgeTJZkrhvlR8nj+QZRvzlF3/xFzfkgs1//Md/lD7JnavvWyHTZmh84AMfKL7TZEaM/aIXvrB5XODCh/AnnjvIYjzgOVei+R1jhs85Fb5T/BYbd0IxVvn/9DviA53JZyTXtVx8BHZMAp1OTRD5rd/6reL4v+iLvqj5tu/4juZZkRxKJs1Arah43SHhMPBdKxyDmRvHYCuG+pzqpEUS4LW/Ga6EjBFnMMrgb3ALWJyuV4jqW2WzkiDYSZ7MGhWJtCOd5LgAJsHmSG+88cbSt2RcWzwJ9F//9V/ffMEXfEEJGBy/Q5Jupd6MXf8ZMPU9ri/Pd2IhM6cisXj1q19dJicmT1YjOFP6MAERFDlRuI0LoluFAZsQ+NjdP/zDP5TVQYHKCgKbNIliM57ZYsK5051JEzsz8XHPhJAerbrsJP3hlc1/3ud9Xgn8ggA8yDeNcuDJ2JZ0Clb//u//XvA3fkzCrUBuJ998Cz9mYm4CZqWQDT/jGc8oK8ZsySQ6/Rl/Z7LGD7KX9FGnw4aMEfTI4q3Hs5797FLHlqAjMQG/kNsRtmo8rUeHvCYEVuGNcckULCRS6Q/p1pscdYfpEk4m2SYhr3vd68rkxFg0Of/CL/zCkkRLbM53BXg9WSRO3grQo+TQ2NmKcZPxip+xui4xJbOJO3tiWxabxFC+80LLOQ4HkwVx85d/+ZeLf//Wb/3W5nu+7/uap8aWIwk0TPhOPt2hvjFAt+Kvz7Ajy2LUp+9hOh/Hw8V6Bner6/hlj3wAW9gKG7hYMu22fndMAi0RMds0YCTRHJiVBAPJIGdkBpSE1TODyT2DSVvPJEyeSUjd40i6R1e5OcjyrM1XfMVXlBWATG7yWbaT6BioklZOSFBz4FPC5NU8xyT5lVBx6LYQSDAEr3RsSa97zmRfws2ZcxDqWy0T2J3xlfJwiO4ZhG9+85tLou6Z+0mrS3+z130M9DGq9OuqN66+58PauN8vgoHkGa5WHH74h3+46AtW5M0JkMSB7t13r1vW4yXrTsqT+vqSMAoCnDmH+OxIXPChf3YluaR/n239UU/RzxXB55FIbjwzCcBjl8/udWk0wT9d/vvtu88mIHUOL/36aOXBbiWmxqpx3O8324667/ko3jbSZpK6xhb7uOWWW8o4+93f/d0yxuhhuxMKPsUqsZVwfHiD8qVf+qXNd37ndxa7YUeZPMPIeDdxTF9ny5mJADpsUTEeyHFLJEs3x0ot3ajPRyrDMOpj36+z3vNCOP7p1xvVX9bvnoe17T7Pa/WMKzLyjQr5j0UssLWPn2CL3UWQbOvMl9jyZ8zCTAxBT+G/hyXPfTxK5cE/o/ge10ZTeqJbcogRfHe/Tf9z9juqz3zubGJ2Z0wSTOBtVWIH3nbZDy95h5lxgAdlVF+eDeuvX1+d7r1hbdDKov/PxKKYCaOYaRJkcvSUmDDSgSK2Sqrp+Xd+53cKRsaIfowFdp1jJO0/6Tt3+eneH3Xd57nfvv98FB33+227ddFxiOlksHgmBogN49qNejaKr1H18TKszUbrd2Xajdc7JoGmOMbDmQkIgnC+WkpjM2A4GisqX/IlX1JmbRJp9RXGqI6zop1g6VivqGMAO/olDU0/+JPo6EdAcvacs1asiHDgf/d3f1f67TrxpNOn7zP5PXegmzyTJa+zHcfr8MzA42AkaBLqpJF1t/o8ToZhfW20/jAa7sHdaorXnZysV+5W7bPAgvyOUWWreOnSF/RsVbB6hT4bdtCPQneCcq6W/Nu//VsJ2mybzvfEiqfAljbbpe36fHnervbkZIMOgazfb37Oc1/OcZ830mbSurnXlR0Z88asibE3GpKKHI/j+NqKZ/yX7z2wC2/YBFFvJayEWkXt2wW7YuP4ZnvetrG9lcA8/SAMUhfejPXLJBitV2e9590+N1K3227UdeqGDhOfAzGGYABPe0qPxGTIPvG+70RTAs2P2BZgsivJzFiDHrr9shkZJmlDn3SVCfxW9itBFavE0oxVZHNk0tzvbyOfh8k37N4omvyEN3T8p+INnTcpWdCCDT9v64Y30vREJrav0Bf/OUxnnm+EH/X75XzaT9JWHbzTvzO5xrUb96zPu88Xuv6wPnfTvR2TQFM0Z5cDweC3v9dKgcFuluY5h+P6hTGY3htBr1841zxydcEgzeAi4c3gYvDpl9Hqj2N1uDZTF8wUWwfMeq0+mynnPY7JPkQ8c1D6MNv3SvHP//zPS5LPoVthkkTpOxPuQmSCf8gyqkjW0edY8Jry4IOjcbhGQ7/OsCBzOlQYkdczcnimjgIndHNgowcfZ5glb93kCQ+KZ10+9EN3aCUNPNEtBziqoKM/OEs0YG7C4BUuXj3HC/qpP5/xhC4Zuvola/ICA88kvO5nMCPzpHrCA5k4QIeExhsBCTPZEg/69ypeILDqrF+HPhPHxABNBU94I5e67qOHN5/h68hnXT24Jifs0HDtHp601++4gqfElP1nf854gF06/WG0UobsQ7uklzrAm37wQ1do4jHbeqaO/rVFw6Gopz794kfdvr2p676iLr126dOb5NmKruTZl5hsC6Cr5KE0vgD/4Esfn4lf0bAlTAJtVdDiANvBV8rV50VbeLEnr+WtusIhC6xgbE/o6bAd7dGir7SpxNGzxJEeFPbG36FDt/m86wfoJMcxWtriwaE+utrTn0O/+EbDkWNVHZ/Jwzb115c35crzsOc3xELCA+ELPxZv/eyJ9obQlj60s6QteF1uwmRSbrKCf6vRw4o2KUeOQ7KwNTLDNG2wy1fabY7PxJt8iVXirY/kLXnwWT98MVrao59jD8ZdW8526tEN2bwZI6vCB4hdYpF28MY7mvrCZ8ZJNJJfdbv8qu+Z+vhLG0BLXX3rC58Z89wfVoo88WxhYHfq3B6TGj7UdjwTxWxrMiTOyQcUbbMkdt17qTP84FNBK+0P/55126acsFXgDhPt++OgVBjxT+IDB219xo++9A8rfcAIz10e1mToyKcb7WGNnsNnB77SBvGf7dHMNtq5ds+hjv6NN5gkD/DIunhOvtLm2HnqY4Tou+72jkmgKUYAyZ9u8QrHQPrN3/zNsqpr8HjGYCS3zwwHeUOs0Cj5Gi+1l4bCeXg1KvHymkgxm7Wf2MqD1VsG/WDMgO8cvPqzMnFnrEj4drItHQxJQmSvnL1W9h9qI7n/vd/7vfJtcAaIP6vNf/mXf1lWnxmbfa0CpH2WXqHpV3D0bNKSA6J/1h4v9rd9X+wZE/hz4FqRgh1ZXOtPwskZWMX12dYSh1k/ecmUSak92AacZM+ecDhxBiYHvowChxxs+hTsBSsYeENgwHnOgasrWPlsZc/rSthZ/YGXLTn2AWozqtgKc1t8EYbzLNt6YvXNJEqha7QFBn2Rmd7p+ZZ4RW+ljty2BeWqk89sDWb2nNGPyYigov63fMu3FAeeDm4UX+6zR3YJS5hL9P0Sh2TNlh6BPAOl1cBbb721OK/D8UqSTvPo90Gm3NNJz7lKoy+JE33Y7kRudfVhHEgG2Zp6AqZfdKBzchpT9tPTK1nxPqoIMCYr+aU27a38GKccr8TNKqm3AWQdVtJmPROM2Bp+fOGHjmClH3Zgb6atLjBKW/CMzvHAlvDjHr7ZmbHEdsjqftqAPtSFGV3jmcy+IOZ1r8/JG18CT2MVzrAiH5vPOsNk24p7dGh8kg22AqEvkeHHeFTG8UCHfoUIHXhoDwfJky+lsXdjz300JSX2WfqlmgzCdAdHvskX84x7+HmDxnexKe3o5wlPeEIJsJJNEw548at45AMko/g3CcCb9sakI/f32uJk7PGp+OM/2KU3il/zNV9TfMQ4mUfhjv9PhD39X/gotkVOvPEXXX9rTOQ45Yvwym74tWEFntqQOX0LuzXBILOx5tc62GAmXmSiUxjRAxzgTS4+kI/JX/jo95lJCz3wk2IXv8ue0adn44S/hWP2mXTYO3/moHt2zTe8613van7t136t+au/+qvy+du//dvLViF2JmkSA8Q4fhJ+bEg7GNE/v8JfGpvsjT8wNuGiLd8v4SUz3+7tyXfE95e0lUgPK+jD8No4FH29MWKPgj/Y8gfGKxshM32SOeUeZivu8edszEEHcMXHTfG9FHaMf28q4Ky+McI2MzfQJ/z8kg0/nOOEnNqPKvrh67oxy5ul9NF0Rvd0OOwN0yi6FsqMN7bLrumHTcAQz12/QR72xq7ZDhugU/4QH3QIS7E34zWe0TcOjFX12bG6/LM4hm/2eymV0VnJlKFA6QaFJM7Ak8QZBH6uiBJdc3ZPikTlmhhoBpYBYQBksEmR0OIUBEOGL0hpz/ExEoNHEDZ4Gcld8ZkjuC2SNP0K8Bw652kgocGIGK2BwWHg1T3OUB2DnwPhSN3nQAVniZzgxVDXS1qS/zyTTWDFv9VvOODX4GDgnJVA52ePFM/ImY7X5AEfgiAeyKMNuu7DgTwCJt7VEWwkLIKGvm+JJJT8cJMYwpAzk4igZ5AKLM4GqISG/Phw38qaPg1c9+GhT86XPIK3we96WOGQMsBxHBwPOnhSyMxBcXb2Rws49MT5SprIqm+yklNgkcjhA130OScB95NRh4OSFHJ07GMUX8kr3Vv9klBy1mxHELKqKNDow57D3KcnoESn5Y94sNNRJZ2gYMQu2TpbY1+cGIdHboHR4TkHBw/jQXvO1TVsOEWYKOMSZ3igwd7YDx3SK/45fHRgaNXTfXoQeLTrl+49duPNjKDFfundJEhwM+YEA/bmC2DsSyLw0bBRPGijD3qhK7ajPjk4dpg8FAkNOnRA38ajw9jBL39gTBuHdJbFmBSU9SnRE3CMA7KOwynbb/YMG/KyD7IobFWAJ8+4vtNu2Cbeu0ViR0dp63wgnypBYIfkNW7hCnv9uW/SgG72awzRvbaCrfb4hBF9GC/skI+jW0GaTzHu+cYjsYWCfHxRfm8Bv5JsPEsq+RhjBQZ0gg9t0dxIUd+44sOyGDd4olc+Dd7kM/bdV9gUrGEyquDR+CODtnyKvowPdNwzDvxSCpnZGV8DIxMVEzH9sGdY8A/0bCyPKvh00CUd6ZsMsGO/xk2O8T4NOPL39EaH2uORftk0XrRVByZ8FN+uD34kxzMbISMc6RUOZKMjehUv2ZB2ki4Y8Jn8pzHIJ35u+ER98k3DChnxJSG12PD2oHl3jFeLQng0dvkJ456toU92fI/yy56xYRinro3pnJzDj+xsGb5iHTnx4GBD2jv4QXIZB/INNNjnqKJvvkf9nEiQA/9w5rf4KHzhDy6jsNEHfPAg1pPBl4yNLzbNbmHApv5x8NOt2hhbMKV7fo+NihVimcNYpTe0TQb4yLQTds4G2Ka64gv969MYEeMUcmp/KZThWckUS27ASQg5HLM/ivSrC5I3TsrPg5kNM2hOpetIUqnOgrRXsgYmQ2FEjImR2F4hgbKCxtgYCKfHGBmrkrQkIYI0xyNpMBA4CA7Kigle8cCYDR4OzKDLRMyKn99g5eQNym7wXk8NZDC4BS3X2nJs6DNsfDB+zxSDUoJhkOCV4zMI8Kx/A49D4pjQ8PzOmAwY0OpwngamAc+R6A9t/fvyG8dG3m/7tm8rgRdG+Pj93//9kjDiR32JHCwE8pKYBj8cgfoCMQeWQcg9A3JU8exo6AQdhQPVPnFEl/4k5eQhWzpA5yz6SXw4Tsk4GfFqZYXc+GcHgkMmVaMcddLFx/WR0HMu7BJt/MD1Z3/2Z8t9bzNMLNgQjNHEz7BCXnyyVxj6bMLABr0REcBhqD0e6ZmOfWbTEiJOkU0aI/okpxVyX07zeVzCoD/B5S1veUvzi7/4i6UPY+hFL3pRwV6wJBuMyCoplyQoo2TyDJ9+XUfiZDxY5TfWBZqf+Zmfaf7gD/6gYE8+dipIvzl4sCqGnx/6oR8qiZxriQmbhJHxoLAR900W0HfAhw3ik12oC1vYZOFD6F6fCh+gLru6kKXYdYxVyWPK4B77NlaHYYmntAu24VobhR2yC36TDRsPZIcj+mkPRyLJ044+JEXaGe9sxzXb5HONT3ZlMsF/Sjwk5b60yCdJpPgCiY2gS3+SEW3YHTqwNQb5FmNC8sEvkk8ygrZgzpb4EYmcvj2ftJCfDzfBQ98qOn+Gnphh0QVN9eDwyeDdOIeDZzBjE6MK/fhlFLHDW0sr/vqQCP/cz/1ca4thc2TpvqnTtwTml37pl8pvU9OXzyY09Jg67/dL757xz3RJb/h/ZiTPXxc2rR/+L31cvz3MjUk+DY9s2VjhF4w541hbcU0/bESc/NVf/dWyIuk7APwEW6AXz8RheLKXW+MNmmcSc4kiO5PYkgtvcEWX/m0fknSPK+Tlm7zpJDO/QydiCgzhLYbyf8YGHXf9ep82euxNoVdY0bO3T/xzJp74RMdYUR+/9MquXXvGtvnLO8PfGR98uLjPloaNT+PK2PCrIcYDHyRH0C/9y2PYkbfUMHN/pK0PxjUZ6MhEJbeFWnBy8IVisjfh94VuYAOjzGnoTi5gpRkf7JN/S58gVpOFXvlhCxzawhwOYqQFTLqnxwvtE/u6nIbPOy6BFsgYKkUy1l//9V8vimPQBikD5cgZBScxagbHkXzP93zPWtJAGQaTACvR4mQ5ewbMWBgfZ8BpKAwrC4dhUEs81FPwow8JkecKx+GeOulEtCNLN2iXyhP8w2jxqi9GnM5V0nxnDGqDv8ungS/QSeYMDqs7Boy+DSCB0CBA14Amv1d68PT5B3/wB8ugJ4/PzniHu0DnmiPhfARJfXMwJiLwlFxZcaYTiekL4/c8OUWrMZyUFZTv//7vLwOZs8EjHY/DRh/Hoy1Z1INn4u0Zmf1OOEeD3qdMHgIbz/K5BNKsWvLGIZCfU/WHZwRyuApSdGamL1nntCRzCjrDHKZn7gtGkhD4cVJ//dd/XYI0vARgf7QDXXhIgiWOaA4r6MGMTl71qlcVudg6ZysIsuHkha6NFWMCxpyzevSvDjshsyBqdUWAEBTGFRjqWzLK9iTPXhHqi13TP8zIRYcwc4ySJ+/TP7rsD16wQc94hwf65DaBRZeO2DcblUhkUBR42Bu6bEJBU1AweWSHZFaMbYmVwK4/ttINAmjAyZj1XIElOsk3Lc2UJ1v7D/p4zsQ+/Qlb5Wey/26v8JG4SAAlL3RAX8aDNvwh3bOT1L/k1thATx8CrDELEz7F5IKPkMRopw4d8C/0wmbQFqwlv5JAY4e9wwx2dGiygjeJMv74VImcQz/eyKjrLYA3jCaFArfxTGdkQV/9jRRy0infgH9/PMm4QRMfkgC2T/f6uzNsWgxQj2xsBT6jCjvEm9hgbJFZX3BkW1eG7McHk2Z2Sh9oaqM/+OKPT0y/zE927bDbN13CX8KET/ZowUJbvoVNp//rtstreJA141X6Vm3cE6+y4NF+cUkr/ydJZQdskB3QM/mtnEqw1DX24CDJJic7MUb5CG+PTDLIxt4kqybz4wp+4SixJ5s3qn/0R39UfIQxL4k22bsl3oSiz+7U6xf9kZEu4UbvJnRsgt9l73xHxm+8kY8/4ze1JwtM8JPjgI8R64ytYf12+TBG8GuVmY+DCUzpHl/GnXvGAp95ZozfTLqw9HaNLfGHZOTD00+kbRt3eBe39cW3OOiGnuCMf7KJhZ6hhb427EwfCtw9M0Yl6njle2B0qZUdl0AzcErOoMZQBF5OmCEwaMkNpRrckrJc1aNghqJwHAYIA85BrN2RSLYEDEGScRlAnKEBw4kwnGGFoeWRz/XHWLONz+okH/nZPSXvZ/v1zhyhQW+QCGZ4RIPc5JCUCTopMz4MEoYvoEm21PfZipJXsVk4e5ga8ArnLOhxjvpR1OGM4OXg5PCRjkS/9MO5cz7+KpSgZZVboqh/+EqIXOOZvji1SQreDW6Dl+61Yx8pLxp4vXzQDxkuGzirrOOsDRuQrLuGq4SNfQgY+ENHUqJPjoozTL2tx6s+yMfW0GaPTw6HbTL2iXDk6Kb9cqwmF3ChL/11i4DLAUtaJAH2ngoAnK+26jv0mdhbYYK9JFqCwhGSV3JmMqAdvbmXNBKf7DtpSgCsXCUPdIZX7RTJkkDGptQ1VslsPPZLtw94/9RP/VQZl2yA7FZH2BVnzqbpgc05e56TJcGBnepPIERLomVs5ARafWOe3tisiZyxiT92z/5zZbTLF561Tfn4F/ambSn0E1j3i+f4WavXqYA+enAZV9gX3BL7legrx96wdp6hS+/wspKVxRjkJzyDD5rsnWzdgje4SXQkvFZ9JVDsi561M9b4FpNuY1m/Aixbcl9dOGuLHwkfOTJR8Bl/xgEe0v9KPvFonHjG76rLpiRJ/DP9b7Tk+MW/BIXtku2jQc/Y4zfYAVvTj+SJr4ATOVYH/nlYv5IVE9hbIoGTeJDB+DKetV0KG8Czg8zw5WPYorMtZTCSgOkP7sa2WNMtcE+cJX6SIfbPzi184Hc9e0p6aLEth2ulew+PDjFQX8YLOY0R+sr6bMl4ExfonV8gN7+JHz5ALDCO+VETa7oVuyct+CAn3cEFvuxCf/TFF+uTLzPerI7Sg7rdsYKOcUsW/pBdHQnfRW/Gv/rqpGx0wg74Iv3oQ+zSxvhAW37Ah1ukgA19KkmnfOj8o08+GD3+VrLP9ukBPbZvMqRP8l4W+I6ilWSN36sjgYetv1DLfrTlM8UHEzv2T7/kNw7RTH/IVk2i+UPP+EBjBJbGHZtSlw7YLLwtMll8SZ8giUbHmFXW4zl53w3n8R58yiTMwU5BBhHFMTqrn14jeZ3LECUZP//zP18UaQAbUH3ngoZBY6AwYMXANjgYgsSMA2F8Shp5n0552Pmnbzz9z52q532JfwHMKywBEm/pCA0Wr4S8vmH4SuLnOvnikNI5DauT9ThEuHRpwOhjkQAaqP5SIudq0GUbdfV9JJwOPWUgyZkwevQFWwM3E5hhfLjXL9oZyGRV6I8+s/9+ffcdXRnU8TnbOKORmHmOR8EiJwbkIHvajTrjSvZHPxytYH1zBJLXxus1SQ7Hy86sPJFH0mUrkj6Tr6TPUfk9YAGX4xaQTIbSLrv1OT3JgeB1JHTAmQoEDrZDD5yn9pxhytylkf3mPXwKVmgYfwJrF3M8W4USlMidjndYIol20jVGf/RHf7Q4bvfIKSGTYOBR0kYGTh4t/LMptisovfzlLy9B1TYukwS2SHb16I+/ELQEA5PKO2NCh77XqOiwW/aYOHZ5c60d+6KfXDV0f1TxxWOTI6s1+E05YaIPfPM1eX8YHf2ZeJUxEjRgr29nNPpt8U/X5KEXwZ3OXZvcwkZwRk/Jc79vdNSzssi3esMkQJvYCazGu4RZgsQv0InP3kjwJ+zKqh3Mshgr7J4O8MNOFDKkHGxFmxwv7ErSbXwY47DX10aLvvUBb3bG3o21fYHvbbFlj53oG15WJtkvXtOuz53Cnts7Pd56660lOfaEX2BfVmRNIGCBf3w76FR/eLBiaysCrNghHUmqbomkDj/9whbwLQHD50/8xE+Un1Wkhy7W/Xb9z13ME3t18jrPZGE/9A0PCaVxRD9ZB0bsjf+An3GFtxx3bAyd9O9pc10aff66n9MWyEd/xjYbh52Y72zsmlz9wi/8QtGZvuGIt2yPX7rw5owt8cPedoqbdNItKRtb5sdMtowFq/4mC5JUY5BP4gclvTDQ37CSshq7xgh/kPE0+3K+frCIYZuM8c0GEq9H0I366KrHlmBjjCYPJvpsRU4kjyEL+9MGTXrEA5lMKPBFFm8U0x9qIyaIeyZK7ExOYeueCQx/IgbRPTyH2ewj+N5lN3ZUAp3GRgcGFIVRKsfDMXP6Xs9xXpyNs1m9wc8YsuSgYkhJ09lnBumsDsebdbv1ks7FPuOTcxbwMtAmTwKUV5CSawFL6crgui/zqDruwwXmScM9A9LeKistcwPc8NQtPtOTQYgPda0YcmJ4T3po9+nnsy697jXdcEb4UNQf12bcs2yP5jA65MCf0rWLcmOdf7r9ckiCyTNCdisHJkD2jUpUyOEVuK0hbFkQEAyUtEMJmZUsTp2ztAIFg1FFcEDHGLH3jrOUEAn8EmGrKn72j4Ok43FF8mQVhf5cszH0u/LByb1+UEI3ZRjWBxuRLEkmHAKi1RmBAW/6TNyd2bzJAxmsiki0BXArL87ecJA5nbrxYcUU35Jt/kAwhaMVPAfMcxLR55HuySQZQKNrc/26Pr8vAu5v//Zvl4kAfSlwggGc7dkWKPHXHzNZ15hhK3gqSVy0hb9Ekjz9gr66Dlg6rKjqz4qmoJnJXPbRp+EzOQVliQodC6wCrCRZ0iChkkTQjbowN67pQpJwSySA3kJ41pcNj+y2+zYv7cc5r/GRY849Nk7v51PokA+SFN0ZiZ5E15jwGT8maibHJoZiRvKS537fdEkWNI0rK/WSW7qBm3GXbzK1VR8mkjAYSU6t/JnIvfKVryyro+xQYiKu9Qs+TCz5AP4T/xI7/aO7lQWvbJ2+XTuG+Qe2JoHFgzFhtRmP6tOfswJ7R2KZ5/V47tbT3rg9EhNpK81s1Ji1JY7ujBUJNb8hH8hkMvsgD19h/Ery+Ql6ZufdfrI+TC1UiKPkMA4cbIc9oiVxlGMYq31bTzra0pmxa5yoxz5g1y3zId/8wN937693TS94xRN7YhfGOb2wbW8G6AYfKSffYF+5z7/yK79S6tovzV94o8kO+VdFXck53ebkWNywAs9X04XJ9Vbb4HpyT8Pz8RFzGjgc8CAIMV5GYAAZSAYU4zEIBAcGw4EzVMq1AqCu2b2ibbf0P3efbcd1GvNm+8K/Q2BxdB2W65tipcMgFegEBs6cc8923X4nwaJfB//wd+gf9pxUv+BFHU6DA+nT6def9LP+OYpMkrYiyKI5ir+8r45jvcJRdwOoGT9etaUHB6ePb7bsSxqKpM5hxUcCnf16xu7dVyTCkm00BBLP+kVf7MCqGqcnwHuF7TUrhyjpwVeuzvbb9z8bQckPfZNxVGETZKP/YSXpeCZQWzExgeDErSAfibHLbiQaKVvi7j67tqUID64FRCsvVqTZmaAhiUaLcyezuvrlG2BsFUtyKCERcAVTybl+1Mv+yJK2re9RMqWc5BY0jTu+q0uLrj3vyp/t8qxf9iE4p+zakU9QN5aGlW4/ZMandnk9rs+kp76gCX+BU5JpQgNfyYPJDNxz6wWasE5b4IutSnWT5KStbk4oMqh3n+V1/5x66N+f5HNi4ky3ZMq3G9obF2RmD/hmA2RIfY/qA09iDVxMgG0HEYNMisluoiF5EYuSf/qALVs0cVU/t2SwSZMUuJgAmjh2C5uhE7qXAKovcWX7+uQrsp9uu81eo5VJHt2yZzy4n/2Qh09jX/g2Thyw7pdh9/p1up9NFOkJff7JWX/GKZ8FO2OEj8Ubf2R7gYTXtpp+gZukm86Md79aAT8HfRvX3eKzPtiEldb0TSZKbJjP4n+Ng8Sp275/Tf70I/wCLEcVz9Rll6MKHagDJ34df2xRP/jytoUf5D+M2W6BpZhBr2iwXX7XFwv5Q/zBmezas2cYKOKPrTC5Kg9LK/K3xKSQLeo/7aPb5268PtdiplDCVAYjYfAPh2JfEt8W9prBrI+i1DGAJQqUyGh8M9qA4sQoN4u6F7PgN3neKl66xtq9NrEwuDkdgZczN2g4ha0oBpgArw8Ym51yTn3HQE5HOgOOjO60d7/L80b4Qg8tTlQR8Dg2DmG9cr7YT9KeU+eUBFeOyq9tSOayoMF5WxnlhDgvssBQgOTE+gXeVp3JyilafaFf949EcIVJF0/PrGYJKoKQlRpO9rZ4dY0nAYVzhOM4mTwTJA6H3uhOEdysNuGlH7zZg/vOxmbylX10z66t4HkFy4a8pvXb5ca4PuDXra9vvFv5JLdgydFbUfalV4FPMJHskZnDZ5NoSDTcs1LjC0l8heDjiztkwKsEtVu001/KKQnLgOlZF+9sh/cfjC+N8kHd8aC+tlau9DWsLRru00mOYTI5JFtWNvk6n0f1nzSSH/X6Zdi9rKN/tmrixXcIqjCVZErsrE5lAs3GBGSBVjt1LHawE0d3PMLDxM3Yl7R0scm+L8SZrA46pl/4K3yhtxf4NU6sDpuQ4o++xxX04OJvEUhm2ZYxDhtJs0SL7Gw/sSavWAYXX1SkR7YrXqkL65/+6Z8uiYhn2Q4fEkW+Qn2JogTGiqsxzCbZBdsaZVPjZOk/QwNWMNEP+5cwGnPpb7NN8sgO2IQJgmv3k5esk23GnbMdDOGCJrm9NcNT0mJvJju+sMgXyg8UPgm/3QJ3YwnmfKvVVvaMJh9iUsUeleQ5r40DPsmKs8m8bRH8Gmz0neOgNB7yD3rGh/FMT+IwOrDsjg1NySaG5WRFmy4/a+SjnkIuNug7LrZW4Mf2P29R4GORRfs+Df042OqRiBtk4g/hyOe65p/gDSO2px5Z+TaTavFKnT/90z8t9s4ujad+X2s878KLqU+gE3NK4Rz8JSnOg0Fydlk85/Q4PwEzB5kgYzBnUW8zCk5667XNetlf/+y5Ax2D0Kw9aea536b/Odu732+T/bufsnMYAq9AwYnAKBquYeR6vZL9JH31DZ4jMag4IEFBwLCHikxZ1M/kw+CkG7PUTECSrnNeZ9tJzoKTQW62jf56QS9pZl9dLPvP8nOes43P3et83j/Dn01aVeKUzOAlzPjNgn8ByX3YSKS1s7Kedquv7M8zzlE7QdvKoBVXSSHsOTEl5dJOXZhbNWQLEkbJJsfoVXwGjuRp2Dn7xxf7kXTD2is8CVV/L6EVCvyRyXP9K0nHNfnYCp5yRQNPDnYqAOhPm3PkCQxMMiTB6EtcTBA4dyt7kmirilbX74wkmsNXTBwEMLx67XhTJCi+MCMQwNG+Pglj9lUaxT/6z4CsDRpd3WS97pk+TVYFOPS6BT006KWLR7eOa7o2tqxGCmAmGYI+eemNztVRhvWBdtLPc6k8+Kd7r3ud8qNvssbf0jN/xT4lG5IKMiiwkBCyI3LzM/hmi+4nVhID+jBZMV69Js5n6HR58DlL3s9z3h93JgPsE/+8hhe+6dGbSV9Al6zwHcaPhCLH57laO7c3iQ/7klx6ZU6X7FZShb6JAtlSL3hXR1+2FuLDeJQAwkwsk7T4MqxJpKRIwuaZtik72uq6bwxLBH2PwliRvBhn+pm0dPnrt+HfrfQaY3TH/iTrkroscJUI5irwkYgHxi4e0o7U7cqQbSc5ixO5JcFPzaVukiYe+SJjn30qsO3aVdbFE7vkj9iq/ef/FuNJHz7zIfxNv+RE0thju2Qhr+2R9McfdmXtt0/d0ZExZbLG5/HbJhvps7WzaKIfE3vY0/UwWbIPfonv1MZiIRvMyS3dkDmxzzOfy8b4SDbDl+R3QYx3ExHP+UtjVAxD38STvOrTsX4s4OhH38a2/tnmpVJ2TALNiBgbA+PQOSqJB4eRQYRTY9hmruozfAM6BwUDSkfqufqONCzPJAXOBoRnWdTxmSNRsm0+d9Yu2zDs/qBizBJ/g94zg0QigGfXeBrlAPWvoC9ZxQd6nIZ72irderDihM1CBTWDNvlajkGkncGkXvJdiMQ/+POMTEqupGU/7nE8nJdgxMnqywpKrlKRFQ33zbj1LYnkqDzz2XM8kyexRXsj5UAElRtj4BrEAvywJDr1mXLqVyGPZ+R0L6/VSyzdw2s6aNfq5/NRvHI8bBQt2yaspNI9pygQaI82/TvQR5cNcLQcbvLjrOCR8/Lcyquga5X71ZEECgL7o40/JMQ2ugUfkkV1JUOcI71xhsaVsp486hhr+pfEee3HttCGCRtQ6IC95RdNkhd1HDCna7LCxoqRSQanLcDBwRgmK36tWLI/gds4uTeeGTdk0MZ9jt2qooDA1iTEJgpsQdKivcSFc8/VeDgLfpIgshhXqeMiSPwDd/e1VwQI8q6HFZ+Tfqc03OA/SR+/9iQmRnAR+CQy9jfiR1LVHZd4Jje+087TfrCRdpc2TAdde09W2cWR8J8mIII9PQjq/KpnqVc2wR+zJ3wI6LClE0GXrePD+LT6RteSGO3gnTw64zNlx18+d4/tdOVIPoedyUNncMAnLFxL6PVLrlvibaVElU0ZlyZfuYqLpl/fYKfJn3uuHfhhg2Shk/RnEnHjlg/kbyWXirrqKfAhCwzho0927zmbZfN4TVski1/zUGDCxuGHN7ZrcYRO+GJjXDKZuimNhvwDxxx/Hie2ib17xpUkCU94Znd8F9vLRBbGEicYJn5kQT+xSvopj8+TFPEFRsamFVb2ZUzxc2nv+tA33D0zXvgnbbOknGTjk41/GLJF/gttOvCMzdJlt7AZY4B/sUjEV/MpuZCQ8bzbpnudNm2cog9LfksewxbZJpvBJ3syicILH0+P7tMPWdGCI5tQ3DMuYaR4xuaMNZhI1vGqHr9s0gdTZ/2Qy0TfuGY3fBv+jAv1s52JJtr41IatwYWt8rWe6WeYHRXGduk/OyqBplwGx/BfFd8GZURerRg0rg0kipasULyVJkGG4SqcEiUrDJNTY7yea89g0skxBJ/VZ8DOEk2GonAcDJWho+U5g1XHPW3TgRuQBi/eM2ijwcFamTSzN3AYtlcwnFMOOvVc54AxeNXFE5pkFlzJot+siw+JBCyssOHPyiVZ8aUdWTidu2Mwk8VnsqCrvjopjwGXjoPDUDgxA4ozt6LHIdCNszocrTYcL73oS9CyysfBeSXoOUeNJ9jTR8qKj/WKOn6m7vExqN8RK4h4dnCy+ks8yKMvMupbf6lPMtMXHNX3XH0HXrQhP7qKdqlbNjmq0DcnA3Oy+f1S9NyX+MCIvDBjA/cH/VPRFwcFU9h2dUW/gqY2nJ0/VAFDf8TmQxHk6FnxmpKdwSYPPAiGtnDo3/igH8EE/pMWbY9E8iFYctocNB4ks1ZSYMep4pFOrDQK7sYGfOnAeGVvjsSYLRknd0YwlhBw0GhZxfaZfmCtz5x8wNKEjf5gBVNykV0yL4kR5Iwr/RoPmYii7UDToR4+4ZR250zXmSThkW7QzwA+KW6brUdWgTvtwOqQ1618hz98wV/khAxP5Ie95/TCdskBI8/Zt3vwdLApvk4buvC8W9gGXUui6NoKFZ3CLotrulcPPTbPr/kDOFarJQL4t5KIF7/zbOKGH2OKHSj4wgM/TW48STR8phf16IPv0zb1lHzk2XN1JQHGHVp0jxb+HHjiD33vQD0yZSKLDhzZjEQETzkW2TFcc8zggfzqSa7gwL6N6Zx0sC+f2bR28MbLbbGNCm/6Jrt6bJCuJHjsNvXpt361zcSaDdIFufhbk0N44cXKNlrk7GNEvyYGcCQLf4IHtkBHPqMBX/1LyI0xv9bgOwr21po8k8X4kzzxXfiyOMIWtSMfmrAjCz3woZJrPqTPV+rOOZ+phxZ9SuqstMPOF9boQ/+SR/7BooD6+GWH6fvJiQ914WoLqGf8qzcO5KWb3/iN3yjXL3nJS4oO+CL1kxf9wZWt2L6AB7KitV7p0jBhsrDgsMhAf870Tn8+k1c8VZfO9Qm71E3mLWyDPvHpoBOxFk9sCjbsO+VHh43CCS2fteffFPfZjT7pDE9sgy2wJb6XLMa3+KOtPl3jydmzlHc9XHbD87n/F2WaBUllMBaO684IsGaNob3ifDl1SUHOJDO4GOS+ZZoJtkEuwWBQggHnYVAxDIbDOLQ1OBiUQMuQJTmM1ysMM1XORGGw2uMPXxJEz28Lp8h5uGcQGvB41w9j1Bf6Bv1nwqk8MHDI+uF8reRwYCm3vjgnA8srazKUveDh7BgtOQwUiYYVTv2TIw/3OFcJhYDBIQlkVi7zVZEVYv0nnwKHhMgXrNDj/AQ6vJMnZXE2uMhl8Hieq9DkpxsDViCBZf6lK4NTkpV4w57zMKgNSoXD4gjgvF5JB0Kv2guEAgy+8IuP1B8s8MixZhDWnv5eEQ76tsAYLzAnn2cckFelMIO1z4kBWTidfsEHHcIUbXsV8QRHNkwHsMHXa8NuBCcy++MtnOeRSFLZILtmk7Cia4E6Jwfwkah4RmccYtbBD0eoDjkd9KO9unj2G9ImM+x00kImuGrjD9iQhT3Tt/4lbhECI5A9t8hBF+wU7jBkw4KuMcLO4QRDZ4kA/mGET9fqsF08kxUt9fFgTBjXVuHoBS9w1Rcd+ZWLW2LCxskbw+gbD2jg8wMROP01Q8HXqpVXxPxGNwjoV7CjB7qkHxPzbp1JsdtMPXjDQAIpoGWCBh+4C/74d/Ap7ImtCcpwFORtAYGDCQa7Z4+vCz/4uqhn7BkPORb0A98cd/r3jC2i+yM/8iPFj5Df/SxsSxtt6Q1mMHfQiwNt9ua1sLHADviy9Ln0kj4FLbLZjsNm0MRnjmv+Bi79ws+Qie9CFx765lvQ4A8kuJmY8efGiYRIQoq+pC/HHZuRPPIJivaSc/TIw25hjw76xgF/qeDRc/4HfjDL5FJCKG6RCX/q0B+79MYhf6EF/7lfF31+SSG7+MM+xTR9Gn/sHub4M8b5lG6RqPOT7MMWEPS11S8cyJdxT1vjDPxLId8AAEAASURBVM/ikjHG5tQlL59lgQYeePZGzHgnE1+Jbz4Onvple+jDYZjP7PLpmgzsXF9iSPovdkHHKYMYBRuTNQkwG8P3/0ZM/PvYcsE/imdwYVewY9d4McnGo/apP3bIb3ZXutVnm8YUu9IPO4YLvjxfr6iX4wZmfFXmCuIh2zF+jNcXBm2TerqyUgxL8rIjtpj+XH3Y0iH7gZc6dMVH8xnsAn22Q2b+kHzosnNy86UZk4xdq/32Ukvi9aeeHAM/aMON79UnO7wlFjJfGBMoNg+LSfBYD6+d8HzHrEAzPrNXq2hmygzAYDCYGSHjMHANDkmzmSgDF3AYTSZFZmaZpJYkIAa1Ac4RMUqzTANXfxyka4OGkQlAfp7Js1xF4xR8Rl8/6Hsdomh/Txgzpyb4MiqJKicjEHOinuEdbe3Q6hcGig8DDK++UOEzehy0e4yZ7D7rSxvy5IAU9K026j95tmKgbziiZRCi5bOze/DGL1ocKifkGfqKOgaN4KOOv7z13pCLTmBKT9pZcXpR/CICGfHu0DcnYf8V7OAFDw7MZ7JMUvTvNVT+ZI+BbnUV7cSHzOgLlBwOvvBOr8nPYtz7+uDlZPCGZ/XSmeIH75yPACOpw6u2wwraCn3S7Utf+tKCE5nhgh9t0XfNYXFWnGfqiT70gQ/4WonMBIOTJLeVlFtvvbXYKHoCR2KPzy6G9KM9XMhyJJJ0OGykoCHJYE/49lN8HC+b0Bfa5LAyaixl0FFXW8+MSfgIULAQuMn8Az/wAyVJNpaMTf0YTwK4a06cXnzmC8jODslr7MOJ/GjDS1CHPRkF7NyTDFcBwFjQF1uROOOXfhWyoIM/AYXPQVM9fW93gSu5yeOQ8PN9fIJEVGBOXRr/PnsTASOrhhJp9m/8knkpbAMNY4+sdEFH5OwWNL12lpTwg2wQRmnf6rp2CNZ8E53DKMcWv8Rfwo/PwT8fY0yxG5/JR5f0bEzggz7V48fZNro+0wnbVlJP5cPgs7Z0rA3fxd60lbSgDR+FzGzEiqU6fKWCj/RD5Ne/NuyXXea4ZIvsE4awRBt/bC1xMq4zaUo7RosfoDe0yOIZfo0DGNEb+fHMpi1+qMdm8UFG/BtPJn5sAa/woGN/uj7lLEIN/vEc5uRzzS+jwU/RE37oMeXFu3GTMkheJdF4zcI26FY9POCFjmBiMQC/+Ma/++SapKCFl3xbgQe6MXbpkwzsn23x/TDCi7cL8D0W2OHTWyO+MnVDfvKhLU9g9+jhk4073INPFs/oOxN/Y4JuYTZpIc+R8Ln0Sw7XsMQL/PGdcZLd4p2eyWLs3hKTYBiioxhf+DK2raYbg3yh52yGbaJJbhjoR9wiB1uHGf610b92+iMbn+G58QgLfdAbbCTb7mlDr+qKq2jr61IqM2EkZ61kiiVnOAYMBRqEBhPlpVLTqXIqnLGgzOgYBRENGoGDMaLF2CibMXGK6HjmYNyeMxDPGWk+Z4T5TP/a+uy5Ppy1Vxin5+rhw+88rkbdk1GPHGaLeMsVEfzqE71uQU+wYbSOfnKpfr9NV62u8YF+ymKgkCVlTV4zAcnBm/KgnwMGJuRBKws65EfXQR9K6gBd1/rBT9JPfbiHHrrow2wYFtlf/6w/qylWGzh5f2TglnA4+E7dpOPUl/v6Sv3gg30ktnjBA77ZSdoOObUnR8rE+Y4qbM3sX8IrqdAOPzBiA+iyZXbLqaVd6z8TDDrv6gHf+tYvmTyny8RQH7BWB520DTL6zWlbPnwBxkSTY9yM09MfGQT4HJN79li1ubwEGXLk2OjLgU+FftMu4ZRjgqwClTGc489YkaCQyfh2P8cC+uwpbckzbR10CAPP6UAbn+GmHR5glf2lzdEzPrwStRXBGPX7vJJSwThtaJTeL8R9fcI9dY4/PlHSQxd4l4iRBa7sIG3cmdxwhgEa8CKnwga0ybGXNqNPdeAvMTPxYqvD5FcPpmxacIc33OkAfvhCHy85LtlP8oEmnvHhICv5nNHWBi00HOTpFzTIBg99a6toa7ywH21hBQu8ou0Z2nDwWXs4wVi9lFefSUd998kKH7TYHDnZFFqeSfK0Mb49x1fyhj75ncmcdohPtNFMW/VZ/4mRc2IEdzI60j+gQc5uQUPfaCbdxDYxIBca+FffgT+6wg9+0VAnx5i+tMOfZ/SGPv7wlHyrA399rVe05ddz3LJt8ujfPX0obCuxTdp4pj/8pg7V1R4PDnzRs0Px2XN6IE/aqftoWZgRX7zhEl/4T3J5PmlJ/PFFNj5P/3AknzPfCZ+sm+N1lC3TH92wM2f8SHwTL/3wEfTCd8GLnDCEJRnSFtzXPzt0ZmPa8b1w7Ppa/LHz5BluaF1KZcck0JTFkaUzY2CpLAbIEBhODuSdoESGqRiou60YkHRGTwblhS4GtgDvdaa9xpIdq6BWgjiBi1VgAAtOjnNPZ8sZcYz45ngcAtaFKvqRyL/iFa8oQeBlL3tZWX3hAHMcbbZvjt3488d0rOKnjJuhhw7MjIkuX/g39ulyGE54MJ7gDMv1bC6Du3r9vvCNXgZMrzrZk0mHt1fTNF5hwo7S/5GdDzwfHQzTGzzowHgehv+wNjDGn/r42s3FeIYR2+ji456Dnbnf1wt7pTt1JHXwnfaCV2Mtx86F4jdjvv4U+CjuZ2LMR2TSXB5eoH8koX/yJ39StoJYuba9wduo8y1wZDvs5nx1b6wZo0pilfy5nzbWt0F10h/yr3gZVqdLC9/0wNd07T3rXCrnC5/ZbBGSFGrAOihOybMB5Mh7eb9vBHm/VOz8o96oZ51qQy+zj3Hts06XgPo5YFwPq9Ot73pcH/26wz5nH+PobKTOsD6Sds7wfc57STvb5f38nOd+vbw/7mzgS25sObFnzutRKwX48BrLQB9V9LceL+s9H0db39k+z/i1QqDkPee+7PlsGP1RfGvDIVr9svLgsyTLNh+vV70eFASsHIyjP6zP/j3tOdAcf567t1E5sl03OU3e0Mqxn/X6suMhE0ft1uOha59dmq5h5TWl1WeTDls7vM48Eq9cu0m9uherJDb4MQmyWqTk/Ty719dFt57rbhlW13P4D0sAu23zOvvuBvG816ef97NtnrPesOf5LOsOOw9rl/W67bNe917Wy2f5uX/ONuoZzw4l23kOM0e35HP31DG5cHbfkXQ979b1uVuyTfde97pLp3vf9Xp0+/W7bchjvCe/nvX72gz9fp9opt11+3c9yt4n5SPrDePTPauztjZIPI0xn+331c42Cyu551OyXzlANw9AM3lL+lk3P3fPWVcdfKb/zDaeu17Pf6Y/RFt9R9LOe9kvWl1b79fNepfCecck0F1ldBXbve/6Qjzr9zHs87h+t6I+GhvtY1i/k9LZbF/9dv3PXZ7GPevW28i1/Vu+5f/q+JUWXw6xumP10D6/cWU9XtZ7Po62Z+Pab/bZKLpWtSTKVk6tOMNAkiUg2GNpv5xXnqPalwcT/jOO9y6JSeqNqzPs2bB742QaVn/YPfsSX/WqV5VJmL2DvvfgPKxuV8btvB7Fy6j7fd4mrddtN2mbSeuhvV7d9Z53+eteT9puXL1xzybtaxiNYffQG3Z/2L1J++7W61+vR7df3+d+m/7nbptxz7r1JrkeR2vcM7Q389xKrWT55S9/+dq+dpNzX57jO73VTP85Cf/D6qzHV7fNJHXH1Rn1bCP3N1K3y/tuv96RCfRuV0qVb/MIcHS+FObLeJIer8fMmC+1Qm7762xDsMXpyti3em18ySO/bJmr35caLpPIaxXHWwv248tlju5bhElo1DoVgYrAzkXAXmK/MsKPOqw4iym+UOo7GP23CjtX0sr5+SBw6WUW54NWbbsjEPA6yms2ibTVRF+auJSK1QKvOP26ge0HtiFInp8f31D3TfUjsRUhX8FdSrhMKqvJhS0bzr6Mk6sveZ6UTq1XEagI7DwEjHPj3pcE+U7bOG6KX9yw+swv5DaJnSdZ5XirEdgxXyLcasErvd2PQH6porv/a/dL3e5h4/R98cXPu9nTa5+dVRS/oJB7hS8FLDYjI7vxGtcq06X49mIzmNU2FYHdgoA9vb6k6Evpfl3F3mIJtW0btsLxC3UyvVu0fX5y1AT6/PCrrSsCU42ARNCeaA6/rjpPtaoqcxWBisCUIeDL2N0v500Ze5Wdi4xATaAvsgJq9xWBC4WAlZR+qSsnfUTq54pARaAicC4C1Xeei0f9NByBmkAPx6XerQhUBCoCFYGKQEWgIlARqAgMReDS+rMxQyGoNysCFYGKQEWgIlARqAhUBCoCkyNQE+jJsao1KwIVgYpARaAiUBGoCFQEKgJNTaCrEVQEKgIVgYpARaAiUBGoCFQENoBATaA3AFatWhGoCFQEKgIVgYpARaAiUBGoCXS1gYpARaAiUBGoCFQEKgIVgYrABhCoCfQGwKpVKwIVgYpARaAiUBGoCFQEKgI1ga42UBGoCFQEKgIVgYpARaAiUBHYAAI1gd4AWLVqRaAiUBGoCFQEKgIVgYpARaAm0NUGKgIVgYpARaAiUBGoCFQEKgIbQKAm0BsAq1atCFQEKgIVgYpARaAiUBGoCNQEutpARaAiUBGoCFQEKgIVgYpARWADCNQEegNg1aoVgYpARaAiUBGoCFQEKgIVgZpAVxuoCFQEKgIVgYpARaAiUBGoCGwAgZpAbwCsWrUiUBGoCFQEKgIVgYpARaAiUBPoagMVgYpARaAiUBGoCFQEKgIVgQ0gUBPoDYBVq1YEKgIVgYpARaAiUBGoCFQE5isEFYGKQEWgIlARqAhcegisrq4WofM8MzPzCBCG3XtEpQ3cWFlZKbXRdejbkZ8nIZVt1N1Iu0lo1zoVgUkRqAn0pEjVehWBikBFoCJQEdhFCEhmH3rooebee+8tUh08eLA5fPhwc/LkyebEiRPNnj17mv379zeLi4slUT1f0fV3//33N2fOnGmuuOKKZmFhoVw/+OCDzd69e5sDBw40s7OzY/taXl5u1Mefupdddlmzb9++82Wttq8IbBiBmkBvGLLaYDMIcHqnT58ux9zcXHGUVg5qqQhUBCoCFYHtRcAKriT205/+dHP33Xc3x44dK6vAl19++dqK8Knw13z0ymB1eCs41OcHPvCB5oEHHmhuvvnm5sorr2yOHj3avOc972muvfba5vGPf3xJpMf1tbS01Nxzzz3NfffdVxJ8iXdNoMchVp9dKARqAn2hkK10z0HAakE6a87uSU96UnF6HLnSTabzlZxnViz6z4a9vks6eV5vFeMc5uqHikBFoCJwCSGQq7hvetObmk9+8pPNE5/4xJJQP/zwwyUpffSjH908+uqrywovX6q+c/re9Mn97Rjdz+qqZ8Ekr0+dOtXo873vfW9ZRHH/E5/4RPOa17ymee5zn9tcd911pf6sxZXBAku3LzxIwiXd4omV8WuuuaaR+GfJ+vm5nisCFwqBmkBfKGQr3XMQ4FitQB8/frw4vk996lNrr948y4SXs+UQvUrkIK1UcLJWKiTeVh/uuuuu8toxnafXfhyzV4P52vGxj31seUWYdM9hpn6oCFQEKgKXMAKSUKvOEmNbKW688cbiO/lRflWCamXac35VeepTn1r8sYT7cY97XElkXfPJ/DM//KEPfaj4+Uc96lHl/tWRhD/lKU9ZW1Xmy8UB20bQfd/73td87GMfK/Rt53DfZ8/EBYmxbSTJr/ignud45e+tXluNFjdsP7EiXUtFYDsQqAn0dqBc+1hbRbY6IAHmOJ/85CcXx8tRc8CSZisgXu1xlFYm7rjjjrIfL50jB5yv79ThWO3R+8xnPlPoSrg53Oc85zlre+rqikQ1wIpARaAicBYBSa99znynZPf6668vSam90HysswUM9Wy5sPBhAYN/tXoscbUP+d3vfnfxwTfddFOh8/rXv7508uxnP7v46SNHjpyzLYMvzj3VaH384x8vifpVV11VkmX9SIgl4ny7lXD8KRJrCyK2ekiSxQp8igfqHjp0qBylcv2nIrANCNSfsdsGkGsXZxHgnK0y3HnnncVhWv1417ve1cwOVp6tLOR+PK04cA7ybW97W/OGN7yhef/739885jGPKck3J2o146Mf/Wjz5je/udC0IsIBf/jDHy7trKDUUhGoCFQEKgLnIsAXK5Jaq71870c+8pHiRyW3/Cv/7GyFl09V7FNWV0Ir4dWen3at2J73/Oc/v6xq998AqisRt4rMr1v4kMhbPLHyjQ7/n6vLknd9Wd3Go0Q5i7Zvf/vbS/+2fki0LZ7UUhHYLgTqCvR2IV37KSsbYJDUSqKtGHhFVxxoOEjXnuVWD9s8OFyrz1asOWjOnDPlhK1cK+pzuJwomopXjFY6tK+lIlARqAhUBM4iILGVxGbCajWZH+V/+WPFcwmp7XD8q1Vhb/1uuOGG4sv5a77YNg2rwtq+853vLL65JN6REJ8Jmt3CH8/Pzxc/zoejITFGV3sr21aWbcXQv9Vubfhzvl9MkGDjVRv94g3/2tdSEdhOBGoCvZ1oX+J9cXicJ8fJwVp1kPDavuEs4fVMPU7RCoU6Xu9Z7XA/f2KJk1fHKop2HKmVaXV9zi0fAkUtFYGKQEWgInAWAckp3yoplbBaYba6KyG2Esyv8reun/CEJ5S6b3zjG0uyy8dqr66kVQJtqwV/zAe7z+9quxD+vuuDXfP1knLbPrRDw5tD/SmS9owJ+PIzdbnFz3Mr4ehYMNFeLLAgY4FF/Kir0FCqZTsQqAn0dqBc+ygOj2PjtDlDzpOj5cA5U9eeew2Xjj1Xp60ucKIcuUTZlg0Ol+PkQDlwdHJPnSSbk5ak11IRqAhUBCoC5yJgIYN/tR3DmzyLFVZ1LT7kL2FYGZYE882SZs8tTLjWls+1Ipy/Ic3n+qIhv6vd42JfNRr6yuL6SOyL5ud9uVCbTHxdS4wfH37+dCTj6Ps+jLpiwP2RTEvsxYH8siD6VtHVdV1XoRPpet4OBGbCINuNUNvRW+3jkkXA6oaVDq/orCpwun46icO+/fbby8qFJNkXB53d9wUTqxqcqjMn6XWefXof/OAHy6u8F7zgBcWhquOb45w85y2p5uQ57LqN45I1uyp4RaAiMAIBCaeVW8kpv+wz38n/Wg322ZnflZhKtD23AKI8+OCxWLS4vzyz8uuQDGed/C4LP8w/K2jy/+hJxNEXG/BhVZuvlsy7p430xMIKP462z+jjKVesM4WZj/b7gwd0aqkIbAcCNYHeDpRrHwUBzlPh8NI5c5iunYddq+u+c37r2qqHX+eQMD/vec8rX1qRcCdt9Tlf51oqAhWB0Qhk8jG6Rn2ymxGIP6IdDrn9IiE5098Ok7n/rKy8Dfxz1u/WSdvq++FR97s08jrPSSP5zfvdc9bp3qvXlxYC220DNYG+tOxrR0t7+vSZ+Eb2fSV5fuihh2Ol5HBz5IifT7pybYVjRwtYma8IbDMCmcxsc7e1u4pARaAisOUI7JgE2qqhVzRexXu9nquLEOnvCbEO6N5Wrwf2+9F3luyz+zmvN3pO3rO/cXK0ASlrbrCn7EizJDGusz75bvt81r3Xv1Yn6XefuZ+f+2fPuiWfu9e97tbJa883WTRdWWm/pe3ni9jb4UOHm8ORRO/dM+aH87uGkLKO42GcDP1nKU/2kfT79bK/UffzuXOXZvf+NFz3+Z/k83bw3ce/3+coPgf3Od39+w+UvZbeZHT3bPZJ7YbPfBSffe899zZ33P6R5li8il9ZsrYHkEuzzMU23QOXNc3i/tVmfsZbrz4OLTb+dSyF4zy1HFvLluebM8ux3eFMNPALa2fiLdtSvFEL/1RiQWA9tDyC/tBa9ealjMAw02E3M7Edxhcu5+NYiBsLq7FtJbbfLJxu9s7GtpuwX1/HbE1s9xva0rKtRrFt85qbYnvRNeHLD27b2+ezu/s3YKgcgz1KXqW/9a1vKUm0zxn9i44H9Fob8K/X8G2N9lNb4ax625ql3qDtuadwaqiUBmdbnb06Wzspnb0TyVfcXIl/8hWQc2wa6FbB4dpzDwTW2dl2a0F3ZpM+sT1Hm9Jhu9VgfmGxmd+zGL9rHPu5evTP6ewS+jBMH5sTH6XU2Wrz8bvav5CF1maxTmqb46e2GotAgptq2zpDGNvtRh7mGL/2mqubpz3tyc118SXVSyGBPn7iePOh2+9o/vr3/6b54DvvaM48vFSS6DK8plBPG9HpI+qyw2EydexzMZLnI89eba6/aaW58rLlZmGuRIpCqq129vNy0Dq+MtM8cGZPc//pxebYqT3N6WORRD8YMeDB5Wbl+Jlm+VTgeXqlWVHZ/5FXr0b8aePQbJwj2tjR5ogA4pnr+LeNJ+VicN27l7JkHMrPUW10QW8UDlqNezaa6vQ8mRb+W2M5F5fBvZK7uB4cPpd7kQ/ntdy4kXOUwy+hrMbHODr35/bEn0c/sKeZPRi/eX14rpk7HJO/g6eaq/fFW9mFM82+uZUmqjSaPDLLaW0Mg9jom4V7Svd+3mufnH3WrZfPtvKcPPRpuq+0/M/E1s5TzdzCo5unP+NbYiLxBbEX38/Xtr/o0ta8cP+eVwJ91913NW9525vjywWfLF/emg2PMB9eoMzgBzyvxj0J9/Jq/A37crQ+Q7JKFSZQ83GsxJcK3Im5e5zDwZSnUSPazgQNs6r5sIj5MKzyhYS4PxtWl19OaL1Oq1xt9MsqZ8IiVwPMh8OZPXTiTHPqzHL51u5q9DcX9OaC3lzUiZ244cSWm2VHPBNY95YvJSw2+xf3hmJAFbWCrhnPUqwwxCmS8lh0iG8B62/Pwp7muhufHsczm0NX3tjML+wr9zO5S8UHoU2UvhlvgsRFaHJ+Mm8Pwxce2elB4RGyPuLG5Jiv23TdCqP72mjTRDjb9T+P7il805kTzQMnVmN70LHmivjCk18d2O1lJZzXqeOnm+N3n2rO3Oe32SMBjGQPfrBLHOHQxzI/e5b1XSv9dt3Pnndp53XSS1r9s3ZK977Pw9r372cb9/M6z3nPORbgm9P3zzRX3bzSPOdZC82hA63Xltj0S4SXEp/OxHmpxIwTzWr8BLFV/DNL8Rv3SzPN0VNzzdETe5vjJ+L3jePviyw9GH/579hSc/ThprnvYX+yOlauH4zYdDyIHI+k+1gk3RGjloPGykoEJgl1oR/2GZ9XImEv2onEO/ZdhixxREwslfAYR+H1Efyq0950VUBzzlJuth86l+VGkkoK+bx7P8nkedgz97KtesPqdO+77pbsv3vPdZdm99m4/vrPsl33/qjrrOusTil5Eee8zEfO0pDCaDC7atJU8pFIbme96ViJhbZoNxd5TKQX85EPz++Za2YuX2jmroi3Yofjz6wfPh3HanPo8vgy/IH5ZvHQanPl4TPNlYunm4Ox4rwnkiJt0VmIi/mZ+NnAYETyPJQh93dDGRgFTO+7L35AIBYADh44FWNgaVul21QCjUOv0I+feLi5+9N3N3fd/an42ZkTjQR6TxOzd68QaDHK8iDZPBMO4FQc3nBFqlp0uxo09oQh7Q1tS1qXwoEvMbLBN3Y5quWoE26m2RNGtm/PbJznBkmzBHo2ZmiSX6VFVH28SaIl17NhWcuRQB87tdw8ePJMJPrLxclJ2NFl4a2Rtwm0JJpzwj4Z9u6J37uMb/bu37dY+tLLCsbif6sIS+HoTsbeXI7Tt4KXVmP2sxDfLt73uObgnsNh3DEqWgbzVLjd2D84ilL+2VjLi117IPpQNjYtTrfhkA6G3Bra//be7DJ94XsuGGwBEENJDL05mUwTN524Yju81qoPLkpu4boP+1pF/MaHGPwrKw+GXzrenDx1OnzQ9jrgyVDb+lr840r4rDMPx2LA0cCA1zv3b15sfadTSjHceNOcisT2jqa554mrzYmnxx/ueMxsc3h/iRBDuT7HjNSIG+LCUiwSnQiCkuiHTs1EXIwEOGgvP7zanI5E+viJ2PoYq9Mn4rx8IsyvPF9uTp2IP2ByOurEVhCJ9GpcW8E+FS92T52JrSJxLMWzFTqKZ0sRSE+cnm1Oxv1Vhy047sf59NJsHBH34ry6HMlZ8DUjww9bL5HEmMgD7547Z1kbM+fczaeX8HkAzACWVTMW1+UI3USesSofiVXjhYXlZnFvnBcjmY0dhnv3rjT7FiM32ht/SGZxJu7H3y+Iz/FjIvE5/qhN1FN/3+JSs3BguZk/ELnOgUic961EYhjJ9MHQUVwv7JsJu5xrDsXKY1SJhNkiYfCwprNzLne9rsJ0Iyc0iYhcco/cbXvLphNobJqjSzRLsCoz5siO40abuHpN5bWXGXQkzpLjway6CFkSV447nEvQ8abLqq4kekbiyyoYhWXeMJTZ+Bmbudio5k8+a2+FuKweS7bx4GbU14WLQiOS55mYlVmFXliYbfaHge8NQ12OPiTQEu0lQSRWpe2vnYnGVroXoy7XuRwry1aXH47Ee2Z+oYltRoWv2VDYvJlf9L0czlLifOr0UlmZvv8zHy5bkxb3H2rmYo/SgcPXRf94wFe/DL3Zr1Q+M5RSJm8yaDDdpxRrK7mcTojW42rrkDinp3M+bBzloc2H3pyM9sRNJ65Yhv8jO8/2ee7WWLsX6USM3/K6NAYon7L2qFt/l18XywvfV7YR7HJZR4m3HInpPbfPNO+IpHn+gN8uXm6edERwZhejWj3yvuUcvwe0L5Koq/ZF0rov0A0bM2GJlaGIKnG4tGoTZzGyXVyab05E0n0qkuQzkXCvnooEO45TkRTHi4KY3MWbTkn1SQm5ZHsl3prMN0ePRwyKPxy4Em9Qlo6vNCcl6LGqffREJPIPBZ04Zh+Kjo5GjIvJkpVsG2RXRX7nCJ9uLUeMVCSFVrjbD4XRwi9e1w4P87PLQfVyz7MseT8/T+u5q9+4Lvp2Lw8phuuS7MRFyFU0GWNm1h8/jEmONGT2UOB7RdjP5U1z2RWxFejylebQZZEfHJppLotnVxxcjv25kYvsj4W5SIQP7Ztt9pXPcyWB3rdntTkQ+5ktKM7FNgydzkbOUtiQZFldpZ+4Ue5Flfa9/bQCe2H5gkOkcHHEuDCcLoK9nVcCzeEuxe/unor9dCeOP1yMamZvGMPMQrE1rwlPx97oh2P02zohkW73FLcGUCxxNWZtkbCyjznG4ZUG3OOfMpiDavkcTshIX46KXjXOx76PubBajslz4MGvXcm2HzusMOrMxGuS08GHBJ6zQk0ftnUEN81yJMK2ZyxJqMuqdOwnWoxkOVbG/RnS47FKUAJsULTKXLZ4hNyC7Z5ot7h3T0nkFyJZNlnwO8T3fPrjzcx7/iVaNM1jnxB/IGTf5VEf1KnhIlF5Puk/jKUFYnSLpF5qnPNhdJuL/WQ9JPpirFf/Ysuz+f6HSdaXvqVeag6rvvnO11oOJTv05lqToRcbbrKBBhuoepa3IY3KLT6nDKwhFc623t1XzCyP3S3pSOlWIzdZjVWsez7YNG+LJHbPwYgtsVL4lOsioYk4UoLzhCayVi0uWtvSbfnQ6X+tVln0ifgfyZD4FXxIBso2johPEWvcs44k3pZn8eVF98/E6rK4ZjtieRarz21d8S7+LHfIVGJw3D8aSfi9J+eb+44vNCeOxvaRoxG7H1puHrg/ft/5/rnm7gcXm+P3xO8nfyrC5oOxZbI5HdExfoO/LHG1MRbzuM6jXESYlYivxacUc62SVlF8Hu7Oyv2hj4beLNTG/6OvTikfe/c6j8tl0a/+2EHqID661R6BebxfPxNH84TZ5qrrT8cfnFlqHn1t0+y/Zra58lFLzQ2HTjaXxdaKxdiAPB+J8J6wm1h3i8U3fxY9VpQj15izXSPwmo2z7wC2n9ucxPbUuN3m6YWrzj8DLAanzoNL+zLtjnrXUfEFAeo8EuhQpVXkSCqXIklejsNenplIiBWKNsitKJfBHzfKrM2KT0jaCtuuABWnUVqZccW9eNquBrXG5pFVZPcY+pkgaCXatX1gUbv0ZxZiC4dtIxLr+DJ0DP8lb7zKHmz7j6xMo8OA/Wc12TewF1baH47nD/YvzsfWkhhLxTFIvOOVS1h7WVGPjW/LMcJOn1kKB9W+MrBXeiEGh5FyejX2WZ98qLn7E++Lb3RfFTPNy5vLr35iXF8Rq+h+KD4S9wukaWRD1JAqzvkhrndy6Yrh+lIvBYMLBMRQskNvjtfChppsqHJr2+N7H/J0TB9jHg0hVG/tWgQ4zkieTh5tmrveOdO8/bEWSGKb383L8ddP5+I1ery9LPFgYwggu1bO+XDWV7eLRyUPbf8pIVR0UuLf9Yw0nf5aR3ExuFdWuOP6WCSFD8SWjwdPxtvSWJVeir3Yy7FifexYrGTHCvUD8UWs0w+diS9ARtvYTnImvi904qQV8IihsR61ahtKbBvxWwFWyU/HtpHlODdxrMZquP3fS7HAtRSr6GWVO/ozM7A6uByJvq0t7oulglPu4y58lllBMIlnJc/kzmvnxKF7rX63ZJ3Oud1qEdmH/CHu239shXe+nINsJLqzZdtFLMxFfjwb2ywWYjvF3sWV8sY6vsoUWydW4rsRsU3gYGyxuGKuOXxF7E++MvYjXznb7I2/K3PZZXPNNfv2Nocjl9gjwGf/Xd6GXYcsKeLaY5OlSduvNaoXFwOB80igk10JbLvneSGS2v/P3ps/SZJcd36eV91999z3DIABcQjE8lhpd6k1akWZyUy/SH+lTL/IjCvbNcq4WokESQAcXAQwgxnMhbm6p6en77qy8tDn8zwiKysrMyuzsqrP8O6siPDj+fMXHu7fePH8edgk21EDwAJm6QwNzCjqrQys7VkCWIMaWz+hmidU0B6KnucxzDjI6tE3NX+hcXbEibDfywTTAZ6hBa7lQeVhx9ZM7TPjIg9IC601r4PwGAsP/eYSxXONarN9A2xRxxJguaWBP6C4D5ju8fDnXY9My9rq7W0GHMw7dnAHZfsF0dpn86oZ4Fpb62tf/J66ANXYh59/6rW0un4JbTSmHfBSVJ6bcYJ/S4kUTZtKuZTigUxjIw/kuO8XZZvue8WnVGHR/WegPqnlJ3eTDtVwKOJoNucuMkeBObIeZnSo8NDp4XxVTCUBJcBjZT/pYZ/65Vu99LPNbtq83k3f+SFKx9dTeo7P80uuej+hMKA0ODlIePCUD04Oph+4cg4twiB7tIc5jXgwH9pR5ltsbBMeR8Jch3TnNjAu4NaF8KQLePnFQsh2EztuFv9vMUdj/rG3jTkjpiJ3uL6HiUgb85EwCyGtTfwWIHsLgL4n6ObHoqfUweRkGxMT8DhmJ03MTZh3/apL3hr232q5aoDvqFs5iEg0lSBb/GKqJN9RwSyiTif7AO8coStUULGXsDXuYy7RAww3Ma1ZxV3hugAZc4omNjetNWyNN1LawNyiidmFLg3PnavHb53j6tlaurTWTWeW2TYc8x7NR4UQDdzGJX5iFH82QXlGX/LCc4/zhHnzz0O7ynuiElgYQKsZDoCc7SICENuBXCC4x8OhtjhAL2wLHHw24sgJXS7A9MCsI9KMz1rlANrG+Y9j0weBoF2QQD0WKkaUIFxzERZj8JYsgM69FtBNWT9j+UR3+abV5fuJ2uv4xTbPPAUQz8DcZ1b766I0J0uAbrkJ0A1VAb+fXvoakTEA2MbbdzdDA33uzJkA2LzHoqXu41+VLUv/8Ou0ee9Guvj0q+nys2+mp1/6QVrduJwrgO6DDONqP/U3XweUBxnGNfo+8nMy1UtlfkH6DJ10GJAcnMxewzGK7BOfo/AcWffpV2dPpgR4rHoCQUwcPvtNLd293kgfv9tIP/y3/fSX/0MvPX2xERjvAQ/dh+/NUCcfOo18Xvsr57WIROuaQz7u/0VrTALOHtJlTrTPDh/haJb7+LzuxJxeKKmc2wGpXdI6aJnRV6FUogxfacMMwq+1pdaafHt8au5qXUmeLnTaTNTm39xrpBs7SwBsFuED2LssvnTxox4H+vckKEdHhADJzOWrzPh8Pm5oQgFQXl/ZS+eW2gBf1jZpWkGaerQl7I2xvkytIq6Buc4KZVaJ0/xCV3G+LLX4NTlvcFwGN2CJEbj+ADfFUDx2RC7FfKBAdfG4SGAhAB2gVpCJdrmPGyTBqprcmKjpTWBcNLP8Id44+1K8pXlOuQCrHLNGmoeOdIFszpnzamJRPvgeBbMtQHumI7TO3dZymm5kDxyQyLXFwTdFS2pCopcN/sRRe+nQSMNcPKJxlI5a6sxP1COPQSPIkCYjatTJo8kGizo6nT1AdBNvHatosdFac77L9647t66lnc0baevOVQaHu2lp5QxvxC1MO84V7Za3hyd4jxYJ+W5MoWAFR2aaUn6RpCmNm5K0SI2nWHY2jmfLVbI5+cZMpTM1saR98HiMIvsEphSekrRffvTMQscqOEqoun4sJMBkoOcMvWhs3aqnq++yCBwj6RdfxgvCm2gi0UgyPTySfWbwhA9O8h3LEJVI/jtXNzlqlbhmQ0uUYELM8sVd9pJky/rDWjObTXKhVYYRrlcKO26u0XHFzzTj25hNasO9hbeQ223NQiiCvaULOk0PYpiZ9FWAHRWco/06gJa9xmr/Og3Qs8UabuHOAJhdnLdCemiOAdt+LHYdlXN5g6N2yrbX9wpn9jLARTFfZTxgQ3mniFAc8kX194mUQPloHKPxoT8GLNJn6XX6LxRX2hntlLqi03whPmfY0+yJ0Rt9QHMeMann5mn7ZssTFg9ZgGhoQWeFX2ioKVx04QJ40ukLusZ7Gr4VeTi0i/aZ00OGsLnUVgeQ5ukNuyyAdAcTDIn0QMfaR/UE/2iWWz4ltCtKU3/+F1nlOOqqqYYmyKp2ZtsYi6mJNnV9fS000j1otWnQDq/ZvZtfwd872Fadw5xlNV1+/o94gHndHQ3QK8Q0mvJIXHsfpoVo21GZphGYM+0+VjUnZyeb/UA7D1zMU89+wf2zMeUHibP31EGRMeSOjJpSeErSkWTLDCdBo6RVHR8TCdC1nV90SZZqe+nqe/308x9jCqFvXj7zlwvLH5PWxpwWbSkfhuJ44AnnwmuTYoqOkywBTwUTAlDnTvVL2hbnmTnnKab1fBF/84xuvHSz8swzL7y2LlCCrkKkOy6YfZDGCaaXg2sv+YfOmZM8b5ckvLdlGJxLi9/gAzaXQ9ly9qBZlqyOT7oEFgDQiI6epymEXiwEnva+bAfkgwOwpC/vAox3sAfWxKJ8KJYB26vLaGF55dMExLR7O50wvyj6MKCXTyY8gMvxCNiNTSkDD0PR6/saOQGUBdnL8OEOUhkg5zdfXeOFmxOyefSR8KG2vIsIDALu+LzEZ6Y2muQGn6r0DCKAV6ssMB88SFEf15YHRK+QIlj3TXqX8vcw+JLqBiC6RjsF0T08c7TxTXTr5vWUPvpZWsGE49zFl9hNSC10BuLBSDAz5qEdJB7/5PDgdXxai5QcyHERIo952YkymphwsgIpHq0ZiO4ztH82QzGzHCqQn8UZS0e2QyQmFZ454yQCVfwTKQG6pAvoDPdu1NLHv+ulmz9krniNeQ7dRzkH5RxPxt/yURqMEWXESPMjmj8TkovcBaidmmlq4kitUy65l/OPMFPoVUmVBJDAYgAaArpmFwRml3JcDT1ZboqyA6jc1MQBkGkXNrkGKBUYx6pYjnxwyT8So7x5eOnUfGP/8fFhy2+s+3HSJBT5gfG8/e6D9wykXcgImAbg6oc6wLR0/A4DqoyHCq100PQa4y1XC+uQvg8tbZ+B0Lke/6rVjnIZROudo8XnoTp2Wj2cQu7gncNVEsqjhZHVsuYtfRYW8n3KBYdff/leuvT8d1J75w5mHOzZ7rek+xCU+7EHkGMXvA8NexiriM50PMYWKDpzhYfqOBQxM6n83ByVfSb6ZjrY0WYqNq7uQwX3I/bPrMurg3WOI1fFPcESKLrJ7nYtXf097t6uddIdFsxdwhxgaFZ4ggW0WNPj6VvgEQzFUPkYFw/3/jO+GG9V6UoCR0lgIQCt6UIAzejFVGXP5RcdmIciNkgRCeOZQvtotcR6ulhdBkBjzO8e785fbnaiQ/FlwGkgbMhor6wvZre7FBIHzWiNT5tXgl+PeRgLcF1kCtgN+FY7rRYZfXKUFDzHximg+Q509Ust6z2+N+nersVqWhcqqv2WtGn5HbkgDBUsssJkQ4qQjvS6G7zgQzRMQeBHrftXN26l82c3WNW7EZpxQbd+pNVUb2/eTpt3v0or6xdxk4OB1uClI9g8tT/7rZitiiw18lpwcDFb2ScyVyHgeeV82rKays/UxMOczZk9953DZMbG5GdtbNLskWMYHBMFvfGxs1dU5XwiJOC4R1fZw0b39qf19NGn/fTKl7o6ZaEdv0iuutID6wqDqbO6Bw/sHjzJFS8EoNXOttCwcogNTsTDxZDCUW2y9scsMiTBJLfeFqC2Cjtp82tvJG7OXi72nwL1sgGwOZboTUAraBaI5yBVzj3ks+JECN3ALnmHTVzaAdpdMJAdleOKCPDOItwAwgNf1QDb8FEJMbXlwnJtpwW3ByZ2mPDFIWt0he0EQbpu7FZWWCjYZtED3/0A/y4ibO3ssNJ3iQUMiJrMe/0ltNAfpI/e+buQz6Vnv5mWlvGf44vGQxZKKcuW9+hYobg3xyp7vwodt20j/J0QmRGqi10GTyfE2FQyUxMXa8PU0kfUe0TyYOyYWkeV+GRLgDEsfB0zhL/zT/W0jsuz9f/QTa++hH9oPDRUoZJAJYEnUwKLAWjGjgDDHDUvDqxUHLPzcqCnWmSwoWkCUQG0NsfYSURc+IEOUBo65OIuCLj9B5IVfEuTP/5iQeHgtVOq0s55cmFrUX+NWx1A8V1sq8PHs8AdoNvCgXoLYKxm2l8dYN0Iu2lZynbT4ckjE+NvOUBaB+YmkYedmnxroJawsWaRQw2ay5hsaAPeZ1Vx02W9ePnYwiZ6nTh9UGujbbh3+1r69P2foH0+Q/xyEkQ3YkFhriu3KrI+NH9KKRxm6GHkeQ4JjmnYmKjDzX7IYsbyPDZydsZnLj5zxlz3nNknMzxEaOh0cv7RlLIQx/J0NEt1XUmAYT7V1PQwd1z9eSP9EmXHufMdxu6UXn2BDVaYQwZTUiWuSgKVBJ4YCSwEoLOUMngdhiyaO6vN1ReywNrrAL/lRAV4xtI4NLBqewWhYF3HqSJw5kYmgGd3NAXnAlyzKYdLfLWTDnBtNs7dNKWvbxyCWm6nQ6/UCi/jOF0t8y7mE1t4w9CNHeNd2CavLmFKggbdXQT1B+kkmh3J60s6Lz40rhwcw2RFfmOZrhBdLTP+LDm6NbjaeIF1vQdd7aHRPrvhyr3N7bQOH8sry/CFZw742NnZTp9+8BPspNfS2tmn8A19EZvvsOKGrrVOCIWQ9mU1Id+R0VPqOLLs4QwTqU1MOEzj5GJOu9LFpT9rW8e2ZGzkrBT3881MZuaMPnknFKYQmpI0W+UFAQ/eSY/xjC9MeLbqq1yPpgTwWJp67E741ce19KP/1ODLYS+trffTM+fxK+ykQijnikezhRXXlQQqCcwjgYUAtJOPgNNBw19oaAHNLtZrA2jdRCU2UpEjMge2BRF3ALFuh63dsY7a2f8kJjKKCkXxAcnbvW5wAKTNcIVHHAA6m24IW6VXHJ3+LEfhvACReJghO2gaUMtq6QZpDQj28K7Ro243VtmVR3ZWaqChXsLjxsbKUlrDNlvn6QLypgCacs3wFJIHRyqxoqiL5OBpl8WBUEk6IWmgknC/+yb1r7hhC4yZb3dnlx2a2H4JbK8mWg8fex3c3t24kj7/+OcA6/X0wut/ms5ceJ5GH7GosGClOCiJQZC92cK40rOVrHIpAeU3s7CPJTKfp9MMY8mPjTxFLo5R3zGK5Ns10oySzmnLeaTa6vJRloDDPyB6h01Wrr5dT//yXC2dwa3d+p800qXzqD1Mf5TbV/FeSaCSwFwSWAxAF2AyDxoAV4Cnm5Ps4cFiB1CsCYUu6iKdvALcDoBZgCrC7cV19pBR2gCb1tM/M0C0h+q5j0P0ANWUR7dL4wZTXzQ0vGoAhj0K0E0VyAviBZSC7rC9FpFzLX13U2rjLWMP8Lsrv8S5K1EfApHfujiXb22zA5hbM8StQ9MPtesuCnRRYmjTrZcMblmuqQjsp/4SdtHIYnt3L21TlzbhayyWdMtzmWnj3u7rK+/DM1rxJdzeAbpX1s6jOcc5nhXNGUrJ5GIHr4yL+zAnzSr7JAmMyvf40h2lNOjik6qeMf4Q3Wnl5sq8/xROIzk17Yj6jkieSvpA4gihkcvqoTggrOpiFgm4TfXunX56/2coStgS+vxGJ73yKht2sC302qrrfGahUuWpJFBJ4FGXwEIA2sYLUp1Oga9hKuH2nNvs6bmt72eTCOZR8xvXIEsBpsHNUwJMU1bAKlCtkbnBq3yRJYCxs5zaYH/xD4AcoNa4HkAYjXVoqLX3MC/mH22AseYh4OjAI4JfTxrUU0cDrA/nHqhZvhzv1tjDU1OOGmWjSdAOEKtaISgApimv/bRH29jR7kRY70sC/qOpDhDtPqF5BI32CJbZeVA3em6o0mjsplUWG2Z7aEB4ezt99cVHaMr/PnXam2z1/f105vzzLHQEUJdMS5ffkcE2TglHJE8pOVvSgMfByWzlHrZcIae5hTVrgZMRztTapiYeLe2Fis9QeIYsRzM5nKMgeCy6xyo0XHl1/kRJwMeXiazLvHDrs3r67d81UISk9I0f9NOb3+6lb7+W0rn1rPyI4fuJEk7V2EoCT5YEFgbQIS4GFc0iQvusZhfvE26/2YzFehkY6zJOFLhkHD/waWwX2neXIUIsEuQoaDQu7JYBnGqLc8CtXZhXdBNulwtwqVs669O22Ui0y9TTYYTbVjusxtrFfkV+50rBr3W42E/tstpqLY/dDMbFhP0wxi7BM7wXtVOKMwgRBOGaanS7mc/wIk1Sn3bDCb8mWmTbrQmJdtho2YlXLmqjm9g6r+oLm598t3e30pef/y7tbt9Jt69/ml765n/LToVvYtrBRivyT9ngI1cfPPhn5HIQ/6BOBrIanDwoTh7meucXjq+nY8P8pMaSGY48kuSRGYapHT5fsHgmOIbImKjDlY+LmSDacVmruEoCAwnwkbTLHHfri3p6959S+hIw/fWVbjq30U0rq2zqVWqABgWqk0oClQQeNwksDKAFvi6464TpBqCVc+PC/zKDiG7sBKpuTuJc1UQjK3gV76rNVd9rvBrkMMOINOKIbGP+oHmD6U6QPeymjc/mGhGTugDlHqBX85HI3WXXP4i7KyCV858mQtNgvSLorFk2RrMQrUUKjxych5YbUG2ZrAE2X1E/+cPWGm5sxzK+8AT6ex2179Svlh0w76LChpvLqOmOhYykw7ibWtlOdz1cJm8dk40lQDQiS5t3vk6bt79Mt778HWyRBv1Lz76ZWisbsCyXBJuhMIowcllGV8fHRALe3xzG3On9xDLTsY4nRGZs3adCe4jo0OnY+meKPBEiM9VUZXrMJGDX6W4Dov+Q0vXftdIWuxW++Eqbr5nd9OLTjP/FvPOYNbtqTiWBSgKFBBYC0GpP99AQ76BV3cWkQWALag3Nc5gzcNkFjIIZAZ6AQEYcNcSG0DiTP/CgUZpW4PJO4DrMFDDW3AE8pWN94E/yGi1YD/0vudQmyw87/uEZQ5CqprfeolCAYdIpZP2aaewDaYE99QqAqZ+a4keGANfUEiHyBLP5ugboDk3ysrx0E+6fi4zkBByDozElgVE020vYRdfXV1JXrTSAX753sIlewr7bl4sVTT4w/ejg/m6X3yfv/zSAfK2xlC4+/TqaaPxEhxz2D0VtZawiOhBGLg+kVRcPjwTy0zCBnwOJBy4mFBiOProHTKU4NXG4nvHnCxYfdPfx1I9MnlRsPx4G5dEX8hLnLMzzPvXq7EmQgI8YP/UtjXV2KLxaT//p/1hlPN9NT/+PfRaS59nrSRBF1cZKAk+iBIax6tztd/wQM6tB9eeU5GTkL4wfsBMT1JpHmCrILScrwXa4iiNdEKzmVw2xJgvmLW2iLe8o5eRm2aDHtVpnZz/jS6LSFKhjXcHbvwpo7ZWtP2uHe2iKo4Tx1COgVsvc02QEN0R16KkhznXF36gbqsRZ1uBfr0jnvylu5y3vu+xWpSZavvy8pxEJlaCJZjEheWr1JfyJEospxy7mKZtb22ixW2l1dRk6bvltub1059aX6eZXn6R7t66ms9hD6y/6yCC7Q0HT7czvUGR1+lBJIG7ZyH07OQYz4dOp42DPOrIJR2Y4utVzkziiQJnssfwdzUWVo5LAGAk497Xx7LRVT5/9QzN9+VftdI+hn6E91teMKVFFVRKoJPAYSGAhAJ3bD7AUrPmHoElDmDNwXcY7QQlm+R9A0xlLLbILDtUUC3wFrtpMq60V1LoBi+W0qzZoMpGDsZm2CLGcyjPA1b46m4wItlEARHABXzdAtLmhy9bdqrD1AuKvhlZ6F/tnUXcfPvTE0RT85+JRiXrpsrYcnzXr+oF21bW89xkwS3OOWDTJAkesMdiJEb7IpMmKebEQJ18Hv9Rt2t2NNjcx53Bh4S6prIlMW2z3fefG5+niM2+kNX1EC/hDIiVTRxxpe9H8IzKOJA8afTB+QvTBTE/41UR5T0yYX2Bzk5q7QOZpejFTZ+wR0wkdr48eJTbqPKLaoyhU6ZUEZpeAjwLzSKyfwS3qV1dS+vRKPy0/12e7b+aXqjPOLssqZyWBR0gCCwDoDGIFvvp1bgMIBc66dtP3sx4qBNOOHYLLs2vL4flC0wei0c720iZaWDc4Efxql9xkYxMX3bUAstpQq0WtAyYDkAsfjRP0AoalK8Q1LeyqLQMNwbI8WYdabXOp1dYeLRYJGmU5UKoAXuVBH/5amm6gujZfeOjQ4oTyg8GveCGwdA4uVrQN2CtDbxXgn8E/mgh5DksNbLZ7AOI2fGGYUm577u6Nbu3dYWOVHWw/vr51J53d2KDtS7x0sNEKTG1v3U7XPn8nXXjqtbR+5qkw49BmelyIJo1LOE7chMF+QvR8NYxhdEzUfDSPkXumtsyU6RiVz1FkZhZmzniw8mMWK4iMlB65zJn27+7Y5IPsHP8K4qdK//icVSWfFAnQ1fu7KF9W99Lv3qqn1QuYcPxP3fQ6230vhVLnSRFE1c5KAk+OBBYA0IJZBMUPXAvgBUYS0WXx3h5gs8u5NsXG6+GiyWI5tcMZUlOMQk3i+4BCwbNa3xU2Mlnl56ZO0g76gFRNiXOebAJSwyxCrx8lQNbmuE/5WCQIuBZUUzwIhDYbQlQRgWRAKulkCC0zvMIBQBfgDc0A+LjDC4265fhlbXIUjDZaNjOnrQhaYwyee6Be4YJa5mWAeOxOiHFcaOSxy+5QZwdw3KJ9vhwIppsd2g8A323vpia7Fq5RPmSCXLqd3XQDM45PP/wZ24230rO4t1tZOxNyiIYM/Ym2Dl17SrMevjCG0fttahIsjOHjYRBW9Kv7xMhEEUxMOA5jmdh8JEc67gyFZ8gymfmFCk8mW6U8gRLwY2mzl65/2Ei//YdaeuYptNDsXPja884wzn1VqCRQSeBxksACADqLQYCsxnYJ7XEdwNjGHEL3cVoyCwiWSVtfwZWbb+FhFgH4BUzG4jn8MJcu6UgO8OyCuprpTmz8+oBZ8zbChMNIwSGu3wDNaoizaYeA2TIsEkT16+6AlsnlqJd/QawcxMjX0OYZmtIyVc2z4L7UXHs0zUFPoK5NsyFAjgWIk0k15jr8UANf46QZ2uUM9KNALHoUPGPz7SJFXPHVqLeuPFzkyIAL0+Heztat11cB4dwW6ttBC/3p+z+mLl0jnYkFhUvsWiioz+2JGsb+iSwyPyFMSZpQ4pSiaUq+q6dE/yEhe2Qbj8wwvSELFs/E5yAyR9bpjB9KlXLRO4tKTqOukuZD8xxGEFv3AABAAElEQVQckkMV8ShKgKkr7d3rpuvv1dJP/muN9S2YcZzppQtnXJsjjCaUne9RbGDFcyWBSgIDCSwEoAW5KFzDi0RNA2DMJ1ogYnf0E2kKSQXQq4DrJaI0dVAV3G1rZiH+dCTJU1jQ4jJcyuECzmtXNwuSBbZNNiNx4BHMuviwC4BuoolWa0001WnX3Eh3tvfSrU1siyErby7eW1bby4W/sMUWwAKwrSA0xNDbowD4Nuq3cI04YDP5rFTPH2qtaRPX2rqpxdbDiOYhS5hegJxdBhhadrf/jh0NFQM0ddBhdZLKAfrQ0mSlgbmHWmhaFeYs/a2tMOdQE7+1C7DevJO+/PRtAPR68Kx/6Hq9pXiPDlPylJpfs+Q7cDS5+XJMqXw+QnPkPp2WzMpAKcuy5XJTnu+fzErtcL4BrcNJs8XMSWDO7LPxUOaaQNxon/cJyWXp4x0hOkq35iATsaMpx6uiKvWES0A9C2P69t1++sPfpfSj9WbaO9tM/+Y7e+mF8045p9S3n3CxV82vJPAgJLAQgBbFZWDKbkygwx4L6gwBFEFoTkmaK2gDlt++Ac6BcQTFmneQt9AOg3OhlW2fLSO4DlMLzBkccupkDjMLytcFywB2tc4rgFCDeuQugFqtcs0NSrTBJhZsGvbWDTTB1hf8ArQ9BsgF0GcgL7eUgb4L/6y7LpDmn+f+gi/Su2TQ8llNO7kC2Koh1/SEqiOgVIaI5iscbYumKOTlpADtnHCtycbK2go22Iy6mHp0dcO3u5uWeVFwYaG7Km7evZ6++OiXaM1X2LlwJ5298FxaZWFhi90Kjx3gVRANU/nIqZeLB+X4ZAVubxaeshxqepwXMh6KPtbpMN2JBMw06SbORGCf8pzZ9wsOn03iZwLxMro8DpNa5DzoTSU6NXGRqquyT6IEmAZ72/j2x/H/+//MPMGc0L7SSz/4Xj+9+lozrS87vz2JgqnaXEng8ZLAQgBa4Bmu4lCvgvfCfMIFfDGLExF2ywwUDhZhvkEeNcjmyAsCsxs5tbFLZBJAZ82tBiAGFwYCYeOXgfCgzhqsC3JV7RLUBmv73ACQrq+vwgtgGAAcOySirdZ/dIBiIS8rE91OXM24ALxVoF53JdRsI8pBW+8c8itwr4E2YxtvfD5bj8AcQxHeEADyePBQDqYL0pXB9h6NpaxtcotwadsOIbk8tXnZwKse5RppjQWWK/iB7rUb6d4WA+82vjhA4Otra2jPW+Gp5ObXX+An+u/TvdtX0/Ov/CA989J309mLL9IWtdFZWpOwUwho3J9cbID6ysvICr/zhrnrn7eCI/PPz/M+ydm4P1RDGVEe9wnms0nxo/mK6zmz71MpC5bH/ZSJZ3NknUjjyISRSkYujyx+nAzF4zB7UZm6H4zNzlGV81GXgJMcHya3P+mk33/WSJ/9dCl9/b/tpb9a66VXn6untaWqwz3qt7jiv5LAQgA6xMc4UEIPgZya3bgO8Ji3vBY8hyZXAMnP3QFbZSnKC4H1vFHaiOWhxTL8AiBbWhDOX36CZtOoIugap/u5dmzp3Qsgq0Y7tN3kCdAumCZPNtnA+4bqV/hosEDPvNowu224NAW1Vuu5gNqg9jg2hQGYa8OtnfVeF55X5B/wCw+C7BIka8ayu4edNr+NVeoIetLKJihu+LLnqwR1t9ytkDpdZFgP7TleTSjX2NnGhm4VX9FNNl7ppHt3vmI78F0+D15HU43+u7GcNs49TRsYqYPHOOQ/8j50OfdpvglzFTtGkbnon27mk+J+PqlHrSdV9YwCmqu6uTJPZ2BhUkcQOCJ5InPHLTeRYJVQSUAJxJdMxnsWEm5d7aVf/zNKm8usc/mLfnr1WWewKlQSqCTwKEtgYQAtvkShGr+AyTEbeeaiiaGFE0gp8vLHo9liAClGESGyAJn/xFue4DnpAXwLf9Cl7XJRLNMSQKMxzbsUwgyFLK/2WnQOLI26YsMUgHSnk80tVlnc6KLFpsbP5LCejisCLRw0c/3S0xxE7x8BrNFMC+EbAmbc4VkanyBUpJ02FVJWv88KpYMmWm14yIKXBEG9IN56en0WHnKtBxFQeyzGbLGwsk05twQXgC8v9TCB0ZZbQN5OW4Dnzu6ddAbt8/mnX8WU4wJ1sR1icMGhDJCU9lFhhixHkajSD0jAzlP03wPxp3dhjacSjiB8RPLJskRlJ1LfEJGh05OhfbItrqg9DhJwfN9hvGeO+eL9pfTrX9fSn36vnV58JiuOnKKqUEmgksCjKYETAdAu6tP3swBU8CvoBUYGINYkwzFCoBZL5dDyChBj10BlRkIAXQCig0nObXQGIWqA1Syr8VW728AuuNHIi/viHd44SmXNctYwl36ig5qmE2La4AKeNBXh85nmFuvsALji9trYNGt6YdgG1OrNQ+8iGexmkw3bpLC0tfa31FpiESMAGWDfpU0Yj3CED0wqog4A9BJl4Jr2uq24u3rrfi/LxwWMNeWl5huKXXYp1NXfkgAaLI6Om8qyXBuWh58+AF1Q7SYs925fS3dvXkkXLr/MIkZsoWMgHhmNRy6jgSN/poFs71kVjpbAYTGPxIxcHqR4tJSnFj9IbLarGQjOkGW2uubNRcUnXfeA3uBkn6mQPvFH34X9MtVZJYGZJVB0LOe2nbu1dPXDerpytZ9eebGbzq8xlznvjOmXM9OvMlYSqCTwwCSwEIAWYAqEtdcV5HY4BvBlQND+WQCYgauL7XLejmYUAMISQJuuK7pmgONCw1uIw7ScL2uYs4lGO+ynBbgC6gDVuIKTF5AvwJYFhE6IIt74b4LXeZwqbZopGGYjmo700SgL+d0IRTpuWKKmO7YLr+t9Q74yL3r/KOt1MSPZUg9A6wJKF1I6Hrp1t6YqscHLCmAcOTSDTiiaA0h3Ae6IjE1o4N2tveVZLgDJq2ywoveSmnTRcLvZiu3VvnuJcm2017e+/jx99cW76dKzb6RlXNw1GphxKHdojAtZCmNSJhUg65SkMYQmRE2seEL+BxF9Ig2djfHDVR2OmUhpatbDgp6afWIlCyYsWOmxi1PwOGUHZQYnC7a/Kl5JYFQCPJouTK/dY5z/sJZ+8Y8Js75e+uH3a2ljjbnFR7fqf6NSq64rCTz0ElgIQAv5BLixVbZmB4BLg2BT+wGBpqYOBjDkUD410EJqzSBIB/F6bZT7Egp2S3MOy6oR1te0mlc1zYJU6xYEW2cdra51udgv7KStEx4yhi7qJ79+qvMixuxRQ3ttPWsImlVTu5hQd3jS8hqTZM5dVAjwBVT7ohAeOaw7yqgRJ58/Gmgbwgc1+Wv6e6ZMeP2AXvgSYUcYteW61svsg6DDxENNNnroPc1YaGthm11Ho7272w8AvQfIXqXhTTTfvhzsxk6F76Yz55+mTCNdwJyjUbj6C/EUIirPlYIs3/eQxX/fq30YK5wqiqmJs7TmKAIL3v2jyE9g8ZjFJlArokeIjlxOLzshtaSxoJQmUK+in3gJ0LHqLhy/ldLb/1BPG2fRQF/spjdeSukMA3vV7574HlIJ4BGUwEIAOkCxAJrX6x4/QWQENj+p8VodwwJgr0Me7YDdOlsttTv7CbwFqpZwk5E2+YWZerMQSLtroRpcwaJ4XJOLLhpiAasu7VzoF2YbLK4TFIuCXUhoUHsc/jahbx0ZEEOEc0eqHtrg7DGjgPcObqS1ALZqeIOe5fyHGzlwO8EpVnDNgkMQtaYbxgU/AGVfFaQhyNakowVYD5No4920xepVjfNf/txWvNXXczQsUU7ZdS2L0UdLExPaKi+px+LCTp0tw/dSwx9llwDYbQD37a8/S+/+4v+CJ3xds0vh6tr5WBQpcI9AXcMjs5eTgnxUYXEJTJPxROrHKpR75ESahxJGOsOh9CkRY/grqY1JmkJo8SSfv0VCWdz+Xp7HsXoAFhFrVfYoCRT9y6+O199N6bcX0T5fYn0LSpVXXmCNC67tVOYs2r+PYqNKryRQSeDkJLAQgNbiWcAoKA7wF6BSzAaY7gJOAbTtdtbOZhAt8FSjWwBt2uHk1WPgQFcLyNQ+uBngtI/mVaAZni3I5cAioG2h2RVE6p3DuGXAJtg5gHY228gjVcSJHou6stu8mCqjXHjFEMhDM5udZO2v5hruhBi1UYemFGB56FMPoLemVri7l7bwY+fmKisAXTXX+my25j421AL5Pbbn9ljDg4bblRdqc3IIwPtRXk26ts01ALYDq5p87DlUSmNfjc6atgqiO102VcH2eRsArezW8MxhfZ1eJ23eu5U+/eAt2GXr2BfeTOewiV5dv8hlbivNmxxkuAhmG7oso6vjHBIYK+qxkXMQnZD1eGTHlDoUdXQvKIuUxwksnkz0gpVYvGzRgBQng/OCy1kel5NpUEXliZYAu2r1UBZdfa+efsLYv3m1m37wJ5307e810sVzeq0a7ZlPtLSqxlcSeKglsACAzhpf3bG1223cq2mvC/B0VRqzkbBUPB2aVUBfLDA0iZ+AlIQAsp6qbY4dAgHSamp9E9c2WLOFKEcetbsC6rBFFnlCSLArLdPUX+fgUQ8X8pdNTJwc8y9req1bYL2zsxv0LB0boYCqw7MGyQLezEsG6hYxOqA1GuweWt82NNxFMPiAN2qJ8xpaBYSBJw3AMmC8hc/qBkDb7bvN04XYDlnqaO2X0aZr0mGKGvrQqtPuPQbZbgBzTDqwfW6yw+MO8t1F416v7bAD43KYegjGb1z7gBeY3dTevk17sKFevwA1+ZHjKSGLapDBy+OEI2o5DsmHpsxxZRINWKDwAkVnl92YSnxyj+w3s9ewUE6f2UVCWbw8Bq0DFwV14h7nPryIDKuyJywBOlqNeWn7Rkqf/gK//1foeyhdLr/QTxvrels64foqcpUEKgmcmgSO/7gyEAgq1Tx3sHHwJ1iOjU8AhJpILAP8BMelh4ys6c1A0xYJXAXEmk6sLOmPGbAaQBSzDujt7qLpZTvrPRbNOe8FMI0z4CHlsg1zBtWhkS4AtoA2MDIg1IkxdhB0NibSRXmakLiQUY2uQFtaSyz8W3WHKEcwssplBM4FFeVkrvZbsL/M9t09tNKCfD2QLOPBTvtlPN1Rp/l9geigiebXAETjZaNfz+LWxMLNV7ZF0eReXbYN1MNvBxcc8dIgn1202tbviwL16e25x8vKDj95lF+13+5OeOPaJ6nT3kwb55+LhYXNFg6qC95zQw7/VTbmWTScAInMQjC0ADcnxsgCPIwpeqJsHUHsiOQx3I2LWpTK0I0sSC1KcZTLQ/QORYyWmHwdRRcoP5lylVJJYIwEeDxq8bURM7wPE545UIJcT+m5p1lcyLBdhUoClQQeDQkcH0CDKAWeKyDHM+z810Irm+2Vs4mFLtv0aqHWWFOH0utGFkuerfwrcFT7KyjVzMIgWNUTRoPPWSsadzQBwoDzAOxqs6EXCxcBwnW1vVEm8xP2xRDN2t4MrsNbBjQ1a2gCYvvYaHcBtcEXRJ3u/WkeYR2yUZqDlMDZePMIuP0Zr8cPdxpcoa0ucgy+QaQC6ExHVGxB+S/qiUt4pc0tQDHFoq3adUddIGYwNwCespTR1rpDXGjI8c5Rwyl0ZxezDl4w3PJ7jVXcehJpo4G+deNKuvb5e+kiCwovPfM6dnUbRctgdkww1jY9NGE8mw8Ne8dh5MgmHZlh9lpPkNT4SmeuYD/j/tkoyWP2PAhOpjlax/TrYTrD59NLVamVBE5AAnzK7KEH6bJw/KurjfTe+wDo53rpwgZzpp2x6pAnIOSKRCWB05XA8QE0fGk6IYhUe1zr6R0iM2s8eJCQgWQ+K68zkPRKf815++wMXAW4AU4D1jGCoHnV33ILAC24VTMr6O2iWc5lC2BamGqE2zkAtUBUrxkCcgG14LUBLcG6g5M/ga+gVB4hm+2uZcq6IUAWuS9iuAIIwy4xuU2mC35rLOhTBrwrQEcTDO28yUjIZifmpw40DsF71GWq9tyWo67AypZRu83iQl4afDkxaGPO4u1g2s1Ummz5zZjLlt+YdGAX3cJ0pslqRXdxbKMN/+rKe2nt7EVePpbSeeyhW0urBTAPcof+5FoORU+MOCbsmUjvUU2YV25j23kMIscoMrbquSOHKh46nZvMfoHZqEzPNVtvnE6j4Gg2UvvsV2eVBE5AAg0Ac4PtvevsbeBi8vgmSV90+nQeq0IlgUoCD68EFgLQNkvQLOjVTMML5yG/TrHWLoLgNeCkaeY1H8Hz0PhSQrMIQbgpmoQ4cLipiFtct1y4R4TAVaQpKAZPS8E/8Vea5U/TDF3bqaE1CGI91wwim32ohRY8A1Y5CrBrgFjBeTleeQxtuExS3toDPGtPQShNQqxTDE7xqIfMYc6xjemJwFjTFGoBUAOE0dC7UlAPHjv4ne5pFw0glifpa8vsz3osGxunEO8CzQ4IGocdDLC8qEgT2egvusdqw62ddlpbyS8yQm89c3z4zo/QPq8HiHajlRru7ZRpGbLkyqv5jkNkphdcpJLplE839cgGLtawI8kv0roZiM+QZREOjiw7qH9wcmSRiRmmkpiaeJBkPBtz5D9YurqqJDCnBIq+1mAB/Orz9fT6H6f0wx/20rkLtbSFuaLzE1Z9KEvmpFtlryRQSeC+SmAhAC1wdvvstpuIoA0VKWcILcjgx8wkONZcIYAiA4JwMTxEUDZAN/kC2AIMTetxVLus8W8PMOxCPYNYNswqONfeWXtjQ0BrTgXKfbW3jDoMQQOwLo+iUsGuGmBxtQBYHpw4S5vmANJcyz8cQVewXtSZ0XPwKx1r1bbbMtarNlt7bPdjaaCR7qEFv7uzh7s5PGawy7bmLIJogX2blYWdyEgtAOJQNQjkkVGfwXOHjHU8b7SIgxHagRysEpvoDvbRGH7ERi2rqyuUwVMH9LS13oF29hGNbffdm+mzD3+R1s9cTmcvPA+fbjGutHLwVJKnGobqO9V67jvxoxo2WbJHlRzblDkKzZF1bFUnFjmBkQnRx6o20yooHkl48j0ZrXz2nKMlq+tKArNJwHmnx5zRwBTv+/+hk/7sL/Gg9HQ9fYwpxy3iXny6n14410vnmTuqUEmgksDDK4GFAHQ0i8FA4KuG1y2VnMvErIYAqQBLwWUGqAwajB4BoEnPXjsoBhDNoNay2CeDGNUIi50FrGE/DNEA0NbnuaOQPyuLU0Ao1/5yRLGQkPKhlQY8x+I8wLAWFsLkcDMH2FVTvLqyBB+ZXoDtAO65IUJyzwT2mmcEwOdanjUNUWPgr4tnjiagWWDbhS54mLrYhbBoExTgBVrQCdNoquthauKvhm225iDYwkS7oh2kK7uoEzr6l8YrIBpqvXJkn9k1fERvb23lDVy0GyetDmDf273H4sLtgXxg90BQSscJWSIjJSU2NmEk36N+WbRzuuzKVAVSnpcNL+OGj2XamONo8eNlGVNqTNRoXSWLw1lH48rroWM8fsNl5j0f4cPnJA8qxbGkZ7xhJH+OHP1rJsem4cwQgNk8Ys1IZpRsdV1JYF4J0AX9mtjiq+GFF/vpj/+0l771bRQcKKE+udZM17ea6dL5dkxr85Ku8lcSqCRwfyWwEIBWe7uM6cUaatYWwDHMNQS0Alz/OUfRngyYHTkAs8Rnmw4uAbdZE6xNs9ckARTL3fi0jQjQqhkD2uigC4Dt9vEP53TobM3P/IJwzyFBkC4/QK3RQQ+QPMyXvKqR9ij2j4WMAFDBbQetrhp13crlzVUAq9DOGmzNQ7RXo7p4MchAWhrarlhnuKVTQwwfYNngx8apOXeXwQzkafMe7v/cPIYcmma4ccz62kpa4kWkockHZZZZNGh7djF8ljd56OF+r7nUx/MHgHnJRZp44kA+eudYW22l8+cupmde+X66+NTLmHEcNN+Qm0WC93NsMIF7+NiGsuHl8ciGjstYxu0fhXAPPBTslFwFPwcuCg5H48rr0eMxG+TjfCiUceWxzDB6XcZPOB4Ez2QqKstk5iQ2oY4qupLAkRKI+aCWzj6f0hv/vp+++RKeN5g7/3ALU0MKP3d2L716fi+d04ajCpUEKgk81BJYCEA7CYUGFiDZ8ycKBgBnswkBbp6nYvISIMcvA2thgxrgMO0ILTFFiXQq04ShNLPodKlDFEzoACDzLoYAaAkUINqNStxOO5CwsVExJhiYSsTUyLVx1iW/BnmRrhri0ENFRgAwaWp/NbuQjG3Z3W2HFliN8h4g2W23pRe7HYJvzRc/6Aug/aEHDlvmZV4CQiaYWAw07vAAdKem3J42BuNuM44CG8CruUvRhuBGvnXz52Yr/izDUAvZFiYgOt7XXryBn+g2NtZrZ58FPP9xevH1P0kXLr0UpiFkvT8wzYqqMLMEsrgWEVo8BAfrOya5YxY7WPcRVz4jJx0mkpyYcNIcVPQqCcwuAa32+DiZnn3dDVRSunixgfIZ22fmi5ef66anVrvpLNppptOYo2anXOWsJFBJ4H5LYCEArfbWDU922Uykre81USkTl/Fg3QCJnguswxTD1nEdQFbtLXn9GbLJRl5QGKYYoEiT4icgBV3qw9ltv8k8VBc53Epcu2LBMT+gKITV/5pGFDO3deYdAQOdBsi1njA9MSfnwpHIG8U1h2Bw076YhXpbaH27YY+cteJqk0N7HaUsKd0MvjW76GKKodeMZV4G3JVRX9Z7gmjfEswoT/JLe8KXttprADS+TPLqEZLMB16On4sKYScAfZh0AJZdqNlngWC4uANgy8+Zi8+mp174I3xBv57WNthQxeqCUj4e529B4jhFn4gy3IYHFKx56O4EIwfj7jdvp1XfXHTnyvyAbl1V7ZMlgaJPaqW39mwtvfzNfvrWN+ppYwPwzCO8ttxPT5/rp8uAZ6YMp4UqVBKoJPCQS2AhAK05wb3t3XTz7mba3dkO04XVZX0jCyDViGJW4GYoLKhzK+8AnADH1ZVWOru6zKCR3bgFnhTgkkdAHQv0BLSMIhyEpgVMZVTh2o1IAqEbT57yJ2QvgTAMBEgNAmp8Ab9qvLuc63O5gSGaGugAsZp7kN0Q4xZ/pGkQuOrPWhOK9jabotBm61eTrS229QVgJy8YmDQ0z0iVr3LRjlKTHgsGSd9EHmrRwy4cRBwAnvr1FNKXdp8NU/DQYb2GPWSyBYp2RTbiyiYduxlIKwNeTajU7cQb7Gq4lM6ePZ82zlzCRtqNVErJBalj/ylEc+zy8xbMkp+31Pj895v38VzMEXsEw4eTD8dw46nwJKU4mf/yuZmcY/GUcS2MJi5OuqJQSeD+SYDhmI+F6blv99Orb9bSc5eZC9kMq8kQrrepNdIEz2P7+/3jsqqpkkAlgRklwCN7vCDAdEvqXeyBtwHKmha4mYgmD6EgFlYK4ACbbsCHXwwqMs7NV5ppmd9SYaphSgO7X7OYLrgUlAKNQ3OsewvNNwyaODQAmHsAzrx9eAa/WkpQRORbjEDSy0NRbMISdcMjfqVj8R9IPSZ/soQZicSpT941hfDlQDCsFlkN7wrlOriNc4FjXkjYgQ+ALLsFMvpFuy0TIBrC2mSHOzraIoy1TjgKN0Vttj/XZnmF9i+1yMs/bbYF+Hudtg430CwjNGi4sNBFgbbB94bwzkH+DvL2ZUOiWXuv7TW7Gq5upJX1c8jJW1vKgtNHKOS79ggxfJ9YnU8uM+YeZLN3Hh0G2Y/OOlsOCJ44zSk1R10jFcY4MKVMlVRJYFEJOBV2mEfqq7X0nT/ZS2/+US1tsAkWQ3uM4wJn55OqLy4q6ap8JYH7J4FjA+gBi2pi1cgCbMPvsZpTBoLwrMEJvi0YGYrJGcTnILEOeF5jcVxT0EwQjO+D2AyyQwNMfNbQutgva5ezb+gmGu3dtIsmV+BODQFQBZTxCxakQ/moItcTNsaCUEE4PIetNmWzKYecqNnVXbNAFpdxBai3SQGi2XURiizWA2ADdjsA7T1GwD0BPz/L8J9AO2modF186I/ND8P8xJcMfNmFLbVbc4ewzGMlgv8w89CXNfmsDfnqL7pm+22XbeKX/ViTg/rUXnc1YUHt3Wwthw9od18kZqGQpbYQiSem8KKyfhCCotsNhQMXQ/GeztcTplE6QHjmjAdKTb042KapWQ8mngIvByuorp5YCdi3GLuXz9XT09+rpW9/P6WXX8jem0xyTvRXhUoClQQeLQkcG0CrKRb0abKxsbqE/2Y+QQUoBriCYoF7eNzgL6CwRV6Bp5ObYLLFm7gAUCtlgbHB8SPMISKv8RnMuiV3TfMLIkKrCwB1573uTidtsZZwc4dFdWhzBcqQxPdy9oKhP+j8Vi8/0s+AtkXZJbSz1qWGO4B61C5IKNsECG3ibQMwuwtIVsNrW12st4FGuNXCNAW7aHcJ3MKExXR5chW1dtIRcF2nr8/cLijDf/CAbJYB4kt4L1ED3YRxyxtsX/yDYeN0ebeHfHxFiB0L4Vmb7Lvbe4X2Gnd55IvFidSnBls3doLoMHMJqsf/U7Tk+ASqkqcvgaGbNHR6+vWOqWFQ/+BkTKZTjOLxqEIlgYdLAvZJZ9ktFg7+62760/+5nl59tZE2WLNS9deH61ZV3FQSmFcCxwbQVuQAoGbWrawxbgB0CkAzWFa7KzgVHwtNQ4MMhIwFgpRzXBHAGvYHEmPVthLvz1CceiltXb2FdptjCxC6TEIHoBlA3HOIqUVuY24hQK8DUCkGAK2nNQCtHi20gc7wWdd0AFiYBGMHwBXKWrPmGw3LYpbhAkUOobGWliYm+o1eAmDLp+1s45IuFhlSv3X0zSjv0DIIn4Mu5yb5J+ygidUkRKAuHcG9dtbKrwtfewJjVedqlNVe235d0xkVdWWZU2GA+Aa2z27jbVoEDgL34AOaZVyO4KrINmAu58iMm1Y2wPgyb5nHY5keefnjm8xwxgPpXASNglCZJpGS3zKuyDKoqowf5CXCl5Wor8hlnrLc8LnJ5bVHg/nKuIgo/oyLM2lc/Dhaw3HDdCfRGM5T1lEep5UZzkO+stnD5OY6L+UxtlB+ERybFJFlo7lYgJGyC0yu5+RTFmD35JmpKD6WEmCdd1p6qpa+8Ufd9MPvslDwAnML4//QU/NYtrtqVCWBx10CCwHomC1Bq4JiEWhpthBgkz8CQ8Gt6CPmezXBZM1DR/bBbJrgdT+YmvMbZ3EBrrGx6A9gKxHNGlaWsWcGVEZ95IlNSkJza72aNWRwK2BdgYLmJGpm5bf0QW0doQEGFMtj7BaIHYZ8upCvFbbEmFTAiNpe/VhnIK8PbGlh8gH43W6zOBBNuK1R8xxu9QCsJBPkg78FgM0yyC8EQnlV5LvSpyE1vHeYLl2gPbwB0vEJLWVBuTsWrqws4ztamahxhm9kUe9jU76yDohepqyLE6PiaNsuG6qonVYzHRutBPq2tUOhyD+IKa5Lhfog/sAJmYbLxflwBJmHL0umShqDtMHJwfxlPo+DLOUJxzgtr4fzeD6hfUPZ92laQRGG08s4j+Pih+OK89EmDpMYS2M4Q0mvPE6qd1r8ML0x58OkB8llZHkcJMx6YsERec9atMg3VW5z0po1e7xk0sGj7mO3fdbaqnxPnATsU/zQd6SnvpPSG9/qpzee0YSR+cHHpepzT1yXqBr8eElgAQAtKATYAcwcDcI2l0m0NI3YZWGhADpPrHmSEvuC/wCgeezQpVvgYYChAC9PwfyVHiUtHQvzyKctsFphZ7vQbJNNu+mWHisEl3jVMF7cFAsZOS+14ALwZcoG4LZygnXF+AY96QiqXRSpXXMH3gXJqNYjPjTFEF4CeMrz7h6LAAG2LeyUNWHJdBuYk7SzfbTaaHlyE5QYJPd5Vj568FAL7gJFdXttaGoCQu0F7zbTgpirAKgF0R1dBRLVYuMUNdxN0vXMAWXsq3Nca3k1XhDUXNdpix5G9to76bOPfgO476TLz7yazpy7nOrylRnjOD0E+2RRXo9WKDk/Ta4PSuV+1DhTa8YwMiZqJlKzZ5pcQ3TlAaGDMhtEn9JJfo6mEJ/M9pRCVVIlgRkkYN9iqF1eATj/N730yjdqbDrm+D9D2SpLJYFKAg+9BBYA0I4C2XxAIJjwdZxjAv8GGLX12kObz7/aP7vltWC5LWAuALSaZbXA4mM1qvtB04nsO9lo84ELAa9qmF1oJ8QmQDy04NAPgBpwT9AqLxlIr8CjuyYOT6gCbMsGWEZzrA5aMN3UdjlmfcpSh6A5NkgR+AKkm2h7u2q4AaqaXrjpimYlK0Ff8xHb5o6FuO/r+MaQwX2mlXl2ELU9GZrmRYE1XgbK1djRrvgjL2YDXrNYUL1zo9WiTiJJAKazOFEqaMuXN9B2YL5hOQvRFgH0F394O7V3cdUPH8toqVtLuLibMwTNOcs8/tlnkQo35yTDhConRJ9kzQNaUdexK5xWcH5ZZV6m0RywPfHE0otRmEi6SnhSJUCH8kNfHYXH2RfYcfC73fTCS4zReF2qQiWBSgKPhwQWANBiNDTAmFDojk4Al+GcmmMnQoAf+DDD6iwsQa4gOsAnYDBgnwMNZ2DUGFzqeL6gZI6UTKBgYaOaYoA2ceHCjgV8bqkt4M3Zi2P5STZXGWlqa91eWz45De4kLQDnMoBsAGR5IF/QLKo2T/h+xo2GWnbTtPnW1lrTjZ3QtLNQEhCth41sn1242LNstBNPGZhouOhQ93MyIXSWF7LQROQCom7hDm/FlwQa2eUFwU1qMsbPcsuaaEwxAO7q3ZshdzdbQfKUa7Y04WAL8QDmVEDrlPWdm1+m7c1b6annXuealZc2WgFU4T5I4OSEbX85rTAX6bkyz8ZxJjkP4aIDjwhlHgpyJpXqUZjtHlW55pCAHZGOtXa5np77XkqvfaOfnmLXwUr7PIcMq6yVBB5yCSwEoMWuAsrSTZsDhhum+AvzCcEh/xxLnOcE3ILs0MRi3iFgVJMsEA13beHujjxmjpktA1wRXwDJgkZojqFp/RHIC9Uw38BimLyadJiiaQZ/UV8HeBdY5oQ4ah4i2GzxyxuqZO1wuM4LOoBsQPE25hP3trZiAaM+rFfwomG5Jvy7YYtsiItti1rlJcwxlpfUJgu6cXvHVuCatLTJpLbYhZBybBC4h2s7joJqvW34OtImY3vXXR4BvIQ16gwzFkB1FxOSDmB+D421Nt016LWWsPBm8SCMkTvzpKybaKvPX34+nTl/OV3guLSsNXhk8W8V7osEyo46b2W5j8xbKvLPUeUcWY/FymghH+/Fw2Eih2NGahmTwaiT4WekruryyZWAnYqZtX83pUvuOPjvmumpZ/ooRxyZq1BJoJLA4yKBhQC04DCbTuSJXu2wds97mDCocQ0QjaQcNMJMAs2pecJWmUjLC6bbaGkFnQJawXQTV2zZZAI8qO0GYLF0AyfuzKYX1A1YzDVnWjE4CZ6pr/zFjeJCIJ01s4Hqgyk1vRgLU1cxslmIEG2CaxfQiXUDBAN+e/C2C69tNMlrLGBsqnU2n7VZlrrziwMaaQExdAPP4hFE84s2QNxXAmWxzytnsoEsNG8JAG0iv12U9Ns1rKl9ISHKugT62nRHnPGauHgfqKjBAkILdtiMRVTQxzOHpNY3zlMF9nds7d0UZFfhEZGAd49QHPJF0UlHo3PiA/lLV5szzF1gQD+X3JdBJMxJbjj7CKVBPdVJJYFFJWA/66JgaXcY72OMjyliUbJV+UoClQQeEgksBKBtg8C0DE5G2idrqiAwdvdAFb6Cw9DwikiJEJDqPaM0vxAhCAA1l9hmq+vlJU0lAMcSZBFd4FPOXeSnZw09YggqzGMIFgTZ0uE6NNBxNBVa5pWHyGluCRMc1QhRz4ETksgmvraI7uO0O97ZYfOW7XYAaOveAIyWYNv8gn5fANzJsBOaaeyu0VKH32vStIvW1MUtu7UD92XDpni0rDQ15QjbaAi2WthG77XCu4f12MLMcW53vHxAoE+a7vzqAGhNP3a276YlrsNfNiYc9Toac/1X696ukJnNnRioxJcC71MV7q8EDkl8bETRMYO18jz3jJPg9lCVBdGyprKOuB5k9mQcD4MMZbEDx+mp+1lH6x6kzEqgKDCaffR6QLc6qSRwXAnYWbVQXE/p649q6YOf9tPXr3XTs+edCwrlyXFpV+UqCVQSeGgksBCAFl8JggXHWCOHZrR096aWVDBnELwJANW8Cg7dHEXU6vUSi960AZaGQLbbA3xuM/pwXppqBA3Kq4V1bAq6nOTJr5gCoRH43MxlivxRbgktdl4YSBLlpJH/UIaLsIUm7wCiUqbMI2hVC67ZhiA37K4pVIJLa4+80iToJs5lfB1sjWOXRMrYvmUAeH9VrXL2qrGzsxPaY4iHWUcdbbHeNHStYe35n+Ye1ABNtd1tzDl22QVRpXwd8w0XN5a8c0GeVQB8O929fT2dY/90qkZWe/EyoL9uFxEG3zI9KdC20HDDQXaHlzP7d7idk4pX8UdJACmWgiyFWtyP4nCYQJn/QMpwZHleHouMJcHyOFR+TNRIoaHME1L2aZRn5XG47AhPw0meHyhy4OJAznEp4+IOFJp0MVQwc8ffI9icRKqKryQwVgJFf9q93k1Xf9VN7/1xL124WEsvPpXnorFlqshKApUEHikJLASgbWm8Twu6AsxlDbGaUVSsg7mxBKZqgLWXFsQJ0tygxH/ZJthZjSsGnj2AovbEgttAf5GrgJRkU4MbaJr4+A+9/XzlXGjGDPDdREXXcQGLo25BcwafasvDBhtQKqDXu4UvBfJo9bZLPvQ7vVzT+wUglIgwpSCNWkIjrRY5+43OuyzyehB0FEXWyKsRpiwgWQ25RH0R6AKo1UK7y2G44KCc9fpH2vHCwYmLIAXkPTXyJGpnbrq5glPoRTn4VpOt7bNpHbxwdPEGog9o4+U7a82jcPCi/+puD6DNvwYvND1eYryHdV2CQC/Xk/nJpR6Ov+VLjNwo0hCah4c22K/oh4g12C35PHBRRhbHUvhcDp2OZHrQlzag5G6/MXQdAo2dKeyXG85eUh2OG1fXwfQpV0MEPfWLkG4hy3UPU0pWSZUEZpcA3Zkpjh1ze+nuZym9/S8sJsQbxzMXVIrMTqbKWUmgksDDK4GFAHRMQCAXAWKbhW2BawFeeVdANvmIdgPoYiQBjDKX9nq5Su2dnTIFqKqOdV/XYCIzrh/g2XS1v7qA08wB+2O0r+EJQ1AX5UiACRfRCQylYxnz9wvzDDW7amKFl1mjne2u1dyWNteCX3Ms4XJo1c1ZNKNQ8wutnI/SZBEQuPBRrx6xDJCKfE3YxFh5ewfTE0D2Otuaq60WLJvP9mgzbV1qkZcAtmqQZVIXeHu0Sa19mGjgHi84jXZwCm3jtY1WE91yq3TbJiqnfZpuCCKVifR2drYBy2io0VgLCLqd3bS9dYdFjJthgiKQ7hDX67uDYpAPN3dbm3cwTbnLS0IzrZ+5BD/5C0BjwxcPbKap42ELmsPo4jDb0yODQyCoaKCMw35uwYNrh3z6YuI98BicBF8lT+WxlLT8EyKPt4s25pgj/0bLI/OsJaaRzHLMXWAcPeNKWRc8B6+cR6EyblodphXtG+pr42o7SGWI9oTMwy9ZuZaCgvVwT/rcizbPR7O5zbVrCKpQSeCEJGD3ZKje3a2l939ZT6+81klvvNJNT11iHGc8t8sOdfeZKnXaM0wqS5fO6ROeh5x6//8GWwVvMv+QsXf/BfIY1+htHnd/54kf6ioDSUVcSYRjMYTH9GN0pA9y35+ThQC0wHMbU4S7m9sAtc0AqMZp5iDwzAHAijTdRa+PT+RuR3CnBjo3VxvhZTxI5C26BawADTSfdUwQBIHaSns7Ol3KAqyVkprUsLGOejAegVZgSBIFJy6wy8DSirFLxpsFhdMe5cpg9QGGAbVqoLe2d9hABa1wUxvudmiEW5pdkM+2lO7o1ATrfWMZtsIlHwSXAN2sm0xt6qizUNDeo2/s0s7bjVYEyWrdlY801XbrqcNOsA0A72nywUDboZxabtuQZZjBtfnUobupi0DcbcZt0w68+4LQxNPHza+/wuXeO+nmzRvpqWdfiZcPzTm2AcgQTF99+VFaurVGfrTg/FOeN69/nv7w/i/T7Ztf8QKxRLlX07mLz6RLT79MO7+VVlncOQpCShnGETaOH2B87uA97qbN21fT7eufcO/Qri+tpfWzl9Lq+kVkrkmQwJpXG9qp+VAsnARgh+Dnrm9MgTnZdqrs7O0i6yvp8z/8Nt386mPMiugD3Eu1nw1kHE5jy6rsIATv0SBwOnSVowf5Brlyv+fZkaYmOMMh1gYEHfuUA1BuSEEm+u2BSop2mk96DfYkzjb0BwXg1SHeDlSc21LWY7VBoajf++KLsvfJ+5X5OljHMLmDtVlzkddDVILEuffymuVgf7e9/vxC40tpfsHcwb3j7a8/TxfPL6WXn/pXkV6+lB2ss7qqJDCnBOx0/Hj0062PaulX/8S8caaX/vxf99LLz3LOdDTUZY8mDq02c9Qec8Mqyh63AhgOdn2NJo0++OQP53ow56GPKqdf+JRX/lfhPkgghsQZ6znQpaJz7hf0fg3SORlOFo5EKOKLqwOHKBt/DkRnmkPlTR2TLX/LLBOKY147pqKRMmXaQfKnerUAgKbF3BmBrIAmNjwBHMZkWEjTxkWjIqsaXzTJxIVZgg9TNLrIw+OkrbAycPvsJi7tYgIMDXS2l+5xblAr64LCZsPFesLKLD0BRx33b3AUk6STaDAgj44s0ZOyVjgALAC5zLLNIOcjbf1qeG0TNfAr4kkoO6I4PMxCvGtkCF/YbKKy52prNQvFJB1F+ZNfDgTETNoIIV4eEJV0YnOTJf01A76Rm3XvMUju8nLgi0iAQJmCs9i9kLMlZUgc1aUugN2Xjq0tXmK++DhdvXoFQL+WLj71fGyYssc23jvbm+HmTrAsQMmNFH930o2vPksfv/vP6e6tKwDmlXT52df5vZaefelbSc308y+/mc5feDaASMhTVoZD8DYccbrn5T3oYOutb+vd3d20tLpH+1Zp95kApNp9ZxBtn8r3VGC9tLwe2vkQ/Aib05uRe8FIkRkvmfCYQW9c/yK9//ZP0vvv/FP6+vN3+NLh144WLy1sr673FDvDUDUBdqMGIvP//Q5IfGSlbaU8zGoZO7Qvn7bXe53jIpF+5z3Pz2z2aW7e/MxZ3n4R9CTjedlRuBDcBs3YBr6sP3elKMufzFOmUxYtGbTPx1jBMZ4Pn5F4+HJpvz5pPpQBNLIowrj7MlzPaLpjgCED6OJFQtnCUHjNiZcWG+cmQ1tp696NdOfGlfTaa6+mzr/6LrlGKVK0CpUEFpBAv41LUsb1j37JOM/A3eBx3/5OL10+g3tSvvKt8JFvhW5nz4vnb0JdTBnps9v19PVWPb3+VDddYE1NCaJNc+nQdXQlq24dDm2f4YchdJiTr9/qpTubuY3r67V0ZgOvULQ7gDVMxktzCKAYRx4Gxh8iHg7cygMXRzMpTMmdqziOKTLc7xgas3MDTmLjOK4l4Sjq6CqU0uzUY04xPs9FezhP0IFCHoUjQ/5jB7WQx+HKyix2ZCuRqBPVmNADX/boSzGnDWX5+kYn3bzbTJd4iMaRHkPqxKIWANAIlzuzhDZWINDvtgLwKTllpGlGBpLIi3NBHtN15HdDEwGs8uo5keEjmQ/bzP0ZXJuidi5ru8gETW+emmcLWa8uo/vk2dd05/vSQ4M8AA1Rg/GC00xbkwuFHKYRUYdaXXxSA9ojTo2395K65C9oUbu20bZJ8K9JhaxwIAN5A2Bo+8xmLeRb4bfkyMCgqelGvFcEYKAc9RinjbfaaOXgxiw1fpqNyMM22uQtTDsweQ7wrW10vGkhK3LGSm6U0DkO1XcPoL2zs5VuXf0ythInAe26mmpNW3zpgEl+MUjJtLIzKmLV5vMSsHoprm/dvJ7u3rmZrnz6u/Txe2+lP/m3/yu7aP2bdPbcUwAo78KDDbZBcNRa2Ujr5/Br7dcCgP/S6hmO2ctIPbZ15wUDkK1pil5JNGs5y4vA8urZyAcRJOkNPM2Q3Rfe+vrL9CGy/Nk//nW69sUH8ZJkPzmzvpLW17BNF0gWId+WfIPi3NO4YXHbij85c76HOa/PXBFbnhw4ZgCLTOx3PG/2Qe+nX1R8rhDH2JD7v4nBTZHH8/wc5WLB4ZjyDqTRAJ7z/PXFl0J5UQPs8xLPeVk3eYIRR/CoYZ/kcO258xJTyq1gL3NhzjK3fSXT8jlbWVkOEyqp6ps9vjoxYGuCdvbcuZDNfo3VWSWBE5KA3ZFBduerlD75+5T+K16RPr1SS2+83EnPvNRLz1yupWfW8RPNLoXObQ7Rw8+jz7m92HUvv7+2nH51dYUefid9ExB9HufS5t1ku4Art/rp7Q+a6bkLvXTxm5gMluj0hJpxXDI7vED85oOUfv0esxfP9muvp/TmG7300iU3IBNX0cBoI22nEttfysB2n/owfdyGHadcburYkiTtD11FDse0QjzF0XG3IBIFhkgpLOMKQmYzON6WWSOOiyLLfjp9qwye7TAubgKEl3DzuwqEYLqK2yAGbjNMb/Fru4FbUUhli+B5s93glzFFmRZZ3L9tx8L8Yu1b5iHuLze9vwotbnptm3QqGWi0KSwd27zHeoIOjDl3ee38bdrt223Q40r6Hs/CM88XBTjcj7AAgEYgPLm6aBMAdgWAXHuzDHHwmhsTpg1ISk3tCoBbcCdQFFi7294ek7rbXwsCjI9f2LTmc6KiLutzgOnHjVOjlYUo8DTNOoHJ/okgaA/wLOwkXeBFVJ4omaxjoRyZNYs4s8brPOWc0G2B+aWvP2vpeBuJCuAck783XVouAuSGSsuy+n9WO627Il+vHRzube2Sx0WEaB0x2xCwNAW2et6w/QAay/rLbYdX+OsysUumj220vMSPOi0fAy1xYWdtOTKGa7w2nYk8vQ5+tXGD1+SFwry2JwslH+KRIl+/74JBte1FULbYqW8T1+v+IX3ywS/T2vrZtPLtP09rrfNlrsFxUG4QM+fJMQjY/pW1c7QNcw3k531VO+rn+ugHmkQg96yVXgU0b6BpvJWuX/0wbZy9zKYyz6SllTUEyT2YKWTZFRIsShzNeAfzkjs3r6X3fvuP6ddv/W26/uUnaWfrHjx3027cr11ePFfTKioo773BgcF+5f1xsao9PAbMstaotsxjl8185DKDrh/ljYtQ0PM6FsDypHV5qYyNevjyssyz6zMQfcRGDpVzJBvQJi2Sy/SCvIfhPGV0xFlncJMzBb/csx1kYyH7rV9ofKZy/ftS3j9TDmUIDkIm9OoykvQcXzIfzxh0bZvPlF/INje30k3XHfjCzrPlC6wmNH4h0BQo5Fw+JwPK1UklgROQAICERy7toIX94q1euvdRL314rpvWL9TTU6/W0qvfbaRX3kjppWdSehr3d5p42eejV/MnxnQiNpp8cbvXS//wIzb4erOb/uS7Kn9SeveDfvrJL5vpxpeAne+xJueVWlpHI8fQ/0BDVC//cHH7XiN9dRVzRhRWG+faKA8Yg8ACX2410pc3MTlDPpdX9tKLZ/fSxTVeKPgy23pEn8ey3aPCVw7eV4aeOBEDGVEqOOLSKMZG5/ttcMM2wHSHz8139tzUrcF+FKTv8NtlXAR/SENdgmvBxBN9TULdc4L4Xcre3GzwRVvnBdTLdRsae7t5bVncGGjUoFUHg5Elgrhmbxf8AXLWZDUwBCnyp+MDlTAqQ8pgOdPaMbYenLMij+31C71HMw4H7nEs/2KuqcFfpI9kkTExVD800BQulCxMGmlzh77Oc/T8c5jjfjNmmGHqp3q+IIDmpjHxhVaWm1d2hJg4baON9h8Nz9pVIpGP8d6qeDPiQkCxvVP4V6YnDD61ch5AMY753EnWCdHy0gnAxHurXjYiMGKQM+oJkwjTSgBpWesWtGK+sLXdLeygtZOl8wUvGURLIO+qmLXFPhCZF45cOHmXbYiXhigL8ciX85rHiVw6W3gWadqBSF/G3EOepKe70Hh4KA9bqYcYTRPQNOioNtJNWCy5x7kdxpcE6XAawMum1zEPEbTzP0Blj/Z17ZChgVZ2ApRs+0zRoCu3SDHTDNqZJgR4SNTe4oLp03cDQD/zwjcCiKo1JJcUIuyflTFzHiUgI8OEpl0XaZo+LC+tDAobnQnFSfEHossAaExalNru9h3MPm5G2tqZCyShtQZ4Hy8MMzxMIXMiYLtz++v00e9/kd799Y/Sh7/7MbfSlzLvOFJn7NH2vV7bjXuohxf7tf+GBZKvyrh8f6RjngNDBVHDb+2ZTtQUzMU1eaIO+pdfNBzs8ts8+WDb/nQg+EhZV/y3vhzyM2dabquxAX7jRkb2slhRhvosDC26YfDARf4yA4n4igQt+2gM1MrhADNck25tOZpryQ04Ks8yh6baTpoIizy/FMzrHHZ55hlnANHxzEJDu/+QgdSH2kNSFSoJnLgE0Feknc+Z7z5M6Spzk96aVl5opg/+XT392V+hR1vvpUuAR5fS3EXNd/cuG42xLxZTAF8Ze+nqh/1047fd9NF7y2nvGuM/5mobZ+rplz+rp3/8G+YAQNB5AOrLr9TS6y+mdGY1K4ROvCFzEHReeu5yP33njb30FZr2S5d5EVjmec8PMc8iY7PAjnW8u4C9zZuddLbVS2dX+uk8OptzmLmsLTsmzFHpA8rqlK2d+g7a1l20regGGesdW8QdWeHGsB+b6wQQJm+PQrHzMPhATCrI1ZShy73cIn2L/FusH7sFUNxynRQa3v42oz/XfdKdS8JclpcRz3ukdU2jvp09XlDuoRADNAuW29DZ5YVle1PzPmRK+foWirY7eT5RxI6fIhPgaPRPUimaZxunBKiTJiahsqGQc0iHivg7ersQQcSVo/VQ0SJvLjE9HRxDwZKWFHfg8+LT9bT5vyjrYaqnf74QgPZFosvspJY2bjw3JGtJuammkcE3GfM5ue/x2qVbHwG3N1wxeGAejw1UdthExYlzDY1cnVfwGq+kASrJGfkBgN6WmOcsHpMkt1JgahrXEQ39UptrnDxFmuiZ/zITC9FYAOkCv/X1teAzNFLkD5MKGOsKJOXZpwDCzQCgdEQbQz4BQZh6uJsh2mQZK7WFmT0mcYCw22zXoONW3ts0NoACb3UOHJ4v8xNEOKmrjbd9LkB0023BfocJX200FtEA/mzXaiezKQHqqVv5+JnFn945BHDh9o4e5ctBeOaQT8rQ+qhDmeWQwYk3Sk8par8N8nbnxtV09ZPfpa/Rnq6xo+E6uxna9BMNo/SmXQ+lFVzDipIYF3K8drUb5y6nFmD65lefoBW+Ep4Xzl16IRYf5l4zrvzx4rQtv4cZzGcf/Tb96qd/kz796NdwyNeGLjPhEK++wW/x4ug99J6Hr/EiR9mPMge5HfF38CfHlRxafjgcui4S89CWX7xWuJGD5xW+LHNIFso7HuB96iH3kfqG2xVJ/jmUR/rUTb+qs/6gNOvwGdNGtM7zblqkc4xJYb/aKBtMFnH5CSirGa7MtgBCeN7usMB5h5fXcCVJPZaP3k122xFyHhXWUJ3VaSWBE5WA3dQxFi0zXRzTPeY45tCvflRLt78HGNiu88WSryV8yv7401764L0+JnV1AFlK927U0mfvNdLVt5mDUHD88gpmG5+00sXnaumrD3rp1s8ZX5gAfg2Qam2gwf3LbnrtpTxvDYb6E23M0cRs7hKmKW++XE+vPiugbIdWs0VcNjHpp+fROn/nbDvdYOvzT76opd+/32DBtV+ru+mll3vpzdd76VXa6MJJFUR5IDi67vudQ5hw6143XbveS1eu9NJN7NU3NxljNUtg0BEr7XJv72DDfo/73AHo9rbBFxzVot5DK7y53cRMgfvL/RbYYkcBOLIwYxVjJBIkASGQBVwbfSnkoaD72kkUcebhAoiBxQQIXFUd5+5RBd/wxgAAQABJREFUoYPbdS/EMWIYIy7yK4NFHRP9lZO9R+uIUJyMGTcjapCvzH+w2EjsbJclzfJYlsKWl6Vw4MV9Vsuk+3FcAED7MPS48W0+zezghWM7wJ4gsJz8BQbOvW7tXbPzeBP8nw+eRl8QoAok1BLpD1kZCQLN6CTnnYtP9fRCJz/LlTfWN6OYEM3PeUyqjBYBoP1ELw1ImBJgE0AbhvE8iX7eVdub/SBnoOwKZ8Gs4DLOA9BCwHaRV01Y1E9tcmb7pG5/dUAMzTLXJcA1TV6W9a+MOYUmHoJ569gFTEtLbxzyFj6yubZeF17Is9pqaesKT5d3sdMj4JvhJ+ScXQYW/MkLtKku3j6tQ+23jCqD2EiFLGYzuJBN+1tpdwDc3jt2DoeGLzbKDR5x8XXj+mfpo9/9FPOHC/wuBs8ljSD0sP8JmTTTCqYc5y49H227e/taWl5Z56XgHECNx4A884RJue3Lm3dvpnd+9ffptz//f9JneN3YBEz3mPCiLw/V43MisLu7tRP3xyTNnOwLhvI5KvkyVhreyzIMzo0jQ+QZpHOS/0f2qJ+zIms8fHSVPI6aAwaiqP3A83xhSgR7ZD6JhJyXiIN1FhE554DGaB7bGl+NOLGvxbhBX/UlW5nEiycmTy4uNG+upSAaB3jIbATfB1Jg3CS7fuxeCs343Bj5SynkEpkEf/PJMJnqvJLA6UjACYufOpcemHf9mX568U/76Y03fO4a6Uc/r6VP3+kBltnJ8HNBNf0YbLQH0Nq+zVwAoFIhc+szru/W0tUzzK3Go/Vkf6109Z2UfkHnX0Jr2/7v+unNlznnIRqMFafTqolUfX6XMcfQJCMPFsXjVjxz4rcVxryVs/20Xsd+e6WX3vu0nt77fT39+G/66YvXeumH/7qfvvvNlC6gbbcdeUyYWOV9T+B2pNt8MfjFz7vpV//cT9c+wXQTrW4bjXF/j3Z7v/l1MMPQeo13eswRYFPTCjTOKhH30F457+c5nTaSXwyQsA8uxycxb3kex+FrW+21dEPQHgnGDUJ5sX+c3i/28w1IPEwnsKccp7fh9BheAEDLdNbybPO9actvToRs0+NAoNmGWmFGCXq72taykfud35uDRoi3KzVh5U0X+GW7Yx84fqZEepxGFNSiizjxHgxFvJ9BQLSxSBFNlG9aamIFq8u6AGJidjV07mfwKuhEQ5ttkrUj5iMGxXxrlHE7cnTesjKj4UnAFLxybVOJjRcLp+lS+62clIUa7GWAuyDaFwLBggDXSX5N39FoDmxt1EVemx5uzqDbJI92ohwC8KN096WUczR3ypDzWIxBeUG8QVtxbczBI/Em6kurPJVBvrxUlp7HvSuTSTBOberWvdvpw3d/mp56/rV06ZmX0+ra2eCrpPOoHGvcg3VMN3r4Yr5982osMGxv30vLtidMXRZpSe479+7cSJ98+Jv0zi//3/Tbt/6aN+PzTH7h4kXhFxVws4pgf2uzKmOrljXRayx0E0SXWc05KMWF99++5X+DB++TucwX10V6kYWr4qyMIGPki3KZrf067AsQKsqUp5FeVFAUK/LwbEf2gjiMD2hFjiKew4CPIof5wtSC+yLNLjOGX318JlwYayTrQUMTbb7hvhvUyiqhU6ZlWVhxVMgz4xcl7f3yc+lzEmkcymDWKlQSuK8SsPOrTl1pptUXa+kiW33v8K3+97/qpLd+spT+8NN6uvs2TxZKl5h4yBpTKXOUblt9PLtoKLfQbm59AS3pEfykv42V2meA8K6rv/iqw/L+dPkSYx+LrJbR/JZjSy5xf/7KcowT/rEtI9XK0xoAe+1CLV0CSK9uMK+CKn/xfi29904rtQHWLWTxTcD0ufVCEz1C44Fc2i5+N+9207vvd9NP/r6W3vqPzbTzJcoAF8w5boktgjnP85wbMuC8iC4Ewtf5iBBLFWngkDJETBFdxo09zpJnbMEqcl4JLACgfQrQdjLZt9CuLi/52sOd8z+ToHbN5eRoejw8PkUWKx6fuM/EudiquyzQyxtMaK6gtjrsbX2yCE6Qg0mUMmLVsmvlY44z1onaqvrSAQVvscmJQF5vIQ06bUv3XhTSREG6/vNzUoPX9wafOzTl2MFQqc1LgdA5djEkr0BVDbTEfWic6MvFSNLx07MG9ruAal8gXBzVI16Q7UtCuVhKm7A+eTW/baN5dyOWFto2f9IJjyDw6cuB/qfxbB0AvPzEr4ZSjZoAXADWE5DLEzLx50Mohg6TE46+nGiH5QvCIJB/R/MB3xwMvh6TXMqjlKmCcnvw6/iQ/uTDf0kXLr+QXnztewGic8FH5a/3Dl7pB7pLW15dp/33AkhfwgVeYzlr9I/XGmTPPd7euouf59+lX/74P6N5fodPY+foD9qRUXEh+oFc6VdGcrsVOl8BMPvYsvfyb4V+KogumIlnx9zcswhDh0GctVhNkVZmzNdDkWXZQdTgRAq5GH89K+s3MlKiAq8IQbjMUZQrLu1KRQlP4rSkHXSLN9FMs8hJ2fhSg4eChi+lPEfxconNuC+E2azDr0hFf82U8194ye0sKgvOMzM+cyFTZOxGTD6vkasoYC7HgqIFkVb9qSRwXyTA2Ft/fjXVn8bema+4f/t/NtJ1tMfdO8yH9M8Guxb6VX7Qtx2ifbbKzurRx8Gf5+VAQX9WwXKVxYo/AVDfu5fSH32/m775KuYSbOKiB6AHEaLWo6om3fnx9acb6cyfYc99vp/e+nGfjWiAKrwMuPj5j7+tH2ye6qNonXIjvS9MwczfvfT+h930t/+5nn73Y74Y8GLTx9a7EUt0yOS9IcR9LM6Ni1P/lHGRq7x+wI0reamOUyWwAIB23gcEAka1y+2xQUruEGp67OjaNGpKwQSmKYWTmj0o5j/O45KOJhKlZAuvERnQAvwoF8COJ8Td8QR1Je3IDZ0MHCK2aOA+uDXClADiTJqCYbXPaqJK0wkHKDV9MTFbDwx5DsPRLg3socgknt8wtSn2t0u7bKmbrHSgkTW8+WUhgCwk4I4/BbCVMnKqoV3zgbcKwboabnlqYaJRYwmqdtcuHFSj7OIuRSWIUn7xSQdejFN+lhfa67lE++g+9C1nMlUQgoOoq0WaLwTS4P1kIGMzW0IvJcHYoGyWXZCxTqnZdrJdARSewZb47PmnWXwF6Cy8XuS88/yV6v0MDrYIzhB9yr7WDJdyt/CNfYb2LOuVQwF7k+YJFLEv7rC8/oPfvZV++4v/L/3hg39Jd29/hby1eS5CkM33pbxHOYWroOF972ADtxsai7V4dug3ZoJ+3HtO80tALpnZzdQiJiJyM3IO222duY7IWWTPnJiLiCJO2oLJYREUSeQrShQR+dmOzk5+tLx82bE/a9a1RRt0lxedJ6qQg9x/9+mZUNRl+/JlvCTr2cdnMeyzeUE01T7MoBLjgl+PSjOXohgHKZTMU6IkSJTAfImXY1/ApaucHQe8b2W2Ugb79KqzSgKnLAEfETwd3P2M/v0Zpl/XAF83GKPtlKRFGHTQ4nr0UILm4XjK9FyQhwb0ytsCupQ+xxzi9l/001/89/10+SzPgXRHH8ZhGg/w3PGHaTE9fb6efvAm8yYvvf/M3PXRrxhn4HvjbC+9/jyeszBROUo8p9kMscF1Fnn+5lfd9NaP8ITyT7V061PmZm2WvS8PkrnTbHhFeyCBhQC0VMJUg5lXgNh3kjPOpx/AZv8Jl3MxmzmpEUOSi4OcgJ3QfIhduOYk57lxfnaNWRzQI4A0b6aVJ0anvZj8pDc0CUYcfEQc8XugATt5ELZqJuA9fgHuMc3wIW2yN7Za6QZMWK15rc9tvbWNdYGkWivxQEy6gmiWRYeZCXl7Lo9mMqYQZZFDaMuACyIR2ZMibXLCt7mlFt2q/Kkh84172W26ydOGbzdRcQHgMueCavkx2G7LiLBC7tZFRIBjZW9lBA9RL0fT5U2g74uNLyyZFwENuWTKY4SgTh2DmnJ9RdpNbKE/Axy+8Mp3WEx4noV5+o7OZXL5Wf8ep8ystA/ms42dzg6fAzHL4d4ZdtAU76J9vnHtD7x4dNI3v/cXEV/KLC5m+uNXAgAjG85c+eS99Pav/i69/Yv/gs3iFlr7nSHJDEu0JLwvA6Vt8D7u8jWmvkO/ByRqblSa4+QM8Xf/zwjDdrlMajghoGtE51ryHTtw2/cpBs9lvqHoQb81rTSbkrIvdPHM2o8B0PZXQXTi3SFAr33L/2QdsDdMeOTcPPEVJJ4ZJFOYIfnMevuUt2YdTRfOmodftNtyJa3RBpAQL8rx+TpzoQ2iz7AhZx+ULqlUx0oCpysB+/It/JFfxwwDIFbHM4U7zNrnI4z243m4sSzPyzaAfOdWLX3xU7++dhi7u2n5dTxbrBUv5/PQvI95HTb4IJueOVtP3wFE72Dmdu3jRvrg/WZ6mi3RL7Gj44bbAdvO+/zoyptfx67d7KffvttLP/ovtfSbv9V7CNgCbbQQpBhU7qPEqqoehAQWAND0Iic1PlF3AAt7u9tMmNkEw1m1zwQXi/PQwhnvuXa/mhzoEWJ5eTn83wYYDGBTgEOkENorjvo1rBeDiaBPn7HxrwSUskBvjgndc3st18Zpl6x1cIvZteYqVHklTncxdQBzgBWAqppuAapaXX0qq/1e5nO+2jRd7wm6SxtK+QoQTT27bbb+1uCfMpp4OJGrZ3eiFhAbKEq7Bba5bTlfJAV/AcxJW0IegoHQLCM3za7v4pFkk1n+7CpywvQkQEp8elPDL//Uh3w2GAj1a3tPTbRtl3y0Oddj3b6byIGyD3MS6ghtt3xRILilfo/KshxaB+MSJ967Nm2+hVeOzz/+TTp/8Vk8WLCgcJCpqO8hO6g915PILXYCdEGk7dCsYvPudRZ5XEcO+timfxDmbUrYsdPvr3zybnrrH/8jrureCvA80DyHcBBwyHiEeiE471nU7L1QzhzdSMevHefwDqPZzv79yEA8brLFOKFb+3fAvTTsS5LN/cET8+6Hg5c5PdjYzxLlS4HYM/QFGiZJZG8D8vUDmtctZLmp1TVdTfTqqhvasKp8k6XkhKiPZ096nkdd/pFX/sUp54ZB+oBpn4uske5iB+mC17ZeNaAfO5Y6LsR4MCSbTCr/laBB+sgl25dTK2BCOhFt+qgAjKtCJYHTkoD9knG8ht2zzyzakuj8Lig7sWAdgjmURHV2a/3sbXxF/6iWzq8BPl9l/uDZibpPrMKTJSTrLqg/x66F38ITx0d/Xk8ff9RMH/42pe++yiY0uMMrvm2fbMXTqCFTlWk38MX969/00v/91830yc8Zs2/zMsRLeQWepwnv8UtbAEA756jd22PC38UtCwCayS00qnzaF/AKNrXhbaP9E8jkhYC8ofmPnubufqENBSJotuADEyAPOoJuQa4gUW1cAGgmSifLrMHWNKSY/hwoDE6mRAVNRwZVVZhHCCicIAWNTVzKuTCvgJpRzHYw/4fXwyZuKNRau1titkmmDGDamvRPHaAEvrYpE8CLukMrxjJpbZXdURGmya0GHhkAZsN2Wr4iBlYi1UmcQYwXhPzPWOVivbxgsAmKMlIzT1W4v9NnMHzBi6BfOZnfNIGMso84I4iPNGoyF/g5BkvPhBlyppYw7gdZw5c3PFM1debiHgYBkn01Iwz42vle/ez36aXXv59e6P8RZehCUecg90Nz4n3fA4x+yqK+93/zD7gNugd4ZsJShpjg3LnxeTp34ZkA1IFElcWBhk9uivl26Pef4KrubTxufPT7X6abX19l4QgeNfh3JBlk5p3KwXvtWb6ffUZoxmJe0tBG09/ttyVfw6LeL59rs29K1CvToob9TMREZD7G6VDmImnAd3GSSdq/fAHNNOMFTipDbbBvxEsrfdEqy/7oS2IJtC1iML3gOAtcNkbqM5P5DJHmtfVB35c8NxCIfu+Y4BcZ8vGo+dc/U4Iy9tnNfFokXiLjZEqxKqmSwElLwK7Kc3OqwedGSzI6+a0rtfT+r1P6AfbQL7DpxAYbrZTP3anycAzi8rWNy9vf48rv2lXc/H1ZS9evEwnPraeYv5cYV2ibM+39Cg4Rm5jFfH6tl/7lX3rp5/9QSx+/Rdw1xhPXiTvZVuGJksDxAbTPPRORQEz/zZss1PN8BdMH5rQAY7EYjwlUW10X34FJ+Wn3q81vKzS7gmN3wwttHnmd/9wVbA8ziQ6g1E4bn18BEU6UAY4FFYDM8G0sG94yMgo+S6Cd4Spv3j6JAlrqF4xmkxDtki0jdM0A1ElZABo2zSwedIGeYLWliYflApwDhoMPxZbBbnjSIK8Tex/QH0vGuA7aEBcALVHWZ4sa4jO0U3evAM7KSmAcYIByDgqWUQuuW7vQfsOXLu/UiJdgKl4KSLecIMXNVpQhzZC13L6MKKgtAzrlKIDWdtv2CnjMzy2IOs01ABOQMVg22uoF9emV49bXn+OIHaedBV1zPHxBrrT/3ktffv5++s0//e8saF9Nna1bqbFxMW08/RKy22ETgovck/yyFp12poZg84yZxrUrH6X3fvOPbJTy98jki/gSo0wUasjEzjUsHK8J46OLRNItIsjz+RGIRp8fKuU9yyH332HguJ+W+8Ag636ROAuwXcYVx30O8ln89cUJIj4XNfuXfBiRE/OB8vYr69KPeQ93WsGH/ZMTXzDNYZEBP3FR0DKehEGatIq+S5JXHgh+daEP88CU/JuSuaKeGD5ybvtxVDhUVgplkF+/NrmdeYOXwKBrgbKqMmN1rCTwOEiAeYaPZen6J3iMuOFXLlzG6YXqIQ0OD3oYeft9XPL9mM1A3uNLKwqlc99gDdI5lEo8t06zmnmY97SD8/I24PnTL7rpZz/v/f/svWmTZcmRnheZN/esvapXNJYBMJghBxIlGmlGmqRv+qQ/oR8oMxpFo8wkoygzzIbBzBA70ECj96Wqu/bKfb2p53n9xL1Z1d1AT1X3GNA4kXnPEouHh5+IE2/48Yhof/tf0YTD15TNxqautjG+N77oR/B7Sf/pATS1VhAn2LNyCeS4oXMrEGuPGDvhARRqHmEntYYGeHN9nc1SVgGDNbEHS2VGm4f80LKKJq2NnAJWuQtYxC+2vmJTaNsdRxtFp+7n7q59tR77Ezy5W507jZnetEfwYsfr5LwsDxetKxpfl7kiBaRictHXhXZ5vgMmIYq/1UILqFed1IjmfIWzvB5jb2E5zT9aXRknP/O0vHbS2jYLIbS/VqsYEMKyaSUyO3DC0OSD4yw010xyIm4mZhHo5MSJa1ZLl+uAB7IREOvHtDNMaSibBHFCiALC8sHLBt46CJFnzVoERNIpCxnKwLXpBRbKLmYu0rE8uDqGc4WET+VF9s/syPqLdT6LJbb+PmPCJmtqLi45PbrqT0lL6Qxl+xROejGRWAYRt95/vf3o+/9Xe+/1H7Y91pQ+c7CnDAe5hEwv1zzxIMgu1SEzw42b9IMfJ2XbwXORqHR+DTjv6pkRw0gVsYIl8BhN01WELvNqW3g/TrIyj9/5gCHtUErvyqeyq5vOI20G/dCEpbOsZ7JiXKl9jGySl+SS+jGiA+1+InHnSJrliqqThh10eCed5ImsSj7zdDMCxHOSspyuMWCtL1qdelEej6ME/uAlUM2D/sYVlfyaVGYIv681vfOlieQjNiW5++Zie/gqSi3soJ2X/dGLy+0ha0If0A2xlcEX6vp78pC8X//grP3D35y1v/uPi+3Oe/QEMDBlIDKb8PmFcjIS/32UwNMDaEqTdmnHKGgWWNJj9Ul/6fhPBdTYTgo4AaHraJ7XsH0WwDopSHBq52ant4qtZ1brsD4KiLEF69a4veOts52xw87qFvM5V5CQn6AQvvhNWV1CcN9/AlwnkblNZl/dogPS8C+YRxOVMgBWJRKaAmN/vngwozhkm1RNOwS93S17Q5lE4AXDKlAZqDE2HwG0LU3smcl88bGbZ02PAHdsxImnwYc8wHq059Lw27SDCcG49tWGZUkuQLb38il493nkqQwygJhE4uuhX0E+tGA4wNkQci2ATlgHbT1hT9fvJ6y/p1yfzc2pOiHy83bWAcvpL2ZArhQTMyFNYRyp+ER8xn4VUANtfRm+THwqM2j7Dw8wYXkjmuff/OLv2u5D1pNmD1ppKOBMHp0X7XFKn+bv8xqengnkuQ7eWd+rVnlnJiHDocCviYuwx2xAZOGNOQjAO+vIzCVJpQnPdZgHJ6r5Gocf/4PXEEce5GngRd9Z1PLLWM65AORrUL4EUY7ORsp7nqWeAXlWviSahc8uKiMISjM2nNRv2VxmWQHbqZN+DTXMgW/eEkbG+zwVfOKqzbOZxbrzDLrveB4l8OWTAENZ5vmgQMrv97x8Q5udsh7fsSuKbPHGZu7SARrgnbd4DzPpcsrE/7xPvqB2K23nI91/dNrefGva/uHvF9pP/3bSbv6a/PnKht7vk18qv+eiHdn7/CTw1ADayuUvWlTAp8u6WY8FjHaWHZRiDh0N6BogWi2PphsCtJhLuIRa6LDt6Noaph3QoxM8cpULJ1OkdVRhh/bEjV0vgC8gmlsC3D1PQBfAawzSRSPOdcBq7tUcAmCdQAh40iZb7auT/LIqB5m7XrXl0DQk5g4pB8CL9ALUI9KfaUPLJxs7aDXLltfJf2qbK43AUm45DmDAs76ZhMVi8N5rPqEN8gIycPUSyx0ADX+GS7MwKgKSFiDJ/ATvnGKGEbMOQJ+fyB10UBp+xqeMFi4yMb9KT4AhiSINAbkP0BQBRAI1/Ipv/epXNL3TAz6WGQQhI+l2d+6yew3nTw+ZR6w4cuKzS/6DDOdxPutVyUvmpGo9WeKZLq2u8fywgeYzoDtRVqktPrJzl0Cerbt4/TZuj44O2ZXxVvs1Zhuv/vh7bDf7QdLW4Kx4D5YdWPjsHNczSd7nhIooIo+Sv9SIAe86w5Iv/JsudYuz9Vl/25j1sQaYpijA6VkNdi9nSUnfc87AZMNhiFinwFG8igflKHivO/lRBvJj++dHWcInB59rAC+k5cliGt5dadW9P8cRt6HdMzDykMT6WyCZ+ph3C4Mf6Do7XroJo3qnLklHHkh+npTk3EDHkDUG9+FXz9GNEviySYA2YHNzoKnZg+2H/8/V0cRm7Uv6z+Sg5aIBKxd4f2/QpkGyC+vQZ4m4k1v0mYDqzHGa5fhMuX0ssWU5QGl2+/60/fo1lqn7fms/xmzj3q/p59l6POD5Y6lGjz82CTw1gFZQdkZU66yWIaASJAY801LVEi8wa15ga2fql9LeqbnjnitSJP2gNXK2rQ28Ot5q7KW1GmiZIeGmqUN52OnNtKF03mnEHCBHh947dcAlaQNyBbu8QVxrVjB/yESwg729AOQFzCsEIvnBsGYaq5iAaG+tBngypbOFaEw2yMtNWg7RSqshFNxq4pEJjxZkcF5GA+rAAlmskqd21QJoNe8C3wB7mSXygvbggBKBbDTk0LFMHThJWZryuMJi8iuUZY/CSSskfB78sdAGYuJPQfgsZvxw5Q1EfcnJdzas4PO3wMbn5KZ8Z0zAnMk6iX3S5q281dSSCx7+frsL858QJdTP+cOzssWUJeY1MjLj+ly0z3gZWCdQ5Ce9xcky9Au8KRJlGrlyOGUVjgJ+n5YlciTew/u32utonV//5Q/a3Q/fhgAmA65IAfjWGeepXOT4hCBhsgCyjELV4ETx6fL+Js895h4c8tME6eLGWurAPpvjWCc31tzcaKkm5yJX6+CGG7TYHkkfTjkUyUjLAhBSfg4EKifjdgYS3GPUeSBm3dlnHoQmSraz9VUGo+RvvdRPYH9hA6NL4rtqjDw7SEz+oQQPlX38hsvHrs29xzdcsyMpZLBARZwApGlas0g9rumsqALsJ13qb0Y9T4aM96MEvlwSsPo7qd33n7/Py0lKen78cRlWuo9szf27+4ZP5qC32wk4YfO55bZ+FcDMO6SxVH8x75nfJ7TnT6b42X07yQMA+wd3Ttrf/g3A+a8m7QMmX26zTN0iG8adOWHwc5TfZ+dujPn7JoFnAtApDOBMLV9AIrVPUDZALYIFjTYotU8FoO3sBG2Cad0ZZ0HOKp28S1S5/rHdueDZuII/66oVW4CShprWX52njdT8Bd7kVnEIN1VA/LBFs2DEVieIjW0yn/QF0PHH74TRJmNbtqbnU37Kc9yOAMROaBRAl0YdIGYY8ZMDZTO92mxBKEbOgAI1nJbNF5XAq/IU8NbGLYBPeJUHeZm6bJ3gl1+AOWedRVd+avVSXG/JVZqLAmzLTfrICH9pBMCZJ4FJDks5E64MvSHnnC2tgMJ8fB7JBxoa1QiOfV5xRSB0iB63hKa+JnBW4BClAj/xWIwMXA0xnkhFntLX/twyKedPcwVUB2Y+LRL+53Nw58djBhvHfPZb4FxSrnpFplyUz/k0IY3HCV9Eth7eae+y0sZvfvaX7e6tN9oRS+JZT/NnWh/I+cSdvd/hV8HnI1U99xlW/XmcUI9pmGY8e8wdWDldDmC2/gienU+QwSJlFmg7yXSRZ6uWlaJXXRjIegpNLvJ8uel5dNH25xac2dk5FytFx9/l7bZ399NezD9zCyDqEnfH/NYB9boDO0Oc7aS/B+ZMKdVyqbX9ZvDz1AfWeR/QOOQ7PHDwXPWjJwgVbqpUT5btE8j3hON5lMCXTwJU+Gep82k/TzQib6Xp5PQdLtDrtHXeM77BP5YXHh/z+wQpJw4D7OUNBtprQwro2o0fYT5xsEdfdUQObKbS2/YnkPknewE/2n3MQ15/87T9hO3Qf8bmKB/8vDa4caWhdMafpQD/5JzHBH+IEnh6AG29xdm5BsjRc9lgAvy4DugTbAKOlwGaS3w6CjAS9KWjKwIeBWsrbHJgGpfLshMUZKoKta6qrfXnjcBBsJgbIqqlVZMVzRNpTMttOtWJn+5jQyJdJ+YN2wIDjDVf4L94UnseIFydsS+CUzTBbq+sOUkBVScllplHVgAhsUDassR4QqCiLS2sGb/4BhTDq3eaepwA2l2iLtp60+Pnrmpq46cAb1dcEOxMyN/P46azvCkuci7AAE2u9ddlkiCXsYEm7/NwATEQc+5Ks20a5cOBPGRUUaO8iwbBwUDU19w/nto0DkqQdTfhGGLISaKbZHD6Gb9+Be77PZ7xr6hDHG7c7OSAbbOkv7amZl+q/PJfz1bmS/vdzwDixCsezPe8CwXC3a3xhIIKon0W0jGFAxyXIywN9JMlKZvnrYe327uv/7S9+cu/bbfe/hH2b9Qj0lc9lJS0nnCf4BXe8P9YUPcgwnn+fcT+4pKOMnszxPck0PaZ2zy8rwHVIHuj9nDrt/H51aHiVKqeCef6N9YsnxDGv+c948koM17qQsAuNQdkctvDTdPrbNow4Uv8lKPOMpjO0tSRc/6LjnG6y7vBmKQ3H+2epanma8bbcCE1f7OVQMiuBmcSN8TwHiu342GUwJdSAvWllK9RMWP73UVMq6gmQmujDfGzL5oKJP3PyTYIqOW3i/99bJbXBb4rrJZhf9yzERzQ1m3uDuLp/kLD4P6O8Pq8M+0CtPwNbNDPYQ/NVtkC6GM2LTm7aKt/dmcZDjDNvPsQkw3A89/+5VL7u/+02k7vMTncfQLSyZNPZ+TZsxwpfAkk8NQAOpXbBmFLAJxE25uJWFR2/I9pXf7ZodtgsgqHoFG0ZhJO6b842yGK5WzgXJEGu146Rs067Bw7eBb4CAikkVUjoG9bnvK55ZR2hJ44YDq2n7YIw2xxcQJzNZsFus3/ZNjkRX/tZKsDhut0zIMmnLxsM2r21JBPlo7IYzDzgE95ivaWMCcpHkNXUCA+lXfNElw/OqYE8ClAXVwsM4WYKkBL7b2ge5UlAF15QzRkeuV4BA2BmgBZ4HwqbeybY5rhPfT9yaNyNayDCSQ6k6nBUE3+eHrLHWcveRC+7EiOXXjJqAhK1SfS45KCG/mt5+4zI/ATnDJV9toNHzHxzvMxvwxkMNPQ9EF+lNnJsEugZzdrcZLi2tpmBixOLLVu5QsHg48lwlaYiOpgJqusYNvsRLDu5uxYdnwtV2gwcTVbnzNQwbSom2x4du3mqatoEPd8eXyuLk/31qs/YJOUH7TbH7xWfEw02/AxScece679HM/O0uw8o22081FyjTQ8EzaLN6TMWKfnMWTh4GudTXbyZYQE1nkObR0aDo6yNbwDRfwyoMPfZ/JxN2RaBSFtPePUDZg0TVJ5kPZ5AufoOeDTbOPKpQupfw4U62uNOyo678HBpu3AycQ1CTWa5Bk9Asg79IeBXYLMM+8F78JJ3ge2yvzxHBx0Z3IweTzG30D7iPAjl5oivXJZYUZzba40RAjdot19xvMogS+NBIaq7QTC1eXTTOjntfDbHWnsYw94B6qQouW2feYlbe2iZd7ivQ14tfPlo2vbYb+kPT4qsWxz26Yj3mCez731advgg1Py8R3CroELaIuX+T2/OW2X2Dim3muy8cltzxbbf9XeK1738/zMDiLyIV55+0Nsnf+BiYJ/NWnvYLIx3XH/Ct7xfjD7XDJ7Zm5HAr9nEpgjj6dmrDpYq3Y62wBOAV6BC/v1mmQnlrETtblUQxBUWjHtVAUAAtMJje8YEKhJRG27bRRTqGWCBgRcD1kA2YGjdTug1zKYB+HaIpvS1RXizUHgbXrz03xBACTYzEohGpoYEI2kwE6qjNaJL6hw5O0L5YTP5scL2HkO4Fng6dCcoMRdBixkdzs8oAIgRQNNuZzTdwRNNd0aECxiKmKZTy2zICcTFwE8gG2XrDNPQbs7vsU8Qxn4IuIX4CB30Do8BLQTT/+4oGBZUmr85IszN1IIo5YsTnrDpX5eC3QEZZ2cwQmzgLmAPzfKgecep9Mwrp4OTO7fvd0++vC9du/2+6yZvIvcAND4u1pF/2UwBae1hrW7PPavBABltND5egBXPooAaWQ+wZZ5Wbt0tdTrF9qN57/SXnjpa+3ajRcIozrL5+CUocD47BSTBt6CrkHeFlh/nCewyBcGpXTkxjDv/JzJofttffPyXI6QUZuqrfO7r/8oZhuHu4+Qp3XCsjtgsn7N8ysBzXIPK7Pn0r09n08Sf59ouf5EIlNoS95n6MPp8h6icqJeOrAi0tGJ5hk8fK7l20k3gmfNhuRR0yjjOpB9jA50e+69LMXLkOk8s+Jh8JavJ119WULT70CIOilY7XXWuqrpRlasIU/DnUU/wS47/ISuzHAx0J5ngX885RT+E8WrNL28B06h5UBbWlU+Q8tpc721Sz2gp1yn475AhEzS5fnHLhr/eV491XgeJfDlkoDtQmWWoNZu65McXVnA8LvvT9v7H7JEKu/La8+dtZdeOGsX2dxrFwD92htn7cNfYirG7nvaVO8eEo/X6QmdnLh6lc/Bl9nohKZNf0LLIuNF7tkQoa2wguhXvzNpN17kHcr76Pr11m5cXWgXeXUL1GeOZK7c9dylk3blCu+5pqKENkwbr7belRezFP/kC7MTG9+lHK/+im25f9zaq3/f2vs/ZbDAFujOcYnm+Z9MeUzwxyKBZwPQ1EAbpY3RX3VDNAxussMePZ2NNcCViF1b3WP2XmsBO2Ci0UAI4QdkxJ5KLbMeakQJpGPFK/lJT+CrNracUJUoNC41gzZEJxQlmSCHsPBJBnby1dGTn52xWjEzB2aWRow4NPqACfLQBMXOexrG/NwvcKLx0vg9Z/ULGIs22bWt0by5moegZgEgQ/Z8guJNwLnSsowaNxPSBqw7EY2XjwBRcLgy5YcRmVxr0uFOj34yk4agPaCbvOVPQOSGM64bnQLilzIhnxrAVNnNXP+sPgGvprVU4kkS5tqD9ug1wFB29WcMohuNKEZyQIQNdMAongp55ozoboW77bVXf9x+8o/fa2/96od8crtP/mjdJzVoiH0swE7N5HJAFg8gD9f0naS0AdcALSehHbEmt7tTxpwHTYgv0Y1LN9o3/vTftH/97//XtrF5gd9FxDBnSBloFiI4Xjo7aBt8ZbBKCeyWqWNAdjaEedDefvWv20dsKaXWtOcuOPaLw/7eTtvb3UGeZZvtY0udoeCRY2RZfId5D8NtnR67SdCMw9lFpZzdDojZQVB/VoZJqcfxmVg/9g4OIhMHjWqANQHa3T9oy8fUFeqsbUUZ7jG5UBtoAWzVc4l1qgPLnXgP4vykMwljiI85+bGuOxhyC29t+gXvTmS0AuUZ8tXBdeD134FH11R3m/p6ZpbOX7m64kh+xdbs4jE5GNu4jA9i+uQA4XHnO2HKpgx8/aDeIIq8hzbd0cz6T+JqDZXj42nHu1ECf2ASsPr7s0+zyXjm3eB5kTm8rsu+CMD9WDMhmo7XbPvw0Vn7y39cat/7m4tt5epK+1f/br/9u0v77coy/TKmE2+/1to//B9sbvIr3jGVjDZkprYh+xP7DjOulmWITl+XGnj5f19t1/8cJQh937/67lH7H9aYn7Fpv1IUKjYrhvDqeO7yCcoReq+XQN72p/Z5fOY9PKq2nCx7gs94lkvf40fMe7qHvfMvftPaf/oPa+2N78H5Pd5dmJtK95Pec58xizHaH4kEnglA0ze3VRonX2cAs9Y4O6XSEK/SUdt8bDxqxuwkgY0AS80z9K1mpVbIBd6FeH5GEdacoB1Uc7tgRZbG0NqJWS8CAK6rVaDrom/G5tLemzDPWZYsK0gUIC57ScKhUcC5tNOCdUGSLxbJBxQlnw5aLA8vHcolXV8UAuuptLkXnNkKMwEPgGtxNAeI1hi6pR2nVGRUGnj4iT02y+IBxmot6KLrIENGpOuGKocAjZi+oC5Qxo6EzwBGU4bLypl3SHi3hSsbee+uylLydJABUYsRcNPjeDZFgpWvHpFB0YoY9Buc98rO55RP8QBRtepxEh+c9DTVuHf7Jrvzfb99dPOt9vLXvo0mApvhs12G+9tkg0yg5dcHy13PNhxw7X0nVmfLUF8XyB+5mkc+LaLy2GEXqPff/GG7cOlSu37jxfbK17/d1jd4E88cdUL7ZrTQapxdVWUZ8w9BnYO5Qz7r+xwOAMlnJ4c8J8skh5WHpgEOYKx3kWL4qwFW1Su7BOQ4y2+4GTx7URJ83i8BPbRSh9LMq3JcTHnr+YUGUXkEM3L17OHXQRjlkJNo9Ynn4C71O0IlBFr54kIcB1NxCtPLsJADN50JY3CNt3l238Tyxoue3qg4vwwJjo0saI0WGllbl/365CTDFb4waXIjf/KcgWbPushwrDpZ3kPOs4rROanIuYNBN13w3ZOKPaPjBZ02+buE5gGbHjivYWtnHz7W+MFrMuFgWUY3SuAPXQK0c7pFuwaqtt86mQjP2dq9iOnE0hWAKcvCLcas8OOF3QZQ/gqA/OartFe0sJe+2tqfXD9u37l40jZpLk7g40Mc/RRtbZP3lB0Jednm807kvc5/8tee0RUrYCfvj1XslVe/utx2bqpOYVGNF1f4OomCiK+obUNCac2cy9nP7RyoLEGjffWo7d7jfU1bd6fTQ3YpPOb9bblM5fmzuPQfRHy0y0Dg3ROUPKyy8f2ldutVFC3YVluebH3+WQl+lkzHOF9aCTwDgLbLt2O0z6oOz87QHfSqRQl2qoI7wcAaTvUEIA2tjbSmyo9aa0wb+wmfatryOlrYNRqk7AEeAZxnoMezU7YhIpZ2ugt8Tlpk4p15pMWmFWseAUX8FzLKppnaGgBRyUle/dmh89NusibTQW8A+cVolcdO1XTSL62dgLcAtCDYrY2XeFMB99PI1f75/uL7OYMASkNegjJBoBrbmEcIBIwD5SwfRwJfcyWXCpKGW3gvLWHrSycvDxZzIoAnX3eTEqAHUPZzeJWqpC0k/4qatNIzS6QIkJzH6ct6xXTFZEb/rQ55QDs7SFIes/EX4kO6vZ2t9uHNd9nm+g0WwH/UNl56uV25sM7uh+SPFtTnpaxjAqPdOWYXC0wWVTb15q081OhH+sjRdZoPD9ishLLG3AYgrEZx4e6DtvXoDhubvNbef+fXaCqeHwB00XBt5+PDPV60+8jL0guQYRce3LUu5g/QdOLiMTO6C+hVXSCjyNw4yjkDImVHgf0K0OtQtmRXuIMrsFlC1ts2Uo5nSNrUJ/1mcusXFTtxc2l7qOceRqwACtuwwQmWu4mGlHv9su4kZ/Mjify6dGMc6W1rMzdcFmd1I0e6fjb6LMXMs+LMAwTQrDRD3uZXAJnnRTRNSWwHDgyl04G/1VP5qik3YtryQFZ+SlaDx3B6jPfuh2xmcyWS4zkmCXMX0QvrTgD2q06vX8QxWgrmxbk0A93xNErgD0oCtLuzzZV2dhUzwusLbfPycbt68ahd2zxilZ6zdulyay+/0tqLLzkXwHb4eOnSCmiKfAhtE9DyxgsL7Wt/etheeeG4XVnBHhrQvEefvMBW2le/zeZnF2lLjkFpQ4LdIwDz7tEqZ/pt+sx1tMdXrh62SxdOGLzyDtpYaDe+gg32OpuhYDB9795Ku3+nta1t+uJL8EK+ec0NbNl/aiv98vPT9sq3T9o7O+SxB4MA5yPWgz5GC238eTt+vDxP3tkPHtH+P7g9bb/5DQOFn7BV+A+wd/4RdFCWnBGW94E0RzdK4DNI4BkA9Lzh2Hkd04JOqYTaLdswu31z7/AcEVuBHU0KOgq0qZm28xSM8Sl3aZ2R8Tr2rdewmeJzvAAa4HzKJ/iTYz5V8xleIHTMesyCLnpG2o6fgAWgmWLHPWcA7HQiaGZ2w3QP+ofgSf1lTN6qw46GFiEFeABG/NOVLXS1In3iT9rergICuV8EofoZynB3uVOjZht0JH4Cn2rejasmzrSCrgBHwETMUJCZpiBqrg0zkjxpD+1PpWLswlXx6z8AaFcTUZ7G9/N82RDjYSa8dSym1znDm6SVvX79eXAXvhMV2gZXeE7ROurVneVIHDwy4VIeua48KpZx9na3o4E+ZWKeXwhOj3bayaGDjkNAMAMMGFH8gprVRdYqXt7gWo0wZZRP5BZ7Z2Tk0OJMs42TvbbPRETrzgqaxKXJZptojrC8yw6Wa21/52H74L032jf/9LvY1D2PnOQMWmieD/a3yReA7PPhWVlHXf5N4JZBE8I53vdLhnWI2gSoX9G0BBOgDJooUw2MHJzVM/R5z8A2aSx3HPwrzy68XOdQfv15JK4Hw5K0LmZ0hiDDBNE+uwx8Oi3DISZQXYNXz5k0WJ8y2FVvLXKuTXcY8CDrNcw7YnZD2srTi4+7quXnMnoyylDU7n3+1smzmsGsw5NbxZuRsjJfQf3JaW1QZDzNd3SWOXUeP/+sZfPc51fF9HBvpk8EOXA3Sx/FvAzFXeSwsdzWeO+ELfLQL25GZ3ZR/uNxlMAfmgR4Z52hrFh4GQXUNxba1Rd32zeuH7VvAKSvMLv44kWA77UJ70gGtLz3nqzxvmfWmOT31a+ctRe/vdR2N5faV17ZbpcuYgKFHurd22ftzv5y20SL/C+W0ByjxVUBZb/kwFRt8Ye7q+3Ow/W2t42J3ZX99uJXpu3lF6ZtG2C9emHSvvNteEED/uF7h+1v/r9pu402+r2vLLVvPnfaNjExoWmmbXviVd++dhWb7G8yF+Uvpu3Om5O2pW0yeR2ykQrWi2nv+PxW5zvB3z7A+9a90/b3/3DWvv9fWdv5v03a/kNzQrmimtxLf6MbJfAZJfAMALo6PsHhPst6uYFDNgShptqhr9JhFo6ZN1M7tsKJgG0AjA12gpZ1eXkTjfKNtrjMJC5BM1rj0/1bgEM2OPHHJDBXdIgWkESlZ6YDXCTd0mWADZ/Zz/ZoJIJmQQ4AFdCgpnQyAYzDiC8MNbhLgOnTCZPKANdnTCxzSR+WmgzmscsX3MtXNIkQ83OU/tW9V9dsKxNcCd+XQINujLLIp+kDPg93MwdgnvCPPBxcqJmGCoBYoO+ScQrel48AecVNJwAexvXTt/bOZwwQdvm0NclkQ4AJwNg0fgrfIL6gQ9kfYMagLazANJDAwQl/8j1zghMFY6GI5x+ZVbABw2X5z8uaCIYRRcDm+tPKUlvtDlJndKAXcxqX/NHkpK2yJvBhe/e99yijRgNqfQGu5i8dtZJLu7ywWSh/TVBcGu3IidjK8YBPF5bNAYNbaDtQWlreA3ypjcb0Ai304RFAmoHMwwdbaKMfUg/3ooVGR5x0R9w7qVFYplbUrxnWPSe0rQ5y17TAfCzTBcxsIg6fl1rwEhlh1CmuqzYMMopQI6VPPwyyTYTz1+dSdLnHK3lUoI+ofnA/+PdgAfwqRoLK1noTQB0AjdZmk684uAzY8Ftji0U11cbNoKATeYKf7p0KYcEHD09PRMWnfIcos/BV8rl+1ZU4aNtpc9Vm1plR5OoXvhvk49KCm6pY/weezINKm63QQy1SIZeeAxHwt+50WejTg5VTDc6hQb4O4PXrTl74n21etkhdqs6fVkO8x2j2RON5lMAfkgRQDiw8wlTuzYN2iGb3zib9w+ZZu7m53lY3ltrGc4sA42n7X/7tcdtgU5J12kOv97aVQ75sHmPmtAqdVZQfR3un7cPXWBcZ843p6rT95/9zLRrob//Lo/Yv/r1KB0whAM0vALA3/bpD/7Z/8rD95Jc77f/5vzfa7tun7Z33F9u9GxfbMWj4O//yuL1yedq+9mJrL13UtOO0/fz1TSbwtfbdrz9qF+F1uTOE3G2vguirVxfb818/axuA6cW3eQMT58H2Mv0LTdcXDe+E8209j8yyEeT7wdMufclb7522v/7+pP38rxfazZ+hUd+mT6K8MDK6UQJPJQEx2VM5K2wm7QGKXP9YAKIWT2BHnQ0QtfObtYckqBp9BhhxX85FAPDSChrIFfboXLTTp1M7RdN4ssWqDQ/aycFDAPROwJKdndojgZW/dK9L1+mQWcqrOVFsi7Rom3GnaLNPAXkn2DkK0BcXXRmjOu9F4gPZANS8ACbbNFI2xABIhzNanKAjtPGwHLFIsazcGWeIGGMAwQCbJcVTrbXWsmoK9Q8Nj4A1JzTKfCb2GRs5GX7KSFrQJvhJZpwFELknXt4NlNl8/QkQBHHRfg7pMhABoEeTRxzNSpR7zAVIZBl0/ewDMS7ZhCY3Ad4JNxNc8uNQy4fNUkIEKZB+Atj3c720+I9TC77Nesl3b77R7t16Ha3uFi+ng7YNgK3JoAwQ4OKIz4DeR8vMM3AnxTVmZ2snLvBJOSinq0bsMaVbjbHMC56XGUwo76WlHbwoMxrmJQS+0HbaDttq33zrF+3alUvta9/8s2iRdxl47WzdjQaapxL5O8hzZRMHH2q+3fgmpjCUoss1j7SKVeUF5MXBh8Dcp6uMY/PHtX8y2V/YSnAQZflX6nO+pi43i2kZZ75DoFSsKz4vvOZp6tr8a0Mbog1xjFcT9+SiEmUJwFLw61P+xP+46zl8csjjKerOo6kqJXKBJycG6n8+C7XgLhTZc8gKHWZjfTR2EujhRT8S2wRW1vh/XELG7c72Ynu1Dfoe8n0BO8lDQG1d9XbGRM+0V+JOaDyPEvhDlAANYAGlRduitQBm7Q13ULt8wA/VQ1v/zmL7k62T9t1vAXZfod3R+6d5EM+vyG+/e9reemvatu4xkfDmlCUxj9pLmH9cYayrxvfVn63TpzJAvoQ98gZzHACfdx4stsvfPItWe51tt9VEf3CTpV736A/fQyt9e7E9wHRk4+uso/Gto3aD5e2ewzzkEpN4eSHwFj9u97Ym7QH9wgY2yJvMe7pIfiq8dHadVzAZeeXrZ+357y6ytTZvX2yht7Yw/2BFkC3KGWUW7TsrDNGmfYP47iGICc1oue+ctg8+OG2v/mKh/eB7y+32LwjbqvdqIpvR6EYJPIUEnhpAm5dVNZ++qa2CD7rztEjrfgeB6dipzEIO4QfVHOB6AY3tFSZ0XQWMoc1Eczw9fsRndj73ow2cau/sjzSLrPjgkm+C9WPfCuRl49D5Fda1kycLfLJGq3x6xJCUdC5OEzADTTAWI1YaDKC6LW6Q97U2Wb2B9nGjrS9fwlz5LiYG9+BMba/ac3mHBOfkYyfMrYDUDlpQqX8aLcUV0AlsdaWVhWf4FiITGw052mMmHro5SiZy0atrnLAcDZhadTTJfIs6OjWXJKHMvO4Ad2oN1Xwq2VOAFLgPktqMqrkjX8BlaWhh0iDz4LzAy1DzBK/rGE6gYqD/Xg08Ekmy2bgF73BtARWgwGXOVsIUTm0EA2+hJSlXejhot959rb3+s79qb/3k/2Vi3mFbjSYaebjSBlriE1dbQbN+jDz6sn0CLjBtBkXSEfSYvQOm2PLykNVsy44yW1nk5Sz7apLVdjNAaae7bf/eYXv9h/ssibTevvWtP8HmdaPtsF7z4e5dgDybnaO59wtFrZ5iPTKpMnXQp7wB8gA/Nf297pIL/FK/qBeudKJ/Fvb3zM86kLjQkqDiSr3zVtf96+7ckQDLgBtO86vuQRSTBwj6XL0hzNN5V+1rCMwzM1RQqhv8cz2/M1pqTIgSmDwpyxDvyVOnYnjVtErT/fvZdL2959pDnIwPQHkmoOJxZocPr6m954ghXhyHfh5uq1jU8YpQsjE1bckVa1xpxXal6U2WhTQe+c/J5KoEEv7qMPie8xkvRwn8gUnAuq51FGsw8+riXcm7jv7T99Y6NsMrD/B30t6sZ6g2vcvEvB/++Kz95/+w2nYxq1h6btL+u//psP2Pf3HcvvkKdsJvQhJge/eDxfaL7y+1D7Eh3r6NdvrdSfuz//mk/dm/bu35l8u04rVf8333Lu3Qr3rrLF25AAiHnwtsgz2ln9vDVlqA/NVrNMH/fr/dxNxjl/b561tMFqTv+zNstC+hHrdbtc9z7r0rcVz7Blr011CX3AHk35+099/Hlvm9k/Y8Wu1NvgKvsRlbLWFLGZHDLgD//Q9O2o///qy9+sNJe+8XrP4DmFbrnFff7GX2B/aMR3Z/byTwTADaHshP6bWTW+3yZ/ud2z977U9gLci91hZWXgIYYXYBUl3APvns6C6TAR4yAkaTzejVpaYcDdsLCrZkcAEA5ed3P+VnTWQ7WV8AaKsXpixRBhhewJ7WxnYGyKpQuStnYwlcpEVmeTyA9OmK05EvAR5XWaoMgH78APDEZ/0su1U0utYqn6JrbACAKJBnCxTIuSRbtO5cB0DzIhBYCv6NI0ywMXNHBORlOsE6WSwy2rasBzB+xi/xiHPGIELBqTlcgdgqdrmrrB6hWUpWAaEc2vE6g3kP4zQ1qgJlsvZYIAd5iX0F/oKaMODDwCUfLjXJML7hvqw8C2gGzBweEp/EDpA0b7GMrs9cg4WQS9jp8X774K1X2/tv/CLa3SmrWpAgINMF/CcUeAJwPsF+3cmbysZnqcpQmegEpHVVvHBMPH21SVbbvEJn4NKC1rkMtEirlE+wub719qtov7+LOuVeu+Kazs9faC+/9Fx77zd8rwQkW27BsvkKiI92AeDx4/PgYM6hoCybceVRkO1ydg5UFpC/QNwgw3u8xC1RzI5EkdSnux7WC9zj594y4RCP2vGAQjoIy9nd/GqIa4rzaRMxHpXEykGEis31IPNZNGQq/Tndit19OqWiElLULdIQUPXd4lbsDB5NgIxm8YeMjK/8ev6dbs7nb4iT+niOQBWh6kjohKZ86qwTPi95YlDGc7ON0P0ygCvzoMo4kXMwnXRImbx69vMY49UogT9ACaRiwzfvj9Rp25B9j+9a+jFewxlkWjKDdngfv4EW+M03mdj317z/n+d9t8sSnl/FNFMzB/E2lE7RRu18MG0ffXTU7vE+9xV/zGoYv/gvANWfoLFmUiFddNu6AyC+yasdjbLmEfRu7eHDlfbr15fa2j+etJcBwtefX2w3rp+2566jcd44aW8S/8c/pWfcm7QX/rfjdpnFlFjpsr33gHk1AG4nG97+5XHbfVMtN3z+6qj9N3h75+9O2waa76ULLCF7GaXT5VNMPk7w2cgAAEAASURBVE7aVTTk9+4stXdfW2o3f3rUHt5ibWc01qfwO5ps+DxH93lI4OkBdFCEE/+uMOGPTSym2BVHYyrAEIIV0KhOFJ0rJhqLkytl6+xkwYZdM6sjHDFB7PjgATjKz0wMcdEUax2gc73hZe7VRoN6AE6AGM0VCLOTnGCiYV5LrNrBEUC9zYIbFIleMSwQUVhgJ6lTmxjzCTXeAhNMOabaRCyzWx6d7RQzkN65m85rNdIxLxjuJWXp5NFJgpprnALao5EWSeSVxMkzGZtLBgPeAzjs/hV6JhFShil+rl7in2mkYOfvJMRFQJ4oXU07euzkIVhzfHEEaHZtX5fNM313ptcJPgQcFPMxl/IlF2jKEn8OCuTTqBYh/gkzfO68TjkH7bjLlikfn4+rb9y8+UG7dfs+ea61Y/1JkHLG3APwDzW/KEywyRWmy5vPMQMucyLj8Dfw3Iulltpl8wTx0rQGTAHSU3YlNA4S5tkvZWvX9957v73x2i/b889da9evbLABwPV24cImz9vcSW98QPQx8s3mIvgnU/w1M3CpO5/poqv440xjmZ0IJ2CWh86nYQWe8Yv0kuSTDx+LgkfKmUOl4TL14LyXzxF+w/hMIMYz98F7uDuXLGFybz3QVdwhBnVuiJCw8JGgqjMVv/gLP6bPg6noA5eeiq7h/AbqwxkO8Sg/qRhjiAVPXunCXr/p5wRw4D4geojt4G6WstM2TfypE56ToQl5zjQUv9Kc+tzy2ULCoxsl8EcqAdswShs/FPcGaPPZ2gEEv7HY3uU3ZSHoBbTR6KbaI2yGb72/0L7+ShoV70Am9GP6cODXP0w6qptn+2602vdetQ+RWpFeYCvv/sogemO5/fbmzxfbDituXIfejRcBz88dt5fQHmt68d4DwO4HrrwFra3j9gLAegcA/uPfTNqjQ7DBo9N25/XTdvgub3/0IccfYiryHgC7vue2E+ZUTL/K+/v5k3bjOTZn2TxuD+5M2j3KdHabfpQBRFfshcnxMErgc5DAUwNom8rCZI01Jb/SVi9fbGCmAeTwuR6AFBCd9sQhGmhaLa2jmhhgjTotWD7DDno6wUgKILPk5LQJNsvEF6wIaMQrgl0B4xKaQztUO0p/TjicsIrD4tJFGjfAlOHv6WSfhhxIRSdKI+YnUDPfmEOoBVUbTvojNtlYdmvojRcwH9EEBA33VJvo9L/2weL2AC0/DQm85GcNcDWblIVHeCV/SydMg3RAbgCsk/rMXGK8KHx3ZVUCykdhU27NfItHaRARc4fYMkNIgCrGj8DMf6Dvkn4nmH4IeyXty6teYfDDvWYrAdGG+CaTqSEWEbnkoD+FrZP8qPU3ByMkUk+R5IJdZbhK+ddYGWRj1QmFi217a7s9REVw+8Fue8Bs65WlDWzlLoTCFPmcmEGnR3wHJMofkUFfvqwvBUb78+3mLgQSH57I94SvDKcMeihdOoIz5IRIIuvQW5+019571M7+y9+0b3zzW+0v/vyb7drVS0yYWYN/IloPdWRZAyguKLZyc33gHcxOLL9g3eXYZNvl39a4N77P3ucTeXKdYnWCFsNiDu6J2+TZw3LO85j7WO6PuYGeZXssNDf9uZOK+1kM+XqS0CeGV6yk8/KxDJ4kQPCMvyEn49vb6Wb8zYkY3Xboc4y8rOvn3IzczK9qnbeP8fRYYaqOmwtUE6+31aSDqOMh05un7dIvPIu8N2yvT7o8P+jXxMVPkNuTCcb7UQJfCglY6YdGz+nR/Wn7OWYZt9+mv8XkAl0Y7WiBidmT9vbbmFT8Ge2HeGtsA87H0MZGvCjOEIQN0deq1pG+ln0d6EffrrVlrjnx0m6LWyh7WIbu5m9au8VqTLWANOZ8l5in9K2ldvVb7EYIAH7la6ft5n22+74KUCefn/xytd3G3vnK4mHbo6NcuACA5kt1IAX6tonro2LWt4rZJgbf7CUO8P41gN33wBIrQcH3GeYjM37kb3SjBD4nCTw1gDZ/wedFdoO7fnQFTSijRDswOqtMbPMTuzanIsOgFBusjgYAmEkHx3JkK+s30CCvlh8AaRFNdSaYCeRo5NVlooUFvEnfRpl86ClP2eRC048zWvACZgUrLFUVDXNa7tBSyCsARACFl7RXGK2eAaKd3CcwXuR+bfN5GhymAtMPAawMv+GToqQslueIjvgQNC3uFaG4q1sAfjz087MxXXeyETq4WxKAnJ+Lv6udz657+IPNYgOmXTMQlB88DDwLC9xyehK5oZOHv2UMrSOJ8E9exHE5PyfupUy+DINITB0vboUYYRU/fStMWajJc4BTPsTyPzQkU7FJECdAMTzmFbyNBJZXLq23566toSXweS0ym3mfFTBut3227HY5MczcoGPuyE+eJeD9QEt/QytLInOTOHiQvYkTdQio58czWNSEZEhovDPulXnAMB4TtCt7u7vt3Xfeb/fv3YP+t9rzL7zYLl/GXIe6uMgATW22GVc+clJspdx4OkCwTJU3z43oPiEO4SvL7BkKDWnJjhQi7RDVx0J47OG5Taxe1nkJh/hFKBHrkiP/0rAq9PhF6YljolaqcwTCRsmVS3gLDVmT93MkUhZl4h/hhumXUqRM5yKfu5SmkYuWx6RIXpq8uKyjmn9XmHEFDkNnMqlEiWvA7CtE6M+fs7fzfIpHAW/lNMsxF4Jn11bvZTCtbZCiZKWX4tSUlH/Iv87ez2mabnSjBL68EhgqPwWk92y7aJU//CW2ydg0N5ani3IL/72thfY6uw3+238zbS+xnffmKms4ixgA2ALnWSMEDweg4vWpzn6Rpnfiq9XlP9SEo0HxS+LZzbP2gPWd92/SV76Dqd97rBe9hIb6q6wa8jJ21/dd9g6b5j36d/rsM1ZQMm/m/ueXPNNRcWXRevFY5i482uRHN0rgC5DAMwFoQZgTypYAVYJYtaGCzQVseI+POXONpSuVmEpv6wEwBuAGZQqwicMKGRNW4rCmM8WBe1TZ0WzZyVdrcEKcy8UZR2AmrSnA+RigW+CYRugcf0w5AgZmLSgpEt+lzFwKz8lr2mTbcaJ3xGyDn52uLwRW6JgwlN5k0fgJK0Rk21BGvU5GOrJc8ki6vh1yBx7aKoO9AaaAdV4Kcm3JDwG5h9k8hPfFOqt/sCaPYVlSD0A2YQOZTC4MfDadMpJQdfCCCkf8MSExIb+I0Xwoi2YexI4zuGPUkCGyfpayH9X49utAfBJYHsvRnfLs8ZLhPIgoAGgGApdYrP/65VW0BJhQwPstNAA7LNDpgKYGFWUrLAPz7cOLP7mSZP9CEfIpr7wM/ABMswufskQGSUMdKD4pRGRkGKn9J548qw1X8ruA6J3t7Tx3wfMGuxM6EVFgbH487eGPm8GlTkHXOtllFvLyhI95ma1gNnly76CieJIJ+ZKY/HYK5vNx97hvxTDNzEG3u/A1gMLu91vPQ9KcBjppe3pYQeTI/0GuYXBIY8F+92fOgcZwKlqmnJc0Zj7KBoEJpEvulppERjOMi3mKeKZYcz/jxauS1OVjx3kqIlKePJ9BVprarDDwdM6A9UJSisM43fns8lz1GPLqYeN5lMCXUgK2Ad9VQ/s7wP5ZE47dN1EYYTIhrrXB2VaY1tLe/dmk3WbjkWtM+NtgU5N1lrPbV9P7tM7XK7TDAu9qzTIbkxtP9rGbxlzk9G2yv7PQ/tVfYObxdYD0c8wBop+7xaTF4x3VTLzjz7XhGRv62YYH/h/zn92MF6MEPl8JPBOAdlLfPhtVbG8f0lECYJ0uSy0WRJ8yw+CEX+yXqdUCGEGvm1tkZ0E10VOWn8N+lhQkszNTW8Sw0kYiJRuEmlJ/ag695c+ud4oJwxTARhfJ6BfbLCfeqWEcwPEQOQ0qa/+ySsQxJhvyqG2134CypJmTyUh7dHAAMD5hvUw2XGBzjg1mDAs8st0w5RE41QRGwbW2sIIp3ga+EHB20c6Nkz9ZVfMu/cPDI3hiiR7WOnY/FMGFaevsCwvC+JXGtvLJ5D7jUU5pGTcAgXxqMiXyRd0W4O8LQ0ccYvErjzLhSAB8CjaFL8YY3jFEU47GXwDIy1OFD36VlOOQJsiDMOgs8pxcT3tlUqscLPAMd3e2TYGmEc0+gxSpVJ7k4teCyNBBCBQpVOfFcllSJ5VqPlEl4PmqTkS4xheAqRk+Izy0CPPZKBfrRlgzR+WEW2ZC4CHrLh0e7LKpZWmdEx9qSsfrkpJH03hvnarn5aYrZ3ySLC6L007bs788P6+lYL6C0+oV8JlTNXzu+l3lXrHmoQMrstMJwGs9a/1MXSl7+u430H3s1PMiTviTJukCoovQTApW7nO8+0QGoRLx465KLS/ES7qiZI6GKZt1Vl5hGJUvNz5F62P6TrMKSWP2dOXT+TH4PEv11HrsJK6DYiBpp+etdcFmOWF1nk12H9zIcySOMvCf85AsNM4Vu2iOx1ECX1oJ0MJoG0fu5Meazy4A+4jl4+7v0ibuOCHf9y9uaCCnhB39ijWTby60K2iCl1fsx5jcl4Y8xEuCz3iQrs42Wlcch3aJOZ5f+fQ/0gyDCX+7qqtlib0Ojl/FtOQqfYD2jvPEMyq5+DT/x2ONd6MEPjcJPBOAFuQcHx0yu/U+YMVNTADIjBadrXuMfe4xANfartmEI0cxkZtpBPxmww1BKuDZOIInfmUlPO/s7PAKQAukvTa6LwJATv9uRLoCWWV7XZ2kEdM8iafG1uXx+Iwfu2l3O3QCokDaeIIU41KCqbuo+WHLT8+YjgDsSstNnjTQ+rmSQ32enjqBMAAPOhaFU4CeedrWSaAGTDq1RFrxKo+L0HBlCYGGbAiizUvwYD5ylgmEXPje8PO0AcY1rCINLz3CChtJS5oAy4o0aO+JbnpKpjMod5IU2rjqiY8gzyEJK0IQRsWW573dnfbar36O5oCZ1dg9f+fP/4JtWvfb3bsPGaDEsB22BqBsPv25YguhCUZ455BnKSO6PL/yC2eUMYMQgjyHBuWRi1CmYJYFCROoT/HrlwoLIRC/dfNWe/ON17Opx6NHj3hepNXkhTTunKXzWHDKm8pfc4PSWEY6RiPSIGMv+Qt4pjwZCMigvsgjgFKqRR5fXR1zOTvgp/cQb+bds5yFUUaK2Ouf8SqXIX08niSipwTKzUgp+F6pepIejXu9ZnFnd51KnY3jwK2eiWWehysXnUdE05bcBIhVYs6YlHTM7mZTvuqYQBrJK9FN5d05128J7xI9FzpcnoukT2jh5z9ltJ1oGqn9ukGJnUMln/kNYeeCKsJ4HCXwJZOATf+U1Sy27y22n/8IUwzsmb/1LeavAFK3mOA3dUMR34u9MXgJyLZT+/WvltrBGht7uXb+JsoL44oczjekZ5FXZZO8XdnjgGXt7sLT7YeYQWIPeKY5KHmfsRkKa6A+S05j2lECn6sEnhpAW41dRuyQFTT2t28CovlkPnUTlEOAM+AZrW6WzQGYnTnjALDq+YxPqmpmT9EgC2bSqUOswIedMq2y/mfX+QQMiDnfYfcUiStSTLpK3ycFzQjlrWDHry0ya/0GSBLKrOIzgTDa6SnbhfN+YYc6tJe8VNZZ72eF71kBZbx9emdeQAFeGBuIF5VDNk4hrevoZcczEMYpDT/ZkKfrGc/WdOZeQOgLzVUg/Pm5udjvWtWiq3ySX+QDfe6yQUpy9d5ik7HhAboCTgHkkF5/fhKXvQDqeJjynBvoGzWkiRPzGkGlfqQ3mXw/BIz+5Ec/bO+9804A6p1799u7799r7wNY9/eYwOkXBtCqgNJ002iO+9tWYoODoGXRhTd50C8Dj9IwK3PL4q8YqTgO3Pya4QY4841j2I/SXSxjw+ySTG/lk+OliyvtnXfeYummldiMuwOdE06lKdm5c2BSz8rBjq7KXDESV375Ga/krK/3FZdjRTbtcFUAMalnYbnoEc75Wv4nnWJ0sGBIqnkOPVb5V271jAwxrjzpQpJrbyPvFMobQwfX456/HfzilbjkFSYqUso8xA/JHp+zZbYOnDKozjPlebn+NiO5yG5IVjz1m086k99jxTWO+eCf8vXC6R8eOeFnm9JWn28P8T7PX2fTwtRg1YT4DuklNbpRAl8qCQx1+4SpPVu3Wvvp95i3gtnGQz4aHtMO3n8T5YyjXvUL3ZmGyXqLDHzf+dlye3C40jbZAOV4ha/GdnxPjRx6Bp9wJs8pn3HdXfbtt4DulybtIcvp7XxYSrasU8trZHSjBH5fJPD0zYDK7tq/+1vvt8OtN9vhnptVqDFT8wrwUwtpxx+QSGcqmpyw3NwyxlSaWQzgWQhACG6A0PSY3nvn2Q5PwJ0brsuZxpBK6SlLXA29eg/tcT0b09UV1tfUPmOvfexOedjtHm/DG5MXGN2etQvs3nSlHW8yyRAdLnpmElZHm9w4CK0E9K7NLIhym+7sykc8gbBAWQ1m1g0mrhBUraa2wUMJIx9XFXHVh0MmREjPzlzw7WQrl8fjP+AwmlP83d57GfBvOU7Q7mXCotQtM3Inefhx4wgHCtptB4wqG2byBXCQdkAeAfeCMyUTQCgt7gvASlJtuAMc0yRa0p5gBnO4z+L3AObXX3+j/eAHf8+OgZN28y4DEOzeFwHQE3awcmMa8zoF1J5i1+7gKaxy8C8065BrebAMmYRKvgGT3EfbS/mVUXfy6CKkC6y15Jra8s0q5HQGy8zFnrBD1gHg/o1259abLJF4D/OcfdIzcGNQZ1GkWW4oGOn5t/Aze/MAPxlCDoku39ybwkFVyd2bSpv4M2FJqoiGLgz2HHNfyTjqBh7qpmQxXBvXuhxa0u6JPUPTLLrzWs2r9UhnGeVbMx/rlfWCsUNIJMfOEHH7ZciaOAXWv0LkIXfk6dKFuh63cpv7FL/wIn98knUAdUJ7UHPNCyDpUtdpO909lv9wE7o9oEfkHJ70p5zGyXHORGRyxDtnhUFwZt8TpgwijyFLo4vn9e8NIe8n/Ec3SuBLKQGrOsvT7X+EmRqTBfdZYeOtd10Fi41JmLx3FGUE7el8m7Oh0IYP3uGLMlt2b/35Ost/GuE80v4cpUV+Z2ix9g8X26v/uNZe/wX9IqYlxw/py9yo+AvK9nMswUjqj0wCTw+gqytEO6bGmUrOL2YKAMU1bJFte3b8ftbfw4bpQNDHVttALHr3TUCIWRur99doh+loS9tMq00Ha4sS2KqJtfMkLRcdrETTbDwDjSoxDgK/MvEQMaRLT1qjnQK6DnYBe0wSXG4HLM3DYBpgeoTN8x7A6/iIHREPL7cjPlmxsjAdr+kLjCSjfOYCjPDikd+EQti+WOyillZ/46oFuwgY33QCoXbBgAgBt511TQBEiwq9U6Y9ayMsWD7BDk05hgLlEFD6UnMr8iXsSqMdhU60kp4tsxwSx0/WOmkJMgMuDDCSPy7LCUMqjf4lIXkXqNbPqJantOOAaXiWlP7unKiJzuEhW2Xv7Laj6QpLDjkB1IER5SESkEUKPDmfQdm5d5rSjZMgLv5c+1wdfMU8w0j8T+XJ33m+CNBu3h3n3BhHMsrf7b7NVbD24P79tvuItcZPdviSgGyIZLwzEk1NCAV59b875RzehryNX9wZ10tpzH8FUuu+iBupXAYE1J3ukj55mofMFgdDbE49bs+rcjaq0FP5e40YEtPrmePaVVlcF3yftZ+k706Wysz2Z/3zl/KYrphJ8s6XNzNv4lgnAsbNaLg3fcxpZhEHHgkosh6LX+VtO3AVDM264ng3uCqLgzvbuaB+2QLpzOcJunMP6fqzHiqNil4Fyq0+ubBmGGXKw7QeqY12sGroOpN4M7EQJvbRjh+wVbyjCsvqfep4JzeeRwl82SRgu+DDry1oi626d3dol7wKTzFqprsoV81oXnLupyiXpvcxxWITFbYMLO2z8Z6MO0/11Ffp27HR3r/LRi4wtbhPH6npxheQ11MzOSYcJTBI4BkA9FyGamLt9u28NJFwNz87WjtwtcdqaBcW0VbTuZ+e7hBmeE3uss8sbR4giXi1YYVsGULXls5X8GYLgk46WcGE3Z7gpfImkBcDgUTLhEXtmAWR+ZnWMEABWvMDtn5ewgZj9cJaW1vb4LeK6YlmB4dtC0369JRF2fmdus6w+ZF35UsZpU97tmy6ACU6akFbwvDzLFAWYK26jTVMaQ/ui8iNT7qWkEx4f1kKyiJQh4YT2RzlRwPMdXbBw1+t9AoAZMXl8yhzJjSSl8BJ0QhW5FHArfbb4g6HgXfv5664h9cqWM5eBxSSWO88Qy7ILs40mcw5e9lSLkwpTrJuHc9GmcMMEC7ZhzR26gu1LhK+OIWDq4GSV5a+nFeLhJuPAxedR+UtKPJZyJ++AxmjDOlliryUKAD54ADwzM6SS5mcEs6ljuyRcbQolTAhllHa8gLhqludK3PAGZFDAPRwy12AeTaLIXWYMr1Rc0yi3BWBgWbKoLfhPZ/zcSvIMho1X1dCd/DoSQYKKTl18PCQncJ2XZnG9VrdkAgAi591dW3FybNVTunGQdvLJ3JO+WsisHb+xqifmne/pmQX0aEMPq1Kb7klOJSftrzI0jQT2zzJTzFK1ozDTX8E9cZdRUW97Ah2yMFszEky0vSX++HK9mHdzhcu2715pB1CDX7yHjENieRb1n3ehwBotdLLAHYBtM/3kLa4s2dNpU7QhvZZm9Z0oxsl8KWWgI0Kpx3z6V3nKHHtC+TT6n73pw1Nb2GgzBk9yafHl+CzOBqhm6UtMKk/fb4v/k9l7lkyGtOOEnh2CXwOAFqzA+xL+bTvusQ1iVAgXZpdwfSSN7gTPvHbWu1i/RSsVlX74d5dBiykQ7TRVLMp8NY7x6FzNoUd5iyWdO0Kjcclv0kSSps0hNmR1sogrMGDrfYEvlbREKvRldYqKzes0TnvAziWWI2jQD6EBLZSGQ7mecbSO4KwXHNvZx1Aa2P3GjqH++5u6HAfDZgvK/Ivm3ChA7yS2A7evBWBC9W7JnVokpmAXKBgPMGz7sQ3HeAD07RomQWzghLT6AJ6SGNagYWyKIqeB/fkBXkJnPVOkAX1N/il9Ap0iOfZAUDZ5cIjYUzNxFuTD4zs0DaT+mNuRh+6mrNYJ2KWkezMhT+uw7e8FPOUpeTp1tspn5SLnXmZ8DJPS8Fm32itV9qRXwq0k+ZZakbizDblPdc+SwhtOujujHg6lJDtGvcpH/f1pAwp6pGJcuF5mJfx5O8QcOZA0XqWqMrHZByVS0C/PPPnuCBhCsQrZZtrbw2pG2mdSAevNeS1sc6a4OTlYLXSeSRQOemMT/jOIeCU8izxGUA5H6DBWeHrygW2tnVwKvnwmTQcvK+TPnHW3wPq7wFg/BgTI3OQjxXA7uYl1m6nrfT6JS3TVw31uu7dQGdK/lnmkkK7G+AZ7d9QQfSeuyRgcrMBTen7bJKSs4PHEouUDS0e3S10Z2uXz8lH+RqzfmEjZ3nJLqghBC3z4DnSNADNvmP4RE3aM2w6Uq2IF3Mz+DikrWhmVvknq/EwSuDLKwGblM72Vk2r7n/Xkba7wGpbpvsinWZmgvSZuYb5fcF5fpHlGWl/uSXwTADazmgFzZY7vS2g9ToAMK5yb6eVjpReSZC3vr6Wnd72mZUvkDyjI0+nB3j1bCfpX/VutmzSBSgIiGxRBnGtP7/EI346b1fiGBpZ8pQScc03naXxpIL96ykTBU8xNXHpPLVRZwIhO3beJHbqAk/Xi97e3gKEoDEP+BfgFp+Cl6z5HE0edCmfafJLh01OlE12Dlh9YBcbZwcUds6lESOc+JbBYluU9c3NduXq1XbxIvZlRwft3p3b2Oq6SYrvETt2uS93hnmHu++pAHAAIvgA54S2ZS1AZxoANNq9LlnTF41+NPOSqyEBw5TR6w5c9atP7wUApRl5IoP+Gd1npr+QxZ/LGgqgP8nJSwFm8xbPCmw6P+YFH5Q1Ayqfn7z4DPGDMjwCgJCdhTJuhJdYlZv040wLOJcv+V9wIqgyHOToWWcdvXJxg+2+L7Qb/FY0j8Fvg68RawwIvQ5INHKeuwOtytbyCzIF9ZoH1PKG8GYZiF45hNWqq6YjuH8NkVfLNsTgjLNI/PU8yg9Polnv1jA/iPkOAanfwzl5cbAOak8vP9aDLkf59KvF+ipmRNR5s02d6gk946fEzVunfNUSn/i1RBSqzOSD9hrNNnRsn1XaSldfBkxNGTj6aAXCE9LbtmqIAp9k4kR6V7HRhGN9FQ0092VyZPpklTLW3fzoIMV11d2e22ezTNoazNie5EMmzd15B04Ipb1SrTXjUAvt5kfRQFOkfUzK/B3bbuHxqy9eyRceWBndKIE/Dgn8Uyo7cRfU3PxzOLP5Z8rqn6M4Yx5fXgk8E4C2Y9e2185aDdAaZhlOdNMUIx0inbpYx3A1jk7eY+MhRr6AE/q5QFs6V7s8QUqcnbU+wynIIzd02gFrhKazJD5xNdcgJJ27IECe7OjtOHX2qXb0mOuyfiWduSuC8Il/bY01YtU6AywExfnsTaIVficszbfHRLjTY81R+PQdMCV4xhwjYFpNnuBRTTRlFGSQt6BW3iyRcQMYCVGDrJY3cQE0lkm+BDJrDC4uXLjYrlzZROs3YUc/7MdrQWnyKvlVOQagguCUp/bVgoZ1NOYBREQS+AigNOtYUbtvJskXEIo8I1K8dAGSXcbcL1LGSexmBVkKjYHOqaY3SrV4L0BZg43EIZr2rCdoEo8A90e8YGsylplIXKnwkwY/5ZHHm+fGU5Ep8jLmkwBXLeIiNC1TAWYJlQy6FldaoUfcaFO4V8mq6YJgc43fBRb+Fxz7uR+sxLPSvIHnDPi6dGG9vXjjSnvlhWvtKprVDdYN1kxG+VYds+boql5FLJVh8jU0t/KR61xwRanrP+WWRgYpyNRnFZlAzHrb3dAKLGJocUio5dIvz1I6Q/55FgRIeyYPZUV4/EyEU3bW2UxMtX7yVzEGWgM9oxtmZjV44glIy/AQNEj5J2Jo98MMvCbLil9JrKt4QsOvL3GkF0RLFrYSniw4JPlAtNevkmvlLV+l6ZdX03MM+SE3b61r/nnNwSi6XuaUgXBBcyZd0nQ177j24rUMqow7JPFydKMERgmMEhglMErgEyXwDADaHkoQOG3bO3uYKewDRpcD3uzO1FT5XRfIgGbMNaH9hGrHVuBTu9iyb67OrTTOpBzApTQMsaftnajUBGHdDtPOcRGQuYkmdp2NSrJ0FSBQTVtWHUhyOl1oHjJh6IBZyNNTdz0s/i5srpMOAA1oEihchM6FVWFNBzkN0w5APxkFAJC3YEytmXyoeTy0p8Z1cJgVPfB/7so6ms21pHUFCMsXLSEaNGUm75Yxgw8mNu49LP9rl6600wtq/UI2QEOAoazNqQMnARH4MK7bpIYfPlWfAOqzWyKhphW4i/EFV7qAIM6lPS6QI4DuWkXzEYToCoAokc5TgRPDpGaee+wktbV32h4d73FfIYlPBRD4CWYdpFhWeVMjqbZ0yMIEVVz5G+Sph3zOwZyDDgcm83IHBAGIwVXRdkpFALW8vNKusnzdlU0202AN4tj+kjeBAWCmUxYH8PBoey98aWp07fJmJtt1Ta98yY5gTtbMx7qoX+QT/3imBBTNgDwjfOOsTcavOszRAA6hYwwCA0AHYeTZGN84iWeUeIQeCf1PPvKQukp4ZKW/4WZiGv7P3ye+fvwCUA1OfIcrFddkScPzNszIIWUeFaRn6HuvK171SoJKx6XpajBCJG/wM4a/lImzkSsf/PzzMSWuEkqEOprWuHnYxVNC9eMiaeUx2dh+vUa2voMCvGvQmgG27Rm/nlIt9IWN1Ty3gVjyHA+jBEYJjBIYJTBK4NMk8AwAundvandd9/mkbWxu5FPxoppMOjA1tOnMkzuTm/gMnwllsZNFuziArTlz1anZ8dk5C94EjMuALz+9OhFKLeE62mOBrNpCP8ULkFyBImBUYAnIitbXLhI2BUsnp4D74/V0mqFNnL5phuDXLvgSAPr6JcxRuKvOFe0xeVuGk/7ZWLtp8tQJHk9OAOB21NDTqZFVIy0PHexKv9vyqh0WvMhrtIUCgICDKq/awuQez+JdfvSXj3T8nAV5DhQCUBQUzjzMX4AoUJhpxAHs+mkXqiN7j8nfK/kTeOqCTzgPUR4DWvrlCcnb4CyDmucHWwftaP9RBinS0za6S9HYxbsgvArrYKI7w0KRJF2bmnhyUWSI6gXJw2Bd93KYT4+3ijH5jctL7eXnNgHRq9SRAqgW2qwd0PXoBww2dvcP2ja2vu98cDdmGV976Tpbla+nXqk99RkmARkkPYeer2cHhXHzaGFFNi2XztMQC3r6COC6v88hsRJHQGzbyTNJIg4Q6HVFqFutQyrEhT/rgGfzkZT+8xwrn6SD4YB1SEraWPKhPX+ewOCZawJTdP1ws2dUt0kcbe85mubvoMxzHqTp+JNfaUWWEVrlXccCujJjMl0BXwQVelV2B4G63s6MGxMjMnPgF+CNX+c95S1GQrdollyl0yua7OSBesF/5yFxxsMogVECowRGCYwS+BQJPAOALorpsOx2AtiYmLe2BrhjdV7sYQMSiFadkp9N2UpbAIMTJNgB50znFdBsH8YvGktBASBxBTCuGYWg2aW4LgJuLrA0nH6C6Gi66bQFszoBpg4yw8ELeGCHwfSn3iSf6tgDcsI+PKDFXlhgwckiEWakYxzpCwIExvIqoBGUVtHVjJKeP4GhPAgWqkxSqHWZnWRpPLWxAhn5KZ6QYngojZ0sBjBBJ8DBfLWtJpJ8aAO6BDBcpvwBJdA3zHzzkylYc1Ji16bqL28dgCrn+qwOr5TJ/PkvPjhb1ipc8S990+jMX9wYLSayh3SA6ge34BFeqmyCMp9J5y3QNbL3MJAa+CYexPV7jI+OpmVsCPNrgjHlRW/PpjM3LwTQKJL5ArDarlzaCC81+LBuDM+LeCW3Bnhebe8d32+37j5qj3b2I7+XnrvcrmDecYH6VrtK+jzPySQ5kl/46ud5mcIIBdGMqZ6jUY1XMrRepJx4Ge6zUb4624SAmAUshjpksv5si14vfy+7tItenTuYDEF5RY6DuXk4V17KIrzJg/WCs/QiIviW4wBT/AwTkHpOMRIGn1QCgb4DDeOmLETybOSUk0HylPyNu2DbkQRhs/KaKc6T2RLiHX9+qeLSuPIqj8jJ52YMB6kORnV5NrxJikdDK6mlsIn2duhZJ3sONpW7WnPj1DOodIk0HkYJjBIYJTBKYJTAb5HAMwFoOzQ7vY2N9azCYc/k8mETlg8LiKKrs6Nz6bZ9jJAFnAJQd+ZbBRg7uUkNsp/PNf8oQLyESUZN4rLD0xQhgNNOmoLUpMVVAKRglw45/sSDESc9uWpAB9PRSkNDzWtAiD2njlN1pXau1cEO3gmLnSUeggOdcQUJTupz2Tb5SUTpSYDzCVpYLxFJOvoABDzSaSc/tcZlU2yH7TrQsQ8lTkCtFPGHQmRHdphqC9QFWwVKlKnySzG47nnpIWixnHgXyAAxCTpcyaGDfgMFGTWJUToFQEiCKxkpGwtMrJmMpO+zk3Y05OZhNM5d02w5NZvpAEeKw/CIeNCiLJApx4W8Dzfz0+BX8fG2fuVviDo7GbE0lKHJrbzomzJ3W2w9hgCCuRTkIQH8a5UWJnFiwvPSc1fzNeLR9m771Vs32aFrt339pRvYR19mUqErTkibslkO0SnOZ1I/6SlrMzCPeuazM2EmMZ3xlGrVWenUc5uBN9I6mDEfXQA4Mije67kWBK1BStGRSn0NgTz5mNBc9CWNNPnhBT3lU8u1dUAq8XBlOuOneJWLxHo5KtT082fns45MSGRu5i34pwhhyvx0+ptPnjl+8R7CKmp5ynX4tfITK3kNifSyPcSlodRESdtoDYYqTDmnXUFLU6GUk0RlulGy7XxN+yRWkjrQlMLAVuUzHkcJjBIYJTBKYJTAp0jgmQC0oK3P1ne2vx2+GuFVJuYt0dkds7TdEUvGLaHluXpxrd24tBpNsiYZdliaQgig+09gqr+AOuYVhLlklus0r6nZ1p+f6dSCHgGW3TL8CBMSwbOd97FgQdBB/unc6RUFLvaOgqYCO2iv8LI/jgbNHp84amgFyQJwO32yCYCQjs7O2P7cyX0dyOhvp2ueyiOdOfFLY118GEEWdEmHPLoToKgpNn4NSAiDnwBR6RGetZpNIr+UgbFD6AkwZM0yqVFLuXNf1MM1BzXN/hEzZfayA8mghkRPbK4EhHUtbTNK1vEC4nAjyPO2wJVmK64FXbKhKAGMYTZxKp7l9+chdDtt6etPLmYbut5yZc4JqlujxN9jD+k89BDr4Q4b5eyyPIkaZL9UDAnDt3UkdM0URhxcbGL/ahwHaw8Azx/e26JM07ZP/XoJEH0VTXbyG+qU8g7PkPAseJY1n4dXc9ApAPWZcbayRa6WMFl7THkzKBruOig1TsnA4/C8fMZmget59LopuAyPhBuny9IzHFE36vlU6sFvALpmYJzirGJ0LXL4IZ71zrK4hLbANKvJ6OEvzvbGhXMcPOVYh/B17j7L1Hmf+BzyX+nlo+edKCFUz0wuqy3TPoa2mWAiKhavlYuPoQ8+9LcM+fITGRmmr3H9VV2um3iPh1ECowRGCYwSGCXwOyXwTABa6gIxl6QSXAp+nZh3EVtoAfTh4V47WFIzLCheB6isYYaBdhkQY4clqMgOe4NmtoOh+IESCzADuk0HzVUAkWDDvFzOys1Z1Kip5VbzHABq50jHCOkyc+RWHtOJ2oGCKNJ9inpwAdr4l2atNK3S1z+AOGUMu6Stcwctdtj42K0DO+uzsGUw74As/OyeA2IEHfwED0kveFEGOdWZYuCIA0o1r/BtHH7yHL6kT6qsK02kgK8UCNwN4ve+zgw+uDevY1bmcCMXwWWVcwDr5i1dM/M6Bapyd76GoBoYEM04ytLwyBLZHrASyDbmDw6mqvyEF44iEjEH/gQ1potUIFS0lZ4RiqahuR/SJH4xZlBiJqiSFF8JqYNlfMSkVicHXqTeODirgsUoIM/VpMmbg2cleoGvKH4BcQWZew+32/sf3c9W69JzkFV296wyY3FIk/Thp56vVOQu4IzwgGmeo20i62ybj2Ue8p6lxyMgtQpKqFTw4z6g1QvcKSuzAIHnzwo/Q/LLQxlogx59nt3fczSxEC3gSGkFxIx05KFA/0CIk854+suHjWjRZ+jIibNZ1aX5VX1ONP3PPafE42D+0pNW5V/xul/an/GStvKtpqmGmWcGswHEeGZgR+ZG7W3QMoQWdQvKiWs78ae/X0z47pM/POI3H2zi76vIAqSwXoxulMAogVECowRGCfxuCTwTgFarcxlb0ReuX6RTdbOGtXZpvbHyQa0CsbC+3k4vsakF4NZOSrMLQYoATy2mneMSGkI3MXGt6GWu3a5awKyphl2bwPgQs5Cd3d12/94DQDkbPKBxdgMRtWDRQhPHTtEONx02KU/QugZI0NsGJNBBurtdgLSAANCkE3Sz1UY02sZXCy78qE4a7SqgUCc/gtPe09pfC0wEIzrp2GlrMmEeuvq8XJo7V88TgJhHAQJBBXkHAKjxrp5cbTGlIXLZU0upT1J0oFA8uppE0DYAEfo8ByTKJM71dunqlXbl2uV2gTWOtUUXAO7v7bdH9x+1e3fvs8b1Ln41oBAzSC+7MCZHcqXgAVxkLP/KQeBhbvKr+UdzPWpOR2j/Xev69r1H7YPb97OVdEAigQFEJYaAFlOHlk8oNCEY54BiuEqEIdzcZDCROeXa+9nFcFngqHzrmasNd0c+t7Z2qbplyiHv0boPuxD6jFIU6xEXykGeL7Eet+7Box0mRu61X7/1YYD0n7zyHKuqXESm1o1K2/nrtBw06gI+E2gZ+GkHjH8vf2JZzOFnPQ5GHcpqWbx3nXIHS+Zn3ABK7iVteeYgUsBY9PTrE18DIKFl/bF6GSe0OSQtNLvsu5jxIm/im09i18BQWj6LPogLQ/HyQBrLWZe59yAF45X5BOe0H+LaVoa48hF5ElfaEkmZKXufVyDj2k+faZaUdHJZeZK8Cs7SlOHa/Ehb/NUz5ZivSz6Dan/Fq0035QrNgSH8RjdKYJTAKIFRAqMEfpcEnhpA2+n5efz61YttcnKZnokdzwDGWUKOjm4FVd0GGmMBsh2Y4DkAmXN1cNWRqoFygpxnfNKJHqHR7Js4CJ73WSnhgN8xwFlzDZdA6yAlna6lhB/nFBVoTdcdUDwTAOFq8ezTddyW49w73uKgwgT3pe2207bDrYSWxUvT2wFL0GsByhngV+C+AEhT89hdwL0gVz8QQAdMxYsU7fTNXV4qXehDVKBMCvzNg1Dylhd5kt4q5i0b7Mi2cWGzXbh0sV2+eplNWTYzOHF1lK2tncjLpQRj223+lXEAmTmmZNCbyUQPC2me8LBApgJn7bwLaEKBYHnb3jto98lDsClYL9dpcke8np+aS13A1uCbcs0yrvCKZN4lkyFZ8Ulgl9S52OVnfBizThww8Dlgt7ujaMVNw5/B/oUn7WGLWLfvdmC3xnNfuGTePqrtlO+dm3dTbgcMz127lM1WBLOWo1jkuRC/Az7GF1VGMyLfnmcBYTOVPufw4Ung2PlLcA6ZkKo/d+E59AwqiUTa+PlMrGOCUevEhM1jEgv/AspFI7wS1OUaulIb6PayJDGBfi3xa4g0PlY/LT8RpWx4bUU/p1UcSIOrVFriFPqt/IY8a7dFn0n9iihUScY4L+eqc5VXeBtyjmDCg+1eXi2RYNn66qV+QwRO0ql8iI+/z7APfiIn4oxulMAogVECowRGCXwWCTw1gJa4K2RcYwOK1bMrdFjs+mYnxp82ytotb2yuBeCpVXZtXu2XBaY6wUEHyafY0O4BkPv21yeYHLhihb9oWun47BwDUDi7+oSa4SzLxr352U9KU3Bh32x8O1KBdsBssCthANzqWOnQjWhnDN+CJwhmGTiSpmMVjCyyOUyADHSkV38CZEpKOvlLvBRLDbP20cHJ6ebNv3YUBJixtIJ/ug5ilIfX8ZcV6CZ8dkiJ4McOX8rmwTrWrFetpv4qGucbz19D63w1QFrZyNPWo+12/879dvfOvfYA7fPRgdtsD9ybn3lBLsDDp0a2+oV/M9Bj4EENoohkyj6rasy7U34+I01EOjBJqoFWL2uP77mXM2SIV7nUURrJtucRpowzp5SYA2+5nsUdciFMeZbphFpy6iX39Yzm+aBmV6DJT+oO4tTc+jXC5RKXLvPseb73Hu6wUsd+e+O9j9Bouz37SXv+Ohp+zYkITwE4Z+BGPspK65UMe5TjwL2y1RFlOBBH3GyVJU5AKoFGG6JGpg4GvLce+WzykEwhIYgqswKGeOIWGSTKl+H+5sCSQAjlUZoP15EqZMImB4tjXiXtRBhoDIOD5El48q248q43x6y2UXTlREcATprhMWXlGce3/Cxf3xxFXisNZbZchAU846t801YSp/KrQTeBxO1llvfwx7nykbNyFWbaPiiArjKibvc1rIeo42mUwCiBUQKjBEYJ/FYJPBOAtgNbcYLf8jXsmzHF2NholwDUF9CIOvnPFTk0HzjiU/r29g7bVO/G5KKWT6MjU000dJR2ovUDpKl1Ta8uQNNulg4PsMMO3OlQBbLd2Xnbecbul3SxWcXTneYWAU+CyVW2QbY71QQimibC7ZyzZjNnO2c3YpGOBhsdDHWNmfd05+xQWKBeYOIkxwBo0itEP987Cc3y2IHDabTR0TZ7y9bax5ZVSvIP3w5AAvTwP2BbYTt4aQjYA9alJT/81DaegV7dUW8Ne90XXnq+vfjy8+3S5UsZpGRJO9LuYHrw0a3b7UN+W1yrhXZwYgk0nxFOCCikrHbWMrtZjJpmy3uWNYGNYIwBxHCr3MqeFI74N61fAiyDK6iELnFMo+OSeOfu46enrgBMXc+PAUQkV97KWDmVxJJl+NY/F0WmhDNcV86V/trljXaN3R39SiIwc7CVH7KVK2XhIMw8BNc+s9rsBypcw0LMk1wxRvvnu/e32rs377Wt7f32ja/st6+9dK1dv3whtPLFIRvwFCMkR16QSb6gxqHY1s0CevWMLUq/j5mOiXDWkfAKYA4YhKDgcYKZQgAnZRB5d3BcUBF5Ec9fn9BZ9bB4yZcE2ps24Y4VfUC9LWhjYn2rnfnquRcnRfmUOpcvS5zTNuDTv5jEkB//cEzclLvfkwcBlpGnCf/a5w/pyIvoyS8DMiJRVVJGZWXxNCOSB9tV5WkrIB7+AeOU/5Q9wXsbNbIycmBrvOSrzGyTeCnPDEJ4B0RGRFjI4MqNh0ibQWCikn50owRGCYwSGCUwSuC3S+CZALSa5QsXLwAgAXWr2jUXuVod46Tt7Oy2HSZzuTX2Np/5t7cE0NovV8carS8dYmmOq/Oaa6GCEdLJ09em47QjNrzf28XagdofT9JZCwrsaB/vWNNfC0rpPOll6eirE1Y0c0Bmxwsh/gu8ArSIni4fkmIbO2WdaQQM/gcccG8n771LYwlyTBnQCVrJLYEp50AjfBPAfozJ75gBRACHNMKf4KnyWkTOy6xsso7WcxN5X8bG+fkXbrSr169EG6+8le8uk+fuY+d858M77dGDLUAuEyuhcQZwy5J4lF8TExm1LAHy3AkuOEaOAv7u70CnT2hEj5s0lt0iCPwEY2tsPnMFk5GDwxPMODQXccdJQVTlQ9TEj5ylQd4+twjLo9F0oTt/tnrN6XjTU9S14QGFuS0QvMagTTv8K9h/P3/tSruIXb10i5eSq89EoJV6Vo8p99Lzuad0sGc8QaNA28GSduJ3H+y02/e3Q8+6JCB2oqJL3cV2XWNn+LR0Va+UQ8mrZDaEEcn6NHMIIc984Ed/eY4GlnzCfwRVA78MyobEsJm8zC91lPwFhMaxPCTOs1+kXlomS4hv2o2g1TSRc3ylJeEcZmfJ2HRSF4D35iV9Jw8nTxPlv8oKRYnE6WOLdACnJYe03E4954G/ITmxqt5kkGAhTEMG4cZy4GOYovA6RwK9dk5E0mE/Y1t0YOo4oZwUKlHiegmR/i4pQN7jjudRAqMERgmMEhgl8Lsl8NQA2i7JT95O/jsDwB0DjPf2tqJxjimGk/2wQbVzWsN0w47LDs50TnrT2XEK3rSt9a9rqMSi2jOb1k6uOnBMJQA0Tgib0jMKONVO62oSnHGBs8YnQYBcqC5gNz3YTBNXPip3tXp0zgDuDn5L6wdwES3g0nkT2U0got0yPoAqWi0jQEzNuMvyCSpMJcjIj+uaNInmGe2W2k350twksgBsxfSBePq7KYR8oWQPrZgCENdBxioy1r75xnPXYq6hnbMTL+Vzl0mBjx5utTsf3W23Pvgog5Qpecmjq52oyRPodvlnEMGd4dE6EyAf8uBfQIUgJXwpHwGoAErtKTSdtIhfJoOGRmtX2blEwGK5H2IL7UAhK7OQTviD2CzUIHefawGYehrGqTJ7Zb5RZZqWgLMz1/vW1xsD4TJh0JWw/0RcZfnEG9cuMKH1crvOZD833TG9WmYnxeVZkk5ZWM8CoIwwaCxT/0R6+OWvSFNenv0G8A+65nObJe7uPNjOyiP7fFn5+ss3sIsmYdIVf6kf4RHy1A2ZlFVlJqjNlxA8LIdWGUC/1GGfjXmkXIT7TIwrr7Yd6dgmujMt0fNzS3vrjPUfliOrrHpCBPnxlzrFMyw6Zozm2ah59tZ3aVV4soFOBjveQMe8ZaOD565Rd6BhG7KMYSY51HXkTlpJHNFebatu517l6flVMv2y1TvxLLtlO0PrroQiE6/iX+1xebFeX/J1Sv7WO68F0yVH6EZcPl2uYRAJcWWpoGFdQDN+xkjZMENGN0pglMAogVECowQ+iwSeGkDbIbkG80Psa3cefgTCOrK3i4bZjlUwENtG43Gvs3Pr4ERtmHEM8yeYBY0GUKvNNK6d26qdM5kdA7JdLs3+vQM/aQYckFZwZ49rJ0zSuHSShgFiBNsFUMiGrFT4as9qeic8HsKDoE8QHeABvaRPL45pB+H03emYC2TYDbvah8DGzpkOPKAeK1p4iBZMQIBNquD56MjP5N7buRcQULOpycYZk772DwtUyJtldwm/ywDBK9evtouXL8ZsYxPTGDf+UO772OVuY+d8DzvnPTT9msoIpqfwad6uk92BimUMcESelDw8WE5BhswoF+MKXxdZf652OBS4wAthCec8WQGIhXaZmyhn81IDW0sPTtD8sia3woWW8oFsZOe1z9yy+YwKsCf7enb4G8ef/NZW7NwT13z6wCh5QkfALpg3X2XvvXz4E6haFrXCxrduCcCUv6Yn7Yiyk0aHBFKGgFXCF5BRtoY3nHzkx+fu15bLaLZNcR+57+4fNScXahe9vXu9vfIizwlttHXNMko98uWcTKQFHeUZ+SAin7UtInVrKKd5mfUifJAkspCOaY0dOI6/cvdZ6C3A7s7LBc07SJPBDvQtu/fKsMeXJllGJqZVDtnSm4FdaBjfv/AywE4Sqz3uuQlAk44Bpmmi8SbUckl/EGGI+8yVvz+ve56OICJ7CMx56wMdBwSVtxmZF4855VHOlsu00nSQxRhiGAxYXuVimXo9HPKkQKYzLD9zJX0fRISx8TBKYJTAKIFRAqMEfocEnhpAS9fJfpppOEnNZey0F43GzE6Uji/aVnop+tJ0jumr0qvRZ9nh0ZH1TlWw3MNjm2w8VGnTLJkmEBJ42dnxI+IyeXVAVp2y/naMFVdgYoebvOk7qwM/hWRpy3qHbqrJpDr1AosFEBIvFKETQvTcALJ09mjuLJsZCJaOBK3aexg/wKGAjYBicQAL8hxgpdowfM4HFgV0qmjGMd0EoKKNqeBbO2bL5UokOnnXrlzA/PD+w2ENbNbG5itA8gdmqRkXSLle9GJsZ5UIyws6IIFvJ9d1ICPN0sZb0LmzrAL+bJmcstaApz+nmIOonRe8Amh8/nkWyol8YTll1s9NbJSZu1IKYvOcIORTsh4ksllzuURdkGaeNHR0AYt4KBu5NI0gygFINIvIXfoFDOWTSEbE3+dXtIofwVImvfqs+CkHeTWBrHiWP9NZxgwAudeemrEMYVPMVTBPYrOWw48sD4Mj/F55gcmcWT6QupI8oQ1d11GeQsyBCP+klz55Ekfgl+vKlnv4TdnkW34on2kHHi239zUo6DKS12RIOfnDjt2FOEpSEsYZnDKaZ9HQW6/ce02EmJyEr0pgmnpWxsaZFr/Oh+krXULNZgZ6TdtBdcUjrnzybkBCiWvZ44gg71DPs/f5+5O38+DW5xNQ7ZmEeV7yBMEz3yE6M8NP2Xku/ocEhhtGHMvgeyqrzOA3ulECowRGCYwSGCXwWSXwTADaDq9AmN2eHZWdFJ0S165BfIZKSECoq06sQKRAwt5vmcWR7bbSd3EwpvHSKSZRgbf0sQQGVHE2zw6c9jETEeTZyUrIOIKimERAXL2qAChL30Hb9ZxLe1cASaAnODGNHapmrGHOzjw8eQb8ESZNTUfkf03+yUuEZBktunkL7JWLoMqy6AR/gmQLm04buto+7wOMT04Bn4vshEeYLnKCH+2a1e7fY41l+VBbrVmKPGjrW9rHCCP5K5Now+WF3+pKbYeuv+kNEwyuM+FPEK3/AVpx42pq4u6PsBltqBrS2E0TJgAyjpMF1eK7Q5+TBkkOvTI7IWUA+xLa6xWeqWXsZiHBMBRuJTtULrJuNKY+fEkoV/Ihg5TfOmRa+Y3sE0x9IHINWACiKQfPG795/Pl1DXB4Jmjafc7+rBqm8xf6mG3kmZOXclQb//+zd2ftcSTJga6TIEEA3Jdau1vSHM38/99zLuaZ0Wik7q6uKu4gQBIAz/eaZ1a1NCN1PYe3ESSIzAhfzM09aJ9bmHugLv03k8B9en0iHQ+xQxfxeAtZkfbnTlzkif5TfXSxDxOS7lEM6Zs1AABAAElEQVT7cfP414zJBHNvJYRxo128ywPRWlHb13ef/8rzOplXncbwr/dR5yqX/vUhochi0uHzqNLEsw90seDTiHRu1a/NyjBpHQ/+Pt/oRJrkUNbS5bq37AAp9GVegrSvSBnqS4o5pm2TzvgyPtb9O+eTcSi367O1nRzqqayjaN/bPeloTR6EViwZJ1l5pqLS6irptE//rwnIKucwqVhyqGjB8+rf5CyPsexep7Opo3qE6cyEsywjkuK2Y9PApoFNA5sGNg38Jxr4IoA+AIzH54IpB1IYtsCEh4fhEtaQnZuDQWakmXNGjFG8E3CCyzH2zFenGTbQxBDOY+U5rxA/le/XGM8FQBUTmZaPd7XzE57QKXAAmHg8/YwH8LTwkPIvoASQyXqrEJLSeiR9HygmM3nmUXvlfd4/1ib7wQPKGNue7tAeukANDLRjQK/Py8MG2Bj9pAdRgCcYOantoGLa7mKHtoFwB/B3lmyfxater50vbP8nTAEcLlnXY3BpqUbbALzDtARq0Dd9Oi9NSVa5XT1c8zsVJM96NffK6dzSI13ZqQEcDxxVyALv1YYBxAGTnkSAokjMWFhS8Hov8J3x0ulfdp5IT2SbxpeaPvzoa7LPX0DlTPriMUyx63vnShQA1UbjxsDpyq9waTysfnJOvzjIMGOwz9OXefqVo/uMmdX/6l9pnde35DSZedgLWhwvbp0X+/+hNx9e7P77P/8wL1353TdPegV4ixjbxlHZJi5kXzCvbXuQ76wagK10DoB40yTFd6obvZRujZ917qgBTHZyauvAeboWsnKY8Exh/XOQWVrQSJIB5fJT+Wr0Ks/9I+ZYnsO4JtWM+fS63kjoflh6mtor5N8/vXDPrntFfyt7ulBlvxy6d+D+0M5gfvUdicrf+dRSXUsXq67VZyNbBZBN6vWzxulxW0XS8zQu2WYsTf/TcyWTpX/kmu/KGWGUtR2bBjYNbBrYNLBp4Ldp4IsAeqrIEjFKsGQZtuCgEILDlnRjfPdGi6EDDwwwI8eQARn51+4Ny7gp17UJ6+j3YEZpxlQyqIV1AEehCR7TjuFliPsBn7FlXs7lbTsASCWOwRRHPRBVPl7RA2CokxdvPMXFyH4KWBnwWXDWNZ7nAZ+RGeCu8swU7g5gHg3wLuhNDtCbwL7Po+TSa4Fz2mGSAMToAaAO3A2oB2gD1oFwoAqUgObkSVe8xRPPnR47vc/nM12oImDrmgmDsnlCSzQetiXHJJm8o9nSA7jxsla+9spn1wayaqffJiU8pe0IOH0zfd35lbY0XadLdR8FLGCtYkbnk7/zQFK+OTppIjEyle64erXhryclhOySOcZAnPIXXFevazV4QLvP/vg846ZyR5/JYetAx2gwyJTPn5kM8CyPDkdFSzFpGk8d5Jz05QFy4x0VhVyes+o47imLvnt1530x0ZezZ7TY6PeFdtgf+7uvHu/uteXgoYyZMCSLpxX0Rt7RVwX6TlTnlsTr88D1tEu1yVFeO6p4VTrQNEbda7f2ky3q1XbH6gMZ9mnkk6drk2IqUorxSHfrXuzf3VHjZk3c3G9Lr6lhL+P+Ht7rUgH0rpySDvwOAPfdmNTH2q4fR5YaYbxIo2wD5aAjfc4FvnSx6p57tIKURWTXDuOPflynnfnVp7pkxsbUVfnSGr/+qMd5ebzpkTZMsEaOznd1OzYNbBrYNLBpYNPA39TAFwE0Q31YXLfgZnlMvZXwmicrY8UzyCgxftmpBVRj5LNWGbpl+PaGdG++xmNXekZ9AfaCC3Vc590CMyDy1lGxyCCsUgAu76o9jXlnP7QQkWzAxDH7ASfPZWEQH0p3VhjEk0f3xugKAwFjAIkpHuMaYgDG04jRNQsbwbAEwISo0KMpQJBUuERp3/T6aOU7HnaOYX4vfrnv2g8kMtWTb5nqNYGwFRyQWi9cWSDDq5cKCbPam/cW4ABz5dIBeCLK3aNe/IEaqsPEwv62joEaco7ewAM92NWidLVFPDL46vIqk1c7KDRxadvqzu3hI9nAh/2QLdJbELLAQ9kqPng3lXtZ+MmDs9IlHF2vNLR1aLXSgF7/zl6BTWbyfvLKJ86SG1SV5hAfbkKgz3kNVTmAl5w3TXSUqnR60cYBv9JYJHqVks5qM70hOHuCNyp7w2Dxy0EuXRgvh50kfBamoqyTPgNW9S6ATs671ZkAhu5Zi0/tMEMvXrjyon23z4Pn//Wnn3ev21LQ2xn/2z9831jw0hU6NaZAat7WKr6+7qXtNfioSdFh0ST9HUIRyOBpw8fk1L/OE3gWQFYOPcgvD0ikqwXiXRiN/DpeDhM75fiZFOlf39CBsm5Vls905a2i9GiEg1Tn1XNR347ndq50tfMK06PKcG3BaDrq2kB8el9tKm1Ht3UZQGu/KmCV5/5QXpn6kaTS5t+ZFNGb9ndBEu2c+0Aq5/ptsr6+LFlm3NNhP/6vkmbqK1xk7uFkVedMtuhiatv+2TSwaWDTwKaBTQN/WwNfBNAsGeM2hi+DOx7BvQFlzGKGrgEG9nIZNbG0zJ1zjL/D5zHw5QUyvrOUzvkZz9+Ax1wY0OI94i3lxbVVWeG8AejndkUQE73Az+I+B2gE0LyxQIzBZFx9Jksmv59lkBl1ANDlznVlPvzaTovFrgqlWCAUxPQHaAqeVi5d+FG+P47xlneOroAOmFifA5LLwD85B3xLO4Z9X+YhTGLKmfKEIqiPZzoIQpjkrxpp1abcu7WXFxj4rYlG9XX1JnAw0RhoGNF+9fIvNgN1UHTpmUy0MJOYOlM+ixqnXwLjmXR0bopKCGX4AaDvAtTRUSf0vXanoNpnnCT7pF/16D9AteKGyVS15FC2xnUsfdf+ylbhddf628f+lKYonOnFqhpdTB+Th7dzCjBW1Nv1oFtegK9N0x+NJwnftzhzAeMCO/qdvuoaaPbZkw5lgmvA/biY5/Gwdu1FIG1njp9fn09d6hPS8VU7qty5U6y7o7aKKZaAF1tZhyc1JpzygENJyHzQs+8ufq5f6FMbSjaHJxrWHQxYIlSFVIJyfST3oV8nb9+0Yu7Lypmr/aYLY179h2PGlnr7kW7WH9BD9zbZqmzSq2tNivQXvQJn9+lKNyFeyb2AuXE1aVb/aMuUlG76O7I5pxzy+8HTc27+IV3S9DRKSNYaa6uMAWJSkdmAUOD+OPxfsv5fUmllVEdN2Y5NA5sGNg1sGtg08Js18EUAnd0Zw8VggaMxhQydH7Zp/ZrvjObBEP7qVVzerAG6DLZs4GtBKyALCg7hDEEDY3w4fARik7eTRPCZsb8VTY1R7PyASZIw+p+HzAoXaRs4cCicg3EnF+PO4CpD3sz+fF9wvGBlwUIGu3QHCF4xwXk6y8dYj0ecHOAf6FTugrnKnPoXbHxKRkafHB/zUpdl2ktZ5KAMXk+wQy/KXQCi7v2kpAvKcB24aCsZgcl4GStHfiEm8kgjfnlgqgoP25D9Wl9wmf7BhDb60ccDGaPLtYiQ3ohId9pHR0snv/bPCiFJ77y4JbYd3bSpcuiOR1bRQmV4kT9+pCcTqM6P/Ete56S3+NEh1McxZfZ79Z844wVJh/OrTdXbH3pZuvF7wal8PN4LLKeJ0wblaz856M6hbSN7v9fkJcn766mBerSaZ/5BnuZ5eU2J7YEOoo0BC1iNh6/bS5o32qTPIRRjfpd+wHx9Hd1OuQmy+naNgf2Fzi19082AIJ31Z8ZuZayFfiqYv0uf+0nLwGVyS+/v6Gs1c3nBjZPaNDvL7HV6CCMhq/G26qG7JBnd+L0f5wRepc+/xrU0xggdkFm9k6r27z+uE10a+UpPHytNY12WvlPXAahv1YajxvXhKdbc75MnWapj+kwBdY7J5mFkyj+wPTWr4/Aj8XZsGtg0sGlg08Cmgd+mgS8CaFWAZrB0/enDGGpGeyCOUc+gsa+MmZhTQCJsoPfDDaCwpcBKOvGwPEyMLODg6b1XaMOz9j52/e27i3ItEAKBVs47AA3oYXjBGvAZj2m/D0C9thXYG+WyjYc6T6pFfAskeF4zyH0TGgA+b/XduQmVyNWrtlUuY773qFXn5zaUkM7BI7mMc6BXO4QQ8NgO8Hqe3aEtszVderDlGQ/mRR7LVDFwYaEd/S1PLQ9eefoRTgAS76Q04HcAjQXlKy9IGHBP3/eFlZQZTHjNOuHO8676PhOECvU0IHHaBq8JgLbokL6vHfnIYHKx4BRYr/jo1Q59as9pQKQPAOpZ/aV9DnHcAyt9px2TJmBnwuEQGjOgsw9NUQ7PtnbZ5UN6UG0A0cX9QkLkfF+MsUO77cyhv+nl01We48pQvT4g37yaet83zlsgZ0yMfoHgPt28bCXAW+Xuoa6vU8a0rUlI8fLKv7r6NGFCRgQ4Jo974LT+AXhAWl+9CJ7fFdLzpnH7P3o8ImTkv9a+f/z91/O2RHpy35Ddzh9045y4YOWYYKz6PUVQQ23T7i4OkFbWJ2O+9k/aPs84TMbDdn7as/rj4FVe/UXHzq9rJpn0rOvTjZr29yrdTx+SjVB9V3dVdCx9zTh0gnD7Q7/aZca128UClWXGiPPKE4JyuE8O5UzWZFKq9KqbOvvut3tynhhUkUknr3PJ595Sljxk0IbRT3Xpr/nTxS6tDKVzT6vXOTpYEwTntmPTwKaBTQObBjYN/DYNfDlAZ9zu51W77kUnYpAZ9AWuGbkM1xjcDOkYTMYqozZbygUODCyAvHPc4rHy8iZ9Dpw8Yv/MEx3UCMngPeZpYzHHa5jpE0YBUMGKmE2GcwCdty+DCsDGpmYlD56vMZZTZ+XdPZ3YVedAjN+HH9/njWlBilABYE7OdVRqZc6kQRv6Oo/8O6lObXeMh3okYKoz1sBhf007WHzhAiD3AHIL7MCwnxVPfjfQBODKUw7AElcs7WGyMDgQFHRq4EmNQh2A5+lpey8HcPROcFAsLxkGHDsLvLVPu+0lLd0BmCxanPQhkYkDWY7qL3G5dAB6ySb/xAwn38dkOevV4zTxMeBMHH/7vDyptyJ0Y2DaVZnyXdrSr7I+N37IZaHo6EF5fRdbrA1nTQzAKz0r0+RJWcYCmSe8oPqv+m78naU//TJxw6WXh+4XrK8nIM6NLOlGqI/rxq0/p3eOR2f6aemniVHyAF5xwjeFy5CLnp4+urN71O4cZKIzP+eBs5CO3nczhzb+4cOz3fNHD+a6CWRDuU5ojMz4qO/6et0TCu2nw7XAsjG+L9NYv7m7AFXdZB0oLXEf+1H36mc6OECutMoQr69cY0CdtpM8HPK7/0yI5uj3LCj1pVNlX/d1591vyjnI/ddlSvypNMaJMidvmSut+az7Zj1ZONwvo+/OKYve6J7nGTTPvaTe/j/wxMJEYcW+H/qNRvZ//DfRn5mcUeDIt+7HBeFdped0RAb30+3+76Kv7dg0sGlg08CmgU0Dv1UDv1rO35rj36fLFvE8Ci+4vi7uFWSNtzVjN4YuK8iy9jPGMeM1UJ0RHeDJ+3YckDGK7BrjeXpdXHNfpLfP7lWABZKBgANEe8MfI882D7iW72O7Z1gYBo5OW9y3IDZbmZEEuSHFlMnzCj7Hq9i1AejKIaa04Jk8ytaGkGIgijxzHbwHsfIxvKTwopCBywoh14QI5H3r48i9gIonLmNdOWJd7dSQ9ANt9l0mgHy2MeMRLtkAsXNVXFrHAqZ5LF3dvHEu+TmAvD6QmieSbnhBtWftgZ1e05UEFjxqD2iceNSgQj7nZm0feUqrHHIvfe/DLBRROjBJL/oQZIKSO7VbLLvrN/XJ0qzJ0yJC4FUUTbC82juTourxAhBt5jleccp9SaLWpBo8A4l0rO8qvH7mNQeadKB/1+RtoGxkB8Tr1eslH/mVTy5e8wH6Ph/evKgdatTjAEyd9DeTp746ZWGrhX3S3C40AKBrlj7iOVe+nTjUQZnK4/m/6NX2f/zLgn1A/XffPp8nEOTTluvl9lfz5OnD6FJ7pw0NgT5O+RKYRNzUz58m9l6extT0+7onJmHCDKDX9/qOLMardk5Hz/faaHx1Vb+Md7e0if7LIa9+Jae8QFw6Y4p+JmSka/64viY3pTGO9+PTOKKjo/K6F2411gTx/xLGMuUnRfJ1eXRNYJ+JOzqqPqElc2/W3/pIff6/madCk97ndZ/OPVTWGQ+l0c7bTRbIQRva+xk8/5LvlyZvHzYNbBrYNLBpYNPAf6qBLwLoMbKMalUwZrxrF8ECg/+whVVHUdLH/Gk8oRMDGQn1MUO2dspguFY4woKzSgknAcPdIAnk8DRl5PbG2SNzXqiB0YwkEGTMecgYUTtwMPSMNoM9cJuQGunzX4c7DAQMfK30toxjqddeuAuAj8ujPQOatdIODGThDU3UKXOMMB0UUlL2McxA9upT0EE2bQR8XdQW6Rl0EFhtE4dMB5+kr5yRWTnTjuXhK+Pkp0OwcnZ/vQwGxL9+ezn1CgMo0V4fPRUo5OFuUEsmwAAqZhJSubPlXJJ6KYui7/RPTtw5xOeCLn07QORseVaozN7znRdYeI0dLWzZNkBTW8ENSJnwjHTguzbpm4OH1+SmU7VzGjnlaqW+OSFj7ZixUrp4kBCTlvdwPMDBq6xzVMe9aWdy1E9OL6Bbj/sTqewmW12oUrLQE53omxP6qTCykZvO9TfwAqNk5I8HgiBylFLeCX3pi7bIt3bwSE4F99f3e2cn086ZrLQbx/n7y9GT0A4vyXnTvtH/8N3z3fctMDwrrUWIxoYxoo9nAlLdZB5veb/JeZCdjPQ+wNp5R1WPboy/IXxnytffubZi3k1yqkdjXCupfubuXfebgpZOVnP2MNpkjwqknntyfelr1yeLupqk9EO3xpbyeHjVPwDfd/04+uIB7rtM04a9vieka1/edH+Za+oc+kcb1ahM8jmmb2qR7/thNXojJ1mcP/w/c3Vnv5ZiFTRlz+vJVVKZ27FpYNPApoFNA5sGfosGvgigGSfxxKcZxTu3gt7jtYMBgy9m2RZf94JaBg40OA8yFlABXHAUuDBySTsLCCuPRxCEM5IfPvHmMZags3PeUdwBCsHLgFjfwTtgYywHkgY2ljdqMvTPAQzJvGB2GW/yXQZmDPTxzVpwN4/R8zSLV3Z+F2COp7QKyKJu9cyOEnuDDvAGFKqLt1dowafieE95eEt/s4+l5mVbXl0Amze28v1R7izMKj/wAmpgymKpBU9CZI52T5/cm231Pny8SE9CDBbwgD91DglUJuiVH5zZKs8bDNW9YHh50fekNXqT1iQB5IAfexvzMB8VTkHPiZMcwfn9uyTcXeVp1SecqK4v+QdvxoM8uqhMaRdU8UguUCn51HPox9ttxWcs0BUPNJi0q4TXmF/mveWtn+tB+0xA9k8ljJ33PfnQR1Nfbb3bZOZpsfPKsZXcpDdeKp+cZFGW3UrUf1k7Vj8D1gXI+sd4WrHf8hk/ABF4r3hn5RwXG03/M2kaT/gCyBo95T9KDuEdb6rL67+Fd8xYTa9CVS4KmfEK8Mf7V4BfVT5ZStb46kmJsZMs2jfe3MoVgjFhS7V1Au/7RfcD8Ml/U376MmbcS8YevYNxu8UYD3TRtzlnDOpX9+s6XHF/gmftMaG4M2OCDLNI9ah7cb+IUI+r2zi1Tdw8WQG9+rjvMy76Ykz7o2JrHrTJhNiJz02CfVqH+3OBL91qqwlWRck95XUqvZsMGV9T5Pwz46C2rrUL656ayXSZ6dUPeQ7hT43cyb3uwClq+2fTwKaBTQObBjYN/E0NHCzm30z4nybIIE3oxkDJcWDQ4qoeU4O94x5zM7p+GD/AMtCcucRSqGQZacCX4ez87XmLHcMJdsqfAQe/A5HiN6uPEWcxx8PZd+dAnzTqYIA7uSCgmse75pF/ueTxm0dbPp4wMvPLlX2BSCkG9krHUN8JRE7OToPQk93D8vCUAqnxLle+tHZgGMip/Fnj+PZ9ANiCSLLXFpABYMnHGzgeuoGTBQCaBDCgDdgAPtOeX9pEPucBlTjh9SbACWlITpMUWgGSazs/8N4kZry0PN5LZwe9gG/y6oBEC2qqW53oZOQIvLzchV47v6BjyWWyo83OLzCl1+ruHEBXlTbYRm7gStUdgh9mK8BZBRZ4AaHSTXz1vg7btHnjIN3eFOdx1X7J+oiMoHpAsAro4cJTjvEQKx3KJUc/wHEWgs44qI67KxTiIJ8xSL8DiaXXFiI6Jy+Z6DFJqncBFxksnJx+LPFAVxWudq+xaCz7IazFffeKQbfnuIkB4V43sTQmZh/qKFk/gWBtelz8NLhVnn4hw2dxLh2KnHb3Yd66mJzOHTzI83pseefsSiu8JbyfNraD4fQL2bRZCFDJp2TtUO/dyjSBUz8QdU8rT71lGWBW4YLlVYbwmXmqosyRd7p+0k//p+fV//UxmZPDuD0cPpkEGRNinoV2qG+8wv2ee/m4+6mxQF739Xip3RP7n31D5trhni3raILc+k8a6wJmvCtHHf3for2/hJrtdXeQbfu9aWDTwKaBTQObBv4jDXwRQIMNXrLLd3m88oYCSFBmcRXAZazevFueYUb0tNAM29KxZ0CGd3Mda0cCnweuM268dLadA1Ylz3MEZdaiQ0DCwPO4vuvROPDwMgtHuDMGehnKjPfkXkabR5Gx5nmctxCWmrdshRrwePJeBhxVyLP48H4e0GS8FQg9fvRw9/TZ492TZ092D1oAxqADBkY8mz/WWtl08P7d+e7FTy8HyniE7bIhDATwgXbgfTsQZK/lF3Zw1X7QK0Qj3VU2KCFXSUdf4qLpgDwfP76ez5+qa+CgcuShA2BPr0JIZlLTefUCi9fv3q5dI+oACz/vn7b4M4iwW4S609LuKri7ubncy7a84Bal8dzRi8a+fnNJ9NX+dAZW7B7COzvw3PezoB2AXvQEQWywkA+yvnl3WTxwL67pM5CqCaMDFZrEeAHOLLzL86xNDwpvMKY+NmGwUPDikhy3Sne9e3d0OWPMWEmNk8748YTh5ZuLkRFwozbyGq/j2ZxvxYBXh/MgjWzGFF0Zm55ImDCsyYl+Nv0I2svguvE1Hk3jA2iW17haYTImOpVpMqbe8p7k2T9uVqVNXroyTyeSm1f6//2nPw1Y/6FwjudPH8zTgpPCnMhqImocTBw0OSsPbH5qYejBm0of2nHdWAPD47GtTvoVYuOafA5yXhX365EKfZjI9asEztuesBL2+rrdi4qwrvGkzRMaMmX0T8dMuKadtb/rJnCTrkzGypTvQ/JN+oMgfbXOYEFs9dZO9c5YVm4/2uHcLObt+lEyaL2i9INJ9sdkpmftd1Z7jQX3ibL9aVh2ZU1GlD8ea/VX5nVPmFa8fbvC1J9lWcdBzv3X7demgU0DmwY2DWwa+Pca+CKAPhT25vxiAJoFsgczsGTAQAIw853NBoWnt4r3zGKDTY/HAQVIYQIZX2kYQG+zAxDL61n68o93qX3jlOeEMk4CXQegkWZ5eoOg3vqmzDGknQdG2dOAxIKuteXZyFEqAHuvEBTlMrKM6u0KuxvwP3zc3r1PHu2ePX+ye/T44e7+g/u706DOUXHVB6RbzFWZL1+82r0NiF6/fL17+erNL4A2MdQZ8uM7tS05tUue5VVf4AZ2r1pIBpYmXrP66cP5o0BBWxzOvT2ASqDjOsAljXxgCFDwrA0QV542083sutGH0Uvl0BlZ6JWXnz7UBWRBKGgcEKy88Rp2HXjMzhqVrh5brFXZlKPfnBPaIj5bnpFF//dZnLk6tcFOIsBanRO603XApA/UoW9tr/exsQHEHAuwOj8e59pbDLP0WjqLTTsvdIYHWbukF2LysTAJXl87dEz909ZfnwBYGAizVmhN+vSnuR29iBenvM/B8YQ+jLyrHa73tzYs8AZv6jHuwTTwJ8OUnpqArW3uLhs/+uAyuYxFMilrJl+d++6rJ7unhXQMfZd72l05DmXxzqrLTxdHP+4jQGssTF+VLtUMIMvk3Dw16Lf2uK/ofiYGjSGl0790ADr1zThQnzJVzzvs/px+6gK5pn3lM3Eij9hnkyze59Xw5Ojz+vHkpHzp1uJHQ5Q3ned71V39EnTUs3PNZ3VOf1aOCacxucbmGp9zj3Rt5Cy9Mjx9MNKFHVXj/P1VnvX0Ya4krqcKA9ZObMemgU0DmwY2DWwa+A0a+CKAZvR4p2aLsVyJ4mfHcEXLh72FGViQaVsxgDWQktdT3mznMoQZ0GMWugf8y0Av4w0ueLh5L3mMYTb7OqEKys2Q3ut8GLMW+o3tdT7D2vWJS81YA1WhDF4XbVstQHtzk2c0QLZokHyg6xdYrJx79053j4Pm518/2z37qhjVIPok+LmdRR5JwdP+x64Mb1+/3f3xX37Y/fFff9i9evV6gAL4AUGGewAhMJHXCdBExikj+dRtOzHngY70k7Jr1+04AkCGYirhl90NKsfplN5voHWAQkBAt8FGv8XdqhMw3Quc1KVuoDe7iUy/0Fmp+se1sCI95bmrk5YncUHOQGWykS/2mINsB5Di0aRLnlPADuyurvO8V8f7tnQjGE+1ccNjTveuKZdyJr63cXTzmQcWoALLtT0iGAJH4y1PPdU6belUnulPTVg+5VlfMPvZ4OqA3soRinL5UX84u7+W3PaGXpOsdFk519oiRRn1w4T5VMHAZm059KNuXeWQYcEoj7B2ux8e3LQPjPNNJpQPLj/Wt3Rp/28g/abXfQvpEELwunCfFRMt5GdNsLx0xfiXB+Jq5+ikelY/gOH0mcC3a8dMEpPKGCLnjKn0q29mwWjnRs191y/SS7OOdb/QtzHZr5FLf006E7niQG6qz3h2uL9MMNY9u34D3f3FpZ7ZWaVzk8+46eP8Q8f7e5UMnV/3QmmmgjUOlTbf+2Bc+v9DmNEaw871uZ9OVW7/NJmxBaKxKe+0j8jJ5bv2iNVebUovpe/uGR2tnpdGwu3YNLBpYNPApoFNA/+xBr4IoBfcgNExTdmdwjTyKoKFdz2qt3DtrDABFglkLMPetl6FXTgetVMHo/nm4v0Y9Gzb3rCv2OLlnQyqM7g+HxYWygMKgBs4ASADYIlBFoZ2dilIDjJKJy+P4MP76liQAk6kJxdiOhW28fjB7n6JQPPXbTV2//79WcjFaGuH9ORknj8FoK/zNL/6+eXuZSEbr16+Cp57PB/4nwZIPLGA534eR5CI6ZaHFNSsrfukFZbxIGAn43HGH4SRexZN1ib6TH1VH0T1yzUiDBx0QvzrAdLogYzg+cH9k0DtpDCX5eXkdaQLulSWnSBsr6bfHp6eznle0RIluxquBuDIjHzIoXy6B2DqIND4+ko+LxGp/5U3YSsB7U0L9HxXdx0TVIIdwKKfwM9avPah/OuJgsWjLeqsYLJOg/vHBAh0X35Y/ZlwMwHQboAN9KXlCbXocI2P5amsioFZeTxtSD3T5yDquNhoIRGH/aRBMP2MJxcgVj4960sVvK9sEE7HNWvGO8/y9EmQqEwTM7LQ1Xh6px3BWrBpcmFhoZ1KhHJ8/tPPu7ee4CS3JwU3P78dz6/wpH/8wze7rwrpMMnD/QdYBfbGlYkiXZLHC12MZ/efxaKuz6SlsQQYyWF3m6PCMkbWlFLTph3a2McZQ5eFyNCzBYL6Tdu9sMVv/UF/B2/trB1oTJBHfx7KUDf9U1EqaEvK/pnuqc5OAu+ZtDYjmjE0mm3MKntkAvH2O18T6rKu/i3vVYtyhT/ZpWfaX3qyqmfAPz3OOoPCZcihnwbYjYH0MDuRNO7W/VI9tf2gj6rZjk0DmwY2DWwa2DTwmzTwRQDNGC5wZTozZAwxg9UPI3mAXIaaseO94j12jVeN5fdClAUtwG55gbuAtTKSGbqAkveKIbzJRchIXhYnC3Im1rrf62UfWdDyMfrq5d3i0eOVnPL6zsSDLQZ5xToHCNVxwttceMaz4pufPnu0uxdAP+hHuMbyOJejvwwt4H2f5/Ddm3e713mdXxWu8fbV293HdqwIZXbH1eNFLuoGc+oaaFV/7fV5AciSE5hYbAYkZ2Fknz/VJt8BkXKEU0zbUkXJB+bAbEkGaOii0gY6CAq8p16AKoMv65/VR3WI9K6JEQY/dOZIxCkX4PBWH7zPS+4FWfoA8MkjHr0aankwOTt48GwHaQN59Zl+62fFnPa5fCBM/DUIdxgfdPJ5H8ICyFb7u941ehfSsyZO9Xsw7anCh2DKmNOXABsEG3tCUPR/6htAOwCi/PYepgp1jkr6DAQdwgnUN/KWwCvffbYi1F7OLpNrPgDG0sxLfqprLWQk99pJRDKqr2smze0mk8afvpwdJcpjkvW0eHrCvMs7r08vRlcLfsnoKczzJw9mIqRu98oAbvKeBvXCH/Tj3IeVTwfCgKQFifR+I1yiP6svjTs9pi9rd3+ld4BZY+lOOqJzhz42nsYLnszacOhT5btu8kJW/yhDux1kkIMKD3mcl2e87Ol9Qq4qd+C2jMrURvHJAFh/WnyoJPmUSaepdw59AIInX/eKvpx1FmrufH+TIFn6rg3usRGVXipfO8G639q2HZsGNg1sGtg0sGngt2jgiwA6ixZLLO8ioHGAH8aIIWagwAz4YswAAoAeb1jGf+Ils+C8e+uRMs/f8g4q6+CBdY43TbnKAMXSM6IMqrf12Vt6YjcTgxl0TYgCsHBeHuUcwgHO8jbz1J21APFR4Rlfff1891Scc0BzDAoz5gw2w38wrB/yPr4Oln/484/L41zM86u+A2Xe6wceuQdyHvtbvMWoj9EORskEJIDDLUCcTAcAAcrTRnB5gIkeLZt0XJZeuwEifV/3SBy00bf8AzzKr8jx7JXmoHtQ1yq+0R096A990aYGAy7ix+kPDIPLm8oGgA7/6qeSjg4WuADu1a8fm8TQjTSu0bEy9DPAU88s1Oy89s0YqKzxxHfNQkpl09UBdMh3GTx5omBc0aknCfpx9t4u/UB/k4yb+sfLvY+rjwcYiJ13Tv+qy1ER/h39AavPNTzxO69vF0AteQPIyuEdd+geoG/yos/o1ri9m7f6XmPDuFCuvOry1WdpXZvXmHdOceslLwvehKyY/IFckEgBTx/dS4eB650mZIVxkFN7X7z2ivpPs8DzD9/1NOR5E7vqpmf6AYQ3DYmKGJ2c1LC5v2q/EB+TAd5WfbPGcf2bTCYWzh2Adsqbdq6JyABwTxyUZcxIO5OEygex18H43If0WZvVP/roA13on4NODjqSbiZQE1hRGp1QermN4Sm5etTlrN9+jH+n/JRMTfN/woJ5fTW1z79A23X/C2m/Q/lKnHKnjFWfNitQ2FNVlKaUK8vkmwJl3I5NA5sGNg1sGtg08B9o4IsAGsQ+CEBvXd1vgdiHWUClHh5VcAqo7BSxwjqKUe1x8gGumC2Pls8CKfAjXvRDhs8ODVbeC2kApLPoL+/fAODe6KoXdADwdwHis5PCLoITz3/Fwn6KgCZUoPI9Mgfo9lRm2A/gcCvP67e//3b3uz98t3v61dNJx9s80BEEgAKGH2gxyO/bqeKHP/+lOOc/7V78/KqQh5PdWXL8KVC2e8HNcV4zv7O+YEG9DL1yPF53rBfEJEefQRDvokPa83SzuxAS4PH0AmK7Y3iLoG3ovn56f7ywL1qkCCoHUtKHR/3HvW6avtcLTIDhQofLdHHxeYUzgOSL6vSCm5GjOkGclIBIHnDFmw/66PsQKjBPE+ovoRygWDiOnUkAJmClJ0ByfX0+EwjlP3/6cECRZ/X5k/sDQeD5ErhMPzTJqK/FWU+oC/6pDv1KPw7ypP456FI/zKSo3yYq985qd3UB74vAlA4e3C+WvH4H3PR72fgz5oDa3d6Q6KU7o7vajWHVoV4Adt2LfsC+vYtrVWfFmzcJKz+5rj7dnj2nVxjAGr/EM2HRR8CYNxP42XHDxOpVYTLG9+gtcNd3B30q834vpfnm+cPdk0dnu3/61592r9q3WuhCwkzf/vHHl90DlxPW8/3Xa3GhyRSVO7RbH8wEq+/KNH7E+dvR5KyQDt8PMCofgDRBudHOAqi1mY6EDhmv86bO7hmHe9h540Mnaiv96fOZCJTPZ2UIQdKXk8YkhW73gmqzSQgPvDqMM7CuGSYNF7VBP5LTJO64+5NX2ptF3T/6z6RLGBb9S6dofUSuLnUPrkmcMaI93mapneS1l/n1dU8RfO7H4TcvvlL015Tlwrrs03ZsGtg0sGlg08Cmgf+rBr4IoNkZRpAB89kPQzlWsXMM6fIWMYrLC3fn9kmgs18U2HWJGUIGcsroH58HATNwmcn12UXHlNP5fgNAux6It1bI8irKwau6PGQHiAV/9+6f5l0OfO/fa1Hg49133381XufTs7Mx3spgVOUhw8cA7LxwjTev3xWq8Wb3019+2v3004vduzyFVwG+iYKFibcCMzB//l7saLKlk/hg2gMQwCvPnBOzb24hKc4BD39spWcHDQnILR2gk8aPhY8DBQFoWUaXfgNfwKaugYTq7mtpVvjM1F059tMeTZZphZbk0T4JKEo/MqirssHlnbsqX/G749Xr6yEv9StT3cDkcyCzvM6uuGaCwsss9lfKJet4j6fMtYiOfmbrsrm+r6vP9DkTn2SjA4/m6UM7xSSLVVbfRyEi6ZvOGkr7eqtgPIrGXUCkD6Mq2ygnanLRE/BP7j7PExOQV7YJAaiOko1cRpBMFq+q4zDpoyvjwk1j/FEEeaaC8iy4XG12uZKn30s2xxqLPhqre7lcVFd7jH/b7htCZ3ii9ffE9jcRMPFI5KlLOx4/PJt7CGhO/1UG6NZPMxmt7bzgFvQaFzMR6be7zQRv6XLpVtna4Q/5l9zatYB2yS5P9Vf3Gstq0s4VVyyPCY17DPTOoX190HRlO1Z4RzLW/wfvuHKJwHcM6LWJbuWR33gA5fqMbrR3jbm9DF33afRQem3l4fY6+Vtc7o7yGG9wXan2pq+aaZNJ2S9jrKsrff/us64T27+bBjYNbBrYNLBp4N9qAAv8/z4YPyEalxn56zzQBwg+POL18gieKSaUYfMIm5eQR4yl5nnikZr0pMhoMZhXpXWOx2p2QejSLP5abDkGVl3ZxDHqb1uUaAswkPrXOzuAB69JBmwPinH+uh01Hj99vHv29dPdk35L64Ud4HHilauf/3P2hg6eQfMPfw6a//Lz7k07a1zUTlui8ZS9CKq1437gc33iFeZ54AM7xt8Pr2VbMc/n/hnYAM8fM+raBgJATmQwBvxBEE9+3jZGfUx9+UAfA//jq/Mpi86FtoA68Ly8dbyCQGSFVYAEkNKmHpMnnpiy6QHc8szyFmq3PgBl9Dn+wOokr4MMYqSB35Jn1SEfYDEpEp/Kj23ycti2jUf0+to+zE1yyP7y3bQBAD3IU6s8beSV5YkcT3wyLGwCZQmcCLPt3dS1Qj2AEsj72N7SH1pMCLgl9AcIrjfjASOwDNJOpl10SN+aRX/5JpuUALJyp5PPyasM4+W68wfdi1E2Xo0HfT6ZK2RAmMLLo1BjR3vWk5TlodXHrllAaozzfHrVvPF8ney0S++8xDy5wmmet4DVGNB3h7cWqhcc/+XFm+lz2//94dunExct/vy4uHNw6V6paYW0LLnWExifTR5MDlYfar++po/DEwTf12RkhXyQa0F7ifvr3qX3CprxM+Ouc+7t9br4NU4Hnmuz+owrcvV15Jpy+kJ3M5Hp8+FekWZ0WiJtMN6FH1kcqwVnPO4a0jeyGftlGbm0UyXGtZomvruL7q07zZ7Ioq3uM/fKjAtt6TCO6daTr7PJP6e3fzYNbBrYNLBpYNPA39TAFwE0SOAps8DLCzgYMN5lAACixhAz1AECzzSDe5ZXDySISRaeAbLPhGrsPW0M/NkhjKHy1iPoowENnkKeK3kmdrbrHlmfVi4w8xgdrDD+zt0p3Wne5nvt5fykxYEWCp7lOb4XrJ4UggFqeNQYWdDVr2T9sHsz3uafdz//+PPu4v3FwMDdaOsqw3uVseZ1tk2a9tw77RXHbcsHMM5OFzDQi5eBKN/Wfln46YjxklWPF4JYuMXI3wuwltdQSMQ+FncMfDtRpDuvcqYvYHAID6BDHljhAGSQXxv0hTYMPAS+uYnnGh8dPL3dPtSgAezZPq3LA8HKuM873+8Sdt1jea/yFsscyNRefckD7DqY4Y30QbuJq99WOxeIklkSkK3co2K6fX5YyA9YepOX9eCtND4+FD5xeeW13etlIKlu2gawTRg8bVihCGRZ+4cba0JYjDUqHl3s6zWxkQ6ILvUX3mOMJpP+MfY+fLIg0V7UeYBnYrdgHoxpz8f0f6/rjx+cBnFrFxkhKd4eqD9sdagNdHre68Rt06dt+pSHW6/fCf4+nBdO0u4WQHT6KWg27rSHzACwvy1AbUIWtN88bvFq5dilw441+t3YeVtIz7/+8HLCer59/nj3d98/K/RDDLXQo7UGwD1yHRR6QqC+8dymk5kcAMkUMOOpa0eNkeMZVyZRTayE0yQT7/3piacqjcEmW++SX/4JnejaPGVSkrqmzAXpV+3wMW2pjhXnnf66J4XUVM2kH29v+QakK6sZWCXVJ5VDJ8Y0mVen+b3yrXJJvyZ7Okg7PvWbd1l+EzRvDKX3kk0RIH3dD/p5TU7IrV0WiV62EHX1lEzbsWlg08CmgU0DmwZ+mwa+CKAZoomjzYDx7AzgMLAZQZ/ZQW9HY0zHI1p4AAOaxRvoYfQG+gIznkqepYos7XrFNA8Zw81DBowZWMe1sisckImj5llyyKvO4+JieZotDrzfGwTvPXxQ2MaK/fV4l+Elu7TygJ1PLRA8Py9co0WBP//4ojcJvuilKO8mAe8gI8x4T77SAx+eNPCmeiB1q10ktIls9OGcdPKoB2jxlPN6gTjnyALg6AXU8aYfQFAaeuOp9WbEz71Exo4K6gAGK97UDhDpBUSODtITj2myKVtfcK6pq38HLnjCz99/qmywq/4VU6ouZQ/0lp+X2nXeWRA08FLblOnQ7gMEgrUBoGRRxkAQiAOG5T2q/8ZTO3C3YlmJRCd+62O/pTU5kE/9vMx0MwDfbzIDOboFRI6DLu8UNkI0aVee1R/kJJNwH+CmTSZexk3FrXL6fQhb6OPo1wABi+SSp4oG1pCZtCZ9gHN0XLsc2qF/xf47zmoIUNPv965bnNp3ZfF665OBummHfOvNkvqVXg+ymsyAaJML7XjXpM59o11ke/aol/sE+mCULrTfFb8On/U8UJzvpXFfkUOfH/pdm0CzxXXjqS0NPdMVMCcwfVmvsLzS/e6POJhK09yRx2/tIsVNcnuL5Iyikqh3XtddPVYM3DJZ2efzNED8+TjRO6cfpnhVKL/fk7a8/rhO3lu1hyda+JR7uSpHzzPuurdmrKi36yY+Ja19TR7kbYLoacTh/xBVbsemgU0DmwY2DWwa+Fsa+EKAHps6hvj0uFdD520CD0DYPsI8nR7FMtoeEfv9vj2Jxwj2D3DjCbJQzuPtAygfgcHiHz71Ht4J4chSDsCMEbdNGlhZXid5kIS3m93kTTrKMD5+/Gj33d99X6jG8+Ke7w1wMZyLAUCWnwXnQi1sS/f29Zvdjz/8tPvhTz+2YLDXkvOqBysMfsLMRAEgMtgeo1tweNRnYR0DQQEPuNF2QCUmlOFWZ1/XUVFgFyAy2Cs9kFre5/N0wzPMo8i7Ol66egg0Aipbe32sjRZ1ATH7Lit7wKoyLboks0mNsv3M0wEEXfrDJAd5aMvFhEHYiu54d1kd0jsOHkDgPp7u0i6YXrB4nQygywRCG4XCgL5XeZVNeshg0qDPBsQGn+i8Pb9LM68Rz0O8QBNA72Eu6BLyIC/FeZHIjKFPl7VpPdHQjoGd2gD4LHhzzCRCnHR98rm0V/XpmrhUb0R1kGsmNgGh8A49OyBZmXRIJ3fqF9ugAfcFxi1U7dXm4Fvf2s5unoBUx4s3b+ZphH5Cdyc9OTHOLkujj4zRRBp9LHirvtLqX2MQmAJwerQ7Bw+5yYFrdKjP56lK98GvE830kG7ESf+vFh2qeSYVbXXnqYvFd2VPD+tpw039Kkxp4LTPQivo0kLb24E5b/NAtIlen7XRZNZBZrJZ0Ou8MgGzc2Q7QPjcm6PN7skqn/GvjbV/9Fp9+q1nKb9OGGrDep23yeea1ND5AtnK6Pr0j/7uunoPMoFnf6U59LHfxoAwKvVPe8unv7WDTqXp1Mi/woeWrs+9Hr7/n7Zj08CmgU0DmwY2DfxWDXwRQDOgjGm2LAPFpnlc6m16Pf4PIBiuAcmMGMMNAlwHEPIORPByMpDZr8xrxnSFHSgv19IYbmDDyPPMPnrQ3rnFitqZAIwJe7Bf89fffrX7qt007vWSClvTPczrfLfH8v/GQ52EYMNxDUouLopvfrH7V28PfNF+zm/fFcJhv1+ykXe9BEQbB4anpct4D5BlsC9qE8N8ACTeam8sBBIHeGDoecMYc2AMOHhe1w4a4oJPB1rVA86AbBIEtgFy1QHi271Fj454zqqQcmqLV0OvsBiecDqtZXPNThlr8aG3ATapaF/rRy0+4xkVFjCTgT0o8SA6D5DAjLYpTz+arGiLBXUmSMDJ4bd+JKt2fPjo5SleGW6ydDQhLMrT3yYYQBGo0wV4IxuAojex08bJYTzZQm4WulWvsBHn9f26zrO5+gcwnSTDfWE5pQNCJmRkWE9GtCc5PT1INeTwJIMXH4RNv9UWY2smPuV7VCiLPpRPGXQAKMlsvNKlid9JeQZSBywXDIN95eozP6BvQj0aD4k394gyB1Brt0Wtj0wS0hMd321fOjLJSR/3zh5NGe6bl6/Pd2+a2K0wn/qlek08/2cQ/a64+d9/+2QnrMOkg+5WmclTuWm6c3n00z9dCN0gx0ywTAa7zw5QfDfYNva1TSiIYyaItTm6ne+pYhYo8iR7sjBhPl1bIL3gPTXMd7ukfL67gJgQ5DD2/hrEjYEJvdrrUj/bcUN5xrw26D+TxrnPyk3PJg8TspIMJtrTP/Uxb/SMs9qY9JNHvdrRpbl/rBfQt/SureSl9+3YNLBpYNPApoFNA79FA18E0CpgyHiKP2fAxPsCpcxeBpphDonnXLGlbSEFGhkxufw+ATaRBXjj0Z1Xa3fegjxGlkEED34YeIYOfPDS3RWm8SR4DJ6/+eb57ut+Hj95uLs7McU8iDXtF3u4/6CujOrH4Ps8WH7VPs5/aZHgn/qxn7PYZODiVcvHWdqLD+q30ChQS1bbxIEnSGKLOF4rcpFV28Z7VpgKIGvGsHYV6DMv90cvswgMeGsTcbyNQgCAKhjywyP5ddu/gUCIMPpJWzU5XSwvHqgYoOg6qACod6IDEwWtpLOb+mPAAPS5Vr0TD9tngOY7UCen9A66XT4/UALaC/PYx6Wr82Z2GkmQHncDrwH2W2tCdNglRB5gDXaBjnTXN2LBA5cmCRbkeUSv7wHq+myXkQWo4BC8m8CAcIDjh4yJXDm8z9oS5HdOWmPNGHRAa9cpApxqJxnUD8Q/2+e6z+rXZ0Jm/KaLtUVfcexBJm860nNNYSYKs71iOgLEF40TtaoLUB8mPsY1iOZ7Poxz43u82U1SLpNXG0GfPP2qDxcUGnd0NiAfcJJZGQN3lSd23AGaed7JZnxKrx1rEnO1+6ZYf2NsPXExsZum7MePbRLvztOEmSjVX8oCzO4rYSI1z3xqJgDGwdRfmgO8Gj8rBro+TQsT2lGb5SOzCvWZMSo8gr71NSB20IcnAsoAzZ5w0Jvx6h5yTW9ql7G09KgXwDRdKWX1+YSCVA4Z6X08z/vr+p6OZ8KQcDNZShaXJyyH8jucOeh6ld3JKWMub/9sGtg0sGlg08Cmgf+rBr4IoBmlBVOiGQOhYHmehHYe8PDyHOUEutMLKBwDdfJkNO8W6AhUzt8X09niqAd5jsfgBSQgwW4XbNzaiYEh5hFc4Mawn947233z9NHu93//u93z589aHNguFlW+jDNwyNiOJcwgZ2CBAo/y+bs8eS9e7n7+4cfZYeO8eNKB2HmEvzyW8i5gAFor7vSmhYJCD06Sw04ZoDEEHbDRLt5moAccvIVP3fbm9fZF7QB7IOV++YVDgEwGHwh5HC9khIf32eN7wVDAFhQhCTCEGt633/XsbECRfY8bpr7xZpZQHSCMHF7HvcDYRGVBiNdbXzZxgB7jQc3L6jE26DVB0ZcVISo14AGFgKS3K1YXwASW2jSQWzvepjfQ8k1eT79fvbkYYN2dBX7tqasv9f/HYJ5H+eMdHr+8rI0RQMojbweJT1dCci4mnni8x0GuRZJ0bRsyUMXTPACULA7QMyCU/oDtzUVAlvQW4I2cpfvmWU8gKt/YUoZ9keuCKdsiVZMibfdj8vG4SdOD9pUeoKsPTbRM5E7b9lB/rVCYAK+JkL63Q4Q+FEazQliWh1y+zy0mvGls6wPj0X7ExoVxNkCafF6Iw7s/E7EmTkDzbpMveW6f9j3oU+dlsepg0tMIE1LXPd0xngZA0+1VO55on5/zJnbfffV45PLEw+JXkydj5/LDekoBZm8nH0AFtHRhvL1v3Bh04Br0ezPoTfHLF50Hmc7Te7sdznjzxbhLpMJmaqc4qk7qK4c23zQGDvufLxhuUjBPltY9Q2bp3LvCSdx7+uTNea8mN+76AeBg3IxxxmnlGwomCeTxj++qPezGoU/0zZrMLYAej3P6It20x39LZbyV7OrYjk0DmwY2DWwa2DTwWzXwRQDN6M/LDcR+sqIdYAqKgS4wxxgO7mT/JjSi78ceJZcX3NjVgAG/bi/nbNt4ecHuvKwj4za7Q2RkwSFP8+9/983u2/Zvvl9s81nQLXxDyASPE9hT+1hIwmQggYOY5ldtQ/fyp5e71716m/f5Q6/eBum8bn7A5IN76wUwC0IDl+oFe7cz3sodkKwuj4vBBGOufJ/vB31r9wZQbDFkWognGG0vdwFOt/v84vpdISiFU+QhVQ4vNMBXBpie7cuKh6U3xv/0tP2m1VUcNpBUDnCw8FC0xoVt7zrnUOcAWiqwaE0srxjah9WlD4DyePhKpyx1jt7SHdl5Hr39j7ebN/xJi9MAt649D+APsdjyPS1ERj9X1EA13esj1+QHrQ5goi1g8X06v/xQp5RJuU9mP2MhPSZencFI/SM9oLtO93TEOy+P8QaYpJGY7EoCldqnLmXRh3CHo/c8uguYPgVJZSpV7Sm9ycu8lKM8ZAapbzvnvO/qUZ43Q1pUR91ATx/5rSy6Btzio8k76ctr4lRz5l4gj8kEIL5X//N+qr8hN1AMEk0C9J1KV7+3Z3mPKXjap8/L52mEyYGxcPz2vB051sTPBJY8gPrntlYE8G+bgP7hu6cD0voELKpzADLdvi0+nEwmBsb3VOzfhHbv0TX5Z0LbGLQV5J41a/WauM31ZHFitce4X/pTjrG7yl5jRB/e7Lfvc52OAa5xNl75dKkwY5uX3BaCB31qs76fuujJod4+H/oycScfjzO5yacd9Ol/BXX6mcW4XRq91ReKs/+5sS3PvvRSbMemgU0DmwY2DWwa+I818EUAPZDIAGV5wAwDxAT5zICCl09Bm/ANhm5sXwZSQuaSt4z39iSDqawPbSHH4ws2eA953cQ738rIn+Rh/v67r4PoZ7uHnfPyk9vVwSgCYJ4yBpsMqgAC53lF37x+28+b3cufX86PXTaugwxgwwMOLoo/WUBa5hWOwPu4Qk54shhwoAxmjgNNxt+CMQ0a476XAQgv4AEh83cMNc8qQKWX0+uAqbxebvJ5Dz9AneFOXQFmIQyBm0Z8yHsLrsTGMvjgbQBv/9Y0OlP2YfcGC8gsqnvQ2+3etSARFIAU3kSefKBCX/oCaIEXnj/noKWyPw88e+S+QmZAEfilF8rl1dTmR+1qYkLxpknQAsrlAQcvvmsPGJp9gvsMdnjGeRH1jXKletDOFH0c0JHGuDmMpdMmJbvCFC4u98l+BwAAQABJREFU+cUXkH7okYbPC4bsZb3KoR8TH2Wrm9ebvAtMF0BW/Iw3Y05+4+6uk37KZbyuSdPapUPe93nuP3jDZMWZLAJSkwNlGAcPbWWXni0AFdPdx2lzo2rq1iZpuW1v011PXoC3hY7qJTd4X/Hgeyjs/PR1v0EkoNRXPp+1/SL9OEzM7KGtzcq0oFUfC+nQHtOAb3vL4aPCP2YRaHUCSnWuPmgS1ZOBFLVkGs0lg9yVCeAnJKvxQ1b6OPz8Aq6j4/LURmXr15Gu8zzYxuOEazSGXJ+xUgISrnTabGJR2VV85F7smvvTQXVrcr6gnhzSqk/4yEEO/wfIYl9yzuqqH71Tlc8KNx6FPWmDcdOnuejeNFHr9JJJxduxaWDTwKaBTQObBv4TDXwRQAMu8MYge5EGCwReQ7Lif3l1lpeWQQcnwPDhnRayYYfMtEfQ4OBxsAwYvFSCkb1dyMf9QOHZ0wctDHyyu//kye704aPdo/Zx5pkCP4zhgF/VAhqfeTGFDyRQXuf3u3/+X3+cn/dvim8ufIEMYBDwkE0e0i7Ise/xikk+1AEGyAVAGf5X7SkMrIEp+ANQwi5AC5ixPzAwpQ/wwgM8RrtawJ1W2ynDpOKHFvLRBx1MGELlLy/uccATJCWbHTne5pkfKE23ynUs+cHhmiiAviqqHYWIFHIAWsVuC5MAMMIE3uR1JLv6PdIXMnLd642BChnVp/x3eYm9ettuGLzYgF66tV/1Hqhqx+P7TW5amKgugniSwEtI1i6nk/J1Sfm8gvp15Awk1X8USK5xsSYPwhUMHuNBt/DiPm+P47fn4FRU8Xq0DzZBvImBxX6fmzjdpFu7Xgi5AOCz4LF2jn6Xyuq/oDW5AJl6xktJp524ld6Wl9Zkgac/2SOt8Up7QpJ+edyf9zp1ALteE178d/3/vKcJJ43fl3feT/8r36jSfnonw5yrUSB27okUBOAubvUCop5WGL9+yEd+2xC+SQ77GzsOkwpPSUz6jFeV0Mutt7t0fzkgafs3bx/Uz//0x5/HS/3h49e7f+iJjf2iVTBg2j0izblQqepV/twLXbe+QLoB07ZNnD3Bdcj+3HRuMrn3Z5zX58YOSbVBP5NvJs+10QJZ94vDxPi6/xfGSy60pnvLPbQWDrtjVrpKmjFCV35MGOjRb/ehOtYEbE3eAfEBgI/O1wRPm4ylmThUN1kn/KZ7dSYsleMpjhh2T8Du1sfKmcOvgyjrzPbvpoFNA5sGNg1sGvg3GvgigOaJ9Fj5Mk/hVaAFopxj5BkmoARQACKDd5IBZQDH+GZ0/bZF1oP7J8UBn0+s6K0M5fftqPH1N093j4pxtrOGhYJHvShidtXIoPIGM/jjQ8o1qE4Wb6AlT6BwjX/6pz/ufmyHjYvAkfuQAXUdCFi0xngD318N5fJ+TqxpMihTXCyYAgMWLC04WNuLiUd1nBdCkRkvfV7l47XrhPMe64PAu/vH7myzxZJgwx8wMbriaU9/XpKhfIDCq6h97Lj6nQcaB08w2XlDyfosb/zZSVsBlv/wCujlNayWdAUsxOCCmooc+Dxs4cULCZRSUPIEGeoOrH56aa/hAD8ZZ9/sMkpLdpgDNMA9IBbjvDygy/NppwdwC3LpzEtngDWg4UEFL+q8PYstTWTW0wvtG0kaEz7jl/fpAeD53jwjOJRiHfQDBhdwA8JCYbqsPHBMv9ok9GKa2O85b/yU0FOItUiySUfy0rvxaKEo+cDgcf3X848g7Hr6SDvWOCqmuv69CLz/9PPyTJv8kY48Z02qPibrVe2nw5lk1gefrhZAArezdk+xANQh5Odytl9b/bQmNfVfBc4uE6U5aVGsfvdjMsM77xX2wFK9vM/uNSEl4u615cXrz7v/3kVl/+6bJ70QxlOD2rrX0clne0dLu2DyAJxzrnoWUCZHupvxSJ7KNRm5SRe3eznOAtPlKT8+bSyXRj7p6UvYjvJXGQm6/+DJjrZIq88Gluvn+b+jNq03DOqV8k42chCkpz/6p3Z6pfuETZXG0xeArU6H9p/vQ4bmfHkHxvsNqsm0wmmM/a5V93ZsGtg0sGlg08Cmgd+qgS8CaIaHsQdzN73VjUfxTovtxrs3xmxs9RhA0OCHQWR0Gc4xxkkKrGw7d3q/n0I1/kt7OD8PnL1F8GFeZzAuLSPHiDKo/hmnd4uxeFM/5GG+zOv8tpCNH9rP+X/8j38tbGHt2csDOga9vIBQKIHFS+KBhYp0ej67BvSUzROnbRNfnJdTW8lO7vmpcpClLeB55CGTwvqyjD2jfWu8vuJ2E0+yMfSzjzRQqI6Bha58CqQYeWkcvLsXl+vxPN0dAKEqkyv9JYsS6U8+MA9QASwP8sSRBrAWGh5CNdbnJiDJddy7vnkYeX8XXC6YevVGjOydiZ3mcV06D6Jr79rd2C4iHwdQeRiFFxgDJklgmodRHmEq3gwH6AELvZnEAJe71f0gGSckojz0BGzPe+vdVb/btS9IT8fppKyTV/tXCMhagAaS49Upb2TUpsJKbBWoLhMfwPWLhz1tLU/vckvrO20q8UAhGZ4W901WutSVd49XH/NqnzZW4JyxqJ2uiw1/3/Z5yp39o+uLD8ZFMs8ErzrIQj5jCBL6a6x1emQ0QZJGX5JZOIKxvvp8gZ3yPxTeJM23Xz9Oby3qzOU8O3ukb6rxBIRc5Fc4yP/BK8DL6/N35fPSFQBujYExY+x8KmzCMTJ2Tr3XlTfhMWT3J9mJP9sLTmrgu54wpY7pg3I2bkxcFshq00E3q3VTyZQDdI0/oOtQi/5PM40n8dMmaqOqrqh3ecXdhXXpLlzuZUEguESE7ZgnGyli0itPP5lQ9H/EQVZjaLWl38qfcTkVTBnzzyru1+/bp00DmwY2DWwa2DTw7zTwRQDNTjP2AIUnjDHmgWTcwY3zvGx2VGDVXGfoGTURmiwpD6utvP4QND9+9mTeGviotweeivUciAhaqsexDHwFjIdtQQ9P4qvim3/8y0+7121L9+e2pPsJNASFoI73coHL8kAyrx/bs5hBBgoM61r0lhztCKEuhtgb0hwLuFZ4xWpnUFgeshwOscyAdh4N99mhHBMKMPmwkAwAJi5XLnltwwfEeMFv8uQ9KKY49QzIkRcYAFtABKqqsjRtzeYaxadB1356+Xbqkh7wp5rRK0iy9Zn2Hd3Ku92EQTiGx/5AC/SKY+alJieP4GyJVxkWfM2ExVaASUxXoPQyqBRSIpZXv6lKGcJYXL9Xn73NE6o8C/TIk/qnrgV2wBLULAB93CJCixxfBuzk0RCvw56wgdLlch6ABrozSTAR6s9l3nGToFmAmR5GHaORNTkxCbJA9aL2Got2gdAO5eoPZXnyYQ9msvB61qsB8nGA+aC0QkgK5ynt+8DzUzHQxjUdVd3uTbKKgTdRUZcnA35u8oi+vmp/8urW3gHjhAPD9HOa13mgznipTz/0ghihP/rUUwHpPAGwWwzQu18s+73yGcNv3rbTRrKI2z6i19oQms/E52GTzjVpbQLZkwF1GIVih4VW2dWGLJ4a/P13z3bff/1keb+7P40ldZVl6tbXyvL7qoWXJjsLOqd7Vt+ll0nnfi6v0JGP6fpT/WXiRZ9eEe7/AF7tT7fXUxRjXR+Y+GmTsXmA2YN3HbT7fHiKonzpZsx0ze8DdM//OeqvT0zMLBRVpz6Z8ZfuXOt/imknHXiluvLpmgzqv/LSpq65q+bw4dfbe39y+7VpYNPApoFNA5sGftXAlwF0IMCoi/VsZ6rxbI1Byhhd8WplvRjTqxbOgTOQxFABq7M8l8+en+z+/u+/6+f73cPAxcLAO8ctKMxgOhhKIQi2hWOwGT0GMqtdiMTlvPzkhz//2BsEi/csztnOGi9fvgnCerNh9bGB42W0H22GUuww2ziPiY8CzIAUIPAikml5sNQcDA84AYLlERvQrk0TJtLCtmfFvgIuYSvjza3sj594GUHF8i6Ky33/NnjNuPOCz4ssAEb5gMH7t20tFySrGzAMKKSf2z1iFr8Mbh4ER/J7PC+eGdyYHDjouhYu4E0/Qg7oST5vzOPdBeZeNIJHw4V0WJ6UAA5NDsQ5ywOsLSgDFQCzIqYeYSfqAeTCUeivE/Mq6g95+H948Xb3JFAH0XR1AKOviqPmdf+x67b9QyTaAGwGhmv/0+JygeWff3wd8C4v9AKb1RdmA1oY4ozc3rTnunrvRG30P3HqtUObTWAAeBWnM/At7pVv0+RpecKF1lzmyQV2iTA6p3/jQ59YMDgTtPI57BbzOW/tZeAlZEK8rD44C8rVwYOpHsnp8fN+3CtLeBN9yCOdLdncBwButg5MLeL2jQ1D3ng3doRGEJq+3F/kB4tnZ0uHP/zl1egQGNIQnYJ7W9bp49eFLR0gc4AzQCSjskZHjY3ff/usWPt75f1rrzpA7T6rHfrI7iMmumSakJzKdv++b9tAE4TVPvkrvwmAg9YO7dNXh4mU9Fd314LUmaD1XVq6n6cPE4+/h2o6r95pXfe7Sd6aDDSG05fJgYn7df3IW+1ed/8c+kCbZ3FtE+UJo+r6EahPHvfVvGSm+o2ZnNNNSNzjJlHbsWlg08CmgU0DmwZ+mwa+CKAZQIAKBm7nfQJsYygZxy4yjNm7AVYhBWJDeZttzWZB4JOnj3d//w/f7777/uuMJIgAzoz08liN8f8rCOJt9qbAy0D5VV5m8Pynf/lzu2y8C/bWrhnicoEocGEUFwgsECMMIwo0mHrgwphLI36TcR4oyWjfbrcHsZ7SggAw8P5iv2NChnce/Wp/aeRRxixsC8x8Bta8bVfFvYKOCQlh6PeeRnoDXBTFkPsO6DxuBwwVMRA7Hrjqnr2EJ+3BA7d0O2WAgDLz2CfKwJMQi9stwAMbFkG6oH+Wp3f4bO0uUZnAHFgBiHvJD0jIPLHTtY8+68V+A/BgJj2J2/ZdKAyPqwPk0Yc5jvCTHjTMeBgvazKMl7R0+rkiBkDl42FXv/4akKEIutGP9mQI5OgIkHsKQF4ygO+qmzpH3sbdhG20xwOZpZmX9PRZ32ofPZlMHADTSWPWswELL7VHvsMh3h4om+hMzHRpvfHP+AKkxgFIXwAONuVtPFSneGp6klcZJmuKJtvA/V5XytLnxoB+X0861kJJ5YHF2WGmz/TkKQD1PHzQDiBNiEzaAKSaJ9SjNLNgMznINjImt7E+3vJ+6wNl2KED1OtLL5qh48/B7K3CI1Zbmngmn74dvVTJnY/BqnbTfTNnbef1NTa0/eKSR3c/TrW5utwThz6hg48fq5zApQft1Oa6sgz8cndNzDidNY4TttOUM/qxeFQ40tVNu9T0kp/JW35FyrkWFTYZ6IS23q2CFRKTrkrf7TH6MK6MV9X+cvz1519Obh82DWwa2DSwaWDTwK8a+CKAZvTmcW9GkGHn2QEJoG6MntjDjCrv5f0WCj4Omh8HzfcfPtzdf/xo97Q3B57mHX3v8W+ev/H2BrU8zrxYAFY54iGBjP2c37RA8MfCNP78p5/m1dv8VGJtP1YnkGMIQTJAuXfWy0+qGywBC8dAJNBTXh5ihvl+Xl4AMMY8+T3yBwj3Ttd18AAmvAJb27yIQxjExJzu2wyybbn3VQsfpf2YfB7Bg5yyjGEHEj59svip9pFN2MN4/apj8QHgDtroIAAH1NrCpos/PirMZICvc9J8KA15F0xWQpWBBsh8nj48+gdkIIgHvgf8o1M4SU9Ht4TbAOLCBXqRyOP6g27eFYrxJs+x+FFQq90DYHmk6Ur88p08mCZP5BMukUSTVzu8WEWdD/OAW0SqjaYndKZvlfHPf/55wArgPGlHD/0/TzQq0zgCRcDLj5d8nN8UGlKbwak6LNxbE5OVZiZyeW/t4GKiYEyeX/A0Hh79mzQVqpEewJQxpa3n7/XHIT7bUxO7XazxsLz0YM0iSmEv95IrfQT1B9i3uDERJ59Jmc7SB550iEMXwmRC8/PL84Fw+U2wTBSBKzA8rg+EZtx81O7CN5ocfNNbKYWKgHpPSYwjE5x5OpHcxrKFiZ4maKN8E7pT+vdH9ldP74H7TPLKbFzqx3fFmf/3f/5hZPi+xYXPG7dkdS/MU5pmPp8CXONGW2ayUR1rCqIf3SmFsvSkxzoC/UYubaX38YYnn3729ES5jimv3zNhqH0D+zM2eN6Ns/0WhsZo3507aisXk/P5fyVFGSv05Y4QCuLJwNt0STZt4FFXjsWS/u8wIZhtJFujoV5lOj/16bRKukxPMxki56Fxfm/HpoFNA5sGNg1sGvgPNPBFAK1M3lcGyQFGloFanwHjwyBLmMaz521H10LBe+2ocdxWa8cZ3LWnLdDh4cuLmdEGLoBOkfIPuAWu7wrRAM8fWol3dX6+e9nbBG0r9zhAVS94AkRl8bbpgTrEASrmcW9Wl0HnDZxdBPoOTu1k8TCDCzKAKeiyup832QtPwAOAAYEgioVloAnI63nZ43Dlit0Esu9OvL0vCG53CsAAdpZV1iAg0SP34OHs1t2BKRAwHsCBWXpcgKwdpyen4zEkj4NuwIhwh/FgBgd0RcaDx5Ench6bBxMjX7LPJKd8QOthUK+/lve04Ih0xjv6+NHZbMl2P4h+w8N50c4PAdo8Aq9MsDpAX1oQI39aHkAhszrsZkG+tW3eh3R43PZpZ7OFml1Gfvj53RojZCbP6CiPYJMPMKgt3oB4vO+rvs5TgttHeZpT3XgSa5e2apt+vUoO6WhO35FBbLUzN59rx65dIMpbdeOh512frc3KoM9BpthwBQhR0UUD7bVHHnUZn+Br4qnLD5xBI90YQ+KW9YFxQBb3wL30zPuskNmesT5Utzh2EzC7cNDzvEQoAT80WQGUZKMLY197wB/d2TPdRM64nPCcvb7fdm9MGE4N4Jl/3CLB0yY3YqFf9YZLL01RRsMzGfP25tGlu3fV96efXs/9oL8O+0Vr++F+3vPz9LHx7bx+XiEnyzOtzTO5bTJqQqDNJnM840Jh4lP/SQzsmiSbUJ/M/VMoRWUdFR/tvjNZ8pITMo6nvmz8yaac3bCjR2sV6IQcdOx+0C+2gvT/RKfWmBCikw7d20oZgO+6cTAvEqocZbhXTGBP0oexOuFhpdmOTQObBjYNbBrYNPC3NPBFAM3WZLPmABu+MJBj3NrL2eu5f//7b3b/+F//bhYIHhe6AQz8gKEx1mXzpj/Gj5H+1KPZidPN6tov2V61r1++moWC50F0FjLICRh5rvosHhh4MN7gBaTID5QtVgQXDKhAC+Ag1ne96hpsL1iYcIRpSIY5agAcDPJ4ypIPoPOkAQFhEsAYzCgXAFtAeCvIUvZAYGnIRqC4aow/3fBaAq3xlAUL3pa34KyywH8GXVzprXYncAh3UYZdPgZe0pn0uATEnAaW8zrnyiRv//g7eegYu989DtiDroHf3gTHU4gShSOQbUB8hAwuyiyMwSJAsA1oxmu3pJl//QM8eb9nwjTy0Ylql4/SeRMO5x7dnM6Egb6A+nGhHcr0+N1YAUF+LyDWj8tbrB7lTZqAS3qACF6FIYxXtTSASv8bPzN5q90O17WH7nhxgan+A75VV3fUN36X0Y8AiHmFue8E76DLud5Xcg6w7fsITF/f5F0NYBUsx1Wy6EcAvMaOpyIXbTHXGEzXzpNfOTzFdO3HRIC+ePj1FQ84CV8F2O8r3yLAkgyYGlfS3pSOTrTRzhjTouSeSU8wSG86gE7utDcyyKfjgejyOZTLM05/FhvS7/37hUOU19OC1ZtLDzzTyjMhVSZPs7qMH32g/Bmb8pVU++lldn8pPS/9hEuoeIpaTzZmctf9o0z33vQb0u3o1DqmjWWrnZ5OyT8hG2C/FFIr2z3gyRGo13cO/89MazqhX3mktX7GVm1wL9o6057iJgyT7VDvlLD9s2lg08CmgU0Dmwb+Tw18EUAzQgwkj5GXFNwuFpMFOsnD/CSP89/9/e/m1duPnzya7cw8xgdRt3oky+vKA8TwsYg8a2sFfh6/jPp5nrMff/x590//8192P7WfM5i24GqgOYNtFwW7D1z2pjjWcox9v3ngHhUuAg6EaNhf2kI8B9jgnXXY6UAuMgk9uXu7F5jkHQQRL4qptrvFD3noAPk8mg4IGNtPbZk1YJYs9p61kG3FX7K6meb0wPADNWWDSQb9AHS++zk7Bb1E57ENPsrkUf+jPOp+TAD++MOrMehr8eHxTBYOe0kLjbAoTVgJiKfGg5f8JjgGwAMPTRLIdwuE7+NaQTzQA2yghacOAP1vUB33m24ApOO8wa9ee7vdp3nj3mnt5wzUZ0Dqdrt0mKB8yINpz91Xs3hNm9dCUWsH//jjmwFH4AOWPN43bj5VF/lMdoDomxZbgk1lgyleTC99cRygqmwDZvRmomIMeRow+q09ZNKuvxQfrxz1mDDYK1vf2SIPfF80kdBbJj6HtuirD8XTfjbroIHJb2SuMXNcaABZeVYf2N2kdC9ffxydA2DjhP5N2mxR6J54c/5x9y9/fqUJ1X9nPMcmJ3bjAOsXwbMJA9gUlnI7WYGcNgG9N+/Sa2V+ro/EUyujRo0eteOPLb60i4kQpEOMtScDs3tN6R43Rh6k7zelefHq3ehXfeM1Ton0VbKeDLweTzqY/7vvns8CWft3h6NUMWP5qPuDzoxX/UO3XZo+NBEWMmHi6UmQt2CaKBhDawwG9n12H5HzojQKXk9LCvuobeoyATmqrKMmfY6Js04P6jSRaTpXny84VrfzemgBfflk8j19uqZfeJy10T1gm8EVM9446R6gB958T6yOm0QobtU8BW3/bBrYNLBpYNPApoH/UANfBNBKZSBtZXbv2b3do0I0jtpF407G9Czv8+N21mDiXr56M+kYXYaLoWLkQAcP1oQ/ZNx4Sd8EvC8CoLdv+mlP55+9DKVYywGM0gO48cIFx8BjDGHGj/dr9myuvoOXewEsjxRIWV6/eWUyS5ulZOwTf8IsPKo/P+q1yL0MBeR4NA7CeQMfJu/DYA60irkVAsKzqVyeb0DM8JLHuWljZ4RvAK0CVgY0QTHoBJFg3S4gPNugRygB+AOyjL/fPNoHQ//gfjUA3wBN+8GK9LzpZOGRvmlxVMWUpvCI2jPezpNkCIhB6vv2yr7qteqEtUCQpxH82JaOrqjluPQWZCrDIUThbeAp09fPHrUH8Wke1Y8DSe/ARzKAIpAL+pQjDOKoHSNOe1kK6DPRwH4mAiYcvJ7arO4nvazm26dPmti8HQ+payYo+lP7lU9OIEQXJhvaTh6x8cDy9u315kZ6Iws9K19svJf0eLMiWFTeTGCSUev0vTG5vMBCFAKtk+VlrcrR04CdWUU7rAyQlVfokHH/NuC3BR+57ge/K0638fxpxdiDfF5a412oAK+z8aJvbpKdTMaApw7y8uRqp/EnjwmO3/SmDcoTznGYeBhb3KZ0BN6XXsTor90+1H1yt4lW341N6b2Rcr1dcvywbd1Y02rqy9rkUOe37x+tNyw29k2Qxd3fvj0zq+pa4Q9r3KxwDp+NyXp74J4+/HwI1r0aXjtNnuj6oH/XjZWSBNL9k+4tEnZop84wBt1rjtVj+2t979KMk+WBNxlYY9mkijyKuOrJ1qqv31Uk1tmxyu9Dyp3/I/Js3yMrZW/HpoFNA5sGNg1sGvgNGvgigGYQecu+7pXbTx8WSxxA3757kkenEIrA600A/PJlW5QFo4waQ85bxNhm8wfwAA8A4G0Ety+C7R9aJPj+3fkYNAZwvLwBwGkG/arfvJ5gO9M+Xkj5mVlGmkG01+ta4IcvhAsEhy0uc328bp2beMfMMs8kmSZsIXi4yACDL3ESK83Y2YEPW58BaGEj8gE7PwdvF1npxDmP6+8GjqCl4pMvGWofrxwZwMEBbHiQx5AHGzzKwJ0Mtn8Tdw2slHFS3WcBblHT8/j+vEmEuk9O1uN0/Q2qPZIHvrYhG3yuOR+CMh75y7b20hfaPJBS/gXL5BZeoHzgkkcuDTt3u7dAvhMnW7sArxhWe+5atKn+KSqdpmYS9JOHspPGhoWSwh2kIxfd3Jo6TRYA8ucg8l5jQr992j3YA6Y2y7N28NAXK+ZcDQcdw6oSTXvEvGpHqUY3E0udrud16uVRnrAVTypMYIDXjJfq/fDhfOB9ed3XdfWtmO9CROoD4T4f+m3vaZBPBsCqr8Cp+o1rgJwqxoPOs//Ns4cD9RYO2oXm/aWdNECovabXWxufFrNtAvKqBZ+vC9sA2FQJEmeiWdlPSkMfAFo79ZN20CdvtPji9VSlPOlefuPstEWi0j39bFvByqyeq+tCQupfY862e4Ccfn5+9Xb2zwbZ7795FrQ/mP5TxxHSrVT5p8/LY2vA8Lf2r3uEPo179wE9mMjQWX/nKYlxQa/GH1RWjnq1x3llq8OhJw/wnKqmD6RfITiNIfEWHfIa8zfFdmuffnHfSqdf9LfjMHGZMJbSmRisCe6a4Mj7y+HzyvbLqe3DpoFNA5sGNg1sGvhrDXwRQIuLtHPDozv3d2eFB5y/exc05TkN1v73Dy9m8ZQFeG97vD+P5AMIRm0MfkbvXqEeoMN3hpcRBQ/CLkCycAovA2FOwZbvQFR4wrwCvL2kGf+7xy1eAowMfcbZqnyPrC1SfNBiLrAEkIEFr5w43NtHxZr2WH7qDGgYUD+gQigF763YWZYUBKqP8X2Rp85LOmYf6MDEwbDzIH9882mg40khA2AbC9hxA3CBYe28KfDWK7ftV2wLMR5uAA0q1nZzwUL10AOI9uIRXuebVze7b4MxUPNNbXj77sPAlPwmH9rxogkLGe2gYb9jvu/r2sA76YUg2v/Mmx2ry6RGWxzk0PiPvQQEyD4DToWRkBvcPmh/7j//9Gq8lHfynPoDjoCg/vQo/hDGAmjokP4AFYg/6ZG810m/ePtudye44W21kE4ZPzXBslvJYRL19PHzOf8mHeln7VCPcslt0iFsAWx5W6B26FseXrAPat/lGZ6tBxsv9P5P73+aPvv59fnu//m7r3ffffVo6gNhFntOfHvAJGzB666fFAYEPi3CUwcgs+uIen5807iqbwEvD7QwA2PBZMG4W28wPCr05WJ3+8mtqcsOJT+9fLd78cN5ci+4FvJg7+wn6fn7bx5Nfy+QFIpTu7WZR7/+EJ/s7YwOExPQSV8mJjzYvPBX+/vFdWNW2I1xZkJGX+4d4+TwtGDtAqKOUvfP56NA1DiuT/7S3t3GnonD7wJp+gCkivaz7tm9p7/0vL52PgHaiTwyelGQfclPG8fGJPFdN17csw51u0lAr98TstHJgfQUdVNl8s3lrtO5e2omeskzkN335YWeS/MU6uP8X2GsiCf3/0OTu2svvln/dywP/JpAnfV/0Md0ObHa6W2O/a/1Zft308CmgU0DmwY2DfyfGvgigOYvAh8/vn2TVe0RcoBxnLfSrgM/Fj8MJryKOQbYfby4vbt4l+EEhFlFcJVVCxZ71Asws5ITu1ihPLwgTcypt/cNlGXkLsQtZ0QHNBnO0jLIQkhAqNhKMOsPY81Lp54B19ILLQAkwA1IAL+7QTC4UB9vL+N9OzAB9Cef1i4LPGpgDlAAFyEPe6s+UCdMYYx7+gBbQED5MGEtZPTYPm9c7ezvQIrv7y7yHNd+7ebNE4axQHR5cwEGXQFf3rIPwR4vpddjgyhgQUfau+pfscPa7Y11tqlDIJ+LORdNTC6QONBbGeSm/5IMBNWo3buPK8xh6ZwHu/x7nU74QPU9bDJh4nR0+36AtsI4ADw5yXPSb1DpnIkPr62J1Hheg2kvdnnctnUvizUHij832aF3gHzwYNKzicTIVj+RecXNCwcRMnAAMqErC4w+jzdzPbEAafrt0L7DokV6I089Fejpp7ULRCJPueAMtJt0CGu4NE6apEzscPIYewdgc37FyJsIGpfLe03Ojwmor5QnHOdF8K6t+pHe6dR5kyMTOW2lK+dnktJCUhM45wEoGNbHxvKhv6U/6YnEhDel93lzoJuttmBA+leegxwHz7sbwTgD0SZ+UtC/D6l1xvm05/aLqdN98aSX3lincIDfmr7yVb463FPjgd6PY2OBjunrrn6oDPLTnRFrwkE+B+j3aem1sTz9ZtEuuHav+dhTDDJ2qO+Qljwzzqtr6WVdI9zamce46X7ofl7hV3d3H06XTpVBzFuCoOdv/2zHpoFNA5sGNg1sGvgNGvgigGbggOKfWih1efE+YxdAZdAYOEZ/wC8QuDvng+HOfwzYQMe9duQAeg7GcbyYgdHBCycvmGJYr3o821K9DKs4yyAlOFQHDymjfPfu/XlRAuiRX561ldva4UFZYkuFC1wF+sDD424LtsDM6T3bZ+WJBPuMd3vGVnwHy22rt+CmyQDvt7J4pEEcAGCYP12tVwaDdsAwAFYdIAHcAGnxwcsDbfcPZdT+fUiLNg3MJwvZ6VE7/DjADzDX3hfF3CqLh5tX9KptwM6DMKBI5+M5v7sAldxCDI7bEYUu5ZutwCpXmWJy5fMZDAJYOrbQCuQk5uhDvwF8sPkmzzdo4Tm9Wz2AVL3QhtzCM+iAJ5cH9VVPE0xs6F4bLLDzFkoQDpKvg1RjyAKy85sF25hpAU1try4THN7M0XlC6Xs7T9BZcRDjddRv5NMHvNFivD22x1wAir5dUxdP9PKOix+mu56AVBYv6t0mgBZE/rG3/VnU6MmJRXp0LyyGzg7hAfQgDIOwYJh80vMMmyxcBLv//OeX4xUXnmQRnXpT0+jmwyXIFm5kYrhgXj8JJeGhv9fEUHy2Ba1vW5AIpumYDMrQd7ag018LtIW9pJfyDqDWizM5q1+ln0lVY0wd+tq1d71sRx8OQAfWxqZxr0+9ZZI33H31/ddPd88L1eLFnrFaG9VhiI6ua694aodRO8X0GwCrGyRfNwFcYL4mmTOuO3+7NPIYZ+r2o1yjUF6fyOrpEki2Aw84llwZExbVUBiY3v+fQn7t6paubYetMdckTz8Z3ybFnnQZEybqvxwHMX45sX3YNLBpYNPApoFNA/9WA18E0GBAmMS8eGQM0IIA9kdYgF0iAK5XC0u74ocLt/BotWsHI+j7V7004iyvJhAQwgE25QGrQBJkMKaMJnBwjtfrpXCP8vCOedTN42thnbLXo+uM7uRvT9yAyMGbeSfI49UD8wOiYC7II6+Fdow34Hv0YO0aASyvGNrKshuIMgG0ehlhHuUx5PNoeQHVrRbS2Zd49gvOmL+8eT95wKp89sgGtTyiA4eVJwSBDrRXzK6QBTRxnj7mzYAAPxnv3E7ezgPTD22TJr6Z3skkr4V/2sJ7OPsxP2w7ueOT3V9+fhN0gbmAMgC8Xfw0mAJQfoQVfPWkV2y3FZqXodTK9BpsldYuGxe9Qv36ZXASxPC0ilEGoRZpAl2ARB9k11czIUlGW/JNPHK/7Wt9cTtwqZ3a/TQY14eAVTscQFR4gnLpHOSAUHXadvBOj+WPmuhcf66dVaQtxgslSK9NYHNikvsNDI0z+V3jzWyKMiAFsAE9QAT+vOi8zxft8LLqDsQqU3ng+QCSxhBQFNIDoLUXVK6QnwWm5y3cnKcEXdOXJo3CN+71WTy/MWscC9nRxrPksouMWPfH9+/u3t4iw9X04e2jtoGsvsfFofstzMXrzelxYsWN1/rZy3uMIf1ioiVkQdlPaqMJHwimL7owDn8Cyu6vGgNUjX2TH7HF+uPPP75qPF3uvnv3ePdffvfVhPgox0TGPXPUy3boVB3vm3yAfuPQfQZ41UV3C9LD4RYlzvion+UzBhwmVMqkc2NXZ9bM+Vd52uy7cowF97ozJkbkWRNbC4vdm3Y+WU8hLIq1W89aZKyEffumDml2u/vBtLqnglJsx6aBTQObBjYNbBr4zzTwRQANZBleBpOxZPgZbZ4fBlOoQ4gRCLXNFivVuXl1cAaTsQSLwGy8o5lJnkDA5WDmQOoYw9KAJnDCxonPBAygFnic3uVFXUaccf0YSICV2GRAmjfQY16hHsoF1soCbKAXbCtHXYy9o4/jce7XQPadJgoL+C3+40lc6QBarDHwxksLXBYoLG/8PJ6u3WdBi7AGwAEYeBHJMfX2wg9AcTuoHI9o8oJQcPXowckA1+vCAa68YjkyGDtfmTx2QhN4eIXLOJQ7ba8d7/MWi+O9+rRiwR/e52UGXHnTA7sDMAk9AHTaDuht+yYuWR9efABiAQZvaG398InXP3gL0G/d6nNfpBPrfAi7MCa8pAMcre5M6xRJ8MoXn3te333uopAGcd7GwOOje6NHXktA5OmAPgG7+vpDguiDAabmFbyIE7uafIe4a3VcWxjXyOMp9SRiPNWlNi6l91TAxEA/WeQGQOeFKoHW8aVQGa7UPLntKOMgz1FPQRqs0+/jpTU+AjiTQrq6c+fR6AF8HiY20nnKYXwYy/rdd/KrD+SJX/ZCmWsTomS3tZ7JD5kaKiOLvF7Mwttq8uG+E+YxoF5/G4MmTc7Ts6ct7quzxqiwDWPSwlr3jZhoUEy3j5vA6bsJCymfMbf6U+tpt/HVffE2PfFCK8ehT759/mjG2uf+BzEO3VdXd91n+nofikLX3RPa7f8HE9Kqm6cV6+lA+ZKTngaQ92XTnzroA0j/m72fK0AZ+nmAt4/rsA5BX6aDrh8AXv9LN3DuPi+NspWhH8jX15GRLuhvOzYNbBrYNLBpYNPA39LAFwG0R6DepgaIzk5tSdZrq6sRzFncxRMM2MDvp16XzEvLK827tYw1j2Ke6Qwtz1W71Y1BXwC6PFKzg0cgwGMNehk5BnuAYehsebrGUGcQ77YN3efTsaGTjuEHTqByPHfJByr8gHneX3WL0V1gBhyXF4vx1kYAAFaW3Q6gaw/41B6L1BhnsAiIlOP7vbx9tpcDQezy/byp2sALPoCTrDVj9AVWgA2Q4BUcICkT7ziY5YmlJ20mkxAJE5IB1uoC5aBA/RZNfvv88fS7CcmfA1mo71XQ98+C3YCFDsGUScBxW99ZrLW8oxb21WfV64UedPShN0Re9xxcn0nviQMPvDAVulMWGAMsAAugADJbxoEXsoM51zVYiIftykCS7dmUSXZ7I3vxzqO2PhzPZRxkMeCHT2srOx5nITZ0wDudpkZ3A16FLRgzxofDk4LreY38HqCTj45AKd2H7vWNlGDXDg3L43+7ycbIL39yLrALxdPPTXXUgjkHYq+vLCAsHClZHjZx9CY/u8QI2/jLi3dzT+grsG5sXBXfwKMLUOnSJGOFh7QIMA+/sXcc/IFgfWBBon2i1V2njQ5JDO6Fk/Bk62sy0j+vskklXZLB9aWPxkZt0UYTxp9bzPi6HW7+299/O/lMmoA0PXoiY4IyY6nz4w2uTiBNby8LfXEvzdOX6v0umY2Hu/0ueQltU7gmPsbCjI35nizpwH10uH8HjPVFOqJYfW67Q7Kqf673GxCrkxTGkfxk1W66MaykJ7fxqO2dXvdjH/y/QD8Vm+7WVn885cow9kxKMLf7bvVwVZV/OzYNbBrYNLBpYNPAf6aBLwJosYsg4NmTh7vCiDN+y4M5XmWLCW94KHmjgzQexIycl5QwfqDC6n4eOd95GMEIUGXABsIyiB4dg+DTFvocVY76GD3GnZFluEGuN7a5NguqgrHltVrgITZ2HeKmAcJ+u7nqZbDfBsGAEDDeO2NUA4M8g2JLXxdDDOIBiDQTRtCiL4/JwQeoG1d3Bnn27a0ixpiBnoVrAdPDe239FkzyNtte7/JD24jVXnIw7l4ZDqh4n7Xtpi335NfGu3m77wc4VZ8cHyesAkyPV2+AEVCs8BGv4f7+60f9PBmAFf8MjjzqNtHBKrz+4NsEwERgILb2erz9Kc8kOBO3TPa3tlQLOrT7Ly/fjF68nEMIgrAFIDUQXhv0J7hJmtERWKR3Ewxt5G23uwmAnP6o/meFTHg6sbzKeYzbEUHIAZgCQyYbPJXaaveQixOL8d6l4fot+DJOBubyftsRhr78OPSrcaHfSGUx6//H3n0Ga5ZVdQM/ncNM93RPznOHIQ05KIKgtKiYUBAVUylaRsqyLD8b6vWTqcrSkjIBiqKIWQTFQZQ2IFFgEAbJPcPkPNNxOr7rt89dPXsOT7q37+2503fv6tPnec7ZYa3/inuf/ZxrnMjDyjaF/odnvsZbV4I2WHiyYDK3MfTYqrUtEookUfFEI1K4Qp/k7UhgtjfqmBBsjUTRKn7S4QeA5AvPfgvH2ng7DXytPD+86lv2nsdYkt31Ifcu3kPtjS/4sJ0C/f1EzZYcq6yS43jSETjeE4n63ngywX4k/vaW40FhG7aG0N3UX7plpd8fIMILPOBrPPIxibo7ftAJe7jqoyTPUbf8sFGfQf8td95XdMjbdq64uH/dndVltZ3RcGRt7C+Ovun14Xh1opX2Eyci4Q+e4kPhj47Q+YAj3s4SNsMbxZdgpyTcVuPpwqawN3rjCFJKKW3iHp2Lhw3FFvkSeuuPLuELRuV1jsF3SZaP9zrmFYd4M8G0TYdtbQq+iu5Ed2UQ51YaAg2BhkBDoCEwBoFTSqAlcttjP+aBY/H6unjTg5hjT25JboTeEqT71T3BUJJgJUrSJlGSGEkmBFGJgWDo0b2zACdhENTc99hZYiuAum+V1Apy3vfWg0i9yqqU8SUe3m5gX6xVYSuK2koOjkSgtRJrfPXckFhI/CWX2tivW1b/oo0VMMHbqpqkKP7v1kRupb3k6Hgk9+5JOuJfFI+IJXT9SiM+9CnJkRRabQbOtmObYrXc1gkrdP2Kc3lvdSyJrY3395bEK/pCc3k1XfCB3pJ0RMIDD6tpxyM5lLhJXOAp4ZLowPvi83eU+lbptHMf/nV+IEmxhcRREp7oc3MkjRKRfvUu2gYG64ImCaTkBO49ZvagwqHff+zPstOL47EaqfjsR23GVF87dJdVw+hzfYzh1XYBb+Ft08Z+/3hZDY37HsvDbcP6WLkvq+B+SBZ1o4G+Ch9xwWd80zOyloyuiW0XxsEfvk14JLTH4y8RlsmW64Fb3zZWlY/1byCJ5iXxig7KPbqIP9fhDyNPB0wWJGgHI+k0NlugH/fGK+zocS+fwCroNYb2RXZBtHFNtMoTh6AxICj0eYNNfC334W8iKdG1Raa0j/6NIQHu9dHbUCTkoQexdYI+0L+yfWqeN3x7D3rKzdh4sHVGkglEP7z0dpTz4lWJD8QPVf01R5Mk/KLdhA/WMc0rk1qTMn2gja7ZnkRXlPLEAbbHQs6x8n4k8GZDBzf0r6ak1z0oTuRkFVmCPI8Vkgymr/J/1In+TI7pAJpMkA9HGz+MLHqoQTwlICsTVXuey2p50F54iH7ognE9Yep9SdQvTxZiwOi7MBj3W2kINAQaAg2BhsA0BE4xgfbDnc3dgfhrxRKIE5EsSSisfFlllPhIXq16Cq5Wl21lsOpoxfJgJGwSCm28UqtfHfUINpLqCHYCnyKW2iZy4GAkq3Fd8qz99lhdFTf94QcBXqCXAB+OJAQN/Z9U9l5db1Dok29JR1k5jiSwT1piL2ksn/tDGRLdPlmTtMXK8nzwlWjIagRdiaB901avDsc1E4FY0+6T0wj3JSGJpMR1SbcE43A8NrfCa1VU4mFF1+pb7EqINxN417MfXQY2kRSjyZ5YfFmdlMTcH4/OH4g/dY0mibhkQybQr+rb1hFJvwQgih/+7Ys9tPrAU25bsS3A20fWRTKrwNZWGzSZCNgace/9+wNjfxzE69GCz+B3ZySFEhQHzP3BjkOxn7ZscQgio3nBHfbkZOLQ148E2s34bmXfGMaSzJpEkdN9Md79Dxwor7SDmx8aHjgrJgshT9sF5DL9I/z+R4loskpq6wTs6Q4aicfWB3u06ceaSNBORJKog/ha5GZ8ieOBogteTRcJsJw/aDoc+7wPRqJnm4ekcG3I1yp7ypAcJYWSPauq5HB8fouLt17A6467+z9ZDiN9nhuvfcs3VuBB4ifp1lfBPIQvybZiezgwldDDzap/v0ot2e4TT7pjIkJvraZLsmFtm4aJnnIs/gz5vfGOavoN850x/jnxx1cyqaVjh4P3/ncG8UQiJnFlUhH4WZ1fs2Zj/OXQreUP5UigjU1H4NnrLe5tfolpQ+C+/6D3YD9UntDYZ/+4yy8s7yiHGdqST/RKar3NY238ERk002vaKpGmz8XKA1cTzhigyIx+aRtfo33/p9Jtx1AliCoTuqPBp/be6c421V8fTw/Imo16rSZ5kYeEu0zKC/5W1KNOyKP86fC457P2pcyf+i/t/4ZAQ6Ah0BBoCHwpAqeUQEtkJMoeER/c79F6BD2JaAQpybCzoFgS4gi6klpJgtVmh1XGEtAjQFphjjhXVtLsoxQQS+COIC6Ql8Q0UlUBdX0ERUmoH3DZYytps+p031F/YlkYFLRjy0P5oWG/eihZkXytjcRHfVsqLr90Zwnk/uiKxNPbCvTfv5e430YhSRNX+72d/Xhnx9sRcouJd1NrVJLLmDAI1oqVZsmM5NskY1uMLXmUEliBvj+SFInSvsBQTlD+WEZ8Vuxl9Zf+1q09eDIB2Bx/4REdaPe4HT7xJZK0eAd20GgCsze2bOjXKnbZ6hIJB+zjX59YxtiS2X7FuX83sdVtmCEbJrBWX5IrAZO87YtklrzWbbaSG6/9iy0yDx22Ymgfc69CknkY2+cdrctnybj3H6MBRicO46lfKZdoeTWgrSUmOOqavEiwJDqw87i/vB0j9oH7ThZWWL1r/Gi8mcJfQsytGEVOMcj22FpzbvzZa6vDVmXtI8aTcehp0ZvAxzX6Geoasu3/xDjJFVjj/taQGTzgc18kpiYf6JH8SeTLG2UCEzSThUmh/qz674ytSZfFH0e5cGesykYfXgd3+93edW0fbrQJuRvf2y/Wrz9QXp93cfwo78LzzylvAfFHa0yavGsbpuwm6WFP+4Nv+9C3hx7SoUPRp20OAW33UBwmT/lny/Fm5VkSX1a8w9ZMao/HNW9nsT2lTAgjiT6Ex6CdjpAPnaZzZEdBPNkJ1IJPF01c+r+MeNOt95QtVJdddF53YfBhTDI0rpqKpyy+RJNyXZ/r4kexJsomhGydHpKnOuyrrCBHW2936f9ke/8UAAbsjDXR+33RGVo9JdCHlWhjefLhVZGKcTxhkVCT07Fj6sZYcc+rNcnDFKEUp2jfSkOgIdAQaAg0BMYhcEoJtKR2f/zy7/545deB/f2r6iSvkhkJtIBmFW5n/DBsXbw1oASuCJYPljdKxOpWBC4rXFYjJReSQ0uwVoV89tfVrIxKUgRGr9wSyP3oT0D2ijir2hLIg7E63T++nn+EHPclOVarN0eSK3GTOHpMjY4IwSX5l9CaBFghNLxkT70jsaqLvz4pssWiX0HtA23QEj/gOhHP0ffeebBsnZBIepRtpc3qsoRADO5XbiXsQUtJ3Pr92OWxenzfFGNJwLyiTpKnSHbwDz9JP7rg6oMkDk9lZRBo+ozx/KXBkgzHfa8VPBJ/VVAeIEmQhKFF0qGvsh+13JUy9PtWN8br7PBoPLRbudROnxI4iR+cSyIdWBoaVfaJq++NFP7C44bAHe3oK/hFRQkRHuEqgSFTOiLZ9OhfPQm0JxJH4tV0VhDLBCFGIPMd2+PHnrH/W7IYQ4WK4Cb4ccRHyeSmoF3/F8SP+S69aEf8CXl/hW9f0UNPOCRaViHPjsRYkl4mOiE/XZGxBB028zDHKeiOpPJYvDfcHmeJN+zJLaZLPZ7RQBty0qcEE25ei+hc6uM7+HGfDL1a7VBgJpk/GjqHizIubgIr9OAD//bbw6ZkeVHTxOmcmCDQc7Zh0rI3+mFrttyU1Vz2FG9ZwYru3SM/xZanrZEYw9c14xQ7izE8xSCzO+JHp8Ueo7FJmGS1rMxHfRhJdp1zonjcRCq+e686OzURPi8mPGiVmLNT/DnYVklwgzr9GNuhkCv8IqfubTDa+qud7K08DQp8bO+RKJc2Uc/ntfHHcMrWj+ivrxfX2T2ZxNnAhdboxzapE6HTqZsA8mfpbemASbExxPQk+bR6Cp5XI9+rR8KN04bAGYcAn/2w23r40+li9NQT6EgY98UbHiI+ldUeQd2Kjr2FflW/bdvZ3RWXXxSrWv0fqLg9/kCF/ZWCnZU6q0iRlcWfnI4gFkmG1dr+vcmx0hWP1h+KlVg5xNZICs8+K14DF4Fy78G93UU7t5YVO3+cwhsXDkXddUGEhCOqRGJlFXFLSQIlHOWHazGalTVB2VsObrtrbyQD/RaTdesiWYhfMVkJ3hE0COgSYlsw/ADJSp3H+3uD13UbDnc74l3JG2JVONZUy1m/a/dbWexflSVRkIxqJ5gL5BImP1g8EFsg1sR4kn+v1rNX++74kZ7H95IDEwjJi0fqHsXLQK2KR35R9oKWZMP+3sAYbweC9/32mUZuviNWpP0o7P5YNZU4bow/orI15KAcDJ4fOnKwJKVllTHeBW0Lwfaz/almCYShIqWO8SQ4Eqn1seK6ZUv8eC3eOmFFH//ef0xWfrTV/xU3K4K2HEQCGX1ISLwNIRZ/g3/8xav1QhZ+5CjBskq+P/YJX3LhjvID1LJ6XH5B1ieaVngldyYV2+IvFlp9LXvrS7IlIY2V4BgPnx7r2/9dJkiRnG4PfTsrfrR59z0HY4U63gYTSbkV+fWxar1pmwQ05Ba8SmCDzODZto3Y/x2ytmpNlwxDXyTN/QqzlUyVpdX90w19WqEOqIo+laQfLhLsWKV/IMY+EBhIhK2E2y8Csy3x3ao0WUqwTRDgZfzbYhsIeg9FUuoNLvsOxhOI6MNE4zCd2R5bM3bECm/gcyCecNx6x72hU0FPbFs4GnSXlfSggb3QR/RJoEOaJZnd7s+yx4TWyrBx/KC1X+k1eei3Te257b5ISE1YY1U99OKsaGOC4TWKtvyYcKlbXoEYZ3puD7b14HviKQ7bZ3+XbtgZ7UP2gXWZYIWCSGD73xX0CXQ0KrJZFz/qk9QqRY7RZnP0WybGQaMfK+LxRGBY3jkffZkAm5RIyrWks96OYjK5YYNXTZqExL2gxQRA/+Vd5baPBN5+nOx1h1vCBuPFPVG/f6NJIUKHp98Xl6FP+3+hrsVo4W9jvTIL/3Wd+WanDbN67J7i2f8fth1+n72n2XBaSH+Pdt3FYjGu3bjry8XntPGG94ffa7om3avrzfJ5oX0ttD4aFtNmlnaj+h11LXGYdC/rLOWZ/5LeRIrVg+B8+sqiE2iBS5Bftz5+vR8Jy0Oxv1HSujkC9Ob4Ltn0yHj9pvgjGRHcY9NB5BWRcEbiuC7+oMfGtRHIoq1ItS6SgE3Rl6At8X7w4PwqbSRe6+Nx9JYIqDtjVctqrr28/gJerAdGghZJaux/9PaGTXHELtjSXpL9UIy/NoJ+SZgF0QjAkevHHwPpV+Qk0RKETZslILF9IxJlyYoE4WjUtfq6KWhfi65IdDZEgD0RyYkEPXKd7o67+j+tvDESxGPxKriI85FsWGn31/3sVY4AHkG4rIZFwuNHUOVHcMHThvhxlfFjbhBJVn/evMUfL9lSJC/gC0YR8iNhjVW/SGhMJDyGPhF4WNuWDEjO1saP9s5eF4/co61kX9yPKt227dtKoiP5sq1BYnLknOCvBMpewc6KRK+snkZb8oSbFcd1kZisk6REEnn2hnizw1mRkGy1OtyvZFpJt+LtT5N7S4gVPj/aejCSvOMh3x3bN3fnbw9ZBxv+Up7VTXI9EFs41gY+27ZHgrQ5JiKBBRnCc00kuN42IhGVzNAd7eBPbh19CUAlQvRsQ0yo1kbSXb4HzUfi+kOxL3fPrQ9EIrq/2NL2eHPHtm3bShLsFWZWSvdHZ2sjyZPwwYTObTnLirLEt1+NhkX8K4nmxvjx3ab4gzhlUhCEmgCsDVrXhw7Su61bz46+7LGNJDmKJO7BeEJydH98D7rKhMgYkSh7NauY/+sAAEAASURBVOCJ4CEWtgu/niRsCFso+B2JLQbxdpb9B0IPo68ip+DvrJCdhNt2l7tj0rFu4wPl1YbEeDT0jg2tiz+PDqfNMUmB38Z4W0lZeQ5F2Bg6vDEmSsbfce7O8hcko0pg3v9FRnu3j8ZeZliwlfUbbZ0IgVDBAMFkRqK6Zcu+8hcR9eumJFQSrV3/NAVGkvCuuzcmghs2HQweY9JrkhN6Gt2FXfSr7bCNVuCKv14Y6EmOQ1nonrI26NY32R6NP7oS07iSmB/eHz9EDNLw6MnHkWhT6KD00ePxwFk/Jnl74z3n5SlKYIwuk4rCU4g5uo66sQ8/ML8n/EFciVcIxv9sPW6itXQZ5zO3WJiw1S4mxrGQwCLC05y57DbOGgINgTMOAQuw8Qy223hEbtbnb6eTyUUl0AKSlcnzz7+ge9ZzntdddfU18caG/i/IWfUShHLbhaS3rHbGdQHx/MsPhNMWoCM9jOCm2PIgaCkCoB+E6aNfvfM2iX5lWgQsP+Kyshf3/dGQs2MPtD2lthqUd0vHGP0PzyKJjZVciZjVVG0lQZIjK6sCpL2yEijbB/wwq7ylIK6Xx7+RNEh+81Gza2UlLWj1oybJqmI1UEE/OvHoiJyhFMlV+fFXjKt9bheQiMelEty9DtAqtGRWUaeQHG3LmPGlXIsEI7oubSTQmZj0CV/Pd1nNjTomAPArSZDPEoMYP/4VnvSXPwSUZAME3YJqaRd0oLGsMAZ9sHEfbq6ZIJl02DqgU3iUH3uFnO1L9yQBXa6bLEiGgQSjPjmKcQL7knTFfUmj8dCpjkf/hd6CrCF62goNUafwHP0Zk4wKrnE2ljpW9+3xJV+r9Lae9FuF6EK/Tce9omdBJ5qUxAixZSIT5z5B7P/4if3pZE7PrSiXrRrRH9yN68nKvkigbRchO8Vkyo8SvbfZ2LBkH14NZz+3RNtec1sjXMdTUFSw0T89pN8mYLZg5CsULwoZ2NaiHV7wq67v5APPfjW/X9nvt3D4cWgklEGbHwH60/B4giedMTZe+onW/I/+4rrx98c2GvzBSKG/ve6htahQuQgvtrktJtNW2NGkRNfB1fykIhrg0u8oshS8Stcq0lfQhM7GymhvE5Ewz+tHbj/xvcdKk74NTFKPi3wQN0+zfkkaD/SBvoTwu3MvuKTbee55ZSKunzO9bIg/EnRu/Hn2pzz/id3Oi84pf2adKGbhvIgoAMq6w++JnetZZ9K1vDfqPKqPrFffqz+Puj/uWrbLc9ab5byYNrP0O0udaWNPuz9qjGGb/J7nUW1cm3a/bjeu7rjrddtRn7OdcxY6l9fz2ko5J13DM/pGXZuV7mxb1x91rb7vc12n/pz1pl1zXxnaeX+1/z/7GJ7rOqM+Z/2J92LgI/GXo885f3t3cfyQfVPEnRKMRjVahmvxdy0ysiysd49X9+3b291zz72RwPbBXQ8lPBUN7tkXiwSkPij1yWU/YtzPQKVqVSSdvUAExPg834cqqpZrRorrAqj++h8Wue+L71Ex2/UDlu/lv/nvkg519FcuOWumXd/4ZEeuudf/17cpVfzXtyp95X1V+xKtorFaSsJdzuXi/L26TqlYqmtRPiRfebXvM3vNqz39vvX099dPfsZkkhu3+p77S/X1vlX1f7Qp+Mxf0oVkBw8SqNKP73HdWCWpAViUvFe+5H8VDQXs+bY1QX3rbPDwOaoWgvN+3X/9+WGde5iG+n4tky/tMMcrLfoB438c4jn7LjTMy+1hucJqfkI437xAEf/BKktfP9B6+FLpu6BYDdvLLjCWfcb4ZRL4iGS/x12/PV2lWp+8R5Mc2zApF59Lb8GLpJ8sCxlJTAE5KilxrdSfr4vueJjQ1+9rqPSI77pBS47X1zZiGaX879voMrgz/7W+Wvovjfv+Tvbja1R8GJGejsLsyUrxYVgvOrTVaMfOc8tWI9uCzuRChkfiL4ree8993Y2f/WK3N96tTg9CAc9kthtvDYGGwJmGQPhuv7/aHE86r7rmyu7Ci8+Pp8L9X9g9HawuOoHmhCXRtisU5/slUeph8otb9l8ErkHIe7jSIj8Vn78M/S6SnNZsHoEMxUst75UI8LxqnzbSFovtl+RHy2w3SecE13AymT0JXirMJFBPdnyy1SM/1H088s6XfpvHwGR6g/3RcZb8n+ml/MYhtuocKk9L+h+FToP1TMek8dcQaAg8NhHw1HNzPPW2pTSf5J8OThadQJ8O4toYDYGGQEOgIdAQaAg0BBoCDYGVhsD8Tt2VRlajpyHQEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUi0BLoFSqYRlZDoCHQEGgINAQaAg2BhsDKRKAl0CtTLo2qhkBDoCHQEGgINAQaAg2BFYpAS6BXqGAaWQ2BhkBDoCHQEGgINAQaAisTgZZAr0y5NKoaAg2BhkBDoCHQEGgINARWKAItgV6hgmlkNQQaAg2BhkBDoCHQEGgIrEwEWgK9MuXSqGoINAQaAg2BhkBDoCHQEFihCLQEeoUKppHVEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUi0BLoFSqYRlZDoCHQEGgINAQaAg2BhsDKRKAl0CtTLo2qhkBDoCHQEGgINAQaAg2BFYpAS6BXqGAaWQ2BhkBDoCHQEGgINAQaAisTgZZAr0y5NKoaAg2BhkBDoCHQEGgINARWKAItgV6hgmlkNQQaAg2BhkBDoCHQEGgIrEwEWgK9MuXSqGoINAQaAg2BhkBDoCHQEFihCLQEeoUKppHVEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUisH4hdJ04cWJq9TVr1kytsxoqFKwCC2jMgtsQk+XGsaavHntI60LomKXtyTrz2NRjt8/TETiJ35iq4+Q1rt24+mO6XxWXYbXScEn5rTS6KETSNqtyrEQeZqV9MfXG4bNQHMb1g6aF9rUUfCznmHit+695r68vho/FtqlpGNXHOLrGtRtXf1Tfq+XaUO4rne81QfD0rHjAxZEjR7qjR49269at6zZu3Fju6sT1tZEYrV27thyDZqvu6/Hjx7tjx451GzZsWFG8k9NDDz3UoQ9tmzdvfoSzSmLVO3ToUAmQZ511VpF33pt2PnDgQOGdfhiDTlA1/emX8zDuSsNmGl/t/pmPAB3dv39/0c+tW7eOtI3ThQKbSV/LhlZ6QWtt3zW97jn4BPZfJxDa7N27t1u/fn139tlnf8n9up/2+dFHgH8XP8iLD5cLLHU5fPhw9+CDD5a4sWXLlk4MqnVmqcdr/T36CNApfsB527ZtRb8efarGUzDTCjRmOD5B5YEHHihKLQGTAO3YsaPbtGlTSYww7vvOnTvLvceCwx8PzSLuRLA7Hkcx/MDiROCWzkUi7Tosh3OWDCacUB7awReGS+k0jH3PPfd0X/jCF7ojQc8FF17YXXPNNSWokTG5ZgLBeR08eLDI9/GPf3wnmRhX8MWpak9PbrnllqL8V1555Ukdwf+NN97Y3XnnnQWXxz3ucd1FF100rst2fYAA/GBMPvQpC/0QyOgLW8wExX3yzomQdmTsmjbqk6n6q85WE7zqnDp86623Fvu4MGyDjkroliNBqIYe+5Gc2SEZZnJJxkvpE8YOPuEGHYIXneQj0OfM9p3hdc455xR9RDd677vvvlKPTxAcs6h/1113dZ/+9KdLkvTEJz6x2759+xkxuU6bdU7bwzebY3tscBbd0jZtH9ZKbff60edyFXpItvz7vn37ujvuuKOMd/HFF3fnnXfeTDzMQptxcgxx6rbbbis6wwYvu+yy7vzzzz/tiTQ9h7/8Bm10PwsZZKyW4Nd+VD1yT9z0o6hDXo+FBDH5PB1nWPERn/nMZwpuT3rSk4q8+buVWqYm0JSAwd50003ddddd133oQx8qyRFFZ7AcHcX2/d577+1e+tKXdi960Yu6K6644hHKtFIBWEq6mNWhMLDPffaz3T/+4z+W5FAw4AQEB8mjYAErhUH5DGMO4txzzy0K4yxhfcYznlGuzeJgS4dT/jMOB/DhD3+4+73f+73iCL/+67+++7Ef+7Ey7t13313k+7//+7/d5z73uc53Ce6zn/3s7pJLLikOXx+jgrcg/5//+Z+lb3w6nvWsZ3Xf9V3f1V177bVFV/T3N3/zN92//uu/lqT6Na95TfeSl7yk6MmoPqews+pu79mzp/vnf/7n7v/+7/+6+++//6Qc2KGJ6zOf+czuOc95TvfEJzyh2xwrNgod+/znP9+9//3v766//voyeXKNHJ/+9Kd3X/3VX9095SlPKcnOqgN0wDA/97GPfaz7l3/5l+4DH/hA99SnPrX4s+c973nFzw2qn5av/AVbZLNk/q3f+q3dE0K+ktI6WJ8WYgaDSOjoIrs3IZdUSXrQlsmcxRRJj2TapNr1n/iJnyg+If0a/XznO99Z+rngggu6b/zGb+y+8iu/8jE/uWZnn/rUp7rdu3d3n42YQH78vUNcePGLX1xsVgI6rcB197//e/fh//mf7uabby7V4aytOEFHJRyJ6bT+Zr2f/l5sF//Zh3hG1nwNfZQ4LlWSQ6c+/vGPF3/1yU9+sui4sSWvc3Nz3Td/8zd3YtZSjTcLDmii3//wD//Q3XDDDYUmslUkwuL1l3/5lxdfwQ8rGWvJ/e1vf3uxYbasaEP+3/u931vypMS43FzF/9Gpd73rXd273/3ukkDLJdmIRYyVmh9MTaDJk4PD2N///d8X4+HAJVSUWOLESUiYKJfEWcIkqV5NhUGZmXMwJhmUAQaci0mGQAIjwfn2228v0Dz3uc8tibIAQ0FgKchYKbz00kvLpOXLvuzLuquvvrokr0sVMNNJme1JjtMZcL4CnBnzJz7xie5973tfcZKCWq56jJMp+s3EObt/D0dPZ/TliYXZu/sCh5UmyRw9QUcrsyMAT6sWHDEdM1NXYPkt3/ItxR7Z5JrBo37t0lb/+7//uwSDb/iGbyiOnDNfKr2anZPZa9IZukc3cyVz9tajawpYVjsUOlvz77qJnkmk5ISOpn2M7m15r+LbSiUaJU67IxlD09Oe9rTOY+1HoxjfKr1Eh49473vfW2ybH+OrJMvrIrk7EH6EP4Cl5FF9CwOvetWrSv1M9sjXfYsMdFuyRO5nQmF3kiqyMoHlGxXyw6MYMSmBzuTKU7t3/NM/df8UBx+qfMVXfEVZgLD4YpzlKJm40D++QiKPhy9+8YtFL7/qq75qSWSFT3FCvyZTkmd6dNVVVxX7/5+YONA5k4XUjcRmOfiu+8Q7P4EeMfod73jHSRpMsiX0/HLqc7aFXcof7WRH3i94wQtKPsCfrfSSK+5iSO0nT4Vu8tOvPmsMcpVfniQHod+ureQyVYICykc/+tHut37rt0ri923f9m3dD//wD5fVGQZF4d/2trcVw5JUY9zxaAadRwNwQcVs08qz1aJXv/rVZRWFwTAyRmOlT5DgDGH1NV/zNd03fdM3lRUl7d37j//4j7JCC9M/+7M/637hF36hzPIFJgp3KiUNWnLO6AUqqxYZiM2krWSoJ7kmW/dmSVw4cQovYTaJ4OTT6NIJm0iYXNEhY1ndHjqdU+Fvpbfl8JXEY6H0Cibf8R3fUXRnYwRMOkNOrpupf1U8+bk49Kp2dD7THXJkywKgYPDd3/3dJfiSge8rtfAlVrzoSyYai8UveeSUTWLJgy3gX590kb2aVEpWJTmwXa7kJOmZdJY8P/nJTy42SJb8i6QUFmg9nbTBi183ybca+Rd/8Rfdf/3XfxX9etnLXlZ8iqcgJYEOLCXD14cveGfU9eSEH+ET6CEZpD8zQdfOSju/aEuZhYfHeiEvEwZy4lfJUvKJRzKUKH7t135tWY3E6yi9hrkFFQkYrGFHZ3339OgHf/AHO1tilnsibBKAVrSIc2IH+Y2ieTFyw6fYcUMkzn/+53/eWTgSJzzFNPGiO/QJHbV/W8xYC23Dd5Kj7Sp01eIQWvmNyy+/vLMYIZanPusfLr7TZYtnJojyKKv2nspaSRczs275sIL+yyTXYoJCZ08VdzI2WYadiYgtcvVWLvmBXIkfcF9ukiv6KwiaR5AyMYHm5AAokcIUp231GZOUiZJw4II65v/kT/6kzMwEPWApea5HTaObdC/r13WyXd7Lc9Zxv/6c9+vz8H5+r+uMG6euk5+1V1/A/cu//MsSXGxhYfiULpMTZys0HJ0gxBkwRnUokn4yqdQfR0XRrDTOxaMr9RjkLPQO69T8+Ewxf+qnfqrIinFnAi2B4OSNxTGYJaJ12F/y7pz3GBeHgEf8GMe9vK+uoOixjGDCIQoso0q2Sbrze9bN6/l9eB7Wz/vT2mW95Tqf6vjaw5gTNgm7LpISRRJt8iXhuyzkVpccEyacuGIiRwckz+SgjMIs25YKI/4b1Ua1xbQbttE33ROs3/KWt5RkX8LAfoZ1jZm0uFd/di9LXoeXx7GChIkEfaW/DsmJRMFKl0QQRnVgzL7ynH3md+dR9OX9rJ918nveH9WejCTykid+WALrSZatDq6frkIeEj8+6c1vfnOhxaT5O7/zO7sXvvCFJcngT1Kn+JLnxGRkW+gs32ZR4MHwaYJoriLCwb3nP//5JRGHNf+jrTILPsN6iW3pYP6/WfvJvuo+hm3re/UYoz7TKbzQI3wqfD/+rbI6JFl4zlhR96MemX/kIx8pk1+xNfGln+JwYlW3q2lGr+/T6K7b1H1pJzbwPWwFrZ4qDOsPv+tj2pg5Dt2SZ3wikmWLLzmWBMqTWnYJC/GltseFjpn1k678PolWdWEOb37TopfVZJMYOIjTqc/JT/aHL/pusUM8tWLPT6fM6vGHbevv9efFtMn22RZP9ee8n2cLLZ5C27oi72PX9FObxC7r1v3Un/N+nuU0tnyJVfTYoo8EOvv0md9lKzAjc/Ifjqe/HCf7zvOounkvx6m/5+c8T2qfderzxASaUtiWkIHXrJMhSZo5BgRJiqwquifYua4NxVEmETTpXhK50DrT6g/vD7/nuLOeM6jYvmJvr717jMSqAJxS0MZhhOn8XJcMcAYwdd13yay9qVZxHfqlcJRNmYXeaXUYhGNUSYfPgU3rZ0gPA0M/nUg+6zHcvzpWQ6eV4bjD7wttP63+6bjPhtgHbASgUY/8ZqGDfAQxq5ImIh6h6/s973lP2YeXq5XZVzqNtE+6JiAJvHXAXijG+l9Mm1nbmbxb6bG/9jd/8zfLKh1e8D+q1LTUn+u6rpt42EIkAHLUL3/5y0uf7jnIxzFrYjpurHrc+vOw/vB7XTc/45tdzcVEWsJqj6AtdRYzJBTujcMl+1iKswSAT9od20hs25AESAZMOMQA/ktBr4ImSePTIyja0iHh+OAHP1hiA/lmQb9DwByWWfDRZlq9affrcYd1h9/rurN+5ufzaQFeTYasstmaYI+nxZTaHrNfOEk61CN/SWbiq3726VpNZ/1ZX8Pv2X99nlaHPMmY7xrl36e1r8cafta2PPWM31pJSI1Dv4xDxx3Dspjxhm2G34dj1N/VtbAkFovLJj9oFZ9tO8gf49dtJM6SUJMC9z1p0UeWhYx/Km1GtR01Nj2S3NqWy0eKLeJM6tyoNvW1+nOO6Uzf2b8nMJ4oiGEmzUq2YSPswDGtZJtp9er7wzbD73XdWT9PTKB1wmgEXSVXQMyIKTZDyiIp2LVrVzF29QAuATfrMJtIA9cuE3D3OAj3HMZKp2BM7Tlt/WFWO/fdU19bfUti87N76uUY+lRXX1lHff2hxWf9u5djMF73fHdMKsY3U7O31MqCBMYKYc4wtTd+luzPtfp63ndNALeijzZPACgx+pXEBL0+6w+9OSt3HWbu6QseHDZ+lBor9VwnRzhlqWlLevOes/v6TzydXVMkavA0jmvZ3ndt4OXQBkZoV9R1zaG9QoZKttEHerWhB8lTqRT/6UNd7Z19d6QOw8KBprxW8539LMfZquHv//7vlwmEVXgJBzkvtnBAVmRtb7C30uPgV77yld2Dgf85oTv4zELOuaJgYmeLAv1KzOHlIB8YwwT2cNbPECMySpx9HocxnMlJe3X0XbcznpI2T4fVdV2iiydPdbQRqARYdNKb1I3UGWftHMaiG+qkvzC2YOYx6p/+6Z+WHwn6Aas+rSwZG7/aGs+RtLleY6COcdCS/OvfdXgZ04EGGLie9GUbtLmfeOhPW3Q4tE/byTM79mOlPfFj0r/6q78qybRJgB8k1fQVwpfwP/SjQcIncbd6L9mlS560SQgSO/WSXiRouyXw88NWdfkHvLvuUFKGsHAtZacfeLkOn+wbNvpIvdI+cVXHPRj67J72iTM5Zf8pJ/24nnQ4+57yyLauZ9vUCWNMK0l31vPkjU0aQ0JhewC5ki/+1c8znZWgmUyyWz7DJCRLYpjfkw805+eabrjgq6Ybtuon3/p0wAW/2jhnGY7petqDflJWtS3oqx4z+0Kj+nRLrLtvPtblE1j2aTHH+OSlHyXprWl23X30OnJM9BpD3cQFLfrMaz7TG8coOvWtnzIhjAUuMlMkeyY3vsuBjFsXfovP8eTGk3u2krEdTehJ3fVdwSf9Sn6THuOjl+7UfOMT1g6f88jvyX/akrOx9J9Y+WwcOYyFHnrpB/8m6SbJcpDEVF0l6XfOz/pIHI3vu3t+E+aH2Z5CwcIkhMwl6+rpM/lLGeEjcSgDxn+p0yl/bRyKftCoL22V7BNeiVmO53tin/JfiF3r/2Gr8G1QEGLmlzMCy/ge3wlA9icxaNcQa0WTE+BUBTjXPN6gXGbNDIKD0Jf9wIKWFVv3MKLkys+uSMQpY85YOBC06N/qrD4wbmZnNkMgDI2QjW2mZ4x07MaWaPjRFUfku6RRP4zWDN+qOcFbefI4UiKsTirvAJqTQtNOAmNFxqqegJb8D9v4nv0510fWpSCSLbS6z9nqk4AVicXuUO49wbtgFJXK3lf8qo8Wq5LoYmgegXjkJGFzX3u4MRKzzKtjRdgWHPJzX3F2pGKWi/P/5XV7SGFvJg5DRoJ2iZo3tpBFFm0YClmbfOFNe7/gNgulK9qZxZOP+65ZzceDMbRl3PixCkf3yJcxKMZWF09kQd4Fn7hHHvgjH+3Jld5KAvKxaulkGf8jPzSgC27shL7DGD4LLXTXyoBgam8kHEzknhZYwQbPClyMyYbIBKZ0W1BKmdCXvE+ObNOqGDvgQNkFeSjuk4W9rR8LXeMEFTzAlK5K7rWBs8ACY3SwU7yjGU3kya61kVzRBXX3RIJor68VEPJU/HDHuBwcffaUx5hshf3SOT5AwkHuZGsiy/nDyjUrtxy48X1nK7/7u79bAhpM/C4AJvRNf8aSnMIZJlk4b74JbnSWreEFRvQLz8b1uJdcjIVOus3u6L4+4WQViz2infMXZN2De8owx00dghecBDn+mS7BcbG6lP1POuOZjeIB/WTrSQY+cyI4To9dV4c+wZOPxRt64QabTBLpCZ8EAz4exsaUiMCSXsFXX+w55WVlnExgxBfaQ2tMuuQ3KfRIEKe/RS8l9LEaCG/f2Ub6Hv2gg++lR/SLnNAj+fGY2eSLHJRxfI/DE230VHwkd7TZAoheOpd90hv+ko7Bi42gy9OmYUED3rThP+kw22RzruHR1i0xFG45jn74b3GazquPT7LhI+gWf0Ifh3yqozjDzDYTOOGJrOgoG4AXXa/HzHZog2+++cZnduApkTjNZ87NzRU54V+f6ef5EjJTL5MuPkise37owPnRlj6ojz62pz6dI0d+AbbsD318Cr1jS6MK/h1snN7QQfKRGPIfFjTcg0diRW/pn+/oTz9CVuyJ3vJH4jK68E4+bIus8ANLfeLDeBbr6AvsXKcbcBnGN9/5B2PhER3w5XvlXOQrVyJfukE+dPFv//Zvu7e+9a3FJshTezixdbKEL1/HH9NhdoVPuoN+OsMGxRDf3ed7/aaLXhpbzGJz8rnaV/ID9JddywFhwN4Tz5xQwg1N5E5f3cerFX7Ywdk1NkDm+k27ZtNsG6/4g2vatb3scFNyzFG6kNcmJtBA0vFcKDDlSGOWQDNkhkJxAKYeoiilgR2YA7L9ckBhhIIfJjkLAAoCfjinCGBW0fStYIzSMy59edsAwAHGePK1aYDjIAiREZvxoe3rvu7rCviuA4sQOR/3gIgegtKXYEoZ8UOxCVkAlvSPKvhjuJQDb45XvOIVj0hER7Wrr1EGtBkPfwIxvDgz/eEpk4B0Pmj063ZGZwJCQbb/8i8X41QH3Yzx3/7t3woWMGMccyFDY5Ah5YW5Fb7v+Z7vKT+C4KhmKWSifw4O/mTI4XBUaEE/R5yFLOGEVxgb1/gwT4eubsqIrPGlHceOpwxsHIDihzOuU3TORUGXPumT9vSRjumX86AzDFpwhgXHAV+O53QU9NDd1FmOAeaZmC6UBrzhQ0LC+SvwwZeglckXHDkajg6vkhc2yilypuyBrrEJDpyToY/65KDpDAcncYGhR5HasCV6gC+2wE7JmC3C2RnWzhy1/iVDaOT86QSHK3kiO3pJd/OxnrFcN77+fWar6jhc154ekrn+jJO00AW6qB4bgjOe1dM3O/Idze7RYzjRXTrIj/BnfuwjaHDIsNQfZ2ySJnCiK4M6faVvnLsgpT4M1NEv2cNNu+///u8vvgn/eBdY+JJdsXhgDMlZyjB1A28CEr3RLyzJmp/D+3IW2EucyV+hG+RMn8YlHOqhWWGndFUwhHfKFM/wIkOY0jP88MN45VPojftkRRe//du/vSTI+iBHegsLPk9w51fQS/7kmBMm19AvqRazbo77aGczxiFXK+zoIAMJj0RJP/rnvxRvEeFX2SAfstCCBzRnIX99k6tFgSz0G/10SqwyJl84ruBP7OBf2TvZwJBeWvhi7/qS/NMf+mkMY3vVmiIBZCNsVH9kTBfJbVwhB/pgTBNUtoRHMmRrxhlVyM499mwsB1txXTt90gdYqaOknHbHNiL8GFsd9/FJdq7rKycLeGZfYo/kUx9sm9zhyS75RPjzFZP0GQ3G4xP4Kv3ybcZk4/Bjt3igr/wpX2TSJO9hp/zOnaH37wla5CrqwJzf5Q/cz+TQYhH84SHZQysdJVe+F0bim7HIai5iAtk66KdDX2zgg+F3HgjeYWMsvEtS0Q1H7ek9GaBHQYvv2rjmuzpsgk3yZXIkfl7+sidsyzX929rFflKe5Kg9meNHn67pn13CMfMDfMEXH3RPH/qEszpshh+RB6BLe3oPC3RIoskz9YVP50eMSw5iMR7YS9q133KwP5jBdpYyMYHWAWA5aYntG9/4xiJgweR1r3tdIVjS6xfYDIYzoXzaKK5hgLIzKrMpjHFeALfyCURKASBM6S8TI8oIPI4boOig+IAEiESeQhrfY3FjvelNbyrXGfIf/uEflvoMCFiSaAqqLyCjE41W0ykPY0DPr//6rxeHb+z6sVphqvqP0lJOiQTeOSzBNPmvqp78iE9FHbQwCu0zESdMjsi4+mJAjJWiKLDBLwwkD3imFAoszIq107cjgD1pFIkDPgULZRKtpcL8f0k3OZInhwvTH/mRHymKjn+OwMz1V37lV0orfWsHJzxSeryhPYv7SQND0IfC0Pwo1Q+lzJBhAF88W52kK1ZTOTOF8aHJqiUH9qM/+qNlNYFz+OM//uNyGJd8t4aBXBqOwxizluR/1vrDenRZQJYscPLwJyeOW3KRGAzbTfqOT0HKyok+YUOPvdKO81A4OzqaExYOiQNjUxzxG97whvJWHb8MZ9fk440JnJF3hXNuAreEmq5x+GRMlt/3fd9XEj60a2OV2Co4WUuWMlFnb/r9oz/6o6Kj7E2iQ5c4YTIzmSN7NOBHkkJvOETj4sm1dG7u6dPbIARF/smv4fmHTAhs/8Arn8SO3Fc4ebbB9n/6p3+6m4ugwx+wRTgJLPRJ4MJbykaQZqd4hQ299BTFqgU9RA/dNIEzoZCc+JFi4kD/OHpB6+/+7u9KUJXM8GvkqB0aYJ8rIbV9FOLjPxjxoZy//hzkPW6yn+0We8Y/fMinTvz4c3otkA0LujPY0kHYkYWiP3jRrfTLfDM++LdMsNk7mcGRvhpfgMv4IYlAAznSfwkRPWFnxiQLvo6d0VWLJvTW20PYioWdXOHjO9FI18gJrWzV2aqkvtEmgOuDjpGjdqkfQwzGfUeHNvSHbdJFyT+bob9Z4IEvvlVd58Qw69RnOHnszq7RxgfSez7w9a9/ffGP7BcfMMQvfVOf/f3sz/5siYVok2ywK7GFnMYVcnZfPXYm8aDP/Inkid8g61zoqPshZ7osueSX2JVVSvRKnshMDNanPvSPfvJDr2T3B37gB0odNJOLnAA/bINti4f8D39LnnvC9umGI7E04TJBEn/yWk3n8DNa2Cs9QxM/TIZ0Sl5jsgNb1+i1xB7e2qjL730sfIWnX3wrf4hP8qMH/KjDJJzu5mIGX2frlj5+/Md/vPhJ/ghm/Di9xav7fNfRiG93hg6xAxMxWJMLWmAMR4sh2rtHl8UPC4Fs9w/+4A+KbfmdiCNlCTu6YUsivH7yJ3+y5HJ0wer17/zO75S3h5EJnaaLtmzARN7IxrxoweKduK4d2ZER+2LnFuS0z2JMsse/RQh+NxNe/fLb4gte2SbZ06GUNVzIAb21XcMdfeTE76dds7V6/KRjeJ4pgWbUElvBi2CBxHkRAqGarQp6u2L1ZC6CEQEqHLq2FJ2gAUepJHKuIxzAGOUoXKdEhK9/zHIiwOTECFABiiANcMrKwAQpZwopmBCItoyCEhIUGgR4/RrXKpBEzFgELIBRRP1zbBSYYmXyWgav/tM3OgTbdB7qzgI8paEQ+DU+WgUTYwpSsKFk6MQPB6RNOh2BSzsFP4p76FBfYFAEPn8dEYaM26ycoXEwSrYtX0b8Z8wsPqOPkZM9x8NJkoFx0QR3MzyKqMCCHjBMTpaSCmpK9q0OmeOVcevDNZMieidAKvjVLwOjR7DTNwNCVwZhukK/6AJnxzkLGhyX8zNC5s8IGunMrGUWmU7qC53oEQjRz444KQkU3BbTP97o754IChJROPgMX3qrX07DNTbKeXIYOWm1KqUOzNFGd2FNRpJP/cEUvfqDt5UMTo4vECglFmgXBCWQHDJHrB8rEGzWCjenJwnyaI88XNenCbU2bFMgNjZ/wYE5MvCybTpiXIVDZDP0AD3qui/Boldsi07QU/UUdOE37Qa/dIBOsGV8OOOTb8G/knrKP+UKCVrxzwboGjr1y560FWDImC2wOzyzAXZnUuCJnuTQJBBNZAYnMuEH+BVtyLguaKRLmTCjSd258LuuL0fBPz9CfiYu+GTLMIcpvzMsfBid42/Jhwy0SR8lOZZQwI5P4kPhAtfEW13yER9gImDzDfQx65CRsdBFNyQ1dEVA3R0TfdckkWRM5/h2NgBr9FktgzNfK0aQnSSUbupLkCdn/evXWGjAE92l/wst8EMP32ahBx1swNNZdkMv4Y1niQ+7hRF/4RhXYKcvvNE5McABK/aduPAJ+IEv3YE7nvQNr7RL2EqkR40JRz6fvUg+jQk7PMGFXdBRdSYVNNBxshGnU9/lEGmbrrErOkKfLJ7Bh+6IGblqrx7/Qk/5KT4Rz/wJ/PANT/08IdrlHzKhl7Bjnzn+NJrpPh1mv8biv4xHZ8RD9ML0k2HX9AeNcGW/dEcMFYdhlf4QreKDCbQ4h1Z5CB1DO4zphEkB3o2PDnSblJE9HMUEfmdr+AMysUBJhsZSTx06wQ4yccRDYkln0KINPNDNtxpLIfO7g3Y2RsZ8gPt8oFhCt/FIt/jp9BP6pdvijzbo4PtghRcykCPiEZ6pd3QtZQc39Y2DXjqTvgAu6bvFG3TDk11b0Pjrv/7rco2MyJ5c2DNa8AQrE8qF2PVMCbQBKEUCAVSDCVCYFTjT+QmaBAMoxoFBDpDwGaMAgSkrUIwrhcNY9CHwEbIxgSmgEgwj0JfCAaHHDFXgIDwGxbFKkjLochKM4+K4TwkpoyDDSWjH2DhxAuAsCFDgAyqHjx604GVUUZ+SoBMv+p3FALMvdGqnDYcnyeU48OEzmvZE8kNJa+OmQH7VDqO6pCI56xOvlG9NVDKO+pQYX2kMDHpaUUefgrW2mXhxkvAhD/f1L/FHK+ehaAs/ssMvR463uqjDYDkFxqcfcqMnEjP96V+fHBGdIGfGQm/wyBk5yASvdE+BgTHJWfKDDt8ZIHlNK4ydE4A5GhZb8IhO+BvfxFOf6GTIcISB7+rOUuAID7bEAdFbjsdk1BjkwnFwrBwVGyAfSSVb5CzoHbmyT/qWZS7sA8aJLVzZE7vnzPRHx9AKY/ZoTEUb+ObEx3gmp2RqDPpNdniFLTmQo358F+BcgzeMFGcO1UGP8Mbu+QXYZeKBNjbJHyh4I8PsR/uUo7PvaKKjaMajoJL6UzqZ/w9t/IPgxk5NHrVR9EW2ghd5SCoEJXgJZvij3/SPvyRziZ36+EaHQGps/gQ+6B7lT/DORtCsLpmj2/ijCtoc+DTOI0rID6/rA9NJuqetIAPH1E/6l772EX3GF+PRA/TRM08Gs8DOyiF9JDu+iE2nzLOeszHgyReop69aB8k3tw/BT3/oVE8sycRT/xIrMkQ/vYcZXaHnxp4LnU8dTp0WlOkZPmDAbiQkdNo1fC60aMMOJV9oRCu6JB30AQ3iKr7IhG2jzbXU41FjopmusU3JBX9Ch9Cqf31pj2++ghzIDx50x8ocH0k34QNzMqS76tS80kE6KqFlr7DgiywIsIv0DdqkvoyiOa+lbuYY6Ezb1BffId/gp9AJO7jgNfv3mbxNqt8didb7YkWYjlkcE0O1Rbf+tH1hTJqeELmKsZJOGM1S6GUucvFn7JaPs1JLJ/VJ5z4V9i+GGc/Y8HRdXcV3/pkN44O82Db8yYdu0lFYO8gx45v6ZM6viG/iIwzoj/G0ZStkNBf6A0/xW3/GwTPZkp2+xU9yQLtDUcdn17PQmStjDPmXeM0H6s948qbEkB3yw3jUj/Gds8/0RfhAh+tkTFYwdd2hHxjhhU3sioVausYfZB3t5XN7Il9in/SYHtITfkF9hezlp2nX8ESfibQJkHHIDy2zlEdmMiNaZEcUBlhmyRIns0C/xkYoYSPcH1vBEKHOhcAASaCM2gzbI3bB3WM2BkEQDJnwBAMJrlkXprXj8AAqOGNasq1wDLZ/WKFMg6AY6dyArBA6cKzAoisFC0QOs3b+PuPP6iXhCcQU3ezFTGlUkVSoRwHRj2/KPamgI4vZuoMBoA0OgquZksfaHBPcrIJ4ZCM4KEVpJgi4HiPll2Nm+2l0Zv1s70weHAUFo5Toxnf2qY5+Kbaz70Na8EmXxhVy0EY9fSedrnEoghkHUxsnQyRnhSHTBWdFf/STU9Ff6kTyVSqN+Y/joH8ctvHSqYypPvWyMdFJZ/FiNi2AWom0VcXMlw7NWmCiPr0QOMiFLnoUatLKhqx40iM2CDtjp0Oi5/BRn00lJmzTpMU5dS6dn7M2gjBnk4FaYuhQ1IGV/pw5VpMudky/OWp9KO6TiQSYTcKldtal0vx/+HUodIzDFCDRwuk6Cxa7Y+UxJ0tsFD1Zsn39vb5G75K2rJNnfUlG2AFe6D/d0iYL3+IeH0kH1YdT+ht18aeeIws9hx850BGOnZxgWNOnPvuhy84ClKCl7rgC4/Sz6tehAZow51thOso2jU9v8n7iaUyYpA+ox6eXfLbgKpjzk3QdDhIaj4n5ed/p7Khx9ec62fI3Vo7EB4mkYOo6n2lCYzyYo2VPxCLJhLawF1BhjY+0QXjTHXijgVzcS9nrB8/5XXvjqasemtmHz4sp+pIsszNFAiB+ockYkmq+1iQrfVfSP2489m1LHZmg3aEf/IsjdFGhXw68sW/Y6ttfGpbE80fiEj0Wq2HhPj1S8AwPtkb3JGS2KtliNRdx37hZtJulqFfXzc95hjW581lkTafE65QPmsiUzkkmD4Zu7ok4IJmmp3jIunC6JNpuDh4UY9Q2PAu9xtMPHyT5cijwNj69Qq/4wbexA+Owff6YHvOdzpLnHD8xpstskm2SJ3kpeBHf2LG6+qRLdERcZJvqOpMNOzAmOkz+Tey1Qb96xk070D7pKIPN/6e+Iwua5F5iDsxhq38+XhJKhxQ0GNtYSvYx7K/cnL9PRmjQxqEu3yU3hBN/Oxc6dl6csz/t6QTcyR8uaFAfj3Q1+RraNV2FH96Nl3adNE07j89k5lvWRAKLUM1QEYURQV+yJ2nlYC2dSzjNztR3cA7qOvaEc3MABNEU3ONLwV7AEWAJ3riU0XXt9J3AApnxAIrzpCTaEqxxKZM+UghY0V8e+klAEyD3KL22xqKgnP60wMSwCcnY6NLPLAVtxoMVJ6Yd5TC2e/D1CJgTpfSwoCRWCgpfswwyps6sNGZz9WHN8DkFWKMvea7rqQvbUWO4lke2GXeu+/EZz/oVFJ19R5NCjzgz+Eg8GI/Amg5CPcasnWDhQP+0oh0doJ+SsxzP2ElT3Ud9LT87K9oo6EcbvZLw0jOTSs7UjDmDVak8w3/6x7stASZ89gZK8Ngj27Mvj15aTWK7MDEuWdIlSYkfbUkG8Zf0Jv3auCeow1cgYHPa003t58I+YctZKmb3Zvx45pAk0Ip+dsXqgRUZ+CeO5Wb8Bxt27UCn+/odVfCEJv6BrcMQrgofwJmaPOjDsZCC98RBu2xPZpyygAYrzhcdeV9dPPB3DnjwbxIMQarmxed6HJ9Tt/VNX+t+9Z1FW7I1NlroUGKfdeozm/C41aNhiWfNm89kRT/IjQ8aVdi6e/QzxyJbYycOdTs0krEDFnQNT3gjHzrL1yUtea778Nl1fNIJOk7WMBWs2bHxrfR7EkEX6Sg9UIesJINWBfmI7K98iP/QiHb+15mNJx0pn7puYu4aPhyLKeSKJ5iY2No+wmdJdCVb+OLv+VqPmufm7StpGzWmPvFAlhIsur8n4ixZoVtcg0faSNIg4dgVNsl3SH74OrYn2ZYc2ouf2A3HzSd+fKSxHGTLLpe64IPsjYkfB3upC3yMzWfRO7bBT9F/193Ht3baT8Kz7nfcZ33Cle8mSzTyjcYnB3bvDGM2QP/ZDJoUbeErh0IT2mqa0AhPfZMdG1ToCszxR4/SX8hF6Irx8G8cdgAzk1U/vuUvlXocn+mOsdjPkI7SYP4/99gGfhSLS1b26RV7ls+Y3JjoqJvHfPOpp5oulX3Hp5gmjsAErZ6YZV1jwMH4cqos+N8XuYp7aFac83N+r+9P8rulg8F/j9TAwU0Bw8wC0Zwnwg1OOJJoTg1gFBSAlMCjCffMUBgeJgmFU6AoFEHCy8CtuABGHxTNWO5xAARgxUI7/aFB0R8D51w4Tj8YoEwCJkWmxJLzLAlyfs8z0If3AJk81vXy8/CsPiy0SSXW7yzF2NmG0NKoOXOBDE/+pCm+GYHANxfGwZgercJABSw8ohnWs/K7FDQba9R4ZAA3ATQDj4kY/RTwc4LFiZjZS+RSn6bRpe9zA/N0LNPqT7qPds4AdrBk8Ga/maDSiVH8TerTvQzEVowk0IpJl4DjbBXJapfx2M5DMTbZsWXjW61mO6MKWtNRG8eqg+DKfmHM7mDJSQsYEhkrjBJGRVu8KuzEOC+Jx7zwHFX4HHShb1JBl2BkFUziYQWIP5EIoskkQamd5aT+ZrlXywZ9eHPmB9KXGA9vgmvWwX/ddpaxJtGtrzzU4zty/FF9kzn5sA1PDskr6VkT7Z8bmOWkRXv36v5858sFWDqkGNfqLj8taMFgWOp+cuUn8UEz/zeqXd1P9iFGWI2ldxI9q7WeDmqPDk9w+Ec6RoesWmmLZjohvhhzWGCjnoKeSUW9rFvjM6nNqHvZlm+RQPNP9JeeWJEkC0mShIm/MtlI2rLtsF/Xc6XOarOnW3DAO7/Ab4urSvZBFuyfb/CjLPR8ICbc7Bs9kkE0sde053pciaKEDK4Sb0+Y9Ycnfel/KQsMHPo12cFfXZIv+k1f5Ajkyw4Tv6yfcszvCz0by4F/W4zEFiu8bIxfmAtd5J/Ijw7Sf7TkYTy6yldZwBilm+qkP1wbev60kJPkWD4AbzJijxZLjGWCaRFGYq6QnfZkT4fER/nUqLHSDpz51sSydFT957r78jaxhT+Bc04k8FTnX1XTkx8Xg33anrMFvFE+lV4YPwu5O2YZb5Y62W99/lKPEnd1BigB2JsQJM8clEBPERR1CI+C2NZBoe3rxJwkmSCyHoERvJUnxm22a6Vae0wzXsGZ8/DrdE4SQDdEcJRMPjES6FroEnb1/NgDYF5r5pETw0FHDYbP9fdC1Px/w+uUzazFWcAwyxoX6HXBSVBMjoSScmDonlTqMYdK6h48JALG9l2AYJBkgTdlVLu63/qzur7X1ybRN+6efmAtMcB3TpqS33qMeqz6+ri+T+V6YgEzv8pF42tf+9rylgQ/0GHYAiw52fZDX6cF7aRHPc5xLpzh0AFnnYWcGfOeWKUR3GwxsJrrNWlsS4ASMMl/IQW+bJKTFij1Q4fZIucuaKJf4kp26p8V47AVjlig5nwVPCaevqurL85S//yA5Jiua4OHvOdML9x3cNTww1P6DMHFJFkCz66G49FzstIOrbBAQxaf8zs/Y/XDL8mtrJok8AHkRSf5kLpkO9dqHus64z5nfTRLbvBJlpJSdsD+s07277sxYUYOeKppGDfWLNeNzRfwsRIWycIkPwVLSRJZ+I1KXdCpD7qYqzc1L1mXP+T/8aNoY4FDAkC/YIK/um39Ofupz9Puq6uOftm35GAuVrfeHpiTvYkTmug8+8YnnUILep3puASDDBwpA/3SE/qokKHEIEvWy+/D87T7w/r19+SJr+KP2Cha4A9T8RP9ZMXuyJa+TytihDdPmWDg1dsRxE9xCQ7pw5J2Z7asfz7o8eE/YGwLoRgIm5/7uZ/rfvVXf7X4UfRm0ad4Tq9MZsRuyZQtKeI6X1TXz3aLPfNXsCBnY1tgMkkeyix1KvMFOMKVLih5f7F0DNvp10SODPHPJsnKpMgKvgkMu1P4M1inP/RUiN8ke/QO/SEZSE7d43deEU9SNgYOr/3t3y5vlTIeuyUnPPqxKXnwNXCBP5tgOya67IDdDhfh0EzntEFrYprn1JfkHV3GfuMb31hyE+N6ykPn+OK6DNu6l/pf1xv3WXt4WSBDO7un5/R2VN/6gTMsyX5bHHQn6y61/Ecm0MkMIgQ1giYIRkaQSQxCXTe7xyBFUBBZE0qg6ghuDECQFAC0l3ybgekHKPrw2Fl7AtGvF6Krq6RyAtJMx4rYXDhwiRJagZWOQh/aZdvSwfx/QxpdlhTo06MCjiSdQd2u/sx48MP5WoFHG/rhU/Nftxl+ruv5rC1sYKEIlgyodgKJf7ZVJycs2uA3r6mTh3uTin6z76yXNDlT4LnAmhNg2BKiXbt2lao5xvDspmvKsO9ycfBftq8vZ7tR9+p6PnMAHJojk1L6x4kI9vR3lD4M+/HdeIw3Hd6oOgu5xvHTfVsfvLWG7nKyJpcwXUxJbPFNZz0S9KofOkQ/BVBOljOBg2IsB0e4JxJ6K030mI1mf/TY6q7VKHjRP/LXJ8d6VvT3Qz/0Q+VxnaRKO4GTHc6FjnDe5KZ+BhDJuJWTT4Q/sUqFpiwcOJtmg/rI4Ju2bExH0id42rZhFYatkK1kxMRTYpsyVt+R33M8Z32zk1q/6vvDz3jxeFIg186jS+PmQkD2iR58qANT9TOgJ/3Zd47t+/Cea/V935XDEfDIl4xgKIGepKPoJl91Pc2rizFhTR/UG1fQT86eVuwJnaHDtlGYmHmySMZ8b5akW/955L1xZ/Wy3bAO+YkHFlOspPE/u3fvLjFF0iCRRiM/mEkDfRW7JNpzoZPaG0MhG8mLJ5j8Nz9W60jWG9KR1/M8vD/qO55Sf903tu9wZ1d0yqvMTPrEHvh6Vanky/0s47Bxnz3QR4ks/Sfnq2MSSzfYHWzq9nhFA5ujr54c0eXtYcPo8SRZMsRfSQ4lafQ4+YYzvTcOvaBbsLRoQRf4W2Onz0keFnuGFT8mHxDn6Z+kkA3UJXMWPKMLDfQ66VbXZ0eNR93HQj7DFV18Dz/OX5Iv/bT9hq6mn4MFO01f74ld8YfhZ/nu9JPGN+Hhf03Q9Y8PRftrYywTlFwU0e+OWIC8NuSXMsJfyoGcxGp2QCck0IkHWiWkbAlO4lFi45y6WgaP/2AvR/L0EX3iLH1xwAJ96bO1oWf6yfFcc5/+JP71PfezuK4OvNDNt/OrMIMd2jJOqKdPMU3//B37d384fvZfn5OGPCdtdZ1Rnycm0ABBhFUq+5wJknMimDQMTDBAySNiCVqSom2WdH7aEzxjFDAdr371q4uSeasEoShWqCm/R3ZA028yZCwC1AcHQGCMSALLiejTWZGwcEgUCJ1ZKIF79TXgm9WapSlonZZAEyxeKSQFRYPANiwpFIJFs+KaMdGQ931HLxw4fk4IrjBAiwCQbSk7w9SWAcAEToLYnnDAFAwt7uuT4qGXXGCZdKDJ4Voqu3tJl88O/VBK8jOuMThrThv/+iYHGHJe+jS+75xA0m6cxN1nR13cM57rSZex87sx8nPW0x5/6LHVBZ0Cgv2E+BWE6C1sHNrrc9ai/qkWdHOqEj6y/Zmf+ZmyUptJ60JpGtLDHjlUP4K1+ky/6YgEmnMj2yywkKSSCVkJfOqyN7KFO52ykuW+QK5/tkfeHNhD4agkwQIoH6FdBgcYk402dJJ+CC70kIwEQWUukhpyoPecsfHYnevo1TaDCpum0/o1juRH4k/v+QpjcZ7sH87OClunf8ZGl3ra4xdG+Ez91bf6qXfOjixoESjpGJ+IF0kHetPf6dP49N4EDt+Z3NHt7I+8a73ymY6gQXFWd5Sewh4/+JX88bnsb1zBc/rtcXVGjZN18x4Z0yd+Dv6w8xj3fTGRQStdNk76Ee3xRb5oxVOth9m/Ou45OxKjvJ9n+iDRkMSTO/nTYT9go1Pa6p+/FHBhQlae+JCTMfCgHh7oMvol4Hh0PX1T0pNjowkfris+q5/YZL1RZ/XoBQyU/Iwf7cWQXZHA01n2Rg/Q5KCrij6MmfS5hpakkz7smff77tFv47Ebiaa+2a/xxJSMkWINfYULjPhM/kI9yTP81Odf+VV0GBPOMGE76GRb/IIkjU7yL1aotan1AW2jivH0l/z57MiifzJGGzsU/+UJEk204xdddBK/bN6TMPpCD9zL/uDrMOapFryJL/wWfmHlUNg/PSTD1BUy5y/VJw+TJvJHn2sKH0S3LRCI+3PhX/RpskNe2kvM+WX94d8BI4eCN/mDtu7ByqSIjBU5EZrom9VydmAs/MA3dZPc6UryBN+cUInveEM7eyI7ctGngg9t9eEeGfGT+lLHGQbOOVHUF7oc5OVMfvSJ7BV6iR8+yHU8sw3fHQofAX/jGTv1KvsvleI/Y9R2rZ4xZ9WNh7Pc7DHO2RhhjMEAApz3P/ss0ALZQGa7AolHT8CnRJQWWMPC2KxWAIDim2XXSSoDcY1SUTwrdJSgLsZMEAiHUqnPIAiPAaMVLRwDhSNojjaBEdyMTxkoLX7xwSlTDkGPgqKH8LJdTYfP7qkjgDNY7SmG+nUhJIJRJ50oBUWHcc0a0YseydXbYi/Zu+IRiXaUkNIL3ImFgOgz2vHI2MgJ9pxzPlKDExphAE+GRG6wgomCLgpMrmjSpk440gm7bwxjwlIbY3uEznmjET/2gdEHmHLaEkYB3th4cSQGaEWHcfGPLmM7U3z1fIaDw5jwopeuMz5n9eiU/b+2CMEKjgyXgePZ+PRPMiPA0k9jzlLSHmapO64OjDgpSaCkU9ChO/peiv7phP7IgU2RBXnlE5qaV1ivw1AKAABAAElEQVSwQ7rOdiSuZMWW9AFPKymconocNR01ubTP0RMidUwa0/nRM4cx9UHmPhuXzngcfV287WNP2IgVcrYCB46c7NgumavnSRV941TJy31OXkARkF13je7QBTTYEka33LMyanuJQAN3q1VshE2TO14ELfz5HYUzWvXFp9BLtKRupfNFqxUatO+OFRt6LuFIWbJ7Dpzuwd+Pw/DCP6CDvjr0k3ZArxXf0QFXNKrn89CX+I5GNLiPR7zA3r1JujTp3ji9ra+zU/oFd77KaiOZsNmXhb68JJ5+8P2SaGOhR12Y0HtyYo/u5X3840M99fkf+MM+S9JNPvCkk34fAie6ZeIIB0XduUga6Kw/mESP6LI/7mBSLQjrWwCmc56qkhO6yAzudJbM1UvZo9F9PLivHpmhl+2NK3jSFgbaK8aFB5nhgfzsoaWL/CV9slBhQgJzJcdP+uDms3gDF99Tl/hI8Vh/5MRu+WU80z12LyawJX3QTX4TLe7jD56ZsLAp8Qa26bPVha0x2bqJu8f4JuP8iD8S4s1RsBUv0DiqpM7COfWAf/I5YwGcjE2vxGar9ewbX+zQfT4PL3ws+ycXe4Id/D8c3CcrMoSbMZaqwMBTRTFR/uHHq3xX0o5Pxfj001N3Cx14eMtb3lJkQ4/VNwGgLzC2xe9xkQjeGvmKBNibUug230sWeNMGZnA2JrnCW3KpbsZrfXqXOv8tuYT5nph0OfxmDf3q0jkxkmzFBXqDzr0P7u3uuPOOkzyxWbyKIWilR2IJGRhfW77QOHwuP4hOuq8/ekiHfOZX6R7ZuAan9ANkTwfFdXiQL/2lA7bt6Zs88eW64ro8lR/nV8mejeub3aZd+8xeRtm1ttPKuv8XZVwlCgZ0DApAlAChgpfZOyMFmINT4Ny8nsgqBQEAAfN18V0Q3RNC8R5BMwXK5zqHBTRCIXh7oykEYWQ/aMC0FSCCyoSPsAQWYwKKUgDJfYITINEOdLRSEvxxrmbOkk7gE7BxKZOxR/GAH3RwNA5jExKDF1AFGdcVgqFEAo2xPRZDRzofyiTAc5ycXK5Qaivg+2MvlEGf+FKMjTf056Msf3HolvlEBIYwclbg66AQeJVskJn2FF+/+NSGrNGIVkmLawyJkTIuSShZoF8QRz8dYQz4/EysWDAkPHJ4lNvYjI28jK2eoj80GZtM8G5vFRrognvkoVgJQTMnwhhgQIYcuzqwhzHaYY8m9GtHn4xJZ/RNTwSIdG6pW2WgZfrPhM1THPogAWDcdFJZivH1gW+4cQhkLzD75bXJk3s5js+cle8leQ2sUo7shizJi/6xZYkuGyRT+kaHOFWYs5+CcVyDs3v5NCblZyyOXv090TfZCGiCjX6c2ahgBxu+g3xNgNiWftHDxuiWuqlTgo0+4Kou3lNnOFo8pi7BgU7ig24Yly7dG232xhl9aNeOntB9uslG8EDXtMcLGmGmLzSRLx2TtMAEdgI9f2B81+muM9lkv2il+5w/3ccL24adoMHe6Kn6ClvkiwXSuQjEMDNxRpeSMi5flvg/fbM5NONf8gqXIs/A4ubAQFyAIV8KR37VQa+04VdtM5Ig6o8+Sd7YNvskc/oJczjzEcm7+nwV+6Vz/LPAS0fRoSSN2qyLfvg4+oxGONN3siV3NPCt9IIcLb6k/6FvMIU93adn7BetdJdu8CGpF+gdFjqMb/3ye9rSE7TRVz5UezJ2TV1tJNN4Qpf4BU/4OCQreFGMSVfQgkaFDrJBOgdLOkqvyS3A6W6MMWCivnEl9bAkB7ZzR9Rno3QMbpI6GEnGJMZW88kTDWjVDznBnV7LCeALI/yhwXjqpF0WQuM/7dEOE33qmx2Qr37pOjmgPWOFz3CHF3tHh/rkSufEAHxItCSxJgFkJ7aSAV+ivvbwS53SL71bbEGvPug/uti+xQs+2BiOLOrRLXSQufq1P0SvJJhty4PwC0f6U8c38iE78sYXPYE9/vnIxMzY9ITPM1baAVrRIJm2cCFBJSe80Buy5HPJwPjkK55bINEHTBX6hX51yZTfIg/t6CE9oz9sN/0rmtig8dmYdmjfHRMi4+Zkk4y0w49+kicYpexhqA0dwqffOpmgmIDqRy5jYgcrdkcP067xMc6u4T7KrlOOzhMTaMZrwExYBBBAMiREW4HBMGAFCrMYhHNMAsCwuEZAwPbZj74YKIEB1DWKzZnZW+MRTDrG7EtdTAGecCg9wWlLESgcxy6oqQMEj5oFXGByQnigwHhwZBINWGNyGJIGfdaKnzQ4u+5AL0PnJDgv7fCfBgk7eBEuIRMwnigC+hg9DP0JSnS4T0klEi+JXz+jBf0EXtOSCkB5D4SMnCnt1RFU/Vo3VwEZInooMKzQ6ODcKLrDmIIbfiXF7jNOsnKko4Grmb4+KTXdyABFORWKPhc06M9qQa7OwVwCLWmBDR4VfWvD6Dlx4yvwgSsHZCyJhTHohsQz+ecgyRYP6GZU+FBPn5wzXBknJ+Odx4w1V63QUuNaBl+G/+i85Am9giN5JK5LORze8K9vCcaLImHZGVgqyaf7bBmG9JdewJq9kxNHRef8PoE9wV8d8k48bwucj4YO4cvqCN2jMzCmz/QRDZIAukiexmK/ivH0Z0x1BAu6Ti/UU4xJrjkhS2fMNkzW6aZr5IxvDhvt+eOrTIDxSY/4lAxo+OQPnK1Ueq+o/vCXuo9+vNMR8uKQXaPbbED/HLlApC86yiELRGggZ/QIWmyffvMHfBJZ8Df6gaHAYmyy0UaBmzFhBzdY8HWSDK+4NNHnr9ildinf0ngZ/4MnOdFlvMAejgK5BBQebJW9mxSzRX4DHvnaLhiSF32BDfskb30n5rDBG96NgT+6Id7Ang3TT32Ti/uJge/aOxvHmc/L5FFyI17RCbGAjCQo6PGdX0z7QCt9luDRxUyayY8dGV+bYUEzXWIPJhN8k/p0AC36nwtfSd7oRidfZkLEd/Jz6okR4hba2Iz6aEqdR49+tBVT6In+2AWdFpNM6M6PNmWyGLyQnacF6mmDf/p3W+gzefGZcJeEWuTaFHbgD5NcH7KCQSYh5JFxBD/GhBXsJWHodZ8e431YMoGW+JpAkQ/+2Bze8UjX+DL6gVd944vvEE/gKm7wQfSQ/Vk4cMafe3SRftIDsnIYm/7qX39saDEFjejVB39gDAk8GbqGhrpk/MePdnyhPmDlTJ/YifiPV8U9eQRe9E9mxffGeBnfxD9PYdXNJ1/pY9gUu0k/gnfjeyrjKQx/n34JDurqhy6lftBLCz9k6b5DXfpAFnOhg+wR39ryVXCme3IQfNMNhd9mG/rSp3HInx9EG7ph46APcju+m47rU//4Jvs9kcPxu+jRl8kLDOkmvaZbbIcs0ODsnr70w67pvHt0VP/O4pLPk8qaENgj9xtUtTGpY0RSTAaNIYS67hrhp0ETgM+ENaoYilGYCREKw9YnQSpAJAzOlNEBncCHRR+ME2gCF4UyrkADHI6IcBTXGYi+zZh+6Zd+qdAt8Lzyla8sCspojQdA50k8DGnBP6XQ96/92q8V5+dRFoXUH1rhpM7Bg4fie78lIfthXA7YOMOCUsKQ8PSBv6ERUliOmIIwWv2jnWPVznd1tOXY4AJL2LhHSdFOkYwFO3Vdd1897RV1UqnQQy/IiQwc2uiD/NHvu7GMq52xjYVeCgsT/KjDUNCd941d36cf2utTe3SpaxxjplNmfK97/eu7/VGH00cnmZOttg4055MUT0p27dpVjGSIbcpmKc/sBY3okozhG65LXWCXDg9OHA/8hoW+pZO7L3C5Zz6ZRBdM2QB5kh+sYSQBtGVHgkRmJbCGzli9PRz45tgCGUdPdr/4i79YArV78IcDx8puFePkWM50wljoIzP12Tm9YBf0O50oXeCb2IDPaHcP3XTUPQGdXgvAghH/hW99ogNd+M0klW+rdT91FG1kp7ALeiWAsW1tjGccuMDb2QE7dckE/z4rrsPWuOSEJjzS2bQN+BlXv3TFWJI8k21J9M///M+XQItv/Z3OQj5oRXPy5TNMnfGAt8QD7viFIXzgmu3xxbbhql9yVkf7Oj4kf7CU7MEEPuSnTV1gmjbPR9EDcjUu/dDGkdiRC51MGaAjacaD7+7rE53449/QmHpbj5+f8QUTY9OR2nfBQlt+zHW6rn/fYUXurqfupF66puA/dU5fdACv4oG+8KZ/GKLVNbapnWT6orAV46ERbQ724ICTPmGFR32nbOk7PGBgfPXQDBd13HfP4Tr8kobEJc9pS3QI9ujRNxrhnxgbQ3+KNnQGLs7aKTDTJulGm77Ylrr4pHPw07++0YU+/J6qDenbxNE4kkj9DvWyEBr/wZg8HDCjW/ijk2SWuKNLf3zvG97whpI02uaqjvHoLbk5w0KSrb7FSTkO/w8v4/BXxoEHuoxl4cBrWumKsbKok5MqMjk39ODC0Blt1NMfPVNHX2kH+vEj5z2Rf2nnuoUA7fCHV+3QQU78OV7JiX6jHT++k0fKCL/GwTM+je+svuv8BdmTp7F8VuDC9tXVVr/oT9/rO1zUoxdozDGT18Rk1HliAq1zgjawomMDpAIDCJOAcG/Wop0+GNdQaTHBAF1333jjCrqADizGknWzj2KElGJecLtjJUACDSxK+JrXvKbMxI1H8ASx0AIj45oUeP2Ps1UTfz3QDAYNy13SOZMBHJSUTW0Uy0EHQyNL2BkfHgyATIayXY7x9WkFy1/F5DzMqGHPkBjykaCFntAJTtRjPAngc2IV88Wx6mkSl3qzXPTpFw2wgss0vT5VOlIGeKYPs8iBDTjQNrRLtAvMHkV7raVVBqsjVjnol3Z0wMG2OFUrpFZ9fuM3fqNMJtNO8KZeJlmZTE3iWX00KKnfWR+PfFTqXH0//QD+h/7JvdSLU9XVDGDpyJO2pTwbg2+Bv8mJ1UNBkv7W2C7lmAvtK+VKzxU+VaBajF+dNHbqA7vlX8l3kg3Dh47SE3XRNItNTKJhJd+jK2nLtT3Qd3GBPNjtEAO4sl91+AA2MwnXlYIBfUtfx5YfrULP4Oe8EOzIRSII61H+0OrpW9/61hLn2LttnRJP+pz5GdnBYXfkOOKgp3T2n9sZUMuZXtAPY7GDafmJ+rBF11AXjCn30EcdM6zIHop2CnkMx8AvnLQ5Fd8A5/Q19Hy5c53C0OC/iRkjwBBVE4ZoAjGzqIvryhDkuk5+TiUfVVffhKWMup99OBOM5D0LGrRxZB/uUYBjcTirkw7YvQRem4XwoK2SNFr5sn2FQnnkZuuCvq161fj1rWb7P/ueVBvNjDUThOQhMc7v2Vd+H/aZ911fSJ0aZ231k047+8m+87t6dTmV+4zRE4s3velN3Vw8QkIPo8R/GjW5q0cOHgMxXrPphTi5mt7FfEaTFQkl+V1MP7O00X/Kf9pYKRNYObLkde1hZ3uCVU/7xTz+vvCiCwue2nDE6qdj1MajOatKqQv6zT7ZuAlOlrw+jlb1kx9163o+uzfqvnupn6Pa1XaZNCRNw3M9Zt7LNvrJvvLasH5ez7Z5znrj7rsu4Fm1ERitcFlV8tjVyo6SfWSfp/uctKdch3qe98fRWt+vaR/HF79vrCzj6rmffdc+Mq8P22Xd7DfPWW/U/byXdUedR7XLesP26g6vqTupD/ezjXrj9BFuaQ/aZMm+Yer+qDrDuvk9z/X4eS3PeS+/jzonDaPujWufbWp689qwTV4f9j+sN7y/kO/6qn3oLG3RRS7j/KH7JsxWny3MWbwgX/6Ob9U24xsdl294wplP6ZKG5H+Unx+HgTY1P77XdemLSXKWHGOIQ93OZzSLGcrwXvZVn+sx83qOlf24nteG9fN6ts1z1ht1P+9l3XHniQm0RrN2NG6AUden9TntfvY5rt7wOkEfiyTAzNo9ZzOXBK52xtn3Qs8EacuJfXU+v/nNby6Pia10U+YM8Avtd1r9Ia9LUX+WPmepM6RlWpvF3DcZMkuWREs0GDSjl2TYW21/68GY1Hjkaw+cPVbkYf+kZJoOTBt3yMdiv5+ucdA361iz1IORFRIJMWz9KAPutilx6hImybNHZeRg36uJrSTP47mF0FMqD/6bRONy3BsMP/brpLGHjabVHXefr7LP095iuNsr7odz9LcOHsPxTuf3Ie3D79NoWWh9/c3aZtZ6s/S5kL5qnhfSblzdcdfrcabxMK6PcdeHfU/rf5b7o/pcbLulpHscXQu9vhCapvHN7+aihAUM8U2SLMax/9yuaUHIBFtsE+NMKOQitq0lPXleCD/T2ky6P+7euOvTsBjSPamfhdZdSF/Dvqcm0MMGj7XvHnHY42L1xiNlj44lXPZI+25lUKIlGJ3K4wRJuKTBY20zrJxVUnozxFaWBwE4cxReWk+eHneRr9U5ydsWTzPCEdEDdT369hhMm3p1dHmoOzN6TYw9VfFDlT3xow3bYayG+n0Bh07/cyWEPfnhiO009ROiMwON08sFTCXR9uN5g4XkWXCE+ak4/tPLRRutIdAQWAwCfK+FHn9t2Y/Q7YWWVGd8y0m0+MYHi232X3sCaLEjFwkXM3ZrMx2BMz6BFnz8YMiPx7wCyHcrafZpWikzoxPsJVOnkkAn1Da768/KnORZvy3QJTpLfyYzr/h71ateVWRplc77NetiNXpX/GDQvl3vKyWbfORe12ufRyMAKyseHLcff8CYMzdhycKRwzjfpuFX0JlYZ512XjgCAigcXxCvNtsR216sLtH55lMWjmVr0RB4LCHAxh0SYn8siO17Faa3RngCmEU884NBW0i9heLq+O1VxrfmJxKl5TlP/BHh8gx5enuVMFuB9hhUIp2b4m2p8OcvL4uVSqtoHkOn0p0qhfnohZJTYP0uxTaRU6XrTG1Pxn5lS862EXgrxL540iD5sHLH8UhCfDbBqfd1namYLDVfuY3DxDN/Ae1pjuvwtNIMY3v5PFqEedP5U5dCrkDzI3xWw/TUMW09NAQeSwhYiONr/ZA734TiO1/gt2i2KfK9583HN4uCrZweBM74BFoAskfIYQUtSz7aEJQE+5bkJjKP/bOEOn8dLLFrs/Cllym7grHCdtp2mKXHuPXYEGgINASGCIhvFgLFNYmzhaJWHh0EzvgEGqyS5TxqmDOxcs7P9f32+bGDQE6IUFx/Hsp1+P2xw+HKoLTGtv5c41p/XhlUNyoaAg2BhsBjG4H0t3lObmp/W3/O++28fAisigR6+eBrPTcEGgINgYZAQ6Ah0BBoCKw2BB5+meZq47zx2xBoCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYbASQROnDhx8vNyfhiO4/vw2rTxF1p/Wn/tfkNgoQisX2iDVr8h0BBoCDQEGgINgcc+AsePH+8eeuihbt++fYWZTZs2dVu2bOmOHDlSjnXr1nWubdiwYUmYlfTu27+/O37sWLd169ZO/2g4ePBgt379+jLWmjVrOse4kvUPHz7crV27ttC7cePGcdXb9YbAsiHQEuhlg7Z1XCPA6R09erQ7Fo6T0+PwJjnJum373BBoCDQEGgJLiwB//MADD3T33ntvt3fv3rICvG3btu7CCy8svvrQoUMloeWvlyqBNuZNN97Y7Y8k+pprrunOPvvs7sCBA92NcW3nzp3dJZdcMnUsMQTNDz74YKmrTUugl1Y3Wm+zIdAS6NlwarVOEQGrHJyeY/Pmzd2VV15ZnHP9GE5C7XudWNf3kZD3htdHkZd1R91r1xoCDYGGwGpFQBJq1fmjH/1od+utt3bnn39+SZqtNivnnHNOd9ZZZ5VV4VwllkhP8rvpv4c+PK87iwPvf//7uy984Qvdy1/+8hIHbr/99u66667rnv70p5ck2njGGlX0IQm/5557Ou3EErRK/FtpCJxuBFoCfboRX6XjcdhWGu67777iRCXSHDSHzWFyug6P8Xbs2FEcY64ygOy8884rj/w8trvzzjvLIz+rDueee265zqlm35yqgMCpcritNAQaAg2BhsDDCPCXVp2tQPO7F198cUlMPSnkV60QS1L5bSvR/PLVV1/d3X///d0dd9zRXXbZZcWPS2L5ZH6Y377pppuKn+d79csPa5crxLl6bMWZH0fHF7/4xe6uu+4q41hV1odx+G6r4dqigX93DS133313mQCIKZ/5zGfKarQV7O3bt58c62Fu26eGwPIg0BLo5cG19TpAgDPlPDnMm2++ubvlllvK4zqOl3OU9HKMHPi1115bHC8nu2fPntJubm6uOGh786xecO726j3pSU8qTlMgUN+Z837Ws55VHCnnO241Y0Bi+9oQaAg0BFYFAvyoJNnWDFsgJLn8sASWH5bcWpk+FCvGtlzw3y996UvLqu/111/fPfvZzy6+9kMf+lDp5ylPeUp3xRVXdO9+97tL8vvkJz+5LHLwz5deeunJpFYCbExj8NWSceNYRZb8WhX/yEc+0n3qU58qctBejJAof/aznz2Z7Nv6gQf1xQJ9qSsmZLK+KgTZmHxUEWgJ9KMK/+obnCO2uvDxj3+8u/zyy0ty+973vrd77nOfW75znBdddFFZcYYOJ2l1wkqH1WpO1uoHB8xxpgO1CuGHKFZVOFsJuR+pCA4tgV59etY4bgg0BMYjwA9brMgVXTUlzRYhrCRbVeZjd4QfvTHquv75z3++JKgSZSvA6it8ssUR3/njxz/+8d2uXbu6G264ofRvjCw+88v65tclvg59uq7w155O8uef/OQnu6uuuqqsREu8HZJtTy1vu+227tOf/nT31Kc+tdy/4IILit/Psdq5IbDcCLQEerkRbv2fRIDTViTFHDDH67Gbz5ynbRpWQeyT4zw5WI7SdY7SiglH+8xnPrM4bImyImlW12NIj/zykSJn20pDoCHQEGgIPBKB/8/em33JkWNpfnCPfeVOJpO5Z1VmVdbS1d2lmm71zDlzpkcjvUov+k919FKSTs+0elVPrVmZWZmVK/clGHuER7i7vt93AXNzDw8yyOASJA0RbgYDLi4ursGAz65dgwFkGVsZixlzAcCMzx0dA2gJWHKx6DKmkoYFGEs1RokyZr/33nuVwYPxufgkYxzBNYMnjvVAvfDlR33FfxnAzDGy8MPqDO1vf/tbF6ce5gHqZdwnD5mpj/GeOQNQTpua0GjgWWmgAdDPStNNPbYsYF1g8OQRHJYOBkUGS4A0xwzYDI4Mkrh5kMcAzmDMwEpZBkpoGCwLPwZiwDWPCxlU8b0jrbE+Nx2v0UCjgUYDwxpgDGWcLGMtlmPG01MyagBksU5zjBEC8MrTP1wrytNBxlWMHvBg3GW8BWT/27/9m2nJpw4CdZRAnDKM91iMMXqQhgGEOgHCBUAzfuPCxx5Azu+TTz5JuJAwDzA3YITB2MJTTfbIWeotdTb7RgNPSwMNgH5amm34DmmAQbIM2oBnBmIGUgZCQDTAmcGaPAZB4uRjXcaKwWDOske4b2CNxhKBvx7+zgzG78kywgDKo0bSKMu+CY0GGg00Gmg0MKyBqQxAAb8YKgClgFfGzeJaB5AGJDMmM0YDkDFm8MPYgVGDsqQDhKFjfAYYM66zL0C81M4cAC3jO37U8MFyzZjPOM44zx6rMmM/siAT4zovlRcZANWkwx9aLNjQM480ALpou9k/bQ00APppa7jhbw0wYGItAEjz6A1wC4hm0P3FL37hQZlB8IMPPnAcWl4KwRJdBlVoy2DKG9kAZiwdtopgAZEVAusFgz4DMnnU14RGA40GGg00GhhoYCJbkAHQjJVYcAGjjMvlvRGOi1GDdN5TYVzmB7hmHCcAYAGujM8//vGPvWecBkwT6oB2cmIyvaMXwnlSCDiGf3nqSBnGa14iL2M7tIzn0AHwmSOQhT1pyMGPUMZ8HzSbRgPPQAMtdb5n8+3OZ9CYpoqTqwEGY34Mugy4+N4xCAJyAckMfgy0dV82BlHKQMOeclidWcXjiy++8KD/N3/zNwbdDMLkwx96jhlgGwB9cvtEI9kJ0ADD/yt8j/mqz35M/4ytBOKMl+VXPybO2NrS2Ar4JlDOZVWmrR8BOgJGj8KX8bgeSIeOdOqiRF9pZawu+c6ryUQZaKmp0Nb5kjYuvU5zUuJZXePFUSNDiwezH1juIPmrkYK+1CmiB8b2WTW8AdDPStNNPZUGPBDmAZREjsvANxpXlvJiQAEg39PKG6zUgcUESwjLJWGBnpBlo9+PgRleo4N2VXkTaTTQaGBIA1xjr2SoJt1XsvVNo5+XBgB8D6q79EuIwINlT/SBBR/E9CXOKzpSE5/1DcZju3Bwl8jj8nW9fIA1kTvIFyOU3jmQFv2XUOurJenA3n24Tlj1aiU680CRJuEoGqhdCKPkqLUnC8j6xnralsV6UhYOHvltqv9d7/EG+cjF87KeB3fWeo8d1VT9WEpAD49Upl6+1FOYPJpSy01RnePD4uVSGh0I6+klPsyryKhUxB4SdeggFwsiZOSHzyaPoNljPXu5Q19j9r58T9fS2iofs9iRDqSjSk1EyrkvmqinFcJCM3o8rkxJe1r7unyjddTzShxrZivt7bdSZ0crA+nnfnWg74zyOsLxk+BxhGqeHEk5f4VjOa/luOyL7sox+3rZ0vDDytfLPShe51noCu/6cYm/AHuLr7GmrZco53ppdj5b3EeayiFGpL2Ovtq4I3fHPV2JGo6mZltpZrqnp7SiwNxqvdf1TMn68TidFBr2hDqfkhc5g+249HFpgxIPj9XrH0dd+Jd9oSnHw+W7wp7t9rReNr2YFpdOawyf8ZheSj3N/WNZoH2CBZpZAP2zTz/RILyqQVhn+qEncKQp5fyNJB96eFT6Q+gYMns9/RgpyzkYW1k8Kip9VN1+hEqFazN8u83yOVOpLSvog0FD4UPlJQ7rclz2JY39IY0h6xUM9D0eJXKG2q22dK7HgEO6fBmVMugD7sP7HfVjLQ/lGX/Q3qrvKb1V9cf4/G5f9F1GY1npD4Z6X4Rt6f95X9dwjdR6rx0XviRxjXGt0bcHvXqUWHnKjEtJefFf2Dx0H+cd7oTgPXRU5xfZQcq2Rkg/uqAXoz788Ad+8Ykbs5c5YOxY043ntaufpy8+/aVuSK/rhvRgf3qZdUDb9nUprG1rPeJr7XTzS4FpQHS5PEr/eNmV0LTv2WlALivtmXZ65/u76a13O8IMmrtG+hndj5X/7t2eSN9+OZk2V7Sc4EIrnX0jpdcv76XlRfmdj5R5dg04eTWhiu0dLTIwdSZ9/8P/lN55l8/BX3hmT6AfywJdAPTN61fTr/75v6bVuzdTT5M6kxjzVJmrDp7negp+U+oLZbKuzs240uKr5AAITMxBDCXpTMJwdkklxISsyVl0pUbSdmV1ubO6mTZ39mTNLCNllKewy4tPVxP/vn5dMZ5QwcmJ7ONVmFGXgZv2bS39o9598coP0vnXP0wzswuZoYgUKFIr5rQjbQ4UOpBgNlVqFTkS94NExy1/kONQyhNnz8k6AtNyToeEeVIHx2VeK1+L1qQbTgWK7u9qzeuvfpXW7nzu9nfzjN9WP5ye0rJ+KrInZLBw9t106pK+zLV0SWU2Rf9VunfjD2l3S5/DVQ34LKI+rj/7Impw97WoxH1dG53OfursdwWE1ccFMLn2AJoM+gTK4gtpVxkuLi5CzQbw5XrZ1tOptY1t8dh3FukF4FPWP13IAG34YPWdQHjqooLBphyQWl3bk8qf4rpUGrx6ssoYr3NMglLhNyVCy4mM5ukstVFtU/1cv1zr3//gh9ULSrOzMyIqxPB6uQLq6XQ0Bu6vptOL36XXz95Iy0uM3Vbcy9XYMa2hlZzdriKae9Nv1f8+/d1sWvmsm/ZWlUBgeoDoearksPoPS0fuB4VSruwfRPsi5h21XUelO4oOCq+yH1eGPILG5/7kdPrgva30w/f30qzANNbkkg0JsGR7p58+Xuun3whA3/yqlRbOtdKpc+305qW99M4bjJnDZSj3qoVyDTPWr6zupvUtfUGzzafnd6WKZ3fRPhaA5mRhBdxcX03Xv/kird2+lvp6DEio5in1Ck9kaosnTnewsEYVOibVYhF2J9KGrgE9KrCluOJZQGwA25jQzUm0+qMe01KedJXXxGgAoHhbk+nm9m7609Xb6e79jbBiqlApGzWH6jsACE38e3INmJpspxlN7lOaaDNblVEdGnQBFu3JqXT20vvpzY122k3n05mLS2lmbslgA0F8KvOGXeGBfOOCSXOG9XeAaJSLjuN/QFlnMkgdExsQ0qbS8Uqs7KuCA/IadZX70AjFC0/2hMKyHEfq+G2hzQgpK5MeMwiFZrSeAcX4WKEntx7nYOjYxalz0OcGHKF8SKiTSFj3VQ2IruRh2hBY3u10081b99KtL34t6mk/+WGun1I/XJhj5REG4N109q2l1Jv9nvpkSlvrW+nWN9/JyvZx2l6/rptC3ozHTSGuv5b6N9cT10pXqGJHvuabW7v6qMK+B2uesACU8TMH6CIzfR83mriRpFF6jKYdoFWc0sqaxoZbt9PWrty7lGtrixubr3lfm+iwrxdIp/V4MlwnAOkxXohPpkdO90/qFS+9Upqm1c75KcmgPXLv95BfdFQmamQBPM9MT2reykDfpZUrPfLBiH3dIPDkaGtXq7moLaur98MdTTxcNaxe0oABQc4LsmjtpAun99P5s489FbywGqKv8CyLJzM3rnfTxyu9dO2WXBP1faYeD1Tdl17Y5jWCnyANeMycn0yd21o/e2o3vfkaX2SUgOVGLcuKcXB9s5+++1zj045eupddcnq6n86dn0hvXO6nt64IhDf9sjqz6GJuppdu3dvReK/ZLhuUKoKnHDnWqMkE50lVqyf0+rBiAgtQSh6TGAHwGpMhk1cAD+YyOhUTvvxIPLUx9fKPxYg+gm8LIXgynsGHCTQsXfCs8zWxNtAQNBenNhpWAABMTvXT1LTWHp4TsMb8kIMlHhwmvl83zQSv+gEEk4AH6jY91CUgTDtt3L+mDv9PElDWNoHuC2/IEj2zYJBdKNlX5apI5GZxB/n1QiWe21EOy36ElXmMPhYqtOyH6YeP6nQH4oeQHpJ8aPHD2jqazjG8R9MPMM4JdfpRmQqPw8qS/kCaB2aO4zooMIjV2qPEetsKhzptpCmlTiuAuC+gB/idmprW2Kueqs7eVzrLQ03oOpwQOp7g2XRfq51sCxDKwXNt5Wq6f/trWR131F2nVRb6+AgN1xSXApca/aYrV6z9nq6wlj6bK1ALsJwQgPa1lq/jsBYHKAXacn225ajH9YZ7QEeguSvf0umZxTQxLb66RsLinccHXVtuv2SnLUUWrtsYA9hG22MQUdyBVCTWdSxhp7Eu0379TUgHAGg0y7gjbG2+U1jlVT+cMwvJqBIt3RRMaMUW7dVKyUEba3RB/fJupQ7OAVuGFp//Bw0cL6kmJtT2997QjdZ/0apAE730zz19IvoPskxvSzPF4ykUdbgGHpZ/eMkm51XQQB564oLL15suOrAeY2fJRhVch1yQ7Wn5Sp9tpfMa4t/6QU8uH700L1cOj12vgs6O2EbGrtAjejtioSdIdiwAzZln0vPjWU1SdAbSqnZwmHuHdzmO/KYVMUnVxFk1LDqVH+ZmAqzRVXFXELUwOVJtCT1pE4VaJiVG/RnMi9ArNQjkhn9mKYXM0bFJYSLVfZ4mZHgxQdduFOFRiiGQ8jUTy8p3L1398lcCC1KpJqLX3vqJ3DmWVJ4rIkLIr9JVQ4qugiPJ9baUct4XRZbELESNFS0I1vXEQp/3JSvqKUcjROMODyEdTq40M45DpI2Ru05c53dYvE5fjxf6si96ro7rxFX8wbkV2REj5nYIy3pyiccVkJmXxJG6qmQiPtBmSNUc5J9OLCTr967qJbEtP0nZliPd9tptWTM20rRAY0tgkY7GDSqPDCmB5XlXFtntnY4s0LI8C2RyI+ug/uz+IoCKJZl0ADU3iwQAK8ebermTOnV3agsvN6/7qoNrva/8gV80FukAtpRFAq7L+oUBFrZuJIcDdOajdNH2kMm30pGPS0eUUb7EBlhjaadYtNCR4EEKvCRbr418IaNVGJtM/OrsQk+vTnurlqrhcwIrVy5Opr/6m30N5b30/3Sn063f9vQ0QtfKAxTjnuebtopbE2k0cFADdBSNSRpyqlC61Wj/4nhS/fGNd1vpb//XfRkKUjp/LqVLl1NaBkBXHJrIQAM1bDhIfCax4wHocjY56+4JJDDt0T1yJlGOIHEs55l+kObUIBh0NB9HIl0nrM3iS1mzJzXXSVKth2b2SpM0wcK1u0aKRLGcVuTIbJVHXX5cDYUZKDFP4JSlOBu/va7Ivqx7q3evuhwAekK+TqfPaaF4Wbyx0lc1wIOyBPFt2RI2eOu/LmpFF9TDWwhHCELvhWyQOYiVvNykwWHERDiOdpTs8OMxQmXiql2HkxzO9nFyqgofVPhIRIcyGO5Xh5I5Y7im4aMxBOOZ1U4OUfqo3aAU76vP4XbkY/WxndUbck34Vutq7wgIdNR15Y4k8DvlviiMKwaA5D39uMfDb3pHluNtrMdKc9/HbQk06obSV3HjyC4W9BSuNzUFYLy3uy+fZ/lar2+kWVl9J0SL+9PeHjei0eeph+CnQbI8w4s4fOm7oU8x5L9S7nB6cMj6y9c2pL5hzmXKcWZY8UZnHohyL/eYlFkF32b7qmpgRqDlvXd4kqqbyL1e+o2eUl79bFIrTU2FOwc3mu6XoSG6PnefLd10tuRWdcyB81VV+6vdbsYeD0oDNTB24Xp2+bUJ4Yd2mhV0mFff5L2SPLwNiJtYaOA5juHHA9ASn4EkLDiy5mjitUVJZ5p+ESc8t86T6OAOilTnu3wGle5Momk7IgsR+ok4tFAx0ToUtqIJGA0jbvSUkef8kC3IozS0ud4am6ih0DEuyjNOFU4YQNBxVa/ahsC4m3ggjepcJ8uriUB5E+n+nasCE9tpZ+NeuvLOn6ULl98Pn2hZ3FBWWMCxeKm+th6Tz+AzrS/0qS4H1VWFWrRKq0dyG6qkIXoyI2GUrNAPkZMoQpc6kFFKHGV/WG2UzYwfRHKUKo5E83Qrcd8dI8fDax2hGDkcw3KQZNoogCZtRc25uBttbOK4Kfcj+S8AmnflC82LsH7awnUiQBsAW11PDHB56AoE8HLtjgAwS5thiW7JHQPXDdwacL/iqgNQ424xobxyvXOti7t9plfXNtLG1rbPMNcNYN2uWQLmfmGXfq36Jux+Ej7Vdu0Sk7imxcz/bCJOgmIRSpKP4sDngGtSaQDuqlgu5eNBolNzD3RdmXOULwfN/pXUAH0Zl6DvvzuRlk9108LFVvr7f5lP33w1n/Zu6xroqOeoT+vRpOcXlDS52Umt++rzfS0DKNDtUHWwOGy2jQYeRQMMVxoi06KWrVsQcI4xTBwY5Jpw4jRwbADNCS5nt36OB1NfDfSCGiEqhDocHm9UCvCrP6dr0jXQLGojUWVLcSeLoOKRM9hRbqgs5UpB9iYa1G96M9T4qNEUvNzjEbUKVY+CS0V5b3aFJ3KwVJj8oLfW76Yb3/xBj8wFpNeupTOnz3h9WYAHdwVYA3v9dtpPs2nu1Jvp1IUA2f4YSK11IW+pNAvHTkljUkcUA2ERjngtHCg8nFDpqVbkSNHD5KoKHyJPlf/sIo/dxkNFHNO2MUmHFq9luNhQWR3Qv/L5JAbw7ejlJ27eANK4Y+zJAo3P/kR7RqtMCBDLnzksvGKudMAzN4b4PNMVeUkWqzWW5z0BAJ7W2MIsAGzXKGSQhXhSx4Bi3CIA6jxhQZR9ld+RhRvgvKVVN+jfUwLa01MxrOztark9bi7NBp4Df+ewGBfLczQ2rM6K+5+0km4WOoxjjhwtx6aHWn8DEusltEYiP24OKB1Hps9lasWCoNm+choARM8KtFw6N5H+3c966ey57fTNNfXxu+pFAGj8hOjamhBkd043b06kq59Mp/t/0Fh+b1cgOm5gXznFNQ1+ohpgLPI4lW1qT5R5w+yJauBYANonmpOdRdIQo0mLYyYqUklRKATETcDUVeW6twACbOnFhlzRZ6rMhuKlvOOHbKiC4J1YlEk0aiUnKoj0fIhZOcsrDG8SHmVTX5+RNbfHvAekFgd2dZl5q3tDHyjo7m2m3fVraffcmbS0MBuPYQyg8Q1NaaMzmWbOaqFHAZ5TcveYnccSHaACESLkmwkfDBSBCIRBShwfaZsLD4zdpUFH43ponSpunoVNEbAcU5B4YZDj5fBIsj+EqOp2pc5CX697NK/QjNkfJB1NKYxHCo+SjWSPHkJecRoqm3stDaPz6R8rcUfgeKfT9kt/uEjsCwgDqmdn9Ply/kQPCJ7W58y7spz1BWTbmvh5ebYj4Cssm/ZED3juyNcTXIyVmZs4biC5k7VrhfZ2tXD9SI0MAPYCnuX3vL1jX2duNP2CoyzXe3q0va9ODuhHjnjJMYC55VMdHiPg6/+ypw7Fc4gYJSKEjihbKLRHJPOrpZWo8oz3RY8sBI9P3ueafO3XGZqs2byCGuASm1ZHfvdSO5091Uvfe2s37W3o+pArkgE0k4Py99Vnrt6ZTL87N5N+1ZlJK131nzXdLGKJ1n8TGg00Gnj5NXAsAK0hJUJt7gGU2pLFrOZ0TVdEifOjED/F2TEeMZHyqBm6KFPtlJCLKM/FteHRcAQdGO3GUZWsCDyhp17AARa3Kn9QOsslGZllM1voKIvBIQgoUOqMPOZc8DVyA3n9OJqC+kHJJL0jYHGvd1dvc2+l7un5dEogmqeAsN0XaLm/siEUvau6Z13mdOtNfaVoaeDOQbUK0EftOcYuh5rYJeno+xofHq8PQq5nkHD0WJ0NperHJV72Of9YbciSmWXhW/Y5z7uSlvfsQqd1ouF4KTJIHUnx4UjagPjIMV8boj7I6WAKVl6+/LmjZQL2urI0C0hjFeZHe+iHM9MCzeqc+DXPa01jwHWns6u+h2tHVy8L7htY84Lfro6xSBssY2XG9UKgGQwAoPYScBLQN7jq2/TfPYFx1nle1cc4dllPWOlISvfHXQQ5+HEzOMl1aL4aaojzB9h1CW1VsMRVhFKxK7EgKEfKRdg49DWuzpMPq3JVpGQMWDpruD74IW0TGg2EBuhy+KGemW+lZX1Tp68lxOjbDrkv0evef30/XVrupnv3Z9L29kzqfK2Xbze1lNYuk02mb3aNBhoNvLQaOBaARiseJ/Jg4bkOIMYgk3eFphqASFCI4wDbHDMZwo2JOhhAUxjXcHLmm3NM4wmRdP0oE3kMcUz8mR3sy6imNA7rmNHZpi+coR8OozmUQW7ABqx5xG2+yCCg0+tpRQO5daz0tZij4r3ufFqald+zXrLi0XZ3TwuAb34tS6IW8M9flzt/+Xv+GAsgxiFXGvKRErFKFh2OpESxisCHD98MKsi0OWEMnwOkY7gPig1iY8giSQyPwvPQ8o+UEeeIIo9c5yMXOCiYWQzxGTpwgYMpwQdN0p/xVWaN5paeXNBPhFMdsPTO6yt6p5b0MR+1blvrngfI1A2ewLBv8uT8zJUBiMZijUUaoBvWZ5avk370A2yXdwC4pujbKAzXkK3tbS1cvx3gOQP3uNZkCRc/wDuyApRVq/ZheaZ8kQdmtLPawp9j7yJectkPAvGDfYrUoMr5cTAolvMHJSPmbbUZ5A4VbA5eOQ3QDzVMC0jT9DGdSakL6tvvv9lPf/sfN9KCnvz8/r9Np41Pe76pbenaGtNNXzk9Ng1uNPAya+DYALooh4mRkHclWWNInkwj1xNmmaY8ebqYJnHvtVFmBZzNr0yxHAzGJL/MZ3SsNKVjRCoyVDWaJ8X0l+NlUCuHIWiRCB65DiflA3YDkioODz78wGL8gGhb27Q3iKeACLAM8oLWStoRTfBbVCWAGAg62xv6lO6nAtV641aD8MyMQNG5N9P07KJyRQNZrW4dOZBcwpjsaO+4jFzoAVmFbewPqX+Y6ODRQL5HY3BkuXKVg3oOyvBEUx6xokPJhzIGB4PYIVKPEOBDPKHZHbcn3Iw5xn2CPjQrC/SW4garYgcY7gGgxaOlZbq4N/PqGOq0+CXzA0ADsulwsfYz5ZFFZyT3ZT6eBHje0FJ1fKxl9JrgGGt0+D3zQjEVFlcQ9WYEcHDPtnzcGpus9PWcjxymLkVyyWrnysnUzxc/OcTz3keZB0kjocjKvUcA/NDXCFlz+AprwGPRgwYk5Z3W0mL/w4/21IdxjZpJf9Sq4mufa3xfkyV6XwQPKv8K67ZpeqOBl0EDxwLQnvg0YdlnkvWSmbw8ZgjCMnBow96AVsSax2NSdp7ySctzHu4QA+txzIPxqDfKZHbBv0brl5HMyjOnC5IWk7cmUNF6PWfKeIJVGoIzc4J6IWCHHPrhfuJBT+mRo8wqYtJq4/bCCpDAn+LhK1KRkKAkPSqXr+kqMuADrb85gRzaizV6fnomzbYEpO99mq7rJUTWkj5z4V0BmfiARYCCOs8cz3K52nFEZBwivLNGWPqcjaT5cBzxOLpD0w5hcIheD2VTyzjA8UBCjfgpR131A+t/YObwmXsAKV2V64VPduOawXrOeq7hfkRnto+z+hdfEsRSjDvGJJ/qU2dv6wvFuF5gce7imyxeYb0WeAZsi7EtxgLRXudZpewaokp5MRFXjbA8b/nlRIAyoZxCrjF1c8knAE2i5Izrl0i+5nJLaaKvQYNrSKHxfy4IxZhQksWfKnI1AyFKPkVRli/IuFl1HWaZr+uch26m9bXCaV2D5QbcZM2m0cDDNKD+ht//Ka2Y8NPv6QLTRy92lpbT57qx7fy93Dmm8InOnfVhvJr8RgONBl44DRwLQDOBMYtVFtc8nTK3Oo98DTBMXsxXnrN8FJNYpMXUZosy9AoidYgvhunYSLXGM0+d0NnK5jryxEhaFI89BwhTCURUf37MLEhdS3exQq+DWtRZbEbTAOp9AwGBdvEFRFQClKgUAhgBhKxthO15fnZaQGfPYGVOiz3O63Od/e276fbmtgBNPIJfPntFE/uc+FHrmFBLrqKj7akLk1kEyQHCA9VkjDSm4ieUVAk94DcmaZD5HGOW65GEG0C2sWI/Eq8aB/WFtoGxLMYCvt2uXC305UD64bSOZzR5z+q3q5cHp7IVGtDdFzDuCEDj96z3+9SnVAars6zPnHhuAjn257nVZ7jRw6rGDSGfD9+Uz/OW3Db4BHYdPNOLuP4N0oXVKzAufnwdMHqZBHAfzuMAfTInoaUh4Gq6WntLVPSHhdD0gCBio8eUpj2xQ19T0lFbn/L2snvSFTI1odHAo2iALsO7MueXWukn+lpcmtlMy7sT6b/fnU+713dSd0MGkcad41FU2tA2GnhhNHAsAJ1nR4FDACLAUD9PQnkmYseEpb0nSc+meRJDRTkPv8sCf6vikOUfhICAmOBMMYjnQ1jFRK4I1jTtCAb3RJxgKo7M23sfIV+OQEKcvYKj9bxIrvKcZRSeiVygRqSoWWUQzaoHWOi2duLlr9mZaQGfAD0d+UGv31vRk7//zy92AW6Wz7ymT5ADojPPLFepoTpUvls9pv5CW/aFVTlmX/GpJY6jq2U/0ei4+o9awTOR85BKxiePTz1qe+p0hZP1w4H6Gn2V64lrYpK3+rT+OHGWj8N9YwZXIN2cYX3m6Qd4mZU7+PkGT8cGzHok1JIJjVu/lsFzuFNwcfhJiYhZCo8XBllpA7/rcp78oEZ4wdiZnofPdAH26rdc0fFirUeF3DcRPGSnjdTscUFpzmBXD04vOYMxIkhyJgwtFZLBMYciaHVYErQXkW8eFJnUB4+Qwb9B6cKl2TcaeKgGuB75dPxrS/208J6Wc1ybTCsC0N/9o3yiv1FxjfV93DkeFiA5AtnD2DT5jQYaDTwbDRwLQDNwRMgTV3WsVGZWjvUjymoVcaht/Oc8ZTJo5J35cUygQC1OLbVD5TPRZxLN6DERloKUjXxSDoQ6bzJpjJnnGnxcahuUtvXN8kebvfqB61ZdRSG1YlUU9lmejj6VvG+rhB6PywpG3VgV29yIdDvp3s0/2a91clLWMblxLJ1+zQAFKWjv2EDd+vnlQ0UfHmpE4lk7GhQdmzhegPGpA1YPi9nY+TCiMflF5WOyjpQ0tolVyQfnVmQl8ojkpdi4/XC7oq9xlgC7JXCElRkXCzoGrh0TAsT4Kns1DAFcLyenvkZ/25fpmc9rz+DWoQoAwfDE/xkgzvXjT8+7n/Z0k6f1neXzzJMSXjgcnGPoeFkQKzXAmXoB8ZJOQDqLYxmopwDUiLtKt0NZOVSRklB1yHoO7dVVNqDRcQmkcnQgVwm+sVYm5S0DtC4abfbSkT4eLl94N/tGAw/TAP2JNwiWdG199J7WVteLhb/cXUxfbep6vCZ3jjLT0kHLIM6FQshp3vEE0xHnNJtGA40GTrAGymX9WCIyDvALH2P5YHqCIi2AKxOWJ1ONCAGf2SvGzM0crlpj0mbMYNTIIQ8wWGodRGjf5IyySGbAGp5QxSFnADHM1+WDiesKboVlVeNgIg8pyiNqAAGSDQijzoqBIp7SJSjguTdgZJLxm3Dn8KTuFmBFDPBBRXxKtrO9mVZvf5luYJ2enpaC97QyxyJmMwFswDcvrfDIXeCboMfsKLPNlw2n59Mkbh+PEmjmuBCqG8kZJS76RROEUijrbqT0oYciN2eKj1ZRL1Tyy76e91jxemWFadmPYVgnH5P9OEl0m6ixigyxKVX6GlAO/T5AqS8jbZzipelwzdjYYnUXuVzkpxwA3bjRy1ZhgVy+QsjayXbbEAinrwOe8WHGf3p7d1dW521ZnzsGyq41C+InTrrY/AIiVmf1S4Az7TC8pxluUMjl86lM8pE7WkATiR8SqlMwTMMR40KA/1xWiaYiPfc/aoamsOHYAdqSSEKWy8IFRbNtNPDYGmC+u3hKPtEf6AZ0fye15+fSH//hYuqta97DCk2f1Mda6JgtPs7CP47UExr7+ZLour5qqI8TtfS0qAmNBhoNnGwNHAtA07SMdd1KX/K1696f8o1Z09MXILpka8jwZMq+mgyV6clNaXEjHtRl8qvqItkMIIyJ2ZMlBDnPZTLgribMnF0JARv4ECrmMUGbEZNrljyIgp4qCGXvNgjEClJExrhtlivki5JseZTO6gkIYjcYyTHFY/WuPo18+5O0sjCTJvvbaXHpvB6zT3mJpN2dTfm/TsuHcyZq0kctDBwm5/Vlw8tp8dRrskrq1FaNGyfQEdLcsIfRFQWqOpMOjiOlaOlhfHJ+vfi4IiW/7MfRPDDtQQVLXtmPMDokeYTqyIf10xP9TEVVx6HVqCNThh8TNYTcO2ENBjhzffFFwV29RLi6EStl8CJf9FSsxZTRNaiLJSzNYc+OFW14sTD60Z7Kr2uN5219SZAl6bhZc1k4qSr3U/Etn/oOdxCYK8C/aoHSolLviGaqr5IoJAAAQABJREFUWiSKVdtCQLfhV45NoAT9Rw1kKpCv3xCZM7TJJCU3wLuS0SM6qJOUMs2+0cAxNEAfn5tqpTfOt9Ivfi43vTmtw74wl3bvqL/t6PrSjWbS+tLufNu6eJnoRN+TI/X2Db2o+5VWZroqum2Bad8pHkOYpmijgUYDT1UDxwbQmlv9CJmBoTwqLRIzNnigqM1uJcokW81vitkCBr0IjAcUnfTkHzygBWQEUAY1FE61KjR6eb4WLXAWCljYtUIM4IF1Gf4OAxY5QXUoDdDBlwJZ09bGAdIqiuGiIVfIZnRR6EqBWl0kVWI7HdgbHAoZeji9OJsWtF70jCzQk9vfpK2rK2lvZk5yaUF/rImyEIbPaQbJStvXi2Tb/YW0fPmnepw+neYWz3hfQANiDe4RSm1F2AfsSzseQOKsQ1kelcHDKniK+U9FxGBa+uNRpT+yKNI35xOAuy/LVk9PKXDXwO8YINxVH8GaHL0+aOn3sVpGWKR7WguaD7GUrwTCMNw2tlJHSy/GkxiuOnjCA37xoqCXvsPqrPros3YdUp4t41wtNMSNIa8c5PTIgJWvN0dGNy5LInXmA1efr0mlcstQKuJqdy1Z4dQJsPdKIBqjIlfkDlBGW6pqck6zazTwJDSAT/QbAsr/+aON9GdXNtPK9oRcoXHy6OudFq4lXbv7cV0xh/IBw6++mUof//NE+vKX86lzezu19Z0Av8AQXfVJiNXwOEkaaM7rSTobjyXLsQC0JyxV60lTE5YBswYI+kWZmAwR88Rbn8RMJdDnoPzgEQNLngNj4hWz8pVAg08dx4QMrbjAO6fBn+OugAOTepGiRKnTvqGlXBHSQmTplOaSRt4hlyugjty2EPro23o1xMXKnBDdB9pEm6mcL8lNpsW5aa2owMtYeilFvqj7ncE6tZSDntU/StjRCHxXHzbc3NGtQ2sivfbWT9LC8nllD2p3HdRZSyvlsyA+NMkg42ixQTVHo3/BqaK5D2n0mOwDSQcSDldMwcP4M+OXrM9ZZn9nvSjITZVOMAYuzjN+0L728t2iu5rivoFkLx7FP7p8SAXAvasXBnf11cJ4ghzMiksTjHHVYJm7cNnAMq3rhh/Xi0I5pu58RQ2l+wA6Igg6Noz2wDiekHzc0NLr5TlSPe8p1KXuuCyyXFFRrovxIuqOqg+rf6xQTWKjgSNrgMthXnh57lRKF5b7aUPXY0eGDgL9mNDVhEaMXqjLMb1xdj8t6Z2Xzvp0uv4vWjXnuhjo6aKJKNCEl0sDnPgyeL1cLXtlWnMsAM259yRdU5dBYe3YFJqwy0BRYTcl9FsxoDCeMPETXF4dy5MvNKTpx4RXLGCl3wWAhkfcyQMATK8ksDnDE3wKqDA9skA0LuR6mYiZqCkNT168stna5UphpCCU49LGkh651VZk3ACQyy9YUYZacjoRBfxVATe0ubyUJZuh8/zIHnmU2W73JCdgRi+qCExtrq2ne+u/0ueZO2lu4UyaktV6emZBpAI6Lq1NFSkJZT+4PahIStNEUouWAq/M3vqolFKaHQkHkkv2UfZjCo9JqjjRUzgPPBnZ3hVAbmkVaCZYUtUx8j2fjtumqW4Wg8Kgmb7Fj5cCeZl1Vz87H9GfuBC1DnlcZ5JE/+6hSsaaywutuBtxTdE32fDnPXF1cGQIOVzYdAFsRV8PZlBPGB+nGgKgg+XCsOyZn2Vw7ZaBNK4D5EQkB2Ty9RFAP9oVWqSpJoQWOhdoNo0GnpwG6GJ9uRhidz6lbtnXV0AJ9LWIxdaJip67pBeBe7tpZV0W6dVWurGibwXIT7rffBrcKnqRN5zpMsYIgviGibncaSXjRW7gKyr7sQC0p1d6hhGpLnTtOcyjg1VK36jcM5TJvAl5FAvw6ESKKRFrF3CvpxkOfp4snW52UFXs4c0EOUgpNJCpUO6Y9vnUof4dSHacTaZxhgAA8gEAiNDRDT4lS8v+oaUg1IWbSSlQT4KgCgPKKqmKUJXzMxFtvr+x45fAAM+wZX3fhbkpAaC+LI/7BteQs+bvmaVw9wBA9fUYf3vrXrp9/fN06pvf+mXCc5fe81JdblhV6/gIMGJIVoTLYSSnJHuPql+GwLkfH8ZnjE8d4XAkoijzYFIpWQRhLZ7Ry3+TAsm6yfKHd8jQGdKJAFzjwlEC5yZeItQa0ALNrMTBp8Ad1zFg2n2cCV5Qmr5vOVSQclyNsUrHpPfhrgEFvSXqDcyquHi4n1mRyMv1FLSZq8WKtCLh4XtKhguVwLN4s9oIVXhc0N7L5DmNlUQAyfDyhojrnpqSG5SWiaROrPJY6vlSomnVRkv3kvRfN7rZnCgNRJ8MkQY9s95Ls7jK1KcA0mtnUvr5R3oH4dpsWrs5m3a+1rXKx1iYjJp+eqLO7SMJw7nTD7Sytd1Kq1u6WZrV+06MX+TVO8cjMW6In6cGjgmgNUGqAzCp6/ZafSADYrWofq1H31CK/hlQOGY8IBBncqvTx7rQIjetNmJvY3UQmw/0UYYtGYTY81IUgfKkIZUHMupxJCjNI0iVr0jh71JM2LEkl1+yIi/TwrWEqLEcHWUfjEbLceMAMEAvO/pwBZVNaOInCOKkGSX50T0vieUvyXGTsaS7WMTiJoK/vT2t13v/drr25a/TrJ4fzi2csivHpPyi3T5zPHxTyVVra0SrnAOFs0oPpL8sCUMtHzp4vBYOWCg2OHgoM0hZE/zc5Q/larGe1u5+l7bWbqS9zqbOfO4H7kdxI4oFGsC8j68z4NGWZ/Ux7SkQTzfC9QoAyjJ4/V7Q8sBDV42ui9oydboeuFYDAMc15bibkRtS2lP2waVqW5StDqsI5KXLEdewEqBZe7tt5HrJCxcS1Y88llGyKoO8KvhYwFrvDUzJ6RTadktfi+Maky4IA1lKzVXpJtJo4NlrQH12SV81fP/1frr7F/ro1no7fbyxkLpyqZro7DARDC6SZy9dU+MxNdDX3N2e3U9ff9ZP//qP++ndD/rpjdcm0tllxrEmvIgaOB6A5qwzc2lywmeilR9RhSKYlKJbeHrSxOVD6DVVglfroTpU/gEYriL+4IP2wcvzoOKGxnU2Ec91QFwAM5WbL3nOhxSCKMIOyQgAWWhplido0vKP/HrIxSMJBiWh7OvEVTwTlgpzoVKkLC02y+eaBWCm9ex6ZkZLhWExbGmpOhGiTnyk+RR4AQIBwPt6AWw73fru4zQ7v5zmF0+rHZNpYemslyyjPYeFUr/zC5kSS3RcuVLmQTSlHLTj6A5LL+Xq+wfRPiivzuOo8aPwG9eew/gP81PJIxYOsqBnmcJLb//U5/bWt79L17/+7+n+7a8FCvWxBlZjUSUGzorv78nvEmuzQHRZxxkLMiu0TPCRFdGSDrjGNWNOL67qWz4uz9UyIV96Phfu1TbUD+lnfrfA1496EiIhnDb80T7a5L2VQGYtjByWHCdrE/ewqlfXHa4aWJ0B0u6zuSzXA58sx3XJ/d53ycM1cvW6cVy/WHgMnnWg5SL5cmOxYB8YhIpAzb7RwHPSgIbzdHaxlX78w27a0io4N24sp5t63aF/Rxu5bdUuruckYVPtY2mAIUoAujXVSZ/+gyzQK5Ppo//YSn/91/r4joD0jOZ4j6WPxbwp9Lw0cDwAzTylR8ZM0H39Yo6LyYxJKkJMrOQ5nxmxCjDQJF5Inc4LgJrsRA0PXoWKiTqXU5rJS5nc6woNVFG16KDRjxIA4uL/GQ+mPS2rmrD6MnlnzpYT39I9gIUsWPFJ45C/VIuoWIvjAzHIyKSu2vXverO4Yjq4MFxYtQQZWQ5IEkABWn2SWa4Z81r+aGlRn/SWLiZkfp/WwDopsDM5qboEBLQxwJiZ0F2tblyojrLUzcoKO3LpuPHt7103q3dMvPmRwLSeDyLjIYGcIlNFcji5SR6SXbEhYtoDFeT0IcrDDx5U31De0MHh/B6U8zAWD8sfapmIH05/UBqXyQXZYSnmPLIKBmd9c3MlbazdTvubaxVYBjQDjOnv9AdA77S+UBjnfiBFlz4u6zSW6dkWLhqTqTeh1TvaXftt0sfoO3bbUAc1YFWd7N2NvC/86MWljVzzHGEyI3DSI9+HYzbce9vPmX4O6FVx15F7ZHyoJcDvvp7A8EJWfEQmnhINWEbN0c2oM9drfjGmlJcinSPCeFI14NDEGg08Tw0w1l9ZTunPf7CfNv+XtfSPuuH909/NaanoLT2eLNfU85SwqftxNcAXKbfl437zy3bqarGAU2f207nX+ul1vWw6JxAd49bjcm/KPWsNHBtA2/VASJK1aAOAMiPRjOgKTFJMhmVq9Zq1eVIDmDLB8zMJZApOJ0JG4WpCJ5pz8M2TY6Y1OYyiavO0TPBXXa7DfJQaB5RU3oBPZZ2Ch9oESLavpcplti7DhmOWEeOzxzxWxqoX7ci0owUis2prPszyIkPIgeWbzzBP6wKziwwvouDDgtBY0wSgDYp1CIyyft0GOIbvNr6e6ys3MSemea0hzYdYJqdn9VLhfK6FFhwMlUwHs6qU0WZVGUeJlAqOxeQoFR2PJsQswj6E1ygZbSOttHE0v8bu0KxaRi1KZxXQnZYF+lQ6c/EdPW3YlAtHJ3396T+kXS09Z2uzgDEC8CVLrK98qId+xIup/FiBA9Fw7cAfmv4NQJ3SjZs8MdOe+voE6zjKLYvOZR/p3L8CPJNGFUWyfOxGK700vmTnFHLqobDgdpkXBLE4ew10xQtI56rlmlQ3FhxnL4u5LOvIH+un1zjW6qt0X8v2DTTvCjAGIKPbpKgOSWlCo4GToAEuK73ykt640E9/+ZNOWrvXSvfvTKaN38iPX0+I3FmbDnsSTtWjycA500/viaatu/104+N++tVpfU12upv+x19o7fCLMnSJpBpWH417Q/0cNHA8AM3J1g8AB7YrfrykEegI5GHBKhMhc1cFRTMhE6ij+dhzGyV0zI8yPJYmTmBH3LxVGJDrFQfonfp3voUa0Fb0ilgGTaSepEUXf3AGDFOaV6eiDmSND1WQfzCoOj2Z0cSuv2ksdvCXST24KJNIDtDWDksyIg+FkA9ZQA3IC3SIP1vPBGzaAkl8SS5uBJBVcXFxW1QJPLBCbm+t2x96fvFsWjx9UaBjRkA/f8FwqFYdjAoymu/jaNvYrEdJHKeIRyn/VGilABSXNXmkKmjHOL2VtLH5kWgVeDOoqTpElEHyUIx0uve8QPTr7/yZAPRu+vrzfxM4Vn9Rz52W/8OUPhE/KUAc7hcBnjt72wLcnQDNsmTbJ1r9aIqP8shVg69eArT31Z/39UIqXys0ePY1Ei4TvqFDGi4odt5UUke6DumHXEMsKTkIAzpirPqBfzMv0gCeeUmwUAT7OOIy4GmQ3VDy+QHsA6DtUgJBLZQaC6841tMs8Sj+z1auMgpNrXgTbTTw3DVAn8Ui+d6FlG7/tJtu307p48954sQ1qdxw43/ucp4YAbiQNYa09JVHviEW1/yJkW5IEI852nS1IMAnfzelrw5PpNdf30tntersIm0Yom4OTrIGjgegdaaZ6MJaxOSXE9Ri4B6BNGKFxtakQIgiiq4CD9tutYeWidd7spVZ1aFDcw7WZCqPkgK8srTBO6xLkAH0xCD+KUg0QLciiMBxzO8A4CCwnMph6bqw0+XKkNX/lIpgqzbyqe6QEckJ0AwAfxyTVLSilAEbtxVgHPVJRqyG9j3VMkawE8hpywKNP7cgg8piUeTRdQbq5OX2RA0cUL+s0fKNvX/n63Tnxhfp4pUP/FLhpMAVgTJDoSbTUPrQwZGIhko89sFjyffYtUll6gU9PSbVyhbCcjqL9CydF3eOLIx06lQdkoI2oCHupd4oSJwNnYsMhbxTJK6HkdQ4rG2hL7iQvsIv+jd7CFWn9hOtbpqbm01nz11KWkFW55tl6OTWI4tytaSbCL3kIc7FYgRwbgM+uWYElttKJ+56qNSreCgdVypfX8oD3IqAXwlKVX45ijggeEKomBdv9yRbFTIdO35T8tkooBkQXdJDDmRkRZFYOYR4N/t5YaHGWj6tHy5T/Pn0VBWVCBwHgQ8Q7etaAEST43OGAkvFA9Im1mjgRGiAy3VBgPDH73bTzs/20rd/N5M27+uq63XiEj0RUp4QIXQp9/Ue1tb+gj4oNpPHyBMi2yFiaBXa1NW4mzb3043NjbS2K39orczhMemQMk3yydLA8QB0botOuUJM6LYIxQyVU53lTlGmNO9rEzHzWMbSA+Ics3lZPQryKC8AUhiJxhbZDE+CZaFSpgK8KVgVIV4d1Ag8pQattrlAAAEfU0e94kgU8ADU4qbCL9eX8w7sqDeU5SyicejpPKcF8BdmMIgAUITAoYO2ZQA2lEaIUI00uDK34EgDADuAqZ2t1bS5fidty1+2y1tiOVgPhbwkjuwfkj1C/YQP6/oqzX3CVRR2e/rq197WXQ1mX+vLurt6cVP+wNKdXXR0Mvizm45mNVZDsY+xO1d0FQAm+V3rnHPIDQynLtKJ+5xyrsCo/CmBZgFgdWj3hDit+OsDIOMpCe488IuXA1leLsoChDnvXa3EcUpfbWh15v0RFIAnopFX+f1TaZaHmy9kJV+Ola7bmywDLh7I5T4mwQtwDvA86HluYFEgvF3K1VRtp11RAYA8bizwccbqTLMB3CUgjm8k3Xa9DCtXjdBz6A6ZkX1K4HlShUMe2MPDFRVWeS89cQ5Zug4ALXcV9oPAWQh5y3aQ18QaDTx/DXCNvHaqld6Sn+z0+cnUn9G1uSMAfViXf/4iP3sJpIvWTDvNSD8f/Xw/nb8SBqU8HD2+POOGlMfndrCk5GZYXjzVS5fPaUk7zim/JrwwGngiAJpJDzDAj6XVmBOZ3Oh/TIoc2w2h1iFjUo6J0Z+nFjUTMP3H5XLZ4poBD0Cqy2X1Mv1RZwmUBagUGh5FIxvww/O08pCHXwkR1ZbCCjHBMjnHsSMuEAnUWYLGtgAi2pueDVdEjSZoo4w5FL5k5Gotc247yfix7uzs+hPLfJUQq5vX8cvCB46XJNK1/7B0EnM1VBCVmK+iPIrviicfW1EDnQupqYJUR8PBrLQ5JHuY+GkePWUBop29tLV+N92//tvUvfWP6fT0ll7gnE+bW1oSUHpzkHJZpWJ2ZkbreO7q/MgVQkATpbMSCv7qvNhH/9nd1YoY6gf0wynNgAvzs37hbVs+yry0ZwBOP1H/5AZpXqut8EIf5ThndGlelPNLrALyc7NyrVA9nT29HKovEAKgAbn0E04QfXxRL//taaWWvX0BaeX1vBwdVle5LUgmgKitr+q0uD/YouzGA6TjhUPa6U99u2NyLYoYgeKCVm5cf9YHG2Xp3xFYuS8qYowqmei25QVhrpUp9VO7a8jRL1hGadehcpQHNOOKYquz2smHKBgZfBbUj7GK+50EyUWOm4AIVYBnpJJrtw0J5KX8pHt0G2NBrrswKPuKTxNpNHAyNMD7AYwj/QW98TIjmbZPhlwnQgrpRg9k0/RZfX33LyfS//a/b6W/+LFGBibJfImfCDkfIATj0ZRuACZ1opnKGYoYdptw8jXwBAC0p1nfEfPOUZz3fPbVEwJGc8zkO6wQzbGmtzWsTIWZhumxcpFQni3bKs6kSF6ZJAtfp9Dzck7FO1fqMjm/TNhFoKgyMgE9npYLLQyVBht4Hrj1d6JIMn3wopCCD9gos87PmWYbybrYs5jG34Az+6rKX/Xc8oLcLqb12FpgXeUMz0EoKmOfUZYvkAy2QLM3b+rUXbjBBwklPQtBe0w3usn52lWij5BkipHUF/CwqEKidwU211eupRvfaNWSjZtpQp8N68mN4eoNrXAhEF3656Wzy+n82aV04/Zqun2PVS+AdXrsphVTTi3N2yq6pXN3b3XdIBAr6aLy3rx8Ls3Kv/ibG3cFyvWZbIFZgDRgDnD8xqUzshzvpVt315QW5xKQDUA+fWohXVS9xFfXt9L9tS2Dy2JdnhWoP7W06BVbOt1WWjf/PfGPFwZ3dgDcctnQCeWc4uvM81/f0NKPlMhKM7SRtvDvG1D3EV0LeU+PiRvTzAhCl4BrCeTp+tSOXHodXCfUR72KjIQAVCNLebICuPfNAO1VHFcN7gsQjU8d09/RiXozhczXtYmHGxRiOGl0w811R1/lJPj6QB6EUygyogtcxwHayBu5Jmk2jQZOhAbc1dn4Im566NBJkTdid3siXXhbL+L9B62t/F47nTkdKxQVuqIxhgrio/tCV98XmnpaPf6w/EJbpyNOGJJHBxp60qq+OLmlD+bMaHie1aA5qQFKw14TTrgGjg2gmYi4rploY5KKFtNJYpJyrOo0kQtIGGiGSa0cl4maXLsrGJnCoxZ0yGeDfSkQL1mKmE9h5vTShWsVkp4LVWWVIClcgjTYw2akVC6XMzObUo4CQ/QcmJnZjt9QB3S5IDrsaFUFrMVduRWcnhW40eP5cN2QTgoX0aMD68HioNNghjzRmrDAx5E163NCrKqw8POedOU4OwsUSUGueDk04YM2ufiDSJ5bHo3IDeGlsj2tZLF272q6de2zNNfeTueWluVWoZFZy7r1eSNF/sLuhqTJ3NHXr9eWfzrPV6Xrno4Be23t93UXua3BcFcfw5nSM7lpWYWh7wv8deSjt6ubmq5+Mkb7vE9o8NxXWcrtKt+WYvqRaPYFiMHoASTlOmKacq2oAeLZUxovhS4unU6thSupO7eXVu5eSxvrK1rabkPyAgyRUuBV6LUt/27VGAhVqcgcuqD/YDXnelYPse+zDhz3zmTkRyAvuoUrUOJQ75fC0A70rOk8rZ/E1THlBIzVRp4u0d6wtgeA5mmJn5hIaOdrH9BWLQDo5lrEpQolPtrluB780iBVRiOrMra6uw7aCgc01IRGAydZA6M9/CTL+mxkY3ieWGilN9/bTz/9qJ/OnJoyIB0ai56NKI9VC0PProDz7ZW+DCgpdXb66eLplM6faaXFeZa0ZXwS63zqiTKONuFkaODYALo0A9BWLm9OeExKTFxx7p0rAvLAeUyg5EFn4OfSpNRDWIzIr3irVLEilbSyp2SpB+Zwoy6/tawj6HxMxFXVSyotB8uvOBZCgidixQNYFHnN3VxLf2bCR4KhkGV3dfWMKJ5TALqlpFqgMljiABdY5/gZ6MBLv4qXkS7IJLdN3MiznU6NQLe0xZxBgP6hD9pE+vhAEQCfixaS6iAKIscDg5k8kOL5ZFbtQFcCa3qxbHPtTrov0Ll+/5YGY32oZupMOndmUR+vmZYLh5YoNFAWCJQvMi4Ir1+UlePMctah9CBdoPOZmal0RogXqzJrMbNO8Sm5gpxeDuv0W6+f12ApVxqZVzt6A5vzwmfal+anbVWenZuzy4XPu8AsVudZuYcsSA7W/ubDOkuydEe/pF71Ud0AzM/Np/mF5XTqwl+kU/1T6fp3n6dbVz/R291fSqYZWaPlMynwSf/s9bWGkmAo7wfyBANL8J5cQ7BY40pFT6I/R79BQ/Sh2Dux0l+cYB9qQ3eAioqIc1M9KcBOvoE7CTryh42UHxbyDJoBxrRFNwPsWVudXwWgYSi5JmXJ7vd1UxOslAZHq8HxcZuQPQhhw/gAeLZrhypDD6yRbTeph/Aax79JazTQaOA5aIALX4Gh+fR73fTGO1pL+bzc4fTBXUKMXxE/yVvk1Csa6d6NXvp//34q/erXs+nDH3XST3+8m95/u5/Oyv+dsamnsQrXtemZll405B2WQaset62MqhoOHx4kY1b3w2lfMYonBqCBdZxIJixCOS8ArRKvnwTieVqO3p6JCrA2E9MET7OFRgU9EZqvazVp6UTwxDe4gn+ipy6z18b1soGOVMczgeIx5ZMv3uSJxGWJUnEJNVr3Zeh47lwEKXTaVzwBsLlCszaPQhi82QKQtN66rJT9tLIpwCPwNC9Qhm4AHgAshJqUaW9xbjrN8Hy8aojANrqhAqXBD5ECTBdJctsgUYCmHqB1m7J8LmV+UIX1EB+zIX3UGRB3xaOJg+PROgc5x49Voh7GKhPQTl4evHvra61U8p1ettxMWxOz1i8vquGaMcPNS77lBwOi0XnpfGoGIAYjgT25Y/CiGi8e4gqxuDArviwPpwFdtLhykD4roMbSa7a+CmyjP1jj38iA2NNnfLvyYbYfsvoS5xkQCoBvyz+ur4+dzKlM3KhF4/YFfuHflrWctaFnF99Lc0uX0qUrH6b11Zv63RY9YL2ll0g30ndffZy+++M/CeTP+OVFrOE9Wb45H/Q7W56xPqtt7sqSK84/22HN+hTnE8mKMPQZ/DUlsih5j6Bc+6pDKRI99XRDwmRgP3BViHWdZSABzuiFru29QG4AfkC/Mmm3XE3YD0nBAT/k4FfLpBjnC/cPbkLRN5cohNwM4wvO0n2seIOOy9gFRRMaDTQaONka6Gs44Kb6yvf0e0cv4y3Ij9g36idb7gPSaZzi3f7tlV6681t9PfZqL93+fT/97ko/XbgsI8u05n3lT8oH/so7rfSTH/XTeQFrYWmPqQx7Rwp5fPQQqU1RVTk+wCMz9k4bxtMSr4+zB8q9QglPBEBbqSjNZyK0x2SFwlE5uzhJQeCJWSkGdUEuAiZYUeqfCRMa8l228DUNzOCd+Sten/ggDb65Lh2bnxhFHgTRGRQbBJNHGfPOOSF9lLV4yKaeF+QwKh0xV2CJVThYKT9HyvGgRsWijOWlwTnYHUZxHu1v6RH+jID0BCBDIGBHj3vwEVVJfT2uJUBFOf1IyMEyc6xkwx7RcUNR/gbCRQGq5mLiDhdAB7jwj7jTVFL51IEu94V2Oh1eciOtVnGw89Zijc9yPuyeR3A7VHERbXd7I9347tN07/Y31m+s1BAgjWXW0Bk6oE/QGznuiQmWS3JJEcTWckSAMHJbaV7guCugjIUXq7V91dXgsKBKpxQFEAPmlO4vWIoTrg5gRJ4+CNf65ZhYti3OBzeG01gjsjx2uRDw84dSqFlCTeuDObOL59Lpc1fS7s5m2ty4p8aydJv60tZGmls8n+b0ifeJ/rYG7c20sbGa7q/c1fkOgOkWiycKqq4rZEFmBbeQY/qF9vzIAywTx/uQSQx99dSI0LNkVgQf5576Mi8ImpM6m4rZih4gmj5OOf1syRY9pO5jEKoC7aI+b8nUbxBKd8Qyb+Cd84NfsOKGiK8uYnnmqUHcNMCvCY0GGg28EBrQ5drSWDglo8Ob399PV96akCFJiQyuw0PCyW8ObUF0jVmtld1071Yv3fvXifSx/N5Of6Avrmppu70dGVJOTaT3f6JvO2zspdcvt9Lystw8dNNwWp9+X5AeDgtlzmPgxFCh12LSplxFtrd44Z33RDQ+86pINi6Yj8bwljwWZV/QGCmwPqeX4ef07QE8G6XjUlsZbw+r+2VPfyIAmkmVPlusO1X/lXZRNCcwQG2os+SXdAoDBhxEyzUwOEXwjRIFzA6WchN/eJseHkFnsOiTrI6hsk7PhFBAVmhzUfNRqidsHh+X/MoSh0SDikTJAdxyonbogQDQiZDznKi0+qHTMpl26KcCuZZVR5ro5/RYf3Fh3lZmXria0N2oNSSwBLhi0AD0ppZWcNCOXHAtJ5aVGwiuttStPewjJ/L8aEjojQ9wAAIBfFg+pwTySLOFU3UYPAsA7ez20tqmfLS3eBEOxoWbq/PG1XkzSBuNHSw1SvHoxw+pcsBQumFlhk2tvnHtq9+m1btXvbZw6aforiV9o1rss6yS4aXqpLx9+qr6FcvP8dQB6+WMrJhe8UKj0Kx01hdwhldYl5FKetVuX3xsDRVPUgFznA+eGrR9DQAag8b5AHDx54YGv+hpRi+FcAORhVrnCku3b+pgRCEFfLhnBZRnZvU5+Hx+TqnuM+ffSO99+HNZpm+ozd+mO9c/F69fewk/1yF+IRM2Y5WEp2PBmxsH5LE7ixpE34tqdTZrJ9Q3rdIRI4NfDJTleV99hzFCmhAP+ZWjELUZd4rOHu1WvgG04r5uQwYJ4HPAZSXxrFfSkExkvp6JIwDXLdcJX1iEL0S0hz4OUOYJgJfBk2vMhO5WRO5ybJvQaKDRwIuhAcahtsa9+bMpvfV+K712hWtbF3ttDHoxWhJSIjY/jA4YV9qnNfZpoeit60p0szSW3uynj79J6at/0pPI96bSpQ/b6Yc/2k9//cNuel+A2kM1fLIO2DMexp45I15UvHa/lf50dUJPI3vp2o3JdPv+bOrc1Zy1NdBff17j/NleunS2ky6/pv3bk+l7VzrpzTPdtAQm8HjKWMxvUHeRQWK8EuGJAOg4STrBUqYnLO04aUBi9qHgCl6GYlF8kEPgR8aiHur/lCWNAO/CwUmRSU7UaypTOqbry2SUAxi4MqVR53AlSnOiNqqKtnQ10e8JbBAMgHS1msQpmUeVEDJzGJJCVGVGCR9W0jutEp9COrAOKw5KVBkDWyZ8PWoGN9lSRscVWDMYEM2E3kLTbULIDivXDeSL8wGAQRcjElXH1o94TumimNVSOgbROgZEczynl+BwEeEcAmpYeWJDde7oJTmrVYyjTjfr4KZq6MGsUZkOUjzhlDjRZtrX+b1/97t0XStvrK/eEuDq6FzPWC/4Hm9sbXsFDnyW0QVtx7eZJefI22GpOv2RjgV4Tn7KWFg7Wk0D/2eaDXBjibtl3bpzLlmdY3tbHztRGU474rAqRrh8aCWQDVmFxYMnDbFyhiwLWgIP9w8Gv20tbbil8pSjv/DyHX7WLX3aG3rSik7jmpM5m7dsnCg5VeeUPueOv/TymQtp+fQFHc8ISH+T1vZWDIxZuSJWv8nrXrvvBQBFcX75Trqjnbva20dfINj9V/XTbhrHjnq59pAFoSPOB1xUB94Y+ivtpS20Ef7IYHeo4OL+yw3djCbMGdwu9EPn8LRLiOSg/l61DwF8IyDdAdYDROt8cD3px/lwyLIiSxMaDTQaeAE0wISmKW/+oj53/letdOVNvZMiS2y5pF+AFhwuYhlDWXFWQxIYqgqyIOxt60mivkbZvttLK7faWnVpRl+r3BaAZvzKGENDm+wRaX1Tlmy5hazoBcW7+nT4vTtJL5i3013t79zc1zsy/bS+JlC9I2PDlpSqOkvQqyapPS8X0rlu+m65lxbP9dLvL3TTxQs9fTGxl06db6Uz51rpgm5gzp5tpyXpnxfFGVVfpZH02ADaE5dPOo9wOYF5YpIaHdfhICVr12kllVMW05cVDy8mXNJqZ4KknBzUuTgAscAG1+h0pQazOJuZljQnc0xEP/P0RscEpXU1ibOGNG3zxKtkipT6OcgszaZYejHGlnRYRaCig6lOIksc/Ke6yh+plECfTPShVy4ltVDHxSVgwpZulXJjxcx7hOAHF6Khi5DRFSqLTMWVBzC3pVl3vTO6AuYMllW36gE4z8/Jt9Y+1tILz39UbmJCd8cqG8BIMgVbqjsQOJdZlAN5zzIBEYsc6Lm7v+uvM373J30Ce3cbVSgVncQLbuubO+mmlqpjH+CrpRc6Fq3rVaWtrm/q8ZcGHgFXwPPy0pyKanUNActNQLL7Dhb8KQNgrPh37sulQsvi+TQhj3TM8nYAvG0tWXhrZd2+wQBsAk8D6NMARnzf77OMneotLaG+Wdaf1ufZl7C2EnQyfG4UDS7a0iy3j3w9XZiS3+/UWfv+7smNY1mfeO+sa/k+QK0sIHJq0AdhdBMmn2tbtjWM2zKs68KrlugGgXbu6kXIfd1gcMMRNwXURX+M+gxg1QbAri2/ullgjwWbGz8CrhsUoC8LAlufzBxY5FW0srDTziX8/QH0CCr5sDTH1wqpX9cHddNY/dN/qbetG4iQA6tJAdBqm2hcRjIQD392i/RqbqTrJjQaOPEaoJ8KtfR32unCu/30o7/Sh2Yu6cYaUP0SBcYkxjENxYPAMXOwjFf9+/tpoyNL8uR0uvkX+sS7XD3m5GqhoVmguifA3EvXrwn8fpvStaut9N037XT1y8l095PJ1F3vpRl9tRaVtaY1DusbAhg06sHV6vPxm1oJakPuHVT9sRSv0Tud+Vk3XXi/l15/q5fevqIXON/qptden0jnz7VlLBJu0MohGn5fiXBMAB2TpactaVi2I2aiUJx2Bn46S2WyKllMyigYAKA52WAD0AohZQIQRjm4cS5wFShAlWoCvEVZzYQ+wVSMtY4C1EXZAPiAz+Bb0s2UAqqvnGvXpQMDJhFCG/miKUQAFErkYx0G4DdjIICLWD5IzCMYuUzh4yTlm7EIOQYDDAKV86Nt+okAUGa/V1naAAiQQxEBuSqxlB7tsp50xB/BNHmDLDz2wuoMSAY8TwtEIwt5uAbYfSBfDWEZ1RJtgCbe9jI/EcLvkEBWOZ+HkDz9ZAkRzxBCC3298Le9eV9vPn+Zbn/3B4FCDSZqsDWGnnUidtTG+xs7aWVtU0AM6/yMbib2/WEVfMC3dpXPmszSw+KCXCkE7LAmd5S3bXcEuX+Ipwyr5oXnDVb7TZXDwsr5AwhO6EuAgMhdgdAt+ZUDyAGj6G2CZe/EgI+57Gpk3FbZzR2V15/sLeKBS4hW/5A1PPyKa31ADODhkONxHFvOydT0XFpYOp8WT1/WOtjfpq6W80PmObVjCnlVJx+NiQ/HaKUOHeP2Qj+kO5XzWtVT6lMeblD+IqJ0waVNoC/aRUjtBkh79Qt/KEgDs2ZAlnPCcsJYwNrRM/JTnpuVhV4vc/IS7az8lTkXtHVfb914JQ/JhOUZCzWAmes/+jzjj+K2Nke6osrPWuB8i1ai5ovIMY5ejZAbzqmMc5n7y4GT+Wqoo2nli6OBtgBaTzfG73zQSb/4cUoXzoCoJf/L2HdHhyUd+5rVONbXXNO/qu8VfCO3jpu99MZFWZrX2+njP6b0+79P6evfTaZ73wlvy8rMN9S6WsJ0blbGBlYq4b1yYWePzVj+OB4N6FOqbYkegD0zua85p5u2r6X03bV+kvdH+nh5Mi1f1pOAj1L60V/rhuaHcqnRk4FZjccaYh3KfpT9y3AsFRwnhJKYqDQzDRjpDBvsKQUdokCDE0XczzlW3IpV3D7NWsKKAH0ARVHqIF6wGpwMeo/dbsUJnp4sM1+Xh686F3yCF/wBhcAO/SGAN1ATLJHzi0CWjYlYdAZWYgTHup92lC1beER9jujQVVgIbaJSU5gyyGslaIfKQ2p5mPyxnuknEOG9kLoW8PKawz6WfH4U7jV9XWvewJyfmKEHMRXe8I82AGCwNAOcw0onAC2gzJrFFAEcgjEAIrTdZ8XlAc7yyRKA297BnzWjonrVh8R9jiqFhHTDpFne4cTHOAo+Ev+QgAZk9exs2+d5VWs/726v6vTgEkPfxNdZ/UptnxdoO3t6ybrnvCxr+bhTi/qioCzKi7rLZnk7LPLocHF+Rr85AcLJNA+gndVKHvBRXVwWAD/cBs6f1SoZygNYolsANFZ+vjaZWnPpgh6JBYAO8al3XivrhyVVq3Ms65wIqKNKyqPJrgAkN3xVIFk/Z1eJByPk8yLdwvL59M4P/kq+9jO6mfh12tCSfpuberlQwBlrOS4nLLlnMKxTXvqnq8mVhFajXmqyfJkSyy5fJyWRGwP8oLFYd2Q9wYqNXialU9+AqB1TLNGkvo9POS9jYqHnRg49UztfY4wLRZJw4yzwTDouTYDjuIEOWvSAngDdWJ/NwtSRzjGy+oZA6a9UcNvV36Q+3Su6v6o7us++UnpoGvviaIDLWj9url/78256+4OULp6RcUMvttma9OK05HiSMpwy/W5rRa5+J/3m/+6lTb0rfuH1Vlpb6aZvP0vpxh9baVX+0x35NXvpfw10qM8D3lFrVz0EvZKjQcJRr8PvERdmmnY2N1Sn1q++L2v1neu99M0P++n9H7bS93VuLmu512W9o+V6vQkeL9P2WAAa/QJmmbx4pOpn+Vnplb7KMZMt/4F+s1KDypO50zUpih7gyqN/JjgshwFuqCzXB1EtkA8P8omYqzbsDTTEG4spxQoAqBUf7lOUU8WCrUoPgASgCus3IDrXnXfFGkdl1MePQD0mtWxKdd3Kz+VMlIlDJ/lA+bTAdVKvwERLQLqlVRJ4pC2YoA1pAAIuivBFNj/XO4hZE1E11VtHABH8nef1gZawMAMw4ldAJOWgow18VtlfxRNYXNdLg6t6A3hTPlPCbW4fei8qKTWP3XMyc9t9roaIlPdEwiF8Kp0DtPSYSy4b+D/z+W40SCmTqCEAX0AYAPrCGYFfrdRAOLU8F3HR4JPusyReAMB5jeBzgGT5O6vHpHn1NbthaJSDN2s5Y8k/d1ouMnmNaG46uZkB3AGyvaSaXCsMoFWHb/i0F3b0i4Oc7ykB7VmVj+aIswAkftFYvg0wlURrDuqXFgwH+Pe6u/7NLyyleX2Ipa8XD7eFplbki71yf0OrduwIoOOuk2+odA65eaNNlUqH2JJDGM4t1wKWffQbe8VlOe/o157o+CYDEM9NCDcU89I7ywjOSifww3WElwKxTtvSLKWFvzQfk8EPPUA25zeC9vr3jYrS0HXJsXjSK2ML8xBFarm5/Mu9QxfcxNy4oa9Xruhl2k19Dl5v9S/p5nBeTwMqNb7camha9yJpQJ0WXMCTpLc/6Mr3mbE1rtwMK16k1hxPVoZYjc08Pf3TL9vp819qWdJ3NS/Jt1mfNEwTsxrZsMtobORa9ojMhgt/eHh+dDnEAzbGMprr9vVp+ZU/aS3r37XTZ5e01N6/S+mv/tNe+vFH++mdy225PvLuSi706LWd6BLHA9A6ETImpQ4nSecLpcZDUWVYw3GulK0gmrx3phJlX9XJDaBWP6mk6RoJHtoJ+g6ddLOBv9LNm/rpJU5SruIcKjXSzJxSA2ACSI4w2JcYVm/na49VC9KWJn7XW3gqDZC0l4E5IMiPj0e4GnAjTGFeyy+rdQTACNBVgBO3mAHameL107HXXvYaGzARqNCdOOChgPKAa9RF+6O9VMsNTgFYboUSadecQLSt0RIeEI2Ywjjew39P1sJtgWVeHNyWe8GW7nixQPPo3IY/NwrdI88RwlHpjsDqaCToQJVW9RLB/7ljF46OXBa4A7T+nUPbgwbdY5lfmJsyCGP1CxntQznKYwUU1uBGjzNYUbVH5UCySUV6uiCqmysV8/nD9YZ8wJtozE7nVWdHMpBGT+csusdbrkmANh1QRy3TRp4LIKPkmhZAD4u0yCDV5rBzYk4qty8f8PX7V9Ptq3/QMn6/12PAz+Qrp5cJ19a1/J2+hKl+PaG6J3kzxBzZWGJXjTwHw7g0S2O5uD64TvpawDU+lFJcVnQjIEs3PtUA6DndkOzr5RVp0KDZvsvSN+2cEMjnZoTz1JZvHhIBrN3sEYGQv9wkhuQHpfb5Lpkj5V/mQ07lmt7G/6f/Npk2VtrpvB7/viPr0Y8/aqf3BEyk6lDuy6yEpm0vlAbosz2NIW2twX/xwp6AGePewWv6hWrUcYXVfN2WC+HEjNwQZdzqa6m5/qTmCFwy+I0fko9Xa+apacTQxIOvzkNbLxv2hRlu/Vsr/fKLdvrTX/bTn//7XvrFz7VOt6zRxkei8zRyPAlOTOljAWgAgsGVQFbSnRCT47R6dEz4aqMUjI6t6Kz0UF5k9FmfVgn+i3naoFQ6diCdf8obiFbpOlbHMZQIVuIDINGf6JmcCeZt/lEecFh1KEhKRSZmE2WokLbZimiedcJgAViCBXVhNcTyWEAospWKhkuWVMCSZNULW+QjJ7wCPBMRqNJvCj9QfYp5WnoCcEFEK8lryT8WkGdspSI0hrZnhk6pb5BtXv6kZ5am05llWUwFnhd1jDUaEElZ/1RI9wUCM6xEwQtxWnFDvrcd/FO529QFomodXJ8rHNSUswYJD4o9EvGDGNXyaIdliv4QL6QqX3X55oHzpa8Psv7zfoev8qmAG4QwoU/Kc8OB5TjWcdbFr85tq7xl1oocspDyFUFUTp5BneIELqqeXr7A0oouo2uHtRp60i0jBwoMLIBnzgNQ0EsDqlzc+ES90E3i5iSfaYuA2GLupweyiBsIQqQQ5zIzj6RqC08+XX7v1hfp5re/TVe/+rVeMPljunXzhlYB2fJLgfTf0h/cTyUTdeaaHatztzxVDRGJ/HxznPOKjL4uVUlPsqBTPuQCYGdFjx0BaVw89mRdYQ+QxhI9pZdleJnSupK+uD5txecCQC/acYmwJ8DXPuboVr+cXO1pkNTtEHJFGyPl1dh2uhPp6v0FvWy0nC5I1/Nv7qSd2vX9amihaeWLpAENGUnvTOtJidzbtPaxLm1f0+PGoBepXceSVfALf2jejqlCLVqlPa0IdeknbxL9tMzttgxvKxN6uqj3aLRiyNZ6Sj8TmP7e+ynpQ78vVTgWgAbw8YECvsTW1w8fg75AB5bSMh2BTcq5HACuAGHkxZJZmuSYzcwP4EM6hxTOs5ziHJIRfDgunDknQVeBUKXExRWTOOB5iFz5HAMKoj74Bg+2gBOW2NIl6snY8zTVZSZFLMqAlw3aLRv1AajhZ4GVWwIyZ/mpK/+iVmQhqKTqkMerLJk9g+dJ3U6Gm4cFlkSUoLz+JRhsSnAOMjoSGTzqxhK3vDCpZWdm0sWz8uWVOXVG5wqA5JcDYa1y5qWL0S/KCTyva71n1n2GpX+lokP2NVEOoaglQyy+TyyIHzdlAOTe3pYAmfZSBFbLtgAY7jBYK3e2tZzc5orAYqywwUtoyIE4/OjTvCxXVpdgvWfyefFtUnrcldsBVvgSugKAU9nPHr9obqjQKU2jfwD8uFnCf5cvFAaAjtKAO6yu0Adf1i8GwQawjjrjMuUlPpaPC5XF9UBfaGsZO/yB6W4+f94U6WJPH0AftHnt3rX07ef/lL754l/Tte/+lG7dWbW/szqx+4O8NIZCvjRzWtTuA5SFoE6qpSvVVxX5JZm96bUnqpmQlTdYbYM7jK70sCedozv7XAOe9QNUSyjrUIYn34xEX8yMaWvmi5xE0TngGVcPu0KRTkYuUtFzTLqDJS4Hr8Rel0Q6+7oMVQIkF87r62aX+mlBwASQ0oRGAydKA/k6ZVXOKbkaTcxrLNe4vI3tToIKetiAN2boO1HNeGrC1MeyMs49tcoOYVxk0L6tVZY2b6X02f8lN7Gr0/puBCt97Ke35NKxpBsfu9RVY+8h/F6A5GMBaLsB6CWoJT3m9nIDTJvqwYPJKuKlU6MvABtTVV/WVQL0DvmkA1RVSjQBEIjB0FTe6BgQqj+sTHmqhlOuVyVMl3kr7jlaPJC3VDdUKVxgCxfoVAaA2RYwquYSxKCQ8pHNEiiTFxTBG5Sp2kIc2rKNA1UQ9VMPICryc1sxVZKh4J02dhEBSAh0AQSoV+gutyHaz2LytoySF8hCMsMbyS2U9wC/xflJfbVoOp1dxvVAuZop4dnttgVWBBoFVnDbYGUHQGScS8ksvXFD4ZB3cfAEtkU3T4AVLLoCiDvrN9LmnU/Slj4WsteTPy0rTZx5PU3OnU078hleufknvfjwnWi1wob0whJtxqx0Dv0D4O7IB/imgOWGlqxD4QC7c1rG7pxeLLy3uqFl7LQCh88hlpDptLQ4Z7C3qZfv1vX5dT68Avgl7/KF0+pPE+mb63fSGms9qz4CTce6evniabsv3Ly7pn24T5Q+e+b0gnyxl3xuKMuqIH6hDxb64aN97uyZNLN0weeSNPcD2qIDb3Uuu3pxcnP9tpbu+zxd/fo36dsvf59uXPtG64Sqzl210eCZplJiECwpwoyESCdxkOeSlFdS9NVcSEnDbOP6IdHk4u9rUzca4W8v4CyZd3Z31RT1S+k5+mY3LWtdbN+QwFoAnKvHUW9Dfp4GoPsJ/XwTHYINgKHlo0CR42C7M7uXdscpPXtqP/1Pf7Mmn+d1veDKJ+hxS5KPaR46XtrGNw17MTWg63hSN3izl2XdXGqlW72JtLMq330tGbQ800vLs5q3meNpnTcvUDNjGDuewE+Cx/EkiOmA8RVrtMaRPY3Ra1/upX/5P1JavdNK/+Fvu+mjD/U+0BLueMet7PmXPxaABr/azxDLs8Ch5ro8UWKVjbNJP+ZXzq0nVqW4f+dZ1VbjGr1NaZwEConQtJSJSJXBIZwq3opE2qDSwpt6o27l5ZCliCPqqzhl+ClmtMsh72oksuBO6XOaM/ILlpVWwMzyFbCBLKVMrq/sSjKyuVbt7DKiY1KY6bU4l5YR0yLomwJUatWsVmMAr2H5tIVSafiELi5obVzdxMCKsmgDS2QdXJDHDQFuGwu6c+fjKNTnMoB6dWTfOMj0OKk1nvfkfgCzngYrAMiWVt0I32dZMQuQRs4xIWQYkzEmqdCW/RiSKulBNOQRaLctjlhk23N6KW5RIErW5+kFWaC1TrPat7ZyPd2+9lna0ieu9/XxFJRA23kRD31Oaw/w8uN/nd+Wlu5BVwaWOi/EOT9t8fUqEByLbyTLHqyVLSjT0k0JlmuvoiL+lG/JEs6am7zWjMyk9eHpmyIBF14iVEZfbjv0jXBXiCc68dIhsk2pZ+Qy4oGLis9lPvvwtMuC+GKNxxK/vXE7rWvFkTu3vpbF+dP03defpps3roW/s9aydhN0yt1GFHkg0GOR+CFBdQ+FkcN6nnu6WAYJ+mEs0UY/dl1Z7ItVHv14HWruchT4MA2uNS4NcQ5uu8aiSb9UiXsNefEL1hGPukfbM+BT+L3Me8759FQvXdZHES6cbukmTIOAEkkf1czLrIen0bbQYdyc1brn06jq1eFJ99TLamde76fvyx3gsr68N6e1QXdYp1iuAlfv6UVqzWWvn91Pl5Zl1NBQyxX9QvTlLORLNwJpuO7r3PCV2VuftlNHa3drWvJZ+cuf6cZHmMRY5QXuxccC0AwUTN64L2Ch9EtvGjEOdATSRAP2irxBtwYoGJQpY0zJfAHkwShfECoiYj3+pYTKccwP3gXvlpkgamJiiMmBc1UGtbI3OzIUzJtaSdTP8NwEITk0RU7WsT29tKhOse1H66UMBYNa20GxiMMzp1Uy5bqiUkNg6VTLfOnZ1H09o+oJoJ0SksU9YEvWUdYEBuJr5bQ0PasXyeioIbj2Yk4d5qlNjvMiFi8M8uPxSVc+zVidAeVFHuGONC00PaUThW8tdBMCKhMCfVgAuwDrYI8ahgP1KeSmxcFDtoW27B9E/iCaKk+RCTnIzSyck/7kVrH8lsCk/Ly13vH0zJyWr9sVgL6Z7ghAd3awBOs2T221v6zaidUS0GvL8dxsuniOG5SFALi68Fkre9Y0Sl+cD7ArvYPlAHQAuPmFflqSgx59mqctrLE9p5cNiV/QMnZzOmn7On/Q6l96DheOGR1M6KuAnFueOHA+yaNOPh6CXBMC2JNa1i0s0NHHWJ1iVh9yiXEJlwe5ePS39NONlsDz7uaddP/WZ+nGt7I43/g63ZCv863b99OqLNl7cgfhGkI2ZImzl0+kT0al2aE8UutUJmVDojJ1pVVJVSTnVcc5YsqoXAXRmVjINBF+y9HveCLQZ/YU3/Bt1o2JLPdDQeVoB5/n5uanPJXhWkXe0DcxV+P9K72RKuhB3JOoC/mHokJDr7Rmjt14+j8GpDCwNRo9tkLplwLEvc12ev19vZj281764ArjsVaQ0Uoyd/W7vqpPUq9OpTU9tdrrddJriwLRclE6+NT52NI8cQZltPQUfsg4+cQrfVYMaQ/4RCB6/Xor/ev/KUPVzH46d7Gb3tHHVxZZ5u4FvkSOBaABxFiJWOoMJMYkzrtQ+P4CANCLJy5OlrTkSV4DizuMNjyejcBBKBJ3ASZCW9XoURB7F3EOMXUz8cPTL1qJwBZv0wZ/ilY+yMT1x+TswU3VYlk1b9jA0yEOoI1AO3LM7crJ2vmkK5NltQBhANGu2h3wV+Xd2CFOUVhZsCw1wKedwWpYDpUvvtC0BQQWFxe8hNq8gC/pfDgIFwAsrfHxE0CDjkMg6wGfMO4NnF8AAEAASURBVNaMxm866iE/HpP78bbqA4OzljF3h8jO4xT8pAF8lknys/cNhKXh2Io0T6vFm2hW1aB8+Lx2WGqnpma1JJdcGnRuAjjJoi/wvH7/Rron943VO9/qhkcAUw3HisxLe7gMcLJZpm3LPs49L60GGAMM+4ZCHcg6AfSKHP9q+iJnFGcY+zMrja8P2lItflJ1tiTzEqes4TpvAGDOC+rjxhK9kj6n5cMAzV1ZBiHAIsun5AHonG/Sev0p9TkuW5XWPyCYFUBoK18VTBs3dXOwmTpyQNtVfGv1Zrp9+7r8nG/pK4ar6fZdfUDm3qqu2wDpmAS4LiwM8hCvwugJjvajp3HBvXZ8lmWPMoWgVpH5wVs/ZbNutO3HuqNryRqP3zg/3GPK0wF4zenGAsbR97mmudkTeIYPysoh+kCkRO1saz9uOh3KPh++AjufbzX71Wv50zu57n/qXqVfPr2aXgHOuWPiqtj6cCa9/cNO+rN35U53Om5PzsiAdFlGi7fP7qYb63vp06+nZCCYSd+/0knfe62fLizpSve5OHm6quRSG5mzwVNxJTpy8gR+XInUnL7Wkd7fEk4S8Pj9f8Uw10r/5X/eTx++LwNXnlcfl/3zLHc8AC3wsaUlr9bkJ4qPJRNxPGoG1LGEFGsNa0ID7vpCAOhqso+eMhi084QHjcnQCGnMpjkF8DgIdcJB6hCFeZqNpsrMVTvYmE4RHn9X9cGmVt+A6/gYfDrqDBvyhWX5rQCaNVoqyfwCDtfyHKVmASfJgK64ESAlUi2h0vWin0AXa/9Oa/UF1NZWx6M9AD2WUpvUl4Hi8nOFbrDdAkRFijlJ2KhH9JTBmqk7nWhDgGiJIeAXYBHrHev1EpChAGtulMJdIOQ0waNsguXBwqTTcEKhiaPx21DS+DwxwlUD14kIYqj/ba00v3LrK7kyXBMYk4+y1FZuVFAELgL70olvCLHyyxeZvsu54euM6CGAmWjFHzHRH+DbQF0HnjB9PkkjH1DuU+K9zyc3KaDqXJ6zxPJ09jPnvCq/l/OpT9VaNZSgOzHYTCrdKqBO+enrrGgFjfW0d/OPaWL1jlbZWBeAvpe25fO8tnov3Vtb02/Tftvr2vMyo/lpS1kZq+HOhsuOrff0g6iJtEJRYhLGZdg/Soh6hktkHuiy1Cgy91ll9dT37Qct96WtLYFoQLJk68sKzTJ+0PHCIK4bnC/EKtJFe1SbEkjzOEJc/Zu+zBjjPs1dpCmGJWuOGg08jgYa8Pw4WhtThmtZF/H0pFw3/v1e+uBHvXReLxFqWtR1m8ck0SwpviA/6D2tHPXtrYn07W2ZkDQ/d+SidFEfqJrWvHnSAsPuykY/XdMHSL76gg+RSEaMYXoP6WUMgGjm2duft9JvNH5fuiAjlb6M+LZ82qdZJ/oFDAVlPIbomtRkfd4QgF7RJ413tzc9ORlwCIjx2JkPIszqNyNXhzKx2RqUJyosRiWgvqJCgwqOdeF4IFJ/wk2EydATYrYY0c34lamvAFXKBNhRJhQqZz9KiKsJGmYc14LzS+2FW8kv6RybUFZMvtIWn+jhfpg6ySpgH/BRcanVVcES0dvibgAdBHAupLATPrAVk1pBUJTFYq3+p1/IQRY5lHS7USty6DgoIhfQAXg2iNaAUt6ERTdePUJXNHUanEjf+nddAGh8qAGArAFBTQ5VpCTkfRYLXiZGFn6ZnnTnQVdLd+lBlwhm0NTqqaKKkOWQaahjEAZy9gWMO1q27v7tr7z+c0tuHX1dzfCir9iX2UKpjPlqyT4Nvnwpj/7Lp6RZLQLd0mdZE9ygC1oBL1uROSGq3y4hEc3tRY+cB/VS0QJ3HUQT7dIZldsMfcargYiSLIJdovKRwX4Gebx/i5x7elHRq1bobmBr715qba6HfALkrGCxpSXhVtb1VcEtvUAo4Lm+LlcjWdd5bwFhfU4QC8E51h9digkL6zeScENM0whQxYZICWQ6pyQcaV940Y6sCHEZ5kOWxw0BY1b5oa2ck7ba46FDDfBnvllSUD9cb7g+BvwUFUuvt845kF4KcI4lBmlhnEtunNBHExoNNBo4ORpgqGLUnJG/85/9dDu9/56e4vFUMF+r7LhuuepPCVT/7O1uOjPfTb/6Yjp99tVkWl/bT38hYH2WlTtEFOPN82sfsiL7jlwoV9Z76ctv++kPv0vpD//cStc+iTGqatzzE/Pp1Kx20/69bb3b9XlK//x3wol6enDmlH46P8xKz/v8PGrDjwGgB1VJJwbT8VhYn5XcyUBO2mCi4wUtVgtYkC/ogqypxAFlABKDXwMDz3Vm6klQnR1lG4wq7gkzV0l9BVxz4cDHtOT7IgGUlPIkchEqqCDpgFYHM4ro8DbAxXCajnJ56hqEOLDMQxlMzRbHsgZ9STGrEDAzKnIhmdssXv5j0vcv4IWtmnrBqt+W7ZBCCtRt4OyyKs8VSpZ0DwlW/4BtQQdwBkTPyl2jx1rQAh72h85KBFATxQqNu0j4Skf9USO1Hh4KUKa1VgJ7FaSs26lYOZ/UAxg1iQhoB4EUNTvAj+KAd+Qu+cjo1UKQVfkuFUV1VA/K5Z8X6vTxkH19RIUbP9+YKYOu55szF4F/uAawBvTd1fATnrJbQLi48MlzwKndP/5/9t7sy67jys+MnAdkJkbOs1SaVVWWyu4uu9tey162X9xPvZafuv9FP/RL97JdtqtqqUaVVZJITaRIcQaJGZnIebj9fb994uYFCIIEAYogiMg898SJYceOHXEiduyzYwd4U3zyyJSmLtBLdZAwvMB0MSLeInF0WCbqxLc7++KsEm3y+P7UQq8YuywEIZQS9eoDwAWGZe6B+AaL1xswyRJ1ZWmJ5lbVQX1hTyjc4+RIGOednXZ9c6tdpy67u7VpUjWeIopYFNGkoviLd6TwlKMxftNaf3WLs9gAdnLwk34qhKHNBGDd+vsrdF2V4G/FJ7D/JEOlCE493NQihLPN59ycaf2ODnLoSgoiWoscJzgePQub3nfIJ8SECQCCHdn+Q926+krMCdJuUDXtafkdE7M9co8o8IgCXzAFMmy4/+MQyw1Y22Dfj2P0pOuPMtueePf8Oe6ze+0vfjrXXnlnvi2v7LTvPMdmWU7EexDc1d0Rqiaj9uP/MdXe+Cn7nN7BXCwWKnY2mNeRx0UuVkPfg4Du/cVBRoQ6Knf83V/NtFNnOVHym6P2HVRxTi/0lry/RX6e0O6Rga4KO9FlcmJSl7EoJoB5C0bFcJkIJ7rlbRlojz3WckQxbsY5AbvJTWlTPpXDcAjZ+dD86VDD5CgxJsncJ1kDE066nrTj1ZnLnmYyf4hrBsopJzOuvz9XlEmO8+kb4sdenyvFmKEogBO/xFeSAO14jhN0kEQII2odjAqxLIHYUckjD3IGictAgo7oMdABkmWknGNaJMbiuaSxB6holcPNaSV9ri8KMsw+h3GGDp2hk2mLSDVIf5TRmAxJ0QMqdSMz/6CdTYnq7IqDdRR+Z2B9TpqJ+I63PKiMqPmsnP1MlZLgLgzx9i7TbZ8xIz9Kf2WUhHsE86WU1+Z1eeP9IywdYTqZ7PUbqCbBMO4OOv6eSrjCJsDN7R0uzc0VLPu2GwWtoxvethkdLDNfY+jnJzFxZ90uXd3ANFu341xt4eJlzY2FwNrg6Ow65VEG33j0ppF+a+rO90B1KVUYplTzAEeP3RbPWZhL6Vg2sMvkm/rCN8BzB1z8SiLTLz6zbEoUbnf6hiqTXxjSULp6WqCl0G7Q3fdUaXSpGomctCVnvELB8Sg983T8k6ghRcrq5eWhfoJTwoWpE8fu51Gv9ran92lPHmzvPerkQU770A6jgZFgmDV4xeN4VM/jcQk62Ta9rr5O5cZY9YBH90cUeESBB4QCChoWUONg2rqjc3pYwZzd7NnWXnp6nzFytv3uvZl2buWwnYEBz/zRB6M7Qrq/kY5f2zDOFy8ftV+/cdT+509m2s//O0KanzNiMpbpJobl+1v4gwaN6h5hnWPrSmtv/Hy6/fhvaVfG8K8/i2EEbEQzZWa+edDQvh0+98ZA0xGdjIfm58EJ1jClVEyk9Ga8mdy3kX5tcV25DrOMRFqmI+odg7rH4gK6vlBO1Y9Ip5ns+0Qv/JQC8PT94QVwss4ca5nWbgjXa3im/8ocKVbgkSaTvIgG8YLpZ+t6rlvgBpA/hAWOzEEvhHs4+3G2JOo4V67+OyBhlh6Ep5dhLPN6GAOjwzCjE+JdKxLT03y2glGWnp7eNuKTv+WowuHmtW4WTTgWYFXi8SbGAy17cBY0MGHGzTEodTqGKWFT4S7Hdnv6oEzGEdJupdVZ6JDFAUqm1DKqHJ4tRjTi8eE4bngivxJcBkFM6Cn51v6yMMOgW3lwMU1n7heInyW9aXT+lupKlW0+mXw3Qh6As8z0LndPTCxmspDxV4mqkomOpHjbN2TESHzcN2AYDZMx28a824467jCi65gSVHXgXGwyj2Ij+iLM8DamC8Vs7cQin6BWAmdTO9OoSsgQaxJv5cRC2kod3XcuXG/XseXcGTzrpgrCk2fF+7BduLKBxNiT+LTSoaoNRywPdqCtwxX07S9e22yLMPKLCwuJX8Aqh+UYL5MoHHGVefZ9K4k0tOe9Kga4aAniwX1ovTz19uv9QUZTmOJrf6sFrn1vMleypn3KZ9zARN8UWuVWqwz5gdufbR0Bp6z4C1ri8+MIwIFAB2UruuOzB6022Xlvf+I0m9TRl8nUI/puZ7Y702wn7WVWkSnZwqvAR7+PKPCIAg8WBYYXdvK9vROCTicKab73EkIMxJ1//7P5dunxI3RtPUHWefNOue9fnPg6pip/2UJt4f0PD9s//mzU/u6/T7ff/Bf4m/mDNo3kValz9qEkw/0r/0GGlK+bnDJ7+a2Z9jf/ia+LW6jD/ulBe+k5bESvqbLze2qkeyTSPTHQdkQ39CgBkyl2Yt2XgWEyyuTLpC4z49xkXDGXNUkqafPkMU55TIfuDHWOSGayj1QP28dLMNZ+RnazVphFAAnLjpmZULgDEQwyUMGZYV49LCx9Mh2nF07Sm5I48XMCV6rnpbPsSEsBlCJNR3ivS0Ire5UVOMlqqnjMZ1n1VHExNzdgVyH8WsZwGWb6yicEo3sk9wFYMWM93FTJpacnCVyfhdJhKs1doAEtLzHQVwnuIrpmu5j6cOPc/C4nPXHJOO3DrEoT+EL5k5vcgEpwHUcQWPSt9nVRtIT0cxk71MtIvj0FUboKyj4SxlmmepAyOwDKQEdtA7+wJtU3xDUb/7hHWi5+MtNe+CORBriw7YtbV1EbUlEdONJRxir0BHC1ZWEuPlp6WFtdas9S7w0kvvbVYnb5HEh/xBpdFiUesqLe7SpMsgd8zPAenIRGp0/uR3ob1QPilzGJpzWN558+hxlC4khju0VCTbwLimUKXlhcgN6cVgiRzSsDrSqJfXBfGvFerCDNVt/XhWZnaG2XfTYG3kCC7WErSp9jHWZcTyYU3k/IeBt3HGjdffIeN5yuKK6JA6dqg8lUx/l7tgkIx0FDbzxOLczjJxP28itTxVUP6elq0TU74GOfcaHiIsc2WsL6iZcbC43rtclCiTy0NEEdVpWSZwruoeO6D9GPbo8o8IgCXzAF+st5F2j4mq8hzTzFwIp1fWxFj9r1Hfwussdv+10AvMukoqxq2A3my/euz7TfvTpqr/1PTub7B3SdX2Wu5byFhlWKfEC+S9hf2uS9HR1kuVw0HGzypfdd9KH/P3iNa8x7/459R99wT8vvo5XunZL3wEBLjZpQ1Y90sofFgSow0ujnhumidzh52Zlr8iqGpjMs+QQfCRcST8yK7fD5e2tuP8yzDNbK/kL0c/3MXS5QChYtcOtkl05rw1Cm5E978ZN0hMXlZpyxPCQRt2FiNVrmbF+88C9QL2t267xL0OAGOP3Ruxl7ueUNTr0Mk4xz4Sn6HN9dKMywCtAU3Sy9bIblWtl9KAbfgzamYG6U2PqaFpNhoXUJu7tJfw/zLi7wqoMrzwxM9AiJtIzr7Kyf/I2GztBu5XA2Ul7IEsYVEiWu/0pemVX5FtveT+PiJ8Ml8xkGGunzKqchnlhiYQQTrURaqToFpP/UYgWIBImRTJCX+UM7A3EyzmGgKS8MMmXnGTieyq2/mGglqOLPZtfL2IfmpQwDaD3JYx/AO3apEk/ivwCjfErdXy5tM6sHrNlAPy+16YVQWt3lOfqpNqBlitWvFh+BR90GYinB3WSziHXjgfasci005CVsB+a3Kg3dodcsh6XMwFR7xLc4qhayRzq/JKxwiEgYZwgs7C0k3lswkKqVeDriOvrOqnqoEjWbFUP1iiBsoXfjQpCiSv3ePrM4Tro7pTWdqSff3p5+MmwSnv4xFkNiyzwQENc0BxltQd99FiDTTJgz7LOg1xBH4qT3hxy+aN0N3q47rSpTYdYTfHXvE1QKEQaSf3UJ8qjmXzoK+Kr75XQZe6PLC0g6N6bbO1dG7aRnJzCGO/7fT+c7o8jNeecGjPHFq6N2BXWNS5dae/vCqL3169be/dlMNs/tw8xPMycp6PvKO8+j2DxsH76+0M6+0Er4w5fDjNu3DkQPILHugYG2B3LRE+2sMjkzMHUzSi6ZrGS6lA4pCcwfSWUuZDS66kOYCokEF+NEpivJr1I6OCHc6SM2R/WJb3xPVBFZFHh0cjRaywXKmgzj5rSZxJmcE5jH4afi6reC8mIZILDAEhoMYU9EWHlT6pDJkP42VNmWa2ivu0+y5L0uBaN+BaKvPwnBJQMWfznUBObtCMsJMpsUKX4ykCIkzUM2M4oOP+btGBRBqirGfpJLHfmhKFyZtNvfhzGB61NqfHikNZX6LC6jantabHDix7aOZBvGTbz0C1NpsjrXmsk7wabFE0uchsh9EbvHMtHW3HTlyyM/wzMRxfikggkfwbDavyJFhuz6xUHnzXBxkdlPOjyXV1V7KCmsYZZlWsv1Oa4j4TN1cyHjIKzurRmkq2oQ1meB+hyxEPB5F6nxNY733kIircqEgHtdxF0GO7rm4FEMfRXcWbbUgzLFynSzmi5EtePwCN1nkkaPWSl4YLGUArctNkS6UVCVkGuaqFunfNU/eG/sH8IpKWyqkjr2Oldlj38HTaRCWlJ4mTiu8OpPiQx5qr9HLSSv7jjDcdJbfDeBpZCQfQj0VgG3ZDJYyqShKi7tjVd6OG64wLZtR0jZ4waYZkkDU5mq+y048qiqTN4jEid9QfjK/Rb96SvUnO4VF2pJI57in7gb0MMq9aPfRxR4sCjAMM347TVq73zAHpXZo/YH5/bbKjrS9vO77b+OV74aXubt+X3mYzpfD5Gmbhy2t95jg+Arc+1XP5lv7yN1Hr2+V5v+OX7cOcnCH2rmeSAOmqayERGmhT9zjpNv4IrKCtE6R+e15zho7IXZtnYGnudLtJnwHhhoq+2kA1tBr/AzuRPaHJ9QZYxlCjxxTYbYOMlkR4ulAeJkvjwkYQbmxAkxUsaeioS9c1YZdtoKCbNDfJgO0vuSmEYHmEyCYUycEBNaaeM1wFnSCycsfd0etPnjTCLPpJRXfWMLMXIcP+QnsXj0TOEjhqceap50nspSMASXdPz6n5sMBZ6hqASaxjctCWRcfawMphV7bT4P1SExDAW/mlyLZDX5DAZoL5/HOzmTia8Dj0eEy4ia3wNWZIBXT2ArCKf08wB7lTatxZRjMwAMpwwNrZ5w21Vmc9GFlRJc4cBQKpHuOs7HLWVR1g9o0iG3jni/Jyo4KeWlifg5jhMP84U+xnO5cXAR6TdC5CGzqQZnmuqeySgkyUU1oAH9mDobpsUPpdGqThiuRFqLMm4K3Eb6q86xKhSHMLo5AIX6RRJPXqXH0/Rz4URSDiwXGOl3BPouCN8l49zsPBeMOZf5lH6r02x5urFJus3tlKd5OnWxtUlu37De9klprPnIqj9t4cIV53Mc5YrP8XOeCOl3I5NyCDkOt+2dBHyvfTekR9rQJGN3nN6giqowwY5jU4Z9WVzEv+ihJZO84zybVmn6vJ0Spx3rfWlqO9Aey7TDKfTQTyKddy+F4494OR5lH4HY2ahcou4YFEsqqPvssUnD7uMiJWNSSviq/IT4NYZKA4h/HQtKG6ht2V2cAJXWLfPZewEmZI4Xbol+6wLSdurXV4Vaj+r55aGAPdv+ucd+nmtXsHbxOnsn0KfY/T6WiDi63vFrGJQ+sVKkTlrHiW0G6Q02Mp9AqHSC98Ppapt58PzFw/bqr0btzd+M2tvYOX73Dcr9gPJukPcUl5/L3DIjYg+DC1GOK+LwGjdIY0bU94jDYxH7tD1EqgunsaDyJF/SYY731zmC/XxtwJfBntnECscP99o/+1+m2gtP8pXV0wmPQT/QvntgoKtebo46dXIln+ad2IphppcwmeskREmXaxLT78SrhQ4nOP129DDQJM48Zz78xgsloDpjxbPpj90wORIApJTnZJnJExhJO5lhyFtTdsVbSgdpvkU2Zs2Alyom4lW1MEWlS8gYt8ppWJD23oEN9w6hogjs8WYZroqrEizlAJy1/rCOtQePNl5CwubnobLSYAomNJiKFaw/yIx2kL2+8pWhngFck+VY1ic5GZBSu5BhRHIKGBmMLBjwywiWlLdKhhxUv1QulHwmnnLFI0eIwzj3jYOmrfax7W7FREAV9pGoW5JaXtLcNmFN8lL08LCksSYzR8r0IaQp/Dtog5Xiqhqxg0TXjYQuUtQhFo59XMmvTK19PebiYGZldLXLLN3mYeJkrtXjTzHQwbS2XV80+CXGeGm8w8a/Iy4H6Hkkz3NYqbFMGWM3AorPDpBckG4g5V6XeeZyY26+6KR9pT2MI35NtklrVUDCnPOZ7JDPYtJchAaq9Sp/8l06DakEMQ0sdfcQuqTNs+HRFUGBvw08IoBQv/oKIKjmnfXeS7BNpcnMjHadS7rsJkkXLsbtQn+l7ofQxvqqg666zQl00L00kVmbZgsN+6jMtnQqhpzSLT4LU/FnkRyKiN1XyKUJmMzodOevTbUPt6ba9hRqWjSja7UFxlsZZvbltnX6zyafv69fJo7Pz4t8Fl87OdUePzPFuF+L9jTuV4h8j6r6e6RAxocML3dVqNkYMvkyOGqXP0DKucgpsPTlu33Tt8lzfau1Dy/xHjBazKwAYRcmmnlxZYGDUN49bL9+5aj96h+n2tu/nG3XXmf+2+LFmWUzOO+SzHqNcXeF/pcjsRM818h6InUaMW5Ps2H/xOpBWzl91FbPMFac2WunuC9h83n9Bqo0v+SLwHvwEOZx2mAB8gSnRj6LFY5TqwpF+tz94JPgnhhomYUFGLtnnjjDxL2PhY0b7dKVdXQykcQx6SupcgIv5thu2yVVSoiQtpFfKw+mqSN6lfhKPPPZ6/DLtHE5cftz3PnLb7iXL0uks6TIXD4kHN49YHafCY8nc54mHEwIE/Iim77gXWFWtsOQmEBw5gKjIb13Q1kQJMb+UzilrCQb0gZJi+V5yFbwBCG+PPEvA2W8Ws1OXBt8Eto+xGQaL/DZtcVYWNhgt+ouzJYMrczzc8x2UYUZQFsE5IK5EJbMggEAIxDfp3aiIiO8gJrFrQr9wrSMzkxbvbwJ0iH+qohFJwY4qeJAhySpqM/11+LEIcXyIwNWfUPiuHArpqoYcROLDkwa+vgXsYjx7gdXop98cnWlnT29FmCbWwfErber2FVWaummxTiyq86g9H11dRmrHMvo3vHZEOemQM3eaZ1DCakbY2/QjsvLbErU/B1S5KOYt9NsHZsRQVLm2ENQZBitg/rN11HV2HbDnMw2f5Zn22uD2rYS/TDqfiOjHj77HsmAi6dSbPua/Yz/cp1I/fm2wUKqvm10ymLE9H3Ilwjg+96GQU+pA/QQX1qXE0p3+jVf6NcBTxmMWhJhSpqXUGFZhQ5r2KNakSnmq5ZSbhcg16QJdL8BAy3qXrpImqmfCx0X9RZt+n0OO9L0n/awfbb9NaFpGYu0j9ZMPJjB0z5DmwL3lfh1UXV9b7q9d5FPzdcZ81BJevHpnfbdZ3baU1gHWIaBZghqF3Za+/Wb0+0v/3ypXXyLjbKnDtof/tOd9m/+2WH75hILHtvhK0GxR5X8Qihg53Ks8Ha3CCTvME4M0tG7BbFO/3+FA0/+/K/Zf0J///b39tvb7ywh9Gjt6dOb7Rf/Y6r94v9xnBs2iOOdQk1ENQWtTXxpnbTjyhgLsyvPNn7Wa2PAmzSk7HrDt7i/6U9m2wvfa+3r3z9qX/uD1r5x9qCdXfFrAOPIqwftR2wcfO/PEUhpacMycI7XdeCYkL487p4YaKU9p9ZOtAvnr7Qb6xtM8ptRAtcMl0xvSZdltph8mbhtCMkjAxbGLo0D02rjSMiBdk7V/iVwSCMDZtCYvINHwsvAGpk/AJnUoCQxgY/cxKmzkQkVNnEyUD7rlwGSWZJBlfHx87yfv5Wcq14Q6xkpgHLMD2LDsiDP4SyBI7ABkxSe8gjud5PoLLnCSB0OWrgyeiVdOwl9T2F5IZYrWO3OLRRz7+f/xUjf1OEUtypNEB6wonpDOcN7CT3s09+71PLmHMIXZggxROm/9XlAYsDtZhi/n6dOyxzmI3MKg1X9rxjfql/RTjq5KABdGDkYMRi3qUguqRmjh3QeoTOywMEdJw6hAUzc+o2t2FmW+eoDfKTCVE+LIrb4HGKIZRg22yxWRYA1h0rJLrD3YaQdeJY8DGRoqevAvHKNkxNvwKTHFB0bDSlrl/dKm6HiLD4y2jKzaXuexV/ce4vrFy8Zbd8SGelp9ym4uhKGTTC8H3q7q/D+xL2nHQcp7U5B1beBocrFNEy1eOUtSxgZmEWkaRZbguIqnEotaBaJhRLmUu/R+o6qGmUjviT0LBCH/j2NuoVtUIz6GJlU4YBFxc42Exh3A/gHD73osaM+dGphuegG3uIuQ+5i2X4B0LzHId4x2IfaZ9+4sTXTfvkb6LKw3r79wh5HJO+0cyc5yY2NVn6ezoZWusoTMAM/eJGDDv7NDtK2Us976lkkSx5q8VBT6VHlvnAKZArhC9IeJ/ftzrR1VAMQZdydG6ahu8tUqR1HGD7aaaSnLz6PjX8kz7tXOEkPhvo8kuY3NjmC+zVUElhpekJt9PBqavksxX1xeTLoD8UPQ7sjqPyOCwVVMlBObFOslpdOoRLJ6YGLqKasPTbVzj5x1M5iJnD18dbOnN1uZ1CROYmlqrXTfKHCJN1J9jvBV3MaLhs6lxHkoBLmZOkYdA9N88XRaqLke2KgnQ2V+l7FNu2lS0jr+LTthCVT6VTZCRRmOZ2qWN00TKU4npyhpBNvkgHDv8y2AilwmRQ77gZ3ZyfvTVHBQ57J1mGCV1oWXAJ7AgC5fUpRCVa2JuPBQ/CquJSTZVflNY2TO4KcrMamKKMXWSnEqzDrzx1vmR5xKdS5T9aZPKbzE7afpVfQ74TfStp5TPPUggQGGzrPT6tl1N9YSwGuTIzMPn7/E8ZvMTIDpawMhSTaJHfpxP+T3adJ88lQ7jVFmGhWaXOo5kx7qp8S+ao+oG/G0XZQ13kRiw5rSJFlrtTrV1XAcLu2ljBkrue35yKF9oQ/eOEsGJXqaZ4x0k8knoHOj4yfzKEtFX1nyneBZseRYRSf3cP9LEAv+yXn6nqYZzcoattZvKyH/S2HDsEAHjOSt9RBgtm+XKaRYTSf/d9Ld8xEk+5WGiTFzT+m0uV4cfuNcLlGwE7dfb8YbO1z0cXWR7zly6yGaQaHwqXClBYX84yKBlLh2IBP2mLLrJXl1tco1YZ4v7IIFpNJVwz6oSo0fA50FEmthrJVZZkfpNgy+AV1yM+zah5dFWYS6sPut4sc7E215x47aN97ftSe4qCJRRZ98gEZOyCAe3xP8pHkxBOtPXkGG+jP0R9R41hGEneGT9muEW/ufQ871R7V7/dNgSne+yO+oK0fzPBFViGGvdOx5vfg6NwK0w5gIOcO2bR9sbX3Xkcl5LWddulX4PMq/Z+jwqexPDZCqPKldB1th0YvpyPGYU/AnaduiydgmFlALK+hliFjfApGGOZ55QwLi3PT7bHHp9q5J2bb6rnZnBZ5ivECdiUu09DgrwB/e4GTEV9O/z0x0DuYj7pweZ2VxXYmOSfMckycNITSOiLo6MUg6nNCHXd8kpsjz1DaeyZofUzIdfW85CPY9Bbj5fOkS2MNcSawpJ4mE8KQPq9fzzvA4ZbyNRl24cJVVlscqMFhGpkgnHRNoCOfL7DOz8YyIvLUYh92VMbVaK8hj7j6UI9EiNsQ5vd0cwqz4ArMzLjcWdlCi0jPyZR6gI/S8NSPkC7hq/wyLVV8FUIq8vm5XEah20q2eNsoaXgIOpY5uAGDj4T3+C/TvdfFNgmdi4rDLzWR9tzCWkIrmU0ZupMry5DHtmFMoZ1L6gpzDf1lpnV+sTCvcG0jmTxVEqLCBGdpnDRWD3ebvsUbkLbYxG9emUbbxM2BqkBdW9+K6pBMufDIiupFTRri4fsjM2p4ue6pOvRQCza9zn5KUanLAUd0y+BPTbnZLrFJc8efDohE2fiYxAIXFyXOpQpzoOoIwfYz+5Z1W0I1wk1+2nd3U2reF5CXxp2p9s2wFtbJotwfEUCGGjHUY9J8YQ82vdGx/sIq042TvYxEkFAVl9DMF4NAGcS4ZOY0Q9pi302EPJviq+LWlg/bD797oz15+qA9tcIXFyrP+uMjNJBcDhUnmC0WH8MnnaQrg+NxP/yqUO1RPX//FLAHOj8Oizse+3v/efQ/YTt2OArtMZadxxzdz38x037xo9bO/5xNgzzvbvjlkHeARWcdhMILYb4H1fWBjbvsTF7y7vdRmrrJERN8zlHMTq39wXx74tv77flvtPYsh9I8z0L78TU2T64wP57gXAcW0cuoYTBV5mvrNJ+9mapCOGaCKkM6hi7sp0Ddg6mn1PVM9xC4e2KgZRpKKgQl6NzOT36O1qUTcpcBKSbEF6CuHi9TV86Jq9JV9jxVXoA6SeuK+RZGtY3BYxDm5zmTMp6ublFzZn1eifQp+DghDHgWAun7hojjHso6vDdURuaVOxHy8+V8KASiQxueQWmgsfnhPuA4lJXkRiUreBJQU7V301oI0T17nnyWDkbUVTfCJsOTl/wFgoQFU+ZagML0i0DZpzyASWNP7Ik9mDc3S/q5vDNkldbiqHbRNYUHjMGhv/C+bC50kw7+UYH0IysC7bL4GBjVcd2IkmldRUfZMKWT2dhmXyRghnzSD9l0Nguuw51qjcN3QVOOqkwoXVVFwE2IOyzElDq7oveUQ3V4ZRK38W+gF+3hJ24M3MSKhxLnkoYW02554qzr74/x7h0oRtF6fdTZHewaxuXixwXAKLs9lEQ7xMnQSpXu9I07Ug/01Q6sdDXqWD2sJ62erLqFi46cJqpkmWcXCNJR6b02szUJaF8UnqWmHw9FWmq8vXjrzZ/tI8PvJk03bHpoinrhcUNa8xWJ9BWdUg/jKexQSxu0Czfe61Jl8StE6EOWWORIp0/2r8SPpJnBssba0lHjHCDa6c7Vlr4KE2hKHB4ADOS/c8YvWSw1O3Y85Nnqpi99sXWe8lPnw0j0Y4p/rM9Rxm+th3REhNDM87QNtEj7fGyuu4+QvO4/UiXj2vWj9sbbo/bKT9GB5rjpS7+bbptIoA9QJ8lK08ReHYl+N+yLdh0X8dA/4KRe9hHSdANnPK8DPnlmmbER6fHa03xlegZVrqeO2uNP7LTHTu9EFWOFDcMrJ5kPOQH3BNLlWdQ4NKvr3DEbQZ6F4Cjj1qqznaidx+rGBTYhX3xvqr36ymx7+02+xKKOKi406Zfa3RMDbc0zwdObo7bBCz7RVsTS7Wtmwz/EKE0NofmRURtIzrzKAwwNd1iQIix5k5+wTLbAiA4yeZzGzTJ2pklITdAZ8IxM+b5t5vioE8bxhF7JnUvHXOSQKbdxXQY44mti3+RUwPDCWXqUhK2eZX5KB3uYuAMCXLlLA3H3LwHWm78xbbMgEClCiVNFQ38Si5MVGDugQWMlhd2ZZ5/PSxvbo/bh1d02mmMzG8yzetXaYu7SVbMI2ip16WdUBnxZqI8MkC9NlV3QpXNQ4G5dEntcdEfhvtxjAhEJqkxVGFlO/rPw9A2RuI2T7gcH++jHbvNFwU2hWr/AwjaqL+oEH8HEmqb619DtfAbWHP16CUZwn4EmEkwCs8LO6grdWmiiWob0E4ZOOC74bC0P43EwVorhAsbPfB54ogUNnZLPWNXI3oGyqGE5wnMjnHBuqhVFRMJt+6aTgi9pyFKNIFDS2KtuzWeUuMnMTtEXUnfgxKLGZP6AAEhVx2zVrqRJOb6dvk7WM3UtfKWpGyTdOOldk3PWg4QDLhZi3ywm1nu/UshQjoVZdOEv81wnDcbyiMwziw83byZvMpq6nP3CTZSQOa5KzJsUnH1NDlWv2VflxvfQNvFdAq/Q8xhWQXjYf32PitbSk6b6RGe6h9X5rronKq83ldRiwy4byNS/XUBvU31OBQ6fgkz3lUQhOf1zCpNsqih9pZzVtU1gtq5wIMk7b6KmxYl1tsMqktCzpxBjMCd9mr77SXRDdtGus8EtB6Bglu59LEW88vJMe+3vp9vlnzBeLNJBHC50ck4OKOKn2TVwGGWwJ8CwL9LZQV3ock1BJyctbWHPYQd71sXyEqpaJ7AgssLprat8VTrJxu3HoeUzU+2Z56bbk89OtSfPTbH3wY3nAvO6xVlHBgPHg+Kfbonn0TbZRt3rl78dtZeR4H+AusuF16Hx2/CALIcySXZ6fjT7lyLknhlo6SjTFQYEiuV56EEyu52xCDWkKFeaRMIP+ZKcZyfA6DhiI0smWiaumO1qwBq8izlwjuyHUtgGgpaRVTI3TbnC0omXrmAJP+0eRt3wivYF5GI2CRg+RegTl7ErMPU44bd/AbXwluEBGXEvnVk/+8NIwEx4wIYbwVICebyXGkb5A1i44jHgIrCp2KEupqUIzeqN+ilN95NJemHqKs48WyEu6X5Me+mCZYe9mXb52gGr+G1wwsLGYJc5AxB1l0lWsiq45AXOMp/FPTlQO8oy3cGWxUjRtcpJu/kWkTELB/FPhe7fj4uC/V1O2buxEYnk/PwiZnFOwNBjMznMZkRjVa40GJwLnI316+3ShfPt6qULbIjYi1qBDJMSzVjRGNL31rY+WrrQZJ2Sz/QG2lbphxtFZOBk7NRN3o9aBoURJ/Or1HlE2utY3dhkQJURtg8cciDO9Y0b7QqWNNx4qKQ5ViHIKqN+gk2GWlcJUyo+ltUr0e8EdPUEcayvPw7qMrMmSg9I+9kruzv2mcLxdFAJIY0SWfuV7xC9ZGh738VSyxCG6eeph4uF6ClTRyXM9mslzFr36P298K/3wNJ8tq9aJfFQej7iHVXqaz8zfOx47rj2YI82v4INKTdWatLPfpnFHQinjw+ZhRWcGZfTFYEkBWERU4ZrXJ0bnHfpA7XB2boNlkkq+iv2O1CZW6f3V4wA6XDOJfu81+vY991gcbntHMHfdcz7vf8Weq6XjtpTWBL44x+wSQprAvc8ad4lkX3XY/Z186BNY8ngq9RYDk80BWMt0ssfTbVrbx1xPDdmOtnZ990fHLZ//i/m2ODHGOv7/Vk6MfnMus/C5L2LR+2XHLn9a5jlN34xi8UZvhheY97hCPCG7q9fsBjKyl03HwWiyjB9uqz+TP2OwQem1NN8VesI4CH5fbvdWkeR1xGOFcpcMqZTmN0bUSfECe2AeXvlO6P25POjduaZUTv3+Kg9fu6onTvLhkxMUa6ssekPPWe2W8WEHAfhwgfQz8eVrSJu+h3wuBWdnsbxmGmj7bAg+cXfzrcf/9eZdvAh5l5dkKIqkmmHzB39nu/Ldr/HscDJ0bYr5kEGwlkxukoMSJmkoIiTqKkqThLR9czHTxixisoEGIqGqvz0O8yOXhtFl0mZh64vXcECEShMAXBlfmvyFow4OSoGigEJE5ZB4hIm0JcVf/2Amz0gWfKqDHFmSqKKo7zS56w3Sz1NYckghGnnzfZzeYULu1zhNH6YoIdh1oMLepYkG9g+io/hlB+zXZSdz3pBWmaBOF3HT3+CrCQLEsIdKLZ2YdSQqmxzl2mOdJWkgq+2MqNZtPPKgR4wgh6gYn08CEVJdOWphUrICi7mzUBW2e/77zamyK5evRZ6nmAF7aZAGSIPL5GZmmfj3wKMtZY2urPdZaAvnD/fLp5/v63ubLeT4HmR9HviCwNYvWvIQbjM8zXMxl3AXJ2qGUvYZtbWuXq8hzBflzFhp4lDJcibLIo8ht62mXOzGhJY7XbbFmUrmzRITrVQ4yVDuADj+fzjp9Jv1Iveh1HfZj/BNEy3zLmqTV3Hutdj8l7vWbW1TLTlZKFFG4y7gP12cHYZU08EkZ628x2lLNtdvW37rLDd2Lc8v8CCCb1lJezgm68USjJI3E85LDN69gUXiuqFy6wSz2V7yCy7cDzkq4H93XLqfScPaXUUh6u66OuuB88cqGPN+wR+4ltfQKzLUJt+G0DksYcNaayji1VzOSYJJwt1wsGK16XietmP7l8hCtD25znm+bWrvrdskFrC5BZqLVpeWFqhvz192NYx+3ASfU/WuAhnoM1Hu+vnSjCH8zAcjNkycXFDH/9cC34QgFNPyc3Bq+3yrzHt+naZzh3BUC8sHrRv/xCelUXNZ5135BHX+TL7szem2iv/MNV++3ej9gGqGtc+nGo7HoLCfDnteAEebhIcKTx4drY992+PcrjQBioeX/vTXQ4JaeSbam/+eKpdeQWgczDT99OE3e363EQfUChxuI2Qh/0m88/NtKde3G/nXjhoTzx91J5FFeMsutonoNMidpaXT8D3cxrwMjbcF7CNPc/hJnyMZgynvtbTdu93/ffgmAIQfiy2D69hZWqXcwn8mju/32YRhsixfNndMafxWWpCo8LKMTlx5+rMV+ff0ukyedkykMuATjQyJL0ZdeZHJJ005jGIwa3PbVFLSEIgWIDpeR43QWCPEyRfwTA9jUZ8JmsDcd5qEsZHnJ/t+nPVx3p5WUKlMd+kq3g/YWu+qxgSYThJx8ACo12YHbJb3qTreBtunjz7w2XHEl/ZMIyu5a7fUTQDOMkcSKdDH6TBPnc66idtx82n7qpeFiITwS8/gzZpT3J8J5vMtUyQ6gcyIfsHWkqAURwORakXruBDAjLQprYK7WMpEygdw/3MPsuBzkiclRrOoDKgTrF1yMY4pYqaTANfGWstZ8TiBnirvnH92tW2fuVKO80SeBlkr5PP/iNDpuWM3u9kpmVIlQZfgYn2pL81NvktL2N5Aw5QybEHeVy8tsEXBVUJ+DSm+gJMtgd6uLDRuobMqE4ps4yz9ovFbY0B7omzq+2Fp86mDS6zaVBJeFQziFfSeoPDUpRul5pBwHzkx75sWdYfFMJ0w74O/aeS9/4sjv7ZJ8LspiPMYhYPCTsMvJOIOsqeXiiz7ELhBIsRbVSr01xSdBKNGxRoFhonItXekC3vWMUULjKrqouYXrN+kVSDvO9+76OkvL0jQppqhcbidmFurKD00k52Kku4cWGIZS4ExgX0xBcuprH+BOnw9/B6zu+jn68QBewzdP22zifmt5E0v7U+184us0kKwzuPoecJf9H20fWU8eAAO0xR8pVIBrr3oS+AVjGTdlPH/QKQ+IKK1J7yLgeZYLa8bXIc5sHlqXb1AnvemMC0/sNLfdeYMdwiCDlsr7111P7bXy60n//X2XbjbwDIAmqKw4JmUXmYQj3Dr7KxRoHqw/LT9IlvHbVv/VOEUZiwe+2vjjhF7wi7xzPt0gccOrh21H7NOLcObtvr4IbENajdPXrH9bF6zq/Mu9NIt2dgAty/IEO/xwFIgl6EOT6D7vLyc0ft9Nem2ovfaO2pP+CMDiTOX8Nazmr6bo25HXDvykGNH3mWGjt7inu8A3Me+r340l7b+JesJ5BGb0CPdXShN1/5LC12j/h8DtnvjYEOQpK/GF0bxAnaieoI5s7BRsarZjUTJwXJBwZPBsDJDCZgPJkmszOhaXhbAh6/uY0zhrD4+AnTUMHjuHjIat5Im8qb4ImkwDh+AhXccYhTrFJj/yqmYoPDkE0poZcMepiErFR7jmRL/th3Pi6q4BXYSsRvMQDktXLAm+GahyHUdM4suyZk9AhKumKiAWiYeEsX/7lbTKoSvH3CQceir/6EDPdbkBiivJnMtkHAGhpKxx108BYHBtpBxY11SqNlqNMSlG+7k4P8/KUsfybKGXCsOKI+pRP/1bU1Vs/McIBTbUOJp+RaWlqGUd3nxKkbSJuvhTlbPXmatCsp2dL7tRnGFskz8ECfUcO6Vjvby2QCVU84yWEoTz12ms19O5HIejqlzOQM9Tt3ZjWqGuov7wJPW8JKqZXYy9xpTSMnFRJn33Zz3bOPnWqPneJAFq6THBAirEvXtto6DPo8ZWlPfQ1GUcn2ux9car977yKSa087FPPbOIMhrQypDL+MdPpm6jKRHgLZjoJRZ1upsoyx6hgbbFq8AgMvHU9hceQM9sY93bJbrVCS7AIwzC73vI+Ato+mn95cDIsGmXlH4Xq/XYDNc9DSAptPgmy6QvUL0S8YBNqIPufitx4T7GbMc6dX2+nVE1mYbEHfi1euR5KfTPY368dsqI68izrx765gDk+V9PhhKLF6e8/x6P5VoIBf4i4jYfz5u3zForv84PHN9gRMiCb7lD7rHB9WGSe0ia2jOz9yXzAFMlT4HoNHv8YDxqfEzXwMl6g0HqGbe9j+/M9UD+Er4PuMTag2KFUaoQLRkHLPYaLtzEtYoYAhfen7o/bSHxy2Z58uM46v/vKovQMH5bh7Fib1pW+29gyqHs+8MGr/8J9be+fnUyy+6DTqRlvo7dxkn+r+44pVDp93WDRsI+Q4O2or5w6wv8zUhQnKC2/OMffBLP/RXvvX/yfM/LfZ/Icd5hyAhslbGdh5mBum6Y91d4j62DyfFAFJMpeeRD3kP/x7Dl36V1sIskbtt7+baj/+b9CHUxv3kYA7h32Z3T0y0NXSdLswzk6IMhF2KEX1rmhcNY8nW6nKf9hhvVyOVTn4g5lPOLrqa/23mJse4wuUi3SWkzwGDM50eSLMe9fDlvk0YCJpyh+y3XQTL9P2ewAVAuO61CavSigD4+Ylgads8SIq+HkfoPd7pelFmrauhBOcdObjkmGz8xvmcxbbZiVcxi+fy7mbN/QHB6gf/JPY54SZqeA4EZhemJ/kShoLPJb6qjZsyUAzs6jKschMIyOmbvThPJJY6HAIcJmuqJ5QgMxXcKMgy+s08YFUCRuoFlSMFz/vt7qcMgdD9REHMy1DbUEyrDvb6MvCTFv2tBsNCVeaq8QVrWWyI8kwLOmLwYREcRYr/nVMupJPI1woFDMZCS1qGjtLHLKDCEt9Z1PIOHv8txJrDz9ZXUbt4/RKrHSsYM1jFQWzNexHa9JN2GaamVY8AR70HVVR3Ozo1mStf7zw5Ckk4DtIroGJaodM8E0UkUZmHujlhKA+s4x09UMK4N8F7Rpbp1dh8GXc51gcpA3I6rvnAkE40iqWNJD4Ko2WBtbLg1vE70gpMtSr9hvaWBzIl1YMMjVoWn6nYy2oh0hSBmZ+Ae4zaStMtPF7UYdaWA9tk/eLlmOmiMoOz5NOCPlCZbmJmIzX38uvcJKFNt4rpJ6T9dHPQ08B2/0ar947V/2iNGqPITV8DknzGgwHcoFxn7DXOPY64oz7yUNPnQe4gr0Rbr1/SpR7NhfZV2n3l19v7W//drr96i84kfM8X1g58nuEHs8sFice/2Okyt84aM89j/77U609/iS2jp/kkLWzWqPgqyUbTN9lY2nGP+A5pJ/GmsWJF1CPWDxsZ/ia8fccJPLyX6JDf42x2X3jdqiORMd5eM6NoVvn2BnnnbBFmOXHvj1qL35zD1xQp6Svao/53bdb+7P/NB897dUzO+3rX+fUv69hTQOVDMsaj3MDuC/ipqDtyXN+oZ9hfkR9FGZ/7QxfPZWzOAF1evQ6fxFI3kOZt+FG7gIalU/9bS8JwE+ng75Ih0kx9IswRlqHcMKridh2JgeEjJRLIMJ08qb1hXXrJFeTbOWrMoc06S0DHkO+ABvDsNS7cIUWE3nhW5k7BKWvSOq49pzUYS7CuFgbkQ7mVXrqMA6puAHicSi4p17JW2mk2QHhnla3g2RPBs4aaGPXtBakhG9BRnqglzgmLsiCi+m4tDwhNoIXv1xG+cw1oKvvNq7K22PAsJ4zrHrdgKiVhV2Y6AU2F+6wOVHVDpnpSCzBh/98slfSq+tlVfnFgBleseXRb37rNdazTgbTEVv/ZvuIk1FbWkY6TUkyWdtbm4F9YvVkaGL77MOcjnhz9xnsDhDdy0DLqE3yY9Vna+J04+TBIScI0gfU8bXPipsSW+mqiTrbXzUNj9hW/cIT8WSeHzt1giPuT7E5YylWKdxsJ446GVLbSZz0C+PGDZ7RFXbjopJipdVzc/PgtsHAg76YBLzFSRrfG1VLXNSIn7js+92Q9KEn5Z5Esvzk2bV2hoNhDNuB8VfF5DrMtPn9umA+1VZcpKga5OILNABjby3GWJwt068haWce7Hu9YWwjSHuTq3oKwX7Er1f3e6ds1WaSDlp0aXpZXCn6uDhV1cSTGA3fQ09cKMfONuTZd0F0PuIqrb+WIxLeOoj4P5LnUcDDTIFL65wi98FMewxG58lVmBKEATLLjpS3dqHqPQ8zNR7+uvmOO6w51qN5197/8Kj96K9n2s/+Cn3ndxBgMJ/NaePYw0GQNn/9n0y17/7hTHsJlQ0+HqIz7P4PRjg6h2bsdmDAPZraqVW5h887qFX49eIpNubN/4BTE1FZ+PBDysIMnhvn4hgg84EsY6hqbfUc/ge/RhD2byBAUEPN6QLYy2dbewFd7//9f4NBfgEptGolWNP42U9H7S/+M5k2GcPFgY2NO9hxXmR+ti/bkW/ty8Hh9/wT9gNE0gYIuqbcZKkwBjz6u5U9YsyHXzZ3bwz00EBhBNgo5+TkJ+dMUhJsTKBK6FQcJsSJd7gkpYyek7hz8fEEyMPgMrl2ShNmjH3LCdv0NowutzzUpG9YyiRxNtuZkXjhWX7FD/nyVD/Bf/w8UfAQZl4/2SuNlGHyxeyMl0hYJ19UI3LwBOnNY5owJRadBN5g7GAQZrjUkTXYTWT7Sv520IO9in1gPjVpg9EwN6zJ7PgWah3j7CqbvWBcxdkiZUYAM5TT6TzQQZSGKx78n9aF0aTYkrbzXvNZageFtNkdDpvhbZXBr4s68pxNZdKdegc38NP5LBPKLfiKkTTpjLcMt8zgQqTbwIQxl/kM0ybSZryDm2Pz24mVVaxubLYtmOilE9jpwZlrjoI83VHrIwf4t+2rxgUmfWLwe1eyf0JpLHEkC9Ms3tlpNCpp80VOC9SG8y52npXQWv81JM2Po3Jw9uSJSJ/tbzlNsID3SlPuiA2IezCtrMb583jwVRjdXUbl3d1dNkayeZHyZcYvgbP0jlR2TEdQGZh6JccrqGWoAmJZr757wWKtWOpRh5kw4hIWO9Tguwe++yzMfO+Eq962jPUcEvuoLhEmv6+K0iz9a366JNdAFXA1g3UCZrWvfTkPRo9djwujTHwsZbhwoFwXD24AdZOt5uX6IT/iohQ6kmjSaSFBXJWwi5MLuTiK60X1csYFD54aCfwl8eDiE1Wf/elAhvhHt4ebAvaF61fQe35juj39R1gh4FNyH1Ye6K7geMo17rPpwA93W92X2g2N6jjLMNLe5SCUf3x51H71/3Ik96swn8wxhwgsnvknh+37/2S7/cGL++1xVCVOIGlGDT7CjS2Ooe59g+EozDOaZHztRHp9FRvHWPCYRkcaUGkehtJ25rnZ9uKfTLVLv8HiE/rQ7qcakd4ejCLSAABAAElEQVQ9Nw468+hYzyFNXuBwouUXsXb1wjx5sfzyo+1241ds6GbqkvmcWxy1kxyZ/eSTmJgjrfO76pQy8lra8Jjtix8utL9DLWLhNHVg8+uSc/B9Id69A/HdSo3x5D3rhBT0MAjvbTMnIaEeHd0bS3rv2N4dhHvHVgJwZe6kZ/nXe9qYTqHewDOatlKFce7MVYVJ4JryBKK/VEJkPS1owsHM2BhJkzx0cJGwcP7N4V+YWFHCGyfM+Ie0Q3B/sgO7IChmpRjRwBnSeXMQW4aB9tSzTT+BA896lDN1+Suoh5OGFyivIUGG1iU+HacBRPCmBixPZQjnFxaQdlOoK9RpTlqDzuqjqucUaajZAlMqgr/5uxM3/aSP5Q7oJrPqJ29TJa6nHe6GWwvTKW22DMN8cWW4rKt1Ljp2WgOL8ANe6IhxkPY60IRBw+NdV/mEZnoDpHEx0TLJSrE1nXd0aNd0IyA3r2Dg/c4uK3ng3di4HhqdOsPyHSddGNOaX9JUScuF33oWNvVLUBi7UsmozXwykQuY+IGlZMG0zzHbGzmB8zom6bZUr4AwtqFOKxtXCRfo5Ws3Qt/jvpEk+bHqN1D32NhEugydN7APffm6VkXcgIg4wQUp5a1vabqNxMAjGZc6ytAJHWqZ6zMn0Z9Gh/oEDLRfRS5c2WhvvH856QsjGeGib0lyD8O436C865tbsSTiomuagV3VDeFoxUTm1sZyMWT+vIcDpXotxMu65V1JG5fE2GdVZtJXcpdhHp7pd+YJA00eJwjVVkaUJ372n2wGNb1MM2nCQPNsC9gXe1/qeEjkwmUc8hGPtJCMviG63Hu+PFd8Ih/9PNwUoN1ZW7eLSKBH3/GLT16XB7rO9m+ljFjDZFSwD9Oje6d+oDH/4pHL2AAafFTjKxaHeqDr/JtfsgfkAmqIMKnL6DkfoSYxtzzTrlyZa6/vHLV32aUvP+H4VPmleTmfD9FtvvjedDv/5nTbYY68+C4HEqHGGAEQjPcKB5NgLLYhA2tzMLVz6P/OqdrxDJv8Hmcz+RlUhk5iW/yUF/t7TjEGIul+/xKHtfyazXY2LpJam3oKybam5ZCn5MvsJhsff/PqfnvlJzDy1xBVA/v6+an287+eZ/PgVvvaN8qqRsf3QbvbbXWdoraLX9Yd72t87ikq3YP8e28MNDUvCSsMllwlDGJnYJwk7WgDXzEwpIYVibwXmZwwi0TGqDKRTkOQeWVMnMDH1J6gptnC/lBuZ4MSTXIliHGVKGURPMbHnEOxE+kspybsSLlIUFYDSG3iIYNwlnJgBMwGE7pOPFMzK51nfoY8RQMe/K/opJEG0kvJZZgUAQ+FGK5kcZXNXasrC6yE6VyEYQyGFNIE5pqi56eK2ToGDhALDKwUgx91Cw4R2dy4gh3lqzBaSFZh/oVxE91InqzkVYUi+s0ws/NIbEUrR4HT0WWGBB/GjLbJZkIGkfwRYR3D+CCdd8CKpBHmyKqH0Uy8DFWvre1lmQxoGG+HD2wLnJhXEk0z5b+Q4/FOzjJUhdjcWE9ZMXFHyf7t0beuAQxbGbFmIp5FKmtjTm8sAmBetTl84aqbAQ9YLC22U9DKHZvbML2XsMDhZZzqEzKcwvHLgDrFF9hEePju5dAh9fXVKOjjYnyExAmXORUXMXDBcIKNd8u0j+9FXYWbpt80gadNZqXKp1eXIu0+h6610mphyJSrKpIFEvBT81S02stFik696k2Yc79+KOndJXjxgD5BGbY3gnFws5/Zv11UAkvm1z/g5ZkfJcpjaXIYYFRackeqzJ2f9JdImclnOwsyqlFIYqSPKIUpGOITR13s56m/P44LeQmD/k0/RR2DxK5o2u89oc+SwQTiH08i9T9yXzUK7KOKton5OvZo0xmPe8ODSAe7Pdpcbe0ppKIfIAjAXFnW2EoEGF9Zf6YO6fwPYgUeAJy0WiV9DmB8r1/lsJQPEURxfP2zz3FU9XdgXpe3UbeYba/+DUKIny+0bVTqGHEYl2o80T/pfJ5dKEsd78GM/3SXhT2Bh5y38PgPp9r3/g32qlEH8dTas88TAaBFvnT80b8ctZe+gd49EuWTHAKz5gl/q5y3ACe2yVj68msH7WVsSQOZuaXGM8c+hywv5+AbqGn85tVR+/lPsKR0g/mfPnyEGsf+B1hzgvn3tFmSPrDuVtycO0W4834PLOK3QeyeGGgrrkSsLCLAYOBCDO5OUmn0wS9DWF2x4sJY0EWTztk4TU6aIZNErom6pFpmTx7BpAWc3vEmbxLzQxpm6JRFGo9PNj5MQEcsicwZT1DqTwIWtBKu5OVBixdhM5NoqJOJeHZOd+ySsbXimp7Ln3UwSfIkKcnroWJ6mGl4UY0iIlXP3XK8fBkoIXf8JBQ+lay0DvwxyVHpU2bKHUpLehJNzbWL77/ZXv7xn7Wt9Uvt+a9/vz321IuoN6yxAGBZS7rkAA8ZnKhQwMSpInIC1RGffXFrk5p4wggNdDbcA11ybDPS45i5I73Dj5sOt1HxUO1Es2w2lQyc+f0E5RHX2pi2+llIsCIoZrxUNkIXIr3nsoKf6KRF4WjS0EuPdYQ5nKVec9Rris9FMnhTlg988/jj4kCdZ6X/mszzJCc3IqbvOZCRVrN1C1jlWJjbR3WCLxEsdNzgls1+RzttmklNmFn4TTJ94kV4d+nfFiwjGXoSwwDvwSqqZNhvd8FP29A79AOlG4uULY1sJ6Xf71+8jsR7Kwy0TLUMfJwJusOrzrqSaruPGxmtZ0nZGXQJdJPj42fWqAsbQmF6yya0C2PbS5qU6kR0kGlLbVd7xLZt7F1VpiyUgFs2myE5cCFfwfDOJBKTj7xRsZSRRVelE1tJ5V0VJnmDPEjIAQdxv9X1IO815R2ncFTRVR8QcqofMDGFaQwZ+7uWiKR69PPVoED1idvWtXesHnmHpD3J53FP92fQOPPUXPsX/xfWH76FreK/Rq0L82kHLOBllTxAw6+TD72zDRhDIqvDWzyEtTbi1gYzvFyajjF5hn08Cxg3OInk97Fn2QPywUL74b/Ybf/63ynWR63jJ3xxPM9Y/hi6zCxYpP0dwDIgEg3cWU3eMbQyzbb9a3PtaTbJ/dt/td9eRF95ndMTf4xk+dfYW15AZeOHf4Ie8zdRuRsOLakjsav55CVWsR/Nx0WKlXXvIxheceGyzjPgtvIE4/mLs+3yOwsc5sUJgt/caf/hP261f/onM+00+e+JsaOoR+7TUeCe6GyXlQF0rs6Lzr0kqUydMKFdDaJ6YqV1xhp3dTx2mnRUOkz6yMf2WmNx5Em5/PZJMOHkc8Lu8bkPaStH/01qCs3/8NBxINAZtRAZ12kouYrpOUQCp3AsdcDfJYoBAT7jyXkA8FE4A5BAGmLNpBsY65CDqKF24OQDTyYfrpjJy0NyDnUgElDBAc/mxtX2zhu/4GSg9Xbpw/fCQK+dOtdWT55hR++Zpn9pme9ZMJlmdOGxD+OrNZ9IDF2MCI8/y/PoUtudZDDFhZ9Sa0KjZ6yVjgajurI8F+a569uKv/1CnV43rcmA90WPmzTGJyQiBdUu8TxKaMWIWtlP6ZJUTHGUV3aal7BvvIA9aCTRSKhnYVq1MDFmYk0dkjFAUWHVc1YwmTcHYyzzqRqHdJABNG6RLxAzMzuRBMtAq/aTNpFG0MQNoPbHhHW0Q7/+cHwPTV2giC5/eM2Zv9IXF7Gqj5OH+JlSXeF9dPNkhNXt1kSdkvMjJOguFgBDKnDh05i61uKoSb3VEwvtHDp/Ho99RfvU0MJ6eRy3OWSEZZBtG/u377IMt0y1Uva610bEMdNMuGkm33nfB80sBl/a1hNCfWdz0WfyxofmNVGEkQUD2HVwqrKLEgTiiqLlv/2vyPZaVwqfbussl2KlarLcNtGjwIebArfvHXTjtq7FgOhkon+KibITqMv5LtXP758qa+Dww+9jDeLkQfv+80ft/D9Hinr+iAM/sCjxASefYoN451r1abr0w+cg/hGL+/CVWSwwz2AX3mmmNj3fucoeHDaNPkXMw8KALp6A8cXqyhqn8Z2DGd1jk9/SgkIKDxmjmdH1S3t/DC17cOQjDpLmgSluuzDTCDuWl1HTWIW9YnPhGgy0m/5UwZlib88SpxeieZe5oY893h3VlTorTErZ+e0lVf0c+lfY0Pjtr2NJ5sPD9u5PUbdbB+bJ3fb815B+Y/FiPgzZnenxKPb+UOCeGGhRKOkNjZyZVoahpFYyWMyomQwjEbZTkGbkkUH0FrtFdBmHHiRjlY5Dtt6plMAZXkxjVbg61tC5Kyg9MeGkFXDXkaxDUCqReI4HFrwmjRuC+3PwoFzRNENwCKeYgBRc+IQ9ymcbPz2EXRkDISv+zpwVK1R1Tpm8GAWtkCjUDOEShv8yqZ2WQ5hD+CjLb3zglOLybWqgUV64KkFYKb94kzBFNzhK+sb6L9ubr/0cVYmFdvqxZ9sTz369Pfvid9o3vvvP2sIz6FpPY/kBhspT9twcl7ZwlACfuDD2VbaMrcyRdqAP+Jx1cKj0shZOKkqoCpAjwFEDSR358XN/ARXDqqvtXn3EehcNqt0dHC2Vett3CoOq91DX0GAIH9+CdKU2/wnsQZ89fRZby6fb+fMXY25OSatlyADaX4qWZSlDtZ1FVCJOEejGOjE1bBpaK2mXUe0WR1Q70XlioUyq0tOOZyImf6wLkaaAguOYYx9BPLjRbxN4HpHd3y+ZU03/SD+ZVKXRSUx7SFIl/F6ejOjXkzkG4k4G2/E6JvHsP+o4224ucFT7sP007idOQKpfylKivrG5G+ZcKbOSZ2mlnrLlkxA3DPb0Ses9ZnrBLdhxB3y1oX5CHQP4plTlAMPuXM5wIPJjHQWfNh/6b9XVwGNqxRs8DEsO7uUS3B8m7ulXquNQx5FqUSQMjSfSPPJ+RSgw0Zd6je1J2oh+G+bkrffokzBA3/nWdHvhGRbzxB33vp7j87/bl+GZ2gucvvrctzhI6KXWLm2ianBhCqHIUWM4b6/+fWvvs5ktX0NF6eNegM8f3c+nBMbZqVPzML0wvwt8+fv6YXv8GVRaaJSaq+9QLC/5FNJnbZf6vjteepdG66g+vM1C5NL7h+31V1GBu4qKjGkZd47HlzvANkpY3pgq5DlusLnwNy8fsQ8HYcY+Os1bjLEw5JvXp9r5K609jwrGKeoRwVBl/dS/jqcy0N98Htzpo3/GImDUhV7MDyUU+GL66aeuxEOU8J4YaOfwMJMhiEwIPcnO2keZ4W5HHDNEpO3jlkxgZk3Ckqfny3PBKeaqOn2NXsVsmd6Jz65itvThFF8vSTFeQzjxk26M39DzJ5kZc5hX3OyMpg1zR7hlpJwBmOE5dMJP6kRMk0Hmwrpq4m4EI8Q8nZWleOp62XmaBIjf6hhkokpnKjkMLyWc3LnwDWGmxt+B6U1eBhv8xvbBQtYoG9Mg/jRqG3vsdr18+XKZB+OI7HNPPNvOPf40DCJSSBAB7YG+egRG/rRvIsb0Ua1DKamM8z4cXuFdjPIC5u1y9Df0UXVDZq3r4Ip00M7PUAVA6xPvDAQgv8clTdMm1s0/yODgYxjU5u/YieYxNGJhlk7BPD/7/Ivt+Re+BgN9oV3YuRCpbGiUegGh/oO/8JWme2gMuzZpw5IuS3/xV9or45zNlQBRheE6qhPbqFrIaNpTxO12zjKPMQ6ytyTDagdwrgMjixMl32SKhRZyyqQe58KX/yFEP/U5LrrSythf51TFbZhr1T+EK5PqiYcyqYVTpxp5gKF02/TqVMs42/T2oWJuLcGAKnfKzg8QS06JFWyKetdtK/xRhZIwXKzRKt6sPDvxB5wFkRihPtos1psyucqZuGrXQ3p4hfa4ydgKM52+GdRxFrDf6h4Hpexhnim4xpKC9uj34aZAeoc/drjJrmK16SS7MFq//uVR++sfIRDg9LvZ/5vNX9gAPu0Y9kWRBrx8dXyHZtikxse0dm4FqwxuRFs4aFuoCnzwt5xbq+UGJJ0PjfOlpY2msG184gdL7dxTh+25E1vtD7/DoSHfwcQc0twwMaa7o5to6CGt487Fq5iye3mv/eIvWTRxBPc6DO6eO811E1kq4M6/MtDT85xg+25rf/WfsKzBomvNfoPNZqeZfTaaKI/REsjdupuqx4PzU7744g+a3DM03pTwbkt5lP5uKXBPDLQtVxNP9TQ7iT3FT7Q2Zi7CbNOaWp1ea7Iakpohf2GSBuyFaZ7OPCd/4Am3JuPKZXYLMEU54VaBxaY46FDA4AbmIslviphIA3wyzfWJXAaG3E74Y0YSrxJApdPFyOEnPlLjAQHxjM7yuOxCa0Akt45B1eU4oZjLs4YZBrDVM21qxEP+eryQyJrc/U7cMbQUlfwCknlyo5ifvQ72OaQDlY6NqxcxIbMFKVUiMKdtZD7pZck8eIuDOQQnGUnvkTrCYMKP4KSUeWW0VAGRyXT38CwDvsy0qhCWXTBV61BqqlqAIfXFoeotNJknpbGaRjTevFHrQLIdRpBn+5WRBZPSebQvefcyWhNxK3xHW107ieUSv7MVU16qL1U14RcofOYDfzeAeJCNbZG4gX5OotbUMi1f5lbmWUZ6REcJzSxfxAbX8ezPuQewPgssp0+ViyMMgao2giCfupYEP+2XMnvqDn/IP+B5DK3SuQBww6M2poOd6YCzhZSb2uFNQDHnDO62nzTcU/WDfLax/ds8YXKDL5A6gVntTNWRmCnQ8gdUstjLfEGASVycuNosBtpUlTYe/cRL39CLRMkLQHHKhbipw6/cJIaOotLx9tUt0qclyj8kTj9h06f1mGLB5ybIXg1yPXJfAQqkH9G3p7fpXdWhx7W2m2gJ5hLS3Td+xfT4CqbO/g82Q9MX2Zs17tfjDL9nT+/aaJS0RRjpmTPT7eI5mMvVYezOi3qfkALWFEIEF9luVuQNy/99gv7pwNggvKB+0V58aha9X076Y5Hw3e9Pt5eeZV5xH8V4IPh0ICdTbcHUXrjY2usvI9GHgZ5ZZmz6rAsQyKMQcQeTde+gWjH6YLY98T0Y6W+jMsiCZ4UDe86yYfBEDjq5B6S/gGaYpNkj/zEF7omBdiobT2yBWRPstC+cL7IdaihrnM7GJ55bXE18phvCyBCJn4web4b5O9M8TIdJWUySUIZyklDGpiZTgYcBddKHwenlVA4T6+recRFhy+jMcfwyaU6yA2ORSpFOJrRLIIeix+VlQgZ6n9BTdxIF/2OUU3wxL8e4BCMHDMpgzAgz4V1mRXZC5iD1oqad0VAymPpx9z8XeQwTTnfSM1ZFYGhnkMwqTcwzdZEZ9uXvl9nE5bilCoqDlRdZuJC+UogWFvbYFKhkdqTEFnrLQO9wjRCHRGcYlZEFVAZSHgDEyg2GSkFvoIsbk33o4ApThtHVtW2s7WsZSjEx77KbG/mYGkYo7JV4Ews+hnWag0LyjNUKfDQh//4MN8HG73Ov62EYR1QWYIg9vEMVnVkNgkJz+270ftOnXDjUs+WmUoIPMyncIYxyhxKJNNRwLt1wqwdihywBx0PHKe8AcI4XID3HrffUDEDcvbobvIEow0nbdGl2vgSRrqTLx3gVLXkfiROfwrwApT+a1EcToA6h16Dq75XOKKd2GWYrV2jxUNE8A5VMvrduwmWpkKFDk4uuL1QNiVoM99DCxBNuXEWDHVeCSyUIg0+/OHZVaN6fIaN9LEz9caJHvoeYAnaT9Cc+009zYMWtDHTvxPsc46wAYIEFvH3KbnVzz/viieSrQJcvx7177xtmjOdTnIo6xXh4tAlXmQLueymfjK7DBcXOMAbLiC4soLrhpjzH5M+KzlCXzHcAUfDhAinDy2eFaU3Im/4CZzViQ7jm7hzQFtB5hpRsMER9g4VPjUSfXPWe4laUxuNeT/Do/oVQ4J4Y6MI409owIRbTE4mVHYkENd/FlwAb3qO7i+GQKexzqf7OaCjRxW+6Ia2xMoqOGAQlv1D1e+nqczT5ZKYCucoXh2IGwFV/MAuQIa8AAo1nygwsBg1hkMGXLK4XVE8V5O8Q3YNTlgyWEzr5LdM02oG2hmMHvDC1MAvjzWIknEISbCq2B7R5vgvNHSn6MNzLoRzHC897mfDgWFiTD8lKCpQuVVYvUVxk/mR2NI8wJBvQFzeu4AiyZAp4ipisnmHCUUpzGAleJYAfC9PMvJNyrY8SbiXbc266W2IT3+JS7FkLQyfzubW93a5fX0ePGgZ7aZlNFAw2bHRbhFH2rlUPD4rRDrZSZ6XYhrt7OQwz5VqP1KW3Ew9pA+5lUo22DEctclW2pImXvpL81NI/N+CpvnCDkwUvD6bq3DB4ioNRHGF32LBnnJv1lJ5rT1kdYcs7phjMX56HskLMaq+UMuA8RjeYHFPZlrC9cwdEvQvH0Avq5O9QqXHQAEsONM579etUNjU1QsIRAw2Ou3blEULoYpJx3QKm+mG8RgI3fUb4SUxJvdwBZx6rr1ZdXLx5uWiLE74dCBcGmjhETnl/DpFWy4CrJeJcVI6HseuBk2FESuMhqqcYZwl9h1CypZ7HkY98XxUK2GW8bukgdsWtndm2cYO9DnxZ6j3rlmRfOJXEZ4wTnrH/XjETEDRww9v0YwtthN3htsWVL5T3Cvwz5O9tZB1zyRuUv7fNZ4A6ZKlx0Tb3QJKGetd9cahqaLNbRKeZy6aw1DHN3BJhGMXcrfsMWe62iEfpPwMF7o2Bpq9FwkfvkzGLRCuTreFgc0urR2oMU5k8PV3uTL1OxP4BszM/mbgJ6F06KYBpuGGCP5YmVV5p4ARezKPAKp3pw4CbwIcekbTCFFalTRzPmu9ScpYyzDK4Y4wICMJKWoEv05PnupeU3CTmKLbCSb3jbaYqcxgQANeZKlgwGGgvXjpHszjSi2fS8at0TQCDS3hKkvWvcO81RJAR54l5wYcGKj1vw+syR4HsrJs5jnGqJ35J3tvgOGxYPJmeS/3VPVQEdmAwZ5FgHCCZ3meAGjNNSYcawdZ2u3btGhv91pDyIl5AtD0nbhSimsgcDHP4LBYSU6g1jA7AcG4ROgxdF+6v11VcigaE4Ikfj/dOJ586yWyVobkqDb+hUhKwAKCxMBYSu9GhCImr7xY821cmWqsUKSPlFwz7jLAMd9BUYi+9o6ZCqNLebMijrukzhB3nMJ9/hXbPN0k7oiZcL4mgjojesd/41Gwiz7E3i82eVoJMuHrsmLkIKH9M2+EvHAmz4wzddIyN8Vwupqy/7Wh+v/AUA13L3EjD6dixHkJcbLjLZKOuMYN5qb4YnkCrvBQ0xrZ7+t0U+r163QwbXNXC6MkMPfbR/atMAcdoN2uPsGU2epzxd7bMxdmRPu/eYldNGbcWdJs+/Lm2EeVnXwL7ZerdvhWhz7X0TwAuLveLIJ9jvQTN4D+9xByGbrRniH/W0sp60WfN/QnkfBT9mSlwDwy0zIdMAFI+uAz1WcM1p1/XMBAmlgnRXuNEpWqGzIZMSHf6hKMUTIZEjsabE21nQH1ZBOMmLtMa7tRtKc7bxvU05fPJEs3E74BDAAdOjx3gJlOAmDECWqW9MrH+j/MVehWWCOoMkz0lE8SftChQAEGqLEchvhXKo7CTgh/CuzNFPfZY8CPAekqq0MXEZiGsMxRhTgwnW6Lw9D9DhFbPJqo05u9MtAzZCJNuMkMyN6WW4V36WNQE7gbc0VkHEvGfdiNtFlXMRgp/cxT1Lcpl4r/JUdjXr3lq4FyZ0TOf/YRM6kZHTQbx4y5Hh+3vbqUt106eQq95Icz4DJseZ3LMNHW1EwHTeuWibI8BV7XE5/ST/Ax1s37Wi7qP+yowVBXxqPZTEL+Ot0bnWl14wBu3iB1lTb7J6FnmlBL9gLEMgA30kxZ4MStEPj3AWEAa4QZE+4qbBXd2y7qFhANL8hdOSl3JUe1HXulQKkOWpBPxSTc852bOwU14K89EvqF9e5+ZTDqQCSCmt37iNtCJMPuljIaBWYiBaVm1KPjSof+pauTXVumn7r3SZJlo8/lX/Wzoc4QfQdMudU868t9UXQo+7puWV2Wa7FZnD+667kkH/I+4O4P4SPJHAQ8xBegL9lMtep56Er3VM3Ntjc16S3Ra++rn5dIF+Rl3RTy+Y46dDDl5fz6vsm8L13GITz4HWJDQZn6+fBL2yH1KCthVIFeEH+z/UbJtWw5T5KcEQrLAYUx0QnhE/k9Pt99TyntgoKtxx9IxJ74JpGtitMPw8hEXqRKdIcwG9zBbpLdPhCHuHINhjBxHSJ7SX+xAph/CnRAzafvMFeaSgk1m5+yMUsUNUvGkNcSJ13T6uYdZEbc8BkYVynMAmqji8ks9hqQVaFxgOcAcJ7W+YZjUIeOzv8xAuX4/Tiv8wsk7tSOJOno5EhvmarS+07ZQl1henA1TuYtt5ixAgOnmvJMrHKwh54uz3EgNuEvvznSpYiDTrKvqUA5l+EJrRUPcVY9YXETHGNvNnlCohDQbrLhX2qqguI6JMPitlV7VJGQKt7dlDItBPNj3qHMkODNIkLGA4EBQjHVNSLs719v61auYX+MQkG1UOMBjCSZzaVFby1zUW0seslcz04vRjd65wtGos5uEH2JSDmZ3maOsMVUXJzJcaSkqJunDzHUkUwF7URIl3nzpo5U1eWVyl1AVMZml288llG2ZC5ILu/obHpw6eUuqmNAuhhdRzMOV/MWc2y5KXQ9Jf4Dt0QP0rD2sxctTFGODm/gtFqYdL1s45Q13y7u9q3aquO4XPy9b6fYu5cA5KCE3XZlRxNuzhZAuYGtiH/cDPEeq85C0L5xM2p3MswxzipbxxeuXGm0+TfNVwgLsZx7fLfBMFEIjbf9SFbjmAW7KJVfcAHe4DbXzaQKBIWndJt/fSjMZclPSRw/3nQK2zNBI6ct3KmCynSf7053y3I84cZzjvXzy2aP27/7DRvvjF/faN7/O0cy8v/bWz8NZVwx/tGuoGbtZUVvA9s71nel2YWO2Pbd60J5d80skvfXjuvYkYqYJsScD78KfvABh7J9i7shEIcxe9r3Avgs0Hoaktq3j4x7Hbe9j3m6bjauHmslDBfFTOTrdCL3I0RbpgfOld1TjU9b8S1HVe2OgreLQpuko/HRmxecwhP2l582PxIm7c7SfJHRKG0NSCWsaw/gRrFJIJYCVkgB85jWdsPvndB4tBUaFyRrmxPTGaw83GxIJUZrZJd+mz0h0m/5YsIQnEMpx4vYpAYM3AIzn0o3vMps8J7m4oo4APmHye7rk7RkMJPkQJlunc/hUT1wVgj2+n+3DDKsk4BCqmtZhmAkH2rAnQih6ynSYl8s/membEB8jKm7GqXtd+sUr7HA4vbbUVjge2vJlujX1pZ6yNAz98EtXN3jprKtQTLeBJPmDDy+1q9e20GvWwoObcGQGsTAvNtTB2kkLmSTv4nh4sNn2ti6i/3zYFk7UMdRa2lB1QyZ2Hv3jeXSoZazdjDiLBYXgMOL0vbkd7Dsvtxeee5wLppvT9OIsSMRy1zO47oUu2WBmMGHiEXLozyXTyy53cKACziNDuKoHRbtISPGLoxsnTa+UdQlmfwXmP/SFbjLD0svTOgViOmEa7qYVvg83Vdyn+Vw8jW2qI87oPYKh3sP03D60YwlVhC5U+cWF8AKadPXc37/EWH9dT9qfK7SiiDOPfTUbPMFT+o7z4ElL2eSkFQTo150H395srLRdCU2fk4i4LDzyetsXSctl/V1EW0TKMT8P5k42/aoZWYb9BDpl0xfpUrcgJtAJJ6w81m89FQ627ce5cYzZetaPS/wo/J4oYNtm1KihY2j/24NM2iGd7ZK+cvukn0uow+rqGu8yTOsf/9F0O43d3eOvGPe/SM73aFcZJjd5QRgmGeXt6/WuaAWo9qV8QrnS6ROS3FW0L4cSli1ONmUsGr9G97WQu8JoIvH4zZ0IewC9HU068CGLI7YDcXokY1q+VPfIO+AtrekPkS2Qz/fgYXDOBQ+LuycG2vZ06pMJjrSS506bTIlDi+czd9LWJOhKOh1jTEUnz2JMCgIjCmlUC9EOrVJN4cqA90+/k9IpJ+pIBdE30kybE3LMn6lWgovpNvKKE/xOmKBM9OMOiYf/Yj5qynX8VverJ0m9/ElAsClULWBw5jdBNh0OSXr+9H7CfDZq7IZ0VbahlA8ccZ6PhPkEUubFtjADjYlbAilrpYRZ/m5hWi5DenEDuiTPxcCrRNhFRL2vQ+HiF4ZOKamMqhLeWU5NWsRe5RKS3MXkkeYeESrjbDsIs6whsHiGU/QvUmritrCi8dZb77W/+7t/xCj9JnQ7SR7bQYxpO+uIxHF0KIOsbiuIE5g/w492kU5fBa93Ug+TO3a7gJrGcv7MDIwlYdMc8jLNNuwpNpgd7V+j7tfa1154sv3LP/02p+sttifmzoHbLV1aekh1gfJjnaVtJJ4G4YKfCXoy7lZYIcEcfcp6mt100eflLu72O5+P5AoTQjyJZKrJlgWbpgFTZ5j/WJbQqgcHmxzt7XEEL22Qi/TgPcti4VB4tN2INrVP20+zKBQ3/Eqvfe7tHKQpWxemnjSFTVBKeH4MtF5xwwM3kudyoaf1E+Efukobpx1q5rPZcL1smftKJvs7ZCHA9V1PHEm2z2Ryp7vvvWDyNkKbYEsGj4M3XMY5KxZnHLr1iD5gv8sYIp1NVCn14AqDBFdkBRtu5XTDTW9Qyb3y9fzGPXKfDwXsLx5OsoeY1QW5DKpfleZ4wXoT9ZKZSnjvkdZh1ccxwH0QC5j98j7RjD3553MH3+rj9FJw0P95lr1BV3/rBvbqsS7xOJvNPMDO8eMxjn5+4QRiE4jkNelu7b1hvMk3Nc975nvSE0xksi7Z2Mb9dvETSeOdcl5hbPc9zOX7S9vlk5Lwb1NGMn7cz4BWnyfHL+PHpf99hH+WenwKvOwz1o/pjY30U22XdYinHXq65S7vggKk8EE3N+vtIZvm06S7fe4HK9T+43WL6/S6JfiBf7yF27gbfB3QBsaVl9v3e/IdL4awv2HcieyMbqbdIY8DZs/XJVKFhXq5fJ7nE76fxGXkNrb2cvyzDIoS02U+8VuO0r7OPNhptW97fdO0B+SdaWeRrC4jFZzDLNE1BqopwjPJ904pAgOqesO48Bx8XC6ZznjvQ7zpfDRtSXOpFWnzJ4Mq800eB37Fb/qThx/z5SdhecpzYizHix/T5/O/DBUA8twZkMQJp5gXpaSWkc1d8ciiyFQXuOQ3HFdtQ2lhSKr8EfrJR4c7XHQJkk0x0moN5Igl8z6WJ1QdsQXnkJSW/i+n9MEIXlnfaK/+5jUOHniFJfYH7enlHSbA9zgxSh1hSyOf9zBLo7a4fAKLHCeQdpYO8yEqC3u72+hCX8KsHaMMrt6xZAJ/GDql1+AURnTaEw4XOdZ1H7WPrfbrl9/m1D0Ogjl7iiNSV9uZU9pxkA5V16q9AeYvVRX7zz4dT8mp7VBJi8b6xxv8kIQeqP4iTs5QLF6Mj5k+pfNMMBjjiApG+jTAxv3RIqk4yVP/TvM8AMpypYtt0L/G9DYuGEiE6fdnHz/HATdn2ocfXMp78NyzT2C3+3q7foXvgbiOuwCP65yo4x+R8IqTrjrvXEP4OHqIqjbzQUes/76sccep/VISUL2jDSlyIy7vpn3WogKUGJCGfAmUcY5jcs4XIh+Jl3GOagjpXBjaePWeF6wxqMo9VOMYryGYxIYVjvyO3fAWjp8feT4/CmzCNLz+3lH75ctT7YP3OEr+3Kj94R8ete9+A5u42DmvcSLN3q7eGLXfvnPUXvnZTLvOIRePPXbY/vR/PWwvPs/7QDv2dr9v2E52igmgvrmWlWsivHvT04bu9llx8t11rLmBqsbVDSTdsxwBzeDnwv14aK4xpJfrXZRzDenYjoGZNBYanEqn4EJm1/juRDPzQ8a7WqAPL0xPcvPdzMxb0zTOHFY4ptcY94At43xwidNW32UzNyZI71alYMRcPFpizpa2jKsjVBQLsZuL/8jTRwhsjSZr+JEcny6gz+2Aug/QjssUPS/mhutvt/YrSLV9iXbdmWk/Z5o8+Rhm+DBrx6GwyhO+Os55QBN+w4dim1Uy+ZId0hYKSr5s7h4Y6KGqVF5C2AFz8ROGElpMroSNkzxjotVTGIgpJk/jpJ/pylNShxNs2FpEF1XmeY9J9QY7WWWKTyMxXVkuJizMs43DnzaDt9TDRX3AS1zUpe1pc3oP6Xx3dMNtwlPe4AuySTcgJmOjE6a+XPyEESVNPROXeAagEKbDSNaiVcLJZ33Nb0acNKjf8uUxDEBxJykhuJihWDYfvTJA4tHf44Acv4H+RW2hpx+eD2BgtzEl9/67b7Y3Xj3Ji82bDbN4yIJF1Yyt7T0OW9nhyNPdML6nz55rayfPQoMZ1DU22muvv9d+8YtftffeehX7lhiMn9JSxjZMLQw05fsJXhZIHCLxHu1gxXmfdFjSoJzpKU7vO7qBnteVdrSzKfJDuFIXsnHJY8m/2k/m2Wy4OseBKIvLbYMB6P33322//OVie/rZr7Wnn3mirSKtt9a2VRhk6jkQhXBgwoiFgUbqM5CK1KEOyZQMIPmi3rsswjawEOIR3TKyqytLgeuXjV2l8qRRMn+EOoIbYwPMMoEWtSQQtr2KabQiRODCSCOBV/IciXTKJMIGzJcEcLFD2IfAdWFpkUMSVto8tF5ZWebo9Sej0qKFk20+r6ruEAccgI/LqcBP/5seIoyxk4o6w6wJf4lGcmIx4BYaExbG3UZKM4t/Mo5zVkcfwkiWLxcmEg7POayG+vu1xDYTlKYYJckB/ce7VQvtArvoLF46fwv/PAbu4Bvfkm389Mjz+6KA7ba9c9Ref3PUfvQXc+3Xf7/QnvvBYTt3bqd96+tDw4JMb58bmxxN/dtR+x//Za69//Zi+9YP9ts3vr3ZXvg8EO6FTsB2uFIPeR89wvSum96J44S8nje9bh+T7DjDx/h8ffdYYGxtAG9lFDWwjlbKH/L1MLaXMK/xbmgeiATZawK+a8/OtW//Rw6rYgxRhHArPr6j165NMU4zl77Pe7VBZoFOFjKJIw03PQ9TfpqN2BzWMrVEUtJvI4TaQZ2uxrWPyzwJaMJvZ2AuHy0DT7WQi4hkJcCd8Eh2yhmK0ib/HipzqjdaRy/B3q1TGn8AA3+Do7yn2eXNUP6Z4HxsueKFrvP2+/Aj7+KHd8GKa3v5b+Fdzh22U2f4uvA4h6xA46FqHwvqkxN8fNYHKoZ2mlLPkQWfDToWqBC0zZHnOyz+HOsrlrTlfaB/74GBrpp2piOTKFVWtSASXKqtcQJTSQjj66pOL1XsOjUp+9QdOcjgSyHDVafXlSG3mkgpYwh3A1k+7VqAGSjDCXdogwAUFxmmOpzjeEOfWXT9fvwgVgPWvp23cePQlAuMBFS+4E34EBW8qoyCKp4+m8UBSRcaUjk/6wygSCMt6yoVmOENT35ivVNw0uenYNWvuf3r9asE4/LIFT1Ty9vdbVeuXW7/+A9/0y5/+GZbO7EU+lp1JYJbHOd8bX2zfXBxvZ0881R74aVvtSeeeQkIM+19jsX+xa/eaJcvftim+eR+YXsLxhuJNQzlrConADnIccmqgJQkemFhByn2JiobvEUgdIhaxy6M8y7SZzfT+VJR69Sv1HWUPKqfa79C0sKA8xhwz80tofKgRYyL7SonKf7Pn73avvOtZ9HjZlHVtM0sh8ymxt3NfDLe20O1BBzoCuiOF13SHweyUWxc9HnpQ5uIls9fXm+bqBCtQpMF1CvEbBup+y7SE+1LR3WJXGVjmuKIlwlUWq8JNhtnpNSaCQ7PsBCgbm4YhPmPGhJlhaEkn4N6zGeRzwNkDN/kE+o1mOcdFjKrq0juETedOnMSqyTonL/3YfHclGsnTB2GegzVqpthPRzYt3O9v9waZz+wHsLOBSAXiOp0y+BHR5nJ/ADajh3pbcdOjxnq0hdDMiiiEksbglbSzEBh+B7pbJNZ8s/SN/xK4H4bQifGCTE1oz/68iR560pIhZni2A1hyVeh3Vv3/nSc45HvM1IAUnZq2i67bChe56jpg0v77RTi0dNsEF9E9YxROe2ecc/+4ngDA33jEocyXd1pJ2myE0ujtkSHmDe+A/2MaH0kG+PARBdKtPrI1/jkfoMvlQszSElT6M39yb66S5/3wCXdHOoos4iNVee6W5ex369YMLRHSOZDuFvAWJ40Ug3mPY4Wf+8D1GE2wI3yldztwnjMn55r3/vXM+3Zs0g4oVnmhwEZy3BT+m9fb+0v/huj4zrCkRu3wbSXm7vEZswe7bYZ8JuxrgQdoMe7B7xswL8NiDsGWREY5xEWlI78eozit3OnJSk1H3can8FhCu5kivFedKaRgDPcQPfpdn1jhvGZU2wBJz929w7BDvXZZdfmhQvT7cbBAnBRNWTlnua+e4C3z0Gd3O8x7ddcFgoHbAS8/OPp9sqTbP5/glMJWTAto550X8u8PSYPdOiIyeHGHgs71lMMAcOI/kCjPEbuHhhoYdSEl8lXEeHw7HtirygJIH5fBt8U7tMQy7nWAcE09dmWtL49/GeWDglJnCzHb8gxI1zSPebbMEPkCjxhKRWUiZ5Bn3OOyVlp8VCUyXAFz6I+4lI+oT2SQVupbVZK3ocMQtAv3HFg4uoldxc17E9Ckgg4VW5BkMmSyTTFPIzRChLeE5hNM21ggmPKcNJgmuk0kbHkLaeuk/Ak9rFLTI/uD6kHaaCFtFFtQl24nKbIi+1pe79+7Q0Y0avt6SdOYwVjLnTcGvTPt2AaL1/fae+cv4Ek6XJbXvkpuB6idnGjXUeF45ADU+bR19Nmr0UKd2ERZo+2PsJShtWHbYSpxMoHuspnkGKfPHWmXblyGdWEG23zYJf0atQWOekVMIbSCPUOmNFd6CUlQhvqv7FxtZ3/8IPQ4sIlLHjszjGRzLdXXnmy7W5e5Drfdm5cbmtr821mCWsdWPV4/90LSGyv89nsqJ3GLBWKy+Sr/mK54h1EQVY83bAo07wzqHAYZ1/yQBd1xueymVGECy9bYVemevsgg3u3OqMKDqDaIoUs0MT5OkEdXEDYA2QandzmYLj9siVDuhXJyB4rcui5juk+Zo4tpM1XLl9v7751vj15eqWdgqm/QPqiWLDHP9z7Y+Lrx6DqfROBepPWuqGHrWScACdf6yvVu5M38NLFhrMMtOlom7QcwKvvkoBgo3R+Ncrbal9wYLCcjBUkIEOfQF0s5NQu8uDNQkTaRNUmAIVWQK1H+YZCjMLdtn6E35wqSW/z8+lS3Sbjo6DbUKC6Bn2bsWqTvRRXt+ba5mihHaxOt91To/YBX57ewCLB4yiJ7rPAXIcJVOr7u+tz7e0bs+0GfWTp8aP2xAu7jBn2ydsUci9BwBupKxEbk8c9Z4MN0O+cx/rFG0ft3Kobeklj2b7gerk+vHrU/uofp9sHbzJGMOY9//3D9l2k6c+eMd7Ed+eycOY9SRm3ZPWd2kTifP7yqL36u+n22k8O2/u/Ypxh7Brxfoi55iOP5g7aySdHbeXfTrVnnp1uT5w8fl8Zwtr5a0dt+zWk0O9PxyLEFAsYy73JBRghcAUu5A8RRux/81SbeYKvZQtHbQlO+ug9LCzNsrn5t+hGMzaHNsfkuwncrQ9T4IuosY0uDsRkdTxis3ne3Em9WIJGjK9Hc/PtgMHTcWHxJOMG4/jmpZ325nvQ4NmD9gTS8dMcjX2rfvit5d7uWdodbB609evzbY+y8hXR/USfsi63g3lr2Ih+O8Kq1RR9CpNK1ImZ7btrjSq0t36z0ba/w8oE6f7t2v1WWA/78//P3ps1aXJcaXqe+77XigIIgGSTbMq61TaSRouNjW5kc6nfOVe6kUkXMmuTpkfTrZ5mr9wJEFuh1qyq3PdNz/OeiC+zCgWQqAIxBPl5ZnwR4evx4x7hr584ftw27uZo36iqvhaAzoDJj2cf5QLF1r+AVO55wuqTUiBQJA7OiAXXyorrjyTJw7M+5EAH1wLHFqoDWgcQxNU7Bgkfs9jN3aPozExpJNP4JBJAH6Cvuw3wO0aNwwE75XA2LHSaee8si75dcLXzNNJV1z3feVN0QXoN3CB6ASzVTSaRjOfzPmHqt2q2zQVxSiyNLogVmB1zRk8A4DLelvk870NsvBDKizh/HX2RKOBXnLX0omJAXudT8QwvJ0CxklmIxeWECnOA5kN207sAoI4DhMaQFu/uA0QBaZpRW1uez0CwvXMQoH9Mz94DGG7uPmsHd58BpAS4e2ynOtK+/c4bAG6UMtBjVj1CECa4nEVHXcB5FlNsBZQ007a8PIu6xQq6jTfbPfSYT/cetylEDQFPVCZ9Azrl2REihhMWxahKYrPYnqqcnB5r2m8XNQhsRwPczwHwexu/aj/+5+vt7oczbXfzI0DyBJ+Jp9qD9Z9Far25edQeP3wK85msMOs/RLJBF8GqiYVWH/BSgOtCOkGykmf7sPUSYNbXjNpq3Dg6+a+T7mP62BEvghDL6CROdKHULI0wAp1+xhutDhcQqW73CfcC5YtR2mIcdRbiuMX59gF1hs/TqTP9lLxVJ9nia8AqYpcxVqTM0PejamM/kob0rlymTvLM5v9cZ3gXwVOOrkKenPTaB/NVAI+wikj2sYBpzone5TH4IhJPn3f4Cx/82jymFJ5JAjg6/SKh5mX+8sTyzI1r29kvvEcOchAo380sfcPrgesKHtxfXhjrpaEvBBjnao6XOQyvXoUD9qddTHZtbJ61jae+N1r7FED6ya+RGgKMT5i4bj47bz//KRPwrZN2c5Z39dloe3YEkCFs/REA+oMJ1MrQCX7juN24w+QT/d6XN+arUNilsR8xdARE51Gu3uKjxPredgK4Pwc0lqmcSmMMo25sXrS//Jup9rO/mmorUyftvz1nDcbKWXtjhSxfpTOZ5iVVlJeHgOeP7562f0B//O//fqJ99P8iMf2l7Kj3T1HGu5EMlnjHzAHiryOFvr3MBIT3hO+gLbYs/+gjeP5PTGR+odCAevSAtXv2fBGMIljwE/sF4Fw+nDGpOaIdzvZ5p/P8jgIGx7RO8g55rPOu2pcKedRT8RvOvMNGEA6M8G4bQ51h6ib5zrsgnC9tn7LWBL7Xw4iq3upYW3p3rN1555S1LRQxxfv39lhb/wBhzo/pX/+TY/0542Zfkd9Q9gvBeZf4JZG6jgDiIe2rfQ/IE8XjmIZtZxx82hjR7Op10BAqLDuYJ9wGVB9R94leMvECjX9Mt+mGX3UbfA0MfC0ALX32k9IbLbDqva4f5+wbYQ7nPJSAoYDZQRwecsLikpiHFxCRT+EASqVQAuhIlwOqui2U0YnWVrBhlbYAsrqre6gdCLInCZsFzJq2XL1QnpMSUHYG7i7G1ZNkVUp/eyIFALxoeqJNTyXzPgY8LqCvOotu9j5A3kWQAq3oEQNYDwX1vKj6z1/WcweQegxg2kRSqi3mfqMZX3BKL30hB3QECSvNK1Isr+Tw0CYN3SG/Pfgv6R7pYCFSZl+xF0gm5gPSVE04Q/KZDWPI9ATansGzWJkggxXizVGPY0D2GVu5CmYvWGS4NM8GI9e/A6BDtWHqqP3b//HPMdvGAPj0YaeuIYGqLfCJjc9iaIikPIGhhKmSMwlPgH6Ad6SuSLsvzqaJI0gWLFMOZ1SdAejYfYYntrEgSt65it+JyMLCQo69vV0+aT5pnz7abb/82d8jIWaR49hRW0Sce/9T9d9HA4QP0Z2/e3+dRTrHvNcEgLZZtZu8EuzHdrZty5/hs0g/LvwywLV2vROPunnOGxd+Qql3nav84gXPSRLwbR2cWPSTOLJDAk2E7sHIFwn6ywmfBQSbTjoivaesmdkZpPULSMJO2+zifFu5vtr2tzfbxdYWq/a1G33WtvmcWY48cf4GTMOv3j1/Jc0Vy3AXnqo+o9qLfdDQ0MiP557O3Jin7WNyf6xLd8iLPm1dVCl0s0gXJp2skcxBN88PCVVv8c9+5/IipfEnThacKPnCMENr47UMfcF91ueFCNyG1M964xNqXxryR+UJg+RR3OCi9/jtz/YD2+/uo/P2o3+6aD/6f8baw7sT7XCT99om/RpTBEr+nn6EYOT/BNDRj8aYfFv4OWDGTZ3OsYt+xlqKs2fo3757wdoDnn82oZCsK935tyfqJTGTT19Pzn2+nuf4VHTnxmn7+G3eVX464jntwyXCR/YUULvP5GCCXVYnzxEycK1qw0W3O2riE8/epbOo/joe3c/VfBPpSqBhdvkdVFr+8Uet/V//G1L5j1jMTTnjK9Dk58urjmfxHKD54T+Mtjdun7Vb1wHRK/JupD3Zoj1oi3/6P6jPKOPStvyUIp48AajPMdLkyTcn2/giwp/7qNNt4Pdgv53879QPYHvEJOZwGQHIvx5rc9eYDF2fbifPGDgQZlQNrxLzBdckUfI9uTzSbv6rsbb6/cl2tI3e+793vQlUSSJMnrvR2p/+D8ftf/13h+2tWyNth4WWP3101v72PrwnjhMDa9DzsD/3JcvzHPxcDcu1AQNHLi9rnEH4a1wAjgXOGvn2/TWBfvrswU5bvM1C+Nu0C5OT66juXF+kHaDhObJ+Q7FX69RH/TLp+zS/N+dvKPGvAaBLt3iepaRrmD875wGLugO9UV7YwC60UpokGJlEMqt0VosaDp4uxNrePWR2fADYdItLEtiJSChAcotk9UwPAMR+wtYplVZX6URwTD77R8yICQvv+THtIbqrWocQFGh542QO02DkJ3iRlkiDKTtpkuvn//hcGc98rc9VV34F+AS9BaqZkQMSJv30xHMTqSX0jeVTV81yBYC9NForDtGPJWOB9sW5zSHQRR2CXzQE2cAIySSHIBp5bh7E8Iq7gEBXXOk4SZOEujNi/0Q6d1ByeQjPVIHZV/KMZ8yDyQ+AcWwOA6Djj19oIcvrK0tcT9A+B/AOgIWe8+gpL08k1TexdvH2jXmAHRMaQPKEaitITCVEXbIxXtwC0HOWlQuO9wCIfh1QUr2/u4HUGjUPpK63VpG8L01FkmpbbyORF3hLv5LshbmpAHn7jHzLRi3EU2VknM/Ai7N84lubTx0/efSUFy3m4Mbn2hP0EhemT9rq3EkbQ7cwkl3oPuUz3Rj0bTH7P0Aaoq6xeY85Mtov+eqxjdhsFuAsqJ7pdjxUUj+v+gnqE6NMAp4gCbZ9Jzg0PTeiOQ7zkAV2HB35ea0E/wzxit4xy0XfnbI++KtPXZMLB46SRsyi260K0gFtpjWU0RgPRWzE2YWW0jcB4F1BQm6cbfq7efd9svqCLfGCi4cxOxLrknj1zPm8pp/rL0+oV/VL+wT9jT9tkMsXeVbrD+iv3lN3++PAdYVP8MyPG9dHmAmlUWpjGWP6rsADPfFMSEiTyQRtwj/stAzje+bCgT41NW25rpjcEKv760Ovnq0leXzG6Xc1l89E+IP16LiftqEbF3c6Fsnuz7iX+fWRYKFpfPVc8L7bA0Q//Ok46yqIQL8aAUSM+DKig/luzpd7VSj8MqFzZiWWMw7PoOa/RgifQA1rAlDrmopB30yCV/ixeIpTxz4SWK4985ohf/sZ9p+ZeN9abm0NSwlWSAydhefc6sIneJWJHhJQoDPvQOpGgPHMJzyo6JWG3y75Fd8qL92acj9zJqYY2QWGTx+Ntvu/RFrLu+IcQJ3IV3MivY79Ntr6ry7aj5FAzyyctX/7r6kP7+mnfHjbvIsQBPWNaSTUK/8zFbg2zRcCxu0PD9voOp8J5AlbTkciDD9iEYH306jtQZ1sp9OPGef+YqrNLqEad4N3+wOC1Ef4Mk5ayRIjTG3pjdbe+FPWlTxr7cNuogJlZIp0GV3vnQe0OePEEiokc/DhLhZa5tZG2upfjPNl4qIto9YxyThjm4TBHR96Zss/XtsVzrU89p6uNGjHMeZvyFw+RrvPhgAAQABJREFUw1Kiv7Yb2a9+b0P69VHzoLv3Rto7Pzxsb7+JJH13lMkN42ynbmM1pFF3tb/0fgZ53d8n4pWfLukVn+Hl75oDrwGgfbFoTs4nYY5OKZjllUzLO1D5AAYEgyRt2FmsaWir17M6sqpnPNvci56ptp4Du41I+mxzzMviOAO6A1/5CzQEe55LD9WFTDVoGsu/o0MWBJC3A7YbWtxYncO02TwkziCNPGk3Vhb5pM8T86J7offlNnWBJF/6XXz9pd96CPBWkdQ6iejVF1YWZ9kGejrx9VN6mrqRh/wRTJ6cALKR9B2dqN+FP0918uMcsM9mGgS3aX6mGUSw5MdD4+OFk8E58yOggBYZrKUI1TMm0YUT0PmUWX6Zhin+SkfUNATQJHXqoVTXF75tKY5RN3tzaz9S22Ukntpc9hN7zOOR7hi0fPzscbs2C3g+X2if3NvmZQTgo0hxrxn7QptC8p8FoNxYxiHgbxsgvgvO3Edcs8VnQcu/OONbHrQ6FB1dALJ5UauTrd8Eqh3j5zP0LTd3cdAqfe09VDbOGby297TIcpoJE+gfCfghIJ3FfhPLrIBGmsIioJmZYyZ47lIIaAac77FY0YnUPCaaNDgi7zLBg3/TgOVZ2m6evjKupBw/w+SVvJxCWr6EaHsfsOx23i5MnUOCJrDfRo9dXksnWUJ+AVCb6AigrjRVf3lifvJb1RS/mGQRIm0taM7CyWQiz6CNScv4yUGA9DmTj9OdrXbIFxalOAJZ87Ff9dLtfOEgvVk85zqPTLKgTRcvfzj0ty9KW2pAnBEaVQAt4Z590vzaZPfKZ0fLJZ5qMAHUZpS8K39zMp3x9RcUZ47FbcCs/vKMfuUz76QzNoAJFegYHLAO7wOguY8z4PPcIMwLK8aJy5TXpdErLnG9G/h0AX8cp3OfNZ7H3X0m6hN0KJ5B219egZ3SXtUfEvRZqecLbJKdJ0jdnrBgEKuUSCjpK0gVRxGXnke1iQiymoh2k7IK9Dzv7YcB0UQ7PsLSz84Ialj0DaSUz8ckwis481C9bgMTeTxW7Rl03mdR3i4Tct9b0rWHCsoB7yf764PHTAYA8P1GKsZ5QpozFhrqB+d4Hhsg9ZwvYS4e5r0F6Ob1kL4r/vSZzGSUtH0dLMf3rraxo0pG3z+Gd8gYig7p5H4/tHCNmsskBqJVBVPVYSSfqrrcutMZ/nvoSr+PCcDRpYv2/bcdQ1u79yn5IFFG0zdAeGKF99pNF1vz5e8e0g/GWl/gqmScmD9t5peCaisbCmJyyzt2g3cWizzVwSaDywpx+Vs5abXukHK4Db3mt1NtazEpB6Yd3EfPmaU2P0FdZXz6vPFhoj1ZR+0OM6sTy6qFnYEfWJyKdF1evujst/box+uMNwBVecbrM/fbjFP7eyJpBCC00wRqgrarfb4fZl/M71XunTSGt91DdM6OWbs/o2/8OwQ/tM+jZxPtMapOb6Pr7xdOyMvzSNXC8pRJFiZnqAAvwDPyNNyv2PYbn9XIFV58Xl+F4GGaL82B1wLQDo6zrqhlB7hxtlULCLPj0uL14rDxHZTdinoSaR7gOW9OZsjow95Eh3UNQOsCIr19ydRA6UDdSaE4x9mJiOenZoFUFgkCOJQC2tv6Z8gd9DzsWlNIv5aQYK4KailbwHL9+govPJGedOaUsgsAmOrSSbcuv177n4KkrwYZ84YNeVmahzaSBVSPqUsAFvw5wg71HpLfAxYMKnUuSSp6yDwBSiDNXz1ipRhKWI8ASIJL9YhddJcd9sh7QG+o4gdahDVCswv4uejEQRAOf+B6aMpiPB9IJc+AnyyyFIh2ExHB+zRiFvkpSHdyEJNtXG9s7TEgTPCg+pJyIsBAeII1CwDwvQez6HDdalMLN3ipL4a3JygPujW4NNWEQr7YthB6Mcu7xLbmSbfCPPWyEghImb30kr7kd0h85cXoKAB6B9qom7FtD5PbDy6UzJ5tM5DcZdHgI3ZCZFEGo88Y3wCtwzhvxuusTP/e2xxvAajJwfZ46JQfd2N1MWBWWgSK8xjmXEVVYnlxLjza2tmLVFtVHPMVoNp/tIZxDOo4h4eqCC0vUC+uH28wGmTQqT5c0qh0lqSNdJ9b294JYPpyQGPxI18rmJBZxzP6hO3jBNIFqTNMosIB+v4YExGl0gek3aQfkxUqK+z8yEUPnovB1lJG88vJfEODN3njln8i9HG6c3iSAOsifwD2HLpRytEiAuY88xL3Re7TJNBNOVybpkPNqW/AMJ76O+6bU+LYU7g/5pmQH87gkD0SWs485UueTfPsnVGu3nf+9vnQQJjBlJi/FyNbdo6kMxVFd3n8sZzkzwkiy8eP+ZTMp3F3AlXNy2Zw4d8GOsn7TPRPAb5+JcMYA9JPUn0RswgWGG08ZtHuewgzBGI0eBY9X2Ww14KAz2F27//swVj757+ebI9+xdesMTL+itwZQOYTJLqbSAN/9DeTbAJF/RFLpk9SB1UWPr3nswhou8vEmfUSPbHGeYzkdR9p7ij9lRU67eGD0fbXf3vKAmvev8iT7tw4bm/dZPKONPsAqSMfu9jNEOCkKkpXOfPxXabQYf0pes18yl8HhE/xQPiFhuDwXr+DI2i4ydhyZ6adsiDt5BFPCSbgRpxh63qGkZ8J9/dG2wPq9sGvT9rso4v28x+Po3dOGPVwrcnjf+AJ/BXP3CnvT6ydpDAyObp70o4dzGhrvwDEmbcHeWu/d/Of+OL1M1Q7RrXOYSP2hVf03/hrPhSxj/rHe/9htH34fgkUTlDRyA6lDt3UwUWO20/H2t/85Vz75EMEcJOnbV3A+ZD6H0y0v6YKv0TaPqj7SwqWixtMvj55j3cMYPsRTP+//2oarYrRdu8DR7Nan+LXvCxwfEker+UlL21o0a+E0uBMWVHLoQ0Y1za30emmnh/Pn2ZTNMVcj5h8HsoLU/gwcnHKc7rLRPLRYxZystg+r0ryW0fNSaHHCGOuoBo5TSYBr0XzMPGX4sBrAWgtFdxYW2q3FgCAvBwEwBmO0q/tApdOSWwBbALTPXz2BNqXL5VIm+hwBbK74a/PhngOsqWO4VPogNxJtywm95Vz1DXoWAKzbAsNMImUjjyWlhYCwAWWgj3+Q7Np8jKgPKKlnHxaJ2vDBmogBCpN3GER4wk6e1qscNtpAWOc6blQXUW/mF/TJjK8UaIpnQH98ECbwuZrPQT7WjcIPyjP7JRWage7l1qar7ypSYP8KScfBeJrbCZyxOf8qM0IPgA91kUVmUPArSblzgBmAsFIRClXyfUUW0jblgJP8/K5d0ZsOftIgRoP78QukxYA69nxLjSzsv6URT97s21c9YLRvTzITm7klYBHOvnvjhEk2uPt+jJ1AQzmgSee9fELgrrHp+S5j77YBtNwzTWZ0EVpvBK6gxO0RRruJRu/XCCdbUjxT09sU0QJSHFHkT6PT92MJHmZVdpry06kNJeF+Sy+lKgmYlu8c+daW+DrideCQ6XLSp+dyDhBW2TBjOdNdNSfbO5mYarS5uvLc1mgOsdXB/u0Nslth7RFV1/r7k5rAmz5f8FodO73VZwSZmvlVxKBt72FbsqnUjoiXx7kv+axslsVfdQFhVv0NQH1GBOKM3hsWtVPYkaLzJTYazrPvhM1DAvqXJ4x8iY5L1niUJ6USJf1kxZd0ekdh/WIpz84aHYSox89B8jAFwZujH1GH6EJABPkl4lBPZuJTD+q58p+S2ScvMkk1Gg+f/gpdQ6AdoIWn6KxgPNlPy+ikk0V3l0+fzJHC6tzf1dxev/nU9SdMf+IHKzY3R5t//J3DOQPecZpC8GcXHBStqdqF93TZ13PC/uvehe/gU32o2P0dA+QeKoeFinzl2Ur5WMsvu0ihfzorw7bIySQ41i7+KqcNO5t8AxhTeMD6nyPOftoZ0HIMnwU91EXsKqP5wC0sIeal5MNmKs/Qr1gFB3WUwDy5i9H2q8enrdPmISow/veKmY2URubwpzcMYD1CCskCzN+Ne2fvi4vCrCsbUzKPUU14+HiOQIfwFxXmGPTHqbP7v6CZ4CFd2e8h30djvIuyzjBbTcXrgzJT93oC3ScN6DpPznmQs/9u+gQPyEPVCNEWOeYb7vADF5ELwqbLM+03cLl+jJQfh2lg/zPWG9xpugT9btBvOci/XY35/SNMzZlOYLPVmIMyWrqza20SNIx9fj07/hS/T5SYjaZOWJBjTrgqh/+4gHWjfgy8EX90ayOGU/2UGE52TprW1z/9D/Qp2HS4RZAnHY8/5CyWSx6Bh0MQ1+YH6FfylUPqrqETr4oCNvv0Z5H0HCwDZCmX3xyzf7N80LuGxtMaO87dtNXYLOMONhiEvAT7Kjz1fUna6rZ+U5kQvAANdZnx20cnhxC/0MA+Q59jbWsQ/c1ceCVAbQdXL3QWSR3s/O8IFhIVuoUHeU8DcbxJ9v50jnt0H6u1t/O5TU4ig7RdzXims40pjVBBlnCiehgrJfuKvCOh2lIWIu9kA47Chgb/16v0tSCJQHrGS/MMco1TwEnEIdQgCt5pAwlLySWjkhRNd5unsT1xWFdBT5KSi23CCaNYdwrmddbKb2mzwSzEwBVgbzbZwusAy5ImDiEO8GIOkTO+BM35tCsiW9TMjTvkspZrv7FG4H46gkLBDnjRXnG883Pi4KXpAvETgFoSqezYI88o7fHGzaqHwBIAb+8CNBicqC6zFMGGvXwMJ7Bi5sHHwn7gZKpC/TLz7C+gfrNBeKpfoKRh1vC5F1PP/czgFiqzFnAKZ9sHTmM4+WhZFzwf4r455AXRXiffIxoixDbusoHz9DpG2aELx+jTbUc9KLdHnhynms33+HrCL2bWGy+owTZ15MvJlUeiMfg4oRG3tuP5auSf4/e2Zey4JGz4b5gbaP+sG3S/hncU5Oqj3E5bAP/plVFiY6fupzkDv1OajLR4TaTFUc+EYv1REJyjnRLHuy6c8IIC01ptxkmWfLJa+ukGhSkwXsH6nqWTq5KhcI6eEs70p275y2ctZT0i5Jy1MQpEmooME/IT13Cevz0MI1/PjceOltzvHsG5LX9QGe9e+ezqnOwF4+Zvy5PnDTyZ3mJR9wEw+vw3IhdfC+fu47Hy36SY/g8sAzSJTWroqZPh09QyNVC+rA/3LO13d8dab/4kZYd+PIDgKkhvLhj75NTtno5z/Kqu/28k+G+6+3nr+q6ok6fIoVEOo5w9sVGe9WcB+my3g86j7EFOeJjd9VRB9XZdGgXlOvZwF3q1oFq1hC2ww0O4tUSEEAfTwVPCDv5wVPHEWQMY7OMN4BZXVe94mzHTx5hHGn6gns+S0toYO3PPqBVvipgYNI5aBqT9g5vLV0c3bto//AesxDcmEBT8GyeFDQqAPYar6t51NqZ5/24e875nNaDbOJXd6rpjDDxH8OUXHJ6sQ3I2s1iDu4etsOPiEF4NmazfBxYvx7buv2cX9LxsunWdiLwQdpftj9ldXhwjIqHg8RIseo5fnxOpr+9t40Kvd3bKOVoq3T9X/iy8WOy4b0ce/koYvvVIXFlsEBblSplR9wKoO/943m7/88KMerLiETYVRgN2hjj8zEPySMse+yoWjN0XxsHXhlAS6Gr5XeQkB0gDTw85VM86ECJnk6wo8sDV49IgFmkXoI0wjWZ1kuo0nnwM5kgSemvoO+YWaemy3zw0x/JXgBp/s+B6KQtgCwJBaCLAGkIlOFCEJTrUFd0Vj6mLWBlfIGgThAr4NLP8n2XTQA6lxdhHWVmkDe+dawq651FaCm344e4wnJKMisFpCXMPx13KUMTcZnZ+8KABsuTYtNWAcarw5ALgKFBKdr89fOGhPLRuH7+R3gJGOQKAFsR5KP5hCHEF4wSV3LwUh/v2EV3zzba1MZue5M39z4v4j3SbKH3t0m4g4vSbI35Z4JDwQMAzbWTFcG5WW7vXbT3WMgS8M99PKXTunCS5gBBwL58fs5xX/w1wCv+qPcokt1pdj5cGMfqBibx5lCUm5/aAzivR7cQ0yZ89lppZ6vTfCJDTxmwL3C1sPuocmygE10gDQpCR02m1POVHgGyINWt4W2fp+jsq0f9ZGOHLcz303dtT4840hTtmCnkRSZA9kuExzimi6y0KjpaZYmePvGVyAuu8yBSrrHA/tF991O67e9CR9NKkwsS0zehzYlh/wykb/IjD8kmTj5Jg+YSldp0XKxA8ssiX8sM3cSmgByJaZ3spbKLvsCz6F2FkxdI2DB/pIf/9AG94sLSLg4eff8wzH7HP45wM5H3DCDOQ2JzHX+uEs7PwKXeFpTw3tt4Hldckj6fPsUR5bmYXVYv5nglpz/sS5jvBg9jS0zEYIzmxKpBOj55KwfyA5dy/i1YUl3tt4//eVnaMKhEpMk/L86r+vc0AmoxT/1ZZzjuM91Nzz5tzw/BmPlIL31T6WFJV3xr4Ny+mP7dZanP86wkH99nvop7/JxIXUTVYnyxXCDt5rcSk1ny7mkYJOAifkg1FyvQuXkAt3H6+P1Zv6vu8/z7OIb/pjh93N90pg5f2LaWQyUvWCgof+P68gf87vxfejIxATK+y8v+FNf5+cUgjPT+K3YlobdgXHfyfOEECJN2mlB06FBAN3C2s+11xUsgrbDBd2b6B2ddxaPfEN/1DG7jroro0H19HHh1AE0jKombY6He7Ng0n6gA0Eg8C5R1AyON7gAfybFnJGt+8lJ9wtfJBbpoDvCCXaVqfl7XYoQvcfuPktIAR54y7wM47TwdYOn6ER7GtzOWD32wHorOr/dPnxyEESeu0vmC48r3FL99CGfyrJeooTX4exXLAoTpV8BDKi7TIs8NVVQl/rCq4l6J05Hbj1mJkLJTf/lF5LiiqLiiB+WmbHz6Aso7ZUQCJDGGdfGUlud1nkIrp54vAwIAUwXq+SzP7NiNO3Y2N9E528sDyvqSNkubjTOBmEMthT0FkeSjyoFIBquCSEX5tInNyzP8hfIW5UNvObb5vioe8kPaOmd4SdR7nz6QgM752WsM3bFJ9CBnWPCB4Q0EKhTIYsIJVocIoie1oywY4NOg+ntatDjam24PH6p/v9ZWlqfSX0vKr84zW2RjaUPaAoIhRPBqf9RFPQg/daA3d1icSL+cR9d/hUWE9vF1dJ6n6ft3bq7y4jptv/zkUXTFfdFZP7ozZ99sZMa905io81ge6f1jXgZNAmjbsys3rcR94pAUb/OzD/qcHCJhdnGuE8y+3xXBaWrykfj4pFzLztFFSlAiGb/oSBCF9H3J4IrnuR+07TP0oAQiIe/yCDCmo2rT2vDKy19TXhYdMrrgmgxaiPnRVinD54x743SFp95mhd+AJu+vui7PvuirQZVP75NM+5sXzl8U9kLUP6hbmOeArfSZS89fifuKskmb+g78XTRPT6Pn/vpq5Xu/l5Xdh/Xxvb9CZ4DNc5kOnow+xWfP5OEz/mLWidh7ZiL92aSf8TG++fXt2af/TMTfA4/fRJvh9Wp8njlX+P2Ftbiav9emu+r0uxrnatjrXn9evoxPBX6rXwRfXC3rxXTeA4sykboaz2smb3lnEofhj+fYDvtiBi8mGt5/VRx4dQANBeoXr2L3ZxUzEUt8L7fp/EQuIBEoCUYEwbHGASBzp6ljwk4ACwKAc1r+hJ50jmrBOZK+MxZnnXFW5cHPwur+Rru+q62DqG/TdA8HfO4y6CdceJgIdeeI0DkH/cTl/nKAvnwvB4j0kY2YSJzpjAXau5xFWHo76JC/vldpSj54dNEqbkenNwEfpueQR8avCYJh0iOdL9ZLf1KkIFOaviub644l5NVdx+8yH+P3ztQJqWzSRoYl60QilDqbv5YenqxvAELZdpsvAIfoJwuClcjP8aVhTkSObvnkEgsD+QS1zQru+09P2tP9qXbINzPkw5RVH4LJzlI49WjQ+57gVDxEpP4pv4KNpROSz4zstJXpY2xmYjt0gX7Bhij7myyCQbdb6Y2qA9pn3QNXH0DjpAtmaKctdipcwxLLDDrL8ttV8gLhtwC+WkwRvNsWTqB08tEr/VTz2MbM4oMn2zncYOa7b13j6wILm9jme+bhs/bmrZWoQkzCi5FRpLRdFW0XJ45uAKSkV31n7ZbLP/Xd5aVl9lsAh1OmhU+OF3l+ICSf9riXKOujCofWPsw//ZqLovnSb9B/ZS31EKjnS0NSmRmOsHPUktT9tL510PIg9ryEk9bwakO/Jgj8ecCz6NLtV3VQk7S2XTLlbF7eFUW54Od5p5Tf5yu8J1+fmXzOTDRzeMF1mdpXPXTW+6rrvKvwKwED/87vhWRXYv4RX8qU31fG/K7p+qL8vyjsxe7yZeK+mNb7103/Yp5fdX4v5v913X9ePT7P/+ui63XKuUr71esvyvPFeP170LODBiD7MxOEL8pvGPbaHHgtAO3gp0RvCsCrJQABihsxeBY0iwLUc9Y28y5mvnYxPO/20DuoBuxwr7R51w1GOKs+oTUIJYNuRGLeZYKt6phBMx3Icvp6O+B3w7QRuDYov1wYpruUcBpff3ucn0RqsBfEBhTja0jKSgzyBvR7XwCh8k6ZeCZ1HznFSwt54ScA6ukx/5TY5WOQkwv9SzovUKIMfopiIugIjw40+VmmR/JKWYZbN3MuJ1iqOz7lGx8iCkCZuWVKB39cl9SPOCQ1DdH9JZ2fgjR3h9UQV7ewIsgNMCZAhmyDwJcCaDIfEkywsnwVQ/xzmnZTKY3VNUcsNNLkkjJjFwa6kCgFkv9laZYlsINP0kyZ0ikx4RsX0lQpDEPyPLbbbs1etLevz7EwcKrtbJ+2T9HPPkO1wMV0x4BR+SNAtS+6Wco5IFuLGR/cXWCRjpJrTNghnl7F0sbNtcV269pi1HNMrxRZCa95CHYVRAt45dn05H5oFfjGFCN7cju5s8/OsrDwBOl3AXFIBgmaVnxpLVwlLei1DkqgJ7vFh+pwC/zVf5bmEb/NQbPNYFtUv7BO5iEP/fd5Y90B+jgTfA4wnio0WYxKOaYtV9zrPexX2QGxD+5jyfPO2Vf6zVQumDiYt+mkWbrc1txFkdbKl0ZKI46fqyepnzsGnqOe4kTmMtdEDBn69fQNrklTfhYmmObdkXa0H+hHIl2XsL8dnPsLI3bXfZXkVe9MXpx93q8PH56HHBhyYMiBbxwHfLH5mvS1pq491j3qq0ONG8/VhziXb7/nQoY3r8GBVwbQjm/aw733aKM9xhzOBOZYBB4CCUffAGgIcyBU31OTbcd8fnaAVU9HYJHBltZ3UZ1gSkCiE3SfkC6DaDpI6SHXoqxEGfzYKQK+OHe4uHoU6dNh+BkM0+QlQJI+ftEn8pcz+MSrvoMZRTfIdxDIRRdoPonmPXVQgBl6SedCKQfwy8HczJJjzpYXMIuf9TavfsAPfRV5kMSSArgFXWQTHnM2bgFOb0KGhXBprKpN6DQsf71vxUkYMc2jJ08p5zZ2Ydd3J9v6yW0Wehy16dCH/QWAIjALYAW9fE/Stusecc/Z0ET7lEcnbIjS5tr5KIpmSDdlTerjxRUnX1MeDWaIfJJ3idZF7VN4PkNF5GhkjjLQYWYhzQS7Ce6xO+LhsSB9JgvkTsyExXqavjsh/gWqJAfQtwPcOzpaaKvj8+37765heYOvJkiSNT/nhC0TNaSw9q1x+qREuFpep5UNdZbd/Eeg7NkvIzRZue4sjeF5kntXLjwnjvWyvaPXzzMiYBZAOxFRfUNJd3RQKT9PgC/D/o/ESmvlmX6neXY6veiufNM7kTV/JwF9W/d0XD2bRyXj14vcOOGDvkwk/MZJLO7lTRajAmyl2WtT20eMb98dheeT6nDjp0s9r4BoJd+9dB/FD3NOXTj5Tz6QwI952YRO7OS+5VeWxqJcTxz1huBap1/vumtPVinxuUj1+jjD85ADQw4MOfCHxgFecqqEaP3mUAs4LlpFzTFji8Ckc3kneo3XpW8f+rs/+y52LBh8Vb1aZAKvenwzrl8ZQFs9F0N9/OBJ237yEHB8ECsKPYg0XAlWBt5uANbWsKBF02x+UhcwZ+Akrg1agI4BlnQO1D0gDpAVuOSwtzjAV3zj6gqoccEo7EBcKMfBWj8HcSPVAG9Z8Y4feTEq9wAl+tlkLniQ9tTHBElDAvyl7nKxU7wqXLoY9Y1e9XLg72jALyFWqohPfVK3pDBX8uqJoxRpdgFj8SVFBECoa245tey78kv9U4aZ+PAIRSy/owW/ngcWYXxBm+e+zSxbiaYA+tHuVHt4djum76ax0D8LyBwDKI+OsRqcydIoElUXIO0+oV2eMTlC6ry+v9D2AdAXrMxQpxfKi+gXfqUjtBBu/X2olEKn8hUQuvGtiQkgbediuT3Y3WWSdtBmNrQowoviiM1cCLugrsY9xwjr+YX2vrHPejqB1jS62PQ5C1sAMP/g2zfa7bVpVCjoh1gdiWSYlKYlUrUZlxMsmOzbXnCqysf1FUzbuWmQ8WUqZ4nsJzbeCvwiOWYGlUkG/SrdkzzztYP46pa7VuuUSaUb5UypBsMzcQHodyOEOOJFfzo8kTJ5VGBTiyqHrE7XNrd9TAnxBFJpnyV5OUb+3SOReptf1c7+BYWSrUfK8NxF4z5rEZgwSIv9wMAsoE0OVTf7Sqlf2DflmdJ2ADaxo0YDLWSZTNO2gG77lUVWj0irQoMSdPlX9XIWS0+iHhVfoXuIg9jk523nui6CPyEGds9c4nVeRrXMjnSiycWXO9Ml7cuDh75DDgw5MOTA7ycHfHHxYkPOhcUadmv8yIX02DVHUDQ7rfUr3s+8U3ktM1bwDuTaj4qOEb4P+3fp11E5y3LHYg8oCOF5u+OvUDED6NdByFdYxmsBaAdXATErCBlA3QhEabJm0VwwpTSwpJAOug5fMrCGQ4Y+RsgsEkSiFkBCoNI9gUB2ZEt6wY+NXOA5GZCX8cscm1JQ7VnW8CeYqbxIg1dKJT8/vY9rx5Yy0t84l2SMOBnEkaKSj1Y/zrQtbJnUJfEZnM1X571AqMy/ITW0VyYvEnRUeNW7gCvz7OsIGAhYJIJ5lRQaKkkkGHDDCumsiQUdrMs7+qsQLnBJHaFVqwingqg+L86RVEKHfFdnVdu9Wkax1pbnn2UmX58g7qOjjmTXjUFCL+F+MdjF+v8uW5EeYfdzDwnjDvlMjNPOYxxiKzlpVlnzaXugN62pP6XAQqU8JF1ZVlAqbDuTXnEGCcSkLw+VDWdc6SQ2SbijH2FnaOdiAXrYuMZVyfgrMHb2Y/3U5T1lm3H17NNc5HfB8mSB/g42Vt0/RcsZN7HIkT5LWs30qfOr6kD6HXwLGWQb28QUrurCLfZavb6KeTz6dQBeKIQuIicdgD3clVj/OQSAqrmkvxDP/iTYNX6eB8qawtThHMDe/n6itRm+6AhywycqaF9RxcMXXrjAPclrgb/sIn+t2ih5zi1e2vc2rvfSkgsr5X8+jXSe3ieSEeVlfTXaY1I8hi1R6bevlAWa6vfGS78NqCWMe+uaZ47CzK7q51cJeMMBB/Avqfgo/ajikg/tpjy6fx6kyt5ROvjVH6y2YD9dguv04Y5oT+auy6+EdO5KtTqfyr0PN+XgSAH1fF+GD6+GHBhyYMiBbwAHfLXxOjvAZvbHP8IQA4vm/+UGaofzAOlldopeBUivXbBHBHsiXGP9Esfq/EVb5SvrpONu3oW+w6uul2/Rru69x2dfql+KOWbj+3wB6yMLAHyQYr2CKVgB5jmqn2d8xe7pyEv9Ncv8UgS+YuTXAtCTgIu169fa+LUFNqAQUDJoDsAQgzKD+ykgxc0fHBzlTs65duC7AvYAJ5qHE5TWGMnwCLgR4OUgjwBc8sx0BeYKLMWwbgYSwC5gFIQCvse6vHJPuIOvoP0YO8PSdE5+0nXsBiP4S6sqKH6ejvQYgGO+Y1OAd/KcwLbwlLqv1LnyrgmCfFflpNcfjdm9bFrCgkhoF+AIzu2nLrAsm9gCL2hmsmF+U9Ps5Ej+E0xG3EFvYFsalglipFOAdcRW2IcHB9DpMt4CZymfa9NMuyHKzAw7F3rMkjd2pwFn5brJDKhTWqVzf3+vnXIodbfu8luprJt07B3Ujo+aUMMLk4V0eXq6R4FIgaA8BfJR/wD7PGyCJRKk8xcQqgbtnob0gaJIH7pLAGzVuSMVOkq9Jhni6RndaiDbCVZAgp65z8MPuor8GT6dAOAhhXrIm44EAKW0bWwftg8+3WB7d1JdLEWXOV8vkDaXSkxJYDt8VoRQrABynD7A3Dlg2ImLAJj/lGP7RCprz9Yvf5RNRtZPWnwm/CIQia39ED/LGRENk7+10y960X6L6/rgJLTNYilkni82WgFRYr0UKbhmIzNzSf8gQfLweZCGlMuvtJSTMH11/bnu+l/LV+p8xEus+FFsTmzCMlFNHtQL+lLTHtl61xWVelMnYbON4DyK3p72qDgV0fJsLPtc7wxJKEltG6OkiI7ktE0Yd9WjUiddn5HnLkqXY0KMM/COT/eTxJ/J4WqM4fWQA0MODDnw+8eB7rXl1urb987aPjuL3geLjbOJz9QCQpol9iFgM7GllfO2vHrWZldbW1ocQYWRNT4LLKjnGjsAbYYzctC2iJWrsjDGuzLvWs8vvDcp81XeluYzhRDFo3LscmEYvDhh7EIgOBjAfv84/VKKXhlAy4xJQN/KGnqlc2MBJD0IEJwKTA8PDwF92BIWsKIza7jplFIJHgWMEwDGSYDfBEBS82igzIzcgjw31ThBOmpeAj4B94Xb86geIEJi90PB7dQUn+XZRU6Aa76C0YBHQKoARRe9amliIaMg9Bi6lNwJfrJoDCA4gv7sFGBFKyDWbRoJ4Zh0ku80gHQWYGoZ+vVdqvIF0JDvwT62gcnTLa3duMMjIIb6qgoQm8gCMgC+0kfznJnDQoQHeQvSo54BTdKmTqp8ONw/aHsX2ymjJO/W3zxRX4Ch8sV6LywutIXlpTbPEzG/gMQUWgVVCiVrkmB+zFKhc3tzq53v7sFXVDKUZgOespCMco9Y+Ic3VRRcyj0AFKBJepQqjolq8gnent8Bv0g+jWtsgm1o2yttVp71uOhfLvcBZcYqKaUh8kw9qQqvVJZXHl3i7mYMKbMS6nPUDhB7Eqi01PQAPW4hD69RNn8ZaffY5nDhwWbqdAdvFwRO8nXCHSCtf+yNk8C0Ame7mM6623fN3r4SXpKvevzpp5l8dHQS31rLJ3lg2kz0yGzwQkqu8pS+Qrku8LO9o/4jH/lXKi7odlHtClLq882dbEJzY2ke9RMWH05qH90JWk0Q6usESa1wR3dO0n1JWkr2p8K4MIwbkwlmtScaUGuEpEtM+hk30EUt+LO9KvgCOjMRSVzCqecYk6xKSlzu7UL1FHKBq6jdLyeyjbO9yK6uTSctlosLzg5Pc9v9GE6YRyINvHNhfgNnhD5ePA20Jpfu6vWl7/BqyIEhB4Yc+D3ngC8vxiM/DmMwq42wg+Ue25i76c4F5mWDzQhjdEMQNd3O7ky2+R+ctbe/fdq+++5Zu/bmebvDLodvLmgq1nU5YjRwBddjqH6wR1mElY5hQrQIGXmF+rp+7j3L/ec54/FaH4yreSF3kZUbXTjAOhB9g9wrA2jrGPAJ+DrCYsOYxndlDsCDU8CCIFRVAqFQSSlLGlvSSj4Zu/McxwGas5FAOmiaHk478OaPsyoh5jW/yFSJzOMfYNDly7WDfsx8YdXjYo/tobgX7Khzml3oaJcMl+bdtfgY4GlxZrmtQuNoJMJIwaUZIC/IF0hJq4BJFYcDrIfsbu8lT1U9si02ksATPr0LQpXS2VHtUdZ7bn6B/CrPSK8B+ZkwAPiVPAcsWyHrQuffY5MOwXftiFeTj3zaZyJxjG6qW3HrppFYTyGZFIRPep1jpk0jfXbyMMYKAqXnohGl4NK9jzm6HOgR99dHTCSUbtte1jVghTTA5IAagV8CjRB+a2HDNgqSgjd6C/7kk5F08JdkAsDis61FvITUw1G/xtXfUMomn7qO5+W1kXTy1ROHUnz7lHc82/y6mBCLGWlXAaOEGeDrAuMg6A3PzM63b71zi1m3OzbtsbHLw/bWjWUscSxhXaIgXHbUS76hqHhieR2IEww7AYkpOQEvf4LTjjRi4rynPvJGNRb7QwFdJ5zypOvfRC3VkZKAn2MCT3FrD2LVJ3ajol4HewtzeoL9WzdW2p9fX2XL8glUbA7ZZnyvPX62zSYvu+3ZFluqu5Oiddd1p5yhy9v0T8+G8+vf8xEvn49B+sTtfyqldwHa8NqXX+9sD79QhKM9GbSLl/Xbl40H8Xzl+6tTl1p1FeO606F8lb68O+BNJkXm0uVrmuTLj34e9WLvSoqnPaAr4UpVL/OosuvXHIduyIEhB4Yc+IZxwBeYINTDl6LOswe7CPPyVB6WsXly9BjVSwSav7hoDz7E1Cu7ZE5yTM+xg/Ii69OWzhHGnbdFNuKZ5ZhfQmqNJHsWifVcpNZgGyTYyHYwZ8sYbDGXL9S84F/2Po3fywJI/011rwegHeQBfHvHSJnRYemBsW0mOLDxIn1D+urA5qGOb3gIw0u/En7jIehIe/PjvT4lkQOAxII4g2AFFK+5TnnQIKhREuhAm5xSrgDfT8QO6CX1jW51pzohSFZqq/TRtjePAAKoEHC77XUGbvIVvJYkHbDsNdLwUksBagL4zd+8lYJHBxwQKxBXCh7penevhN2JguVYnkBZ6bog2Xzl5fERwBlpthL3E2jws775T5P37PwigHkq0mpBdMCzYJxrgfkoEmmZrsR/f28fKbsqH4BnJM1KnY8O9iN9VwJ/BOinOWgTpYXwlnJ8uuTLyARmBFloN4uN70nUIvJwyFOezBEkvuM8gH4ZkG7bhOlFgKQNEzvg0Cvje8lnNaeAKFd2CpspJ+XOLvqzu+gIManBXnH0YCgeudfbvKIyZBtOoEd8wfcn4tonIvmncBfijfDF4vjkgJfHDC+CFVSOWGR4uN12nq639+89ZZOU/fbWrdU2322qItQqMguwSZBlhUecY4GCMpQYH6Mrvg5wPe03NjFtlz7wGpaal2ouSvRHeUbcddDJnX1bHexDJnyaptPah6ozMs2dAw85O7XZZXK6iRk9N3QBb7ZdLNm8Da23b6xmYqlqh7aqrYe7JH54b739fz/+IFZv5IccDA1eXHUy+qrLPT8v+l+N88K1+XbMGoTYVzxszqtF2uS9T9eiAdBwJWDbl74AOQcx3Qin0nOmP0VCjx/d1XnG57rQZBsQo6riFUcRUCQQkDB+nLj1m9h8bqbDgCEHhhwYcuCbwoGr78f+WmCNjNMXICIvXoBqBKA7jeALw1aMUfqyf4NWlZZR9eCYX7qIwGmW8wKyyzlA9Rxget6zwFoQPcdmevNgdNRF5jFpG5DNUBxg3b9kff/Wf8b5/lX8TWHnF9H56gBahtACAa7Y2z3ns78gUECo/ySDnmBxDFCntHVcdQ0PrB+oAhE1C4ClUlgHN4dcG1TQqqT1RPUNAJp2fAWvAZZcC2wFGQIlB2rBZQ3aZENeSmWjzpGzOsuoh1CO4PVS4usIapmAN1UkAJR7AM4DpLSCzgK2gGSkt8YJ4OU6JsxAnfmkT3rznl+YoxPNAW4xi4a1Bus10Mdmyhcpblc3yzpBariHFHh3axuQu5vyVFWpyUBgGhMGzpCo5H1seoa859BfWo5ahgDahYHWRz3qka4MgcAR21RbxjG2bDafPkNN41nb39mJHW75mv4Mk72G1QV2KQg8F96MApwvMBc34nbfAPO5SZ4QLGrkqwD19i+Rz/lmsLeFhHQbunn6pDeLBl3pW7rdtqEm19KolFZ/ZGdv5Mf65cbyO/4YJF2mcSqkS6nECWhK3Hjyo24x0v3pJdp7CZ1pp9kFoHudeb8SXJzTjm0TKyFj2EtG92tlmS2/l9o9+s0vfv5e+/DTxwH6SqJdXJhdAe3b/PX9SmIFdjr7qGFKiPcAtR/cfQzP6fvO6O2TxFGFJLGJ259VvTlgUWb6LLx0AYf97pSJiIsTD2m3rcNScwr4tlGYVTxSusxXDwHkwdFU+9nHj2l/pe2j2QxGm9bXVxagqJ6dG6uL7ecfPmjHm2WNw4ms9psnnSj53FgB45K/W792FFqpznlRwDt+Ve0+8CVnI5Cm448R+iQJSXbwY5B/RTDMJK4Kl1t9e0fKTEC2we3jEO8Myy/y/EWaLrMlH2589+i6U/pl/wVBwizXPHxekhc/FfcyJ6MM3ZADQw4MOfCN5sCLr7TuPqf+fa06hiiQoWAMM7UjHtyebLa28ay1TSMDrn1f5ospb2pHjXHWEo2tgk/emGzL3zpvt7912t54a7TdvH3ebl47zZ4Nc2rk8kkR+RAYgjw4lBEx1HXuRQJ7/2/O+ZUBtFUvsIs5LhijtQKlpP2iPcGf4K4He7JE4CFacSA8ZJHaIfs/ZyEf4ONUSawAHDAp+NLf6IIRwaUSWyV1AcyqRQDCBZNRjegAuoAyUuaAS+MWgBV8aP5LoHqARFYJr9Jey7AsQbo77xU4p4XpJKpteFimoHBSXe0OnE8DagcqFB1gdqKgBFgQ7zAtdlTCeAxAUodZCXBJgS0bqxeqgFAn1T6UmMKWAFWl4jN8GxE0zwHOLVOgrj52pMzQI+A8ZzGdnbqk2UwyqNMOoHxvZ5uJwC71RD2Dra5VPTmijvJSnWkvnAD4EMgTbR1Pz8y2RXSnR6fm2/o2C/XYJvvwBNClVJtdBp14eJRKh8ADnW0A6/gUuxBaB+hX2it4SRvB/+hVE1bgRCDtARG98ykVKOW+zoYaxX6SuqGa4cQqn+UB6NSWPyNxAAzHx5lMTAMexwDPfp8yIDrR9h1eBMymR85tF9oaGg9QDjtBgjs+P4Uk+np7m3Z/+On99uP376MCsdPevbPWlpgIqXtcQEzqKNPG4VI67Evyz7NmHO893si1CzvVDZ8inlzu309cDpz066ztmC8kMTJ8OXN9AFJqN0DXkp08sEjLtt+Hx9xtU+aH956wIHKv/eT9T9sK+tDujihozgGQPoKOlC3p8MgX2HfeutFusGrkybOdqHrs0tdP4IXSdIup+FBFGmkzaVxfCT0gqqg3Di5+eIuMDZDoLsCYvbdR/abI/2W+SWIieGowf0yDk43AOVemSQx+SGs/He/M6zkJ6Z1Xl/G868M6X+nGq/K8ErfPIOkHOVzxHV4OOTDkwJADf6Ac6F95DstXqji47l+jnnlJaylDIdkpYyDDSo0VW7yr907a3t2L9uQfz9r7c6hKIo12ceLMEpuOsXBxaQ1VECyBLK0gsV5k7MUS7NOnXZk9JOjK8lRjkO9rHMQM6PEezy6qd78X7pUBtNQL3s6QCLvBhnhX7CiAVorkeKqU6wyjt6cosgsUY0UDUKm0TrBqWvWHlVoHyHbnAmMADKRmmqCL2oOsw6ZhVATw9yw7BRoFJJkoATBc2IW4MaoVoQEAkkWIAei1iPAAQKtE+5wtqpUaCiSUWtpcgiTVMmw4hYBag3DAFkTHLJyV7AZwJxCRkPMZXcAlsEpv41fgqhTdxYo9eFbi6CTBckr1gzqRxAmFKQXhE5QfHnY0WKdIxJF2Wp+4gMVK6+RCvh6inhGp9u5O1Q1ayCqkapItqhpkkLI4B4RI8yBPdyA8Qw3gmAOJ/C58Yec+JyG1eQj8pu4XncRbqR4kOm0lL/lOYbrwhvqRTsBt/nAU2qljGFrRUixxTSWdvQt86iqqPeKAQOsRCTepCJPXkbxT/tkJ7ehXCWWYzloE8pyV4stVAWo7g+/o2m8zpX7yCJWYUzZfgW9+JdEG830AqXrhBwDLt26utGsr89jQdDdMi7O8TnqfzWHIlbTy3f694tJl3NOt3XaE34h1vFIfw7yVLU4GzNR8Y6cb/nRdif7FZzD69zSxXJjnbN14prV/ujOk5gXV534G2E+HMXMmcO+ynbhbk99Bp9sNi/ZcByCPCJbPb1xfbH/27TtJry617avKx102QfrowdOAbhL4n3TUIAQHdJoJLu1lnO66gHZ8E5443Jrmed+EJAOBrDGSr5edqyKK3nhJSOJ5R2xZCjOMl9+OaR1pyTuTGvjv8xJe81PR+txN2zuuRPhXXIp83utK6PByyIEhB4Yc+CPiQL2C68XPENq/s/Wu97i8cFwE53RqIM8cfhnjXEN1gjho+g4A+tZJW8J03jILFBewBjLDbsKPPmCN1TQ5uSECzvwO2UXxyZPW7j5EMAWWmEQSNcOBQRH2ZTBf4tb/5Tmpu5/Ll/tV39/59WsC6JKQnbO5xemhgKKAWn3uLnCmnxI8pWgFmuGyYMdfQU7AiOkEw94rxdREXM+RcC+jnwBPlo+TRuB6cbGbQV+wJkAMYAcsOnC6+AoPygSwA7CitkA6gYX5ONBWOgdawErQoIN4D8prwM3ATNwzwPb5AWAWoCr1lwO5aR3kS8otsBccW9dIl5UwQ1M+ncsLiaMSkBYJpPSED9wLEgXyLu5TfWV7YyPxjGtFlYjrBPM604ouTGM9S6JtnKKwB8tVq4qfjWLs4tCoNF8X6TsqH/uYwvn0/lF79thtvJl48CBMADSm+HzuVt5+vFFHCuVxNv1D6js2DQ3wi7rHGgR5ZVMNpYXQKF8lXfqrrb2DjvzWj3FMI1vCGuv0nIM/g3vCUmcfJ2vFROwcXW6lzQDlUdrIszmcYjc6Nqmh/+yMrwDYgn72eBsTPxvtaHMSmmwv+hG8nmPL7vWnW+0hxwY6zd9/91b71u01ViNTB/50fk2w3whkN1ist4fE3z7zBov6tLhx//FmeOCCQXfRLGdaXynWrfqFz8a4S5r5QtOvE+hNP9p3ZgD0U6o6Ubb+5i1w/vD+E6THeySz3SosuVPUE+i2fF9ELuBzNfYEW40PeAU9s1iXeQN71vLbXUJ3kZ7/+L1P2TTnEPvYLIylbrGY0fXfotws4LRsz5/V8eolrvPsQ6Wl590gtnFoj3p2yjd9OJeWqBvk0HE+XrQhvSB0JIvEjEeu6hlSJ/1A/tIuPpO2D//JJ32xp0nw3NHbZTQ8DTkw5MCQA0MOXOXA570je3/ep77NHeDYwyzv2oAaPq1OIlQd3b9o+++jZ/3L1h4q40KN8mKGg3VA535+DbDhRPqtx6396icC59ZuvNkA3A1B1mlbBXDPgaAd10pAW3hLeEiyGhMcGv4LvdJfE0ADnFS3QG+Yj+RIygSmxV2xWQ9QHawC8gAXgukMmjCgTH0V4yttQaVxdXAZCB3UBb4Ofg7ufsbV7NfhQd+CSlQF3AUGzVe1BMGaacpZXg2++glgBMNaUnCQ14SY9DngGg4WDCDsP9tr89b0qn/YWQSLAlPBTwZokpvOsh3kBUHSgweACmALvRZ0SXGBHDtDwiAywKXjkRYzDjs642/e/Jm39ZKG0JrKSTMAjThWQom6ccopBRa0UV/oPQdYatM5gAJ65Jt1IRnaDzWpOWYSdEj51tVFXH63Gaejz6JisIylFAw10s6k42vD/sRq2x9fAasxWQCICuAtOsBcgK+VEcqXjz14zmTKfANpUnTo88ko/uOX8FRnUI9cVBW7APKAiLHzvTZ3+qRNnSMph44J0qq2cTg63Z649XdDigz8PjtHQo/y1db2UXv6DCWJM/TUoU22aW9kju2aTlCHeAZ4/vmHD9su0v5jvpp8563r6A+Pt8cbu+0XH9xvnz56Rh4HbMqy2+6zM4uLS3+NDvSEjUmd3GEzE8LwriO/O9lH+vb0PKZ6k37QYD+aBFAvI81+5871LGpc1VwdIPgI4P7Jw2dtB6nyDuB9GRUTpes7SMsPdrFPRHvIu97GtDgz7QDQdlOVcfS+//EXd9v9R5ttZXG2XUeV4/Z1rI9w3FhbRAVkDjB92K6hCvLunWvwayQThPtPNuEZzzaZ9XTaBFQiNHt5ta1s1WrRrnXt832bca601DexrgQknRHIIZlUHL3ljc588pxyzkS0vCu65VDnM1R33E7eSWTRK7/rveB7qNS/SgVMfifr8J/0IbQrrMt7eBpyYMiBIQeGHPgCDtRLv3/tR0vzMjbv4v6V6lmkyRdWd6BF7oVqZZfY1z7w4+jRabv7dwDpX2MNZP6cnRSRQLMwcWIF62vXR9uNGydt9dZoW7sxwhh22tYA1vMCa97hhV76wi4p+DquXg9AO3AxYKkioRRQkKckUpjXg1pBHON7Br6AuwzwMo+BGUAssNA5bGbgM7JeASECR0ERA6hQCE6Zx3E3SJoueQIWyn6tCupKZCkE5+BvOUVD0QGh+BUIjVTa4hxIyd+ROtJUQa+x9O/sD2siLQCQPD2fKvHEr+rpIFy8oEmBZF0c8ilazCcZJn/LUiIprYIppYqCdOsS4J7Cq3wBKbnHpBmnlHkGnWanM13iUIBlSUcCORe4Jg75hg5ASgFH6S1g6zklOCMkr1HqOwaPFOBbhhMFVQrUuRbkkBMHf9T/nL2n5XsvaTevM+7hCpNNJ0umK14ESEtc/iWynJuJ+HcBAJYXukRLlCvxqtSkr0hI+JE+q66RuuB5VkzOA0XPgA4X5Vkvz0rp6Tvssodwv53Dc/luEvk3h2WLkjAfIs3dwo+ttSleYHmoqUXUgp5s7EUSvI4usQsIXST5yYNnAdnuMihvSRh6LikPtaG77+veSHNwW/ocPKLtbCMtejgJlF+RRAOstVc9xeLb2yx0/OG33wAIz+VrxDoLDDcwybcDkN4DUNsvnRjuoKJk68lHaXz/0/X28/fuxe/O7dX2g3dutj/51s1Y+DjIZOEsW5tfX1mMSop8eGf7WqTUStpVCVHfW0AtoJfOTL66qtlRbLnSW6fQtEP5JcB4+KV1u7Au1ABT5t9oA4d3z8NKR8hLovWx7GcnThT5M88+jWDZ9q1dIN2RlN7GYVs4kXZyqavfXA5/hhwYcmDIgSEHXpcDvsC713uhXLGGYx/+/cvdMnj5nqEyyvKttv1rMEOC+dqNGsgxa7AmvzvS7nzrol1/87xdd5Hi2mm7jqk95EGoeTS+CrO27XyyvfUdAPbX/CJ/PQBt3eFGDagl+fXTeMZIB3M/eyO6V0LWO68ExcVDQXMfompCSSITHgYLHS85rS5vJHwMehkEAy6rLRwHBSW6Uk3QZrFWKdgX3niAP7crFoRHYscg6qdsaVU6FSAO7T04iJSKwAJnfhau2Y6gR1u3pjWueY1HL1g6hM7yBEku0klBkAO1eTiIW1cHedONAS4F+EpOtRdc4FnaCoDJ14BPwTzpuqopAMysy/vQSl4nAEQjmcb6WJbXSrjBigO+xApJB/wF/9Je+dZZvylsFYPVAJfSTGLy3buYbLt05MCS0Ech3FFa+IoX+tvQTX3kQjgBONEwejiC1yAoKSuWuWT6SbiL0c7hRTk9EphbS6Io/7mqa+9OMU23NcZmMfpbccEy/K12CIwnBEgFj8bhsVoNWtmwHfJVQdaSrtd/X8CKyjQS4CcbO+39Tx5hY3mnfe/tW0hmr7c/++6bbW1prs0TRysX99Y3AZPH5ItUkzws2r4hLf7WGb/cx6uui+F4ONkIByUx/VSA+ujpdvvnX33SlEB/C/N6y2yiYl9yE5s76Gf/93/27fan37kTVQ8tdNxFOn0XyfijJ9uZWKrb/N7HD+j7ZNrRoypKtv6h4ptIz//jP2y3v/xbvqvRwLN87ZFGQfI29tNvX1tEfeVaJOLqW2/v7ke/20nDY2izzB3trONs80FNycQ+l4kBYX39E7H/iWdX586vfxP0/XCQsG9mzploQKVx6uiv+9RVXpVpn/SKyDjb3ncGryIinSR7g52s+eezn16aDpokw58hB4YcGHJgyIGvggP1Gq6cfH9/Xp4M/S7t4uNxcMeIAr3RozY3whdjdKO32KJ8+69a+zWAxpH9fBX10tutXb+GTWt0pRdvTbb/ZXYcSyCFZT6vmK/a//UANCnnScsAAEAASURBVKNZ6R0DJLkO2GQgEqAw1ciA6qWATjCnxDVSOkYwwZoATb1eJW5+gnbzDxmsLqNDo7qMntXbDVhMecRwAORwy0nT6Sy7dwU+AamAJT+VKyVXbqpzcDWt0ZW0JT3XplcaZW4CTcs27j60JB16qTZ/D1JTBmmsV6ScxLWEqJ1kwCZvKijwjpRLsAQ96mb30liBW6TgoC+Bs05eJE+uHdwD5KXKOJZBPpqrK1BR9QjQdmbQOZQpMsHwVt1s6Rp8CfBeBnTlGSeAAy8nGRN03LnJ43Z97pjZXdGkJNYGdf4YDgF0hUES0S/gJNuoiBwiqT0A8Pn9xmSDz+PGDXfNC0dgwuGPW4JXu0iEYWQGbyuHol31iAlnLsklKesammM2rkvnFwOptFtYH9t1Y4d+R53DP9JXWxcLLNeS/CKgjeax0QmsW8yFDu0q/wtgVtWOP/vem1mkpy7x9dX59j6qG3cfPyMM+9oAX+miqByy99IVzVIcPlcFK9j4+avb9C0uBcyCeAH1NODXtJYxiTRcCbPPkABbMH9zbal9753b2VRFDPgh0uZ10j7d2unKs49iAg8EKSXS5nkKXtozfNYEk27GYj99wMRA0K5E3mNxfoay5trbb1yDN+zoiCT6GSD8AXrX9wDuxt9ArUWe+jynH1NIyurqKv1x3UV6JNfG6X+cGMYNIntHDP17P9qzrgce3HrtYTvWXfLFR34kzLmEntCYvs+9nxfiR8GmFGQ/n9q0QzfkwJADQw4MOfA750D3Gnfo1+XV7YXv/Jz56dRA1CKIAAy96cdb7KyIoG7lGfrW/4Z0Bdcqzdfw+1oAugc9gg+PfqxzrIo5u24gFbwpCQ7QMxJMyXiWgaskcdZ1hIFewCWQkIVXzwLonqmWC884AE+AUgdv83ZADNimFcxCwGRBMts4XAIa9HLINC6gUwkw+pNKAwNgSKMKtvECPh2FzcM/8hBkmLdO4GG50mZRAl6vj50scKBpGxoyOKd8QQYMIHJJaykH/5jLqywBoU40yl5wAB/hfXmCQosWeCuBV7dTusxDumoyQd7GM6L+PS9I3NfBTMI76JCXklQ8tB7oFrM35OgFlh4Aa7qyyUumcs7MOWcBHDGpUe4FJsmH9OfMGgssWj/KpTxqxNm0zzufD6Xx1ZfCGmNyX5OZ1IvGHmejlHHO1sHfgGzVa2gpoaBgWT/I4J6DOoVflDmCNQ+2ouEe29kEyi8nLjrVVdI+tCM5kBZdZs0xUhkXGQpEd/cfoEIxjjT6JjaX55lYjAdU3ri/0D65j/S3k8qq6nHZP7rcpCv55lTEUUbapysxBBtsVNsC0gTRAmi7n/1AdRN3HlTnWn3prVsHbXEOG+GA3FuAaHRNMjmTjzMsihzZpn+EGSOY5ptpS4Bt1S9iAYe69xPS0AGY1DLHxtZ+e//DR0UICxXfvLncvvPm9fZtjjex8iGwdmvxSeo/i8mQRa5voPaxhRqJG714uLGLJv2cLOd5t4CwwJ+0XPoaN311419xXugfV26TBekrhz6gfM1r0O6dV19azn30nKudLS+kdWf5XG5w0XsMz0MODDkw5MCQA/8lOODr2Pe25xruM9a7oZs2X1XHRJ4I1kIQixEEx86v070WgBawTWFG68IFY/xZT7fgdZhT+itIFIQKbrSPzH8AgYw4B/z0A5gA2wEwQBcwFXvFBApGHNii30x4pNcAIgGPZXHiKPAbgIynYNQhUjDbS4Oj9yiAJK+oTVgef6bJoM4pQFLfxHPnOIAgQFVrEhPkZV2zQDL0ANy5F9hYWhpXf8FqABOgGABxEd3bngdV3hnhgYCULZi23NAFiCl6ihbrp7871Pk5Xh7pQbEBzpPQpMpLJPvE1Qn68kmaPK27CzMFMeabL9jkZ/2sczpj+F50mU8WYHI+PGKh3LMNpJOHyaNLIWFJmnuurX8mTl5Tdh30Ca6n0QORFsuWb+ri2jamtV6DuuITXkJXgWi/KphX0WX9tYBxsDOKKol52SfkbQFfwXDyypl80x6E2ZZcZyHrxBJ2kv2qIGAOBeGPYLIvS/6RRfjj5GCafn0HCxturrK+sdl+9LOPYiv6z7/3Vrut1Pdbt7KBye1rK+1DQK07AK6j8qGu8IsgOpW2gLS8ZymjsM5JUUd5aOhD9Jde62d7PmTh4ibS3p//+n67gaqFqiVKhpVCC6YXAMr5emFFLIt20S76O6qCEC7Qf4CqxyY7U1qQ7yA51TvVW8aYPYYnpN3EOsd//ulu+08/+SB63m+w6PDtW2vtTczmaXdalZJ3Add+4VFav76xjZrHTvSyNwHk7qLoDldOmGvCVSVVy/SlQqv/deojFMvwrJrg7YVOpkBbXejROcLzDIdfhlbaNHcSdXmZZ5dpsiF59Z8+o+F5yIEhB4YcGHLg94YD/bu/O/e3vtYdCTI2MLbn+msm+pUBtIPPODZHllbX2iqflv38nU1DtA6AabAjLHO4SCerLbuKdtgloDPgOgNrAadYrBAYA56UsPWgQeYIOPvBjmCuO9WODjwLqAVSxvUsIx2wXQgmGBCYq//swK2f8byX5QGBgH/BsuB3FIl0AJ9ADfAZlQAKF8ibJBJnkbu5SQx+Dty54LfEv51fF19vgfuF/CBuSewFvFWv5Jvyqh5Fv6ofAHkAJPgzdEqA6hm64xMBPfUyXw7rKU2Cbflh2AAYBLQnWVd2gTKiJ47xVQ3w7MRn0tWtqHJo/s/NZqp+VUNp63LCv+ogD6t8dKdpO9UcptiEResWkygeS4c648coxAsE5Zl1t3zTuVgumZGxeTnhkScuYFP394jFivvs0pe6Ekd6nJhlskQ88+eEq99cdZdj43wJ0KQO9SkVENpChlK4k5JMrqBDH7KkDH6QSls3/aaR5i6yoc0Gagt3sWShlFlJ9DsAV3cAnGHyqBm8WeoqiL6PSsPOnpvyqDTUEWFFceaps26pgxfG6qJ5oqkkLSkSaqAX/ES955TnCxOOLhoU4H6CHec11DlcWKhlDU3SOeGwqBTHjxLkP/+Tt3g+T0izH/WLX6DH/bFbmQOm65mx0OrTY7ShkzPBe7V9PTuWq9rKNosUraeS7flZNjOi/ex9Tprefeta+97YzQG96lXv7LkQUek0dqxRGXFjn4G0Gim//a544GSq+kARH5JSk+JdatQHDbhLhOecsXgk5Cw/3oWBl/2E274tDAvPn8theDPkwJADQw4MOfB7zYG843mD+3qvV/zXTu4rA+gBpYx4JV0GfJ6WVQ0BncDvHPAl1AUyFajLQClgEKAI4qh3xjeAIeBSqa1SzBpMS+pmsFLEqCuEYTWYC54CdghPPoZx4bV5CyDdhU1AxhgdcCRoixRbbhPej8SmMy8xnSohAjXLNa2D+3Fn8FtP89dPiTvDftrNuJaZQdsIOvPsrs3HmIJvAqiLeQvU5UyfJxJjaDJKpKQiiaQqWsgigC9qEFwraZRm8xSEZmKgPzz0MK0uEucirHKDpkht8TPMfAWpmqGTp/JgBinkLKCQ3c0juTarqmnlSqrkrxx/GgCplNb6a9Ghqiyf2eEQQDUDmLaukSK7aQ7gTn734EydcDctkSb5bhu5tbVxrMfeiNYlkMQDSK2j6gmCdHlneQKy4mvRKGVOUIKKSKfKyTTW2Oem2U2S/qD0+lSpaAg1tulsO6XkxU99FPh7diOfJVQXdE8xZ/f+3fWoUuwDYL//7m2sVsxGCiyAVqVBUHkPm8zPsBUtSAzoJ++UZJNUkclP3oeM3H3Oj2nk/iCtk6OR0LALkL3HZiiT7F6ppQ4l5tZBW9XWx7LkneD620ir5bU6zw+ebqavbbOpyg6TXWdo8tt29fkwnnak+68KscEJsbbxCfx7DEh/xITCtrLtF1Aj0QSfiyzXFufZKp0JBe3kOoLrZwsd8OcLB23oQmDP8kY6tWaiqspxp/aRLyr0QycgtrH8s32tT85cW668s4JSHRZxL32RdHuNr2lkgz85mSSRvcBVJnU9/B1yYMiBIQeGHBhy4Etw4JUBtAPTMQoo648et/2tdTRhTwKKLhj8HCCPkV66QYZQTp1I9Wj9ExQJhpVwGRdhX6SJscvsNfHOkVAJUj0c1B3IHdgLNAI+GUCVaAqGlH45lvaDZYFVgaS2npU8KgGtcVNAq8augDMDLOEO0DpVDAR9CYMorWM4vloXP/WrS5ww/HrQajpBr0A0OZqX/5xNp9NouPQLGDWlJa3WRZDngjt1tk2viTUpCXg2Fv8TxtMknKABYtw1z8/sPQg1vjSqD10TD+jGQ/OA8sMw/plAdOAUfl4FJIJM66Sqh3mGp8Rx4dri3CQqC6LIApdK8XXmWbkiwSXeKnaFBWhWfB0rDYJao3jIh5rIKKEW3BTvbeNESLxkCA1OVGpRp/W2vpZlHQvctUg715D6CsyNuwWQc1OTg1OtU1cfsL+QPM50HqsLU6gIuxW6bUc9ANXWx/50YrvQ7mln+qbgUZ7Iz3mMvivRD2Brs6FJMPkINQWlqkpz/9UP345+8OzMWgDkLVQr3kOl41cfPcJu9CZ0agnGiVFqUhUq7oTG9NeOH15bEdiWyZnXphq41Mc727b4aVbWYwtatI6h6pHqFC5YvWAbc/e9EaBqZcMvAwJj2+sm6hjLnO8+3CAvp4LVtkrnbcPDI585VbTG2ep9KqodJZWWN5ZtHy4aXI+wARjeOjhpn6xvpZ+7AHGVycUt2usGh9daA9Ecn4Dfh1JaD1BgE0zvQ9+uByaJdtD1Vt9bFRDpFmgXyK5+OnHsRktuem436vo5NOWLUD2J+EMnYelr4aM/9YylXySt9NO/oX/ohhwYcmDIgSEHhhz4Mhx4ZQBtIYKeI7bEdovqMTbZcMB1UFWSecrgqO1k7x24lOw6qOFRfp1aQcAFiKEHLQUmBZ/EFsgQX/Dh4iSzUqrlxSSDcYA6EjXjlR1egZHgWcsYNVhG/9o8AAbmI+hWKimAEggbXxrVdRbgKQkTwAhSLMe8ksahus+T8gTjsX8MDyZixk7JdalOCNIEYuYRkCHN3pGldAe0CrwTA3/im7dAWP1vr+VD9HfJxnrKJ8GoUljr67XxzMt8LNP8SypN3tAuD4VGPZi2vkr1bB/je21e5iNQlGOC+6VsT70G0BlvnwKwNGEWqS7hOn8zIQB41tcGJyKAUfKzfOkV8EiDi+F6XWh5a1nlqn0CYkknjfJaqsuqBZu1IOXN5AXaBG2mVeLc89lzcjNRR1su+2tuZINAeH7GviS/CsxrMs820krKcepecUtC7SJO2842dMKDRHYc6yQsxDM/+6TS3/eQRttmqnW8iW7wMtLXSXSnR9mpcRIVloW5WfSWtVLhNuEuCKw28knouWD+1VZe4aSZU88nr8s9n8YMzCO8sMN6w5cSbaTrp/UZN1yZ5PgYNQ+lxNcEskiJlfC7aYr62oJlN4gRzLpJy3feuhGJuxMqTeJtIqXe58vBzo7burOYkbRuLiMQH+fw65MPTmiht/EhCZUbgC481QzeHvV+Sj7LSOYXUPdYQBd7kUWaswBp1WPWUP+6TT72xx5M+6wfM7nMglrysY/YN1RhcdOXf/rl3fa3P/kQHtWkzmfAxZTff+tm+zYm+Ly3PvYfVUcE4wLxnFGv2VctiveBTBtlgiuvB92ymD38HXJgyIEhB4YcGHLgCznwWgDaUUfJsiCkk/cMCgs4ZYByoFWKJSxwYAeXDBzJot7hABawjEekuR0oFKwILhhDkeSdMnDXQkQHSPVZDd8FUGndrJeI1WffAirmL2CyyCyYAuQp6Q2wxzfAxTIIFyRJ8wkI4Opg6sCuc3KQmJ6orQA2YQziSn2l2wFdWCjYpNqhr/tJ3oaZh1n6Kdt8XE3aA3nLjS/1y4RDPuChHN+yBKY66yXtRRG/SUe9oF/rEvLZCYVp/KRveNqHs3SHdmhlgz7oll6lnrZBASRBkiBL6b7SwSeYcbPMni8Uk8rZboKUslOMzWnayEWdyWvfLagtINOm0K26TujmrAtINBx+SaRgXL/Uo7tO3taB2grAtfiQdPiEb5SX5IgRk60/lsOpv9DShlJpmzD2vLlxEmEdBdGngCv1oe0rBUjJM+1DDslcnpdqyfgo1kDoK040VNP4+QfsXIjkdQ/Q984b12Ol4vaN1UhZFwGkqn/ce+wkZBubymzRzkRIRqbvSaK8dE7opddxhPeVCK/LV78rt10lL+strW6E08ezHewDH99/2g6Q7CodV29bEK15OvWX3YnwMYv/lAq78+J/81+9jXR6Oaoe6lNrEs8JlNdu0KLk/xid9JNj+EUnd5IlkFY6bZ9zQpHyIVT1DHd1vPesNqZRJ34RoKu97UWONXhzjfJXkYSr8uGCR00IXrP/94edE+cXIEG0m8Zsc/znn3/MpJ1nyTalTL9KCP7/ux++G5qU/EeqjfR6m68FW/BeKf0mdq39enBAv63JmAtuT3hPFd3F6eHvkANDDgw5MOTAkANfzIHXAtCObQ50Sm9dLOjGJQ53NXADrBkQ1ZF1cOw/IztoCVrUjVXaOj7mp/taXMTYXFJXMq7PxQ5ugkY3wSg1jgysDtGWzY/mvUoSpuT7Uh9WGgQpDujmofRPqZMLGwWDJVWk+lwLmoJMKEkQqae/OsF2ABv+U356xikhKyCKpJu0pXcpTVpvKD1wF0qFN4At1UOkV9WB6IaLgri2KMvLbn7Q6y500i1vpE+4JO0eSU8yyz2lLtIi4HBhWBbD0Q6CQkFqL62NdJc8ncSkPvz4aZ9pCH/WkT/Kl45j8pT+KdpEGnQzU6dZJKdKh3mRffKJOg71FqTo5LM8kjYnEVplKGlyxzuZSxzLiePav5psmCcBRLFc/5gv1Nl86VfVlghYkbA6QQoVRoMGw/KVgpmGdeodwQNn/5KmcWZasKxohFal7kW7wJrUANlztoMm0+SUMCixHPlkvVUTUN95fHwxKjXr2EP+JQvytJDxF9/faz/49u12EwsV0zeWoxMtWL2G6TvNz73/8aMAuau0WZD06/ylCFlFO5ZfArqf9MOEQwu0GlfXxzS8j1Mhda/09T7PnbaefV5U5ZAukwsybavbmMH70+/cbt9nh0KtekiEz0vULJBAO1n46P6T9i/vfdp+ynbnW8922zRqPrPolk+Rn8/5DHwRyNbXnI7G4iR1JC/yeUpbbABix6mAgNtJmoBa/enbmMTTwomLImfpc1P0W3mTPmCPAKxbZ8uwrc2TrhJ++aypS2+9DE+fStv5DCkNP2Wih2oKEvFDVM+0EqKt7fVn6HMzgVDlpJ794tzwd8iBIQeGHBhyYMiBL+LAawFoBzMBTXSN2eHOEdlB2SFdkCzoENQJYJRc6fR30BTUFXgUGAPasPwgUNE5aIofAo4YGPnvBsQCkIKEEz7xmq+DqwBSmwcO+AEQpI0Elni1KYtgo4BQpLOCcWruJ2mSk4d6wpdWE5SiWjdpUNptXgIn6TFAs3YO4KeEQ0LqoRTMBKYxmvXkKqC+VCYEZQXqiUIcpdX4CDgpr6TQ0KjkE6JiZQJ+FPivOppxLXQr0I4CBXUOhCDHktBZT/mRCYP5ECIwjoScaxG24CuqIBAiLfIgEnbOlmd6z0qe9/j87WTG9GMCViK7c6J11Am+kgnX4T0BBmm9wwDr/FInrwzgJyCJaGl9o9sgcfIzsZK33aPKtfxLGgTm0leEkAFpiv/6qRpCH+zUR+yHSv9VbzgDPB47UQk/+CHPpODHetq/ehc6CFdtx0mZ0msX7qlionRWyeZP37+XieIP2G77FoBU6bNqOAHi0G5fegTgVm9bPV/7hfS5Y6Pl2jY9t1QhsT59fQ2Oq4hJk7R4Jo0RE9bF63IyzMnPOTwY6dRqVGVQIitdsfISfrB7JqooTtysl5Nbn0915uWZkmvtTX8Xix7/5r/WHN4WxyagfCc7GB7Cy0OkzT4rkwBYn/GoK8GrasPL9pJCF8PatLabX5Yeoj9/b24zizKXXIyJqoeg+joqHi7UlC7rZ16DvpyMzKyqrn8m2MQpVR15X/17lq1eLy6m065+pfGdpVUQpeRPMQ04vfJmgPdn2GgZQzfkwJADQw4MOTDkwAsceC0ALaAMQFYKiiqCg1yva+xAJogTwDpgeV2qFwywSJcEnFnQFoQg4HGxnBJdAVpZ4hAcigkELB4JJ76Aw0+wAqMJJLHS4YLEHpAIWlRDUDp7hAkOTak58DqoCialowdtAdbQpjRSR5TkI4AS1oxOhoKMwupkSpD5ZaAWM5MgusqO1FwLPK2DAE66ChwDKFOvkUjJrGvAOOVZzrgTAUCA6QTU0iYwjbSZMqU9kwwQpBYzTCMoUtosQBKKqwsTSankAr7IpnhnhQivelI38ki9pJ18xWnCNnkjQLWO8lqJnbvMKakzB9vLlECxotUy/ZfwOM/y19j657fuyys0QUnCE6Erv8+hiyZhxPHoQnJZoaYPr/ixHlVcnavsosH2N4V8N448tc0Ezkfw0Lx7dQ2lp5Wv5dn/Km7ag/vUi18ztN0iiebaNtaEo4s7NXOnnWUBmRZDXCD6xo2lgMOVxdnwyS8xgtNP2X57DLWGHdQL1Ot1EppSqjKh28J6Xllf69IFQIM31r/O3W0fHN/+xzhVf5MXb2xn9Z/Vl7af2UXUhXZbcLco9wuIElklutZRSfD0JOoWSwuY8LsVtR2l2R+w66HqIffWNzLZUmdalZ9DTO2dAE6dJPusy/e4IjjNGpo7It0YfJNJxadU1D5v/CX0x9+5vdZ+iKWTH777BlJqdMsh1OfU/i8PolXV5RHm4Ff9nAueB58lC7Ms/f1SpCWWMTaCmRjvQfkoZvmYSE3W9uWJ3bXDIOvhxZADQw4MOTDkwJADL3DgtQC0I5ODu6DCFe+Oj4IBJVYCZp0DsIBR0Opqf+P2CwcFMA6G5uOnZcEc/zhzKsmsC4uUiPrZ3KgCOQGrgNJP8i4eMo9DPg+rHuIgK3iaQQomgNZ/ZERTa/jNUV0GUUG+YFtwraRXQCG4CG3kFfUJ8g7w5z5SOiPhDDsVYAWQodYxWp+V3X1QPWtpFHiZRsnt1AT0jRdYc6vy1bW1Nr+wgNrJRA32xJUGUc4JafZ22YxjB2sW6JsqFZcm1VfkgYec0f5AgDu4JJI57gWKhhcHBcTGqQnNsXb8AI2mVrVEGsNHeQWN0hnJN9xXGiiYFnwogQ1QT52q7ZI/RMiv/Cs1tRPoI3GcvR/AP4M+x/Xp+lbvo1Xe5qOPP1CO1Dt3nCxGkDUoj/vKK1GSTsmw6QXV80gzl936GlCWCQ4WY+yffklQYmp7VT+kLUijNN7+IwD08/++klvqad+iK6cs+64TmJjxm5qqHfoAny4Y/On7n7IRzU77k2/dYJvtW1FRuIEax3QmXk64oAn940dIXdcxjafkVjWfvg7WtIOc3fNQXLh8Pqxn8T+8IZZ0C/5M+6KTn+EpAVVGV094OOYEkUTmvY51kf/4979CJeVhNkp5iw1Y3mKzlBtY7LCe9hP57gTLZ3oZ+9gCaqXZqng8RiVCMO124h89fNo+ebzF84mqkf2Jsm23UEKb9HTq53XC8fePIrJo8ZBJsjy7TfnsD5m+2U8s/WpQ/YPEnavay1+eSfzyfuHC58u42jaXX7ZjnnvORvRVFb6YaOiGHBhyYMiBIQeGHPgtOPB6AJrRRwmr+s0TDE6R7AZkAFKREvcSIEGYg5ZgsIAaskxGwJJqFjAT6BjHoTUDHFYSHLDH2QjDQVYwq/T07KwAjxBNQOjgV8OuElR8uxHZk7qeDoxKZtUXFli7Kl+gbVzDAvAZpCO9FgRDgzqUAeWCTsCCKh1Hft4GbAVcp1ylYAVEOiTnKFwgl3hH6FuOwIMJrDJMT2F1YH6hLa7wWX95uc3MzmSQF4RLm7qh+7u7bZsd7xzYrb9boY8gHdTucUA79Zdf1iGSe+hXZWUGHVSBs4sjj1gVKDAkecAdOUhpgASkhUzLFMD5ib3aB96Gr4KLHvh6btm62ToeIU2NnWg+e5cKSZcZNMg3kpN3zwvboNpFfohJLFMnv+uKG/0M1080lNvu3lSiU+IY3zp49spkuc7ZuhQg6qWc3vcLIOWXfciFctbXPLUgcTFZFj5sY/ujQEuem3aCAkxnOZLRx7FO6b/QGx4yOXHXzZrAGHkyusN+nXjIbn93sXzh5E3A/l02XnHnvrWVso29OD/d1pd2YpHCieFDTL+50M248kRXnPMqtfVCci6diDdhnLtLk8rPPuQysnzt7jgDJ5PSOuUp6sCoutJKx58A6j1/Agi+w+Ysd9jG+9a1pUjb59FXdsGhz5M7H84xEVDvWLN4t3eWA7i/hx71UyTy1sm+JTPtk7A699UPisHSJa99d8j/uM7PxcduFe7Cz6gKEdn+FrUl4vR14jL11l8e+r6RN5YT5lgATum16U94hyiJnqD97Xu+wxLveQ4nzfBnyIEhB4YcGHJgyIGXceA1AXQ3hDNQlbTnUlrqYHYuCMIBUxi4hEGC2RodLwQ3DpgOjsSNI7pDuuNdrGp4Pd2BGNKdAHwFjyeCYQ4HcXUZ+wVgliQgcGR1EM2CJsrw07JjqUXnEzNS7QLsZVbOz8x8zw6lDvTSdcLAL1gcxxyYgzsZcy5w5b06tdGRJc8y0VcAXoCbRU7Wj50a5xaQfC6stGs3brS1a2ttamYGsKa8XoIEz3w+RlrqeQfJ8x5WJrL7od+nYYRWDoyvjVzBn5/TBYWRDlMh66Wt63Gk3AeAdkG1xJp/QCFpw2d8zadUTgSZqpjYLoLIgg+SJH9tS6X8b7AQbgGTdvtYmXDhleo4vUTaNrItVQUowJIWTNtJUwFr2gOeaaVk0PYWUiR2hUoumeEEPNJv7ALGBY4D9IhTsS6TG0dexz42ddMpGdU8mhJkwaz3WsOw7ewr+jmByFcCrC+ckq7Kqvy9lhyBmLQcOWlg4emIevrwxUnHGGbqkocV5V9+SdvK0iz0oDpE2keCaECoJuCsrkB7dRG9XiTRqnHMMblzgjeHhNYw46sXbbv6FUewrjPfjj11Lx847Kfy1hihnMsCjPpri9uw4pX67pPUKxmRb5d18jFNJgnUQdx5dF4LepWkf3DvSew2uyhSCxdvv7GGNBogjTTfhX9T1HWa/mkf9XmU51rVsBy/Qh3wRUUVFUnpJ4sBwB2/pMPybZv6ElJtqF/qQrh9uDddWYC/6lS1SxUH9ay61GQvEwMiOTcLAbRC37dHed+cnY/l3mci7x9pucxueDXkwJADQw4MOTDkwBdy4LUAtIPPFJ92tX/bsAOtODjSxG5QdoDvpbYOpCeqEjBMOXAq1QWb/P/s3XlzZEuSn2cAhQJq3+7afXtWzlCkTKbv/xFkpr8kk1ESKc5Mb7fvUvsGFJaC3scDeXvGbHoxlZlII8+pSmTmOXEiPDz8pP/cw8NjFKQFesI6Jsa4a7yuAJdpbYqXEgRegD3AFbjgnaK4KWfnV+zk8iKqH9gDdClF7V5dATI8zgGmQIsygI8PwBRPs0V56LJl8QCornvXB/lrj0p1BezMvbWpXgpeI8CosvIAH9++s/fFzx7uPXj0eO/+w8dlK7g3nmjgGlBA/2lg6cXz53svnj3be/PyxXigT9r6D1AFeJUB4AF+9ZvmP2tL6svr+FQ8EybCawis4LU+owEAxbejxkYYwlXGy3yPZ4fVuxZR6VfAqlCVi0JrAEIHAKm+44O2sM7DKDOIEAbeVCnleMjHMOleY/aqGGl0zL3RZKyMhZhagAUQB6B1Qn+AHNfxfhZjRvd5vHSo2zU0MGoYDGjcAVzj5D51AF025QDkdgbLgC5DigOAbmWEyuAnWXXdbAnANPI1nsryRAdo3YV3ZKmC8Yu3H01kj5gtLyWZUp+wGm2IFcfbW7c9Snmk4/cXAU5tPCukwXbbFhfix98V0vFNRomwI6nb0ES2jNFDXukyW/DcWuSnXsA2UqZ98oCNs1FO6+ncO8CVQaBvXQM032ccAu3SvuG6Fy/xo+QXAHWI4dZNBoWsFIwzY9Xtyd0U0ZXhnzFBk2wd//ibH3rW7+RNf7j38zzTvyi8Q8YOecMZMWZbbpQvG9E8/kJn/vkxoTLRNeM84xgt0YTuG/Gh4epWz6BZDc8TI3z1gwwcZgjIgOMZHgL/WeV6ZlwYSOrTDU56RtCaaVnPhOdcm+ojrPp7gbc/dfyfVbp93DiwcWDjwMaBjQN/gAOfBKB3dVJQsi4MMCotHZA5Wy6PsgJwuTiXgqYElyJfXuKrQDRlN6ngUmIA0sdLUBbwBYKBoeXRHEXYF+/OU/g2awB8vEYHAgldM+VroeHU3XcAkdoFfKSmA0g+BoC1B5QDg8uTusI6lF+5n9G9PMHjtbTBQ3XzFO5AvSlmYPXug4d7X3395d4XX35RyEae5wf39+7cvTseSyBLT69q6+XzF3vf/va7vZcvX+Zxfr334eRtIFeauMUj4EfdgJF+zCtAdiswCSQAZ2gGgNSq7oNCXvBfWX0e40Ifq2d4r/8Vnty3gQrX1R+K2BMaWovDE31TnoEyWSbqL7CuDV0A6pwXE6uh28X/ngT6d8D3OBrxy7gAo8ZaM0DTbqHmgKT6CCCrG2CfhXS1CyAOsA+9DjDuuna9ujztSEeGHgvdHufVBYb0S1+MK7lZ4wM07Y23HcDTrt3tXNuNaTdFa4bBdd2N0NA64Lt63aNv0q45h94pXDn8E2rDIBmvcbypudnOG58YSwwgoQz/V6nu3rUJiO88uTYW+TywB/Dp584jLR/x989qol0FbZMtZIKn2sYjY4BFk/LCVPR78XfNSuiL7BivMsSAYtfATzMJ0tMZq2XwkYv1rDHMxC7LqCHfMz6ScwaZuO8xbM/bfCS+vWgmRxkhJ9/+8DwPu7zSD/Y+z2BgNNgUhWwYvygbOayWn8aOjJEDg3IU30Zu4yualozVAfyuDOBsVmWMiGrCV+Xr8ryvev0W6HVX+288VrpLpV3r1XNt06MannLaskPqfm10dWoWxsOo+P3hszq2Y+PAxoGNAxsHNg786xz4NACd0gHQeCcvz9dU9SVv562VM3m8rV0HWCgzyovHja6iGL0G0PW+y8Mq7ANAVO8CJYGAdB9gSIHy1g2oTvXNTmeFEFDKVTHgierzcv/5aeAvPQik8IhRsOPtzOMKOjqmXED0pDAFAHpCAAIo2phKK8M56/W+frxrQwqgYjxmgQCdOQbkim/+/Kuv9n7+zS/2Hj15MsAFuKL6zwN8yl0VCnDyrvjSf/r13n/+f/6x/gF9KXLKPaLxh2dRvDEQg4bLCYNZHjOgFX085MvrezXgCp+Xp22RDFyMQaL2+gTKeOEnT6jrQJl3vOptsnsAz9oF0oEv4wTU4z1QsxsXfHIOgBOCIP6ZDPgO3HkZs9mtsTpcH69347r6qOUV1hClYwgwBsgIYG+B6ITCBOLRMHm00dmBhoM2aQF9LAwF9AFcuxfKP6w/ZhHGmOi8OiecIx6Rkf39jCrgrLEBQvHtbbvTGYABpMMT4yGFGzmspeogL2NwxJcB/F3TvoNnXZy4xnnOhXHYEAQfLIKVzeRpWTdspAJACwn5+3bN47l9dJ2ijTEhtthYak+7DwPZXz65N+BUKjdZPFw3dmhfXnV98lzI7JI3/Vc/7P1v/8+vJ3zC88K7+uWT+3v/rkwWZhTm2dEnhPdHLm8bqfzDr+/s/ceD8lQHkk8tNI0vxn6ew4oaLyDULASD41kpDv/jL7+b5+qLtnP/m0I8/r4FhX9R5oyHhcwYR2MdCcM3NBrjMfCiyTM5XvzkP1EaQIveaaZ28MA9ZHH3W5CJjIipk0T/C9C761AlrqsZWd7Jgt8IRRho+409wG6NgnrI5sH1de1vx8aBjQMbBzYObBz4Uxz4NACdvqPkePf2q2mUnhZTfnYLo8kAZuAgx/SA5YviTilmitB0KlVOQfKoUrpHZbWg1NV73JQwpUsJmo89CpgAhgAQYHJ20VR3wAWQ4fXqdGWvAV9KEUgSQqD8AkKAztrsBV08xyvkZKqf8kdthNK3yvc3b3lFdCM6hKAAkr9POXanrA6PAs5fff3V3pPPPy9Uox3V7tydqWx9HMAasPtwkkfwdZ7BFy96F+fc1tiTZ+vaex6gEiox/Ion2hxvW7TjCXBkIxD8BWCiOp4u7yWvHwPlRbusOXbT1wDklT7qf+d5gwf4B04HmOtgF/C55urvAi34gleAtvaAZUDSPYCbwxigIwyS53SlOjv5sAC3NHEApgNIAYBmrGtnps9rDbBSHwCobVkThMfU3PSb4bHuA+BXaIxy6gHAhvAKC3N4lZwZF6EsDcfUqQgwXbUDosiKcADt4gsQCiyLXccbwHgtJEMLY6WNOqJX28YRreLSFY4d7WRnZgMwP5oyQD36htcBbzmOxaUL58EDsdGMIjm1f/2758PbV+Ue/rd/ncFVKMTy6C+PP9Cs79old8JcxBnzUEsvh52oJtNim3mKR+Y9M322Q6cts4H13fOoL11iTQX2l1G08oDr643JpvHv/vawkIzPJlyDh/m3eZgtJjyJmehwGB/t4pkDS7TNe/2qPNj/+NsfJ1f0X7ad9lfterg80reHT57P2NnBOCNXDOTFN3Sq26GpWDZjshpexrS4cuOEr+TITMOSHjcibPWLjB8cBLWr23PBsPLsTvnrevF3NiLCzFocI9NvzI6Izm7HxoGNAxsHNg5sHPhjHPg0AE3dpV0Bh/3iACgtQIwSAz7oo8MW61BSFKAXuBZkHt1IAc7UbXpM2QUaTccDDwt8f/wYmKju/UIUHKZ2l3dxKV3g2VQ3pTrhB8oM1kEbZZ2CpFxrAJQEhjTu3wLyKdzKHQQcp/2U9CjcAKe2eJ73rpbSRvdx0+D3Hzwovtnr4d7j4pwfPXk8IRsHgX+eabcATK/KqvGsGOfTvM7vA81A9NuybeATALfaB7z6DNl0AJWH0Tee2lHw+FKZ+oiuujKguo/zGS+88N0ZYGTq9V62gfG6BzABYX2e1G2AY9e7a4yO4eeM2fjjBmyYvgdMKzZ82Y8WdA4/a+ssYDKAvEWWwAngDnyjwcI7xyxe20kYtvdvgdJK1SkbstRVF6ZeNAnzkMFZW5GAwrlnCKloPVR8vurnZAjJAHEef2zbrUKATXvjNa/eCU1Q6hqYSosnVzG+MM7WzMYaO31c3tPqqTGfNUiOVt3CaMTjr0FADz6Lfx5wp9R1Hc7Lp/y4mGd9AjRt7Q3YMQDQJZYYOB6Dosr0w2ex0AwGxujOs3+njC68t2MAxG48wEPjwzCwXfadgD06ZgYnmp2fxad4Gm03GQmdq0t7BxMf32LXaGzvl8mmIePGz8phLcWefM9S8qEFIP3nh/vRh16LSW0o87Ty3+dtl3Xk8zzTFhzq+8NipxkHjDCgfRkBakNR/WjcjQUZGHmvzDwjnXtdOMtvvn8+ebM9678qw4n7ef6n8NTQn6oiiz22M+5TZ2XmXNcYNt0Qv9ZvCVkgj+OBXmR0XZnt2DiwcWDjwMaBjQN/nAM7ePPHS/2hqxT3DgGlgCjzXbjG8hZVoPO7TA2UI2/qfqCLmqIgB2j0DZDui08/AQkKegBlyn55rIQOrFACoJ0H0Gs8iwvdDKXXtVQTZQokqigQzitY++igrM8GtC6v3Sx2g5b7bzHeWZ5t5Y7zSN9MaVssuX+jqfM79/Z+/otvyqrx+d6Dhw/axrjFWdU7R+XFMgPP79+2RfDvfrf3q1/+cu/iNG982Q0A8otAyACFjATAfRbL5akcz3H3C9EA5NGBdwNGe0cHGp0ExGxrfSru96oMI/0DEuaW3oFpPMarjy3u5C3mZTNlfhNwDUjMQrLKCWlZBs+q47K4cB7C5U1lcCyvHzCigQUsDdUCp0ISlDGW6nfMZhfRDMnIcjH9iS5gZYyArl1WVl5eXmD9ETIAkLrOuz7tROt4PKvHWMwCuupjSy1TQmud7/6jpkAAp2blBzyTmy5NPQiftuO9dtCLxaenjXMzIhYj4rt6zASMMZMxALSi3XgBivjLQLp7cDzGhX4uoyueVg4oRffy5us+2Vve+3t3j2ddALpsIW3nPYszAVN9+7o0cEC8vvssT/TLZhW+LfzDbn83Xy95t0OfBa1CV8zMnI6RUzhL4R92AHyZdxxgZgo0kr0yuOob4MrY1Hf8HqA/z6twlwVGydGdW3cn/OTnXz7O0346YP8/Farx2zKKyPc8z2F98kh5rq5yQ+PLvOIBb/+vfvts7zd52tEonMM24X9Z3PdfffN54Sj3A/ll8OiZmoWrIyeNTwbNZakYgVkDZybj+Mps1EUx4W/2/pf//R/2/tf/8MsJe8Gz2S6+/t+sjd2xZpp+b7w7v+R1gWYGHd4w9EjqmpWKgOj+6XeM0GzHxoGNAxsHNg5sHPgTHPi99vkTBf+1ywNUUz68u3YCBFL6mDLiDbsOq+iEzAcT3xlAoLwBBi+r6QEmG4MoT3cJ5QAUKWo5m3lMB+2koYE6B0VfsxOCYeqfJ4+iXeBAeWA+T+YAMHWueF31nl/m+QtQAkQDejrHoyfulgJ2/sjnyDkrrvvenRWmcacFgvcftQnKA3mc7xQuEAgYb5r7KOMFnN/kZX7x9Oneix+f7r16+Wrv4OJs7+7xjfGUnhaTzUMoxMFitpDs0AA03QzY4AVQtuOFfgHZy7Or44GMwNzb6AdcLZa7tIW6IxoAPmX19+DaM8zDaZxulnoNv23mYqoff94HIHlSB1TEB/3HR2B5wEVYBrgcgBtPgT8vUB0gQ6dyu9d5AGgB4uU9NBDGecIMejem7lef18TBRhP+AUXkRKjFAProOji5Bja1DeCoh6EhfRpeTa7tzqvzprCLtoOfKf6+G0dhGWgDorThBeQCkgwpNHw4X6CXLEzcb2VmJqXCRzeFDTU2ydhF3nzXY1sV4TkjI9BcW8bIadeAZ7KAPvWQU8etjCSx2CsWf388u7zR//c/fTeLC/+umOi/aZvsz/LY2gIcgH4QUObBtXjPrn//qfhmWU/+6pvP9n4eKBX6UabEaVMbP42jLxlBc8yb52Xnla88RkQbg0FoiOw3K9NKspLLXfjLg7t5s7smx/PfRpdt3f+pEI3/8z9/OxvAzOYy8xwao1rSTi9G4pyI7+T3RWkZPa/ipr9rG3Ox4VLh/aLc0jzTZN8hVGvNeHgmnFkGnedBOJEdMb+3yLFYe4ajZyi2z6E7cX28+UJ5yJlxIAPkb2SudgB6Yz7VR7Rwl6MqOchojBk/jdWqdfu7cWDjwMaBjQMbB/4wBz4JQO+qHbCQshyvJuADw6YFKbEBhSmyiSFNcwEqANoC21TrOgfkrfCMpeyBjwXmKMDU6SjCBZDSgaMcXT++XCnpBgzXJmWe7l5thHMoY8CF4twtYhqQVv0wBmX6MSAkhhv4mjOUa6EaN4+f7H315ZNZFHjr7v0AdFPtt+8uIAeMVicv3OnJSXHNhWkUqvGy1HQvnz3dOylkg7IHrPYLAVleXt/6Xv3opNh57QFHdOLVqbCCUoHhH88n76FD/x0A4QDN+g4I2WVw6uoPWiYDAgAJ7AVodwewIXwFaIIkAWspweLoAItZ6Nf9+AEUupPnmsd1QEcVIGE83bUllOX4SB7oAEu9ZDQNSKuN6Rcg1Q27fqDNGC0wu8It0K0+Hl/8cejfZQMzAKnrQhuAXd/xB2G3bwVYp3pUVuiaLu3GhQGuO0BGprTp4GnlkyV/520biV4AjgE4ntUByBmB/VPTgLDGAN3oQ9tVZQAzL23faGZAu3F16hiDofPuMajz1nfGhrUCJXwMlN6ffj8rREJ4xn86/WHGXR//9i++mPAHBsr9QOzMsvQZMBSb/DLQffmbtQbgm0I/gFALCnft4rnP/a/V3x/oYXwYD/zSR8d63437opthMGMe4LzfPZ8FegFfGUEYjj/kPbeIkIecEUAe8XlXow+xKdlOlusTvvFM34j+u4H+L/Mo27r788f3p05tkcuZIakvDL3dDIl+8Kwr+9c/ezLpHAHz6a+QjK73f8aWfPhNcIwxlJBcD33XjdniiHPG/qpX3ZtQkANjO3dufzYObBzYOLBxYOPAn+bAJwLolA6QHNC6THFRShQVOAEgr1AIyhXokK1D1objATDAoXAOwGLiNVNgo/KrY8DmgJ21cl83gKCb1yCNx+98FiMuz7YwiF3IgXaBId4sip0y/lkLmnjZLDgTB6kpgG55qgB0HvOyKhQHeutOC8OCHndLQ/fVVzY/+Xx2EbzRFDmADYBMHHXq9jIaZNh49sOPe999+7vyOb/cO5kY54BvXlJxqR9KXWaBHdCGV0ArYDaApus+v32/APTwLLqvKgNUWNC4pqUX+AyOzYgqJ+TFrnmAqzJAoOn82+jTbnSBBHZcA8xMeedErd2b9TtAM/G/UskZrR2AXJ56nkyev+Wpj+62ewY0xvCpLuN88zpjBMDP7HCP9gY4RueH9ysu2RjbAAffxK8CU+o102DMqqrrLQQNJPLOOoAm4103JuyB9/b8svCBs2iprzeL28UDIO1GL2n/9EldV9fp/MihLCcf6vdPoR/4FG2n7j0pRKA+4DPgtWQBQF/800cyc9msAZrJUySNcUF23VN1fc9DXT/QS67EjuPNGAZDwzIkyCwayR+j4Msnj+bep2XAkMHkt9+XCzyQDCjLF21xoXzR+IYvf/uLLyf13e/aKtsW4M9fvd97U9m//vnn7dZ3f4wMxoN+k+1hIl72Wrxccks21Gksx2jQ9177dUYKQgaYZ2aFCy0DR/+lnftZsdGPi2UG+sVG2yhGPPL3pc4jbxOPPVJgFDvwIz66nzHGEDppVum7py/2XpRbWv5tmUjuZIx5f9Jiyzu3Vl5vswR4eJUxpc3/8W9/PjMsMpr807dPC2159VNLwPSMX32YJ6TvA+h7JyMfmzGY/vYbhAYzH35rpv4+eW6OjoVD4dbU0Pt2bBzYOLBxYOPAxoE/zIFPAtA8ekAqj9CHlDnlLYSAwndeCIXPwM5B8a4A02ySkqKiq6RlA8CUnVjgFFu+r73TywX+KP5bKVcH0KIugPO0mGLtAG1QE/8ZRU39UdYTR1kDZyntdycAH2/Y8oarD2AA4iysMlV+t621Kc7j2y14arfAew8fTXzzg/I42xwCwIZJ6NaZtgdQ3wdgXr3ce/Pi+d5vfvPd3o8/Pg+ErCnj8fR2z+SbZU7UD0peHUAmxe2z8wwIoRcUPJCmH7sFbzzB+sskOQyQj+ezcsDYDVPthRb4PGnt4uE6gFhYIG9094MDtbZAkvPOzBQB0As6X+29K1+2A2jSJq+z8+jD5wU4At0B0neFnsjD/Fn1P8z7KWRD6kHgaYVUKC+e+MaApvdlIJnQgsaK8SDsBO95iCcMxJjXjlAcY3EQkBKeMmnp4jNj6n2eTJk5hFTgh9AT9zMMrrIK0MkIO8oA0mfjbovsWchZHO8snIxP52JmqydyR+YGOAOQ8XTnqTbNT57fvzkro4qsI8BzMx31SRw8nn08aUzq7359J5fv+o5PwnNmMWDhM3KQX8gzXt14OeZFGE2bfO1CST4L+Cr/Q6ENr/PkPg1Unv/Dt/P5VWnh/q7Xk7Ks3I0OqfHutG37o/u3ZjOW75/ZbvvF3vM8wd8Ur/yXeWcft0iPnGvvXx7r+fAg4J+ZCTJIFMQhMzo8kO4S1qAvDs8zmRyPr+8RzjMsHt+Og9Lq/eKrR+OJ/jFAvcInlsHhWTfu5NnY4JtzDKz+N2ba6IO/vb1rnKTQMztk7GzQ8vn0vZmODBIx2eTjLwr9YFgopzxeqoVhNc9TcnSnMSQbngtjq8TMzLB4OrRN5mwqNPzyjNVXz8x2bBzYOLBxYOPAxoE/hwOfBKA1kDoc5WRRmAVyS3eniPrPE0c52oRBOcoT8Eh3LSXWdwodoArfBN7yknWOGhtQ1OdR5p0AcLwoOgflTBECm1UdEJDTt8/VvzzEy5NI+b+pfcoROHSfzyCjLZlvFc8sm8bRreJOH+Zh++yzdg982AYod8ZDrq1ps3b17+zEtHTbbudtflGoxvMff9z7vpRfAMCAp/gwCjragSsHqBBZ0y6AT0+vkAkeVXSK+XZSPwKK4TbhJfS9Oj4WKy0WeY7KAAMOPAUc1ouXP69vq+iAopUnePFbfwEFGPtDwGPxASAXA935OVfFDQJPdicnrMJ9Y2wMOPd5ARBFJkQiD7wy48mrHn2YuGFgKV6j/aR2WyI59AKP6sefmX0IPPMAE5Y75ZN+eC/jpjrIAxioXt7Zah5QDkQDZFNP5YR+4A25kiZRuMBVhppx2sWAE6a5jmd4XdlOTX1AOqCF78ZjGWHXXszODditX8Yf8F5guHZqFw/GmxvP8GBCVOoXj7Rr6lqv6V5ybgzWTpG874gABIVFLEPlRoDwXZ7ld7M7oOwi5Ng1238z9o4Pb+09CEwLZ3CvBaYvKv/LPLJ49lWLD93PsK1xHBwZMfazQLO+RuLIoudO3WMwNQZoRhSwi19LTsmqC9ce3njsGTxKvm62KPJBtBujk8/Oimu+P7HKOxkhx3g2hl6NktkZ6/i6q1tZPEaHd4sUzy/ywve8/rj/egwX/NnF4d/PQLidkfRjRsPtW9+1yDE6MXKOKu7A84nD7zkA2JEvVEM/xXajA23GXN8YBFPG+9Sw/dk4sHFg48DGgY0Df5oDnwSgKb7jvFAPm4o9C8G8HUXM82nBTlkBAtBAlEU/OyVlWhxmotzOW1jkmsVe5+dLs+8U/Cj2vvAmL9W2P0Cc0uPNEsJA6fJe58sOkK2QkVsBDdkMzN1SvLyNvLRAhHhXClj87uFhMc5CNiwO/MzugV8GnGXVsFsbDyygBADvQGSK/e2bvdelpnv5/Nneeynpinu2qMtOfACvDT9kuwC07Do3faDQ49MV77Trau4cRQ+EAv3akxEEsJjUbwyPyo33L/4A/ep0ACFAI/AxntzAIlqBOfTiswWRC6wsYFLXq3uBHzvPCaVQp7FRHn/UsRa/aVffA3zxkCeVRxdwEkrBGyo8Rf3ALQCONrTjrx3zbvMAVvfRxUqrBkg50DD5mY8ZGcsDDlBfth0lgGhc35SyzKIxWVBkQByeduPlR57I1a5Y2cvrMdKuzUIiZMBcl2oncFjiE6d5Ko0hfuPRGAh9138AGg94zAecdx5PyeY9AFW/1dX4aeedzXb6Lr6WB9NY8cICugAqXlj4qqx7zKoAavjj5boxX4ZmZfK03ut1sP9wnhczEVLGvY/nvy5tG6Eit//D/ld5nm0lb5Eo+T4cj6z6f1W2i99+/3LvP/7q+9LOvVnPRHR7TiKDqK1zjRWjxrOhf2YN9EM5tAKVZIBBF5nDO8RrD6iOGXvnyQDP+RgOM57GRdx9uyXGL7zCc/LswPNdekA8UlfkjCzhB6NDec+3cTLus2AwbzxD4LvyS6vLTJXtyHmgyYB28Hja6I9P6m0oMxKN1zKCLJhd/apEMr6MtjUm2mWskfMp3XV1bMfGgY0DGwc2Dmwc+HM48EkAekBJShJ4BJJMYfMIU5Q8igCDaVQKjprzndIEsnZxiC5ShgDaYJ1rxQhyUexAFQX7kaewYweE3EMp3wvQ1VxgoKVsefhqfkAqxT5KWuPp8+VpCzykVO8Fmm/dfTCe5vuFady9dzcFXUaA6BLnPNPb01ogNTDz9OnzvW9/89u9169ercWCpairwWgBzJZnG+CdrBT1owqmbe81jGr6e0AaumLC9APOGLDRqcmokULnfT5IqQ8YbcoewF7Aa4V36M6qDwgPTHcCL5wHCgYwBkj1YxdKcVUqO/cYI/wHGh2xL96BDYGmbgamVAJgyRX8san9fwFWpr/rPmNjLMQ3ow9QMe7oeCsEIwAM0APa9xsjQM5MAIBzpX/Wpmc4AABAAElEQVSBv7hHLGpjL8B0Uiz4As6zW1/3qt8LfQNma8eMxAKjeS6jEfjXvrYYLzcKn+BldpCpea/PjDT8JjPdNTxzHf8QNx77obHwknggn7QNfRhw4nHJrLE6zWAxqzG1TDPJpvor57W332xK9XkWlpEC7HXaWPfOCCH7K0xn0Sh8RUYNh3uFQ7yd3McvZkyEvvzbv/56whqOj3i5a73xvV288Jdl47h586gsFe9b2PemfMnFF7e4b2K2K4c2dJBN46uug31G2fXag/o/HuuuYcUYDNGAjukTUNw/5Y/LcuLZID8MOGXxbjzNnsG+e1Vk5GFn6Boj4Vzj+dUK8Yt3V/HYu8Ni2ZUR5KJ46FsTvgFMM7DxirH2Jg81r7t48VlgfN2++4f2oY1huTz8kTYHehqh2moQ0JIMoVMfyA4Z2MnZumP7u3Fg48DGgY0DGwf+OAc+CUBbFEeRAcn7E6cK0KSsOg8Qmh4HQMS6UoCAB3BGoXrxrlGggBeAC5RR+KPUevf9OKAwQHGAwJpqBgR48ngBbRoBUPBGU6JTZ7pS1epxXiO385A9vF+KsMeyanxeRo08z22IsotxFgZxzpsdAFIHkHCWZ/l1oRq/+/a7vV//6jd5nPPwWZxXQ0AJ0MWrRfma9hY/K6xATlteOscocTwZJe47cAKELl4txb2MgU5f84Bnb3ns1HljPIWAjHtXTDJwo87DywWKVbriOPOkVZHsHPIs8wDyxN+Uki2QMl7Arg/4GQpxZ9GDf3gLVJtBUI8YddlEtO26+1bbADfH5PKAA5dRlxHU+MVzQF452Q3wEzvU7X4A1r2AmzZuZSjwBFoY6rvD2O/AvYYZHgCvKJ1lAATqqhRdgKm2r/93X+MS0ASWyNPuQE81z9h0qfsbryJj8HTGsDZ5lVf9YnGLv0dot2m7/9MPO/3NuE0feJ7RnqwPjTvvMxPQOPAGz8eur7AM47DGfWU6cZU82HDF4ZlBK7D7q9+1uHB2UhSrfjHbessD7Xk5LATpQcbfcbnsxPHL6b3/9PX0m9eYDKrRczAzAmRVdyJoPOi1iTTjY2zQaUEmyf1JfuOJf+QdjRaXdsPcV7E5dvcqJ+5f/SMNBvO6Tp7tmQ3qjpEDjXXMc1AbC4QzjjIMkj1bnPv9AKD9vpjpedFGLe9fFlseHxmHPNNGlGedvDBu3jQDcL/fG9+1uZMJ/CZDwmekJNzRQH6QGSFTFk3bsXFg48DGgY0DGwf+FAc+CUADDlbV29o42JFHbHm5gGeKD8ARFwwYPAv5vC1+GHjgBQW8BtymtyyQAqhpsuXhSi12/kbKFLA6tLCJQgwMUqoA2uQ67pzyFK4p+JO8nkDTSkcHrAUeAnIHbfYgw8aTzwPPn31RfHOp6Grrw2nhAi0GRAfAQOlT60DeSSEYL9t6+1kxzm9evS4DRNmqAxfKUdjoW0AywJ1SPmAEUNJTQxtbXIMhoBZQXOEaZToIEMsr3O0DbIAutJi+723oF5ss1OWqrBM8lnfqJ8U/XtTaFzYAoKLzqp0aGSW8eyucRRX1LfAl3MDW6Lyb2kDfmr6XESVjAbgJDAGQ+OcE8BhJA7QnE0JfcsJDPQG7wHC8RPMs9IvfAJC24Srg6kagxT8LzU4/tMAur7M6GTkDZnmIr8GY78bW5iAAqrGCq3it0QX4A38AHkOFDGiv/3PoJz45eBW1K95VeA/vrMwe+k1eeDPF4qtPdhMLAu/eBTLzOFeH88IatIMG4yxfMaAlzvhlmSfwm2f5q1K68aDrm5CND2Sy+91orPFdqMrNQ/m+T2c2QX2zRT3e1C/gj2wYB/weQMyr3Pkn7eAHAP5Yhg6bENlIRAaZ75+/3fv3/+abFgx+tveoBZx2p9RX44cp37TADlB+XZvPXmVYxVPX39XG07zSNjARgqNP+LJ4iWtL5s1CeJ7qyYBosjprECqBVn10L1rli15jlnzXX3wnW54NdauT5xpAVa97mTsTY13foGnlzAgZ76nzp3E1lozUvNLxe2+/jDifBY7zQMsF7T4hT0c9B3jvXrnB/ebImS1E6Sheos9B9vSjYiODZ+WC13fG5GHPx5TDwzkajO3YOLBxYOPAxoGNA3+CA58EoOkcYMiq+YOm+9NJAY+lpAYMwWSdpMgptUctAuI5cuyAD+VlSr9qRhHzaO8U3UnZNihdK/6AcgoPsPDisVp1dz1lTCdTupTx5PbNS+WzcqaSz/NivSh9lnfgCaBZoCYwnuIFYAE6Xj/HRZ7Dk/I78ziD1a7z5o53EshIN/u883D7Lr2XcwMoustUPQghywWvIkAyAFpnOw4PA9YBAMYA6tEvDAEduxCU4zzHQBBgcxpgverluvaENUhPB7hoC392xsVuyt5ue2sXwwWyABigBu8GQARSgMEVb13fY6S6Vx+GrAAVYNolvK+tg+K5GTw3yiG3Az7AfRi/+OzVDyAnkqctHtQVkrKA4/Ql7/5ktcgLDESuursnVhg3gOdOgE9Z3m0bz9R68iasZZkpR22eMuA7fpjhqLFpb1LwJS8ANjqG1uoA/gA5MitE5U7GibCEN+/W7MjFbCFPhrUvRt+4rNkB46Yu4Bd/YDMxyUB3o2i3ntpZoSanvKAtsgOiefLNyODKo9KxRerw5fd0ZXw0hmPI1Bo+iPWVXpC8PSuuGXgWG/6r3z0d+i22+6t29rPDH7lkpM5YRvfu2ZCf2YwP8CqbBfky7kI/fBoZipYB0fEGyBypLGc5PjnQ6D78Nya82ejkET4pvd8yGlYd5EnHjJex9lUbP9UlJKZ+nrWDJnnWrno/Fm70sb4uL/KSUbxirIhtZ2wflLNb2XsZWt7ldbf9ua3DyYXfEkbcg35fGFkXzWSQcv3VTkM1bcu6QV6d01+9k+JuGaLLENPf7dg4sHFg48DGgY0Df4oDnwagUzYUN+W1H4CisihQOsiiMAoYoCsNcuUO9h7ebNvrPr8NYABNlNhafBWADcxQ7Lza0qiNgnN/yhEQ4OkGFgBxShTIUX8qMiWtnLCR8iAHdG7njQrPBHBcW2nirLZ/8/p1r1cDqCeutSl6Xivpt2YRVG3LxasPE4IS7c7fKyMHkAIQWFBnYd0o3fFwpaajIzNggAXAMMAAygqS+DzgsHdAl+cdrTydjpqc7wDKOnhlA8PO1/60OcBjpRQDwC4vuYTjFoByfde00TkAx0l1ANingdeDA3Hiiw6GDYCJV+gYr2HX1HUZfVeNiWNtZS4GNRqMaS8gGrC72zjcPLQbol0jhUmsUB68wYsdKEMKwG3WwEY6rqGDNx3gBTA/ln/7TC7pAC0ZwTZ9Vi/euMfnCKxv9d0CsXjpO5oYCg5yMgsPOy8Mw7bQZ8X6OrQ5sefVpQ8XzYYYXztOim3GA55k3l78xUvy9y5PrvFk5Klj2q0O5eSuXmN43d94j04GonAHPPFyDr/16VahFkC983jkGfgQgBxQN22SAffg00qhN3zv7OtA8+tA9Iff/jDv76MN8P76ekdCcm+bdrMMd3pG3nRdSAP+CTUS9mE3yjHGoiWK4t/itf7OkxRvds/dOGTxv7YX4NT/xZvzi2uZjpk99rWxjI6KzmfP8dTYBdeEjWRZTRpB8ql118noTbtHGvPrctojb34HltxlPEdvJE5fpMG8c/vRZBx5XeabSat43U/9ME5mvtCMCp2cUKFoXX3Tn/Vi2JMT1xk5O7DfTduxcWDjwMaBjQMbB/4oBz4NQKeI0nWTNWC/hWpCMWzZC6zahhhQ+lDKt8uPcti2jXEeO5CPErVgjMIDRj+0Zbbp5dkxMBDFq/swb5LQA17d8/EypewCg0CZ6W+KkaIU70oZW8z27t37cuEeT1tXZWHgITS9zUM+wC0g9yaley4+ONBk0SANz0PM46oMwAzkAlSvAiw8toWZDiiiYHm3zgNgvHCO1UZAomvKUtkA2Z28iN6dAKgwymYSv/vhRSXyRhYGAFzyTHvdastoXjixzwwFffoQsJy4zUJf3gHC9UUZYHcWMMY/4Sq8suoEmMdrWluAC6+wczI9TBx05QCxd3lchYnI5wzgA9I82EIbPta++hkteK9f/i0gEo8q/0Vp1N4yND6W45n3uvECzE8+CHMAfpdRxdNrij4i5vppISn7BxkCwG7ARbYJNVv4B2TrY80N0AE8bXBBRpzES3VrizdYOWMGiOOL9H3CNADGR/dbqFdfFvBmDMSX7gOs9YVhwot7eVG4RLG2X5eC7V33Pnv5LrrWwjL8EQajDQhQvZCXRWx2I8SHWyPPvJvF+8fD/cIBAGjbb2vzZR7SAdMsgaox02H7d2sCzAoI6UDzg2jY9UkubeMxALM+ew70Q995otXxbRk6hIZ4/U9/903e6M973o7rn103o+Ewg693YT4Mv5n1AOx74dvHPLrQ8Ixt/eN5rncTfrTflpw7Q5UsiYkGPPHssu/kwDPlWSWbdhicZ6exVs7R6dqpXJ+NzZovqB5ymiFFVmZjlUrcuVN7jec8K9VtBkqWErQ5N8Zonyc0Jj4bx5UTe20lzyu9MzQ1P+Es1eNAn0XAYwDVL55xRhr5ds7vkHoNsVsW9XPr9mfjwMaBjQMbBzYO/FEOfBKAVjOl+UAGgXKOASe8aePN6bPpa0qb8qfYLlJalDIFS6lTkIDb5eXyzE24Rd8pTZ7Fy7xGYivH9VVbFO8Fd5VMFbUL1FDUO6+ukAAA6E3g/Kd4ztrk8bsKXaBNGzyQANPHp2+qh7LfL4vByVybRYk8gHmvlUcvkA/w8OTtPO5AIsVLVatzgbXlfUbXbGGcgkbnjlaA/2HT+DbYiOy5rxsHQB/lHbRoDmh+X7q0xTMLy4rVDQADGUCH/ukzxe8AUoU0hDl6197yDjJKtIHPkIHFjfzkQJVFWO62LTPQIGxkdjmecjbDCWgAbd2Ltx/dG58AFVPmh4fvBmCL6wYqteMe4w3gaBBwBCZlyrh98/60A8ACRvj64N6t635EC1BVf9w73nn3VoskDcZcfwHW4fHQGz3Rip8jb5Ub2XNfcoMO/JPBJOoaQ17/6ihud3ZQDPi6gxzaza8WBrhNfzo3Hap+W28DhyM/6ok+fAcetXuWMSW+/yjPMrCP/zzhFtKRa1lMhr5451CP1I2zYNWAdUhP96RNSRgQsmeQTbwf3nl+zgO99eLLJ4VGRLfFdAyPV4HzX3oGqsOsyS++fjJg2314xbP+MSZ6/vBtPLLRh/8Tz0wOohWfpgw5rS7Pl4WjeNYITD/MFJCrs/NmjJIHz2UDG/9rv/ce+BlvdO+eR4Rpc4QvvuWA3juML+TiRluxB/XH4CQ3Dnw2Vu4Y2YtO9F11r98OzxA6AeDpT23dMt4fF5DXD/w1BsZp/RYZw5X2Dv3qN+g7j/pu9uIkw079QytitmPjwMaBjQMbBzYO/AkOfDKAppQoRWCHZ5FSkm2AJqTM6dABFxR3IGE8pJ2z6McU+sGN41G640WqjGOm4AOnF3m3VigBpZfSzRNIQQ9ISYnvPFS8fUJBAAwhBxcfW7iV4gQUKWYKdRRoxEwMcFtBmz4Hmi3aAlJ5nBkDo1xT0sofBoIoYvHQPLkLuJp+d71rAQcQRp3iVXm2KHfdAGpcH5AXSEYP3tzL0356wGunT8tb/fEaeFgw6V4p4NANNOOjGO4bLf7S/4uP8gzHG+BCHVUyWRt6Bz/wBE12x2PIjAe0cuKQD/L+Ak9AHXaaDu9Si+vybDY2A/ACxTx8FkHyXjpOK6QfRuckAHUV34QPrMVzC+AwGtxzg5ewugBIiyXRd6/NarQpvtyUOx6Lb+YBH0DZteF3bQwIiu6LxuiocrupdcDXeACAZ9XjEI5gwR7ZEYqDPmUArRWCE5+vARX6BojFT0zFww/xAg1mGowtusjsApnGeRmI2tkBQ/UyGI3zhw9CcYxtMfWHGWX1jefa5iEMF2W0Ewlzf29Dq7EbKmpPXnKA9/TjkjH9R8fuYNyRtwf37gQef/+48lRb3GjcxhudvNmN8LO839rGz7XL4HpeYiibYeRpnqH64bnQVzwGWoHZ/fiOn+SELF2WpkR5hux58ikNIe8tCo3ttFNbw18Mi16fNeXh79Z5n+vXPMYzY6Sf2p9XNJBnz8ySgWX4eE7wf4zUAc9rNsez0umRdfWQZ7x27zR63Vf0TdvouT6UZ3i65pn5kCE09O4KbO8bBzYObBzYOLBx4E9w4Pca+U8U/NcuU44U7XglA2cAorAEYEm4BgUq/hMY5AGkdCn1m7mjUt1dX4oY0EilBWaK2Q0cnZZKTl3iRXl/KXRlqlqVKfEAVG0DFGKnByxdn6MsgcJU8YAnninK9mYL3vZD+byMvJwU8yxYrDzgQKnqz+TJ5WkLYFCvxyntyUVd+VevT7oXGAeWF0C9ERjQL0BNBegDBNC0pokDh02Zj5evdt7nZQTaAAKePtEowAvPIlpno5cAEG+08/IBv6puC8vABfcBCeu1vHy84TtAP4ChkkBP1VWu0IFAFk8y+gBE8enqUmZ28+sb4KdvO960T3WgbW2Go+zt7jOOXsDxh4DOZQvJZvFenQbagDxjxKONKXhikR0jBY/fN7YDHmd8hpw43Mh3k5RymHea51zcNmAdDq1fC+zYSMN4A31oBNIv65P6xjPf5yV3+qafwGvANJna0cwIMK5CRfAEjeQK7ut/9TOE4lv1nwRItaWvE1IDrGXA8ECP8UMWk3M81p66jZkQGDLAe61P2qvG4TXZJGca89ksCXlbsdfXfM0buoBtCxubJdFX/EEHHrgdzSXomPCP92WL+e0Ptjf/MN+FczwuPAjNxtpCz5oZg0dID4PKy0l1kXFhSVzEBwzU/rlANjx7NgTy3b9h0vpTv+tVssXoJKdo8u6ZnbjiLlbLjN8Yv32bfkWDZ1xoj5mClX87voWAk6hkRN7ntRmNuvFpdgBtHMmC3wXnsd3z4ljG9ZI3v0fKOUb+okNf8NBupfq+rlZvvPXbYIz2+zx9nzu3PxsHNg5sHNg4sHHgj3PgkwA0PcVbDEBQVjycvM8TXpDepakou6UkF/ARh2g7Yoru6fM2JEmRjqczJZdKnHqWgqPjF+Cj9ACPe3n+JqNG088AJGAGGANLptXpU8BWWcockEUDcOc+cb0WDFKcAI+FVxYs2iVQei+eQEABYAeGxIPq2woRWUCUAXC3OOluDxDYQU9saUoZmKrv6jbNDbgN+Ks8ADKZCzoH6PDsAcoAAJren7b5w8RUa3MBOYsfAaxZZBk9+/HT9tQ6BDBYTAnEMEyEOfCouRmIHCDZ9R2w0QbuOs+gmTRrgYlbbcBxi5e4PgCsQ0Pe7wEtlRMD7UBTnZm+Xn+cEBX9YBg4BwgDgwPC61dQb3n7A9rijbXPU2rc0C9u2IwFMDr9iHdr3BhgvOsBMG7Fbuzj9DMpG/kATI2TumaL62j4cBO/GTvFFjMW3Bjh4otn4V79OY//Y3x17e6dwjCin4hM6EYf1LlCY6RGzCAorpgMSg23QGFVJs9v4guACgACX+5Ho89owj/3JaUzCzI8IzCdc37ksnq0iC/GBwAFDrWPD2K4u2NkkWyRdfe6wTNnduIHae4KV5pMFNHgOp7+7d6Xbf/9IJAq1CTZ7B7Go/bJi+fsZrTfTfYHyNf3MaCSszMZVqLNee8N34wFOdR36w+MC77ZCEVtnZjyrq/7UF4rtTfjW3uuicNfXdDHjOjG5F1bd5PTWDF9VZ9Y6QVop5rhTSyY59Ozhj/Ti4iY+vozvOlZu1EcepfnuFkIDcMNb/FBOJFynm+yMk9TzDmuj2Ow725ct29/Nw5sHNg4sHFg48Af5MAnAWj6ZhRbCmp/ppoXgKOMgSUHRQ+syg6w3zsAPQuccnoB0RTXhHpMOinT54tWipEC3gdOOwXQmjrniRPHS3U7f0nhdw2gBMouogPKoMh3L6B3n/IshRbvFpByMxAsTzBlrA8/LXKsXeEaN/JCyzZgkZd44qOyRVDEAITQB/dQxl7O64Owg4uLdtNLQTs63QsoX3XyelLeQk0o9onvrS/CIZY3jYd8xW/O90CGXlL2+qzvKgPS3V+vJjTDPTdbqOkYIBFN6JEeDHA5D9ShAu95bpd3vFCNq+UZjglDK1iC/ep1AP0+A6Wu6GddGpAGpezCFAAqPD2JbxOiUyHtKu/860mpVh+jWyiLkBd9l1fawUMMeCovU8Sq18wAo4Snc3lqx8ABxBrrm8Xc68ctYxG5No6p81MXIE8GhKIAnuo1prYx1zsLNu9mwAhLAI67vEBt92uL3BhjhhJwe1pu4am/fhqD01LwTf3RsbyYYtCNeWNlfK7HU13Oo0NsNmBvVqJiI9v4YOYAkFwHY3PFwgOKnpmzykTWgExglNFy6/7iEb4d7L8boxB4/+7Zq54HBlhjr5EOi3M9Yyv9INlZ4xCbO7cW1hkrz8W78rnPWFTHAcDdwQCu4NyHELWSk3mek0vPKF5Eqjf/e617+zjXGQz7gdljxhpmV1i1eDMx9gKkO/BSezPLEq8Ze7vnyzlGsBc6/PN7UtXDP0ahHOTreb6W4NogS4zcZSwxIIx3F6LBP5sNYT9DWhdWD+bD9mfjwMaBjQMbBzYO/EEOfBKAptCBRUrxdmm3Vo7cAFOZLp7l6QUggANKUiYMGS540968yxNbvCjgNSvjU9am+g8oyIDgKOAU4w6AAEAUIa8uIFQVAzyUGzBdO5QvsAuYAQQWLHZ5lKT45ttXMoDUBqWfsh29H1vUDahRpuO97vqkyuva8i4uJc5Te69Fd7Ybpn/1C1ADAtB9u/6h68MZ73cvXurwLoWONt48xoR7AQrxsqgDrh7eP957Wr5fIR0U+ZpmXuEvlP2NAABQB/ADAM9flQIOkArADRioZ4wRn4E7fFPP9LWOzhR3rbkH/XgoJZo823b/A3fQpY01o4C/puSvgVMlQBxtnNZfYRv4JnwFzTU1oHaMgsoAYRiMz+oATIDn06bLgeAJpUAXo6aiY9CoL3ngjTy6Gbjt/PCWbFSPjBXdWIq2Fu31zlhBD+J5LG/Ha4D6vLAS7+Kv8UEoxvKEMjoCUwHq4Uv0rJSFNkf5fRw+WoE2Y2ah6aSgqw08IqsWe0biT/3jiSY/cjW6b2J4r0EyOXTY6MdYjefTRjJVoF7PzTKwhEsIKxFfXS7j+MJoOwnUWgPQsAw93jHTu+dBto/Fzxsrq0h8et523v9Hz5utvf/qZ5/v/eyLh8lXG78kQ55XFZBzIUM812ZuvNRp/MqqN3y/tNC1cujTP+/4iWfqINf653l2L6N5woi6ugwCoHpdw5ePXWd34D0jahkKPOvLK+2eKMuYXM+bSnnOtSnNoXSHNg26vDBroAzj4br+2hzDoLLo9JyRZXJo/BmoK/f7inE3+2MsZht6Y93nqwzLPk7f/N2OjQMbBzYObBzYOPDHOPBJAHoAWXGZRx9tLbymsaX5AgQo+vul4KLMfB9AkjI7tiiJUkxhAV8fzt4GjM/2HrfZA4X4sS3Bu5wqpUwrE4iZ+OFABa82gGzRn3AOCg9YH+9lihOo2C/eWFsU8nieOq++8f4GuNx/Ow/kg3vAaIq4f/6j8TIFrU8DvAI0YmUpZsqYd1udDAaLIWXDgDq7dQCaclfqGy28lLfpcop+AcEFDtPpC1hHF6A3kRvV4bZOwQ1DAzqOOjmgq3YAAAYK8AsIAqG7GFK0AQqAyfIIFmZyfGvAKKPiHYBQXccBJGEpABGQrp/jAewa4MFTj2ec+P2ffn9soRw638ZngAm/8MNr0Rx/Oyd0YABY/UMjsCbTxmcP2wylcy/22vQiGnmp1Q6AaV/dA/CrTJ2FIE//r0JPa8yWd9pnKfPs+Pi2uFyebmZPrBhwKm0gYC/tmjAdmdpu3qjhOgK8GzfbjOMRbyTwDVQC48D2xEob6xkXCySXtxhfImvCPwA6QHhmIDopJ7a4Ykac+pwXZ4unZBUPyBueGhf9J/tAt50SB+A1Pq7hh4bQASAKqcEfBhavq/7zgiuLhXhlJuNBOxLyJMuG8TrQ7P6z83fduwzKN6V2/Ovion/25ePJGKIdBssAztpB4xhBQDK+9P0gr+yEaYxcLhlk2JAb1x3kgyHAMPSNfA2v+i6NJXove5YnjKgxc68xmzCn6Dfu+uA6WdTHG22M44GaZ3Ja6HPt6YvnyDUHI+8qj3YjO8+HPouvV/96/pTZyWh01cZK57fi0qfNxl0ZgH7CQqIhcjquG/FxOzYObBzYOLBxYOPAH+DAJwFogEtIw2Gg2HS8Lb0BLds8AyKzCUnAhrKUf5iillVgKcsUWEqTF/fy/fne7TsWuQVkAx/Aoy8DWLuXQlWWJxnQpbSfBLjT0yumOXBkgZXMDmKBteOiqWug+nwAQ2AhMKNq3vCH5Ys+aSOQBX4AufJXXytTSnu8yylkXjXtAdv6NXmCgYWUMsAANI53FRBK0Q+QHgABAA0mGhAlBhX2QPNhmnoAaP3SH+cGPFLiBqrvQOXy0K5KgKXOVhbPeUGXwQB8zIYSJ+8HXKkLKBCeMN7B7gLgxwsXkDuugLYGwPYOrKF5DI79NqkIBK5zACQDAICRxcOYBtri553bK0+1tvAXb+TGDt5NbDRvMeD4UVx59DnIyrkY8eK91QmIDsDsXrvHoQmwMx59mjEHynk28VdbA7S7ynsvRzODYkB79QNFaMOb8VBXj34zNIyfNi1eM9U/MevVc+duKQIzxrQzYL5+HlQO0J4Y7doWArI8/Xhfnypr7EeG4/MpoyBDy8DlO25cFhDzLAwwTeDe3JTrXKz7WhzXCCSvAcroc85YGl8h98D/xERHM+Pz1uSzXiD1Y5k65NIeHoUfecOPimN/eJ9XG6jsmXm9+CslHj7ZwRDz8OTrLx5Pf/CqJZkz7uRvjMfLJctLHoFo8pN8xHvj6/Bc8o5X3RxdXkcnnNM+owZ/bM7IqGhYC61Yz8rVT/eudQLG3zN6ZRw9mBVGm2q1CCJ3cyCaDJPD9fxol2xOOr9+V2TTYZwYX8Yb2SBPDCRH7J12GN5oq2eTY96MEiM0Kvfu3lyGzAzk3LX92TiwcWDjwMaBjQN/mAOfBKCtYOfhDBnN5hIzJRoooABNLbtGgd7N22YzksMWeq142bxyAbWvv3o4gMNU+dPiN634p0hnQV+K7qRpceAO2AOyHpYzFzADkn72s8ej2H/Z9sYACHDF60VBUoo8t8AVb62tzpyH5QAf08ZHh8UyP7w9NL7IcyfNGxCwPFUr8wJadguPTKVPqrSUM4AqDZ92gQaxwoCevs5r4N8uBvd6IVp0A98UO+V/0nx2eGI2OeE9PfkA+C+vIwDFY6ouXjKAz0I1O8stcLDaYVgAkbcDOIAY8DB1VL+4Z4ChKoYanlnXTPsDNgwEOYxvHqxcx8AcjzdAztPJuFAfdzRwxhMK44zHLo/n7hgA3b3vTtZsgfG9e6dxilYb1nz/45uAWMCwxZOMLICs9BnzmVeSAWZMteFlkR9PMr6O97F3fDCm5EBKQfHE6iJv7/er90Xe3YAi4wkAe/Lo/t6Pz16Pp1rb+GfchWBoQzwtvpARYQza+pgsj1ERqFPu9tHd8Wa7lwfZpj5o410+j3dnheoIwdjtfgiWMRKB46obPsmcwiPtO9kcACqfeH1hZADpmCMExaY+aAfwjeks1qu208Js3rxta/Bk//5dMyyn8XetA/C8SAXpeTA+Yh78Q4d80sDwsxdv9/7D5bcT4vH3f/l+75u2wBYmMkw1iPpem0J/lG8ourSMXPwY+anMbI/dzo47g0V4BzmutFqmuh3QlhkHyNWfyFn11lX1AfLqwFOGC/4tbz10vGTdfepGxxw+z4foacxcW1ubP9v7zXfPy0jyLmOMzJ4PkB6DS8Pdj8T+TtvGawyDoPnMwkQDA8lz8O//58O9n/3b9QzPPddNLwK2vxsHNg5sHNg4sHHgX3Lg90joX57/s76Zvl4e5EBMi+eAOF5EXlKghEJ28O5J6yX20DkgDIgdJZpCdI63C7AAWJQFwCfXa2CH91TOYaCJTrWA6W0gQRwpgEzNiw9e3kRgAB0p+JQqsChNmPsobiALOH0TcHpUbKjFVeMVT5kOaEvZ6gMlTcEftaofvXD4ig/NIxrwkf3h6BgA5OU29VzWiqbLzz6sMBGhLOg6vLHe6XPAACAGVnnaZb+g+NELYOETGoDd8QoPsFxT3Ac3gNnl+bbZyzqWVxVoEj5Q16afQB7wCwNoz6YuwOK5PNC1pzyP8IO88ACzLCT5KYfemhgPJy/0LES8pgk4Myaxa3jKIwhEGRuH+/CcUQAQXplm17fCcxghwBOPX9VOH2ccoaw+VGzOAY/anR0AqwswBHzxX2csdLOZh3/o5+/EywJR5v5Mld4DX90LOLuPt9ZYAuParMDE1grbGMAYyAeqyAZgbpbDgjd8U490a7Yuv+i+i0IStBdJE55igZ7dCwHAAYV5jEG9MT4CyDzITzLS8J7xIhSJlxwvhKHwUI/3HnBNXtQBWPNGM87MiqCHV/pxm60A1cbuXqFRsoJ8/5R8LwCMP+oFCPFMBhWzQUJmLl6+nb4yANAKRD8u9IOh0LB1a3/7T/6M4RxXgD6j6fce/JHneGSMmMk34gkv8hggfR4DqYq049nGT3R1acrgs8wyV40J2TpORizim9zh8UjbyuqTshMnHY3aGyp3bfQdHxkoj+oHGvDIfbeqQ7/f9UyZ+aq6IWD3rh5y4PemnvUMt2tlsvDZN6/mmSMi27FxYOPAxoGNAxsH/hQHPglAU3bAganij23ZzUtqCvtmymkyDqTYgBRA9GHIi9IzDT5xpyl591nsxAtoIReA4FjT6UuZijvloQQKgWFKlfL99rsXKVbZM7qnd1P1prRtHQ6YXLY47maJhN1DoQIvt9OcC7AGTPp82PS3tmhU9QACQBzwCtCiu6sDBniseMSADX3SD4DFLoE8eu6bhXkBlrkXcANuAJLK4QuAFDLouzaruHfxm0AN4LVbVDbXuowO1x2ADBqPj25NSMEAzXjC86p+3k2gEVgEkYHdhmGA4wDzAan4mOe7C8Adg8N97woxyBYawMno8EIvIwcIwfumGAbcfGzxnoWEvMv69v40r3XGxPLGB3661z2rf0PaAPvD2rt9zBsfByvD+FJWnDiwBBjueDqgMlkCuIFoA7zGY4E7sw2MEeDfLIf7fD5vO0Xg20udwKQ2xkvcOz5p/7LY6MPejeNpuz4OsE0+AP+VEm6FkAgRkAccH3ebAJERAJfxBbyZubA9/JKF42kXEOSRv+reB4WJAM82+wFs0c3wI/vGNtKRVRnGybpOvpdxaiGhmOhlONkN87Kd92zGg473J7dHticuvzq1C1TeuXM/g+r9yI22ydGaZVmZNhi6f/NN+aLbFRPI1e4uVMRYK9+poRUteKl/DBJhQcbnIB6Kdfb84/GMXXJA1siPOsZgTL4YvJ4j/fQsn035jNNkYq1vEMJC7qqvur0PgG78hM+QZ+c8y0s+Fz8Ok9H7d+/sff7kXZvKFLLSeFmc/KyFlLzSjA90DH3dH7mkbPjiSR4Pd1+ts+AIwOft2DiwcWDjwMaBjQN/Dgc+CUBTchTsKc3Yi9fJ4j6A400eYrvW8fTcb0ofaHr/3mYhgGfAMUVm0Q8PoWn1KhjACdS8PHtPvaWAl0JWjnKcUI3OmfruronF5QWUl9e09avXedwqR2lKVSa0wj1A2G4V/lmAiRI15b6LDwVWJl44ugEFYLjb9m7L9dVBrw54iG6L8FwD6NbmJ7qOzoBBafIOLNILfZx+eL9XWGn3Li+zsIz9pv0BAmDPVsv4xKMZC+ac/qIXWL9xO6B3pzbq1y6WFnAEksR7uncXQwzoj1f72sMIlH3z1ZMBkPhpeLQPHhgTcacWnb0r9ryeBOTWOBlLtE+89QBdoyIkJiATvQDfa2C/isYgCDDhNfA/ry5ohyEF7I+XOGJuHdruOiDUJiPhmMC9hXE3BtR9OFvpDifWuDaAnRXCIRREnm9hHStPspR1ZGWXWQOInNmGxg9QBIjUjzcPy/9sZgC/8kW28cviF29jLN9798oivz40poCZA8A1szCGU3QbC70je8ZBbPS9DD08wsePQFsgbTz+0Qj8GTv3a4cHl+fbDAD5Nw6Mi7m382Rwv/JkwnOCfn0GgpV9+37FCHt+jI1Dfc+ev5kY4WV0ZTjljbbJi0W71gIAxl99fr73OB7842+fBi7fDm1iqH/748v6czZx8//mL77c+8uvHy8gm0wU2LF3drTGzzgY1Y+FgiSNQ6c28Hx36C8ZBDw9N65Y/MlIMcPzqudS6Mt4xeMr+cXjGB4PzueFlw73T/aa+HBefQwOfDUDwLAew7D2YsvwKvJmQemdjCxlHt2/lzH+rpCVN5WX2eb2eOGf1XdGEaA/ADkidWGB/j7Xu6umloD07dg4sHFg48DGgY0Dfy4HPhFA85rxivHyAA0B4bQTVcSrxdMJgs2ZzvM+AVzp3EDW8uTyLAHLgB5ADkRQqpQcbQk4XByvMA/gBEif6eG8cdKDHV2DTiDbtLXYT97oK966vJtat2gQaFQpDzaatQvoAQTidrU9i8W699VbClyquGUgiIsGIKXwevc+Zdu9wFS+sgkHGY9cdAMBE6pSHcrrvnqVF1KhjxS5qXMAEuhGy21ZFKKh2zvWNLrQFBudPLdzYeAQbWgd46H34RXOdROg97FFip3u9s6FSVa7QP0C0MD5Cg3hLVzhIq/bxGKAfzwTXmMb7MnVXVuLR0Bf4E970462pFgDZBgZa2x5H1fbygmVKUSnhYbKGnN9k6Lu5s2+Nybi2cmK6+4FXoxb9s4YAjzbA8i6dpac4B0a1Kt+oE2DvJcAmnHBIzQDrYDzyEht5JTuaOzrh/uAcPQsT+eie7XPCFn9wRNjZiy0y2O8A4sXhRyQS2FBvM8MlyocY/B9QF2mEP3apXRjnABr411unMSmk/dJ3xadDuBZe8affBprMwzGDI/RQV7M0pBjwPIt72ry67pnpFPzWd3q8mx8/uRB478WUvJA89YDk86hSb2yYnz55GEA9E4ysBZ9osMY4MsA2/hOHkemYguKurTXZMQYm2SaUYz/IzcBUtxjiIpL1tbNM+ErYtQXkGaQ4i1aGdFZBjO+ZHl3L8CbONfu+j0wLmg7mN0exWnjz/pN2D2DI+cAekbP87zQnsOXvfO6exaWsWN9gV6szgD806h+bcfGgY0DGwc2Dmwc+DM48EkAmhJaICoFRB/1mjjolCIl6KCgARzKzjkxkHLMAmAALC8cwAGAAw+U+J1bAIFQgKXo1oKqgPUAszx0AWJAyb22fTaVzLMFhFG6vMmOAX2BU0pd49pXvzKziCuP8WXKmNIGPNQJbLt2Xh7eq2i62WLDBzMtbrHbRdtqB+aBpsofVrf3HYgdL2F9AYDwhfdz5+mi6Ie2eBZ75hUZ452TQxogo9ydk9ECCL5Rbm0eVovFHrZNtmwidmg7KPZa/dodr119HxANFOlk4wBQ4I3Y0Dt5NScvdLG9CwTZwCKQMRgqkCRGuRd0ano9LLTqHz4uQC9fNDbiz/kFQwUP1jjPjnQBICaF+k3Ny8BiXMmDfuODcfkYeAdUNe0cryQQvTzoKzYceCQvAA8gB/AB99pkFJEb180yyBpinM8uFlgCMgFoQApA69LwCGju1gGuwK1sGqd1FPgDYNHCOME+YwDYAb0rCwuD6GjAIO834H5+Y+d557mW0ULvGQTJUvfx3J4m51Ih8j4bE9wiZ+R4V3ciNjMKywDovtoVVz68iV9omYW63QsMDmisU2YD0PvTTEBtGPPJ09xNOx589dnD2gNsD/aeFgstXAEQFTr1n3/9Q57i07zQJ3u/+PqzgPT9mRlZtHmGrg0n90eLscWfg309BdTje2c8u9k5e0fx+DBDzrVd+9oihx/2i+0+X95kz4dnDVN4/2cGxbgm/xN6VDtkmyH8ew91pbVf3/wz5nhhmaw6zFKQTbKHh+LlVxagWwOggWgG9pueJc8amRrjbni8nv8I2o6NAxsHNg5sHNg48Gdx4BMB9PIQf1ZKuYsPh+P1eWc1f4odYBzPNA9kpJhm3cU70sKAi62jAZvxXHfSDoX3AriUOqCyAOUCMsCD6ekFkIR8BDyKPX356t0oSrsUAhUnKUeAxb03C++4WXjFWaABiADCKFegSqYAU8sACmX6tvCSt++BGx4yEGDtXnd5dTLKHPiyOGxidqOZMgc6gY0BP32XSUHYgkP8bLcEAORdFv8NeOdpDkuZxgcGTTWbdrfRxfl5U+tty6w+dQMveMQoUPas94NcfnOpdngEGQ0Ayiya6l4Hfgb/xoP+oVhwxsCjw2KJA5pistHcLX0WdyuntJzYhd3UrpAX90xGkYg3XmKllTnp/M3GFH3oAdZ4dvESaMRHgAjovfxogeadaC18pTYBaSDJ+AAtDcHIBG8swAMk8dzjOprUrd6ZSQiQyZLwKBkDfH58/lpD43VlGAlvsZsgWgEo9wGH7hUDr22AFYgnE+gHri3QY3yIyzZmFpdqH9/dA8AxiPTdPXcC3Q3MyI8+GRdQEVDUhwGB9e2ihZqZK11fQP9USEQ8MQ53bmUIVB8iXT8+Wu0AyEKQPDO2ED89xe/kB7iLIrIIhD6r7y8DgYAwPgOI5HlAt+Goj+h58vBufS22vlR6ZEmsNv7ok+wkxllKR97oq6vXlV1GIYD8zZePio0vlhuNyZ9+GQ+GMBA9YzUG2zIEV3iGtQ0r1eGplJQ9VwN+K4/v18JRHSs+Hh3Hycbi87URecyoXItiea7HQK4cad4f7zQQv4wiY+RwTR12r5wMLPGWwSZ8jDzLfe2FD98/fbH32x+e7z0obhxJTwuDEd5xkREwKR9razs2Dmwc2DiwcWDjwJ/LgU8C0JTm8gqaCg9OpNGOj3iqAAoafQHM9OgAI7GXYn8BE+qKkgayxQ4D0YCIFF4vWxgH7PBKqhfoAABdpzon80f1i7N8E6gCzgEHC/p47yh8WTmAbgof2BiVW6OU5w5UjeeQUr++R2wxJZ5OHpAFaJykfGUDEXKiXrHUQjBMOw+Q7P2g8IAbtWVaXn+AHW3yrtbD5WXjTW+qGC+AReD5sDhZflteYkYHYKC/vI/n8QSgu1MKQFCBfh/PZN/Quz9gdHnkhBIADuOdjHhACG/laxZT610IBaAJRBsaZWbKPv5oh/ePx1/7AJn3Oj7tqovXN85131rMGKYZcKYcYKX4jifGVsww/rsOlKN5YpnxpLbxGZDFC4vj3I+fwOyEP/RdyIW2lcNLbY/XX+GOnTEk3lpbQ0d0La+lMYuP8dS23zqiTZ7J8/kceM8IAa6nr10TvwvkMSDIrnu05PoyJlZ6RIB4spDM1WVo3K24+skU48wiWt7gWZRYeV51GV8OK+M2deKTePP7xfHqGx6btSD770pft7aaD9jHL3mlLVZ8xWjMQCBrFq8q6znY8YJR4RlazazQFos88WcyVlT/K1urM1Qak11Ix/AARWhr90LGiHNk3tipMHb0WvKFP+N1n37Et94X73qeDyyYBJAzjHpWjKG+Tp9V0gHgk3N0e76NsUMZ58g6YJuk1+b6ffmYrA59609/PVMRXDvoWkB//e7s6DQWM87JFTnxrJnVYayTu9cZnrsFnovKIWP7s3Fg48DGgY0DGwf+KAc+CUBT9jy+VrzL7Ush8RJb6PT+GjTRl7ye707fNJXaIsKu38/jOeEaKXUAwBTsYbuQzRR/N3Q7FZlepKyLcawc8OwAagHUmXIP8FGewj0O8vwBkPIz283OQiqgerxegVrA9uMZEJCijSZhBGeHediqg9cTAACMeDmXR5birm6p09q8wlbjQC8PuEVe+v36vXCEiwX+xyMcsL7On6xdqOEiIDwL3eIVIHEVUAB+Hj28M33gHfvu7avpm/7q+XiexbTWvtANih+fTq8zYfgMoJnKZgygG7/0YRdfzEgRGjKxtl0EmGSj+AAMRdh4bKvXoc8DXqNvZgrqC8AHxLjP5y79BHbuBdyCMgsA1abxRpOyymn7VSDvw1nhL3nYgftJOxhPeDcBuh1wArLw2YJOntid0TMArfYBK0DtTaDPOfK14ycjBUAT72zrduEJ5OVxvAWKzALwruILmngwV3aY+tPnwzJJqANAVA8wjfe7+4BbRsbsMBifeaInnKg+NkoZiUC6GOO1Q6Hr2gHy358m28kqoOjQD7wZD3yyAChGcseNvYd5iKWmE7dr9uQiWcUXPAbhxa6/5i3ue7fOolwyevd26eyuWnBbveTAYawYKk7iM7BctfMs4B35l23EwkL0CZ/Bq++fvormZnAqLCvMz794NCBa+eVxl+Uj4zTaumnqIc/a8WY8ZdtgCC/AHU09f8osr79FldI99jwkK2Z8yMUymjKk4hvQrRvqUQdAy3jwjyd8GVG7flYVXnV+2m78pv/RsTYDWmssnMN7z5FZKkaNcA6Lnf1G/Pji3Rh7ZjnW8zfVbH82Dmwc2DiwcWDjwB/lwCcB6NHoKURezdk4I2V2frEAzQJ9xdkCvL2A7eX1qcmQAMVNaQGk1TBKTryrtGzABTAMLBy3kA64oTYHIKdoeZR4oQ/aPhy4pnBpccDlXmmtfKWsKWRA9nCA8hSpDE/fLiRiTefzbktBN6C0tl8HOrQFsHTXvKtH6jFgVV8GJHRlAF/Ay7bFafmyvXnlHW+qHXAwFQ2koSk0sPch0KAO3m7gbDx8fectBT6WV9gCSG1AWIDAmmKPtAWsAlf4Z4XV8jgGtorJ1QZvs7CL93nWLnjPAxT4JY+x2G0eR6CofW32zqIPuDRGQErouxAT/BJfHpjMw7dOq78+Gudo2m9DjQUAVwhGA1E9y4OMb/rBwNFlNOuL2PfxIM/1PPV9t3hr8XEBMEB84t67U3jF8K+6GC76iVcTAx4fx8i4DNwfdU/hFECfth80/sCYsRRyA5h/FqAW7oKPaCE770/z4gLHyc8YHgEq7QCdQ3i5pdesCKC92kP/bN9depUSqkRDnuIMReNgnPF/PNWFhRxG42dt6KK+HSB8X/zt8CA5PcnDjO+zQDFQilf6p02ya4zIHEALaN4LMJNnBYVu4Pnv2nyI0cEL6zkCtHn7f3z2pst42whWBz76bvMgfHQAqi/tVniSUdv9H5PB12/f7f3DrxePGBN/cfykRZpyc6xZj52H3AMxccfRL7Z+ntGMZ8fIc3JWldOn2eGzUJ+bjODGxWHs3WOG4SqjFgDGl/vNlgDc6FGBN5UM6O86IMxb7T6y7Dfn8DJjrIJe7j1sBowR6LP7J7Y/HhgrswaeV2Ed6sXX54XD/O7p68Je7gyfNLkdGwc2Dmwc2DiwceBPceCTAHQ6ahQV5UzZfwiwnKfg9u7wRAVs24aXFgNmKF1eZ+BgecvyLqfYB6hWZjyspTSjwGBDyvagraUpPGCNd1Fdpvx55yw2MqWbLg3AA5rqv96oInpmulzMZEBmbWbye1p5riyAMr3LE7VAz9EAZ+CKF5dCDw0MmNTPHZ19HK+iPltsB7jxMrquk64PaO/+BQBXvuWd19XGGzzB5R6rZIC1vzeK05bOTB3Tt4ACUAFc6jttb+GV+FrfgYPu6vYFPLR7UIaLWy2+BAIxcd01OKFu8MB3xjgN8F7AWVyudpTGZ+BqtuSOPwMeG6815V38cyAIKdofg6B7AEvgXA125uPhNLa8htOXri9KFvDXPsDltV+7ujGZTvr+oWvDjO6Yqf3aAdLGqzkg6ffgDH/Fye48osqjQZvaRp/KGQK8zvq1FgMu+Zk48eRi2Nif+9FNBgZgT71qaxyjgWzhu2uO4UvtHAYsAbrnLV780OY5B7utsDMwLi6B9rszczAxxI2jeohpXR0eoZWn++QdL/XyvBuDBSYD5H0G9td47xVTfnv6wct/XOiPenmXycvnxYd/9fmjkUPn5OgGZL3wXxnyJyUgRmmHCTXPrJAW9AHfgdmz87cDWAf4N34/x5/WEgCu440uC4nnxyHumCEnHvyoOHjP7K1eZG2AtPYZlfGRDCq7jJCe7Tvxohh1/FSeLFWs64wnYwMAJwNdG570fYHi5f3Ge9/1gRzsjE0jx7hibOAhwwm95+fJXQZ31Y2MuNczxYi/VZjUbYstR15/EsPp4/Zn48DGgY0DGwc2DvxrHPgkAA3wjMJL6QGTC5AFvlJe56We4xmz2cFkCrjeTnumaYGlDopRaIT318V2AgWuU/jScPEQWozEUyd+mtfpVgoZIBqv5oCV5Q22s5yp9gEJg8WAU+2sMAf1UpCyL3z8CNzeaKr//myRzGN1/+7xtCf1FaCvfmEINnhAD3BuaphitysioGCXvd+0MEm90sABCDyalPJ4tOqn0JMHTR/zcjMkxlDIW3zLpiLhCyAN7eNlrR1AQyaDiwDeWZlAqHMeZX0D1N3vnFjhiszBowf023hErl6gF51oERcudhaoMhZATsXn+s77y3uq/0DFq7eBajQExk15n8X7ZxkJx9HrXoBX3WYFzDIIycCPs649akocoDEjYcHmMqIA2QWuZKcYwySqgSc5lxlUwNBpYP7G9WYi5IEsCS3wecCU+OQIB6r8I3D+WdwIhD1uISZea59RAzzbIt29szNicsao0uaNtsJ+0r08kNUU3fdmLC1IFf4AgBn/BSwbn2ZVdosbjdPPxAjXbwCNx/ygDBNi4487p335zvEdMP+2vMtSyAF4A+hr76DxtQuksfpwXnq5eHw7fpOvU0ZocmFB6u14arObupChV931/W33e7+0qNT5xvzLzx/v/UUbowiLOGhchDhZhHjZZi6MVGPmOWKMEBnG52H0nZ2XQz3ZkEsjB+14sM0y7BYpkjXhPX/RzoW383B7DvB8jLHalh/cFuBrw5KP9VdYSeUa24P4d6DPedt5rgF/zyZZi5S9w/q3kwvPKKOHh16dwrBGtBuc3TicW0DbnAj+MkwH0CfPxteBF0J9yI3n0vPIUJv46vjIYLmKl/q0+y3xDN0Vfx6NR4/vTb2x1uO1HRsHNg5sHNg4sHHgj3LgkwB0umw8TQDcfsqIcgQUAAL5cC0YnOnmFJIcsBTf3bw9y7Mk5CAFFmjg7RKPaTp6wDZl32sAUiCyZmYqmZIEHgArYNv9lC0g6TyQc3K1QCcgUQW9hBzs7d0VCpIifR996kXf3XvFAHdNPOibpq/VC1ygn8LnjQX4gDzeVaAY7QDGo0et5m/ridcpfR4uAAX4BXSeBCQBTOAKuBwvboobGFCffMiI83m8gyl6XkF18KbyTN4AYvsOnKwQkABEgOFYCrs6xHBxLz7xmuOfKXkAQ7aL8djXijGZzT4CmrxxjBp0nEQ34KlvjBXgarzT0bUAT17OxgwAY8gwioCRMQjq4xeP7kw6wXcnhQzED15AY9D/8fDx7g1oqT58t+ENWQDyGBqP7t0d0O4eu8gZowGJDbY4VTTeCgRNSEt04jvAiScMHuWN94/PxfLWt7Y613ceaMMOKIWnBjQDfHiCto/NiuwnA8pauKmdb394WV3JWX14+OB2/W+r7YAl4047vNN4rW78BDIZWi/fnOy9q1ytDH0D9vtm4eY3X96fRX5Cdd7X9n5ebDMeAPjjB7cGlNry+re1rQ9kWR+NAXov2rL89pFMJvUzQIhHc54RWR1jmHaN7Bn7N2gpLATv3mVACIeZMbvbbEb9wiOzN7ejTWw8mTSWFhYe3ijDSc/e83bww1Ox72Twl98+nfrs7PfF4/t5uu9ndCqfIdo4TX8HxOKllH2F9jSbsnY1ZDT1YNavW1fCZLqh/gnRYpiQJc8eXs6MVGODx54hu94Mv/GkMoyx83gofp9RvJ8BvB/grotTznOzDHPPdunyktVZhxEfLI71GzGGWvV7MiV4zwAAF2FJREFUNwNhBoOX3MzCGFL1m3zU3HZsHNg4sHFg48DGgT/JgU8C0MAFICddWFqrxoAzmSxMPaegUlIUIdChrANQcI7XkbbiJXV9Yl6dD+QBlsrtQOZx+X6PU4pSbw1ASNntALR4YpVToAAb5Qw8fQyc8CRCUwPm8jIFS+Y65e+YeOZ2Z7NADXDQYk0PIOF5A+7WEXA75a2yIcsKtaDo0TjbeNfOmp5eXuD7eZyDGHM9kkdJz/4b+gTty2XX5124g4bdzxAB7LyAKS/AFBDkGbUgTx8nREFZPG6BYwXHS42HNrf4GG8v4wdP5I8Xb8e7D2itrBxNxwc40L9iWoUnLG/mrrdAG5DBc3vEI1gqNlYMUGLsHkbHF3nspFz7cP5m0Tr8jCdd5y2/X8gBoM8QuX1/bdOuXTG9QJMxAazFVJOFvkb3MsiOSvc3U+y8vLXRbQN21A08A0EWhRpbG+l4FxaDV+qaUJTqHVqOjpOVlT6P19uYeT84CEgVdsID+9oi2Dr4sDhjCxDRjPezy11tXhY7qy712kVRWxct6ARkry55iNcMhPHzb4yhQJ/xYKRI62aRK2C3jInj2Snvw0Wb8wR++VbJrTE6E2YAGc741k5tk8W+VseiHxjmaQX+0QlAP332ctI/ytDBEDQGvLkMprP6z5iT1eIoms14tBXo0EqepBy8dxc43Wsnv3JFV5/yFtsxavGId/7ka4s094d29wlLOej5ZSySIbTMrEHjYHzxAfjF82UU8O6PsA/9wPDykGeoZVR6toBa/Z9nr/o8I8pceq8e8ofQ3XUy+THDysHAuV2fjw6ro3v7v/jatQHqjR+wDbzPv9pS2Y0b1iigZjs2Dmwc2DiwcWDjwJ/HgU8C0LyfFPWljU8AwxCQGGieUsBGyAJFBiSnnwZ4fPx4NtO8vF8ANhUGCKz40zzD1cOP5FqwOtCX1w6IqoKzpsrftb0xBb9TjsCFOOYvnpTdo7hUoPl1mQlejkcZyF0eW4v6KFj6F0AHWOQUBgIo4YfVQZma/q/5OYau+vAmQCC2lKeXFxqok0cWiOFR5+3+ULYNAMtLPVLzBbsG8J23M9vNwkJ4DW3mMECvewobjT/iM+tvG5VoeABE7emHF5oP0RONQAtvmv4DnkDLmzy6Qi2+/uzBxMmimffUdtE/ROMvf/N0AIgQkvzie0/yIoqn5X39rvCC54BRMbwX8XlAUQNiSlu2CQDSIreDfduyr5zd+s7Hq5338WPStEUnkDOexYAQ4HY7jzNAeFE8ghAWoEV+XuCIfKzMGqWH6NDOXlus8/yPTEWLMcAvcoNfPJxC6sXV7/Pqt0DydVs3y+Ms5MZ227Plecy6dby8uQCrKfqc7S0JzJCKBwCUUAk0GQuhLW8PSq+Yl/3zvKzCENAAMFtshtfffveifkR3mL1uDz0PMgoeP7o7nt/zAPWtaJAp4zRazaK8qG6efzvxDfCrTiFIvY1h8yyPsv6+KwZa2AP4xiO9Yq2FKckvvvJyW1twK5541gBI21Vb9DrhTpVjTDx/9abX2+HLMjJWOItNeMYYHL7nFW5W4ePVWpAJJFtc51m8f1NmlRYedo5x6pkgxwwtIShkDf0G5q8LF/ns4b0xDhgESjJAjT/51SYj0MzSUR5pB3Cq7DKabs5z5rdhwpPqm+fGONv23CwWuRtDstp39xo7AH4a7F48s3CSIcxLL8zoTnLn8LuiCxPDXr22rfebMTNjGWZk3Qs989y2+NTvgqd2OzYObBzYOLBxYOPAn+LAJwHonc+Gd4mHB9iztTLVtpSthX1rARNleBD4AaRgbeBwprcDHZSi7aEpMp95XF1/10vKK54pMb47TxbFB6TcuZ3Ht/a6lBI9n1AMZYBvoIX3T+or6vSiLBkW66WCB4QAd89ft5FCyhdN2hllmhIVdzpAx9R7d+cUHCBHAwOOs6I/pQzUHdV38dGALcXPWwes08Om/i1iBL4vLsqM0GeARH8uAy7vaxuI4DXFH/UzFCzK4nnTt+b/B2jNNH70iisGNPAeIECPsI/xtka3+iZsJECDCLsQMiLwDE0TJpNn1CFjyVGhLQwdYAfYAIhte13R8dy6yb0n0aUdQPW3P7wa4M3jqL9nwA56uoccqENMs/q8hE/o4zIK6mfNvyjcxHeA+saM04qFlyYN6AbgjIv+DRgL5Nkumlf9gwHpeHi/uNXGC+A7jJ/a+WjMhlZ8TbwDWJPFJTFQVv+FKACtPKQ8znZHxExT+e+/WzmVd/HN6GP8HGUYGD+y/jaAePKsdG+FQYj3lnXldRvu6LNxELpgsSgw+uOzPLqNs3EHMnmth4bqwS+f3weQl6fds2IRXjJWeW0BroD1+wDi6Vn0Fh7EY/xZYH/CW+Kr2PjXhXCQiaE7emz1jVf6hI4V4mDc43M09xSOlxgo/SxDAL9fvLqKH/fG6HuVcTLbcHdvl2JPf8r6YSzwxDgL67h7Z4Fi9AP/wCxQDEjLT+25cm3kbyhcBqzYbeNmfGW3WTNIKxSGzHmmJ4NG94yg1z4aGI5DSz2ZtHZd9twO+G2sbcDkFrIj5txv0mzVXT+nH9EvPEV5NHmegO0eye3YOLBxYOPAxoGNA382Bz4JQE+YRmCEouU5AlotpqLk7Kw2wCXlyZvGK2YKmaIEpoAYcbpAiKlvINRUNwU9oDDlSlGHHlJ2C/yI4aRMKUx13C4umXf77bv3Lfizk6BtlinOFdsLhKiDslQeDeJQLfACX0yfAzBnATbeS15Iit0U/612SovcUdJnLSIDuIGb5QELQPSdxw1gQMMKRQFCbBmcdzDFfDsX8yyoCuyffMgTmHd7NnaQUSHFbrpbuMko+mulP1kqohXNA/47rw8fAtV7ed8vC6fQPyAR/4FC/NIPwNnBewe4AA/6s5sFuHdnhVVMuEr3oVmf9g/kHw6sGcv4Pe0BbacHbWNeerf4/qBFerJFAL1if1++WZ7Bqqm9BdrdV7fjZ2Ex74QYkImD+PF+wOx4r+uPvkfd8JARcgFY1sbIS0Ouf3Ut/q40bLDNxGhXP4897/jE1Fc3FDpT/I2HxWEzTuQtI+H2bPXNsKnYae3EHyENygCcQlTQou2J+45nwjfwDQrjMSevvNg7z6hxd4/Y71cZSuLHhaaM9zTezPidlFVEmEWeafnQAdyPY8DV58rw+uu3EBhdYGSMt7bvCzxbR0DuA5T12XgC0RZOmm34/PGDwHNp61wbgL1AtueMUTApC6/7YrwceCp/tzAgtL55w/vO0z0CNmMOeOItfqrL2gCAFH1ntfV6ZN78kBR5snZYI7AfAOeNXj8lOAfEe56EW50WYgRYC80iq8rjn/qNMeNtDIUW1pIPY4MHQDIZV5/rZIuce6Y9d67znB9lJKlzwHXXpZP0O3T1Md52b+IxxvfNygHKwsAA9+FbITwHbfoi1ePd48YIQXNXb9uxcWDjwMaBjQP/VXPAb7zXf6njkwA0xUaJCgGg6E0xt5pwFCCl2akyGDRNG5Dkdd3vGiXK63ORFxFAMJVPmR107bDYxZDFAOo04pSleB3qwirgRjYFYRM8cDahABwvPp6M59ofMZ4WpPGOApY8yrJeAPcPOm8Tk8liEXq5sf9qee8003f0DMiqrRttEXwrxXszxQzYjyet7wDAVe0BEciivIGOu9XvHAPiqPYO8+4CE1+UIuvFy1t7v/7uKWd4/RSaUmhBIEOuYpuy3A0YAdc82bIVqMdUOB6rG7DgvVybRACp0VS7ABOkL3zgqLAAYILXERTA58NCGngDLRb7+ovHMzbiqdGMp3Yn/BBQPQuw8VgCKerdL5h6YmUbo5vRZXGdLAl2GKy5eGCBYoZKwAkgfP76VefX2AqpwJcSNIy3Ux+uivu2wY1+3IiH+msLZv1kREX2yMidwzzDQhpqRBYUcoAfgBMgapGn8AHHMpjiV+3uV+Zd9FtoaNtvY3SveizoBHSVBY4/f3x36P7xRR7wy8J6akeccVye8b1/9+4YCdoD/mTH4GW10E9IBiAnxt0Cx2ctngQEjdmNg6PhO94KmQC8efe/fGKLeQtbG4M8x/rgPuEzDLnHjYuZlzeFGJy9XoAcQCQbjJ9Cruf63fhM3m/E2+M2UMHf75+9GK+2GZHEdgwQW8PfDSgz4p5F8402KEIzfn/25EEhSPfG4/uPv3nWmJ3MM/t9m4mIK/d86CO5+erz0vTVh2eFATE058gQvGxVn81HyO2zZhGAe8+NmacFcJP92iT3vPF+HzyH7199WG0wOBobMmRs0ea5Zgx+bD2CY9YDdL6z19+XsQVYM0Bm1qN3bR7fXAaCkn5beNS7cWT+sufAbwyjQP88w7LbOGdW4KSxOM2w9ftxeSwf9jxKEVBl6Pvv4DAO/fROONn8aPx30OetixsHNg78N8KBFSE4uPC/RI8+CUBTOB8CH2GgCY/Yb2FWaK9XJ3p3/kN/joC9lJfpaIAF+BO3KTsBRcXD96jV/a4DaGtqNc9SwIJna9rpGg8p5Sd846bQg3Tn920aYYdDilwmEAphvG1leTgMCNxMed9MoQPDvtuBjsL8+AE9wkoARIvhePGqsPoBSN6oUahpU066WXhXX15flOGg64A2wCueF/i6ykjw7rs2eNUvqxMo+fmXj4qtLU73/fu85XY2LJVWoJExYFdGCvsw+ta21jyaNwIHN/e+LrevWFfT6YwMqc+s15QFRH8BL3G+PGhAl7hagI4H7k4g6/eeucu9O4GNw/p5UFneT+AcTnAAtLdvxYd4ytDAC+MDEOPRu/GG5skdsLTiugFens6rYoPfZ0AZGxlVgC4zDbYO7/JMl2vnTnw1dngKUIufvpuXXy5h4Ab95MUGJEIMLNj82d/9fACzDBO//t2zalkzHOpgFJz34The6+dhcb1ff/WoEehzPAC2In3vFeDcuGZ2jayRDf09qw0gdY7qE+5zK55JxYfXxofBxAi6kQweNY43ApdngbKdHIq5F0s+9Rvv6NFn8edxNX7WV1LROMWUmRU4TWjxlNGwvP/KFdbRPWKy3zUbALzzHIOQYrLFZquDbDtnlgPwHAOsPgghmTCTNkoRB3y3mYa3tqiuDjMAFvJpwz0TbqO/AVzypj4zCPvRZKMRMmUMPXfi5T2vT1srAPgv73DhVgD7u2Y58oqrF6j++vMHGXfJZ/dfZngM/+MjQ5p8GtuTvN5HzaBI7zcLK4FdfW2s+Jo9O2SXp12ecDLod8PzFol971pl7tS/m+TFyQwz40TeyD5LTHsH3aMuMnveLql+h4BrsokWNFe46hrjsnoI98ErZ6t13nv7b/ZgMhqjs4t4kyxyBVyW/UT/t2PjwMaBjQP/tXLA7/PuYPx/+JiOT8/TF37X/v88/j8DaEr2wYNHe3/5N3+/9/DRk5QPRWYzjry4Kc4v/CinxChUMZFiJoENB4ADaNz9ggcwcJXS5zkDWp41bcyD6Z7lxQugVhaoA2oXmN1lYlhxlkcPz/e+inGTwaMKeZx42gCa8apSqLUJFIyHqrIA2+e3Puw9/JIi5m3k/TK1XCxw1xcYSqHUuHvEcju3gN46B+grD0SgmSK/V3zlI57KakM3L9nP//LzvJ958W5/OcCG4gf61LsDvMozDIQmUORidE3XWyQoPEWIgZ0cgZi7eRZ56WYKG4CJLqAY8ByPW+MgB/JsNhMR+GYGYLzV9ZHHW70O9PPWatNhzKT+MlbjHWx88G63QYa29FPfKGD03Pn8dO/zX3wItOc9zqgYD30FeP8BdUCc91SfCDhQBPAYpwFg+BrQmj4F9oA2ean/4pvPhkcyQ+zdeR5NlxN2wtMIQD+uv8JukO67NvAV/Sv8Y41fpFbWtH1p6jJC9OfgwekA2poe0EDeeGkfFl4DvKLd2JBpfLz32dnek4wZWUTwSsiFtoTDCK9YvOdJXWMxISmNDQH3T992Mb9fRN/P2gGQh/lJOajJpbhqaQj1A18BmZlh6bkQdqGtMRoaFzMcxulxIHD4Fk+Nj3Gx6FbKxcN7PUcP386zxmgY2ew8nhvD/7e9s+mRmwgC6ByCIpTVLhGChBwQCodcECf+/x/ghvgJi4JQiHKLiDikXlW3x/Z4lyhiWuvRayUeu7u6Pl73uMse78yrL785vIiLS8YChplsRtyw5aKGecR7k8es+DYO4iQ2nktGln0+deJ9++g6Eu2r+NXF2OcTCQrfA82vRj6K/48j9ifBnjvzMOWikbmALR4n4T3FKDAXoipjZ8y420w7seIz85G5weM54XY+IsJYElve1Y7OIRp9ih/zkIsD5n+OWYwl/qPncdOXdkLXzdffHa5vbsIH/uAZ+pdd8ldb47Gs5y+/rU9c4qKH93LSB2IWOPT9VnWWl7Wd9fGW0bXM+nirD3WfKndX/7vqz6V3bW+UnbXd/+v4XP5v6d2qm8fxX+1z2XPv4wtlxPutLB23D4nD0avl3txHVtQobOJc/eHffw5Pn10fruPRxi/iHD+yRH44nS0/2S5dWNj+fvPmcHt7GwkZd8Ri0eoLT7Sz6OVciLpYx2pa5NxgExXxjz7ssCCTIORCyeIXx/UfPtV5urKI7lR1WyyGaQtNpTbv7LI4pwuxaRazDzIU2uibrXEQu1nm7VUTemNnXn/UVw3VXj7DpvuDYeKqu+gk3y0pbQpyGjR/ui1YUOjHos/iT/KAw5m4RBsJPyUZ5V7xJSa6o5f+7DXyVd904x+xU9LacZN1xLCcFvjSNGEjkpy8V4XBKIwjOvGvxg3h4tDXZPr3JB3mmCSxxiW0dHs9Ju7Oc4FCOxdfPVHMsKJ3Wo4NCRdR0L/HfOo/NoiJixQsk/y3GFEUVcmM5DDnTbRFO7ZrnpX+HmdqoDHK0hZ1ZWfiEDVVm9LpA33QhS3mKargR5zNU4STFzEhQ8lWgmgH8+NiX/MG2+giEadgn7p6bIlYKsnkGyxQmnMuhKhHFofqNeqCQ10oRVzVhMRUeEyjXwgmW4KhhDBx9pIxxzGtxD3ZRCDloqX+ZZfqiZLWnLVtg5Ksj032WfWNagquzFxIBulAtlc8KIDNVVwAPHv+IpNovrrxkgtj8T4u4F7/8efht19/P7z9K75lhtvyjdslx25sEpDABRGIczw/KnYVTzD8/MtPhx9+/D5u6N7UuX5AmJ+VQOMXJ+EPfDNA/HgDz2DOF8vyOyKbSj8zU8d+a+uHKdfqT+omJW1nIXDUtRDr9haV9xw0f7Yk1ua2ZE5Wnt6pXrs3ZaW2SzVd4rR2S7plDW3Ba9wWXbf1LUTuPdiyOrez1k8SwpzoSpts1HVN2TS1z+X6/ulr19dzstJ2ouS04501eNP7d8+6cK/vx3e9zvvRZ348O7xHXY8nRaZNMVxbLQZzZSt7iw5zOXwJ2alq2mk9oq2rWjelBJUl0P1tHU9euo9rNV39SYeoWMtuyczr5rqOnh0l5vq67FpuS6ZryD/6jUd4+GSNBP+SC+dqPu58H3/U/O7tu/y1Ua6lLBKQgAT2RoBPd3k89atInJ/wi8Tx2OW0tp05mM9OoM/sl+olIAEJSEACEpCABCTwIAlc9q2WB4lcpyQgAQlIQAISkIAE9kzABHrPo6fvEpCABCQgAQlIQALDCZhAD0euQQlIQAISkIAEJCCBPRMwgd7z6Om7BCQgAQlIQAISkMBwAibQw5FrUAISkIAEJCABCUhgzwRMoPc8evouAQlIQAISkIAEJDCcgAn0cOQalIAEJCABCUhAAhLYMwET6D2Pnr5LQAISkIAEJCABCQwnYAI9HLkGJSABCUhAAhKQgAT2TMAEes+jp+8SkIAEJCABCUhAAsMJmEAPR65BCUhAAhKQgAQkIIE9EzCB3vPo6bsEJCABCUhAAhKQwHACJtDDkWtQAhKQgAQkIAEJSGDPBEyg9zx6+i4BCUhAAhKQgAQkMJyACfRw5BqUgAQkIAEJSEACEtgzARPoPY+evktAAhKQgAQkIAEJDCdgAj0cuQYlIAEJSEACEpCABPZM4CNhK/z+mb0/iQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "1dc3150f", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "In segmentation, we consider an image mislabeled if the given mask does not match what truly appears in the image that is being segmented. More specifically, when a pixel is labeled as class `i` but the pixel _really_ belongs to class `j`. This generally happens when an image is annotated maunally by human annotators.\n", + "\n", + "Below are examples of three types of annotation errors common in segmentation datasets.\n", + "\n", + "![synthia_errors-2.png](attachment:synthia_errors-2.png)\n", + "\n", + "\n", + "Based on the given `labels` and out-of-sample `pred_probs`, cleanlab can quickly help us identify such label issues in our dataset by calling `find_label_issues()`. \n", + "\n", + "By default, the indices of the identified label issues are sorted by cleanlab’s self-confidence score, which measures the quality of each given label via the probability assigned to it by our trained model. The returned `issues` is a boolean mask of dimension `(N,H,W)`, where `True` corresponds to a detected error sorted by image quality with the lowest-quality images coming first." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "2c2ad9ad", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:51:52.607115Z", + "iopub.status.busy": "2024-05-24T23:51:52.606826Z", + "iopub.status.idle": "2024-05-24T23:52:27.466344Z", + "shell.execute_reply": "2024-05-24T23:52:27.465635Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5903754741d04c7fa47f1c71ab0f5ca1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "number of examples processed for estimating thresholds: 0%| | 0/30 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAEdCAYAAACSbhf4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA60ElEQVR4nO3deVwV1f8/8NcF5ILovYAIF1yIkFzRTJNw/agkoqZ+NBUjQ3NpwXLLlExNKzUtMzW3T6X+0rKstPLjEuJWSWQk5kpoKGZeUImLSyDL+/eHX+bDsAl4gcvl9Xw85vGAM2dmzpmZO+97zpyZqxERARERUS1nU90FICIisgQMiERERGBAJCIiAsCASEREBIABkYiICAADIhEREQAGRCIiIgAMiERERAAYEImIiAAwIBJRBR04cAAajQYHDhyo7qJUqxs3bsDd3R2bN29W0l577TVoNJpqLFXFnT9/HhqNBhs2bFDSZs6ciYCAgOorVBVhQLQQGzZsgEajwS+//FLdRak0Fy9exLx589CpUye4uLjAzc0N//rXv7B3794ieS9fvoyZM2eiZ8+eqF+/vtkuvLdv38Z7772H9u3bQ6fTwdnZGa1bt8aECRNw5syZe16/JVqwYAG2b99ebdvPP7dLmn766adqK5s5vPfee6hfvz5CQ0MrbRv5QSp/srGxgaurK0JCQhATE1Np2803efJkHDt2DN98802lb6s62VV3Aaj2+Prrr/HWW29h8ODBCA8PR05ODv7f//t/ePTRR/HRRx9hzJgxSt6EhAS89dZb8PPzg7+/v9k+9EOHDsWuXbswcuRIjB8/HtnZ2Thz5gx27NiBzp07o0WLFmbZjiVZsGABHn/8cQwePLhayzF//nz4+PgUSW/WrFk1lMY8srOz8d5772HKlCmwtbVV0l999VXMnDnT7NsbOXIk+vXrh9zcXPz+++9YtWoVevbsiSNHjsDf39/s28tnMBgwaNAgvP322xg4cGClbae6MSBSlenZsyeSk5Ph5uampD377LN48MEHMWfOHFVA7NChA65duwZXV1d88cUXGDZs2D1v/8iRI9ixYwfefPNNvPLKK6p5K1euRHp6+j1vg0oWEhKCjh07lmuZnJwc5OXlwd7evsi8mzdvwsnJqcLlERFkZmbC0dGxwuvYsWMHrly5guHDh6vS7ezsYGdn/svrQw89hCeffFL5v1u3bggJCcHq1auxatUqs2+voOHDh2PYsGH4448/cP/991fqtqoLu0wt2OjRo1GvXj0kJydjwIABqFevHho1aoT3338fAHD8+HH06tULTk5O8Pb2xieffKJaPi0tDS+99BL8/f1Rr1496HQ6hISE4NixY0W2deHCBQwcOBBOTk5wd3fHlClTsGfPnmK7KmNjY9G3b1/o9XrUrVsXPXr0wI8//njX+rRu3VoVDAFAq9WiX79++PPPP3H9+nUlvX79+nB1dS3Tfrp69SrOnDmDW7dulZrv3LlzAIAuXboUmWdra4sGDRoo/48ePRr33XdfkXzF3Rv6559/8OKLL8LNzQ3169fHwIEDcenSJWg0Grz22muqvAcOHEDHjh3h4OAAX19frF27tsT7TZs2bUKHDh3g6OgIV1dXhIaG4uLFi6o8iYmJGDp0KAwGAxwcHNC4cWOEhobCZDIBADQaDW7evImNGzcq3W2jR49Wlr906RKefvppeHh4QKvVonXr1vjoo4+KlOXPP//E4MGDVedHVlZWkXz3Ir9b8O2338ayZcvg6+sLrVaLU6dOKfvo1KlTeOKJJ+Di4oKuXbsCuBM0X3/9dSX/fffdh1deeaVI+e677z4MGDAAe/bsQceOHeHo6Ii1a9cCAKKiotC1a1c4OzujXr16aN68eZEvTcXZvn077rvvPvj6+qrSizumGo0GEydOxPbt29GmTRtlf+/evbvC+6xbt24A/ndu50tPT8fkyZPRpEkTaLVaNGvWDG+99Rby8vKK5Bs9ejT0ej2cnZ0RHh5e4hfDoKAgAHd6eqwVW4gWLjc3FyEhIejevTsWL16MzZs3Y+LEiXBycsKsWbMQFhaGIUOGYM2aNXjqqacQGBiodEv98ccf2L59O4YNGwYfHx+kpKRg7dq16NGjB06dOgUvLy8Ad75p9+rVC5cvX8akSZNgMBjwySefYP/+/UXKs2/fPoSEhKBDhw6YO3cubGxssH79evTq1Qvff/89OnXqVO46Go1G1K1bF3Xr1q3QPlq5ciXmzZuH/fv341//+leJ+by9vQEAmzdvRpcuXcz2DX706NH4/PPPMWrUKDzyyCM4ePAg+vfvXyTf0aNH0bdvX3h6emLevHnIzc3F/Pnz0bBhwyJ533zzTcyePRvDhw/HuHHjcOXKFaxYsQLdu3fH0aNH4ezsjNu3byM4OBhZWVl44YUXYDAYcOnSJezYsQPp6enQ6/X4+OOPMW7cOHTq1AkTJkwAAOXinZKSgkceeUS5UDds2BC7du3C2LFjkZGRgcmTJwO4E/B79+6N5ORkvPjii/Dy8sLHH3+Mffv2lWs/mUwmXL16VZWm0WhUX0QAYP369cjMzMSECROg1WpVX4yGDRsGPz8/LFiwAPm/XDdu3Dhs3LgRjz/+OKZNm4bY2FgsXLgQp0+fxrZt21TrTkhIwMiRI/HMM89g/PjxaN68OU6ePIkBAwagbdu2mD9/PrRaLc6ePVumL3mHDx/GQw89VOZ98MMPP+Crr77C888/j/r162P58uUYOnQokpOTi+yHsjh//jwAwMXFRUm7desWevTogUuXLuGZZ55B06ZNcfjwYURGRuLy5ctYtmwZgDst5EGDBuGHH37As88+i5YtW2Lbtm0IDw8vdlt6vR6+vr748ccfMWXKlHKXtUYQsgjr168XAHLkyBElLTw8XADIggULlLS///5bHB0dRaPRyJYtW5T0M2fOCACZO3eukpaZmSm5ubmq7SQlJYlWq5X58+crae+8844AkO3btytp//zzj7Ro0UIAyP79+0VEJC8vT/z8/CQ4OFjy8vKUvLdu3RIfHx959NFHy13vxMREcXBwkFGjRpWYZ+vWrapyFDZ37txS5+fLy8uTHj16CADx8PCQkSNHyvvvvy8XLlwokjc8PFy8vb1L3Fa+uLg4ASCTJ09W5Rs9enSR4/HYY49J3bp15dKlS0paYmKi2NnZqdZ5/vx5sbW1lTfffFO1zuPHj4udnZ2SfvToUQEgW7duLbXeTk5OEh4eXiR97Nix4unpKVevXlWlh4aGil6vl1u3bomIyLJlywSAfP7550qemzdvSrNmzcq03/PP7eImrVar5EtKShIAotPpJDU1VbWO/P0+cuRIVXp8fLwAkHHjxqnSX3rpJQEg+/btU9K8vb0FgOzevVuV99133xUAcuXKlVLrUVh2drZoNBqZNm1akXmFzxMREQBib28vZ8+eVdKOHTsmAGTFihWlbit/38ybN0+uXLkiRqNRvv/+e3n44YeLnAOvv/66ODk5ye+//65ax8yZM8XW1laSk5NFRGT79u0CQBYvXqzkycnJkW7dugkAWb9+fZFy9OnTR1q2bFlqWWsydpnWAOPGjVP+dnZ2RvPmzeHk5KS6b9G8eXM4Ozvjjz/+UNK0Wi1sbO4c4tzcXFy7dk3pDvr111+VfLt370ajRo1UN8sdHBwwfvx4VTni4+ORmJiIJ554AteuXcPVq1dx9epV3Lx5E71798ahQ4eKdMmU5tatWxg2bBgcHR2xaNGisu+QQl577TWISKmtQ+BOa2TPnj1444034OLigk8//RQRERHw9vbGiBEjKnQPMb+76/nnn1elv/DCC6r/c3NzsXfvXgwePFhpmQN3BpSEhISo8n711VfIy8vD8OHDlX189epVGAwG+Pn5KS13vV4PANizZ89du4sLExF8+eWXeOyxxyAiqu0EBwfDZDIp58jOnTvh6emJxx9/XFm+bt26SouzrN5//31ERUWppl27dhXJN3To0GJbzcCde84F7dy5EwAwdepUVfq0adMAAP/9739V6T4+PggODlalOTs7A7jTFVie8zctLQ0iomqd3U1QUJCqe7Vt27bQ6XSqz21p5s6di4YNG8JgMKBbt244ffo03nnnHdWx2bp1K7p16wYXFxfVcQ0KCkJubi4OHToE4M6+s7Ozw3PPPacsa2trW+TcLSh/ndaKXaYWzsHBocjFQa/Xo3HjxkXuUej1evz999/K/3l5eXjvvfewatUqJCUlITc3V5lXsHvmwoUL8PX1LbK+wqP/EhMTAaDELhXgTrdYWS4Qubm5CA0NxalTp7Br1y5VkKhMWq0Ws2bNwqxZs3D58mUcPHgQ7733Hj7//HPUqVMHmzZtKtf6Lly4ABsbmyKjJwvvu9TUVPzzzz/Fjqgsbj+LCPz8/IrdZp06dQDcubhPnToVS5cuxebNm9GtWzcMHDgQTz75pBIsS3LlyhWkp6dj3bp1WLduXbF5UlNTlTo2a9asyPnRvHnzUrdRWKdOnco0qKa4kaglzcvf/4X3ocFggLOzMy5cuHDXdY8YMQIffPABxo0bh5kzZ6J3794YMmQIHn/8ceULZWnk/7puy6Jp06ZF0lxcXFSf29JMmDABw4YNQ2ZmJvbt24fly5erPtfAnfPnt99+K/FLRcHj6unpiXr16qnml3ZcRaTGPl9ZFgyIFq7gUO6ypBf8cC5YsACzZ8/G008/jddffx2urq6wsbHB5MmTy/VNOF/+MkuWLMGDDz5YbJ7CH66SjB8/Hjt27MDmzZvRq1evcpfFHDw9PREaGoqhQ4eidevW+Pzzz7FhwwbY2dmV+KEvfPGpDHl5edBoNNi1a1exx7ngPn7nnXcwevRofP311/juu+/w4osvYuHChfjpp5/QuHHjUrcBAE8++WSJX3Datm17jzWpmNJGfZY0r6wX6eKWd3R0xKFDh7B//37897//xe7du/HZZ5+hV69e+O6770r8rLm6ukKj0ZQ5mAFl+9yWxs/PTxncMmDAANja2irP6+Z/2cjLy8Ojjz6Kl19+udh1PPDAA2Uub2F///13kYFx1oQB0Yp98cUX6NmzJz788ENVenp6uuqk9vb2xqlTp4p8+zt79qxqufyuHp1Op3woK2L69OlYv349li1bhpEjR1Z4PeZSp04dtG3bFomJiUrXpIuLS7FdqIVbHN7e3sjLy0NSUpKqRVd437m7u8PBwaFIenF5fX19ISLw8fEp08XL398f/v7+ePXVV3H48GF06dIFa9aswRtvvAGg+GDRsGFD1K9fH7m5uXc9lt7e3jhx4kSR8yMhIeGuZats+fs/MTERLVu2VNJTUlKQnp6uDKS6GxsbG/Tu3Ru9e/fG0qVLsWDBAsyaNQv79+8vcf/Y2dnB19cXSUlJZqlLRcyaNQv/+c9/8Oqrryrd976+vrhx40aZjmt0dDRu3Lih+pJV2nFNSkpCu3btzFN4C8R7iFbM1ta2yDfPrVu34tKlS6q04OBgXLp0SfUWiszMTPznP/9R5evQoQN8fX3x9ttv48aNG0W2d+XKlbuWacmSJXj77bfxyiuvYNKkSeWpTonK+thFYmIikpOTi6Snp6cjJiYGLi4uSjeTr68vTCYTfvvtNyXf5cuXi4xazL8fVfgZsBUrVqj+t7W1RVBQELZv346//vpLST979myR+2hDhgyBra0t5s2bV+T4iQiuXbsGAMjIyEBOTo5qvr+/P2xsbFSPHDg5ORUJ7ra2thg6dCi+/PJLnDhxosg+KXgs+/Xrh7/++gtffPGFknbr1q0Su1qrUr9+/QBAGTmZb+nSpQBQ7GjfwtLS0oqk5feA3O3RksDAwGp9u5SzszOeeeYZ7NmzB/Hx8QDuPC8YExODPXv2FMmfnp6unDP9+vVDTk4OVq9erczPzc0tcu7mM5lMOHfuHDp37mz+ilgIthCt2IABAzB//nyMGTMGnTt3xvHjx7F58+YiD9U+88wzWLlyJUaOHIlJkybB09MTmzdvhoODA4D/tTBsbGzwwQcfICQkBK1bt8aYMWPQqFEjXLp0Cfv374dOp8O3335bYnm2bduGl19+GX5+fmjZsmWR+3WPPvooPDw8lP/zWzgnT54EAHz88cf44YcfANx5E0i+sj52cezYMTzxxBMICQlBt27d4OrqikuXLmHjxo3466+/sGzZMqVLKzQ0FDNmzMC///1vvPjii7h16xZWr16NBx54QDUgqUOHDhg6dCiWLVuGa9euKY9d/P7776p9B9wZ/PPdd9+hS5cueO6555Cbm4uVK1eiTZs2ysUMuBOM33jjDURGRuL8+fMYPHgw6tevj6SkJGzbtg0TJkzASy+9hH379mHixIkYNmwYHnjgAeTk5ODjjz9Wgl3BMu7duxdLly6Fl5cXfHx8EBAQgEWLFmH//v0ICAjA+PHj0apVK6SlpeHXX3/F3r17lUAxfvx4rFy5Ek899RTi4uLg6emJjz/+uNyPyezatavY1+N17ty5wg96t2vXDuHh4Vi3bh3S09PRo0cP/Pzzz9i4cSMGDx6Mnj173nUd8+fPx6FDh9C/f394e3sjNTUVq1atQuPGjZVnHUsyaNAgfPzxx/j999/vqSvyXkyaNAnLli3DokWLsGXLFkyfPh3ffPMNBgwYgNGjR6NDhw64efMmjh8/ji+++ALnz5+Hm5sbHnvsMXTp0gUzZ87E+fPn0apVK3z11VfKM6yF7d27V3lUw2pV/cBWKk5Jj104OTkVydujRw9p3bp1kXRvb2/p37+/8n9mZqZMmzZNPD09xdHRUbp06SIxMTHSo0cP6dGjh2rZP/74Q/r37y+Ojo7SsGFDmTZtmnz55ZcCQH766SdV3qNHj8qQIUOkQYMGotVqxdvbW4YPHy7R0dGl1jF/KHpJU+Hh+6XlLW69dxv+n5KSIosWLZIePXqIp6en2NnZiYuLi/Tq1Uu++OKLIvm/++47adOmjdjb20vz5s1l06ZNxQ6nv3nzpkRERIirq6vUq1dPBg8eLAkJCQJAFi1apMobHR0t7du3F3t7e/H19ZUPPvhApk2bJg4ODkW2/+WXX0rXrl3FyclJnJycpEWLFhIRESEJCQkicueYPf300+Lr6ysODg7i6uoqPXv2lL1796rWc+bMGenevbs4OjoKANUjGCkpKRIRESFNmjSROnXqiMFgkN69e8u6detU67hw4YIMHDhQ6tatK25ubjJp0iTZvXv3PT92gQLD+/MfLViyZEmRdeTv9+IejcjOzpZ58+aJj4+P1KlTR5o0aSKRkZGSmZmpylf485EvOjpaBg0aJF5eXmJvby9eXl4ycuTIIo8tFCcrK0vc3Nzk9ddfL7a8BQGQiIiIIuvw9vYu9rGYgkrbNyJ3HvOxtbVVHum4fv26REZGSrNmzcTe3l7c3Nykc+fO8vbbb8vt27eV5a5duyajRo0SnU4ner1eRo0apTzOU/ixixEjRkjXrl1LLWdNpxEpxxApqlWWLVuGKVOm4M8//0SjRo2quzg1Snx8PNq3b49NmzYhLCys1LyDBw/GyZMnlVG8VLO8/vrrWL9+PRITE0scNFPTGY1G+Pj4YMuWLVbdQuQ9RAJw520kBWVmZmLt2rXw8/NjMLyLwvsOuPNlwsbGBt27dy81b2JiInbu3HnXZyjJck2ZMgU3btzAli1bqrsolWbZsmXw9/e36mAIAGwhEoA7L15u2rQpHnzwQZhMJmzatAknT57E5s2b8cQTT1R38SzavHnzEBcXh549e8LOzg67du3Crl27MGHCBOVdmfk8PT0xevRo3H///bhw4QJWr16NrKwsHD16tMTnDomoajAgEoA73wA/+OADnD9/Hrm5uWjVqhVefvlljBgxorqLZvGioqIwb948nDp1Cjdu3EDTpk0xatQozJo1q8j7UseMGYP9+/fDaDRCq9UiMDAQCxYsKNf7MImoclh0QHz//fexZMkSGI1GtGvXDitWrKjQy6OJiIjuxmLvIX722WeYOnUq5s6di19//RXt2rVDcHCw8tohIiIic7LYFmJAQAAefvhhrFy5EsCd1xE1adIEL7zwQqX8EjUREdVuFvlg/u3btxEXF4fIyEglzcbGBkFBQYiJiSl2maysLNVbJfLy8pCWloYGDRpY9ctoiYioZCKC69evw8vL664va7fIgHj16lXk5uaq3loCAB4eHsW+6QIAFi5ciHnz5lVF8YiIqIa5ePFiqS+8Byw0IFZEZGSk6jfRTCYTmjZtiosAdNVXLCIi61DwlW53+XmxSt9+OWRkZKBJkyaoX7/+XfNaZEB0c3ODra0tUlJSVOkpKSkwGAzFLqPVaqHVaouk68CASER0z3QFrqQFh55U5i0pMw5xKcutM4scZWpvb48OHTogOjpaScvLy0N0dDQCAwOrsWRERGStLLKFCABTp05FeHg4OnbsiE6dOmHZsmW4efMmxowZU91FIyIiK2SxAXHEiBG4cuUK5syZA6PRiAcffBC7d+8uMtCGiIiqkbm7T6vxSUCLfQ7xXmVkZECv18ME3kMkIrpnZQkV9xoQKyEcKbHAZIJOV3o0sMh7iERERFWNAZGIiAgWfA+RiIgsSMHu0JK6Nmv4HTi2EImIiMCASEREBIABkYiICAADIhEREQAGRCIiIgAMiERERAAYEImIiAAwIBIREQHgg/nVp6wvxC3pQdfK/A0yIqJaiC1EIiIiMCASEREBYEC0bDX8vYBERDUJ7yGaW0WCGAMfEdUkZXnRdw3EFiIREREYEImIiACwy/SOsj4CUZblqwofxyAiMiu2EImIiMCASEREBIBdpkWVtSuyukZW5ZejpO2XVi52pxIRlYgBsaaxoiHORESWhF2mREREqA0B0WS606oqbSqLiixjaWp6+YnI8mg0VnM7xvoDIhERURkwIBIR0b2zglYiA2JtxW5TIiIVjjKtzfi2GyLzqolfNPl5V5i9hbhw4UI8/PDDqF+/Ptzd3TF48GAkJCSo8mRmZiIiIgINGjRAvXr1MHToUKSkpKjyJCcno3///qhbty7c3d0xffp05OTkmLu4REREACohIB48eBARERH46aefEBUVhezsbPTp0wc3b95U8kyZMgXffvsttm7dioMHD+Kvv/7CkCFDlPm5ubno378/bt++jcOHD2Pjxo3YsGED5syZY+7iEhGZR01sHZKaVLLU1FQBIAcPHhQRkfT0dKlTp45s3bpVyXP69GkBIDExMSIisnPnTrGxsRGj0ajkWb16teh0OsnKyirTdk0mkwAQk8lkxtrUEnd/UIUTJ05AdX9SzcPK90F5YkGlD6oxmUwAAFdXVwBAXFwcsrOzERQUpORp0aIFmjZtipiYGABATEwM/P394eHhoeQJDg5GRkYGTp48Wex2srKykJGRoZqIiIjKqlIDYl5eHiZPnowuXbqgTZs2AACj0Qh7e3s4Ozur8np4eMBoNCp5CgbD/Pn584qzcOFC6PV6ZWrSpImZa0NERNasUgNiREQETpw4gS1btlTmZgAAkZGRMJlMynTx4sVK36bVKtghQkRq/HxY7T6otMcuJk6ciB07duDQoUNo3Lixkm4wGHD79m2kp6erWokpKSkwGAxKnp9//lm1vvxRqPl5CtNqtdBqtWauBRER1RZmbyGKCCZOnIht27Zh37598PHxUc3v0KED6tSpg+joaCUtISEBycnJCAwMBAAEBgbi+PHjSE1NVfJERUVBp9OhVatW5i4yERGVlZW1CgsyewsxIiICn3zyCb7++mvUr19fueen1+vh6OgIvV6PsWPHYurUqXB1dYVOp8MLL7yAwMBAPPLIIwCAPn36oFWrVhg1ahQWL14Mo9GIV199FREREWwFVrWCJz8f4CVrZ8UX+3KrjfvC3ENcARQ7rV+/Xsnzzz//yPPPPy8uLi5St25d+fe//y2XL19Wref8+fMSEhIijo6O4ubmJtOmTZPs7Owyl4OPXVSC6h7izolTZU61lZXvj/LEAo2ISPWF48qTkZEBvV4Pk8kEnU5X3cWxDmwhkjWzzkvh3ZX0ubaS/VGeWMCXexMR1WZWEvjMgS/3JqLai8HgDu4HAGwhEhERAWBAJCIiAsAuU7obDqQholqCLUQiIiIwIBJRbcWBJFQIu0ypKHaTkjVjIKQSsIVIREQEBkQiIiIA7DKl4pTUpcSuVKqp2E1KZcAWIhERERgQiYiIALDLlMqDXalUk7CblMqJLUS6d7zwkKXhOUkVwIBIREQEBkQyB3aZkqXhOUkVwHuIVDG84JClyz9H2X1KZcQWIhERERgQicjasTeDyohdplQxhbuheNEhohqOLUQiIiIwIBIREQFgl2nNYykj59hFShVV8NzleUQWhAGxpqnuQEhEZKXYZUpERAS2EKmqlbeFyy4161DScS/L+cBzgKoIW4hUddjdWzvd63HneUNVhAGRiIgIDIhEVNnY5Uk1RKUHxEWLFkGj0WDy5MlKWmZmJiIiItCgQQPUq1cPQ4cORUpKimq55ORk9O/fH3Xr1oW7uzumT5+OnJycyi4uFabR/G+qCJH/TSWtt7SJrENZj3dJU0nnEZEZVWpAPHLkCNauXYu2bduq0qdMmYJvv/0WW7duxcGDB/HXX39hyJAhyvzc3Fz0798ft2/fxuHDh7Fx40Zs2LABc+bMqcziUnF4ESKi2kIqyfXr18XPz0+ioqKkR48eMmnSJBERSU9Plzp16sjWrVuVvKdPnxYAEhMTIyIiO3fuFBsbGzEajUqe1atXi06nk6ysrDJt32QyCQAxmUzmqxT9j/o7e8nTvS7PiRNw7+cO1VrliQWV1kKMiIhA//79ERQUpEqPi4tDdna2Kr1FixZo2rQpYmJiAAAxMTHw9/eHh4eHkic4OBgZGRk4efJksdvLyspCRkaGaqJKVPiSU9K8gtgVan0qEp7MuU0iM6qU5xC3bNmCX3/9FUeOHCkyz2g0wt7eHs7Ozqp0Dw8PGI1GJU/BYJg/P39ecRYuXIh58+aZofRERFQbmb2FePHiRUyaNAmbN2+Gg4ODuVdfosjISJhMJmW6ePFilW1bwZYPEVGNZfaAGBcXh9TUVDz00EOws7ODnZ0dDh48iOXLl8POzg4eHh64ffs20tPTVculpKTAYDAAAAwGQ5FRp/n/5+cpTKvVQqfTqaYqxy6cothNSkQ1hNkDYu/evXH8+HHEx8crU8eOHREWFqb8XadOHURHRyvLJCQkIDk5GYGBgQCAwMBAHD9+HKmpqUqeqKgo6HQ6tGrVytxFJqKK4BdAsjJmv4dYv359tGnTRpXm5OSEBg0aKOljx47F1KlT4erqCp1OhxdeeAGBgYF45JFHAAB9+vRBq1atMGrUKCxevBhGoxGvvvoqIiIioNVqzV1kIiKi6nm597vvvgsbGxsMHToUWVlZCA4OxqpVq5T5tra22LFjB5577jkEBgbCyckJ4eHhmD9/fnUUl0rCblDrZWmtv5J+B7Tg/zwf6R5pRCztzDePjIwM6PV6mEym6rmfaO1Ku/jwIlXzVeZl4V7PiZLKVtZzkmqV8sSC2vUu08IfGA72ICKi/1O7fg+xtO4WMg/uUyKqoWpXQKR7wy4pqqkKnrs8V6kEtavLlIiIqAQMiDUN73sSEVUKdpnWNFXd3WPNwbcs+9Ka609EKmwhEpWG95uIag0GRKLSsIVIVGuwy9TcSnqjBlUuc+7v6hhNy8BbdmV5aw1RBTAgmhs/lERENRK7TImIiMAWYu1VkS66sr6jtKZ3//FdrPdGoym9p+Ree1F4TKiSsIVIVJqq6gK3pq72yq5L/voZGMnMGBCJiIjAgFh73eu3+ILLW1PrprCqbIVY834kqgF4D7E2K6nrqawX5orcJyppyLwldn9VR5mK229lLQfvfRLdE7YQyfwqc0BFVWFAuTfcf1QDMSBS1T9sbulBsSZezC19nxLVAOwypTvK291Wlgtwad2mFXnLSEW7dsuiuN/Lu9vjA+Vdb2Hm6Jq+l2UqI/BX1ZcJfgGgSsAWIlW9il7MKjqQJ/8ns+52sTbXq8AKB9fC5S6YVhNbo0RWii1Eqlkqq7UE/C843UvLsKRlS1pfdbZ0RBiQiQpgQKSi7jZC1JIUV6bKDJpVtZ6qYu6RqQyyVIMxIFLZWdrFvjLvKZZ1m+bYrjnuVdY0tbHOZPF4D5GKKsv9NktQ+P5cdZWhMtSE/V9RBbumiSwIW4j0P6X9luPdHqGozt+BrMptVsa2ynPPsTJUdWDK71at7i8zRIWwhUj/c7cWV+ERkkDRQMhv/VQWDIZkgdhCpLIpyyMJlnqRq87Wa01QmQNh2BKkGoQBkawfL8h3Z859ZE0vfmdAr1XYZUpUmQq3vNilTGSxKiUgXrp0CU8++SQaNGgAR0dH+Pv745dfflHmiwjmzJkDT09PODo6IigoCImJiap1pKWlISwsDDqdDs7Ozhg7dixu3LhRGcUlqjzmevsNVQ8er1rF7AHx77//RpcuXVCnTh3s2rULp06dwjvvvAMXFxclz+LFi7F8+XKsWbMGsbGxcHJyQnBwMDIzM5U8YWFhOHnyJKKiorBjxw4cOnQIEyZMMHdxiYiIAAAaEfN+BZo5cyZ+/PFHfP/998XOFxF4eXlh2rRpeOmllwAAJpMJHh4e2LBhA0JDQ3H69Gm0atUKR44cQceOHQEAu3fvRr9+/fDnn3/Cy8vrruXIyMiAXq+HyWSCTqczXwWJiKjGKE8sMHsL8ZtvvkHHjh0xbNgwuLu7o3379vjPf/6jzE9KSoLRaERQUJCSptfrERAQgJiYGABATEwMnJ2dlWAIAEFBQbCxsUFsbGyx283KykJGRoZqIiKiKlTWF+lbKLMHxD/++AOrV6+Gn58f9uzZg+eeew4vvvgiNm7cCAAwGo0AAA8PD9VyHh4eyjyj0Qh3d3fVfDs7O7i6uip5Clu4cCH0er0yNWnSxNxVIyIiK2b2gJiXl4eHHnoICxYsQPv27TFhwgSMHz8ea9asMfemVCIjI2EymZTp4sWLlbo9IiIqpLiXd9QgZg+Inp6eaNWqlSqtZcuWSE5OBgAYDAYAQEpKiipPSkqKMs9gMCA1NVU1PycnB2lpaUqewrRaLXQ6nWoiIiIqK7MHxC5duiAhIUGV9vvvv8Pb2xsA4OPjA4PBgOjoaGV+RkYGYmNjERgYCAAIDAxEeno64uLilDz79u1DXl4eAgICzF1kIiIi87+pZsqUKejcuTMWLFiA4cOH4+eff8a6deuwbt06AIBGo8HkyZPxxhtvwM/PDz4+Ppg9eza8vLwwePBgAHdalH379lW6WrOzszFx4kSEhoaWaYQpERFZiap89aJUgm+//VbatGkjWq1WWrRoIevWrVPNz8vLk9mzZ4uHh4dotVrp3bu3JCQkqPJcu3ZNRo4cKfXq1ROdTidjxoyR69evl7kMJpNJAIjJZDJLnYiIqOYpTyww+3OIloLPIRJRhfBl8FalPLGAL/cmIiqIgbDW4su9iYiIwIBIREQEgAGRiIgIAAMiERERAAZEIiIiAAyIREREABgQiYiIADAgEhERAWBAJCIiAsCASEREBIABkYiICAADIhEREQAGRCIiIgAMiERERAAYEImIiAAwIBIREQFgQCQiIgLAgEhERASAAZGIiAgAAyIREREABkQiIiIADIhEREQAGBCJiIgAMCASEREBYEAkIiICwIBIREQEgAGRiIgIAAMiERERgEoIiLm5uZg9ezZ8fHzg6OgIX19fvP766xARJY+IYM6cOfD09ISjoyOCgoKQmJioWk9aWhrCwsKg0+ng7OyMsWPH4saNG+YuLhEREYBKCIhvvfUWVq9ejZUrV+L06dN46623sHjxYqxYsULJs3jxYixfvhxr1qxBbGwsnJycEBwcjMzMTCVPWFgYTp48iaioKOzYsQOHDh3ChAkTzF1cIiIiAIBGCjbdzGDAgAHw8PDAhx9+qKQNHToUjo6O2LRpE0QEXl5emDZtGl566SUAgMlkgoeHBzZs2IDQ0FCcPn0arVq1wpEjR9CxY0cAwO7du9GvXz/8+eef8PLyums5MjIyoNfrYTKZoNPpzFlFIiKqIcoTC8zeQuzcuTOio6Px+++/AwCOHTuGH374ASEhIQCApKQkGI1GBAUFKcvo9XoEBAQgJiYGABATEwNnZ2clGAJAUFAQbGxsEBsbW+x2s7KykJGRoZqIiIjKys7cK5w5cyYyMjLQokUL2NraIjc3F2+++SbCwsIAAEajEQDg4eGhWs7Dw0OZZzQa4e7uri6onR1cXV2VPIUtXLgQ8+bNM3d1iIioljB7C/Hzzz/H5s2b8cknn+DXX3/Fxo0b8fbbb2Pjxo3m3pRKZGQkTCaTMl28eLFSt0dERNbF7C3E6dOnY+bMmQgNDQUA+Pv748KFC1i4cCHCw8NhMBgAACkpKfD09FSWS0lJwYMPPggAMBgMSE1NVa03JycHaWlpyvKFabVaaLVac1eHiIhqCbO3EG/dugUbG/VqbW1tkZeXBwDw8fGBwWBAdHS0Mj8jIwOxsbEIDAwEAAQGBiI9PR1xcXFKnn379iEvLw8BAQHmLjIREZH5W4iPPfYY3nzzTTRt2hStW7fG0aNHsXTpUjz99NMAAI1Gg8mTJ+ONN96An58ffHx8MHv2bHh5eWHw4MEAgJYtW6Jv374YP3481qxZg+zsbEycOBGhoaFlGmFKRERUXmYPiCtWrMDs2bPx/PPPIzU1FV5eXnjmmWcwZ84cJc/LL7+MmzdvYsKECUhPT0fXrl2xe/duODg4KHk2b96MiRMnonfv3rCxscHQoUOxfPlycxeXiIgIQCU8h2gp+BwiERFV63OIRERENREDIhERERgQiYiIADAgEhERAWBAJCIiAsCASEREBIABkYiICAADIhEREQAGRCIiIgAMiERERAAYEImIiAAwIBIREQFgQCQiIgLAgEhERASAAZGIiAgAAyIREREABkQiIiIADIhEREQAGBCJiIgAMCASEREBYEAkIiICwIBIREQEgAGRiIgIAAMiERERAAZEIiIiAAyIREREABgQiYiIADAgEhERAWBAJCIiAsCASEREBKACAfHQoUN47LHH4OXlBY1Gg+3bt6vmiwjmzJkDT09PODo6IigoCImJiao8aWlpCAsLg06ng7OzM8aOHYsbN26o8vz222/o1q0bHBwc0KRJEyxevLj8tSMiIiqjcgfEmzdvol27dnj//feLnb948WIsX74ca9asQWxsLJycnBAcHIzMzEwlT1hYGE6ePImoqCjs2LEDhw4dwoQJE5T5GRkZ6NOnD7y9vREXF4clS5bgtddew7p16ypQRSIiojKQewBAtm3bpvyfl5cnBoNBlixZoqSlp6eLVquVTz/9VERETp06JQDkyJEjSp5du3aJRqORS5cuiYjIqlWrxMXFRbKyspQ8M2bMkObNm5e5bCaTSQCIyWSqaPWIiKiGK08sMOs9xKSkJBiNRgQFBSlper0eAQEBiImJAQDExMTA2dkZHTt2VPIEBQXBxsYGsbGxSp7u3bvD3t5eyRMcHIyEhAT8/fffxW47KysLGRkZqomIiKiszBoQjUYjAMDDw0OV7uHhocwzGo1wd3dXzbezs4Orq6sqT3HrKLiNwhYuXAi9Xq9MTZo0ufcKERFRrWE1o0wjIyNhMpmU6eLFi9VdJCIiqkHMGhANBgMAICUlRZWekpKizDMYDEhNTVXNz8nJQVpamipPcesouI3CtFotdDqdaiIiIiorswZEHx8fGAwGREdHK2kZGRmIjY1FYGAgACAwMBDp6emIi4tT8uzbtw95eXkICAhQ8hw6dAjZ2dlKnqioKDRv3hwuLi7mLDIRERGACgTEGzduID4+HvHx8QDuDKSJj49HcnIyNBoNJk+ejDfeeAPffPMNjh8/jqeeegpeXl4YPHgwAKBly5bo27cvxo8fj59//hk//vgjJk6ciNDQUHh5eQEAnnjiCdjb22Ps2LE4efIkPvvsM7z33nuYOnWq2SpORESkUt4hrPv37xcARabw8HARufPoxezZs8XDw0O0Wq307t1bEhISVOu4du2ajBw5UurVqyc6nU7GjBkj169fV+U5duyYdO3aVbRarTRq1EgWLVpUrnLysQsiIipPLNCIiFRjPK40GRkZ0Ov1MJlMvJ9IRFRLlScWWM0oUyIionvBgEhERAQGRCIiIgAMiERERAAYEImIiAAwIBIREQFgQCQiIgLAgEhERASAAZGIiAgAYFfdBags+S/g4Q8FExHVXvkxoCwvZbPagHjt2jUA4A8FExERrl+/Dr1eX2oeqw2Irq6uAIDk5OS77gRLlpGRgSZNmuDixYs1/p2s1lIXa6kHYD11sZZ6ANZTF0uph4jg+vXryq8plcZqA6KNzZ3bo3q9vkafVPms6UePraUu1lIPwHrqYi31AKynLpZQj7I2ijiohoiICAyIREREAKw4IGq1WsydOxdarba6i3JPrKUegPXUxVrqAVhPXaylHoD11KUm1sNqfyCYiIioPKy2hUhERFQeDIhERERgQCQiIgLAgEhERASAAZGIiAiAlQbE999/H/fddx8cHBwQEBCAn3/+ubqLpLJw4UI8/PDDqF+/Ptzd3TF48GAkJCSo8vzrX/+CRqNRTc8++6wqT3JyMvr374+6devC3d0d06dPR05OTlVWBa+99lqRcrZo0UKZn5mZiYiICDRo0AD16tXD0KFDkZKSYnH1uO+++4rUQ6PRICIiAoBlH49Dhw7hscceg5eXFzQaDbZv366aLyKYM2cOPD094ejoiKCgICQmJqrypKWlISwsDDqdDs7Ozhg7dixu3LihyvPbb7+hW7ducHBwQJMmTbB48eIqq0d2djZmzJgBf39/ODk5wcvLC0899RT++usv1TqKO46LFi2q0nrcrS4AMHr06CLl7Nu3ryqPpR8TAMV+ZjQaDZYsWaLksZRjUiZiZbZs2SL29vby0UcfycmTJ2X8+PHi7OwsKSkp1V00RXBwsKxfv15OnDgh8fHx0q9fP2natKncuHFDydOjRw8ZP368XL58WZlMJpMyPycnR9q0aSNBQUFy9OhR2blzp7i5uUlkZGSV1mXu3LnSunVrVTmvXLmizH/22WelSZMmEh0dLb/88os88sgj0rlzZ4urR2pqqqoOUVFRAkD2798vIpZ9PHbu3CmzZs2Sr776SgDItm3bVPMXLVoker1etm/fLseOHZOBAweKj4+P/PPPP0qevn37Srt27eSnn36S77//Xpo1ayYjR45U5ptMJvHw8JCwsDA5ceKEfPrpp+Lo6Chr166tknqkp6dLUFCQfPbZZ3LmzBmJiYmRTp06SYcOHVTr8Pb2lvnz56uOU8HPVVXU4251EREJDw+Xvn37qsqZlpamymPpx0REVOW/fPmyfPTRR6LRaOTcuXNKHks5JmVhdQGxU6dOEhERofyfm5srXl5esnDhwmosVelSU1MFgBw8eFBJ69Gjh0yaNKnEZXbu3Ck2NjZiNBqVtNWrV4tOp5OsrKzKLK7K3LlzpV27dsXOS09Plzp16sjWrVuVtNOnTwsAiYmJERHLqUdhkyZNEl9fX8nLyxORmnM8Cl+08vLyxGAwyJIlS5S09PR00Wq18umnn4qIyKlTpwSAHDlyRMmza9cu0Wg0cunSJRERWbVqlbi4uKjqMmPGDGnevHmV1KM4P//8swCQCxcuKGne3t7y7rvvlrhMVddDpPi6hIeHy6BBg0pcpqYek0GDBkmvXr1UaZZ4TEpiVV2mt2/fRlxcHIKCgpQ0GxsbBAUFISYmphpLVjqTyQTgf7/QkW/z5s1wc3NDmzZtEBkZiVu3binzYmJi4O/vDw8PDyUtODgYGRkZOHnyZNUU/P8kJibCy8sL999/P8LCwpCcnAwAiIuLQ3Z2tup4tGjRAk2bNlWOhyXVI9/t27exadMmPP3009BoNEp6TTkeBSUlJcFoNKqOgV6vR0BAgOoYODs7o2PHjkqeoKAg2NjYIDY2VsnTvXt32NvbK3mCg4ORkJCAv//+u4pqo2YymaDRaODs7KxKX7RoERo0aID27dtjyZIlqm5rS6rHgQMH4O7ujubNm+O5555TfrIuv5w17ZikpKTgv//9L8aOHVtkXk05Jlb1axdXr15Fbm6u6qIEAB4eHjhz5kw1lap0eXl5mDx5Mrp06YI2bdoo6U888QS8vb3h5eWF3377DTNmzEBCQgK++uorAIDRaCy2nvnzqkpAQAA2bNiA5s2b4/Lly5g3bx66deuGEydOwGg0wt7evsgFy8PDQymjpdSjoO3btyM9PR2jR49W0mrK8Sgsf9vFla3gMXB3d1fNt7Ozg6urqyqPj49PkXXkz3NxcamU8pckMzMTM2bMwMiRI1W/pPDiiy/ioYcegqurKw4fPozIyEhcvnwZS5cuVcpqCfXo27cvhgwZAh8fH5w7dw6vvPIKQkJCEBMTA1tb2xp5TDZu3Ij69etjyJAhqvSackwAKwuINVFERAROnDiBH374QZU+YcIE5W9/f394enqid+/eOHfuHHx9fau6mCUKCQlR/m7bti0CAgLg7e2Nzz//HI6OjtVYsor78MMPERISovr9tJpyPGqD7OxsDB8+HCKC1atXq+ZNnTpV+btt27awt7fHM888g4ULF1rUOzVDQ0OVv/39/dG2bVv4+vriwIED6N27dzWWrOI++ugjhIWFwcHBQZVeU44JYGWjTN3c3GBra1tkFGNKSgoMBkM1lapkEydOxI4dO7B//340bty41LwBAQEAgLNnzwIADAZDsfXMn1ddnJ2d8cADD+Ds2bMwGAy4ffs20tPTVXkKHg9Lq8eFCxewd+9ejBs3rtR8NeV45G+7tM+EwWBAamqqan5OTg7S0tIs7jjlB8MLFy4gKirqrr+zFxAQgJycHJw/fx6A5dSjsPvvvx9ubm6q86mmHBMA+P7775GQkHDXzw1g2cfEqgKivb09OnTogOjoaCUtLy8P0dHRCAwMrMaSqYkIJk6ciG3btmHfvn1FuguKEx8fDwDw9PQEAAQGBuL48eOqD03+BaJVq1aVUu6yuHHjBs6dOwdPT0906NABderUUR2PhIQEJCcnK8fD0uqxfv16uLu7o3///qXmqynHw8fHBwaDQXUMMjIyEBsbqzoG6enpiIuLU/Ls27cPeXl5SuAPDAzEoUOHkJ2dreSJiopC8+bNq6xLKz8YJiYmYu/evWjQoMFdl4mPj4eNjY3S/WgJ9SjOn3/+iWvXrqnOp5pwTPJ9+OGH6NChA9q1a3fXvBZ9TKp8GE8l27Jli2i1WtmwYYOcOnVKJkyYIM7OzqrRf9XtueeeE71eLwcOHFANRb5165aIiJw9e1bmz58vv/zyiyQlJcnXX38t999/v3Tv3l1ZR/4w/z59+kh8fLzs3r1bGjZsWOWPK0ybNk0OHDggSUlJ8uOPP0pQUJC4ublJamqqiNx57KJp06ayb98++eWXXyQwMFACAwMtrh4id0YkN23aVGbMmKFKt/Tjcf36dTl69KgcPXpUAMjSpUvl6NGjyujLRYsWibOzs3z99dfy22+/yaBBg4p97KJ9+/YSGxsrP/zwg/j5+amG+Kenp4uHh4eMGjVKTpw4IVu2bJG6deuadWh8afW4ffu2DBw4UBo3bizx8fGqz03+6MTDhw/Lu+++K/Hx8XLu3DnZtGmTNGzYUJ566qkqrcfd6nL9+nV56aWXJCYmRpKSkmTv3r3y0EMPiZ+fn2RmZirrsPRjks9kMkndunVl9erVRZa3pGNSFlYXEEVEVqxYIU2bNhV7e3vp1KmT/PTTT9VdJBUAxU7r168XEZHk5GTp3r27uLq6ilarlWbNmsn06dNVz72JiJw/f15CQkLE0dFR3NzcZNq0aZKdnV2ldRkxYoR4enqKvb29NGrUSEaMGCFnz55V5v/zzz/y/PPPi4uLi9StW1f+/e9/y+XLly2uHiIie/bsEQCSkJCgSrf047F///5iz6fw8HARufPoxezZs8XDw0O0Wq307t27SB2vXbsmI0eOlHr16olOp5MxY8bI9evXVXmOHTsmXbt2Fa1WK40aNZJFixZVWT2SkpJK/NzkPysaFxcnAQEBotfrxcHBQVq2bCkLFixQBZmqqMfd6nLr1i3p06ePNGzYUOrUqSPe3t4yfvz4Il/aLf2Y5Fu7dq04OjpKenp6keUt6ZiUBX8PkYiICFZ2D5GIiKiiGBCJiIjAgEhERASAAZGIiAgAAyIREREABkQiIiIADIhEREQAGBCJiIgAMCASEREBYEAkIiICwIBIREQEAPj/EbjZXpDZ3NYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display_issues(issues,top=2)" + ] + }, + { + "cell_type": "markdown", + "id": "717b3b7d", + "metadata": {}, + "source": [ + "We can also input `pred_probs`, `labels`, and `class_names` as auxiliary inputs to see more information." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "57fed473", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:52:28.154988Z", + "iopub.status.busy": "2024-05-24T23:52:28.154520Z", + "iopub.status.idle": "2024-05-24T23:52:30.911603Z", + "shell.execute_reply": "2024-05-24T23:52:30.910991Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEZkAAAGFCAYAAACBR0rlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNaUlEQVR4nOzdd5RV1fk/4M/QBZQi9oq9kYhiiyLYG9h7xdijJpoY89WQ2GJMojGxYVdU7L3FriiCRqVYorErKlhQQBHp/P7gd29mmMLMMAN4eZ61shbeU+6+k3PO3vs9e7+7bObMmTMDAAAAAAAAAAAAAAAAAAAAAEBJajK/CwAAAAAAAAAAAAAAAAAAAAAAQOORZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACWsWX0PnDlzZqZOnZoZM2Y0ZHkAAAAAAAAAAAAAAAAAAAAAAKhC06ZN06xZs5SVldXpuDonmZk4cWLGjx+f7777LtOnT6/r4QAAAAAAAAAAAAAAAAAAAAAA1FPLli3Tvn37dOjQodbJZuqUZOa7777Lp59+mubNm6d9+/Zp06ZNmjRpUufMNgAAAAAAAAAAAAAAAAAAAAAA1N7MmTMzbdq0jB8/Pl988UWmTJmSpZdeulbH1jrJzMSJE/Ppp59mscUWy7LLLiuxDAAAAAAAAAAAAAAAAAAAAADAPLboootm7Nix+fzzz7PIIoukXbt2czymSW1PPn78+DRv3lyCGQAAAAAAAAAAAAAAAAAAAACA+ahDhw5p3bp1vv3221rtX6skMzNnzsx3332XxRZbTIIZAAAAAAAAAAAAAAAAAAAAAID5rG3btpk4cWJmzJgxx31rlWRm6tSpmT59etq0aTPXhQMAAAAAAAAAAAAAAAAAAAAAYO60atUqM2bMyLRp0+a4b62SzBSy1TRpUqvdAQAAAAAAAAAAAAAAAAAAAABoRIVcMIXcMDXuW5cTl5WV1a9EAAAAAAAAAAAAAAAAAAAAAAA0mLrkgqlTkhkAAAAAAAAAAAAAAAAAAAAAAH5cJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDNU66OPPkpZWVnKysrSv3//RvmOM888s/gd81vPnj1TVlaWnj17zu+iFP8mZ5555vwuCgsB1xsLmgWlbphTPdi/f//i9o8++qje39OnT5+UlZVl5ZVXrnK7exQWTHO6d6GhrLzyyikrK0ufPn3qfY550bdb0NXU3/P3obGNHDkyxxxzTFZdddW0atWqeL3dd99987toAA1C2xjmXkO0+wFYME2fPj0XXXRRNt544yy22GLFPuHuu+9eYb+vv/46p5xyStZee+0sssgixf3++c9/Jllw3p3UlbgLAA2lIerCBWlsWENS3wLzi5gWVK1UYgFzev8zL54B3kHBgseYZn4MjLmEH7+BAwcW78GBAwfO7+JQIuZ3HwsWRvoPUNmCEHMraNYYJ/185MiMGzOmMU69QGjfqVOWXnHF+V0MKCljvhyZb8eX7nNjsXad0mlJz42FxahxIzP2+9K8nju06ZRl27uWWXiMnPBVxkz6dn4Xo9F0arVYVmy7xPwuBj8SI8dOypjvp8zvYjSaTm1aZMUOreZ3MWCBMnrktIwbM31+F6NRtO/UNMus2ChhsQpGjhyZDTfcMGNKOE7GHIycnoyZOb9L0Tg6lSUrNp3fpQC+HJmUcFw17Tol4qrUYFpGZkZK8x5okk5pFtd/qRuZkfm6RK/hxdMpK7qGc8ABB+TOO++scZ/x48dns802y7vvvjuPSsXCYmSmZEymze9iNJpZNWWL+V0MqLWRY5Ix383vUjSOTosmK3aa36WAuhs/MplYms3xJEnrTkk7TXJYMI38PhkzeX6XonF0apms2GZ+l2K+EgtggTN5fDJ14vwuReNp3jpp2W5+lwJqNCXjMy2lex82S+u0iPuQuhufCZmYEm0XJ2mdlmmXtvO7GJSQ8TOSiSU6FLF1WdKuyfwuBfPL+PHJxB/mdykaR+tFknaaSdTDtPHJjNLtQqRJ66SZe2O+a/DZNJ+PHJk911wzUyZNauhTLzBatGqVe95+W6IZaCBjvhyZXx2xZqZOLd3nRvPmrXLRtW9LNLMQGDVuZLa/YM1MmVaa13OLZq3y+ClvSzTDQmHkhK+y5u3HZ9L0qfO7KI2mVdPmeXu/yySaYY5Gjp2UNf82JJOmzZjfRWk0rZo1ydun/kyiGfj/Ro+clt3X/CRTJpXmG6kWrcpy39srNHqimT/96U8ZM2ZMmjVrlnPPPTdbbrll2rad9eJ4pZVWatTvZgEwcnqy5vikNLuHSaskb7eTaGYe6d+/fw4//PAkyYcfftjoKzaeeeaZOeuss5IkM2eWZl1QEr4cmRyxZlLCcdU0b5Vc+7ZEM1RpWkZmdNZMKVe2y+RtiWZK2MiMzE+yZiaX6DXcMq3yWt5u1EQz87qNVFdDhgwpTirbZZddctJJJ2WppZZKWVlZFltsseJ+l112WXFS2amnnprevXunffv2SZJllllmnpeb0jAyU7Jm/pNJKd32fKuU5e2sK9EMPwojxyRrnpxMKtHXjq2aJ2//Q6IZflzGj0wuXzOZXprN8SRJ01bJcW9LNJMs+H0HFjIjv0/WfCiZVKLjL1o1Sd7u1WiJZhb0+1ksYMG08sor5+OPP85hhx2W/v37z+/izFuTxyfDL01mlm4S2pQ1S7qe0KiJZhb0Zw8LtikZn//k0sws4WTQZWmWdXOCRDPUyfhMyKW5N9NSmovgJUmzNM0J2aNRE82ooxYe42ckl36fkq1NmiU5oY1EMwuj8eOTS69KppVoddCsaXLC0Y2baEZdUHqmjU++vDSl+9BPkmbJkidINDO/NfhMmnFjxpR0gpkkmTJpUsaNGSPJDDSQb8ePKekEM0kydeqkfDt+jCQzC4Gx348p2QQzSTJl2qSM/X7MQpFkZuWVV14gJtItCGVYWI2Z9G1JJ5hJkknTp2bMpG8lmWGOxnw/paQTzCTJpGkzMub7KQtckpmPPvpofheBhdS4MdNLNsFMkkyZNDPjxkxv9CQzTz75ZJJk9913z6mnntqo38UCaMzM0p3znsz6bWNmxrx3+vfvv/ANyF1QjB9T2glmklm/b/wYSWao0oyMSalXtrN+o+u/VH2dMSWbYCZJJmdSvs6YRk0ys6Ar9AmbNm2aW265pcJksqr269atW/76179Wuc+ZZ56ZM888s1HK2ZgWlHctC6MxmVbSCWaSZFJmZkymSTLDj8KY70o3wUwy67eN+W7BTzIzcODA+V0EFiATx5R2gplk1u+bOEaSGVjgjJlcuglmklm/bczkRksys6BbmGIBxrP8SEydWNoJZpJZv2/qxEZNMsP/iPXV3bRMLOkEM0kyM9MyLRMXmCQz6qgfh4mZXNIJZpJkWqZnYiY3apIZFh4TZ5Z2roFpmfUbF4yahHlp4g+lm2AmmfXbJv7QuElmFmT6D/UzY2JK+6GfJNP+/+9cSO+NBYXcbgAAAADQCD777LMkyRprrDGfSwIAAMC8VugTLrXUUtVOKiu/n74jAAAA/LiJBQAAAAAAPwaSzAAAAABAI5gyZUqSpHnz5vO5JAAAAMxrkydPTjLnPmFt9wMAAAAWbGIBAAAAAMCPgSQzC6A+ffqkrKwsK6+8co379e/fP2VlZSkrK8tHH31UYdvKK6+csrKy9OnTJ0ny9ttv56ijjsrKK6+cli1bZqmllsoee+yRF198ca7K+sYbb+RPf/pTdthhhyy//PJp2bJl2rZtm9VXXz2HHXZYnc8/bty4nHHGGVl33XXTtm3bdOzYMVtttVVuvfXWWh0/adKkXHrppdlmm22y9NJLp0WLFllyySWz7bbb5tprr820adPq8zMr+Pzzz/P73/8+3bp1S8eOHdOyZcussMIK2XffffPkk0/W6hy33HJLevbsmQ4dOqRt27ZZb731csYZZ2TcuHFzXT4WbqNGjcr//d//ZYMNNki7du3SvHnzLLXUUunSpUsOOOCA9O/fP99++22dzjljxowcd9xxxefNCSeckIsuuqj437W5z/faa6+UlZWlY8eOmTRpUn1/Hgup+tQNhevzzDPPrPHcPXv2TFlZWXr27Flp20cffVQ8T//+/etd/rfeeit9+vTJCiuskFatWmWFFVbIgQcemJdffrlWx9f0W2ZvC8yYMSNXXXVVfvazn6VDhw5p06ZNfvKTn+Tcc8/NxIkT5/hdb7zxRg499NAsv/zyadWqVVZcccUcfPDBGTZsWJLat1GgvDPPPLN4nSbJ+PHjc84556Rr165p3759pXtswoQJ+ctf/pLNNtus2NZafvnls/fee+ehhx6q8btmzJiRp59+Oqeccko233zzdOrUKc2bN0/79u2z/vrr55RTTsnIkSNrVe65vXehKvVpq83et6vK9OnT069fv2yyySZZbLHF0q5du2ywwQa54IILigOTauu+++7LPvvskxVXXDGtWrVK+/bt061bt5x11lkZO3Zslcest956KSsry/7771/l9vL11frrr1/lPi+++GJxn0cffbTCtilTpuTBBx/MCSeckI022igdOnRI8+bNs/jii2eTTTbJmWeemTFjxtTpd9bVpEmTsttuuxXL+Ne//rVRv48ft/LXfMFZZ51V/Kyqe3r69Om54YYb0qtXryy77LJp2bJlFl988WyxxRa58MIL88MPP1T7fbO3aT/77LP8+te/zmqrrZZFFlkkiy++eHbYYYc88sgjtSr/V199lbPPPjubb755llxyyTRv3jwdOnTIJptsklNPPTWvvfZatcfOi7gMC4eJEydm0UUXTVlZWQ466KA57v/CCy8U769+/fpV2t4Q8bwbb7wxPXr0KMbzunTpkrPPPrtYd9e2H/rMM8/ksMMOyyqrrJLWrVtnscUWS5cuXfLb3/42o0aNqrT/wIEDU1ZWlsMPP7z4WefOnSs8U8rKyjJw4MAKx7344ovp27dvevbsWbwfF1tssayzzjo57rjj8uabb1ZZvsIz7Kyzzip+Nvt3zR6Prm1f8fXXX8/RRx+d1VdfPa1bt86iiy6addddNyeffHKl+HZ5VfXPn3jiifTu3TtLL710WrZsmc6dO+e4447Lp59+WmMZYHaz91nn5h3FRx99lJNPPjnrrrtuFl100bRu3Tqrr756jjnmmLz++usNUt733nsvJ598crp06ZJ27dplkUUWySqrrJI+ffrklVdeaZDvYOE1ePDgHHnkkVlzzTWz2GKLpUWLFll++eXTq1evXHbZZZXeYY0ePTr9+vXL3nvvndVXXz1t2rRJy5Yts9xyy2W33XbL7bffnhkzZlT7fYU6rlCPzZgxI9ddd1222mqrLLXUUmnSpEmNfWEWbvVpI83eZhk9enR+97vfFZ/bs+8/duzYXH/99Tn44IOzzjrrpG3btmnRokWWXnrp7LDDDrnqqquKiUVnV/j+G264IUny8ccfV1m2wr8//vjjJMkNN9xQYZ/y7y5mr7OqM3ny5Fx11VXZZZddstxyy6Vly5Zp06ZN1l133Rx55JF57LHHMnPmzDr8tf9n6NChOeKII7LGGmukTZs2xbjphhtumOOPPz4PPPBApXPX9l3L119/nVNPPTVrrrlmFllkkSy11FLZbrvtcu+99yapeWxEMu/GR7Dwacj24tzETWa/xocOHZo+ffqkc+fOadmyZaVnw7hx43Luuedms802K8ZTl1hiiayzzjrZY489cvnll+eLL76o9vvmpm07e//45ZdfzgEHHFAcU7TccsvlkEMOyVtvvTXHvxnUpD73Y03jA8qrS4z0gQceKF73t9122xzL/Zvf/CZlZWVp1qxZlbGgpO5t87qoa2wKajJ7Pfntt9/mzDPPTJcuXdK2bdssueSS2XnnnTNkyJAKx3355Zfp27dv1l133bRp0yaLL754dttttwwfPrzG75sxY0YGDBiQnXfeuViXLrHEEtlqq63Sr1+/Ktvn9Y2vJnM3dmH25827776bE044oRgbrapdW5e2/JgxY4ptgGOPPbbGsiTJgw8+WPytd9xxR5X7fPTRR/nd736XDTfcMIsvvniaN2+eTp06pXv37jnzzDPzwQcfzPF7qiOmRUMQC6heY8YCalKb8SzTpk3LxRdfnI033jiLLbZYcQzKP/7xj0yZMqXOYzTHjRuXP/7xj8U6pH379tlyyy1z8803V7l/4Xlc3d+7Nm1DFm5z05aozxispG7Prnn5nCuo6b14Q49phvLqMhb5xzDmMqn7PQzl1bWOqsv1Nvt73JrUdrxUY8S7xo4dm8022yxlZWVp3rx5tW1CqM78mquWzHpndPHFF6dnz55ZYokl0rx583Ts2DFrrrlmdtppp1x44YU1jqeDpHHrgkT/gR+vXr16paysLJtuummV28u3dTp27Fjl+LbPP/+8uM8VV1xR/Lwh5y0uCJrN7wLQ+O69994cfPDBFR6kX375Ze677748+OCDufnmm7PffvvV+bwDBw7MVlttVenzKVOm5L333st7772XG2+8Mf/3f/+X8847b47n+/DDD7Pddtvl/fffL372/fffZ+DAgRk4cGDuu+++3HzzzWnWrOrL9tVXX81uu+1WDAQXfPXVV3nqqafy1FNP5corr8yDDz6YpZZaqo6/dpabb745xxxzTL7//vsKn3/66ae58847c+edd+aII47IFVdcUWU5p02blgMPPDB33nlnhc//85//5D//+U8GDBhQ64ktMLtBgwalV69elSYmf/nll/nyyy/zxhtv5LbbbkunTp3Sq1evWp1z6tSpOfTQQ4sDYfr27Ztzzjkn33zzTX73u99l8uTJ6d+/f7UVbjLrpfaDDz6YJDnwwAPTqlWrev5CFkZzWzfMb3fccUcOPfTQCsHmTz/9NLfeemvuvPPOCo3MuTVx4sRsv/32eeqppyp8/vrrr+f111/PAw88kKeffjpt2rSp8vgBAwbk5z//eaZOnVr87JNPPsnNN9+cO+64I1dffXWDlZWF17vvvpvtt9++2oDX8OHD06tXr0oDGD/77LPcfffdufvuu7Pnnnvm5ptvrrI+OfvssytMhi0YP358Xn311bz66qu5/PLLM2DAgOyxxx7VlnNe3rssPBqjrZbMGty48847Z9CgQRU+Hz58eIYPH55bb70111xzzRzPM3bs2Oy99955+umnK3w+efLkDB06NEOHDk2/fv1y//33V2r79ejRI//5z3/y7LPPVnnu8p+/9tpr+eabb9KxY8cq92nWrFm22GKLCtuOPvro4kCs8r755pu89NJLeemll3LppZfm/vvvz+abbz7H31pX3333XXbdddcMHDgwTZo0yRVXXJGjjjqqwb+HhdfIkSOz66675tVXX63w+TfffJPBgwdn8ODBufzyy/Pwww9njTXWqPFcgwcPzu67714h8dKkSZPy+OOP5/HHH8/555+fU045pdrjq4t7jBs3rni/3XHHHVXW5fMiLsPCo3Xr1tl9990zYMCA3H///fn++++r7cskKQ4SaNasWfbdd99K2+Ymnjd16tTss88+uf/++yt8/sYbb+SNN97IgAED8sQTT8zxN02aNCmHH354lZONCue6/PLLc+utt6Z3795zPF9N+vfvX+HFYcHUqVPz1ltv5a233srVV1+diy++OL/4xS/m6rtq67zzzkvfvn0rvYx588038+abb+byyy/PVVddlUMPPXSO5zrttNPyl7/8pcJnH330Ua644orcfffdefbZZ7P22ms3aPlZOMxNHOrGG2/M0UcfXWnAYeFdybXXXptzzjknp512Wr3Ld8EFF+T000+vELsplPvDDz/MjTfemL59++bss8+u93ewcPrhhx9yxBFHVDlQ6rPPPstnn32Whx9+OF999VVx0Mf06dOz/PLLV/mSfdSoUXnggQfywAMP5Nprr80999yTtm3b1liGSZMmZYcddvCOjHnmxRdfTO/evWtMWtu1a9dK/Zsk+eKLL4p9rCuuuCL/+te/svTSSzdmcWttxIgR2XPPPfPhhx9W+HzKlCnFdte1116bDz/8sM7J5P/xj3/klFNOqXTff/rpp/n0008zbNiw9OvXL999990c7/nZvf7669luu+0qJLyYNGlSnnzyyTz55JM5+uijs9lmm9X6fI01PgLmpr3YkHGTK664IieeeGK1SWneeuutbLvttpXetYwZMyZjxozJW2+9lfvuuy/Tp0/PCSecUOn4hmzb9uvXL7/61a8qlHXUqFEZMGBA7rnnnjzyyCPZcsst53gemF1jjiOoa4x0l112yTLLLJPRo0enf//+1SbkT2aNGxswYECSZMcdd8yyyy5bYXt92ua1NS9jUyycPvnkk2y77bZ55513ip99//33eeSRR/L444/n1ltvzT777JPXXnstO++8cz777LPifhMnTswDDzyQxx57LI888kiVY1K/+eab7Lrrrhk8eHCFz8eMGVO89y+99NI88sgjWWmlleb698zt2IXy7r///hx00EGVnivl1bUt36lTp+y222658847c/vtt+ef//xnjeW4/vrrkyQdO3bMbrvtVml7dXGnr7/+Os8//3yef/754t+5rsS0WFCIBdQ9FjC3vv322+ywww6VEr4WxqDcdtttufLKK2t9vrfffjs77rhjpXfVgwYNyqBBg/LCCy/k0ksvbYiiw1yZmzFYs6vNs6su+87L59zcjmmGmsxpLPKcLAhjLmdXl/sd5ta8vN4aK941atSo7LDDDnnjjTeyyCKL5M4778wuu+zSgCWn1M3PuWqjR4/OtttuW2mRuLFjx2bs2LF555138uijj2bUqFG54IILGvz7IdF/oLT16NEjDz/8cIYOHZoJEyZUGsNSfn7T2LFj89prr1VaTLv8PuUThjXUvMUFxYI5I5sG8/rrr+f222/PMsssk9/85jfp1q1bZs6cmcceeyx/+ctfMmnSpBx99NHZeuuts8QSS9Tp3NOmTUubNm2yyy67ZOutt85aa62VxRZbLF9++WX+85//5OKLL87HH3+cv/zlL1ljjTWqnNhQ3n777ZcPP/wwxx57bPbee++0a9cur732Wv7617/mnXfeyR133JFll102//jHPyod+95776VHjx4ZP358FltssRx//PHZeOONs8IKK+Trr7/OAw88kCuvvDIvv/xydttttwwaNCjNmzev0++94447csghh2TmzJlZZZVVcsIJJ2SdddbJEksskY8++ijXXntt/vWvf+Xaa6/NYostlgsvvLDSOU455ZRigpk111wzp556an7yk59k/PjxufPOO3P11Vcb0Ea9TJ48Ofvvv3++/fbbLLroojnuuOOy1VZbZckll8yUKVPy4YcfZsiQIcXV/mpj4sSJ2WuvvfLoo4+mrKwsF154YU466aQks14477nnnrn11ltz22235R//+EcWWWSRKs9z8803F18S//znP5/r38rCZW7qhvnt5ZdfzkEHHZRp06alZcuWOfnkk7PzzjunZcuW+fe//50///nPOe6447LOOus0yPcdddRRefHFF3PYYYdl3333zdJLL52RI0fmb3/7W1544YW89NJL+dOf/lRl4rchQ4akT58+mT59elq3bp1f//rX2X777dOyZcu88sorOe+883L00Udn3XXXbZCysvDae++989lnn+XEE0/Mrrvumg4dOuTdd9/NSiutlM8++yzbbLNNxo4dW1xBYP/998/iiy+eN998M3//+9/z6quv5p577kmfPn2qHAA5bdq0LLPMMtljjz2y2WabZZVVVkmrVq3yySefZMiQIenXr18mTJiQAw88MMOGDaty4um8vndZODRGW63g4IMPLr7s3HjjjXPyySdn9dVXzxdffJH+/fvnzjvvzDHHHDPH8m277bYZNmxYmjZtmgMPPDA777xzOnfunKlTp+a5557LhRdemC+//DI777xzhg8fXmFwZs+ePdOvX798/vnn+e9//5u11lqrwvnLDzacOXNmnnvuuey+++5V7rPBBhtUCuJMmzYtq6yySvbYY49svPHGWXHFFdOsWbN8/PHHefLJJ3Pdddfl66+/zh577JE33ngjSy65ZB3/itX76quvstNOO2Xo0KFp0aJFbrrppkrJC2B2u+++e7p165Yk6dKlS5LkuOOOq5DIoUOHDklmDc7dYost8sknn6Rly5Y56qij0qNHj6y88sqZMGFCHn/88Vx00UV57733stNOO2XYsGFp165dld87evTo7L777mnSpEn+8pe/ZIsttkiLFi3y/PPP5+yzz864ceNy2mmnZaeddqqyXXfTTTcVkzu0atUqRx11VHbaaacsvfTSmTBhQl577bU88MADeffddysdOy/iMix8DjrooAwYMCDff/997r///hx44IFV7jdt2rRivG2HHXZIp06ditsaIp73q1/9qphgZt11180pp5yS9dZbL99++23uvffeXH755XOM582cOTN77713Hn744SRJ7969s++++2aVVVZJkyZN8tJLL+Xvf/97Ro4cmb333juDBw8uPkc22mijvP7667n//vvTt2/fJMljjz1WaRJS586dK/xNOnTokN122y1bbrllVl999bRp0yajRo3KsGHDcvHFF2fMmDE54YQTstZaa2XrrbcuHlt4hvXr1y+XX355klS5Sv1yyy1X428ur1+/fjn99NOTJEsssUR+97vfZfPNN8/06dPz5JNP5vzzz8/333+fPn36pFOnTtl5552rPdfVV1+dIUOGpEePHjnmmGOyxhprZNy4cbnxxhtz44035quvvsrPf/7zvPDCC7UuHxTUNw718MMPp0+fPpk5c2batm2b3/zmN9l2223TrFmzDBkyJOedd17GjBmT008/Pe3bt89xxx1X57Kdf/75OfXUU5MkP/nJT3Lcccdl9dVXT/v27fP222/n0ksvzQsvvJBzzjknnTp1yi9/+csG+ZtQ+mbMmJHddtutmDBt9dVXzy9+8Yt069YtrVu3zujRozNkyJBKq5wXVj7eeuuts9NOO6VLly5ZYokl8t133+WDDz7I1VdfnRdeeCFPPPFEjj/++CoTh5b3u9/9Lq+99lp23XXX9OnTJyuttFK++OKLSolaoaA+baSCCRMmZK+99sqkSZPy+9//Ptttt11at26d119/Pcsss0xxv+nTp2eTTTZJr1690rVr1yy11FLFOM6AAQPy6KOPZvjw4dl///0rTbQstJ/69u2b+++/P8suu2wee+yxSmUr7LfDDjtk1KhR2W233fKnP/2puE9dBki99dZb6d69eyZMmJAk2WOPPbL//vtnlVVWyfTp0/POO+/k8ccfr1f86bXXXismmOncuXNOOOGErL/++unYsWO+++67vP3223nmmWcqJWasjXHjxmXHHXcsJpg55JBDcuCBB2aJJZbIe++9l4suuihXXXVVpcSs1WnM8RFQ3/ZiQ8ZNXn755QwYMCArrLBCTjnllHTr1i3Tpk2rMCHmkEMOyahRo9K8efMK8Z0ZM2bk008/zYsvvljts6Ah27aPPfZYXnrppXTp0iW/+tWv0qVLl/zwww+59957c9FFF2XixIk55JBD8u6776ZFixb1+H+EhVljjSOoT4y0adOm6dOnT84777w88cQT+fTTT7P88stXef6HH344X375ZZLK42fq2zavjbmJTUFt7bPPPvn0009z2mmnZccdd0zr1q3z/PPP54wzzsi3336bI444It26dUuvXr3yww8/5Nxzz02PHj3SvHnzPProozn33HMzefLk9OnTp1LdMH369PTq1asY8+vRo0dOOOGEdO7cOaNGjcp1112X++67L2+99Va22WabjBgxovi+sT59h4YYu1AwcuTIHHzwwWndunX+8Ic/pHv37mnatGlefvnlYhnr25Y/8sgjc+edd2bcuHG59957c8ABB1RZhq+++ioPPfRQkllx95YtW1bYfs455+SPf/xjkqR9+/b5xS9+ka222iqLL754xo0bl2HDhuWee+5JWVlZtb+zOmJaNCSxgMoaMxbQEPbff/9igpnNN988J554YlZbbbV89dVXGTBgQG6++eYce+yxtTrXxIkT07t373z99dfp27dvtt1227Rt2zbDhw/PWWedlU8//TSXXXZZevfunR122KF43PXXX5/vv/++2r93Ure/OQufuj575nYMVnm1fXbVZd+5ec7V1dyMaYY5qWkscm0sCGMuy6vL/Q4F9W0fz8vrrbHiXe+//3622267fPjhh1lsscXy4IMPSmZOnc3PuWonnnhiMcHMwQcfnD333DPLLrtsmjZtmtGjR+eVV16p13tXFj6NXRfoP/BjVUgKM23atDz//PPZcccdK2yf/XodOHBgpSQzhX2WWmqpCvOjGmLe4oJEkpkSN2zYsGy44YZ5+umns9hiixU/33TTTbPaaqvl4IMPzrfffpsBAwbk5JNPrtO5119//Xz66adp3759pW077LBDTjjhhPTq1StPPPFEzjrrrBx66KFp2rRpted7+eWXc8stt1R42dWtW7fss88+6d69e1599dVcfPHFOeKII7LeeutVOPawww7L+PHj07Vr1zz++OMVJpMkyfbbb59evXpll112yb///e/079+/TivPjxkzJkcffXRmzpyZn//857nyyisrZCLcYIMNsueee+b3v/99/vznP+eiiy7KMccckzXXXLO4z+uvv55LLrmkuP+zzz5bYfLkNttsk5/97Gc57LDDal0uKBg8eHBx5ZRbbrklvXr1qrB90003zQEHHJB//OMfFVbtq864cePSq1evDB48OE2bNs0111yTPn36VNjnyCOPzK233prx48fn3nvvrXayV2EllJ/+9KfZYIMN6vHrWJjNTd0wv/3iF7/ItGnT0rx58zz++OMVAlcbb7xx9txzz2y66aa1Hhg9J0OGDMlNN92Ugw8+uPjZBhtskJ122indunXLG2+8kauvvjrnnHNOpWy6xx9/fKZPn56WLVvm6aefziabbFKhrHvvvXc222yzDB8+vEHKysLrjTfeyCOPPJLtt9+++NmGG26YZNags7FjxyaZNXH0iCOOqLDPvvvum5122inPPPNMbr/99hx22GHZaaedKpz/yCOPzBlnnFFp8PUGG2yQ3XbbLSeeeGI23XTTfPbZZ/nzn/+cm266qVIZ5/W9y8KhodtqBQ8//HAxiLzzzjvn/vvvr/CM33nnnXP22WfnjDPOqPE8Z599doYNG5b27dvnySefLN6XBVtssUUOOuigbLbZZhk9enROP/303HzzzcXtPXr0KP574MCBFYIoI0eOzEcffZSysrLssssueeihhzJw4MAKSWamT59eXHWwfJbfgrPOOiurrLJKpYGL3bp1y1577ZVf/OIX+dnPfpavvvoql1xySc4555waf29tffLJJ9luu+3y9ttvp3Xr1rnnnnsqDEaC6rRv375SrGTJJZessr36y1/+Mp988klWWmmlPPPMM5UC+T179iy2fT/44IP87W9/y7nnnlvl977zzjtZaaWVMnjw4ArJHzbaaKNstNFG2XLLLTNt2rRcddVVueiiiyocO3r06OIAviWXXDJPPfVUpfJ27949xx9/fD755JNK393YcRkWTttuu22WXHLJfPnll7nllluqjTs8+eSTxck5Bx10UPHzhojnDR8+PFdccUWSZLPNNstTTz1VIcnu1ltvnR49emSfffap8bdcc801efjhh9O8efM88MADlV5YbLrppjnkkEPSvXv3/Oc//8lJJ52U559/Psmsga3rrbdeXnnlleL+a6yxRo2rTe6000458MAD07p16wqfd+3aNbvsskt++ctfZsstt8xrr72WM844o0KSmcIzrHzStrnpb3/11Vf57W9/myRZdtll8+KLL2aFFVYobt98882z6667pnv37vn+++9z9NFH58MPP6x2QuWQIUNy1FFH5corr6zQNthmm23SokWLXHPNNXnxxRczfPjwdO3atd7lZuFUnzjU1KlTi8+atm3bZtCgQRVeOG666abZa6+9im3pU045Jfvss0+lurImb775Zn7/+98nSc4444ycccYZFa7/DTfcMPvvv38OO+ywDBgwIL///e9zyCGHFJPaQU0uvfTS4qC+PfbYI7feemulyWa77LJLzjnnnIwePbr4WdOmTfP2229ntdVWq3TOHj165PDDD88ZZ5yRs88+OzfddFP69u2b1VdfvdpyvPbaa+nbt2+D9ecoffVpIxV8/fXXadu2bZ5//vn89Kc/LX6+0UYbVdjv6aefrvK6/dnPfpaDDjoo119/fX7+85/n2WefzVNPPZVtttmmuE+hnij0DZs3b15lm6rwWaHt0759+3q3vQ4++OBMmDAhTZo0yc0335z999+/wvZNNtkkhxxySL7++utK7cQ5ueuuuzJjxoy0adMmL7zwQpZaaqkK27t3754jjzwy48ePr/O5zzrrrGLc7J///Gd+9atfFbdtuOGG2XvvvbPXXnvVeiBlY46PgPq+t2zIuMmbb76ZLl265LnnnqsQf9p8882TJB988EGGDh2aJLnwwgtzwgknVDi+8J7jr3/9a8aNG1dhW0O3bV988cXsvPPOuffeeyskCujevXsWX3zx9O3bNyNHjszDDz/8o1jFjQVLY4wjmJsY6RFHHJG//OUvmTFjRm688cZist3ZXXfddUlmJeHt3bt3hW31bZvXxtzEpqC2RowYkWeffbbCeJNu3bpl9dVXT69evfLdd99lk002ycyZM/PSSy9l1VVXLe638cYbp1OnTjn++OOrrBuuuOKKYoKZQw89NP379y/GRjbccMP07t27GOd9//33c8455+Svf/1rkvr1HU466aS5HrtQ8OGHH2bZZZfNCy+8kBVXXLH4efm/U33b8ttuu21WWmmlfPzxx7n++uurTTIzYMCAaheIGz58eHGl+DXWWCNPPfVUpURZW221VX7zm99U+X6oJmJaNDSxgMoaMxYwt+6///488sgjSZI999wzd955Z5o0aVLcvuOOO6Zr16455ZRTanW+r776KlOmTMkLL7xQYUGVDTfcMD179kyXLl0yadKk9OvXr8K4jsL794b4e7NwquuzZ27HYJVX22dXXfadm+dcXc3NmGaYk5rGIs/JgjLmsry63O9QUN/28by83hoj3vX6669n++23z+eff54lllgijz76qHlq1Mv8mqs2adKkPPDAA0mS3/zmN7ngggsq7dO7d++cddZZ+eabbxrseylNjV0X6D/wY7XBBhtk0UUXzXfffZeBAwdWeC82efLkYlLk3r1758EHH8zAgQNz0kknVTjHs88+m6TiXKmkYeYtLkiazHkXfuyuu+66CgOoCg488MBiVrLyqxrVVqdOnapMMFPQokWLnH/++UmSjz/+OCNGjKjxfL169aryRdeiiy6aq666KsmsLJaFiR0FgwYNypAhQ5IkN9xwQ7UDWHbcccfsvffeSZL+/fvXWJbZXX755Rk/fnyWW2659OvXr9qK6Kyzzspyyy1XHDRQ3hVXXJEZM2YkSa666qoKCWYKDj300GpfOEJNPv/88+K/a8rA2qxZsyqfB+V98cUX6dmzZwYPHpyWLVvmrrvuqpRgJpn1Arnwwr+QSGZ2w4YNK07Cn/0lNdRGfeuG+e3ll18udtKOOeaYKu/L5ZZbLn//+98b7Dv33HPPCp2pgpYtWxYHkH799dfFjLcF//73v4t19IknnlhhIEvBkksu2SgZeFn49OnTp8JLnYJRo0YVV83ZcccdKwzSKmjZsmWuu+66Yjvs0ksvrbTPyiuvXO1k1CRZfvnlixNcH3jggeKq2wXz495l4dCQbbXy+vXrl2TW/XH11VdX2U/p27dvjcHtCRMm5LLLLksya5W66l62rrTSSvnDH/6QJLnzzjvz/fffF7ctueSSxQy7VWX1TZJ11lmnOAF/9n2GDh2a7777LknlIEySrLrqqjWujNelS5cceeSRSZL77ruv2v3q4u23384WW2yRt99+O+3bt88TTzwhwQwN7qOPPsrtt9+eZFa9VtWqesmspBDHH398kjnHMy655JIKCWYKtthii2I7r6oY0CWXXFJMcnXVVVfV+NwonxyicL7GjsuwcGrWrFn222+/JMnjjz+er7/+usr9CoNw2rZtm9122634eUPE86666qpim/Hqq6+ukGCmYO+9965xMtzMmTOLExp++ctfVprEU9ChQ4diLHXw4MEVVsSuq+WWW67GwcLt2rXL2WefnSR5/vnnq/3bNoTrr7+++Hy58MILKz1DklnPudNOOy3JrFWCa6rPl1lmmVxyySVVtg3KD0SuT7wb6hOHuvfee4sT4/v27VtpRYtkVlu6cH9PnDix2lhqdf7+979n6tSp6datW6XJOAVNmjTJJZdckpYtW2bChAm566676vQdLJxmzJhRvDaXX3753HjjjZUG9RU0adKkQjuzrKysygQz5f3xj39Mp06dMnPmzOIgqeqsscYaxUltMC+ceuqpFQZLVaWmxEhJcvjhhxef+w0Vj6ivxx9/PMOGDUsyq805+6Sy8hZffPEq27U1KcS21lhjjUoJZspr165dhQljczJ58uRi/3CjjTaqkGCmoGnTprnyyivTqlWrWp+3scZHQH3ai40RN7nsssuqHatT21h0WVlZpQncDd22bdWqVa6//voKCWYKfvnLXxY/dz9SH40xjmBuYqSrrrpqMYl+dffwF198kX/9619JZk0IL/9Oc27a5nMyP2JTLJxOOumkKseb7LLLLllppZWSzEoQcM4551RIMFNw+OGHF9t8s9cNhXeZSyyxRC699NIqYyNnnXVWcSGMq6++OpMnT67X72iosQvl/eUvf6mQYKa8uWnLN2nSpDge76mnnqo2CUyhvu7atWul+v3888/PjBkzUlZWlttuu61Sgpnyqort1kRMiwWNWEDdYgFzq9AOW2SRRXLFFVdUGS/49a9/XacJweecc06FBDMFq622WnGhI4nymJ8aYgzW7Grz7KrLvvPyOVffMc1QG9WNRa6NBWXM5ezqcr/D3JoX11tjxLuGDBmSHj165PPPP88KK6yQQYMGSTBDvc2vuWrffPNNMRlwTe9xkqRjx44N+t1Qnv4Dpaxp06bZYostklSeu/Tvf/87kyZNSrt27YoLEz333HPF3A9J8uWXX+att95KUnl+09zOW1zQSDJT4rp06ZKf/OQnVW4rKysrrub6wQcfzPV3TZ48OSNHjsybb76ZN954I2+88UaFG6CQaKI6hx9+eLXbNt5442Jg+Mknn6ywrTAwdc0110yXLl1q/I5C4+vll1/OtGnTaty3qu/o1atXtZ2aZNbkl8022yxJiqtnFBTK3aVLlxqz5ErEQX0ss8wyxX/XdZJCeR999FG22GKLvPrqq2nbtm3+9a9/FV++zK6srKx4vT799NMZOXJkpX0KZWnRokWF1cShtupbN8xv5ctT02/YY489akzYVhc13WPl653Z6/zyZT3kkEOqPccuu+ySxRdffC5KCNVfpwMHDsz06dOTpMpBWgUrr7xytttuu0rHVOfbb7/Nhx9+mP/85z/F9mlhsm1hW3nz495l4dBQbbXypk+fXgx4bL/99sUJMrNr0qRJDjvssGrP8+yzz2b8+PFJUpzEUJ1Cf2rq1KnF1XALCsGTQsbe8udPkp49exYHWL/22msVsqsX9ikfzKnJ2LFj8/7771e4twv35JtvvlkMvtfXsGHD0r1794wcOTJLL710nn322fzsZz+bq3NCVR5++OFMnz49rVu3nmPC2cL9N2rUqCr7XsmsVdd22WWXas9RaBNWFQN66KGHkiSrrLJKdt1111qVv2BexGVYeBXaj1OnTs0dd9xRafsPP/xQfDm1++67V0is0pDxvK5du1Y5aLXg0EMPrXbbm2++mffffz9J7evaqsoyN77//vt89NFHFerO8i855hS3nRuFv2H79u2z5557VrtfIWFc+WOqsvfee1f7/+eaa65ZTOzdEPFuFj71iUMV/l0+VlqVffbZJ+3atat0fG08+OCDSZK99tqrxuSL7du3L9bFDfkMoXSNGDEin376aZLkqKOOqnJxhNqaMWNGRo0albfffrtY17z11lvFyWlzqmv222+/NG3atN7fD3VV13dWM2fOzOeff5533nmneI2/8cYbxQGvjdmeqo1Cny5JpdWVGkIhtvXmm2/mpZdearDzvvLKKxk3blySVDlgrGCppZaqdfLfeTk+goVPfdqLDR03WWGFFdK9e/dqz1E+Fl3XJL8N3bbdbrvtsuSSS1a5bdFFFy0OTHU/Uh+NMY5gbmKkyf9iG++++26Vk5sHDBhQvLdnv8casm0+uwUhNsXCoabkBoX2WVlZWTGx+OwWWWSRKuuGUaNGFQdz77vvvll00UWrPL5Zs2bFZ8PYsWOLiRfqqqHHLrRo0aK4EEdV5rYt//Of/zxNmjTJjBkzcsMNN1TaPnTo0Lz++uvFfcubMWNGHnnkkSSz3uUW2soNRUyLBY1YwLwzbdq04jiQHXfcMUsssUSV+5WVldU4XnH2fQ888MBqtxfehX/zzTfFWAPMaw01Bqu8ujy7FrTnXH3HNENt1HdeyoI25rI8c22Yl+bF9dbQ8a7HHnss2223XcaOHZs111wzgwcPzpprrtkQRWUhNb/mqi2++OLFJPw33XSTcbTMN/oPlLrC/KahQ4dmwoQJxc8LMastttgiP/vZz7LIIotk7Nixee211yrtk6Q4B6o6dZ23uKCRZKbEFVZnqE4ho11h1fi6+v7773Peeeflpz/9adq0aZOVVlop6667brp06ZIuXbpUePE0ZsyYGs+10UYb1bh94403TpK88847mTJlSvHzV155JcmslebLyspq/F8ha9nUqVMrTGqsyfTp0zNixIgkyZVXXjnH7yisplB+hajJkycXV3ip7e+Euthiiy2yyiqrJJn1wmjjjTfOeeedl8GDB1e4X2ry1ltvZfPNN897772XxRdfPE899VS23nrrGo/p06dPmjZtWuWL6smTJ+eWW25Jkuy2226SU1Av9a0b5rfCAI0WLVrUmNmzefPmDTZIo6Y6v3wG29nr/DfeeCPJrOyeNU2abNq0aZUrFkJdVDe4v3AdJqlydbPyCtsnTpxYZYDg448/zoknnpiVV1457dq1yyqrrJL11luv2D49+uiji/vO3j6dH/cuC4eGaKvN7v333y+uqDk3fYxCfyqZNQGhpr5O+dU5yvd3kv8FTz7//PP897//LX5eeCnbs2fPrLjiiuncuXNmzpyZ5557rtI+Xbt2rXKV6WTW/fnzn/88yyyzTDp27JjVVlutwr1dWPF+xowZGTt2bI1/j5oMGjQoW221Vb766qusvPLKef7556t9dsHcKtx/EydOTLNmzWq8/3r16lU8bvb7r2D11VevccX46mJAU6dOLdbFW2yxRY0DfWv6HY0Vl2HhtskmmxRXtb355psrbX/ggQeKwf/yL5kaIp43adKkvPfee0lSY8LoJOnWrVu128rXtZtttlmN5Sg/oKK6e722xowZk9NPPz1rrrlmFl100XTu3LlC3Vk+KdWc4rZzo/B82WCDDWrM3r/UUktl5ZVXrnBMVeYU7+7QoUOS+se7WbjVJw5VuF47d+5c7UD5ZFY/s9CPrOkan93HH3+cr776Kkly2mmnzfF5VnjmzO0zhIXD8OHDi/+uabJ6dWbOnJkBAwZkq622Stu2bbPccstlrbXWKtY1Xbp0KdbHc6pr9LuYl9q2bVuM08zJww8/nF69eqVdu3ZZZpllikkiCv97+OGHkzRue6o2CvfziiuumJVWWqnBz3/AAQekefPmmTx5cjbffPP07t07V1xxRaVFZ+qqfJ04N23u8hp7fAQLt/q0Fxs6bjKnOrNz587Fev0f//hH1l133fzxj3/M008/XYwnV6eh27buRxpTQ48jmNsYaTJrlc1CXKKqBQcKn2200UaVVkOf27Z5TeZXbIqFzxprrFHttsJiEZ06dSreJzXtV75uqM9YgtmPq4uGHLuQzHp306pVq2rPMbdt+eWXX76YkLGqBHOFZ0/Lli0rTdT48MMPi4kYGvrZI6bFgkYsYN56//3388MPPyRpuP5+p06dahyDXNP4SJhXGmoMVkFdnl0L4nOuvmOaoTbq+15pQRtzWVCXexjm1ry63hoy3nXXXXdl1113zcSJE7PBBhtk0KBBWWGFFea2iCzk5tdctZYtWxaTMN91111ZbbXVcuqpp+Zf//qXhJnMM/oPLAwK85umTZtWYXGI8vObWrZsmU033bTC5+X/vcQSS2SdddapdO65mbe4oJFkpsSVX723KoXJR9WtpFCTjz76KF26dMnpp5+e1157bY7nKASMq1PdCkYFSy21VJJZg1bLTxr88ssva1niiuY0gKbgm2++qVdWwPLnHzt2bHGAXW1/J9RF8+bN8+CDD2bttddOMmt1s9NPPz1bbLFF2rdvnx133DG33HJLjffpHXfckVGjRiVJLr/88lolPFp22WWz8847J5n1orr8QNL777+/OPitppXOoCb1rRvmt8K137FjxzmuwNtQz/2a6vzyk41nfw4U/m61KWtNA0qhNqobMFZ+sPSc7vull166yuOS5JFHHsk666yTSy+9NB9//PEcyzN7+3R+3LssHBqirTa7utw3NV2vDdWfKmT6Tf4XVPn000/zwQcfpKysrLi9EKwp7DN9+vRi0Ka6LL/XXnttNthgg1x//fW1Glg4p75nTa677rp8++23SZLbb7+9mNgAGkNDxzNqGwOaMWNGhc+/+eabYl+u/GrXtdXYcRkoDHwfMmRIPvroowrbColnllxyyWy77bbFzxsinlf+pe2c+kI1bZ8f98jQoUOz1lpr5bzzzss777wzx4m/c1N3zkmhzTKn9kryv7Z+TUmoGjPeDfWJQzX0NT479SyNqfxL7Lq2AydNmpRddtklhxxySAYOHDjHumRO22uaZAgNrTBxtSYzZ87MkUcemV69euXhhx+e40ClxmxP1Ubhfq5Pn6421lprrdx6663p0KFDpk2bloceeijHHXdcunTpkiWXXDKHHHJIBg0aVOfzln+vMzdt7vK0F2lM9WkvNnR7rjZ15q233prNNtssSfLmm2/mnHPOyTbbbJP27dtnyy23zBVXXJFJkyZVOk7/jR+Thh5HMLcx0iRp1apVDj744CSzxt98//33xW0vvfRS/vOf/ySpevzM3LTN50S/knmlNmNW6lM3NNRYgtpq6O+bU93dEG35I488MsmsCbPlF/oov0Dc7rvvXqksnj0sTMQC5q352d9P9DGYfxq6/qvNs6su+87r51x9xzRDbdT3vdKCNuayoC73O8yteXW9NWSf87LLLsuUKVPSsmXL3Hfffea00CDm51y1Sy+9NL17904yK1HB+eefn1122SWLL754Ntpoo5x//vkZP358g34nlKf/wMJgww03LC6uUJi7NGXKlLzwwgtJ/jd3afb5TUny7LPPJqk4R6pgbuctLmiaze8C8ON1yCGH5MMPP0xZWVkOP/zw7L///ll77bWzxBJLpEWLFikrK8uMGTOKE3TnNJmhPqvAJP+rGH76059mwIABtT5uueWWq9P5k1kv5H71q1/V6rgWLVpU+Xl9fyfMyTrrrJPXX389Dz74YB588ME899xzee+99/LDDz/ksccey2OPPZYLL7ww//rXv6rsDO2www55/vnn8/333+eEE07IuuuuW2WmtdkdeeSRefDBB/PBBx/kueeeK1aehZVQll9++Wy//fYN+2NZaPzYn5k/9vJDQ5tT4pak/vfNmDFjcuCBB2bixIlp27ZtTjnllOywww5ZddVV065du2Lb7Omnn84222yTpPr2qXuXxjC3bbWazM01W76/M2zYsDRv3rxWxy2//PIV/nvppZfOmmuumbfffjsDBw7MscceWwyurLPOOsWXOj169Mj1119fDMKMGDGimNSlqiDMf//73xx77LGZNm1allxyyfz2t7/N1ltvnZVXXjmLLrposbzXXXddjjjiiCRz7nvWZLfddstDDz2U6dOnFydLLoiDsigNhfuvU6dOeeaZZ2p9XOfOnRurSPXS2HEZOOigg3L22Wdn5syZufXWW3PaaaclmTX457HHHkuS7LfffmnW7H+h7oaO582N8mV58MEHs/LKK9fquLq2BwqmTJmSfffdN19//XWaN2+eE088MbvttlvWWGONdOjQIS1btkySfPDBB8VkanNTd9aWNjY/BnNznTbWNV7+GfLHP/4x++yzT62Oa9OmTaOUBwrOPffcPPLII0lm9eWOP/74bLDBBll66aWzyCKLFAd4bLnllhk0aNAc65raxIygodTmervuuuty7bXXJknWX3/9nHTSSdlkk02y3HLLpXXr1sVzHHroobnpppvmSXtqfttrr72y7bbb5vbbb89jjz2WQYMG5auvvsqYMWMyYMCADBgwIIcddliuu+66CoO8oJTUp83X0HGT2jzDlltuuQwZMiRPPfVU7rnnnjz77LN58803M3Xq1AwaNCiDBg3KBRdckH/9619ZY401Kh2v/8aPwYJ6nR555JG55JJLMmHChNx111057LDDkvxv/MwiiyySAw44YJ6WaV7HpqAxzet7vyG+b170d3v37p2llloqX3zxRa6//vpsueWWSZL77ruvOAlqXi8QJ6bFgkYsAJgXGmoMVkFd2hGecyxsGqKdvSCMuSzwnox56cd4ve2555655557Mnny5Oy333557LHHsuiii87vYvEjNz9jzIsttlgeeOCBvPTSS7njjjsycODAjBgxItOnT88rr7ySV155JRdccEHuu+++4qIC0JD0H1gYNGvWLJtvvnkee+yx4tyll19+OT/88EPatWuXrl27JvnfHKbnnnsuM2bMyDfffJM333yzwraChpy3uKCQZGYBVN3K0rMrv+LJvPbf//63uNr86aefnj/96U9V7leXFSG++OKLrLDCCjVuT2Y14spnnl188cWTJBMmTMh6661X6++rrY4dOxb/PXPmzHp9R/nsboXfUZ05bYeaNG3aNLvvvnt23333JMno0aPz6KOP5rLLLsvQoUMzdOjQHHPMMbn33nsrHbvpppvmtNNOy84775wvv/wy22yzTQYOHJg111yzxu/cZZddsswyy2T06NG5/vrr06NHj3z22Wd5/PHHkySHHXaYwaTUW33rhrKyssycOXO+1aWFsnz99deZPn16jR2w+f3cL5T1m2++mWNZv/rqq3lVLBYy5dtbc7rvP//88yqPu+uuuzJu3Lgkyb333pttt922yuNrap/+mO5dfpzmpq02u/L13tz0MQr9qWTWClHVvcisjR49euTtt98uJpcpBGMK2X3L//u1117LN998U9ynSZMm6d69e6Vz9u/fP9OmTUvTpk3z7LPPZq211qryu+u7GuHsdt999+y///45+OCD884772TrrbfOwIEDa1yZBOqrcP999913WXvttefbC9yOHTumSZMmmTFjRkaPHl3n4xs7LgNrrLFGunXrlldeeSW33HJLMcnMXXfdlSlTpiSZlYimvIaO582pL1TT9vJ1bfv27Rv9Pnn66afzwQcfJEn69etXXMV2dg1Vd85Jx44dM3r06Fq1nwtt/fL//8G8VJ84VOF6baxrvPwzpHnz5upaGlSnTp2K/x49enS1/a3ZzZw5M9dcc02SpHv37nn66aerfQcwr+obaGhXX311kmS11VbLkCFDssgii1S534JyjRfu5/r06eqiXbt2Ofroo3P00UcnSd56663cf//9ueSSSzJq1KjccMMN6dq1a62TPJaPb3311VdVJrsovx3mt/q0F+dn3GSbbbYpDl77+uuv8+STT+aqq67K008/nffffz/77bdfhg8fXty/sdu20JDqO46gOnMbIy34yU9+ko022igvv/xyrr/++hx22GGZNGlSbrvttiSzJsS0a9eu0nH1bZvXxryOTUFDm30sQU2qG0swN99Xn7ELddEQbfnmzZvn0EMPzfnnn58777wzl1xySdq2bVtMcLXiiitWOX5i9mdPQxLT4sdILKDhzN7fr4n+PqWkIcdgNYYf23MOGsOCOOYSFkTl3/3WNB+nprk4DRnvOvHEE7Ppppvm1FNPzQsvvJCdd945jzzySNq2bVvvc8KCMFdt4403zsYbb5xk1jjigQMHpn///rnnnnvy5ZdfZq+99sr7779fbbsNGpP+A6WgR48eeeyxxzJ06NBMmDChOHdpiy22KM7b2HTTTdOqVauMHTs2r732Wt5///1iYpjy86CShpm3uKAx638BVMimWLjYqvPOO+/Mg9JU7T//+U/x3/vtt1+1+73yyiu1PufLL79cq+2rr756hVWFCxmjPvjggwov7hpKixYtsu666yZJBg8eXK9ztGrVKquvvnqS2v9OaAjLLLNMDj/88LzwwgvZYIMNkiQPPfRQfvjhhyr379GjRx588MEsssgi+fzzz7PVVlvl3XffrfE7mjZtmj59+iSZVVFOmDAhN9xwQ2bMmJGysrIcfvjhDfqbWLjUt24o1KWFFXmqMnPmzLz33nsNUMrKunTpkmTWCvKvvvpqtftNmzYtI0aMaJQy1Fahjps8eXKF+n1206dPn+9lpXSVH1D073//u8Z9X3rppSRJ69ats8oqqxQ/L1y/HTt2rLajltTcPv0x3buUhrq21cpbddVVi8G6ueljFPpTSf37OwWFIMrnn3+e//73v8VkM+WDKyuttFJWXnnlzJw5M88991xxn/XXX7/KgdWFe/unP/1pjS+Z6tL3nJP9998/N9xwQ5o0aZL//ve/2XrrrfPll1822PmhoHD/TZ48uUGv4boqP7h30KBBdc6Y3dhxGUj+l0TmjTfeyGuvvZYkufnmm5PMqhM32WSTCvs3VDxv1VVXTZIMHTq0xn1ruocbqq6t7eopDRW3bajVWgrPl2HDhmXatGnV7vfll1/m448/rnAMzGv1iUMVrtcPP/ywxsHwU6dOLU7grcs1vsoqqxTbyXPbXofZFfqhyazVWGrrm2++Kbb79tlnn2oTzEyYMCFvv/323BUS5qCxVpgrtKl23XXXagdLzZw5M8OGDWuU76+rwv08cuTIYptqXlh77bXzf//3f3nxxRfTpk2bJMkdd9xR6+MLbfZk7trcMK/Up724oMRNFl988ey333556qmnsuuuuyZJRowYUWEsQGO3baEh1XccQXXmNkZaXiHh73PPPZcPPvgg99xzT3EM4M9//vMqj6lv27w2GvI9EMwP9RlLMPtxSe37Dg0xdqEuGqotX3j2fP/997nzzjvz6aef5oknnkhS/QJxnTt3LiZbb+hnj5gWjUksYJb5FQuojVVXXTWtWrVKsuD09xvrumHhUZtraEFve//YnnPQGBbEMZcwtxqjnVOYi5PUPB+npnmtDR3v+u1vf5s///nPSZLnn38+u+yySyZOnDjX52XhtaDNVVt00UXTu3fv3H333fnlL3+ZZFaCpueff75O52Hh1Bh1gf4DpaAwj2natGl5/vnnq5zf1LJly2y66aZJZi2yXdinU6dOFca0JA0zb3FBI8nMAqhz585JZmWgq27w5ZQpU3L33XfPy2JVUH5CQE2Z9a644opan/OGG26odtvLL7+cN954I0kq3XyFATAzZ87MRRddVOvvq4vCd/z3v//NY489Vq9zFMr9+uuvV1gNanbXXXddvc4PNWnevHl69OiRZNb9W1MSq6233jr3339/WrVqldGjR2errbbK+++/X+P5jzjiiJSVleX777/P7bffnv79+ydJttxyy+KELKiP+tYNhbq0pkbZI488MseEbvVVvjw1/YZ77723xuDCvFBYwTBJbrrppmr3e/jhh/P111/PiyKxEOrZs2cxC2hNbaGRI0cWB0KVPyb5X/t00qRJ1WaGnjhxYo3X+Y/p3qW01KWtVtCsWbNicOPxxx+vdnWqGTNm1Hg9b7vttmndunWS5OKLL56rgdOF35Akt9xyS959992UlZVV+Dz5X1Dm6aefzqBBgyp8NrvCvV1Tv3P06NF54IEH6l3uqhx00EG5/vrr06RJk7z55pvZZpttMmbMmAb9Dujdu3cxsP/Pf/5zvpclmTWJ6P7776/TsfMiLgP7779/se13880359NPPy3WIYUENLNriHheob80fPjwGpNy3njjjdVu22CDDYqrVl111VWZNGlSvcpSGIybzEpOVZ3axG1nzJhRXGlibr9vTgpt7HHjxuWee+6pdr9rr7222A6p6eULNKb6xKEK/545c2Zxdeiq3HXXXRk/fnyl4+ekadOm2XnnnZPMave/9dZbtT4W5uSnP/1pcWWua665JhMmTKjVcbV9R3jNNdfUmGAMGkJDtVlmV5t4xP3337/ArBZe6NMlyT/+8Y95/v0rrLBC1lhjjSSpU/ykW7duxYmnAwYMqHa/L774ot5temhI9WkvLohxk/LvBsvfs43dtoWGVN9xBDWZmxhpeQcccEDatGmTmTNnpn///sX7qXPnztlqq62qPKa+bfPaaKjYFMwvyy67bNZee+0ksxIaVnd/TJ8+vTherUOHDhUmsyW17zs0xNiFumiotvwaa6yR7t27J0muv/76Wi0Q16RJk+yyyy5JkmeffbbGMa11JaZFYxILmGV+xwJq0qxZs2y55ZZJkkcffbTaJJYzZ86scRxXQypcNw15zbBwqc2zpyHHYDWGH9tzDhrDgjjmEuZWY7SPV1555eK/a5qPc+utt1a7rTHiXaeddlrOOeecJLMS1/Tq1atWi3pCVRbkuWrVvceB6jRGXaD/QCno1q1bccGkJ554IkOGDElSee5S4b8HDhyYgQMHJpk1L372BE4NMW9xQSPJzAKo/AS8v//971Xu8+tf/zqfffbZvCpSJauvvnrx34WXc7O7/PLL6/TS/YEHHqhyZbMJEybkmGOOSTLrxVbh3wXbb799Nt544yTJ+eefP8fV0V5//fU8+OCDtS5XkvzqV79K27ZtkySHH354jZNKklkT8QurKhccc8wxxYfK0UcfXWUFe/PNN+df//pXncoGyayVlGrKcjllypRiFrW2bdtmiSWWqPF82223Xe677760bNkyn332Wbbaaqt88MEH1e6/6qqrFivTvn37Flc8q24VJqit+tYNhbr03//+d5UZwj///POceOKJjVDiWTbeeOPigJXLL7+8yuyxo0ePzimnnNJoZaitzTbbLD/5yU+SJJdcckmVKzF99dVXOfnkk+d10ViILLvsstljjz2SzAqqVRW0mzJlSn7+859n6tSpSZITTjihwvZC+3TixIlVPjemT5+eI488MqNGjaq2HD+me5cfl4ZuqxUcd9xxSWYFA4855phMnz690j7nnXdeXn/99WrP0b59++L9NGTIkJx88snVBjySWZN6rrnmmiq3LbvsssV78eKLL06SrLPOOpV+T6GevvHGG4tB9NkT0RQUzvfuu+8WgzrlTZw4MQceeGCjvCg69NBDc80116SsrCxvvPFGttlmGwnXaFBrrrlm9tlnnyTJbbfdlgsvvLDG/T/88MMaX8zOjRNOOKEYRD3mmGOKL8iq8umnn1b473kRl4Gll146W2+9dZJZAxRuueWW4iCd6pLMNEQ87+ijjy7G84466qgq65u777479957b7XnbdKkSU4//fQks1auP/TQQ2t8kfftt9/m0ksvrfT5MsssU/x3TcmAaxO3Pe200+a4gkRtv29ODj/88OLgqt/85jdVxrRfffXV4mpDyy23XHbfffd6fx/MjfrEoXbfffcsu+yySZJzzz23yrb3J598UuxHtm7dutqJPdU57bTT0rRp08yYMSN77713pbq4vOnTpxeTccGcNGnSJL/97W+TzGrjHXrooZkyZUqV+86YMaMYU1liiSWKK53feuutVdZrL7/8cv7whz80TsGhnIZqs8yu0KZ68MEH880331Ta/v777+f4449vsO+bW9tuu2023HDDJLPi/Lfddlu1+3799dd1jqPcd999NQ6E/OSTT/Lf//43yf8GVtZGq1atcuihhyaZ9dyoKgHHjBkzcswxx5gQzwKhPu3FeR03GTFiREaMGFHt9pkzZ+bJJ59MMmtVw/KTBeZF2xYaSn3HEdRkbmKk5S266KLZd999kyRXXnllnn766SRJnz59ql1NtL5t89poqNgUzE+FtvdXX31VXMl5dmeddVbefPPNJLNiuS1btqywvbZ9h4YYu1AXDdmWP/LII5PMejd9ySWXJJk1OL6mNvopp5ySJk2aZObMmdl///1rfL7VNd4kpkVjEQuYpbFjAXOr0A774Ycfcuyxx1Y5DuXCCy+cZyueF66bhrxmWLjU5tnTkGOwGsOP7TkHjWVBG3MJc6sx2scdOnQozi+5/vrrq6w3nn/++RoTqzdWvKtv374544wzkiTPPPNMevfu7R0S9TK/5qp98MEHxTkD1Xn88ceL/67Lu1cWXo1RF+g/UAqaN2+en/3sZ0lmLYT5/fffp127dunatWuF/QrP9qeffrr4frCq+U0NMW9xQSPJzAKoa9eu2WyzzZIkV199dfr06ZNnnnkmw4YNy+23355tttkml112WfHinl9lXG+99ZLMeiG+33775aGHHsrQoUNz//33Z5999skvfvGLbL755rU+Z7du3XLggQfm+OOPzzPPPJOhQ4fm+uuvT7du3YqrJBx//PHFjkp5t9xySzp27Jjp06dnv/32y6677pqbb745L730UoYOHZpHHnkkf/7zn4sT6efUGJvdUkstlRtuuCFlZWUZPXp0unXrluOOOy4PPPBAhg0bln//+9+5++6787vf/S6rrrpqevXqlZEjR1Y4x09/+tNixfnKK6+kW7du6d+/f4YOHZqnn346xx13XA499NB069atTmWDJHnqqaey5pprpmfPnjn//PPz2GOPZdiwYRk8eHCuv/76dO/evfgy5ogjjkizZs3meM4ddtgh99xzT1q0aJFPPvkkW2+9dT7++ONq9y+8qP7888+TJIsttlj23nvvBvh1LMzqWzccffTRadasWWbOnJnevXvnn//8Z1555ZUMGTIk559/frp27Zrx48dXmHzX0Pr165dmzZpl6tSp2W677XL66afn+eefz8svv5xLL700G264YUaPHp2f/vSnjVaG2rrsssvSpEmTTJ48OVtvvXX+8Ic/FMt6+eWXZ8MNN8wnn3yS9ddfP0mqHfwGc+Mf//hHOnTokGRWkrKjjjoqTz75ZIYOHZqbb745m2yySZ566qkkyb777puddtqpwvH77rtvcaDY4Ycfnv/7v//LU089lVdeeSU33HBDNtlkk9x6661zbJ/+mO5dfjwao62WzFqZqrA61YMPPpjNN988t99+e4YNG5ZHH300+++/f/r27TvHPsbZZ5+dTTbZJEly0UUXZYMNNshll12WwYMHZ8SIEXnmmWdy6aWXZvfdd8+KK66YK664otpzFYIphZVsZ8/yW/6zwj5NmjQprmI1u0MOOSTJrJdIu+yyS/785z/nueeey0svvZTLL78866+/fgYOHFinvmddHH744bnyyitTVlaW1157Ldttt13Gjh3bKN/Fwunyyy/PKquskmRW8oUePXrk2muvzYsvvpjhw4fnySefzN///vdst912WW211XL33Xc3SjmWXnrpXH755UmSL7/8MhtvvHF+9atf5dFHH82IESPy/PPP54orrsjOO+9cZdC0seMykPwvmcwnn3yS8847L8msPuMaa6xR5f4NEc/bcMMNc9RRRyVJXnjhhWy00Ua54YYbMnTo0DzzzDM58cQTs99++xUnDCZV95eOPfbY4sSEO++8M+uuu27OP//8PPvssxkxYkSee+65XHXVVTnwwAOz7LLL5swzz6x0jq5duxZXnPjDH/6QJ554Iu+8807ee++9vPfee8XBwTvssEOWXHLJJLMGVhx77LF57LHHMnTo0Nx+++3Zdttt87e//W2OdWf52PPJJ5+c5557Lu+++27x+woZ+edkiSWWyPnnn59k1qCRDTfcMP/85z/z0ksvZciQITn77LOzxRZbZMKECSkrK8tVV12V5s2b1+rc0NDqE4dq0aJFrrrqqpSVleXbb7/N5ptvnnPOOSdDhgzJv//97/zjH/9It27dii8OL7jggnTq1KlO5erSpUsuuOCCJMmbb76Z9dZbL6eeemoeffTRDB8+PC+88EJuvfXW/PKXv8wKK6yQgw8+eK5WRGLhcvzxx2e77bZLktx7773p0qVLLrroogwePDjDhw/PI488kjPOOCNrrbVWrrrqqiSz+nCFevm1117LFltskVtvvTWvvPJKnnrqqfzmN7/JlltumVatWlVbT0NDqW0bqa4KiU9GjRqVzTbbLNddd11eeumlPPfccznzzDOz4YYb5ptvvikmrF4Q3HTTTWnbtm1mzJiRAw44IHvttVfuvPPODB06NC+99FJuueWW9OnTJyuttFK++OKLOp37n//8Z5Zbbrnsu+++ueKKK4rt2GeeeSbnn39+Nt988+Lf+thjj63Tuc8888wsvfTSSZKTTjophx56aDF2dscdd6R79+65//7759jmhnmhvu8t52XcZMSIEenatWs23njjnHPOOXn44YczdOjQvPjii7n11luzww47FJPY7LrrrhUGnc6Lti00lLkZY1aduY2RllcYP/Pll19mxowZadKkSfr06VPjMfVpm9dWQ8SmYH469thji+Npr7/++myzzTa5++67M2zYsDz88MPZa6+9iiuZr7rqqlUmPa1L32Fuxy7UVUO15ffZZ5+0a9cuSYr7zWmBuPXXXz9nnXVWkuSdd95Jly5d0rdv3zz11FMZMWJEBg4cmH/+85/Zcssti+9ta0tMi8YiFvA/jRkLmFt77rlntt9++yTJPffcky233DJ33HFHhg0blsceeyyHHHJITjnllHnW3y+893r55Zfzl7/8Ja+++mrxmpmfi/7y41HbZ09DjsFqaD/G5xw0hgVxzCXMjcZqHxfmP37xxRfp3r17brvttgwfPjxPPfVUfv3rX2fbbbed433SWPGuM888M3379k0ya3z2brvtVmNSZajK/JqrNnLkyPTs2TPrrrtu+vbtm/vuuy8vv/xyXn755dxzzz3Zb7/9ctlllyWZFbcp1DVQk8aoC/QfKBWzz2/aYost0rRp0wr7bLrppmnZsmW+++674gKoVc2Daqh5iwuS2s1cY5677rrr0qNHj3z55Ze54YYbKq2IcMopp2TdddetciX3eaGsrCw33XRTtt5664wdOzZ33HFHpcxLXbp0yZ133llc6WhO7rjjjmyzzTbp169f+vXrV2n7XnvtVe2q3quuumpeeOGF7LXXXnnjjTfy4IMP1ri602KLLVarMpW355575v7770+fPn3yzTff5Iorrqi2o9+kSZPi6jblXXjhhRk1alTuueee/Pe//620qlPnzp1z++23Z9VVV61z+WDGjBl59tlnaxx0tttuuxUnYtXGzjvvnLvuuit77bVXPv7442y11VZ59tlns8IKK1Tad88990yHDh2Kk27322+/4krVUF/1rRvWXXfd/O1vf8uvf/3rjB07NieffHKF7R07dsx9992XP/zhD3n33XcbpeybbLJJbrzxxvTp0yeTJk3KeeedV+H+a9asWfr165fBgwfn1VdfbZQy1NYWW2yR6667LkcddVQmTpyYP/3pT/nTn/5U3N6sWbNcfvnlee655zJixIhi5xMa0vLLL5+nnnoqvXr1yqhRo3LNNddUmbl/zz33rHK1sOWXXz6XX355jjzyyEyaNCl//etf89e//rXCPvvtt1+OOuqobLvtttWW48d07/Lj0hhttSS5+eabs9NOO2Xw4MH597//nf3337/C9q5du+bKK68srmBVlZYtW+aJJ55Inz59cs899+TVV1+tccW9mvpTPXv2rHDvVhVcWXnllbPSSisVExj+5Cc/Sfv27as830YbbZSzzjorZ5xxRsaNG5ff//73lfb5zW9+k/XWW6/KjPAN4aijjsr06dPzi1/8IsOHD892222XJ598stoyQ1107NgxgwcPzr777ptBgwblueeey3PPPVft/vWJZ9TWIYcckhkzZuS4447LDz/8kIsvvjgXX3xxpf1WWmmlSp/Ni7gM7LnnnsXrszDQvDDBvaZj5jaed8kll2TUqFF56KGH8p///KfShKDOnTvnlltuyWqrrZYkVfaXysrKcvvtt+dXv/pVrrjiirz//vs59dRTqy13IUlMeYsuumh++ctf5m9/+1uGDRtWHJhb8Mwzz6Rnz55p06ZNbrzxxuy+++6ZNGlSrrzyylx55ZUV9u3Zs2cuvfTSYhLxqqy22mrZd999c8cdd+Txxx+vsEJKknz44YcVVryvyS9+8YuMGzcuf/jDH/LFF19U6qMns9ojV111VXbeeedanRMaQ33jULvsskuuv/76HHPMMfnuu+/yxz/+MX/84x8r7NO0adOcc845xZXx6uqkk05KmzZtctJJJ2X8+PE5//zziwmcZteiRQuxG2qtSZMmue+++3LYYYflrrvuyjvvvJOTTjppjsede+65xUGyr7zySg488MAK2zt27Ji77747f/zjH/POO+80Uumh9m2kuvrVr36VJ554Io8//njeeeedHHHEERW2L7LIIrnxxhvz8MMPz7MVt+dk7bXXzsCBA7PHHnvkk08+yT333JN77rmnwc4/ceLE3Hnnnbnzzjur3N6kSZOcddZZ2X333et03o4dO+bRRx/Ndtttl6+++io33XRTbrrppgr79OnTJ927d89LL72UpOo2N8wL9W0vzo+4SWFAcnV+9rOf5dprr630+bxo20JDmJsxZjWZmxhpeT/72c+yzjrr5M0330ySbLPNNllxxRVrPKa+bfPaaIjYFMxPTZs2zUMPPZRdd901gwcPztNPP52nn3660n5rr712HnnkkbRt27bStrr0HeZ27EJdNVRbfpFFFsmBBx5YTJjVrl277LXXXnM8rm/fvmnSpEnxfey5556bc889t9J+c0qwVRUxLRqDWMD/NHYsYG7dfvvt2WGHHfLSSy9l8ODBlcZ0dO3aNf369StOTm7MZ8Bxxx2Xyy+/PN98801OO+20nHbaacVtPXr0yMCBAxvtuykNtX32NOQYrIb2Y3zOQWNZ0MZcwtxorPbxkUcemUceeST33Xdf3nzzzRxwwAEVtnfp0iV33313hUTms2vMeNc555yTadOm5S9/+Usef/zx7Lnnnrn33nvTokWLBjk/pW9+z1V78803i/Hjqqy11lq55557LL5BrTRGXaD/QKmY/dqv6l5o1apVNt100+Jcr44dO6ZLly6V9muoeYsLkiYNfcL2nTqlRYkH+lu0apX2jbwaz1prrZVhw4bluOOOy0orrZQWLVpkiSWWyI477piHH3642hct89L666+fESNG5Nhjj81KK62U5s2bp2PHjtl4441zwQUX5KWXXqqxszC7zp07Z+jQoTn99NOz9tprp3Xr1mnXrl223HLLDBgwIHfddVeaNas+L9Iaa6yRESNG5JZbbslee+2VFVdcMYssskhatGiRZZZZJj179kzfvn0zdOjQSoNgaqt379758MMPc8EFF2TrrbfOUkstlebNm2eRRRZJ586d06tXr1x44YX56KOPstVWW1U6vnnz5rn77rtz0003pXv37mnXrl1at26dtddeO6effnqGDh1aXMF8YbJYu05p3ry0nxvNm7fKYu0a77lxyimn5O67785xxx2XTTfdNCuuuGJatWqVVq1aZeWVV86+++6bhx56KPfdd18WWWSROp27d+/eueOOO9K8efN8+OGH2WqrrfLpp59W2q9Vq1bZZ599iv89p5VQSlWHNp3SolnpXs8tmrVKhzbzbkW6uakbTj755Dz66KPZYYcd0qFDh7Rs2TKdO3fO8ccfn+HDh6d79+6NXv4DDjggw4cPzyGHHJJll102LVq0KK72+fzzz+eoo45q9DLU1mGHHZZXXnklBx10UJVlPfLII/Ptt98mSXHlo1LXqdViadW0+fwuRqNq1bR5OrVacF5cdO3aNW+//XbOO++8bLLJJmnfvn1atGiRZZddNnvuuWceeOCB3H333dUOKjj88MMzaNCg7L777lliiSXSvHnzLLPMMtlxxx1z++2357bbbquUcbQqP6Z7d17p1KZFWjVr8O7jAqVVsybp1KZxXi40Zltt0UUXzcCBA3PJJZdko402Stu2bbPoootm/fXXz3nnnZchQ4akY8eOtTrP3XffnUGDBuXII4/M/2vv7oOsrOv/j7/2jl0Wll3ggGi6zQrSkGDOAGaCGmbkjElTTiMlRpPBYDdjDtUM2JSO0d0fNQOTqYRaY1qjM5kFo6lRpE5YiTSJOiMpFD+aLzRy8w3UgP39sbVpX4hdYPfAZx8P/2F2z559X+PZc67zua7zvN7ylrekpaUl9fX1GTFiRKZOnZpPfvKTWbVqVR5++OFD3s/rTy6sqak55MmGr1+cOdyi5Re/+MWsXLkyM2fOzPDhwzNo0KCceuqp+cAHPpCf//zn3VfA60sLFizIsmXLkiS///3vM3PmzO6acanaKnUZ1FTuwYlBTTVpqxz+NaE/jBkzJmvWrMnPfvazXHnllTn99NPT3NychoaGjBo1Kuedd14WLlyYX/3qV7n99tv7dJa5c+dm48aNuf766zN58uS0tbWlrq4uw4cPz7nnnpvFixfnwQcfPOjP9se6zAmnUpOU+/awa9sq/fc80dLS0n01qaTrgwX/eaLPwRztet6gQYPywAMP5I477sj06dMPup43cuTI7tsf6v1SQ0NDbr755qxfvz6f/vSnM2nSpLS2tqauri6tra05++yzc/XVV+e+++7Ls88+e9D7+NrXvpbly5fn/PPPz4gRIw65b/ue97wnv/vd7zJnzpyccsop3c8nF154YW677bY8+uijBw3q/Ke77ror3/jGN3LOOeektbU1tbVHvj+4ePHirFu3LvPmzcvYsWMzePDgDBkyJBMmTMi1116b5557rvvqF/RCayUpfF01DU1d29kPjmYdau7cuXnuuedy7bXXZsKECRkyZEgGDx6csWPHZt68eVm3bt0bTlo/EvPmzcuf/vSn3HjjjZk2bVoqlUrq6+szZMiQjB8/PpdffnluueWWbNmypTt8VbraVFL6i23XNvat5ubm3HvvvfnFL36Rq666Kh0dHd37caeddlouu+yy3HrrrVm4cGH3z7S2tubxxx/PTTfdlEmTJqWpqSlDhw7NhAkT8tnPfjbr16/PBRdc0Oezn+hGppLGgh/DjWnKyH54DPd0H6k3GhoasnLlyixdujRTpkxJc3NzBg8enHHjxmXBggV56qmn3nBM7HgxefLkPP/881m6dGkuuuiijB49OvX19Rk6dGgmTZqU+fPn59FHH+1xLPBf7rnnntx222358Ic/nLPPPjtjxozpvt8zzzwz11xzTdatW9d91cjeetvb3pYNGzZk4cKFOeOMM9LY2JhKpZIZM2bk7rvvzh133NF9fCIZOMcojlYl9WlKuWs7SdKUmlT68dpaR7O/2F/rJh/60IeyatWqXHfddZk+fXo6OjrS3NzcvaY6a9as/OAHP8ivf/3rN7yXfb3+2LcdiCotSVPBhx2bGrq2sb8c7Tlm/83RrJG+3pw5c7r/3dPzZ45k37ynjsXaVGmaK0ldubvjSbq2r7n/TvHpUyNGjMiaNWvy/e9/P5dcckn3Ou/IkSO7o9pPP/30f41A9ea9w9Geu9Bbx2pf/qqrrur+9+zZs3t87Hnx4sXZsGFDPvOZz2TixIkZNmxY6uvru9eVv/zlL/+fGGRPWdM6iEpj0lTw+RdNtV3b2IesBfxbX60FHAttbW157LHH8q1vfSuTJ08+6Pksr/9/15fv99/0pjflySefzNVXX51x48YNrKhVQ3NSU/h1qWvqu7azj/X0uedYnYN1rJ2oz3MlqE9zagq/PnxN6lOfE+fixMfbOZcDVXMaU5/j4/y9vlKfujSnb/eNk77ZP66trc19992Xb3/725k6dWqGDBmSIUOG5KyzzsqSJUuydu3ajBkz5rD305frXV/96lfzuc99LkmyatWqXH755Xnttdd6fT8niuaaFP1qUp+ubewv1fqs2vnnn59f/vKXWbRoUWbMmJFx48alpaUlDQ0NOemkkzJz5szccsstefrpp9PR0dFXm39caR6c1Bf8clBf17WNfe1YvxZ4/1Bdtc0p+0k/Ser/uZ19bOrUqWlu/vcvOtRnl17/9QsuuOCQka9j9bnF40VNZ2dn5+Fu9Morr+TFF19MR0dHjxbV/rp5c3Zs335MBjwetVUqGXOYq4sAvbP9fzZn185ynzeGtVZSGV3+88a0adPyxBNP5K1vfWueeeaZao9TNf9vx+a8/PcyH8/Dh1RySlv5j2UObty4cdm4cWPmzJlzxCePnGg2/++2bH9l1+FveIKqNA1L+9BR1R6DE8Tml1/J9r+Xu/heGTIo7cMH0Ekk0ANbN+/Lju37qz1Gn2ir1OXk9tJXXzkubN6fbD/s8uuJqVKTtJ84C+F96bHHHus+OPzII4/kXe96V5UnYkD5n81Jweuqaa0kfbiuesMNN+TGG29MkvTgcBnHoX3ZnAMp82+gNpXUx1ps6TZnc/5W6GN4ZCpp9xjmGPn4xz+eFStW5NRTT82f//znao9zwtic17I9+6o9Rp/peqXs26uS2l/kWNq8Pdm+u9pT9I1KS9JeSMjiWLnyyitz9913Z/jw4dm6dWsaG/v+A0X03s7NyZ4yd8eTdAVmWu2SDyjLly/P/PnzkyRr167NOeecU+WJOKTNf0+2v1rtKfpGpTFpP3zoHpKuCx78K5D1wgsvZOzYsVWeqFCv7kz+safaU/SdhuakUZSY49tr2Zl9KffvsD7NGRR/h/Tezvxv9qTQ/eJ0hXRaM7TaY1CQnQeSPYUeqmiuSVoL7rHy3+3cmezZW+0p+kbz4MQ1VDgS+3YmB8p9C5Ha5qTe30af6E0Tpk8+TTOmvV2EBeiVyuj2ARFhKdnzzz+fJ554IknPr8JUqlPa2oVYKM5vf/vbbNy4MUly7rnnVnma/tM+dJQIC/xT+/AmERYYYE5urxdigaPVXhefqy3fPffck6Tr6g2TJ0+u8jQMOKPb+zTCAse7rgiLvwFOXO3//A84tL179+YnP/lJkoF1fOJYaM+gPo+wAD3XXhFiGSh27NiRH//4x0m6YjMCM8ev1nYRFspy++23J0kmTpwoMHO8ax8ixAL59zG2UaNG5fTTT6/yNAVrbBVhgSoblFYRFjiI1gwVYYFeaK2NVxOK1NoqxAL/qb41nvTpc/puABwTX//615MkTU1N+ehHP1rdYYBee+GFFw75vb/97W+ZN29ekqSxsTFXXHFFf40FAABQVdu3b8+OHTsO+f2HHnoot956a5Jk1qxZaWtr65/BAACgEBs3bkxn58Evu7h///5cc8012b59e5Jk7ty5/TkaAByRpUuXZu/ersuuLliwoMrTAAPFmjVr8pvf/CaJ5x7g+LBly5bufaKD+e53v5tVq1YlST7ykY+kpqamv0YDAAAAgAHP5agBOCJ79+7Nli1bsmfPntx///258847kyTz58/PyJEjqzsc0Gvvfve709HRkfe///0566yz0trampdffjmPP/54br755mzdujVJ8oUvfCGVikvsAQAAA8Mf//jHvO9978sHP/jBXHzxxRk7dmxqa2uzadOmPPDAA7nrrruyf//+DB48OF/5yleqPS4AAJxwbrrppjz55JOZPXt23v72t2f06NHZu3dv/vCHP2T58uV56qmnkiQXX3xxLr300ipPCwD/1759+/LSSy/l1VdfzerVq7vXiGbNmpUzzzyzytMBJdu0aVNeffXVPPPMM7nuuuuSJGPGjMnHPvaxKk8GkDz88MP5/Oc/n9mzZ+ed73xn3vzmN+fAgQPZuHFjfvSjH+X+++9Pkpx00klZtGhRdYcFAAAAgAFGZAaAI7J27drMmDHjDV877bTTcsMNN1RnIOCodHZ2ZvXq1Vm9evUhb/OJT3wiixcv7sepAAAAqm/Xrl1ZsWJFVqxYcdDvDxs2LPfee2/Gjx/fz5MBAEAZnn322XzpS1865PenTZuWH/7wh65qDsBx6S9/+UvOOOOMN3yttbU13/zmN6s0ETBQXHjhhdm0adMbvrZs2bIMHjy4ShMBvNG2bduybNmyLFu27KDfP/nkk7Ny5UoXtgQAAACAfiYyA8BRqampycknn5yLLrooS5YsyfDhw6s9EnAEvve97+WnP/1p1qxZk61bt2bbtm2pr6/PmDFjMn369MyfPz/nnXdetccEAADoV1OmTMmdd96ZBx98MOvXr8+2bduyY8eODBs2LOPGjcsll1yST33qUxk1alS1RwUAgBPSokWLMn78+DzyyCN56aWXsm3btvzjH//IyJEjM2XKlFxxxRWZPXt2amtrqz0qABzW6NGj8453vCNLlizJ2LFjqz0OMEC0tLRk4sSJuf7663PppZdWexyAJMl73/vefOc738lDDz2UDRs2ZNu2bdm9e3fa2toyYcKEXHbZZVmwYEFaWlqqPSoAAAAADDg1nZ2dnYe70SuvvJIXX3wxHR0daWpq6o+5AAAAAAAAAAAAAAAAAAAAAAA4hN40YVzqCQAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMF6FZnp7OzsqzkAAAAAAAAAAAAAAAAAAAAAAOih3rRgehSZqaurS5Ls27fvyCYCAAAAAAAAAAAAAAAAAAAAAOCY2b9/f5KktvbwCZkeRWbq6+vT2NiYnTt3Ht1kAAAAAAAAAAAAAAAAAAAAAAActd27d6ehoSENDQ2HvW2PIjM1NTVpa2vL7t278/LLLx/1gAAAAAAAAAAAAAAAAAAAAAAAHJm9e/dm165daWlpSU1NzWFvX9/TOx4+fHhee+21/PWvf82uXbsydOjQNDU1pba2tke/CAAAAAAAAAAAAAAAAAAAAACAI9PZ2Zn9+/dn9+7d2bVrVxobG1OpVHr0szWdnZ2dvfllO3fuzK5du7Jnz54cOHDgiAYGAAAAAAAAAAAAAAAAAAAAAKD3Ghoa0tLSkkqlkrq6uh79TK8jM/9y4MCB7Nu3T2gGAAAAAAAAAAAAAAAAAAAAAKAf1NbWpqGhITU1Nb36uSOOzAAAAAAAAAAAAAAAAAAAAAAAcPyrrfYAAAAAAAAAAAAAAAAAAAAAAAD0HZEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMH+P+wrG1k9L7y3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/WUlEQVR4nOydd3xUVfbAv29KJj2EkNAJEECqoCiKiKCiiFhYu65SbKxi13VXd+2FVdff6lpx3VV3RV2x69pFsTcQRRGl9xQCKaRNu78/JjO8uXPfm0lIyCTcL58hM7ece86b++4998x79xlCCIFGo9FoNBqNRqPRaDQajUajwdHWCmg0Go1Go9FoNBqNRqPRaDTJgg6WaTQajUaj0Wg0Go1Go9FoNI3oYJlGo9FoNBqNRqPRaDQajUbTiA6WaTQajUaj0Wg0Go1Go9FoNI3oYJlGo9FoNBqNRqPRaDQajUbTiA6WaTQajUaj0Wg0Go1Go9FoNI3oYJlGo9FoNBqNRqPRaDQajUbTiA6WaTQajUaj0Wg0Go1Go9FoNI3oYJlGo9FoNBqNRqPRaDQajUbTiA6WafYKbr75ZgzDaGs19hgTJ05k+PDhLSqzb9++zJw5s0VlajQaTVtjGAY333xzW6sRl5kzZ9K3b9+otJbWfeLEiUycOLHF5CUjffv25bjjjmsxeR999BGGYfDCCy/ELZvId/jkk09iGAbr1q1LuO2PPvqoaUprNBpNkqPXHSEuvvhijjrqqMjndevWYRgGTz75ZNsptRvIfsby5ctxuVz8+OOPbaeUDTpYpmm3rF27lksuuYRBgwaRnp5Oeno6Q4cOZc6cOfzwww9trV6TMQyDSy65pK3V0Gg07ZSHH34YwzA46KCD2lqVDkfYOQ2/nE4nffr04Te/+Q1Lly5ta/WaxPLly7n55psTCsbsKcJBn/DL7XbTv39/pk+fzpo1a9pavTbn4YcfbrcLI037Ihys/fbbb9talVblkUce4dRTT6VPnz4YhtFiQZlPP/2UKVOm0LNnT1JTU+nTpw/HH388zzzzTIvITzbefPPNNv+xyTx3yK/f/e53barb7rJ27Voef/xxrr/++lZtZ+LEiVHHLS0tjX333Zf77ruPYDDYqm0PHTqUqVOncuONN7ZqO83F1dYKaDTN4Y033uD000/H5XLx29/+lpEjR+JwOFixYgUvvfQSjzzyCGvXrqWwsBCAP//5z/zxj39sY601Go2m9Zg/fz59+/bl66+/ZtWqVQwYMKCtVepwnHnmmRx77LEEAgF+/vlnHnnkEd566y2+/PJLRo0atcf1qaurw+Vqmiu3fPlybrnlFiZOnBhzldO7777bgto1ncsuu4wDDzwQn8/HkiVLeOyxx/jf//7HsmXL6NGjR5vq1hL84x//iLvwOOecczjjjDPweDyRtIcffpguXbrELOgPO+ww6urqSElJaQ11NZoOy1133UV1dTVjxoxh69atLSJzwYIFnH766YwaNYrLL7+c3Nxc1q5dy8cff8w//vEPzjrrrBZpJ5l48803eeihh9o8YHbUUUcxffr0mPRBgwa1gTYtx/3330+/fv04/PDDI2mFhYXU1dXhdrtbtK1evXoxd+5cALZt28YzzzzDlVdeSVlZGXfccUeLtiXzu9/9jmOPPZbVq1dTVFTUqm01FR0s07Q7Vq9ezRlnnEFhYSEffPAB3bt3j8q/6667ePjhh3E4dl046XK5mryg0Gg0mvbC2rVr+fzzz3nppZeYPXs28+fP56abbopbz+/3EwwG9WI7Qfbff3/OPvvsyOdx48Zxwgkn8MgjjzBv3jxlnZqaGjIyMlpFn9TU1BaV19b9YPz48ZxyyikAzJo1i0GDBnHZZZfx1FNPcd111ynrtObxbWkSWdw4nU6cTmdC8hwOR4v3AY1mb2DRokWRq8oyMzNbRObNN9/M0KFD+fLLL2PG0tLS0hZpQ6Nm0KBBUXNzotTW1pKenh6T3hK+0e7OTT6fj/nz58dcHWcYRquM+zk5OVHH8He/+x2DBw/mgQce4NZbb014XmoOkyZNIjc3l6eeeopbb7211dppDvo2TE274+6776ampoYnnngiJlAGocDYZZddRu/evSNp8p5lw4cPj4rShwkGg/Ts2TPirIfT7rvvPoYNG0Zqaipdu3Zl9uzZ7NixI6pueB+UTz/9lDFjxpCamkr//v3597//3RJmA/Dqq68ydepUevTogcfjoaioiNtuu41AIKAsv3jxYg455BDS0tLo168fjz76aEyZhoYGbrrpJgYMGIDH46F3795ce+21NDQ02Ori8/m45ZZbGDhwIKmpqeTl5XHooYfy3nvvtYitGo0mcebPn09ubi5Tp07llFNOYf78+TFlwrcS/vWvf+W+++6jqKgIj8fD8uXLgdCtcAcccACpqakUFRUxb9485X6P4VvGFyxYwNChQ0lLS2Ps2LEsW7YMgHnz5jFgwABSU1OZOHFizO1+n3zySeT2l/CYc+WVV1JXVxcpU1paSn5+PhMnTkQIEUlftWoVGRkZnH766ZG0RMewhoYGrrzySvLz88nKyuKEE05g06ZNzTvgjRxxxBFAKFgJu25hWrRoERdffDEFBQX06tUrUv6tt95i/PjxZGRkkJWVxdSpU/npp59i5L7yyisMHz6c1NRUhg8fzssvv6xsX7Vn2ebNmznvvPMi80S/fv246KKL8Hq9PPnkk5x66qkAHH744ZFbLsJ7Xqn2LCstLeW8886ja9eupKamMnLkSJ566qmoMua+9dhjj0X61oEHHsg333yT8PGUkY9vuD8uX76cs846i9zcXA499FAgtLi57bbbIm337duX66+/3nIue/fddxk1ahSpqakMHTqUl156KSp/+/btXHPNNYwYMYLMzEyys7OZMmUK33//vVJeIBDg+uuvp1u3bmRkZHDCCSewcePGqDKqPctk5D3L+vbty08//cSiRYsi31f4O7Las+yrr77imGOOIScnh/T0dCZMmMBnn30WVaa6uporrriCvn374vF4KCgo4KijjmLJkiW2+mn2PmbOnElmZiYbNmzguOOOIzMzk549e/LQQw8BsGzZMo444ggyMjIoLCyMueWwKefS+vXrOeGEE8jIyKCgoIArr7ySd955p9n93IrCwsKE9jL2+XysWLEioavPVq9ezYEHHqgMsBQUFETeW523VntRheda83ygGkvKy8s555xzyM7OplOnTsyYMYPvv/9eKXPFihWccsopdO7cmdTUVA444ABee+21GNvt/PyZM2dG+oD5Fr4wia6fhBDcfvvt9OrVi/T0dA4//HDlvLi7hPdzXrx4MYcddhjp6elcf/31cX2jhQsXRubtTp06ceKJJ/Lzzz9Hybabm4qLi5k1axa9evXC4/HQvXt3TjzxxLhbIXz66ads27aNSZMmRaWr+kn4HN28eTPTpk0jMzOT/Px8rrnmGss1YjxSU1M58MADqa6ujgn2Pv3004wePZq0tDQ6d+7MGWecETPfARF/IC0tjTFjxvDJJ58o23K73UycOJFXX321Wbq2JvpSG02744033mDAgAG7tS/P6aefzs0330xxcTHdunWLpH/66ads2bKFM844I5I2e/ZsnnzySWbNmsVll13G2rVrefDBB/nuu+/47LPPon4pXrVqFaeccgrnnXceM2bM4F//+hczZ85k9OjRDBs2rNn6hnnyySfJzMzkqquuIjMzk4ULF3LjjTdSVVXFPffcE1V2x44dHHvssZx22mmceeaZPP/881x00UWkpKRw7rnnAqGJ7IQTTuDTTz/lwgsvZMiQISxbtoy//e1v/Prrr7zyyiuWutx8883MnTuX888/nzFjxlBVVcW3337LkiVLojai1Gg0rc/8+fM56aSTSElJ4cwzz+SRRx7hm2++4cADD4wp+8QTT1BfX8+FF16Ix+Ohc+fOfPfddxxzzDF0796dW265hUAgwK233kp+fr6yvU8++YTXXnuNOXPmADB37lyOO+44rr32Wh5++GEuvvhiduzYwd133825557LwoULI3UXLFhAbW0tF110EXl5eXz99dc88MADbNq0iQULFgChhUV4T5kHHniAyy67jGAwyMyZM8nKyuLhhx8GmjaGnX/++Tz99NOcddZZHHLIISxcuJCpU6fu1nFfvXo1AHl5eVHpF198Mfn5+dx4443U1NQA8J///IcZM2YwefJk7rrrLmpra3nkkUc49NBD+e677yILn3fffZeTTz6ZoUOHMnfuXMrLyyOOdjy2bNnCmDFjqKio4MILL2Tw4MFs3ryZF154gdraWg477DAuu+wy/v73v3P99dczZMgQgMhfmbq6OiZOnMiqVau45JJL6NevHwsWLGDmzJlUVFRw+eWXR5V/5plnqK6uZvbs2RiGwd13381JJ53EmjVrmnXLiNXxPfXUUxk4cCB33nlnJJh6/vnn89RTT3HKKadw9dVX89VXXzF37lx+/vnnmGDjypUrOf300/nd737HjBkzeOKJJzj11FN5++23I/PXmjVreOWVVzj11FPp168fJSUlzJs3jwkTJrB8+fKY20LvuOMODMPgD3/4A6Wlpdx3331MmjSJpUuXkpaW1mTbw9x3331ceumlZGZm8qc//QmArl27WpZfuHAhU6ZMYfTo0dx00004HA6eeOIJjjjiCD755BPGjBkDhK4aeOGFF7jkkksYOnQo5eXlfPrpp/z888/sv//+zdZX0zEJBAJMmTKFww47jLvvvpv58+dzySWXkJGRwZ/+9Cd++9vfctJJJ/Hoo48yffp0xo4dS79+/YDEz6WamhqOOOIItm7dyuWXX063bt145pln+PDDD2P0SbSf7y6bN29myJAhzJgxI+6+geE7XjZt2pTQeJ0I//vf/zj99NMZMWIEc+fOZceOHZx33nn07NkzqlwwGOT444/n66+/5qKLLmLw4MG8+uqrzJgxI0bmTz/9xLhx4+jZsyd//OMfycjI4Pnnn2fatGm8+OKL/OY3vwHi+/mzZ89my5YtvPfee/znP/+JaSfR9dONN97I7bffzrHHHsuxxx7LkiVLOProo/F6vQkfp/r6erZt2xaTnp2dHRW8LC8vZ8qUKZxxxhmcffbZUWOpyjd6//33mTJlCv379+fmm2+mrq6OBx54gHHjxrFkyZKYgKVqbjr55JP56aefuPTSS+nbty+lpaW89957bNiwwfbHk88//xzDMNhvv/0SOgaBQIDJkydz0EEH8de//pX333+fe++9l6KiIi666KKEZMiEA3OdOnWKpN1xxx3ccMMNnHbaaZx//vmUlZXxwAMPcNhhh/Hdd99Fyv7zn/9k9uzZHHLIIVxxxRWsWbOGE044gc6dO0dd0BJm9OjRvPrqq1RVVZGdnd0sfVsFodG0IyorKwUgpk2bFpO3Y8cOUVZWFnnV1tZG8m666SZh7u6//PKLAMQDDzwQJePiiy8WmZmZkbqffPKJAMT8+fOjyr399tsx6YWFhQIQH3/8cSSttLRUeDwecfXVV8e1DRBz5syxLWO2Kczs2bNFenq6qK+vj6RNmDBBAOLee++NpDU0NIhRo0aJgoIC4fV6hRBC/Oc//xEOh0N88sknUTIfffRRAYjPPvssyr4ZM2ZEPo8cOVJMnTo1rl0ajaZ1+fbbbwUg3nvvPSGEEMFgUPTq1UtcfvnlUeXWrl0rAJGdnS1KS0uj8o4//niRnp4uNm/eHElbuXKlcLlcQnYVAOHxeMTatWsjafPmzROA6Natm6iqqoqkX3fddQKIKqsax+bOnSsMwxDr16+PSj/zzDNFenq6+PXXX8U999wjAPHKK69E8hMdw5YuXSoAcfHFF0eVO+usswQgbrrpphidzISP3S233CLKyspEcXGx+Oijj8R+++0nAPHiiy8KIYR44oknBCAOPfRQ4ff7I/Wrq6tFp06dxAUXXBAlt7i4WOTk5ESljxo1SnTv3l1UVFRE0t59910BiMLCwqj6su7Tp08XDodDfPPNNzE2BINBIYQQCxYsEID48MMPY8pMmDBBTJgwIfL5vvvuE4B4+umnI2ler1eMHTtWZGZmRr7r8PHJy8sT27dvj5R99dVXBSBef/31mLbMfPjhhwIQ//rXv0RZWZnYsmWL+N///if69u0rDMOI2BOey88888yo+uHv9/zzz49Kv+aaawQgFi5cGEkLz9Xh70yIkG/RvXt3sd9++0XS6uvrRSAQiJK3du1a4fF4xK233hqje8+ePaP6/vPPPy8Acf/990fSZsyYEfc7DPch8zkzbNiwqO9Fbjv8XQaDQTFw4EAxefLkyPctROic69evnzjqqKMiaTk5OXF9Ds3eR7j/mceQGTNmCEDceeedkbQdO3aItLQ0YRiGeO655yLpK1asiOnTiZ5L9957b8wYX1dXJwYPHtzsfp4IGRkZUf6trCdgmW/mn//8pwBESkqKOPzww8UNN9wgPvnkkxjb5fNWbuuJJ56IpI0YMUL06tVLVFdXR9I++uijmPngxRdfFIC47777ImmBQEAcccQRMTKPPPJIMWLEiKh1QzAYFIcccogYOHBgJC0RP3/OnDkxPoIQia+fSktLRUpKipg6dWrUd3n99dcnfNwBy9ezzz4bKRdeGz366KNR9e18o/C6qby8PJL2/fffC4fDIaZPnx5Js5qbduzYIQBxzz33xLVD5uyzzxZ5eXkx6ap+Ej5HzeeTEELst99+YvTo0XHbmjBhghg8eHBkDb1ixQrx+9//XgBRfWDdunXC6XSKO+64I6r+smXLhMvliqR7vV5RUFAgRo0aJRoaGiLlHnvsMQEo57NnnnlGAOKrr76Kq++eRN+GqWlXVFVVASj3F5g4cSL5+fmRV/jSYBWDBg1i1KhR/Pe//42kBQIBXnjhBY4//vjIr8ALFiwgJyeHo446im3btkVeo0ePJjMzM+bXrqFDhzJ+/PjI5/z8fPbZZ58We5qX+dfp6upqtm3bxvjx46mtrWXFihVRZV0uF7Nnz458TklJYfbs2ZSWlrJ48eKIfUOGDGHw4MFR9oVvfVH9mhemU6dO/PTTT6xcubJFbNNoNM1j/vz5dO3aNXJruWEYnH766Tz33HPKy+9PPvnkqCvGAoEA77//PtOmTYu6WmbAgAFMmTJF2eaRRx4Z9Yto+Erfk08+maysrJh08xhoHsdqamrYtm0bhxxyCEIIvvvuu6h2HnzwQXJycjjllFO44YYbOOecczjxxBMj+YmOYW+++SYQ2kDezBVXXKG0z4qbbrqJ/Px8unXrxsSJE1m9ejV33XUXJ510UlS5Cy64IGp/j/fee4+KigrOPPPMKD2dTicHHXRQRM+tW7eydOlSZsyYQU5OTqT+UUcdxdChQ211CwaDvPLKKxx//PEccMABMfmJ3HIk8+abb9KtWzfOPPPMSJrb7eayyy5j586dLFq0KKr86aefTm5ubuRzeD5MdA4899xzyc/Pp0ePHkydOpWamhqeeuqpGHvkPVzC3+9VV10VlX711VcDoaszzPTo0SNy9QSErj6YPn063333HcXFxQB4PJ7I3qeBQIDy8nIyMzPZZ599lLcqTp8+Parvn3LKKXTv3j2i255g6dKlrFy5krPOOovy8vJIP6upqeHII4/k448/jjxgoFOnTnz11Vds2bJlj+mnad+cf/75kfedOnVin332ISMjg9NOOy2Svs8++9CpU6eocz7Rc+ntt9+mZ8+enHDCCZG01NRULrjggig9mtLPd5e+ffsihEjoabTnnnsub7/9NhMnTuTTTz/ltttuY/z48QwcOJDPP/+8yW1v2bKFZcuWMX369Kh1z4QJExgxYkRU2bfffhu32x11rBwOR+Tq7zDbt29n4cKFnHbaaZF1xLZt2ygvL2fy5MmsXLmSzZs3A7vn5ye6fnr//ffxer1ceumlUXNUU+fmE088kffeey/mJW+54/F4mDVrllKG7BuF5+OZM2fSuXPnSPq+++7LUUcdpRzb5bkpLS2NlJQUPvroo5jbT+NRXl4eNZ8mgtz++PHjE55/V6xYEVlDDx48mHvuuYcTTjghqu+/9NJLBINBTjvttKjvtVu3bgwcODDyvX777beUlpbyu9/9LurKvpkzZ0b5NmbCtqquEGxL9G2YmnZF2BHduXNnTN68efOorq6mpKQkoU0eTz/9dK6//no2b95Mz549+eijjygtLY3aC2flypVUVlZG7TVgRr6Hu0+fPjFlcnNzmzxAWvHTTz/x5z//mYULF0YCh2EqKyujPvfo0SNmY8nwU2HWrVvHwQcfzMqVK/n5558tb7Wy25D01ltv5cQTT2TQoEEMHz6cY445hnPOOYd99923OaZpNJpmEAgEeO655zj88MMj+zpBKEh177338sEHH3D00UdH1QnfGhOmtLSUuro65dMzrZ6oKY91YedHvrQ+nG4eAzds2MCNN97Ia6+9FjM2yuNY586d+fvf/86pp55K165d+fvf/x6Vn+gYtn79ehwOR8xTlvbZZx9lPSsuvPBCTj31VBwOB506dWLYsGFRTy0MIx/j8GIjHMSTCd9ysH79egAGDhwYU8YqSBOmrKyMqqoqhg8fnpgxCbB+/XoGDhwY9cAc2HXbZljfMHK/CDu/ic6BN954I+PHj8fpdNKlSxeGDBmifDiPfHzD36/cX7t160anTp1i9BwwYEBM8NA8P3br1o1gMMj999/Pww8/zNq1a6MCz/JtoRD7nRmGwYABA+LuS9OShPuZ6tarMJWVleTm5nL33XczY8YMevfuzejRozn22GOZPn06/fv331PqatoRqampMeNsTk4OvXr1ijmXcnJyos75RM+l9evXU1RUFCNPPq+b0s/3NJMnT2by5MnU1tayePFi/vvf//Loo49y3HHHsWLFCsv1hIrwuGU1N5vng/Xr19O9e/eYzerluqtWrUIIwQ033MANN9ygbLe0tJSePXvulp+f6PrJas7Lz89v0vfXq1evmL29VPTs2dNy037VvAJqP2HIkCG88847MZv4yzI8Hg933XUXV199NV27duXggw/muOOOY/r06VHbAFkhTHu2xkN1jjZlDdq3b9/IE5tXr17NHXfcQVlZWdTDBFauXIkQQumjwK6H2Fh9r26323KOCdvanB/2WhMdLNO0K3JycujevTs//vhjTF74CoZEHdPTTz+d6667jgULFnDFFVfw/PPPk5OTwzHHHBMpEwwGKSgoUG6WDcQMSlZPCmnKYGdFRUUFEyZMIDs7m1tvvZWioiJSU1NZsmQJf/jDH5r1K1owGGTEiBH83//9nzJfdU95mMMOO4zVq1fz6quv8u677/L444/zt7/9jUcffTTq10eNRtN6LFy4kK1bt/Lcc8/x3HPPxeTPnz8/Jli2O/snhbEa6+KNgYFAgKOOOort27fzhz/8gcGDB5ORkcHmzZuZOXOmchx75513gFDAZdOmTVF7Z+zOGNYcBg4cmJBDLh/jsF3/+c9/lA5yR3la8+7OgSNGjGjW8Q3Tkk72nXfeyQ033MC5557LbbfdRufOnXE4HFxxxRUtdtVKSxPW65577mHUqFHKMuErVE477TTGjx/Pyy+/zLvvvss999zDXXfdxUsvvWR5Ralm76W5Yz60/LnUlH7eVqSnpzN+/HjGjx9Ply5duOWWW3jrrbeYMWOG5TjV3I3Ym0L42F1zzTVMnjxZWSYcYNsdP7+p66c9hZ3/0xK+kUrGFVdcwfHHH88rr7zCO++8ww033MDcuXNZuHCh7X5keXl5TbrYYnefVpmRkRE1/44bN47999+f66+/PvJDZTAYxDAM3nrrLWV7u3PehW3t0qVLs2W0Bh3DO9PsVUydOpXHH3+cr7/+erc28OzXrx9jxozhv//9L5dccgkvvfQS06ZNi7pKoKioiPfff59x48a1yCC6O3z00UeUl5fz0ksvcdhhh0XSzVeTmNmyZUvMLx6//vorQOT2qaKiIr7//nuOPPLIZi0yOnfuzKxZs5g1axY7d+7ksMMO4+abb9bBMo1mDzF//nwKCgqUt52/9NJLvPzyyzz66KO241dBQQGpqamsWrUqJk+VtjssW7aMX3/9laeeeorp06dH0q2eovv222/z+OOPc+211zJ//nxmzJjBV199FQkuJTqGFRYWRn4tNf9K/Msvv7SQZfaEr2grKCiwDQYVFhYCKG97iadrfn4+2dnZyh+TzDRlrC8sLOSHH34gGAxGXV0Wvu0/rG9bE/5+V65cGfWwgpKSEioqKmL0DF9dYT4W8vz4wgsvcPjhh/PPf/4zqm5FRYXSmZe/MyEEq1atapGrrRP9zsL9LDs7O6GgY/fu3bn44ou5+OKLKS0tZf/99+eOO+7QwTJNi5LouVRYWMjy5ctjzk15HmpqP29rwreRh5+oGb5iqqKiIqqcfAVseNxKZG4uLCzkww8/pLa2NurqMrlc+Koet9ud0LGL5+dbjU2Jrp/Mc575iqOysrIWuyunuYR1U829K1asoEuXLjF38FhRVFTE1VdfzdVXX83KlSsZNWoU9957L08//bRlncGDBzN//nwqKystb11sTfbdd1/OPvts5s2bxzXXXEOfPn0oKipCCEG/fv0iV2OrMH+v5ivqfT4fa9euZeTIkTF11q5di8PhsJXbFug9yzTtjmuvvZb09HTOPfdcSkpKYvKbchXX6aefzpdffsm//vUvtm3bFnULJoR+eQ0EAtx2220xdf1+f8xE15qEI/hm+7xeb+SpcDJ+v5958+ZFlZ03bx75+fmMHj0aCNm3efNm/vGPf8TUr6urizzFTUV5eXnU58zMTAYMGEBDQ0PiRmk0mmZTV1fHSy+9xHHHHccpp5wS87rkkkuorq6OeRy8jNPpZNKkSbzyyitR+xetWrWKt956q0V1Vo1jQgjuv//+mLIVFRWRp3DdeeedPP744yxZsoQ777wzUibRMSy8+Jdv47zvvvt226ZEmDx5MtnZ2dx55534fL6Y/LKyMiAUvBg1ahRPPfVU1C2p7733XuQx9lY4HA6mTZvG66+/zrfffhuTHz7mYec+kfnr2GOPpbi4OGp/T7/fzwMPPEBmZiYTJkyIK2NPcOyxxwKx32f4ikP5qadbtmyJekJmVVUV//73vxk1alTkyj+n0xnjTyxYsCCyn4/Mv//9b6qrqyOfX3jhBbZu3doigaeMjIyEvq/Ro0dTVFTEX//6V+V2FeF+FggEYm55LigooEePHnoO17Q4iZ5LkydPZvPmzVFzVn19fcz4nmg/bwl8Ph8rVqyIBLrs+OCDD5Tp4b2twj/UFBYW4nQ6+fjjj6PKyf58jx49GD58OP/+97+j7Fy0aBHLli2LKjt58mR8Pl/UsQoGgzE/pBUUFDBx4kTmzZuntMl87BLx863mk0TXT5MmTcLtdvPAAw9E9ZE9NTfbYZ6Pzfb9+OOPvPvuu5F5x47a2lrq6+uj0oqKisjKyoo71o4dOxYhRGSf6bbg2muvxefzRebSk046CafTyS233BJzTgshIn3mgAMOID8/n0cffTTqqaZPPvmk5Vy2ePFihg0b1iaBQTv0lWWadsfAgQN55plnOPPMM9lnn3347W9/y8iRIxFCsHbtWp555hkcDkdCj20+7bTTuOaaa7jmmmvo3LlzzK8sEyZMYPbs2cydO5elS5dy9NFH43a7WblyJQsWLOD+++/nlFNOaTHbvv32W26//faY9IkTJ3LIIYeQm5vLjBkzuOyyyzAMg//85z+WwcEePXpw1113sW7dOgYNGsR///tfli5dymOPPRa5p/ycc87h+eef53e/+x0ffvgh48aNIxAIsGLFCp5//nneeecd5UbREHqYwcSJExk9ejSdO3fm22+/jTyGXqPRtD6vvfYa1dXVUZshmzn44IPJz89n/vz5MT8EyNx88828++67jBs3josuuohAIMCDDz7I8OHDWbp0aYvpPHjwYIqKirjmmmvYvHkz2dnZvPjii8pfkC+//HLKy8t5//33cTqdHHPMMZx//vncfvvtnHjiiYwcOTLhMWzUqFGceeaZPPzww1RWVnLIIYfwwQcftPiVc1ZkZ2fzyCOPcM4557D//vtzxhlnkJ+fz4YNG/jf//7HuHHjePDBBwGYO3cuU6dO5dBDD+Xcc89l+/btPPDAAwwbNky5MDRz55138u677zJhwgQuvPBChgwZwtatW1mwYAGffvopnTp1YtSoUTidTu666y4qKyvxeDwcccQRyr1lLrzwQubNm8fMmTNZvHgxffv25YUXXuCzzz7jvvvui9rQvi0ZOXIkM2bM4LHHHotsWfD111/z1FNPMW3atJhNngcNGsR5553HN998Q9euXfnXv/5FSUkJTzzxRKTMcccdx6233sqsWbM45JBDWLZsGfPnz7fcb6Vz584ceuihzJo1i5KSEu677z4GDBgQszl5cxg9ejSPPPIIt99+OwMGDKCgoEC5/53D4eDxxx9nypQpDBs2jFmzZtGzZ082b97Mhx9+SHZ2Nq+//jrV1dX06tWLU045hZEjR5KZmcn777/PN998w7333rvb+mo0ZhI9l2bPns2DDz7ImWeeyeWXX0737t2ZP39+ZM+k8FVMifZzO15//XW+//57IBQQ++GHHyL+9wknnBC5InTz5s0MGTKEGTNmxN3k/8QTT6Rfv34cf/zxFBUVUVNTw/vvv8/rr7/OgQceyPHHHw+EtpQ59dRTeeCBBzAMg6KiIt544w3lPsF33nknJ554IuPGjWPWrFns2LEjMjeb54Np06YxZswYrr76alatWsXgwYN57bXX2L59e9SxA3jooYc49NBDGTFiBBdccAH9+/enpKSEL774gk2bNkWOSyJ+fvjH98suu4zJkyfjdDo544wzEl4/5efnc8011zB37lyOO+44jj32WL777jveeuutJt2O9+uvvyqv0uratStHHXVUwnJk7rnnHqZMmcLYsWM577zzqKur44EHHiAnJ4ebb745Ib2OPPJITjvtNIYOHYrL5eLll1+mpKSEM844w7buoYceSl5eHu+//77lfqetzdChQzn22GN5/PHHueGGGygqKuL222/nuuuuY926dUybNo2srCzWrl3Lyy+/zIUXXsg111yD2+3m9ttvZ/bs2RxxxBGcfvrprF27lieeeEI5h/p8PhYtWsTFF1/cBlbGYQ89dVOjaXFWrVolLrroIjFgwACRmpoq0tLSxODBg8Xvfvc7sXTp0qiy4Uf6qhg3bpzykfNmHnvsMTF69GiRlpYmsrKyxIgRI8S1114rtmzZEilTWFiofMTyhAkTlI/IlcHm0ce33XabEEKIzz77TBx88MEiLS1N9OjRQ1x77bXinXfeiXkE9YQJE8SwYcPEt99+K8aOHStSU1NFYWGhePDBB2Pa9Xq94q677hLDhg0THo9H5ObmitGjR4tbbrlFVFZWRtlnfoTz7bffLsaMGSM6deoUOfZ33HGH8Hq9cW3VaDS7z/HHHy9SU1NFTU2NZZmZM2cKt9sttm3bFnncuNUjzD/44AOx3377iZSUFFFUVCQef/xxcfXVV4vU1NSocoCYM2dOVJqV7A8//FAAYsGCBZG05cuXi0mTJonMzEzRpUsXccEFF4jvv/8+6lHor776qgDEvffeGyWvqqpKFBYWipEjR0bGmkTHsLq6OnHZZZeJvLw8kZGRIY4//nixceNGAYibbrrJ8hja2SfzxBNPCEB88803yvwPP/xQTJ48WeTk5IjU1FRRVFQkZs6cKb799tuoci+++KIYMmSI8Hg8YujQoeKll14SM2bMEIWFhVHlVLqvX79eTJ8+XeTn5wuPxyP69+8v5syZE/X49n/84x+if//+wul0Rs0fqvmqpKREzJo1S3Tp0kWkpKSIESNGRD2yPt7xSeT4qvqJivBcXlZWFpPn8/nELbfcIvr16yfcbrfo3bu3uO6660R9fX1UufBc/c4774h9991XeDweMXjw4Ji26+vrxdVXXy26d+8u0tLSxLhx48QXX3wRc4zCuj/77LPiuuuuEwUFBSItLU1MnTpVrF+/PkpmIt9huA+tXbs2klZcXCymTp0qsrKyBBBpP9y2ef4XQojvvvtOnHTSSSIvL094PB5RWFgoTjvtNPHBBx8IIYRoaGgQv//978XIkSNFVlaWyMjIECNHjhQPP/ywzdHX7A2oxrAZM2aIjIyMmLJhX1NG9ocTPZeEEGLNmjVi6tSpIi0tTeTn54urr75avPjiiwIQX375ZVTZeP3cjhkzZlj63ObxLTy2mf1fK5599llxxhlniKKiIpGWliZSU1PF0KFDxZ/+9CdRVVUVVbasrEycfPLJIj09XeTm5orZs2eLH3/8MaZ9IYR47rnnxODBg4XH4xHDhw8Xr732mjj55JPF4MGDY2SeddZZIisrS+Tk5IiZM2eKzz77TADiueeeiyq7evVqMX36dNGtWzfhdrtFz549xXHHHSdeeOGFSJlE/Hy/3y8uvfRSkZ+fLwzDiFlrJbJ+CgQC4pZbbon0j4kTJ4off/wxZt1hhd36ydy/rPprvPn9/fffF+PGjRNpaWkiOztbHH/88WL58uVRZazmpm3btok5c+aIwYMHi4yMDJGTkyMOOugg8fzzz8e1SwghLrvsMjFgwAClvuZ+YnWO2q1/zVgdGyGE+Oijj2LmqRdffFEceuihIiMjQ2RkZIjBgweLOXPmiF9++SWq7sMPPyz69esnPB6POOCAA8THH3+sPO/feustAYiVK1fG1XVPYwjRAjuPazQajUaj6XBMmzat2Y+O12g0Go1md7nvvvu48sor2bRpEz179mxrdZKCUaNGkZ+fb7nfZ5hXXnmF3/zmN3z66aeMGzduD2mnaSnWrFnD4MGDeeuttzjyyCPbWp1WY9q0aRiGEbU9QrKg9yzTaDQajUZDXV1d1OeVK1fy5ptvMnHixLZRSKPRaDR7FfI8VF9fz7x58xg4cOBeGSjz+Xz4/f6otI8++ojvv/8+Zm6Wj10gEOCBBx4gOzub/fffv7VV1bQC/fv357zzzuMvf/lLW6vSavz888+88cYbyv3tkgF9ZZlGo9FoNBq6d+/OzJkz6d+/P+vXr+eRRx6hoaGB7777joEDB7a1ehqNRqPp4EyZMoU+ffowatQoKisrefrpp/npp5+YP38+Z511Vlurt8dZt24dkyZN4uyzz6ZHjx6sWLGCRx99lJycHH788Ufy8vIiZc8//3zq6uoYO3YsDQ0NvPTSS3z++efceeedXHfddW1ohUbTftEb/Gs0Go1Go+GYY47h2Wefpbi4GI/Hw9ixY7nzzjt1oEyj0Wg0e4TJkyfz+OOPM3/+fAKBAEOHDuW5556L+5Cajkpubi6jR4/m8ccfp6ysjIyMDKZOncpf/vKXqEAZwBFHHMG9997LG2+8QX19PQMGDOCBBx7QD97SaHaDpL6y7KGHHuKee+6huLiYkSNH8sADDzBmzJi2Vkuj0Wg0HQg912g0Go2mNdHzjEaj0bQ/knbPsv/+979cddVV3HTTTSxZsoSRI0cyefJk5WN1NRqNRqNpDnqu0Wg0Gk1roucZjUajaZ8k7ZVlBx10EAceeCAPPvggAMFgkN69e3PppZfyxz/+sY2102g0Gk1HQM81Go1Go2lN9Dyj0Wg07ZOk3LPM6/WyePHiqM0IHQ4HkyZN4osvvlDWaWhooKGhIfI5GAyyfft28vLyMAyj1XXWaDSajo4Qgurqanr06IHDkbQXJidMU+caPc9oNBpN66LnGT3PaDQaTWvSlHkmKYNl27ZtIxAI0LVr16j0rl27smLFCmWduXPncsstt+wJ9TQajWavZuPGjfTq1aut1dhtmjrX6HlGo9Fo9gx6ntFoNBpNa5LIPJOUwbLmcN1113HVVVdFPldWVtKnTx9GENqYzQCs7jcN/04jTJ+FKR1TvmHx3k6enCeI1sfcjpUOZlmqurJMVbt28s3taxvV8uQ8baNaB21j023EDTvPBNFZKmiltCrfShE7BVTK2hzIYAOsewSysrIsBHdsrOaZqYeBy2XfR2VU/c2qjqrvWX22qhOv2zRVD7s0uR1to1pfbD5b1dE2ahubmhbJM6C4MV7TrdhaH5W+2Hy2qhN5b0B5HpQUQMBpIYxd6XqeUc8zG4HstlNLo9Fo4lNZuet9Ts6ebzNBqqqq6N27d0LzTFIGy7p06YLT6aSkpCQqvaSkhG7duinreDwePB5PTLqz8SVjtaA256kW0lZlVXlyvt1COtFFu5UsFdpG63YTbVuVr23UNra4jT5I2Q6+bhaKyYrIeXJDskHYpMkKxisHHeZWkKbONVbzjNsVeqkWwXYL5Hj9zq4vqdaadt+KqvvYybWTo22MzdM2xm9H2xhdR24jnv7x2lbpIud1roOSbuAuDyW0to1BJ2ztDtvyQDjAoeeZCE2dZ7LRwTKNRpPkZJtGKfO2+C09nrfQlvuJzDNJuRlASkoKo0eP5oMPPoikBYNBPvjgA8aOHbvb8sOTfvjwyIfJUKSZ08Nfj1mO2Ykwv2R5Vk6JSqaqbVkHK7SN2kZtY/uxEcC1UaGAnbCwIKHIs1v1qA6QnK4qF0+vdkhLzjXy1wCxh1OgPoRWfcN82K3qmusLRR1VG1byVV1GZZf5vbZR3b62UY22MbYNK/mtYaPbDw0e8Llb10YBeD2wri9s6wLCkCrKguTGOxCtvabRaDQaTeuRlFeWAVx11VXMmDGDAw44gDFjxnDfffdRU1PDrFmzmiRHXvRC9FrSyhmRF+Hmv6oFeiJrWys/QLXelfVUyVPJ1zbG10nbaI22sW1sBHBuBsMHwm0qJAsxK2S1mpKNCZeNV97q4JnT4rXXDmmpuUZe/4WRF8h29cx1rOSFP1st8u3KWHUBVf+1kmlVx0pXqzRto7bRroy2MX7bzbExxQsZNVCfGnqfSDvhz4naKICaTNjYG+rlC6T0PLNb84xGo9Fo9ixJGyw7/fTTKSsr48Ybb6S4uJhRo0bx9ttvx2yQmQhWi2KrNFW6PLfbLYatFtdWvoBqcS2Ibs9uzWx+r220T9c2ahuT1UZHRegVyLcoEKYpRsp1MOXL9WWDElW8ndNSc41Vvwlj18fkOlZfo/lrVi2O7b46cx2rc8Cqj1vpDdpGbaO2sV3ZKCC9FqqyIasaDNHCNhpQnQUb+oDPhfWB1fNMs9c0Go1G0+5oiVsyW+jWy6ZiCNFGLbcyVVVV5OTkMJLoPctkBwjTZzlfRVMcKrs0M6q2rNqR5VrpqGpL2xi/bW2jtrEtbayfDN5Ru2HE7uQnUCfohTX3hTYczs7Wu6eE55lpR4T2LAujWrzKC2EV8RarVvIT7deJ5FvpbqerttG6njlNrqNt1DbGy28NGytyQvuWDVwJRrDlbBSO0C2Xxd0g4JCE6Hmm2YTnmUr0nmUajSbJSSSslATBssi4msA8k5R7lrU0qgVq+L3VotyQ/soI01/ZBzCnIaXJ7Zr1MUwvczt2AQOVntpGbaMZbWP7sdG5UUqQjVA1bCjeWxkpKxgvzdy+qm0NYH2YVe+tFqagPtTmOrJ8uzqJ6CTXMdc162vXlbSN2kZtY/uyMbsanIFd+5btro0CCLhgS4/QK+BUCNHzjEaj0XR8OsiDWcx0+GCZeb2J9Fd2IuSv1zx3m50Ucz15watyaFR1zLLNyGkqB0Vli7ZR26htbP82OreC0SAZKq9UrBSUVy8yhpQnl1Gt7MLpKuU1EVT9QvXeCnmBLpe3WsDb1ZH7nRV2X7eqDbmOtjFarp2+2kZtYzLYaAhwBEO3YqrmqnC7VjrJZX0psLafaSP/3Z1nNBqNRtN+MQxsg2ZCNO/VRnT4YJkZ80JafqnKmD+H0+wWunKayvFoSh25fry1sLmOttFaJ21jfB2bWkfbqKapNjqqwLEd69WJ6gDIysirMrmeYSqnWlnZfQEaJeGvwED9tcj9zOoQq/pHuIwsX0a19lTJVeliVVeWrW2MlYuUp23UNprLyG0kg40IyNwJtemhgs21ESMkY00/2JnBrideygKaOM+4farGNBqNRqPZ8+xVwTLV3Cznq9aEKmdEdnbk9ShEOxiqukj5so52jppcFkWatjFWprZR24hFXUgCGwPg2qyoKH+WFyWJoFJQzrNb+WlskReVqj4ol4XoPquqp1r8qvo9Ur7cl83vm/t1axvVZc3taBu1jcluI0CnCvCmQNBopo0GVHSCtf2hLk1hjIoEDfU7FXkajUaj0bQBSfs0zJbCvKiWP6ucA6SyEN8HsFrXyu3a1ZUDADJmHeRAgaotbaO20U5PuS1tY2wbbWEjgHMTcICiQdkwK+XMmBVSrcxkZMOtVlGaKFSHzZxnVcf8V7XAlutbrTHN5eV+K3/1ciBAbieRhbm2MTZd26htVJVPVhuNYChYVpceusrMrLOdjQIQDigtgJKuEHSEExXGmf/GU97UiNirfsbXaDQaTTLT4YNlKlRzuN2iWLVolp2d8HvVAljluKhkqdpKxHFT6a1tjEbbqG1sLzY6S8BoAJEqCTBXMC8wVCs2lfJWi5lwGVkZWbZKWU0MVgtVFebDm0iftpOdyCI+Xprd4j+eHCu0jeoyibSrbWx6vUTkWLE32egKhIJkNRmQsTN2alDZKAg9FGBzL6jMYdf+ZHqe0Wg0Gk0HpcP/fqNaQ8rpdo6PymlQzflyOVVZ8ytem1Y6qPTVNtqXVeku621VTtuobdzTNhrV4CwzNRwvYiev6qyUlxc0dkqqooxWCmuA+Gs9+ZDGWwirvl67daTqqzafF6q6cpl4NmgbtY125bWNavnJaKMhIKsadmbuSrSzURC6Cm1NEVTkEL0/2W7MM4aqrJ5nNBqNRpMkdPhgmcrxMCPP91YLXVlmOE9VXuV4qdai8fSxy5f9EW1jtO7axl3lwnnaRrVuVm3J7e0pGwmCc6ONEnYrNLNgVR1ZltVqy6pOIm3v5SSymDZQf5XyYZcXu/GQ+57qnFDpIbcRb62qbYyWrW3UNqpIdhtdvtAG/d6UWDlmWcKAyk6hJ17WpZoU2o15xiFCV7cZqjp6ntFoNBpNktDhb8O0W0DHq2fG6gcyuzJymrywVvsVBm7cePEq9VK1YbUgT1Yb4+mnbUxMhlU9baN1++3FRtcmaLBauVmt6qyEyqsoVbTOkD6b/9pFIzVA9CE2HyZ5zWhV16qcSo6qjl0bZp3M9czv5b8q+XLX0Dba66tttNbBqg1to7qd1rIxoxZSvKFbK1MaQonbukCDB7psA089BJ1Qlh/aoyxgtfF+E+YZQ4TkGkGoT2PXrZx6ntFoNBpNEtLhryyD2F/KlL+c0XRHyMo3kB0XA3A2xiVVa1wDAwMHWeRwIX9gGufY+goqPdvaRlVZWd9E1/dyO7Iu4ffaRm2jnG7+255tdJSBo86UqVp4WKFarMgyzIsbq/pWKzRNDPLCNxHkr8ncT+T3VnXkfHOanG7VBxNF26hG26htbK82OoKQWg/leaHEgDP03hkIBdEaUkNXkxV3UwTKmjrPCHAEQu2l1jUGysJy9DzTfhBi1yuRMvHKajQaTZKzVwTLEvmlTXZ2rIZ2ux+9ZMcq/Mokh3O5KipgZnbIHDg4kEN5mJc5j6voy8AomXZ+hJW/YqW7uV5L2qgqpwo8qOppG7WNKt3ltqzKdUQbjVpwlFpUtooUqhq3q2s+eOH6dhFGTZNRLbbNyIfWvABWHX6rYK6qnFw/nOYQThwYtgFnu1iqVZ1ksjERfbWN6jraxujPHdpGEQpe1TVe4eUIQp8N0K0Y6j2hQFl1Jrv2J2vuPAOkNkCPrSFZFZ0axeh5RqPRaDRJTocPlqkWvHZzspVzolpEy+WtXr/hHM7hYoazf5RzFc73E6CYzfSkDw4cdKUHBoblIlz2L5LBRqtgQzjPSn9to7ZR26iwMQiuDRaNyoEtsyLmz6oDY4VsvCpfY4t8iMJfkd0hTWTBbpanqhsu7w6mkhJMU5YP4xQuLlj+Vy79YR6pgcyovq06h2QZbW2jHACw69aq81fbqNZN27j32phTGbpqrMETCpal1YWCWWv7hwJmuzXPiJDMvO2hIFxlTqNMK/Q8o9FoNJoko8PvWQa75nPzX4h2TOQ8K2dD5bio6obTOtGZE/gtaWRyFhdRSQW5dGYZi+lBH4Yzmu70xokLLw0ADGN/BjOSn1lq65DJtrSVjXZyVUEIld7aRm2jtjEa52YwgiAcCsXMiwohfUYqozoYcl0rGVYGaqJQ9Zcwdl+V3cJWrmP/lRt0qe/J/mVH82HP+QgEfocXn6MBVzCFUeVH0Lt6CH6Hj4NKjiclmMb3XT5kUY9nY3S0s8+qG+wZG63PTStdrWRb6WBuQ9uobbSS35FsdPtC88yO3NBeYiXdQvuTBRMxUqW8ScEUH/TYEmpjc0+oSVcokIhBmj1HU26Z1LdXajQaOwzTYN6Ox4sOHyxTLVqtHJh4C14r+ea/YcL19uNgUkjBAMYxie70oj+DWca3FDIAH146U0Aau64I6EI3Dmcqy1lqqUu8hfmetFElVy6faCBB26ht1DaG/jq2gVELIsvCSLuVVbwFh1Vd1eewgZqESGTBa9f/7OSkBjJxCic1rsqo9eWkTdOZsv4CetQMZOLmM3EFU9iWtol/Dvk9/atGcsmyR3AKd1R7U9ZfwGfdXsTn8DZ5jdqaNprLy8EE8/tEdTW3o21MXDe5jKxbonK0jcltoyMYCmo1eGBbviJQ1ox5xgAyd4YCZX4XrOsLPpdUQK6g5xmNRqPRJCEdPlhmxmquD/81+wPy4lWWY66nakcAeRRwNnPoQSEAqaQxlP0AOJDxlvVDZdOVbcdzoPa0jXK+Sl/z+0Ta1jZqG7WNYNSHNvoPZto0EA+7A6NSQkjvwzRltbcXouojiS52VQtj+WsIvx+17QhGbTuSecOuiLSU481nyvoL6F0zGIDCnUMB6FE7gOsXP0+GvxNO4Y7RxSlcqHcuU+u+p2wMfwZ72aquGu7KctdVdX9to7ZRxV5no4CsatjaPXSbZLPiVSYFHAIKSqBLeehqtZKu4Hdif0DNimk6JkIQdZWJRqPRtBM6fLBMXiuah2rZ+bGbv4X03iC0MX8WOVSyQ1k3ly4MZt8mL6YD+Pmer+hObwSCHWyjgfqIbCvdWsNGVWCiqXXtnE+retpGbeNeb6MA11rw95MKmQtarWxkJeX68krLasUlG9msldTehdV4r1oThg+1qo6c5w6mkunLpahyFK5gCmn+LI7eOIv9y46iV80+Sj261fWz1NPv8CEQCS22rRbqKp3lMonaqOp2crlEdZLPV21jfHmyznIZbWPHtNEgtG9ZSVfTEy+bOc+4/aGryVLrYX0f2JlF9MMBEpxnjKBFexp7wrc5NTUotaduj1K1owNoGo0myenwwTJQOzehvwYOHAQIRKWb6yDVMTOacRzJCfzIYt7hJbx4o8qVU0IVFaSabrFMhOV8x+e8z3lczW+YTgmbWc53/JO/sZUNUWWtFvlWzlRTbZRlq5w3K4dOpZdcVvVeJV8lS9sYXUfVnpWe2kb7uqqybWGjczMYARBORUFzZblhOV2O3MkHSfVX1Z72ay1R9Re7PmvVF81fgQCcwsmY0qmcsPZScrxd+CFvET6HF48R4LAtp9kGxOz4pdNX+B3eGN2acv60lI2qrmV17sn1VfnmNFm+uU1t4y452sa918aoArKwBOeZzBooKIWdGbC5R+j2y5iGE5xnUrx2Smo0Go1Gs+fYK4Jl8noxzL4cwGz+yAZWs4IfWM3PlLCZCrbjxwcI849dEcK+QyU7OIZTOJGzGcdRPMztbGRtJN+Nh0p2UED3xvZDnkA434eXUrZi4KA7vTEAL15e4Wm8NODCTQ655JDLQIbxPV/zBhsRjZLMuljZKOfHO0Z2aXYyrMpa6WVOkx1Jq3a0jdrGeDrYlYlXNhltdG4HYyeIHIUgq9WX1WLELNhqVWiXphoMNRHsFsEQve60W/jKa9TC6mHMWfYgKcHQrfn9q0aS7c2jOqWcL7u+zonrLmtWDHPf8gkM2z4Or7OBSRunsyzvY3yOBr7q+gbhK86aYqN5Yd9UG61QrdXlYEU8WVaBDas62kZto6xjR7fR5QsFqOpSFcLizTNAWv2uWzmjZDRznjH0PLN76FseNRqNpsXo8MEyQ/prJp0MDmQ8BzEBAfjxspNqitnEBtawgu9ZxXI2sJotbCAFD53Jpwtd6UYvathJJdvpSSGTOJERjOZ1nuMrPqITeVzCnylkAF68CIJsZRM7qWIfRuDGzWY2sJzvGM/kiE4CwRlcwAmcRQ/6RFkyhgkMZiSf8wFf8AFBgo2yPPzItwkfi11tqX0h1WerPDvZqnw50GD3I6NKz3jTv7ZR29iRbBQN4CyBYCdFwXBhOaBlFm5nrDmiZ7XCkvM1TSbb24WJW87kf4WPEDD8AKQG0pm29nJW5XzH4vy3geh+4xROchu6EjAC9KwZhDuYGvkK+lYP56Kf/k5x+hrGbT2p2Xr1rNmHPy1+AYHAJVIYV3wS5ambWd75c5xBJ/WuGuqdNQnLk88LiO06Zhut1uHmOnK6XEY+1+J1VVl2U7u2tjFWrrZRnS6XSWYbnQFIq4W6NEVhu3kGSK8DrxuKuxF9y6VctgnzjJ5uWoB4tzwmy5PprPTQwT6NRpMkdPhgmQMDQ/lTVjQG4CaFXPLIJY8hjORofkOQIL/wAxdwHOlk8hf+RT/2IZVURKP8cP1u9OJ8ruFUziWNDDx4Gn2C0L/e9MdHA05C91T1oYgCupNORkQPDx4GMVyp3yROxImT4zmT//IPVrGcXvTjQMZzBWdRT62tjaqFvipfTjPnqXyhmAU+audO5TPJeSjymoK2UdvYkWwEcK0D3yCLxlQCrFZjVis1eSGkakP1XqNE7lMGBpM3nEu2N491WT+S4c9h1LYjGVV2JC/3/1skWGb+SnrUDOBPixfgEimk+jMwcETkGxiMLjt6t/U0AJfpCZkpwVS61vbnnF9upl/VvmzNWMMTg68jw59Dr52D+SHvI2pdlUobzTLN7xNZrMt5Vl3Urh0V8vllKMraBSG0jdH1VfVU5bWN7c9GAbj8Ng1YzTMiFGAT5sZaYJ7xNNiU02g0Go1mD9Lhg2V38k+2sZk1/MIqllPKVqrYgZcGfPgRNrO3AThxUEE5Xrw0sI1nmcdNPIDDtHiR63Sic9RnD57IZ6dp/zIDAw/yde/WuAktbNLJYAaXU04J2yhhIEM5jMm8w8uWa2OV02TlPKHIS2RRby4jpHy7gIOsn6qOXVBD26ht7Kg2QuO+ZX4wxTWsBQpFnpURqoMW/munvCaGbG8eda5ywPyVhA6mgYFDODl+3SVRdQxg/7Kj+bz7y2xNXx256gygJH0d29I2sU/FmD1jQCMODA7degoO4aDPzqEMqjiANH82KcFU5g29go96PhvR3fxX7kpW2HUpq+BAPOTTQNVV7c5ZK321jdZoG2PLtmcbDaBTJWzLh2AiCpgaEPKBkhtoxjyTooNlTSeRK8XCt2cmy1VlGo1G0w7o8MGysRxONlkIBD581FDNNkpYwy9UsYMA/siVXlaEHgAQCqst5HWOYhrjmRy5qqy5GKBsu4F6SthCH/pb1nVg0IVudKErb7GAxXwGqB22eIEDsz5Wfo38WQ46yGVA7Wza/dAYxydTBjesbLFK1zZqG9ubjY4KcFRCoIvUYCJGItUxKy/Xj7ci0/61JUEjSF59T6pTyvE66nEHPZy85mpS/Zn0rxpJbkM35WHtV70vt371Bv/r+ygv9r8XCB1mn6OBRT3+y8CK0TjizE8tjflqs84N3SPvR2yfEAmWyedGGLvzSK5j1VXNXVm1DrfrnuY6Vue51XlspTdoG7WNHd9Gl4/ovcLacJ7x6A3+1VRWQnb27sloL4Eys576lkyNpv0TPo/byxhkosMHy3bN7QYppJDSeJvlQIYq53oVvenHWI7kF5YxjFE8zUP0ZSCFFAGh4JYTF64WOpwuUiigR9xyRuP/B3M4/+FByikFwIGDIEGpXHyHSvaHVA6jlSNplmnnP6mCHKr3Kt0SLadt1DZ2KBt94CiGQJ4iM97KTrXIsVrxxVNI+6uWGAL+tGQB1e7tvNf7STL8OZy49jIcIjQnWB06A8j053Lkxhks6fIea7N/iJRdkv8uNe4/k+XL3RMmxGXY9nEM2TGWHG8Bv3T6ih2eYsB6Aa8KBGCRZtc9zTITaUdVx+rctTs/7cppG9Vpe6ONAvUQnEg7cr4qz9ymaokhD9/NtdEVCN2KGXAojGnlecYgNIYGjdBftw6WaTQajSZJ6PDBsgB+y6BYomu/QgbyfzxNFRVkks0j3EE9tRG5blJaTF8I3frpbMLtmelkci5Xs5jPSCOdpXzJZtZTwfbGp2l2Zj0rsbvlNEy8dbNczi7YYFfGyvmT/S1VnpXPlijaxthy7d1GkQa+fUDs2YtwEsJZDK7Nu2ejayP4hpkS5ZWOkN6rVkbmg65aWYXzZblWA6gmQnXKDj7pvoAzVv2JfSrGIIwgDuFK+LDlNfTgqu+f4P1eT7E4/x1K0tfhCaThEOrb/duC3IbuXL94Ae5gCpsyf+H5AX9hWd4i6pw7Y8raBX9VxDtOTZm/VaeCXQDbKs9q/LKrp220p73bKAyozoIGT3Qa0CpPcPSmgCMQ2oDf64GgI/TeGQjlGSL03u+C7CrIqVTrkYiNRjC0V1hDilUB1F8K0t+mzjNA3jbovB2qsiHoDD00QKOJEO9hBRpNRyKZr7xqifOuHd4K3uGDZX9gFiM5gOlcQjadmiXDAFy46EwXBDCbP/IiT9KXQXjwUMpWggSkp1fuOVJJ4yhOZBInAoLNrMdNCu/yMmM5gny68yyP8hyPsZOqGB9IdiatghhWDpcqzbCpF+9XWBRp8RxmleOsbdw7bMQJDYeD1/xcDCsFrcZn1UJAbshKlqyg1HbKssZ9x3bDRucmMLwg5IWM/CXJQlQ22umv6hCahFiVs4QggdCt9U0MchlA17pCzlp5I79ZcyVbM1bxQ94ial1VZPhzWkfhJmIAnmDoR5zeO4dw5ff/4o3Ch5g/6NaorqQMMiQgX+7SqjElkbitqmvbjVeqLq8aLrSNe7eNwoAdubCxt2lfrySaZ2rTQwEzQzTPRkNApwqoyjIVaKV5xhGE9NpQ8M/jhW4l4PbtCpL5g2g0Go0m2Qjve7iX0eI/W8+dO5cDDzyQrKwsCgoKmDZtGr/88ktUmfr6eubMmUNeXh6ZmZmcfPLJlJSURJXZsGEDU6dOJT09nYKCAn7/+9/j9/tpKt/yKfN5mBd5kp/5Ier2xOZgAB7SGM9kRKOsXLrQlZ6RMgJBsA1WmyFfxqAXfSmgB2czhyKGkEMnLuRa7uHfdKNXjFOp8sFQ5KnS7Bb5idSR6wvFeytZQvFSlVG1o23sGDYCeEeBb6gi0+y0m9PCgswvc4OqhYFqJWaXZiLQDXDv3vfoqArtXZYUNiYByTbPCGCnewdBI7A7ZmEA6YEsiqr2Y9ray+lS33u35LUWBuAUTgqrh3Ho1lM4dsOFpAUyospYdSPVORAuYxdgMZeR25DlWgVn7Nb5qjW+fHqp5CLlaRs7oI0GVObApl7SBvhJNM/4XRBwNt9GgBRvY54Bbn8ogNYaNqbVQdEaGLgSCteH9ksThNprjSv0mkuyzTMajUaj2fO0eLBs0aJFzJkzhy+//JL33nsPn8/H0UcfTU1NTaTMlVdeyeuvv86CBQtYtGgRW7Zs4aSTTorkBwIBpk6ditfr5fPPP+epp57iySef5MYbb2yyPi5cHM1vcOJiLb9Qz+5f320AfehPauOTLT14cOBEIAgQIBQsa3pQroEGfOzarKGGnexgW7N1DL8CBPiOL3iWR9lOmXLdq3IqZadV9oUg1mdSOdGG9Fd2dK0cbrksijSVI66SZ9ZP29gxbATw94OGQ9l1+6XKYU8EOwddtUCQFbJKE4DPulhC36MLfMOBgCkzGWxsQ5JtnoHQZvhO0XIXaxsYyXbYYxhZfiSXLnuEM1f+KephABB9nprHHojtwqoFvmr8QsqXxyTz++Z2aTnIoxov5bLmdrSNHctGgNq00BVlkf28kmUMNh2kyO2gFuLjfY9BJ5Tn7SqTVw6p9XHaV5GAjWn1uwJj4eBYMo51yTjPaDSaDogQu14dlXZsoyFE62pdVlZGQUEBixYt4rDDDqOyspL8/HyeeeYZTjnlFABWrFjBkCFD+OKLLzj44IN56623OO6449iyZQtdu3YF4NFHH+UPf/gDZWVlpKTE7hHW0NBAQ8Ou501XVVXRu3dvRgHjmcStPEwnOreKjTsoZwU/UE0FRQyhiMFNlrGdbWxmPX3oTw65AGxhIx5SySN/t/Tz0sBj3M3z/JNadsYNQMRD+pGwyfWs6sjOsVzO6rPKWbdrvym6NreetrH1bRSdoOZUCHZWCLQSolI+kYbNMlUKm+tKbaS9B+7vEm/KLEJkQf3h4B/UWMdhKmAlpBVtDNbDmvuhsrKS7N19KlcL0tbzzLQjYEDdcO786h3cQU9MvY6OQPBa3wd5buCdBAyfTbkQqjHCXMZq4Ww1jsSrrypnp6PVKZ4I2kZrHeX64TrJbKMvBdb2Dd3mGEWSzTOdKqHvOpp0ZZbZxk29QnuGhdNSG8DngoDLQt/dsDFjJwxYHbodU4XPD68s1PNMmPA8k2zHo03ZC28F03Rg2lMAqbnnXpLZWFVVRU5OTkLjaqvvHlxZWQlA586hQNXixYvx+XxMmjQpUmbw4MH06dOHL774AoAvvviCESNGRCYWgMmTJ1NVVcVPP/2kbGfu3Lnk5OREXr17h25f6U0/1rOSz/mgVewD6EQeB3M4R/Eb+kuBMkHsFWMqUkihP/uQ3RgoA+hB72YFynyN/8K/4qbg4SL+xF08QR+KcBG9C7qVTyb/8qjyDYWUr/rRFaLlyG0ZpnQr2SrMv5KGX/F+VdU2dgwb8UDd0RDMVVSQG5SNUSkvHwBzg2blYhSR6ksGOSrB9Ut0VkI2GqGr5mpPA9/gUJAs6uEFbW1jktHW8wxAv+oROIPuFretPWBgMGXDBVy35Fn2LzsKV3DXAlAVxzZ/lruZnRtm7uaC2K5sVd9q3LOjKe6gtrFj2igcsLGXKVCWpPOMQWiD/EQOSlQRA2ozYHV/qAwHyhp1qfeEbuuM0q+FbMyuAiOo0CfJSYZ5RqPRaDR7llYNlgWDQa644grGjRvH8OGh3beLi4tJSUmhU6dOUWW7du1KcXFxpIx5Ygnnh/NUXHfddVRWVkZeGzduBOAxXuc/LOQQjmxJ06KwCy7spJJStuCK88TMTLLJILNJjp0VPrwE8LOdMsKuiBMHB3Aot/EI+UTfLmP2dWQfSPbNVEEXc1lVMEBlk+wgqQIvqr9W+XZlVbrLeluV0zYmn404oP5Q8PeVFDdXEoo8O+XN5eTyskJWixeFsYY39DInq4pGqeUG78FQdyIEuij0SwYbk4hkmGfOWHk9x6+bg6P1f39KWlKCqexbPpGrvn+C01ddB9gHhcP5YN81VeXNdczjm6quXCZesCVevnxqaBs7po3CgNICqA7/4JxsY7B5nhGm/cYsqsk2Bh1Qlg9r+kN9+OHre8BGg+inXcb7npKFZJhnNCba8S1dGg2wd/ThDmJjqz4Nc86cOfz44498+umnrdkMAB6PB48n9vaXdDLIJqvV27cilXR6kh3H0Qy5MC21Dk0jg42sJkCQzqYr02qo5jn+QTGbosrbBUFUeSp/ypxudn6bUl/WR5Znp2+Uk5tgHW1j+7MRQvt3+fZTCLBz5s2oHHtz1FCliFU7KoVN6cFsEJlgVFiLjlpbdIL6I8BXFCsrpm07WtPGJCMZ5pkpGy9o03kmGRBAwPCx072DgBHavNrc9cLI3dGc35SuLXdnK2TZqlPBqp5AbYNKtrax49goCD0VsrSAyF5gMQLjsQfnGWHsugosERv9LtjSA3Z0bmxiD9poBEOBPdmcRPpAW5IM84xGo9Fo9jyt9jP4JZdcwhtvvMGHH35Ir169IundunXD6/VSUVERVb6kpIRu3bpFyshPkwl/DpdpL7hx47BxAxpo4FH+QgmbW6zN1fzM/3ieXhRiELot83u+4UFu5Rs+JpMsPHhiHBTzr7agdl7kMqCuY3bMVD6XnWMkUOui8sHi+XPaxo5jI0CgJzQcRmjvLnMDiayEVOnmlZfVAZFXg/KqUF4xmuqKFAh0TsBGA/wDoeYM8A1g18icjDYmEXqeaTt8hpcAu57+udO9g7v3O5s7Rp/KuuxldK7vQbjDqOIA8nt5bLA6X1Td0NyNhSJdbsdKvnT6xtSR36vqqsppG2NJZhvrzRv6J+MYLM8zwM7MWNVijq8BO7NgbX/Y3tkUCNyDNhoQ2thfEplIbK6t0POMRqPRNJF2fjWZmRYPlgkhuOSSS3j55ZdZuHAh/fr1i8ofPXo0brebDz7YtYfYL7/8woYNGxg7diwAY8eOZdmyZZSWlkbKvPfee2RnZzN06NCWVrlNceAgBQ9pZLSYzBI2k0UOjsa9yRw42MxaDuVo5vEaT/AO+zMuqo6Vb2TndFo5O1YOtZ2jLaNybmXnWeVMm+1QOeLaxti224uNIgvqJ0Mw3cIAuaIK+QCoZNhFtlQKynlmDAj0sLdRuKHhEKg7DoI5CvnJbmMboOeZtsfnrCfYeAUZgCeQxsTNZ3L10qe47Id53P71W3SvDX0v8ppc9R7pvdWYYU6zWpOb3zely9rFCayQ9dU2quvI+ea0ZLLR7w5tdu9z067G4KpsYq+CM1UJOENXk63pDzXppow9aaOA1DpwWz8DJKnQ80w7oYPc6qXpYJj7perVkejg9rX4bZhz5szhmWee4dVXXyUrKytyT35OTg5paWnk5ORw3nnncdVVV9G5c2eys7O59NJLGTt2LAcffDAARx99NEOHDuWcc87h7rvvpri4mD//+c/MmTMn6S5N3t1bKN24mcWVuyEhloOYyEgOigTLnDiZwmnALt9lBKP5mo8IEvs4okT8o3inQSQQQLTPpQq0xPMHw/mJ+Jkqx7wpP5Ca62kb97CNzlBATLnwcoSuKAt0MQlI1GjzQbJboMiKqerLRsryZN0ag2VW7QYzG2+73EdRV35vl7YnbUwC9rZ5JhlJ90c/PSglmMohJdMin3Pru5FfV8jW9DVR5ay6mPxeNZ7Eq5PILGoehxINqJjHQVU7qs/axmi5VrL2tI0Y4LXYQjbggNKusDMjjjJtPQYr5hm/K7QPmRGQijfau6kXVGftOgZx7WkFGw0gfxuRzf3DIpv6Pe4p9Dyj0Wg0GkOIlg3/GRaPFH3iiSeYOXMmAPX19Vx99dU8++yzNDQ0MHnyZB5++OGoS5LXr1/PRRddxEcffURGRgYzZszgL3/5Cy5XYvG9yCNBWdtqe8lUsJ1v+ZTB7Esv+rZKG61FBduZwyms4AelHxYvSKPCrk68X5ntnHSVbFXQJp7fqW20bttOD5UuLW6jAd6x0DDGWkHhts6zFGxFU8ub69jpoDjojirIeBKM+uj0QHeonyIFAO1WC0lgY7Ae1txPmz/Cfm+aZ9ojAtiavoobDjqWKvf2hLq3Kl/1GRI7XVSyzTRVJ6txWJahbUxeGwG258HmnhZlDAiGIzdNaTxeo4mWN9dp6jwjoGg1ZO6MDpRVZ4VuKfWa58+2mGcE5FZAnw3gCNp/j34/vLJQzzNhIvNMGx+PdoHFd6bR7FE62JVVUajOsXZob1PG1RYPliUL5kVMFplUU0k6WVSxg850iS8gAQIEqKYKHw3k0772HljPamZwFNVU2QZVrH7sFFKanCfLsauj+iu3Ge+vSj4KWdrG5LMRINAHak9WBMTsooB2B0Kub4XdCtDOILk9q7KAEYCM+eAobswywDcUGg5vvKWU2DrJamPQC2vua/tFTLKgg2VqBPD0oJt4ve9Dkc9hVF1V1YWturXqtJDzze00NVBkNUYmom8YbaN9mqzTnrKxLh3W9pMCR6rKsoAkGoOt5hkIXbXVc1MoK+iAkq5Q1mXX5v9taWOKDwauBLfiqZ2ymGQJliULOljWBHSwTNOWdMyQSoekKePqXvGce4GgnjoC+JW3HTYXJ046kdvuAmUCeJeX2GkKlNlNL4b01yzHnKcKrqh8Jyv/zM6Bt/MTVe1a+YNWaBvVcsNprWpjBtRPYlegLN6KTKW4XF7l7CPl2clV1TWkNLmtcJr0WTgh0Pjk+GA6+EY17r0WvtWnvdmo0STAgaXHkuPd9TRmVVe368LhU0k1HlnVscJqHE2kTrzT04y2MZZksTHgCt2K6O2g8wxGaC8yXwrsyA0FBUu6huxu83kGyN2xa68y2+/RgNq0OHI1Go1Go9lDtPieZcmIAwcFdAfAQ0GrtuXDSzGb6U5vXEl6eHdSxbu8HPlsFSCxc2is8uWycp7sIKvaTjToo2onXDeRdrSNbW9j1F5k5obkiFo845pDvJWXfKDlCKBZD1mmeYVogL9v6L13VGgTf+Gi/dqo0cRFEDB8FNT1oTKlTBnMtwqohz+DfbdTdVXVaWR1CtnFB+RxMZHur21MXhuFAcXdpI3tzZXb2xhsMc/UpcOvg0L7lwlz2Ta20QAyasAQ6mKisVB9KpTnQVnLPe9Ko9FoNJrdIjmjOe2YeuoJ4I9fsI0QCD7if+ygvPFzCEPx3sqnAmsnVlXXzsG2qmclX+V8yz6mna+pbUwuG31DQy9LI82fkf7KB0pu0Mr5l5WU68tt2OliZaSkh39g6CUcCcpNVht3Z0Gl2WsIGkFe6/cgK3MWx8QCzMjrd1XXR8rDVMbqs3zqJBIYiiffrItcRtuYvDYC1KWFrraKKtBex2CrNBH66HORdDZ6GkLBMrmfAAgDGjyhq+CqssHvhGCDRXsajQp966VGo2lFdLCshckimyxadk+BkN8Rci0Mmv/cTAHUspMaduLEGZNvJdfKHzLLTaSuqqzqvUq+SpaVk23lbKvqqPTUNtrXVZVtjo3BzqGryoQ8CqkUlRuUlbFSVNWwnK5aKNjpYNeehZ5CPt3aq43aJ9XYIBBsTV/Noh7/ZXnu55ZjirmbWXUtq/FFrq/KN6fJ8s1tJjIOxhtftY3JbWPQGdrQ3+9UKNMex2BZL9XnJLNRGKGr3Vx+k0gjFMTc3jkUyPSb91XT84xGo2lv6P3KOiw6WNYOEARZwy8s5HXOZg7pNO0adS9etlHCR/yPD3idZXxDQNq7TXWKy2l2w4BVWfmvqozsLFu1YyVL5ecloqMqTdtor0+L2eiG+iMgmCkVtFosyA1ZKaNSRJWXiHxVnlWa/N4sX/VltlcbtS+gkRBAkAANzlo+6bGAF4ruoTKlzDaAYRXgUMlWreutYh4qrII3dvEFqzRzgMZKhrYxlrayURhQWgA1GabCcmPtbQw2v28P84wgdPulKc3rDt1uua2LKUhmrqvnGU2i6KvKNMmADpR1aDp8sCzQ+E91JVV7wcDgDZ7jRZ6kJ32Zwik4Enw2Q4AAT3I//+Uxqqhg1xVqsX6O7DepnFE7v8lMvGBPIj+kmmUl6pRbOfXaxuSy0bs/+PslqITcsN1KTl7FqRYahvRXzje/l9uyak+Wb/WlyPao0pLZRo1GYlvqRh4ZfjnbPVsoTl9H0Ni1DYHcdcynhtXpYa4jp8tl5DEzXleVZTe1a1vFBbSNu9Kt9DCny2Vaw0ZB6Pa+bV0a2+woY3B7mmcEZNZA4frQUzB97tD3UZ4n3S6qal+jsUMHyTTJgg6UdXg6fLCsjlo8uJt8NVZyYXAIR9CDPnSnd0I/ugkggJ8P+R//5u/UUdcoKdYRNtex8XkifpM5XZapCp5YyVK1gyKvKagCNqp8Vdvaxta3UQCBXtBwsKSICpWTLjv2dqtB1UGKtzBQvbc74eQVpLm+1QJGpWN7s1GjaaTGVcWKTl/id3ij0hMNush5Vl3Uqp5Vl1SdhqpYgtWpZTX+qYJGqnqq8trGPWejcFjcfinTXsfgJJ9nDAGdt0O3raHssoJQkKzeY6Oj6r1Go9FoNG1Ihw+WZZKVtIGycspooJ4udCWFFMtyBnAgh3EgE5rkQ7zCf3idZ8kgi/rGYFlYXhiVExwuYxVIkVHVkX+EtAuqyDqp6tgFbsKfVQ6+laMv66v6HK+OtrEZNqZD/SQQHjkDtfGyYJVjb7cKlOsqlVK0pTpo5gVHIgsgq4PR3m3UaEykBtLJ8nVmh6c4bjex61JWAZB4yKeBSge7cclKX6tTy66OnKdtbBsbhREKzFRnWSjb3sfgJJ9nnAEoKIFOlVDRCbblgzcl9L3oeUbTIlhdzaOvONPsCfTVZHsVid3Lp2kVAvgpZhN+fHHLNnVjfwM4jjN4mJf4PX/BgSPi3wxjf85kNp3Jj+vk2v1NNA9i/S2Vc271o6ecL0wvFGlCKmtG29iGNjqgYTwECiQF7VZoZmc+kblJtdoS0nurNsy6WK3a7BYU5veqL0/WUW6/Pdmo0TTSta4vF/70f7hEim2gRD4drIIo5tPAIPHTQ9WtzTpY6WElJ5HTV7ZD2xid1xY2CiMUoNnSQ2qno43ByTjPAOl10HMzBJywqgi29IQGOVBm1kdGzzMajUajSSJ0sKwNKaA7+zO21a58SyWNVNLJIItU0skki3y6cz33ciW380/e5HQuIJMspe9j/mz27cLpch0h5WGqY+XwynkyKn/KkF4qOXZ+orZxz9sI4BsMvuEWgs0NWy0ArJxrcxm5vMpIebUlG6KSG2+RojpQHdlGjSaCwYjthzFu60mEf9JxCCdHbZzFsO2HKscFOc1qLMGUL6dbBVXkfFlmIuOxSt94sQ5VHfNfbWPr2yiA+lTY1AuCHX0MTsZ5hlCQrLhb6MEKvnCQrLk2ajQajUbTxnT42zD3dpw4GM04/sq/KaAHAkFfBmBg0Jt+XMXtHMcZPMdjfMT/qGFnpK6VjyP7Zio/R/alzGXldEx1zMiyVFjVkdNUASO5DfNfbWO0XrtjI0CwMzQcBsIpFTKvduyEqQy0SsPis52Tr2pflqX6khJpo6PZqNE0IoDluZ+y013BjBW3M6L8MErTNtB752BGbTuS1TnfUZy+Fq+znm61/Whw1rIh82cEImb9rZLdlKCKqoyVzvG6s91pZpVnN0ZqG6M/Q+vYKAwo7mrap6yjjsFJPM80eGLT9Dyj2WPo2zM1rYW+9XKvRQfLOhCV7OBnviefbhQyAFfj15tCCmM4TFnHiZMhjORG/s7JzOSf3MtXfISf0BPNVE5yIkEZO6fZyiezqm/n09kFmOx8MZU92kZ7HVWyErFRuKBhIgSzFRVVDakWAIkoJhuiUtqujNy+1Zck66hqpyPbqNlrCRIkaARwCndUV0kNZJDp78RhW0+LKj94x8Hc9cVC/A4v2d4u/Jz7BXNHn47fCG09YBWQkbt+U7q1WZYZc0An0bW6XEfW2e6zavzWNu4qY0dzbdyZBVU5FpkdaQzW84xGo9FoNHsEfRtmOyRAgGI2x/gXHlIZyFB60Q8nTmVdK5w4GcGBzOQKUkiNpKv8KCufx8rRtqsj1xeK91ayhOKlKqNqx0qHRHRsap293cZAPvj7WQiUhccrEy4nHzi5rnkxIaQ0c3m5nnkBolpo2H0B5jQ73du7jZq9ltK09bxR+Ag+Rz0Q6h5DdxzKvuWHK8s7cJDty6NzQ3ecws2qnCUECSrHPnO3tFrDy6eFPJaq1uUQLVeuK8uWdTDrqpKLlGc1Xpvb0Da2jo01GY23X9rREcbgvcFGjUaj0WiSAB0sayMENC4ZwItX6SMIBBVsp4xiya8wyEPeJT20R1keBXjw0LTHAYTYRgn/x5+pbbwVU/aLrAIiZj9JdnplH8jKKZblyO3I/prsZxmKfLktKz20ja1ro6MWCEhKWCltNthqNaZy2GUDzY480nvZQDnfnG4lX65jtZDoqDZq9kryGnowadN03MHoH1QSnW0mbZpBt9p+yjxVV5fzwbq7m/+q59PY9b0qX05XnWbxTgOr46FtbH0bYwp11DF4b7BRo9kdDGPXS6PZXXRf2mvRwbI2IoCfaioAcONWltnAGq7gTLawMSrdgQM3brWT2Ey8ePk7N/EzS4HowI3ZhzGnqfwkOR+I0VP2ncxyzFjVC+fZ2Z9IvrZxD9m4E9y/So1YCbdy3pvSoJDeq4xUHTiVs2+1MJHlm+uE0zu6jZq9DnfQQ6a/U7O6gQFszviVsrSNMWOXan2PlC+fClYxAflUQJEmy1GdLuby5niDrJNcRzV2WumLlK9t3D0bM3eCQ88z1jJlHdqDjRqNRpNM6IDZXocOlrUigtAeLyqcuMgmFwAD9XVg2XTiAn7PCEYn7DvIzm6iBAmwnW0xsswy5eCL7NsIRR2znHA5lYOt8p3Mdcx/5XLmtmQ58XwvbWPr22gEwPMROCoUFVUNmRWRDZRXdiqFzRiK91ZGqhYbdmnyyk9euHRUGzWaZlLjrsTn8MZ0J/l0kdfgqi5odepBbH2r00xe/yciT45NyG3Y6attbF0bM3dC4XpIbVAoY25ApVB7GoP1PKPRaDQazR5BB8takRqqeZMFiMaZv5oqvudrljdevWUV3AiTSx7jmISjCV+TDy9L+KzJvoaHNK7idvIoiHF8rfwdKydWVUdlq+y/yelmDIt0O2Sf0dyWtjE6T6VvS9po1Idetg6/lZJCkRZusCkH2EphuR2kdLO+cn2VDR3dRo2mGQgEP+V+irkTqrq0VTezS5PrJNJN5TKJ1lGNl01pR9tonba7NhoCsqvACP9G2VHHYD3PaDTxEWLXS6PRaJqJDpa1IhWUU0N1JFi2lY1cwZms4Pu4dYMIfPia3OYqllPClibXM4D+7MNvuQiH5KnIvpbqJSP7QCp/zZDyzWl2eqrkqNqV/a54/qC2MZYWszEIjkpJUdnhNyM7z7Jxch2rCKDKQHkRIbctL0JkmVZfnnyAOqqNmqRHRGad5EAAZakb+arb64B6TW21ppfX9/G6pspuq/W/VTBJPnVVp1CisrSNe9ZGYUDAacroiGOwnmc0Go1Go9kj6GBZK9KDQk7jvMiVYaWNQax9GWMbLGmgnke4gw94DS8Nln5DBdvx449KG8y+TOYkW/kyAthOGfN5hFf4T2SZpfK5wn9VQRo7Z9tQvLfzh+wCPeYydj6XlbOtCjzJ7Wob4+vcVBsNr4VSZkfbLmKnMsT8kuWoVmWy0y4fdNWXYG7b7sBa1THL7Wg2apKOWlc1C4rupsFZ09aqAKEutCZ7KfePvICy1Oj9N63GEKv1vSxXJSuR7ptoF5eDSar8eHOttnHP2hh0gHBIieH3HXEM3hts1Gg0Go2mjdjrg2UC8OOnhC348LXonO0gejey/RjL/zGfQgbY1vPjYz2rKaOYedyFjwZluRxyceKS2nTgxKksr0IA3/Ax53Is93MTG1gT48vIARKrHyFVdVQ/OKr8K5XfpPqRUtjkq9qVy8l1tY2xslR1WsJGxw4LBWQBVs6/VQNWBsiOuiGlq2SbFwiqhYNKnpDSOrqNGksEUOusbtPD5RAOhu44hJRAWhtqsQtBgOcH/IWVOYsty8Q7lXbJsg/sqOSqZNiVaWp+omgbo+W3mo3miaejjsF6ntG0J8Ibou/pjdH10zD3PvStt5pWwBW/SMckQJASNlPMRv7NA/zIEgYxnNM4n0M4khRSWrzNDDLZj4Pjlksni1t5pNF/cOC20EX9WICmUUMVD3E7m1gryVb/UAjWfppVmp2PpvK1ZFmyTHMdlV5WR0XlA2obY/1aua4su7k2GjVS43YOvyxYhdyo/N6suFVdc9t2B9dKrmohYZXX0WzUKEkNZCjTQ+dX+H+B11mPIQw8wbQWGcvN7Q/fPr7F5O0uBk5OXn0NmzJ+oSxt15VlTQmW7JIVi2rMTKR7W51SVmXMOljpnsh8Eg9to7VeVu2b67gC0GUbFHdrlNmRx2A9z2jaA+HAhQ5gaDSadsheGywLEuAp7ucdXqKOWjqRxwq+5wn+xlK+pIjBTGQqmWTv8fnbAFJJbfV2BPA+r/EzS2P8G3lKs5viVOUTyQvLNftI8QI9Kj9Q5bhb5dvptTfaOK4LnNoHfEHYUAvvboVKH6Q7ocoPVT7wBtV1ZblxbayREswFrVZAsvMeI1TKk+XZrexUB1JVTm5PNtb8WSW/o9mosSR0iGIv2BaEbkV8ud991Lt2EjD8lKduwSlczFhxO6PKj9jjurY2obBgAJ+jgaARYHTZZN7t/QRBIxApE+8UMstSpam6qJxvfm+1jo93aqhQnZ5W47ms795oo8PpIreHn/pqqKmItaGlbBQCsqqhpKtp+OtoY7CeZzQajcYeIdBXFWpagr02WObGzRxuoCd9eYq/cwW3sA8jKKAHz/Iof+V6XmU+d/IPCuje1uq2KAECbGIdy/iGx7ibIKFoiJVPBNH+kF3QKPzXaYQCLt1SIScFVlTBTv+u+nb+lCofizSVjHhlWsJG83tVnfZgI4DDgLwU2OGFX6pCgbKdfnA7oE86dE8LlVlZHXr5TZWbaqOjBowACJepUKIKy4qb61sdyHgHWZVntyBRGWso8u1Wke3dRk2zEAje6/0kG7KW4w562JKxioDho5O3gLRAZlur1yo0OGt4ap8/80vu15SkrcPnCG0nYHUKyO+tTilzOWHKdOPCLwLhVMuxyfzZarxNtLvHBGqwP83l94nYKOubSFxCrqNiT9sYJIjfB74G6zotYqMB27qAkA9sRxmD9Tyj0bQ8Tb3qTQdhkgur7y/e96q/R00C7LXBMoAschjLERjABKaQTuj2mXO5igMYTyZZ5NG1bZVsBZbzHVdzNjsoJ7yZv8p5TzRg1CkF+mZAjhtq/aHgSqYLTugFQ7JD71/ZBHf/HOurqXwnK79LlW/1o6nK4W6ujeZyKh9TtgdFWjLaCPBJGXxVDkERCoSFy1b7Q1eaGTsg2wUH5sERXeH9Yvi1upk2eqExLqtWzM64eH6M6iDZOffyF2aVb35vFw01pHJWB7+j2KhpEgYG5/xyK4YwMHDwt5HnIgzByauvZlDFmLZWr1VYnvsFH/Z8JupKshbHgPpUEBnpDMjvzvYfatjhLrYqCtiv1a3yVWVVp9eecrvtAmCQpDYGglSqvxolzbURGjf5DxvQUcdgPc9oNBqNRtPqtPoG/3/5y18wDIMrrrgiklZfX8+cOXPIy8sjMzOTk08+mZKSkqh6GzZsYOrUqaSnp1NQUMDvf/97/H4/LYkBDGQo53BJJFAG4MTJfhzMQIbh7IDPQBjCKH7LHLLIIbxXTtinNKT3sq9k9qH2yYJZ/WFK91CQ7Kty+GY7fFkO75fAH5fCFUvg2qXwxBq1j4cpTfU+npMu6yf7d3LQqSk2muvJMs1BsngLE5VdyWSjNwg+k0KGVKfSDx+UwPMb4NgecFyP0MDRVBsddWDUS4lytFE2XKW4bKxcR1ZI5aDHW/GZ9VJ9+XIbsr6ynI5kYxKSzPMMhA5bhj+b9EAWqYEMZv/0N65d8jT7VByUrId0tymsHkpuQ+jHJnMXtVt/h5HHMLA4fQSk1UHmNi+/rlzL9pTiqLKq+qr25cCQ3VpdNR6bX1ZtyCRqo6yjHIPQNkp6C8hQ7Y/ZkcZgPc+0Cck+z+zVNHcjf6vN4M0PB1C9NMlFvO/L6qUfBqBJgFaNBH3zzTfMmzePfffdNyr9yiuv5PXXX2fBggUsWrSILVu2cNJJJ0XyA4EAU6dOxev18vnnn/PUU0/x5JNPcuONN7amui2OIHTL406qGq/iSg5cuDibi/kPHzCbP5JP9xh/RuXghtOyXXBBERzTHd7ZCs+sh1+qoTYQunAoXKc2AD9VwsdlUNoQKyeM7OOZ38dzslVBLVXARrYrno2qRYa5vOy3yg5+R7MRoKwBHlsFw3LgpN67AmaJ2kgADK8i0w6VwjGrI4t6ZqXMbVq1a7XIsNNXPpCJ1LGS0Z5sTCLa2zxjAHkNPXCLlGQ+rLtN54buXLD8XgZVHNj4ZOhdxBvz5DW1Oc1cJ/w3iB+nPwgi/mmkGjutyqrKqWIKqrV/S9sYzg/L1Taq9TWA1PrGch15DNbzzB6lvc0zmt1AB8P2PnTATGNDqwXLdu7cyW9/+1v+8Y9/kJubG0mvrKzkn//8J//3f//HEUccwejRo3niiSf4/PPP+fLLLwF49913Wb58OU8//TSjRo1iypQp3HbbbTz00EN4vV6rJpOOLaznb9zA1ZzD93wNhPwBP23/i5ITJz0p5Dyu4l+8xXlcTR+KyCYHsPaBeqXBn4ZBST08tBI211n7PbIzq3LA5cCMqoz5bzzZqmCSXT077HzBeHqE6Wg21gTgwV/hwM6wb6fYgJytjX52bfIvI6+Q4ikWEUrsAZGdbrMsOZpoVceMrIdq0aEqp9K3o9u4h9HzTPJiYLDftqO4bslzjCk5DpdIMeUpgukk1r3s6sjBHKs0c55qvDR3+0TX8LI+2samyWoNGy0LduQxeG+wcQ+j55lGkjmIpIMdGo2mlWi1YNmcOXOYOnUqkyZNikpfvHgxPp8vKn3w4MH06dOHL774AoAvvviCESNG0LXrrv3CJk+eTFVVFT/99JOyvYaGBqqqqqJerUUxm6gmvvzu9OZCruVq7uAQjmz0CYLUUN1qujUVA4Pu9OJ3/JH/8D7XchfZdFL+ipzjhj8Pgy+2wWubQ7fuqYIi5pdVQCf8V+UQx3N64znRdsEkuYyVA26nQ3u3UTQmNNfGmgA8ux5m9oMURxNsFGDUEu3Iq5SVlVAJNCstRxsTWWXFq2NVVl7RqcoJOr6NSUJHnmc6AgaQ7s/h0mWPMmfZQ4wpPY4JW86gS32vSL58Ctghj2l2ARQ7naw+q9bt8crL761Ozb3NRmE0vhT6tbaNAdeuOafDjsF6ntlj6HmmkWQPSMn6hW+xSzRd32KZnJi/r3ivlmhHo5FolQ3+n3vuOZYsWcI333wTk1dcXExKSgqdOnWKSu/atSvFxcWRMuaJJZwfzlMxd+5cbrnllhbQPj5VVLCMxUziBMCwnNcdOMimE9l0ikrLIXdPqNkkDAwyyGIyJzGI4TzHY7zBc3gJ/fLlBC4aABtr4X9bYn+VlgMjVr6Q1Y+OqvKyHNV7Oz/STqZVGdlnNKe3JxuDeSAypIpBEGngPQBwgPt7cG4FRyUY/qbZ+GNl6EEOI3Jg8Y7EbTRqpEIqx97q12Y533wgzNg54vEOdLy25fIqvWT5Hc3GJKGjzzMdBQNICXo4pPg3HFI8DYHgf4WP8J99bgJiu5lTuAgY/pixGulzvPHWKoZgV051atidJio58YYGu7axaDdZbfS5od4TXdnR+DyHbfngTYG88tAeYm4fGMHm2WhVx8pGZ0AaIjvaGKznmT2Gnmf2EnSQTKPRWNDiwbKNGzdy+eWX895775GamtrS4i257rrruOqqqyKfq6qq6N27d6u0VchAOpPPGn5hDSuYxLSEHE07GqjHSwNZ5CAaPwOksueOIYSCef0ZzDgm8SbPR+wakgMHd4FLvg09NVGFofirCkQhpdn5ffGCN1bBKlWaqr65jJWOqrLJbCMOqD8K/FL3NwKhwsIZ+hzoCvgh4zlwljbdxnQXnFkI3+2AQII2OiptlFc1LBsrN2BI6Ymiqi/n2ZVNdDVsLtuRbdzD7A3zTEfDaPy/IqWUtwsfV5ZxChc9dw5ifdbyhLq9PL5Y1VEFlczl7NbrVvJV+eYyVqefVQyhvdkogNICKMuPlmk0Fgw2CqrJCAXQ+q6DbIuL6u1s9HqgNh067bDWz6yTYdIhKtPcEIq/7X0M3hts3MPoeUaj0Wg0LX4b5uLFiyktLWX//ffH5XLhcrlYtGgRf//733G5XHTt2hWv10tFRUVUvZKSErp16wZAt27dYp4mE/4cLiPj8XjIzs6OerUW/+UfvMYzFLOJf/J/7KSSeurj1vPhZR2rlHuWuXCTRgY+fLzHK/zMUlt/oZ56fPh2wwo1AljDCu7hukjAzmnAbwtD+5Rtrd8VlIkEZ2xkqXw0ux8q5R9G5frmMmY/UPb54jn88fy6dm1jFgQKCJ3dRuNfBwhXY6CssbJwgfBAMKvpNgYF+IPQMx1cjsRtNOrMikoVVAfbKtJodxBlBYQiXa5vlmM+2FarRYjWX9ZXXv11JBuTgL1hngkYfkrTNlDt3k6QYKu1s6fJ9uVxyqprcYrQb3XmbldUuR/1rhrLoE4YOfgjj4/mOqq1t2p8lf+qTj95XI8K0Cjalk9rVRxDriO3l6w2YoSCWOFbLcO3XQYbX5F5Bgg4Q0Gv5tjod0FlTigjURvDV7d12DFYzzN7hL1hntnr0bdeajSaOLR4sOzII49k2bJlLF26NPI64IAD+O1vfxt573a7+eCDDyJ1fvnlFzZs2MDYsWMBGDt2LMuWLaO0dNflLu+99x7Z2dkMHTq0WXr58bPI8RYL+7yN39i9DfazyOFR/sLfuIH1rOJnvieAHxFnpt/ONv6PP0WCUGacOHE1/juQ8YxkDB6bq8q+ZhErUe930FwEUEE5d3AlJWyOpGe4YFTurs4i+0gqBxeifTlVuty2+X08p1hVzkquIb230ktup73a6O8LItWisrlgY5rwNN1GQegKQ7cjFEw1+9B2NjoqCf3qLzv7Kv3sFgJWjahsNKNSVM6T5ar0C39WdTA5r6PZmAQk6zzTknzX5X2uHXs4fxh7BN93WdjW6rQYQYKUpq8jaAQiaeHu5XH3oiY9dn6Wxx45zVyuKUEpq8CTFXZthuvGm1sSkd0ebKxJh7o0Eh6fvCnNs9Htg6DCU7Wz0RUAR/jR3B1xDNbzzB5hb5hnNBqNRmNPi9+GmZWVxfDhw6PSMjIyyMvLi6Sfd955XHXVVXTu3Jns7GwuvfRSxo4dy8EHHwzA0UcfzdChQznnnHO4++67KS4u5s9//jNz5szB4/E0Sy8HDvqKQaxI+ZnP+y5i/NojbR1XFdVU8j6v8QULCRJgHSsZyn50pzcbWUMWOfSk0LJ+Pt24lrtJJ9OyjIFBLnlxdTmUo7DeLc0aAdSykx2U05M+ERmCUKDsFi7lB76JpBlAbgpkumBTHQSEvU+j8ttUgRa5vNk5lsvJcqycZDnYI/ticpvxdEtWG3FCII/QVWJOMHwgXIRusxTgGxjHIAVNtVEAm2phSHYomLozFxrGg1ELqR+A8EfLCjdveIEgoZFHZWykoKKybIdq5Wdlo6pjNGXFaFdXtTqWD2BHsbHpQ06rkKzzTEuyPXUrXmctda4qalxJssHzbhIkyDODbuXtPo8j/7jkEims6PYrDfXbMBovmladIvHGclX3NRT5Ms3t2gkOsZGyVqd9stkoGiuErxhzBKPb29EZAg5z4fiNNMdGR+NFlaLRQNHYpmFxsaUBpHjB7YWAOZjXUcZgubyeZ1qNvWGe0WiSGr3hviYJaJUN/uPxt7/9DYfDwcknn0xDQwOTJ0/m4YcfjuQ7nU7eeOMNLrroIsaOHUtGRgYzZszg1ltvbXabDhz0EUVkbe6Eo9HbUvkedtRSQwmb8eHlAMbThyLO52qqqCCdTJxxDqcDB71sgmlNwdHMiwJ3UsVlnEZn8vkNMxjJGDLJZj2ruJXL+IGvY/yVnmngccKGmtBn1Q+C5s8qVD6d3fG3c54TCUpZ5ck/dlr5eslsYzAH6ieBSCV0VdhOQpf9Nf6SHuyiUETVaHjxkdY8G/0itMm/ywjtf+YbCI4KQk+D8FvYWAv4GsvIjckOu9XCQFYkno3mdlSLAqs8K6fdrrPIusllOoqN7YC2mGdaksO2nE6/qn3Zmr6GfcsntrU6TabKvR2HcJDh7xTpemuzf2BRj+fxG/6org3QtbYvh26awes97qDW2aBcf8vjqVXXtzo1ZBmqbi3rFU8HuW1ZbiKnqp38trJROGBj79AG/n536AovM/WpkqA445Mw1NkqG8w2Ov2QXRWqbxDaJ602PbQHmvzAgIgMEbq6rEOPwXqeSQra+zzTodG3VyY/bR0MM/eRsC5mnXQf0gCGEG3dU1uHqqoqcnJyqGAt2WSxnVJ2UE5fBrKh8zoW7Ps0Y348mAnbJuNowgwtAD8+jMZ/DpxUU0EaGThxNUmWiiBBdlBOHvnxCzcDLw2cx1Q2s446ahnGfhzHmTzBfWxmXaSc2W86pTf8YQhcuxQ+LFXLVS0OVL6XqrwVshyrfPl9orKs5FudEMlio28w1J5go1g4zc6ZNgn0fAmeRZbZljae1huuHgznfw3fdYe6YyDle/B8RNQGy1H1U2DnDAh2VhgrG25mN22Ma5Cqc6jkqWSa66vKW9EObQzWw5r7obKyUu+jwq55prJxntGEEMAr/e7jm4K3OHrjTHIbulOVso1X+/2dDZnLo8pBqKsNrDyAI7bOYt7gSwBhOb4nespZnQqJjLNm+XZrfFl+ImWRPierjQ0e+GUf09Vjuzk+5VRCv7W75oaEbTRCQbv8Ukithy09oC4d+q8GhzSGmlXZ0jMUWLOlHY7Bep7Z+4jMM1bHwzDaPuiQjFgFOnQwJHlojX7b3O9UpUsifUjTLok7rppokyvL9iRf9/6M1AY3r25/ioP8E+lDEfk7u9JnR18cvqafUAbgxh2Vlk2nllEWMDDIIqfF5Mm4SWEAQ/iZpQAs5Su+52uEaXESHgLCn/tnhDZzLzFttSb7R/KwIRTpqoCLnU9lFbgxl5Hbslt4xNNPXjQkq42Brlg7pOF0lYOcwNjeFBt9jb/qOw0wqkKJovH2SrM6UWdZAAy/pK9Kf/P7lrDRymG3+8KsDoZVO3Z6WdVvjzZqNHEQBFmZs5hVjS+HcEb2KDN3d3M3y6/rRefaLgkHf+JhSH/t5KhOv0TKW5W1stEqrmDXlh2taePOTEWgbDfGp91ZWgQdEGx8OI3XA54GYp94SbQtDvOVZR1tDNbzzN6NHBzTC3eNRqNpNTp8sMzr9PLGmAWM/nYs04rPwY2bFG8KZ34/s0lyAgTw4cNDKgZQRQUppOIhFYEggB8X7t2e4w0M3LgRCJqzJ1kidKGrFAQSpvdhPXb5Ob3SoS4A5Q3ReeH3ZlSLHDngogpCqQJH8VDp0JTglrwos/L7kslGYTQ+6dLcoFmwypFVGWhKF+7o4maxdjaWe0M+W890WBIEo4HQgwUs1AEgENrkP2KDlb7myi1go62B8Va7sjxVWbtFSUeyUfvkmgQoS9vIpsxfIp+DRsByDR/uZnn1PQk0PnzHrjtbBYbsAmyJjrVWp4dVniodrG20ilfIcpPCRjvFmjE+BZzqYwL2NoZ18TXOU0FH44b/FoGWKBVUwaD2Pgar9OhoNup5xh4dHLNGXwmk2ROE+5nuV3sFHT5Ydui6wzly49G4gqEnTTYXgeBNnudAxlPMJrLIoZIdZJDJ27yIGzeXcjMtEeD6hWWkk0k3euEmpQUk7qKELbzJAis/E4j2ezwO6JEWCoxU+dQ+mjlN5WfFOL6KduL5ZqD26+xsiJevajuRtDa30W1RUVZO1aDCsGCOvRgrXat8oXnCbYBRAzgJBcukgjF9zavWI+q9csXUfBuVsmVUzr5dh7CTKS8qOqKNGo0CASzr/DHF6Wui0lVdK4xTuBi1bRI/5C0k9EOR+rSwC+7Y5cfr6uYyKnmqOIHVeG6VJ4/jyW6j32WjZDPGp4bU0N5nKd6m2wihYBsC0upCt4iqmjHb6AwqCnS0MVjPMxqNRtN26Fug9wqat0t8O8IAUgOpuETzA2WV7OBBbuUrPsRLA13oygs8QTWV1FPPFjbgxUtLXQn2M98zj7sit0rGQwANNNiWCRKklp38mwcoYTMQ68uo5Ga7oXMKbK2DhmC0PyP7Q+E0FO8xlTOI9fdkh9eMSk/Z7zP7jIaijp2NZhmy75iMNkZlysqZ36sUjtNoU2ys8Yc2+e+VTuj2ynoQ6YSCZjY2OiqIPRiygarV6e7YqJKj+vLN5eKlyYsQsxyDjmujRmNDRUoJr/V7ICrNqtuH/7qDHnIbuvJrp29juqpVHatTD2LrW51mcswgEXnmOk2xUR4Skt3GcHBKKdT8PsHxyRChV1NtDON37fobcKjnafNnT4Pp+HS0MVjPM5r2hN4XTKPRtGM6/JVlu4sAvuZjdlDOddxLDqGdya9hLl+ykKe4n5lcQW/6NUlmPbWk4MEZ9VjAEEdyAsdwMqmkWwZ5ZFKwfwR1PXXczKV8yruWfojs9xhAFw+kuWBjrdrfMdskp9s5vlZ1VOXMuqnSXUYooOd2QIoD9smGg/Lgm3J4c2t8G630TRYbY/ATbYgRWoS4BAQIPRRT6QybG5cd38YyTbGx0gfeIKQ6wfASatxJ5GmYVjY6dmJ9YGQdhfTeanUZz0ZZtrmO3I5ZvlzHLFulk6y7LMeqXHuxUfu8exyBIGD4cQoXrXVrfkshELzX+0mK09fads8w4fwMXw5Zvly8zjrLOqrx0apbJnKUZHmJjL+y3KDReJrYVLQaHhLRyVx/T9sYdatjC4xP4ds6m2qjIHR8d2ZCQSk4A9CQFdrDzOG3tjG1LlTW71QIlnVsT2OwSndZjlW59mJjcg9zmqbS2lfedIRgXLxj1BFs1GjaKR3+yrKWII8C9vHsG3VLpA8vz/IYX7CQaziHT3nPVoa/8V8dtfzEEl7iKRrYtWO+MIIEupcAkE0OaU0IlIV9DTvSyGAGl5FBVqS8uZ6Vz9U7I3SbXThYZvWSkX0oVbDFkPITscUAHBiRhyz0TIPD8g3SnAYl9bC2Bt7dCg+thIWl0fbY+ZWyfsLRtjaq5IQTHJWmxhozcgJwzwY4extkBqGwAfo3QFawcSFnWAgXILKxvBrMzka/gIYAdHKD4QCjBkQaiJTodkRjPFikNNavlYSaG0LKs+qkcp04NsZ8AeY6cttmnVRfmt3CQaVHR7NRs8cQCL7o9io3jTmORT3+i0jyL0Ag2JT5K+GOYjXeyuObJ5COz+GlIqUsKl1I7+3GTqvTTNV+PL3kU9cqSGmYhMWzMfxeTk8eG6PlGubbGFtgfBJGKLjYZBtF6CqxcLDN7Qtd9eZ32dvoDDba0BHHYD3PaDSajowODmqSCH1lWRwMwNctwM+DV5C3+UOOXnkc4Rm+gXoEsJNqVvNzTF1B6MEAQfz48OHCjQMH+XTjRM4mjYxdZbNq8Pdfh3Nr11azYyijuJQb+Qu/p4EGSyfarH/PtNCVSutron0uuZzsM6nal99blQ2XceJiH4azgTXspAoXLgRBUknnRu6nKvdNqh3b2FDWnWLxCv7G7yMAbGuIlS8gdNWTofYrze99Q8DYCa6NkmJBEMGWs9GMqqxKpsqxrXTC7T2h2gleA2pTIDMA/eshNQhLMsDnkOqGg1mOXe+b8j3W+EP7lnXOAd8IEB4QbvD3ASP8MIgGCGaBowqCeeDYDsFcC8OtVj5Wjngi5VQrU3OeXMfKcNUKL55DrzoxOpqNmlal2r2dZwbeRmnaenyOBsYWn4gnmJZwfavu1tIIYFnnRSzJf5elXd5PuM1wmaKq/XAKFz5HQyRd7qbxxkvV+juRcSyefn2rR3DUxhm83vfh2H3YFOeHaKxo3iBfNc8YAnbkQIoP0msbr1IT0UEiWdfm2hhvHlKe+uafUltifIpTRc6X/9anQnkeeFNCV72V50FGDTiCoX3QfG5we0N7ozkDofIBs4fbUcdgPc9oNO0bvedVLMlyTISwD9wli56aVkUHyxKga30PetYXUpG+gzp3Ldt921jKl9RQRRcK+C0XcQK/japTThnzeZi1/EoRgzmcqfSkLz+ymHd5mQlMoT/70IcBOHHg77MJ58aerWaDAKqpwoGTdDLxNu5xFs/P6pcB3gCUSk/CtAqqyD9cCps6VsE3Jy460ZnxHM0V3MY3fMx7vMKhHMU6VvEp7zIwNYc+GWMJbDqLh5mLH7+y3Sgd3VB7EojM+McrmEPoyY07Jd02Qup7IaG7Y2O8H2LlckpMQoQB29ymLAFVLvjBCf0a4JhKeKtT6A5OK4FN/R4BAgI8+eAvCu0jA1B3rJXCCv3Njag6lVXDVuVUxqjS7IySFxpW5VRty/kd0UbNHuOrrm9QlraRnjUDmfXzX0gJptqWF0Cds4Zvu21mQ8b7rOjSlzR/ClcuPoj0QFYraipY3vkz3iyc16za++wYQ3HaWmrclZE0q3V2OK8pwThZhgFk+nLJ9uXRpa43I7cdzluF8+jU0I0hOw6mOmU7fsNLn51DOXTryeTV92KHp4QXiu6JeyoEnbCpF9SmW5dxBkKvnZmhYE9GTSjY4wyEPqfWQfdidTCuKTZalUkkP6ZwC45PTf0eIXR8NvbaVbEsP/SC0DELOnb9jajXUcdgPc9oNMlNSwRR9tSTPfVVXCGsnnCpA2J7PTpYFgcB9MgcxIyyawg4/Dj6uMmvyWLwtnoO90/lMKYwjP2Qb9NYyU/UUct0LkEA7/IKi3iTrWwkQIB3eIlMsvkdf+R4zoIeW3Gv6tfiugcJsJn1vMnzvMcrbGQtQQLKsrLv4jRCT8KsCcCOBvWPlaqAj5wm+0d2PpIDB2dzMcdyGgAuXIzlCMZxFG7ceGlgBpfi6vpPjNITcZLCeVzNCn7gaxbF6BdlowuCXSAYDpbZOYihxgl4otODmZCyGJzlzbdRdbyQ8sx1UKTHflALFcAaD3Txw+A6+FG+KEWASAXhAXyxIqJsdBB1u6bXgK1e6O+HlMbPURVlp9nuWKuMT9DGuLJV85yqE6sWImYZVgsMu/J2ixqVLlZ6JqONmlan1859OHn11Ry++bd0qe9lPbYB9c6d/Jz7Bf8dcBdrclYjqOXXLifTf8dqdrr/0aLBstD6OMhO9w6qUspxBd302rkPDuEkYITml3gBmnCXdeCge20R21O3EDCkQUgiXgBN1Y5V+0dvnMWJay/HKZy4gx4mbDkdTyAjJiAZrpPuz458Vo7Hjel+F1TmNG6QLzesUC5oQGV2dPrOTMitCD35cXdstGraqgyK/JYan4IO8LmkjfclPcIyReMLCF1tp5hTzGnhYx0wXSUd12HpCGOwnmc0Go1Go2lV9upgmWWs2OVvfO44BDIMtp+ZRiDTAY2b6BsByKko4uzVc0j91UewshxHZRbhmV4gKKQPfSnk7/4bWRlYQT11UU348VNNJd/xBXnOPDwpS+hR34s+FCk3/Q8vTrw04MDZuGdXqL0G6ljPalbzMwH8BAmygdX48LGVDSzmM6qoiLLXzpcJ+zsZTuiaCmX1sNNvfRxVAaBE8sJ2mX0kAXzLpxzIYZSxlZ4UksquCI+HVDyGA7p8QrDkJIL4+YklLOc7TuVcKtjOl3xIFZUxNoq0xqCQ7BBCrINosbITntAtmo5Pm2+jnW8py7P8nuSK8pcrCV2RCheWws9poavBoso4AYdkhwMCuWDUEdpjzAX1h4O/X3Qz9WXg8oUeLqA01vxZ/vUbRTmkz4na2MTvMeZLs1oUmL8Aq4jo3majpslEjQ+GIJi/jYZDv8K5rTPCGaDhsM8R2aHLWB0lBThLugDQB+i37lBStuaBx7vrB86AEwJODEJPOv6q6xu8WTiPVTmLCTr9oa8pCPuUPY9bpLAtbRMF9X1axBa/4efT7i+wOP8dVud8R7W7HAMHAcNP0BQoU627VWOdQzhJDWSwKm1J1LGy6tLmNFUXlfOt2t/hKSY1kE74h65sX56t3V3qe+EUbkIzvCBoBNRtGIrgThPP3YAjFHBLrSf0FMlm2mgXK7EK+EXRkuOTCF11Z07GaHzKpQBXIPS3PA+2ddl1hZgjAL6UWFl79Ri8N9io0YRp6pVP8W6day9XUpmvaGovOicDzb0STB9jjQUdPljmG7QSX0oa/sKN4AwgnAH8A9eA24dwBEPvU6J/zQ4UlBHMrQBAuA0CnZ1R+48ABNK2U++upcoHjjoHjpJ8zIW2UUwPyjllG1SX76rn98GWlSAC0IlOTAv0Y231O/yy3wIWOz7hnPqrydw0IOJJOrZ1xvC5qaWGh2r/ynf+b0gLZtCHIlLw4CGVpXzFWn6lQQrImYk3dLhwhhYABCP+Sq4HctywrBJ8JgFWslSOuZD+ht+r/CkDGMQwzmQ2IxiNhzRcjV20hp0Us5n+7IPh8IGzljrqKGcDOXRmJAcxgWMZw2G8xFM8z+Os4Rd7RVXjosoplOp5R4NzC7jXNN3GBJuwJHrRTbTTqRLU+DdghDb8d4vGX98lBfx9QGSC+2cwdkLdFPAPBKMe0l6FQCF4R7HrkSCN7a2vg0O3QacAVKj2h0lk9WbljDfRRst6qjyrenYLEqtOuzfZqFHiG7QSn3PXHpSB7iX4h/yKY0s3grkVBIrW4e+/DqM2HZHio2HCZwR6bCWyMZQzoF7IAkZDCq7V/cDnwmi8V89RUkDai8fj+XwMwaxq8id/yqH9yhjT309KKlTuTGPrLw2kpgXps+QIipYMQKR4CebtIJi5M7Q3pkOE7lsTBkZNemj+agzA2bEpcwX/HHItDc5a23LyaWB1CmT6csmv6029a2dUPatTSiVfdfpYjb9O4eKITecwZcP5FpLVjC49mkuXPUxuQzeq3NuZP+gWStPWxwQIYxRo5rlbWhC6PTOrepf+idpo/mxlYbxT2uWXCu7m+CSAHblQlwa5O0Ib9Rd3CwXHAPpsCF11VloADeGHe6uigSoD96YxeG+wUaNpLuFASbyAmaZ9YxjND4ppNE2kwwfLShcdT12OgfA0EJmFw5NyCyCAQA4EupVFpXdqfNlTjlf8Hz2BngCzfmCnmEVNQwphRR0V2Y3PPocJW6sYVekkuLo7XZd5eGfV13xVuoKKUghsI+Y2OqsfFFUO9wSO5TAm8xyPsZLlBPDTLRVSHLCxBgwMXDjpQSHFbIrseYZJlsr/kv0kFGmC0O2WAxjC/oxDIFjC54xhAgZG5Eq7IAHqqCG9cZGW7utJOpn48DKIYXipx4GDk5nFoRzNxZzEelbvaied2Oe/qg6SnVMoCF1dth+41oERTNzGSJ6FQ2i1CFL6v3Jkzg4RCpbl+EOb/tebb1UBcIYCYYEeYNSAe3nodlWRAsIF3oPA35+YQBkGNBihNbdLEN0RVCtlOc/KYVd10gRsbOr3qCyj0i2RaOjeZqMmitJFx1OXvetgiRRfKABmXgQqib0lXi4rUr34hsUG/uuP/hCjwQNGEE9qA0Oj6tXBEY1vz3mX7Zcej7MsD/+ANQTT63Bu7hH6wcjtxQg6cW7uDvUeXGv64qjIxrW2EKM6E+fGnji25+La0BOjKnQbYrfafozbejIf9noa+emccrdWredl+lftS5Y3r/FnmtBcYwhHJAjVVOyCQwAjyicw/Zdbm/SgBAC38HBI8W+AkH1Dd4zl4x7P8+zAO/A66iJt1KUR8+Nac87dgCO0J1fmTmL2Lotno108wipfLuvy07LjkwHbc0NvvSnQbStUdArtRYYIBc6CDoi4P3oM1jZqNJrWpz0GFnWgTLMH6fDBMpHegGiaT7xniVlNBBHp9ZGkQPquq8V69mkMqlEJYgVnBw1O80JdNWz5FVZ8Dj98AMs+hIAv1s+RfR8HTvoyEDdu9mcsUzmDwzmOxXzGC/yLYWk/4jBKSK0bwsmMxYmT2fyR9aziSz5kCxv4mkWUsNnSOQ+3pfKN5GXWdC6lF335lPcYwFC8eHHgxImTDDIpYjDrWEl/ZypgYIhQEM1NCrO4kgrKGyUFWc8qtlMW7Vt6CF3IkchKzjLSFfrsLwxdYeZaCYYfhBscO+xtDKd1Hwibf7VcT1j6vYYqUXZsZWfUgJSgi9y6NFxeAdTsygz/cYJo3M7INzR0q2WwU2N9B/gGWSgkQg8VSBHQ3Qtbc6C2QZrD5GBBvIhgM21UypTLKL5HS6zaluWay+xNNmqiEOkNoWC8TGseL2cQkW59NXGkbVcQ/6DV+AetjmT5B6+MKurvG3rsb8ORn+xKFEDAgeFNwbm5B65fBmAEHaR8sx+nf30UxVW/sjz7K2WT4e6kGsvMZdL8WYzaNgkHDnZ4tpLb0I1TV19LQW0hlZ4yPu7xPKVp6ylJW0fACNgGiVTBIFUXPrD0WFKaGChTtZfp68zY4mm83vchyj27vgdvCrEby6N4D3HP3eqsUMAsd0coYOYM7KpjZ6Pd3GIo6qnsazDv19lS41Pj3+2dQ/uyRa4gM6AmQ6qnx2Bto0YDu5xKOaATL2CSaL6d3PYWRGouqmOViO1Wx7A90h6Dhpo9QocPlnVYDMApSEmDlDTIKYAh4+C4y+GdR+HZm6CmMtZPcZPCUUyjwtiOx53OH7ibrGAOLr8DA8ggk/FMZhxHQsafQTzJaTVzgbHUU0sGWQxgKCDoxyB+Ygl/5nd0oxebWEstOwkQvcFzvEWMAQQI8Bd+z2BGcj/P4aUBH17cZJvKOejHIHAvBV9nCHoi9dPJIJ0MAgT4hk+4kYvYSZXyh8wo5WRUzppi4SPcUD8RjHFg+MCohPTXwKiytjGM26P2V5V6ojh+tVKG7LhKjR60fih3vTmbVHzkdr2bbXlbYpzuYGOwzF+oUEpWwiR/e+MI4hLgdoFoiF8n8leVL5OgjZb14nyPyjpN0XdvtVHT8TEAVxDhqsc/cE1oywKg7vi3MepTOenJcdS80o91rFWO9WEZwggFeoKO0FZrbh+kBDwcuekcjtlwPgV1oUHniM1nc+Tmcxi8Y2ykK44tPhGvo57X+z3Ewp5Pk1ffg82Zv1Ln3BnTnqrrq9Le7f0vxm09abceeCCAipRSHhl+KTs8xdanx26eu0EHbOkBJQWhK3jT6qD3htBVX3Y2quZcWR3V3GOuI2QBLTg+BQ2oT5UUkJWQ5esxuGl1rNptTzZqNGbMwYzdubLI6mmHyRooSVa99NVdmr0EHSzrSBihQMzUS0Mfn7rGgd8fjPg0Asggi8u5mfSiHuyYkkbAcFLZIEj72UvaMi/OHaFf7504IH0TBFJxNfQiADzLo4xmHCM4kB70IZV0BjGCv/BP+rEPJWxmM+uYx11sYA0uXDRQH2lboW5M+ngmU0M11VTSi7676jqClGevxZHmJav7BoLDqyBlCc6tXTG8KRgV2ZTXV7KEz3mN+WynDJlgjqnhsGCT4+Z0QFZa6C+AwwjNUYEgNPigth6C5joOQrcqeoCMUPAs7R0wGsDpBkejnLSs0GcIycsvhKptu/Sqqw5dCQgQCEDQr178hHHUoD6g8sFtrJgScNGlJge/I0iaLzXaIVU5vKpfn43oIg5H6DjVe0KBw/4CtnTadWWZP7BLpjDLtNNX/uU6HlaLOatfro0m1DGjkmfVzt5goya5EKHxqbQSVm+FrduhqhaGF0JRD+jayd7XNhrcEHDZX6UWVQFEWj25F37IuKzObHgGhMUdkztyQ4Eetz+0kbvfCX23ZHLWN1dx/NqLcYldLsiQHYeExUf+uoQbV8DNb9ZcwTEbzifdl83a7GW81/sJPu3+IgHDZ7n2xyLN66yPe4unXRwgXOK5gbfzfd6HUXWiyluchy7HrrnBTDAI/mBsHWE0boJvhG5Z3Nodem0GI7irDYPGOUaACILDCU4XBEwP5gkGQvOXyxVqK+iPVdHyQFjRCuOTQWjuDZrWr4YR0lkZ3NHzTKy+HcFGjWZPk4zBn2QNlGk0exE6WNYBMRww+QInvcquYeGr61m6+j2q68oRQCqpuEjB382N6Oym8blp+Lo52XlQKmnLvaQvbcBdUg1p6zD8ueDrjAMnp3NB5EmceRQQRLCWX1nC5+zPODrThcGMpB/78D1f8W8eZCNrY/QzB+/SyWAoo9hBOYdyFHXUUE0FfSiKlAl2L6Z69FfUjv2YNI+bsjNfwFHlQjguBmcAozIb969FOD8+gI3/qCToFxQygK1swkv9Lr8r/ABR+ZdSA/Ky/r+9N4+To67z/5/V59z3nYuQmxsChACiQoQAIiCuRvMVVBZUYF3WC9FF1HUF0Z8H6qLuKuCKwnqAyCXhDEfIRQK5D8idzEwyk7mnz/r8/qjunurqqu6eSc/RM+/n4zHp7s/5flVV6v2uz+dTVfDBBXDKcfD2LmPQR9MGgvZZk2DNdnhuneltkiR/hudCrQeWvBdmnw2+IiO7tBq8BQP6fQUQGrjTlu62gd/dR2DjS/D4j6C/17RPLdvOdpbXLgjVLPWspLm6dLthcg3MngQNlVBfCcWx22ZKi6CiGPw6HA7BB71wUZGx3XQdmo8ag4y6gv1H4HAn7DgAOw8ZA4Ipfaebic5So+MVc7or6HRX2XZllU269bdTmfGkUcgtCkIRY7Br72Eo8kNlifF/z+d1rhaJwsMvw/INcLAd+oMDu+9PGpQXwwUnwdlz4LTjodCf2kbB04vwrTmdzv/43uD2r1vnlI8coV2D1cugvQWIDfZEXRDyG7fbBQohYDqu353az8ruHXxwN0nHWrqufXoBvpBxEp3dOZ/ju05hQcsVPHr8j9hRvjYrc8tDtVy69wbOPXQ1xZGKpLyEGe4o4VM2EVj0Mu6DDRQ+filad4mNbRontp/P7rINHCx6h6C7L/FfJ+o2NWr6v6tpcOrx8MmLoNzmlt2eADy7Fv6x1vQkO+uAkAbt1VDrgwtmwOzTjUEytxsq640BsUAvlFSA1wdh00rfni4I9kNVHQQDsOY5ePNFCPWn+W8+Qucnnzs2WVUEVyyA2ZONySkAv9f463J4n4THDYEQrNoOLUfhSJfxGdUH2k+x18m2fDoHi58RJiKDWQWWi8GvTG0M9tZQcz2nsnZ5uRrIG8zKvMH0mU3ZXA385WJ1oRNjccBUGHVksGyc4i2McvonN3Oa9xFa2g6wZseTvPz2Q/jawvhLAvTXurFGUHqRRu+ZfvpP8ePf20nF4cPQMQuiRWhAmeWVBS40+ujhHC5Maml64XFU1ITxap9gmf//6JqU/HwcMws4i2t7vwIt1bg1F38N/YFwZzcqGEUv7yIyeydoUHikiYJHl9J/3SOotgDVN3yK3gtr6P/I4xQ99BHceycRfN9rfGTJKVz3+4dp4SBP82d+xd1miUmfGuDzQEmhMRhW5DcuWN1uqCiBdTthSi1MroWaMrj8bCNo//vK2PnUHHQqo95n7oALTyVjsOc3PZ+ltDo578T3QlE5PPhVY+DJtimn2Vtr0KugubSdsDuCS7nQlJY+yI6l1VfAPy+Gc+ZAUXwxmoOmCFAe+4szc1KqXYEw/Ppp+NsKkz+y2mtOG4TGJNIF4nYz7pb9mLZva3k7u6ztjzeNQm5RsPMg3PcUbNoD4dhqoEnV8OPPQnWawbKWo/DnV6Crn+T9ijFudbQb/vYGPLEKzpgJn/4AzJmcHLOGT9tovG0TaOuCXc3GwJoni+jAWwAf+ATMfR+88jyseg3CzdBVZqyAsnvQfdQV5dnZT3DtmhuZ13rykK6LPcrL/MOXUB6q5Y9z7ubNuheIuo0VWPUVUFVqnKsB/AUwfa6b89b8E9PfvB5N8xqr6Pr9aMqFQhFY/AKBDz6LXnuE/suWoYr7QHdR9KcrqfrkfbGlXQNowHsOfZRzWq7k/rlf4/nJ/2tsds30gHrz/13N8DHfWGJMzDiJnjPJWHX29GrLYI9p31aUwL/9C8xsAi22Qi0ahlDQGCwrLkvuOxIGj5eUPo+bB03Hw2P3GRMYx+pnUjZQFucntwYL5sJHzjcGh31eaKx06DMdCi48zdhmgRA8stwYRE5MzIy3c7D4GUEYGwz21tBs3uIYb1OpoQ3e2PVhtVHeJikIWSODZeMVDdTxy3DNeInGovlcMeXjXHzehznctZLwimrCjTq4wqB7BirEPnUfRBoPo7X1EKyfS/S0Ygq2hXH16SkxzblcBBixTXfNbtwXr0EL+gl+4Em0vxQyb24fte+HXW8ZtyNWNsJJ7zVmw1c+CvO7veiH1uLZOZ3excso2b4Djz9IYOtBAhe+QnTyQfyvnEPotA30FreiXb0cLapz+Hd/QS/TiNa3Ep71DlrUjau5DnX5sxSvOofC7eVscq+itAIqG8Djh+CZEGkasL26zJjlX7vD8BuTa+D0GXDWbCPgPmOGcUHidhm3x/QG4KMXwJodxioOK8c3wMJ5OAeGWeJyw4Wfgn/8Cg7ucIhVswluY2U6C3o5ULWPxpCLipDDlbeCk/qhzwU99fCdT8KspmPXYrarwAefvBBWbjVuFUvRYRnMHIzGlO+ZsKtvzUtXNt0FjJWJoFEYMgfb4T8fhj2HSeyHIr8xWF2d4bFateVw51J4t9kY6I9zuNNYIbu7xVjdGY3C6u3G6s7bPwZnzSKxLyPT9tHzhV8T1eHFt2D5RmPQYXKNMWAXCkIkFLsNDmNSoLCEpGN4Swu80afhPkNR6YZqINhqrAbSdaO9+GASCrp93fzwfd/hvr/8Hl/UD5oCpQ3q8NKAWZ1ncMmhL/Cn819myuQo558ErR1QUQbXLYqV00DTovBPv6L1pqch4kZTGr6V8/GtOgOibrruvIdoU0tyB26dwAdeouuOH1L6/92Eq6sspX+v7kN5okyqK6ZuRoTDniBVk+FA98CESkOlMdly6VnpB8oA/D646XJjwO/B50y3ZZo4vtH401zQfdS43XLDa/D8I6B0OPUCaDLGPjlyEDavhEkz4bQLYNZpA/1rLph/Ibz+BDTvTj0FeMIM3/lJg+IC+NACuHbRwMDmkNGMrj1uY/Lr/10Ie1rg1c0Wu8bzOXgiaBSEschQBp3S1YkPbA11QMuuznCtVBOECYAMlo1nPAH0jyyBiHH7ijfqoylYTme4EGPKuRBaT4ZDp6MdOBva5kDEeAWWJ7ATVIie6il0nBCl4Fw/ZZuh6K3Yc81i51kXLpQ7Smj+WtSU3Wz4h5fpU0poaSpk26tuemcfRu2BP3/PmP2unQY/XAXrft3I43d6Ob/q8/DxrRQ8finurTM5dfarNLSeQucP7yS4cDW4o/Rf/SQQi580UG4Izx54Jpkq7UUBeoXxdP3NV/2E3/11I8dfv5EzJ8GkeTDtJAgrCOvQ02/M3teWG8+PmdFo3G4Zf1YZmrGaas4U06Z0G7c0lRfB1efCfz1hGcTS4KLToNBHTiitgvcuhUe+Y1wAJbSaCznN4FoCzQPlh7nviu9y5VGdnppwcuAcq+PVoEyHlhL4lw/leKDMREWJsZ0eehHb1Xlg6TdLjSkXA1aN1nJO2M2cx9PtAn9rupO9Y0Wj9UJkKBqF3KHgqdWxgTIADUoK4OYr4D0nkvF49Xnh9JnGn7XdvqDx/+yvr0EwNpDW0QtProIzZyUPvCtvhI4u2HEQlr4/lq8ZA2UbXjNu19u/0yhe3QCfu9u4nTzOe07S2BI+jstmtjCj0rhfrrsPDncZA2XN7bBlH7x7CFo6jMOpuXQ1bUdeoGHdQrq//HPc+5so/NOVuI5UZ/xvqgD8QQIXvsLk977I7RdrnDoHygqN/kKR2HPBzA15o0Rm7kr8DM/dQe91D6ftR68+Stc3foS7uY7i+z5j+a+j6P/o37js+ne4+JwQ3pIIOsZ2i5oeieZ220xypKHAbzwS4MlV0NyRnKdpsGDOgK8qjg2+nXKesZ+2rIIX/4+Uc0XXUVj0cZu+imDhZfDofUZZ8+nHGzG1kePzk88NX7kGzj/R/vltx4rfAzdcCht2Q2evjf1m+2Bkz8F2fZvTx4OfsevbnC5+RjhW0t3COJrY9W+2Nde3P+YTuXrLqLy1UhhhZLBsPKMBBV2guqCnEW3febD3PJi0CnXK79FWfBFt56WoosOoE/4M5fvQtl4Juy7CHd2Ocin+Z/l/8crR/6WiuIG5k89l4Qeu4OTOU6nY6MITOExk9g7Cp23E9/JCiv76QV7W/h39yzvRls/n9E/s5lVvCE2DmWcab+08Z7GfMr+HD276OovOqaDM7SZw+gZUZQfencdTdtP9tC25h2jd4aEN1mhQe+U2znjpRA5ubeNv33Nxwb8fYPOr8I9m6Kg0Voh94Ay46YNGee9g/hdoMK3OGFyLKmMl2nknGheG7z2Z3A0waXDpTTBjPvz6Zji8N5FsYA0urQGwKU0Bu4qCdPfA5BCshaSgdEoN/Mvl0N8B0zpyszrOUZYGF58Bj79huXUsSRzJgXoWGgc6sGkDhzS7GW1zn9a+7C4qzOWsZTO1McIaXX2gPKB8x6hRyCm9pucX1pTCbR81VrVqxzKIoBkD/p+5BI6rh1/8feD/W8Th2fbVpfC1j8YOgdhx4CswVh8dfzI8/SC0HYI582O39Zko9Cr+5axduEwX3+Ulxh8Yt36+92RjlVt8BVw40kP0y9fT3FKHXn8Y5QvRc8v/UPD0RRQ8/QF8q09D6yo1Rm3cOoSMp9zr1e1EG1vo/MGdBC94HeUP8R7Tcet2Q6GbzGR7jnPrBBa9TPEvP038vlIFBN/3Gkd/fhtabRvxzRHfZdncwpqO5qPQ1m1JVDCpJtnPuGL9FJYat1RuWRUrqpJPHyXlxp/d/+8zLjTKv/hn6LS63UH4GXObSfVtOGu24WeGY6AsbkNjlbEyfO1Oxsw52LbPceZnbPsUPyMMB04rr0ZzsClXb+zMxFCflWbXjnUQK98H60Zi+wsTChksmwi0nozrj49DfyU0rkPVbQI01KynjFVnRUegtx5CJaizfwHn/pD+3u2Et8OMg23U+9poP7Cb5377Bk+t/gXTG07l3LmXcemdL+M/5xW8q08nXNuCQrG0OIq65h08Vx0iMmcnszBu4bn0JuP85XIHgSDd/3srKGiLmaiXd+F9+0TCp20kWp/6JsvB4CoKc2X3Zwm1LWLJ+zsJ3/JV3nrKT7Q9SIFPp6IErlo49ImJ2nLjYigaNoLxS880bjHM9fhSWS2cfCE0zoJW62CZ0+yxdVZYDXy4GLiYM1NZArMboWgGLNBMK+yGiaZq4zk1y9ZhP5tsnu0ehMaUctY27WbKnUgX/FvrWi8yzGlOM+ajoFEvBC1iKW+12aGu4yoE4Zi5YgGsf9cYrPrnxTB3Mjnbzm4XLDrduK38vieN89SCOQ7Na87plXXw8S/FrgNcNudOzZhASEusTEFs9a3xGSI6bX+iSPiE7YTnbafnX/4bz/aZ+NaeSmT6XvTKDjxbZ4FLJ7RwNXpJL6q0Z8SOx+D5bxC45HkKnr0QdBfh0zbQ/rub0GvaMlceAjVl8JmL4bfPDjzDzqXBP73H8D92nHGhMYgZvz5QynjpQmUdTJsLHodVz0WlcP6HYPs6Y7AsiUH6mZRylrZcmvH4g4+/f5CTVEPA4zJetrN5L/SHGBPnYNvyZsaBn7Etb7XZqa74GSFbnAL4sTBAMtI2HEt/o7G9ZFWYkGfIYNlEoGIX6v3fRNVsgbpNaDsXQ7gQyvajbf4IFHSg6jfAkbloW6+CUAHqvVcSeRf+ei/4psG/P2HcWvLsr4JMu3QVU69ZhetsDeVVhM5dTejc1Uldmq/JPTZvYMOTvLyh/8NP0v/hJwevLaqhBQpxdZShV3agigLo1e0E/uNHqIIA7tM3QqHOmVcHOPVKZcRlGnizWXng1KVOIsB7crXxLKCvf8zmofY5YOOLsPnVgd8q9o9fh5Io9LohROwldNYZYtOnT0FTyMjWoqD1gioyVhpt2QdPPw5XXwG+ytxrsOLSjNVlL74VeyaPU8DudGFg/m53keA0g22dWSdDnlPQblfXzk67C49R1qj1gSrn2DUKuUEznnX4s88bLxvxGYunctuFZryc5PhGKC00VpIOpQ/NNUKHgQbKFyF80lbCJ21NJIdP3jISvdui17XR/rubKXzyAxT+5Qo6v/9topMPDtsGqS6Dc+bBA8/FEjSYUpd+9XLDNOMvQTYDHzGiEegwDZQpUt5pMJAxxPNTUxV8+mKYN8X4PuxoxsrvD54NT6yEUNS4LtTjK5fEz6S2M9Y0CoITdoM86QbQzHljYUDtWBkuDcO9bUZqoGw87GNhzCCDZRMBfw/q1P81vitQs58wHu4PqEVfQzWthcI242H/uy5Ea5mDFtIJ3QxLZkNxFfiL4MovwuLPQnm98RD69NOJuUEL+Cl44mL0gIej71lG0bQe9G5wFQMu8OyeRvWS/yaw+AW6v/QLVFGA6JSD9E85mNyQW2U3QKZiAzgxaS5X6q0ib++K3UqkjOcChaMDtxvlmuNOhXM/ArvXw/6txtvOXB1QHYLjQ7DbD/0uKNShxQvBNH7oqMcYZPO+BQWvQPBsCC2ExWfClZeDL0fPW8uIBidMNW6DDRqHIT0B48HcYPi41g5j2+5uMd02ls0stjW4z/aiwGRbomy6QN9azm623W5fmNPMfdi168RQNWrg6gJVYgySHpNGIXdoxkPJhxOXC06clrmc4Ixe20bvtY/Qt/TPKE9kRC/s3Zox6FNWNIhKg7DP7YGzFsGKELQeAE0Hl8kPprQ5yPOT2wWfvxzOO2Fwdh0rLpcxQPfBBcabXgMh2NViPPz/YLtxq+uRTsOHD2q1lPiZkdEoCIMh3QCJDJ5MHGRfCzlGBssmGhrgDid+qpnPDuS5I6iZz6JmPkt8wc8Zlw9kF5UbfyOJ1lVC5c330HokyMOfeJFTlkDzizVc/pUwWl0n7r2T6P3MQ/Re/xDKF87cYAa6+uCuR+Bor/H77NnwqQ8Yq8l03QiqdzUPxHIeF9xyBdSWOTZ5TFRPglt/B32dcMeFsGs9EIX9PthvWrFXqOD0XlhXDEEXKYHuYY+L+t3nM232q3h36BAAV7uxwu6DZw/cGjVSFPrhqnNNCRbfFn9I91d/A5v2WMpZA3ZIDf7NeU7YBelOOAXx1ouXbC4+4p9OFyzDpFEpL3rQh9bTi6rIYJ+1DacVCoIwkXAplCuSudyxooxBnGgU0ODU44f5WZIuuOBqmH8R/PrfYd/22GCZ3flgCOenAp/x7LzROH8U+GBKrfEHcM5c4zOiG4NnL74FP/1bbMVZHPEzo69REMYjo/E8rbH0DK+4DblaYTYenrEmjHlksEwY0/SGCllRE2ZLxR4ee9zF3x+CE5jE/3v7a2iz9xCZdIieL/1XTgbKAFo7Yd27AyvHjnQaD6euLIAn18Cbu+BoT6ywBhXFRv6wBXea4QuKK2D22XDg7VgaxJ81DQr6NdheCHP64W2b1Qdhl05DTyXgo696Gq6Qh6gP5k46ytS6g6kVRhrL9nO7odAFsycXsGGPhqaiaIQxRn2yaMdu1ts6O27Xt/kCw3rRYWNnSr34d2vbdmnpyqQjG41oKOUnTD1BNZMAcwmoE/D72ph06FvoFfrQNArCeEWZ/hvE/g/osQGjjM9jG0Jfpg8AIrqGpoGuNPYfgZ8/oYjohkWHu9SwP+MLDYrLYNIM2LfDdBumdUAli4EThYcgs/GodtBCzJ7ST31F/7CZPihi9nvcxorOmnJwuzSiugeUhkbM+SsX4PA2DPEzw6tREMYrozGwYx6gGisDS8dqh/nhnIIwzAxL+HXgwAFuu+02nn76afr6+pg5cyb3338/Z555JgBKKe68807++7//m46ODs477zzuu+8+Zs2alWijvb2df/mXf+Hvf/87LpeLa665hp/+9KeUlAzT/W7CmKM/7OYnm8/mv69+E+Xux9N5E3VvPkpxbwlPtpXhXXMSp9zwOwpyNFAGUF7qIlBzHB1BY6lVh4Kv/R2mBeGoCw74gNKB8g11fRT69+asf0c0mHx5OaX9jez3QrAceiz/e3t1qO6Ddpv/IqEofP2SA7xTfB47Z1+GCtZDuIyrZz+E3/PI8Ns/FDSYPvV09r9yIxDGwxE0gmjoeLWDaITxqkO46MKrHUajHzc9aIRNA2t6oi3bgN3ue6Yg36kOlu82emz7cboASde31UY0opQSUY0E1Bz61SkEmU5E1aIoSHSgFe5Fe8cHcwND1zhGED8j5AKlYH1rJW+2VrHhSAWn1bZTWxTE69J5YW8D5zQe4aqZ+3M6IdIV8vKD1fNo7itIpLX1+3Fpiv6Ih44+F4fdUdz1/ehuHx86az81ZbtzZ4ATGtRdVMEbHbPpK1B4oq249AH/GvYUE/RXAjrecC+a5aTgCfcRdfvo9zfR55qLK1gO3g6WzN2Cx/0qY5EzZ8Gic87jV8uvBTTcHMVFAJ0ivBzEox3Bqw6hEQAUPm0/HtoBHRf9QDT787Zdfj75mZHUOEYQPyOMG2RgSRCGRM4Hy44ePcp5553H+9//fp5++mlqa2vZsWMHlZWViTL33HMP9957Lw8++CDTp0/njjvu4JJLLmHz5s0UFBjB49KlSzl06BDLli0jHA7z6U9/mhtvvJE//OEPuTZZGAvYzOo/tauJX+1W6FMeB3SiTbBv3iz2Acv5bwo8UZ6Yso/ZOeibWL+6y0d75dzEYBnAEWCPuazpoul98zfiH6H1mcG5ZTx7/tzkREsAesj64OSYre3Af9XEyvEKKA9apJg501fl9CIw10yrOQLuOkIRHyGmkxCqYGDHKTQisUGyAC6tFzc9uOjDwxFcWg8e1YqLIB6a0YjgUUeIvRYhOThX2KZpgEt1oxEFImjK9JAbax3r9rRrM17OWifdBYapPYWHqKokxBQC6mQCahYhphNRlRindfsrkIi/BFerDy0SQHlJPp6zuYAZI7GW+BkhV7zZWsmnnllIZ9AHCv66YwoAGgqFxuF+Px+aud/2TcJD5aX9dfxu83SU08lXgTHGbRzPuwN9wO4cWuBMuLSAA02NKKUBNm+tsRvQsE1rRS9qBaCqZt+Y9TNeD7z3xA5+9dokQhEfcBzxE18/p6ZcYGoEcNGHpkXwcBgvB/Fp+9FUYKCQAi/NuOjGQxvgIqJq0Qjjpt20KgI0IrjpiW0/HU2ZJv8SK0IYFT+T0o71u1OddD5F/Iz4GUEQhDwi55f53//+95kyZQr3339/Im369OmJ70opfvKTn/Dv//7vXHnllQD87ne/o76+nscee4wlS5awZcsWnnnmGVavXp2YvfnZz37GZZddxg9/+EOamppS+g0GgwSDwcTvrq6uXEsTcoGCsK7RHfLSFvDR0lfIvq4idnSUUuYL84UzthkXJQoO9BSho0Czj5xiC2qOif3dhTz+zmROrzvKwqYj6MoUG1sDP0tQ6HbpnF7bPmIXAVNK+3BrOlFlumxLd2uDwj4IBnBFwNeB29M3fAbngBJ/Hx5XFONFnpaRSpNohReFDygiqqpJWmuozBvB+NMIMhg0FC6tC40objpx0YuLfjxaCxo6XvajEcWjteFSvWgEcdMZG8QLxNqwPOvIKscsy7S/lPKgU0yUCkJqOgHmEVBzCKnJ6JRA4jI+04GoiPqLiIYq0Lq7UJUp2elXEWTTxQghfkZIi4JA1MXRgI+WvgL2dRcTirrY213E/Pp2Lph0OHEsH+oppCvoNX5o5iaMHzs7SukLeyjxDf1ZZaGoi50dJUwr7aPYG6HCHxq4IyaDn9E0xUVTW0bsJWIzKnoo8kbpDVvCw8H6mViahqKqIOh8vhsDzG7YTU1JBwc76nD2MwAKRSFRCkBpRKgnwEmmyRvzTlSAjpbwXv7Y7+SV8Bph3Fp37HswNrgGLgJ4tOZEcy56KdQ24CIIKNyqPTZ5E8eFTiEuunHTTWIG0irBLCvTgNmA7OxXgGVaASd+RvyMIAhCHpHzwbLHH3+cSy65hH/6p3/i5ZdfZtKkSdx0003ccMMNAOzatYvm5mYWLVqUqFNeXs6CBQtYsWIFS5YsYcWKFVRUVCQcC8CiRYtwuVysXLmSq6++OqXfu+66i29/+9u5liNkoCvo4XB/QUq6UtAe8HNa3VF8bj2R3h32cNNzZ7G1vZzukIdg1E009vCtcl+I0+qOMqW0j/6ImyffbXIOsGNxYDg6MHDUG3bT3Ov8Wrm+sJvWvgJOqe2gtiiYWEXwwzUncMHkVt5sqaS5t5CesNe+AUtQpwFe98hNgXrd+sCmyNStUxCaVERjV2cJqJYxE5za4fOG6QvFj7F0I0xOWCNwFwrrg93s2h1IUyh0VQwowkxOLpK0M4xXyGlEcBFA0wKxC5coXpoBHa/WjEv146ENl+rCpRkXSBohXPSgcKNTRoRquvX3EeJ4wqoeneLYgKBGer12Vx3GlYlyeYh6KvEc3EuoylLc7mLdPMY4ho4R8TMTi76wm0O9hehK42BPIZqmKPNFKPWFKfWFqSsMJh2ffRE3n3vubNa3VtIT9hDRBw7w48p6+PqCTRxX3kso6uLP26emXeF1pN9Pe8CXGCyL6tDSV0h/ZOD1yh0BH0dNq5Er/IYv87gMR/WX7VO48/VTOLfpMGc1tLHtaFnyA+XNWM7bbk0xpXTkJjXK/SGKPBFjsCxHfubv70zioqktuB0mvkYbj0un2G/exsfiZ+K4MHyNJylNkRxfGL6lPPErxIyB/lVyyYFnqClc9KOhm3KNSSMXfRRo2xITQh7tCG7VgY8DaFoYD63oFAKa8dgCFYhN7ISNwC2xPzXAha78aETRVDDZFOtgl93msDs+xM+InxEEYWJjnv3Lg9uDcz5Y9u6773LffffxxS9+ka9//eusXr2aL3zhC/h8Pq677jqam42Zsvr6+qR69fX1ibzm5mbq6uqSDfV4qKqqSpSxcvvtt/PFL34x8burq4spU6bkUppgwz92N/Lvr52Wkq6U8X/h95e+xlkN7YlgaF1rJa8frCWsu1KCpc6Qj+v/cQ4el0JXEIy6nWc8NWO2fuORck6o7iSqNJ7e1cQ3Xj0Vp2grqozBtbsvWM/H5uwhomtsbS8HBcv317F8f136INBpRnSEqCsMUFkQMgYn083eWsdSnIJWBVvah+k1njliatUhvnPlz7n14dvQ9fjFabqdlGmnOF3ZOQ+UJednujJwY1z+uGOrDyBCA6AIMscop6wHtLHaQCOMS+tDKTc6JSjcJN9SmS1pNLrchAsr8O8CTrQp6rRqYAxdwID4mYnG07ua+Pqrp6KURkg3JkjcmsLjUsys6ObBS1+nptBYwYOCtw5X8vrBGkJRd8q5cXdXCZ9ddjY+t45SEIqfVxz8TDBiTMJMLukjrFz8Yctx/GTtHALRgfApomuxATmDQk+UBxav4Iz6owSjLp7b20Ag4uaFfQ28sK9hTPuZCn+YuVVdHD6QOz+z4lAtHUEv1fF9NMYo8fexZMEz/MffP0vSm3PGnJ/xJOroifDdXFYRpZBedd5A20kTOgqNMCq2GlkjikYIj9aKhyN4tdbEhUtUVRKhigg1+NhPresXsUE1Y2Vb0u2iVklOiJ8BxM8IgjDByYMBMjM5HyzTdZ0zzzyT733vewCcfvrpbNy4kV/+8pdcd911ue4ugd/vx+/3D1v7gj1NJf0Eoy50ZYlyYsHQj9+cx8fn7kZDEdFd/HrDTGOgDGzjxrDuIqyb2jCXS44JQdP42bo5LNvTSE/Yw6a2cvojnkyLhPjZm3P4x+5GOoNeNreVO8eqmS4MRpiqghAV/thgmV2Mbb1QAfttZ0pL7IsYR/r8rGqu5vjyHo6v6MHn0kc1gHW7daZUtWB9kLTBsRiW7cWOmUyrDRwPVJwPMjBWGxSgKEBXpZZ6x4J9/UDNNMq3gRbGeG6ZtYr1gsYqZwwgfmZi0VDcT1h3ETGdr3SlEY7ChiPlfOv1U1h83EHK/cYF/J2vn2IMlIGtL1CaZkzGxH4nlbMc7yHdxU3Pn8W8qk66Q142tZUbddP4mb6Ihy+8cCZ1xQG6gl72dRfljZ9xaYrS+C2nOfIznUEvrX0FicGyiK6xrb2MQk+EyaX9o+5n0OD0KVtjjzlwp2YeS8ODzs+1n4l/Vxi+xm+q5UFRQEiVEWKm4/k9Qj17o7/ArXXHVrSF8LMDv7YDt4rfQhrFozVjPOvPi0cdjj2fzUGK+BlHxM8IgiCMHXI+WNbY2MgJJ5yQlDZv3jz+8pe/ANDQ0ABAS0sLjY2NiTItLS2cdtppiTKtra1JbUQiEdrb2xP1hbHB5NI+3ju5ldcO1BKKulKC6VcP1PLqgdr0jdjNpGc5VrC3u5i9XcUDCdagy5we62t/TxH7e0y34Tn1mS6OHYUZ/56wh7ZALIDKoNFxsNCSF9FdSUlrW6u46bmzKPBEmVfdyWXTD3LtCbvwe3RGi5auanTlIv2SC6cdYl0WkW0du405mB1uvYpMh9NFz/BoDFRNQet24+qIEq01VbOb5be7MB4DiJ+ZWJxed5Rzm444rP7VePydyTz+zmTcmnEzWkTZPI7/GPxMa18Brb2mxw1k4Wea+wpp7jM9FmCIfkZz4TBZMDyEdZcxuOdk2xD8TDjqYndXMfOqjWcvvX6glhuXnY2mwfz6di4//gCXTDtE1SiuPNvWMi32PFDxM6ntaSgKiajCRJ0gs21WB4RjuRpe7TCTXF/Gw+GB7sXPAOJnBEEQ8olcvuAJgPPOO49t27YlpW3fvp1p06YBxsMxGxoaeP755xP5XV1drFy5koULFwKwcOFCOjo6WLt2baLMCy+8gK7rLFiwINcmC8fAtNI+fvy+tVQUhNLHeuYgyfqZLvh2wnqx4VRPOXy3a8s8y68sf1b7RmEWvK3fn/ScnATHoPGdjhKC8ee+KdjdWYyORl/Ew9qWan6xfjZdIYdnuI0ASmms2nVS7M1sTleY6SJtc73UCwB70l3JZrrHxK5fuzrW/wSZ+s6dxrLda9FCUdwHbIrZdWGVNQYQPzOxKPJEuf6kd4xnXqU5B0d1bWD12TjxM8XeCHVFpjctDjO6Mh5xkMIxaNTRePtwZeL3lvYy+iIeesMelu+v47blp/Hz9bNH7c4MpTRe23E6iJ9J056dRs3y58N4rqYXXfmwPp9N/IyB+BlBEIQcMQJvP8r5yrJ/+7d/49xzz+V73/seH/3oR1m1ahW//vWv+fWvfw2ApmnceuutfPe732XWrFmJVy03NTVx1VVXAcbMzeLFi7nhhhv45S9/STgc5pZbbmHJkiW2b44RRhENokobuA0z3Yy9OYDGId/ue7YXN+nKmO2yS8+mjaFcbOWQzfHbTJ0Ygsa93cW8tK+emRXd6Gi8Fl8FGKvjFLL3h90Eoi7cGhwN+AibntdTWxSk1BfGNZRtpOBQZw172xspLehlb1sjf1n7Aew3uHl23E5oPM3KYA4uu42XzUx8prRsN07uNR5a+P/oOu5MvBU7KeMRI99ptt+uqTGA+JkJhkbsdv/Y7wnkZ7TYs9lGiu6QlyP9aW4BG4pGBW8druC5PfV4XIp/7G60tKWx42hp6plVwf7uIiJKI2ryMV63TmNx4Jhu39R1Y7U2uNh7eCpv7jnBoaT4mYE0K872RanioH4XRdpKyrWn8LFb/Iz4GUEQhNwyArNsOR8sO+uss3j00Ue5/fbb+c53vsP06dP5yU9+wtKlSxNlvvrVr9Lb28uNN95IR0cH559/Ps888wwFBQO3OTz00EPccsstXHTRRbhcLq655hruvffeXJsr5IC2fj/dodihZDdzaJ2QtM4mWgMmp6DbeoGULpa0BmCZ7LIj3QSrDboOG45UUOSNUuyNUOYLU+iJ4h7khU5E11h5qJoTqzupKBh4iG7U7rlwZnuGoLE39nbS+MVYYpVZrE5Udw2kmVjdUsVXXj4DDegKeZKeJTSptI9rT9jFp05819acxHcbu3Q0vvP3z/GPjefhdkWJ6m4iUbeNWOv3dAx2lDPTRYrT1bfTgZruwsXuCmE4NWqEyuoJldXh0eZSyCt41BE0IkDU/v+Y2axRGCS2Q/zMxKPYG8GlGS9qmch+BozYMGkz5PD/pYLkZ5DmSOOrB+p47UAtmmZq39RWynNPgbaAn48/eR5tAb/h/2K2eFw6J9V0ctNp21nQ2IbfHU09K2fYJhvbKrjpuQVEjp5I18H30BMothFr/Z4O8TPJuAirRjrVVXhcR/FyEI0wickZ8TOjIUkQhJFE00ZkMEcYXjSlxude7Orqory8nE2dUDq2X/iX3yh4encjn3/ubCPYHcwFBmQOilJGWGy+O9VxmrFM9ztTv6bfHk3nr1e+wml1RwFjtdUHH30fB3oK8bgUTSX9/Nv8LVx63CHb5lMGv4BgxMXRoI+o0qgrClLoiSby/rRtKl96+YwR1ejWdB7+4GssaGxLqvr0rkY+t+zs2O2Rqe03FvdzUk0HAPVFASr8IQ71FlLgiVLkiXJ8eQ9L5+1Oqdcb8nDlI//E9v0nQ38jhKogWkDq7TFOpFtyYic8XVq25QfbnhODvcg6Vo0KN524tC7cGH8erQU3vXjZj4t+PForLvpx0Y2LECoY4t2f6nR2dlJWJidW8TMjhIJHd07m316aP+H8TGVBkOc+8gK1RcFE+l92TOGJdyfh0hRTS/u48ZQd1BcHYjG5hktTCdPCuotQ1IXPHaU37EEp482dRwJ+SrwRppT2JQ0stfb5+cCfLuJo0DdiGlHQWNLP369+ibq4TmBXRzGL//p++sOWybgYfneUaWW9TC7tM27RjVHuD9NQ3I8LxcXHNXNyTUeSRl3BD1fP4+fr5kCwDo4sgP4mUG4HEU6ixM9k42dc9ODRjuChBb+2h0LtTdx0JkoYPqYHwBhQCwbFz5iI+xnZHoJwjMjglRBjMOfVnK8sEyYWHUEvv357pu2scMpMeZxMAbbdRY7TygBre+Y884yl3cSqE9msQnAgqow3oQF0tRvbZtnuxpRyEaWxt6s4Zbt1hTy0B/zUFAb51sINXDBl4MGwB3tND4seIY1R5WJ9ayULGtqS9sXmtnIUmmMcf6i3kEM9FntN5eZWdfKhmfsH3roWy1t/uIJdwV6oWmUUjBZCqAIC9cbFTLAaokWgXKnGJnWU7so308y7uWy6q0Wnuk7927Uf/+7Ujh250ghRKoiq8sRjmZOPGwVE0QjjIoBb6wa9HfhqlnYKQg5QxrnvvrdmiZ/B8B1/3TGFVw7UJdKefLeJE2s6Y28M1Sj3hSn2RogojXc7SugOeynxhmntK0BXGlGl0RPyUF0Y4n8vfZ3ZVd32nY2gxpa+Ara3l1FXdDhR92jQZ6xadjidBqNutreXsb29bKB9S7nHdk7hb1e9nHgTJwpaegt4ZNs0o4y/FSY9aUzO9Ew3fE24HHSf+BnHPgbnZ3RKCakSQkynTy3gKB8BBl4a5CKEhjFI6tL6cOmHgK9naacgCEKWyECZMARksEwYPMpYFbWnq4ifvjmXN1uqBvLM8VWmiUll8z0ef1nrZhs7Wts1p1nbyTRh6tSX6bv5vBvRNcJ68i2La5urWdtcbR8HO20fBR1BX/LgWCzAd7TP3F6ONf55+1ROqulgRkUPLhS9EQ/L9pgGAIewH7cfLeNbr5/Ch2bsp9Rn3GoajLq5e9WJxjbUMDauuw+K+qDwIFSuB90PoUoI1BkXNYFaiJSkWRFgJyqbi4ZMB7DdRrZr16lcuoucTPl2tlq/50qjC4WXKIVEVRWo6gy2CEKOUMZt4W+2VnHPqhPY2l4+kDeB/IyKDW7Fae0rYFNbeVK15t5CmnsLB+1nDvUW8sS7k/hi1dZE8r7uInrjL5IZKT+jGbdhrmmp4rS6owSjLoJRN/+zYeaATx3KflTG26+/t/JEvjh/K16XzpGAn++tPMnyXDYdig5A4QHABZEiiJRCzwxjEC1caho8s4pwEiV+ZiDPapM79meg4wWM22ANP1ORwRZBEARBGBlksEzIDgVhXWNPdzFrmqtZtqeBVc3VdAZ9KeWS4jm7mWjrhCWW39YyaYL9tPGftY9sytvZZSVWJ6I0NreXc3yFcfvAvu4i2gP+nGl8YW89p9e1o2nG7Zmrm6tHXCMKth0t45NPnUuJL4KGMVCa9IbMIWjU0fjT9qn8ZccUXLGDRWG6KLTVqMAdgIJDxh8YFzDh8tjAWZ3xFykF3esg0u4CIdNGsxNkl5+pP7uNYdf/YHauHSOtURByg1LGcxS3tpex4UgF/9jdyJstVQSilrcATyA/0xPysOpQNRdMbiWqNJ58t4mOgC9nGre0l3Gwp5BSX5hQ1MX/vD2TUNQ94n4G4BfrZ/Pojin0RjwEoy66gsfmZ9CMQbg/b5/Ks7sbcWnGAGx89be9Rh28PeDpMfyMcoNeYAygBash0Gisdo6UQqTQYaJG/Ex628TPCIIgCPmBPLNMyEg4qvHgpuNZtqeBDUcq6Al7kycUnS4u0k2EWskmPstmIjRTO9nEd3Z2O5Qp8YYTtxKGoi7aAlm8RSwdpjIaCp9bTySHou6UMhn7yYHGvNqPyhu7qKk1VgQEGiBUbqQnPfcsmw4gdYNgk+6UP9jyTv062TeUq1e7/gehMdgDP79anp0SQ/xM7ghEXPxozTye29vAnq5iY0XReDs/DfEc7HdHqSwIoSuNtn4fUZX60pWsbbOU0VBU+EMJP7avuwiFJn7GqQ0F4DImZEIVsdVnk4wVzinP1xQ/I37m2JFnlgmCIOQWeWaZkFMiysUj26ax7WhZ+hjLPIlpLWMNktMFz3ZtZotdP05xq2apQ5qyVntieT1h78DgYY41KqURtK6osGtvmDXm1X4kDN5O8HVCyU5QbogWQ7DSeOZZoMG4jVOPrQBMe3FhF9xbL07SCbReAdr1lRjlI3mjD/ZqMN0Gc6oLx65REHJDW7+fP26bZqxWFj+TpDEYdRu3WQ6Tnzka9HM0aJnoET+TRqMOriAUtkBBi+FndL/xWIBQFQRroH9ybPDM2oDZWGu6+BnxM4IgCMJYQgbLhIx4NJ2C+FsZ7WIku2DXTLpgOB3Z5GeK0+yCXSesdorG9HXj38eyRi0KWhd4u6B4D4nn0YSqjQub/qbYGzcLTSsC7ERluprKdqMNZoObyeYCJdNGsrvosas/WI2CcOwUeqJ4XbGHfk+U85O1vmjMT41aFLQ+KNkDao+RGC0yJmbCJQMDaKFqiPoZeHGA+BlnewVBEARh9JHBMiF7zDGPZknL9DtdGbs+7MYsrOUztRevb063TsBa4zjRmP53NjZZ88aKRiDxPBpvDxTFL2oKTS8NaDSeSxMpJvlNaNYZeavhZiOsAtLN+jstFcnU72BXBNjZ5dRvNhoFYZiYqOcn0Tg+NMYzPL3GnzIViBYaLwvonWasco6UGL+V29KQ+BlBEARBGAvIYJkwOOJxjDVItAt6Nctvp0AzU1Br11emOC5dEG5OtwbG5j5E4wTQqExv3DwArDdeGhCqHHhpQLDOWB2grLfEWjt3EuGUrxzy0l14WOtZfzu16YR5B6S7Yh1Mm4IweDpDXoLxtzDK+Uk0jjuNCjx9xl9Bi5GheyFcZrykpn8y9BxnrEhTmqUxJyMyGRk3VPyMIAiCIAwFGSwbbyjjLY1H+v1EdFdSRm1hEL9HH3STfREPh82vWbcLBM3pTvGVNd8axCpLeqZ+0mFXxtqHnd3WANipb9E4/jQCaCr2LJpmKGg20nSfcUETqI/dtlltrAbQvabGBksm4XblnQTaXfRYN4DdRY5dHesOc6ojTGSUMl5o0hXyJj1X0a3p1BcHcA3hcNncVk532BSSyPlJNI5njUqBOwSuI1BwBEreharVxu2agVrjpQGBBtA9Ng1ni/gZQRAEQTgWZLAs31FGiNEd8rL9aCmrmqt5ZX8dW9rLCEUHBsvcLsX9l7zBmQ3tg+5if3cRRwN++4DSLkA0Y42hnAYpMrVh7s8pbrOzy1zHaoe1nNk+u7ZE48TUaL6gKd8EymMMlgXrYi8NqIVIGUR9aYQ6dWiH04WGk3Br2XRXmOlsMpfL5gpTmDDE/Ex7wMeOo6U8vauJNS3VNPcW0B8ZGCwr8Oj876Wvc2JN56Db39peBmhyfhKNE1SjMlY5F++For3AOmPgLFhjvNG5b4qxAs12kkb8jCAIgiAMBzJYlo8oCOouDnQX8WZrJa8dqGVtSxUHeooI6y7bYE1DcaTfb9tcpr6e31tvXBCli8eseU7fnQJhuwDTKWi1zvJay2eK/8zlM+lIlycaU/ueCBqJgO+o8Ve6jcQbNwM1sdUA9cZKNN1P8u006bC7QEknxmkjmevbbZh09jhtmGw1COMKZaxS3niknDdbqthwpILXD9ZyuM9PRNn7mf6Ioic8+LAipLt47UBtol85Pzn0LRonkEYd/K1Q0GqkqdUQKYX+xtjqs7qBwTNlvosgHeJnBEEQBGEwyGBZPqBAB44GfGw8UsEbh2pYcbCGHR2ldIc8pAQZNjGHQmNtSxWLjzs0qJikM+TlsZ1THNu17TNdcGr+Ho/BjmXmOJt0a592tmTThmi0b3eia9Si4Iq9cbPk3djgWYFxu2Z/E/Q3GG9DSxo8s7uqsxOpLL8Hi7X9dDP/TleedvnCeEQp6Al7eONgDesPV/L24QpWNVfTH7EJFWwOB11BW79/cIergjdbKtlwpMKxXds+5fyU3J9ozNxXNunWPu1syaaNXGrUAM00SaOI+ZlC4yUBoSpj5Vn85TRJq8/EzwiCIAjCUJHBsrGIMkKHQNTN7s5iVhys4Y1DxsXL4T4/0fgsYrqJQJv81w7W0hv2UOyLZGeGgkd3TOHdzhJbG8Gm/3ia1Tan8k722s0SZ6pj15c1AM2mfiabrW1nKi8aJ5ZGLQquXvD2xm6ncUGkEMIVxsBZoAmCVcaFTtIbN+1EW79nYxyWMnYXS9nuGLurRWHcoCAae8blawdrWXmomlWHqtnXU0SpN0JbwGHgy+H/gkLjoS3HsWhaMz53ds/H7Iu4+fm6OUnPPkvqB5v+42lyfspsr2gcnxq1KLhib3YuaIayLaA8xmBZf+PAIFp/vbHyWWmWxsyGWb+LnxEEQRAEkMGysYMybkVp7fOzqa2Cl/fV8WZrFbs6S5KeCRMvm/I7iyBsa1sZz+2t58oZB5wDPlMbbxyq4advzkGPr4axi23sbHCKp5TltxWnINauzXSBqRODtV00ikYn2wajER08scGzwgPAm8bKs3B57KUBjRCsNS5ykgbPnDZKOoMyXc2Z27ZeyJivFK11BrODhDGJMvZmVGl0Br3s7Chlw+EKXjlQx4Yj5bT3+9Fj+9nvjlJbFKQt4MM0EpbV/901LVW8caiaCyYdTn/YKAhGXfzX+tm8erA2ud2x8n93IpyfRKM9+aYRBVoYfB3GX7xstDD23LMq6J5lfE+6bVP8jCAIgiA4IYNlo4WCQNTF4f4CtrSVsepQDWtaqni3s4SuoDdx0ZIScEHqRJ05vrCWNQVXEVzctfJEJpf0c0Z9O5pNIBbWNVr6Cli2p5FfrJ89sLLAxv6Uvs2xkF0Zp9gohxqzjres/YjGVLtFY3LZXGiM/3D3g6ffWBFQ8XbsjZsVxm00/U3G82giJZY3oVkvNqwi7TaaVagddsKcrgCFvEEZt+8f6fdzoKeIt1orWNVcw+E+P3u6i5NWKZd4w0yv6GFXZwm6rhGMuI0H7g/h/25/xMM3Xj2VBxa/wYzynpT/S2Fdoy3g582WKv64dRqvHahF1x2Os7H0f3cinJ9Eoz35rNHTD559ULQPyjcbg2bRgoFnnwWrIFrEwESN+BlBEARBiCODZSOEUsYs+sGeQjYcqWTloWrWtVayr7uYnpBnYHAMkoMjp4DIKZaxyzeVO9hbxPXPLuCS4w4xtbQ3qVpLXyGbjpSzs6OUo0EvKC37YDKTbdnGXTnQmDZes9ri1L4dolE05lpjvIArCP4W469sMyiv8ZKAQL0xcJZ4aYDXpgNwFmD+tG5QszHpBAj5gFIQ0TUO9xewrb2MHR0lvNVaycrmGtoDPiJ68kPAp5b20tpXQCDqpifspacjdmzl4Lje01XCtU8v5EMzDlDiDSeqtAX8bDxSwbajpXQGfcaq5Xz9vzsRzk+icXxp1MKGj9GAoj1GAd0/8LbNYO3Ac8+UzW3R4mcEQRCECYYMlg0HyggH+iJu9nUVs+FIBetaK1nXWsmermJ6wx6UNViwDpApS5o1LrELjMiiPNDe7+ePW46zr4flt12gmCnIs8s39zXcGq19WetZA1HRKBrHmkYtDP42469sM8azaEpiA2cNEKg1VqJF/abKWL5bxTltCGt+pisxYdRRxpsqO4NeukNeNrWV8/K+OnYcLWNXVzEdAR86GhqKSSX9ybfSA2iGf4rGB6tiabn0M/u6ivnFutniZ0SjaByzGhW4A1AYgIIWI1P3Go8ICNYaK8/6JhkTNYnBM6ufED8jCIIgjF9ksCwXKON2l/7Y4Nj6w8bKsbcOV3Kgp8j+mWN2cYI1uMmiX9u4I11AZRe3WIM/c3tOMc5gAkoc8kRjqr2i0b6OnT0TSaMrMvAsmtLtxoVLtMi4oIk/8yxYCXoBAw9yzmR0uosVp7LZbAgh58R8zP7uIra2l7G3q5jlB+rY3FZOX9jtOAGjNI2DvYUDg2WQOMaO9BcM/M7Qt/zftbFHNIrGcadRgTsE7sNQcDg2eBdb5RyqiD0ioB7Cpcaz0FKMsEP8jCAIgpC/yGDZMaAUtAd8vHagln/sbmRzezkHewrpj9hs1mxmIEmTZw2CsoklrAGTXfvmtHS2ZZo8TFfW2rZoFI12tovG5LS0tkXB2238Fb8LuGIPcq6KXdA0GrfW2L5x09p4OsHCaKIU9IY9LN9fx1O7mnhlfx0dQW/qwFiiAinH5KBe0DLax/VE+L8rGtOXtbYtGkfRzwAu0yrnkncw3u5cBP2TjIGz3imxt226SX7jprUh8TOCIAhC/iGDZYNFQXfYw+rmav6xu5FXDtRxoLsQFX++l12Qkk2MYDcraI47sg2UrH2Y6zv16ZRvrm+1zVpGNCb3JxqzQzSm9umUb66fcvGkg7sXinqNBznjMm7RDFUat232N8Ue5FxoXNSkvcpLJ87JMCGX6Dq801nKn7ZP5R+7GtnfU0RYd02s41o0ikbROAY16uDpgbJtULoNqv2GXwlVGANofVOM7ymTNOJnBEEQhPxDBsuyRUFnyMuzuxv47cYZbG0vN573EiddQGMNfOxiBGvAZZdv930ws41OOAV82cycWvNEo2gUjZkZTo0aGBc0/cZbNwsPQuW62Bs3y6G/YeDWzWhR7I2b1oatnQ3mqk0YKkpBc28Bv3p7Fn/aPpXukOWFDhP5uDbniUbRKBozMxIa3UHjBTW+DijeDcprPOcsUG/4m1Cl8cIA3U/yyjPxM4IgCMLYRwbLMnCk38/OoyWsP1zJw1uPY3dXcfLzX+wwB0l26dYgyho7YMlXlny7QMZphtLaltkuqz1OdtkhGkWjaMwfjajYRU0r+FuhYoMxeBZ/aUB/k/EZKY0Nnjl1IBcyw0EoqnGwp4iHt03j8Z2T2d9TlLmSHNeiUTSKxrGmUQsbg2bFu2Nl3cbKs0ip8eyz/kbonRq7ddPamfgZQRAEYWwhg2UZ2Hm0hP/31HmEdFdyxlAmwKwBjTVIMZcD+7jBKRAy5zulW21wCqyc7MoG0ZhczmyXaExGNI6ixtjgmTsIvjYo20LiQc7BauOCJr4yQI+vbpILmOFi+f56/vXF+XSHLKv85Li2RzQmlzPbJRqTEY2jq9EVBVePcetmwSHj1s1oIYSqDF/TO81462bWLwwQBEEQhJFDBssyUOSNokPqTJod5oABnAOYdO1lCoqUTVmnfq3tWW1yCpzSIRqdbbXaYG3PqZ5oTG3PapNotCeXGrWwMXDmb4u9cdNj3D4TrDEGzgINEPFlMEgYCl0hj3HLpfiZ9H2JxlQbrO051RONqe1ZbRKN9uRao7sfig5A4QFjlXOkxBg0C9QbjwcIy6WJIAiCMDZwZS4yOKLRKHfccQfTp0+nsLCQGTNm8B//8R8oNeBBlVJ885vfpLGxkcLCQhYtWsSOHTuS2mlvb2fp0qWUlZVRUVHB9ddfT09PT67NzR7N9Af2QQKkBgqazXenT6d2FKlBULrAyGxvJvvMaaLRuQ3R6NyWaBx/GgG0CPg6ofQdqHkdJj8Gk//qYMTIIn7Gpp71uxzXqe2IRtGYyT5zmmh0biNXfgZlvNW5YiPUPw+T/wKTH3UwYmQZt35GEARByJqcD5Z9//vf57777uPnP/85W7Zs4fvf/z733HMPP/vZzxJl7rnnHu69915++ctfsnLlSoqLi7nkkksIBAKJMkuXLmXTpk0sW7aMJ554guXLl3PjjTfm2tyM9IY9xpsurdgFHxqpgYddHfOnZpNvbsv821rHHDgpSx2n4MgaFMX/0gVTZkSjaLS2KRoH0sazRk0Hb69NJyPPePMzPdYH+ccZ7X0eTxvPx3U8TTSm9i8a7e01Ixpzq9EdNl4WMAYYb35GEARBGDyaMk+R5IAPfvCD1NfX85vf/CaRds0111BYWMjvf/97lFI0NTXxpS99iS9/+csAdHZ2Ul9fzwMPPMCSJUvYsmULJ5xwAqtXr+bMM88E4JlnnuGyyy5j//79NDU1ZbSjq6uL8vJyNnVCadkQxSj4zcbj+faKU5Kdf/y7XUBgDkAylbGWTWNH2nxrGafymdoRjanpZFFGNGZvm5N9g21HNKamk0WZY9XYH4Zbn6Szs5OysqGeWI+d8eZnvr3iJH6zcebY3OdOZcbTcZ3JvsG2IxpT08mijGjM3jYn+wbbzljUKH4mibifGe3tIQiCMF4YzHk15yvLzj33XJ5//nm2b98OwFtvvcWrr77KpZdeCsCuXbtobm5m0aJFiTrl5eUsWLCAFStWALBixQoqKioSjgVg0aJFuFwuVq5cadtvMBikq6sr6e9Y0YHVzdWpDl0zfSoGggIYKGsNAKyBg7U9axvK9N0p2FAO6U7Y9WP+LhpTy4pG0Sga7W0cRcaTn+mPunnjUM342ecT4bgWjaJRNCa3J34GGLt+RhAEQRgaOX+K5te+9jW6urqYO3cubrebaDTKf/7nf7J06VIAmpubAaivr0+qV19fn8hrbm6mrq4u2VCPh6qqqkQZK3fddRff/va3c6rlaMDH+tbK9DNjkBokKJs0pzayCTDsyCY/nd1OQZITojF9G6IxvY2Z8kVj/mscQcaTnznQXcjurpL83OcT4bgWjaLRDtGYvg3xM4kyY8HPCIIgCEMj5yvL/u///o+HHnqIP/zhD7z55ps8+OCD/PCHP+TBBx/MdVdJ3H777XR2dib+9u3bd2wNKnhuTwPNfYWJ3ymfdjNm5mDCqYxdHWuaXQBiLmvNd/ptbd+cb00XjaLRzkZrHWuaaJyYGkeR8eJnlIIn3p1Eb/ztb2N9n0+E41o0piIaM9srGu3rWNPEz2Qk59czgiAIwpDJ+cqyr3zlK3zta19jyZIlAJx88sns2bOHu+66i+uuu46GhgYAWlpaaGxsTNRraWnhtNNOA6ChoYHW1takdiORCO3t7Yn6Vvx+P36/P2c6AlEXD205Dl23eG672TKzk7cGCBqpQUA8YEgX2GQKjqwBjrkv86cddvbY9SEaU/u1tikaRaM5fyJoHAOMFz/T0lfAQ1uOG/v7fCIc16LRHtEoGsXPAPnrZwRBEIShk/OVZX19fbhcyc263W50XQdg+vTpNDQ08Pzzzyfyu7q6WLlyJQsXLgRg4cKFdHR0sHbt2kSZF154AV3XWbBgQa5NTkXBM7ua2NhWYfy2Bg/mAMAanKT77hQ0mMtqlu/W4Mgu0HCq44RdMCUaRaP5u2hMb+9E1zjKjAc/oxT8btN0WvoKjISxvs8nwnEtGlMRjaLRrm/zd/Ezifyx5mcEQRCEYyPnK8uuuOIK/vM//5OpU6dy4oknsm7dOn70ox/xmc98BgBN07j11lv57ne/y6xZs5g+fTp33HEHTU1NXHXVVQDMmzePxYsXc8MNN/DLX/6ScDjMLbfcwpIlS7J6c8yxsq+niB+smUck6hpw6mYnD6nBQbqAwcn527VtDVDMZZ3aMPen4RzUWO0y1xGNyfbZtSUaRWM6W63p41XjGCDv/YyCVc3V/GHrcaC0sb/PJ8JxLRpFo7mOaEy2z64t8TNj288IgiAIx0zOB8t+9rOfcccdd3DTTTfR2tpKU1MTn/3sZ/nmN7+ZKPPVr36V3t5ebrzxRjo6Ojj//PN55plnKCgoSJR56KGHuOWWW7joootwuVxcc8013Hvvvbk2N4WIrvGTtXPY113s7ODtZvCcAgG7PKfvTsGFXWDiFOzYzeiZy1ttFI3pdaTLE42pfYvG8a9xDJDvfqYn7OGe1SfQHvDnxz6fCMe1aEwtLxqTy2fSkS5PNKb2LX5GEARBGONoSik795j3dHV1UV5ezqZOKC3Lrk5Uh//ZMJMfrJ5HSHcbiVZnbre1snXs1rrWACGeZg4WMgUOuQgsRGNyXrZt2dUTjenbFI3Z2zUWNfaH4dYn6ezspKwsyxPrOGYofqYz6OWulSfy8LZp6Cq2ocfyPs8mfzB2icbBtWVXTzSmb1M0Zm/XWNQofiaJuJ+R7SEIgpAbBnNezfkzy/IVpeCZ3U38aO1cY6As3YyXeYbMztkr7AMPc3tOwYS1HbtARtnkW/Os3+1sE40DeaIxFdGY2o5oFI6BiK7xs3Wz+ePW2EBZvuzziXBci8b0tonGgTzRmIr4GUEQBGEcIoNlEBsoa+Rry0+jPxK7MzU+C2b9jiktqRHTZzzQcApO7Nozt2MXpFjtMX8qnIMYayBibls0ikbRKBqHolEYNMGIix+umccDm45HxVeU5dM+nwjHtWh0bls0ikbxM4IgCMIEI+fPLMs3IrrG7zZN50dr59EV8g5k2AUY8fT4b7ugwM7xm9szt2sOPqz1NZvyTu3YBRbmcumCLdEoGq19i8bU+qLR+SJISI+C1n4//9+aefxp21QiypVf+3wiHNeiUTSay2CTbtWCpZxoFD8jCIIgjDsm7mCZgs6Ql/9vzTz+sOU4Qrors5O2CwaywVrHKUiw68spqLFrx1rXKYhJh2h0RjSKRtEoDAJdwY6jpdz64nw2tVUYifm4zyfCcS0aRaMdotEZ8TOCIAjCOGfiDZYp6I24eWlfPb96axZvHa5AxT211clbcQomnAINp+/WoMIuoLELMOLpdu3YtWcXdIhG0SgaReOxaBTSoyCiNN7tKOE3G2ewbE8jR/r9A/n5uM8nwnEtGkWjaBw7GgVBEARhDDAxBssUBHUX73aU8MLeev7+7mS2tZcSVWke2ZbOWdvlKZs8c+BgreMUaFjbzJRnF5RYbXBCNKYiGkWjaHTOE2xRCnpCHta1VrKprZz1rZUs319HT9ibvmI+7POJcFyLRmdbh5onGkWj+BlBEAQhzxn3g2XvHi3mtXebWLankS1tZfTFH+DvNDNm/m3+NGMXUDgFIE59WPuxa8PJJru8dHXs+heNotEpXTTatyEaBQf+440TWd9Vz86OUqLKtKHG0z6fCMe1aLTvXzSKRqd08TOCIAjCOGbcD5YtefI8ej1Fxg+zU7c6Z7sgwlrWLlBJFzBgybMGN+b2M9Wzs8HclrWO2W6rBtGY3Ja5fdEoGkVjZo1CEo9sPQ4KY6vIxus+nwjHtWhM1SAak9syty8axc8IgiAI45pxP1jWG/Ymq3RyzumCB7t0u0DC+t2ubSt2gUq6IMiujFObolE0OvUnGkVjNr+z1SgkMxH2uWgUjaJRNJo/7ezJ5rf4GUEQBGGMkuahXeMEZfpzcsjK8qmZ6pixOnFzcGLON/+2ppnbTBe4mOubbbELWkSjff+iMdVG0Wjfh50d5r7N9UWjYGUi7HPRaN+/aEy1UTTa92Fnh7lvc33RKAiCIAijzvgfLNNIduzpggI7524uZ/1urmfON/dnbcta1tq2FWuwYrXb3J9oFI1WO0SjaBwOjUIyE2Gfi0bRKBpFo/gZQRAEYQIx/gfLINVhm526XTDhFFw4OX6nGTFl+m0NOJwCgnTl09UVjaLRro6dXaJRNNrZOliNQjITYZ+LRtFoV8fOLtEoGu1sFT8jCIIg5BETY7DMzvlaAwSz87cLSMxO3JxvF4g4BR52NjkFENa+rEGFXR27PkRjap5oFI12/ZvtFI2ZNQrJTIR9LhoHyotG0Qii0a5/s53iZwRBEIQ8ZmIMllmdtjl4gAEHrtmUNZexc+B2gYb50y6YsbZrDSCc7HTq12yvaBSNonGgjPVTNOZOo5DMRNjnolE0msuIRtHohPgZQRAEYRww7t+GmXC8VgccT7MLLMz5WPKt7VrbtgsANEsdu2DAaoddf3bE00VjcppoTG5bNKbWE42p5bPRKKQifkY0ikbRaFdPNKaWFz8jCIIg5Anjf2VZugAhnm4OJOwcuzXd3J5doGJt2/w922AiXboV0SgaRaNoNLdt/j4cGoVkJsI+F42iUTSKRnPb5u/iZwRBEIRxyPgfLDOjWT7NKEue+bddwGENDKzpmiUtXR3NUsc6a2i109yOVYtoTM4TjaJRNNr3OVSNQnrG4z6fCMe1aEyta84TjaJR/IwgCIIwwZhYg2VWB292ytk66LiT12x+m9u3BhF2wYRdwGC2xVrHGnjYIRqzQzQOtC8aReOxaBSSmQj7XDRmh2gcaF80ikbxM4IgCEKeMf6fWQbJjllZ0rOpG8caNFjTrX1YAwNrf3bp1t/pbDT3IxrTIxrT9yEaRWM2NsqFjDPjfZ9PhONaNGZGNKbvQzSKnxEEQRDGDeN/sMwcANgFFZjSnerazdLZ5cX7sKY5kSkQsbPHLkgRjZnbtOaLRtFoRTTa22PVKKQy3vf5RDiuRWOq3XZtWvNFo2i0In5GEARBGCdMjNswrY5XM33GnboZZVPWrk2ndp3SNMtfPM0pOLHaZBfYWD/t8kWjaBSNqWmicWgaBXvG8z6fCMe1aBSN6ew217Vr1ylNNIqfEQRBEPKW8b+yLO6w4w7YLliwlrHmx0nXTjoHn67vbOtYgw1rcCEaRaMZ0Zi9vXZtZ6oz0TUKyUyEfS4a7cs42SEas7fXru1MdUTj+NcoCIIgCKPMxFhZZkazfKYrY8YuUHFqQ5EcPJiDgvifdXZtMLZkqi8anfNEY2pZ0SgaM9kymPrCxNjnotE5TzSmlhWNojGTLeJnBEEQhDHG+F9ZFiedA7Zz/nGsDt06A6dZPrHk2/XlFFTYlbfrP509TojG9G2KRvu+RGPm/tPZ40Q+axScGa/7fCIc16LRvp5oFI3iZwRBEIQJyvhfWWYXIMSduTUAsJaxa8s6Axf/tOZZy1h/mwMLa9vW/u3qWPu2s180ikZr36LR/rdozF6jkMp43+cT4bgWjaJRNCbXEz8jCIIgTHAGPVi2fPlyrrjiCpqamtA0jcceeywpXynFN7/5TRobGyksLGTRokXs2LEjqUx7eztLly6lrKyMiooKrr/+enp6epLKvP3227znPe+hoKCAKVOmcM899wxeHSQ7aUgOMDI5ZXNA4lTWOnPnFHA42WWdjbOWtQt8nPoUjfaIxvT9meuIRtGYSeMIIH7Gwmjv84lwXItG0RjPF42jr3EEyDs/IwiCIIw4gx4s6+3t5dRTT+UXv/iFbf4999zDvffeyy9/+UtWrlxJcXExl1xyCYFAIFFm6dKlbNq0iWXLlvHEE0+wfPlybrzxxkR+V1cXF198MdOmTWPt2rX84Ac/4Fvf+ha//vWvhyAR+6DC7LjjvxWpTtsuQFCmv3RBgxVl82dnp7lvc7BhtdWuf9EoGq31RaM9onFoGkcA8TOMrX0+EY5r0Zjct2hMrS8a7RE/M3J+RhAEQRhRNKXUkN2Spmk8+uijXHXVVQAopWhqauJLX/oSX/7ylwHo7Oykvr6eBx54gCVLlrBlyxZOOOEEVq9ezZlnngnAM888w2WXXcb+/ftpamrivvvu4xvf+AbNzc34fD4Avva1r/HYY4+xdevWrGzr6uqivLwcfnI5FHjtHb5d0GDOcwoSnAKSbL87tW/eE055dunWYCibek42OOWJxsx1rPbY2SQaRaNdPScbnPJGS2N/GG59ks7OTsrKyhyMzS3iZ2x+y3Gdvn3R6JwuGu3rOdnglCcaM9ex2mNnk/iZjMT9zEhuD0EQhPHMYM6rOX1m2a5du2hubmbRokWJtPLychYsWMCKFSsAWLFiBRUVFQnHArBo0SJcLhcrV65MlLngggsSjgXgkksuYdu2bRw9etS272AwSFdXV9JfArNTN6PhHDQ4pTvlKVKDhHgwY1fHziaNZJvs8rDkaZZP0WhvQ7Z5olE0Wu0Rjal5o4j4GeS4tmtDNDrbKhqd69nZkG2eaBQ/M9J+RhAEQRhRcjpY1tzcDEB9fX1Sen19fSKvubmZurq6pHyPx0NVVVVSGbs2zH1YueuuuygvL0/8TZkyxchQ2Dt75fDd/Nv8af6zwyk4cQpm4mnxoMMu385eJy2iUTRa2xCNznaKxmPTOIqIn3FIt+sjnibHtb1NojG1jl3/otEe0Sh+ZiT9jCAIgjDijJu3Yd5+++10dnYm/vbt22dkmGe0zE7b7MjNeebf1tk768xYuqAES565v3hZu3at9exsspvJE42i0ckW0Zhqq2g8No0TFPEziEbRKBqt9tghGsXPDBFHPyMIgiCMOJ5cNtbQ0ABAS0sLjY2NifSWlhZOO+20RJnW1takepFIhPb29kT9hoYGWlpaksrEf8fLWPH7/fj9/sxG2gUMkOzcrXl26ebAwum7XdtO9mTz264fO0SjaBSNotH8aWdPNr+z1TiCiJ9hbOxz0SgaRaNoNH/a2ZPNb/EzSWTtZwRBEIRhJ6cry6ZPn05DQwPPP/98Iq2rq4uVK1eycOFCABYuXEhHRwdr165NlHnhhRfQdZ0FCxYkyixfvpxwOJwos2zZMubMmUNlZeXgjFKmPyeHrCyfmqmOGasTNwcn5nzzb2uauc10gYu5vtkWu6BFNNr3LxpTbRSN9n3Y2WHu21xfNI4q4mds2pHjWjSKRtE43jSOImPSzwiCIAgjzqAHy3p6eli/fj3r168HjIdgrl+/nr1796JpGrfeeivf/e53efzxx9mwYQPXXnstTU1NiTfMzJs3j8WLF3PDDTewatUqXnvtNW655RaWLFlCU1MTAJ/4xCfw+Xxcf/31bNq0iUceeYSf/vSnfPGLXxy8Qo1kx54uKLBz7uZy1u/meuZ8c3/WtqxlrW1bsQYrVrvN/YlG0Wi1QzSKxuHQOMyIn2Hs7XPRKBpFo2gUPzN6fkYQBEEYcQZ9G+aaNWt4//vfn/gdP+Ffd911PPDAA3z1q1+lt7eXG2+8kY6ODs4//3yeeeYZCgoKEnUeeughbrnlFi666CJcLhfXXHMN9957byK/vLycZ599lptvvpn58+dTU1PDN7/5TW688cahqbQ6X3MgYBdMOAUXTk7cOiNm/m5XN1Nb1nYy2Wtns2gUjaJRNA6nxmFE/EyG9uW4zq4tazui0d5m0Sgax6rGYSQv/YwgCIIwomhKKZW5WP7R1dVFeXk5/ORyKPTaF4o7ZvMWSOfknZy4uR3rJ2QXQGQqh01eNoGFaEy1QzSKRtGYuRw2eX1h+Lcn6ezspKyszKHSxEH8jI1t5n6c7BCNolE0Zi6HTd5E0Ch+Jom4n5HtIQiCkBsGc14dN2/DTIuy+bQ68viftay5jDUtXk4zlbF+ZgpqNEs5qw12fVr7NdsrGkWjaBwoY/0UjbnTKCQzEfa5aBSN5jKiUTQ6IX5GEARBGAfk9G2YY5K447U64HiaXWBhzseSb23X2rZdAKBZ6tgFA1Y77PqzI54uGpPTRGNy26IxtZ5oTC2fjUYhFfEzolE0ika7eqIxtbz4GUEQBCFPGP8ry9IFCPF0cyBh59it6eb27AIVa9vm79kGE+nSrYhG0SgaRaO5bfP34dAoJDMR9rloFI2iUTSa2zZ/Fz8jCIIgjEPG/2CZGc3yaUZZ8sy/7QIOa2BgTdcsaenqaJY61llDq53mdqxaRGNynmgUjaLRvs+hahTSMx73+UQ4rkVjal1znmgUjeJnBEEQhAnGxBosszp4s1PO1kHHnbxm89vcvjWIsAsm7AIGsy3WOtbAww7RmB2icaB90Sgaj0WjkMxE2OeiMTtE40D7olE0ip8RBEEQ8ozx/8wySHbMypKeTd041qDBmm7twxoYWPuzS7f+TmejuR/RmB7RmL4P0Sgas7FRLmScGe/7fCIc16IxM6IxfR+iUfyMIAiCMG4Y/4Nl5gDALqjAlO5U126Wzi4v3oc1zYlMgYidPXZBimjM3KY1XzSKRiui0d4eq0YhlfG+zyfCcS0aU+22a9OaLxpFoxXxM4IgCMI4YdwOlikV886BcKrjTimMfWAwGKc9mPazyXeyKV190Sgas0E0isahagyEjaz4+XWCI34my/ZEY2Y7s8lzyheN9mVFY35qFD+TRHw7dHV1jbIlgiAI44P4+TQbPzNuB8va2tqML7c/O7qGCIIgjDO6u7spLy8fbTNGHfEzgiAIw4P4GYPu7m4ApkyZMsqWCIIgjC+y8TPjdrCsqqoKgL179+aFs+3q6mLKlCns27ePsrKy0TYnK/LN5nyzF8TmkSDf7IXRs1kpRXd3N01NTSPW51gm3/wM5N/xnm/2Qv7ZnG/2Qv7ZnG/2gviZsUJTUxObN2/mhBNOyJvjR4734Sff7IX8sznf7IX8szkf/My4HSxzuYwXfZaXl+fFwRKnrKwsr+yF/LM53+wFsXkkyDd7YXRszpdBoZEgX/0M5N/xnm/2Qv7ZnG/2Qv7ZnG/2gviZ0cblcjFp0iQg/46ffLMX8s/mfLMX8s/mfLMX8s/msexnXMNshyAIgiAIgiAIgiAIgiDkDTJYJgiCIAiCIAiCIAiCIAgxxu1gmd/v584778Tv94+2KVmRb/ZC/tmcb/aC2DwS5Ju9kJ82j0fycT/km835Zi/kn835Zi/kn835Zi/kp83jlXzbF/lmL+SfzflmL+SfzflmL+Sfzflgr6bk3cyCIAiCIAiCIAiCIAiCAIzjlWWCIAiCIAiCIAiCIAiCMFhksEwQBEEQBEEQBEEQBEEQYshgmSAIgiAIgiAIgiAIgiDEkMEyQRAEQRAEQRAEQRAEQYghg2WCIAiCIAiCIAiCIAiCEGNcDpb94he/4LjjjqOgoIAFCxawatWqUbHjrrvu4qyzzqK0tJS6ujquuuoqtm3bllTmfe97H5qmJf197nOfSyqzd+9eLr/8coqKiqirq+MrX/kKkUhkWGz+1re+lWLP3LlzE/mBQICbb76Z6upqSkpKuOaaa2hpaRk1e4877rgUezVN4+abbwbGxvZdvnw5V1xxBU1NTWiaxmOPPZaUr5Tim9/8Jo2NjRQWFrJo0SJ27NiRVKa9vZ2lS5dSVlZGRUUF119/PT09PUll3n77bd7znvdQUFDAlClTuOeee4bF5nA4zG233cbJJ59McXExTU1NXHvttRw8eDCpDbt9c/fddw+LzZm28ac+9akUWxYvXpxUZixtY8D2uNY0jR/84AeJMiO5jYVUxNcMjXzzMzD2fY34GfEzQ7FZ/MzYR/zM0Mk3XzPW/Qzkn6/JNz+TyWYYe75m3PsZNc54+OGHlc/nU7/97W/Vpk2b1A033KAqKipUS0vLiNtyySWXqPvvv19t3LhRrV+/Xl122WVq6tSpqqenJ1Hmve99r7rhhhvUoUOHEn+dnZ2J/Egkok466SS1aNEitW7dOvXUU0+pmpoadfvttw+LzXfeeac68cQTk+w5fPhwIv9zn/ucmjJlinr++efVmjVr1DnnnKPOPffcUbO3tbU1ydZly5YpQL344otKqbGxfZ966in1jW98Q/31r39VgHr00UeT8u+++25VXl6uHnvsMfXWW2+pD33oQ2r69Omqv78/UWbx4sXq1FNPVW+88YZ65ZVX1MyZM9XHP/7xRH5nZ6eqr69XS5cuVRs3blR//OMfVWFhofrVr36Vc5s7OjrUokWL1COPPKK2bt2qVqxYoc4++2w1f/78pDamTZumvvOd7yRte/Oxn0ubM23j6667Ti1evDjJlvb29qQyY2kbK6WSbD106JD67W9/qzRNU++8806izEhuYyEZ8TVDJ9/8jFJj39eInxE/MxSbxc+MbcTPHBv55mvGup9RKv98Tb75mUw2KzX2fM149zPjbrDs7LPPVjfffHPidzQaVU1NTequu+4aRasMWltbFaBefvnlRNp73/te9a//+q+OdZ566inlcrlUc3NzIu2+++5TZWVlKhgM5tzGO++8U5166qm2eR0dHcrr9ao//elPibQtW7YoQK1YsWJU7LXyr//6r2rGjBlK13Wl1NjbvtaTiK7rqqGhQf3gBz9IpHV0dCi/36/++Mc/KqWU2rx5swLU6tWrE2WefvpppWmaOnDggFJKqf/6r/9SlZWVSTbfdtttas6cOTm32Y5Vq1YpQO3ZsyeRNm3aNPXjH//Ysc5w2ezkWK688krHOvmwja+88kp14YUXJqWN1jYWxNccC/nuZ5Qa275G/MwA4mfS22xF/MzYQvzMsZHvvmYs+xml8s/X5JufUSr/fM149DPj6jbMUCjE2rVrWbRoUSLN5XKxaNEiVqxYMYqWGXR2dgJQVVWVlP7QQw9RU1PDSSedxO23305fX18ib8WKFZx88snU19cn0i655BK6urrYtGnTsNi5Y8cOmpqaOP7441m6dCl79+4FYO3atYTD4aTtO3fuXKZOnZrYvqNhb5xQKMTvf/97PvOZz6BpWiJ9rG1fM7t27aK5uTlpm5aXl7NgwYKkbVpRUcGZZ56ZKLNo0SJcLhcrV65MlLngggvw+XxJOrZt28bRo0eHXUdnZyeaplFRUZGUfvfdd1NdXc3pp5/OD37wg6Sl4CNt80svvURdXR1z5szh85//PG1tbUm2jOVt3NLSwpNPPsn111+fkjeWtvFEQXzNsZOvfgbyz9eInxE/kw3iZ8YW4mdyQ776mnzzMzA+fE0++BnIX1+Tj37GM6ytjzBHjhwhGo0mnSQA6uvr2bp16yhZZaDrOrfeeivnnXceJ510UiL9E5/4BNOmTaOpqYm3336b2267jW3btvHXv/4VgObmZls98bxcs2DBAh544AHmzJnDoUOH+Pa3v8173vMeNm7cSHNzMz6fL+UEUl9fn7BlpO0189hjj9HR0cGnPvWpRNpY275W4n3Y2WDepnV1dUn5Ho+HqqqqpDLTp09PaSOeV1lZOSz2g/HMh9tuu42Pf/zjlJWVJdK/8IUvcMYZZ1BVVcXrr7/O7bffzqFDh/jRj3404jYvXryYD3/4w0yfPp133nmHr3/961x66aWsWLECt9s95rfxgw8+SGlpKR/+8IeT0sfSNp5IiK85NvLZz0D++RrxM+JnskH8zNhC/Myxk8++Jt/8jLmPfPU1+eBnIL99TT76mXE1WDaWufnmm9m4cSOvvvpqUvqNN96Y+H7yySfT2NjIRRddxDvvvMOMGTNG2kwuvfTSxPdTTjmFBQsWMG3aNP7v//6PwsLCEbdnMPzmN7/h0ksvpampKZE21rbveCMcDvPRj34UpRT33XdfUt4Xv/jFxPdTTjkFn8/HZz/7We666y78fv+I2rlkyZLE95NPPplTTjmFGTNm8NJLL3HRRReNqC1D4be//S1Lly6loKAgKX0sbWNhbJAPviaf/QyIrxlpxM+MDOJnhGzJBz8D+e1rxM+MLPniZyC/fU0++plxdRtmTU0Nbrc75U0mLS0tNDQ0jJJVcMstt/DEE0/w4osvMnny5LRlFyxYAMDOnTsBaGhosNUTzxtuKioqmD17Njt37qShoYFQKERHR0eKPXFbRsvePXv28Nxzz/HP//zPacuNte0b7yPdMdvQ0EBra2tSfiQSob29fVS3e9yx7Nmzh2XLliXNwtixYMECIpEIu3fvHjWb4xx//PHU1NQkHQdjcRsDvPLKK2zbti3jsQ1jaxuPZ8TX5JZ88TOQn75G/Iz4mUyInxl7iJ/JPfnia/LRz5j7yDdfk89+BvLH1+SrnxlXg2U+n4/58+fz/PPPJ9J0Xef5559n4cKFI26PUopbbrmFRx99lBdeeCFl+aAd69evB6CxsRGAhQsXsmHDhqSDPv4f+YQTThgWu8309PTwzjvv0NjYyPz58/F6vUnbd9u2bezduzexfUfL3vvvv5+6ujouv/zytOXG2vadPn06DQ0NSdu0q6uLlStXJm3Tjo4O1q5dmyjzwgsvoOt6wlEuXLiQ5cuXEw6Hk3TMmTNnWJamxh3Ljh07eO6556iurs5YZ/369bhcrsTS4JG22cz+/ftpa2tLOg7G2jaO85vf/Ib58+dz6qmnZiw7lrbxeEZ8TW7JFz8D+elrxM+In8mE+Jmxh/iZ3JMvviYf/Qzkp6/Jdz8D+eNr8tbPDPsrBEaYhx9+WPn9fvXAAw+ozZs3qxtvvFFVVFQkvRlkpPj85z+vysvL1UsvvZT0KtS+vj6llFI7d+5U3/nOd9SaNWvUrl271N/+9jd1/PHHqwsuuCDRRvw1wBdffLFav369euaZZ1Rtbe2wvbb4S1/6knrppZfUrl271GuvvaYWLVqkampqVGtrq1LKeM3y1KlT1QsvvKDWrFmjFi5cqBYuXDhq9iplvB1o6tSp6rbbbktKHyvbt7u7W61bt06tW7dOAepHP/qRWrduXeJNK3fffbeqqKhQf/vb39Tbb7+trrzyStvXLJ9++ulq5cqV6tVXX1WzZs1KegVwR0eHqq+vV5/85CfVxo0b1cMPP6yKioqG/ErddDaHQiH1oQ99SE2ePFmtX78+6diOv6Xk9ddfVz/+8Y/V+vXr1TvvvKN+//vfq9raWnXttdcOi83p7O3u7lZf/vKX1YoVK9SuXbvUc889p8444ww1a9YsFQgExuQ2jtPZ2amKiorUfffdl1J/pLexkIz4mqGTj35GqbHta8TPiJ8ZrM1xxM+MXcTPHBv56GvGsp9RKv98Tb75mUw2j0VfM979zLgbLFNKqZ/97Gdq6tSpyufzqbPPPlu98cYbo2IHYPt3//33K6WU2rt3r7rgggtUVVWV8vv9aubMmeorX/mK6uzsTGpn9+7d6tJLL1WFhYWqpqZGfelLX1LhcHhYbP7Yxz6mGhsblc/nU5MmTVIf+9jH1M6dOxP5/f396qabblKVlZWqqKhIXX311erQoUOjZq9SSv3jH/9QgNq2bVtS+ljZvi+++KLtcXDdddcppYxXLd9xxx2qvr5e+f1+ddFFF6VoaWtrUx//+MdVSUmJKisrU5/+9KdVd3d3Upm33npLnX/++crv96tJkyapu+++e1hs3rVrl+Ox/eKLLyqllFq7dq1asGCBKi8vVwUFBWrevHnqe9/7XtKJPJc2p7O3r69PXXzxxaq2tlZ5vV41bdo0dcMNN6QEm2NpG8f51a9+pQoLC1VHR0dK/ZHexkIq4muGRj76GaXGtq8RPyN+ZrA2xxE/M7YRPzN08tHXjGU/o1T++Zp88zOZbB6Lvma8+xlNKaVsFpwJgiAIgiAIgiAIgiAIwoRjXD2zTBAEQRAEQRAEQRAEQRCOBRksEwRBEARBEARBEARBEIQYMlgmCIIgCIIgCIIgCIIgCDFksEwQBEEQBEEQBEEQBEEQYshgmSAIgiAIgiAIgiAIgiDEkMEyQRAEQRAEQRAEQRAEQYghg2WCIAiCIAiCIAiCIAiCEEMGywRBEARBEARBEARBEAQhhgyWCYIgCIIgCIIgCIIgCEIMGSwTBEEQBEEQBEEQBEEQhBgyWCYIgiAIgiAIgiAIgiAIMf5/I+BYFC4HgRsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/5klEQVR4nOydd5wURdqAn56wsznCsuScRVBOFAExc4iBExN6CBhPMet5evqZs+cdJlDPO/UUzxPTmTNiTiDKiSA5LOwSN6cJ9f3RO0NPTXXP7LLLBurhN2x3xfftrq566+3uakMIIdBoNBqNRqPRaDQajUaj0Wg0uFpaAI1Go9FoNBqNRqPRaDQajaa1oJ1lGo1Go9FoNBqNRqPRaDQaTT3aWabRaDQajUaj0Wg0Go1Go9HUo51lGo1Go9FoNBqNRqPRaDQaTT3aWabRaDQajUaj0Wg0Go1Go9HUo51lGo1Go9FoNBqNRqPRaDQaTT3aWabRaDQajUaj0Wg0Go1Go9HUo51lGo1Go9FoNBqNRqPRaDQaTT3aWabRaDQajUaj0Wg0Go1Go9HUo51lmn2CW265BcMwWlqMvcbhhx/Ofvvt16Rl9urVixkzZjRpmRqNRtPSGIbBLbfc0tJixGXGjBn06tUrKqypZT/88MM5/PDDm6y81kivXr04/vjjm6y8Tz75BMMweOmll+KmTeQcPv300xiGwbp16xKu+5NPPmmY0BqNRtPG0P2dSUVFBfn5+cybNy8S1pbnuevWrcMwDJ5++ulI2HXXXcfBBx/cckJZ0M4yTZtl7dq1XHLJJQwYMIDU1FRSU1MZMmQIs2bN4qeffmpp8RqMYRhccsklLS2GRqNpo8yZMwfDMFqNgdGeCBtz4Z/b7aZHjx787ne/Y8mSJS0tXoNYtmwZt9xyS0LOmL1FeBIU/nm9Xvr06cPZZ5/NmjVrWlq8FmfOnDlREwmNZk8JO2W///77lhal2di4cSO33noro0aNIicnhw4dOnD44Yfz4YcfxqTdsmUL1113HUcccQQZGRlN5pSpq6vjwQcf5IADDiAzM5Ps7GyGDh3KBRdcwPLly/e4/NbIXXfdxWuvvdZi9Yfbtt3v66+/bjHZmoIHH3yQjIwMzjjjjGarQ7Z5XC4Xubm5TJw4ka+++qrZ6g1zxRVX8OOPP/L66683e13x8LS0ABpNY3jzzTc5/fTT8Xg8nHXWWQwfPhyXy8Xy5ct55ZVXmDt3LmvXrqVnz54A3HjjjVx33XUtLLVGo9E0H/PmzaNXr158++23rFq1in79+rW0SO2OqVOnctxxxxEMBvnll1+YO3cu77zzDl9//TUjRozY6/JUV1fj8TTMlFu2bBm33norhx9+eMxTTu+//34TStdwLrvsMg466CD8fj+LFy/miSee4K233mLp0qV06dKlRWVrCv7+978TCoUc00ybNo0zzjgDn88XCZszZw4dOnSIebr7sMMOo7q6mqSkpOYQV6Np0/z3v//l3nvvZfLkyUyfPp1AIMC//vUvjjnmGP75z38yc+bMSNoVK1Zw77330r9/f4YNG9ZkDoEpU6bwzjvvMHXqVM4//3z8fj/Lly/nzTff5NBDD2XQoEFNUk9r4q677uKUU05h8uTJLSrHbbfdRu/evWPC27Jt5Pf7efDBB7nyyitxu92R8Oaa51ptnl9//ZU5c+ZwxBFH8N133zFs2LAmry9MQUEBJ510En/5y1848cQTm62eRNDOMk2bY/Xq1Zxxxhn07NmTjz76iM6dO0fF33vvvcyZMweXa/eDkx6Pp8ETCo1Go2krrF27li+//JJXXnmFCy+8kHnz5nHzzTfHzRcIBAiFQnqynSAHHnggv//97yP7Y8aM4cQTT2Tu3Lk8/vjjyjyVlZWkpaU1izzJyclNWl5Lt4Nx48ZxyimnADBz5kwGDBjAZZddxjPPPMP111+vzNOcx7ep8Xq9cdO43e6oSZATLperyduARtNeOOKII9iwYQMdOnSIhP3hD39gxIgR3HTTTVHOspEjR7Jjxw5yc3N56aWXOPXUU/e4/u+++44333yTO++8kz//+c9RcY888gglJSV7XIfGnokTJ/Kb3/ymQXmcbKI9HWuEENTU1JCSktLoMt588022bdvGaaedFhXeXPNc2eYZN24cEydOZO7cucyZM6fJ67Ny2mmnceqpp7JmzRr69OnTrHU5oV/D1LQ57rvvPiorK3nqqadiHGVgdhiXXXYZ3bt3j4TJ73Lvt99+HHHEETF5Q6EQXbt2jRjr4bDZs2czdOhQkpOT6dSpExdeeCG7du2KyhteB+Xzzz9n1KhRJCcn06dPH/71r381hdqAeZds0qRJdOnSBZ/PR9++fbn99tsJBoPK9IsWLeLQQw8lJSWF3r1789hjj8Wkqa2t5eabb6Zfv374fD66d+/OtddeS21traMsfr+fW2+9lf79+5OcnExeXh5jx47lgw8+aBJdNRpN4sybN4+cnBwmTZrEKaecErWWRZjwY/V/+ctfmD17Nn379sXn87Fs2TLAfBXuN7/5DcnJyfTt25fHH39cuQ5G+JXx+fPnM2TIEFJSUhg9ejRLly4F4PHHH6dfv34kJydz+OGHx7zu99lnn3HqqafSo0ePSJ9z5ZVXUl1dHUmzdetWOnbsyOGHH44QIhK+atUq0tLSOP300yNhifZhtbW1XHnllXTs2JGMjAxOPPFENm3a1LgDXs+RRx4JmM5K2P36x8KFC7n44ovJz8+nW7dukfTvvPMO48aNIy0tjYyMDCZNmsTPP/8cU+5rr73GfvvtR3JyMvvttx+vvvqqsn7VmmWFhYWce+65kXGid+/eXHTRRdTV1fH0009HJoFHHHFE5BWL8OtGqjXLtm7dyrnnnkunTp1ITk5m+PDhPPPMM1FprG3riSeeiLStgw46iO+++y7h4ykjH99we1y2bBlnnnkmOTk5jB07FjAnObfffnuk7l69evHnP//Zdix7//33GTFiBMnJyQwZMoRXXnklKn7nzp1cc801DBs2jPT0dDIzM5k4cSI//vijsrxgMMif//xnCgoKSEtL48QTT2Tjxo1RaVRrlsnIa5b16tWLn3/+mYULF0bOV/gc2a3h88033/Db3/6WrKwsUlNTGT9+PF988UVUmvLycq644gp69eqFz+cjPz+fY445hsWLFzvKp2m/zJgxg/T0dDZs2MDxxx9Peno6Xbt25dFHHwVg6dKlHHnkkaSlpdGzZ0+ef/75qPwNuWbWr1/PiSeeSFpaGvn5+Vx55ZW89957jW7PKoYOHRrlKAPw+Xwcd9xxbNq0ifLy8kh4RkYGubm5CR2n7du3s3z5cqqqqhzTrV69GjBvqsi43W7y8vIi+3Z9g2oMrq6u5rLLLqNDhw6RsaywsFA5HiQ6rgM899xzjBw5kpSUFHJzcznjjDNi+rCVK1cyZcoUCgoKSE5Oplu3bpxxxhmUlpYC5phUWVnJM888E+mvrE/EFhYWcs4559CpUyd8Ph9Dhw7ln//8Z4wsmzZtYvLkyVHtI968pKE42URNMdaE54Xvvfcev/nNb0hJSYncVPvggw8YO3Ys2dnZpKenM3DgwBiHqorXXnuNXr160bdv36hwJ1stbE+Ej/e7777b6GM2btw4YHfbDlNSUsIVV1xB9+7d8fl89OvXj3vvvTfmSeqSkhJmzJhBVlYW2dnZTJ8+3dZpfPTRRwPm3Lcl0Y/aaNocb775Jv369dujdXlOP/10brnlFoqKiigoKIiEf/7552zevDnqPfALL7yQp59+mpkzZ3LZZZexdu1aHnnkEX744Qe++OKLqDvFq1at4pRTTuHcc89l+vTp/POf/2TGjBmMHDmSoUOHNlreME8//TTp6elcddVVpKen8/HHH3PTTTdRVlbG/fffH5V2165dHHfccZx22mlMnTqVF198kYsuuoikpCTOOeccwHQEnnjiiXz++edccMEFDB48mKVLl/K3v/2NX3/91XHNgVtuuYW7776b8847j1GjRlFWVsb333/P4sWLOeaYY/ZYV41Gkzjz5s3j5JNPJikpialTpzJ37ly+++47DjrooJi0Tz31FDU1NVxwwQX4fD5yc3P54Ycf+O1vf0vnzp259dZbCQaD3HbbbXTs2FFZ32effcbrr7/OrFmzALj77rs5/vjjufbaa5kzZw4XX3wxu3bt4r777uOcc87h448/juSdP38+VVVVXHTRReTl5fHtt9/y8MMPs2nTJubPnw9Afn4+c+fO5dRTT+Xhhx/msssuIxQKMWPGDDIyMiJ3NBvSh5133nk899xznHnmmRx66KF8/PHHTJo0aY+Oe9hgtE56AC6++GI6duzITTfdRGVlJQDPPvss06dPZ8KECdx7771UVVUxd+5cxo4dyw8//BCZKL3//vtMmTKFIUOGcPfdd7Njxw5mzpwZ5XSzY/PmzYwaNYqSkhIuuOACBg0aRGFhIS+99BJVVVUcdthhXHbZZTz00EP8+c9/ZvDgwQCRvzLV1dUcfvjhrFq1iksuuYTevXszf/58ZsyYQUlJCZdffnlU+ueff57y8nIuvPBCDMPgvvvu4+STT2bNmjUJPVUlY3d8Tz31VPr3789dd90Vcaaed955PPPMM5xyyilcffXVfPPNN9x999388ssvMc7GlStXcvrpp/OHP/yB6dOn89RTT3Hqqafy7rvvRsavNWvW8Nprr3HqqafSu3dviouLefzxxxk/fjzLli2LeS30zjvvxDAM/vSnP7F161Zmz57N0UcfzZIlS/boSYLZs2dz6aWXkp6ezg033ABAp06dbNN//PHHTJw4kZEjR3LzzTfjcrl46qmnOPLII/nss88YNWoUYD5h89JLL3HJJZcwZMgQduzYweeff84vv/zCgQce2Gh5NW2bYDDIxIkTOeyww7jvvvuYN28el1xyCWlpadxwww2cddZZnHzyyTz22GOcffbZjB49OvKqW6LXTGVlJUceeSRbtmzh8ssvp6CggOeff54FCxbEyJNoe24IRUVFkbWOG8MjjzzCrbfeyoIFCxw/iBJeCmbevHmMGTOmyZ78mTFjBi+++CLTpk3jkEMOYeHChcqxrCHj+p133sn//d//cdppp3Heeeexbds2Hn74YQ477DB++OEHsrOzqaurY8KECdTW1nLppZdSUFBAYWEhb775JiUlJWRlZfHss89G5gUXXHABQMSxU1xczCGHHBJx4nTs2JF33nmHc889l7KyMq644grAHHeOOuooNmzYwGWXXUaXLl149tlno+yIRCgtLWX79u1RYYZhxIwnKpsozJ6ONStWrGDq1KlceOGFnH/++QwcOJCff/6Z448/nv3335/bbrsNn8/HqlWrEnIAf/nllw3qnz///HNeeeUVLr74YjIyMnjooYeYMmUKGzZsiDkOiRC+iZOTkxMJq6qqYvz48RQWFnLhhRfSo0cPvvzyS66//nq2bNnC7NmzAfPJupNOOonPP/+cP/zhDwwePJhXX32V6dOnK+vKysqib9++fPHFF1x55ZUNlrXJEBpNG6K0tFQAYvLkyTFxu3btEtu2bYv8qqqqInE333yzsDb3FStWCEA8/PDDUWVcfPHFIj09PZL3s88+E4CYN29eVLp33303Jrxnz54CEJ9++mkkbOvWrcLn84mrr746rm6AmDVrlmMaq05hLrzwQpGamipqamoiYePHjxeAeOCBByJhtbW1YsSIESI/P1/U1dUJIYR49tlnhcvlEp999llUmY899pgAxBdffBGl3/Tp0yP7w4cPF5MmTYqrl0ajaV6+//57AYgPPvhACCFEKBQS3bp1E5dffnlUurVr1wpAZGZmiq1bt0bFnXDCCSI1NVUUFhZGwlauXCk8Ho+QTQVA+Hw+sXbt2kjY448/LgBRUFAgysrKIuHXX3+9AKLSqvqxu+++WxiGIdavXx8VPnXqVJGamip+/fVXcf/99wtAvPbaa5H4RPuwJUuWCEBcfPHFUenOPPNMAYibb745RiYr4WN36623im3btomioiLxySefiAMOOEAA4uWXXxZCCPHUU08JQIwdO1YEAoFI/vLycpGdnS3OP//8qHKLiopEVlZWVPiIESNE586dRUlJSSTs/fffF4Do2bNnVH5Z9rPPPlu4XC7x3XffxegQCoWEEELMnz9fAGLBggUxacaPHy/Gjx8f2Z89e7YAxHPPPRcJq6urE6NHjxbp6emRcx0+Pnl5eWLnzp2RtP/9738FIN54442YuqwsWLBAAOKf//yn2LZtm9i8ebN46623RK9evYRhGBF9wmP51KlTo/KHz+95550XFX7NNdcIQHz88ceRsPBYHT5nQpi2RefOncUBBxwQCaupqRHBYDCqvLVr1wqfzyduu+22GNm7du0a1fZffPFFAYgHH3wwEjZ9+vS45zDchqzXzNChQ6POi1x3+FyGQiHRv39/MWHChMj5FsK85nr37i2OOeaYSFhWVlZcm0PTfgm3M2tfMX36dAGIu+66KxK2a9cukZKSIgzDEC+88EIkfPny5TFtN9Fr5oEHHojpy6urq8WgQYMa3Z4TZeXKlSI5OVlMmzbNNo1THynE7n7ILj5MKBSK2OOdOnUSU6dOFY8++mjMOCeEum+w1hVm0aJFAhBXXHFFVLoZM2bEnI9Ex/V169YJt9st7rzzzqgyly5dKjweTyT8hx9+EICYP3++o95paWlR84Uw5557rujcubPYvn17VPgZZ5whsrKyIrZBeNx58cUXI2kqKytFv379Ejru4bat+vl8vkg6J5uoKcead999Nyrt3/72NwGIbdu2Oeoh4/f7hWEYyjml3E6EMMeWpKQksWrVqkjYjz/+qJz/yqhsns8++0wcdNBBMW3g9ttvF2lpaeLXX3+NKuO6664TbrdbbNiwQQghxGuvvSYAcd9990XSBAIBMW7cOAGIp556KkaOY489VgwePNhR1uZGv4apaVOUlZUBkJ6eHhN3+OGH07Fjx8gv/Ni4igEDBjBixAj+85//RMKCwSAvvfQSJ5xwQuQu8Pz588nKyuKYY45h+/btkd/IkSNJT0+PuQs2ZMiQyCOqAB07dmTgwIFN9jUv693p8vJytm/fzrhx46iqqor5qo7H4+HCCy+M7CclJXHhhReydetWFi1aFNFv8ODBDBo0KEq/8Ksvqrt8YbKzs/n5559ZuXJlk+im0Wgax7x58+jUqVPk1XLDMDj99NN54YUXlK9oT5kyJerOcjAY5MMPP2Ty5MlRT8v069ePiRMnKus86qijol4ZCT/pO2XKFDIyMmLCrX2gtR+rrKxk+/btHHrooQgh+OGHH6LqeeSRR8jKyuKUU07h//7v/5g2bRonnXRSJD7RPuztt98GzAXkrYTvZCfKzTffTMeOHSkoKODwww9n9erV3HvvvZx88slR6c4///yodac++OADSkpKmDp1apScbrebgw8+OCLnli1bWLJkCdOnTycrKyuS/5hjjmHIkCGOsoVCIV577TVOOOEE5Totjfms/Ntvv01BQQFTp06NhHm9Xi677DIqKipYuHBhVPrTTz896o5zeDxMdAw855xz6NixI126dGHSpEmR13lkff7whz/EyAlw1VVXRYVfffXVALz11ltR4V26dOF3v/tdZD8zM5Ozzz6bH374gaKiIsB8XSu89mkwGGTHjh2R12VUryqeffbZUW3/lFNOoXPnzhHZ9gZLlixh5cqVnHnmmezYsSPSziorKznqqKP49NNPI6/FZGdn880337B58+a9Jp+mbXDeeedFtrOzsxk4cCBpaWlR6yQNHDiQ7OzsqGs70Wvm3XffpWvXrlELdycnJ3P++edHydGQ9pwIVVVVnHrqqaSkpHDPPfckfkAkbrnlFoQQjk+Vgdnnvvfee9xxxx3k5OTw73//m1mzZtGzZ09OP/30Rq1ZFn6F7uKLL44Kv/TSS6P2GzKuv/LKK4RCIU477bSo8amgoID+/ftHxqfwmPTee+/FfQVVRgjByy+/zAknnIAQIqqeCRMmUFpaGmkjb7/9Np07d45aEic1NTXypFqiPProo3zwwQdRv3feeScmnWwTWdnTsaZ3795MmDAhKiw7OxswXy9sSPvduXMnQoioMTYeRx99dNQrm/vvvz+ZmZkJj8lWm2fcuHH88ssvPPDAA1HnZv78+YwbN46cnJyo83r00UcTDAb59NNPAfPYeTweLrrookhet9sd03athMtsSfRrmJo2RdgQraioiIl7/PHHKS8vp7i4OGoxQjtOP/10/vznP1NYWEjXrl355JNP2Lp1a9RaOCtXrqS0tJT8/HxlGVu3bo3a79GjR0yanJycmPXNGsvPP//MjTfeyMcffxxxHIYJrxcQpkuXLjELUQ4YMAAwH6M95JBDWLlyJb/88ovtICHrZ+W2227jpJNOYsCAAey333789re/Zdq0aey///6NUU2j0TSCYDDICy+8wBFHHBFZ1wlMJ9UDDzzARx99xLHHHhuVR/461NatW6murlZ+Icruq1FyXxc2oq1rRVrDrX3ghg0buOmmm3j99ddj+ka5H8vNzeWhhx7i1FNPpVOnTjz00ENR8Yn2YevXr8flcsWs8zFw4EBlPjsuuOACTj31VFwuF9nZ2QwdOjTqq4Vh5GMcvqkQduLJZGZmRuQE6N+/f0waOydNmG3btlFWVsZ+++2XmDIJsH79evr37x/1wRzY/dpmWN4wcrsIG/WJjoE33XQT48aNw+1206FDBwYPHqx8dUk+vuHzK7fXgoICsrOzY+Ts169fjPPQOj4WFBQQCoV48MEHmTNnDmvXro1yPKteX5HPmWEY9OvXL2bNvuYk3M7sXmsB8xrLycnhvvvuY/r06XTv3p2RI0dy3HHHcfbZZ7foQsqalic5OTmmP83KyqJbt24x10xWVlbUtZ3oNbN+/Xr69u0bU558/TakPccjGAxyxhlnsGzZMt5555299nVdn8/HDTfcwA033MCWLVtYuHAhDz74IC+++CJer5fnnnuuQeWF+zq5D5SPXUPG9ZUrVyKEUI47sPvDJL179+aqq67ir3/9K/PmzWPcuHGceOKJ/P73v4+6uaNi27ZtlJSU8MQTT/DEE08o01jHa1Uf3dDxetSoUQkt8K/6YqZdXEPHGlXZp59+Ok8++STnnXce1113HUcddRQnn3wyp5xySsxYq0JY1nGNx57OS8M2T01NDR9//DEPPfRQzE3YlStX8tNPPyVkh3Xu3DnmgRen8yqEaNSNvqZEO8s0bYqsrCw6d+7M//73v5i48BMMiRqmp59+Otdffz3z58/niiuu4MUXXyQrK4vf/va3kTShUIj8/HzlYtlATMdg9wWrhnRsdpSUlDB+/HgyMzO57bbb6Nu3L8nJySxevJg//elPDbo7ESYUCjFs2DD++te/KuPlia+Vww47jNWrV/Pf//6X999/nyeffJK//e1vPPbYY1F3JTUaTfPx8ccfs2XLFl544QVeeOGFmPh58+bFOMv2ZP2kMHZ9Xbw+MBgMcswxx7Bz507+9Kc/MWjQINLS0igsLGTGjBnKfuy9994DTIfLpk2bIndlYc/6sMbQv3//yKKzTsjHOKzXs88+G7VOZpj28rXmPR0Dhw0b1qjjG6Ypjeq77rqL//u//+Occ87h9ttvJzc3F5fLxRVXXNGo8XZvEJbr/vvvZ8SIEco04YnKaaedxrhx43j11Vd5//33uf/++7n33nt55ZVXbJ8o1bR/Gtu3Q9NfMw1pz/E4//zzefPNN5k3b57tTYvmpnPnzpxxxhlMmTKFoUOH8uKLL/L000/j8Xhs+y67D3g1JaFQCMMweOedd5Tn2XqMH3jgAWbMmBGx/S+77DLuvvtuvv76a8d1NcPn8ve//72t87OlbrY72UR7Otao8qekpPDpp5+yYMEC3nrrLd59913+85//cOSRR/L+++/bXmu5ubkYhtGgBzD2dEy22jzHH388breb6667jiOOOCLiiAyFQhxzzDFce+21yjLCN6Iaw65du2I+0rG3aR/WmWafYtKkSTz55JN8++23jVrYM0zv3r0ZNWoU//nPf7jkkkt45ZVXmDx5ctRTAn379uXDDz9kzJgxTTLB3BM++eQTduzYwSuvvMJhhx0WCbc+TWJl8+bNMZ85/vXXXwEir0/17duXH3/8kaOOOqpRk4zc3FxmzpzJzJkzqaio4LDDDuOWW27RzjKNZi8xb9488vPzla+dv/LKK7z66qs89thjjv1Xfn4+ycnJrFq1KiZOFbYnLF26lF9//ZVnnnmGs88+OxJu9xXdd999lyeffJJrr72WefPmMX36dL755puIcynRPqxnz56EQiFWr14ddRdzxYoVTaSZM+En2vLz8x2dQeEFoVWvt8eTtWPHjmRmZipvJllpSF/fs2dPfvrpJ0KhUNQd7/Br/2F5W5rw+V25cmXUxwqKi4spKSmJkXPVqlUxd6zl8fGll17iiCOO4B//+EdU3pKSEqXxLp8zIQSrVq1qkglgoucs3M4yMzMTcjp27tyZiy++mIsvvpitW7dy4IEHcuedd2pnmaZRJHrN9OzZk2XLlsVcg/J409D2bMcf//hHnnrqKWbPnh31SnlL4fV62X///Vm5cmXkdcecnBzla5nyk0rhvm7t2rVRT4LJx64h43rfvn0RQtC7d++EHBvDhg1j2LBh3HjjjXz55ZeMGTOGxx57jDvuuANQ91fhr1AHg8G457Jnz57873//i2kfe2u8dqKhY40dLpeLo446iqOOOoq//vWv3HXXXdxwww0sWLDA9vh4PB769u1rO+/bG9xwww38/e9/58Ybb4y8Ety3b18qKioSOq8fffQRFRUVUQ5Yp/O6du1ahg8f3jTCNxK9ZpmmzXHttdeSmprKOeecQ3FxcUx8Q57iOv300/n666/55z//yfbt26NewQTzzmswGOT222+PyRsIBBq13kBjCd8dsOpXV1cX+SqcTCAQiHyiOJz28ccfp2PHjowcORIw9SssLOTvf/97TP7q6urIV9xU7NixI2o/PT2dfv36NfmnnTUajZrq6mpeeeUVjj/+eE455ZSY3yWXXEJ5eTmvv/66Yzlut5ujjz6a1157LWr9olWrVinX99gTVP2YEIIHH3wwJm1JSUnkq1p33XUXTz75JIsXL+auu+6KpEm0DwtP/uXXOMNfaWpuJkyYQGZmJnfddRd+vz8mftu2bYDpvBgxYgTPPPNM1CupH3zwAcuWLXOsw+VyMXnyZN544w2+//77mPjwMQ/fQElk/DruuOMoKiqKWt8zEAjw8MMPk56ezvjx4+OWsTc47rjjgNjzGX7iUP5S3ObNm6O+WlZWVsa//vUvRowYEXnyz+12x9gT8+fPp7CwUCnDv/71L8rLyyP7L730Elu2bGkSx1NaWlpC52vkyJH07duXv/zlL8rlKsLtLBgMxrzynJ+fT5cuXfQYrmk0iV4zEyZMoLCwMGpsqqmpienHE23PTtx///385S9/4c9//nPM13sby/bt21m+fHncdbtWrlzJhg0bYsJLSkr46quvyMnJibyh0rdvX0pLS/npp58i6bZs2RLzdcXw+ley7f/www9H7TdkXD/55JNxu93ceuutMedPCBGx98vKyggEAlHxw4YNw+VyRfUbqv7K7XYzZcoUXn75ZeUNHeu5PO6449i8eTMvvfRSJKyqqsr29c29SUPHGhU7d+6MCQs/ORmv/x09erRyfN9bZGdnc+GFF/Lee++xZMkSwLTDvvrqq8hbAFZKSkoibea4444jEAgwd+7cSHwwGIxpu2FKS0tZvXo1hx56aNMr0gD0k2WaNkf//v15/vnnmTp1KgMHDuSss85i+PDhCCFYu3Ytzz//PC6Xy/Fx4DCnnXYa11xzDddccw25ubkxXvHx48dz4YUXcvfdd7NkyRKOPfZYvF4vK1euZP78+Tz44INRixzuKd9//33kzoyVww8/nEMPPZScnBymT5/OZZddhmEYPPvss7bOwS5dunDvvfeybt06BgwYwH/+8x+WLFnCE088EVl/YNq0abz44ov84Q9/YMGCBYwZM4ZgMMjy5ct58cUXee+992zf9x8yZAiHH344I0eOJDc3l++//z7yGXqNRtP8vP7665SXl0ctkmzlkEMOoWPHjsybNy/mRoDMLbfcwvvvv8+YMWO46KKLCAaDPPLII+y3334Rg6gpGDRoEH379uWaa66hsLCQzMxMXn75ZeVrBZdffjk7duzgww8/xO1289vf/pbzzjuPO+64g5NOOonhw4cn3IeNGDGCqVOnMmfOHEpLSzn00EP56KOPmvzJOTsyMzOZO3cu06ZN48ADD+SMM86gY8eObNiwgbfeeosxY8bwyCOPAHD33XczadIkxo4dyznnnMPOnTt5+OGHGTp0qHLCaOWuu+7i/fffZ/z48VxwwQUMHjyYLVu2MH/+fD7//HOys7MZMWIEbrebe++9l9LSUnw+H0ceeaRybc4LLriAxx9/nBkzZrBo0SJ69erFSy+9xBdffMHs2bOjFrRvSYYPH8706dN54oknIksWfPvttzzzzDNMnjw58vGLMAMGDODcc8/lu+++o1OnTvzzn/+kuLiYp556KpLm+OOP57bbbmPmzJkceuihLF26lHnz5tmu6ZWbm8vYsWOZOXMmxcXFzJ49m379+sUsWt4YRo4cydy5c7njjjvo168f+fn5ylfJXC4XTz75JBMnTmTo0KHMnDmTrl27UlhYyIIFC8jMzOSNN96gvLycbt26ccoppzB8+HDS09P58MMP+e6773jggQf2WF7Nvkmi18yFF17II488wtSpU7n88svp3Lkz8+bNIzk5Gdj9ZFKi7dmOV199lWuvvZb+/fszePDgmPXBjjnmGDp16hTZD9vfP//8M2C+Nv/5558DcOONN0bSPfLII9x6660sWLDAcZH/H3/8kTPPPJOJEycybtw4cnNzKSws5JlnnmHz5s3Mnj07cgPpjDPO4E9/+hO/+93vuOyyy6iqqmLu3LkMGDAgaq3KkSNHMmXKFGbPns2OHTs45JBDWLhwYeTJWOuTWImO63379uWOO+7g+uuvZ926dUyePJmMjAzWrl3Lq6++ygUXXMA111zDxx9/zCWXXMKpp57KgAEDCAQCPPvssxFHmFXGDz/8kL/+9a906dKF3r17c/DBB3PPPfewYMECDj74YM4//3yGDBnCzp07Wbx4MR9++GHEiXT++efzyCOPcPbZZ7No0SI6d+7Ms88+S2pqqu2xVvHOO+/EfPwM4NBDD2302owNHWtU3HbbbXz66adMmjSJnj17snXrVubMmUO3bt0YO3asY96TTjqJZ599ll9//XWPXm/cEy6//HJmz57NPffcwwsvvMAf//hHXn/9dY4//nhmzJjByJEjqaysZOnSpbz00kusW7eODh06cMIJJzBmzBiuu+461q1bx5AhQ3jllVdibtyE+fDDDxFCRH3UqUXYG5/c1Giag1WrVomLLrpI9OvXTyQnJ4uUlBQxaNAg8Yc//EEsWbIkKq3qk7phxowZo/wMsJUnnnhCjBw5UqSkpIiMjAwxbNgwce2114rNmzdH0vTs2VNMmjQpJu/48eOVn3yXweYzx4C4/fbbhRBCfPHFF+KQQw4RKSkpokuXLuLaa68V7733XsynlMePHy+GDh0qvv/+ezF69GiRnJwsevbsKR555JGYeuvq6sS9994rhg4dKnw+n8jJyREjR44Ut956qygtLY3Sz/op6DvuuEOMGjVKZGdnR479nXfeKerq6uLqqtFo9pwTTjhBJCcni8rKSts0M2bMEF6vV2zfvj3yKfD7779fmfajjz4SBxxwgEhKShJ9+/YVTz75pLj66qtFcnJyVDpAzJo1KyrMruwFCxbEfGZ82bJl4uijjxbp6emiQ4cO4vzzz498zjz86fD//ve/AhAPPPBAVHllZWWiZ8+eYvjw4ZG+JtE+rLq6Wlx22WUiLy9PpKWliRNOOEFs3LhRAOLmm2+2PYZO+smEP1n/3XffKeMXLFggJkyYILKyskRycrLo27evmDFjhvj++++j0r388sti8ODBwufziSFDhohXXnlFTJ8+XfTs2TMqnUr29evXi7PPPlt07NhR+Hw+0adPHzFr1ixRW1sbSfP3v/9d9OnTR7jd7qjxQzVeFRcXi5kzZ4oOHTqIpKQkMWzYsJhPvDsdn0SOr6qdqAiP5du2bYuJ8/v94tZbbxW9e/cWXq9XdO/eXVx//fWipqYmKl14rH7vvffE/vvvL3w+nxg0aFBM3TU1NeLqq68WnTt3FikpKWLMmDHiq6++ijlGYdn//e9/i+uvv17k5+eLlJQUMWnSJLF+/fqoMhM5h+E2tHbt2khYUVGRmDRpksjIyBBApP5w3dbxXwghfvjhB3HyySeLvLw84fP5RM+ePcVpp50mPvroIyGEELW1teKPf/yjGD58uMjIyBBpaWli+PDhYs6cOQ5HX9OeUPVV06dPF2lpaTFpwzaljGz3JnrNCCHEmjVrxKRJk0RKSoro2LGjuPrqq8XLL78sAPH1119HpY3Xnu0I9xd2P/m6cUqrKlfOL1NcXCzuueceMX78eNG5c2fh8XhETk6OOPLII8VLL70Uk/79998X++23n0hKShIDBw4Uzz33nHL+UllZKWbNmiVyc3NFenq6mDx5slixYoUAxD333BOVNtFxXQhz3Bk7dqxIS0sTaWlpYtCgQWLWrFlixYoVQgjznJ1zzjmib9++Ijk5WeTm5oojjjhCfPjhh1HlLF++XBx22GEiJSVFAFFzh+LiYjFr1izRvXt34fV6RUFBgTjqqKPEE088EVXG+vXrxYknnihSU1NFhw4dxOWXXy7efffdhI57uG3b/cLjl9O41ZRjjcxHH30kTjrpJNGlSxeRlJQkunTpIqZOnSp+/fVXR72EMPvuDh06ROaFsrxWVLZaWC7rOVERz+aZMWOGcLvdYtWqVUIIIcrLy8X1118v+vXrJ5KSkkSHDh3EoYceKv7yl79EzQt37Nghpk2bJjIzM0VWVpaYNm2a+OGHH6LOS5jTTz9djB071lHOvYEhRBOsPK7RaDQajabdMXnyZH7++WflGloajUaj0TQVs2fP5sorr2TTpk107dq1pcVpUyxZsoQDDjiA5557jrPOOssxrR7X2za33347Tz31FCtXrrRdwL+tU1RURO/evXnhhRda/MkyvWaZRqPRaDQaqquro/ZXrlzJ22+/7fiaiUaj0Wg0DUUeb2pqanj88cfp37+/dpTFQT52YDoaXS5X1AfAVGn1uN72ufLKK6moqFB+Ab29MHv2bIYNG9bijjIA/WSZRqPRaDQaOnfuzIwZM+jTpw/r169n7ty51NbW8sMPP0R9dUuj0Wg0mj1h4sSJ9OjRgxEjRlBaWspzzz3Hzz//zLx58zjzzDNbWrxWza233sqiRYs44ogj8Hg8vPPOO7zzzjuRNSat6HFdo9kztLNMo9FoNBoNM2fOZMGCBRQVFeHz+Rg9ejR33XUXBx54YEuLptFoNJp2xOzZs3nyySdZt24dwWCQIUOGcO2118b9GI3G/DryrbfeyrJly6ioqKBHjx5MmzaNG264AY8n+tt9elzXaPaMVu0se/TRR7n//vspKipi+PDhPPzww4waNaqlxdJoNBpNO0KPNRqNRqNpTvQ4o9FoNG2PVrtm2X/+8x+uuuoqbr75ZhYvXszw4cOZMGECW7dubWnRNBqNRtNO0GONRqPRaJoTPc5oNBpN26TVPll28MEHc9BBB/HII48AEAqF6N69O5deeinXXXddC0un0Wg0mvaAHms0Go1G05zocUaj0WjaJp74SfY+dXV1LFq0iOuvvz4S5nK5OProo/nqq6+UeWpra6mtrY3sh0Ihdu7cSV5eHoZhNLvMGo1G094RQlBeXk6XLl1wuVrtg8kJ09CxRo8zGo1G07zocUaPMxqNRtOcNGScaZXOsu3btxMMBunUqVNUeKdOnVi+fLkyz913382tt966N8TTaDSafZqNGzfSrVu3lhZjj2noWKPHGY1Go9k76HFGo9FoNM1JIuNMq3SWNYbrr7+eq666KrJfWlpKjx49GIa5MJsB2L1vGr5PIyz7whKOJd6w2XYqT44TRMtjrcdOBmtZqrxymap6ncq31q91VJcnx2kd1TJoHRuuI16omAoiV0poJ7Qq3k4QJwFUwjocyFAtrJsLGRkZNgW3b+zGmUmHgcfj3EZlVO3NLo+q7dnt2+WJ12waKodTmFyP1lEtLw77dnm0jlrHhoZF4gwoqvfXFBTZy6OSF4d9uzyRbQN25EFxPgTdNoWxO1yPM+pxZiOQ2XJiaTQaTXxKS3dvZ2Xt/ToTpKysjO7duyc0zrRKZ1mHDh1wu90UFxdHhRcXF1NQUKDM4/P58Pl8MeHu+p+M3YTaGqeaSNulVcXJ8U4T6UQn7XZlqdA62tebaN2qeK2j1rHJdfRD0k7wF9gIJgsix8kVyQrhECYLGC8dtJtXQRo61tiNM16P+VNNgp0myPHanVNbUs01nc6Kqvk4letUjtYxNk7rGL8erWN0HrmOePLHq1slixyXWw3FBeDdYQY0t44hN2zpDNvzQLjApceZCA0dZzLRzjKNRtPKybT0UtZl8Zu6P2+iJfcTGWda5WIASUlJjBw5ko8++igSFgqF+Oijjxg9evQelx8e9MOHRz5MhiLMGh4+PdZyrEaE9SeXZ2eUqMpU1S3LYIfWUeuodWw7OgJ4NioEcCosXJBQxDnNelQHSA5XpYsnVxukKcca+TRA7OEUqA+hXduwHna7vNb8QpFHVYdd+aomo9LLuq11VNevdVSjdYytw6785tDRG4BaH/i9zaujAOp8sK4XbO8AwpAyygXJlbcjmntOo9FoNJrmo1U+WQZw1VVXMX36dH7zm98watQoZs+eTWVlJTNnzmxQOfKkF6LnknbGiDwJt/5VTdATmdva2QGq+a4sp6o8Vflax/gyaR3t0Tq2jI4A7kIw/CC8lkRyIVaB7GZTsjLhtPHS2x08a1i8+togTTXWyPO/MPIE2SmfNY9deeF9u0m+Uxq7JqBqv3Zl2uWxk9UuTOuodXRKo3WMX3djdEyqg7RKqEk2txOpJ7yfqI4CqEyHjd2hRn5ASo8zezTOaDQajWbv0mqdZaeffjrbtm3jpptuoqioiBEjRvDuu+/GLJCZCHaTYrswVbg8tjtNhu0m13a2gGpyLYiuz2nObN3WOjqHax21jq1VR1eJ+Qt2tEkQpiFKynmwxMv5ZYUSFbyN01RjjV27CePUxuQ8dqfReppVk2OnU2fNY3cN2LVxO7lB66h11Dq2KR0FpFZBWSZklIMhmlhHA8ozYEMP8HuwP7B6nGn0nEaj0WjaHE3xSmYTvXrZUAwhWqjmZqasrIysrCyGE71mmWwAYdmX41U0xKByCrOiqsuuHrlcOxlVdWkd49etddQ6tqSONROgbsQeKLEn8QnkCdXBmtnmgsOZmXr1lPA4M/lIc82yMKrJqzwRVhFvsmpXfqLtOpF4O9mdZNU62uezhsl5tI5ax3jxzaFjSZa5bln/lWCEmk5H4TJfuSwqgKBLKkSPM40mPM6Uotcs02g0rZxE3EqtwFkW6VcTGGda5ZplTY1qghretpuUG9JfGWH5K9sA1jCkMLleqzyG5Wetx8lhoJJT66h1tKJ1bDs6ujdKAbISqooNxbadkrKA8cKs9avq1gD2h1m1bTcxBfWhtuaRy3fKk4hMch5rXqu8Tk1J66h11Dq2LR0zy8Ed3L1u2Z7qKICgBzZ3MX9Bt6IQPc5oNBpN+6edfJjFSrt3llnnm0h/ZSNCPr3WsdtqpFjzyRNelUGjymMt24ocpjJQVLpoHbWOWse2r6N7Cxi1kqLyTMVOQHn2ImNIcXIa1cwuHK4SXhNB1S5U23bIE3Q5vd0E3imP3O7scDrdqjrkPFrH6HKd5NU6ah1bg46GAFfIfBVTNVaF67WTSU7rT4K1vS0L+e/pOKPRaDSatoth4Og0E6Jxvxai3TvLrFgn0vJPlca6Hw5zmujKYSrDoyF55Pzx5sLWPFpHe5m0jvFlbGgeraOahuroKgPXTuxnJ6oDIAsjz8rkfIYlnWpm5XQCNErCp8BAfVrkdmZ3iFXtI5xGLl9GNfdUlauSxS6vXLbWMbZcpDito9bRmkauozXoiID0CqhKNRM2VkcMs4w1vaEijd1fvJQLaOA44/WrKtNoNBqNZu+zTznLVGOzHK+aE6qMEdnYkeejEG1gqPIixcsyOhlqcloUYVrH2DK1jlpHbPJCK9AxCJ5CRUZ5X56UJIJKQDnOaeancUSeVKraoJwWotusKp9q8qtq90jxclu2bjf2dGsd1Wmt9WgdtY6tXUeA7BKoS4KQ0UgdDSjJhrV9oDpFoYyKBBUNuBVxGo1Go9G0AK32a5hNhXVSLe+rjAOktBDfBrCb18r1OuWVHQAyVhlkR4GqLq2j1tFJTrkurWNsHS2hI4B7E/AbRYWyYnbCWbEKpJqZyciK282iNFGoDps1zi6P9a9qgi3nt5tjWtPL7VY+9bIjQK4nkYm51jE2XOuodVSlb606GiHTWVadaj5lZpXZSUcBCBdszYfiThByhQMVyln/xhPeUonYp27jazQajaY10+6dZSpUY7jTpFg1aZaNnfC2agKsMlxUZanqSsRwU8mtdYxG66h1bCs6uovBqAWRLBVgzWCdYKhmbCrh7SYz4TSyMHLZKmE1MdhNVFVYD28ibdqp7EQm8fHCnCb/8cqxQ+uoTpNIvVrHhudLpBw79iUdPUHTSVaZBmkVsUODSkeB+VGAwm5QmsXu9cn0OKPRaDSadkq7v3+jmkPK4U6Gj8poUI35cjpVWusvXp12Mqjk1To6p1XJLsttl07rqHXc2zoa5eDeZqk4nsdOntXZCS9PaJyEVHkZ7QTWAPHnevIhjTcRVp1ep3mk6lRbrwtVXjlNPB20jlpHp/RaR3X5rVFHQ0BGOVSk7w500lFgPoW2pi+UZBG9PtkejDOGKq0eZzQajUbTSmj3zjKV4WFFHu/tJrpymeE4VXqV4aWai8aTxyletke0jtGyax13pwvHaR3VstnVJde3t3QkBO6NDkI4zdCsBavyyGXZzbbs8iRS9z5OIpNpA/WplA+7PNmNh9z2VNeESg65jnhzVa1jdNlaR62jitauo8dvLtBflxRbjrUsYUBptvnFy+pki0B7MM64hPl0m6HKo8cZjUaj0bQS2v1rmE4T6Hj5rNjdIHNKI4fJE2u1XWHgxUsddUq5VHXYTchbq47x5NM6JlaGXT6to339bUVHzyaotZu52c3q7AqVZ1Eqb50h7Vv/OnkjNUD0IbYeJnnOaJfXLp2qHFUepzqsMlnzWbflv6ry5aahdXSWV+toL4NdHVpHdT3NpWNaFSTVma9WJtWagds7QK0POmwHXw2E3LCto7lGWdBu4f0GjDOGMMs1QlCTwu5XOfU4o9FoNJpWSLt/sgxi75Qp75zRcEPIzjaQDRcDcNf7JVVzXAMDAxcZZHEBf2Iy0xxtBZWcLa2jKq0sb6Lze7keWZbwttZR6yiHW/+2ZR1d28BVbYlUTTzsUE1W5DKskxu7/HYzNE0M8sQ3EeTTZG0n8rZdHjneGiaH27XBRNE6qtE6ah3bqo6uECTXwI48MzDoNrfdQdOJVptsPk1WVKBwlDV0nBHgCpr1JVfXO8rC5ehxpu0gxO5fImnipdVoNJpWzj7hLEvkTpts7Nh17U43vWTDKvxLJ4tzuCrKYWY1yFy4OIixzOFVzuUqetE/qkwnO8LOXrGT3ZqvKXVUpVM5HlT5tI5aR5Xscl126dqjjkYVuLbaZLbzFKoqd8prPXjh/E4eRk2DUU22rciH1joBVh1+O2euKp2cPxzmEm5cGI4OZydfql2e1qRjIvJqHdV5tI7R++1aR2E6r6rrn/ByhaDHBigoghqf6SgrT2f3+mSNHWeA5FrossUsqyS7vhg9zmg0Go2mldPunWWqCa/TmGxnnKgm0XJ6u9/vmMY0LmY/DowyrsLxAYIUUUhXeuDCRSe6YGDYTsJl+6I16GjnbAjH2cmvddQ6ah0VOobAs8GmUtmxZRXEuq86MHbIyqviNY7Ihyh8ipwOaSITdmt5qrzh9N5QMkmhFGX6MG7h4fxlf+HSnx4nOZge1bZV15BcRkvrKDsAnJq16vrVOqpl0zruuzpmlZpPjdX6TGdZSrXpzFrbx3SY7dE4I8wy83aaTrjSrPoy7dDjjEaj0WhaGe1+zTLYPZ5b/0K0YSLH2RkbKsNFlTcclk0uJ3IWKaRzJhdRSgk55LKURXShB/sxks50x42HOmoBGMqBDGI4v7DE0SCTdWkpHZ3KVTkhVHJrHbWOWsdo3IVghEC4FIJZJxVC2kdKozoYcl67MuwU1EShai9hnE6V08RWzuN8yg061HTlwG3HsqDrPASCgKsOv6sWTyiJETuOpHv5YAIuPwcXn0BSKIUfOyxgYZd/x8jopJ9dM9g7Otpfm3ay2pVtJ4O1Dq2j1tGu/Pako9dvjjO7csy1xIoLzPXJQokoqRLeImCSH7psNuso7AqVqQoBElFIs/doyCuT+vVKjUbjhGHpzNtwf9HunWWqSaudARNvwmtXvvVvmHC+AziEJJIwgDEcTWe60YdBLOV7etIPP3Xkkk8Ku58I6EABRzCJZSyxlSXexHxv6qgqV06fqCNB66h11Dqaf13bwagCkWGjpNPMKt6Ewy6vaj+soCYhEpnwOrU/p3KSg+m4hZtKT2nU/PLoTWczcf35dKnsz+GFU/GEktiesol/DP4jfcqGc8nSubiFN6q+ievP54uCl/G76ho8R21OHa3pZWeCdTtRWa31aB0Tl01OI8uWaDlax9atoytkOrVqfbC9o8JR1ohxxgDSK0xHWcAD63qB3yMlkDPocUaj0Wg0rZB27yyzYjfWh/9a7QF58iqXY82nqkcAeeTze2bRhZ4AJJPCEA4A4CDG2eY306Yq645nQO1tHeV4lbzW7UTq1jpqHbWOYNSYC/2H0h0qiIfTgVEJIaTtMA2Z7e2DqNpIopNd1cRYPg3h7RHbj2TE9qN4fOgVkZqy6joycf35dK8cBEDPiiEAdKnqx58XvUhaIBu38MbI4hYe1CuXqWXfWzqG98G5bFVTDTdluemqmr/WUeuoYp/TUUBGOWzpbL4m2Sh/lUUAl4D8Yuiww3xarbgTBNw4H1CrYJr2iRBEPWWi0Wg0bYR27yyT54rWrlo2fpzGbyFtG5gL82eQRSm7lHlz6MAg9m/wZDpIgB/5hs50RyDYxXZqqYmUbSdbc+iockw0NK+T8WmXT+uoddzndRTgWQuB3lIia0K7mY0spJxfnmnZzbhkJRs1k9q3sOvvVXPC8KFW5ZHjvKFk0v059C0dgSeUREogg2M3zuTAbcfQrXKgUo6C6t62cgZcfgQiocm23URdJbOcJlEdVc1OTpeoTPL1qnWMX54ss5xG69g+dTQw1y0r7mT54mUjxxlvwHyaLLkG1veAigyiPw6Q4DhjhGzq0zgTfs2poU6pvfV6lKoe7UDTaDStnHbvLAO1cWP+NXDhIkgwKtyaBymPlZGM4ShO5H8s4j1eoY66qHQ7KKaMEpItr1gmwjJ+4Es+5Fyu5necTTGFLOMH/sHf2MKGqLR2k3w7Y6qhOsplq4w3O4NOJZecVrWtKl9VltYxOo+qPjs5tY7OeVVpW0JHdyEYQRBuRUJrZrliOVz23MkHSfVXVZ+2a21RtRenNmvXFq2nQABu4WbU1kmcuPZSsuo68FPeQvyuOnxGkMM2n+boEHNiRfY3BFx1MbI15PppKh1VTcvu2pPzq+KtYXL51jq1jrvL0TruuzpGJZALS3CcSa+E/K1QkQaFXczXL2MqTnCcSapzElKj0Wg0mr3HPuEsk+eLYfbnN1zIdWxgNcv5idX8QjGFlLCTAH5AWG92RQjbDqXs4recwkn8njEcwxzuYCNrI/FefJSyi3w619dvWgLheD91bGULBi460x0DqKOO13iOOmrx4CWLHLLIoT9D+ZFveZONiPqSrLLY6SjHxztGTmFOZdiltZPLGiYbknb1aB21jvFkcEoTL21r1NG9E4wKEFmKguxmX3aTEWvBdrNCpzBVZ6iJ4DQJhuh5p9PEV56j9iwfyqylj5AUMl/N71M2nMy6PMqTdvB1pzc4ad1ljfJh7r9jPEN3jqHOXcvRG89mad6n+F21fNPpTcJPnDVER+vEvqE62qGaq8vOinhl2Tk27PJoHbWOsoztXUeP33RQVScrCos3zgApNbtf5Ywqo5HjjKHHmT1Dv/Ko0Wg0TUa7d5YZ0l8rqaRxEOM4mPEIIEAdFZRTxCY2sIbl/MgqlrGB1WxmA0n4yKUjHehEAd2opIJSdtKVnhzNSQxjJG/wAt/wCdnkcQk30pN+1FGHIMQWNlFBGQMZhhcvhWxgGT8wjgkRmQSCMzifEzmTLvSI0mQU4xnEcL7kI77iI0KE6svy8T++T/hY7K5LbQup9u3inMpWxcuOBqebjCo54w3/WketY3vSUdSCuxhC2YqE4cSyQ8tauJOyVo+e3QxLjtc0mMy6Dhy+eSpv9ZxL0AgAkBxMZfLay1mV9QOLOr4LRLcbt3CTU9uJoBGka+UAvKHkyCnoVb4fF/38EEWpaxiz5eRGy9W1ciA3LHoJgcAjkhhTdDI7kgtZlvsl7pCbGk8lNe7KhMuTrwuIbTpWHe3m4dY8cricRr7W4jVVueyGNm2tY2y5Wkd1uJymNevoDkJKFVSnKBI7jTNAajXUeaGogOhXLuW0DRhn9HDTBMR75bG1fJnOTg7t7NNoNK2Edu8sc2FgKG9lRWMAXpLIIY8c8hjMcI7ld4QIsYKfOJ/jSSWde/gnvRlIMsmI+vLD+Qvoxnlcw6mcQwpp+PDV2wTmv+70wU8tbsx3qnrQl3w6k0paRA4fPgawn1K+ozkJN25OYCr/4e+sYhnd6M1BjOMKzqSGKkcdVRN9VbwcZo1T2UIxE3zUxp3KZpLjUMQ1BK2j1rE96QjgWQf+ATaVqQqwm43ZzdTkiZCqDtW2RoncpgwMJmw4h8y6PNZl/I+0QBYjth/FiG1H8Wqfv0WcZdZT0qWyHzcsmo9HJJEcSMPAFSnfwGDktmP3WE4D8Fi+kJkUSqZTVR+mrbiF3mX7syVtDU8Nup60QBbdKgbxU94nVHlKlTpay7RuJzJZl+PsmqhTPSrk68tQpHVyQmgdo/Or8qnSax3bno4C8AQcKrAbZ4TpYBPWyppgnPHVOqTTaDQajWYv0u6dZXfxD7ZTyBpWsIplbGULZeyijlr8BBAOo7cBuHFRwg7qqKOW7fybx7mZh3FZJi9ynmxyo/Z9+CL7bsv6ZQYGPuTn3u3xYk5sUkljOpezg2K2U0x/hnAYE3iPV23nxiqjyc54QhGXyKTemkZI8U4OB1k+VR4np4bWUevYXnWE+nXLAmDxa9gXKBRxdkqoDlr4r5Pwmhgy6/Ko9uwArKfEPJgGBi7h5oR1l0TlMYADtx3Ll51fZUvq6shTZwDFqevYnrKJgSWj9o4C9bgwGLvlFFzCRY+KIQwo+Q0pgUySQsk8PuQKPun674js1r9yU7LDqUnZOQfiIV8GqqbqdM3ayat1tEfrGJu2LetoANmlsL0jhBIRwFKBkA+UXEEjxpkk7SxrOIk8KRZ+PbO1PFWm0Wg0bYB27ywbzRFkkoFA4MdPJeVsp5g1rKCMXQQJRJ70ssP8AIDpVvuYNziGyYxjQuSpssZigLLuWmooZjM96GOb14VBBwroQCfeYT6L+AJQG2zxHAdWeezsGnlfdjrIaUBtbDrdaIxjkymdG3a62IVrHbWObU1HVwm4SiHYQaowESWR8liFl/PHm5Fp+9qWkBEir6Yr5Uk7qHPV4A35mLLmapID6fQpG05ObYHysPYu35/bvnmTt3o9xst9HgDMw+x31bKwy3/oXzISV5zxqamxPm2WW9s5sj1s5/iIs0y+NsI4XUdyHrumam3Kqnm4U/O05rG7zu2uYzu5QeuodWz/Onr8RK8V1oLjjE8v8K+mtBQyM/esjLbiKLPKqV/J1GjaPuHruK30QRbavbNs99hukEQSSfWvWfZniHKsV9Gd3ozmKFawlKGM4DkepRf96UlfwHRuufHgaaLD6SGJfLrETWfU/38IR/Asj7CDrQC4cBEiJKWLb1DJ9pDKYLQzJK1lOtlPKieHalslW6LptI5ax3alox9cRRDMU0TGm9mpJjl2M754Aml71RZDwA2L51Pu3ckH3Z8mLZDFSWsvwyXMMcHu0BlAeiCHozZOZ3GHD1ib+VMk7eKO71PpvZEMf87eUCEuQ3eOYfCu0WTV5bMi+xt2+YoA+wm8yhGATZhT87SWmUg9qjx2167T9emUTuuoDtsXdRSou+BE6pHjVXHWOlVTDLn7bqyOnqD5KmbQpVCmmccZA7MPDRnmX692lmk0Go2mldDunWVBArZOsUTnfj3pz195jjJKSCeTudxJDVWRcr0kNZm8YL766W7A65mppHMOV7OIL0ghlSV8TSHrKWFn/dc0c1nPSpxeOQ0Tb94sp3NyNjilsTP+ZHtLFWdnsyWK1jE2XVvXUaSAfyCIvfsQTkK4i8BTuGc6ejaCf6glUJ7pCGlbNTOyHnTVzCocL5dr14FqIpQn7eKzzvM5Y9UNDCwZhTBCuIQn4cOWV9uFq358ig+7PcOiju9RnLoOXzAFl1C/7t8S5NR25s+L5uMNJbEpfQUv9ruHpXkLqXZXxKR1cv6qiHecGjJ+qy4FJwe2XZxd/+WUT+voTFvXURhQngG1vugwoFm+4FiXBK6guQB/nQ9CLnPbHTTjDGFuBzyQWQZZpWo5EtHRCJlrhdUm2SVAfVKQ/jZ0nAHytkPuTijLhJDb/GiARhMh3scKNJr2RGt+8qoprrs2+Cp4u3eW/YmZDOc3nM0lZJLdqDIMwIOHXDoggAu5jpd5ml4MwIePrWwhRFD6euXeI5kUjuEkjuYkQFDIerwk8T6vMpoj6Uhn/s1jvMATVFAWYwPJxqSdE8PO4FKFGQ754t2FRREWz2BWGc5ax31DR9xQewTUWb+LYSegXf+smgjIFdmVJQso1Z20tH7dsT3Q0b0JjDoQ8kRGPklyISodneRXNQhNQqzKWkyIoPlqfQOdXAbQqbonZ668id+tuZItaav4KW8hVZ4y0gJZzSNwAzEAX8i8idO9YjBX/vhP3uz5KPMG3BbVlJROhgTKl5u0qk9JxG+ratpO/ZWqyau6C63jvq2jMGBXDmzsblnXqxWNM1WppsPMEI3T0RCQXQJlGZYEzTTOuEKQWmU6/3x1UFAMXv9uJ1kghEaj0WhaG+F1D/cxmvy29d13381BBx1ERkYG+fn5TJ48mRUrVkSlqampYdasWeTl5ZGens6UKVMoLi6OSrNhwwYmTZpEamoq+fn5/PGPfyQQCNBQvudz5jGHl3maX/gp6vXExmAAPlIYxwREfVk5dKATXSNpBIJQC8w2TVvGoBu9yKcLv2cWfRlMFtlcwLXcz78ooFuMUamywVDEqcKcJvmJ5JHzC8W2XVlC8VOlUdWjdWwfOgLUjQD/EEWk1Wi3hoULsv6sFaomBqqZmFOYhWAB4N2z8+gqM9cuaxU6tgJa2zgjgArvLkJGcE/UwgBSgxn0LTuAyWsvp0NN9z0qr7kwALdw07N8KGO3nMJxGy4gJZgWlcauGamugXAaJweLNY1ch1yunXPGaZ6vmuPLl5eqXKQ4rWM71NGA0izY1E1aAL8VjTMBDwTdjdcRIKmuPs4Ab8B0oDWHjinV0HcN9F8JPdeb66UJzPqa4wm9xtLaxhmNRqPR7H2a3Fm2cOFCZs2axddff80HH3yA3+/n2GOPpbKyMpLmyiuv5I033mD+/PksXLiQzZs3c/LJJ0fig8EgkyZNoq6uji+//JJnnnmGp59+mptuuqnB8njwcCy/w42Htayghj1/vtsAetCH5PovW/rw4cKNQBAkiOksa7hTrpZa/OxerKGSCnaxvdEyhn9BgvzAV/ybx9jJNuW8V2VUykarbAtBrM2kMqIN6a9s6NoZ3HJaFGEqQ1xVnlU+rWP70BEg0Btqx7L79UuVwZ4ITga6aoIgC2QXJgC/fbKEzqMH/PsBQUtka9CxBWlt4wyYi+G7RdM9rG1gtLbDHsPwHUdx6dK5TF15Q9THACD6OrX2PRDbhFUTfFX/hRQv90nW7cY2adnJo+ov5bTWerSO7UtHgKoU84myyHperaUPthykyOugNsXHO48hN+zI250mbwck18SpX0UCOqbU7HaMhZ1jrbGva43jjEajaYcIsfvXXmnDOhpCNK/U27ZtIz8/n4ULF3LYYYdRWlpKx44def755znllFMAWL58OYMHD+arr77ikEMO4Z133uH4449n8+bNdOrUCYDHHnuMP/3pT2zbto2kpNg1wmpra6mt3f296bKyMrp3784IYBxHcxtzyCa3WXTcxQ6W8xPllNCXwfRlUIPL2Ml2CllPD/qQRQ4Am9mIj2Ty6LhH8tVRyxPcx4v8gyoq4jog4iHdJGxwPrs8snEsp7PbVxnrTvU3RNbG5tM6Nr+OIhsqT4VQrqJAu0JUwidSsbVMlcDWvFIdKR+A94fEq7IWITKg5ggIDKjP47IksCukGXUM1cCaB6G0tJTMPf0qVxPS0uPM5COhX/V+3PXNe3hDvph87R2B4PVej/BC/7sIGn6HdCaqPsKaxm7ibNePxMuvSucko90lnghaR3sZ5fzhPK1ZR38SrO1lvuYYRSsbZ7JLodc6GvRkllXHTd3MNcPCYcm14PdA0GMj7x7omFYB/Vabr2Oq8AfgtY/1OBMmPM60tuPRouyDr4Jp2jFtyYHU2GuvlelYVlZGVlZWQv1qs68eXFpaCkBurumoWrRoEX6/n6OPPjqSZtCgQfTo0YOvvvoKgK+++ophw4ZFBhaACRMmUFZWxs8//6ys5+677yYrKyvy697dfH2lO71Zz0q+5KNm0Q8gmzwO4QiO4Xf0kRxlgtgnxlQkkUQfBpJZ7ygD6EL3RjnK/PX/wndxk/BxETdwL0/Rg754iF4F3c4mk+88qmxDIcWrbrpCdDlyXYYl3K5sFda7pOFfvLuqWsf2oSM+qD4WQjmKDHKFsjIq4eUDYK3QKlyMIFJ+SSFXKXhWREclpKNhPjVXdRr4B5lOsqiPF7S0jq2Mlh5nAHqXD8Md8ja5bm0BA4OJG87n+sX/5sBtx+AJ7Z4AqvzY1n25mTmZYdZmLohtynb57fo9JxpiDmod26eOwgUbu1kcZa10nDEwF8hP5KBEJTGgKg1W94HSsKOsXpYan/laZ5R8TaRjZhkYIYU8rZzWMM5oNBqNZu/SrM6yUCjEFVdcwZgxY9hvP3P17aKiIpKSksjOzo5K26lTJ4qKiiJprANLOD4cp+L666+ntLQ08tu4cSMAT/AGz/Ixh3JUU6oWhZNzoYJStrIZT5wvZqaTSRrpDTLs7PBTR5AAO9lG2BRx4+I3jOV25tKR6NdlrLaObAPJtpnK6WJNq3IGqHSSDSSV40X11y7eKa1Kdlluu3Rax9anIy6oGQuBXpLg1kxCEeckvDWdnF4WyG7yolDWqDN/1mBV0iixvFB3CFSfBMEOCvlag46tiNYwzpyx8s+csG4Wrua//9RqSQols/+Ow7nqx6c4fdX1gLNTOBwPzk1Tld6ax9q/qfLKaeI5W+LFy5eG1rF96igM2JoP5eEbzq2tD7aOM8Ky3phNNlnHkAu2dYQ1faAm/PH1vaCjQfTXLuOdp9ZCaxhnNBba8CtdGg2wb7ThdqJjs34Nc9asWfzvf//j888/b85qAPD5fPh8sa+/pJJGJhnNXr8dyaTSlcw4hqZpwjTVPDSFNDaymiAhci1PplVSzgv8nSI2RaV3coKo4lT2lDXcavw2JL8sj1yek7xRRm6CebSObU9HMNfv8h+gKMDJmLeiMuytXkOVIHb1qAS2hIcyQaSDUWJfdNTcIhtqjgR/39iyYup2ojl1bGW0hnFm4sbzW3ScaQ0IIGj4qfDuImiYi1dbm14YuTla4xvStOXmbIdctupSsMsnUOugKlvr2H50FJhfhdyaT2QtsJgC47EXxxlh7H4KLBEdAx7Y3AV25dZXsRd1NEKmY09WJ5E20JK0hnFGo9FoNHufZrsNfskll/Dmm2+yYMECunXrFgkvKCigrq6OkpKSqPTFxcUUFBRE0shfkwnvh9O0Fbx4cTmYAbXU8hj3UExhk9W5ml94ixfpRk8MzNcyf+Q7HuE2vuNT0snAhy/GQLHetQW18SKnAXUeq2GmsrmcDCOBWhaVDRbPntM6th8dAYJdofYwzLW7rBUkMhNShVtnXnYHRJ4NyrNCecZoySuSIJibgI4GBPpD5Rng78funrk16tiK0ONMy+E36giy++ufFd5d3HfA77lz5Kmsy1xKbk0Xwg1G5QeQt+W+we56UTVDazMWinC5Hrvypcs3Jo+8rcqrSqd1jKU161hjXdC/NfbB8jgDVKTHihZzfA2oyIC1fWBnrsURuBd1NMBc2F8qMhHfXEuhxxmNRqNpIG38aTIrTe4sE0JwySWX8Oqrr/Lxxx/Tu3fvqPiRI0fi9Xr56KPda4itWLGCDRs2MHr0aABGjx7N0qVL2bp1ayTNBx98QGZmJkOGDGlqkVsUFy6S8JFCWpOVWUwhGWThql+bzIWLQtYylmN5nNd5ivc4kDFReexsIyej087YsTOonQxtGZVxKxvPKmPaqofKENc6xtbdVnQUGVAzAUKpNgrIGVXIB0BVhpNnSyWgHGfFgGAXZx2FF2oPherjIZSlKL+169gC6HGm5fG7awjVP0EG4AumcHjhVK5e8gyX/fQ4d3z7Dp2rzPMiz8lV20jbdn2GNcxuTm7dbkiTdfIT2CHLq3VU55HjrWGtSceA11zs3u+lTfXBZZnEPgVnyRJ0m0+TrekDlamWiL2po4DkavDafwOkVaHHmTZCO3nVS9POsLZL1a890c71a/LXMGfNmsXzzz/Pf//7XzIyMiLv5GdlZZGSkkJWVhbnnnsuV111Fbm5uWRmZnLppZcyevRoDjnkEACOPfZYhgwZwrRp07jvvvsoKirixhtvZNasWa3u0eQ9fYXSi5eZXLkHJcRyMIcznIMjzjI3biZyGrDbdhnGSL7lE0LEfo4oEfso3mUQcQQQbXOpHC3x7MFwfCJ2psowb8gNUms+reNe1tFtOsSUEy+X+URZsIOlgESVth4kpwmKLJgqv6ykXJ4sW72zzK7eUHr9a5cDFXnlbaewvaljK2BfG2daI6mB6K8HJYWSObR4cmQ/p6aAjtU92ZK6JiqdXROTt1X9Sbw8iYyi1n4oUYeKtR9U1aPa1zpGl2tX1t7WEQPqbJaQDbpgayeoSIsjTEv3wYpxJuAx1yEzglLyen03dYPyjN3HIK4+zaCjAXTcTmRx/3CRDT2Pews9zmg0Go3GEKJp3X+GzSdFn3rqKWbMmAFATU0NV199Nf/+97+pra1lwoQJzJkzJ+qR5PXr13PRRRfxySefkJaWxvTp07nnnnvweBLz70U+CcraZltLpoSdfM/nDGJ/utGrWepoLkrYySxOYTk/Ke2weE4aFU554t1ldjLSVWWrnDbx7E6to33dTnKoZGlyHQ2oGw21o+wFFF77ONuC7WhoemseJxkUB91VBmlPg1ETHR7sDDUTJQeg02yhFegYqoE1D9Lin7Dfl8aZtogAtqSu4v8OPo4y786EmrcqXrUPiV0uqrKtNFQmu35YLkPr2Hp1BNiZB4VdbdIYEAp7bhpSebxKE01vzdPQcUZA39WQXhHtKCvPMF8prbOOny0xzgjIKYEeG8AVcj6PgQC89rEeZ8JExpkWPh5tAptzptHsVdrZk1VRqK6xNqhvQ/rVJneWtRask5gM0imnlFQyKGMXuXSIX0ACBAlSThl+aulI21p7YD2rmc4xlFPm6FSxu9kppDA5Ti7HKY/qr1xnvL+q8lGUpXVsfToCBHtA1RSFQ8zJC+h0IOT8djjNAJ0UkuuzSwsYQUibB66i+igD/EOg9oj6V0qJzdNadQzVwZrZLT+JaS1oZ5kaATw34Gbe6PVoZD+MqqmqmrBds1ZdFnK8tZ6GOors+shE5A2jdXQOk2XaWzpWp8La3pLjSJVZLqAV9cF24wyYT2113WRGhVxQ3Am2ddi9+H9L6pjkh/4rwav4aqdcTGtxlrUWtLOsAWhnmaYlaZ8ulXZJQ/rVfeI79wJBDdUECShfO2wsbtxkk9PmHGUCeJ9XqLA4ypyGF0P6ay3HGqdyrqhsJzv7zMmAd7ITVfXa2YN2aB3V5YbDmlXHNKg5mt2OsngzMpXgcnqVsY8U51SuKq8hhcl1hcOkfeGGYP2X40Op4B9Rv/Za+FWftqajRpMAB209jqy63V9jVjV1pyYcvpRU/ZFdHjvs+tFE8sS7PK1oHWNpLToGPeariHXtdJzBMNci8yfBrhzTKVjcydS7xccZIGfX7rXKHM+jAVUpccrVaDQajWYv0eRrlrVGXLjIpzMAPvKbtS4/dRRRSGe642mlh7eCMt7n1ci+nYPEyaCxi5fTynGygayqO1Gnj6qecN5E6tE6tryOUWuRWSuSPWrxlGsM8WZe8oGWPYBWOeQyrTNEAwK9zO26EeYi/sJD29VRo4mLIGj4ya/uQWnSNqUz386hHt4H52anaqqqy8juEnLyD8j9YiLNX+vYenUUBhQVSAvbWzO3tT7YZpypToVfB5jrlwlr2hbW0QDSKsEQ6mSiPlFNMuzIg21N970rjUaj0Wj2iNbpzWnD1FBDkED8hC2EQPAJb7GLHfX7JoZi286mAnsjVpXXycC2y2dXvsr4lm1MJ1tT69i6dPQPMX+2Slr3kf7KB0qu0M74l4WU88t1OMlip6QkR6C/+ROuBMttrTruyYRKs88QMkK83vsRVmYtivEFWJHn76qmjxSHJY3dvnzpJOIYile+VRY5jdax9eoIUJ1iPm0VlaCt9sF2YcLc9XtodTr6ak1nmdxOAIQBtT7zKbiyTAi4IVRrU59Go0K/eqnRaJoR7SxrYjLIJIOmXVPAtDtM08Kg8d/NFEAVFVRSgRt3TLxduXb2kLXcRPKq0qq2VeWryrIzsu2MbVUelZxaR+e8qrSN0TGUaz5VJuReSCWoXKEsjJ2gqorlcNVEwUkGp/ps5BTy5dZWddQ2qcYBgWBL6moWdvkPy3K+tO1TrM3MrmnZ9S9yflW8NUwu31pnIv1gvP5V69i6dQy5zQX9A26FMG2xD5blUu23Mh2FYT7t5glYijRMJ+bOXNORGbCuq6bHGY1G09bQ65W1W7SzrA0gCLGGFXzMG/yeWaTSsGfU66hjO8V8wlt8xBss5TuC0tptqktcDnPqBuzSyn9VaWRj2a4eu7JUdl4iMqrCtI7O8jSZjl6oORJC6VJCu8mCXJGdMCpBVHGJlK+KswuTt63lq05mW9VR2wIaCQGECFLrruKzLvN5qe/9lCZtc3Rg2Dk4VGWr5vV2Pg8Vds4bJ/+CXZjVQWNXhtYxlpbSURiwNR8q0yyJ5craWh9s3W4L44zAfP3SElbnNV+33N7B4iSz5tXjjCZR9FNlmtaAdpS1a9q9syxY/0/1JFVbwcDgTV7gZZ6mK72YyCm4Evw2Q5AgT/Mg/+EJyihh9xNqsXaObDepjFEnu8lKPGdPIjdSrWUlapTbGfVax9alY92BEOidoBByxU4zOXkWp5poGNJfOd66LddlV59cvt1JkfVRhbVmHTUaie3JG5m73+Xs9G2mKHUdIWP3MgRy07FeGnaXhzWPHC6nkfvMeE1VLruhTdvOL6B13B1uJ4c1XE7THDoKzNf7tneor7O99MFtaZwRkF4JPdebX8H0e83zsSNPel1UVb9G44R2kmlaC9pR1u5p986yaqrw4W3w01itC4NDOZIu9KAz3RO66SaAIAEW8Bb/4iGqqa4vKdYQtuZxsHkidpM1XC5T5TyxK0tVD4q4hqBy2KjiVXVrHZtfRwEEu0HtIZIgKlRGumzYO80GVQcp3sRAte10wckzSGt+uwmMSsa2pqNGU0+lp4zl2V8TcNVFhSfqdJHj7JqoXT67Jqm6DFW+BLtLy67/UzmNVPlU6bWOe09H4bJ5/VKmrfbBrXycMQTk7oSCLWb0tnzTSVbjc5BRta3RaDQaTQvS7p1l6WS0WkfZDrZRSw0d6EQSSbbpDOAgDuMgxjfIhniNZ3mDf5NGBjX1zrJweWFURnA4jZ0jRUaVR74J6eRUkWVS5XFy3IT3VQa+naEvy6vaj5dH69gIHVOh5mgQPjkCtfJywSrD3mkWKOdVCqWoS3XQrBOORCZAdgejreuo0VhIDqaS4c9ll68objNxalJ2DpB4yJeBSganfslOXrtLyymPHKd1bBkdhWE6ZsozbIRt631wKx9n3EHIL4bsUijJhu0doS7JPC96nNE0CXZP8+gnzjR7A/002T5FYu/yaZqFIAGK2EQAf9y0DV3Y3wCO5wzm8Ap/5B5cuCL2zVAOZCoXkkvHuEau099E4yDW3lIZ53Y3PeV4YfmhCBNSWitaxxbU0QW14yCYLwnoNEOzGvOJjE2q2ZaQtu3qsMpiN2tzmlBYt1UnT5ZRrr8t6ajR1NOpuhcX/PxXPCLJ0VEiXw52ThTrZWCQ+OWhatZWGezksCsnkctX1kPrGB3XEjoKw3TQbO4i1dPe+uDWOM4AqdXQtRCCbljVFzZ3hVrZUWaVR0aPMxqNRqNpRWhnWQuST2cOZHSzPfmWTArJpJJGBsmkkk4GHenMn3mAK7mDf/A2p3M+6WQobR/rvtW2C4fLeYQUhyWPncErx8mo7ClD+qnKcbITtY57X0cA/yDw72dTsLViuwmAnXFtTSOnVykpz7ZkRVTlxpukqA5Ue9ZRo4lgMGznYYzZcjLhWzou4eaYjTMZunOssl+Qw+z6EizxcridU0WOl8tMpD9WyRvP16HKY/2rdWx+HQVQkwybukGovffBrXGcwXSSFRWYH1bwh51kjdVRo9FoNJoWpt2/hrmv48bFSMbwF/5FPl0QCHrRDwOD7vTmKu7geM7gBZ7gE96ikopIXjsbR7bNVHaObEtZ08rhWPJYkctSYZdHDlM5jOQ6rH+1jtFy7YmOAKFcqD0MhFtKZJ3tOBWmUtAuDJt9JyNfVb9cluokJVJHe9NRo6lHAMtyPqfCW8L05XcwbMdhbE3ZQPeKQYzYfhSrs36gKHUtde4aCqp6U+uuYkP6LwhEzPxbVXZDnCqqNHYyx2vOTpeZXZxTH6l1jN6H5tFRGFDUybJOWXvtg1vxOFPriw3T44xmr6Ffz9Q0F/rVy30W7SxrR5Syi1/4kY4U0JN+eOpPbxJJjOIwZR43bgYznJt4iCnM4B88wDd8QgDzi2YqIzkRp4yT0Wxnk9nld7LpnBxMTraYSh+to7OMqrIS0VF4oPZwCGUqMqoqUk0AEhFMVkQltFMauX67kyTLqKqnPeuo2WcJESJkBHELb1RTSQ6mkR7I5rAtp0WlH7TrEO796mMCrjoy6zrwS85X3D3ydAKGufSAnUNGbvoNadbWsqxYHTqJztXlPLLMTvuq/lvruDuNE43VsSIDyrJsIttTH6zHGY1Go9Fo9gr6Ncw2SJAgRRTG2Bc+kunPELrRGzduZV473LgZxkHM4AqSSI6Eq+woO5vHztB2yiPnF4ptu7KE4qdKo6rHToZEZGxonn1dx2BHCPS2KVAuPF6acDr5wMl5rZMJIYVZ08v5rBMQ1UTD6QRYw5xkb+s6avZZtqas582ec/G7agCzeQzZNZb9dxyhTO/CRaY/j9zazriFl1VZiwkRUvZ91mZpN4eXLwu5L1XNyyG6XDmvXLYsg1VWVblIcXb9tbUOrWPz6FiZVv/6pRPtoQ/eF3TUaDQajaYVoJ1lLYSA+ikD1FGntBEEghJ2so0iya4wyENeJd1coyyPfHz4aNjnAEy2U8xfuZGq+lcxZbvIziFitZNko1e2geyMYrkcuR7ZXpPtLEMRL9dlJ4fWsXl1dFUBQUkIO6GtCtvNxlQGu6yg1ZBH2pYVlOOt4Xbly3nsJhLtVUfNPklebReO3nQ23lD0DZVER5ujN02noKq3Mk7V1OV4sG/u1r/q8TR2fq+Kl8NVl1m8y8DueGgdm1/HmETttQ/eF3TUaPYEw9j902j2FN2W9lm0s6yFCBKgnBIAvHiVaTawhiuYymY2RoW7cOHFqzYSG0kddTzEzfzCEiDacWO1YaxhKjtJjgdi5JRtJ2s5VuzyheOc9E8kXuu4l3SsAO+vUiV2hdsZ7w2pUEjbKiVVB05l7NtNTOTyrXnC4e1dR80+hzfkIz2Q3ahmYACFab+yLWVjTN+lmt8jxcuXgp1PQL4UUITJ5aguF2t6q79BlknOo+o77eRFitc67pmO6RXg0uOMfZmyDG1BR41Go2lNaIfZPod2ljUjAnONFxVuPGSSA4CB+jmwTLI5nz8yjJEJ2w6ysZsoIYLsZHtMWdYyZeeLbNsIRR5rOeF0KgNbZTtZ81j/yumsdcnlxLO9tI7Nr6MRBN8n4CpRZFRVZBVEVlCe2akEtmIotu2UVE02nMLkmZ88cWmvOmo0jaTSW4rfVRfTnOTLRZ6Dq5qg3aUHsfntLjN5/p9IebJvQq7DSV6tY/PqmF4BPddDcq1CGGsFKoHaUh+sxxmNRqPRaPYK2lnWjFRSztvMR9SP/OWU8SPfsqz+6S0750aYHPIYw9G4GnCa/NSxmC8abGv4SOEq7iCP/BjD187esTNiVXlUusr2mxxuxbAJd0K2Ga11aR2j41TyNqWORo35czT47YQUirBwhQ05wHYCy/UghVvllfOrdGjvOmo0jUAg+Dnnc6yNUNWk7ZqZU5icJ5FmKqdJNI+qv2xIPVpH+7A91dEQkFkGRvgeZXvtg/U4o9HER4jdP41Go2kk2lnWjJSwg0rKI86yLWzkCqaynB/j5g0h8ONvcJ2rWEYxmxuczwD6MJCzuAiXZKnItpbqJyPbQCp7zZDirWFOcqrKUdUr213x7EGtYyxNpmMIXKWSoLLBb0U2nmXl5Dx2HkCVgvIkQq5bnoTIZdqdPPkAtVcdNa0eERl1WgcC2Ja8kW8K3gDUc2q7Ob08v4/XNFV6283/7ZxJ8qWruoQSLUvruHd1FAYE3ZaI9tgH63FGo9FoNJq9gnaWNSNd6MlpnBt5MmxrvRNrf0Y5OktqqWEud/IRr1NHra3dUMJOAgSiwgaxPxM42bF8GQHsZBvzmMtrPBuZZqlsrvBflZPGydg2FNtO9pCTo8eaxsnmsjO2VY4nuV6tY3yZG6qjUWcjlNXQdvLYqRSx/uRyVLMy2WiXD7rqJFjrdjqwdnms5bY3HTWtjipPOfP73ketu7KlRQHMJrQmcwkPDj+fbcnR62/a9SF283u5XFVZiTTfRJu47ExSxccba7WOe1fHkAuESwoMb7fHPnhf0FGj0Wg0mhZin3eWCSBAgGI248ffpGO2i+jVyA5gNH9lHj3p55gvgJ/1rGYbRTzOvfipVabLIgc3HqlOF27cyvQqBPAdn3IOx/EgN7OBNTG2jOwgsbsJqcqjuuGosq9UdpPqJqVwiFfVK6eT82odY8tS5WkKHV27bASQC7Az/u0qsFNANtQNKVxVtnWCoJo4qMoTUlh711FjiwCq3OUterhcwsWQXYeSFExpQSl2IwjyYr97WJm1yDZNvEtpd1nOjh1VuaoynNI0ND5RtI7R5TebjtaBp732wXqc0bQlwgui7+2F0fXXMPc99Ku3mmbAEz9J+yRIiGIKKWIj/+Jh/sdiBrAfp3Eeh3IUSSQ1eZ1ppHMAh8RNl0oGtzG33n5w4bWRRf1ZgIZRSRmPcgebWCuVrb5RCPZ2ml2Yk42msrXksuQyrXlUctkdFZUNqHWMtWvlvHLZjdXRqJQqdzL45YJVyJXK21bB7fJa63Y6uHblqiYSdnHtTUeNkuRgmjLcvL7C/wvq3DUYwsAXSmmSvtxa/347xzVZeXuKgZspq69hU9oKtqXsfrKsIc6S3WXFouozE2nedpeUXRqrDHayJzKexEPraC+XXf3WPJ4gdNgORQX1ZbbnPliPM5q2QNhxoR0YGo2mDbLPOstCBHmGB3mPV6imimzyWM6PPMXfWMLX9GUQhzOJdDL3+vhtAMkkN3s9AviQ1/mFJTH2jTykOQ1xqvSJxIXLtdpI8Rw9KjtQZbjbxTvJtS/qOKYDnNoD/CHYUAXvb4FSP6S6oSwAZX6oC6nzyuXG1bFSCrAmtJsBycZ7TKFSnFye08xOdSBV6eT6ZGWt+6ry25uOGlvMQxT7wLbAfBXx1d6zqfFUEDQC7EjejFt4mL78DkbsOHKvy9rcmG7BIH5XLSEjyMhtE3i/+1OEjGAkTbxLyFqWKkzVROV467bdPD7epaFCdXna9eeyvPuiji63h5wuAWrKobIkVoem0lEIyCiH4k6W7q+99cF6nNFoNBpnhEA/VahpCvZZZ5kXL7P4P7rSi2d4iCu4lYEMI58u/JvH+At/5r/M4y7+Tj6dW1rcJiVIkE2sYynf8QT3EcL0htjZRBBtDzk5jcJ/3YbpcClIhqwkWF4GFYHd+Z3sKVU8NmGqMuKlaQodrduqPG1BRwCXAXlJsKsOVpSZjrKKAHhd0CMVOqeYaVaWm7+AJXNDdXRVghEE4bEkSlRgWXBrfrsDGe8gq+KcJiQqZQ1FvNMssq3rqGkUAsEH3Z9mQ8YyvCEfm9NWETT8ZNflkxJMb2nxmoVadyXPDLyRFTnfUpyyDr/LXE7A7hKQt+0uKWs6YYn04iEgguFQ277Jum/X3yba3GMcNThf5vJ2IjrK8ibil5DzqNjbOoYIEfCDv9Y+T5PoaMD2DiDkA9te+mA9zmg0TU9Dn3rTTpjWhd35i3de9XnUJMA+6ywDyCCL0RyJAYxnIqmYr8+cw1X8hnGkk0EenVpWyGZgGT9wNb9nFzsIL+avMt4TdRhlJ0GvNMjyQlXAdK6ke+DEbjA409x+bRPc90usraaynezsLlW83U1TlcHdWB2t6VQ2pqwPirDWqCPAZ9vgmx0QEqYjLJy2PGA+aWbsgkwPHJQHR3aCD4vg1/JG6lgH9X5ZtWBOysWzY1QHycm4l0+YXbx128kbakjp7A5+e9FR0yAMDKatuA1DGBi4+NvwcxCGYMrqqxlQMqqlxWsWluV8xYKuz0c9SdbkGFCTDCItlX4dO7Pzp0p2eYvskgLOc3W7eFVa1eW1t8xuJwcYtFIdgyFK1adGSWN1hPpF/sMKtNc+WI8zGo1Go9E0O82+wP8999yDYRhcccUVkbCamhpmzZpFXl4e6enpTJkyheLi4qh8GzZsYNKkSaSmppKfn88f//hHAoEATYkB9GcI07gk4igDcOPmAA6hP0Nxt8NvIAxmBGcxiwyyCK+VE7YpDWlbtpWsNtTADJjZByZ2Np1k3+yA73bC1zvgw2K4bglcsRiuXQJPrVHbeFjCVNvxjHRZPtm+k51ODdHRmk8u0+okizcxUenVmnSsC4HfIpAh5SkNwEfF8OIGOK4LHN/F7DgaqqOrGowaKVD2NsqKqwSXlZXzyAKpDPR4Mz6rXKqTL9chyyuX0550bIW05nEGzMOWFsgkNZhBcjCNC3/+G9cufo6BJQe31kO6x/QsH0JOrXmzydpEnebfYeQ+DGwuHwEp1ZC+vY5fV65lZ1JRVFpVflX9smPIaa6u6o+tP7s6ZBLVUZZR9kFoHSW5BaSp1sdsT32wHmdahNY+zuzTNHYhf7vF4K0fB1D9NK2LeOfL7qc/BqBJgGb1BH333Xc8/vjj7L///lHhV155JW+88Qbz589n4cKFbN68mZNPPjkSHwwGmTRpEnV1dXz55Zc888wzPP3009x0003NKW6TIzBfeaygrP4prtaBBw+/52Ke5SMu5Do60jnGnlEZuOGwTA+c3xd+2xne2wLPr4cV5VAVNB8cCuepCsLPpfDpNthaG1tOGNnGs27HM7JVTi2Vw0bWK56OqkmGNb1st8oGfnvTEWBbLTyxCoZmwcnddzvMEtWRIBh1ikgnVALHzI5s8lmFstZpV6/dJMNJXvlAJpLHroy2pGMroq2NMwaQV9sFr0hqzYd1j8mt7cz5yx5gQMlB9V+G3k28Pk+eU1vDrHnCf0MEcAdCIOJfRqq+0y6tKp3Kp6Ca+ze1juH4cLlaR7W8BpBcU5+uPffBepzZq7S1cUazB2hn2L6HdphpHGg2Z1lFRQVnnXUWf//738nJyYmEl5aW8o9//IO//vWvHHnkkYwcOZKnnnqKL7/8kq+//hqA999/n2XLlvHcc88xYsQIJk6cyO23386jjz5KXV2dXZWtjs2s52/8H1czjR/5FjDtgQAtf0fJjZuu9ORcruKfvMO5XE0P+pJJFmBvA3VLgRuGQnENPLoSCqvt7R7ZmFUZ4LJjRpXG+jde2SpnklM+J5xswXhyhGlvOlYG4ZFf4aBc2D871iHnqGOA3Yv8y8gzpHiCRQol9oDIRre1LNmbaJfHiiyHatKhSqeSt73ruJfR40zrxcDggO3HcP3iFxhVfDwekWSJUzjTSax5OeWRnTl2YdY4VX9pbfaJzuFlebSODSurOXS0Tdie++B9Qce9jB5n6mnNTiTt7NBoNM1EsznLZs2axaRJkzj66KOjwhctWoTf748KHzRoED169OCrr74C4KuvvmLYsGF06rR7vbAJEyZQVlbGzz//rKyvtraWsrKyqF9zUcQmyolffme6cwHXcjV3cihH1dsEISopbzbZGoqBQWe68Qeu41k+5FruJZNs5V3kLC/cOBS+2g6vF5qv7qmcItafnUMn/FdlEMczeuMZ0U7OJDmNnQHuJENb11HUBzRWx8og/Hs9zOgNSa4G6CjAqCLakFcJKwuhKtAqtOxtTGSWFS+PXVp5RqdKJ2j/OrYS2vM40x4wgNRAFpcufYxZSx9l1NbjGb/5DDrUdIvEy5eAE3Kf5uRAcZLJbl81b4+XXt62uzT3NR2FUf9TyNfcOgY9u8ecdtsH63Fmr6HHmXpau0NKli/8il2i4foVy9aJ9XzF+zVFPRqNRLMs8P/CCy+wePFivvvuu5i4oqIikpKSyM7Ojgrv1KkTRUVFkTTWgSUcH45Tcffdd3Prrbc2gfTxKaOEpSziaE4EDNtx3YWLTLLJJDsqLIucvSFmgzAwSCODCZzMAPbjBZ7gTV6gDvPOlxu4qB9srIK3NsfelZYdI3a2kN1NR1V6uRzVtpMd6VSmXRrZZrSGtyUdQ3kg0qSMIRApUPcbwAXeH8G9BVylYAQapuP/Ss0POQzLgkW7EtfRqJQSqQx7u7vNcrz1QFhxMsTjHeh4dcvpVXLJ5bc3HVsJ7X2caS8YQFLIx6FFv+PQoskIBG/1nMuzA28GYpuZW3gIGoGYvhppP15/a+dDcEqnujScLhNVOfG6Bqe6sam3tero90KNLzqzq/57Dts7Ql0S5O0w1xDz+sEINU5Huzx2OrqDUhfZ3vpgPc7sNfQ4s4+gnWQajcaGJneWbdy4kcsvv5wPPviA5OTkpi7eluuvv56rrroqsl9WVkb37t2bpa6e9CeXjqxhBWtYztFMTsjQdKKWGuqoJYMsRP0+QDJ77xiC6czrwyDGcDRv82JEr8FZcEgHuOR786uJKgzFX5UjCinMye6L57yxc1apwlT5rWnsZFSlbc064oKaYyAgNX8jaCYWbnM/2AkIQNoL4N7acB1TPTC1J/ywC4IJ6ugqdRBeVbGsrFyBIYUniiq/HOeUNtHZsDVte9ZxL7MvjDPtDaP+/5Kkrbzb80llGrfw0LViAOszliXU7OX+xS6PyqlkTec0X7crXxVvTWN3+dn5ENqajgLYmg/bOkaXadQnDNUXVJlmOtB6rYNMm4fqnXSs80FVKmTvspfPKpNhkSEq0loRir9tvQ/eF3Tcy+hxRqPRaDRN/hrmokWL2Lp1KwceeCAejwePx8PChQt56KGH8Hg8dOrUibq6OkpKSqLyFRcXU1BQAEBBQUHM12TC++E0Mj6fj8zMzKhfc/Ef/s7rPE8Rm/gHf6WCUmqoiZvPTx3rWKVcs8yDlxTS8OPnA17jF5Y42gs11ODHvwdaqBHAGpZzP9dHHHZuA87qaa5TtqVmt1Mm4pxxKEtlozndqJRvjMr5rWmsdqBs88Uz+OPZdW1axwwI5mNe3Ub9XxcIT72jrD6z8IDwQSij4TqGBARC0DUVPK7EdTSqrYJKGVQH287T6HQQZQGEIlzOby3HerDtZosQLb8srzz7a086tgL2hXEmaATYmrKBcu9OQoSarZ69TaY/j1NWXYtbmPfqrM2ub+kB1HgqbZ06YWTnj9w/WvOo5t6q/lX+q7r85H49ykGjqFu+rFV+DDmPXF9r1RHDdGKFX7UMv3YZqv9Fxhkg6DadXo3RMeCB0iwzIlEdw0+3tds+WI8ze4V9YZzZ59GvXmo0mjg0ubPsqKOOYunSpSxZsiTy+81vfsNZZ50V2fZ6vXz00UeRPCtWrGDDhg2MHj0agNGjR7N06VK2bt39uMsHH3xAZmYmQ4YMaZRcAQIsdL3Dxz3eJWDs2QL7GWTxGPfwN/6P9aziF34kSAARZ6TfyXb+yg0RJ5QVN2489f8OYhzDGYXP4amyb1nIStTrHTQWAZSwgzu5kmIKI+FpHhiRs7uxyDaSysCFaFtOFS7Xbd2OZxSr0tmVa0jbdnLJ9bRVHQO9QCTbZLYmrA8TvobrKDCfMPS6TGeq1YZ20tFVinnXXzb2VfI5TQTsKlHpaEUlqBwnl6uSL7yvamByXHvTsRXQWseZpuSHDh9y7egj+NPoI/mxw8ctLU6TESLE1tR1hIxgJCzcvHzeblSmxo7Pct8jh1nTNcQpZed4ssOpznDeeGNLImW3BR0rU6E6hYT7p7qkxuno9UNIYak66egJgiv8ae722AfrcWavsC+MMxqNRqNxpslfw8zIyGC//faLCktLSyMvLy8Sfu6553LVVVeRm5tLZmYml156KaNHj+aQQw4B4Nhjj2XIkCFMmzaN++67j6KiIm688UZmzZqFz+drlFwuXPQSA1ie9Atf9lrIuLVHORquKsop5UNe5ys+JkSQdaxkCAfQme5sZA0ZZNGVnrb5O1LAtdxHKum2aQwMcsiLK8tYjsF+tTR7BFBFBbvYQVd6RMoQmI6yW7mUn/guEmYAOUmQ7oFN1RAUzjaNym5TOVrk9FbjWE4nl2NnJMvOHtkWk+uMJ1tr1RE3BPMwnxJzg+EH4cF8zVKAv38chRQ0VEcBbKqCwZmmM7UiB2rHgVEFyR+BCESXFa7eqANCmD2PStlIQkVmWQ/VzM9OR1XDaMiM0SmvanYsH8D2omPDu5xmobWOM03JzuQt1LmrqPaUUelpJQs87yEhQjw/4Dbe7fEk8s0lj0hiecGv1NZsx6h/aFp1icTry1XN11DEyzS2aSfYxUbS2l32rU1HUZ8h/MSYKxRd365cCLqsieNX0hgdXfUPVYp6BUV9nYbNw5YGkFQH3joIWp157aUPltPrcabZ2BfGGY2mVaMX3Ne0Applgf94/O1vf8PlcjFlyhRqa2uZMGECc+bMicS73W7efPNNLrroIkaPHk1aWhrTp0/ntttua3SdLlz0EH3JKMzGVW9tqWwPJ6qopJhC/NTxG8bRg76cx9WUUUIq6bjjHE4XLro5ONMagquRDwVWUMZlnEYuHfkd0xnOKNLJZD2ruI3L+IlvY+yVringc8OGSnNfdUPQuq9CZdM5HX8n4zkRp5RdnHyz087Wa806hrKg5mgQyZhPhVVgPvZXfyc91EEhiKrS8OQjpXE6BoS5yL/HMNc/8/cHVwnm1yACNjpWAf76NHJlssFuNzGQBYmno7Ue1aTALs7OaHdqLLJscpr2omMboCXGmabksM2n07tsf7akrmH/HYe3tDgNpsy7E5dwkRbIjjS9tZk/sbDLiwSMQFTTBuhU1Yuxm6bzRpc7qXLXKuffcn9q1/TtLg25DFWzluWKJ4Nct1xuIpeqU/ktpaNwwcbu5gL+Aa/5hJeVmmSpoDj9kzDU0SodrDq6A5BZZuY3MNdJq0o110CTPxgQKUOYT5e16z5YjzOtgrY+zrRr9OuVrZ+WdoZZ20hYFqtMug1pAEOIlm6pzUNZWRlZWVmUsJZMMtjJVnaxg170Z0PuOubv/xyj/ncI47dPwNWAEVoAAfwY9f9cuCmnhBTScONpUFkqQoTYxQ7y6Bg/cSOoo5ZzmUQh66imiqEcwPFM5SlmU8i6SDqr3XRKd/jTYLh2CSzYqi5XNTlQ2V6q9HbI5djFy9uJlmVXvt0F0Vp09A+CqhMdBAuHORnTlgJ9X4NvoW20rY6ndYerB8F538IPnaH6t5D0I/g+IWqB5aj8SVAxHUK5CmVlxa3soY5xFVI1DlV5qjKt+VXp7WiDOoZqYM2DUFpaqtdRYfc4U1o/zmhMBPBa79l8l/8Ox26cQU5tZ8qStvPf3g+xIX1ZVDowm1r/0t9w5JaZPD7oEkDY9u+JXnJ2l0Ii/ay1fKc5vlx+ImmR9lurjrU+WDHQ8vTYHvZPWaXQe+3usSFhHQ3TaddxKyTXwOYuUJ0KfVaDS+pDraJs7mo61hxpg32wHmf2PSLjjN3xMIyWdzq0RuwcHdoZ0npojnbb2HOqkiWRNqRpk8TtVy20yJNle5Nvu39Bcq2X/+58hoMDh9ODvnSs6ESPXb1w+Rt+QRmAF29UWCbZTSMsYGCQQVaTlSfjJYl+DOYXlgCwhG/4kW8RlslJuAsI7/dJMxdzL7YstSbbR3K3IRThKoeLk01l57ixppHrcpp4xJNPnjS0Vh2DnbA3SMPhKgM5gb69ITr66+/quw0wysxAUf96pVWcqKssCEZAklclv3W7KXS0M9idTpjdwbCrx0kuu/xtUUeNJg6CECuzFrGq/ucS7sgaZdbmbm1mHau7kVvVIWHnTzwM6a9TOarLL5H0dmntdLTzKzjV5URz6liRrnCU7UH/tCdTi5ALQvUfp6nzga+W2C9eEq2Ly/pkWXvrg/U4s28jO8f0xF2j0WiajXbvLKtz1/HmqPmM/H40k4um4cVLUl0SU3+c0aByggTx48dHMgZQRglJJOMjGYEgSAAP3j0e4w0MvHgRCBqzJlkidKCT5AQSlu2wHLvtnG6pUB2EHbXRceFtK6pJjuxwUTmhVI6jeKhkaIhzS56U2dl9rUlHYdR/6dJaobVglSGrUtASLrzRya3FOum4o8602bqmwuIQGLWYHxawEQeAoLnIf0QHO3mtmZtAR0cF48125fJUaZ0mJe1JR22TaxJgW8pGNqWviOyHjKDtHD7czPJquhKs//iOU3O2cww5OdgS7WvtLg+7OFU42Oto56+Qy20VOjoJ1oj+KehWHxNw1jEsi79+nAq56hf8t3G0RImgcga19T5YJUd701GPM85o55g9+kkgzd4g3M50u9onaPfOsrHrjuCojcfiCZlfmmwsAsHbvMhBjKOITWSQRSm7SCOdd3kZL14u5RaawsG1gqWkkk4B3fCS1AQl7qaYzbzNfDs7E4i2e3wu6JJiOkbK/GobzRqmsrNiDF9FPfFsM1DbdU46xItX1Z1IWIvr6LXJKAunqlChWCjLuRg7Wcv85jjhNcCoBNyYzjIpYUxbq1PLEbWtnDE1Xkdl2TIqY9+pQTiVKU8q2qOOGo0CASzN/ZSi1DVR4aqmFcYtPIzYfjQ/5X2MeaNIfVk4OXec4uM1dWsaVXkqP4Fdf24XJ/fjrV3HgMdByEb0T7XJ5tpnSXUN1xFMZxsCUqrNV0RV1Vh1dIcUCdpbH6zHGY1Go2k59CvQ+wSNWyW+DWEAycFkPKLxjrJSdvEIt/ENC6ijlg504iWeopxSaqhhMxuoo46mehLsF37kce6NvCoZDwHUUuuYJkSIKir4Fw9TTCEQa8uoys30Qm4SbKmG2lC0PSPbQ+EwFNtY0hnE2nuywWtFJads91ltRkORx0lHaxmy7dgadYyKlIWzbqsEjlNpQ3SsDJiL/HdLxXy9sgZEKqbTzEFHVwmxB0NWUDU73RMdVeWoTr41XbwweRJiLceg/eqo0ThQklTM670fjgqza/bhv96Qj5zaTvya/X1MU7XLY3fpQWx+u8tM9hkkUp41T0N0lLuE1q5j2DmlLNS6nWD/ZAjz11AdwwQ8u/8GXepx2rrvq7Ucn/bWB+txRtOW0OuCaTSaNky7f7JsTxHAt3zKLnZwPQ+Qhbky+TXczdd8zDM8yAyuoDu9G1RmDVUk4cMd9VlAk6M4kd8yhWRSbZ08Mkk4f4K6hmpu4VI+531bO0S2ewyggw9SPLCxSm3vWHWSw50MX7s8qnRW2VThHsN06HldkOSCgZlwcB58twPe3hJfRzt5W4uOMQSIVsQwJyEeAUHMj2IqjWFr5bLhW5+mITqW+qEuBMluMOowK3cT+RqmnY6uCuwPjCyjkLbtZpfxdJTLtuaR67GWL+exlq2SSZZdLscuXVvRUdu8ex2BIGgEcAsPzfVqflMhEHzQ/WmKUtc6Ns8w4fg0fxYZ/hzq3NW2eVT9o12zTOQoyeUl0v/K5YaM+svEIaNd95CITNb8e1vHqFcdm6B/Cr/W2VAdBebxrUiH/K3gDkJthrmGmStgr2NytZk24FYULMvYlvpglexyOXbp2oqOrbub0zSU5n7ypj044+Ido/ago0bTRmn3T5Y1BXnkM9C3f9QrkX7q+DdP8BUfcw3T+JwPHMsI1P+rpoqfWcwrPEMtu1fMF0aIYOdiADLJIqUBjrKwreFECmlM5zLSyIikt+azs7m6p5mv2YWdZXY/GdmGUjlbDCk+EV0MwIUR+chC1xQ4rKNBituguAbWVsL7W+DRlfDx1mh9nOxKWT7halkdVeWEA1yllsrqI7KCcP8G+P12SA9Bz1roUwsZofqJnGFTuACRie3TYE46BgTUBiHbC4YLjEoQKSCSousR9f5gkVSfv0oq1FoRUpxdI5XzxNEx5gRY88h1W2VSnTSniYNKjvamo2avIRB8VfBfbh51PAu7/AfRyk+AQLAp/VfCDcWuv5X7N18wFb+rjpKkbVHhQtp26jvtLjNV/fHkki9dOyelYSksno7hbTm89egYXa5hfY2xCfonYZjOxQbrKMynxMLONq/ffOot4HHW0R2q16E99sF6nNFoNO0Z7RzUtCL0k2VxMAB/QZBfBi0nr3ABx648nvAIX0sNAqignNX8EpNXYH4YIEQAP348eHHhoiMFnMTvSSFtd9qMSgJ91uHe0qnZ9BjCCC7lJu7hj9RSa2tEW+XvmmI+qbS+MtrmktPJNpOqfnnbLm04jRsPA9mPDayhgjI8eBCESCaVm3iQspy3KXdtZ8O2zhSJ1wjUn48gsL02tnwB5lNPhtqutG77B4NRAZ6NkmAhEKGm09GKKq2qTJVhW+qGO7pCuRvqDKhKgvQg9KmB5BAsTgO/S8obdma5dm835DxWBsx1y3KzwD8MhA+EFwI9wAh/DKIWQhngKoNQHrh2QijHRnG7mY+dIZ5IOtXM1Bon57FTXDXDi2fQqy6M9qajplkp9+7k+f63szVlPX5XLaOLTsIXSkk4v11za2oEsDR3IYs7vs+SDh8mXGc4Td+yA3ALD35XbSRcbqbx+kvV/DuRfiyefL3Kh3HMxum80WtO7DpsiutD1Ge0LpCvGmcMAbuyIMkPqVX1T6mJaCeRLGtjdYw3Dikvfeut1Kbon+JkkePlvzXJsCMP6pLMp9525EFaJbhC5jpofi9468y10dxBM33QauG21z5YjzMaTdtGr3kVS2s5JkI4O+5ai5yaZkU7yxKgU00Xutb0pCR1F9XeKnb6t7OEr6mkjA7kcxYXcSJnReXZwTbmMYe1/EpfBnEEk+hKL/7HIt7nVcYzkT4MpAf9cOMi0GMT7o1dm00HAZRThgs3qaRTV7/GWTw7q3ca1AVhq/QlTDuninzjUjjksXO+ufGQTS7jOJYruJ3v+JQPeI2xHMM6VvE579M/OYseaaMJbjqTOdxNgICy3igZvVB1Moj0+McrlIX55cYKSbaNkPyBWeie6BjvRqycTomlEGHAdq8lSkCZB35yQ+9a+G0pvJNtvsFpV2BDzyNAUICvIwT6muvIAFQfZyewQn5rJapGZVexXTqVMqowJ6XkiYZdOlXdcnx71FGz1/im05tsS9lI18r+zPzlHpJCyY7pBVDtruT7gkI2pH3I8g69SAkkceWig0kNZjSjpIJluV/wds/HG5V74K5RFKWspdJbGgmzm2eH4xrijJPLMIB0fw6Z/jw6VHdn+PYjeKfn42TXFjB41yGUJ+0kYNTRo2IIY7dMIa+mG7t8xbzU9/64l0LIDZu6QVWqfRp30PxVpJvOnrRK09njDpr7ydXQuUjtjGuIjnZpEomPSdyE/VNDzyOYx2djt90Zt3U0f2Aes5Br99+IeO21D9bjjEbTumkKJ8re+rKnforLxO4Ll9ohts+jnWVxEECX9AFM33YNQVcAVw8vHSszGLS9hiMCkziMiQzlAOTXNFbyM9VUcTaXIID3eY2FvM0WNhIkyHu8QjqZ/IHrOIEzocsWvKt6N7nsIYIUsp63eZEPeI2NrCVEUJlWtl3chvklzMog7KpV36xUOXzkMNk+crKRXLj4PRdzHKcB4MHDaI5kDMfgxUsdtUznUjyd/oGx9STcJHEuV7Ocn/iWhTHyRenogVAHCIWdZU4Golk5QV90eCgdkhaBe0fjdVQdL6Q4ax4U4bE76kIFsMYHHQIwqBr+Jz+UIkAkg/AB/tgionR0EfW6Zp0BW+qgTwCS6vejMspGs9OxVimfoI5xy1aNc6pGrJqIWMuwm2A4pXea1KhksZOzNeqoaXa6VQxkyuqrOaLwLDrUdLPv24AadwW/5HzFf/rdy5qs1Qiq+LXDFPrsWk2F9+9N6iwz58chKry7KEvagSfkpVvFQFzCTdAwx5d4Dppwk3XhonNVX3YmbyZoSJ2QRDwHmqoeu/qP3TiTk9Zejlu48YZ8jN98Or5gWoxDMpwnNZAZ2Vf2x/XhAQ+UZtUvkC9XrBAuZEBpZnR4RTrklJhfftwTHe2qtkuDIr6p+qeQC/weaeF9SY5wmaL+B5hP2ynGFGtY+FgHLU9JxzVY2kMfrMcZjUaj0WialX3aWWbrK/YE6r87DsE0g51TUwimu6B+EX0jCFklffn96lkk/+onVLoDV2kG4ZFeIOhJD3rRk4cCN7EyuJwaqqOqCBCgnFJ+4Cvy3Hn4khbTpaYbPeirXPQ/PDmpoxYX7vo1u8z6aqlmPatZzS8ECRAixAZW48fPFjawiC8ooyRKXydbJmzvpLmhUzJsq4GKgP1xVDmAEokL62W1kQTwPZ9zEIexjS10pSfJ7Pbw+EjGZ7igw2eEik8mRICfWcwyfuBUzqGEnXzNAsoojdFRpNQ7hWSDEGINRJuZnfCZr2i6Pm+8jk62pVye7XmSM8onVyp0eTJcsBV+STGfBotK4wZckh4uCOaAUY25xpgHao6AQO/oamq2gcdvflxAqax1X777jSId0n6iOjbwPMacNLtJgfUE2HlE9zUdNQ0mqn8wBKGO26kd+w3u7bkId5Daw75EZJqPsbqK83EXdwCgB9B73ViStuSBr273Dc6gG4JuDMwvHX/T6U3e7vk4q7IWEXIHzNMUgoHbXsQrktieson8mh5NokvACPB555dY1PE9Vmf9QLl3BwYugkaAkMVRppp3q/o6l3CTHExjVcriqGNl16StYaomKsfb1b/LV0RyMJXwja5Mf56j3h1quuEWXswRXhAyguo6DIVzp4HXbtBlOtySazC/ItlIHZ18JXYOvyiasn8S5lN31mCM+q9cCvAEzb878mB7h91PiLmC4E+KLWuf7oP3BR01mjANffIp3qtzbeVJKusTTW1F5tZAY58E08dYY0O7d5b5B6zEn5RCoOdGcAcR7iCB/mvA60e4QuZ2UvTd7GD+NkI5JQAIr0Ew1x21/ghAMGUnNd4qyvzgqnbhKu6INdF2iujCDk7ZDuU7ducL+GHzShBByCabycHerC1/jxUHzGeR6zOm1VxN+qZ+EUvStT0Xw++likoerfoLPwS+IyWURg/6koQPH8ks4RvW8iu1kkPOSryuw4PbnAAQitgrOT7I8sLSUvBbCrArS2WYC+lveFtlTxnAAIYylQsZxkh8pOCpb6KVVFBEIX0YiOHyg7uKaqrZwQayyGU4BzOe4xjFYbzCM7zIk6xhhbOgqn5RZRRK+epGgnszeNc0XMcEq7AletJNtNGpKqj+b9AwF/z3ivq775IAgR4g0sH7CxgVUD0RAv3BqIGU/0KwJ9SNYPcnQerrW18NY7dDdhBKVOvDJDJ7szPGG6ijbT5VnF0+pwmJXaPdl3TUKPEPWInfvXsNymDnYgKDf8W1uYBQTgnBvusI9FmHUZWKSPJTO/4Lgl22EFkYyh1UT2QBozYJz+re4Pdg1L+r5yrOJ+XlE/B9OYpQRjkdJ3zO2N7bGNUnQFIylFaksGVFLckpIXosPpK+i/shkuoI5e0ilF5hro3pEuZ7a8LAqEw1x696B5wTm9KX84/B11LrrnJMJ18GdpdAuj+HjtXdqfFUROWzu6RU5asuH7v+1y08HLlpGhM3nGdTspqRW4/l0qVzyKktoMy7k3kDbmVryvoYB2GMAI28drfmm69nZpTvlj9RHa37dhrGu6Q9ASnhHvZPAtiVA9UpkLPLXKi/qMB0jgH02GA+dbY1H2rDH/dWeQNVCu5LffC+oKNG01jCjpJ4DjNN28YwGu8U02gaSLt3lm1deALVWQbCV0tkFA4Pyk2AAIJZECzYFhWeXf9zZgd14q90BboCzPyJCjGTytokwoK6SjLrv30O47eUMaLUTWh1Zzot9fHeqm/5ZutySrZCcDsxr9HZ3VBUGdzjOY7DmMALPMFKlhEkQEEyJLlgYyUYGHhw04WeFLEpsuYZlrJU9pdsJ6EIE5ivW/ZjMAcyBoFgMV8yivEYGJEn7UIEqaaS1PpJWqq/K6mk46eOAQyljhpcuJjCTMZyLBdzMutZvbueVGK//6o6SE5GocB8uuwA8KwDI5S4jpE4G4PQbhKktH9lz5wTwnSWZQXMRf9rrK+qALhNR1iwCxiV4F1mvq4qkkB4oO5gCPQhxlGGAbWGOef2CKIbgmqmLMfZGeyqRpqAjg09j8o0KtkS8Ybuazpqoti68ASqM3cfLJHkNx1g1kmgkthX4uW0IrkO/9BYx3/NsQswan1ghPAl1zIkKl81HFm/Oe19dl56Au5teQT6rSGUWo27sIt5w8hbhxFy4y7sDDU+PGt64SrJxLO2J0Z5Ou6NXXHtzMGzoStGmfkaYkFVb8ZsmcKCbs8hf51Tbtaq+bxMn7L9yajLq79NY441hnBFnFANxck5BDBsx3jOXnFbgz6UAOAVPg4t+h1g6jdk12g+7fIi/+5/J3Wu6kgd1SnE3FxrzLUbdJlrcqVXELN2WTwdnfwRdvFyWk+Apu2fDNiZY27WJUHBFijJNtciQ5iOs5ALIuaP7oO1jhqNpvlpi45F7SjT7EXavbNMpNYiGmYT711iZhMhRGpNJCiYuvtpsa496p1qlIJYzu9DBqfVQXU5bP4Vln8JP30ESxdA0B9r58i2jws3veiPFy8HMppJnMERHM8ivuAl/snQlP/hMopJrh7MFEbjxs2FXMd6VvE1C9jMBr5lIcUU2hrn4bpUtpE8zTqbS+lGLz7nA/oxhDrqcOHGjZs00unLINaxkj7uZMDAEKYTzUsSM7mSEnbUlxRiPavYybZo29KH+SBHIjM5W0+XuR/oaT5h5lkJRgCEF1y7nHUMh3XuD4W/2s4nbO1eQxUoG7ayMWpAUshDTnUKnjoBVO6ODP9xg6hfzsg/xHzVMpRdn98F/gE2AgnzowJJAjrXwZYsqKqVxjDZWRDPI9hIHZVlymkU59EWu7rlcq1p9iUdNVGI1FrTGS/TnMfLHUKk2j9NHKnbEyIwYDWBAasjUYFBK6OSBnqZn/2tPeqz3YECCLow6pJwF3bBs6IfRshF0ncHcPq3x1BU9ivLMr9RVhluTqq+zJomJZDBiO1H48LFLt8WcmoLOHX1teRX9aTUt41Pu7zI1pT1FKesI2gEHZ1EKmeQqgkftPU4khroKFPVl+7PZXTRZN7o9Sg7fLvPQ10SsQvLo9iGuNdueYbpMMvZZTrM3MHdeZx0dBpbDEU+lX611vU6m6p/qv+7M9dcly3yBJkBlWlSPt0Hax01GthtVMoOnXgOk0Tjncpta06kxqI6VonobncM2yJt0Wmo2Su0e2dZu8UA3IKkFEhKgax8GDwGjr8c3nsM/n0zVJbG2ilekjiGyZQYO/F5U/kT95ERysITcGEAaaQzjgmM4ShIuxHE05xWeTcwmhqqSCODfgwBBL0ZwM8s5kb+QAHd2MRaqqggSPQCz/EmMQYQJMg9/JFBDOdBXqCOWvzU4SXTks5FbwaAdwn4cyHki+RPJY1U0ggS5Ds+4yYuooIy5Y3MKOFkVMaaYuIjvFBzOBhjwPCDUQqpr4NRZq9jGK9Pba8q5URx/KqkCNlwlSo9eP0Q7n37QpLxk9PpPrbnbY4xukP1zrJAT4VQshCW8nfW9yAeAV4PiNr4eSJ/VfEyCepomy/OeVTmaYi8+6qOmvaPAXhCCE8Ngf5rzCULgOoT3sWoSebkp8dQ+Vpv1rFW2deHyxCG6egJucyl1rx+SAr6OGrTNH674Tzyq81O58jC33NU4TQG7RodaYqji06izlXDG70f5eOuz5FX04XC9F+pdlfE1Kdq+qqw97v/kzFbTt6jDx4IoCRpK3P3u5RdviL7y2MPr92QCzZ3geJ88wnelGrovsF86stJR9WYK4ujGnuseYRcQBP2TyEDapIlAWQh5PJ1H9ywPHb1tiUdNRorVmfGnjxZZPe1w9bqKGmtcumnuzT7CNpZ1p4wTEfMpEvN3WeucREIhCI2jQDSyOBybiG1bxd2TUwhaLgprRWk/FJHytI63LvMu/duXJC6CYLJeGq7EQT+zWOMZAzDOIgu9CCZVAYwjHv4B70ZSDGFFLKOx7mXDazBg4daaiJ1K8SNCR/HBCopp5xSutFrd15XiB2Za3Gl1JHReQOh/cogaTHuLZ0w6pIwSjLZUVPKYr7kdeaxk23IhLIsFYcLthhubhdkpJh/AVyGOUYFQ1Drh6oaCFnzuDBfVfQBaabzLOU9MGrB7QVXfTkpGeY+mOV17All23fLVV1uPgkIEAxCKKCe/IRxVaI+oPLBrc+YFPTQoTKLgCtEij852iBVGbyqu89GdBKXyzxONT7TcdhHwObs3U+WBYK7yxTWMp3kle9cx8NuMmd359poQB4rqvLs6tkXdNS0LoTZP20thdVbYMtOKKuC/XpC3y7QKdvZ1jZqvRD0OD+lFpUBREoNORcsYExGLhueB2HzxuSuHNPR4w2YC7kH3NBrczpnfncVJ6y9GI/YbYIM3nVouPjIX4/w4gl6+d2aK/jthvNI9WeyNnMpH3R/is87v0zQ8NvO/bEJq3PXxH3F08kPEE7xQv87+DFvQVSeqPQ216HHtXtssBIKQSAUm0cY9YvgG+Yri1s6Q7dCMEK76zCoH2MEiBC43OD2QNDyYZ5Q0By/PB6zrlAgVkTbA2FHM/RPBubYG7LMXw3DlFnp3NHjTKy87UFHjWZv0xqdP63VUabR7ENoZ1k7xHDBhPPddNt2DR//dz1LVn9AefUOBJBMMh6SCBR4Eble6r+bhr/ATcXByaQsqyN1SS3e4nJIWYcRyAF/Li7cnM75kS9x5pFPiP9v78zj5Cjr/P+uPue+71yE3NwQIAQQFSIEEAFxNZgVVBZUYF3WC9FF1HUF0Z8HHqi7CriisB4gckk4wxFykUASckLuZGaSmcw9fdbz+6O6e6qrq7p7Jj1Hz3zfr9eku5/z+6mq1Pdbz/NUlWIn23iD1ziNc6iihrmczHTm8CYr+R0/Yy87U+wzD94VUcxxnMIR2jiXD9BPL910MJUZiTJ6YzPd81fSt3A5hX4vh67+M64uD8p1I7ijaJ1leLfNwL38dPb+dyd6RDGNmRxkHyECA3FX/AWi1plSDapL4YML4KRj4K2dxqCPpg0E7bMmwZpt8Ow609skSf4Mz4VaDyx5L8w+E3xFRnZpNXgLBvT7CiA0cKct3W0Dv7sPw8YX4bEfQn+vaZ9atp3tLK9dEKpZ6llJc3XpdsPkGpg9CRoqob4SimO3zZQWQUUx+HU4FIIPeuGCImO76To0HzEGGXUF+w7DoU7Yvh92HDQGBFP6TjcTnaVGxyvmdFfQ6a6y7coqm3Trb6cy40mjkFsUhCLGYNeeQ1Dkh8oS4/+ez+tcLRKFh16C5RvgQDv0Bwd23580KC+G806AM+fAKcdCoT+1jYKnFuFbcyqd//ndwe1ft85JHzlMuwarl0F7CxAb7Im6IOQ3brcLFELAdFy/O7Wfld3b+eAuko61dF379AJ8IeMkOrtzPsd2ncSClst45Ngfsr18bVbmlodquXjP9Zx98EqKIxVJeQkz3FHCJ20isOgl3AcaKHzsYrTuEhvbNI5vP5ddZRs4UPQOQXdf4r9O1G1q1PR/V9Pg5GPhExdAuc0tuz0BeGYt/GOt6Ul21gEhDdqrodYH582A2acag2RuN1TWGwNigV4oqQCvD8Kmlb49XRDsh6o6CAZgzbPwxgsQ6k/z33yEzk8+d2yyqgguWwCzJxuTUwB+r/HX5fA+CY8bAiFYtQ1ajsDhLuMzqg+0n2Kvk235dA4WPyNMRAazCiwXg1+Z2hjsraHmek5l7fJyNZA3mJV5g+kzm7K5GvjLxepCJ8bigKkw6shg2TjFWxjl1E+8zSneh2lp28+a7U/w0lsP4msL4y8J0F/rxhpB6UUavaf76T/Jj39PJxWHDkHHLIgWoQFlllcWuNDoo4ezOD+ppemFx1BRE8arfZxl/v+ja1Ly83HMLOAMrun9MrRU49Zc/DX0B8Kd3ahgFL28i8jsHaBB4eEmCh5ZSv+1D6PaAlRf/0l6z6+h/yOPUfTgR3DvmUTwfa/ykSUnce3vH6KFAzzFn/kVd5klJn1qgM8DJYXGYFiR37hgdbuhogTW7YAptTC5FmrK4NIzjaD97ytj51Nz0KmMep++Hc4/mYzBnt/0fJbS6uS8498LReXwwFeMgSfbppxmb61Br4Lm0nbC7ggu5UJTWvogO5ZWXwH/shjOmgNF8cVoDpoiQHnsL87MSal2BcLw66fgbytM/shqrzltEBqTSBeI2824W/Zj2r6t5e3ssrY/3jQKuUXBjgNw75OwaTeEY6uBJlXDjz4D1WkGy1qOwJ9fhq5+kvcrxrjVkW742+vw+Co4bSZ86gMwZ3JyzBo+ZaPxtk2grQt2NhsDa54sogNvAXzg4zD3ffDyc7DqVQg3Q1eZsQLK7kH3UVeUZ2Y/zjVrbmBe64lDui72KC/zD11EeaiWP865izfqnifqNlZg1VdAValxrgbwF8D0uW7OWfNPTH/jOjTNa6yi6/ejKRcKRWDx8wQ++Ax67WH6L1mGKu4D3UXRny6n6hP3xpZ2DaAB7zn4Uc5quZz75n6V5yb/r7HZNdMD6s3/dzXDx3x9iTEx4yR6ziRj1dlTqy2DPaZ9W1EC//6vMLMJtNgKtWgYQkFjsKy4LLnvSBg8XlL6PGYeNB0Lj95rTGAcrZ9J2UBZnJ/cGiyYCx851xgc9nmhsdKhz3QoOP8UY5sFQvDwcmMQOTExM97OweJnBGFsMNhbQ7N5i2O8TaWGNnhj14fVRnmbpCBkjQyWjVc0UMcuwzXjRRqL5nPZlKu58JwPc6hrJeEV1YQbdXCFQfcMVIh96j6INB5Ca+shWD+X6CnFFGwN4+rTU2Kas7kAMGKb7ppduC9cgxb0E/zAE2h/KWTe3D5q3w873zRuR6xshBPea8yGr3wE5nd70Q+uxbNjOr2Ll1GybTsef5DAlgMEzn+Z6OQD+F8+i9ApG+gtbkW7cjlaVOfQ7/6CXqYRrW8lPOsdtKgbV3Md6tJnKF51FoXbytnkXkVpBVQ2gMcPwdMh0jRge3WZMcu/drvhNybXwKkz4IzZRsB92gzjgsTtMm6P6Q3AR8+DNduNVRxWjm2AhfNwDgyzxOWG8z8J//gVHNjuEKtmE9zGynQW9LK/ai+NIRcVIYcrbwUn9EOfC3rq4dufgFlNR6/FbFeBDz5xPqzcYtwqlqLDMpg5GI0p3zNhV9+al65sugsYKxNBozBkDrTDfz0Euw+R2A9FfmOwujrDY7Vqy+GOpfBuszHQH+dQp7FCdleLsbozGoXV24zVnbd9DM6YRWJfRqbtpefzvyaqwwtvwvKNxqDD5BpjwC4UhEgodhscxqRAYQlJx/DmFni9T8N9mqLSDdVAsNVYDaTrRnvxwSQUdPu6+cH7vs29f/k9vqgfNAVKG9ThpQGzOk/jooOf50/nvsSUyVHOPQFaO6CiDK5dFCungaZF4Z9+ReuNT0HEjaY0fCvn41t1GkTddN1xN9GmluQO3DqBD7xI1+0/oPT/3Yirqyylf6/uQ3miTKorpm5GhEOeIFWTYX/3wIRKQ6Ux2XLxGekHygD8PrjxUmPA74FnTbdlmji20fjTXNB9xLjdcsOr8NzDoHQ4+TxoMsY+OXwA3l4Jk2bCKefBrFMG+tdcMP98eO1xaN6VegrwhBm+85MGxQXwoQVwzaKBgc0hoxlde9zG5Nc/nw+7W+CVty12jedz8ETQKAhjkaEMOqWrEx/YGuqAll2d4VqpJggTABksG894AugfWQIR4/YVb9RHU7CcznAhxpRzIbSeCAdPRdt/JrTNgYjxCixPYAeoED3VU+g4LkrB2X7K3oaiN2PPNYudZ124UO4ooflrUVN2seEfXqZPKaGlqZCtr7jpnX0ItRv+/F1j9rt2GvxgFaz7dSOP3eHl3KrPwdVbKHjsYtxbZnLy7FdoaD2Jzh/cQXDhanBH6b/yCSAWP2mg3BCePfBMMlXaiwL0CuPp+m9f8WN+99eNHHvdRk6fBJPmwbQTIKwgrENPvzF7X1tuPD9mRqNxu2X8WWVoxmqqOVNMm9Jt3NJUXgRXng2/eNwyiKXBBadAoY+cUFoF710KD3/buABKaDUXcprBtQSa+8sPce9l3+HyIzo9NeHkwDlWx6tBmQ4tJfCvH8rxQJmJihJjOz34Arar88DSb5YaUy4GrBqt5ZywmzmPp9sF/tZ0J3vHikbrhchQNAq5Q8GTq2MDZQAalBTATZfBe44n4/Hq88KpM40/a7t9QeP/2V9fhWBsIK2jF55YBafPSh54V94IHV2w/QAsfX8sXzMGyja8atyut2+HUby6AT57l3E7eZz3nKCxOXwMl8xsYUalcb9cdx8c6jIGyprbYfNeePcgtHQYh1Nz6WraDj9Pw7qFdH/pZ7j3NVH4p8txHa7O+N9UAfiDBM5/mcnvfYHbLtQ4eQ6UFRr9hSKx54KZG/JGiczcmfgZnrud3msfStuPXn2Erq//EHdzHcX3ftryX0fR/9G/ccl173DhWSG8JRF0jO0WNT0Sze22meRIQ4HfeCTAE6uguSM5T9NgwZwBX1UcG3w76RxjP21eBS/8Hynniq4jsOhqm76KYOEl8Mi9Rlnz6ccbMbWR4/OTzw1fvgrOPd7++W1Hi98D118MG3ZBZ6+N/Wb7YGTPwXZ9m9PHg5+x69ucLn5GOFrS3cI4mtj1b7Y117c/5hO5esuovLVSGGFksGw8owEFXaC6oKcRbe85sOccmLQKddLv0VZ8AW3HxaiiQ6jj/gzle9G2XA47L8Ad3YZyKf5n+S94+cj/UlHcwNzJZ7PwA5dxYufJVGx04QkcIjJ7O+FTNuJ7aSFFf/0gL2n/gf6lHWjL53Pqx3fxijeEpsHM0423dp612E+Z38MHN32NRWdVUOZ2Ezh1A6qyA++OYym78T7altxNtO7Q0AZrNKi9fCunvXg8B7a08bfvujjvP/bz9ivwj2boqDRWiH3gNLjxg0Z572D+F2gwrc4YXIsqYyXaOccbF4bvPZHcDTBpcPGNMGM+/PomOLQnkWxgDS6tAbApTQE7i4J098DkEKyFpKB0Sg3866XQ3wHTOnKzOs5RlgYXngaPvW65dSxJHMmBehYaBzqwaQOHNLsZbXOf1r7sLirM5axlM7UxwhpdfaA8oHxHqVHIKb2m5xfWlMKtHzVWtWpHM4igGQP+n74IjqmHn/994P9bxOHZ9tWl8NWPxg6B2HHgKzBWHx17Ijz1ALQdhDnzY7f1mSj0Kv71jJ24TBff5SXGHxi3fr73RGOVW3wFXDjSQ/RL19HcUodefwjlC9Fz8/9Q8NQFFDz1AXyrT0HrKjVGbdw6hIyn3OvV7UQbW+j8/h0Ez3sN5Q/xHtNx63ZDoZvMZHuOc+sEFr1E8S8/Rfy+UgUE3/cqR352K1ptG/HNEd9l2dzCmo7mI9DWbUlUMKkm2c+4Yv0Ulhq3VG5eFSuqkk8fJeXGn93/79PON8q/8GfotLrdQfgZc5tJ9W04Y7bhZ4ZjoCxuQ2OVsTJ87Q7GzDnYts9x5mds+xQ/IwwHTiuvRnOwKVdv7MzEUJ+VZteOdRAr3wfrRmL7CxMKGSybCLSeiOuPj0F/JTSuQ9VtAjTUrCeNVWdFh6G3HkIlqDN/Dmf/gP7ebYS3wYwDbdT72mjfv4tnf/s6T67+OdMbTubsuZdw8R0v4T/rZbyrTyVc24JCsbQ4irrqHTxXHCQyZwezMG7hufhG4/zlcgeBIN3/ewsoaIuZqJd34X3reMKnbCRan/omy8HgKgpzefdnCLUtYsn7Ownf/BXefNJPtD1IgU+nogSuWDj0iYnacuNiKBo2gvGLTzduMcz1+FJZLZx4PjTOglbrYJnT7LF1VlgNfLgYuJgzU1kCsxuhaAYs0Ewr7IaJpmrjOTXL1mE/m2ye7R6ExpRy1jbtZsqdSBf8W+taLzLMaU4z5qOgUS8ELWIpb7XZoa7jKgThqLlsAax/1xis+pfFMHcyOdvObhcsOtW4rfzeJ4zz1II5Ds1rzumVdXD1F2PXAS6bc6dmTCCkJVamILb61vgMEZ22L1EkfNw2wvO20fOv/41n20x8a08mMn0PemUHni2zwKUTWrgavaQXVdozYsdj8NzXCVz0HAXPnA+6i/ApG2j/3Y3oNW2ZKw+BmjL49IXw22cGnmHn0uCf3mP4HztOO98YxIxfHyhlvHShsg6mzQWPw6rnolI490OwbZ0xWJbEIP1MSjlLWy7NePzB1e8f5CTVEPC4jJftvL0H+kOMiXOwbXkz48DP2Ja32uxUV/yMkC1OAfxYGCAZaRuOpr/R2F6yKkzIM2SwbCJQsRP1/m+gajZD3Sa0HYshXAhl+9De/ggUdKDqN8DhuWhbroBQAeq9lxN5F/56D/imwX88btxa8syvgky7eBVTr1qF60wN5VWEzl5N6OzVSV2ar8k9Nm9gw5O8vKH/w0/Q/+EnBq8tqqEFCnF1lKFXdqCKAujV7QT+84eoggDuUzdCoc7pVwY4+XJlxGUaeLNZeeDUpU4iwHtitfEsoK99zOah9jlg4wvw9isDv1XsH78OJVHodUOI2EvorDPEpk+fgqaQka1FQesFVWSsNNq8F556DK68DHyVuddgxaUZq8teeDP2TB6ngN3pwsD83e4iwWkG2zqzToY8p6Ddrq6dnXYXHqOsUesDVc7RaxRyg2Y86/CnnzNeNuIzFk/ltgvNeDnJsY1QWmisJB1KH5prhA4DDZQvQviELYRP2JJIDp+4eSR6t0Wva6P9dzdR+MQHKPzLZXR+71tEJx8Ytg1SXQZnzYP7n40laDClLv3q5YZpxl+CbAY+YkQj0GEaKFOkvNNgIGOI56emKvjUhTBvivF92NGMld8fPBMeXwmhqHFdqMdXLomfSW1nrGkUBCfsBnnSDaCZ88bCgNrRMlwahnvbjNRA2XjYx8KYQQbLJgL+HtTJ/2t8V6BmP2483B9Qi76KaloLhW3Gw/53no/WMgctpBO6CZbMhuIq8BfB5V+AxZ+B8nrjIfTppxNzgxbwU/D4hegBD0fes4yiaT3o3eAqBlzg2TWN6iX/TWDx83R/8eeoogDRKQfon3IguSG3ym6ATMUGcGLSXK7UW0Xe2hm7lUgZzwUKRwduN8o1x5wMZ38Edq2HfVuMt525OqA6BMeGYJcf+l1QqEOLF4Jp/NARjzHI5n0TCl6G4JkQWgiLT4fLLwVfjp63lhENjptq3AYbNA5DegLGg7nB8HGtHca23dVium0sm1lsa3Cf7UWBybZE2XSBvrWc3Wy73b4wp5n7sGvXiaFq1MDVBarEGCQ9Ko1C7tCMh5IPJy4XHD8tcznBGb22jd5rHqZv6Z9RnsiIXti7NWPQp6xoEJUGYZ/bA2csghUhaN0Pmg4ukx9MaXOQ5ye3Cz53KZxz3ODsOlpcLmOA7oMLjDe9BkKws8V4+P+BduNW18Odhg8f1Gop8TMjo1EQBkO6ARIZPJk4yL4WcowMlk00NMAdTvxUM58ZyHNHUDOfQc18hviCn9MuHcguKjf+RhKtq4TKm+6m9XCQhz7+AictgeYXarj0y2G0uk7ceybR++kH6b3uQZQvnLnBDHT1wZ0Pw5Fe4/eZs+GTHzBWk+m6EVTvbB6I5TwuuPkyqC1zbPKoqJ4Et/wO+jrh9vNh53ogCvt8sM+0Yq9Qwam9sK4Ygi5SAt1DHhf1u85l2uxX8G7XIQCudmOF3QfPHLg1aqQo9MMVZ5sSLL4t/pDur/wGNu22lLMG7JAa/JvznLAL0p1wCuKtFy/ZXHzEP50uWIZJo1Je9KAPracXVZHBPmsbTisUBGEi4VIoVyRzuaNFGYM40SigwcnHDvOzJF1w3pUw/wL49X/A3m2xwTK788EQzk8FPuPZeaNx/ijwwZRa4w/grLnGZ0Q3Bs9eeBN+8rfYirM44mdGX6MgjEdG43laY+kZXnEbcrXCbDw8Y00Y88hgmTCm6Q0VsqImzOaK3Tz6mIu/PwjHMYl/fuuraLN3E5l0kJ4v/iInA2UArZ2w7t2BlWOHO42HU1cWwBNr4I2dcKQnVliDimIjf9iCO83wBcUVMPtM2P9WLA3iz5oGBf0abCuEOf3wls3qg7BLp6GnEvDRVz0NV8hD1AdzJx1hat2B1AojjWX7ud1Q6ILZkwvYsFtDU1E0whijPlm0YzfrbZ0dt+vbfIFhveiwsTOlXvy7tW27tHRl0pGNRjSU8hOmnqCaSYC5BNRx+H1tTDr4TfQKfWgaBWG8okz/DWL/B/TYgFHG57ENoS/TBwARXUPTQFca+w7Dzx5XRHTDokNdatif8YUGxWUwaQbs3W66DdM6oJLFwInCQ5DZeFQ7aCFmT+mnvqJ/2EwfFDH7PW5jRWdNObhdGlHdA0pDI+b8lQtweBuG+Jnh1SgI45XRGNgxD1CNlYGlo7XD/HBOQRhmhiX82r9/P7feeitPPfUUfX19zJw5k/vuu4/TTz8dAKUUd9xxB//93/9NR0cH55xzDvfeey+zZs1KtNHe3s6//uu/8ve//x2Xy8VVV13FT37yE0pKhul+N2HM0R928+O3z+S/r3wD5e7H03kjdW88QnFvCU+0leFdcwInXf87CnI0UAZQXuoiUHMMHUFjqVWHgq/+HaYF4YgL9vuA0oHyDXV9FPr35Kx/RzSYfGk5pf2N7PNCsBx6LP97e3Wo7oN2m/8ioSh87aL9vFN8DjtmX4IK1kO4jCtnP4jf8/Dw2z8UNJg+9VT2vXwDEMbDYTSCaOh4tQNohPGqg7jowqsdQqMfNz1ohE0Da3qiLduA3e57piDfqQ6W7zZ6bPtxugBJ17fVRjSilBJRjQTUHPrVSQSZTkTVoihIdKAV7kF7xwdzA0PXOEYQPyPkAqVgfWslb7RWseFwBafUtlNbFMTr0nl+TwNnNR7mipn7cjoh0hXy8v3V82juK0iktfX7cWmK/oiHjj4Xh9xR3PX96G4fHzpjHzVlu3JngBMa1F1Qwesds+krUHiirbj0Af8a9hQT9FcCOt5wL5rlpOAJ9xF1++j3N9HnmosrWA7eDpbM3YzH/QpjkdNnwaKzzuFXy68BNNwcwUUAnSK8HMCjHcarDqIRABQ+bR8e2gEdF/1ANPvztl1+PvmZkdQ4RhA/I4wbZGBJEIZEzgfLjhw5wjnnnMP73/9+nnrqKWpra9m+fTuVlZWJMnfffTf33HMPDzzwANOnT+f222/noosu4u2336agwAgely5dysGDB1m2bBnhcJhPfepT3HDDDfzhD3/ItcnCWMBmVv/JnU38apdCn/IYoBNtgr3zZrEXWM5/U+CJ8viUvczOQd/E+tVdPtor5yYGywAOA7vNZU0XTe+bvxH/CK3PDM4t45lz5yYnWgLQg9YHJ8dsbQd+URMrx8ugPGiRYuZMX5XTi8BcM63mMLjrCEV8hJhOQqiCgR2n0IjEBskCuLRe3PTgog8Ph3FpPXhUKy6CeGhGI4JHHSb2WoTk4Fxhm6YBLtWNRhSIoCnTQ26sdazb067NeDlrnXQXGKb2FB6iqpIQUwioEwmoWYSYTkRVYpzW7a9AIv4SXK0+tEgA5SX5eM7mAmaMxFriZ4Rc8UZrJZ98eiGdQR8o+Ov2KQBoKBQah/r9fGjmPts3CQ+VF/fV8bu3p6OcTr4KjDFu43jeFegDduXQAmfCpQXsb2pEKQ2weWuN3YCGbVorelErAFU1e8esn/F64L3Hd/CrVycRiviAY4if+Po5OeUCUyOAiz40LYKHQ3g5gE/bh6YCA4UUeGnGRTce2gAXEVWLRhg37aZVEaARwU1PbPvpaMo0+ZdYEcKo+JmUdqzfneqk8yniZ8TPCIIg5BE5v8z/3ve+x5QpU7jvvvsSadOnT098V0rx4x//mP/4j//g8ssvB+B3v/sd9fX1PProoyxZsoTNmzfz9NNPs3r16sTszU9/+lMuueQSfvCDH9DU1JTSbzAYJBgMJn53dXXlWpqQCxSEdY3ukJe2gI+WvkL2dhWxvaOUMl+Yz5+21bgoUbC/pwgdBZp95BRbUHNU7Osu5LF3JnNq3REWNh1GV6bY2Br4WYJCt0vn1Nr2EbsImFLah1vTiSrTZVu6WxsU9kEwgCsCvg7cnr7hMzgHlPj78LiiGC/ytIxUmkQrvCh8QBFRVU3SWkNl3gjGn0aQwaChcGldaERx04mLXlz049Fa0NDxsg+NKB6tDZfqRSOIm87YIF4g1oblWUdWOWZZpv2llAedYqJUEFLTCTCPgJpDSE1GpwQSl/GZDkRF1F9ENFSB1t2FqkzJTr+KIJsuRgjxM0JaFASiLo4EfLT0FbC3u5hQ1MWe7iLm17dz3qRDiWP5YE8hXUGv8UMzN2H82NFRSl/YQ4lv6M8qC0Vd7OgoYVppH8XeCBX+0MAdMRn8jKYpLpjaMmIvEZtR0UORN0pv2BIeDtbPxNI0FFUFQefz3RhgdsMuako6ONBRh7OfAVAoColSAEojQj0BTjBN3ph3ogJ0tIT38sd+J6+E1wjj1rpj34OxwTVwEcCjNSeac9FLobYBF0FA4VbtscmbOC50CnHRjZtuEjOQVglmWZkGzAZkZ78CLNMKOPEz4mcEQRDyiJwPlj322GNcdNFF/NM//RMvvfQSkyZN4sYbb+T6668HYOfOnTQ3N7No0aJEnfLychYsWMCKFStYsmQJK1asoKKiIuFYABYtWoTL5WLlypVceeWVKf3eeeedfOtb38q1HCEDXUEPh/oLUtKVgvaAn1PqjuBz64n07rCHG589gy3t5XSHPASjbqKxh2+V+0KcUneEKaV99EfcPPFuk3OAHYsDw9GBgaPesJvmXufXyvWF3bT2FXBSbQe1RcHEKoIfrDmO8ya38kZLJc29hfSEvfYNWII6DfC6R24K1OvWBzZFpm6dgtCkIho7O0tAtYyZ4NQOnzdMXyh+jKUbYXLCGoG7UFgf7GbX7kCaQqGrYkARZnJykaSdYbxCTiOCiwCaFohduETx0gzoeLVmXKofD224VBcuzbhA0gjhogeFG50yIlTTrb+PEMcSVvXoFMcGBDXS67W76jCuTJTLQ9RTiefAHkJVluJ2F+vmMcYxdIyIn5lY9IXdHOwtRFcaB3oK0TRFmS9CqS9MqS9MXWEw6fjsi7j57LNnsr61kp6wh4g+cIAfU9bD1xZs4pjyXkJRF3/eNjXtCq/D/X7aA77EYFlUh5a+QvojA69X7gj4OGJajVzhN3yZx2U4qr9sm8Idr53E2U2HOKOhja1HypIfKG/Gct52a4oppSM3qVHuD1HkiRiDZTnyM39/ZxIXTG3B7TDxNdp4XDrFfvM2Pho/E8eF4Ws8SWmK5PjC8C3liV8hZgz0r5JLDjxDTeGiHw3dlGtMGrnoo0DbmpgQ8miHcasOfOxH08J4aEWnENCMxxaoQGxiJ2wEbon9qQEudOVHI4qmgsmmWAe77DaH3fEhfkb8jCAIExvz7F8e3B6c88Gyd999l3vvvZcvfOELfO1rX2P16tV8/vOfx+fzce2119LcbMyU1dfXJ9Wrr69P5DU3N1NXV5dsqMdDVVVVooyV2267jS984QuJ311dXUyZMiWX0gQb/rGrkf949ZSUdKWM/wu/v/hVzmhoTwRD61oree1ALWHdlRIsdYZ8XPePs/C4FLqCYNTtPOOpGbP1Gw+Xc1x1J1Gl8dTOJr7+ysk4RVtRZQyu3XXeej42ZzcRXWNLezkoWL6vjuX76tIHgU4zoiNEXWGAyoKQMTiZbvbWOpbiFLQq2Nw+TK/xzBFTqw7y7ct/xi0P3Yquxy9O0+2kTDvF6crOeaAsOT/TlYEb4/LHHVt9ABEaAEWQOUY5ZT2gjdUGGmFcWh9KudEpQeEm+ZbKbEmj0eUmXFiBfydwvE1Rp1UDY+gCBsTPTDSe2tnE1145GaU0QroxQeLWFB6XYmZFNw9c/Bo1hcYKHhS8eaiS1w7UEIq6U86Nu7pK+MyyM/G5dZSCUPy84uBnghFjEmZySR9h5eIPm4/hx2vnEIgOhE8RXYsNyBkUeqLcv3gFp9UfIRh18eyeBgIRN8/vbeD5vQ1j2s9U+MPMreri0P7c+ZkVB2vpCHqpju+jMUaJv48lC57mP//+GZLenDPm/IwnUUdPhO/msooohfSqcwbaTprQUWiEUbHVyBpRNEJ4tFY8HMartSYuXKKqkghVRKjBxz5qXT+PDaoZK9uSbhe1SnJC/AwgfkYQhAlOHgyQmcn5YJmu65x++ul897vfBeDUU09l48aN/PKXv+Taa6/NdXcJ/H4/fr9/2NoX7Gkq6ScYdaErS5QTC4Z+9MY8rp67Cw1FRHfx6w0zjYEysI0bw7qLsG5qw1wuOSYETeOn6+awbHcjPWEPm9rK6Y94Mi0S4qdvzOEfuxrpDHp5u63cOVbNdGEwwlQVhKjwxwbL7GJs64UK2G87U1piX8Q43OdnVXM1x5b3cGxFDz6XPqoBrNutM6WqBeuDpA2OxrBsL3bMZFpt4Hig4nyQgbHaoABFAboqtdQ7GuzrB2qmUb4VtDDGc8usVawXNFY5YwDxMxOLhuJ+wrqLiOl8pSuNcBQ2HC7nm6+dxOJjDlDuNy7g73jtJGOgDGx9gdI0YzIm9jupnOV4D+kubnzuDOZVddId8rKprdyom8bP9EU8fP7506krDtAV9LK3uyhv/IxLU5TGbznNkZ/pDHpp7StIDJZFdI2t7WUUeiJMLu0fdT+DBqdO2RJ7zIE7NfNoGh50fq79TPy7wvA1flMtD4oCQqqMEDMdz+8R6tkT/TlurTu2oi2En+34te24VfwW0igerRnjWX9ePOpQ7PlsDlLEzzgifkYQBGHskPPBssbGRo477riktHnz5vGXv/wFgIaGBgBaWlpobGxMlGlpaeGUU05JlGltbU1qIxKJ0N7enqgvjA0ml/bx3smtvLq/llDUlRJMv7K/llf216ZvxG4mPcuxgj3dxezpKh5IsAZd5vRYX/t6itjXY7oNz6nPdHHsKMz494Q9tAViAVQGjY6DhZa8iO5KSlrbWsWNz55BgSfKvOpOLpl+gGuO24nfozNatHRVoysX6ZdcOO0Q67KIbOvYbczB7HDrVWQ6nC56hkdjoGoKWrcbV0eUaK2pmt0sv92F8RhA/MzE4tS6I5zddNhh9a/GY+9M5rF3JuPWjJvRIsrmcfxH4Wda+wpo7TU9biALP9PcV0hzn+mxAEP0M5oLh8mC4SGsu4zBPSfbhuBnwlEXu7qKmVdtPHvptf213LDsTDQN5te3c+mx+7lo2kGqRnHl2daWabHngYqfSW1PQ1FIRBUm6gSZbbM6IBzL1fBqh5jk+hIeDg10L34GED8jCIKQT+TyBU8AnHPOOWzdujUpbdu2bUybNg0wHo7Z0NDAc889l8jv6upi5cqVLFy4EICFCxfS0dHB2rVrE2Wef/55dF1nwYIFuTZZOAqmlfbxo/etpaIglD7WMwdJ1s90wbcT1osNp3rK4btdW+ZZfmX5s9o3CrPgbf3+pOfkJDgKje90lBCMP/dNwa7OYnQ0+iIe1rZU8/P1s+kKOTzDbQRQSmPVzhNib2ZzusJMF2mb66VeANiT7ko20z0mdv3a1bH+J8jUd+40lu1aixaK4t5vU8yuC6usMYD4mYlFkSfKdSe8YzzzKs05OKprA6vPxomfKfZGqCsyvWlxmNGV8YiDFI5Co47GW4cqE783t5fRF/HQG/awfF8dty4/hZ+tnz1qd2YopfHq9lNB/Eya9uw0apY/H8ZzNb3oyof1+WziZwzEzwiCIOSIEXj7Uc5Xlv37v/87Z599Nt/97nf56Ec/yqpVq/j1r3/Nr3/9awA0TeOWW27hO9/5DrNmzUq8armpqYkrrrgCMGZuFi9ezPXXX88vf/lLwuEwN998M0uWLLF9c4wwimgQVdrAbZjpZuzNATQO+Xbfs724SVfGbJddejZtDOViK4e8Hb/N1IkhaNzTXcyLe+uZWdGNjsar8VWAsTpOIXt/2E0g6sKtwZGAj7DpeT21RUFKfWFcQ9lGCg521rCnvZHSgl72tDXyl7UfwH6Dm2fH7YTG06wM5uCy23jZzMRnSst24+Re48GF/0zXMafjrdhBGQ8b+U6z/XZNjQHEz0wwNGK3+8d+TyA/o8WezTZSdIe8HO5PcwvYUDQqePNQBc/ursfjUvxjV6OlLY3tR0pTz6wK9nUXEVEaUZOP8bp1GosDR3X7pq4bq7XBxZ5DU3lj93EOJcXPDKRZcbYvShUH9Dsp0lZSrj2Jj13iZ8TPCIIg5JYRmGXL+WDZGWecwSOPPMJtt93Gt7/9baZPn86Pf/xjli5dmijzla98hd7eXm644QY6Ojo499xzefrppykoGLjN4cEHH+Tmm2/mggsuwOVycdVVV3HPPffk2lwhB7T1++kOxQ4lu5lD64SkdTbRGjA5Bd3WC6R0saQ1AMtklx3pJlht0HXYcLiCIm+UYm+EMl+YQk8U9yAvdCK6xsqD1Rxf3UlFwcBDdKN2z4Uz2zMEjb2xt5PGL8YSq8xidaK6ayDNxOqWKr780mloQFfIk/QsoUmlfVxz3E4+efy7tuYkvtvYpaPx7b9/ln9sPAe3K0pUdxOJum3EWr+nY7CjnJkuUpyuvp0O1HQXLnZXCMOpUSNUVk+orA6PNpdCXsajDqMRAaL2/8fMZo3CILEd4mcmHsXeCC7NeFHLRPYzYMSGSZshh/8vFSQ/gzRHGl/ZX8er+2vRNFP7prZSnnsKtAX8XP3EObQF/Ib/i9nicemcUNPJjadsY0FjG353NPWsnGGbbGyr4MZnFxA5cjxdB95DT6DYRqz1ezrEzyTjIqwa6VRX4HEdwcsBNMIkJmfEz4yGJEEQRhJNG5HBHGF40ZQan3uxq6uL8vJyNnVC6dh+4V9+o+CpXY187tkzjWB3MBcYkDkoShlhsfnuVMdpxjLd70z9mn57NJ2/Xv4yp9QdAYzVVh985H3s7ynE41I0lfTz7/M3c/ExB22bTxn8AoIRF0eCPqJKo64oSKEnmsj709apfPGl00ZUo1vTeeiDr7KgsS2p6lM7G/nssjNjt0emtt9Y3M8JNR0A1BcFqPCHONhbSIEnSpEnyrHlPSydtyulXm/Iw+UP/xPb9p0I/Y0QqoJoAam3xziRbsmJnfB0admWH2x7Tgz2IutoNSrcdOLSunBj/Hm0Ftz04mUfLvrxaK246MdFNy5CqGCId3+i09nZSVmZnFjFz4wQCh7ZMZl/f3H+hPMzlQVBnv3I89QWBRPpf9k+hcffnYRLU0wt7eOGk7ZTXxyIxeQaLk0lTAvrLkJRFz53lN6wB6WMN3ceDvgp8UaYUtqXNLDU2ufnA3+6gCNB34hpREFjST9/v/JF6uI6gZ0dxSz+6/vpD1sm42L43VGmlfUyubTPuEU3Rrk/TENxPy4UFx7TzIk1HUkadQU/WD2Pn62bA8E6OLwA+ptAuR1EOIkSP5ONn3HRg0c7jIcW/NpuCrU3cNOZKGH4mB4AY0AtGBQ/YyLuZ2R7CMJRIoNXQozBnFdzvrJMmFh0BL38+q2ZtrPCKTPlcTIF2HYXOU4rA6ztmfPMM5Z2E6tOZLMKwYGoMt6EBtDVbmybZbsaU8pFlMaeruKU7dYV8tAe8FNTGOSbCzdw3pSBB8Me6DU9LHqENEaVi/WtlSxoaEvaF2+3laPQHOP4g72FHOyx2GsqN7eqkw/N3Dfw1rVY3vpDFewM9kLVKqNgtBBCFRCoNy5mgtUQLQLlSjU2qaN0V76ZZt7NZdNdLTrVderfrv34d6d27MiVRohSQVSVJx7LnHzcKCCKRhgXAdxaN+jtwFeytFMQcoAyzn33vjlL/AyG7/jr9im8vL8ukfbEu00cX9MZe2OoRrkvTLE3QkRpvNtRQnfYS4k3TGtfAbrSiCqNnpCH6sIQ/3vxa8yu6rbvbAQ1tvQVsK29jLqiQ4m6R4I+Y9Wyw+k0GHWzrb2Mbe1lA+1byj26Ywp/u+KlxJs4UdDSW8DDW6cZZfytMOkJY3KmZ7rha8LloPvEzzj2MTg/o1NKSJUQYjp9agFH+Agw8NIgFyE0jEFSl9aHSz8IfC1LOwVBELJEBsqEISCDZcLgUcaqqN1dRfzkjbm80VI1kGeOrzJNTCqb7/H4y1o329jR2q45zdpOpglTp75M383n3YiuEdaTb1lc21zN2uZq+zjYafso6Aj6kgfHYgG+o33m9nKs8c/bpnJCTQczKnpwoeiNeFi22zQAOIT9uO1IGd987SQ+NGMfpT7jVtNg1M1dq443tqGGsXHdfVDUB4UHoHI96H4IVUKgzrioCdRCpCTNigA7UdlcNGQ6gO02sl27TuXSXeRkyrez1fo9VxpdKLxEKSSqqkBVZ7BFEHKEMm4Lf6O1irtXHceW9vKBvAnkZ1RscCtOa18Bm9rKk6o19xbS3Fs4aD9zsLeQx9+dxBeqtiSS93YX0Rt/kcxI+RnNuA1zTUsVp9QdIRh1EYy6+Z8NMwd86lD2ozLefv3dlcfzhflb8Lp0Dgf8fHflCZbnsulQtB8K9wMuiBRBpBR6ZhiDaOFS0+CZVYSTKPEzA3lWm9yxPwMdL2DcBmv4mYoMtgiCIAjCyCCDZUJ2KAjrGru7i1nTXM2y3Q2saq6mM+hLKZcUz9nNRFsnLLH8tpZJE+ynjf+sfWRT3s4uK7E6EaXxdns5x1YYtw/s7S6iPeDPmcbn99Rzal07mmbcnrm6uXrENaJg65EyPvHk2ZT4ImgYA6VJb8gcgkYdjT9tm8pftk/BFTtYFKaLQluNCtwBKDho/IFxARMujw2c1Rl/kVLQvQ4i7S4QMm00O0F2+Zn6s9sYdv0PZufaMdIaBSE3KGU8R3FLexkbDlfwj12NvNFSRSBqeQvwBPIzPSEPqw5Wc97kVqJK44l3m+gI+HKmcXN7GQd6Cin1hQlFXfzPWzMJRd0j7mcAfr5+No9sn0JvxEMw6qIreHR+Bs0YhPvztqk8s6sRl2YMwMZXf9tr1MHbA54ew88oN+gFxgBasBoCjcZq50gpRAodJmrEz6S3TfyMIAiCkB/IM8uEjISjGg9sOpZluxvYcLiCnrA3eULR6eIi3USolWzis2wmQjO1k018Z2e3Q5kSbzhxK2Eo6qItkMVbxNJhKqOh8Ln1RHIo6k4pk7GfHGjMq/2ovLGLmlpjRUCgAULlRnrSc8+y6QBSNwg26U75gy3v1K+TfUO5erXrfxAagz3wsyvl2SkxxM/kjkDExQ/XzOPZPQ3s7io2VhSNt/PTEM/BfneUyoIQutJo6/cRVakvXcnaNksZDUWFP5TwY3u7i1Bo4mec2lAALmNCJlQRW302yVjhnPJ8TfEz4meOHnlmmSAIQm6RZ5YJOSWiXDy8dRpbj5Slj7HMk5jWMtYgOV3wbNdmttj14xS3apY6pClrtSeW1xP2Dgwe5lijUhpB64oKu/aGWWNe7UfC4O0EXyeU7ADlhmgxBCuNZ54FGozbOPXYCsC0Fxd2wb314iSdQOsVoF1fiVE+kjf6YK8G020wp7pw9BoFITe09fv549Zpxmpl8TNJGoNRt3Gb5TD5mSNBP0eCloke8TNpNOrgCkJhCxS0GH5G9xuPBQhVQbAG+ifHBs+sDZiNtaaLnxE/IwiCIIwlZLBMyIhH0ymIv5XRLkayC3bNpAuG05FNfqY4zS7YdcJqp2hMXzf+fSxr1KKgdYG3C4p3k3geTajauLDpb4q9cbPQtCLATlSmq6lsN9pgNriZbC5QMm0ku4seu/qD1SgIR0+hJ4rXFXvo90Q5P1nri8b81KhFQeuDkt2gdhuJ0SJjYiZcMjCAFqqGqJ+BFweIn3G2VxAEQRBGHxksE7LHHPNolrRMv9OVsevDbszCWj5Te/H65nTrBKw1jhON6X9nY5M1b6xoBBLPo/H2QFH8oqbQ9NKARuO5NJFikt+EZp2RtxpuNsIqIN2sv9NSkUz9DnZFgJ1dTv1mo1EQhomJen4SjeNDYzzD02v8KVOBaKHxsoDeacYq50iJ8Vu5LQ2JnxEEQRCEsYAMlgmDIx7HWINEu6BXs/x2CjQzBbV2fWWK49IF4eZ0a2Bs7kM0TgCNyvTGzf3AeuOlAaHKgZcGBOuM1QHKekustXMnEU75yiEv3YWHtZ71t1ObTph3QLor1sG0KQiDpzPkJRh/C6Ocn0TjuNOowNNn/BW0GBm6F8Jlxktq+idDzzHGijSlWRpzMiKTkXFDxc8IgiAIwlCQwbLxhjLe0ni4309EdyVl1BYG8Xv0QTfZF/FwyPyadbtA0JzuFF9Z861BrLKkZ+onHXZlrH3Y2W0NgJ36Fo3jTyOApmLPommGgmYjTfcZFzSB+thtm9XGagDda2pssGQSblfeSaDdRY91A9hd5NjVse4wpzrCREYp44UmXSFv0nMV3ZpOfXEA1xAOl7fbyukOm0ISOT+JxvGsUSlwh8B1GAoOQ8m7ULXauF0zUGu8NCDQALrHpuFsET8jCIIgCEeDDJblO8oIMbpDXrYdKWVVczUv76tjc3sZoejAYJnbpbjvotc5vaF90F3s6y7iSMBvH1DaBYhmrDGU0yBFpjbM/TnFbXZ2metY7bCWM9tn15ZonJgazRc05ZtAeYzBsmBd7KUBtRApg6gvjVCnDu1wutBwEm4tm+4KM51N5nLZXGEKE4aYn2kP+Nh+pJSndjaxpqWa5t4C+iMDg2UFHp3/vfg1jq/pHHT7W9rLAE3OT6JxgmpUxirn4j1QtAdYZwycBWuMNzr3TTFWoNlO0oifEQRBEIThQAbL8hEFQd3F/u4i3mit5NX9taxtqWJ/TxFh3WUbrGkoDvf7bZvL1Ndze+qNC6J08Zg1z+m7UyBsF2A6Ba3WWV5r+Uzxn7l8Jh3p8kRjat8TQSMR8B0x/kq3knjjZqAmthqg3liJpvtJvp0mHXYXKOnEOG0kc327DZPOHqcNk60GYVyhjFXKGw+X80ZLFRsOV/DagVoO9fmJKHs/0x9R9IQHH1aEdBev7q9N9CvnJ4e+ReME0qiDvxUKWo00tRoipdDfGFt9VjcweKbMdxGkQ/yMIAiCIAwGGSzLBxTowJGAj42HK3j9YA0rDtSwvaOU7pCHlCDDJuZQaKxtqWLxMQcHFZN0hrw8umOKY7u2faYLTs3f4zHY0cwcZ5Nu7dPOlmzaEI327U50jVoUXLE3bpa8Gxs8KzBu1+xvgv4G421oSYNndld1diKV5fdgsbafbubf6crTLl8YjygFPWEPrx+oYf2hSt46VMGq5mr6Izahgs3hoCto6/cP7nBV8EZLJRsOVzi2a9unnJ+S+xONmfvKJt3ap50t2bSRS40aoJkmaRQxP1NovCQgVGWsPIu/nCZp9Zn4GUEQBEEYKjJYNhZRRugQiLrZ1VnMigM1vH7QuHg51OcnGp9FTDcRaJP/6oFaesMein2R7MxQ8Mj2KbzbWWJrI9j0H0+z2uZU3sleu1niTHXs+rIGoNnUz2Szte1M5UXjxNKoRcHVC97e2O00LogUQrjCGDgLNEGwyrjQSXrjpp1o6/dsjMNSxu5iKdsdY3e1KIwbFERjz7h89UAtKw9Ws+pgNXt7iij1RmgLOAx8OfxfUGg8uPkYFk1rxufO7vmYfRE3P1s3J+nZZ0n9YNN/PE3OT5ntFY3jU6MWBVfszc4FzVC2GZTHGCzrbxwYROuvN1Y+K83SmNkw63fxM4IgCIIAMlg2dlDGrSitfX42tVXw0t463mitYmdnSdIzYeJlU35nEYRtaSvj2T31XD5jv3PAZ2rj9YM1/OSNOejx1TB2sY2dDU7xlLL8tuIUxNq1mS4wdWKwtotG0ehk22A0ooMnNnhWuB94w1h5Fi6PvTSgEYK1xkVO0uCZ00ZJZ1Cmqzlz29YLGfOVorXOYHaQMCZRxt6MKo3OoJcdHaVsOFTBy/vr2HC4nPZ+P3psP/vdUWqLgrQFfJhGwrL6v7umpYrXD1Zz3qRD6Q8bBcGoi1+sn80rB2qT2x0r/3cnwvlJNNqTbxpRoIXB12H8xctGC2PPPauC7lnG96TbNsXPCIIgCIITMlg2WigIRF0c6i9gc1sZqw7WsKalinc7S+gKehMXLSkBF6RO1JnjC2tZU3AVwcWdK49nckk/p9W3o9kEYmFdo6WvgGW7G/n5+tkDKwts7E/p2xwL2ZVxio1yqDHreMvaj2hMtVs0JpfNhcb4D3c/ePqNFQEVb8XeuFlh3EbT32Q8jyZSYnkTmvViwyrSbqNZhdphJ8zpClDIG5Rx+/7hfj/7e4p4s7WCVc01HOrzs7u7OGmVcok3zPSKHnZ2lqDrGsGI23jg/hD+7/ZHPHz9lZO5f/HrzCjvSfm/FNY12gJ+3mip4o9bpvHq/lp03eE4G0v/dyfC+Uk02pPPGj394NkLRXuh/G1j0CxaMPDss2AVRIsYmKgRPyMIgiAIcWSwbIRQyphFP9BTyIbDlaw8WM261kr2dhfTE/IMDI5BcnDkFBA5xTJ2+aZyB3qLuO6ZBVx0zEGmlvYmVWvpK2TT4XJ2dJRyJOgFpWUfTGayLdu4Kwca08ZrVluc2rdDNIrGXGuMF3AFwd9i/JW9DcprvCQgUG8MnCVeGuC16QCcBZg/rRvUbEw6AUI+oBREdI1D/QVsbS9je0cJb7ZWsrK5hvaAj4ie/BDwqaW9tPYVEIi66Ql76emIHVs5OK53d5VwzVML+dCM/ZR4w4kqbQE/Gw9XsPVIKZ1Bn7FqOV//706E85NoHF8atbDhYzSgaLdRQPcPvG0zWDvw3DNlc1u0+BlBEARhgiGDZcOBMsKBvoibvV3FbDhcwbrWSta1VrK7q5jesAdlDRasA2TKkmaNS+wCI7IoD7T3+/nj5mPs62H5bRcoZgry7PLNfQ23Rmtf1nrWQFQ0isaxplELg7/N+Ct7G+NZNCWxgbMGCNQaK9GiflNlLN+t4pw2hDU/05WYMOoo402VnUEv3SEvm9rKeWlvHduPlLGzq5iOgA8dDQ3FpJL+5FvpATTDP0Xjg1WxtFz6mb1dxfx83WzxM6JRNI5ZjQrcASgMQEGLkal7jUcEBGuNlWd9k4yJmsTgmdVPiJ8RBEEQxi8yWJYLlHG7S39scGz9IWPl2JuHKtnfU2T/zDG7OMEa3GTRr23ckS6gsotbrMGfuT2nGGcwASUOeaIx1V7RaF/Hzp6JpNEVGXgWTek248IlWmRc0MSfeRasBL2AgQc5ZzI63cWKU9lsNoSQc2I+Zl93EVvay9jTVczy/XW83VZOX9jtOAGjNI0DvYUDg2WQOMYO9xcM/M7Qt/zftbFHNIrGcadRgTsE7kNQcCg2eBdb5RyqiD0ioB7Cpcaz0FKMsEP8jCAIgpC/yGDZUaAUtAd8vLq/ln/sauTt9nIO9BTSH7HZrNnMQJImzxoEZRNLWAMmu/bNaelsyzR5mK6stW3RKBrtbBeNyWlpbYuCt9v4K34XcMUe5FwVu6BpNG6tsX3jprXxdIKF0UQp6A17WL6vjid3NvHyvjo6gt7UgbFEBVKOyUG9oGW0j+uJ8H9XNKYva21bNI6inwFcplXOJe9gvN25CPonGQNnvVNib9t0k/zGTWtD4mcEQRCE/EMGywaLgu6wh9XN1fxjVyMv769jf3chKv58L7sgJZsYwW5W0Bx3ZBsoWfsw13fq0ynfXN9qm7WMaEzuTzRmh2hM7dMp31w/5eJJB3cvFPUaD3LGZdyiGao0btvsb4o9yLnQuKhJe5WXTpyTYUIu0XV4p7OUP22byj92NrKvp4iw7ppYx7VoFI2icQxq1MHTA2VboXQrVPsNvxKqMAbQ+qYY31MmacTPCIIgCPmHDJZli4LOkJdndjXw240z2NJebjzvJU66gMYa+NjFCNaAyy7f7vtgZhudcAr4spk5teaJRtEoGjMznBo1MC5o+o23bhYegMp1sTdulkN/w8Ctm9Gi2Bs3rQ1bOxvMVZswVJSC5t4CfvXWLP60bSrdIcsLHSbycW3OE42iUTRmZiQ0uoPGC2p8HVC8C5TXeM5ZoN7wN6FK44UBup/klWfiZwRBEISxjwyWZeBwv58dR0pYf6iSh7Ycw66u4uTnv9hhDpLs0q1BlDV2wJKvLPl2gYzTDKW1LbNdVnuc7LJDNIpG0Zg/GlGxi5pW8LdCxQZj8Cz+0oD+JuMzUhobPHPqQC5khoNQVONATxEPbZ3GYzsms6+nKHMlOa5Fo2gUjWNNoxY2Bs2Kd8XKuo2VZ5FS49ln/Y3QOzV266a1M/EzgiAIwthCBssysONICf/85DmEdFdyxlAmwKwBjTVIMZcD+7jBKRAy5zulW21wCqyc7MoG0ZhczmyXaExGNI6ixtjgmTsIvjYo20ziQc7BauOCJr4yQI+vbpILmOFi+b56/u2F+XSHLKv85Li2RzQmlzPbJRqTEY2jq9EVBVePcetmwUHj1s1oIYSqDF/TO81462bWLwwQBEEQhJFDBssyUOSNokPqTJod5oABnAOYdO1lCoqUTVmnfq3tWW1yCpzSIRqdbbXaYG3PqZ5oTG3PapNotCeXGrWwMXDmb4u9cdNj3D4TrDEGzgINEPFlMEgYCl0hj3HLpfiZ9H2JxlQbrO051RONqe1ZbRKN9uRao7sfivZD4X5jlXOkxBg0C9QbjwcIy6WJIAiCMDZwZS4yOKLRKLfffjvTp0+nsLCQGTNm8J//+Z8oNeBBlVJ84xvfoLGxkcLCQhYtWsT27duT2mlvb2fp0qWUlZVRUVHBddddR09PT67NzR7N9Af2QQKkBgqazXenT6d2FKlBULrAyGxvJvvMaaLRuQ3R6NyWaBx/GgG0CPg6ofQdqHkNJj8Kk//qYMTIIn7Gpp71uxzXqe2IRtGYyT5zmmh0biNXfgZlvNW5YiPUPweT/wKTH3EwYmQZt35GEARByJqcD5Z973vf49577+VnP/sZmzdv5nvf+x533303P/3pTxNl7r77bu655x5++ctfsnLlSoqLi7nooosIBAKJMkuXLmXTpk0sW7aMxx9/nOXLl3PDDTfk2tyM9IY9xpsurdgFHxqpgYddHfOnZpNvbsv821rHHDgpSx2n4MgaFMX/0gVTZkSjaLS2KRoH0sazRk0Hb69NJyPPePMzPdYH+ccZ7X0eTxvPx3U8TTSm9i8a7e01Ixpzq9EdNl4WMAYYb35GEARBGDyaMk+R5IAPfvCD1NfX85vf/CaRdtVVV1FYWMjvf/97lFI0NTXxxS9+kS996UsAdHZ2Ul9fz/3338+SJUvYvHkzxx13HKtXr+b0008H4Omnn+aSSy5h3759NDU1ZbSjq6uL8vJyNnVCadkQxSj4zcZj+daKk5Kdf/y7XUBgDkAylbGWTWNH2nxrGafymdoRjanpZFFGNGZvm5N9g21HNKamk0WZo9XYH4ZbnqCzs5OysqGeWI+e8eZnvrXiBH6zcebY3OdOZcbTcZ3JvsG2IxpT08mijGjM3jYn+wbbzljUKH4mibifGe3tIQiCMF4YzHk15yvLzj77bJ577jm2bdsGwJtvvskrr7zCxRdfDMDOnTtpbm5m0aJFiTrl5eUsWLCAFStWALBixQoqKioSjgVg0aJFuFwuVq5cadtvMBikq6sr6e9o0YHVzdWpDl0zfSoGggIYKGsNAKyBg7U9axvK9N0p2FAO6U7Y9WP+LhpTy4pG0Sga7W0cRcaTn+mPunn9YM342ecT4bgWjaJRNCa3J34GGLt+RhAEQRgaOX+K5le/+lW6urqYO3cubrebaDTKf/3Xf7F06VIAmpubAaivr0+qV19fn8hrbm6mrq4u2VCPh6qqqkQZK3feeSff+ta3cqrlSMDH+tbK9DNjkBokKJs0pzayCTDsyCY/nd1OQZITojF9G6IxvY2Z8kVj/mscQcaTn9nfXciurpL83OcT4bgWjaLRDtGYvg3xM4kyY8HPCIIgCEMj5yvL/u///o8HH3yQP/zhD7zxxhs88MAD/OAHP+CBBx7IdVdJ3HbbbXR2dib+9u7de3QNKnh2dwPNfYWJ3ymfdjNm5mDCqYxdHWuaXQBiLmvNd/ptbd+cb00XjaLRzkZrHWuaaJyYGkeR8eJnlILH351Eb/ztb2N9n0+E41o0piIaM9srGu3rWNPEz2Qk59czgiAIwpDJ+cqyL3/5y3z1q19lyZIlAJx44ons3r2bO++8k2uvvZaGhgYAWlpaaGxsTNRraWnhlFNOAaChoYHW1takdiORCO3t7Yn6Vvx+P36/P2c6AlEXD24+Bl23eG672TKzk7cGCBqpQUA8YEgX2GQKjqwBjrkv86cddvbY9SEaU/u1tikaRaM5fyJoHAOMFz/T0lfAg5uPGfv7fCIc16LRHtEoGsXPAPnrZwRBEIShk/OVZX19fbhcyc263W50XQdg+vTpNDQ08NxzzyXyu7q6WLlyJQsXLgRg4cKFdHR0sHbt2kSZ559/Hl3XWbBgQa5NTkXB0zub2NhWYfy2Bg/mAMAanKT77hQ0mMtqlu/W4Mgu0HCq44RdMCUaRaP5u2hMb+9E1zjKjAc/oxT8btN0WvoKjISxvs8nwnEtGlMRjaLRrm/zd/Ezifyx5mcEQRCEoyPnK8suu+wy/uu//oupU6dy/PHHs27dOn74wx/y6U9/GgBN07jlllv4zne+w6xZs5g+fTq33347TU1NXHHFFQDMmzePxYsXc/311/PLX/6ScDjMzTffzJIlS7J6c8zRsreniO+vmUck6hpw6mYnD6nBQbqAwcn527VtDVDMZZ3aMPen4RzUWO0y1xGNyfbZtSUaRWM6W63p41XjGCDv/YyCVc3V/GHLMaC0sb/PJ8JxLRpFo7mOaEy2z64t8TNj288IgiAIR03OB8t++tOfcvvtt3PjjTfS2tpKU1MTn/nMZ/jGN76RKPOVr3yF3t5ebrjhBjo6Ojj33HN5+umnKSgoSJR58MEHufnmm7ngggtwuVxcddVV3HPPPbk2N4WIrvHjtXPY213s7ODtZvCcAgG7PKfvTsGFXWDiFOzYzeiZy1ttFI3pdaTLE42pfYvG8a9xDJDvfqYn7OHu1cfRHvDnxz6fCMe1aEwtLxqTy2fSkS5PNKb2LX5GEARBGONoSik795j3dHV1UV5ezqZOKC3Lrk5Uh//ZMJPvr55HSHcbiVZnbre1snXs1rrWACGeZg4WMgUOuQgsRGNyXrZt2dUTjenbFI3Z2zUWNfaH4ZYn6OzspKwsyxPrOGYofqYz6OXOlcfz0NZp6Cq2ocfyPs8mfzB2icbBtWVXTzSmb1M0Zm/XWNQofiaJuJ+R7SEIgpAbBnNezfkzy/IVpeDpXU38cO1cY6As3YyXeYbMztkr7AMPc3tOwYS1HbtARtnkW/Os3+1sE40DeaIxFdGY2o5oFI6CiK7x03Wz+eOW2EBZvuzziXBci8b0tonGgTzRmIr4GUEQBGEcIoNlEBsoa+Sry0+hPxK7MzU+C2b9jiktqRHTZzzQcApO7Nozt2MXpFjtMX8qnIMYayBibls0ikbRKBqHolEYNMGIix+smcf9m45FxVeU5dM+nwjHtWh0bls0ikbxM4IgCMIEI+fPLMs3IrrG7zZN54dr59EV8g5k2AUY8fT4b7ugwM7xm9szt2sOPqz1NZvyTu3YBRbmcumCLdEoGq19i8bU+qLR+SJISI+C1n4//2/NPP60dSoR5cqvfT4RjmvRKBrNZbBJt2rBUk40ip8RBEEQxh0Td7BMQWfIy/9bM48/bD6GkO7K7KTtgoFssNZxChLs+nIKauzasdZ1CmLSIRqdEY2iUTQKg0BXsP1IKbe8MJ9NbRVGYj7u84lwXItG0WiHaHRG/IwgCIIwzpl4g2UKeiNuXtxbz6/enMWbhypQcU9tdfJWnIIJp0DD6bs1qLALaOwCjHi6XTt27dkFHaJRNIpG0Xg0GoX0KIgojXc7SvjNxhks293I4X7/QH4+7vOJcFyLRtEoGseORkEQBEEYA0yMwTIFQd3Fux0lPL+nnr+/O5mt7aVEVZpHtqVz1nZ5yibPHDhY6zgFGtY2M+XZBSVWG5wQjamIRtEoGp3zBFuUgp6Qh3WtlWxqK2d9ayXL99XRE/amr5gP+3wiHNei0dnWoeaJRtEofkYQBEHIc8b9YNm7R4p59d0mlu1uZHNbGX3xB/g7zYyZf5s/zdgFFE4BiFMf1n7s2nCyyS4vXR27/kWjaHRKF432bYhGwYH/fP141nfVs6OjlKgybajxtM8nwnEtGu37F42i0Sld/IwgCIIwjhn3g2VLnjiHXk+R8cPs1K3O2S6IsJa1C1TSBQxY8qzBjbn9TPXsbDC3Za1jttuqQTQmt2VuXzSKRtGYWaOQxMNbjoHC2Cqy8brPJ8JxLRpTNYjG5LbM7YtG8TOCIAjCuGbcD5b1hr3JKp2cc7rgwS7dLpCwfrdr24pdoJIuCLIr49SmaBSNTv2JRtGYze9sNQrJTIR9LhpFo2gUjeZPO3uy+S1+RhAEQRijpHlo1zhBmf6cHLKyfGqmOmasTtwcnJjzzb+taeY20wUu5vpmW+yCFtFo379oTLVRNNr3YWeHuW9zfdEoWJkI+1w02vcvGlNtFI32fdjZYe7bXF80CoIgCMKoM/4HyzSSHXu6oMDOuZvLWb+b65nzzf1Z27KWtbZtxRqsWO029ycaRaPVDtEoGodDo5DMRNjnolE0ikbRKH5GEARBmECM/8EySHXYZqduF0w4BRdOjt9pRkyZflsDDqeAIF35dHVFo2i0q2Nnl2gUjXa2DlajkMxE2OeiUTTa1bGzSzSKRjtbxc8IgiAIecTEGCyzc77WAMHs/O0CErMTN+fbBSJOgYedTU4BhLUva1BhV8euD9GYmicaRaNd/2Y7RWNmjUIyE2Gfi8aB8qJRNIJotOvfbKf4GUEQBCGPmRiDZVanbQ4eYMCBazZlzWXsHLhdoGH+tAtmrO1aAwgnO536NdsrGkWjaBwoY/0UjbnTKCQzEfa5aBSN5jKiUTQ6IX5GEARBGAeM+7dhJhyv1QHH0+wCC3M+lnxru9a27QIAzVLHLhiw2mHXnx3xdNGYnCYak9sWjan1RGNq+Ww0CqmInxGNolE02tUTjanlxc8IgiAIecL4X1mWLkCIp5sDCTvHbk03t2cXqFjbNn/PNphIl25FNIpG0SgazW2bvw+HRiGZibDPRaNoFI2i0dy2+bv4GUEQBGEcMv4Hy8xolk8zypJn/m0XcFgDA2u6ZklLV0ez1LHOGlrtNLdj1SIak/NEo2gUjfZ9DlWjkJ7xuM8nwnEtGlPrmvNEo2gUPyMIgiBMMCbWYJnVwZudcrYOOu7kNZvf5vatQYRdMGEXMJhtsdaxBh52iMbsEI0D7YtG0Xg0GoVkJsI+F43ZIRoH2heNolH8jCAIgpBnjP9nlkGyY1aW9GzqxrEGDdZ0ax/WwMDan1269Xc6G839iMb0iMb0fYhG0ZiNjXIh48x43+cT4bgWjZkRjen7EI3iZwRBEIRxw/gfLDMHAHZBBaZ0p7p2s3R2efE+rGlOZApE7OyxC1JEY+Y2rfmiUTRaEY329lg1CqmM930+EY5r0Zhqt12b1nzRKBqtiJ8RBEEQxgkT4zZMq+PVTJ9xp25G2ZS1a9OpXac0zfIXT3MKTqw22QU21k+7fNEoGkVjappoHJpGwZ7xvM8nwnEtGkVjOrvNde3adUoTjeJnBEEQhLxl/K8sizvsuAO2CxasZaz5cdK1k87Bp+s72zrWYMMaXIhG0WhGNGZvr13bmepMdI1CMhNhn4tG+zJOdojG7O21aztTHdE4/jUKgiAIwigzMVaWmdEsn+nKmLELVJzaUCQHD+agIP5nnV0bjC2Z6otG5zzRmFpWNIrGTLYMpr4wMfa5aHTOE42pZUWjaMxki/gZQRAEYYwx/leWxUnngO2cfxyrQ7fOwGmWTyz5dn05BRV25e36T2ePE6IxfZui0b4v0Zi5/3T2OJHPGgVnxus+nwjHtWi0rycaRaP4GUEQBGGCMv5XltkFCHFnbg0ArGXs2rLOwMU/rXnWMtbf5sDC2ra1f7s61r7t7BeNotHat2i0/y0as9copDLe9/lEOK5Fo2gUjcn1xM8IgiAIE5xBD5YtX76cyy67jKamJjRN49FHH03KV0rxjW98g8bGRgoLC1m0aBHbt29PKtPe3s7SpUspKyujoqKC6667jp6enqQyb731Fu95z3soKChgypQp3H333YNXB8lOGpIDjExO2RyQOJW1ztw5BRxOdlln46xl7QIfpz5Foz2iMX1/5jqiUTRm0jgCiJ+xMNr7fCIc16JRNMbzRePoaxwB8s7PCIIgCCPOoAfLent7Ofnkk/n5z39um3/33Xdzzz338Mtf/pKVK1dSXFzMRRddRCAQSJRZunQpmzZtYtmyZTz++OMsX76cG264IZHf1dXFhRdeyLRp01i7di3f//73+eY3v8mvf/3rIUjEPqgwO+74b0Wq07YLEJTpL13QYEXZ/NnZae7bHGxYbbXrXzSKRmt90WiPaByaxhFA/Axja59PhONaNCb3LRpT64tGe8TPjJyfEQRBEEYUTSk1ZLekaRqPPPIIV1xxBQBKKZqamvjiF7/Il770JQA6Ozupr6/n/vvvZ8mSJWzevJnjjjuO1atXc/rppwPw9NNPc8kll7Bv3z6ampq49957+frXv05zczM+nw+Ar371qzz66KNs2bIlK9u6urooLy+HH18KBV57h28XNJjznIIEp4Ak2+9O7Zv3hFOeXbo1GMqmnpMNTnmiMXMdqz12NolG0WhXz8kGp7zR0tgfhlueoLOzk7KyMgdjc4v4GZvfclynb180OqeLRvt6TjY45YnGzHWs9tjZJH4mI3E/M5LbQxAEYTwzmPNqTp9ZtnPnTpqbm1m0aFEirby8nAULFrBixQoAVqxYQUVFRcKxACxatAiXy8XKlSsTZc4777yEYwG46KKL2Lp1K0eOHLHtOxgM0tXVlfSXwOzUzWg4Bw1O6U55itQgIR7M2NWxs0kj2Sa7PCx5muVTNNrbkG2eaBSNVntEY2reKCJ+Bjmu7doQjc62ikbnenY2ZJsnGsXPjLSfEQRBEEaUnA6WNTc3A1BfX5+UXl9fn8hrbm6mrq4uKd/j8VBVVZVUxq4Ncx9W7rzzTsrLyxN/U6ZMMTIU9s5eOXw3/zZ/mv/scApOnIKZeFo86LDLt7PXSYtoFI3WNkSjs52i8eg0jiLiZxzS7fqIp8lxbW+TaEytY9e/aLRHNIqfGUk/IwiCIIw44+ZtmLfddhudnZ2Jv7179xoZ5hkts9M2O3Jznvm3dfbOOjOWLijBkmfuL17Wrl1rPTub7GbyRKNodLJFNKbaKhqPTuMERfwMolE0ikarPXaIRvEzQ8TRzwiCIAgjjieXjTU0NADQ0tJCY2NjIr2lpYVTTjklUaa1tTWpXiQSob29PVG/oaGBlpaWpDLx3/EyVvx+P36/P7ORdgEDJDt3a55dujmwcPpu17aTPdn8tuvHDtEoGkWjaDR/2tmTze9sNY4g4mcYG/tcNIpG0SgazZ929mTzW/xMEln7GUEQBGHYyenKsunTp9PQ0MBzzz2XSOvq6mLlypUsXLgQgIULF9LR0cHatWsTZZ5//nl0XWfBggWJMsuXLyccDifKLFu2jDlz5lBZWTk4o5Tpz8khK8unZqpjxurEzcGJOd/825pmbjNd4GKub7bFLmgRjfb9i8ZUG0WjfR92dpj7NtcXjaOK+BmbduS4Fo2iUTSON42jyJj0M4IgCMKIM+jBsp6eHtavX8/69esB4yGY69evZ8+ePWiaxi233MJ3vvMdHnvsMTZs2MA111xDU1NT4g0z8+bNY/HixVx//fWsWrWKV199lZtvvpklS5bQ1NQEwMc//nF8Ph/XXXcdmzZt4uGHH+YnP/kJX/jCFwavUCPZsacLCuycu7mc9bu5njnf3J+1LWtZa9tWrMGK1W5zf6JRNFrtEI2icTg0DjPiZxh7+1w0ikbRKBrFz4yenxEEQRBGnEHfhrlmzRre//73J37HT/jXXnst999/P1/5ylfo7e3lhhtuoKOjg3PPPZenn36agoKCRJ0HH3yQm2++mQsuuACXy8VVV13FPffck8gvLy/nmWee4aabbmL+/PnU1NTwjW98gxtuuGFoKq3O1xwI2AUTTsGFkxO3zoiZv9vVzdSWtZ1M9trZLBpFo2gUjcOpcRgRP5OhfTmus2vL2o5otLdZNIrGsapxGMlLPyMIgiCMKJpSSmUuln90dXVRXl4OP74UCr32heKO2bwF0jl5Jydubsf6CdkFEJnKYZOXTWAhGlPtEI2iUTRmLodNXl8Y/v0JOjs7KSsrc6g0cRA/Y2ObuR8nO0SjaBSNmcthkzcRNIqfSSLuZ2R7CIIg5IbBnFfHzdsw06JsPq2OPP5nLWsuY02Ll9NMZayfmYIazVLOaoNdn9Z+zfaKRtEoGgfKWD9FY+40CslMhH0uGkWjuYxoFI1OiJ8RBEEQxgE5fRvmmCTueK0OOJ5mF1iY87HkW9u1tm0XAGiWOnbBgNUOu/7siKeLxuQ00ZjctmhMrScaU8tno1FIRfyMaBSNotGunmhMLS9+RhAEQcgTxv/KsnQBQjzdHEjYOXZrurk9u0DF2rb5e7bBRLp0K6JRNIpG0Whu2/x9ODQKyUyEfS4aRaNoFI3mts3fxc8IgiAI45DxP1hmRrN8mlGWPPNvu4DDGhhY0zVLWro6mqWOddbQaqe5HasW0ZicJxpFo2i073OoGoX0jMd9PhGOa9GYWtecJxpFo/gZQRAEYYIxsQbLrA7e7JSzddBxJ6/Z/Da3bw0i7IIJu4DBbIu1jjXwsEM0ZodoHGhfNIrGo9EoJDMR9rlozA7RONC+aBSN4mcEQRCEPGP8P7MMkh2zsqRnUzeONWiwplv7sAYG1v7s0q2/09lo7kc0pkc0pu9DNIrGbGyUCxlnxvs+nwjHtWjMjGhM34doFD8jCIIgjBvG/2CZOQCwCyowpTvVtZuls8uL92FNcyJTIGJnj12QIhozt2nNF42i0YpotLfHqlFIZbzv84lwXIvGVLvt2rTmi0bRaEX8jCAIgjBOGLeDZUrFvHMgnOq4UwpjHxgMxmkPpv1s8p1sSldfNIrGbBCNonGoGgNhIyt+fp3giJ/Jsj3RmNnObPKc8kWjfVnRmJ8axc8kEd8OXV1do2yJIAjC+CB+Ps3Gz4zbwbK2tjbjy23PjK4hgiAI44zu7m7Ky8tH24xRR/yMIAjC8CB+xqC7uxuAKVOmjLIlgiAI44ts/My4HSyrqqoCYM+ePXnhbLu6upgyZQp79+6lrKxstM3JinyzOd/sBbF5JMg3e2H0bFZK0d3dTVNT04j1OZbJNz8D+Xe855u9kH8255u9kH8255u9IH5mrNDU1MTbb7/NcccdlzfHjxzvw0++2Qv5Z3O+2Qv5Z3M++JlxO1jmchkv+iwvL8+LgyVOWVlZXtkL+WdzvtkLYvNIkG/2wujYnC+DQiNBvvoZyL/jPd/shfyzOd/shfyzOd/sBfEzo43L5WLSpElA/h0/+WYv5J/N+WYv5J/N+WYv5J/NY9nPuIbZDkEQBEEQBEEQBEEQBEHIG2SwTBAEQRAEQRAEQRAEQRBijNvBMr/fzx133IHf7x9tU7Ii3+yF/LM53+wFsXkkyDd7IT9tHo/k437IN5vzzV7IP5vzzV7IP5vzzV7IT5vHK/m2L/LNXsg/m/PNXsg/m/PNXsg/m/PBXk3Ju5kFQRAEQRAEQRAEQRAEARjHK8sEQRAEQRAEQRAEQRAEYbDIYJkgCIIgCIIgCIIgCIIgxJDBMkEQBEEQBEEQBEEQBEGIIYNlgiAIgiAIgiAIgiAIghBDBssEQRAEQRAEQRAEQRAEIca4HCz7+c9/zjHHHENBQQELFixg1apVo2LHnXfeyRlnnEFpaSl1dXVcccUVbN26NanM+973PjRNS/r77Gc/m1Rmz549XHrppRQVFVFXV8eXv/xlIpHIsNj8zW9+M8WeuXPnJvIDgQA33XQT1dXVlJSUcNVVV9HS0jJq9h5zzDEp9mqaxk033QSMje27fPlyLrvsMpqamtA0jUcffTQpXynFN77xDRobGyksLGTRokVs3749qUx7eztLly6lrKyMiooKrrvuOnp6epLKvPXWW7znPe+hoKCAKVOmcPfddw+LzeFwmFtvvZUTTzyR4uJimpqauOaaazhw4EBSG3b75q677hoWmzNt409+8pMptixevDipzFjaxoDtca1pGt///vcTZUZyGwupiK8ZGvnmZ2Ds+xrxM+JnhmKz+Jmxj/iZoZNvvmas+xnIP1+Tb34mk80w9nzNuPczapzx0EMPKZ/Pp37729+qTZs2qeuvv15VVFSolpaWEbfloosuUvfdd5/auHGjWr9+vbrkkkvU1KlTVU9PT6LMe9/7XnX99dergwcPJv46OzsT+ZFIRJ1wwglq0aJFat26derJJ59UNTU16rbbbhsWm++44w51/PHHJ9lz6NChRP5nP/tZNWXKFPXcc8+pNWvWqLPOOkudffbZo2Zva2trkq3Lli1TgHrhhReUUmNj+z755JPq61//uvrrX/+qAPXII48k5d91112qvLxcPfroo+rNN99UH/rQh9T06dNVf39/oszixYvVySefrF5//XX18ssvq5kzZ6qrr746kd/Z2anq6+vV0qVL1caNG9Uf//hHVVhYqH71q1/l3OaOjg61aNEi9fDDD6stW7aoFStWqDPPPFPNnz8/qY1p06apb3/720nb3nzs59LmTNv42muvVYsXL06ypb29PanMWNrGSqkkWw8ePKh++9vfKk3T1DvvvJMoM5LbWEhGfM3QyTc/o9TY9zXiZ8TPDMVm8TNjG/EzR0e++Zqx7meUyj9fk29+JpPNSo09XzPe/cy4Gyw788wz1U033ZT4HY1GVVNTk7rzzjtH0SqD1tZWBaiXXnopkfbe975X/du//ZtjnSeffFK5XC7V3NycSLv33ntVWVmZCgaDObfxjjvuUCeffLJtXkdHh/J6vepPf/pTIm3z5s0KUCtWrBgVe63827/9m5oxY4bSdV0pNfa2r/Ukouu6amhoUN///vcTaR0dHcrv96s//vGPSiml3n77bQWo1atXJ8o89dRTStM0tX//fqWUUr/4xS9UZWVlks233nqrmjNnTs5ttmPVqlUKULt3706kTZs2Tf3oRz9yrDNcNjs5lssvv9yxTj5s48svv1ydf/75SWmjtY0F8TVHQ777GaXGtq8RPzOA+Jn0NlsRPzO2ED9zdOS7rxnLfkap/PM1+eZnlMo/XzMe/cy4ug0zFAqxdu1aFi1alEhzuVwsWrSIFStWjKJlBp2dnQBUVVUlpT/44IPU1NRwwgkncNttt9HX15fIW7FiBSeeeCL19fWJtIsuuoiuri42bdo0LHZu376dpqYmjj32WJYuXcqePXsAWLt2LeFwOGn7zp07l6lTpya272jYGycUCvH73/+eT3/602ialkgfa9vXzM6dO2lubk7apuXl5SxYsCBpm1ZUVHD66acnyixatAiXy8XKlSsTZc477zx8Pl+Sjq1bt3LkyJFh19HZ2YmmaVRUVCSl33XXXVRXV3Pqqafy/e9/P2kp+Ejb/OKLL1JXV8ecOXP43Oc+R1tbW5ItY3kbt7S08MQTT3Ddddel5I2lbTxREF9z9OSrn4H88zXiZ8TPZIP4mbGF+JnckK++Jt/8DIwPX5MPfgby19fko5/xDGvrI8zhw4eJRqNJJwmA+vp6tmzZMkpWGei6zi233MI555zDCSeckEj/+Mc/zrRp02hqauKtt97i1ltvZevWrfz1r38FoLm52VZPPC/XLFiwgPvvv585c+Zw8OBBvvWtb/Ge97yHjRs30tzcjM/nSzmB1NfXJ2wZaXvNPProo3R0dPDJT34ykTbWtq+VeB92Npi3aV1dXVK+x+Ohqqoqqcz06dNT2ojnVVZWDov9YDzz4dZbb+Xqq6+mrKwskf75z3+e0047jaqqKl577TVuu+02Dh48yA9/+MMRt3nx4sV8+MMfZvr06bzzzjt87Wtf4+KLL2bFihW43e4xv40feOABSktL+fCHP5yUPpa28URCfM3Rkc9+BvLP14ifET+TDeJnxhbiZ46efPY1+eZnzH3kq6/JBz8D+e1r8tHPjKvBsrHMTTfdxMaNG3nllVeS0m+44YbE9xNPPJHGxkYuuOAC3nnnHWbMmDHSZnLxxRcnvp900kksWLCAadOm8X//938UFhaOuD2D4Te/+Q0XX3wxTU1NibSxtn3HG+FwmI9+9KMopbj33nuT8r7whS8kvp900kn4fD4+85nPcOedd+L3+0fUziVLliS+n3jiiZx00knMmDGDF198kQsuuGBEbRkKv/3tb1m6dCkFBQVJ6WNpGwtjg3zwNfnsZ0B8zUgjfmZkED8jZEs++BnIb18jfmZkyRc/A/nta/LRz4yr2zBrampwu90pbzJpaWmhoaFhlKyCm2++mccff5wXXniByZMnpy27YMECAHbs2AFAQ0ODrZ543nBTUVHB7Nmz2bFjBw0NDYRCITo6OlLsidsyWvbu3r2bZ599ln/5l39JW26sbd94H+mO2YaGBlpbW5PyI5EI7e3to7rd445l9+7dLFu2LGkWxo4FCxYQiUTYtWvXqNkc59hjj6WmpibpOBiL2xjg5ZdfZuvWrRmPbRhb23g8I74mt+SLn4H89DXiZ8TPZEL8zNhD/EzuyRdfk49+xtxHvvmafPYzkD++Jl/9zLgaLPP5fMyfP5/nnnsukabrOs899xwLFy4ccXuUUtx888088sgjPP/88ynLB+1Yv349AI2NjQAsXLiQDRs2JB308f/Ixx133LDYbaanp4d33nmHxsZG5s+fj9frTdq+W7duZc+ePYntO1r23nfffdTV1XHppZemLTfWtu/06dNpaGhI2qZdXV2sXLkyaZt2dHSwdu3aRJnnn38eXdcTjnLhwoUsX76ccDicpGPOnDnDsjQ17li2b9/Os88+S3V1dcY669evx+VyJZYGj7TNZvbt20dbW1vScTDWtnGc3/zmN8yfP5+TTz45Y9mxtI3HM+Jrcku++BnIT18jfkb8TCbEz4w9xM/knnzxNfnoZyA/fU2++xnIH1+Tt35m2F8hMMI89NBDyu/3q/vvv1+9/fbb6oYbblAVFRVJbwYZKT73uc+p8vJy9eKLLya9CrWvr08ppdSOHTvUt7/9bbVmzRq1c+dO9be//U0de+yx6rzzzku0EX8N8IUXXqjWr1+vnn76aVVbWztsry3+4he/qF588UW1c+dO9eqrr6pFixapmpoa1draqpQyXrM8depU9fzzz6s1a9aohQsXqoULF46avUoZbweaOnWquvXWW5PSx8r27e7uVuvWrVPr1q1TgPrhD3+o1q1bl3jTyl133aUqKirU3/72N/XWW2+pyy+/3PY1y6eeeqpauXKleuWVV9SsWbOSXgHc0dGh6uvr1Sc+8Qm1ceNG9dBDD6mioqIhv1I3nc2hUEh96EMfUpMnT1br169POrbjbyl57bXX1I9+9CO1fv169c4776jf//73qra2Vl1zzTXDYnM6e7u7u9WXvvQltWLFCrVz50717LPPqtNOO03NmjVLBQKBMbmN43R2dqqioiJ17733ptQf6W0sJCO+Zujko59Ramz7GvEz4mcGa3Mc8TNjF/EzR0c++pqx7GeUyj9fk29+JpPNY9HXjHc/M+4Gy5RS6qc//amaOnWq8vl86swzz1Svv/76qNgB2P7dd999Siml9uzZo8477zxVVVWl/H6/mjlzpvryl7+sOjs7k9rZtWuXuvjii1VhYaGqqalRX/ziF1U4HB4Wmz/2sY+pxsZG5fP51KRJk9THPvYxtWPHjkR+f3+/uvHGG1VlZaUqKipSV155pTp48OCo2auUUv/4xz8UoLZu3ZqUPla27wsvvGB7HFx77bVKKeNVy7fffruqr69Xfr9fXXDBBSla2tra1NVXX61KSkpUWVmZ+tSnPqW6u7uTyrz55pvq3HPPVX6/X02aNEndddddw2Lzzp07HY/tF154QSml1Nq1a9WCBQtUeXm5KigoUPPmzVPf/e53k07kubQ5nb19fX3qwgsvVLW1tcrr9app06ap66+/PiXYHEvbOM6vfvUrVVhYqDo6OlLqj/Q2FlIRXzM08tHPKDW2fY34GfEzg7U5jviZsY34maGTj75mLPsZpfLP1+Sbn8lk81j0NePdz2hKKWWz4EwQBEEQBEEQBEEQBEEQJhzj6pllgiAIgiAIgiAIgiAIgnA0yGCZIAiCIAiCIAiCIAiCIMSQwTJBEARBEARBEARBEARBiCGDZYIgCIIgCIIgCIIgCIIQQwbLBEEQBEEQBEEQBEEQBCGGDJYJgiAIgiAIgiAIgiAIQgwZLBMEQRAEQRAEQRAEQRCEGDJYJgiCIAiCIAiCIAiCIAgxZLBMEARBEARBEARBEARBEGLIYJkgCIIgCIIgCIIgCIIgxJDBMkEQBEEQBEEQBEEQBEGI8f8B+VTAEra84SsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display_issues(issues, labels=labels, pred_probs=pred_probs, class_names=SYNTHIA_CLASSES,top=2)" + ] + }, + { + "cell_type": "markdown", + "id": "116fff37", + "metadata": {}, + "source": [ + "After additionally inputting `pred_probs`, `labels`, and `class_names` we see more information:\n", + " - Inputs `labels` and `pred_probs` generates the first two columns. This segments the image based on the class that appears in the given label and what class the model predicted for those pixels.\n", + " - Input `class_names` creates the legend that color codes our segmentation.\n", + "\n", + "\n", + "In the leftmost plot we can see that the dark brown area (the `unlabeled` class as shown in the legend) was the given label. The middle plot shows our model believes that this area is infact the `sky`, a light brown shade in the legend. The rightmost plot highlights the discrepancy between these classes in red to indicate which area of the image is likely mislabeled.\n", + "\n", + "These plots clearly highlight the part of the sky that was mislabeled by annotators of this image." + ] + }, + { + "cell_type": "markdown", + "id": "d213b2b2", + "metadata": {}, + "source": [ + "### Classes which are commonly mislabeled overall \n", + "\n", + "We may also wish to understand which classes tend to be most commonly mislabeled throughout the entire dataset by calling `common_label_issues()`. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4a006bd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:52:30.913879Z", + "iopub.status.busy": "2024-05-24T23:52:30.913557Z", + "iopub.status.idle": "2024-05-24T23:53:03.744223Z", + "shell.execute_reply": "2024-05-24T23:53:03.743668Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "264d88c9c8dc4f55a6af2fcc156ed752", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/4997683 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
given_labelpredicted_labelnum_pixel_issues
0unlabeledsky3263230
1unlabeledcar783381
2polebuilding275110
3unlabeledbuilding255917
4traffic lightbuilding78225
5personbuilding55990
6unlabeledsidewalk54315
7polesidewalk33591
8buildingcar24645
9wallbuilding21054
10personsidewalk15045
11wallsidewalk14171
12buildingsky13832
13roadcar13498
14fencebuilding11490
15carroad9164
16carbuilding8769
17wallvegetation6999
18wallcar6031
19traffic signbuilding5011
\n", + "" + ], + "text/plain": [ + " given_label predicted_label num_pixel_issues\n", + "0 unlabeled sky 3263230\n", + "1 unlabeled car 783381\n", + "2 pole building 275110\n", + "3 unlabeled building 255917\n", + "4 traffic light building 78225\n", + "5 person building 55990\n", + "6 unlabeled sidewalk 54315\n", + "7 pole sidewalk 33591\n", + "8 building car 24645\n", + "9 wall building 21054\n", + "10 person sidewalk 15045\n", + "11 wall sidewalk 14171\n", + "12 building sky 13832\n", + "13 road car 13498\n", + "14 fence building 11490\n", + "15 car road 9164\n", + "16 car building 8769\n", + "17 wall vegetation 6999\n", + "18 wall car 6031\n", + "19 traffic sign building 5011" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "common_label_issues(issues, labels=labels, pred_probs=pred_probs, class_names=SYNTHIA_CLASSES)" + ] + }, + { + "cell_type": "markdown", + "id": "a35ef843", + "metadata": {}, + "source": [ + "The printed information above is also stored in a returned pandas DataFrame, which summarizes which classes are overall least reliably labeled in the dataset.\n", + "\n", + "### Focusing on one specific class\n", + "\n", + "We can also just focus on issues within a specific class of interest, say just the class `car`. Easily do so using `filter_by_class` to only look at the estimated label errors in the `car` class. \n", + "Here the color-coding reveals that the pixels depicting a car in the image were mistakenly left as the `unlabeled` class in the given label." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c8f4e163", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:03.746309Z", + "iopub.status.busy": "2024-05-24T23:53:03.746100Z", + "iopub.status.idle": "2024-05-24T23:53:18.357315Z", + "shell.execute_reply": "2024-05-24T23:53:18.356798Z" + } + }, + "outputs": [], + "source": [ + "class_issues = filter_by_class(SYNTHIA_CLASSES.index(\"car\"), issues,labels=labels, pred_probs=pred_probs)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "716c74f3", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:18.359775Z", + "iopub.status.busy": "2024-05-24T23:53:18.359571Z", + "iopub.status.idle": "2024-05-24T23:53:22.035955Z", + "shell.execute_reply": "2024-05-24T23:53:22.035407Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEZkAAAGFCAYAAACBR0rlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNaUlEQVR4nOzdd5RV1fk/4M/QBZQi9oq9kYhiiyLYG9h7xdijJpoY89WQ2GJMojGxYVdU7L3FriiCRqVYorErKlhQQBHp/P7gd29mmMLMMAN4eZ61shbeU+6+k3PO3vs9e7+7bObMmTMDAAAAAAAAAAAAAAAAAAAAAEBJajK/CwAAAAAAAAAAAAAAAAAAAAAAQOORZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACVMkhkAAAAAAAAAAAAAAAAAAAAAgBImyQwAAAAAAAAAAAAAAAAAAAAAQAmTZAYAAAAAAAAAAAAAAAAAAAAAoIRJMgMAAAAAAAAAAAAAAAAAAAAAUMIkmQEAAAAAAAAAAAAAAAAAAAAAKGGSzAAAAAAAAAAAAAAAAAAAAAAAlDBJZgAAAAAAAAAAAAAAAAAAAAAASpgkMwAAAAAAAAAAAAAAAAAAAAAAJUySGQAAAAAAAAAAAAAAAAAAAACAEibJDAAAAAAAAAAAAAAAAAAAAABACZNkBgAAAAAAAAAAAAAAAAAAAACghEkyAwAAAAAAAAAAAAAAAAAAAABQwiSZAQAAAAAAAAAAAAAAAAAAAAAoYZLMAAAAAAAAAAAAAAAAAAAAAACUMElmAAAAAAAAAAAAAAAAAAAAAABKmCQzAAAAAAAAAAAAAAAAAAAAAAAlTJIZAAAAAAAAAAAAAAAAAAAAAIASJskMAAAAAAAAAAAAAAAAAAAAAEAJk2QGAAAAAAAAAAAAAAAAAAAAAKCESTIDAAAAAAAAAAAAAAAAAAAAAFDCJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDMAAAAAAAAAAAAAAAAAAAAAACWsWX0PnDlzZqZOnZoZM2Y0ZHkAAAAAAAAAAAAAAAAAAAAAAKhC06ZN06xZs5SVldXpuDonmZk4cWLGjx+f7777LtOnT6/r4QAAAAAAAAAAAAAAAAAAAAAA1FPLli3Tvn37dOjQodbJZuqUZOa7777Lp59+mubNm6d9+/Zp06ZNmjRpUufMNgAAAAAAAAAAAAAAAAAAAAAA1N7MmTMzbdq0jB8/Pl988UWmTJmSpZdeulbH1jrJzMSJE/Ppp59mscUWy7LLLiuxDAAAAAAAAAAAAAAAAAAAAADAPLboootm7Nix+fzzz7PIIoukXbt2czymSW1PPn78+DRv3lyCGQAAAAAAAAAAAAAAAAAAAACA+ahDhw5p3bp1vv3221rtX6skMzNnzsx3332XxRZbTIIZAAAAAAAAAAAAAAAAAAAAAID5rG3btpk4cWJmzJgxx31rlWRm6tSpmT59etq0aTPXhQMAAAAAAAAAAAAAAAAAAAAAYO60atUqM2bMyLRp0+a4b62SzBSy1TRpUqvdAQAAAAAAAAAAAAAAAAAAAABoRIVcMIXcMDXuW5cTl5WV1a9EAAAAAAAAAAAAAAAAAAAAAAA0mLrkgqlTkhkAAAAAAAAAAAAAAAAAAAAAAH5cJJkBAAAAAAAAAAAAAAAAAAAAAChhkswAAAAAAAAAAAAAAAAAAAAAAJQwSWYAAAAAAAAAAAAAAAAAAAAAAEqYJDNU66OPPkpZWVnKysrSv3//RvmOM888s/gd81vPnj1TVlaWnj17zu+iFP8mZ5555vwuCgsB1xsLmgWlbphTPdi/f//i9o8++qje39OnT5+UlZVl5ZVXrnK7exQWTHO6d6GhrLzyyikrK0ufPn3qfY550bdb0NXU3/P3obGNHDkyxxxzTFZdddW0atWqeL3dd99987toAA1C2xjmXkO0+wFYME2fPj0XXXRRNt544yy22GLFPuHuu+9eYb+vv/46p5xyStZee+0sssgixf3++c9/Jllw3p3UlbgLAA2lIerCBWlsWENS3wLzi5gWVK1UYgFzev8zL54B3kHBgseYZn4MjLmEH7+BAwcW78GBAwfO7+JQIuZ3HwsWRvoPUNmCEHMraNYYJ/185MiMGzOmMU69QGjfqVOWXnHF+V0MKCljvhyZb8eX7nNjsXad0mlJz42FxahxIzP2+9K8nju06ZRl27uWWXiMnPBVxkz6dn4Xo9F0arVYVmy7xPwuBj8SI8dOypjvp8zvYjSaTm1aZMUOreZ3MWCBMnrktIwbM31+F6NRtO/UNMus2ChhsQpGjhyZDTfcMGNKOE7GHIycnoyZOb9L0Tg6lSUrNp3fpQC+HJmUcFw17Tol4qrUYFpGZkZK8x5okk5pFtd/qRuZkfm6RK/hxdMpK7qGc8ABB+TOO++scZ/x48dns802y7vvvjuPSsXCYmSmZEymze9iNJpZNWWL+V0MqLWRY5Ix383vUjSOTosmK3aa36WAuhs/MplYms3xJEnrTkk7TXJYMI38PhkzeX6XonF0apms2GZ+l2K+EgtggTN5fDJ14vwuReNp3jpp2W5+lwJqNCXjMy2lex82S+u0iPuQuhufCZmYEm0XJ2mdlmmXtvO7GJSQ8TOSiSU6FLF1WdKuyfwuBfPL+PHJxB/mdykaR+tFknaaSdTDtPHJjNLtQqRJ66SZe2O+a/DZNJ+PHJk911wzUyZNauhTLzBatGqVe95+W6IZaCBjvhyZXx2xZqZOLd3nRvPmrXLRtW9LNLMQGDVuZLa/YM1MmVaa13OLZq3y+ClvSzTDQmHkhK+y5u3HZ9L0qfO7KI2mVdPmeXu/yySaYY5Gjp2UNf82JJOmzZjfRWk0rZo1ydun/kyiGfj/Ro+clt3X/CRTJpXmG6kWrcpy39srNHqimT/96U8ZM2ZMmjVrlnPPPTdbbrll2rad9eJ4pZVWatTvZgEwcnqy5vikNLuHSaskb7eTaGYe6d+/fw4//PAkyYcfftjoKzaeeeaZOeuss5IkM2eWZl1QEr4cmRyxZlLCcdU0b5Vc+7ZEM1RpWkZmdNZMKVe2y+RtiWZK2MiMzE+yZiaX6DXcMq3yWt5u1EQz87qNVFdDhgwpTirbZZddctJJJ2WppZZKWVlZFltsseJ+l112WXFS2amnnprevXunffv2SZJllllmnpeb0jAyU7Jm/pNJKd32fKuU5e2sK9EMPwojxyRrnpxMKtHXjq2aJ2//Q6IZflzGj0wuXzOZXprN8SRJ01bJcW9LNJMs+H0HFjIjv0/WfCiZVKLjL1o1Sd7u1WiJZhb0+1ksYMG08sor5+OPP85hhx2W/v37z+/izFuTxyfDL01mlm4S2pQ1S7qe0KiJZhb0Zw8LtikZn//k0sws4WTQZWmWdXOCRDPUyfhMyKW5N9NSmovgJUmzNM0J2aNRE82ooxYe42ckl36fkq1NmiU5oY1EMwuj8eOTS69KppVoddCsaXLC0Y2baEZdUHqmjU++vDSl+9BPkmbJkidINDO/NfhMmnFjxpR0gpkkmTJpUsaNGSPJDDSQb8ePKekEM0kydeqkfDt+jCQzC4Gx348p2QQzSTJl2qSM/X7MQpFkZuWVV14gJtItCGVYWI2Z9G1JJ5hJkknTp2bMpG8lmWGOxnw/paQTzCTJpGkzMub7KQtckpmPPvpofheBhdS4MdNLNsFMkkyZNDPjxkxv9CQzTz75ZJJk9913z6mnntqo38UCaMzM0p3znsz6bWNmxrx3+vfvv/ANyF1QjB9T2glmklm/b/wYSWao0oyMSalXtrN+o+u/VH2dMSWbYCZJJmdSvs6YRk0ys6Ar9AmbNm2aW265pcJksqr269atW/76179Wuc+ZZ56ZM888s1HK2ZgWlHctC6MxmVbSCWaSZFJmZkymSTLDj8KY70o3wUwy67eN+W7BTzIzcODA+V0EFiATx5R2gplk1u+bOEaSGVjgjJlcuglmklm/bczkRksys6BbmGIBxrP8SEydWNoJZpJZv2/qxEZNMsP/iPXV3bRMLOkEM0kyM9MyLRMXmCQz6qgfh4mZXNIJZpJkWqZnYiY3apIZFh4TZ5Z2roFpmfUbF4yahHlp4g+lm2AmmfXbJv7QuElmFmT6D/UzY2JK+6GfJNP+/+9cSO+NBYXcbgAAAADQCD777LMkyRprrDGfSwIAAMC8VugTLrXUUtVOKiu/n74jAAAA/LiJBQAAAAAAPwaSzAAAAABAI5gyZUqSpHnz5vO5JAAAAMxrkydPTjLnPmFt9wMAAAAWbGIBAAAAAMCPgSQzC6A+ffqkrKwsK6+8co379e/fP2VlZSkrK8tHH31UYdvKK6+csrKy9OnTJ0ny9ttv56ijjsrKK6+cli1bZqmllsoee+yRF198ca7K+sYbb+RPf/pTdthhhyy//PJp2bJl2rZtm9VXXz2HHXZYnc8/bty4nHHGGVl33XXTtm3bdOzYMVtttVVuvfXWWh0/adKkXHrppdlmm22y9NJLp0WLFllyySWz7bbb5tprr820adPq8zMr+Pzzz/P73/8+3bp1S8eOHdOyZcussMIK2XffffPkk0/W6hy33HJLevbsmQ4dOqRt27ZZb731csYZZ2TcuHFzXT4WbqNGjcr//d//ZYMNNki7du3SvHnzLLXUUunSpUsOOOCA9O/fP99++22dzjljxowcd9xxxefNCSeckIsuuqj437W5z/faa6+UlZWlY8eOmTRpUn1/Hgup+tQNhevzzDPPrPHcPXv2TFlZWXr27Flp20cffVQ8T//+/etd/rfeeit9+vTJCiuskFatWmWFFVbIgQcemJdffrlWx9f0W2ZvC8yYMSNXXXVVfvazn6VDhw5p06ZNfvKTn+Tcc8/NxIkT5/hdb7zxRg499NAsv/zyadWqVVZcccUcfPDBGTZsWJLat1GgvDPPPLN4nSbJ+PHjc84556Rr165p3759pXtswoQJ+ctf/pLNNtus2NZafvnls/fee+ehhx6q8btmzJiRp59+Oqeccko233zzdOrUKc2bN0/79u2z/vrr55RTTsnIkSNrVe65vXehKvVpq83et6vK9OnT069fv2yyySZZbLHF0q5du2ywwQa54IILigOTauu+++7LPvvskxVXXDGtWrVK+/bt061bt5x11lkZO3Zslcest956KSsry/7771/l9vL11frrr1/lPi+++GJxn0cffbTCtilTpuTBBx/MCSeckI022igdOnRI8+bNs/jii2eTTTbJmWeemTFjxtTpd9bVpEmTsttuuxXL+Ne//rVRv48ft/LXfMFZZ51V/Kyqe3r69Om54YYb0qtXryy77LJp2bJlFl988WyxxRa58MIL88MPP1T7fbO3aT/77LP8+te/zmqrrZZFFlkkiy++eHbYYYc88sgjtSr/V199lbPPPjubb755llxyyTRv3jwdOnTIJptsklNPPTWvvfZatcfOi7gMC4eJEydm0UUXTVlZWQ466KA57v/CCy8U769+/fpV2t4Q8bwbb7wxPXr0KMbzunTpkrPPPrtYd9e2H/rMM8/ksMMOyyqrrJLWrVtnscUWS5cuXfLb3/42o0aNqrT/wIEDU1ZWlsMPP7z4WefOnSs8U8rKyjJw4MAKx7344ovp27dvevbsWbwfF1tssayzzjo57rjj8uabb1ZZvsIz7Kyzzip+Nvt3zR6Prm1f8fXXX8/RRx+d1VdfPa1bt86iiy6addddNyeffHKl+HZ5VfXPn3jiifTu3TtLL710WrZsmc6dO+e4447Lp59+WmMZYHaz91nn5h3FRx99lJNPPjnrrrtuFl100bRu3Tqrr756jjnmmLz++usNUt733nsvJ598crp06ZJ27dplkUUWySqrrJI+ffrklVdeaZDvYOE1ePDgHHnkkVlzzTWz2GKLpUWLFll++eXTq1evXHbZZZXeYY0ePTr9+vXL3nvvndVXXz1t2rRJy5Yts9xyy2W33XbL7bffnhkzZlT7fYU6rlCPzZgxI9ddd1222mqrLLXUUmnSpEmNfWEWbvVpI83eZhk9enR+97vfFZ/bs+8/duzYXH/99Tn44IOzzjrrpG3btmnRokWWXnrp7LDDDrnqqquKiUVnV/j+G264IUny8ccfV1m2wr8//vjjJMkNN9xQYZ/y7y5mr7OqM3ny5Fx11VXZZZddstxyy6Vly5Zp06ZN1l133Rx55JF57LHHMnPmzDr8tf9n6NChOeKII7LGGmukTZs2xbjphhtumOOPPz4PPPBApXPX9l3L119/nVNPPTVrrrlmFllkkSy11FLZbrvtcu+99yapeWxEMu/GR7Dwacj24tzETWa/xocOHZo+ffqkc+fOadmyZaVnw7hx43Luuedms802K8ZTl1hiiayzzjrZY489cvnll+eLL76o9vvmpm07e//45ZdfzgEHHFAcU7TccsvlkEMOyVtvvTXHvxnUpD73Y03jA8qrS4z0gQceKF73t9122xzL/Zvf/CZlZWVp1qxZlbGgpO5t87qoa2wKajJ7Pfntt9/mzDPPTJcuXdK2bdssueSS2XnnnTNkyJAKx3355Zfp27dv1l133bRp0yaLL754dttttwwfPrzG75sxY0YGDBiQnXfeuViXLrHEEtlqq63Sr1+/Ktvn9Y2vJnM3dmH25827776bE044oRgbrapdW5e2/JgxY4ptgGOPPbbGsiTJgw8+WPytd9xxR5X7fPTRR/nd736XDTfcMIsvvniaN2+eTp06pXv37jnzzDPzwQcfzPF7qiOmRUMQC6heY8YCalKb8SzTpk3LxRdfnI033jiLLbZYcQzKP/7xj0yZMqXOYzTHjRuXP/7xj8U6pH379tlyyy1z8803V7l/4Xlc3d+7Nm1DFm5z05aozxispG7Prnn5nCuo6b14Q49phvLqMhb5xzDmMqn7PQzl1bWOqsv1Nvt73JrUdrxUY8S7xo4dm8022yxlZWVp3rx5tW1CqM78mquWzHpndPHFF6dnz55ZYokl0rx583Ts2DFrrrlmdtppp1x44YU1jqeDpHHrgkT/gR+vXr16paysLJtuummV28u3dTp27Fjl+LbPP/+8uM8VV1xR/Lwh5y0uCJrN7wLQ+O69994cfPDBFR6kX375Ze677748+OCDufnmm7PffvvV+bwDBw7MVlttVenzKVOm5L333st7772XG2+8Mf/3f/+X8847b47n+/DDD7Pddtvl/fffL372/fffZ+DAgRk4cGDuu+++3HzzzWnWrOrL9tVXX81uu+1WDAQXfPXVV3nqqafy1FNP5corr8yDDz6YpZZaqo6/dpabb745xxxzTL7//vsKn3/66ae58847c+edd+aII47IFVdcUWU5p02blgMPPDB33nlnhc//85//5D//+U8GDBhQ64ktMLtBgwalV69elSYmf/nll/nyyy/zxhtv5LbbbkunTp3Sq1evWp1z6tSpOfTQQ4sDYfr27Ztzzjkn33zzTX73u99l8uTJ6d+/f7UVbjLrpfaDDz6YJDnwwAPTqlWrev5CFkZzWzfMb3fccUcOPfTQCsHmTz/9NLfeemvuvPPOCo3MuTVx4sRsv/32eeqppyp8/vrrr+f111/PAw88kKeffjpt2rSp8vgBAwbk5z//eaZOnVr87JNPPsnNN9+cO+64I1dffXWDlZWF17vvvpvtt9++2oDX8OHD06tXr0oDGD/77LPcfffdufvuu7Pnnnvm5ptvrrI+OfvssytMhi0YP358Xn311bz66qu5/PLLM2DAgOyxxx7VlnNe3rssPBqjrZbMGty48847Z9CgQRU+Hz58eIYPH55bb70111xzzRzPM3bs2Oy99955+umnK3w+efLkDB06NEOHDk2/fv1y//33V2r79ejRI//5z3/y7LPPVnnu8p+/9tpr+eabb9KxY8cq92nWrFm22GKLCtuOPvro4kCs8r755pu89NJLeemll3LppZfm/vvvz+abbz7H31pX3333XXbdddcMHDgwTZo0yRVXXJGjjjqqwb+HhdfIkSOz66675tVXX63w+TfffJPBgwdn8ODBufzyy/Pwww9njTXWqPFcgwcPzu67714h8dKkSZPy+OOP5/HHH8/555+fU045pdrjq4t7jBs3rni/3XHHHVXW5fMiLsPCo3Xr1tl9990zYMCA3H///fn++++r7cskKQ4SaNasWfbdd99K2+Ymnjd16tTss88+uf/++yt8/sYbb+SNN97IgAED8sQTT8zxN02aNCmHH354lZONCue6/PLLc+utt6Z3795zPF9N+vfvX+HFYcHUqVPz1ltv5a233srVV1+diy++OL/4xS/m6rtq67zzzkvfvn0rvYx588038+abb+byyy/PVVddlUMPPXSO5zrttNPyl7/8pcJnH330Ua644orcfffdefbZZ7P22ms3aPlZOMxNHOrGG2/M0UcfXWnAYeFdybXXXptzzjknp512Wr3Ld8EFF+T000+vELsplPvDDz/MjTfemL59++bss8+u93ewcPrhhx9yxBFHVDlQ6rPPPstnn32Whx9+OF999VVx0Mf06dOz/PLLV/mSfdSoUXnggQfywAMP5Nprr80999yTtm3b1liGSZMmZYcddvCOjHnmxRdfTO/evWtMWtu1a9dK/Zsk+eKLL4p9rCuuuCL/+te/svTSSzdmcWttxIgR2XPPPfPhhx9W+HzKlCnFdte1116bDz/8sM7J5P/xj3/klFNOqXTff/rpp/n0008zbNiw9OvXL999990c7/nZvf7669luu+0qJLyYNGlSnnzyyTz55JM5+uijs9lmm9X6fI01PgLmpr3YkHGTK664IieeeGK1SWneeuutbLvttpXetYwZMyZjxozJW2+9lfvuuy/Tp0/PCSecUOn4hmzb9uvXL7/61a8qlHXUqFEZMGBA7rnnnjzyyCPZcsst53gemF1jjiOoa4x0l112yTLLLJPRo0enf//+1SbkT2aNGxswYECSZMcdd8yyyy5bYXt92ua1NS9jUyycPvnkk2y77bZ55513ip99//33eeSRR/L444/n1ltvzT777JPXXnstO++8cz777LPifhMnTswDDzyQxx57LI888kiVY1K/+eab7Lrrrhk8eHCFz8eMGVO89y+99NI88sgjWWmlleb698zt2IXy7r///hx00EGVnivl1bUt36lTp+y222658847c/vtt+ef//xnjeW4/vrrkyQdO3bMbrvtVml7dXGnr7/+Os8//3yef/754t+5rsS0WFCIBdQ9FjC3vv322+ywww6VEr4WxqDcdtttufLKK2t9vrfffjs77rhjpXfVgwYNyqBBg/LCCy/k0ksvbYiiw1yZmzFYs6vNs6su+87L59zcjmmGmsxpLPKcLAhjLmdXl/sd5ta8vN4aK941atSo7LDDDnnjjTeyyCKL5M4778wuu+zSgCWn1M3PuWqjR4/OtttuW2mRuLFjx2bs2LF555138uijj2bUqFG54IILGvz7IdF/oLT16NEjDz/8cIYOHZoJEyZUGsNSfn7T2LFj89prr1VaTLv8PuUThjXUvMUFxYI5I5sG8/rrr+f222/PMsssk9/85jfp1q1bZs6cmcceeyx/+ctfMmnSpBx99NHZeuuts8QSS9Tp3NOmTUubNm2yyy67ZOutt85aa62VxRZbLF9++WX+85//5OKLL87HH3+cv/zlL1ljjTWqnNhQ3n777ZcPP/wwxx57bPbee++0a9cur732Wv7617/mnXfeyR133JFll102//jHPyod+95776VHjx4ZP358FltssRx//PHZeOONs8IKK+Trr7/OAw88kCuvvDIvv/xydttttwwaNCjNmzev0++94447csghh2TmzJlZZZVVcsIJJ2SdddbJEksskY8++ijXXntt/vWvf+Xaa6/NYostlgsvvLDSOU455ZRigpk111wzp556an7yk59k/PjxufPOO3P11Vcb0Ea9TJ48Ofvvv3++/fbbLLroojnuuOOy1VZbZckll8yUKVPy4YcfZsiQIcXV/mpj4sSJ2WuvvfLoo4+mrKwsF154YU466aQks14477nnnrn11ltz22235R//+EcWWWSRKs9z8803F18S//znP5/r38rCZW7qhvnt5ZdfzkEHHZRp06alZcuWOfnkk7PzzjunZcuW+fe//50///nPOe6447LOOus0yPcdddRRefHFF3PYYYdl3333zdJLL52RI0fmb3/7W1544YW89NJL+dOf/lRl4rchQ4akT58+mT59elq3bp1f//rX2X777dOyZcu88sorOe+883L00Udn3XXXbZCysvDae++989lnn+XEE0/Mrrvumg4dOuTdd9/NSiutlM8++yzbbLNNxo4dW1xBYP/998/iiy+eN998M3//+9/z6quv5p577kmfPn2qHAA5bdq0LLPMMtljjz2y2WabZZVVVkmrVq3yySefZMiQIenXr18mTJiQAw88MMOGDaty4um8vndZODRGW63g4IMPLr7s3HjjjXPyySdn9dVXzxdffJH+/fvnzjvvzDHHHDPH8m277bYZNmxYmjZtmgMPPDA777xzOnfunKlTp+a5557LhRdemC+//DI777xzhg8fXmFwZs+ePdOvX798/vnn+e9//5u11lqrwvnLDzacOXNmnnvuuey+++5V7rPBBhtUCuJMmzYtq6yySvbYY49svPHGWXHFFdOsWbN8/PHHefLJJ3Pdddfl66+/zh577JE33ngjSy65ZB3/itX76quvstNOO2Xo0KFp0aJFbrrppkrJC2B2u+++e7p165Yk6dKlS5LkuOOOq5DIoUOHDklmDc7dYost8sknn6Rly5Y56qij0qNHj6y88sqZMGFCHn/88Vx00UV57733stNOO2XYsGFp165dld87evTo7L777mnSpEn+8pe/ZIsttkiLFi3y/PPP5+yzz864ceNy2mmnZaeddqqyXXfTTTcVkzu0atUqRx11VHbaaacsvfTSmTBhQl577bU88MADeffddysdOy/iMix8DjrooAwYMCDff/997r///hx44IFV7jdt2rRivG2HHXZIp06ditsaIp73q1/9qphgZt11180pp5yS9dZbL99++23uvffeXH755XOM582cOTN77713Hn744SRJ7969s++++2aVVVZJkyZN8tJLL+Xvf/97Ro4cmb333juDBw8uPkc22mijvP7667n//vvTt2/fJMljjz1WaRJS586dK/xNOnTokN122y1bbrllVl999bRp0yajRo3KsGHDcvHFF2fMmDE54YQTstZaa2XrrbcuHlt4hvXr1y+XX355klS5Sv1yyy1X428ur1+/fjn99NOTJEsssUR+97vfZfPNN8/06dPz5JNP5vzzz8/333+fPn36pFOnTtl5552rPdfVV1+dIUOGpEePHjnmmGOyxhprZNy4cbnxxhtz44035quvvsrPf/7zvPDCC7UuHxTUNw718MMPp0+fPpk5c2batm2b3/zmN9l2223TrFmzDBkyJOedd17GjBmT008/Pe3bt89xxx1X57Kdf/75OfXUU5MkP/nJT3Lcccdl9dVXT/v27fP222/n0ksvzQsvvJBzzjknnTp1yi9/+csG+ZtQ+mbMmJHddtutmDBt9dVXzy9+8Yt069YtrVu3zujRozNkyJBKq5wXVj7eeuuts9NOO6VLly5ZYokl8t133+WDDz7I1VdfnRdeeCFPPPFEjj/++CoTh5b3u9/9Lq+99lp23XXX9OnTJyuttFK++OKLSolaoaA+baSCCRMmZK+99sqkSZPy+9//Ptttt11at26d119/Pcsss0xxv+nTp2eTTTZJr1690rVr1yy11FLFOM6AAQPy6KOPZvjw4dl///0rTbQstJ/69u2b+++/P8suu2wee+yxSmUr7LfDDjtk1KhR2W233fKnP/2puE9dBki99dZb6d69eyZMmJAk2WOPPbL//vtnlVVWyfTp0/POO+/k8ccfr1f86bXXXismmOncuXNOOOGErL/++unYsWO+++67vP3223nmmWcqJWasjXHjxmXHHXcsJpg55JBDcuCBB2aJJZbIe++9l4suuihXXXVVpcSs1WnM8RFQ3/ZiQ8ZNXn755QwYMCArrLBCTjnllHTr1i3Tpk2rMCHmkEMOyahRo9K8efMK8Z0ZM2bk008/zYsvvljts6Ah27aPPfZYXnrppXTp0iW/+tWv0qVLl/zwww+59957c9FFF2XixIk55JBD8u6776ZFixb1+H+EhVljjSOoT4y0adOm6dOnT84777w88cQT+fTTT7P88stXef6HH344X375ZZLK42fq2zavjbmJTUFt7bPPPvn0009z2mmnZccdd0zr1q3z/PPP54wzzsi3336bI444It26dUuvXr3yww8/5Nxzz02PHj3SvHnzPProozn33HMzefLk9OnTp1LdMH369PTq1asY8+vRo0dOOOGEdO7cOaNGjcp1112X++67L2+99Va22WabjBgxovi+sT59h4YYu1AwcuTIHHzwwWndunX+8Ic/pHv37mnatGlefvnlYhnr25Y/8sgjc+edd2bcuHG59957c8ABB1RZhq+++ioPPfRQkllx95YtW1bYfs455+SPf/xjkqR9+/b5xS9+ka222iqLL754xo0bl2HDhuWee+5JWVlZtb+zOmJaNCSxgMoaMxbQEPbff/9igpnNN988J554YlZbbbV89dVXGTBgQG6++eYce+yxtTrXxIkT07t373z99dfp27dvtt1227Rt2zbDhw/PWWedlU8//TSXXXZZevfunR122KF43PXXX5/vv/++2r93Ure/OQufuj575nYMVnm1fXbVZd+5ec7V1dyMaYY5qWkscm0sCGMuy6vL/Q4F9W0fz8vrrbHiXe+//3622267fPjhh1lsscXy4IMPSmZOnc3PuWonnnhiMcHMwQcfnD333DPLLrtsmjZtmtGjR+eVV16p13tXFj6NXRfoP/BjVUgKM23atDz//PPZcccdK2yf/XodOHBgpSQzhX2WWmqpCvOjGmLe4oJEkpkSN2zYsGy44YZ5+umns9hiixU/33TTTbPaaqvl4IMPzrfffpsBAwbk5JNPrtO5119//Xz66adp3759pW077LBDTjjhhPTq1StPPPFEzjrrrBx66KFp2rRpted7+eWXc8stt1R42dWtW7fss88+6d69e1599dVcfPHFOeKII7LeeutVOPawww7L+PHj07Vr1zz++OMVJpMkyfbbb59evXpll112yb///e/079+/TivPjxkzJkcffXRmzpyZn//857nyyisrZCLcYIMNsueee+b3v/99/vznP+eiiy7KMccckzXXXLO4z+uvv55LLrmkuP+zzz5bYfLkNttsk5/97Gc57LDDal0uKBg8eHBx5ZRbbrklvXr1qrB90003zQEHHJB//OMfFVbtq864cePSq1evDB48OE2bNs0111yTPn36VNjnyCOPzK233prx48fn3nvvrXayV2EllJ/+9KfZYIMN6vHrWJjNTd0wv/3iF7/ItGnT0rx58zz++OMVAlcbb7xx9txzz2y66aa1Hhg9J0OGDMlNN92Ugw8+uPjZBhtskJ122indunXLG2+8kauvvjrnnHNOpWy6xx9/fKZPn56WLVvm6aefziabbFKhrHvvvXc222yzDB8+vEHKysLrjTfeyCOPPJLtt9+++NmGG26YZNags7FjxyaZNXH0iCOOqLDPvvvum5122inPPPNMbr/99hx22GHZaaedKpz/yCOPzBlnnFFp8PUGG2yQ3XbbLSeeeGI23XTTfPbZZ/nzn/+cm266qVIZ5/W9y8KhodtqBQ8//HAxiLzzzjvn/vvvr/CM33nnnXP22WfnjDPOqPE8Z599doYNG5b27dvnySefLN6XBVtssUUOOuigbLbZZhk9enROP/303HzzzcXtPXr0KP574MCBFYIoI0eOzEcffZSysrLssssueeihhzJw4MAKSWamT59eXHWwfJbfgrPOOiurrLJKpYGL3bp1y1577ZVf/OIX+dnPfpavvvoql1xySc4555waf29tffLJJ9luu+3y9ttvp3Xr1rnnnnsqDEaC6rRv375SrGTJJZessr36y1/+Mp988klWWmmlPPPMM5UC+T179iy2fT/44IP87W9/y7nnnlvl977zzjtZaaWVMnjw4ArJHzbaaKNstNFG2XLLLTNt2rRcddVVueiiiyocO3r06OIAviWXXDJPPfVUpfJ27949xx9/fD755JNK393YcRkWTttuu22WXHLJfPnll7nllluqjTs8+eSTxck5Bx10UPHzhojnDR8+PFdccUWSZLPNNstTTz1VIcnu1ltvnR49emSfffap8bdcc801efjhh9O8efM88MADlV5YbLrppjnkkEPSvXv3/Oc//8lJJ52U559/Psmsga3rrbdeXnnlleL+a6yxRo2rTe6000458MAD07p16wqfd+3aNbvsskt++ctfZsstt8xrr72WM844o0KSmcIzrHzStrnpb3/11Vf57W9/myRZdtll8+KLL2aFFVYobt98882z6667pnv37vn+++9z9NFH58MPP6x2QuWQIUNy1FFH5corr6zQNthmm23SokWLXHPNNXnxxRczfPjwdO3atd7lZuFUnzjU1KlTi8+atm3bZtCgQRVeOG666abZa6+9im3pU045Jfvss0+lurImb775Zn7/+98nSc4444ycccYZFa7/DTfcMPvvv38OO+ywDBgwIL///e9zyCGHFJPaQU0uvfTS4qC+PfbYI7feemulyWa77LJLzjnnnIwePbr4WdOmTfP2229ntdVWq3TOHj165PDDD88ZZ5yRs88+OzfddFP69u2b1VdfvdpyvPbaa+nbt2+D9ecoffVpIxV8/fXXadu2bZ5//vn89Kc/LX6+0UYbVdjv6aefrvK6/dnPfpaDDjoo119/fX7+85/n2WefzVNPPZVtttmmuE+hnij0DZs3b15lm6rwWaHt0759+3q3vQ4++OBMmDAhTZo0yc0335z999+/wvZNNtkkhxxySL7++utK7cQ5ueuuuzJjxoy0adMmL7zwQpZaaqkK27t3754jjzwy48ePr/O5zzrrrGLc7J///Gd+9atfFbdtuOGG2XvvvbPXXnvVeiBlY46PgPq+t2zIuMmbb76ZLl265LnnnqsQf9p8882TJB988EGGDh2aJLnwwgtzwgknVDi+8J7jr3/9a8aNG1dhW0O3bV988cXsvPPOuffeeyskCujevXsWX3zx9O3bNyNHjszDDz/8o1jFjQVLY4wjmJsY6RFHHJG//OUvmTFjRm688cZist3ZXXfddUlmJeHt3bt3hW31bZvXxtzEpqC2RowYkWeffbbCeJNu3bpl9dVXT69evfLdd99lk002ycyZM/PSSy9l1VVXLe638cYbp1OnTjn++OOrrBuuuOKKYoKZQw89NP379y/GRjbccMP07t27GOd9//33c8455+Svf/1rkvr1HU466aS5HrtQ8OGHH2bZZZfNCy+8kBVXXLH4efm/U33b8ttuu21WWmmlfPzxx7n++uurTTIzYMCAaheIGz58eHGl+DXWWCNPPfVUpURZW221VX7zm99U+X6oJmJaNDSxgMoaMxYwt+6///488sgjSZI999wzd955Z5o0aVLcvuOOO6Zr16455ZRTanW+r776KlOmTMkLL7xQYUGVDTfcMD179kyXLl0yadKk9OvXr8K4jsL794b4e7NwquuzZ27HYJVX22dXXfadm+dcXc3NmGaYk5rGIs/JgjLmsry63O9QUN/28by83hoj3vX6669n++23z+eff54lllgijz76qHlq1Mv8mqs2adKkPPDAA0mS3/zmN7ngggsq7dO7d++cddZZ+eabbxrseylNjV0X6D/wY7XBBhtk0UUXzXfffZeBAwdWeC82efLkYlLk3r1758EHH8zAgQNz0kknVTjHs88+m6TiXKmkYeYtLkiazHkXfuyuu+66CgOoCg488MBiVrLyqxrVVqdOnapMMFPQokWLnH/++UmSjz/+OCNGjKjxfL169aryRdeiiy6aq666KsmsLJaFiR0FgwYNypAhQ5IkN9xwQ7UDWHbcccfsvffeSZL+/fvXWJbZXX755Rk/fnyWW2659OvXr9qK6Kyzzspyyy1XHDRQ3hVXXJEZM2YkSa666qoKCWYKDj300GpfOEJNPv/88+K/a8rA2qxZsyqfB+V98cUX6dmzZwYPHpyWLVvmrrvuqpRgJpn1Arnwwr+QSGZ2w4YNK07Cn/0lNdRGfeuG+e3ll18udtKOOeaYKu/L5ZZbLn//+98b7Dv33HPPCp2pgpYtWxYHkH799dfFjLcF//73v4t19IknnlhhIEvBkksu2SgZeFn49OnTp8JLnYJRo0YVV83ZcccdKwzSKmjZsmWuu+66Yjvs0ksvrbTPyiuvXO1k1CRZfvnlixNcH3jggeKq2wXz495l4dCQbbXy+vXrl2TW/XH11VdX2U/p27dvjcHtCRMm5LLLLksya5W66l62rrTSSvnDH/6QJLnzzjvz/fffF7ctueSSxQy7VWX1TZJ11lmnOAF/9n2GDh2a7777LknlIEySrLrqqjWujNelS5cceeSRSZL77ruv2v3q4u23384WW2yRt99+O+3bt88TTzwhwQwN7qOPPsrtt9+eZFa9VtWqesmspBDHH398kjnHMy655JIKCWYKtthii2I7r6oY0CWXXFJMcnXVVVfV+NwonxyicL7GjsuwcGrWrFn222+/JMnjjz+er7/+usr9CoNw2rZtm9122634eUPE86666qpim/Hqq6+ukGCmYO+9965xMtzMmTOLExp++ctfVprEU9ChQ4diLHXw4MEVVsSuq+WWW67GwcLt2rXL2WefnSR5/vnnq/3bNoTrr7+++Hy58MILKz1DklnPudNOOy3JrFWCa6rPl1lmmVxyySVVtg3KD0SuT7wb6hOHuvfee4sT4/v27VtpRYtkVlu6cH9PnDix2lhqdf7+979n6tSp6datW6XJOAVNmjTJJZdckpYtW2bChAm566676vQdLJxmzJhRvDaXX3753HjjjZUG9RU0adKkQjuzrKysygQz5f3xj39Mp06dMnPmzOIgqeqsscYaxUltMC+ceuqpFQZLVaWmxEhJcvjhhxef+w0Vj6ivxx9/PMOGDUsyq805+6Sy8hZffPEq27U1KcS21lhjjUoJZspr165dhQljczJ58uRi/3CjjTaqkGCmoGnTprnyyivTqlWrWp+3scZHQH3ai40RN7nsssuqHatT21h0WVlZpQncDd22bdWqVa6//voKCWYKfvnLXxY/dz9SH40xjmBuYqSrrrpqMYl+dffwF198kX/9619JZk0IL/9Oc27a5nMyP2JTLJxOOumkKseb7LLLLllppZWSzEoQcM4551RIMFNw+OGHF9t8s9cNhXeZSyyxRC699NIqYyNnnXVWcSGMq6++OpMnT67X72iosQvl/eUvf6mQYKa8uWnLN2nSpDge76mnnqo2CUyhvu7atWul+v3888/PjBkzUlZWlttuu61Sgpnyqort1kRMiwWNWEDdYgFzq9AOW2SRRXLFFVdUGS/49a9/XacJweecc06FBDMFq622WnGhI4nymJ8aYgzW7Grz7KrLvvPyOVffMc1QG9WNRa6NBWXM5ezqcr/D3JoX11tjxLuGDBmSHj165PPPP88KK6yQQYMGSTBDvc2vuWrffPNNMRlwTe9xkqRjx44N+t1Qnv4Dpaxp06bZYostklSeu/Tvf/87kyZNSrt27YoLEz333HPF3A9J8uWXX+att95KUnl+09zOW1zQSDJT4rp06ZKf/OQnVW4rKysrrub6wQcfzPV3TZ48OSNHjsybb76ZN954I2+88UaFG6CQaKI6hx9+eLXbNt5442Jg+Mknn6ywrTAwdc0110yXLl1q/I5C4+vll1/OtGnTaty3qu/o1atXtZ2aZNbkl8022yxJiqtnFBTK3aVLlxqz5ErEQX0ss8wyxX/XdZJCeR999FG22GKLvPrqq2nbtm3+9a9/FV++zK6srKx4vT799NMZOXJkpX0KZWnRokWF1cShtupbN8xv5ctT02/YY489akzYVhc13WPl653Z6/zyZT3kkEOqPccuu+ySxRdffC5KCNVfpwMHDsz06dOTpMpBWgUrr7xytttuu0rHVOfbb7/Nhx9+mP/85z/F9mlhsm1hW3nz495l4dBQbbXypk+fXgx4bL/99sUJMrNr0qRJDjvssGrP8+yzz2b8+PFJUpzEUJ1Cf2rq1KnF1XALCsGTQsbe8udPkp49exYHWL/22msVsqsX9ikfzKnJ2LFj8/7771e4twv35JtvvlkMvtfXsGHD0r1794wcOTJLL710nn322fzsZz+bq3NCVR5++OFMnz49rVu3nmPC2cL9N2rUqCr7XsmsVdd22WWXas9RaBNWFQN66KGHkiSrrLJKdt1111qVv2BexGVYeBXaj1OnTs0dd9xRafsPP/xQfDm1++67V0is0pDxvK5du1Y5aLXg0EMPrXbbm2++mffffz9J7evaqsoyN77//vt89NFHFerO8i855hS3nRuFv2H79u2z5557VrtfIWFc+WOqsvfee1f7/+eaa65ZTOzdEPFuFj71iUMV/l0+VlqVffbZJ+3atat0fG08+OCDSZK99tqrxuSL7du3L9bFDfkMoXSNGDEin376aZLkqKOOqnJxhNqaMWNGRo0albfffrtY17z11lvFyWlzqmv222+/NG3atN7fD3VV13dWM2fOzOeff5533nmneI2/8cYbxQGvjdmeqo1Cny5JpdWVGkIhtvXmm2/mpZdearDzvvLKKxk3blySVDlgrGCppZaqdfLfeTk+goVPfdqLDR03WWGFFdK9e/dqz1E+Fl3XJL8N3bbdbrvtsuSSS1a5bdFFFy0OTHU/Uh+NMY5gbmKkyf9iG++++26Vk5sHDBhQvLdnv8casm0+uwUhNsXCoabkBoX2WVlZWTGx+OwWWWSRKuuGUaNGFQdz77vvvll00UWrPL5Zs2bFZ8PYsWOLiRfqqqHHLrRo0aK4EEdV5rYt//Of/zxNmjTJjBkzcsMNN1TaPnTo0Lz++uvFfcubMWNGHnnkkSSz3uUW2soNRUyLBY1YwLwzbdq04jiQHXfcMUsssUSV+5WVldU4XnH2fQ888MBqtxfehX/zzTfFWAPMaw01Bqu8ujy7FrTnXH3HNENt1HdeyoI25rI8c22Yl+bF9dbQ8a7HHnss2223XcaOHZs111wzgwcPzpprrtkQRWUhNb/mqi2++OLFJPw33XSTcbTMN/oPlLrC/KahQ4dmwoQJxc8LMastttgiP/vZz7LIIotk7Nixee211yrtk6Q4B6o6dZ23uKCRZKbEFVZnqE4ho11h1fi6+v7773Peeeflpz/9adq0aZOVVlop6667brp06ZIuXbpUePE0ZsyYGs+10UYb1bh94403TpK88847mTJlSvHzV155JcmslebLyspq/F8ha9nUqVMrTGqsyfTp0zNixIgkyZVXXjnH7yisplB+hajJkycXV3ip7e+Euthiiy2yyiqrJJn1wmjjjTfOeeedl8GDB1e4X2ry1ltvZfPNN897772XxRdfPE899VS23nrrGo/p06dPmjZtWuWL6smTJ+eWW25Jkuy2226SU1Av9a0b5rfCAI0WLVrUmNmzefPmDTZIo6Y6v3wG29nr/DfeeCPJrOyeNU2abNq0aZUrFkJdVDe4v3AdJqlydbPyCtsnTpxYZYDg448/zoknnpiVV1457dq1yyqrrJL11luv2D49+uiji/vO3j6dH/cuC4eGaKvN7v333y+uqDk3fYxCfyqZNQGhpr5O+dU5yvd3kv8FTz7//PP897//LX5eeCnbs2fPrLjiiuncuXNmzpyZ5557rtI+Xbt2rXKV6WTW/fnzn/88yyyzTDp27JjVVlutwr1dWPF+xowZGTt2bI1/j5oMGjQoW221Vb766qusvPLKef7556t9dsHcKtx/EydOTLNmzWq8/3r16lU8bvb7r2D11VevccX46mJAU6dOLdbFW2yxRY0DfWv6HY0Vl2HhtskmmxRXtb355psrbX/ggQeKwf/yL5kaIp43adKkvPfee0lSY8LoJOnWrVu128rXtZtttlmN5Sg/oKK6e722xowZk9NPPz1rrrlmFl100XTu3LlC3Vk+KdWc4rZzo/B82WCDDWrM3r/UUktl5ZVXrnBMVeYU7+7QoUOS+se7WbjVJw5VuF47d+5c7UD5ZFY/s9CPrOkan93HH3+cr776Kkly2mmnzfF5VnjmzO0zhIXD8OHDi/+uabJ6dWbOnJkBAwZkq622Stu2bbPccstlrbXWKtY1Xbp0KdbHc6pr9LuYl9q2bVuM08zJww8/nF69eqVdu3ZZZpllikkiCv97+OGHkzRue6o2CvfziiuumJVWWqnBz3/AAQekefPmmTx5cjbffPP07t07V1xxRaVFZ+qqfJ04N23u8hp7fAQLt/q0Fxs6bjKnOrNz587Fev0f//hH1l133fzxj3/M008/XYwnV6eh27buRxpTQ48jmNsYaTJrlc1CXKKqBQcKn2200UaVVkOf27Z5TeZXbIqFzxprrFHttsJiEZ06dSreJzXtV75uqM9YgtmPq4uGHLuQzHp306pVq2rPMbdt+eWXX76YkLGqBHOFZ0/Lli0rTdT48MMPi4kYGvrZI6bFgkYsYN56//3388MPPyRpuP5+p06dahyDXNP4SJhXGmoMVkFdnl0L4nOuvmOaoTbq+15pQRtzWVCXexjm1ry63hoy3nXXXXdl1113zcSJE7PBBhtk0KBBWWGFFea2iCzk5tdctZYtWxaTMN91111ZbbXVcuqpp+Zf//qXhJnMM/oPLAwK85umTZtWYXGI8vObWrZsmU033bTC5+X/vcQSS2SdddapdO65mbe4oJFkpsSVX723KoXJR9WtpFCTjz76KF26dMnpp5+e1157bY7nKASMq1PdCkYFSy21VJJZg1bLTxr88ssva1niiuY0gKbgm2++qVdWwPLnHzt2bHGAXW1/J9RF8+bN8+CDD2bttddOMmt1s9NPPz1bbLFF2rdvnx133DG33HJLjffpHXfckVGjRiVJLr/88lolPFp22WWz8847J5n1orr8QNL777+/OPitppXOoCb1rRvmt8K137FjxzmuwNtQz/2a6vzyk41nfw4U/m61KWtNA0qhNqobMFZ+sPSc7vull166yuOS5JFHHsk666yTSy+9NB9//PEcyzN7+3R+3LssHBqirTa7utw3NV2vDdWfKmT6Tf4XVPn000/zwQcfpKysrLi9EKwp7DN9+vRi0Ka6LL/XXnttNthgg1x//fW1Glg4p75nTa677rp8++23SZLbb7+9mNgAGkNDxzNqGwOaMWNGhc+/+eabYl+u/GrXtdXYcRkoDHwfMmRIPvroowrbColnllxyyWy77bbFzxsinlf+pe2c+kI1bZ8f98jQoUOz1lpr5bzzzss777wzx4m/c1N3zkmhzTKn9kryv7Z+TUmoGjPeDfWJQzX0NT479SyNqfxL7Lq2AydNmpRddtklhxxySAYOHDjHumRO22uaZAgNrTBxtSYzZ87MkUcemV69euXhhx+e40ClxmxP1Ubhfq5Pn6421lprrdx6663p0KFDpk2bloceeijHHXdcunTpkiWXXDKHHHJIBg0aVOfzln+vMzdt7vK0F2lM9WkvNnR7rjZ15q233prNNtssSfLmm2/mnHPOyTbbbJP27dtnyy23zBVXXJFJkyZVOk7/jR+Thh5HMLcx0iRp1apVDj744CSzxt98//33xW0vvfRS/vOf/ySpevzM3LTN50S/knmlNmNW6lM3NNRYgtpq6O+bU93dEG35I488MsmsCbPlF/oov0Dc7rvvXqksnj0sTMQC5q352d9P9DGYfxq6/qvNs6su+87r51x9xzRDbdT3vdKCNuayoC73O8yteXW9NWSf87LLLsuUKVPSsmXL3Hfffea00CDm51y1Sy+9NL17904yK1HB+eefn1122SWLL754Ntpoo5x//vkZP358g34nlKf/wMJgww03LC6uUJi7NGXKlLzwwgtJ/jd3afb5TUny7LPPJqk4R6pgbuctLmiaze8C8ON1yCGH5MMPP0xZWVkOP/zw7L///ll77bWzxBJLpEWLFikrK8uMGTOKE3TnNJmhPqvAJP+rGH76059mwIABtT5uueWWq9P5k1kv5H71q1/V6rgWLVpU+Xl9fyfMyTrrrJPXX389Dz74YB588ME899xzee+99/LDDz/ksccey2OPPZYLL7ww//rXv6rsDO2www55/vnn8/333+eEE07IuuuuW2WmtdkdeeSRefDBB/PBBx/kueeeK1aehZVQll9++Wy//fYN+2NZaPzYn5k/9vJDQ5tT4pak/vfNmDFjcuCBB2bixIlp27ZtTjnllOywww5ZddVV065du2Lb7Omnn84222yTpPr2qXuXxjC3bbWazM01W76/M2zYsDRv3rxWxy2//PIV/nvppZfOmmuumbfffjsDBw7MscceWwyurLPOOsWXOj169Mj1119fDMKMGDGimNSlqiDMf//73xx77LGZNm1allxyyfz2t7/N1ltvnZVXXjmLLrposbzXXXddjjjiiCRz7nvWZLfddstDDz2U6dOnFydLLoiDsigNhfuvU6dOeeaZZ2p9XOfOnRurSPXS2HEZOOigg3L22Wdn5syZufXWW3PaaaclmTX457HHHkuS7LfffmnW7H+h7oaO582N8mV58MEHs/LKK9fquLq2BwqmTJmSfffdN19//XWaN2+eE088MbvttlvWWGONdOjQIS1btkySfPDBB8VkanNTd9aWNjY/BnNznTbWNV7+GfLHP/4x++yzT62Oa9OmTaOUBwrOPffcPPLII0lm9eWOP/74bLDBBll66aWzyCKLFAd4bLnllhk0aNAc65raxIygodTmervuuuty7bXXJknWX3/9nHTSSdlkk02y3HLLpXXr1sVzHHroobnpppvmSXtqfttrr72y7bbb5vbbb89jjz2WQYMG5auvvsqYMWMyYMCADBgwIIcddliuu+66CoO8oJTUp83X0HGT2jzDlltuuQwZMiRPPfVU7rnnnjz77LN58803M3Xq1AwaNCiDBg3KBRdckH/9619ZY401Kh2v/8aPwYJ6nR555JG55JJLMmHChNx111057LDDkvxv/MwiiyySAw44YJ6WaV7HpqAxzet7vyG+b170d3v37p2llloqX3zxRa6//vpsueWWSZL77ruvOAlqXi8QJ6bFgkYsAJgXGmoMVkFd2hGecyxsGqKdvSCMuSzwnox56cd4ve2555655557Mnny5Oy333557LHHsuiii87vYvEjNz9jzIsttlgeeOCBvPTSS7njjjsycODAjBgxItOnT88rr7ySV155JRdccEHuu+++4qIC0JD0H1gYNGvWLJtvvnkee+yx4tyll19+OT/88EPatWuXrl27JvnfHKbnnnsuM2bMyDfffJM333yzwraChpy3uKCQZGYBVN3K0rMrv+LJvPbf//63uNr86aefnj/96U9V7leXFSG++OKLrLDCCjVuT2Y14spnnl188cWTJBMmTMh6661X6++rrY4dOxb/PXPmzHp9R/nsboXfUZ05bYeaNG3aNLvvvnt23333JMno0aPz6KOP5rLLLsvQoUMzdOjQHHPMMbn33nsrHbvpppvmtNNOy84775wvv/wy22yzTQYOHJg111yzxu/cZZddsswyy2T06NG5/vrr06NHj3z22Wd5/PHHkySHHXaYwaTUW33rhrKyssycOXO+1aWFsnz99deZPn16jR2w+f3cL5T1m2++mWNZv/rqq3lVLBYy5dtbc7rvP//88yqPu+uuuzJu3Lgkyb333pttt922yuNrap/+mO5dfpzmpq02u/L13tz0MQr9qWTWClHVvcisjR49euTtt98uJpcpBGMK2X3L//u1117LN998U9ynSZMm6d69e6Vz9u/fP9OmTUvTpk3z7LPPZq211qryu+u7GuHsdt999+y///45+OCD884772TrrbfOwIEDa1yZBOqrcP999913WXvttefbC9yOHTumSZMmmTFjRkaPHl3n4xs7LgNrrLFGunXrlldeeSW33HJLMcnMXXfdlSlTpiSZlYimvIaO582pL1TT9vJ1bfv27Rv9Pnn66afzwQcfJEn69etXXMV2dg1Vd85Jx44dM3r06Fq1nwtt/fL//8G8VJ84VOF6baxrvPwzpHnz5upaGlSnTp2K/x49enS1/a3ZzZw5M9dcc02SpHv37nn66aerfQcwr+obaGhXX311kmS11VbLkCFDssgii1S534JyjRfu5/r06eqiXbt2Ofroo3P00UcnSd56663cf//9ueSSSzJq1KjccMMN6dq1a62TPJaPb3311VdVJrsovx3mt/q0F+dn3GSbbbYpDl77+uuv8+STT+aqq67K008/nffffz/77bdfhg8fXty/sdu20JDqO46gOnMbIy34yU9+ko022igvv/xyrr/++hx22GGZNGlSbrvttiSzJsS0a9eu0nH1bZvXxryOTUFDm30sQU2qG0swN99Xn7ELddEQbfnmzZvn0EMPzfnnn58777wzl1xySdq2bVtMcLXiiitWOX5i9mdPQxLT4sdILKDhzN7fr4n+PqWkIcdgNYYf23MOGsOCOOYSFkTl3/3WNB+nprk4DRnvOvHEE7Ppppvm1FNPzQsvvJCdd945jzzySNq2bVvvc8KCMFdt4403zsYbb5xk1jjigQMHpn///rnnnnvy5ZdfZq+99sr7779fbbsNGpP+A6WgR48eeeyxxzJ06NBMmDChOHdpiy22KM7b2HTTTdOqVauMHTs2r732Wt5///1iYpjy86CShpm3uKAx638BVMimWLjYqvPOO+/Mg9JU7T//+U/x3/vtt1+1+73yyiu1PufLL79cq+2rr756hVWFCxmjPvjggwov7hpKixYtsu666yZJBg8eXK9ztGrVKquvvnqS2v9OaAjLLLNMDj/88LzwwgvZYIMNkiQPPfRQfvjhhyr379GjRx588MEsssgi+fzzz7PVVlvl3XffrfE7mjZtmj59+iSZVVFOmDAhN9xwQ2bMmJGysrIcfvjhDfqbWLjUt24o1KWFFXmqMnPmzLz33nsNUMrKunTpkmTWCvKvvvpqtftNmzYtI0aMaJQy1Fahjps8eXKF+n1206dPn+9lpXSVH1D073//u8Z9X3rppSRJ69ats8oqqxQ/L1y/HTt2rLajltTcPv0x3buUhrq21cpbddVVi8G6ueljFPpTSf37OwWFIMrnn3+e//73v8VkM+WDKyuttFJWXnnlzJw5M88991xxn/XXX7/KgdWFe/unP/1pjS+Z6tL3nJP9998/N9xwQ5o0aZL//ve/2XrrrfPll1822PmhoHD/TZ48uUGv4boqP7h30KBBdc6Y3dhxGUj+l0TmjTfeyGuvvZYkufnmm5PMqhM32WSTCvs3VDxv1VVXTZIMHTq0xn1ruocbqq6t7eopDRW3bajVWgrPl2HDhmXatGnV7vfll1/m448/rnAMzGv1iUMVrtcPP/ywxsHwU6dOLU7grcs1vsoqqxTbyXPbXofZFfqhyazVWGrrm2++Kbb79tlnn2oTzEyYMCFvv/323BUS5qCxVpgrtKl23XXXagdLzZw5M8OGDWuU76+rwv08cuTIYptqXlh77bXzf//3f3nxxRfTpk2bJMkdd9xR6+MLbfZk7trcMK/Up724oMRNFl988ey333556qmnsuuuuyZJRowYUWEsQGO3baEh1XccQXXmNkZaXiHh73PPPZcPPvgg99xzT3EM4M9//vMqj6lv27w2GvI9EMwP9RlLMPtxSe37Dg0xdqEuGqotX3j2fP/997nzzjvz6aef5oknnkhS/QJxnTt3LiZbb+hnj5gWjUksYJb5FQuojVVXXTWtWrVKsuD09xvrumHhUZtraEFve//YnnPQGBbEMZcwtxqjnVOYi5PUPB+npnmtDR3v+u1vf5s///nPSZLnn38+u+yySyZOnDjX52XhtaDNVVt00UXTu3fv3H333fnlL3+ZZFaCpueff75O52Hh1Bh1gf4DpaAwj2natGl5/vnnq5zf1LJly2y66aZJZi2yXdinU6dOFca0JA0zb3FBI8nMAqhz585JZmWgq27w5ZQpU3L33XfPy2JVUH5CQE2Z9a644opan/OGG26odtvLL7+cN954I0kq3XyFATAzZ87MRRddVOvvq4vCd/z3v//NY489Vq9zFMr9+uuvV1gNanbXXXddvc4PNWnevHl69OiRZNb9W1MSq6233jr3339/WrVqldGjR2errbbK+++/X+P5jzjiiJSVleX777/P7bffnv79+ydJttxyy+KELKiP+tYNhbq0pkbZI488MseEbvVVvjw1/YZ77723xuDCvFBYwTBJbrrppmr3e/jhh/P111/PiyKxEOrZs2cxC2hNbaGRI0cWB0KVPyb5X/t00qRJ1WaGnjhxYo3X+Y/p3qW01KWtVtCsWbNicOPxxx+vdnWqGTNm1Hg9b7vttmndunWS5OKLL56rgdOF35Akt9xyS959992UlZVV+Dz5X1Dm6aefzqBBgyp8NrvCvV1Tv3P06NF54IEH6l3uqhx00EG5/vrr06RJk7z55pvZZpttMmbMmAb9Dujdu3cxsP/Pf/5zvpclmTWJ6P7776/TsfMiLgP7779/se13880359NPPy3WIYUENLNriHheob80fPjwGpNy3njjjdVu22CDDYqrVl111VWZNGlSvcpSGIybzEpOVZ3axG1nzJhRXGlibr9vTgpt7HHjxuWee+6pdr9rr7222A6p6eULNKb6xKEK/545c2Zxdeiq3HXXXRk/fnyl4+ekadOm2XnnnZPMave/9dZbtT4W5uSnP/1pcWWua665JhMmTKjVcbV9R3jNNdfUmGAMGkJDtVlmV5t4xP3337/ArBZe6NMlyT/+8Y95/v0rrLBC1lhjjSSpU/ykW7duxYmnAwYMqHa/L774ot5temhI9WkvLohxk/LvBsvfs43dtoWGVN9xBDWZmxhpeQcccEDatGmTmTNnpn///sX7qXPnztlqq62qPKa+bfPaaKjYFMwvyy67bNZee+0ksxIaVnd/TJ8+vTherUOHDhUmsyW17zs0xNiFumiotvwaa6yR7t27J0muv/76Wi0Q16RJk+yyyy5JkmeffbbGMa11JaZFYxILmGV+xwJq0qxZs2y55ZZJkkcffbTaJJYzZ86scRxXQypcNw15zbBwqc2zpyHHYDWGH9tzDhrDgjjmEuZWY7SPV1555eK/a5qPc+utt1a7rTHiXaeddlrOOeecJLMS1/Tq1atWi3pCVRbkuWrVvceB6jRGXaD/QCno1q1bccGkJ554IkOGDElSee5S4b8HDhyYgQMHJpk1L372BE4NMW9xQSPJzAKo/AS8v//971Xu8+tf/zqfffbZvCpSJauvvnrx34WXc7O7/PLL6/TS/YEHHqhyZbMJEybkmGOOSTLrxVbh3wXbb799Nt544yTJ+eefP8fV0V5//fU8+OCDtS5XkvzqV79K27ZtkySHH354jZNKklkT8QurKhccc8wxxYfK0UcfXWUFe/PNN+df//pXncoGyayVlGrKcjllypRiFrW2bdtmiSWWqPF82223Xe677760bNkyn332Wbbaaqt88MEH1e6/6qqrFivTvn37Flc8q24VJqit+tYNhbr03//+d5UZwj///POceOKJjVDiWTbeeOPigJXLL7+8yuyxo0ePzimnnNJoZaitzTbbLD/5yU+SJJdcckmVKzF99dVXOfnkk+d10ViILLvsstljjz2SzAqqVRW0mzJlSn7+859n6tSpSZITTjihwvZC+3TixIlVPjemT5+eI488MqNGjaq2HD+me5cfl4ZuqxUcd9xxSWYFA4855phMnz690j7nnXdeXn/99WrP0b59++L9NGTIkJx88snVBjySWZN6rrnmmiq3LbvsssV78eKLL06SrLPOOpV+T6GevvHGG4tB9NkT0RQUzvfuu+8WgzrlTZw4MQceeGCjvCg69NBDc80116SsrCxvvPFGttlmGwnXaFBrrrlm9tlnnyTJbbfdlgsvvLDG/T/88MMaX8zOjRNOOKEYRD3mmGOKL8iq8umnn1b473kRl4Gll146W2+9dZJZAxRuueWW4iCd6pLMNEQ87+ijjy7G84466qgq65u777479957b7XnbdKkSU4//fQks1auP/TQQ2t8kfftt9/m0ksvrfT5MsssU/x3TcmAaxO3Pe200+a4gkRtv29ODj/88OLgqt/85jdVxrRfffXV4mpDyy23XHbfffd6fx/MjfrEoXbfffcsu+yySZJzzz23yrb3J598UuxHtm7dutqJPdU57bTT0rRp08yYMSN77713pbq4vOnTpxeTccGcNGnSJL/97W+TzGrjHXrooZkyZUqV+86YMaMYU1liiSWKK53feuutVdZrL7/8cv7whz80TsGhnIZqs8yu0KZ68MEH880331Ta/v777+f4449vsO+bW9tuu2023HDDJLPi/Lfddlu1+3799dd1jqPcd999NQ6E/OSTT/Lf//43yf8GVtZGq1atcuihhyaZ9dyoKgHHjBkzcswxx5gQzwKhPu3FeR03GTFiREaMGFHt9pkzZ+bJJ59MMmtVw/KTBeZF2xYaSn3HEdRkbmKk5S266KLZd999kyRXXnllnn766SRJnz59ql1NtL5t89poqNgUzE+FtvdXX31VXMl5dmeddVbefPPNJLNiuS1btqywvbZ9h4YYu1AXDdmWP/LII5PMejd9ySWXJJk1OL6mNvopp5ySJk2aZObMmdl///1rfL7VNd4kpkVjEQuYpbFjAXOr0A774Ycfcuyxx1Y5DuXCCy+cZyueF66bhrxmWLjU5tnTkGOwGsOP7TkHjWVBG3MJc6sx2scdOnQozi+5/vrrq6w3nn/++RoTqzdWvKtv374544wzkiTPPPNMevfu7R0S9TK/5qp98MEHxTkD1Xn88ceL/67Lu1cWXo1RF+g/UAqaN2+en/3sZ0lmLYT5/fffp127dunatWuF/QrP9qeffrr4frCq+U0NMW9xQSPJzAKoa9eu2WyzzZIkV199dfr06ZNnnnkmw4YNy+23355tttkml112WfHinl9lXG+99ZLMeiG+33775aGHHsrQoUNz//33Z5999skvfvGLbL755rU+Z7du3XLggQfm+OOPzzPPPJOhQ4fm+uuvT7du3YqrJBx//PHFjkp5t9xySzp27Jjp06dnv/32y6677pqbb745L730UoYOHZpHHnkkf/7zn4sT6efUGJvdUkstlRtuuCFlZWUZPXp0unXrluOOOy4PPPBAhg0bln//+9+5++6787vf/S6rrrpqevXqlZEjR1Y4x09/+tNixfnKK6+kW7du6d+/f4YOHZqnn346xx13XA499NB069atTmWDJHnqqaey5pprpmfPnjn//PPz2GOPZdiwYRk8eHCuv/76dO/evfgy5ogjjkizZs3meM4ddtgh99xzT1q0aJFPPvkkW2+9dT7++ONq9y+8qP7888+TJIsttlj23nvvBvh1LMzqWzccffTRadasWWbOnJnevXvnn//8Z1555ZUMGTIk559/frp27Zrx48dXmHzX0Pr165dmzZpl6tSp2W677XL66afn+eefz8svv5xLL700G264YUaPHp2f/vSnjVaG2rrsssvSpEmTTJ48OVtvvXX+8Ic/FMt6+eWXZ8MNN8wnn3yS9ddfP0mqHfwGc+Mf//hHOnTokGRWkrKjjjoqTz75ZIYOHZqbb745m2yySZ566qkkyb777puddtqpwvH77rtvcaDY4Ycfnv/7v//LU089lVdeeSU33HBDNtlkk9x6661zbJ/+mO5dfjwao62WzFqZqrA61YMPPpjNN988t99+e4YNG5ZHH300+++/f/r27TvHPsbZZ5+dTTbZJEly0UUXZYMNNshll12WwYMHZ8SIEXnmmWdy6aWXZvfdd8+KK66YK664otpzFYIphZVsZ8/yW/6zwj5NmjQprmI1u0MOOSTJrJdIu+yyS/785z/nueeey0svvZTLL78866+/fgYOHFinvmddHH744bnyyitTVlaW1157Ldttt13Gjh3bKN/Fwunyyy/PKquskmRW8oUePXrk2muvzYsvvpjhw4fnySefzN///vdst912WW211XL33Xc3SjmWXnrpXH755UmSL7/8MhtvvHF+9atf5dFHH82IESPy/PPP54orrsjOO+9cZdC0seMykPwvmcwnn3yS8847L8msPuMaa6xR5f4NEc/bcMMNc9RRRyVJXnjhhWy00Ua54YYbMnTo0DzzzDM58cQTs99++xUnDCZV95eOPfbY4sSEO++8M+uuu27OP//8PPvssxkxYkSee+65XHXVVTnwwAOz7LLL5swzz6x0jq5duxZXnPjDH/6QJ554Iu+8807ee++9vPfee8XBwTvssEOWXHLJJLMGVhx77LF57LHHMnTo0Nx+++3Zdttt87e//W2OdWf52PPJJ5+c5557Lu+++27x+woZ+edkiSWWyPnnn59k1qCRDTfcMP/85z/z0ksvZciQITn77LOzxRZbZMKECSkrK8tVV12V5s2b1+rc0NDqE4dq0aJFrrrqqpSVleXbb7/N5ptvnnPOOSdDhgzJv//97/zjH/9It27dii8OL7jggnTq1KlO5erSpUsuuOCCJMmbb76Z9dZbL6eeemoeffTRDB8+PC+88EJuvfXW/PKXv8wKK6yQgw8+eK5WRGLhcvzxx2e77bZLktx7773p0qVLLrroogwePDjDhw/PI488kjPOOCNrrbVWrrrqqiSz+nCFevm1117LFltskVtvvTWvvPJKnnrqqfzmN7/JlltumVatWlVbT0NDqW0bqa4KiU9GjRqVzTbbLNddd11eeumlPPfccznzzDOz4YYb5ptvvikmrF4Q3HTTTWnbtm1mzJiRAw44IHvttVfuvPPODB06NC+99FJuueWW9OnTJyuttFK++OKLOp37n//8Z5Zbbrnsu+++ueKKK4rt2GeeeSbnn39+Nt988+Lf+thjj63Tuc8888wsvfTSSZKTTjophx56aDF2dscdd6R79+65//7759jmhnmhvu8t52XcZMSIEenatWs23njjnHPOOXn44YczdOjQvPjii7n11luzww47FJPY7LrrrhUGnc6Lti00lLkZY1aduY2RllcYP/Pll19mxowZadKkSfr06VPjMfVpm9dWQ8SmYH469thji+Npr7/++myzzTa5++67M2zYsDz88MPZa6+9iiuZr7rqqlUmPa1L32Fuxy7UVUO15ffZZ5+0a9cuSYr7zWmBuPXXXz9nnXVWkuSdd95Jly5d0rdv3zz11FMZMWJEBg4cmH/+85/Zcssti+9ta0tMi8YiFvA/jRkLmFt77rlntt9++yTJPffcky233DJ33HFHhg0blsceeyyHHHJITjnllHnW3y+893r55Zfzl7/8Ja+++mrxmpmfi/7y41HbZ09DjsFqaD/G5xw0hgVxzCXMjcZqHxfmP37xxRfp3r17brvttgwfPjxPPfVUfv3rX2fbbbed433SWPGuM888M3379k0ya3z2brvtVmNSZajK/JqrNnLkyPTs2TPrrrtu+vbtm/vuuy8vv/xyXn755dxzzz3Zb7/9ctlllyWZFbcp1DVQk8aoC/QfKBWzz2/aYost0rRp0wr7bLrppmnZsmW+++674gKoVc2Daqh5iwuS2s1cY5677rrr0qNHj3z55Ze54YYbKq2IcMopp2TdddetciX3eaGsrCw33XRTtt5664wdOzZ33HFHpcxLXbp0yZ133llc6WhO7rjjjmyzzTbp169f+vXrV2n7XnvtVe2q3quuumpeeOGF7LXXXnnjjTfy4IMP1ri602KLLVarMpW355575v7770+fPn3yzTff5Iorrqi2o9+kSZPi6jblXXjhhRk1alTuueee/Pe//620qlPnzp1z++23Z9VVV61z+WDGjBl59tlnaxx0tttuuxUnYtXGzjvvnLvuuit77bVXPv7442y11VZ59tlns8IKK1Tad88990yHDh2Kk27322+/4krVUF/1rRvWXXfd/O1vf8uvf/3rjB07NieffHKF7R07dsx9992XP/zhD3n33XcbpeybbLJJbrzxxvTp0yeTJk3KeeedV+H+a9asWfr165fBgwfn1VdfbZQy1NYWW2yR6667LkcddVQmTpyYP/3pT/nTn/5U3N6sWbNcfvnlee655zJixIhi5xMa0vLLL5+nnnoqvXr1yqhRo3LNNddUmbl/zz33rHK1sOWXXz6XX355jjzyyEyaNCl//etf89e//rXCPvvtt1+OOuqobLvtttWW48d07/Lj0hhttSS5+eabs9NOO2Xw4MH597//nf3337/C9q5du+bKK68srmBVlZYtW+aJJ55Inz59cs899+TVV1+tccW9mvpTPXv2rHDvVhVcWXnllbPSSisVExj+5Cc/Sfv27as830YbbZSzzjorZ5xxRsaNG5ff//73lfb5zW9+k/XWW6/KjPAN4aijjsr06dPzi1/8IsOHD892222XJ598stoyQ1107NgxgwcPzr777ptBgwblueeey3PPPVft/vWJZ9TWIYcckhkzZuS4447LDz/8kIsvvjgXX3xxpf1WWmmlSp/Ni7gM7LnnnsXrszDQvDDBvaZj5jaed8kll2TUqFF56KGH8p///KfShKDOnTvnlltuyWqrrZYkVfaXysrKcvvtt+dXv/pVrrjiirz//vs59dRTqy13IUlMeYsuumh++ctf5m9/+1uGDRtWHJhb8Mwzz6Rnz55p06ZNbrzxxuy+++6ZNGlSrrzyylx55ZUV9u3Zs2cuvfTSYhLxqqy22mrZd999c8cdd+Txxx+vsEJKknz44YcVVryvyS9+8YuMGzcuf/jDH/LFF19U6qMns9ojV111VXbeeedanRMaQ33jULvsskuuv/76HHPMMfnuu+/yxz/+MX/84x8r7NO0adOcc845xZXx6uqkk05KmzZtctJJJ2X8+PE5//zziwmcZteiRQuxG2qtSZMmue+++3LYYYflrrvuyjvvvJOTTjppjsede+65xUGyr7zySg488MAK2zt27Ji77747f/zjH/POO+80Uumh9m2kuvrVr36VJ554Io8//njeeeedHHHEERW2L7LIIrnxxhvz8MMPz7MVt+dk7bXXzsCBA7PHHnvkk08+yT333JN77rmnwc4/ceLE3Hnnnbnzzjur3N6kSZOcddZZ2X333et03o4dO+bRRx/Ndtttl6+++io33XRTbrrppgr79OnTJ927d89LL72UpOo2N8wL9W0vzo+4SWFAcnV+9rOf5dprr630+bxo20JDmJsxZjWZmxhpeT/72c+yzjrr5M0330ySbLPNNllxxRVrPKa+bfPaaIjYFMxPTZs2zUMPPZRdd901gwcPztNPP52nn3660n5rr712HnnkkbRt27bStrr0HeZ27EJdNVRbfpFFFsmBBx5YTJjVrl277LXXXnM8rm/fvmnSpEnxfey5556bc889t9J+c0qwVRUxLRqDWMD/NHYsYG7dfvvt2WGHHfLSSy9l8ODBlcZ0dO3aNf369StOTm7MZ8Bxxx2Xyy+/PN98801OO+20nHbaacVtPXr0yMCBAxvtuykNtX32NOQYrIb2Y3zOQWNZ0MZcwtxorPbxkUcemUceeST33Xdf3nzzzRxwwAEVtnfp0iV33313hUTms2vMeNc555yTadOm5S9/+Usef/zx7Lnnnrn33nvTokWLBjk/pW9+z1V78803i/Hjqqy11lq55557LL5BrTRGXaD/QKmY/dqv6l5o1apVNt100+Jcr44dO6ZLly6V9muoeYsLkiYNfcL2nTqlRYkH+lu0apX2jbwaz1prrZVhw4bluOOOy0orrZQWLVpkiSWWyI477piHH3642hct89L666+fESNG5Nhjj81KK62U5s2bp2PHjtl4441zwQUX5KWXXqqxszC7zp07Z+jQoTn99NOz9tprp3Xr1mnXrl223HLLDBgwIHfddVeaNas+L9Iaa6yRESNG5JZbbslee+2VFVdcMYssskhatGiRZZZZJj179kzfvn0zdOjQSoNgaqt379758MMPc8EFF2TrrbfOUkstlebNm2eRRRZJ586d06tXr1x44YX56KOPstVWW1U6vnnz5rn77rtz0003pXv37mnXrl1at26dtddeO6effnqGDh1aXMF8YbJYu05p3ry0nxvNm7fKYu0a77lxyimn5O67785xxx2XTTfdNCuuuGJatWqVVq1aZeWVV86+++6bhx56KPfdd18WWWSROp27d+/eueOOO9K8efN8+OGH2WqrrfLpp59W2q9Vq1bZZ599iv89p5VQSlWHNp3SolnpXs8tmrVKhzbzbkW6uakbTj755Dz66KPZYYcd0qFDh7Rs2TKdO3fO8ccfn+HDh6d79+6NXv4DDjggw4cPzyGHHJJll102LVq0KK72+fzzz+eoo45q9DLU1mGHHZZXXnklBx10UJVlPfLII/Ptt98mSXHlo1LXqdViadW0+fwuRqNq1bR5OrVacF5cdO3aNW+//XbOO++8bLLJJmnfvn1atGiRZZddNnvuuWceeOCB3H333dUOKjj88MMzaNCg7L777lliiSXSvHnzLLPMMtlxxx1z++2357bbbquUcbQqP6Z7d17p1KZFWjVr8O7jAqVVsybp1KZxXi40Zltt0UUXzcCBA3PJJZdko402Stu2bbPoootm/fXXz3nnnZchQ4akY8eOtTrP3XffnUGDBuXII4/M/2vv7oOsrOv/j7/2jl0Wll3ggGi6zQrSkGDOAGaCGmbkjElTTiMlRpPBYDdjDtUM2JSO0d0fNQOTqYRaY1qjM5kFo6lRpE5YiTSJOiMpFD+aLzRy8w3UgP39sbVpX4hdYPfAZx8P/2F2z559X+PZc67zua7zvN7ylrekpaUl9fX1GTFiRKZOnZpPfvKTWbVqVR5++OFD3s/rTy6sqak55MmGr1+cOdyi5Re/+MWsXLkyM2fOzPDhwzNo0KCceuqp+cAHPpCf//zn3VfA60sLFizIsmXLkiS///3vM3PmzO6acanaKnUZ1FTuwYlBTTVpqxz+NaE/jBkzJmvWrMnPfvazXHnllTn99NPT3NychoaGjBo1Kuedd14WLlyYX/3qV7n99tv7dJa5c+dm48aNuf766zN58uS0tbWlrq4uw4cPz7nnnpvFixfnwQcfPOjP9se6zAmnUpOU+/awa9sq/fc80dLS0n01qaTrgwX/eaLPwRztet6gQYPywAMP5I477sj06dMPup43cuTI7tsf6v1SQ0NDbr755qxfvz6f/vSnM2nSpLS2tqauri6tra05++yzc/XVV+e+++7Ls88+e9D7+NrXvpbly5fn/PPPz4gRIw65b/ue97wnv/vd7zJnzpyccsop3c8nF154YW677bY8+uijBw3q/Ke77ror3/jGN3LOOeektbU1tbVHvj+4ePHirFu3LvPmzcvYsWMzePDgDBkyJBMmTMi1116b5557rvvqF/RCayUpfF01DU1d29kPjmYdau7cuXnuuedy7bXXZsKECRkyZEgGDx6csWPHZt68eVm3bt0bTlo/EvPmzcuf/vSn3HjjjZk2bVoqlUrq6+szZMiQjB8/PpdffnluueWWbNmypTt8VbraVFL6i23XNvat5ubm3HvvvfnFL36Rq666Kh0dHd37caeddlouu+yy3HrrrVm4cGH3z7S2tubxxx/PTTfdlEmTJqWpqSlDhw7NhAkT8tnPfjbr16/PBRdc0Oezn+hGppLGgh/DjWnKyH54DPd0H6k3GhoasnLlyixdujRTpkxJc3NzBg8enHHjxmXBggV56qmn3nBM7HgxefLkPP/881m6dGkuuuiijB49OvX19Rk6dGgmTZqU+fPn59FHH+1xLPBf7rnnntx222358Ic/nLPPPjtjxozpvt8zzzwz11xzTdatW9d91cjeetvb3pYNGzZk4cKFOeOMM9LY2JhKpZIZM2bk7rvvzh133NF9fCIZOMcojlYl9WlKuWs7SdKUmlT68dpaR7O/2F/rJh/60IeyatWqXHfddZk+fXo6OjrS3NzcvaY6a9as/OAHP8ivf/3rN7yXfb3+2LcdiCotSVPBhx2bGrq2sb8c7Tlm/83RrJG+3pw5c7r/3dPzZ45k37ynjsXaVGmaK0ldubvjSbq2r7n/TvHpUyNGjMiaNWvy/e9/P5dcckn3Ou/IkSO7o9pPP/30f41A9ea9w9Geu9Bbx2pf/qqrrur+9+zZs3t87Hnx4sXZsGFDPvOZz2TixIkZNmxY6uvru9eVv/zlL/+fGGRPWdM6iEpj0lTw+RdNtV3b2IesBfxbX60FHAttbW157LHH8q1vfSuTJ08+6Pksr/9/15fv99/0pjflySefzNVXX51x48YNrKhVQ3NSU/h1qWvqu7azj/X0uedYnYN1rJ2oz3MlqE9zagq/PnxN6lOfE+fixMfbOZcDVXMaU5/j4/y9vlKfujSnb/eNk77ZP66trc19992Xb3/725k6dWqGDBmSIUOG5KyzzsqSJUuydu3ajBkz5rD305frXV/96lfzuc99LkmyatWqXH755Xnttdd6fT8niuaaFP1qUp+ubewv1fqs2vnnn59f/vKXWbRoUWbMmJFx48alpaUlDQ0NOemkkzJz5szccsstefrpp9PR0dFXm39caR6c1Bf8clBf17WNfe1YvxZ4/1Bdtc0p+0k/Ser/uZ19bOrUqWlu/vcvOtRnl17/9QsuuOCQka9j9bnF40VNZ2dn5+Fu9Morr+TFF19MR0dHjxbV/rp5c3Zs335MBjwetVUqGXOYq4sAvbP9fzZn185ynzeGtVZSGV3+88a0adPyxBNP5K1vfWueeeaZao9TNf9vx+a8/PcyH8/Dh1RySlv5j2UObty4cdm4cWPmzJlzxCePnGg2/++2bH9l1+FveIKqNA1L+9BR1R6DE8Tml1/J9r+Xu/heGTIo7cMH0Ekk0ANbN+/Lju37qz1Gn2ir1OXk9tJXXzkubN6fbD/s8uuJqVKTtJ84C+F96bHHHus+OPzII4/kXe96V5UnYkD5n81Jweuqaa0kfbiuesMNN+TGG29MkvTgcBnHoX3ZnAMp82+gNpXUx1ps6TZnc/5W6GN4ZCpp9xjmGPn4xz+eFStW5NRTT82f//znao9zwtic17I9+6o9Rp/peqXs26uS2l/kWNq8Pdm+u9pT9I1KS9JeSMjiWLnyyitz9913Z/jw4dm6dWsaG/v+A0X03s7NyZ4yd8eTdAVmWu2SDyjLly/P/PnzkyRr167NOeecU+WJOKTNf0+2v1rtKfpGpTFpP3zoHpKuCx78K5D1wgsvZOzYsVWeqFCv7kz+safaU/SdhuakUZSY49tr2Zl9KffvsD7NGRR/h/Tezvxv9qTQ/eJ0hXRaM7TaY1CQnQeSPYUeqmiuSVoL7rHy3+3cmezZW+0p+kbz4MQ1VDgS+3YmB8p9C5Ha5qTe30af6E0Tpk8+TTOmvV2EBeiVyuj2ARFhKdnzzz+fJ554IknPr8JUqlPa2oVYKM5vf/vbbNy4MUly7rnnVnma/tM+dJQIC/xT+/AmERYYYE5urxdigaPVXhefqy3fPffck6Tr6g2TJ0+u8jQMOKPb+zTCAse7rgiLvwFOXO3//A84tL179+YnP/lJkoF1fOJYaM+gPo+wAD3XXhFiGSh27NiRH//4x0m6YjMCM8ev1nYRFspy++23J0kmTpwoMHO8ax8ixAL59zG2UaNG5fTTT6/yNAVrbBVhgSoblFYRFjiI1gwVYYFeaK2NVxOK1NoqxAL/qb41nvTpc/puABwTX//615MkTU1N+ehHP1rdYYBee+GFFw75vb/97W+ZN29ekqSxsTFXXHFFf40FAABQVdu3b8+OHTsO+f2HHnoot956a5Jk1qxZaWtr65/BAACgEBs3bkxn58Evu7h///5cc8012b59e5Jk7ty5/TkaAByRpUuXZu/ersuuLliwoMrTAAPFmjVr8pvf/CaJ5x7g+LBly5bufaKD+e53v5tVq1YlST7ykY+kpqamv0YDAAAAgAHP5agBOCJ79+7Nli1bsmfPntx///258847kyTz58/PyJEjqzsc0Gvvfve709HRkfe///0566yz0trampdffjmPP/54br755mzdujVJ8oUvfCGVikvsAQAAA8Mf//jHvO9978sHP/jBXHzxxRk7dmxqa2uzadOmPPDAA7nrrruyf//+DB48OF/5yleqPS4AAJxwbrrppjz55JOZPXt23v72t2f06NHZu3dv/vCHP2T58uV56qmnkiQXX3xxLr300ipPCwD/1759+/LSSy/l1VdfzerVq7vXiGbNmpUzzzyzytMBJdu0aVNeffXVPPPMM7nuuuuSJGPGjMnHPvaxKk8GkDz88MP5/Oc/n9mzZ+ed73xn3vzmN+fAgQPZuHFjfvSjH+X+++9Pkpx00klZtGhRdYcFAAAAgAFGZAaAI7J27drMmDHjDV877bTTcsMNN1RnIOCodHZ2ZvXq1Vm9evUhb/OJT3wiixcv7sepAAAAqm/Xrl1ZsWJFVqxYcdDvDxs2LPfee2/Gjx/fz5MBAEAZnn322XzpS1865PenTZuWH/7wh65qDsBx6S9/+UvOOOOMN3yttbU13/zmN6s0ETBQXHjhhdm0adMbvrZs2bIMHjy4ShMBvNG2bduybNmyLFu27KDfP/nkk7Ny5UoXtgQAAACAfiYyA8BRqampycknn5yLLrooS5YsyfDhw6s9EnAEvve97+WnP/1p1qxZk61bt2bbtm2pr6/PmDFjMn369MyfPz/nnXdetccEAADoV1OmTMmdd96ZBx98MOvXr8+2bduyY8eODBs2LOPGjcsll1yST33qUxk1alS1RwUAgBPSokWLMn78+DzyyCN56aWXsm3btvzjH//IyJEjM2XKlFxxxRWZPXt2amtrqz0qABzW6NGj8453vCNLlizJ2LFjqz0OMEC0tLRk4sSJuf7663PppZdWexyAJMl73/vefOc738lDDz2UDRs2ZNu2bdm9e3fa2toyYcKEXHbZZVmwYEFaWlqqPSoAAAAADDg1nZ2dnYe70SuvvJIXX3wxHR0daWpq6o+5AAAAAAAAAAAAAAAAAAAAAAA4hN40YVzqCQAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMF6FZnp7OzsqzkAAAAAAAAAAAAAAAAAAAAAAOih3rRgehSZqaurS5Ls27fvyCYCAAAAAAAAAAAAAAAAAAAAAOCY2b9/f5KktvbwCZkeRWbq6+vT2NiYnTt3Ht1kAAAAAAAAAAAAAAAAAAAAAAActd27d6ehoSENDQ2HvW2PIjM1NTVpa2vL7t278/LLLx/1gAAAAAAAAAAAAAAAAAAAAAAAHJm9e/dm165daWlpSU1NzWFvX9/TOx4+fHhee+21/PWvf82uXbsydOjQNDU1pba2tke/CAAAAAAAAAAAAAAAAAAAAACAI9PZ2Zn9+/dn9+7d2bVrVxobG1OpVHr0szWdnZ2dvfllO3fuzK5du7Jnz54cOHDgiAYGAAAAAAAAAAAAAAAAAAAAAKD3Ghoa0tLSkkqlkrq6uh79TK8jM/9y4MCB7Nu3T2gGAAAAAAAAAAAAAAAAAAAAAKAf1NbWpqGhITU1Nb36uSOOzAAAAAAAAAAAAAAAAAAAAAAAcPyrrfYAAAAAAAAAAAAAAAAAAAAAAAD0HZEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMFEZgAAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAABQMJEZAAAAAAAAAAAAAAAAAAAAAICCicwAAAAAAAAAAAAAAAAAAAAAABRMZAYAAAAAAAAAAAAAAAAAAAAAoGAiMwAAAAAAAAAAAAAAAAAAAAAABROZAQAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAEDBRGYAAAAAAAAAAAAAAAAAAAAAAAomMgMAAAAAAAAAAAAAAAAAAAAAUDCRGQAAAAAAAAAAAAAAAAAAAACAgonMAAAAAAAAAAAAAAAAAAAAAAAUTGQGAAAAAAAAAAAAAAAAAAAAAKBgIjMAAAAAAAAAAAAAAAAAAAAAAAUTmQEAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAABAwURmAAAAAAAAAAAAAAAAAAAAAAAKJjIDAAAAAAAAAAAAAAAAAAAAAFAwkRkAAAAAAAAAAAAAAAAAAAAAgIKJzAAAAAAAAAAAAAAAAAAAAAAAFExkBgAAAAAAAAAAAAAAAAAAAACgYCIzAAAAAAAAAAAAAAAAAAAAAAAFE5kBAAAAAAAAAAAAAAAAAAAAACiYyAwAAAAAAAAAAAAAAAAAAAAAQMH+P+wrG1k9L7y3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wURfqHn568OSdyzgiKIogKRlTUM6CcCVDMmM5053lmT08977jTM53Zw58K5iwq5gQqiATJmQ2wbN6dWL8/Zmfo6amemYVdmN2th88yM9VVb73f7pmqt6q7qzUhhEChUCgUCoVCoVAoFAqFQqFQYNnXDigUCoVCoVAoFAqFQqFQKBTJgposUygUCoVCoVAoFAqFQqFQKJpRk2UKhUKhUCgUCoVCoVAoFApFM2qyTKFQKBQKhUKhUCgUCoVCoWhGTZYpFAqFQqFQKBQKhUKhUCgUzajJMoVCoVAoFAqFQqFQKBQKhaIZNVmmUCgUCoVCoVAoFAqFQqFQNKMmyxQKhUKhUCgUCoVCoVAoFIpm1GSZQqFQKBQKhUKhUCgUCoVC0YyaLFN0Cm6//XY0TdvXbuw1JkyYwLBhw1rVZq9evZg+fXqr2lQoFIp9jaZp3H777fvajbhMnz6dXr16RaS1tu8TJkxgwoQJrWYvGenVqxcnnnhiq9n77LPP0DSNuXPnxs2byDF89tln0TSN9evXJ1z3Z5991jKnFQqFop3RkraxI7Np0yZcLhdff/11OE3Wt7QXZP3Y73//e84888x955QONVmmaLesW7eOK664ggEDBpCamkpqaipDhgxh5syZ/PLLL/vavRajaRpXXHHFvnZDoVC0Ux555BE0TePggw/e1650ONavX4+maeE/q9VKjx49OPXUU1m0aNG+dq9FLFu2jNtvvz2pBhyhYDn0Z7fb6dOnD1OnTmXt2rX72r19ziOPPMKzzz67r91QdCBCEw8LFy7c1660KY8++ihnnHEGPXr0QNM005O+EyZMiGiDjO3R7lJXV8dtt93GsGHDSEtLIy8vj5EjR3L11VezdevW3babrDQ0NHD77bfv0wn80AUSZn+lpaX7zLfW4M477+Tggw9m3LhxbVaHsU+2Wq0UFhYyefJkli9f3mb1hvjjH//Iq6++yuLFi9u8rnjY9rUDCsXu8M477zBlyhRsNhvnnHMOI0aMwGKxsGLFCl577TUeffRR1q1bR8+ePQH4y1/+wp/+9Kd97LVCoVC0HbNnz6ZXr1788MMPrF69mn79+u1rlzocZ511FieccAJ+v5/ly5fz6KOP8v777/Pdd98xcuTIve5PY2MjNlvLQrlly5Zxxx13MGHChKgz0R999FEretdyrrrqKg466CC8Xi8//fQTTzzxBO+++y5LliyhS5cu+9S31uC///0vgUAgZp7zzjuP3//+9zidznDaI488Qn5+ftRA//DDD6exsRGHw9EW7ioU7Z777ruP2tpaRo8ezbZt20zz3XzzzVx44YURafX19Vx66aUce+yxu1W31+vl8MMPZ8WKFUybNo0rr7ySuro6li5dyosvvsipp57aIdo1PQ0NDdxxxx0A+/wq5UcffZT09PSo9Ozs7L3vTCtRUVHBc889x3PPPReRnkjfsjvo++RffvmFxx57jM8++4xff/2V4uLiVq8vxP7778+BBx7Igw8+yPPPP99m9SSCmixTtDvWrFnD73//e3r27Mknn3xCSUlJxPb77ruPRx55BItl14WTNputxQMKhUKhaC+sW7eOb775htdee41LLrmE2bNnc9ttt8Ut5/P5CAQCarCdIAcccADnnntu+PO4ceM4+eSTefTRR3n88celZerr60lLS2sTf1wuV6va29ffg8MOO4zJkycDcP755zNgwACuuuoqnnvuOW666SZpmbbcv61NIleoWK1WrFZrQvYsFkurfwcUio7E559/Hr6qTDZxEuKYY46JSvvf//4HwDnnnLNbdb/xxhv8/PPPzJ49m7PPPjtiW1NTEx6PZ7fsKhJj8uTJ5Ofnt6hMU1MTDocjYgwZYk/7mkAggMfj2aM2+3//+x82m42TTjopIn1Prn6Mhb5PBhg4cCCXXXYZzz//PDfeeGOb1BnizDPP5LbbbuORRx6J+dtta9RtmIp2x/333099fT3PPPNM1EQZBCfGrrrqKrp37x5OM65ZNmzYMI444oiosoFAgK5du0Y0DIFAgFmzZjF06FBcLhdFRUVccskl7Ny5M6JsaB2Ur776itGjR+NyuejTp0+rzoi/+eabTJo0iS5duuB0Ounbty933XUXfr9fmv/HH3/kkEMOISUlhd69e/PYY49F5XG73dx2223069cPp9NJ9+7dufHGG3G73TF98Xq93HHHHfTv3x+Xy0VeXh6HHnoo8+bNaxWtCoUicWbPnk1OTg6TJk1i8uTJzJ49OypP6FbCv//978yaNYu+ffvidDpZtmwZELzs/sADD8TlctG3b18ef/xx6XqPoVvG58yZw5AhQ0hJSWHs2LEsWbIEgMcff5x+/frhcrmYMGFC1O1+X375Zfi2mFCb84c//IHGxsZwnvLycgoKCpgwYQJCiHD66tWrSUtLY8qUKeG0RNswt9vNH/7wBwoKCsjIyODkk09m8+bNu7fDmznyyCOB4GQl7Lq16fPPP+fyyy+nsLCQbt26hfO///77HHbYYaSlpZGRkcGkSZNYunRplN033niDYcOG4XK5GDZsGK+//rq0ftmaZVu2bGHGjBnhfqJ3795cdtlleDwenn32Wc444wwAjjjiiPAtFqFbZmRrlpWXlzNjxgyKiopwuVyMGDEi6qy2/rv1xBNPhL9bBx10EAsWLEh4fxox7t/Q93HZsmWcffbZ5OTkcOihhwLBid+77rorXHevXr3485//bNqXffTRR4wcORKXy8WQIUN47bXXIrZXVlZy/fXXM3z4cNLT08nMzOT44483vS3E7/fz5z//meLiYtLS0jj55JPZtGlTRJ5E1pUxrsvTq1cvli5dyueffx4+XqFjZLZm2ffff89xxx1HVlYWqampjB8/PmJ9G4Da2lquueYaevXqhdPppLCwkGOOOYaffvoppn+Kjsv06dNJT09n48aNnHjiiaSnp9O1a1f+85//ALBkyRKOPPJI0tLS6NmzJy+++GJE+Zb8ZjZs2MDJJ59MWloahYWF/OEPf+DDDz/c7e+zGT179tztNYtffPFF0tLS+N3vfheRvm3bNlasWIHX641Zfs2aNQDS2+VcLheZmZnhz2brRcrajB07dnDeeeeRmZlJdnY206ZNY/HixWiaFnW7dqif1vclMpuJjnUWLlzIxIkTyc/PD48tLrjgAiDYDxQUFABwxx13hNsrfR+1YsUKJk+eTG5uLi6XiwMPPJC33norSvfSpUs58sgjSUlJoVu3btx9992tfuVUqP186aWX+Mtf/kLXrl1JTU2lpqYm/FtYs2YNJ5xwAhkZGeFJ0/r6eq677jq6d++O0+lk4MCB/P3vf4+IVWBXrDR79myGDh2K0+nkgw8+AOCll15i1KhRZGRkkJmZyfDhw/nXv/4V1+c33niDgw8+OGryyHhM26pPPuyww4Bd3+0QW7Zs4YILLqCoqAin08nQoUN5+umno8pv3ryZU045JeJ3b9ZHH3PMMdTX1+/zcaW61EbR7njnnXfo16/fHq3LM2XKFG6//XZKS0sjLiP96quv2Lp1K7///e/DaZdccgnPPvss559/PldddRXr1q3j4Ycf5ueff+brr7+OmM1fvXo1kydPZsaMGUybNo2nn36a6dOnM2rUKIYOHbrb/oZ49tlnSU9P59prryU9PZ1PP/2UW2+9lZqaGh544IGIvDt37uSEE07gzDPP5KyzzuKVV17hsssuw+FwhDu2QCDAySefzFdffcXFF1/M4MGDWbJkCf/85z9ZuXIlb7zxhqkvt99+O/feey8XXngho0ePpqamhoULF/LTTz9Jz9ApFIq2Y/bs2Zx22mk4HA7OOussHn30URYsWMBBBx0UlfeZZ56hqamJiy++GKfTSW5uLj///DPHHXccJSUl3HHHHfj9fu68885w4Gvkyy+/5K233mLmzJkA3HvvvZx44onceOONPPLII1x++eXs3LmT+++/nwsuuIBPP/00XHbOnDk0NDRw2WWXkZeXxw8//MBDDz3E5s2bmTNnDgCFhYXhtWYeeughrrrqKgKBANOnTycjI4NHHnkEaFkbduGFF/K///2Ps88+m0MOOYRPP/2USZMm7dF+DwWMeXl5EemXX345BQUF3HrrrdTX1wPwwgsvMG3aNCZOnMh9991HQ0MDjz76KIceeig///xzOND96KOPOP300xkyZAj33nsvO3bs4Pzzz4+YdDNj69atjB49mqqqKi6++GIGDRrEli1bmDt3Lg0NDRx++OFcddVV/Pvf/+bPf/4zgwcPBgi/GmlsbGTChAmsXr2aK664gt69ezNnzhymT59OVVUVV199dUT+F198kdraWi655BI0TeP+++/ntNNOY+3atbt15tts/55xxhn079+fe+65JzxAufDCC3nuueeYPHky1113Hd9//z333nsvy5cvj5psXLVqFVOmTOHSSy9l2rRpPPPMM5xxxhl88MEH4f5r7dq1vPHGG5xxxhn07t2bsrIyHn/8ccaPH8+yZcuibp/661//iqZp/PGPf6S8vJxZs2Zx9NFHs2jRIlJSUlqsPcSsWbO48sorSU9P5+abbwagqKjINP+nn37K8ccfz6hRo7jtttuwWCw888wzHHnkkXz55ZeMHj0agEsvvZS5c+dyxRVXMGTIEHbs2MFXX33F8uXLOeCAA3bbX0X7xu/3c/zxx3P44Ydz//33M3v2bK644grS0tK4+eabOeecczjttNN47LHHmDp1KmPHjqV3795A4r+Z+vp6jjzySLZt28bVV19NcXExL774IvPnz4/yJ9Hvc2tTUVHBvHnzmDJlStTVRDfddBPPPfcc69atizn5HVoK5vnnn+cvf/lLqzxoLBAIcNJJJ/HDDz9w2WWXMWjQIN58802mTZsWlffdd99lypQpDB8+nHvvvZedO3cyY8YMunbtGpU3kbFOeXk5xx57LAUFBfzpT38iOzub9evXh080FBQU8Oijj3LZZZdx6qmnctpppwGw3377AcEJsHHjxtG1a1f+9Kc/kZaWxiuvvMIpp5zCq6++yqmnngpAaWkpRxxxBD6fL5zviSeeaHE7WllZGZVms9mibsO86667cDgcXH/99bjd7vAV1j6fj4kTJ3LooYfy97//ndTUVIQQnHzyycyfP58ZM2YwcuRIPvzwQ2644Qa2bNnCP//5zwjbn376Ka+88gpXXHEF+fn59OrVi3nz5nHWWWdx1FFHcd999wGwfPlyvv7666g+VY/X62XBggVcdtllCe+D1u6TQydxcnJywmllZWWMGTMmPDlYUFDA+++/z4wZM6ipqeGaa64BgvHEUUcdxcaNG7nqqqvo0qULL7zwQkR8qCd0Mvbrr78Ofzf2CUKhaEdUV1cLQJxyyilR23bu3CkqKirCfw0NDeFtt912m9B/3X/77TcBiIceeijCxuWXXy7S09PDZb/88ksBiNmzZ0fk++CDD6LSe/bsKQDxxRdfhNPKy8uF0+kU1113XVxtgJg5c2bMPHpNIS655BKRmpoqmpqawmnjx48XgHjwwQfDaW63W4wcOVIUFhYKj8cjhBDihRdeEBaLRXz55ZcRNh977DEBiK+//jpC37Rp08KfR4wYISZNmhRXl0KhaFsWLlwoADFv3jwhhBCBQEB069ZNXH311RH51q1bJwCRmZkpysvLI7addNJJIjU1VWzZsiWctmrVKmGz2YQxVACE0+kU69atC6c9/vjjAhDFxcWipqYmnH7TTTcJICKvrB279957haZpYsOGDRHpZ511lkhNTRUrV64UDzzwgADEG2+8Ed6eaBu2aNEiAYjLL788It/ZZ58tAHHbbbdF+aQntO/uuOMOUVFRIUpLS8Vnn30m9t9/fwGIV199VQghxDPPPCMAceihhwqfzxcuX1tbK7Kzs8VFF10UYbe0tFRkZWVFpI8cOVKUlJSIqqqqcNpHH30kANGzZ8+I8kbfp06dKiwWi1iwYEGUhkAgIIQQYs6cOQIQ8+fPj8ozfvx4MX78+PDnWbNmCUD873//C6d5PB4xduxYkZ6eHj7Wof2Tl5cnKisrw3nffPNNAYi33347qi498+fPF4B4+umnRUVFhdi6dat49913Ra9evYSmaWE9ob78rLPOiigfOr4XXnhhRPr1118vAPHpp5+G00J9deiYCRGMLUpKSsT+++8fTmtqahJ+vz/C3rp164TT6RR33nlnlO9du3aN+O6/8sorAhD/+te/wmnTpk2LewxD3yH9b2bo0KERx8VYd+hYBgIB0b9/fzFx4sTw8RYi+Jvr3bu3OOaYY8JpWVlZcWMORccl9D3TtxXTpk0TgLjnnnvCaTt37hQpKSlC0zTx0ksvhdNXrFgR9d1N9Dfz4IMPRrXljY2NYtCgQbv9fU6EtLS0iDg2Fg899JAAxHvvvRe1LbSf9L9RGQ0NDWLgwIHhtnv69OniqaeeEmVlZVF5jW2vvi59m/Hqq68KQMyaNSuc5vf7xZFHHikA8cwzz4TThw8fLrp16yZqa2vDaZ999llUX5LoWOf111+P+s4YqaioMO1TjzrqKDF8+PCI8UogEBCHHHKI6N+/fzjtmmuuEYD4/vvvw2nl5eUiKysrof0e6idkfwMHDgznC7Wfffr0iYpLQsf4T3/6U0T6G2+8IQBx9913R6RPnjxZaJomVq9eHU4DhMViEUuXLo3Ie/XVV4vMzMyIGCERVq9eLR27hvzVH9O26JM/+OAD0a9fP6Fpmvjhhx/CeWfMmCFKSkrE9u3bI2z8/ve/F1lZWeF9G4onXnnllXCe+vp60a9fP9OYZMCAAeL444+P6Wtbo27DVLQrampqAKT3Lk+YMIGCgoLwX+iycRkDBgxg5MiRvPzyy+E0v9/P3LlzOemkk8JnL+bMmUNWVhbHHHMM27dvD/+NGjWK9PT0qLNgQ4YMCV+iCsGzLAMHDmy1p3npz6rU1tayfft2DjvsMBoaGlixYkVEXpvNxiWXXBL+7HA4uOSSSygvL+fHH38M6xs8eDCDBg2K0Be69UV2li9EdnY2S5cuZdWqVa2iTaFQ7B6zZ8+mqKgofGu5pmlMmTKFl156SXqL9umnnx5xxZjf7+fjjz/mlFNOibhapl+/fhx//PHSOo866qiIM+qhK31PP/10MjIyotL1baC+Hauvr2f79u0ccsghCCH4+eefI+p5+OGHycrKYvLkydxyyy2cd955EbfEJNqGvffee0BwsVo9oTOeiXLbbbdRUFBAcXExEyZMYM2aNdx3333hM+ghLrroooh1p+bNm0dVVRVnnXVWhJ9Wq5WDDz447Oe2bdtYtGgR06ZNIysrK1z+mGOOYciQITF9CwQCvPHGG5x00kkceOCBUdt356qG9957j+LiYs4666xwmt1u56qrrqKuro7PP/88Iv+UKVMizjiH+sNE+8ALLriAgoICunTpwqRJk6ivr+e5556L0nPppZdG+Qlw7bXXRqRfd911QPAKCz1dunSJOFOdmZnJ1KlT+fnnn8NPSnM6neF1a/x+Pzt27CA9PZ2BAwdKb1WcOnVqxHd/8uTJlJSUhH3bGyxatIhVq1Zx9tlns2PHjvD3rL6+nqOOOoovvvgifCtTdnY233//fYd8Ip9iz9AvdJ+dnc3AgQNJS0vjzDPPDKcPHDiQ7OzsiN92or+ZDz74gK5du3LyySeH01wuFxdddFGEHy35Prc2L774IgUFBdI7JZ599lmEEHFvqU5JSeH777/nhhtuCJebMWMGJSUlXHnllXGXO5HxwQcfYLfbI/aVxWIJX+UdYuvWrSxZsoSpU6dGjJnGjx/P8OHDI/ImOtYJXZH1zjvvxL0F1UhlZSWffvopZ555Znj8sn37dnbs2MHEiRNZtWoVW7ZsAYLt+ZgxYyKuGiwoKGjx2nGvvvoq8+bNi/h75plnovJNmzbN9Ko141Vc7733HlarNSqWuO666xBC8P7770ekjx8/Pqrvzs7O3q3bC3fs2AFEXtUVj9bsk4877jiqq6t54YUXwnctCCF49dVXOemkkxBCRHx/Jk6cSHV1dfi3/95771FSUhKx1FFqaioXX3yxaf05OTls3749Yb1tgboNU9GuCAWidXV1Udsef/xxamtrKSsri1iA2YwpU6bw5z//mS1bttC1a1c+++wzysvLI9bCWbVqFdXV1RQWFkptlJeXR3zu0aNHVJ6cnJyoe/53l6VLl/KXv/yFTz/9NDxxGKK6ujric5cuXaIuHR8wYAAQvIx2zJgxrFq1iuXLl5veamXUp+fOO+/kd7/7HQMGDGDYsGEcd9xxnHfeeeHLrRUKRdvj9/t56aWXOOKII8LrOkFwkurBBx/kk08+iXqSV+iWmRDl5eU0NjZKn55p9kRNY1sXmtjRrxWpT9e3gRs3buTWW2/lrbfeimobje1Ybm4u//73vznjjDMoKiri3//+d8T2RNuwDRs2YLFY6Nu3b8T2gQMHSsuZcfHFF3PGGWdgsVjIzs4Or0NixLiPQycVQpN4RkJr12zYsAGA/v37R+Uxm6QJUVFRQU1NDcOGDUtMTAJs2LCB/v37Ry12HLptM+RvCOP3IhSkJ9oH3nrrrRx22GFYrVby8/MZPHiw9OE8xv0bOr7G72txcTHZ2dlRfvbr1y9q8lDfPxYXFxMIBPjXv/7FI488wrp16yImno23hUL0MdM0jX79+kWt2deWhL5nsluyQlRXV5OTk8P999/PtGnT6N69O6NGjeKEE05g6tSp9OnTZ2+5q0hCXC5XVHualZVFt27don4zWVlZEb/tRH8zGzZsoG/fvlH2jL/flnyfW5O1a9fy7bffcsUVV+zxw8GysrK4//77uf/++9mwYQOffPIJf//738Mngu6+++4W2duwYQMlJSWkpqZGpBv3XajNM+vX9X1JomOd8ePHc/rpp3PHHXfwz3/+kwkTJnDKKadw9tlnS/tBPatXr0YIwS233MItt9xiWk/Xrl3ZsGGDdKmdlvbXhx9+eEIL/Bv7kxA2my1q+YMNGzbQpUuXiBMjYN4nymxffvnlvPLKKxx//PF07dqVY489ljPPPJPjjjsurq9A1NposWitPrmuro7XX3+dl156KSIeqKiooKqqiieeeIInnnhCakMfh8n63ljHVQjRKrcv7wlqskzRrsjKyqKkpIRff/01aluoYU00MJ0yZQo33XQTc+bM4ZprruGVV14hKysrorEKBAIUFhZKF8sGogIKsydYtaRhM6Oqqorx48eTmZnJnXfeSd++fXG5XPz000/88Y9/3K2za4FAgOHDh/OPf/xDut048NVz+OGHs2bNGt58800++ugjnnzySf75z3/y2GOPRT1+W6FQtA2ffvop27Zt46WXXuKll16K2j579uyoybI9WT8phFlbF68N9Pv9HHPMMVRWVvLHP/6RQYMGkZaWxpYtW5g+fbq0Hfvwww+BYHC3efPmiPVG9qQN2x369+/P0UcfHTefcR+HdL3wwgvSx613lKc172kfOHz48N3avyFaM6i+5557uOWWW7jgggu46667yM3NxWKxcM0117TZ1Sx7SsivBx54gJEjR0rzhK4yOfPMMznssMN4/fXX+eijj3jggQe47777eO2110yvKFV0fHa3bYfW/8205PvcmoQeXLC7T8E0o2fPnlxwwQWceuqp9OnTh9mzZ4cnyzRNk7aTZg/wak0SHetomsbcuXP57rvvePvtt/nwww+54IILePDBB/nuu+9iHovQsbz++uuZOHGiNI/Zybm2xqw/0V8p2Zq2CwsLWbRoER9++CHvv/8+77//Ps888wxTp06NeniOntCEc0suwGjNPvmUU06hoaGBiy66iEMPPZTu3buHj+u5555rOqm9JxdR7Ny5U3rycG/SMaIzRadi0qRJPPnkk/zwww97tLBn7969GT16NC+//DJXXHEFr732GqecckrE2ZG+ffvy8ccfM27cuFYZYO4Jn332GTt27OC1117j8MMPD6frrybRs3Xr1qjHHK9cuRIgfOl43759Wbx4MUcdddRuDTJyc3M5//zzOf/886mrq+Pwww/n9ttvV5NlCsVeYvbs2RQWFkpvO3/ttdd4/fXXeeyxx2K2X4WFhbhcLlavXh21TZa2JyxZsoSVK1fy3HPPMXXq1HC62e0IH3zwAU8++SQ33ngjs2fPZtq0aXz//ffhyaVE27CePXsSCARYs2ZNxFnM3377rZWUxSZ0RVthYWHMyaDQgtCy29vj+VpQUEBmZqb0ZJKelrT1PXv25JdffiEQCEQMGkK3/Yf83deEju+qVasiHlZQVlZGVVVVlJ+hqxz0+8LYP86dO5cjjjiCp556KqJsVVWV9GoF4zETQrB69epWudo60WMW+p5lZmYmNOlYUlLC5ZdfzuWXX055eTkHHHAAf/3rX9VkmWK3SPQ307NnT5YtWxb1GzT2Ny39PrcWL774In379mXMmDFtYj8nJ4e+fftGtNU5OTnSW+OMVyr17NmT+fPn09DQEHF1mXHfhdq8RPr1lo51xowZw5gxY/jrX//Kiy++yDnnnMNLL73EhRdeaNpWha5YtdvtcY9lz549d6sP3Bv07NmTjz/+mNra2oiry1raJzocDk466SROOukkAoEAl19+OY8//ji33HJLzCv6U1JSTMd9e4O//e1vvP766/z1r3/lscceCz9d3O/3J3Rcf/3116jfvdlx9fl8bNq0KeJ27X2BWrNM0e648cYbSU1N5YILLqCsrCxqe0uu4poyZQrfffcdTz/9NNu3b4+4BROCZ179fj933XVXVFmfz0dVVVWL/d9dQmcH9Po8Hk/4qXBGfD4fjz/+eETexx9/nIKCAkaNGgUE9W3ZsoX//ve/UeUbGxvDT3GTEbp3PkR6ejr9+vXbrTUYFApFy2lsbOS1117jxBNPZPLkyVF/V1xxBbW1tdLHsuuxWq0cffTRvPHGGxHrF61evTpq/Y09RdaOCSGkj0yvqqoKP233nnvu4cknn+Snn37innvuCedJtA0LDf6Nt3HOmjVrjzUlwsSJE8nMzOSee+6RrvVSUVEBBCcvRo4cyXPPPRdxS+q8efNYtmxZzDosFgunnHIKb7/9NgsXLozaHtrnoRMoifRfJ5xwAqWlpRHre/p8Ph566CHS09MZP358XBt7gxNOOAGIPp6hKw6NTz3dunVrxBMya2pqeP755xk5cmT4yj+r1RoVT8yZMye8ro6R559/ntra2vDnuXPnsm3btlaZeEpLS0voeI0aNYq+ffvy97//XbpcReh75vf7o255LiwspEuXLqoPV+w2if5mJk6cyJYtWyL6pqampqh2PNHvc2vy888/s3z5cs4++2zTPNu2bWPFihVx1+1avHixdL2lDRs2sGzZsogTN3379mXFihURmhYvXszXX38dUXbixIl4vd6IfRUIBKJOmHXp0oVhw4bx/PPPR+y7zz//nCVLlkTkTXSss3PnzqjjG7riL9RuhCbwjO1VYWEhEyZM4PHHH2fbtm1R9eh1n3DCCXz33Xf88MMPEdvNrnzbm5xwwgn4/X4efvjhiPR//vOfaJqWUHtvHD9ZLJbwSZVY7a/dbufAAw+U9u97i759+3L66afz7LPPUlpaitVq5fTTT+fVV1+VnqgzHtetW7cyd+7ccFpDQ4Pp7ZvLli2jqamJQw45pPWFtAB1ZZmi3dG/f39efPFFzjrrLAYOHMg555zDiBEjEEKwbt06XnzxRSwWS9R95jLOPPNMrr/+eq6//npyc3OjZsXHjx/PJZdcwr333suiRYs49thjsdvtrFq1ijlz5vCvf/0rYqHCPWXhwoXS9QsmTJjAIYccQk5ODtOmTeOqq65C0zReeOEF08nBLl26cN9997F+/XoGDBjAyy+/zKJFi3jiiSfCjws+77zzeOWVV7j00kuZP38+48aNw+/3s2LFCl555RU+/PBD6ULREHyYwYQJExg1ahS5ubksXLgw/Bh6hULR9rz11lvU1taannUbM2YMBQUFzJ49O+pEgJHbb7+djz76iHHjxnHZZZeFg8Fhw4axaNGiVvN50KBB9O3bl+uvv54tW7aQmZnJq6++Kr2t4Oqrr2bHjh18/PHHWK1WjjvuOC688ELuvvtufve73zFixIiE27CRI0dy1lln8cgjj1BdXc0hhxzCJ5980upXzpmRmZnJo48+ynnnnccBBxzA73//ewoKCti4cSPvvvsu48aNCwff9957L5MmTeLQQw/lggsuoLKykoceeoihQ4dKB4x67rnnHj766CPGjx/PxRdfzODBg9m2bRtz5szhq6++Ijs7m5EjR2K1Wrnvvvuorq7G6XRy5JFHSterufjii3n88ceZPn06P/74I7169WLu3Ll8/fXXzJo1K2rdln3FiBEjmDZtGk888UR4yYIffviB5557jlNOOSX88IsQAwYMYMaMGSxYsICioiKefvppysrKIhZ/PvHEE7nzzjs5//zzOeSQQ1iyZAmzZ882XdMrNzeXQw89lPPPP5+ysjJmzZpFv379ohYt3x1GjRrFo48+yt13302/fv0oLCyUrn9nsVh48sknOf744xk6dCjnn38+Xbt2ZcuWLcyfP5/MzEzefvttamtr6datG5MnT2bEiBGkp6fz8ccfs2DBAh588ME99lfROUn0N3PJJZfw8MMPc9ZZZ3H11VdTUlLC7NmzcblcwK4rKRP9Psfi7bffZvHixQB4vV5++eWXcJx98sknR135GZqQiXUL5k033cRzzz3HunXrYi7yP2/ePG677TZOPvlkxowZQ3p6OmvXruXpp5/G7XZz++23h/NecMEF/OMf/2DixInMmDGD8vJyHnvsMYYOHRqxRvEpp5zC6NGjue6661i9ejWDBg3irbfeorKyMmLfQbA/+N3vfse4ceM4//zz2blzZ7hf1/cliY51nnvuOR555BFOPfVU+vbtS21tLf/973/JzMwMn7BISUlhyJAhvPzyywwYMIDc3FyGDRvGsGHD+M9//sOhhx7K8OHDueiii+jTpw9lZWV8++23bN68OXycbrzxRl544QWOO+44rr76atLS0njiiSfCVzonyty5c6W3hh5zzDEUFRUlbEfPSSedxBFHHMHNN9/M+vXrGTFiBB999BFvvvkm11xzTdS6qDIuvPBCKisrOfLII+nWrRsbNmzgoYceYuTIkRFXRsv43e9+x80330xNTU14rdO9zQ033MArr7zCrFmz+Nvf/sbf/vY35s+fz8EHH8xFF13EkCFDqKys5KeffuLjjz8OfzcvuugiHn74YaZOncqPP/5ISUkJL7zwQtT6eyHmzZtHamqq9CEbe5W989BNhaL1Wb16tbjssstEv379hMvlEikpKWLQoEHi0ksvFYsWLYrIG3qMsIxx48ZJHzmv54knnhCjRo0SKSkpIiMjQwwfPlzceOONYuvWreE8PXv2FJMmTYoqa/Y4aCOYPOYYEHfddZcQQoivv/5ajBkzRqSkpIguXbqIG2+8UXz44YdRj9wdP368GDp0qFi4cKEYO3ascLlcomfPnuLhhx+Oqtfj8Yj77rtPDB06VDidTpGTkyNGjRol7rjjDlFdXR2hT//I7bvvvluMHj1aZGdnh/f9X//6V+HxeOJqVSgUe85JJ50kXC6XqK+vN80zffp0Ybfbxfbt28OPEn/ggQekeT/55BOx//77C4fDIfr27SuefPJJcd111wmXyxWRDxAzZ86MSDOzHXr8+Jw5c8Jpy5YtE0cffbRIT08X+fn54qKLLhKLFy+OeOx96PHmDz74YIS9mpoa0bNnTzFixIhwW5NoG9bY2CiuuuoqkZeXJ9LS0sRJJ50kNm3aZPqY+0T0GXnmmWcEIBYsWCDdPn/+fDFx4kSRlZUlXC6X6Nu3r5g+fbpYuHBhRL5XX31VDB48WDidTjFkyBDx2muvRT0aXggh9X3Dhg1i6tSpoqCgQDidTtGnTx8xc+ZM4Xa7w3n++9//ij59+gir1RrRf8j6q7KyMnH++eeL/Px84XA4xPDhw8PHKZH9k8j+lX1PZIT68oqKiqhtXq9X3HHHHaJ3797CbreL7t27i5tuukk0NTVF5Av11R9++KHYb7/9hNPpFIMGDYqqu6mpSVx33XWipKREpKSkiHHjxolvv/02ah+FfP+///s/cdNNN4nCwkKRkpIiJk2aJDZs2BBhM5FjGPoOrVu3LpxWWloqJk2aJDIyMgQQrj9Ut77/F0KIn3/+WZx22mkiLy9POJ1O0bNnT3HmmWeKTz75RAghhNvtFjfccIMYMWKEyMjIEGlpaWLEiBHikUceibH3FR0JWVs1bdo0kZaWFpU3FFMaMca9if5mhBBi7dq1YtKkSSIlJUUUFBSI6667Trz66qsCEN99911E3njf51hMmzbNNLY2tmN+v1907dpVHHDAAQnZ1P9GZaxdu1bceuutYsyYMaKwsFDYbDZRUFAgJk2aJD799NOo/P/73/9Enz59hMPhECNHjhQffvihtM2oqKgQZ599tsjIyBBZWVli+vTp4uuvvxaAeOmllyLyvvTSS2LQoEHC6XSKYcOGibfeekucfvrpYtCgQVH1xxvr/PTTT+Kss84SPXr0EE6nUxQWFooTTzwxqv/65ptvxKhRo4TD4Yhq39asWSOmTp0qiouLhd1uF127dhUnnniimDt3boSNX375RYwfP164XC7RtWtXcdddd4mnnnoqof0e6ifM/kLtZax+x+y3IIQQtbW14g9/+IPo0qWLsNvton///uKBBx4QgUAgIp8sVhJCiLlz54pjjz1WFBYWCofDIXr06CEuueQSsW3btpi6hAj2xzabTbzwwgtR/uq/J23dJ0+YMEFkZmaKqqqqsF8zZ84U3bt3F3a7XRQXF4ujjjpKPPHEExHlNmzYIE4++WSRmpoq8vPzxdVXXy0++OADaT928MEHi3PPPTemn3sDTYhWWHlcoVAoFApFh+OUU05h6dKl0vVDFAqFQqFoLWbNmsUf/vAHNm/eTNeuXfe1O+2KN954g1NPPZWvvvqKcePGxcw7cuRICgoKTNcKVSQ3M2bMYOXKlXz55Zf72pU2Y9GiRRxwwAH89NNPpg/32FuoNcsUCoVCoVDQ2NgY8XnVqlW89957TJgwYd84pFAoFIoOibG/aWpq4vHHH6d///5qoiwOxn3n9/t56KGHyMzM5IADDgine71efD5fRN7PPvuMxYsXq369HXPbbbexYMGCqPXsOhJ/+9vfmDx58j6fKANQV5YpFAqFQqGgpKSE6dOn06dPHzZs2MCjjz6K2+3m559/3ueP7lYoFApFx+H444+nR48ejBw5kurqav73v/+xdOlSZs+eHXNxfUVwzavGxkbGjh2L2+3mtdde45tvvuGee+7hpptuCudbv349Rx99NOeeey5dunRhxYoVPPbYY2RlZfHrr7+Sl5e3D1UoFO0DtcC/QqFQKBQKjjvuOP7v//6P0tJSnE4nY8eO5Z577lETZQqFQqFoVSZOnMiTTz7J7Nmz8fv9DBkyhJdeeinuw2gUcOSRR/Lggw/yzjvv0NTURL9+/XjooYeiHrCVk5PDqFGjePLJJ6moqCAtLY1Jkybxt7/9TU2UKRQJktRXlv3nP//hgQceoLS0lBEjRvDQQw8xevTofe2WQqFQKDoQqq9RKBQKRVui+hmFQqFofyTtmmUvv/wy1157Lbfddhs//fQTI0aMYOLEiZSXl+9r1xQKhULRQVB9jUKhUCjaEtXPKBQKRfskaa8sO/jggznooIN4+OGHAQgEAnTv3p0rr7ySP/3pT/vYO4VCoVB0BFRfo1AoFIq2RPUzCoVC0T5JyjXLPB4PP/74Y8QihRaLhaOPPppvv/1WWsbtduN2u8OfA4EAlZWV5OXloWlam/usUCgUHR0hBLW1tXTp0gWLJWkvTE6YlvY1qp9RKBSKtkX1M6qfUSgUirakJf1MUk6Wbd++Hb/fT1FRUUR6UVERK1askJa59957ueOOO/aGewqFQtGp2bRpE926ddvXbuwxLe1rVD+jUCgUewfVzygUCoWiLUmkn0nKybLd4aabbuLaa68Nf66urqZHjx5MOhxsNjCeixFEp+m3IdkuK6NPM5ZLxI7Rpv6eWC2BOluaZqxHaZT7S4zPZmX2VGMqcDEwUmJra/MfQBrwCbAwhm8QXJAwDegC9AeGAT2a6/EC5cDPzXY2Az6JjX11HOvSYG0fQwUy54zEc1Cfx+wGdKONRMqaCTKWj+VnO9AYcMP6RyEjI8PEcMdG9TNKo5H2qjFgAb8VLIHg+8pc8NohszaYx2OHjFpwuRPX2L12EPvtmEBxQ2+GVR6Oy5fGTlcZXxe/yrLcb9iQ8SsBLYCRfXUc3Q5Y1T+oXyrQ6IDekVgO6vOofiba11hlVT9j2s9s2rSJzMzMfeiZQqFQdAxqamro3r17Qv1MUk6W5efnY7VaKSsri0gvKyujuLhYWsbpdOJ0OqPS7bbgnywAixWcGeMOYzwSK3CWxQBm+fX5YtmOVadZHqWxfWn0ArOBJqAPkNWcXg88C6xr/mwBAoCd+BobgbXNf58AucD+wFigLzAYOB1YCcwHfmyuv600muUx7u8UwG4Hv34QIzvYsgA81gGONahIdKDRkgGMmR1Zve1IY0e5FaSlfY3qZ5TGjqIxYAn+aRYQGhTWgcMDmjCUtyWusTRnBaU5wStlct0llNT35cgt53Dalis4Z8NN/FjwAZ91/T+W5n6NX/O2ucZ4x9GigdMC7tBPuh21waqfaT+0Vj+TmZmpJssUCoWiFUmkn0nKxQAcDgejRo3ik08+CacFAgE++eQTxo4d22J7QvJev2tCfbax3w5t03TvjXYE5mX15YWkjKwOM/tmwWKs90qjvP5k1rgTeAq4Dbih+e8Wdk2UAfhN/Iyn0QuUAR8CdwN3Al8RvKJsOHAFcCswDnDqyu6L42gNBK94iEA2qpRVpN8JxsrijV71AvXijcKN+fT5NZMy+jQzLe1BYweiNfuaztA+KY0dR6MWAJsPLP7gq9MNmthVx55q3OHcxtLcr3h4+Ez+NOYo/jvkOjQ0jtt2Db/b/GdyfD2xCnubajS+j2rexC7NERuMBmQVqX5G9TMJ0tpjGoVCoVDsPZLyyjKAa6+9lmnTpnHggQcyevRoZs2aRX19Peeff36LbRn75RDG4CxWOX0ZM3uhz2YBZqw8ZjGH0V+zupVGua9macmu0UfkbZGtrdEHrALWELxN81TgQIJXm10BLANebs5jnLPaG8fR6g/+eY0tlN6wMZjXG4kVxBsrjzX6MtYrG3QIyft4NmINZJJdYwejtfqaztQ+ycqY+WqWpjR2Do2CADudZXxZMpfvit7C63JQUSCw2HMYUNkfrbKaHbYt+0ajAIcXmlwxKk/GNlj1M+2O1hzTKBQKhWLvkbSTZVOmTKGiooJbb72V0tJSRo4cyQcffBC1QGYiyE6CmQWFxryyeEIWC5idNIvX9xvjGf2rWWxkVr/SaJ5XaZRrCRBcr+w/BCfKziZ4a+YwgreCfgy8BdTubY0ieEtQeBATa3Cgx+iUzDnZiNXonNmOjfcFkIoxSYuVJxb7UmMHpLX6GtU+KY1Ko1xLaJvP4gGPh/xtUJtRz4JiK11Se9Jv4yi22RcT0Hx7VaMgeFVdu2qDVT/TLmnNMY1CoVAo9h6aEKJDdk01NTVkZWVxypHBtWRCyGINYwwgI14waGbfLLg0s93SoE/mr9KoNO6uRhcwETgZSG/etpzgraGbTMrI6m4NjZt6wI5cQ2IiB8XMyT3Z3tIyIRIpYzYASUKNAQ+snRVccFitnaL6GaVRjtIY299QPr8VyorAnZHO4E3dsNeUU2er3Ksay4tga4khMYnbYNXPdD5C/YzaHwqFQtE6tKRdTco1y1oToXuN10ebBX4QGWvoYw69DWNQZ1YmEZ+MZfRl9f4KlEalsfU0NgJvAvcB65u3DQb+THBds72p0e7VGTMKMw4CjIL1wozv4zkjcyregMBox7jD9dv1/pjtuGTWqIgiGX67xjIdsX1SGjuORgCbH7psg+zyOhb3Wk1TXlcyvcV7VWNKY3Nae2qDVT+jUCgUCsVeocNPlpkFarL4QYYx5jDmN4tJYpXRp8Wq22jPLIBVGqPzGFEaE9cIwadj3g8saP6cC1wJHGriQ1todLrjVKQP8mUYHQq9ygLxeAMFmaOhdOOgxVhedjCMZWW+6N8no0ZFmGT57XaG9klplNNeNWoCcqqg+wY/vxWtxJYxgEJfT2ndbaHR5jNxsj20waqfUSgUCoWiTenwk2X6E136V7OgUBZ7CMMfhjxG+0ZkMYHMrlmMIytrtK00RtvFsE1pbJnGHcCjwA/Nn7OBiwk+CGBvaHR4TGJmsxGYcRAhC9qNI09jOb1jspGV2U43ppmR6EAgmTUqoki2366+jo7aPunrUBrbt0YEpNULBqx2sLT4V2qK8+lXc+Be0WjzBZ++HN9JkqcNVv2MQqFQKBR7haRd4L81MQZtsfpls0AvVnBqjCtkNo1l9HUZfYoXZMpQGs3zKo27r7EeeKz582jACVzYnL4sRn1GW2Z+6/MZ/bH6QBMgEhl1mRmTDQZkxMojG3UZfZD5pS8ba+CS6Mgy2TQqIki2325naJ+Uxo6l0R+oZb9V/RjecCy2gJ8qzza2O7aY1me0Zea3Pp/RH0sg2M/ErSQZ22DVzygUCoVC0aZ0+CvLdqdfjhdcCaLjDX2sYvwzxmGCyPhDFgTr8xn9kfmrNMrL6F+Vxkj/E9VYR3DC7OfmbdnADCDP4Hdra7T5wOo3ESQzajwgsrxmtmQ7wKwe2YE2lok1wNDvLLMRZzJrVESRrL/dztA+KY0dS+N2+xoqtEW8PmoOw3MPxiVS94pGqSCZ0WRog1U/o1AoFArFXqHDT5bpSShIakbfVxvLGWOBeLaNQaImyS8rr8+XaOygNEaiNLaOxnrgGaCsOV834Fx2XZraFhotonmyzDgwMBaWjdL0efSiQp9jldGn60UZ69d/lr2XDWoSHfzI8iSTRoUpyfbbjedbR2if4vmmNJrXlSh7S6NAsCxjHq7SnXw26mN6eseiNW9tk34mAM4m2l8brPoZhUKhUCjanE4xWRYvuDL207KTcLL8+j4+3kk3vS/GE3eysrKTe7HqURqVxlj5W0NjGfAU4GneNho4wOBLIhoS1WgJNC++HCokGymFdoBZ5cZAXFaRMZ8xv2Z4NQvsjfmMPsswDjzai0ZFFMn82zUr25HaJ7OySmM0ya7Rp/lIrwPv8u6sL6qnoKlPhC+JaEhUoxYAV+hhMu2pDVb9jEKhUCgUbU6nmCwLkUggpyGPCYwxhFkfb4YxyGtJbKOvI14MoTRG2lYaW1fjEuDz5u024BTARRtpFMFF/qMyaDHeJypQVsZoy2y0ZVZGP6KU7RCZD2aj4GTWqIhJsv52Y/lhrKO9tk+x/DDWoTQmt8ZGSzUTlxzOryW/kmbvh1XY2kyj6mck7/e1RoVCoVAokoAOP1lmjA9kMYZZsGV2UsxoJ1YsgCGfzH6sQNPob7x4SFbG+F5WVpZPaYyms2sMAG8B1c15ehN8OqbM39bQ6HAbEo07OPSn6V6NmO004yjK6LBxJCerR1+/bFRm9uWQ+dteNCqiaA+/3c7QPimNka/tWSMIyhzL6be9P18MWojFmin1d081ahiuYDYaTcY2WPUzCoVCoVDsFTr8ZFmsft8MY4Cl7/uN783KGLfr08ziCP17swBThtIoR2lsG43l7Lq6zAIcDdgT9LclGjXAHhrEGAUYR2aybTJk4o02jAMOWXlZPYkcbONAJdYIuL1q7IS0l9+u8X1HbJ+M75XGSNqLRgEszfmSRsrZkVZJQ1Zq8MnICdBSjXZvc96O0garfkahUCgUilahw0+WmSEL9PQY+2598BXrLGU8W7LyiZxIM4t1EimjNEZ+Vhoj7ZrZMtMIMB9oaP7cF+gl8bc1NDo8Bn1mooiRpjca6wCZiQ+Vlx1o2c6XvRrTjDaEIV8ya1QkTLL9djtD+6Q0dhyNAj/OqgrS6wRrikvRLK4of1tDo2Y0kOxtsOpnFAqFQqHYK3SKyTJjHxzqq80CLLNtZn25Mf6IdRbWmF9Whyy20JeT+ac0yutRGqPtycq2VGMpsLL5vQO4FOhJ62t0eJoHMvFGRMZRkFmwrnfK6KwZu0Zu5tuNvuj/4qEfcbYXjYoo2stvN1SmI7dPoTJKY/vXaPVr+OwWvDYfa/oE8Dgtra7R6W5+8nJ7aoNVP6NQKBQKRZvT4SfLYvXh+kBTFmjFi0GMAWAozdjf6z9bhBWLZLebBY+a4S9WuWTRKNtu9NVoW2lsXxqL2HU1mQZ0I7h2WWtrtPrB4pcUlI2WzETI0DupmeSNNwAwCtIw36nGAUgsX5NdoyKK9vTb7Qztk9LYMTRqWMhnJHmVVnqth0anh5qMQJv0MzafpGCytsGqn1EoFAqFYq/Q4SfL9MhiAbM8IWQBWSw7ZgGlhkZBU3cuXH4/xQ29EvA2fnwRq8y+0Ri/bjNflEZ5mWTVWARkGcqkxMgvIxGNlkDzGX8zA2ajsFjG4x0Is7LGHSwbGBhHmbJRYaw8Ml+STaMiJsn+2zXzpSO1T2a+KI3yMsmq0WcN8OWAH7B6vaTXQUojWBJduCwB30JYAsF1y0wNJFsbrPoZhUKhUCj2Ch1+skwWkCXaH8vOrupjCtk2fZwSwipsjNgxgVsXvM6Rm8+lpL5fRH6jf7LPsXxPBo1mPiqN8csb87YHjT6ibRbHKK/3U/9qli+EJQAOr4mT+lHY7gTZ+tGlrLzxoMbaIWYDC2MefTnja3vRqIgiWX67mZ58xpT9jgFVB2EPOCPyG/2TfdbXIfPTWCZZ2ydj3fHKG/MqjXL2tkZNgNMtyKjdlcdmzTMtr/dT/2qWz7SgMS3Z2mDVzygUCoVCsVfo8JNlehIJ1lpyMi0UX3SvG8zAqtEmMYhGQAtgCzgoaOyOhpWedUOkPhljHH1gaha/7E7QvDsazezHClRln5VGOe1N4w7AeCLeKqknUXuxfIk4468fBZkNIoyBu/FP073KysvqkB1AY51mo0bj9lj224NGRUz21W9Xw8KBFcfxh8VPcvOPcyhp6Cst0xnaJ6VRTrvTKIJXFusvJrMJh6mtePZMfRHBdcuiCiVrG6z6GYVCoVAo9gq2fe3A3kDfZ0NiAZ1ZQKgPUDUg3ZfFMZumU9TYi7+PnAYI9tsxgdVZP5HrLqFb3UAO23oGKb4MBMHZyUO3nsHH3V6g1r4jqg5jnGGMIYyxyd7QGC9gNysv265PUxrbr0ZZLJtPsEHx0HoaNdE8WWYsZDZgkFVqNpIzBu3Ggxbr1ay+WH7qiWU/mTWajTwVe+m3G9zi8qdQ3NCHTekrEFqAwTvH8rt1V9G1fgCg4fKnMW7baWzsv6xTtk/6NKWxfWt0undV4PCA0Hnaav0Mzbf7t4c2WCZO9TMKhUKhULQJnWKyLF6QGSsG0afJYoeCxh4MqzyM4oY+HFR+HHX2Kq5Z/CQ1ju04/Wmsz/yFooZeFDX2CpcpbuhNQWN3auw7TGMCs4AzVkzUVhplmMVbsuBUaZT725411gH1gEuXZic4GdzaGsNn/GWBuIxYoy+zQF1mX7bNLM34Xm/fWLYlPiSbRjN/FK3y23UGXIzYfgS/5n5Fo23XvWcp/nR61+zHkMpxvNvzUYbsHMeVvzzG3L4P4AykMmn9paT5snU2gxNmZnWZ+dxR2qdYPiuN7UijgF5bMrAJG3W2ndh8UJaxjd7bCT4lOUb9qp9pgQ/JplH1MwqFQqFIEjrFZFkszPp5syDOGDv0rB2C05+KVdg4af2V1NkrcQRSKGjqDsDwHeMJaJErlAc0Pz6LB6uwEtD8cYNN/fZEg9PW1Gjmhz7dmMfop9LYsTT6m//0ZABpQGjM0VoaHZ7m9NDGWDvd6LhsoCETj0leY11m9RntGwcRZqNZWVoya1TsFon+drvVDeTKJY/zr/0uZmHBB+H009ZcxzGbp+HypTNk5zhSfRmk+DM4b+UdzXmiD5DTnxouL6vPSEdqn8xQGuOTTBo1QLOl0WjzgRcya6A+rW00Bh8eAAELyd0Gq35GoVAoFIq9RqeaLNPHFcbAT/8+kUARIMtTwKlrr6WgqRsAfWpGSOxpWMWu3SyA37J/oNK5lSuWPMIO1xaW53zHyuwF1Nl3SmMfWfxjFle0tkb9NllMFa8eGUpjpI/tUaOP4NVlhbo0C9GLILaGRpsPNNGsVTaaMqtAtoPiDQxk7402ZPZkts0GMDIfhSFNbycZNSpM2ZPf7nbXFupsVYzYPoEfw5NlGt3rBpHqywRgWOWhJlYjbe1wbQHAKuzYAw6arPVSH0NWOlL7ZPQxlE9pNC+frBp7VvUl3ZfHwry3TJ1qDY1Wf7CfkTqcjG2w6mcUCoVCoWhzOtVkmQUNgYjou0OY9c057mJ8Fm94fbHIuEALD2DMbAgEPs2DTTgILvbv48MeT9Fkq6ewsQfjSk/npPVXMLfv35nb9/6IskZ7+rrN/DVuT0SjcVusoDL0OVbMI7NjFocpjbF9TVaNPqDBkM8J5ADbJWVi+RpPo80XfCpmwIY8sI81QpJVIAvujY4ZndEPTBIdHJgd+FgDEn2+ZNWoiMnu/na7NPRlYNVoNqevoDxlI0WNvThtzXXU26voXbNfi/1I82bTo3YIB5efyP4Vx/B90dt82u1/1Norpf6G6AjtU2dogzuLxiVFCyj2jgA/uJogw5NNmhcarVWtqtESIDhZZmx3k7ENVv2MQqFQKBR7hU4xWSaA3rXDOW3ttWxNXc3m9N/YlrqGStdW6uxVeC2hJcmj44wetUM4d+VtvNH73ywoehePpQmLsJHpycOChQZbDdmeAmkA1mCr4cuSufSrPoDeNfuhobE5bSUlDX3I3HIWqb7M5vjEwpCdYzmg4hjWZy6l0rkVDehdux9b0lbisTRF2JfFE7L4yCwoNOaVxWBmdYRsyeIjsxjHGIcZA2Lje30ZmR2lUZ53b2usM2zXAAetr9HqD06Y+awmjhmdCL3qKzKmycronTPbsfF2jpmYWKNQWZ5Y7EuNClMEYBM20r05VDsqwmkaYGm+5V6fV7/bM7x5XLfoWTSh8XXJ61SkbCJAgAMrjiPDm9NiXzTg+I0XcfTmqVgDdqxY6VMzgs3pv7Eu8xcCBKhylpm2DXofjdvbS/vUGdrgzqDRa/His3ih+covS6BtNKp+xiS/6mcUCoVC0YnpFJNlGpDuzWZ02SQ0ggtS+DQvjbZadjpLKU1dx+b0lazPWMJPBR/htbixCitd6wewJutnQGPmrw+zbuPFfNj9adZn/sK0FX8ly1NISUOfcD3Lcr5GIOhWP5AsTwEOfyqHbpscnhQD6F43iHNW3h7l44Cq0VxTPYoqRzlz+t3PTuc2Dtt6BmuzFvNh96ci4gpZjCGLP8yCR1mgbWbHLOA12kykHlkZM3+VRvN8yaBRADsN+S0Eb8tsdY0CbF4inyZgRDaCizeykw0AzEZ88QYpiYgWRA8EZAfIjGTSqIhCA/KaunL1L08wa7+L2OHagk3YGVt6KoduO43/6/9X1mQuMvymggenuKEXXer7EdACnLR+JvX2Kl7sfxfWgLyL9hNc99JrcZPuyzbxR8MRcOk+Wzh75S2ke3Oot1fz0H6Xkt/YjSE7D+G1Pv+g1l7ZYdonY5mO2AYby3RUjSluOyPLD+bL3CUE8JPmzaJ/9UAW535k6ns8f6V1q35G7oPqZxQKhULRiekUk2UADbZa/BYv9oAT0LALB3ZvHpnePHrWDWV0OdQ4tvPH7IUMqRzHwKrRjNh+BNWO7eS6S7AJO/2rR9G3en9qHNvJ9ORj0a3QpAG9aodR49hOtaOcLE8BNmHDprtNE4goo8cRcAJQ1NiLy399iNKUtdiEg2GVh/NjwQdsb15/JkSsM6TGtHjlZAGszHai2+PVLYutZOWUxuTW6DPUqRF8IqZZfqPNhDUKsPtMChqNGHeCMY9sdKkfYOjzGJ01CtGX0afr/Yg1mNAPHvRlk12jwpQaxw4yPLncsvBVqh3bcfpT6VrfDws20rwPRxyqFH8a5/12Jym+dIob+mAVNmxCwxFwkurLYOaS/2ATDmk9Ghq/5H3G9pQtHL/xwoR804Du9YMAyPYUceuC13H507AIKz7Ny+wBd0SVac/tU2dogzuDRo/Nyy9FPxDwBQDYkbqd8vRM0/xGmy3pZ5weqIvVVidLG6z6GYVCoVAo9gqdZrKs0rmVBlsNWZ4C6XYNqLVX0mCrwSbsHLn5XOzCQXFj74h8FixkewqlNtJ8WaT5suL6st25BauwkeMpkvphFVa6NvQnQID3ej5GjSO4xowsNtHHHLKgOdaJPmN5M8ziMVmeWMjiMaM9pbH9aNwm2Rb6ZbSmRgE43SZG9Q7JjGsm281EyQYbGN7H2tlmg5pYJDLyTCaNChM00rzBPiDDmxvRdwjgtLXXMrzycF7t8yBuawMQXLh/YNXBUV8BjeAJHTMsWMhr6sqA6oN201Mi+qpu9QPQsGARVvyaNyJfyH+9lvbQPoXe69M6Whsceq9P62gasxsz6dnQn8qMnxEaNDncVGTsAHfr9zMZtbAj1+CE0SEzoaqfibSh+hmFQqFQdADklzntAffeey8HHXQQGRkZFBYWcsopp/Dbb79F5GlqamLmzJnk5eWRnp7O6aefTllZWUSejRs3MmnSJFJTUyksLOSGG27A5/PRUmYueZgz1tzI4J1j2e7aGjOvQODwp/B18Wt8X/QOTdYGAgRaXGc8UvzppPgz4ubTsHBw2ckUNHbHKuxkefKwBXYNoCzCKo1L9GkgD1QxbBOGPwx5YgW++jzGOox2zYLmWPGX0hipQ2ZjX2iU/TJSTPzT226pRg1weGI4GUozjnyMxo0jK01SzmxgIAvuY6WZYTYKleVLVo1JQLL1Myeuv4wrlzzK1N/uJM2bHbVdA4buHMcJGy6he90gNDSarHX8UPhei+sK0bt2PzI9+btdXk+P2iGcvuY67vjhbY7beGFEPwPts30y+tIR22CjLx1RY42zmpdHvYLPBgELNDl8bMvYGlV2TzVqBE/KWITBkNF4MrTBqp/ZKyRbP6NQKBSKvU+rX1n2+eefM3PmTA466CB8Ph9//vOfOfbYY1m2bBlpaWkA/OEPf+Ddd99lzpw5ZGVlccUVV3Daaafx9ddfA+D3+5k0aRLFxcV88803bNu2jalTp2K327nnnnta5M/oiklkVGQgCBDQYndOXev7c9cP77E1dTX9avbnqcE3cHDZSYyqOC4q7vBqHjQ0bEJ241lsErn6DILxQ25TCbcsfJXtri1kefL5ossc3NZ6luV8w8nrr+Tn/I/5qmQuXos7Kn4BeexhFszGCsCNsZPMprGMvi6jT/ECaRnGMkrjvtVofOolQD7gt8POTIkTe0BjismGeDtMNhiQESuPbNRl9EHml75srH2R6Mgy2TTuQ5Ktnzlp/UwKA8Vx89kDLq5b9Cxz+t2P1+Kh0VaDX/NhEy3vilvzkOQ3deeMNX9EA3rX7MfYst/x6NCrKU1dG1Vne2mfOkMb3Bk02nyQWwl+CwSswQkzjzP4WpMJPlswjybAaw++FxoENBAtPB3sdgbLSh1OxjZY9TNtSrL1MwqFQqHY+2hCiDY9l1NRUUFhYSGff/45hx9+ONXV1RQUFPDiiy8yefJkAFasWMHgwYP59ttvGTNmDO+//z4nnngiW7dupagoeKviY489xh//+EcqKipwOKJvT3G73bjd7vDnmpoaunfvTjXryCT+VVxGBLApfTlPDf4j1y16hkxvXsT2LWmrgOAE295EAAHNh8fShMufjl/zsrDwA2YPuIOylPWmcVAidkEeH+nzmNk2niRMtLwsXywfY8V6iZTX16U0mpcPlYlVfiBwO6B/eNgyDS4rhq3RdxjvOcbg2mxE1pKRXyw7xnKh7WYHyDioMBtVxsuXxBoDTbD2X1BdXU1mZvS6QfuK9tTPCEAQQEPDbWnEGUhBS7JRYqO1jr+OOgOrsNFoq2N9xhKgfbVPseqN56PSGL+8vq621Cg0WNM3OClm9UFdOnTdGrwKbF2v4HZZU7vbgW2St8Gqn9l37PN+Jsn2h0KhULRXampqyMrKSqhdbfXbMI1UV1cDkJsbXAjixx9/xOv1cvTRR4fzDBo0iB49evDtt98C8O233zJ8+PBwxwIwceJEampqWLp0qbSee++9l6ysrPBf9+7d98hvDShu6M3osklYJWf9u9T3o7ih9x7VIWh5QKcBVmEjxZ8OgF/zoQkLLl9aeHtL6tfbNdYTK56S+aUvIzvJaXYys6XBrdIYyb7S2EhwkX89qVaozdVlTFSIZngvKxcruDcbJOjt6T/HKmP0JbTdbIRn9E3oXoUkTea/cbssTzJpTDLaUz+jEVxzTEPDFUhNuokyAJc/jT/+/CK3LHyNk9bPjNreHtonWTmjP7FQGiPZlxotgeBVX+7gc5CoyobN3YITZWjBV1mzK63Y6ISR9tIGq35mr9Oe+hmFQqFQtA5tOlkWCAS45pprGDduHMOGDQOgtLQUh8NBdnZ2RN6ioiJKS0vDefQdS2h7aJuMm266ierq6vDfpk2bAGiw1uy2/46AixM2Xkxq822THksTtfadlKVsQCCkk2hmeCxNbEtdh8fSBECAAL9l/8CeRAaCAB91f5qHh1/GhoylzWlmeSPfxzujbDwpGcu2cVuojFlsZvTD7Cy1kXjblUbz/G2hsQ7wEonTAppFklmTvMabTDMG5bLRoP7sNJLtxkBcj1nAbsxv9N0ssO9MGpOIZOhnkoWYEwUtQEMjw5uDTdgpqe9LRvOV1e2pfTL60RHbYKMfHVWjJoK3VfqaV72oTwWPQ5K5M7XBnUFjEqH6GYVCoeictOnTMGfOnMmvv/7KV1991ZbVAOB0OnE6nVHpbksT+Hffrv6sv0/z4rY0YBU2jFcD+PGjoWExmX+sdlQAwTVrQnZ71wynpVGBT/OiYcEqrGhYOG7jRRQ0deflfn9ja9oqQETEPDLr+jjFeOIvlGYsn8gATB9TJaLKLFaLV1bvm9K47zQGiP5puQKQFoAaq6Gw3gljuswBY2BuLG8M6I3psZAF9kaxsXw0q7+zaEwykqGfSRZ2OreR7S5Ca8F5MIGgydpAij9Nur1vzUhu+Pl5Xu37d5bkfkFA87eL9knmh96fjtAGy/zQ+9ORNALBK8nMJnWMTnbkNrgzaEwyVD+jUCgUnZM2u7Lsiiuu4J133mH+/Pl069YtnF5cXIzH46Gqqioif1lZGcXFxeE8xqfJhD6H8iRKjrdwN7yXk+rPIN/dlfymrugnywIIfs37gnWZi03L5jd1p7ihty5G0ZrXqmkZjbY6fJqHBmstGmAXDg4sP4HrFj1Ll+b102RxlFk9Zif+jHb08Y9ZHCMLes1OSsY6UWoW8xntmflrVlaWT2mMJlGNDYDxus2U5smycCHjaArJq3HHyUZuMqcFkXXEG+3J0vW+GHeIcTQnq6czakwikqWfSRay3IW0ZKIsiIbT74qxVWNg1cFc//PznLvy9rD9ZG+fjDY6YhtstNEhNYrmpyGrNrhzaUwiVD+jUCgUnZdWnywTQnDFFVfw+uuv8+mnn9K7d++I7aNGjcJut/PJJ5+E03777Tc2btzI2LFjARg7dixLliyhvLw8nGfevHlkZmYyZMiQ1nY5Lm5LIwECEWmC4BMxAUpT12ARVvKb5OsKyE6c7S6pvgw2p/8WcQuowM/H3Z6nLHVdwnaMPunjG+N7szLG7fo0s1hJ/94siJYRK34zQ2lse43G7VYBOT6iRSSyI4xBfKzRoXFkJtsmQybeaMNYn6y8rB6lca/REfsZIwLBt0VvUuUoj5+5GSvWFvczGmDRPaYj1LfpvwYVKRv5seAj1mYuQhj6wljs6/bJrKwZ7bENNitrRnvTCMFbMKM2qjbYnM6gcS/QGfoZhUKhUMSm1W/DnDlzJi+++CJvvvkmGRkZ4Xvys7KySElJISsrixkzZnDttdeSm5tLZmYmV155JWPHjmXMmDEAHHvssQwZMoTzzjuP+++/n9LSUv7yl78wc+bMfXJpstfixhaIfmKNTQQX0Chp6EtJQ19kkYUAFha8T1FjL3rUDd4jPwTwadfZ5LpL6FMzku2uLWzI+JUluV/wUY9nCBhuigvFILKYxuyzMW4xOyEZy5bZ2eZ4hOy2JJhXGvedRh+wHeihS7MBWX5dZn3QazQiEyUL1mU2jO9jpenriBW8m9k2DjRiDQY6g8YkoCP2M9FoFDf0xtX8MJe9h+Dzri8xYcvZ2ISNrWmruOeAKVSkbGxegsASMWGWrO2TGR2pDY7nb0fRaPcZHOzsbXBn0JgEdI5+RqFQKBSxaPXJskcffRSACRMmRKQ/88wzTJ8+HYB//vOfWCwWTj/9dNxuNxMnTuSRRx4J57VarbzzzjtcdtlljB07lrS0NKZNm8add97Z2u4mRLovOypNi/h/V4/v07xUurZR0NgdDQ1BgGpnBd3rBrWKL5mePAZUHQRArb2SHwrfY1TFsfSrPoDtKVt4sf9dgJDGRkb/4wWxeownIPXBeGg7hs9mtozpshOd8QJxfV6lce9pFBr4dK2G2w/GC00y9Y/IjLUjEkHvQKwdLjuDbuaDcYfGG00ad47ZdqMvidIeNe5jOmI/Y0QDetfu16Z1hJ6mHLnWpkb/qlE02GrI9Obi0zwMqzyMbHcRg6pGM6/7syws+ABIvvYpVh0dpQ2OVUdH0Si04AL+AQvYfMHPEQVlDhodaAntsQ3uDBr3MZ2hn1EoFApFbDQhRJKdy2kdampqyMrKopp1ZJKx1+r1az42pC+jZ90QrMJGgADLcr9maOWhGB8KsDsYT8wJRNjupvQV/HnMMXgsjdKYxSwthMy7RO3o02Nt19cTL66SnemOF+8pjW2rsSEV1vUODmIA/rQNpm2PLDurBB4JPfxJb0g2IpOlR4yaEihjNgKLJVK2PWrEFsc/2UHr4BoDHlg7C6qrq8nMzIxRaedgX/UzrYVX82DBilVYI9IFgkZrHan+jKhx7TfFr/Ov/S5uzpVc7ZO+ro7aBuvr6qgaG1NgTV/wW8ESCPY3AQty4UZBHbwN7gwaVT8TSbifUftDoVAoWoWWtKtttsB/R8GneSlP2ciazMU02IzLmUdjFTb61O4XXlPMgoVhlYfRGhNlEIwlNN17S7NlDShs7EFXwyL/MoyDH71NYx6ZnVCsI7MTr24zX4y2EimjNEbS1hqFBhUF4LEHry7z2aDGFl02W383sCwwN1YUyqfFyWNEFrzHCvZlPpnZlZU17mBjXaG0jq5R0WGwC0fURBmAhkaqP6P5/a6/OvtOvi96m9AXIpnap1h0lDY4Fh1Fo9Bgez54bcEJMp9Nt2aZaoN3pXV0jQqFQqFQJAEdfrJsT/tej6WJb4pf5+8jp7I+Y2mr+NRWCAJozfcrJKrbGE+FyprFLoLIWEzuR3T+UF3GuuOVN+Y1xoSJoDS2jka3E2oyIyurtUbbLvLqbOoriHU22TiiMr7GG4Xtzg9dX4esvJm/xjKdTaOi0/JN8et8X/ROiydmVBusNCaq0WuH6ixDZaoN7nwaFQqFQqFIAlp9zbJkw48vfqYYpPgzOHndFRQ09qDKsevxz7Hijn2BAL4reot1mUtMt4fQxytmsYl+mz4YNgbL+m1G+7LPxvhX/1lmK549o8/GPEpjK2nUYEce+Ky6jQK2OaKNpQR0SUaHjcF0LEGynSYToC9nZtsoTBC9UwTynRTLF2OdHV3j7gykFAkjEHgsTTgCKUnTt+gZt+10Vmf9xOddXpJuV22wPL/SaO6X8XPoqrIIA6oN7lwaVT+jUCgUiiShw19ZZiX6FpOWoAEWrIwpO5mR248CggOa5Tnf4te8reBh6+CxNPJ1yWuEnlKmjz1kQa5ZMG2Md5DkMwbsxvKh11gBuyzQ19cvK2uMn5TGvafR44DKnOgKfET7XOwBmzEQ1gvWJNtko0BZoG0UaAyy49mNJdJsxBlr9NcZNSraDK/FzfrMJQjjUzOSAAF4rA24/GnhtGRpnzpDG9wZNHodsFPSz6g2uBNqVCgUCoUiCejwk2WttVaYVVjDa7iARp+aEeF1yZKBstT1VLq2RaQZA2d0781iHWMcZoYx2JYFysZYyIgsqDYL7mX59WWMPimNracRLXi232eLNrbFAV5DmkuAXR90G98bX4Ukj2zHCqJ3gGznG4N+2TazkV+sbWb5Ze+Nrx1No6JNcARcDKwabXg6ZXIgCPBlyVw+7P50RPq+bp86QxvcGTQCVGUH18RUbbBJ/Z1No0KhUCgU+5jki8jbARrg8qfi13wE8MfNnwgeSxPbXZvxay27bdSneSlL2cC87s+y3bVZmieReEUfT5nFR8KQX5YuC6Jl9cXyJ97AQIbSGG23tTRKryprfg1InMr2QWrowhjZGWljEK0Z8iUykjPm148OQX5QjAG8RnTdGMoZ6xKSMp1Ro6LTIAj2Tx93e57X+vwDs5ZLtcHRdpXGaJtmGn224EmZqI2qDe68GhUKhUKh2Mckz6VR7ZB6WzXOQCouf+oe25rX/Vle6/MPrln8JMMrD4+bXwDrMn7hox5PsaDwfWrtleF0sxhK/14W2JrlN4tx4pUzi3mMJztl8ZFMg6y80igvJ8u/OxoFzWuVha4qMxSqskG9BZy6u8YsgCOWQVkgLkM2CpMF2mY7UbaDzASb7QzZKFBmT2a7I2tUdAoqnaX8mvsFX5e8xi95n4eXHkiW9sn4XlZXe2+Dje/NfAzla48aBc1XlenXwFRtcLQ9me2OrFGhUCgUin2MmizbA7K8+fEzJUj32sGcs/I2+tSMSCj/TmcpD+93GZvTfotI1wyvsthIhlmsIysni5tkGE88yuIw42djmVi+Ko3m5Yz1yMolotFnDw5iokQ249aib8NM9UO+N3iLpmngbLZTYgXr+nya4b0RWV1Csk2frq/LuMP1/iU6OOioGhWdhsV583ls2FUIwxcoWdono52O2AYb7XREjQErVOaBMOlnVBtM59OoUCgUCkUSoG7DbEME4Nd8UQMNGcMrx3PElnNI82UlZNtn8TCkchzHbJqORVh1Jxd3HVKzwNd4QlLE2IZhm/4kpj7OiqXQeOLTGA+b+WFmxyyf0mi+zVhHIhoFUJkLboehAp04rwYNhmdoaDQv8C8TIJBXpC9sNJbIATCWNwvKzUaZxkGA2cg01oBC/76ja1QkDQLYlrqOHc5tcfO2lNHlJ3DMpvNxBFLCdelfje9VG2y+zViH0rgrX1U2NKYYKlBtcDSdTaNCoVAoFPsYNVnWxnzU/Rlq7Tvj5jOLG8woaOzBjOX3c/zGiylo6o4GDN45lkt//Rd9a/bHIqwRASrEDrQxSZMFvHqEJN2sHuN2o03jeyNm/iqN8jL6193R6LMHb8GMMqor5LbATsNkmVVAd49JOaMYmZNmA4BYPxKz/HphZqM+486R2Y03SOlsGhVJww7XZu4ZdQYLC99rddtpvizOX34vk9dcDwS/Ai5/Gs5ASjiPaoOVxj3R6LdBRYFOi2qDo/00atD72ZE1KhQKhUKxj1G3YbYpgh61Q8jw5rS65VCc4rE2gtDI8hRw3m930rdmf8aUncTCwg94r+fjrMv4hYDmjzoJaIx19DaNcVG0qpYF9LI8MmQnKhOpW4uzTWlsuUZB8KqyiDVk9DQXFAJ8EuPOgKQCWZCtGbbJnDSW1TufyM6JVb/RPob8eluyg9cZNSqSikxPPsduvIBDt01uVbt+/FQ7y8lyF9KjdgiZnny81iamL78Xm3Dwn2GXE9D86L9Yqg3eVb/SaG5LX74mE5pckgqQFFRtsHkdHU2jQqFQKBRJgJosa1M0utcNorUiAAFUO8rJ8OZiFTY0oGftUG5f8CZ19ip61A1GA1L86Ry6bTIHlh8XNWm2yzOjp/LXUL3GWMpYThabmeUzi5HM6kikjNHnWJ+VxvgafbbgVWVRmkMGmo0EgE1OGF0Xma2X21gwhgNmgbhRQKwdrLdllt6SAykL6M18lNXTkTUqkgpHwMWJGy5vdbvVznLu2/8cLl06i5Hbj+L+b+fjsTSR39SNBlsNx2yejjVgo3/1gSzP+YZ53Z/F+IVRbbDSaOY7gLBAeWH8fkbqSGdugzuDRoVCoVAokgA1WdaGaECmNy9uPoHAp3mwCSca4NO81NuryPIUhPNUOSrY4dpMg62WQTsPxtp86KzCRp67C3nuLlF16yfN3u71H17t+3cEIiJu0ccyxvIY8pgFwMY8GPKb2TXmM4vfjPGezHasQYHSKLcbSyMaBCwxDDQ7IIi+skwD7GJXHumISka87WZ+6Msa69XvkHjiZbb1I0m9fX3ezqZRkXS0xaHJcRdz3aJnyfYUYcFCrrskvC3Dm8cFy+8DQODn19wvMa7Nqdrg6DJKo8GOFvyL18+oNpjOp1GhUCgUiiRATZbtQ0KxQkDz02irJ8PrRABVzvKIq8AAsjz5ZHnyAa1FsYQGeC0eFufPjxrMyPLKchjjF7PPsnjLGDjLYqF4MWCig4pYeY1l4tXR2TVa/WD3gtcucVqfUcB6Z3RdPTzBBREDofwyMbLg20yEsf5EBBntmB0w2YGRHfBY9juLxthNiKIDoaFR2NTDZNsuApogzZeFRVilt/zLyqo2OPbnzqLREgBXEzQ5iRau2uBo+51Fo+pnFAqFQpEkqAX+2wgB+DQfgeB0gZSdzlJWZS0kQIBMb244nshr6kphY+QgRQv/axk+zccr/e5lVdZC0wBbN+8hjWmMeTFsN8ZisjKG+RVp3caysfw1xoyxYkVjPUpjfI1aAIrKgq9RBrTIQl4t2r4z0JzNLHg2OmkM+s1GgkabZqM1ozDjATAbSYaI5Y/ZgehsGhUKwCJs9K0eGZGm2mClEeJr1AQUVIBF5rRqg6Pt68uE0ju6RoVCoVAo9iFqsqyNKE9Zj8fSiBZjF+e4i+hdsx82YY9I18cR9bYa4l0RFosGWw1Lc78O2zWLmULbjTGrvows4DYrI0zKGMubxWzGuCwRe7LgXWncPY0akNoAVuNC/RKnyuwEb6XRUezVLfJvrNTojH67zCFZQK8frRl3nh6jSH1Zsx0u2/GxDkZn06hQGFiZvQC/7qoy1QYrjYlqdDWB1WfIrNpgpVGhUCgUiiRATZa1Im5LAwECCKAiZRM7XFujgk09Ghp24cD8ejFBrb0yfEumHz/Vju20ZPIsw5vLuStvx+lP1VmNjyxIlgXPsrz6NGOZWPvDLE+iZWQDh5bUozRGYvU3D2Jkleky11ijN9tEcxbN8Bcr4DcG/rJBgNnIK9aozohs4CArY9zZZiPZzqZRkRQED1dyjCo1YVFtcIL1KI2RWP3g9JhUptrgzqtRoVAoFIokQE2WtSIBLcBPBR+xKX053xW9hdOfskf2NDSKG3thFcGl5bamreaVvvfh13xxSuptwIjtRzB+65SIdLO4SBbrmMVaxrjLLL6JdbLQLC4z88sYJ+rfm9WrNO563xKNmpDolRRstBB1s3GWP/gXUc54dtkY8BsFRDkkESQTZxwo6P8wbJPtXNnOMfoho7NoVOxTBIIqRwUgKE1dt6/dodK5lZ8LPpZuU22w0hh6jaXRGrlEq2qD9eWNdBaNCoVCoVAkAWqyrBWpSNnIY0OvocpZRoYnj7ymrqZ5BYSvQpNt2+HcisfijkjvWt+fab/djdVw22Ys+xvSl/HU4Bv5tvjN8LZETtzFOkEoi7uMdctsaTHyGPPGyqP3Q1Z/KE1p3DONEJwwCyPkmbbbwG1oSWxC90RMGTK7AvkOiTUI0P8Z7chGZcag3ajJRKP0QMQL6DuDRsVep9Zeyf/1vxtBAMcenpDZEwSwJnMR/xk+ky1pK6O2qzY4spzSaF6HRX+2RbXBSqNCoVAoFElCp3saZrB/D7B7y+XHplvdQH6/+s90qxtIlrsAC9aY+ctS17MhYyn7VxyDM+CK2JbtKcIiIstbsOAISB49KMFjaeK5QTfzbfEb1NuqTeOWeBhPHOrT9MhOGiZi12hDi5GnpdsTRWmMtB/apglweKAxxSRD8+eAFn1lmTMQXLdsg8OkQuMITe+Y7L1MuFkZM3GyQN8syDdolOaLt1M7qkZFwjRZG7AICw5D+74n2ANODqg4Fg0Lee4SADalryDbXUiGN7fF9vTj1NAhLndtJNtTGNNvQYA5fe/n19wvI2ypNji2L0qjofkR4HAbMqo2ONpeZ9OoUCgUCkUS0Okmy3Y6S3mvx+P0qzmA3jX7UdDYHUsrXWBnwcpRm6cCkNs8iDFDA4obepPTVIwwTDVogFXEnmiLhQB+yZvP/K4v4te8YZuyE3qh/LHim0SIGxBL6olVf7z4UGZLaWwbjfFGPtVWqLJBpu5WGgtgD5gYlJ2lNhMWy/lYAwJjfWZl9XXHG92Z7fDOqlERE0HwamOH30VRY6+obT6LG2vA3uL+x+VPZ3T5pIhDkuUuIMWXsdueVju2k+UpCKfkuIvjXsGsYeGMNTeyOX0F5Skbm9NUG6w0xkfa/Kk2WGlU/YxCoVAokoxON1mW5SlgwtazeG7gX6jot5ExZSczcvtR9KodhsOfsscTZy0LGDVcgdT4GVuAANzWet7t9Wh4oiyyzsRONhq3m8VfZmn6uCeRAD7WSVOjPlm6nvao0Q6kAR7ADfiTQCM03x4T5yAEiL6yTBPQxRuj4nijP5kgfaButi3eDpH5AHE1RtgyO/idRaMiLn7Nz+dd/o9fc78iy5OPRdiwChv7bZ/AkJ2HoGGhzlZFujcHi3C0yLbsEGR68/bAW40sT0GEXXsMnwTBpyz7NS8rsr+nuKFveLJM72N7a4ONGmXpepTGaNt7ojEK1QZ3bo0KhUKhUCQBnW6yzCqsdKnvx3kr78AecDKv27M8sP9UetUM44w1NzCoasy+djGMV/NgE3ZacrvopvTlPD/wFlZkf2+axxjkmsVCANbmdFnAbLQls6+3LduOYZvRvsy2Mb9ZPmMZM42xgn6Zv8a01tB4NHAqUA4sBb4GMglOQtUDO4GaOH63tkZE8DbMKKcNAbrXAtvt0Eu3xJ4GpPmJdiiWI2aOy3awvrzZATL7IsUqF2tAIjuommR7R9aoSAi/5mNR/qesyVzEDtcWApqfvKYu9K4ZTmgBgBxP0b52E4Dtrs3kNXVBa8GJop3OUmaNuJBN6csxeyJne2uDjbY7Yj9jCzjYb8cE/DYPq0q+or4p/sOC9obGRPoZ1QbTeTQqFAqFQpEkdLrJMgiu/dWjbjAA56y6lQlbzybLk0+Gp+XrvbQlthZecQDQpb4fQyrHsSz3GwLsui/OGCMZ4yw7kAGkEJygsQNHAD0ITtY8DVS12JtIYg1M9D7qMZukkxFP495gdzQCfAZsJjgpVgqEhjBWgpNm/ZtfFwOV7B2NWshhYwX6NBG8Cq5eMs4u0l9ZJnbll9ox2jcGzfECaNkgIVZwL9uBsu3698Y02SjSuK2jalTExB5wctUvj+O2NvBFl1eos+/kyM3nkusuobXXytxT8pu6tSi/RrCfKWzswcb0ZRHbdqcNzm/qyqQNM/mpYB5Lcue3yBcz/2Kld9Z+RgA+i4df8j4DDXxu84myva3Rq49EVRscXZ++XGfSqFAoFArFPqbNn4b5t7/9DU3TuOaaa8JpTU1NzJw5k7y8PNLT0zn99NMpKyuLKLdx40YmTZpEamoqhYWF3HDDDfh88c+CthSrsNGjblDwVplW3B2CPe/vQyfaWoJN2Dl5/ZWcsfpGnLonpRljnpBvhcCRBCfG8tl1FVMF8DmwHlgFNOnKhWIZWdwj0yCL6WTlzU6YGk9KxqpL/yoMf2Z1GNnbGgEagCUEJ8y8uvx+gsfjx+a/0cAwdv1w21qj1S/ZoD8DrAVfaiVL7GX7JWVkdswOrL6MTJTsRyYbIcoExvthGTRG+Wusw+iv0U5H0piEJFs/oxFsi9N8WRy/8SLOWHMjee4uSTdRBrvXz2hYKGzoGfUQmt1pg5usDSwsfJ/tKZvDdlQ/I6+3NTT6LB58mgcRo7K9rTHiyjK9E6oNjqzD6K/RTkfSmIQkWz+jUCgUiranTSfLFixYwOOPP85+++0Xkf6HP/yBt99+mzlz5vD555+zdetWTjvttPB2v9/PpEmT8Hg8fPPNNzz33HM8++yz3HrrrW3p7m4TQLAq60earA1AsL/fmrqagLZvOkObsHHy+iu5+ce5jC6fRLo3B+MtNi7gWOAoYAUwD1hJcGKmsflvHfAC8Da7JsuMsY4+DcxjqVCcZRbEG8uYxWJmsZXxvd5HY0wWL3BPVo01BI9TAXCg3j8NhCX4GtAgYAG/NfhXlQXlhVBRAHXp4HHIY1YzjQ6vIUGPtmtTqWQt8EIv0c+D1VcWa2Sod0QWaBvtycqFthvrNKs33pdBtl3vV6JlzGy0J41JRGfpZ5KNKav/zMFlJ0WkGb8+FixYhTVmG1xr38nSnC/ZlrIqvD1Z22Dje72PHaWfkfkr1abt+mtIhZpMqM2AJhf4rC3rZzRjgrHy0KtqgxMvY2ajPWlMIlQ/o1AoFJ2TNrsNs66ujnPOOYf//ve/3H333eH06upqnnrqKV588UWOPPJIAJ555hkGDx7Md999x5gxY/joo49YtmwZH3/8MUVFRYwcOZK77rqLP/7xj9x+++04HC2/PbG1EM09ujHGyG/sht3vbM4ToMlWh0XYosr6NT820fZ3v1qFlYFVB9Nv8QFUurbxbs/H+KLLy9TbqkkDziN4xdgrBK9eCsUpxmBbFl+ZYQzuzWIyYqTpt+nLy/xINLYylm3PGn3Al8AZwAaCa5z5rLCxZ3DQAuC3gL/5K+a1ByfPNAF2L6TXQY+NmAe5Eo0xhTQ72GiJ9jXDbxgEJbIzjO9jYbbjjHXJgv14ZfTI7JnV0xk0JhEdtZ9JdjQgxZ/GOStvo9FWQ7anCE1obEtbE14v0+VPpbihD6Wpa2iyNnaYNjiWXx1Zo98KZYUQaD4D4nEE0wAaUgiesAG0AGTWQq/1xGwvdqefifrcWdvgzqAxiVD9jEKhUHRe2uzKspkzZzJp0iSOPvroiPQff/wRr9cbkT5o0CB69OjBt99+C8C3337L8OHDKSratQDyxIkTqampYenSpdL63G43NTU1EX9tgU/6hEmNHE8R1ubraDQs9KkZGRUvuK2NVLq27rU4QCN4K1BhYw+mrbibO354h2O3nskMNNYB8yG8qpnRV43IeCiR4F6T/LXUX7PPsngqXn7j+46i0Qd8AYxtTnO7gmf0Q38NaeB2gNsZnCiD4ESaxwG+OPO0Ro02XxyNzRs3OqM3ZfjBEYjMFz4bbRY0G8XrD47xh6MP3GWvMjuY5I03+JD5YGazM2hMEjpqP9NeKGjqzo0/z+ayXx/i0qX/YsKWswFI9WVwzObp1NkrcTdPlEHHaYNjve9IGoW268SLxwEVzVcpVxRAdRbUpQWvWA5YCV9lFrC2vJ+xe0GLFRipNjj6c2fQmCSofkahUCg6L20yWfbSSy/x008/ce+990ZtKy0txeFwkJ2dHZFeVFREaWlpOI++YwltD22Tce+995KVlRX+6969eyso2RWL+DQvAoFNOOL242bBrcufSro3p9lu8N/ewoKFbnUDmd7QFyvwKbu0QXTsZJZmTDfGasZt8cq3pB5jfJXo3uuIGiuAvkAW0Jiiy2cMeoXhL0bdMo1Wn24QE2NHBqKTyPCDU1bGGNjL0mQBvVkZmUYTzdI8xHiVYeZbZ9O4j+lI/Uxr4LY04tVkiz+1HRo0P7EZ3NYGPur+DBZh5bS11+PXfOxwbQU6ZhtsZqcjaRRacDJMaMGrlIXROZP2yaLrEBLR6HQ3r4+pT1RtsNKYBKh+RqFQKDo3rT5ZtmnTJq6++mpmz56Ny+VqbfOm3HTTTVRXV4f/Nm3a1Cp2K53beKfXf/ipYB7lKRvYkPHrHtlL9WWgAaWp66i3VUdtr7NVIXT/WgsBbCn4iJre/+Y9BD7kMZcsJoLIuMfshKUxfygOMtqTxXL6z/qA2syXWPZlcZu+3vaqMbxGDGC3BJ+Q2c0SHMxEVGzmkM6JRDVKHZM4usUBfoMBVwDS9ff4ypCNDI1nqI16EtQYE9nAwrhN/znWAQ7l6cwa9zIdrZ9pDfyaj4AWnHEwa+OMCCBAoFV6Gqc/jRnL7+OUdddw2LbJLM77NFxHiPbeBsu2Q8fSqF+LTGjBq8i89uCVymEbcdqn0KRaoho1YUhXbbC8XGfXuJdR/YxCoVAoWn2y7Mcff6S8vJwDDjgAm82GzWbj888/59///jc2m42ioiI8Hg9VVVUR5crKyiguLgaguLg46mkyoc+hPEacTieZmZkRf61Bujcbhz+FN3r/i/KUjaR7cqixV+6x3eKGPqT5sqPS3dZGAgRwWxtxWxv3uB4Ixh6b01ewfNDNpFjrqWVXPBLrxKQ+jjLGXMYy6LYb85udxZbFRBqRfslejX4b7evr7AgaG9KCa5Kt7ger+sGGnrCpe/B2l4oiqE8zOCDbQc3OhK4OSFSjza+7SkDvmD7o1cBjibbhFJCmv+RMPyrT+xtvRGo8WHE0Rh1446hR9iXS2zHRKPUNog98R9eYBHS0fgaCuzggvUYzMVL9GTgDwScg19p34LW4Eyq3KP8TvJam+BljIIDNab/xfdE7HL71TBqstVS6tnWYNlhfp9FGR9Hot8GWbs39TH/Y3BW2dgku3r+hJ5QVGRyI0T55HM1rZSao0RIIXsUc5ZhqgzuvxiSgI/YzCoVCoWgZrT5ZdtRRR7FkyRIWLVoU/jvwwAM555xzwu/tdjuffPJJuMxvv/3Gxo0bGTs2uArT2LFjWbJkCeXl5eE88+bNIzMzkyFDhuyRfwFEQgOSUN9uCzgAwTGbptGrdjiNttpWecqlWXyR5y7BihWXPxWXPzVhewIoTVnHd0VvU2vfGdYoECzN+YoHR0zHmbKBBqCW6PhKFmzH8lO/Xe+DMU2fryWDBbMBQSJ+GOsMlW2vGutToTIneAVZfTrszIHaTMACeTbw2nSVygJqnYMBC7tupTH4bvRFIziI0fQBstFu82uNFdyG1sQqgrdiSssYg/1QuixQlw0EYmiMsGHEqEW2zUSj6ehZMynTUTUmAcnez+wuoSvD9hSXPw1rIP6DZDRgxI4jsAcSv2pC9tXyWpp4ZNgVvNPzEaodFex0leKxNHWYNljmh7HOUNn2qrEuHbbnN/czacH32/OCfUZdWsv6GZ9Nvm6ZmUZNgDVA67RPnaEN7gwak4CO2s8oFAqFInFa/bGMGRkZDBs2LCItLS2NvLy8cPqMGTO49tpryc3NJTMzkyuvvJKxY8cyZswYAI499liGDBnCeeedx/33309paSl/+ctfmDlzJk6nZCXxGHg0Nz/n/UCP2iHkuIt4+sCHqXPVM/Ob67EH7DFKChpstaT6Mjl20wWEnn8ZWnMsGfmx8EM+7Tqb93s8Qf/qA5m04VIW5X3C7AF3Uu/YTgmwA2gkMhaJFcCDPIaRfTYGwsbYThYHaZLtRuL5Z8Y+1RggPBW9JxoF4LPrPuiMaIBdFuDqnTbZCYlqTMhZAfUW8BjSrQLyvfL8UUG+0b7ZwZA5nciB1teTSEBuNvqUlZWNjjuqxt39MbYyydbPtAYawfW/jMSaODHD0YLJL2sLns4sEHxd/Dr9q0dR0Nidbalr6dLQl++K3mZjxjJc/jRy3SUszptPQPOrfkaSNxk1CppPpMSqpAXtk8UfXIOstfsZqTG9z8b8HbENNubviBpVP6NQKBSKJKHVJ8sS4Z///CcWi4XTTz8dt9vNxIkTeeSRR8LbrVYr77zzDpdddhljx44lLS2NadOmceedd7a4rgeOuJ1Mr4UrvxuJhoXD1h9NvaMOq7DGLKehkebLDH8i6l1yoQG9a/Zj64Db8Ws+lud8yzfFr1PtqMBrcZMO5AG/EvkETLPYSHYyUFZGlj9WGTObseo02okV8Bu37SuN7hpwZIDFGpm3xRq14FoxEU7IkI2ozAJo8+QojZZA8ImYXpsuQ8iALqNPC96KaSTHeKGMzCezgN1sYGC0Y7SXyIGVDSpk9csOkqyszM+OrLEdsDf7mbYkgB800aJJrbZD46DyExBagAWF7zF7wB2cseZG3uz9b7wWN13rB5DtLqQiZaOuhOpnkl6jFnyScoQTssIJtk8Ba3DyzUZiGqUZQvWrNji2nx1ZYzugo/QzCoVCoZCjCSFinRNqt9TU1JCVlcUth1/A1QtuJLcxf7f6YQEIAmhYaLLW4fSnYmmbh4juMRWuzdx4yHjqbNVRWrsCfwPmAm8SHR8Z0cc4xlhMFmeZlTGzLYvNYuWV2U/E732lsWE7OLPBYtszjWiwrhdUZ0cWyPHDOyvgiSJ4riCGKIM4mx8G/gYOT4IateD6NfWpkgw6QY4AzFkFQxoitf2nGGaVxNkBMmIF0XE0mo5UYw0KZAddZk9mU19elt+Mdqgx0ARr/wXV1dVqHRV29TPVrCOTjPgF2jkC2Oks5Ykh17Ii5zsabDVoaIQeRnNgxXFcs/gp/jFyOj/lz1P9jIm/Mvv7UqNZPxNBC9onayDYzzjdrdvPJCZGkt+MdtgGdwaNqp+JJNzPqP2hUCgUrUJL2tVkOFXdplz7xc1kkZVwXKFHIPBYmvglfz75jd2Z1/0ZUn1ZTFl1E3bh2CO/Gmw12P0ubMKOtlveGX2FldkLaLTWSa0VEDzYW5s/a4bXkA19erwg31g+UWR1m9mRxYqJ5DfLu7c0Wh0Q8IFV9wvbHY1hnwxBab0FKvR3bBmFyAJkQfgJZ0b7CWuUBcfNH2UrAaYFL4oJ1mnml8x//XuzPCYaTf021mlWxkSj6ZfFaKuja1S0KQJBva2GNN/u9Vu7i1fzUG+vIstTaFqvIMDL/e7lp4KPdGm7vij2gJPP+nzAhvTlgOpnQunJrtGsn2mN9qk1+xnVBsfxy6x8e9SoUCgUCkUSkJyXSLUiFiy7OVEGP+XP48khNzBg58H0rB3KlNU3kdtU0iqLMK/JXMwr/e6jylkWN68gOLlmFrv48VPlKOON3v/Cr/NNn78LwdsvK5DHLfqYxhjYhrZphryyuEuTvBe6V7OYKRZWILP51VjGzF4yaBR+uS8yzOoLY6hUsOt22ghnZIGsMVAmcY0QvApNOhLUpfk02CyZP+7qMZQxViA7GEYtRscS1BiRDnINRr+M22X29L4YdXQGjYo2JaAF2OncttfrrXVUsjT3K2Id5LWZi/mu6E3TNrhH7RAyG9Opt+9MijZY5mMsLGhR9mTlk6mfMfNRRkv7mT1tn1q7n5H62Bnb4M6gUaFQKBSKJKDDT5btPoLNWetJoYgMbw4WLGR6Cjh+48U4AikJWhB4NY90W5+a/Zi85jqy3fJHRxuxxngYQaVrK7NGXMjGjKVR8UzofTegAdiJPGbRxzrGOMeYF8N2Y8wlK2McJMjqDpFC8LbR7kAJcAhwcbMGoy7joETvk9GHRDUa2S2NAvxuuUaZnRwgm+AP0iLxPyKzzGFZkBxDWMLHUbDraZjGwgZ/fBKnHaI5u3GHGw+EzKbMSX1eM42yL4PxAMh2cDyNZqNoswFCR9eoaBOswkr3+kExd3WAANtS11Jvq6beVoNP8+5xvbnuYg4pPQ2zK50F8FXJqzTa6qRtsIZGdbqbipTN4Sdh6kmmfsZoRwADqg7ioqX/wNn8FOq27mf2hUYg4mnI0ualNdonQzZ98T3qZ1Qb3Pk0KhQKhUKxD1GTZSYIBPVpGnZrFnXO2uY+XbDTVYbA/Mqy4K2bbspdm/ih8D2W534jzZfmy8IZSE0oJtAAZyDFNG9+U3cmbpqB3e+KikM0gldkdQEqCU6YRfobWY8x0NbHYPq4LF4ZYVLGWD6Uz+VPxRFw0gcYAFShsRmNIZun4ik7iZcaepNadTA24TC1Jx2gaOC37voLWCM/h9L06TtzoT6teZsl0s9ENVp1V1mZxaX6MgcCEwAHwQcx9CA4OWgzGtEbAlL9OkPRo1fDKCm4P3y2xI8jgBYgOog1BLYCKJXM55Z4gxNmUUG9LIA2+zLKAvoYGiMwitSXNTuAJhqj0oz7vbNoVLQpxq+JjLLU9dy3/9l83O053ur1ENtS17RK3WZ9jAAabNWsyl5o2qa7fOn037k/1fbSqKuvk6WfsWLBIqyk+NMYWnkYFmEN153jLubQ0tMYvHNslI24/QzBviKRfiaUryoL3C4IaIQnsFpDo1k/oxGs32eT27O0Yvu0O/1MVD1GkaoN7lwaFQqFQqFIAjr8mmW7S0AL8MnAeQhNUNjYm2NWnkiDow6v5iagBbA0P01TAAHNR4OthoAWIN2TA4A94KBPzX7kukva3FcNOLj0JDalr+C1Pg8iDJGGC8gHVgNeogNYM5t6YpXRxzjG8sYyxs/OQAq2gIPfr/oz/W11/FD4HmWN3Tkw4GJFznd0rxvIcRsvpNFWxzu9HmFl9oIW+VuXDpu6xXBegs8WfAqkJQBWH/Rev2tB/EQ1ahbwS8ro8+i3fax739i8PRvYD9gCVMtGRUB32W2Oxgp074UWHKzJdofsOEJwkWapfYM/1ZLWxBEAq2DXtLwxKI41OjeO9hLUGFHezLa+jLEevX1jGb1tmU9G3412zPK1F40t+B0pdhfBlrSVdK0fGDUODn0uaOzBjT/PJsddTJ29kmpHBZvSVtC1fkCrP4BGAF+WvMJ7PR9nXeYvpvmc/lRqUupYWPxJuFwy9DP2gJPihj402GqYtOFSetUOI9tdRIovgzf6zGJR/icUNfTmrFV/welP44gtZ7Mo/5MW+VufDlu77JqIioUmgn1LY0rwScMOT/C12+aW9zNoYLFAwOT8nXGfWf1gkeUVMW6D3I32aXf6mZQGgpdYqzY40nZn1Kj6GYVCoVAkCWqyzBSNrKYculZ3p+fOvmhAZcp2Sp2/UdjYPSLn+oxfmd91NgOrDmbQzjGsyPmOL0vmsCVtFYdvO5OjN00l192lTfp/AdTbqlicP5/fsn8Ip+njjywgAyg3lAvliVQdud3svSxGiuWjLF+PuiGcsOESetUOI9+XRnrh+xT+PJtUTw5CE1Q5y9ju2gxopPqyOGbTdFZl/cQvefPjxpGhev1WcDsl4oyiDYGeP/TLcMCOPChuXkJIBCAgW8m+2a6/eTbSUwd128CeDpouALTGeC6ExbrLRwFUASsEHNwAb2eCPyTYbNRoPFD6HWEoY3YchYWI23RoTotZsDl/peRKghw/ZPiDDyQI59e/xgveY6WZaTQLzPX+GgcOGMqYaEx44KB/7YgaFW2IRnFDn4gUn+bBJuyEDoyGxsrsH5jX/TlKU9fRYKvG5Uvnlh9fpU/NiLg1+DU/lak7yK83X8xfT6VrG2szFzfXHcTYBud4ihi4fRjzC3xgj84TqTByu9n71uhnhlYeyrWLn8aneUn1ZYYnEwVwwfK/UW+rxh5w4mi+eltrbvD0tuL1M25n85McjeKMog1GvLbgnwZU5UHBtub6LOBICebXDO2vpkF6Nvh9kN8FxhwPbz4BVivYHCAE1FdH91M+b7AMgWY7Bjd9NkPanrRPJknh99quq7ZDWAO67aoNVhoVCoVCoUgC1GRZMwG7hrfYuqvzDti4/Yt/kFGTCiK4ikuP6t70oHdEOQ3oUzOSXjXDWZf5Cy/3u4cFhe/TaKsF4NU+f2dR/sectfIW+tXsT4ovg5Y+/TIYiwTwWTyI5n8N9mrq7FV8X/Q23xS/wda01Yjm5xEag/wCgrf3bdb5HI8WxPtR9sy2G/NVOreS21TCxvRlVOd+ydDaYaR4s7BiBQH5TV3Jb+oa9mGns4xK11ZGVUxkc9pKylLXA0KqJ+x/zI3BP60JLFVgqQHbOrBUgkiBQCZofqjzwrZtQCB4Bj8gX4YOIYJPwEQE3yOgcUdkvRa7+f63OoMDI80CtpTgoMhiB18F5CyE2mLwdQ/a0dKIDnBlGvXbdUGrZkjy2YJXOpQV6SYXm/EbrwqLEh5M324L7m9N54tFgE0W+MYbGcfwPVGNEXmE4RWid4LRL5ntWIMHszIy3zqKRkWro0HzxNgu9E9fFsAXJS/z5JAb8Frc4fR6ezVlKRsSmixbm7uaH7t9z5mLz0NDQwBVjjIyPflYsFJn38nXxa/SYKsl05tHecpGqZ/6r0zXugF0re5BAHd4eyJaQ5rMbBvzhki0n7EHnNgDLlwiTVK3RrovOyLdJuxYsGAN2PFrPvyaP+pnYazTKrtaS1LA6YC+JdCzEGzWXenFOdAvG7ybg31HVh506Q0BEflE5VDfEpos0zRwpkLvYWB3gK35hEVjXfRkWWMtNNbDzjJwN0F9DdQ090+aBjkDwJsP23bA8k3BetaXQ2Vts63daJ+i+hkrNKYGT0DVp0aW91sNE2VGVBsspzNoVCgUCoViH6Emy5rx9LJROSUjIiCw1qbj3+TDudKDY5MPa20AArL+X/Bbzg88OvQqutb3w2NtJMWXgUVYabBXsyZzEfcdcDZd6vsxvHI8J66ZicVnJ4ucqImzAAEabLWk+7IQCNZl/sIPhe+yOf03ylI2hCfMahzb8VrcuK0NIXdNBxZdm7fvzvPVZCcBzeKf0LZEBklOfyoHlU+ipKEvfWpGkJG2Gq2pCz6g2r6dTG/+rnlLzUe9rYbS1LW4fGlcvOwf+DQPzw+8lV9zv6TeXhXlY4ioq8qaM1oawLYGbKvBWg5aHeCX6xVAk4kOvW5pzBqITPf7Ddt15b0mlVQ1vzqXg7N5gKW54JVcKBwl0ScTYBiU6H12u2B9L2hyGiYXZSNWYxCuE+LRomPelAAUepuflCmzLavHLPhvgcaYI9tQfjPbMTRK6zD7cXRUjYp9ToY3j3RvDgHNR4Y3j22pa7AHnHSrG5BQ+d47+9J3xwDds6IFb/T5F0MqD6F/9YHcv/+5rMtcjPGW/lhfwRE7jiCg+Wi01rZYT1v1MydsuIRDSk9Bk541kTO08jAu+/UhutcOZmX2Aj7s8SRb09YQOhnVon7GAi47DOgGXXLh2ANgcA+wWyVGAEYm7GYEmbmRnx2u6Dw5hQkaE8FJOoCqevjsF5j9KeysJ+H2SQAeR+RmjzPYzzSmGPoJ1QbH9qGzalQoFK2Dtps/KhFnFnt37SZiW6FIItRkGc2BXU87wWXIdv34fdlWfNkWGoY5sDQK7KV+nGu8ONd5sW33o3kFO1LLeav/M2xM+ZEs0YPzV/yNakcFmZ48rMLGG33+hdOXSp+aERQ29uSjbs/yvfYZS1J+4ErPHbgC6Xi72Qg4gvWKBjeOHSnhGGNet+f4tNsLTFn1Z0aXTeKzrv/Hb9k/4LW4TWMnY7zRDfAHUsiuG4Q9fVnE1Qiy/EF7GgJBQWN3ah2VNFnrY+7DeAMbfT057iIKGntwcNmJ/FD4Lsdumk5dygYydo4loPmpcpaT6c1DEJxKtAgbGd5chlYexuL8+QTwk9/UnT8sfpJfc7/inyNmUG+viooZZc5pPrAvAecPoFVF55WV19s1SzPGgLHiQLOTujL/jSdxw+tm18MH9WCtB2sW+IviVNr8XhAcrDg8wQFeQwo0pUCTC/Or8BIZwWpQ6ghOmKXoBGqA0yjYbCeZ7XwzYg0IjPWZldXXnYBGaVqs/B1Zo6LFCMBjdbOk5Ge6VfWkqK6kxbtWA0ZVHEvv7+ZhERZc/nRe6/MgPos36vZNM2yByK5fQ+PkdVfg8qfh8qdz6LbTqbVXUpGyMaF+RsNCtruQOnsVjbb6uOPx0GcACxqp3iwa7NVRk3My7UbM+hlHwMXY0lMYUH1QTJtGUvxpjN86BYDetcM5bNtk5vb9O+/3+C8BzSdvpw2/EQ3oUQhnHAZDe0LXfLAZb0VPVjSwNPuYmwGnHgLDesItz0NFTXReQNo+VWUF+xmfDbx2qM0I9jemky+qDVYak/23oVAoFIpOR6eZLBPN/0tvgbSAu7sN0yhOg0CqhruPBXcfG5o3BdvO4MSZZVM2o2qO44S1U/lg4Jtke4opauwZrvPCZQ8AGo008CB/ZmPtOt4KfMIU74WsZw15mcUEzhhEIL25bl8G9nIfKb96cK7yUOTuTVFDb47aci6ZngLGlP2O1/r8g9f6PGgax+jTM73ZlNhqcTT05OqFr7A6YwUfdn+SldkL8Ft84Xxei4d6WxUAKb4MBlaNRiC4aPnfabLW80veZ2xJW8Wy3G/Ylro6Zp3GuMcYG/WoHcrU3+6kNHUdW9JXYcGCy1YDTd1wBFyUNPSh0rmNLE8BNmEPl83y5PP7VTdjCwRvURKa4Lec78NX1+mOWNivgGXXB0s9OD8D+3IQqeAbCMIOts3B2zBjDdNkk1yJbJPtj1ixpdGe2SA1lJYLeD6AhlMgkGVi1GCsvDD4JzTDBJnx7DSR5aT5dPllS7lZRPAhBN8aRZmNcDF8lulIQGNCZ7p3Q2PEq7GuzqJRsds02hv40wlX8En/9xlQMYQbPruNUZsPxul3xi+sQ0MjT/fwmLNX3RJO313y3F3C7ydtuIyR249k1oiL2Jz2W8TTLWVtvj3gIMddzMrsBTTaatAAi7CG1wKrtVeiNU+FhcpZhZXetftxzKZpDKkcx8rshSwofJffcn6gxr4jbp3x+pmCxh70qBu82/sjWF9wvcxjN01nftcXabBV67bJ+xmrBY4cCRccCy4HZKQ0Tz7tyW9HBG+FDPihrhq2roHaaqgshdyi4C2YucVQuxOams9rpWZAek5w/TKvG4p7QWE3gutuiuAtm4n4pGkwoCv85Sz4x+uwoZzYbVfz55pMqM1s3qTaYKVR9TMKxb6hra7iai27xivU1FVniiSjU0yWCWAH5diwkU1u1PZAugVfvjW6oBQNYQdvoQ1voRXt4GKKawqxbHMztvR3fLn/Vxz2y+E4PKFJnuD/TlwcwlH8ElhAJRW8yyu4aSIroxtHpA5GhBoLO3i62vF0taFNSGFQ5VQGLz+RtJRC8Ap2OrfxbfEbJp6BLeBgaM1hVKfuwGtxM2PpzQwc9Ce0xp44fFkM3jmWQTtH02CrJaDtmt74qmQOzw66GZc/jfNX3Eu1o5z+1QeS19gVv8WHX/MxfMd4Jm6awQMjzyXNl02TtY6KlM34NW+UH/p9b4ylluZ9xXOD/sINP79A79r98FjrcWp+8KdAs4ZsT2H4iaO77GrkuosBaLTW82GPJ3m71yP4LNGLiGkEA/TQ7TGWGkh5CyzV4D4cvEMgkA5aA6TNjt6XImREY9di1VYQKc0ZLME1zSwC0usIPuHMFlxrrCX4veA33H7pawoOaFx+F66mFJpowm1vwu0XQcd0O7MqJ7jbUj6EhpNBhG6/0QyvOsIDO1lAGqNczGBdg502qLEGb73Um7ObBdLxgnGD/agZyVi+mtmLVy6Oxph5ZXY7mkbFbiOAdwa/xkcD3sVv8fNr0WIuOmMKV335Jy76/irdLZEtZ08myeT2oGv9QG5eOJePuz/LnL73R2wTzXXaAyl4LY1YhBWHP6X5SjRBpiefs1fdyoCqA3H503hk2JX8mvtFuGyeu4RpK/7K8B2Hk+bLRgOKGnszrvRU6uxVfF38Gp92+x9+zccO1xbplc3x+pnS1HWszvqJ4ZWH79G+KEtZx3+GXRExUab3IaBBXfNyaA4bnHcUnDgaZs+Hz3+FcUPg8knNk1O7SX0NzH0Itm+Bmp3BCTChPzuhBR8QEwgQPmsRWv9SBIJjD1ca9B0GTY3Q1AB9hsGgUZBdAMU9iT1BocHwXnDz7+G2F6BsZ3M1cdonodpgpVH1MwqFwgzZrZxaqPNQKJKDDj9Z1kgDpWwkgyxyyUcQfXWZt8iKSNmdwYaGsARv1yQ7hfTBQ+nj70XVfjZSVwaCt2uWB2/XtGLhSE5iGKP4D3djw86ZXIi9sIQ66TydhnBqZJT0geLeVBwscGz2Mr/2AxpFE1mNBVTbK8K5Q7FGmi+L8x1P4j+gCIGftNz1WGtqEOW9oXk4pmGNWNQ4NP+S6y4BNIobeuO2NvBBjydZk7mI4zdeRGFjTxx+FwHNzwXL76Nb/UAAFuV/wv/1v5sGm/H+DJmiUH2CAyqOab69s44UBFZrE3izEdA8kecnLbTYv44AghpHBT/nf8L8rv9Hk7Uuah8Ym9jQRBkaNPwe/Hm7MjoWg2VnsIw/KB/rVsACTUdDoAACGc2GrCCcBEcJgeBnSwByt0BO1S4HQm2/vq0P+AyDGwnW0KScCNrYf/tALlt8KR5bFa8ccy+P5Nag+cH5NVib19v2bADfCeD8ClxfBH0Wxu+TLICOFfgazwSbbde/F8Gndfoldns1ReaT2jHaNx7IeP3mXtIYVZ++XGfSqIhA2D0IX/Mq6M0z7cbJnBWFv/LMQY/i1/zh/eixeHl8zL/ovbMvR688IfykxmRAA7I8edTrJon0X4nqbCvejCyy6os49ecpZHsKGVlxFLX2Sg7dNpk+NSMIPTxg5pKH+bDHU6zI+Z51Gb9w7MYLGFN2ctTXyypsZHnyOX7jRRy9eSoCwarshTw38C9syFiasN8AWZ4CsjwFe7QPBIK5fR9gZfaCqH0Q/iloELBCegpccnzwqrL/vA0f/gh+AV/9CseNgu4FsLY0eJWWvYWRl9UanDDbus7ghI5A6EI8Xf8jdA8eaKqHpd/v+ly6Hr5+G4aOgWl/iT1XFrLbrwT+eQn86eng4v8RJFP71Bna4M6gUaFQKBSKfUyHnyy7iJMAPxlkUUgJOeTTlZ4MYBjd6EU+xfh7FsrXa2oRQQNOazq+7lDTXaD5mm/XXOvDucaDfYufwsYu3CL+hQc3qaRTXWK2iIfetEYgTaNpoJNDxZ84wH0h/k2VfFbzMD/4X6Y+sANNhGIOC74SB9aM4CVOols5LG+gbv+RUJhCylIP1srgYE1f69Gbp3L4tjPZmL6M/+t/N4N3jiXbXcghpadgFXbSfPbgpJoI0KdmJFmeAixoTNhyNquzfuLzLi8ji3D0MVe3ukH0qBtMo62WVF8WS3O+5vBtZ6I5yoMzPMKGIEBp6lq61w2KmigL2tNI82ZTkbKRgTsPIr+pC6szfw4/fVSE/2u+baUaUr4AawU0ngD4wb4G8IDmA8dPutjMApq7+bMA+woQaySHowm0xl2fqwQ06C5us9iCfz7dFWMBb/zJMotj10RbWiHUOt000kQqdmw2CBQGffQO2DVZRvMabJ6DwfUx+HqCd6DhAMje6/aTNDCOFayanMX2aFBthS6G7E5jPTJ/zM6ES+qJCrj3osYou/o8ssFBR9WoiKDigzPwNBah+S1oVVnYNnfBtro3jgUHoFVn4nbWc8dRV7Am+7ddhZr3aa2zhj8ffzVf9P6UKYun0mdHP5y+FGxRs957n4AWYIdrK7aAA5/Fs+srpUFVjoUd2dvQ8uCk1Wk4/an0qR1Bn99GRNjQCN7iedaqW/Ba3JSmruWLLi9Tb6uKehLlrjIajkDwMtmhlYdx/aLnmDXiQtZkLjLJH9qdGgWN3eldsx+nr72O7nt4GyZoDKoaw88FH1NrrwzXBcEJLDSwuWDccDjhCBjRB7buAJ8fxu8HKQ4YPRC65AUX9S/MDt6m2VJcaXDOjbDml+BJlcptkJoZfIBAaubuKUvPgkVfBHUk/LPWoCALxg4O3o4pkrV96gxtcGfQqJAjOyOr6BzEuupqTxbcbyv0vsq+t+o7rGgHaEJ0zG9qTU0NWVlZnFo0klPHXI2tBhybvVgqvGypXcV2fyllbKWBOvJ692H40GMY0fcYCrN6oGmtPUgRaAGw1AZwbPXj+i34dE1LXYAd52Tg6WHfLZsEBNvda1he/SE/73iZLfU/0aWmH38Y/A2BrmmAIK3sMbLWXc2OIR/jzjwMS6PAuc5L6mIPjg1eNLeIiEvWZvzCVyVzyfDmcuTmc8NPpay178Thd+EMpIRqx+0UON0aO1yb+bboTT7s8RRlKRul8ZBN2Ll54VyG7ByH19JErb2SFwbexgXL7yPTsQMG3Qw//h9gJUCAGsd2Mj35UVdaCMBDE5VUUM42NlhX8W3muyzM/Qhv8wSWrwmEL3im3eMDQs8zsDQ7FcA0uJP5DtGxJZjHp8a8ieYz+mHRNNJECnZsNLpqqcsQYAX8YKnQ2bGA+9DgpBkCGs6EQLakIpkTRpGhyhMto9tuBZ5bDQfXRW76OgNm9JVcdSbbGWbvYx0UmX9tpDEhvxLxsZ1qDLhh7Syorq4mM3M3R+kdiFA/s7QaMoy7I6ChNTnRGlMQVj9bmhr4bLmP73+DVVvA7SV8FanWvJ/TmjIpqivh7J+nc+5PFxLQAliEdZ+NHQXgtjbwTdf3eWq/22gQpdi8wSforhzQ/GRdASW1XXhqziv02z4orq8CqHaUk+rLwhFIbK02AVS4NnHnQadQnrLB9CeT6+7CXd+/R25TCRZ2f78JBCKrBs+YH3EPXUZZn4V8nvI+dXV+nClgtUG/EcFJLFcq5HcJTlzFbNCTkNAtmmHfE6SuEWa9AZ//Erx6LmiMfd4+JVymJbaSrA1OuExLbCWZRtXPRBLqZ8L7Qz8p0jGHcIoQsgmw9j5ZZkxXKPYBUe1qDDr8lWXVDeXs3/dYcjJK0ARoTQLbDj/2TV78G6upqinl9cJXefO7f/LiZ7cztOfhHDZsClaLjZr65tscNY2CrB447alhu6nOLNJd2aSn5GK3OYkdGQRv1/RnWWnMstI4yI7FLbDtDODL292JOQ0sGvkp/TkspR9jC2dQ1riCiu1LCeQ6wrlsDUsR1jT8zh6ARiBFo3GIg6ZBDmzb/aT86iFl2a6rzRwBFxO2nkVeU1c81kYabNWk+bJI82YRurFIANvz/Vz/wE7uvzHr/9t78zi5qjLh/3tvbb13p9PpLSQhQNj3LQYQdcjI5oL6jqJ5R8dhYEZhHBUVmfmBo6Pi4Iw6qIOjr4rvi46ODqKDgEIA2WKASAIJkI3sSXcn6X2r7Z7fH7X0rVPn3qpOeqmqfr6fT33q1lmf59S593nOcze6nG1sbnqekdBANj/znRmV+tj87K2bjpVkNDjEhd1XU5OoR9W9hhOvZ3f9RhpirTTE5lMXn4f7RiYHxX52sZpf8yi/Zj+7GWGIRDIBfQrVlzMyZl/NyS/jhynYZcp3/3afFC108tQkr3vskkoxxGgqbRzscXMdHIg8OZFX+5+QOBbip0ByIagQ3o6yW0kv59XP8XXlKWDccNVEqBibqEcXi61TjLxTqKOxrlc5k7yVoKNQHLZC1YyjalI7bifwgbbUGxJ39cCWvTAWg5aG1C188STsPzyIUoO0XX0vfb0bie9uo3H1ZUReOBuikRmPuVhAJFlDMlLNxmUDJBU0DEIgycTV2BYcqN/P/3f5J7j7vnuZNza/4G7QFGudtBxhp4qkFc85Rma+LWDZwHm8bedHmT/eeUS3syqAUJzE8TsYfd/9jF57H4kTdkAgSbUFVxQyCBSZX0JY9pGJW1cNn3o3/MlZ8D9/gBdfT5+YKoXj01w4Bs8FHQVhrlKKQS9BmMNUfLCsb2g/r+x+motP+zOUZZGIJHiVF/h9/0/YMvgcJBzaR05g8YLTWLTgVHqH9vPvD/wNw2N9nLr4Yi469X/RWLOAkfF+tu1fRzwxTlff66zd/CtsK8D5J17Nx97xfWx7EkNpWThVFrGOqXo+jUXQrmZh7TksrD17IlUlCY5vJhlqwwnOz6aPx0Z4ecdjJFWSyOIalpx2Mm29LdRvdGjfsYx4bJSe6p0cqt7LuQcvB8hZfIzUKv7XLw7yx3PHufpHW2netpuD1bvzroCwsDnn4EoiyRpaxhdSF5uHBVQla+kYPY6FI8uIBkbZO28NbSrMHxc8ynCoj8v2fpCFIye6fDHFo/yKr/JZ+jiUTsv1sfRAUyEfUT+xqWrAaQYrDnY3qeBmBwT25bfjrpc4DpwWSB4D1cPQtBPGuqG2HZIxCEYgOgjRAYiPmGUzyamXsbSyfjpaQ6mrzEKbILkodftp9rlrug022WQ92lfIMU9/Owr2hfOLtMahyoGRAGalwOxge0UU9TqF5J1CHT3ld/+eCzoKR4aVel7VCZ2pjzebGGETKDh067ep+s2f0vyXd2ENzvxVFkk7wfzRFqrjtRyuGeNgSzpDWyy/uPB5PvruD3LF5newcsuVLBhpI5ycugBfyImwYHwx/ZGDOS+VsVWAZQPnccOmr3HMSOEr27xQtSP0f/OzjL3nf3DqhsmLt8ncz6EqAhedAucvgw074F//G3oG0pmzfXyaC8fguaCjkEtjY36a1y2Zha5Ikqt8Zh+v/yCzXUzQzKuM6T+dTNli6hWDV90jbVPmqjALVHywTAH3PHoLm/f+gZMXreDpTT9n3dYHGY+n3q61cP6J9A7tZ2isl1hinLct/1v+9Nzr+I8Hb2Ljzt9zcGA3l5z2Pi4/73recPK7SCRjrF5/D0+8dC9JleTQwJ7ZVTCPiQOQ5YwSjO4kGV6Eside09g3fIB/uW8V47FhbMumtmoex3Wcw5tO+wCnnXsBg+PbOP6FxRzXdQ4mz+u1k+M8d2GU6oFRXg7cw3tHP8AnNnyffXVb+PpZf0XMTt0PGU5Wcen+9/GG7rcDCtv1DLKgSt16GnIiLEpWYw+dxrt23sj6lkfpi3SzcORESPe+gef4V/6BPg7lBcestM5hwtghSNhREjGwbAjPg9E6UFWpN1c689KdJyHyPDCQbqcKRt8HzvxUgKnqoVTj9uDEiCrMAa5AFyROhvgJ0L4X1FZIjIETS92qU9ueOraP6g9D1nQwnQjWfVqnOnWlmBUDawTsw/l+c04dBwK7oPpXMH45JBdoHQB5DrOfEEWcOXa0dAUEHbDjpJ4Hp0CFATsVkMz2YXLcvfrRHXtTNHMadfTMd6e529fldaeVo47CzGGBqooy9s6HiC3/I1WPvDn9F+S/qGY6SFhJvnnxndxz/ncYDY2a509mrWbBuoVr+ePC5/j2Rf/Ckr6l/MXzH+GtW64m5ISPWtqaRAO3rvsZ9x33r/xq6V3Z9FP6VnDLiz8hkqw58kCZ7TD0yX9n5IM/g0CBh0vOFgp2HYRFLenbJksBC8IhuGAZfPLd8K/3wcFMwEyOwaKj2JmZw/0sK7kySZhKMs+LEIQ5SsUHywC6+3fy6z98g/9ZexdJ1+uhLGDf4S3sO7wFgN09G9m0+yma69oZHD2MQnGg73V+8fQdrF5/D6csvpjDg3vZ3bMJRyVpn3ccbz5zFbY9+w9iNmHHD2HHDxJtXIlyPYdtcPQwiWTqifSOchgcO8z61x9lw+urqa9u5rQll7Lqis/RGAsQ+kOQmtcdrPGJZ5v1NieJhRVNTi1/9cqdLOqtx8amKdbGGw/8GS+0/pa+cDfR4Bj/fcK/4thJVnS90+gABVUI7CjEm7GwOPfQn+YUixHlG9zOYbrzfK9mWjg3fBErY+9gEccTCDj8vPo73Bf/Oc75oE6FxD6InQJEUpM9AdhdqWBTBqc1FShTrgWIpcAaypfX0r5xPejficN4d+qBz8PdqYDZwO7UFWYZpUy+rR6EM6VBKtgUOyd1i2VwL9T8DEJW6vYti5T88WVQvQcSo66A3n6ofghG3p8OVBXC7fh65XmU3RmZSB5NwmPd8LsesJ+FungqQ0VA1adfRnAKOI25beR9+znwlpZeLEeho7FeoQWBXqbSdBSml0CSDWf/lqEdYzx77JNEg2O8++UPcGr36VQljjxI5IcCXm17if933vcYDY+a52imoGs+KxT91X30V/dxy9U38tuTfs0nnvoHlvYef1QBPguoTtZy9a6PkLBjPLz4+yStONHAKLayj2oMksfuZvjvvmsOlCXT0QRFyjDYatb2g/ufgfe/CVqbZ6d/Tyy48ES4+d1w2/9N2aSCyDG4cFnRURAEQRBmlYoPlmVss4PCUkmjz+C2zWPRQfZFB/PK9A4f4JlXfpETrOkd3Meuno04TtJ4G6YiE2DKt/xOunWTi69QJFEEj+C5K24CsV1YyRHi1afmpA+NHiKZjKf7IiuhQjE4dph12x7ivW/8exoXncngQhjpc6jeFKN6U5TgoSSRqEUobrF4T5i23gYsLGKBGL8488fce8GvGQ2NkLBTrW9Rr/LcaZ/hR784g+N6l6FQ2YdW72QLh+nhjOqthAeuzQ9EAX0cYjev5wWY6mniq9zDGbELs7eIbh5/iSfHnySxGEZXgJWEFgWWDaEYvGUQ7psHyU2komYZ4lC1GoiC3T/RT1EoCL0IyVYY2w/JsXTTmQYSecXz5mBmTuk66nWUA6FtkFiaDjCFIZZ5WYGT+qgQnHEsbHwV4mqirn0w9Ul2agJ4nTU2YTqr7FaA1BsxFbB3DL60Cf7YO/GouOz/OwL0pq56C6+H8TdC/FStvTzltW9dVtOgTpOORtkKyauXLWcdhRlnPA7/evz32PCu7+NYqT3qV6f9nDMPnMv/9+iXOaXnjClfXx6s7eKzV32MofDQEc/rWDDGwyf9D+uOWctl267glO4zOG/vG+gcXEhNvPaIXl7QFFvAB7bcTsRuo7t2N2/f8ueEinxRgBexszbizOvPz3As6r79V1Q9uBLLsVHV4wze+g1ib1h3VP0dKZednYrVlSQWnLYEjm2DrfuRY7AfomMuYmemhkJX/xRzS5zc5ja9TOYKraP5LybTj9f/PxNXk022P3kTrDALVHywzOQL6MEIy5Dmtt16gCOzHU9GeX7LA7zv0tuoq84/1eugsDGfS/c7JFhwFO/xmiAQ3QUoEtUn5/R4oG87CuWpY11VE/MbFwGpFxMk5gcYurSKkeVVWAfirFk2zJuerWZ+l0U4lqq1peVVfnfig/TVjxENxMECW1mgLE7qX0bAyZ1qCeJ8mZt5mRe4cH81X4r/JZnHailgf8MeOgaPYS87GGEwbzTOZQVnMhEoO0wPX+QTjFojzDt3IU5wH8dthW0LIRZKtXlvCwQ3Q/XLE+MMEDwAHCjuhKZp7gQOQO2PIeFyJr3mlFc7GH7r5SwgsBesOKlnrNVD4GDuXA1thBdNfSRTgbZkpyvT1JmXMHpkT1cw/b0vDCMOfP01eKE3v4s8nQeh+neAnbrKzDOS6FbIa4fUO5gmHXPqe+1ExbRRrjoKM87wGOztBcd2sv9BNJDguWNe4MZ3Xc8tj3+BN21fSdixs8GUWECxry51UqQhZhNMWoQcC1tByLEIKMs4lRxLcaC+h3+59BtsbdmaSjzKeX2wtoefnv1/sRRUx2uYP7qA4w+fyOldZ7Okbynn7V1O+1AnQSdUlOWzCfLqot1satvAR//4ZQ8rWxwKiF30HFj5kzu4+xgavngzgYMtKCBxwg6SHd1H3NdRYcHpS2en62KpjcA1K+Bf/jv918sxWHQUOyMIwlTjvu1YEKaZig+WgfeJuQyWlu/nL+h+RVff62zYsZqLT/2zvH4DPleG+Tv3xbr+Ku+X40oLjL5C0q6mN3wMYyrGYRVDAQdrGxhfcBxKmZ/N0tZ2JvvCIbqc4dyMEBw6Jc7zZ8d5w5Z67D1xNnaMY8UUJE/kY7//AT89+0f8/Mx7QUHzaAuL+pfwwT98nK7qBgaDE/csVo+MsG9sF3Hi7BiuRql2IPWMnJ66A2xt2UzbUAdb1EaSJLP6Zf6nJMl0wE8xxih38XleYwNv41oWdC9lTecdbB+DWDMTb21LQHgdEPP2D03+n344Nvl+xAsHxkx+oD7nCs1VuxdUz3xinfVEmg4SODhxP2mhuRrYbhNfsRAVKuK2YS8blE631TA249hqjMzMsxzYOwCf3QDPHczXxVPHOFQ9mbq9VFUzMVgYKusN6bJ67Thegnjh5/zrdfVJ5E4z/aGZdspRxyOPSQhHQUsDfODNcNevw0RVO6PqAkbVeSSZx576AH/xp2EWrNjMsr4IZxyqZkdjjB2NUV5tHgcLGqKp0y/hpEXQsTh2IMy5PTVYCpqiATqHQ6xvHWPLvCij4Sib5+9kX8N5tLCWMLuJqw4U1QToAywSah42YySc+VjEcagHklhMPHjfPX8StOCoemxGGQp209MArzZE+fXSDQT4Aw3jD3LSwVM59vD5nNp9Ji1jQUKOxZLBcM6VVHFbsashxvr23fzXSb0c23spDy0dYclAJGttQ0mLBWNBauI2Vcn8a7fzdolggth5G8xzO2ljxYOp43b9EP13fZbk4r1H8hfODazU1WWBqtMYHktiM45DBIdagvQTV20TBVEE6cbCIUkDNuMoQigCBFT6gaEKbEaw1TigsBjHwkmXC2Izki03Z47BevlK1FHsjCAIglAizIlgmd/Jtsy2yadw5+kn5LJllXOED/lXOW3GcHDSCTEchtTE/XvdKko0fTPbmEqyR41lgy47nTHG08GkUZVknxoHwFaKr438gYWBOq5K7GRw9CCD6XsC1bGLiC/6pqeDs9m2WR1db3RY1Bg4qxW/BiwFd7yXnBPyCfsSksk3ALC3yuHV1hCPvLMXrIMQiKaeTxYcpWVsDOvVxTBaRTJYxffUWkLJzShLEQtECScjvLTkCV546THU4dwxt4AtVdv4uwu+QZVdQ+/637Nx4HFUwOapt/Vx4LQdnDC6mK6GcUbm12XVDPXGqTu4Nzv2Xv855PuTxfiQJr/V5N/q5d3bvnPVsnGsENFXV3Bg3p8T4huEWWPs39Sm3WtzuOtjjHTm3pZ7JFiMYVvjBDmMlYzSuvXnNL38PIe64HA0X4ZCOjIAoddSz2QzOvVejXlFF02d6INDgTwvp91vsuiy6WVMfZjq6u2Umo7CzGLBOSfU02t/ht74WSiqcE+U7iqL7qpxNraM88tl/eiT6HBVMuf3xpYxHjh+kNyJlMJmhIAVB6o47PwVSZqIqwWkHhqQOXERIHWDdRDvyWxQwsPoHAjD5oXAQoCUPbUUhB0rx74oK3XFXOoI/lFea4ffXvM6YUdhWQmwowQCIzSqQU7uC/K21xsJaG8dUZair2aUnvohYsEEbYkQq47fkb2y2U1iyV5++VcPULXuLJb/7VcZf+vjYMFYLEIkGMMu2XsiZ4+FLTatnR/gtS3nYJF5GEVq7qisy5maC1bGJ8HGPRctJk7kpQJkMSxLEeAwFkkcqlEEabG/i0Uy1Y6CIIcIsR9wKv8YLHZGEISp5khvE5UXAAgVzJwIlumY/AQ3fifU3HUy39sOrONQYgQnEOSgipFMewCDKk6PimXr7HRGGU87gb0qzkEVBcBRsF+NE0/Xi5Jk0BUsG1dO9oqxTADGLMnEd40TpSm6iz2hFnZjEU/LkS0TCGP2pBTJtDuaynYfDNMOrBVLbQdGIeJAaAisBIQGwEpCaBDsBCowStSOpwJkVjL9ST1ka68FLGsH1c4eYAMP5UWIrESSk7avo+Zw/n/RFd/BCwt/Q2A8QcfIa1g4ROfX8sRbgjhVHezeEcE6QTE8f362TqA6RnNDL1Xpq7H0UXOPqmkJpJcx+ZemIJFXG37lTPkKhaUcWl56hMZtzxMaPjy5uZpM0LB9HcOdZ3lI40fuXFGEcVQjSWc+nU//kOZ1L2K7LlQ0jZVfyxbAznkMnXVO1ugG6CfAIAEGsFQUm1Es5QA+T4/WnftiFwW64O5JYHL09XIW+hAVngCmiaYvdkyUgo7CjBMKBVDB41BRd6AMvP+4zLbpT/aaOOBQg6NqAIhzDO4/PxUky/y2feTQ29bLmI66uGxMEmUliALYMQjEIDAGkUMpexIaTqWna0YDYyl7FEjZmhEc9lvw2Pk+IqTT68JxrmzqNwbLCCRJ/PUPsatGGFu4LVu3d6SR1vpebDthqjWnCVgOZy7axpNbLkgPe8Zm6Fc0Wyj0N85k/JygKyXtqyiLBAtwz8cDyc+Bq12bUWqtNTTbPyGk9urNpncBC0fVYTGWDbLllcum2SiVCRKr3HKzfQwWOyMIgiAI007FB8tMwQu3jfc62eUVAMGQ9/Qrv+C/T7+Y4YWnMaxStwdC6pZI87K+UPig2DK6tzTxHcDhp41v4cXqE4hb7gWOyzOxFKkzsE4qkBWIphcmo+ng12AqL9yf/j2UKh8cTX3b8Yk2TGIVq1ZmQLU/KTAaJ9w/nlMtu0xLKo75+cupt1amL8kLjCdY8uMNKAsih0ZJ1IdpeXLHRDeOIjgS8/wfC/loXvNCVwMt3xSQMw2FKXiXM1eVwkq/mCEy2O0rk0lHgPrd67GScVTA77WYJsnNe0rDjudo/eMvsZ3EUetIbz0HY5/ACWUe1p16a4GdXtQErF5sxgnRTcg6gK1GCLEPmzGCHCJIDxYxc8cmTE66F14TRF+8FDuBtF3RWE7f1svPlo7CrBBN1DCeqKPwnwiF912/Ml6r2ULfmf4z7WVsDCn7YkfTNiMJwZEJWUMDEBiH8AAE0zbHjmWDYam6CbKT2OuAahoGk7raPjW/Osb8qpihQir/ohM25CUvnNfj0/kcx4KrznyKHzz1LkZj1T4Fj3auWkAop5RDHUNqJePOSVSxNa+VKns7TXU2uwffToBeqqzNBDmIIkRcLYT0zbwWUWxrlKg6Doc66qxnaOIX6TzXXBE7k19H7IwgzA2m4rlh8uwxoQyo+GAZeAc3vNJM6bptd/siSSdOX3yIIRXHGy9vxLSNtm3yLvT8THLqyq2hEHyx85rUIsTuguDwRCAsOJa+HXIknTaeXqBEU21ZhhBfsc6L+yyij5j6msrUfmhgnMBoPKeK+9tKqpy84GCUec/7P0/G73/Uf3sFu7x8OlMgSB8OP5/UvT1dc7X68E6qevcytuA4j9bctXQptW2laH7tiVTwTZPnSHQMjg0SiI3ghKrSuQEggJNeECVV6iUa45xG6kF0KvuxiNIZuJ1qa0O+0oWilj5rfeOfb0IfHr1tr33Cq4wfk5mspj6PRkdhlinmQDwddiYT9Eq/fjcT8ApEU7bFCad+B4dSaZmymauN7WjK9mSCXiYbU6x6bnG91NBV8rEzSxuGqQnKFWJTybLWXZzS+Trrdp5WoOR0zFWLuFpMnMV5vQ0l/4S+4SQJFSBBG1GV+/KjHNREHzG1hGHrjYCi3vodTdavyAvcip0ROyMIR0q53sY4FXKXq+7CnMH7CfRHwb59+/jf//t/M3/+fKqrqznjjDN44YUXsvlKKW6//XY6Ojqorq5m5cqVbN2aexawt7eXVatW0dDQQFNTE9dddx3Dw8N6V5MmY7uL/Z2V2ZV/dLbcy5vRvYz0x0pf+RUYT9+G0pu6FaXudajfBs3rYP5z0PEIdD4Ei+6DxT+HJT+DJT+FRb+AY34J7b+D1idSZZtehoYtULMPqg6mrhgLjqQWMnZyYhDcH5dIBVVyf9z57jQvf9hFYDy1gHGqgsTnVZGsnjiLPF3/o+7TmfxEdx/6tjsQ5BWE02XxYjp0tOPjNOx8vojedQnztbWcBFWHd06ZjnY8ih0f1/ozteDu0QYCKKrTVwaQPwB+f6RpYW2qX6iOLpoJ0yTJfHtFGL36nk0dS4RStjOzTzF2JlPOdWVxcDRtYw677MxWmL8WOh5O2ZLFP4cl/5X6ztiWzt9A6+PQ/ELKvjS9DI2boGYvVB9ItRkc97cxs2RnGiJxY3fCkRMJxnnnOY9hesNoPsXO1UxZ/WBZ6ODknlAWiWQQ8wTRmSijiBBVJxBVy+hzPkCCZrEzYmeAuW5nBEEQKp8pv7Ksr6+Piy++mLe85S089NBDLFiwgK1btzJv3rxsmTvvvJO77rqLH/3oRyxdupTbbruNyy+/nFdeeYWqqioAVq1axYEDB3jkkUeIx+N8+MMf5oYbbuAnP/nJpGVy22fTiTndTy8UJHHXVYATCJOomedKMVl8V0uZZ3dZidSVXZmz9HY8dWbezjz/K33ro+VAYITs7SmZNryUdQvptVjQo0J+kSC/NHe6SXWT01RI3nTZ0UWNbLn5EhK1YbBg8U82UP/qQaNqmaaO5n/Eo7weDNLr6uleLr7fMJn6nR4dLWp6tmPHxnDCmVdP6ugt6mGwdItKZW+BnQod7USM0PBhok2d5I66ro15ksdp85/HxfyR7m+/hYV72zSJdJHd3255vCZZsYsSvb+Z0nGWKUU7M92MxSI4Tub8ltfBNv1tp5+xZMdSdiQ4krIZoSGwXFdAh4Yh1Jc6GZMpY7tuMyvazqiJbV2kErczj+xq53svn8A7j99LR904whRgwVtPW8O9a97Glq5jOSo7U7QTo6e7+9HxOiB6tTHRl0OEBAsI4nqYqtgZs2xiZ4DysjOCIAhCLpZSU3uz8Gc/+1meeeYZnnrqKWO+UorOzk5uvvlmPvWpTwEwMDBAW1sb99xzD9deey2vvvoqp556Ks8//zznn596Qu/DDz/MVVddxd69e+ns7MxrNxqNEo1Gs78HBwdZtGgRZzPxGGKvMFaOfOS7SOBt37Fsho85lW3v/iJOJEAqsDWWWqAExiZuU7GjqdsfA6PpWyPTD70PuG99dP0Vnh0WqYzJ+SnkD5qU9nKYTAOjy+bl1Ol9++noKGp39bHwvk3UbT08bf9jMar61dfrFQoc+Q39tOtoWQweewE7r/gUiZqmIiSB/J4srESUU+69ierDO6dER4XFtnf/E4NLl5vU9WkxlVdvPcYC+1vYjJF9CUChPzmDrupkJsxk1m/F7sPFTtBiyunlTduF+kynO1F4/RupY3ZDQ4NHR9NPqdmZTQNQP03DoRQMx4M8vuUs/vann0QlatM2Jn3SJTQIoX7XSZb0yZfMyRg74bIvyv//zmzDnLEzFopj6ke5440buPQYeRbZlKFgS/cSPvL/bmNr92KO1M74b/t0nqVYi2rqNz/PZpiOwOeoYgup55cZ9imxM+btQn2KnQG87cwAMO2jIc+Pml7klsOpR+ascAQMDg7S2NhYlJ2Z8tswf/3rX3P++efzZ3/2Z7S2tnLOOefwve99L5u/Y8cOurq6WLlyZTatsbGR5cuXs2bNGgDWrFlDU1NT1rAArFy5Etu2Wbt2rbHfO+64g8bGxuxn0aJFeWXc9ln/mMq4f2fTLIi21DCyuImelSew7aNvZvuNZ+Ic9wAs/i9YnL71cdF90PkgtD0K8/8AzS9C/WtQuxsiPamHGYeG0w88TpB6Un0BATL5hZwVkyNlUt6vrqVtu2UzYZLNpI/el1s217YVT1K35RBLf7iOZd94hrqth/UiR/U/GrrMU8e07bcu86qj11eGba+2pkVHlXow/8In/w8oR6ul1/DSVIFlodKGfyp0BEWkb7+hpPLYzm1tSF3Kbuc77HG+TrdzC33qAww7b2JMnUmCtvQb/uyJzk3zWp+7Xov1QmleFNqPdDn86rr3NaWluctPtY4lQCnbmanAUbB3qIZ1Xc189flTuPq+N3Pr8x2oRfelb6//75SNOeb+lI1pfgHmrYe6HVCzO3UbZWgg/XzKOBPPGtM6mst2xoKO2jE+fcGr/OqaJ3njQgmUTSkWnNi2i6+976vUVY26MiZpZ/K2C+HjWBRVT9/OlcmhjgPJz7PH+SZdzq0MqisYcZYzrk4hTieOcl2xLXZG7EwJ25kclJKgg1CeSABSmGam/DbM119/nbvvvptPfvKT/P3f/z3PP/88H/vYxwiHw3zoQx+iq6sLgLa2tpx6bW1t2byuri5aW1tzBQ0GaW5uzpbRufXWW/nkJz+Z/Z05E+NGt++6WXD/Hm+vxwnbBIdjhAbGIamwgLH2erZ84mKSNSFUMJBucBTUaP7CQW/YK193JHTHxLQg0RcLuuPhVd7P//RzdiC/T11HfSFzhDoGh6Ic+6M/Uv/aQayEk+dHFfs/eong5XZ7HW79hlqvqw+VWx5THYX/cLrL6fkmmSej47wtT3L4tD9leNFZ5K84/RYaqXxlB4k1tFFzaMeU6RiIjZA/4l6jq7caIqHaUg9u5hSX45fEZhzbGiTEIULsJ2ztIkgXIauHAL0EGMIiZnYWC00Ar3Weu66fLffbrzDk6ROr2HWkX5kj0XEWKWU7MxVs6JnHh3/7BoZiIeKO+5xWEgLJaT8G5/2uQDtz4rxB/n3l8yxrGhJfe7qw4PSFW/lf5z3CPc+8kyOxM/n5pj/LNFH1+qlJML9ugFgyyNBYnVa3WDtj4VBPTNUTYynD6s3p9AQWcYJWL2H2ELR6CKkubAaJWNsJcQCLBBYJck9S+ajgRuzMjFN2dibjvxRzQJPA2MwiRmZ6kbdqCtPIlAfLHMfh/PPP58tf/jIA55xzDhs3buQ73/kOH/rQh6a6uyyRSIRIJJKXng2w2KkDVSISRAUsEvURVMAi3lRNMhLACQeY9+IB7PRD5cN9o/RcdgJNL+7PvnUxURNi3zWnkmioMjvpme/JLAz0NopxetzKmfxHP4fE5H+aIjumdmdIx7qth2jY1I2lzOsck4pu9fRtXSWvw6lpHWjq16+unx+oy6C79aa+plNHOz5O2wv/zfDC08F2HwoKTb50vmWhAgFPf/dIdIz0H9Ba8ppIk5CTIA51OKqOBJ2McWbaqCpSgbQxglZfOni2nxAHUosdDhKgD5sxLOUASe8B19P8FvVewQk9X1fFtM8V8g30wIE7za8fr/20RHyRUrMz43EbYjZKWQzFgjy1r5W4YzEvEssp1xiJc3ZrH/WhhOf0TToWP9x0HL3j+f2InfFpE488o46Kj5y1lRObhkpugV5pBAIO7zjncX6y9ipiibArp9jjtxu/P9z07a6TSlsyfz8Hh+a5gmVTZWdCKELEVQ1xjknPXZUuESNgHcYmRpBD2AxRbb1EhNexGSFAHxYKS41jES/uGCx2ZtopNTvjiztQoBQSnCkh5L+YGSRgJkwTUx4s6+jo4NRTT81JO+WUU/jv//5vANrb2wHo7u6mo6MjW6a7u5uzzz47W6anJ/eWiEQiQW9vb7Z+sex57+lQEybWUpsKjjVW4QRtnKoQygYVsLM72MAZ++l4cAuRg6mrW1pXbyNZHSK6oJbxjnq6//QEhpfNz3UGTI6In4/n5bSYfDx3nsm5KITJyfHzM/1km0Eda3f2gTIHV/RqaHl+QSrTms6kutLKmOIiep4739SXVxBrNnUEqN/7ElW9exhvOZZcDb0mWW56orrR2I9Jh2J0DI4PaY6e16LHtDLw+4f0OhMLHIcQMdVAjCWuBY6DRRybEYLWYSzihOgCEunaipC1H0tNPFckSA+2NZrtMqAGsEndfmSrKAEGyHuWmltEfdsrMFFoKHR1TXVMQ2M6VpgmTQlQanbmfQ9cQiwcwVEWw/EgA9EQyjAfA5bivSft4vY3bCTzUPzhWIgDI9VsPNTIeCLA/pFqHtk1IbPYmSLL6m376Bi2FcdLoGzGOGPhVi5cupGnt57D5O2M35/qh9lyHx5pJJYMaWWn084oFBESKvVsqhjHAqSvSEtikUjbCUXQ6k1f+bwbWw0DipDqwrKihEhdBW2ROnFjqQQ5jpJbPJPqYmcmTanZGQYGoNhnuPkFzCSgIAiCUDRTHiy7+OKL2bx5c07ali1bWLJkCQBLly6lvb2d1atXZ43J4OAga9eu5SMf+QgAK1asoL+/n3Xr1nHeeecB8Nhjj+E4DsuXez3820zvRUugWneMNBRgW/Sfu5DB09oIDkWzL/dK1IRQQRsnHEgZHpMj7xWl0PPcdUwymBYqfgsML0wyekUpCjkoM62j41C7s79gk34BKZOI+e6rfzmTq14oQGVS16ttU93Z0NGOjdK8+Qn2t/yFoXcTuZMrXtvs2bYuh6lVXc7QSB8oByyb/JH12vZaWPnVMf12pwdQBEhSRVLNB2Cc03LbzxnY/FWARZxMcMwmSsjaS8R6nSpeJcLrBDmYXiQ5ZpVM+wuu7UILGV3GYvdhd9vg/wfOEqVmZ7b11xdlZ5JY3Ld1Ec/uX5BNHo4FGYqFiDm294I08y12Zkp07Kwb5bjGEY8GhKkmEozznvMf4ZltZ6OU3zHZlK6X8ZukXhNkIn1orFZLm007E0QRJEnqrYlJNZ8oy9LBDPfBGCzGCVgDWDjYDBNggIi1jSpeJWD1k1BtKMIEGCDEHoL0gUrf9glmVcXO+FJqdmbSSFBMEAThqJnyYNknPvEJLrroIr785S/z3ve+l+eee47vfve7fPe73wXAsiw+/vGP88UvfpFly5ZlX7Xc2dnJNddcA6TO3FxxxRVcf/31fOc73yEej3PTTTdx7bXXGt8cc9S4DLRTFSRWFfR2uDP4+Upe7Xu1BfmOhZ+/5SdHIRlMFIqqFNPGFOkYGEsQ6RnOKV6omp5WbB09AOUlqj4EXr5eMfV1eUpBx6atz9J1wXtxwjUevXihSAW1pk7HwNgAdiKKEy7m0FTMSt8rxKm3UagPd12/g8GELIpIdjtJDUnVxLg6nQHegUWUgNVPiH1ErO1E2EaEnfkBNF1c037qJbZJZL/jCFqeafKUiO9dznYmmgywazC9YPc7XmJIFzuT39YR6Hh80zB14bhPR8KUYsEbl/2R1vpeugfnM73HYP+0vtHMlTnFRmRm285Y6RLVJFRNTtlRdUH6twMEsm3ZjKVv+xwnRBdN9s+pUltxqMJSSVJv8XQKOzqFEDtTenZGEARBmFKmPFh2wQUX8Mtf/pJbb72VL3zhCyxdupRvfOMbrFq1KlvmM5/5DCMjI9xwww309/dzySWX8PDDD1NVVZUt8+Mf/5ibbrqJyy67DNu2ec973sNdd911ZEJNJvClG+78NXC+M6Cjt6Wne7WlOyheZ/pMjkiF6BjuHSU4HPNsVk8r5FMVcmn9AkxeaboqXgEpP/kKudbFtOFVb7I6VvXtoX7PSwwcv6JAT5maEy2Oz1voW1KnkI6B+Dh2Mp4OFZm852JX1aZei13xTzYy7jXpTZM/U6KKhGonQTtj6tx0boyA1ecKoO0kzC6CdBNgmOwz00yTwkstd1l9CFXqhyKMQy02o1gqnt+Pu16xQz7NiJ0xtKWni53Jlyv9vaxpaOpfBS74Mr+unwuWbuSBDW8qovT0HYOVsqgOjzMej6Svcit3OwO5rryFQy2OSgXkoywj6hxHgAEStGARJUgfIfYTsAap4hVshgCwiRFhG6jk1NkZt6hum6IfR8TOCIIgCCWIpVRlXqc7ODhIY2MjfONqqAoV58eYFg16ntdvU7pXnWIWGHr/fvIW6tdUpxR1VNDy9E4W37t+Uk24m5qM6nodv7UiHvmm+MNkhr5UdBxYeiHb33E7Khg2tO7dY9OWJznuf/7JuETxktdPRxWM8Or//hbj848tWgZzuWJGqdj2C5WfbHte5I9U6rlpg4Ss/YTZR8TaSsR6Pf3ygX5St3oq83ovSwCHKhyqSTKPuOogzkISzCeuOkjQRlI1YFvDBOgnSC8haz9BeglwkJDVTYABbMZR0VF2/FuSgYEBGop9dkoFI3amQJ0S1NG2FHevfI4rl7pfJiLMBOt3n8T7/+NORqLVzOYx+E0nPc8z284hkdTPF89FO+OQ2VksElRZGwlb+wmzi5C1mwg7sBkmezsnNnlXPmf3NRtFEIcqwCZJMzF1DDGORaWvfEuqZgJWH2F2YmUeU5C2PTZRbAZR0SQ7/21E7EyajJ2R8Sgz5MH+xTGZt7gW25YgFGAyx9Upv7Ks5PBavWe23ZjOdPkuQovsy2shYKLQIsK0AKgQHa2kQ/3mg3lVM0Xc1fSAkFfTepqpnI7Svv3KmYZRr1co+OZua7Z0rN/9R2q6tzKy8PQiWprQ3AlVkXlBxpTo6CQIREe0WoW0Mcnqt7ovZrT0xdBkR7pQRME0Y/J3VkWYJC0kVQvjnAnqClJv8BwlaB3KXoVmq/G8HhyqiKuFxOkgwXwcVYNDDfpVCBlZkqop9RY3rLRIGbkS2IxhW1FsZx/waYM+c5wKOQYb61WYnTmhaYiLOw8WEECYDs48ZgtvPe1ZfvnHlYbcmTsGN9UMYeVZJ692TFSSnbFdpQOMqfMYU+elyycJMEDQ6iHMfgAcaqiyXsbCwSKBUgGSNJNQ80iwgCSNJFUTYOFQgyJE7ngpwz7rQLo9mzFwBoHrDfoIglBRSHBLKAMqP1g2mSiCaZ81+T2FTg569aX5C0UvANw+jqluJeiYdGj77Vaa/rjfc92lp3kFk9xN692bhlUv70dm3ef+7eeKmsqb+pl1HZMJmravYWThaX6l8nqM17eg7CAkJ57/czQ6Wk6S8NBBRrIteS0uvPJNsurbxfzbhSawaWcxtetVzk8Hv3wLCOLQkH6D53GMqDca5J/MjC6kYwiHII5qAFVdoL05SiUcg+eAnakNJbjlgldoCCcMBYXpxrYV5x+7iV/+8bJ0yuwcg/tH6w118Uibi3Ym02aQJPPTLx44JZszola46un9myi0kwZIvVQnSJJqUOEC7QlCiSNXlQlCxTA3HtuhO+nFOPKW6+NVXsfSPl513N+6j6O35f6t13HLVuY6Vu8bpP3hLdhJlRNg0otnvk3NmIaimECTux3T2tFriP3aMsmt91NKOgLUdG0BxzH0ZGrZSm9ZeX24+5msjgDB0X6PEiZtTJr4YRo5fx3NO5WXRl6zQy+nhzoxlNO3S0VHwUiZH4Ozv/U6FWRnLj92P5ct6ZJpPIssau7GtidnZ6b6GLzj0DE4ynalldsxWOyMIAiCIMwEcyNY5qaYk4Q6Xn6Gnub2F7yiBKZFSLEn50xlvBYSZaZjaDCKHU/mVDU1o3/r3ZvE1kUy4eWiea0Z3fWKldckSynpGBnsJhAfM0hlItV7orqBZLh2ynS0gNBIH7mTxt2nlyPv5+ybnPHidTTL4LXjmXYMr2hAueooFKQMj8F5/fr9zvRZZjourBvDlnX4rHJi204aqkaYzWPwnt42ko6tldXbMFEqx2CxM4IgCIIwE8y9YJkXusOub5tOwpn8kExZrxN/Jp/C1LceQTAxWX+ihHWMHBzJ/vZqXhfN1LWXCIXWaMrw0V1GL5fUbz3n7sf0t5aSjsGxAYJjAz5S5feuAiGUHZhSHcOD3VoJd58mLf3kzNTzm+xedU2LBr+d0SJXY79/Bq1MOekoHDElfAyueDsDtNeOFZJemGaa6wbobDrIbB6DlbINZcrpGCx2RhCECkBuVxXKgLkZLCvkH3g59F64fRXdlyh0ws3L4S9EMToUyi8hHau6h3OSTYEXtDR3U17uoldgyDKk6e2ZVNTV8Vu3FQpulZqOdnyMqt49htJeIwHKDuAEw1OqYyA6wsRDP/3CbSb5vFbYhSa7t465crhHtFAdd7pfnXLXUTBSZsdgTxmPNr9EdLRRLKofLSCAMN2EA3HaG00vWJBjsOjoVUcQhIrFspiyoFmmLQnCCVPI3AiWedl604o9k6+nF1rtmyIWXmVMdfQ0Lx/E66RcOeuoFKG+sTyXTl8v6e6g7sYVsx70che9AlFukf3qerl9ep+lrCNKER7o8tBA/50q4wQjJGqaplTH8FAPVjJB/oTMbOsjrY9GoRW83qbehqkdr77ceV47mztf76ccdRSMlPMxWJehAu2MZSlqQ/Jg/9nGthTnH/sKcgw2tSM6mtsUBEEQhNmh8oNlbr8i4xv42eFCTropEqDbfn2x4W5TL19oMeC3OHGXK2cdFQSHY0aVTC6WX77p45WPlm/6reeZ6vq5sHr5Utcx0n8A8wpax/UnW9aU6mjHo1hOgtyJSIFtd+uW9tu0PUkd8yax3w5jasfUp/LIK3UdhTzK/Rg8B+xMfTjBwjq5DXPWseCyU/5AVShaXOFpOQYr6nyfm1bqx2CxM4IgCIIwE1R+sMztVxRzoszPBwHvRYOpbKGTdIX8IHcd/Vtvu4x1tGMJwv25ixgrv1heusllNOV5DZX7t/LJ82vb1Lf7d+bbaz1aajoGxwcxh9lMk8oCyyZe2zylOgbHBlK3YhaNaQXvtaNA/uTW29E1cOeZFiJHwmTrlaOOc4gyPwbPBTszvyrKvEisgNDCTFAbGSNgO+lfs3N8mlczOMka5XgMFjsjCIIgCEdD5QfLMpjOQJsiEbq916MAfpESjzPaxvLuOsUsQPwiJ7rsZaaj5SispJNT5Uhxu22mofRL8zvvqavuNVwmt9HUd6nqGBrtAZLkau3TsmWRjNQZSxypjpaTSL+V04SXE276R7xGQg8fFnLy0cpNRjO/BYBXO+Wmo5ClTI/BOWUr1M549ifMPJYDdpzZPAbv6W33aafcjsFiZwRBEARhOpg7wTK3A67bcN351x3uYk6Auf0G/WNy2k3bJmfftHAAs29SpjoGh2MERuLG9ZhezUutTHPupl1dGOsc6fCZAmLFBK30tVop6hhw9mLNeza9kPGTfgInEPIsdSQ62okYwdF+j9xiJ6qprDvNa6Hgt7AwTepCzn6xi4Fy1lHIUqbH4LlgZxZURwnZDkIJEByBBU9BcBRvC6czlcdgU1o5H4PFzgiCIAjCdDB3gmWQ78C70/3wior4+R1e7RdaZLi33QuMYmUuQx2thIOllLErUxVT88rw0eubVDAFnvRyxeRl+nKX8dOBAvmzpWNwZByr7kVoezy1oDFKnttjdN7CKdURpQiN9BlaMbWQ+T4SR1sfCb/wpykE6DXRvXCXN0Ug9LL6dznoKJTjMXgu2Jn6cJyAJfO4NFBQvx06fwPhgdx04zbIMVh0FISyQN7EKAgVxdwKlvnZ70ya7juYoiGmiIhXOzqmSIWpL3d/urx+fk0Z6hg5PJoKmHk0ZVqP6Wu1QiJn0vQhMw2xvnbUy5jWlXr/7uHR80pZx+BIjNDAONRtg/bfQWjQ0IKV21LaMZg6HRWBcdPzZEwLANPq2W+ncPeu53npqLfl9y8o7WPq12+kykFHwZcyPAZXvJ0BTpo3KDO5RKgJJagPxSFyMBUwq9sBloMcg9HydHl1GSpZR0EQBEGYfSo/WKbbaC8fwA8vn8NrwaDbfb2cKWrg93syfWd+l5GOta/3gspdWxXrkhWqY8K0BvRb7/mpUkhWdxl9/ViKOtrjCWp39qV+VO+HhQ9AVY+rtju0lkqL1bWQCnFNnY6R/v2GXHdtL+faL81v9PQ+dCffa0GhpxVawXvJUE46CnmU+THYM61C7EzAcrhk4UGZxiVCc1WMtyzuTv0foX5ofwQaN6UDZiDHYNFREMoSuaqsdJD/QpgiKj9YpvsXXlEMU74JfYFgigh4pflFWYrxefS+Tf5Smeloj8dpWn8gTyzTmsdvbWSRq5rS0pSWhqGsLrJe1xR40uvpQSov+UpVR4CGV7onfoX6U2f+a3cC+vN+UjVjDa2MLVgKViCbY5q2uqsM4NhBHDuIcn1j2QRi7mfZFJqwJofcjVc7fnVMbevS+8nl1aZXnXLUUchSxsfguWBn5lfHOL5pqIBAwkxhW3Bx50EmHIEEtDwL89eClSD/D536Y7BtOYQC8bx0b0rxGCx2RhAEwRMJmAlTQHC2BZhx3Dbdz3b71dW3C6HXMTn7Xr6HKbri1Y5etwx0bNrQRVXXUJ5ofmESP1W8gkRuN04Xxa+PzLZXEEyvY5LbtD7Fo6xeZzZ0rN9ymOBglERjVSoxMAYdj8ChFTBwGig7p9fRthPZ/P5vULf3ZQLR4Wybza8+hp2IceiMKwy9A1aAaGM7ys6N2Tdv/j01XVtAOekAXDGT0m+iek1E97c+0u5J7Lez6ZgiEMXWKxcdhYKU0TG44u0M8IGTd9JaEy2yE2EmOL+9l47acQ6MVKf+NzsB815MPSvz4CWQrGI6j8GOsnCSbhe4nI7BYmcEQRAEYSaYG8Eyv5OUJjsO+TbftKAw+R2FFiSmfL3fzG9dFpPMphN6ZaKjPRandfV2UN7ulV9XJhUgtxtTm6Y6pvJ6f8XUNbmhXuvGUtUx1D9G48ZuDl+0xCVEPHXmPzgMhy8ANXEVGZaNE6pmcOmFOW0GYmM07HiOvpPfYtBEd7on8ocHe6jb8xKW46ACAbxH12ui+eG1UPD7B9z5xUYNTKt4yJdbj1aUg46CkTI8Bs8FO9MQjnPV0v1ygrnE6Kwd4+rj9vF/Xj7BNYcU1G8GHOh5MzghVw05Bs8tHQWhzBAjIwgVSeXfhgkTPoLJ6XfbZC9/wu0T6E6/vu32YUxxAT8/wLSY8Tv26guVctJRpa4qq9k7kJNlcr/cLqHS8t3q6N0qrb6erqOr5NWvX11dNr18OeiIgoZN6Vsx3Q1lzvy3PQGBaMEelR3EchxQponqrpM7IRPVjQTHBrASMR9NIHfSTZZiFwJu/Ca1/u2vY27dctRRyKPcjsG6zF6Us50B3nrsAU5sNr0wRJhVLHhDxyFs3c5YQP02aF8NQfft+CDHYP270nUUBEE4SiSIKRwlcyNYZsLkO5j2Jz2y4S7jFUExLUD0CAhanpePoJ8o9JLFRInrWL/lEDgqZ+1lcou91NQDPqZu3eKa8nXXUnc9dTn0j96WV1/lpqMddzwEU6kz/zlvyjRrEKtvITg+hOUkDFp5a5KobkDZQexEVCtj2hn0PIO8npPYr45pezIGt9C/5aZcdRQKUuLH4Lx6FWhnLmg/jC3TuiRZ2jhCOOCY7Uzt69DxkBYwk2Owud9K1lEQBEEQZo+5FywzRTBMTPZkpimqYXLqi4mKuL/1BUYxlIuOWpYutunbK9+vrJd4XsErU2DJXdYUuPLq00sGk7ylpGNBavZAx+8gcgivP3b4mDN4/W1/jwqEtDyvkF2KWGMH2979RZLV9VqOaSR0jbxW23od0+9C/ZjlNef56+gfHTBtl6KOgiflcgyeA3bGljlbsliF/puqbuh4GKpcLwOQY7BHv5WqoyAIwhGg1MRHEI6CuRcsM+G3OPBaPPj5Hl7t+/l6+gk+P1/EdIKwEKWoo0eTfuumQnUyZYtx5dztmcqbztnqrqLX0Pm5iHo7papjTgOmjiI90PlQKnCWbWWiggqEidcvMPTs59SDCoSINXak3ozpSzErfVOIs5AsfvmGSVxAH3NasRGJUtZRmBSleAyucDsTsBSL6kd9GhRKAj87U9UFC38F89aD5SDH4MmkVYKOgiAIgjB7zI1gme5Y+9lnPXpgio64f5vwOsteqC2vmILCW3avxUO56GjA5IpZ5HdpcrUKiWlq16t/PU2v41bRz9c3Ueo65lX2+h+DQ6krzBo2uxYypgZ0J7yYieGnlVcdE+4RKqZOoZERHQUD5XoMrmg7o1K3+QklSXa6FPofAzGYvxZa1oAdp/DxaS4cg+eCjoIgCIIwu8yNYFmGjF/hZZ8V+U4b2m+v/GLQFxh+femLDJMP4XdWvdR1LEAhdXV3z92t35rQK3Dk/vYb9mLXknq6iVLX0VjB9D/aUWh9In3mP+khdQavCVoMheq4Fw6mlbhJCb80vz7nuo6CJ+VyDJ4DdiapbHYP1RxBB8JMEHfSN8kWM1etJDRtgAVPQmAcOQbPBR0FQRAEYXap/GCZ++Sbvq2j+x5eiwsve+7Vl1dZrxN8mY+prrue6QRjuegIOEE7p0m9qr5djNtV6Pypu1wh103hPxxew2iqV246qqCdW7jQXLWSqTP/C55Kn/k3aaRr4Ddx9M6LXRD4hf6KkUkvW2iHKtReJesoZCnHY/AcsTMjsZBHRWG2CVpq4shSzFxFQcNr0PYoBMZchefqMXgu6CgIgiAIs8eUB8uSySS33XYbS5cupbq6muOPP55/+qd/QrkesKeU4vbbb6ejo4Pq6mpWrlzJ1q1bc9rp7e1l1apVNDQ00NTUxHXXXcfw8PDkBfKy5aZ0r0WDu47pzLtfG6boh9e3Vztu38Jdp5C/UuI6RltrPd0vXQxTUMfPrXKXMfWR2VaG8n4fUxv6mrNQ+XLQcby1NvVrMnPVcqDxldRtmdk3mLl795s4ukPt3jaV07e9ME1OP2fdXVZp36a23HLMFR1nH7EzPv2Lnclhx2CtRwfCbLNvuJpY0p6knQFqd0Hb4643Ms+1Y/Bc0HH2KTk7IwiCIMw4Ux4s++d//mfuvvtuvvWtb/Hqq6/yz//8z9x5551885vfzJa58847ueuuu/jOd77D2rVrqa2t5fLLL2d8fDxbZtWqVWzatIlHHnmEBx54gCeffJIbbrjhyITS7bOXI6878HoURC+vY4o6mOqYfBm9TS9/wl3HLVu56WhBvKHK2LwpwJPJc5fRRTINhZfLZVr/eQWdvIbYry2T3Ho/paojgBMOmDvUK7qFy2TU7ILOByHc51XIoxFdQpN2hZzsQphGzm9ncffjtbjQdyi9HVO5ctZx9hE7g3m6ueuInQFgMBqSl2GVKF2j1ThYRzZXa3fCMfdDzT6fQqZGMt/lfAyeCzrOPiVpZwRBKA7LmvgIwlFgKTW1buTb3vY22tra+P73v59Ne8973kN1dTX33nsvSik6Ozu5+eab+dSnPgXAwMAAbW1t3HPPPVx77bW8+uqrnHrqqTz//POcf/75ADz88MNcddVV7N27l87OzoJyDA4O0tjYCN+4GqpC5kWAG690U75+kkwvo/snXmX0ssX0PRn5JtvODOtY/9pBln3jGSxlrqpX8WrWJIaprJe76DdcfjJ45XnJW0467rjufPouOObI56oC4vOg+00wpu+vJs28JHPnFyOAWwiv315ppv79Vm5edTL5FahjdBi+9S4GBgZoaGgoIOP0IXYGsTNF6njJwh7uvepZbPGXSwsF//DMWfy/TUuPzs4ka6DrT2F0oVaoQo/BYmdmjFKzM7M9HkIBJChTmsjZMsHAZI6rU35l2UUXXcTq1avZsmULABs2bODpp5/myiuvBGDHjh10dXWxcuXKbJ3GxkaWL1/OmjVrAFizZg1NTU1ZwwKwcuVKbNtm7dq1xn6j0SiDg4M5n0mh+xz6tqWVddcxlTX5E3pdv76Va9vr+DvZ/b/EdIw1VeOEA9nmdZW91PZzB71E8AsiZerpH9210/solGcawrLQ0YJkdejo5qoFhPpSt2TWb3MlFiM1Whm3xn7l3fgtKI7GuffbGS3mho6zj9gZxM4UqeNIPEjCKY15K+TSPz4FdiYwCu2PpG7NtPRJU6nH4Lmg4+xTtnZGEARBmDKCU93gZz/7WQYHBzn55JMJBAIkk0m+9KUvsWrVKgC6uroAaGtry6nX1taWzevq6qK1tTVX0GCQ5ubmbBmdO+64g89//vPFCVmMfTc59F7oPovuzPm1UYyj6CVjofwS1zFZE8SJBLGjyazKpjWTHvAxNJUjktLSTO3o/ZnEnUxdvV9dHlO9UtVRBWzi8/JvkZ30XLVIPbus7XEIjkD/GaACPg1OZlK50UfDVKfQZNf79hsxP3m9+q1kHWcesTNMbirNYTuzZ6iG/miY1ppogc6FmSYccPITj8TOBEah47fQex70nQvK1gq4vyvxGDwXdJx5ysLOCIJgRq4oE6aIKb+y7L/+67/48Y9/zE9+8hP++Mc/8qMf/Yh/+Zd/4Uc/+tFUd5XDrbfeysDAQPazZ8+eiUzd9rrts2lfMtl3PZJhOgue+Xi171dHT/PyQbxOypWhjsmqEPH6iNGlc390lfVyeOTr26Y6prqm4cqo7FXXK3il91kOOiargsTrI1M3V+04tKyB+c+BHTMUdPfuladL6U6fbARAb1Nvw9ROoRBm5ttrZDPflaDj7CN2xqd9sTM5aQPRMHuG5CH/pYajoHd8iuyMBdgJaF4HC56GwLihETA3VI7HYLEzM0FJ2hlBEARhRpnyK8s+/elP89nPfpZrr70WgDPOOINdu3Zxxx138KEPfYj29nYAuru76ejoyNbr7u7m7LPPBqC9vZ2enp6cdhOJBL29vdn6OpFIhEgkkp/hdqb0bxO6HffyA9z13XV0P8YUCdEjLybfp9BixeRTlJmOKmQz3l5Pzb7BvOb9xPYSt5B75ede+pUpVNbPvTPpVeo6JhoiE7dhTtlcdWDeixAcgoNvhGSV1rDJuS8UGvRaPekTV5+UXnV1vAZA779Qm3NBx5lF7Az5f5PYGaOOCcdK3e4nlBSHxyO8crhhau2MlYDGlyF8OPUcs0St1nAlH4Pngo4zS8nZGUEQBGHGmfIry0ZHR7Ht3GYDgQCOk7rcfunSpbS3t7N69eps/uDgIGvXrmXFihUArFixgv7+ftatW5ct89hjj+E4DsuXL5+cQLqfVCjaYLLRur/gduR0f8Jv2y9q4ZbRJK/+rbddljpaDJ/QbFxvWeSrpadbBep5uYem37ob51fW1K9X+cx3Oek4ekwjKqQdGqZkriqo3wodD0NoEO+JWmgCe5V3r+C9dhTIn9x+/eqOvWkhciTMBR2nD7EzPttiZ3LkVVis624uxWk8p9k9WMvhMS0gMFVztXo/dD4E1V14//Fz4Rg8F3ScPkrOzgiljdz2JwgVyZRfWfb2t7+dL33pSyxevJjTTjuNF198ka997Wv85V/+JQCWZfHxj3+cL37xiyxbtoylS5dy22230dnZyTXXXAPAKaecwhVXXMH111/Pd77zHeLxODfddBPXXnttUW+OMeIVKTCV0+uYTqKZzpIXeyZUr1MoqlKoDV3eMtJx5LhmVNCGhJNT5Uhxq+OXr6e580zqu9t0q2A691qoHwx5k2G6dRxZOi+/hamcq9X7YeEDqTP/4wsm2YhX2NFrAptGQs83pZnkcY9esU6RV3v4pJebjjOP2BlDW2JnzDoqeGxPO3977haqg0mPBoQZRcGWvnoSSjspM5VzNdIDnQ9C12UwsmSSjZTbMVjszHRQsnZGEARBmDGmPFj2zW9+k9tuu42PfvSj9PT00NnZyV//9V9z++23Z8t85jOfYWRkhBtuuIH+/n4uueQSHn74YaqqJh4q/uMf/5ibbrqJyy67DNu2ec973sNdd9115ILpNrmQ8++u4xf10Nswoed5bfs4+55lTXX82i4xHcfb64m21lG9P/dtP6YglElUk1sH5uFz18GQ5+e2meqY1oKmOu729fxS09EJBxg+scUs9FTNVQsI9UPnb6D7zTByLPmjo0tmGgE9T0/zWxyZRqFYGdxl/eoUk29qv9x0nHnEzhSRJ3Ymm949UsVILCjBshIhoSwe3e26BW267Iw9Dm2PwYErYawd74ll6swrT08rhWOw2JnpoGTtjCAIgjBjWEpV5nWjg4ODNDY2wjeuhuqjeF6J7pRN1i8wtWWqp0c33P1Nxu84EmZTRwVtv9vKwvs2GbspZnL6BYD8ynoNsckfN5XR2zCVNQWqSlZHC/rOXcjOD5+XutpPb1QX+GjnqgKcCBxeDgOnpQQwNuzVUKEVux9+C4NCbRTq369Pd/ky1DE6At+6hoGBARoaGgr0X/mInZkEs6hjwFL886Uv8t4Td5fimnxuoWD7QB3vvP9SBqPh3LzpsjPJmtRbMvtPY+KNzGV6DC6I2JlKI2NnZDzKAEsMTMlQmeENYYqYzHF1yp9ZVtIoj213mtLyTX6De01vOi6629ExnUQz9eXuT5dXGfL1PH3bJFsp6AiMLmkC2/I8d6mnW9pHL+dXxytopIuoPOoo8ofI1L97ePS8UtUx2lrH7g+cNfG8sumeqwCBKLQ8C/PXgpX06NTdmCnMZ8rX6+mYhNWde68dyO9fUNrH1G+56yj4Um7H4DlgZ5KOxSO7OjybEmaO4XiQzz97BoOxdKBsJuxMcBRanoGWP4idyalfyjoKQhkiARpBqDgqP1jm50/ozpYe/dAjC2j5prb0CIQ7T4+meMnrFVExtZOpU8Y6xuZV44TsPPdPQTZdDxy5m3J/Cg0d2rbu5pnaMQW/THUK+esmed3pk9UxGQnSf24nydrQEenoTrOA8bY6kjWh3EozMVftROpNma2/h8C4QTp3Y3qYTxem2NWVX567D78VP1qa/i/qbXstWvQypa6jkEeZH4M95XF/l7mOXSNVxByDy+OlkzAtrD0wnyf3taZ+zORctRQ0vZQKmNlx8idVOR2Dxc4IQslSbMBMqfyPkMI0Nl4fQZhmKj9Y5uVT6E6VydnSHX49amJ0yAxtQr6f4N52y1ZoYWFqp8x1TNRHSNRFcoo44QB95y9kx4fPx4kE8ppXmJs2rbPwSXOn62mmba+h09syrfN0WfWh1+VXQLIqSLI6mFc3VUhx4OqT2HfNqdk7GE3TxbgWtC36zltIrLk6mz92TCNY1izNVQUNr0HbaggNkTvChRYDpknozvNzzk11TPWLceKLiSp41Sk3HYUcyvwYPBfszK7BWnrHJm77UwpePdzAt9afyL9vWEbSyZ3bSkHSIX9shAkUjMQDDERDuWuW9P82nrD57c4OXjrYhJMey9d6G3DULNqZppeg/VEIjOE9Yd2/MfwuhWOw2BlBqDgk+DN5ZMyEaWbKH/Bf8ujRjGJtt7uuvl0IvY7J+feK4HhFVEzt6HXLRMdkVZCxzgbCh0dRIZv+MzvoWXk8I0uasBMOseYaqg8MpapY0P2nJzC6qImq7iE6frM5e5xMNEQY66inYfOhPHGy6670hmlYTepktt3+eF7QylDOq32vdYGJWHM1r//1hVTvHWTJ/3sxr7wdS1Kzq5++84+h9fEdVO8fRJEen8VN2XaaNhxg3gv7UEGbfdecSryximR1kKGTFlCzu5/j/s8LhPrGGOuon/25WrsTgiPQ/RaIthgqezXkN1G9FDCtxtDSLPwVMCmkt1lsvXLRUShImR2D54KdGYoFeaF7PlfV7KNvPML3Xj6Bn7y2hIFomJbqKO89cTctNVEA4kmLb68/kZcPNfGnS7p4x/F7qQlV7ssBDgxX0RBOUBNKFPXIHaXg8T1trD0wn8f3tDESD/K24/ax6pSdDMZC/Oy1JfRHw3SPVvF813yqgkm+dPEGrli6n8f3tKUa8Zo7GH670456riqofR06YtD9JxCvM1Qu9WOw2BlBKAv0QI4802x6yIxzZnwlgCZMIXMjWDYZm+6uo+PlY3j5H17bur9gWmCYHMVMuqmdctbRstj37lMZXdLEyNJ5DJ6yAGwbLHBsi7GFDVQdGMKpCtLzluPouvJEnEiQSM8wbY9uJzCeQAHJ6hA1ewfy1Mr8HjqpBRW0adjUU9Q6zzTkaHXcquoBNdPQm4ZfHxIFqKDNnmvPZHTJPCxHoQIWdlLlla/b3svhi5bQ8+alLP7JBpI1IQ6+aSmxBbXZxoeXzadmzwB2NMHhFYtJ1oWzeSPHz+f16y9g3gt7GTm+OVcBt0AzOVcjB6HzodRCZnShobC7Iz1NF/BoVuGmfopZ2RUrr9dA+NXRZTXV8WIqdRTyKOdjsC5PBdqZpLL53LNncu8rx3JgpJqdg7XZzP5oiBd75nHxwoNs66/noR2dfO+lE4g5Nqt3t7N3qJpPnLeZgF1hDriCPcM1fPbJsxlNBLn2pJ287+TdnsWTDtgW7B+u5gtrzuD1gbpsO3dvWMZPXjsWFAzEXA/uVzASD3L7s2fyi62LWNc9P5s+q3O1ei8s/B/oPQeGloEKaoXdHZXiMVjsjCCULF7BmmKCOHrgx69eOQXfTDoUo+PR9iEIR8ncCJZ5OeZ+x5jJ5pn8Cbcv4OeHFOO/eOWZnMsy1HG8s4EDHQ2GRZZF/zmdhAbG2f/2UxheNj97cI03VBFvrMIeH2a8ox4nFCDSPZzXNUCyOsi+d51GcDRO/WsHsZPKM1BWKM3k4plcQn14vNxRU73RxY0MntIKFiRqw6hgAJKJvLo1u/ux4kkGzmwn/uBmxtvriTVX5xSKN1Wz/x2nMG/dPpLVobz/ceS4ZkaOa85tWO/IPRCmMlM9V4ND0PEw9LwJho8HZbpj3Gv1ZMrT073+FZMSk1k0FLOi85JlMu35yTHdOgpGyvwY7JtXIXbm0FiEQ2ML8vISjs2tT59Nc1WMHQO1RJOBbB1HWfzHS8s4NFbFgppxOmrHed9Ju/ICZ0kH/uf1YxhPBDi2YZjlHYdLex2jYEt/PX/58BvYPZQ6uXJOa6/5cKRgLBngn587lcX1Izzw+sKJQBmZ8hYD0YkTMbl5MBgL8fS+1tKaq+E+aHsCqrvg4CXgmN5oW4rHYLEzgiCUERLEEsqYyg+WKcx22etMtfu36cSY3o5fmjvdwwHNad/LxylU1suvKTcd3XVceX3ndtJ/VnsqYORKd8IBRhc3Ea+PsPPD59H2yFZqdvfndJvp+uBbjmN0SRN23GH02HnUbe/N6coruOUWUR8mvU4hlfyGSe+3d/kiVCilb7yxinhTFXb3cI5OCrASDpajiDdWMXhKK+Od9amr8jTfue+cTgZPbU1dFlDoPyiVuWpHoe0xCA1C39mgAgbh/EKRXspkOjftBF7OfLH9FhNFMM0sP5lLTUchD7Ez5v7LSMee0Sp6RqqMdaKJQOqqKWBR/QiXH7uf+dWxnDaf3NuWvUKrKRLjR1es4ezWvpINmCWUxddfODkbKEPBgeFqHLSH2SpYvbuN7718AmsPtJA0PSCzhP5HX9lMc9VyoOFVSFbD4QtJnZgp9WOw2BlBEMoECZQJZc7cesC/7kBlIw6uPJPddn+77b0pcmLC3aZpUeVuV69nksnkQFayjraVChzpOloWu689k+03voHY/Bp6LjuB0WObcppWwODpbXRfdgLYFk44wOHli/RYktGN08UoVKcYd1VPd5NRLVkbYuD0tmwlJxLk8BsWoYK5u6sTCXDw0qU4kSDYFnv/1+kcvHRpvvAKsK2JN12Wy1y1ACsB85+DBU+B7VqcFlwIeCmnC2P6dgvv9Q+aBPcrV2hlaZKrVHUU8qj0Y7C7/hzXce9QDbc9cxZ94yHG4gEOjkZ4tbeBb754IqOJ1PnH/miYv/rdcn648ThePthE/3iIeNIilrSJJ618fbWPUqnnpmVfMKDAcdJrDv1TLOl2Y0mLkViQf33hFB7d3Z6j49P7FvCLLYvpHw8RS9ocGgvzi62LuP3ZM3l2/4KJQJk+Xm493Hr5yDLb/2Nunko9+L96vyvT3WGpHYPFzghCxVPMGx9L/a2QheQqdfkFgblwZZmOyYGHXBuv55nSdV/AtG1q20ueYn6b+jExh3RM1oaz5aILatn6txfR/MI+al/vBQuGj2um7/xjJgJFFqnbOgejWAnH2LSdSBI5OOLrswWHogTG4sY8Jxwk3lRlzHOTqI8Qr4/kpcfnVRObV5MzBl2XL2O8vZ6m9fsJ940z3lpL33kLGTp5QbZM9llkUHb/o/9cdaDxldSD/3veAonqIgQ0raKKUSrbqaF+3gpLK1+MYqY+/Mr4yTvbOgqezKFj8FzTUWHxm9c7ebW3gZDt0DNaxXgikA2UZTg4WsXn15xB0Fa0147RUh0llrQJ2YrTW/rprBsDYDwRYCgepKUqys7BOqJJm6RjsWeohnlVMRojKTszHAsSDjiEAxN2a3H9CDWhJLalWNIwwuGxCMfUj3JM3Si942GG4iEcZZFwLF4+1ETPSBWv9TUQTdq83l8/8QbQtI4DsTC3PHkO/1Z3Eg3hOP3RMPuHq1GmQSrz/zFfjji0/w4GzkhdyeyEihBwto/BYmcEQUjj90ww93PQjiQwVewl0hL0EiqQyg+WuU9UWa7fXnbbItde+/kHpnqZdL28yV8p1rfQ5dfr607oXNWRVMDo4JuWcvBNS/P7TJNoiHDg7Sd7y63cApmxkgocjzIWeVeBeRbM69clr1vHgE3/OZ30n9OR6jf9AoSs/JqOZf0/GueqSr0ps+Nh6H4zxOZNQqBCSuiYVniTXSz4rQb9+vJbJWbam20dhTzEzswpHZVlsb2v3l9OCxQWccdiz1AtewZrs22uPzgvV58j1TEnPbVhoYgEHOKOhZO+Eky5OyigY1JZObLOKTsTGIPm51PPzDy0ApJVkxBI7EzhfjPlxM4IwoygB6+ONJglQTBhDjO3bsOEfLtsctgwlFWGbXc93Tnzaksvq7etY3Iy3XK7+xMdc/07U9lidLQAy/L9qKCNCgVQ4YDxO3UWxlUHw2/9PymkI2m53IEyDGUr6X/U5ao6kAqYZW+XMQmgK6gLYaqjd+Tl2Jucf31RYcK9Yiu0aHCv7MpJxzmMHINFx1nX0QIFSlmMJwMklY1SFgoL3LdPlrWOzMD/qFLPMOt4GKoP+AhXisdgsTOCIAiCMJVUfrAM8m24br912+/lJHo5cCabn9n28jkK+Rum8n51RUfR0VTHJFc562iReoNZx++gfruhcwyV9U70zk24Fx0moQv159Wm10LAa1D8Vph63ZnSUTAi+67oaKpjkkt0LG0dLVInZBY+AHU7DJ1jqKx3onduQuyMd3+CIAiCMPvMjWCZyf7q9t5ty01Ol+5ImdrOlPHzY/R6Xo6g3pfu6JnqmPoQHfPzRMfy1hEgMJp6U2bjJrCSHoX1RYCpE7TfxSqnDOW9hDX1Yaqr4x48rwGZDR0FI7LvTpQXHUVHKG8dAax4ys40vOZTWOyM2BlBEAShUpkbwTLd+fKy45ahrLuMyZabHEb3dyGfxiLfj/CS06tft7yio+g4V3S04tD6VOptmXbC0IG+CNDTdIXdnfop5DdohZx+i/yBBP92TOVnU0fBiOy7oqO7jOhYGTra0ZSdqdth6DBTSO9A7IzYGUEQBKESqPxgWcaO6/Zct/26/bcwO1fudt3l3On6R6/j5WBmPib/wc9BFB1Fx7mqo+XAvBeh9fHUw5mNKyZ9RYRWxt0xWplCTr6pjpfT7zcwprbdchUqM5M6CnnIvis6io655UyylquOVhzaVkPL2pTNyamUaVDsTG5bejtiZwRBEITyo/KDZboTZMr3csBMjqA7T3fk9Drudt0+hsm3KNSnl1/kzhMdRUc93d1epepoKajfCp0PQXDYlVlIAb2cpW27y5kWALpQOl4rskLlM2X1j9eKcjZ1FADZd919i46iY6XpaAGBGDRtgAVPQWjQlTnbx2CxM4IgCIIwXVR+sMyNpX270f0Mky/hTtd9By9foZg6up/iTtd9Ct0Z1XURHXPzRMe5oSOk3pS58DcQOeTq2G8hoQtgWhDonZqU1AXR63nlm+QodjD0gZ8tHYU8ZN/NzRMdRcdK0dFKQONGWPhraNhC6iqz2T4Gi50RBEEQhOlibgXLdFtssvWFyNh4y/Db3b7uDJqcQpO/4JZFr+PnZ7jbdX+LjmZEx4n2K0VHCwgfhs4HoXaXlmFaIPgJ4CWI30rMS1GvxYm7bz+8VnJ6+7Opo5BF9t3iEB0n2hcdy0dHCwgPQOsT0PgyEwGz2T4Gi50RBEEQhKkmONsCzAhuB0tp6cXUzaA7f3q6yddw96/3Z0rXf/vJ6O5HdPRHdPTvo5J0DA5D+6Nw6A0weCoor3MClvbttXorJJBplVgsprJeckymXb39qdRRMCL7rj+io38fomN56WgnoGUNRPrg4ApwIh6NiZ0ROyMIgiCUK5UfLHM7OSbHCbztsu7gubdNeSZfw88xK+RQmuQxOZuiY+E29XzRsbJ1tKOw4GkIjEPf2aAKHepMzrz+22sB4OfkF7tiNCnlrjMVTJWOQh6y7xZuU88XHUVHnXLT0UpCwyZQdurkjBPyaVgXyEsQsTOCIAiCUCrMjdswvex2xonT/QRlKGtqs5A/oKdZ2ieT5uVk6jKZ/Bwv30l0FB11eU3teqVVgo52EuY/NxE0K2qVpndoEiLz29K+3fWVVta0aiymz6lcOEyljkIesu+KjqKjuV2vtErRsXFj+gUzmTcyeyF2RuyMIAiCUE5UfrDMbYNhwg7rjpHJNuv+g8kvKXTm051n6rvYOn5Oo+iYW8arH1PboqO/vOWuo6WgcRO0rYaQ/qZMUwemhYPS8r3K6qsx97Z7EaAL6rcy85JH18P0Z02njkIOsu/mlvHqx9S26Ogvr+horlNKOloKqvdCx0MQ6XUVEDtjLit2RhAEQSgPKj9YpmNp335l3JhsuVcbuj+h+yteTlqxshSqLzp654mO+WUrXUeA2p2phUy4X6s8WeXc9UzbJvQVmtdAFUOmL728O01fyc2EjkIOsu9654mO+WVFx/LXEaCqCxb+Cuq3kX/8LAaxM2JnBEEQhFJi7gTL/M5gep05LKas20lzn/G0MLehn0zz69urf5PTqdcvJLfomLstOla+jpGDsPB/oPqAppybQgsMU71Czr1ppVbsgqCQfMUsiGZCRwGQfVd09C8rOla+joExaH0SmjaClXQp50bsjNgZQRAEoRyo/GCZ7viYnDa/k2d6Wya7bhny9DL6b7dzpbet92+qo/dtkl90FB31vue6jsGh1LNl6reC5WiN6Y2bvv2cedMqyy/d1L6fPMW079fOdOo4x5nteT0X9l3RUXT0q1NKOgbGYcEzMG+DJozYGbEzgiAIQjkx6WDZk08+ydvf/nY6OzuxLIv7778/J18pxe23305HRwfV1dWsXLmSrVu35pTp7e1l1apVNDQ00NTUxHXXXcfw8HBOmZdeeok3vvGNVFVVsWjRIu68887Jawe5jg3k2mA/W53JL2TXTWccvfo2yeV29kyOl8m58+pTdDQjOvr3565T6TpapBYybU/AvBeZCJh5raR0ZfUOTIsLv4WJ1yLAq3/378ms5Ey/p1LH6UXsjIbsu951RcfcNkXHEtExCc0vuK4wyxQUO5Mvt9gZQRAEoTSZdLBsZGSEs846i29/+9vG/DvvvJO77rqL73znO6xdu5ba2louv/xyxsfHs2VWrVrFpk2beOSRR3jggQd48sknueGGG7L5g4ODvPWtb2XJkiWsW7eOr371q/zjP/4j3/3ud49ARcyOk9u2u30Yk++gt+O2637On44yfExy6n6L23nT/S29f9FRdNTri4752HGY/zy0PJPazlmhuTvMNKY8tr2UcOO1+tIV1PNM+K3S/Mq5y0+HjlOL2Blk3/VDdBQdy0FHO56yMR2/g+CIq7LYGbEzR2hnBEEQhBnFUkp5WcvClS2LX/7yl1xzzTUAKKXo7Ozk5ptv5lOf+hQAAwMDtLW1cc8993Dttdfy6quvcuqpp/L8889z/vnnA/Dwww9z1VVXsXfvXjo7O7n77rv5h3/4B7q6ugiHwwB89rOf5f777+e1114rSrbBwUEaGxvhG1dDVchse01+hTvPzz8oxhcp5KPo7es+RTGymhy+Yup5yeCVJzoWrqPLY5JJdCwtHZUFw8fDwUsgUeMSQHfo/QbEb/CKFdSLYhYqXgNdqM0j0DE6At+6hoGBARoaGgrIPjWInTH8ln3Xv33R0TtddDTX85LBK29SdgaItcCBt0KsySWA2BmxM4XJ2JmZHA9BEIRKZjLH1Sl9ZtmOHTvo6upi5cqV2bTGxkaWL1/OmjVrAFizZg1NTU1ZwwKwcuVKbNtm7dq12TKXXnpp1rAAXH755WzevJm+vj5j39FolMHBwZxPFrd/4cbC29b7+QBeTpZu93U/wdSG7gxaBfLQ8iztW3Q0y1Bsnug4t3S0FNRtg/bfQbhPK2wSuNACwbSgmMzAFtteRg6TLHq7poHOfB+JjrOL2BkKz2s/mSpl39XbEB29ZRUdveuZZCg2r2g7A4QPQdvjEOn1EEbsTClRsnZGEARBmFGmNFjW1dUFQFtbW056W1tbNq+rq4vW1tac/GAwSHNzc04ZUxvuPnTuuOMOGhsbs59FixalMnSbn0F5bLt/u7/dHxPF+hN6PxnHypRvktdLF9FRdNTbEB295dQXXdX7oeNhqOrxaFxfNCgt3Ut4kyB626Z802+3DH59utt1/3F62SPVcXYRO+ORbuojk1ap+667H9HRLJPomF/H1P9M2JmqA7Dw19DwKuAYGhc7UyqUpJ0RBEEQZpyKeRvmrbfeysDAQPazZ8+eVIbb5ut+g9uZ0u21226bTpCZ7L8XugOYKWtqV69nksl04lB0FB29ZBEd82XVdbRIXVnW+SDU7tKEcneqo6/svMr5LVpMbbrr6Ir7YVpEmb7df9BkdZy7iJ1BdBQdRUddHhNediY4Cq1PQ/MfwU5ogoidETvjY2cEQRCEGWdKg2Xt7e0AdHd356R3d3dn89rb2+np6cnJTyQS9Pb25pQxteHuQycSidDQ0JDzMaI7RyYb73aY0NLdv3VnTXei3A6Su46llTPJ5/5t8j/8EB1FR9Fx8jpaQGA09TDmxk2k3mBmGgCvhYKXYib0lZpXGa923dvucoXqmPo/Uh1nB7EzWj+y73rrpP8WHfMRHWdeRysO859LvS3TSmAeALEzs0lZ2BlBEARh2pnSYNnSpUtpb29n9erV2bTBwUHWrl3LihUrAFixYgX9/f2sW7cuW+axxx7DcRyWL1+eLfPkk08Sj8ezZR555BFOOukk5s2bNzmhTM6L7hTpdtty1XGj23GF2Rdw/9bTdB/EzzlzO2O6s6e3KTqKjnr/bkTH4nW049D6VGoxk31Tpt5hocWCvhrzwjRIpvbc7Xop6FenUL9HsyCaWcTOGNqRfVd0FB3LS0dLwbwXof0x15sy9Q7FzswWJWlnBEEQhBln0sGy4eFh1q9fz/r164HUQzDXr1/P7t27sSyLj3/843zxi1/k17/+NS+//DIf/OAH6ezszL5h5pRTTuGKK67g+uuv57nnnuOZZ57hpptu4tprr6WzsxOAD3zgA4TDYa677jo2bdrEz372M/7t3/6NT37yk5PX0CLXefFzfExOmrucvu2up/svXm3pZfW2dUy+hVtud3+io+ioyyE6HpmOlpNayLQ+DnbMVchrZWbqRO/QvYIzCaYvKvz+ANOCyTRoelldHpMcR6rj1CF2humZ115U0r7rheiY25/oOPs6WgrqtqZu/4/0ugqJnZkJys7OCIIgCDNOcLIVXnjhBd7ylrdkf2cO+B/60Ie45557+MxnPsPIyAg33HAD/f39XHLJJTz88MNUVVVl6/z4xz/mpptu4rLLLsO2bd7znvdw1113ZfMbGxv53e9+x4033sh5551HS0sLt99+OzfccMORaanbdrezY3KYvBwoPx/B5EeYnKti2tLbKSSvSWbRUXQUHY9OR0tB/VYIjkH3n0C8ziAEFBZWL2/Cb1D0NrwGqJjVn6mtQv0Vkn3qETtToH3Zd4trS29HdDTLLDrOop0BIj2w4Km0nak3FIDCwurlTYidcVOWdkYQBEGYUSyllCpcrPwYHByksbERvnE1VIfMhTI22z0Cfs6alx13t6N/g7d/4G67UDkMeX5lTbK5+/GSQ3QUHUXH3HIAsfmphcz4AkOlyTj4+uHWa7WlD55XX4VWiV5tFfNnGOSMjsC3rmFgYECeo4LYGaNs7n685BAdRUfRMbccQLIWut8MI0sMlcTOzFUydkbGQxAEYWqYzHG1Yt6G6YsyfOt+Qeajl3WX0dMy5SxXGf27kK9gaeV0GUx96v265RUdRUfRcaKM/n0kOgKED0PHw643ZXo16DcQegeWlu7Vjqm8vhjRy2fS9HbdA+sn62QGTQDKb17PhX1XdMzv1y2v6Fg6OgIERqD1SajqMRTWBRA7IwiCIAjTTeUHyzJ2XLfnuu3X7b+F2blyt+su507XP3odL+cr8zH5D34OougoOoqOueVMsh6NjhYQHIL21dCwGSy/1ZWX0+83MHobJkH8yuirPr2Muy29nUILGb9FmQCU77zOtF3J+26mbdFRdCx1HTN2pvPB9BuZxc4IgiAIwmxS+cEy3Qky5Xs5YCYnyZ2nO3J6HXe7bh/D5FsU6tPLL3LniY6io57ubk90PDodAQLj0PpE6uH/VsJQQG/ItCIrVN4toPvjtdryU0Bp5Sxt20tWN4XkFsp6Xs+FfVd0zM8THUtTR4DgKCx4Gpo2pO2MH2JnBEEQBGG6qPxgmRtL+3aj+xkmX8KdrvsOXr5CMXV0P8WdrvsUuqOm6yI65uaJjqLjVOtoJ2H+WljwTCp45uv8m1ZjpnJ6eTemwdCF8los6YNsWvS4+/b6IzGkC0bKdV7rclbivqvLKTqa0/X+vPovRl7R8cjtTMsfoO33YCe0yrqCYmcEQRAEYTqYW8Ey3RabbH0hMjbeMvx2t687SiaHyeQvuGXR6/j5Ge523d+ioxnRcaJ90XHyOloKGjdC2+rUVQA5ipga8FKomIWB10pOb9/Uj98g6+0X+u33ZwpZynleZ9Ired/NpIuOomOp62g5UL8Z5v+BiSuZxc4IgiAIwkwRnG0BZgS386G09GLqZtAdIz3d5Gu4+9f7M6Xrv/1kdPcjOvojOvr3IToemY61O1PPl+laCbEmreNiMJX1WmFNpl29fa/VZjHy6qtEwUglzWuTbJW275pkEx0LIzr69zHlOipoejlV6NAKUAGt42IQOyMIgiAIR0LlX1nmdnK8/AD9hFnmo7R8fRvy/QG9jJ9j5na29DZNH5Ms7j5ER9FRdJxgpnSM9MDCB6D6gKFRfQVkWhHpQpmUmApMCxb9dzErOyGPSpzXc2HfFR1Fx7LQUaWuZK7f4qrsRuyMIAiCIEwHFXtlmVJpozsez3VOjIXJ9xsK1SnURrF5XvmTOTFXjLyiY3GIjqLjkeioesHeDrF6UO4Vltv5N3Xql38kihfCr033qs9UVkEsdctp9vg6xxE7U2R7omNhOYvJ88oXHc1lK0rHOERehGQzJOrIPV6LnalkMuMwODg4y5IIgiBUBpnjaTF2pmKDZYcPH05t3Pq72RVEEIQ5wgOzLcCMMTQ0RGNj42yLMeuInREEYWb54WwLMGOInUkxNDQEwKJFi2ZZEkEQhMqiGDtTscGy5uZmAHbv3l0WxnZwcJBFixaxZ88eGhoaZlucoig3mctNXhCZZ4JykxdmT2alFENDQ3R2ds5Yn6VMudkZKL/5Xm7yQvnJXG7yQvnJXG7ygtiZUqGzs5NXXnmFU089tWzmj8z36afc5IXyk7nc5IXyk7kc7EzFBstsO/U4tsbGxrKYLBkaGhrKSl4oP5nLTV4QmWeCcpMXZkfmcgkKzQTlameg/OZ7uckL5SdzuckL5SdzuckLYmdmG9u2WbhwIVB+86fc5IXyk7nc5IXyk7nc5IXyk7mU7UzlP+BfEARBEARBEARBEARBEIpEgmWCIAiCIAiCIAiCIAiCkKZig2WRSITPfe5zRCKR2RalKMpNXig/mctNXhCZZ4JykxfKU+ZKpBz/h3KTudzkhfKTudzkhfKTudzkhfKUuVIpt/+i3OSF8pO53OSF8pO53OSF8pO5HOS1lLybWRAEQRAEQRAEQRAEQRCACr6yTBAEQRAEQRAEQRAEQRAmiwTLBEEQBEEQBEEQBEEQBCGNBMsEQRAEQRAEQRAEQRAEIY0EywRBEARBEARBEARBEAQhjQTLBEEQBEEQBEEQBEEQBCFNRQbLvv3tb3PsscdSVVXF8uXLee6552ZFjjvuuIMLLriA+vp6Wltbueaaa9i8eXNOmTe/+c1YlpXz+Zu/+ZucMrt37+bqq6+mpqaG1tZWPv3pT5NIJKZF5n/8x3/Mk+fkk0/O5o+Pj3PjjTcyf/586urqeM973kN3d/esyXvsscfmyWtZFjfeeCNQGuP75JNP8va3v53Ozk4sy+L+++/PyVdKcfvtt9PR0UF1dTUrV65k69atOWV6e3tZtWoVDQ0NNDU1cd111zE8PJxT5qWXXuKNb3wjVVVVLFq0iDvvvHNaZI7H49xyyy2cccYZ1NbW0tnZyQc/+EH279+f04bpv/nKV74yLTIXGuO/+Iu/8lXhUgAADKpJREFUyJPliiuuyClTSmMMGOe1ZVl89atfzZaZyTEW8hFbc2SUm52B0rc1YmfEzhyJzGJnSh+xM0dOudmaUrczUH62ptzsTCGZofRsTcXbGVVh/PSnP1XhcFj94Ac/UJs2bVLXX3+9ampqUt3d3TMuy+WXX65++MMfqo0bN6r169erq666Si1evFgNDw9ny7zpTW9S119/vTpw4ED2MzAwkM1PJBLq9NNPVytXrlQvvviievDBB1VLS4u69dZbp0Xmz33uc+q0007LkefgwYPZ/L/5m79RixYtUqtXr1YvvPCCesMb3qAuuuiiWZO3p6cnR9ZHHnlEAerxxx9XSpXG+D744IPqH/7hH9R9992nAPXLX/4yJ/8rX/mKamxsVPfff7/asGGDesc73qGWLl2qxsbGsmWuuOIKddZZZ6k//OEP6qmnnlInnHCCev/735/NHxgYUG1tbWrVqlVq48aN6j//8z9VdXW1+o//+I8pl7m/v1+tXLlS/exnP1OvvfaaWrNmjbrwwgvVeeedl9PGkiVL1Be+8IWcsXfP/amUudAYf+hDH1JXXHFFjiy9vb05ZUppjJVSObIeOHBA/eAHP1CWZant27dny8zkGAu5iK05csrNzihV+rZG7IzYmSORWexMaSN25ugoN1tT6nZGqfKzNeVmZwrJrFTp2ZpKtzMVFyy78MIL1Y033pj9nUwmVWdnp7rjjjtmUaoUPT09ClC///3vs2lvetOb1N/93d951nnwwQeVbduqq6srm3b33XerhoYGFY1Gp1zGz33uc+qss84y5vX396tQKKR+/vOfZ9NeffVVBag1a9bMirw6f/d3f6eOP/545TiOUqr0xlc/iDiOo9rb29VXv/rVbFp/f7+KRCLqP//zP5VSSr3yyisKUM8//3y2zEMPPaQsy1L79u1TSin17//+72revHk5Mt9yyy3qpJNOmnKZTTz33HMKULt27cqmLVmyRH3961/3rDNdMnsZlne+852edcphjN/5zneqP/mTP8lJm60xFsTWHA3lbmeUKm1bI3ZmArEz/jLriJ0pLcTOHB3lbmtK2c4oVX62ptzsjFLlZ2sq0c5U1G2YsViMdevWsXLlymyabdusXLmSNWvWzKJkKQYGBgBobm7OSf/xj39MS0sLp59+Orfeeiujo6PZvDVr1nDGGWfQ1taWTbv88ssZHBxk06ZN0yLn1q1b6ezs5LjjjmPVqlXs3r0bgHXr1hGPx3PG9+STT2bx4sXZ8Z0NeTPEYjHuvfde/vIv/xLLsrLppTa+bnbs2EFXV1fOmDY2NrJ8+fKcMW1qauL888/Pllm5ciW2bbN27dpsmUsvvZRwOJyjx+bNm+nr65t2PQYGBrAsi6amppz0r3zlK8yfP59zzjmHr371qzmXgs+0zE888QStra2cdNJJfOQjH+Hw4cM5spTyGHd3d/Ob3/yG6667Li+vlMZ4riC25ugpVzsD5WdrxM6InSkGsTOlhdiZqaFcbU252RmoDFtTDnYGytfWlKOdCU5r6zPMoUOHSCaTOQcJgLa2Nl577bVZkiqF4zh8/OMf5+KLL+b000/Ppn/gAx9gyZIldHZ28tJLL3HLLbewefNm7rvvPgC6urqM+mTypprly5dzzz33cNJJJ3HgwAE+//nP88Y3vpGNGzfS1dVFOBzOO4C0tbVlZZlped3cf//99Pf38xd/8RfZtFIbX51MHyYZ3GPa2tqakx8MBmlubs4ps3Tp0rw2Mnnz5s2bFvkh9cyHW265hfe///00NDRk0z/2sY9x7rnn0tzczLPPPsutt97KgQMH+NrXvjbjMl9xxRW8+93vZunSpWzfvp2///u/58orr2TNmjUEAoGSH+Mf/ehH1NfX8+53vzsnvZTGeC4htuboKGc7A+Vna8TOiJ0pBrEzpYXYmaOnnG1NudkZdx/lamvKwc5AeduacrQzFRUsK2VuvPFGNm7cyNNPP52TfsMNN2S3zzjjDDo6OrjsssvYvn07xx9//EyLyZVXXpndPvPMM1m+fDlLlizhv/7rv6iurp5xeSbD97//fa688ko6OzuzaaU2vpVGPB7nve99L0op7r777py8T37yk9ntM888k3A4zF//9V9zxx13EIlEZlTOa6+9Nrt9xhlncOaZZ3L88cfzxBNPcNlll82oLEfCD37wA1atWkVVVVVOeimNsVAalIOtKWc7A2JrZhqxMzOD2BmhWMrBzkB52xqxMzNLudgZKG9bU452pqJuw2xpaSEQCOS9yaS7u5v29vZZkgpuuukmHnjgAR5//HGOOeYY37LLly8HYNu2bQC0t7cb9cnkTTdNTU2ceOKJbNu2jfb2dmKxGP39/XnyZGSZLXl37drFo48+yl/91V/5liu18c304Tdn29vb6enpyclPJBL09vbO6rhnDMuuXbt45JFHcs7CmFi+fDmJRIKdO3fOmswZjjvuOFpaWnLmQSmOMcBTTz3F5s2bC85tKK0xrmTE1kwt5WJnoDxtjdgZsTOFEDtTeoidmXrKxdaUo51x91Futqac7QyUj60pVztTUcGycDjMeeedx+rVq7NpjuOwevVqVqxYMePyKKW46aab+OUvf8ljjz2Wd/mgifXr1wPQ0dEBwIoVK3j55ZdzJn1mRz711FOnRW43w8PDbN++nY6ODs477zxCoVDO+G7evJndu3dnx3e25P3hD39Ia2srV199tW+5UhvfpUuX0t7enjOmg4ODrF27NmdM+/v7WbduXbbMY489huM4WUO5YsUKnnzySeLxeI4eJ5100rRcmpoxLFu3buXRRx9l/vz5BeusX78e27azlwbPtMxu9u7dy+HDh3PmQamNcYbvf//7nHfeeZx11lkFy5bSGFcyYmumlnKxM1CetkbsjNiZQoidKT3Ezkw95WJrytHOQHnamnK3M1A+tqZs7cy0v0JghvnpT3+qIpGIuueee9Qrr7yibrjhBtXU1JTzZpCZ4iMf+YhqbGxUTzzxRM6rUEdHR5VSSm3btk194QtfUC+88ILasWOH+tWvfqWOO+44demll2bbyLwG+K1vfatav369evjhh9WCBQum7bXFN998s3riiSfUjh071DPPPKNWrlypWlpaVE9Pj1Iq9ZrlxYsXq8cee0y98MILasWKFWrFihWzJq9SqbcDLV68WN1yyy056aUyvkNDQ+rFF19UL774ogLU1772NfXiiy9m37Tyla98RTU1Nalf/epX6qWXXlLvfOc7ja9ZPuecc9TatWvV008/rZYtW5bzCuD+/n7V1tam/vzP/1xt3LhR/fSnP1U1NTVH/EpdP5ljsZh6xzveoY455hi1fv36nLmdeUvJs88+q77+9a+r9evXq+3bt6t7771XLViwQH3wgx+cFpn95B0aGlKf+tSn1Jo1a9SOHTvUo48+qs4991y1bNkyNT4+XpJjnGFgYEDV1NSou+++O6/+TI+xkIvYmiOnHO2MUqVta8TOiJ2ZrMwZxM6ULmJnjo5ytDWlbGeUKj9bU252ppDMpWhrKt3OVFywTCmlvvnNb6rFixercDisLrzwQvWHP/xhVuQAjJ8f/vCHSimldu/erS699FLV3NysIpGIOuGEE9SnP/1pNTAwkNPOzp071ZVXXqmqq6tVS0uLuvnmm1U8Hp8Wmd/3vvepjo4OFQ6H1cKFC9X73vc+tW3btmz+2NiY+uhHP6rmzZunampq1Lve9S514MCBWZNXKaV++9vfKkBt3rw5J71Uxvfxxx83zoMPfehDSqnUq5Zvu+021dbWpiKRiLrsssvydDl8+LB6//vfr+rq6lRDQ4P68Ic/rIaGhnLKbNiwQV1yySUqEomohQsXqq985SvTIvOOHTs85/bjjz+ulFJq3bp1avny5aqxsVFVVVWpU045RX35y1/OOZBPpcx+8o6Ojqq3vvWtasGCBSoUCqklS5ao66+/Ps/ZLKUxzvAf//Efqrq6WvX39+fVn+kxFvIRW3NklKOdUaq0bY3YGbEzk5U5g9iZ0kbszJFTjramlO2MUuVna8rNzhSSuRRtTaXbGUsppQwXnAmCIAiCIAiCIAiCIAjCnKOinlkmCIIgCIIgCIIgCIIgCEeDBMsEQRAEQRAEQRAEQRAEIY0EywRBEARBEARBEARBEAQhjQTLBEEQBEEQBEEQBEEQBCGNBMsEQRAEQRAEQRAEQRAEIY0EywRBEARBEARBEARBEAQhjQTLBEEQBEEQBEEQBEEQBCGNBMsEQRAEQRAEQRAEQRAEIY0EywRBEARBEARBEARBEAQhjQTLBEEQBEEQBEEQBEEQBCGNBMsEQRAEQRAEQRAEQRAEIc3/DwDqeg7rbNsJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8ZklEQVR4nOydd3gcxdnAf3tdXbKs4t4LxsYOpplmUw0YCATTA6aGUAIkJCSk0RJawhcSCC0kVBNCCyEktNASejXFYNy75aperu18f+zdaW9u9u4kq57m9zx6dDc75X135vZ9593ZWUMIIdBoNBqNRqPRaDQajUaj0Wg0uHpbAI1Go9FoNBqNRqPRaDQajaavoINlGo1Go9FoNBqNRqPRaDQaTQwdLNNoNBqNRqPRaDQajUaj0Whi6GCZRqPRaDQajUaj0Wg0Go1GE0MHyzQajUaj0Wg0Go1Go9FoNJoYOlim0Wg0Go1Go9FoNBqNRqPRxNDBMo1Go9FoNBqNRqPRaDQajSaGDpZpNBqNRqPRaDQajUaj0Wg0MXSwTKPRaDQajUaj0Wg0Go1Go4mhg2WaAcE111yDYRi9LUaPMWfOHKZOndqldY4ePZqzzjqrS+vUaDSa3sYwDK655preFiMjZ511FqNHj05K62rZ58yZw5w5c7qsvr7I6NGjOfroo7usvtdffx3DMHjyyScz5s2mDx944AEMw2D16tVZt/366693TGiNRqPpZ3Tk2pjLrFu3jkAgwFtvvZVIU9mW/oLKjp1yyimcdNJJvSeUDR0s0/RbVq1axSWXXMLEiRPJz88nPz+fKVOmcPHFF/PZZ5/1tngdxjAMLrnkkt4WQ6PR9FPuvPNODMNg77337m1Rco7Vq1djGEbiz+12M3LkSI4//ngWLVrU2+J1iC+//JJrrrmmT0044s5y/M/r9TJ27FjOPPNMVq5c2dvi9Tp33nknDzzwQG+Lockh4oGHDz/8sLdF6VbuuusuTjzxREaOHIlhGGlv+r788svsv//+5OfnU1ZWxvz583f6OtnU1MTVV1/N1KlTKSgooLy8nBkzZnDZZZexcePGnaq7L9LS0sI111zTqwH8+AIJp7+amppek60ruO6669h7773Zb7/9uq0N2Sa73W4qKyuZP38+X331Vbe1G+fHP/4xTz31FJ9++mm3t5UJT28LoNF0hueee46TTz4Zj8fD6aefzvTp03G5XCxZsoSnn36au+66i1WrVjFq1CgAfv7zn/OTn/ykl6XWaDSa7mPhwoWMHj2a999/n+XLlzN+/PjeFinnOPXUUznqqKOIRqN89dVX3HXXXTz//PO8++67zJgxo8flaW1txePpmCv35Zdfcu211zJnzpyUO9EvvfRSF0rXcS699FL23HNPwuEwH3/8Mffeey//+te/+Pzzzxk6dGivytYV/OlPf8I0zbR5zjjjDE455RT8fn8i7c4772Tw4MEpE/0DDzyQ1tZWfD5fd4ir0fR7br75ZhobG9lrr73YtGmTY77nnnuOb37zm+y+++7cdNNNNDQ08Pvf/57999+fTz75hIqKig63HQ6HOfDAA1myZAkLFizge9/7Hk1NTSxevJhHH32U448/Pieua3ZaWlq49tprAXp9lfJdd91FYWFhSnppaWnPC9NFbN26lQcffJAHH3wwKT0b29IZ7Db5s88+4+677+b111/niy++oLq6usvbi/ONb3yDPfbYg1tvvZWHHnqo29rJBh0s0/Q7VqxYwSmnnMKoUaN45ZVXGDJkSNLxm2++mTvvvBOXq33hpMfj6fCEQqPRaPoLq1at4u233+bpp5/mggsuYOHChVx99dUZy0UiEUzT1JPtLNl999359re/nfi+3377ceyxx3LXXXdxzz33KMs0NzdTUFDQLfIEAoEura+3x8EBBxzA/PnzATj77LOZOHEil156KQ8++CBXXXWVskx3nt+uxuv1Zszjdrtxu91Z1edyubp8DGg0ucQbb7yRWFWmCpzE+fGPf8zYsWN56623EtfBY445JhE8u/XWWzvc9jPPPMMnn3zCwoULOe2005KOtbW1EQqFOlynJnvmz5/P4MGDO1Smra0Nn8+XNIeMs7O2xjRNQqHQTl2zH3nkETweD8ccc0xSeja2pTPYbTLApEmTuPDCC3nooYe48soru6XNOCeddBJXX301d955Z9rfbnejH8PU9DtuueUWmpubuf/++1MCZWAFxi699FJGjBiRSJP3LJs6dSoHHXRQSlnTNBk2bFjShcE0TW677TZ23XVXAoEAVVVVXHDBBdTW1iaVje+D8uabb7LXXnsRCAQYO3Zsl0bE//GPfzBv3jyGDh2K3+9n3LhxXH/99USjUWX+jz76iH333Ze8vDzGjBnD3XffnZInGAxy9dVXM378ePx+PyNGjODKK68kGAymlSUcDnPttdcyYcIEAoEA5eXl7L///rz88stdoqtGo8mehQsXUlZWxrx585g/fz4LFy5MyRN/lPC3v/0tt912G+PGjcPv9/Pll18C1rL7PfbYg0AgwLhx47jnnnuU+z3GHxl/4oknmDJlCnl5ecyaNYvPP/8cgHvuuYfx48cTCASYM2dOymMs//vf/xKPxcSvOd///vdpbW1N5NmyZQsVFRXMmTMHIUQiffny5RQUFHDyyScn0rK9hgWDQb7//e9TUVFBUVERxx57LOvXr+/cCY9x8MEHA1awEtofbXrjjTe46KKLqKysZPjw4Yn8zz//PAcccAAFBQUUFRUxb948Fi9enFLvM888w9SpUwkEAkydOpW///3vyvZVe5Zt2LCBc889N2EnxowZw4UXXkgoFOKBBx7gxBNPBOCggw5KPGIRf2RGtWfZli1bOPfcc6mqqiIQCDB9+vSUu9r2sXXvvfcmxtaee+7JBx98kPX5lJHPb3w8fvnll5x22mmUlZWx//77A1bg9/rrr0+0PXr0aH7605862rKXXnqJGTNmEAgEmDJlCk8//XTS8R07dvDDH/6QadOmUVhYSHFxMUceeaTjYyHRaJSf/vSnVFdXU1BQwLHHHsu6deuS8mSzr4y8L8/o0aNZvHgxb7zxRqK/4n3ktGfZe++9xxFHHEFJSQn5+fnMnj07aX8bgMbGRi6//HJGjx6N3++nsrKSww47jI8//jitfJrc5ayzzqKwsJC1a9dy9NFHU1hYyLBhw/jjH/8IwOeff87BBx9MQUEBo0aN4tFHH00q35HfzJo1azj22GMpKCigsrKS73//+7z44oudHs9OjBo1KuOexTt27ODLL7/k+OOPT7phMH36dHbZZRcee+yxpPybNm1iyZIlhMPhtPWuWLECQPm4XCAQoLi4OPHdab9I1TVj+/btnHHGGRQXF1NaWsqCBQv49NNPMQwj5XHtuJ222xJVndnOdT788EPmzp3L4MGDE3OLc845B7DsQHwF3rXXXpu4Xtlt1JIlS5g/fz6DBg0iEAiwxx578Oyzz6bovXjxYg4++GDy8vIYPnw4v/rVr7p85VT8+vnYY4/x85//nGHDhpGfn09DQ0Pit7BixQqOOuooioqKOP300wEraHbFFVcwYsQI/H4/kyZN4re//W2SrwLtvtLChQvZdddd8fv9vPDCCwA89thjzJw5k6KiIoqLi5k2bRq///3vM8r8zDPPsPfee6cEj+Q+7S6bfMABBwDtYzvOhg0bOOecc6iqqsLv97Prrrvyl7/8JaX8+vXrOe6445J+9042+rDDDqO5ubnX55V6qY2m3/Hcc88xfvz4ndqX5+STT+aaa66hpqYmaRnpm2++ycaNGznllFMSaRdccAEPPPAAZ599NpdeeimrVq3ijjvu4JNPPuGtt95KiuYvX76c+fPnc+6557JgwQL+8pe/cNZZZzFz5kx23XXXTssb54EHHqCwsJAf/OAHFBYW8uqrr/LLX/6ShoYGfvOb3yTlra2t5aijjuKkk07i1FNP5fHHH+fCCy/E5/MlDJtpmhx77LG8+eabfOc732GXXXbh888/53e/+x1Lly7lmWeecZTlmmuu4cYbb+S8885jr732oqGhgQ8//JCPP/6Yww47bKd11Wg02bNw4UK+9a1v4fP5OPXUU7nrrrv44IMP2HPPPVPy3n///bS1tfGd73wHv9/PoEGD+OSTTzjiiCMYMmQI1157LdFolOuuu87x0ZP//e9/PPvss1x88cUA3HjjjRx99NFceeWV3HnnnVx00UXU1tZyyy23cM455/Dqq68myj7xxBO0tLRw4YUXUl5ezvvvv8/tt9/O+vXreeKJJwCorKxM7DVz++23c+mll2KaJmeddRZFRUXceeedQMeuYeeddx6PPPIIp512Gvvuuy+vvvoq8+bN26nzHncYy8vLk9IvuugiKioq+OUvf0lzczMADz/8MAsWLGDu3LncfPPNtLS0cNdddyUe84k7ui+99BInnHACU6ZM4cYbb2T79u2cffbZSUE3JzZu3Mhee+1FXV0d3/nOd5g8eTIbNmzgySefpKWlhQMPPJBLL72UP/zhD/z0pz9ll112AUj8l2ltbWXOnDksX76cSy65hDFjxvDEE09w1llnUVdXx2WXXZaU/9FHH6WxsZELLrgAwzC45ZZb+Na3vsXKlSs7defb6fyeeOKJTJgwgRtuuCExQTnvvPN48MEHmT9/PldccQXvvfceN954I1999VVKsHHZsmWcfPLJfPe732XBggXcf//9nHjiibzwwgsJ+7Vy5UqeeeYZTjzxRMaMGcPmzZu55557mD17Nl9++WXK41O//vWvMQyDH//4x2zZsoXbbruNQw89lEWLFpGXl9dh3ePcdtttfO9736OwsJCf/exnAFRVVTnmf/XVVznyyCOZOXMmV199NS6Xi/vvv5+DDz6Y//3vf+y1114AfPe73+XJJ5/kkksuYcqUKWzfvp0333yTr776it13373T8mr6N9FolCOPPJIDDzyQW265hYULF3LJJZdQUFDAz372M04//XS+9a1vcffdd3PmmWcya9YsxowZA2T/m2lububggw9m06ZNXHbZZVRXV/Poo4/y2muvpciT7XjeGeKTddXvND8/n8WLFyfNF6666ioefPBBVq1alTb4Hd8K5qGHHuLnP/95l7xozDRNjjnmGN5//30uvPBCJk+ezD/+8Q8WLFiQkvdf//oXJ598MtOmTePGG2+ktraWc889l2HDhqXkzWaus2XLFg4//HAqKir4yU9+QmlpKatXr07caKioqOCuu+7iwgsv5Pjjj+db3/oWALvtthtgBcD2228/hg0bxk9+8hMKCgp4/PHHOe6443jqqac4/vjjAaipqeGggw4iEokk8t17770dvo7u2LEjJc3j8aQ8hnn99dfj8/n44Q9/SDAYTARMI5EIc+fOZf/99+e3v/0t+fn5CCE49thjee211zj33HOZMWMGL774Ij/60Y/YsGEDv/vd75LqfvXVV3n88ce55JJLGDx4MKNHj+bll1/m1FNP5ZBDDuHmm28G4KuvvuKtt95Ksal2wuEwH3zwARdeeGHW56CrbXL8Jk5ZWVkibfPmzeyzzz6J4GBFRQXPP/885557Lg0NDVx++eWA5U8ccsghrF27lksvvZShQ4fy8MMPJ/mHduI3Y996663E2OgVhEbTj6ivrxeAOO6441KO1dbWiq1btyb+WlpaEseuvvpqYR/uX3/9tQDE7bffnlTHRRddJAoLCxNl//e//wlALFy4MCnfCy+8kJI+atQoAYj//ve/ibQtW7YIv98vrrjiioy6AeLiiy9Om8euU5wLLrhA5Ofni7a2tkTa7NmzBSBuvfXWRFowGBQzZswQlZWVIhQKCSGEePjhh4XL5RL/+9//kuq8++67BSDeeuutJP0WLFiQ+D59+nQxb968jHppNJru5cMPPxSAePnll4UQQpimKYYPHy4uu+yypHyrVq0SgCguLhZbtmxJOnbMMceI/Px8sWHDhkTasmXLhMfjEbKrAAi/3y9WrVqVSLvnnnsEIKqrq0VDQ0Mi/aqrrhJAUl7VdezGG28UhmGINWvWJKWfeuqpIj8/XyxdulT85je/EYB45plnEsezvYYtWrRIAOKiiy5KynfaaacJQFx99dUpMtmJn7trr71WbN26VdTU1IjXX39dfOMb3xCAeOqpp4QQQtx///0CEPvvv7+IRCKJ8o2NjaK0tFScf/75SfXW1NSIkpKSpPQZM2aIIUOGiLq6ukTaSy+9JAAxatSopPKy7GeeeaZwuVzigw8+SNHBNE0hhBBPPPGEAMRrr72Wkmf27Nli9uzZie+33XabAMQjjzySSAuFQmLWrFmisLAw0dfx81NeXi527NiRyPuPf/xDAOKf//xnSlt2XnvtNQGIv/zlL2Lr1q1i48aN4l//+pcYPXq0MAwjoU/clp966qlJ5eP9e9555yWl//CHPxSAePXVVxNpcVsd7zMhLN9iyJAh4hvf+EYira2tTUSj0aT6Vq1aJfx+v7juuutSZB82bFjS2H/88ccFIH7/+98n0hYsWJCxD+NjyP6b2XXXXZP6RW473pemaYoJEyaIuXPnJvpbCOs3N2bMGHHYYYcl0kpKSjL6HJrcJT7O7NeKBQsWCEDccMMNibTa2lqRl5cnDMMQjz32WCJ9yZIlKWM329/MrbfemnItb21tFZMnT+70eM6GgoKCJD82TjQaFaWlpeKQQw5JSt+2bZsoKCgQgPjwww8T6fHzZP+NqmhpaRGTJk1KXLvPOuss8ec//1ls3rw5Ja987bW3Zb9mPPXUUwIQt912W5L8Bx98sADE/fffn0ifNm2aGD58uGhsbEykvf766ym2JNu5zt///veUMSOzdetWR5t6yCGHiGnTpiXNV0zTFPvuu6+YMGFCIu3yyy8XgHjvvfcSaVu2bBElJSVZnfe4nVD9TZo0KZEvfv0cO3Zsil8S7+Of/OQnSenPPPOMAMSvfvWrpPT58+cLwzDE8uXLE2mAcLlcYvHixUl5L7vsMlFcXJzkI2TD8uXLlXPXuLz2Pu0Om/zCCy+I8ePHC8MwxPvvv5/Ie+6554ohQ4aIbdu2JdVxyimniJKSksS5jfsTjz/+eCJPc3OzGD9+vKNPMnHiRHHkkUemlbW70Y9havoVDQ0NAMpnl+fMmUNFRUXiL75sXMXEiROZMWMGf/vb3xJp0WiUJ598kmOOOSZx9+KJJ56gpKSEww47jG3btiX+Zs6cSWFhYcpdsClTpiSWqIJ1l2XSpEld9jYv+12VxsZGtm3bxgEHHEBLSwtLlixJyuvxeLjgggsS330+HxdccAFbtmzho48+Sui3yy67MHny5CT94o++qO7yxSktLWXx4sUsW7asS3TTaDSdY+HChVRVVSUeLTcMg5NPPpnHHntM+Yj2CSeckLRiLBqN8p///IfjjjsuabXM+PHjOfLII5VtHnLIIUl31OMrfU844QSKiopS0u3XQPt1rLm5mW3btrHvvvsihOCTTz5JaueOO+6gpKSE+fPn84tf/IIzzjiDb37zm4nj2V7D/v3vfwPWZrV24nc8s+Xqq6+moqKC6upq5syZw4oVK7j55psTd9DjnH/++Un7Tr388svU1dVx6qmnJsnpdrvZe++9E3Ju2rSJRYsWsWDBAkpKShLlDzvsMKZMmZJWNtM0eeaZZzjmmGPYY489Uo53ZlXDv//9b6qrqzn11FMTaV6vl0svvZSmpibeeOONpPwnn3xy0h3nuD3M1gaec845VFRUMHToUObNm0dzczMPPvhgij7f/e53U+QE+MEPfpCUfsUVVwDWCgs7Q4cOTbpTXVxczJlnnsknn3ySeFOa3+9P7FsTjUbZvn07hYWFTJo0Sfmo4plnnpk09ufPn8+QIUMSsvUEixYtYtmyZZx22mls3749Mc6am5s55JBD+O9//5t4lKm0tJT33nsvJ9/Ip9k5zjvvvMTn0tJSJk2aREFBASeddFIifdKkSZSWlib9trP9zbzwwgsMGzaMY489NpEWCAQ4//zzk+ToyHjeGVwuFxdccAGvvPIKV111FcuWLeOjjz7ipJNOSuwrZt8m4IEHHkAIkfGR6ry8PN577z1+9KMfJcqde+65DBkyhO9973sZtztR8cILL+D1epPOlcvlSqzyjrNx40Y+//xzzjzzzKQ50+zZs5k2bVpS3mznOvEVWc8991zGR1BlduzYwauvvspJJ52UmL9s27aN7du3M3fuXJYtW8aGDRsA63q+zz77JK0arKioSDwGmS1PPfUUL7/8ctLf/fffn5JvwYIFjqvW5FVc//73v3G73Sm+xBVXXIEQgueffz4pffbs2Sm2u7S0tFOPF27fvh1IXtWVia60yUcccQT19fU8/PDDiacWhBA89dRTHHPMMQghksbP3Llzqa+vT/z2//3vfzNkyJCkrY7y8/P5zne+49h+WVkZ27Zty1rf7kA/hqnpV8Qd0aamppRj99xzD42NjWzevDlpA2YnTj75ZH7605+yYcMGhg0bxuuvv86WLVuS9sJZtmwZ9fX1VFZWKuvYsmVL0veRI0em5CkrK0t55r+zLF68mJ///Oe8+uqricBhnPr6+qTvQ4cOTdmIcuLEiYC1jHafffZh2bJlfPXVV46PWsn62bnuuuv45je/ycSJE5k6dSpHHHEEZ5xxRmK5tUaj6X6i0SiPPfYYBx10UGJfJ7CCVLfeeiuvvPIKhx9+eFKZ+CMzcbZs2UJra6vy7ZlOb9SUr3XxwI59r0h7uv0auHbtWn75y1/y7LPPplwb5evYoEGD+MMf/sCJJ55IVVUVf/jDH5KOZ3sNW7NmDS6Xi3HjxiUdnzRpkrKcE9/5znc48cQTcblclJaWJvYhkZHPcfymQjyIJxPfu2bNmjUATJgwISWPU5AmztatW2loaGDq1KnZKZMFa9asYcKECSmbHccf24zLG0ceF3EnPVsb+Mtf/pIDDjgAt9vN4MGD2WWXXZQv55HPb7x/5fFaXV1NaWlpipzjx49PCR7a7WN1dTWmafL73/+eO++8k1WrViUFnuXHQiG1zwzDYPz48Sl79nUn8XGmeiQrTn19PWVlZdxyyy0sWLCAESNGMHPmTI466ijOPPNMxo4d21PiavoggUAg5XpaUlLC8OHDU34zJSUlSb/tbH8za9asYdy4cSn1yb/fjoznneW6665j27Zt3HLLLdx0000AHH744Zx77rncfffdnd5gvKSkhFtuuYVbbrmFNWvW8Morr/Db3/42cSPoV7/6VYfqW7NmDUOGDCE/Pz8pXT538Wuek12325Js5zqzZ8/mhBNO4Nprr+V3v/sdc+bM4bjjjuO0005T2kE7y5cvRwjBL37xC37xi184tjNs2DDWrFmj3Gqno/b6wAMPzGqDf9mexPF4PCnbH6xZs4ahQ4cm3RgBZ5uoqvuiiy7i8ccf58gjj2TYsGEcfvjhnHTSSRxxxBEZZQVS9kZLR1fZ5KamJv7+97/z2GOPJfkDW7dupa6ujnvvvZd7771XWYfdD1PZ3nT9KoTokseXdwYdLNP0K0pKShgyZAhffPFFyrH4hTVbx/Tkk0/mqquu4oknnuDyyy/n8ccfp6SkJOliZZomlZWVys2ygRSHwukNVh25sDlRV1fH7NmzKS4u5rrrrmPcuHEEAgE+/vhjfvzjH3fq7pppmkybNo3/+7//Ux6XJ752DjzwQFasWME//vEPXnrpJe677z5+97vfcffddyfdldRoNN3Hq6++yqZNm3jsscdSNiEGa9WZHCzbmf2T4jhd6zJdA6PRKIcddhg7duzgxz/+MZMnT6agoIANGzZw1llnKa9jL774ImA5d+vXr0/ab2RnrmGdYcKECRx66KEZ88nnOK7Xww8/rHzdeq68rXlnbeC0adM6dX7jdKVTfcMNN/CLX/yCc845h+uvv55Bgwbhcrm4/PLLu3yj6a4iLtdvfvMbZsyYocwTn/SfdNJJHHDAAfz973/npZde4je/+Q0333wzTz/9tOOKUk3u09lrO3T9b6Yj43ln8fl83Hffffz6179m6dKlVFVVMXHiRE477TRlIL4zjBo1inPOOYfjjz+esWPHsnDhwkSwzDAM5XXS6QVeXUm2cx3DMHjyySd59913+ec//8mLL77IOeecw6233sq7776bti/iffnDH/6QuXPnKvN0xTnuDE72xL5SsivrrqysZNGiRbz44os8//zzPP/889x///2ceeaZKS/PsRMPOHdkAUZX2uTjjjuOlpYWzj//fPbff39GjBiR6Ndvf/vbjkHtnVlEUVtbq7x52JPkhnemGVDMmzeP++67j/fff3+nNvYcM2YMe+21F3/729+45JJLePrppznuuOOS7o6MGzeO//znP+y3335dMsHcGV5//XW2b9/O008/zYEHHphIt68msbNx48aU1xwvXboUILF0fNy4cXz66acccsghnZpkDBo0iLPPPpuzzz6bpqYmDjzwQK655hodLNNoeoiFCxdSWVmpfOz86aef5u9//zt333132utXZWUlgUCA5cuXpxxTpe0Mn3/+OUuXLuXBBx/kzDPPTKQ7PY7wwgsvcN9993HllVeycOFCFixYwHvvvZcILmV7DRs1ahSmabJixYqku5hff/11F2mWnviKtsrKyrTBoPiG0KrH2zPJWlFRQXFxsfJmkp2OXOtHjRrFZ599hmmaSZOG+GP/cXl7m3j/Llu2LOllBZs3b6auri5FzvgqB/u5kO3jk08+yUEHHcSf//znpLJ1dXXK1QpynwkhWL58eZests62z+LjrLi4OKug45AhQ7jooou46KKL2LJlC7vvvju//vWvdbBM0ymy/c2MGjWKL7/8MuU3KNubjo7nrqCqqirxAo1oNMrrr7+ufPvgzlBWVsa4ceOSrtVlZWXKR+PklUqjRo3itddeo6WlJWl1mXzu4te8bOx6R+c6++yzD/vssw+//vWvefTRRzn99NN57LHHOO+88xyvVfEVq16vN2Nfjho1qlM2sCcYNWoU//nPf2hsbExaXdZRm+jz+TjmmGM45phjME2Tiy66iHvuuYdf/OIXaVf05+XlOc77eoKbbrqJv//97/z617/m7rvvTrxdPBqNZtWvX3zxRcrv3qlfI5EI69atS3pcuzfQe5Zp+h1XXnkl+fn5nHPOOWzevDnleEdWcZ188sm8++67/OUvf2Hbtm1Jj2CCdec1Go1y/fXXp5SNRCLU1dV1WP7OEr87YNcvFAol3gonE4lEuOeee5Ly3nPPPVRUVDBz5kzA0m/Dhg386U9/Sinf2tqaeIubiviz83EKCwsZP358p/Zg0Gg0Hae1tZWnn36ao48+mvnz56f8XXLJJTQ2Nipfy27H7XZz6KGH8swzzyTtX7R8+fKU/Td2FtV1TAihfGV6XV1d4m27N9xwA/fddx8ff/wxN9xwQyJPttew+ORffozztttu22mdsmHu3LkUFxdzww03KPd62bp1K2AFL2bMmMGDDz6Y9Ejqyy+/zJdffpm2DZfLxXHHHcc///lPPvzww5Tj8XMev4GSjf066qijqKmpSdrfMxKJcPvtt1NYWMjs2bMz1tETHHXUUUBqf8ZXHMpvPd24cWPSGzIbGhp46KGHmDFjRmLln9vtTvEnnnjiicS+OjIPPfQQjY2Nie9PPvkkmzZt6pLAU0FBQVb9NXPmTMaNG8dvf/tb5XYV8XEWjUZTHnmurKxk6NCh2oZrOk22v5m5c+eyYcOGJNvU1taWch3Pdjx3F7/97W/ZtGlTYu/DOJs2bWLJkiUZ9+369NNPlfstrVmzhi+//DLpxs24ceNYsmRJkk6ffvopb731VlLZuXPnEg6Hk86VaZopN8yGDh3K1KlTeeihh5LO3RtvvMHnn3+elDfbuU5tbW1K/8ZX/MWvG/EAnny9qqysZM6cOdxzzz1s2rQppR273kcddRTvvvsu77//ftJxp5VvPclRRx1FNBrljjvuSEr/3e9+h2EYWV3v5fmTy+VK3FRJd/31er3sscceSvveU4wbN44TTjiBBx54gJqaGtxuNyeccAJPPfWU8kad3K8bN27kySefTKS1tLQ4Pr755Zdf0tbWxr777tv1inQAvbJM0++YMGECjz76KKeeeiqTJk3i9NNPZ/r06QghWLVqFY8++igulyvlOXMVJ510Ej/84Q/54Q9/yKBBg1Ki4rNnz+aCCy7gxhtvZNGiRRx++OF4vV6WLVvGE088we9///ukjQp3lg8//FC5f8GcOXPYd999KSsrY8GCBVx66aUYhsHDDz/sGBwcOnQoN998M6tXr2bixIn87W9/Y9GiRdx7772J1wWfccYZPP7443z3u9/ltddeY7/99iMajbJkyRIef/xxXnzxReVG0WC9zGDOnDnMnDmTQYMG8eGHHyZeQ6/RaLqfZ599lsbGRse7bvvssw8VFRUsXLgw5UaAzDXXXMNLL73Efvvtx4UXXphwBqdOncqiRYu6TObJkyczbtw4fvjDH7JhwwaKi4t56qmnlI8VXHbZZWzfvp3//Oc/uN1ujjjiCM477zx+9atf8c1vfpPp06dnfQ2bMWMGp556KnfeeSf19fXsu+++vPLKK12+cs6J4uJi7rrrLs444wx23313TjnlFCoqKli7di3/+te/2G+//RLO94033si8efPYf//9Oeecc9ixYwe33347u+66q3LCaOeGG27gpZdeYvbs2XznO99hl112YdOmTTzxxBO8+eablJaWMmPGDNxuNzfffDP19fX4/X4OPvhg5X413/nOd7jnnns466yz+Oijjxg9ejRPPvkkb731FrfddlvKvi29xfTp01mwYAH33ntvYsuC999/nwcffJDjjjsu8fKLOBMnTuTcc8/lgw8+oKqqir/85S9s3rw5afPno48+muuuu46zzz6bfffdl88//5yFCxc67uk1aNAg9t9/f84++2w2b97Mbbfdxvjx41M2Le8MM2fO5K677uJXv/oV48ePp7KyUrn/ncvl4r777uPII49k11135eyzz2bYsGFs2LCB1157jeLiYv75z3/S2NjI8OHDmT9/PtOnT6ewsJD//Oc/fPDBB9x66607La9mYJLtb+aCCy7gjjvu4NRTT+Wyyy5jyJAhLFy4kEAgALSvpMx2PKfjn//8J59++ikA4XCYzz77LOFnH3vssYkgxSOPPMJTTz3FgQcemPg9PP7445x33nmccMIJSXVeddVVPPjgg6xatSrtJv8vv/wyV199Ncceeyz77LMPhYWFrFy5kr/85S8Eg0GuueaaRN5zzjmH//u//2Pu3Lmce+65bNmyhbvvvptdd901aY/i4447jr322osrrriC5cuXM3nyZJ599ll27NiRdO7Asgff/OY32W+//Tj77LOpra1N2HW7Lcl2rvPggw9y5513cvzxxzNu3DgaGxv505/+RHFxceKGRV5eHlOmTOFvf/sbEydOZNCgQUydOpWpU6fyxz/+kf33359p06Zx/vnnM3bsWDZv3sw777zD+vXrE/105ZVX8vDDD3PEEUdw2WWXUVBQwL333ptY6ZwtTz75pHJF4GGHHZZYPdhRjjnmGA466CB+9rOfsXr1aqZPn85LL73EP/7xDy6//PKUfVFVnHfeeezYsYODDz6Y4cOHs2bNGm6//XZmzJiRtDJaxTe/+U1+9rOf0dDQkNjrtKf50Y9+xOOPP85tt93GTTfdxE033cRrr73G3nvvzfnnn8+UKVPYsWMHH3/8Mf/5z38SY/P888/njjvu4Mwzz+Sjjz5iyJAhPPzwwyn778V5+eWXyc/P57DDDutJ9VLpmZduajRdz/Lly8WFF14oxo8fLwKBgMjLyxOTJ08W3/3ud8WiRYuS8sZfI6xiv/32U75y3s69994rZs6cKfLy8kRRUZGYNm2auPLKK8XGjRsTeUaNGiXmzZuXUtbpddAyOLzmGBDXX3+9EEKIt956S+yzzz4iLy9PDB06VFx55ZXixRdfTHnl7uzZs8Wuu+4qPvzwQzFr1iwRCATEqFGjxB133JHSbigUEjfffLPYddddhd/vF2VlZWLmzJni2muvFfX19Un62V+5/atf/UrstddeorS0NHHuf/3rX4tQKJRRV41Gs/Mcc8wxIhAIiObmZsc8Z511lvB6vWLbtm2JV4n/5je/UeZ95ZVXxDe+8Q3h8/nEuHHjxH333SeuuOIKEQgEkvIB4uKLL05Kc6o7/vrxJ554IpH25ZdfikMPPVQUFhaKwYMHi/PPP198+umnSa+9j7/e/NZbb02qr6GhQYwaNUpMnz49ca3J9hrW2toqLr30UlFeXi4KCgrEMcccI9atW+f4mvts9JO5//77BSA++OAD5fHXXntNzJ07V5SUlIhAICDGjRsnzjrrLPHhhx8m5XvqqafELrvsIvx+v5gyZYp4+umnU14NL4RQyr5mzRpx5plnioqKCuH3+8XYsWPFxRdfLILBYCLPn/70JzF27FjhdruT7IfKXm3evFmcffbZYvDgwcLn84lp06Yl+imb85PN+VWNExVxW75169aUY+FwWFx77bVizJgxwuv1ihEjRoirrrpKtLW1JeWL2+oXX3xR7LbbbsLv94vJkyentN3W1iauuOIKMWTIEJGXlyf2228/8c4776Sco7jsf/3rX8VVV10lKisrRV5enpg3b55Ys2ZNUp3Z9GF8DK1atSqRVlNTI+bNmyeKiooEkGg/3rbd/gshxCeffCK+9a1vifLycuH3+8WoUaPESSedJF555RUhhBDBYFD86Ec/EtOnTxdFRUWioKBATJ8+Xdx5551pzr4ml1BdqxYsWCAKCgpS8sZ9ShnZ7832NyOEECtXrhTz5s0TeXl5oqKiQlxxxRXiqaeeEoB49913k/JmGs/pWLBggaNvbb+Ovffee+LAAw8UZWVlIhAIiOnTp4u7775bmKbpWKf9N6pi5cqV4pe//KXYZ599RGVlpfB4PKKiokLMmzdPvPrqqyn5H3nkETF27Fjh8/nEjBkzxIsvvqi8ZmzdulWcdtppoqioSJSUlIizzjpLvPXWWwIQjz32WFLexx57TEyePFn4/X4xdepU8eyzz4oTTjhBTJ48OaX9THOdjz/+WJx66qli5MiRwu/3i8rKSnH00Uen2K+3335bzJw5U/h8vpTr24oVK8SZZ54pqqurhdfrFcOGDRNHH320ePLJJ5Pq+Oyzz8Ts2bNFIBAQw4YNE9dff73485//nNV5j9sJp7/49TKd3XH6LQghRGNjo/j+978vhg4dKrxer5gwYYL4zW9+kzJWVL6SEEI8+eST4vDDDxeVlZXC5/OJkSNHigsuuEBs2rQprV5CWPbY4/GIhx9+OEVe+zjpbps8Z84cUVxcLOrq6hJyXXzxxWLEiBHC6/WK6upqccghh4h77703qdyaNWvEscceK/Lz88XgwYPFZZddJl544QWlHdt7773Ft7/97bRy9gSGEF2w87hGo9FoNJqc47jjjmPx4sXK/UM0Go1Go+kqbrvtNr7//e+zfv16hg0b1tvi9CueeeYZjj/+eN58803222+/tHlnzJhBRUWF416hmr7Nueeey9KlS/nf//7X26J0G4sWLWL33Xfn448/dny5R0+h9yzTaDQajUZDa2tr0vdly5bx73//mzlz5vSOQBqNRqPJSWR709bWxj333MOECRN0oCwD8rmLRqPcfvvtFBcXs/vuuyfSw+EwkUgkKe/rr7/Op59+qu16P+bqq6/mgw8+SNnPLpe46aabmD9/fq8HygD0yjKNRqPRaDQMGTKEs846i7Fjx7JmzRruuusugsEgn3zySa+/uluj0Wg0ucORRx7JyJEjmTFjBvX19TzyyCMsXryYhQsXctppp/W2eH2a8847j9bWVmbNmkUwGOTpp5/m7bff5oYbbuCqq65K5Fu9ejWHHnoo3/72txk6dChLlizh7rvvpqSkhC+++ILy8vJe1EKj6R/oDf41Go1Go9FwxBFH8Ne//pWamhr8fj+zZs3ihhtu0IEyjUaj0XQpc+fO5b777mPhwoVEo1GmTJnCY489lvFlNBo4+OCDufXWW3nuuedoa2tj/Pjx3H777Skv2CorK2PmzJncd999bN26lYKCAubNm8dNN92kA2UaTZb06ZVlf/zjH/nNb35DTU0N06dP5/bbb2evvfbqbbE0Go1Gk0NoW6PRaDSa7kTbGY1Go+l/9Nk9y/72t7/xgx/8gKuvvpqPP/6Y6dOnM3fuXLZs2dLbomk0Go0mR9C2RqPRaDTdibYzGo1G0z/psyvL9t57b/bcc0/uuOMOAEzTZMSIEXzve9/jJz/5SS9Lp9FoNJpcQNsajUaj0XQn2s5oNBpN/6RP7lkWCoX46KOPkjYpdLlcHHroobzzzjvKMsFgkGAwmPhumiY7duygvLwcwzC6XWaNRqPJdYQQNDY2MnToUFyuPrswOWs6amu0ndFoNJruRdsZbWc0Go2mO+mInemTwbJt27YRjUapqqpKSq+qqmLJkiXKMjfeeCPXXnttT4in0Wg0A5p169YxfPjw3hZjp+mordF2RqPRaHoGbWc0Go1G051kY2f6ZLCsM1x11VX84Ac/SHyvr69n5MiRzDsQPB6Q78UIUtPsx1AcV5XZVA1bK62DhoDSOihuBHcU8lvAMNPXI9dpfybWcGhzZ9Lkdjpaj1wum3q0jlrHzqTJ7Wgd1fKS5rtTGScdTwGOcpARoCECI/4LRUVFaXLlLr1hZ4QBa0ZBQ3F7hsJmGLoB/KH2ivS41jpqHTueJrejdVTLS5rvTmWcdKwrg3XDaVfWjgFmEFbfpe1MnLidWbduHcXFxWlKajQajSYbGhoaGDFiRFZ2pk8GywYPHozb7Wbz5s1J6Zs3b6a6ulpZxu/34/f7U9K9HutPZbjTGXXZhhtSejy/xwcuX/uB+moIlkH5NmgNQF4reENgyA6B1J7chiqPkwPklKerdEzXjlw+nWxyG5nkz9S2Shato9bRqR2tY3IZuQ2AfCAbVzxXHgXpqK3pDTsjDHBLdqbFD2uKoXILDN4Ghtle3omBPK7TyZ+pbZUsWketo1M7WsfkMnIbAB4vuFIvoymVaTuTTHFxsQ6WaTQaTReSjZ3pk5sB+Hw+Zs6cySuvvJJIM02TV155hVmzZnW4PqH4bD81cUNuz2c/Ztg+q+qUM7QFYONQqCuFlnxrRYDpai8jt2VvQ64/ntfJkUr3uat0FDiXtZcXijKqNpzq1zpqHeOftY6pZXpKx4FEV9qanrYzYa9lZ1aPhogXwj5tZ7SOWsd0n7WO6vZ71c7YMwmnTP2brp7TaDQajabn6JMrywB+8IMfsGDBAvbYYw/22msvbrvtNpqbmzn77LM7XJfsPMSRjXq6cvYyyhikdEC4oLbUCpa5TGjNg7Ja8MVWmcm+gFO9srxOunSnjnKeuIOUri5VHq1j5ra1jmpZndK0jl2v40Cjq2xNd/W5cDoACAPqiyE8FkJeGLkOiuvb69XjWl1O6+hcxklWpzSto9YxXZ6s7Yy9cA4apq6c02g0Go2m5+izwbKTTz6ZrVu38stf/pKamhpmzJjBCy+8kLJBZjbEjbXTBETlmDiVkdOSKrFniKUFfdZHXx74gxDyQUEzicdm4kUMWzWkVpNyB1Fuvyd0tMujcsyc/ButY+pnexlVPVpHdV6to1qXrtJxINJVtqY37UxLnvVxS6VlZ/xBkh79H+jjWuuorkfrqM6rdVTr0uV2RlVYKNJygK6c02g0Go2m5zCEEDlpmhoaGigpKeG4g629ZOKonArZQVHh5ERsGgqbK0n1OuyfY5X7Q9b+Mr6QtZeZfZWZqrjctpPs6WTtCh3lMpmcrHQ6ZDqudXSuL56vr+ooiD0G1oMPd7tM6y/RvhuE04npRoyYHP29H78NHOsgD1gb/Je8am04rPdO6SE7Y8CqMdYKsmzsjCcCFdugYiu4oumLqNrO1etTunqc5NU69j0d49f5kM8a36a7/Zg7Aq4sPVphWP5X1G3ZrXR4w1bdcdmjbqtdlwkRj2RzBHgj2ckgyxPJcPvaEwFPuP/3445BsGak1IitUjMEK2/TdiZO3M7o86HRaDRdQ0euq312ZVlXIaT/KmOvMvJI6QapDoLS+TAUn2OFgj7YNARK6i3HyGmVmdy+LIOsR7pjXamjyoGyt2svI83f0jq+Wsfc0FG4YO0oaC5QCNhNlG+D6hrrc0sBrBuRecLRHQzaDkM39f9+1HSO7rQzStLYmYgHaqqhOR+GbQR/m3UsvtJsoF6ftI65oaNwwdqR1l6whknSzRmXSdqXKakwDTLe4Cmtg5FrQQhrS421o6w9Aw0BURcpJ8sd7ZgMcaLu9MeLG2D0aksO6L/9mFSRLLS9UY1Go9FoepmcD5apDLzdsMt5ZGSnIm1+e2bZ+Mcwjfa9zMpqrTts1TXgC6plV1Wpyqcq01U6OjlWTnI61aNC65han1ymp3XEsMapvVymzwD1JdafcBLYKQqg8rDTRQpi+TxRKGixPrfmw5pR7Y89O550Jydc1b5d/jR1+UNQ3JhclVxtfxmrms7R1+yMwAomRD1Q1GhN6qs2qwMJ/e36NBCuwQNBRwwIu62VYJlWdiXKCst3aiyKlZEEMF0k/yZ21s4YVpt5rdb31nzrhRqZ7IzpVOdO2Blf2AqWxb/3lX7cKTvjNGC1odJoNBpNHyHng2WCVN/JPl+QbbLKQZDnF0o7rqrcyWnDcrY2V1nL+5sLUleZORV3dDy7UUe5XicHPJvYhJMsWse+oSPA1gqoLXM4mIaQz9a+XaCOzPaywbBWEAxfbwUCwj5YO8I2gQH1CcxGeaeOsn+3ZS1qgOEb2oPdfaUfOztWNZ2jr9qZ5nzrzxuxJtp5raQEzPrT9WkgXIMHgo4A28phc7V1LVetzlLhMiFif2yym+0MwvrNDNoBwYC1crmn7QxAIAhjVlo3ZuQs/XGspgTtVf2o0Wg0Gk0fIOeDZZBq0B38kZS86ZzOpPIqDzQLBNYbzGqqrce4Ih7Ib7H2MkM4OycqulNHQ0p3qlMuY29LlimTA6ZC6+ict6t0NN2wvRzaAoqMqoZUgshCqgR3EkpGoaDLhCGbrEdjwl7rTn9rnoNy2f4e0+VRREFcprX/YHVNbM80I7UKIf1P11QmEYXtQ+L0GdmJ3qF2s7x2aVLprt9uSiH5cxaEPbBiHAzeau1l5o72z+vTQLgGDwQdhQt2lFvX75SMfcTOgHVtr66xVrJtHGr5az1pZxDWirKRa63/wiBlT87usDOG2X7K4m12lZ0xhLX3mvKUpesjjUaj0Wh6gZwPljk5euBslzM5kLLDmtRQOuwFbZUHfVAzxLrzb7qsYFlBM2Cq5VHJ2xM6ppvICSmPg6pJ31XOv9ax93QUWJOCoB9n5VSNOAmfblJhoFbUacIUTxZWkKpiq7W/y9qR1sqZlLI78XvMpKMnYu0FVVJvBRabemiPNl8Yhm60ZGgLWCsAIxn2uOko9TuA+q6tc6DQXb/dlEKdHNcRt7WSp7EYhm2wbswg+s/1yZ4/V6/B9vy5qqPAsjF92c4grKTK2Esy1o2IBfaEQuZusjMAeW3W49Pby212rptxCRi5BgJt1mq6zVXWzSjDzP5x2XR4I7GXIkDmftRoNBqNppfJ+WBZ0AeemIPj5AiqsPtPsj+U4jCmc8og1cGTywBCWG87a8mDQbVQV2o5Sd5Qqjzp6A4dMznf8jEnWTOlaR3T1+NEl+loWE55khNrLywP/Hge2bGVfwf246pJgmpWKOfHCpSVb7dWlZkuWD8cmgqlNmV5O/l7dNIxv9V6/NMbsiZQdaUk79GWDpWO6crZ8rjN9gDhtsHWX8SdRke7Tk4zY1lHINichR6aFIJ+8Jr0CzvTnG+9XbO0ztr8f/B2HDf/d0Jfg5PROqrzODW6tcL26GUfszPxz4E2a5uMNaOslZlpf1tdbGcMrEf8S+utJw/a/KSedCc6a2ewrgPFDSBcsLXS6qfEarousjNtTvJmI6tGo9FoND1MzgfLVoyDwS3WahRfCOUGxyo7nc6JVN0Iy+g42SsHtSOFtf/Slsr21WX+NmvPjPjr0DM5z5n8GbsY2ero5AM51a9ypFVl5TyZdNA6dq+ObQHbmyyzGKvKY7KA8glL50zLSIoWN8RWVmELVNnrtn/uot9j/JghrODCsA1WYGTlOGgNpObbKR3l/LHAS2GTFTiPxB6lawtI1XWRjnqS0nlWjIPBzVCxzdq/rit/u8rEnbUzXmsi7A1Zq1cKmq0x3pevT3L9uXgNluvPRR2DfuvlE0rBe9vOxK71JXXWS1s2DrWt3u0BO4OwHv0sbrQCdRuGxYKKinxdaWfideW1WkHC1aOlPUjldndSx6z6UaPRaDSaPkDOB8siXtgS27C8rNZameIPkpiIyjj5FHYbn8nZTcHJkZAbsGUP+mDjEOuuf9RjOTGecOY2s3FWO6NjNvNoux+ZzbmR61adFqdyWseu1VEY1m8kyTHPYqymDbrI+VSOsEoghaOd32oFqoRhPRaSWNHl1HY6Ovh7jO9PVrHVWv25SZ5AyXKr0lUyyPJKHekLQ+VmS/ctlVbbKTo70UEddaBs54h6rOBTXRmUb7NWB2ez92Q2v92s6USfh72wciyU7YCqLVbwrC9en+zk6jXYTq7qKLACZWG759mH7Ez8sztqXXMTq3ed2k5HJ6/B7thLDOpLbFV0l52RzmNLnvXX3TqmlMmUT6PRaDSaXiLng2VxwrGg2fZya6+hiq3tbwZzcihVzqHqcwpOB+2OQTpHz2iXuabaWlFTVmvdacxvTpVZdnZVftTO6CiXzeRUq/KqnGm5fien3J6mdVSzszpG3VYAKqlQB8ZqivBCUU6VR24LdZ6gH5aPtz6HvbHkDGWSjqnIUkdhWOemrtTWdjfoKM80DWEFX2qGKB657GIdM86qNVkRv2ZvHwzF9daeR/7gztkZx3ljF/V51GU91ttSACPWWXbGEyHjWzP1NTi9vFrH1DJRj/Sm5T5mZzCsj9vLJRnSlbEfU9FBHcMeCBd1r45JdfSCjhn7UdsjjUaj0fQRBkywLE7UBTvKrLt2JXXWYzN5rYBI9RtU3+XPUTdqpyKOynFIV7GieHwvM08UKrdAUWPyKjPZec6Gjugo+zcqHyhd3fY0++eOyKx1VNMVOsbHWMgnVZapYidhVI6244xfasvuNNvajLpivzUnpeztdPHvURixcyPr08U6yvoE/dYK057QUdO1hD3WhLu+1FqVOGhH6jYA2f52AUyDbu/zljxYNt5a2TJ6VezRTKk6fQ1OReuorldlZ5oKY28utleWqWInYXrgGtyTdkZZvrt1FIo0FMfSydhbOmo0Go1G0wMMjGCZIqoUdcOOQdZkJh40C7SBIb2BktSiRN2WwycMaCwkFbujkM5ZUDkZcvlYo2EfRATUlloTLl8weS8zFbIPotJJ/q7yFeXPKr8qU5lsHHO7c52tM6913HkdhQtqB5F+o/oOjNUUQeRy8u9RdSxJwCzkSJfWDb/HpHy5pKOm8yjsTMQDNVVW4GzQDusvvtLMXoTUolZwGGjJt1Z9pdAN49p0Wy/P2DgMhmyEwmZSxq+yGVuivgZrHe2fE/UasK1c2xmtI9npqNFoNBpNHyD3g2X2u2syRnvQrK4UipqsxzMLmqwyTs5im98KlrkjEIq//jyd4yE7AZm8V7uXaS9mWPt9tOZDfou1l5I3nKYerDy+UPo82WAI9QsS/EHrPCTyxWXFWUU5XXVqMjni9rzp/LVMkxFVfXJZuTtyTcdW+8b+XTRWHQXpqDNsbz+dLEL63wO/R8f6+7OOms6Rwc6EvbC50nrcsbTWsjOBIIg0dia+0rMlP7aXYA/ZGYzYGzPHWnbGH7Rsj+my7EnIm1pNXmtsL9CdxBDqerSdcW5brltup6/oGPZZvktSoqqAkwDxfOmO2+vrCH3pGqx11Gg0Go2mz5D7wTIn42438oZ1R72+GBqLrMcc40Ez1dszMawJQ7DIelNd1B3bFNWpTXtaOofFLpeqjpgsYa8lq1IXJx27AJVIBc0wanVy0C6D+CnqZ/KP0t2MlOXqzM1KlRxO7Yg0x2VZnep2ksHeRk/piAE7ymOPecmNdcFYTRmL2YxVeZYFqSde/q8qr5Jb69gxHTXZkaWdibqtVWZ1pbEXzuxo3wZAxh21AlS1ZdaLXupKrJVqjm3a07pgXEfd1srpRnn/JIWODUWKejqJtjM5aGewxn3ixSj2xvQ1WOuYaWBqNBqNRtNLyC+lzj1kZ8KernAMTJcViFo5FlaPgaYiEK5UJzEQtCYuVZstR76g2XqbmCG3qfruJKPKc5W9VZVO2ehor0/lVcvtKMoJQBjJf00FsGa0FcBTVZUJ2X/rSJl07cj1qVROV0/8tKrqydS2kyx9Ucewx9q/Tzm2OiJYV45VpzwqWZzGcTrFtY7ZDTBN9nTQzkQ91iqzFeNg7UgIBmLXVKnO+P5Og7eBNwIlDVBWl4UM6Y5rO9OhMtrOJNMZHSPe2AtktJ1JPa51zH5caDQajUbTw+R+sAzURl/2UqW7bfag2Ypx1t5mZixo5g1Zd9tb86z9aHYMsqorbLLufJfvsN4m5hg0U3nHsnxIeQSp8qcrk0lHexk79jLZOC7SREYuJostN6VC1axq8pCtXyX7jPGyTv6ZsB3PRsb+rGNDibRaRW44l8aqjNZRB826kk7YmYjHeuHM0onWzZmGknY7Y2C9WbM1YNmgtgAYpnVjxhux3uqs7YxabLkpFX3lGjwQ7Exjke0FMioBc2msymgdO6ejRqPRaDR9gIERLFMZZtlLtXuBtvymy3LSV4+G5bGgmTtq7aGS32y9sS6eZ80oEIb1xspxK6wJjcu01Wlvy3BId3JwkMrYddhJHZXHZRllZ0hyrBITGYVDLN9AlH0jlUhO5VXf4zidKqcyKhlUedNNOFTf+4uOIvZmWBHPKGwZc3Wsah0z66jpHDvR59HYNgCrRsOqMdBY3G5nDGGtAAXL/mwYZh0bvh5GrLNe8mIMhHGNtjP9UUfhslZRajujdeyQjhqNRqPR9AEGxp5lKuMt55ENv2TohbA2QV9dYG16HPZYLwSIeGHYGthS2b5v2YpxUNxgTXRK66zJjSEgHjdL8Tqd2rb/V8mq0qmzOspl07Up6xA71lRgrcQbtQYCrckqyqLYm5P9JFVzKtWymXw4Ofb2iYahyCe341Reddye1pd1bC6wNg9XNiQ7tLk0VrWOmdvWdIyusjNY+381F1jX0NY8Kz2/FQZvtd5SGfFYN2lWjLNuxhQ1gHBZq3dcZuxlAHE5ILfGtbYzyvJ9WcfmgvbHifU1WOuYlY7aFmk0Go2mj5D7K8tkIy6kv3iabLiR8tiSmvOtRwpqS63NmYsaYdB267MhrM3/t5VD0GcF0PxtMHQjeKIO9Tt5oao0WY+u1lGhM9jKpjtmWI8MrR4NbXnOatiLyd/Tzdud0lR+ntMEQRI3rU+mOlWyHKpTKsunkre3dRSG9fiwUCnjNB5zbKw6yqx11HSULrYzUZcVZIg/kukLQWm99VIAhJXW5rfsS0u+FTxzRx3efJyD47o1YO31FvI7q2EvJn/vC9dgOb+qvL39/qhj3M6kvEBGX4O1jk7yOLWn0Wg0Gk0vkPvBMpVBN0j27rLxHOX8hvUGzbpSWD7e2qA56gG3CYNqrUdjwl7LUQwGYHOVFUgbuhEKmxXtyc6Nqm2p/Z7QMcnRcvKkRXK5Nn9ywEwuosJ+PNPEQEU2Ppmsisonk+VQpasmCqr20snT2zqGvdIb7BT9mDKG5EZzYKxqHRVtaTpON/d5fYllZ5oLrEOBIBQ3Wp/DXuvGTMRjreDxRGHYRvCHFG3m0LhuybO2PrA/ktmfrsGqOnPNzkTd7WM2kaivwVrHbHXUaDQajaaXyf1gmXxnLZ0hthtxuzOg8gxtWVvzYOtga0WZYVobL8ez+sJgCGsiE3VbwbTSOmui441IMsrtp5Mx/tnuMHWTjo7tq+qMfbcHzJwmCgJnkdOJIKT/KtGcHH7V6ZNET6lb5U+ma0eWsa/pCFaQN2Vjf6fZmDxGcmmsYvuuddR0lh6wMy35scemDfCE21eRGVifjVhdwrA2/vdErHRXuslqfx7XhrXKe/Voa2WdtjPqvL1pZxqKFRv762uw1jFTG+l00Wg0Go2mB8n9YJnd87QbYCcv0V7OyZFwMuSGtYfZuhHWV2/Y2uh/yEZrLxlhwPrhsGmI9UazQJv1aE0giNrbTeeM2D/3lI72elRtSWXkFWYqMeRm5CacxLb/t/t/6VCdGqe24qciU52yvP1BR+GygmWJxHT9qKok18aq1lFPTnaWHu7zpkLYXm7l8QdhwnIo324di7qsRxRb8q29Mz0RKIntoZlz4xorYLZ2VPpHMvvaNdj+PVftDIb10op4WpIM+hqsdVTlzzTwNBqNRqPpYXJ/g3+VoU7nRToZcSfsxl9YAbGI20qKxoIShU1Q0GQ58xGPdbym2spf1GQF1cJeK6AW9pDqCDnplU6fbtRR6Wg5tBEPmI1erd6MWeWvxdNVzr/cnJOacl65jJPYdnmc5FQRr0vuNief1F5GVU936mgIqNgKZbZf//Zyaxw2FknDQtWgU6P9fKwmyTqQddR0nB62MxggYm2GvdZjmsUNsH2QdcwQ1j5R28qtYqbL+vOH2lc559K4jq8wG70afEF1dfLnuGjaziS3LbffWR0RMKQGBseDuG7rRmLErcisr8FaR3s5jUaj0Wj6CLkfLJO90XiafXJjT4dkh8AJlccoOQNRN2yqtoIQGFYwbNAOaw+PNr81eWkosh6TKdsBBS1W0KItEHujWToHyFCk9YKOjp60rf6UgJkBwrB0bCixNq02zOxUko85TQJUkwmnepwmLnKd2bSjKuMkb6/pKGIbhccI+q2VKsKwDReVc+w048vkwPejsTrgddR0jt60My7rjcvuqPUb9oWtVcv2PQkjsZsw5dutx+Lqi61V0CKHxnV8D7NRq5MfURWGtVVCXquVv09cgxXt5pydwRqHgTYrrSXf6gt3NBas1dfg5HpV9csyDjQdNRqNRqPpZXL/MUxInQzKXqmhyCun2Z0BldNgr0vKE/ZZK8ZCXmulWVvACoyNWW1NbIQBtYOswFppHeS3WIG1JKcnXXu9raPKY5fKxgNmrfmW/tsGW3o3FSSLZEeQfArkdCdU5dLld5q82I9nk2Zv2+43OumR7lhP6SgMqC2zHtFqLCR9P9r/GyRXmitjdaDrqOk8vdjnglhAzLBWmjXGAmWl9TB0U8yeYK1o3jHIWtEcT8uZcW1YK8zWjLZWcQuXtYrJdFkr7+wi2enta7D9eDZp9rb7k53ZMcgac6Z9ZZm+BmsdndrTaDQajaYPkPsry+xkY4id8qichjiy86A6juUwhrzWZ1fUClAUN1hpjcXWJGfTkNhx0/a69UzerJNz5EQ36phSn825avPDinHWfm15rdbLDoQLDKH2l1TqyxME+3FHR12RpspjKP6r8qTDLpshpfVFHcNeK3gZf0wrm35UOt05NlYHrI6anae37YxUZVmtFRBvzYN4fKy2zJYvx8Z1cz4snWDdiBq92lplVl2TXLYvXYMHgp1pC1gBXG/IttWEk1ID/RqsddRoNBqNps/Q5SvLbrzxRvbcc0+KioqorKzkuOOO4+uvv07K09bWxsUXX0x5eTmFhYWccMIJbN68OSnP2rVrmTdvHvn5+VRWVvKjH/2ISCRCl+LkEaryyUZdLmt3DISUZs8f+6srhWUTrEcygwFrX7OiJmszZvu+Z0ntqhyMbLzqXtIxpW7DWv3QWGS9JWtrheVEb66y/toCqerZi6uccKf5vtNps/+p2nCawNjzyG3I9TpNftL5mL2hI4a1x5EvpFhVlqEflU5wjo3VAatjP0DbGbLq87oS6wZFyEdSnwu57hwb1xGv9VjmuhHWDag1o6BmCGwaaj12LqtnL67tTGq9SMc6amfqSq0bgxEvHerHAXsN1jr2CfqVndFoNBpNt9DlwbI33niDiy++mHfffZeXX36ZcDjM4YcfTnNzcyLP97//ff75z3/yxBNP8MYbb7Bx40a+9a1vJY5Ho1HmzZtHKBTi7bff5sEHH+SBBx7gl7/8ZeeEkg1xOidCSP9VdclGXnYQsiTitu72B32x1T2Gtb/HmFXWXfG03rRTWl/S0aF+07AmMpuGQGvA+r9xCKwa0/7mzHRiyT5aurxxMex5Vb4girR0EwJZDqTPKp9Sli+d3D2hY8Rj7RnXXBBbVeZEOge2M4r2o7GaIkOu69hP0HYme7Ha/LE9omx4I9ZLPoz44/45Oq4bC60bMbWl1iOomyut7QDCPucy2s6o89rb6aid2V5urWYMex0asRdOdyyHx6rWsQNt9BB90s5oNBqNpkcxhBDdOk3aunUrlZWVvPHGGxx44IHU19dTUVHBo48+yvz58wFYsmQJu+yyC++88w777LMPzz//PEcffTQbN26kqqoKgLvvvpsf//jHbN26FZ8v1dMNBoMEg8HE94aGBkaMGMHYy8HlI9mpcPLuhCKf0928bO+K2et18pZtFDdC9SbYUmXdjU25BYyirJPs2ebrYR2VdcbKBoLtLwJQqet0KrLB6camLKpT3fLpyLZ8Nn6sXL67dQRrZd/GYba0LuzHgTBWc1HHH2+A87Y4HAcaIlDyKtTX11NcXOycsYfRdkZRV5o+z2uDqs3WyqukN2Pm6LiW5ShshlFrrMcCtZ3pOB2xMzvKrXGW0Etfg7WOshySjmYbrPy9tjNx4namr50PjUaj6a80NDRQUlKS1XW12zf4r6+vB2DQoEEAfPTRR4TDYQ499NBEnsmTJzNy5EjeeecdAN555x2mTZuWMCwAc+fOpaGhgcWLFyvbufHGGykpKUn8jRgxwjoQN9hC+mz/Lxt4+bgqj5NTEv9vSN/TlbGlNxTBivHW2wkdvWZZtn6mY5KzJLUffxFAW15mXysbnNSzi5Uujyq/XVVVnU7lZHnS0d06Rj3tL1kQ3dCPA2Gs5qSO/RRtZ+hQn7cGrEcTo/I+hbk6rqX2mwos/cM+bWeypTM6Cpe1qkx0Uz8OhLE6oHXsY/S6ndFoNBpNj9OtwTLTNLn88svZb7/9mDp1KgA1NTX4fD5KS0uT8lZVVVFTU5PIYzcs8ePxYyquuuoq6uvrE3/r1q2zDjgZeRWyE6DyPuOOgexE2L87GXsnB0FKj7pje5apPF+Vk9PfdFTJbjvuFDDLNBGQT5PswznlTyemU/3xMk7+pyyH06mU6Skda8usN8Z1Zz8OhLGaczr2Q7SdkcjSzoiBNK4VOjoFzLSd6Tod60ugJT/LhvQ1WF23qg75f67q2IfoE3ZGo9FoND1Ot74N8+KLL+aLL77gzTff7M5mAPD7/fj9fvVBu+F18jRlR8DuHaocCDk9HSpHQnZu0sno1L4so1N5e95+omM8YKZ6JNNevZMTb/fFnMrK5TuiZibfVCWHXZ5MZbtTR+GKvQ1P1bd6rGaWcSDo2I/QdkbRph7Xahml9uMBM9UjmdrOpNbdIR0N6wUySn31WM0s40DXsY/RZ+yMRqPRaHqUbltZdskll/Dcc8/x2muvMXz48ER6dXU1oVCIurq6pPybN2+muro6kUd+m0z8ezxPhxDSf9kRUHmKKs9W2P6y8S5V6XZZnAIVsveZEu2Q8qD43991RL3CTParnHwyVZOqfPZ67D6ek6+mmoA4nXL59Nv/O/m1cn1O8jqVVeWTdQTbhv56rCbXZWcg6tjP0HbGIV2P6/Z8GexMPGAW8Wo7I9fjVFaVT9ZRGNbj/mmvLXqsah2ddOxD9Ck7o9FoNJoepcuDZUIILrnkEv7+97/z6quvMmbMmKTjM2fOxOv18sorryTSvv76a9auXcusWbMAmDVrFp9//jlbtrTvNP3yyy9TXFzMlClTuk5Y2WlI542qIg7yMRWyR6qqQ25PVV7VjlMZO/1ZRyM1YNYRH0oWy+7DyZ+dysjH7WlO/qD9czZdFCedj+pEZ3Q0DYe3X+qxqm5PVT6XdewHaDsjoce1uj1VeYWdkQNm2s6o2+yIjllXFv+sx2pqea1jr9Kv7IxGo9FouoUufwzz4osv5tFHH+Uf//gHRUVFiWfyS0pKyMvLo6SkhHPPPZcf/OAHDBo0iOLiYr73ve8xa9Ys9tlnHwAOP/xwpkyZwhlnnMEtt9xCTU0NP//5z7n44os7tzTZ7gzIBl7lHNgNtWz4neq2Y28jnbPgVLfs2KRzPmQ9clDHdI9kyurIoqq+q5qTP6v8t0xlspl8xOvtyISlK3UUQEMJhHy2hHgGPVbVnweSjv0EbWfQ49qpbCd1bCxsfyTTE9Z2ZmftTFMhtAVsCfEMeqyqP2sd+5wd6pN2RqPRaDQ9iiGE6FLzZBhqt+z+++/nrLPOAqCtrY0rrriCv/71rwSDQebOncudd96ZtCR5zZo1XHjhhbz++usUFBSwYMECbrrpJjye7OJ78VeCjr0MXLI9cvIcVbdPM+XNVGdn86vkUR13cjByUMdAMDlglsn/sxeXP6drKt13exvZTkLsZWU5s5Wpq3SMumH5eGjJS5NRj9Xs5FEd7+c6/ngDnLfF+XhDBEpepddfYa/tTBflV8mjOt7Px3VHdCxqSg6YaTuTWkem+kwXrBhnrdjTdqYD+VXyqI7nuI5mG6z8vbYzceJ2prfPh0aj0eQKHbmudnmwrK+QmMRcDi6f7YDK+83mDpyQ/kP68k6k8zjlNlQOjpM86eTNIR0DQRizCvxtqWI5iZZuApCuTLq86Y7b2+noJEV1+rtKR4DaQbB2JO2b++uxqnW0tdFfgmV9BW1nclPHghbrxowv1LXX4IFiZxqLYdWY2OP+eqxqHTuooxmClbdpOxNHB8s0Go2ma+nIdbXbNvjvMzh5d3GjrXIe0tUlH0/nXKhkSCejqm5D+i7Xl07+HNPRZYInAg3FzmI4iSM3k04kW5PKejK17SRLplOkKtMVOgoDwj4IBmBrha2cHqvO9arKDgQdNZ2jP/f5QBjXHbEzAgwBEY+zGE7iDHQ705oHTUWwdbC1N6Zj5Xqsah0z6ajRaDQaTR+gy/cs65PYPVK7kbYbZvnOl+xo4JDWETJ5syr5nBwluc4BoKM/BGNXWJMZuWg67CrLYqjqyXYCofIlVf6p6lSk803tZXZWR4DmAlg1GoTLYWN/FXqsDkwdNZ2nv/b5QBjXHdCxsMlavWyYqUXTMZDtjAE051uPXpquDnStHqtaRycdNRqNRqPpAwyMYJnsOMSRDbfKc1R5lvZyTnXbsTsqspMgt5VJFrlNVVqu6hj7aAi1KOnUVvlgsu+oOg2yeHL9qu/yacxmUpKpfrsscp6k060ouL28fZWEsiK5YT1WB7aOms7Rn/t8IIzrLHUMZ1hRNtDtjEGqnRFY+5NF5ZsxeqxqHTujo7ZFGo1Go+kj5H6wzO7BpvMgZYMv55UdAVVZpOMqb1g+bq873X+n9tLJmas6OjQtZ3E6FfYmnSY58qTEqbzquD1Nrt/epko+Oa0jOppuWD8cwl7bcQNa8qXK+ko/DoSx2t901HQObWdyR0dJL21nkvNH3bBxiPVYfxyXGdvM315Zb/ejk7Kqcv11rOaqjtoWaTQajaaPkPvBMtmIC+m4k+G251U5Eqo67Hk7U7/qmFOa/Nlef67q6CBW/HA6X9Kelm1swMmnVE0ynOpymhyl822d0jLp2JoHdaW2vWKcBOrtfhwIYzVXdNRkh7YzOaOjO0pi9bK96XjWgW5ngn5rtbJqFXOKwE7C6bGqdXRKEw55NBqNRqPpBXI/WKYy6E6epSotk+coe8Yqx8aQ/svH7Z/ltpzak+sfCDqmwclfc5pwOJ0qexk5Xc4jT2AyTYzkurOZSNlJp6MwbIGyvt6PA2Gs9lcdNZ2jP/f5QBjXHdDRE1HoYGtW2xnrf1/vx4EwVnNWR41Go9Fo+ggD422Y6ZwJO7Ihd/J4ZU9SLu9Up0ou2bO2t5+pDbl8rusoNSMXl4vJqCY1Kv9TrlsWPVM7sozp/FinU9BRHaPu2FtC+0M/DoSxmks6ajKTa30+EMa1g47x/R21nUn9HHVbwbL+0I8DYazmtI4ajUaj0fQBcj9YZvc87QbYyUu0l3NyJJw8ZLms/ZiqbXt+lbebzhlR1T0QdHQoms1cP5N46cR1Qj4lqvxy3XIZFR3RUQCNRRDyKQTpq/04EMZqf9RR0zn6c58PhHHdAR2jbhCGtjMqGZoKtZ1xbFfr2LU6ajQajUbTB8j9xzBVhjqdF+lkxJ2wG3+B2glxagPbcbm87FTI2POo9MlhHTOpbs+jak6VZi8Xr0vlA2YSVVbJySeV9XCSG7LQ0YC6kiy6s4/140AYq/1SR03H0XYm53TUdkbKa0BtqbYzSfm1juoydlk7o6NGo9FoNH2EgbGyTPZI7U6D/Q9bOopyKPLI+Z0cBKT/Tl6xnFeWU9bBLmeu6+iQbFdBblLll8lpsqhOE4t0kxonFeU6VRMdpLwqedPpGPZYm/t7FBtTpwjTF/pxIIzV/q6jpmPkQp8PhHGt7UxaedPpGPFASwG45POnEqYv9ONAGKu5rqNGo9FoNL1M7gfLVEYcMjsKdkcgnq5Kk8vKjouTUxFPs/85eavZtBE/lus6OqiiKiafFpVfF68+3STEXoddJJUsDmI61ptNHmFAyGv9V+nojcCE5TBuRWxz6v7Qj4qTpfTf+/NY7Y+/R03n6M99PhDGtbYzGfNk0tETgbErYPRqW8Csr/fjQBiruaqjRqPRaDR9gNwPltmNupOhlp0AQ0pPZ8SdvNJ0jodKxmzkcmpnoOioaM7ul8nFnb7L/+31qdTINpYQz6eSxclPlY87pbkEmIpfqwEYAjxhaMmLbU7d1/tRGquGgP0b4Q+r4fIa6dnw/jpW++vvUdM5+nOfD4Rxre2MY7vZ6mgICLS137jp8/04EMZqLuuo0Wg0Gk0fIPf3LEtHtkZa5ZnKToDT3Tknr9ap7nTOj8qbzaRDDuqoEkM1abAXF2T21zKp4qRGunrlfE4+qr0eWRbTZU1UEhMUkVqHcMGO8lieftKPcUYH4ea1UBGG10sc2k4nh73uPqpjipyZ6E0dNV1Lf+jzgTCus9TRHXucfaDZmUz1gmVnagf1TzuTImcmtI7JsvW0jhqNRqPR9AFyP1gmG2tVOqT3GGWnwakOuR7Zi5adB1Vd2dav8njtsqrK93cdHbJlqs5JdDuZ6lGJ7qS6SoZMfm66iVOb35qk+IJguMAVTc3bmhd7S1l/6EfbWB0Wht2b4YlyiBrwxCCIyLKp2u9HOjqW74s6ajpHf+7zgTCuO6CjJ6LOlut2JhsdQz5oC9Av+nEgjNWc1VH149FoNBqNphfI/WAZpBp42cmQDT7SMSeHQM6XqW6VXLJzoSqTTZ0DQUdbNbLYTqqTxTHZL3M6RU7iyjLJxzOpbc+jkqEtD/JaQbhAxAoLYavDgIYiSei+3I8xOUeE4Mg6eLgCWp1OZn8dq/3196jpPP21zwfCuO5AnRFPezUDyc5EPeCOOOshDGgsgqhLaqCP9uNAGKsDQkeNRqPRaHqR3A+WxR2COEL6b88nOx4qb1nldMj1yJ+dyjg5E05pcvtOHnCO6+iUPVu/TfbJ0vmesmrpTpXTBEdux6mM6pgwrFVjgTbrsxFT1ACibqgtsyZ32yqs74m9zfp4PxZE4bIauKNKCpTZ5cmBsZqU3l9+j5qOo+1Msjz9WMeom8RjhgPJzmwbDJVbwDCT6zZd0FRorSjbXKUQuI/2YxI5OlaTyEUdNRqNRqPpZXI/WJbJwbDnk71h2RtN8TAV5dPJIDslqvrlMva6VTLJssv1OOXrjzqmwemUdFWZFD/OliCXydSuXJ/qe0Imw5qkbBsMLtP6ixP2Ql0pSfvHCKeZUh/qRwM4aTus8MMav4Ms/X2s9vffo6ZjaDujztcfdUxDLtuZxiII+tsfQ3WZ4A9Ccz5sj++HKTfcl/txIIzVXNUxm8Gt0Wg0Gk0PkPvBMtn4ZnIW0qWpjLxcRvZE7Y6A7Nyo6rKXsR9TITtJA0FHSSQnPxIpjyyu3Kzqs8oPBCtItW0wVNe0Z3I6VSi+Z5LLLkfYY73lMlrkUIm9cD/px6oQHF0Ll422VZ+LY7W//h41Hae/9/lAGNf9zc7EVgz3hJ0xXdZ+ZE2FUgWqyvtTPw6EsZrLOmo0Go1G08vkfrAsTiYvVZVX5Rxkyic7H/IxuUxHPPBMDsRA0FHRjKrqbOb9Kj9RrltVn2Fab0xT1eU0p3CSLZ2/aGDd6Tfd5E4/CphXB6v9sNHnIFt/11Euo5Ktr+qo2Tn6Y58PhHHdD+2MS9C+mks63tV2piXfCs6lBDXkwEl/68eBMFYHgo4ajUaj0fQSAydYJjsQKgfD/lll6J3KoMgrp4k0dcuOjVM+Vdvy8VzXMY046SYE6ci2ybgKLmE9npLJwUvnJzrlkY+35seayZF+zDPhqFprU3/TnjcXx2p//D1qdo7+2OcDYVz3RztjQlkt1j6VWdSbTsZMOrT5sQJzudaPA2Gs5qqOGo1Go9H0AQZGsCxugNM5GCg+y6RzQOT2nMra287kMTs5NOny57KOGYo6qRvf98t0QX6LNflQ5VO1Ea9UnkfEJxbxt1NG3alvEksnr9PpleVuzUujWD/sx8mtMCwEn+Y7tKNq34k+qqPjsf6go6bz9Nc+HwjjugM6ekMkAlQdsTOmy1oJDNYLWbK1MzL20xHfPyxeT+IlLw51dsrOAMEAOdePA2GsDggdNRqNRqPpRXI/WGa/kwXOjoDqjpfdMXA6JteX7s6aXJ8spz3dXpfsSNi/q+qP5bPfkS6IQmkEyiPQ5LY2Vo/0Nx2lQ07YqzNdsH54+0b4xQ0wbENsQiTVZ7pAuKxHLA1h5d9aaaXntYI3HMtvWPu7tORb31vzoLYUqjdDYWOqjKrTls6HtU+M2gIKhfvxWN23EXZ4oMankDFHdEypvz/pqOkcA9jO5JqOLqFWSyapWsOyM7Vllu0YtAOqNoMnnPl0mgbsKLcCbQXNlp1xmSRuluS3WDapodiqv7qma+0MRizIl2P9OBDGak7rqNFoNBpNHyD3g2Uqb9HJ+EOqIVfVpTLkTvVlKpfOAVI5HYbiuC2fGxgShJEh8JuwxQsRA/ZrtP72bIJmN1w8Gj4u7F86RtwQ8sYegcxAopiwAk5Rl/W9oRhKa6E0ZAXBAIzY84AuASJqteM2rTJbK6y9XDL5bgJY74UJS8ETTTMxkdSUZa4CQgFYUwZtQNQbOxU5MFbdwO7NsN4PQZWDnAM6ptTb33TUdI7+3OcDYVx3QMe2gPUSF29I0YaDOGDZJjNW57bB1o2ZorA6r/30Rd1QUx2zMxWx4/GAnWF9dplWPgFsGAYTl1p2qzN2RhhWXS35VvDNdFkvkcm1fkxpKwfHakpbuaKjRqPRaDR9hNwPlgmHz6B2MJzyqupN57yo2lDlkY/bP8tpsnNky+cCprTCIfWwJA8+KoBaD8T3oV8agMfLYVIrBF3wdV7/0zHshXUjYfTq1A32ZbETnw1FtwsQrvbjpseajBgmCDdEvOBps9oX2P6n05HYZEZ1fkgdarK8BjAI+DFQFIK3W+FfZbAqbE3a8k1odcEaHzS6Y8EzlcIq+kg/FpgwOgjvFMay5/DvUVmPXH8f1DFsOM+LNGkYIHamv47rjujY5od1I2DUGssuACn7holYGfv13mXL447GbuoY1rXa3pzAemlL1G2tIjPi9RsKcY2YjXIlt70zdsZ0werR0FwQC+6lq6Af9+NAGKs5r6NGo9FoNL2MK3OWneOmm27CMAwuv/zyRFpbWxsXX3wx5eXlFBYWcsIJJ7B58+akcmvXrmXevHnk5+dTWVnJj370IyKRyM4JY9j+VMY4fgzFf2JlnJwSVR6RJp9T27KDYpfJ3obteJ6A726GgxqsjdNfKoFt3ligLJZHYD1++VEhfJEP4X6mY/xzcwEsnQhfT8rub+lE275fWJOMDcOtY5urrLSQz5q4NBbBirGwfBxsHAIRjyRLJh1jk6Kg36pTdZpUpzx+SrYDNwPXFcOVo6x+/DoPvsiDjwtgmwd2bYXD62FQRKpArrQP9mNZ7DHgzd5Yco7+HpX19BMdV/szlOmjaDvjkM+p7QE2rjtqZxqLYMU4y34smwCrxrT/rRjXnrZ0gvW3Yhw0FLXXEXFbaavGwOZqK0AVdVs2pTXfClYtnWitXE4ErLLUMb5NQNBv3UDqqJ1xRWHkWhi8jdzuR7kerWOyTH1dxz5In7IzGo1Go+kRunVl2QcffMA999zDbrvtlpT+/e9/n3/961888cQTlJSUcMkll/Ctb32Lt956C4BoNMq8efOorq7m7bffZtOmTZx55pl4vV5uuOGGjglhN87yHSwVme6qOZWP51d5p07lVPJkkldKyzPh+5usxy0fqIjtQ5ZjOtrLCMN63CVxXL67Kn+WdBS0l99cZQXSwl7rL+puf4xmSyVEPe3lstEx6rHqrC+xNmYesQ4CrcnFnMSN/68BtnqhVTrPEQM2+WCTFwZH4Ih6WJQPX+WR/IhmH+7HijD4zAxlnNrtJzpmVcap3T6gY8pKk36AtjPocd0NdqbFdpOlo3YGIOizAloNxdZNnrDXCqLFA2cYsHGolc8dBeL7OGbQsSUfVo61Hhf1RGDMKvAFk4tlsjO+kPWX6/04EMZqTuvYh+gTdkaj0Wg0PU63rSxramri9NNP509/+hNlZWWJ9Pr6ev785z/zf//3fxx88MHMnDmT+++/n7fffpt3330XgJdeeokvv/ySRx55hBkzZnDkkUdy/fXX88c//pFQKIuNRLIhbrCF9DlTGaQy9u/Yvst3ATOVsSPLoXJyALeAS2qsgNmDFVZAJUXefq5jVvJ2UkcB1Bdbk6Kwbb+ZeJ6kRz2z0NF0WUG2oB+a863Amel2PgX2agCGAIOxItgeYo/1yHoZ1gqzJwbBjBbYqym9jn2pHwtMa98yR3n1WFWXkdtUydvVOvYTtJ2xldHjOpU+oKPACpi1BiDsaw+UAQjDtoI5XiaDjsKwVr6FvVadm4aAcGVvZ6Lu5Mc6u0LHgdCPWkf6jo49TJ+3MxqNRqPpNrotWHbxxRczb948Dj300KT0jz76iHA4nJQ+efJkRo4cyTvvvAPAO++8w7Rp06iqqkrkmTt3Lg0NDSxevFjZXjAYpKGhIekPaDfuKmNsSGlSsERp2JHy2P+r6sEhr5MzIecRivQYU1vg4Hq4qyr2WGU/19EQUGhCcdQKAB5aD2dss15U0OF+xAo2uYDCKHhNqYxdBwd5g34r2NUpHQ3rDZxrR1qTGrm4/D0fmA/MBvKFtQprfJu1D13ATC0cdsHfB8GsJqgO06f60bEdWb5+PFYd24nL1V+vOf0MbWcUaenKOOXN9XHdh3VsLI699dhJbpW8tnx1pdam/1F3UrKyOmFYLxNoKFZk1P2odexrOvYR+oyd0Wg0Gk2P0y3Bsscee4yPP/6YG2+8MeVYTU0NPp+P0tLSpPSqqipqamoSeeyGJX48fkzFjTfeSElJSeJvxIgR7QdlR0KVpnIgnMoI6U9Ok8vKeUjzX4VCNpeA07fB+4XWo3n9XcfKiLVSqjJs7bUWNmBd7LFDU+WEpdHRZ8KoEIwIWXt7HVxvfe+ojg3F0n4yHdRRGFBXApsrcdyQ2S7Sf4EXACHAI6xHa9f5raDosHhAzNaPrS54tgyOq7Wdhj44VtOW6YdjNSsd+/nvsT+g7YxUVo/rVHll+qCOSS+G6aSd2V5urWTOZGcQULnFelNnT+qYUjYH+zGlrNYxVV6ZjvoLvUCfszMajUaj6VG6PFi2bt06LrvsMhYuXEggIN8u7T6uuuoq6uvrE3/r1q1TZ7Q7BXKaymGNp6ucBdVdNidUjox8zP5d1ZaNijDs3QRvFyn8iv6ko4CJbTCzGRbnwcoANLutR0q/DsB/Sq3AWQoOOgZM2KMZtnusN0du81gBpeUBtY4urEcei2ObJieJaLSXcWFQ1VSNN76RWbY6Yq0cSHqbme0vLlIIWA4EgSYXbPBZK+Lyo/BpPuzaAiVRUvpxjR+qQ1aQMZHex8ZqQlEV/Wmsym3JeXJNxz6MtjMO6HGd+n0A6CiA2rLk1WUqO2MAnnD7Wz5T9JDT+pCOA6EftY6k17GH6fN2RqPRaDTdTpcHyz766CO2bNnC7rvvjsfjwePx8MYbb/CHP/wBj8dDVVUVoVCIurq6pHKbN2+muroagOrq6pS3ycS/x/PI+P1+iouLk/6AZC/RfqfLyUmwG2p7Gdl5kJ0PQ5FmT3dyPuzH7PKo7rjZ5J/dCFVhGB3s3zqWRGH/RvhPCYRckvyyvJl0FDCzyQqyNbnS6+gS7SvPPLHPhnwOYnW6MDhl0QJueP73jKwbw7c/PpcJ2yZlraPLTJ6cyKfKAAqAEqw9nstN682Rm3zWY5hRAz4ohD2bU89LFCuwtlcz7cG+PjZWlfTDsZqVjtmO1b6qYz9B2xn0uM5BHV0Y7FbzDXbbtDuVzVW45KViaXT0RDLbGfv/lPOg+1Hr2Jd07AP0OTuj0Wg0mh6ny4NlhxxyCJ9//jmLFi1K/O2xxx6cfvrpic9er5dXXnklUebrr79m7dq1zJo1C4BZs2bx+eefs2XLlkSel19+meLiYqZMmdJxoWSnwu4wqBwDleOBlGav216HjN25cDom16uST9LDa1ob/JdEU4/1Gx0F7NtkBYLCUnpSe6pjCh1dwK6tUOdJr6MhrNVs2zzWX5sLFudLj1zacJse3hn1P/LC+dz67D1c9eqvOP/dSzHiE5lM/SidDtXnWmAj0AzscFmBUJ+AsUFrY/wmF3yjGQKSs2rEdD5+R6y5PjhWle31t7Eq1x3/3smx2md17CdoOyOhx3W/19EADls6jwcee4q/PvocTzz8IuO3TU6uP8NvN37DxMnOCDlN96PWsa/q2Afok3ZGo9FoND2KJ3OWjlFUVMTUqVOT0goKCigvL0+kn3vuufzgBz9g0KBBFBcX873vfY9Zs2axzz77AHD44YczZcoUzjjjDG655RZqamr4+c9/zsUXX4zf7++4ULIzIRtilVMgG3L7MaE4JmNvJxsHQK4nXVkn56Sf6ejC2k/s7vh2DukcN3uag44GkG/a8sptxj7nmTCpFZYEbHnT6OiP+PnuO99nly3TyAvnIwyTN8b9h8OWHcVn1Z9QU7TRUUeVjA7NJDCx9iOb3GqtenMJa8XZ7s2W7G3xX22sbrew8iVV1JfGqqrdfjZWO6xjP/w99pUJSjZoO2NL1+M6Nb8ss1PZPqRjcVsJP/jvzygKWatIhjQM55qXbuHmg67my6rPCLsizvV0ws4kyul+1Dr2NR2d2u5h+qSd0Wg0Gk2P0uXBsmz43e9+h8vl4oQTTiAYDDJ37lzuvPPOxHG3281zzz3HhRdeyKxZsygoKGDBggVcd911HW9M5UQ4OQhOjohcj1yfPZ/siKicEKdjTk6CqqxKzn6oY2HU9rZLuaxKznQ6SriA0W2wyk/SBsp+EdvjK0sdB7UMxhf14RIGLmHQ6GvhhM9PZWTtGB7Y8y6enPYoIXcIE1Opo0qNeDYBtBRYe80YwnqUBqy3glaF1XUgwB3TL+JwvLv60b5ywWu6cZsu2jw2QTP1oypfPxmrStnTydmfdcwBtJ1xODaQx3Uf1nFk7RiG149KanaP9bN4+K//4N59fs/d+9xGxBXJ6rersjPNhZadcZnglW2L7ke17FrH3tWxH9Cjdkaj0Wg0PU6PBMtef/31pO+BQIA//vGP/PGPf3QsM2rUKP7973/vfOMqQy8fA8toOxluh2BM4pjslWbjhKjaSOdYqPLJx/qbjpnyGYr8mcpJYtd6YGjY2terIzq6hPWygDwThjdVMnvloZiGlakwWMh+qw6iMVCPaQh+9soN/H3aX/l42Adp+1GgEN+w3mLWVGxlKG4AdwQ8pgsw5dwJKsKwzeugR5Y6dqYfD6q3gpvv+Yu45qWz+Xj4Uh7Y44WUfIk6nerrb2M10++xo2NVbkNVrxM9pWM/Q9sZ9LiW2+9HOvqiPlymOym7AeRF8vjuO9+noqmKmw7+Ja3eVqWO8XsWTnZmS6X1hmeAQBsUNioy6n7UOtrL9baOfZBetTMajUaj6XG6fM+yPoeQ/uR0cHY+7Mbbng8pn1O7qnyqMkrvllTnwcmB6M862stkcuoy6Sg3aUCTG0YEM7QvpQdMqA5be5iFXNYm+nmhAgpDhRiACxcuDIrbSvnxa9eSFwmwdPBXWelouqxsYa8VJNtcBVEXVDXDsGYoNmF82yh+9cL5sYCZmlLF2zuTdOmmfhwagpEhuOx/8zl86Z7MWf4NLnj3GKZvHJd+rMp19cexmun32JGx2ld11HSO/tznA2Fc9wMd80OFGA6Z/FE/x39xCsPrRzrq6Im2tykM66NpwI5BUF8CIV+7iG0B2D6453VU5suxflTm0zqmpnfEX9BoNBqNppfolccwexzVHS57uuwwxI24ypFwutOGlI50TCjKqI47yS7ndcrXH3WU25X1kOt00lFGWNnKI5LMcpuSXGPbYEUAgga0GRBxqN8A3KabKTW7sffa/fl06Edsz9+K/AIzYYDwQtgHGwfD0I3Qlgebhti6wYSWWGBuTH0h47YNbX+BgKLhUUFYqdruoif6ESgIBXALF7PW7EplUylfVa5x7vN0572/jdVMOmY7VvuyjprO0Z/7fCCM6z6uY0GowPmaD7iFm6rGISwr/1pZV5sfoh4I+q0AWXWNFSBbN4JE8CzenjCsP92PaB1VZXpbR5XPoNFoNBpNL5D7K8ug3fjanQQnJ0IuZ89rdxZU+ez12PM6OQsqR0VVRlW/hN+E0a1uytoKKW0rpCDsTy7jVLY3dcxUv71MPD1TP6YjU2AgVsfwkC2/AVFXlKg7BK4WKFgGrmCiiC/qZ8yO8dz+zP389JVf4RJuXAJKI1AQu9Pv9ULecFg6FupL4etJsGZU8qmf3ORjcosbn4C6QDN1xTUI5dIxq06Xk7490Y823h79BRd96/94d9SXzvXb5VK1bT/eV8dqNr/Hjo5VBzmED8wCiFSCyFPI6SRDV+io6Ty5ame6YlxrHdWy2tpZUb6UoKdVUcDCG/Vx7vsX4zE9Snla82HpRFgxDraVw7IJsHq0tbpM9BEdB0I/ah3pWh01Go1Go+lFcn9lmd2JAOeJod0BkB0IQ/osG3i5HvmzUxmVc5MuTdV+LO/INnjkw3FEPvseCIMPhy/lB8feTtSeua/pqKpTbl+uh+R8keJKPI1bQSg8vUz1OOjoFgZVzYWsL2zCNAT1gR2Efdvxt1ZC63AwfYm8jf4G7t3n9xy46kAen/4QwogyMgTb3UAIxhg+/NFCpjSYrFrWxOZdBZH8WDu1JqbPgHyDgoiLQe5yluUVESlez2v73kvE5bBnWSZHsjv7UeIbGybwyF9/we8OeIKnpr2RuR/l9nLp95hurDrJZisjfNDyDWjaB6IFIPzgaoLAMij6L3h29JCOmo6Ty3ZmJ8d1UprWMbWeGPV5dbR6W8mLGwhF1hF1owlE8mhyN0q21EWYQUQDTZhuFwLrUX8D2G1YGzUNHjY3ejCjFURFOQBuGvCLlST2xtT9mJymdUytR/7c3TpqNBqNRtPL5H6wLJODYc8XN9b2z7KDIBSfUeRVySA7Jar65TL2ulUyxY4bQEHYi7+pDDCYsmUUxcECavOa+q6OcvkMOtrlMQMFBIdMpGnGXEreeQLf5hWpDpbtu/9dEPkQ2k3Ko9CxMOTnpv8dz3fmPk6Tv40CU+ATwopmiFgmVyvC04QLLwesOpitJV9T1TyMkeF8SiItlERclLVVYppjWWUcxgPDmlm366dE8gV4rSpGvPI5DbtVUj+pimL8fO+9idy/x34c1vQnvlz8IqumwahMj1o60d39GCPqMvnXLu/w9ujPk+t26kdVO07H+9JY7eDvUTlBUckRy2cWwo4ToG0SCNt6X9MPTYMgOBYGPQm+tbZ6u1NHTccYIHamo+Na66j4jCIvUJu3neWDv2avdfs6NApDGocxaesUPhr+XqxOgzBDaBKzqRPHY5S8gzloKSJWucsQ/OzwD3l22TA+WDkUGqYgth0IphcXLQxz/xg/S5Nl7kYdk47Zy+RQP6bIq3XsuI5O7Wk0Go1G08Pk/mOYduNrdwLkiaHdWBtSGooysmE3bOn2P6Rjcp32euUy2ToOiuNNvlaC7nBqvr6koySbGShMTZcdL6M9b+3B59A47VCaph6irM8uk3s9eJYp2nXQ0RRRa7GaiP1IYo9ECgNEYCvCZ9K01yB2DA+xa9EBHL75fH7ovYcTjXMxhYHRMIaqvPlsqZ3BsIZCVpYLWssLCOcXEvYWEvYWIPDSOqiUaDTAjrwSJrkXMd67hTGtETbWuFnZlCJtu5yZ6K5+lPh0yHLeH/FVZtlUv7dc+z06jNVMOgov1B0NbZNJCpTZ84UroPY4MPNsZbtDR03nyGU708lxrXWUPmfQMeKKsLZ0tfKSKwATQaOvEX8kn4ioIiRGsUOczjrzdraLBURL1xIp24Dp8iJcHoTLQ9TwctvHU3hj4xArrWQZDPoYMDApoMa8iiZxAC3sjpDvnep+TC2jdew5HTUajUaj6QPk/sqyOHYHQDbsssF2MvzZ5LO3geKYXMYul6puQ0rLkuJgAYGIjxZvMHvZs83XVTomyhg07zqH1pHTKHn/abzb1jvnjdUlfAFC5aNwN9ZBXZgIlQghMGkmQgHRWNtCQKMLQmWAGyJACKh3B8FobBfSJl9rKMifG/6O+b823NMh7HGzqLKNqetNaopbqQp8SfPww2ja38VtL/+E+ZVnU3TwdJoL63ijZRpL1hzHiFUradxHsN6o47WZS4gUNyTJ761to263KtqGFuMKRTHdQRaV+HG1tZLvaqSusIqIO4hJGxECRDAQ1BERJUSEi0YXhBGYNAEhBAKBN/Y0qsAgnDp2uqIfJfZfvRt7rJ/MtYfdz1O7/Te5vXQMhN9jNjoa1mqylmmkvBgiCQPCQ6B5Dyj6n0IPuzw7o6Nm59DjOrPs2ebrbR1jDQnhQRAgJEYgcAPgpgmTfIQtuu2mGS8bEcKDQQTDCJLSkCyf7bvA4NNhizlqSSgpS9RlsqmknucmbuAvU5axuuhwWs1LEIYb4QlCyafgaYWCleCKJveFgMXbS2znQUDBGmicCKEywqKaJubgpp5m9sMt6nGzHQOB19iAhy24RAgXDZZNkc9Pf+jHgTBWc11HjUaj0Wh6iYETLJMdCJWDYf+sMvROZVDkldNEmrplx8Ypn+yspKHZ10qbJ9S3dYxh5hWy7fCLCA8egREJU/7yXcnlE2VchKkmZI6muW0fol8WAIXUfnU8dZFjcROl3vwba6OnELUtmlxfAOEDBXiCENiMUbCKZUO2gWs1BpEUlZ4thFA5NHhBFEBNSR6HjV/IbjWD8ApBvmsrDYMXIwIhPjm5gAfc/8Aw/kkg2kTLIEHrsGqWHgqvemso+KKG1kApuLxJukSK/dRPH4LpszZrXl1k8qt9imjhK24q3pv1g39C1GVSV/sM66JziRhuguJ61ps/YXu0mEfzIWIKPEYdLeKP+EQz66I/wDRcGJ4gJdF/UcSrGLSl9tPO9KOUbUnlGq497AE+r16prs+pfK79HuWxatfL/lku44bmPUG4FfJKCAPadoGit7Bem9odOmp2Dj2u+7eOwvoQpYgQY2gwjyDEKKIUEhEVicwGkVjgzLBVGcZjbEW4TAxfDd7S/2C4nDfslzFdXm6v3saT+1yP/d0uYXeUzcUNNPlDiEghhMtA1IC3Cdwt4G5NtavpzrdvOwx/GrbvDXXTaBIHxsrJjoWJizYggtfYiIfaJF3zjM/wsZIAyzBQ3JTTY1XruDM6ajQajUbTBxgYwTLVnSzZwUDxWSadAyK351TW3rbK8ZFlVqVl4Ux4ox48prtv6xivynBj5hWB4UJ4fVZmQ4AAgZeIqCAoxtMi9qRJ7I9JPrS64CsXlLnAV4DAxCCKiZ8oBZi4LQHcQYKBzVC4EvLXg8daTdZiAKJCOclYWQC0z4tixzbwZumGmGMocIU2WMfc7eUa8uW3lEUxfaJ94mM7J8LjQrhdtvMjWF8SBrGNHQUF0OaGSBEmfsyEPq7Y50JCsXIhUWitcCBKiFGYhgsODLDlrfE0BmdT6boDr7GuXaad7ccYz0x9k/1WT+O5Xd7mo2FLOzdWc/n3mOU1xwxAaJiivAORMhA+MNoU7cl0RkdN5xkIdibXdAQQBgI3ITGWFjGTVjGFEGOJiDIsFym1UoE7uTJPMyJvE+G8TVCwGtwthI1SMEpTdQRH/VuJUp+/KSndbQhK/CFEmx98DeBtSK1PFfQzSD0/8eOuEJR+Cs2jIVwsCRXHjUkBAEFRTFASukkciEEYv/E15a4HyOOzVFlspygFPVadZValDVQdNRqNRqPpRXI/WGa/kwXOjoDqjpfdMXA6JteX7s6aXJ8spz3dXpfsSMgOi8KBibiimIboXh1dbjBTH/vIVkcryBMm6ipFGB68Wzbg3raDsBhCUIynld1oE7sQFkOtAJl9i70gsCJi1WlalUdx8VDZoZjuEAS2pATIUuRycjDT3IF1t4YZ8q+vKVqyBeF24QpGAUHzmDI2zZtMaFA+uIxEnWbAg7s5RDTfm9yO3J92mdwt4N8KkVG8WjiDVpcfr7CvgEtz+3WMB2YHrInXm7vTbO5FqViXrO/OjlXg3VGLuehbv2NF+YbMY1XlBOfa79E+MZXrT6NjtMgKmGWL8Fh/hr2+rtRR0zly1c50clz3KR3l9sG64SBG0iam0CqmEqWUoBiLIKCoUFGJYYIrCAVrrb/AJvA0qc9PJ+xMwBPl5ElrGFnczJiSZkYXN/HepsHUh7z8cdFEGkNetf6qfnWyM94GGPQhbJlN+9JW2ZlId1EwEPhoE1NpFrPIMz5TB1v0WNU6dkZHjUbTMxiKH5yQbYFGM3DJ/WCZypFM46SmGHJVXSpD7lRfpnLpHCCV06FyJGLfI64owUAzQhh8XbmWFm9b9+no8rB13uWUv/InXM312ekIgIuoKCLMCOrMU2gR/2BL8BTMbfmYm73saDqN2ugJmOQpToxUZ9T2xW09YrmiShEgy6bf5YmE6r8QlHxeQ/HizWCAcAkM08SImARqmhjxt89oG1rMhm9OscqYYERNXGGTxCZq8frixknpgApLh+aRfJA3GUAKlqXxJCvd1mq3oW44IIBY5Ye1Up6dGasxIobJJ8OWqXWwp2XTVi78HlXjx/7ZSccOTgxcrWDEtzTqDh01nSNX7Uxnx7Vcf0/qCAh8REQ5YYbSKqYSFsMxCBMwlmAQpF4cQ1CMg6RHKbP4AXjrrRsxxV+Dfxu428Aw1b/rztoZYEJZI7+Y9QU+t5lIG1/WRNSEqvw2Hl0ymg9qyhNlSvwhDKAu6FPL7RRAKf4aonlQ+w2IpgsUqhSx0l00UWw8n77/naob6GNV6+icV6PRdD+qQFk8XQfMNBpgIATLhMNnSHEwRABC1dZn7zZwNSrKkFzG0XlRtaHKo/LThUOakx8by/fp0OX8dPerMIG6vKbklWUqJynTdTCNjqHy4TTtdji43FQ8+xsQpvKOpMBDlHJCYiStYoq1UoyRREQZBi7gX5jRfGg1oNiHCAnkvWAcHfVYgCxlBZmTX6+qTuWICsA0cQejeBqDFKzcgWEKTJ+bQe+vx7+tBSMcTarKt8Pam6ZwZS2ehiC+2laMiImnKQiGQaSgfRITKfQRKfannO5wSYBIoZUeKgoSrc/HiAq8zTsQwybQFhEQjYDbyeMF6kwICmgSsJefljEHUPrQ4xhmpOvGqp1sxqqTA5zh99hVY9WxDVWezv4eDSmf0/xb0tHdCK42iCpeBKvCswMM+0tuu1pHTefogJ0ZCOO6R3UUAC5CjCBsDifESJrELMJiJCYBrBXJVuZGcahDpU6NCsvOFKy2bEzBGusHqyraUTuD9Yil3x1l8qAGjhizkbqgj2DEzb5Dt+J1mci4XXDChHXsUbWDf68aSpEvjAHsVlFH2DR4d9Ngin3WBaI57GFdYz7C0XGAgDtKa3g1kR2ribSV89LifWkN+YmYntg8SRXdSB4UJoU0i/3x8ageq6o2VHm0jqnt2ctpe6TRdA/2IJhToMyeNxt0UE2T4+R+sMyOynmNES2G7adCaKSV7tkBg/4GvnWkGvgs4jhKZyPd9cTuWNgda7le+bONkDvCpqIdmE4OlNyOHCCS5ZfL2NoXvjyiecU073Igg16+G3dLfSKzEH7CVNMoDqJVzCAkhsf2PolPWqTGBPBuENoE1DjtXB7L6AqDbyNe8QXhIbXgTRMgU537DI6Zb3sLZR9tpOSzTfh2tOJuCeFujSTlVXVLvBpPc4jB76x1PL3y6VeJbM1RPgVejB0QmHmF/MYVpLL4GtyTDmLrjGMQbsXPd2kYtpmwIwp5PkJDx2AGinA313bdWJXLyMqoHOF0zrY9n+r4To7VFHnt351waluu155H9bvLoKOrFbybIVqgkF0WKQoFHyrk7kodNTuPHtc9o6NwE2QMTWI2QTGeNrFLbEWyS6pApUw6hLWnl6/OWnmVv9Z6ZLGL7IxhCIYWtjJ/4lr2rt7O0MJWhha2EHCb2YlnwKiSZi6csSzl0O5VtVlUoNCBjzGFwbItI2lsK2BHUyn/+uwAnvt0NuGox54R1XlsErMoNZ4g5S3McrGBOlad0Dp2/meq0WiyQw56ZRsE62z9HUEH2jT9gNwPlskG3eE33bw3hEaDiB0Pl0PDwTD4IYf6ZFRGXhUlUZWxfTeCYITBLHSQN50jlC0qpyWdkySXMyBcNgTcboTLQ9RVTkRU0SYm0yp2I8hoIqISa/8XpwptJycCfGlfLiN5cq6w9chLwWrrzr63jmgwCD5ve3aFjMrvDufAiJiUv7WG6heW4tvRqs4uYnM0mwZyMwrpk86AXRxVvkTdAmKbsSEAd2sj24G85iUM27wMT1sDm/Y5PTVgZgK1pvXfA1FPGdsmXcTgT+7ELWqTG96ZsWrP5/TbSvN7y/R7TKljJ8ZqSptO5bpKxyyvOQBEofBtCI4m/RsxBfhXQeBrRdtdqaOmc3SkzyH3x7W9ji7Q0XrRSyVhqoiIwQSZSFBMICRGYBJflulkZ+SKVQKCxxMk4qmDgnVQtBS8jbhcEcy4U9AFdqbUH+LkSWu4YLfllOcFu3zO0iliMrgMwaTqNYnkgya/z9iK9fzhP6cTjnpJ12EhMZYGMZcS/kXijTYDdKxqHTspbzY6aDSa3CKxJY0Ommn6LrkfLHNCMvZmnnRzzIDIIKzNtMPteY0I1l5UISvNaMEK9ihwNZD8yFQM4QOzSCFS1KrPHGztES88gBeEfUFWR5wJ2aHJ5lokO/8pdyDdRCmhtXoPwMDc5mdD468xo8UIvLZKMkVKMuAKgWcrrsAK3K4V4K3HMMN4N1j7sAU2N9JW3X4ShWEQLg2AYSBcBtE8T+xtkw5t2UR0tUUY/tQXFH+5hdo9huMKR6l4fWV7nzuIKPuKpttFpNBHuMSPcLswBNZjmKb6xBsCMAXeRiuP/TSbHmt1hBEFhJkceDOjVL3/GKbbw+a9T00V6oMg+GPerddN477HEPp0CJXR2/CL5anzxbgS6fo+kyMtf09391hFV4/V3tIx3dBW6Cg8XtzbqjHqRiHK3yYeIE0qJsC7AcqetV1PultHTdfQwXFtYL03xe1KTS8ItF/Omtog4IXBxTBhWOplrjAAX62DTTus760hiERRIoR1TNhl3MlxnZEMdkYIDyYFFARceLzFLKs/hxYxA4Gf9pVjHbUzyd8NA4aW1jCxag3TRyxFFC3n6dXFjC5pYEhhK0XeCLuW1/F+TTkmBkMKWqkPelm0ZRAbm/MAMIXBjjZfe0BNJUJMxIllDdx0wCJ2r9qhlK7XEBA2jYQOHpfAbQi87ggXHfwYTcF87n1jPkK4HCqwNvqvF9+k2HgJg1C/ugZnJAfsTEb6oo4ajWbn6RN3ZDSa/k3uB8sE6jtgknHOWwzNM8H0W8eMMOR/DN6V4KoHVy24toOrDgiD0RrLFwueJTkOcVLnve04+Z0C8IDwgvCDyLeCZ9HhEB0MZqmVnlLGqa5084V0jlh8Mo+PqCgjKMbRyjSCYjwhRhEdMszKHvETFYMVjcueVKpQAoO/lcyhxlNmpbvC4N8O+SsZtPgtBr/3KZ6mFryNscikCe5gLDIpRJIREAaYfus1gcLtIlzkJzQ4n/pp1dRNH0KkyHbSbA6kqy3CiMc/xwhHWXr5foQG5THyr58lnVP59Mra1O4+lMDGRtqqC1lzxjcw/W6Ey6Bo6TZGPbwIT4siYpqoQCDfUREeF+tO2Y3mUZV4Vu6Ju8mF1wxz6OpnWfn114QjUQwzSvX7f6O1cnzqr3h5BCpdsD0KVW5oFASLd2Hj9usY5voZPrGqXQmVHZWPZXLM4/+FIt3pezYTgI6M1XTy9rSOTnlk+Q3Yccj51M86CTPgwcN9uKPPYLjqElndbeD/Ckqet/Y3y9i2k9xOedKV12RPlnYm5bgBHhdUlUJpIRw8HcZUQ3G+VMSAssLYTRSgtskKiBUEIM9hT/dQBNpiL4NobIWgw2UoakJNLbz9JXy93ort1+yAUDy41tFxrdAx3e9dCA+CPCKijLAYShuTaRF7EBGD8QZdGGEvrcLpOeXMdiaZmJ3xNDOhah2PnHUDlUU7cBmCsGlw/kw3Bd4obqNd2fkT1yXVEIy6aIlYy0AjpotX1lbzyZYy/r1yKPX2DfZtelflt3HLgZ+we2UtX9cW8X5NOadOXoPHkK1Lz9IadnPvZ+N5dV0VrTGdygMhppTXc+WeX+L3RLn0kIUsWjuJ91buRrrOjIpiWtmNPPEpBpGYjY5l6avXYPl4LtoZ+Xh/0lHTPfRmAGWgryDq7kcW7fV35lxnKtNR+bOtT79QQNOHyf1gGSQbZtkpiKX5l0P5/RAugcD7kLfISiMKohjMAogOgchowATfJ+DaZhUPT7P+ELFgWsQKrLm3gnsLEJTEMEAUQrQczEHWH27wLQJ3jXW9aDsERJEVqCMErk3g/cL6HB1m/TnG4hx0THvXL3Z+TPKIiGqCYjTujR4KvliHKSrwGkU07DKZ1mG7Whe1NaY1E8s30jg2mbw2+Oug/a0AWcE7sUcs6ylasomRT7yHKxRNETnpsxBJvpfREk589zQEyd/QQMlnNVS8vpK1p82geeygpObdrWGqXlxKYGMDtTOHUfbJRlyhKIPeW6eM7QjpezxP0/hyth44GtPrJlros8ZBKIJ/SzM1cydQ/t46WkaUkL+mjoLVtYnHOe26xesOlwYIDi7At72F7bPyEN6h0DgBgKfHz2J0/c8pXP+5JY/hZsRrd+HZpxjyAyThMsAT65ugAJ9BVAxmq3kx5a4/4RNrcdGaOkbiJ1P+LDu3TjiNsUwB3Y6OVXsZVTQz3URCziPrmK5tOb9KLrl+Bx2FP4+mqQdj5lmPkUXEhZQ9vw5v4yvMb4LdG+CTOvhXhNQB2N06ajpOFn0un3e3AafOgYOmw/YGqC6DPL8VGEvnk5YUZBbH521/Ur04Q/4Jw2DfKRCNWsGzD5bCyx/DkvWwo9E21DqhYxIxA2iSR5uYTJvYJbav5TBMCrFWjrVXGnVYtZ1aaTo7EwuQ5a+z3mSZvxZ8dRy/1xdUF2+nKezB747idVurqTLh95j4Pe3W95TJazh50hpGFTfzx0UTaQx52zMbUB4IctMBVqAMAyaUNjK2pGmnA2WmCa0RDwW+rE6Sku1tPv70+Xgagt6kvl3TUMClu3+N32NSFGjhmm/exan33EJdSzHqiw1EKWNT9Fp8xko87KDU9RR5YjEQ7bPX4IFgZ/qtjpqupy+sMpJl0AGS7Mn0yGJ3702m0QxQBkawzI7kFLgawbMKPMugsBmmFMCOEbBqOLTuCiJAyl5Cvk/AtcOqyiyC4P62xypHkHAAjCh4voa8F7BWoMUORaqh9WhrlZjdSXDtAFcNVrCtGYK7gDGMxETZaAX3RvB+Cm98BjdWQshlPbITCcL6OnBtBQpi6nmsP+Ei2blK6G9gUkBIDKNNTCEoJtDGpNh+Yz5Gf3QzRUuWYLDEKmMKmoftatWxPgJvt8EYb5qonYPnFF9BVrAKCtaCt846WbE2Kl9bmRQoi6OK2aj8uKQ0AXnrGxj94Mcsv2QWwQpr1pi3ro7RD3yMf2szkUIf5e+tw/S6yF9ThxF1Nt7yaTSA/DV1RAqtFQX+7S0ABGqa8Na30TqkiKbx5bQOKaLo622JQJmTPq5wlLrdh+IKRclfU0tzxdpEsCzoyaN+9B4UrP/cyhsN4W7YzMefb2K/vaYnnxUf8EYbfCvf2sMs1t+tYjc2RG8lz/iMwa578Il1YEgdaHd8M6HKm865lzEUeZRjVSqTTbvpSKej3F436RjNKyJaOKg9W7CN/K++xrcNDlkDx9ZC7RCgOoO8TnRGR03XIPW5ywC/1/JdPW5oiK1MNrGCUv96H+pbrDx5Pjh6bzjzEFJuEgth1dUdQU63q/3xzwOnwv67wsYd8MR/4b9fWKvTfB4I+CAUtmTwuqElaMkVsa+wTvrtuohSSFSU0yJm0Cq+QYiRhEUVpLz5uDM42Bl3K/h3QOEKCNRYNid2AR6UF2TeuHVgOD4l3zEJDDhzyir2G7aVH7w2k2V1lkMweVA9vznwE3arqEuo6XKBqyt+cAZ43emWr2emzB9mt4pavt5RzLZWPyI24Er8IQLuaKKdXYas5NuznuPeN+YTisRXz8kWzHocMygmE0TQEt2dQuNNKlx34hKNzgGRXrwGpxyTy+SAnUk5JpfpTzpqdg5VkKW3Ayp6zyqNRtPHyf1gmexHA0YY3BvAu9ha/RUdAqE9IVoJUxtgST4sL5TKYn32rIfAf634ggBC00H4sfYwc2HtMxYLlPk+Ad87QATMEjAarXLuTZD3L2iba6XjtgJy0ap2kX0fWIGzxF65AaseotZjmUMBMwT/fRUKXNYG4R8Hwb8WTE/7fmnCDaG9ITwBrElLEWFG0CYm0CqmEWQ8UVGOtd9Y8skyRDTZ/xIxx9zEeusiBnyl2phf0QFOATLJWctfV0fR11tTuk8OMKlaVN1YjePf3MTIhYvYcsg4jIhJ9fNL8W9rJprnJVLoJ1Sej39bc1K92SCAQe+tY9B76zLmVckLyTq6m8NUv7AU0+Oi7MMNtFZvwAx+SrDU2pjI21ybKEM0TCS/lFdq6vBtB8bSXuO6qLWirMGEKLC5fcMigZ8WsQfro7tQ4nqOMh7DRXNmB1V1V9mugEpRpxPpdAda1Y4qr2qY2eWyf1dFVJ3YWR2d5FXo6Gprwt1Sj5lfbKW53Ai3wzN1sk7y967SUdM5FH3tdbc/XllSYH1+/gMIR9rzCAE1de3fW4LW3/tLYM5u0NJmBajGDYXNtdYeZBOHQ2vQ2q+s2/osFuAbPhguPQ5OPxhWbISqMmvVW1Ob1XSe31p51tACNzwGtc2WLlFKaBXTCDOCVjGVoBiHSQHtK8dUtkK+Ima6KEgCI6y9LvM2W6vHipZbATPM5IusAXtW7WBksXW9L/Z3fmWWnUJfhOmD67hij694ftVQhhe1cOLENYwtyeLa2glcBvh2MlhW4I3w57nvUdfm5ZnlI6iNPUY6tbwuqW6XS/D9wx8iFPVw7xsnYr0JKX0/CgI0ikOImqXkGZ/iEVsoNN7EMELpherBa3DGMjlgZzKW6as6anqGrnq0zylPpmCcU15Ven8MqPV2MLKjdOebMrN9JLM/9rMmp8n9YBm0+9HN1kov72IrOTIptiqsxJbXvi+Q5FQYQfC/TuKxSgDfZ+D7PJY9D1rngigA/2vgXQK4IDwDgvtC4EXwrrCqdG+EgketIJhZBuFJYDRb+YUZW/G2Dtpmg1lurULzrCTxYoGJIfhpFZSF4c+LQGyAQVOgdT8w3WCEDfL/LvCsgeCy4WwbfxRBMY6QGEmUUnb+jr7KC5O8LCMKvjrrLZaFK8BX2x4gk6sSgBCUv7MWVzDq6L/Zkd10letu78KiJVspWpIciHMHo/jq2yhYW5fVDU3l1MDjir1UwHqUxd0Wwd0Wsc5CLLN9RZlTPfHv3obYANvRSt76egxWJMrI+d1tjbSZ8OxX2/FOrCFYMoTELDyK9ZxXqxlbPpHsGZsUUmueRJuxCxWuO/CJ1anC2AQe1jCYb2woo75wG67KWmtBoeGQX3bK0znHqjrkebNTGdUgkOuQ21XlVbWZTj5VPjlvhjpcwVYCqz8hPHiE1bzHS7SoHDavTJWrp3TUdJ7YOcz3w56TYM+JUJQHSzdYe4GNGwJXnQxPvw2LVpJ2XH+9Hi683QqwXXuGlVZdBoNL4I//hFGVcNysnlHL7YLKUusvTpntBTXlxdajm4Mr92fpit0QIkAr0wmLatSzcRVOgzALO+OKgG+HFRzL22C9ORnh+Hv1ukxOmrTGcdvQncKAo8Zs5MgxG63mu/p3JSBkWufA5zJ3vn4D8jxR8gqjXDhjWdqsXneU7xz4JC9/sS+rtg0jO6sMLWIPWsQeQJQWY3fKXQ/iYWui/ZTi8fQeuAYPBDvTb3XUZMdACjD0t32t+lugrK/Q3/pZk/PkfrCsFdwN4P0cvEutwFhoFkRGgbC/vFFGEYXxfWQFuex23Wiw+QX1EHgJjEjscUifFYwLjwVcsccubWVFEIwguOvBvVohQqO1Ak3kQ2RsbM+yWGPv+OBPjbB2GETGQ9MH8MwHENgBLZOGYmx24d64gajXT7Nnd+rM+Q6KplM8W2zeViJAtsZaRebfTuIZVNqzpWAKPM0hSj7fnJJN9uXkoJNdCkNRTv6czj9U+X/p4jwYsGPvEWw+bDzhIj9G1GTUI4so+awGgGjAixE1cdseK1XJn5WORmx6Z3s7psuMIoDo1nVMfOwK1h18EXUT9rdqMbACZTVRUvs1/t0VezTzRspdD1BkvIJhRJR9NGXzaI75alcWD/sK95iPMF1RZyXkkyUjO8fyMbkuVWcK6b+cT9Wek5yq/HY6qqM8QVDpiMBbW4MRDiE8PjDctI2cSv7yD1Ll6UkdNR2mKAClg2DCUDhltrUC67dPWv+P2hO+Mc463Xl+GFRI2nFtAH6ftYLruH1hZIWVbgp460urvjHVOI+DXsDAoNmYR705k87ZmUzf7WnCCpB5660bMUXLwNuQsDOGIfC7TTwuE7dLEI66CEZdeFyCgCfK5EEN7Ddsa/edP6P7qv5kSxm/encqVQVt3DrnY/I8Dq847SYqi2q549s3cM0/LuTD1VMRKW8BTffdTaM4nBZzd8qNRyxbI4I40hPX4IFgZ/qjjn3o2tZnGUhBMk3PEx9XOuCn0eR+sKzwEfCEgDCEd4O2Q7EelZTvsoGzI4K1n5jvk/ZDTj6Ce1P7cSHA9yH437LaNDL4hcqbhwJotoJ9dmpDcN9KYKW1PRUAprX3WvGyjYl8wYphNA+dolBKFSZKPgHC5SHqDWAIQSRQRNRfqMibIUBmy5a3ro6KN1Yh72tsREz825pxBaP4drSoWkjyn5yCW3I+1TH5xqpTPypipepjAgqXbWPdiVMxA16Kv9xM8eLNiTLu1rCj39cRHYXbx+q5V+Br3MKw//0FIyaRfeh6m7Yx6sX/w/Tm0TB6prWyrNaETU4TqvZWo5SzxbyMNtckynkANw3OJyA+QVIplu5EOuVzctjT/B7TThLs+Zw6UiWnqv3O6KiSyUHHknf+hr9mGTUnXYvw5xOqHEvK/FOWz96G3H5X6ajpELdfBBUV1n5ebsM6vSfsD7uMhE3brRVm979k7UW27xT43+LY45iQbGcMmLcnHL+vtYos35987MDY+1X6Wp8ZhmDa8KX8d+nMWEq2dsbpxy7njdmZwGZrk/7CldYKMtnOAAt2XcUpk1dT4I3gd5s0hTzUBX3keaKU5wUJuKPk93CQqatY35TPntXbGVvaRJ67F3QwYNqwZdx31tVc8NDVvLvC/obMWIYUkvs8KirYIi6l1diFStftGITai/bCNXgg2Jl+q6MmmZKSnm1PFSjp7NsWs8nbkcc3+zrdKb9TH3TF+ZP7qSuDZvqRTE0/JeeDZa7YdiHCG9tfzEsiGmUIrP23BMSfyTBNoM3ahNdow3oTZZP16KbRnOpTpAvcEAYjHPMTgu3pKr9EDuLYSed+yvll/yd/6wqGvnk/9WP2JBoolnKqPJn2GjfveSKbZn0bT2sDwdIhmB6/rXhEHSBL4xCVfbyRwW+ucdTJScdsjmd73uzp6fpRdXlWTfkE4NvRSt7GRprHDSKwsREjKhxlT+ezqkgcj4YxhEndhP3wtDVQ9cGTGIiUsp5gEyNeuYPVR11Js2cKvNoGIZU2qpHjpcE8mqAxkQrXnQT4MqlEg7+ZjcXbaAg0W+dHjvDJSgpSB7qcxylN1QnyRECF7NxnOylwkj2e1hEdVZMLuVysrLu5nvyv3yKw9nNaJ+xNuLQaXG6sSGcv66jJmvISKLC9kNbACpT5PNZ+ZaWFcPXp4PVAJAofLrP+fB4IhqHAb+1LNm00zJ1prUBLwei78wfDgEOnvMs9b5xEJGp3KzLZGSeFYmVcQWvVWPHXkLcJfNtRPsofK2IYgoNH1DCl3Bbsz+LNof2Fg0fWsPeQbdabNHtrLBhQlt/IL4+5mzPuu4HtTWWk70eVh+KmURyKaZZQ4bq9/bFMe5YeugYPBDvTb3XUaDQDG/1IpqYPkPPBsvhPzBwUi+98Aq56MBqtIJjRhhUwi73x8rUIBNugQFiBLqIkGXtVkCuTbXcKjMWRywspPVOARRX0sX/3Nu8gf8sKGkd+g1RvR6ZdmtaKsYBBsCx+ZyFqTVYK1liPv/i3k4gGOkWe4lWagvx19d2mo1OMTnXe5bZVeVU41WdETEo/2UhbVWFiZVzX6ygoXvMhOyYfxPZdD6di0T9xh9uUMvnrNlD97l9ZUXUN1nZnKi/XaXJjEBQT2Ri9jnLXQxQbL2CIEBjwwcgl3J/3NXmmIOKynal0ATHZsXdCVt7JmVepgiK/0/CW5YvnzZQ/Wx2zHUBxHQ0XtbMX0Dp2Jgjwb1oGZpRN9n3+e1JHTZfhjz3mH9/fyx/rU58BV5wATa3gcVlvkfS6rQCZAf02aDmkZBsVRbVsqqsgezujmIW7QtYKsrxN1j5kniYSN2Iy2Jlif5gxpU1drVqfocAbpcDbB1bFGbDrsOUs2PdZ/u+lM3GOpqQbzG6axT6EzJFUuH5Pvvikd67B8XRVPvlzf7UzdpnlfPLnvqKjpmvo7Eqwrl5JpIMePUd3btKv0QxAcj5YBpb9dW2F/L9hBcZiqOx1re2YHTlvusCNU5DEyRdwmDKkBNCcfBn75/9v783j5KrqvP/PvbV19VK9prfshLAEwpZoCLLo0MPmI/DIT41GRWXIqDAjgwOIDjjjqCD6cxTGAX0eQXyGcZlnBB3EaEhAQGIggQBZSULIRro7Saf37truef64XdXnnjrn3lud6qp7q77v16teVXXP9v3c7fs931t1r8wVaekk6va9gqE550h6kVnBN+Z/Qfa2NUFmqScxhluuJw2EJ542OR0aVS7YLh7jv5/IdjQCGlrX7UHDa4cRGEvl2F8IjelICHUHXkP06F4EEmOApivragCqe3chEB9GOjq1R+YZqMcR4/MY0xajRf8hguwoDDCkNTb5N0HZipHhlCmU7C85393GWPlsSNmY/ARDlb2U4aRHoXF04fk4ftHHAU2Hlk6i9vU1AAOGAiqBmH6NxPSimX/VrC+jXzwBQEfDEVx55gt4+IVr4d7PMECbSJBFD5k+pqrb9DlgefuZUxqHMLN27IS1EM5oGnDF4j/hwWc/grEE93/h/HpBknXiiPE36ND/GUHWO/lk5iKdg5V17M2efPeBn1HWsaOUGgn35JPIKFYSJd/l+Y7ptaSbV5JJhU5wOnEif/v0yjojCBdMywOhDh06hI9//ONobm5GNBrF4sWLsXHjxmw5Ywx33303Ojo6EI1G0dXVhV27rE9i6uvrw8qVKxGLxdDQ0IAbbrgBw8MncMXYQPYJ8vwh6vQ9azNXrkrW8LGALL7gxxA/84kPVfJGtEWFTFPV8YMOPXAtNGb+9aXpFWDWr4HZvwKa/2xOYmSJMjFA41/Zcpa9V9l0aSzVdtQMBi3NEOkdQXAonu2nkBq1VBqh4WM49RdfxMm/+jL0xKitRiNYBRYIwboR8g0wdAyzS3DI+A6OsL/BALsaSXTCQAQMVQALWLtmAJhuLs+8Mk9dVa1sMVOoeqnaObVRZSKd2ojtZdqyGrXcsVxoTNc04Mg1t6PqnZ3Qx4dRtfdVVB3You4jZ3x9srxQGn2EJ/1MBaNpQFNtP5xn5QzQ0qaPqTkAtD8NzPkF0PF7ILbdfGqyLFHmws8ENQOa33ZkH9MeO4r66DBOzM8ASTYLB9LfxwHj33CUrcKwcTHG2SKMYgmGjYswzC7CGDsXSdaJNGuEweqsL1TDfJS4Zr5DOC+fkJ+xnncNFp0YtxaMhc2xsr6O+zxlP5N5aZPnedk5Xmqr2M/EOpmSL82MLxnXjZ9RJddUWsQAySOQn/EglGghCKKIFPyXZcePH8d73vMevO9978Pvfvc7zJgxA7t27UJjY2O2zn333Yf7778fjz76KObPn4+77roLl19+ObZt24aqKvPGLytXrsThw4exZs0aJJNJfPrTn8aqVavwH//xH3nbJFzHzgnl+aQIE77bJVXEPmTxgTi+rA2E+uI4muSzqM1JY2ikD1p6FCwUniwJxGFmENNAcMR8wljkCBB9Bwj3AYEx+8FFw2V1JgwI9Y8jMCq/2X2hNJZsO7Lp345a2vxJZCAx+QAEO42h4aOI9B/CWOtCxYgqS3KtSbKZGGCdAIB+4wkYxnHsN7oQwBBC6IaG5ERvOpJoh3haCaAPAQyj39gL4FcYYcvRa1wgGde7MGhIoQNMcsoM4ih0jEpaOfQ5GkJ6dzUCW+Mwro0iFW7DkY5bgf0pDLOXADyPYfYe9BrnT4zfBjb5OA9oiCOInoLOLwbYNgC/K2CP04MX/QwBnD37TdRGBzCcmjiH6EnTjwBAaMj8BVm4z/QzoUGznE+MnYif0YDmaAI6zaOKRm3VCE7reAvdAy04UT/DEEWSVaGf/X8T5SmYia/MNV0DOsZhPhDAsPSka3EEcBQ6xgAEYKDa8bwc1HqRRgyMVSnrmOfddjCEssvSqIOBKmhg0DEIPfOAAqFlEL3QYfNUJw5NS0wk3iZJoQkGagGkEMLhKSWBU2iBhnFEtN0IoRsB7ThSbAbiWIAgjsJADdKsCQHtOAADadacbWugGik0Tfj4zJNmJ+3UtRHoGESKdQhakgjhEMCMzKrIorNRhLTD0NkIdMQRRDc0xj2kQ5aYKyHkZzyKl35Z5pXEXSns8OKv/AhiGih4suxb3/oWZs+ejUceeSS7bP78+dnPjDF873vfwz/8wz/gmmuuAQD89Kc/RVtbG5544gmsWLEC27dvx+rVq/Hyyy9j6dKlAIAHHngAV111Fb7zne+gs7MzZ9x4PI54fDIwGRw0b/ArJhL4xIeILHklJkxkSQ/x4pzsurqqvYgYVoqfZRrcaKzp3onY8A8wcDa37gLjgDYR0Gj8o9mEjmXGyVaMWC+7Uhhm/d8tll9dTYdGldnltB1lmsTvGgA9FUfTjj/iUOvJDla5uZw7WSetBZHUapFkc5AEMI5FkK+VXIbxMhLaf2MUp2CQXZ7H+Cr7ZWU2M2nbNhDqqNKbbtdXBhuNSQC/AsZxGvDQKJJ6A5KpywBmYJz1A3gecXYyBtkVRdM4xgLwQ7LMa36GMLng5Fdwytk/xitH6syrCGCAlrnHFsvd/YCC+ZmQbmDFaW97Zu5SCQR1A1ef8yxe2HUeUunMf8dP3M9M9A7rhg/AQA2A6py+0gxIgj9eXZyDlXO8fPxMq027MyRtAOk5mIntrX2N4yyFLRns1/EIuxDWS2yCHZZ1YdU4jjO5Iq69qg0T+s7RZUBDChoSiGhvIqatQY22HjobtQ96SgD5GQ/ileSMVxxNqe0oxvj0ZEyixBT8b5i/+c1vsHTpUnzoQx9Ca2srzj33XPyv//W/suV79+5Fd3c3urq6ssvq6+uxbNkyrF+/HgCwfv16NDQ0ZB0LAHR1dUHXdWzYsEE67j333IP6+vrsa/bs2Tl1eHctvmR1+O+ZZaoEiGyZal7gto3Ynkk+q/rK0WekERrtBUIDky89bl7Z15PmxCbzP0kN1tiLf6kQ2zDrssBYcto1VsJ2dKsRAJq2P42GN593cDAydfxya6//N3YR/k9DlzCqOwe2vnoRLjjp+/jfTVcqxlchzpBlOO2csvZu05HuNcq3ho1t6YlXXxo4agD9aZvt5RWNpcfLfqaSGUvp6E2kzV+QaUmYF2EmfIvsJFxAP8MYvHHz+0pCA64+51ncfuXDaK8/BnfnZ4+dg6V2ef0cPBWN4gFWKo06GCIwUIsxdh56jNvwjvENpFHvORdEfoYgCIIo+C/L3nrrLTz44IO49dZb8eUvfxkvv/wy/vZv/xbhcBjXX389uru7AQBtbW2Wdm1tbdmy7u5utLa2WsqDwSCampqydUTuvPNO3Hrrrdnvg4ODOQ5GvKYm+mVV0kGMzUXcXoO0ayu7nmgXyojXCMUx+XoZjHDAPjYTJyq88TJBsoFl5bqG8fY61O46Nu0a+T7LdTvyfdppDA0fw7zV38G+6rdx/Ly5QKoaSFdPVk7WAUw4BaRqkL0XmcTio3oNzPvCSCalWnrib1VyxgwD+9GE0UAQCIwo6xEwkw2Z92AR722iu/vbUKnxsp+pbDSkmVYSP5NmGvb212BJW19BlBDuCAeT+Owl/4m2ll34uzXvhRFvBuKNQHyGWYEFTZ9iROTO0OJvGCZ/iQiY9wsDLBtdMyYu8KWQNxoDtIRpi2W5Yd6KIjBq/uKeJxmz2sh0048GR5DdCZlm9pGOAkbI2j4QN8+rRsTUlq6aqBc022RWSsZ/soDZh540z/+BMSBdA8CY/MxU0UrGxhBgCH6cBbjxMvd34zZIdvygtX9eu8Zg+QtscFTtn1K1pk4W4MbiD/7MewDjbBFG2HsQ056y11VkyM8QSjIXNUv9y65Kgv72SZSIgifLDMPA0qVL8c1vfhMAcO6552LLli146KGHcP311xd6uCyRSASRSCRnuZjgUMXhsmuKYkJCdYiK8wDZHMGprdtkDBPqqcbKmX/oGuIzanKFyyYq/ICyC5f5Tn404PjSmWjceAiBuBngMiNXZb4aea0Qlot1xP5l+GE7ijY4adSTY+hc9ysMvetipOrF40Pi5I2QfDkwMUmoUpdrqYn74MnRjTTCiSTiwSAQrIgH8U6dxHbgHQANbwBzDcfqBUN/G9hXvOGmitf8DCFQAj/DoOG3e2fiktm9aIiY9y4LiL9oy8d+HpoP2aMBly7cglN2NGLHsXpzWeZCTObBJCrfkazD5J8cmHlvu8wGSNUAo7OAVMz8Hu4DqvebSRpddq8wJyaSbTkXhJh5z1aLN+bEid+NIFef26lZENkHr2Srp80XC0zUCQDJejOZFBifvEChp8zPLAikI9wv/1PmeJk6Bv/3VAVG2Jq0Y4GJ8cbM9ZaOTtQJA2MdQFUvUNVj2mOEuWSZDiRrJ8fTk2ZCMaM3OKa+wGKEzKRiqtrc9vFW4PjZ3Lq3XFFFHAs4e+3lFQvyM4QjjFHCjCDKnILPWDs6OrBo0SLLstNPPx3/9V//BQBob28HAPT09KCjY/LGoD09PTjnnHOydXp7ey19pFIp9PX1ZdufCLLEh11yQ5b8UP2CSJbIkJ1GZX3JxlIleFQX7cXyzHs6GkSiKSo3RiYGwjLZ5Ec2qOIXAUOntGDnbRchEE9BSxmY9+grCB8dzRlepiGbUBLEDp7ZhlRNGJGjI6h56zjAWNlvR7u6Ko2RoyOIbe1F37LZghBJL4GE7Xa0PPRBZqzNr0PiAeBwSMPkfw8lbXgxduSzr9q1t+vHaVy3401FY+ZXE1ramoCcbo36FH6tUQL84Gcqkb7xMEaSwZL5mWcOtOHK/3ofOmrH0FSVwHcueQUzqt3/WpIxIGnoeP1IA377Vifi6QDm1Y8goDH85dzDmBPL/0EelUIsnMIV8w5jR1+9uW3Ec0lwzPo9s/3Cfer9IdIHVB/IHexEz8Ead1N5OxiQvT1Fdhmz+kn+pK4Jv6zm7cuujzQQOAKwI4rx4+Yvr3l7+fECiiQhr5FPYGXHOCJvU7dTqDditTtyVD6eOK64DQKJiQd69JsJxMA4EOoHWAgYbwWGT55MAgII4Z3J/jwC+Rli2qFfqBGE5yl4suw973kPdu7caVn25ptvYu7cuQDMm2O2t7dj7dq1WWcyODiIDRs24HOf+xwAYPny5ejv78emTZuwZMkSAMC6detgGAaWLVuWlz2Sa4LKRIYsCcEk5Xb1VHNpmV2q+M6ub1lbJ43paBDHls1GKiY89Uk1iRc7k3VqJ0Y6UdIw3hkDNEBLppGusu56mS6HFzYj0Vyd05wFdAwvaEJgNAk9ZcAIB3D83A4kG6Oo23kUC7//ouWWa+W4HYFcDbL+c9oyoPnP+3F86UywoH5i21EUwr/bTYZVyCbGqqxhsfZVfrxSaXTqa7o0+gSv+ZlKJ20Au/pj+OFrJ2MoIYQVRTx2DUND72gVeseqEAmk0TcezkmWMQZsONyMXcdjSDENB4eqURVMo7NmDC91N2P/UA22HK1HPD3566NoMIULOiXJBmISDfjQKfvxf7bNx7HxSOHOT7I2YrkL23I+k5+Rt+W/F0yjYT5lvfod83ssBCSagPEZADQ01gxAG+OTjoq+igz5GaIguPnrICXNCMKzFDxZ9nd/93e44IIL8M1vfhMf/vCH8dJLL+FHP/oRfvSjHwEANE3DLbfcgq9//etYuHBh9lHLnZ2duPbaawGYV26uuOIK3HjjjXjooYeQTCZx8803Y8WKFdInx9jBkJto4JHFXkxRztez609WLsYcqhhI1V60RxXD8G1GZ8UwcGYb+pbNwXh7rfok7JQ5knWuMkx1lZEzmgV1jM2sR/TgoHX9h3Qc+PBijM1usBkod7y6HUcA7m+d5bYdZcvy1Vizpw9V7wxibE5DwbajcmDVPuM28LerU+R9VdnfdGtULS+mRg/jNT9TqTAG7OiL4f9sm4/Hd8/GSDIA5Y5U5GM3bWg4NhYB2JClTt94GLc+uwQHh3MvyqgwmAbmdJ8oAjPrRvHe2T34r11z/H8OrgQ/UzKNSaDj98Dxs1E1cgrGkxEEsRD1mXsSeeTCDfkZj+G3+1VNxV76WydBeI6CJ8ve9a534fHHH8edd96Jr33ta5g/fz6+973vYeXKldk6t99+O0ZGRrBq1Sr09/fjwgsvxOrVq1FVNfnLp8ceeww333wzLr30Uui6juuuuw73339/3vZocPbdqnY8sotqIqqLeGIbPtEi68vOPukYIR2p2gjCxyf/5mCEA9j3iXMxOrcxN4gRBxbfxaubMsS+xOWqvjQATDPvYbbpELSUYXahAcMnNWG8vc7a3iIU1pXDAC1loG7nUaWpftqOTkk3FW406ok0mjccxMHZ9VZHfELbURhUzBCqgm7V1XSxL96uku2rEruKpVGsWwyNPsFrfqZSOT4exo1/WIb9QzXmAg8duymm4webT8Gi5gHUR5IwmIY3jjbg0a3z8c5wVJ1wkBy7M2tHMTtGDyVxQteAqxccwm/2zELS4O7d5ddzcAX4mTmxEfSOVmE8FSiunwkNAvVb0BqKwUhXYVGHjqPd56K/fxcMJAEID1ooAeRnPISXE2WyBJeX7SUIIi80xsrziB4cHER9fT3OgXnrWJWPB+QxBo/sApwYn9j1IysX4xa7uB0AoGswQjqMcBCpujAiR0agJ80bfzMNYEF98juAYxfMwb6PnwME9NwOZQbIjHCaTNi1cQjatLSBhs2HEek1n6Q03laLkQXNSNZX2Qd7wudI7zBO++azCIylPL0dZeO7jW15TkSjURXEvk+ci+NLZuZ2NMXtaBnEDoft6EpMifbVLEXUeMfON3Hvlm24a9Hp+Prpp9r3U0CNHz9wAD99eZPS3MEUUL8OGBgYQCwWU9SqHDJ+ZusAUOfH1cHMzZ9mGpJpHQYDRlNBHByqxvF4GJ21Y+isGUMsnMzdfwD88WArPr36fKTEm5p75NjVNIaFjUOYGxvBaDKI1440YDgpPK3QbqyJz1fOfwcPdb1EF/xdkExr+MaGM/HIlpPAoPn2HGxrr9txxf49qLG5Ko6hRAiJTHKzmBqZhsjoAqSPXICIFkAipSFg7EZ1Yh367n+S/MwEGT8zAKDs1gY/BVX++6Usp6lyKsXJFOJvp5W0XxAFJ3tedeFnKuKRdJrwWZWEyCCLmWT1RJjwblcvY4clltA1GKEAUrVhJOurkGiKIj6jBvHWGiQaq5FsqEKqJox0VRBNGw9h5uNbERwy78eipQwYIR3pSBBDp7fi0LWLAF3PHVzM9MiCG7fGi/3J6srQABbUcXzpTPusFJAbnAnj1m0/gsBYKqc6UMLtKBnLSWamfDr31cB4Cu2r30T/We1goUBBtmOOAFU7h+0oNdgj+2pOf6p206HRzja7saaqkSgbMnFkmmmIp8xLRuNpHUOJEHpGqzCWCuCt/lq80tuE/UPVGE0GkTI0DMTDGEyEkGYawrqBj572Nm5/1zZEQ2mkDQ1jqQBe7W3CU3s78cyBttxEGeCZY5dBw5vHY3izLzblY1cDw3mtfXSYuCQUYPjc2bvw33tm4sholf/PwWXuZ46NuXjq4nRp1Bji1buBFgOpw38JsCCSWIS40Q7gSWe7CP8w1cRGJSVEKiVRVigyf9smiGmm7JNlmbggQyYhoTq8VLGAmNiQ1Xdlh67BCAeQjoaQaKhCoqXGTIi1VCPeUoNkYxSp2jCMcAAsIKRPOGOOLZ+D4QVNCB+bfDpXqi6CVF0YybpI7i/KZMbzy8RMjSoQkvUhZngy76qrjbJ++BUpaytpHxhJoOVP+2xNnLbtyH0X+xZXo5txZPvkdOyr4aOjCA3GzYcoeGQ7ut7PMst8uK/mrVFsW2yNhH9gQNLQMJIMIpHWcWw8gqf3t+Ot/lqkDB2HR6rQMxoFY0B8IlmWSOtIMw2WX/6IJycGjLMAnnxrJl7uaUZjJIHRVBA9I1XoHa2a/CWKwibpMh8eu63VcXxw4QFKKudBY1UCnbVjZrLMI9uR/IxkmVc0Vu8Hqo4AY+0AAmCIKowgPEchkxWU+CAIwoOUfbIMUPtvPrlgl3DgkV3Eg66B8TclnUiIpapDSMWqEG+OIt5Wi/HWWiSaq5GsrzITYpHgZELMKbgQjQUQb6tFvLVW3lbWl7gs3/piGxnixMvOLlXfYh1F8FW36yiq9/cXbDvK2qqGlyXMVLLFhJfdmNO9rwbiKYSPjSDR4nBz6yJux0rYV/PWaGevzA6nNlPRSHgHBhgwbykAAAlDxzvDUbw1UIstR+vx3MFWHByqxlgqiHhax2gqmHvS4fpS7neS/frIWJX1F0IVduye33EUzVHrEzUJe4K6gZZo3FPbsRL2Vf9qTAF1b04ky9wMSEwbdn+Po2QWUSjoV3SEjyj7ZJksrlD5c0tZUM/efF5MdvD0n9OB3q6TUXV4CFU9QxjriE38bTKKdHVInRCTdezm3OEmiFEl3Zz6Va0QWdCTT7aHr1tAjeGjowBzNlu1umVD2MWNqlXkVNduudtVVyiNzGCoPjCA4VNmeGY7VsK+WpDYv1QaiZLCGLCppwkPb1mAWXWjMAwNG3uasOt4HUZSQRhMs98vvLRf+/DYPaf1OHQ6TvJCB3Bu63Gs3T+R/PDAdqyEfdW3GjUAoSFATwFGkGtMlAxKjBUXSh5NDforJlEEyj5ZxqOKLzLvGZ/OdA0DZ7WjbscRpOoi0BNp6PEUAqPJbD8MgBEJoOcvT8bIgmYMn9wsH0gWOIh1xMBDFZDIjM/n/CobR/ZZtFO0XTUuvxKBaddYNfFwAL47lQm8DNEkSMrsysW6YpmbsZ02ndt91WkcmYbq/QPmN6Z5YjtKKbN9VYqdRlldvg2/rJAaCU/BGLBmXzvufP4cHBmbeLqauP0tDeDt/dpvx65m/kqKyBMNeHf7UQQ0hrRBfoY0cnVlywHzr5idTwFjHUB/k7MuovBQ0oEgCCIHm5uOlAd8okCWSJAmGgyG6v39GO+ow/6PnQ2mawiMWRNl0DX0XnoyRk5qmuxIEzuCPIAQjRDL3QRCTj7NTXk+Y/J2ekEjY4j0jlhMynwWk1eZl10MJ5qrksh/lsWTfD0xSSXW4W0T67veV5G/xug7g9CShje2o9tyP++rbsvznQBl3oulkSguDHi1txF3PHfuZKIM8Pd+7bNjVwNDe824i04IkepQGrrGPLEdXZf7eF91Xe5VjRoDqg8CTS8B7f/tYBiRhbHc11T7IAiCIHIo+1+WJWMRJGIRGGFTarKhCuloCMlYBKm6CLRkGq3PvIVQ/7jFt0eOjiIwksSs/9yCcN8otAk/wgAY4QB6u07G4atORfans7IgQnZlTvbdrg4PX2aXzXHTnyyTwoTlou/0kEY9kUb4+JgyicUvs1tNYj1VgskulyG2sYtHVfGl6oKrarOeiMbgYBx6Io105omYogF23+3q8NC+mqvBrj/VjgeUViPhis29jQiPmNeeDg1VI2HoSBka3hqoNf8mOcG82Ag+vmgvgrrzxCTFtIn7kAXk+4Bf92sfHbuaBtSHE5IOCCdaq8dRE0qhfzxc8u3oqj+f76uu+vOBxnByCDUD+3BcUo0QUCW4GAP9rY8gCKIwlH2ybMeXLgarq5q4bxhg3nzE6kQGz2jDzMe3om7nUWipyb9cBMaSiB4cADTACOpIR4MY64yh99KTMbC4DdkbmYiZDjFQkAUSmvBdFaA4BUOysewm3rK+xbFlGRmPadQMBi2ZzklS2SErt4sL3daVmSnWEVeRahxVX4XUGIinEBxJIF0TLvl2rIR91Xcaibz5xFPnQ4uGAQBpJmxoblvUhpJYPKMf57b2mT/rFk4GcUPHW/212N1fhz+83YGn97ebN+uXnUBov552jdFQmn5ZNkXqw0nMiMbNZBntq6RRZQdXEEjF0dy3DZGhI5QskzEwAMRihe2TflFGEARhS9kny4zqMBAOTC6QZCzGZtVjz2eXIfrOIKKHBqEZVueRqg0j0VSNREMV0jVhsIBu7U+VCeGDAVkgw38Xy8XghwnLncaxQ1ZHHENmt4c0BkYSCI4mlTGlOLwqThRNkZXZ9S0rF1eTTKLYn5tY186OfDRqyTSCIwnEPbAdfbmvQmijwgiYjWS2ytpZyjPnLH3ihscKHPtxqJvTtuz/mT8tGEwH+CSZ4iQynAzhr36/DOd3HsWZzf2oDqWxb7AGY6kADKbhzeN12NEXM39Nltl3PHoO9uWxm6fG5qo4PQlzikSCacyJjWBXf13Jt2NZ7KsAAD33HM0mOkoHAT0JpMMTjQ1Am3gZYUBPmJWzdhpmHWgT5y424XckUYjSz2hAOpJb39JIKAuMm+MyAFo6W7du+ACa+7YhmB6HkQZxovBJMLoJOkEQxJQp+2RZFj6gysDPbcIBjM5txOjcxskyuwyGXWAl1lFlP8S+7bIldn3w49lozLGLbyPaIdbj7ZP1VWSNejINLZ1742VVTkMsF5fxZTL5srhYFQc7jQNJWT6csMY0Q+j4mDyRUgn7amZyYIQmJx5G1WRSKlUNGJGJzzVmWQYjBCTrJIZKSFeb9adC/xNgeAPoPxPYf93U+pgKx54D8HLxxis3XOzXx8Yi+O2emfjtnpnOfkbEQ+fgSvAzs+pGUR2kmftU0AHMrhutYD+T+awDhm4mrFLVZiMWmPAjChGpWtMHMQ1INiCbiDciQLpK0mDCn/HJskyiTEubCS09juz9RAAgOApoSWQTXnrK9Hd6Mg+/pZn2yC6yaHwijlshwVFzDD0B1O4G9HE0JdagcWgrNJbOdksUEEqUEQRBTJnKSZaJQY1TQMW3cUqUQVFPVab6rAoSZQGmKqCrEI2Ro6PQUoY0nlV1zXcLSZlTAkqsI4uvZW34/sVyJ7livUJpDPeNqScNft9XmQawoJn8MiLmpCRdY05UkvXmhCAdNYP8TIKMcYkzJptduclk5IPdVgb+u+Z9GO1swNbIPCDRILHBjT2y9K5D/XS1G+MJFRV0Drbtu0w01oRS5k3qifzRzF/mla+f4X71a4RN35JoMD9DNz8zHUjVTSbKjNBkx46/4i2Ev+GEpKPW74lGRd1p9jOJ8GTd0ZkAGJjeD2hvAkgX1s0SBFH+0C8niWmmcpJlgNoJu4kF+NgBks92fYgBmtNyPog7kauqbpaLY8pscdNHMTUCiG3rtfTnlOTiu5Qlj5zicVX87RSrM8hlA/arWzWHlDEVjdHDQ/L17qd9lQGAbia9Eg3AeBuQaDInJ8kaMwFmhAEWkCTAVLMh1SRBtaXdGp1px9dXpUGBbZG52BaZB+seMZVZhGxvc6ORmDKVcA6uAI2axrC88ygdFSfA/IZhaGBg4lr0y74KIOtj0lEg3gKMzzAvKqRqzBc0MwmW+SXYCfkZWb3p8zO5YxTTz2TG1XHc+BAS2iy06d+FwaqRZNUA9k7BDoIgCIIoLJWVLHOKUWTZEVUc4RTjQFEuC/ZU9VXjybIyTm1kY/lUY3A4jtiWHmn4pZqLybpVDSlLeIl92uWY7MJbuxjfKSQupMaaPcegx1MwIkH7Ab20r2YmJak6IN4MjHUAiWbzin66CpN/97AbCEIdVfrSjdFOs36ZLU57Q45o5G5NWdtCaiROiAo4B1eCxtbqOK5ZcJAOjxNgecdRzKiOo3dk4q+DfthXgYlfijUAY53A8DzzIkzm18oWw1UDiXXIz9j3FcAIOx8HjAdgsAh0owfALRK7CYIgCKK4lH+yTIwp7IJvFW7m4LI4wake37/bTAnfp6x/vqwcNTKg8eVDiBwdERe7RjVfU9WzC0Pt6ohhp6xM1U41D3CLk8bIsVFUdQ9hdF5jbkOv7aupGmBkLjA83/zrSLqam7Twgbhq1u12Vs7v3GKf/IxfbCNOTMQtJmYLVJMX8eBS2TqdGokpQX7GHT7SePWCg3Rz/xOksSqBebER9I4K99ny3L6qmfftGp8BDJ9sXohJ1sG84b2bxA8k9WSQn1FrDCLJZgIA0iyq6JsgyhAtHydKEESxKf9kmRhfAPIshui7VYgX4dxmWWRxDV9HFRvJsh3i8grSGBhLYsYf38rep9bNnEpmiioZJYvPVcs0m3ZOcwGZzaq0xXRo1JIGogcHrQ+0EDsu5b7KAkB8BjB4KjAyb+LvLmIHfEd2ExlZcA7I17Zd34BajIiqz3wmJio7plsjkTcVdA62fC5TjdFgCh86ZT90OiROiKDGML9+GC8dbjYXeG1fTdUAwwuAsVkTf6+MwryXGPkZ72gkiDKGEmUE4XnKP1kmorrIlSlz01b87IQsYyELBGVjqYI+u/ltGWsMjCYR7h/PVlGZIXYjxuSyIWX9ZD6Lbe1CaVn7DEzy2W78adUouyFmKfdVwLwR/8g8YPAUYLzVTJplO2RQd2S3o6oE8O/iuuCNthMgIs7enGyT2VVKjURBKONzcE7bMtR4SuMQ5tcPuzSKsEP6gISS+hndfNpk/2JgaOHkEyotlcjPyCmmRoIgCIIoPZWRLON9t+irVfNF0efLgjRZ3OEU5MnKxXH5eM3JZtkFvbLWaA3EZKGZKnRUrS6+XIbdqhbbysJQ1bzRLiyXrQqxXGazWzuZuEAcuNj7Kguak5f+syZvmpxjgJsd0SkIV00U7LYAX+40E1NtVdUKEmeAXtBITImKOQeXv8baUAqhgAGiQHhhXzWCwOgsYOBM80JMukoyEP9Ofsae6dZIEARBEKWnMpJlYiyhCqhkPl2W9ZD5ejFo45fb9SnaKcY0dojBori8jDWqQjxRKv8uSpQNJZopfnZqq1rtfL+Z+mLIKxtrOjXmLCjVvmpUAUfPBwZPh/kXGDcGiB3li9uJAI/dypC9821UkwmvaSSmTIWdg8tZY5ppYEwDZL+KIvIizbTS7qsM5gWY3guBkfnI/Zul187BleBn3GokCIIgiNJSGckyGbJshp3vtrvK7XRhza6u2LeqTJyUuIklylyjLIElk8wvl82/RPOYUEec18ls4MtlY4lzRFnfMrunTaMGJBqqSrsdGcwnW/ZeAozMUVRUTQhkKUS7LZRvG9layyeAt9trRLykkSgoZX4OzvZVZhqHEkGkDA0BnZJlJ0Kaadg/WFO6fZXBfJJl73uBsXZFJXGQUp+DK8HPkL8hCIIg/EHlJctkgbgqS2FXzrdXZSnEMnF82Xji+1Tms2WtUVOaI5oqG9pJiiz2VtUV+xKx61vWVuxjOjVC05COhuRZuGJsRwYg3gb0vBeINwsN3MycVYG62zay727aOGX/ZCtvqtmBUmkkTpiyPgdLxigzjaPJIFJMQ8S+GuGClKGVzs8kmoF3rjKfbOmrc3Al+BknjQRBEARRenTnKhWAXcDlNhNi14c4UbDLuqj6s4tt3FAmGtPVIaRqwsrhM9XdhHJ8AkqVqFKFi07xulMqQpwbZvqyu05cSI1MA1hAcvgXa19lIaDnfVyizK5DFeLaUk0WxJesD6cxeNvc9OG0zMsaiWmhTM7BtpSJxqShm3/DJKaHYmxHBmDg9IlEmVgo61AF+ZnJZaXQSBAEQRClozKSZWJAZuefxQyJLDvCf5chy7646UsWm/A2ibbK+ipzjSyggQX17GKn0ConSSS0Uc3d7FafTKIq1lchCzc15No7XRqNcBDJ+qrS7avJmPlSdiguk61ltxMBXqSbNk4BvGrWJk40nFaauMxLGom8qZBzsPRd7Ivvz4caBxMh9MdDNoYRbkgzDfF0oPjbkQGItwJDp8L53OjVc3Al+BknjQRBEARRWiojWZYhE1eo/DNDbtAG4buq3A1icGc3ljjJkMUQqgxNGWs0QgEkGqM54R4/rF2crUqOyUyWmeR2Likul+Ekdzo1GuEAWMjm8J/ufXW8zXw6WV44BdD8xEE2E5eJsFtmN6Zsy4h2TCXg95JGYkqU+Tk4W17GGpOGhqRRWeHRdDCWCuDImM2fWadzOw4sAtJT+SOtl87BleBn7DQSRJnDmPkiCMKzlP89y2QX31RXtDWhvhiHOJ3PVGPZZS9ExPFk2RCxbiVpBJCsr7KYYNe1uExWT0SVEJPVk61GtyGtGCJqQp3p1JiuCSNdFSzNdgSAsU4b62Rr0+2EQJbeFD+7WVv81rU7oJyW2a1Ur2ok8qaSzsEVoDFt6BikX5adMN0jVRhKhIq/HQEgMOZiQK+egyvBz+QbtRAEQRBE8Sn4pdN0Oo277roL8+fPRzQaxYIFC/DP//zPYFzmnDGGu+++Gx0dHYhGo+jq6sKuXbss/fT19WHlypWIxWJoaGjADTfcgOHh4fwNUvljt8Ea79f5diqfLsuUiJ9V76p+GHLjCzcxR1lq1BBvqVaGhmLXYgpANaRsFchesj4yZarVKBtftqqZ8AKmT2O8pTr3nmXF2o4sqLipf+bdLiBXKVUhE8UbaddODPJlffF2yPr1m0Z/QH7GZnzyM+p+XGpMGDo2H2mk/PEJsv1YPUaSwjXZYm3H4DDUWVovn4Mrwc+40Vh6POdnCIIgiKJT8GTZt771LTz44IP413/9V2zfvh3f+ta3cN999+GBBx7I1rnvvvtw//3346GHHsKGDRtQU1ODyy+/HOPj49k6K1euxNatW7FmzRo8+eSTeO6557Bq1aqpGSX6Z1UgLwbwYhZErC8iy6zI2shiGbFPVTzBt+FtqyCNI/MbLe1ECbIElspMcXhZ+KhaxXZ9iTIhfJclsfi6oi2F1jjeXgtoWmm2Y6pm4qbLTspl6pyCbCdka87uYOHHUU0uxANK7EdWz6sa/QH5Gch3N74N+RlrX/x3sY3kUFm9txNpusn/CbFvqMb8UOztyACko4pO+IriZ7Ge+Jn8jLXedGosPZ70MwRBEERRKfjfMF988UVcc801eP/73w8AmDdvHn72s5/hpZdeAmBehfne976Hf/iHf8A111wDAPjpT3+KtrY2PPHEE1ixYgW2b9+O1atX4+WXX8bSpUsBAA888ACuuuoqfOc730Fnp91fuBwQgzE3ZGIBWdZBjDFk8YkYu4jvmTI3dskyLyJlrnG8ow7paAiB0aTFJJXZMlNUQ8pCUFk/MtOcVoNsudtVV0iNABCfUVO67cgC5sv8oqhoN6uWDa7aEuJ31QxLhsw2OxvEoF+19cRyt/0XS6P3IT8D8jPTrLE/HkKaaQi4Th4QFpj5N8zMZwDF244MQHAU0BjAZDsYX1FiuLRjcRn5GfUy2XhT1Vg6PO9nCIIA3fONmG4K/suyCy64AGvXrsWbb74JAHjttdfwwgsv4MorrwQA7N27F93d3ejq6sq2qa+vx7Jly7B+/XoAwPr169HQ0JB1LADQ1dUFXdexYcMG6bjxeByDg4OWV16IMYX4WZYh4TMeYl2nuEA2WeDr2sU/MhvdUCYaE41RDC9sllZTmSALGcUwU3yJIaI4hlOZbBWKklWy7cLHE9UIDUg2REu+HdVW82WiQXb1VQPKjLabhcmCeLvAnu+TX6F2WwZCHS9p9D7kZ+CBY1dBmWjcN1iD7cdifjosPIUBoHukRH5GA1CzFwiMKjrk8eI5uBL8TD6JtdLgWz9DEARBFIyC/7LsS1/6EgYHB3HaaachEAggnU7jG9/4BlauXAkA6O7uBgC0tbVZ2rW1tWXLuru70draajU0GERTU1O2jsg999yDf/qnf3JnpBv/LgvoVbi50OaUFbELFFU2OpWXq0ZdR/dlCxHbdgRaMp1jEm+aKszThPoyc/NpK44r2iNrp+pfFkqKNk1ZowYMnTYDQwubc40u1nbUGCav+PMd5mOMOICsD8ugis+yPpz2Cjt7VeP6SaP3IT+D0hy7svIy1TicDOGHry/EA3+xEQGNMmb5wBjwh7c7sOFwCf1MIA6EjwOpWqFDP5yDK8HP5Kux+PjCzxBEpUK/KCOKRMF/WfbLX/4Sjz32GP7jP/4Dr7zyCh599FF85zvfwaOPPlrooSzceeedGBgYyL4OHDgwWSj6Xt4/y441mX8XMxmyq+CZl6p/uzbiMlUMorooV0kaNWC8M4ZUbVgattmFcppiWLvQLmOWXVtV8kocUxOWZV6iZLFe1o6Qjt5LFyBZX5Vju2w8cXm8pQZ7P7MURlWodNsxOAhU9XAVM+9iRXGHFOup0opuHKhTokjsx20KU7X3ZN79oNH7kJ+x6Z/8jHXZCWhc/04Ljo6FJR0QdvSOVuHuF8/CcLKEfgYGULPffPfdObgS/IyTxtLjST9DEARBFJWC/7Lstttuw5e+9CWsWLECALB48WLs27cP99xzD66//nq0t7cDAHp6etDR0ZFt19PTg3POOQcA0N7ejt7eXku/qVQKfX192fYikUgEkUgkt4APtMR3GaIfV8UBlgwGt0yMY2SZEDHzIot9nAJ5WUxRQRqNUADJWASh42MAgHR1CONttah5+7gyzrILL7PfdQ0w5B24mfOp2oirSBUKZvvSNaQjQQTGkwDjNknKwPDJzUg0RTHrP7c42ijaN95Rh1RtuLTbUUsDsR3A6EzIdzZ+YLHMLhUqthO/q/pUwR9IsoNFltpU9SMr96pG70N+BqU5dvmxKkDjYCKEQ8PVaKuJw2DAwaFqDCZCOKN5AJp/Dhdn7LbjFPp6/uAM9I5WWZZlKeZ2jO0A+s+aeKCMrLFXz8GV4GemorG4eM7PEOULYygvp0IQ5UPBf1k2OjoKXbd2GwgEYBgGAGD+/Plob2/H2rVrs+WDg4PYsGEDli9fDgBYvnw5+vv7sWnTpmyddevWwTAMLFu2LD+DeN9sl6Xg69stY7AGcmI8YfdZFfzxdVX25iQchLYVppEFNQwvNJNGRy6Zj523XYTdf7Mcg2e0SYeQdcN/ZwBGTmrCkYvnOdZVpRVk9XmJshhfZicL6dj38XOw/SvvxdjMmLUdA2r39KHv3bMRn1HjSiNgPkF0vL0Wo3MbJh1yKbdj9T4gNAA5Tjuwqj4/g1cNDuTu3HbjioG9bCIyFbys0fuQn7H5TH7G3t48NCYNHT/bMQ+r93bglmeW4OonLsHK316AV3sb/XS4yGFA/3gIB4eiWP12h/QaEWNA2tDMf7s46WVAytCQYhqe2jsThuEBP6MngOghhfFePgdXgp8plMbpw3N+hihvGLO+TrT9VPspJE42ubHTK1qIiqXgvyz7wAc+gG984xuYM2cOzjjjDLz66qv47ne/i8985jMAAE3TcMstt+DrX/86Fi5ciPnz5+Ouu+5CZ2cnrr32WgDA6aefjiuuuAI33ngjHnroISSTSdx8881YsWLF1J8ck/H9qsCNrye24YN41bzSLvCTjcO3ccqqOPUh2lsRGjUcuvYMHL7yFKRrwmYCiAFvf+o8nPTDl5CqCcMIB7LNIkdHUfNWH0ZnxRA+NobAWNLSpREO4J2rT0cyFkHznw8gMJ7KiduZ8FkmRTXv48vspAJA/9kdOHb+bEDTkKrNvboYPdCPVE0I/ed1ounPBzCwuA16Ip0tDw3GocdT5hMvAaSrw+j5y5NhhAMwQro3tmNgHKjbDfQtybMT2aB2O7BsK4jlsmUye/gDzK3TVvUHm+Wl1OgPyM9I+iI/U3iNAH6xcw5+uXMOGFfh9ufOxScW7UUsnLR00VEzhvPajiOsG9LDMsU0HB6OIhZJoj6cLNkhZxjAH/Z14P/feDpOaRrEBZ1HzXkIZ89oMoB/ffUU7B2oRVUwjWgwjboJvZ21Y4iFk0gzDYOJEI6PhxENpvH8wVZUh1J48Z0Wb2xHGED0MDB0CibvkemmE/Iz1rZe0Fh8POtniMqg0n5tJibDVNopaUYUmYInyx544AHcdddd+PznP4/e3l50dnbir//6r3H33Xdn69x+++0YGRnBqlWr0N/fjwsvvBCrV69GVdXkz/Yfe+wx3Hzzzbj00kuh6zquu+463H///VM3TPTJTsE/38Yu6yH2IUMsU31WBYmyAFM1+aggjSyoIx2yJpNStRHsvul8GJGg5URb89YxNG56Bz2XLUTHkzvQ8vzblmH7ls3G0CktABgGT5uBhs2Hc+QJw0vngrI2stUga8MAQNfQ965ZwMTVzOGFzajbccRSL1lfBWhmPSOo4/AHTrP0pCXT0NKGeV8yEbvJh8yo6dyOsZ3AwGIg7fR3A1nwrjKYX2Y3OZLt4HZBiWrFOAUybgMdr2j0B+RnXJSRn8kde0oaNWuehQFvHo/hrj+dnWNeWE/j/M5jOLOlHx846RAWNg4hpBtgDBhJBnHbc+di/eEW1IeTuPbkg/jkGW+hpSrh/jRxIkwk646ORfDo1pPw8JYFGEsFsPN4DBsOt+AvZnejo2YcAJBmwC92zsW/vXYKDGmSyX4cT/mZmr1AcCn3V0wnw8WOZQbzy8jP5GfPVDUWH8/6GaJyKERiKNNHsRJvdjZnbHCjS1aHEmVECdAYK889b3BwEPX19cD33g9EJUkDt4hBWb5xgawvWTsxG8OPl0/cMRUqTGNgOIGO3+4wn6ZpGBg8ow3v/I/TkK4NAwyo29GLxo2HcrrQ0gYiR0ah2RwyejyN4EgCiYYqQHc2Ot5cbfkFnBEO4PD/OM38tRyAwEgCnf+9A/VvdAMGw/ApLTh07SIkG6Om0zAYENBzNFq+W0Q4miRvOx3bkWnA4cuB4ZMkg7mZaTnN2O2wmxg49eE0vt2YfH3vafx4/xr89MB9yp4HU0D9OmBgYACxWMxh/PKH/EweVJjGulASCxqGsKBhGN0jUfTHQ9jeV29JPi1pO4ar5r+DmlAKJzcMIxZOYjhpXsOsCycRCyfRM1qFtKFD0xj2DtQikXa+ewYDMJQIYTwdQG0ohUPDUYwkg9jTX4u9A7U4OhYB/0s5DQyLZ/Tj2pMP4thYBG8er8P6d1rMG/TbaLR85/HSdmQAjp8LHDsf1qynN8/B7se3G5Ov70ON8RHgX68lPzNBxs/Q+iBOmOlMmJVnOoEoU/I5rxb8l2Wexsl/y4Iz3o/n4/+hKJfFLqr6qvHsrtySRkeN6ZowDn5oMfRkGmCAEQmAv4/X0GmtGDqtFVIUN//PoKUN6EkDRiQA5sYp6RlDJRo009YDH1mMQ9ecDo0B6aqgmYRjE+0Cmn+3IxhQvxUYmQcwXaggM0jcsOJnN8aJ/fNl+e58stmi3exP/O5VjcQJQedg0ggzWbX5SBM2H2lSatzU04xNPc0AgKBmIKgzJA0zGRYOpBHWDYymgjCY6aJSxgncZtZGI4OG13sb8fqRxrw0+mI7AhM3+j8bSFULFbx6Dq4EP+OkkSCIgkMJLYLIm/JPljGo/a8q2AKs/p1fDq5c1pddAMfHBaqgTrVc1U+mjQrSKNeoa+ZfNVV9qfoMaPL6E5+ZHkA6HLCfRNitFyma+ZfKctyO0W4g3AfEZ9gMIHbmFHirltttCDFwF8cWbeBxmi3atfWaRmJKkJ8hjSeoMWXoSLHJZWOpIMZUY4tjinVk3z2gsWTbUU8BgTEgVWMzgFfOwZXgZ9xoJAiCIIjSU/CnYXoOTXgBuX5d9O1iHb4fflLEhO8Q6oixBIS6fBAqxhbiZ7t+SCNp9KtGLQk0vwwE4pIOVDMgMciWGc+Xqdqp2sjauwnixQ3lJuD3okYibyrx2CWNpNEvGrUk0PKniScwk5/xj0aCIAiCKC3lnywTyfhqVTBoF3tk2mjCZz6wkyG2YUIb2XiymETWj52dpNG+LWnMpdgaAfMGzK3PAIGEjRjZZ9FwFaoJgLhSxTZ2MzQVqpXhtp34WbRJRWE0HgvEYFTS05emi0o4dkkjafSLRgCoPgh0/AEIjtqIkX0WDVdBfqawGgmCIAii9FRGskzl00Wf7RTk8YGcKmYQg0dxuWxsMTDll8GmjO+HNFrLSGOuvWL/XtGoAajdAzSvB7S0ohJfWSbGzkA3iLM0tytEZodq4mDXzhsajwQbkK4Qt1BwKvHYlY2TWUYac+0V+yeN8rGny89EeoEZz5t/ycw5f3rjHDxZr3z9zGQ9J40EQRAEUVoqY1Yk+m5+uVMQ6LYsE09oQj1VoCezSQxMZWUQysR4iTTKbXBbRhpLo1EDUL8daH4JZsJMtSJkhvED8eJk4u0CedFImcHiinNrk6zMixqJKVOpx66sncwGt2WkkTSK9hTSz9TuAdqeBfSkopII+ZnSaCQIgiCI0lP+yTLR5/PLZZ/57/w7/5LhNp4Qx8kEj3YX9mS2iGWkkTSKffhNo2YAjZvNl2ZIOpYZxw8mzqxUYjL98qLEuqJQcdIgjqsaT7ayxb69pJGYEpV+7Mo+i/2JfZBGtZ2kcRr9DMy//je9gslfMnvpHFwJfsaNRoIgCIIoPeWfLON9vhg38MGU6K95vy27QJbPPFMMADN1Zf2K7WQ2yS4ckkbSqLLFTxphAE0bgdh283MOYoAtCrdDNsGQvfPGi+PI7JGtKLuxnWz1mkbCETp2SSNp9I9GMKDxVe6XzCJeOwdXgp8RNRIEQRBE6Sn/ZJmIGGzJfDwfFEJYzn8XgzUxUOQDT76NJtST2cd/l8UfdpBG0uhnjXoKmPECULfbpgO7mRT/ma/n1IavJ2vPhHc3/drZ76aOql/+cyE1EgWhUo9dgDTyy/nvpNFbGjO/ZFZemOEHUBlEfkbeRjb+VDUSBEEQROko/2SZLEATAz/Rb2tcGx7RjzPIYwH+u7hMjEHsAlA+4BSDPbFP0kgaxfF5/KYxkzCrPqgQ6DYwlwX9YhsR0bipTBbE2ZwK2UqS9cf3O50aiSlBx658fNKYayNplI8hs4Mfm29fKI2aAcx4EajbA/MXZl44B1eCn8lHI0EQBEGUjvJPlmmwBmh2wZ0sSOPriZ/5dmL8oupLrCv2LSKLLXi7+fFII2kU7fCzxsAY0P40ED0sVJAJ4Q2QTSZkK02sy7eRze7EfsTZmt2EhZ/hqfoWJxWl0kjkDR27pJE0+lRjEmhbC9RvFSqQn/GmRoIgCIIoHuWfLANyfbjov0XfrwoSVQGczOdnPqtiDqd4Q1bfri1pJI2yNjK7/KJRAxAYBVqfBcJ9LjqWzYzENiKqoJyfdMiMdhpP1adqIqBaKaXWSLiGjl3SKGsjs4s0ekejBkBPm/cvq98K68NlvHAOrgQ/IxuPIAiCIEpPZSTLZP5X9Pe8L5cFXXw8wZfLAko3c04xkBQDQXEsMdCTtZGNQRpzy0ijfzRqAMLHgY7fA+F+hVGqFSJOAmSDQPjuVpw4rmiXCru2IqXSSEwJOnYn65NG0gj4S2MgPvGXzDcVHZOfsbaZbo0EQRAEUXoqI1kmBl8qP65J6vJ1ZL5cFjDy704xjYbcOEJlp2pc3l7SSBrLTaMGM2HW+kcgOCY0EI2CUCYOwC8TBfOD2gmyW2lOQb8Guc12/ZRCI5E3dOySRr4OafSfRi1p+pmGLTB/YUZ+xtqumBoJgiAIovSUf7Is48dFfy76ftH/a5AHV3y/fD1+ufgS26gCzMxLFj/YBYikkTRWgsboIaD1GUBPKiqLnWXqiDMisQ7fl9iPU5Ava6MK+u1WjKxv3q5SaCRcQ8cuaSSN1noyW/2gUUsBLeuBpo2YTJiRnym+RoIgCIIoPeWfLBMDPVm5KgCTBYJ8mRjIiW34fvkYQxZbOI2piov4MtJIGsXlfH/loLFmH9Dxh4lfmInGijgJYEI9TfjM15NNAAB7saoZmVP9TF3xVQyNxJSgY5c0ksby0ailgMZXgJYXYT4lk/xMaTUSBEEQRGko/2QZjya884hxhiyW4JeLsYMqVnDTRoxT+OViTCEGo6IW0mgtI41lppEB1fuA9jVAaFBRUTRKNZEQDZBNCDLlqomEuOJk7VTlMjvcrozp0kicMHTsWstII2n0o0Y9DTS8ATS+BjNhJlYkPyPvO9O2kBoJgiAIojRUVrJM9MUyX+9Exsdrku98/2IwKAsKZfECb4vYxi7O4Pvl30mjHNI42b/fNGoAogeBzqfMe5nlBPAqQ8RO7QxQGWI3E1MJVU1O+LHtUM1Wxf4LpZE4IejYdQdpnOyfNHpTo8aA5peB5g2AnhA6IT+T2/90ayQIgiCI4hIstQFFgQ+wmLDcTdsMYvAnLpfFGvz44niy5eJ3Oxv5cUijPaTRfgw/agz3mQmz3vcCozNdNBbRhHfV7M3JINksMV8bVH3y3/PpV+z/RDQSrqBj1x7SaD8GafSoxjTQuBkIDQM9lwBGmOvYDeRnpqaRIAiCIEpP+f+yjA/kVHGAeMEs82JCufgZyI0HxDp2gRkf84h9yl4yW/gxSCNprCSNGoDQgPmXzJr9DgKckAXz4ne3MztVGyb5LutXtqEKgRuNxJSgY9e+T9JoHQeK+qTRoxoZULtr4n6ZIw4i7CA/Ix9PlT0lCIIgiNJS/skyQO23xeAog11Mwi93igfEZapAT7zqKtqQ+S4LSMV3WTlpJI3lqlEDEBgF2v8A1G+XNHYLP7CsD7vgPvPOt5dNXmQzQKcxVRt1KuSrkcgLOnZJI2mU96ta5ieNGoDq/UDn74DIUUkHbiA/k59GgiAIgigt5Z8s430wMOmHxcBI5pvF+EEWl8iCOlU/srHdtrELGkmjtY5qHFnfpNHeXj9o1GDeT2bGC+bfZbI3Y1ZNKmSGyYyTDSR+Vs3WxM/8JEDcGHazT5U94mSkUBqJKUHHrrWOahxZ36TR3l7SKG9TCo0AEOkFOlYD1e8InZKfcdcnX66qW8jkHUEQBEFMnfJPlomorjrK6vDIfLmqDzGeEOMVVZDm1han9qRRXUYac+uWi0Y9CbT82bwhs5YSCvlZEyTfnRANFWdidgLEGZpqRbkhM5ZYv5AaiROGjl11GWnMrUsa/aUxNAjMeN68j1lOYaYhJN+dqCQ/o9LIACRc9kUQBEEQ00vlJMvsrmCqro66qcsHafwVTw3yPsSLaXZjq8aXBZ1ieye7SaP1M2ksE40G0Pgq0PbsxNPLRGTBv913cZk4QVC1kbXPp42qXr72TrUNMSXo2FWP41SXNJJGP2kMHwM6ngJqDkgakZ+Zqsag1o2YvlZqJUEQBEEUm/JPlsliGDEos7t4JvYli0M0SZlYR/zOB5Bi3+L4sjbi2DL7SSNpFMeuCI0GULfTTJhZbsasmqXZlYnvdpMP2SzLbrmsfzt73PRfCI1E3tCxq7aDNFrbkUb5dz9qjBw175fZsAW5f/+H5Dv5GXuNDBHsQ4P2K4UNBEEQBFFc8k6WPffcc/jABz6Azs5OaJqGJ554wlLOGMPdd9+Njo4ORKNRdHV1YdeuXZY6fX19WLlyJWKxGBoaGnDDDTdgeHjYUuf111/HRRddhKqqKsyePRv33Xdf/uoAa2ADWP24XTySKXeKXWRXHFVjy+zigz1ZcCkL7lRjkkY5pNF+PL5NOWms3Q10/B4IDisMFleATIAoVhQkm1zYTUxUExHV+Pz3fGZysu9uNZYe8jMClXbsksbcvvk2pDG3jWzMYmjU4+b9MltehPn3f/IzU9GoIY4abT2a9EcRxBGF/YXFd36GIAiCKDp5J8tGRkZw9tln4wc/+IG0/L777sP999+Phx56CBs2bEBNTQ0uv/xyjI+PZ+usXLkSW7duxZo1a/Dkk0/iueeew6pVq7Llg4ODuOyyyzB37lxs2rQJ3/72t/GP//iP+NGPfjQFiZAHTrxvz3yX+XFZfMDHLnbBnwiTvGR2inELH7zxtsrGJ42kUWxfyRqrDkueXiZORPhBVbMrpvisEsGjmn2JAsUyGXYzUbt6fH0njaWH/Azo2LWDNJJGL2nUDKDhDaBpk/nZ0hn/mfyMSqOGBJr1/40I9rjbdwqAL/0MQRAEUVQ0xtiUZ0iapuHxxx/HtddeCwBgjKGzsxNf/OIX8fd///cAgIGBAbS1teEnP/kJVqxYge3bt2PRokV4+eWXsXTpUgDA6tWrcdVVV+HgwYPo7OzEgw8+iK985Svo7u5GOBwGAHzpS1/CE088gR07driybXBwEPX19cD33g9UheTOVxZX8GV28YGbWMQpRhH7F2MKN7bKAj437VQ2qMpIo3Mb0R6ZTaSx+BoBIFkPdP8lMN5q05FoJCA32O1KzcdQJ3tUZZCUO/Wr1rh0bCf+tOcLCLO0tOVgCqhfZ57XY7GYg+2FgfyM5HulHLukUd0/aVQvL5VGIwAcWwb0LwZYUNGRaCQgN7h8/Yysj1rtj2jX7wGQhhEH3vo++ZkMGT9TzPVBEARRzuRzXi3oPcv27t2L7u5udHV1ZZfV19dj2bJlWL9+PQBg/fr1aGhoyDoWAOjq6oKu69iwYUO2zsUXX5x1LABw+eWXY+fOnTh+/Lh07Hg8jsHBQcsrizhx5perfL1dDKAKssQ4QIwTZH2IwaDmUAahTBPeSaPcBrdlpLH8NGoAQgNA52+B2re5QpURojG8wU4TBNmEIp8V67Y/XpyqTf4ah/RqDAaqbS0qNeRnhLJyPnb5eqSRNHpdo54GWtabT2XW0tzg5Gdy2/AaDdRqLwBIy80pAZ71MwRBEERRKWiyrLu7GwDQ1tZmWd7W1pYt6+7uRmtrq6U8GAyiqanJUkfWBz+GyD333IP6+vrsa/bs2WaB6PMzMMVn/jv/zr9kuI0nxHEywaOsXGavSgtpJI1iH6TR+j0wBrStA+q3ARpvhCzYFzsXJw1MWK4yXrayxb5l5bLvvA12Y/L95qfxzcgsfHz2ndgZmQXmgQmLDPIziuWyMTLL/HzsinaSRtIos8UrGjVm/iVzxp8APSmIkhlReX4mV6OGJNqdhyoinvQzBEEQRNEpm6dh3nnnnRgYGMi+Dhw4YBbwPl+MG/hgSowT+NhEdoFM5v9ViAFgpq6sX7GdzCbZhUPSSBpVtpDGyfqBcfNmzPVvYPLeMmLHvPHiCpB1KltRInaTFlmffBvRPjtkkyjZu1wjg4bf1y7F5fPvxdsha4BPkJ8hjSCNKltIIzeOAdRvAdqeAcL9io4r18/IbBlkXRjDOS7HL2+UfoYgCIIoOgVNlrW3m1eGenp6LMt7enqyZe3t7ejt7bWUp1Ip9PX1WerI+uDHEIlEIojFYpaXFDE4kvl4Pq6BsJz/LgZrYhDFB2V8G02oJ7OP/y6LP+wgjaSRNKo16ilgxovm32W0lMQoVWDPhHdI6jjVlY1hV0fVL/+Zr+fURja+qFHDkWADxvSIwq7SQn5GGKeSjl3SKLeP/04acymJRmY+kbnzt0CkT2JkpfsZa5skm4PD6a9iHKcjgdL/ksoXfoYgCIKYdgqaLJs/fz7a29uxdu3a7LLBwUFs2LABy5cvBwAsX74c/f392LRpU7bOunXrYBgGli1blq3z3HPPIZlMZuusWbMGp556KhobG/MzShagiUGR6Lc1rg2PGB8wyGMB/ru4TIxB7IIzPhgTgz2xT9JIGsXxeUijMCkzgIbXzV+ZBcahFsuQ26FscH4gvlxWT2a02F72PdOfSqBdG6dxZRq9CfkZST+VdOySRusYpNG7GoGJ+2U+CdTthlpsJfuZSQ0GajBg/A/E2TxJX8XFk36GIAiCKDp5J8uGh4exefNmbN68GYB5E8zNmzdj//790DQNt9xyC77+9a/jN7/5Dd544w188pOfRGdnZ/YJM6effjquuOIK3HjjjXjppZfwpz/9CTfffDNWrFiBzs5OAMDHPvYxhMNh3HDDDdi6dSt+8Ytf4Pvf/z5uvfXW/BVqsAYvdoGPLEjj64mf+XZi/KLqS6wr9i2imsPy9pJG0kga89eoMaB+q3kfM0vCTDY7k4kRZ2t2ExZ+JqbqW5xU2G0A2YRJttLEuqI9MjvsNnJxID+Dqe/XkNQV+xbx27ELSV2xbxHSaB2PNBbJzwAIDQOtzwLNGzlfQ34mVyMwjlMBBCR9FR7f+RmCIAii6Ng921rKxo0b8b73vS/7PXPCv/766/GTn/wEt99+O0ZGRrBq1Sr09/fjwgsvxOrVq1FVVZVt89hjj+Hmm2/GpZdeCl3Xcd111+H+++/PltfX1+MPf/gDbrrpJixZsgQtLS24++67sWrVqqmpFH07H+zIAiZVAGUXI8jiCFlw5aYvsR8ne2U2k0bSSBqdNWoAavYCneNA918AyXrBELvBZDMxlVFiPTujncZUrSAnO2X2OGksDeRnHPqnY9ddX2I/pFFuM2mcfo2BBND0EhDpAbovA4wwV8lusErwM5Ma06wZrEi3U/alnyEIgiCKisYYY87V/Mfg4CDq6+uB770fiIbklTI+m18DdsGaKhbg+xHfAXV8wPftVA+SMjdzW9KYawdpJI0y++IzgJ5LgXiTg7HiKdNJmJu2qpmX2MZpRui2L3uboyyOjbs/j0Xj+y3LB1NA/TpgYGCA7qMC8jNS2/hxVHaQRtJYqRqZBgyfBBxbBiQaHAbgKT8/I7NTQxydqb/Boe/vJT8zQcbP0PogCIIoDPmcV8vmaZi2MMm7GBdkXmJdvo64LFNP4+qI706xgibUE22QjSmOy9tLGkkjaZysI76rNGoAIkfMe8tEuyVGiZVVHdq149uIbe36kdUXJyNi/cwysV9+xTrZSuSFF/dr2djiOH4/dmVji+OQRtLoFY0aA2r3mDf+rz6kGMCpw3LxM7kadYwgiOOK+gRBEARRXMo/WZbx46I/F32/6P81yIMrvl++Hr9cfIltVMFX5iWLkewCRNJIGkmjtZ7MVieNGoDgMND+e6D2LQcxKrF2MyW7FSPrO1Mmm2yIdcRZn1iH70vsx27SRbjCy/u1aGc5HrsyW0mjuh1pLK1GDeaN/1ufA4IjNmIqwc9YNQa0AegYVdQlCIIgiOJS/skyMQiSlasCMFmQxJeJgZzYhu+XjzFksYXTmKq4iC8jjaRRXM73RxqdNWowJy9t64C6XYCmmgHJBhBRzcic6vMG8i/VjNJuIzGhniZ8VtlK5IXX92u3Y/r52HU7Jmm02iQrJ425y/n+CqERAELHgY7VQKSP67hS/YxZL4BBaEhKygmCIAii+JR/soxHE955xDhDFkvwy8XYQRUruGkjxin8cjGmEAM1UQtptJaRRtI4FY16Amh7Bmh8FWbCTDWREDvlUc3GZPXE+rIx+L7EFa+aLIkrWTVrc5osEa7x8n5dCccuabS2IY3y5eJ4qvHd2HsiGqt6zL9kRru5gkr0M5nvhlIBQRAEQRSbykqWifGGzNc7kfHxmuQ7378YKMkCJtW8VBVvuJnPkkZ3kMbJ/kljbhsNgJ4Cml82n2CmJ7kC0QDAXqhqcpIZ2AnVTE7sXzaO3UoW+1d9J/LCy/u1OAZfh1/u52NXHIOvwy8njaTRCxo1AMEhoP0PQM0+SSPe0HL2M6a2Km2bS3sJgiAIYvoJltqAosDHHkxY7qZtBjEwEpfLYg1+fHE8VeDk1kZ+HNJoD2m0H4M0KjSmgaZXgOAocORCwAhxHfGNZAO7QVZXNcPKp1+xf9VsM197CSW+2q/zsNG3x24eNpJG5/ayOqSxcBqDw+bf/7u7gNHZXEd8I9nAbvCDn2HQMYiY9jS5JIIgCMIzlP8vy/ggRxUHiBfMMi8mlIufgdx4QKxjF5jxMY/Yp+wls4UfgzSSRtI4ScE0MiC2A2hfAwTHhAF4w0QDxAGZ5LvMKJmIQiCbsNjZS7jGl/u14iWzhR+DNJJG0jhJITUGxoD2tUDVEWEA3jDRAHFAP/oZBg1jaNW/jxAOkRsiCIIgPEPZ/rKMsQlvO560BifSysiNG5zaOPXhtkxVns+FOTf2kkZ3kEbSqNKIfYDRDcTbJEbxMybZ58x32WCq8qkId8Kuz0m7GUtgOGlgMGWtkfmePb9WOORnXPZHGp3tdFOmKieN8rp+1IgBIPpnYOhiwAgKRpWXn+HrhrTdiOovwgCDkZgoIT8DYHI9DA4OltgSgiCI8iBzPnXjZzRWpt7orbfewoIFC0ptBkEQRNlx4MABzJo1q9RmlBzyMwRBENMD+RmTgwcPYvbs2aU2gyAIouxw42fK9pdlTU1NAID9+/ejvr6+xNY4Mzg4iNmzZ+PAgQOIxWKlNscVfrPZb/YCZHMx8Ju9QOlsZoxhaGgInZ2dRRvTy/jNzwD+29/9Zi/gP5v9Zi/gP5v9Zi9AfsYrdHZ2Ytu2bVi0aJFv9h/a36cfv9kL+M9mv9kL+M9mP/iZsk2W6bp5O7b6+npf7CwZYrGYr+wF/Gez3+wFyOZi4Dd7gdLY7JekUDHwq58B/Le/+81ewH82+81ewH82+81egPxMqdF1HTNnzgTgv/3Hb/YC/rPZb/YC/rPZb/YC/rPZy36m/G/wTxAEQRAEQRAEQRAEQRAuoWQZQRAEQRAEQRAEQRAEQUxQtsmySCSCr371q4hEIqU2xRV+sxfwn81+sxcgm4uB3+wF/GlzOeLH7eA3m/1mL+A/m/1mL+A/m/1mL+BPm8sVv20Lv9kL+M9mv9kL+M9mv9kL+M9mP9hbtk/DJAiCIAiCIAiCIAiCIIh8KdtflhEEQRAEQRAEQRAEQRBEvlCyjCAIgiAIgiAIgiAIgiAmoGQZQRAEQRAEQRAEQRAEQUxAyTKCIAiCIAiCIAiCIAiCmICSZQRBEARBEARBEARBEAQxQVkmy37wgx9g3rx5qKqqwrJly/DSSy+VxI577rkH73rXu1BXV4fW1lZce+212Llzp6XOe9/7XmiaZnl99rOftdTZv38/3v/+96O6uhqtra247bbbkEqlpsXmf/zHf8yx57TTTsuWj4+P46abbkJzczNqa2tx3XXXoaenp2T2zps3L8deTdNw0003AfDG+n3uuefwgQ98AJ2dndA0DU888YSlnDGGu+++Gx0dHYhGo+jq6sKuXbssdfr6+rBy5UrEYjE0NDTghhtuwPDwsKXO66+/josuughVVVWYPXs27rvvvmmxOZlM4o477sDixYtRU1ODzs5OfPKTn8Q777xj6UO2be69995psdlpHX/qU5/KseWKK66w1PHSOgYg3a81TcO3v/3tbJ1irmMiF/I1U8Nvfgbwvq8hP0N+Zio2k5/xPuRnpo7ffI3X/QzgP1/jNz/jZDPgPV9T9n6GlRk///nPWTgcZg8//DDbunUru/HGG1lDQwPr6ekpui2XX345e+SRR9iWLVvY5s2b2VVXXcXmzJnDhoeHs3UuueQSduONN7LDhw9nXwMDA9nyVCrFzjzzTNbV1cVeffVV9tRTT7GWlhZ25513TovNX/3qV9kZZ5xhsefIkSPZ8s9+9rNs9uzZbO3atWzjxo3s/PPPZxdccEHJ7O3t7bXYumbNGgaAPfPMM4wxb6zfp556in3lK19hv/rVrxgA9vjjj1vK7733XlZfX8+eeOIJ9tprr7Grr76azZ8/n42NjWXrXHHFFezss89mf/7zn9nzzz/PTj75ZPbRj340Wz4wMMDa2trYypUr2ZYtW9jPfvYzFo1G2Q9/+MOC29zf38+6urrYL37xC7Zjxw62fv169u53v5stWbLE0sfcuXPZ1772Ncu65/f9QtrstI6vv/56dsUVV1hs6evrs9Tx0jpmjFlsPXz4MHv44YeZpmlsz5492TrFXMeEFfI1U8dvfoYx7/sa8jPkZ6ZiM/kZb0N+5sTwm6/xup9hzH++xm9+xslmxrzna8rdz5Rdsuzd7343u+mmm7Lf0+k06+zsZPfcc08JrTLp7e1lANgf//jH7LJLLrmEfeELX1C2eeqpp5iu66y7uzu77MEHH2SxWIzF4/GC2/jVr36VnX322dKy/v5+FgqF2H/+539ml23fvp0BYOvXry+JvSJf+MIX2IIFC5hhGIwx761f8SRiGAZrb29n3/72t7PL+vv7WSQSYT/72c8YY4xt27aNAWAvv/xyts7vfvc7pmkaO3ToEGOMsX/7t39jjY2NFpvvuOMOduqppxbcZhkvvfQSA8D27duXXTZ37lz2L//yL8o202WzyrFcc801yjZ+WMfXXHMN+4u/+AvLslKtY4J8zYngdz/DmLd9DfmZScjP2NssQn7GW5CfOTH87mu87GcY85+v8ZufYcx/vqYc/UxZ/Q0zkUhg06ZN6Orqyi7TdR1dXV1Yv359CS0zGRgYAAA0NTVZlj/22GNoaWnBmWeeiTvvvBOjo6PZsvXr12Px4sVoa2vLLrv88ssxODiIrVu3Toudu3btQmdnJ0466SSsXLkS+/fvBwBs2rQJyWTSsn5PO+00zJkzJ7t+S2FvhkQigX//93/HZz7zGWiall3utfXLs3fvXnR3d1vWaX19PZYtW2ZZpw0NDVi6dGm2TldXF3Rdx4YNG7J1Lr74YoTDYYuOnTt34vjx49OuY2BgAJqmoaGhwbL83nvvRXNzM84991x8+9vftvwUvNg2P/vss2htbcWpp56Kz33uczh27JjFFi+v456eHvz2t7/FDTfckFPmpXVcKZCvOXH86mcA//ka8jPkZ9xAfsZbkJ8pDH71NX7zM0B5+Bo/+BnAv77Gj34mOK29F5mjR48inU5bThIA0NbWhh07dpTIKhPDMHDLLbfgPe95D84888zs8o997GOYO3cuOjs78frrr+OOO+7Azp078atf/QoA0N3dLdWTKSs0y5Ytw09+8hOceuqpOHz4MP7pn/4JF110EbZs2YLu7m6Ew+GcE0hbW1vWlmLby/PEE0+gv78fn/rUp7LLvLZ+RTJjyGzg12lra6ulPBgMoqmpyVJn/vz5OX1kyhobG6fFfsC858Mdd9yBj370o4jFYtnlf/u3f4vzzjsPTU1NePHFF3HnnXfi8OHD+O53v1t0m6+44gp88IMfxPz587Fnzx58+ctfxpVXXon169cjEAh4fh0/+uijqKurwwc/+EHLci+t40qCfM2J4Wc/A/jP15CfIT/jBvIz3oL8zInjZ1/jNz/Dj+FXX+MHPwP429f40c+UVbLMy9x0003YsmULXnjhBcvyVatWZT8vXrwYHR0duPTSS7Fnzx4sWLCg2GbiyiuvzH4+66yzsGzZMsydOxe//OUvEY1Gi25PPvz4xz/GlVdeic7Ozuwyr63fciOZTOLDH/4wGGN48MEHLWW33npr9vNZZ52FcDiMv/7rv8Y999yDSCRSVDtXrFiR/bx48WKcddZZWLBgAZ599llceumlRbVlKjz88MNYuXIlqqqqLMu9tI4Jb+AHX+NnPwOQryk25GeKA/kZwi1+8DOAv30N+Zni4hc/A/jb1/jRz5TV3zBbWloQCARynmTS09OD9vb2ElkF3HzzzXjyySfxzDPPYNasWbZ1ly1bBgDYvXs3AKC9vV2qJ1M23TQ0NOCUU07B7t270d7ejkQigf7+/hx7MraUyt59+/bh6aefxl/91V/Z1vPa+s2MYbfPtre3o7e311KeSqXQ19dX0vWecSz79u3DmjVrLFdhZCxbtgypVApvv/12yWzOcNJJJ6GlpcWyH3hxHQPA888/j507dzru24C31nE5Q76msPjFzwD+9DXkZ8jPOEF+xnuQnyk8fvE1fvQz/Bh+8zV+9jOAf3yNX/1MWSXLwuEwlixZgrVr12aXGYaBtWvXYvny5UW3hzGGm2++GY8//jjWrVuX8/NBGZs3bwYAdHR0AACWL1+ON954w7LTZw7kRYsWTYvdPMPDw9izZw86OjqwZMkShEIhy/rduXMn9u/fn12/pbL3kUceQWtrK97//vfb1vPa+p0/fz7a29st63RwcBAbNmywrNP+/n5s2rQpW2fdunUwDCPrKJcvX47nnnsOyWTSouPUU0+dlp+mZhzLrl278PTTT6O5udmxzebNm6HrevanwcW2mefgwYM4duyYZT/w2jrO8OMf/xhLlizB2Wef7VjXS+u4nCFfU1j84mcAf/oa8jPkZ5wgP+M9yM8UHr/4Gj/6GcCfvsbvfgbwj6/xrZ+Z9kcIFJmf//znLBKJsJ/85Cds27ZtbNWqVayhocHyZJBi8bnPfY7V19ezZ5991vIo1NHRUcYYY7t372Zf+9rX2MaNG9nevXvZr3/9a3bSSSexiy++ONtH5jHAl112Gdu8eTNbvXo1mzFjxrQ9tviLX/wie/bZZ9nevXvZn/70J9bV1cVaWlpYb28vY8x8zPKcOXPYunXr2MaNG9ny5cvZ8uXLS2YvY+bTgebMmcPuuOMOy3KvrN+hoSH26quvsldffZUBYN/97nfZq6++mn3Syr333ssaGhrYr3/9a/b666+za665RvqY5XPPPZdt2LCBvfDCC2zhwoWWRwD39/eztrY29olPfIJt2bKF/fznP2fV1dVTfqSunc2JRIJdffXVbNasWWzz5s2WfTvzlJIXX3yR/cu//AvbvHkz27NnD/v3f/93NmPGDPbJT35yWmy2s3doaIj9/d//PVu/fj3bu3cve/rpp9l5553HFi5cyMbHxz25jjMMDAyw6upq9uCDD+a0L/Y6JqyQr5k6fvQzjHnb15CfIT+Tr80ZyM94F/IzJ4YffY2X/Qxj/vM1fvMzTjZ70deUu58pu2QZY4w98MADbM6cOSwcDrN3v/vd7M9//nNJ7AAgfT3yyCOMMcb279/PLr74YtbU1MQikQg7+eST2W233cYGBgYs/bz99tvsyiuvZNFolLW0tLAvfvGLLJlMTovNH/nIR1hHRwcLh8Ns5syZ7CMf+QjbvXt3tnxsbIx9/vOfZ42Njay6upr9z//5P9nhw4dLZi9jjP3+979nANjOnTsty72yfp955hnpfnD99dczxsxHLd91112sra2NRSIRdumll+ZoOXbsGPvoRz/KamtrWSwWY5/+9KfZ0NCQpc5rr73GLrzwQhaJRNjMmTPZvffeOy027927V7lvP/PMM4wxxjZt2sSWLVvG6uvrWVVVFTv99NPZN7/5TcuJvJA229k7OjrKLrvsMjZjxgwWCoXY3Llz2Y033pgTbHppHWf44Q9/yKLRKOvv789pX+x1TORCvmZq+NHPMOZtX0N+hvxMvjZnID/jbcjPTB0/+hov+xnG/Odr/OZnnGz2oq8pdz+jMcaY5AdnBEEQBEEQBEEQBEEQBFFxlNU9ywiCIAiCIAiCIAiCIAjiRKBkGUEQBEEQBEEQBEEQBEFMQMkygiAIgiAIgiAIgiAIgpiAkmUEQRAEQRAEQRAEQRAEMQElywiCIAiCIAiCIAiCIAhiAkqWEQRBEARBEARBEARBEMQElCwjCIIgCIIgCIIgCIIgiAkoWUYQBEEQBEEQBEEQBEEQE1CyjCAIgiAIgiAIgiAIgiAmoGQZQRAEQRAEQRAEQRAEQUxAyTKCIAiCIAiCIAiCIAiCmOD/AWRWYezqlMvgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjyklEQVR4nOydd3gcxfnHP3tdXZYsuXcDxhhsYzCYZlMNGAihGwKmhGrTSYEk9OAfkIQaTEuABBOICSWB0FvoYHrHBndbkoua1a7N74+9O+3Nze6dbJXTaT7Pc8/d7U55vzu7+74zuztrCCEEGo1Go9FoNBqNRqPRaDQajQZXTxug0Wg0Go1Go9FoNBqNRqPRZAt6sEyj0Wg0Go1Go9FoNBqNRqOJoQfLNBqNRqPRaDQajUaj0Wg0mhh6sEyj0Wg0Go1Go9FoNBqNRqOJoQfLNBqNRqPRaDQajUaj0Wg0mhh6sEyj0Wg0Go1Go9FoNBqNRqOJoQfLNBqNRqPRaDQajUaj0Wg0mhh6sEyj0Wg0Go1Go9FoNBqNRqOJoQfLNBqNRqPRaDQajUaj0Wg0mhh6sEzTJ7j66qsxDKOnzeg2ZsyYwYQJEzq1zJEjR3Lqqad2apkajUbT0xiGwdVXX93TZqTl1FNPZeTIkUnLOtv2GTNmMGPGjE4rLxsZOXIkhx12WKeV9/rrr2MYBo8//njatJm04YMPPohhGCxfvjzjul9//fWOGa3RaDRZTm/xzV3NoYceyplnnpn439vP+3J/8vnnn6ewsJD169f3nFEO6MEyTa9l2bJlzJs3j2233Zb8/Hzy8/MZP348c+fO5fPPP+9p8zqMYRjMmzevp83QaDS9lLvuugvDMNhtt9162pScY/ny5RiGkfi43W6GDx/OT3/6Uz799NOeNq9DfP3111x99dUZDcZ0F/HgP/7xer2MHj2aU045hR9//LGnzetx7rrrLh588MGeNkPTB4gP1i5evLinTely/vKXv7D99tsTCATYZpttuOOOO7a6zP/85z9Mnz6dyspK8vPzGT16NMcddxzPP/98J1icfTzyyCPceuutPVa/7Jvlz//93//1mG2dwdtvv82LL77Ir371qy6tZ+TIkUnbraCggKlTp/K3v/2tS+sFOPjggxk7dizz58/v8rq2BE9PG6DRbAnPPPMMxx9/PB6Ph5NOOomJEyficrn49ttveeKJJ1iwYAHLli1jxIgRAPz2t7/l17/+dQ9brdFoNF3HwoULGTlyJB988AFLly5l7NixPW1SzjF79mwOPfRQIpEI33zzDQsWLOC5557jvffeY9KkSd1uT0tLCx5Px0K5r7/+mmuuuYYZM2ak3OX04osvdqJ1HeeCCy5g1113JRQK8fHHH3Pvvffy7LPP8sUXXzB48OAeta0zuO+++4hGo45pTj75ZE444QT8fn9i2V133UX//v1T7u7eZ599aGlpwefzdYW5Gk3Ocs8993DOOedw9NFHc8kll/Dmm29ywQUX0NzcvMUDE3/4wx/4xS9+wfTp07n88svJz89n6dKlvPzyyzz66KMcfPDBnayi53nkkUf48ssvueiii3rUjrhvlpk8eXIPWNN53Hzzzey///5J8VxXnfcnTZrEpZdeCsC6deu4//77mTNnDm1tbUl3tnUFZ599NpdddhnXXHMNRUVFXVpXR9GDZZpexw8//MAJJ5zAiBEjeOWVVxg0aFDS+htvvJG77roLl6v9xkmPx9PhDoVGo9H0FpYtW8Y777zDE088wdlnn83ChQu56qqr0uYLh8NEo1Hd2c6QnXfemZ/97GeJ/3vuuSdHHHEECxYs4J577lHmaWpqoqCgoEvsCQQCnVpeT+8He++9N8cccwwAp512Gttuuy0XXHABDz30EJdffrkyT1du387G6/WmTeN2u3G73RmV53K5On0f0GhynZaWFn7zm98wa9asxOPTZ555JtFolOuuu46zzjqLfv36dajMcDjMddddx4EHHqi86FBTU9MptmvUyL45E4QQtLa2kpeXl7KutbUVn8+X1JfsKFvrm2pqanj22We5++67k5Z31Xl/yJAhSdvw1FNPZfTo0dxyyy1dPlh29NFHc/7557No0SJOP/30Lq2ro+jHMDW9jptuuommpiYeeOCBlIEyMAfGLrjgAoYNG5ZYJs9ZNmHCBPbdd9+UvNFolCFDhiSC9fiyW2+9lR122IFAIMCAAQM4++yzqa2tTcobnwflrbfeYurUqQQCAUaPHt2pt7A+/fTTzJo1i8GDB+P3+xkzZgzXXXcdkUhEmf6jjz5ijz32IC8vj1GjRqWccAHa2tq46qqrGDt2LH6/n2HDhvHLX/6StrY2R1tCoRDXXHMN22yzDYFAgPLycvbaay9eeumlTtGq0WgyZ+HChfTr149Zs2ZxzDHHsHDhwpQ08ccV/vCHP3DrrbcyZswY/H4/X3/9NWA+CrfLLrsQCAQYM2YM99xzj3K+x/gj44sWLWL8+PHk5eUxbdo0vvjiC8C8Yj927FgCgQAzZsxIedzvzTff5Nhjj2X48OGJc87FF19MS0tLIk1NTQ0VFRXMmDEDIURi+dKlSykoKOD4449PLMv0HNbW1sbFF19MRUUFRUVFHHHEEaxevXrLNniM/fbbDzAHK6H9EaY33niD8847j8rKSoYOHZpI/9xzz7H33ntTUFBAUVERs2bN4quvvkop96mnnmLChAkEAgEmTJjAk08+qaxfNafLmjVrOOOMMxJ+YtSoUZx77rkEg0EefPBBjj32WAD23XffxCMX8blPVHOW1dTUcMYZZzBgwAACgQATJ07koYceSkpj3bfuvffexL6166678uGHH2a8PWXk7RvfH7/++mtOPPFE+vXrx1577QW0d1bjdY8cOZIrrrjC1pe9+OKLTJo0iUAgwPjx43niiSeS1m/atInLLruMHXfckcLCQoqLiznkkEP47LPPlOVFIhGuuOIKBg4cSEFBAUcccQSrVq1KSqOas0xGnrNs5MiRfPXVV7zxxhuJ9oq3kd3cNe+//z4HH3wwJSUl5OfnM336dN5+++2kNI2NjVx00UWMHDkSv99PZWUlBx54IB9//LGjfZq+x6mnnkphYSErV67ksMMOo7CwkCFDhvDnP/8ZgC+++IL99tuPgoICRowYwSOPPJKUvyPH0ooVKzjiiCMoKCigsrKSiy++mBdeeGGL93MVr732Ghs3buS8885LWj537lyampp49tlnE8uam5v59ttv2bBhg2OZGzZsoKGhgT333FO5vrKyMvHbbl5Cu+P5z3/+M6NHjyYvL4+pU6fy5ptvKs/Vnb3t0p0jZsyYwbPPPsuKFSsS5ybr+a0nfbOKeD/thRdeYJdddiEvL4977rknsd0fffRRfvvb3zJkyBDy8/NpaGgAYNGiRUyZMoW8vDz69+/Pz372M9asWZNUdvwY+eGHHzj00EMpKiripJNOAmDJkiUcffTRDBw4kEAgwNChQznhhBOor693tPfZZ58lHA5zwAEHJC1X7Sfxuaq//vpr9t13X/Lz8xkyZAg33XTTFm+viooKxo0bxw8//JC0PNN+sRCC66+/nqFDh5Kfn8++++6rjHfAPD522mknnn766S22t6vQt9poeh3PPPMMY8eO3ap5eY4//niuvvpqqqqqGDhwYGL5W2+9xdq1aznhhBMSy84++2wefPBBTjvtNC644AKWLVvGnXfeySeffMLbb7+ddKV46dKlHHPMMZxxxhnMmTOHv/71r5x66qlMmTKFHXbYYYvtjfPggw9SWFjIJZdcQmFhIa+++ipXXnklDQ0N3HzzzUlpa2trOfTQQznuuOOYPXs2//znPzn33HPx+XyJUftoNMoRRxzBW2+9xVlnncX222/PF198wS233ML333/PU089ZWvL1Vdfzfz58/n5z3/O1KlTaWhoYPHixXz88ccceOCBW61Vo9FkzsKFCznqqKPw+XzMnj2bBQsW8OGHH7LrrrumpH3ggQdobW3lrLPOwu/3U1ZWxieffMLBBx/MoEGDuOaaa4hEIlx77bVUVFQo63vzzTf597//zdy5cwGYP38+hx12GL/85S+56667OO+886itreWmm27i9NNP59VXX03kXbRoEc3NzZx77rmUl5fzwQcfcMcdd7B69WoWLVoEmIHTggULOPbYY7njjju44IILiEajnHrqqRQVFXHXXXcBHTuH/fznP+fhhx/mxBNPZI899uDVV19l1qxZW7Xd40FkeXl50vLzzjuPiooKrrzySpqamgD4+9//zpw5c5g5cyY33ngjzc3NLFiwgL322otPPvkk0cl48cUXOfrooxk/fjzz589n48aNnHbaaUmDbnasXbuWqVOnUldXx1lnncW4ceNYs2YNjz/+OM3Nzeyzzz5ccMEF3H777VxxxRVsv/32AIlvmZaWFmbMmMHSpUuZN28eo0aNYtGiRZx66qnU1dVx4YUXJqV/5JFHaGxs5Oyzz8YwDG666SaOOuoofvzxx4zuqpKx277HHnss22yzDTfccENiMPXnP/85Dz30EMcccwyXXnop77//PvPnz+ebb75JGWxcsmQJxx9/POeccw5z5szhgQce4Nhjj+X5559P+K8ff/yRp556imOPPZZRo0ZRXV3NPffcw/Tp0/n6669THgv9/e9/j2EY/OpXv6KmpoZbb72VAw44gE8//VR550Km3HrrrZx//vkUFhbym9/8BoABAwbYpn/11Vc55JBDmDJlCldddRUul4sHHniA/fbbjzfffJOpU6cCcM455/D4448zb948xo8fz8aNG3nrrbf45ptv2HnnnbfYXk1uEolEOOSQQ9hnn3246aabWLhwIfPmzaOgoIDf/OY3nHTSSRx11FHcfffdnHLKKUybNo1Ro0YBmR9LTU1N7Lfffqxbt44LL7yQgQMH8sgjj/Daa6+l2JPpfq7ik08+AWCXXXZJWj5lyhRcLheffPJJ4g6bDz74gH333ZerrrrKcbL5yspK8vLy+M9//sP5559PWVlZh7avHQsWLGDevHnsvffeXHzxxSxfvpwjjzySfv36JfmErth26c4Rv/nNb6ivr2f16tXccsstABQWFgLd75ubm5uVA5qlpaVJTxZ99913zJ49m7PPPpszzzyT7bbbLrHuuuuuw+fzcdlll9HW1obP50v0/3bddVfmz59PdXU1t912G2+//TaffPIJpaWlifzhcJiZM2ey11578Yc//IH8/HyCwSAzZ86kra2N888/n4EDB7JmzRqeeeYZ6urqKCkpsdX0zjvvUF5enphSKB21tbUcfPDBHHXUURx33HE8/vjj/OpXv2LHHXfkkEMOyagMK+FwmNWrV6fcZZlpv/jKK6/k+uuv59BDD+XQQw/l448/5qCDDiIYDCrrmzJlimO/s8cQGk0vor6+XgDiyCOPTFlXW1sr1q9fn/g0Nzcn1l111VXCurt/9913AhB33HFHUhnnnXeeKCwsTOR98803BSAWLlyYlO75559PWT5ixAgBiP/973+JZTU1NcLv94tLL700rTZAzJ071zGNVVOcs88+W+Tn54vW1tbEsunTpwtA/PGPf0wsa2trE5MmTRKVlZUiGAwKIYT4+9//Llwul3jzzTeTyrz77rsFIN5+++0kfXPmzEn8nzhxopg1a1ZaXRqNpmtZvHixAMRLL70khBAiGo2KoUOHigsvvDAp3bJlywQgiouLRU1NTdK6ww8/XOTn54s1a9Ykli1ZskR4PB4hhwqA8Pv9YtmyZYll99xzjwDEwIEDRUNDQ2L55ZdfLoCktKrz2Pz584VhGGLFihVJy2fPni3y8/PF999/L26++WYBiKeeeiqxPtNz2KeffioAcd555yWlO/HEEwUgrrrqqhSbrMS33TXXXCPWr18vqqqqxOuvvy4mT54sAPGvf/1LCCHEAw88IACx1157iXA4nMjf2NgoSktLxZlnnplUblVVlSgpKUlaPmnSJDFo0CBRV1eXWPbiiy8KQIwYMSIpv2z7KaecIlwul/jwww9TNESjUSGEEIsWLRKAeO2111LSTJ8+XUyfPj3x/9ZbbxWAePjhhxPLgsGgmDZtmigsLEy0dXz7lJeXi02bNiXSPv300wIQ//nPf1LqsvLaa68JQPz1r38V69evF2vXrhXPPvusGDlypDAMI6En7stnz56dlD/evj//+c+Tll922WUCEK+++mpiWdxXx9tMCDO2GDRokJg8eXJiWWtrq4hEIknlLVu2TPj9fnHttdem2D5kyJCkff+f//ynAMRtt92WWDZnzpy0bRjfh6zHzA477JDULnLd8baMRqNim222ETNnzky0txDmMTdq1Chx4IEHJpaVlJSkjTk0fY/4/mc9h8yZM0cA4oYbbkgsq62tFXl5ecIwDPHoo48mln/77bcp+3Smx9If//jHlHN8S0uLGDdu3Bbv5yrmzp0r3G63cl1FRYU44YQTEv/jx1g6HyGEEFdeeaUAREFBgTjkkEPE73//e/HRRx+lpFMd49a64jrb2tpEeXm52HXXXUUoFEqke/DBBwWQdE7oim2XyTli1qxZKec0IbrfN9t93n333UTa+Ln/+eefTyojvt1Hjx6dFJ8Eg0FRWVkpJkyYIFpaWhLLn3nmGQGIK6+8MrEsfoz8+te/Tir7k08+EYBYtGiRow4Ve+21l5gyZUrKcnk/EaK93/e3v/0tsaytrU0MHDhQHH300WnrGjFihDjooIMSfegvvvhCnHzyySl900z7xTU1NcLn84lZs2Yl7WdXXHGFAJL6k3FuuOEGAYjq6uq09nYn+jFMTa8ifkts/MqFlRkzZlBRUZH4xG8PV7HtttsyadIkHnvsscSySCTC448/zuGHH564Crxo0SJKSko48MAD2bBhQ+IzZcoUCgsLU67YjB8/nr333jvxv6Kigu22267T3uZlvTrd2NjIhg0b2HvvvRO3iVvxeDycffbZif8+n4+zzz6bmpoaPvroo4S+7bffnnHjxiXpiz/6oroiFae0tJSvvvqKJUuWdIo2jUazZSxcuJABAwYkHi03DIPjjz+eRx99VPmI9tFHH510x1gkEuHll1/myCOPTLpbZuzYsbZXI/fff/+kxy3id/oeffTRSZOzxpdbz4HW81hTUxMbNmxgjz32QAiRuOIf584776SkpIRjjjmG3/3ud5x88sn85Cc/SazP9Bz23//+FzAnkLfS0UmJr7rqKioqKhg4cCAzZszghx9+4MYbb+Soo45KSnfmmWcmzTv10ksvUVdXx+zZs5PsdLvd7Lbbbgk7161bx6effsqcOXOSrjgfeOCBjB8/3tG2aDTKU089xeGHH55yxwSQ8jhtJvz3v/9l4MCBzJ49O7HM6/VywQUXsHnzZt54442k9Mcff3zSVei4P8zUB55++ulUVFQwePBgZs2aRVNTEw899FCKnnPOOSfFToBLLrkkaXl8smLrY1UAgwcP5qc//Wnif3FxMaeccgqffPIJVVVVAPj9/sR8NZFIhI0bN1JYWMh2222nfFTxlFNOSdr3jznmGAYNGpSwrTv49NNPWbJkCSeeeCIbN25M7GdNTU3sv//+/O9//0u8YKC0tJT333+ftWvXdpt9mt7Nz3/+88Tv0tJStttuOwoKCjjuuOMSy7fbbjtKS0uTjvlMj6Xnn3+eIUOGcMQRRySWBQKBlPmSOrKfq3CaHD0QCCRNCRCfCsDprrI411xzDY888giTJ0/mhRde4De/+Q1Tpkxh55135ptvvkmbX2bx4sVs3LiRM888M+nuqJNOOinlbp+u2HZbc47obt981lln8dJLL6V8ZL85atQoZs6cqSxjzpw5SfHJ4sWLqamp4bzzzkuaI2zWrFmMGzcuxa8AnHvuuUn/4378hRdeoLm5uUOaNm7c2KG58woLC5PmHPP5fEydOjVj//viiy8m+tA77rgjf//73znttNOSnlzKtF/88ssvEwwGOf/885NiD6d2jWtN98hzd6Mfw9T0KuKB6ObNm1PW3XPPPTQ2NlJdXZ3RJI/HH388V1xxBWvWrGHIkCG8/vrr1NTUJM2Fs2TJEurr65PmGrAiT9g5fPjwlDT9+vVLeY57S/nqq6/47W9/y6uvvpoYOIwjP/s+ePDglIklt912W8CcX2b33XdnyZIlfPPNN7aPWjlNSHrttdfyk5/8hG233ZYJEyZw8MEHc/LJJ7PTTjttiTSNRrMFRCIRHn30Ufbdd9/EvE5gDlL98Y9/5JVXXuGggw5KyhN/NCZOTU0NLS0tyrdn2r1RUz7XxQNC61yR1uXWc+DKlSu58sor+fe//51ybpTPY2VlZdx+++0ce+yxDBgwgNtvvz1pfabnsBUrVuByuRgzZkzSeusjGJlw1llnceyxx+JyuSgtLWWHHXZIemthHHkbxy8qxDsKMsXFxQk7AbbZZpuUNHaDNHHWr19PQ0MDEyZMyExMBqxYsYJtttkmZZLj+GObcXvjyPtFPPjN1AdeeeWV7L333rjdbvr378/222+vfDmPvH3j7SvvrwMHDqS0tDTFzrFjx6YMHlr948CBA4lGo9x2223cddddLFu2LGngWX4sFFLbzDAMxo4dmzIvUVcS38/mzJljm6a+vp5+/fpx0003MWfOHIYNG8aUKVM49NBDOeWUUxg9enR3mavpRQQCgZTzbElJCUOHDk05lkpKSpKO+UyPpRUrVjBmzJiU8uTjuiP7uYq8vDzbR8HsJnzPlNmzZzN79mwaGhp4//33efDBB3nkkUc4/PDD+fLLLzs0MXv8vCXr93g8KXMfdsW225pzRHf75m222SZlbi8Vsu9wWhff/ipbxo0bx1tvvZW0zOPxpEyXMGrUKC655BL+9Kc/sXDhQvbee2+OOOIIfvaznzk+ghlHWOZsTYfqWOzXrx+ff/55Rvl32203rr/+eiKRCF9++SXXX389tbW1SQPLmfaL7WKZiooK2+MyrnVLLux1JXqwTNOrKCkpYdCgQXz55Zcp6+J3MGQamB5//PFcfvnlLFq0iIsuuoh//vOflJSUJL3aORqNUllZqZwsG0hxAnZvsOrIyc6Ouro6pk+fTnFxMddeey1jxowhEAjw8ccf86tf/Srt6+hVRKNRdtxxR/70pz8p18sdXyv77LMPP/zwA08//TQvvvgi999/P7fccgt333130tVHjUbTdbz66qusW7eORx99lEcffTRl/cKFC1MGy7amIxDH7lyX7hwYiUQ48MAD2bRpE7/61a8YN24cBQUFrFmzhlNPPVV5HnvhhRcAc8Bl9erVSXOEbM05bEvINCCXt3Fc19///vekeTLj5MrbmrfWB+64445btH3jdGaQfcMNN/C73/2O008/neuuu46ysjJcLhcXXXTRFvnb7iBu180338ykSZOUaeJ35h933HHsvffePPnkk7z44ovcfPPN3HjjjTzxxBNbNL+NJrfZ0nM+dP6x1JH9XMWgQYOIRCLU1NQkdfqDwSAbN25MmY9wSyguLubAAw/kwAMPxOv18tBDD/H+++8zffp02/OU3cu6OpPuOkd0t2/OFKf4Z2tjI+sdlFb++Mc/cuqppyb6SxdccAHz58/nvffec5yLtLy8vEM3W2yt/+3fv3/C/86cOZNx48Zx2GGHcdtttyXu2u5ov7gjxLX2799/i8voCnIjOtP0KWbNmsX999/PBx984DiBZzpGjRrF1KlTeeyxx5g3bx5PPPEERx55ZNJdAmPGjOHll19mzz337JQO5tbw+uuvs3HjRp544gn22WefxHLr3SRW1q5dm/La4u+//x4gcUVqzJgxfPbZZ+y///5b1MkoKyvjtNNO47TTTmPz5s3ss88+XH311XqwTKPpJhYuXEhlZaXysfMnnniCJ598krvvvtvx/FVZWUkgEGDp0qUp61TLtoYvvviC77//noceeohTTjklsdzuLbrPP/88999/P7/85S9ZuHAhc+bM4f33308MLmV6DhsxYgTRaJQffvgh6Srxd99910nKnIlfNa+srHQcDIpP5Kt6vD2drRUVFRQXFysvJlnpyLl+xIgRfP7550Sj0aROQPyx/0wnHu5q4u27ZMmSpJcVVFdXU1dXl2Ln0qVLEUIkbQvZPz7++OPsu+++/OUvf0nKW1dXpwzm5TYTQrB06dJOuds60zaL72fFxcUZDToOGjSI8847j/POO4+amhp23nlnfv/73+vBMk2nkumxNGLECL7++uuUY1P2Qx3dz2Xig0SLFy/m0EMPTSxfvHgx0WjUdhBpS9lll1146KGHWLduHdB+x21dXV1SOvkO2Ph5a+nSpYlpFsCceH358uVJ55au2nbpzhF256be4pudiG//7777LuWu8O+++65D/m/HHXdkxx135Le//S3vvPMOe+65J3fffTfXX3+9bZ5x48bxr3/9a8uM7wRmzZrF9OnTueGGGzj77LMpKCjIuF9sjWWsdyKuX7/edgBw2bJl9O/ff6sG3LoCPWeZptfxy1/+kvz8fE4//XSqq6tT1nfkLq7jjz+e9957j7/+9a9s2LAh6RFMMK+qRCIRrrvuupS84XA4xdF1JfErBlZ9wWAw8VY4mXA4zD333JOU9p577qGiooIpU6YApr41a9Zw3333peRvaWlJvMVNxcaNG5P+FxYWMnbs2JRXQms0mq6hpaWFJ554gsMOO4xjjjkm5TNv3jwaGxv597//7ViO2+3mgAMO4Kmnnkqam2Tp0qU899xznWqz6jwmhOC2225LSVtXV5d42+4NN9zA/fffz8cff8wNN9yQSJPpOSwe2MuPcd56661brSkTZs6cSXFxMTfccAOhUChl/fr16wGzYzJp0iQeeuihpEdSX3rpJb7++mvHOlwuF0ceeST/+c9/WLx4ccr6+DaPX0DJxH8deuihVFVVJc3vGQ6HueOOOygsLGT69Olpy+gO4h1euT3jdzXIb1Zbu3Zt0hsyGxoa+Nvf/sakSZMSd/653e6UeGLRokWsWbNGacPf/vY3GhsbE/8ff/xx1q1b1ykDTwUFBRm115QpUxgzZgx/+MMflNNVxPezSCSS8shzZWUlgwcP1j5c0+lkeizNnDmTNWvWJPms1tbWlPN7pvu5Hfvttx9lZWUsWLAgafmCBQvIz89POl/E5wRON49Sc3Mz7777rnJd3I/GB4PiA1b/+9//EmkikQj33ntvUr5ddtmF8vJy7rvvPsLhcGL5woULUwYcOnvbZXqOKCgoSEkHvcc3O7HLLrtQWVnJ3XffnaT5ueee45tvvsnojZ0NDQ1JbQfmwJnL5Up7rp02bRq1tbWdNu/1lvCrX/2KjRs3Jtox037xAQccgNfr5Y477kg69p3a9aOPPmLatGmdan9noO8s0/Q6ttlmGx555BFmz57Ndtttx0knncTEiRMRQrBs2TIeeeQRXC6X462tcY477jguu+wyLrvsMsrKylKuskyfPp2zzz6b+fPn8+mnn3LQQQfh9XpZsmQJixYt4rbbbuOYY47pNG2LFy9WXmWYMWMGe+yxB/369WPOnDlccMEFGIbB3//+d9vBwcGDB3PjjTeyfPlytt12Wx577DE+/fRT7r333sRrfU8++WT++c9/cs455/Daa6+x5557EolE+Pbbb/nnP//JCy+8oJwoGsyXGcyYMYMpU6ZQVlbG4sWLE6+Y1mg0Xc+///1vGhsbkyb0tbL77rtTUVHBwoULUy4EyFx99dW8+OKL7Lnnnpx77rlEIhHuvPNOJkyYwKefftppNo8bN44xY8Zw2WWXsWbNGoqLi/nXv/6lvNJ44YUXsnHjRl5++WXcbjcHH3wwP//5z7n++uv5yU9+wsSJEzM+h02aNInZs2dz1113UV9fzx577MErr7zS6XfO2VFcXMyCBQs4+eST2XnnnTnhhBOoqKhg5cqVPPvss+y5557ceeedAMyfP59Zs2ax1157cfrpp7Np0ybuuOMOdthhB2XnxsoNN9zAiy++yPTp0znrrLPYfvvtWbduHYsWLeKtt96itLSUSZMm4Xa7ufHGG6mvr8fv97Pffvsp5yA566yzuOeeezj11FP56KOPGDlyJI8//jhvv/02t956a9KE9j3JxIkTmTNnDvfee29iyoIPPviAhx56iCOPPDLprgww5yc744wz+PDDDxkwYAB//etfqa6u5oEHHkikOeyww7j22ms57bTT2GOPPfjiiy9YuHCh7Xw9ZWVl7LXXXpx22mlUV1dz6623Mnbs2JQJtreEKVOmsGDBAq6//nrGjh1LZWWlcv47l8vF/fffzyGHHMIOO+zAaaedxpAhQ1izZg2vvfYaxcXF/Oc//6GxsZGhQ4dyzDHHMHHiRAoLC3n55Zf58MMP+eMf/7jV9mo0VjI9ls4++2zuvPNOZs+ezYUXXsigQYNYuHBhYp6v+B1Kme7nduTl5XHdddcxd+5cjj32WGbOnMmbb77Jww8/zO9//3vKysoSaT/44AP23XdfrrrqKsdJ/pubm9ljjz3YfffdOfjggxk2bBh1dXU89dRTvPnmmxx55JFMnjwZgB122IHdd9+dyy+/nE2bNlFWVsajjz6aMqji8/m4+uqrOf/889lvv/047rjjWL58OQ8++GDK/GSdve0yPUdMmTKFxx57jEsuuYRdd92VwsJCDj/88G73zR9//DEPP/xwyvIxY8Zs8QCM1+vlxhtv5LTTTmP69OnMnj2b6upqbrvtNkaOHMnFF1+ctoxXX32VefPmceyxx7LtttsSDof5+9//jtvt5uijj3bMO2vWLDweDy+//DJnnXXWFmnYWg455BAmTJjAn/70J+bOnZtxv7iiooLLLruM+fPnc9hhh3HooYfyySef8NxzzynvzK6pqeHzzz9n7ty5PaAyDd345k2NplNZunSpOPfcc8XYsWNFIBAQeXl5Yty4ceKcc84Rn376aVLa+OvmVey5557KV85buffee8WUKVNEXl6eKCoqEjvuuKP45S9/KdauXZtIM2LECDFr1qyUvNOnT1e+8l0Gh1cfX3fddUIIId5++22x++67i7y8PDF48GDxy1/+UrzwwgvKVwjvsMMOYvHixWLatGkiEAiIESNGiDvvvDOl3mAwKG688Uaxww47CL/fL/r16yemTJkirrnmGlFfX5+kz/qq3+uvv15MnTpVlJaWJrb973//exEMBtNq1Wg0W8/hhx8uAoGAaGpqsk1z6qmnCq/XKzZs2JB4xfrNN9+sTPvKK6+IyZMnC5/PJ8aMGSPuv/9+cemll4pAIJCUDulV4kII27Ljrzi3vjb966+/FgcccIAoLCwU/fv3F2eeeab47LPPBCAeeOABIYQQTz/9tADEH//4x6TyGhoaxIgRI8TEiRMT55pMz2EtLS3iggsuEOXl5aKgoEAcfvjhYtWqVR16Pb3dtovzwAMPCEB8+OGHyvWvvfaamDlzpigpKRGBQECMGTNGnHrqqWLx4sVJ6f71r3+J7bffXvj9fjF+/HjxxBNPiDlz5ogRI0YkpVPZvmLFCnHKKaeIiooK4ff7xejRo8XcuXNFW1tbIs19990nRo8eLdxud5L/UPmr6upqcdppp4n+/fsLn88ndtxxx0Q7ZbJ9Mtm+qv1ERdyXr1+/PmVdKBQS11xzjRg1apTwer1i2LBh4vLLLxetra1J6eK++oUXXhA77bST8Pv9Yty4cSl1t7a2iksvvVQMGjRI5OXliT333FO8++67Kdsobvs//vEPcfnll4vKykqRl5cnZs2aJVasWJFUZiZtGN+Hli1bllhWVVUlZs2aJYqKigSQqD9et9X/CyHEJ598Io466ihRXl4u/H6/GDFihDjuuOPEK6+8IoQQoq2tTfziF78QEydOFEVFRaKgoEBMnDhR3HXXXQ5bX9MXUJ3D5syZIwoKClLSxmNNGTkezvRYEkKIH3/8UcyaNUvk5eWJiooKcemll4p//etfAhDvvfdeUtp0+3k67r33XrHddtslfN4tt9wiotFoUpr4MZbuHBYKhcR9990njjzySDFixAjh9/tFfn6+mDx5srj55puTzr9CCPHDDz+IAw44QPj9fjFgwABxxRVXiJdeekl5PN9+++2JMqdOnSrefvttMWXKFHHwwQd32bbL9ByxefNmceKJJ4rS0lIBJJ3futM3232s/Ra7flo6//PYY4+JyZMnC7/fL8rKysRJJ50kVq9enZTG7hj58ccfxemnny7GjBkjAoGAKCsrE/vuu694+eWXHXXFOeKII8T++++vtFfV75NR+RwVdttGCCEefPDBpPhMiMz6xZFIRFxzzTWJ437GjBniyy+/TOlPCiHEggULRH5+vmhoaEhra3djCNEJM49rNBqNRqPJOY488ki++uor5RxaGo1Go9F0NbfeeisXX3wxq1evZsiQIT1tTo8TjUapqKjgqKOOUj7maEVvu97Nm2++yYwZM/j222+Vb8nOFSZPnsyMGTO45ZZbetqUFPScZRqNRqPRaGhpaUn6v2TJEv773/8yY8aMnjFIo9FoNH0K2Q+1trZyzz33sM022/TJwZ7W1taU6Vb+9re/sWnTphTfrLdd7rH33ntz0EEHcdNNN/W0KV3G888/z5IlS7j88st72hQl+s4yjUaj0Wg0DBo0iFNPPZXRo0ezYsUKFixYQFtbG5988klOX9HUaDQaTXZwyCGHMHz4cCZNmkR9fT0PP/wwX331FQsXLuTEE0/safO6nddff52LL76YY489lvLycj7++GP+8pe/sP322/PRRx/h8/kSafW202g6Hz3Bv0aj0Wg0Gg4++GD+8Y9/UFVVhd/vZ9q0adxwww16oEyj0Wg03cLMmTO5//77WbhwIZFIhPHjx/Poo4+mfUlNrjJy5EiGDRvG7bffnngZwCmnnML//d//JQ2Ugd52Gk1XkNV3lv35z3/m5ptvpqqqiokTJ3LHHXcwderUnjZLo9FoNDmE9jUajUaj6Uq0n9FoNJreR9bOWRZ/De1VV13Fxx9/zMSJE5k5cyY1NTU9bZpGo9FocgTtazQajUbTlWg/o9FoNL2TrL2zbLfddmPXXXflzjvvBMw3fwwbNozzzz+fX//61z1snUaj0WhyAe1rNBqNRtOVaD+j0Wg0vZOsnLMsGAzy0UcfJb0VweVyccABB/Duu+8q87S1tdHW1pb4H41G2bRpE+Xl5RiG0eU2azQaTa4jhKCxsZHBgwfjcmXtjckZ01Ffo/2MRqPRdC3az2g/o9FoNF1JR/xMVg6WbdiwgUgkwoABA5KWDxgwgG+//VaZZ/78+VxzzTXdYZ5Go9H0aVatWsXQoUN72oytpqO+RvsZjUaj6R60n9FoNBpNV5KJn8nKwbIt4fLLL+eSSy5J/K+vr2f48OGMPBdcsZeF5LVCqx+MKFSuh/4bwRVNLSv+XKp8/UakWSbny6QcuUzrM7FGBnV2dJlcj9aotheH/3Z5tEatsaPL5HqyXWMoDM/+D4qKitRCcpy0fsa6AQUMWgf9N6jbvbe0+ZYsk+vRGtX24vDfLo/WqDV2dJlcT7Zr1H5G7WdWrVpFcXFxD1qm0Wg0uUFDQwPDhg3LyM9k5WBZ//79cbvdVFdXJy2vrq5m4MCByjx+vx+/35+y3OUDVyA2KGZAABAuaO0H3npzucqpx515HKkP5BiMyAEF2Ke3pnMq26lOuzTpAhetUWvUGtV55DrS2Z+ubpUtvVljrjwK0lFfk87PGFHwhiHiji0PgNej3s69rc3t0uTSfm2XRmvUGrVG7We2lM7yM8XFxXqwTKPRaDqRTPxMVk4G4PP5mDJlCq+88kpiWTQa5ZVXXmHatGkdKyzmpfvVwnbfmZ9x38HIFWbHxpIkKQCwZjcsv+MIy7ddXmt+ocijqsOufLsgw+m3NY/WqDVqjVqjqg678tNpzAU6zdfENvjA6nY/s913UFmT3Ja9vc37wn6tNWqNWmP2aMwFOrVPo9FoNJpuJSvvLAO45JJLmDNnDrvssgtTp07l1ltvpampidNOO22LystrBnckeZnVsascdiZXweQ08eDBqSxVGrugQQ5i7Oq2+y0HLk7lZ1JP/L/WqDU65dMa7fPY2Wq3LFs15gqd5WsMoHAzeMLmJ04utXlf2K+1RrWtdsu0Rq3RKY32Myad3afRaDQaTfeQtYNlxx9/POvXr+fKK6+kqqqKSZMm8fzzz6dMkJkWYTrevNZkh2wXTMTTyN+qdVI1ibJUQYud84+XZUjprEGHHIDY1a+yN47WqDWqtGiNatu0xvQac4VO8TUCDGFekMnlNu8L+7XWqDVqjWot2s9sOZ3Wp9FoNBpNt2IIIUT6ZL2PhoYGSkpKGH0h+DzmIzG+oDqokJ23inRBhCqdU1BiV3ZHAyKVvVqj1qg12turNW65xlAYnn7VnHBYz52S7GcKBGz7feo8mL29ze3s1Rq1Rq3R3l6tUfuZziLuZ/T20Gg0ms6hI+fVrJyzrFMxwBsyH4uxc9zx33YBQ6yYxH9rIGEtQw4G7PIImzxyfjlgMaQ81v/pytMatUatUWvsDI0aBQb428AQudnmfWG/1hq1Rq0xezRqNBqNRpMN5P5gGe2dGKszl3/bIQcVcnq7oMMpj3WZU91yeXaBhF0QozUml+tkr9aoNWqNmWvUpOINAdrP2KI1ao12ebRG+/L6skaNRqPRaHqarJ2zrNMQEGg1v+MOWRUkWJInOXyBfZBgTWP9lpHXqexwssXpCp0qSNIatUZVHq0xNY1su125crq+rFGjIOZncrXN+8J+rTU6l2vNozVqjXIa2Xa7cuV02s9oNBqNJpvpE3eW5bWY39ZAwc4pWx29kNLK+azBinWZ/EFabyjyWQMGOZ1sn5PdWmNyWms9WqPWqDWm2r6lGjXtuKLmmzBzvc37wn6tNarTWuvRGrVG7Wc0Go1G0xfI+TvLDBF7DJNUJ+0UVFi/VUGBnN8uALCmj6ex5jekdda65XoyCZi0xtTlWqPWqEqvNW65Rk0y3hB4g7nd5n1hv9Ya7fNYv7XGZBtVaI3J67Sf0Wg0Gk1vJOcHy1zR1LeTZYJ8lcwaVMhBgHWZikwCj3TLMrVfa0xGa1SnyaRerbHj+TIpx47eqlEDUQNEbGP1hTbXGpPRGtVpMqlXa+x4vkzKsaO3atRoNBqNpifI+ccwjSi0BqC5wOzMyFfSIHmZIL3ztl4VE9Iyp/TWPALnvHIawyFtJuu1Rvv0WqO6fK0x1Q6tUaMi4oGQD6Ku3G7zvrBfa41ao1N6rVFdvvYzGo1Go8lFcn6wDMw7y9p8sKG/2aEB5+BDvtqGtExen4mTl4OD+McOeb0cWDjlSxfkaI2pv53KsqI12tsh16E19g2NGvPOsrWDYck2sG4QhN3m8lxt876wX2uNyWVrjVqjCu1nNBqNRpPL5PxgWV4rNOebg2QRNwRjg2VWx2znpFVBhfxbDg7SBSqq8p0CFEP6trtSJ5dnZ69dXlU6rTEVrVFrtH73VY2aZNxRaCw0fc36Sgj6zeW51OZ9Yb/WGlN/q/Kq0mmNqWiN2s9oNBqNpneT+4NlsTdhuiIQaAVPOH0eOfiwXjmTf9vlkddbl8nLVeV0JHCIByR2gZEKrVFr1Bq1Rutv3VnZcoathiFrwR0Bfyv4gunz9LY27wv7tdaoRmvUGrWf0Wg0Gk1fJOcHy4RhfjDMAbP4YJkqQLAiByDWwMTpCl66slT5VVfmZKwBS6bBhtaoNWqNzmVpjent7YjGvkp9MYS85lsxyzeBW/sZpV3WsrVGrTH+W2t0tldr1Gg0Go2mZ8j5t2Gur4DCKOQ3QaAl+c2Ydo7ZGjzIy1VY06oCD9XVPLuy5OXylbl4uXIZqnxaY+/WaAD5gBcIAS1AVFFPb9ZoTZur7WhN29s1atTU9gOXHzwRyG82l+VKm/eF/Vpr1Bq1xlS0n9FoNBpNXyfnB8swoDkP2vymIy5sSlqVQBWEpHPacuCgKkcuyy6YsAs67AIPVb50QZDWaF9+tmksA2YDOwABoBVYBfwX86BtBH7AHDzrrRr7QjvmokaNgthGC7vNF8kMbyaxgXOhzfvCft0XNfqjAaZVHUn/1iEEXa00exrIL4I3Cv5Lo6c2lieaYpdT+dmmsS+0Yy5q1Gg0Go0mG8j5wbKyDeCJTeofaDW/nZx0uit31jSqddbgQVVORwKEeD1OV+s6YpucRrYt03K0xq7XOAPYh/bnpIuAfsAEzIO2BXgeiE+NVBhLW485kLYOqAEaYmmyUWNfaMe+oFEDQ9aAyIemAihuAERut3lf2K/7gsZRDTtx2jfzafRt4rvS92lzNzN1+cFM857MF5UfUlW0jm/zn2dd/lIABjWPxvAUEIrWUuuvpihUTqOvFkMIwkYwKzX2hXbsCxo1Go1Go+kJcn6wbOha8MZUdtRBq9Ja/6vWQeYBizW9NRBB8V+V35pWzqM1ptbTmzRuxLxrzDqpoAtzkCxe5mLMQTEDczDNDwwAhgITY7+jwHLgM+B7oDaWNxs09oV2zFWNmmTKN4KnnsRG1H4mNa/WmH0al5Z8wjW7/oT1eavY7K0DBN+ue4/K1tEsHvkZTd7NBFtqE3mr8pcl8hcFyxnaMoEq33pO+fwSvu73FsuKP2N93io2+ddljca+0I65qlGj0Wg0mp4m5wfLrNg5YtmRx5cZqPNY11kdvBwEOAU4qv/W/HKQYRdIpCvfaoucRmvMXo3vAMOAfTHnLPMC3wILgAIgAqymfeAr/nTxCuCDWHkFwAhgEnAs5vxnXwGvAEsA64thdTum/tcadeelIxig7gXG6M1t3hf2676oMWKEWFb8eVL6Nwc9HkvrgjAIb9RSpkjU0eDbwJe+lwGDh7a7nEHNYzlk5VmUtg3gh+JPeHfg0/xY/ClRI9KjGvtCO+aiRo1Go9FosoE+MVgmO2PZ8cuO2s55x5cL7AMOuR67/Kr11mVy+dY6VfZpjbmlMQw8AjyHOVBWCqwBNgPrFellorG0X2IOkD2JOf/ZwcCvMO8yewb4OlaXbketsaMaNcn0hTbXGvuORmF5nYyzRsGGwFo2BNbyTb93KGsdzEGrTuW0b+dTk7eCp0fdzqrCb4gY4azT6JReZWNvbEen9Cobs02jRqPRaDQ9SZ8YLEvnuAWpjtyK1bln4szlNKrgI11ZdoGKXR6tMfc0CmBT7Hc1qYFoRzQ2Ax8Cn2LOe3Y08IvY/0cxB+Lk/FabdDva29tXNWqS6QttrjVqjbKN1vURI8z6vJUs3PZaSoIVzFgzm4s/+wtflr3JE6P/yMbA2l6v0Y5cakc7tJ/RaDQaTV/DlT5JbqNyzkKRRki/5TR2V/OE4rccTMhlOdljkD69jNaYWm5f1RgCPgF+DzwMjAOuAvYD3Ipye6NGlR2q5VqjPVurUZNMX2hzrTG13L6ssc63nn+PuoMbphxHRcswrvhoEVNrZuEW7ddoe7vGvtCO2axRo9FoNJqupk8NlgnpO458VUyVT04jBwOq4EBIadPVI9sol23NaxdUaI32dWuN7bQALwDzMd+aeQZwChDIsB7ZxmzT2BfaMVs0apLpC22uNdrXrTVa6xVU5y3nloln8HHFi5z75R0cuexCfFF/RvXINmajRrnsXGxHuWztZzQajUbTV+hTg2WyYxckO+50+eJ57NbF/2dSZiZX1OSy5TwqtEZ7tMZUfgT+hHm32UHA+UBxGnt7k8a+0I49rVGTTF9oc63RHq0xlWZPI49ucwMPjPs1+63+GScu+R2+aJ6jvb1JY19ox57WqNFoNBpNT9AnBstUV93snHP8ipldHjvnL18tM8gsuJCvsFm/rXntbJeXaY3ty7XG9BrBnBftz8C7wC7AubTfYaayrbdp7Avt2BMaNcn0hTbXGrXGLdUYMUL8b/A/uWnyz9h5/UGc9P2VeITP1rbeqLEvtKP2MxqNRqPpS/SJwTLZWcd/G5ZlTo7drhxVEGFFKJbb1SOvl8uUf8tojc51a43OGpuB+zHfnjkZmE37HGa5orEvtGN3atQk0xfaXGt0rltrTK9xRdFX/G273zGt+kj2W3MyRixVLmnsC+2o/YxGo9Fo+gJ9YrAsTiZXwuQ0TulVQYS8PpNl1roNS50qe5xsxWZZunxao9ZoYA6Y3Q2sAw4A9k5Td2/UmMkya91aY2p6jTO52OZ9Yb/WGjPL1xkaP654iSdG/YlCz7YMah3nWHdv1ZhumbVurTE1vUaj0Wg02UCfGSyLO2t5WdwpG9IHMnPYwuZblcYJp6t8KnucrvbJy7TG9GiNJhuAR2LrjgMGKNL0do19oR27S6Mmmb7Q5lqj1uhEJhqjRHl16MMUNBkESyrwiNQH/3u7xt7SjsLhg+Jbricd2s9oNBqNpjfT6YNl8+fPZ9ddd6WoqIjKykqOPPJIvvvuu6Q0ra2tzJ07l/LycgoLCzn66KOprq5OSrNy5UpmzZpFfn4+lZWV/OIXvyAcDnfYnpAHhGE6X+vVLWsgYUV22vFldlfC5HJVTj6+Tq5DLtcuCFLllcuWbdAak/OrbFHV0dc1AnwEfAiUA0diniRySWNvaMeoCzaVQfWA5E9NJTSUQH1J6rf1o1qm+qTLK69vkN/+0ENkm58JerWf0RrVtqjq0Boh6GrhpSH3EvZ6qO/nRRi5pzHb2zHqgrp+sGJk8mflCNhU3nN+pr5EsUF7gGzzMxqNRqPpfjydXeAbb7zB3Llz2XXXXQmHw1xxxRUcdNBBfP311xQUFABw8cUX8+yzz7Jo0SJKSkqYN28eRx11FG+//TYAkUiEWbNmMXDgQN555x3WrVvHKaecgtfr5YYbbuiQPRv6w4BG8LU5X83Csk4VBDkFNYa0TFWmnMdal2xTugBMhZxHa9QarXREYxR4EpgITAP+C6witzTKeax1yTZ1q0YDWvKgaqA5MCUUhtjV2R1E2nqwcgvZ5meWjYJxK8Ed1vu1Kq3WqDWqyqzxL2NU3Ta8M7GRbZrAG8otjXIea12yTd2tMeg3/UxdqTloJhu6qV/P+RrtZzQajUaTLRhCCJVf7TTWr19PZWUlb7zxBvvssw/19fVUVFTwyCOPcMwxxwDw7bffsv322/Puu++y++6789xzz3HYYYexdu1aBgwwHwS7++67+dWvfsX69evx+VLfoNTW1kZbW7uHbWhoYNiwYRxwBBSFwRO2D0TSoQpsrP/jy+zKtm5gVaBkl1+VzslGp2Ark/zWurRG+/zxPLms0Q1cgDlY9iTwaJr8vVFjPE9ntaPTiTSdTgFE3ebgfk0lhOW3K8gVdKRX5FSOykiHBoq2wo+3QX19PcXFWXKbGT3vZ3Y4yxwsc0Vzb7+W0+bisSun1RrT57fWtTUaXZ4iPt++iUHropRvSD9QJdfjZGO2aOx0P+OwUrXKaotwQW0/WDcQQl4bo5CWaz8D9LyfybbtodFoNL2VhoYGSkpKMjqvdvmcZfX19QCUlZUB8NFHHxEKhTjggAMSacaNG8fw4cN59913AXj33XfZcccdE44FYObMmTQ0NPDVV18p65k/fz4lJSWJz7BhwxLrXFHzuyMBkypesP430qRRpbfGBaoy7fLJ9jihNSajNW6Zxijwv9j3VCAgpbHLJ9vjRE9rdGpHgKgBEXf7Jxr7RGw+m4tg1TBYNTz5s26wOQDm+BkAP4yBdYMcBspUHRHD8m1I/53yWJdbG86uhweZN2wP0NN+xhcCI7Z9snm/7gvHrtbYuzSGRSPeYNR89M5ITmOXT7bHiWzQ6OhnXNDmb/8EY582xSfihqYCWD4SlmyT/Fk2yvQjKv+ybrDpi6oGwdIxpp+yHSjTfsaWnvYzGo1Go+l+Ov0xTCvRaJSLLrqIPffckwkTJgBQVVWFz+ejtLQ0Ke2AAQOoqqpKpLE6lvj6+DoVl19+OZdccknif/xKjBFt78TYXQW0Ls/kyqU18Mnk6qV1nSrYcrq6GE9jtc8uiHRarzXap9ca1eUvAeqACmA74HPMwbNc0mjXjm1+WDsEWlPnnbYl7IGIy8YApyvwslHx/7IYa17reifBdjup3CGR18mNYN1gWUY2+Jn+60ls02zer/vCsas19i6NrgiU1ZqDOk35UNCkrq83a7Rrx4jHHLhqLHKo2IIn7Oxn6oulyrSf6TSywc9oNBqNpvvp0sGyuXPn8uWXX/LWW291ZTUA+P1+/H6/emXMYWcS5NgFWNY8cn45HnAwISnIc0Iu21p3unxao9bYGRp3AgoBH3AOcAWwKY0dVnt6g0bZTmHA5gLzKnybz1K4ymDZQOt/uUOiMkDuTNj1rlTC02HXeZHLsrPRrv5M6u5mssHPuCKpTZdN+7UduXTsOtlqzac1qu3sKY0hn/n4ecgDK0bANkvMucuc7LDa0xs0pvgZoC1gDpRtLrAUrjLYYmDElfxf+5nuIxv8jEaj0Wi6ny57DHPevHk888wzvPbaawwdOjSxfODAgQSDQerq6pLSV1dXM3DgwEQa+W0y8f/xNJnSmqf2x3a+3IrKr8u/DZJjAzsfrwrq5NhIVa9sr108JJdnZ69dXlU6rTGVvqRxO8Af+10MFJF7GpPKN8w3UC4fFRsokxOrelzC8t+6cVRC7ToWsgh5A1vrSNfbUy232iJvELk3l4nGLCJr/Ey++Z2V+7VlXc4eu5Z1WmPv0hj0mo8X9t8IYa95t1WuaUwq34D6UvhhdGygTE6s/Yz2MxqNRqPJGjp9sEwIwbx583jyySd59dVXGTVqVNL6KVOm4PV6eeWVVxLLvvvuO1auXMm0adMAmDZtGl988QU1NTWJNC+99BLFxcWMHz++Q/YUNtr7fVsNsW/Zh6t+2+WR11uX2cUR1t8dubDmFNvYoTVqjek0qh4QyDWN8fwRN6wdDKuHmo+5pDVGJSKTDSF3VJx6wHLPTLXOyUa5gyT/t7N3azV2A9nmZwo2Z+d+rarP+jsXjl1VfdbfWmMy2abRFwJ/G5RvaJ9fNtc0xvNHXVA9wLyDLuh045D2M1lBtvkZjUaj0XQ/nf4Y5ty5c3nkkUd4+umnKSoqSjyTX1JSQl5eHiUlJZxxxhlccskllJWVUVxczPnnn8+0adPYfffdATjooIMYP348J598MjfddBNVVVX89re/Ze7cuR2+NdkXwny1n0TcP6v8vd1/2afbXaxzKsvuKmU64uV2JAjUGrVGJ3vTaVQ8CZNzGsF8DCg+b4xQNabc0XDqDMj5VaJUHRJVGSpj7ZZZ63DqoNiV3RGNWUC2+RlvGO1nbOrRGu3t1RpNQl7zrrL4qFIuaox4YO0g8+5lIT9OGS/EqVLtZ7qdbPMzGo1Go+l+On2wbMGCBQDMmDEjafkDDzzAqaeeCsAtt9yCy+Xi6KOPpq2tjZkzZ3LXXXcl0rrdbp555hnOPfdcpk2bRkFBAXPmzOHaa6/tsD11pVCxmSQnrIobrNgFX3bBmHxxzhrExdeDc2BlV4fqImC6AM6aVmvUGlXlyXntNFrLk19w3ts1YkBzvjlQ1hJwKDAlYxpDOhrwWw122qmE9O20UeUNmq432VGNPUy2+Zn6EujfhPYzinq0RnV5ct6+rDHqgpY8KZGDrXI92awRYvOTDYWmQtovyKgMkDM6GaL9TJeTbX5Go9FoNN2PIYTIsms5nUNDQwMlJSVsMw/GrjUfk3GKE+yWxVH58EzLsS53Wm+tJ13MIQd+ctlaY2q9KNZ1pBzZplzXeCBwpmXZn4D3yRGNBtT2Mx+9DHkURsmGywJALUjVI3MqQ67HLo9dL9NJpGr9VmqMBuHHW6G+vp7i4mKHSvsGcT+z7VzYZg3kNWfHsdsXzk9aY25oDPrg2+2guNG8uDlyOZTW5YhGw7xjefVQ6YUx2s84atR+Jpm4n9HbQ6PRaDqHjpxXu2yC/2wh4oaVw6A1oPb/MkL6byjSO5UTjwNU5aSr284WuaxM8miNyWiNqaTT2Caty8SW3qAx4oZ1g8w7yhIDZZkUKFcuB/rWCuU08XRGmjQyqg6KU4cGaZ1Tuaq8mWjUpBD2wMrh5iO92XDs9oXzk9aorqe3aQRwR8ETNhN5wult6Q0aoy7zLZ/LR1oGyjIpUPsZjUaj0WiyhpwfLANo88PqYbE5McjcH8uxRjyvnV8XJMcpKoT02ymWSJdfTivHS5mgNWqNdjauB6IOdtr9t9Zhl7cnNArMuXFWDoeaSogaUkIZuVGdGt2uYyGnseaTv9P1wrakI2Gto7M0apS0BGDNEIjG5i7T56fkvFpj6jqtEQwBwjA/LgHuSKp9qv/WOlR2ynm608+EYy+MWTMEIi4poYz2M9rPaDQajSZr6RODZWC+onv1EPOuEhmr3+7IxbR0F+6cgjjVfznGsZZvF79sSUCpNaau0xrTY53gsLdpFEBLPvw4GupKYumsPSprRdbldh0O2Thrj0lOJ693Kl+2y66jJHdO5I9BqpbO0qixpb4EqgZaBmIt6POTfXqtse9qFIZ5vOS1mB+X5QpNb9MoMOcnWzHSvKtM+5mt0KjRaDQaTRaQ+4NlRvunvtR8/EoY9nEFJPt4bJbbBVVyMCvnj3/b1RG3xS52kWMTuWxrOVqj1mgtc0s0WhmoyN8bNIrYsf/jKGjOU2SSK7YuV3UG7Doc1rRyZ0UWZVeuSriqx+hUrpWu0KhJJbZthAHr+8PG/rH/6POT1qg1qn7LeXxBc86/1kBq/t6gURjQWGxekGmwvllZ+xntZzQajUbTa+n0t2FmHRZnLYAN5eANQWUN5u3/pAZDqjhAjlHSVWkXi8RJV5ZdwOkUNNst0xpTbdQa1WWoNMZtsBtZz2aNUResr4jd7WN9HEYO1LH8t+sxOS2Tf8sdBSuGIo2dDap6rWWo7O1I+ap1dsuETRpNsp8xYO0g8w6Zsk3az6hs1hpT06vyW+vPVY2uiPnopSFi5dkUls0ahWG+nGD1UPMRzC49B8sGaj+j0Wg0Gk2X0TfuLLNEOsKA6gHm4zJ2AZBdzGH9bRcbxNOolstlpItT7MruaByhNaaWqzWmlilrrAWCaepzsqenNYY9sGqoeTdp1JrQsGS2flSVyj1XociTSc9WlUfGrh45v1NHp7s0apKR2jzqMucsas7XfkZOozVqjdbf7igUNDnX52RPT2uMuM25yVYOjw2UxVdoP7P1GjUajUaj6WFyf7As7pAtjj/iNq8ANhWqYw27Iqxp5PjBLp6wi1vs4gFrXCGXbc1rFxwK6VtVn9bYnkZrTM5n1RgieYJ/l1R2tmoUmI/y/DgKNpVJ5dv1OK0bQBXU24lQGaI459gi1yHbAc4b0a4zFC/TSmdp1KSiaPOwO/bGVZ/2M7Kt1jRaY3K+PqdRgCHMl6+ojMlWjQLzpVErh5vzk0VVBWo/o/2MRqPRaHo1uT9YZo3KLA445DEHzNoC9r5bLgKcA674f6d4QFWOXYwily3nUSEH2tbYyAmtMfW/1pjMIJtyVWX3lEYMaCiBH8dAU4Elg5wp3YZS9cycOgeqslX1Ko2W0qs6L3a9OTmvyg5VnVujUZOKqs0N8w2Zq4ZBxKPPT3J5WqPWGE8QtkwI0lygLldVdo/5GUz/kvLCGO1nUuvSfkaj0Wg0vZjcHyxTRUax36qOTNz3q+INeZ2qGmiPJzIJhO1iCDmvwnxlOXbpVPGN1qiuQ2tUE3/CJFs1Rg3zCv+KERCM36VgNc6wfFuxdgBUDenUMVEJcDjnpAi0lplJD87Otu7WqEnGoc0bisxHMoUreZU+P2mN8fL6tEZhTu4P5rchkm3INo3xF8YsHxV7YYxsnPYzybZoP6PRaDSaXkzuT/CvcsiWyGdzgXmH2fCVYETVARo2y+RAUEYVS8SXqcqX86jqVuVJZ2+6urXG9v9aYztRIKJIq8rT0xrDblg3GDaWmZ2ZJOHyb9V3vCCVIapyOiImvkzVSbHrWKhQaZE7IN2lUZNMGj+zqcwcCBhQTWIic3DeffT5SW1vunpUebTGZLJJI5gvXQLzpRiuaHKabNIYcZtz3m7oDxHrvATaz2g/o9FoNJqcpG/cWRb/trnqVldqvi0v/hYmOYt8tTGTeMD63+linyqNikwutqnqtv6WA1Br3Vpj+nr6msYmoDED+zq63q5u6++OaqzrBxvLSbp7J6UgVVAvpHXWj0HyhlMJs6vDarB1nQrZBrlseVkm9XelRk0qadpcANWV7S+WUWXR56f09WiNuanRZ3mTTHzgLBs1NhVATaU5aGZbkPYz2s9oNBqNJmfI/cEyq1O3cdTCgPUVsKHc/C37a6erjnKcIOfLxPerLtzJ5cuxjLzeKY+qXK1Ra5Tz2XXM4pRh3oqajRrjHSzbHpRTR0DGLqCXOwt29WRwzkkpSxbl1HHoaY2aVDJo82jsrXktNm/I1Ocn+7q0xtR0uaQx6gKXuwCXcOHylmPgymqNPX4O1n5Go9FoNJpuIfcHy5ywBA9RA6oGQUNxcmAFqRfJ5CLkuEVVjSq+UF18Q0pnl1cuW7bBaqtdsGldpzVqjdY0KvwOeXtaoyFXpircarghfWQjrT1SuXKVQfIyOzrSI1ZtQLlX2hMaNR3Dsv2DXnNOvbZA8mrQ5yetMTmNXEcuawz6YLuGvRhTP5lNxY1EDZGVGq1zqqUYpP2M9jMajUajyTlyf7DM6tRlZ2/FMOc9Wj20/cq/tDpt8apiVcGZYfOtihNUMYlqvbxcLtuufFUeJxtU5WiNyd+5pNGObNOY1wxFjZblqkKty1TnAZUBqk6Dqky7jkSac45tj1NVlmxDT2rUJNOBNm/1m3eYJV5Ckbw6bfGqYvvq+UlrtC+/V2kU8Enlaywv/pKwEUTEUmWbRk8Y8pu0n9F+RqPRaDR9hdwfLIN256ty/FKwEPSab8gMe9uTGYrs1qxx7II2IS2T86guvsl1y3mtklTlWX/L+VR5tMbktEjrs01j2JP8Fle5ns7QGAZqSSUb29EbhpHLYNgqcKkKkY1T9fRUwb5dx0RlpLzBMzznKG1QdUbsbO0pjZpkOtDmDUXmnczxeTJz7fzUF87BWmPnafQFIWwECbna8ITby802je4wjF4GQ7WfsS9bzqf9jEaj0Wh6Mbk/WGaNuiDZYcsOPfa/OQ/WDjbn0VCsToozrMXKcYNdHtkEaxmqwFOOZ+SYJZPyVIGttQ6tsXdpDHnNSYbjA2ZdoTEKtFrS5AMBS5psakcRWxj0STG/LFI2TmWMyignQ1XldPCco+y0WHtrsr09qVGTyha0eW0/8+UyuXh+6gvnYK2x8zQaAjYXQps/dg43slNjPG3E3W5jkkF2xqmM0X5G+xmNRqPRZD2enjagy1FFZnbppI5MXgtUrCdlPiRVcGVXrNX/y/nlPHZlOJWnKl+Vx4qTvVuSR2t0LjeT8jqiUQDuiPlISNRlBu0pc3bZ2NJRjVb8gNeSNh3d1Y5gzgG1eqjZ4RLpMjp1Euw6QEL6be2Z2RndkXOO9bdd71LegD2hMZPG6ItsgZ+JGrBmMOQ3g78tNWlvPT/FyeVzcBytseN57GwI+sw3GoM5GOWKZpdGgDYfrBlqmdtW+5nkPNrPaDQajSbH6Bt3lsW/rUGAKiK1OG5hQNVAaCxKjUXs4gjVhT1rLKDC6UKaKjZSLbeT6BQ0pitLa8xijUasIxFNTq8qqzM1yvar6pPTdHU7CsMc2P5hDDTGB8qsIoT0QVqnqli1caxlOu0EcsDfgXNO0jLZFqu9sj3drVGTyha2ecgL6wbF7lSRiuq156cOlKU1ao3WfGG3eRHIFc0ujcKAzUXw4xiojw+UaT+j/YxGo9Focp7cv7MsjhzByRFU/KcgcZeOMMy7VfpvgLJNZhCHVIwVa0xiXWZnhnW94ZBGVZZdGtmOdOXYoTVmt0Yjai40RPtVeFfUvq4t0QgQUSwLe6G+xMbobqY53xwsi9p1AlS9NqS0ckdDtSFUDZEuoM/wnKNcL9vvlK4nNWqSybTNLdu1rtQcJBhYDQVN7f6nN5+fVDbZlRGvx65su/K0RnUaVVnZrjG+3B0x5y9zxfxbQ5G5zhU1/Zw7AhGXOf2AL5iBYTGihjTHmAJhmHeOqQS3BKC2zKw7SZgsSvsZ7Wc0Go1Gk1P0ncEyOYBQBRiAvxVGrDADK2GYj3W15Fk641KRUnbb2CC+riOBp1zGlgTVduszRWtMLj++ric1CsPsLBhhs2PtippBvGGQ9nHMjmgEqLKs8wIF8eUDzbtikgJkJ8Gq9emOR7v1ctnybxRp5WXCwTZ5I9ilS7dRMzznpN1G2aZRY0+mfiYIlTXmMm8YWgPmY2gFTeoipexZfX7qC+dgrdHZli3VKDDnLYu4TV+2Zoj5X5W/K05HIm6UXWXZcg7Wfkaj0Wg0mm6hbwyWqa5kyQFGDH8Q8lrbBx0CLalFSVnSksmgRLqxBtV/u9hJVZaNXNs67Oy2Q2u0t8uu/i3V2BIgcQekOzZgJlyYM/I72JYJclprkR7MSf7bfOadMI6Gqo45p3V2jedkvFOHQK7PLq+17nS9u76gUbgxQn6EtyW2Yyl0aNR0oM1L6qF8Q/ui4vrcOT/1hXNwX9AYdZF0p71THXZ222Fne8TTXrcwzLc+G1Hz4mXYnZxR2BmTyUbCJp3TeVT7mZ7RqNFoNBpND5L7c5ZZr2QJxXIpSAq0tv92upBnyaIsHodl8TyGw3rZdCc75PrSxUR2dcjpZHu1xuRl8TzdqVFg3unoipqDViLWqYg/gtkVGmWaC0h9E1g8saojIlec6fGoakhrPtU6uV5VuUL6bRe8W8vvCxoB39vnE3joKVzV4+01alLZAj/jtBuQmqVXnJ+seXL1HGzNk8samwpig1Y2dVjZWo2GSLWjOd8cIIu6LANluX4O1hqT/2s0Go1G08Pk/p1ldqNcclQZw9qJMZyTOhYtr1flUcUwqjhD/m8XR6iCWLt0ch6tMfl31mo0zJdOgPmoSkt++2TILmHO6dKZtLUBre11NxVI85XZbVRrYJ2u95aucdL10OwayG4jO+WT7XYqKxc1CheuTaNxbRxLdOBXSeUbES/GpqHAMkWhfZwOtLlB8nxLOXV+sqlDa+xdGkXMzwjDHKyKGuCOXZBxh8HTSX4m7DF9Vmug3Zaoy/QxDcUWQ6HvnIO1Ro1Go9FosobcHyyTr5hZkQIMIwr+NnWSrsYpoAXn+MJuvSqt6sKd1th5dLXGsMecR6+2dItN7BDfbQCxuj2ObaqEzQWWBPIV4vhvVS9SXpfmeHQ8dmVUnQSn4F61k6jWW3/3do3CwGgqB08bItCorDvafwkAro1jQYARLMC1aTTuH/bFvXwvohsGANPTGNoH6YCfcUXAG1In6Wr0OVhrtFtvJeyBTWWwvsIcMEsaoBOdp1MYZnki7mAwB+ZWD1EYb/2O/+5t52C79dbfWqMeMNNoNBpN1tDlj2H+3//9H4ZhcNFFFyWWtba2MnfuXMrLyyksLOToo4+muro6Kd/KlSuZNWsW+fn5VFZW8otf/IJwOLx1xhiWj8IZu6NmJ0aQ/IlntX6rsMYYqphAZY4q3lHlt7uYKF+wc6rL+q012pPNGiNu85PYj1WFqnpvhuLjlCb2v84ynG4IqAhZ0sjBtFwukjBVMO1wPDpqjJdt10lQpREO6ezqziGNrsaB5D38ON63LmrXJWkU/VaAK4R75W74Xv0Ngb//C/8/H8D9/UFEBn9M2yG/VojoeXqTn/GGtJ+R65DRGtX1drefic8dZi1MxO40i99xlvTbpfg4pBFIdcTrkY+hHDkH29atNSaXm67MHiKr/IxGo9FouoUuvbPsww8/5J577mGnnXZKWn7xxRfz7LPPsmjRIkpKSpg3bx5HHXUUb7/9NgCRSIRZs2YxcOBA3nnnHdatW8cpp5yC1+vlhhtu6JgRVudsddYKPGHzkQC7JHKgqYpXkJbL8YgqZlAFuPIyOUhOFww75ZHzWdEas1tj2G1ZZ2eIymgr1oESVaWZBqrpjq10GzfN8ZhURndo3BJ7e5FG4W0G4cJVMw6ibvNkJwDhxtjcH/eqqXi+P8hMs24iwtNGeMITREa9iei3HOFtIRok6+htfsYbMh+dzsXzU184B/cJjZkYojLaij4Ha40dsTcTDT1IVvgZjUaj0XQ7XXZn2ebNmznppJO477776NevX2J5fX09f/nLX/jTn/7Efvvtx5QpU3jggQd45513eO+99wB48cUX+frrr3n44YeZNGkShxxyCNdddx1//vOfCQY7qbcWd9iWAMIXbJ8oHVIvohkkxwiqi2x2OOWR4xC7ZbLpqrLtAvpM7dIaO1ZWd2oUQGterCOTzli5AFXh8f+qDZNJHVajrf9VwXAm9krHY7dqdNqZeolGo7kM97K9MNqK1Rp9TYiidbgahmC0luLaMBbvp7MJPH4feX97At8blyEMgcjfhPA3EDz0l4R2u5fogG8QvpbM94lupDf6mbwWkrZjrpyfOmKX1tixsrpbY2ugB/xMDpyDtUZFHiudpbGbyXo/o9FoNJouo8vuLJs7dy6zZs3igAMO4Prrr08s/+ijjwiFQhxwwAGJZePGjWP48OG8++677L777rz77rvsuOOODBgwIJFm5syZnHvuuXz11VdMnjw5pb62tjba2tonHGtoaDB/yM49jsKhC0OavLyPEPSZj0J0B0YU+tWBN2h/4VH1XxVPpUsv/+5IfSoy7TQ5pd0qjYY5wX5GGeP/ZfGZiLakjUo9Pr8cxFrLlXt0qnR2aVQbrJs02qZRpc1ije6Vu+F/5g+0Hn8qkWEfptod8SEKNuBaN5HAPx/AaByIKK4iMvQDQlPvJ1r5LSJQR+DpO3H/sC9GUwUUr7O3NwvojX6mOR/qS7dMb2+mzU/yHUtdiDcExQ3gCeW2n7FjazSKmJ8RmWTU52B7W1RptcZkG+zK1X5G7Wc0Go1G0+10yWDZo48+yscff8yHH36Ysq6qqgqfz0dpaWnS8gEDBlBVVZVIY3Us8fXxdSrmz5/PNddcozbI6pjloMCyrLHQ/PRlXJgDIvkR8/fINhgdexviqyWwPr7HyNsvvkz+LX8DG8th8DooqTf/R1zQFjAfg/UFwRDtxVrjQjnG68gVf1V86FSGXA+o67Urs60B/MXpbZWX+4AIEFWsFwa0BBzEWDOoAuq4CKcgW0qz2gchA3zCXDyizaFua16nDZ3h8dhdGm331WzUKFwYUS/CnfomElFYY65vGJzo6RptRbiqJuBZciCuVbviqhsOUQ+RYR8SnvAEovwHhKc1qZ5o+VLc3x+EsWkkDPo81a4sobf6mc0F0ksy+hqq49G6rhOOXQPzzdZD1kDhZjNp1ICQL/YYbCT50OqNfka1PNN6nDTGB8v0ORitsSc1ZglZ52c0Go1G0610+mDZqlWruPDCC3nppZcIBAKdXbwtl19+OZdccknif0NDA8OGDUtNqIoO5W9VcGAXGCCtd1quqj+TurYk+pXTqPJbqhkQggkt5iBNjRc2uyBiwPgWmNEAeVH4Mt8yWOZUpp29sXVtAVgxAvrVtgfmQa85hVL5JqhY335HgFMcla4pMtm8crmqOp02oa0N4dR0sn1WGw1gLHAmsAn4AngJqMA8SOuAjV7zLkClGLlA2aBMenuygQbIU9CmFJNJXemCZTmN0/EYX96JGm3XOaXtIY3exafiXrUbbT85H+FOfoRDFNYgPG241k3E423BveRAXGsmY0S8RAZ/Rmi3ezFayvC98htE+VKiA75SHhTR8qVA+xsxOzxq0A1oP+OwXFV/FvgZxxNwJx+78QsLy0aZfiZqQEseBP3mG6/7bzAv1rjDvdvPODWDnZ+JumFDufmnX237Xd7x9GFP9/sZ23VOabWfSaYvaOxmst7PaDQajabL6fTBso8++oiamhp23nnnxLJIJML//vc/7rzzTl544QWCwSB1dXVJV2Oqq6sZOHAgAAMHDuSDDz5IKjf+dpl4Ghm/34/f709dYY0SVd/xNHHs0srO2y4iFqRGqU6ki26R1svLnbRloLE0AofVQtiA14rNgbJE8QY81B8W9jeTh612baXGqAEby5LThF1QXQl1peYdAcX19jGfNV/88R5/W/LE2ek6QFY5TnWoOjWqeNS6q7h89jbY/V8DPAVsBn4EQkANkA/0B4a5QQThG3fs8cju3let6XpgX+0Lx2MmGl1rJ0FbERRsBAFG1INRPxT3j/uAEcX72bFEV+xOZPh7BPe/nujAzxF5tWAIXNUTwB3G2DjGVqPotxzcIXOwLLHQboP1DNrPkHP7dVdojLhgQ//kspvzYdUwqKmEESsgvzkDPyNJkM3sCT9j/d0RP+OKQnGj+dsTTq2zoTj2xmXZML2vao3dqTELyDo/o9FoNJpup9Nnqtp///354osv+PTTTxOfXXbZhZNOOinx2+v18sorryTyfPfdd6xcuZJp06YBMG3aNL744gtqamoSaV566SWKi4sZP358x41SBQjx5XIgYHXYTkGKtWw5uLAiSA0y5HVyuSr7ZB2qPB3UOCIIF62D7/Lgn+VQ7SPlNfEY5kBayMB+wt8t1Wj9WDQGfRDytC+3ZleV728z7xCIXxGPa5CbUtWhsJpihyrmc+pMCUg8R2nXiVL9bgHewbyrrCm2PAzUAz8AbxRBfhRm1YE/SqrArtxXY3gE5mOy3byvdovGHj4e48tcG7bF9/ovMFpKUsoVhTUYwQJcdcNxVY/H+965+B97iMBjf8P9/UzwthDtt5LWE08keMC1RMa8jijYBC4Ry1+N8DXiqhthFqrQGC2qQvgbMWpHYIR9qRqzAO1nJHrBfp1NGoUBrX5zIntrEXZV21UVL7qn/IwsU86v+m0ICLSYL5qwvtAovj7sieXpBe3YF/bVPqsxC8hKP6PRaDSabqXT7ywrKipiwoQJScsKCgooLy9PLD/jjDO45JJLKCsro7i4mPPPP59p06ax++67A3DQQQcxfvx4Tj75ZG666Saqqqr47W9/y9y5c7fsaoscTMiOWBUUyI7cuk6OlFVY68kkALCLdlV5VdF4BzUODcKv18Btg+DbAFml0RCQ15q++sT6mOb6EnPOM28o1ZR0ZajiNNV/uUMjx6+JWNBtLhRGcrM4bUpHDGgogNUFMDwIR26CJ8sgqAo6rUZvZTtudkOrYc6lBjC8zRxhj1jzd/G+mmJ7Fu2rid9botGmbKOtEM+nJxKe8CQiUJ9IY7SWYLT0g4gP/79vA3eQaOW3hCc8SXToh4iStfheuhr3DzOSdzwrgXpzwK1uGEYoYL7lUrYj0IAoqMHYPADaSsBTk34H7ma0n7Esz7b9updoNDD9Rbrqk4pyQdVAKN9oXqSRTeluPyPX3Rl+pjlfYYCcOYvaMfE7h/fVxO++olH7GY1Go9FkCV32NkwnbrnlFlwuF0cffTRtbW3MnDmTu+66K7He7XbzzDPPcO655zJt2jQKCgqYM2cO1157bccrUwURdgGCXSAilyOXZ00nByKqIMRunV2Q4NTRlm2T0yjq8Au4eB080w++kwfKskSjsCmvzWv+9IYSN8uY6Q3zSnlBE4kXBMgmyKZnIkm2SRVnynkMi+1y+XZ1yuXI66Iu8y4IAazwwRA/zKyHZ0ot26oL2rHJDW2W0THr0zndsa8q88rl9NLj0bV+HO4f9yE09S9gRBLLReF6MKIY9UMwAvW4V++C+8fpuNZOBFxgRAmP/zehKQ8iCjaamWLlR0tX4GkrwmgpNR+9lOwU7hCidBWuVbtitJaag2WS/cLThihdiWvjGFwNA4kU1GTWKcoytJ+xWddNfkaZVy6nBzUawryzSnVeV52Dof3xRF/ydIE952ds0m6Nn2nzKypRGZcl7ehoZ47sq4525rLGXkC3+hmNRqPRdDuGEKIXdX8yp6GhgZKSEkZfBK5MLt44OW2rw3cKUCDzIESOVu3KU5Vpza9Kb0cs/V6NcF41nD4GWl3J67JBoyHMQa8ha8wBMOvbMTEgFBswc0fa32rWGjA7MvlNahlOcVomZnd087dtBm8eGO70aZ3Kjy9vyYPvtzU7MwjwAheug/sqod4jFSYXsBXtWBaBZ76Fitjdeu8VwaljLHeWdfG+amu3tdxeejx6vjoC31sX0TLnJwi/OYmQEfXiqt4B/6K/QF4twhVB5G8kMupNoiPeJVq8hrxHHiW8zYsEZ9yYYrfn20Px/+dPtB53KpER7yk1+l7/Nd6PTqH1pOOJDPxCabPvjUvxvncubYddSmTb5zEaB+LaOBaxYke+++hW6uvrKS4uzkxoDqP9jIJepLGgCYatNt+cmeRnFMWCef4NecHXppbR3X7GbrNsqZ9pKoClY9v9TBJZ3I5J+VXp7dAaU+3KAo3RVvjxNrSfiRH3M3p7aDQaTefQkfNqj9xZ1q0I1M7aLvhwClBUQYe8zFqvXKddHlXAYWejqn67YEiR3w0ctQm+D5iP12WjRgFsLoAfxsCAavPNZUZsbpWWgPk2zTafOVjmiw3ixN/e5Q2Zy4M+swOEsI/3VPJVEjKNSa243CBE8qSAduWomktOH5UShYDVPpjUbM5llmJ4Z7WjhCtdGZ24r+b68SiK10GwAKO5DKNuOO5VU3H/sB9G4wCMcIBIyWqCB16NKFmNcMXeSyrcRAurcNWOTDVEmHeWYURxbRplDpYp7I2WL4GIF6N2BMQHyyxlGKE8RF4dAN4PzsT74RkY9YPBFSFc8o1CuEb7GXqlxiaLnynfGPMzhvkoYnwOTHfE/MSLibrN/4YAYcTW9ZCfUfmKrfIzLpLnJu0l7ZhSVg7uqyll5bpGjUaj0WiygNwfLIPkAEHl6OUAIu7g5eVyHmvwgbQcaZ1Q5LGLrlW2y2mdgiAHjcVhmLoZ/lcsrc9CjWE3rB0Mmwth8FrzFferhpt3WdkVVV/S3skprTM7QfG7AFSmW+XbdSbsTLeTDhANm3/cHnUsKCOXL9vjiXXOsNwJuGMz7NASGyzronaUd6cBIciLmnOZpdDJ+2rOHo/CwAgWYDT1xwgW4H9yAbhDRIZ+RHjKg0QGf4b/+d+bc5L1W0HSc8VEECVrcK3fFiPiRXiCSRpF4XqErwlj02hbjaJkDRjRxNsujVA+Rv0QXOsm4l41FVfVBIzNlWby5n6EJz5GZOhiouU/EHFvhDsU20Wj92volRpDHlgzxBwgG1BtLvthtDkopqoezDdoRl3m2zYHVkO/WhIXdFSmd5WfkdelI52f8YZMHcJtWWhNmMXt2Bf21T6jMZOdWaPRaDSabqBvDJbJDl4OMgzpG2mdvD72bQB5EfNurSjm3E7heF5VHpVdqqBGFQg5re+ARp8Ar4A1PmldOns7ak8naRQG1BebHZl+tbF5u2LphCJPY2F73o1l0FhkuWtA2EuzYrcbCKCp0LzLq6gxuRxlk4jMZEOqTdZ0BqbmhE2xHz5h3mGWVHgnt2OzC9Z7oTJWkUdYVnfxvtqh43ErNCrzdcXxCLhXTMPz9eG4asYhPG3m3VoTniA86R8IX1Mie7R0Be61k80eefxZ43hRpSsxVuwBoXzwBJPr9jcg8jfa3nmGcCECdeBtxf39QQQ2jsVYvy1Gawkir9Z8YcDkhxFF1fj+eyPCt5nQ1PvMuc0EIM3VpLHQV/frHNAoDNjUz7wwU9AUGyizpBNSnqb89ryrhsGG/lC+Aco3dY6fack351Pztzr7mY7ItqZRlRf3M8qCZCOztB37wr7a5zRqNBqNRtOD5P5gmTX4g/aAwSlyNaRlUlDhFTC5CYojsMFjfiIGeMOwRyMMCsGn+fBGsTmIpgxU5HrAOcCw/pY12EXlCo3lISiMQoNbUa5TYCWVk/K7izWGvFBTkZlGa91Bn9kJKot1YlSxoVPsKRcZ9rSPXcimWiW4vRBqAQpS67HL47Qu6jLvLgtjduTiifKjlk5OF7Rj1IBwR4Nh6++t2FczPR6zbV+11YiBa9NIooM+I7T73Yi8WgILHwNvC8LflJReFFVhbK7ECOUjAo3JbdJvBUZrMUZLP/NxSUt9wh1EFK/FaBiEEfYh3CGM1hJcG8fiWj0F95opuDaNgrAfV8MQwkM/IjxtAdGBnyOK1yK85rPLRthv2tA40HwRgLdF0qJJogv8TK/Zr3NIY9DX/kh/UvkOGoVhXswRFVBW2zl+ptVvnu8Drc5+Ri5za/1Mq5/2gcFe3I59YV/tExo1Go1Go+lhcn+wLF2AYU0Xd9ZylBvHgMIInFljvkXy5RIISuU1lsKsWnNAKrFKjlDleizlp9httU1lk2x7Go1FsblXVvrbl9lG7KpAyGn7WfN0pcZ0dkjpAq0kPSKjMsWaVUW8yIIm84q/Nb+cJ/4/GrKP+eRNK/+Xid9ZZtCecLXPHJx1A+Guakc7umFfzeR4zPp9NakcQWjyPyzpDHNgq35YikZRthzaYgNiscn/4+tF8VqIejAaBkHZsuR6hQtRuB5X1QS8b1+Aa/125uOWwiBasprokE8IT/oH3nfmYTQMIrj3LYj8TSkahSeIKFmNa+MYjIbBULwudZto2ulkP9O79muHdH1FI1C4ufP8TGk9iaevnfxMfGAr6UltRXl2/2VcVvv7YjtqjdmhUfsZjUaj0WQJuT9YJjvfdMGCwzJ/FC5fAx8WwnOlJN/NE6PWDQ/3V9ggBypWVEGPbK8KOUjKQGNl2JykvdllySOkvCq77IIdq71ZolFe1poHDSVQ3EDiqr9creq3Kg5sDZiDb4kJny2ZrOnCbdC8AfIr7WNcVefHWl98/wr6zcd8Qt5kI5vcUuZuaMeCqDng2uiS8ljrUdEJ7Zhz+yrCnH+sdnh7gthXtHiNWURLKZSuTCpHFKxHeNpw1Y4gOvRDjKZKXNXjca3bCdfaybhqxmG0luJaN5HI2FcI7XYf0fKlsbvQzB3XvXR/POu3w9hcicjblKoRQbTfMtzR/TE2jYKhH6m3p8ZE79f2elTLclBjYxE0Fsce0d9KPxNym37ak5jXQW2Oux+MngBL3yRlwCwTP2OVHvbCxnLLJu2j7ag12uTpCY0ajUaj0fQwuT9YFiddlKpKKwUQ0xtgfAv8fgjJA2XWdHLwIa+T89gFDKpIN10AkYHGYW3Q6oJqr02ZmWyLLNcop23KhxUjYNvvY2/ItJFhXVFbak527G9LfhNayNv+xk0wO0hhtzmfWrwgISDSBq11EA2CYTnKjJhep80uDKgrMQf48pvNOurTvS28i9pREHtragx/FALy3RPd1I45t68aIAprcNVsjxF1I9zh9vWBBnCFMRqGwODPE2UYoQBGSz8woni+OAbPVz/FaByAyKsnWvk1ke3/Q2TsK/he+zXhXR4gPPaVZK0xouVLzTdiNgyCim+VGqP9l4IRwVU7wrljo2lH79fpbc80XS/T2Oo3/czYpZDXYi/DuqK+FLxR8DWZj126PeB2QWN/KAgDNYAL3KOgOAC1X5kFxcucNAlmnQ63fw31G1OKV+uK/zSgthya8kx/trkwNheb0/boA+2oNdqk60mNGo1Go9H0EH1nsEwOIFQBhvW35OjdwAkboc5tDjalBAKqoEAOBmzKTgls7NKp7JXXO2nEfIy0zbDRIJfdGzXalB81zDeXqZBjwJAb1g4wH230hMDbYK40NoOoA1cbuOpiaTeAqxZamtvvAhARCDaZA2Zr3gfDUq/bDy7pjjBvfnsaTwAMH9S4oc0P9V4QAowWzKPVDUKlo4vaMSxgrc8hfTe3YxI5sK9GS1fiaeoPYT+4won1IlAPgXpcNdvjKl+Kq2b79jdVthVjRLzQWkJw+s1EK79FFFYjPOZs4K7124I7jFE7Ql03IEpXgjBwbRpDZOxrSo2RUW/SetzpRMuXKDamRoner/u0xojb/KiQswwZC9OOhpc/h/EDYLehkFcKpUXm6cArYN0S8Pph8PbgNeDT16FuPaz9EZoaYOf9oLQ/HHshrPgGhm6jrhsDGmuhfj2sXQYrv4fBo2HU4fC/b6GqFkKbwQhDa+ydIZGopL0PtWMSWmMq3aFRo9F0D4bioIu/oUxeL0T7f2sajSaH6RuDZXEH7BRgoPgdy2tg3k0zJAifxCZsd3TuqvOHqm5V4CPbnE6H0zpJoyFgZBAa3bDZZuAons4g9nICJ1sUeVPq7maNSlvAnIS5wLxTy5pFRCDUDMHNEGyASBCCreD7CPxNZkKjLZYh2p4xnj9+ALVhvihQlhS23GEgAKPJPq614vkUPK7YSg8ID4gACD9Ey6GovJDtPWVQtFKR21KoTbBs3Qa2eS3ZHOnGdlTa6RTox5fZ5bXW3QP7qiheA21F5iT6vmaMlmKMhsG4102EsB/Pxz/D/f1BiNJVRIZ8RHi7F4j2/x7fa5fjqh1BZOyrCHfy5HiiYAPC34irdpStxmi/FYjidRihPMvBkGyvKKomUlitOy+ZovfrPq9RAC0Bc/4yq/mGAV4fDBgOw7aFpnrYcS+YPAOO2At8HnV/pXJQ8v89DzcLjUZBRM070TBg+11h3K7qMmQDhTAH2nwB8Plh/10hHIHmNmgJQt1mCEVgWRV8tQI+Wgq1m23Ky9F2VNqpNfaMRo1G0/3YOZO0TkajyT1yf7DMeiUL7AMB1RWvWJ7jNsLejTA4CM+XxpJlesVMHhlByqdKZ01v/ZbrknWl0egC8iNQ64GQpNFaRmkELlsLz/aDxQWWlxj0Ao1O7bi5EMproK0eWjZBuNV8VDLcbHY8rKarbg5QbCqlbFU+qzSn2DJJTvwlERHMAbvYCxPFWgjSxL8Kwuy9i6JyG/3x/x7gwnXwj/7SXWMZCPII6BeWyu/mdsxEY9bvqwIQLnCHIeLF88EZuDZXYmwaDe4Q0YrvEEXrwBC0HnWOeaeZZfZwUfYjxqpdIVgAgbpk+31NiIL1ZlnCDURSNEb7LaPl5KMhUJ+8DTLRqEmlE/xMIl9v3q+1RpoLgU3QrxJGbGcOkJUPgoEjoGKoOUCVuDhvgN9LxzBidydLdyhndGgaZr2Fpe2LXAb4XODzQikwqMxcvtMoOGJ3+HEdLHwN3vwKIpHksnK5HbXGHtao0WgypycGsTq7Tn2nmiZLyf3BMkPx2875Q6ojB/7bzxxc2r/enOtrbKs5gLTSb7n7yq48a72qdU4BkCroMBTrM9ToEzAwZL5FMSLXaclf54YFA8xHNXdqhiqvmac3aExKI7Vjkx9qlkDLShA2by2Lm2d3yrYzQ85jJ002zal8FfEyogi+amrlm3fB5QMm2RinKHBYG7xfCOtVR7+cT9oQbqDYqcNkNbSL2tHWVrt8qnV2+bphX3VX7Yhr2d641+yMsXkARsSPq3YU4R0fJ1rxLaJ4HcLbjO+debi/PRR8zdJr6iBasgqjrQijqdycuN9qlitIZPh74G0xK1TZ7Y4gCtendpLSadSo0fu11gjk+WDnvWHvIpi8DxSUxlZJ+XrLxXnDgDGD4NfHwXbvwAMvQTBkTSB9I63rje3YF/bVbNeo0Wgyo7c4k0zQj3dqspTcHyyTRzCsqAIMRdpGlzm4FDXgyzxYGoBxLXBAPbxSEht4spZnV4cqjbze+ttp9MWQ0qnKkcr3RyEvag58CVXaeFIDVvvN9Q1u+OkmeK6f+TvbNTq1I8uhaQVJ4weZDIrZmRtPJ8eCsumq+NAutlStV8W/8bSRIAReA+GH0Hi1Fnm77NJk7rch+VFcm3Zc5bcp15q2O9vRzg6nzoSqDlWart5XAdfqXTCiHsKT/kG0fCn+p+8kMup/hMc9m5QuWrQOT3M5tBWBpy1JoyiJvS2zqQL6/yBpEAT3/T/ib75MoTM0apLpBD9jW25v2K+1RgwDdhwJcw6GIeU2GnojhnnX2TF7wYoaeOEjm75MjrSjI1qjug5VGu1nNBqNRpMD5P5gmRXVCIRqvRwsCBgWhKbYWySjBnyTB+VhOKQOni01B5gSeUEdbDgFAHZ1W+2VbVcFIw4a86NQFIHN7lgWSWOK/UDQZc7TdkgtPFYupe0hjQbmjhsBopm2I+D93vytGtxSmZJIF7fDenNPbKBJGCB8yfmsuMMgQu3rXB7wBlJtjrRBxHLFPvG2VUm3bKsBEIbAKyD8EB4jGSIFoS4B/UOxOesyaUcDmu1eKNCF+2rSesXx6KQxiSw8HkO7PNC+Luoy34hZOzI5jwDRbyVGKA+jqT+iYEPS+ujAL2g97jSiFd+qNcYHyrpKo8aePrpfZ1RPDmsUAhqaobRAkdaJWJ2h2LxhSauEOV9Y/PFHtxv6FZr1eNwwoNRcpiw2as5N1rCJxJ3U+UUQyAdfXnt5mdrqdsNpB8GnP0LVpmTbc6kd+8K+2ms0ajQaNenuKOuqu7Ps6t3S+lTlGUbX2a/RbAG5P1gmO/R0Tljh0A1gTCts8piT48eTvVcIV62Gd4pgUzzolIMNVRACRIr6Y0RCuJrrO2avUyCURmNZ2HwUc5lfkdYhSFrhh9kbzbzBDmjcYnsVwVRxFApiHYahQdi3Hr7Ih+dKFXVay4jZ5v0BPMtTq7SaXlaejys/Qm1NG5FYp0XkQevBEC0AVz0YURBuiJbEMrlAFCjqj4D/A/AsAREGQ7TX48mHsm3Mt2DGjYiEgVZzPC5iwIoRZufJ1QzGZvCsBPc6M41Kg9ECef+FliMhPEzazhZ8AgaFzAHfDrWjZVW/iJSuC/bVlDIy3FdT8nX3vppJniQ7oojCaozNleYKy44SLV1JeMKT4G9INdXXQmTIR2nKTsnWeRo1yej92r7ePqLR7YJDdoGCgHP6xiZo2QxF/cDlgq9Xwuufwar1sHJ9avHNrbGLQpjp8/3mGyvdLthvIpx5MBTkpVbV1AAPXgervm/vd/gC4M9rr/uIc8BfAetqoSQf8vxQXhSbR02hvaIYfrI73PucZYwjx9qxL+yrvUajRqNJJdseveyKgS09YKbJInJ/sMwO2dk7HJMeYU7uX+WFtvgdOQaEMAfQdmqC10ssGazlGpZlsXqieYWsOf1OAqu/ovJf16dWrrrypgow0gUXksaCCLhFTINTHqnOkGFug7IwVPks6x00pg3gMtRoCBjXatb/fcAcrKvywmf5mHdfZdCOnmUQ+C/QmnoRM54tUGwwq2IWYW+Q59e/Ti31CGCIawSNFRHW9FtNZEjmGj3LwPtp7K1lluWRMDTXgOGCyp1i9Rvg8cG+sW37lgsqyiHkM/evNgOCu4LRALu8OZZV36ymmdaUqo0W8L8BkeNpv9tNstMj2gcdUzaCXTta6xBQYZ2zpov2Vccr1dY8qjpVdcfTd+G+uqUaowO+xrV2krlDG+3CRWE1bQdepbazJzVqMqcP79eO5JpGA8aPgP0nOduyegP84UFo+QaiO5nn/jUbzbdQKu2WvyPQZjn/PvM+BMMw7wjIj88rGqOwBHY9AJZ9ZfY5DKAlBM2NUFcDwgW3PwFLg9DSZt6p5nbBDiPgZ/vBhJGKPpkB+0yAp96F6jpyrx3t8mRir9ao/YxG0xfRA1uaHCf3B8sEyQ7eulwRCCb9jqXJi8KAELxaEnsSz2hPMjgEG+RAVxUoGO3f4dKBRArLCFaOonXkRAIrPidpxnlL2qSgwc5euzSSxmFBc9FqnyWtXfBiscEQUB4Cr5Mtst12aVRpbco1BExpgjoPfBuwJDMUb+hUlS3AvRHyXgSjJTmJnC2vUtAUaWJ90TLywoVsoh4AX1GAFl/yI3CZaBT5EN4G3PXg39yu0eUBTwAKBqRmfz2WLALUeMDrhu1bYLnffOmC6AfNu4Txrw/QtKFVGQe714H3KwhOIqUdwZy3zt/BdgwaDvFvF+2rKesz3Fcd67az2y6NKm0XaAzvtAh2+ifmbYs29WWbRk0yneBnUvJkW5vrY9fWtopiOHeWedeXEgHr6+G6f8DKtTCwBVauo336Bie7VfbGiAIvfgzrNsCx46DIl7z++09Ts8c3hQCWroOm2J3RkZC58sMl8O1quOZnMGl0at2DyuDCI+H3/4CmVnKqHfvCvtqrNGo0mmSc7irrjgGrzq7DWp5Vmx5802QRuT9YBsmOWQ4KrMtsRgTKw1AagVU+2ueSwnwz4KAgvF6Mc+BisSFSUMq6k24iUlhGpLCMdT+7mWF3/AxPXbV9gGBnm13H2kZjQRTCBrSo7iyT81j0eAWURaTlDhpTbM7kiqNifXEERrXB4wWxYjvYjkYrBF4Eoz61KmtygNof4N/GC3gKBGFLMUtGfU+rV+CuBmMz5mOX+eZjmMJvKVCqO1IJzT+BogYYstRSt8VmWXIUiLRCaxO4WqHNC9+Uwa558Fl/8xHgLwctxzcZAi8lV5koX4D/PQiPjj0qKvmbNpd5p1rKBgDbdlzpR77pyZ5O2lcd9xeHfTWlfMhI49buq0l2yeWn0Sg8bcnLVXmySaNGjd6v+6TGyhK44gQYN9Sm3thA2bWPwNK1gA82DYf+JbH5yGLXydwu8+4ugFAYIiK1LpXGqIAfvoLH/21zjhaSZMO862y7KTBtAny1ET5amjxfWmML/PkZuO0cxQCgAVO3hcN3h8feiG2qHGjHFHJwX00hmzVqNJpksu3xS42mj9A3BsusWIMCQ1pmEzAMCZp35KyQgsZA1BxIWyVdzVUSKzOaV0i4qDwRJER9BYTyt8f/dTWiCEQBCLsJ1eXynAIQOY0Bo1rNgbKNnlSNKQGPZXl+BLzR9vna0mm0DcrSpZXyTWkyB+qEHLBZ09q0oxEB/1vgXhWTZkB4LHiWknLBwuPzQgSCgRBN48H3vqV4Ich/DNw1mLd8Abgg2h9aDobIABuNcZtdYLiTOzFybBv/37IR1n9lDph5iR2cBqwsg21nwUcDzf9Fg8DlhrZI6qYQgNFgzpfWcoBie5kmmfbY7T9S28ibviiiMN6hHbdkX01ZJ+fJpF4nOnlf7fMaNcn0hTbXGhk1AH472/y2KyMchT8+Yc5NJjD7O4fuDcdNh9XrYVXsxuVh/aG00Py9diN8s8p8zHLT5vQajfjJX+Fn4ibHJYzaAY67CCqGgOEyB+uWroVFb8KbX5pzZQKs2QCbGiC/IlWTywUnzYAf18EH3yu2VyZkUTsq68yxfVVZZ2/TqNH0VbZmoCyeV9+tpdFsEbk/WOZ0pUvluBVphgXNO7LWWAfFDCiJmBOmr7dOhisFrLLTbxs6HuHLT/zv969nqbjqQ1yNIPwQLQVRCiIAbbua/5W2Odir0mgAhVHzTZhtLpu08rk49t8fNSeET0zun0ZjCvL2tS5XBVOx5YOCsUcGM9RobQPPN+D7LHm1ey1J20MAhtvA8LgIhttwtRn4azwIQok83s9IeoTTAIiAqxoCL0Pz8SDkyZDT+CPVZhZRqPvBHChLag4B9RvB/ykYB5vrhuaDOx9+aEytMq7L+xUEd4DIoOTtAlAZMt+MWu+mY+0YY1AwVo9cqZWt2FfTHY9O+6pqX+iOfTWtvbmkUZNKrrd5X9ivO6jRZcCJ+zoPlIE5GLW+3vw9sBSGVsARu5tvtexXCDuOSs0zrAJ22w4mjDAf3WxsTqNRgWozG27Y9xiotNwF53bBdkPg18fC6IHwt5chGAGfp/1ONxUFAThpX/PtmMEQvbYdHfPkyL7qmCdbNWo0GpMtHSiT83XnI5xbW5d+JFOTReT+YBmoAwRQO3Orw459Dwuag0yJO7Ji+QaEzEfaGtxSGVYsy4TXR/2uP7UEH4KiVz7DVd9kVt0CnhYQ69rztBzooEPW4qDRJcyXFDS6Y4/hWTXKeay/gX5hM0/YLphxCqDk7erUBlI6YcAKHxlrjNfnXg+B18GIWJILMJpSJYqIINTcZi6PClgWSirObq4zA7MeYzOIUnv7gl6IusAdSc5v3TRtAQgGIdislIOBOScNUcANfhdsV9I+WKbaJUQb+N+Flp+AiB/l8c4RqZs9ySDZCCcyaMeO7qtJtnRwX03bmeyifbVPadSoyeU27wv7dQc0ugxzMGuP7RVlS9Rtho0NMKQcbv45lBeDx+klOxYbp2wDZx8Cd/7HfAOmnX1BH0Tc4AmbSVSb2V8A43eFsZPU28PjgeP2AZ/XfDvnT6ZBZamzfeOGwZ7j4fXPLc3Ti9qxL+yrvVajRqPZcjo6wNadk/TrFwJoehl9Y7BMdtbyMWqQHDDQ/t8lYHQrVHstjyHG0gxtM99W2Gr32KRUVsuonSn47h3aho4n6i8gsOIzit5/0z6uCShWWPV0QGP8kdHl/tigl8WupN9C+sa8e26z25LPQaNjkOMUUMl5BfQPmW++TEqfph2NUGygrMm+arv4ULVbqJYn8oTA+7X5SGa0BEQRRPNQbtd4nhT3ZcDawdBUD/nh9iwpzd0AtAH5ZoKSQufYFsDzI3iWQ2iMTQJrRoe22OA17yoM2LVtmnbs6L7qdDwq63EK2q3Lu3Bf7TMaOxh/9Slytc3l9Fojh+8GZx4MeRlMwbC8Gja3wrTtzcGnjvRhDAMO3gVaQ/Dv98zHM8PRVJvjLwpw8jMzT4U9DzbfvGyHxw1H7wlH7GbeWZbuePe6Yd7h5p1vH8WnOOhF7dgX9tVeqVH7GY3GpDvnKeusQSw9t5omx8j9wTJVEGEXICiculeYd2St9UHIsKQT5h1na3ztU1mllGGtV0Bg5Re4m+sRB52Ld/1yBj7yOzxV9cp4RwDRQoXtNnam0+gR5ls9N7ul4lQjR1J5Q4LmoGAin4PGFDtV21h1HlXkLQ+bA3S7buiHp7mSzwYup9nblpQmKa8A7+fgXm4z4CSZo4oj00lMWifMedGIDaKKfHNi/eBO5m8i5ts4WzeYg65xXB5weQEvRL3gbwKqiL1qNbV+ARgt4GqASJ65IFSQanfKbhAF/9vmywaiRcnpHEVKG6PZBRFLWq+1LWU6YV91Oh7T7asp6bppX1XamcsaNcn0hTbXGgFzgOygnSE/QEaMGQTH7GW+WXJLDiOXC47aA2buDO99Cy9+ArWNUFMP4QiUFcHUkVBcCU217fkaa6G2xrS7qB8MHAUer10t7RiGeXdZRhjmo6SXnwD3PQevfBqb86wXtGNf2Fd7vUaNpi+Ty4NOHb1qFEffkabpAXJ/sEzl6OV1YDptheMuDENFGD4oTBrLwACGtZl3aiUNPjgEIa7WJoTHh3C58Vf/gLe6GqO5PamcJVqisFWQGtRkoLEsbL5dcrlPkmk3WmQhLza/lZB1KTQqy5Ftjy+T7ZXStbmgxu3m+sV7s+23h3DMSb/n+4rV6vKF+Vik/10Sk+nbnYrtTMey3EmGnFf4wWgxP95vwfsl5gCaAMJQLRVmxOeM84HwgIiltYslDUBEIO8FiObDqjDUVGem0VUFBX+H8Eho2xvaCmFD/KjvaDvGGBo0B19D8YrStGNH99WkvHbl2iEH9920r/Y5jZpk+kKba40A7D4Oth3ioEOifwmcMyvz9EoMKMiD/SfBvhPNQbK6JvO7tADy/KRsk2CrOWAmBOQXQUExal1bi2EOmF38U5g4Cm55CoLh9nXZ2o4pdajKtaOX7KspdajKtSMbNGo0mp4jGwep9MsKND1A7g+W2SE7e5vgoSIMhRFYFn8TZiydG/POsv8VkxpI2GGAd/1yPA01tA7ZHmEUYoQaUmIDEatAFKTakxIsZRLsCPMROreAJtWEvaogyKJ1eOzOskw1JspJl94uMDLMO7H6hc0/nqgLl/IVoe1lGBHzLqr44KOqePlbXteBzZlUjqs5ti4MIt5JiKjzAojYqKtoad/15DhRFaO6q8z9rjn2UcWqKo1sNgfwov0hNNV8I2paHILplCZ1aMct2Vedjsd0+2pKgzrRSftqn9OoyZxcafO+sF9noLG8CE6cYU6K3yMY5nxpPpdiPjFpG/jzzU934fXA5LHm45vBMFndjn1hX+31GjUazZaRy3ekaTQ9QE+FfN2HsHysy+KornJZRi+Gt5l30Sz3JyfLi0L/sPl4ZiKfSM6rGkRzhVoxQq2EiysIFY6CcGqcYgB4QOSRHOzIujqgcVDQfHxuhT9VoyMCPFFz3qpMNSYLITUAUo0ISfkNzLvh8oMB+ofNt3FGDaHWKMDzPXiWti+WB42s5ar+231nui5el0pSul3PRpKySeWPnF+2KfHfBdEy879PmG/DzLQdoyTfVZlUcJp2TDFwK4/HtKj2sS7eV1M09AWNmmT6Qpv3cY2FAZh7OIy2vmFYk4Tfa95lBmRtOyaVLdefI/tqUtly/b1Jo0bTFzEMtmjAa0vzqcpQvUkz009XIgT6rjJNd9Mlg2Vr1qzhZz/7GeXl5eTl5bHjjjuyePHixHohBFdeeSWDBg0iLy+PAw44gCVLliSVsWnTJk466SSKi4spLS3ljDPOYPPmzZ1opQuE2/6D+RkcdLPZ7Wa1P7Ystr4s7MYr3Kz3SHkseZOWxT9RA1dzExhe2vpNJFLuJlrgJup3gWEgDDfCcBPNcxENONnmSh9UWIKW4og54LHZRXLAI6VLBDSWVcODsXyQHPDIQRSWcqy/reszzYP5ltENvgjVgVY+HbicmsLa1LQGuJrMu8rkOb+c4jC5epW5ThLjZci/rQNY8iaWY8tMmk+uw+m/XK7VZlEA4cEuwI0v6qYwksG+GvvUetzUWe5BdQkwrPtfura3Guwk1prfaUNay1bVrdrXunJf7Wsas4Te4WdIOpaiIo+oKEIIb/Lxlzj2XKiOQyF8COEhKgpi610IvEQpIiqK2r9FAUJ4Y7+LYnX5LevzSXe8J/uZGH1hv06j8eg9YfqOXd8X6M2U5MNP9iylTWxLUIyijW3ZHN2HWjGbzWIGbWI0QYYTFgMIicGJ/RMR8yfCQOCJLfeRiHP0ObjvacwSeo2f0Wg0Gk2X0OmPYdbW1rLnnnuy77778txzz1FRUcGSJUvo169fIs1NN93E7bffzkMPPcSoUaP43e9+x8yZM/n6668JBMxZc0866STWrVvHSy+9RCgU4rTTTuOss87ikUce6ZA9YfpjxGRGRBlRAoCb+uhhRChNm/+vRfB0HnznhqBlMGa9C34yHL53Q0R5240aEXYTfGIAeBuoX7c7dSftjBEy8DRuxtUYIZxXAoBhhAi7vDa39JjKvFThNarwsBGPUYWHDbjFZlw0YxAk8bwf5ksKwgasj0/cqxrFUQQ0BuadddXWCX9VQZtdEGQXmNkti/12R8074eoCLfx9yos8X/wykdVh8r4D4YPIMIgMAFEA3k/AtSm5iEwGu6xmOsV0mUi0LrcbwFLJteaR65XzxNPF03REo9EIrV8eyPpdDuWiAbDWA60Z7reF0TZC3AhsBKAsXEhj6DIavBsI8A35xmJcwvLiBaegWzZM+VvE9l/LThj/7kjAbs2rKkfOs4X7qnInsmK3DZx2smzX2MNkm58R+ImQR5hyIqKEsOhPhBKCYhQhBhPfoBGKiIo8PEYthjnrXxIGIQSps6tHCWAQJEIJbupw00SEEsKiH9YdwDBCuGkgLMqIN5zbaCBKEUK4cBmtuKnPWJffWEJAfIXH2IiH9bipx6WaaDNZRO/dr6Vj1wBcbvPxy2nb64GytBiQV7ADa6JXmDcAmBFEbKXAIAxEY/u+C4NW3EYDHjbipo4oBQjctInRuI163NSRZ3yOV6wjYHyHR9RgxOc4yMDPCNwgPKnpEr8jIIjZZfE3vXBfzcnjsYfJNj+j0Wg0mu7HEKJz72f89a9/zdtvv82bb76pXC+EYPDgwVx66aVcdtllANTX1zNgwAAefPBBTjjhBL755hvGjx/Phx9+yC677ALA888/z6GHHsrq1asZPHhwSrltbW20tbV32BsaGhg2bBjGvIfBb74K0OyExK+Wx6MEJ5wudVm9uypqcRoyUUU7lmYwYkMhRhhcEXC1gSsInmbzW1muOcDgogUXm/EYNeYgGhvwGas5tE6weyPcOig2/1iGeAXMrYJ/lcEqf/r0nUVeFE6rgQcqYadmWBwB7/tgxOW7QPjB5Wuj9M0aXC3J+eUWkLe4U5yGIq1qmWp9PE26wbFM9pCO7p3pNAZLBvLd8X8kVFTZIUsKoy18uuQcxgTXAVDjKWHHbe6jxtMPiOA2NuGiTVHGlmEQxss6vMZqfKzBzcbY/lyLi6ZYR0s4jxLaNYLd2U4+LDuyw8iNoGpAVZ5MTi9OtveAxmgb/Hirec4uLi62qajryTY/4zn/LoSvjCiFMT+TiX9JWOuQtov9jBEGV3yixajpYxDgbQAjCu5WcG8GohhGKx424fV+hzdShxG7GOMSEbyhpgy1JmOICK5omIi7851LyJNP1GXv7DyRVtyRZH8aNdyEvAW4oyGEy42vII8x/du4deZXDCgh8ybtw9Q0lPHTO29l1aZBlqVbuq/G/0dx0YTPWIWLzO/IiVJAhBLb9S6agQhuNuM1VuNnKS6aYxchN+GisX1QO0vOwSnrtJ/pMrLNz/T09tB0E/qqTGboxzE1W0FDQwMlJSUZnVc7/c6yf//738ycOZNjjz2WN954gyFDhnDeeedx5plnArBs2TKqqqo44IADEnlKSkrYbbfdePfddznhhBN49913KS0tTTgWgAMOOACXy8X777/PT3/605R658+fzzXXXJOyXFAA5JPZ8EN7LuehDtKUpeicxDsmCLMDYkTB0wRGyOyYuMLg2WwOjHmawBUCd5u53hUGI/4+dvuTg8CcVz5C7E2FuIBKoJIHKuCB9MKVXF6ZPk1XcNUA83t5fMFYKUFUMOyfn2O0pL+gKV+0VF0kxWaZKq9dHlVca9NVVaaV86hae0s1+uqrGPjhP1m173mYr+RUWSeXnu6YcRMR/YlkNMSXaQQPQUZaHKF5R4KLJtxGLR5q8BrVeMVafMYqPKLKvOOFFhJ3CKgC+kxGIu06BnYjpwL1ZrMj01OQyk7Zhp7SmAVkm58Ji0FAIT3uZ8D0Fa5QbKCr2fwN5re3wfztbQBvXczXxAaMDGG5GCPddmqYNYSAEOVAefpOc0Y4nQU7EbtxmgwYkb+B8iKDxGuWNY5UFm3ipN2f5cbnTkeIjvgZp1EaF1EKaRXjSX+MZe5nkrPFzwNmJOWmCY+xnoDxJX6W42YjXmrwUI2LFrSfUeR1Klv7mUSaLfUzGo1Go+l+On2w7Mcff2TBggVccsklXHHFFXz44YdccMEF+Hw+5syZQ1VVFQADBgxIyjdgwIDEuqqqKiork0doPB4PZWVliTQyl19+OZdccknif/xKjInq8huk9+ZpLqUZkVgHo6198Ito++CXt95M4200B708TeZ/d5tZVmIAzFqmZKLKTNkk2TSn9Cr5ct1W7K4Cymkz6feprjBmYrPN5i/9dC3l76xMW42qCqdBKFV5meZVbQK7LpZTfCjHxXIZW6qx/KsXqd1mbzYP28kmt1w7BA0vGzwliTvLzJSqHcdpB7J+Z3o8xpcZCHxE8BER/QgyCkR7WeYdlZvxGLV4WI/XWIeXVXhZZz6aTH3s0eSQfWM49YPT7QBOYxzyKSWT8lVlqTpKdsexUz2Z2pCJxh6kz/gZI9r+P+5rEODdDL5a8398AAzMCy6ezeBpafdLqmf5s8bPGOp8ne1nVE1hV58lrc8V5aRxy/G49EBZxhgwe7f/8u9P9+XrtaPJ1M84N7Z1fWf7GdXx6CJCCRFRSpsYm0hnEMRjbMTLWnzGSryswscqvKzBzWbMizUR7WcytUH7GWW9zn5Gk7PoO8o0mqyk0wfLotEou+yyCzfccAMAkydP5ssvv+Tuu+9mzpw5nV1dAr/fj9+vepRDFRWrgjLMzgixq/JGFNwtJAa7iIKvDozYIJgrAp5GM4+7xVzvis97Ye3sKExy6gRkEvSoysm0g6OKP+06OHK5dqM3sr2ZBmRbqlFA/vJahv/jc1zBiDIctv52GqOTq5LNlH+ny5tusEruv1nDelVddv1R+XemGl3BFoa+fg9Lj/494fx+NqmSGyZsuKl35yf+F0VbGBCupdpTJlniFM077ah2HSanHSm+3kAQIEKAiOhPG9vQfkdaFHMgrRm3UYuX6tijNivwUJOYJ8e8S0CaB8eu8ZyOU7sOeaZ9Nnm9qu5k6ek7L9a65J1jazT2ML3Pz0gb3xUyfYkRMe8Ai+Nuid31VW9+3K3t6+M+KZ5ffqOJjPYzW6UxzxPmTzM+5sARVVnXic92+uU3csVh93LpY7+gur6/Tap0GzXTndqatqv8jPktCBASQwgxhObEnWiR2F3PdbhpxMNGfMYy/CzHQxUGoZifCWIQG+zWfkb7GQfs/YwmZ9EDZRpN1tLpg2WDBg1i/PjxScu23357/vWvfwEwcOBAAKqrqxk0qH1Oi+rqaiZNmpRIU1NTk1RGOBxm06ZNifwZY0TMR0uMsNnBcIVjj6a0mVfnXW2xxx/D5uCXKxzrkIhYPoFtpyTdlToyTGvXGbGuUwUXabWzZVcnM7HbKY7tYo2u1hBDnvoaT2NbIrvVrExiM1mG3I9TDUjZSZbLUtUlx4+qslV2q+LNrdWYX7OEis+eYd20k3COtNUN4BZRvCKMc6M64bRFZew6PU72xr/dloG0coKMsWyYCAZB3EYTbjbEXpaxLjZX2rrYZOYNGLRiEFYfR6rOv/W3avBAJV2V1066PJJqd6yodga5UyLvfB3R2MNknZ+xbkAjYvoQX73521uPeYcX4Go1/Y5/Q+xiTBQMy0T/SXeSWYrWfiZ9WrnsrdQ4Y2gNB46owufuwBt8NCYG7LPNx/zmsHu55NFfEo646ZifkU882exnPEQpJiqKCcXziH1iacMYRHHRjMtoNO9CM6rwsB4XrfiM5XhZhyt+V5o8B4/2Mz1K9vkZjUaj0XQ3nT5Ytueee/Ldd98lLfv+++8ZMWIEAKNGjWLgwIG88sorCWfS0NDA+++/z7nnngvAtGnTqKur46OPPmLKlCkAvPrqq0SjUXbbbbeOGTTkWSiImINgriAgSHr8MZOg2y7mchodQbFOVYZcn/zt1MGwQ9XZsBuJSRegZJlGV0uY4f/4nKLv1idVrTJVVXU6Kao+lF1auSwZp7JVeTOJQztDI0Dlx0/SMHwyTUN2cKg9HU4HjYyd0i3tOduVkWkeDwIPYZFPmAra2D62oQTmHWltuA3zLgEva/AaVbHvtXjEJlxsxkUriEhy8Xampzu+VOlVx4u1nnQdGbneTI9ha9mybR3pq3YhWednBr4M+bH5mTzNsbnA4hM0C+1nepmfGVbUxK+mfo3PpQfKthgDDpnwFo+POYj/fT+lfaGcyC6zbZre4mcMwIeA2AWbMkKMsOzX5mCam0Y8xkbcbMJnrCDAN/iMNbhFXWwezpDpZ+yOEe1nuoys8zOa3EPfUbblxLednuhf08V0+mDZxRdfzB577MENN9zAcccdxwcffMC9997LvffeC4BhGFx00UVcf/31bLPNNolXLQ8ePJgjjzwSMK/cHHzwwZx55pncfffdhEIh5s2bxwknnKB8c4wjgWrweZ3TOJ2r0o2qZFKGatTFbmTErrxM4jcnckCjEYow7LHPKftgFYawL0olxym+U62TY0Z5uSrWyyS/bI9dXOmUJ2771mh0tzYy6P1H+OHIaxBJb4xT71xRXNbssaWqHUQVjWfS2dmSSDmTXrDKiTrZZ2DekZYfG0irpJXxFmccMd84azSabwakKvHWTg81uNmEW9SbbwcVUfVxZa1WKJaB/Q5kV56qfDmPdVPJ5dp1atKl6yGyzs8ULoc87WdyQePQwmYemPkeo0s2Z02nvbfi94S4+KC/s3jFDjS3BSxrOrJz5aKfia/3EqGMiOgHGDSLqYA5N5p5waYBN/X4jWV4RDVe1uCixbzzWdTjplH7mS4k6/yMJrfQA2Wdg2HoATNNl9Lpg2W77rorTz75JJdffjnXXnsto0aN4tZbb+Wkk05KpPnlL39JU1MTZ511FnV1dey11148//zzBALtwdTChQuZN28e+++/Py6Xi6OPPprbb799y4yyu9Isr4//htR4So6TMg3oVcvtyrILauQrfapAJNc1Cuj38VrK31+VeClZJvFcupDWaYDJbpksxW5Aysm+dKF1JmXY5ctEI0Dhmq/w166ltXwETh2WKAZLfe1BnYcIw0M1LM7bVpHPrmdqt6M6dVxU0XOmvWpVOZn2+J0OHg9RioiKIsIMppUJFicdxkUbbqMODxvwshavsQYvVXiMGjxiQ2wS6CAQVe/7cnV2nZFMG9ma1q5TouoHyiPCSOl6GO1nFGXJy7WfSbUrjUYDwSk7/Mi2/RqzZl/v1RgwYcgSthmwgs9WjqNzzsEoysglP2POjSYIEBUlhBhGq5hgsS2KQRi30WD6GNZgGEF8rMRnrMAr1uKmkaSXDWg/s0VkpZ/RaDQaTbdiCJGbw7ENDQ2UlJTArbMg4M0sjrELKlT57MqRAxBVnkw6GHL9Tvamq1eVp7dpjAjGLHif0i+qUoqwFtUR6XIep34UNuud4s909XdkM6nszaQOJ3sFsGq/uayf/JM0CgR/Wnc3F294IpHi5GG/YmHpAbbp05XX8Wi4ox2QTLZSpuVvrcYo5h1prbGBtPWWOdLMRzzd1MY6OJaJ2+12ELt1qjROptqdA6xIO020FX68Derr6ykuLlZU3rfQfiZNnl6mscQf5L8/fZ1hxc1pMmgyRsBdrx3P//33DLbcL2g/k9n6+MsG6nFTh5caAsZX+I0lGIRjb4Zuir3UJob2M1lP3M/o7ZFD6LvKOpfcHMrQdCEdOa92+p1lWYfdKEH8txV5VMEugOhoXU6Bhky6ToSqA9AHNHobWilYvilpsd1gklyMyjQnNyWkb6d0qs1oFwc6yYyvt6bpDo3FyxezftLhYLgUFqQryalH7JQ3XW87XaTthCF9qyL4TOyUO0Nbo9EFuIjiJSqKCDGMFoSlccO4aMZjbDLvSDOq8LIar1iD11gfm7umCfOONJG+42K348imZto5cipPY9IHzsF9QeMO5fUMLGhB04kYsOuoL/G4I5aJ/rv7HNwX/IyBeedzSeyOtOG0ImgU+wPmC3lctOA26vGzDK+xDje1eMUaDCOET6zFTW3Mz8TLVJgbr1b7GY1Go9H0AXJ/sKyjfX/VMjnuSXdx0K4ua3yV7sKkPJISz6fK2wc05q1pwLM5mHGsZheTqaqU0zsR7/dZ/zuF26r0qnpUWrpDY+Hab/A1biBYPCCNhSrsGle1I6nKtUvn1MlJt15lo/w7E43pduDO1OglSglBUUKQUbRfIRMYhHDRjNtowEMNXmOtOYgWuzOtfSAt/nZSyXy5aie58XRO6zVq+sA5uC9oPHBEFV6X7rF3NmUFDfg9QcKR/NiSbDsH57qf8QAGUXyJgTSrnzEH0swLNm42YBDGa6zBL5bjM1bgEo242dx+0cZ6LGs/o9F0DH1XmUbTq8j9wTJIdeDpYiO2IL2cx8kOIf1XlWlXtpzGLs7KMY35K+sSZcpy5Wx2A0eymdayVOXK5TkNSMlxo6qZUPxXaVHV11Ua3a2NFFR9Gxsss1df7emXtHZAuM7GMpV667dsoSqdvEXtdtpMe912dTp1Upy2vpPtTvV1VKOBwE8EPxHRjyDDLY1tTgJtDqTVtj/WKdbhNdbFXjZQG3ubWpjERH92x2O6gQanNBqTHD8H57qfcRtRxpfX6328Cxheto7Jw7/hrSVT6F3nYPl3bvoZgChFBEURMNxcZnmpjUEIgyAe4//be/couaoy7/97qqqr+pJ0dzp9D0kIt0AkIBeJUS4q/YMAo6C8awSzRhyReIF3dImKjAu8jA4Is9QBFZ314+L6wYjO7xWcAQyEAEYgBAgJkAAxwZBwSXcn6fQ1fauq/f5RXZVdu5596nSnu6rOqe9nrVp16uxn7/189zl1nmfvU5f9iOIdRJ3dcNRo6vfSMI4Kpwsh9Kd+k1NN/JQA4wwhpFDwnzHJDFIei2U6UwnEtjzDbeIp2UiTDt3Wi19eJhVB0wiFyj0DYvO6Sza3pTq2LvOlsl7ngbb5pbnf69DNnEaFuh3rceC4s7WS3MT73voO7IvUIZZMfUVjY9VxQg8qq45cpntr9iWVe23fbUKTb0JiOyltkxtbnUJqBBQqkUAlEqoBYzgKUIfOqtRC2tDEVzv3osLpRBS7UOG8i4jaO/H7aCNwMJ7rtuQm84/JEbRrcBnEmZqKBObPHvKmg0yKinAcZx33Ep7efiqCcw0OepxJ141AIQKFKoyp2olYo7eR+gS0g2FEnB6EMIQKdCHmbEel8xoi6EEIg3BUYiLeJO1uMs4QQggpMcpvscyGmYzbtoHcXAIutjD2S3mT1Le039amV/yqUQEVfSM5rplmbi5IKaOZZprYyk1bs8xL3/kOXSE11ux5DeGRQSQqZ1s9e7eiEXfOuQC5JwOQezAlz23ZsdsJoGfQumIvJ77bMme++n7XmP5EWiUSai5Gcaw2uUnCwSjCziDCOIAIuhF13kn90QA6EcF+hNEHJ/2JNN1Ncvj49RpcBnGmtWYYcyvHLAbksHCAMxZtQTQSx1i8AsG/Bnup73eN6e0QFGJQiGFM1QMARrAUA+pcpD+RFnb6AcQRwT5UOy8horonWlMTn4TuRBiDABJQiAFqzKKfEEIIKSzluVjmJYeREnobZtJuWzHxUje9nS9P8FIeEI2h8QQqBkb1XaLrUrqoDDtp7iQtME22rpSmutko2NsvtMZYfzeq9r6Jwfnvh3wQpWTZ1prbCWJyOCeVzT+3yYK0LbURVI0AEIZCNeKqGnE0YRSLMZT52Hp6IW0IYfSgAnsQdXahAqmvdUawD47qBcAfQPdEgK7BruUB0XjsnAFURhJ5jMlUObZlF+Y3dOLN7vko32twOWl0oBCFQgWSahYAYBwLMKxOMezjCKMfUWc3IujBKI5EKNkN4EYP/hJCCCEzS3kslpnx3FxlkMrdVj6kHMdcsZDat7324pNZZvoQYI2xrkFE9x3Mcdkm2W2u5JZqut2bdZsTmnXc5oc2322LbgXRmExg1rtbMDj/ZKnU4oWkWKojLRnqeBl12+ja+s03gzfbkfwqR42hnIW0lCQFIIEQRuEkuwGsytNvmRLga3BOfa/t+UUjgPmzDuZ9R5GpU1s5hP912mP48erP49BXxnkNLj+Npk0FEpiLYTX3kJ1qASGEEFIKhIrtwIyjcCi3sCXnkr1jvE6jr1aYkwmpjoPsNk17Wz+mH2b/yrALsMba1/ciNJYQJUvNeS0HcofJy7CZdU2/pDq2bcnHfOUzoXHWO1sAlZx45WXK6HZSuJ1MUjtSn8pS5paUm/XSr6Vtajxkk0+jAyCCJGqQUM0e2ixDAn4NDnqcqQglcUpLj7e3DJkaDrBy+cNYceLTkA+IpRKvwUZZuWgkJIDwnzAJ8R3BXyzT84p8yX3axm2fbdIg2ZrbbqsWUh6k1zGfzbaDqjGpUPtatzivklJGqcw2VPpr5VLm1rbUt/5al+jmq2lfaI1V+3YiMtwP+zKbdFKZM2opSZ8Kk60nzeBtbxSAGk1mSmMZEeRrMPLUseEjjcfWD+AjR3QLDpPppL5qAN+64G7MqjyI4l+fyuEaXA4aCSGEkJkj+ItlaaQ70NJKhBnvzZUOt5USr3e0zTpeJiBuKyem7wHSWNE3gqp3+iwVctHTNqkbt31u9z1N6bbhktJGqW/bcHlhJjRGhvsR69uD3KW1fAkwDLvJKHNLjm3t2JJw6YjYRoIa7f5MRSPJEMBrcGa/6XuANJ7Y2Isq/l5ZQZhb04fq6Ah4Dbb5Q42EEEJIqVA+i2V6Am7GcDP5NxNut0mAvs+xPEx7x7ItJfvSxAGQc5MAaqx+uxeRoTFRrummKUvvQqoz1eGTFsS8LFqZc0Mvh9S0mymNTjKO2MA2wEkKrUneS57rtoDd3rTLh9syo9vI22bitnrUODWNJEMAr8FBjzM1FXGsPOEtwREy3SgA44mI9sqE12BqJIQQQkqH8lksA3ITeH2/G7ZVEbe8w9Z+vkmGvq0n+V59DpJGALO278/Y6otUZvNKeJhdShKkhSfTzktZui/dRkolpeGUygutEQCqRp4C6l8GnIRg5bY0aI6CTYEbur00OzdtzeepJNrUKNua/U5GIwnUNbgM4kxtdByL6gY5Vy8AjgNEwuMTMQbgNZgaDz0zzhBCCCk9ymuxzC1+p/eZuYO0GiKtiNjaMZFWKqS+9P5Mf93ymiBpTCZRs6tXnI+Zc7V8Lqf3mUMmdW/Oq0wbac5l9q8Pj1lm4uZvoTQCQGx/LzB3PTB3AxAaQ/YB0VswE3CpJ8lDZTxM8o2UNAGQZs9ubwq9L7OMGrPLTH+JJ4J0DTbLzTJzW/KtxDUOx8MYipfHH4OXAhu6ZuNA3TNAbD9yDzCvwdllpr+mD0HWSAghhBSf4C+WmTHalgO4Ycs5bBMGM+6bdtIqh9vryfSdfh0AjeHhOGJ7h3KKbfM525zKRJoDus333Fx3S1VNG3P+6DXtLJTGaM8wnGQCmPMy0PIkEB4VetWX2fLNhs19+Wa3NnVSEm5Lrt32uY0eNXrXSHII6DW4HOLMB9v2oalqVDAkM8FIIoR45btA+8PA7B2AY15/AF6DqZGQwMF/wpx5HIfjTKad4C+WmfmFbRVDKpcwJwjSCoZtn9sqi5ecx+xbypcCpDHacxCRwdEsM9tcyEG2NGXsU8Y+CLamy2ZdaeHJrGcuUtn8A2QtxdQYHhqDM55IvZq1A2j7E1AxADumx7aDbWJLtG118p2wUkIu9SfN0N0mFmbbADUSkYBeg7PqBFTj2Ud0IxpO5nGWTBdLG3tRGUkAkUGgZS3Q+CwQclus5DXYTjloJCQAcAGnsHC8yTQS/MUyEz2mSysKUnJu1nWM7XwTA7OOuaLhNSeR2nHz0+caY3uH4IznTmIkKbb5ktSFOdeSZNnKbamiWx3bvM7tMBRDY2RoDOGR+KGCqvdSC2aVe4WebbNQN2wH3Gs9c1sn38kp1ZdWAfQyaiRTJCDX4HKIM0ypC0vbrGEcWTs0cQwSqd/JbF0LVAyCcYYaCSGEkFKiPBbL9MRdSu5teYeZ8Evleh/pZzPhN/MEM5/Q+9L7MVdWTHvHKA+Yxqo98qeapBTNLJfSMXPYzIdtriYNpW3YpDmbbd7oZX6n25nl060xNKp97TVtENsHtD2aWjjLOQFMD22emnXM+raTQBpd86Q3yTdhsI2621E3fTApN41EJIDX4KDHGcdRqIuNgRSOmkgCnznhLQDq0PGp2Qm0PpqKN4wzlvbLTSMhhBBSfMpjsUxfIZCSf2jbenIurYDYVjFsqymSnS0PMCcb0qqGjjlRCZJGhczCjTk3g/HalK41IUqyuWZKsvXrVtf0TUojpTS3FDQ6CYXa17pzj2mkH2j/EzDrb4CThPWAiUgnmplkSydketstac6XzLvhdSKgQ42H50/ACdo12PTXtA+AxpADNFfz98oKigOc2tyDWPqrr+njUtkFzHsIqH+VccbVtpw0EkIIIcWlPBbLJKTcQYrP5sqGbmNbQZGSc+mmIIR9Upnpr+SLhJ81JhWi+w9aXTa70xd9JBxLuZlamqmn6Z75MNuy9aXPL21tSxRa46wd++Ekkod2piuERlNflal/ZWIiY7YwmeQ2nxLTe9NL6cT2uozptY60TY1kkvj5GlwGcaYilMTs6LjgLJlJ6mPjqAgJcSZyEGh8Dqh6F/JJwWuw3G+QNRJCCCHFo/wWy6QVDAlbjJfaMicY5t1wtwTe7MN8NicYXgiARieRRHgkbm3Sdu/U1r3knm3xSlpY0m2lhStbnzYfJH9LQWOsewjhg+Nyx6FxYO5zQOP61LZ1NiphJsrSkp1p6zYDNxN/W3umQlt7XvqR2reVlYNGYiUA1+C8BEBjNJxEPb+GWXAaKsfQWjOSepFzyRoHWh8Hat+A/AkzXoPlfoOqkRBCpgB/5J9ME+W3WCbh9n6yTR7ccg9b+7a8JW3jduPNLbfxgs80huJJRAZHc+ZNNjds6Z6tK91FaZ6nLzK5LVbZhs4tRTTbKSWNkcFRVHYOuOTYEz/I3LQOCA9bWpQ8mMw+rwHOy0xfWuLM54tbOTWSKeKza3A5xJmqSBwV/CfMglNdEcfSxl75ODoAwgeB5j8bn2TWDXgN9rYvCBoJIYSQ4lEei2W2O81meXpbunttJun5Evp8KyRSW7Ybbwp2322TB59rdOJJOIlDTjvI7VJKtfK5aaZ4trmb2/BJEm1zNhtSulkKGp2EQvXu3tzKWatuKnXXv3UtUDGQpzfb8mK+E8PcJ3nsdSKgj5CXOvkSeGokAgG7BottBkzj+xr70FDJT5YVGscBFqb/EROQj2Mokfokc+1r4DVYf11OGgkhhJDiUh6LZWnSeYUtPivkJm0wXtvKvWBOMNz6MicZUg5hW6EJgMbI4BjCw+NWuWa6p3frNl+yLRxJLkvD7nUuae6XyHdIi6Wx6t3+3IrSZKZ6F9D2CBA9YPHU3E5XtHmZj3x19ImDNBOXjpLbPrc+y10jsRKQa3BOezoB0RhxFKflRWJR3eChF7bjGEqkfsOs/hUgFDdaKPdrcDloJISQw4BfxSTTQPAXy/Sbb+a2iZl72BJvWzy39WWztd3gSz+kuno96QZjQDSGD44BSZXlope0y5zj2VxzkD91U3AfDtswSvWklFZKEUtBY2XnAJBMZhvbjmNsX+ofzKres3gieZBvliyNpteAZ1ve1LfdfDJt872h8rUXZI0kQwCvweUQZxoqR3lmF4kja4cQCXmIM+FRoOkZoPFpIDwiGADlew0uB42EEEJI8Zj2xbJEIoEbbrgBixYtQlVVFY4++mj8y7/8C5Q6FByVUrjxxhvR1taGqqoqdHR0YPv27Vnt9PT0YOXKlaitrUV9fT2uvPJKDA4Omt3lxxbLpf22SYNeR7rz7taGtPphe7a1o+cWep18+YqPNVa925/5GqaeXklD4eaiOU+ydSkNgfSQ2jDnY/nsJZtS0ljRN4LwaCLbAdtxdABEBoC2x4DZ25GbjOu9u504ZkKtb0t25rYN6eR0S9Z1W2U8S23pfpSLxuLDOOPSP+OMvR1D43ENA5yfF4kFtUNoqhpNvcgbZxRQtxVoexSIDIFxphw0Fp+SizPEn/DTTYT4mmlfLPvxj3+MO+64Az//+c/x+uuv48c//jFuueUW3H777RmbW265Bbfddht+9atfYcOGDaipqcH555+PkZGRjM3KlSuxdetWrFmzBg899BDWrVuHVatWTc0pMz7bEnkzgTdXQUx7E2llRaoj5TJmm7Z8Qq+j+xYwjVV7BnLckmTrzUhDYUu5pPmfaW+TYsqW2pL8NvuR0sJS0BgejiM0Es8tcBMY0X+QOWFRZBs50862DCipkdpyQxo5tzeL3o9tclFuGosP4wzk002vwziT3Zb+GkBFKInTW/YLjZNCUB8bx1Hpr2J6PY5V7wCta4CqTmT/8H+5XYPLQWPxKck4QwghpKA4Sr9FMg383d/9HVpaWnDnnXdm9l166aWoqqrCvffeC6UU2tvbce211+Ib3/gGAKCvrw8tLS245557cNlll+H111/HkiVL8MILL+D0008HAKxevRoXXngh3nnnHbS3t+f1o7+/H3V1dcDPLgIqK+RJgI5tv1Ru3iQzbcz8xGZj2nrpezL+TbadUtGYVDj6l8+h7tUuT81Kbki2tnTRbbhMt90k5RuGybRRTI3JcAhvXH8Oho+om8JxDAE9pwIHTgWSFUJPukf6a5tnerkXB9J2bkfGtk/q323mZquTLg+gxtFB4OefRF9fH2pra/P4OHMwzoBx5jA1zq4YxyOfegoL64ZcKpAZQwFXrz0d//PmEZM7jgqAqgD2fRDoOzEVc7IK0wT0GlwOGhlnskjHmWKPB5ki/GRZcZneZQ4SECZzXZ32T5Z96EMfwtq1a/HXv/4VAPDyyy/j6aefxgUXXAAA2LlzJzo7O9HR0ZGpU1dXh2XLlmH9+vUAgPXr16O+vj4TWACgo6MDoVAIGzZsEPsdHR1Ff39/1mNSmDmHue0YtnodyVbKJ8y6bn0rbdstaZwMPtHoJJKI9gxbZbulgzYX3BaRdHf0h5namX3kK5OG0JRcihodpRAeHp/icUwCDRuB5nWp35rJ6klX7OY1DBtdsZu9jtuE4nCSe7c3Y7loLD6MM2CcOUyNtbFx1POfMItKU/Xo5I8jAITGgcb1wJyXUtsZo3K5BpeDxuLj2zhDCCFk2ohMd4Pf/va30d/fj+OPPx7hcBiJRAI/+tGPsHLlSgBAZ2cnAKClpSWrXktLS6ass7MTzc3N2Y5GImhoaMjYmNx00034/ve/781JL/FdSuhtmDmLEvblWxVxSxRtPuYr96nG8EgcFQOjWSmVbaFIckkZ+6QuHcNecncydc1+TX+kerb2i64xqVDRN4IcvB5HRwGz3wAig0BnBxCvzm1LbHAyJ5WOORpSnXwnu9m324i5+WvrN8gaCw/jDCZ3KjHO5NBUPYKaCvMfFknBcIC5laPi/qzn9LZ5HENxYO7zQEUfsPcsIBm1d5T1HMRrcDloLDy+iDOEEHccB/x0GTkcpv2TZb///e9x33334T//8z/x0ksv4Te/+Q3+7d/+Db/5zW+mu6ssrr/+evT19WUeb7/99qFCM/bq8Vl6/0jx3VzJkO6Cpx+29t3qmPtsOYjtplyANDoJlXoYbkqpn5S2uaVyZh2prjRcaXdtdW2LV2afpu+lqDFrh749meMIpH5fpv1hILZfqGx2IjVknpCmnW1Z0UtQtCXwtnbyLWGmn8tBY/FhnHFpn3Eme59FY1I5zJ9LgcOKMwqo3Qa0PAFU9AuVzU6Ccg0uB43FpyTjDCGEkIIy7Z8s++Y3v4lvf/vbuOyyywAAS5cuxa5du3DTTTfhiiuuQGtrKwCgq6sLbW1tmXpdXV14//vfDwBobW1Fd3d3VrvxeBw9PT2Z+iaxWAyxWCy3QE+0zGcJM47b8gC9vl7HzGOklRBz5UXKffJNVqScIiAanfEEnEQy7xzLdDdfeuWWXrrZ5LN1S+/MYTO3bfYloVE/j6Z6rsb2pv7BrPsc4OA8oUfpZEs3mm9p0DbTN09c86S01ZV8kwbA7D9fm+WgsbAwziD3MDHOTErjcDyM8WQIFeEESBE57DijgFlvApXdqTgztMDSiVQ5SNfgctBYWEouzhBCCCk40/7JsoMHDyIUym42HA4jmUz9c9GiRYvQ2tqKtWvXZsr7+/uxYcMGLF++HACwfPly9Pb2YuPGjRmbJ554AslkEsuWLZucQ3psdlul0O3d9ilkJ3JmPuG27bZqofso+Ws+m20HSGPFwChCY4kcM72qYzQDS7nkovTaTOPcbKV+bfa6RDdfTftiahSZ6rnqAKjoBVofA2b9Ddn/YOalMy+YHeonr6TOPLnd+jUTe2kiMhXKQePMwTjjss044+7vxPNRdYOojHChrGgoYDQRytmXYbJxJjIAtDwO1G9B9j8yuzgwWYezOvTDNbgcNM4cJRdnCCGThx8hJ4fJtH+y7OMf/zh+9KMfYcGCBXjf+96HTZs24Sc/+Qk+//nPAwAcx8HXvvY1/PCHP8Sxxx6LRYsW4YYbbkB7ezsuueQSAMAJJ5yAFStW4KqrrsKvfvUrjI+P45prrsFll13m6Z9jRGwrBZKdWUe6iSbdJfd6J9Ssk29VJV8bpr9B0zgJdDlu5eY+vUySr7epS5DuvebrB0LZZCiExhwO5zg6AMLDQOvjwL4PA30nACrs0oDUiK5E6sB2AksjYZZL+yR/9NHzGnzLQWPhYZwR2mKcmZTGcXOhhhScWNi4eXLYcWYEaHoaqOwC9p4JJGIWY1sjafx2DWacmQlKNs4QQrzD3ywjh8m0L5bdfvvtuOGGG/CVr3wF3d3daG9vxxe/+EXceOONGZtvfetbGBoawqpVq9Db24szzzwTq1evRmVlZcbmvvvuwzXXXINzzz0XoVAIl156KW677bapO2bG5HzJv17HbdXDbEPCLLNt25JEaaJgm3wESaNQTVqcMtM6W9N6HQhlbmmbVEeaC0p19PbN8nyH1LQrhEar04d7riIOND4NRPqB/WcAyuvlxzYCZpm5z22GJam1ndxSPzZ/JtOmrX2/aSw8jDMeyhhncvvWNB4YjSKpHIQcJtFFYcbO1SQwexvgxIHuj2gLZvnw8zWYcWYmKNk4QwghpGA4SgVzubW/vx91dXXAzy4Cqiqm3pCZlE02L5DakuqZqxt6f5PJO6ZCiWms2t2L43+8DqF47u+WSbgtALnZ2oZYysclG7MNyVZaqPIyX3TzezK2U9GoAOz8wuk4cPoR2Y2aDk/1XFUOMHBc6h/MElFBnW2kbN5LDuY7Yd0mBvnayNe/W5+6vQ81jg4BP78EfX19qK2tzdN/8GGcmQQlpvGkxgN44OJ1qAgHMgXyBbe/dBxufWHJoR3TGmcADB+h/SMz48zk+2CcKQXScYbj4VOc0lsILjuCudRBDoPJXFfL63sIyrKt71NGuZQ36DfCpGug3o6JdBNN6kvvz/RXCeVmmbkt+VaiGuO1lUjGwtbuHeNh2rnVsS0amS4qSx2F3CGS+teHxywzKTWNcIBEZWTmzlVHpe78tzwOVAzC+0jpo287eb0uR0rOmsm97Q3kdhSU8ZD69btG4koArsFZ2wGNMwdGoxiOhy2Nk4IxY3EGqX9kblud+lom44xQv5Q1EkIIIcUn+ItlbvmEmWyZqx/mygKMcqktcwVCLzNXU2z+2lZUpHbSdQKkUYUdJCPhHHMvKWO+oYOxbaZ5UjsOsofXVsdtbmnzV98/GY1m/enUqEIhjNdXyQ2bjk31XAWAmreA1keB6AGXDvRnc2nPbfYtOWkKsZXpfbjN+GHsM4+i2bZt0mLalLpGkkPArsE57aTrBEjjrIo4ouZvZpHCoYCh+MRX8WcyzlR2phbMZr1l6cSP12DGGUII8QQ/VUYOk+AvltlyCjOpkpItM+E3VymkyYNuY+YfMGzNvEWvb267tRMwjYnKCsRrD/3OiLTYY7rsJd3zkgKabkv92ero+6V5nu6v3pa+nQw7SFaEPGns/thRGG2qmXaNKhJCMhouzLla2QXMexio6hQakE5Y/bVpZ3YmOSnhFkj1o+nFNm1jW1Ww1fGbRpJFwK7B5RBn9o/EMByf9p9tJR6JKwcv7JlbmHO1YghoXQPUb0XuPzL79RrMOEMIIYTMNMFfLDMxVzMA77mHuQJiW8UwMeuYKxpSf1JOIrXj5qdPNaqIg5HW2VYXJSnSPMvWhTR3s/Uh1Z1sHbO+OT/UGTi+Cb0nt3nSeHBBPQZOaIJyJvaHHCQrI4hXRTBWX4nxOVVT8jcZCyNeU1GYcxVI/eB/2yPArL/l6cDmgNm5W5l0lthGx22GZsM2GF7rmdumTzYKqZHkxefX4HKIM4NjEbw7WOXSGXFDKSCedBBPOlO6dCSVk/pkWcHO1XGg8Rlg7nOAk3DpwOaA2blbGeNMdhnjDCGEEH9SHrdVpWReitm2PMAsN1dbzJtl+bbdJhiSL3qZnlBKkwYI5ZIGsz+zvJga4WDwqAbMeeGdHHM3l83mAaB/STP6TmqFk1SIdQ3CSXj72s2sHftR2TmI0ZZZiM+KeqrjRnxWDOOz5XZie4cQ238Q/cc3offUeUAyidqtXQgPxzM2Yw1VqOgbQSihMhojB8ex58LFGGuoQtvDf8VbnzsVQ0fOARwgGQ2jcs8Ajv3Zs0AimXM4lPGsn1bjs2NIRo2vx8z0uRoeAVqeACKDQN9SQJmVbR2Z+0wHvUwgzHrmmeZ2Ykt+ePXX9qZ1q2P6KtWxMZ0aSQ5BugaXQZw5GI/g0bfacOLcvsM7tRWwsbsB/71jHirCScytHEMskkBl+NCCTEI52Nk3Cy3VI5gdHce8WcOYFY3jhIY+VEcSGBiPYHAsgvFkCH2jFYiEFAbHJ5eeKeXg7YFqjCVCmF97EPsOxtBcPYKKia+atlSPoKV6BAnlYFd/DebNGkZtdDyzphlyGQOlgJF4GJWRBDbsmYun3m5B31gF/tpTi7rYGG49ZxPmVo1Nyt++0QocGJmIiQU7VxPAnJeBRBXQuxRQYclI6KgUr8GMM4T4AqVw2D/yb/sqodnu4fal9yO1czhfacznl5e2+WcJpAiUx2KZLTF3e89Ntsx2o8+8Y+rmk1v+YiuTkssAaBw8pgHJaBihsUSWqdS0zf+xhmq8fflJGG2elcc4l5Y129H20Db87QunY3henfeKLv7YLvJzXngHNbt68c7/OjFlGk9gtHkWqnf1Zob3wGnzMPuv+1C9qxcAoCpCGK+NYXxOFXo+MB91r3RhYHEj4rMPfX11RAHx2VFEe0fEuaZt32hzDVSF9qHTQpyrDoDwGNC4HggPAwdOA5IVcE+ebbMnqcwmxssEZDKTBi8zOpsvk2nPzY+Z1khEAnYNzioLaJx5cncLvnjSDsyKxjEVlAJe6JyL//3E6dgz5P1TaiFHIQSFS497G//7lG341rpTsHVfHZLKwWgyhBCA8eTkP/ifUE6m/aRKLYCl5aYW6Q5iJBHGe4NVWNrYi6+8fzs2dc+BA+CTx76N+tgYIiGFvtEoxhMOmqpHEQsn8NDf5uH+NxbipKZe/GH7fOwdrsz0GQsn0DlUNenFso1dDegcOtRO4c7VJND4HBDtAfZ9GEjEjAompXgNZpwhhEBeYJL2Oc7kF7qm+7e+pmPRkJAiEPzFsvRtUyA7LtvuVOuvpRtjZjtu+/T9Up5itm/LcfLZ2vIaH2scaa/FwPFNqHulU3TTlJZuygGgHKBzxXHY/8EFGG2aZc8RXRLxnjOOwGjTrNRCWdgRbTxrzGM7tGgORptrDplEwth9+clofupviAyMYfCYBuw9ZxH2fvQozHnxXYSHx9G/pBmDRzcAKvWpsx1XfxCJmoqs4xifFcXgsXMx54V3c8bJzeWhI+fkiijUuRpKAA0vAZERYN8HtYmMaSh1Zpt52w6+9CawJfNe+/WyimC27TYjdOvLZq/3PRMaSQ6MM3L/Ja5x6/56/OXdJlywaI+lUztD42H8fNNi/G7bQuwbjnnXqIAkHCTh4P/8dT6eersZXQercmwOJ84kkw7gAMnkIdve0Sh6R6OZ+s93NmLjo3ORUA4cKPy/rx6D6oo4KsMJDI1HEE86mFM5hvrYOP56YDYOxiNY/15TjsbRRBh/2tmOJXP7vM+DFNA5VAVVrDjjJIHaN4BoL9D5/wDjs3MdLOlrMOMMIWXDdCxalcqP3JeKH4RMguAvlqVXUIDsWGwmWW6x3parAPb4D8PWTKJ1v7zUc8slbDmUjzWqSAidFxyHWTv2I3JwXJyD2JrrO7EFnSuOQ7IyMmWN4/VV6D3FMoGZ5uM41lSDsaaarCoHj5yDtz536oRtyjhRHUXX+ccK7ThI6F8VzUwIHBw4pR1zXnwPzkSAUsgdEp1EdQX6Tmo91M40aczg6VxVQO3W1Fcyuz4KxKsFBzIi8zgmOWk6Y2tb6kcSJA2UW9/5zuZS1khEGGdyNfhAY0I5+P9eW4Qz5+3F7El8uiyZBO589Rj8cvOxqQWfKWqMq5B9oawAxzExsaim4GBw4quguoa+sain4/jgjiNw1Uk7UBcbtziXzf6RKO59/chDfs+gRtdztbIz9fX/vWcCo3MFB0rxGsw4Q4jvmMynqrigNHU4dmQGKM8f+E8/S/mBLQGzJa/K2Nb7kVYmzFzBfF9Lr6X8w42AaBxaNAd7LlyMpPaVQAe5w6C/Hm2uwTt/fxKSsYgvNLrjHPohmSkex4HjmzKfWjPTVvORDDvoOu9YjLTOLo1ztXoX0P5w6u5/TkNS0mEeONMuXx3dTqqvjGcv7doGwPFoY2tX3y6WRmIlINdgVwKi8Zl3m/CzjcdjJB7KqpNUQCKZeiSTh3wYS4Twp7faccfLwkJZiWp0ZRqOY+dQFTZ1z8nMU5TS5iwqNX5qQt9IPISbn38fth+Yna2zWBqr3gVaH0vdnGGcEWyLrZGQgMCFHEJ8SfA/WZZOQIFDcdtM/BSyE0JbfDfjuFQvvd+0N22BXD+A/O1J9c2kPDAaHXR/7GgMz6tFZfcQvDBw3FyMNtW4+1lSGjGjxzFRHcWule9H1Z4B5GN8dhR9J7chc/er2BoBILY3tWDW9VFguH2KDuWrY2LWSdt5mSxIM0033PwrVY0kB8YZ32pUcHDXlqOwsasBxzX0oyKUMto3HMv8AH0snMD82QeRVA5e76nF6/vrMJIIZ7dVwhpz2jTrH+ZxHEuG8M0/n4KPLejCEbMP4o39tYiGk6iuSEApYPdADVqrhxGLJLH9wGy80NkApZzS0AgA0QNA+5+A7nOAkeYpOsQ4k7/ftB3jDClTuGB2eKTHbyq/wUbIFAn+YpkUl/X3l5SU6ramnb6t15PyF6ktqS+pb71MatOtvyBpDDsYWNKMgSWWelKS7DeNM3kcAQwubsTg4kb3+hKlorGiD2hbA3SfCQwencc5W4c2x71OFCT7yQyoNIOzHUTbTFAvK5ZGLydOGcI442uNCYTwUncDXupukOsxzuTWNTR2HazCb9840vtlsdQ0xvYC8/4H6Dl94p8yQy7O2TpknJH9YZwhhEwjXCgjBaQ8voZpvqf0fMJrombmIGb7Zv6R3lbCfre8x83erS41UqNUR/LLbxoBIDKU+m2ZutcAJ2kxkmZKZsMmtqQ8bS+J9NKfrU3bRMA2KKWokYjwvUuNUh3JL2osPY0AEB5N/SPznJcAR1mMSuEazDhDCCGEFILyWCyT4q8Z7/VYLiVdej6hl0sJpVseY9azJYJmX2aiJ9WR+qDG3DJq9KfG8DjQvA5o2Ag4CcNQGhBzEiB1AuO1V3FmvzDsbLjVNdEHr5Q0EhG+dw/ZUyM1Av7U6CRTMab5KaBiQDMqpWsw4wwhhBBSCMpjscxMvmxx3BFsdRsplksJo/6cL6dxkJtH2Py09av7S43UGGSNThJoeBFo/jMQGrM4L82gpH2mYL1TN0Fug5Yv6XeQO5CAezuSfTE1EhG+d6lRt6FG/2oMJYDa17Uf/pecZ5w5tI9xhhBCSDAJ/mJZOo6b8dyM/Wb8dyAnV3q7up2+33yYdWwJZvoh5Q9uCSI1UmNZaVRA7Tag7TEgclDo0BRvzohMG71js518Sb5Ux5b0uw2M1LbuVylpJDnwvUuN1JhtJ/nqN42VXcAR/wNUvy10yDiTa6O3ZbbDOEMIIcR/BH+xzEyCpHJbAiYlgnqZmciZdfR29RxDyi3y9WnLi/QyaqRGc7/eXpA0QgHVu4C21UCsx9JYPgHKsHOMbd1OmgDkOCX0Jc3I8tmnbc1HKWokAPje1fumRmoMikYAqDiQujEzeztSv5dpUuxrMOMMIYQQMlMEf7FMxzGedcw8Q8ol9P1m7mDLFbzUMfMUfb+ZU5jJqKmFGrPLqDG4Gh0AlZ2pBbOqTq1D0ynbRMJ0QJoQmJ1KIiHs1+vZyiU/vA5GqWgkOfC9m11GjdToZ40OgNAo0PIUUPOW1mGpXIMZZwghhJCZorwWy8xYLMX6fKRjvCO81ts3k0EpKZTyBd0Xs45bnqG3qz9Toww1Hmrf7xoreoG2PwE1uywNmbM7Lw7YHHGbidmE2iYnet9u2GZyZvvF1Egy8L3rDWo81D41lr5GZxxoWQvUbUXqnzJL7RrMOEMIIYRMN5FiO1AQ9LxGGfu91E1jJn/mfinX0Ps3+5P2m6/dfNT7oUZ3qNG9D79rDA+nviqz90NA/xJAebkP4BjPttlbPoekWaJXJFubH5Np12x/OjUSEb533aFG9z6osfQ1hsaApmeA8Ahw4P2A8pJCM84wzhBCCPErwV8s0xM5KXEC7HHZTPD0balMyjXcErN8CaXkj5RsUmP+Ns1yagyeRmc8NZGpGAT2n+5xIiM5bHPENgFwS/K9zhglUXqd6WC6NJIc+N7N36ZZTo3UaOIHjU4cmPt86quZ+5cxzuTAOEMIISQ4lMfXMG1xO53EmXmCEmylNvPlA+Y+x3ik99mSTNMnKc+x5U7USI2mv1K7tn1+1RiKA3NeApr/krr773kSoHcs1bGJtM3QlGErzRq99DmdE4fp1Ehy4HuXGqlRbte2z68aHQXMeRloehYIjwqN2WCcYZwhhBDiJ4K/WKbHYOBQHDYTIyk2m/mDlJfku/Opl0l9e63jljRSY7aNrR+pbWp099ePGh0F1L4GtDwJRIYsQmwdSBMHZZTbbM3ZmL6tTwLMg+E2M7P5Y05GCq2RZMH3braNrR+pbWp095ca5TrF1ugooO5VoPVRIHLQIoRxRrZlnCGEEOIPgr9YZuIYz242OlIst7Vh5hNmvmJL0rz6kq8+NdrLqDHXNogaHQA1f0v9U2a0z6ioNzpZcXo9aVvCnKHZBsoL6b5Me31fMTSSLPjetZdRY64tNfpTowOg+m2gad3EJ5n1inqjjDO5PjDOEEIIKX3KZ7HM7Q6m7c6hF1s9SdPveDqQ2zBvprn1betfSjrN+vn8psbsbWoMnkYAqOwC2h9KPYuJeL7X5j5zgmCrI9WfTB2b3WT9nUqdqWgkAPjepUZ3W2oMnkYAmPU3oHXNxCeZ02J0GGdy9zHOEEIIKX2Cv1hmJj5S0uZ288xsS4rrjlBm2piv9QTSbFu6e2nWMfuW/KdGajT7LkeNFX1A++rUhMZ1VmU2Lj27JfPSLMttv9S+mz9e2ndrZyY1ljl879r9oMbsetQov/a7xuq3U7+V6SSEBqRt/TXjjLtfhBBCSHGY9GLZunXr8PGPfxzt7e1wHAcPPvhgVrlSCjfeeCPa2tpQVVWFjo4ObN++Pcump6cHK1euRG1tLerr63HllVdicHAwy+aVV17BWWedhcrKSsyfPx+33HLL5NUB2YkNkB2D3WJ1ujxfXJfuONr6lvzSkz0puZSSO1uf1ChDje796XWCqNFB6o5/y5NA3VbASQqN2GZSplizA2ly4TYxsU0CbP3rryczk5NeT6fGmYVxxqBc37tm+9RIjaWq0QFQvQtoejr1SebMohnjTPZ+xpkpxxlCCCEFZ9KLZUNDQzj55JPxi1/8Qiy/5ZZbcNttt+FXv/oVNmzYgJqaGpx//vkYGTn0ew4rV67E1q1bsWbNGjz00ENYt24dVq1alSnv7+/Heeedh4ULF2Ljxo249dZb8b3vfQ//8R//MQWJkBMnPbanX0txXMoP9LjulvyZKOEh+WnmLXrypvsq9U+N1GjWp8YU4dHURGbOS0Bo3GhYn/Ho+9ONKcu2TYSObfZlCjTLJNxmom52uv1MaJxeGGfA964b1EiNpagxlADqtgBHPADUb8GhGzOMM7KPjDOEEEJKG0cpZYuW+Ss7Dh544AFccsklAAClFNrb23HttdfiG9/4BgCgr68PLS0tuOeee3DZZZfh9ddfx5IlS/DCCy/g9NNPBwCsXr0aF154Id555x20t7fjjjvuwHe+8x10dnYiGo0CAL797W/jwQcfxBtvvOHJt/7+ftTV1QE/uwiorJBjr5RX6GVu+YGXXCRfjmK2b+YUXnyVEj4v9Ww+2MqoMX8d0x/JJ2osvkblAH1LgH3LgWTUUtlM6N0GxG3wvDpqw8tExTbQ+dqcgsbRIeDnl6Cvrw+1tbV5fJ8eGGeE1+X63s1Xx/RH8okaqVGqZ/PBVpZPVzIM9J4E9HwASEYslRlnGGfyk44zhRwPQggJMpO5rk7rb5bt3LkTnZ2d6OjoyOyrq6vDsmXLsH79egDA+vXrUV9fnwksANDR0YFQKIQNGzZkbM4+++xMYAGA888/H9u2bcOBAwfEvkdHR9Hf35/1yKDnFzoO7LHeLQewJVlm3DfzBKkNMxl08pTBKHOMZ2qUffBaRo3B1+gooO41oG0NEB4WnDed0R3ON0GQJhSTGViv7aX9kHwx25UGOv08FY3FhXEG8nkt1Qnae1eqQ432Mhhl1Fg4jaEEMGdz6of/K/cKzpvOMM6UEiUbZwghhBSUaV0s6+zsBAC0tLRk7W9pacmUdXZ2orm5Oas8EomgoaEhy0ZqQ+/D5KabbkJdXV3mMX/+/FSBGfPTKMu2/lp/1h8SXvMJs590YiWVS/7atFAjNZptUKOLnyr1+zLtjwDRXqEx6bU0a3MTYnPEbFsql17rPrj1qberHzjTdqoaiwvjjGW/1Ed6X5Deu9RIjZIvpagRCqjZmYoz1e8KjTHOMM7kYo0zhBBCCk5g/g3z+uuvR19fX+bx9ttvpwr0mG/mDXoyZcZrPW5LN8ik+G/DTADTtlK7Zj3JJ+nGITVSo80Xasz1NV2vsgtoWw1U7REMdEdsSbw5s7PZuU1apDb1OqZwN6RJlPR8OBrLF8YZUCM1UqPpj4TeVngIaHtU+B0zxpnsNhhnAJc4QwghpOBM62JZa2srAKCrqytrf1dXV6astbUV3d3dWeXxeBw9PT1ZNlIbeh8msVgMtbW1WQ8RMzmSYrye5MDYr782kzUzidKTMr2OY9hJ/umvpfzDDWqkRmr0rjHaA7Q9BtS8pRlIib0yniHY5LOVBLjZ2NrVt3W7fHWk/qeqsTgwzhj9lPN7lxpzX1NjLqWgMTyS+oOZ2tc1A8aZ/L4UB1/EGUIIITPOtC6WLVq0CK2trVi7dm1mX39/PzZs2IDly5cDAJYvX47e3l5s3LgxY/PEE08gmUxi2bJlGZt169ZhfHw8Y7NmzRosXrwYc+bMmZxTUvJiJkVm3Ha0OjpmHLflO/prc5+Zg7glZ3oyZiZ7ZpvUSI1m/zrUaNfoYOLO/xqg9g2k7vzrhlOZLJizMRvSIEnt6e3aBLrVydfv4UyICgvjjNBOub53zfpmH9RIjaWk0UkCTc8CtX8VnGOccW+/sJRknCGEEFJwJr1YNjg4iM2bN2Pz5s0AUj+CuXnzZuzevRuO4+BrX/safvjDH+K///u/8eqrr+Kzn/0s2tvbM/8wc8IJJ2DFihW46qqr8Pzzz+OZZ57BNddcg8suuwzt7e0AgM985jOIRqO48sorsXXrVvzud7/Dv//7v+PrX//65BU6yE5e3BIfKUnT7cxtvZ6Zv9jaMm3Ntk2k3EL3W++PGqnR9IMavWl0ADjjQPOfgYYXASdhqWybmUmdmB3qMzipbXNS4XYApAmTNGimremP5MdUNU4fjDOYnvPa9MGGn9+7kg4JaszujxqLo9EZT33CbM7LjDOMM4QQQkqcyGQrvPjii/joRz+aeZ2+4F9xxRW455578K1vfQtDQ0NYtWoVent7ceaZZ2L16tWorKzM1LnvvvtwzTXX4Nxzz0UoFMKll16K2267LVNeV1eHxx57DFdffTVOO+00NDY24sYbb8SqVaumptKM7VkTZKHclkC55QhSHiElV17aMtvJ56/kMzVSIzVOXqOTABo2ApFBYO+ZQLLCpTNpJmZzyrRzc1py0m1/vgF388c2KGbdwkxe0jDO5Gmf711vbZntUKPsMzUWVmN4BGhcn/oJgH3LgUSlS2eMMzOFL+MMIYSQguIopVR+M//R39+Puro64GcXAVUVslE6Zusj4Jas2eK43o75DNjzA73tfHYQytxsJd/0fmx+UCM1UmOqcGgR0H0WEK9BrhidyST4trq2mZdZJ9+M0GtbXg6G4OfoEPDzS9DX18ffUQHjjOib3o/ND2qkRmpMMTwP6OxgnNHtGWeySMcZjgchhEwPk7muBubfMF1RwrOZF6Qfpq1uY+5L2zmajfmcL1dwDDvTB6lPs1/dX2qkRmo8ZGM+e9aogJq/Aa1rgGiv4KCtQbeByOrAqOvWjmRvTkZM+/Q+s119YN18ncygEQA+Oa+FfgL33hX6oUZqLFWNVe+m/ikztl9w0NYg4wwhhBBSCIK/WJaO42Y8N2O/Gf8dyMmV3q5up+83H2YdW/KVfkj5g1uCSI3USI3ZdpKvk9UIAFXvAe2PAJV7LZ1Lsytb0u82MGYbepk02TBtzFmfaaO3ZbaTbyLjNikjAPx1XpfDe5caZagxt219f7HiTGUnMO8hoGaXpXPGGUIIIaQYBH+xzEyCpHJbAiYlSXqZmciZdfR29RxDyi3y9WnLi/QyaqRGc7/eHjVOTWNFL9D+sDCRMTswsc3I8tnrDuoP22zLTYAy7Bxj2+arTj6/iS/P63z7TaiRGqlx5jSGh4CWtdo/MkuCJBhnCCGEkJki+ItlOo7xrGPmGVIuoe83cwdbruCljpmn6PvNnMJM1Ewt1JhdRo3UeLgaASB8EGh9HKjbakxkzEZ1bLMxyc6015EGwxx422TJHGRp0qP3bTuQEPYTEb+c1+Xw3qVGavSLRgCIjADN6xhnCCGEkBKhvBbLzFgsxfp8pGO8I7zW2zcTJSlhkvIF3RezjlueoberP1OjDDUeap8a82t0AIRGgaZnUv+W6cQNR92E2iYn6Y7zYZvJme1L/bgNstl+vtduGkkGP53Xuo2+P0jvXd1G30+N1FiKGp040PgsUPcq4wwhhBBSZCLFdqAg6AmLMvZ7qZvGTIzM/VKuofdv9iftN1+7+aj3Q43uUKN7H9ToTaMTBxpeAMLDwP5lQCKqNSzNjvIh2dpmWJNp12zfNtv04q85SyQifj6vy+G9S43u/eerL9lQ48zFmaZngYpBYN8yQIW1hhlnCCGEkEIR/MUyPcmREifAHpfN5EfflsqkXMMtMcuXbEn+SIkYNeZv0yynRmo08axRpe76R4aArnOARJVmZBp7nU1JovI5PFmkCYubv/rryU7OyoxAnNdG+/p2YN67Rvv6NjXm+i21aZZT4wxpTAL1LwNOAtj7IeQumJlOM84QQggh001gF8uUmgj+I+P5Y/B0xO3JtO+l3OaTW31qpEYvUOP0aFS7AfUeMNqqFaQdNbfTr6XObOUzMYFwazPfJEsBYwdTJUqBMM7k7YMavfvppcxWTo2ybRA0RjcBs0eBntMmPskMzVFzG5A7ZZzxM+lx6O/vL7InhBASDNLXUy9xJrCLZfv3709tXP9YcR0hhASY/7/YDhSFgYEB1NXVFduNosM4QwiZeR4qtgNFgXEmxcDAAABg/vz5RfaEEEKChZc4E9jFsoaGBgDA7t27fRFs+/v7MX/+fLz99tuora0ttjue8JvPfvMXoM+FwG/+AsXzWSmFgYEBtLe3F6zPUsZvcQbw3/nuN38B//nsN38B//nsN38BxplSob29Ha+99hqWLFnim/OH5/vM4zd/Af/57Dd/Af/57Ic4E9jFslAo9UefdXV1vjhZ0tTW1vrKX8B/PvvNX4A+FwK/+QsUx2e/LAoVAr/GGcB/57vf/AX857Pf/AX857Pf/AUYZ4pNKBTCvHnzAPjv/PGbv4D/fPabv4D/fPabv4D/fC7lOBOaYT8IIYQQQgghhBBCCPENXCwjhBBCCCGEEEIIIWSCwC6WxWIxfPe730UsFiu2K57wm7+A/3z2m78AfS4EfvMX8KfPQcSPx8FvPvvNX8B/PvvNX8B/PvvNX8CfPgcVvx0Lv/kL+M9nv/kL+M9nv/kL+M9nP/jrKP43MyGEEEIIIYQQQgghAAL8yTJCCCGEEEIIIYQQQiYLF8sIIYQQQgghhBBCCJmAi2WEEEIIIYQQQgghhEzAxTJCCCGEEEIIIYQQQibgYhkhhBBCCCGEEEIIIRMEcrHsF7/4BY488khUVlZi2bJleP7554vix0033YQPfOADmD17Npqbm3HJJZdg27ZtWTYf+chH4DhO1uNLX/pSls3u3btx0UUXobq6Gs3NzfjmN7+JeDw+Iz5/73vfy/Hn+OOPz5SPjIzg6quvxty5czFr1ixceuml6OrqKpq/Rx55ZI6/juPg6quvBlAa47tu3Tp8/OMfR3t7OxzHwYMPPphVrpTCjTfeiLa2NlRVVaGjowPbt2/Psunp6cHKlStRW1uL+vp6XHnllRgcHMyyeeWVV3DWWWehsrIS8+fPxy233DIjPo+Pj+O6667D0qVLUVNTg/b2dnz2s5/Fe++9l9WGdGxuvvnmGfE53xh/7nOfy/FlxYoVWTalNMYAxPPacRzceuutGZtCjjHJhbFmavgtzgClH2sYZxhnpuIz40zpwzgzdfwWa0o9zgD+izV+izP5fAZKL9YEPs6ogHH//feraDSq7rrrLrV161Z11VVXqfr6etXV1VVwX84//3x19913qy1btqjNmzerCy+8UC1YsEANDg5mbM455xx11VVXqT179mQefX19mfJ4PK5OPPFE1dHRoTZt2qQeeeQR1djYqK6//voZ8fm73/2uet/73pflz969ezPlX/rSl9T8+fPV2rVr1Ysvvqg++MEPqg996ENF87e7uzvL1zVr1igA6sknn1RKlcb4PvLII+o73/mO+sMf/qAAqAceeCCr/Oabb1Z1dXXqwQcfVC+//LL6xCc+oRYtWqSGh4czNitWrFAnn3yyeu6559Rf/vIXdcwxx6jLL788U97X16daWlrUypUr1ZYtW9Rvf/tbVVVVpX79619Pu8+9vb2qo6ND/e53v1NvvPGGWr9+vTrjjDPUaaedltXGwoUL1Q9+8IOssdfP/en0Od8YX3HFFWrFihVZvvT09GTZlNIYK6WyfN2zZ4+66667lOM46s0338zYFHKMSTaMNVPHb3FGqdKPNYwzjDNT8ZlxprRhnDk8/BZrSj3OKOW/WOO3OJPPZ6VKL9YEPc4EbrHsjDPOUFdffXXmdSKRUO3t7eqmm24qolcpuru7FQD15z//ObPvnHPOUV/96letdR555BEVCoVUZ2dnZt8dd9yhamtr1ejo6LT7+N3vfledfPLJYllvb6+qqKhQ//Vf/5XZ9/rrrysAav369UXx1+SrX/2qOvroo1UymVRKld74mheRZDKpWltb1a233prZ19vbq2KxmPrtb3+rlFLqtddeUwDUCy+8kLH505/+pBzHUe+++65SSqlf/vKXas6cOVk+X3fddWrx4sXT7rPE888/rwCoXbt2ZfYtXLhQ/fSnP7XWmSmfbYHl4osvttbxwxhffPHF6mMf+1jWvmKNMWGsORz8HmeUKu1YwzhzCMYZd59NGGdKC8aZw8PvsaaU44xS/os1foszSvkv1gQxzgTqa5hjY2PYuHEjOjo6MvtCoRA6Ojqwfv36InqWoq+vDwDQ0NCQtf++++5DY2MjTjzxRFx//fU4ePBgpmz9+vVYunQpWlpaMvvOP/989Pf3Y+vWrTPi5/bt29He3o6jjjoKK1euxO7duwEAGzduxPj4eNb4Hn/88ViwYEFmfIvhb5qxsTHce++9+PznPw/HcTL7S218dXbu3InOzs6sMa2rq8OyZcuyxrS+vh6nn356xqajowOhUAgbNmzI2Jx99tmIRqNZOrZt24YDBw7MuI6+vj44joP6+vqs/TfffDPmzp2LU045BbfeemvWR8EL7fNTTz2F5uZmLF68GF/+8pexf//+LF9KeYy7urrw8MMP48orr8wpK6UxLhcYaw4fv8YZwH+xhnGGccYLjDOlBePM9ODXWOO3OAMEI9b4Ic4A/o01fowzkRltvcDs27cPiUQi6yIBAC0tLXjjjTeK5FWKZDKJr33ta/jwhz+ME088MbP/M5/5DBYuXIj29na88soruO6667Bt2zb84Q9/AAB0dnaKetJl082yZctwzz33YPHixdizZw++//3v46yzzsKWLVvQ2dmJaDSacwFpaWnJ+FJof3UefPBB9Pb24nOf+1xmX6mNr0m6D8kHfUybm5uzyiORCBoaGrJsFi1alNNGumzOnDkz4j+Q+s2H6667Dpdffjlqa2sz+//pn/4Jp556KhoaGvDss8/i+uuvx549e/CTn/yk4D6vWLECn/rUp7Bo0SK8+eab+Od//mdccMEFWL9+PcLhcMmP8W9+8xvMnj0bn/rUp7L2l9IYlxOMNYeHn+MM4L9YwzjDOOMFxpnSgnHm8PFzrPFbnNH78Gus8UOcAfwda/wYZwK1WFbKXH311diyZQuefvrprP2rVq3KbC9duhRtbW0499xz8eabb+Loo48utJu44IILMtsnnXQSli1bhoULF+L3v/89qqqqCu7PZLjzzjtxwQUXoL29PbOv1MY3aIyPj+Pv//7voZTCHXfckVX29a9/PbN90kknIRqN4otf/CJuuukmxGKxgvp52WWXZbaXLl2Kk046CUcffTSeeuopnHvuuQX1ZSrcddddWLlyJSorK7P2l9IYk9LAD7HGz3EGYKwpNIwzhYFxhnjFD3EG8HesYZwpLH6JM4C/Y40f40ygvobZ2NiIcDic808mXV1daG1tLZJXwDXXXIOHHnoITz75JI444ghX22XLlgEAduzYAQBobW0V9aTLZpr6+nocd9xx2LFjB1pbWzE2Nobe3t4cf9K+FMvfXbt24fHHH8cXvvAFV7tSG990H27nbGtrK7q7u7PK4/E4enp6ijru6cCya9curFmzJusujMSyZcsQj8fx1ltvFc3nNEcddRQaGxuzzoNSHGMA+Mtf/oJt27blPbeB0hrjIMNYM734Jc4A/ow1jDOMM/lgnCk9GGemH7/EGj/GGb0Pv8UaP8cZwD+xxq9xJlCLZdFoFKeddhrWrl2b2ZdMJrF27VosX7684P4opXDNNdfggQcewBNPPJHz8UGJzZs3AwDa2toAAMuXL8err76addKn38hLliyZEb91BgcH8eabb6KtrQ2nnXYaKioqssZ327Zt2L17d2Z8i+Xv3XffjebmZlx00UWudqU2vosWLUJra2vWmPb392PDhg1ZY9rb24uNGzdmbJ544gkkk8lMoFy+fDnWrVuH8fHxLB2LFy+ekY+mpgPL9u3b8fjjj2Pu3Ll562zevBmhUCjz0eBC+6zzzjvvYP/+/VnnQamNcZo777wTp512Gk4++eS8tqU0xkGGsWZ68UucAfwZaxhnGGfywThTejDOTD9+iTV+jDOAP2ON3+MM4J9Y49s4M+N/IVBg7r//fhWLxdQ999yjXnvtNbVq1SpVX1+f9c8gheLLX/6yqqurU0899VTWX6EePHhQKaXUjh071A9+8AP14osvqp07d6o//vGP6qijjlJnn312po303wCfd955avPmzWr16tWqqalpxv62+Nprr1VPPfWU2rlzp3rmmWdUR0eHamxsVN3d3Uqp1N8sL1iwQD3xxBPqxRdfVMuXL1fLly8vmr9Kpf4daMGCBeq6667L2l8q4zswMKA2bdqkNm3apACon/zkJ2rTpk2Zf1q5+eabVX19vfrjH/+oXnnlFXXxxReLf7N8yimnqA0bNqinn35aHXvssVl/Adzb26taWlrUP/zDP6gtW7ao+++/X1VXV0/5L3XdfB4bG1Of+MQn1BFHHKE2b96cdW6n/6Xk2WefVT/96U/V5s2b1Ztvvqnuvfde1dTUpD772c/OiM9u/g4MDKhvfOMbav369Wrnzp3q8ccfV6eeeqo69thj1cjISEmOcZq+vj5VXV2t7rjjjpz6hR5jkg1jzdTxY5xRqrRjDeMM48xkfU7DOFO6MM4cHn6MNaUcZ5TyX6zxW5zJ53Mpxpqgx5nALZYppdTtt9+uFixYoKLRqDrjjDPUc889VxQ/AIiPu+++Wyml1O7du9XZZ5+tGhoaVCwWU8ccc4z65je/qfr6+rLaeeutt9QFF1ygqqqqVGNjo7r22mvV+Pj4jPj86U9/WrW1taloNKrmzZunPv3pT6sdO3ZkyoeHh9VXvvIVNWfOHFVdXa0++clPqj179hTNX6WUevTRRxUAtW3btqz9pTK+Tz75pHgeXHHFFUqp1F8t33DDDaqlpUXFYjF17rnn5mjZv3+/uvzyy9WsWbNUbW2t+sd//Ec1MDCQZfPyyy+rM888U8ViMTVv3jx18803z4jPO3futJ7bTz75pFJKqY0bN6ply5apuro6VVlZqU444QT1r//6r1kX8un02c3fgwcPqvPOO081NTWpiooKtXDhQnXVVVflJJulNMZpfv3rX6uqqirV29ubU7/QY0xyYayZGn6MM0qVdqxhnGGcmazPaRhnShvGmanjx1hTynFGKf/FGr/FmXw+l2KsCXqccZRSSvjAGSGEEEIIIYQQQgghZUegfrOMEEIIIYQQQgghhJDDgYtlhBBCCCGEEEIIIYRMwMUyQgghhBBCCCGEEEIm4GIZIYQQQgghhBBCCCETcLGMEEIIIYQQQgghhJAJuFhGCCGEEEIIIYQQQsgEXCwjhBBCCCGEEEIIIWQCLpYRQgghhBBCCCGEEDIBF8sIIYQQQgghhBBCCJmAi2WEEEIIIYQQQgghhEzAxTJCCCGEEEIIIYQQQib4v+mhYI3HSnynAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display_issues(class_issues, pred_probs=pred_probs, labels=labels, top=3, class_names=SYNTHIA_CLASSES)" + ] + }, + { + "cell_type": "markdown", + "id": "1759108b", + "metadata": {}, + "source": [ + "### Get label quality scores\n", + "\n", + "Cleanlab can provide an overall label quality score for each image to estimate our confidence that it is correctly labeled. These scores range from 0 to 1, such that lower scores indicate images more likely to contain some mislabeled pixels.\n", + "\n", + "**Note:** To automatically estimate *which* pixels are mislabeled (and the number of label errors) rather than ranking the images, use `find_label_issues()` instead. \n", + "\n", + "The label quality scores are most useful if you only have time to review a limited number of images and want to prioritize which ones to look at, or if you're specifically aiming to detect label errors with high precision (or high recall) rather than overall estimation of the set of mislabeled images and pixels." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "db0b5179", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:22.038105Z", + "iopub.status.busy": "2024-05-24T23:53:22.037761Z", + "iopub.status.idle": "2024-05-24T23:53:23.467875Z", + "shell.execute_reply": "2024-05-24T23:53:23.467252Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1474531326dd4e7fa0f05b90fd86a555", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "images processed using softmin: 0%| | 0/30 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wURdqAn56Z3dmcgGXJOYugKIqAmDnEwIkJPQSMp5i98/T0M2fPO0ygnnfqKZ4npjNnxJxAlBNBcljYJW5OE+r7o3eGnprqntlll53drYffMjMV37e7uuqtt6urDSGEQKPRaDQajUaj0Wg0Go1Go9HgamkBNBqNRqPRaDQajUaj0Wg0mkRBO8s0Go1Go9FoNBqNRqPRaDSaerSzTKPRaDQajUaj0Wg0Go1Go6lHO8s0Go1Go9FoNBqNRqPRaDSaerSzTKPRaDQajUaj0Wg0Go1Go6lHO8s0Go1Go9FoNBqNRqPRaDSaerSzTKPRaDQajUaj0Wg0Go1Go6lHO8s0Go1Go9FoNBqNRqPRaDSaerSzTKPRaDQajUaj0Wg0Go1Go6lHO8s07YJbbrkFwzBaWox9xhFHHMF+++3XpGX27t2bmTNnNmmZGo1G09IYhsEtt9zS0mLEZObMmfTu3TsirKllP+KIIzjiiCOarLxEpHfv3pxwwglNVt4nn3yCYRi89NJLMdPGcw6ffvppDMNg/fr1cdf9ySefNExojUajaWXo/s6koqKC/Px85s+fHw5rzfPc9evXYxgGTz/9dDjsuuuu45BDDmk5oSxoZ5mm1bJu3TouvfRSBg4cSFpaGmlpaQwdOpTZs2fz008/tbR4DcYwDC699NKWFkOj0bRS5s6di2EYCWNgtCVCxlzoz+1207NnT37729+ydOnSlhavQSxfvpxbbrklLmfMviI0CQr9JSUl0bdvX8455xzWrl3b0uK1OHPnzo2YSGg0e0vIKfv999+3tCjNxqZNm7j11lsZPXo0ubm5dOzYkSOOOIIPP/wwKu3WrVu57rrrOPLII8nMzGwyp0xdXR0PPvggBxxwAFlZWeTk5DBs2DAuvPBCVqxYsdflJyJ33XUXr732WovVH2rbdn9ff/11i8nWFDz44INkZmZy5plnNlsdss3jcrnIy8tj0qRJfPXVV81Wb4grr7ySH3/8kddff73Z64qFp6UF0Ggaw5tvvskZZ5yBx+Ph7LPPZsSIEbhcLlasWMErr7zCvHnzWLduHb169QLgxhtv5LrrrmthqTUajab5mD9/Pr179+bbb79l9erV9O/fv6VFanNMmzaN448/nkAgwC+//MK8efN45513+Prrrxk5cuQ+l6e6uhqPp2Gm3PLly7n11ls54ogjolY5vf/++00oXcO5/PLLOfjgg/H5fCxZsoQnnniCt956i2XLltG1a9cWla0p+Pvf/04wGHRMM336dM4880y8Xm84bO7cuXTs2DFqdffhhx9OdXU1ycnJzSGuRtOq+e9//8u9997LlClTmDFjBn6/n3/9618ce+yx/POf/2TWrFnhtCtXruTee+9lwIABDB8+vMkcAlOnTuWdd95h2rRpXHDBBfh8PlasWMGbb77JYYcdxuDBg5uknkTirrvu4tRTT2XKlCktKsdtt91Gnz59osJbs23k8/l48MEHueqqq3C73eHw5prnWm2eX3/9lblz53LkkUfy3XffMXz48CavL0RBQQEnn3wyf/nLXzjppJOarZ540M4yTatjzZo1nHnmmfTq1YuPPvqILl26RMTfe++9zJ07F5drz8JJj8fT4AmFRqPRtBbWrVvHl19+ySuvvMJFF13E/Pnzufnmm2Pm8/v9BINBPdmOkwMPPJDf/e534d9jx47lpJNOYt68eTz++OPKPJWVlaSnpzeLPCkpKU1aXku3g/Hjx3PqqacCMGvWLAYOHMjll1/OM888w/XXX6/M05zHt6lJSkqKmcbtdkdMgpxwuVxN3gY0mrbCkUceycaNG+nYsWM47Pe//z0jR47kpptuinCWjRo1ip07d5KXl8dLL73Eaaedttf1f/fdd7z55pvceeed/PnPf46Ie+SRRygpKdnrOjT2TJo0iYMOOqhBeZxsor0da4QQ1NTUkJqa2ugy3nzzTbZv387pp58eEd5c81zZ5hk/fjyTJk1i3rx5zJ07t8nrs3L66adz2mmnsXbtWvr27dusdTmhH8PUtDruu+8+Kisreeqpp6IcZWB2GJdffjk9evQIh8nPcu+3334ceeSRUXmDwSDdunULG+uhsDlz5jBs2DBSUlLo3LkzF110Ebt3747IG9oH5fPPP2f06NGkpKTQt29f/vWvfzWF2oB5l2zy5Ml07doVr9dLv379uP322wkEAsr0ixcv5rDDDiM1NZU+ffrw2GOPRaWpra3l5ptvpn///ni9Xnr06MG1115LbW2toyw+n49bb72VAQMGkJKSQocOHRg3bhwffPBBk+iq0WjiZ/78+eTm5jJ58mROPfXUiL0sQoSW1f/lL39hzpw59OvXD6/Xy/LlywHzUbiDDjqIlJQU+vXrx+OPP67cByP0yPiCBQsYOnQoqampjBkzhmXLlgHw+OOP079/f1JSUjjiiCOiHvf77LPPOO200+jZs2e4z7nqqquorq4Op9m2bRudOnXiiCOOQAgRDl+9ejXp6emcccYZ4bB4+7Da2lquuuoqOnXqRGZmJieddBKbN29u3AGv56ijjgJMZyXsefxj0aJFXHLJJeTn59O9e/dw+nfeeYfx48eTnp5OZmYmkydP5ueff44q97XXXmO//fYjJSWF/fbbj1dffVVZv2rPssLCQs4777zwONGnTx8uvvhi6urqePrpp8OTwCOPPDL8iEXocSPVnmXbtm3jvPPOo3PnzqSkpDBixAieeeaZiDTWtvXEE0+E29bBBx/Md999F/fxlJGPb6g9Ll++nLPOOovc3FzGjRsHmJOc22+/PVx37969+fOf/2w7lr3//vuMHDmSlJQUhg4dyiuvvBIRv2vXLv7whz8wfPhwMjIyyMrKYtKkSfz444/K8gKBAH/+858pKCggPT2dk046iU2bNkWkUe1ZJiPvWda7d29+/vlnFi1aFD5foXNkt4fPN998w29+8xuys7NJS0tjwoQJfPHFFxFpysvLufLKK+nduzder5f8/HyOPfZYlixZ4iifpu0yc+ZMMjIy2LhxIyeccAIZGRl069aNRx99FIBly5Zx1FFHkZ6eTq9evXj++ecj8jfkmtmwYQMnnXQS6enp5Ofnc9VVV/Hee+81uj2rGDZsWISjDMDr9XL88cezefNmysvLw+GZmZnk5eXFdZx27NjBihUrqKqqcky3Zs0awLypIuN2u+nQoUP4t13foBqDq6urufzyy+nYsWN4LCssLFSOB/GO6wDPPfcco0aNIjU1lby8PM4888yoPmzVqlVMnTqVgoICUlJS6N69O2eeeSalpaWAOSZVVlbyzDPPhPsr64rYwsJCzj33XDp37ozX62XYsGH885//jJJl8+bNTJkyJaJ9xJqXNBQnm6gpxprQvPC9997joIMOIjU1NXxT7YMPPmDcuHHk5OSQkZHBoEGDohyqKl577TV69+5Nv379IsKdbLWQPRE63u+++26jj9n48eOBPW07RElJCVdeeSU9evTA6/XSv39/7r333qiV1CUlJcycOZPs7GxycnKYMWOGrdP4mGOOAcy5b0uil9poWh1vvvkm/fv336t9ec444wxuueUWioqKKCgoCId//vnnbNmyJeI58Isuuoinn36aWbNmcfnll7Nu3ToeeeQRfvjhB7744ouIO8WrV6/m1FNP5bzzzmPGjBn885//ZObMmYwaNYphw4Y1Wt4QTz/9NBkZGVx99dVkZGTw8ccfc9NNN1FWVsb9998fkXb37t0cf/zxnH766UybNo0XX3yRiy++mOTkZM4991zAdASedNJJfP7551x44YUMGTKEZcuW8be//Y1ff/3Vcc+BW265hbvvvpvzzz+f0aNHU1ZWxvfff8+SJUs49thj91pXjUYTP/Pnz+eUU04hOTmZadOmMW/ePL777jsOPvjgqLRPPfUUNTU1XHjhhXi9XvLy8vjhhx/4zW9+Q5cuXbj11lsJBALcdtttdOrUSVnfZ599xuuvv87s2bMBuPvuuznhhBO49tprmTt3Lpdccgm7d+/mvvvu49xzz+Xjjz8O512wYAFVVVVcfPHFdOjQgW+//ZaHH36YzZs3s2DBAgDy8/OZN28ep512Gg8//DCXX345wWCQmTNnkpmZGb6j2ZA+7Pzzz+e5557jrLPO4rDDDuPjjz9m8uTJe3XcQwajddIDcMkll9CpUyduuukmKisrAXj22WeZMWMGEydO5N5776Wqqop58+Yxbtw4fvjhh/BE6f3332fq1KkMHTqUu+++m507dzJr1qwIp5sdW7ZsYfTo0ZSUlHDhhRcyePBgCgsLeemll6iqquLwww/n8ssv56GHHuLPf/4zQ4YMAQh/ylRXV3PEEUewevVqLr30Uvr06cOCBQuYOXMmJSUlXHHFFRHpn3/+ecrLy7noooswDIP77ruPU045hbVr18a1qkrG7viedtppDBgwgLvuuivsTD3//PN55plnOPXUU7nmmmv45ptvuPvuu/nll1+inI2rVq3ijDPO4Pe//z0zZszgqaee4rTTTuPdd98Nj19r167ltdde47TTTqNPnz4UFxfz+OOPM2HCBJYvXx71WOidd96JYRj86U9/Ytu2bcyZM4djjjmGpUuX7tVKgjlz5nDZZZeRkZHBDTfcAEDnzp1t03/88cdMmjSJUaNGcfPNN+NyuXjqqac46qij+Oyzzxg9ejRgrrB56aWXuPTSSxk6dCg7d+7k888/55dffuHAAw9stLya1k0gEGDSpEkcfvjh3HfffcyfP59LL72U9PR0brjhBs4++2xOOeUUHnvsMc455xzGjBkTftQt3mumsrKSo446iq1bt3LFFVdQUFDA888/z8KFC6Pkibc9N4SioqLwXseN4ZFHHuHWW29l4cKFji9ECW0FM3/+fMaOHdtkK39mzpzJiy++yPTp0zn00ENZtGiRcixryLh+55138n//93+cfvrpnH/++Wzfvp2HH36Yww8/nB9++IGcnBzq6uqYOHEitbW1XHbZZRQUFFBYWMibb75JSUkJ2dnZPPvss+F5wYUXXggQduwUFxdz6KGHhp04nTp14p133uG8886jrKyMK6+8EjDHnaOPPpqNGzdy+eWX07VrV5599tkIOyIeSktL2bFjR0SYYRhR44nKJgqxt2PNypUrmTZtGhdddBEXXHABgwYN4ueff+aEE05g//3357bbbsPr9bJ69eq4HMBffvllg/rnzz//nFdeeYVLLrmEzMxMHnroIaZOncrGjRujjkM8hG7i5ObmhsOqqqqYMGEChYWFXHTRRfTs2ZMvv/yS66+/nq1btzJnzhzAXFl38skn8/nnn/P73/+eIUOG8OqrrzJjxgxlXdnZ2fTr148vvviCq666qsGyNhlCo2lFlJaWCkBMmTIlKm737t1i+/bt4b+qqqpw3M033yyszX3lypUCEA8//HBEGZdcconIyMgI5/3ss88EIObPnx+R7t13340K79WrlwDEp59+Gg7btm2b8Hq94pprrompGyBmz57tmMaqU4iLLrpIpKWliZqamnDYhAkTBCAeeOCBcFhtba0YOXKkyM/PF3V1dUIIIZ599lnhcrnEZ599FlHmY489JgDxxRdfROg3Y8aM8O8RI0aIyZMnx9RLo9E0L99//70AxAcffCCEECIYDIru3buLK664IiLdunXrBCCysrLEtm3bIuJOPPFEkZaWJgoLC8Nhq1atEh6PR8imAiC8Xq9Yt25dOOzxxx8XgCgoKBBlZWXh8Ouvv14AEWlV/djdd98tDMMQGzZsiAifNm2aSEtLE7/++qu4//77BSBee+21cHy8fdjSpUsFIC655JKIdGeddZYAxM033xwlk5XQsbv11lvF9u3bRVFRkfjkk0/EAQccIADx8ssvCyGEeOqppwQgxo0bJ/x+fzh/eXm5yMnJERdccEFEuUVFRSI7OzsifOTIkaJLly6ipKQkHPb+++8LQPTq1Ssivyz7OeecI1wul/juu++idAgGg0IIIRYsWCAAsXDhwqg0EyZMEBMmTAj/njNnjgDEc889Fw6rq6sTY8aMERkZGeFzHTo+HTp0ELt27Qqn/e9//ysA8cYbb0TVZWXhwoUCEP/85z/F9u3bxZYtW8Rbb70levfuLQzDCOsTGsunTZsWkT90fs8///yI8D/84Q8CEB9//HE4LDRWh86ZEKZt0aVLF3HAAQeEw2pqakQgEIgob926dcLr9YrbbrstSvZu3bpFtP0XX3xRAOLBBx8Mh82YMSPmOQy1Ies1M2zYsIjzItcdOpfBYFAMGDBATJw4MXy+hTCvuT59+ohjjz02HJadnR3T5tC0XULtzNpXzJgxQwDirrvuCoft3r1bpKamCsMwxAsvvBAOX7FiRVTbjfeaeeCBB6L68urqajF48OBGt+d4WbVqlUhJSRHTp0+3TePURwqxpx+yiw8RDAbD9njnzp3FtGnTxKOPPho1zgmh7husdYVYvHixAMSVV14ZkW7mzJlR5yPecX39+vXC7XaLO++8M6LMZcuWCY/HEw7/4YcfBCAWLFjgqHd6enrEfCHEeeedJ7p06SJ27NgREX7mmWeK7OzssG0QGndefPHFcJrKykrRv3//uI57qG2r/rxebzidk03UlGPNu+++G5H2b3/7mwDE9u3bHfWQ8fl8wjAM5ZxSbidCmGNLcnKyWL16dTjsxx9/VM5/ZVQ2z2effSYOPvjgqDZw++23i/T0dPHrr79GlHHdddcJt9stNm7cKIQQ4rXXXhOAuO+++8Jp/H6/GD9+vADEU089FSXHcccdJ4YMGeIoa3OjH8PUtCrKysoAyMjIiIo74ogj6NSpU/gvtGxcxcCBAxk5ciT/+c9/wmGBQICXXnqJE088MXwXeMGCBWRnZ3PssceyY8eO8N+oUaPIyMiIugs2dOjQ8BJVgE6dOjFo0KAme5uX9e50eXk5O3bsYPz48VRVVUW9Vcfj8XDRRReFfycnJ3PRRRexbds2Fi9eHNZvyJAhDB48OEK/0KMvqrt8IXJycvj5559ZtWpVk+im0Wgax/z58+ncuXP40XLDMDjjjDN44YUXlI9oT506NeLOciAQ4MMPP2TKlCkRq2X69+/PpEmTlHUeffTREY+MhFb6Tp06lczMzKhwax9o7ccqKyvZsWMHhx12GEIIfvjhh4h6HnnkEbKzszn11FP5v//7P6ZPn87JJ58cjo+3D3v77bcBcwN5K6E72fFy880306lTJwoKCjjiiCNYs2YN9957L6ecckpEugsuuCBi36kPPviAkpISpk2bFiGn2+3mkEMOCcu5detWli5dyowZM8jOzg7nP/bYYxk6dKijbMFgkNdee40TTzxRuU9LY14r//bbb1NQUMC0adPCYUlJSVx++eVUVFSwaNGiiPRnnHFGxB3n0HgY7xh47rnn0qlTJ7p27crkyZPDj/PI+vz+97+PkhPg6quvjgi/5pprAHjrrbciwrt27cpvf/vb8O+srCzOOeccfvjhB4qKigDzca3Q3qeBQICdO3eGH5dRPap4zjnnRLT9U089lS5duoRl2xcsXbqUVatWcdZZZ7Fz585wO6usrOToo4/m008/DT8Wk5OTwzfffMOWLVv2mXya1sH5558f/p6Tk8OgQYNIT0+P2Cdp0KBB5OTkRFzb8V4z7777Lt26dYvYuDslJYULLrggQo6GtOd4qKqq4rTTTiM1NZV77rkn/gMiccsttyCEcFxVBmaf+95773HHHXeQm5vLv//9b2bPnk2vXr0444wzGrVnWegRuksuuSQi/LLLLov43ZBx/ZVXXiEYDHL66adHjE8FBQUMGDAgPD6FxqT33nsv5iOoMkIIXn75ZU488USEEBH1TJw4kdLS0nAbefvtt+nSpUvEljhpaWnhlWrx8uijj/LBBx9E/L3zzjtR6WSbyMrejjV9+vRh4sSJEWE5OTmA+XhhQ9rvrl27EEJEjLGxOOaYYyIe2dx///3JysqKe0y22jzjx4/nl19+4YEHHog4NwsWLGD8+PHk5uZGnNdjjjmGQCDAp59+CpjHzuPxcPHFF4fzut3uqLZrJVRmS6Ifw9S0KkKGaEVFRVTc448/Tnl5OcXFxRGbEdpxxhln8Oc//5nCwkK6devGJ598wrZt2yL2wlm1ahWlpaXk5+cry9i2bVvE7549e0alyc3NjdrfrLH8/PPP3HjjjXz88cdhx2GI0H4BIbp27Rq1EeXAgQMBcxntoYceyqpVq/jll19sBwlZPyu33XYbJ598MgMHDmS//fbjN7/5DdOnT2f//fdvjGoajaYRBAIBXnjhBY488sjwvk5gOqkeeOABPvroI4477riIPPLbobZt20Z1dbXyDVF2b42S+7qQEW3dK9Iabu0DN27cyE033cTrr78e1TfK/VheXh4PPfQQp512Gp07d+ahhx6KiI+3D9uwYQMulytqn49BgwYp89lx4YUXctppp+FyucjJyWHYsGERby0MIR/j0E2FkBNPJisrKywnwIABA6LS2DlpQmzfvp2ysjL222+/+JSJgw0bNjBgwICIF+bAnsc2Q/KGkNtFyKiPdwy86aabGD9+PG63m44dOzJkyBDlo0vy8Q2dX7m9FhQUkJOTEyVn//79o5yH1vGxoKCAYDDIgw8+yNy5c1m3bl2E41n1+Ip8zgzDoH///lF79jUnoXZm91gLmNdYbm4u9913HzNmzKBHjx6MGjWK448/nnPOOadFN1LWtDwpKSlR/Wl2djbdu3ePumays7Mjru14r5kNGzbQr1+/qPLk67ch7TkWgUCAM888k+XLl/POO+/ss7frer1ebrjhBm644Qa2bt3KokWLePDBB3nxxRdJSkriueeea1B5ob5O7gPlY9eQcX3VqlUIIZTjDux5MUmfPn24+uqr+etf/8r8+fMZP348J510Er/73e8ibu6o2L59OyUlJTzxxBM88cQTyjTW8VrVRzd0vB49enRcG/yr3phpF9fQsUZV9hlnnMGTTz7J+eefz3XXXcfRRx/NKaecwqmnnho11qoQln1cY7G389KQzVNTU8PHH3/MQw89FHUTdtWqVfz0009x2WFdunSJWvDidF6FEI260deUaGeZplWRnZ1Nly5d+N///hcVF1rBEK9hesYZZ3D99dezYMECrrzySl588UWys7P5zW9+E04TDAbJz89XbpYNRHUMdm+wakjHZkdJSQkTJkwgKyuL2267jX79+pGSksKSJUv405/+1KC7EyGCwSDDhw/nr3/9qzJenvhaOfzww1mzZg3//e9/ef/993nyySf529/+xmOPPRZxV1Kj0TQfH3/8MVu3buWFF17ghRdeiIqfP39+lLNsb/ZPCmHX18XqAwOBAMceeyy7du3iT3/6E4MHDyY9PZ3CwkJmzpyp7Mfee+89wHS4bN68OXxXFvauD2sMAwYMCG8664R8jEN6PfvssxH7ZIZoK29r3tsxcPjw4Y06viGa0qi+6667+L//+z/OPfdcbr/9dvLy8nC5XFx55ZWNGm/3BSG57r//fkaOHKlME5qonH766YwfP55XX32V999/n/vvv597772XV155xXZFqabt09i+HZr+mmlIe47FBRdcwJtvvsn8+fNtb1o0N126dOHMM89k6tSpDBs2jBdffJGnn34aj8dj23fZvcCrKQkGgxiGwTvvvKM8z9Zj/MADDzBz5syw7X/55Zdz99138/XXXzvuqxk6l7/73e9snZ8tdbPdySba27FGlT81NZVPP/2UhQsX8tZbb/Huu+/yn//8h6OOOor333/f9lrLy8vDMIwGLcDY2zHZavOccMIJuN1urrvuOo488siwIzIYDHLsscdy7bXXKssI3YhqDLt37456Sce+pm1YZ5p2xeTJk3nyySf59ttvG7WxZ4g+ffowevRo/vOf/3DppZfyyiuvMGXKlIhVAv369ePDDz9k7NixTTLB3Bs++eQTdu7cySuvvMLhhx8eDreuJrGyZcuWqNcc//rrrwDhx6f69evHjz/+yNFHH92oSUZeXh6zZs1i1qxZVFRUcPjhh3PLLbdoZ5lGs4+YP38++fn5ysfOX3nlFV599VUee+wxx/4rPz+flJQUVq9eHRWnCtsbli1bxq+//sozzzzDOeecEw63e4vuu+++y5NPPsm1117L/PnzmTFjBt98803YuRRvH9arVy+CwSBr1qyJuIu5cuXKJtLMmdCKtvz8fEdnUGhDaNXj7bFk7dSpE1lZWcqbSVYa0tf36tWLn376iWAwGHHHO/TYf0jeliZ0fletWhXxsoLi4mJKSkqi5Fy9enXUHWt5fHzppZc48sgj+cc//hGRt6SkRGm8y+dMCMHq1aubZAIY7zkLtbOsrKy4nI5dunThkksu4ZJLLmHbtm0ceOCB3HnnndpZpmkU8V4zvXr1Yvny5VHXoDzeNLQ92/HHP/6Rp556ijlz5kQ8Ut5SJCUlsf/++7Nq1arw4465ubnKxzLllUqhvm7dunURK8HkY9eQcb1fv34IIejTp09cjo3hw4czfPhwbrzxRr788kvGjh3LY489xh133AGo+6vQW6gDgUDMc9mrVy/+97//RbWPfTVeO9HQscYOl8vF0UcfzdFHH81f//pX7rrrLm644QYWLlxoe3w8Hg/9+vWznfftC2644Qb+/ve/c+ONN4YfCe7Xrx8VFRVxndePPvqIioqKCAes03ldt24dI0aMaBrhG4nes0zT6rj22mtJS0vj3HPPpbi4OCq+Iau4zjjjDL7++mv++c9/smPHjohHMMG88xoIBLj99tuj8vr9/kbtN9BYQncHrPrV1dWF3won4/f7w68oDqV9/PHH6dSpE6NGjQJM/QoLC/n73/8elb+6ujr8FjcVO3fujPidkZFB//79m/zVzhqNRk11dTWvvPIKJ5xwAqeeemrU36WXXkp5eTmvv/66Yzlut5tjjjmG1157LWL/otWrVyv399gbVP2YEIIHH3wwKm1JSUn4rVp33XUXTz75JEuWLOGuu+4Kp4m3DwtN/uXHOENvaWpuJk6cSFZWFnfddRc+ny8qfvv27YDpvBg5ciTPPPNMxCOpH3zwAcuXL3esw+VyMWXKFN544w2+//77qPjQMQ/dQIln/Dr++OMpKiqK2N/T7/fz8MMPk5GRwYQJE2KWsS84/vjjgejzGVpxKL8pbsuWLRFvLSsrK+Nf//oXI0eODK/8c7vdUfbEggULKCwsVMrwr3/9i/Ly8vDvl156ia1btzaJ4yk9PT2u8zVq1Cj69evHX/7yF+V2FaF2FggEoh55zs/Pp2vXrnoM1zSaeK+ZiRMnUlhYGDE21dTURPXj8bZnJ+6//37+8pe/8Oc//znq7b2NZceOHaxYsSLmvl2rVq1i48aNUeElJSV89dVX5Obmhp9Q6devH6Wlpfz000/hdFu3bo16u2Jo/yvZ9n/44YcjfjdkXD/llFNwu93ceuutUedPCBG298vKyvD7/RHxw4cPx+VyRfQbqv7K7XYzdepUXn75ZeUNHeu5PP7449myZQsvvfRSOKyqqsr28c19SUPHGhW7du2KCgutnIzV/44ZM0Y5vu8rcnJyuOiii3jvvfdYunQpYNphX331VfgpACslJSXhNnP88cfj9/uZN29eOD4QCES13RClpaWsWbOGww47rOkVaQB6ZZmm1TFgwACef/55pk2bxqBBgzj77LMZMWIEQgjWrVvH888/j8vlclwOHOL000/nD3/4A3/4wx/Iy8uL8opPmDCBiy66iLvvvpulS5dy3HHHkZSUxKpVq1iwYAEPPvhgxCaHe8v3338fvjNj5YgjjuCwww4jNzeXGTNmcPnll2MYBs8++6ytc7Br167ce++9rF+/noEDB/Kf//yHpUuX8sQTT4T3H5g+fTovvvgiv//971m4cCFjx44lEAiwYsUKXnzxRd577z3b5/2HDh3KEUccwahRo8jLy+P7778Pv4Zeo9E0P6+//jrl5eURmyRbOfTQQ+nUqRPz58+PuhEgc8stt/D+++8zduxYLr74YgKBAI888gj77bdf2CBqCgYPHky/fv34wx/+QGFhIVlZWbz88svKxwquuOIKdu7cyYcffojb7eY3v/kN559/PnfccQcnn3wyI0aMiLsPGzlyJNOmTWPu3LmUlpZy2GGH8dFHHzX5yjk7srKymDdvHtOnT+fAAw/kzDPPpFOnTmzcuJG33nqLsWPH8sgjjwBw9913M3nyZMaNG8e5557Lrl27ePjhhxk2bJhywmjlrrvu4v3332fChAlceOGFDBkyhK1bt7JgwQI+//xzcnJyGDlyJG63m3vvvZfS0lK8Xi9HHXWUcm/OCy+8kMcff5yZM2eyePFievfuzUsvvcQXX3zBnDlzIja0b0lGjBjBjBkzeOKJJ8JbFnz77bc888wzTJkyJfzyixADBw7kvPPO47vvvqNz587885//pLi4mKeeeiqc5oQTTuC2225j1qxZHHbYYSxbtoz58+fb7umVl5fHuHHjmDVrFsXFxcyZM4f+/ftHbVreGEaNGsW8efO444476N+/P/n5+cpHyVwuF08++SSTJk1i2LBhzJo1i27dulFYWMjChQvJysrijTfeoLy8nO7du3PqqacyYsQIMjIy+PDDD/nuu+944IEH9lpeTfsk3mvmoosu4pFHHmHatGlcccUVdOnShfnz55OSkgLsWZkUb3u249VXX+Xaa69lwIABDBkyJGp/sGOPPZbOnTuHf4fs759//hkwH5v//PPPAbjxxhvD6R555BFuvfVWFi5c6LjJ/48//shZZ53FpEmTGD9+PHl5eRQWFvLMM8+wZcsW5syZE76BdOaZZ/KnP/2J3/72t1x++eVUVVUxb948Bg4cGLFX5ahRo5g6dSpz5sxh586dHHrooSxatCi8Mta6Eivecb1fv37ccccdXH/99axfv54pU6aQmZnJunXrePXVV7nwwgv5wx/+wMcff8yll17KaaedxsCBA/H7/Tz77LNhR5hVxg8//JC//vWvdO3alT59+nDIIYdwzz33sHDhQg455BAuuOAChg4dyq5du1iyZAkffvhh2Il0wQUX8Mgjj3DOOeewePFiunTpwrPPPktaWprtsVbxzjvvRL38DOCwww5r9N6MDR1rVNx22218+umnTJ48mV69erFt2zbmzp1L9+7dGTdunGPek08+mWeffZZff/11rx5v3BuuuOIK5syZwz333MMLL7zAH//4R15//XVOOOEEZs6cyahRo6isrGTZsmW89NJLrF+/no4dO3LiiScyduxYrrvuOtavX8/QoUN55ZVXom7chPjwww8RQkS81KlF2Bev3NRomoPVq1eLiy++WPTv31+kpKSI1NRUMXjwYPH73/9eLF26NCKt6pW6IcaOHat8DbCVJ554QowaNUqkpqaKzMxMMXz4cHHttdeKLVu2hNP06tVLTJ48OSrvhAkTlK98l8HmNceAuP3224UQQnzxxRfi0EMPFampqaJr167i2muvFe+9917Uq5QnTJgghg0bJr7//nsxZswYkZKSInr16iUeeeSRqHrr6urEvffeK4YNGya8Xq/Izc0Vo0aNErfeeqsoLS2N0M/6Kug77rhDjB49WuTk5ISP/Z133inq6upi6qrRaPaeE088UaSkpIjKykrbNDNnzhRJSUlix44d4VeB33///cq0H330kTjggANEcnKy6Nevn3jyySfFNddcI1JSUiLSAWL27NkRYXZlL1y4MOo148uXLxfHHHOMyMjIEB07dhQXXHBB+HXmoVeH//e//xWAeOCBByLKKysrE7169RIjRowI9zXx9mHV1dXi8ssvFx06dBDp6enixBNPFJs2bRKAuPnmm22PoZN+MqFX1n/33XfK+IULF4qJEyeK7OxskZKSIvr16ydmzpwpvv/++4h0L7/8shgyZIjwer1i6NCh4pVXXhEzZswQvXr1ikinkn3Dhg3inHPOEZ06dRJer1f07dtXzJ49W9TW1obT/P3vfxd9+/YVbrc7YvxQjVfFxcVi1qxZomPHjiI5OVkMHz486hXvTscnnuOraicqQmP59u3bo+J8Pp+49dZbRZ8+fURSUpLo0aOHuP7660VNTU1EutBY/d5774n9999feL1eMXjw4Ki6a2pqxDXXXCO6dOkiUlNTxdixY8VXX30VdYxCsv/73/8W119/vcjPzxepqali8uTJYsOGDRFlxnMOQ21o3bp14bCioiIxefJkkZmZKYBw/aG6reO/EEL88MMP4pRTThEdOnQQXq9X9OrVS5x++unio48+EkIIUVtbK/74xz+KESNGiMzMTJGeni5GjBgh5s6d63D0NW0JVV81Y8YMkZ6eHpU2ZFPKyHZvvNeMEEKsXbtWTJ48WaSmpopOnTqJa665Rrz88ssCEF9//XVE2ljt2Y5Qf2H3J183TmlV5cr5ZYqLi8U999wjJkyYILp06SI8Ho/Izc0VRx11lHjppZei0r///vtiv/32E8nJyWLQoEHiueeeU85fKisrxezZs0VeXp7IyMgQU6ZMEStXrhSAuOeeeyLSxjuuC2GOO+PGjRPp6ekiPT1dDB48WMyePVusXLlSCGGes3PPPVf069dPpKSkiLy8PHHkkUeKDz/8MKKcFStWiMMPP1ykpqYKIGLuUFxcLGbPni169OghkpKSREFBgTj66KPFE088EVHGhg0bxEknnSTS0tJEx44dxRVXXCHefffduI57qG3b/YXGL6dxqynHGpmPPvpInHzyyaJr164iOTlZdO3aVUybNk38+uuvjnoJYfbdHTt2DM8LZXmtqGy1kFzWc6Iils0zc+ZM4Xa7xerVq4UQQpSXl4vrr79e9O/fXyQnJ4uOHTuKww47TPzlL3+JmBfu3LlTTJ8+XWRlZYns7Gwxffp08cMPP0SclxBnnHGGGDdunKOc+wJDiCbYeVyj0Wg0Gk2bY8qUKfz888/KPbQ0Go1Go2kq5syZw1VXXcXmzZvp1q1bS4vTqli6dCkHHHAAzz33HGeffbZjWj2ut25uv/12nnrqKVatWmW7gX9rp6ioiD59+vDCCy+0+MoyvWeZRqPRaDQaqqurI36vWrWKt99+2/ExE41Go9FoGoo83tTU1PD4448zYMAA7SiLgXzswHQ0ulyuiBeAqdLqcb31c9VVV1FRUaF8A3pbYc6cOQwfPrzFHWUAemWZRqPRaDQaunTpwsyZM+nbty8bNmxg3rx51NbW8sMPP0S8dUuj0Wg0mr1h0qRJ9OzZk5EjR1JaWspzzz3Hzz//zPz58znrrLNaWryE5tZbb2Xx4sUceeSReDwe3nnnHd55553wHpNW9Liu0ewd2lmm0Wg0Go2GWbNmsXDhQoqKivB6vYwZM4a77rqLAw88sKVF02g0Gk0bYs6cOTz55JOsX7+eQCDA0KFDufbaa2O+jEZjvh351ltvZfny5VRUVNCzZ0+mT5/ODTfcgMcT+e4+Pa5rNHtHQjvLHn30Ue6//36KiooYMWIEDz/8MKNHj25psTQajUbThtBjjUaj0WiaEz3OaDQaTesjYfcs+89//sPVV1/NzTffzJIlSxgxYgQTJ05k27ZtLS2aRqPRaNoIeqzRaDQaTXOixxmNRqNpnSTsyrJDDjmEgw8+mEceeQSAYDBIjx49uOyyy7juuutaWDqNRqPRtAX0WKPRaDSa5kSPMxqNRtM68cROsu+pq6tj8eLFXH/99eEwl8vFMcccw1dffaXMU1tbS21tbfh3MBhk165ddOjQAcMwml1mjUajaesIISgvL6dr1664XAm7MDluGjrW6HFGo9Fomhc9zuhxRqPRaJqThowzCeks27FjB4FAgM6dO0eEd+7cmRUrVijz3H333dx66637QjyNRqNp12zatInu3bu3tBh7TUPHGj3OaDQazb5BjzMajUajaU7iGWcS0lnWGK6//nquvvrq8O/S0lJ69uzJcMyN2QzA7nnT0H0aYfktLOFY4g2b707lyXGCSHms9djJYC1LlVcuU1WvU/nW+rWO6vLkOK2jWgatY8N1JAkqpoHIkxLaCa2KtxPESQCVsA4HMlgL6+dBZmamTcFtG7txZvLh4PE4t1EZVXuzy6Nqe3a/7fLEajYNlcMpTK5H66iWF4ffdnm0jlrHhoaF4wwoqvfXFBTZy6OSF4ffdnnC3w3Y2QGK8yHgtimMPeF6nFGPM5uArJYTS6PRaOKjtNT8zM5uubpjUFZWRo8ePeIaZxLSWdaxY0fcbjfFxcUR4cXFxRQUFCjzeL1evF5vVLi7/k/GbkJtjVNNpO3SquLkeKeJdLyTdruyVGgd7euNt25VvNZR69jkOvogeRf4CmwEkwWR4+SKZIVwCJMFjJUO2syjIA0da+zGmSSP+aeaBDtNkGO1O6e2pJprOp0VVfNxKtepHK1jdJzWMXY9WsfIPHIdseSPVbdKFjkurxqKCyBppxnQ3DoG3bC1C+zoAMIFLj3OhGnoOJOFdpZpNJpWQHY27Ost8RtZXzzjTEJuBpCcnMyoUaP46KOPwmHBYJCPPvqIMWPG7HX5oUE/dHjkw2QowqzhodNhLcdqRFj/5PLsjBJVmaq6ZRns0DpqHbWOrUdHAM8mhQBOhYUKEoo4p1mP6gDJ4ap0seRqhTTlWCOfBog+nAL1IbRrG9bDbpfXml8o8qjqsCtf1WRUelm/ax3V9Wsd1Wgdo+uwK785dEzyQ60XfEnNq6MA6rywvjfs6AjCkDLKBcmVtyGae06j0Wg07Zpmdswl5MoygKuvvpoZM2Zw0EEHMXr0aObMmUNlZSWzZs1qUDnypBci55J2xog8Cbd+qibo8cxt7ewA1XxXllNVnqp8rWNsmbSO9mgdW0ZHAHchGD4QSZZEciFWgexmU7IyobSx0tsdPGtYrPpaIU011sjzvxDyBNkpnzWPXXmh33aTfKc0dk1A1X7tyrTLYyerXZjWUevolEbrGLvuxuiYXAfplVCTYn6Pp57Q73h1FEBlBmzqATXyAik9zuzVOKPRaDQaC/tgBVvCOsvOOOMMtm/fzk033URRUREjR47k3XffjdogMx7sJsV2YapweWx3mgzbTa7tbAHV5FoQWZ/TnNn6XevoHK511Domqo6uEvMv0MkmQYiGKCnnwRIv55cVilfwVk5TjTV27SaEUxuT89idRutpVk2OnU6dNY/dNWDXxu3kBq2j1lHr2Kp0FJBWBWVZkFkOhmhiHQ0oz4SNPcHnwf7A6nGm0XMajUajSXgMwxxwmvNx+n30qKchxL5+qHTfUFZWRnZ2NiOI3LNMNoCw/JbjVTTEoHIKs6Kqy64euVw7GVV1aR1j16111Dq2pI41E6Fu5F4osTfxceQJ1sHaOeaGw1lZeveU0Dgz5Shzz7IQqsmrPBFWEWuyald+vO06nng72Z1k1Tra57OGyXm0jlrHWPHNoWNJtrlv2YBVYASbTkfhMh+5LCqAgEsqRI8zjSY0zpSi9yzTaDStiOZ0lu2l+yrcr8YxziTknmVNjWqCGvpuNyk3pE8ZYfmUbQBrGFKYXK9VHsPyZ63HyWGgklPrqHW0onVsPTq6N0kBshKqig3FdzslZQFjhVnrV9WtAewPs+q73cQU1Ifamkcu3ylPPDLJeax5rfI6NSWto9ZR69i6dMwqB3dgz75le6ujAAIe2NLV/Au4FYXocUaj0Wg0e4sQ7OuXB7R5Z5l1von0KRsRskFhHbutRoo1nzzhVRk0qjzWsq3IYSoDRaWL1lHrqHVs/Tq6t4JRKykqz1TsBJRnLzKGFCenUc3sQuEq4TVhVO1C9d0OeYIup7ebwDvlkdudHU6nW1WHnEfrGFmuk7xaR61jIuhoCHAFzUcxVWNVqF47meS0vmRY18eykf/ejjMajUaj0ci00MOQbd5ZZsU6kZb/VGmsv0NhThNdOUxleDQkj5w/1lzYmkfraC+T1jG2jA3No3VU01AdXWXg2oX97ER1AGRh5FmZnM+wpFPNrJxOgEZJ6BQYqE+L3M7sDrGqfYTSyOXLqOaeqnJVstjllcvWOkaXixSnddQ6WtPIdSSCjgjIqICqNDNhY3XEMMtY2wcq0tnzxku5gAaOM0k+VWUajUajaVWE9i1rClpw17B25SxTjc1yvOpUqIwR2diR56MQaWCo8iLFyzI6GWpyWhRhWsfoMrWOWkds8kIC6BgAT6Eio/xbnpTEg9M4Y53J2c38NI7Ik0pVG5TTQmSbVeVTTX5V7R4pXm7L1u+NPd1aR3Vaaz1aR61jousIkFMCdckQNBqpowElObCuL1SnKpRREaeifrciTqPRaDTtkxbeXj9h34bZVFgn1fJvlXGAlBZi2wB281q5Xqe8sgNAxiqD7ChQ1aV11Do6ySnXpXWMrqMldARwbwYOUlQoK2YnnBWrQKqZmYysuN0sShOB6rBZ4+zyWD9VE2w5v90c05pebrfyqZcdAXI98UzMtY7R4VpHraMqfaLqaARNZ1l1mrnKzCqzk44CEC7Ylg/FnSHoCgUqlLN+xhLeUoloV7fxNRqNRmNLAryHss07y1SoxnCnSbFq0iwbO6HvqgmwynBRlaWqKx7DTSW31jESraPWsbXo6C4GoxZEilSANYN1gqGasamEt5vMhNLIwshlt/x41Sqwm6iqsB7eeNq0U9nxTOJjhTlN/mOVY4fWUZ0mnnq1jg3PF085drQnHT0B00lWmQ7pFdFDg0pHgflSgMLuUJrNnv3J9Dij0Wg0mqYkAZxkIdr8/RvVHFIOdzJ8VEaDasyX06nSWv9i1Wkng0peraNzWpXsstx26bSOWsd9raNRDu7tlopjeezkWZ2d8PKExklIlZfRTmANEHuuJx/SWBNh1el1Mh1Up9p6Xajyymli6aB11Do6pdc6qstPRB0NAZnlUJGxJ9BJR4G5Cm1tPyjJJnJ/sr0YZwxVWj3OaDQaTdugMfuWJZCjDNqBs0xleFiRx3u7ia5cZihOlV5leKnmorHkcYqX7RGtY6TsWsc96UJxWke1bHZ1yfXtKx0JgnuTgxDxjCF2kxe5LLvZll2exBq/EpJ4JtMG6lMpH3Z5shsLue2prgmVHHIdseaqWsfIsrWOWkcVia6jx2du0F+XHF2OtSxhQGmO+cbL6hSLQHsxzriEubrNUOXR44xGo9G0TxLMUQbt4DFMpwl0rHxW7G6QOaWRw+SJtdquMEgiiTrqlHKp6rCbkCeqjrHk0zrGV4ZdPq2jff2tRUfPZqi1m7nZzersCpVnUSpvnSH9tn46eSM1QOQhth4mec5ol9cunaocVR6nOqwyWfNZv8ufqvLlpqF1dJZX62gvg10dWkd1Pc2lY3oVJNeZj1Ym15qBOzpCrRc67gBvDQTdsL2TuUdZwG7j/QaMM4YwyzWCUJPKnkc59Tij0Wg07QchwDCiwxKQNr+yDKLvlCnvnNFwQ8jONpANFwNw1/slVXNcAwMDF5lkcyF/YgrTHW0FlZwtraMqrSxvvPN7uR5ZltB3raPWUQ63frZmHV3bwVVtiVRNPOxQTVbkMqyTG7v8djM0TRTyxDce5NNkbSfyd7s8crw1TA63a4PxonVUo3XUOrZWHV1BSKmBnR3MwIDb/O4OmE602hRzNVlRgcJR1tBxRoArYNaXUl3vKAuVo8cZjUajadtYHWGyU0yI6LAEol04y+K50yYbO3anzOmml2xYhf4yyOZcro5wmFkNMhcuDmYcc3mV87ia3gyIKNPJjrCzV+xkt+ZrSh1V6VSOB1U+raPWUSW7XJdduraoo1EFrm02me08harKnfJaD14ov5OHUdNgVJNtK/KhtU6AVYffzpmrSifnD4W5hBsXhqPD2cmXapcnkXSMR16tozqP1jHyd5vWUZjOq+r6FV6uIPTcCAVFUOM1HWXlGezZn6yx4wyQUgtdt5plleTUF6PHGY1Go2n7yCvIDGNPWFM7yeS6moA27yxTTXidDqOdcaKaRMvp7f5+y3Smcwn7cWCEcRWK9xOgiEK60RMXLjrTFQPDdhIu2xeJoKOdsyEUZye/1lHrqHVU6BgEz0abSmXHllUQ62/VgbFDVl4Vr3FEPkShU+R0SOOZsFvLU+UNpU8KppAcTFWmD+EWHi5Y/hcu++lxUgIZEW1bdQ3JZbS0jrIDwKlZq65fraNaNq1j+9Uxu9RcNVbrNZ1lqdWmM2tdX9NhtlfjjDDL7LDLdMKVZteXaYceZ9oOCb5SRKPRJADN4Shrhn6nze9ZBnvGc+snRBomcpzdoVYZLqq8obAc8jiJs0klg7O4mFJKyCWPZSymKz3Zj1F0oQduPNRRC8AwDmQwI/iFpY4GmaxLS+noVK7KCaGSW+uoddQ6RuIuBCMIwqUQzDqpENJvpDSqgyHntSvDTkFNBKr2EsLpVDlNbOU8zqfcoGNNNw7cfhwLu81HIPC76vC5avEEkxm58yh6lA/B7/JxSPGJJAdT+bHjQhZ1/XeUjE762TWDfaOj/bVpJ6td2XYyWOvQOmod7cpvSzom+cxxZneuuZdYcYG5P1kwHiVVwlsETPZB1y1mHYXdoDJNIUA8Cmk0Go2m9RPap6y5VpM1k4O+zTvLVJNWOwMm1oTXrnzrZ4hQvgM4lGSSMYCxHEMXutOXwSzje3rRHx915JFPKntWBHSkgCOZzHKW2soSa2K+L3VUlSunj9eRoHXUOmodzU/XDjCqQGTaKOk0s4o14bDLq/odUlATF/FMeJ3an1M5KYEM3MJNpac0Yn55zOZzmLThArpWDuCIwml4gsnsSN3MP4b8kb5lI7h02TzcIimivkkbLuCLgpfxueoaPEdtTh2t6WVngvV7vLJa69E6xi+bnEaWLd5ytI6JraMraDq1ar2wo5PCUdaIccYAMipMR5nfA+t7g88jJZAz6HGmdaCajDpNVFWbeGs0Gk1T0cyOMmgHzjIrdmN96NNqD8iTV7kcaz5VPQLoQD6/YzZd6QVACqkM5QAADma8bX4zbZqy7lgG1L7WUY5XyWv9Hk/dWketo9YRjBpzo/9ghkMFsXA6MCohhPQ9hLZ1HVG1kXgnu6qJsXwaQt9H7jiKkTuO5vFhV4Zryq7rxKQNF9CjcjAAvSqGAtC1qj9/Xvwi6f4c3CIpSha38KDeuUwt+77SMfQbnMtWNdVQU5abrqr5ax21jiranY4CMsthaxfzMclGTTcsArgE5BdDx53marXizuB343xArYJpEhe7yah+3FKj0cQitKKsqfoLqxO+mfugNu8sk+eK1rFYNn6cxm8hfTcwN+bPJJtSdivz5tKRwezf4Ml0AD8/8g1d6IFAsJsd1FITLttOtubQUeWYaGheJ+PTLp/WUevY7nUU4FkH/j5SImtCu/FBFlLOL8+07GZcspLaJo6JXX+vmhOGDrUqjxyXFEwhw5dLv9KReILJpPozOW7TLA7cfizdKwcp5Sio7mMrp9/lQyDimmzbTdRVMstp4tVR1ezkdPHKJF+vWsfY5ckyy2m0jm1TRwNz37LizpY3XjZynEnym6vJUmpgQ0+oyCTy5QBxjjNG0KY+jUaj0Wj2wWoyK23eWQZq48b8NHDhIkAgItyaBymPlVGM5WhO4n8s5j1eoY66iHQ7KaaMElIsj1jGw3J+4Es+5Dyu4becQzGFLOcH/sHf2MrGiLR2k3w7Y6qhOsplq4w3O4NOJZecVvVdVb6qLK1jZB5VfXZyah2d86rStoSO7kIwAiDcioTWzHLFcrjsuZMPkupTVZ/dwdMo24tTm7Vri7Ij1i3cjN42mZPWXUZ2XUd+6rAIn6sOrxHg8C2nOzrEnFiZ8w1+V12UbA25fppKR1XTsrv25PyqeGuYXL61Tq3jnnK0ju1Xx4gEcmFxjjMZlZC/DSrSobCr+fhlVMVxjjPJdU5CajQajabd0kyb+DvRLpxl8nwxxP4cxEVcx0bWsIKfWMMvFFNICbvw4wOE9WZXmJDtUMpufsOpnMzvGMuxzOUONrEuHJ+El1J2k0+X+vpNSyAU76OObWzFwEUXemAAddTxGs9RRy0eksgml2xyGcAwfuRb3mQTor4kqyx2OsrxsY6RU5hTGXZp7eSyhsmGpF09WketYywZnNLESpuIOrp3gVEBIltRkN3sy24yYi3YblboFKbqDDVhnCbBEDnvdJr4ynPUXuXDmL3sEZKD5qP5fctGkFXXgfLknXzd+Q1OXn95o3yY+++cwLBdY6lz13LMpnNY1uFTfK5avun8JqEVZw3R0Tqxb6iOdqjm6rKzIlZZdo4NuzxaR62jLGNb19HjMx1U1SmKwmKNM0BqzZ5HOSPKaOQ4Y+hxpmWwTkCbap8x+VEpvX+ZRqNpLC3gKIN24CwzpE8raaRzMOM5hAkIwE8dFZRTxGY2spYV/MhqlrORNWxhI8l4yaMTHelMAd2ppIJSdtGNXhzDyQxnFG/wAt/wCTl04FJupBf9qaMOQZCtbKaCMgYxnCSSKGQjy/mB8UwMyyQQnMkFnMRZdKVnhCajmcBgRvAlH/EVHxEkWF+Wl//xfdzHYk9daltI9dsuzqlsVbzsaHC6yaiSM9Ywq3XUOrYlHUUtuIshmKNIGEosO7SshTspa/Xo2c2w5HhNg8mq68gRW6bxVq95BAw/ACmBNKasu4LV2T+wuNO7QGS7cQs3ubWdCRgBulUOJCmYEj4Fvcv34+KfH6IobS1jt57SaLm6VQ7ihsUvIRB4RDJji05hZ0ohy/O+xB10U+OppMZdGXd58nUB0U3HqqPdPNyaRw6X08jXWqymKpfd0KatdYwuV+uoDpfTJLKO7gCkVkF1qiKx0zgDpFVDXRIUFRD5yKWctgHjjB5umpDGOqjkfI2doMr5Qr+100yj0TSUFtofsc07y1wYGMpbWZEYQBLJ5NKBXDowhBEcx28JEmQlP3EBJ5BGBvfwT/owiBRSEPXlh/IX0J3z+QOncS6ppOPFW28TmP960Bcftbgxn6nqST/y6UIa6WE5vHgZyH5K+Y7hZNy4OZFp/Ie/s5rldKcPBzOeKzmLGqocdVRN9FXxcpg1TmULRU3wURt3KptJjkMR1xC0jlrHtqQjgGc9+AbaVKYqwG42ZjdTkydCqjpU3zVK5DZlYDBx47lk1XVgfeb/SPdnM3LH0YzcfjSv9v1b2FlmPSVdK/tzw+IFeEQyKf50DFzh8g0MRm0/bq/lNACP5Q2ZycEUOlf1ZfrKW+hTtj9b09fy1ODrSfdn071iMD91+IQqT6lSR2uZ1u/xTNblOLsm6lSPCvn6MhRpnZwQWsfI/Kp8qvRax9anowA8focK7MYZYTrYhLWyJhhnvLUO6TT2yI6o0G8nh5nT5LM5J6bNsYpNo9EkNi20MmxvafPOsrv4BzsoZC0rWc1ytrGVMnZTRy0+/AiH0dsA3LgoYSd11FHLDv7N49zMw7gskxc5Tw55Eb+9eMO/3Zb9ywwMvMjr3u1JwpzYpJHODK5gJ8XsoJgBDOVwJvIer9rOjVVGk53xhCIunkm9NY2Q4p0cDrJ8qjxOTg2to9axreoI9fuW+cHi17AvUCji7JRQHbTQp5Pwmiiy6jpQ7dkJWE+JeTANDFzCzYnrL43IYwAHbj+OL7u8yta0NeFVZwDFaevZkbqZQSWj940C9bgwGLf1VFzCRc+KoQwsOYhUfxbJwRQeH3oln3T7d1h266fclOxwalJ2zoFYyJeBqqk6XbN28mod7dE6RqdtzToaQE4p7OgEwXgEsFQg5AMlV9CIcSZZO8v2jtY2GdWOM41Gk8C0eWfZGI4ki0wEAh8+KilnB8WsZSVl7CaAP7zSyw7zBQCmW+1j3uBYpjCeieFVZY3FAGXdtdRQzBZ60tc2rwuDjhTQkc68wwIW8wWgNthiOQ6s8tjZNfJv2ekgpwG1sel0ozGGTaZ0btjpYheuddQ6tjYdXSXgKoVAR6nCeJREymMVXs4fa0bWyuzvfUnQCNKhphvlyTupc9WQFPQyde01pPgz6Fs2gtzaAuVh7VO+P7d98yZv9X6Ml/s+AJiH2eeqZVHX/zCgZBSuGONTU2NdbZZX2yX8ffiuCWFnmXxthHC6juQ8dk3V2pRV83Cn5mnNY3ed213HdnKD1lHr2PZ19PiI3CusBccZr97gP37idYzZrS5LtJUeel8zjUazL8jOjjtpm3eW7RnbDZJJJrn+McsBDFWO9Sp60IcxHM1KljGMkTzHo/RmAL3oB5jOLTcePE10OD0kk0/XmOmM+v8P5Uie5RF2sg0AFy6CBKV0sQ0q2R5SGYx2hqS1TCf7SeXkUH1XyRZvOq2j1rFN6egDVxEEOigiY83sVJMcuxlfLIG0/WqLIeCGJQsoT9rFBz2eJt2fzcnrLsclzDHB7tAZQIY/l6M3zWBJxw9Yl/VTOO2STu9TmXQjmb7cfaFCTIbtGsuQ3WPIrstnZc437PYWAfYTeJUjAJswp+ZpLTOeelR57K5dp+vTKZ3WUR3WHnUUqLvgeOqR41Vx1jpVLg25+26sjp6A+ShmwKVQppnHGQOzDw0a5meSdpbZszd7fmlHlEaj0TSYNu8sC+C3dYrFO2T0YgB/5TnKKCGDLOZxJzVUhctNIrnJ5AXz0U93Ax7PTCODc7mGxXxBKmks5WsK2UAJu+rfppnHBlbh9MhpiFjzZjmdk7PBKY2d8SfbW6o4O5stXrSO0elau44iFXyDQOzbRThx4S4CT+He6ejZBL5hlkB5piOk76qZkfWgq2ZWoXi5XLsOVBOmPHk3n3VZwJmrb2BQyWiEEcQlPHEftg61Xbn6x6f4sPszLO70HsVp6/EGUnEJ9eP+LUFubRf+vHgBScFkNmes5MX+97CswyKq3RVRaZ2cvypiHaeGjN+qS8HJgW0XZ9d/OeXTOjrT2nUUBpRnQq03Mgxoljc41iWDK2BuwF/nhaDL/O4OmHGGML/7PZBVBtmlajni0dEImnuF1SbbJUB9UpA+GzrOAB12QN4uKMuCoNt8aYDGhtBKsL3ZcD/RHWatQUaNRtM4WnI1q7yfY5y0eWfZn5jFCA7iHC4li5xGlWEAHjzk0REBXMR1vMzT9GYgXrxsYytBAtLbK/cdKaRyLCdzDCcDgkI2kEQy7/MqYziKTnTh3zzGCzxBBWVRNpBsTNo5MewMLlWY4ZBPVb6MnYPFzmBWGc5ax/ahI26oPRLqrO/FsBPQrn9UTQTkiuzKkgWU6k5eVr/v2F7o6N4MRh0IeSIjnyS5EJWOTvKrGoQmLlZnLyFIwHy0voFOLgPoXN2Ls1bdxG/XXsXW9NX81GERVZ4y0v3ZzSNwAzEAb9C8idOjYghX/fhP3uz1KPMH3hbRlJROhjjKl5u0qk+Jx2+ratpO/ZWqyau6C61j+9ZRGLA7Fzb1sOzrlUDjTFWa6TAzRON0NATklEBZpiVBM40zriCkVZnOP28dFBRDkm+Pk8wfRNOcyBPFRHsUE9QyajTthUS7Hq201mvRKncDdWjy29Z33303Bx98MJmZmeTn5zNlyhRWrlwZkaampobZs2fToUMHMjIymDp1KsXFxRFpNm7cyOTJk0lLSyM/P58//vGP+P1+Gsr3fM585vIyT/MLP0U8ntgYDMBLKuOZiKgvK5eOdKZbOI1AEGyB2aZpyxh0pzf5dOV3zKYfQ8gmhwu5lvv5FwV0jzIqVTYYijhVmNMkP548cn6h+G5XllD8qdKo6tE6tg0dAepGgm+oItJqtFvDQgVZ/6wVqiYGqpmYU5iFQAGQtHfn0VVm7l2WEDomAIk2zgigImk3QSOwN2phAGmBTPqVHcCUdVfQsabHXpXXXBiAW7jpVT6McVtP5fiNF5IaSI9IY9eMVNdAKI2Tg8WaRq5DLtfOOeM0z1fN8eXLS1UuUpzWsQ3qaEBpNmzuLm2An0DjjN8DAXfjdQRIrquPMyDJj7lKrRl0TK2GfmthwCrotcHcL01g1tccK/QaS6KNM81GIk/MNZr2hr4emw7D2PO3FzS5s2zRokXMnj2br7/+mg8++ACfz8dxxx1HZWVlOM1VV13FG2+8wYIFC1i0aBFbtmzhlFNOCccHAgEmT55MXV0dX375Jc888wxPP/00N910U4Pl8eDhOH6LGw/rWEkNe7++2wB60peU+jdbevHiwo1AECCA6SxruFOullp87NmsoZIKdrOj0TKG/gIE+IGv+DePsYvtynmvyqiUjVbZFoJom0llRBvSp2zo2hnccloUYarmryrPKp/WsW3oCODvA7Xj2PP4pcpgjwensUk1QZAFsgsTgM8+WVzn0QO+/YCAJTIRdGxBEm2cAXMzfLdousXaBkaiHfYoRuw8msuWzWPaqhsiXgYAkdepte+B6CasmuCr+i+keLlPsn5vbJOWnTyq/lJOa61H69i2dASoSjVXlIX380qUPthykMKPg9oUH+s8Bt2ws8OeNB12QkpNjPpVxKFjas0ex1jIOZaIfV0ijjPtlr159FSjaS3oNp6QGEI075nZvn07+fn5LFq0iMMPP5zS0lI6derE888/z6mnngrAihUrGDJkCF999RWHHnoo77zzDieccAJbtmyhc+fOADz22GP86U9/Yvv27SQnR+8RVltbS23tnvdNl5WV0aNHD0YC4zmG25hLDnnNouNudrKCnyinhH4MoR+DG1zGLnZQyAZ60pdscgHYwia8pNCBTnslXx21PMF9vMg/qKIipgMiFtJNwgbns8sjG8dyOrvfKmPdqf6GyNrYfFrH5tdR5EDlaRDMUxRoV4hK+HgqtpapEtiaV6oj9QNI+iH+qqxFiEyoORL8A+vzuCwJ7AppRh2DNbD2QSgtLSUrK8tBg31LS48zU46C/tX7cdc375EU9Ebla+sIBK/3foQXBtxFwPA5pDNR9RHWNHYTZ7t+JFZ+VTonGe0u8XjQOtrLKOcP5UlkHX3JsK63+ZhjBAk2zuSUQu/1NGhlllXHzd3NPcNCYSm14PNAwGMj717omF4B/deYj2Oq8PnhtY/1OBMiNM6UAlmgJ9St9TEwjcaJ1nBd7+21t691dJC3DMgmvnGm2XcPLi0tBSAvz3RULV68GJ/PxzHHHBNOM3jwYHr27MlXX30FwFdffcXw4cPDAwvAxIkTKSsr4+eff1bWc/fdd5OdnR3+69HDfHylB33YwCq+5KNm0Q8ghw4cypEcy2/pKznKBNErxlQkk0xfBpFV7ygD6EqPRjnKfPX/Qndxk/FyMTdwL0/Rk354iNwF3c4mk+88qmxDIcWrbrpCZDlyXYYl3K5sFda7pKG/WHdVtY5tQ0e8UH0cBHMVGeQKZWVUwssHwFqhVbgoQaT8kkKuUvCsjIyKS0fDXDVXdTr4BptOsoiXF7S0jglGS48zAH3Kh+MOJjW5bq0BA4NJGy/g+iX/5sDtx+IJ7pkAqvzY1t9yM3MyxazNXBDdlO3y2/V7TjTEJNQ6tk0dhQs2dbc4yhJ0nDEwN8iP56BEJDGgKh3W9IXSkKOsXpYar/lYZ4R8TaRjVhkYQYU8CU4ijDMaWodTQaNpCO2hTSeQo6yhNKuzLBgMcuWVVzJ27Fj228/cfbuoqIjk5GRycnIi0nbu3JmioqJwGuvAEooPxam4/vrrKS0tDf9t2rQJgCd4g2f5mMM4uilVi8DJuVBBKdvYgifGGzMzyCKdjAYZdnb4qCOAn11sJ2SKuHFxEOO4nXl0IvJxGautI9tAsm2mcrpY06qcASqd5EtG5XhRfdrFO6VVyS7LbZdO65h4OuKCmnHg7y0Jbs0kFHFOwlvTyellgewmLwpljTrzzxqsShohVhLUHQrVJ0Ogo0K+RNAxgUiEcebMVX/mxPWzcTX//aeEJTmYwv47j+DqH5/ijNXXA85O4VA8ODdNVXprHmv/psorp4nlbIkVL18aWse2qaMwYFs+lIduOCdaH2wdZ4RlvzGbbLKOQRds7wRr+0JN6OXr+0BHg8i3XcY6T4lCIowzlJa2j0l1POjHMjWa1kMrv1ab9W2Ys2fP5n//+x+ff/55c1YDgNfrxeuNfvwljXSyyGz2+u1IIY1uZMUwNE0Tpqnmoamks4k1BAiSZ1mZVkk5L/B3itgckd7JCaKKU9lT1nCr8duQ/LI8cnlO8kYYuXHm0Tq2Ph3B3L/Ld4CiACdj3orKsLd6DVWC2NWjEtgSHswCkQFGiX3REXOLHKg5Cnz9osuKqtuJ5tQxwUiEcWbSpgtadJxJBAQQMHxUJO0mYJibV1ubXgi5OVrjG9K05eZsh1y26lKwyydQ66AqW+vYdnQUmG+F3JZPeC+wqAJjsQ/HGWHsWQUWj45+D2zpCrvz6qvYhzoaQdOxJ6sTTxtoSRJhnNFI6McxNW2BVu5IcqSN6NZst8EvvfRS3nzzTRYuXEj37t3D4QUFBdTV1VFSUhKRvri4mIKCgnAa+W0yod+hNK2FJJJwOZgBtdTyGPdQTGGT1bmGX3iLF+lOLwzMxzJ/5Dse4Ta+41MyyMSLN8pAsd61BbXxIqcBdR6rYaa6VJyGOIFaFpUNFusy1Dq2HR0BAt2g9nDMvbusFcQzE1KFW2dedgdEng3Ks0J5xmjJK5IhkBeHjgb4B0DlmeDrz56eORF1TCD0ONNy+Iw6Aux5+2dF0m7uO+B33DnqNNZnLSOvpiuhBqPyA8jf5b7B7npRNUNrMxaKcLkeu/Klyzcqj/xdlVeVTusYTSLrWGPd0D8R+2B5nAEqMqJFizq+BlRkwrq+sCvP4gjchzoaYG7sLxWZyFMqPc40gOZwYMllNsHb7TSahKCNOJOUtCHdmtxZJoTg0ksv5dVXX+Xjjz+mT58+EfGjRo0iKSmJjz7as4fYypUr2bhxI2PGjAFgzJgxLFu2jG3btoXTfPDBB2RlZTF06NCmFrlFceEiGS+ppDdZmcUUkkk2rvq9yVy4KGQd4ziOx3mdp3iPAxkbkcfONnIyOu2MHTuD2snQllEZt7LxrDKmrXqoDHGtY3TdrUVHkQk1EyGYZqOAnFGFfABUZTh5tlQCynFWDAh0ddZRJEHtYVB9AgSzFeUnuo4tgB5nWh6fu4Zg/QoyAG8glSMKp3HN0me4/KfHuePbd+hSZZ4XeU6u+o703a7PsIbZzcmt3xvSZJ38BHbI8mod1XnkeGtYIunoTzI3u/cl0ar64LIsolfBWbIE3OZqsrV9oTLNErEvdRSQUg1J9u8ASSj0ONMImmOCLJcZegRTP4qpac20xrYbr8ytUTcHmvwxzNmzZ/P888/z3//+l8zMzPAz+dnZ2aSmppKdnc15553H1VdfTV5eHllZWVx22WWMGTOGQw89FIDjjjuOoUOHMn36dO677z6Kioq48cYbmT17dsItTd7bRyiTSGIWV+1FCdEcwhGM4JCws8yNm0mcDuyxXYYzim/5hCDRryOKxz6KdRlYb1BabS6VoyWWPRiKj8fOVBnmDblBas2nddzHOrpNh5hy4uUyV5QFOloKiFdp60FymqDIgqnyy0rK5cmy1TvL7OoNZtQ/djlIkVf+7hS2L3VMANrbOJOIpPkj3x6UHEzhsOIp4d+5NQV0qu7F1rS1Eensmpj8XdWfxMoTzyhq7YfidahY+0FVParfWsfIcu3K2tc6YkCdzRayARds6wwV6TGEaek+WDHO+D3mPmRGQEper+/m7lCeuecYxNSnGXQ0gE47CG/uHyqyoedxX6HHGY1G0yy0MWdSmETRq4lXnhpCNK1mho2ATz31FDNnzgSgpqaGa665hn//+9/U1tYyceJE5s6dG7EkecOGDVx88cV88sknpKenM2PGDO655x48nvj8e2VlZWRnZ1PKumbbS6aEXXzP5wxmf7rTu1nqaC5K2MVsTmUFPyntsFhOGhVOeWLdZXYy0lVlq5w2sexOraN93U5yqGRpch0NqBsDtaPtBRRJ9nG2BdvR0PTWPE4yKA66qwzSnwajJjI80AVqJkkOQKfZQgLoGKyBtQ/G96rl5qQ9jTOtEQFsTVvN/x1yPGVJu+Jq3qp41W+I73JRlW2loTLZ9cNyGVrHxNURYFcHKOxmk8aAYMhz05DKY1Uab3prnoaOMwL6rYGMikhHWXmm+UhpnXX8bIlxRkBuCfTcCK6g83n0++G1j/U4EyI8zrTw8UhY9COZmkQkURxHTY3d9ZZI+sbRJ5QB2cQ3zjS5syxRsE5iMsmgnFLSyKSM3eTRMXYBcRAgQDll+KilE61r74ENrGEGx1JOmaNTxe5mp5DC5Di5HKc8qk+5zlifqvJRlKV1TDwdAQI9oWqqwiHm5AV0OhByfjucZoBOCsn12aUFjACkzwdXUX2UAb6hUHtk/SOlROdJVB2DdbB2TstPYhIF7SxTI4DnBt7MG70fDf8OoWqqqiZs16xVl4Ucb62noY4iuz4yHnlDaB2dw2SZ9pWO1Wmwro/kOFJllgtIoD7YbpwBc9VWt81mVNAFxZ1he8c9m/+3pI7JPhiwCpIUb+2Ui0kUZ1mioJ1lDmhHmSYRaZuuFRPVNZdI+sbZJzTEWdYu3nMvENRQTQC/8rHDxuLGTQ65rc5RJoD3eYUKi6PMqWkZ0qe1HGucyrmisp3s7DMnA97JTlTVa2cP2qF1VJcbCmtWHdOh5hj2OMpizchUgsvpVcY+UpxTuaq8hhQm1xUKk34LNwTq3xwfTAPfyPq910KP+rQ2HTWaODh42/Fk1+15G7OqqTs14dClpOqP7PLYYdePxpMn1uVpResYTaLoGPCYjyLWtdFxBsPci8yXDLtzTadgcWdT7xYfZ4Dc3Xv2KnM8jwZUpcYoV6MJkUiTdI0G2l+bbAf6NvmeZYmICxf5dAHAS36z1uWjjiIK6UIPPAl6eCso431eDf+2c5A4GTR28XJaOU42kFV1x+v0UdUTyhtPPVrHltcxYi8ya0WyRy2Wco0h1sxLPtCyB9Aqh1ymdYZogL+3+b1upLmJv/DQenXUaGIiCBg+8qt7Upq8XenMt3Ooh36Dc7NTNVXVZWR3CTn5B+R+MZ7mr3VMXB2FAUUF0sb21sytrQ+2GWeq0+DXgeb+ZcKatoV1NID0SjCEOpmoT1STAjs7wPame9+VRqPR7DvageMIIcAwElPXeFeaCgFlZZCdHVfyxPTmtGJqqCGAP3bCFkIg+IS32M3O+t8mhuK7nU0F0TacU14nA9sun135KuNbtjGdbE2tY2Lp6Btq/tkqaf2N9CkfKLlCu35cFlLOL9fhJIudkpIc/gHmn3DFWW6i6piAY6Mm8QgaQV7v8wirshdH+QKsyPN3VdNHisOSxu63fOnE4xiKVb5VFjmN1jFxdQSoTjVXW0UkaK19sF2YMH/6PCScjt5a01kmtxMAYUCt11wFV5YFfjcEa23q02hk9GOYGs2+JxEdZfHQSLm1s6yJySSLTJp2TwHT7jBPsEHj35spgCoqqKQCN+6oeLty7ewha7nx5FWlVX1Xla8qy87ItjO2VXlUcmodnfOq0jZGx2CeuapMyL2QSlC5QlkYO0FVFcvhqomCkwxO9dnIKeTLrbXqqO1SjQMCwda0NSzq+h+W535p26dYm5ld07LrX+T8qnhrmFy+tc54+sFY/avWMbF1DLrNDf39boUwrbEPluVS/U4wHYVhrnbz+C1FGqYTc1ee6cj0W/dV0+OMJh60o0yTSLRWB1J7YC/PjXaWtQIEQdayko95g98xmzQatka9jjp2UMwnvMVHvMEyviMg7d2makZymFNTs0srf6rSyMayXT12ZansvHhkVIVpHZ3laTIdk6DmKAhmSAntJgtyRXbCqARRxcVTvirOLkz+bi1fdTJbq47aFtBICCBIgFp3FZ91XcBL/e6nNHm7owPDzsGhKls1r7fzeaiwc944+RfswqwOGrsytI7RtJSOwoBt+VCZbkksV9ba+mDr99YwzgjMxy8tYXVJ5uOWOzpanGTWvHqc0cRCO8o0iYR2lCUmTXRe2ryzLFD/T7WSqrVgYPAmL/AyT9ON3kziVFxxvpshQICneZD/8ARllLBnhVq0nSPbTSpj1MlushLL2RPPjVRrWfEa5XZGvdYxsXSsOxD8feIUQq7YaSYnz+JUEw1D+pTjrd/luuzqk8u3OymyPqqwRNZRo5HYkbKJeftdwS7vForS1hM09mxDIDcd66Vhd3lY88jhchq5z4zVVOWyG9q07fwCWsc94XZyWMPlNM2ho8B8vG9Hx/o620of3JrGGQEZldBrg/kWTF+SeT52dpAeF1XVr2m7hBxdDZ3IageZRqOxw9o/NLHzss07y6qpwktSg1djJRYGh3EUXelJF3rEddNNAAH8LOQt/sVDVFNdX1K0IWzN42DzhO0ma7hcpsp5YleWqh4UcQ1B5bBRxavq1jo2v44CCHSH2kMlQVSojHTZsHeaDaoOUqyJgeq70wUnzyCt+e0mMCoZW5uOGk09lZ4yVuR8jd9VFxEer9NFjrNronb57Jqk6jJU+RLsLi27/k/lNFLlU6XXOu47HYXL5vFLmdbaByf4OGMIyNsFBVvN6O35ppOsxusgo+q7pu2hV+Fo2hK6Pbc8zegog3bgLMsgM2EdZTvZTi01dKQzySTbpjOAgzmcg5nQIBviNZ7lDf5NOpnU1DvLQuWFUBnBoTR2jhQZVR75JqSTU0WWSZXHyXET+q0y8O0MfVle1e9YebSOjdAxDWqOAeGVI1ArLxesMuydZoFyXqVQirpUB8064YhnAmR3MFq7jhqNhZRAGpm+PHZ7i2I2E6cmZecAiYV8GahkcOqX7OS1u7Sc8shxWseW0VEYpmOmPNNG2NbeByf4OOMOQH4x5JRCSQ7s6AR1yeZ50eOMRqPRaJqEZnaShYjvWT5NsxDATxGb8eOLmbahG/sbwAmcyVxe4Y/cgwtX2L4ZxoFM4yLy6BTTyHX6jDcOou0tlXFud9NTjheWPxRhQkprRevYgjq6oHY8BPIlAZ1maFZjPp5+UDXbEtJ3uzqsstjN2pwmFNbvqpMnyyjX35p01Gjq6Vzdmwt//isekezoKJEvBzsnivUyMIj/8lA1a6sMdnLYlRPP5SvroXWMjGsJHYVhOmi2dJXqaWt9cCKOM0BaNXQrhIAbVveDLd2gVnaUWeWR0eOMxg69gkeTaOg22XIYhnn8Q3/NiHaWtSD5dOFAxjTbyrcUUkkhjXQySSGNDDLpRBf+zANcxR38g7c5gwvIIFNp+1h/W227ULicR0hxWPLYGbxynIzKnjKkP1U5Tnai1nHf6wjgGwy+/WwKtlZsNwGwM66taeT0KiXl2ZasiKrcWJMU1YFqyzpqNGEMhu86nLFbTyF0S8cl3By7aRbDdo1T9gtymF1fgiVeDrdzqsjxcpnx9Mcqea35nBw6duVoHZtfRwHUpMDm7hBs631wIo4zmE6yogLzxQq+kJOssTpqNBpNoqIdZS3LPjz+bf4xzPaOGxejGMtf+Bf5dEUg6E1/DAx60IeruYMTOJMXeIJPeItKKsJ57Wwc2TZT2TmyLWVNK4djyWNFLkuFXR45TOUwkuuwfmodI+XaGx0BgnlQezgIt5TIOttxKkyloF0YNr+djHxV/XJZqpMUTx1tTUeNph4BLM/9nIqkEmasuIPhOw9nW+pGelQMZuSOo1mT/QNFaeuoc9dQUNWHWncVGzN+QSCi5t+qshviVFGlsZM5VnN2uszs4pz6SK1j5G9oHh2FAUWdLfuUtdU+OIHHmVpvdJgeZzRNht0EWW/+r9mXaEdZu0I7y9oQpezmF36kEwX0oj+e+tObTDKjOVyZx42bIYzgJh5iKjP5Bw/wDZ/gx3yjmcpIjscp42Q029lkdvmdbDonB5OTLabSR+voLKOqrHh0FB6oPQKCWYqMqopUE4B4BJMVUQntlEau3+4kyTKq6mnLOmraLUGCBI0AbpEU0VRSAulk+HM4fOvpEekH7z6Ue7/6GL+rjqy6jvyS+xV3jzoDv2FuPWDnkJGbfkOatbUsK1aHTrxzdTmPLLPTb1X/rXXck8aJxupYkQll2TaRbakP1uOMRhOJ7LzQzjONRtNE6McwWyEBAhRRGGVfeElhAEPpTh/cuJV57XDjZjgHM5MrSSYlHK4abuxsHjtD2ymPnF8ovtuVJRR/qjSqeuxkiEfGhuZp7zoGOoG/j02BcuHx2Dcq41rOa51MCCnMml7OZ52AqCYaTifAGuYke2vXUdNu2Za6gTd7zcPnqgHM5jF09zj233mkMr0LF1m+DuTVdsEtklidvYQgQWXfZ22WdnN4+bKQ+1LVvBwiy5XzymXLMlhlVZWLFGfXX1vr0Do2j46V6fWPXzrRFvrg9qCjpn2jnV2aREWvKmt3aGdZCyGgfsoAddQpbQSBoIRdbKdIsisMOiDvkm7uUdaBfLx4adjrAEx2UMxfuZGq+kcxZbvIziFitZNko1e2geyMYrkcuR7ZXpPtLEMRL9dlJ4fWsXl1dFUBAUkIO6GtCtvNxlQGu6yg1ZBH+i4rKMdbw+3Kl/PYTSTaqo6adkmH2q4cs/kckoKRN1TiHW2O2TyDgqo+yjhVU5fjwb65Wz/V42n0/F4VL4erLrNYl4Hd8dA6Nr+OUYnaah/cHnTUtF+0Q0Kj0SQI2lnWQgTwU04JAEkkKdNsZC1XMo0tbIoId+EiiSS1kdhI6qjjIW7mF5YCkY4bqw1jDVPZSXI8ECWnbDtZy7Fily8U56R/PPFax32kYwUk/SpVYle4nfHekAqF9F2lpOrAqYx9u4mJXL41Tyi8reuoaXckBb1k+HMa1QwMoDD9V7anborqu1Tze6R4+VKw8wnIlwKKMLkc1eViTW/1N8gyyXlUfaedvEjxWse90zGjAlx6nLEvU5ahNeioaTvo1WKatoBux+0O7SxrRgTmHi8q3HjIIhcAA/U6sCxyuIA/MpxRcdsOsrEbL0EC7GJHVFnWMmXni2zbCEUeazmhdCoDW2U7WfNYP+V01rrkcmLZXlrH5tfRCID3E3CVKDKqKrIKIisoz+xUAlsxFN/tlFRNNpzC5JmfPHFpqzpqNI2kMqkUn6suqjnJl4s8B1c1QbtLD6Lz211m8vw/nvJk34Rch5O8Wsfm1TGjAnptgJRahTDWClQCtaY+WI8zmtaIXi2maStoh1m7QjvLmpFKynmbBYj6kb+cMn7kW5bXr96Kdanl0oGxHIOrAafJRx1L+KLBtoaXVK7mDjqQH2X42tk7dkasKo9KV9l+k8OtGDbhTsg2o7UurWNknEreptTRqDH/HA1+OyGFIixUYUMOsJ3Acj1I4VZ55fwqHdq6jhpNIxAIfs79HGsjVDVpu2bmFCbniaeZymnizaPqLxtSj9bRPmxvdTQEZJWBEbpH2Vb7YD3OaDT2aEeGRqNpQrSzrBkpYSeVlIedZVvZxJVMYwU/xswbRODD1+A6V7OcYrY0OJ8B9GUQZ3MxLslSkW0t1Z+MbAOp7DVDireGOcmpKkdVr2x3xbIHtY7RNJmOQXCVSoLKBr8V2XiWlZPz2HkAVQrKkwi5bnkSIpdpd/LkA9RWddQkPCI86iQGAtiesolvCt4A1HNquzm9PL+P1TRVetvN/+2cSfKlq7qE4i1L67hvdRQGBNyWiLbYB+txRpMIaKeURqNpB2hnWTPSlV6cznnhlWHb6p1Y+zPa0VlSSw3zuJOPeJ06am3thhJ24ccfETaY/ZnIKY7lywhgF9uZzzxe49nwNEtlc4U+VU4aJ2PbUHx3soecHD3WNE42l52xrXI8yfVqHWPL3FAdjToboayGtpPHTqWI9U8uRzUrk412+aCrToK1bqcDa5fHWm5b01GTcFR5ylnQ7z5q3ZUtLQpgNqG1WUt5cMQFbE+J3H/Trg+xm9/L5arKiqf5xtvEZWeSKj7WWKt13Lc6Bl0gXFJg6Htb7IPbg46a1s2+dKppB55Go2li2r2zTAB+/BSzBR++Jh2zXUTuRnYAY/gr8+lFf8d8fnxsYA3bKeJx7sVHrTJdNrm48Uh1unDjVqZXIYDv+JRzOZ4HuZmNrI2yZWQHid1NSFUe1Q1HlX2lsptUNymFQ7yqXjmdnFfrGF2WKk9T6OjabSOAXICd8W9XgZ0Css1kSOGqsq0TBNXEQVWekMLauo4aWwRQ5S5v0cPlEi6G7j6M5EBqC0qxB0GAF/vfw6rsxbZpYl1Ke8pyduyoylWV4ZSmofHxonWMLL/ZdLQOPG21D9bjjCYRaOgeZM3tyNKOMo1G0wx4YidpmwQIUkwhRWziXzzM/1jCQPbjdM7nMI4mmeQmrzOdDA7g0Jjp0sjkNubV2w8ukmxkUb8WoGFUUsaj3MFm1kllq28Ugr2dZhfmZKM5OWOs8bI9aJXHySlkRWUDah2j7Vo5r1x2Y3U0KqXKnQx+uWAVcqXyd6vgdnmtdTsdXLtyVRMJu7i2pqNGSUogXRluXl+h/wV17hoMYeANpjZJX26tf79d45usvL3FwM3UNX9gc/pKtqfuWVnWEGfJnrKiUfWZ8TRvu0vKLo1VBjvZ4xlPYqF1tJfLrn5rHk8AOu6AooL6MttyH6zHGY2M1WGUKBvqh+RobnmEQDvMNPsMw0ica0zTrLRbZ1mQAM/wIO/xCtVUkUMHVvAjT/E3lvI1/RjMEUwmg6x9Pn4bQAopzV6PAD7kdX5haZR9I1/+Tt2BKn08caFyrTZSLEePyg5UGe528U5ytUcdx3aE03qCLwgbq+D9rVDqgzQ3lPmhzAd1QXVeudyYOlZKAdaEdjMg2XiPKlSKk8tzmtmpDqQqnVyfrKz1t6r8tqajxhbzEEUv2BaYjyK+2mcONZ4KAoafnSlbcAsPM1bcwcidR+1zWZsb0y0YwOeqJWgEGLV9Iu/3eIqgEQiniXUJWctShamaqBxv/W43j491aahQXZ52/bksb3vU0eX2kNvVT005VJZE69BUOgoBmeVQ3NnS/bW1PliPMxoZlZMoER1nGo1G08pot86yJJKYzf/Rjd48w0Ncya0MYjj5dOXfPMZf+DP/ZT538Xfy6dLS4jYpAQJsZj3L+I4nuI8gpjfEziaCSHvIyWkU+nQbpsOlIAWyk2FFGVT49+R3sqdU8diEqcqIlaYpdLR+V+VpDToCuAzokAy762Blmekoq/BDkgt6pkGXVDPNqnLzz2/J3FAdXZVgBEB4LIniFVgW3Jrf7kDGOsiqOKcJiUpZQxHvNIts7TpqGoVA8EGPp9mYuZykoJct6asJGD5y6vJJDWS0tHjNQq27kmcG3cjK3G8pTl2Pz2VuJ2B3Ccjf7S4pazphiUzCg18EQqG2fZP1t11/G29zj3LU4HyZy9/j0VGWNx6/hJxHxb7WMUgQvw98tfZ5mkRHA3Z0BCEf2LbSB+txRqMi5AyzW1nVllfB6NVkmpagrV5PmijarbMMIJNsxnAUBjCBSaRhPj5zLldzEOPJIJMOdG5ZIZuB5fzANfyO3ewktJm/yniP12GUkwy90yE7Car8pnMlwwMndYchWeb31zbDfb9E22oq28nO7lLF2900VRncjdXRmk5lY8r6oAhLRB0BPtsO3+yEoDAdYaG05X5zpZmxG7I8cHAHOKozfFgEv5Y3Usc6qPfLqgVzUi7WmKQ6SE7GvXzC7OKt3528oYaUzu7gtxUdNQ3CwGD6ytswhIGBi7+NOBdhCKauuYaBJaNbWrxmYXnuVyzs9nzESrImx4CaFBDpafTv1IVdP1WyO6nILingPFe3i1elVV1e+2rK5uQAgwTVMRCkVH1qlDRWR6jf5D+kQFvtg/U4o1FhncCHnEh6Uq/RaDSNptk3+L/nnnswDIMrr7wyHFZTU8Ps2bPp0KEDGRkZTJ06leLi4oh8GzduZPLkyaSlpZGfn88f//hH/H4/TYkBDGAo07k07CgDcOPmAA5lAMNwt8F3IAxhJGczm0yyCe2VE7IpDem7bCtZbahBmTCrL0zqYjrJvtkJ3+2Cr3fCh8Vw3VK4cglcuxSeWqu28bCEqb7HMtJl+WT7TnY6NURHaz65TKuTLNbERKVXIulYFwSf1b6S8pT64aNieHEjHN8VTuhqdhwN1dFVDUaNFCh7G2XFVYLLysp5ZIFUBnqsGZ9VLtXJl+uQ5ZXLaUs6JiCJPM6AedjS/VmkBTJJCaRz0c9/49olzzGo5JBEPaR7Ta/yoeTWmjebrE3Uaf4dQu7DwObyEZBaDRk76vh11Tp2JRdFpFXlV9UvO4acppaq/tj6Z1eHTLw6yjLKPgitoyS3gHTV/phtqQ/W40yLkOjjTBRCaEeZRtNc6BWN7YZm9QR99913PP744+y///4R4VdddRVvvPEGCxYsYNGiRWzZsoVTTjklHB8IBJg8eTJ1dXV8+eWXPPPMMzz99NPcdNNNzSlukyMwH3msoKx+FVdi4MHD77iEZ/mIi7iOTnSJsmdUBm4oLMsDF/SD33SB97bC8xtgZTlUBcyFQ6E8VQH4uRQ+3Q7baqPLCSHbeNbvsYxslVNL5bCR9Yqlo2qSYU0v262ygd/WdATYXgtPrIZh2XBKjz0Os3h1JABGnSLSCZXAUbMjm3xWoax12tVrN8lwklc+kPHksSujNemYQLS2ccYAOtR2JUkkJ/Jh3WvyartwwfIHGFhycP2bofcQq8+T59TWMGue0GcQP25/EETsy0jVd9qlVaVT+RRUc/+m1jEUHypX66iW1wBSaurTteU+WI8z+5TWNs60K7RDUKPRNCPN5iyrqKjg7LPP5u9//zu5ubnh8NLSUv7xj3/w17/+laOOOopRo0bx1FNP8eWXX/L1118D8P7777N8+XKee+45Ro4cyaRJk7j99tt59NFHqaurs6sy4djCBv7G/3EN0/mRbwHTHvCzD+4oxcCNm2704jyu5p+8w3lcQ0/6kUU2YG8DdU+FG4ZBcQ08ugoKq+3tHtmYVRngsmNGlcb6GatslTPJKZ8TTrZgLDlCtDUdKwPwyK9wcB7snxPtkHPU0c+eTf5l5BlSLMHChRJ9QGSj21qW7E20y2NFlkM16VClU8nb1nXcx+hxJnExMDhgx7Fcv+QFRhefgEckW+IUznTia15OeWRnjl2YNU7VX1qbfbxzeFkerWPDymoOHW0TtuU+uD3ouI/R40w9hkHCrqbRDjONRtNMNJuzbPbs2UyePJljjjkmInzx4sX4fL6I8MGDB9OzZ0+++uorAL766iuGDx9O58579gubOHEiZWVl/Pzzz8r6amtrKSsri/hrLorYTDmxy+9CDy7kWq7hTg7j6HqbIEgl5c0mW0MxMOhCd37PdTzLh1zLvWSRo7yLnJ0ENw6Dr3bA64Xmo3sqp4j1z86hE/pUGcSxjN5YRrSTM0lOY2eAO8nQ2nUU9QGN1bEyAP/eADP7QLKrAToKMKqINORVwspCqAq0Ci17G+OZZcXKY5dWntGp0gnavo4JQlseZ9oCBpDmz+ayZY8xe9mjjN52AhO2nEnHmu7hePkScELu05wcKE4y2f1WzdtjpZe/212a7U1HYdT/KeRrbh0Dnj1jTpvtg/U4s8/Q40w9if5YZ6LLp9FoWiXNssH/Cy+8wJIlS/juu++i4oqKikhOTiYnJycivHPnzhQVFYXTWAeWUHwoTsXdd9/Nrbfe2gTSx6aMEpaxmGM4CTBsx3UXLrLIIYuciLBscveFmA3CwCCdTCZyCgPZjxd4gjd5gTrMO19u4OL+sKkK3toSfVdadozY2UJ2Nx1V6eVyVN+d7EinMu3SyDajNbw16RjsACJdyhgEkQp1BwEuSPoR3FvBVQqGv2E6/q/UfJHD8GxYvDt+HY1KKZHKsLe72yzHWw+EFSdDPNaBjlW3nF4ll1x+W9MxQWjr40xbwQCSg14OK/othxVNQSB4q9c8nh10MxDdzNzCQ8DwR/XVSL9j9bd2PgSndKpLw+kyUZUTq2twqhubehNVR18S1HgjM7vq3+ewoxPUJUOHneYeYkk+MIKN09Euj52O7oDURba1PliPM/sMPc60QlQvOdC0TWK9BVajaQKa3Fm2adMmrrjiCj744ANSUlKaunhbrr/+eq6++urw77KyMnr06NEsdfViAHl0Yi0rWcsKjmFKXIamE7XUUEctmWQj6n8DpLDvjiGYzry+DGYsx/A2L4b1GpINh3aES78335qowlB8qhxRSGFOdl8s542ds0oVpspvTWMnoyptIuuIC2qOBb/U/I2AmVi4zd+BzoAf0l8A97aG65jmgWm94IfdEIhTR1epg/CqimVl5QoMKTxeVPnlOKe08c6GrWnbso77mPYwzrQ1jPr/S5K38W6vJ5Vp3MJDt4qBbMhcHlezl/sXuzwqp5I1ndN83a58Vbw1jd3lZ+dDaG06CmBbPmzvFFmmUZ8wWF9QZbrpQOu9HrJsFtU76Vjnhao0yNltL59VJsMiQ0SktSIUn629D24POu5j9DjTytEOlLZBPKsFtdNM04w0+WOYixcvZtu2bRx44IF4PB48Hg+LFi3ioYcewuPx0LlzZ+rq6igpKYnIV1xcTEFBAQAFBQVRb5MJ/Q6lkfF6vWRlZUX8NRf/4e+8zvMUsZl/8FcqKKWGmpj5fNSxntXKPcs8JJFKOj58fMBr/MJSR3uhhhp8+PZCCzUCWMsK7uf6sMPObcDZvcx9yrbW7HHKhJ0zDmWpbDSnG5UGajtKdfPUagfKNl8sgz+WXdeqdcyEQD7m1W3Uf7pAeOodZfWZhQeEF4KZDdcxKMAfhG5p4HHFr6NRbRVUyqA62HaeRqeDKAsgFOFyfms51oNtN1uESPlleeXZX1vSMQFoD+NMwPCzLXUj5Um7CBJstnr2NVm+Dpy6+lrcwrxXZ212/UoPoMZTaevUCSE7f+T+0ZpHNfdW9a/yp+ryk/v1CAeNom75slb5MeQ8cn2JqiOG6cQKPWoZeuwyWP8XHmeAgNt0ejVGR78HSrPNiHh1DK1ua7N9sB5n9gntYZyJoK05GvQjmRqNpglocmfZ0UcfzbJly1i6dGn476CDDuLss88Of09KSuKjjz4K51m5ciUbN25kzJgxAIwZM4Zly5axbdue5S4ffPABWVlZDB06tFFy+fGzyPUOH/d8F7+xdxvsZ5LNY9zD3/g/NrCaX/iRAH5EjJF+Fzv4KzeEnVBW3Ljx1P87mPGMYDReh1Vl37KIVaj3O2gsAihhJ3dyFcUUhsPTPTAyd09jkW0klYELkbacKlyu2/o9llGsSmdXriF9t5NLrqe16ujvDSLFJrM1YX2Y8DZcR4G5wjDJZTpTrTa0k46uUsy7/rKxr5LPaSJgV4lKRysqQeU4uVyVfKHfqgYmx7U1HROARB1nmpIfOn7ItWOO5E9jjuLHjh+3tDhNRpAg29LWEzQC4bBQ8/ImdacyLXp8lvseOcyariFOKTvHkx1OdYbyxhpb4im7NehYmQbVqcTdP9UlN07HJB8EFZaqk46eALhCr+Zui32wHmf2Ce1hnAFo9Mb9ie5cS3T5NBpNq6DJH8PMzMxkv/32iwhLT0+nQ4cO4fDzzjuPq6++mry8PLKysrjssssYM2YMhx56KADHHXccQ4cOZfr06dx3330UFRVx4403Mnv2bLxeb6PkcuGitxjIiuRf+LL3IsavO9rRcFVRTikf8jpf8TFBAqxnFUM5gC70YBNrySSbbvSyzd+JAq7lPtLIsE1jYJBLh5iyjONY7HdLs0cAVVSwm510o2e4DIHpKLuVy/iJ78JhBpCbDBke2FwNAeFs06jsNpWjRU5vNY7ldHI5dkay7OyRbTG5zliyJaqOuCHQAXOVmBsMHwgP5mOWAnwDYiikoKE6CmBzFQzJMp2pFblQOx6MKkj5CIQ/sqxQ9UYdEMTseVTKhhMqMst6qGZ+djqqGkZDZoxOeVWzY/kAthUdE8T2TNRxpinZlbKVOncV1Z4yKj0JssHzXhIkyPMDb+Pdnk8i31zyiGRWFPxKbc0OjPpF06pLJFZfrmq+hiJeprFNO84uNpzW7rJPNB1FfYbQijFXMLK+3XkQcFkTx66kMTq66hdVinoFRX2dhs1iSwNIroOkOghYnXltpQ+W0+txptloD+PMXjmUEnnllnaUtQ0SuY1p2g3NssF/LP72t7/hcrmYOnUqtbW1TJw4kblz54bj3W43b775JhdffDFjxowhPT2dGTNmcNtttzW6Thcueop+ZBbm4Kq3tlS2hxNVVFJMIT7qOIjx9KQf53MNZZSQRgbuGIfThYvuDs60huBq5KLACsq4nNPJoxO/ZQYjGE0GWWxgNbdxOT/xbZS90i0VvG7YWGn+Vt0QtP5WobLpnI6/k/Ecj1PKLk6+2Wln6yWyjsFsqDkGRArmqrAKzGV/9XfSgx0VgqgqDU0+Uhuno1+Ym/x7DHP/M98AcJVgvg3Cb6NjFeCrTyNXJhvsdhMDWZBYOlrrUU0K7OLsjHanxiLLJqdpKzq2AlpinGlKDt9yBn3K9mdr2lr233lES4vTYMqSduESLtL9OeGmty7rJxZ1fRG/4Y9o2gCdq3ozbvMM3uh6J1XuWuX8W+5P7Zq+3aUhl6Fq1rJcsWSQ65bLjedSdSq/pXQULtjUw9zA359krvCyUpMiFRSjfxKGOlqlg1VHtx+yysz8BuY+aVVp5h5o8gsDwmUIc3VZm+6D9TiTELTqcUZ2KLVGx0RIh9You8YkUc+dENHXiKZdYgiRqK107ygrKyM7O5sS1pFFJrvYxm520psBbMxbz4L9n2P0/w5lwo6JuBowQgvAjw+j/p8LN+WUkEo6bjwNKktFkCC72UkHOsVO3AjqqOU8JlPIeqqpYhgHcALTeIo5FLI+nM5qN53aA/40BK5dCgu3qctVTQ5UtpcqvR1yOXbx8vd4y7Ir3+6CSBQdfYOh6iQHwUJhTsa0pUDv1+BdZBttq+PpPeCawXD+t/BDF6j+DST/CN5PiNhgOSJ/MlTMgGCeQllZcSt7qWNMhVSNQ1WeqkxrflV6O1qhjsEaWPsglJaW7rt9VBKY0DhTWj/OaEwE8FqfOXyX/w7HbZpJbm0XypJ38N8+D7ExY3lEOjCb2oDSgzhq6yweH3wpIGz793gvObtLIZ5+1lq+0xxfLj+etEi/E1XHWi+sHGRZPbaX/VN2KfRZt2dsiFtHw3TaddoGKTWwpStUp0HfNeCS+lCrKFu6mY41R1phH6zHmfZHeJyxOx6GkbgOh+ZG5fDTDo7WRVO33aY4//G+MKC9XndtgJj9qoUWWVm2L/m2xxek1Cbx313PcIj/CHrSj04Vnem5uzcuX8MvKANIIikiLIucphEWMDDIJLvJypNJIpn+DOEXlgKwlG/4kW8RlslJ6NIP/e6bbm7mXmzZak22j+TuQijCVQ4XJ5vKznFjTSPX5TTxiCWfPGlIVB0DnbE3SEPhKgM5jj69ITr66u/quw0wysxAUf94pVWciKssAIZfklclv/V7U+hoZ7A7nTC7g2FXj5Ncdvlbo44aTQwEQVZlL2Z1/Z9LuMN7lFmbu7WZdaruTl5Vx7idP7EwpE+nclSXXzzp7dLa6WjnV3Cqy4nm1LEiQ+Eo24v+aW+mFEEXBOtfTlPnBW8t0W+8JFIXl3VlWVvrg/U4076RnWN6wr4H7SjT7Evas6O6HdHmnWV17jreHL2AUd+PYUrRdJJIIrkumWk/zmxQOQEC+PDhJQUDKKOEZFLwkoJAEMCPh6S9HuMNDJJIQiBozJ5k8dCRzpITSFi+h+TYY+d0T4PqAOysjYwLfbeimuTIDheVE0rlOIqFSoaGOLfkSZmd3ZdIOgqj/k2X1gqtBasMWZWClnCRFJncWqyTjjvrzHGiWxosCYJRi/liARtxAAiYm/yHdbCT15q5CXR0VDDWbFcuT5XWaVLSlnTUNoEmDranbmJzxsrw76ARsJ3Dh5pZh5puBOpfvuPUnO0cQ04Otnj7WrvLwy5OFQ72Otr5K+RyE0JHJ8Ea0T8F3OpjAs46hmTx1Y9TQVf9hv82jpYIEVTOoNbeB6vkaGs66nHGHj0512g0mn1Km3eWjVt/JEdvOg5P0HzTZGMRCN7mRQ5mPEVsJpNsStlNOhm8y8skkcRl3EJTOLhWsow0MiigO0kkN0GJeyhmC2+zwM7OBCLtHq8LuqaajpEyn9pGs4ap7Kwow1dRTyzbDNR2nZMOseJVdccT1uI6JtlklIVTVahQLJjtXIydrGU+02ZLMsCoBNz1zjIpYVRbq1PLEfFdOWNqvI7KsmVUxr5Tg3AqU55UtEUdNRoFAliW9ylFaWsjwlVNK4RbeBi54xh+6vAx5o0i9WXh5Nxxio/V1K1pVOWp/AR2/bldnNyPJ7qOfo+DkI3on2pTzL3PkusariOYzjYEpFabj4iqqrHq6A4qErS1PliPM+2P5naU6T3ANBqNJoLG7RLfijCAlEAKHtF4R1kpu3mE2/iGhdRRS0c68xJPUU4pNdSwhY3UUUdTrQT7hR95nHvDj0rGQgC11DqmCRKkigr+xcMUUwhE2zKqcrOSIC8ZtlZDbTDSnpHtoVAYiu9Y0hlE23uywWtFJads91ltRkORx0lHaxmy7ZiIOkZEysJZv6sEjlFpQ3Ss9Jub/HdPw3y8sgZEGqbTzEFHVwnRB0NWUDU73RsdVeWoTr41XawweRJiLceg7eqo0ThQklzM630ejgiza/ahz6Sgl9zazvya831UU7XLY3fpQXR+u8tM9hnEU541T0N0lLuERNcx5JxSFmr9Hmf/ZAjzr6E6hvB79nwGXOpx2vrbW2s5Pm2tD9bjjGZvMAwiHlds7kcXm6t8/chl60c7ZTWtgDa/smxvEcC3fMpudnI9D5CNuTP5H7ibr/mYZ3iQmVxJD/o0qMwaqkjGizvitYAmR3MSv2EqKaTZOnlkknF+BXUN1dzCZXzO+7Z2iGz3GEBHL6R6YFOV2t6x6iSHOxm+dnlU6ayyqcI9hunQS3JBsgsGZcEhHeC7nfD21tg62smbKDpG4SdSEcOchHgEBDBfiqk0hq2Vy4ZvfZqG6Fjqg7ogpLjBqMOs3E34bZh2OroqsD8wsoxC+m43u4ylo1y2NY9cj7V8OY+1bJVMsuxyOXbpWouO2jbd5wgEAcOPW3horkfzmwqB4IMeT1OUts6xeYYIxaf7ssn05VLnrrbNo+of7ZplPEdJLi+e/lcuN2jUXyYOGe26h3hksubf1zpGPOrYBP1T6LHOhuooMI9vRQbkbwN3AGozzT3MXH57HVOqzbR+t6JgWcbW1AerZJfLsUvXWnRM7G6ubaDa86y5HvFsjjK1o0yj0ewj2vzKsqagA/kM8u4f8Uikjzr+zRN8xcf8gel8zgeOZfjr/1VTxc8s4RWeoZY9O+YLI0igSzEAWWST2gBHWcjWcCKVdGZwOelkhtNb89nZXD3SzcfsQs4yuz8Z2YZSOVsMKT4eXQzAhRF+yUK3VDi8k0Gq26C4BtZVwvtb4dFV8PG2SH2c7EpZPuFqWR1V5YQCXKWWyuojsgNw/0b43Q7ICEKvWuhbC5nB+omcYVO4AJGF7WowJx39AmoDkJMEhguMShCpIJIj6xH1/mCRXJ+/SirUWhFSnF0jlfPE0DHqBFjzyHVbZVKdNKeJg0qOtqajZp8hEHxV8F9uHn0Ci7r+B5HgJ0Ag2JzxK6GGYtffyv2bN5CGz1VHSfL2iHAhfXfqO+0uM1X9seSSL107J6VhKSyWjqHvcnji6BhZrmF9jLEJ+idhmM7FBusozFViIWdbks9c9eb3OOvoDtbr0Bb7YD3OaPYGlfMq5HzSTihNItDS7bCl69ckFHplWQwMwFcQ4JfBK+hQuJDjVp1AaISvpQYBVFDOGn6JyiswXwwQxI8PHx6ScOGiEwWczO9IJX1P2sxK/H3X497audn0GMpILuMm7uGP1FJra0Rb5e+Waq5U2lAZaXPJ6WSbSVW//N0ubSiNGw+D2I+NrKWCMjx4EARJIY2beJCy3Lcpd+1g4/YuFInX8NefjwCwoza6fAHmqidDbVdav/uGgFEBnk2SYEEQwabT0YoqrapMlWFb6oY7ukG5G+oMqEqGjAD0rYGUICxJB59LyhtyZrn2fG/Ieaz0m/uW5WWDbzgIL4gk8PcEI/QyiFoIZoKrDIIdwLULgrk2itvNfOwM8XjSqWam1jg5j53iqhleLINedWG0NR01zUp50i6eH3A721I34HPVMqboZLzB1Ljz2zW3pkYAy/IWsaTT+yzt+GHcdYbS9Cs7ALfw4HPVhsPlZhqrv1TNv+Ppx2LJ17t8OMdumsEbvedG78OmuD5EfUbrBvmqccYQsDsbkn2QVlW/Sk1EOolkWRurY6xxSHnpW2+lNkX/FCOLHC9/1qTAzg5Ql2yuetvZAdIrwRU090HzJUFSnbk3mjtgpg9YLdy22gfrcUbTUGKtIEv0lwhoR0bbp6XbX0vXr0kotLMsDjrXdKVbTS9K0nZTnVTFLt8OlvI1lZTRkXzO5mJO4uyIPDvZznzmso5f6cdgjmQy3ejN/1jM+7zKBCbRl0H0pD9uXPh7bsa9qVuz6SCAcspw4SaNDOrq9ziLZWf1SYe6AGyT3oRp51SxGrjWG6CqPHbONzcecshjPMdxJbfzHZ/yAa8xjmNZz2o+530GpGTTM30Mgc1nMZe78eNX1hshYxJUnQIiI/bxCmZjvrmxQpJtE6R8YBa6NzrGuhErp1NiKUQYsCPJEiWgzAM/uaFPLfymFN7JMZ/gtCuwoecRICDA2wn8/cx9ZACqj7cTWCG/tRJVo7Kr2C6dShlVmJNS8kTDLp2qbjm+Leqo2Wd80/lNtqduolvlAGb9cg/JwRTH9AKodlfyfUEhG9M/ZEXH3qT6k7lq8SGkBTKbUVLB8rwveLvX443KPWj3aIpS11GZVBoOs5tnh+Ia4oyTyzCADF8uWb4OdKzuwYgdR/JOr8fJqS1gyO5DKU/ehd+oo2fFUMZtnUqHmu7s9hbzUr/7Y14KQTds7g5VafZp3AHzryLDdPakV5rOHnfA/J1SDV2K1M64huholyae+KjETdg/NfQ8gnl8NnXfk3F7J/MPzGMWdO35DIvXVvtgPc5o9gbZEWB1Ptk5CezSxJO3KWnNjjIhnOWPFa9Kv7e05uPZXKgeUda0a7SzLAYC6JoxkBnb/0DA5cfVM4lOlZkM3lHDkf7JHM4khnEA8mMaq/iZaqo4h0sRwPu8xiLeZiubCBDgPV4hgyx+z3WcyFnQdStJq/s0uexBAhSygbd5kQ94jU2sI0hAmVa2XdyG+SbMygDsro22e0Lf5a5EDpPtIycbyYWL33EJx3M6AB48jOEoxnIsSSRRRy0zuAxP539gbDsZN8mcxzWs4Ce+ZVGUfBE6eiDYEYIhZ5mTgWhWTsAbGR7MgOTF4N7ZeB1VxwspzpoHRXj0D3WhAljrhY5+GFwN/5MXpQgQKSC8gC+6iAgdXUQ8rllnwNY66OuH5PrfERllo9npWKuUj1PHmGWrxjpVI1ZNRKxl2E0wnNI7TWpUstjJmYg6apqd7hWDmLrmGo4sPJuONd3t+zagxl3BL7lf8Z/+97I2ew2CKn7tOJW+u9dQkfT3JnWWmfPjIBVJuylL3oknmET3ikG4hJuAYY4vsRw0oSbrwkWXqn7sStlCwJA6IQm7ZmuNs5tvy+HHbZrFyeuuwC3cJAW9TNhyBt5AepRDMpQnzZ8V/q3sj+vD/R4oza7fIF+uWCFc0IDSrMjwigzILTHf/Lg3OtpVbZcGRXxT9U9BF/g80sb7khyhMkX9H2CutlOMKdaw0LEOWFZJxzRY2kIfrMcZTVMQctLEcgxY9zZrKRrqUEoEGuJ8aY36aTRtnHbtLLPtsjz++veOQyDdYNe0VAIZLqjfRN8IQHZJP363ZjYpv/oIlu7EVZpJaKQXCHrRk9704iH/TawKrKCG6ogq/Pgpp5Qf+IoO7g54k5fQtaY7Pemn3PQ/NDmpoxYX7vo9u8z6aqlmA2tYwy8E8BMkyEbW4MPHVjaymC8ooyRCXydbJmTvpLuhcwpsr4EKv/1xVDmA4okL6WW1kQTwPZ9zMIezna10oxcp7PHweEnBa7ig42cEi08hiJ+fWcJyfuA0zqWEXXzNQsoojdJRpNY7hWSDEKINRJuZnfCaj2i6Pm+8jk62pVye7XmSM8onVyp0RQpcuA1+STVXg0WkcQMuSQ8XBHLBqMbcY8wDNUeCv09kNTXbweMzXy6gVNb626pUrNmf6jw46djA8xh10uwmBdYTYOcRbW86ahpMRP9gCIKddlA77hvcO/IQ7gC1h3+JyDKXsbqK83EXdwSgJ9Bn/TiSt3YAb90eOzvghoAbA/NNx990fpO3ez3O6uzFBN1+8zQFYdD2F0kSyexI3Ux+Tc8m0cVv+Pm8y0ss7vQea7J/oDxpJwYuAoafoMVRppp3q/o6l3CTEkhndeqSiGNl16StYaomKsfb1b/bW0RKII3Qja4sXwdHvTvWdMctkjBHeEHQCKjrMBTOnQZeuwGX6XBLqcF8i2QjdXTyldg5/CJoyv5JmKvurMEY9W+5FOAJmJ87O8COjntWiLkC4EuOLqtd98HtQUdN82DniGkKJ07I4daUj3G2B8dRoj/2mog0xTFzWmGp0Vho884y38BV+JJT8ffaBO4Awh3AP2AtJPkQrqD5PTnybnYgfzvB3BIARJJBIM8dsf8IQCB1FzVJVZT5wFXtwlXcCWuiHRTRlZ2cugPKd+7J5/fBllUgApBDDlMCfVhX/h4rD1jAYtdnTK+5hozN/cOWpGtHHoYviSoqebTqL/zg/47UYDo96UcyXryksJRvWMev1EoOOSuxuhQPbnMCQDBsr+R6ITsJlpWCz1KAXVkqw1xIn6HvKnvKAAYyjGlcxHBG4SUVT30TraSCIgrpyyAMlw/cVVRTzU42kk0eIziECRzPaA7nFZ7hRZ5kLSudBVX1iyqjUMpXNwrcWyBpbcN1jLMKWyIn3UQanaqC6j8Dhrnhf5Kov/suCeDvCSIDkn4BowKqJ4F/ABg1kPpfCPSCupHseSVIfX0bqmHcDsgJQIlqf5h4Zm92xngDdbTNp4qzy+c0IbFrtO1JR40S38BV+Nx79qAMdCnGP+RXXFsKCOaWEOi3Hn/f9RhVaYhkH7UTviDQdSvhjaHcAfVEFjBqk/Gs6QM+D0b9s3qu4nxSXz4R75ejCWaW02ni54zrs53Rff0kp0BpRSpbV9aSkhqk55Kj6LekPyK5jmCH3QQzKsy9MV3CfG5NGBiVaeb4Ve+Ac2Jzxgr+MeRaat1Vjunky8DuEsjw5dKpugc1noqIfHaXlKp81eVj1/+6hYejNk9n0sbzbUpWM2rbcVy2bC65tQWUJe1i/sBb2Za6IcpBGCVAI6/dbfnm45mZ5Xvkj1dH6287DWNd0h6/lHAv+ycB7M6F6lTI3W1u1F9UYDrHAHpuNFedbcuH2tDLvVXeQJWC7akPbg86apqPxjgYZCeC02OY1hcFxNoXrT3QWIfOvlrF1x5Wsqnaq3ZOahpAm3eWbVt0ItXZBsJbS3gUDg3KTYAAAtkQKNgeEZ5T/+fMTurEX+kGdAOY9RMVYhaVtcmEBHWVZNW/+xwmbC1jZKmb4JoudF7m5b3V3/LNthWUbIPADqIeo7O7oagyuCdwPIczkRd4glUsJ4CfghRIdsGmSjAw8OCmK70oYnN4zzMsZansL9lOQhEmMB+37M8QDmQsAsESvmQ0EzAwwivtggSoppK0+klamq8baWTgo46BDKOOGly4mMosxnEcl3AKG1izp540ot//qjpITkahwFxddgB41oMRjF/HcJyNQWg3CVLav7JnzglhOsuy/eam/zXWR1UA3KYjLNAVjEpIWm4+riqSQXig7hDw9yXKUYYBtYY55/YIIhuCaqYsx9kZ7KpGGoeODT2PyjQq2eLxhrY3HTURbFt0ItVZew6WSPaZDjDrJFBJ9CPxclqRUodvWLTjv+a4hRi1XjCCeFNqGRqRrxqOqv86/X12XXYi7u0d8PdfSzCtGndhV/OGUVIdRtCNu7AL1HjxrO2NqyQLz7peGOUZuDd1w7UrF8/Gbhhl5mOIBVV9GLt1Kgu7P4f8dk65Wavm8zJ9y/Yns65D/W0ac6wxhCvshGooTs4hgOE7J3DOytsa9KIEgCTh5bCi3wKmfkN3j+HTri/y7wF3UueqDtdRnUrUzbXGXLsBl7knV0YFUXuXxdLRyR9hFy+n9fhp2v7JgF255te6ZCjYCiU55l5kCNNxFnRB2PzRfbDWUZMYODkW5Lh4nRBWJ017cNg0ln3hNGvJ498cq+qcjpl2kmkaQZt3lom0WkTDbOJ9S9RsIohIqwkHBdL2rBbr1rPeqUYpiBX8Lmhweh1Ul8OWX2HFl/DTR7BsIQR80XaObPu4cNObASSRxIGMYTJnciQnsJgveIl/Miz1f7iMYlKqhzCVMbhxcxHXsYHVfM1CtrCRb1lEMYW2xnmoLpVtJE+zzuEyutObz/mA/gyljjpcuHHjJp0M+jGY9ayirzsFMDCE6URLIplZXEUJO+tLCrKB1exie6Rt6cVcyBHPTM7W02X+9vcyV5h5VoHhB5EErt3OOobCugyAwl9t5xO2dq+hCpQNW9kYNSA56CG3OhVPnQAq90SGPtwg6rcz8g01H7UM5tTnd4FvoI1AwnypQLKALnWwNRuqaqWxSHYWxPIINlJHZZlyGsV5tMWubrlca5r2pKMmApFWazrjZZrzeLmDiDT71cThuj1B/APX4B+4JhzlH7wqIqm/t/na39qjP9sTKICAC6MuGXdhVzwr+2MEXSR/dwBnfHssRWW/sjzrG2WVoeak6susaVL9mYzccQwuXOz2biW3toDT1lxLflUvSr3b+bTri2xL3UBx6noCRsDRSaRyBqma8MHbjie5gY4yVX0ZvjzGFE3hjd6PstO75zzUJRO9sTyK7xDz2i3PNB1mubtNh5k7sCePk45OY4uhyKfSr9a6X2dT9U/1n7vyzH3ZwivIDKhMl/LpPljrqGnbOO3ltS+cN83piLKW3VAHTXty6DSnro057tppq1HQ5p1lbRYDcAuSUyE5FbLzYchYOOEKeO8x+PfNUFkabackkcyxTKHE2IU3KY0/cR+ZwWw8fhcGkE4G45nIWI6G9BtBPM3plXcDY6ihinQy6c9QQNCHgfzMEm7k9xTQnc2so4oKAkRu8BxrEmMAAQLcwx8ZzAge5AXqqMVHHUlkWdK56MNASFoKvjwIesP500gnjXQCBPiOz7iJi6mgTHkjM0I4GZWxppj4iCSoOQKMsWD4wCiFtNfBKLPXMUSSV22vKuVEcfyqpAjZcJUqPWTDUO59+yJS8JHb+T52dNgSZXQH651l/l4KoWQhLOXvqu9BPAKSPCBqY+cJf6riZeLU0TZfjPOozNMQedurjpq2jwF4gghPDf4Ba80tC4DqE9/FqEnhlKfHUvlaH9azTtnXh8oQhunoCbrMrdaSfJAc8HL05un8ZuP55Febnc5Rhb/j6MLpDN49JtwUxxSdTJ2rhjf6PMrH3Z6jQ01XCjN+pdpdEVWfqumrwt7v8U/Gbj1lr154IICS5G3M2+8ydnuL7C+Pvbx2gy7Y0hWK880VvKnV0GOjuerLSUfVmCuLoxp7rHmEXEAT9k9BA2pSJAFkIeTydR/csDx29bYmHTXtF7tHPRtbltPjd83hNGvKx/32peNwX9bZWBJZNk2bRDvL2hKG6YiZfJn585k/uPD7g2GbRgDpZHIFt5DWryu7J6USMNyU1gpSf6kjdVkd7t3m3Xs3LkjbDIEUPLXdCQD/5jFGMZbhHExXepJCGgMZzj38gz4MophCClnP49zLRtbiwUMtNeG6FeJGhY9nIpWUU04p3em9J68ryM6sdbhS68jsspHgfmWQvAT31s4YdckYJVnsrCllCV/yOvPZxXZkgtmWikMFWww3twsyU81PAJdh9smBINT6oKoGgtY8LsxHFb1Auuk8S30PjFpwJ4GrvpzUTPM3mOV16gVlO/bIVV1urgQECAQg6FdPfkK4KlEfUPng1mdMDnjoWJmN3xUk1ZcSaZCqDF7V3WcjMonLZR6nGq/pOOwrYEvOnpVl/sCeMoW1TCd55TvXsbCbzNnduTYakMeKqjy7etqDjprEQpj907ZSWLMVtu6CsirYrxf06wqdc5xtS6M2CQIe51VqERlApNaQe+FCxmbmsfF5EDZPTO7ONR09SX5zI3e/G3pvyeCs767mxHWX4BF7TJAhuw8LFR/+9IgkPIEkfrv2Sn6z8XzSfFmsy1rGBz2e4vMuLxMwfLZzf2zC6tw1MR/xdPIDhFK8MOAOfuywMCJPRHqb69Dj2jM2WAkGwR/8//bOPE6Oss7/7+pz7vvORcjNDQFCAFEhQgAREFeDWUFlQQXWZb0QXURdVxD9eeCBuquAKwrrASKXhDMcIQkhgdwH5E5mJpnJ3NNnPb8/qrunurqqu2fSc/TM9/16Tbr7Ob+fqkp9v/XUU0+l1lFabBF8zXhk8WAjTN4Pmj7Qh0bMxyhQOrjc4PZA1PRiHj1q+C+Px+hLj6Sa6LghnBiG85OG4Xt10/Wrphk22w7uiJ9JtXc8aBTGPiO1MP1QZ/wc7YyuXAzSHS2jNTA0UrOs5OUGQh4gg2XjEM0FF13vZvKhL/H833az7p1ldPe3oYACCvDgI9LgRVV5ib03jXCDm54FBRRuClG0Loi3pRsKd6FFKiFchQs3H+P6xJs4q6lDR7GTbbzJa5zGOVRRw1xOZjpzeIuV/I6fsZedKfaZB++KKOY4TuEIbZzLB+inl246mMqMRBm9sZnu+SvpW7icQr+XQ1f/GVeXB+W6EdxRtM4yvNtm4F5+Onv/uxM9opjGTA6yjxCBgbgr/gJR651SDapL4YML4KRj4O2dxqCPpg0E7bMmwRvb4Nm1prdJkvwZngu1HljyXph9JviKjOzSavAWDOj3FUBo4ElbutsGfncfhg0vwmM/hP5e0z61bDvbu7x2QahmqWclzdWl2w2Ta2D2JGiohPpKKI49NlNaBBXF4NfhUAg+6IULioztpuvQfMQYZNQV7DsMhzph+37YcdAYEEzp2y7AHqRGxyvmdFfQ6a6y7coqm3Trb6cy40mjkFsUhCLGYNeeQ1Dkh8oS4/+ez+tcLRKFh16C5evhQDv0Bwd23580KC+G806AM+fAKcdCoT+1jYKnFuF741Q6//O7g9u/bp2TPnKYdg1WL4P2FiA22BN1QchvPG4XKISA6bh+d2o/K7u388FdJB1r6br26QX4QsZJdHbnfI7tOokFLZfxyLE/ZHv5mqzMLQ/VcvGe6zn74JUURyqS8hJmuKOET9pIYNFLuA80UPjYxWjdJTa2aRzffi67ytZzoOgdgu6+xH+dqNvUqOn/rqbBycfCJy6AcptHdnsC8Mwa+Mca00p21gEhDdqrodYH582A2acag2RuN1TWGwNigV4oqQCvD8Kmmb49XRDsh6o6CAbgjWfhzRcg1J/mv/kInZ987tjNqiK4bAHMnmzcnALwe42/Lof3SXjcEAjBqm3QcgQOdxmfUX2g/RR7nWzLp3Ow+BlhpLEbPLEu8J+p/kgOjBxtf8P5mKa1TbuXKOSi36G+/XSoZbPtf6wiA3eCDTJYNk7xFkY59RObOMX7MC1t+3lj+xO89PaD+NrC+EsC9Ne6sUZQepFG7+l++k/y49/TScWhQ9AxC6JFaECZ5ZUFLjT66OEszk9qaXrhMVTUhPFqH2eZ///ompS8Po6ZBZzBNb1fhpZq3JqLv4b+QLizGxWMopd3EZm9AzQoPNxEwSNL6b/2YVRbgOrrP0nv+TX0f+Qxih78CO49kwi+71U+suQkrv39Q7RwgKf4M7/iLrPEpE8N8HmgpNAYDCvyGxesbjdUlMDaHTClFibXQk0ZXHqmEbT/fWXsfGoOOpVR79O3w/knkzHY85vWZymtTs47/r1QVA4PfMUYeLJtyunurTXoVdBc2k7YHcGlXGhKSx9kx9LqK+BfFsNZc6AoPhnNQVMEKI/9xZk5KdWuQBh+/RT8bYXJH1ntNacNQmMS6QJxuzvulv2Ytm9reTu7rO2PN41CblGw4wDc+yRs3A3h2GygSdXwo89AdZrBspYj8OeXoauf5P2KMW51pBv+9jo8vgpOmwmf+gDMmZwcv4ZP2WC8bRNo64KdzcbAmieL6MBbAB/4OMx9H7z8HKx6FcLN0FVmzICyW+g+6oryzOzHueaNG5jXeuKQros9ysv8QxdRHqrlj3Pu4s2654m6jRlY9RVQVWqcqwH8BTB9rptz3vgnpr95HZrmNWbR9fvRlAuFIrD4eQIffAa99jD9lyxDFfeB7qLoT5dT9Yl7Y1O7BtCA9xz8KGe1XM59c7/Kc5P/19jsmmmBevP/Xc3wMV9fYtyYcRI9Z5Ix6+yp1ZbBHtO+rSiBf/9XmNkEWmyGWjQMoaAxWFZcltx3JAweLyl9HjMPmo6FR+81bmAcrZ9J2UBZnJ/cGiyYCx851xgc9nmhsdKhz3QoOP8UY5sFQvDwcmMQOXFjZrydg8XPCENlqIueZzPoMZxvGhzq4FEuBmsG0/dgBgyt65qZ86wDfYPR4dSHXZ/pyMV+HKm3egrCMCKDZeMVDdSxy3DNeJHGovlcNuVqLjznwxzqWkl4RTXhRh1cYdA9AxVin7oPIo2H0Np6CNbPJXpKMQVbw7j69JSY5mwuAIzYprtmF+4L30AL+gl+4Am0vxQyb24fte+HnW8ZjyNWNsIJ7zXuhq98BOZ3e9EPrsGzYzq9i5dRsm07Hn+QwJYDBM5/mejkA/hfPovQKevpLW5Fu3I5WlTn0O/+gl6mEa1vJTzrHbSoG1dzHerSZyhedRaF28rZ6F5FaQVUNoDHD8HTIdI0YHt1mXGXf8124zw+uQZOnQFnzDYC7tNmGBckbpfxeExvAD56Hryx3ZjFYeXYBlg4D+fAMEtcbjj/k/CPX8GB7Q6xajbBbaxMZ0Ev+6v20hhyURFyuPJWcEI/9Lmgpx6+/QmY1XT0Wsx2FfjgE+fDyi3Go2IpOjRL2iA0pnzPhF19a166sukuYKxMBI3CkDnQDv/1EOw+RGI/FPmNwerqDMtq1ZbDHUvh3WZjoD/OoU5jhuyuFmN2ZzQKq7cZsztv+xicMYvEvoxM20vP539NVIcX3oLlG4xBh8k1xoBdKAiRUOwxOIybAoUlJB3Dm1vg9T4N92mKSjdUA8FWYzaQrhvtxQeTUNDt6+YH7/s29/7l9/iiftAUKG1Qh5cGzOo8jYsOfp4/nfsSUyZHOfcEaO2AijK4dlGsnAaaFoV/+hWtNz4FETea0vCtnI9v1WkQddN1x91Em1qSO3DrBD7wIl23/4DS/3cjrq6ylP69ug/liTKprpi6GREOeYJUTYb93QM3VBoqjZstF5+RfqAMwO+DGy81BvweeNb0WKaJYxuNP80F3UeMxy3XvwrPPQxKh5PPgyZj7JPDB2DTSpg0E045D2adMtC/5oL558Nrj0PzrtRTgCfM8J2fNCgugA8tgGsWDQxsDhnN6NrjNm5+/fP5sLsFXtlksWs8n4Mngkbh6DiatwPalXMaAHEaiLEO/uTLLJ50Az1Oj25mu06a9bu5r3TbaDBvKLVLG+q2d5pJOJwDpYIwyshg2XjGE0D/yBKIGI+veKM+moLldIYLMW45F0LriXDwVLT9Z0LbHIgYr8DyBHaACtFTPYWO46IUnO2nbBMUvRVb1yx2PnThQrmjhOavQU3Zxfp/eJk+pYSWpkK2vuKmd/Yh1G7483eNu9+10+AHq2Dtrxt57A4v51Z9Dq7eQsFjF+PeMpOTZ79CQ+tJdP7gDoILV4M7Sv+VTwCx+EkD5Ybw7IE1yVRpLwrQK4zV9Tdd8WN+99cNHHvdBk6fBJPmwbQTIKwgrENPv3H3vrbcWD9mRqPxuGV8rTI0YzbVnCmmTek2HmkqL4Irz4ZfPG4ZxNLgglOg0EdOKK2C9y6Fh79tXAAltJoLOd3Btfj1/eWHuPey73D5EZ2emnBy4Byr49WgTIeWEvjXD+V4oMxERYmxnR58YeBi0jojJu2dcQeNKRcDVo3Wck5Y+zan2wX+1nQne8eKRuuFyFA0CrlDwZOrYwNlABqUFMBNl8F7jifj8erzwqkzjT9ru31B4//ZX1+FYGwgraMXnlgFp89KHnhX3ggdXbD9ACx9fyxfMwbK1r9qPK63b4dRvLoBPnuX8Th5nPecoLE5fAyXzGxhRqXxvFx3HxzqMgbKmtth81549yC0dBiHU3PpatoOP0/D2oV0f+lnuPc1Ufiny3Edrs7431QB+IMEzn+Zye99gdsu1Dh5DpQVGv2FIrF1wcwNeaNEZu5M/AzP3U7vtQ+l7UevPkLX13+Iu7mO4ns/bfmvo+j/6N+45Lp3uPCsEN6SCDrGdoualkRzu5O3dSYK/MaSAE+sguaO5DxNgwVzBnxVcWzw7aRzjP20eRW88H+knCu6jsCiq236KoKFl8Aj9xplzacfb8TURo7PTz43fPkqOPd4+/Xbjha/B66/GNbvgs5eG/vN9sHInoPt+janjwc/Y9e3OV38zMhzNANlTqSbNZRuoMcpz+5RROvvTINsmWYwDeaxUTucZplleqxyqH2O5UGowcwWy+UaaPLWSmGEkcGy8YwGFHSB6oKeRrS958Cec2DSKtRJv0db8QW0HRejig6hjvszlO9F23I57LwAd3QbyqX4n+W/4OUj/0tFcQNzJ5/Nwg9cxomdJ1OxwYUncIjI7O2ET9mA76WFFP31g7yk/Qf6l3agLZ/PqR/fxSveEJoGM0833tp51mI/ZX4PH9z4NRadVUGZ203g1PWoyg68O46l7Mb7aFtyN9G6Q0MbrNGg9vKtnPbi8RzY0sbfvuvivP/Yz6ZX4B/N0FFpzBD7wGlw4weN8t7B/C/QYFqdMbgWVcZMtHOONy4M33siuRtg0uDiG2HGfPj1TXBoTyLZwBpcWgNgU5oCdhYF6e6BySFYA0lB6ZQa+NdLob8DpnXkZnacoywNLjwNHnvd8uhYkjiSA/UsNA50YNMGDmlWjdY+rX3ZXVSYy1nLZmpjhDW6+kB5QPmOUqOQU3pN6xfWlMKtHzVmtWpHM4igGQP+n74IjqmHn/994P9bxGFt++pS+OpHY4dA7DjwFRizj449EZ56ANoOwpz5scf6TBR6Ff96xk5cpovv8hLjD4xHP997ojHLLT4DLhzpIfql62huqUOvP4Tyhei5+X8oeOoCCp76AL7Vp6B1lRqjNm4dQsYq93p1O9HGFjq/fwfB815D+UO8x3Tcut1Q6CYz2Z7j3DqBRS9R/MtPEX+uVAHB973KkZ/dilbbRnxzxHdZNo+wpqP5CLR1WxIVTKpJ9jOuWD+FpcYjlZtXxYqq5NNHSbnxZ/f/+7TzjfIv/Bk6rW53EH7G3GZSfRvOmG34meEYKIvb0FhlzAxfs4Mxcw627XOc+RnbPsXPjD1yOfgy2Eft0s2WytRGutlpdo8apiPTQFSmgTm7fjLNKEtHOv2ZtB3NTLGRmvE3ki8NiPcnCDlABssmAq0n4vrjY9BfCY1rUXUbAQ0160lj1lnRYeith1AJ6syfw9k/oL93G+FtMONAG/W+Ntr37+LZ377Ok6t/zvSGkzl77iVcfMdL+M96Ge/qUwnXtqBQLC2Ooq56B88VB4nM2cEsjEd4Lr7ROH+53EEgSPf/3gIK2mIm6uVdeN8+nvApG4jWp77JcjC4isJc3v0ZQm2LWPL+TsI3f4W3nvQTbQ9S4NOpKIErFg79nF1bblwMRcNGMH7x6cYjhrl2AWW1cOL50DgLWq2DZebA1y7AVcmfCuNCzu7apLIEZjdC0QxYoJlm2A0TTdXGOjXL1pKsI47pgnswGlPKWdu0tpXOj6YL/q11rRcZ5jTrxaa5/RHWqBeCFrGUt9rsUNdxFoJw1Fy2ANa9awxW/ctimDuZnG1ntwsWnWo8Vn7vE8Z5asEch+Y15/TKOrj6i7FY12Vz7tSMGwhpiZUpiM2+NT5DRKftSxQJH7eN8Lxt9Pzrf+PZNhPfmpOJTN+DXtmBZ8sscOmEFq5GL+lFlfaM2PEYPPd1Ahc9R8Ez54PuInzKetp/dyN6TVvmykOgpgw+fSH89pmBNexcGvzTewz/Y8dp5xuDmOalatpbjH03bS54HGY9F5XCuR+CbWuNwbIkBulnUspZ2nJpxvIHV79/kDephoDHZbxsZ9Me6A8xJs7BtuXNjAM/Y1vearNTXfEzw8fRDOKMZB9Hs37aYB41zOZxR+u6X9n2k+uByMEMIA6l/aGUH46ZioIwRpHBsolAxU7U+7+BqtkMdRvRdiyGcCGU7UPb9BEo6EDVr4fDc9G2XAGhAtR7LyfyLvz1HvBNg/943Hi05JlfBZl28SqmXrUK15kayqsInb2a0Nmrk7o0X5N7bN7Ahid5ekP/h5+g/8NPDF5bVEMLFOLqKEOv7EAVBdCr2wn85w9RBQHcp26AQp3Trwxw8uXKiMs08GYz88CpS51EgPfEamMtoK99zGZR+xyw4QXY9MrAbxX7x69DSRR63RAi9hI66x1i06dPQVPIyNaioPWCKgLlMR6PeuoxuPIy8FXmXoMVl2bMLnvhrdiaPE4Bu9OFgfm73UWC0x1s6511MuQ5Be12de3stLvwGGWNWh+oco5eo5AbNGOtw59+znjZiM+YPJXbLjTj5STHNkJpoTGTdCh9aK4ROgw0UL4I4RO2ED5hSyI5fOLmkejdFr2ujfbf3UThEx+g8C+X0fm9bxGdfGDYNkh1GZw1D+5/NpagwZS69LOXG6YZfwmyGfiIEY1Ah2mgTJHyToOBjCGen5qq4FMXwrwpxvdhRzNmfn/wTHh8JYSixrWcrmL2iZ9JbWesaRRyy0gMZoxmH+kG0dI9fjmWBnnsBhyzWYMsl/3nstxoMdbtE/IKGSybCPh7UCf/r/FdgZr9uLG4P6AWfRXVtAYK24zF/neej9YyBy2kE7oJlsyG4irwF8HlX4DFn4HyemMR+vS3E3ODFvBT8PiF6AEPR96zjKJpPejd4CoGXODZNY3qJf9NYPHzdH/x56iiANEpB+ifciC5IbfKboBMxQZwYtJcrtRHRd7eGXuUSBnrAoWjA48b5ZpjToazPwK71sG+LcbbzlwdUB2CY0Owyw/9LijUocULwTTB5hGPMcjmfQsKXobgmRBaCItPh8svBV+O1lvLiAbHTTUegw0ahyE9AWNhbjB8XGuHsW13tZgeG8vmLrY1uM/2osBkW6JsukDfWs7ubrvdvjCnmfuwa9eJoWrUwNUFqsQYJD0qjULu0IxFyYcTlwuOn5a5nOCMXttG7zUP07f0zyhPZEQv7N2aMehTVjSISoOwz+2BMxbBihC07gdNB5fJD6a0Ocjzk9sFn7sUzjlucHYdLS6XMUD3wQXGm14DIdjZYiz+f6DdeNT1cKfhwwc1W0r8zMhoFITBMJhF78fqYIo8Qjh4rDMDZdsJOUYGyyYaGuAOJ36qmc8M5LkjqJnPoGY+Q3zCz2mXDmQXlRt/I4nWVULlTXfTejjIQx9/gZOWQPMLNVz65TBaXSfuPZPo/fSD9F73IMoXztxgBrr64M6H4Uiv8fvM2fDJDxizyXTdCKp3Ng/Ech4X3HwZ1JY5NnlUVE+CW34HfZ1w+/mwcx0QhX0+2GeasVeo4NReWFsMQRcpge4hj4v6XecybfYreLfrEABXuzHD7oNnDjwaNVIU+uGKs00JFt8WX6T7K7+Bjbst5awBO6QG/+Y8J+yCdCecgnjrxUs2Fx/xT6cLlmHSqJQXPehD6+lFVWSwz9qG0wwFQZhIuBTKFclc7mhRxiBONApocPKxw7yWpAvOuxLmXwC//g/Yuy02WGZ3PhjC+anAZ6ydNxrnjwIfTKk1/gDOmmt8RnRj8OyFt+Anf4vNOIsjfmb0NQrCeMRufbPhHOjJ1dpmuWKw69ulI9s3hwrCUSKDZcKYpjdUyIqaMJsrdvPoYy7+/iAcxyT++e2vos3eTWTSQXq++IucDJQBtHbC2ncHZo4d7jQWp64sgCfegDd3wpGeWGENKoqN/GEL7jTDBxRXwOwzYf/bsTSIrzUNCvo12FYIc/rhbZvZB2GXTkNPJeCjr3oarpCHqA/mTjrC1LoDqRVGGsv2c7uh0AWzJxewfreGpqJohDFGfbJox+6ut/XuuF3f5gsM60WHjZ0p9eLfrW3bpaUrk45sNKKhlJ8w9QTVTALMJaCOw+9rY9LBb6JX6EPTKAjjFWX6bxD7P6DHBowyrsc2hL5MHwBEdA1NA11p7DsMP3tcEdENiw51qWFf4wsNistg0gzYu930GKZ1QCWLgROFhyCz8ah20ELMntJPfUX/sJk+KGL2e9zGjM6acnC7NKK6B5SGRsz5Kxfg8DYM8TPDq1EQJgLxwZ7RmE0mM9iEfOVo32g7BIYl/Nq/fz+33norTz31FH19fcycOZP77ruP008/HQClFHfccQf//d//TUdHB+eccw733nsvs2bNSrTR3t7Ov/7rv/L3v/8dl8vFVVddxU9+8hNKSobpeTdhzNEfdvPjTWfy31e+iXL34+m8kbo3H6G4t4Qn2srwvnECJ13/OwpyNFAGUF7qIlBzDB1BY6pVh4Kv/h2mBeGIC/b7gNKB8g11fRT69+Ssf0c0mHxpOaX9jezzQrAceiz/e3t1qO6Ddpv/IqEofO2i/bxTfA47Zl+CCtZDuIwrZz+I3/Pw8Ns/FDSYPvVU9r18AxDGw2E0gmjoeLUDaITxqoO46MKrHUKjHzc9aIRNA2t6oi3bgN3ue6Yg36kOlu82emz7cboASde31UY0opQSUY0E1Bz61UkEmU5E1aIoSHSgFe5Be8cHcwND1zhGED8j5AKlYF1rJW+2VrH+cAWn1LZTWxTE69J5fk8DZzUe5oqZ+3J6Q6Qr5OX7q+fR3FeQSGvr9+PSFP0RDx19Lg65o7jr+9HdPj50xj5qynblzgAnNKi7oILXO2bTV6DwRFtx6QP+NewpJuivBHS84V40y0nBE+4j6vbR72+izzUXV7AcvB0smbsZj/sVxiKnz4JFZ53Dr5ZfA2i4OYKLADpFeDmARzuMVx1EIwAofNo+PLQDOi76gWj25227/HzyMyOpcYwgfkbIe0ZyzbNsOdr+rfVH4i2bwuiQbt+O0IzCnA+WHTlyhHPOOYf3v//9PPXUU9TW1rJ9+3YqKysTZe6++27uueceHnjgAaZPn87tt9/ORRddxKZNmygoMILHpUuXcvDgQZYtW0Y4HOZTn/oUN9xwA3/4wx9ybbIwFrC5q//kziZ+tUuhT3kM0Ik2wd55s9gLLOe/KfBEeXzKXmbnoG9i/eouH+2VcxODZQCHgd3msqb/t++bvwH/CM3PDM4t45lz5yYnWgLQg9aFk2O2tgO/qImV42VQHrRIMXOmr8rpRWCumVZzGNx1hCI+QkwnIVTBwI5TaERig2QBXFovbnpw0YeHw7i0HjyqFRdBPDSjEcGjDhN7LUJycK6wTdMAl+pGIwpE0JRpkRtrHev2tGszXs5aJ90Fhqk9hYeoqiTEFALqRAJqFiGmE1GVGKd1+yuQiL8EV6sPLRJAeUk+nrO5gBkjFzLiZ4Rc8WZrJZ98eiGdQR8o+Ov2KQBoKBQah/r9fGjmPts3CQ+VF/fV8btN01FOJ18Fxhi3cTzvCvQBu3JogTPh0gL2NzWilAbYvLXGbkDDNq0VvagVgKqavWPWz3g98N7jO/jVq5MIRXzAMcRPfP2cnBKIawRw0YemRfBwCC8H8Gn70FRgoJACL8246MZDG+AiomrRCOOmfaBNBRoR3PTEtp+Opkw3/xKPLDEqfialHet3pzrpfIr4GfEzE5mRHqQa7UGxkWKi6BzvjNFBz5xf5n/ve99jypQp3HfffYm06dOnJ74rpfjxj3/Mf/zHf3D55ZcD8Lvf/Y76+noeffRRlixZwubNm3n66adZvXp14u7NT3/6Uy655BJ+8IMf0NTUlNJvMBgkGAwmfnd1deVampALFIR1je6Ql7aAj5a+QvZ2FbG9o5QyX5jPn7bVuChRsL+nCB0Fmv1JMDah5qjY113IY+9M5tS6IyxsOoyuTOdca+BnCQrdLp1Ta9tH7CJgSmkfbk0nqkyXbdY7tWZbFPZBMIArAr4O3J6+4TM4B5T4+/C4ohgv8rSMVJpEK7wofEARUVVN0lxDZd4Ixp9GkMGgoXBpXWhEcdOJi15c9OPRWtDQ8bIPjSgerQ2X6kUjiJvO2CBeINaGZa0jqxyzLNP+UsqDTjFRKgip6QSYR0DNIaQmo1MCicv4TAeiIuovIhqqQOvuQlWmZKefRZBNFyOE+BkhLQoCURdHAj5a+grY211MKOpiT3cR8+vbOW/SocSxfLCnkK6g1/ihmZswfuzoKKUv7KHEN/S1ykJRFzs6SphW2kexN0KFPzRwQzSDn9E0xQVTW0YshpxR0UORN0pv2BIeDtbPxNI0FFUFQefz3RhgdsMuako6ONBRh7OfAVAoColSAEojQj0BTjDdvDHvRAXoaAnv5Y/9Tp4JrxHGrXXHvgdjg2vgIoBHa04056KXQm09LoKAwq3aYzdv4rjQKcRFN266SdyBtEowy8o0YDYgO/sZYJlmwImfET8jCIIAY3ZwzErOB8see+wxLrroIv7pn/6Jl156iUmTJnHjjTdy/fXXA7Bz506am5tZtGhRok55eTkLFixgxYoVLFmyhBUrVlBRUZFwLACLFi3C5XKxcuVKrrzyypR+77zzTr71rW/lWo6Qga6gh0P9BSnpSkF7wM8pdUfwufVEenfYw43PnsGW9nK6Qx6CUTfR2OJb5b4Qp9QdYUppH/0RN0+82+QcYMfiwHB0YOCoN+ymudf5tXJ9YTetfQWcVNtBbVEwMYvgB28cx3mTW3mzpZLm3kJ6wl77BixBnQZ43SN3N8Pr1gc2RaZunYLQpCIaOztLQLWMmeDUDp83TF8ofoylG2FywhqBu1BYF3aza3cgTaHQVTGgCDM5uUjSzjBeIacRwUUATQvELlyieGkGdLxaMy7Vj4c2XKoLl2ZcIGmEcNGDwo1OGRGq6dbfR4hjCat6dIpjA4Ia6fXaXXUYVybK5SHqqcRzYA+hKktxu4t18xjjGDpGxM9MLPrCbg72FqIrjQM9hWiaoswXodQXptQXpq4wmHR89kXcfPbZM1nXWklP2ENEHzjAjynr4WsLNnJMeS+hqIs/b5uadobX4X4/7QFfYrAsqkNLXyH9kYHXK3cEfBwxzUau8Bu+zOMyHNVftk3hjtdO4uymQ5zR0MbWI2XJC8qbsZy33ZpiSunI3dQo94co8kSMwbIc+Zm/vzOJC6a24Ha48TXaeFw6xX7zNj4aPxPHheFrPElpiuT4wvAt5YlfIWYM9K+SSw6soaZw0Y+Gbso1bhq56KNA25q4IeTRDuNWHfjYj6aF8dCKTiGgGcsWqEDsxk7YCNwS+1MDXOjKj0YUTQWTTbEOdtltDrvjQ/yM+BlBECYeeTIwZkfOB8veffdd7r33Xr7whS/wta99jdWrV/P5z38en8/HtddeS3Ozcaesvr4+qV59fX0ir7m5mbq6umRDPR6qqqoSZazcdtttfOELX0j87urqYsqUKbmUJtjwj12N/Merp6Skx1/y8vuLX+WMhvZEMLS2tZLXDtQS1l0pwVJnyMd1/zgLj0uhKwhG3c53PDXjbv2Gw+UcV91JVGk8tbOJr79yMk7RVlQZg2t3nbeOj83ZTUTX2NJeDgqW76tj+b669EGg0x3REaKuMEBlQcgYnEx399Y6luIUtCrY3D5Mr/HMEVOrDvLty3/GLQ/diq7HL07T7aRMO8Xpys55oCw5P9OVgRvj8scdm30AERoARZA5RjllPaCN2QYaYVxaH0q50SlB4Sb5kcpsSaPR5SZcWIF/J3C8TVGnWQNjzMeJn5lYPLWzia+9cjJKaYR04waJW1N4XIqZFd08cPFr1BQaM3hQ8NahSl47UEMo6k45N+7qKuEzy87E59ZRCkLx84qDnwlGjJswk0v6CCsXf9h8DD9eM4dAdCB8iuhabEDOoNAT5f7FKzit/gjBqItn9zQQiLh5fm8Dz+9tGNN+psIfZm5VF4f2587PrDhYS0fQS3V8H40xSvx9LFnwNP/598+Q9OacMednPIk6eiJ8N5dVRCmkV50z0HbSDR2FRhgVm42sEUUjhEdrxcNhvFor8an1UVVJhCoi1OBjH7Wun8cG1YyZbUmPi1olOSF+BhA/IwjCBCSbR2WHMqA2AuuW5XywTNd1Tj/9dL773e8CcOqpp7JhwwZ++ctfcu211+a6uwR+vx+/3z9s7Qv2NJX0E4y60JXlAI8FQz96cx5Xz92FhiKiu/j1+pnGQBnYxo1h3UVYN7VhLpccE4Km8dO1c1i2u5GesIeNbeX0RzyZJgnx0zfn8I9djXQGvWxqK3eOVTNdGIwwVQUhKvyxwTK7GNt6oQL2286UltgXMQ73+VnVXM2x5T0cW9GDz6WPagDrdutMqWrBupC0wdEYlu3FjplMsw0cD1ScDzIwZhsUoChAV6WWekeDff1AzTTKt4IWxli3zFrFekFjlTMGED8zsWgo7iesu4iYzle60ghHYf3hcr752kksPuYA5X7jAv6O104yBsrA1hcoTTNuxsR+J5WzHO8h3cWNz53BvKpOukNeNraVG3XT+Jm+iIfPP386dcUBuoJe9nYX5Y2fcWmK0vgjpznyM51BL619BYnBsoiusbW9jEJPhMml/aPuZ9Dg1ClbYsscuFMzj6bhQefn2s/EvysMX+M31fKgKCCkyggx0/H8HqGePdGf49a6YzPaQvjZjl/bjlvFHyGN4tGaMdb68+JRh2LrszlIET/jiPgZQRAmJHaDXmNgRlrOB8saGxs57rjjktLmzZvHX/7yFwAaGhoAaGlpobGxMVGmpaWFU045JVGmtbU1qY1IJEJ7e3uivjA2mFzax3snt/Lq/lpCUVdKMP3K/lpe2V+bvhG7O+lZjhXs6S5mT1fxQII16DKnx/ra11PEvh7TY3hOfaaLY0fhjn9P2ENbIBZAZdDoOFhoyYvorqSkNa1V3PjsGRR4osyr7uSS6Qe45rid+D06o0VLVzW6cpF+yoXTDrFOi8i2jt3GHMwOt15FpsPpomd4NAaqpqB1u3F1RInWmqrZ3eW3uzAeA4ifmVicWneEs5sOO8z+1Xjsnck89s5k3JrxMFpE2SzHfxR+prWvgNZe03IDWfiZ5r5CmvtMywIM0c9oLhxuFgwPYd1lDO452TYEPxOOutjVVcy8amPtpdf213LDsjPRNJhf386lx+7nomkHqRrFmWdbW6bF1gMVP5PanoaikIgqTNQJMtvmwiYcy9XwaoeY5PoSHg4NdC9+BhA/IwiCkDWZZo2NwGBaLl/wBMA555zD1q1bk9K2bdvGtGnTAGNxzIaGBp577rlEfldXFytXrmThwoUALFy4kI6ODtasWZMo8/zzz6PrOgsWLMi1ycJRMK20jx+9bw0VBaH0sZ45SLJ+pgu+nbBebDjVUw7f7doy3+VXlj+rfaMw0N3W709aJyfBUWh8p6OEYHzdNwW7OovR0eiLeFjTUs3P182mK+SwhtsIoJTGqp0nxN7M5nSFmS7SNtdLvQCwJ92VbLqTttMUEbs61v8EmfrOncayXWvQQlHc+22K2XVhlTUGED8zsSjyRLnuhHeMNa/SnIOjujYw+2yc+Jlib4S6ItObFocZXRlLHKRwFBp1NN4+VJn4vbm9jL6Ih96wh+X76rh1+Sn8bN3sUXuhmVIar24/FcTPpGnPTqNm+fNhrKvpRVc+rOuziZ8xED8jCIKQA0Zo1lnOZ5b9+7//O2effTbf/e53+ehHP8qqVav49a9/za9//WsANE3jlltu4Tvf+Q6zZs1KvGq5qamJK664AjDu3CxevJjrr7+eX/7yl4TDYW6++WaWLFli++YYYRTRIKq0gccw092xNwfQOOTbfc/24iZdGbNddunZtDGUi60csin+mKkTQ9C4p7uYF/fWM7OiGx2NV+OzAGN1nEL2/rCbQNSFW4MjAR9h03o9tUVBSn1hXEPZRgoOdtawp72R0oJe9rQ18pc1H8B+g5vvjtsJjadZGczBZbfxsrkTnykt242Te40HF/4zXcecjrdiB2U8bOQ73e23a2oMIH5mgqERe9w/9nsC+RkttjbbSNEd8nK4P80jYEPRqOCtQxU8u7sej0vxj12NlrY0th8pTT2zKtjXXUREaURNPsbr1mksDhzV45u6bszWBhd7Dk3lzd3HOZQUPzOQZsXZvihVHNDvpEhbSbn2JD52iZ8RPyMIo8sIrG8ljCAjtC9zPlh2xhln8Mgjj3Dbbbfx7W9/m+nTp/PjH/+YpUuXJsp85Stfobe3lxtuuIGOjg7OPfdcnn76aQoKBh5zePDBB7n55pu54IILcLlcXHXVVdxzzz25NlfIAW39frpDsUPJ7s6h9Yak9W6iNWByCrqtF0jpYklrAJbJLjvS3WC1Qddh/eEKirxRir0RynxhCj1R3IO80InoGisPVnN8dScVBQOL6Ebt1oUz2zMEjb2xt5PGL8YSs8xidaK6ayDNxOqWKr780mloQFfIk7SW0KTSPq45biefPP5dW3MS323s0tH49t8/yz82nIPbFSWqu4lE3TZird/TMdhRzkwXKU5X304HaroLF7srhOHUqBEqqydUVodHm0shL+NRh9GIAFH7/2Nms0ZhkNgO8TMTj2JvBJdmvKhlIvsZMOLDpM2Qw/+XCpLXIM2Rxlf21/Hq/lo0zdS+qa2UdU+BtoCfq584h7aA3/B/MVs8Lp0Tajq58ZRtLGhsw++Opp6VM2yTDW0V3PjsAiJHjqfrwHvoCRTbiLV+T4f4mWRchFUjneoKPK4jeDmARpjEzRnxM6MhSRCEkcTsiGSQLm/RlBqfe6+rq4vy8nI2dkLp2H7hX36j4KldjXzu2TONYHcwFxiQOShKGWGx+e5Ux+mOZbrfmfo1/fZoOn+9/GVOqTsCGLOtPvjI+9jfU4jHpWgq6eff52/m4mMO2jafMvgFBCMujgR9RJVGXVGQQk80kfenrVP54kunjahGt6bz0AdfZUFjW1LVp3Y28tllZ8Yej0xtv7G4nxNqOgCoLwpQ4Q9xsLeQAk+UIk+UY8t7WDpvV0q93pCHyx/+J7btOxH6GyFUBdECUh+PcSLdlBM74enSsi0/2PacGOxF1tFqVLjpxKV14cb482gtuOnFyz5c9OPRWnHRj4tuXIRQwRDv/kSns7OTsjI5sYqfGSEUPLJjMv/+4vwJ52cqC4I8+5HnqS0KJtL/sn0Kj787CZemmFraxw0nbae+OBCLxTVcmkqYFtZdhKIufO4ovWEPShlv7jwc8FPijTCltC8pnm/t8/OBP13AkaBvxDSioLGkn79f+SJ1cZ3Azo5iFv/1/fSHLTfjYvjdUaaV9TK5tM94RDdGuT9MQ3E/LhQXHtPMiTUdSRp1BT9YPY+frZ0DwTo4vAD6m0C5HUQ4iRI/k42fcdGDRzuMhxb82m4KtTdx05koYfiYHgBjQC0YFD9jIu5nZHsIwlEyWjPLZEbbmGMw59WczywTJhYdQS+/fnum7V3hlDvlcTIF2HYXOU4zA6ztmfPMdyztbqw6kc0sBAeiyngTGkBXu7Ftlu1qTCkXURp7uopTtltXyEN7wE9NYZBvLlzPeVMGFoY90GtaLHqENEaVi3WtlSxoaEvaF5vaylFojnH8wd5CDvZY7DWVm1vVyYdm7ht461osb92hCnYGe6FqlVEwWgihCgjUGxczwWqIFoFypRqb1FG6K9909bCUTXe16FTXqX+79uPfndqxI1caIUoFUVWeWJY5+bhRQBSNMC4CuLVu0NuBr2RppyDkAGWc++59a5b4GQzf8dftU3h5f10i7Yl3mzi+pjP2xlCNcl+YYm+EiNJ4t6OE7rCXEm+Y1r4CdKURVRo9IQ/VhSH+9+LXmF3Vbd/ZCGps6StgW3sZdUWHEnWPBH3GrGWH02kw6mZbexnb2ssG2reUe3THFP52xUuJN3GioKW3gIe3TjPK+Fth0hPGzZme6YavCZeD7hM/49jH4PyMTikhVUKI6fSpBRzhI8DAS4NchNAwBkldWh8u/SDwtSztFARBGGUyDYbJQFleI4NlwuBRxqyo3V1F/OTNubzZUjWQZ46vMt2YVDbf4/GXtW62saO1XXOatZ1MN0yd+jJ9N5//IrpGWE9+ZHFNczVrmqvt42Cn7aOgI+hLHhyLBfiO9pnby7HGP2+bygk1Hcyo6MGFojfiYdlu0wDgEPbjtiNlfPO1k/jQjH2U+oxHTYNRN3etOt7YhhrGxnX3QVEfFB6AynWg+yFUCYE646ImUAuRkjQzAuxEZXPRkOkAttvIdu06lUt3kZMp385W6/dcaXSh8BKlkKiqAlWdwRZByBHKeCz8zdYq7l51HFvaywfyJpCfUbHBrTitfQVsbCtPqtbcW0hzb+Gg/czB3kIef3cSX6jakkje211Eb/xFMiPlZzTjMcw3Wqo4pe4IwaiLYNTN/6yfOeBTh7IflfH26++uPJ4vzN+C16VzOODnuytPsKzLpkPRfijcD7ggUgSRUuiZYQyihUtNg2dWEU6ixM8M5Fltcsf+DHS8gPEYrOFnKjLYIgiCMASGa9BKBsPGNTJYJmSHgrCusbu7mDeaq1m2u4FVzdV0Bn0p5ZLiObs70dYbllh+W8ukCfbTxn/WPrIpb2eXlVidiNLY1F7OsRXG4wN7u4toD/hzpvH5PfWcWteOphmPZ65urh5xjSjYeqSMTzx5NiW+CBrGQGnSGzKHoFFH40/bpvKX7VNwxQ4Whemi0FajAncACg4af2BcwITLYwNndcZfpBR0r4NIuwuETBvNTpBdfqb+7DaGXf+D2bl2jLRGQcgNShnrKG5pL2P94Qr+sauRN1uqCEQtbwGeQH6mJ+Rh1cFqzpvcSlRpPPFuEx0BX840bm4v40BPIaW+MKGoi/95eyahqHvE/QzAz9fN5pHtU+iNeAhGXXQFj87PoBmDcH/eNpVndjXi0owB2Pjsb3uNOnh7wNNj+BnlBr3AGEALVkOg0ZjtHCmFSCH2N2rEz6S3TfyMIAiCkB/ImmVCRsJRjQc2Hsuy3Q2sP1xBT9ibfEPR6eIi3Y1QK9nEZ9ncCM3UTjbxnZ3dDmVKvOHEo4ShqIu2QBZvEUuHqYyGwufWE8mhqDulTMZ+cqAxr/aj8sYuamqNGQGBBgiVG+lJ655l0wGkbhBs0p3yB1veqV8n+4Zy9WrX/yA0BnvgZ1fK2ikxxM/kjkDExQ/fmMezexrY3VVszCgab+enIZ6D/e4olQUhdKXR1u8jqlJfupK1bZYyGooKfyjhx/Z2F6HQxM84taEAXMYNmVBFbPbZJGOGc8r6muJnxM8cPbJmmSAIQm6RNcuEnBJRLh7eOo2tR8rSx1jmm5jWMtYgOV3wbNdmttj14xS3apY6pClrtSeW1xP2Dgwe5lijUhpB64wKu/aGWWNe7UfC4O0EXyeU7ADlhmgxBCuNNc8CDcZjnHpsBmDaiwu74N56cZJOoPUK0K6vxCgfyRt9sFeD6TaYU104eo2CkBva+v38ces0Y7ay+JkkjcGo23jMcpj8zJGgnyNBy40e8TNpNOrgCkJhCxS0GH5G9xvLAoSqIFgD/ZNjg2fWBszGWtPFz4ifEQRBEMYSMlgmZMSj6RTE38poFyPZBbtm0gXD6cgmP1OcZhfsOmG1UzSmrxv/PpY1alHQusDbBcW7SaxHE6o2Lmz6m2Jv3Cw0zQiwE5XpairbjTaYDW4mmwuUTBvJ7qLHrv5gNQrC0VPoieJ1xRb9nijnJ2t90ZifGrUoaH1QshvUbiMxWmTcmAmXDAyghaoh6mfgxQHiZ5ztFQRBEITRRwbLhOwxxzyaJS3T73Rl7PqwG7Owls/UXry+Od16A9Yax4nG9L+zscmaN1Y0Aon1aLw9UBS/qCk0vTSg0ViXJlJM8pvQrHfkrYabjbAKSHfX32mqSKZ+BzsjwM4up36z0SgIw8REPT+JxvGhMZ7h6TX+lKlAtNB4WUDvNGOWc6TE+K3clobEzwiCIAjCWEAGy4TBEY9jrEGiXdCrWX47BZqZglq7vjLFcemCcHO6NTA29yEaJ4BGZXrj5n5gnfHSgFDlwEsDgnXG7ABlfSTW2rmTCKd85ZCX7sLDWs/626lNJ8w7IN0V62DaFITB0xnyEoy/hVHOT6Jx3GlU4Okz/gpajAzdC+Ey4yU1/ZOh5xhjRprSLI05GZHJyLih4mcEQRAEYSjIYNl4QxlvaTzc7yeiu5IyaguD+D36oJvsi3g4ZH7Nul0gaE53iq+s+dYgVlnSM/WTDrsy1j7s7LYGwE59i8bxpxFAU7G1aJqhoNlI033GBU2gPvbYZrUxG0D3mhobLJmE25V3Emh30WPdAHYXOXZ1rDvMqY4wkVHKeKFJV8ibtK6iW9OpLw7gGsLhsqmtnO6wKSSR85NoHM8alQJ3CFyHoeAwlLwLVauNxzUDtcZLAwINoHtsGs4W8TOCIAiCcDTIYFm+o4wQozvkZduRUlY1V/Pyvjo2t5cRig4Mlrldivsuep3TG9oH3cW+7iKOBPz2AaVdgGjGGkM5DVJkasPcn1PcZmeXuY7VDms5s312bYnGianRfEFTvhGUxxgsC9bFXhpQC5EyiPrSCHXq0A6nCw0n4day6a4w09lkLpfNFaYwYYj5mfaAj+1HSnlqZxNvtFTT3FtAf2RgsKzAo/O/F7/G8TWdg25/S3sZoMn5STROUI3KmOVcvAeK9gBrjYGzYI3xRue+KcYMNNubNOJnBEEQBGE4kMGyfERBUHexv7uIN1sreXV/LWtaqtjfU0RYd9kGaxqKw/1+2+Yy9fXcnnrjgihdPGbNc/ruFAjbBZhOQav1Lq+1fKb4z1w+k450eaIxte+JoJEI+I4Yf6VbSbxxM1ATmw1Qb8xE0/0kP06TDrsLlHRinDaSub7dhklnj9OGyVaDMK5QxizlDYfLebOlivWHK3jtQC2H+vxElL2f6Y8oesKDDytCuotX99cm+pXzk0PfonECadTB3woFrUaaWg2RUuhvjM0+qxsYPFPmpwjSIX5GEARBEAaDDJblAwp04EjAx4bDFbx+sIYVB2rY3lFKd8hDSpBhE3MoNNa0VLH4mIODikk6Q14e3THFsV3bPtMFp+bv8RjsaO4cZ5Nu7dPOlmzaEI327U50jVoUXLE3bpa8Gxs8KzAe1+xvgv4G421oSYNndld1diKV5fdgsbaf7s6/05WnXb4wHlEKesIeXj9Qw7pDlbx9qIJVzdX0R2xCBZvDQVfQ1u8f3OGq4M2WStYfrnBs17ZPOT8l9ycaM/eVTbq1Tztbsmkjlxo1QDPdpFHE/Eyh8ZKAUJUx8yz+cpqk2WfiZwRBEARhqMhg2VhEGaFDIOpmV2cxKw7U8PpB4+LlUJ+faPwuYrobgTb5rx6opTfsodgXyc4MBY9sn8K7nSW2NoJN//E0q21O5Z3stbtLnKmOXV/WADSb+plstradqbxonFgatSi4esHbG3ucxgWRQghXGANngSYIVhkXOklv3LQTbf2ejXFYythdLGW7Y+yuFoVxg4JobI3LVw/UsvJgNasOVrO3p4hSb4S2gMPAl8P/BYXGg5uPYdG0Znzu7NbH7Iu4+dnaOUlrnyX1g03/8TQ5P2W2VzSOT41aFFyxNzsXNEPZZlAeY7Csv3FgEK2/3pj5rDRLY2bDrN/FzwiCIAgCyGDZ2EEZj6K09vnZ2FbBS3vreLO1ip2dJUlrwsTLpvzOIgjb0lbGs3vquXzGfueAz9TG6wdr+Mmbc9Djs2HsYhs7G5ziKWX5bcUpiLVrM11g6sRgbReNotHJtsFoRAdPbPCscD/wpjHzLFwee2lAIwRrjYucpMEzp42SzqBMV3Pmtq0XMuYrRWudwewgYUyijL0ZVRqdQS87OkpZf6iCl/fXsf5wOe39fvTYfva7o9QWBWkL+DCNhGX1f/eNlipeP1jNeZMOpT9sFASjLn6xbjavHKhNbnes/N+dCOcn0WhPvmlEgRYGX4fxFy8bLYyte1YF3bOM70mPbYqfEQRBEAQnZLBstFAQiLo41F/A5rYyVh2s4Y2WKt7tLKEr6E1ctKQEXJB6o84cX1jLmoKrCC7uXHk8k0v6Oa2+Hc0mEAvrGi19BSzb3cjP180emFlgY39K3+ZYyK6MU2yUQ41Zx1vWfkRjqt2iMblsLjTGf7j7wdNvzAioeDv2xs0K4zGa/iZjPZpIieVNaNaLDatIu41mFWqHnTCnK0Ahb1DG4/uH+/3s7ynirdYKVjXXcKjPz+7u4qRZyiXeMNMretjZWYKuawQjbmPB/SH83+2PePj6Kydz/+LXmVHek/J/KaxrtAX8vNlSxR+3TOPV/bXousNxNpb+706E85NotCefNXr6wbMXivZC+SZj0CxaMLD2WbAKokUM3KgRPyMIgiAIcWSwbIRQyriLfqCnkPWHK1l5sJq1rZXs7S6mJ+QZGByD5ODIKSByimXs8k3lDvQWcd0zC7jomINMLe1NqtbSV8jGw+Xs6CjlSNALSss+mMxkW7ZxVw40po3XrLY4tW+HaBSNudYYL+AKgr/F+CvbBMprvCQgUG8MnCVeGuC16QCcBZg/rRvUbEw6AUI+oBREdI1D/QVsbS9je0cJb7VWsrK5hvaAj4ievAj41NJeWvsKCETd9IS99HTEjq0cHNe7u0q45qmFfGjGfkq84USVtoCfDYcr2HqklM6gz5i1nK//dyfC+Uk0ji+NWtjwMRpQtNsooPsH3rYZrB1Y90zZPBYtfkYQBEGYYMhg2XCgjHCgL+Jmb1cx6w9XsLa1krWtlezuKqY37EFZgwXrAJmypFnjErvAiCzKA+39fv64+Rj7elh+2wWKmYI8u3xzX8Ot0dqXtZ41EBWNonGsadTC4G8z/so2YaxFUxIbOGuAQK0xEy3qN1XG8t0qzmlDWPMzXYkJo44y3lTZGfTSHfKysa2cl/bWsf1IGTu7iukI+NDR0FBMKulPfpQeQDP8UzQ+WBVLy6Wf2dtVzM/XzhY/IxpF45jVqMAdgMIAFLQYmbrXWCIgWGvMPOubZNyoSQyeWf2E+BlBEARh/CKDZblAGY+79McGx9YdMmaOvXWokv09RfZrjtnFCdbgJot+beOOdAGVXdxiDf7M7TnFOIMJKHHIE42p9opG+zp29kwkja7IwFo0pduMC5dokXFBE1/zLFgJegEDCzlnMjrdxYpT2Ww2hJBzYj5mX3cRW9rL2NNVzPL9dWxqK6cv7Ha8AaM0jQO9hQODZZA4xg73Fwz8ztC3/N+1sUc0isZxp1GBOwTuQ1BwKDZ4F5vlHKqILRFQD+FSYy20FCPsED8jCIIg5C8yWHYUKAXtAR+v7q/lH7sa2dRezoGeQvojNps1mzuQpMmzBkHZxBLWgMmufXNaOtsy3TxMV9batmgUjXa2i8bktLS2RcHbbfwVvwu4Ygs5V8UuaBqNR2ts37hpbTydYGE0UQp6wx6W76vjyZ1NvLyvjo6gN3VgLFGBlGNyUC9oGe3jeiL83xWN6cta2xaNo+hnAJdplnPJOxhvdy6C/knGwFnvlNjbNt0kv3HT2pD4GUEQBCH/kMGywaKgO+xhdXM1/9jVyMv769jfXYiKr+9lF6RkEyPY3RU0xx3ZBkrWPsz1nfp0yjfXt9pmLSMak/sTjdkhGlP7dMo310+5eNLB3QtFvcZCzriMRzRDlcZjm/1NsYWcC42LmrRXeenEORkm5BJdh3c6S/nTtqn8Y2cj+3qKCOuuiXVci0bRKBrHoEYdPD1QthVKt0K13/AroQpjAK1vivE95SaN+BlBEAQh/5DBsmxR0Bny8syuBn67YQZb2suN9V7ipAtorIGPXYxgDbjs8u2+D+ZuoxNOAV82d06teaJRNIrGzAynRg2MC5p+462bhQegcm3sjZvl0N8w8OhmtCj2xk1rw9bOBnPVJgwVpaC5t4BfvT2LP22bSnfI8kKHiXxcm/NEo2gUjZkZCY3uoPGCGl8HFO8C5TXWOQvUG/4mVGm8MED3kzzzTPyMIAiCMPaRwbIMHO73s+NICesOVfLQlmPY1VWcvP6LHeYgyS7dGkRZYwcs+cqSbxfION2htLZltstqj5NddohG0Sga80cjKnZR0wr+VqhYbwyexV8a0N9kfEZKY4NnTh3IhcxwEIpqHOgp4qGt03hsx2T29RRlriTHtWgUjaJxrGnUwsagWfGuWFm3MfMsUmqsfdbfCL1TY49uWjsTPyMIgiCMLWSwLAM7jpTwz0+eQ0h3JWcM5QaYNaCxBinmcmAfNzgFQuZ8p3SrDU6BlZNd2SAak8uZ7RKNyYjGUdQYGzxzB8HXBmWbSSzkHKw2LmjiMwP0+OwmuYAZLpbvq+ffXphPd8gyy0+Oa3tEY3I5s12iMRnROLoaXVFw9RiPbhYcNB7djBZCqMrwNb3TjLduZv3CAEEQBEEYOWSwLANF3ig6pN5Js8McMIBzAJOuvUxBkbIp69SvtT2rTU6BUzpEo7OtVhus7TnVE42p7VltEo325FKjFjYGzvxtsTdueozHZ4I1xsBZoAEivgwGCUOhK+QxHrkUP5O+L9GYaoO1Pad6ojG1PatNotGeXGt090PRfijcb8xyjpQYg2aBemN5gLBcmgiCIAhjA1fmIoMjGo1y++23M336dAoLC5kxYwb/+Z//iVIDHlQpxTe+8Q0aGxspLCxk0aJFbN++Pamd9vZ2li5dSllZGRUVFVx33XX09PTk2tzs0Ux/YB8kQGqgoNl8d/p0akeRGgSlC4zM9mayz5wmGp3bEI3ObYnG8acRQIuArxNK34Ga12DyozD5rw5GjCziZ2zqWb/LcZ3ajmgUjZnsM6eJRuc2cuVnUMZbnSs2QP1zMPkvMPkRByNGlnHrZwRBEISsyflg2fe+9z3uvfdefvazn7F582a+973vcffdd/PTn/40Uebuu+/mnnvu4Ze//CUrV66kuLiYiy66iEAgkCizdOlSNm7cyLJly3j88cdZvnw5N9xwQ67NzUhv2GO86dKKXfChkRp42NUxf2o2+ea2zL+tdcyBk7LUcQqOrEFR/C9dMGVGNIpGa5uicSBtPGvUdPD22nQy8ow3P9NjXcg/zmjv83jaeD6u42miMbV/0WhvrxnRmFuN7rDxsoAxwHjzM4IgCMLg0ZT5FkkO+OAHP0h9fT2/+c1vEmlXXXUVhYWF/P73v0cpRVNTE1/84hf50pe+BEBnZyf19fXcf//9LFmyhM2bN3PcccexevVqTj/9dACefvppLrnkEvbt20dTU1NGO7q6uigvL2djJ5SWDVGMgt9sOJZvrTgp2fnHv9sFBOYAJFMZa9k0dqTNt5ZxKp+pHdGYmk4WZURj9rY52TfYdkRjajpZlDlajf1huOUJOjs7KSsb6on16BlvfuZbK07gNxtmjs197lRmPB3XmewbbDuiMTWdLMqIxuxtc7JvsO2MRY3iZ5KI+5nR3h6CIAjjhcGcV3M+s+zss8/mueeeY9u2bQC89dZbvPLKK1x88cUA7Ny5k+bmZhYtWpSoU15ezoIFC1ixYgUAK1asoKKiIuFYABYtWoTL5WLlypW2/QaDQbq6upL+jhYdWN1cnerQNdOnYiAogIGy1gDAGjhY27O2oUzfnYIN5ZDuhF0/5u+iMbWsaBSNotHexlFkPPmZ/qib1w/WjJ99PhGOa9EoGkVjcnviZ4Cx62cEQRCEoZHzVTS/+tWv0tXVxdy5c3G73USjUf7rv/6LpUuXAtDc3AxAfX19Ur36+vpEXnNzM3V1dcmGejxUVVUlyli58847+da3vpVTLUcCPta1Vqa/MwapQYKySXNqI5sAw45s8tPZ7RQkOSEa07chGtPbmClfNOa/xhFkPPmZ/d2F7Ooqyc99PhGOa9EoGu0QjenbED+TKDMW/IwgCIIwNHI+s+z//u//ePDBB/nDH/7Am2++yQMPPMAPfvADHnjggVx3lcRtt91GZ2dn4m/v3r1H16CCZ3c30NxXmPid8ml3x8wcTDiVsatjTbMLQMxlrflOv63tm/Ot6aJRNNrZaK1jTRONE1PjKDJe/IxS8Pi7k+iNv/1trO/ziXBci8ZURGNme0WjfR1rmviZjOT8ekYQBEEYMjmfWfblL3+Zr371qyxZsgSAE088kd27d3PnnXdy7bXX0tDQAEBLSwuNjY2Jei0tLZxyyikANDQ00NramtRuJBKhvb09Ud+K3+/H7/fnTEcg6uLBzceg6xbPbXe3zOzkrQGCRmoQEA8Y0gU2mYIja4Bj7sv8aYedPXZ9iMbUfq1tikbRaM6fCBrHAOPFz7T0FfDg5mPG/j6fCMe1aLRHNIpG8TNA/voZQRAEYejkfGZZX18fLldys263G13XAZg+fToNDQ0899xzifyuri5WrlzJwoULAVi4cCEdHR2sWbMmUeb5559H13UWLFiQa5NTUfD0ziY2tFUYv63BgzkAsAYn6b47BQ3msprluzU4sgs0nOo4YRdMiUbRaP4uGtPbO9E1jjLjwc8oBb/bOJ2WvgIjYazv84lwXIvGVESjaLTr2/xd/Ewif6z5GUEQBOHoyPnMsssuu4z/+q//YurUqRx//PGsXbuWH/7wh3z6058GQNM0brnlFr7zne8wa9Yspk+fzu23305TUxNXXHEFAPPmzWPx4sVcf/31/PKXvyQcDnPzzTezZMmSrN4cc7Ts7Sni+2/MIxJ1DTh1s5OH1OAgXcDg5Pzt2rYGKOayTm2Y+9NwDmqsdpnriMZk++zaEo2iMZ2t1vTxqnEMkPd+RsGq5mr+sOUYUNrY3+cT4bgWjaLRXEc0Jttn15b4mbHtZwRBEISjJueDZT/96U+5/fbbufHGG2ltbaWpqYnPfOYzfOMb30iU+cpXvkJvby833HADHR0dnHvuuTz99NMUFBQkyjz44IPcfPPNXHDBBbhcLq666iruueeeXJubQkTX+PGaOeztLnZ28HZ38JwCAbs8p+9OwYVdYOIU7Njd0TOXt9ooGtPrSJcnGlP7Fo3jX+MYIN/9TE/Yw92rj6M94M+PfT4RjmvRmFpeNCaXz6QjXZ5oTO1b/IwgCIIwxtGUUnbuMe/p6uqivLycjZ1QWpZdnagO/7N+Jt9fPY+Q7jYSrc7cbmtl69itda0BQjzNHCxkChxyEViIxuS8bNuyqyca07cpGrO3ayxq7A/DLU/Q2dlJWVmWJ9ZxzFD8TGfQy50rj+ehrdPQVWxDj+V9nk3+YOwSjYNry66eaEzfpmjM3q6xqFH8TBJxPyPbQxAEITcM5rya8zXL8hWl4OldTfxwzVxjoCzdHS/zHTI7Z6+wDzzM7TkFE9Z27AIZZZNvzbN+t7NNNA7kicZURGNqO6JROAoiusZP187mj1tiA2X5ss8nwnEtGtPbJhoH8kRjKuJnBEEQhHGIDJZBbKCska8uP4X+SOzJ1PhdMOt3TGlJjZg+44GGU3Bi1565HbsgxWqP+VPhHMRYAxFz26JRNIpG0TgUjcKgCUZc/OCNedy/8VhUfEZZPu3ziXBci0bntkWjaBQ/IwiCIEwwcr5mWb4R0TV+t3E6P1wzj66QdyDDLsCIp8d/2wUFdo7f3J65XXPwYa2v2ZR3ascusDCXSxdsiUbRaO1bNKbWF43OF0FCehS09vv5f2/M409bpxJRrvza5xPhuBaNotFcBpt0qxYs5USj+BlBEARh3DFxB8sUdIa8/L835vGHzccQ0l2ZnbRdMJAN1jpOQYJdX05BjV071rpOQUw6RKMzolE0ikZhEOgKth8p5ZYX5rOxrcJIzMd9PhGOa9EoGu0Qjc6InxEEQRDGORNvsExBb8TNi3vr+dVbs3jrUAUq7qmtTt6KUzDhFGg4fbcGFXYBjV2AEU+3a8euPbugQzSKRtEoGo9Go5AeBRGl8W5HCb/ZMINluxs53O8fyM/HfT4RjmvRKBpF49jRKAiCIAhjgIkxWKYgqLt4t6OE5/fU8/d3J7O1vZSoSrNkWzpnbZenbPLMgYO1jlOgYW0zU55dUGK1wQnRmIpoFI2i0TlPsEUp6Al5WNtayca2cta1VrJ8Xx09YW/6ivmwzyfCcS0anW0dap5oFI3iZwRBEIQ8Z9wPlr17pJhX321i2e5GNreV0RdfwN/pzpj5t/nTjF1A4RSAOPVh7ceuDSeb7PLS1bHrXzSKRqd00WjfhmgUHPjP149nXVc9OzpKiSrThhpP+3wiHNei0b5/0SgandLFzwiCIAjjmHE/WLbkiXPo9RQZP8xO3eqc7YIIa1m7QCVdwIAlzxrcmNvPVM/OBnNb1jpmu60aRGNyW+b2RaNoFI2ZNQpJPLzlGCiMzSIbr/t8IhzXojFVg2hMbsvcvmgUPyMIgiCMa8b9YFlv2Jus0sk5pwse7NLtAgnrd7u2rdgFKumCILsyTm2KRtHo1J9oFI3Z/M5Wo5DMRNjnolE0ikbRaP60syeb3+JnBEEQhDFKmkW7xgnK9OfkkJXlUzPVMWN14ubgxJxv/m1NM7eZLnAx1zfbYhe0iEb7/kVjqo2i0b4POzvMfZvri0bBykTY56LRvn/RmGqjaLTvw84Oc9/m+qJREARBEEad8T9YppHs2NMFBXbO3VzO+t1cz5xv7s/alrWstW0r1mDFare5P9EoGq12iEbROBwahWQmwj4XjaJRNIpG8TOCIAjCBGL8D5ZBqsM2O3W7YMIpuHBy/E53xJTptzXgcAoI0pVPV1c0ika7OnZ2iUbRaGfrYDUKyUyEfS4aRaNdHTu7RKNotLNV/IwgCIKQR0yMwTI752sNEMzO3y4gMTtxc75dIOIUeNjZ5BRAWPuyBhV2dez6EI2peaJRNNr1b7ZTNGbWKCQzEfa5aBwoLxpFI4hGu/7NdoqfEQRBEPKYiTFYZnXa5uABBhy4ZlPWXMbOgdsFGuZPu2DG2q41gHCy06lfs72iUTSKxoEy1k/RmDuNQjITYZ+LRtFoLiMaRaMT4mcEQRCEccC4fxtmwvFaHXA8zS6wMOdjybe2a23bLgDQLHXsggGrHXb92RFPF43JaaIxuW3RmFpPNKaWz0ajkIr4GdEoGkWjXT3RmFpe/IwgCIKQJ4z/mWXpAoR4ujmQsHPs1nRze3aBirVt8/dsg4l06VZEo2gUjaLR3Lb5+3BoFJKZCPtcNIpG0SgazW2bv4ufEQRBEMYh43+wzIxm+TSjLHnm33YBhzUwsKZrlrR0dTRLHetdQ6ud5nasWkRjcp5oFI2i0b7PoWoU0jMe9/lEOK5FY2pdc55oFI3iZwRBEIQJxsQaLLM6eLNTztZBx528ZvPb3L41iLALJuwCBrMt1jrWwMMO0ZgdonGgfdEoGo9Go5DMRNjnojE7RONA+6JRNIqfEQRBEPKM8b9mGSQ7ZmVJz6ZuHGvQYE239mENDKz92aVbf6ez0dyPaEyPaEzfh2gUjdnYKBcyzoz3fT4RjmvRmBnRmL4P0Sh+RhAEQRg3jP/BMnMAYBdUYEp3qmt3l84uL96HNc2JTIGInT12QYpozNymNV80ikYrotHeHqtGIZXxvs8nwnEtGlPttmvTmi8aRaMV8TOCIAjCOGFiPIZpdbya6TPu1M0om7J2bTq165SmWf7iaU7BidUmu8DG+mmXLxpFo2hMTRONQ9Mo2DOe9/lEOK5Fo2hMZ7e5rl27TmmiUfyMIAiCkLeM/5llcYcdd8B2wYK1jDU/Trp20jn4dH1nW8cabFiDC9EoGs2IxuzttWs7U52JrlFIZiLsc9FoX8bJDtGYvb12bWeqIxrHv0ZBEARBGGUmxswyM5rlM10ZM3aBilMbiuTgwRwUxP+sd9cGY0um+qLROU80ppYVjaIxky2DqS9MjH0uGp3zRGNqWdEoGjPZIn5GEARBGGOM/5llcdI5YDvnH8fq0K134DTLJ5Z8u76cggq78nb9p7PHCdGYvk3RaN+XaMzcfzp7nMhnjYIz43WfT4TjWjTa1xONolH8jCAIgjBBGf8zy+wChLgztwYA1jJ2bVnvwMU/rXnWMtbf5sDC2ra1f7s61r7t7BeNotHat2i0/y0as9copDLe9/lEOK5Fo2gUjcn1xM8IgiAIE5xBD5YtX76cyy67jKamJjRN49FHH03KV0rxjW98g8bGRgoLC1m0aBHbt29PKtPe3s7SpUspKyujoqKC6667jp6enqQyb7/9Nu95z3soKChgypQp3H333YNXB8lOGpIDjExO2RyQOJW13rlzCjic7LLejbOWtQt8nPoUjfaIxvT9meuIRtGYSeMIIH7Gwmjv84lwXItG0RjPF42jr3EEyDs/IwiCIIw4gx4s6+3t5eSTT+bnP/+5bf7dd9/NPffcwy9/+UtWrlxJcXExF110EYFAIFFm6dKlbNy4kWXLlvH444+zfPlybrjhhkR+V1cXF154IdOmTWPNmjV8//vf55vf/Ca//vWvhyAR+6DC7LjjvxWpTtsuQFCmv3RBgxVl82dnp7lvc7BhtdWuf9EoGq31RaM9onFoGkcA8TOMrX0+EY5r0Zjct2hMrS8a7RE/M3J+RhAEQRhRNKXUkN2Spmk88sgjXHHFFQAopWhqauKLX/wiX/rSlwDo7Oykvr6e+++/nyVLlrB582aOO+44Vq9ezemnnw7A008/zSWXXMK+fftoamri3nvv5etf/zrNzc34fD4AvvrVr/Loo4+yZcuWrGzr6uqivLwcfnwpFHjtHb5d0GDOcwoSnAKSbL87tW/eE055dunWYCibek42OOWJxsx1rPbY2SQaRaNdPScbnPJGS2N/GG55gs7OTsrKyhyMzS3iZ2x+y3Gdvn3R6JwuGu3rOdnglCcaM9ex2mNnk/iZjMT9zEhuD0EQhPHMYM6rOV2zbOfOnTQ3N7No0aJEWnl5OQsWLGDFihUArFixgoqKioRjAVi0aBEul4uVK1cmypx33nkJxwJw0UUXsXXrVo4cOWLbdzAYpKurK+kvgdmpm9FwDhqc0p3yFKlBQjyYsatjZ5NGsk12eVjyNMunaLS3Ids80SgarfaIxtS8UUT8DHJc27UhGp1tFY3O9exsyDZPNIqfGWk/IwiCIIwoOR0sa25uBqC+vj4pvb6+PpHX3NxMXV1dUr7H46GqqiqpjF0b5j6s3HnnnZSXlyf+pkyZYmQo7J29cvhu/m3+NP/Z4RScOAUz8bR40GGXb2evkxbRKBqtbYhGZztF49FpHEXEzzik2/URT5Pj2t4m0Zhax65/0WiPaBQ/M5J+RhAEQRhxxs3bMG+77TY6OzsTf3v37jUyzHe0zE7b7MjNeebf1rt31jtj6YISLHnm/uJl7dq11rOzye5OnmgUjU62iMZUW0Xj0WmcoIifQTSKRtFotccO0Sh+Zog4+hlBEARhxPHksrGGhgYAWlpaaGxsTKS3tLRwyimnJMq0trYm1YtEIrS3tyfqNzQ00NLSklQm/jtexorf78fv92c20i5ggGTnbs2zSzcHFk7f7dp2sieb33b92CEaRaNoFI3mTzt7svmdrcYRRPwMY2Ofi0bRKBpFo/nTzp5sfoufSSJrPyMIgiAMOzmdWTZ9+nQaGhp47rnnEmldXV2sXLmShQsXArBw4UI6OjpYs2ZNoszzzz+PrussWLAgUWb58uWEw+FEmWXLljFnzhwqKysHZ5Qy/Tk5ZGX51Ex1zFiduDk4Meebf1vTzG2mC1zM9c222AUtotG+f9GYaqNotO/Dzg5z3+b6onFUET9j044c16JRNIrG8aZxFBmTfkYQBEEYcQY9WNbT08O6detYt24dYCyCuW7dOvbs2YOmadxyyy185zvf4bHHHmP9+vVcc801NDU1Jd4wM2/ePBYvXsz111/PqlWrePXVV7n55ptZsmQJTU1NAHz84x/H5/Nx3XXXsXHjRh5++GF+8pOf8IUvfGHwCjWSHXu6oMDOuZvLWb+b65nzzf1Z27KWtbZtxRqsWO029ycaRaPVDtEoGodD4zAjfoaxt89Fo2gUjaJR/Mzo+RlBEARhxBn0Y5hvvPEG73//+xO/4yf8a6+9lvvvv5+vfOUr9Pb2csMNN9DR0cG5557L008/TUFBQaLOgw8+yM0338wFF1yAy+Xiqquu4p577knkl5eX88wzz3DTTTcxf/58ampq+MY3vsENN9wwNJVW52sOBOyCCafgwsmJW++Imb/b1c3UlrWdTPba2SwaRaNoFI3DqXEYET+ToX05rrNry9qOaLS3WTSKxrGqcRjJSz8jCIIgjCiaUkplLpZ/dHV1UV5eDj++FAq99oXijtm8BdI5eScnbm7H+gnZBRCZymGTl01gIRpT7RCNolE0Zi6HTV5fGP79CTo7OykrK3OoNHEQP2Njm7kfJztEo2gUjZnLYZM3ETSKn0ki7mdkewiCIOSGwZxXx83bMNOibD6tjjz+Zy1rLmNNi5fTTGWsn5mCGs1SzmqDXZ/Wfs32ikbRKBoHylg/RWPuNArJTIR9LhpFo7mMaBSNToifEQRBEMYBOX0b5pgk7nitDjieZhdYmPOx5FvbtbZtFwBoljp2wYDVDrv+7Iini8bkNNGY3LZoTK0nGlPLZ6NRSEX8jGgUjaLRrp5oTC0vfkYQBEHIE8b/zLJ0AUI83RxI2Dl2a7q5PbtAxdq2+Xu2wUS6dCuiUTSKRtFobtv8fTg0CslMhH0uGkWjaBSN5rbN38XPCIIgCOOQ8T9YZkazfJpRljzzb7uAwxoYWNM1S1q6OpqljvWuodVOcztWLaIxOU80ikbRaN/nUDUK6RmP+3wiHNeiMbWuOU80ikbxM4IgCMIEY2INllkdvNkpZ+ug405es/ltbt8aRNgFE3YBg9kWax1r4GGHaMwO0TjQvmgUjUejUUhmIuxz0ZgdonGgfdEoGsXPCIIgCHnG+F+zDJIds7KkZ1M3jjVosKZb+7AGBtb+7NKtv9PZaO5HNKZHNKbvQzSKxmxslAsZZ8b7Pp8Ix7VozIxoTN+HaBQ/IwiCIIwbxv9gmTkAsAsqMKU71bW7S2eXF+/DmuZEpkDEzh67IEU0Zm7Tmi8aRaMV0Whvj1WjkMp43+cT4bgWjal227VpzReNotGK+BlBEARhnDBuB8uUinnnQDjVcacUxj4wGIzTHkz72eQ72ZSuvmgUjdkgGkXjUDUGwkZW/Pw6wRE/k2V7ojGzndnkOeWLRvuyojE/NYqfSSK+Hbq6ukbZEkEQhPFB/HyajZ8Zt4NlbW1txpfbnhldQwRBEMYZ3d3dlJeXj7YZo474GUEQhOFB/IxBd3c3AFOmTBllSwRBEMYX2fiZcTtYVlVVBcCePXvywtl2dXUxZcoU9u7dS1lZ2WibkxX5ZnO+2Qti80iQb/bC6NmslKK7u5umpqYR63Msk29+BvLveM83eyH/bM43eyH/bM43e0H8zFihqamJTZs2cdxxx+XN8SPH+/CTb/ZC/tmcb/ZC/tmcD35m3A6WuVzGiz7Ly8vz4mCJU1ZWllf2Qv7ZnG/2gtg8EuSbvTA6NufLoNBIkK9+BvLveM83eyH/bM43eyH/bM43e0H8zGjjcrmYNGkSkH/HT77ZC/lnc77ZC/lnc77ZC/ln81j2M65htkMQBEEQBEEQBEEQBEEQ8gYZLBMEQRAEQRAEQRAEQRCEGON2sMzv93PHHXfg9/tH25SsyDd7If9szjd7QWweCfLNXshPm8cj+bgf8s3mfLMX8s/mfLMX8s/mfLMX8tPm8Uq+7Yt8sxfyz+Z8sxfyz+Z8sxfyz+Z8sFdT8m5mQRAEQRAEQRAEQRAEQQDG8cwyQRAEQRAEQRAEQRAEQRgsMlgmCIIgCIIgCIIgCIIgCDFksEwQBEEQBEEQBEEQBEEQYshgmSAIgiAIgiAIgiAIgiDEkMEyQRAEQRAEQRAEQRAEQYgxLgfLfv7zn3PMMcdQUFDAggULWLVq1ajYceedd3LGGWdQWlpKXV0dV1xxBVu3bk0q8773vQ9N05L+PvvZzyaV2bNnD5deeilFRUXU1dXx5S9/mUgkMiw2f/Ob30yxZ+7cuYn8QCDATTfdRHV1NSUlJVx11VW0tLSMmr3HHHNMir2apnHTTTcBY2P7Ll++nMsuu4ympiY0TePRRx9NyldK8Y1vfIPGxkYKCwtZtGgR27dvTyrT3t7O0qVLKSsro6Kiguuuu46enp6kMm+//Tbvec97KCgoYMqUKdx9993DYnM4HObWW2/lxBNPpLi4mKamJq655hoOHDiQ1IbdvrnrrruGxeZM2/iTn/xkii2LFy9OKjOWtjFge1xrmsb3v//9RJmR3MZCKuJrhka++RkY+75G/Iz4maHYLH5m7CN+Zujkm68Z634G8s/X5JufyWQzjD1fM+79jBpnPPTQQ8rn86nf/va3auPGjer6669XFRUVqqWlZcRtueiii9R9992nNmzYoNatW6cuueQSNXXqVNXT05Mo8973vlddf/316uDBg4m/zs7ORH4kElEnnHCCWrRokVq7dq168sknVU1NjbrtttuGxeY77rhDHX/88Un2HDp0KJH/2c9+Vk2ZMkU999xz6o033lBnnXWWOvvss0fN3tbW1iRbly1bpgD1wgsvKKXGxvZ98skn1de//nX117/+VQHqkUceScq/6667VHl5uXr00UfVW2+9pT70oQ+p6dOnq/7+/kSZxYsXq5NPPlm9/vrr6uWXX1YzZ85UV199dSK/s7NT1dfXq6VLl6oNGzaoP/7xj6qwsFD96le/yrnNHR0datGiRerhhx9WW7ZsUStWrFBnnnmmmj9/flIb06ZNU9/+9reTtr352M+lzZm28bXXXqsWL16cZEt7e3tSmbG0jZVSSbYePHhQ/fa3v1Wapql33nknUWYkt7GQjPiaoZNvfkapse9rxM+InxmKzeJnxjbiZ46OfPM1Y93PKJV/vibf/Ewmm5Uae75mvPuZcTdYduaZZ6qbbrop8TsajaqmpiZ15513jqJVBq2trQpQL730UiLtve99r/q3f/s3xzpPPvmkcrlcqrm5OZF27733qrKyMhUMBnNu4x133KFOPvlk27yOjg7l9XrVn/70p0Ta5s2bFaBWrFgxKvZa+bd/+zc1Y8YMpeu6UmrsbV/rSUTXddXQ0KC+//3vJ9I6OjqU3+9Xf/zjH5VSSm3atEkBavXq1YkyTz31lNI0Te3fv18ppdQvfvELVVlZmWTzrbfequbMmZNzm+1YtWqVAtTu3bsTadOmTVM/+tGPHOsMl81OjuXyyy93rJMP2/jyyy9X559/flLaaG1jQXzN0ZDvfkapse1rxM8MIH4mvc1WxM+MLcTPHB357mvGsp9RKv98Tb75GaXyz9eMRz8zrh7DDIVCrFmzhkWLFiXSXC4XixYtYsWKFaNomUFnZycAVVVVSekPPvggNTU1nHDCCdx222309fUl8lasWMGJJ55IfX19Iu2iiy6iq6uLjRs3Doud27dvp6mpiWOPPZalS5eyZ88eANasWUM4HE7avnPnzmXq1KmJ7Tsa9sYJhUL8/ve/59Of/jSapiXSx9r2NbNz506am5uTtml5eTkLFixI2qYVFRWcfvrpiTKLFi3C5XKxcuXKRJnzzjsPn8+XpGPr1q0cOXJk2HV0dnaiaRoVFRVJ6XfddRfV1dWceuqpfP/730+aCj7SNr/44ovU1dUxZ84cPve5z9HW1pZky1jexi0tLTzxxBNcd911KXljaRtPFMTXHD356mcg/3yN+BnxM9kgfmZsIX4mN+Srr8k3PwPjw9fkg5+B/PU1+ehnPMPa+ghz+PBhotFo0kkCoL6+ni1btoySVQa6rnPLLbdwzjnncMIJJyTSP/7xjzNt2jSampp4++23ufXWW9m6dSt//etfAWhubrbVE8/LNQsWLOD+++9nzpw5HDx4kG9961u85z3vYcOGDTQ3N+Pz+VJOIPX19QlbRtpeM48++igdHR188pOfTKSNte1rJd6HnQ3mbVpXV5eU7/F4qKqqSiozffr0lDbieZWVlcNiPxhrPtx6661cffXVlJWVJdI///nPc9ppp1FVVcVrr73GbbfdxsGDB/nhD3844jYvXryYD3/4w0yfPp133nmHr33ta1x88cWsWLECt9s95rfxAw88QGlpKR/+8IeT0sfSNp5IiK85OvLZz0D++RrxM+JnskH8zNhC/MzRk8++Jt/8jLmPfPU1+eBnIL99TT76mXE1WDaWuemmm9iwYQOvvPJKUvoNN9yQ+H7iiSfS2NjIBRdcwDvvvMOMGTNG2kwuvvjixPeTTjqJBQsWMG3aNP7v//6PwsLCEbdnMPzmN7/h4osvpqmpKZE21rbveCMcDvPRj34UpRT33ntvUt4XvvCFxPeTTjoJn8/HZz7zGe688078fv+I2rlkyZLE9xNPPJGTTjqJGTNm8OKLL3LBBReMqC1D4be//S1Lly6loKAgKX0sbWNhbJAPviaf/QyIrxlpxM+MDOJnhGzJBz8D+e1rxM+MLPniZyC/fU0++plx9RhmTU0Nbrc75U0mLS0tNDQ0jJJVcPPNN/P444/zwgsvMHny5LRlFyxYAMCOHTsAaGhosNUTzxtuKioqmD17Njt27KChoYFQKERHR0eKPXFbRsve3bt38+yzz/Iv//IvacuNte0b7yPdMdvQ0EBra2tSfiQSob29fVS3e9yx7N69m2XLliXdhbFjwYIFRCIRdu3aNWo2xzn22GOpqalJOg7G4jYGePnll9m6dWvGYxvG1jYez4ivyS354mcgP32N+BnxM5kQPzP2ED+Te/LF1+SjnzH3kW++Jp/9DOSPr8lXPzOuBst8Ph/z58/nueeeS6Tpus5zzz3HwoULR9wepRQ333wzjzzyCM8//3zK9EE71q1bB0BjYyMACxcuZP369UkHffw/8nHHHTcsdpvp6enhnXfeobGxkfnz5+P1epO279atW9mzZ09i+46Wvffddx91dXVceumlacuNte07ffp0GhoakrZpV1cXK1euTNqmHR0drFmzJlHm+eefR9f1hKNcuHAhy5cvJxwOJ+mYM2fOsExNjTuW7du38+yzz1JdXZ2xzrp163C5XImpwSNts5l9+/bR1taWdByMtW0c5ze/+Q3z58/n5JNPzlh2LG3j8Yz4mtySL34G8tPXiJ8RP5MJ8TNjD/EzuSdffE0++hnIT1+T734G8sfX5K2fGfZXCIwwDz30kPL7/er+++9XmzZtUjfccIOqqKhIejPISPG5z31OlZeXqxdffDHpVah9fX1KKaV27Nihvv3tb6s33nhD7dy5U/3tb39Txx57rDrvvPMSbcRfA3zhhReqdevWqaefflrV1tYO22uLv/jFL6oXX3xR7dy5U7366qtq0aJFqqamRrW2tiqljNcsT506VT3//PPqjTfeUAsXLlQLFy4cNXuVMt4ONHXqVHXrrbcmpY+V7dvd3a3Wrl2r1q5dqwD1wx/+UK1duzbxppW77rpLVVRUqL/97W/q7bffVpdffrnta5ZPPfVUtXLlSvXKK6+oWbNmJb0CuKOjQ9XX16tPfOITasOGDeqhhx5SRUVFQ36lbjqbQ6GQ+tCHPqQmT56s1q1bl3Rsx99S8tprr6kf/ehHat26deqdd95Rv//971Vtba265pprhsXmdPZ2d3erL33pS2rFihVq586d6tlnn1WnnXaamjVrlgoERskwcAAAAqVJREFUAmNyG8fp7OxURUVF6t57702pP9LbWEhGfM3QyUc/o9TY9jXiZ8TPDNbmOOJnxi7iZ46OfPQ1Y9nPKJV/vibf/Ewmm8eirxnvfmbcDZYppdRPf/pTNXXqVOXz+dSZZ56pXn/99VGxA7D9u++++5RSSu3Zs0edd955qqqqSvn9fjVz5kz15S9/WXV2dia1s2vXLnXxxRerwsJCVVNTo774xS+qcDg8LDZ/7GMfU42Njcrn86lJkyapj33sY2rHjh2J/P7+fnXjjTeqyspKVVRUpK688kp18ODBUbNXKaX+8Y9/KEBt3bo1KX2sbN8XXnjB9ji49tprlVLGq5Zvv/12VV9fr/x+v7rgggtStLS1tamrr75alZSUqLKyMvWpT31KdXd3J5V566231Lnnnqv8fr+aNGmSuuuuu4bF5p07dzoe2y+88IJSSqk1a9aoBQsWqPLyclVQUKDmzZunvvvd7yadyHNpczp7+/r61IUXXqhqa2uV1+tV06ZNU9dff31KsDmWtnGcX/3qV6qwsFB1dHSk1B/pbSykIr5maOSjn1FqbPsa8TPiZwZrcxzxM2Mb8TNDJx99zVj2M0rln6/JNz+Tyeax6GvGu5/RlFLKZsKZIAiCIAiCIAiCIAiCIEw4xtWaZYIgCIIgCIIgCIIgCIJwNMhgmSAIgiAIgiAIgiAIgiDEkMEyQRAEQRAEQRAEQRAEQYghg2WCIAiCIAiCIAiCIAiCEEMGywRBEARBEARBEARBEAQhhgyWCYIgCIIgCIIgCIIgCEIMGSwTBEEQBEEQBEEQBEEQhBgyWCYIgiAIgiAIgiAIgiAIMWSwTBAEQRAEQRAEQRAEQRBiyGCZIAiCIAiCIAiCIAiCIMSQwTJBEARBEARBEARBEARBiPH/AYJ45hPBUosSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmNElEQVR4nOydd3wcxfm4n72ibjVbkns3uGKDwWAM2IDBgCkOHRKwKaGZDiGBhBrAAcLvC6EnJEASExJ6Sei9hQ6hGQwYG9yrZKtemd8fe3fam5vZW8kn6U6a5/OxdTf1fXdn533nvd1ZSwghMBgMBoPBYDAYDAaDwWAwGAz4uloAg8FgMBgMBoPBYDAYDAaDIVswwTKDwWAwGAwGg8FgMBgMBoMhhgmWGQwGg8FgMBgMBoPBYDAYDDFMsMxgMBgMBoPBYDAYDAaDwWCIYYJlBoPBYDAYDAaDwWAwGAwGQwwTLDMYDAaDwWAwGAwGg8FgMBhimGCZwWAwGAwGg8FgMBgMBoPBEMMEywwGg8FgMBgMBoPBYDAYDIYYJlhmMBgMBoPBYDAYDAaDwWAwxDDBMkOP4IorrsCyrK4Wo9OYMWMG48ePz2ibQ4cOZd68eRlt02AwGLoay7K44oorulqMtMybN4+hQ4cmpWVa9hkzZjBjxoyMtZeNDB06lAMPPDBj7b3yyitYlsVDDz2UtqyXc3jvvfdiWRbff/+9575feeWVtgltMBgMWY5Zd9icccYZ7LPPPonv33//PZZlce+993adUFuB7Gd88cUXBAIBPvvss64TygUTLDPkLEuWLOHMM89km222oaioiKKiIsaOHcv8+fP53//+19XitRnLsjjzzDO7WgyDwZCj3H777ViWxc4779zVonQ74s5p/J/f72fw4MH85Cc/4eOPP+5q8drEF198wRVXXOEpGNNZxIM+8X/BYJDhw4dz/PHH891333W1eF3O7bffnrMLI0NuEQ/Wvv/++10tSofxww8/cOWVVzJlyhQqKiro06cPM2bM4IUXXtjqtt944w32339/BgwYQEFBAYMHD+aggw7i/vvvz4Dk2cd//vOfLv+xyWk75H+nnXZal8q2tSxZsoS7776bSy65pEP7mTFjRtJxKywsZLvttuOmm24iGo12aN9jx45l9uzZXHbZZR3aT3sJdLUABkN7eOqppzjqqKMIBAL89Kc/ZeLEifh8PhYtWsQjjzzCHXfcwZIlSxgyZAgAv/nNb/jVr37VxVIbDAZDx7Fw4UKGDh3Ku+++yzfffMPIkSO7WqRuxzHHHMMBBxxAJBLhyy+/5I477uDpp5/mv//9L5MmTep0eRobGwkE2ubKffHFF1x55ZXMmDEj5S6n5557LoPStZ2zzz6bnXbaiVAoxIcffsgf//hH/v3vf/Ppp5/Sv3//LpUtE/zpT39Ku/A47rjjOProo8nPz0+k3X777fTp0yflLos99tiDxsZG8vLyOkJcg6Fb8vjjj3PdddcxZ84c5s6dSzgc5q9//Sv77LMPf/nLXzjhhBPa1e6DDz7IUUcdxaRJkzjnnHOoqKhgyZIlvPbaa/zpT3/i2GOPzbAmXc9//vMfbrvtti4PmO2zzz4cf/zxKenbbLNNF0iTOW6++WaGDRvGnnvumUgbMmQIjY2NBIPBjPY1cOBAFixYAMC6deu4//77Oe+881i7di3XXHNNRvuSOe200zjggAP49ttvGTFiRIf21VZMsMyQc3z77bccffTRDBkyhBdffJF+/fol5V933XXcfvvt+HytN04GAoE2LygMBoMhV1iyZAlvvfUWjzzyCKeeeioLFy7k8ssvT1svHA4TjUbNYtsjO+ywAz/72c8S36dNm8bBBx/MHXfcwV133aWsU19fT3FxcYfIU1BQkNH2unoc7L777hx++OEAnHDCCWyzzTacffbZ3HfffVx88cXKOh15fDONl8WN3+/H7/d7as/n82V8DBgM3Z0999yTZcuW0adPn0TaaaedxqRJk7jsssvaHSy74oorGDt2LP/9739T5tI1a9ZslcwGd7bZZpsk2+yVhoYGioqKUtIz4RttrW0KhUIsXLgw5e44y7I6ZN4vKytLOoannXYao0eP5pZbbuGqq67ybJfaw8yZM6moqOC+++7jqquu6rB+2oN5DNOQc1x//fXU19dzzz33pATKwA6MnX322QwaNCiRJu9ZNn78+KQofZxoNMqAAQMSzno87aabbmLcuHEUFBRQU1PDqaeeysaNG5PqxvdBeeONN5gyZQoFBQUMHz6cv/71r5lQG7B/DZs9ezb9+/cnPz+fESNG8Nvf/pZIJKIs/8EHH7DrrrtSWFjIsGHDuPPOO1PKNDc3c/nllzNy5Ejy8/MZNGgQF110Ec3Nza6yhEIhrrzySkaNGkVBQQG9e/dmt9124/nnn8+IrgaDwTsLFy6koqKC2bNnc/jhh7Nw4cKUMvFHCX//+99z0003MWLECPLz8/niiy8A+1G4HXfckYKCAkaMGMFdd92l3O8x/sj4gw8+yNixYyksLGTq1Kl8+umnANx1112MHDmSgoICZsyYkfK43+uvv84RRxzB4MGDE3POeeedR2NjY6LMmjVrqKqqYsaMGQghEunffPMNxcXFHHXUUYk0r3NYc3Mz5513HlVVVfTq1YuDDz6YH3/8sX0HPMZee+0F2MFKaH2E6dVXX+WMM86gurqagQMHJso//fTT7L777hQXF9OrVy9mz57N559/ntLuY489xvjx4ykoKGD8+PE8+uijyv5Ve5YtX76ck046KWEnhg0bxumnn05LSwv33nsvRxxxBGAvGOOPXMT3vFLtWbZmzRpOOukkampqKCgoYOLEidx3331JZZxj649//GNibO2000689957no+njHx84+Pxiy++4Nhjj6WiooLddtsNsBc3v/3tbxN9Dx06lEsuuURry5577jkmTZpEQUEBY8eO5ZFHHknK37BhAxdeeCETJkygpKSE0tJS9t9/fz755BNle5FIhEsuuYS+fftSXFzMwQcfzA8//JBURrVnmYy8Z9nQoUP5/PPPefXVVxPnK36OdHuWvfPOO+y3336UlZVRVFTE9OnTefPNN5PKbN68mXPPPZehQ4eSn59PdXU1++yzDx9++KGrfIaex7x58ygpKWHZsmUceOCBlJSUMGDAAG677TYAPv30U/baay+Ki4sZMmRIyiOHbbmWli5dysEHH0xxcTHV1dWcd955PPvss+0e5yrGjRuXFCgDyM/P54ADDuDHH39k8+bNifRQKMSiRYtYuXJl2na//fZbdtppJ2WApbq6OvFZd93q9qKK21qnPVDNJevXr+e4446jtLSU8vJy5s6dyyeffKJsc9GiRRx++OFUVlZSUFDAjjvuyBNPPJFUJp2fP2/evMQYcD7CF8fr+kkIwdVXX83AgQMpKipizz33VNrFrSW+n/MHH3zAHnvsQVFREZdcckla3+ill15K2O3y8nIOOeQQvvzyy6S23WzTqlWrOOGEExg4cCD5+fn069ePQw45JO1WCG+88Qbr1q1j5syZSemqcRK/RpcvX86cOXMoKSmhqqqKCy+8ULtGTEdBQQE77bQTmzdvTgn2/v3vf2fy5MkUFhZSWVnJ0UcfnWLvgIQ/UFhYyJQpU3j99deVfQWDQWbMmMHjjz/eLlk7EnOrjSHneOqppxg5cuRW7ctz1FFHccUVV7Bq1Sr69u2bSH/jjTdYsWIFRx99dCLt1FNP5d577+WEE07g7LPPZsmSJdx666189NFHvPnmm0m/FH/zzTccfvjhnHTSScydO5e//OUvzJs3j8mTJzNu3Lh2yxvn3nvvpaSkhPPPP5+SkhJeeuklLrvsMurq6rjhhhuSym7cuJEDDjiAI488kmOOOYZ//etfnH766eTl5XHiiScCtiE7+OCDeeONNzjllFMYM2YMn376Kf/3f//H119/zWOPPaaV5YorrmDBggWcfPLJTJkyhbq6Ot5//30+/PDDpI0oDQZDx7Nw4UIOPfRQ8vLyOOaYY7jjjjt477332GmnnVLK3nPPPTQ1NXHKKaeQn59PZWUlH330Efvttx/9+vXjyiuvJBKJcNVVV1FVVaXs7/XXX+eJJ55g/vz5ACxYsIADDzyQiy66iNtvv50zzjiDjRs3cv3113PiiSfy0ksvJeo++OCDNDQ0cPrpp9O7d2/effddbrnlFn788UcefPBBwF5Y3HHHHRxxxBHccsstnH322USjUebNm0evXr24/fbbgbbNYSeffDJ///vfOfbYY9l111156aWXmD179lYd92+//RaA3r17J6WfccYZVFVVcdlll1FfXw/A3/72N+bOncusWbO47rrraGho4I477mC33Xbjo48+Six8nnvuOQ477DDGjh3LggULWL9+fcLRTseKFSuYMmUKmzZt4pRTTmH06NEsX76chx56iIaGBvbYYw/OPvts/vCHP3DJJZcwZswYgMRfmcbGRmbMmME333zDmWeeybBhw3jwwQeZN28emzZt4pxzzkkqf//997N582ZOPfVULMvi+uuv59BDD+W7775r1yMjuuN7xBFHMGrUKK699tpEMPXkk0/mvvvu4/DDD+eCCy7gnXfeYcGCBXz55ZcpwcbFixdz1FFHcdpppzF37lzuuecejjjiCJ555pmE/fruu+947LHHOOKIIxg2bBirV6/mrrvuYvr06XzxxRcpj4Vec801WJbFL3/5S9asWcNNN93EzJkz+fjjjyksLGyz7nFuuukmzjrrLEpKSvj1r38NQE1Njbb8Sy+9xP7778/kyZO5/PLL8fl83HPPPey11168/vrrTJkyBbDvGnjooYc488wzGTt2LOvXr+eNN97gyy+/ZIcddmi3vIbuSSQSYf/992ePPfbg+uuvZ+HChZx55pkUFxfz61//mp/+9Kcceuih3HnnnRx//PFMnTqVYcOGAd6vpfr6evbaay9WrlzJOeecQ9++fbn//vt5+eWXU+TxOs7bwqpVqxJ7IMdZvnw5Y8aMYe7cuWn3DYw/8fLjjz96mq+98O9//5ujjjqKCRMmsGDBAjZu3MhJJ53EgAEDkspFo1EOOugg3n33XU4//XRGjx7N448/zty5c1Pa/Pzzz5k2bRoDBgzgV7/6FcXFxfzrX/9izpw5PPzww/zkJz8B0vv5p556KitWrOD555/nb3/7W0o/XtdPl112GVdffTUHHHAABxxwAB9++CH77rsvLS0tno9TU1MT69atS0kvLS1NCl6uX7+e/fffn6OPPpqf/exnSXOpyjd64YUX2H///Rk+fDhXXHEFjY2N3HLLLUybNo0PP/wwJWCpsk2HHXYYn3/+OWeddRZDhw5lzZo1PP/88yxbtsz1x5O33noLy7LYfvvtPR2DSCTCrFmz2Hnnnfn973/PCy+8wI033siIESM4/fTTPbUhEw/MlZeXJ9KuueYaLr30Uo488khOPvlk1q5dyy233MIee+zBRx99lCj75z//mVNPPZVdd92Vc889l++++46DDz6YysrKpBta4kyePJnHH3+curo6SktL2yVvhyAMhhyitrZWAGLOnDkpeRs3bhRr165N/GtoaEjkXX755cI53L/66isBiFtuuSWpjTPOOEOUlJQk6r7++usCEAsXLkwq98wzz6SkDxkyRADitddeS6StWbNG5OfniwsuuCCtboCYP3++axmnTnFOPfVUUVRUJJqamhJp06dPF4C48cYbE2nNzc1i0qRJorq6WrS0tAghhPjb3/4mfD6feP3115PavPPOOwUg3nzzzST95s6dm/g+ceJEMXv27LR6GQyGjuX9998XgHj++eeFEEJEo1ExcOBAcc455ySVW7JkiQBEaWmpWLNmTVLeQQcdJIqKisTy5csTaYsXLxaBQEDIrgIg8vPzxZIlSxJpd911lwBE3759RV1dXSL94osvFkBSWdU8tmDBAmFZlli6dGlS+jHHHCOKiorE119/LW644QYBiMceeyyR73UO+/jjjwUgzjjjjKRyxx57rADE5ZdfniKTk/ixu/LKK8XatWvFqlWrxCuvvCK23357AYiHH35YCCHEPffcIwCx2267iXA4nKi/efNmUV5eLn7+858ntbtq1SpRVlaWlD5p0iTRr18/sWnTpkTac889JwAxZMiQpPqy7Mcff7zw+XzivffeS9EhGo0KIYR48MEHBSBefvnllDLTp08X06dPT3y/6aabBCD+/ve/J9JaWlrE1KlTRUlJSeJcx49P7969xYYNGxJlH3/8cQGIJ598MqUvJy+//LIAxF/+8hexdu1asWLFCvHvf/9bDB06VFiWldAnbsuPOeaYpPrx83vyyScnpV944YUCEC+99FIiLW6r4+dMCNu36Nevn9h+++0TaU1NTSISiSS1t2TJEpGfny+uuuqqFNkHDBiQNPb/9a9/CUDcfPPNibS5c+emPYfxMeS8ZsaNG5d0XuS+4+cyGo2KUaNGiVmzZiXOtxD2NTds2DCxzz77JNLKysrS+hyGnkd8/DnnkLlz5wpAXHvttYm0jRs3isLCQmFZlnjggQcS6YsWLUoZ016vpRtvvDFljm9sbBSjR49u9zj3yuLFi0VBQYE47rjjUuQEkvxfHX/+858FIPLy8sSee+4pLr30UvH666+n6C5ft3Jf99xzTyJtwoQJYuDAgWLz5s2JtFdeeSXFHjz88MMCEDfddFMiLRKJiL322iulzb333ltMmDAhad0QjUbFrrvuKkaNGpVI8+Lnz58/P8VHEML7+mnNmjUiLy9PzJ49O+lcXnLJJZ6PO6D9949//CNRLr42uvPOO5Pqu/lG8XXT+vXrE2mffPKJ8Pl84vjjj0+k6WzTxo0bBSBuuOGGtHrI/OxnPxO9e/dOSVeNk/g16ryehBBi++23F5MnT07b1/Tp08Xo0aMTa+hFixaJX/ziFwJIGgPff/+98Pv94pprrkmq/+mnn4pAIJBIb2lpEdXV1WLSpEmiubk5Ue6Pf/yjAJT27P777xeAeOedd9LK25mYxzANOUVdXR0AJSUlKXkzZsygqqoq8S9+a7CKbbbZhkmTJvHPf/4zkRaJRHjooYc46KCDEr8CP/jgg5SVlbHPPvuwbt26xL/JkydTUlKS8mvX2LFj2X333RPfq6qq2HbbbTP2Ni/nr9ObN29m3bp17L777jQ0NLBo0aKksoFAgFNPPTXxPS8vj1NPPZU1a9bwwQcfJPQbM2YMo0ePTtIv/uiL6te8OOXl5Xz++ecsXrw4I7oZDIb2sXDhQmpqahKPlluWxVFHHcUDDzygvP3+sMMOS7pjLBKJ8MILLzBnzpyku2VGjhzJ/vvvr+xz7733TvpFNH6n72GHHUavXr1S0p1zoHMeq6+vZ926dey6664IIfjoo4+S+rn11lspKyvj8MMP59JLL+W4447jkEMOSeR7ncP+85//APYG8k7OPfdcpX46Lr/8cqqqqujbty8zZszg22+/5brrruPQQw9NKvfzn/88aX+P559/nk2bNnHMMcckyen3+9l5550Tcq5cuZKPP/6YuXPnUlZWlqi/zz77MHbsWFfZotEojz32GAcddBA77rhjSr78OK0X/vOf/9C3b1+OOeaYRFowGOTss89my5YtvPrqq0nljzrqKCoqKhLf4/bQqw088cQTqaqqon///syePZv6+nruu+++FH3kPVzi5/f8889PSr/gggsA++4MJ/3790/cPQH23QfHH388H330EatWrQLsx7Lie59GIhHWr19PSUkJ2267rfJRxeOPPz5p7B9++OH069cvIVtn8PHHH7N48WKOPfZY1q9fnxhn9fX17L333rz22muJFwyUl5fzzjvvsGLFik6Tz5DbnHzyyYnP5eXlbLvtthQXF3PkkUcm0rfddlvKy8uTrnmv19IzzzzDgAEDOPjggxNpBQUF/PznP0+Soy3j3AsNDQ0cccQRFBYW8rvf/S4pb+jQoQghPL2N9sQTT+SZZ55hxowZvPHGG/z2t79l9913Z9SoUbz11lue5YmzYsUKPv30U44//vikdc/06dOZMGFCUtlnnnmGYDCYdKx8Pl/i7u84GzZs4KWXXuLII49MrCPWrVvH+vXrmTVrFosXL2b58uXA1vn5XtdPL7zwAi0tLZx11llJNqqttvmQQw7h+eefT/knb7mTn5+v3ZNO9o3i9njevHlUVlYm0rfbbjv22Wcf5dwu26bCwkLy8vJ45ZVXUh4/Tcf69euT7KkX5P533313z/Z30aJFiTX06NGjueGGGzj44IOTxv4jjzxCNBrlyCOPTDqvffv2ZdSoUYnz+v7777NmzRpOO+20pDv75s2bl+TbOInrqrpDsCsxj2Eacoq4I7ply5aUvLvuuovNmzezevVqT5s8HnXUUVxyySUsX76cAQMG8Morr7BmzZqkvXAWL15MbW1t0l4DTuRnuAcPHpxSpqKios0TpI7PP/+c3/zmN7z00kuJwGGc2trapO/9+/dP2Vgy/laY77//nl122YXFixfz5Zdfah+1ctuQ9KqrruKQQw5hm222Yfz48ey3334cd9xxbLfddu1RzWAwtINIJMIDDzzAnnvumdjXCewg1Y033siLL77Ivvvum1Qn/mhMnDVr1tDY2Kh8e6bujZryXBd3fuRb6+Ppzjlw2bJlXHbZZTzxxBMpc6M8j1VWVvKHP/yBI444gpqaGv7whz8k5Xudw5YuXYrP50t5y9K2226rrKfjlFNO4YgjjsDn81FeXs64ceOS3loYRz7G8cVGPIgnE3/kYOnSpQCMGjUqpYwuSBNn7dq11NXVMX78eG/KeGDp0qWMGjUq6YU50PrYZlzeOPK4iDu/Xm3gZZddxu67747f76dPnz6MGTNG+XIe+fjGz688Xvv27Ut5eXmKnCNHjkwJHjrtY9++fYlGo9x8883cfvvtLFmyJCnwLD8WCqnnzLIsRo4cmXZfmkwSH2eqR6/i1NbWUlFRwfXXX8/cuXMZNGgQkydP5oADDuD4449n+PDhnSWuIYcoKChImWfLysoYOHBgyrVUVlaWdM17vZaWLl3KiBEjUtqTr+u2jPN0RCIRjj76aL744guefvrprX7r7qxZs5g1axYNDQ188MEH/POf/+TOO+/kwAMPZNGiRdr1hIr4vKWzzU57sHTpUvr165eyWb1c95tvvkEIwaWXXsqll16q7HfNmjUMGDBgq/x8r+snnc2rqqpqU6Bo4MCBKXt7qRgwYIB2036VXQG1nzBmzBieffbZlE385Tby8/O57rrruOCCC6ipqWGXXXbhwAMP5Pjjj0/aBkiHcOzZmg7VNdqWNejQoUMTb2z+9ttvueaaa1i7dm3SywQWL16MEELpo0DrS2x05zUYDGptTFzX9vyw15GYYJkhpygrK6Nfv3589tlnKXnxOxi8OqZHHXUUF198MQ8++CDnnnsu//rXvygrK2O//fZLlIlGo1RXVys3ywZSJiXdm0LaMtnp2LRpE9OnT6e0tJSrrrqKESNGUFBQwIcffsgvf/nLNv2KFicajTJhwgT+3//7f8p81TPlcfbYYw++/fZbHn/8cZ577jnuvvtu/u///o8777wz6ddHg8HQcbz00kusXLmSBx54gAceeCAlf+HChSnBsq3ZPymObq5LNwdGIhH22WcfNmzYwC9/+UtGjx5NcXExy5cvZ968ecp57NlnnwXsgMuPP/6YtHfG1sxh7WHUqFGeHHL5GMf1+tvf/qZ0kLvL25q31gZOmDChXcc3Tiad7GuvvZZLL72UE088kd/+9rdUVlbi8/k499xz22VvO4O4XDfccAOTJk1SlonfoXLkkUey++678+ijj/Lcc89xww03cN111/HII49o7yg19FzaO+dD5q+ltozzdPz85z/nqaeeYuHChdofM9pDUVERu+++O7vvvjt9+vThyiuv5Omnn2bu3Lnaeaq9G7G3hfixu/DCC5k1a5ayTDzAtjV+flvXT52Fm/+TCd9I1ca5557LQQcdxGOPPcazzz7LpZdeyoIFC3jppZdc9yPr3bt3m2622Nq3VRYXFyfZ32nTprHDDjtwySWXJH6ojEajWJbF008/rezP63WnIq6r/PKNrqZ7eGeGHsXs2bO5++67effdd9u1gWecYcOGMWXKFP75z39y5pln8sgjjzBnzpykuwRGjBjBCy+8wLRp0zIyiW4Nr7zyCuvXr+eRRx5hjz32SKQ77yZxsmLFipRfPL7++muAxONTI0aM4JNPPmHvvfdu1yKjsrKSE044gRNOOIEtW7awxx57cMUVV5hgmcHQSSxcuJDq6mrlY+ePPPIIjz76KHfeeafr/FVdXU1BQQHffPNNSp4qbWv49NNP+frrr7nvvvs4/vjjE+m6t+g+88wz3H333Vx00UUsXLiQuXPn8s477ySCS17nsCFDhiR+LXX+SvzVV19lSDN34ne0VVdXuwaDhgwZAqB87CWdrFVVVZSWlip/THLSlrl+yJAh/O9//yMajSbdXRZ/7D8ub1cTP7+LFy9OelnB6tWr2bRpU4qc8bsrnMdCto8PPfQQe+65J3/+85+T6m7atEnpzMvnTAjBN998k5G7rb2es/g4Ky0t9RR07NevH2eccQZnnHEGa9asYYcdduCaa64xwTJDRvF6LQ0ZMoQvvvgi5dqU7VBbx7mOX/ziF9xzzz3cdNNNSY+aZ5r4Y+TxN2rG75jatGlTUjn5Dtj4vOXFNg8ZMoSXX36ZhoaGpLvL5HLxu3qCwaCnY5fOz9fNTV7XT06b57zjaO3atRl7Kqe9xGVT2d5FixbRp0+flCd4dIwYMYILLriACy64gMWLFzNp0iRuvPFG/v73v2vrjB49moULF1JbW6t9dLEj2W677fjZz37GXXfdxYUXXsjgwYMZMWIEQgiGDRuWuBtbhfO8OoPQoVCIJUuWMHHixJQ6S5YswefzubbbFZg9yww5x0UXXURRUREnnngiq1evTslvy11cRx11FP/973/5y1/+wrp165IewQT7l9dIJMJvf/vblLrhcDjF0HUk8Qi+U7+WlpbEW+FkwuEwd911V1LZu+66i6qqKiZPngzY+i1fvpw//elPKfUbGxsTb3FTsX79+qTvJSUljBw5kubmZu9KGQyGdtPY2MgjjzzCgQceyOGHH57y78wzz2Tz5s0pr4OX8fv9zJw5k8ceeyxp/6JvvvmGp59+OqMyq+YxIQQ333xzStlNmzYl3sJ17bXXcvfdd/Phhx9y7bXXJsp4ncPii3/5Mc6bbrppq3XywqxZsygtLeXaa68lFAql5K9duxawgxeTJk3ivvvuS3ok9fnnn0+8xl6Hz+djzpw5PPnkk7z//vsp+fFjHnfuvdivAw44gFWrViXt7xkOh7nlllsoKSlh+vTpadvoDA444AAg9XzG7ziU33q6YsWKpDdk1tXV8de//pVJkyYl7vzz+/0p/sSDDz6Y2M9H5q9//SubN29OfH/ooYdYuXJlRgJPxcXFns7X5MmTGTFiBL///e+V21XEx1kkEkl55Lm6upr+/fsbG27IOF6vpVmzZrF8+fIkm9XU1JQyv3sd527ccMMN/P73v+eSSy5Jeauvk1AoxKJFixKBLjdefPFFZXp8b6v4DzVDhgzB7/fz2muvJZWT/fn+/fszfvx4/vrXvybp+eqrr/Lpp58mlZ01axahUCjpWEWj0ZQf0qqrq5kxYwZ33XWXUifnsfPi5+vsidf108yZMwkGg9xyyy1JY6SzbLMbTnvs1O+zzz7jueeeS9gdNxoaGmhqakpKGzFiBL169Uo7106dOhUhRGKf6a7goosuIhQKJWzpoYceit/v58orr0y5poUQiTGz4447UlVVxZ133pn0VtN7771Xa8s++OADxo0b1yWBQTfMnWWGnGPUqFHcf//9HHPMMWy77bb89Kc/ZeLEiQghWLJkCffffz8+n8/Ta5uPPPJILrzwQi688EIqKytTfmWZPn06p556KgsWLODjjz9m3333JRgMsnjxYh588EFuvvlmDj/88Izp9v7773P11VenpM+YMYNdd92ViooK5s6dy9lnn41lWfztb3/TBgf79+/Pddddx/fff88222zDP//5Tz7++GP++Mc/Jp4pP+644/jXv/7Faaedxssvv8y0adOIRCIsWrSIf/3rXzz77LPKjaLBfpnBjBkzmDx5MpWVlbz//vuJ19AbDIaO54knnmDz5s1JmyE72WWXXaiqqmLhwoUpPwTIXHHFFTz33HNMmzaN008/nUgkwq233sr48eP5+OOPMybz6NGjGTFiBBdeeCHLly+ntLSUhx9+WPkL8jnnnMP69et54YUX8Pv97Lfffpx88slcffXVHHLIIUycONHzHDZp0iSOOeYYbr/9dmpra9l111158cUXM37nnI7S0lLuuOMOjjvuOHbYYQeOPvpoqqqqWLZsGf/+97+ZNm0at956KwALFixg9uzZ7Lbbbpx44ols2LCBW265hXHjxikXhk6uvfZannvuOaZPn84pp5zCmDFjWLlyJQ8++CBvvPEG5eXlTJo0Cb/fz3XXXUdtbS35+fnstddeyr1lTjnlFO666y7mzZvHBx98wNChQ3nooYd48803uemmm5I2tO9KJk6cyNy5c/njH/+Y2LLg3Xff5b777mPOnDkpmzxvs802nHTSSbz33nvU1NTwl7/8hdWrV3PPPfckyhx44IFcddVVnHDCCey66658+umnLFy4ULvfSmVlJbvtthsnnHACq1ev5qabbmLkyJEpm5O3h8mTJ3PHHXdw9dVXM3LkSKqrq5WPjPl8Pu6++272339/xo0bxwknnMCAAQNYvnw5L7/8MqWlpTz55JNs3ryZgQMHcvjhhzNx4kRKSkp44YUXeO+997jxxhu3Wl6DwYnXa+nUU0/l1ltv5ZhjjuGcc86hX79+LFy4MLFnUvwuJq/jXMejjz7KRRddxKhRoxgzZkzK3T377LMPNTU1ACxfvpwxY8Ywd+7ctJv8H3LIIQwbNoyDDjqIESNGUF9fzwsvvMCTTz7JTjvtxEEHHQTYW8occcQR3HLLLViWxYgRI3jqqaeU+wRfe+21HHLIIUybNo0TTjiBjRs3Jmyz0x7MmTOHKVOmcMEFF/DNN98wevRonnjiCTZs2JB07ABuu+02dtttNyZMmMDPf/5zhg8fzurVq3n77bf58ccf+eSTTwBvfn78x/ezzz6bWbNm4ff7Ofrooz2vn6qqqrjwwgtZsGABBx54IAcccAAfffQRTz/9dJsex/v666+Vd2nV1NSwzz77eG5H5oYbbmD//fdn6tSpnHTSSTQ2NnLLLbdQVlbGFVdc4UmuvffemyOPPJKxY8cSCAR49NFHWb16NUcffbRr3d12243evXvzwgsvZPQR4bYwduxYDjjgAO6++24uvfRSRowYwdVXX83FF1/M999/z5w5c+jVqxdLlizh0Ucf5ZRTTuHCCy8kGAxy9dVXc+qpp7LXXntx1FFHsWTJEu655x6lDQ2FQrz66qucccYZXaBlGjrprZsGQ8b55ptvxOmnny5GjhwpCgoKRGFhoRg9erQ47bTTxMcff5xUNv5KXxXTpk1TvnLeyR//+EcxefJkUVhYKHr16iUmTJggLrroIrFixYpEmSFDhihfsTx9+nTlK3JlcHn18W9/+1shhBBvvvmm2GWXXURhYaHo37+/uOiii8Szzz6b8grq6dOni3Hjxon3339fTJ06VRQUFIghQ4aIW2+9NaXflpYWcd1114lx48aJ/Px8UVFRISZPniyuvPJKUVtbm6Sf8xXOV199tZgyZYooLy9PHPtrrrlGtLS0pNXVYDBsPQcddJAoKCgQ9fX12jLz5s0TwWBQrFu3LvG6cd0rzF988UWx/fbbi7y8PDFixAhx9913iwsuuEAUFBQklQPE/Pnzk9J0bb/88ssCEA8++GAi7YsvvhAzZ84UJSUlok+fPuLnP/+5+OSTT5Jehf74448LQNx4441J7dXV1YkhQ4aIiRMnJuYar3NYY2OjOPvss0Xv3r1FcXGxOOigg8QPP/wgAHH55Zdrj6GbfjL33HOPAMR7772nzH/55ZfFrFmzRFlZmSgoKBAjRowQ8+bNE++//35SuYcffliMGTNG5Ofni7Fjx4pHHnlEzJ07VwwZMiSpnEr2pUuXiuOPP15UVVWJ/Px8MXz4cDF//vyk17f/6U9/EsOHDxd+vz/Jfqjs1erVq8UJJ5wg+vTpI/Ly8sSECROSXlmf7vh4Ob6qcaIibsvXrl2bkhcKhcSVV14phg0bJoLBoBg0aJC4+OKLRVNTU1K5uK1+9tlnxXbbbSfy8/PF6NGjU/puamoSF1xwgejXr58oLCwU06ZNE2+//XbKMYrL/o9//ENcfPHForq6WhQWForZs2eLpUuXJrXp5RzGx9CSJUsSaatWrRKzZ88WvXr1EkCi/3jfTvsvhBAfffSROPTQQ0Xv3r1Ffn6+GDJkiDjyyCPFiy++KIQQorm5WfziF78QEydOFL169RLFxcVi4sSJ4vbbb3c5+oaegGoOmzt3riguLk4pG/c1ZWR/2Ou1JIQQ3333nZg9e7YoLCwUVVVV4oILLhAPP/ywAMR///vfpLLpxrmO+Dyi++e8nuJzm9P/1fGPf/xDHH300WLEiBGisLBQFBQUiLFjx4pf//rXoq6uLqns2rVrxWGHHSaKiopERUWFOPXUU8Vnn32WZAfjPPDAA2L06NEiPz9fjB8/XjzxxBPisMMOE6NHj05p89hjjxW9evUSZWVlYt68eeLNN98UgHjggQeSyn777bfi+OOPF3379hXBYFAMGDBAHHjggeKhhx5KlPHi54fDYXHWWWeJqqoqYVlWylrLy/opEomIK6+8MjE+ZsyYIT777LOUdYcOt3PpHF+68ZrOvr/wwgti2rRporCwUJSWloqDDjpIfPHFF0lldLZp3bp1Yv78+WL06NGiuLhYlJWViZ133ln861//SquXEEKcffbZYuTIkUp5neNEd426rX+d6I6NEEK88sorKXbq4YcfFrvttpsoLi4WxcXFYvTo0WL+/Pniq6++Sqp7++23i2HDhon8/Hyx4447itdee0153T/99NMCEIsXL04ra2djCZGBnccNBoPBYDB0O+bMmdPuV8cbDAaDwbC13HTTTZx33nn8+OOPDBgwoKvFyQomTZpEVVWVdr/POI899hg/+clPeOONN5g2bVonSWfIFN999x2jR4/m6aefZu+99+5qcTqMOXPmYFlW0vYI2YLZs8xgMBgMBgONjY1J3xcvXsx//vMfZsyY0TUCGQwGg6FHIduhpqYm7rrrLkaNGtUjA2WhUIhwOJyU9sorr/DJJ5+k2Gb52EUiEW655RZKS0vZYYcdOlpUQwcwfPhwTjrpJH73u991tSgdxpdffslTTz2l3N8uGzB3lhkMBoPBYKBfv37MmzeP4cOHs3TpUu644w6am5v56KOPGDVqVFeLZzAYDIZuzv7778/gwYOZNGkStbW1/P3vf+fzzz9n4cKFHHvssV0tXqfz/fffM3PmTH72s5/Rv39/Fi1axJ133klZWRmfffYZvXv3TpQ9+eSTaWxsZOrUqTQ3N/PII4/w1ltvce2113LxxRd3oRYGQ+5iNvg3GAwGg8HAfvvtxz/+8Q9WrVpFfn4+U6dO5dprrzWBMoPBYDB0CrNmzeLuu+9m4cKFRCIRxo4dywMPPJD2JTXdlYqKCiZPnszdd9/N2rVrKS4uZvbs2fzud79LCpQB7LXXXtx444089dRTNDU1MXLkSG655Rbz4i2DYSvI6jvLbrvtNm644QZWrVrFxIkTueWWW5gyZUpXi2UwGAyGboSxNQaDwWDoSIydMRgMhtwja/cs++c//8n555/P5ZdfzocffsjEiROZNWuW8rW6BoPBYDC0B2NrDAaDwdCRGDtjMBgMuUnW3lm28847s9NOO3HrrbcCEI1GGTRoEGeddRa/+tWvulg6g8FgMHQHjK0xGAwGQ0di7IzBYDDkJlm5Z1lLSwsffPBB0maEPp+PmTNn8vbbbyvrNDc309zcnPgejUbZsGEDvXv3xrKsDpfZYDAYujtCCDZv3kz//v3x+bL2xmTPtNXWGDtjMBgMHYuxM8bOGAwGQ0fSFjuTlcGydevWEYlEqKmpSUqvqalh0aJFyjoLFizgyiuv7AzxDAaDoUfzww8/MHDgwK4WY6tpq60xdsZgMBg6B2NnDAaDwdCReLEzWRksaw8XX3wx559/fuJ7bW0tgwcPZgL2xmwWoHveNP47jXB8F450HPmW5rNbe3KeIFkeZz86GZxtqerKbar6dWvf2b/RUd2enGd0VMuQTTqGxkLTDCBPI4ibACph0x1IVT2VsroDKaM7Map8L3Lq2vCoY7QZvr8DevXqpWm4e6OzM7P3gEDAfYzK6E67l7GOy3ddnXTDpq1yuKXJ/Rgd1fLi8l1Xx+iYfTrWl8APAyEUlISVFUCR72zQ2BljZ9DbmR+A0q4Ty2AwdDW1tV0tQbehrq6OQYMGebIzWRks69OnD36/n9WrVyelr169mr59+yrr5Ofnk5+fn5Luj/2T8epTqHwQnQ8h58n5bsECr4EJXVsqjI76fr32rco3OuaGjuGREJoFvjypgG5R0RYhdOVUfaQ7OCoF5XZ05dxWch2oY3d5FKSttkZnZ4IB+59qoe8WBEh3bbldL6q1pttZ0Q0zXbtu7RgdU/OMjun76W46CqCpEFYMg0ge+NwMJy5pzga9lFP1YexM1pIpO1OKCZYZDD2W7NxiPufxYmeycjOAvLw8Jk+ezIsvvphIi0ajvPjii0ydOnWr24/b+PjhkQ+TpUhzpseHq7Mdp9/h/Ce3p/M9VG2q+pZl0GF0NDr2VB0BIoOhaV8Qzl/6vazsVAdIJYRczlne0tRxpsl1nfmqdCdyH0KR15E6diMyaWvk0wCph1OgPoS68S8PLd3hd14Lch1VH7r2VUNGpZfzs9FR3b/RUU130rG5AJYOgZY8R0FjZ9SyGzvTYWsag8HQzTGBsi4lK+8sAzj//POZO3cuO+64I1OmTOGmm26ivr6eE044oU3tqBbSThuvc7jkRbjzr2qB7sXn0PkBKj9EllPVnqp9o2N6mYyOerqDjpHB0HggREsUjcnKxCu5Of0qIZxtqARJ14bbQkZIefKqTTWp6egIHbsZmbI18vovjhwEcKvnrKNrL/5dt8h3K6MbAqprVNemro5OVl2a0dHo6FYmm3UEO1D2/VBoLFBUUDVo7EyqfHIbxs4YDAZDMiZQ1uVkbbDsqKOOYu3atVx22WWsWrWKSZMm8cwzz6RskOkF3cJfl6ZKl22724JfF0DQ+QKqAIIguT83X8b52ejonm507N46RgZJgTI3JZ2VZeHlgyQrpBJQpaxbmlsZN9pyIlV9bo2O3ZBM2RrdtRHH7TpSrVtVp9F5mlUBgHTDUz7FbmtwXf9GR31Zo6Nal+6ko0ARKDN2JrVPY2eSyOSaxmAw9BBMoCwrsITonmeirq6OsrIyJpK8Z5nsAOH4LueraIvT6JbmRNWXrh+5XZ2Mqr6Mjun7Njrmpo4A0T7QcAREe2kaTqdkew6M1xVZutUXZOZEdbCO0Rb47iZ7w+HSUrN7StzOzNnL3rMsjmo4yKdahds1p7qunJ+9XLte8nWyu8lqdNTXc6bJdYyOuaWjAMJB+G44NBRqhDR2xtiZDBO3M7WYPcsMhh5D9wzPZA2JedWDncnKPcsyjWoRHv8sO0vydzcnytmG7JM4fQBnmtyv7O9YpMqr8o2cdWQ5jY5GRyc9QcdoJTQeFAuUqTqVG1EpKXeSLk1ehDjbsUhVwtknUl1ZNudnlbxdqaMhBd1hVn1WLfzjqA61PJScbbrV8SKTXMdZ1ymv21AyOhode4qO4QAsGxwLlCEVlD8bO2PsjMFgMLQHEyjLKrp9sMzpByD9lR0l2WmS/QlnWyq7j5QvSPVr5LZk0vknOl2MjkbHnqpjtBIaD4FIlYuAuoWE3LjOWVet7OLpKuHlxYpKId1qTbeQUdGVOhoSqMa+6rOOdMNFt/Z1qyNfWzrcTreqD7mO0TG5XTd5jY65qaMAIgFYNgTq5B9kjJ1Rt2vsjMFgMLQdEyjLOrJ2z7KOQA4WqPKcZeRAgexLqOy5zknT+StyOV37Kl/FrX+jY6pMRkd1O/HPuahjUqBMpYTKGXdbFMj58sFQraKc5dM5+V4XASo5ZRm6SkdDCs5DpDotuvUrJB9iJ6rr0+3U6k6rW7tyObmu3LZKlnTtOusYHY2OchlZdl27crnO1DESsN96WdeL5MaMnTF2xmAwGDKFCZRlJd3+zjInbs5SPF+3cHf6BvI/i2QfwNmeygFz9iP7PrI/4uaYqmQ1Ohode4qOohCaZjkCZfFMleOfDjf7JC8aVALp0uSDl659FaqVXjboaEhCXhuqrjO5LCRfl6p6qiGkuraR8lXrat06WCWfm9xGx+Syzn6Mjt1LR+GDFf0dgTJVY8bOpPaTTgZjZwwGg6EVEyjLWrr9nWXOwIH8XeXkQapP4bbgl9Odfcn9utWVgxwyThnkYIiqL6Oj0dFNTrmvXNIRQBRC42wID1IIYinS0imkWpnJyIq7rRSd+TrlVHnp+nZ+70odDUmoDpszT1fH+VcVRJDr69aYzvLytSmfejnYIffjJfhgdExNNzp2Px2FD5YPgA2VkgBOYY2dMXbGYDAYtgYTKMtqun2wTIXKhrst/FWBAdmhi39WLfJVzpmqLVVfXpxTldxGx2SMjt1DR6A1UDZcI4jbAkInvOywy0LLwshtqw6mnKY6WLq6qjLZpKNBi24xrsJ5eL1ct25tewlUpEtzC3Cka0eH0VFdxku/Rse21/PSjo6k6c4Hy/vD+t4gjJ0xdsZgMBg6AhMoy3q6/WOYKtsup7s5dyrnT2Xz5XKqss5/6frUyaCS1+joXlYluyy3rpzRMct0TBco0znoKuQFg2rxoRIo3aJDPrjpVo268vLiI5t0NKSQbq0nH9J0i33V6XVzqVSn2nntq+rKZdLpYHQ0OrqV7y46RuOBsj6oA2XZMAcbO2MwGAy5jQmU5QTdPlimcq6cWFJZ3WJebjOepyqvci5VPkI6edzyZX/E6Jgsu9GxtVw8L+d1DEDz9FigTCeEF7ujc+zltnSrLV0dp8Byuk4G3QpRd3CzQUeDK14CBhbqUykfdt1aUod8fbVlDe3sI91a1eiY3LbRsfvoKCxYWxULlDkLqBp0w9iZ1s/GzhgMBoMhR+n2wTKVE+bFD1A5Zul++JLLgLqO029QyeHm/AnUshgd1Rgdu4eOBKBpT2iZoBAqvnjwEtWT01WLCacCTqFV/Tj7V63KdKtJlbyqBUU26mhIQXW6nX/lz6q6qnLOdtzWnEjlVO27BTRU17tOTqOjGqNj69+c1dGyA2Wr+tpBs0Qj2TYHGztjMBgMuY25qyxn6PbBMlD7BHKe02arHDhdwMH5V3YWnWlyWTT5croKlZxGx9a/RsdUcllHAtA0A1omkepgy4617gDIHciLB/m7zoYpBZTy3NAdZNXqMFd17IG4rS91yKfJeS3In3V15Hxnmm696vzcltNpdFRjdOweOkZ9sLoaVvaDqLEz2a+jwWAw5ComUJZT9IgN/r3YbpVD15Yf1pz10l0Ccd9AkOwnqIIQ6fyIeL7RsTVdbsPomEqu6Cj8sUDZ9qSG9r0q7TxIbs67LJiqvqyk3J4cHXTm6yKHujbkz25pnamjwTPy6ZVPneq76vDLn1XXWro6XgIHzmvUa7DB6Gh0dJM3F3QUFqyusf+JdIrr0oydSd+2sTMGg6EnY4JkOUm3D5bJv1qms/E6W676pVMu3xY5VG3LPoWXflS6GB2NjnIZt75V7WaDjsKClskQmoQdKHNbEcnRP7eFgNxhupWW6sCq8mVZvCIf4FzQ0ZCCahikW0+mCySo2pPr6q5Nt1PuNmTdghBGR3U/Rkd1e3LdbNRRWPYbL9dUk7yZv4psmoONnTEYDAaDocPpEY9hyk6bM92ZJjteKnT+gypYoGo3XVuyfEjfnYEJVVmjo9HRTa5c0TEeKGveHYRfI6hOMJ2QsoBOQVRlVcLL+fKB060ohaKOTtZs19GQgtthtNBfq/J14ta2fMrdAhe6UyX35Wzb+c+tntHR6Kgj53S07CDZ8gGORy9x+Zstc7CxMwaDwZBbmLvKcpZuHyxz+hXOv5Bqt1WL93R2W/YR4ggpT9WX5VJW7lv+nq6O0TH1u9Ex+W+cbNRRFEPzriDc7n11W4WpHH+kPLd2VXXl1ZlqYaA6Mc52VStRt5OWjToaXHE7LXKZOKqFv1s78SGkaidd3zpZ2nKKjY7q9oyOqWSzjhE/rOtt71emFSQb52BjZwwGgyF3MIGynKbbB8ucuNl62aanCx4468n/ZL9F5+Dp8uS+5XIqZ1WuK/fj/Gt0TE0zOmaXjsQXL15XYe2xQ/KB0eWrHHkh5esWFnIZ1YHMNR0NKagW/l5Pl+q6dV6bumvR7ZS4nUa573T15bJGRzVGx9zT0RcFn1un8bRsm4ONnTEYDAaDoVPo9sEyNxvutMuyE6gLKFiKNLk9VTDB+VkVA1A5dboyqqAEGB3lfuV2jI6p7WWrjkmohJQFkzuUO5cPkpDactZX9SH/1SnpthiQV42q9nNBR4MrXhb1ujWvqrzbdSq3qyujmhdU7etOb3sCF0bH1DyjY9tk6iwdUxKyfQ42dsZgMBgMhk6h22/wD2p7LufL6emcPlXbQlFOlaaTSy6rC17I7avaMjom11H1p5PT6OheV1U20zoKVYKjcz9QFoGAgM1+aLYgqiqr6lhOl1eB8kFS/XWRLaVv1UF1a19V163PztRRN0AMymsiXeBAdTidp0B32HXXnlxfle9Mk9vXrYF1MhsdjY65rKOrnZEbyZY5WKWcsTMGg8FgMHQIPSJYJtvxOCr/wK2+W5pbG7qyOrmcabIjqevH6Gh0TCeDW5l0ZbNCR2GX2aEeTl0DYxsgT8C6AHxaBG+UQpMFHxfDhkCrDBFnxzpHXVZEJ7QuTf7sbF+lqFcZdAfDbYXZkTqmG4A9mHQLfbe1rjNNt/iX0a15VQECXVu6wIbb2luXZnRMldHoqG4jW3TUCisX1gnUFXOw87OxMwaDwZDbWIqJ0uxxllV0+2CZJf1NVy6O7APIPoXKUXPzKeS2VflyoMHtBziVnEZHo6NODmc5VZ5b26r8jtYxhViFbRrh1u+hd6i1jYowjGyCn2y0vz9RAcvy7GfMe0VgUwBKIrAqCD/kwzcF9udmC4QsoPxZPmi6VZ+zjupgpDvQzrR0q1V5paqSWzfxba2OhnahW0/qggW6oeOs4zZ0VYGMdKdRbrutp93omNqu0VGdLpfJBh2TBM3mOdjYGYPBYOgeqAJlbulC2HkmmNapdPtgmVdUC31VvpzmzJN9GUj1Y3QBA5U/IeehyGsLRkejY67oqGu0yQctUsNhC97uBWGgLgB31MD3+XZenoBgFKrDMKIJpmyBE9bYj3F+VggvlsEnRdDgfBuayqnXIa8gnfV1Cxi5vtyH3I7balA1ENItflSf26qjQYvuulEFG1T1VOVV163uNHs5Xaohqlpn64ad0TG5vqqeqrzRMbt0FHJBWZhsnoONnTEYDIbujSooFk+TA2omgNZhdPtgmduCP/5d5UDpHEQUeaqybnWElO8WcJDlU9UxOqa2YXRMlVf1PV2drtIxRcZY5rI8uHAIHL4e+oTtu8qeLYd7qyAUKxN11GkEGgN2EO2bfHiuDAoEjGmA/TfBgmX2nWcPVcILZbA6iH23meqgORccXhYHuoPhtiBxlrOkzzKqvoQiz5ku6yR/96KjwRXdKXGmudWL13FbO7pdx05U15WqLbc6brIaHfX15H5U9YyO6nY6S0dt4Wyfg42dMRgMhtwnfqeY83tb6saxrNZ2TNAs43T7YBmoF/5yXrp0N5svf5eDDqogQLoAgiC5Pzd/xfnZ6OiebnTMMR2lBgTwXgm8X2xnBYV9p1nS45QqYWNtCQGNPviwBD4qhvuq4Kj1cPpq+PkauLsaHq+AOr+jfy8rMvmAaORXtuFpFaco7+VEqvpULZK86mjQors24rhdR6p1sOo0Ok+zao2abnjKp1g1dOQ6qnaMjuqyRke1Ltmqo3B+kQu40ZVzsLEzBoPB0H3IRHDLebeZCZplHF9XC9CZWNI/XD7LdWS/QOWzOMupnDTZCVT17ww8qBxGlWxGR6Njd9QxSQEpU1j2HWTNPlLvBEunpGgt9mM+/L9+cNxI+KwIfrUC/vwd7Fgf60pIbcY/CylNdaDkNLmuTmYviwiPOib91a1S26OjIQXV+JeHgnwKdHWcf3XXGY58OV3Xj5wvt+nlOlbJa3RU13H+NTpmn47KjnJlDjZ2xmAwGAxOhFAHzgxbRY8IlsnOn/OzbKfdcNZRteksJwcskL7r+lWVcZZNV8/omB6jY6psWaujyvF2Ci0rICsjl3Hmx/4KC77Lh/OHwA39YHgT3LEEjllv73mmXQnq+pMVcivXSTpq5VKtkNPpaHAl3XXqtoZV4bauRZPntg5WrXN1MuvyjI5GRxW5qGOikCxMNs/Bxs4YDAaDQYccNDNsFd0+WCbbdGd6/K9sw51pQkpDURZSbb+zrlxObsNZV9WX7ICqdDE6Gh27k45JGap5XufEo/gr1xeKf5b9dsy/VsE5Q+0N/3+9HM5bCflRRzvpbI68KvNiozpRx0Se3F46WQyeUI1t1fUmX8de2lX9VZVxQ3VtquYKZxmVPkZHo6OOXNLRtbJKiGyZg42dMRgMBkM6zF1mGSHjwbIFCxaw00470atXL6qrq5kzZw5fffVVUpmmpibmz59P7969KSkp4bDDDmP16tVJZZYtW8bs2bMpKiqiurqaX/ziF4TD4a2STbXol+24LlAQT3MLBMhpct221pHrC8VnXVtGR71MRsf0Mra1TkfpqK2YzvlWOerOg6JaCQJRC97sBecNhXUBmLcWzl0J+aqVn27Flk52rwubDtIxUcciuR83fbysbjuRbLMzznWi6rSo1phIeW7XgNyu7tp01pOvQXkt6yynqyu3bXRMbRcpz+iYezoqyeY52NiZTiHb7IzBYDC0GflFAIY2k/Fg2auvvsr8+fP573//y/PPP08oFGLfffelvr4+Uea8887jySef5MEHH+TVV19lxYoVHHrooYn8SCTC7NmzaWlp4a233uK+++7j3nvv5bLLLtsq2dL5GrqFusrhkh06lW8i+xMqB9OS/spOoM4ZlcuiSDM6prZpdMwdHZMK6Zxo2dlXOexeEMkfPyqCqwbaLwOYtxbmrwa/28pPl+ZlddYFOrrK4FXHLiQb7YwcHHBbrzpPqZDKqtaqKNJU16gzX75enZ/be7qNjuqyzn6MjrmnY87OwcbOdCjZaGcMBoOhzZiA2VZhCdGxr0tYu3Yt1dXVvPrqq+yxxx7U1tZSVVXF/fffz+GHHw7AokWLGDNmDG+//Ta77LILTz/9NAceeCArVqygpqYGgDvvvJNf/vKXrF27lry8vJR+mpubaW5uTnyvq6tj0KBBTMR+5afsA8i22u0gyD6EG86y7amnq6PyiVQ6qdqLY3Q0OurKZpuOkb5Q/1MQ8ff1qjrUHRRZgHTCa9rxASeuhQtX2G/c/M0geLKC1hcKyPZGVtgph25FqSrXiTqm1JPlkHSMNsF3N0NtbS2lpaWahjqfrrYzc/aCQEB72DwhnyrdqdO1rbvG0tX3ss6W6xsd3es7+zI66uvH63SVjqEgfLWt/TelklNAneBymjOvg+ZgY2e6jq62M7VA9hwNg8HgmWx5M6V5U2aCuro6ysrKPNmZDt+zrLa2FoDKykoAPvjgA0KhEDNnzkyUGT16NIMHD+btt98G4O2332bChAkJwwIwa9Ys6urq+Pzzz5X9LFiwgLKyssS/QYMGaWUSjr/xfzpnSuevWI4052fn8BNSviWVdbal68typOvaVmF0TO3f6Jg7OoogCJ/UmJtzr1skyErphJcPAPbbNu/vDa/3goIonL8SBrRIbcj1VQrJaSr5u0jHpDbkE+emY5aRTXbGy0I+ju50x7+7rWlV/TrruF2/qnqyPG4YHZMxOuamjsKCaBfbmaQ22jIHGzvT6WSTnTEYDIZ2Y+4uaxMdGiyLRqOce+65TJs2jfHjxwOwatUq8vLyKC8vTypbU1PDqlWrEmWchiWeH89TcfHFF1NbW5v498MPPwDui323tDhCka8LCKgCEs6yqoCHrk+dDCp5jY7uZVWyy3Lryhkdu07HlAKqlVK8Q9mpd37XOd86h92R3uCDO/rCFj/0b4FT1sQex9S14SazCvkEdIGOStnT6ZhFZIOdgfSLePmQyteKrrzbadO1L1/LurpymXQ6GB2Njm7lc01HS4AvCjk5Bxs706lki50xGAyGdmMex2wXgfRF2s/8+fP57LPPeOONNzqyGwDy8/PJz89PSVc5V04sqazsD7gFCHTtqfLj6U7HsC31ZXnk9tzkNToaHTOlo3AW9tv/hB9EYSy/F62PTgJWI1hNUr8t9j+nfCICRBR9yI68F8HToXLs5cWG4/PHRfBcORy6Hg7cCP/sDZ8XKvqXZVT1J5eVFwtdpKNyUaPq30vfnUw22Bkn8vXjdi3L+fKpSrn20uA8ZV7cIN1llq6u0TG1baNjZnUUVuvfqGNeFBY0FcTuCIvhi0JBE0R8rY35I2BFScKKlY0T9dH6WL2sZDbPwcbOdDrZZmcMBoPB0Dl0WLDszDPP5KmnnuK1115j4MCBifS+ffvS0tLCpk2bkn6NWb16NX379k2Ueffdd5Pai79dJl7GKypHzIsfINfR/UDmVkZOk/0TXSDDTT5VerpAiA6jo9FRl6bTMTwaWibZGaIQRD7gi/3FDpw5O7Si2M8zOgmBJb0IymoiKagmCiTBVSs2naPu5QA46zjbUixKohY8WmkHykoicOR6uGJgrIpcT155OvPTyduFOrrK39aVeyeSLXZGF6TQrRnlurpyqnZUddz6cAtoyO3rAiPONKOjGqOjum5bdQTYXAprqkD47IBWONCaLyyIKDzXQNgR/CIWLJPnSQHBUKxvARE/hP0KobJ5DtaVkfvSyZsLOho7YzAYOoOeuHeXECTuKrOsnnkM2kjGH8MUQnDmmWfy6KOP8tJLLzFs2LCk/MmTJxMMBnnxxRcTaV999RXLli1j6tSpAEydOpVPP/2UNWvWJMo8//zzlJaWMnbs2LbLJH2Wv8f/ttXZ0/kGKgdULosmX05XoZLT6Nj61+iYSiZ0jNZA00wID4bwIIhUQbQUoiUgAvY/uTHhw95/LJYvgiAKY/V6xf6V2m3F2w0Pgmi5o2PZaZcPgMop16Fy5OU2FIuETwthSb6dtVcd9A4r+vFib3QHOQt0TKmvW2lnAdlmZ+QAhicdHHXj34Xms66OnO9MU8QJUj635XQaHdUYHTOrYygPfhgIm3vBlmJoKIKWPPtfKGgHzuJ1hNX6ORS07yyLWnbQLBSI1QvG/sXaqC+x291SAk2Fjo670xxs7ExGyDY7YzAYMogJEhk8kvE7y+bPn8/999/P448/Tq9evRLP5JeVlVFYWEhZWRknnXQS559/PpWVlZSWlnLWWWcxdepUdtllFwD23Xdfxo4dy3HHHcf111/PqlWr+M1vfsP8+fPbdWuyF9utcuhUfoIX3yHd5Rf3DQTJfoIq0JLOj4jnGx1b0+U2jI6ptFXHaCE07gPRIhcBZCVlBeSonDPfUS+wHIJfQONM7HC+qg35s1uasw83513XtoBGH7zVC7ZthKoQbNcAL5Up2vOio2pBkgU6JsnrdcHTRWSjnVEhn1751Km+qw6//Fk1n6Sr4yU44pyHvAZUjI5GRzd526Kj8MGqvnZQq6PtTFEjlG+Elf1JfhTTTUC3tM6cg42d6RRyxc4YDIY20pmBMnP3Vs5jCZHZM2hpNoy75557mDdvHgBNTU1ccMEF/OMf/6C5uZlZs2Zx++23J92SvHTpUk4//XReeeUViouLmTt3Lr/73e8IBLzF9+KvBJ2IvbVSQr7YX53PoLLlctl0AQwVbnVUzqmuTzf/Rdeurm2jo15eHT1SRx807Q0t27tUdlMsnu9BIP86KHoAopVQfzStTrmzDS9Ct1VJD6vJfTbBrd+DJeDOGvi/fiQe+UmSry0HXT5uXaxjuvMYbYLvbsbTq5Y7kmyzM3P2gqBUJd361FlG/qxCzld9d/bhNUjirCvL6VUmo6PRUVdW912WDwvW9YHlA6R5VW5YJZzcUZo5OBCGUYvtO9AWj4rtiZYjc7CxM51HttmZWqDrjobB0I3orOBVfA7JxmCZc37LRvk6mMS86sHOZDxYli04g2UBkv0L+UctXRq4+yS6H8nS9SW341ZH9VfuM91fo6PRcWt0DI2HplkkbdzvqpBKKFVZRb5/JRQvhMgAKVjmUkfZpyynDrcVoKMPCzhgE/x+KQQErAvCz0bCt/lt11ErYxfr6OU8Rlvgu5u6fhGTLcTtzCF7QV7A/VC7pcVRnUav7TjT3fKd/XgdOunmDy/yxjE6uqfJMvUEHcF+PHLJsNb9yVIKZdDOBMMwepF9B1tSsCwH5mBjZ3oeJlhmMGSQzr6rrLP79IoJlnkOlmV8z7Jsw82/kIeGmx/h1j6KMkLKU/Wl8it0voubc2t0TO3X6JhKe3SM1kDzdOyN+52CyI1YUprsBOuEVgmhElqFqo6bs4+U59auVNcC5mwAfyyvLGxv9p/Snhcd3cqoZOkkHRPf051Hgytup0UuE0c+7OnaiQ8hVTvp+tbJ0pZTbHRUt2d0TMWLjuGgfUdZuJPtTCCM/RKAXJuDjZ0xGAyGttMDg0JKNHfNGtR0+2CZEzdbL9v0dAESZz35n+y36JxYXZ7ct1xO5azKdeV+nH+NjqlpRsdU+UR8n7JiF2FUTq6Q8nVOt1xGZcO8rsLaY//kA5Omb+35aquO8onMIh09nUdDCqrghtfTpRr6zmtTN9+4nRK30yj3na6+XNboqMbo2D4doz5Y3h8aChWZHWRnfFGS35SZa3OwsTMGg8HQNkygzNBOun2wLFpi/1XZcKddlp1AXUDBUqTJ7akCJs7PzjJujquujOzTuPkpRkejY3t0xA/Ne0CkvySwSgj5L6iVdHOUdYLq2pUPvtyf3Lbcj6xLOh3daKuObsewK3X0eh4NKYQC7mtR0B9WXR1nnvY6RX1K3IIp8lpaNwy9tqeTxeiYmmd0lL5bsLYPbKqQOupgOxMI2wEzrXDZPgcbO2MwGAwGQ6fQ7YNlDT8BYi+cUdlzOV1Oc37XBR3if1X2XfZb5Lo6v0fuU5ZdDnboyqnklNNU/cnpTnlljI7dS0eA0HYQmiBlyA6vylHWOePOsvIB0QnsbEdIZWSZVAdQd/CcbcT/ptPRTTZnf1511B27rtTR63k0pLB0CAjJmjpPm2r+kE+3Kl0XoGjrKZdRzTvOPlXD0dm2sx2jo9HR2aZXHQVQVwqr+8bqGjuTeR2Nnele1NZ2tQQGQ25i7iozbAXeXsWSw4gC+59ltf/HKl1gwe2vMk0Aze515LqyI6zTQdeW7MjqcJPBrUy6skZHm1zSMdIfmnYjefGvWwl56VT+LDvRXpFl0NWVD7YqT3US3HRMJ1NbdGyLDJ2po5fzaPwNJeGA/S/lbpUuwBIxOYQ+WJIoq/nuFpzRpclBHV2QRl7vu+G2rnf2b3TUy5utOobyYGU/iBg7k5qnSzN2xmAwGNqGCZQZtpLuHywrhPqfkR3GN2K/7S/4Nfh/AKveTpb9FdkH0f0Ah6KcGzqHV+c3qZxlN79JbluVb3RUt5ctOooiaNrHvm5SBJQ/yw3qVn1yhzqB3fC6kpNXcSq5LemvnO/8rFsM6GSLf0+n49asVjtKR1Xfqv4NKbTkwdfbkBV2xhJQWgcVm6CwEXyxF1GkO43OfK9zUVK/qNfMuqCP7vKQ5XCmy2VkOY2OuaGj8Nkb+jcWKDLlzz3Jzqj6VuXH2zV2pueRbQt/s1G4IZvJtuvFkJN0+2AZVmzfMq8Ok1sEJN1nD/Wj5RDaFnxbIPAdBL62A2hWk7o5ucmtMUvp1v1ufTv9JpVMOv9NdWiMjtmpI77YPmU1pCqlG/tudkheXamE93IgVAdOt5KU+/dyPcvfFTrmCagOafrQte1FR9VCpIt0dJVR9dmQRChI1tiZdX1gfR8oaoDyjVDcAIUNdr5uja1aZ+uGnW7+UwVUVPVU5VVzk059L0PS6JgsY7boCLC2CmrLNBVVn3uIndFi7IwhW4kHI0zQzGAwdFO6fbCsJAp+xy/rzT4Ixz6ndQ5A7Ui4eZ1yXTkvlh/tBS0T7b2hrDoILo4FzlaDkBblcnc638TNZ1E5vzonGEWeqqxbHSHlq3RwYnTseh3xgW8T5H1oj0sRVBTWNeh0xr04zukOhkxHXo8edPRFoVD3iF1bdVToagF+oCDamhUBmnwQVbWl62srdPR8Hg2ptOOcJ5XP9Li27DVMfZH9zxe1A2aVG6B4CwTDYEXdRVblyWLLIrjVkfPcAi7x725ra1U7ukNtdHSXtbN1LGiCqrV2UDfqUxTooXYmozp2hW9r7EzPxXkHjwmcGQyGbkS3D5btVQsNRfZnAYQtCFmwxQ+b/FAagQ0B+1/Iitl1rx5svKyzjrOuB69WAKIcmneElu3BtxECX9nBM9967BUz7v6K87NK7HQBIKdYOr9G/q5TUc5z9iWXFaTqYHTU69PhOoYh/78QLYbQGCCIWkG5gXQrMvmAOAVzU8xrGVX5dl6PWh3T0QYdLcAnoCIMfUN2QKxvi50eEPbf4iiMbIKyMHxWBG/2glVBEM4FTaZ19HIeDWqcF7qXyEMnj+uoDzb3gi0l9mOZ8cBZyRb7zYCI1KGualI3xym6TCmrWuvr+oi3pVqHp5tm5GGsOlRyHVU7Rkd12UzoWFoLxfWwsSIWLOsiO2MJ+1/W2JlM6tjFc46xMz0YEzgzZAuWhXkUMwuIzwM5ei66fbDsiQrwFTgSYouCPAFDmuHXy6EqDJt9sDIPvimAp8vh64LYwlSHymNM50mqHA6H4yD8EOlj/2vZGXxrIfglBL4FXy2IaLJ/4cU/ksul87Oc4rVFRWebbv6T7Mir9NHJ7rVcW/zl7qrj1pzHJHQrHmdeOoG8HIBYsEEUQHiU/Vcpg45MX49y3+nwoKMlYLt6OGwDDGqB4U2wNgi/HAxv94rFxR2y+oCqkF3+z9/Co5Vwfx+o9zn6yaSObTmPhmRUx9UxrlPSoUvGtbAg4oe6XnbwLBiygxblm6BkM/ijrfXc5iC34e4W0NG14zY8nW166UdVRyev0VFfrqN1FJbDx+pkO9OcD6trIBDSyKCjo+1MBnVMSXe2mSs6GtqGKjDV1YtTEzgzGLov8jWtm2/keaCr56U20u2DZQkcRlwAzRYsLoCTRsBOW+B3y2B8I+xTCwdvhONGwnLnnTWyU4D0WfVd5UQIKQ+pfLxYACL97H/WNPCvsl8MEPgGrC12XVkcncqK5pUiynXkNJWfJauhOlyqvlSXiZt/lykdRTGEh4AlILDI/utspzvoKNdpz3lMKegmRNw5d1vJyULKQsTSohXQcAj2I2JyOTdnXdVfBq9HLW3QsSwCV/8A2zTZgbEXy+DXg2CzP1bUWdeCqIDVeXBnDXxaBAuWweR6uGQwbPB3gI5ez6MhFd3FlW4i6MJxLYCWILSUw6YyyAvZLwSoWms/JucPq0+7mzi6PLc5UrWu1rXlEF9bR5ena9dLmbbqKHyxPbmwA5GW6H46bu15TEnoRDsT9sPKvi4ydJWdyaCOKeSajoa2o9o/LJsWpiZwZuhpZMu11xF4DZTJCEGu3WnW/YNlshNA63cBNFnwRi84YhsY0WTvGbQ2aD/y1K5IhtSHaxlZRpVDAoh8CA+1gzy+aeBfbu9vFlgCVoPeB3IT2c1PEYp0VZpcNt3hSueT6eq7+XRt1VH0gpZdgIgdeCTU/XTc2vPoSpqxmlRGJ3AaR9yK2mM8PEjTR1ddj15w0XGzHy4dZD/63eiDLwpjd4ml0TGKPUf9ejDc9D1ctxQuHAK18uydwTknqYwhPR7GtXJh6/zchXZGWNCcZ/+rLYP8ZiirtR/TLNmCcn8zZ4BEpZbbd9Xcprt0nOW8qOhsy4ksr5e1ent1bAnCD4PsgGNpXfK+qd1FR9VfZ3tbo2On2BlhB4ib8zR9dLHfl1RG108OzzlKGQ2ZIRcWoCZwlhnMCxYMXcXWzDPxgFk2BfNd6P7BMjdic4sAVgRhRZ5LObfoBiQ7LyjSdPOYnO/0XJ3tx8pGiyA6CkKjwLcZAktjgbMfQDS7+zCyY6tykt18GlWaqq6ujpvPJsusc9qdae3R0dqSWrm76ehMU8mgSksauvEAjmql04axmuIkp7PlsXxrM/h/iAXLdOU6+3rU4MNKBBKc/QggikiqG7Hg42KFPB7kEJYdMHuyAo5aDyevgf/rB9FOmHPaHTg02Hg9btlgZyz7Y1M+NFXbby0saLLfqlm5wQ6i+cNqMeSu5UtfSOXlOk4Rdaro1HBrVy6nu7Tl+XtrdLRiH6J+iPhag2XdSUedLJ511NmFzrIzwt6vrzkH/L726piWbNbR0HMwgTODoeeSAwGz7h8sk421Kh3cPUZdBEJl2GVv1JkmOw+qttrQfrQXtIyH0DjwrYaiB4HG1OKyGmjSVL6Ryt9x/tWJLDvkbn6Xrh1ZPlW9eLpKH1Wa1Wy/OMH/Y6o83UXHrTmPwg8tk7H3DMvUWFWtzlRCx9KjZdA8VSGgTkEvMjjbaO/16GxW+Djgy104+cedKG8sSclv8Yd4f+BX/H3yc2zOa1TL18Y5J2LZe5YdvBGOWWfvx7i4MMM6pjuP2W3Puo5uameiFjQU2v82VNr7mw3/jqQ7zbyIqxPdSbp2VKLrVFfJkC7WoJO7PTr6ovb+b74oBCL6erms49acR2HZm/tH/C5Cd7Sd8UF9saIuUr0suh7bqmOKbKr+VXW6WkdjZ3ou5k6ptmOOlWFrSTeGOiKY5XwcM8vp/sEySDXwspMhG3ykPJ1DIJdL17ZKLtm50EU2XPIFEC0H/KlNqfCS7yaGW5pKXdVhdesnXT2vOijzBVjNYCl+6Vfpo0rLeh3T9K1LwwfN06BlR41gGRirSQK71XEqIMvQFdejhH/jKE744OdYUd1tCbDbku3Ykt/I33Z4Tt1mO+acbwvs/ct23gyzN8HNBbHqnTznGBR0czsTBcKB1mZksXWq4yFPnsN0h0gnriyTnJ927tPI214d429Z9DnuOu1uOrb3PGLBht6wqi/23WVdaWdy+HrsMToaDAZDe8nyO5Zyho6++yvL7y7zpS+S41iOf9DqMAiSnQeVpyinOY25sx25P/mzqo6bM6FLk50eoUiTRHJ2q3OcdX6JrhsLtQoqFWV55NOhUlFGJedW6Riy3y7qLNftdFS0k07HSA2EtwFCmkpy5+0dq7l4PcrNNle4BsrAfkRz7vv7MWrdwOR+nPK0UccwsKjQzt6jzn6rb6fPOYZUcnVct/Hadb4Qxa2qas3tFFdWSz50qmGtqqNTVa6vO+ROed0OXZt1FJDfBH3WtR6zbqejRt50OoaCsL43+CIuwvRUO2N0VPdtMBgMbSWLgy85SY7cBdYRdP9gmZuDITsaKqdD5826eZE6GVTOghPZ89V5zpLsVgMUvGn/9YrsT6nEcjtEsiOdro7qEmvLobQ06W6odATAbz/CGm+3u+nY3vPoXw3Ff4XgZ1IBlcDtGavpHP5svh7byeBNNZz634PtpjKkY17sbpVtmmCHek3HHTznGCRydVy34ZwHQ/a+ZZZGBt186YZKPd0wc0uT63gZpnIZr3W86Bj1QUs+1Bel5nUXHd3addMxGIKR30C/VYoGerqdMToaO2OgJy/KDRkkvoG8IXP00OPZ/R/DVBlxp2F2lkuX5nQAdO2onIR4OfnXM1VbzjrOPBUCrDAUPQH+pclVZB8E9L6QXE4W0Sme12COqi1ZJfmwqtJUcsbz262jH6ymVHm7lY604zxGgRbs/Yg6YKwmCZ1r12M72VSwhVdHfJzcrlOWtuoI1ITs7LwolEfInI5tOY+GZHJ1XHs85z4BQ5bG3owpkquoxJO7lPN063jV4QP3PlTq6frzKpdqHm+LjlGf/chqS566rCwv5J6OqjZ0n5OmUmG/8CDxiKqxM8l1nHkqepKOhp5HD12MGww5QQ+9W6/7B8vipPXgFGVVzkG6crLzIefJddrinarGqB+IujvObs3r6qjK6JxpnaOcTh43XymdLLo209WJEy1Vl+kOOmbiPHbIWNV1lgvXYzt5ffj/eGrMW3bzmdJRprPnHIOeXBvXHs+5sEjsw6XqJt18qEO1Vpfb1rWny5dVSSdbujm6PTpams39dW3r2stmHVVl2qOjsTOKto2OBoPBYDBkBT0nWCY7ELroh1Dk41LO2b6qT2ddXduyY6Mrp+hbAPhSfQ1dEEXgTXVnd26BFjdnXqey01dyO8wqnbZWRwBawL+m++qYifPYEWNVKUA6YbLlemwnEStiV8+UjunohDnH4EKujes2nHNhpRenvcMk3XThbD+e56Uft7W6rkxGdLSgsBEG/EhC6G6no4ssXnVMFDB2xuio6ttgMBgMhi6m++9ZBmrvM26wvTgGcp5rlMHRn1xX7luV52xD166LjHJTcRXdulJ1J4vobEtVzvnPKaqzbZX4chxA7lPnG7ZXR8Des6xE3V930HFrz2OKUJkeq7l4PbaTkD9MMOp4TW1bdQQCAvq1wKAW+7OSLpxzDDFycVy38Zyr1sFyvjxX6crryrmhU0Gei1Wo+ld9zoSO/gjktWC/7bGN106u6KiTzQsph8TYmfTt9lQdDQaDwWDoQrp9sKwwElNS5W06Dbkc7XDW0UVHZMdC166QPuucBdnJkPuV+5LaUPlIKlF0TrOqa6d4Orz4YDpkVdz8LmdaW3UUeSCKY/8KgSCIoFqWtuqRLTqq5Gr3eeyIsepsL9euR5lwsUtmK3M+250Dv9g1uR8POloCCqIwfTPcsgQe/wr+8i1UhRWddOGcY4iRq+O6Hedc17QTlYq6uU7uSnXp6dLiddLNdc7+nXOqLIfcX1t1xIKI396vbHMvqCsjcUded9Ex0+fR2Bmjo7EzBoPB0AOIv3Qhx/Ym7PaPYfYJQ2kj5AnYGIAVeRCGVK8yjjNd5xG6RSZ0ebp6TgdEdoZUToelzvcasElXJt1hcWtL5ZjrfDGVas5+3A6jDp1cAmjeCVp2iDUShPAw8E2E4CIIfkryhv8i93SUy2zNedQKkomxqjuA2X49yjRVKhJTCUYD7Lp0PI+Nf92+yySNjn4Bw5qhKgTrY7PzeyXwv2J4rResDUJRVFFfpqPmHIOaXB3XbbQzzmrpkA9JusMhf9ZNG6o6qkOpm3/lOiraoyMWrK6BDZVgCWjOh+UDYEMFVG6Eio2OTe1jAuSajh1xHj3NOT3FzhgdjZ0xGLzg3Gg9/jnHAhCGHMSy2KpN/nP0BQHdPlj2Qx748iE/tgjdbxMsy4MviiCscjBwpLmhckrcnAndwlvOd352i75I8qqaV4moc7hVjq2XgJFOXGe7smzpfCed36XK96JjtAZCE7DvKIsXCkCkH0T62nlWY2ubvrVQ8CpYLdmvY6QKRMCW32oCX1NyvkpmnQxC/tIRY9VNsGy/HtvBiyM/4PfTH2htQqOjBfRvgV02w6JCeL8EQsDXhfBqaWudAgHVoTSddtKcY3DgNl6yfVy30c64ueOyiunmvI5A14/KxqFIa6+OLXmwrg+EAq2JwoL6EmgotoNoeS0Qit3R3GszVK21H9lsK52tY9Rv61fQRNJLHjqEnm5njI7GzhgMbugCDqp0E0AzZJIcDXZtLR3+GObvfvc7LMvi3HPPTaQ1NTUxf/58evfuTUlJCYcddhirV69Oqrds2TJmz55NUVER1dXV/OIXvyAcVj2D5AELmi17EfpcGVRE4NTV0LcFfdRI5SQI9E6Jqowu+qGRUemgOGVy9iG16ebLqBxkuVlBso8k0B8OnZ9jSf8EqX6QXEdWSf6cbrHlRUdRANFeUgeOTiJ9IDyo9V/L9tC4D4i87NcxWgGRgRCtAlGemfOYlvaOVZUz7WxL148suLPtzrwe28EHA79ida+Nrjr6gJ3q4dAN8GIZfF5oB8qSTqIbXTTnZBNZYWfi5Nq4bqOdcRuOqrnK+U9VRoU8hznF0fWrih2o6qv6t6T89uhY1ysWKEPKiP2pL4aNFbClxP63qi/8ONB+bDPbddxQCcsGk3ikVNeHTFvPY4oQPdHOGB2NnTEYMoUQPTbAYcgwPXgcdWiw7L333uOuu+5iu+22S0o/77zzePLJJ3nwwQd59dVXWbFiBYceemgiPxKJMHv2bFpaWnjrrbe47777uPfee7nsssvaLoQUHWjx2Y8z/acczl4Fkxoku+z07nQepwqVI5Nusatzapx1VXUUMuiKytVUARtnQEX+LJeRu7ekPHlRpHLwZTlkH8/5OZ2T7VXHRMOqz3KDFoTGQeO+IPKyW0dfLVhh8K8C35rMnEclmRqr6ero2ujq63FrcNHTEjCzFg7eAH+ugk1+UhcRXhcj8c+dNOdkC9loZ9KSLeO6Hedct75VdWVJ/5zl3OY8eU0t96tbs8fbdTukOnndDr8XHZWKupxHYdnBsx8H2nduycWzScdem6Figz1fZfI8ptDT7YzRMWvJCjvjhrmDyOBGDw50GDqZbjgXdViwbMuWLfz0pz/lT3/6ExUVFYn02tpa/vznP/P//t//Y6+99mLy5Mncc889vPXWW/z3v/8F4LnnnuOLL77g73//O5MmTWL//ffnt7/9LbfddhstLS26Lj0jLFiSD3fVwPxVMLked8MfRxcNkY28WzRFVydJQMV3VTRDIa+shi5Q4qWeG+kOl5sccZz+luxw+4CgZZcZVATbl8OufaDY334dkzpWFZacyNBYe2+zjOoYAOFXiwNAEKK9IVpO4s42ue3E3wLwrQeawNoMRDN4HjthrCr7E6R3xJ115D5V8mb6emwDuy+ZSGVjr9a+JR23aYKj18PN/aDBp5BB1lFHF845XUk22xkgt8a1x3PuzPa6vpXnLqe4qvy2tOWsI8eqdGnOvHj9qAUNRdBU0D4dlY07G1Cck3jAbHOv5KodpWO8LYH9WGU4mDw8ZQQgfJDfDFXrWhvKxHlM6iT+19iZ5O9Gx6wg6+0MgBDdcpFqMBiyBC/zy9buaZaldFiwbP78+cyePZuZM2cmpX/wwQeEQqGk9NGjRzN48GDefvttAN5++20mTJhATU1NosysWbOoq6vj888/V/bX3NxMXV1d0j+g1bgrDPjSPPhzNfxqBfQPof7lzInTSVD9xfFdt+jV1dGVlb1kVbk0RWQfJF0wKV5G54DLjreqP9mJVtWXT4kFlAdhhwoYVwYDiiBgwcgSOHwwzBsGNQUZ0NHreQSEP7M6igLsN3EqygJEKyE0BlrG2Y+OCiAyBMjHvlrjj/kEoGGO/ciobudB+TwGLCgNQNCXqrLyWHXEWNVdj05hnXWy6XpsB1OXjuOkd2fb+/xIOhYIOH8lPFoJa+P7HKXT0U3GLppzupKstzO5MK7bcM5Vc7amqPKzTgUv4jr7l/+1BbdDtrkE6kq9lVflJeHxPAog6kv+3lE6xj8LH3w/BJYOsT+DHbgTli2L8LUGyr4fYu/FlqiraT/JHsba0pE05I2dSS1jdMwqssbOpMMEzAy5SjcMsHRL3OaXbhoogw7a4P+BBx7gww8/5L333kvJW7VqFXl5eZSXlyel19TUsGrVqkQZp2GJ58fzVCxYsIArr7xSLZDTMEuOxLslsKgAzlwFlw6CiGocyM6HKnqiM/xCUcbpcep+WVO1L+eL1CJuxZ3iq0QWacro1u3yD5e69p15MnkW7NIHIgI+q4W6UGvZl9fAa2vAZ0FYtF/HNp9HKXlrdYyXjxaCr9n+IvIAx4+LVgP46sG/AnwbITQeWibZj1uKEhBB8K+xG4tWQqgYaIZIf7BaIP9Nuz3Vcdi9Ck4eAV9vhhdXweqmVr3WNsHmsEOfjhirKkdZ5din66err8c2UFdQz4rS9Uo5pm2Gfi2xDfx1x0uno6qs83u8vw6cc7qaXLIzSWnZOq7bYGfSzXUybt2nOxxOEVT9eqnvpZwloHpN+nZ0+KKSoG20M5nUUQDCR/Jm/MJxDgSU1UEwZH/e0gvWVtkvG2jJs++yq9gE4QBsLrXz64uhqMFOq1md+mKChCyWHXAsbLRfaOB2HlOENnYmtf2eqmOWkHV2xgvdeNFqyHHkcekcq863eprAb3bSQ+eVjAfLfvjhB8455xyef/55CgoKMt28losvvpjzzz8/8b2uro5BgwalFpS8z6hl39lx2xK4rwq+KsTdYbCkdK8ovUQpz62szmESyq8pzap8IWdauvpeUPlRqu9yXp4FhwyEbzbDx5vUZSPYgbT26pj4spXn0VL8TXfMko6tBS072IEuokAeFDxjB8ZEEYgSRwXLvnMs0g8iA1rbi/RzNF4SS+sPvgbIewd8Leoh/NY6+HYLbGiB+nBreq8ADCm2/36yCZplZWVlVN+9jFUVqtWg/Ddbrsd28NfJz/CP7V+w77Jw6OjH3tD/nRLY7FP0odOxLXTUnJMF5JqdSUrLtnHt0c44Ay+6dbJbvrNMUh0r9l32oV3EkovrLtGk9Ji9t6Jpyilk9KKjsNJUSHMeddmybdY1mXR5WrCiv/1IqT9iy9Z/BeQ3tTZWsgX8MTuwqsZ+6YCzwYbi5MY3ltv//FHovT7WrkomAaV1dh15ylDqaOyMvqzRsUvJejujwgQZDJ2NM4DiNvZUgRavaYbsppvPORkPln3wwQesWbOGHXbYIZEWiUR47bXXuPXWW3n22WdpaWlh06ZNSb/GrF69mr59+wLQt29f3n333aR242+XiZeRyc/PJz8/PzXDuUhV/QW+LYBmn73R9lcFmrLyOFB6/bRGnuRyOnQRJnmVEc9XpcfKK6eX2ONdIgxE1X6J3F38c3gkhEY7uoiAby34V4Jvg922CIAoxH68MGDvtYXffkuj8PCQryVgTj183xvebnaJSwjwbwDfavuv1RBLD5M45rpTldyh5rvqPKZ+VInVulhSpCd16YPmnSEyGCJVrZWa98S+uywfe9+xAgiNAqsZon1IPTmqzq3kZEgdKi1RWNZAEgKoDdt38/XOg5l94bkgJL/LSdO3M93LWHW7Dr3q2FXXYztpCDYTtUSKjhVh2K4e/jOARBDVk45eogKdNed0IbloZ7JyXHs855awg0zyo3XxIhG/nReIzceqdbtcJ97F2j5QV2bf5RS/W6m4Hgqa7D6x7LbDgeT+m/PtPca8Eg7YcuY368tYAgob7LuiguGYPnH9RWwd6pDfqaM/4jhs7bQzcgxBZUeE4nNSmgWra2B979jjnaJV//xmO98Xte8gi/jtAFpDEXgdq74o+BSBsqTqmvnCKWc0XdAnXsGZ3t3tjNExq8g6O2PYOlR3NbWnnhte7+rrLsEFWVcT6Oq+pDu33fjcZzxYtvfee/Ppp58mpZ1wwgmMHj2aX/7ylwwaNIhgMMiLL77IYYcdBsBXX33FsmXLmDp1KgBTp07lmmuuYc2aNVRXVwPw/PPPU1paytixY9sulMpBoPVveRh6RWC3zfam//FH/dSeKMlOQLrFtZtzIa8adN6xTo/Y56Y9wWpU9G1hP7rnB1+d/bZE/2rwr7XLR6VfkhP4IFoV2+B+gJQXWzRZDSAC2LfI+EkOjCkWAjodB7TAkDVw/wAIq1YAjvZCMZ2tFrCaYln19ufAUrAUiyDfBods7TyPKn9Tp5YqvVUYe/+xSJ/kzNBITSe6sSCPG0lmt4Wq3JST9S3w8mo4ZFtYGIV654sIMjRWPbeh07Err8f2otBx20aoCkPf+F6JbdHRS39xOmLOyQJy0c4A2TmuPZzzqAU/DG4NHsXxRcESdrBFWHaQqbDRDsrkN9vlw9ILTeK05EEkAGur7c9Oedf1oXWfv5hMykCd28SruW7q43dM6QILlXbfPtF651UwbAeVihrsdJnCxthjmM525c/geh5VJkA3f8siJ9W17DvAEoGyWIX6Iofujk4aCnUNKTqU7Ix8KNoSP4movE9jZ4yOxs5khlx9FLOtgamtabcrj49b37kSSMvF8WUwtIOMB8t69erF+PHjk9KKi4vp3bt3Iv2kk07i/PPPp7KyktLSUs466yymTp3KLrvsAsC+++7L2LFjOe6447j++utZtWoVv/nNb5g/f377fm2RjbV0fQeAoIDCaMwRlr1UpzPh/AupRt+ZLnu0bvOKm7Mh15WcmkgNaXWMlgOxu7itCPYdWUG1/IlFiKIvwN78Nx5oU8mp01Oh47TN8HFxLFDmomMCH4h87DvZBFBmJ4eHa7oMg28Tyee0LeeRVHW8+JmuqsgOq1vjqtWIrIfmHCaqx+rEHz9SqR1P2xyG/22BfWvh0YrUdpX9tWGspgjXHh274nqUCdanKWA33xwIKXUsFLH3NUgBgZT+VTrq6Iw5J0t8uFy0M1k5rttw7TYWklbHUCnUOV7+6osmb16v6jqlr9gaT8SPl5uOKl23dn7CtnERAZF8u0xLnh1s2lCp1iUQsXVNsZ1yfx7sjHyZqeyMSpWk06EKjMidZcDOJMnuKK+r6vweDCmUkGVI6UTRWPxzd7AzRkdjZwzeycZgTSZkyka9DIYeTIds8J+O//u//8Pn83HYYYfR3NzMrFmzuP322xP5fr+fp556itNPP52pU6dSXFzM3Llzueqqq9remcqJ8GLgnXXldtwCO7IjonPqVXk6J0FVVyWnm46OPkTsbjBtxKeTdLSA3evsYFlGdFT0K4KxO7nao6NIVUMlmkrE+F/NWkzdUBvPY0pdRdFoJTTvDkSh4DWwatXdO+X9rBCmNUGegBZ5sdrJY1VZV26ns69HgL5vw6optGwZQlhxq4lA8Fnf73hum/eS5cjUnCPL7qaHW157z2MOkHV2JtvHdabtjICIT9JHbicXdVT0Gw7Qfh2ldmWboTsM6Q6TsgFZNrlMG+yMk+YCWD4ArCgMWNH6qKtu2lI2Y+xMqhxyXZWc3UxHvwXbDITvFMWzkU61M4bsJlfv5sslnC8B8Io5L4atpFOCZa+88krS94KCAm677TZuu+02bZ0hQ4bwn//8Z+s7Vxl6OS9dXbdrTOX4tmWx6yzr5ljI5dJ5zXI9uQ9Vuzo6SEcL+26+8rCmXFfrKFWTu1GpLaR8JfEKHaGj9DUyEELb2p+DX0KwVt9EvF7Ugm2aYFQTfF6oaLQHjtUU8jfCxD/wl141PNJ/Y0p21BKsLd5EQ1B6NjgTc45MV8w5WUhO2JlsG9c94drNdh1dmvAqmvKwdKKdaShqvaOwpB6q1njrQkmunseeMFY7QcchfeHKY+E/F7rI1oV0qZ0xZD8mMGPIZXrS2C0r81y0S+4s61RkR0HljcroPFaVw6EbV6o+dXV0DofKY1b1n84Rkh0s2elJ11ZH6piun67W0YHu9MiHQae6tqFM6ih3E01OkGWR5RXYjyJXh6BY8dY4M1YdFGxgQ/UGllQoZHSTYWvmHDc6a84xpOLFzmTruO4J126260j7Li1dvMRy6z9DdsaZnN/cWlTe104V39EWkBvPtfPYE8ZqB+tYVgQFeRgMBoOhM+lJgbI24uF9hd0A569ZTsdA550682Vj7vRO5cgDpDoozjblOqp8VXtOWWQ95Hxnnqq+cJTJFh2d7WaTjgqxVGrJKjqblUXR6pEJHRVyCMedYdEKkq54+TQqT40Zq95oq46q+s56Oh1VdPacY1CTy+O6J1y72aqjJLosgiyOLFZKXRELWHWwnXHauAaHnakrtTOd+SodkgTvDuexJ4zVDtTR74OAH5augduexGAwGAyGjqO21nPRnhEsU3lsWs9NqucsKzsXcrn4Z5WDIjsKcj2VN6yS0c0hSaejSo6u1DFd+8468fTO1FHRtLO6SgxVlxZQPURRoCN0dCaV2HuWFbwC+W9CeCiIglTfVuVLpzbm+NzTx6pMe3VU4VVHuU5XzDmGZHJxXPeEazfbdZSa1GQnNamLdaQcmg60Mwl5fbCxEqrWQulm2Nyr9e2mququU1oun8eeMFY7UMe4Khs2w3MfKto0GAwGy8I86mrobLp/sMwi2ZFwGmzdtaZyIJxeqrOuypvVtSP3rXJu3NJkT1N2lNLpKOvT1Tqq2sxCHS1AWBCthkiFumvVosWp5rZTad2PsqN0VODbBL514F8NVii5uvMQaJsxYzU97dVRJacXHePNWRCSB1pnzDmGVHJ1XPeEazdHdIzbmYZi+82jwtKLKKuTJKoFIecLBzrIziRUs+x/BU1Qvsn+HPanyis3mUQ3Oo89Yax2hI5RAZGIpm+DwWAwGLqInrFnmfOv18Wv04GIo3Iw5DpuMqicEpUD4qzjbFslkyyv3I6uXBboWBjKp6K+iG1Wb8s+W0K8OuITWvzhrNQxNAaa9gUrDIVPQmBpa3HZr1WJY6n6z7SOskqWvcF/tMy+w0ylYpLc+YC0H70Zqx5or466Oh51DFmwPOjSnrNOps6j12PS0/BqZ7JtXPeEazeHdNxYAT8MAl8UhiyF0jr9ped6KXakjgqiPljRHyJ+sIS976WuWWUz3ew8JsnbTcdqkrzGzhgMuUV73irZ1Zi7yQxdRPcPlqmiAjrnQ1XHWU5l5OV25GvZ6QjoHE6V0yPLq0J2ktLp6CWtE3Ucv2oYY5f3xv/lcexCHj+Z+2u+670y63QU2MEmkQ8ij8Q+YCrfUhbPkxnKlI6y6Bb41oB/LUQaIdoH+15SS73miVYAYYjWAC1yYwqZ4v32gLHqibbqiFQORTlZR7lLlfydMecYksnVcd0Trt0c0VEAzfl24Clq2YEnlZi6qSTtNJVhOxP/agkobISKjbGAmQ/84djcpCDih1DQflwzqR9Z1hw9j0nydtOxmiSvsTMGQzLZ/phgNsvmhjOw51UHIcipgKAhK+n+wbI4smOgMuxyWZVzkK6c7HzIeXIdncMQT3dzVnR1VLJ5kd1ruQzp6Bc+LGFhAT5h4RO+TtPREg7RdToKO3DUOByi5a350VKI9JaabAZrS3J1Z9ORkCSXG+3Q0ScgX0DAsl+AKfIhNApC4yDcZH/HDw1zwIqgROSB6AWBQmBx8nFIkUslbzceq+2io+Ycma6ccwzJ5Nq47gnXbrbrKOxN8aO+2Ob4sfymAthSAsGQba+EZW/c74ukqqKcsjpIR2FB3FRHArCh0g58NRS17lX2/TA7YBb1J7fhj9p6hYJ2QLBbnUenPN11rDrlMXbGYMgtcj1wJAfIcjXoZ8g5ek6wTHYg3BbFunyVU+Kso2rHWdfpTKgcBZXDo+rDmS7n63TUOVRdqaOKjtJRQHEECqJQGoH+IZheB3/rAz/k63UMD4NIn9Y2rAg07w7NuyaXC3wDhU8lq+v0Bxu3gBXfIbADdKwOwQlr4Pl8WO8HcQA09oV1eRApddQpSdUx5VxFXfLMWE2lPTqq6nvRMR2dMecY9OTauO4J126262jBxnL7EUxn3dU19j9ftLV+xUYY+KNDNqkp4Ud/DDKkY9Rn70nmC8C3w6GxiMQ+ZfE69UVpjkf8e3c6j6o0o6NaB2NnDIbM4vVuNq8Bp64OqrXnLjKDoYPoGcEyOXIByQ6GV9wcELk/XV1n3yrHx9mGzqFxK+/mRKlk0cm5lTpallTE67zbATr6BYxphGYLluXDhgAszYcvCqEu/su3xkmL9mpNt6LgawZRAlYQ8oKtVcr6QemI5LqWD/oMgvwiOPwSKCiDDeMgVAxra+0NbZ20hKGhKdavsL/HRRNpdFwVhN9X25ss44f6Gij3w6R6+LIQGuKLKC/nMUkJuv1Y9aSjG+3RMV19Oc+5yFDRFXOOIZlcHNc94drNMR19sf+EsLMi/tYqfaugKpq8dvAHoLwP+IMwdhos+RSCBVBv2fakrBg2boFI7EeQugaIxj6n2BmVjJK8vigEw3bQrDmf1kfBzXnU13X2bXQ0dsZgyDSdGVDqjDvUcv0uOEO3ovsHy+RFpsIRaLKgWfVeUOfco3IIVe25/bImt6fqy+lkyG3Kfcl6ueiolbEjdLSgqgzW1KbRUUUH6LjjFliVB0vzWvOEBRtVgTKpvr8Ixg2BsYOhXyX0rbCL+X1QVQ6+WL3iPMiTVbEgrwAsn/35Fzu3LkhaQqTQHIKG2Ab7oTCsrbMLb9wCS9fAF8vg0yWxRY/iPEQcnwV2ULClEKZsgddLHfnpziNSWnceq0j1dDq60V4d5frOfp1tqPJ09WXZO2LOMaTiwc6klMuGcd0Trt0c0DHohzGDYLdxMKjKti9ra6E+9uNJn1Kob4bth0Pv4uS+LB8EY8bHsmDqvnBULKAWidpth2LvzREiFiyL1Xfamfom28589C38b4ld1vMc5EFHZbludh6NjhnU0WAwdB3pgm/mbi9DD6L7B8ssxWfJUNf5ocEZLJMXPnJ9lSFXORNe6rk5QCqnw1Lke9BRK2sH6GgBec6RpdGxMdhMxBfBD4R9EcK+SMZ1LIk9dvlunqJ+Gh2Dfpg7Ew7fLabPVjpwltXaRGF+an5hPpSXtH4fUuPIFHYw7b4X4eE3IBQh5TyKfGjaL/Y99pbELT5o9MGAFvuuOlnHVCHRO77dcKymoNPRjc7UUeWfdOacY1CTq+M6i69dy4L8oH0XVEukNc9y1EtqNgd1xILhNXDuT2BEPyjM05RvAxYQiP0QFH9Zrt+xd1hRQXJ52c78ZFe46TF48/PYcZd0jPhh2WB7L7XEnmQ9fKwaHRV5xs4YDIatwQTkDFlC9w+WCc1ncHdK012jKqfEzZnQLbxVi2ChSZOdI6HI0+mocpIUOsb9lWCAxB2wBUHIl2+bws7PC9hBHCcBn51eEPPUQ5HWxz6EQ54vq5fx2cB1bCleyAM1jfxYtjbjOo5rsB9r0Z5OzXn0AcfOgKP2SF5odBmWfQ5O3AfW1cILH5MyToQfQiNJOYZBYT+Oucy5EHMbqy4yOPtL+pzhsWpFQcgBbLl4GAg58vJjdTrqenSjrTo6UR1DFV79hs6YcwzJeLEzHufglHa7kZ1xPlURtzHhsD3H+hx5fUphr0mw+3jY3ABvfgHhWMBsWF9oaoGifPjqR/hxnX2H1I/rYEuTHSjqUwrr6hx38HaBLU1Ccx79Fhy7J4wfgvq8djYW9CqEXx0Jtz0FT/7XsV4RrX/qHNsTJOhmY1WJ0VHdh6qMsTOGXCFumDIVnDFBHoOhW9H9g2VOnAZZ90uZs6zsaKicApXDKNd3fk8nm8pRcbbrLKNyRtLp6Fys+KF3KQyrsR8xrCqDAX3sYFd1eeuv00X5UKAJlvms1r1QnF1saWoNom3YDI3NdtraWvvfl8tg9YYQ9UW1fFH5Os/37wAdBZRF7DvL2noeRw6AQ6dlSaDMQSAAP9sL3vsaahtIHS8KHfMFFMcf3XSiG6vp6ICxajWBFbIDflYYfHUQHqjpJ9aGfxUQe2zVvyb2Moa+HnVs6/XoxtaMVVk2L3OOqn+5Hed3HVtzHg162jA/dXc7Y2HfHdar0LYtO29rP2ZoWba9Cfpte1BWbJeLU1YMZY5N4idJ+0HGOXAKRIT9Y8y6Ovhhrd3XoCr497tw3wvQJD/y3gF2pr3nsaocJo9StN2VWHYgc/p4eOqdmBo9YKwaHck+HQ2GzsAEtwwGgwvdP1gmG3QXI1wWhsIotARIdQbk9mRURt7pRKjquTk1Onl1dXx+hD+AFWrWCNhKcT7sOAoOmWo/+lFcEPtVP4MOSnFh6+fB1VKmsDcV3rgFqt+E/z2fmt/m46IoHpBHt8fzaFmw/472oisbGdgHdtomdneZynFF8dlJurHqVsdJe8eqoo5vMxQ9iP0mTgEtO8aCZSoHO74Qr4fCJ2N5AqKVjmBZpq9HN9o5VgWw0TnXtPU8qvI7a84xJNPG+and57yr7YxbHalo71LYexLMnGQHxooL7L245HpJjwG2Fcu+O8vvs3/w6VfZmnX47vZ+k899CIuX23eeNTQ7prk0Ovose28vv2VPS0E/+HyODfFFrK12nke/D/abDKVF7dK8w8kLxI6Bao/MbjRWk9owOurrGTtjMKTHBN4MQLve5mneAJq1dP9gmQ5FcKAwaj+y5loH1L/OOY2804nwWseJqj1dP7Hv9dvsSt1Oh9D3/ouxIqFUHWPO/3ZD4cRZ9mbCXXbXlGW/SbKmApgNvQdA8KHYPlwuOjrr+3120C/oGMEFQSiL7fnV3GKXKwlDcQQqS2BLo2MPFmfb0t8+pbDrWEW/WYLPB/vuAK/8D8JRTSGnjk68jlW3OunaSzNWlc0UARGwGuzvvjqFHBLR0liZ2DGwtrjIBFt3PXohnbOvmHPWpZuBVfLq+o6X7+g5x+AdeVHp5fhlsZ3RyuuQpTgfpo2FufvYL0Tpqhda+X0wfqgdMAuFYcUGeOEj+67cYTW2/Vu6Gr78wRa/rAh2Hm3//WKZfadbeTHsMcG2TQN623uKra+zy9c3wYr18MkSOxiXF7QDaqs3xQJqac7JxOFw5B5dd3zSMbyf/cKBVz51KZTjY7UnXI85q6OhZ2NZuRcw2Bp5dYYg146BIZVcHMuGJLp/sEyg/gXMq8OhqmM5ysjtqr6ryqbr2ymDrl2HsxLctIqW6mG0VA8jf+XXyfICFSX2/lsH7ZyZTYQzhgU7jYfx78FH39mBoJpye2FSWWovXOJ7ozW12Pt2Bf0wZrC9KOtbYS961tdBY0vyPmmhMPQrtN9UeWDQfkTn3+/a+980xoJpcRmcf6eNswNm2cy4IfbePYtXkH6sWmD57Dsk4mWiIja0vIyDDI9VVRkRAIKtzfhq4x+k9p11ikHkgS/2xjj/+tQyrYXBUgUBY38TWW7XbjrS6KiVTT6GbnNOur517erK6GTQtZst80a20RY7Y0mfc8jOKMvE5PXHAkCnHgDD+2bPI+yWZQeyhtbASbPguL0hP+b5bNgMT7xj/z1iN+jfx3E3FbY9siBJX3lD/CN2h9p6+4cbvx++WQEPvALvfhWL42vOyZRtW+1VNlKYb8v46ff28REex6rPSvx+0Tq0smysKus42+8G16NWtlzS0WDIRVSBL2ewRHUHkQmmGJyYAFtW0f2DZZBsmL0uPp3IdeTx62b4Vb/wOZ0VL7/G6fIdaaGKfoR6D6Jx+GTyV3ydkNeHvYA562Dbyc/GX7HzArDfjvDVcthmgO1shyPw2ff2L/3/WwJH7wHfrIQhVVDXYN8ZcPnf4MCd7T1f/vKcvdlzSaEd6Irvt7ZLFH6yAywut9NLCmHm9vDBYnsB0OTcIN6yFy/7bJ+dx8lJYZ59zFY8Zu9xH7JiajjGalUp7DkRpvSF/qWwc6C1zMoN9h0VL38Cm2PBJu2vuRkeq6rrUQQhPAD8sRlJ+CHvf0DE0UYeRMvAt86uZ4XAikK0CEQhWPV2wCzay24PC6xGyH8H/Mv1xxLs+o2zQeR70FHbiLuOGZ1zdP06y3bUnGNQk+6cpzvuOWBndDqWFMDP9oSDp8YCQFk6f8bfsBmnshTmzXQWsP94DvRZdtlKx48r2w2FkcfAXf+xH5VvapF8Xsv+EWjHbNurTMG+O9j+wy/utu/MS+A49wVB+y60fhVQ2QsmDLUfeS0qsO/m/vg725Y3yS9b6KKxmlK2G16PKWVzUUeDIVcRInURIQfI5GCI87vbAkRXx9Az8Lo4NeMio/SMYJkTp1OgG3NuDoMlpXtFVV/Xn5e+JPmFPwCWj7LyfI6abu+D0tRi31117J72YiZrHXPLftzjw2/g1U8C7DEhyrcrLWZsF2HJKkDY+56t2mg/3rLNQFhTa//qXZgXe3xmWzjjQHtj6IJg63xiAVEL+m6yN4DefRy88xXMnWm/mODmx6A53CrK+KEwakCnH4G2Y9m6/PdTCNYDG+C/IVtXhL0/0G7j7X3XdhwI77wGz4btly5sO8BeMBbkwQFT4NE37eNqNWMHpxQvc0iQgbEq6+H869vQ+jfwTXIRAXb0Nypdki12UMy3AQJLQBRB887QMgmC30Leu6lrAVmcSAWtd7HpdHTDi46ZmHPaQgfPOQYXVOdc/puDdiZexm/BwGp7/8TaejhxXzuoku0/MijJtMyWHSg6+xD7x5x/v2vfveZk4nD7TrdsJ36n95ypdtDrh7XwwzoSx6xfhf1D3ORR9g9UFiQfT2Hf0b7oR7j/ZXh7UXIecnk5z61se+xMd7we5bLdWUdDz6I7B4Pc9PKqsyro1p2J66q6My/bj0N7nKNMv6XV0G66f7DM7Zcu3fhTlVUsGIBU4y+kdtNdH6pf6pwyIOXL6bG0aIG9Wdd2Uwdzij92jYlYdg44HoV5sNvIEvpRyZQd1+IXQUYNr6OhxVa5IA9G9W8tH4rA6IGxFxNgL0rc9Kwuhz5l9sLu/cX2Rs87jrJ/CV+5ERD2wmDWDvbbQHOBPqVwzcmAgB8/geUL4Yd8O0jWp9S+A2/6BPCFYMmX8GMFjBsMB+0Cb39pP4q5thamjoHX3oeif8UefxwP9Fd0mKGxqr0OfWAJ3H1lOVAWbyaeEAJqwYrtGRTtZf9NZ2tEKfajoDodXStLn9s65+jKquYcnUydOecYUvFyzuXjnoN2BmE/bnjaATBjO/vHiVAk9lhjDtiZzsTvt394mTYOnn6/dU/OvIAdfPLlyPHy+eDw3ey3Qz/9Hvy/R+3hMHog/OpIGFyFawDH77e3Ddh3sm17QxFNWUedBJm2M93weuy2OhoMuUxbA1kmIOJOumMpH+9cWPgacobuHywDtYMAemMvHH/lOvJKPt3i2s25SFnxp5FPLhf73FIzgo17HA+REC1WfuINXlg5tH6xYNoOW5i2Q3yX9kYAivLVxYPSyE2rp2UvTip6wc/3s5NawvYjmX9/CYQFA3vbj33mzEGzWh83rS+FcY2wLM++m+yI3e1HWftVQtiCn/wKDrFib3Sz7KAgln3n4dpa+OYr2LwBrGbwLQP6Sn1laKxq2xAQLU/Ndnavaso1sObIVF16SWnxt/TpFhQuJHz8dDqqBElqQFPHgwxJdPScY1Dj5ZjKxx9NnSy0MwVB+w7fPcbbP07E5+D8HPlxoavYfgQcOwPuf8UOFA2tsbcbyBk7Awn7ObDKfnFCYb59J7droExix1H2HqPL17fuCddRY9VzGzl8PXpuI1d1NPRcukugozMCYD0lyObUU6dzNh0L1aO4hpylZwTLdL+6uaFyGoT0Vy4n11f9MuelP2dZVV2H0xEtLGXD4ZfQr/l7Rv3v72yzbSG1wqKyJIsmjWwjduzygnDgFPuxzG9X2m89KynoWtHajLDvkqutg1HN8GWN/Yhpn7LkYkHp0UrLcQz697b3mXkLR9DH0X4K7RyrKWny9ZjXmqS6fGTc/HwR3/usCPAD4VRVnN1Hi6RMjzbu0A8OZFvRn6Xlq3lg0otsLNqS2ni6OUelqNuco6OD5hwrBFYzWE0gTGBET7pzHh/Y0PZz3sV2pigPzjwY9ppoB0uyZfP+XCDgh5/uBSP622/NnDpG/yNQtrPtQPvlOvvuYN8t1paAX1E+XHkcPPAqPPdhLLEDxmpKWje8HlPSuoGO8f0EBclbYxh6GCbAYAC26rFKM4bah3nsU0v3D5apnAgvBt5ZV25Hbk/3i5n8Sx5p8pyOjSxHvIhlP8bRv7e9qe7ocQEGD7yZ4aHFlPVvTNxpZPBGVRn8v1Ps/VSmjqFNzn+28OyH8Len4GdRmDW57W/ytCx7EfSWF+e4DWM1UU7O11yPIravnjxPO7sWvWJBm1Bqd4nPVutdaiIPe7N/p9xREq9rS7TtDJal09Eh+Ojl4xm9fgKNgRae3fZdO1jmYc4J6uYer3NOshjJnzM05/g2Q94HEPgWrAawWiCcxW/v61K82Bld9DfL7Ex80er32XdBjR9iz43jh9qP5BnaTsBv78u529hYQg7aGbDvTK4qte/Abut6xLJgaLW9nyqQMZ8oUU7O7ybXY4r8cv+5rqMFpYVw8C4wYzs7ed06OPz/Kcobuj9mob71ZPv+XenY2mCXuatr68j18aNjK8ZE9w+WqQy9nJeurtuYkZ2Jti52nWU1joVl2Xc8bTsQdtoWth8OA/rY+3hZ1gZgg/um7AY9lv2L97EzUh/tzAksey+3+LxWWUK7FmJjhlhQWkrYZxHtA8LaTIRCIgTU4zZTaY7PLX1A7GAHxAjH3mpZbAfHgoshPNAO4Fj1EBoNwS8hUgOiBETAfntmeDgEvrffUxABogXQPDYMzQHCIyDSB3wNdhuEIbiiGeHzES0GQZj46zctIu0zFrrFBclpQ5o19b0G8nV9ZmLOEfbLEooes9886izuS7ffUE/Fq51xHnM5v4vtTFGB/ZbhPcbbdiY/AL1L7R9ncjW4k3Xk+HH8fBl8vQJWrG/7jzJgD736lkrCIkCEMvzUYdHcmqmqkIm0dNcWFmEqQfjx0YBPbEHgJ0Illohg0URU2PvCWjQhRD4+GvGJ1juJBQVEaD0olmjBzyZXOS1asERL7LPjV5zWAq315Ou7G8w5WPYesafsD/vv1LqWqSp2kctgMLjTHQMduYrqXMgvKtC9HbU97eryejpbGTzNxfBAm4iKQhDuBymKQNAEWISoIYTf3fmS87Tfo/hFLTFPCnsJXgb49G050iwryojqdRw0pYUpo+39PgLxvZUMGWNzSwC/XxAM5GYkYHhfqKopYNOGAL0JIUQzjWE/RYGI57FSWlPB98ffSF19MQF/hJc2/IMvrRksiwzsUNmT6A3siv3YpEXy2ymHYQeEW2JpedgvIQiS0NEaACIfGBtLiwA+gW/nENFgXmu75a1d5vVdRySv2J5Io81YsQ4CrMVHk/3ZWk2LqCPCs8AWVAh8NIrtaGCQp0BXWKwAfqRJbENDXCAPc05URInyGcTmq0YxjgaK1AtDR5oQfkKiPyLd3AZY0SjVr72Ib93GlLWRQYMgjZ2JrxIjCIKEqSLJDshtOf860sP0RmA/w+cTdfhj49EnGrFoJCqKEBRo2wpTGcuPEBBriFKGRYgx/b/jzANDjB8S2wfRnGyDgjGD4A+nQUlh++pvbCjl8UXX82OkkigF+GjCIhueubOIUoTAwiKEj2YEPqIUYRHFIkw09oukRRhBIFEujiBIlHxHixF8sb1Xdfisenw0AOCnFj91BK3lFPE+UXphiWYK+DIWhBNYQtDCQPsa9rgeymcRLQwhIsrwWS2e5pyw6I1FBD8b8bOJkBhAlEICrNfWiYoCQvTVzl8+mgmwCiuWIUSQvEAT5x3yKTO3bzE3ghgMhszRlsBTZ8igSnfbh609+7J1VZAs2yfvDMjX7YNlP0Rvxoq6e3al0UaWB64nLxrhh+hvWRspy1DvUfzWZpw/q0VEL1qjAHp8vihHTH6OS2b/mfIizOKlA2mO+An6osTvKso1ivLhhMOLeOzLwVQUr+OHzRt47JtBnLX9V6ypL+DhxYOoyLeDQD4LJlRtpCgQ4b1VlWxbuZnt+myCQJhI1RrCgVGEIyWc1/90hJCf6fUSOlH91Oxl8Ar7ssiLl3f0YdF652Seo488qY/4OiWQXDeivPztMo0VFY6k1nrNjGptQ0BLtJEI/0UfLAuyJnoOKyLenoNeYT3G8sCDrOBEVkS291QHoDDaTFjMB35AEGBt9ExWRIZ5rC3fiqA+j8HNaxjww3PKmub3KjUroldhRd02PLQ3zqv0/Y0tYjp10X3xYgdkhDM6TMS+AxLsoIPVRFQUJoJp6vqBRL8WLQgCFOU1csER5zCm3w/GzhhcCQagvCQ1PSrgue/7sb4xn7F9amkI+RHCYoeaDfxnSX+GldYzuWYDBcEmAsXridb1gYhFlGJHkFl3+5KKrbAzSeVT+xAEiVCUyBMIRMIAWbFr0L6W7HK6noJEyFfI1dpnRJSn5gvBBo4BfFiEyLN+JCSqYkEmQQRvPqRNlIC1jrDoje3ue53BW8+BHRwMJr6nr+N2G1ry8a8uWM+O255FXnCdR7kMBkO3J9OPUZo7rTqWHvDYa4cEy5YvX84vf/lLnn76aRoaGhg5ciT33HMPO+64IwBCCC6//HL+9Kc/sWnTJqZNm8Ydd9zBqFGjEm1s2LCBs846iyeffBKfz8dhhx3GzTffTEmJwlNzIeIrA5/eoQHYZJXxkyFXYCFYF+yV7ka0NuAjTPsCb5OHfsXlh/yF4vymTAlj0NCnUPdMXI5gwdSBG9hlwAa2hAJ8sqaCloiPbzeV8Nm6cm54bwwRx87shYEwfkuwJRRk5pCV/GLHL/lhcxHNvd+AXh9CpBARDUC4l914qBSisUV2S+zOSLDTwtL1GA1CVLdYt2LtuF1gAqwwWNll3AI0EBRp7oDwhcDvLeB6X+WePF46lTV5JeBrSV8hjtWSdGyErwX8bajvgUDLBnwtTSlP8mSbKcwmO9Pk2wZ8sWeHhN/+p2BFZJwj4OX1iKoW+AABhOUHBBGfBc47ynzN9njUNulHRAqwrBbm7/1PRtWsyL4TbMgJWiI+nlnSj0vemERdS5A8fwSERWEgzDaVm/lgdSVjKms5a/uvWVpXzI/Fb8Hgj+1fMSJFEM2DlnL7r/BDcx/bBkQLYvbCQTRgp6c8i4hte+LXhzz2RSxQlHRdiqQ/STZHWMllEnkCiIKvg+6GE76YHradFPhpZoSjgO6ZRwWWwPZBq2OHyWM9Ydl1hUUiOOjJHsu3lMWPr+rZUZuJg76mqtdGb3J1EdlkZzxjggOGXEe+M8yM6eymm5+fjAfLNm7cyLRp09hzzz15+umnqaqqYvHixVQ47uC4/vrr+cMf/sB9993HsGHDuPTSS5k1axZffPEFBQW2w//Tn/6UlStX8vzzzxMKhTjhhBM45ZRTuP/++9sm0KCHodB9V2ohBDTFglIFBV0eIfVZgp/t9Q7Fee638BsMTiwLeuWF2W3AWqb2X8vj3w7kl69tnxQoQ0BjuPWyf2lZX177sRohLEJRH/ib7YW2BbAuqZ6iR1Jejyj82DvqKxAWhD1sRhJoACuavlwnUtGwhcpFG6RUwatjl7BuSwX5YT8Nw76ECm/BbREKIUIhyM9v26sFI2FYUhd7CjMC/Z+B0oq01dpCXt1yrIgdgMvGIBlkq52J3X0SyY8teCWieYhwCYTKIepPyUsJPMsE62KBZCBYC1YIgpvtNPmasUL2+NBiL8rz/FH2GP88AY9BXoNBZsWWQi59cyJ1LfaYb4n4Y3fj5vHeqt4AfL6+nNNf2AkRn00CjeBvBCs2pybZF8cdSvIvlwn7IgVfBBApbg30BOqT60VigWQ5+Bb/MUj4Y9dSyG4/5Nj809cCgS0k7J2vxZa/I4gUkLd5PBC1j2OojDxRQAsh8DfYMhSsto+dKyI2X7T1urbsY+Vvhk3j7YCmFYXSL1KPqdf24sc3RcQgs3d6gkAWb4SZdXZma/GytumIRa8Jdhi2BjN2DF2MJURmR+GvfvUr3nzzTV5//XVlvhCC/v37c8EFF3DhhRcCUFtbS01NDffeey9HH300X375JWPHjuW9995L/HrzzDPPcMABB/Djjz/Sv3//lHabm5tpbm69Q6iuro5BgwYx/u/T+Ly+T6uTBt7u4NetEp0+mnzk5GeVVN/lvhV91BQ18Z9DX6aqKMfveDJ0KWsb8tn/kT1Z06DY3yRDY1X71IyqHR1Zfj0iYFhDPR+/+DKloeQ7Cs7bbjw3jxyJJSyilti6p4Y86FgYjvDBSy8zZvMWmvw+puw5nU/LyjJ6Hss+WcmI299RntYI8DH2nF1a2o4dvjNEttkZ/x/2J5Iv3VHZlnMuVJkpWiW3sZXnvF9xI+dP/pKfjPqRPH92BacNuUNT2MdPHt+Dz9eXGzuj++5VR2eb8TkhGruzywq1ZnSwnWmdj+IFo2r5t/I8Xr3bJxw/bklKsc11MK7M2Jk4cTvT1cfDYDB0E1SB864ISjrl6Kj+NT8S1AFleLMzGX8R/BNPPMGOO+7IEUccQXV1Ndtvvz1/+tOfEvlLlixh1apVzJw5M5FWVlbGzjvvzNtvvw3A22+/TXl5ecKwAMycOROfz8c777yj7HfBggWUlZUl/g0aNAiAO2a+y5jeda0FnQbd8QNmIi/+T0W8jiV9dvoUKuQ6Qqrj6K8iv4VTt1tM7wITKDNsHZUFLYyurO2wsZpA5Ryr2lGR5dejFwQQ9blUyqCOFsLbpL0151ESTf6cDWSbnTlvh6/wJT3GRdvOuUVsQRzLUH3O4LiuLmri9r3f48htl5lAmWGrKPBH2W/YSvuLsTPusnmxM075LGE/Zh9/rNTtcciM6yjAisb+ZVBHt2BalpFtdsZgMBgMnU/Gg2Xfffdd4nn9Z599ltNPP52zzz6b++67D4BVq1YBUFNTk1SvpqYmkbdq1Sqqq6uT8gOBAJWVlYkyMhdffDG1tbWJfz/88AMAFQWh1oCBzpnQOWGyg6HKj+NcVcpOlOrXNyex9B2qN/DAgW9w0oRv8WX8zBh6Gn5LMKXv+g4Zq8pfmJ3tyuUtKT8HrkfPTn0n6lgRCtGnWQqkZ/o8alR0ye50ss3OzBn1A/2LG7N/XAPbVNTx1/3fYoeaDV2940D2IrB/5MyWAZ/NWLDHgDX2S3KMneneOjrT5DZUMsn6SDpGhcWWlux9z1i22RmDwWAwdD4Zt1LRaJQdd9yRa6+9FoDtt9+ezz77jDvvvJO5c+dmursE+fn55MuPwWDb5vEVjTzS0rttDfqa9Zu4WmES+8MI6Vd52dGQHSid4wRM6bc++S44Q4JldUX8b215Svq6xgLWNTrPu+CA4SsYa44jWLBNxWYsBMK5KlY50/HvHseq8ldkN2QnXk6XFwFyHZU8sgMul3XWUckTF14Awoe9CbSGSBTlmz/CxdDcxrllK/A11+MXVqtKLeXQUpnZTkL23jTy2i2b4irZZmfK80McNGwtd3w4IXW/MmHF9iPzqceQE0vY9sXfSPK+fdHW/clU10obrt2fjvmesZV12XVCswQh4PvaYu5fNJTVDQXMGrqSoC/KpOqNVBc2m2OmoTgYJuCL2vtexunRdiYmcCT20oFo0N6XEFJfjONvbt2DLBpsfVFBNLY3W3CL/dnfpH6pjhW2y6iI5iW/QMYK2/3F5RABu91IAYl9xYQF4VISc040D8JF9v5lLRXp91aM42uBwObktOAW27eOEapfRii8GvI66IUJW0m22RlDD0D+Bcvs12XoiXj9JbeTro+MB8v69evH2LFjk9LGjBnDww8/DEDfvn0BWL16Nf369UuUWb16NZMmTUqUWbNmTVIb4XCYDRs2JOp7xoKxJXn4fzyUSLQNt2v5Qmg3Gfc1246ABQRim6gGa6FgHeRtsB0E+TyrfvmT8wxa3lpRxUWvba/OlBzx2pY8frvr/8wxBYaU1pPvj9IU9qvHn+oYeR2rujx5UeLlPKiCWrrFkyyHSm6wFwKRAtu5j+RDqCz2Zs/YosW58XA0z+UtnkDzGhDPA9Jb1jZNhGU/cdMso2yINjO/71DyRJhe0QaWr98TNmX4jVrr3gGeTzkd2eSyZZudsSwYRD9YdmTq5v1YpLwIw7Ux+daMWFqwDvI22ram+HsoWNUuO1OW32LmRg1vrejD2S/tyNpGe2Pup5f0Z/vqjfx0zBL2HryaupYgZfktFAYi9lRnjiMAFQUtFAQiNIYCPczOWLbdaKqG5kr75R3CZ9uceJAJn21nEi8XkOYDSwDR1rx4h/HAuhWNpUVT6yba0G2SLylsRVsf6RR+uy1fyA7GJdp19GFFFH2qDrjuBKiijq3c8cwUmrY8xll7/SMr56RsszOGbo7KoJiXIxi6M7qxnWVjPuPBsmnTpvHVV18lpX399dcMGTIEgGHDhtG3b19efPHFhDGpq6vjnXfe4fTTTwdg6tSpbNq0iQ8++IDJkycD8NJLLxGNRtl5553bLNOAijUUBVvY3FRCeu8nlhdxOzRFjjZqWutawn5j0YAn7aAZqc1qHYLsGhedg4CosG1B4jBpjo/r4ZF8saZwG94u2M3pXdhMYTBMUyR2THS/rst54D5WVQsVtwWGDtWCSncnmFt+vL6woGEQbBlhL2DCJakLgfYQf5tailzOO9K8LBjkNK8Hyy5XbwW4v3yv5DqZnjtix8o5RNoiaWeQjXbGwoJIHukjAGmOpFBcSELYdzA297bTN4+CQQ/ad4WgaDZbTlQ2ICAsLKLCIuiL2odGcXyEgH8sGpoIlAG0RHx8X1fM798fyw3vjaWuJUjvgmYGlDRy8MgfOXKbZeZYA0FflKJAhI3O8det7YwP6odA3WhorrLvMBZO4dqAsEjdEcV57cf9GV9qXqJ4QJ0uHzxB649FcZK+SwdAe7e13I9Ob7eIqWDd5kqe+HhPfrbLv6kozr6nAbLRzhi6MVkWIDAYDDYZD5add9557Lrrrlx77bUceeSRvPvuu/zxj3/kj3/8IwCWZXHuuedy9dVXM2rUqMSrlvv378+cOXMA+5eb/fbbj5///OfceeedhEIhzjzzTI4++mjlm2PSUVWykb5l62PBsjjtWVm4eWsxh8TXktqeXFzl0/QQh1sI2NwS4Pu6Et5cXsW7q3rjtwT5/gizhq7k4JHLlfVaIh7uzIgdw1EV2ed0dRXFgTAV+SE2NjnumnIba17HqlDUUX338uOzTgYVugVYPL1xAKzcL/YrvltBr0J5Edrr7aKZnnOcZWQyp6O8/s0GstHOjOn/LcFAmFDY+Rhmps95zMb0+tre+NuJl2u3hyAErG/M56uNpby/upLXfqimMeJnZPlmfjXlC/qXNCrrJD/SDwKLVfWFSWmbmvP4trYXNcWNdrDMQElemP4ljSzfUtSa2F3tDMDGSbB+SuyHBWdBncBtnYNVB6W72Rlbx69XDeWvbx3EOTMXZt18lY12xmAwGAydS8aDZTvttBOPPvooF198MVdddRXDhg3jpptu4qc//WmizEUXXUR9fT2nnHIKmzZtYrfdduOZZ56hoKD1F92FCxdy5plnsvfee+Pz+TjssMP4wx/+0C6ZCvOaGVm9jMWrh+DuRMiGX06T8i0BviZ7X4eCVVD0IxSusB/T1P2i6vwr+SdRQfdZ4Ahblaawnw1NeSzfUsSXG0p5Z2UfPl1Xxqr6Qpoj/iSntDw/xMEjlqf+aCrgi/VlSW3rfEnLEgwvq+8exzAD5PmjlOSF9AV0v6KnGasp41teXKjOj26B5LYmkC/DdHIhFL/wuy0AVKgEckMnlOqg6eo6+3H7NT6dDFujo7petgTInGSjnRlZ/QMDK1azZO1AMm9nGqFwFRSuhMLlkL+OxJvx2njtNoSyd0PtNiMgIiwaw37WN+Xx1YZS3l/dm9X1Bbyzqjer6wuJCCtxDD5fV8asoSvtlzE4DrMQsL4p3w72eJiffD7BjEHJj1b1ZAKWYFLVRt5bpdm/sTvZGYH95IAvZD/er+04HenmYF10sDvZGQsh4LnPd+W0Gf8iP+jiq3QB2WhnDAaDwdC5dIjXfOCBB3LggQdq8y3L4qqrruKqq67SlqmsrOT+++/PiDwWgpE1y+DTtkaiHF6ZFbE3Rg3WQXCT7Szlr7f3kPE32vkqh8yJzreJfV9aW9ItYmW1zUEeXTyQN1dUsaS2hFX1BTSEAoTjj8Kpfny1YPGmXoSiFkF/ske9uSXAOyt7pzqsCl8yzx9lYElDR6iVkwR8gkElDfxvbUXbKqYZq0nlAKWfni4W43IeU2TQ+dxy2cKVUPMKbJoAzX1I3WtFFsYtzSmkG17uCvBKujqq1V+6wODW67g1GnUU2WZnivIaqSyujQXL2kLs6FrCvmvM1wyBeihaDoEtMXtTaz/irwuQOUlz7S7e2Cv7TmY7WFpXxD8XDeHTdeV8X1fM+sZ8GkIBonHFFHZGYHHHx6OY2m8dlQX23m1RAbd+tA3//m4AK7YUJtfRzE8F/gjjetfm/DHMGBaU57ekLyeTq3am+Hvo/xSs29V+DDPqdKUzOQfLEb3uaGcETaE8om3Z17ETyTY7Y8hxzB5kBkPO0Y1+YnbBgvEDvsGyBEL5NjJHQMwXsveBCWyJLVTq7MBYXh3462NvEoom2k1pxukPuPkyirny+7pimiJ+CgO6zVpzg6eX9Ofyt7ZLPdYq/8lxfD5bV8aiDaVM6FObOHYtUR+PfTOIpXUl6mMrtdcrL0xlYevblno6FuCzFINtK8dqoo7cnq6eamGC4rPcfrqFTIpMUej1FZR8C001sGW4/WhmqNTxaKZKSbeL2UJYFhH8CKs1XqGvq1JYxu22hnS4LU5UCxudnKpbL9QY1y49PkvQr2wd/7+9Nw+Torz3vr/VM9PLbD0Mw2wsAyKiIKjB44hRc3KcR1FjNPo+RwzPcYmRLHIS36hRj3FJruRA9ByTmMeDOXlVfI5GY/KqOYmGBEFCVIKCLAKyOjAgswBD9+wzvdzPH9XdU3X3XdU9MEtX9/dzXX11973V71tV3d9f31VdlfKDFPeZ/C797nAFQX2/9TYDnqN6nSuMkfKZxo5iRJF8lSQnEYlqeGrzTLy8uy712UqAaf18dKwMj7w3Fw9d+BHG+/rROVCAPzbW4uN2f9rfT2WeAYynz6Qma30GgLcVmPjfQH8l0HmGfqfI/vGGs81O5Ts4nb7GMif6zGC7C6dvg7eAnyeS5fCOMIQ4ktyYLANwemUTvO4+/W5NrpB+5D6v13CmWFA/cp/Xq0+WaREM/riRBrM7mGeVuBtfqw7aAWju9qK9142JJcnXU3ESoagGEReVbnIsgK5QAb677jxcWHMM0IDeUD52tZdi53G//lcaGUWROy8CX56zJxtHjVPYVy3HMebBqQ5Oq5ZrF1+8TB5HdcBdC+t/V/N9Coh8fbKsvxLongT0V+kXZDbenUwZ1GDwR/LH47q672P6wBGURbpx24mVmNN3QApA9WNEFajd2QJyWTpnDqiWl84PI/uNO9SfVrmOSxO46/L/g3c+OROB3tjNZOI+423Vzxoz+UzsjOQ4o+QzB4JFCPYXYJw3s/7yNBTa+9xYc6hqsGAI308CGn63fyI+aC3H1NJutHZ70dhRPDiOjKJsdkUQxQXhk44/G7E8yJfVPhPRJ7m9zXpBqBQYKI8dqJmu3xgmcYOZ1D6jnsmTA8gunwGAuZP2JOYRwhGgoytFKIQ4EZ5RRjIF477ISdyU5Mxk2YTSYxg3/bfo7cmLTYaFoN+S27jDWHROlWek6i/3EdL7GF2hAry0ayq+OmcfStxh5LnG/otVCD1M1xA+S5GoZqnR9F4x5o7jZdhxrCx17qcamygpcSt+1J3ivmq7HVX5t12+nM7na6jtjX20MOBp188QLdml3/0rXKyfBdBXDYRKgFBZ7M6ZxhsDDAY/oBVgXdEcrCuaC0DAIwZQ37ML+z21NitCtRLklaFaIUMRrkL1IyjVSpN//JgjlV8TBRpQUnQUYvL/D/R7AAj9wEz8dBW7iQBY1I2AzxzsKMJjH8zCP57RhLkTAhnhM0PFlx9BcUEYbSf9/aThSGchjhgvSD+E76fmbh9CUc2R626kmFLaDQ1i8EAZkFs+A6FPhruDQFEjUL5JP8ssXAz01sYuC5AP9I8DwqWxCTSr72ArcXKQqsCc4jP664qSAC46fQsggOYTwIf7gAOH0lg8IYSQU0cITpilIGcmy0o8vZha+QmOfDrBOtewwirPsErG5F+XdomcoW1UaHhqywz8ds8UzK4I4HsXbsc0f3f6Ik+W2IRYVGjoCuWjucuHg51F2HHMj72BEvyPKS24/ow0sxcB7A+WWGpMKwdL58chJ8rSZmJxz7Dvq2O6HU/185g3AOS16xNoJXtjbQv0HzV9FfqZZ30TgIEyIOqRzgrQB1s2YaGFGDkgK5FWU092R+rtftCk+tE1lBkac4TxZ37kUlNYEMa4wk4EQ2L09+s0P7sCGl78eBpe3TsZ1884hAfrd6BYNaE+EsS8JhzVEOh3Y1+gBHtPlEDTBC6va0FVUV9aY2xpG4dDnYVj9v3U3udGKOKCNz+axoJyA19+JPlyPLnqM0Ds79Qh/a/W3pbB9lGPPnkW8usTaL3VQKRQuu6ZnQ9ki8/oMUwpb0a1/xgOHgUe+S/gyHFgUpnFMIQQQoYfnvVoS85MluVpAmeWd+C9IxPUDeQkyOo1kJzowaYtpHJVTmFYdkS4cKTLh+ZuL/7nGU0nNVk2EHGhayAf7rwo+iPJV6bpj+h3qGzp9qKtx4tDnUU40uXD0V4PDgSLcazXg/6IK3GEeNb4YNrJZkRo+gWkbTQCsE6eZYaY5Lpd0SGdBZf1jOC+mmirKrcacyhxj+rnMaTfrKPgRGwCzQVEfMCAH+ir1M9AGyg3nH0GaWC7Hyp2K0eeikoVuEqEvKx0+qt+LAllC06SpU+pO4Qrpx3B8q1nqBtkiM8A+t/cX9o1FQumNuNzQ72zowB6wnnoDechKjQc7fUgKjR48yIY7xtAiTuEfE1AAOgO5eNIlw9Hun1499MJ2BcoQaDfjaaOQgT63QhFXXC7ojhnQiCtybKBqIYVO05DKOpKqXGkvp+m+7vgdfi1RYebmqJeuF1R9IXz9AL6TLJGQL/ubVHj4DhRj35ZgFAp0FszeI3NiFcxcDb5jD5WbdlRnOiM4BdvAE1H9ZrjwRQhETIa8GL8hBDk0GQZtNikDwT0q3TbtLVKkmzGNj2rDrRZjWGRKApo2NRajgVTm4eU/AkB/OzDmXh5Vx2K3WF0DsT/VjZIOKqhO5SPSFQbvHOYDY1DuEtnW48He06UmgvtkmE70qmXgqoq7OOPGAnT+hiBfXUktqNt/Wh8HhHVrzeV3w34jugVIl//y+bAeKAn9reakD929lm6K20owRhJ5wdKqpWk+tFj1d/cyjhxRqzRNOC8yhPQELuZTKbt19LyokLD7vZSfG5S25B8pjOUj9v/dCH2BUogBNAVykdUaChwRVHiDuE0fxdqivvQF3ZhV7sfR7p9GIi4ELX4nISFhrYej7JO5livF/sCJWlrHO7vJw0C1884hAL+BdPEOO8ASj0hfbKMPmM/hrE+r19/eNr1u2yKPCDqBXom6ZcKiJ+BFi4CLO8Y6USf0dtFohqe+zOwYfdg0+Ao/KGCEEIISYfcmSwDcG7lCRTmR9ATjslWHfSKv7c6oGd8hlRv7K8a3+q9RZs1TVW489w9KEv3QswC2B8oxku76nCs14ujvRbLtMqFLDTuOOZHXzgPvoIUk1AC+OOBWhzvdZvHtNGoGiNRJ69n1XYy9HHnRdFQ16K++2MO84XTPsWvd9dhT3tsEnME9tUkTmE7ZubnUUA/+yz2983i2Nln4UL975r9lfrfaQbGAZFiIJqnCF7140NVp3qt+uWY6sdPql9/dsu1/s1K7Kkr7YYnL4q+SGwfyOj9GnizsRb/a1YjClN9vxti2Ha0DBtbyxGOn90VGy8UdaEnnI/Wbt+QfCYKDTuPl6FhSmvKnWyCrw8Vvn58Eigek++n8YUDuKDmOD8MEqWxSdK2bq9eQJ+xf2/VRosAWjdQujtWrukHZAbKgP4J+s0D+qqAsA8QBbEDNU70Gf397pbJ6MnzQaDXsA5SLJKQ0YBnlRFC4Oy7xw+ZqaVdOK/yhP0RyPhpFJr0Po7xF6ScoKn6aDCPKbe3Wo4A9gVKsGLHafoF81Mh9L/FLHt/No71eodV475ACbYcHWc/JoCWHi9WbD8NAlraGpW5mJxACpj7KhJXTRP48lkH8JWz9/M6hRI1RX24cebBEd1Xh2s7JpFBn0dTHBoARPXr0RQdBsZ9CNT+EZjyG2Dyb4HqNUDZdv0uiHl90G8mohKXakrK6hei/ItO9TqdD4JqhZlHEkjedMSa6WVdmFfV7pj9etuxMjy/4zT0h1OkA0I/K/kvhyvx7xvP0ifKhksjgFUHqxHoL0g53rtHJuDj9tKx+X7SBG468wAmFfdYx5mjFLgELq9rps8Mp0YtVpjXB/haAP9HQNVbwJRXgLpXgNo3AP9OoPAQkN9jITJTfUYX23hsCnYdvTR5+xFCCCEZQE6dWeZ2Cfw/ZzThvSMVEFYGr0qqjGVyjiAnYla/PVUH6eQcRkrWBDQ8teUM+PIjuHX2J/DkRU0hRISG9j43GoPF2NhSjnWHK7GhpSJ1ojFEjaGoC499cBb+v8s3YLx3IElDf8SF/cFiPLHxLBzoKDaPm0Kjch1aJZg28U8u6cFdn9mFgjxmWUlosb9ijuC+OlzbURV7pnweU2sUgGsA8BzXHyW7AOTpZwCEyvQzz/piZ5+FCwERP/ssHawCMP7yMoqUV4AsBBZ91N+Lqp9aRI3bFcUlk9rwrtX1MYGM2q/Dse/3T7t8eLB+B3z5EQjo3+sDkTwc6/Vg5/FSbGwdj53H/dh6tAy94fxh/+xuO1qGp7fOwF3zdsGbF020jQr9b567T5Tit3umYO2hKnQOSJNqo+gzt87+hAdkVGjA7IogXJrQL+9Anxk5jVoIKAgBBR1AYZNeEfHFbhZQpD/3TtTvxpmxPqP3EcKF49H/hULXeuRpHUOIlRBCCBl5cmqyDBpwyaQ2VPj6cbTXq/7lJx88k3MAOUcwjJ1UpkqeVH2sEicA/eE8/Pj9WVh7qApzKgLQNIEjXYXoHMhHVygfnwRLEOgvGDzKb5XTnIpGAXzYWo5bV87H/Npj0AwD9IbzsaWtDHtOlOp/b5VzpDQ02sYql1to7I+4oPHvl5YI47WCRmhfNbW1GsO4vJHYV+V4VWONlkYA0CL62WcFXYDvsN4g6tavfdZfqd88oH+CfkHnqBuD1z5T/dCwEi63tfv1ZdXHuAxAv7AtIGB5WIFYoQF/V30cBa6ofhF6B+zXkagLL3w8DfsDJZhTEUBbrxc7jvnRHcpHe58bveG8wT1hhD67Qmj45Uen44OW8fjC9E9R5hlAW48X77eMx+72UrT2eNFv/GvrGPjMeG8/xnkHLAYgUdWkkhH6zAj5jNDPLCv5RH/v367fYTNcqN+YpnO6fnOaSKE+qZYRPjM4YaYhBCAv9bojhBBCRpncmiwDcLzXg+6QJFuVUAHWSYxqTsYqL1DVWb22SKDCURfe/XSC+UwFq4ROTlbl9iepUUDD1rZx2Hp0XJK8pNjlZaehUZkkDUFjbzgfXQMFGJfu9d1yjIMdRYNvRnBfPdXtaGqfoZ/HU9Mo9Is5u/oBzzGgdCcg8vQfMQPjBq9Hk3T2mdUPFbtfWKoVY/crZDD4ngnT0XLhl+E71gjvsYPwtTehoLsdoq8bELyBRir0u0RKhRm+X0ej2pj7TCjqwget4/FB6/gkeUmxy8sehe+nvkgewlEN+by4v5IP28oHb+KQsd/BUvsM/TyekkZN6DenyesGPEeBkj3Q7/DsBnomx25OUwb0TdC9x3LybGR9Jt42JCbiSPSH8GAvSl2rkCcOAeBZZoQQQoaB+PUHT/JvAbk1WSaAtw9VDV7gP06qdScfLIPitd0YcrKTqtx80M0+TznVcnmZqljSGWOMNfaF89ApT4ISHQHzusng7ZgyPuMyVbGkM0amadQigKsTKOgc/EtN1K2fbdZfof91sy929lnigs7pIv8Isjvyr78WmgsRXykCp1+EwIyLAQho4RDy+zpR0N4E/Oa+ISw/BxHABy3jEZHvXJdr+7WKdDTaMcYa23s96A3nw5vPs8tUdIfyzevcimzZVx2jUQCIAPm9QOkeQOzRKyO+2IGZEt1ruqfo3jPkv28O3WfMdRr6xQz0YwY6I/8DWqQVwFeGsHxCCCEkBcabdnR0AH5/Wt1yanahP+rCqoM1+hu7I4fGZMV41M7O/63GkVElQlbtrZanOrqYqo9qWVmkMSw0tHT7MGs8j0bKRETszDLVtsqw7WgZWxbtq5axJeqFfuaZ96h+VkDpx/oPl3CxdPZZWeysAJdhEFmcvODUQXdNmoO+8VMAzYX4Shf5boSKKxAq8IHYExYa/nakQn/D/TqrNAqAN0izQgAd/QX0GadohADyeoDCHr2sBMD4At1rQiVA5xn6c8ivP6LGnwua4vXQfMaqvYAbAuUghBBCTplhSNpyarLsk0AxPj5eap/wqJD9PI5VgjLURMaYmKn6W42pGt9Yl0Mao0JDoN+tGJSEoi4Ejesmg7djWjh8X00LOXYtAhQE9UfRAb0i6tF/xPRNiF37rBIIFetnBlgGaRxY/iGjP0fdhRhwF0p9hhJ8btPc7cPeQAl9RoXDNXaGCtDc7UO5j2eWyUQFcKizcLAgg7djWjh8X02LJJ8JASIEePr0AzVAbPKsDOgvB6JeoLtO9xuRDwiX/kgKJLXPqPvQZwghhGQWuTNZJoANzRXmv2DKiUo6Pi0foVNNWKqSFmOeoGpjlTfICRcU5ca+cttc0agBjUHDdblIgv5IHk70uZ2xHY112bqvGutORmO80NUHePsAb2tMe/7gBZ3jf90cGA9EvID8l0ATKmFWvwBJKrYf9euftzjcr9U4UGNfOA9/bKzF7PFBfjQkeiN5ONRZ5IjtaKrL0n3VVHfSPgNAiwze4VkA8O/Q/74ZzdfPdu44Uz/jOeLV31t6DX2GEEKI88iZybKw0PBWU7X1QS5AnQAZsfL5VMh95L6qsVQH2lKNI/fNMY1tPV4IgZO9fl/W0trjRdDq7zEyGbAdc2FfHRGNWhhwd+iP+NlnEW/s7LMqffKsf4L+gyZaIAVjJ4CkS1QAbx+qhoDG/doOB2sMDhTwk6Ig0O/WJ4npM+nF5liNUf3mAYB+prPviN4hmg/01QC9NfrkWX+F/jdO+gwhhBAHkzOTZZ92FmJrW1myV6t8HNJrQJ3AqBKMVAmQql5ebvy9HIsqZgF1rDmoce2hKjR3+1Bb3AsSQwB/PlCTfEZlBm/HXNhXR1wjAP2OaL1AXi/gbYn1iZ0N0F+u/7DpmmY4G8AYoIxKGJE51uvB2sOV+hvu11mpcWVjDRbP2YfJpT0gMQSwpqkKgf4CU1kmb8dc2FdHzWcgANcAUHQQKDyol0cK9TOcB/xAz5TY2WfGGwfQZwghhGQ+uTFZJoC1hysRHCiwTzbkZECVNADmZASKsqEkIrCoU9XLyImRXJ5jGpu7ffjtnsn41nl70hs7Bzja68Fv9kwxF2b4dlT2UcXj4H1V2UcVz3Br1MKAO6A/ij8Bxn0YO/OsUj/7rH8CEC6KnXmmWjA/WJYI4MWPp6K125tZ21wmG/drmRHU2NrjxcoDNfjqnP08izlGe78b/7VzGoRx5WX4dlT2UcXj4H1V2UcVz0hozO/RPUYAGLdVnygLFwGdM/VLBQz49Qm1xI0DjAPyg0UIISQzyInJssNdPvxy2+kwGbBs/IB1IgPYHzlUJSIy6RyBVPVVHZ20SrpUseeSRgH8atdUXH3aEUz3dzHfEsAvPzpdv5abk7ajXWzZsq/axTaaGvN79UfizLOC2JlnFYN/3Rwo028mYHvdsxxHAI0dRfjNnrrkCYNM2+aqvtm2X6v6DpvPaPiPLWfg7Iog5tcco88I4JXdU7C7vdRZ29EutmzZV+1iG1WN0UGv8RzTC6MFgzcOCPn1AzV9lbEb1MgCCCGEkLEh6yfLQhHg37echabO2MXfVcav8mXVUTcZY6KjOpon18nLVy1PfrZLaKzIYY1Hugrx0Ltz8b8v24hy70DyEVOnkmr7KIgC+t1foTluO1ou06re2J8aT16jKwS4T+iP4r0AXPrFnAf8+l9qgqUWg+U2vWEXHn1/Lg7H7wbopG2eC/v1MGs83ufB/X89F/9nwXrUlXY7319OgSiAdz+dgMR1+gDHbEfLZVrVG/tT48lpBABNAHkDQF4b4GkbHCBcCIRL6DOEEEIyhqyfLFt1oAa/3z/JvpFdMmKVKKRzxE2uszsCJy9DVa96PZSjjVZkmcZ3Pq3ED9bPwe1n78e2Y2WoLerB56e02ffNcFp6vPivndPQ1FGEqADOGt+Bb567B2md6+PQ7agky/ZVJRmlMXYx5/xu/ULO3rDNQnOXF3ZOxV/i1yqzwjHbXPE66/ZrxeshamwMFuPWP12IO8/dg7kTAqgu7EWpJwc/HwKICs2x21FJlu2rSjJOowAKuvUHDtkslBDieIzXMBBWs/aEZAZZ/7+af9s4CwORmMz451GVHBhfq46WyUfiUiUQqvpUY8l9jPFaxS6PRY0AgFf3TsaXfncJHnznHKyO3wU1DUIRDfsDxXi/eTy6BsZuLjkU0dAXzkM4qouvKuzDV+fsx6WT2nCsz4OVB2oQith/fEMRF473eRy9HXNhX3WMRg3QL+ZMZH750emIxj6rWbXN5TGzcb+WxxyCxv0nSnDPXz6D616/FK/vm5y2z2QTfZE8HOnyOXo75sK+6jiNhJDsRYjBSTJe/JNkOFl/Zllrjxfwxt7YHfmCoU5OKox1ctuhIB99sxrLLtFQxQSpnhoBDRiI6Hdd2n2iFGGhIT/VD30B/HzzTDy34zSEoy784UtrUezusu8zQjy7fTp+vbsOZ5Z34Gtz9+LsiiDGeQbwP89owhdPP4zvvXMOOgcK4MnvtxwjFHWho7/A8dsxF/ZVR2kkSXSHCgDjTd6ybZvnwn59khqjUQ1dAwV4de9k3DjzIDz50ZSxRxE7UjmWvxEE8EmwGDuO+wEAJe4Qzh4fRFhoiEQ1TCxJ767SAkBYuBy/HXNhX3WURkLIqROfiBrrs7c0TR2DEOBkGcl0sn6yzGTiULw2oiF1UnEyy1J9D1iNlSopEoq21Jg8vqH97vZSHOnyYUppj0VAOoH+Avzhk4kI9rnhKwiP6e+YY70e7AuUYF+gBG8fqsKV045gybl7MM3fBbdL/zF2tNeDikLrybKjvR6093nUlQ7cjrmwrzpGIzGTC9ucGpPHN7TfHyxGc7cPU+2uYSb0v9Q/vXUG5lQEMM3fhellXShxh4Z18ixxwN4QYvxNFMCJPjc2NFdg2fuzcKCjGACQpwmUeQYQBXDjzCZ8Z97HEEKDLz9iG1ckqk+uWel12nbMhX3VMRoJIdmBPFGWKZN4hKTBsE+WRSIRPProo3jhhRfQ0tKC2tpa3Hrrrfje974HLfbhEELgkUcewS9/+UsEAgF89rOfxfLlyzFjxozEOO3t7fjnf/5n/P73v4fL5cINN9yAn/3sZyguLh5aQCrTtUlklWUaUhu91Ria4rWcuKRKOIwJiqovNdrGF+gvwMu76nD3+buQ51J/MUeiGp7dPh37A/r+FY668MfGGkxQTEadX3UckwxH3SNCw18OVaJjoACevAiumNoMb34U4aiGVQer0TlQYBGoNbvbBy9w2x3Kx2/3TMGapip86fTDmDU+iFUHq3FhzTGcVd6hXA9CAO83j0d3KC9rtmOiLIv31URZJmvMAOgzNsvifm09zghqDPa78a8bZuOnn9+EwoKIsv3G1nL8yzvnYFe7H4BAgUugtqgXZ44PYlJxDyaV9KLEHYInLwpNEzizvAN+dwjHez0Y5+3H4a5CePKiqCrsgwYBd14Upe4QNA040uXD4a5CHOv1YN3hSnQN5KOqqA9Huny4sOYYwlEXDnQU4UCwGJ90FONIl0+/1liMiND0v+0DeHlXHf5yqBICwKMXfYT5NceUB//DUQ2v7K5DS7c3a7ZjoiyL99VEWSZrzAAyzmcIGSpjPRlld0aZ6jUhGciwT5b9+Mc/xvLly/H8889j9uzZ2LhxI2677Tb4/X5861vfAgA89thjePLJJ/H8889j2rRpeOihh3DFFVdg586d8Hr1/0wuWrQIzc3NWLVqFUKhEG677TYsXrwYv/rVr4YelOoommzictlQ28t97OIQ0nvVmFZjy22sEhNqNIyp4ZcfnY48l8DZFUFl2E0dhXh66wzE7+gVirrw4w9mK9tOLO5BqTtkWKSGxmAR+iN5KCkIYSCSh1JPCN2hfDz63hwE+t3KcdLCoKe9z4Nntk+HBgEBDS9+PBVFBWHlj5jWbi9+vvkMiPiPoazYjkNor4pLhhpPTmMGQJ9JIw7u1+qxRlDjnw/W4NH35qKhrhkTi3uhaQI7j/vxaVchTvS58fv9E3G0d/C6EKGohoOdRTgYv1u3aQFAUUEEBa4oesN5KCwIozukp2yF+RFoAHwFYZwxrhOF+RF82DoOR3u9iArdk4y82Tgxeb3ZaAz0uxHocwMasGT1+bhhxiHMLO9AiTsMDQL5LoGBiAtrmqrw6r7JCEdd5nUrrRdLMnQ7pt1eFZcMNdJnhtNnCBlNTvUMME6EkSxAE2J49+QvfOELqKqqwjPPPJMou+GGG+Dz+fDCCy9ACIHa2lrcfffduOeeewAAwWAQVVVVWLFiBRYuXIiPP/4Ys2bNwgcffIDzzz8fALBy5UpcddVVOHz4MGpra1PG0dHRAb/fD/z0asBboDZkI3ZH1OT6VImK8WiZXRu5bTrLHkp8Qx0nFzTCanfXzE1OSaNxGYpxU4U3JI0p9GTrdsyFfTUTNfaGgLveQDAYRGlpqaLB6ECfAffrDNaoQaAgT/+7vH6DIS1LNApTN/oMqFHVhj4zIj4z1uuDEEKyhaF8rw773TAvuugirF69Gnv27AEAbN26Fe+88w6uvPJKAEBjYyNaWlrQ0NCQ6OP3+1FfX4/169cDANavX4+ysrKEsQBAQ0MDXC4XNmzYoFxuf38/Ojo6TI8hYTR3KF5rUltjH1VbOQGQEwd5PHkMYXhtlWxYzZNYQY0YDFx6DKvG+JjaKGiMLce4TOOCsnU75sK+mg0aRwj6DDJ3m1MjBDQMRPJiN5nRzH0crVGDgBY7Y5k+k9SWGukzmeAzhBBCho1h/xvm/fffj46ODpx55pnIy8tDJBLBj370IyxatAgA0NLSAgCoqqoy9auqqkrUtbS0oLKy0hxofj7Ky8sTbWSWLl2K73//++kFaWfSqnq7tsb6+LNQlFmNkU6CYRVjqnpqpEYZarQfgxrtY8wQ6DPIjG1OjdSoghrtx6BG+xgzBEf4DCGEkBFl2M8se+WVV/Diiy/iV7/6FT788EM8//zz+Ld/+zc8//zzw70oEw888ACCwWDicejQocFK2cyNxq8yZpWhC8Wz6oiZMZmwaqPqI5epEhBjWytN8ntqTB5ffqZGapT7yGXUmPqH1ShCn7EZn/u1uYwaqdH4nhqTx5efM0njGJKRPkMIIWRUGfYzy+69917cf//9WLhwIQBgzpw5OHjwIJYuXYpbbrkF1dXVAIDW1lbU1NQk+rW2tuLcc88FAFRXV6Otrc00bjgcRnt7e6K/jMfjgcfjSa4wGrT8rEI2bDmxUB0tM/aREwQN6jE12Cc2qZIjOcExLosaqdFYTo3Jy5XHpMb0NWYA9Blwv463p0ZqNNZToxqnacwAMs5nCCGEjDrDfmZZT08PXC7zsHl5eYhG9YvdTps2DdXV1Vi9enWivqOjAxs2bMD8+fMBAPPnz0cgEMCmTZsSbdasWYNoNIr6+vqhBWQ0bqO527W3KxMwJwBycmL32ippMLa1ild+lsemRjPUSI2qZRtfU6N9vHYaxxj6jM1r7tf28VIjNcpQY2ZqHGMyzmcIIYSMOsN+Ztk111yDH/3oR5gyZQpmz56NzZs344knnsBXvvIVAICmabjrrrvwwx/+EDNmzEjcarm2thbXXXcdAOCss87CggULcMcdd+Dpp59GKBTCkiVLsHDhwrTuHKNEPuIFqE1ZSK81mJMGTdEOsE8YrMxfNbacoNjFKpdTY3Jcxj7UaI5PNRY1UqNdrBkCfUYxFvdrarSLVS6nxuS4jH2o0Ryfaiz6zNj4DCGEkFFj2CfLfv7zn+Ohhx7CN7/5TbS1taG2thZf+9rX8PDDDyfafPe730V3dzcWL16MQCCAiy++GCtXroTX6020efHFF7FkyRJcdtllcLlcuOGGG/Dkk0+efGCy4adKNox95HLVETyrREBVZ/XaKrlQJSZWyQ41UqMccyoddnXUmLzsXNeYAdBn0qjjfp28bGqkRrk9NZrbp9JhV0efGR2fIYQQMmpoQgiVPTqejo4O+P1+4KdXA76Ckx9INnPV2krX2OW+coIQLzMmC6kSh+FILKjRXJfuWKp+1Gg/JjWmH1cmauwNAXe9gWAwiNLS0jSDyF7oM0OAGs116Y6l6keN9mNSY/pxZaJG+oyJuM9wfRBCyPAwlO/VYb9mWUYjLF4by4RUb3eUTnXETh5HRpOerZZlXJ4cr1DUy3Xya1Vs1DhYR43JUGPyONRIUpGN2zwX9mtqtI+NGgfrqDEZ+gwhhJAsJPsnywSsDV42aaOhazAbvdzfKlkxJh1WyYlqPKs4rOIxPlOj9djUSI3UOPwaiZlc2ObUaD02NVIjNdJnCCGEZB3Dfs2yjCNu7kbipm1MNFSJiJxgAPZJhlxu7G9cprwMVSKjKdpbjaNKLKjR3AaKclkLpHbUSI3UaB6HqKHPUCM1UqO8bGpM7k+fIYQQ4iCyf7JMRjZ22eDT6Su/ToXcxypJUC3LKqlRjSP3pUY11GgNNVJjKo0kNdm2zXNhv6ZGalRBjdbQZwghhGQ52f83TMBsvJrhWTZkDckmLtfHx5MTAkh18vjGPnKdcVwhlcGmzjgONZrrqDE5Xnl8alQvmxqt69L9EZWLZPM2z4X9mhqpUQU1muvoM4QQQnKI3DizzCoRsDPkodapEoF44qBKUlQxqZKIVHVyPTWqY0i3jhqpkRqt64g12brNc2G/pkbrWE+2jhqpkT5DCCHE4WT/mWXC8NCkctVr43vjs/GhQpU0AObEQRVbPOlQ1avitdJCjdQoj0GN1nFS46lpJGZyYZtTo3r51KiGGqmRPkMIIcThZP+ZZUajNxpx3MiNr1XPcn0cY195bBnjmKq40umnisE4ltzHGLesgRrNYxnHp0ZqpMbUGokZ+kyyBmo0j2UcnxqpkRrpM4QQQjKe7J8sk7EyZ7vkQVWuSiTk16qxreJJ5306yYuxnhqp0Wp51EiN6bxPVyMxkwvbnBqpkRqp0fisiied9/QZQgghGUpu/g1TZdrGZ83Qx4hs4sbkxFhvfC+XGce0S1yM/Y2xqJIWalQvnxqTY6RG9TJUcRiXbexPjUQmF7Y5NaqXT43JMVKjehmqOIzLNvanRkIIIWTMyf7JMg1mY7dLClTmbmwnvzb2M9YblyePJbeVx5aRkxU5buPyqJEa5TiokRpHQiMxkwvbnBqpkRqpkT5DCCEkh8j+yTIg2bCNpq5KJqySCyvjtzoiJgzv5YTDKiGwa2/XlxqpUdVHFRc1UqMq1qFqJGZyYZtTIzWq+qjiokZqVMVKnyGEEOIgcmOyTGW+coJgNH9VQmI0cWO9KhGxSjxUMVklEPKy5KRC1Ue1DGpMrqNGalQt3xgnNabWSMzkwjanxsH21EiNADWqlm+Mkz5DCCHEweTGZJls2sbkARg0cE3R1thGZeCqRMP4rEpm5HHlBMIqTqvlGuOlRmqkxsE28jM1Dp9GYiYXtjk1UqOxDTVSoxX0GUIIIVlA9t8NM268sgHHy1SJhbEeUr08rjy2KgHQpD6qZECOQ7U8FfFyajSXUaN5bGpM7keNye3T0UiSoc9QIzVSo6ofNSa3p88QQghxCNl/ZpldghAvNyYSKmOXy43jqRIVeWzj63STCbtyGWqkRmqkRuPYxtcjoZGYyYVtTo3USI3UaBzb+Jo+QwghJAvJ/skyI5r0bERIdcb3qoRDTgzkck0qs+ujSX3ko4ZynMZxZC3UaK6jRmqkRvUyT1YjsScbt3ku7NfUmNzXWEeN1EifIYQQkmPk1mSZbPBGU07XoOMmryneG8eXkwhVMqFKGIyxyH3kxEMFNaYHNQ6OT43UeCoaiZlc2ObUmB7UODg+NVIjfYYQQojDyP5rlgFmYxZSeTp948hJg1wuL0NODOTlqcrl93YxGpdDjfZQo/0yqJEa04mRP2SsyfZtngv7NTWmhhrtl0GN9BlCCCFZQ/ZPlhkTAFVSAUO5VV/VUTpVXXwZcpkVqRIRVTyqJIUaU48p11MjNcpQozoeWSNJJtu3eS7s19SYHLdqTLmeGqlRhj5DCCEkS8iNv2HKxqsZnuOmbkQo2qrGtBrXqkyTHvEyq+REjkmV2MjPqnpqpEZqTC6jxpPTSNRk8zbPhf2aGqnRLm5jX9W4VmXUSJ8hhBDiWLL/zLK4YccNWJUsyG3k+jh249gZvN2y0+0jJxtyckGN1GiEGtOPVzV2qj65rpGYyYVtTo3qNlZxUGP68arGTtWHGrNfIyGEEDLG5MaZZUY06dmujRFVomI1hoA5eTAmBfGHfHRtKLGk6k+N1nXUmNyWGqkxVSxD6U9yY5tTo3UdNSa3pUZqTBULfYYQQkiGkf1nlsWxM2CV+ceRDV0+AqdJz5DqVcuySipU7VXLt4vHCmq0H5Ma1cuixtTLt4vHCidrJNZk6zbPhf2aGtX9qJEa6TOEEEJylOw/s0yVIMTNXE4A5DaqseQjcPFnuU5uI783Jhby2PLyVX3kZavip0ZqlJdNjer31Ji+RpJMtm/zXNivqZEaqdHcjz5DCCEkxxnyZNm6detwzTXXoLa2Fpqm4fXXXzfVCyHw8MMPo6amBj6fDw0NDdi7d6+pTXt7OxYtWoTS0lKUlZXh9ttvR1dXl6nNtm3bcMkll8Dr9WLy5Ml47LHHhq4OMJs0YE4wUpmyMSGxaisfubNKOKziko/GyW1ViY/VMqlRDTXaL8/YhxqpMZXGUYA+IzHW2zwX9mtqpMZ4PTWOvcZRwHE+QwghZNQZ8mRZd3c3zjnnHDz11FPK+sceewxPPvkknn76aWzYsAFFRUW44oor0NfXl2izaNEi7NixA6tWrcIf/vAHrFu3DosXL07Ud3R04PLLL0ddXR02bdqExx9/HI8++ij+8z//8yQkQp1UGI07/l4g2bRVCYIwPOySBhmheKjiNC7bmGzIsaqWT43UKPenRjXUeHIaRwH6DDJrm+fCfk2N5mVTY3J/alRDnxk9nyGEEDKqaEKIk7YlTdPw2muv4brrrgMACCFQW1uLu+++G/fccw8AIBgMoqqqCitWrMDChQvx8ccfY9asWfjggw9w/vnnAwBWrlyJq666CocPH0ZtbS2WL1+OBx98EC0tLXC73QCA+++/H6+//jp27dqVVmwdHR3w+/3AT68GvAVqw1clDcY6qyTBKiFJ97XV+MYtYVWnKpeToXT6WcVgVUeNqfvI8ahiokZqVPWzisGqbqw09oaAu95AMBhEaWmpRbDDC31G8Z77tf341GhdTo3qflYxWNVRY+o+cjyqmOgzKYn7zGiuD0IIyWaG8r06rNcsa2xsREtLCxoaGhJlfr8f9fX1WL9+PQBg/fr1KCsrSxgLADQ0NMDlcmHDhg2JNpdeemnCWADgiiuuwO7du3HixAnlsvv7+9HR0WF6JDCauhEN1kmDVblVnUBykhBPZlR9VDFpMMekqoNUp0nP1KiOId06aqRGOR5qTK4bQ+gz4H6tGoMarWOlRut+qhjSraNG+sxo+wwhhJBRZVgny1paWgAAVVVVpvKqqqpEXUtLCyorK031+fn5KC8vN7VRjWFchszSpUvh9/sTj8mTJ+sVAmqzFxavje+Nz8aHCqvkxCqZiZfFkw5VvSpeKy3USI3yGNRoHSc1nprGMYQ+Y1GuWka8jPu1OiZqTO6jWj41qqFG+sxo+gwhhJBRJ2vuhvnAAw8gGAwmHocOHdIrjEe0jKZtNHJjnfG9fPROPjJml5RAqjMuL95WNa7cTxWT6kgeNVKjVSzUmBwrNZ6axhyFPgNqpEZqlONRQY30mZPE0mcIIYSMOvnDOVh1dTUAoLW1FTU1NYny1tZWnHvuuYk2bW1tpn7hcBjt7e2J/tXV1WhtbTW1ib+Pt5HxeDzweDypg1QlDIDZ3OU6VbkxsbB6rRrbKp503quWo4IaqZEaqdH4rIonnffpahxF6DPIjG1OjdRIjdRofFbFk857+oyJtH2GEELIiDOsZ5ZNmzYN1dXVWL16daKso6MDGzZswPz58wEA8+fPRyAQwKZNmxJt1qxZg2g0ivr6+kSbdevWIRQKJdqsWrUKM2fOxLhx44YWlDA8rAxZSM+aoY8R2cSNyYmx3vheLjOOaZe4GPsbY1ElLdSoXj41JsdIjeplqOIwLtvYnxrHFPqMYhzu19RIjdSYbRrHkIz0GUIIIaPOkCfLurq6sGXLFmzZsgWAfhHMLVu2oKmpCZqm4a677sIPf/hD/Pd//zc++ugj3HzzzaitrU3cYeass87CggULcMcdd+D999/Hu+++iyVLlmDhwoWora0FAHz5y1+G2+3G7bffjh07duDXv/41fvazn+E73/nO0BVqMBu7XVKgMndjO/m1sZ+x3rg8eSy5rTy2jJysyHEbl0eN1CjHQY3UOBIaRxj6DDJvm1MjNVIjNdJnxs5nCCGEjDpD/hvmxo0b8fnPfz7xPv6Ff8stt2DFihX47ne/i+7ubixevBiBQAAXX3wxVq5cCa/Xm+jz4osvYsmSJbjsssvgcrlwww034Mknn0zU+/1+/PnPf8add96JefPmoaKiAg8//DAWL158cipl8zUmAqpkwiq5sDJx+YiY8bWqb6qx5HFSxauKmRqpkRqpcSQ1jiD0mRTjc79Obyx5HGpUx0yN1JipGkcQR/oMIYSQUUUTQojUzZxHR0cH/H4/8NOrAV+BulHcmI1rwM7krUzcOI78DKSXQKRqB0VdOokFNSbHQY3USI2p20FR1xMC/t83EAwGUVpaatEpd6DPKGIzLscqDmqkRmpM3Q6KulzQSJ8xEfcZrg9CCBkehvK9mjV3w7RFKJ5lI48/5LbGNnJZvJ1maCM/p0pqNKmdHINqmfJyjfFSIzVS42Ab+Zkah08jMZML25waqdHYhhqp0Qr6DCGEkCxgWO+GmZHEjVc24HiZKrEw1kOql8eVx1YlAJrUR5UMyHGolqciXk6N5jJqNI9Njcn9qDG5fToaSTL0GWqkRmpU9aPG5Pb0GUIIIQ4h+88ss0sQ4uXGREJl7HK5cTxVoiKPbXydbjJhVy5DjdRIjdRoHNv4eiQ0EjO5sM2pkRqpkRqNYxtf02cIIYRkIdk/WWZEk56NCKnO+F6VcMiJgVyuSWV2fTSpj3zUUI7TOI6shRrNddRIjdSoXubJaiT2ZOM2z4X9mhqT+xrrqJEa6TOEEEJyjNyaLJMN3mjK6Rp03OQ1xXvj+HISoUomVAmDMRa5j5x4qKDG9KDGwfGpkRpPRSMxkwvbnBrTgxoHx6dGaqTPEEIIcRjZf80ywGzMQipPp28cOWmQy+VlyImBvDxVufzeLkbjcqjRHmq0XwY1UmM6MfKHjDXZvs1zYb+mxtRQo/0yqJE+QwghJGvI/skyYwKgSipgKLfqqzpKp6qLL0MusyJVIqKKR5WkUGPqMeV6aqRGGWpUxyNrJMlk+zbPhf2aGpPjVo0p11MjNcrQZwghhGQJWTtZJkTMnftCycad1BjqxGAopj2U8dOpt4rJrj81UmM6UCM1nqzGvpBeFf9+zXHoM2mOR42p40ynzqqeGtVtqdGZGukzJuLroaOjY4wjIYSQ7CD+fZqOz2TtZNnx48f1Fw/8eWwDIYSQLKOzsxN+v3+swxhz6DOEEDIy0Gd0Ojs7AQCTJ08e40gIISS7SMdnsnayrLy8HADQ1NTkCLPt6OjA5MmTcejQIZSWlo51OGnhtJidFi/AmEcDp8ULjF3MQgh0dnaitrZ21JaZyTjNZwDn7e9OixdwXsxOixdwXsxOixegz2QKtbW12LlzJ2bNmuWY/Yf7+8jjtHgB58XstHgB58XsBJ/J2skyl0u/0aff73fEzhKntLTUUfECzovZafECjHk0cFq8wNjE7JRJodHAqT4DOG9/d1q8gPNidlq8gPNidlq8AH1mrHG5XJg4cSIA5+0/TosXcF7MTosXcF7MTosXcF7MmewzrhGOgxBCCCGEEEIIIYQQx8DJMkIIIYQQQgghhBBCYmTtZJnH48EjjzwCj8cz1qGkhdPiBZwXs9PiBRjzaOC0eAFnxpyNOHE7OC1mp8ULOC9mp8ULOC9mp8ULODPmbMVp28Jp8QLOi9lp8QLOi9lp8QLOi9kJ8WqC92YmhBBCCCGEEEIIIQRAFp9ZRgghhBBCCCGEEELIUOFkGSGEEEIIIYQQQgghMThZRgghhBBCCCGEEEJIDE6WEUIIIYQQQgghhBASg5NlhBBCCCGEEEIIIYTEyMrJsqeeegpTp06F1+tFfX093n///TGJY+nSpfi7v/s7lJSUoLKyEtdddx12795tavP3f//30DTN9Pj6179uatPU1ISrr74ahYWFqKysxL333otwODwiMT/66KNJ8Zx55pmJ+r6+Ptx5550YP348iouLccMNN6C1tXXM4p06dWpSvJqm4c477wSQGet33bp1uOaaa1BbWwtN0/D666+b6oUQePjhh1FTUwOfz4eGhgbs3bvX1Ka9vR2LFi1CaWkpysrKcPvtt6Orq8vUZtu2bbjkkkvg9XoxefJkPPbYYyMScygUwn333Yc5c+agqKgItbW1uPnmm3HkyBHTGKpts2zZshGJOdU6vvXWW5NiWbBggalNJq1jAMr9WtM0PP7444k2o7mOSTL0mpPDaT4DZL7X0GfoMycTM30m86HPnDxO85pM9xnAeV7jNJ9JFTOQeV6T9T4jsoyXX35ZuN1u8eyzz4odO3aIO+64Q5SVlYnW1tZRj+WKK64Qzz33nNi+fbvYsmWLuOqqq8SUKVNEV1dXos3nPvc5cccdd4jm5ubEIxgMJurD4bA4++yzRUNDg9i8ebN48803RUVFhXjggQdGJOZHHnlEzJ492xTP0aNHE/Vf//rXxeTJk8Xq1avFxo0bxYUXXiguuuiiMYu3ra3NFOuqVasEAPH2228LITJj/b755pviwQcfFK+++qoAIF577TVT/bJly4Tf7xevv/662Lp1q/jiF78opk2bJnp7exNtFixYIM455xzxt7/9Tfz1r38Vp59+urjpppsS9cFgUFRVVYlFixaJ7du3i5deekn4fD7xi1/8YthjDgQCoqGhQfz6178Wu3btEuvXrxcXXHCBmDdvnmmMuro68YMf/MC07o37/nDGnGod33LLLWLBggWmWNrb201tMmkdCyFMsTY3N4tnn31WaJom9u/fn2gzmuuYmKHXnDxO8xkhMt9r6DP0mZOJmT6T2dBnTg2neU2m+4wQzvMap/lMqpiFyDyvyXafybrJsgsuuEDceeedifeRSETU1taKpUuXjmFUOm1tbQKA+Mtf/pIo+9znPie+/e1vW/Z58803hcvlEi0tLYmy5cuXi9LSUtHf3z/sMT7yyCPinHPOUdYFAgFRUFAgfvOb3yTKPv74YwFArF+/fkzilfn2t78tpk+fLqLRqBAi89av/CUSjUZFdXW1ePzxxxNlgUBAeDwe8dJLLwkhhNi5c6cAID744INEmz/+8Y9C0zTx6aefCiGE+I//+A8xbtw4U8z33XefmDlz5rDHrOL9998XAMTBgwcTZXV1deInP/mJZZ+RitnKWK699lrLPk5Yx9dee634h3/4B1PZWK1jQq85FZzuM0JkttfQZwahz9jHLEOfySzoM6eG070mk31GCOd5jdN8RgjneU02+kxW/Q1zYGAAmzZtQkNDQ6LM5XKhoaEB69evH8PIdILBIACgvLzcVP7iiy+ioqICZ599Nh544AH09PQk6tavX485c+agqqoqUXbFFVego6MDO3bsGJE49+7di9raWpx22mlYtGgRmpqaAACbNm1CKBQyrd8zzzwTU6ZMSazfsYg3zsDAAF544QV85StfgaZpifJMW79GGhsb0dLSYlqnfr8f9fX1pnVaVlaG888/P9GmoaEBLpcLGzZsSLS59NJL4Xa7TTp2796NEydOjLiOYDAITdNQVlZmKl+2bBnGjx+P8847D48//rjpVPDRjnnt2rWorKzEzJkz8Y1vfAPHjx83xZLJ67i1tRVvvPEGbr/99qS6TFrHuQK95tRxqs8AzvMa+gx9Jh3oM5kFfWZ4cKrXOM1ngOzwGif4DOBcr3Giz+SP6OijzLFjxxCJRExfEgBQVVWFXbt2jVFUOtFoFHfddRc++9nP4uyzz06Uf/nLX0ZdXR1qa2uxbds23Hfffdi9ezdeffVVAEBLS4tST7xuuKmvr8eKFSswc+ZMNDc34/vf/z4uueQSbN++HS0tLXC73UlfIFVVVYlYRjteI6+//joCgQBuvfXWRFmmrV+Z+DJUMRjXaWVlpak+Pz8f5eXlpjbTpk1LGiNeN27cuBGJH9Cv+XDffffhpptuQmlpaaL8W9/6Fj7zmc+gvLwc7733Hh544AE0NzfjiSeeGPWYFyxYgOuvvx7Tpk3D/v378S//8i+48sorsX79euTl5WX8On7++edRUlKC66+/3lSeSes4l6DXnBpO9hnAeV5Dn6HPpAN9JrOgz5w6TvYap/mMcRlO9Ron+AzgbK9xos9k1WRZJnPnnXdi+/bteOedd0zlixcvTryeM2cOampqcNlll2H//v2YPn36aIeJK6+8MvF67ty5qK+vR11dHV555RX4fL5Rj2coPPPMM7jyyitRW1ubKMu09ZtthEIh/OM//iOEEFi+fLmp7jvf+U7i9dy5c+F2u/G1r30NS5cuhcfjGdU4Fy5cmHg9Z84czJ07F9OnT8fatWtx2WWXjWosJ8Ozzz6LRYsWwev1msozaR2TzMAJXuNknwHoNaMNfWZ0oM+QdHGCzwDO9hr6zOjiFJ8BnO01TvSZrPobZkVFBfLy8pLuZNLa2orq6uoxigpYsmQJ/vCHP+Dtt9/GpEmTbNvW19cDAPbt2wcAqK6uVuqJ1400ZWVlOOOMM7Bv3z5UV1djYGAAgUAgKZ54LGMV78GDB/HWW2/hq1/9qm27TFu/8WXY7bPV1dVoa2sz1YfDYbS3t4/peo8by8GDB7Fq1SrTURgV9fX1CIfDOHDgwJjFHOe0005DRUWFaT/IxHUMAH/961+xe/fulPs2kFnrOJuh1wwvTvEZwJleQ5+hz6SCPpN50GeGH6d4jRN9xrgMp3mNk30GcI7XONVnsmqyzO12Y968eVi9enWiLBqNYvXq1Zg/f/6oxyOEwJIlS/Daa69hzZo1SacPqtiyZQsAoKamBgAwf/58fPTRR6adPv5BnjVr1ojEbaSrqwv79+9HTU0N5s2bh4KCAtP63b17N5qamhLrd6zife6551BZWYmrr77atl2mrd9p06ahurratE47OjqwYcMG0zoNBALYtGlTos2aNWsQjUYTRjl//nysW7cOoVDIpGPmzJkjcmpq3Fj27t2Lt956C+PHj0/ZZ8uWLXC5XIlTg0c7ZiOHDx/G8ePHTftBpq3jOM888wzmzZuHc845J2XbTFrH2Qy9Znhxis8AzvQa+gx9JhX0mcyDPjP8OMVrnOgzgDO9xuk+AzjHaxzrMyN+C4FR5uWXXxYej0esWLFC7Ny5UyxevFiUlZWZ7gwyWnzjG98Qfr9frF271nQr1J6eHiGEEPv27RM/+MEPxMaNG0VjY6P43e9+J0477TRx6aWXJsaI3wb48ssvF1u2bBErV64UEyZMGLHbFt99991i7dq1orGxUbz77ruioaFBVFRUiLa2NiGEfpvlKVOmiDVr1oiNGzeK+fPni/nz549ZvELodweaMmWKuO+++0zlmbJ+Ozs7xebNm8XmzZsFAPHEE0+IzZs3J+60smzZMlFWViZ+97vfiW3btolrr71WeZvl8847T2zYsEG88847YsaMGaZbAAcCAVFVVSX+6Z/+SWzfvl28/PLLorCw8KRvqWsX88DAgPjiF78oJk2aJLZs2WLat+N3KXnvvffET37yE7Flyxaxf/9+8cILL4gJEyaIm2++eURitou3s7NT3HPPPWL9+vWisbFRvPXWW+Izn/mMmDFjhujr68vIdRwnGAyKwsJCsXz58qT+o72OiRl6zcnjRJ8RIrO9hj5DnxlqzHHoM5kLfebUcKLXZLLPCOE8r3Gaz6SKORO9Jtt9Jusmy4QQ4uc//7mYMmWKcLvd4oILLhB/+9vfxiQOAMrHc889J4QQoqmpSVx66aWivLxceDwecfrpp4t7771XBINB0zgHDhwQV155pfD5fKKiokLcfffdIhQKjUjMN954o6ipqRFut1tMnDhR3HjjjWLfvn2J+t7eXvHNb35TjBs3ThQWFoovfelLorm5ecziFUKIP/3pTwKA2L17t6k8U9bv22+/rdwPbrnlFiGEfqvlhx56SFRVVQmPxyMuu+yyJC3Hjx8XN910kyguLhalpaXitttuE52dnaY2W7duFRdffLHweDxi4sSJYtmyZSMSc2Njo+W+/fbbbwshhNi0aZOor68Xfr9feL1ecdZZZ4l//dd/NX2RD2fMdvH29PSIyy+/XEyYMEEUFBSIuro6cccddyQlm5m0juP84he/ED6fTwQCgaT+o72OSTL0mpPDiT4jRGZ7DX2GPjPUmOPQZzIb+szJ40SvyWSfEcJ5XuM0n0kVcyZ6Tbb7jCaEEIoTzgghhBBCCCGEEEIIyTmy6pplhBBCCCGEEEIIIYScCpwsI4QQQgghhBBCCCEkBifLCCGEEEIIIYQQQgiJwckyQgghhBBCCCGEEEJicLKMEEIIIYQQQgghhJAYnCwjhBBCCCGEEEIIISQGJ8sIIYQQQgghhBBCCInByTJCCCGEEEIIIYQQQmJwsowQQgghhBBCCCGEkBicLCOEEEIIIYQQQgghJAYnywghhBBCCCGEEEIIifF/AQoonA1mXS9TAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADnaklEQVR4nOydd3wcxdmAn707dVnNluTejY1LbDDNGLCpBkwxYHrAdEKvgZBCTaghgUBoIYAB8xF6S+gt9A4BjMGAsY17lWTVK/P9sXenvbmZvZV8ku6keX4/6e6mvu/O7Mw77+7OWkIIgcFgMBgMBoPBYDAYDAaDwWDA19UCGAwGg8FgMBgMBoPBYDAYDJmCcZYZDAaDwWAwGAwGg8FgMBgMUYyzzGAwGAwGg8FgMBgMBoPBYIhinGUGg8FgMBgMBoPBYDAYDAZDFOMsMxgMBoPBYDAYDAaDwWAwGKIYZ5nBYDAYDAaDwWAwGAwGg8EQxTjLDAaDwWAwGAwGg8FgMBgMhijGWWYwGAwGg8FgMBgMBoPBYDBEMc4yg8FgMBgMBoPBYDAYDAaDIYpxlhl6BJdffjmWZXW1GJ3G9OnTGT9+fFrLHDp0KMcdd1xayzQYDIauxrIsLr/88q4WIyXHHXccQ4cOTQhLt+zTp09n+vTpaSsvExk6dCj77bdf2sp74403sCyLxx57LGVaL2143333YVkWP/30k+e633jjjbYJbTAYDFlGW8bG7szSpUvJz8/nnXfeiYep5pZsQTWPHXHEERx22GFdJ5QD4ywzZC2LFi3izDPPZIsttqCwsJDCwkLGjh3LGWecwf/+97+uFq/NWJbFmWee2dViGAyGLOW2227Dsiy23377rhal2/HTTz9hWVb8z+/3M3jwYA466CA+//zzrhavTcyfP5/LL788oxYcMWM59peTk8Pw4cM59thj+fHHH7tavC7ntttu47777utqMQzdiJjj4eOPP+5qUTqMpUuXcsUVV7DddttRXl5Onz59mD59Oq+88krKvCeffDKWZW22Y33Tpk1cdtlljB8/nqKiInr37s2kSZM455xzWL58+WaVnYk0NDRw+eWXd6kDP3aDhO5v5cqVXSZbOrjyyivZfvvtmTp1aofVIc/Jfr+fqqoqZs+ezTfffNNh9ca4+OKLefzxx/niiy86vK5UBLpaAIOhPTz33HMcfvjhBAIBjj76aCZOnIjP52PBggU88cQT3H777SxatIghQ4YA8Pvf/57f/OY3XSy1wWAwdBzz5s1j6NChfPjhh3z//feMHDmyq0Xqdhx55JHsu+++hMNhvvnmG26//Xaef/553n//fSZNmtTp8jQ2NhIItM2Umz9/PldccQXTp09PuhL90ksvpVG6tnP22Wez7bbbEgwG+fTTT7nrrrv497//zZdffkn//v27VLZ08I9//INIJOKa5phjjuGII44gLy8vHnbbbbfRp0+fpLu7d9llFxobG8nNze0IcQ2GrObpp5/muuuuY9asWcyZM4dQKMT999/PnnvuyT333MPxxx+vzPfxxx9z3333kZ+fv1n1B4NBdtllFxYsWMCcOXM466yz2LRpE19//TUPPfQQBx10ULcY15w0NDRwxRVXAHT5Xcq33347xcXFSeFlZWWdL0yaWLNmDXPnzmXu3LkJ4V7mlvbgnJP/97//cccdd/DGG2/w1Vdf0bdv37TXF2OrrbZim2224cYbb+T+++/vsHq8YJxlhqzjhx9+4IgjjmDIkCG8+uqr9OvXLyH+uuuu47bbbsPna71xMhAItHlBYTAYDNnCokWLePfdd3niiSc49dRTmTdvHpdddlnKfKFQiEgkYhbbHtl666355S9/Gf89depUDjjgAG6//XbuvPNOZZ76+nqKioo6RJ7NXczJdHU/2HnnnZk9ezYAxx9/PFtssQVnn302c+fO5ZJLLlHm6cjjm25ycnJSpvH7/fj9fk/l+Xy+tPcBg6G7sOuuu7JkyRL69OkTD/vVr37FpEmTuPTSS5XOMiEEZ599NsceeyyvvvrqZtX/1FNP8dlnnzFv3jyOOuqohLimpiZaWlo2q3yDO7Nnz05oey80NTWRm5ubsIaMsblzTSQSoaWlZbPG7AcffJBAIMD++++fEO5lbmkPzjkZYPTo0Zx22mncf//9XHTRRR1SZ4zDDjuMyy67jNtuu03p9OwszGOYhqzj+uuvp76+nnvvvTfJUQa2Y+zss89m0KBB8TB5z7Lx48ez6667JuWNRCIMGDAgYWCIRCLcdNNNjBs3jvz8fKqrqzn11FPZsGFDQt7YPihvv/022223Hfn5+QwfPjytHvGnn36amTNn0r9/f/Ly8hgxYgRXXXUV4XBYmf6TTz5hxx13pKCggGHDhnHHHXckpWlubuayyy5j5MiR5OXlMWjQIC666CKam5tdZQkGg1xxxRWMGjWK/Px8evfuzU477cTLL7+cFl0NBoN35s2bR3l5OTNnzmT27NnMmzcvKU3sUcI///nP3HTTTYwYMYK8vDzmz58P2Lfdb7PNNuTn5zNixAjuvPNO5X6PsUfGH330UcaOHUtBQQFTpkzhyy+/BODOO+9k5MiR5OfnM3369KTH/d566y0OPfRQBg8eHB9zzjvvPBobG+NpVq9eTWVlJdOnT0cIEQ///vvvKSoq4vDDD4+HeR3DmpubOe+886isrKRXr14ccMAB/Pzzz+074FF22203wHZWQuujTW+++Sann346VVVVDBw4MJ7++eefZ+edd6aoqIhevXoxc+ZMvv7666Ryn3rqKcaPH09+fj7jx4/nySefVNav2rNs2bJlnHjiifF5YtiwYZx22mm0tLRw3333ceihhwL2QjL2iEXskRnVnmWrV6/mxBNPpLq6mvz8fCZOnJh0VdvZt+66665439p222356KOPPB9PGfn4xvrj/PnzOeqooygvL2ennXYCbMfvVVddFa976NCh/Pa3v9XOZS+99BKTJk0iPz+fsWPH8sQTTyTEr1+/ngsvvJAJEyZQXFxMSUkJ++yzj/axkHA4zG9/+1v69u1LUVERBxxwAEuXLk1I42VfGXlfnqFDh/L111/z5ptvxtsr1ka6Pcs++OAD9t57b0pLSyksLGTatGkJ+9sA1NXVce655zJ06FDy8vKoqqpizz335NNPP3WVz9B9Oe644yguLmbJkiXst99+FBcXM2DAAP7+978D8OWXX7LbbrtRVFTEkCFDeOihhxLyt+WcWbx4MQcccABFRUVUVVVx3nnn8eKLL7a7P6sYN25ckrMkLy+Pfffdl59//pm6urqkPA888ABfffUVf/rTn7TlrlixggULFhAMBl3r/+GHHwCUj8vl5+dTUlIS/63bL1I1Zqxbt45jjjmGkpISysrKmDNnDl988QWWZSU9rh2bp51ziapMr2udjz/+mBkzZtCnT5/42uKEE04A7HmgsrISgCuuuCI+XjnnqAULFjB79mwqKirIz89nm2224ZlnnknS++uvv2a33XajoKCAgQMH8sc//jHtd07Fxs+HH36Y3//+9wwYMIDCwkJqa2vj58IPP/zAvvvuS69evTj66KMB22l2wQUXMGjQIPLy8hg9ejR//vOfE2wVaLWV5s2bx7hx48jLy+OFF14A4OGHH2by5Mn06tWLkpISJkyYwM0335xS5qeeeortt98+yXkkt2lHzck777wz0Nq3YyxbtowTTjiB6upq8vLyGDduHPfcc09S/p9//plZs2YlnPe6OXrPPfekvr6+y9eV5lYbQ9bx3HPPMXLkyM3al+fwww/n8ssvZ+XKlQm3kb799tssX76cI444Ih526qmnct9993H88cdz9tlns2jRIm699VY+++wz3nnnnQRv/vfff8/s2bM58cQTmTNnDvfccw/HHXcckydPZty4ce2WN8Z9991HcXEx559/PsXFxbz22mtceuml1NbWcsMNNySk3bBhA/vuuy+HHXYYRx55JI888ginnXYaubm58YktEolwwAEH8Pbbb3PKKaew5ZZb8uWXX/LXv/6V7777jqeeekory+WXX84111zDSSedxHbbbUdtbS0ff/wxn376KXvuuedm62owGLwzb948Dj74YHJzcznyyCO5/fbb+eijj9h2222T0t577700NTVxyimnkJeXR0VFBZ999hl77703/fr144orriAcDnPllVfGDV+Zt956i2eeeYYzzjgDgGuuuYb99tuPiy66iNtuu43TTz+dDRs2cP3113PCCSfw2muvxfM++uijNDQ0cNppp9G7d28+/PBDbrnlFn7++WceffRRAKqqqrj99ts59NBDueWWWzj77LOJRCIcd9xx9OrVi9tuuw1o2xh20kkn8eCDD3LUUUex44478tprrzFz5szNOu4xg7F3794J4aeffjqVlZVceuml1NfXA/YibM6cOcyYMYPrrruOhoYGbr/9dnbaaSc+++yzuKH70ksvccghhzB27FiuueYa1q1bx/HHH5/gdNOxfPlytttuOzZu3Mgpp5zCmDFjWLZsGY899hgNDQ3ssssunH322fztb3/jt7/9LVtuuSVA/FOmsbGR6dOn8/3333PmmWcybNgwHn30UY477jg2btzIOeeck5D+oYceoq6ujlNPPRXLsrj++us5+OCD+fHHH9t15Vt3fA899FBGjRrF1VdfHV+gnHTSScydO5fZs2dzwQUX8MEHH3DNNdfwzTffJDkbFy5cyOGHH86vfvUr5syZw7333suhhx7KCy+8EJ+/fvzxR5566ikOPfRQhg0bxqpVq7jzzjuZNm0a8+fPT3p86k9/+hOWZXHxxRezevVqbrrpJvbYYw8+//xzCgoK2qx7jJtuuomzzjqL4uJifve73wFQXV2tTf/aa6+xzz77MHnyZC677DJ8Ph/33nsvu+22G2+99RbbbbcdYN9h89hjj3HmmWcyduxY1q1bx9tvv80333zD1ltv3W55DdlNOBxmn332YZddduH6669n3rx5nHnmmRQVFfG73/2Oo48+moMPPpg77riDY489lilTpjBs2DDA+zlTX1/PbrvtxooVKzjnnHPo27cvDz30EK+//nqSPF77c1tYuXJlfK9jJ3V1dVx88cVxp7eOSy65hLlz57Jo0SJX53dsK5j777+f3//+92l50VgkEmH//ffnww8/5LTTTmPMmDE8/fTTzJkzJyntv//9bw4//HAmTJjANddcw4YNGzjxxBMZMGBAUlova53Vq1ez1157UVlZyW9+8xvKysr46aef4hcaKisruf322znttNM46KCDOPjggwH4xS9+AdgOsKlTpzJgwAB+85vfUFRUxCOPPMKsWbN4/PHHOeiggwC7fXbddVdCoVA83V133dXmcXT9+vVJYYFAIOkxzKuuuorc3FwuvPBCmpub43dYh0IhZsyYwU477cSf//xnCgsLEUJwwAEH8Prrr3PiiScyadIkXnzxRX7961+zbNky/vrXvyaU/dprr/HII49w5pln0qdPH4YOHcrLL7/MkUceye677851110HwDfffMM777yTNKc6CQaDfPTRR5x22mmej0G65+TYRZzy8vJ42KpVq9hhhx3izsHKykqef/55TjzxRGprazn33HMB257YfffdWbJkCWeffTb9+/fngQceSLAPncQuxr7zzjvxvtElCIMhi6ipqRGAmDVrVlLchg0bxJo1a+J/DQ0N8bjLLrtMOLv7t99+KwBxyy23JJRx+umni+Li4njet956SwBi3rx5CeleeOGFpPAhQ4YIQPz3v/+Nh61evVrk5eWJCy64IKVugDjjjDNc0zh1inHqqaeKwsJC0dTUFA+bNm2aAMSNN94YD2tubhaTJk0SVVVVoqWlRQghxAMPPCB8Pp946623Esq84447BCDeeeedBP3mzJkT/z1x4kQxc+bMlHoZDIaO5eOPPxaAePnll4UQQkQiETFw4EBxzjnnJKRbtGiRAERJSYlYvXp1Qtz+++8vCgsLxbJly+JhCxcuFIFAQMimAiDy8vLEokWL4mF33nmnAETfvn1FbW1tPPySSy4RQEJa1Th2zTXXCMuyxOLFixPCjzzySFFYWCi+++47ccMNNwhAPPXUU/F4r2PY559/LgBx+umnJ6Q76qijBCAuu+yyJJmcxI7dFVdcIdasWSNWrlwp3njjDbHVVlsJQDz++ONCCCHuvfdeAYiddtpJhEKheP66ujpRVlYmTj755IRyV65cKUpLSxPCJ02aJPr16yc2btwYD3vppZcEIIYMGZKQX5b92GOPFT6fT3z00UdJOkQiESGEEI8++qgAxOuvv56UZtq0aWLatGnx3zfddJMAxIMPPhgPa2lpEVOmTBHFxcXxto4dn969e4v169fH0z799NMCEM8++2xSXU5ef/11AYh77rlHrFmzRixfvlz8+9//FkOHDhWWZcX1ic3lRx55ZEL+WPuedNJJCeEXXnihAMRrr70WD4vN1bE2E8K2Lfr16ye22mqreFhTU5MIh8MJ5S1atEjk5eWJK6+8Mkn2AQMGJPT9Rx55RADi5ptvjofNmTMnZRvG+pDznBk3blxCu8h1x9oyEomIUaNGiRkzZsTbWwj7nBs2bJjYc88942GlpaUpbQ5D9yXWz5xjxZw5cwQgrr766njYhg0bREFBgbAsSzz88MPx8AULFiT1Xa/nzI033pg0ljc2NooxY8a0uz97ZeHChSI/P18cc8wxSXEXXnihGDZsWNyeHjJkiNLOjR0n5zmqoqGhQYwePTo+dh933HHin//8p1i1alVSWnnsddblHDMef/xxAYibbropHhYOh8Vuu+0mAHHvvffGwydMmCAGDhwo6urq4mFvvPFG0lzida3z5JNPJvUZmTVr1mjn1N13311MmDAhYb0SiUTEjjvuKEaNGhUPO/fccwUgPvjgg3jY6tWrRWlpqafjHpsnVH+jR4+Op4uNn8OHD0+yS2Jt/Jvf/CYh/KmnnhKA+OMf/5gQPnv2bGFZlvj+++/jYYDw+Xzi66+/Tkh7zjnniJKSkgQbwQvff/+9cu0ak9fZph0xJ7/wwgti5MiRwrIs8eGHH8bTnnjiiaJfv35i7dq1CWUcccQRorS0NH5sY/bEI488Ek9TX18vRo4cqbVJtthiC7HPPvu4ytrRmMcwDVlFbW0tgPLZ5enTp1NZWRn/i902rmKLLbZg0qRJ/Otf/4qHhcNhHnvsMfbff//41YtHH32U0tJS9txzT9auXRv/mzx5MsXFxUlXwcaOHRu/RRXsqyyjR49O29u8nFdV6urqWLt2LTvvvDMNDQ0sWLAgIW0gEODUU0+N/87NzeXUU09l9erVfPLJJ3H9ttxyS8aMGZOgX+zRF9VVvhhlZWV8/fXXLFy4MC26GQyG9jFv3jyqq6vjj5ZblsXhhx/Oww8/rHxE+5BDDkm4YywcDvPKK68wa9ashLtlRo4cyT777KOsc/fdd0+4oh670/eQQw6hV69eSeHOMdA5jtXX17N27Vp23HFHhBB89tlnCfXceuutlJaWMnv2bP7whz9wzDHHcOCBB8bjvY5h//nPfwB7s1onsSueXrnsssuorKykb9++TJ8+nR9++IHrrrsufgU9xsknn5yw79TLL7/Mxo0bOfLIIxPk9Pv9bL/99nE5V6xYweeff86cOXMoLS2N599zzz0ZO3asq2yRSISnnnqK/fffn2222SYpvj13NfznP/+hb9++HHnkkfGwnJwczj77bDZt2sSbb76ZkP7www9PuOIcmw+9zoEnnHAClZWV9O/fn5kzZ1JfX8/cuXOT9PnVr36VJCfA+eefnxB+wQUXAPYdFk769++fcKW6pKSEY489ls8++yz+prS8vLz4vjXhcJh169ZRXFzM6NGjlY8qHnvssQl9f/bs2fTr1y8uW2fw+eefs3DhQo466ijWrVsX72f19fXsvvvu/Pe//40/ylRWVsYHH3zQLd/IZ9g8TjrppPj3srIyRo8eTVFREYcddlg8fPTo0ZSVlSWc217PmRdeeIEBAwZwwAEHxMPy8/M5+eSTE+RoS3/2QkNDA4ceeigFBQVce+21CXHfffcdN998MzfccEPCyzVU3HfffQghUj5SXVBQwAcffMCvf/3reL4TTzyRfv36cdZZZ6Xc7kTFCy+8QE5OTsKx8vl88bu8Yyxfvpwvv/ySY489NmHNNG3aNCZMmJCQ1utaJ3ZH1nPPPZfyEVSZ9evX89prr3HYYYfF1y9r165l3bp1zJgxg4ULF7Js2TLAHs932GGHhLsGKysr449BeuXxxx/n5ZdfTvi79957k9LNmTNHe9eafBfXf/7zH/x+f5ItccEFFyCE4Pnnn08InzZtWtLcXVZW1q7HC9etWwck3tWVinTOyXvvvTc1NTU88MAD8acWhBA8/vjj7L///gghEvrPjBkzqKmpiZ/7//nPf+jXr1/CVkeFhYWccsop2vrLy8tZu3atZ307AvMYpiGriBmimzZtSoq78847qaurY9WqVQkbMOs4/PDD+e1vf8uyZcsYMGAAb7zxBqtXr07YC2fhwoXU1NRQVVWlLGP16tUJvwcPHpyUpry8POmZ//by9ddf8/vf/57XXnst7jiMUVNTk/C7f//+SRtRbrHFFoB9G+0OO+zAwoUL+eabb7SPWsn6Obnyyis58MAD2WKLLRg/fjx77703xxxzTPx2a4PB0PGEw2Eefvhhdt111/i+TmA7qW688UZeffVV9tprr4Q8sUdmYqxevZrGxkbl2zN1b9SUx7qYY8e5V6Qz3DkGLlmyhEsvvZRnnnkmaWyUx7GKigr+9re/ceihh1JdXc3f/va3hHivY9jixYvx+XyMGDEiIX706NHKfDpOOeUUDj30UHw+H2VlZfF9SGTkYxy7qBBz4snE9q5ZvHgxAKNGjUpKo3PSxFizZg21tbWMHz/emzIeWLx4MaNGjUra7Dj22GZM3hhyv4gZ6V7nwEsvvZSdd94Zv99Pnz592HLLLZUv55GPb6x95f7at29fysrKkuQcOXJkkvPQOT/27duXSCTCzTffzG233caiRYsSHM/yY6GQ3GaWZTFy5MikPfs6klg/Uz2SFaOmpoby8nKuv/565syZw6BBg5g8eTL77rsvxx57LMOHD+8scQ0ZSH5+ftJ4WlpaysCBA5POmdLS0oRz2+s5s3jxYkaMGJFUnnz+tqU/pyIcDnPEEUcwf/58nn/++aTHqM855xx23HFHDjnkkJRltYXS0lKuv/56rr/+ehYvXsyrr77Kn//85/iFoD/+8Y9tKm/x4sX069cv6RFS+djFxjzdvO6cS7yudaZNm8YhhxzCFVdcwV//+lemT5/OrFmzOOqoo1I6GL///nuEEPzhD3/gD3/4g7aeAQMGsHjxYuVWO22dr3fZZRdPG/zL80mMQCCQtP3B4sWL6d+/f8KFEdDPiaqyTz/9dB555BH22WcfBgwYwF577cVhhx3G3nvvnVJWIGlvNDfSNSdv2rSJJ598kocffjjBHlizZg0bN27krrvu4q677lKW4bTDVHOvW7sKIdLy+PLmYJxlhqyitLSUfv368dVXXyXFxQZWr4bp4YcfziWXXMKjjz7KueeeyyOPPEJpaWnCYBWJRKiqqlJulg0kGRS6N1i1ZWDTsXHjRqZNm0ZJSQlXXnklI0aMID8/n08//ZSLL764XRtfRiIRJkyYwF/+8hdlvLzwdbLLLrvwww8/8PTTT/PSSy9x991389e//pU77rgj4aqkwWDoOF577TVWrFjBww8/zMMPP5wUP2/evCRn2ebsnxRDN9alGgPD4TB77rkn69ev5+KLL2bMmDEUFRWxbNkyjjvuOOU49uKLLwK2cffzzz8n7DeyOWNYexg1ahR77LFHynTyMY7p9cADDyj3wukub2ve3DlwwoQJ7Tq+MdJpVF999dX84Q9/4IQTTuCqq66ioqICn8/Hueeem/aNptNFTK4bbriBSZMmKdPE7jI57LDD2HnnnXnyySd56aWXuOGGG7juuut44okntHeUGro/7R3bIf3nTFv6cypOPvlknnvuOebNm5d00eK1117jhRde4IknnkhYQ4RCIRobG/npp5+oqKhI2JC/PQwZMoQTTjiBgw46iOHDhzNv3ry4s8yyLOU4qXuBVzrxutaxLIvHHnuM999/n2effZYXX3yRE044gRtvvJH333/ftS1ibXnhhRcyY8YMZRrdxbmORjefOO+UTGfZVVVVfP7557z44os8//zzPP/889x7770ce+yxSS/PcRJzOLflBox0zsmzZs2ioaGBk08+mZ122olBgwbF2/WXv/yl1qm9OTdRbNiwQXnxsDPpHtaZoUcxc+ZM7r77bj788MN2bewZY9iwYWy33Xb861//4swzz+SJJ55g1qxZCVdHRowYwSuvvMLUqVPTssDcHN544w3WrVvHE088wS677BIPd95N4mT58uVJrzn+7rvvAOK3jo8YMYIvvviC3XffvV2LjIqKCo4//niOP/54Nm3axC677MLll19unGUGQycxb948qqqqlI+dP/HEEzz55JPccccdruNXVVUV+fn5fP/990lxqrDN4csvv+S7775j7ty5HHvssfFw3eMIL7zwAnfffTcXXXQR8+bNY86cOXzwwQdx55LXMWzIkCFEIhF++OGHhKuY3377bZo0cyd2R1tVVZWrMyi2IbTq8fZUslZWVlJSUqK8mOSkLWP9kCFD+N///kckEklYNMQe+4/J29XE2nfhwoUJLytYtWoVGzduTJIzdpeD81jI8+Njjz3Grrvuyj//+c+EvBs3blTerSC3mRCC77//Pi13W3tts1g/Kykp8eR07NevH6effjqnn346q1evZuutt+ZPf/qTcZYZ2oXXc2bIkCHMnz8/6RyU55u29mcdv/71r7n33nu56aabEh4pj7FkyRKApMfpwX7L37Bhw/jrX//a5sf2dZSXlzNixIiEsbq8vFz5aJx8p9KQIUN4/fXXaWhoSLi7TD52sTHPy7ze1rXODjvswA477MCf/vQnHnroIY4++mgefvhhTjrpJO1YFbtjNScnJ2VbDhkypF1zYGcwZMgQXnnlFerq6hLuLmvrnJibm8v+++/P/vvvTyQS4fTTT+fOO+/kD3/4g+sd/QUFBdp1X2dw7bXX8uSTT/KnP/2JO+64I/528XA47Kldv/rqq6TzXteuoVCIpUuXJjyu3RWYPcsMWcdFF11EYWEhJ5xwAqtWrUqKb8tdXIcffjjvv/8+99xzD2vXrk14BBPsK6/hcJirrroqKW8oFGLjxo1tlr+9xK4OOPVraWmJvxVOJhQKceeddyakvfPOO6msrGTy5MmArd+yZcv4xz/+kZS/sbEx/hY3FbFn52MUFxczcuTIdu3BYDAY2k5jYyNPPPEE++23H7Nnz076O/PMM6mrq1O+lt2J3+9njz324KmnnkrYv+j7779P2n9jc1GNY0II5SvTN27cGH/b7tVXX83dd9/Np59+ytVXXx1P43UMiy3+5cc4b7rpps3WyQszZsygpKSEq6++WrnXy5o1awDbeTFp0iTmzp2b8Ejqyy+/zPz5813r8Pl8zJo1i2effZaPP/44KT52zGMXULzMX/vuuy8rV65M2N8zFApxyy23UFxczLRp01KW0Rnsu+++QHJ7xu44lN96unz58oQ3ZNbW1nL//fczadKk+J1/fr8/yZ549NFH4/vqyNx///3U1dXFfz/22GOsWLEiLY6noqIiT+01efJkRowYwZ///GfldhWxfhYOh5Meea6qqqJ///5mDje0G6/nzIwZM1i2bFnC3NTU1JQ0jnvtz27ccMMN/PnPf+a3v/2t9k2Du+22G08++WTSX2VlJdtssw1PPvkk+++/fzz9ihUrWLBgQcp9u7744gvlfkuLFy9m/vz5CRduRowYwYIFCxJ0+uKLL3jnnXcS8s6YMYNgMJhwrCKRSNIFs/79+zN+/Hjuv//+hGP35ptv8uWXXyak9brW2bBhQ1L7xu74i40bMQeePF5VVVUxffp07rzzTlasWJFUj1Pvfffdl/fff58PP/wwIV5351tnsu+++xIOh7n11lsTwv/6179iWZan8V5eP/l8vvhFFbfxNycnh2222UY5v3cWI0aM4JBDDuG+++5j5cqV+P1+DjnkEB5//HHlhTq5XZcvX85jjz0WD2toaNA+vjl//nyamprYcccd069IGzB3lhmyjlGjRvHQQw9x5JFHMnr0aI4++mgmTpyIEIJFixbx0EMP4fP5kp4zV3HYYYdx4YUXcuGFF1JRUZHkFZ82bRqnnnoq11xzDZ9//jl77bUXOTk5LFy4kEcffZSbb745YaPCzeXjjz9W7l8wffp0dtxxR8rLy5kzZw5nn302lmXxwAMPaJ2D/fv357rrruOnn35iiy224F//+heff/45d911V/x1wccccwyPPPIIv/rVr3j99deZOnUq4XCYBQsW8Mgjj/Diiy8qN4oG+2UG06dPZ/LkyVRUVPDxxx/HX0NvMBg6nmeeeYa6ujrtVbcddtiByspK5s2bl3QhQObyyy/npZdeYurUqZx22mlxY3D8+PF8/vnnaZN5zJgxjBgxggsvvJBly5ZRUlLC448/rnys4JxzzmHdunW88sor+P1+9t57b0466ST++Mc/cuCBBzJx4kTPY9ikSZM48sgjue2226ipqWHHHXfk1VdfTfudczpKSkq4/fbbOeaYY9h666054ogjqKysZMmSJfz73/9m6tSpceP7mmuuYebMmey0006ccMIJrF+/nltuuYVx48YpF4xOrr76al566SWmTZvGKaecwpZbbsmKFSt49NFHefvttykrK2PSpEn4/X6uu+46ampqyMvLY7fddlPuV3PKKadw5513ctxxx/HJJ58wdOhQHnvsMd555x1uuummpH1buoqJEycyZ84c7rrrrviWBR9++CFz585l1qxZ8ZdfxNhiiy048cQT+eijj6iuruaee+5h1apVCZs/77ffflx55ZUcf/zx7Ljjjnz55ZfMmzdPu6dXRUUFO+20E8cffzyrVq3ipptuYuTIkUmblreHyZMnc/vtt/PHP/6RkSNHUlVVpdz/zufzcffdd7PPPvswbtw4jj/+eAYMGMCyZct4/fXXKSkp4dlnn6Wuro6BAwcye/ZsJk6cSHFxMa+88gofffQRN95442bLa+iZeD1nTj31VG699VaOPPJIzjnnHPr168e8efPIz88HWu+k9NqfdTz55JNcdNFFjBo1ii233JIHH3wwIX7PPfekurqawYMHK/ccPvfcc6murmbWrFkJ4Zdccglz585l0aJFrpv8v/zyy1x22WUccMAB7LDDDhQXF/Pjjz9yzz330NzczOWXXx5Pe8IJJ/CXv/yFGTNmcOKJJ7J69WruuOMOxo0bl7BH8axZs9huu+244IIL+P777xkzZgzPPPMM69evTzh2YM8HBx54IFOnTuX4449nw4YN8XndOZd4XevMnTuX2267jYMOOogRI0ZQV1fHP/7xD0pKSuIXLAoKChg7diz/+te/2GKLLaioqGD8+PGMHz+ev//97+y0005MmDCBk08+meHDh7Nq1Sree+89fv75Z7744gvAvinigQceYO+99+acc86hqKiIu+66K36ns1cee+wx5aOhsXZvD/vvvz+77rorv/vd7/jpp5+YOHEiL730Ek8//TTnnntu0r6oKk466STWr1/PbrvtxsCBA1m8eDG33HILkyZNSrgzWsWBBx7I7373O2prazf7seD28utf/5pHHnmEm266iWuvvZZrr72W119/ne23356TTz6ZsWPHsn79ej799FNeeeWVeN88+eSTufXWWzn22GP55JNP6NevHw888EDS/nsxXn75ZQoLC9lzzz07U71kOuelmwZD+vn+++/FaaedJkaOHCny8/NFQUGBGDNmjPjVr34lPv/884S0sdcIq5g6darylfNO7rrrLjF58mRRUFAgevXqJSZMmCAuuugisXz58nga3Sumda+DlkHzmmNAXHXVVUIIId555x2xww47iIKCAtG/f39x0UUXiRdffDHplbvTpk0T48aNEx9//LGYMmWKyM/PF0OGDBG33nprUr0tLS3iuuuuE+PGjRN5eXmivLxcTJ48WVxxxRWipqYmQb85c+bEf//xj38U2223nSgrK4sf+z/96U+ipaUlpa4Gg2Hz2X///UV+fr6or6/XpjnuuONETk6OWLt2bfxV4jfccIMy7auvviq22morkZubK0aMGCHuvvtuccEFF4j8/PyEdIA444wzEsJ0ZcdeP/7oo4/Gw+bPny/22GMPUVxcLPr06SNOPvlk8cUXXyS89j72evMbb7wxobza2loxZMgQMXHixPhY43UMa2xsFGeffbbo3bu3KCoqEvvvv79YunSp9jX3XvSTuffeewUgPvroI2X866+/LmbMmCFKS0tFfn6+GDFihDjuuOPExx9/nJDu8ccfF1tuuaXIy8sTY8eOFU888UTSq+GFEErZFy9eLI499lhRWVkp8vLyxPDhw8UZZ5whmpub42n+8Y9/iOHDhwu/358wf6jmq1WrVonjjz9e9OnTR+Tm5ooJEybE28nL8fFyfFX9REVsLl+zZk1SXDAYFFdccYUYNmyYyMnJEYMGDRKXXHKJaGpqSkgXm6tffPFF8Ytf/ELk5eWJMWPGJNXd1NQkLrjgAtGvXz9RUFAgpk6dKt57772kYxST/f/+7//EJZdcIqqqqkRBQYGYOXOmWLx4cUKZXtow1ocWLVoUD1u5cqWYOXOm6NWrlwDi9cfqds7/Qgjx2WefiYMPPlj07t1b5OXliSFDhojDDjtMvPrqq0IIIZqbm8Wvf/1rMXHiRNGrVy9RVFQkJk6cKG677TaXo2/oTqjGqjlz5oiioqKktDGbUka2e72eM0II8eOPP4qZM2eKgoICUVlZKS644ALx+OOPC0C8//77CWlT9WcdsfFC9yefN6n0izFnzpykc1TFjz/+KC699FKxww47iKqqKhEIBERlZaWYOXOmeO2115LSP/jgg2L48OEiNzdXTJo0Sbz44ovKMWPNmjXiqKOOEr169RKlpaXiuOOOE++8844AxMMPP5yQ9uGHHxZjxowReXl5Yvz48eKZZ54RhxxyiBgzZkxS/anWOp9++qk48sgjxeDBg0VeXp6oqqoS++23X9L89e6774rJkyeL3NzcpPHthx9+EMcee6zo27evyMnJEQMGDBD77befeOyxxxLK+N///iemTZsm8vPzxYABA8RVV10l/vnPf3o67l7b3W3e0Z0LQghRV1cnzjvvPNG/f3+Rk5MjRo0aJW644QYRiUQS0qlsJSGEeOyxx8Ree+0lqqqqRG5urhg8eLA49dRTxYoVK1z1EsKejwOBgHjggQeS5HX2k46ek6dPny5KSkrExo0b43KdccYZYtCgQSInJ0f07dtX7L777uKuu+5KyLd48WJxwAEHiMLCQtGnTx9xzjnniBdeeEF5Pm6//fbil7/8paucnYElRBp2HjcYDAaDwdDtmDVrFl9//bVy/xCDwWAwGNLFTTfdxHnnncfPP//MgAEDulqcrOKpp57ioIMO4u2332bq1KmuaSdNmkRlZaV2r1BDZnPiiSfy3Xff8dZbb3W1KB3G559/ztZbb82nn36qfblHZ2H2LDMYDAaDwUBjY2PC74ULF/Kf//yH6dOnd41ABoPBYOiWyPNNU1MTd955J6NGjTKOshTIxy4cDnPLLbdQUlLC1ltvHQ8PBoOEQqGEtG+88QZffPGFmdezmMsuu4yPPvooaT+77sS1117L7Nmzu9xRBmDuLDMYDAaDwUC/fv047rjjGD58OIsXL+b222+nubmZzz77rMtf3W0wGAyG7sM+++zD4MGDmTRpEjU1NTz44IN8/fXXzJs3j6OOOqqrxctoTjrpJBobG5kyZQrNzc088cQTvPvuu1x99dVccskl8XQ//fQTe+yxB7/85S/p378/CxYs4I477qC0tJSvvvqK3r17d6EWBkN2YDb4NxgMBoPBwN57783//d//sXLlSvLy8pgyZQpXX321cZQZDAaDIa3MmDGDu+++m3nz5hEOhxk7diwPP/xwypfRGOy3d954440899xzNDU1MXLkSG655ZakF2yVl5czefJk7r77btasWUNRUREzZ87k2muvNY4yg8EjGX1n2d///nduuOEGVq5cycSJE7nlllvYbrvtulosg8FgMHQjzFxjMBgMho7EzDMGg8GQfWTsnmX/+te/OP/887nsssv49NNPmThxIjNmzGD16tVdLZrBYDAYuglmrjEYDAZDR2LmGYPBYMhOMvbOsu23355tt92WW2+9FYBIJMKgQYM466yz+M1vftPF0hkMBoOhO2DmGoPBYDB0JGaeMRgMhuwkI/csa2lp4ZNPPknYpNDn87HHHnvw3nvvKfM0NzfT3Nwc/x2JRFi/fj29e/fGsqwOl9lgMBi6O0II6urq6N+/Pz5fxt6Y7Jm2zjVmnjEYDIaOxcwzZp4xGAyGjqQt80xGOsvWrl1LOBymuro6Iby6upoFCxYo81xzzTVcccUVnSGewWAw9GiWLl3KwIEDu1qMzaatc42ZZwwGg6FzMPOMwWAwGDoSL/NMRjrL2sMll1zC+eefH/9dU1PD4MGDmYC9MZsF6J43jV2nEY7fwhGOI97SfHcrT44TJMrjrEcng7MsVV65TFW9buU76zc6qsuT44yOahkyScfgWGiaDuRqBHETQCVsqgOpyqdSVncgZXQNo4r3IqeuDI86Rprhp9uhV69emoK7N7p5ZuYuEAi491EZXbN76eu4/NblSdVt2iqHW5hcj9FRLS8uv3V5jI6Zp2N9MSwdCMEcSVhZARTxzgLNPGPmGfTzzFKgpOvEMhgMXU1NTVdL0G2ora1l0KBBnuaZjHSW9enTB7/fz6pVqxLCV61aRd++fZV58vLyyMvLSwr3R/9kvNoUKhtEZ0PIcXK8m7PAq2NCV5YKo6O+Xq91q+KNjtmhY2gkBGeAL1dKoFtUtEUIXTpVHakOjkpBuRxdOreVXAfq2F0eBWnrXKObZ3IC9p9qoe/mBEh1brmdL6q1plur6LqZrly3coyOyXFGx9T1dDcdBdBUAMuHQTgXfG4TJy5hzgK9pFPVYeaZjCVd80wJxllmMPRYMnOL+azHyzyTkZsB5ObmMnnyZF599dV4WCQS4dVXX2XKlCmbXX5sjo8dHvkwWYowZ3isuzrLcdodzj+5PJ3toSpTVbcsgw6jo9Gxp+oIEB4MTXuBcF7p97KyUx0glRByOmd6S5PHGSbndcarwp3IdQhFXEfq2I1I51wjNwMkH06B+hDq+r/ctXSH33kuyHlUdejKV3UZlV7O70ZHdf1GRzXdScfmfFg8BFpyHQnNPKOW3cwzHbamMRgM3RzjKOtSMvLOMoDzzz+fOXPmsM0227Dddttx0003UV9fz/HHH9+mclQLaeccrzO45EW481O1QPdic+jsAJUdIsupKk9VvtExtUxGRz3dQcfwYGjcDyLFisJkZWKZ3Ix+lRDOMlSCpCrDbSEjpDh51aYa1HR0hI7djHTNNfL6L4bsBHDL58yjKy/2W7fId0uj6wKqc1RXpi6PTlZdmNHR6OiWJpN1BNtR9tNQaMxXZFAVaOaZZPnkMsw8YzAYDIkYR1mXk7HOssMPP5w1a9Zw6aWXsnLlSiZNmsQLL7yQtEGmF3QLf12YKlye290W/DoHgs4WUDkQBIn1udkyzu9GR/dwo2P31jE8SHKUuSnpzCwLLx8kWSGVgCpl3cLc0rjRloZU1bk5OnZD0jXX6M6NGG7nkWrdqmpGZzOrHACpuqfcxG5rcF39Rkd9WqOjWpfupKNA4Sgz80xynWaeSSCdaxqDwdBDMI6yjMASonu2RG1tLaWlpUwkcc8y2QDC8VuOV9EWo9EtzImqLl09crk6GVV1GR1T1210zE4dASJ9oOFQiPTSFJxKyfYcGK8rslSrL0hPQ3WwjpEW+PEme8PhkhKze0psnpm1m71nWQxVd5CbWoXbOac6r5zfvZy7XuJ1srvJanTU53OGyXmMjtmlowBCOfDjcGgo0Ahp5hkzz6SZ2DxTg9mzzGDoMXRP90zGEB9XPcwzGblnWbpRLcJj32VjSf7tZkQ5y5BtEqcN4AyT65XtHYtkeVW2kTOPLKfR0ejopCfoGKmAxv2jjjJVpXIhKiXlSlKFyYsQZzkWyUo460TKK8vm/K6Styt1NCShO8yq76qFfwzVoZa7krNMtzxeZJLzOPM65XXrSkZHo2NP0TEUgCWDo44ypITydzPPmHnGYDAY2oNxlGUU3d5Z5rQDkD5lQ0k2mmR7wlmWat5Hihck2zVyWTKp7BOdLkZHo2NP1TFSAY0HQrjSRUDdQkIuXGesq1Z2sXCV8PJiRaWQbrWmW8io6EodDXFUfV/1XUeq7qJb+7rlkc8tHW7NrapDzmN0TCzXTV6jY3bqKIBwAJYMgVr5goyZZ9TlmnnGYDAY2o5xlGUcGbtnWUcgOwtUcc40sqNAtiVU87nOSNPZK3I6XfkqW8WtfqNjskxGR3U5se/ZqGOCo0ylhMoYd1sUyPHywVCtopzpUxn5XhcBKjllGbpKR0MSzkOkahbd+hUSD7ET1fnp1rS6ZnUrV04n55XLVsmSqlxnHqOj0VFOI8uuK1dO15k6hgP2Wy9re5FYmJlnzDxjMBgM6cI4yjKSbn9nmRM3YykWr1u4O20D+c8i0QZwlqcywJz1yLaPbI+4GaYqWY2ORseeoqMogKYZDkdZLFJl+KfCbX6SFw0qgXRh8sFLVb4K1UovE3Q0JCCvDVXnmZwWEs9LVT5VF1Kd20jxqnW1bh2sks9NbqNjYlpnPUbH7qWj8MHy/g5HmaowM88k15NKBjPPGAwGQyvGUZaxdPs7y5yOA/m3ysiDZJvCbcEvhzvrkut1yys7OWScMsjOEFVdRkejo5uccl3ZpCOAKIDGmRAapBDEUoSlUki1MpORFXdbKTrjdcqp4lLV7fzdlToaElAdNmecLo/zU+VEkPPr1pjO9PK5KTe97OyQ6/HifDA6JocbHbufjsIHywbA+gpJAKewZp4x84zBYDBsDsZRltF0e2eZCtUc7rbwVzkGZIMu9l21yFcZZ6qyVHV5MU5VchsdEzE6dg8dgVZH2XCNIG4LCJ3wssEuCy0LI5etOphymOpg6fKq0mSSjgYtusW4Cufh9XLeupXtxVGRKszNwZGqHB1GR3UaL/UaHduez0s5OhKGOx8s6w/reoMw84yZZwwGg6EjMI6yjKfbP4apmtvlcDfjTmX8qeZ8OZ0qrfMvVZ06GVTyGh3d06pkl+XWpTM6ZpiOqRxlOgNdhbxgUC0+VAKlWnTIBzfVqlGXXl58ZJKOhiRSrfXkQ5pqsa9qXjeTStXUznNflVdOk0oHo6PR0S19d9ExEnOU9UHtKMuEMdjMMwaDwZDdGEdZVtDtnWUq48qJJaXVLeblMmNxqvQq41JlI6SSxy1etkeMjomyGx1b08Xisl7HADRPizrKdEJ4mXd0hr1clm61pcvjFFgO18mgWyHqDm4m6GhwxYvDwELdlPJh160ldcjnV1vW0M46Uq1VjY6JZRsdu4+OwoI1lVFHmTOBqkA3zDzT+t3MMwaDwWDIUrq9s0xlhHmxA1SGWaoLX3IaUOdx2g0qOdyMP4FaFqOjGqNj99CRADTtCi0TFELFFg9evHpyuGox4VTAKbSqHmf9qlWZbjWpkle1oMhEHQ1JqJrb+Sl/V+VVpXOW47bmREqnKt/NoaE633VyGh3VGB1bP7NWR8t2lK3sazvN4oVk2hhs5hmDwWDIbsxdZVlDt3eWgdomkOOcc7bKgNM5HJyfsrHoDJPToomXw1Wo5DQ6tn4aHZPJZh0JQNN0aJlEsoEtG9a6AyBXIC8e5N+6OUwpoBTnhu4gq1aH2apjD8RtfalDbibnuSB/1+WR451huvWq83tbmtPoqMbo2D10jPhgVRWs6AcRM89kvo4Gg8GQrRhHWVbRIzb49zJ3qwy6tlxYc+ZLdQrEbANBop2gckKksiNi8UbH1nC5DKNjMtmio/BHHWVbkeza96q08yC5Ge+yYKr8spJyebJ30Bmv8xzqypC/u4V1po4Gz8jNKzed6rfq8MvfVedaqjxeHAfOc9Srs8HoaHR0kzcbdBQWrKq2/0QqxXVhZp5JXbaZZwwGQ0/GOMmykm7vLJOvWqaa43VzuepKp5y+LXKoypZtCi/1qHQxOhod5TRudavKzQQdhQUtkyE4CdtR5rYikr1/bgsBucJUKy3VgVXFy7J4RT7A2aCjIQlVN0i1nkzlSFCVJ+fVnZtuTe7WZd2cEEZHdT1GR3V5ct5M1FFY9hsvV1eRuJm/ikwag808YzAYDAZDh9MjHsOUjTZnuDNMNrxU6OwHlbNAVW6qsmT5kH47HROqtEZHo6ObXNmiY8xR1rwzCL9GUJ1gOiFlAZ2CqNKqhJfj5QOnW1EKRR6drJmuoyEJt8NooT9X5fPErWy5yd0cF7qmkutylu38c8tndDQ66sg6HS3bSbZsgOPRS1w+M2UMNvOMwWAwZBfmrrKspds7y5x2hfMTkudt1eI91bwt2wgxhBSnqstySSvXLf9OlcfomPzb6Jj4GSMTdRRF0LwjCLd7X91WYSrDHynOrVxVXnl1ploYqBrGWa5qJerWaJmoo8EVt2aR08RQLfzdyol1IVU5qerWydKWJjY6qsszOiaTyTqG/bC2t71fmVaQTByDzTxjMBgM2YNxlGU13d5Z5sRtrpfn9FTOA2c++U+2W3QGni5OrltOpzJW5bxyPc5Po2NymNExs3QktnjxugprzzwkHxhdvMqQF1K8bmEhp1EdyGzT0ZCEauHvtblU563z3NSdi25N4taMct2p8stpjY5qjI7Zp6MvAj63SmNhmTYGm3nGYDAYDIZOods7y9zmcOe8LBuBOoeCpQiTy1M5E5zfVT4AlVGnS6NySoDRUa5XLsfomFxepuqYgEpIWTC5Qrly+SAJqSxnflUd8qdOSbfFgLxqVJWfDToaXPGyqNeteVXp3c5TuVxdGtW4oCpf17ztcVwYHZPjjI5tk6mzdEwKyPQx2MwzBoPBYDB0Ct1+g39Qz+dyvByeyuhTlS0U6VRhOrnktDrnhVy+qiyjY2IeVX06OY2O7nlVadOto1AFOCr3A6VhCAio80OzBRFVWlXFcri8CpQPkurTRbakulUH1a18VV63OjtTR10HMSjPiVSOA9XhdDaB7rDrzj05vyreGSaXr1sD62Q2Ohods1lH13lGLiRTxmCVcmaeMRgMBoOhQ+gRzjJ5Ho+hsg/c8ruFuZWhS6uTyxkmG5K6eoyORsdUMrilSZU2I3QUdpqt6+HU1TC2AXIFrA3Al4Xwdgk0WfB5EawPtMoQdlasM9RlRXRC68Lk787yVYp6lUF3MNxWmB2pY6oO2INJtdB3W+s6w3SLfxndmlflINCVpXNsuK29dWFGx2QZjY7qMjJFR62wcmKdQF0xBju/m3nGYDAYshtLMVCaPc4yim7vLLOkz1TpYsg2gGxTqAw1N5tCLlsVLzsa3C7AqeQ0OhoddXI406ni3MpWxXe0jklEM2zRCLf+BL2DrWWUh2BkExy0wf79TDksybWfMe8Vho0BKA7DyhxYmgff59vfmy0QsoDyd/mg6VZ9zjyqg5HqQDvDUq1W5ZWqSm7dwLe5OhrahW49qXMW6LqOM49b11U5MlI1o1x2W5vd6JhcrtFRHS6nyQQdEwTN5DHYzDMGg8HQPVA5ytzChbDjjDOtU+n2zjKvqBb6qng5zBkn2zKQbMfoHAYqe0KOQxHXFoyORsds0VFXaJMPWqSCQxa81wtCQG0Abq+Gn/LsuFwBORGoCsGIJthuExy/2n6M86sCeLUUviiEBufb0FRGvQ55BenMr1vAyPnlOuRy3FaDqo6QavGj+t5WHQ1adOeNytmgyqdKrzpvdc3spblUXVS1ztZ1O6NjYn5VPlV6o2Nm6SjkhLIwmTwGm3nGYDAYujcqp1gsTHaoGQdah9HtnWVuC/7Yb5UBpTMQUcSp0rrlEVK8m8NBlk+Vx+iYXIbRMVle1e9UebpKxyQZo5FLcuHCITB7HfQJ2XeVvVgG91VCMJom4sjTCDQGbCfa93nwUinkC9iyAfbZCNcsse88e6wCXimFVTnYd5upDppzweFlcaA7GG4LEmc6S/ouo6pLKOKc4bJO8m8vOhpc0TWJM8wtXyyP29rR7Tx2ojqvVGW55XGT1eiozyfXo8pndFSX01k6ahNn+hhs5hmDwWDIfmJ3ijl/tyVvDMtqLcc4zdJOt3eWgXrhL8elCneb8+XfstNB5QRI5UAQJNbnZq84vxsd3cONjlmmo1SAAD4qho+L7KgcYd9plvA4pUrYaFlCQKMPPi2Gz4pgbiUcvg5OWwUnr4a7q+Dpcqj1O+r3siKTD4hGfmUZnlZxivReGlJVp2qR5FVHgxbduRHD7TxSrYNVzehsZtUaNVX3lJtY1XXkPKpyjI7qtEZHtS6ZqqNw/pATuNGVY7CZZwwGg6H7kA7nlvNuM+M0Szu+rhagM7GkP1y+y3lku0BlszjTqYw02QhU1e90PKgMRpVsRkejY3fUMUEBKVJY9h1kzT6S7wRLpaRoTfZzHvylHxwzEr4qhN8sh3/+CNvUR6sSUpmx70IKUx0oOUzOq5PZyyLCo44Jn7pVant0NCSh6v9yV5CbQJfH+ak7z3DEy+G6euR4uUwv57FKXqOjOo/z0+iYeToqK8qWMdjMMwaDwWBwIoTacWbYLHqEs0w2/pzf5XnaDWceVZnOdLLDAum3rl5VGmfaVPmMjqkxOibLlrE6qgxvp9CyArIychpnfPRTWPBjHpw/BG7oB8Ob4PZFcOQ6e88z7UpQV5+skFu6TtJRK5dqhZxKR4Mrqc5TtzWsCrd1LZo4t3Wwap2rk1kXZ3Q0OqrIRh3jiWRhMnkMNvOMwWAwGHTITjPDZtHtnWXynO4Mj33Kc7gzTEhhKNJC8tzvzCunk8tw5lXVJRugKl2MjkbH7qRjQoRqnNcZ8Sg+5fxC8WfZb8e8vxLOGWpv+P+7ZXDeCsiLOMpJNefIqzIvc1Qn6hiPk8tLJYvBE6q+rTrf5PPYS7mqT1UaN1TnpmqscKZR6WN0NDrqyCYdXTOrhMiUMdjMMwaDwWBIhbnLLC2k3Vl2zTXXsO2229KrVy+qqqqYNWsW3377bUKapqYmzjjjDHr37k1xcTGHHHIIq1atSkizZMkSZs6cSWFhIVVVVfz6178mFAptlmyqRb88j+scBbEwN0eAHCbnbWseOb9QfNeVZXTUy2R0TC1jW/N0lI7ajKmMb5Wh7jwoqpUgELHgnV5w3lBYG4Dj1sC5KyBPtfLTrdhSye51YdNBOsbzWCTW46aPl9VtJ5Jp84xznahqFtUaEynO7RyQy9Wdm8588jkor2Wd6XR55bKNjsnlIsUZHbNPRyWZPAabeaZTyLR5xmAwGNqM/CIAQ5tJu7PszTff5IwzzuD999/n5ZdfJhgMstdee1FfXx9Pc9555/Hss8/y6KOP8uabb7J8+XIOPvjgeHw4HGbmzJm0tLTw7rvvMnfuXO677z4uvfTSzZItla2hW6irDC7ZoFPZJrI9oTIwLelTNgJ1xqicFkWY0TG5TKNj9uiYkEhnRMvGvspg94JI/PpZIVw50H4ZwHFr4IxV4Hdb+enCvKzOukBHVxm86tiFZOI8IzsH3NarziYVUlrVWhVFmOocdcbL56vze3ub2+ioTuusx+iYfTpm7Rhs5pkOJRPnGYPBYGgzxmG2WVhCdOzrEtasWUNVVRVvvvkmu+yyCzU1NVRWVvLQQw8xe/ZsABYsWMCWW27Je++9xw477MDzzz/Pfvvtx/Lly6murgbgjjvu4OKLL2bNmjXk5uYm1dPc3Exzc3P8d21tLYMGDWIi9is/ZRtAnqvdDoJsQ7jhTNuefLo8KptIpZOqvBhGR6OjLm2m6RjuC/VHg4i9r1dVoe6gyAKkEl5Tjg84YQ1cuNx+4+bvB8Gz5bS+UECeb2SFnXLoVpSqdJ2oY1I+WQ5Jx0gT/Hgz1NTUUFJSoimo8+nqeWbWbhAIaA+bJ+Sm0jWdrmzdOZYqv5d1tpzf6Oie31mX0VGfP5anq3QM5sC3o+3PpExOAXWCy2HOuA4ag80803V09TxTA2TO0TAYDJ7JlDdTmjdlxqmtraW0tNTTPNPhe5bV1NQAUFFRAcAnn3xCMBhkjz32iKcZM2YMgwcP5r333gPgvffeY8KECfGJBWDGjBnU1tby9ddfK+u55pprKC0tjf8NGjRIK5NwfMb+dMaUzl6xHGHO787uJ6R4S0rrLEtXl+UI15WtwuiYXL/RMXt0FDkgfFJhbsa9bpEgK6UTXj4A2G/bfKg3vNUL8iNw/goY0CKVIedXKSSHqeTvIh0TypAbzk3HDCOT5hkvC/kYuuaO/XZb06rqdeZxO39V+WR53DA6JmJ0zE4dhQWRLp5nEspoyxhs5plOJ5PmGYPBYGg35u6yNtGhzrJIJMK5557L1KlTGT9+PAArV64kNzeXsrKyhLTV1dWsXLkynsY5scTiY3EqLrnkEmpqauJ/S5cuBdwX+25hMYQiXucQUDkknGlVDg9dnToZVPIaHd3TqmSX5dalMzp2nY5JCVQrpViFslHv/K0zvnUGuyO8wQe394VNfujfAqesjj6OqSvDTWYVcgN0gY5K2VPpmEFkwjwDqRfx8iGVzxVderdm05Uvn8u6vHKaVDoYHY2ObumzTUdLgC8CWTkGm3mmU8mUecZgMBjajXkcs10EUidpP2eccQZfffUVb7/9dkdWA0BeXh55eXlJ4SrjyoklpZXtATcHga48VXws3GkYtiW/LI9cnpu8RkejY7p0FM7EfvtP+EEURON70froJGA1gtUk1dti/znlE2EgrKhDNuS9CJ4KlWEvLzYc3z8vhJfK4OB1sN8G+Fdv+LpAUb8so6o+Oa28WOgiHZWLGlX9XuruZDJhnnEinz9u57IcLzdV0rmXAmeTeTGDdKdZqrxGx+SyjY7p1VFYrZ8Rx7goLGjKj94RFsUXgfwmCPtaC/OHwYqQgBVNGyPio/WxelnJTB6DzTzT6WTaPGMwGAyGzqHDnGVnnnkmzz33HP/9738ZOHBgPLxv3760tLSwcePGhKsxq1atom/fvvE0H374YUJ5sbfLxNJ4RWWIebED5Dy6C2RuaeQw2T7ROTLc5FOFp3KE6DA6Gh11YTodQ2OgZZIdIQpA5AG+6Ce248xZoRXBfp7RSRAs6UVQVhMJTjWRLwmuWrHpDHUvB8CZx1mWYlESseDJCttRVhyGw9bB5QOjWeR88srTGZ9K3i7U0VX+tq7cO5FMmWd0TgrdmlHOq0unKkeVx60ON4eGXL7OMeIMMzqqMTqq87ZVR4C6ElhdCcJnO7RCgdZ4YUFYYbkGQg7nF1FnmTxOCsgJRusWEPZDyK8QKpPHYF0auS6dvNmgo5lnDAZDZ9AT9+4SgvhdZZbVM49BG0n7Y5hCCM4880yefPJJXnvtNYYNG5YQP3nyZHJycnj11VfjYd9++y1LlixhypQpAEyZMoUvv/yS1atXx9O8/PLLlJSUMHbs2LbLJH2Xf8c+22rs6WwDlQEqp0UTL4erUMlpdGz9NDomkw4dI9XQtAeEBkNoEIQrIVICkWIQAftPLkz4sPcfi8aLHBAF0Xy9on8ldlmxckODIFLmqFg22uUDoDLKdagMebkMxSLhywJYlGdH7VYLvUOKerzMN7qDnAE6JuXXrbQzgEybZ2QHhicdHHljv4Xmuy6PHO8MU/gJkr63pTmNjmqMjunVMZgLSwdCXS/YVAQNhdCSa/8Fc2zHWSyPsFq/B3PsO8silu00Cwai+XKif9Ey6ovtcjcVQ1OBo+LuNAabeSYtZNo8YzAY0ohxEhk8kvY7y8444wweeughnn76aXr16hV/Jr+0tJSCggJKS0s58cQTOf/886moqKCkpISzzjqLKVOmsMMOOwCw1157MXbsWI455hiuv/56Vq5cye9//3vOOOOMdt2a7GXuVhl0KjvBi+2Q6vSL2QaCRDtB5WhJZUfE4o2OreFyGUbHZNqqY6QAGveESKGLALKSsgKyV84Z78gXWAY586FxD2x3vqoM+btbmLMON+NdV7aARh+82wtGN0JlEH7RAK+VKsrzoqNqQZIBOibI63XB00Vk4jyjQm5euelUv1WHX/6uGk9S5fHiHHGOQ14dKkZHo6ObvG3RUfhgZV/bqdXR80xhI5RtgBX9SXwU001At7DOHIPNPNMpZMs8YzAY2khnOsrM3VtZjyVEelvQ0mwYd++993LccccB0NTUxAUXXMD//d//0dzczIwZM7jtttsSbklevHgxp512Gm+88QZFRUXMmTOHa6+9lkDAm38v9krQidhbK8Xli37qbAbVXC6nTeXAUOGWR2Wc6up0s1905erKNjrq5dXRI3X0QdPu0LKVS2Y3xWLxHgTyr4XChyFSAfVH0GqUO8vwInRblfSwmtxzI9z6E1gC7qiGv/Yj/shPgnxtOejycetiHVO1Y6QJfrwZT69a7kgybZ6ZtRvkSFlSrU+daeTvKuR41W9nHV6dJM68spxeZTI6Gh11aXW/ZfmwYG0fWDZAGlflglXCyRWlGIMDIRi10L4DbeGo6J5oWTIGm3mm88i0eaYG6LqjYTB0IzrLeRUbQzLRWeYc3zJRvg4mPq56mGfS7izLFJzOsgCJ9oV8UUsXBu42ie4iWaq65HLc8qg+5TpTfRodjY6bo2NwPDTNIGHjfleFVEKp0iri/SugaB6EB0jOMpc8yjplOXW4rQAddVjAvhvhz4shIGBtDvxyJPyQ13YdtTJ2sY5e2jHSAj/e1PWLmEwhNs8cuBvkBtwPtVtYDFUzei3HGe4W76zHa9dJNX54kTeG0dE9TJapJ+gI9uORi4a17k+WlCiN80xOCMYssO9gS3CWZcEYbOaZnodxlhkMaaSz7yrr7Dq9Ypxlnp1lad+zLNNwsy/kruFmR7iVjyKNkOJUdansCp3t4mbcGh2T6zU6JtMeHSPV0DwNe+N+pyByIZYUJhvBOqFVQqiEVqHK42bsI8W5lSvltYBZ68EfjSsN2Zv9J5XnRUe3NCpZOknH+O9U7Whwxa1Z5DQx5MOeqpxYF1KVk6punSxtaWKjo7o8o2MyXnQM5dh3lIU6eZ4JhLBfApBtY7CZZwwGg6Ht9ECnkBLNXbMGNd3eWebEba6X5/RUDhJnPvlPtlt0RqwuTq5bTqcyVuW8cj3OT6NjcpjRMVk+EdunrMhFGJWRK6R4ndEtp1HNYV5XYe2Z/+QDk6JubXu1VUe5ITNIR0/taEhC5dzw2lyqru88N3XjjVuTuDWjXHeq/HJao6Mao2P7dIz4YFl/aChQRHbQPOOLkPimzGwbg808YzAYDG3DOMoM7aTbO8sixfanag53zsuyEahzKFiKMLk8lcPE+d2Zxs1w1aWRbRo3O8XoaHRsj474oXkXCPeXBFYJIX+CWkk3Q1knqK5c+eDL9clly/XIuqTS0Y226uh2DLtSR6/taEgiGHBfi4L+sOryOOO05ynqJnFzpshraV039FqeThajY3Kc0VH6bcGaPrCxXKqog+eZQMh2mGmFy/Qx2MwzBoPBYDB0Ct3eWdZwEBB94YxqPpfD5TDnb53TIfapmt9lu0XOq7N75Dpl2WVnhy6dSk45TFWfHO6UV8bo2L10BAj+AoITpAjZ4FUZyjpj3JlWPiA6gZ3lCCmNLJPqAOoOnrOM2GcqHd1kc9bnVUfdsetKHb22oyGJxUNASLOps9lU44fc3KpwnYOirU0uoxp3nHWquqOzbGc5Rkejo7NMrzoKoLYEVvWN5jXzTPp1NPNM96KmpqslMBiyE3NXmWEz8PYqlixG5Nt/ltX+i1U6x4LbpzJMAM3ueeS8siGs00FXlmzI6nCTwS1NqrRGR5ts0jHcH5p2InHxr1sJealU/i4b0V6RZdDllQ+2Kk7VCG46ppKpLTq2RYbO1NFLOxp7Q0koYP8l3a3SBVgiKofQO0viaTW/3ZwzujDZqaNz0sjrfTfc1vXO+o2OenkzVcdgLqzoB2EzzyTH6cLMPGMwGAxtwzjKDJtJ93eWFUD9L8mMyTdsv+0v5zvwLwWr3g6W7RXZBtFdgEORzg2dwauzm1TGspvdJJetijc6qsvLFB1FITTtaZ83SQLK3+UCdas+uUKdwG54XcnJqziV3Jb0Kcc7v+sWAzrZYr9T6bg5q9WO0lFVt6p+QxItufDdFmTEPGMJKKmF8o1Q0Ai+6IsoUjWjM97rWJRQL+o1s87pozs9ZDmc4XIaWU6jY3boKHz2hv6N+YpI+XtPmmdUdaviY+WaeabnkWkLf7NRuCGTybTzxZCVdHtnGVZ03zKvBpObByTVdw/5I2UQHA2+TRD4EQLf2Q40q0ldnFzk5kxLqdb9bnU77SaVTDr7TXVojI6ZqSO+6D5l1SQrpev7bvOQvLpSCe/lQKgOnG4lKdfv5XyWfyt0zBVQFdTUoSvbi46qhUgX6egqo+q7IYFgDhkzz6ztA+v6QGEDlG2AogYoaLDjdWts1Tpb1+1045/KoaLKp0qvGpt06nvpkkbHRBkzRUeANZVQU6rJqPreQ+YZLWaeMWQqMWeEcZoZDIZuSrd3lhVHwO+4st7sg1D0e0rjANSGhJvVKeeV46LxkV7QMtHeG8qqhZyFUcfZKhDSolyuTmebuNksKuNXZwSjiFOldcsjpHiVDk6Mjl2vIz7wbYTcT+1+KXIUiXUFOo1xL4ZzqoMh05HnowcdfREo0D1i11YdFbpagB/Ij7RGhYEmH0RUZenq2gwdPbejIZl2tHlC+nT3a8tew9QX2n++iO0wq1gPRZsgJwRWxF1kVZwstiyCWx45zs3hEvvttrZWlaM71EZHd1k7W8f8JqhcYzt1Iz5Fgh46z6RVx66wbc0803Nx3sFjHGcGg6Eb0e2dZbvVQEOh/V0AIQuCFmzyw0Y/lIRhfcD+C1rRed2rBRtL68zjzOvBqhWAKIPmbaBlK/BtgMC3tvPMtw57xYy7veL8rhI7lQPIKZbOrpF/61SU45x1yWkFyToYHfX6dLiOIch7HyJFENwSyEGtoFxAqhWZfECcgrkp5jWNKn07z0etjqlog44W4BNQHoK+Qdsh1rfFDg8I+7MoAiOboDQEXxXCO71gZQ4I54Im3Tp6aUeDGueJ7sXz0Mn9OuKDul6wqdh+LDPmOCveZL8ZEJHc1VVF6sY4RZVJaVVrfV0dsbJU6/BUw4zcjVWHSs6jKsfoqE6bDh1LaqCoHjaUR51lXTTPWML+y5h5Jp06dvGYY+aZHoxxnBkyBcvCPIqZAcTGgSxti27vLHumHHz5joDooiBXwJBm+N0yqAxBnQ9W5ML3+fB8GXyXH12Y6lBZjKksSZXB4TAchB/Cfey/lu3BtwZyvoHAD+CrARFJtC+82EdyulR2llO8tqjoLNPNfpINeZU+Otm9pmuLvdxdddycdkxAt+JxxqUSyMsBiDobRD6ERtmfShl0pPt8lOtOhQcdLQG/qIdD1sOgFhjeBGty4OLB8F6vqF/cIasPqAza6f/5AzxZAQ/1gXqfo5506tiWdjQkojqujn6dFA5d0q+FBWE/1PaynWc5QdtpUbYRiuvAH2nN5zYGuXV3N4eOrhy37uks00s9qjw6eY2O+nQdraOwHDZWJ88zzXmwqhoCQY0MOjp6nkmjjknhzjKzRUdD21A5prp6cWocZwZD90U+p3XjjTwOdPW41Ea6vbMsjmMSF0CzBQvz4cQRsO0muHYJjG+EPWvggA1wzEhY5ryzRjYKkL6rfquMCCHFIaWPJQtAuJ/9Z00F/0r7xQCB78HaZOeVxdGprCheKaKcRw5T2VmyGqrDpapLdZq42Xfp0lEUQWgIWAICC+xPZzndQUc5T3vaMSmhmxAx49xtJScLKQsRDYuUQ8OB2I+IyencjHVVfWk8H7W0QcfSMPxxKWzRZDvGXi2F3w2COn80qTOvBREBq3Lhjmr4shCuWQKT6+G3g2G9vwN09NqOhmR0J1eqgaAL+7UAWnKgpQw2lkJu0H4hQOUa+zE5f0jd7G7i6OLcxkjVulpXlkN8bR5dnK5cL2naqqPwRffkwnZEWqL76bi57ZgU0InzTMgPK/q6yNBV80wadUwi23Q0tB3V/mGZtDA1jjNDTyNTzr2OwKujTEYIsu1Os+7vLJONAFp/C6DJgrd7waFbwIgme8+gNTn2I0/t8mRIdbimkWVUGSSAyIPQUNvJ45sK/mX2/maBRWA16G0gN5Hd7BShCFeFyWlTHa5UNpkuv5tN11YdRS9o2QEI245Hgt1Px81tR1dS9NWENDqBUxjiVsTu46FBmjq66nz0gouOdX74wyD70e9GH8wviN4llkLHCPYY9bvBcNNPcN1iuHAI1MijdxrHnIQ0htR46NfKha3zexfOM8KC5lz7r6YU8pqhtMZ+TLN4E8r9zZwOEpVabr9VY5vu1HGm86Kisywnsrxe1urt1bElB5YOsh2OJbWJ+6Z2Fx1Vn87yNkfHTplnhO0gbs7V1NHFdl9CGl09WTzmKGU0pIdsWIAax1l6MC9YMHQVmzPOxBxmmeTMd6H7O8vciI4tAlieA8tzXdK5eTcg0XhBEaYbx+R4p+XqLD+aNlIIkVEQHAW+OggsjjrOloJodrdhZMNWZSS72TSqMFVeXR43m02WWWe0O8Pao6O1KTlzd9PRGaaSQRWW0HVjDhzVSqcNfTXJSE41l0fjrTrwL406y3TpOvt81ODDijsSnPUIIIJIyBu24PMihTwe5BCW7TB7thwOXwcnrYa/9oNIJ4w57XYcGmy8HrdMmGcs+2tTHjRV2W8tzG+y36pZsd52ovlDajHkquVTX0jp5TxOEXWq6NRwK1dOpzu15fF7c3S0ol8ifgj7Wp1l3UlHnSyeddTNC501zwh7v77mLLD72qtjSjJZR0PPwTjODIaeSxY4zLq/s0yerFXh4G4x6jwQqoldtkadYbLxoCqrDeVHekHLeAiOA98qKHwUaExOLquBJkxlG6nsHeenTmTZIHezu3TlyPKp8sXCVfqowqxm+8UJ/p+T5ekuOm5OOwo/tEzG3jMsXX1VtTpTCR0Nj5RC8xSFgDoFvcjgLKO956OzWOFj32924KSft6WssTgpvsUf5OOB3/Lg5Jeoy21Uy9fGMSds2XuWHbABjlxr78e4sCDNOqZqx8yez7qObjrPRCxoKLD/1lfY+5sN/5GEO828iKsT3UmqclSi61RXyZDK16CTuz06+iL2/m++CATC+nzZrOPmtKOw7M39w34XoTt6nvFBfZEiL1K+DDof26pjkmyq+lV5ulpHM8/0XMydUm3HHCvD5pKqD3WEM8v5OGaG0/2dZZA8wctGhjzhI8XpDAI5XaqyVXLJxoXOs+ESL4BIGeBPLkqFl3g3MdzCVOqqDqtbPanyedVBGS/AagZLcaVfpY8qLON1TFG3LgwfNE+Flm00gqWhryYI7JbHqYAsQ1ecjxL+DaM4/pOTsSK62xJgp0W/YFNeIw9s/ZK6zHaMOT/k2/uXbV8HMzfCzfnR7J085hgUdPN5JgKEAq3FyGLrVMdDnDyG6Q6RTlxZJjk+5dinkbe9Osbesuhz3HXa3XRsbztiwfresLIv9t1lXTnPZPH52GN0NBgMhvaS4XcsZQ0dffdXht9d5kudJMuxHH/QajAIEo0HlaUohzknc2c5cn3yd1UeN2NCFyYbPUIRJonkrFZnOOvsEl01FmoVVCrK8sjNoVJRRiXnZukYtN8u6kzX7XRUlJNKx3A1hLYAgppMcuXt7avZeD7KxTaXuzrKwH5Ec87HezNq7cDEepzytFHHELCgwI7epdZ+q2+njzmGZLK1X7fx3HW+EMUtq2rN7RRXVks+dKpurcqjU1XOrzvkTnndDl2bdRSQ1wR91rYes26no0beVDoGc2Bdb/CFXYTpqfOM0VFdt8FgMLSVDHa+ZCVZchdYR9D9nWVuBoZsaKiMDp0162ZF6mRQGQtOZMtXZzlLslsNkP+O/ekV2Z5SieV2iGRDOlUe1SnWlkNpacLdUOkIgN9+hDVWbnfTsb3t6F8FRfdDzldSApXA7emrqQz+TD4f28ngjdWc+v4BdlFp0jE3erfKFk2wdb2m4g4ecwwS2dqv29DmOUF73zJLI4NuvHRDpZ6um7mFyXm8dFM5jdc8XnSM+KAlD+oLk+O6i45u5brpmBOEkd9Dv5WKAnr6PGN0NPOMgZ68KDekkdgG8ob00UOPZ/d/DFM1iTsnZme6VGFOA0BXjspIiKWTr56pynLmccapEGCFoPAZ8C9OzCLbIKC3heR0sohO8bw6c1RlySrJh1UVppIzFt9uHf1gNSXL2610pB3tGAFasPcj6oC+miB0tp2P7WRj/ibeHPF5YrlOWdqqI1AdtKNzI1AWJn06tqUdDYlka7/22OY+AUMWR9+MKRKzqMSTq5TjdOt41eED9zpU6unq8yqXahxvi44Rn/3IakuuOq0sL2SfjqoydN8ThlJhv/Ag/oiqmWcS8zjjVPQkHQ09jx66GDcYsoIeerde93eWxUhpwSnSqoyDVOlk40OOk/O0xTpV9VE/EHE3nN2K1+VRpdEZ0zpDOZU8brZSKll0ZabKEyNSok7THXRMRzt2SF/VVZYN52M7eWv4/3huy3ft4tOlo0xnjzkGPdnWrz22ubCI78OlqibVeKhDtVaXy9aVp4uXVUklW6oxuj06WprN/XVl68rLZB1Vadqjo5lnFGUbHQ0Gg8FgyAh6jrNMNiB03g+hiMclnbN8VZ3OvLqyZcNGl05RtwDwJdsaOieKwJvqzurcHC1uxrxOZaet5HaYVTptro4AtIB/dffVMR3t2BF9VSlAKmEy5XxsJ2ErbGdPl46p6IQxx+BCtvXrNrS5sFKL095ukmq4cJYfi/NSj9taXZcmLTpaUNAIA34mLnS309FFFq86xhOYecboqKrbYDAYDIYupvvvWQZq6zM2YXsxDOQ4Vy+Doz45r1y3Ks5Zhq5cFxnlomIqulWlqk4W0VmWKp3zzymqs2yV+LIfQK5TZxu2V0fA3rOsWF1fd9Bxc9sxSah099VsPB/bSdAfIifieE1tW3UEAgL6tcCgFvu7ki4ccwxRsrFft7HNVetgOV4eq3Tpdenc0Kkgj8UqVPWrvqdDR38Ycluw3/bYxnMnW3TUyeaFpENi5pnU5fZUHQ0Gg8Fg6EK6vbOsIBxVUmVtOidy2dvhzKPzjsiGha5cIX3XGQuykSHXK9cllaGykVSi6IxmVdVO8XR4scF0yKq42V3OsLbqKHJBFEX/CoAcEDlqWdqqR6boqJKr3e3YEX3VWV62nY8yoSKXyFZmfbUz+83fMbEeDzpaAvIjMK0OblkET38L9/wAlSFFJV045hiiZGu/bkeb64p2olJRN9bJValOPV1YLE+qsc5Zv3NMleWQ62urjlgQ9tv7ldX1gtpS4nfkdRcd092OZp4xOpp5xmAwGHoAsZcuZNnehN3+Mcw+IShphFwBGwKwPBdCkGxVxnCG6yxCN8+ELk6Xz2mAyMaQyuiw1PFeHTap0qQ6LG5lqQxznS2mUs1Zj9th1KGTSwDN20LL1tFCciA0DHwTIWcB5HxJ4ob/Ivt0lNNsTjtqBUlHX9UdwEw/H2WaKhSByeREAuy4eDxPjX/LvsskhY5+AcOaoTII66Kj80fF8L8i+G8vWJMDhRFFfpmOGnMMarK1X7dxnnFmS4V8SFIdDvm7bthQ5VEdSt34K+dR0R4dsWBVNayvAEtAcx4sGwDry6FiA5RvcGxqHxUg23TsiHb0NOb0lHnG6GjmGYPBC86N1mPfs8wBYchCLIvN2uQ/S18Q0O2dZUtzwZcHedFF6N4bYUkuzC+EkMrAwBHmhsoocTMmdAtvOd753c37IsmrKl4los7gVhm2XhxGOnGd5cqypbKddHaXKt6LjpFqCE7AvqMsligA4X4Q7mvHWY2tZfrWQP6bYLVkvo7hShABW36rCXxNifEqmXUyCPlHR/RVN8Ey/XxsB6+O/IQ/T3u4tQiNjhbQvwV2qIMFBfBxMQSB7wrgzZLWPPkCqoIpKu2kMcfgwK2/ZHq/buM842aOyyqmGvM6Al09qjkORVh7dWzJhbV9IBhoDRQW1BdDQ5HtRMttgWD0juZedVC5xn5ks610to4Rv61ffhMJL3noEHr6PGN0NPOMweCGzuGgCjcONEM6yVJn1+bS4Y9hXnvttViWxbnnnhsPa2pq4owzzqB3794UFxdzyCGHsGrVqoR8S5YsYebMmRQWFlJVVcWvf/1rQiHVM0gesKDZshehL5VCeRhOXQV9W9B7jVRGgkBvlKjS6LwfGhmVBopTJmcdUplutozKQJaLFSTaSAL94dDZOZb0J0i2g+Q8skry91SLLS86inyI9JIqcFQS7gOhQa1/LVtB454gcjNfx0g5hAdCpBJEWXraMSXt7asqY9pZlq4eWXBn2Z15PraDTwZ+y6peG1x19AHb1sPB6+HVUvi6wHaUJTSiG1005mQSGTHPxMi2ft3GecatO6rGKuefKo0KeQxziqOrV+U7UOVX1W9J8e3RsbZX1FGGFBH9qC+CDeWwqdj+W9kXfh5oP7aZ6Tqur4Alg4k/UqqrQ6at7ZgkRE+cZ4yOZp4xGNKFED3WwWFIMz24H3Wos+yjjz7izjvv5Be/+EVC+Hnnncezzz7Lo48+yptvvsny5cs5+OCD4/HhcJiZM2fS0tLCu+++y9y5c7nvvvu49NJL2y6E5B1o8dmPM/2nDM5eCZMapHnZad3pLE4VKkMm1WJXZ9Q486ryKGTQJZWzqRw2ToeK/F1OI1dvSXHyokhl4MtyyDae83sqI9urjvGCVd/lAi0IjoPGvUDkZraOvhqwQuBfCb7V6WlHJenqq6ny6Mro6vNxc3DR0xKwRw0csB7+WQkb/SQvIrwuRmLfO2nMyRQycZ5JSab063a0uW59q6rKkv6c6dzGPHlNLderW7PHynU7pDp53Q6/Fx2Virq0o7Bs59nPA+07t+TkmaRjrzooX2+PV+lsxyR6+jxjdMxYMmKeccPcQWRwowc7OgydTDccizrMWbZp0yaOPvpo/vGPf1BeXh4Pr6mp4Z///Cd/+ctf2G233Zg8eTL33nsv7777Lu+//z4AL730EvPnz+fBBx9k0qRJ7LPPPlx11VX8/e9/p6WlRVelZ4QFi/Lgzmo4YyVMrsd94o+h84bIk7ybN0WXJ0FAxW+VN0Mhr6yGzlHiJZ8bqQ6XmxwxnPaWbHD7gBzLTjOoELYqgx37QJG//TomVKxKLBmRwbH23mZp1TEAwq8WB4AciPSGSBnxO9vksuOf+eBbBzSBVQdE0tiOndBXlfUJUhvizjxynSp5030+toGdF02korFXa92Sjls0wRHr4OZ+0OBTyCDrqKMLx5yuJJPnGSC7+rXHNndGe13fymOXU1xVfFvKcuaRfVW6MGdcLH/EgoZCaMpvn47Kwp0FKNok5jCr65WYtaN0jJUlsB+rDOUkdk8ZAQgf5DVD5drWgtLRjgmVxD7NPJP42+iYEWT8PAMgRLdcpBoMhgzBy/iyuXuaZSgd5iw744wzmDlzJnvssUdC+CeffEIwGEwIHzNmDIMHD+a9994D4L333mPChAlUV1fH08yYMYPa2lq+/vprZX3Nzc3U1tYm/AGtk7tiAl+cC/+sgt8sh/5B1FfOnDiNBNUnjt+6Ra8ujy6tbCWr0qVIItsgqZxJsTQ6A1w2vFX1yUa0Kr/cJBZQlgNbl8O4UhhQCAELRhbD7MFw3DCozk+Djl7bERD+9Ooo8rHfxKlICxCpgOCW0DLOfnRUAOEhQB722Rp7zCcADbPsR0Z1Ow/K7RiwoCQAOb5klZXHqiP6qu58dArrzJNJ52M7mLJ4HCd+ONPe50fSMV/A+SvgyQpYE9vnKJWObjJ20ZjTlWT8PJMN/boNba4aszVJld91KngR11m//NcW3A5ZXTHUlnhLr4pLwGM7CiDiS/zdUTrGvgsf/DQEFg+xv4PtuBOWLYvwtTrKfhpi78UWz6spP2E+jJalI6HLm3kmOY3RMaPImHkmFcZhZshWuqGDpVviNr50U0cZdNAG/w8//DCffvopH330UVLcypUryc3NpaysLCG8urqalStXxtM4J5ZYfCxOxTXXXMMVV1yhFsg5MUuGxIfFsCAfzlwJfxgEYVU/kI0PlfdEN/ELRRqnxam7sqYqX44XyUnckjvFV4ksUqTRrdvlC5e68p1xMrkW7NAHwgK+qoHaYGva11fDf1eDz4KQaL+ObW5HKXhzdYyljxSAr9n+IXIBx8VFqwF89eBfDr4NEBwPLZPsxy1FMYgc8K+2C4tUQLAIaIZwf7BaIO8duzzVcdi5Ek4aAd/VwasrYVVTq15rmqAu5NCnI/qqylBWGfap6unq87EN1ObXs7xknVKOqXXQryW6gb/ueOl0VKV1/o7V14FjTleTTfNMQlim9us2zDOpxjoZt+pTHQ6nCKp6veT3ks4SULU6dTk6fBFJ0DbOM+nUUQDCR+Jm/MLRBgJKayEnaH/f1AvWVNovG2jJte+yK98IoQDUldjx9UVQ2GCHVa9KfjFBXBbLdjgWNNovNHBrxyShzTyTXH5P1TFDyLh5xgvdeNFqyHLkfunsq863ehrHb2bSQ8eVtDvLli5dyjnnnMPLL79Mfn5+uovXcskll3D++efHf9fW1jJo0KDkhJL1GbHsOzv+vgjmVsK3BbgbDJYU7hWllSjFuaXVGUxC+TOpWJUt5AxLld8LKjtK9VuOy7XgwIHwfR18vlGdNoztSGuvjvEfm9mOluIz1TFLOLYWtGxtO7qIALmQ/4LtGBOFIIodGSz7zrFwPwgPaC0v3M9ReHE0rD/4GiD3A/C1qLvwu2vhh02wvgXqQ63hvQIwpMj+/GIjNMvKysqofnvpqypUq0H5M1POx3Zw/+QX+L+tXrHvsnDo6Mfe0P+DYqjzKerQ6dgWOmrMyQCybZ5JCMu0fu1xnnE6XnTrZLd4Z5qEPFb0t2xDu4glJ9edognh0fneiqRIp5DRi47CSpEhRTvqouW5WVdkwulpwfL+9iOl/rAtW//lkNfUWljxJvBH54GV1fZLB5wFNhQlFr6hzP7zR6D3umi5KpkElNTaeeQhQ6mjmWf0aY2OXUrGzzMqjJPB0Nk4HShufU/laPEaZshsuvmYk3Zn2SeffMLq1avZeuut42HhcJj//ve/3Hrrrbz44ou0tLSwcePGhKsxq1atom/fvgD07duXDz/8MKHc2NtlYmlk8vLyyMvLS45wLlJVn8AP+dDsszfa/jZfk1buB0qrn1bPk5xOh87DJK8yYvGq8Gh65fASfbxLhICI2i6Rq4t9D42E4BhHFWHwrQH/CvCtt8sWARAF2I8XBuy9tvDbb2kUHh7ytQTMqoefesN7zS5+CQH+9eBbZX9aDdHwEPFjrmuqxAo1v1XtmPxVJVbrYkkRnlClD5q3h/BgCFe2ZmreFfvusjzsfcfyITgKrGaI9CG5cVSVW4nBkNxVWiKwpIEEBFATsu/m650Le/SFl3Ig8V1Omrqd4V76qtt56FXHrjof20lDTjMRSyTpWB6CX9TDfwYQd6J60tGLV6CzxpwuJBvnmYzs1x7b3BK2k0l+tC6WJOy34wLR8Vi1bpfzxKpY0wdqS+27nGJ3KxXVQ36TXSeWXXYokFh/c569x5hXQgFbzrxmfRpLQEGDfVdUTiiqT0x/EV2HOuR36ugPOw5bO+cZ2YegmkeE4ntCmAWrqmFd7+jjnaJV/7xmO94Xse8gC/ttB1pDIXjtq74I+BSOsoTsmvHCKWckldMnlsEZ3t3nGaNjRpFx84xh81Dd1dSefG54vauvuzgXZF2No6v7kqptu3Hbp91Ztvvuu/Pll18mhB1//PGMGTOGiy++mEGDBpGTk8Orr77KIYccAsC3337LkiVLmDJlCgBTpkzhT3/6E6tXr6aqqgqAl19+mZKSEsaOHdt2oVQGAq2fZSHoFYad6uxN/2OP+qktURKNgFSLazfjQl416KxjnR7R7027gtWoqNvCfnTPD75a+22J/lXgX2Onj0hXkuP4IFIZ3eB+gBQXXTRZDSAC2LfI+El0jCkWAjodB7TAkNXw0AAIqVYAjvKCUZ2tFrCaolH19vfAYrAUiyDfeods7WxHlb2pU0sV3iqMvf9YuE9iZHCkphJdX5D7jSSz20JVLsrJuhZ4fRUcOBrmRaDe+SKCNPVVz2XodOzK87G9KHQc3QiVIegb2yuxLTp6qS9GR4w5GUA2zjNAZvZrD20esWDp4FbnUQxfBCxhO1uEZTuZChptp0xes50+JL3QJEZLLoQDsKbK/u6Ud20fWvf5i8qkdNS5Dbya86Y+dseUzrFQYdftE613XuWEbKdSYYMdLlPQGH0M01mu/B1c21E1BejGb1nkhLyWfQdY3FEWzVBf6NDdUUlDga4gRYXSPCMfirb4T8Iq69PMM0ZHM8+kh2x9FLOtjqnNKbcrj49b3dniSMvG/mUwtIO0O8t69erF+PHjE8KKioro3bt3PPzEE0/k/PPPp6KigpKSEs466yymTJnCDjvsAMBee+3F2LFjOeaYY7j++utZuXIlv//97znjjDPad7VFnqyl8zsA5AgoiEQNYdlKdRoTzk9InvSd4bJF6zauuBkbcl7JqAlXk1LHSBkQvYvbCmPfkZWjlj++CFHUBdib/8YcbSo5dXoqdJxaB58XRR1lLjrG8YHIw76TTQCldnBouKbKEPg2ktimbWlHktXxYme6qiIbrG6Fq1Yjsh6aNoxnj+aJPX6kUjsWVheC/22CvWrgyfLkcpX1taGvJgnXHh274nyUyalPkcAuvjkQVOpYIKLva5AcAkn1q3TU0RljTobYcNk4z2Rkv27DudtYQEodgyVQ63j5qy+SuHm9quqkuqJrPBE7Xm46qnTd3PEJe44LCwjn2Wlacm1n0/oKtS6BsK1r0twp1+dhnpFPM9U8o1IloTlUjhG5sjTMMwmyO9Lrsjp/5wQVSsgyJFWiKCz2vTvMM0ZHM88YvJOJzpp0yJSJehkMPZgO2eA/FX/961/x+XwccsghNDc3M2PGDG677bZ4vN/v57nnnuO0005jypQpFBUVMWfOHK688sq2V6YyIrxM8M68cjlujh3ZENEZ9ao4nZGgyquS001HRx0iejeY1uPTSTpawM61trMsLToq6hU50Tu52qOjSFZDJZpKxNinZi2mLqiN7ZiUV5E0UgHNOwMRyP8vWDXq6p3yflUAU5sgV0CLvFjt5L6qzCuX09nnI0Df92DldrRsGkJIcauJQPBV3x95aYuPEuVI15gjy+6mh1tce9sxC8i4eSbT+3W65xkBYZ+kj1xONuqoqDcUoP06SuXKc4buMKQ6TMoCZNnkNG2YZ5w058OyAWBFYMDy1kdddcOWshgzzyTLIedVydnNdPRbsMVA+FGRPBPp1HnGkNlk69182YTzJQBeMe1i2Ew6xVn2xhtvJPzOz8/n73//O3//+9+1eYYMGcJ//vOfza9cNdHLcanyup1jKsO3LYtdZ1o3w0JOl8pqlvPJdajK1dFBOlrYd/OVhTTpulpHKZtcjUptIcUriWXoCB2ln+GBEBxtf8/5BnJq9EXE8kUs2KIJRjXB1wWKQntgX00ibwNM/Bv39Krmif4bkqIjlmBN0UYacqRng9Mx5sh0xZiTgWTFPJNp/bonnLuZrqNLEV5FUx6WTpxnGgpb7ygsrofK1d6qUJKt7dgT+mon6DikL1xxFPznQhfZupAunWcMmY9xzBiymZ7Ud0tLPSftkjvLOhXZUFBZozI6i1VlcOj6lapOXR6dwaGymFX1pzKEZANLNnpSldWROqaqp6t1dKBrHvkw6FTXFpROHeVqIokBsiyyvAL7UeSqIBQp3hpn+qqD/PWsr1rPonKFjG4ybM6Y40ZnjTmGZLzMM5nar3vCuZvpOtK+U0vnL7Hc6k/TPOMMzmtuTSrva6fy72gTyIVnWzv2hL7awTqWFkJ+LgaDwWDoTHqSo6yNeHhfYTfAeTXLaRjorFNnvDyZO61T2fMAyQaKs0w5jypeVZ5TFlkPOd4Zp8ovHGkyRUdnuZmko0IslVqyis5iZVG0eqRDR4UcwnFnWKSchDNebkZl05i+6o226qjK78yn01FFZ485BjXZ3K97wrmbqTpKossiyOLIYiXlFVGHVQfPM845rsExz9SW2JHOeJUOCYJ3h3bsCX21A3X0+yDgh8Wr4e/PYjAYDAZDx1FT4zlpz3CWqSw2reUm5XOmlY0LOV3su8pAkQ0FOZ/KGlbJ6GaQpNJRJUdX6piqfGeeWHhn6qgo2pldJYaqSguoGqJI0BE6OoOK7T3L8t+AvHcgNBREfrJtq7KlkwtzfO/pfVWmvTqq8KqjnKcrxhxDItnYr3vCuZvpOkpFaqITitT5OpIOTQfOM3F5fbChAirXQEkd1PVqfbupKrvrkJbN7dgT+moH6hhTZX0dvPSpokyDwWCwLMyjrobOpvs7yywSDQnnhK0711QGhNNKdeZVWbO6cuS6VcaNW5hsacqGUiodZX26WkdVmRmoowUICyJVEC5XV61atDjVHD2F1v0oO0pHBb6N4FsL/lVgBROzOw+BthjTV1PTXh1VcnrRMVacBUG5o3XGmGNIJlv7dU84d7NEx9g801Bkv3lUWHoRZXUSRLUg6HzhQAfNM3HVLPsvvwnKNtrfQ/5keeUiE+hG7dgT+mpH6BgREA5r6jYYDAaDoYvoGXuWOT+9Ln6dBkQMlYEh53GTQWWUqAwQZx5n2SqZZHnlcnTpMkDHgmAe5fWFbLFqNHtuCvLmiC9o8YcyUsfgltC0F1ghKHgWAotbk8t2rUocS1V/unWUVbLsDf4jpfYdZioVE+TOA6T96E1f9UB7ddTl8ahj0IJlOS7lOfOkqx29HpOehtd5JtP6dU84d7NIxw3lsHQQ+CIwZDGU1OpPPddTsSN1VBDxwfL+EPaDJex9L3XFKovpZu2YIG837asJ8pp5xmDILtrzVsmuxtxNZugiur+zTOUV0BkfqjzOdKpJXi5HPpedhoDO4FQZPbK8KmQjKZWOXsI6UcfxK4cxdllv/N8cww7kctCc3/Fj7xUZp6PAdjaJPBC5xPcBU9mWsniepqF06SiLboFvNfjXQLgRIn2w7yW11GueSDkQgkg10CIXppApVm8P6KueaKuOSOlQpJN1lKtUyd8ZY44hkWzt1z3h3M0SHQXQnGc7niKW7XhSiakbSlIOU2meZ2I/LQEFjVC+Ieow84E/FB2bFIT9EMyxH9dMqEeWNUvbMUHebtpXE+Q184zBkEimPyaYybK54XTsedVBCLLKIWjISLq/syyGbBioJnY5rco4SJVONj7kODmPzmCIhbsZK7o8Ktm8yO41XZp09AsflrCwAJ+w8Alfp+loCYfoOh2F7ThqHA6Rstb4SAmEe0tFNoO1KTG7s+hwUJLLjXbo6BOQJyBg2S/AFHkQHAXBcRBqsn/jh4ZZYIVRInJB9IJAAbAw8TgkyaWStxv31XbRUWOOTFeOOYZEsq1f94RzN9N1FPam+BFfdHP8aHxTPmwqhpygPV8Jy9643xdOVkU5ZHWQjsKC2FQdDsD6Ctvx1VDYulfZT8Nsh1nEn1iGP2LrFcyxHYLdqh2d8nTXvuqUx8wzBkN2ke2OI9lBlq1OP0PW0XOcZbIB4bYo1sWrjBJnHlU5zrxOY0JlKKgMHlUdznA5XqejzqDqSh1VdJSOAorCkB+BkjD0D8K0WnigDyzN0+sYGgbhPq1lWGFo3hmad0xMF/geCp5LVNdpDzZuAiu2Q2AH6FgVhONXw8t5sM4PYl9o7AtrcyFc4shTnKxjUltFXOJMX02mPTqq8nvRMRWdMeYY9GRbv+4J526m62jBhjL7EUxn3lXV9p8v0pq/fAMM/Nkhm1SU8KM/BmnSMeKz9yTzBeCH4dBYSHyfslie+sIUxyP2uzu1oyrM6KjWwcwzBkN68Xo3m1eHU1c71dpzF5nB0EH0DGeZ7LmARAPDK24GiFyfLq+zbpXh4yxDZ9C4pXczolSy6OTcTB0tS0riddztAB39ArZshGYLluTB+gAszoP5BVAbu/KtMdIivVrDrQj4mkEUg5UDuTmtWUr7QcmIxLyWD/oMgrxCmP1byC+F9eMgWARrauwNbZ20hKChKVqvsH/HRBMpdFyZA3+usjdZxg/11VDmh0n18E0BNMQWUV7aMUEJun1f9aSjG+3RMVV+Oc65yFDRFWOOIZFs7Nc94dzNMh190X9C2FFhf2uWvpVQGUlcO/gDUNYH/Dkwdios+hJy8qHesueT0iLYsAnC0YsgtQ0QiX5PmmdUMkry+iKQE7KdZs15tD4KbtpRn9dZt9HRzDMGQ7rpTIdSZ9yhlu13wRm6Fd3fWSYvMhWGQJMFzar3gjrHHpVBqCrP7cqaXJ6qLqeRIZcp1yXr5aKjVsaO0NGCylJYXZNCRxUdoOM2m2BlLizObY0TFmxQOcqk/P5CGDcExg6GfhXQt9xO5vdBZRn4ovmKciFXVsWC3HywfPb3X2/fuiBpCZJEcxAaohvsB0OwptZOvGETLF4N85fAl4uiix5FO4Qd3wW2U7ClALbbBG+VOOJTtSNSWHfuq0j5dDq60V4d5fzOep1lqOJ0+WXZO2LMMSTjYZ5JSpcJ/bonnLtZoGOOH7YcBDuNg0GV9vyypgbqoxdP+pRAfTNsNRx6FyXWZfkgJzr5WBZM2QsOjzrUwhG77GD0vTlCRJ1l0fzOeaa+yZ5nPvsB/rfITut5DPKgozJdN2tHo2MadTQYDF1HKuebudvL0IPo/s4yS/Fdmqhr/dDgdJbJCx85v2oiVxkTXvK5GUAqo8NSxHvQUStrB+hoAbnOnqXRsTGnmbAvjB8I+cKEfOG061gcfezyw1xF/hQ65vhhzh4we6eoPptpwFlWaxEFecnxBXlQVtz6e0i1I1LYzrS5r8Ljb0MwTFI7ijxo2jv6O/qWxE0+aPTBgBb7rjpZx2Qh0Ru+3bCvJqHT0Y3O1FFln3TmmGNQk639OoPPXcuCvBz7LqiWcGuc5ciXUGwW6ogFw6vh3INgRD8oyNWkbwMWEIheCIq9LNfv2DusMD8xvTzPHLQj3PQUvPN19LhLOob9sGSwvZdafE+yHt5XjY6KODPPGAyGzcE45AwZQvd3lgnNd3A3SlOdoyqjxM2Y0C28VYtgoQmTjSOhiNPpqDKSFDrG7JWcAPE7YPNzIE++bQo7PjdgO3GcBHx2eH7UUg+GWx/7EA55vqlawlcD17KpaB4PVzfyc+matOs4rsF+rEXbnJp29AFHTYfDd0lcaHQZlt0GJ+wJa2vglc9J6ifCD8GRJB3DHGE/jrnEuRBz66suMjjrS/ie5r5qRUDIDmw5eQgIOuLyonk66nx0o606OlEdQxVe7YbOGHMMiXiZZzyOwUnldqN5xvlURWyOCYXsMdbniOtTArtNgp3HQ10DvDMfQlGH2bC+0NQChXnw7c/w81r7Dqmf18KmJttR1KcE1tY67uDtgrk0AU07+i04alcYPwR1u3Y2FvQqgN8cBn9/Dp5937FeEa0ftY7tCeJ0s76qxOiorkOVxswzhmwhNjGlyzljnDwGQ7ei+zvLnDgnZN2VMmda2dBQGQUqg1HO7/ydSjaVoeIs15lGZYyk0tG5WPFD7xIYVm0/YlhZCgP62M6uqrLWq9OFeZCvcZb5rNa9UJxVbGpqdaKtr4PGZjtsTY39980SWLU+SH1hDfMr3uLl/h2go4DSsH1nWVvbceQAOHhqhjjKHAQC8Mvd4KPvoKaB5P6i0DFPQFHs0U0nur6aig7oq1YTWEHb4WeFwFcLoYGaeqJl+FcC0cdW/aujL2Po61HHtp6PbmxOX5Vl8zLmqOqXy3H+1rE57WjQ04bxqbvPMxb23WG9Cuy5ZfvR9mOGlmXPNzl+ez4oLbLTxSgtglLHJvGTpP0gY+y3HYSFfTFmbS0sXWPXNagS/v0hzH0FmuRH3jtgnmlvO1aWweRRirK7Est2ZE4bD899EFWjB/RVoyOZp6PB0BkY55bBYHCh+zvL5AndZRIuDUFBBFoCJBsDcnkyqkneaUSo8rkZNTp5dXl8foQ/gBVs1gjYSlEebDMKDpxiP/pRlB+9qp9GA6WooPX74CopUtibCm/YBFXvwP9eTo5v83FRJA/IvdtjO1oW7LONvejKRAb2gW23iN5dpjJcUXx3kqqvuuVx0t6+qsjjq4PCR7HfxCmgZZuos0xlYMcW4vVQ8Gw0TkCkwuEsS/f56EY7+6oANjjHmra2oyq+s8YcQyJtHJ/a3eZdPc+45ZGS9i6B3SfBHpNsx1hRvr0Xl5wv4THAtmLZd2f5ffYFn34VrVGzd7b3m3zpU1i4zL7zrKHZMcyl0NFn2Xt7+S17WMrxg8/n2BBfRMtqZzv6fbD3ZCgpbJfmHU5uIHoMVHtkdqO+mlCG0VGfz8wzBkNqjOPNALTrbZ7mDaAZS/d3lulQOAcKIvYja655QH11zjnJO40Ir3mcqMrT1RP9Xb/FjtRueyB9H7oEKxxM1jFq/P9iKJwww95MuMvumrLsN0lWlwMzofcAyHksug+Xi47O/H6f7fTLcfTg/Bwoje751dxipysOQVEYKophU6NjDxZn2dJnnxLYcayi3gzB54O9toY3/gehiCaRU0cnXvuqW55U5aXoq8piCoEwWA32b1+tQg6JSEk0TfQYWJtcZILNOx+9kMrYV4w5a1ONwCp5dXXH0nf0mGPwjryo9HL8Mnie0crrkKUoD6aOhTl72i9E6aoXWvl9MH6o7TALhmD5enjlM/uu3GHV9vy3eBV8s9QWv7QQth9jf85fYt/pVlYEu0yw56YBve09xdbV2unrm2D5Ovhike2My82xHWqrNkYdainaZOJwOGyXrjs+qRjez37hwBtfuiTK8r7aE87HrNXR0LOxrOxzGGyOvLqJINuOgSGZbOzLhgS6v7NMoL4C5tXgUOWxHGnkclW/VWlT1e2UQVeuw1jJ2biSlqphtFQNI2/Fd4nyAuXF9v5b+2+fnk2E04YF246H8R/BZz/ajqDqMnthUlFiL1xie6M1tdj7duX4YcvB9qKsb7m96FlXC40tifukBUPQr8B+U+V+OfYjOv/+0N7/pjHqTIvJ4PycOs52mGUy44bYe/csXE7qvmqB5bPvkIiliYho1/LSD9LcV1VpRADIaS3GVxP7IpXvzFMEIhd80TfG+dclp2lNDJbKCRj9jEe5nbupSKGjVjb5GLqNOanq1pWrS6OTQVdupowbmUZb5hlL+p5F84wyTVRef9QBdOq+MLxv5jzCblm2I2toNZw4A47ZHfKils/6OnjmA/vz0J2gfx/H3VTY85EFCfrKG+IfujPU1NsXbvx++H45PPwGfPht1I+vaZPtRrfOV5lIQZ4t45c/2cdHeOyrPit+/aK1a2VYX1XmcZbfDc5HrWzZpKPBkI2oHF9OZ4nqDiLjTDE4MQ62jKL7O8sgcWL2uvh0IueR+6/bxK+6wuc0VrxcjdPFO8KC5f0I9h5E4/DJ5C3/Li6vD3sBc9YBtpGfiVexcwOw9zbw7TLYYoBtbIfC8NVP9pX+/y2CI3aB71fAkEqobbDvDLjsAdhve3vPl3tesjd7Li6wHV2x/dZ2iMBBW8PCMju8uAD22Ao+WWgvAJqcG8Rb9uJlz60y8zg5Kci1j9nyp+w97oNWVA1HX60sgV0nwnZ9oX8JbB9oTbNivX1HxetfQF3U2aS9mpvmvqo6H0UOhAaAPzoiCT/k/g8IO8rIhUgp+Nba+awgWBGIFIIoAKvedphFetnlYYHVCHkfgH+Z/liCnb9xJog8DzpqC3HXMa1jjq5eZ9qOGnMMalK1earjngXzjE7H4nz45a5wwJSoAyhDx8/YGzZjVJTAcXs4E9gfnh19lp22wnFx5RdDYeSRcOd/7Eflm1okm9eyLwJtk2l7lSnYa2vbfvj13fadeXEcbZ+fY9+F1q8cKnrBhKH2I6+F+fbd3J//aM/lTfLLFrqoryal7YbnY1LabNTRYMhWhEheRMgOMtkZ4vzttgDR5TH0DLwuTk2/SCs9w1nmxGkU6Pqcm8FgSeFeUeXX1eelLkl+4Q+A5aO0LI/Dp9n7oDS12HdXHbWrvZjJWMPcsh/3+PR7ePOLALtMiPDDCovpvwizaCUg7H3PVm6wH2/ZYiCsrrGvehfkRh+fGQ2n72dvDJ2f0zqeWEDEgr4b7Q2gdx4HH3wLc/awX0xw81PQHGoVZfxQGDWg049A27FsXd7/EnLqgfXwftDWFWHvD7TTeHvftW0Gwgf/hRdD9ksXRg+wF4z5ubDvdvDkO/ZxtZqxnVOKlznESUNflfVwfvrWt34Gvk9MIsD2/kakU7LFdor51kNgEYhCaN4eWiZBzg+Q+2HyWkAWJ1xO611sOh3d8KJjOsacttDBY47BBVWby59ZOM/E0vgtGFhl759YUw8n7GU7VTL9IoOSdMts2Y6isw+0L+b8+0P77jUnE4fbd7plOrE7vWdNsZ1eS9fA0rXEj1m/cvtC3ORR9gUqCxKPp7DvaF/wMzz0Ory3IDEOOb0c55a2PfNMdzwf5bTdWUdDz6I7O4Pc9PKqs8rp1p2J6aq6My/Tj0N7jKN0v6XV0G66v7PM7UqXrv+p0ioWDEDy5C+kclOdH6ordU4ZkOLl8GhYJN/erOsXUwZzij96jolodBYYHgW5sNPIYvpRwXbbrMEvchg1vJaGFlvl/FwY1b81fTAMYwZGX0yAvShx07OqDPqU2gu7jxfaGz1vM8q+Er5iAyDshcGMre23gWYDfUrgTycBAn7+ApbNg6V5tpOsT4l9B960CeALwqJv4OdyGDcY9t8B3vvGfhRzTQ1M2RL++zEUPhJ9/HE80F9RYZr6qvY89IElcLeVZUdZrJhYQBCoASu6Z1Ckl/2Zaq4RJdiPgup0dM0sfW/rmKNLqxpzdDJ15phjSMZLm8vHPQvnGYT9uOGv9oXpv7AvTgTD0ccas2Ce6Uz8fvvCy9Rx8PzHrXty5gZs55MvS46Xzwezd7LfDv38R/CXJ+3uMGYg/OYwGFyJqwPH77e3Ddhrsj33BsOatI48cdI9z3TD87Hb6mgwZDNtdWQZh4g7qY6lfLyzYeFryBq6v7MM1AYC6Cd74fiU88gr+VSLazfjImnFn0I+OV30e0v1CDbsciyEg7RYefE3eGFl0frFgqlbb2Lq1rFd2hsBKMxTJ8+Rem5KPS17cVLeC07e2w5qCdmPZD74GggLBva2H/vMmoNmtT5uWl8C4xphSa59N9mhO9uPsvargJAFB/0GDrSib3SzbKcgln3n4Zoa+P5bqFsPVjP4lgB9pbrS1Fe1ZQiIlCVHO6tXFeXqWHNEqk69hLDYW/p0CwoX4jZ+Kh1VgiQUoMnjQYYEOnrMMajxckzl448mTwbOM/k59h2+u4y3L07ExuC8LLm40FVsNQKOmg4PvWE7ioZW29sNZM08A/H5c2Cl/eKEgjz7Tm5XR5nENqPsPUaXrWvdE66j+qrnMrL4fPRcRrbqaOi5dBdHR2c4wHqKk82pp07nTDoWqkdxDVlLz3CW6a66uaEyGoT0KaeT86uuzHmpz5lWlddhdEQKSlg/+7f0a/6JUf97kC1GF1AjLCqKM2jQyDSixy43B/bbzn4s84cV9lvPivO7VrQ2I+y75GpqYVQzfFNtP2LapzQxWY70aKXlOAb9e9v7zLyLw+njKD+JdvbVpDD5fMxtDVKdPjJudr6I7X1WCPiBULIqzuojhVKkxznu4E/2Y7Toz+KyVTw86VU2FG5KLjzVmKNS1G3M0dFBY44VBKsZrCYQxjGiJ1Wbxzo2tL3Nu3ieKcyFMw+A3SbazpJM2bw/Gwj44ejdYER/+62ZU7bUXwTKdEYPtF+us9fW9t1ibXH4FebBFcfAw2/CS59GAzugryaFdcPzMSmsG+gY209QkLg1hqGHYRwMBmCzHqs0fah9mMc+tXR/Z5nKiPAywTvzyuXI5emumMlX8kgR5zRsZDliSSz7MY7+ve1NdceMCzB44M0MDy6ktH9j/E4jgzcqS+Evp9j7qUzZkjYZ/5nCi5/CA8/BLyMwY3Lb3+RpWfYi6F0vxnEb+mo8nRyvOR9FdF89eZx2Vi16RZ02weTq4t+t1rvURC72Zv9OuSPEX9cWL9vpLEulo0PwMcvGM2bdBBoDLbw4+kPbWeZhzMnRjT1ex5xEMRK/p2nM8dVB7icQ+AGsBrBaIJTBb+/rUrzMMzrvb4bNM7FFq99n3wU1fog9No4faj+SZ2g7Ab+9L+dOY6MBWTjPgH1ncmWJfQd2W9cjlgVDq+z9VIG02UTxdHJ8Nzkfk+SX6892HS0oKYADdoDpv7CD166F2X9RpDd0f8xCffPJ9P27UrG5zi5zV9fmke39R8dm9Inu7yxTTfRyXKq8bn1GNibauth1ptUYFpZl3/E0eiBsOxq2Gg4D+tj7eFnWemC9+6bsBj2WfcX7qOnJj3ZmBZa9l1tsXKsopl0LsS2HWFBSQshnEekDwqojTAFhAup+m64wx/eWPiC2th1ihKJvtSyynWM5CyE00HbgWPUQHAM530C4GkQxiID99szQcAj8ZL+nIAxE8qF5bAiaA4RGQLgP+BrsMghBzvJmhM9HpAgEIWKv37QIt2+y0C0uSAwb0qzJ79WRr6szHWOOsF+WUPiU/eZRZ3Jfqv2Geipe5xnnMZfju3ieKcy33zK8y3h7nskLQO8S++JMtjp3Mo4sP45fL4HvlsPydW2/KAN216tvqSAkAoQpxU8tFs2tkaoM6QhLdW5hEaIChB8fDfjEJgR+wlRgiTAWTUSEvS+sRRNC5OGjEZ9ovZNYkE+Y1oNiiRb8bHSV06IFS7REvzuu4rQmaM0nn9/dYMzBsveIPWUf2Gfb1rVMZZGLXAaDwZ3u6OjIVlRtIb+oQPd21PaUq4vr6Wym8zQb3QNtIiIKQLgfpAgCQRNgEaSaIH5340uO0/6O4Bc1RC0p7CV4KeDTl+UIs6wII6rWsv92LWw3xt7vIxDbW8mQNupaAvj9gpxAdnoChveFyup8Nq4P0JsgQjTTGPJTGAh77isl1eX8dOyN1NYXEfCHeW39//GNNZ0l4YEdKnsCvYEdsR+btEh8O+UwbIdwSzQsF/slBDnEdbQGgMgDxkbDwoBP4Ns+SCQnt7XcstYqc/uuJZxbZA+kkWasaAUB1uCjyf5uraJF1BLmRWATKgQ+GsUvaGCQJ0dXSCwHfqZJbEFDTCAPY05ERIjwFUTHq0YxjgYK1QtDR5gQfoKiPyLV2AZYkQhV/30V39oNSWsjgwZBinkmtkoMI8ghRCUJ84BclvPTER6iNwL7GT6fqMUf7Y8+0YhFIxFRiCBfW1aIimh8mIBYTYRSLIJs2f9HztwvyPgh0X0QTWMbFGw5CP72KyguaF/+DQ0lPL3gen4OVxAhHx9NWGTCM3cWEQoRWFgE8dGMwEeEQiwiWISIRK9IWoQQBOLpYghyiJDnKDGML7r3qg6fVY+PBgD81OCnlhxrGYV8TIReWKKZfL6JOuEElhC0MNA+hz2uh/JYQAtDCItSfFaLpzEnJHpjEcbPBvxsJCgGEKGAAOu0eSIinyB9teOXj2YCrMSKRgiRQ26gifMO/JI9tmoxN4IYDIb00RbHU2fIoAp324etPfuydZWTLNMH7zTI1+2dZUsjN2NF3C27kkgjywLXkxsJszRyFWvCpWmqPYLfqsN5WS0setHqBdDj80U4dPJL/HbmPykrxCxeOpDmsJ8cX4TYXUXZRmEeHD+7kKe+GUx50VqW1q3nqe8HcdZW37K6Pp/HFw6iPM92AvksmFC5gcJAmI9WVjC6oo5f9NkIgRDhytWEAqMIhYs5r/9pCCE/0+vFdaK61Oyl8wr7tMiNpXfUYdF652Suo45cqY7YOiWQmDesPP3tNI3l5Y6g1nzNjGotQ0BLpJEw76N3luWwOnIOy8PenoNebj3FssCjLOcEloe38pQHoCDSTEicASxFEGBN5EyWh4d5zC3fiqBux5y61QxY+pIyp7lepWZ55EqsiNuGh/bGeRW+B9gkplEb2Qsv84CMcHqHCdt3QILtdLCaiIiCuDNNnT8Qr9eiBUGAwtxGLjj0HLbst9TMMwZXcgJQVpwcHhHw0k/9WNeYx9g+NTQE/QhhsXX1ev6zqD/DSuqZXL2e/JwmAkXriNT2gbBFhCKHk1l3+5KKzZhnEtIn1yHIIUxhPE4gEPEJyIqeg/a5ZKfT1ZRDmDyFXK11hkVZcrwQrOdIwIdFkFzrZ4KiMupkEoTxZkPaRAhYawmJ3tjmvtcRvLUNbOdgTvx36jxut6ElHv+q/HVsM/oscnPWepTLYDB0e9L9GKW506pj6QGPvXaIs2zZsmVcfPHFPP/88zQ0NDBy5EjuvfdettlmGwCEEFx22WX84x//YOPGjUydOpXbb7+dUaNGxctYv349Z511Fs8++yw+n49DDjmEm2++meJihaXmQthXCj69QQOw0SrloCGXYyFYm9Mr1Y1obcBHiPY53iYP/ZbLDryHorymdAlj0NCnQPdMXJZgwZSB69lhwHo2BQN8sbqclrCPHzYW89XaMm74aEvCjp3ZCwIh/JZgUzCHPYas4NfbfMPSukKae78NvT6FcAEiEoBQL7vwYAlEoovsluidkWCHhaTzMZIDEd1i3YqW43aCCbBCYGXW5BaggRyR4g4IXxD83hyucyt25emSKazOLQZfS+oMMayWhGMjfC3gb0N+DwRa1uNraUp6kifTpsJMmmeafFuAL/rskPDbfwqWh8c5HF5ej6hqgQ8QQFh+QBD2WeC8o8zXbPdHbZF+RDgfy2rhjN3/xajq5ZnXwIasoCXs44VF/fjt25Oobckh1x8GYVEQCLFFRR2frKpgy4oaztrqOxbXFvFz0bsw+HP7Kka4ECK50FJmfwo/NPex54BIfnS+cBAJ2OFJzyJizz2x80Pu+yLqKEo4L0XCR8KcI6zENPE4AUTA10F3wwlfVA97nhT4aWaEI4HumUcFlsC2Qauih8ljPmHZeYVF3DnoaT6WbymLHV/Vs6M2Ewd9R2WvDd7k6iIyaZ7xjHEOGLId+c4w06czm27ePml3lm3YsIGpU6ey66678vzzz1NZWcnChQspd9zBcf311/O3v/2NuXPnMmzYMP7whz8wY8YM5s+fT36+bfAfffTRrFixgpdffplgMMjxxx/PKaecwkMPPdQ2gQY9DgXuu1ILIaAp6pTKz+9yD6nPEvxytw8oynW/hd9gcGJZ0Cs3xE4D1jCl/xqe/mEgF/93qwRHGQIaQ62n/WtL+vLfn6sQwiIY8YG/2V5oWwBrE/IpaiTp9YjCj72jvgJhQcjDZiSBBrAiqdN1IuUNm6hYsF4KFbw5dhFrN5WTF/LTMOwbKPfm3BbBICIYhLy8tr1aMByCRbXRpzDD0P8FKClPma0t5NYuwwrbDrhMdJJBps4z0btPwnnRBa9EJBcRKoZgGUT8SXFJjmeZnNqoIxnIqQErCDl1dph8zlhBu39osRfluf4Iu4x/mYBHJ6/BILN8UwF/eGcitS12n28J+6N34+by0creAHy9rozTXtkWERtNAo3gbwQrOqYmzC+OO5TkK5fx+UVyvgggXNTq6AnUJ+YLRx3JsvMtdjFI+KPnUtAuP+jY/NPXAoFNxOc7X4stf0cQzie3bjwQsY9jsJRckU8LQfA32DLkr7KPnSsiOl609by27GPlb4aN422HphWBkvnJx9RrebHjmyRiDjO3fYZABm+EmXHzzObiZW3TEYte4+wwbA6m7xi6GEuI9PbC3/zmN7zzzju89dZbynghBP379+eCCy7gwgsvBKCmpobq6mruu+8+jjjiCL755hvGjh3LRx99FL9688ILL7Dvvvvy888/079//6Rym5ubaW5uvUOotraWQYMGMf7BqXxd36fVSANvd/DrVolOG00+cvKzSqrfct2KOqoLm/jPwa9TWZjldzwZupQ1DXns88SurG5Q7G+Spr6qfWpGVY6ODD8fETCsoZ7PX32dkmDiHQXn/WI8N48ciSUsIpbYvKeGPOhYEArzyWuvs2XdJpr8PrbbdRpflpamtR1Lv1jBiNs+UDZrGPgce8wuKWnHDt9pItPmGf/f9iGcJ91R2ZY2F6rIJK0Sy9jMNu9X1Mj5k7/hoFE/k+vPLOe0IXtoCvk46Old+HpdmZlndL+96ugsMzYmRKJ3dlnB1ogOnmdax6NYwoha/s1sxz/u9AXHjluUlKyuFsaVmnkmRmye6erjYTAYugkqx3lXOCWdcnRU/ZqLBLVAKd7mmbS/CP6ZZ55hm2224dBDD6WqqoqtttqKf/zjH/H4RYsWsXLlSvbYY494WGlpKdtvvz3vvfceAO+99x5lZWXxiQVgjz32wOfz8cEHHyjrveaaaygtLY3/DRo0CIDb9/iQLXvXtiZ0TuiOC5jxuNifilgeS/rutClUyHmElMdRX3leC6f+YiG9842jzLB5VOS3MKaipsP6ahyVcawqR0WGn49eEEDE55IpjTpaCG+D9ua0oySa/D0TyLR55rytv8WX8BgXbWtzi+iCOBqh+p7Gfl1V2MRtu3/EYaOXGEeZYbPI90fYe9gK+4eZZ9xl8zLPOOWzhP2YfeyxUrfHIdOuowArEv1Lo45uzrQMI9PmGYPBYDB0Pml3lv3444/x5/VffPFFTjvtNM4++2zmzp0LwMqVKwGorq5OyFddXR2PW7lyJVVVVQnxgUCAioqKeBqZSy65hJqamvjf0qVLASjPD7Y6DHTGhM4Ikw0MVXwM56pSNqJUV9+cRMO3rlrPw/u9zYkTfsCX9pYx9DT8lmC7vus6pK8qrzA7y5XTW1J8FpyPno36TtSxPBikT7PkSE93O2pUdInudDJtnpk1ain9ixozv18DW5TXcv8+77J19fqu3nEgcxHYFzkzpcNnMhbsMmC1/ZIcM890bx2dYXIZKplkfSQdI8JiU0vmvmcs0+YZg8FgMHQ+aZ+lIpEI22yzDVdffTUAW221FV999RV33HEHc+bMSXd1cfLy8siTH4PBnpvHlzfyREvvthXoa9Zv4mqFiO8PI6Sr8rKhIRtQOsMJ2K7fusS74AxxltQW8r81ZUnhaxvzWdvobHfBvsOXM9YcR7Bgi/I6LATCuSpWGdOx3x77qvIqshuyES+Hy4sAOY9KHtkAl9M686jkiQkvAOHD3gRaQziC8s0foSJobuPYshn4muvxC6tVpZYyaKlIbyVBe28aee2WSX6VTJtnyvKC7D9sDbd/OiF5vzJhRfcj86n7kBNL2POLv5HEffsirfuTqc6VNpy7R2/5E2MrajOrQTMEIeCnmiIeWjCUVQ35zBi6ghxfhElVG6gqaDbHTENRToiAL2LvexmjR88zUYHD0ZcORHLsfQkh+cU4/ubWPcgiOa0vKohE92bL2WR/9zepX6pjhew0KiK5iS+QsUJ2fTE5RMAuN5xPfF8xYUGohPiYE8mFUKG9f1lLeeq9FWP4WiBQlxiWs8m2raME65cQDK2C3A56YcJmkmnzjKEHIF/BMvt1GXoiXq/kdtL5kXZnWb9+/Rg7dmxC2JZbbsnjjz8OQN++fQFYtWoV/fr1i6dZtWoVkyZNiqdZvXp1QhmhUIj169fH83vGgrHFufh/PphwpA23a/mCaDcZ9zXbhoAFBKKbqObUQP5ayF1vGwhyO6uu/MlxBi3vLq/kov9upY6UDPGallyu2vF/5pgCQ0rqyfNHaAr51f1PdYy89lVdnLwo8dIOKqeWbvEky6GSG+yFQDjfNu7DeRAsjb7ZM7pocW48HMl1eYsn0LwaxMuA9Ja1jRNhyUFumqWV9ZFmzug7lFwRolekgWXrdoWNaX6j1toPgJeTmiOTTLZMm2csCwbRD5Yclrx5PxZJL8JwLUy+NSMallMLuRvsuaboJ8hf2a55pjSvxYyNGt5d3oezX9uGNY32xtzPL+rPVlUbOHrLRew+eBW1LTmU5rVQEAjbQ505jgCU57eQHwjTGAz0sHnGsueNpiporrBf3iF89pwTczLhs+eZ+MsFpPHAEkCkNS5WYcyxbkWiYZHkvPEydJvkSwpbkdZHOoXfLssXtJ1x8XIddVhhRZ2qA65rAJXXsZXbX9iOpk1PcdZu/5eRY1KmzTOGbo5qQjEvRzB0Z3R9O8P6fNqdZVOnTuXbb79NCPvuu+8YMmQIAMOGDaNv3768+uqr8cmktraWDz74gNNOOw2AKVOmsHHjRj755BMmT54MwGuvvUYkEmH77bdvs0wDyldTmNNCXVMxqa2faFzY7dAUOsqobs1rCfuNRQOetZ1mJBerNQgyq190DgIiwp4L4odJc3xcD49kizWF2vB2wW5O74JmCnJCNIWjx0R3dV2OA/e+qlqouC0wdKgWVLo7wdziY/mFBQ2DYNMIewETKk5eCLSH2NvUkuRy3pHmZcEgh3k9WHa6eivAQ2W7JeZJ99gRPVbOLtIWSTuDTJxnLCwI55LaA5DiSArFiSSEfQdjc287vG4UDHrUvisERbGZ0lCZgICQsIgIixxfxD40iuMjBPzfgqFxRxlAS9jHT7VF/Pnjsdzw0VhqW3Lond/MgOJGDhj5M4dtscQcayDHF6EwEGaDs/9163nGB/VDoHYMNFfadxgLp3BtQFgk74jiPPdj9owvOS6ePKAOlw+eoPViUYyE39IB0N5tLdej09vNYypYW1fBM5/vyi93+DflRZn3NEAmzjOGbkyGOQgMBoNN2p1l5513HjvuuCNXX301hx12GB9++CF33XUXd911FwCWZXHuuefyxz/+kVGjRsVftdy/f39mzZoF2Fdu9t57b04++WTuuOMOgsEgZ555JkcccYTyzTGpqCzeQN/SdVFnWYz2rCzcrLWoQeJrSS5PTq6yaXqIwS0E1LUE+Km2mHeWVfLhyt74LUGeP8yMoSs4YOQyZb6WsIc7M6LHcFR55hldXUVRIER5XpANTY67ptz6mte+KhR5VL+9XHzWyaBCtwCLhTcOgBV7R6/iuyX0KpQXob3eLpruMceZRiZ9Osrr30wgE+eZLfv/QE4gRDDkfAwz3W0enWN6fWdv/O3Ey7nbQxAC1jXm8e2GEj5eVcF/l1bRGPYzsqyO32w3n/7Fjco8iY/0g8BiZX1BQtjG5lx+qOlFdVGj7SwzUJwbon9xI8s2FbYGdtd5BmDDJFi3XfTCgjOhTuC2jsGqg9Ld5hlbx+9WDuX+d/fnnD3mZdx4lYnzjMFgMBg6l7Q7y7bddluefPJJLrnkEq688kqGDRvGTTfdxNFHHx1Pc9FFF1FfX88pp5zCxo0b2WmnnXjhhRfIz2+9ojtv3jzOPPNMdt99d3w+H4cccgh/+9vf2iVTQW4zI6uWsHDVENyNCHnil8OkeEuAr8ne1yF/JRT+DAXL7cc0dVdUnZ+SfRIRdJ8FjrBVaQr5Wd+Uy7JNhXyzvoQPVvThy7WlrKwvoDnsTzBKy/KCHDBiWfJFUwHz15UmlK2zJS1LMLy0vnscwzSQ649QnBvUJ9BdRU/RV5P6t7y4ULWPboHktiaQT8NUciEUV/jdFgAqVAK5oRNKddB0eZ31uF2NTyXD5uiozpcpDjInmTjPjKxaysDyVSxaM5D0zzONULASClZAwTLIW0v8zXhtPHcbgpm7oXabERAWFo0hP+uacvl2fQkfr+rNqvp8PljZm1X1BYSFFT8GX68tZcbQFfbLGByHWQhY15RnO3s8jE8+n2D6oMRHq3oyAUswqXIDH63U7N/YneYZgf3kgC9oP96vrTgVqcZgnXewO80zFkLAS1/vyK+mP0Jejout0gVk4jxjMBgMhs6lQ6zm/fbbj/32208bb1kWV155JVdeeaU2TUVFBQ899FBa5LEQjKxeAl+21RPlsMqssL0xak4t5Gy0jaW8dfYeMv5GO15lkDnR2TbR34triruFr6ymOYcnFw7kneWVLKopZmV9Pg3BAKHYo3Cqi68WLNzYi2DEIsefaFHXtQT4YEXvZINVYUvm+iMMLG7oCLWykoBPMKi4gf+tKW9bxhR9NSEdoLTTU/liXNoxSQadzS2nLVgB1W/AxgnQ3IfkvVZkYdzCnEK64eWuAK+kyqNa/aVyDG6+jpujUUeRafNMYW4jFUU1UWdZW4geXUvYd435miFQD4XLILApOt/U2I/46xxkTlKcuws39Mq8xmwHi2sL+deCIXy5toyfaotY1/j/7b15nFTlne//OVXdtfRWTXfTG7uIKAhqdESMmsnYVzHGaPR3JxjuuMRIFpnEG03USVySVzIanWsSczOYyc/tjibG5BoyiUqCICEqQUFQAWkWGxqkF6Cpqt67luf+caqqz3nqOaeqoZc6VZ/361WvOudZv59znqrv9zxn86IvUoR4UpjCzwhoWLltDhY3HEWVT392W1wA/3vraXjpwyk43OM317H4f/K5Y5hfHXL8Nhw1NKDSO5S5nIxT/UzpfqDxj8DRC/XbMOPGUHo0/4PlGb189DMCAxEP4iN5ruM4kmt+hjgcPoOMEMeRR6eYbdCAM6fshaYJCOXbyAwTYq6I/hyYop7EgUpYnxjzhAF3b+JNQvFUu2nNGOMBu1hG8V+5P1yKgZgb/iKrh7U6g1daGnH/mwvTt7UqfjJsn+1HA9jVVYEFNaHUthuKu7Bq7zQcCJept63UXrkniir/8NuWCh0NgEtTDLaTHKupOnJ7VvVUByZQLMvtZzqQSbMpDpQ3A2X7gIE6oOcU/dbMSIXh1kyVSLsfswahaYjBDaENz1dY11UJlrG7rCETdgcnqgMbKztVl16oYWiXGZcm0BA4iow/pKSfKerR3w5XHNLHra8N8B7R81xRjJWfaQmXIY70pyQ5iVhcw8+2zsXzzTMyX60EmLbP+0crcf+bC3HvBe+j2j+I7qFivNLSiA+6Aln/P1V6h1BNP5OZvPUzAHwdwJT/AgZrge7T9DdFDlYbrjY7mf/gbOoa05zoZ4bLXTD7PfiK+XsieQ7fCEOIIymMyTIAp9a2wucZ0N/W5IroZ+7d/YYrxUL6mXt3vz5ZpsUwfHAjNWZ3Ms8qcDcuq07aAWjr9aGr34Mp5enPU3ESkbgGkRSVbXAsgJ5IMb614Rxc0HAU0ID+SBF2dVVg57GAfiuNjCLJ447B73b2ZOO4cRJj1bIdYxyc6eS0ql87+5JpcjuqE+5aVL9dzf8RIIr0ybLBWqB3KjBYpz+Q2fh2MqVRw8YfLqrGNTO+i9lDh1EZ68XNx1djwcB+yQDVwYjKULurBeS0bK4cUPWXzYGR/c4d6aFVoePSBG6/7P/g9Q9PR7A/8TKZpJ/xdehXjZn8TOKK5CTj5Gf2h0oRGizGJF9u3fI0EroGPFh3sG44YQT/TwIafr9vCt7uqMLMil509PrQEi4bbkdGkTa/JoSy4ugJ25+PWJ7ky2s/E9MnuX1tekKkAhiqSpyoma2/GCb1gpnMfkY9kycbkF9+BgAWTt2dmkeIxoBwTwZTCHEivKKM5ArGschJ3IwUzGTZ5IqjmDT7t+jvcycmwyLQX8ltHDAWlTPFGZnqy3WEtJ6gJ1KMX+2aiS8u2ItyTxRu18T/sQqhm+kawW8pFtcsNZrWFW3uOFaJHUcrM8d+qraJknKP4qDuJMeq7X5Uxd928XI2v6+RljfW0aKAt0u/QrR8l/72r2iZfhXAQD0QKQcilYk3ZxpfDDBs/JBWjA2lC7ChdCEAAa8YwqK+XdjnbbTZEKqNIG8M1QYZiXAVqoOgTBtNPvgxWyovEwUaUF56BGLa/wUGvQCEfmImebmK3UQALPLGwM8cCJfi4bfn4R9Pa8XCycGc8DMjxV8UQ1lxFJ0n/P+k4XB3CQ4bH0g/gv+ntl4/InHNkdturJhe0QsNYvhEGVBYfgZCnwz3hIDSFqBqi36VWbQM6G9MPBagCBicBEQrEhNoVv/BVuJkI1WGOcXP6Ms15UFceOo2QABtx4F39gL7D2bRPSGEkJNHCE6YZaBgJsvKvf2YWfshDn802TrWsMIqzrAKxuSjS7tAzlA2LjT8bNsc/Hb3dMyvCeI7F2zHrEBv9iJPlMSEWFxo6IkUoa3HjwPdpdhxNIA9wXL8t+ntuPa0LKMXAewLlVtqzCoGy+bgkBNlWTOlrG/Ux+qE7seT/T26hwB3lz6BVr4nUbZYP6gZqNGvPBuYDAxVAnGvdFWA3thDk5daiJENshJpNfVkd6be7oAm00HXSGZozBYmv/mTy0xJcRSTSroRiojxH9dZ/nYFNDz3wSy8uGcarp1zEN9etANlqgn1sSDha6JxDcFBD/YGy7HneDk0TeCyGe2oKx3Iqo1tnZNwsLtkwv6fugY8iMRc8BXFs+ioMPAXxdIfx1OofgZI3E4d0W+19rUPl4979cmzSECfQOuvB2Il0nPP7PxAvvgZ3YbpVW2oDxzFgSPA/f8JHD4GTK20aIYQQsjow6sebSmYyTK3JnB6VRhvHp6sLiAHQVbLQHqgB5uykNJVMYWh75hw4XCPH229Pvz301pPaLJsKOZCz1ARPO44BmPpT6YZjOlvqGzv9aGzz4eD3aU43OPHkX4v9ofKcLTfi8GYK3WGeF51KOtgMyY0/QHSNhoBWAfPMiMMcj2u+Iiugst7xnCspsqq0q3aHInd4/p7jOgv6yg+nphAcwExPzAUAAZq9SvQhqoMV59BatjuQMVu48hTUZkMV4mQ+8qmvupgSShLcJIseyo8EVwx6zBWvnuaukCO+BlAv839V7tmYsnMNnxipG92FEBf1I3+qBtxoeFIvxdxocHnjqHaP4RyTwRFmoAA0BspwuEePw73+vHGR5OxN1iO4KAHreESBAc9iMRd8LjiOGtyMKvJsqG4hqd3nIJI3JVR41j9P80O9MDn8GeLjjYNpf3wuOIYiLr1BPqZdI2A/tzb0pbhduJe/bEAkQqgv2H4GZsxn6LhfPIzeluNlUdwvDuGn78EtB7Rc46FMphEyHjAh/ETQlBAk2XQEpM+ENCf0m1T1ipIsmnb9K060WbVhkWgKKBhS0cVlsxsG1HwJwTwk3fm4vldM1DmiaJ7KHlb2TDRuIbeSBFicW34zWE2tIzgLZ2dfV7sPl5hTrQLhu3IJl8yqq5kgAcxEqbtMQZjdSz2o23+ePweEdefN1XUC/gP6xmiSL9lc6ga6EvcVhMJJK4+y3ajjcQYI9kcoGTaSKqDHqv65lLGiTNijaYB59Qeh4bEy2RybVxL/cWFhuauCnxiaueI/Ex3pAi3/OkC7A2WQwigJ1KEuNBQ7Iqj3BPBKYEeNJQNYCDqwq6uAA73+jEUcyFu8TuJCg2dfV5lnszRfh/2Bsuz1jja/08aBK6dcxDFvAXTxCTfECq8EX2yjH7Gvg1jvntQ/3i79LdsCjcQ9wF9U/VHBSSvQIuWApZvjHSin9HLxeIanvozsKl5uGhoHG6oIIQQQrKhcCbLAJxdexwlRTH0RROyVSe9kutWJ/SM35DyjfVV7VutW5RZ11qH287ejcpsH8QsgH3BMvxq1wwc7ffhSL9Fn1axkIXGHUcDGIi64S/OMAklgFf2N+JYv8fcpo1GVRupPHk7q/aToY7HHUfTjHb12x8LmE+f8hF+3TwDu7sSk5hjMFbTOIn9mJu/RwH96rPE7ZtliavPoiX67ZqDtfrtNEOTgFgZEHcrjFcdfKjyVMuqI8dMBz+Zjv7s+rU+ZiX2zKjohdcdx0AsMQZyelwDL7c04n/Ma0FJpv93gw3vHanE5o4qRJNXdyXai8Rd6IsWoaPXPyI/E4eGnccq0TS9I+Mgm+wfQI1/EB8Gyybk/6m6ZAjnNxzjj0GiIjFJ2tnr0xPoZ+zXrcpoMUDrBSqaE+mafkJmqBIYnKy/PGCgDoj6AVGcOFHjRD+jrze3T0Of2w+BfsM2yNAlIeMBryojhMDZb48fMTMrenBO7XH7M5DJyyg0aT2J8QhSDtBUdTSY25TLW/UjgL3Bcjy94xT9gfmZEPptMQ+9NR9H+32jqnFvsBzbjkyybxNAe58PT28/BQJa1hqVsZgcQAqY6yoCV00T+PwZ+/GFM/fxOYUSDaUD+NzcA2M6VkdrP6aRQ79Hkx0aAMT159GUHgImvQM0vgJM/w0w7bdA/Tqgcrv+FkT3APSXiajEZZqSsjpClI/oVMvZ/BBUG8zckkD6riPWzK7swbl1XY4Z1+8drcQzO07BYDRDOCD0q5L/cqgW/2vzGfpE2WhpBLDmQD2Cg8UZ23vj8GR80FUxMf9PmsD1p+/H1LI+azsLlGKXwGUz2uhnRlOjlkh0DwD+diDwPlD3KjD9BWDGC0DjS0BgJ1ByECjqsxCZq35GF9tydDp2Hbkkff8RQgghOUBBXVnmcQn8f6e14s3DNRBWDl4VVBnT5BhBDsSsjj1VJ+nkGEYK1gQ0/GzbafAXxXDT/A/hdcdNJsSEhq4BD1pCZdjcXoUNh2qxqb0mc6AxQo2RuAsPv30G/v/LNqHaN5SmYTDmwr5QGR7dfAb2h8vM7WbQqNyGVgGmjf3Tyvtw+8d2odjNKCsNLXEr5hiO1dHajyrbc+X3mFmjAFxDgPeY/infBcCtXwEQqdSvPBtIXH0WLQFE8uqzbLAywHjkZRQpbwBZCCzqqP8XVYdaRI3HFcfFUzvxhtXzMYGcGtfRxP/7Rz1+fHvRDviLYhDQ/9eHYm4c7fdi57EKbO6oxs5jAbx7pBL90aJR/+2+d6QSj787B7efuws+dzxVNi702zybj1fgt7unY/3BOnQPSZNq4+hnbpr/IU/IqNCA+TUhuDShP96BfmbsNGoRoDgCFIeBklY9I+ZPvCygVP/un6K/jTNn/YxeRwgXjsX/B0pcG+HWwiOwlRBCCBl7CmqyDBpw8dRO1PgHcaTfpz7yk0+eyTGAHCMY2k5LUwVPqjpWgROAwagbP3xrHtYfrMOCmiA0TeBwTwm6h4rQEynCh6FyBAeLh8/yW8U0J6NRAO90VOGm1YuxuPEoNEMD/dEibOusxO7jFfrtrXKMlIVGW1vldAuNgzEXNN5+aYkwPitojMaqqaxVG8b+xmKsyvaq2hovjQCgxfSrz4p7AP8hvUDcoz/7bLBWf3nA4GT9gc5xD4affaY60LASLpe1O/qyqmPsA9AfbAsIWJ5WIFZowN/VH0OxK64/hN4B4zoWd+HZD2ZhX7AcC2qC6Oz3YcfRAHojRega8KA/6h4eCWP02xVCwy/ePxVvt1fj07M/QqV3CJ19PrzVXo3mrgp09PkwaLy1dQL8TLVvEJN8QxYNkLhqUskI/cwY+RmhX1lW/qG+Htiuv2EzWqK/mKZ7tv5ymliJPqmWE35meMJMQwSAO/O2I4QQQsaZwposA3Cs34veiCRbFVAB1kGMak7GKi5Q5VktWwRQ0bgLb3w02XylglVAJwercvkT1Cig4d3OSXj3yKQ0eWm2y31noVEZJI1AY3+0CD1DxZiU7fPdCowD4dLhlTEcqye7H03lc/T3eHIahf4wZ9cg4D0KVOwEhFs/iBmaNPw8mrSrz6wOVOyOsFQbxu4oZNj4vsmz0X7B5+E/2gLf0QPwd7WiuLcLYqAXEHyBRib0t0RKiTk+ruNxbcL9TCTuwtsd1Xi7ozpNXprtct/j8P80EHMjGtdQxIf7K3mns2r4JQ45+x8slc/R3+NJadSE/nIady/gPQKU74b+hmcP0Dct8XKaSmBgsu57LCfPxtbPJMtGxBQcjn8fXuxBhWsN3OIgAF5lRgghZBRIPn/wBG8LKKzJMgG8drBu+AH/STJtO/lkGRTLdm3IwU6mdPNJN/s45WTT5T5VtmTTxgRrHIi60S1PghIdAfO2yeH9mNE+Y58qW7JpI9c0ajHA1Q0Udw/fUhP36FebDdbot24OJK4+Sz3QOVvkgyC7M//6stBciPkrEDz1QgTnXARAQItGUDTQjeKuVuA3d42g/wJEAG+3VyMmv7mu0Ma1imw02jHBGrv6veiPFsFXxKvLVPRGiszb3Ip8GauO0SgAxICifqBiNyB265kxf+LETLnua3qn675nxLdvjtzPmPM0DIo5GMQcdMf+G7RYB4AvjKB/QgghJAPGl3aEw0AgkFW1gppdGIy7sOZAg75id+bQGKwYz9rZ+X+rdmRUgZBVeav+VGcXM9VR9ZVHGqNCQ3uvH/OqeTZSJiYSV5ap9lWO7UdL2/JorFralsoX+pVnviP6VQEVH+gHLtEy6eqzysRVAS5DI7I4uePMRvdMXYCB6umA5kJyo4siDyJlNYgU+0HsiQoNfztco69wXOeVRgHwBWlWCCA8WEw/4xSNEIC7Dyjp09PKAVQX674mUg50n6Z/RwL6J248XNAUyyPzM1blBTwQqAIhhBBy0oxC0FZQk2UfBsvwwbEK+4BHhezPk1gFKCMNZIyBmaq+VZuq9o15BaQxLjQEBz2KRkkk7kLIuG1yeD9mhcPHalbItmsxoDikf0r36xlxr34QMzA58eyzWiBSpl8ZYGmksWH5QEb/jntKMOQpkeqMxPjCpq3Xjz3BcvoZFQ7X2B0pRluvH1V+XlkmExfAwe6S4YQc3o9Z4fCxmhVpfiYCiAjgHdBP1ACJybNKYLAKiPuA3hm6vxFFgHDpnzRDMvsZdR36GUIIIblF4UyWCWBTW435Fkw5UMnGT8tn6FQTlqqgxRgnqMpYxQ1ywAVFurGuXLZQNGpAS8jwXC6SYjDmxvEBjzP2ozEvX8eqMe9ENCYTXQOAbwDwdSS0Fw0/0Dl56+ZQNRDzAfItgSZUwqyOAEkmth8J6L+3JBzXahyocSDqxistjZhfHeJPQ6I/5sbB7lJH7EdTXp6OVVPeCfsZAFps+A3PAkBgh377ZrxIv9o5fLp+xXPMp69b+hr6GUIIIc6jYCbLokLDq6311ie5AHUAZMTKz2dCriPXVbWlOtGWqR25boFp7OzzQQic6PP78paOPh9CVrfHyOTAfiyEsTomGrUo4Anrn+TVZzFf4uqzOn3ybHCyfkATL5aMsRNAsiUugNcO1kNA47i2w8EaQ0PF/KUoCA569Eli+pnsbHOsxrj+8gBAv9LZf1ivEC8CBhqA/gZ98mywRr+Nk36GEEKIgymYybKPukvwbmdluq9W+XFIy4A6gFEFGJkCIFW+3G9yXbZFZbOA2tYC1Lj+YB3aev1oLOsHSSCAP+9vSL+iMof3YyGM1THXCEB/I1o/4O4HfO2JOomrAQar9AObnlmGqwGMBsqohBGZo/1erD9Uq69wXOelxtUtDVi+YC+mVfSBJBDAutY6BAeLTWm5vB8LYayOm5+BAFxDQOkBoOSAnh4r0a9wHgoAfdMTV58ZXxxAP0MIIST3KYzJMgGsP1SL0FCxfbAhBwOqoAEwByNQpI0kEIFFnipfRg6M5PQC09jW68dvd0/D187ZnV3bBcCRfi9+s3u6OTHH96OyjsoeB49VZR2VPaOtUYsCnqD+KfsQmPRO4sqzWv3qs8HJQLQ0ceWZqmP+sCwRwHMfzERHry+39rlMPo5rmTHU2NHnw+r9Dfjign28ijlB16AH/7lzFoRx4+X4flTWUdnj4LGqrKOyZyw0FvXpPkYAmPSuPlEWLQW65+qPChgK6BNqqRcHGBvkD4sQQkhuUBCTZYd6/PjFe6fC5IBlxw9YBzKA/ZlDVSAik80ZSFVd1dlJq6BLZXshaRTAL3fNxJWnHMbsQA/jLQH84v1T9We5OWk/2tmWL2PVzrbx1FjUr39SV54VJ648qxm+dXOoUn+ZgO1zzwocAbSES/Gb3TPSJwxybZ+r6ubbuFbVHTU/o+Hft52GM2tCWNxwlH5GAC80T0dzV4Wz9qOdbfkyVu1sG1eN8WFf4z2qJ8aLh18cEAnoJ2oGahMvqJEFEEIIIRND3k+WRWLA/9p2Blq7Ew9/Vzl+lV9WnXWTMQY6qrN5cp7cv6o/+dsuoLGigDUe7inBvW8sxP++dDOqfEPpZ0ydSqb9oyAO6G9/hea4/WjZp1W+sT41nrhGVwTwHNc/ZXsAuPSHOQ8F9FtqQhUWjRU2/VEXHnhrIQ4l3wbopH1eCON6lDUeG/Di7r+ejf+zZCNmVPQ637+cBHEAb3w0Gann9AGO2Y+WfVrlG+tT44lpBABNAO4hwN0JeDuHG4iWANFy+hlCCCE5Q95Plq3Z34A/7JtqX8guGLEKFLI54ybn2Z2Bk/tQ5auWR3K20Yo80/j6R7X43sYFuOXMfXjvaCUaS/vwyemd9nVznPY+H/5z5yy0hksRF8AZ1WF89ezdyOpaH4fuRyV5NlaV5JTGxMOci3r1Bzn7ojadFi7P7pyJvySfVWaFY/a5YjnvxrVieYQaW0JluOlPF+C2s3dj4eQg6kv6UeEtwN+HAOJCc+x+VJJnY1VJzmkUQHGv/sFBm04JIY7H+AwDYTVrT0hukPf31fzb5nkYiiVkJn+PquDAuKw6WyaficsUQKjyM7Ul1zHaa2W73BY1AgBe3DMNn/39xfj262dhbfItqFkQiWnYFyzDW23V6BmauLnkSEzDQNSNaFwXX1cygC8u2IdLpnbi6IAXq/c3IBKz//lGYi4cG/A6ej8Wwlh1jEYN0B/mTGR+8f6piCd+q3m1z+U283Fcy22OQOO+4+W48y8fwzWrLsGqvdOy9jP5xEDMjcM9fkfvx0IYq47TSAjJX4QYniTjwz9JjpP3V5Z19PkAX2LF7swXDHlyUGHMk8uOBPnsm1VbdoGGyiZI+dQIaMBQTH/rUvPxCkSFhqJMB/oC+OnWuXhqxymIxl3442fXo8zTY19njHhy+2z8unkGTq8K40sL9+DMmhAmeYfw309rxWdOPYTvvH4WuoeK4S0atGwjEnchPFjs+P1YCGPVURpJGr2RYsD4krd82+eFMK5PUGM8rqFnqBgv7pmGz809AG9RPKPtcSTOVE7kMYIAPgyVYcexAACg3BPBmdUhRIWGWFzDlPLs3iotAESFy/H7sRDGqqM0EkJOnuRE1ERfvaVpahuEACfLSK6T95NlJicOxbIRDZmDihPpS/U/YNVWpqBIKMpSY3r7hvLNXRU43OPH9Io+C4N0goPF+OOHUxAa8MBfHJ3Q45ij/V7sDZZjb7Acrx2swxWzDmPF2bsxK9ADj0s/GDvS70VNifVk2ZF+L7oGvOpMB+7HQhirjtFIzBTCPqfG9PYN5feFytDW68dMu2eYCf2W+sffnYMFNUHMCvRgdmUPyj2RUZ08S52wN5iYXIkDOD7gwaa2Gjz01jzsD5cBANyaQKV3CHEAn5vbim+c+wGE0OAvitnaFYvrk2tWep22HwthrDpGIyEkP5AnynJlEo+QLBj1ybJYLIYHHngAzz77LNrb29HY2IibbroJ3/nOd6AlfhxCCNx///34xS9+gWAwiI9//ONYuXIl5syZk2qnq6sL//zP/4w//OEPcLlcuO666/CTn/wEZWVlIzNI5XRtAlllmobMjt6qDU2xLAcumQIOY4CiqkuNtvYFB4vx/K4ZuOO8XXC71H/MsbiGJ7fPxr6gPr6icRdeaWnAZMVk1Hl1xzDVcNY9JjT85WAtwkPF8LpjuHxmG3xFcUTjGtYcqEf3ULGFodY0dw0/4LY3UoTf7p6Oda11+OyphzCvOoQ1B+pxQcNRnFEVVm4HIYC32qrRG3HnzX5MpeXxWE2l5bLGHIB+xqYvjmvrdsZQY2jQg3/dNB8//uQWlBTHlOU3d1ThX14/C7u6AgAEil0CjaX9OL06hKllfZha3o9yTwRedxyaJnB6VRgBTwTH+r2Y5BvEoZ4SeN1x1JUMQIOAxx1HhScCTQMO9/hxqKcER/u92HCoFj1DRagrHcDhHj8uaDiKaNyF/eFS7A+V4cNwGQ73+PVnjSWICU2/bR/A87tm4C8HayEAPHDh+1jccFR58j8a1/BC8wy09/ryZj+m0vJ4rKbSclljDpBzfoaQkTLRk1F2V5SplgnJQUZ9suyHP/whVq5ciWeeeQbz58/H5s2bcfPNNyMQCOBrX/saAODhhx/GY489hmeeeQazZs3Cvffei8svvxw7d+6Ez6ffM7ls2TK0tbVhzZo1iEQiuPnmm7F8+XL88pe/HLlRqrNoshOX00ZaXq5jZ4eQ1lVtWrUtl7EKTKjR0KaGX7x/KtwugTNrQkqzW8MlePzdOUi+0SsSd+GHb89Xlp1S1ocKT8TQpYaWUCkGY26UF0cwFHOjwhtBb6QID7y5AMFBj7KdrDDo6Rrw4onts6FBQEDDcx/MRGlxVHkQ09Hrw0+3ngaRPBjKi/04gvIqu2So8cQ05gD0M1nYwXGtbmsMNf75QAMeeHMhmma0YUpZPzRNYOexAD7qKcHxAQ/+sG8KjvQPPxciEtdwoLsUB5Jv6zZ1AJQWx1DsiqM/6kZJcRS9ET1kKymKQQPgL47itEndKCmK4Z2OSTjS70Nc6D7JyMstU9K3m43G4KAHwQEPoAEr1p6H6+YcxNyqMMo9UWgQKHIJDMVcWNdahxf3TkM07jJvW2m7WJKj+zHr8iq7ZKiRfmY0/Qwh48nJXgHGiTCSB2hCjO5I/vSnP426ujo88cQTqbTrrrsOfr8fzz77LIQQaGxsxB133IE777wTABAKhVBXV4enn34aS5cuxQcffIB58+bh7bffxnnnnQcAWL16NT71qU/h0KFDaGxszGhHOBxGIBAAfnwl4CtWO2QjdmfU5PxMgYrxbJldGblsNn2PxL6RtlMIGmE13DVzkZPSaOxD0W4m80akMYOefN2PhTBWc1FjfwS4/SWEQiFUVFQoCowP9DPguM5hjRoEit367fL6C4a0PNEoTNXoZ0CNqjL0M2PiZyZ6exBCSL4wkv/VUX8b5oUXXoi1a9di9+7dAIB3330Xr7/+Oq644goAQEtLC9rb29HU1JSqEwgEsGjRImzcuBEAsHHjRlRWVqYcCwA0NTXB5XJh06ZNyn4HBwcRDodNnxFhdO5QLGtSWWMdVVk5AJADB7k9uQ1hWLYKNqzmSaygRgwbLn1GVWOyTW0cNCb6MfZp7Chf92MhjNV80DhG0M8gd/c5NUJAw1DMnXjJjGau42iNGgS0xBXL9DNpZamRfiYX/AwhhJBRY9Rvw7z77rsRDodx+umnw+12IxaL4Qc/+AGWLVsGAGhvbwcA1NXVmerV1dWl8trb21FbW2s2tKgIVVVVqTIyDz74IL773e9mZ6Sdk1bl25U15ie/hSLNqo1sAgwrGzPlUyM1ylCjfRvUaG9jjkA/g9zY59RIjSqo0b4NarS3MUdwhJ8hhBAypoz6lWUvvPACnnvuOfzyl7/EO++8g2eeeQb/9m//hmeeeWa0uzJxzz33IBQKpT4HDx4czpSdudHxqxyzyqELxbfqjJkxmLAqo6ojp6kCEGNZK03yOjWmty9/UyM1ynXkNGrMfGA1jtDP2LTPcW1Oo0ZqNK5TY3r78ncuaZxActLPEEIIGVdG/cqyb37zm7j77ruxdOlSAMCCBQtw4MABPPjgg7jxxhtRX18PAOjo6EBDQ0OqXkdHB84++2wAQH19PTo7O03tRqNRdHV1perLeL1eeL3e9Ayjg5a/VcgOWw4sVGfLjHXkAEGDuk0N9oFNpuBIDnCMfVEjNRrTqTG9X7lNasxeYw5APwOO62R5aqRGYz41qnGaxhwg5/wMIYSQcWfUryzr6+uDy2Vu1u12Ix7XH3Y7a9Ys1NfXY+3atan8cDiMTZs2YfHixQCAxYsXIxgMYsuWLaky69atQzwex6JFi0ZmkNFxG527XXm7NAFzACAHJ3bLVkGDsayVvfK33DY1mqFGalT1bVymRnt77TROMPQzNssc1/b2UiM1ylBjbmqcYHLOzxBCCBl3Rv3Ksquuugo/+MEPMH36dMyfPx9bt27Fo48+ii984QsAAE3TcPvtt+P73/8+5syZk3rVcmNjI6655hoAwBlnnIElS5bg1ltvxeOPP45IJIIVK1Zg6dKlWb05Rol8xgtQO2UhLWswBw2aohxgHzBYOX9V23KAYmernE6N6XYZ61Cj2T5VW9RIjXa25gj0M4q2OK6p0c5WOZ0a0+0y1qFGs32qtuhnJsbPEEIIGTdGfbLspz/9Ke6991589atfRWdnJxobG/GlL30J9913X6rMt771LfT29mL58uUIBoO46KKLsHr1avh8vlSZ5557DitWrMCll14Kl8uF6667Do899tiJGyY7/EzBhrGOnK46g2cVCKjyrJatggtVYGIV7FAjNco2Z9Jhl0eN6X0XusYcgH4mizyO6/S+qZEa5fLUaC6fSYddHv3M+PgZQggh44YmhFC5R8cTDocRCASAH18J+ItPvCHZmau2VraOXa4rBwjJNGOwkClwGI3AghrNedm2papHjfZtUmP2duWixv4IcPtLCIVCqKioyNKI/IV+ZgRQozkv27ZU9ajRvk1qzN6uXNRIP2Mi6We4PQghZHQYyf/qqD+zLKcRFsvGNCHl252lU52xk9uR0aRvq76M/cn2CkW+nCcvq2yjxuE8akyHGtPboUaSiXzc54UwrqnR3jZqHM6jxnToZwghhOQh+T9ZJmDt4GUnbXToGsyOXq5vFawYgw6r4ETVnpUdVvYYv6nRum1qpEZqHH2NxEwh7HNqtG6bGqmRGulnCCGE5B2j/syynCPp3I0knbYx0FAFInKAAdgHGXK6sb6xT7kPVSCjKcpbtaMKLKjRXAaKdFkLpHLUSI3UaG6HqKGfoUZqpEa5b2pMr08/QwghxEHk/2SZjOzYZQefTV15ORNyHasgQdWXVVCjakeuS41qqNEaaqTGTBpJZvJtnxfCuKZGalRBjdbQzxBCCMlz8v82TMDseDXDt+yQNaQ7cTk/2Z4cEEDKk9s31pHzjO0KKQ02ecZ2qNGcR43p9srtU6O6b2q0zsv2IKoQyed9XgjjmhqpUQU1mvPoZwghhBQQhXFlmVUgYOeQR5qnCgSSgYMqSFHZpAoiMuXJ+dSotiHbPGqkRmq0ziPW5Os+L4RxTY3Wtp5oHjVSI/0MIYQQh5P/V5YJw0eT0lXLxnXjt/GjQhU0AObAQWVbMuhQ5avstdJCjdQot0GN1nZS48lpJGYKYZ9To7p/alRDjdRIP0MIIcTh5P+VZUZHb3TESUduXFZ9y/lJjHXltmWMbarsyqaeygZjW3Ido92yBmo0t2VsnxqpkRozayRm6GfSNVCjuS1j+9RIjdRIP0MIISTnyf/JMhkr52wXPKjSVYGEvKxq28qebNazCV6M+dRIjVb9USM1ZrOerUZiphD2OTVSIzVSo/FbZU826/QzhBBCcpTCvA1T5bSN35qhjhHZiRuDE2O+cV1OM7ZpF7gY6xttUQUt1KjunxrTbaRGdR8qO4x9G+tTI5EphH1Ojer+qTHdRmpU96Gyw9i3sT41EkIIIRNO/k+WaTA7drugQOXcjeXkZWM9Y76xP7ktuazctowcrMh2G/ujRmqU7aBGahwLjcRMIexzaqRGaqRG+hlCCCEFRP5PlgHpDtvo1FXBhFVwYeX4rc6ICcO6HHBYBQR25e3qUiM1quqo7KJGalTZOlKNxEwh7HNqpEZVHZVd1EiNKlvpZwghhDiIwpgsUzlfOUAwOn9VQGJ04sZ8VSBiFXiobLIKIOS+5KBCVUfVBzWm51EjNar6N9pJjZk1EjOFsM+pcbg8NVIjQI2q/o120s8QQghxMIUxWSY7bWPwAAw7cE1R1lhG5cBVgYbxWxXMyO3KAYSVnVb9Gu2lRmqkxuEy8jc1jp5GYqYQ9jk1UqOxDDVSoxX0M4QQQvKA/H8bZtLxyg44maYKLIz5kPLlduW2VQGAJtVRBQOyHar+VCTTqdGcRo3mtqkxvR41ppfPRiNJh36GGqmRGlX1qDG9PP0MIYQQh5D/V5bZBQjJdGMgoXLscrqxPVWgIrdtXM42mLBLl6FGaqRGajS2bVweC43ETCHsc2qkRmqkRmPbxmX6GUIIIXlI/k+WGdGkbyNCyjOuqwIOOTCQ0zUpza6OJtWRzxrKdhrbkbVQozmPGqmRGtV9nqhGYk8+7vNCGNfUmF7XmEeN1Eg/QwghpMAorMky2cEbnXK2Djrp5DXFurF9OYhQBROqgMFoi1xHDjxUUGN2UONw+9RIjSejkZgphH1OjdlBjcPtUyM10s8QQghxGPn/zDLA7JiFlJ5N3SRy0CCny33IgYHcnypdXrez0dgPNdpDjfZ9UCM1ZmMjD2Ssyfd9XgjjmhozQ432fVAj/QwhhJC8If8ny4wBgCqogCHdqq7qLJ0qL9mHnGZFpkBEZY8qSKHGzG3K+dRIjTLUqLZH1kjSyfd9XgjjmhrT7Va1KedTIzXK0M8QQgjJEwrjNkzZ8WqG76RTNyIUZVVtWrVrlaZJn2SaVXAi26QKbORvVT41UiM1pqdR44lpJGryeZ8XwrimRmq0s9tYV9WuVRo10s8QQghxLPl/ZVnSYScdsCpYkMvI+Uns2rFz8HZ9Z1tHDjbk4IIaqdEINWZvr6rtTHUKXSMxUwj7nBrVZazsoMbs7VW1nakONea/RkIIIWSCKYwry4xo0rddGSOqQMWqDQFz8GAMCpIf+ezaSGzJVJ8arfOoMb0sNVJjJltGUp8Uxj6nRus8akwvS43UmMkW+hlCCCE5Rv5fWZbEzgGrnH8S2aHLZ+A06RtSvqovq6BCVV7Vv509VlCjfZvUqO6LGjP3b2ePFU7WSKzJ131eCOOaGtX1qJEa6WcIIYQUKPl/ZZkqQEg6czkAkMuo2pLPwCW/5Ty5jLxuDCzktuX+VXXkvlX2UyM1yn1To3qdGrPXSNLJ931eCOOaGqmRGs316GcIIYQUOCOeLNuwYQOuuuoqNDY2QtM0rFq1ypQvhMB9992HhoYG+P1+NDU1Yc+ePaYyXV1dWLZsGSoqKlBZWYlbbrkFPT09pjLvvfceLr74Yvh8PkybNg0PP/zwyNUBZicNmAOMTE7ZGJBYlZXP3FkFHFZ2yWfj5LKqwMeqT2pUQ432/RnrUCM1ZtI4DtDPSEz0Pi+EcU2N1JjMp8aJ1zgOOM7PEEIIGXdGPFnW29uLs846Cz/72c+U+Q8//DAee+wxPP7449i0aRNKS0tx+eWXY2BgIFVm2bJl2LFjB9asWYM//vGP2LBhA5YvX57KD4fDuOyyyzBjxgxs2bIFjzzyCB544AH8x3/8xwlIhDqoMDru5LpAutNWBQjC8LELGmSE4qOy09i3MdiQbVX1T43UKNenRjXUeGIaxwH6GeTWPi+EcU2N5r6pMb0+Naqhnxk/P0MIIWRc0YQQJ+yWNE3D7373O1xzzTUAACEEGhsbcccdd+DOO+8EAIRCIdTV1eHpp5/G0qVL8cEHH2DevHl4++23cd555wEAVq9ejU996lM4dOgQGhsbsXLlSnz7299Ge3s7PB4PAODuu+/GqlWrsGvXrqxsC4fDCAQCwI+vBHzFaoevChqMeVZBglVAku2yVfvGPWGVp0qXg6Fs6lnZYJVHjZnryPaobKJGalTVs7LBKm+iNPZHgNtfQigUQkVFhYWxowv9jGKd49q+fWq0TqdGdT0rG6zyqDFzHdkelU30MxlJ+pnx3B6EEJLPjOR/dVSfWdbS0oL29nY0NTWl0gKBABYtWoSNGzcCADZu3IjKysqUYwGApqYmuFwubNq0KVXmkksuSTkWALj88svR3NyM48ePK/seHBxEOBw2fVIYnboRDdZBg1W6VZ5AepCQDGZUdVQ2aTDbpMqDlKdJ39SotiHbPGqkRtkeakzPm0DoZ8BxrWqDGq1tpUbreiobss2jRvqZ8fYzhBBCxpVRnSxrb28HANTV1ZnS6+rqUnnt7e2ora015RcVFaGqqspURtWGsQ+ZBx98EIFAIPWZNm2aniGgdvbCYtm4bvw2flRYBSdWwUwyLRl0qPJV9lppoUZqlNugRms7qfHkNE4g9DMW6ao+kmkc12qbqDG9jqp/alRDjfQz4+lnCCGEjDt58zbMe+65B6FQKPU5ePCgnmE8o2V02kZHbswzrstn7+QzY3ZBCaQ8Y3/Jsqp25Xoqm1Rn8qiRGq1socZ0W6nx5DQWKPQzoEZqpEbZHhXUSD9zglj6GUIIIeNO0Wg2Vl9fDwDo6OhAQ0NDKr2jowNnn312qkxnZ6epXjQaRVdXV6p+fX09Ojo6TGWS68kyMl6vF16vN7ORqoABMDt3OU+VbgwsrJZVbVvZk826qh8V1EiN1EiNxm+VPdmsZ6txHKGfQW7sc2qkRmqkRuO3yp5s1ulnTGTtZwghhIw5o3pl2axZs1BfX4+1a9em0sLhMDZt2oTFixcDABYvXoxgMIgtW7akyqxbtw7xeByLFi1KldmwYQMikUiqzJo1azB37lxMmjRpZEYJw8fKIQvpWzPUMSI7cWNwYsw3rstpxjbtAhdjfaMtqqCFGtX9U2O6jdSo7kNlh7FvY31qnFDoZxTtcFxTIzVSY75pnEBy0s8QQggZd0Y8WdbT04Nt27Zh27ZtAPSHYG7btg2tra3QNA233347vv/97+O//uu/8P777+OGG25AY2Nj6g0zZ5xxBpYsWYJbb70Vb731Ft544w2sWLECS5cuRWNjIwDg85//PDweD2655Rbs2LEDv/71r/GTn/wE3/jGN0auUIPZsdsFBSrnbiwnLxvrGfON/cltyWXltmXkYEW229gfNVKjbAc1UuNYaBxj6GeQe/ucGqmRGqmRfmbi/AwhhJBxZ8S3YW7evBmf/OQnU+vJP/wbb7wRTz/9NL71rW+ht7cXy5cvRzAYxEUXXYTVq1fD5/Ol6jz33HNYsWIFLr30UrhcLlx33XV47LHHUvmBQAB//vOfcdttt+Hcc89FTU0N7rvvPixfvvzEVMrO1xgIqIIJq+DCyonLZ8SMy6q6mdqS28lkr8pmaqRGaqTGsdQ4htDPZGif4zq7tuR2qFFtMzVSY65qHEMc6WcIIYSMK5oQQmQu5jzC4TACgQDw4ysBf7G6UNIxG7eAnZO3cuLGduRvILsAIlM5KPKyCSyoMd0OaqRGasxcDoq8vgjwP19CKBRCRUWFRaXCgX5GYZuxHys7qJEaqTFzOSjyCkEj/YyJpJ/h9iCEkNFhJP+refM2TFuE4lt25MmPXNZYRk5LltMMZeTvTEGNJpWTbVD1KfdrtJcaqZEah8vI39Q4ehqJmULY59RIjcYy1EiNVtDPEEIIyQNG9W2YOUnS8coOOJmmCiyM+ZDy5XbltlUBgCbVUQUDsh2q/lQk06nRnEaN5rapMb0eNaaXz0YjSYd+hhqpkRpV9agxvTz9DCGEEIeQ/1eW2QUIyXRjIKFy7HK6sT1VoCK3bVzONpiwS5ehRmqkRmo0tm1cHguNxEwh7HNqpEZqpEZj28Zl+hlCCCF5SP5PlhnRpG8jQsozrqsCDjkwkNM1Kc2ujibVkc8aynYa25G1UKM5jxqpkRrVfZ6oRmJPPu7zQhjX1Jhe15hHjdRIP0MIIaTAKKzJMtnBG51ytg466eQ1xbqxfTmIUAUTqoDBaItcRw48VFBjdlDjcPvUSI0no5GYKYR9To3ZQY3D7VMjNdLPEEIIcRj5/8wywOyYhZSeTd0kctAgp8t9yIGB3J8qXV63s9HYDzXaQ432fVAjNWZjIw9krMn3fV4I45oaM0ON9n1QI/0MIYSQvCH/J8uMAYAqqIAh3aqu6iydKi/Zh5xmRaZARGWPKkihxsxtyvnUSI0y1Ki2R9ZI0sn3fV4I45oa0+1WtSnnUyM1ytDPEEIIyRPydrJMiIR3HoikO+60wlAHBiNx2iNpP5t8K5vs6lMjNWYDNVLjiWociOhZyf/XAod+Jsv2qDGzndnkWeVTo7osNTpTI/2MieR2CIfDE2wJIYTkB8n/02z8TN5Olh07dkxfuOfPE2sIIYTkGd3d3QgEAhNtxoRDP0MIIWMD/YxOd3c3AGDatGkTbAkhhOQX2fiZvJ0sq6qqAgC0trY6wtmGw2FMmzYNBw8eREVFxUSbkxVOs9lp9gK0eTxwmr3AxNkshEB3dzcaGxvHrc9cxml+BnDeeHeavYDzbHaavYDzbHaavQD9TK7Q2NiInTt3Yt68eY4ZPxzvY4/T7AWcZ7PT7AWcZ7MT/EzeTpa5XPqLPgOBgCMGS5KKigpH2Qs4z2an2QvQ5vHAafYCE2OzUyaFxgOn+hnAeePdafYCzrPZafYCzrPZafYC9DMTjcvlwpQpUwA4b/w4zV7AeTY7zV7AeTY7zV7AeTbnsp9xjbEdhBBCCCGEEEIIIYQ4Bk6WEUIIIYQQQgghhBCSIG8ny7xeL+6//354vd6JNiUrnGYv4DybnWYvQJvHA6fZCzjT5nzEifvBaTY7zV7AeTY7zV7AeTY7zV7AmTbnK07bF06zF3CezU6zF3CezU6zF3CezU6wVxN8NzMhhBBCCCGEEEIIIQDy+MoyQgghhBBCCCGEEEJGCifLCCGEEEIIIYQQQghJwMkyQgghhBBCCCGEEEIScLKMEEIIIYQQQgghhJAEnCwjhBBCCCGEEEIIISRBXk6W/exnP8PMmTPh8/mwaNEivPXWWxNix4MPPoi/+7u/Q3l5OWpra3HNNdegubnZVObv//7voWma6fPlL3/ZVKa1tRVXXnklSkpKUFtbi29+85uIRqNjYvMDDzyQZs/pp5+eyh8YGMBtt92G6upqlJWV4brrrkNHR8eE2Ttz5sw0ezVNw2233QYgN7bvhg0bcNVVV6GxsRGapmHVqlWmfCEE7rvvPjQ0NMDv96OpqQl79uwxlenq6sKyZctQUVGByspK3HLLLejp6TGVee+993DxxRfD5/Nh2rRpePjhh8fE5kgkgrvuugsLFixAaWkpGhsbccMNN+Dw4cOmNlT75qGHHhoTmzNt45tuuinNliVLlpjK5NI2BqAc15qm4ZFHHkmVGc9tTNKhrzkxnOZngNz3NfQz9DMnYjP9TO5DP3PiOM3X5LqfAZzna5zmZzLZDOSer8l7PyPyjOeff154PB7x5JNPih07dohbb71VVFZWio6OjnG35fLLLxdPPfWU2L59u9i2bZv41Kc+JaZPny56enpSZT7xiU+IW2+9VbS1taU+oVAolR+NRsWZZ54pmpqaxNatW8XLL78sampqxD333DMmNt9///1i/vz5JnuOHDmSyv/yl78spk2bJtauXSs2b94sLrjgAnHhhRdOmL2dnZ0mW9esWSMAiNdee00IkRvb9+WXXxbf/va3xYsvvigAiN/97nem/IceekgEAgGxatUq8e6774rPfOYzYtasWaK/vz9VZsmSJeKss84Sf/vb38Rf//pXceqpp4rrr78+lR8KhURdXZ1YtmyZ2L59u/jVr34l/H6/+PnPfz7qNgeDQdHU1CR+/etfi127domNGzeK888/X5x77rmmNmbMmCG+973vmba9ceyPps2ZtvGNN94olixZYrKlq6vLVCaXtrEQwmRrW1ubePLJJ4WmaWLfvn2pMuO5jYkZ+poTx2l+Rojc9zX0M/QzJ2Iz/UxuQz9zcjjN1+S6nxHCeb7GaX4mk81C5J6vyXc/k3eTZeeff7647bbbUuuxWEw0NjaKBx98cAKt0uns7BQAxF/+8pdU2ic+8Qnx9a9/3bLOyy+/LFwul2hvb0+lrVy5UlRUVIjBwcFRt/H+++8XZ511ljIvGAyK4uJi8Zvf/CaV9sEHHwgAYuPGjRNir8zXv/51MXv2bBGPx4UQubd95T+ReDwu6uvrxSOPPJJKCwaDwuv1il/96ldCCCF27twpAIi33347VeaVV14RmqaJjz76SAghxL//+7+LSZMmmWy+6667xNy5c0fdZhVvvfWWACAOHDiQSpsxY4b40Y9+ZFlnrGy2cixXX321ZR0nbOOrr75a/MM//IMpbaK2MaGvORmc7meEyG1fQz8zDP2Mvc0y9DO5Bf3MyeF0X5PLfkYI5/kap/kZIZzna/LRz+TVbZhDQ0PYsmULmpqaUmkulwtNTU3YuHHjBFqmEwqFAABVVVWm9Oeeew41NTU488wzcc8996Cvry+Vt3HjRixYsAB1dXWptMsvvxzhcBg7duwYEzv37NmDxsZGnHLKKVi2bBlaW1sBAFu2bEEkEjFt39NPPx3Tp09Pbd+JsDfJ0NAQnn32WXzhC1+Apmmp9FzbvkZaWlrQ3t5u2qaBQACLFi0ybdPKykqcd955qTJNTU1wuVzYtGlTqswll1wCj8dj0tHc3Izjx4+PuY5QKARN01BZWWlKf+ihh1BdXY1zzjkHjzzyiOlS8PG2ef369aitrcXcuXPxla98BceOHTPZksvbuKOjAy+99BJuueWWtLxc2saFAn3NyeNUPwM4z9fQz9DPZAP9TG5BPzM6ONXXOM3PAPnha5zgZwDn+hon+pmiMW19nDl69ChisZjpTwIA6urqsGvXrgmySicej+P222/Hxz/+cZx55pmp9M9//vOYMWMGGhsb8d577+Guu+5Cc3MzXnzxRQBAe3u7Uk8yb7RZtGgRnn76acydOxdtbW347ne/i4svvhjbt29He3s7PB5P2h9IXV1dypbxttfIqlWrEAwGcdNNN6XScm37yiT7UNlg3Ka1tbWm/KKiIlRVVZnKzJo1K62NZN6kSZPGxH5Af+bDXXfdheuvvx4VFRWp9K997Wv42Mc+hqqqKrz55pu455570NbWhkcffXTcbV6yZAmuvfZazJo1C/v27cO//Mu/4IorrsDGjRvhdrtzfhs/88wzKC8vx7XXXmtKz6VtXEjQ15wcTvYzgPN8Df0M/Uw20M/kFvQzJ4+TfY3T/IyxD6f6Gif4GcDZvsaJfiavJstymdtuuw3bt2/H66+/bkpfvnx5annBggVoaGjApZdein379mH27NnjbSauuOKK1PLChQuxaNEizJgxAy+88AL8fv+42zMSnnjiCVxxxRVobGxMpeXa9s03IpEI/vEf/xFCCKxcudKU941vfCO1vHDhQng8HnzpS1/Cgw8+CK/XO652Ll26NLW8YMECLFy4ELNnz8b69etx6aWXjqstJ8KTTz6JZcuWwefzmdJzaRuT3MAJvsbJfgagrxlv6GfGB/oZki1O8DOAs30N/cz44hQ/Azjb1zjRz+TVbZg1NTVwu91pbzLp6OhAfX39BFkFrFixAn/84x/x2muvYerUqbZlFy1aBADYu3cvAKC+vl6pJ5k31lRWVuK0007D3r17UV9fj6GhIQSDwTR7krZMlL0HDhzAq6++ii9+8Yu25XJt+yb7sBuz9fX16OzsNOVHo1F0dXVN6HZPOpYDBw5gzZo1prMwKhYtWoRoNIr9+/dPmM1JTjnlFNTU1JjGQS5uYwD461//iubm5oxjG8itbZzP0NeMLk7xM4AzfQ39DP1MJuhncg/6mdHHKb7GiX7G2IfTfI2T/QzgHF/jVD+TV5NlHo8H5557LtauXZtKi8fjWLt2LRYvXjzu9gghsGLFCvzud7/DunXr0i4fVLFt2zYAQENDAwBg8eLFeP/9902DPvlDnjdv3pjYbaSnpwf79u1DQ0MDzj33XBQXF5u2b3NzM1pbW1Pbd6Lsfeqpp1BbW4srr7zStlyubd9Zs2ahvr7etE3D4TA2bdpk2qbBYBBbtmxJlVm3bh3i8XjKUS5evBgbNmxAJBIx6Zg7d+6YXJqadCx79uzBq6++iurq6ox1tm3bBpfLlbo0eLxtNnLo0CEcO3bMNA5ybRsneeKJJ3DuuefirLPOylg2l7ZxPkNfM7o4xc8AzvQ19DP0M5mgn8k96GdGH6f4Gif6GcCZvsbpfgZwjq9xrJ8Z81cIjDPPP/+88Hq94umnnxY7d+4Uy5cvF5WVlaY3g4wXX/nKV0QgEBDr1683vQq1r69PCCHE3r17xfe+9z2xefNm0dLSIn7/+9+LU045RVxyySWpNpKvAb7sssvEtm3bxOrVq8XkyZPH7LXFd9xxh1i/fr1oaWkRb7zxhmhqahI1NTWis7NTCKG/Znn69Oli3bp1YvPmzWLx4sVi8eLFE2avEPrbgaZPny7uuusuU3qubN/u7m6xdetWsXXrVgFAPProo2Lr1q2pN6089NBDorKyUvz+978X7733nrj66quVr1k+55xzxKZNm8Trr78u5syZY3oFcDAYFHV1deKf/umfxPbt28Xzzz8vSkpKTviVunY2Dw0Nic985jNi6tSpYtu2baaxnXxLyZtvvil+9KMfiW3btol9+/aJZ599VkyePFnccMMNY2Kznb3d3d3izjvvFBs3bhQtLS3i1VdfFR/72MfEnDlzxMDAQE5u4yShUEiUlJSIlStXptUf721MzNDXnDhO9DNC5LavoZ+hnxmpzUnoZ3IX+pmTw4m+Jpf9jBDO8zVO8zOZbM5FX5PvfibvJsuEEOKnP/2pmD59uvB4POL8888Xf/vb3ybEDgDKz1NPPSWEEKK1tVVccskloqqqSni9XnHqqaeKb37zmyIUCpna2b9/v7jiiiuE3+8XNTU14o477hCRSGRMbP7c5z4nGhoahMfjEVOmTBGf+9znxN69e1P5/f394qtf/aqYNGmSKCkpEZ/97GdFW1vbhNkrhBB/+tOfBADR3NxsSs+V7fvaa68px8GNN94ohNBftXzvvfeKuro64fV6xaWXXpqm5dixY+L6668XZWVloqKiQtx8882iu7vbVObdd98VF110kfB6vWLKlCnioYceGhObW1paLMf2a6+9JoQQYsuWLWLRokUiEAgIn88nzjjjDPGv//qvpj/y0bTZzt6+vj5x2WWXicmTJ4vi4mIxY8YMceutt6YFm7m0jZP8/Oc/F36/XwSDwbT6472NSTr0NSeGE/2MELnta+hn6GdGanMS+pnchn7mxHGir8llPyOE83yN0/xMJptz0dfku5/RhBBCccEZIYQQQgghhBBCCCEFR149s4wQQgghhBBCCCGEkJOBk2WEEEIIIYQQQgghhCTgZBkhhBBCCCGEEEIIIQk4WUYIIYQQQgghhBBCSAJOlhFCCCGEEEIIIYQQkoCTZYQQQgghhBBCCCGEJOBkGSGEEEIIIYQQQgghCThZRgghhBBCCCGEEEJIAk6WEUIIIYQQQgghhBCSgJNlhBBCCCGEEEIIIYQk4GQZIYQQQgghhBBCCCEJ/h8cNg3mcN6l2QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAEDCAYAAAAr7oPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcD0lEQVR4nOydd3xcxdX3v3erumTJkjvuYIyJDaaZZlMNGAihOzxgIJRQEwgJDwmhBz9ACgRCCwklMS+JCSEBQicQWugkdGwwuFtukmy1LXfeP+7u6u7szN1VWZXV/D4fae/OnDlzzp1yzpydO9cSQggMDAwMDAwMDAwMDAwMDAwMDAwM8PW1AAYGBgYGBgYGBgYGBgYGBgYGBv0FJlhmYGBgYGBgYGBgYGBgYGBgYGCQgAmWGRgYGBgYGBgYGBgYGBgYGBgYJGCCZQYGBgYGBgYGBgYGBgYGBgYGBgmYYJmBgYGBgYGBgYGBgYGBgYGBgUECJlhmYGBgYGBgYGBgYGBgYGBgYGCQgAmWGRgYGBgYGBgYGBgYGBgYGBgYJGCCZQYGBgYGBgYGBgYGBgYGBgYGBgmYYJmBgYGBgYGBgYGBgYGBgYGBgUECJlhmMChw1VVXYVlWX4vRa5gzZw7Tpk3rUZ7jxo3j1FNP7VGeBgYGBn0Ny7K46qqr+lqMrDj11FMZN25cWlpPyz5nzhzmzJnTY/z6I8aNG8fhhx/eY/xefPFFLMvi4YcfzkqbSxved999WJbFV199lXPdL774YueENjAwMOjnGCi2Od847LDDOPPMM1PfB/q8L68nn3rqKcrKyli/fn3fCeUBEywzGLBYtmwZ559/Pttuuy0lJSWUlJQwdepUzjvvPP773//2tXidhmVZnH/++X0thoGBwQDF7bffjmVZ7L777n0tSsHhq6++wrKs1J/f72ebbbbhW9/6Fu+//35fi9cpfPzxx1x11VU5BWN6C0nnP/kXDAaZMGECp5xyCl9++WVfi9fnuP3227nvvvv6WgyDQYBksPbtt9/ua1F6Da+88kpq7tmwYUO3eD322GPMnj2buro6SkpKmDBhAscffzxPPfVUD0nbv/Dggw9y880391n9sm2W//7v//6vz2TrCbz66qs888wzXHrppXmtZ9y4cWn3rbS0lN12240HHnggr/UCHHLIIUyaNImFCxfmva6uINDXAhgYdAWPP/44J5xwAoFAgJNOOonp06fj8/n49NNPeeSRR7jjjjtYtmwZY8eOBeDyyy/nf//3f/tYagMDA4P8YdGiRYwbN44333yTpUuXMmnSpL4WqeAwf/58DjvsMOLxOJ988gl33HEHTz75JP/+97+ZMWNGr8vT2tpKINA5V+7jjz/m6quvZs6cORm7nJ555pkelK7zuPDCC9l1112JRqO8++673H333TzxxBN88MEHjBw5sk9l6wn89re/xbZtT5qTTz6ZE088kXA4nEq7/fbbGTp0aMbu7n333ZfW1lZCoVA+xDUwKHjYts0FF1xAaWkpzc3N3eL185//nB/+8IfMnj2byy67jJKSEpYuXcpzzz3HQw89xCGHHNJDUvcfPPjgg3z44Yd8//vf71M5krZZxk477dQH0vQcbrrpJg444IA0fy5f8/6MGTP4wQ9+AMCaNWu45557WLBgAe3t7Wk72/KBs88+m0suuYSrr76a8vLyvNbVWZhgmcGAwxdffMGJJ57I2LFjef755xkxYkRa/g033MDtt9+Oz9excTIQCHR6QWFgYGAwULBs2TJee+01HnnkEc4++2wWLVrElVdembVcLBbDtm2z2M4RO++8M//zP/+T+r7XXntx5JFHcscdd3DXXXcpyzQ3N1NaWpoXeYqKinqUX1/3g3322Ydjjz0WgNNOO41tt92WCy+8kPvvv5/LLrtMWSaf97enEQwGs9L4/X78fn9O/Hw+X4/3AQODwYS7776bFStWcMYZZ3DLLbd0mU8sFuPaa6/loIMOUv7oUF9f3x0xDbJAts25QAhBW1sbxcXFGXltbW2EQqG0tWRn0V3bVF9fzxNPPMGdd96Zlp6veX/UqFFp9/DUU09lwoQJ/OpXv8p7sOyYY47hggsuYPHixZx++ul5rauzMI9hGgw43HjjjTQ3N3PvvfdmBMrACYxdeOGFjBkzJpUmn1k2bdo09ttvv4yytm0zatSolLOeTLv55pvZYYcdKCoqYtiwYZx99tls3rw5rWzyHJRXXnmF3XbbjaKiIiZMmNCjW1j/9re/MW/ePEaOHEk4HGbixIlce+21xONxJf0777zDnnvuSXFxMePHj8+YcAHa29u58sormTRpEuFwmDFjxvCjH/2I9vZ2T1mi0ShXX301kydPpqioiJqaGvbee2+effbZHtHVwMAgdyxatIghQ4Ywb948jj32WBYtWpRBk3xc4ec//zk333wzEydOJBwO8/HHHwPOo3C77LILRUVFTJw4kbvuukt53mPykfHFixczdepUiouLmTVrFh988AEAd911F5MmTaKoqIg5c+ZkPO738ssvc9xxx7HNNtuk5pyLLrqI1tbWFE19fT21tbXMmTMHIUQqfenSpZSWlnLCCSek0nKdw9rb27nooouora2lvLycI488kpUrV3bthiew//77A06wEjoeYXrppZc499xzqaurY/To0Sn6J598kn322YfS0lLKy8uZN28eH330UQbfRx99lGnTplFUVMS0adP461//qqxfdabLqlWr+M53vpOyE+PHj+ecc84hEolw3333cdxxxwGw3377pR65SJ59ojqzrL6+nu985zsMGzaMoqIipk+fzv33359G4+5bd999d6pv7brrrrz11ls5308Z8v1N9sePP/6Yb3/72wwZMoS9994b6FisJuseN24cP/7xj7W27JlnnmHGjBkUFRUxdepUHnnkkbT8TZs2cckll7DjjjtSVlZGRUUFhx56KP/5z3+U/OLxOD/+8Y8ZPnw4paWlHHnkkaxYsSKNRnVmmQz5zLJx48bx0Ucf8dJLL6XaK9lGurNr3njjDQ455BAqKyspKSlh9uzZvPrqq2k0W7Zs4fvf/z7jxo0jHA5TV1fHQQcdxLvvvuspn8Hgw6mnnkpZWRnLly/n8MMPp6ysjFGjRvGb3/wGgA8++ID999+f0tJSxo4dy4MPPphWvjNj6euvv+bII4+ktLSUuro6LrroIp5++uku93MvbNq0icsvv5xrrrmGqqoqJU1LSwuffvpp1sczN2zYQFNTE3vttZcyv66uLnWtO5dQN55/85vfMGHCBIqLi9ltt914+eWXlXN1T9+7bHPEnDlzeOKJJ/j6669Tc5N7futL26xCcp329NNPs8suu1BcXMxdd92Vuu8PPfQQl19+OaNGjaKkpISmpiYAFi9ezMyZMykuLmbo0KH8z//8D6tWrUrjnRwjX3zxBYcddhjl5eWcdNJJACxZsoRjjjmG4cOHU1RUxOjRoznxxBNpbGz0lPeJJ54gFotx4IEHpqWr+knyrOqPP/6Y/fbbj5KSEkaNGsWNN97Y5ftVW1vLlClT+OKLL9LSc10XCyG47rrrGD16NCUlJey3335Kfwec8fGNb3yDv/3tb12WN18wW20MBhwef/xxJk2a1K1zeU444QSuuuoq1q5dy/Dhw1Ppr7zyCqtXr+bEE09MpZ199tncd999nHbaaVx44YUsW7aM2267jffee49XX3017ZfipUuXcuyxx/Kd73yHBQsW8Pvf/55TTz2VmTNnssMOO3RZ3iTuu+8+ysrKuPjiiykrK+OFF17giiuuoKmpiZtuuimNdvPmzRx22GEcf/zxzJ8/nz//+c+cc845hEKhVNTetm2OPPJIXnnlFc466yy23357PvjgA371q1/x+eef8+ijj2plueqqq1i4cCFnnHEGu+22G01NTbz99tu8++67HHTQQd3W1cDAIHcsWrSIo48+mlAoxPz587njjjt466232HXXXTNo7733Xtra2jjrrLMIh8NUV1fz3nvvccghhzBixAiuvvpq4vE411xzDbW1tcr6Xn75Zf7+979z3nnnAbBw4UIOP/xwfvSjH3H77bdz7rnnsnnzZm688UZOP/10XnjhhVTZxYsX09LSwjnnnENNTQ1vvvkmt956KytXrmTx4sWA4zjdcccdHHfccdx6661ceOGF2LbNqaeeSnl5ObfffjvQuTnsjDPO4I9//CPf/va32XPPPXnhhReYN29et+570omsqalJSz/33HOpra3liiuuSD3a84c//IEFCxYwd+5cbrjhBlpaWrjjjjvYe++9ee+991KLjGeeeYZjjjmGqVOnsnDhQjZu3Mhpp52WFnTTYfXq1ey22240NDRw1llnMWXKFFatWsXDDz9MS0sL++67LxdeeCG//vWv+fGPf8z2228PkPqU0draypw5c1i6dCnnn38+48ePZ/HixZx66qk0NDTwve99L43+wQcfZMuWLZx99tlYlsWNN97I0UcfzZdffpnTrioZuvt73HHHMXnyZK6//vpUMPWMM87g/vvv59hjj+UHP/gBb7zxBgsXLuSTTz7JCDYuWbKEE044ge9+97ssWLCAe++9l+OOO46nnnoqZb++/PJLHn30UY477jjGjx/PunXruOuuu5g9ezYff/xxxmOhP/vZz7Asi0svvZT6+npuvvlmDjzwQN5//33lzoVccfPNN3PBBRdQVlbGT37yEwCGDRumpX/hhRc49NBDmTlzJldeeSU+n497772X/fffn5dffpnddtsNgO9+97s8/PDDnH/++UydOpWNGzfyyiuv8Mknn7Dzzjt3WV6DwkQ8HufQQw9l33335cYbb2TRokWcf/75lJaW8pOf/ISTTjqJo48+mjvvvJNTTjmFWbNmMX78eCD3sdTc3Mz+++/PmjVr+N73vsfw4cN58MEH+ec//5khT6793As//elPGT58OGeffTbXXnutkubNN99kv/3248orr/Q8bL6uro7i4mIee+wxLrjgAqqrq3O4q9lxxx13cP7557PPPvtw0UUX8dVXX3HUUUcxZMiQNJuQj3uXbY74yU9+QmNjIytXruRXv/oVAGVlZUDv2+aWlhZlQLOqqirtyaLPPvuM+fPnc/bZZ3PmmWey3XbbpfKuvfZaQqEQl1xyCe3t7YRCodT6b9ddd2XhwoWsW7eOW265hVdffZX33nsvLcgai8WYO3cue++9Nz//+c8pKSkhEokwd+5c2tvbueCCCxg+fDirVq3i8ccfp6GhgcrKSq1Or732GjU1NakjhbJh8+bNHHLIIRx99NEcf/zxPPzww1x66aXsuOOOHHrooTnxcCMWi7Fy5UqGDBmSlp7ruviKK67guuuu47DDDuOwww7j3Xff5eCDDyYSiSjrmzlzpue6s88gDAwGEBobGwUgjjrqqIy8zZs3i/Xr16f+WlpaUnlXXnmlcHf3zz77TADi1ltvTeNx7rnnirKyslTZl19+WQBi0aJFaXRPPfVURvrYsWMFIP71r3+l0urr60U4HBY/+MEPsuoGiPPOO8+Txq1TEmeffbYoKSkRbW1tqbTZs2cLQPziF79IpbW3t4sZM2aIuro6EYlEhBBC/OEPfxA+n0+8/PLLaTzvvPNOAYhXX301Tb8FCxakvk+fPl3Mmzcvq14GBgb5xdtvvy0A8eyzzwohhLBtW4wePVp873vfS6NbtmyZAERFRYWor69PyzviiCNESUmJWLVqVSptyZIlIhAICNlVAEQ4HBbLli1Lpd11110CEMOHDxdNTU2p9Msuu0wAabSqeWzhwoXCsizx9ddfp6XPnz9flJSUiM8//1zcdNNNAhCPPvpoKj/XOez9998XgDj33HPT6L797W8LQFx55ZUZMrmRvHdXX321WL9+vVi7dq148cUXxU477SQA8Ze//EUIIcS9994rALH33nuLWCyWKr9lyxZRVVUlzjzzzDS+a9euFZWVlWnpM2bMECNGjBANDQ2ptGeeeUYAYuzYsWnlZdlPOeUU4fP5xFtvvZWhg23bQgghFi9eLADxz3/+M4Nm9uzZYvbs2anvN998swDEH//4x1RaJBIRs2bNEmVlZam2Tt6fmpoasWnTphTt3/72NwGIxx57LKMuN/75z38KQPz+978X69evF6tXrxZPPPGEGDdunLAsK6VP0pbPnz8/rXyyfc8444y09EsuuUQA4oUXXkilJW11ss2EcHyLESNGiJ122imV1tbWJuLxeBq/ZcuWiXA4LK655poM2UeNGpXW9//85z8LQNxyyy2ptAULFmRtw2Qfco+ZHXbYIa1d5LqTbWnbtpg8ebKYO3duqr2FcMbc+PHjxUEHHZRKq6yszOpzGAw+JPufew5ZsGCBAMT111+fStu8ebMoLi4WlmWJhx56KJX+6aefZvTpXMfSL37xi4w5vrW1VUyZMqXL/VyH//znP8Lv94unn35aCNExt6xfvz6NLjnGstkIIYS44oorBCBKS0vFoYceKn72s5+Jd955J4NONcbddSX1bG9vFzU1NWLXXXcV0Wg0RXffffcJIG1OyMe9y2WOmDdvXsacJkTv22bd3+uvv56iTc79Tz31VBqP5H2fMGFCmn8SiUREXV2dmDZtmmhtbU2lP/744wIQV1xxRSotOUb+93//N433e++9JwCxePFiTz1U2HvvvcXMmTMz0uV+IkTHuu+BBx5IpbW3t4vhw4eLY445JmtdY8eOFQcffHBqDf3BBx+Ik08+OWNtmuu6uL6+XoRCITFv3ry0fvbjH/9YAGnrySSuv/56AYh169Zllbc3YR7DNBhQSG6JTf5y4cacOXOora1N/SW3h6uw7bbbMmPGDP70pz+l0uLxOA8//DBHHHFE6lfgxYsXU1lZyUEHHcSGDRtSfzNnzqSsrCzjF5upU6eyzz77pL7X1tay3Xbb9djbvNy/Tm/ZsoUNGzawzz77pLaJuxEIBDj77LNT30OhEGeffTb19fW88847Kf223357pkyZkqZf8tEX1S9SSVRVVfHRRx+xZMmSHtHNwMCga1i0aBHDhg1LPVpuWRYnnHACDz30kPIR7WOOOSZtx1g8Hue5557jqKOOStstM2nSJO2vkQcccEDa4xbJnb7HHHNM2uGsyXT3HOiex5qbm9mwYQN77rknQgjee++9tHpuu+02KisrOfbYY/npT3/KySefzDe/+c1Ufq5z2D/+8Q/AOUDejc4eSnzllVdSW1vL8OHDmTNnDl988QU33HADRx99dBrdmWeemXbu1LPPPktDQwPz589Pk9Pv97P77run5FyzZg3vv/8+CxYsSPvF+aCDDmLq1Kmestm2zaOPPsoRRxzBLrvskpEvP06bC/7xj38wfPhw5s+fn0oLBoNceOGFbN26lZdeeimN/oQTTkj7FTppD3O1gaeffjq1tbWMHDmSefPm0dzczP3335+hz3e/+90MOQEuvvjitPTkYcVPPPFEWvrIkSP51re+lfpeUVHBKaecwnvvvcfatWsBCIfDqfNq4vE4GzdupKysjO222075qOIpp5yS1vePPfZYRowYkZKtN/D++++zZMkSvv3tb7Nx48ZUP2tubuaAAw7gX//6V+oFA1VVVbzxxhusXr261+QzGNg444wzUtdVVVVst912lJaWcvzxx6fSt9tuO6qqqtLGfK5j6amnnmLUqFEceeSRqbSioqKM85I60891uPDCCzn00EM5+OCDPemSRwF47SpL4uqrr+bBBx9kp5124umnn+YnP/kJM2fOZOedd+aTTz7JWl7G22+/zcaNGznzzDPTdkeddNJJGbt98nHvujNH9LZtPuuss3j22Wcz/mS7OX78eObOnavksWDBgjT/5O2336a+vp5zzz037YywefPmMWXKlAy7AnDOOeekfU/a8aeffpqWlpZO6bRx48aMdvZCWVlZ2pljoVCI3XbbLWf7+8wzz6TW0DvuuCN/+MMfOO2009KeXMp1Xfzcc88RiUS44IIL0nwPr3ZN6trdN9L2NMxjmAYDCklHdOvWrRl5d911F1u2bGHdunU5HfJ4wgkn8OMf/5hVq1YxatQoXnzxRerr69POwlmyZAmNjY1pZw24IR/Yuc0222TQDBkyJOM57q7io48+4vLLL+eFF15IBQ6TkJ99HzlyZMbBkttuuy3gnC+zxx57sGTJEj755BPto1ZeB5Jec801fPOb32Tbbbdl2rRpHHLIIZx88sl84xvf6IpqBgYGXUA8Huehhx5iv/32S53rBE6Q6he/+AXPP/98xmIg+WhMEvX19bS2tirfnql7o6Y81yUdQvdZke509xy4fPlyrrjiCv7+979nzI3yPFZdXc2vf/1rjjvuOIYNG8avf/3rtPxc57Cvv/4an8/HxIkT0/Ldj2DkgrPOOovjjjsOn89HVVUVO+ywQ9pbC5OQ73HyR4XkQkFGRUVFSk6AyZMnZ9DogjRJrF+/nqamJqZNm5abMjng66+/ZvLkyRmHHCcf20zKm4TcL5LOb6428IorrmCfffbB7/czdOhQtt9+e+XLeeT7m2xfub8OHz6cqqqqDDknTZqUETx028fhw4dj2za33HILt99+O8uWLUsLPMuPhUJmm1mWxaRJkzLOJconkv1swYIFWprGxkaGDBnCjTfeyIIFCxgzZgwzZ87ksMMO45RTTmHChAm9Ja7BAEJRUVHGPFtZWcno0aMzxlJlZWXamM91LH399ddMnDgxg588rjvTz1X405/+xGuvvcaHH36oLd9VzJ8/n/nz59PU1MQbb7zBfffdx4MPPsgRRxzBhx9+2KmD2ZPzlqx/IBDIOPswH/euO3NEb9vmyZMnZ5ztpYJsO7zykvdfJcuUKVN45ZVX0tICgUDGcQnjx4/n4osv5pe//CWLFi1in3324cgjj+R//ud/PB/BTEK4zmzNBtVYHDJkCP/9739zKr/77rtz3XXXEY/H+fDDD7nuuuvYvHlz2ot/cl0X63yZ2tpa7bhM6tqVH/byCRMsMxhQqKysZMSIEUoDl9zBkKtjesIJJ3DZZZexePFivv/97/PnP/+ZysrKtFc727ZNXV2d8rBsIMMI6N5g1ZnJToeGhgZmz55NRUUF11xzDRMnTqSoqIh3332XSy+9NOuvaCrYts2OO+7IL3/5S2W+vPB1Y9999+WLL77gb3/7G8888wz33HMPv/rVr7jzzjvTfn00MDDIH1544QXWrFnDQw89xEMPPZSRv2jRooxgWXfOT0pCN9dlmwPj8TgHHXQQmzZt4tJLL2XKlCmUlpayatUqTj31VOU89vTTTwNOwGXlypVpZ4R0Zw7rCnJ1yOV7nNTrD3/4Q9o5mUkUytuau2sDd9xxxy7d3yR60sm+/vrr+elPf8rpp5/OtddeS3V1NT6fj+9///tdsre9gaRcN910EzNmzFDSJHfmH3/88eyzzz789a9/5ZlnnuGmm27ihhtu4JFHHunS+TYGhY2uzvnQ82OpM/1chR/+8Iccd9xxhEKh1JqhoaEBgBUrVhCJRDLOJOwsKioqOOiggzjooIMIBoPcf//9vPHGG8yePVs7T+le1tWT6K05ordtc67w8n+66xu5d1C68Ytf/IJTTz01tV668MILWbhwIf/+9789zyKtqanp1GaL7trfoUOHpuzv3LlzmTJlCocffji33HJLatd2Z9fFnUFS16FDh3aZRz5QGN6ZwaDCvHnzuOeee3jzzTdzOsBTh/Hjx7Pbbrvxpz/9ifPPP59HHnmEo446Km2XwMSJE3nuuefYa6+9emSB2R28+OKLbNy4kUceeYR99903le7eTeLG6tWrM15b/PnnnwOkfpGaOHEi//nPfzjggAO6tMiorq7mtNNO47TTTmPr1q3su+++XHXVVSZYZmDQS1i0aBF1dXXKx84feeQR/vrXv3LnnXd6zl91dXUUFRWxdOnSjDxVWnfwwQcf8Pnnn3P//fdzyimnpNJ1b9F96qmnuOeee/jRj37EokWLWLBgAW+88UYquJTrHDZ27Fhs2+aLL75I+5X4s88+6yHNvJH81byurs4zGJQ8yFf1eHs2WWtra6moqMi6W6Izc/3YsWP573//i23baYuA5GP/uR48nG8k23fJkiVpLytYt24dDQ0NGXIuXboUIUTavZDt48MPP8x+++3H7373u7SyDQ0NSmdebjMhBEuXLu2R3da5tlmyn1VUVOQUdBwxYgTnnnsu5557LvX19ey888787Gc/M8Eygx5FrmNp7NixfPzxxxljU7ZDne3nMlasWMGDDz6Y8dZOgJ133pnp06fz/vvvd5qvDrvssgv3338/a9asATp23CYDdEnIO2CT89bSpUtTxyyAc/D6V199lTa35OveZZsjdHPTQLHNXkje/88++yxjV/hnn33WKfu34447suOOO3L55Zfz2muvsddee3HnnXdy3XXXactMmTKFv/zlL10Tvgcwb948Zs+ezfXXX8/ZZ59NaWlpzutity/j3om4fv16bQBw2bJlDB06tFsBt3zAnFlmMODwox/9iJKSEk4//XTWrVuXkd+ZXVwnnHAC//73v/n973/Phg0b0h7BBOdXlXg8rnxLTiwWyzB0+UTyFwO3fpFIJPVWOBmxWIy77rorjfauu+6itraWmTNnAo5+q1at4re//W1G+dbW1tRb3FTYuHFj2veysjImTZqU8UpoAwOD/KC1tZVHHnmEww8/nGOPPTbj7/zzz2fLli38/e9/9+Tj9/s58MADefTRR9POJlm6dClPPvlkj8qsmseEENxyyy0ZtA0NDam37V5//fXcc889vPvuu1x//fUpmlznsKRjLz/GefPNN3dbp1wwd+5cKioquP7664lGoxn569evB5yFyYwZM7j//vvTHkl99tln+fjjjz3r8Pl8HHXUUTz22GO8/fbbGfnJe578ASUX+3XYYYexdu3atPM9Y7EYt956K2VlZcyePTsrj97AYYcdBmS2Z3JXg/xmtdWrV6e9IbOpqYkHHniAGTNmpHb++f3+DH9i8eLFrFq1SinDAw88wJYtW1LfH374YdasWdMjgafS0tKc2mvmzJlMnDiRn//858rjKpL9LB6PZzzyXFdXx8iRI40NN+hx5DqW5s6dy6pVq9JsVltbW8b8nms/1+Gvf/1rxl/S/3/ggQdSb3YEUmcCZztHqaWlhddff12Zl7SjyWBQMmD1r3/9K0UTj8e5++6708rtsssu1NTU8Nvf/pZYLJZKX7RoUUbAoafvXa5zRGlpaQYdDBzb7IVddtmFuro67rzzzjSdn3zyST755JOc3tjZ1NSU1nbgBM58Pl/WuXbWrFls3ry5x8697gouvfRSNm7cmGrHXNfFBx54IMFgkFtvvTVt7Hu16zvvvMOsWbN6VP6egNlZZjDgMHnyZB588EHmz5/Pdtttx0knncT06dMRQrBs2TIefPBBfD6f59bWJI4//nguueQSLrnkEqqrqzN+ZZk9ezZnn302Cxcu5P333+fggw8mGAyyZMkSFi9ezC233MKxxx7bY7q9/fbbyl8Z5syZw5577smQIUNYsGABF154IZZl8Yc//EEbHBw5ciQ33HADX331Fdtuuy1/+tOfeP/997n77rtTr/U9+eST+fOf/8x3v/td/vnPf7LXXnsRj8f59NNP+fOf/8zTTz+tPCganJcZzJkzh5kzZ1JdXc3bb7+desW0gYFB/vH3v/+dLVu2pB3o68Yee+xBbW0tixYtyvghQMZVV13FM888w1577cU555xDPB7ntttuY9q0aT36C/uUKVOYOHEil1xyCatWraKiooK//OUvyl8av/e977Fx40aee+45/H4/hxxyCGeccQbXXXcd3/zmN5k+fXrOc9iMGTOYP38+t99+O42Njey55548//zzPb5zToeKigruuOMOTj75ZHbeeWdOPPFEamtrWb58OU888QR77bUXt912GwALFy5k3rx57L333px++uls2rSJW2+9lR122EG5uHHj+uuv55lnnmH27NmcddZZbL/99qxZs4bFixfzyiuvUFVVxYwZM/D7/dxwww00NjYSDofZf//9lWeQnHXWWdx1112ceuqpvPPOO4wbN46HH36YV199lZtvvjntQPu+xPTp01mwYAF333136siCN998k/vvv5+jjjoqbVcGOOeTfec73+Gtt95i2LBh/P73v2fdunXce++9KZrDDz+ca665htNOO40999yTDz74gEWLFmnP66murmbvvffmtNNOY926ddx8881MmjQp44DtrmDmzJnccccdXHfddUyaNIm6ujrl+Xc+n4977rmHQw89lB122IHTTjuNUaNGsWrVKv75z39SUVHBY489xpYtWxg9ejTHHnss06dPp6ysjOeee4633nqLX/ziF92W18DAjVzH0tlnn81tt93G/Pnz+d73vseIESNYtGhR6pyv5A6lXPu5DkcddVRGWtLOHXrooWm73d588032228/rrzySs9D/ltaWthzzz3ZY489OOSQQxgzZgwNDQ08+uijvPzyyxx11FHstNNOAOywww7sscceXHbZZWzatInq6moeeuihjKBKKBTiqquu4oILLmD//ffn+OOP56uvvuK+++7LOJ+sp+9drnPEzJkz+dOf/sTFF1/MrrvuSllZGUcccUSv2+Z3332XP/7xjxnpEydO7HIAJhgMcsMNN3Daaacxe/Zs5s+fz7p167jlllsYN24cF110UVYeL7zwAueffz7HHXcc2267LbFYjD/84Q/4/X6OOeYYz7Lz5s0jEAjw3HPPcdZZZ3VJh+7i0EMPZdq0afzyl7/kvPPOy3ldXFtbyyWXXMLChQs5/PDDOeyww3jvvfd48sknlTuz6+vr+e9//8t5553XB1pmQS++edPAoEexdOlScc4554hJkyaJoqIiUVxcLKZMmSK++93vivfffz+NNvlKaBX22msv5Svn3bj77rvFzJkzRXFxsSgvLxc77rij+NGPfiRWr16dohk7dqyYN29eRtnZs2crX/kuA49XH1977bVCCCFeffVVsccee4ji4mIxcuRI8aMf/Ug8/fTTylcI77DDDuLtt98Ws2bNEkVFRWLs2LHitttuy6g3EomIG264Qeywww4iHA6LIUOGiJkzZ4qrr75aNDY2punnftXvddddJ3bbbTdRVVWVuvc/+9nPRCQSyaqrgYFB93HEEUeIoqIi0dzcrKU59dRTRTAYFBs2bEi9Yv2mm25S0j7//PNip512EqFQSEycOFHcc8894gc/+IEoKipKo0N6lbgQQss7+Ypz92vTP/74Y3HggQeKsrIyMXToUHHmmWeK//znPwIQ9957rxBCiL/97W8CEL/4xS/S+DU1NYmxY8eK6dOnp+aaXOew1tZWceGFF4qamhpRWloqjjjiCLFixYpOvZ5ed++SuPfeewUg3nrrLWX+P//5TzF37lxRWVkpioqKxMSJE8Wpp54q3n777TS6v/zlL2L77bcX4XBYTJ06VTzyyCNiwYIFYuzYsWl0Ktm//vprccopp4ja2loRDofFhAkTxHnnnSfa29tTNL/97W/FhAkThN/vT7MfKnu1bt06cdppp4mhQ4eKUCgkdtxxx1Q75XJ/crm/qn6iQtKWr1+/PiMvGo2Kq6++WowfP14Eg0ExZswYcdlll4m2trY0uqStfvrpp8U3vvENEQ6HxZQpUzLqbmtrEz/4wQ/EiBEjRHFxsdhrr73E66+/nnGPkrL/v//3/8Rll10m6urqRHFxsZg3b574+uuv03jm0obJPrRs2bJU2tq1a8W8efNEeXm5AFL1J+t2238hhHjvvffE0UcfLWpqakQ4HBZjx44Vxx9/vHj++eeFEEK0t7eLH/7wh2L69OmivLxclJaWiunTp4vbb7/d4+4bDAao5rAFCxaI0tLSDNqkrylD9odzHUtCCPHll1+KefPmieLiYlFbWyt+8IMfiL/85S8CEP/+97/TaLP1885AN7ckx1i2OSwajYrf/va34qijjhJjx44V4XBYlJSUiJ122kncdNNNafOvEEJ88cUX4sADDxThcFgMGzZM/PjHPxbPPvuscjz/+te/TvHcbbfdxKuvvipmzpwpDjnkkDS6nrx3uc4RW7duFd/+9rdFVVWVANLmt960zbo/97pFt07LZn/+9Kc/iZ122kmEw2FRXV0tTjrpJLFy5co0Gt0Y+fLLL8Xpp58uJk6cKIqKikR1dbXYb7/9xHPPPeepVxJHHnmkOOCAA5TyqtZ9MlQ2RwXdvRFCiPvuuy/NPxMit3VxPB4XV199dWrcz5kzR3z44YcZ60khhLjjjjtESUmJaGpqyiprb8MSogdOHjcwMDAwMDAoOBx11FF89NFHyjO0DAwMDAwM8o2bb76Ziy66iJUrVzJq1Ki+FqfPYds2tbW1HH300crHHN0w925g4+WXX2bOnDl8+umnyrdkFwp22mkn5syZk/YIdH+BObPMwMDAwMDAgNbW1rTvS5Ys4R//+Adz5szpG4EMDAwMDAYVZDvU1tbGXXfdxeTJkwdlsKetrS3juJUHHniATZs2Zdhmc+8KD/vssw8HH3wwN954Y1+Lkjc89dRTLFmyhMsuu6yvRVHC7CwzMDAwMDAwYMSIEZx66qlMmDCBr7/+mjvuuIP29nbee++9gv5F08DAwMCgf+DQQw9lm222YcaMGTQ2NvLHP/6Rjz76iEWLFvHtb3+7r8Xrdbz44otcdNFFHHfccdTU1PDuu+/yu9/9ju2335533nmHUCiUojX3zsCg52EO+DcwMDAwMDDgkEMO4f/9v//H2rVrCYfDzJo1i+uvv94EygwMDAwMegVz587lnnvuYdGiRcTjcaZOncpDDz2U9SU1hYpx48YxZswYfv3rX6deBnDKKafwf//3f2mBMjD3zsAgH+jXO8t+85vfcNNNN7F27VqmT5/Orbfeym677dbXYhkYGBgYFBCMrTEwMDAwyCeMnTEwMDAYeOi3Z5YlX0N75ZVX8u677zJ9+nTmzp1LfX19X4tmYGBgYFAgMLbGwMDAwCCfMHbGwMDAYGCi3+4s23333dl111257bbbAOfNH2PGjOGCCy7gf//3f/tYOgMDAwODQoCxNQYGBgYG+YSxMwYGBgYDE/3yzLJIJMI777yT9lYEn8/HgQceyOuvv64s097eTnt7e+q7bdts2rSJmpoaLMvKu8wGBgYGhQ4hBFu2bGHkyJH4fP12Y3LO6KytMXbGwMDAIL8wdsbYGQMDA4N8ojN2pl8GyzZs2EA8HmfYsGFp6cOGDePTTz9Vllm4cCFXX311b4hnYGBgMKixYsUKRo8e3ddidBudtTXGzhgYGBj0DoydMTAwMDDIJ3KxM/0yWNYVXHbZZVx88cWp742NjWyzzTaMOwd8IcACEg+cWs0Qeh+CH4DV7mTRkZ0ilX+/cafJ127o0mXeQqL3ksHNS1VW5qmq14u/u36jo5qfnGd0VMvQH3RsORqwgQAEP4HIdCj5G8RHQWQalPzVIXTzbtsXIjsplNQpoRJaVU6lrO5GytA1jCo/Fzl1PHLU0W6Hr+6A8vJyDePCRmfsTDAKdeuhajP4bHUXAe9+rUrTNVOu48NdJlkuW52dTZPrMTqq5cXju66M0bF/6AiweiTYfghGwB+HdcNg3FcQC8Ka4TBpKQTiYIkOPs0l8MVEhZLGzqTSjZ1R25kVK1ZQUVGRWaCyshelMzAw6FU0NjqfyXHe2Ki+1pUzUKKpqYkxY8bkZGf6ZbBs6NCh+P1+1q1bl5a+bt06hg8friwTDocJh8MZ6b4Q+IpIN9BFEN0f7G9A+FXwLwXi3ot02VdAolXlyflewYJcAxM6Xirk6jcZHY2Ocv5A1jE+CqyRIBLTQXQkWCFoWwDEgSJo/zaEXwH/1x08/QHwhT0Yu4XQCZuk7czNUSko89HRea0IvepSyd4JHQvlUZDO2prO2Jl4Eawtg6ZhMGwdlDeBz3VfcxlbXuNFtdb0ahVdN9Px9eKjWgN75Rkds9djdEwvI9eRTf5sdatk6aqOAmgug+ZaiAYTtAmClds613YAlk+B2vVQs7GDZzAI/rCrHmNn1HQYOyOjoqJCHSxLHj1dIPfLwMDAheSYdx8xL1+rxr5qrjDIQC52pl8eBhAKhZg5cybPP/98Ks22bZ5//nlmzZrVOWaW69NKT4/XQusR0HoU2MNBWGpSNyu3fReuNLff4f6T+el8DxVPVd2yDDrIfHT8ZBgdO9KMjgNPx/gIaD0S7BIQARB+EMXOp10GdhWIMMRGJdJlGVU3SCWETOem18057jS5rDtfle6GXIdQ5HmtJLurYwGhx2yNps2FBc2l8NU4WD4WWko67IxcXNX/5a6lu/3usSCXUdWh46/qMnL3kq/lLqOT0+hodHSXH6g6CqC9CJZvA5GgM54FYPsc4pjfCaAJoLUY2kNqHY2d0dBlk2sAokfXNF4QAvrnO9sMDAy6AjOe+wX65c4ygIsvvpgFCxawyy67sNtuu3HzzTfT3NzMaaed1jMVJIy88EF0IsTGOI9lht8Ea0vmItz9qQpC5OJz6PwAlR/iTlc5jbIDJ9O6v+ucSqOj0TFXfkn0Zx1FKbTNBbuTT27kZIp0N8+d1pmb67WQEVKevGqTG9QL8mLFiz5XHQsMebU1iXtqW7C5CprKYehGqKsHf8wh8erzSajWwrpFvheNrguoxqiOp66MTlZdmtHR6OhF0191jPtg5eiOIFguyMX2ehIaOzPgkfc1jRtmp5mBwcCHCZT1G/TbYNkJJ5zA+vXrueKKK1i7di0zZszgqaeeyjggMyuSxhvUTkMiTYQhMhNik5yAWfAjIJJOJhfTLfh1AQSdL6AKILjFBm9fxn2tGlq64ZYtEGJ09KZxywlGR5kGelfH+BBnt2jGAkClpIDYWBA+8DU62XaZK1++SbJCKgE95hfPFZpuMaNDZxpSVWd3dCxA9IitydHOxANQXweNlc6jmZWN4ItnFtM1o7sKVQAgW/eUm9hrDa6rXzX+k/CaK1Rrc6Oj0VFGf9fR9kNrkYaATAZNlWAJKG2BQMzZbZYmhLEz6TB2puegezzLwMCgsGDGel5hCVGYocumpiYqKyuZ8D3XOUSyc+O+dn8K8K91zjQKfI1zULiLRa5Oo1eaG6oG0NUj81VBV5fXWi6Xuo2ORsf+rGNsDDSfSPpKK9tYT6Rb4Dwe19kbk+uKLBc5eqKhupOfQxk7Al/e7Bw4rDw7ZZChO3bGAsq2wIi1UNJC2iHgbshjIRtrOd+rjCpf1ZVVLpiOzquMV91yGaOj0TFbfl/oaPvgs+2gLawRUiOchTPGwdlpmlaxsTPGznggaWe6dT/MQtrAYGChMMMz/QadmVf77c6yHkNyAZyEkD7ddMk0X+Lso29BYCmEXwPfhnRymY3OJ5FZq8og0cv1eDmNqnp1jmGSRkjfZTlkOY2Oal2Mjpn19LWOGbAU1wplhJwvC5dtQSAroBLOa86RZfNSWsVHvvZqSJ0+ndHRIB1dsDPCgi3l0FIK1ZucRzODkcw1pYqt3OTyePIa4/LYlOvRlfHKk8erDLmbGR2NjgNVR2GRee5gDnOwSJRV2gdjZ4ydyTfMo5kGBgYGXULhB8vA2/tR0SToRBCiUyA2DkLvQehdoFnveMlspPW4Z76HGGnXKp9D5dDJZWUequ/ZfBijo9HRjf6ko7Cct2AqV1ZphIqKVMxlOtXCQq4D1Dc31zlHlsVrIaPi0Rs6Gj9bjy7ambgf1g91Hs2sXQ9DNkMgqu/KcvN4pUH2JsvWpWV+chnVuFRBNx/o8o2Oej4qGB0z+clluqujALaWdbwBM4PY2BljZ/o7zONaBgYGBp3C4AiW6ZCLvbBAFEP7LCdwFn4Ngp8DUb3/4b6WfRovn0VVPgnZ99GJb0k0qjzZN1HJqZJBlWZ0VNMZHdOv86mjsCD6DWeMplWsWzToFg8o8uWbIRS0nXHyc/VRvVaUGTfARdMbOhp0DjnamUgIVo2ETdXOLrPkeWaqtWy2tS+ou4dKHBVfXYBDrkfuKiq+7jJeshgdM2lk2XV8ZTqjo1qWbHzdZVR2aUsFrBjjeozS2BljZwYizC4zA4P+DfMIZr+Cr68F6BXIxtnLPgjp0wV7CLQdBi3HQHwbUq8Mt0j3AdysVA6Y2xGTfR/ZH/FyTFVDycshdPOUITuV8p/RMZ2H0bGf6Gg5gbK2/UGEyFQuV1/Qyy7JiwaVQLq0bs45qbLyzeoPOhqko4favLUYlm8DX0yEreWkHvlys1ONbZm9al2tWwfLyHX9q5pLZFp3PbpyqltmdDQ6unn2pY5YTqBs+TYQDSiYGTuTWU82GYyd6XsIgVmUGxj0M5gx2e8wOHaWub0f2Ui7nQyVAZecB2FBbBvnTLPgJxB+FdiSRpLBUmajYi8HOWS4fSI5GKKqy0tVyJTLK6ghpxsd9WWNjr2oo+UKlAUlAp1wOoVUKzOVYrLA2eaS7s45ct3u732po0EmerDNhQXNJbBsPNRsdN6cGYjp15huFvLYlJteDgTI4yqX4IMsh1cZ96fcfVRrfKNjOo3RMV1ulTwqeXtKR4FztmAqUCYLZ+yMsTMDHWanmYFB/4AJlPVLFP7OMrfBlo23zsNTGXnJhogQRL7h/LmzVYt8S/HnhuwMyo5dMl3HWwVZbS/HVedLyY6q0dHo2F90BIhOcwXKdIsEWSmd8Cpn381DVkpeQKiue3LO8ZLXLXdv6WiQjjzZmbgf6muhocp7XCSLyutm3fhVlZNF8UJnllQe6inX4kZHo6OufF/ouLVc2lEmExs7Y+yMgYGBQXdhAmX9FoUfLNMZeR2tjt7tZLiMe3QaiOJ0f0HlS8h/7nwZ8nBRBSVUn7p8L1qZv0puHZ3R0ejYFzoCxMdB2xxXoEx26t3fdfZH57DL9LJAOsdepWwe5px+oaNBOvLc5vV1EA94ryNVTa1bH7vLuGlUzS+L7pUvd5tsAT5VFzY6pstidEyXo7d0FEBbsXNGWSpQ1p/mYGNnDHoaZrFuYNA3MGOvX6Pwg2WQ6QHJcBt2lZFXreQT1yJE2l10O35eAQCd86mrSsVHJXY2nqp6vYISKh/M6Gh0lOvrLR3BCZS1Hg6iWCFELvZG59jLvHSrLV0Zt8B5nHP6XEcDNfLY5naOlloeX51ZQ7vFybZWzSUoYqHurnLX0q2XdTA66uWQ6zA6dk3HZKDsq3HQnjwLU8XQC8bOdFwbO2NgYGCghgmU9XsMjmCZ7CTIjkDyu8pxkD1Ad3RB6t8iM0npl7hZq4aIl/PnFsFNLzuSufg6KudT50fpaMDoaHRUo6d1hI5AmV0iVaIaw9mElFdHuhviXknJ9bjrV63K8jHn9LWOBmrksc0DMfDZ+jWnm53cRLkENFTjXYZKPfenfK0qq6Jz8/FaVyPRqfgbHdM/jY7qMvK1XDYZKGsLuxL70xxs7IyBgYHBwIcJlA0IDI5gmQ6y0+DlqcmeIFK+hkRXhU4EOd1LbDlA4r5WOZqyGkg0uqCK+9PomCmLKl9OV8HomLuOAilQphuPuhsgVyAvHuTvOvulElDO80JPzDn9XUeDdHSnzQX4BMR9zu4yVdPqggW69apKlFzgtYbWQZbXLZd8rSsj57vTjI76sjoYHdVI8k8LlA3UOdjYGQMDA4P+DRMoGzAYHG/DlFfdcloSgkzjrvpFLvnVhvDrYEU6irs/dXBX4/YTVEGIbH5EMj8X/0TltKp8oVz8I6Oj0VGuK5862sOgdZ4iUOZVUBbCFYBQQjfW5YWGlwKybD0852jTelNHAzXyaGfq6sEfTx9/cjfQsfAaLjLcYzTXYIOsjpdcoO9i8rXR0eiYi7w9qWM0BF+NVQTKZPT1HGzsjEE+YN6GaWDQOzCBsgGFwg+WqX62zEbv5eW56WwIfAnEsjtqshiqwIPsU8j0Mk3yuypw4eV36PwVVX1edav4Gh2Njj2to12T2FFW6iG8HP3zWgjIFWZbaalurCpfliVXdGbOcX/2pY4G6ciXnQGK2qFmUzp/95jXjU0vtl5d1isIoSqXbc2cLVii4ieXNTrq65Z5y/UYHdNpVToKIBZ03nrZVuQhTH+ag42dMTAwMBh4MIGyAYfCfwzTy7jLCxw5AuD16aJV+Qvyp4Xe11FV6yW6zN9NK8siByNk51IFnY9kdDQ69raOdg20HgXxGg+BZQF0QsoCugVR0aqEl/PlG6dbUfbwnNOnOhpkIo9tbonEn1TMK3ChaypZFHfXcv95lVN1FXdZOV+eC1TQzS9GR6OjindP6ihwAmVfj4UtZVLB/joHGztjYGBgMPBgAmUDEoUfLPNyGFReoZeR9jDiquCCLiiQTLM8aGV/SP6erYzON1Gpm803kf2gJIyORsd86ShQBMpkeK3CVI4/Up4OurLy6ky1MPCaT3pqzulrHQ0ykcc21y34VYEL3Rj3QrZ1rFeZbGq4oQpuePExOhoddbL0pI7RkBQoUzHob3OwsTMGBgYGAwsmUDZgUfiPYUK6tyav/HFdW+gdDTRpWcjkKnTl5ICCrrpcAyKqemT1swVIvBxTo6P6u9FRTaeCl452NbR+MxEo0znSmvGYM7KtvFTzhW7hIvPM85yTM/Kho4EaeWrzaMg53N8fT2eX69rXTa9aP6u6htfaWZ4zcukabpV1MuqGkQ5Gx8y6vcq7aeUyg1XHWNA5zL/ZfRbmQJiDjZ0xMDAwGDgwgbIBjcLfWQaZjoPKudBFDVT57nISqcrBy8ZKppPFkGncKsj0Kh9IF9CQbwUSncpvMToaHfOpI4AogbaDIT5UKuQlmFyhXLl8k4TES+XEq+YElSyqBsjnnNPXOhqo0Yt2RletjkY1L8jrbR2vbPx0sqgCIDp6r7lIJ5fR0eioQi46CiDuh9UjE4EymWF/n4ONnTEwMDAYGDCBsgGPwt9ZpjPeMo1s+GVanYOiYOGGrkpVGZlWF7yQ+at46RxGlSOqqk8np9HRu6yK1ujYUUbFK81PLnEO849tk0Vg3XjU0brz5HR5FaibC4SCR7Ybk485py911HWQwY5esjNuVqprNwuv4IYsqrxWzXWOyDb36G6Fuw5d1zI6Gh3daT2po+2HlaNh8xCJwUCYg1XKGTtjYGBg0P9gAmUFgcIPlslGXO63OsPtps1h8eI1HHRsdSLJVev8Ey+eSeQgelYZvGiy0RodHRgd9TxT6clA2TgNg1zHo9fqqzPjXZWnS5Ov3fzzMef0lY7G7qvRS3ZGLqZa86oCBLq1py6w4bX21qUlu4cXD7eMXnLJ9Kry7vqNjnp5jY7paXE/rBrlBMrEQJyD3dfGzhgYGBj0T5hAWcGg8INlKoOu87pUaTl4jrK/kY19tkBILj/AuXnl6rDqHF6d36RS2eiYzluVb3RU89PpKCAzUCYj1/Eor+JUCw1L+pTz3ddyXbr6ZP75nHP6UkcDNXrBzsjJchPJNPJYy9aMMu/ONrtuzawLiOhuldExncbomImu6hgNwspR0FiFEyiTMRDmYGNnDAwMDPo3TKCsoFD4Z5ZlcybckA25zhuUxoAqKOEu7vYzZCdP9n9Uw0sXfOgs3HVkq0dVxl2/0dHo2GM6BqHtUEWgrIvj0VMAWQlc3+VVm1x/tjrk8nmcc5T1q3i60VM6GmSil9pc1bRyU+bSXKo5RLXO1nUJ3RyQrW55PayaV4yOudUjy2h09C5vW84ZZQ1VpAfKBuIcbOyMgYGBQf+ECZQVHAo/WKZa7YP3it9Nr3IkrExStw/ihqq47DzKUDmuKtHd31V+jhy4kB1UrzJyntExs4zRsfs6iiC07Q/RCRpFZMY5jMeMilVCeQnpvklu/l6LAxXvPM45GXx6U0eDTPRWm0tk2ZpFNfZVvLzK6Op3f+rmFK+6vAI0ye9Gx0w+Rkd9GRUsQFiwvg42V3kwTxIPhDnY2BkDAwMDA4NeQeEHy1Ten5eH5XYkOmG4ZR9AlabKS4qj8nuyiazK16kr/8nlZZm85Dc6qvkZHTOvPXVMBMoi39BU7K4k1/Ho5iNIL+tOU9XhFk7FR6Z1Q9dQqvxC0NEgHb1kZ+R1Z65sdGtVuaxOfDktFzXd3VFVRhezMDrqYXTsgo4W1NfB2uF07CgrhDnY2BkDAwOD/gWzq6wgMTjOLFMZdJXDoDPyKoj0S7cfYknpXizloITO11GJogpEZKPzKqNyiuU8o6NaBqNj7rIDzqOXyUCZj54Zj7kqqfrEVUbmq+Ivy5jLDSgkHQ3SkUc7IyywfeCP69eWqiZ1i6TLl/NyHcdedLq6VWVUt8LomL0eVRmjYzos0gNltrEzA09HAwMDg4ECEygrWBT+zjJIN9LJT53ToXImks6HJV17VKciUbGUoaJx02Yr587LVkaFbP6MLJvR0ejopslFRwKKQFlPjUcVL5let/qT5wnL9Scr5FWfilch6WigRp7aPO53/nTwCoaoRJTXtfK4VdHLednmIlU5L3pdcMWdn0uau26jo7esaNKylRsoOioDZYUyBxs7Y2BgYNB/YAJlBY3C31nmRi6GWEejchpcEApSXVrSZ5CdPtn/0PkOqsCG7FS66WR6ma+XzyL7USp9VGlGR6OjSmZ8ENkFoslAWTZ0ZTzKzrwqX8VPtTrzWqCo4LVY0WGg6WjgjTzbGXnsyXnZqpWb3Wssq7qDao6S18QyculOsm5GRz2Mjpl83GnCgk3VsHZYIlCWDQNtDjZ2xsDAwKB/wATKCh49vrNs4cKF7LrrrpSXl1NXV8dRRx3FZ599lkbT1tbGeeedR01NDWVlZRxzzDGsW7cujWb58uXMmzePkpIS6urq+OEPf0gsFutZYXUeoYpOHguacjr/ReUvZCsjlxeKax0vofhT0ajqyeaDGR2NjtnK63SMToP2vUCoZp7ujkfVDZCFsSR6uZxuYaBy7r3SvGQf6Dr2AwxGO+MVfFAVl8ege/2KRJdtDaxa/8pdT8VXVkM3l7nrMDoaHburY1MFrBytCZQVwhxs7EyvYEDZGQMDg96HCZQNCvR4sOyll17ivPPO49///jfPPvss0WiUgw8+mObm5hTNRRddxGOPPcbixYt56aWXWL16NUcffXQqPx6PM2/ePCKRCK+99hr3338/9913H1dccUXXhPKKKsgQ0qeKl8hMUvkmsj+hcjAt6VN2AnXOqE7EbP6Uip9bPpWcbn/H6Gh07I6O8VoQASmxJ8ejymHPBV72TrVAkGXQpRWyjn2IwWpn3MW9AhbyeNaJ2NnmlgMgXmtytwpColWtx+V6jY5GRzfPzugYC4CtC9KoMFDnYGNn8op+aWcMDAwMDHoVlhD5DYuuX7+euro6XnrpJfbdd18aGxupra3lwQcf5NhjjwXg008/Zfvtt+f1119njz324Mknn+Twww9n9erVDBs2DIA777yTSy+9lPXr1xMKhTLqaW9vp729PfW9qamJMWPGMOH74AuR7lTovDuhoNNFLQRYMSi9D3yb0klklrlADnKo8lXiquqV+blEzlp/Z2Ttajmj4+DVse0AiMyUiHpoPGoFyCZ8LjdXJYfs2GeTPVe6fqyj3QZf3gKNjY1UVFRoGPU+CtnOBOKw3WcQiujXmO4q3NUo2Hl222zw6v65QK4rVxnl8skyRkd9vdlkLGQdN9bA8jGSgAUyBxs703foazuT9/thdWU2MDAYxDA7ywYsmpqaqKyszGlezfsB/42NjQBUV1cD8M477xCNRjnwwANTNFOmTGGbbbbh9ddfB+D1119nxx13TBkWgLlz59LU1MRHH32krGfhwoVUVlam/saMGeNkJPuxkK7dn7KBl/NVNFZ6lsqnEFK+JdHKrFV+g+VK1/FWQVbby3HV+WRuWY2ORke3nN3WMY/jMYOPrIxKePkGyPXISsmLDdV1IevYz1DIdkYk/uRsGe4uIMhsZl153Zzghc4sqXTquev2olHRGx315WR5vFDwOhbyHGzsTK+jz+2MgYGBgUGvI6/BMtu2+f73v89ee+3FtGnTAFi7di2hUIiqqqo02mHDhrF27doUjduwJPOTeSpcdtllNDY2pv5WrFjhZOiMvAqqqILsmSUdA8mgC0VRXKTynztfhuwrqIISqk9dvhetSnZZbh2d0dHo2Fkd0zLyMR7lfMVYVQrvppPpZSV0jr3q5heqjv0IhW5n3MEyr3Wkqql162N3GTeNqvll0b3y5W4jzwc6eq+uqeNvdMyUw+gooZDnYGNnehX9ws4YGBgYGPQ68vo2zPPOO48PP/yQV155JZ/VABAOhwmHw+pMt+HVeWGyIyBHCWQHQgMdaTLd7RiqWGWrShZJFturDJ0ok00Go6PRsSs6ZhD35Hj0cuZl/nIZebHhJaOufllGXXk37UDUsZ+h0O2MPw7+WOeaPdvaOQndejlbWXmO8Br/cr7cHQWZcnjB6Ogth1seo6OHQAN5DjZ2ptfRb+yMgYGBgUGvIm87y84//3wef/xx/vnPfzJ69OhU+vDhw4lEIjQ0NKTRr1u3juHDh6do5LfJJL8naToF+VcuVZRB5QlCppPhET0QZNp4VTDDzVrlE3g5f24R3PQq/ySbvyGXUfHV1S+nyWWMjkZHlY5pFfX0eMy22lOlu2XR3RB5NSivCuUVI4rPQtKxH2Ew2BnbB3F/+u3XzQmqJtKJk228y1Cp5/6Ur1VlVXRuPkbHdDoVf6Nj+mfWuEohzsHGzvQq+pWdMTAwMDDoVfR4sEwIwfnnn89f//pXXnjhBcaPH5+WP3PmTILBIM8//3wq7bPPPmP58uXMmjULgFmzZvHBBx9QX1+fonn22WepqKhg6tSpPSes7DR4eWqyJyhloyHRVaETQU73ElsOkLivVY6mrAYSjS6o4v40OmbKosqX01UYrDpmJe7OeNTdAHe+LJDMQ65PVV5VT9ZVG4NDx17AYLIzwn0tsXSnIaXp1qsqUXKB1xpaB1let1zyta6MnO9OMzrqy+owGHT0xGCYgweDjr2AAWVnDAwMDAzygh5/DPO8887jwQcf5G9/+xvl5eWpZ/IrKyspLi6msrKS73znO1x88cVUV1dTUVHBBRdcwKxZs9hjjz0AOPjgg5k6dSonn3wyN954I2vXruXyyy/nvPPO69rWZLczoIoWJCHINO6y4fdArk6duxq3n6AKQmTzI5L5ufgnKqdVpVIu/pHR0ego15WLjmmC5WM8ekUKkzdYp7SOt7zQ8GokWY9C1LEfYLDaGff4k8l0LFQi6OCeh3INqMjqeMkF+i4mXxsdjY65yJtVx0Kcg42d6RX0SztjYGBgYNCr6PFg2R133AHAnDlz0tLvvfdeTj31VAB+9atf4fP5OOaYY2hvb2fu3LncfvvtKVq/38/jjz/OOeecw6xZsygtLWXBggVcc801nRdI9bNlNnovL89N50I2504WQxV4kH0KVaBB57DKaV5+h85fUQY2POpW8TU6Gh2zLrbyOR5VlWe72dlWk6obq8qXZckVA1HHPsZgtDNuMveY141NL7ZeXdYrCKEql23NnC1YouInlzU66uuWecv1DFYdM4i9MBDnYGNn8o5+Z2cMDAwMDHodlhCisyZ3QKCpqYnKykomfB98IVeG26vSrfxlB0Auk6C3olB6H/g3qf0QRRFlQMSrjOpTJ1K2enWy6JxkXX1GR6NjV3VsPQAiMxXC9cB49Cyvg9cCwkshuT4dbYHpaEfgy5uhsbGRiooKj0oHB3rDzvhs2O4zKGrLLC5D1WXkfLcouXadbPOHqoyqXhR5neEjy2R09Oaj4geFr+OmGlg+RhK2QOZgY2cGH5J2Ju/3w/JqYAMDgwwUZghlUKAz82reDvjvN9B5d0mjrXIevHhp8r0cRLmKZJrKr9D5Ll7OrZcPpapX5yvpYEmfSRgdjY6d1VEpkJuou+PRy9lHyvPiqyprSWlyXcm0fM85fa2jQSZ6yc64iwvUYzUbe1V17s/OlMmmhhty18rGx+hodNTJ0qnpqBDnYGNnDAwMDAwMegU9/hhmv4TbW5NX/riuLfSOBpq0LGRyFbpycrBBV12uARFVPbL62QIkXo6p0VH93eioplNWmqfxmDOyrbxU8ukWLjLPQtbRQI1eavNcAxyqta5q/ayqymvtLM8ZuXQNt8o6GXXDSAejY2bdXuXdtHKZQtNRSVBIc7CxMwYGBgYGBr2Cwt9ZBpmOg8q50EUNVPnuchKpysHLxkqmk8WQadwqyPQqH0gX0JBvBRKdym8xOhodu6NjGrFK+O6OR/mGqv7kG6Nz4lUyqGRRNUAh62igRi/aGV21OhrVvCCvt3W8svHTySIPBVUZlQwqWqNj5nejoxpKnQptDjZ2xsDAwMDAoFdQ+DvLdMZbppENv0yrc1AULNzQVakqI9PqghcyfxUvnQOqckRV9enkNDp6l1XRGh07yqRl5GM86mjdeXK6vArU1S0UPLLdmELTUddBBjvyaGd8tvMns1Jdu1nITa4qLzerbg2sEs+tUjZZZLjr0HUto6PR0Z3WWR1ThQttDpblUn0f6DoaO2NgYGBg0E9Q+MEy2YgLKV9nuN20KkdCQ5pLXjaR5Kp1/okXzyRyED2rDF402WiNjg4GtI4+EEEQxRCvBJF823kMfE2ADVYLWAKI0rGKyUXQfIxHr9VXZ/ir8nRp8rWbfyHpmK1dByvyaGd8Nvjj6ipVa15VEES39tQFNrzW3rq0ZPfw4uGW0UsumV5V3l2/0VEv74DQ0QJhQTzxrEMk5PyB0/eL2hL2JQGf7TBJDaeuGNSBOge7r42dMTAwMDAwyCsKP1imMug6z1KVloPnKPsb2dhnC4Tk8gOcm1euDqvO4dX5TSqVjY7pvFX5A1lHAFEB8ZFgV0J8KIgqsMtBFAFBZ1GTZGLZOMGy9sT3rU6a1QhWNBFMawdfi5NHwENgnYKyEl7jUV7FqRYalvQp57uv5bp09cn8C1VHAzXy2OZxP8QCTtDATSI3EVJReT7J1owy7842u27NbCloLPS3yuiYTlOoOto+aC12+nZDFbQVOdfCcvq8bXWU9cdIBcssIOD+LqB8C5S0OEG0ojaXjSrEOdjYGQMDA4POo7tvrjRvix20KPxgWTZnwg2VUyA7Egrv052V/C6zhEzfRuVAqvwFlThdgXwrdPmquo2Og0NHuwRajoL4cIlI41ALP+AHEUwkJN++OzpTAP9q8G0m82bq0MXxmFFeTlPoodVRrl9Vh453IetokI48trmwOhb/OQzJnJpLJa5qna3rdrr5T77OJegi5xkd1fWoMFB1tH2wcjRsHpLo3zIjVyEhnCCaG8ldZ0lsLe0oOnQDHbvQCnkONnbGwMDAwBvdDZDli5fBgELhH/BvuT5lg+7+VJWTHRGNU+L2Q1ROpVxcKPJVZWRRdPm64InsF7lvhSyTl7zu70bHAtbRB+37KgJlshLuwrIwKkFsCC6Bkr+B1aZQxF2uB8ZjBh9VXV4N0RUdVbwLVUeDTPRWm0tk2ZpFNfZVvLzK6Op3f+rmFK+6dGtv93ejYyafga6jABoqnUCZ7aNjF5hXoWzzUyKpbCvU1UMo4qIvxDnY2BkDAwODvoNlYXaaDR4UfrBM5f15eZFuR6IThlv2AVRpqrykOCq/J5vIqnyduvKfXF6WyUt+o6Oa30DWESC6I0SnkamgLKibgZfTnoCvGYqeBmuLpIhbMS/hOzMeVbIJ6VpXh1uWTuqobShVfiHoaJCOXrIz8rozVza6taoqkCGXUfHJRU13d1SVsdDXYXRUY6DrCNBaAqtHOYGytAq7OT9ZOLvKghHSjgpIE8hNLBceaHOwsTMGBgYGeuRrJ5gJkg06FP5jmCqDrHMYdEZeBZF+6fZDLCndi6Ucl9D5OipRVP5gNjr52gJCPgj7IS6gOZbuFKvoB5KOunyjYzpdfAS07QvCp2GiGke6CmSBbLDiruL5Go+5NqTqE7qnYy6NXEg6GqQjj3bGH+844F+3tlQ1qVskXb6cl+tc5UWnq9uHhSV8CCtxOjvqWzGQdVSVMTp25MWCsGIMRAOuxJ6anwBLJFioxlahzcHGzhgYGBioYR6ZNOhBFH6wTEifboOsGktCytc5Bx7FcF3nEsyQq/MSS8dLBbdMIR9UBqE6cdbH1hjsWAUHDIMRxU56exz+vgoe+MoJnMn+TH/WUS4jp+USYHJ/DiYdRQm0HQSiWBJcHgs6IZLOuddKTmaRj/EoyyB/VzVOD+uoXTjo6lDJ0N91NMhEHu2M7ZN24aDuBnK1XlXqkEtTe3VBVV5t22i+uexCyqJVVLeNZGPRah7c9ho2FK1MW4vnUo9b/v6kYzY7YHQE4YNVo6AlX3YmmU/ibZkyb10dKhn6+xxs7IyBgYGBGiZQZtDDKPxgmewEoPiucjjc150w4rkELDwdSg2trryXv1Psg2lVsH0F+Cz4uhlWt0JDBLbEYHkz/KfByRtb4gTURhRnd5L7k466Zsnmi6n0GYw64j6nTC6kgntRolLATaMoqhS8J8ejTn7djVGhGzoqG1CuXy4/0HQ0yEQe29wSOG+d1ZB0psl1PNzBjlzXsXIZFDQWEPG18k7tU8R8UarbRlAZqUUkSuhszUDTUfVdNX8PVh2F5ZxR1ljpIvJCF+YnS0AoKrEu1DnY2BkDAwMDA4NeQeEHy7ygcxJUdF7GXpPs9gHcDqmOvap8EhlBDg9eQQvmDIP96uDDRnhqDWxoz/RHPmqCj5vgT1/DmFLYGoVNEYiJdH79UUeZXs6TfUFZTkJgh8DaWrg65tBdO84pSxJ5Oc8ZKyDSb4ZQ0HbGCe6J8SjfAF3EsKd1VK0adfxzQX/W0aBz6Gab+2zw29mbVtes8hDUBUtUZWXe8rXcVVR8m0IbeX/oC8o1tqqO/qSjzFvH110mbTj6IO6HQDR9ji4kHeUyKr6txbB6JNjyTVChG3Ym+RimJwphDjZ2xsDAwCATZleZQR5Q+MEylYcup4O3x6iLQEik8gJClIIVA+IgSoBmsOKZzqqXT5Kk04kjyzCyGM6eBLaA25Y4O8nkcm4IICLgi62Zdeqcb/enSjaVQ95TOqp0UJVDkyYSBdr2g9g4KFkM/k0FqCOZ7SfrmHZOmbwakgtYzkJk961wYKOT9FUY1gXhnTLwCYhZ0OKDKB332S1Y6jJf41E1PuWGyqJjBq9c+atWoG5ZVeUHoo7GD1GjF+2Mm0RY0FYEoXYnoT0Mxa3pQQO5K6jYZ1uHK0Vy6ZutC3UlT/ddta7Pm44S71z0SJWxnADRlnKY+IXzhsaC0zGHOmJBWDkaYn70yvTE/OQiyRBIV34gzsEyb7esqvIDUUdjZwwMOgchGPQHz3clUJa8ZybIZuCBwg+WQaaBl50M2eAj5ekcAgVp6jMELceDfw0EP4aWo6D4HxBY6u3HqHyhHPxDAHYaAj+YAk+vgT8th3Zb7xi761Llq+rOJU0lb0/pqPL3vHTQ5lsgSkCUAoEC1dGj7iS9XQuBVRAbD8KvIHRDOK/OndsIx28EG3irDL4Mw0clUBGHkjjUxqA0DpsCTvoG1QyT7/Go4qfirZJLdva9OoQXz8Ggo0E6esHOQHrx1mL4YiIMX+u8BGDlaNj2cwi3qecnlWjZuoFM014EkSCUb/GmU811ujx5DtPdIp0OPamjip+loMumI0BLiRPAbC123tJYaDrm0o62D8LtTlA3nvxhJg/zkz/mjIE0trnOaQN1DjZ2xqC34A7GmMBM/4IJ9HQN7j5sgmYGHij8YFnSIUhCSJ9uOtnxUHmSstOB3icRYecPX+IzkF61zCqbz+HluG5XDtfuCH9ZAYu+dnaWyXUl68tBpbSysrxet0ou21M6ZtxbqUySLicdbfBthtBmnG1QhaijQk5Z3uB/neBt8+k4gcMsSsaBG0bCX6qdpM+KnN1kAlgd6qANChgbcXaghW14wYIGt875HI8qPvK1V0O6P70cfve16ga7UYg6GqQjj3bGcvGQi/psJxgR9yfmBMt51M1rHlOtt93i68oARMKwdhiMWp1Z3j0nyZC7mWwzVbdO7tbyvJgvHb34dVbHQAxKWpy/QtUxWzuG2mHMCidY1lKiEEAWTKdklvnJ9jnBuDSnVla8kOZgY2cMDAySMMFL5x50JthlAmMGOaLwg2XZHAw3newpyh6jyumQ2MdGgj0ECIIIgl3pPO6HBbExODt4ehjDbLiy2tnJc385tE2VCGzw1zsBIlwHRctwq5/8noTsQOv8NK8ycp3ZfD6VbJ2BFx/fZrBawIqny1dIOnZF3ozVlDQm2nzwYYmijItR1AdLi+CLMExohwVr4dMZ8KQAu0ZRj06xzo5H2Wn34u2hYxp/uYybt0omWXaZj45uoOho/DE18mhnglGwBAgX7dZSZ3eX7XfSm0udwJmwYGsZtBX3pHIJUQRsrnLq3FKeme+zoWyrs8PHrYonT+m7V5dWzY+6bplLN5X55TL/dkZehPPo5ZBNzplluZQZcDrmWCbug1hAInAL1APzk+2DdcOdwOTWMkU9KgzEOVglu8xHRzdQdDR2pn/CBBf6J0ygrPfgvtdmPAwaFH6wTDa+2ZwFrzTJyAs/tO0PVntHcnwE2FWu78UdbxqM7ATs1A1dFPAD/7MKqhvgwkmw+RtqOisC/nXOI6GBZWBtcXRw355svpIUE/GEipfcBPJtVaVl6OHKV9Xh5Tem6eUDEewgLEQdO9WOstMqO+IqJiqFrHTSL8LwizGwoBjOicNtwyEmK9lD41FZRrXy7EEdM8q5dStkHQ3Skcc2bymGJZOdwIslnKDAljLnM1m0yRW8Wj0q/820pSwzzcJ5/LO0BWo2QlGbE0BTHbqu6mqqa9VaXAfdLUfxXZ6fZTrVPK6rX8cLnDbaXA1VjQ5hoemYazv6bOcRyXzYmVQRCzYNcf7ShJP5FcocbOyMQU+jP+zK6czjcCZIZNDbSPZL0/cGFQo/WJZENi9VRatyDiTEJkp0KufDnafiLZfRea2yvALGt8O3NsGj1c75UUrvGxBhiG3j7G6zWiGw2gmc+ZeD1axWLxefS6bT+T8yHy/aXGTR8cyljACE3zmUXlVvIejoRaPrhhl9UibqzErK1Qdb/PDbOrhkNXxvDfx8pEfAzEuBbOMxl7GVDx11yMec0990NEhHHtrc9jmPr7UUZ9Ko1hNC1eZuvl2wMxnfFXZG4OxoayuCzUOc4F5FE1Q1JF46oDhDU2cudet7WUxVvtx9s83V2eZo1bDQyaRCMPHGk0LWMVs7Iuh4nLg35ieVAS7UOXgw6GhgoILbAJrghUFvo7OPfRoMWAyeYJnCuc/qUHUmYpKLt6rj7bUYUdXhSj+kAYoEPFPpWiRl0VEUQ3QSRCeAr9kJmAU/h8ByoC2zOlmEXG5Dkk6littX8rrN8hSk+q5afAm8mxechRuRjoRC01HlL6t0tGtI22GXYtDDfTWGs6vs5q/g0AZ4vMplYwpoPCpvsvu6EHQ00KNQ27yT/doG2sLQVgsbhnac26ULnGWrUqVCLt1Rx8PrlnY2Pxt8djqfQtRR5iOXjwUTj2H2w77qyV9HJ9ePJs3oqNbB2BkDL3QlAGECZwa9CfOSi0GFwREsc0cukpAdDBTXMrwcELk+XVl33dk8Zp1Dk0gPC5jdBOuC8Gly10FndLTALgd7KkS3B1+j84hmcAn4V4GIevs9chW6NNk/8vKRVLx0qgjp0+t2ynWIMFiy867gpdJHldbfdJTlVLWjXQet83CCZSqBVAy62FcBtvrg1uFwxUp4pRw2u2efAhiPWfMKTUeDdAyGNu+CjjbOGVJbS2FDDRS3QfUm522awSjKHWc66ERy5+nW26p5UFVGR+OWQaWujj7UTqcw0HTU0SURD8Cycc4ZexmVyBWaOdjoaDB40VPBB/Oo3OBEb+/ySgbMzO6ygkfhB8vkCIXOEVD94uXu/7o8mZ+XJynzk+V0p7t5yY5E4vseW2GHFifoUGJDY3d0tJwXE0SqIDodfBsh8AWE3nF2n3lNBbJquea5RVL5VqrbqWpK1e3W5acQA1GUXqDQdFTJJX8P/hciu4Nwvc0yH301mfdRCWwMOrvLHqxR0CF9H0DjMaPhCnDOMYsZDQrYzvRkv7Z9zssIWkqcHVelzU7grLIxcb6Zgr1KbFk8LzF0Islzrhuq+mSoVFQ1TSScKW+h6ejZZQRUNjn3IRZA3ZdyEdDMwYNLRwOD7sLsNhtcMIErgzzB19cC5B1eHp1qTKmcArm8RaZB72o5lceq4yU5JxVxCAiojEN5XOLTDR2FH+J10L472NWZ4gnFn1s997VwlZHVkFVT0cpieyGXKTJF4wPipL2dtNB0VPmd7mtfPYTeByuqIOjhvppEDHipHA5qcEXqC2Q8ZvB3XxeajgbpGAxt3oM6CgvifufFBCtGp78pUZ5X3Wkye7fIua7Zdd91vL2gu51J3v6YEwhUNWOh6OhFawG+ONStc86wyyAcAH11MIzHfqujgUFPwQRRDPIB8zjmoMDg2FmmugZvByPbvKr6tc3LmVA5Dqp897WcpnKOEiixoS4GTX6IWQ65LZxFSYa8cj0aWAInoKQR2UvcJJ27Svdtkn0jD9UyeOsWEF6qWuC8AbPU+ZLaSeXP7vS76+/vOsr5Kpnd9EJOcBfoyb7qyt/qh+3aYEw7LAtr+HdjPFo4E5tPQGXMefyz1ZcYC72ho9fNH+hzjvE31ShkO5PPfm2B3+4416snoHNbVXMjijRdXECm1cYCLIgmHjkUlrOLrrjVCRr1lEvd1zp2CwO1r8plCnE8ymX6WkcDAwMDA4M+Rt53lv3f//0flmXx/e9/P5XW1tbGeeedR01NDWVlZRxzzDGsW7curdzy5cuZN28eJSUl1NXV8cMf/pBYLNY9YSzXny5CIjsHctQil8iRyiHI5mG65bKkNF3kJgGfgHHtMDoCw6Jw4ga480v48SqY2CaVzVFHKwah18C/LpNU5+dYZN7ibE67SiXdbfPy11SLADk2YldB8ymw9TSI7Abte0LLt6B9DogKnNGQ+BOW2iftzzom89y+rpBodO2Y976ayLOAAxuhJgZjIhIvXT2y4G7eUrnJbfB/y+GWr2CnZmdMzN4CC9Yndl/qHPse1FHJp1DmnG6vlPMDY2c0dLq6+0m/9tlQVw/+eFrpjDnMLY5OLVXsQFVeJY4l5Wery/0ppL+WEvh8W/h0CmyohdUjYekkWDvc2UEnLOfP9jlMBqKOujpkZNjBAdxXM8rI9RfAeMwoI9dv7Ez/sTODCZZFt3fvFOLuHyHUfwa9h3z3q57o+wbdRl53lr311lvcddddfOMb30hLv+iii3jiiSdYvHgxlZWVnH/++Rx99NG8+uqrAMTjcebNm8fw4cN57bXXWLNmDaeccgrBYJDrr7++c0K4jbMqgiEj269quvJyVMJdp66cSp5s8ibSwjbsttVJsi34uBg+L3by62ugOgbTWp3PL7qgo28DhN8A4voispiy/+R2tOVrla/lvoUqOpUJ0PGWFxT4oH0fsEtclQRAhKB9N4huB1ZrB19/PRQ9B8T6r46iEuxSsCLgawIR0csj88qoO499VUanpv1OjsfqmPNY8t+HwJtlztiwBBzQBNeugJ+OgS0+jRA9pWOBzjn9FcbO0Dttngcdh2yCoRucMaqrSk7zYq0K5MhpqvlUVZdq3pSvM+SyoL4OooH0zJZiaC2GzdXOo5nJvOJWGL0y842Z/UlH4XOCfMFoZjvJwTddl1FWOsD6qme5AhmPnuWMnel7O1PIMAGBzsErKKbKM/d34ELXniYw2mvI286yrVu3ctJJJ/Hb3/6WIUOGpNIbGxv53e9+xy9/+Uv2339/Zs6cyb333strr73Gv//9bwCeeeYZPv74Y/74xz8yY8YMDj30UK699lp+85vfEIlEdFV2DkmDLaTrbGWQyri/4/rudiSsHMq4IcshOTk+AWevg0Ma1MVbE28d/O54eKuUruloe9NmYyXnq+jdIrlvi0oc3e2Vv6sCUEnYVTg9XrEisKsgPhziI5y/yI7Qth8Ij3Byn+voh9hEECUdZ8upyuWMPPTVnAXpofH4RhmcOx6erHICZcnsf1ZAiw9Oq08UG8A6KuXN85yjpetjGDvjKjMAx65I0OvmRhVkWncZeU2vS3PnqeZL9y3IdQ0vcM5ha3H/IONiIID2sJPfknjJwaZqWF9L2k5mlW59qWNbkbNTbuVoRz83D3e308mrFGgA9tXBMB4HjI69jH5vZwY6sgVyzI4pg8EKr35vAqC9hrwFy8477zzmzZvHgQcemJb+zjvvEI1G09KnTJnCNttsw+uvvw7A66+/zo477siwYcNSNHPnzqWpqYmPPvpIWV97eztNTU1pf0CHcVcZY9nDdH9XRVzcToLqU8UHDa1XH9fJkEjfrhWO3wiPVCvkcy1CbJUsueroIabK8ZbZy060qrzKp9I59l4yySrKvptWAK828UFkhjpg1l909DWDbzNYLWA1qWWwFGW96k2rvAf6qva7SpieGI+WEyQTEp+4BYtr4KjNMCJKfnUswDlH+72PYeyMIs2rjI62r/p1J8SVq/Ka27zg1aWTosppXvQ6ulzaUVjO45nLtwHbFYjqTzoGI1DUBmVb1Dvgkt/lJs9ZyIHSVwfDeOxvOvYT9Bs7Y2DQVZiAY2HBtGWvIi/Bsoceeoh3332XhQsXZuStXbuWUChEVVVVWvqwYcNYu3ZtisZtWJL5yTwVFi5cSGVlZepvzJgxHZmyI6FKUzkQujJC+pPT5LIyDR6fKrhkswR8czPUB2FJUY7yJtM6o6NCLPkHRbffpKKTfSFLus7mrHs59Kp8N2+vHzdzbkcfRHcAUZapTz50FBbYNc4usfhQnMdENfXgB+EH/2qwWsFqSa/DfR90sisXdz3YVzN4q9CL4/GLxMsE9t4i0eDxqUIuOhbQnKOUqx/A2BmpbG+0eU/r6AF5zkqbKzV0uvK50qnEz7XLCxJzuBw0yNKOtg8aK51HN3tLx2jQeSy0tZiMXW1u2D4QPpjwJVQ1djDqyhSfljAQ++pgGI/9Ucc+Rr+zM4WG5O4Ys/g3MDDop+jxYNmKFSv43ve+x6JFiygq0kVzeh6XXXYZjY2Nqb8VK1aoCVWeqM65deernAXVr2w6aBYJFhC0we+m0dUFFAnYcwt8WgztutbrQR1VQR8dsv3AqPOJVD826hYtsphuP06ndpocXWlH15vauqsjfhDh9PRUGQvsSojuCPExDi2JRy3xg10GhB362ARoOR5EcYKOTJ6q+5BTd/Va0Ho5zO7KZBpdxb04Hlt9sDEAs7Y4jzIrZZVlUdWvKtdPdMyQSSWrLIuqflU5Lx17GcbOaDBQ+7XESq5Wdwt0851bBBU/2W7o5m0v/qr4gDIzmxLJbNF7Om6sgc8nw6qRCVqf81ionTifLJ54S/SWclg2ruM7Vqat9Yp1eE4ZA7WvDobx2F917GX0eztjYNDfkWsQ1ARLuwbzKGavoMcP+H/nnXeor69n5513TqXF43H+9a9/cdttt/H0008TiURoaGhI+zVm3bp1DB8+HIDhw4fz5ptvpvFNvl0mSSMjHA4TDoczM5LOgO4zSZOEjlbuj7Jj4uWMeGBMBK5aCU1++ONQ+LwImv3OY2MqR2N8G4xvd3aW+VROR0/qKBVRXXtB5+S7fSGds+8WW16UeJVRqZEmb1fbUYPO6ogf4nXOCxSsOMRLwdfQUdi/3tlZFvgUiEPbXIgPg8jOzplqvkbwbQK7zqFrn4PzYoKI80IG//rMe6e7F0LOyDbnyjfena6qSE7X3c9eGo8WEBCwfSsU2dDiJxM9oWM/n3O6rWM/gLEz9G6b57NfK4pnWz9bUppsA1TVu6H7rqs/1zpTAa8esDPd0VEA8cSbN/1xZ9daMOpkWEDtemgug7r1Dv3qEc75aUXtzq4zfxwqmmBzFURDsGSyk+azYdQqKGlRt1m2duw1O2PGo7qegaRjP0C/szMDAWanmIEbcjAn1xcTmCCQQT9Cj+8sO+CAA/jggw94//33U3+77LILJ510Uuo6GAzy/PPPp8p89tlnLF++nFmzZgEwa9YsPvjgA+rr61M0zz77LBUVFUydOrXzQqkchGS67Ai4DbaXk+LmLTsXbggynQxX3soQXD/KCZR9HYawgB1bYIeWRONIdYWEs+AvstX8ekzHTiBZhVzMa6Gi8pXc16oysl+nW0DJfJVTbifbsad0FCGIjYPmBbD1NGg5AeKjQZQ5wTARBHw4h/YPgei2TnAtNsFJi4+A6FTnMU3hh9goiE5y0uzydP9Xp7vqXnYIqNY/LV21gpMZygLohOnF8WjhjK+QyJz4fMDQaA/pKMCywYqCbyvOY7JxF+8+nnO6rWM/gLEzEnpr7Pawju4zsJLZwpL+FOq4xXcjxUOhplxed+3Vxb3qTH3vTjtKWV3W0QcrRsNn2zmBrs+3haZyZ+dYJOQUCEWcAFpbkfOWzngAmkud/NZiWFfnXAsL2kPOGz23Jl5MkM22eGKA9tXBMB77lY79AP3SzvR3mLOxBh+SbZ6t3U2/MBig6PGdZeXl5UybNi0trbS0lJqamlT6d77zHS6++GKqq6upqKjgggsuYNasWeyxxx4AHHzwwUydOpWTTz6ZG2+8kbVr13L55Zdz3nnnde3XFtmZkMeryimQDbk7TyjyZLjr8XAAbGCpe3e3gE0BmNEMR22Cx4dAxKcuq62zJ3RMFwksaN8T7FpXRhz89RBYBr76Dlov306uIpnnXgDIdIpYhJKXyv9SojPt6CFzZ3UEaN8HYuMTj1Qm0HJ0B5FvK4gwRKbjnFkWUsipakeRrkausmUgF2dVt/pUlZUq32HdOCZ+tDNWGxy5EaaH4ZXx/+X9kUs7iuV7PEpyWzhvll0Tgg0BF72CVqsjTtv5V4N/ZeIsuXacs+SCIIqcoGd8G4iNdh63TUXsennO0fLJpR2zroR7B8bOuNLz3eYyfQ/qGIils44HYPkY5zOZ549DVQOUNoMvnjmXyfOcShVLkS+jK11bSPcg7cyyLtoZWcbO6gjOSwMaq5zv0cSctnysExxL7hyL+2FrmSNvzK9gpmhHSzgH/nupkVPMYwD21cEwHvuNjsbOGPQG5OCN2c3UOaiCX4M1IGZZham715goRH016PFgWS741a9+hc/n45hjjqG9vZ25c+dy++23p/L9fj+PP/4455xzDrNmzaK0tJQFCxZwzTXXdL4ylROhcxB0jojMRxWxSdLJjojKCdHlJZyEOPBuKZTYsGA9/K4u7dgsPXpSRz/YVSDKE4v84YndTeF0HtHtwb8DhF+GwHKgPYtofpydU2EQ0mvodarorpOw4lAVgRI/BCyIC/jmKCgJwK8/g6hXpCuXdpTr06SrWGcEqopdgbJEhijqYBAvQt1W2dpRgjsOo/Nn09TvYl/NgKqsC9/8cB8mfnQIFvDNBPkuK6dw+vH/R9yyM+uQeXdnPGowvQVGReCpKkkHSUfLBiJOEAxwbnLceTQ2sBSCnyaCY0KqthVocgLKwQ+BImfHYGRm4kUO2VbGvTDnZCBLOw4EGDujyetqm+dBx7Yi57o9BG1h2FoOTZUJNi76TdVOsKx2vfMIYDBK2hlfSfqUGJbzFwk5Z3D5Y+C3nUCR6ERf9sedP3Dq88cT9SYm96YKKG51dmml3b5uzE+yzdA1tbYrWM59TZvbce5DLOAwSH36JQY52Bm3WipSlbzC5+xqG8h9dTCMx36n4wBAr9oZg56BbpGfTDdBM4NcIPeTQnkEOdf+76Yb6DpnQa8Ey1588cW070VFRfzmN7/hN7/5jbbM2LFj+cc//tH9yr0WzbKTqDPcXn1AdiZydUJUdbgcC2HBa+Uwpwl23QpvlGl00OmjSuuEjvFaaD4F57FA2dGRvPn4UGg5yjl7K7AcfJud3TWiEkQoEXRLBIlEqZMmwvRI7yuNw9St0BSD1Q0QWwEiCn9oh9BmiARwoo/yokCGVzu6kmVyuWmFlK9EagUhFe5OX3XBb8EZE6AiBC9ugfooxJpgawyaoh3Fc17cyTJIfTVDXpnOxc+HleFzh+KB3HTs7nhUICjg+I3wm+GJgLQkuxUH/xpn96R/pRMYs9pIKuMUcp0FpKsubVpog+B/IfiZs1szsjOpwHFfzjmdacf+CGNnyG+b50HHpgpYOhHai5wAjpBpEzIGok5A7atxTqBs1CqHJPU2R8sJjNmJXwmiwY7D6m0fqQCXLT9/nQWpwFjiOhk8K2pzdr41VcDwtek75DLOEnUjy/wk36Zcb7+y6fNoZyyce95Q5QTmyhNvGC5tTi+TqsptdAZoX01DgY7HNPQHHfsh+tTODHT05e6bztTrFTTrTflN0M6gs8hljOWjXxXqzroE+mRnWa9CdhSyeaOyQ+BOVzkcur6hqlNXRuMgxIG/DYEz6uGdMohl64eyE9UdHX04jwDmomPCAbKrITIkkWSDkBcmKkdPJSMaGimvMgYz2uHdGtjiA0YA2zvZLQLnzKgtQKxDPiW/HJ0zVbPJ6V7Nq2Xk1b/c9F7t6EJcwINfgz0M6g8FOwCV/4CR62FcKXyx1QmcKVXuYl/1bEevdC/e+RqPLkxoh+II1G+B4NpEf0kiDoGvnGAZyd0lCnZyE6hukbJcO4RfdF720DYH582msi69POfk1I4GmRjAdibnsdud+Umjo+1zHgX0ms8QiZ1Q4ATFgk7QLMVWXrQr7EyKrpN2RkiPSid3ZLUUd/BaMcY538vCeaQxGtTwy0MQwCtekm87g3CCY/44LBvvtOU2y2HIZoVNFFIQcQD2VU95ZfncderKGB2NnRlsEGJgLar7Ws6+rr+/wez86x7yfd8KZWedAoUfLIN0B0Fl6GUHImngvVbGOidSFRBy83SXUeVL+LIIRkRhWBRWhTLzlXX3Ax2F/KZBgVZH7f3wcPT8Ag5vgCerYIuqLgtEKPGYmztdVWc2HRWiqfxQNGly1cr+qHJmO9OOUnJTDOJBiA0BfNBWDSuXw8YIzBwC/23s2GXmqWAn+mpO7eiFfPfVGKxrgZYWYBX4AxD/An7/kfMoFRG1SHI7ukWRxdFBN1wQEPwA582nh+Ds5JSZ9vKc49mOhWcDew4D2M50ZQ7uTR3lRydFP9Ix7oPWEomnqkw2HX3q+SWb7VFVmyFnHuyMhXN+WXvYOf9MzvOUSVamH7SjGY8a3kjpOh2MnTEwMDDoOySDVX0dTBxIAfEcMTiCZbKBl50MS/pEypPz5X6o4qfirZJL5dS4ytg4jxpObMshWJarHP1Mx5x5utpxTBu0WbDJrynTkzp6sElCVSXoRcpFR61MSobZIYDWOHzYCLvXwLNrc5BHzlfJ1tW+oROyO+0oSJ0t5msGEQJrKwQ/gsAquGwTtMfA9xqUWlBvp68dktXI19m6jq79If12qGABwU9AVEHbXjiPdw6E8WiQjgFsZ3LmaXTMq45e4iZF0uUr55k82Rl3ts8GS4CwOt5uKtNllUfOV8k2gNrR6NiDOhoYGBgYdEB3Vlp/QoEFzAo/WJZ0CJIQ0qebTnY83Ibby+mQ+cjXujI6Z8KVFsA56D8kFHXJkL3lAaKj1mFS8Ulg963QKr9NUJajp3RUsJZFk0WQoV0wyIxUhXJpRxk+iI0DXysIP8RHOofLixg0RCHog6ogbJKFznc7eqE77SjAv945ZN+/0jk/z2p3dLdiQMwhbVXU19l2VKkriy2rLg9NtwoCZ7EZegtiI523pSoDZpLcSkH7QzsORgxwO9OVOdjoqJGtizqq5gwVG938kzEf5dnOWJA6tyz5BtA1I6Bsq/NoplCVGwTtaHTMoo+xMwYGBt1B8nHeQsdg0HGAoPCDZdkcDDdd2uqVdGMOmU6H7CR48XaXketx85fLoMnPVo8uv7/qqHLcdLIDVXEIZKPrYR1Tzr9I9/Fkny+jjFxNjjp2qh1dsMA5bw4IvwAEQZSQekWmACoCMLMant2SXjbv7egF1covh3b0NUP4FSdQ5n4bqwVY0cxqVLe3M+2oSpfV6KyvLwCiUPwPaD0KYmMUzPrDeDS2W41CsDOdnIONjvSYjrbPOess3J5g6ZqIdEMv61DMg44C58y4JOJ+J1hW2eS8WTOWeNtosmhTubPbrKRZwVuWsQDaMYO3u4zRMb2Mm7exMwYGBl4YLAEyKBw9C2h3WeEHy2Tjm81Z8EpTGXm5jNwv3I6A7NyoeLnLdBYDVcdcnTEUdL2kowDsOmifBf61EHoH58UBCrXcbFVVZkCnY2faUcpCgCgCUQXYHS83SOaXBaAtLsnQG+2YK3JsR98mKHkMfOvU/nouUK0RsrVjLm3rzhcWzmzrA7vEubYrEm1U7ugR+BziYyFepxDOLUx/GI8G6RjodqYrc7DRscd09NnOGzUF0FwGq0c6b9wctcrZpZWNDYrv+dDRAoKuN3+CM7e5zy2zfR2OZUuJ8ybTVLCst+yM6at6fVRp/VVHAwOD/GGgBqAGqty5oFD1GuAo/GBZErJjoFoZy7Qq5yAbnex8yHlyGZ3DoErP5kAMVB29HDJdGbm+XGXPlU4hb2RniG7nPN4Y/BSsRj1bT38wH+0o1S0swAYrsXPM8qXna+tNY0L+2tGr/lzaRzhvriz5O/jqM1np1gJ+CwI+aLdAxNTq5NqOIkngBzsIBCBeBgTBrgIRTnyWJP5KQQRBFOG8bdZ1KHbov06wzC4htSsw53vRl+PRIB2DbQ42OvaIjsJygkxYzqOMzSXQWgxDN0BJSyZLWRXlnJ4nO2O5+FoCglHnz7KhvSg9uBdU7Owt5HYcDH3V2BkDgwJAcsfPQAw8DTR5c0V/16szu8T6uy6dxOAJlskOhMrBcF/rVse61XO2Vbfw4C07Nrk6NKr6BqKO2aITcr5wJfeCjnY52GMSQY4EjQjjBKD8CXHiIOxMtiofsjM65tyOknoiBKIE7MTbQO0qiG6Lc34XEK+EeBxiQ0EEyGyrPLVjzBfPUKEtEHGuOtGOVhSKXugIlMm3Ufgc/eMVIMqcXVz+CrioEYYWweVFIP6JE1B0qZxS0ef8iSAQctpbBMC/GkQF2AGw2qH1UBCVifwgziOvyYbPpR0F+JpIBTXTlNDdCxWdrmw+2tFAj0E2BxsdNfx1dCp9cM78WjcMSpuhraijTNzvBNHsxI8dPhssO/vtypuOknrQESyLBiEWgK1lEEq8WTgWcHRoKU3sPCvwdsxIMzqqdTB2xsDAoKsYiAG+bOisPu570FP3o6cemSy0tmGwBMvckYskZAcDxbUMLwdErk9X1l23yvGRZc7GN5d6VOnZyveljnJbKeir1+7IgRtrqCiq4q49/k485xUEndJRBKH1W2AX4/yiboEIQctRYLWSGkFWCxQ/BrSou1qndexiOwogtr3zuGh8aHpedHLHdWwdRALQWqOQIY/t+OfpLzC70ceE1gDPDomwMgzPT3qHuCU61Vf9KyCwFEQZThs0k34+mQAr5hz0TyP4Vzms7otBRbGzg8sKgB0Gu8YJiIoisIc47WtXkTrrTQScOnz1ULoo8fhkGPwbIT7aoVcuUnT3UkoPv+a8fEGJ/jweDdJRSHYmT/NTRp7RMcW3odL5S5a1fbBsPITanaATlnM97msIRvSie+rhlddJO9NY5QT4WosTxRLll40ntfssefZafW3HtZJvAbWjsqy7bqOjsTMGBm64gx75hqoOVVp/Cni4d8HJaUCfnY2lClL1lhzuenVtlU2WfLRxf+o3PYjCD5a5f8kCvSOg+sXL3c+yLYZz+WVN5ifL6U6X6VVlZAxUHd2fcl1y2wnno3bDZGasrqUoOo57dnuceMDuso4+nLeNBmwY1w7LwtCcfBuhBXapQ+d29u0qoKqDj9UGuB6rk9VOuxU56KikkxhaAnZphqgFnxZBOc7jhZHpiUCZrj3c/Hu5Hb+sXsPSGX9gfCP8fRw8XeWto64d7VonSNV6OMSHOwfjBz93kQmgLfVOgxS2WPDNWfCbGRD+B4gSaD1Yoad8L1w6+RoAP1jNEHoP2neXaFXXOh2ByC6OLqG3PeqW03X3SFUeqZyKTq7Pqx0NMjHQ7Uwn52CjY551TCDuc4JRSZpYACIhJ1gmiyV3wbzoCKmdsxuGQkuxi0Z05Av5nvskvrIMbjlUdG76gdSORkdjZwwMckUBHYjeY8jlfvSHe9YTMiR5dHeXWV+iEHf9kbmWLDxYiusMr1KikZ0CubxFpkHvajnZkfDilcsYKBQdszlg2ZCDrBYwMgpj2yFkO+SVMQhm01GAFQUrBlar8zZGXxMgHcSsRS465tCOAlgZguVhiFlg+WFsKdS4R7WuHXXIdzsmkwWMjrhou9JXE2V9W0i9bEEWTyj+/M0Q2uIQ+tdB7XrS77dOxyRiQBTnrLJKqZyqrJeOFsRrOx6XzUB/HY8G6ShEO9PN+cno6CFrF8tZwnkUUyVuUtSMLz2oo8A5zN+2IOp+fN+0Y+fKGR3TYeyMgYGBQWGgrwN2ecDg2FmmugZvByNbW6t+bfNyJlSOgyrffa2TN5tcOv79XUfZibIkumz6d0ZHAePbodkPX4UTZBa8WqGhV+lo4ZxrJcDf4LwtkziIcIKkHUTQeXsmLQpeXjrm2I5rgh0km8bBlnKYZkF7HBoCijJe97A32tGVZMnlutBX/Wsg/DoQ068P3LAFPPAOBD5zHrmMVk+gvNoHLM2UQVO3PZTUY5ixiYoyXWjHnNCfxqNBOgrFzuQ6Bxsd+0ZHoKmiY4eZP95xiH5xq/M9JUqedNw8xHlENBZML2raUVOHisbomFmfu5yxMwYGgxsFukMpK7qi82C8T72Mwg+WueHuT6rAgcrBkJ0TmY/Mw00jOxteDoCu7s5iIOuocqB0zqAXctCxxIYRUXgtTOZZKu76NE6jSC4UEiMoOhmikxSiCCj+CwSWkbmP00vHLrRjZGeICPjIhp2b4V/leLejVL5P2lHmlUs9Lh6iLEEq9KQym6hNaifaln12YsX8HalbfFX2unXoiXaU0/r7eDTQYzDMwUbHPtHR9sGa4Wq1Rq+Amo2OPYu436jbwzq2lEiPX/awjl51F0o7Zq1b5uumGUw6GhgY9A10u4N6MzBTgDuU8g7zKG9eUPjBMtmgZxvnuuCBzE9XTqZVOSFyGS95O4OBqqPKKfMoIwRsrv6SpdFWXipqwHY/lyLz0Og4tRVGt3cEWzLKdUVHRV7anBV00XTlvujqlXSMWLBtG7xcrulCKie7p9tR5QArYMVxznsD5w2WRRJBlnYUPn11crVpawQLhGVhCaiuX5Gbjjr0RDt68eyP49EgHQPdznRyDjY6Sjx6U0crM8YBztsmLRyb44tLZdwYCDp2Rl6jY+HqaGBgYGBg0Mco/GCZDrKxzyUwlTTkql/nVIECqxNl3NDldTV4Jl9nK+OWobd09KpHwaN+5PssGv0+i4YmRHGXzwYLwjYU2z2oo3DOv8IVtxPlOGdbWSBKXeVz1NEtb2fa0QcUy4ulXm5H/zqwYs53EYR4nZqH1QzBD3BejiAgsivO2ydzbMfo0DEU+VZhoQiYKlRMwi6uoH30GABaxu9M8Ot3Kf7qvdx09KqoB9sxRefm3R/Go0HuKJQ2Hwz9eiDrCPhtZ+eZbTnXBafjYGhHo2N6PQYGgwFmJ5CBQb9G4QfLksEJyO5wWNK1zrBbEr0XHzlNV8aL1ouvG7k4Vf1RR6FIl78raFJN2xUddbLo+OhoXfIFvnI+rSgIP0R3BFHpvLERwGrDCSB1QsdUemd1zCavik+uZXS0Lvn966Doaec6shPED1QXFwEIvQ/WVudeRXamY1bKpqPPz6YDzqDs4RvwtTuHwslNK3TX/gB2uARhQf12uxMYPo4xv1mAf8sGvY7Z0N12VKG/jkeDdAx0O9PFOThNXp1sRkdveXtCRwFrh8P6WhAWRIOKMgNdR7cMOr5Gx8LS0cDAoG8hP9Y3WAN77sdPve5BrnTZynYH5lHMHkfhB8sg3TDLToE7TRdwkMuogi1ejotM464rl1/jOov+oKMXdA6XSjZ3mop/d3RMpsky6HjLNO66LGjfXVGnBRQ7dMlHDMuKoLQIqkqhKOQcOr+hESIx2LTFNcd1tR29vnu1UU/01US+XQ7YCfHbPcoEQIQSx7m1gtXqfPfsD2n1+ZVZqrhFMj1DfQvixRXY4VL8TRu6Ph51fbU/jMcutmPW+2/QgUJu88HQr/ubjm7SbDpaToAs9YbKBJ+AD8bUwoQR0NoOy+th9SbH5vQLHQdDOxodjZ0xMBioMEEXA4NBEixzw+0UWFJaLg6D5KDmDN3qXVWfF20u6CMdfY0Q/Bz8K0D3VFz0GxDdNse6cglYdFVHOV0Dn4Ai2wnm7L4V3i0FqqC2Avx+x47EbVizCba2SfIIMuQL+mHWFNjQBD4fjKyBhq0OSXU5fLIc1jUo9EhcV8ZhTAQ+LYZQHFp9kkpd0DED3e2rFs5jlZZzf/zrIfgpHcGzxOH6/nUQWJ+gA4iDrwFEKYgAWK0Q+hAs95tEcWisNiCiV7Gz5l2EimgbPZXghq/1OnoyQH+PcxmPqjJ9Ped0ZTwaOBiodqYzbW50VNfZAzoGfDB3JkyfAJ+vhC/WOEGu+gbF2kVTV1Up/O/xMG0sFIcdui2t8N4XcNtjsLGpb3UcDO1odMyB1tgZg/4Mr90+JpDkQHePBtP9yXU3l3lz5YBE4QfLvH7pUhluHa3cv2XnQw6QyHRe8rnrluVGk6/j1Vc62lD0LAS+yPTZ3KTRKRI/lY5yeuLaihbhnOgu8MfiWMGYk5Yk8sUQ/ihWHOessCAIf9d1DAoY0w6rQ9BmwRuVUFYBB+0CR82CtigUh5z58bWP4Y4noCWiuDeJ76EA7PcNaI8682VdFXz4FYSDMGkkvLMU9p4Gb33u7ABQtWOzH74KO7FIHzA8CvVBiLtpZUjt5mtyAlEEFbJ6oRN9VZTgBMxi4FsHxX/vIPVPB4ZB8GMo/spVKA4lf4V4DbQeA6G3IfRvdRMJ0M5eiq7jDQFWPMrWHfaj/L/PgB1X6+hRPu26K3OOzK8/zTmqdIN0FJqdUc3BRkd1PT2sY9APpxwAx+3r2IwDZzg/yDS1wP3PwT/egpidWc79PeCDOd+AXSY7P8okaSpKYd9p8OHX8MirCd/etKPRUSVbX+toYNCXMEGN3NAf7lNvP3ao01lOT34Xovfvk3kUs0dR+MEyUDsIoDbmboOtKiMHJDwWvVYEfJscmtQB7wk6a6vzKarALlHIKfNWfZfRBzq66UVJZrEMH0iWS6Wju5DrOvjWifhWzoRACxPa1/LBuA8J1R+BJXzYVcuJT36W+Mj3KHoBAkshOg3a9tHoKEOh4+RWWB52AmUAE8fD+Uc6i5lQwFm8xOJQVgz77gjN7fC7pyAeh0CCRxQQifJ+Cw7fHUbVQEkYAn5oae/gsbEJggFYsgpW4LyEwCaxgSrBIwZsTSx+tiaeQNymHZaF5Rut0MuCwCooeRhC24B9aCXtY0YRXvlxdkdY7jtZ+qoIgwiCL5bJwvkSwBICi3h6s0TA14zzZsxgell3lxChoJMQi6FCZ81S6cf/omXirkSGjiVU/2VufcZdmSDzfnRmPKr4dWc8qmjlOnNoR+V4NFCjj+xMRlo+2ryr/dro2Ckdg344+zA4YnfHFiTL+P0wpBzOPRxaI/Dsu3r5/D747jzH1qQCZW4RfDB/DrzxGazc0Ps6DoZ2NDp2Qj4VnbEzBoMBuexa684ZWL2BvpapPwTrckFfBMwMegyDI1gmG2tVQMHtMIDaaRDSp0zngn8jFD8OvsRjZrgW/gicKApgV0HrURCvVcis0sMLvaxjWj0WiCJvH0z4QFS6ystyCClPqte/4XN86yciyjdCLIoo3QDBFgQWhJoRgTaHXRNYW8Bqlvjr6lHoaAF7boElxR0JU0bDhOEd811psauAACsK27RCOxASsCYIUdfNCAWhthKqyjqKlbl4DBsCtu3sNAMojcM2EYgDG4KwIeDwEy492i3YY6uz20wkBU/o5AMs4QTYUkpFcASMQ/O2e7Lh4MMZef/FWNF2/T2S4eUYJ76LMBAGWhW3WPjgwzMZs2Ej8OeM6kQQCDhjQ1e1EAIrZjPy6t/ia23P6C6q7uulUtHy/xIvraJplyMY+o9b9DqqoOirXZpz5Hx3XhfGo5a3jk8u49HYej36wM70SpvL9EbHvOlYHILZO7oCZRJCQWe32HPvSWK55CgKwu7bOT/o6FBd5tCsTPonph0z6zQ66mU2dmbwIdeFfl8HTwYKzOOdPQv3Lq7BjmRgzuwu6zEofncsMKicCNkYC9TGXueoeC2kE3mht53Hz7Bxoh1tOG9DbAPawbKdPN8mCH6E2pHpLHpTRxWd19yf/PRr6FROXgZJOdhD8G0uZnntanwby7Bayp2bafux7EBmcZ8lM9HL6ZLBAkrtdPpt6jzsmwUH7AoTJwI+WBWCVr+LpXCCYCVhTXmXuEMrnXIbg/BxsfM044iIExSb3AZlcScIhlMVtVE1r7AN27bq64pVj8QuriBeNkQfaUrolpbn1VddZYWljktiAa11hKI1euGSdP6O4KBw/VnRGNg2oWWrsOJxrc/u1T2jo+pS13a4jJqnf0Pb6B2IVQ3v3Hj0WsC4aXIZjyo+ujpUvPPQjloagw70hZ3p7TYfrDqqeORRx2y+7YyJMKxKwxtnB9qQssz0NFgwc7KzuzlDjqSMhdaORkc17/6so0H/QGd2xJjdM91HPu7hQGmXgSJnf4cJkvUoCn9nmc4JkNNUToVuBe6G7GgIJ5Dh26SvxpI/o67MZIFs8qrQizqmlUuk2UMgPgIIg7UF7KE4AcImJ92/icxzsgCEH4GFIJT4CxIXVRkKxScKfDVfYFd9RltsDW0VG2ma/jAUNYNlI4I2iG2xqiAyDOJVbTTNmE75B09jxSKd11GRJ0TiUnGvq8vhvNPhyf8Hf/jQRyTkvOUgaAc55e2zCQ9vwCceRPv2AyAunJcFWLFEH6qGmAVtPudw/6o4bLSh2Ib1qtHrkrvNB+Pb4YPiKmLUgrCIhYDhECnbiL01hO+LLcSaaoiLiozyKp45p/lBTANftB07ECJea4EPgl8IYtXr4GuIjC6nuXwU0eEl2NUWvgbwNQh8dgttVgn+6jiRA8G3IUBsrMM2uKKNsreXO+PMVa3cLZPpKjGTNLEhFRQtWQ62TXDzaoqWf8CQV/8fm2cvoPaxX0A81lHAa+zJi5buzDnuvGz1JflpxqN20e+m9ZpzZLpsQYTBjD6wM73S5qq8fOqo+nSTiCA2xSSFtynFFsX42YxFPFFVBJ9IbJ8FBGFsivCJFgQBBGEEIWzKEMKPnwbAT5wKbELE7DriVBKjBgTERSV+awvJedsCwiyhyPoYy9+EhY3PjpH6BaMz7SihNQqbtkJNBcTsdAK/JfBZUFkC5SWwdrOLj1fwQgP5d6RMmZIODel9RqZ1fQoC2KI8ce98RMUwhChCYBFlFOAjyGriopIAGwGbgFWPj/ZUHXEqEPgJsBkhLGzK8dPUUa/G9tiEaRfbEaeUMMso4iMCbEQQoE3sQLsYT4yh+GmkyPoMH22psjFRTZwKomI0YFMkPqXY+g8+NL829Yc5uFDnHGNnDPoD+uKxuf4W4DC7tTrQE/2ht/tUsj7Tft1G4QfLdJCNvc55UDkIgCBIk5iLTUlGGStuE448j5/NGVWpqmgTk9gsdk6vM4G4HaPR9xINYhqb7WFsERsRvECUoTSLCcAbCHw0iYPYbFd26hZ4BjxU90H3PXHtHw5iLIgiJ9ATH+4EffwrIDYeAishXpEctxZRMQKbImIMSyxeSrFFCQJ/YkEkYbvkxUH8o/kDGv2lLC+a4CT5YuBrB1871qFbIbAFgi1Yfh+R4evxb9mYxurDIlgbg82lKGEBz/phY3lyyQVPr4P3XnUeo/Sa7pYESrBqprLF+g81LUPZWLyBZbVDGVZZiW35aI1avLm2hrhI5zKytJXJQ5rYVDyahqJigpsgvg3EWoBy2BR3XjrwZbGz02xzyBnAzwVgc3lHkwSEk7apHD4NBlhdMof22HbQVgsjyrHmB7in/WtaPiqmdckIVto3eWjTdVi7ghWPYQdcO/7Gwtbl18OIV1k24mA+n/Yb7GDIyUwo4ItFsAlhDbFhCGD5UrvLSkuWsO07P8ASsTT/291ts/naAqAtjrUpim+r85xoo5iHsG0qPnmawObVIGxFoWwK51BxN+acDHo5OqiTKUmbjV5383SLZYPs6G6bYxFlGBBACD8x6joyRZwiPs5c0GsWnzGGEWFsWp22KMGiFZ/VQlzUYAkngBBlJHEqCLCekLWSdjEZhCDIKixLHeyPizIEQcBHnPJ03VT3JfEZp4q4qAbAb20gLipJP7cgSeojyihioprEQ+bYhBEE8dGClQhm+axmAmwiwHoEPiJsQ1xUEbA2YxPGFmWJoFkIgS9x/yxsihI3y73dKll5QuDAVihdDsVD8AXGYYXWYxEnGG0mGN1CMNqCT8QIRp1X+Nq+ALYvSCDmtJGwLKLBMgQWWBYxfxGhSBPBWCuxQBHtJUO5/j9+hn0R4aMNlQ5dAmPKW/hG7Wa2tvv5L37aqtJfBxyMOXWO3DZOcXgtCGiJ+alvKcIWFqXBGGF/nJDfpiQQ58Mtw1lXOcQJ9Mlt6Q/THq7EZ0cpatucSrd9AWKBEvx2OwIL2xfquEWWRVSMItY6A7t9G0SkGkQICIDwmjjipHcSX+Lex13f9T8wdcDddoKgtYZy61naxURaxO6JvpkcjHKd8pZ3myLrY2p891MsPsR5axD9Zw42dsag0NAfdxTJ54b1ZPChKzy6U3dXyunK5DOI1lmevRkIUtXV2TPlZJp87SJM1mMCZT2Cwg+Wyb9qQbqR9vqVy4utFWSz9U1iDM3Is0SMobxHmM3KH+fkatusbdnom6+sp8GyOWHsAawID6HRV0yD9TnwIlFrGFt9s3CCZX4afIey0TdWyaPXMNx1PSrx6QcmJa5zEc+yIdAMNEvpMQhuIXkHXxzig+A6YJ1DH2wEfwv4oggr4QhbIDZBQ2g4VCeES9z4jV6/hCbwd+kpwUdWA6tRO3lJJPPqWkFsy1oLoJq7DnifYaVtzG4r5oXlw7jxrakZOwf2Gb2ehXu/z4bSiawfOyR1v9YpRF2vktPVuR4b6nx/uhpgjfMnAhCtRLTV8oEIQqwM4g1OmXgY4lLkUFgQK828MTlCQOKQ/nhaGr4YjHmONaNGYRdPxjlErQN2EKBdvcb2O68blX1t+Ydv1Y/eaTQxC/FlJLW2arMmEvRNoMKOE179mZ6xl7Je80suc06uyFlJTR3uRZS8sPKSx9hcPfJkZ2IMZaW4CVtUgvAlFvwdlRZb7xOyllPJk4RYpqzD9gWJ+0KsDR9De/wbEC92xna81BHA1wbBJvBHQPhB+MASEC9ygkPRUohWO/NsrMTJV8EC/G3gi2YqHC9KDuwO+CLOfB9PvNE4Nfe7b0CxM2+5YYcTckdwgijt2PhJDuY4VUSpAv9IRxbhg1iIeMpA+SAecgIgvnbsQFsiGLLFuQ9Wx3xFsLHjLSWBrVC0zrEzVjJ84wSLYoFiWouHutpTNTu5vmfYDJFKf2GlggXwwYYq/rFspPMleSZkGmvn4rkt7Ry99i1aYn5+8fb2LN1cjg2UBJxA2dxxazh1hy95YvVkNg/J8ig80Fw6Mj3Bq58DlP0HxIdOP4sXOe0VLSftjS3g2JxY8nlRK0Hjams74PDoLPytEN5I1A6xyb+b88NZdClEahL2TIbl1OWLOrL6IiB8tMWnsTr+M+p8t1DOs+lt1pdzcHftTK7zuLEzBvnAQFy8u2Xubfn74/3qjzIZpMPsKOtR5CVYtmrVKi699FKefPJJWlpamDRpEvfeey+77LILAEIIrrzySn7729/S0NDAXnvtxR133MHkyZNTPDZt2sQFF1zAY489hs/n45hjjuGWW26hrCzbYRw5Qv5FLZszkPFrXRRG/h0CJWQgbkN4k9I/QHVd/jmMfUgppi0E9ZEI7YGA80qszRthqQ3hdVDzOnyF49yPeAoqKjt1C/onRGJxogyVpH/tTJAhlwCFl6OZzcmTf8V10yXy6lvCfOtv+9Ia8xO1fRl8X11Vy6GP7EdzNJBbgEZGNh2tGIQ2On+5MpAXuD2BdSuhARjyPoxt62ThTWDZWX121dhLG+K+Ngh/6izWhA2lz0PNm7ARtE6+Dqp5Q0enEk4XfM2mhCxjtjLZyudSph9hMNiZaJGP+NAXIFoFWyfAlm2dQJcvAha0xmfSKnYmao1ipO8KUoHpRPnmkhFsqJmGAGKB1TiB80TFyTMerbgTqNJt9RB+J9DhiyTKeExMVizBS4IIZAbZkj9qpAIkIhFoy1IuXgzY4E8PsmfKEk/UIc1jwufwSO5GTpNZ0cm7ZGc8JmM5sGq58rtlZ6yEnSnif/6xJzFhEXPZmdaYc58f+Hg8D3++DVvzZWcAiDvBxcBW78nZi5HwZQZKc5Iv1tHuaZX4O/q8XK8dcvpCvDjRz8Ow6nBE8RqaW3ek3H5WLX9fzcHdsTOdkdfYmYFhZ3oSfbXDy7wt0GAgwwSmCho9HizbvHkze+21F/vttx9PPvkktbW1LFmyhCFDhqRobrzxRn79619z//33M378eH76058yd+5cPv74Y4qKnF+ZTzrpJNasWcOzzz5LNBrltNNO46yzzuLBBx/snECyYylcn+48C4TlI/koh7D8WMQdX97nd9KTB1YJnCcDfBHwKW6hcBYebp/XPYwy/B3LTvxKrmAF1BdbOIugOKkDzizR8Ys3SVnUPLIjhwVCLk51tqiFim+utLpAls7xkvl5BSWypbnTu6Jjah1k0dQe1NLG7US+zKO3dEwWTtUhOhakPdmOqUdaEovVzqzW5MV0uuTK9YAshrM2FeBLLJAj7bB5jSOPmzDbwtWrcq98XHQq+6pbYMj83Hzka69Jx/2p0tFrAdNP/IEBZWdkOlVbaNrc9vmdHbX+CEQqO4IAdiiNaZvYjhg1BER9WnVbS0YRDZQRjLQ5u2p8cWd3WDxxfIAvDv7mdNl9kUQ9tmObLBusxC6upI3p7PxE1LGZyr4bV9An8xXj3dfeyTlYpAfWBBBQvaZXkm+A2hmAtphfS2vbFlsjgYz0Xtcxg0ZI9cSd/qlDVn9BSOkJfqq5zdfWQRgvgaZtnZ1v0TIiYhwxhhIQGyT+WXTK9xzcFTuTw5yTwc/NR742dqZ37UxvwAStDAx6B2acDRj0eLDshhtuYMyYMdx7772ptPHjx6euhRDcfPPNXH755Xzzm98E4IEHHmDYsGE8+uijnHjiiXzyySc89dRTvPXWW6lfb2699VYOO+wwfv7znzNypPRYANDe3k57e4dD3NTUcSCsEEVYRMGKIwgAPizLcfqF5ccSmQ6ZlTyzyKIj3+1U2AFYdwBY1Zk3IR6H6PsIGjr4JWWRrgFoHger52XyUWB5+1b+d9h2rAqX49/cBLwDwgf1s2HrqKzl1bAh1NghkS/qPI7iiziPMIQanECCSvgMZVA7XjrH330tO3XZghU6x91dp46H0JQ3OnrXnU1HAHwQCzuLcxF0Hq/Bch7JiZVA+1JgDWwdn+j3nTAY678C8TJW6vButb8tpDRZNQjD0O1g9RqIB2HNAdDoB95VEXs777ogiWphomsHmV+2hYyKR659Rb6Wecl9Klsf7QP0RzvT420ORFr3gOUnOMGxWDHqzgY25TSIb1Fj/Q5BGIsIW+yDaN14JDSFiEWKQZQ687hdhLNbDLAEaY8dQuKHl0Qg29+Gc96UD8IbILSZjkBanIxH6zJgO4/FuR/xtmKOfQluSQTLpY5o5mDvuo2OmTpiOf3UDiT6tt8JesVKnLxAs9NffdGOx36F37FN0QqIDHF2lUUrXY8MW9A6iggj2erblyrrEfW96e05GFc5Y2fyin5pZ3oDvXGukq4uA4OBiORjj/JY8erfJjA9YNDjwbK///3vzJ07l+OOO46XXnqJUaNGce6553LmmWcCsGzZMtauXcuBBx6YKlNZWcnuu+/O66+/zoknnsjrr79OVVVVyrAAHHjggfh8Pt544w2+9a1vZdS7cOFCrr76aqVMFh2PelnJoE/yu+h4bMVKO0TWw4EHED5oHQWilgzLbkfBDqX5CW7/IAPRMmgei94j6Si1Bvjl0B0AmN/4QkpDWkeA2EZXgwKSx9OsXoRhxaHqAxj6mjdrb7HVDpvqpmTjoxJf5XR5wcsJ9YLRMbuObcNg/SyIDnHOBcJHxuHO0cecz7YRTqA4K1zCtHXsAJBF0a0H3Nep2xb2Y1UVwyqBJUBER0F7jbP7xV3QpZsoJXlEkVo8nRA6gbLR6RSUJxXdwlNXl26RoupbSdrO9KFeQH+0M1p0o83b41MgVpWZkcHYosk+lHZrPFFGEKCBNjHZCR5ELWm6cPESwgkauNNsTSdv6eKPMZbInAOS55MFt0DV+1D6VW73yczBRkc5PVoBG3d3Al52KNF/LSfglXyEN/mYsRWn49FOy9Uv5RuQLmyD+Cbl1gvOm1NVjp1uDsafnimS/0T35mBjZ3oFA8rOdAeD4Xyjzh7EbmAAufcbc6B+QaPHg2Vffvkld9xxBxdffDE//vGPeeutt7jwwgsJhUIsWLCAtWvXAjBs2LC0csOGDUvlrV27lrq6unRBAwGqq6tTNDIuu+wyLr744tT3pqYmxowZ43zRGWsVvBxGAQLnDBWbEoTw4cVM5YPKsDKo5Rwv71bPraO2bB6Ly0uxBKlH45KH5hevhdKv1QqpRNLlu2+Am04npsp5VzlXKnq5LrmcfJtVt8fo2DUdhc857yUeSizCMxWNWAFeKJvBf5JvMu1UX81UQYZuRLrLBDY2UrPoHwifj8lHXkB7cy1WsBmrYhiiEqyiFkRZBCvcDomNCvhRv9TNKy3XOccLqn7gLqe7EZ2pJ9tk1Y8WMFDYdkYI542SNmUIErtgclgd25TSKnYGLGJk7lZIr7ijnJ6/rlN0xs4gDZpEuvA5u3rsILSMdoJlumpVIpk52OgocA7tX3uA80NHhgJ0pCUDwsKPWlCk8ukKxMQw6u2LCVj1lIh38VtNQJwAG4mLcvxsJfk4sY8WEH7iVLDJ/jYx0ucgH1sJWBvw00gJbxJmGRYRdZvI90RGd+ccmZexM2nol3bGoGswQQyD7sD0n0GNHg+W2bbNLrvswvXXXw/ATjvtxIcffsidd97JggULerq6FMLhMOFwWJ2pcvyA5NuzbIoBH3FRgqCEuCglLoYgRIAooxD4iYnh2BQRZwg2JdiEiaN4BNMFd3W6YdaR7rVYUXGG5cE6FlfuS9QK0OgvlcoovNNUMCzmvNEr0Ox8BpucxzBTaa2Js6Fsb6fK/d3LaVaVzebYucRWrue8nC7VejAX31hOMzp2XseiNTDmEYhUObvMIkOgfajz3S4CYfGj4Wey1VdMg9/1JrQM4bIJkMuY0q/1RDBAdNhQ/A1N4IOyjR8TWLsZX7Qt8Qi2QAQtKAYRArsCRBisKFhtCUY2WC2Ja8U55NrFoG5RC1iKp9IyhJd5e0FecLrTvOrRtW8/8RcGhJ1Jax8rYWcC2CKMTbmzdsdHzB5GlFpiDCUqRhNjGDZB4qIKG8ULZDyRbcLpvJ3xnpw8OlXysTcr5jzOCc73QDMEmqCoPvF2yVZ9tWYONjp66RjaDCOfhNbhzi7laKWzsyxa3hEg01aaiwDJfD/NYhYIQSNHkIzc+WhDEMQimqrLbzUhCBIXZQjkR6cTEM6/zRxPyFpOgPVYRAhZqwiygmI+IsB6ELZ+DpbvTSfsTFq+rKqxMyn0SzuTD5hAgIGBGtnGRn8eO+YRzx5DjwfLRowYwdSpU9PStt9+e/7yl78AMHy48/r2devWMWLEiBTNunXrmDFjRoqmvj79oOJYLMamTZtS5XNFm9geKMa2K4hRjU0JUTEM8BNlBAI/caoRIoAgjCCEwEcykOZA54noFh7JK4V3YvmwA2FixRXYwTDR0hriRWVSeZXnmYlXS3bg1W12cImZOEfG1544b2yrEwhLPu4SbEoEwhL57jegeTlUqjyvNZcXH1VZ3SIzl3GucuS81n1Gx17QMQrh9VC0PiG3zzkHJjIE2mtZ2ToC2sMQj2V/u5405oTlo2ncTILNmyipX4pIvGBD+DrGa1vNOOJh7yBDrKScyIjhVBS/w9eX/YjoO2X4l28huHUToS31BLduJNywGhAEt26kdM2nBFobIdaGz3XOc+kfgBDYJWBXgSgGUZkIrpWAXeYE2QjgPP2jW6wm4NtCel+R762QvuvaSbX41cU3kjSqPqZaGPcD9Dc7ExGjsakDAbYoI8bQxP3yExGjnEAYo7FFEYIgyR1jjo1wPRamXfHK8FoJe9km1SSRq0MlHJvhb0vYkMT4DW12fmwJNjg7xSzhHJietD2+GGkvpqHjPNAMdcwc7E0r8x70OtqObxPYAuVLcB779zs7zSJDnL+2OogMTZxnJj9nrxIw2+Ta8auITVmiRPLRZQtblGn4qW5BEe1iW9qZ7NAkFl5+NlJs/Zcq318JiA0EUq9pltgiJctzvm4qkQNiuvLGzvQrO1Pw6M+BBwODgQLVOMolcKaiMWMSyEOwbK+99uKzzz5LS/v8888ZO3Ys4ByOOXz4cJ5//vmUMWlqauKNN97gnHPOAWDWrFk0NDTwzjvvMHPmTABeeOEFbNtm991375Q8q+PXQjxxwHhWz8zLq9Q5P2qvsGX4dqze67RUlmXHGfLpi0TLati0/QFEKuoQvgDC76fiyzc19ST5J7MSCw1fxFmw+BMLklRArMkJkPnaEguUuFM+F4dUNx7cDqvsFKHIU6kg1yd/ejnfOqgccZUORsf08n2ho2VDoMX5K14FVf9xFtWxCmivds4uaxua2BUQxnlsS73iipbX8vUhl+CLtLL9H85h7e7zaR6xPdHSarAswg2riZYMobV2Atkw/I2HCC1ZR+nN77Bp6kHYpTVES2toGTY5ndCO4Y+2Ed60ksmP/Jh4uBTbHyK0ZT3NQ6cQbNlMoKGRQH0zVjzmLOCAZMxdhEGEQFSAXZ4IolWDKIb4UCfIlvN9xnWdbSED6W2ca9u7eUNufaKX0d/szMr4zyE+xJXiHhBJ9LydybxWfc+ljKtD+GIdb1cOtDiBCF/ECYqFNzpBMV9yJ41F2ltkc7UzOpHNHGx0lOvL2c5A6g2uxWudPwHOC2dKO94CGxninDfbVue88TJDCN11b4xH5zNODVvFfjTH98bHVkqs9yj3PUuIFVhE8NGMs5tNIaJXVbLY7rne2JkM9Dc706fQHfpvFtMGBl1Hcvz0xLmBXjx6MoCWC+8CQ48Hyy666CL23HNPrr/+eo4//njefPNN7r77bu6++24ALMvi+9//Ptdddx2TJ09OvWp55MiRHHXUUYDzy80hhxzCmWeeyZ133kk0GuX888/nxBNPVL45xhvJ7RxeHnyuljkXj9TZ/bJ5233Yss1OHfxFHDsQonnkVOxAOI1H0/hdSXkVlu0sRPytTuAruVgJNSQek2xxPn3O2z07ymUR3Stf59h4+YM6/l7rQbkOL59S56N6weg4QHQU4I+AfwOENkD55zhvLyuCSDW0DXce4Wyrk4JnECuuAqCotYl4qJT2qlFsHf2NVAWRsqH/v70zD46jvPP+t2ckjeRDI8myLmI74jKXgcQErbMc2VgvtmEJbLybGFwL2XjtHPa74eWI8aYwOdeO2SKJ2cQkVYCpgg3JVgVnF1hvjA3rkCgGHAtjA45xDOawJLCsy7pnnvePnh49/czz9LRkaTQ98/1UqWbmOX/f7tZ8f31Md2LekDSpTqRAaHgAfTPmoOPsTxoXByCAUAFikWkYjFZDWCFACFgijljxNBxr/L8YnD4T4aF+FJw6icLeDhR1tSLS8T4iHcdR1N2GcH+PPVRX4s+JwgKGz6pEz9U1mI5DKMYRCIQRRwQhDMC+AkekLk8/vmTaefFaN6mLKH27SSL7fKYYqd7gvE6Mz6Ti5wtF2B5jDQPhAaCoPXH116DtJ5ETQNEJoKDP/mwNu+eiz1BjkDRaAJC4+qywO1F/FChvth+sNFBpP4ymrzrxJMySFM+Z2P9HU70tXqAIMVSgW3wa3bFPIYReWBhGgfUBSqwDiOBPCIlehK1OhNCTGooAYihDXNi36bCsQUTEmwijGzFEEUI3LEgHu93Tp4c+k2GfmSR0O8N5sINMSGAYj59cmv6n042dBw/PsIQYf2VPPfUU1q1bh8OHD6O+vh6333578ukxACCEwL333ouf/exn6OjowBVXXIGf/OQnOPfcc5Nt2tvbsWbNGvzXf/0XQqEQli5dis2bN2PatGm6KVPo6upCNBoF1jwJRKbBf5aYjDLxOpoERy3TnIq1YkAoNnIT/XCvfVCsqNM+KBbuS5QP6HdUvM7sWZpXU1he0kaT1402BzT1V89mUmN+a4RlXw0wWAEMzLSf9jpYAQyXACIMa3gIBX0diBdNQSwyTRnYj0iBgr5OWMNDGJpaDoQKPPrY8RT0nsQFW1ciFBuCCIURHujFB5dej3c+/VWdALtXfBiIy0/ZVbBCEOECzHh1O+b85n70zL4QR//26wiH2lGAD1FgnUAh3kMB2hG22lGAE4mrCgahvbJADUG30+Nn+9LtEFtAfAD48w+Bzs5OlJaWmnVlAPpMmp13S9h+U9Bj/yy6qD1xJXJ34gDZkO1D6gbC7ydqzCeNjt8kT9iUA72zgb66xL02Cw0dRyPSTx9o2ngh/98Ow/00d7lV4uk0AIA4Cq0WFOI4BkQ9Cq33UIRjCFkDKMS7KLLeQiGOI4we2AfRYt5h0Wcy6jPZsDwIIadJtlyVOZE/u8wWjR6M5nt1Qg6WZQMjOzHbgMgUjC4JAfzv9Chu75y1d64OK+y2nyop/0xSvueLev8WJWnwHaLfhFSXbOrG8xrHa67RJN/q/F7xpptX14cavccJlEYrcePmqH0/mr66xFUBpYmdGcAdsJ+B05W565yDZQPlZyAWmYriE2/jT393HwbLakc5Xur4zsGy7tmX4vDffh8jV8Y5xAHEEUI/QlY3wuhOHExrQwFOoBDHUWC1IYwuhNCNEPoTOzsj3y9CFGAYMxHCKW19ys6OWm4B8X7gzz/Kjp2YbGByfCbxaomE3wzZr87DWpyrk6cdSdynste+cgyYpP9dpV1Ofj95xOE1DjVmp0YBQBQAw9OArvOBnjPtK9FEunvZmoLxKvPbfrTjmfBaUcMIwb5SLYxOhNGNEHpQYh1EofVu4kSNQBgnAcQQwgAsDEI1D/thJoWwElfCJdGtU6ecPmOEB8sIIeOOerBsPA8H5djBsnH/GWZ2ki5j0mVmuqQESN5EP9xv3xusoNc+GFbYM/KUr4K+xD1fhuA6M6cmZV6hmsLVJY6mZE8nQ41Dl6R6YZrLtFh1UCM1jlqjsA8wF7cBkTag9PXEzszUxD1o6oCBKvtKgFgxRm7krNvZ0Ik07YSk/tOGhgfRcdYC9FadnTAEr/HSfecIVO5/BjMO/kbTRiYEIIQ4piVuIF+LAZybCMuJbRgWhhBCH8JWB8LoQCE+QKH1LsKiC0AMJ+IrAcQRtk4ihFMoRCsKrA9RID5EGCfRj/NQgHYUogUhqwcF4gOE0GsfXBOmR3USm/HwGanOiifuH5Z4kmRB78hJmKJ2oOR44v6VfXYf56eUownVFC6/n9zzquOpMVGjniBrtIbt+/PNaALK99onagYrEg8MqLB9JxbByAG08fQZP311c6r4/c5xygsRRxRxEXWuWwYg0C3+D+xcVsCCQAinAAiErS4U4njy55yF1nsACtAtrkZMlCaujH4fIfSiyHoPBaIVIasXQhQhjikosFrtK9lEN3QH3QghhEwwQmBcn5yZg0/hzJODZQ66rEtJUqzEDWJDg/YZ+XCffSCssCNxhVgfEJZ+JmlJ9xVSfV6XlDmv6vQqQvPeyb/Uvn7zKnVcuUwdxxSXbgxL854aU8ehxvHTCNj/f0Wd9v/l1LeQfOrmUKn9s82BKvvqs+Gpiadu6oI0YRYeKyxB6yf+DrCcnSSvHR2v7xybcH83wgOnDHF4rUB1jkIIFCKGKYiJCgBAHyzpgNrISnDq+yFg359H3RO2P9s3k+5FyDqFAnyIcPw4gB+miSffSbfOpQ3biiVOrAzYVyGXvJ94cEvnyA32w/0jbZPryTCdSjb+7+bD9xM1mscIosbwIBBKPOF5+iG7IlacOFkzI3GbgPLEAbRiTZAm0gk3fZeodX6+c9Sx09WrYxckW8YST/+MiXIMYs5IG2VZxkQlBjDXrkjWyfHHEMIpFCRuMVBovY+I+BMiaAbQaoiHEELIuJLFV4BNGNGo76Z5drBMIHkfF+eJkgWJ+7ck7xuW+JlkuA/Jn7ckD6SNDOP6DMNnzfSuXEfNT1wHAgxjq21MeVa63Eidw097XVwq1EiNk6ERgOupm8UtibaFIzdydh4cMFSauImzGpgpgHQLy6udbhz3Xl3rJz6HU2dciHN/cZfH2OpYXph2gtSfdqqxqXubAgIliKEEMTEDQ5gNiFPgwbJ0KOvJ+Wm+FU/8HL/DfrJkUfuI5zg/3YdI7zN+pw/K/24+fD9Ro57AahT2idOCPiDyYeIAWsi+p2bfR+yrz5wr0JL3PPPrM6bv79PzGW+x4+UzfheyU1aAOEoxKKIYRH1yh82KfQjgZh8xEEIIySrG+0q1iaKz0/cBs9w/WDblfWDaUOKAWPfIPVzC/YmfrWgOhulQD7p6JWPC0EaXyMlt/WxbfpJRv7mOOo5XTqOOTY3U6CcWr89yHKPBj0bnc2gocWDiJDD9MICwvUMzVAb01dgH0AbLgeEpsH9OY9ppEJj23gH7xv6Dp1DY24GhqTM0YtSATCJH6i0Rx7R3XkEsMgXhgVMo6OvA8JQKg3BdbOpnrx0tFdPOjamP+kVIAAAzXgQKy21/kW+0HR5MnIDpTfyk0nlwC/wt3nz835XHpkZq9BOL12c5jtHgV2OyPHEwvPRQ4uBZGBiM2vfYHJiZ8JooEJdvE2AKzu93sH+f8T/+ZPqMlagpMYxDCCGEZJbcP1hW+wxQUqD3dRXTCT3TCTk1sfMaXz7BB3gnYKbE0iteP+jmoUZqNMWTixpFLHF/wR6g5F27Ml4EDE23f7bZV5t4cMB0u1waoLP+cvTevBnW8CBiRVN8CNTtCaYKFaEw2uYvRfsFjbCGhxAvLPFob5rTa4GZ+kJpo65Mr/mIi/JXgOJC+oxpHmqkRlM8uarRitlXj0baAZE4URMrtj2m+xz7CufhafZ9z4xHFf0I9Oczdp260OkzhBCSl0zkTy9z7GeduX+wzNKsMD/+rkuSjHMor7oTbaYxvBJFL/zUUyM1qlCjMoaw7z8YHrB/TlP6GiAKgNgU+6BZXzUwUA0MRiGsEgyWVqUZeGzBxAtLMFgon01XF5qfHZR0C0m306Prb5qLOzCjgv+71KiDGr3HyEWNFgDE7CvPpr1pP6lWhIDY1MQVztXSPc9K7LoJ8Jn00GcIIYQQmdw/WAakeq/sz6Z6NU9QT9zp9mXTjW/67CcmtU6NgRqpUR6fGtOPb5xv2P45XWEXMPXPsB8cELF3ZAaq7ANogxXA8HTpwQGWx4BqsOnqdO91e47pdirS7f2Z5tX1MS1okiRbt+t8+N+lxlSoMVWD13gZ9RkBWLERn5n+J7tBLGLfImCwLHF7gKm25wxPSVzprBNkCjZdHX2GEEIISUfuHywT0Cc8Jv/3St7kcjWhcsoEUhMo3ZiW8tmUhKVL+HRzUSM1yuXUmDqvOqanxrj9wI+SPvtphWWA/eCA6SMPDhiotHdwXA8O8ApSntjUXtdH7ad+No1pQl4BXnusoxkzD6HPpEKN1EiNo9AoEg+XagFKWiQ9hfZ9NvtrgVNz7J9yDlQBsSIlIPoMIYQQMt7k/sEy2ZvlBMarvS5R8pOIqW3VXMQr91DrdTtecnm6ebygRmpU21Lj6DRiKPE0w/bEVQEh++czg+X2PWn6ZwKDMwwPDlAD94NpIctfcLJIdQHodnJ0fdQVZupDXNBnUqFGalTbUuPoNVpDQOFQ4gq0Q3bFUBlwarZ9oqa3LvHQANUL1MD9QJ8hhBBCZHL/YJmD7M8OOl/Webea3KjtgFTfl9uY/F83tilf8BpDjZcaqVHuQ43uNhOiMQ6ETwFTTikPDigF+qvse9IMVNqfkz+nMQVi2tEwCdftIJn2vkx91Dn87GGSFHJuu9aUU2NqXHIfanTHpxuLGseuUYiRJzyL/fYJmaEy+6mbgxX2X6wk8dPNQo9A6DOEEEJIOvLnYJnqyekSKrmPLkdQ8TopptaZ3psSKF3yZUroqJEa1ZjT6fCqo8bUuX1pFPZDA0IfAJEPgOhBQITte9AMViYOoFUldmyK4b6hs9dOiVrmtYelWzCmhaKbxxQPMZLz2zWokRqp0aTDq24iNFoCKDxlPzig5L1Eo9CI1/Scaf90c7Dc9hnXgPQZQgghJB35c7AMMHtxOo9WT5ZB895rDDXZSVeunnTzylNOt1ydUxeLnzGoUT8uNVJj8n0MKOqy/6b+2a6MFdtXBchXnw1Pkx4coAYxWtQdEXXhpduD87tQSZJ82679lKtz6mLxMwY16selRmpMEgesOFDUAZT/EShvtg+c9dUm7nc2c+QqZxGGfaJGDWK00GcIIYTkJvl1sMzLv50ywJ2syD6err9uHBVdImRqb5pPdwY1XR/dXNRIjdQ4ORqtREG4z/4rPp5oIz84IHEAbag0cU8aNXDTRGqblIlHEbRub5F4ks/btW4uaqRGapxEn4kDBd3A9O6R/qLAPoA2PNU+eNY7y/4ZZ7xQeeomfYYQQkh+k/sHy1Tv9UpoTKh+Lo/llSekayePL5TPphjkMXXjy3XUqB+fGqkx2zQ6c4aGgEi7/Sc/OGBghr1T01dt/3RzeCrcDw7wuzcnt1d3ZOQ9RbXPaFZQHkKf8Qc1pr6nRmo0xTZRGkPDQFGn/VfyPlC2336Sc7zIfjjNUCnQd4Z90iYWkbyGPkMIISS/yP2DZZbmvVBenTo/Pq2ehdSdCNMlLXKeoGtjyhvUhAuacmp011Gjfh5qTI07mzVagOvBAVOOAeVW4sEBUfsAWn/NyM6N9mbOqlDTRH73AIkWbtfuOmrUz0ONqXFTo7vtpPiMAEL99t/0Lrt/eXPiQQGJn3D21QID1YknPIc0QdJnCCGE5B65f7BMRfZ0U1KSrq/6Ph26fEKXJOnmMiVEunHUvtSohxrNUGOWaxT2gwPCbUCkDSh9HfbNnKfZN3Hur9E8OMAJVp1MDsZLABk13K69oUYz1EiNWaFRAAW99l/kg8TVZ8X2SZqhUmCwLPGwmkr7qrTkQ2roM4QQQnKH/DhYJnu36tU6HwdSPV+XwOgSjHQJkK5endf5rMaii1lAHys1UiM15rZGpwyxkZ/UTH0L9k83I/bVZ/1V9gG0gZn2FQHxwnSDaRYIDMKIC27X1EiN1JjLGsP9wJT3ALyXGMOyrz4bmm77TO9s+2Ca6wnP9BlCCCHBJT8Olsme7JVs6DxdTRrk8Uz+P9odXl2drl5FTYzUcmrUx0ON7j5yOTXq6wKlMQ4U9Nl/xS0A9sN+cMA0+0qAvhr7XjSD5YkrAmSBXgtDDYC44Hat76OLhxrdfeRyatTXUWNqvJOtEWLk6rPiVvvqs1hx4p5ndfYDagZn2AfTUq5yps8QQgjJfvLjYJkO1fidMl07QO/tanLiNY6prTq2qU5NgvzkEtSYWkaN1OjVVh07VzSGhoDISftv2mEAIftKs6Ey+6EBA1X2AbThKXA/OICcFtyuU8uokRq92qpjU2MwNAKAJaQTNa12WbzIPjEzFLVvFzAw0z5hEyvByNVnhBBCSHaSfwfLdMavJhZOmVe93F9NaNQ2XkmROp/66pXQmKDG1DlN9XJ/aqRGdb5c1GgBEHGgoAco7AFK3rUL40X2FQADVYmfb1YDw9OBWJEyMElLtq1zdb5c3K7V+ajRH9SYOqepXu5PjT58BkBoEChptQ+eWQCElfjpZtQ+QXNqtv3wgHiRj8AIIYSQzJJ/B8t0eCUjpkTBzxk3tc7rDKE6h65e995vMkWN1OhnDGocaZNPGpMPDhgAIh8Cpa8BogCITQEGKuwDZ/21QKwQZIxk2zrXjZdr27VuPGpMDzVSo58xxqRRSD/dPA5ED9gPC+idnfjpZhUwGPOYlBBCCMkc+XGwzHT2Tq133kP6rL6qZ/50qGOp5aax1KRCTWZ0sZuSFWrUx0ONei3USI0pcQ8DhV1AQdfIgwNO+dlDy1NyYZ3L9bm6Xcv11EiNclzUmFmNzofISaDo5Mg9z3ryY9eEEEJI9hNK3ySH0CUTQKrBO+9l1ERDrfeDUF695pJjUZMOdTwZaqRGavQHNbrbeWm0AFhxINQ/hiDyjFxZ5+p4MtRIjdToD2p0t/P0GWHf76yofQxBEEIIIeNP7p++cYxZNnHV0KHUOa9q8pEuiTDNpc7jNZY6n9pXaNpSY+r41OgNNZpjVWNQxzP1yyeNxE0+rHNqTB2fGr2hRnOsagzqeKZ++aSREEIImWTG/cqyWCyGe+65B/X19SgpKcFZZ52F73znOxBixAmFEFi/fj1qa2tRUlKCxsZGHD582DVOe3s7li9fjtLSUpSVlWHFihXo6ekZfUA607UM5TqTl5MDuZ/JzNUxLM1706tpHIHUJMgrMZLjTRefXEaN5jGo0TwWNeafxkmGPuMxP7dr8zjUSI3p4pPLqNE8Bn0GQIZ9hhBCSMYZ94Nl3//+97Flyxb827/9G15//XV8//vfx6ZNm/DAAw8k22zatAmbN2/Ggw8+iD179mDq1KlYtGgR+vtHfuKzfPlyHDx4EDt27MBTTz2F3bt3Y9WqVWMLyjmLZUmf07WREwivREPGQmrioesjv1qaenks+bPaR46NGvVtqJEaqXF8NWYB9Blkdp3nw3ZNjanzU6M+XhlqpM9k0mcIIYRkFEvIp0jGgb/+679GdXU1HnrooWTZ0qVLUVJSgsceewxCCNTV1eGOO+7AnXfeCQDo7OxEdXU1tm7dimXLluH111/HBRdcgJdeegmXXXYZAGD79u249tpr8e6776Kuri5tHF1dXYhGo8APrwOKC/WGLGMq19U773UJgZyApGujtvUz92jiG+041JhaDh9tqNF/bKb4RjsONaaWw0eb09XYNwTc9jQ6OztRWlrqMcDEQp8Bt2tqTD/3aOIb7TjUmFoOH22oMX1s9BkXjs9M9vIghJBcYTTfq+N+ZdknP/lJ7Ny5E3/6058AAK+88gpeeOEFLFmyBABw9OhRtLS0oLGxMdknGo2ioaEBTU1NAICmpiaUlZUljQUAGhsbEQqFsGfPHu28AwMD6Orqcv2NCtncoXlvKW3lPrq2agKgJg7qeOoYQnpvSjaEodwENVIjNbrHo8aRthOhcYKgzyB71zk1UiM1usejxpG29JmJ9xlCCCHjxrjf4P/uu+9GV1cXzjvvPITDYcRiMXzve9/D8uXLAQAtLS0AgOrqale/6urqZF1LSwuqqqrcgRYUoKKiItlGZcOGDfjWt77lL0gvk9bVe7WV651XoSkzjeEnwTDFmK6eGqlRhRq9x6BG7xizBPoMsmOdUyM16qBG7zGo0TvGLCEQPkMIIWRCGfcry375y1/i8ccfx7//+7/jj3/8Ix599FH867/+Kx599NHxnsrFunXr0NnZmfx75513RipVM5eNX2fMOkMXmlfdGTM5mTC10fVRy3QJiNzWpEn9TI2p46uv1EiNah+1jBrT71hlEPqMx/jcrt1l1EiN8mdqTB1ffc0mjZNIVvoMIYSQjDLuV5bddddduPvuu7Fs2TIAwLx58/D2229jw4YNuPXWW1FTUwMAaG1tRW1tbbJfa2srLr30UgBATU0N2traXOMODw+jvb092V8lEokgEomkVsgGrb7qUA1bTSx0Z8vkPmqCYEE/pgXvxCZdcqQmOPJc1EiNcjk1ps6rjkmN/jVmAfQZcLt22lMjNcr11KgnaBqzgKzzGUIIIRln3K8s6+3tRSjkHjYcDiMejwMA6uvrUVNTg507dybru7q6sGfPHixYsAAAsGDBAnR0dGDv3r3JNrt27UI8HkdDQ8PoApKNWzZ3r/ZeZQLuBEBNTrzem5IGua0pXvVVHZsa3VAjNermlt9To3e8XhonGfqMx3tu197xUiM1qlBjdmqcZLLOZwghhGSccb+y7Prrr8f3vvc9zJ49GxdeeCH27duH+++/H1/84hcBAJZl4bbbbsN3v/tdnHPOOaivr8c999yDuro63HjjjQCA888/H4sXL8bKlSvx4IMPYmhoCGvWrMGyZct8PTlGi3rGC9CbslDeW3AnDZamHeCdMJjMXze2mqB4xaqWU2NqXHIfanTHpxuLGqnRK9YsgT6jGYvbNTV6xaqWU2NqXHIfanTHpxuLPjM5PkMIISRjjPvBsgceeAD33HMPvvrVr6KtrQ11dXX40pe+hPXr1yfbfP3rX8epU6ewatUqdHR04IorrsD27dtRXFycbPP4449jzZo1WLhwIUKhEJYuXYrNmzePPTDV8NMlG3IftVx3Bs+UCOjqTO9NyYUuMTElO9RIjWrM6XR41VFj6tz5rjELoM/4qON2nTo3NVKj2p4a3e3T6fCqo89kxmcIIYRkDEsIobPHwNPV1YVoNAr88DqgpHDsA6lmrltafo1d7asmCE6ZnCykSxzGI7GgRned37F0/ajRe0xq9B9XNmrsGwJuexqdnZ0oLS31GUTuQp8ZBdTorvM7lq4fNXqPSY3+48pGjfQZF47PcHkQQsj4MJrv1XG/Z1lWIwzv5TKh1HudpdOdsVPHUbGUV9Nc8nxqvEJTr9ap73WxUeNIHTWmQo2p41AjSUcurvN82K6p0Ts2ahypo8ZU6DOEEEJykNw/WCZgNnjVpGVDt+A2erW/KVmRkw5TcqIbzxSHKR75lRrNY1MjNVLj+GskbvJhnVOjeWxqpEZqpM8QQgjJOcb9nmVZh2PuMo5py4mGLhFREwzAO8lQy+X+8pzqHLpExtK0N42jSyyo0d0GmnJVC5R21EiN1Ogeh+ihz1AjNVKjOjc1pvanzxBCCAkQuX+wTEU1dtXg/fRV36dD7WNKEnRzmZIa3ThqX2rUQ41mqJEa02kk6cm1dZ4P2zU1UqMOajRDnyGEEJLj5P7PMAG38VrSq2rIFlJNXK13xlMTAih16vhyH7VOHlcoZfCok8ehRncdNabGq45Pjfq5qdFc53cnKh/J5XWeD9s1NVKjDmp019FnCCGE5BH5cWWZKRHwMuTR1ukSASdx0CUpuph0SUS6OrWeGvUx+K2jRmqkRnMdMZOr6zwftmtqNMc61jpqpEb6DCGEkICT+1eWCenPUsp17+XP8qv8p0OXNADuxEEXm5N06Op18Zq0UCM1qmNQozlOajw9jcRNPqxzatTPT416qJEa6TOEEEICTu5fWSYbvWzEjpHL73Wvar2D3FcdW0UeUxeXn366GOSx1D5y3KoGanSPJY9PjdRIjek1Ejf0mVQN1OgeSx6fGqmRGukzhBBCsp7cP1imYjJnr+RBV65LJNT3urFN8fj57Cd5keupkRpN81EjNfr57FcjcZMP65waqZEaqVF+1cXj5zN9hhBCSJaSnz/D1Jm2/GpJfWRUE5eTE7le/qyWyWN6JS5yfzkWXdJCjfr5qTE1RmrUz6GLQ55b7k+NRCUf1jk16uenxtQYqVE/hy4OeW65PzUSQgghk07uHyyz4DZ2r6RAZ+5yO/W93E+ul+dTx1LbqmOrqMmKGrc8HzVSoxoHNVLjRGgkbvJhnVMjNVIjNdJnCCGE5BG5f7AMSDVs2dR1yYQpuTAZv+mMmJA+qwmHKSHwau/VlxqpUddHFxc1UqMu1tFqJG7yYZ1TIzXq+ujiokZq1MVKnyGEEBIg8uNgmc581QRBNn9dQiKbuFyvS0RMiYcuJlMCoc6lJhW6Pro5qDG1jhqpUTe/HCc1ptdI3OTDOqfGkfbUSI0ANerml+OkzxBCCAkw+XGwTDVtOXkARgzc0rSV2+gMXJdoyK+6ZEYdV00gTHGa5pXjpUZqpMaRNuorNY6fRuImH9Y5NVKj3IYaqdEEfYYQQkgOkPtPw3SMVzVgp0yXWMj1UOrVcdWxdQmApfTRJQNqHLr5dDjl1Oguo0b32NSY2o8aU9v70UhSoc9QIzVSo64fNaa2p88QQggJCLl/ZZlXguCUy4mEztjVcnk8XaKiji2/95tMeJWrUCM1UiM1ymPL7ydCI3GTD+ucGqmRGqlRHlt+T58hhBCSg+T+wTIZS3mVEUqd/FmXcKiJgVpuKWVefSylj3rWUI1THkfVQo3uOmqkRmrUzzlWjcSbXFzn+bBdU2NqX7mOGqmRPkMIISTPyK+DZarBy6bs16Adk7c0n+Xx1SRCl0zoEgY5FrWPmnjooEZ/UOPI+NRIjaejkbjJh3VOjf6gxpHxqZEa6TOEEEICRu7fswxwG7NQyv30dVCTBrVcnUNNDNT5dOXqZ68Y5Xmo0Rtq9J6DGqnRT4zckTGT6+s8H7ZrakwPNXrPQY30GUIIITlD7h8skxMAXVIBqdzUV3eWTlfnzKGWmUiXiOji0SUp1Jh+TLWeGqlRhRr18agaSSq5vs7zYbumxtS4dWOq9dRIjSr0GUIIITlCfvwMUzVeS3p1TF1GaNrqxjSNayqzlD+nzJScqDHpEhv1VVdPjdRIjall1Dg2jURPLq/zfNiuqZEaveKW++rGNZVRI32GEEJIYMn9K8scw3YMWJcsqG3UegevcbwM3mtuv33UZENNLqiRGmWo0X+8urHT9cl3jcRNPqxzatS3McVBjf7j1Y2drg815r5GQgghZJLJjyvLZCzl1auNjC5RMY0h4E4e5KTA+VPPro0mlnT9qdFcR42pbamRGtPFMpr+JD/WOTWa66gxtS01UmO6WOgzhBBCsozcv7LMwcuAdebvoBq6egbOUl6h1OvmMiUVuva6+b3iMUGN3mNSo34uakw/v1c8JoKskZjJ1XWeD9s1Ner7USM10mcIIYTkKbl/ZZkuQXDMXE0A1Da6sdQzcM6rWqe2UT/LiYU6tjq/ro86ty5+aqRGdW5q1H+mRv8aSSq5vs7zYbumRmqkRnc/+gwhhJA8Z9QHy3bv3o3rr78edXV1sCwL27Ztc9ULIbB+/XrU1taipKQEjY2NOHz4sKtNe3s7li9fjtLSUpSVlWHFihXo6elxtdm/fz+uvPJKFBcXY9asWdi0adPo1QFukwbcCUY6U5YTElNb9cydKeEwxaWejVPb6hIf05zUqIcaveeT+1AjNabTmAHoMwqTvc7zYbumRmp06qlx8jVmgMD5DCGEkIwz6oNlp06dwiWXXIIf//jH2vpNmzZh8+bNePDBB7Fnzx5MnToVixYtQn9/f7LN8uXLcfDgQezYsQNPPfUUdu/ejVWrViXru7q6cM0112DOnDnYu3cv7rvvPnzzm9/Ez372szFIhD6pkI3b+SyQatq6BEFIf15Jg4rQ/OnilOeWkw01Vt381EiNan9q1EONY9OYAegzyK51ng/bNTW656bG1P7UqIc+kzmfIYQQklEsIcSYbcmyLDz55JO48cYbAQBCCNTV1eGOO+7AnXfeCQDo7OxEdXU1tm7dimXLluH111/HBRdcgJdeegmXXXYZAGD79u249tpr8e6776Kurg5btmzBN77xDbS0tKCoqAgAcPfdd2Pbtm144403fMXW1dWFaDQK/PA6oLhQb/i6pEGuMyUJpoTE73vT+PKaMNXpytVkyE8/UwymOmpM30eNRxcTNVKjrp8pBlPdZGnsGwJuexqdnZ0oLS01BDu+0Gc0n7lde49PjeZyatT3M8VgqqPG9H3UeHQx0WfS4vhMJpcHIYTkMqP5Xh3Xe5YdPXoULS0taGxsTJZFo1E0NDSgqakJANDU1ISysrKksQBAY2MjQqEQ9uzZk2xz1VVXJY0FABYtWoRDhw7h5MmT2rkHBgbQ1dXl+ksim7qMBXPSYCo31QmkJglOMqPro4vJgjsmXR2UOkt5pUZ9DH7rqJEa1XioMbVuEqHPgNu1bgxqNMdKjeZ+uhj81lEjfSbTPkMIISSjjOvBspaWFgBAdXW1q7y6ujpZ19LSgqqqKld9QUEBKioqXG10Y8hzqGzYsAHRaDT5N2vWLLtCQG/2wvBe/iy/yn86TMmJKZlxypykQ1evi9ekhRqpUR2DGs1xUuPpaZxE6DOGct0cThm3a31M1JjaRzc/NeqhRvpMJn2GEEJIxsmZp2GuW7cOnZ2dyb933nnHrpDPaMmmLRu5XCd/Vs/eqWfGvJISKHXyfE5b3bhqP11MujN51EiNplioMTVWajw9jXkKfQbUSI3UqMajgxrpM2PE6DOEEEIyTsF4DlZTUwMAaG1tRW1tbbK8tbUVl156abJNW1ubq9/w8DDa29uT/WtqatDa2upq43x22qhEIhFEIpH0QeoSBsBt7mqdrlxOLEzvdWOb4vHzWTePDmqkRmqkRvlVF4+fz341ZhD6DLJjnVMjNVIjNcqvunj8fKbPuPDtM4QQQiaccb2yrL6+HjU1Ndi5c2eyrKurC3v27MGCBQsAAAsWLEBHRwf27t2bbLNr1y7E43E0NDQk2+zevRtDQ0PJNjt27MDcuXNRXl4+uqCE9GcyZKG8WlIfGdXE5eRErpc/q2XymF6Ji9xfjkWXtFCjfn5qTI2RGvVz6OKQ55b7U+OkQp/RjMPtmhqpkRpzTeMkkpU+QwghJOOM+mBZT08Pmpub0dzcDMC+CWZzczOOHTsGy7Jw22234bvf/S7+8z//E6+++ipuueUW1NXVJZ8wc/7552Px4sVYuXIlXnzxRfzud7/DmjVrsGzZMtTV1QEAbr75ZhQVFWHFihU4ePAgfvGLX+BHP/oRbr/99tErtOA2dq+kQGfucjv1vdxPrpfnU8dS26pjq6jJihq3PB81UqMaBzVS40RonGDoM8i+dU6N1EiN1EifmTyfIYQQknFG/TPMl19+GX/1V3+V/Ox84d96663YunUrvv71r+PUqVNYtWoVOjo6cMUVV2D79u0oLi5O9nn88cexZs0aLFy4EKFQCEuXLsXmzZuT9dFoFL/5zW+wevVqzJ8/H5WVlVi/fj1WrVo1NpWq+cqJgC6ZMCUXJhNXz4jJ73V9042ljpMuXl3M1EiN1EiNE6lxAqHPpBmf27W/sdRxqFEfMzVSY7ZqnEAC6TOEEEIyiiWEEOmbBY+uri5Eo1Hgh9cBJYX6Ro4xy0vAy+RNJi6Po74C/hKIdO2gqfOTWFBjahzUSI3UmL4dNHW9Q8D/exqdnZ0oLS01dMof6DOa2OR5THFQIzVSY/p20NTlg0b6jAvHZ7g8CCFkfBjN92rOPA3TE6F5VY3c+VPbym3UMqedJbVRX9MlNZbSTo1BN6c6rxwvNVIjNY60UV+pcfw0Ejf5sM6pkRrlNtRIjSboM4QQQnKAcX0aZlbiGK9qwE6ZLrGQ66HUq+OqY+sSAEvpo0sG1Dh08+lwyqnRXUaN7rGpMbUfNaa296ORpEKfoUZqpEZdP2pMbU+fIYQQEhBy/8oyrwTBKZcTCZ2xq+XyeLpERR1bfu83mfAqV6FGaqRGapTHlt9PhEbiJh/WOTVSIzVSozy2/J4+QwghJAfJ/YNlMpbyKiOUOvmzLuFQEwO13FLKvPpYSh/1rKEapzyOqoUa3XXUSI3UqJ9zrBqJN7m4zvNhu6bG1L5yHTVSI32GEEJInpFfB8tUg5dN2a9BOyZvaT7L46tJhC6Z0CUMcixqHzXx0EGN/qDGkfGpkRpPRyNxkw/rnBr9QY0j41MjNdJnCCGEBIzcv2cZ4DZmoZT76eugJg1quTqHmhio8+nK1c9eMcrzUKM31Og9BzVSo58YuSNjJtfXeT5s19SYHmr0noMa6TOEEEJyhtw/WCYnALqkAlK5qa/uLJ2uzplDLTORLhHRxaNLUqgx/ZhqPTVSowo16uNRNZJUcn2d58N2TY2pcevGVOupkRpV6DOEEEJyhJw9WCZEwp37h1KNO6Ux9InBaEx7NOP7qTfF5NWfGqnRD9RIjWPV2D9kVznfr3kOfcbneNSYPk4/daZ6atS3pcZgaqTPuHCWQ1dX1yRHQgghuYHzferHZ3L2YNmJEyfsN+t+M7mBEEJIjtHd3Y1oNDrZYUw69BlCCJkY6DM23d3dAIBZs2ZNciSEEJJb+PGZnD1YVlFRAQA4duxYIMy2q6sLs2bNwjvvvIPS0tLJDscXQYs5aPECjDkTBC1eYPJiFkKgu7sbdXV1GZszmwmazwDB296DFi8QvJiDFi8QvJiDFi9An8kW6urq8Nprr+GCCy4IzPbD7X3iCVq8QPBiDlq8QPBiDoLP5OzBslDIftBnNBoNxMbiUFpaGqh4geDFHLR4AcacCYIWLzA5MQfloFAmCKrPAMHb3oMWLxC8mIMWLxC8mIMWL0CfmWxCoRDOOOMMAMHbfoIWLxC8mIMWLxC8mIMWLxC8mLPZZ0ITHAchhBBCCCGEEEIIIYGBB8sIIYQQQgghhBBCCEmQswfLIpEI7r33XkQikckOxRdBixcIXsxBixdgzJkgaPECwYw5FwnieghazEGLFwhezEGLFwhezEGLFwhmzLlK0NZF0OIFghdz0OIFghdz0OIFghdzEOK1BJ/NTAghhBBCCCGEEEIIgBy+sowQQgghhBBCCCGEkNHCg2WEEEIIIYQQQgghhCTgwTJCCCGEEEIIIYQQQhLwYBkhhBBCCCGEEEIIIQl4sIwQQgghhBBCCCGEkAQ5ebDsxz/+MT760Y+iuLgYDQ0NePHFFycljg0bNuATn/gEpk+fjqqqKtx44404dOiQq82nPvUpWJbl+vvyl7/sanPs2DFcd911mDJlCqqqqnDXXXdheHh4QmL+5je/mRLPeeedl6zv7+/H6tWrMWPGDEybNg1Lly5Fa2vrpMX70Y9+NCVey7KwevVqANmxfHfv3o3rr78edXV1sCwL27Ztc9ULIbB+/XrU1taipKQEjY2NOHz4sKtNe3s7li9fjtLSUpSVlWHFihXo6elxtdm/fz+uvPJKFBcXY9asWdi0adOExDw0NIS1a9di3rx5mDp1Kurq6nDLLbfg/fffd42hWzcbN26ckJjTLeMvfOELKbEsXrzY1SabljEA7XZtWRbuu+++ZJtMLmOSCr1mbATNZ4Ds9xr6DH1mLDHTZ7If+szYCZrXZLvPAMHzmqD5TLqYgezzmpz3GZFjPPHEE6KoqEg8/PDD4uDBg2LlypWirKxMtLa2ZjyWRYsWiUceeUQcOHBANDc3i2uvvVbMnj1b9PT0JNtcffXVYuXKleL48ePJv87OzmT98PCwuOiii0RjY6PYt2+feOaZZ0RlZaVYt27dhMR87733igsvvNAVzwcffJCs//KXvyxmzZoldu7cKV5++WXxF3/xF+KTn/zkpMXb1tbminXHjh0CgHjuueeEENmxfJ955hnxjW98Q/zqV78SAMSTTz7pqt+4caOIRqNi27Zt4pVXXhGf+cxnRH19vejr60u2Wbx4sbjkkkvEH/7wB/Hb3/5WnH322eKmm25K1nd2dorq6mqxfPlyceDAAfHzn/9clJSUiJ/+9KfjHnNHR4dobGwUv/jFL8Qbb7whmpqaxOWXXy7mz5/vGmPOnDni29/+tmvZy9v+eMacbhnfeuutYvHixa5Y2tvbXW2yaRkLIVyxHj9+XDz88MPCsixx5MiRZJtMLmPihl4zdoLmM0Jkv9fQZ+gzY4mZPpPd0GdOj6B5Tbb7jBDB85qg+Uy6mIXIPq/JdZ/JuYNll19+uVi9enXycywWE3V1dWLDhg2TGJVNW1ubACD+93//N1l29dVXi6997WvGPs8884wIhUKipaUlWbZlyxZRWloqBgYGxj3Ge++9V1xyySXauo6ODlFYWCj+4z/+I1n2+uuvCwCiqalpUuJV+drXvibOOussEY/HhRDZt3zVL5F4PC5qamrEfffdlyzr6OgQkUhE/PznPxdCCPHaa68JAOKll15Ktvnv//5vYVmWeO+994QQQvzkJz8R5eXlrpjXrl0r5s6dO+4x63jxxRcFAPH2228ny+bMmSN+8IMfGPtMVMwmY7nhhhuMfYKwjG+44Qbx6U9/2lU2WcuY0GtOh6D7jBDZ7TX0mRHoM94xq9Bnsgv6zOkRdK/JZp8RInheEzSfESJ4XpOLPpNTP8McHBzE3r170djYmCwLhUJobGxEU1PTJEZm09nZCQCoqKhwlT/++OOorKzERRddhHXr1qG3tzdZ19TUhHnz5qG6ujpZtmjRInR1deHgwYMTEufhw4dRV1eHM888E8uXL8exY8cAAHv37sXQ0JBr+Z533nmYPXt2cvlORrwOg4ODeOyxx/DFL34RlmUly7Nt+cocPXoULS0trmUajUbR0NDgWqZlZWW47LLLkm0aGxsRCoWwZ8+eZJurrroKRUVFLh2HDh3CyZMnJ1xHZ2cnLMtCWVmZq3zjxo2YMWMGPvaxj+G+++5zXQqe6Ziff/55VFVVYe7cufjKV76CEydOuGLJ5mXc2tqKp59+GitWrEipy6ZlnC/Qa06foPoMEDyvoc/QZ/xAn8ku6DPjQ1C9Jmg+A+SG1wTBZ4Dgek0QfaZgQkfPMB9++CFisZjrSwIAqqur8cYbb0xSVDbxeBy33XYb/vIv/xIXXXRRsvzmm2/GnDlzUFdXh/3792Pt2rU4dOgQfvWrXwEAWlpatHqcuvGmoaEBW7duxdy5c3H8+HF861vfwpVXXokDBw6gpaUFRUVFKV8g1dXVyVgyHa/Mtm3b0NHRgS984QvJsmxbvirOHLoY5GVaVVXlqi8oKEBFRYWrTX19fcoYTl15efmExA/Y93xYu3YtbrrpJpSWlibL/+mf/gkf//jHUVFRgd///vdYt24djh8/jvvvvz/jMS9evBif/exnUV9fjyNHjuCf//mfsWTJEjQ1NSEcDmf9Mn700Ucxffp0fPazn3WVZ9MyzifoNadHkH0GCJ7X0GfoM36gz2QX9JnTJ8heEzSfkecIqtcEwWeAYHtNEH0mpw6WZTOrV6/GgQMH8MILL7jKV61alXw/b9481NbWYuHChThy5AjOOuusTIeJJUuWJN9ffPHFaGhowJw5c/DLX/4SJSUlGY9nNDz00ENYsmQJ6urqkmXZtnxzjaGhIXzuc5+DEAJbtmxx1d1+++3J9xdffDGKiorwpS99CRs2bEAkEslonMuWLUu+nzdvHi6++GKcddZZeP7557Fw4cKMxjIWHn74YSxfvhzFxcWu8mxaxiQ7CILXBNlnAHpNpqHPZAb6DPFLEHwGCLbX0GcyS1B8Bgi21wTRZ3LqZ5iVlZUIh8MpTzJpbW1FTU3NJEUFrFmzBk899RSee+45fOQjH/Fs29DQAAB48803AQA1NTVaPU7dRFNWVoZzzz0Xb775JmpqajA4OIiOjo6UeJxYJivet99+G88++yz+8R//0bNdti1fZw6vbbampgZtbW2u+uHhYbS3t0/qcneM5e2338aOHTtcZ2F0NDQ0YHh4GG+99dakxexw5plnorKy0rUdZOMyBoDf/va3OHToUNptG8iuZZzL0GvGl6D4DBBMr6HP0GfSQZ/JPugz409QvCaIPiPPETSvCbLPAMHxmqD6TE4dLCsqKsL8+fOxc+fOZFk8HsfOnTuxYMGCjMcjhMCaNWvw5JNPYteuXSmXD+pobm4GANTW1gIAFixYgFdffdW10Tv/yBdccMGExC3T09ODI0eOoLa2FvPnz0dhYaFr+R46dAjHjh1LLt/JiveRRx5BVVUVrrvuOs922bZ86+vrUVNT41qmXV1d2LNnj2uZdnR0YO/evck2u3btQjweTxrlggULsHv3bgwNDbl0zJ07d0IuTXWM5fDhw3j22WcxY8aMtH2am5sRCoWSlwZnOmaZd999FydOnHBtB9m2jB0eeughzJ8/H5dccknattm0jHMZes34EhSfAYLpNfQZ+kw66DPZB31m/AmK1wTRZ4Bgek3QfQYIjtcE1mcm/BECGeaJJ54QkUhEbN26Vbz22mti1apVoqyszPVkkEzxla98RUSjUfH888+7HoXa29srhBDizTffFN/+9rfFyy+/LI4ePSp+/etfizPPPFNcddVVyTGcxwBfc801orm5WWzfvl3MnDlzwh5bfMcdd4jnn39eHD16VPzud78TjY2NorKyUrS1tQkh7Mcsz549W+zatUu8/PLLYsGCBWLBggWTFq8Q9tOBZs+eLdauXesqz5bl293dLfbt2yf27dsnAIj7779f7Nu3L/mklY0bN4qysjLx61//Wuzfv1/ccMMN2scsf+xjHxN79uwRL7zwgjjnnHNcjwDu6OgQ1dXV4u///u/FgQMHxBNPPCGmTJky5kfqesU8ODgoPvOZz4iPfOQjorm52bVtO08p+f3vfy9+8IMfiObmZnHkyBHx2GOPiZkzZ4pbbrllQmL2ire7u1vceeedoqmpSRw9elQ8++yz4uMf/7g455xzRH9/f1YuY4fOzk4xZcoUsWXLlpT+mV7GxA29ZuwE0WeEyG6voc/QZ0YbswN9Jnuhz5weQfSabPYZIYLnNUHzmXQxZ6PX5LrP5NzBMiGEeOCBB8Ts2bNFUVGRuPzyy8Uf/vCHSYkDgPbvkUceEUIIcezYMXHVVVeJiooKEYlExNlnny3uuusu0dnZ6RrnrbfeEkuWLBElJSWisrJS3HHHHWJoaGhCYv785z8vamtrRVFRkTjjjDPE5z//efHmm28m6/v6+sRXv/pVUV5eLqZMmSL+5m/+Rhw/fnzS4hVCiP/5n/8RAMShQ4dc5dmyfJ977jntdnDrrbcKIexHLd9zzz2iurpaRCIRsXDhwhQtJ06cEDfddJOYNm2aKC0tFf/wD/8guru7XW1eeeUVccUVV4hIJCLOOOMMsXHjxgmJ+ejRo8Zt+7nnnhNCCLF3717R0NAgotGoKC4uFueff774l3/5F9cX+XjG7BVvb2+vuOaaa8TMmTNFYWGhmDNnjli5cmVKsplNy9jhpz/9qSgpKREdHR0p/TO9jEkq9JqxEUSfESK7vYY+Q58ZbcwO9Jnshj4zdoLoNdnsM0IEz2uC5jPpYs5Gr8l1n7GEEEJzwRkhhBBCCCGEEEIIIXlHTt2zjBBCCCGEEEIIIYSQ04EHywghhBBCCCGEEEIIScCDZYQQQgghhBBCCCGEJODBMkIIIYQQQgghhBBCEvBgGSGEEEIIIYQQQgghCXiwjBBCCCGEEEIIIYSQBDxYRgghhBBCCCGEEEJIAh4sI4QQQgghhBBCCCEkAQ+WEUIIIYQQQgghhBCSgAfLCCGEEEIIIYQQQghJwINlhBBCCCGEEEIIIYQk+P/vdZ/Rp5LgygAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display_issues(issues_from_score, pred_probs=pred_probs, labels=labels, top=5) " + ] + }, + { + "cell_type": "markdown", + "id": "eacdd73d", + "metadata": {}, + "source": [ + "We can see that the errors are dominated by label errors in the sky." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "86bac686", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:29.631297Z", + "iopub.status.busy": "2024-05-24T23:53:29.630883Z", + "iopub.status.idle": "2024-05-24T23:53:29.687766Z", + "shell.execute_reply": "2024-05-24T23:53:29.687083Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "top_2_issues = np.argsort(-np.sum(issues, axis=(1, 2)))[:2]\n", + "assert (top_2_issues == [1, 21]).all()\n", + "\n", + "top_3_class_issues = np.argsort(-np.sum(class_issues, axis=(1, 2)))[:3]\n", + "assert (top_3_class_issues == [17, 19, 0]).all()\n", + "\n", + "highlighted_indices = [ 1, 21, 2, 24, 4, 3, 12]\n", + "top_issues_from_scores = np.argsort(-issues_from_score.sum((1,2)))[:len(highlighted_indices)]\n", + "if not len(set(top_issues_from_scores).difference(highlighted_indices)) == 0:\n", + " raise Exception(f\"Some highlighted examples are missing from ranked_label_issues. Highlighted indices: {top_issues_from_scores[:len(highlighted_indices)]}\")\n", + " \n", + "lowest_image_scores = np.argsort(image_scores)[:15] \n", + "assert len(set(top_issues_from_scores).difference(lowest_image_scores)) == 0" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "02a730701c244ce78d701ac9888e9171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_48c1159ee3e34b178d0690dee5e57fd3", + "placeholder": "​", + "style": "IPY_MODEL_8b0d08710e394e65b0afdcf0c45f0d4b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "038676f0e17b431b827b1d1fd1209273": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e18d924125974f4097aa6733b104d321", + "placeholder": "​", + "style": "IPY_MODEL_105452a84fe4498a9a5414ed0c4010b9", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.04it/s]" + } + }, + "0f9f1a797720480b92c56143c37c851e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fe716df0cb54230a1293795fc0acf66", + "placeholder": "​", + "style": "IPY_MODEL_133d60275b9b4c9abae4e8b4341eebbf", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "105452a84fe4498a9a5414ed0c4010b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "133d60275b9b4c9abae4e8b4341eebbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1474531326dd4e7fa0f05b90fd86a555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a697c66f954f484f94a48a2dcd61e8c2", + "IPY_MODEL_ed21eea7318544819fb3e201b70e0a9d", + "IPY_MODEL_038676f0e17b431b827b1d1fd1209273" + ], + "layout": "IPY_MODEL_4717520a16184e018dbcbfc486eebcae", + "tabbable": null, + "tooltip": null + } + }, + "19f61b9e31674c029955548b39469ceb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "264d88c9c8dc4f55a6af2fcc156ed752": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f9f1a797720480b92c56143c37c851e", + "IPY_MODEL_cf9031ebc4c04c5abf364a7b1ec995e0", + "IPY_MODEL_8aa0dfe023ab4ca5bc9e6d00f7d29cd1" + ], + "layout": "IPY_MODEL_6177abe866c5431595c2c89349344bc3", + "tabbable": null, + "tooltip": null + } + }, + "2d9b27e5cffb4d9e9e62dd0a03923e2c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34e3be07f9604b99a11e33784d77118d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cc71aa0453342808623f68f299cb6fc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ccf8189ddb940f8b0b913309626e58f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4717520a16184e018dbcbfc486eebcae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48c1159ee3e34b178d0690dee5e57fd3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4da68edbc0a04df8a8969f309ec227e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34e3be07f9604b99a11e33784d77118d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_558307be8dfd48e6a766bcf3cbe55941", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "54a63eedc37541f0a3d71e3cf310c9ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "558307be8dfd48e6a766bcf3cbe55941": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "55a45b10021e4a45b53e673f18674c62": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5903754741d04c7fa47f1c71ab0f5ca1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_02a730701c244ce78d701ac9888e9171", + "IPY_MODEL_4da68edbc0a04df8a8969f309ec227e9", + "IPY_MODEL_88ea26470043475f844444bd3af2a6aa" + ], + "layout": "IPY_MODEL_3ccf8189ddb940f8b0b913309626e58f", + "tabbable": null, + "tooltip": null + } + }, + "5e31af0e09b6402ab6167e07c218cefb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6177abe866c5431595c2c89349344bc3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66b2bf235cf74fec82271a188038df03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6ce67699ad964d9baf3fd185e645302d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6fe716df0cb54230a1293795fc0acf66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ebe91f3a6d948dea3bfb66354e6e81e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "88ea26470043475f844444bd3af2a6aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c952a7339ae94d9681157298d3f4c1fa", + "placeholder": "​", + "style": "IPY_MODEL_5e31af0e09b6402ab6167e07c218cefb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 780.72it/s]" + } + }, + "8aa0dfe023ab4ca5bc9e6d00f7d29cd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e35e488019514708a471ca6955572ef4", + "placeholder": "​", + "style": "IPY_MODEL_19f61b9e31674c029955548b39469ceb", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152781.86it/s]" + } + }, + "8b0d08710e394e65b0afdcf0c45f0d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "92c253c22f3c46cbafcfe7427e169de3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ea11267dc76419286613a29940a1ae1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9f7300d357454e6d8ce032b85df8fde4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a697c66f954f484f94a48a2dcd61e8c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3cc71aa0453342808623f68f299cb6fc", + "placeholder": "​", + "style": "IPY_MODEL_66b2bf235cf74fec82271a188038df03", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "a820974aa8c24b68b49aca9919209daf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b8b041aa073443f5950740bad4cb1b2b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbc0333d150f4eabb4af68f928e34c80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55a45b10021e4a45b53e673f18674c62", + "placeholder": "​", + "style": "IPY_MODEL_7ebe91f3a6d948dea3bfb66354e6e81e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:22<00:00,  1.31it/s]" + } + }, + "c952a7339ae94d9681157298d3f4c1fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf9031ebc4c04c5abf364a7b1ec995e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8b041aa073443f5950740bad4cb1b2b", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6ce67699ad964d9baf3fd185e645302d", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "da6ee09cb585471580fa1cff1dc47b07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92c253c22f3c46cbafcfe7427e169de3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ea11267dc76419286613a29940a1ae1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "dce7b3e3895a4818895a487be4742012": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d9b27e5cffb4d9e9e62dd0a03923e2c", + "placeholder": "​", + "style": "IPY_MODEL_a820974aa8c24b68b49aca9919209daf", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "dda8b0203a894ea9bbfeea01c58cfb94": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e18d924125974f4097aa6733b104d321": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e35e488019514708a471ca6955572ef4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed21eea7318544819fb3e201b70e0a9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f7300d357454e6d8ce032b85df8fde4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54a63eedc37541f0a3d71e3cf310c9ce", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "f5054f52f43247dd9c67575b63ef4782": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dce7b3e3895a4818895a487be4742012", + "IPY_MODEL_da6ee09cb585471580fa1cff1dc47b07", + "IPY_MODEL_bbc0333d150f4eabb4af68f928e34c80" + ], + "layout": "IPY_MODEL_dda8b0203a894ea9bbfeea01c58cfb94", + "tabbable": null, + "tooltip": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/v2.6.5/.doctrees/nbsphinx/tutorials/token_classification.ipynb new file mode 100644 index 000000000..b515149ea --- /dev/null +++ b/v2.6.5/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -0,0 +1,1174 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d0d2e007", + "metadata": {}, + "source": [ + "# Find Label Errors in Token Classification (Text) Datasets\n", + "\n", + "This 5-minute quickstart tutorial shows how you can use cleanlab to find potential label errors in text datasets for token classification. In token-classification, our data consists of a bunch of sentences (aka documents) in which every token (aka word) is labeled with one of K classes, and we train models to predict the class of each token in a new sentence. Example applications in NLP include part-of-speech-tagging or entity recognition, which is the focus on this tutorial. Here we use the [CoNLL-2003 named entity recognition](https://deepai.org/dataset/conll-2003-english) dataset which contains around 20,000 sentences with 300,000 individual tokens. Each token is labeled with one of the following classes:\n", + "\n", + "- LOC (location entity)\n", + "- PER (person entity)\n", + "- ORG (organization entity)\n", + "- MISC (miscellaneous other type of entity)\n", + "- O (other type of word that does not correspond to an entity)\n", + "\n", + "**Overview of what we'll do in this tutorial:** \n", + "\n", + "- Find tokens with label issues using `cleanlab.token_classification.filter.find_label_issues`. \n", + "- Rank sentences based on their overall label quality using `cleanlab.token_classification.rank.get_label_quality_scores`." + ] + }, + { + "cell_type": "markdown", + "id": "07936a54", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab uses three inputs to handle token classification data:\n", + "\n", + "- `tokens`: List whose `i`-th element is a list of strings/words corresponding to tokenized version of the `i`-th sentence in dataset. \n", + " Example: `[..., [\"I\", \"love\", \"cleanlab\"], ...]`\n", + "- `labels`: List whose `i`-th element is a list of integers corresponding to class labels of each token in the `i`-th sentence. Example: `[..., [0, 0, 1], ...]`\n", + "- `pred_probs`: List whose `i`-th element is a np.ndarray of shape `(N_i, K)` corresponding to predicted class probabilities for each token in the `i`-th sentence (assuming this sentence contains `N_i` tokens and dataset has `K` possible classes). These should be out-of-sample `pred_probs` obtained from a token classification model via cross-validation. \n", + " Example: `[..., np.array([[0.8,0.2], [0.9,0.1], [0.3,0.7]]), ...]`\n", + "\n", + "Using these, you can find/display label issues with this code: \n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.token_classification.filter import find_label_issues \n", + "from cleanlab.token_classification.summary import display_issues\n", + " \n", + "issues = find_label_issues(labels, pred_probs)\n", + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels,\n", + " class_names=OPTIONAL_LIST_OF_ORDERED_CLASS_NAMES)\n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "1da020bc", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows: \n", + "\n", + " !pip install cleanlab " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ae8a08e0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:32.043714Z", + "iopub.status.busy": "2024-05-24T23:53:32.043547Z", + "iopub.status.idle": "2024-05-24T23:53:33.260125Z", + "shell.execute_reply": "2024-05-24T23:53:33.259517Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2024-05-24 23:53:32-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HTTP request sent, awaiting response... 200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n", + "Saving to: ‘conll2003.zip’\r\n", + "\r\n", + "\r", + "conll2003.zip 0%[ ] 0 --.-KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "\r\n", + "2024-05-24 23:53:32 (8.10 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n", + "mkdir: cannot create directory ‘data’: File exists\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Archive: conll2003.zip\r\n", + " inflating: data/metadata \r\n", + " inflating: data/test.txt \r\n", + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2024-05-24 23:53:32-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.196.57, 3.5.28.118, 52.217.225.89, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.196.57|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", + "Length: 17045998 (16M) [binary/octet-stream]\r\n", + "Saving to: ‘pred_probs.npz’\r\n", + "\r\n", + "\r", + "pred_probs.npz 0%[ ] 0 --.-KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "\r\n", + "2024-05-24 23:53:33 (133 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "\r\n" + ] + } + ], + "source": [ + "!wget -nc https://data.deepai.org/conll2003.zip && mkdir data \n", + "!unzip conll2003.zip -d data/ && rm conll2003.zip \n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz' " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "439b0305", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:33.262724Z", + "iopub.status.busy": "2024-05-24T23:53:33.262345Z", + "iopub.status.idle": "2024-05-24T23:53:34.497882Z", + "shell.execute_reply": "2024-05-24T23:53:34.497264Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a1349304", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:34.500791Z", + "iopub.status.busy": "2024-05-24T23:53:34.500207Z", + "iopub.status.idle": "2024-05-24T23:53:34.504010Z", + "shell.execute_reply": "2024-05-24T23:53:34.503541Z" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.token_classification.filter import find_label_issues \n", + "from cleanlab.token_classification.rank import get_label_quality_scores, issues_from_scores \n", + "from cleanlab.internal.token_classification_utils import get_sentence, filter_sentence, mapping \n", + "from cleanlab.token_classification.summary import display_issues, common_label_issues, filter_by_token \n", + "\n", + "np.set_printoptions(suppress=True)" + ] + }, + { + "cell_type": "markdown", + "id": "9ad75b45", + "metadata": {}, + "source": [ + "## 2. Get data, labels, and pred_probs\n", + "\n", + "In token classification tasks, each token in the dataset is labeled with one of *K* possible classes.\n", + "To find label issues, cleanlab requires predicted class probabilities from a trained classifier. These `pred_probs` contain a length-*K* vector for **each** token in the dataset (which sums to 1 for each token). Here we use `pred_probs` which are out-of-sample predicted class probabilities for the full CoNLL-2003 dataset (merging training, development, and testing splits), obtained from a BERT Transformer fit via cross-validation. Our example notebook [\"Training Entity Recognition Model for Token Classification\"](https://github.com/cleanlab/examples/blob/master/entity_recognition/entity_recognition_training.ipynb) contains the code to produce such `pred_probs` and save them in a `.npz` file, which we simply load here via a `read_npz` function (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "6cc832fd", + "metadata": {}, + "source": [ + "
See the code for reading the `.npz` file **(click to expand)** \n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def read_npz(filepath): \n", + " data = dict(np.load(filepath)) \n", + " data = [data[str(i)] for i in range(len(data))] \n", + " return data \n", + "\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ab9d59a0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:34.506073Z", + "iopub.status.busy": "2024-05-24T23:53:34.505772Z", + "iopub.status.idle": "2024-05-24T23:53:34.508865Z", + "shell.execute_reply": "2024-05-24T23:53:34.508402Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def read_npz(filepath): \n", + " data = dict(np.load(filepath)) \n", + " data = [data[str(i)] for i in range(len(data))] \n", + " return data " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "519cb80c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:34.511024Z", + "iopub.status.busy": "2024-05-24T23:53:34.510519Z", + "iopub.status.idle": "2024-05-24T23:53:43.489246Z", + "shell.execute_reply": "2024-05-24T23:53:43.488676Z" + } + }, + "outputs": [], + "source": [ + "pred_probs = read_npz('pred_probs.npz') " + ] + }, + { + "cell_type": "markdown", + "id": "a8136f37", + "metadata": {}, + "source": [ + "`pred_probs` is a list of numpy arrays, which we'll describe later. Let's first also load the dataset and its labels. We collect sentences from the original text files defining: \n", + "\n", + "- `tokens` as a nested list where `tokens[i]` is a list of strings corrsesponding to a (word-level) tokenized version of the `i`-th sentence\n", + "- `given_labels` as a nested list of the given labels in the dataset where `given_labels[i]` is a list of labels for each token in the `i`-th sentence. \n", + "\n", + "This version of CoNLL-2003 uses IOB2-formatting for tagging, where `B-` and `I-` prefixes in the class labels indicate whether the tokens are at the start of an entity or in the middle. We ignore these distinctions in this tutorial (as label errors that confuse `B-` and `I-` are less interesting), and thus have two sets of entities: \n", + "\n", + "- `given_entities` = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] \n", + "- `entities` = ['O', 'MISC', 'PER', 'ORG', 'LOC']. These are our classes of interest for the token classification task.\n", + "\n", + "We use some helper methods to load the CoNLL data (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "43a87745", + "metadata": {}, + "source": [ + "
See the code for reading the CoNLL data files **(click to expand)**\n", + "\n", + "```python\n", + "\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "given_entities = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n", + "entities = ['O', 'MISC', 'PER', 'ORG', 'LOC'] \n", + "entity_map = {entity: i for i, entity in enumerate(given_entities)} \n", + "\n", + "def readfile(filepath, sep=' '): \n", + " lines = open(filepath)\n", + " data, sentence, label = [], [], []\n", + " for line in lines:\n", + " if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == '\\n':\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " sentence, label = [], []\n", + " continue\n", + " splits = line.split(sep) \n", + " word = splits[0]\n", + " if len(word) > 0 and word[0].isalpha() and word.isupper():\n", + " word = word[0] + word[1:].lower()\n", + " sentence.append(word)\n", + " label.append(entity_map[splits[-1][:-1]])\n", + "\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + "\n", + " tokens = [d[0] for d in data] \n", + " given_labels = [d[1] for d in data]\n", + " return tokens, given_labels\n", + "\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "202f1526", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:43.491820Z", + "iopub.status.busy": "2024-05-24T23:53:43.491470Z", + "iopub.status.idle": "2024-05-24T23:53:43.496997Z", + "shell.execute_reply": "2024-05-24T23:53:43.496555Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "given_entities = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n", + "entities = ['O', 'MISC', 'PER', 'ORG', 'LOC'] \n", + "entity_map = {entity: i for i, entity in enumerate(given_entities)} \n", + "\n", + "def readfile(filepath, sep=' '): \n", + " lines = open(filepath)\n", + " data, sentence, label = [], [], []\n", + " for line in lines:\n", + " if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == '\\n':\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " sentence, label = [], []\n", + " continue\n", + " splits = line.split(sep) \n", + " word = splits[0]\n", + " if len(word) > 0 and word[0].isalpha() and word.isupper():\n", + " word = word[0] + word[1:].lower()\n", + " sentence.append(word)\n", + " label.append(entity_map[splits[-1][:-1]])\n", + "\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " \n", + " tokens = [d[0] for d in data] \n", + " given_labels = [d[1] for d in data] \n", + " return tokens, given_labels " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a4381f03", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:43.499045Z", + "iopub.status.busy": "2024-05-24T23:53:43.498712Z", + "iopub.status.idle": "2024-05-24T23:53:43.847833Z", + "shell.execute_reply": "2024-05-24T23:53:43.847179Z" + } + }, + "outputs": [], + "source": [ + "filepaths = ['data/train.txt', 'data/valid.txt', 'data/test.txt'] \n", + "tokens, given_labels = [], [] \n", + "\n", + "for filepath in filepaths: \n", + " words, label = readfile(filepath) \n", + " tokens.extend(words) \n", + " given_labels.extend(label)\n", + " \n", + "sentences = list(map(get_sentence, tokens)) \n", + "\n", + "sentences, mask = filter_sentence(sentences) \n", + "tokens = [words for m, words in zip(mask, tokens) if m] \n", + "given_labels = [labels for m, labels in zip(mask, given_labels) if m] \n", + "\n", + "maps = [0, 1, 1, 2, 2, 3, 3, 4, 4] \n", + "labels = [mapping(labels, maps) for labels in given_labels] " + ] + }, + { + "cell_type": "markdown", + "id": "46cb7c93", + "metadata": {}, + "source": [ + "To find label issues in token classification data, cleanlab requires `labels` and `pred_probs`, which should look as follows: " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7842e4a3", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:43.850422Z", + "iopub.status.busy": "2024-05-24T23:53:43.850210Z", + "iopub.status.idle": "2024-05-24T23:53:43.854554Z", + "shell.execute_reply": "2024-05-24T23:53:43.854009Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "sentences[0]:\tEu rejects German call to boycott British lamb.\n", + "labels[0]:\t[3, 0, 1, 0, 0, 0, 1, 0, 0]\n", + "pred_probs[0]:\n", + "[[0.00030412 0.00023826 0.99936208 0.00007009 0.00002545]\n", + " [0.99998795 0.00000401 0.00000218 0.00000455 0.00000131]\n", + " [0.00000749 0.99996115 0.00001371 0.0000087 0.00000895]\n", + " [0.99998936 0.00000382 0.00000178 0.00000366 0.00000137]\n", + " [0.99999101 0.00000266 0.00000174 0.0000035 0.00000109]\n", + " [0.99998768 0.00000482 0.00000202 0.00000438 0.0000011 ]\n", + " [0.00000465 0.99996392 0.00001105 0.0000116 0.00000878]\n", + " [0.99998671 0.00000364 0.00000213 0.00000472 0.00000281]\n", + " [0.99999073 0.00000211 0.00000159 0.00000442 0.00000115]]\n", + "\n", + "sentences[1]:\tPeter Blackburn\n", + "labels[1]:\t[2, 2]\n", + "pred_probs[1]:\n", + "[[0.00000358 0.00000529 0.99995623 0.000022 0.0000129 ]\n", + " [0.0000024 0.00001812 0.99994141 0.00001645 0.00002162]]\n", + "\n", + "sentences[2]:\tBrussels 1996-08-22\n", + "labels[2]:\t[4, 0]\n", + "pred_probs[2]:\n", + "[[0.00001172 0.00000821 0.00004661 0.0000618 0.99987167]\n", + " [0.99999061 0.00000201 0.00000195 0.00000408 0.00000135]]\n" + ] + } + ], + "source": [ + "indices_to_preview = 3 # increase this to view more examples\n", + "for i in range(indices_to_preview):\n", + " print('\\nsentences[%d]:\\t' % i + str(sentences[i])) \n", + " print('labels[%d]:\\t' % i + str(labels[i])) \n", + " print('pred_probs[%d]:\\n' % i + str(pred_probs[i])) " + ] + }, + { + "cell_type": "markdown", + "id": "9b71eb4a", + "metadata": {}, + "source": [ + "Note that these correspond to the sentences in the dataset, where each sentence is treated as an individual training example (could be document instead of sentence). If using your own dataset, both `pred_probs` and `labels` should each be formatted as a nested-list where: \n", + "\n", + "- `pred_probs` is a list whose `i`-th element is a np.ndarray of shape `(N_i, K)` corresponding to predicted class probabilities for each token in the `i`-th sentence (assuming this sentence contains `N_i` tokens and dataset has `K` possible classes). Each row of one np.ndarray corresponds to a token `t` and contains a model's predicted probability that `t` belongs to each possible class, for each of the K classes. The columns must be ordered such that the probabilities correspond to class 0, 1, ..., K-1. These should be out-of-sample `pred_probs` obtained from a token classification model via cross-validation. \n", + "\n", + "- `labels` is a list whose `i`-th element is a list of integers corresponding to class label of each token in the `i`-th sentence. For dataset with K classes, labels must take values in 0, 1, ..., K-1. " + ] + }, + { + "cell_type": "markdown", + "id": "1dc3150f", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "Based on the given labels and out-of-sample predicted probabilities, cleanlab can quickly help us identify label issues in our dataset. Here we request that the indices of the identified label issues be sorted by cleanlab’s self-confidence score, which measures the quality of each given label via the probability assigned to it in our model’s prediction. The returned `issues` are a list of tuples `(i, j)`, which corresponds to the `j`th token of the `i`-th sentence in the dataset. These are the tokens cleanlab thinks may be badly labeled in your dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2c2ad9ad", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:43.856612Z", + "iopub.status.busy": "2024-05-24T23:53:43.856432Z", + "iopub.status.idle": "2024-05-24T23:53:46.325702Z", + "shell.execute_reply": "2024-05-24T23:53:46.324883Z" + } + }, + "outputs": [], + "source": [ + "issues = find_label_issues(labels, pred_probs) " + ] + }, + { + "cell_type": "markdown", + "id": "7221c12b", + "metadata": {}, + "source": [ + "Let's look at the top 20 tokens that cleanlab thinks are most likely mislabeled. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "95dc7268", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:46.329225Z", + "iopub.status.busy": "2024-05-24T23:53:46.328349Z", + "iopub.status.idle": "2024-05-24T23:53:46.332669Z", + "shell.execute_reply": "2024-05-24T23:53:46.332113Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cleanlab found 2254 potential label issues. \n", + "The top 20 most likely label errors:\n", + "[(2907, 0), (19392, 0), (9962, 4), (8904, 30), (19303, 0), (12918, 0), (9256, 0), (11855, 20), (18392, 4), (20426, 28), (19402, 21), (14744, 15), (19371, 0), (4645, 2), (83, 9), (10331, 3), (9430, 10), (6143, 25), (18367, 0), (12914, 3)]\n" + ] + } + ], + "source": [ + "top = 20 # increase this value to view more identified issues\n", + "print('Cleanlab found %d potential label issues. ' % len(issues)) \n", + "print('The top %d most likely label errors:' % top) \n", + "print(issues[:top]) " + ] + }, + { + "cell_type": "markdown", + "id": "65421a2d", + "metadata": {}, + "source": [ + "We can better decide how to handle these issues by viewing the original sentences containing these tokens.\n", + "Given that `O` and `MISC` classes (corresponding to integers 0 and 1 in our class ordering) can sometimes be ambiguous, they are excluded from our visualization below. This is achieved via the `exclude` argument, a list of tuples `(i, j)` such that tokens predicted as `entities[j]` but labeled as `entities[i]` are ignored." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e13de188", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:46.334853Z", + "iopub.status.busy": "2024-05-24T23:53:46.334429Z", + "iopub.status.idle": "2024-05-24T23:53:46.340264Z", + "shell.execute_reply": "2024-05-24T23:53:46.339710Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sentence index: 2907, Token index: 0\n", + "Token: Little\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mLittle\u001b[0m change from today's weather expected.\n", + "\n", + "\n", + "Sentence index: 19392, Token index: 0\n", + "Token: Let\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mLet\u001b[0m's march together,\" Scalfaro, a northerner himself, said.\n", + "\n", + "\n", + "Sentence index: 9962, Token index: 4\n", + "Token: germany\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "3. Nastja Rysich (\u001b[31mgermany\u001b[0m) 3.75\n", + "\n", + "\n", + "Sentence index: 8904, Token index: 30\n", + "Token: north\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "The Spla has fought Khartoum's government forces in the south since 1983 for greater autonomy or independence of the mainly Christian and animist region from the Moslem, Arabised \u001b[31mnorth\u001b[0m.\n", + "\n", + "\n", + "Sentence index: 12918, Token index: 0\n", + "Token: Mayor\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mMayor\u001b[0m Antonio Gonzalez Garcia, of the opposition Revolutionary Workers' Party, said in Wednesday's letter that army troops recently raided several local farms, stole cattle and raped women.\n", + "\n", + "\n", + "Sentence index: 9256, Token index: 0\n", + "Token: Spring\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mSpring\u001b[0m Chg Hrw 12pct Chg White Chg\n", + "\n", + "\n", + "Sentence index: 11855, Token index: 20\n", + "Token: Prince\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\" We have seen the photos but for the moment the palace has no comment,\" a spokeswoman for \u001b[31mPrince\u001b[0m Rainier told Reuters.\n", + "\n", + "\n", + "Sentence index: 18392, Token index: 4\n", + "Token: /\n", + "Given label: O, predicted label according to provided pred_probs: LOC\n", + "----\n", + "Danila 28.5 16\u001b[31m/\u001b[0m12 Caribs/ up W224 Mobil.\n", + "\n", + "\n", + "Sentence index: 19402, Token index: 21\n", + "Token: Wednesday\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "A Reuter consensus survey sees medical equipment group Radiometer reporting largely unchanged earnings when it publishes first half 19996/97 results next \u001b[31mWednesday\u001b[0m.\n", + "\n", + "\n", + "Sentence index: 83, Token index: 9\n", + "Token: Us\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "Listing London Denoms (K) 1-10-100 Sale Limits \u001b[31mUs\u001b[0m/ Uk/ Jp/ Fr\n", + "\n", + "\n", + "Sentence index: 10331, Token index: 3\n", + "Token: Maccabi\n", + "Given label: O, predicted label according to provided pred_probs: ORG\n", + "----\n", + "Hapoel Haifa 3 \u001b[31mMaccabi\u001b[0m Tel Aviv 1\n", + "\n", + "\n", + "Sentence index: 9430, Token index: 10\n", + "Token: hospital\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "The revered Roman Catholic nun was admitted to the Calcutta \u001b[31mhospital\u001b[0m a week ago with high fever and severe vomiting.\n", + "\n", + "\n", + "Sentence index: 6143, Token index: 25\n", + "Token: alliance\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "The embattled Afghan government said last week that the Kabul-Salang highway would be opened on Monday or Tuesday following talks with the Supreme Coordination Council \u001b[31malliance\u001b[0m led by Jumbish-i-Milli movement of powerful opposition warlord General Abdul Rashid Dostum.\n", + "\n", + "\n", + "Sentence index: 18367, Token index: 0\n", + "Token: Can\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mCan\u001b[0m/ U.s. Dollar Exchange Rate: 1.3570\n", + "\n", + "\n", + "Sentence index: 12049, Token index: 0\n", + "Token: Born\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mBorn\u001b[0m in 1937 in the central province of Anhui, Dai came to Shanghai as a student and remained in the city as a prolific author and teacher of Chinese.\n", + "\n", + "\n", + "Sentence index: 16764, Token index: 7\n", + "Token: (\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "1990 - British historian Alan John Percivale \u001b[31m(\u001b[0mA.j.p.) Taylor died.\n", + "\n", + "\n", + "Sentence index: 20446, Token index: 0\n", + "Token: Pace\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mPace\u001b[0m bowler Ian Harvey claimed three for 81 for Victoria.\n", + "\n", + "\n", + "Sentence index: 15514, Token index: 16\n", + "Token: Cotti\n", + "Given label: O, predicted label according to provided pred_probs: PER\n", + "----\n", + "But one must not forget that the Osce only has limited powers there,\" said \u001b[31mCotti\u001b[0m, who is also the Swiss foreign minister.\"\n", + "\n", + "\n", + "Sentence index: 7525, Token index: 12\n", + "Token: Sultan\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "Specter met Crown Prince Abdullah and Minister of Defence and Aviation Prince \u001b[31mSultan\u001b[0m in Jeddah, Saudi state television and the official Saudi Press Agency reported.\n", + "\n", + "\n", + "Sentence index: 2288, Token index: 0\n", + "Token: Sporting\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mSporting\u001b[0m his customary bright green outfit, the U.s. champion clocked 10.03 seconds despite damp conditions to take the scalp of Canada's reigning Olympic champion Donovan Bailey, 1992 champion Linford Christie of Britain and American 1984 and 1988 champion Carl Lewis.\n" + ] + } + ], + "source": [ + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "96d04902", + "metadata": {}, + "source": [ + "More than half of the potential label issues correspond to tokens that are incorrectly labeled. As shown above, some examples are ambigious and may require more thoughful handling. cleanlab has also discovered some edge cases such as tokens which are simply punctuations such as `/` and `(`. " + ] + }, + { + "cell_type": "markdown", + "id": "d213b2b2", + "metadata": {}, + "source": [ + "### Most common word-level token mislabels \n", + "\n", + "We may also wish to understand which tokens tend to be most commonly mislabeled throughout the entire dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e4a006bd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:46.342451Z", + "iopub.status.busy": "2024-05-24T23:53:46.342126Z", + "iopub.status.idle": "2024-05-24T23:53:46.370070Z", + "shell.execute_reply": "2024-05-24T23:53:46.369452Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Token '/' is potentially mislabeled 42 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `O` but predicted to actually be class `LOC` 36 times\n", + "labeled as class `O` but predicted to actually be class `PER` 4 times\n", + "labeled as class `O` but predicted to actually be class `ORG` 2 times\n", + "\n", + "Token 'Chicago' is potentially mislabeled 27 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 22 times\n", + "labeled as class `LOC` but predicted to actually be class `ORG` 3 times\n", + "labeled as class `MISC` but predicted to actually be class `ORG` 2 times\n", + "\n", + "Token 'U.s.' is potentially mislabeled 21 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `LOC` but predicted to actually be class `ORG` 8 times\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 6 times\n", + "labeled as class `LOC` but predicted to actually be class `O` 3 times\n", + "labeled as class `LOC` but predicted to actually be class `MISC` 2 times\n", + "labeled as class `MISC` but predicted to actually be class `LOC` 1 times\n", + "labeled as class `MISC` but predicted to actually be class `ORG` 1 times\n", + "\n", + "Token 'Digest' is potentially mislabeled 20 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `O` but predicted to actually be class `ORG` 20 times\n", + "\n", + "Token 'Press' is potentially mislabeled 20 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `O` but predicted to actually be class `ORG` 20 times\n", + "\n", + "Token 'New' is potentially mislabeled 17 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 13 times\n", + "labeled as class `LOC` but predicted to actually be class `ORG` 2 times\n", + "labeled as class `O` but predicted to actually be class `ORG` 1 times\n", + "labeled as class `MISC` but predicted to actually be class `LOC` 1 times\n", + "\n", + "Token 'and' is potentially mislabeled 16 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `O` 7 times\n", + "labeled as class `O` but predicted to actually be class `ORG` 5 times\n", + "labeled as class `O` but predicted to actually be class `LOC` 3 times\n", + "labeled as class `MISC` but predicted to actually be class `ORG` 1 times\n", + "\n", + "Token 'Philadelphia' is potentially mislabeled 15 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 14 times\n", + "labeled as class `LOC` but predicted to actually be class `ORG` 1 times\n", + "\n", + "Token 'Usda' is potentially mislabeled 13 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 7 times\n", + "labeled as class `ORG` but predicted to actually be class `PER` 5 times\n", + "labeled as class `ORG` but predicted to actually be class `MISC` 1 times\n", + "\n", + "Token 'York' is potentially mislabeled 12 times throughout the dataset\n", + "---------------------------------------------------------------------------------------\n", + "labeled as class `ORG` but predicted to actually be class `LOC` 11 times\n", + "labeled as class `LOC` but predicted to actually be class `ORG` 1 times\n", + "\n" + ] + } + ], + "source": [ + "info = common_label_issues(issues, tokens, \n", + " labels=labels, \n", + " pred_probs=pred_probs, \n", + " class_names=entities, \n", + " exclude=[(0, 1), (1, 0)]) " + ] + }, + { + "cell_type": "markdown", + "id": "9c417061", + "metadata": {}, + "source": [ + "The printed information above is also stored in pd.DataFrame `info`." + ] + }, + { + "cell_type": "markdown", + "id": "a35ef843", + "metadata": {}, + "source": [ + "### Find sentences containing a particular mislabeled word \n", + "\n", + "You can also only focus on the subset of potentially problematic sentences where a particular token may have been mislabeled." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c8f4e163", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:46.372702Z", + "iopub.status.busy": "2024-05-24T23:53:46.372316Z", + "iopub.status.idle": "2024-05-24T23:53:46.377776Z", + "shell.execute_reply": "2024-05-24T23:53:46.377237Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sentence index: 471, Token index: 8\n", + "Token: United\n", + "Given label: LOC, predicted label according to provided pred_probs: ORG\n", + "----\n", + "Soccer - Keane Signs Four-year Contract With Manchester \u001b[31mUnited\u001b[0m.\n", + "\n", + "\n", + "Sentence index: 19072, Token index: 5\n", + "Token: United\n", + "Given label: LOC, predicted label according to provided pred_probs: ORG\n", + "----\n", + "The Humane Society of the \u001b[31mUnited\u001b[0m States estimates that between 500,000 and one million bites are delivered by dogs each year, more than half of which are suffered by children.\n", + "\n", + "\n", + "Sentence index: 19910, Token index: 5\n", + "Token: United\n", + "Given label: LOC, predicted label according to provided pred_probs: ORG\n", + "----\n", + "His father Clarence Woolmer represented \u001b[31mUnited\u001b[0m Province, now renamed Uttar Pradesh, in India's Ranji Trophy national championship and captained the state during 1949.\n", + "\n", + "\n", + "Sentence index: 15658, Token index: 0\n", + "Token: United\n", + "Given label: ORG, predicted label according to provided pred_probs: LOC\n", + "----\n", + "\u001b[31mUnited\u001b[0m Nations 1996-08-29\n", + "\n", + "\n", + "Sentence index: 19879, Token index: 1\n", + "Token: United\n", + "Given label: ORG, predicted label according to provided pred_probs: LOC\n", + "----\n", + "1. \u001b[31mUnited\u001b[0m States Iii (Brian Shimer, Randy Jones) one\n", + "\n", + "\n", + "Sentence index: 19104, Token index: 0\n", + "Token: United\n", + "Given label: ORG, predicted label according to provided pred_probs: LOC\n", + "----\n", + "\u001b[31mUnited\u001b[0m Nations 1996-12-06\n" + ] + } + ], + "source": [ + "token_issues = filter_by_token('United', issues, tokens)\n", + "\n", + "display_issues(token_issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "1759108b", + "metadata": {}, + "source": [ + "### Sentence label quality score \n", + "\n", + "For best reviewing label issues in a token classification dataset, you want to look at sentences one at a time. Here sentences more likely to contain a label error should be ranked earlier. Cleanlab can provide an overall label quality score for each sentence (ranging from 0 to 1) such that lower scores indicate sentences more likely to contain some mislabeled token. We can also obtain label quality scores for each individual token and manually decide which of these are label issues by thresholding them. For automatically estimating which tokens are mislabeled (and the number of label errors), you should use `find_label_issues()` instead. `get_label_quality_scores()` is useful if you only have time to review a few sentences and want to prioritize which, or if you're specifically aiming to detect label errors with high precision (or high recall) rather than overall estimation of the set of mislabeled tokens." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "db0b5179", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:46.380011Z", + "iopub.status.busy": "2024-05-24T23:53:46.379582Z", + "iopub.status.idle": "2024-05-24T23:53:47.834116Z", + "shell.execute_reply": "2024-05-24T23:53:47.833464Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sentence index: 2907, Token index: 0\n", + "Token: Little\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mLittle\u001b[0m change from today's weather expected.\n", + "\n", + "\n", + "Sentence index: 19392, Token index: 0\n", + "Token: Let\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mLet\u001b[0m's march together,\" Scalfaro, a northerner himself, said.\n", + "\n", + "\n", + "Sentence index: 9962, Token index: 4\n", + "Token: germany\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "3. Nastja Rysich (\u001b[31mgermany\u001b[0m) 3.75\n", + "\n", + "\n", + "Sentence index: 8904, Token index: 30\n", + "Token: north\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "The Spla has fought Khartoum's government forces in the south since 1983 for greater autonomy or independence of the mainly Christian and animist region from the Moslem, Arabised \u001b[31mnorth\u001b[0m.\n", + "\n", + "\n", + "Sentence index: 12918, Token index: 0\n", + "Token: Mayor\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mMayor\u001b[0m Antonio Gonzalez Garcia, of the opposition Revolutionary Workers' Party, said in Wednesday's letter that army troops recently raided several local farms, stole cattle and raped women.\n", + "\n", + "\n", + "Sentence index: 9256, Token index: 0\n", + "Token: Spring\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mSpring\u001b[0m Chg Hrw 12pct Chg White Chg\n", + "\n", + "\n", + "Sentence index: 11855, Token index: 20\n", + "Token: Prince\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\" We have seen the photos but for the moment the palace has no comment,\" a spokeswoman for \u001b[31mPrince\u001b[0m Rainier told Reuters.\n", + "\n", + "\n", + "Sentence index: 18392, Token index: 4\n", + "Token: /\n", + "Given label: O, predicted label according to provided pred_probs: LOC\n", + "----\n", + "Danila 28.5 16\u001b[31m/\u001b[0m12 Caribs/ up W224 Mobil.\n", + "\n", + "\n", + "Sentence index: 19402, Token index: 21\n", + "Token: Wednesday\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "A Reuter consensus survey sees medical equipment group Radiometer reporting largely unchanged earnings when it publishes first half 19996/97 results next \u001b[31mWednesday\u001b[0m.\n", + "\n", + "\n", + "Sentence index: 83, Token index: 9\n", + "Token: Us\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "Listing London Denoms (K) 1-10-100 Sale Limits \u001b[31mUs\u001b[0m/ Uk/ Jp/ Fr\n", + "\n", + "\n", + "Sentence index: 10331, Token index: 3\n", + "Token: Maccabi\n", + "Given label: O, predicted label according to provided pred_probs: ORG\n", + "----\n", + "Hapoel Haifa 3 \u001b[31mMaccabi\u001b[0m Tel Aviv 1\n", + "\n", + "\n", + "Sentence index: 9430, Token index: 10\n", + "Token: hospital\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "The revered Roman Catholic nun was admitted to the Calcutta \u001b[31mhospital\u001b[0m a week ago with high fever and severe vomiting.\n", + "\n", + "\n", + "Sentence index: 6143, Token index: 25\n", + "Token: alliance\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "The embattled Afghan government said last week that the Kabul-Salang highway would be opened on Monday or Tuesday following talks with the Supreme Coordination Council \u001b[31malliance\u001b[0m led by Jumbish-i-Milli movement of powerful opposition warlord General Abdul Rashid Dostum.\n", + "\n", + "\n", + "Sentence index: 18367, Token index: 0\n", + "Token: Can\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mCan\u001b[0m/ U.s. Dollar Exchange Rate: 1.3570\n", + "\n", + "\n", + "Sentence index: 12049, Token index: 0\n", + "Token: Born\n", + "Given label: LOC, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mBorn\u001b[0m in 1937 in the central province of Anhui, Dai came to Shanghai as a student and remained in the city as a prolific author and teacher of Chinese.\n", + "\n", + "\n", + "Sentence index: 16764, Token index: 7\n", + "Token: (\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "1990 - British historian Alan John Percivale \u001b[31m(\u001b[0mA.j.p.) Taylor died.\n", + "\n", + "\n", + "Sentence index: 20446, Token index: 0\n", + "Token: Pace\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mPace\u001b[0m bowler Ian Harvey claimed three for 81 for Victoria.\n", + "\n", + "\n", + "Sentence index: 15514, Token index: 16\n", + "Token: Cotti\n", + "Given label: O, predicted label according to provided pred_probs: PER\n", + "----\n", + "But one must not forget that the Osce only has limited powers there,\" said \u001b[31mCotti\u001b[0m, who is also the Swiss foreign minister.\"\n", + "\n", + "\n", + "Sentence index: 7525, Token index: 12\n", + "Token: Sultan\n", + "Given label: PER, predicted label according to provided pred_probs: O\n", + "----\n", + "Specter met Crown Prince Abdullah and Minister of Defence and Aviation Prince \u001b[31mSultan\u001b[0m in Jeddah, Saudi state television and the official Saudi Press Agency reported.\n", + "\n", + "\n", + "Sentence index: 2288, Token index: 0\n", + "Token: Sporting\n", + "Given label: ORG, predicted label according to provided pred_probs: O\n", + "----\n", + "\u001b[31mSporting\u001b[0m his customary bright green outfit, the U.s. champion clocked 10.03 seconds despite damp conditions to take the scalp of Canada's reigning Olympic champion Donovan Bailey, 1992 champion Linford Christie of Britain and American 1984 and 1988 champion Carl Lewis.\n" + ] + } + ], + "source": [ + "sentence_scores, token_scores = get_label_quality_scores(labels, pred_probs)\n", + "issues = issues_from_scores(sentence_scores, token_scores=token_scores) \n", + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "1759108c", + "metadata": {}, + "source": [ + "## How does cleanlab.token_classification work?\n", + "\n", + "The underlying algorithms used to produce these scores are described in [this paper](https://arxiv.org/abs/2210.03920)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a18795eb", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-24T23:53:47.836827Z", + "iopub.status.busy": "2024-05-24T23:53:47.836354Z", + "iopub.status.idle": "2024-05-24T23:53:47.840665Z", + "shell.execute_reply": "2024-05-24T23:53:47.840174Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "highlighted_indices = [(2907, 0), (19392, 0), (9962, 4), (8904, 30), (19303, 0), \n", + " (12918, 0), (9256, 0), (11855, 20), (18392, 4), (20426, 28), \n", + " (19402, 21), (14744, 15), (19371, 0), (4645, 2), (83, 9), \n", + " (10331, 3), (9430, 10), (6143, 25), (18367, 0), (12914, 3)] \n", + "\n", + "if not all(x in issues for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from ranked_label_issues.\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_data_monitor_14_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_data_monitor_14_0.png new file mode 100644 index 000000000..c3b2f6a12 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_data_monitor_14_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_advanced_15_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_advanced_15_0.png new file mode 100644 index 000000000..f4e1cd479 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_advanced_15_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_quickstart_15_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_quickstart_15_0.png new file mode 100644 index 000000000..9d0daefb7 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_datalab_quickstart_15_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_1.png new file mode 100644 index 000000000..321b30602 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_3.png new file mode 100644 index 000000000..1a7b24908 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_30_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_38_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_38_0.png new file mode 100644 index 000000000..9c10ccac5 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_38_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_44_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_44_0.png new file mode 100644 index 000000000..3f475d975 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_44_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_0.png new file mode 100644 index 000000000..d95c6961d Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_1.png new file mode 100644 index 000000000..a9e4dc375 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_2.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_2.png new file mode 100644 index 000000000..1aa029df0 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_2.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_3.png new file mode 100644 index 000000000..5c236c697 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_4.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_4.png new file mode 100644 index 000000000..bf5f771b5 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_50_4.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_57_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_57_0.png new file mode 100644 index 000000000..2ed7b063d Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_57_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_61_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_61_0.png new file mode 100644 index 000000000..82c886c5e Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_datalab_image_61_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_25_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_25_0.png new file mode 100644 index 000000000..4231ebeed Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_25_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_49_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_49_0.png new file mode 100644 index 000000000..e61be677e Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_49_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_55_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_55_0.png new file mode 100644 index 000000000..3d41baa39 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_55_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_8_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_8_0.png new file mode 100644 index 000000000..ca118fcac Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_indepth_overview_8_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_19_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_19_0.png new file mode 100644 index 000000000..6992b1216 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_19_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_9_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_9_0.png new file mode 100644 index 000000000..2e409b9ff Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_multilabel_classification_9_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_22_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_22_1.png new file mode 100644 index 000000000..482e044ac Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_22_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_24_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_24_1.png new file mode 100644 index 000000000..512fc71c5 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_24_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_26_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_26_1.png new file mode 100644 index 000000000..e5cc313e5 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_26_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_28_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_28_1.png new file mode 100644 index 000000000..38c29b07d Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_28_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_31_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_31_1.png new file mode 100644 index 000000000..178d07750 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_31_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_33_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_33_1.png new file mode 100644 index 000000000..d57dc95a6 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_33_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_35_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_35_1.png new file mode 100644 index 000000000..dfaf20952 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_35_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_1.png new file mode 100644 index 000000000..f9f15bfd3 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_3.png new file mode 100644 index 000000000..484169e5a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_5.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_5.png new file mode 100644 index 000000000..23b5b864f Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_38_5.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_1.png new file mode 100644 index 000000000..a58ceca25 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_3.png new file mode 100644 index 000000000..2cd0cb83a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_5.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_5.png new file mode 100644 index 000000000..fdc91223c Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_44_5.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_8_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_8_0.png new file mode 100644 index 000000000..62716ca2d Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_object_detection_8_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_13_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_13_0.png new file mode 100644 index 000000000..df4d5ad79 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_13_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_15_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_15_0.png new file mode 100644 index 000000000..358bc9593 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_15_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_20_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_20_1.png new file mode 100644 index 000000000..cf1eba332 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_20_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_22_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_22_0.png new file mode 100644 index 000000000..02d2a08f6 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_22_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_24_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_24_0.png new file mode 100644 index 000000000..ed13a9ba8 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_24_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_27_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_27_0.png new file mode 100644 index 000000000..3757f037e Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_27_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_29_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_29_0.png new file mode 100644 index 000000000..c39af09e8 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_outliers_29_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_regression_14_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_regression_14_0.png new file mode 100644 index 000000000..63b616cfb Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_regression_14_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_0.png new file mode 100644 index 000000000..6cb6f47bb Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_1.png new file mode 100644 index 000000000..49067f19a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_19_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_0.png new file mode 100644 index 000000000..c041ae84a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_1.png new file mode 100644 index 000000000..d08f45e79 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_2.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_2.png new file mode 100644 index 000000000..9a8cc6bce Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_21_2.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_0.png new file mode 100644 index 000000000..c041ae84a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_1.png new file mode 100644 index 000000000..6a9558904 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_2.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_2.png new file mode 100644 index 000000000..bd9888ddd Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_2.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_3.png new file mode 100644 index 000000000..6c7795496 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_27_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_0.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_0.png new file mode 100644 index 000000000..4355002b1 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_0.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_1.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_1.png new file mode 100644 index 000000000..3ac3b2b3c Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_1.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_2.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_2.png new file mode 100644 index 000000000..ef3cb4498 Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_2.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_3.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_3.png new file mode 100644 index 000000000..1213c142a Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_3.png differ diff --git a/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_4.png b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_4.png new file mode 100644 index 000000000..a37f2467f Binary files /dev/null and b/v2.6.5/.doctrees/nbsphinx/tutorials_segmentation_32_4.png differ diff --git a/v2.6.5/.doctrees/tutorials/clean_learning/index.doctree b/v2.6.5/.doctrees/tutorials/clean_learning/index.doctree new file mode 100644 index 000000000..2d4e77981 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/clean_learning/tabular.doctree b/v2.6.5/.doctrees/tutorials/clean_learning/tabular.doctree new file mode 100644 index 000000000..ad4cba4dc Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/clean_learning/text.doctree b/v2.6.5/.doctrees/tutorials/clean_learning/text.doctree new file mode 100644 index 000000000..c26fa440e Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/audio.doctree b/v2.6.5/.doctrees/tutorials/datalab/audio.doctree new file mode 100644 index 000000000..e4dde246d Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/data_monitor.doctree b/v2.6.5/.doctrees/tutorials/datalab/data_monitor.doctree new file mode 100644 index 000000000..9ec63a21b Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/data_monitor.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/datalab_advanced.doctree b/v2.6.5/.doctrees/tutorials/datalab/datalab_advanced.doctree new file mode 100644 index 000000000..e763c7c2b Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/v2.6.5/.doctrees/tutorials/datalab/datalab_quickstart.doctree new file mode 100644 index 000000000..22a3dd846 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/image.doctree b/v2.6.5/.doctrees/tutorials/datalab/image.doctree new file mode 100644 index 000000000..62083b81f Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/image.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/index.doctree b/v2.6.5/.doctrees/tutorials/datalab/index.doctree new file mode 100644 index 000000000..818c9106f Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/index.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/tabular.doctree b/v2.6.5/.doctrees/tutorials/datalab/tabular.doctree new file mode 100644 index 000000000..9e91d041b Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/datalab/text.doctree b/v2.6.5/.doctrees/tutorials/datalab/text.doctree new file mode 100644 index 000000000..3e170528e Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/datalab/text.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/dataset_health.doctree b/v2.6.5/.doctrees/tutorials/dataset_health.doctree new file mode 100644 index 000000000..2d965f85e Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/dataset_health.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/faq.doctree b/v2.6.5/.doctrees/tutorials/faq.doctree new file mode 100644 index 000000000..2f683d75c Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/faq.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/indepth_overview.doctree b/v2.6.5/.doctrees/tutorials/indepth_overview.doctree new file mode 100644 index 000000000..b518e1834 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/index.doctree b/v2.6.5/.doctrees/tutorials/index.doctree new file mode 100644 index 000000000..cb35f2aaa Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/index.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/multiannotator.doctree b/v2.6.5/.doctrees/tutorials/multiannotator.doctree new file mode 100644 index 000000000..c4d18b007 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/multiannotator.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/multilabel_classification.doctree b/v2.6.5/.doctrees/tutorials/multilabel_classification.doctree new file mode 100644 index 000000000..f586c1096 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/object_detection.doctree b/v2.6.5/.doctrees/tutorials/object_detection.doctree new file mode 100644 index 000000000..63ed77795 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/object_detection.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/outliers.doctree b/v2.6.5/.doctrees/tutorials/outliers.doctree new file mode 100644 index 000000000..0841d7c83 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/outliers.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/pred_probs_cross_val.doctree b/v2.6.5/.doctrees/tutorials/pred_probs_cross_val.doctree new file mode 100644 index 000000000..c9790df1b Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/regression.doctree b/v2.6.5/.doctrees/tutorials/regression.doctree new file mode 100644 index 000000000..60440f3fe Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/regression.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/segmentation.doctree b/v2.6.5/.doctrees/tutorials/segmentation.doctree new file mode 100644 index 000000000..72aea7868 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/segmentation.doctree differ diff --git a/v2.6.5/.doctrees/tutorials/token_classification.doctree b/v2.6.5/.doctrees/tutorials/token_classification.doctree new file mode 100644 index 000000000..af04c2a62 Binary files /dev/null and b/v2.6.5/.doctrees/tutorials/token_classification.doctree differ diff --git a/v2.6.5/_images/tutorials_datalab_data_monitor_14_0.png b/v2.6.5/_images/tutorials_datalab_data_monitor_14_0.png new file mode 100644 index 000000000..c3b2f6a12 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_data_monitor_14_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_datalab_advanced_15_0.png b/v2.6.5/_images/tutorials_datalab_datalab_advanced_15_0.png new file mode 100644 index 000000000..f4e1cd479 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_datalab_advanced_15_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_datalab_quickstart_15_0.png b/v2.6.5/_images/tutorials_datalab_datalab_quickstart_15_0.png new file mode 100644 index 000000000..9d0daefb7 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_datalab_quickstart_15_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_30_1.png b/v2.6.5/_images/tutorials_datalab_image_30_1.png new file mode 100644 index 000000000..321b30602 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_30_1.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_30_3.png b/v2.6.5/_images/tutorials_datalab_image_30_3.png new file mode 100644 index 000000000..1a7b24908 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_30_3.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_38_0.png b/v2.6.5/_images/tutorials_datalab_image_38_0.png new file mode 100644 index 000000000..9c10ccac5 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_38_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_44_0.png b/v2.6.5/_images/tutorials_datalab_image_44_0.png new file mode 100644 index 000000000..3f475d975 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_44_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_50_0.png b/v2.6.5/_images/tutorials_datalab_image_50_0.png new file mode 100644 index 000000000..d95c6961d Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_50_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_50_1.png b/v2.6.5/_images/tutorials_datalab_image_50_1.png new file mode 100644 index 000000000..a9e4dc375 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_50_1.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_50_2.png b/v2.6.5/_images/tutorials_datalab_image_50_2.png new file mode 100644 index 000000000..1aa029df0 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_50_2.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_50_3.png b/v2.6.5/_images/tutorials_datalab_image_50_3.png new file mode 100644 index 000000000..5c236c697 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_50_3.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_50_4.png b/v2.6.5/_images/tutorials_datalab_image_50_4.png new file mode 100644 index 000000000..bf5f771b5 Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_50_4.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_57_0.png b/v2.6.5/_images/tutorials_datalab_image_57_0.png new file mode 100644 index 000000000..2ed7b063d Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_57_0.png differ diff --git a/v2.6.5/_images/tutorials_datalab_image_61_0.png b/v2.6.5/_images/tutorials_datalab_image_61_0.png new file mode 100644 index 000000000..82c886c5e Binary files /dev/null and b/v2.6.5/_images/tutorials_datalab_image_61_0.png differ diff --git a/v2.6.5/_images/tutorials_indepth_overview_25_0.png b/v2.6.5/_images/tutorials_indepth_overview_25_0.png new file mode 100644 index 000000000..4231ebeed Binary files /dev/null and b/v2.6.5/_images/tutorials_indepth_overview_25_0.png differ diff --git a/v2.6.5/_images/tutorials_indepth_overview_49_0.png b/v2.6.5/_images/tutorials_indepth_overview_49_0.png new file mode 100644 index 000000000..e61be677e Binary files /dev/null and b/v2.6.5/_images/tutorials_indepth_overview_49_0.png differ diff --git a/v2.6.5/_images/tutorials_indepth_overview_55_0.png b/v2.6.5/_images/tutorials_indepth_overview_55_0.png new file mode 100644 index 000000000..3d41baa39 Binary files /dev/null and b/v2.6.5/_images/tutorials_indepth_overview_55_0.png differ diff --git a/v2.6.5/_images/tutorials_indepth_overview_8_0.png b/v2.6.5/_images/tutorials_indepth_overview_8_0.png new file mode 100644 index 000000000..ca118fcac Binary files /dev/null and b/v2.6.5/_images/tutorials_indepth_overview_8_0.png differ diff --git a/v2.6.5/_images/tutorials_multilabel_classification_19_0.png b/v2.6.5/_images/tutorials_multilabel_classification_19_0.png new file mode 100644 index 000000000..6992b1216 Binary files /dev/null and b/v2.6.5/_images/tutorials_multilabel_classification_19_0.png differ diff --git a/v2.6.5/_images/tutorials_multilabel_classification_9_0.png b/v2.6.5/_images/tutorials_multilabel_classification_9_0.png new file mode 100644 index 000000000..2e409b9ff Binary files /dev/null and b/v2.6.5/_images/tutorials_multilabel_classification_9_0.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_22_1.png b/v2.6.5/_images/tutorials_object_detection_22_1.png new file mode 100644 index 000000000..482e044ac Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_22_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_24_1.png b/v2.6.5/_images/tutorials_object_detection_24_1.png new file mode 100644 index 000000000..512fc71c5 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_24_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_26_1.png b/v2.6.5/_images/tutorials_object_detection_26_1.png new file mode 100644 index 000000000..e5cc313e5 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_26_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_28_1.png b/v2.6.5/_images/tutorials_object_detection_28_1.png new file mode 100644 index 000000000..38c29b07d Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_28_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_31_1.png b/v2.6.5/_images/tutorials_object_detection_31_1.png new file mode 100644 index 000000000..178d07750 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_31_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_33_1.png b/v2.6.5/_images/tutorials_object_detection_33_1.png new file mode 100644 index 000000000..d57dc95a6 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_33_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_35_1.png b/v2.6.5/_images/tutorials_object_detection_35_1.png new file mode 100644 index 000000000..dfaf20952 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_35_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_38_1.png b/v2.6.5/_images/tutorials_object_detection_38_1.png new file mode 100644 index 000000000..f9f15bfd3 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_38_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_38_3.png b/v2.6.5/_images/tutorials_object_detection_38_3.png new file mode 100644 index 000000000..484169e5a Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_38_3.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_38_5.png b/v2.6.5/_images/tutorials_object_detection_38_5.png new file mode 100644 index 000000000..23b5b864f Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_38_5.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_44_1.png b/v2.6.5/_images/tutorials_object_detection_44_1.png new file mode 100644 index 000000000..a58ceca25 Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_44_1.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_44_3.png b/v2.6.5/_images/tutorials_object_detection_44_3.png new file mode 100644 index 000000000..2cd0cb83a Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_44_3.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_44_5.png b/v2.6.5/_images/tutorials_object_detection_44_5.png new file mode 100644 index 000000000..fdc91223c Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_44_5.png differ diff --git a/v2.6.5/_images/tutorials_object_detection_8_0.png b/v2.6.5/_images/tutorials_object_detection_8_0.png new file mode 100644 index 000000000..62716ca2d Binary files /dev/null and b/v2.6.5/_images/tutorials_object_detection_8_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_13_0.png b/v2.6.5/_images/tutorials_outliers_13_0.png new file mode 100644 index 000000000..df4d5ad79 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_13_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_15_0.png b/v2.6.5/_images/tutorials_outliers_15_0.png new file mode 100644 index 000000000..358bc9593 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_15_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_20_1.png b/v2.6.5/_images/tutorials_outliers_20_1.png new file mode 100644 index 000000000..cf1eba332 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_20_1.png differ diff --git a/v2.6.5/_images/tutorials_outliers_22_0.png b/v2.6.5/_images/tutorials_outliers_22_0.png new file mode 100644 index 000000000..02d2a08f6 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_22_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_24_0.png b/v2.6.5/_images/tutorials_outliers_24_0.png new file mode 100644 index 000000000..ed13a9ba8 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_24_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_27_0.png b/v2.6.5/_images/tutorials_outliers_27_0.png new file mode 100644 index 000000000..3757f037e Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_27_0.png differ diff --git a/v2.6.5/_images/tutorials_outliers_29_0.png b/v2.6.5/_images/tutorials_outliers_29_0.png new file mode 100644 index 000000000..c39af09e8 Binary files /dev/null and b/v2.6.5/_images/tutorials_outliers_29_0.png differ diff --git a/v2.6.5/_images/tutorials_regression_14_0.png b/v2.6.5/_images/tutorials_regression_14_0.png new file mode 100644 index 000000000..63b616cfb Binary files /dev/null and b/v2.6.5/_images/tutorials_regression_14_0.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_19_0.png b/v2.6.5/_images/tutorials_segmentation_19_0.png new file mode 100644 index 000000000..6cb6f47bb Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_19_0.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_19_1.png b/v2.6.5/_images/tutorials_segmentation_19_1.png new file mode 100644 index 000000000..49067f19a Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_19_1.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_21_0.png b/v2.6.5/_images/tutorials_segmentation_21_0.png new file mode 100644 index 000000000..c041ae84a Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_21_0.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_21_1.png b/v2.6.5/_images/tutorials_segmentation_21_1.png new file mode 100644 index 000000000..d08f45e79 Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_21_1.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_21_2.png b/v2.6.5/_images/tutorials_segmentation_21_2.png new file mode 100644 index 000000000..9a8cc6bce Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_21_2.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_27_0.png b/v2.6.5/_images/tutorials_segmentation_27_0.png new file mode 100644 index 000000000..c041ae84a Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_27_0.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_27_1.png b/v2.6.5/_images/tutorials_segmentation_27_1.png new file mode 100644 index 000000000..6a9558904 Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_27_1.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_27_2.png b/v2.6.5/_images/tutorials_segmentation_27_2.png new file mode 100644 index 000000000..bd9888ddd Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_27_2.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_27_3.png b/v2.6.5/_images/tutorials_segmentation_27_3.png new file mode 100644 index 000000000..6c7795496 Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_27_3.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_32_0.png b/v2.6.5/_images/tutorials_segmentation_32_0.png new file mode 100644 index 000000000..4355002b1 Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_32_0.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_32_1.png b/v2.6.5/_images/tutorials_segmentation_32_1.png new file mode 100644 index 000000000..3ac3b2b3c Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_32_1.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_32_2.png b/v2.6.5/_images/tutorials_segmentation_32_2.png new file mode 100644 index 000000000..ef3cb4498 Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_32_2.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_32_3.png b/v2.6.5/_images/tutorials_segmentation_32_3.png new file mode 100644 index 000000000..1213c142a Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_32_3.png differ diff --git a/v2.6.5/_images/tutorials_segmentation_32_4.png b/v2.6.5/_images/tutorials_segmentation_32_4.png new file mode 100644 index 000000000..a37f2467f Binary files /dev/null and b/v2.6.5/_images/tutorials_segmentation_32_4.png differ diff --git a/v2.6.5/_modules/cleanlab/benchmarking/noise_generation.html b/v2.6.5/_modules/cleanlab/benchmarking/noise_generation.html new file mode 100644 index 000000000..270897a27 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/benchmarking/noise_generation.html @@ -0,0 +1,1172 @@ + + + + + + + + + + + cleanlab.benchmarking.noise_generation - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.benchmarking.noise_generation

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+
+"""
+Helper methods that are useful for benchmarking cleanlab’s core algorithms.
+These methods introduce synthetic noise into the labels of a classification dataset.
+Specifically, this module provides methods for generating valid noise matrices (for which learning with noise is possible),
+generating noisy labels given a noise matrix, generating valid noise matrices with a specific trace value, and more.
+"""
+
+from typing import Optional
+
+import numpy as np
+from cleanlab.internal.util import value_counts
+from cleanlab.internal.constants import FLOATING_POINT_COMPARISON
+
+
+
[docs]def noise_matrix_is_valid(noise_matrix, py, *, verbose=False) -> bool: + """Given a prior `py` representing ``p(true_label=k)``, checks if the given `noise_matrix` is a + learnable matrix. Learnability means that it is possible to achieve + better than random performance, on average, for the amount of noise in + `noise_matrix`. + + Parameters + ---------- + noise_matrix : np.ndarray + An array of shape ``(K, K)`` representing the conditional probability + matrix ``P(label=k_s|true_label=k_y)`` containing the fraction of + examples in every class, labeled as every other class. Assumes columns of + `noise_matrix` sum to 1. + + py : np.ndarray + An array of shape ``(K,)`` representing the fraction (prior probability) + of each true class label, ``P(true_label = k)``. + + Returns + ------- + is_valid : bool + Whether the noise matrix is a learnable matrix. + """ + + # Number of classes + K = len(py) + + # let's assume some number of training examples for code readability, + # but it doesn't matter what we choose as it's not actually used. + N = float(10000) + + ps = np.dot(noise_matrix, py) # P(true_label=k) + + # P(label=k, true_label=k') + joint_noise = np.multiply(noise_matrix, py) # / float(N) + + # Check that joint_probs is valid probability matrix + if not (abs(joint_noise.sum() - 1.0) < FLOATING_POINT_COMPARISON): + return False + + # Check that noise_matrix is a valid matrix + # i.e. check p(label=k)*p(true_label=k) < p(label=k, true_label=k) + for i in range(K): + C = N * joint_noise[i][i] + E1 = N * joint_noise[i].sum() - C + E2 = N * joint_noise.T[i].sum() - C + O = N - E1 - E2 - C + if verbose: + print( + "E1E2/C", + round(E1 * E2 / C), + "E1", + round(E1), + "E2", + round(E2), + "C", + round(C), + "|", + round(E1 * E2 / C + E1 + E2 + C), + "|", + round(E1 * E2 / C), + "<", + round(O), + ) + print( + round(ps[i] * py[i]), + "<", + round(joint_noise[i][i]), + ":", + ps[i] * py[i] < joint_noise[i][i], + ) + + if not (ps[i] * py[i] < joint_noise[i][i]): + return False + + return True
+ + +
[docs]def generate_noisy_labels(true_labels, noise_matrix) -> np.ndarray: + """Generates noisy `labels` from perfect labels `true_labels`, + "exactly" yielding the provided `noise_matrix` between `labels` and `true_labels`. + + Below we provide a for loop implementation of what this function does. + We do not use this implementation as it is not a fast algorithm, but + it explains as Python pseudocode what is happening in this function. + + Parameters + ---------- + true_labels : np.ndarray + An array of shape ``(N,)`` representing perfect labels, without any + noise. Contains K distinct natural number classes, 0, 1, ..., K-1. + + noise_matrix : np.ndarray + An array of shape ``(K, K)`` representing the conditional probability + matrix ``P(label=k_s|true_label=k_y)`` containing the fraction of + examples in every class, labeled as every other class. Assumes columns of + `noise_matrix` sum to 1. + + Returns + ------- + labels : np.ndarray + An array of shape ``(N,)`` of noisy labels. + + Examples + -------- + + .. code:: python + + # Generate labels + count_joint = (noise_matrix * py * len(y)).round().astype(int) + labels = np.ndarray(y) + for k_s in range(K): + for k_y in range(K): + if k_s != k_y: + idx_flip = np.where((labels==k_y)&(true_label==k_y))[0] + if len(idx_flip): # pragma: no cover + labels[np.random.choice( + idx_flip, + count_joint[k_s][k_y], + replace=False, + )] = k_s + """ + + # Make y a numpy array, if it is not + true_labels = np.asarray(true_labels) + + # Number of classes + K = len(noise_matrix) + + # Compute p(true_label=k) + py = value_counts(true_labels) / float(len(true_labels)) + + # Counts of pairs (labels, y) + count_joint = (noise_matrix * py * len(true_labels)).astype(int) + # Remove diagonal entries as they do not involve flipping of labels. + np.fill_diagonal(count_joint, 0) + + # Generate labels + labels = np.array(true_labels) + for k in range(K): # Iterate over true_label == k + # Get the noisy labels that have non-zero counts + labels_per_class = np.where(count_joint[:, k] != 0)[0] + # Find out how many of each noisy label we need to flip to + label_counts = count_joint[labels_per_class, k] + # Create a list of the new noisy labels + noise = [labels_per_class[i] for i, c in enumerate(label_counts) for z in range(c)] + # Randomly choose y labels for class k and set them to the noisy labels. + idx_flip = np.where((labels == k) & (true_labels == k))[0] + if len(idx_flip) and len(noise) and len(idx_flip) >= len(noise): # pragma: no cover + labels[np.random.choice(idx_flip, len(noise), replace=False)] = noise + + # Validate that labels indeed produces the correct noise_matrix (or close to it) + # Compute the actual noise matrix induced by labels + # counts = confusion_matrix(labels, true_labels).astype(float) + # new_noise_matrix = counts / counts.sum(axis=0) + # assert(np.linalg.norm(noise_matrix - new_noise_matrix) <= 2) + + return labels
+ + +
[docs]def generate_noise_matrix_from_trace( + K, + trace, + *, + max_trace_prob=1.0, + min_trace_prob=1e-5, + max_noise_rate=1 - 1e-5, + min_noise_rate=0.0, + valid_noise_matrix=True, + py=None, + frac_zero_noise_rates=0.0, + seed=0, + max_iter=10000, +) -> Optional[np.ndarray]: + """Generates a ``K x K`` noise matrix ``P(label=k_s|true_label=k_y)`` with + ``np.sum(np.diagonal(noise_matrix))`` equal to the given `trace`. + + Parameters + ---------- + K : int + Creates a noise matrix of shape ``(K, K)``. Implies there are + K classes for learning with noisy labels. + + trace : float + Sum of diagonal entries of array of random probabilities returned. + + max_trace_prob : float + Maximum probability of any entry in the trace of the return matrix. + + min_trace_prob : float + Minimum probability of any entry in the trace of the return matrix. + + max_noise_rate : float + Maximum noise_rate (non-diagonal entry) in the returned np.ndarray. + + min_noise_rate : float + Minimum noise_rate (non-diagonal entry) in the returned np.ndarray. + + valid_noise_matrix : bool, default=True + If ``True``, returns a matrix having all necessary conditions for + learning with noisy labels. In particular, ``p(true_label=k)p(label=k) < p(true_label=k,label=k)`` + is satisfied. This requires that ``trace > 1``. + + py : np.ndarray + An array of shape ``(K,)`` representing the fraction (prior probability) of each true class label, ``P(true_label = k)``. + This argument is **required** when ``valid_noise_matrix=True``. + + frac_zero_noise_rates : float + The fraction of the ``n*(n-1)`` noise rates + that will be set to 0. Note that if you set a high trace, it may be + impossible to also have a low fraction of zero noise rates without + forcing all non-1 diagonal values. Instead, when this happens we only + guarantee to produce a noise matrix with `frac_zero_noise_rates` *or + higher*. The opposite occurs with a small trace. + + seed : int + Seeds the random number generator for numpy. + + max_iter : int, default=10000 + The max number of tries to produce a valid matrix before returning ``None``. + + Returns + ------- + noise_matrix : np.ndarray or None + An array of shape ``(K, K)`` representing the noise matrix ``P(label=k_s|true_label=k_y)`` with `trace` + equal to ``np.sum(np.diagonal(noise_matrix))``. This a conditional probability matrix and a + left stochastic matrix. Returns ``None`` if `max_iter` is exceeded. + """ + + if valid_noise_matrix and trace <= 1: + raise ValueError( + "trace = {}. trace > 1 is necessary for a".format(trace) + + " valid noise matrix to be returned (valid_noise_matrix == True)" + ) + + if valid_noise_matrix and py is None and K > 2: + raise ValueError( + "py must be provided (not None) if the input parameter" + " valid_noise_matrix == True" + ) + + if K <= 1: + raise ValueError("K must be >= 2, but K = {}.".format(K)) + + if max_iter < 1: + return None + + np.random.seed(seed) + + # Special (highly constrained) case with faster solution. + # Every 2 x 2 noise matrix with trace > 1 is valid because p(y) is not used + if K == 2: + if frac_zero_noise_rates >= 0.5: # Include a single zero noise rate + noise_mat = np.array( + [ + [1.0, 1 - (trace - 1.0)], + [0.0, trace - 1.0], + ] + ) + return noise_mat if np.random.rand() > 0.5 else np.rot90(noise_mat, k=2) + else: # No zero noise rates + diag = generate_n_rand_probabilities_that_sum_to_m(2, trace) + noise_matrix = np.array( + [ + [diag[0], 1 - diag[1]], + [1 - diag[0], diag[1]], + ] + ) + return noise_matrix + + # K > 2 + for z in range(max_iter): + noise_matrix = np.zeros(shape=(K, K)) + + # Randomly generate noise_matrix diagonal. + nm_diagonal = generate_n_rand_probabilities_that_sum_to_m( + n=K, + m=trace, + max_prob=max_trace_prob, + min_prob=min_trace_prob, + ) + np.fill_diagonal(noise_matrix, nm_diagonal) + + # Randomly distribute number of zero-noise-rates across columns + num_col_with_noise = K - np.count_nonzero(1 == nm_diagonal) + num_zero_noise_rates = int(K * (K - 1) * frac_zero_noise_rates) + # Remove zeros already in [1,0,..,0] columns + num_zero_noise_rates -= (K - num_col_with_noise) * (K - 1) + num_zero_noise_rates = np.maximum(num_zero_noise_rates, 0) # Prevent negative + num_zero_noise_rates_per_col = ( + randomly_distribute_N_balls_into_K_bins( + N=num_zero_noise_rates, + K=num_col_with_noise, + max_balls_per_bin=K - 2, + # 2 = one for diagonal, and one to sum to 1 + min_balls_per_bin=0, + ) + if K > 2 + else np.array([0, 0]) + ) # Special case when K == 2 + stack_nonzero_noise_rates_per_col = list(K - 1 - num_zero_noise_rates_per_col)[::-1] + # Randomly generate noise rates for columns with noise. + for col in np.arange(K)[nm_diagonal != 1]: + num_noise = stack_nonzero_noise_rates_per_col.pop() + # Generate num_noise noise_rates for the given column. + noise_rates_col = list( + generate_n_rand_probabilities_that_sum_to_m( + n=num_noise, + m=1 - nm_diagonal[col], + max_prob=max_noise_rate, + min_prob=min_noise_rate, + ) + ) + # Randomly select which rows of the noisy column to assign the + # random noise rates + rows = np.random.choice( + [row for row in range(K) if row != col], num_noise, replace=False + ) + for row in rows: + noise_matrix[row][col] = noise_rates_col.pop() + if not valid_noise_matrix or noise_matrix_is_valid(noise_matrix, py): + return noise_matrix + + return None
+ + +
[docs]def generate_n_rand_probabilities_that_sum_to_m( + n, + m, + *, + max_prob=1.0, + min_prob=0.0, +) -> np.ndarray: + """ + Generates `n` random probabilities that sum to `m`. + + When ``min_prob=0`` and ``max_prob = 1.0``, use + ``np.random.dirichlet(np.ones(n))*m`` instead. + + Parameters + ---------- + n : int + Length of array of random probabilities to be returned. + + m : float + Sum of array of random probabilities that is returned. + + max_prob : float, default=1.0 + Maximum probability of any entry in the returned array. Must be between 0 and 1. + + min_prob : float, default=0.0 + Minimum probability of any entry in the returned array. Must be between 0 and 1. + + Returns + ------- + probabilities : np.ndarray + An array of probabilities. + """ + + if n == 0: + return np.array([]) + if (max_prob + FLOATING_POINT_COMPARISON) < m / float(n): + raise ValueError( + "max_prob must be greater or equal to m / n, but " + + "max_prob = " + + str(max_prob) + + ", m = " + + str(m) + + ", n = " + + str(n) + + ", m / n = " + + str(m / float(n)) + ) + if min_prob > (m + FLOATING_POINT_COMPARISON) / float(n): + raise ValueError( + "min_prob must be less or equal to m / n, but " + + "max_prob = " + + str(max_prob) + + ", m = " + + str(m) + + ", n = " + + str(n) + + ", m / n = " + + str(m / float(n)) + ) + + # When max_prob = 1, min_prob = 0, the next two lines are equivalent to: + # intermediate = np.sort(np.append(np.random.uniform(0, 1, n-1), [0, 1])) + # result = (intermediate[1:] - intermediate[:-1]) * m + result = np.random.dirichlet(np.ones(n)) * m + + min_val = min(result) + max_val = max(result) + while max_val > (max_prob + FLOATING_POINT_COMPARISON): + new_min = min_val + (max_val - max_prob) + # This adjustment prevents the new max from always being max_prob. + adjustment = (max_prob - new_min) * np.random.rand() + result[np.argmin(result)] = new_min + adjustment + result[np.argmax(result)] = max_prob - adjustment + min_val = min(result) + max_val = max(result) + + min_val = min(result) + max_val = max(result) + while min_val < (min_prob - FLOATING_POINT_COMPARISON): + min_val = min(result) + max_val = max(result) + new_max = max_val - (min_prob - min_val) + # This adjustment prevents the new min from always being min_prob. + adjustment = (new_max - min_prob) * np.random.rand() + result[np.argmax(result)] = new_max - adjustment + result[np.argmin(result)] = min_prob + adjustment + min_val = min(result) + max_val = max(result) + + return result
+ + +
[docs]def randomly_distribute_N_balls_into_K_bins( + N, # int + K, # int + *, + max_balls_per_bin=None, + min_balls_per_bin=None, +) -> np.ndarray: + """Returns a uniformly random numpy integer array of length `N` that sums + to `K`. + + Parameters + ---------- + N : int + Number of balls. + K : int + Number of bins. + max_balls_per_bin : int + Ensure that each bin contains at most `max_balls_per_bin` balls. + min_balls_per_bin : int + Ensure that each bin contains at least `min_balls_per_bin` balls. + + Returns + ------- + int_array : np.array + Length `N` array that sums to `K`. + """ + + if N == 0: + return np.zeros(K, dtype=int) + if max_balls_per_bin is None: + max_balls_per_bin = N + else: + max_balls_per_bin = min(max_balls_per_bin, N) + if min_balls_per_bin is None: + min_balls_per_bin = 0 + else: + min_balls_per_bin = min(min_balls_per_bin, N / K) + if N / float(K) > max_balls_per_bin: + N = max_balls_per_bin * K + + arr = np.round( + generate_n_rand_probabilities_that_sum_to_m( + n=K, + m=1, + max_prob=max_balls_per_bin / float(N), + min_prob=min_balls_per_bin / float(N), + ) + * N + ) + while sum(arr) != N: + while sum(arr) > N: # pragma: no cover + arr[np.argmax(arr)] -= 1 + while sum(arr) < N: + arr[np.argmin(arr)] += 1 + return arr.astype(int)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/classification.html b/v2.6.5/_modules/cleanlab/classification.html new file mode 100644 index 000000000..39fc4ded2 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/classification.html @@ -0,0 +1,1752 @@ + + + + + + + + + + + cleanlab.classification - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.classification

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+cleanlab can be used for learning with noisy labels for any dataset and model.
+
+For regular (multi-class) classification tasks,
+the `~cleanlab.classification.CleanLearning` class wraps an instance of an
+sklearn classifier. The wrapped classifier must adhere to the `sklearn estimator API
+<https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_,
+meaning it must define four functions:
+
+* ``clf.fit(X, y, sample_weight=None)``
+* ``clf.predict_proba(X)``
+* ``clf.predict(X)``
+* ``clf.score(X, y, sample_weight=None)``
+
+where `X` contains data (i.e. features), `y` contains labels (with elements in 0, 1, ..., K-1,
+where K is the number of classes). The first index of `X` and of `y` should correspond to the different examples in the dataset,
+such that ``len(X) = len(y) = N`` (sample-size). Here `sample_weight` re-weights examples in
+the loss function while training (supporting `sample_weight` in your classifier is recommended but optional).
+
+Furthermore, your estimator should be correctly clonable via
+`sklearn.base.clone <https://scikit-learn.org/stable/modules/generated/sklearn.base.clone.html>`_:
+cleanlab internally creates multiple instances of the
+estimator, and if you e.g. manually wrap a PyTorch model, you must ensure that
+every call to the estimator's ``__init__()`` creates an independent instance of
+the model (for sklearn compatibility, the weights of neural network models should typically be initialized inside of ``clf.fit()``).
+
+Note
+----
+There are two new notions of confidence in this package:
+
+1. Confident *examples* --- examples we are confident are labeled correctly.
+We prune everything else. Mathematically, this means keeping the examples
+with high probability of belong to their provided label class.
+
+2. Confident *errors* --- examples we are confident are labeled erroneously.
+We prune these. Mathematically, this means pruning the examples with
+high probability of belong to a different class.
+
+Examples
+--------
+>>> from cleanlab.classification import CleanLearning
+>>> from sklearn.linear_model import LogisticRegression as LogReg
+>>> cl = CleanLearning(clf=LogReg()) # Pass in any classifier.
+>>> cl.fit(X_train, labels_maybe_with_errors)
+>>> # Estimate the predictions as if you had trained without label issues.
+>>> pred = cl.predict(X_test)
+
+If the model is not sklearn-compatible by default, it might be the case that
+standard packages can adapt the model. For example, you can adapt PyTorch
+models using `skorch <https://skorch.readthedocs.io/>`_ and adapt Keras models
+using `SciKeras <https://www.adriangb.com/scikeras/>`_.
+
+If an open-source adapter doesn't already exist, you can manually wrap the
+model to be sklearn-compatible. This is made easy by inheriting from
+`sklearn.base.BaseEstimator
+<https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html>`_:
+
+.. code:: python
+
+    from sklearn.base import BaseEstimator
+
+    class YourModel(BaseEstimator):
+        def __init__(self, ):
+            pass
+        def fit(self, X, y, sample_weight=None):
+            pass
+        def predict(self, X):
+            pass
+        def predict_proba(self, X):
+            pass
+        def score(self, X, y, sample_weight=None):
+            pass
+
+Note
+----
+
+* `labels` refers to the given labels in the original dataset, which may have errors
+* labels must be integers in 0, 1, ..., K-1, where K is the total number of classes
+
+Note
+----
+
+Confident learning is the state-of-the-art (`Northcutt et al., 2021 <https://jair.org/index.php/jair/article/view/12125>`_) for
+weak supervision, finding label issues in datasets, learning with noisy
+labels, uncertainty estimation, and more. It works with *any* classifier,
+including deep neural networks. See the `clf` parameter.
+
+Confident learning is a subfield of theory and algorithms of machine learning with noisy labels.
+Cleanlab achieves state-of-the-art performance of any open-sourced implementation of confident
+learning across a variety of tasks like multi-class classification, multi-label classification,
+and PU learning.
+
+Given any classifier having the `predict_proba` method, an input feature
+matrix `X`, and a discrete vector of noisy labels `labels`, confident learning estimates the
+classifications that would be obtained if the *true labels* had instead been provided
+to the classifier during training. `labels` denotes the noisy labels instead of
+the :math:`\\tilde{y}` used in confident learning paper.
+"""
+
+from sklearn.linear_model import LogisticRegression as LogReg
+from sklearn.metrics import accuracy_score
+from sklearn.base import BaseEstimator
+import numpy as np
+import pandas as pd
+import inspect
+import warnings
+from typing import Optional, TYPE_CHECKING
+
+if TYPE_CHECKING:  # pragma: no cover
+    from typing_extensions import Self
+
+from cleanlab.rank import get_label_quality_scores
+from cleanlab import filter
+from cleanlab.internal.util import (
+    value_counts,
+    compress_int_array,
+    subset_X_y,
+    get_num_classes,
+    force_two_dimensions,
+)
+from cleanlab.count import (
+    estimate_py_noise_matrices_and_cv_pred_proba,
+    estimate_py_and_noise_matrices_from_probabilities,
+    estimate_cv_predicted_probabilities,
+    estimate_latent,
+    compute_confident_joint,
+)
+from cleanlab.internal.latent_algebra import (
+    compute_py_inv_noise_matrix,
+    compute_noise_matrix_from_inverse,
+)
+from cleanlab.internal.validation import (
+    assert_valid_inputs,
+    labels_to_array,
+)
+from cleanlab.experimental.label_issues_batched import find_label_issues_batched
+
+
+
[docs]class CleanLearning(BaseEstimator): # Inherits sklearn classifier + """ + CleanLearning = Machine Learning with cleaned data (even when training on messy, error-ridden data). + + Automated and robust learning with noisy labels using any dataset and any model. This class + trains a model `clf` with error-prone, noisy labels as if the model had been instead trained + on a dataset with perfect labels. It achieves this by cleaning out the error and providing + cleaned data while training. This class is currently intended for standard (multi-class) classification tasks. + + Parameters + ---------- + clf : estimator instance, optional + A classifier implementing the `sklearn estimator API + <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_, + defining the following functions: + + * ``clf.fit(X, y, sample_weight=None)`` + * ``clf.predict_proba(X)`` + * ``clf.predict(X)`` + * ``clf.score(X, y, sample_weight=None)`` + + See :py:mod:`cleanlab.experimental` for examples of sklearn wrappers, + e.g. around PyTorch and FastText. + + If the model is not sklearn-compatible by default, it might be the case that + standard packages can adapt the model. For example, you can adapt PyTorch + models using `skorch <https://skorch.readthedocs.io/>`_ and adapt Keras models + using `SciKeras <https://www.adriangb.com/scikeras/>`_. + + Stores the classifier used in Confident Learning. + Default classifier used is `sklearn.linear_model.LogisticRegression + <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`_. + Default classifier assumes that indexing along the first dimension of the dataset corresponds to + selecting different training examples. + + seed : int, optional + Set the default state of the random number generator used to split + the cross-validated folds. By default, uses `np.random` current random state. + + cv_n_folds : int, default=5 + This class needs holdout predicted probabilities for every data example + and if not provided, uses cross-validation to compute them. + `cv_n_folds` sets the number of cross-validation folds used to compute + out-of-sample probabilities for each example in `X`. + + converge_latent_estimates : bool, optional + If true, forces numerical consistency of latent estimates. Each is + estimated independently, but they are related mathematically with closed + form equivalences. This will iteratively enforce consistency. + + pulearning : {None, 0, 1}, default=None + Only works for 2 class datasets. Set to the integer of the class that is + perfectly labeled (you are certain that there are no errors in that class). + + find_label_issues_kwargs : dict, optional + Keyword arguments to pass into :py:func:`filter.find_label_issues + <cleanlab.filter.find_label_issues>`. Particularly useful options include: + `filter_by`, `frac_noise`, `min_examples_per_class` (which all impact ML accuracy), + `n_jobs` (set this to 1 to disable multi-processing if it's causing issues). + + label_quality_scores_kwargs : dict, optional + Keyword arguments to pass into :py:func:`rank.get_label_quality_scores + <cleanlab.rank.get_label_quality_scores>`. Options include: `method`, `adjust_pred_probs`. + + verbose : bool, default=False + Controls how much output is printed. Set to ``False`` to suppress print + statements. + + low_memory: bool, default=False + Set as ``True`` if you have a big dataset with limited memory. + Uses :py:func:`experimental.label_issues_batched.find_label_issues_batched <cleanlab.experimental.label_issues_batched>` + to find label issues. + """ + + def __init__( + self, + clf=None, + *, + seed=None, + # Hyper-parameters (used by .fit() function) + cv_n_folds=5, + converge_latent_estimates=False, + pulearning=None, + find_label_issues_kwargs={}, + label_quality_scores_kwargs={}, + verbose=False, + low_memory=False, + ): + self._default_clf = False + if clf is None: + # Use logistic regression if no classifier is provided. + clf = LogReg(solver="lbfgs") + self._default_clf = True + + # Make sure the given classifier has the appropriate methods defined. + if not hasattr(clf, "fit"): + raise ValueError("The classifier (clf) must define a .fit() method.") + if not hasattr(clf, "predict_proba"): + raise ValueError("The classifier (clf) must define a .predict_proba() method.") + if not hasattr(clf, "predict"): + raise ValueError("The classifier (clf) must define a .predict() method.") + + if seed is not None: + np.random.seed(seed=seed) + + self.clf = clf + self.seed = seed + self.cv_n_folds = cv_n_folds + self.converge_latent_estimates = converge_latent_estimates + self.pulearning = pulearning + self.find_label_issues_kwargs = find_label_issues_kwargs + self.label_quality_scores_kwargs = label_quality_scores_kwargs + self.verbose = verbose + self.label_issues_df = None + self.label_issues_mask = None + self.sample_weight = None + self.confident_joint = None + self.py = None + self.ps = None + self.num_classes = None + self.noise_matrix = None + self.inverse_noise_matrix = None + self.clf_kwargs = None + self.clf_final_kwargs = None + self.low_memory = low_memory + +
[docs] def fit( + self, + X, + labels=None, + *, + pred_probs=None, + thresholds=None, + noise_matrix=None, + inverse_noise_matrix=None, + label_issues=None, + sample_weight=None, + clf_kwargs={}, + clf_final_kwargs={}, + validation_func=None, + y=None, + ) -> "Self": + """ + Train the model `clf` with error-prone, noisy labels as if + the model had been instead trained on a dataset with the correct labels. + `fit` achieves this by first training `clf` via cross-validation on the noisy data, + using the resulting predicted probabilities to identify label issues, + pruning the data with label issues, and finally training `clf` on the remaining clean data. + + Parameters + ---------- + X : np.ndarray or DatasetLike + Data features (i.e. training inputs for ML), typically an array of shape ``(N, ...)``, + where N is the number of examples. + Supported `DatasetLike` types beyond ``np.ndarray`` include: + ``pd.DataFrame``, ``scipy.sparse.csr_matrix``, ``torch.utils.data.Dataset``, ``tensorflow.data.Dataset``, + or any dataset object ``X`` that supports list-based indexing: + ``X[index_list]`` to select a subset of training examples. + Your classifier that this instance was initialized with, + ``clf``, must be able to ``fit()`` and ``predict()`` data of this format. + + Note + ---- + If providing `X` as a ``tensorflow.data.Dataset``, + make sure ``shuffle()`` has been called before ``batch()`` (if shuffling) + and no other order-destroying operation (eg. ``repeat()``) has been applied. + + labels : array_like + An array of shape ``(N,)`` of noisy classification labels, where some labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + Supported `array_like` types include: ``np.ndarray``, ``pd.Series``, or ``list``. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to class 0, 1, ..., K-1. + `pred_probs` should be :ref:`out-of-sample, eg. computed via cross-validation <pred_probs_cross_val>`. + If provided, `pred_probs` will be used to find label issues rather than the ``clf`` classifier. + + Note + ---- + If you are not sure, leave ``pred_probs=None`` (the default) and it + will be computed for you using cross-validation with the provided model. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + noise_matrix : np.ndarray, optional + An array of shape ``(K, K)`` representing the conditional probability + matrix ``P(label=k_s | true label=k_y)``, the + fraction of examples in every class, labeled as every other class. + Assumes columns of `noise_matrix` sum to 1. + + inverse_noise_matrix : np.ndarray, optional + An array of shape ``(K, K)`` representing the conditional probability + matrix ``P(true label=k_y | label=k_s)``, + the estimated fraction observed examples in each class ``k_s`` + that are mislabeled examples from every other class ``k_y``, + Assumes columns of `inverse_noise_matrix` sum to 1. + + label_issues : pd.DataFrame or np.ndarray, optional + Specifies the label issues for each example in dataset. + If ``pd.DataFrame``, must be formatted as the one returned by: + :py:meth:`CleanLearning.find_label_issues + <cleanlab.classification.CleanLearning.find_label_issues>` or + `~cleanlab.classification.CleanLearning.get_label_issues`. + If ``np.ndarray``, must contain either boolean `label_issues_mask` as output by: + default :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>`, + or integer indices as output by + :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + with its `return_indices_ranked_by` argument specified. + Providing this argument significantly reduces the time this method takes to run by + skipping the slow cross-validation step necessary to find label issues. + Examples identified to have label issues will be + pruned from the data before training the final `clf` model. + + Caution: If you provide `label_issues` without having previously called + `~cleanlab.classification.CleanLearning.find_label_issues` + e.g. as a ``np.ndarray``, then some functionality like training with sample weights may be disabled. + + sample_weight : array_like, optional + Array of weights with shape ``(N,)`` that are assigned to individual samples, + assuming total number of examples in dataset is `N`. + If not provided, samples may still be weighted by the estimated noise in the class they are labeled as. + + clf_kwargs : dict, optional + Optional keyword arguments to pass into `clf`'s ``fit()`` method. + + clf_final_kwargs : dict, optional + Optional extra keyword arguments to pass into the final `clf` ``fit()`` on the cleaned data + but not the `clf` ``fit()`` in each fold of cross-validation on the noisy data. + The final ``fit()`` will also receive `clf_kwargs`, + but these may be overwritten by values in `clf_final_kwargs`. + This can be useful for training differently in the final ``fit()`` + than during cross-validation. + + validation_func : callable, optional + Optional callable function that takes two arguments, `X_val`, `y_val`, and returns a dict + of keyword arguments passed into to ``clf.fit()`` which may be functions of the validation + data in each cross-validation fold. Specifies how to map the validation data split in each + cross-validation fold into the appropriate format to pass into `clf`'s ``fit()`` method, assuming + ``clf.fit()`` can utilize validation data if it is appropriately passed in (eg. for early-stopping). + Eg. if your model's ``fit()`` method is called using ``clf.fit(X, y, X_validation, y_validation)``, + then you could set ``validation_func = f`` where + ``def f(X_val, y_val): return {"X_validation": X_val, "y_validation": y_val}`` + + Note that `validation_func` will be ignored in the final call to `clf.fit()` on the + cleaned subset of the data. This argument is only for allowing `clf` to access the + validation data in each cross-validation fold (eg. for early-stopping or hyperparameter-selection + purposes). If you want to pass in validation data even in the final training call to ``clf.fit()`` + on the cleaned data subset, you should explicitly pass in that data yourself + (eg. via `clf_final_kwargs` or `clf_kwargs`). + + y: array_like, optional + Alternative argument that can be specified instead of `labels`. + Specifying `y` has the same effect as specifying `labels`, + and is offered as an alternative for compatibility with sklearn. + + Returns + ------- + self : CleanLearning + Fitted estimator that has all the same methods as any sklearn estimator. + + + After calling ``self.fit()``, this estimator also stores extra attributes such as: + + * *self.label_issues_df*: a ``pd.DataFrame`` accessible via + `~cleanlab.classification.CleanLearning.get_label_issues` + of similar format as the one returned by: `~cleanlab.classification.CleanLearning.find_label_issues`. + See documentation of :py:meth:`CleanLearning.find_label_issues<cleanlab.classification.CleanLearning.find_label_issues>` + for column descriptions. + + + After calling ``self.fit()``, `self.label_issues_df` may also contain an extra column: + + * *sample_weight*: Numeric values that were used to weight examples during + the final training of `clf` in ``CleanLearning.fit()``. + `sample_weight` column will only be present if automatic sample weights were actually used. + These automatic weights are assigned to each example based on the class it belongs to, + i.e. there are only num_classes unique sample_weight values. + The sample weight for an example belonging to class k is computed as ``1 / p(given_label = k | true_label = k)``. + This sample_weight normalizes the loss to effectively trick `clf` into learning with the distribution + of the true labels by accounting for the noisy data pruned out prior to training on cleaned data. + In other words, examples with label issues were removed, so this weights the data proportionally + so that the classifier trains as if it had all the true labels, + not just the subset of cleaned data left after pruning out the label issues. + + Note + ---- + If ``CleanLearning.fit()`` does not work for your data/model, you can run the same procedure yourself: + * Utilize :ref:`cross-validation <pred_probs_cross_val>` to get out-of-sample `pred_probs` for each example. + * Call :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` with `pred_probs`. + * Filter the examples with detected issues and train your model on the remaining data. + """ + + if labels is not None and y is not None: + raise ValueError("You must specify either `labels` or `y`, but not both.") + if y is not None: + labels = y + if labels is None: + raise ValueError("You must specify `labels`.") + if self._default_clf: + X = force_two_dimensions(X) + + self.clf_final_kwargs = {**clf_kwargs, **clf_final_kwargs} + + if "sample_weight" in clf_kwargs: + raise ValueError( + "sample_weight should be provided directly in fit() or in clf_final_kwargs rather than in clf_kwargs" + ) + + if sample_weight is not None: + if "sample_weight" not in inspect.signature(self.clf.fit).parameters: + raise ValueError( + "sample_weight must be a supported fit() argument for your model in order to be specified here" + ) + + if label_issues is None: + if self.label_issues_df is not None and self.verbose: + print( + "If you already ran self.find_label_issues() and don't want to recompute, you " + "should pass the label_issues in as a parameter to this function next time." + ) + label_issues = self.find_label_issues( + X, + labels, + pred_probs=pred_probs, + thresholds=thresholds, + noise_matrix=noise_matrix, + inverse_noise_matrix=inverse_noise_matrix, + clf_kwargs=clf_kwargs, + validation_func=validation_func, + ) + + else: # set args that may not have been set if `self.find_label_issues()` wasn't called yet + assert_valid_inputs(X, labels, pred_probs) + if self.num_classes is None: + if noise_matrix is not None: + label_matrix = noise_matrix + else: + label_matrix = inverse_noise_matrix + self.num_classes = get_num_classes(labels, pred_probs, label_matrix) + if self.verbose: + print("Using provided label_issues instead of finding label issues.") + if self.label_issues_df is not None: + print( + "These will overwrite self.label_issues_df and will be returned by " + "`self.get_label_issues()`. " + ) + + # label_issues always overwrites self.label_issues_df. Ensure it is properly formatted: + self.label_issues_df = self._process_label_issues_arg(label_issues, labels) + + if "label_quality" not in self.label_issues_df.columns and pred_probs is not None: + if self.verbose: + print("Computing label quality scores based on given pred_probs ...") + self.label_issues_df["label_quality"] = get_label_quality_scores( + labels, pred_probs, **self.label_quality_scores_kwargs + ) + + self.label_issues_mask = self.label_issues_df["is_label_issue"].to_numpy() + x_mask = np.invert(self.label_issues_mask) + x_cleaned, labels_cleaned = subset_X_y(X, labels, x_mask) + if self.verbose: + print(f"Pruning {np.sum(self.label_issues_mask)} examples with label issues ...") + print(f"Remaining clean data has {len(labels_cleaned)} examples.") + + if sample_weight is None: + # Check if sample_weight in args of clf.fit() + if ( + "sample_weight" in inspect.signature(self.clf.fit).parameters + and "sample_weight" not in self.clf_final_kwargs + and self.noise_matrix is not None + ): + # Re-weight examples in the loss function for the final fitting + # such that the "apparent" original number of examples in each class + # is preserved, even though the pruned sets may differ. + if self.verbose: + print( + "Assigning sample weights for final training based on estimated label quality." + ) + sample_weight_auto = np.ones(np.shape(labels_cleaned)) + for k in range(self.num_classes): + sample_weight_k = 1.0 / max( + self.noise_matrix[k][k], 1e-3 + ) # clip sample weights + sample_weight_auto[labels_cleaned == k] = sample_weight_k + + sample_weight_expanded = np.zeros( + len(labels) + ) # pad pruned examples with zeros, length of original dataset + sample_weight_expanded[x_mask] = sample_weight_auto + # Store the sample weight for every example in the original, unfiltered dataset + self.label_issues_df["sample_weight"] = sample_weight_expanded + self.sample_weight = self.label_issues_df[ + "sample_weight" + ] # pointer to here to avoid duplication + self.clf_final_kwargs["sample_weight"] = sample_weight_auto + if self.verbose: + print("Fitting final model on the clean data ...") + else: + if self.verbose: + if "sample_weight" in self.clf_final_kwargs: + print("Fitting final model on the clean data with custom sample_weight ...") + else: + if ( + "sample_weight" in inspect.signature(self.clf.fit).parameters + and self.noise_matrix is None + ): + print( + "Cannot utilize sample weights for final training! " + "Why this matters: during final training, sample weights help account for the amount of removed data in each class. " + "This helps ensure the correct class prior for the learned model. " + "To use sample weights, you need to either provide the noise_matrix or have previously called self.find_label_issues() instead of filter.find_label_issues() which computes them for you." + ) + print("Fitting final model on the clean data ...") + + elif sample_weight is not None and "sample_weight" not in self.clf_final_kwargs: + self.clf_final_kwargs["sample_weight"] = sample_weight[x_mask] + if self.verbose: + print("Fitting final model on the clean data with custom sample_weight ...") + + else: # pragma: no cover + if self.verbose: + if "sample_weight" in self.clf_final_kwargs: + print("Fitting final model on the clean data with custom sample_weight ...") + else: + print("Fitting final model on the clean data ...") + + self.clf.fit(x_cleaned, labels_cleaned, **self.clf_final_kwargs) + + if self.verbose: + print( + "Label issues stored in label_issues_df DataFrame accessible via: self.get_label_issues(). " + "Call self.save_space() to delete this potentially large DataFrame attribute." + ) + return self
+ +
[docs] def predict(self, *args, **kwargs) -> np.ndarray: + """Predict class labels using your wrapped classifier `clf`. + Works just like ``clf.predict()``. + + Parameters + ---------- + X : np.ndarray or DatasetLike + Test data in the same format expected by your wrapped classifier. + + Returns + ------- + class_predictions : np.ndarray + Vector of class predictions for the test examples. + """ + if self._default_clf: + if args: + X = args[0] + elif "X" in kwargs: + X = kwargs["X"] + del kwargs["X"] + else: + raise ValueError("No input provided to predict, please provide X.") + X = force_two_dimensions(X) + new_args = (X,) + args[1:] + return self.clf.predict(*new_args, **kwargs) + else: + return self.clf.predict(*args, **kwargs)
+ +
[docs] def predict_proba(self, *args, **kwargs) -> np.ndarray: + """Predict class probabilities ``P(true label=k)`` using your wrapped classifier `clf`. + Works just like ``clf.predict_proba()``. + + Parameters + ---------- + X : np.ndarray or DatasetLike + Test data in the same format expected by your wrapped classifier. + + Returns + ------- + pred_probs : np.ndarray + ``(N x K)`` array of predicted class probabilities, one row for each test example. + """ + if self._default_clf: + if args: + X = args[0] + elif "X" in kwargs: + X = kwargs["X"] + del kwargs["X"] + else: + raise ValueError("No input provided to predict, please provide X.") + X = force_two_dimensions(X) + new_args = (X,) + args[1:] + return self.clf.predict_proba(*new_args, **kwargs) + else: + return self.clf.predict_proba(*args, **kwargs)
+ +
[docs] def score(self, X, y, sample_weight=None) -> float: + """Evaluates your wrapped classifier `clf`'s score on a test set `X` with labels `y`. + Uses your model's default scoring function, or simply accuracy if your model as no ``"score"`` attribute. + + Parameters + ---------- + X : np.ndarray or DatasetLike + Test data in the same format expected by your wrapped classifier. + + y : array_like + Test labels in the same format as labels previously used in ``fit()``. + + sample_weight : np.ndarray, optional + An array of shape ``(N,)`` or ``(N, 1)`` used to weight each test example when computing the score. + + Returns + ------- + score: float + Number quantifying the performance of this classifier on the test data. + """ + if self._default_clf: + X = force_two_dimensions(X) + if hasattr(self.clf, "score"): + # Check if sample_weight in clf.score() + if "sample_weight" in inspect.signature(self.clf.score).parameters: + return self.clf.score(X, y, sample_weight=sample_weight) + else: + return self.clf.score(X, y) + else: + return accuracy_score( + y, + self.clf.predict(X), + sample_weight=sample_weight, + )
+ +
[docs] def find_label_issues( + self, + X=None, + labels=None, + *, + pred_probs=None, + thresholds=None, + noise_matrix=None, + inverse_noise_matrix=None, + save_space=False, + clf_kwargs={}, + validation_func=None, + ) -> pd.DataFrame: + """ + Identifies potential label issues in the dataset using confident learning. + + Runs cross-validation to get out-of-sample pred_probs from `clf` + and then calls :py:func:`filter.find_label_issues + <cleanlab.filter.find_label_issues>` to find label issues. + These label issues are cached internally and returned in a pandas DataFrame. + Kwargs for :py:func:`filter.find_label_issues + <cleanlab.filter.find_label_issues>` must have already been specified + in the initialization of this class, not here. + + Unlike :py:func:`filter.find_label_issues + <cleanlab.filter.find_label_issues>`, which requires `pred_probs`, + this method only requires a classifier and it can do the cross-validation for you. + Both methods return the same boolean mask that identifies which examples have label issues. + This is the preferred method to use if you plan to subsequently invoke: + `~cleanlab.classification.CleanLearning.fit`. + + Note: this method computes the label issues from scratch. To access + previously-computed label issues from this `~cleanlab.classification.CleanLearning` instance, use the + `~cleanlab.classification.CleanLearning.get_label_issues` method. + + This is the method called to find label issues inside + `~cleanlab.classification.CleanLearning.fit` + and they share mostly the same parameters. + + Parameters + ---------- + save_space : bool, optional + If True, then returned `label_issues_df` will not be stored as attribute. + This means some other methods like `self.get_label_issues()` will no longer work. + + + For info about the **other parameters**, see the docstring of `~cleanlab.classification.CleanLearning.fit`. + + Returns + ------- + label_issues_df : pd.DataFrame + DataFrame with info about label issues for each example. + Unless `save_space` argument is specified, same DataFrame is also stored as + `self.label_issues_df` attribute accessible via + `~cleanlab.classification.CleanLearning.get_label_issues`. + Each row represents an example from our dataset and + the DataFrame may contain the following columns: + + * *is_label_issue*: boolean mask for the entire dataset where ``True`` represents a label issue and ``False`` represents an example that is accurately labeled with high confidence. This column is equivalent to `label_issues_mask` output from :py:func:`filter.find_label_issues<cleanlab.filter.find_label_issues>`. + * *label_quality*: Numeric score that measures the quality of each label (how likely it is to be correct, with lower scores indicating potentially erroneous labels). + * *given_label*: Integer indices corresponding to the class label originally given for this example (same as `labels` input). Included here for ease of comparison against `clf` predictions, only present if "predicted_label" column is present. + * *predicted_label*: Integer indices corresponding to the class predicted by trained `clf` model. Only present if ``pred_probs`` were provided as input or computed during label-issue-finding. + * *sample_weight*: Numeric values used to weight examples during the final training of `clf` in `~cleanlab.classification.CleanLearning.fit`. This column may not be present after `self.find_label_issues()` but may be added after call to `~cleanlab.classification.CleanLearning.fit`. For more precise definition of sample weights, see documentation of `~cleanlab.classification.CleanLearning.fit` + """ + + # Check inputs + assert_valid_inputs(X, labels, pred_probs) + labels = labels_to_array(labels) + if noise_matrix is not None and np.trace(noise_matrix) <= 1: + t = np.round(np.trace(noise_matrix), 2) + raise ValueError("Trace(noise_matrix) is {}, but must exceed 1.".format(t)) + if inverse_noise_matrix is not None and (np.trace(inverse_noise_matrix) <= 1): + t = np.round(np.trace(inverse_noise_matrix), 2) + raise ValueError("Trace(inverse_noise_matrix) is {}. Must exceed 1.".format(t)) + + if self._default_clf: + X = force_two_dimensions(X) + if noise_matrix is not None: + label_matrix = noise_matrix + else: + label_matrix = inverse_noise_matrix + self.num_classes = get_num_classes(labels, pred_probs, label_matrix) + if (pred_probs is None) and (len(labels) / self.num_classes < self.cv_n_folds): + raise ValueError( + "Need more data from each class for cross-validation. " + "Try decreasing cv_n_folds (eg. to 2 or 3) in CleanLearning()" + ) + # 'ps' is p(labels=k) + self.ps = value_counts(labels) / float(len(labels)) + + self.clf_kwargs = clf_kwargs + if self.low_memory: + # If needed, compute P(label=k|x), denoted pred_probs (the predicted probabilities) + if pred_probs is None: + if self.verbose: + print( + "Computing out of sample predicted probabilities via " + f"{self.cv_n_folds}-fold cross validation. May take a while ..." + ) + + pred_probs = estimate_cv_predicted_probabilities( + X=X, + labels=labels, + clf=self.clf, + cv_n_folds=self.cv_n_folds, + seed=self.seed, + clf_kwargs=self.clf_kwargs, + validation_func=validation_func, + ) + + if self.verbose: + print("Using predicted probabilities to identify label issues ...") + + if self.find_label_issues_kwargs: + warnings.warn(f"`find_label_issues_kwargs` is not used when `low_memory=True`.") + arg_values = { + "thresholds": thresholds, + "noise_matrix": noise_matrix, + "inverse_noise_matrix": inverse_noise_matrix, + } + for arg_name, arg_val in arg_values.items(): + if arg_val is not None: + warnings.warn(f"`{arg_name}` is not used when `low_memory=True`.") + label_issues_mask = find_label_issues_batched(labels, pred_probs, return_mask=True) + else: + self._process_label_issues_kwargs(self.find_label_issues_kwargs) + # self._process_label_issues_kwargs might set self.confident_joint. If so, we should use it. + if self.confident_joint is not None: + self.py, noise_matrix, inv_noise_matrix = estimate_latent( + confident_joint=self.confident_joint, + labels=labels, + ) + + # If needed, compute noise rates (probability of class-conditional mislabeling). + if noise_matrix is not None: + self.noise_matrix = noise_matrix + if inverse_noise_matrix is None: + if self.verbose: + print("Computing label noise estimates from provided noise matrix ...") + self.py, self.inverse_noise_matrix = compute_py_inv_noise_matrix( + ps=self.ps, + noise_matrix=self.noise_matrix, + ) + if inverse_noise_matrix is not None: + self.inverse_noise_matrix = inverse_noise_matrix + if noise_matrix is None: + if self.verbose: + print( + "Computing label noise estimates from provided inverse noise matrix ..." + ) + self.noise_matrix = compute_noise_matrix_from_inverse( + ps=self.ps, + inverse_noise_matrix=self.inverse_noise_matrix, + ) + + if noise_matrix is None and inverse_noise_matrix is None: + if pred_probs is None: + if self.verbose: + print( + "Computing out of sample predicted probabilities via " + f"{self.cv_n_folds}-fold cross validation. May take a while ..." + ) + ( + self.py, + self.noise_matrix, + self.inverse_noise_matrix, + self.confident_joint, + pred_probs, + ) = estimate_py_noise_matrices_and_cv_pred_proba( + X=X, + labels=labels, + clf=self.clf, + cv_n_folds=self.cv_n_folds, + thresholds=thresholds, + converge_latent_estimates=self.converge_latent_estimates, + seed=self.seed, + clf_kwargs=self.clf_kwargs, + validation_func=validation_func, + ) + else: # pred_probs is provided by user (assumed holdout probabilities) + if self.verbose: + print("Computing label noise estimates from provided pred_probs ...") + ( + self.py, + self.noise_matrix, + self.inverse_noise_matrix, + self.confident_joint, + ) = estimate_py_and_noise_matrices_from_probabilities( + labels=labels, + pred_probs=pred_probs, + thresholds=thresholds, + converge_latent_estimates=self.converge_latent_estimates, + ) + # If needed, compute P(label=k|x), denoted pred_probs (the predicted probabilities) + if pred_probs is None: + if self.verbose: + print( + "Computing out of sample predicted probabilities via " + f"{self.cv_n_folds}-fold cross validation. May take a while ..." + ) + + pred_probs = estimate_cv_predicted_probabilities( + X=X, + labels=labels, + clf=self.clf, + cv_n_folds=self.cv_n_folds, + seed=self.seed, + clf_kwargs=self.clf_kwargs, + validation_func=validation_func, + ) + # If needed, compute the confident_joint (e.g. occurs if noise_matrix was given) + if self.confident_joint is None: + self.confident_joint = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, + thresholds=thresholds, + ) + + # if pulearning == the integer specifying the class without noise. + if self.num_classes == 2 and self.pulearning is not None: # pragma: no cover + # pulearning = 1 (no error in 1 class) implies p(label=1|true_label=0) = 0 + self.noise_matrix[self.pulearning][1 - self.pulearning] = 0 + self.noise_matrix[1 - self.pulearning][1 - self.pulearning] = 1 + # pulearning = 1 (no error in 1 class) implies p(true_label=0|label=1) = 0 + self.inverse_noise_matrix[1 - self.pulearning][self.pulearning] = 0 + self.inverse_noise_matrix[self.pulearning][self.pulearning] = 1 + # pulearning = 1 (no error in 1 class) implies p(label=1,true_label=0) = 0 + self.confident_joint[self.pulearning][1 - self.pulearning] = 0 + self.confident_joint[1 - self.pulearning][1 - self.pulearning] = 1 + + # Add confident joint to find label issue args if it is not previously specified + if "confident_joint" not in self.find_label_issues_kwargs.keys(): + # however does not add if users specify filter_by="confident_learning", as it will throw a warning + if not self.find_label_issues_kwargs.get("filter_by") == "confident_learning": + self.find_label_issues_kwargs["confident_joint"] = self.confident_joint + + labels = labels_to_array(labels) + if self.verbose: + print("Using predicted probabilities to identify label issues ...") + label_issues_mask = filter.find_label_issues( + labels, + pred_probs, + **self.find_label_issues_kwargs, + ) + label_quality_scores = get_label_quality_scores( + labels, pred_probs, **self.label_quality_scores_kwargs + ) + label_issues_df = pd.DataFrame( + {"is_label_issue": label_issues_mask, "label_quality": label_quality_scores} + ) + if self.verbose: + print(f"Identified {np.sum(label_issues_mask)} examples with label issues.") + + predicted_labels = pred_probs.argmax(axis=1) + label_issues_df["given_label"] = compress_int_array(labels, self.num_classes) + label_issues_df["predicted_label"] = compress_int_array(predicted_labels, self.num_classes) + + if not save_space: + if self.label_issues_df is not None and self.verbose: + print( + "Overwriting previously identified label issues stored at self.label_issues_df. " + "self.get_label_issues() will now return the newly identified label issues. " + ) + self.label_issues_df = label_issues_df + self.label_issues_mask = label_issues_df[ + "is_label_issue" + ] # pointer to here to avoid duplication + elif self.verbose: + print( # pragma: no cover + "Not storing label_issues as attributes since save_space was specified." + ) + + return label_issues_df
+ +
[docs] def get_label_issues(self) -> Optional[pd.DataFrame]: + """ + Accessor. Returns `label_issues_df` attribute if previously already computed. + This ``pd.DataFrame`` describes the label issues identified for each example + (each row corresponds to an example). + For column definitions, see the documentation of + `~cleanlab.classification.CleanLearning.find_label_issues`. + + Returns + ------- + label_issues_df : pd.DataFrame + DataFrame with (precomputed) info about label issues for each example. + """ + + if self.label_issues_df is None: + warnings.warn( + "Label issues have not yet been computed. Run `self.find_label_issues()` or `self.fit()` first." + ) + return self.label_issues_df
+ +
[docs] def save_space(self): + """ + Clears non-sklearn attributes of this estimator to save space (in-place). + This includes the DataFrame attribute that stored label issues which may be large for big datasets. + You may want to call this method before deploying this model (i.e. if you just care about producing predictions). + After calling this method, certain non-prediction-related attributes/functionality will no longer be available + (e.g. you cannot call ``self.fit()`` anymore). + """ + + if self.label_issues_df is None and self.verbose: + print("self.label_issues_df is already empty") # pragma: no cover + self.label_issues_df = None + self.sample_weight = None + self.label_issues_mask = None + self.find_label_issues_kwargs = None + self.label_quality_scores_kwargs = None + self.confident_joint = None + self.py = None + self.ps = None + self.num_classes = None + self.noise_matrix = None + self.inverse_noise_matrix = None + self.clf_kwargs = None + self.clf_final_kwargs = None + if self.verbose: + print("Deleted non-sklearn attributes such as label_issues_df to save space.")
+ + def _process_label_issues_kwargs(self, find_label_issues_kwargs): + """ + Private helper function that is used to modify the arguments to passed to + filter.find_label_issues via the CleanLearning.find_label_issues class. Because + this is a classification task, some default parameters change and some errors should + be throne if certain unsupported (for classification) arguments are passed in. This method + handles those parameters inside of find_label_issues_kwargs and throws an error if you pass + in a kwargs argument to filter.find_label_issues that is not supported by the + CleanLearning.find_label_issues() function. + """ + + # Defaults for CleanLearning.find_label_issues() vs filter.find_label_issues() + DEFAULT_FIND_LABEL_ISSUES_KWARGS = {"min_examples_per_class": 10} + find_label_issues_kwargs = {**DEFAULT_FIND_LABEL_ISSUES_KWARGS, **find_label_issues_kwargs} + # Todo: support multi_label classification in the future and remove multi_label from list + unsupported_kwargs = ["return_indices_ranked_by", "multi_label"] + for unsupported_kwarg in unsupported_kwargs: + if unsupported_kwarg in find_label_issues_kwargs: + raise ValueError( + "These kwargs of `find_label_issues()` are not supported " + f"for `CleanLearning`: {unsupported_kwargs}" + ) + # CleanLearning will use this to compute the noise_matrix and inverse_noise_matrix + if "confident_joint" in find_label_issues_kwargs: + self.confident_joint = find_label_issues_kwargs["confident_joint"] + self.find_label_issues_kwargs = find_label_issues_kwargs + + def _process_label_issues_arg(self, label_issues, labels) -> pd.DataFrame: + """ + Helper method to get the label_issues input arg into a formatted DataFrame. + """ + + labels = labels_to_array(labels) + if isinstance(label_issues, pd.DataFrame): + if "is_label_issue" not in label_issues.columns: + raise ValueError( + "DataFrame label_issues must contain column: 'is_label_issue'. " + "See CleanLearning.fit() documentation for label_issues column descriptions." + ) + if len(label_issues) != len(labels): + raise ValueError("label_issues and labels must have same length") + if "given_label" in label_issues.columns and np.any( + label_issues["given_label"].to_numpy() != labels + ): + raise ValueError("labels must match label_issues['given_label']") + return label_issues + elif isinstance(label_issues, np.ndarray): + if not label_issues.dtype in [np.dtype("bool"), np.dtype("int")]: + raise ValueError("If label_issues is numpy.array, dtype must be 'bool' or 'int'.") + if label_issues.dtype is np.dtype("bool") and label_issues.shape != labels.shape: + raise ValueError( + "If label_issues is boolean numpy.array, must have same shape as labels" + ) + if label_issues.dtype is np.dtype("int"): # convert to boolean mask + if len(np.unique(label_issues)) != len(label_issues): + raise ValueError( + "If label_issues.dtype is 'int', must contain unique integer indices " + "corresponding to examples with label issues such as output by: " + "filter.find_label_issues(..., return_indices_ranked_by=...)" + ) + issue_indices = label_issues + label_issues = np.full(len(labels), False, dtype=bool) + if len(issue_indices) > 0: + label_issues[issue_indices] = True + return pd.DataFrame({"is_label_issue": label_issues}) + else: + raise ValueError("label_issues must be either pandas.DataFrame or numpy.array")
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/count.html b/v2.6.5/_modules/cleanlab/count.html new file mode 100644 index 000000000..ed82c322a --- /dev/null +++ b/v2.6.5/_modules/cleanlab/count.html @@ -0,0 +1,2167 @@ + + + + + + + + + + + cleanlab.count - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.count

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to estimate latent structures used for confident learning, including:
+
+* Latent prior of the unobserved, error-less labels: `py`: ``p(y)``
+* Latent noisy channel (noise matrix) characterizing the flipping rates: `nm`: ``P(given label | true label)``
+* Latent inverse noise matrix characterizing the flipping process: `inv`: ``P(true label | given label)``
+* Latent `confident_joint`, an un-normalized matrix that counts the confident subset of label errors under the joint distribution for true/given label
+
+These are estimated from a classification dataset. This module considers two types of datasets:
+
+* standard (multi-class) classification where each example is labeled as belonging to exactly one of K classes (e.g. ``labels = np.array([0,0,1,0,2,1])``)
+* multi-label classification where each example can be labeled as belonging to multiple classes (e.g. ``labels = [[1,2],[1],[0],[],...]``)
+"""
+
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import sklearn.base
+from sklearn.linear_model import LogisticRegression as LogReg
+from sklearn.metrics import confusion_matrix
+from sklearn.model_selection import StratifiedKFold
+
+from cleanlab.internal.constants import (
+    CONFIDENT_THRESHOLDS_LOWER_BOUND,
+    FLOATING_POINT_COMPARISON,
+    TINY_VALUE,
+)
+from cleanlab.internal.latent_algebra import (
+    compute_inv_noise_matrix,
+    compute_noise_matrix_from_inverse,
+    compute_py,
+)
+from cleanlab.internal.multilabel_utils import get_onehot_num_classes, stack_complement
+from cleanlab.internal.util import (
+    append_extra_datapoint,
+    clip_noise_rates,
+    clip_values,
+    get_num_classes,
+    get_unique_classes,
+    is_tensorflow_dataset,
+    is_torch_dataset,
+    round_preserving_row_totals,
+    train_val_split,
+    value_counts_fill_missing_classes,
+)
+from cleanlab.internal.validation import assert_valid_inputs, labels_to_array
+from cleanlab.typing import LabelLike
+
+
+
[docs]def num_label_issues( + labels: LabelLike, + pred_probs: np.ndarray, + *, + confident_joint: Optional[np.ndarray] = None, + estimation_method: str = "off_diagonal", + multi_label: bool = False, +) -> int: + """Estimates the number of label issues in a classification dataset. Use this method to get the most accurate + estimate of number of label issues when you don't need the indices of the examples with label issues. + + Parameters + ---------- + labels : np.ndarray or list + Given class labels for each example in the dataset, some of which may be erroneous, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + pred_probs : + Model-predicted class probabilities for each example in the dataset, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + confident_joint : + Array of estimated class label error statisics used for identifying label issues, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + The `confident_joint` can be computed using `~cleanlab.count.compute_confident_joint`. + It is internally computed from the given (noisy) `labels` and `pred_probs`. + + estimation_method : + Method for estimating the number of label issues in dataset by counting the examples in the off-diagonal of the `confident_joint` ``P(label=i, true_label=j)``. + + * ``'off_diagonal'``: Counts the number of examples in the off-diagonal of the `confident_joint`. Returns the same value as ``sum(find_label_issues(filter_by='confident_learning'))`` + + * ``'off_diagonal_calibrated'``: Calibrates confident joint estimate ``P(label=i, true_label=j)`` such that + ``np.sum(cj) == len(labels)`` and ``np.sum(cj, axis = 1) == np.bincount(labels)`` before counting the number + of examples in the off-diagonal. Number will always be equal to or greater than + ``estimate_issues='off_diagonal'``. You can use this value as the cutoff threshold used with ranking/scoring + functions from :py:mod:`cleanlab.rank` with `num_label_issues` over ``estimation_method='off_diagonal'`` in + two cases: + + #. As we add more label and data quality scoring functions in :py:mod:`cleanlab.rank`, this approach will always work. + #. If you have a custom score to rank your data by label quality and you just need to know the cut-off of likely label issues. + + * ``'off_diagonal_custom'``: Counts the number of examples in the off-diagonal of a provided `confident_joint` matrix. + + TL;DR: Use this method to get the most accurate estimate of number of label issues when you don't need the indices of the label issues. + + Note: ``'off_diagonal'`` may sometimes underestimate issues for data with few classes, so consider using ``'off_diagonal_calibrated'`` instead if your data has < 4 classes. + + multi_label : bool, optional + Set ``False`` if your dataset is for regular (multi-class) classification, where each example belongs to exactly one class. + Set ``True`` if your dataset is for multi-label classification, where each example can belong to multiple classes. + See documentation of `~cleanlab.count.compute_confident_joint` for details. + + Returns + ------- + num_issues : + The estimated number of examples with label issues in the dataset. + """ + valid_methods = ["off_diagonal", "off_diagonal_calibrated", "off_diagonal_custom"] + if isinstance(confident_joint, np.ndarray) and estimation_method != "off_diagonal_custom": + warn_str = ( + "The supplied `confident_joint` is ignored as `confident_joint` is recomuputed internally using " + "the supplied `labels` and `pred_probs`. If you still want to use custom `confident_joint` call function " + "with `estimation_method='off_diagonal_custom'`." + ) + warnings.warn(warn_str) + + if multi_label: + return _num_label_issues_multilabel( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + labels = labels_to_array(labels) + assert_valid_inputs(X=None, y=labels, pred_probs=pred_probs) + + if estimation_method == "off_diagonal": + _, cl_error_indices = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, + calibrate=False, + return_indices_of_off_diagonals=True, + ) + + label_issues_mask = np.zeros(len(labels), dtype=bool) + label_issues_mask[cl_error_indices] = True + + # Remove label issues if model prediction is close to given label + mask = _reduce_issues(pred_probs=pred_probs, labels=labels) + label_issues_mask[mask] = False + num_issues = np.sum(label_issues_mask) + elif estimation_method == "off_diagonal_calibrated": + calculated_confident_joint = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, + calibrate=True, + ) + assert isinstance(calculated_confident_joint, np.ndarray) + # Estimate_joint calibrates the row sums to match the prior distribution of given labels and normalizes to sum to 1 + joint = estimate_joint(labels, pred_probs, confident_joint=calculated_confident_joint) + frac_issues = 1.0 - joint.trace() + num_issues = np.rint(frac_issues * len(labels)).astype(int) + elif estimation_method == "off_diagonal_custom": + if not isinstance(confident_joint, np.ndarray): + raise ValueError( + f""" + No `confident_joint` provided. For 'estimation_method' = {estimation_method} you need to provide pre-calculated + `confident_joint` matrix. Use a different `estimation_method` if you want the `confident_joint` matrix to + be calculated for you. + """ + ) + else: + joint = estimate_joint(labels, pred_probs, confident_joint=confident_joint) + frac_issues = 1.0 - joint.trace() + num_issues = np.rint(frac_issues * len(labels)).astype(int) + else: + raise ValueError( + f""" + {estimation_method} is not a valid estimation method! + Please choose a valid estimation method: {valid_methods} + """ + ) + + return num_issues
+ + +def _num_label_issues_multilabel( + labels: LabelLike, + pred_probs: np.ndarray, + confident_joint: Optional[np.ndarray] = None, +) -> int: + """ + Parameters + ---------- + labels: list + Refer to documentation for this argument in ``count.calibrate_confident_joint()`` with `multi_label=True` for details. + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.count.get_confident_thresholds` function. + + Returns + ------- + num_issues : int + The estimated number of examples with label issues in the multi-label dataset. + + Note: We set the filter_by method as 'confident_learning' to match the non-multilabel case + (analog to the off_diagonal estimation method) + """ + + from cleanlab.filter import find_label_issues + + issues_idx = find_label_issues( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + multi_label=True, + filter_by="confident_learning", # specified to match num_label_issues + ) + return sum(issues_idx) + + +def _reduce_issues(pred_probs, labels): + """Returns a boolean mask denoting correct predictions or predictions within a margin around 0.5 for binary classification, suitable for filtering out indices in 'is_label_issue'.""" + pred_probs_copy = np.copy(pred_probs) # Make a copy of the original array + pred_probs_copy[np.arange(len(labels)), labels] += FLOATING_POINT_COMPARISON + pred = pred_probs_copy.argmax(axis=1) + mask = pred == labels + del pred_probs_copy # Delete copy + return mask + + +
[docs]def calibrate_confident_joint( + confident_joint: np.ndarray, labels: LabelLike, *, multi_label: bool = False +) -> np.ndarray: + """Calibrates any confident joint estimate ``P(label=i, true_label=j)`` such that + ``np.sum(cj) == len(labels)`` and ``np.sum(cj, axis = 1) == np.bincount(labels)``. + + In other words, this function forces the confident joint to have the + true noisy prior ``p(labels)`` (summed over columns for each row) and also + forces the confident joint to add up to the total number of examples. + + This method makes the confident joint a valid counts estimate + of the actual joint of noisy and true labels. + + Parameters + ---------- + confident_joint : np.ndarray + An array of shape ``(K, K)`` representing the confident joint, the matrix used for identifying label issues, which + estimates a confident subset of the joint distribution of the noisy and true labels, ``P_{noisy label, true label}``. + Entry ``(j, k)`` in the matrix is the number of examples confidently counted into the pair of ``(noisy label=j, true label=k)`` classes. + The `confident_joint` can be computed using `~cleanlab.count.compute_confident_joint`. + If not provided, it is computed from the given (noisy) `labels` and `pred_probs`. + If `multi_label` is True, then the `confident_joint` should be a one-vs-rest array of shape ``(K, 2, 2)``, and an array of the same shape will be returned. + + labels : np.ndarray or list + Given class labels for each example in the dataset, some of which may be erroneous, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + multi_label : bool, optional + If ``False``, dataset is for regular (multi-class) classification, where each example belongs to exactly one class. + If ``True``, dataset is for multi-label classification, where each example can belong to multiple classes. + See documentation of `~cleanlab.count.compute_confident_joint` for details. + In multi-label classification, the confident/calibrated joint arrays have shape ``(K, 2, 2)`` + formatted in a one-vs-rest fashion such that they contain a 2x2 matrix for each class + that counts examples which are correctly/incorrectly labeled as belonging to that class. + After calibration, the entries in each class-specific 2x2 matrix will sum to the number of examples. + + Returns + ------- + calibrated_cj : np.ndarray + An array of shape ``(K, K)`` representing a valid estimate of the joint *counts* of noisy and true labels (if `multi_label` is False). + If `multi_label` is True, the returned `calibrated_cj` is instead an one-vs-rest array of shape ``(K, 2, 2)``, + where for class `c`: entry ``(c, 0, 0)`` in this one-vs-rest array is the number of examples whose noisy label contains `c` confidently identified as truly belonging to class `c` as well. + Entry ``(c, 1, 0)`` in this one-vs-rest array is the number of examples whose noisy label contains `c` confidently identified as not actually belonging to class `c`. + Entry ``(c, 0, 1)`` in this one-vs-rest array is the number of examples whose noisy label does not contain `c` confidently identified as truly belonging to class `c`. + Entry ``(c, 1, 1)`` in this one-vs-rest array is the number of examples whose noisy label does not contain `c` confidently identified as actually not belonging to class `c` as well. + + """ + + if multi_label: + if not isinstance(labels, list): + raise TypeError("`labels` must be list when `multi_label=True`.") + else: + return _calibrate_confident_joint_multilabel(confident_joint, labels) + else: + num_classes = len(confident_joint) + label_counts = value_counts_fill_missing_classes(labels, num_classes, multi_label=False) + # Calibrate confident joint to have correct p(labels) prior on noisy labels. + calibrated_cj = ( + confident_joint.T + / np.clip(confident_joint.sum(axis=1), a_min=TINY_VALUE, a_max=None) + * label_counts + ).T + # Calibrate confident joint to sum to: + # The number of examples (for single labeled datasets) + # The number of total labels (for multi-labeled datasets) + calibrated_cj = ( + calibrated_cj + / np.clip(np.sum(calibrated_cj), a_min=TINY_VALUE, a_max=None) + * sum(label_counts) + ) + return round_preserving_row_totals(calibrated_cj)
+ + +def _calibrate_confident_joint_multilabel(confident_joint: np.ndarray, labels: list) -> np.ndarray: + """Calibrates the confident joint for multi-label classification data. Here + input `labels` is a list of lists (or list of iterable). + This is intended as a helper function. You should probably + be using `calibrate_confident_joint(multi_label=True)` instead. + + + See `calibrate_confident_joint` docstring for more info. + + Parameters + ---------- + confident_joint : np.ndarray + Refer to documentation for this argument in count.calibrate_confident_joint() for details. + + labels : list + Refer to documentation for this argument in count.calibrate_confident_joint() for details. + + multi_label : bool, optional + Refer to documentation for this argument in count.calibrate_confident_joint() for details. + + Returns + ------- + calibrated_cj : np.ndarray + An array of shape ``(K, 2, 2)`` of type float representing a valid + estimate of the joint *counts* of noisy and true labels in a one-vs-rest fashion.""" + y_one, num_classes = get_onehot_num_classes(labels) + calibrate_confident_joint_list: np.ndarray = np.ndarray( + shape=(num_classes, 2, 2), dtype=np.int64 + ) + for class_num, (cj, y) in enumerate(zip(confident_joint, y_one.T)): + calibrate_confident_joint_list[class_num] = calibrate_confident_joint(cj, labels=y) + + return calibrate_confident_joint_list + + +
[docs]def estimate_joint( + labels: LabelLike, + pred_probs: np.ndarray, + *, + confident_joint: Optional[np.ndarray] = None, + multi_label: bool = False, +) -> np.ndarray: + """ + Estimates the joint distribution of label noise ``P(label=i, true_label=j)`` guaranteed to: + + * Sum to 1 + * Satisfy ``np.sum(joint_estimate, axis = 1) == p(labels)`` + + Parameters + ---------- + labels : np.ndarray or list + Given class labels for each example in the dataset, some of which may be erroneous, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + pred_probs : np.ndarray + Model-predicted class probabilities for each example in the dataset, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + confident_joint : np.ndarray, optional + Array of estimated class label error statisics used for identifying label issues, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + The `confident_joint` can be computed using `~cleanlab.count.compute_confident_joint`. + If not provided, it is internally computed from the given (noisy) `labels` and `pred_probs`. + + multi_label : bool, optional + If ``False``, dataset is for regular (multi-class) classification, where each example belongs to exactly one class. + If ``True``, dataset is for multi-label classification, where each example can belong to multiple classes. + See documentation of `~cleanlab.count.compute_confident_joint` for details. + + Returns + ------- + confident_joint_distribution : np.ndarray + An array of shape ``(K, K)`` representing an + estimate of the true joint distribution of noisy and true labels (if `multi_label` is False). + If `multi_label` is True, an array of shape ``(K, 2, 2)`` representing an + estimate of the true joint distribution of noisy and true labels for each class in a one-vs-rest fashion. + Entry ``(c, i, j)`` in this array is the number of examples confidently counted into a ``(class c, noisy label=i, true label=j)`` bin, + where `i, j` are either 0 or 1 to denote whether this example belongs to class `c` or not + (recall examples can belong to multiple classes in multi-label classification). + """ + + if confident_joint is None: + calibrated_cj = compute_confident_joint( + labels, + pred_probs, + calibrate=True, + multi_label=multi_label, + ) + else: + if labels is not None: + calibrated_cj = calibrate_confident_joint( + confident_joint, labels, multi_label=multi_label + ) + else: + calibrated_cj = confident_joint + + assert isinstance(calibrated_cj, np.ndarray) + if multi_label: + if not isinstance(labels, list): + raise TypeError("`labels` must be list when `multi_label=True`.") + else: + return _estimate_joint_multilabel( + labels=labels, pred_probs=pred_probs, confident_joint=confident_joint + ) + else: + return calibrated_cj / np.clip(float(np.sum(calibrated_cj)), a_min=TINY_VALUE, a_max=None)
+ + +def _estimate_joint_multilabel( + labels: list, pred_probs: np.ndarray, *, confident_joint: Optional[np.ndarray] = None +) -> np.ndarray: + """Parameters + ---------- + labels : list + Refer to documentation for this argument in filter.find_label_issues() for details. + + pred_probs : np.ndarray + Refer to documentation for this argument in count.estimate_joint() for details. + + confident_joint : np.ndarray, optional + Refer to documentation for this argument in filter.find_label_issues() with multi_label=True for details. + + Returns + ------- + confident_joint_distribution : np.ndarray + An array of shape ``(K, 2, 2)`` representing an + estimate of the true joint distribution of noisy and true labels for each class, in a one-vs-rest format employed for multi-label settings. + """ + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + if confident_joint is None: + calibrated_cj = compute_confident_joint( + labels, + pred_probs, + calibrate=True, + multi_label=True, + ) + else: + calibrated_cj = confident_joint + assert isinstance(calibrated_cj, np.ndarray) + calibrated_cf: np.ndarray = np.ndarray((num_classes, 2, 2)) + for class_num, (label, pred_prob_for_class) in enumerate(zip(y_one.T, pred_probs.T)): + pred_probs_binary = stack_complement(pred_prob_for_class) + calibrated_cf[class_num] = estimate_joint( + labels=label, + pred_probs=pred_probs_binary, + confident_joint=calibrated_cj[class_num], + ) + + return calibrated_cf + + +
[docs]def compute_confident_joint( + labels: LabelLike, + pred_probs: np.ndarray, + *, + thresholds: Optional[Union[np.ndarray, list]] = None, + calibrate: bool = True, + multi_label: bool = False, + return_indices_of_off_diagonals: bool = False, +) -> Union[np.ndarray, Tuple[np.ndarray, list]]: + """Estimates the confident counts of latent true vs observed noisy labels + for the examples in our dataset. This array of shape ``(K, K)`` is called the **confident joint** + and contains counts of examples in every class, confidently labeled as every other class. + These counts may subsequently be used to estimate the joint distribution of true and noisy labels + (by normalizing them to frequencies). + + Important: this function assumes that `pred_probs` are out-of-sample + holdout probabilities. This can be :ref:`done with cross validation <pred_probs_cross_val>`. If + the probabilities are not computed out-of-sample, overfitting may occur. + + Parameters + ---------- + labels : np.ndarray or list + Given class labels for each example in the dataset, some of which may be erroneous, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + pred_probs : np.ndarray + Model-predicted class probabilities for each example in the dataset, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + calibrate : bool, default=True + Calibrates confident joint estimate ``P(label=i, true_label=j)`` such that + ``np.sum(cj) == len(labels)`` and ``np.sum(cj, axis = 1) == np.bincount(labels)``. + When ``calibrate=True``, this method returns an estimate of + the latent true joint counts of noisy and true labels. + + multi_label : bool, optional + If ``True``, this is multi-label classification dataset (where each example can belong to more than one class) + rather than a regular (multi-class) classifiction dataset. + In this case, `labels` should be an iterable (e.g. list) of iterables (e.g. ``List[List[int]]``), + containing the list of classes to which each example belongs, instead of just a single class. + Example of `labels` for a multi-label classification dataset: ``[[0,1], [1], [0,2], [0,1,2], [0], [1], [], ...]``. + + return_indices_of_off_diagonals : bool, optional + If ``True``, returns indices of examples that were counted in off-diagonals + of confident joint as a baseline proxy for the label issues. This + sometimes works as well as ``filter.find_label_issues(confident_joint)``. + + + Returns + ------- + confident_joint_counts : np.ndarray + An array of shape ``(K, K)`` representing counts of examples + for which we are confident about their given and true label (if `multi_label` is False). + If `multi_label` is True, + this array instead has shape ``(K, 2, 2)`` representing a one-vs-rest format for the confident joint, where for each class `c`: + Entry ``(c, 0, 0)`` in this one-vs-rest array is the number of examples whose noisy label contains `c` confidently identified as truly belonging to class `c` as well. + Entry ``(c, 1, 0)`` in this one-vs-rest array is the number of examples whose noisy label contains `c` confidently identified as not actually belonging to class `c`. + Entry ``(c, 0, 1)`` in this one-vs-rest array is the number of examples whose noisy label does not contain `c` confidently identified as truly belonging to class `c`. + Entry ``(c, 1, 1)`` in this one-vs-rest array is the number of examples whose noisy label does not contain `c` confidently identified as actually not belonging to class `c` as well. + + + Note + ---- + If `return_indices_of_off_diagonals` is set as True, this function instead returns a tuple `(confident_joint, indices_off_diagonal)` + where `indices_off_diagonal` is a list of arrays and each array contains the indices of examples counted in off-diagonals of confident joint. + + Note + ---- + We provide a for-loop based simplification of the confident joint + below. This implementation is not efficient, not used in practice, and + not complete, but covers the gist of how the confident joint is computed: + + .. code:: python + + # Confident examples are those that we are confident have true_label = k + # Estimate (K, K) matrix of confident examples with label = k_s and true_label = k_y + cj_ish = np.zeros((K, K)) + for k_s in range(K): # k_s is the class value k of noisy labels `s` + for k_y in range(K): # k_y is the (guessed) class k of true_label k_y + cj_ish[k_s][k_y] = sum((pred_probs[:,k_y] >= (thresholds[k_y] - 1e-8)) & (labels == k_s)) + + The following is a vectorized (but non-parallelized) implementation of the + confident joint, again slow, using for-loops/simplified for understanding. + This implementation is 100% accurate, it's just not optimized for speed. + + .. code:: python + + confident_joint = np.zeros((K, K), dtype = int) + for i, row in enumerate(pred_probs): + s_label = labels[i] + confident_bins = row >= thresholds - 1e-6 + num_confident_bins = sum(confident_bins) + if num_confident_bins == 1: + confident_joint[s_label][np.argmax(confident_bins)] += 1 + elif num_confident_bins > 1: + confident_joint[s_label][np.argmax(row)] += 1 + """ + + if multi_label: + if not isinstance(labels, list): + raise TypeError("`labels` must be list when `multi_label=True`.") + + return _compute_confident_joint_multi_label( + labels=labels, + pred_probs=pred_probs, + thresholds=thresholds, + calibrate=calibrate, + return_indices_of_off_diagonals=return_indices_of_off_diagonals, + ) + + # labels needs to be a numpy array + labels = np.asarray(labels) + + # Estimate the probability thresholds for confident counting + if thresholds is None: + # P(we predict the given noisy label is k | given noisy label is k) + thresholds = get_confident_thresholds(labels, pred_probs, multi_label=multi_label) + thresholds = np.asarray(thresholds) + + # Compute confident joint (vectorized for speed). + + # pred_probs_bool is a bool matrix where each row represents a training example as a boolean vector of + # size num_classes, with True if the example confidently belongs to that class and False if not. + pred_probs_bool = pred_probs >= thresholds - 1e-6 + num_confident_bins = pred_probs_bool.sum(axis=1) + at_least_one_confident = num_confident_bins > 0 + more_than_one_confident = num_confident_bins > 1 + pred_probs_argmax = pred_probs.argmax(axis=1) + # Note that confident_argmax is meaningless for rows of all False + confident_argmax = pred_probs_bool.argmax(axis=1) + # For each example, choose the confident class (greater than threshold) + # When there is 2+ confident classes, choose the class with largest prob. + true_label_guess = np.where( + more_than_one_confident, + pred_probs_argmax, + confident_argmax, + ) + # true_labels_confident omits meaningless all-False rows + true_labels_confident = true_label_guess[at_least_one_confident] + labels_confident = labels[at_least_one_confident] + confident_joint = confusion_matrix( + y_true=true_labels_confident, + y_pred=labels_confident, + labels=range(pred_probs.shape[1]), + ).T # Guarantee at least one correctly labeled example is represented in every class + np.fill_diagonal(confident_joint, confident_joint.diagonal().clip(min=1)) + if calibrate: + confident_joint = calibrate_confident_joint(confident_joint, labels) + + if return_indices_of_off_diagonals: + true_labels_neq_given_labels = true_labels_confident != labels_confident + indices = np.arange(len(labels))[at_least_one_confident][true_labels_neq_given_labels] + + return confident_joint, indices + + return confident_joint
+ + +def _compute_confident_joint_multi_label( + labels: list, + pred_probs: np.ndarray, + *, + thresholds: Optional[Union[np.ndarray, list]] = None, + calibrate: bool = True, + return_indices_of_off_diagonals: bool = False, +) -> Union[np.ndarray, Tuple[np.ndarray, list]]: + """Computes the confident joint for multi_labeled data. Thus, + input `labels` is a list of lists (or list of iterable). + This is intended as a helper function. You should probably + be using `compute_confident_joint(multi_label=True)` instead. + + The MAJOR DIFFERENCE in how this is computed versus single_label, + is the total number of errors considered is based on the number + of labels, not the number of examples. So, the confident_joint + will have larger values. + + See `compute_confident_joint` docstring for more info. + + Parameters + ---------- + labels : list of list/iterable (length N) + Given noisy labels for multi-label classification. + Must be a list of lists (or a list of np.ndarrays or iterable). + The i-th element is a list containing the classes that the i-th example belongs to. + + pred_probs : np.ndarray (shape (N, K)) + P(label=k|x) is a matrix with K model-predicted probabilities. + Each row of this matrix corresponds to an example `x` and contains the model-predicted + probabilities that `x` belongs to each possible class. + The columns must be ordered such that these probabilities correspond to class 0, 1, 2,..., K-1. + `pred_probs` must be out-of-sample (ideally should have been computed using 3+ fold cross-validation). + + thresholds : iterable (list or np.ndarray) of shape (K, 1) or (K,) + P(label^=k|label=k). If an example has a predicted probability "greater" than + this threshold, it is counted as having true_label = k. This is + not used for filtering/pruning, only for estimating the noise rates using + confident counts. This value should be between 0 and 1. Default is None. + + calibrate : bool, default = True + Calibrates confident joint estimate P(label=i, true_label=j) such that + ``np.sum(cj) == len(labels) and np.sum(cj, axis = 1) == np.bincount(labels)``. + + return_indices_of_off_diagonals: bool, default = False + If true returns indices of examples that were counted in off-diagonals + of confident joint as a baseline proxy for the label issues. This + sometimes works as well as filter.find_label_issues(confident_joint). + + Returns + ------- + confident_joint_counts : np.ndarray + An array of shape ``(K, 2, 2)`` representing the confident joint of noisy and true labels for each class, in a one-vs-rest format employed for multi-label settings. + + Note: if `return_indices_of_off_diagonals` is set as True, this function instead returns a tuple `(confident_joint_counts, indices_off_diagonal)` + where `indices_off_diagonal` is a list of arrays (one per class) and each array contains the indices of examples counted in off-diagonals of confident joint for that class. + """ + + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + confident_joint_list: np.ndarray = np.ndarray(shape=(num_classes, 2, 2), dtype=np.int64) + indices_off_diagonal = [] + for class_num, (label, pred_prob_for_class) in enumerate(zip(y_one.T, pred_probs.T)): + pred_probs_binary = stack_complement(pred_prob_for_class) + if return_indices_of_off_diagonals: + cj, ind = compute_confident_joint( + labels=label, + pred_probs=pred_probs_binary, + multi_label=False, + thresholds=thresholds, + calibrate=calibrate, + return_indices_of_off_diagonals=return_indices_of_off_diagonals, + ) + indices_off_diagonal.append(ind) + else: + cj = compute_confident_joint( + labels=label, + pred_probs=pred_probs_binary, + multi_label=False, + thresholds=thresholds, + calibrate=calibrate, + return_indices_of_off_diagonals=return_indices_of_off_diagonals, + ) + confident_joint_list[class_num] = cj + + if return_indices_of_off_diagonals: + return confident_joint_list, indices_off_diagonal + + return confident_joint_list + + +
[docs]def estimate_latent( + confident_joint: np.ndarray, + labels: np.ndarray, + *, + py_method: str = "cnt", + converge_latent_estimates: bool = False, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Computes the latent prior ``p(y)``, the noise matrix ``P(labels|y)`` and the + inverse noise matrix ``P(y|labels)`` from the `confident_joint` ``count(labels, y)``. The + `confident_joint` can be estimated by `~cleanlab.count.compute_confident_joint` + which counts confident examples. + + Parameters + ---------- + confident_joint : np.ndarray + An array of shape ``(K, K)`` representing the confident joint, the matrix used for identifying label issues, which + estimates a confident subset of the joint distribution of the noisy and true labels, ``P_{noisy label, true label}``. + Entry ``(j, k)`` in the matrix is the number of examples confidently counted into the pair of ``(noisy label=j, true label=k)`` classes. + The `confident_joint` can be computed using `~cleanlab.count.compute_confident_joint`. + If not provided, it is computed from the given (noisy) `labels` and `pred_probs`. + + labels : np.ndarray + A 1D array of shape ``(N,)`` containing class labels for a standard (multi-class) classification dataset. Some given labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + + py_method : {"cnt", "eqn", "marginal", "marginal_ps"}, default="cnt" + `py` is shorthand for the "class proportions (a.k.a prior) of the true labels". + This method defines how to compute the latent prior ``p(true_label=k)``. Default is ``"cnt"``, + which works well even when the noise matrices are estimated poorly by using + the matrix diagonals instead of all the probabilities. + + converge_latent_estimates : bool, optional + If ``True``, forces numerical consistency of estimates. Each is estimated + independently, but they are related mathematically with closed form + equivalences. This will iteratively make them mathematically consistent. + + Returns + ------ + tuple + A tuple containing (py, noise_matrix, inv_noise_matrix). + + Note + ---- + Multi-label classification is not supported in this method. + """ + + num_classes = len(confident_joint) + label_counts = value_counts_fill_missing_classes(labels, num_classes) + # 'ps' is p(labels=k) + ps = label_counts / float(len(labels)) + # Number of training examples confidently counted from each noisy class + labels_class_counts = confident_joint.sum(axis=1).astype(float) + # Number of training examples confidently counted into each true class + true_labels_class_counts = confident_joint.sum(axis=0).astype(float) + # p(label=k_s|true_label=k_y) ~ |label=k_s and true_label=k_y| / |true_label=k_y| + noise_matrix = confident_joint / np.clip(true_labels_class_counts, a_min=TINY_VALUE, a_max=None) + # p(true_label=k_y|label=k_s) ~ |true_label=k_y and label=k_s| / |label=k_s| + inv_noise_matrix = confident_joint.T / np.clip( + labels_class_counts, a_min=TINY_VALUE, a_max=None + ) + # Compute the prior p(y), the latent (uncorrupted) class distribution. + py = compute_py( + ps, + noise_matrix, + inv_noise_matrix, + py_method=py_method, + true_labels_class_counts=true_labels_class_counts, + ) + # Clip noise rates to be valid probabilities. + noise_matrix = clip_noise_rates(noise_matrix) + inv_noise_matrix = clip_noise_rates(inv_noise_matrix) + # Make latent estimates mathematically agree in their algebraic relations. + if converge_latent_estimates: + py, noise_matrix, inv_noise_matrix = _converge_estimates( + ps, py, noise_matrix, inv_noise_matrix + ) + # Again clip py and noise rates into proper range [0,1) + py = clip_values(py, low=1e-5, high=1.0, new_sum=1.0) + noise_matrix = clip_noise_rates(noise_matrix) + inv_noise_matrix = clip_noise_rates(inv_noise_matrix) + + return py, noise_matrix, inv_noise_matrix
+ + +
[docs]def estimate_py_and_noise_matrices_from_probabilities( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + thresholds: Optional[Union[np.ndarray, list]] = None, + converge_latent_estimates: bool = True, + py_method: str = "cnt", + calibrate: bool = True, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Computes the confident counts + estimate of latent variables `py` and the noise rates + using observed labels and predicted probabilities, `pred_probs`. + + Important: this function assumes that `pred_probs` are out-of-sample + holdout probabilities. This can be :ref:`done with cross validation <pred_probs_cross_val>`. If + the probabilities are not computed out-of-sample, overfitting may occur. + + This function estimates the `noise_matrix` of shape ``(K, K)``. This is the + fraction of examples in every class, labeled as every other class. The + `noise_matrix` is a conditional probability matrix for ``P(label=k_s|true_label=k_y)``. + + Under certain conditions, estimates are exact, and in most + conditions, estimates are within one percent of the actual noise rates. + + Parameters + ---------- + labels : np.ndarray + A 1D array of shape ``(N,)`` containing class labels for a standard (multi-class) classification dataset. Some given labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + + pred_probs : np.ndarray + Model-predicted class probabilities for each example in the dataset, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + converge_latent_estimates : bool, optional + If ``True``, forces numerical consistency of estimates. Each is estimated + independently, but they are related mathematically with closed form + equivalences. This will iteratively make them mathematically consistent. + + py_method : {"cnt", "eqn", "marginal", "marginal_ps"}, default="cnt" + How to compute the latent prior ``p(true_label=k)``. Default is ``"cnt"`` as it often + works well even when the noise matrices are estimated poorly by using + the matrix diagonals instead of all the probabilities. + + calibrate : bool, default=True + Calibrates confident joint estimate ``P(label=i, true_label=j)`` such that + ``np.sum(cj) == len(labels)`` and ``np.sum(cj, axis = 1) == np.bincount(labels)``. + + Returns + ------ + estimates : tuple + A tuple of arrays: (`py`, `noise_matrix`, `inverse_noise_matrix`, `confident_joint`). + + Note + ---- + Multi-label classification is not supported in this method. + """ + + confident_joint = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, + thresholds=thresholds, + calibrate=calibrate, + ) + assert isinstance(confident_joint, np.ndarray) + py, noise_matrix, inv_noise_matrix = estimate_latent( + confident_joint=confident_joint, + labels=labels, + py_method=py_method, + converge_latent_estimates=converge_latent_estimates, + ) + assert isinstance(confident_joint, np.ndarray) + + return py, noise_matrix, inv_noise_matrix, confident_joint
+ + +
[docs]def estimate_confident_joint_and_cv_pred_proba( + X, + labels, + clf=LogReg(solver="lbfgs"), + *, + cv_n_folds=5, + thresholds=None, + seed=None, + calibrate=True, + clf_kwargs={}, + validation_func=None, +) -> Tuple[np.ndarray, np.ndarray]: + """Estimates ``P(labels, y)``, the confident counts of the latent + joint distribution of true and noisy labels + using observed `labels` and predicted probabilities `pred_probs`. + + The output of this function is an array of shape ``(K, K)``. + + Under certain conditions, estimates are exact, and in many + conditions, estimates are within one percent of actual. + + Notes: There are two ways to compute the confident joint with pros/cons. + (1) For each holdout set, we compute the confident joint, then sum them up. + (2) Compute pred_proba for each fold, combine, compute the confident joint. + (1) is more accurate because it correctly computes thresholds for each fold + (2) is more accurate when you have only a little data because it computes + the confident joint using all the probabilities. For example if you had 100 + examples, with 5-fold cross validation + uniform p(y) you would only have 20 + examples to compute each confident joint for (1). Such small amounts of data + is bound to result in estimation errors. For this reason, we implement (2), + but we implement (1) as a commented out function at the end of this file. + + Parameters + ---------- + X : np.ndarray or pd.DataFrame + Input feature matrix of shape ``(N, ...)``, where N is the number of + examples. The classifier that this instance was initialized with, + ``clf``, must be able to fit() and predict() data with this format. + + labels : np.ndarray or pd.Series + A 1D array of shape ``(N,)`` containing class labels for a standard (multi-class) classification dataset. + Some given labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + All classes must be present in the dataset. + + clf : estimator instance, optional + A classifier implementing the `sklearn estimator API + <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_. + + cv_n_folds : int, default=5 + The number of cross-validation folds used to compute + out-of-sample predicted probabilities for each example in `X`. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + seed : int, optional + Set the default state of the random number generator used to split + the cross-validated folds. If None, uses np.random current random state. + + calibrate : bool, default=True + Calibrates confident joint estimate ``P(label=i, true_label=j)`` such that + ``np.sum(cj) == len(labels)`` and ``np.sum(cj, axis = 1) == np.bincount(labels)``. + + clf_kwargs : dict, optional + Optional keyword arguments to pass into `clf`'s ``fit()`` method. + + validation_func : callable, optional + Specifies how to map the validation data split in cross-validation as input for ``clf.fit()``. + For details, see the documentation of :py:meth:`CleanLearning.fit<cleanlab.classification.CleanLearning.fit>` + + Returns + ------ + estimates : tuple + Tuple of two numpy arrays in the form: + (joint counts matrix, predicted probability matrix) + + Note + ---- + Multi-label classification is not supported in this method. + """ + + assert_valid_inputs(X, labels) + labels = labels_to_array(labels) + num_classes = get_num_classes( + labels=labels + ) # This method definitely only works if all classes are present. + + # Create cross-validation object for out-of-sample predicted probabilities. + # CV folds preserve the fraction of noisy positive and + # noisy negative examples in each class. + kf = StratifiedKFold(n_splits=cv_n_folds, shuffle=True, random_state=seed) + + # Initialize pred_probs array + pred_probs = np.zeros(shape=(len(labels), num_classes)) + + # Split X and labels into "cv_n_folds" stratified folds. + # CV indices only require labels: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html + # Only split based on labels because X may have various formats: + for k, (cv_train_idx, cv_holdout_idx) in enumerate(kf.split(X=labels, y=labels)): + try: + clf_copy = sklearn.base.clone(clf) # fresh untrained copy of the model + except Exception: + raise ValueError( + "`clf` must be clonable via: sklearn.base.clone(clf). " + "You can either implement instance method `clf.get_params()` to produce a fresh untrained copy of this model, " + "or you can implement the cross-validation outside of cleanlab " + "and pass in the obtained `pred_probs` to skip cleanlab's internal cross-validation" + ) + # Select the training and holdout cross-validated sets. + X_train_cv, X_holdout_cv, s_train_cv, s_holdout_cv = train_val_split( + X, labels, cv_train_idx, cv_holdout_idx + ) + + # dict with keys: which classes missing, values: index of holdout data from this class that is duplicated: + missing_class_inds = {} + is_tf_or_torch_dataset = is_torch_dataset(X) or is_tensorflow_dataset(X) + if not is_tf_or_torch_dataset: + # Ensure no missing classes in training set. + train_cv_classes = set(s_train_cv) + all_classes = set(range(num_classes)) + if len(train_cv_classes) != len(all_classes): + missing_classes = all_classes.difference(train_cv_classes) + warnings.warn( + "Duplicated some data across multiple folds to ensure training does not fail " + f"because these classes do not have enough data for proper cross-validation: {missing_classes}." + ) + for missing_class in missing_classes: + # Duplicate one instance of missing_class from holdout data to the training data: + holdout_inds = np.where(s_holdout_cv == missing_class)[0] + dup_idx = holdout_inds[0] + s_train_cv = np.append(s_train_cv, s_holdout_cv[dup_idx]) + # labels are always np.ndarray so don't have to consider .iloc above + X_train_cv = append_extra_datapoint( + to_data=X_train_cv, from_data=X_holdout_cv, index=dup_idx + ) + missing_class_inds[missing_class] = dup_idx + + # Map validation data into appropriate format to pass into classifier clf + if validation_func is None: + validation_kwargs = {} + elif callable(validation_func): + validation_kwargs = validation_func(X_holdout_cv, s_holdout_cv) + else: + raise TypeError("validation_func must be callable function with args: X_val, y_val") + + # Fit classifier clf to training set, predict on holdout set, and update pred_probs. + clf_copy.fit(X_train_cv, s_train_cv, **clf_kwargs, **validation_kwargs) + pred_probs_cv = clf_copy.predict_proba(X_holdout_cv) # P(labels = k|x) # [:,1] + + # Replace predictions for duplicated indices with dummy predictions: + for missing_class in missing_class_inds: + dummy_pred = np.zeros(pred_probs_cv[0].shape) + dummy_pred[missing_class] = 1.0 # predict given label with full confidence + dup_idx = missing_class_inds[missing_class] + pred_probs_cv[dup_idx] = dummy_pred + + pred_probs[cv_holdout_idx] = pred_probs_cv + + # Compute the confident counts, a num_classes x num_classes matrix for all pairs of labels. + confident_joint = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, # P(labels = k|x) + thresholds=thresholds, + calibrate=calibrate, + ) + assert isinstance(confident_joint, np.ndarray) + assert isinstance(pred_probs, np.ndarray) + + return confident_joint, pred_probs
+ + +
[docs]def estimate_py_noise_matrices_and_cv_pred_proba( + X, + labels, + clf=LogReg(solver="lbfgs"), + *, + cv_n_folds=5, + thresholds=None, + converge_latent_estimates=False, + py_method="cnt", + seed=None, + clf_kwargs={}, + validation_func=None, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """This function computes the out-of-sample predicted + probability ``P(label=k|x)`` for every example x in `X` using cross + validation while also computing the confident counts noise + rates within each cross-validated subset and returning + the average noise rate across all examples. + + This function estimates the `noise_matrix` of shape ``(K, K)``. This is the + fraction of examples in every class, labeled as every other class. The + `noise_matrix` is a conditional probability matrix for ``P(label=k_s|true_label=k_y)``. + + Under certain conditions, estimates are exact, and in most + conditions, estimates are within one percent of the actual noise rates. + + Parameters + ---------- + X : np.ndarray + Input feature matrix of shape ``(N, ...)``, where N is the number of + examples. The classifier that this instance was initialized with, + `clf`, must be able to handle data with this shape. + + labels : np.ndarray + A 1D array of shape ``(N,)`` containing class labels for a standard (multi-class) classification dataset. + Some given labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + All classes must be present in the dataset. + + clf : estimator instance, optional + A classifier implementing the `sklearn estimator API + <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_. + + cv_n_folds : int, default=5 + The number of cross-validation folds used to compute + out-of-sample probabilities for each example in `X`. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + converge_latent_estimates : bool, optional + If ``True``, forces numerical consistency of estimates. Each is estimated + independently, but they are related mathematically with closed form + equivalences. This will iteratively make them mathematically consistent. + + py_method : {"cnt", "eqn", "marginal", "marginal_ps"}, default="cnt" + How to compute the latent prior ``p(true_label=k)``. Default is ``"cnt"`` as it often + works well even when the noise matrices are estimated poorly by using + the matrix diagonals instead of all the probabilities. + + seed : int, optional + Set the default state of the random number generator used to split + the cross-validated folds. If ``None``, uses ``np.random`` current random state. + + clf_kwargs : dict, optional + Optional keyword arguments to pass into `clf`'s ``fit()`` method. + + validation_func : callable, optional + Specifies how to map the validation data split in cross-validation as input for ``clf.fit()``. + For details, see the documentation of :py:meth:`CleanLearning.fit<cleanlab.classification.CleanLearning.fit>` + + Returns + ------ + estimates: tuple + A tuple of five arrays (py, noise matrix, inverse noise matrix, confident joint, predicted probability matrix). + + Note + ---- + Multi-label classification is not supported in this method. + """ + confident_joint, pred_probs = estimate_confident_joint_and_cv_pred_proba( + X=X, + labels=labels, + clf=clf, + cv_n_folds=cv_n_folds, + thresholds=thresholds, + seed=seed, + clf_kwargs=clf_kwargs, + validation_func=validation_func, + ) + + py, noise_matrix, inv_noise_matrix = estimate_latent( + confident_joint=confident_joint, + labels=labels, + py_method=py_method, + converge_latent_estimates=converge_latent_estimates, + ) + + return py, noise_matrix, inv_noise_matrix, confident_joint, pred_probs
+ + +
[docs]def estimate_cv_predicted_probabilities( + X, + labels, + clf=LogReg(solver="lbfgs"), + *, + cv_n_folds=5, + seed=None, + clf_kwargs={}, + validation_func=None, +) -> np.ndarray: + """This function computes the out-of-sample predicted + probability [P(label=k|x)] for every example in X using cross + validation. Output is a np.ndarray of shape ``(N, K)`` where N is + the number of training examples and K is the number of classes. + + Parameters + ---------- + X : np.ndarray + Input feature matrix of shape ``(N, ...)``, where N is the number of + examples. The classifier that this instance was initialized with, + `clf`, must be able to handle data with this shape. + + labels : np.ndarray + A 1D array of shape ``(N,)`` containing class labels for a standard (multi-class) classification dataset. + Some given labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + All classes must be present in the dataset. + + clf : estimator instance, optional + A classifier implementing the `sklearn estimator API + <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_. + + cv_n_folds : int, default=5 + The number of cross-validation folds used to compute + out-of-sample probabilities for each example in `X`. + + seed : int, optional + Set the default state of the random number generator used to split + the cross-validated folds. If ``None``, uses ``np.random`` current random state. + + clf_kwargs : dict, optional + Optional keyword arguments to pass into `clf`'s ``fit()`` method. + + validation_func : callable, optional + Specifies how to map the validation data split in cross-validation as input for ``clf.fit()``. + For details, see the documentation of :py:meth:`CleanLearning.fit<cleanlab.classification.CleanLearning.fit>` + + Returns + -------- + pred_probs : np.ndarray + An array of shape ``(N, K)`` representing ``P(label=k|x)``, the model-predicted probabilities. + Each row of this matrix corresponds to an example `x` and contains the model-predicted + probabilities that `x` belongs to each possible class. + """ + + return estimate_py_noise_matrices_and_cv_pred_proba( + X=X, + labels=labels, + clf=clf, + cv_n_folds=cv_n_folds, + seed=seed, + clf_kwargs=clf_kwargs, + validation_func=validation_func, + )[-1]
+ + +
[docs]def estimate_noise_matrices( + X, + labels, + clf=LogReg(solver="lbfgs"), + *, + cv_n_folds=5, + thresholds=None, + converge_latent_estimates=True, + seed=None, + clf_kwargs={}, + validation_func=None, +) -> Tuple[np.ndarray, np.ndarray]: + """Estimates the `noise_matrix` of shape ``(K, K)``. This is the + fraction of examples in every class, labeled as every other class. The + `noise_matrix` is a conditional probability matrix for ``P(label=k_s|true_label=k_y)``. + + Under certain conditions, estimates are exact, and in most + conditions, estimates are within one percent of the actual noise rates. + + Parameters + ---------- + X : np.ndarray + Input feature matrix of shape ``(N, ...)``, where N is the number of + examples. The classifier that this instance was initialized with, + `clf`, must be able to handle data with this shape. + + labels : np.ndarray + An array of shape ``(N,)`` of noisy labels, i.e. some labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + + clf : estimator instance, optional + A classifier implementing the `sklearn estimator API + <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_. + + cv_n_folds : int, default=5 + The number of cross-validation folds used to compute + out-of-sample probabilities for each example in `X`. + + thresholds : array_like, optional + An array of shape ``(K, 1)`` or ``(K,)`` of per-class threshold + probabilities, used to determine the cutoff probability necessary to + consider an example as a given class label (see `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_, Section + 3.1, Equation 2). + + This is for advanced users only. If not specified, these are computed + for you automatically. If an example has a predicted probability + greater than this threshold, it is counted as having true_label = + k. This is not used for pruning/filtering, only for estimating the + noise rates using confident counts. + + converge_latent_estimates : bool, optional + If ``True``, forces numerical consistency of estimates. Each is estimated + independently, but they are related mathematically with closed form + equivalences. This will iteratively make them mathematically consistent. + + seed : int, optional + Set the default state of the random number generator used to split + the cross-validated folds. If None, uses np.random current random state. + + clf_kwargs : dict, optional + Optional keyword arguments to pass into `clf`'s ``fit()`` method. + + validation_func : callable, optional + Specifies how to map the validation data split in cross-validation as input for ``clf.fit()``. + For details, see the documentation of :py:meth:`CleanLearning.fit<cleanlab.classification.CleanLearning.fit>` + + Returns + ------ + estimates : tuple + A tuple containing arrays (`noise_matrix`, `inv_noise_matrix`).""" + + return estimate_py_noise_matrices_and_cv_pred_proba( + X=X, + labels=labels, + clf=clf, + cv_n_folds=cv_n_folds, + thresholds=thresholds, + converge_latent_estimates=converge_latent_estimates, + seed=seed, + clf_kwargs=clf_kwargs, + validation_func=validation_func, + )[1:-2]
+ + +def _converge_estimates( + ps: np.ndarray, + py: np.ndarray, + noise_matrix: np.ndarray, + inverse_noise_matrix: np.ndarray, + *, + inv_noise_matrix_iterations: int = 5, + noise_matrix_iterations: int = 3, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Updates py := P(true_label=k) and both `noise_matrix` and `inverse_noise_matrix` + to be numerically consistent with each other, by iteratively updating their estimates based on + the mathematical relationships between them. + + Forces numerical consistency of estimates. Each is estimated + independently, but they are related mathematically with closed form + equivalences. This will iteratively make them mathematically consistent. + + py := P(true_label=k) and the inverse noise matrix P(true_label=k_y|label=k_s) specify one + another, meaning one can be computed from the other and vice versa. + When numerical discrepancy exists due to poor estimation, they can be made + to agree by repeatedly computing one from the other, + for some a certain number of iterations (3-10 works fine.) + + Do not set iterations too high or performance will decrease as small + deviations will get perturbed over and over and potentially magnified. + + Note that we have to first converge the inverse_noise_matrix and py, + then we can update the noise_matrix, then repeat. This is because the + inverse noise matrix depends on py (which is unknown/latent), but the + noise matrix depends on ps (which is known), so there will be no change in + the noise matrix if we recompute it when py and inverse_noise_matrix change. + + + Parameters + ---------- + ps : np.ndarray (shape (K, ) or (1, K)) + The fraction (prior probability) of each observed, NOISY class P(labels = k). + + py : np.ndarray (shape (K, ) or (1, K)) + The estimated fraction (prior probability) of each TRUE class P(true_label = k). + + noise_matrix : np.ndarray of shape (K, K), K = number of classes + A conditional probability matrix of the form P(label=k_s|true_label=k_y) containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1. + + inverse_noise_matrix : np.ndarray of shape (K, K), K = number of classes + A conditional probability matrix of the form P(true_label=k_y|labels=k_s) representing + the estimated fraction observed examples in each class k_s, that are + mislabeled examples from every other class k_y. If None, the + inverse_noise_matrix will be computed from pred_probs and labels. + Assumes columns of inverse_noise_matrix sum to 1. + + inv_noise_matrix_iterations : int, default = 5 + Number of times to converge inverse noise matrix with py and noise mat. + + noise_matrix_iterations : int, default = 3 + Number of times to converge noise matrix with py and inverse noise mat. + + Returns + ------ + estimates: tuple + Three arrays of the form (`py`, `noise_matrix`, `inverse_noise_matrix`) all + having numerical agreement in terms of their mathematical relations.""" + + for j in range(noise_matrix_iterations): + for i in range(inv_noise_matrix_iterations): + inverse_noise_matrix = compute_inv_noise_matrix(py=py, noise_matrix=noise_matrix, ps=ps) + py = compute_py(ps, noise_matrix, inverse_noise_matrix) + noise_matrix = compute_noise_matrix_from_inverse( + ps=ps, inverse_noise_matrix=inverse_noise_matrix, py=py + ) + + return py, noise_matrix, inverse_noise_matrix + + +
[docs]def get_confident_thresholds( + labels: LabelLike, + pred_probs: np.ndarray, + multi_label: bool = False, +) -> np.ndarray: + """Returns expected (average) "self-confidence" for each class. + + The confident class threshold for a class j is the expected (average) "self-confidence" for class j, + i.e. the model-predicted probability of this class averaged amongst all examples labeled as class j. + + Parameters + ---------- + labels : np.ndarray or list + Given class labels for each example in the dataset, some of which may be erroneous, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + pred_probs : np.ndarray + Model-predicted class probabilities for each example in the dataset, + in same format expected by :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` function. + + multi_label : bool, default = False + Set ``False`` if your dataset is for regular (multi-class) classification, where each example belongs to exactly one class. + Set ``True`` if your dataset is for multi-label classification, where each example can belong to multiple classes. + See documentation of `~cleanlab.count.compute_confident_joint` for details. + + Returns + ------- + confident_thresholds : np.ndarray + An array of shape ``(K, )`` where K is the number of classes. + """ + if multi_label: + assert isinstance(labels, list) + return _get_confident_thresholds_multilabel(labels=labels, pred_probs=pred_probs) + else: + # When all_classes != unique_classes the class threshold for the missing classes is set to + # BIG_VALUE such that no valid prob >= BIG_VALUE (no example will be counted in missing classes) + # REQUIRES: pred_probs.max() >= 1 + # TODO: if you want this to work for arbitrary softmax outputs where pred_probs.max() + # may exceed 1, change BIG_VALUE = 2 --> BIG_VALUE = 2 * pred_probs.max(). Downside of + # this approach is that there will be no standard value returned for missing classes. + labels = labels_to_array(labels) + all_classes = range(pred_probs.shape[1]) + unique_classes = get_unique_classes(labels, multi_label=multi_label) + BIG_VALUE = 2 + confident_thresholds = [ + np.mean(pred_probs[:, k][labels == k]) if k in unique_classes else BIG_VALUE + for k in all_classes + ] + confident_thresholds = np.clip( + confident_thresholds, a_min=CONFIDENT_THRESHOLDS_LOWER_BOUND, a_max=None + ) + return confident_thresholds
+ + +def _get_confident_thresholds_multilabel( + labels: list, + pred_probs: np.ndarray, +): + """Returns expected (average) "self-confidence" for each class. + + The confident class threshold for a class j is the expected (average) "self-confidence" for class j in a one-vs-rest setting. + + Parameters + ---------- + labels: list + Refer to documentation for this argument in ``count.calibrate_confident_joint()`` with ``multi_label=True`` for details. + + pred_probs : np.ndarray + Predicted class probabilities in the same format expected by the `~cleanlab.count.get_confident_thresholds` function. + + Returns + ------- + confident_thresholds : np.ndarray + An array of shape ``(K, 2, 2)`` where `K` is the number of classes, in a one-vs-rest format. + """ + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + confident_thresholds: np.ndarray = np.ndarray((num_classes, 2)) + for class_num, (label_for_class, pred_prob_for_class) in enumerate(zip(y_one.T, pred_probs.T)): + pred_probs_binary = stack_complement(pred_prob_for_class) + confident_thresholds[class_num] = get_confident_thresholds( + pred_probs=pred_probs_binary, labels=label_for_class + ) + return confident_thresholds +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/data_valuation.html b/v2.6.5/_modules/cleanlab/data_valuation.html new file mode 100644 index 000000000..43a195545 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/data_valuation.html @@ -0,0 +1,785 @@ + + + + + + + + + + + cleanlab.data_valuation - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.data_valuation

+# Copyright (C) 2017-2024  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Methods for quantifying the value of each data point in a Machine Learning dataset.
+Data Valuation helps us assess individual training data points' contributions to a ML model's predictive performance.
+"""
+
+
+from typing import Callable, Optional, Union
+
+import numpy as np
+from scipy.sparse import csr_matrix
+
+from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index
+
+
+def _knn_shapley_score(knn_graph: csr_matrix, labels: np.ndarray, k: int) -> np.ndarray:
+    """Compute the Shapley values of data points based on a knn graph."""
+    N = labels.shape[0]
+    scores = np.zeros((N, N))
+    dist = knn_graph.indices.reshape(N, -1)
+
+    for y, s, dist_i in zip(labels, scores, dist):
+        idx = dist_i[::-1]
+        ans = labels[idx]
+        s[idx[k - 1]] = float(ans[k - 1] == y)
+        ans_matches = (ans == y).flatten()
+        for j in range(k - 2, -1, -1):
+            s[idx[j]] = s[idx[j + 1]] + float(int(ans_matches[j]) - int(ans_matches[j + 1]))
+    return 0.5 * (np.mean(scores / k, axis=0) + 1)
+
+
+
[docs]def data_shapley_knn( + labels: np.ndarray, + *, + features: Optional[np.ndarray] = None, + knn_graph: Optional[csr_matrix] = None, + metric: Optional[Union[str, Callable]] = None, + k: int = 10, +) -> np.ndarray: + """ + Compute the Data Shapley values of data points using a K-Nearest Neighbors (KNN) graph. + + This function calculates the contribution (Data Shapley value) of each data point in a dataset + for model training, either directly from data features or using a precomputed KNN graph. + + The examples in the dataset with lowest data valuation scores contribute least + to a trained ML model’s performance (those whose value falls below a threshold are flagged with this type of issue). + The data valuation score is an approximate Data Shapley value, calculated based on the labels of the top k nearest neighbors of an example. Details on this KNN-Shapley value can be found in these papers: + https://arxiv.org/abs/1908.08619 and https://arxiv.org/abs/1911.07128. + + Parameters + ---------- + labels : + An array of labels for the data points(only for multi-class classification datasets). + features : + Feature embeddings (vector representations) of every example in the dataset. + + Necessary if `knn_graph` is not supplied. + + If provided, this must be a 2D array with shape (num_examples, num_features). + knn_graph : + A precomputed sparse KNN graph. If not provided, it will be computed from the `features` using the specified `metric`. + metric : Optional[str or Callable], default=None + The distance metric for KNN graph construction. + Supports metrics available in ``sklearn.neighbors.NearestNeighbors`` + Default metric is ``"cosine"`` for ``dim(features) > 3``, otherwise ``"euclidean"`` for lower-dimensional data. + The euclidean is computed with an efficient implementation from scikit-learn when the number of examples is greater than 100. + When the number of examples is 100 or fewer, a more numerically stable version of the euclidean distance from scipy is used. + k : + The number of neighbors to consider for the KNN graph and Data Shapley value computation. + Must be less than the total number of data points. + The value may not exceed the number of neighbors of each data point stored in the KNN graph. + + Returns + ------- + scores : + An array of transformed Data Shapley values for each data point, calibrated to indicate their relative importance. + These scores have been adjusted to fall within 0 to 1. + Values closer to 1 indicate data points that are highly influential and positively contribute to a trained ML model's performance. + Conversely, scores below 0.5 indicate data points estimated to negatively impact model performance. + + Raises + ------ + ValueError + If neither `knn_graph` nor `features` are provided, or if `k` is larger than the number of examples in `features`. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.data_valuation import data_shapley_knn + >>> labels = np.array([0, 1, 0, 1, 0]) + >>> features = np.array([[0, 1, 2, 3, 4]]).T + >>> data_shapley_knn(labels=labels, features=features, k=4) + array([0.55 , 0.525, 0.55 , 0.525, 0.55 ]) + """ + if knn_graph is None and features is None: + raise ValueError("Either knn_graph or features must be provided.") + + # Use provided knn_graph or compute it from features + if knn_graph is None: + knn_graph, _ = create_knn_graph_and_index(features, n_neighbors=k, metric=metric) + return _knn_shapley_score(knn_graph, labels, k)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/datalab.html b/v2.6.5/_modules/cleanlab/datalab/datalab.html new file mode 100644 index 000000000..a42e5aeed --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/datalab.html @@ -0,0 +1,1306 @@ + + + + + + + + + + + cleanlab.datalab.datalab - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.datalab

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Datalab offers a unified audit to detect all kinds of issues in data and labels.
+
+.. note::
+    .. include:: optional_dependencies.rst
+"""
+from __future__ import annotations
+
+import warnings
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
+
+import numpy as np
+import pandas as pd
+
+import cleanlab
+from cleanlab.datalab.internal.adapter.constants import DEFAULT_CLEANVISION_ISSUES
+from cleanlab.datalab.internal.adapter.imagelab import create_imagelab
+from cleanlab.datalab.internal.data import Data
+from cleanlab.datalab.internal.display import _Displayer
+from cleanlab.datalab.internal.helper_factory import (
+    _DataIssuesBuilder,
+    issue_finder_factory,
+    report_factory,
+)
+from cleanlab.datalab.internal.issue_manager_factory import (
+    list_default_issue_types as _list_default_issue_types,
+    list_possible_issue_types as _list_possible_issue_types,
+)
+from cleanlab.datalab.internal.serialize import _Serializer
+from cleanlab.datalab.internal.task import Task
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    from datasets.arrow_dataset import Dataset
+    from scipy.sparse import csr_matrix
+
+    DatasetLike = Union[Dataset, pd.DataFrame, Dict[str, Any], List[Dict[str, Any]], str]
+
+
+__all__ = ["Datalab"]
+
+
+
[docs]class Datalab: + """ + A single object to automatically detect all kinds of issues in datasets. + This is how we recommend you interface with the cleanlab library if you want to audit the quality of your data and detect issues within it. + If you have other specific goals (or are doing a less standard ML task not supported by Datalab), then consider using the other methods across the library. + Datalab tracks intermediate state (e.g. data statistics) from certain cleanlab functions that can be re-used across other cleanlab functions for better efficiency. + + Parameters + ---------- + data : Union[Dataset, pd.DataFrame, dict, list, str] + Dataset-like object that can be converted to a Hugging Face Dataset object. + + It should contain the labels for all examples, identified by a + `label_name` column in the Dataset object. + + Supported formats: + - datasets.Dataset + - pandas.DataFrame + - dict (keys are strings, values are arrays/lists of length ``N``) + - list (list of dictionaries that each have the same keys) + - str + + - path to a local file: Text (.txt), CSV (.csv), JSON (.json) + - or a dataset identifier on the Hugging Face Hub + + task : str + The type of machine learning task that the dataset is used for. + + Supported tasks: + - "classification" (default): Multiclass classification + - "regression" : Regression + - "multilabel" : Multilabel classification + + label_name : str, optional + The name of the label column in the dataset. + + image_key : str, optional + Optional key that can be specified for image datasets to point to the field (column) containing the actual images themselves (as PIL objects). + If specified, additional image-specific issue types will be checked for in the dataset. + See the `CleanVision package <https://github.com/cleanlab/cleanvision?tab=readme-ov-file#clean-your-data-for-better-computer-vision>`_ for descriptions of these image-specific issue types. + Currently, this argument is only supported for data formatted as a Hugging Face ``datasets.Dataset`` object. + + + verbosity : int, optional + The higher the verbosity level, the more information + Datalab prints when auditing a dataset. + Valid values are 0 through 4. Default is 1. + + Examples + -------- + >>> import datasets + >>> from cleanlab import Datalab + >>> data = datasets.load_dataset("glue", "sst2", split="train") + >>> datalab = Datalab(data, label_name="label") + """ + + def __init__( + self, + data: "DatasetLike", + task: str = "classification", + label_name: Optional[str] = None, + image_key: Optional[str] = None, + verbosity: int = 1, + ) -> None: + # Assume continuous values of labels for regression task + # Map labels to integers for classification task + self.task = Task.from_str(task) + self._data = Data(data, self.task, label_name) + self.data = self._data._data + self._labels = self._data.labels + self._label_map = self._labels.label_map + self.label_name = self._labels.label_name + self._data_hash = self._data._data_hash + self.cleanlab_version = cleanlab.version.__version__ + self.verbosity = verbosity + self._imagelab = create_imagelab(dataset=self.data, image_key=image_key) + + # Create the builder for DataIssues + builder = _DataIssuesBuilder(self._data) + builder.set_imagelab(self._imagelab).set_task(self.task) + self.data_issues = builder.build() + + # todo: check displayer methods + def __repr__(self) -> str: + return _Displayer(data_issues=self.data_issues, task=self.task).__repr__() + + def __str__(self) -> str: + return _Displayer(data_issues=self.data_issues, task=self.task).__str__() + + @property + def labels(self) -> Union[np.ndarray, List[List[int]]]: + """Labels of the dataset, in a [0, 1, ..., K-1] format.""" + return self._labels.labels + + @property + def has_labels(self) -> bool: + """Whether the dataset has labels, and that they are in a [0, 1, ..., K-1] format.""" + return self._labels.is_available + + @property + def class_names(self) -> List[str]: + """Names of the classes in the dataset. + + If the dataset has no labels, returns an empty list. + """ + return self._labels.class_names + +
[docs] def find_issues( + self, + *, + pred_probs: Optional[np.ndarray] = None, + features: Optional[npt.NDArray] = None, + knn_graph: Optional[csr_matrix] = None, + issue_types: Optional[Dict[str, Any]] = None, + ) -> None: + """ + Checks the dataset for all sorts of common issues in real-world data (in both labels and feature values). + + You can use Datalab to find issues in your data, utilizing *any* model you have already trained. + This method only interacts with your model via its predictions or embeddings (and other functions thereof). + The more of these inputs you provide, the more types of issues Datalab can detect in your dataset/labels. + If you provide a subset of these inputs, Datalab will output what insights it can based on the limited information from your model. + + NOTE + ---- + The issues are saved in the ``self.issues`` attribute of the ``Datalab`` object, but are not returned. + + Parameters + ---------- + pred_probs : + Out-of-sample predicted class probabilities made by the model for every example in the dataset. + To best detect label issues, provide this input obtained from the most accurate model you can produce. + + For classification data, this must be a 2D array with shape ``(num_examples, K)`` where ``K`` is the number of classes in the dataset. + Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name. + + For regression data, this must be a 1D array with shape ``(num_examples,)`` containing the predicted value for each example. + + For multilabel classification data, this must be a 2D array with shape ``(num_examples, K)`` where ``K`` is the number of classes in the dataset. + Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name. + + + features : Optional[np.ndarray] + Feature embeddings (vector representations) of every example in the dataset. + + If provided, this must be a 2D array with shape (num_examples, num_features). + + knn_graph : + Sparse matrix of precomputed distances between examples in the dataset in a k nearest neighbor graph. + + If provided, this must be a square CSR matrix with shape ``(num_examples, num_examples)`` and ``(k*num_examples)`` non-zero entries (``k`` is the number of nearest neighbors considered for each example), + evenly distributed across the rows. + Each non-zero entry in this matrix is a distance between a pair of examples in the dataset. Self-distances must be omitted + (i.e. diagonal must be all zeros, k nearest neighbors for each example do not include the example itself). + + This CSR format uses three 1D arrays (`data`, `indices`, `indptr`) to store a 2D matrix ``M``: + + - `data`: 1D array containing all the non-zero elements of matrix ``M``, listed in a row-wise fashion (but sorted within each row). + - `indices`: 1D array storing the column indices in matrix ``M`` of these non-zero elements. Each entry in `indices` corresponds to an entry in `data`, indicating the column of ``M`` containing this entry. + - `indptr`: 1D array indicating the start and end indices in `data` for each row of matrix ``M``. The non-zero elements of the i-th row of ``M`` are stored from ``data[indptr[i]]`` to ``data[indptr[i+1]]``. + + Within each row of matrix ``M`` (defined by the ranges in `indptr`), the corresponding non-zero entries (distances) of `knn_graph` must be sorted in ascending order (specifically in the segments of the `data` array that correspond to each row of ``M``). The `indices` array must also reflect this ordering, maintaining the correct column positions for these sorted distances. + + This type of matrix is returned by the method: `sklearn.neighbors.NearestNeighbors.kneighbors_graph <https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.kneighbors_graph>`_. + + Below is an example to illustrate: + + .. code-block:: python + + knn_graph.todense() + # matrix([[0. , 0.3, 0.2], + # [0.3, 0. , 0.4], + # [0.2, 0.4, 0. ]]) + + knn_graph.data + # array([0.2, 0.3, 0.3, 0.4, 0.2, 0.4]) + # Here, 0.2 and 0.3 are the sorted distances in the first row, 0.3 and 0.4 in the second row, and so on. + + knn_graph.indices + # array([2, 1, 0, 2, 0, 1]) + # Corresponding neighbor indices for the distances from the `data` array. + + knn_graph.indptr + # array([0, 2, 4, 6]) + # The non-zero entries in the first row are stored from `knn_graph.data[0]` to `knn_graph.data[2]`, the second row from `knn_graph.data[2]` to `knn_graph.data[4]`, and so on. + + For any duplicated examples i,j whose distance is 0, there should be an *explicit* zero stored in the matrix, i.e. ``knn_graph[i,j] = 0``. + + If both `knn_graph` and `features` are provided, the `knn_graph` will take precendence. + If `knn_graph` is not provided, it is constructed based on the provided `features`. + If neither `knn_graph` nor `features` are provided, certain issue types like (near) duplicates will not be considered. + + .. seealso:: + See the + `scipy.sparse.csr_matrix documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html>`_ + for more details on the CSR matrix format. + + issue_types : + Collection specifying which types of issues to consider in audit and any non-default parameter settings to use. + If unspecified, a default set of issue types and recommended parameter settings is considered. + + This is a dictionary of dictionaries, where the keys are the issue types of interest + and the values are dictionaries of parameter values that control how each type of issue is detected (only for advanced users). + More specifically, the values are constructor keyword arguments passed to the corresponding ``IssueManager``, + which is responsible for detecting the particular issue type. + + .. seealso:: + :py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>` + + Examples + -------- + + Here are some ways to provide inputs to :py:meth:`find_issues`: + + - Passing ``pred_probs``: + .. code-block:: python + + >>> from sklearn.linear_model import LogisticRegression + >>> import numpy as np + >>> from cleanlab import Datalab + >>> X = np.array([[0, 1], [1, 1], [2, 2], [2, 0]]) + >>> y = np.array([0, 1, 1, 0]) + >>> clf = LogisticRegression(random_state=0).fit(X, y) + >>> pred_probs = clf.predict_proba(X) + >>> lab = Datalab(data={"X": X, "y": y}, label_name="y") + >>> lab.find_issues(pred_probs=pred_probs) + + + - Passing ``features``: + .. code-block:: python + + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.neighbors import NearestNeighbors + >>> import numpy as np + >>> from cleanlab import Datalab + >>> X = np.array([[0, 1], [1, 1], [2, 2], [2, 0]]) + >>> y = np.array([0, 1, 1, 0]) + >>> lab = Datalab(data={"X": X, "y": y}, label_name="y") + >>> lab.find_issues(features=X) + + .. note:: + + You can pass both ``pred_probs`` and ``features`` to :py:meth:`find_issues` for a more comprehensive audit. + + - Passing a ``knn_graph``: + .. code-block:: python + + >>> from sklearn.neighbors import NearestNeighbors + >>> import numpy as np + >>> from cleanlab import Datalab + >>> X = np.array([[0, 1], [1, 1], [2, 2], [2, 0]]) + >>> y = np.array([0, 1, 1, 0]) + >>> nbrs = NearestNeighbors(n_neighbors=2, metric="euclidean").fit(X) + >>> knn_graph = nbrs.kneighbors_graph(mode="distance") + >>> knn_graph # Pass this to Datalab + <4x4 sparse matrix of type '<class 'numpy.float64'>' + with 8 stored elements in Compressed Sparse Row format> + >>> knn_graph.toarray() # DO NOT PASS knn_graph.toarray() to Datalab, only pass the sparse matrix itself + array([[0. , 1. , 2.23606798, 0. ], + [1. , 0. , 1.41421356, 0. ], + [0. , 1.41421356, 0. , 2. ], + [0. , 1.41421356, 2. , 0. ]]) + >>> lab = Datalab(data={"X": X, "y": y}, label_name="y") + >>> lab.find_issues(knn_graph=knn_graph) + + - Configuring issue types: + Suppose you want to only consider label issues. Just pass a dictionary with the key "label" and an empty dictionary as the value (to use default label issue parameters). + + .. code-block:: python + + >>> issue_types = {"label": {}} + >>> # lab.find_issues(pred_probs=pred_probs, issue_types=issue_types) + + If you are advanced user who wants greater control, you can pass keyword arguments to the issue manager that handles the label issues. + For example, if you want to pass the keyword argument "clean_learning_kwargs" + to the constructor of the :py:class:`LabelIssueManager <cleanlab.datalab.internal.issue_manager.label.LabelIssueManager>`, you would pass: + + + .. code-block:: python + + >>> issue_types = { + ... "label": { + ... "clean_learning_kwargs": { + ... "prune_method": "prune_by_noise_rate", + ... }, + ... }, + ... } + >>> # lab.find_issues(pred_probs=pred_probs, issue_types=issue_types) + + """ + + if issue_types is not None and not issue_types: + warnings.warn( + "No issue types were specified so no issues will be found in the dataset. Set `issue_types` as None to consider a default set of issues." + ) + return None + issue_finder = issue_finder_factory(self._imagelab)( + datalab=self, task=self.task, verbosity=self.verbosity + ) + issue_finder.find_issues( + pred_probs=pred_probs, + features=features, + knn_graph=knn_graph, + issue_types=issue_types, + ) + + if self.verbosity: + print( + f"\nAudit complete. {self.data_issues.issue_summary['num_issues'].sum()} issues found in the dataset." + )
+ +
[docs] def report( + self, + *, + num_examples: int = 5, + verbosity: Optional[int] = None, + include_description: bool = True, + show_summary_score: bool = False, + show_all_issues: bool = False, + ) -> None: + """Prints informative summary of all issues. + + Parameters + ---------- + num_examples : + Number of examples to show for each type of issue. + The report shows the top `num_examples` instances in the dataset that suffer the most from each type of issue. + + verbosity : + Higher verbosity levels add more information to the report. + + include_description : + Whether or not to include a description of each issue type in the report. + Consider setting this to ``False`` once you're familiar with how each issue type is defined. + + show_summary_score : + Whether or not to include the overall severity score of each issue type in the report. + These scores are not comparable across different issue types, + see the ``issue_summary`` documentation to learn more. + + show_all_issues : + Whether or not the report should show all issue types that were checked for, or only the types of issues detected in the dataset. + With this set to ``True``, the report may include more types of issues that were not detected in the dataset. + + See Also + -------- + For advanced usage, see documentation for the + :py:class:`Reporter <cleanlab.datalab.internal.report.Reporter>` class. + """ + if verbosity is None: + verbosity = self.verbosity + if self.data_issues.issue_summary.empty: + print("Please specify some `issue_types` in datalab.find_issues() to see a report.\n") + return + + reporter = report_factory(self._imagelab)( + data_issues=self.data_issues, + task=self.task, + verbosity=verbosity, + include_description=include_description, + show_summary_score=show_summary_score, + show_all_issues=show_all_issues, + imagelab=self._imagelab, + ) + reporter.report(num_examples=num_examples)
+ + @property + def issues(self) -> pd.DataFrame: + """Issues found in each example from the dataset.""" + return self.data_issues.issues + + @issues.setter + def issues(self, issues: pd.DataFrame) -> None: + self.data_issues.issues = issues + + @property + def issue_summary(self) -> pd.DataFrame: + """Summary of issues found in the dataset and the overall severity of each type of issue. + + Each type of issue has a summary score, which is usually defined as an average of + per-example issue-severity scores (over all examples in the dataset). + So these summary scores are not directly tied to the number of examples estimated to exhibit + a particular type of issue. Issue-severity (ie. quality of each example) is measured differently for each issue type, + and these per-example scores are only comparable across different examples for the same issue-type, but are not comparable across different issue types. + For instance, label quality might be scored via estimated likelihood of the given label, + whereas outlier quality might be scored via distance to K-nearest-neighbors in feature space (fundamentally incomparable quantities). + For some issue types, the summary score is not an average of per-example scores, but rather a global statistic of the dataset + (eg. for `non_iid` issue type, the p-value for hypothesis test that data are IID). + + In summary, you can compare these summary scores across datasets for the same issue type, but never compare them across different issue types. + + Examples + ------- + + If checks for "label" and "outlier" issues were run, + then the issue summary will look something like this: + + >>> datalab.issue_summary + issue_type score + outlier 0.123 + label 0.456 + """ + return self.data_issues.issue_summary + + @issue_summary.setter + def issue_summary(self, issue_summary: pd.DataFrame) -> None: + self.data_issues.issue_summary = issue_summary + + @property + def info(self) -> Dict[str, Dict[str, Any]]: + """Information and statistics about the dataset issues found. + + Examples + ------- + + If checks for "label" and "outlier" issues were run, + then the info will look something like this: + + >>> datalab.info + { + "label": { + "given_labels": [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, ...], + "predicted_label": [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, ...], + ..., + }, + "outlier": { + "nearest_neighbor": [3, 7, 1, 2, 8, 4, 5, 9, 6, 0, ...], + "distance_to_nearest_neighbor": [0.123, 0.789, 0.456, ...], + ..., + }, + } + """ + return self.data_issues.info + + @info.setter + def info(self, info: Dict[str, Dict[str, Any]]) -> None: + self.data_issues.info = info + +
[docs] def get_issues(self, issue_name: Optional[str] = None) -> pd.DataFrame: + """ + Use this after finding issues to see which examples suffer from which types of issues. + + Parameters + ---------- + issue_name : str or None + The type of issue to focus on. If `None`, returns full DataFrame summarizing all of the types of issues detected in each example from the dataset. + + Raises + ------ + ValueError + If `issue_name` is not a type of issue previously considered in the audit. + + Returns + ------- + specific_issues : + A DataFrame where each row corresponds to an example from the dataset and columns specify: + whether this example exhibits a particular type of issue, and how severely (via a numeric quality score where lower values indicate more severe instances of the issue). + The quality scores lie between 0-1 and are directly comparable between examples (for the same issue type), but not across different issue types. + + Additional columns may be present in the DataFrame depending on the type of issue specified. + """ + + # Validate issue_name + if issue_name is not None and issue_name not in self.list_possible_issue_types(): + raise ValueError( + f"""Invalid issue_name: {issue_name}. Please specify a valid issue_name from the list of possible issue types. + Either, specify one of the following: {self.list_possible_issue_types()} + or set issue_name as None to get all issue types. + """ + ) + return self.data_issues.get_issues(issue_name=issue_name)
+ +
[docs] def get_issue_summary(self, issue_name: Optional[str] = None) -> pd.DataFrame: + """Summarize the issues found in dataset of a particular type, + including how severe this type of issue is overall across the dataset. + + See the documentation of the ``issue_summary`` attribute to learn more. + + Parameters + ---------- + issue_name : + Name of the issue type to summarize. If `None`, summarizes each of the different issue types previously considered in the audit. + + Returns + ------- + issue_summary : + DataFrame where each row corresponds to a type of issue, and columns quantify: + the number of examples in the dataset estimated to exhibit this type of issue, + and the overall severity of the issue across the dataset (via a numeric quality score where lower values indicate that the issue is overall more severe). + The quality scores lie between 0-1 and are directly comparable between multiple datasets (for the same issue type), but not across different issue types. + """ + return self.data_issues.get_issue_summary(issue_name=issue_name)
+ +
[docs] def get_info(self, issue_name: Optional[str] = None) -> Dict[str, Any]: + """Get the info for the issue_name key. + + This function is used to get the info for a specific issue_name. If the info is not computed yet, it will raise an error. + + Parameters + ---------- + issue_name : + The issue name for which the info is required. + + Returns + ------- + :py:meth:`info <cleanlab.datalab.internal.data_issues.DataIssues.get_info>` : + The info for the issue_name. + """ + return self.data_issues.get_info(issue_name)
+ +
[docs] def list_possible_issue_types(self) -> List[str]: + """Returns a list of all registered issue types. + + Any issue type that is not in this list cannot be used in the :py:meth:`find_issues` method. + + See Also + -------- + :py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here. + """ + possible_issue_types = _list_possible_issue_types(task=self.task) + if self._imagelab is not None: + possible_issue_types.extend(DEFAULT_CLEANVISION_ISSUES.keys()) + return possible_issue_types
+ +
[docs] def list_default_issue_types(self) -> List[str]: + """Returns a list of the issue types that are run by default + when :py:meth:`find_issues` is called without specifying `issue_types`. + + See Also + -------- + :py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here. + """ + default_issue_types = _list_default_issue_types(task=self.task) + if self._imagelab is not None: + default_issue_types.extend(DEFAULT_CLEANVISION_ISSUES.keys()) + return default_issue_types
+ +
[docs] def save(self, path: str, force: bool = False) -> None: + """Saves this Datalab object to file (all files are in folder at `path/`). + We do not guarantee saved Datalab can be loaded from future versions of cleanlab. + + Parameters + ---------- + path : + Folder in which all information about this Datalab should be saved. + + force : + If ``True``, overwrites any existing files in the folder at `path`. Use this with caution! + + NOTE + ---- + You have to save the Dataset yourself separately if you want it saved to file. + """ + _Serializer.serialize(path=path, datalab=self, force=force) + save_message = f"Saved Datalab to folder: {path}" + print(save_message)
+ +
[docs] @staticmethod + def load(path: str, data: Optional[Dataset] = None) -> "Datalab": + """Loads Datalab object from a previously saved folder. + + Parameters + ---------- + `path` : + Path to the folder previously specified in ``Datalab.save()``. + + `data` : + The dataset used to originally construct the Datalab. + Remember the dataset is not saved as part of the Datalab, + you must save/load the data separately. + + Returns + ------- + `datalab` : + A Datalab object that is identical to the one originally saved. + """ + datalab = _Serializer.deserialize(path=path, data=data) + load_message = f"Datalab loaded from folder: {path}" + print(load_message) + return datalab
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/data.html b/v2.6.5/_modules/cleanlab/datalab/internal/data.html new file mode 100644 index 000000000..6b839c59c --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/data.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + cleanlab.datalab.internal.data - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.data

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""Classes and methods for datasets that are loaded into Datalab."""
+
+import os
+from typing import Any, Callable, Dict, List, Mapping, Optional, Union, cast, TYPE_CHECKING, Tuple
+
+from cleanlab.datalab.internal.task import Task
+
+try:
+    import datasets
+except ImportError as error:
+    raise ImportError(
+        "Cannot import datasets package. "
+        "Please install it and try again, or just install cleanlab with "
+        "all optional dependencies via: `pip install 'cleanlab[all]'`"
+    ) from error
+from abc import ABC, abstractmethod
+import numpy as np
+import pandas as pd
+from datasets.arrow_dataset import Dataset
+from datasets import ClassLabel
+
+from cleanlab.internal.validation import labels_to_array, labels_to_list_multilabel
+
+
+if TYPE_CHECKING:  # pragma: no cover
+    DatasetLike = Union[Dataset, pd.DataFrame, Dict[str, Any], List[Dict[str, Any]], str]
+
+
+
[docs]class DataFormatError(ValueError): + """Exception raised when the data is not in a supported format.""" + + def __init__(self, data: Any): + self.data = data + message = ( + f"Unsupported data type: {type(data)}\n" + "Supported types: " + "datasets.Dataset, pandas.DataFrame, dict, list, str" + ) + super().__init__(message)
+ + +
[docs]class DatasetDictError(ValueError): + """Exception raised when a DatasetDict is passed to Datalab. + + Usually, this means that a dataset identifier was passed to Datalab, but + the dataset is a DatasetDict, which contains multiple splits of the dataset. + + """ + + def __init__(self): + message = ( + "Please pass a single dataset, not a DatasetDict. " + "Try specifying a split, e.g. `dataset = load_dataset('dataset', split='train')` " + "then pass `dataset` to Datalab." + ) + super().__init__(message)
+ + +
[docs]class DatasetLoadError(ValueError): + """Exception raised when a dataset cannot be loaded. + + Parameters + ---------- + dataset_type: type + The type of dataset that failed to load. + """ + + def __init__(self, dataset_type: type): + message = f"Failed to load dataset from {dataset_type}.\n" + super().__init__(message)
+ + +
[docs]class Data: + """ + Class that holds and validates datasets for Datalab. + + Internally, the data is stored as a datasets.Dataset object and the labels + are integers (ranging from 0 to K-1, where K is the number of classes) stored + in a numpy array. + + Parameters + ---------- + data : + Dataset to be audited by Datalab. + Several formats are supported, which will internally be converted to a Dataset object. + + Supported formats: + - datasets.Dataset + - pandas.DataFrame + - dict + - keys are strings + - values are arrays or lists of equal length + - list + - list of dictionaries with the same keys + - str + - path to a local file + - Text (.txt) + - CSV (.csv) + - JSON (.json) + - or a dataset identifier on the Hugging Face Hub + It checks if the string is a path to a file that exists locally, and if not, + it assumes it is a dataset identifier on the Hugging Face Hub. + + label_name : Union[str, List[str]] + Name of the label column in the dataset. + + task : + The task associated with the dataset. This is used to determine how to + to format the labels. + + Note: + + - If the task is a classification task, the labels + will be mapped to integers, e.g. [0, 1, ..., K-1] where K is the number + of classes. If the task is a regression task, the labels will not be + mapped to integers. + + - If the task is a multilabel task, the labels will be formatted as a + list of lists, e.g. [[0, 1], [1, 2], [0, 2]] where each sublist contains + the labels for a single example. If the task is not a multilabel task, + the labels will be formatted as a 1D numpy array. + + Warnings + -------- + Optional dependencies: + + - datasets : + Dataset, DatasetDict and load_dataset are imported from datasets. + This is an optional dependency of cleanlab, but is required for + :py:class:`Datalab <cleanlab.datalab.datalab.Datalab>` to work. + """ + + def __init__( + self, + data: "DatasetLike", + task: Task, + label_name: Optional[str] = None, + ) -> None: + self._validate_data(data) + self._data = self._load_data(data) + self._data_hash = hash(self._data) + self.labels: Label + label_class = MultiLabel if task.is_multilabel else MultiClass + map_to_int = task.is_classification + self.labels = label_class(data=self._data, label_name=label_name, map_to_int=map_to_int) + + def _load_data(self, data: "DatasetLike") -> Dataset: + """Checks the type of dataset and uses the correct loader method and + assigns the result to the data attribute.""" + dataset_factory_map: Dict[type, Callable[..., Dataset]] = { + Dataset: lambda x: x, + pd.DataFrame: Dataset.from_pandas, + dict: self._load_dataset_from_dict, + list: self._load_dataset_from_list, + str: self._load_dataset_from_string, + } + if not isinstance(data, tuple(dataset_factory_map.keys())): + raise DataFormatError(data) + return dataset_factory_map[type(data)](data) + + def __len__(self) -> int: + return len(self._data) + + def __eq__(self, other) -> bool: + if isinstance(other, Data): + # Equality checks + hashes_are_equal = self._data_hash == other._data_hash + labels_are_equal = self.labels == other.labels + return all([hashes_are_equal, labels_are_equal]) + return False + + def __hash__(self) -> int: + return self._data_hash + + @property + def class_names(self) -> List[str]: + return self.labels.class_names + + @property + def has_labels(self) -> bool: + """Check if labels are available.""" + return self.labels.is_available + + @staticmethod + def _validate_data(data) -> None: + if isinstance(data, datasets.DatasetDict): + raise DatasetDictError() + if not isinstance(data, (Dataset, pd.DataFrame, dict, list, str)): + raise DataFormatError(data) + + @staticmethod + def _load_dataset_from_dict(data_dict: Dict[str, Any]) -> Dataset: + try: + return Dataset.from_dict(data_dict) + except Exception as error: + raise DatasetLoadError(dict) from error + + @staticmethod + def _load_dataset_from_list(data_list: List[Dict[str, Any]]) -> Dataset: + try: + return Dataset.from_list(data_list) + except Exception as error: + raise DatasetLoadError(list) from error + + @staticmethod + def _load_dataset_from_string(data_string: str) -> Dataset: + if not os.path.exists(data_string): + try: + dataset = datasets.load_dataset(data_string) + return cast(Dataset, dataset) + except Exception as error: + raise DatasetLoadError(str) from error + + factory: Dict[str, Callable[[str], Any]] = { + ".txt": Dataset.from_text, + ".csv": Dataset.from_csv, + ".json": Dataset.from_json, + } + + extension = os.path.splitext(data_string)[1] + if extension not in factory: + raise DatasetLoadError(type(data_string)) + + dataset = factory[extension](data_string) + dataset_cast = cast(Dataset, dataset) + return dataset_cast
+ + +
[docs]class Label(ABC): + """ + Class to represent labels in a dataset. + + It stores the labels as a numpy array and maps them to integers if necessary. + If a mapping is not necessary, e.g. for regression tasks, the mapping will be an empty dictionary. + + Parameters + ---------- + data : + A Hugging Face Dataset object. + + label_name : str + Name of the label column in the dataset. + + map_to_int : bool + Whether to map the labels to integers, e.g. [0, 1, ..., K-1] where K is the number of classes. + If False, the labels are not mapped to integers, e.g. for regression tasks. + """ + + def __init__( + self, *, data: Dataset, label_name: Optional[str] = None, map_to_int: bool = True + ) -> None: + self._data = data + self.label_name = label_name + self.labels = labels_to_array([]) + self.label_map: Mapping[Union[str, int], Any] = {} + if label_name is not None: + self.labels, self.label_map = self._extract_labels(data, label_name, map_to_int) + self._validate_labels() + + def __len__(self) -> int: + if self.labels is None: + return 0 + return len(self.labels) + + def __eq__(self, __value: object) -> bool: + if isinstance(__value, Label): + labels_are_equal = np.array_equal(self.labels, __value.labels) + names_are_equal = self.label_name == __value.label_name + maps_are_equal = self.label_map == __value.label_map + return all([labels_are_equal, names_are_equal, maps_are_equal]) + return False + + def __getitem__(self, __index: Union[int, slice, np.ndarray]) -> np.ndarray: + return self.labels[__index] + + def __bool__(self) -> bool: + return self.is_available + + @property + def class_names(self) -> List[str]: + """A list of class names that are present in the dataset. + + Without labels, this will return an empty list. + """ + return list(self.label_map.values()) + + @property + def is_available(self) -> bool: + """Check if labels are available.""" + empty_labels = self.labels is None or len(self.labels) == 0 + empty_label_map = self.label_map is None or len(self.label_map) == 0 + return not (empty_labels or empty_label_map) + + def _validate_labels(self) -> None: + if self.label_name not in self._data.column_names: + raise ValueError(f"Label column '{self.label_name}' not found in dataset.") + labels = self._data[self.label_name] + assert isinstance(labels, (np.ndarray, list)) + assert len(labels) == len(self._data) + + @abstractmethod + def _extract_labels(self, *args, **kwargs) -> Any: + """Extract labels from the dataset and formats them""" + raise NotImplementedError
+ + +
[docs]class MultiLabel(Label): + def __init__(self, data, label_name, map_to_int): + super().__init__(data=data, label_name=label_name, map_to_int=map_to_int) + + def _extract_labels( + self, data: Dataset, label_name: str, map_to_int: bool + ) -> Tuple[List[List[int]], Dict[int, Any]]: + labels: List[List[int]] = labels_to_list_multilabel(data[label_name]) + # label_map needs to be lexicographically sorted. np.unique should sort it + unique_labels = np.unique([x for ele in labels for x in ele]) + label_map = {label: i for i, label in enumerate(unique_labels)} + formatted_labels = [[label_map[item] for item in label] for label in labels] + inverse_map = {i: label for label, i in label_map.items()} + return formatted_labels, inverse_map
+ + +
[docs]class MultiClass(Label): + def __init__(self, data, label_name, map_to_int): + super().__init__(data=data, label_name=label_name, map_to_int=map_to_int) + + def _extract_labels(self, data: Dataset, label_name: str, map_to_int: bool): + """ + Picks out labels from the dataset and formats them to be [0, 1, ..., K-1] + where K is the number of classes. Also returns a mapping from the formatted + labels to the original labels in the dataset. + + Note: This function is not meant to be used directly. It is used by + ``cleanlab.data.Data`` to extract the formatted labels from the dataset + and stores them as attributes. + + Parameters + ---------- + data : datasets.Dataset + A Hugging Face Dataset object. + + label_name : str + Name of the column in the dataset that contains the labels. + + map_to_int : bool + Whether to map the labels to integers, e.g. [0, 1, ..., K-1] where K is the number of classes. + If False, the labels are not mapped to integers, e.g. for regression tasks. + Returns + ------- + formatted_labels : np.ndarray + Labels in the format [0, 1, ..., K-1] where K is the number of classes. + + inverse_map : dict + Mapping from the formatted labels to the original labels in the dataset. + """ + + labels = labels_to_array(data[label_name]) # type: ignore[assignment] + if labels.ndim != 1: + raise ValueError("labels must be 1D numpy array.") + + if not map_to_int: + # Don't map labels to integers, e.g. for regression tasks + return labels, {} + label_name_feature = data.features[label_name] + if isinstance(label_name_feature, ClassLabel): + label_map = { + label: label_name_feature.str2int(label) for label in label_name_feature.names + } + formatted_labels = labels + else: + label_map = {label: i for i, label in enumerate(np.unique(labels))} + formatted_labels = np.vectorize(label_map.get, otypes=[int])(labels) + inverse_map = {i: label for label, i in label_map.items()} + + return formatted_labels, inverse_map
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/data_issues.html b/v2.6.5/_modules/cleanlab/datalab/internal/data_issues.html new file mode 100644 index 000000000..b635b2ae7 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/data_issues.html @@ -0,0 +1,1096 @@ + + + + + + + + + + + cleanlab.datalab.internal.data_issues - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.data_issues

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Module for the :py:class:`DataIssues` class, which serves as a central repository for storing
+information and statistics about issues found in a dataset.
+
+It collects information from various
+:py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`
+instances and keeps track of each issue, a summary for each type of issue,
+related information and statistics about the issues.
+
+The collected information can be accessed using the
+`~cleanlab.datalab.internal.data_issues.DataIssues.get_info` method.
+We recommend using that method instead of this module, which is just intended for internal use.
+"""
+from __future__ import annotations
+
+import warnings
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
+import numpy as np
+
+import pandas as pd
+
+if TYPE_CHECKING:  # pragma: no cover
+    from cleanlab.datalab.internal.data import Data
+    from cleanlab.datalab.internal.issue_manager import IssueManager
+    from cleanvision import Imagelab
+
+
+class _InfoStrategy(ABC):
+    """
+    Abstract base class for strategies that fetch information about data issues.
+
+    Subclasses must implement the `get_info` method, which takes a `Data` object, a dictionary of
+    information about data issues, and an optional issue name, and returns a dictionary of
+    information about the specified issue, augmented with dataset about the dataset as a whole.
+
+    This class also provides a helper method, `_get_info_helper`, which takes an information
+    dictionary and an optional issue name, and returns a copy of the information dictionary for
+    the specified issue. If the issue name is `None`, this method returns `None`.
+    """
+
+    @staticmethod
+    @abstractmethod
+    def get_info(
+        data: Data,
+        info: Dict[str, Dict[str, Any]],
+        issue_name: Optional[str] = None,
+    ) -> Dict[str, Any]:
+        """
+        Get information about a data issue from an information dictionary.
+
+        Parameters
+        ----------
+        info : dict
+            A dictionary of information about data issues.
+        issue_name : str or None, optional (default=None)
+            The name of the issue to get information about. If `None`, this method returns `None`.
+
+        Returns
+        -------
+        dict or None
+            A copy of the information dictionary for the specified issue, or `None` if the issue
+            name is `None`.
+
+        Raises
+        ------
+        ValueError
+            If the specified issue name is not found in the information dictionary.
+        """
+        pass  # pragma: no cover
+
+    @staticmethod
+    def _get_info_helper(
+        info: Dict[str, Dict[str, Any]],
+        issue_name: Optional[str] = None,
+    ) -> Optional[Dict[str, Any]]:
+        if issue_name is None:
+            return None
+        if issue_name not in info:
+            raise ValueError(
+                f"issue_name {issue_name} not found in self.info. These have not been computed yet."
+            )
+        info = info[issue_name].copy()
+        return info
+
+
+class _ClassificationInfoStrategy(_InfoStrategy):
+    """Strategy for computing information about data issues related to classification tasks."""
+
+    @staticmethod
+    def get_info(
+        data: Data,
+        info: Dict[str, Dict[str, Any]],
+        issue_name: Optional[str] = None,
+    ) -> Dict[str, Any]:
+        info_extracted = _InfoStrategy._get_info_helper(info=info, issue_name=issue_name)
+        info = info_extracted if info_extracted is not None else info
+        if issue_name in ["label", "class_imbalance"]:
+            if data.labels.is_available is False:
+                raise ValueError(
+                    "The labels are not available. "
+                    "Most likely, no label column was provided when creating the Data object."
+                )
+            # Labels that are stored as integers may need to be converted to strings.
+            label_map = data.labels.label_map
+            if not label_map:
+                raise ValueError("The label map is not available.")
+            for key in ["given_label", "predicted_label"]:
+                labels = info.get(key, None)
+                if labels is not None:
+                    info[key] = np.vectorize(label_map.get)(labels)
+            info["class_names"] = list(label_map.values())
+        return info
+
+
+class _RegressionInfoStrategy(_InfoStrategy):
+    """Strategy for computing information about data issues related to regression tasks."""
+
+    @staticmethod
+    def get_info(
+        data: Data,
+        info: Dict[str, Dict[str, Any]],
+        issue_name: Optional[str] = None,
+    ) -> Dict[str, Any]:
+        info_extracted = _InfoStrategy._get_info_helper(info=info, issue_name=issue_name)
+        info = info_extracted if info_extracted is not None else info
+        if issue_name == "label":
+            for key in ["given_label", "predicted_label"]:
+                labels = info.get(key, None)
+                if labels is not None:
+                    info[key] = labels
+        return info
+
+
+class _MultilabelInfoStrategy(_InfoStrategy):
+    """Strategy for computing information about data issues related to multilabel tasks."""
+
+    @staticmethod
+    def get_info(
+        data: Data,
+        info: Dict[str, Dict[str, Any]],
+        issue_name: Optional[str] = None,
+    ) -> Dict[str, Any]:
+        info_extracted = _InfoStrategy._get_info_helper(info=info, issue_name=issue_name)
+        info = info_extracted if info_extracted is not None else info
+        if issue_name == "label":
+            if data.labels.is_available is False:
+                raise ValueError(
+                    "The labels are not available. "
+                    "Most likely, no label column was provided when creating the Data object."
+                )
+            # Labels that are stored as integers may need to be converted to strings.
+            label_map = data.labels.label_map
+            if not label_map:
+                raise ValueError("The label map is not available.")
+            for key in ["given_label", "predicted_label"]:
+                labels = info.get(key, None)
+                if labels is not None:
+                    info[key] = [list(map(label_map.get, label)) for label in labels]
+            info["class_names"] = list(label_map.values())
+        return info
+
+
+
[docs]class DataIssues: + """ + Class that collects and stores information and statistics on issues found in a dataset. + + Parameters + ---------- + data : + The data object for which the issues are being collected. + strategy : + Strategy used for processing info dictionaries. + + Attributes + ---------- + issues : pd.DataFrame + Stores information about each individual issue found in the data, + on a per-example basis. + issue_summary : pd.DataFrame + Summarizes the overall statistics for each issue type. + info : dict + A dictionary that contains information and statistics about the data and each issue type. + """ + + def __init__(self, data: Data, strategy: Type[_InfoStrategy]) -> None: + self.issues: pd.DataFrame = pd.DataFrame(index=range(len(data))) + self.issue_summary: pd.DataFrame = pd.DataFrame( + columns=["issue_type", "score", "num_issues"] + ).astype({"score": np.float64, "num_issues": np.int64}) + self.info: Dict[str, Dict[str, Any]] = { + "statistics": get_data_statistics(data), + } + self._data = data + self._strategy = strategy + +
[docs] def get_info(self, issue_name: Optional[str] = None) -> Dict[str, Any]: + return self._strategy.get_info(data=self._data, info=self.info, issue_name=issue_name)
+ + @property + def statistics(self) -> Dict[str, Any]: + """Returns the statistics dictionary. + + Shorthand for self.info["statistics"]. + """ + return self.info["statistics"] + +
[docs] def get_issues(self, issue_name: Optional[str] = None) -> pd.DataFrame: + """ + Use this after finding issues to see which examples suffer from which types of issues. + + Parameters + ---------- + issue_name : str or None + The type of issue to focus on. If `None`, returns full DataFrame summarizing all of the types of issues detected in each example from the dataset. + + Raises + ------ + ValueError + If `issue_name` is not a type of issue previously considered in the audit. + + Returns + ------- + specific_issues : + A DataFrame where each row corresponds to an example from the dataset and columns specify: + whether this example exhibits a particular type of issue and how severely (via a numeric quality score where lower values indicate more severe instances of the issue). + + Additional columns may be present in the DataFrame depending on the type of issue specified. + """ + if self.issues.empty: + raise ValueError( + """No issues available for retrieval. Please check the following before using `get_issues`: + 1. Ensure `find_issues` was executed. If not, please run it with the necessary parameters. + 2. If `find_issues` was run but you're seeing this message, + it may have encountered limitations preventing full analysis. + However, partial checks can still provide valuable insights. + Review `find_issues` output carefully for any specific actions needed + to facilitate a more comprehensive analysis before calling `get_issues`. + """ + ) + if issue_name is None: + return self.issues + + columns = [col for col in self.issues.columns if issue_name in col] + if not columns: + raise ValueError( + f"""No columns found for issue type '{issue_name}'. Ensure the following: + 1. `find_issues` has been executed. If it hasn't, please run it. + 2. Check `find_issues` output to verify that the issue type '{issue_name}' was included in the checks to + ensure it was not excluded accidentally before the audit. + 3. Review `find_issues` output for any errors or warnings that might indicate the check for '{issue_name}' issues failed to complete. + This can provide better insights into what adjustments may be necessary. + """ + ) + specific_issues = self.issues[columns] + info = self.get_info(issue_name=issue_name) + + if issue_name == "label": + specific_issues = specific_issues.assign( + given_label=info["given_label"], predicted_label=info["predicted_label"] + ) + + if issue_name == "near_duplicate": + column_dict = { + k: info.get(k) + for k in ["near_duplicate_sets", "distance_to_nearest_neighbor"] + if info.get(k) is not None + } + specific_issues = specific_issues.assign(**column_dict) + + if issue_name == "class_imbalance": + specific_issues = specific_issues.assign(given_label=info["given_label"]) + return specific_issues
+ +
[docs] def get_issue_summary(self, issue_name: Optional[str] = None) -> pd.DataFrame: + """Summarize the issues found in dataset of a particular type, + including how severe this type of issue is overall across the dataset. + + Parameters + ---------- + issue_name : + Name of the issue type to summarize. If `None`, summarizes each of the different issue types previously considered in the audit. + + Returns + ------- + issue_summary : + DataFrame where each row corresponds to a type of issue, and columns quantify: + the number of examples in the dataset estimated to exhibit this type of issue, + and the overall severity of the issue across the dataset (via a numeric quality score where lower values indicate that the issue is overall more severe). + """ + if self.issue_summary.empty: + raise ValueError( + "No issues found in the dataset. " + "Call `find_issues` before calling `get_issue_summary`." + ) + + if issue_name is None: + return self.issue_summary + + row_mask = self.issue_summary["issue_type"] == issue_name + if not any(row_mask): + raise ValueError(f"Issue type {issue_name} not found in the summary.") + return self.issue_summary[row_mask].reset_index(drop=True)
+ +
[docs] def collect_statistics(self, issue_manager: Union[IssueManager, "Imagelab"]) -> None: + """Update the statistics in the info dictionary. + + Parameters + ---------- + statistics : + A dictionary of statistics to add/update in the info dictionary. + + Examples + -------- + + A common use case is to reuse the KNN-graph across multiple issue managers. + To avoid recomputing the KNN-graph for each issue manager, + we can pass it as a statistic to the issue managers. + + >>> from scipy.sparse import csr_matrix + >>> weighted_knn_graph = csr_matrix(...) + >>> issue_manager_that_computes_knn_graph = ... + + """ + key = "statistics" + statistics: Dict[str, Any] = issue_manager.info.get(key, {}) + if statistics: + self.info[key].update(statistics)
+ + def _update_issues(self, issue_manager): + overlapping_columns = list(set(self.issues.columns) & set(issue_manager.issues.columns)) + if overlapping_columns: + warnings.warn( + f"Overwriting columns {overlapping_columns} in self.issues with " + f"columns from issue manager {issue_manager}." + ) + self.issues.drop(columns=overlapping_columns, inplace=True) + self.issues = self.issues.join(issue_manager.issues, how="outer") + + def _update_issue_info(self, issue_name, new_info): + if issue_name in self.info: + warnings.warn(f"Overwriting key {issue_name} in self.info") + self.info[issue_name] = new_info + +
[docs] def collect_issues_from_issue_manager(self, issue_manager: IssueManager) -> None: + """ + Collects results from an IssueManager and update the corresponding + attributes of the Datalab object. + + This includes: + - self.issues + - self.issue_summary + - self.info + + Parameters + ---------- + issue_manager : + IssueManager object to collect results from. + """ + self._update_issues(issue_manager) + + if issue_manager.issue_name in self.issue_summary["issue_type"].values: + warnings.warn( + f"Overwriting row in self.issue_summary with " + f"row from issue manager {issue_manager}." + ) + self.issue_summary = self.issue_summary[ + self.issue_summary["issue_type"] != issue_manager.issue_name + ] + issue_column_name: str = f"is_{issue_manager.issue_name}_issue" + num_issues: int = int(issue_manager.issues[issue_column_name].sum()) + self.issue_summary = pd.concat( + [ + self.issue_summary, + issue_manager.summary.assign(num_issues=num_issues), + ], + axis=0, + ignore_index=True, + ) + self._update_issue_info(issue_manager.issue_name, issue_manager.info)
+ +
[docs] def collect_issues_from_imagelab(self, imagelab: "Imagelab", issue_types: List[str]) -> None: + pass # pragma: no cover
+ +
[docs] def set_health_score(self) -> None: + """Set the health score for the dataset based on the issue summary. + + Currently, the health score is the mean of the scores for each issue type. + """ + self.info["statistics"]["health_score"] = self.issue_summary["score"].mean()
+ + +
[docs]def get_data_statistics(data: Data) -> Dict[str, Any]: + """Get statistics about a dataset. + + This function is called to initialize the "statistics" info in all `Datalab` objects. + + Parameters + ---------- + data : Data + Data object containing the dataset. + """ + statistics: Dict[str, Any] = { + "num_examples": len(data), + "multi_label": False, + "health_score": None, + } + if data.labels.is_available: + class_names = data.class_names + statistics["class_names"] = class_names + statistics["num_classes"] = len(class_names) + return statistics
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_finder.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_finder.html new file mode 100644 index 000000000..05267f5c9 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_finder.html @@ -0,0 +1,1168 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_finder - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_finder

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Module for the :class:`IssueFinder` class, which is responsible for configuring,
+creating and running issue managers.
+
+It determines which types of issues to look for, instatiates the IssueManagers
+via a factory, run the issue managers
+(:py:meth:`IssueManager.find_issues <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues>`),
+and collects the results to :py:class:`DataIssues <cleanlab.datalab.internal.data_issues.DataIssues>`.
+
+.. note::
+
+    This module is not intended to be used directly. Instead, use the public-facing
+    :py:meth:`Datalab.find_issues <cleanlab.datalab.datalab.Datalab.find_issues>` method.
+"""
+from __future__ import annotations
+
+import warnings
+from typing import TYPE_CHECKING, Any, Dict, Optional
+
+import numpy as np
+from scipy.sparse import csr_matrix
+
+from cleanlab.datalab.internal.issue_manager_factory import (
+    _IssueManagerFactory,
+    list_default_issue_types,
+)
+from cleanlab.datalab.internal.model_outputs import (
+    MultiClassPredProbs,
+    MultiLabelPredProbs,
+    RegressionPredictions,
+)
+from cleanlab.datalab.internal.task import Task
+
+if TYPE_CHECKING:  # pragma: no cover
+    from typing import Callable
+
+    import numpy.typing as npt
+
+    from cleanlab.datalab.datalab import Datalab
+
+
+_CLASSIFICATION_ARGS_DICT = {
+    "label": ["pred_probs", "features"],
+    "outlier": ["pred_probs", "features", "knn_graph"],
+    "near_duplicate": ["features", "knn_graph"],
+    "non_iid": ["pred_probs", "features", "knn_graph"],
+    # The underperforming_group issue type requires a pair of inputs: (pred_probs, <any_of_the_other_three>)
+    "underperforming_group": ["pred_probs", "features", "knn_graph", "cluster_ids"],
+    "data_valuation": ["features", "knn_graph"],
+    "class_imbalance": [],
+    "null": ["features"],
+}
+_REGRESSION_ARGS_DICT = {
+    "label": ["features", "predictions"],
+    "outlier": ["features", "knn_graph"],
+    "near_duplicate": ["features", "knn_graph"],
+    "non_iid": ["features", "knn_graph"],
+    "data_valuation": ["features", "knn_graph"],
+    "null": ["features"],
+}
+
+_MULTILABEL_ARGS_DICT = {
+    "label": ["pred_probs"],
+    "outlier": ["features", "knn_graph"],
+    "near_duplicate": ["features", "knn_graph"],
+    "non_iid": ["features", "knn_graph"],
+    "data_valuation": ["features", "knn_graph"],
+    "null": ["features"],
+}
+
+
+def _resolve_required_args_for_classification(**kwargs):
+    """Resolves the required arguments for each issue type intended for classification tasks."""
+    initial_args_dict = _CLASSIFICATION_ARGS_DICT.copy()
+    args_dict = {
+        issue_type: {arg: kwargs.get(arg, None) for arg in initial_args_dict[issue_type]}
+        for issue_type in initial_args_dict
+    }
+
+    # Some issue types (like class-imbalance) have no required args.
+    # This conditional lambda is used to include them in args dict.
+    keep_empty_argument = lambda k: not len(_CLASSIFICATION_ARGS_DICT[k])
+
+    # Remove None values from argument list, rely on default values in IssueManager
+    args_dict = {
+        k: {k2: v2 for k2, v2 in v.items() if v2 is not None}
+        for k, v in args_dict.items()
+        if (v or keep_empty_argument(k))
+    }
+
+    # Prefer `knn_graph` over `features` if both are provided.
+    for v in args_dict.values():
+        if "cluster_ids" in v and ("knn_graph" in v or "features" in v):
+            warnings.warn(
+                "`cluster_ids` have been provided with `knn_graph` or `features`."
+                "Issue managers that require cluster labels will prefer"
+                "`cluster_ids` over computation of cluster labels using"
+                "`knn_graph` or `features`. "
+            )
+        if "knn_graph" in v and "features" in v:
+            warnings.warn(
+                "Both `features` and `knn_graph` were provided. "
+                "Most issue managers will likely prefer using `knn_graph` "
+                "instead of `features` for efficiency."
+            )
+
+    # Only keep issue types that have at least one argument
+    # or those that require no arguments.
+    args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))}
+
+    return args_dict
+
+
+def _resolve_required_args_for_regression(**kwargs):
+    """Resolves the required arguments for each issue type intended for regression tasks."""
+    initial_args_dict = _REGRESSION_ARGS_DICT.copy()
+    args_dict = {
+        issue_type: {arg: kwargs.get(arg, None) for arg in initial_args_dict[issue_type]}
+        for issue_type in initial_args_dict
+    }
+    # Some issue types have no required args.
+    # This conditional lambda is used to include them in args dict.
+    keep_empty_argument = lambda k: not len(_REGRESSION_ARGS_DICT[k])
+
+    # Remove None values from argument list, rely on default values in IssueManager
+    args_dict = {
+        k: {k2: v2 for k2, v2 in v.items() if v2 is not None}
+        for k, v in args_dict.items()
+        if v or keep_empty_argument(k)
+    }
+
+    # Only keep issue types that have at least one argument
+    # or those that require no arguments.
+    args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))}
+
+    return args_dict
+
+
+def _resolve_required_args_for_multilabel(**kwargs):
+    """Resolves the required arguments for each issue type intended for multilabel tasks."""
+    initial_args_dict = _MULTILABEL_ARGS_DICT.copy()
+    args_dict = {
+        issue_type: {arg: kwargs.get(arg, None) for arg in initial_args_dict[issue_type]}
+        for issue_type in initial_args_dict
+    }
+    # Some issue types have no required args.
+    # This conditional lambda is used to include them in args dict.
+    keep_empty_argument = lambda k: not len(_MULTILABEL_ARGS_DICT[k])
+
+    # Remove None values from argument list, rely on default values in IssueManager
+    args_dict = {
+        k: {k2: v2 for k2, v2 in v.items() if v2 is not None}
+        for k, v in args_dict.items()
+        if v or keep_empty_argument(k)  # Allow label issues to require no arguments
+    }
+
+    # Only keep issue types that have at least one argument
+    # or those that require no arguments.
+    args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))}
+
+    return args_dict
+
+
+def _select_strategy_for_resolving_required_args(task: Task) -> Callable:
+    """Helper function that selects the strategy for resolving required arguments for each issue type.
+
+    Each strategy resolves the required arguments for each issue type.
+
+    This is a helper function that filters out any issue manager
+    that does not have the required arguments.
+
+    This does not consider custom hyperparameters for each issue type.
+
+    Parameters
+    ----------
+    task : str
+        The type of machine learning task that the dataset is used for.
+
+    Returns
+    -------
+    args_dict :
+        Dictionary of required arguments for each issue type, if available.
+    """
+    strategies = {
+        Task.CLASSIFICATION: _resolve_required_args_for_classification,
+        Task.REGRESSION: _resolve_required_args_for_regression,
+        Task.MULTILABEL: _resolve_required_args_for_multilabel,
+    }
+    selected_strategy = strategies.get(task, None)
+    if selected_strategy is None:
+        raise ValueError(f"No strategy for resolving required arguments for task '{task}'")
+    return selected_strategy
+
+
+
[docs]class IssueFinder: + """ + The IssueFinder class is responsible for managing the process of identifying + issues in the dataset by handling the creation and execution of relevant + IssueManagers. It serves as a coordinator or helper class for the Datalab class + to encapsulate the specific behavior of the issue finding process. + + At a high level, the IssueFinder is responsible for: + + - Determining which types of issues to look for. + - Instantiating the appropriate IssueManagers using a factory. + - Running the IssueManagers' `find_issues` methods. + - Collecting the results into a DataIssues instance. + + Parameters + ---------- + datalab : Datalab + The Datalab instance associated with this IssueFinder. + + task : str + The type of machine learning task that the dataset is used for. + + verbosity : int + Controls the verbosity of the output during the issue finding process. + + Note + ---- + This class is not intended to be used directly. Instead, use the + `Datalab.find_issues` method which internally utilizes an IssueFinder instance. + """ + + def __init__(self, datalab: "Datalab", task: Task, verbosity=1): + self.datalab = datalab + self.task = task + self.verbosity = verbosity + +
[docs] def find_issues( + self, + *, + pred_probs: Optional[np.ndarray] = None, + features: Optional[npt.NDArray] = None, + knn_graph: Optional[csr_matrix] = None, + issue_types: Optional[Dict[str, Any]] = None, + ) -> None: + """ + Checks the dataset for all sorts of common issues in real-world data (in both labels and feature values). + + You can use Datalab to find issues in your data, utilizing *any* model you have already trained. + This method only interacts with your model via its predictions or embeddings (and other functions thereof). + The more of these inputs you provide, the more types of issues Datalab can detect in your dataset/labels. + If you provide a subset of these inputs, Datalab will output what insights it can based on the limited information from your model. + + Note + ---- + This method is not intended to be used directly. Instead, use the + :py:meth:`Datalab.find_issues <cleanlab.datalab.datalab.Datalab.find_issues>` method. + + Note + ---- + The issues are saved in the ``self.datalab.data_issues.issues`` attribute, but are not returned. + + Parameters + ---------- + pred_probs : + Out-of-sample predicted class probabilities made by the model for every example in the dataset. + To best detect label issues, provide this input obtained from the most accurate model you can produce. + + If provided for classification, this must be a 2D array with shape ``(num_examples, K)`` where K is the number of classes in the dataset. + If provided for regression, this must be a 1D array with shape ``(num_examples,)``. + + features : Optional[np.ndarray] + Feature embeddings (vector representations) of every example in the dataset. + + If provided, this must be a 2D array with shape (num_examples, num_features). + + knn_graph : + Sparse matrix representing distances between examples in the dataset in a k nearest neighbor graph. + + For details, refer to the documentation of the same argument in :py:class:`Datalab.find_issues <cleanlab.datalab.datalab.Datalab.find_issues>` + + issue_types : + Collection specifying which types of issues to consider in audit and any non-default parameter settings to use. + If unspecified, a default set of issue types and recommended parameter settings is considered. + + This is a dictionary of dictionaries, where the keys are the issue types of interest + and the values are dictionaries of parameter values that control how each type of issue is detected (only for advanced users). + More specifically, the values are constructor keyword arguments passed to the corresponding ``IssueManager``, + which is responsible for detecting the particular issue type. + + .. seealso:: + :py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>` + """ + + issue_types_copy = self.get_available_issue_types( + pred_probs=pred_probs, + features=features, + knn_graph=knn_graph, + issue_types=issue_types, + ) + + if not issue_types_copy: + return None + + new_issue_managers = [ + factory(datalab=self.datalab, **issue_types_copy.get(factory.issue_name, {})) + for factory in _IssueManagerFactory.from_list( + list(issue_types_copy.keys()), task=self.task + ) + ] + + failed_managers = [] + data_issues = self.datalab.data_issues + for issue_manager, arg_dict in zip(new_issue_managers, issue_types_copy.values()): + try: + if self.verbosity: + print(f"Finding {issue_manager.issue_name} issues ...") + issue_manager.find_issues(**arg_dict) + data_issues.collect_statistics(issue_manager) + data_issues.collect_issues_from_issue_manager(issue_manager) + except Exception as e: + print(f"Error in {issue_manager.issue_name}: {e}") + failed_managers.append(issue_manager) + if failed_managers: + print(f"Failed to check for these issue types: {failed_managers}") + data_issues.set_health_score()
+ + def _set_issue_types( + self, + issue_types: Optional[Dict[str, Any]], + required_defaults_dict: Dict[str, Any], + ) -> Dict[str, Any]: + """Set necessary configuration for each IssueManager in a dictionary. + + While each IssueManager defines default values for its arguments, + the Datalab class needs to organize the calls to each IssueManager + with different arguments, some of which may be user-provided. + + Parameters + ---------- + issue_types : + Dictionary of issue types and argument configuration for their respective IssueManagers. + If None, then the `required_defaults_dict` is used. + + required_defaults_dict : + Dictionary of default parameter configuration for each issue type. + + Returns + ------- + issue_types_copy : + Dictionary of issue types and their parameter configuration. + The input `issue_types` is copied and updated with the necessary default values. + """ + if issue_types is not None: + issue_types_copy = issue_types.copy() + self._check_missing_args(required_defaults_dict, issue_types_copy) + else: + issue_types_copy = required_defaults_dict.copy() + # keep only default issue types + issue_types_copy = { + issue: issue_types_copy[issue] + for issue in list_default_issue_types(self.task) + if issue in issue_types_copy + } + + # Check that all required arguments are provided. + self._validate_issue_types_dict(issue_types_copy, required_defaults_dict) + + # Remove None values from argument list, rely on default values in IssueManager + for key, value in issue_types_copy.items(): + issue_types_copy[key] = {k: v for k, v in value.items() if v is not None} + + return issue_types_copy + + @staticmethod + def _check_missing_args(required_defaults_dict, issue_types): + for key, issue_type_value in issue_types.items(): + missing_args = set(required_defaults_dict.get(key, {})) - set(issue_type_value.keys()) + # Impute missing arguments with default values. + missing_dict = { + missing_arg: required_defaults_dict[key][missing_arg] + for missing_arg in missing_args + } + issue_types[key].update(missing_dict) + + @staticmethod + def _validate_issue_types_dict( + issue_types: Dict[str, Any], required_defaults_dict: Dict[str, Any] + ) -> None: + missing_required_args_dict = {} + for issue_name, required_args in required_defaults_dict.items(): + if issue_name in issue_types: + missing_args = set(required_args.keys()) - set(issue_types[issue_name].keys()) + if missing_args: + missing_required_args_dict[issue_name] = missing_args + if any(missing_required_args_dict.values()): + error_message = "" + for issue_name, missing_required_args in missing_required_args_dict.items(): + error_message += f"Required argument {missing_required_args} for issue type {issue_name} was not provided.\n" + raise ValueError(error_message) + +
[docs] def get_available_issue_types(self, **kwargs): + """Returns a dictionary of issue types that can be used in :py:meth:`Datalab.find_issues + <cleanlab.datalab.datalab.Datalab.find_issues>` method.""" + + pred_probs = kwargs.get("pred_probs", None) + features = kwargs.get("features", None) + knn_graph = kwargs.get("knn_graph", None) + issue_types = kwargs.get("issue_types", None) + + model_output = None + if pred_probs is not None: + model_output_dict = { + Task.REGRESSION: RegressionPredictions, + Task.CLASSIFICATION: MultiClassPredProbs, + Task.MULTILABEL: MultiLabelPredProbs, + } + + model_output_class = model_output_dict.get(self.task) + if model_output_class is None: + raise ValueError(f"Unknown task type '{self.task}'") + + model_output = model_output_class(pred_probs) + + if model_output is not None: + # A basic trick to assign the model output to the correct argument + # E.g. Datalab accepts only `pred_probs`, but those are assigned to the `predictions` argument for regression-related issue_managers + kwargs.update({model_output.argument: model_output.collect()}) + + # Determine which parameters are required for each issue type + strategy_for_resolving_required_args = _select_strategy_for_resolving_required_args( + self.task + ) + required_args_per_issue_type = strategy_for_resolving_required_args(**kwargs) + + issue_types_copy = self._set_issue_types(issue_types, required_args_per_issue_type) + if issue_types is None: + # Only run default issue types if no issue types are specified + issue_types_copy = { + issue: issue_types_copy[issue] + for issue in list_default_issue_types(self.task) + if issue in issue_types_copy + } + drop_label_check = ( + "label" in issue_types_copy + and not self.datalab.has_labels + and self.task != Task.REGRESSION + ) + + if drop_label_check: + warnings.warn("No labels were provided. " "The 'label' issue type will not be run.") + issue_types_copy.pop("label") + + outlier_check_needs_features = ( + self.task == "classification" + and "outlier" in issue_types_copy + and not self.datalab.has_labels + ) + if outlier_check_needs_features: + no_features = features is None + no_knn_graph = knn_graph is None + pred_probs_given = issue_types_copy["outlier"].get("pred_probs", None) is not None + + only_pred_probs_given = pred_probs_given and no_features and no_knn_graph + if only_pred_probs_given: + warnings.warn( + "No labels were provided. " "The 'outlier' issue type will not be run." + ) + issue_types_copy.pop("outlier") + + drop_class_imbalance_check = ( + "class_imbalance" in issue_types_copy + and not self.datalab.has_labels + and self.task == Task.CLASSIFICATION + ) + if drop_class_imbalance_check: + issue_types_copy.pop("class_imbalance") + + required_pairs_for_underperforming_group = [ + ("pred_probs", "features"), + ("pred_probs", "knn_graph"), + ("pred_probs", "cluster_ids"), + ] + drop_underperforming_group_check = "underperforming_group" in issue_types_copy and not any( + all(key in kwargs and kwargs.get(key) is not None for key in pair) + for pair in required_pairs_for_underperforming_group + ) + if drop_underperforming_group_check: + issue_types_copy.pop("underperforming_group") + + return issue_types_copy
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html new file mode 100644 index 000000000..004b95102 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html @@ -0,0 +1,881 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.data_valuation - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.data_valuation

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import (
+    TYPE_CHECKING,
+    Any,
+    Callable,
+    ClassVar,
+    Dict,
+    List,
+    Optional,
+    Union,
+)
+
+
+import numpy as np
+import pandas as pd
+from scipy.sparse import csr_matrix
+
+from cleanlab.data_valuation import data_shapley_knn
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    import pandas as pd
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class DataValuationIssueManager(IssueManager): + """ + Detect which examples in a dataset are least valuable via an approximate Data Shapely value. + + Examples + -------- + .. code-block:: python + + >>> from cleanlab import Datalab + >>> import numpy as np + >>> from sklearn.neighbors import NearestNeighbors + >>> + >>> # Generate two distinct clusters + >>> X = np.vstack([ + ... np.random.normal(-1, 1, (25, 2)), + ... np.random.normal(1, 1, (25, 2)), + ... ]) + >>> y = np.array([0]*25 + [1]*25) + >>> + >>> # Initialize Datalab with data + >>> lab = Datalab(data={"y": y}, label_name="y") + >>> + >>> # Creating a knn_graph for data valuation + >>> knn = NearestNeighbors(n_neighbors=10).fit(X) + >>> knn_graph = knn.kneighbors_graph(mode='distance') + >>> + >>> # Specifying issue types for data valuation + >>> issue_types = {"data_valuation": {}} + >>> lab.find_issues(knn_graph=knn_graph, issue_types=issue_types) + """ + + description: ClassVar[ + str + ] = """ + Examples that contribute minimally to a model's training + receive lower valuation scores. + Since the original knn-shapley value is in [-1, 1], we transform it to [0, 1] by: + + .. math:: + 0.5 \times (\text{shapley} + 1) + + here shapley is the original knn-shapley value. + """ + + issue_name: ClassVar[str] = "data_valuation" + issue_score_key: ClassVar[str] + verbosity_levels: ClassVar[Dict[int, List[str]]] = { + 0: [], + 1: [], + 2: [], + 3: ["average_data_valuation"], + } + + DEFAULT_THRESHOLD = 0.5 + + def __init__( + self, + datalab: Datalab, + metric: Optional[Union[str, Callable]] = None, + threshold: Optional[float] = None, + k: int = 10, + **kwargs, + ): + super().__init__(datalab) + self.metric = metric + self.k = k + self.threshold = threshold if threshold is not None else self.DEFAULT_THRESHOLD + +
[docs] def find_issues( + self, + features: Optional[npt.NDArray] = None, + **kwargs, + ) -> None: + """Calculate the data valuation score with a provided or existing knn graph. + Based on KNN-Shapley value described in https://arxiv.org/abs/1911.07128 + The larger the score, the more valuable the data point is, the more contribution it will make to the model's training. + + Parameters + ---------- + knn_graph : csr_matrix + A sparse matrix representing the knn graph. + """ + self.k = kwargs.get("k", self.k) + knn_graph = self._process_knn_graph_from_inputs(kwargs) + old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") + metric_changes = self.metric and self.metric != old_knn_metric + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"Expected labels to be a numpy array of shape (n_samples,) to use with DataValuationIssueManager, " + f"but got {type(labels)} instead." + ) + raise TypeError(error_msg) + if knn_graph is None or metric_changes: + knn_graph, knn = create_knn_graph_and_index( + features, n_neighbors=self.k, metric=self.metric + ) + self.metric = knn.metric + + scores = data_shapley_knn(labels, knn_graph=knn_graph, k=self.k) + + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": scores < self.threshold, + self.issue_score_key: scores, + }, + ) + self.summary = self.make_summary(score=scores.mean()) + + self.info = self.collect_info(issues=self.issues, knn_graph=knn_graph)
+ + def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: + """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" + knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) + knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + knn_graph: Optional[csr_matrix] = None + if knn_graph_kwargs is not None: + knn_graph = knn_graph_kwargs + elif knn_graph_stats is not None: + knn_graph = knn_graph_stats + + if isinstance(knn_graph, csr_matrix) and self.k > (knn_graph.nnz // knn_graph.shape[0]): + self.k = knn_graph.nnz // knn_graph.shape[0] + Warning( + f"k is larger than the number of neighbors in the knn graph. Using k={self.k} instead." + ) + return knn_graph + +
[docs] def collect_info(self, issues: pd.DataFrame, knn_graph: csr_matrix) -> dict: + issues_info = { + "num_low_valuation_issues": sum(issues[f"is_{self.issue_name}_issue"]), + "average_data_valuation": issues[self.issue_score_key].mean(), + } + + params_dict = { + "metric": self.metric, + "k": self.k, + "threshold": self.threshold, + } + + statistics_dict = self._build_statistics_dictionary(knn_graph=knn_graph) + + info_dict = { + **issues_info, + **params_dict, + **statistics_dict, + } + + return info_dict
+ + def _build_statistics_dictionary(self, knn_graph: csr_matrix) -> Dict[str, Dict[str, Any]]: + statistics_dict: Dict[str, Dict[str, Any]] = {"statistics": {}} + + # Add the knn graph as a statistic if necessary + graph_key = "weighted_knn_graph" + old_knn_graph = self.datalab.get_info("statistics").get(graph_key, None) + old_graph_exists = old_knn_graph is not None + prefer_new_graph = ( + not old_graph_exists + or knn_graph.nnz > old_knn_graph.nnz + or self.metric != self.datalab.get_info("statistics").get("knn_metric", None) + ) + if prefer_new_graph: + statistics_dict["statistics"][graph_key] = knn_graph + if self.metric is not None: + statistics_dict["statistics"]["knn_metric"] = self.metric + + return statistics_dict
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html new file mode 100644 index 000000000..3bdbdecae --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html @@ -0,0 +1,932 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.duplicate - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.duplicate

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, List, Optional, Union
+import warnings
+
+import numpy as np
+import pandas as pd
+from scipy.sparse import csr_matrix
+
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index
+from cleanlab.internal.constants import EPSILON
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class NearDuplicateIssueManager(IssueManager): + """Manages issues related to near-duplicate examples.""" + + description: ClassVar[ + str + ] = """A (near) duplicate issue refers to two or more examples in + a dataset that are extremely similar to each other, relative + to the rest of the dataset. The examples flagged with this issue + may be exactly duplicated, or lie atypically close together when + represented as vectors (i.e. feature embeddings). + """ + issue_name: ClassVar[str] = "near_duplicate" + verbosity_levels = { + 0: [], + 1: [], + 2: ["threshold"], + } + + def __init__( + self, + datalab: Datalab, + metric: Optional[Union[str, Callable]] = None, + threshold: float = 0.13, + k: int = 10, + **_, + ): + super().__init__(datalab) + self.metric = metric + self.threshold = self._set_threshold(threshold) + self.k = k + self.near_duplicate_sets: List[List[int]] = [] + +
[docs] def find_issues( + self, + features: Optional[npt.NDArray] = None, + **kwargs, + ) -> None: + knn_graph = self._process_knn_graph_from_inputs(kwargs) + old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") + metric_changes = self.metric and self.metric != old_knn_metric + + if knn_graph is None or metric_changes: + knn_graph, knn = create_knn_graph_and_index( + features, n_neighbors=self.k, metric=self.metric + ) + self.metric = knn.metric + N = knn_graph.shape[0] + nn_distances = knn_graph.data.reshape(N, -1)[:, 0] + median_nn_distance = max(np.median(nn_distances), EPSILON) # avoid threshold = 0 + self.near_duplicate_sets = self._neighbors_within_radius( + knn_graph, self.threshold, median_nn_distance + ) + + # Flag every example in a near-duplicate set as a near-duplicate issue + all_near_duplicates = np.unique(np.concatenate(self.near_duplicate_sets)) + is_issue_column = np.zeros(N, dtype=bool) + is_issue_column[all_near_duplicates] = True + temperature = 1.0 / median_nn_distance + scores = _compute_scores_with_exp_transform(nn_distances, temperature=temperature) + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_issue_column, + self.issue_score_key: scores, + }, + ) + + self.summary = self.make_summary(score=scores.mean()) + self.info = self.collect_info(knn_graph=knn_graph, median_nn_distance=median_nn_distance)
+ + @staticmethod + def _neighbors_within_radius(knn_graph: csr_matrix, threshold: float, median: float): + """Returns a list of lists of indices of near-duplicate examples. + + Each list of indices represents a set of near-duplicate examples. + + If the list is empty for a given example, then that example is not + a near-duplicate of any other example. + """ + + N = knn_graph.shape[0] + distances = knn_graph.data.reshape(N, -1) + # Create a mask for the threshold + mask = distances < threshold * median + + # Update the indptr to reflect the new number of neighbors + indptr = np.zeros(knn_graph.indptr.shape, dtype=knn_graph.indptr.dtype) + indptr[1:] = np.cumsum(mask.sum(axis=1)) + + # Filter the knn_graph based on the threshold + indices = knn_graph.indices[mask.ravel()] + near_duplicate_sets = [indices[indptr[i] : indptr[i + 1]] for i in range(N)] + + # Second pass over the data is required to ensure each item is included in the near-duplicate sets of its own near-duplicates. + # This is important because a "near-duplicate" relationship is reciprocal. + # For example, if item A is a near-duplicate of item B, then item B should also be considered a near-duplicate of item A. + # NOTE: This approach does not assure that the sets are ordered by increasing distance. + for i, near_duplicates in enumerate(near_duplicate_sets): + for j in near_duplicates: + if i not in near_duplicate_sets[j]: + near_duplicate_sets[j] = np.append(near_duplicate_sets[j], i) + + return near_duplicate_sets + + def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: + """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" + knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) + knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + knn_graph: Optional[csr_matrix] = None + if knn_graph_kwargs is not None: + knn_graph = knn_graph_kwargs + elif knn_graph_stats is not None: + knn_graph = knn_graph_stats + + if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( + knn_graph.nnz // knn_graph.shape[0] + ): + # If the provided knn graph is insufficient, then we need to recompute the knn graph + # with the provided features + knn_graph = None + return knn_graph + +
[docs] def collect_info(self, knn_graph: csr_matrix, median_nn_distance: float) -> dict: + issues_dict = { + "average_near_duplicate_score": self.issues[self.issue_score_key].mean(), + "near_duplicate_sets": self.near_duplicate_sets, + } + + params_dict = { + "metric": self.metric, + "k": self.k, + "threshold": self.threshold, + } + + N = knn_graph.shape[0] + dists = knn_graph.data.reshape(N, -1)[:, 0] + nn_ids = knn_graph.indices.reshape(N, -1)[:, 0] + + knn_info_dict = { + "nearest_neighbor": nn_ids.tolist(), + "distance_to_nearest_neighbor": dists.tolist(), + "median_distance_to_nearest_neighbor": median_nn_distance, + } + + statistics_dict = self._build_statistics_dictionary(knn_graph=knn_graph) + + info_dict = { + **issues_dict, + **params_dict, + **knn_info_dict, + **statistics_dict, + } + return info_dict
+ + def _build_statistics_dictionary(self, knn_graph: csr_matrix) -> Dict[str, Dict[str, Any]]: + statistics_dict: Dict[str, Dict[str, Any]] = {"statistics": {}} + + # Add the knn graph as a statistic if necessary + graph_key = "weighted_knn_graph" + old_knn_graph = self.datalab.get_info("statistics").get(graph_key, None) + old_graph_exists = old_knn_graph is not None + prefer_new_graph = ( + not old_graph_exists + or knn_graph.nnz > old_knn_graph.nnz + or self.metric != self.datalab.get_info("statistics").get("knn_metric", None) + ) + if prefer_new_graph: + statistics_dict["statistics"][graph_key] = knn_graph + if self.metric is not None: + statistics_dict["statistics"]["knn_metric"] = self.metric + + return statistics_dict + + def _set_threshold( + self, + threshold: float, + ) -> float: + """Computes nearest-neighbors thresholding for near-duplicate detection.""" + if threshold < 0: + warnings.warn( + f"Computed threshold {threshold} is less than 0. " + "Setting threshold to 0." + "This may indicate that either the only a few examples are in the dataset, " + "or the data is heavily skewed." + ) + threshold = 0 + return threshold
+ + +def _compute_scores_with_exp_transform(nn_distances: np.ndarray, temperature: float) -> np.ndarray: + r"""Compute near-duplicate scores from nearest neighbor distances. + + This is a non-linear transformation of the nearest neighbor distances that + maps distances to scores in the range [0, 1]. + + Note + ---- + + This transformation is given by the following formula: + + .. math:: + + \text{score}(d, t) = 1 - e^{-dt} + + where :math:`d` is the nearest neighbor distance and :math:`t > 0` is a temperature parameter. + + Parameters + ---------- + nn_distances : + The nearest neighbor distances for each example. + + Returns + ------- + scores : + The near-duplicate scores for each example. The scores are in the range [0, 1]. + A lower score indicates that an example is more likely to be a near-duplicate than + an example with a higher score. + A score of 0 indicates that an example has an exact duplicate. + """ + if temperature <= 0: + raise ValueError("Temperature must be greater than 0.") + + scores = 1 - np.exp(-temperature * nn_distances) + + # Ensure that for nn_distances approximately equal to 0, the score is set to 0 + inds = np.isclose(nn_distances, 0) + scores[inds] = 0 + + return scores +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html new file mode 100644 index 000000000..664e8f6a6 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html @@ -0,0 +1,762 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.imbalance - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.imbalance

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, ClassVar
+
+import numpy as np
+import pandas as pd
+from cleanlab.datalab.internal.issue_manager import IssueManager
+
+if TYPE_CHECKING:  # pragma: no cover
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class ClassImbalanceIssueManager(IssueManager): + """Manages issues related to imbalance class examples. + + Parameters + ---------- + datalab: + The Datalab instance that this issue manager searches for issues in. + + threshold: + Minimum fraction of samples of each class that are present in a dataset without class imbalance. + + """ + + description: ClassVar[str] = ( + """Examples belonging to the most under-represented class in the dataset.""" + ) + + issue_name: ClassVar[str] = "class_imbalance" + verbosity_levels = { + 0: ["Rarest Class"], + 1: [], + 2: [], + } + + def __init__(self, datalab: Datalab, threshold: float = 0.1, **_): + super().__init__(datalab) + self.threshold = threshold + +
[docs] def find_issues( + self, + **kwargs, + ) -> None: + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"Expected labels to be a numpy array of shape (n_samples,) to use with ClassImbalanceIssueManager, " + f"but got {type(labels)} instead." + ) + raise TypeError(error_msg) + K = len(self.datalab.class_names) + class_probs = np.bincount(labels) / len(labels) + rarest_class_idx = int(np.argmin(class_probs)) + # solely one class is identified as rarest, ties go to class w smaller integer index + scores = np.where(labels == rarest_class_idx, class_probs[rarest_class_idx], 1) + imbalance_exists = class_probs[rarest_class_idx] < self.threshold * (1 / K) + rarest_class_issue = rarest_class_idx if imbalance_exists else -1 + is_issue_column = labels == rarest_class_issue + rarest_class_name = self.datalab._label_map.get(rarest_class_issue, "NA") + + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_issue_column, + self.issue_score_key: scores, + }, + ) + self.summary = self.make_summary(score=class_probs[rarest_class_idx]) + self.info = self.collect_info(class_name=rarest_class_name, labels=labels)
+ +
[docs] def collect_info(self, class_name: str, labels: np.ndarray) -> dict: + params_dict = { + "threshold": self.threshold, + "Rarest Class": class_name, + "given_label": labels, + } + info_dict = {**params_dict} + return info_dict
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html new file mode 100644 index 000000000..32a0590a2 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html @@ -0,0 +1,1014 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.issue_manager - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.issue_manager

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from abc import ABC, ABCMeta, abstractmethod
+from itertools import chain
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Set, Tuple, Type, TypeVar
+import json
+
+import numpy as np
+import pandas as pd
+
+if TYPE_CHECKING:  # pragma: no cover
+    from cleanlab.datalab.datalab import Datalab
+
+
+T = TypeVar("T", bound="IssueManager")
+TM = TypeVar("TM", bound="IssueManagerMeta")
+
+
+class IssueManagerMeta(ABCMeta):
+    """Metaclass for IssueManager that adds issue_score_key to the class.
+
+    :meta private:
+    """
+
+    issue_name: ClassVar[str]
+    issue_score_key: ClassVar[str]
+    verbosity_levels: ClassVar[Dict[int, List[str]]] = {
+        0: [],
+        1: [],
+        2: [],
+        3: [],
+    }
+
+    def __new__(
+        meta: Type[TM],
+        name: str,
+        bases: Tuple[Type[Any], ...],
+        class_dict: Dict[str, Any],
+    ) -> TM:  # Classes that inherit from ABC don't need to be modified
+        if ABC in bases:
+            return super().__new__(meta, name, bases, class_dict)
+
+        # Ensure that the verbosity levels don't have keys other than those in ["issue", "info"]
+        verbosity_levels = class_dict.get("verbosity_levels", meta.verbosity_levels)
+        for level, level_list in verbosity_levels.items():
+            if not isinstance(level_list, list):
+                raise ValueError(
+                    f"Verbosity levels must be lists. "
+                    f"Got {level_list} in {name}.verbosity_levels"
+                )
+            prohibited_keys = [key for key in level_list if not isinstance(key, str)]
+            if prohibited_keys:
+                raise ValueError(
+                    f"Verbosity levels must be lists of strings. "
+                    f"Got {prohibited_keys} in {name}.verbosity_levels[{level}]"
+                )
+
+        # Concrete classes need to have an issue_name attribute
+        if "issue_name" not in class_dict:
+            raise TypeError("IssueManagers need an issue_name class variable")
+
+        # Add issue_score_key to class
+        class_dict["issue_score_key"] = f"{class_dict['issue_name']}_score"
+        return super().__new__(meta, name, bases, class_dict)
+
+
+
[docs]class IssueManager(ABC, metaclass=IssueManagerMeta): + """Base class for managing data issues of a particular type in a Datalab. + + For each example in a dataset, the IssueManager for a particular type of issue should compute: + - A numeric severity score between 0 and 1, + with values near 0 indicating severe instances of the issue. + - A boolean `is_issue` value, which is True + if we believe this example suffers from the issue in question. + `is_issue` may be determined by thresholding the severity score + (with an a priori determined reasonable threshold value), + or via some other means (e.g. Confident Learning for flagging label issues). + + The IssueManager should also report: + - A global value between 0 and 1 summarizing how severe this issue is in the dataset overall + (e.g. the average severity across all examples in dataset + or count of examples where `is_issue=True`). + - Other interesting `info` about the issue and examples in the dataset, + and statistics estimated from current dataset that may be reused + to score this issue in future data. + For example, `info` for label issues could contain the: + confident_thresholds, confident_joint, predicted label for each example, etc. + Another example is for (near)-duplicate detection issue, where `info` could contain: + which set of examples in the dataset are all (nearly) identical. + + Implementing a new IssueManager: + - Define the `issue_name` class attribute, e.g. "label", "duplicate", "outlier", etc. + - Implement the abstract methods `find_issues` and `collect_info`. + - `find_issues` is responsible for computing computing the `issues` and `summary` dataframes. + - `collect_info` is responsible for computing the `info` dict. It is called by `find_issues`, + once the manager has set the `issues` and `summary` dataframes as instance attributes. + """ + + description: ClassVar[str] = "" + """Short text that summarizes the type of issues handled by this IssueManager. + + :meta hide-value: + """ + issue_name: ClassVar[str] + """Returns a key that is used to store issue summary results about the assigned Lab.""" + issue_score_key: ClassVar[str] + """Returns a key that is used to store issue score results about the assigned Lab.""" + verbosity_levels: ClassVar[Dict[int, List[str]]] = { + 0: [], + 1: [], + 2: [], + 3: [], + } + """A dictionary of verbosity levels and their corresponding dictionaries of + report items to print. + + :meta hide-value: + + Example + ------- + + >>> verbosity_levels = { + ... 0: [], + ... 1: ["some_info_key"], + ... 2: ["additional_info_key"], + ... } + """ + + def __init__(self, datalab: Datalab, **_): + self.datalab = datalab + self.info: Dict[str, Any] = {} + self.issues: pd.DataFrame = pd.DataFrame() + self.summary: pd.DataFrame = pd.DataFrame() + + def __repr__(self): + class_name = self.__class__.__name__ + return class_name + + @classmethod + def __init_subclass__(cls): + required_class_variables = [ + "issue_name", + ] + for var in required_class_variables: + if not hasattr(cls, var): + raise NotImplementedError(f"Class {cls.__name__} must define class variable {var}") + +
[docs] @abstractmethod + def find_issues(self, *args, **kwargs) -> None: + """Finds occurrences of this particular issue in the dataset. + + Computes the `issues` and `summary` dataframes. Calls `collect_info` to compute the `info` dict. + """ + raise NotImplementedError
+ +
[docs] def collect_info(self, *args, **kwargs) -> dict: + """Collects data for the info attribute of the Datalab. + + NOTE + ---- + This method is called by :py:meth:`find_issues` after :py:meth:`find_issues` has set the `issues` and `summary` dataframes + as instance attributes. + """ + raise NotImplementedError
+ +
[docs] @classmethod + def make_summary(cls, score: float) -> pd.DataFrame: + """Construct a summary dataframe. + + Parameters + ---------- + score : + The overall score for this issue. + + Returns + ------- + summary : + A summary dataframe. + """ + if not 0 <= score <= 1: + raise ValueError(f"Score must be between 0 and 1. Got {score}.") + + return pd.DataFrame( + { + "issue_type": [cls.issue_name], + "score": [score], + }, + )
+ +
[docs] @classmethod + def report( + cls, + issues: pd.DataFrame, + summary: pd.DataFrame, + info: Dict[str, Any], + num_examples: int = 5, + verbosity: int = 0, + include_description: bool = False, + info_to_omit: Optional[List[str]] = None, + ) -> str: + """Compose a report of the issues found by this IssueManager. + + Parameters + ---------- + issues : + An issues dataframe. + + Example + ------- + >>> import pandas as pd + >>> issues = pd.DataFrame( + ... { + ... "is_X_issue": [True, False, True], + ... "X_score": [0.2, 0.9, 0.4], + ... }, + ... ) + + summary : + The summary dataframe. + + Example + ------- + >>> summary = pd.DataFrame( + ... { + ... "issue_type": ["X"], + ... "score": [0.5], + ... }, + ... ) + + info : + The info dict. + + Example + ------- + >>> info = { + ... "A": "val_A", + ... "B": ["val_B1", "val_B2"], + ... } + + num_examples : + The number of examples to print. + + verbosity : + The verbosity level of the report. + + include_description : + Whether to include a description of the issue in the report. + + Returns + ------- + report_str : + A string containing the report. + """ + + max_verbosity = max(cls.verbosity_levels.keys()) + top_level = max_verbosity + 1 + if verbosity not in list(cls.verbosity_levels.keys()) + [top_level]: + raise ValueError( + f"Verbosity level {verbosity} not supported. " + f"Supported levels: {cls.verbosity_levels.keys()}" + f"Use verbosity={top_level} to print all info." + ) + if issues.empty: + print(f"No issues found") + + topk_ids = issues.sort_values(by=cls.issue_score_key, ascending=True).index[:num_examples] + + score = summary["score"].loc[0] + report_str = f"{' ' + cls.issue_name + ' issues ':-^60}\n\n" + + if include_description and cls.description: + description = cls.description + if verbosity == 0: + description = description.split("\n\n", maxsplit=1)[0] + report_str += "About this issue:\n\t" + description + "\n\n" + report_str += ( + f"Number of examples with this issue: {issues[f'is_{cls.issue_name}_issue'].sum()}\n" + f"Overall dataset quality in terms of this issue: {score:.4f}\n\n" + ) + + info_to_print: Set[str] = set() + _info_to_omit = set(issues.columns).union(info_to_omit or []) + verbosity_levels_values = chain.from_iterable( + list(cls.verbosity_levels.values())[: verbosity + 1] + ) + info_to_print.update(set(verbosity_levels_values) - _info_to_omit) + if verbosity == top_level: + info_to_print.update(set(info.keys()) - _info_to_omit) + + report_str += "Examples representing most severe instances of this issue:\n" + report_str += issues.loc[topk_ids].to_string() + + def truncate(s, max_len=4) -> str: + if hasattr(s, "shape") or hasattr(s, "ndim"): + s = np.array(s) + if s.ndim > 1: + description = f"array of shape {s.shape}\n" + with np.printoptions(threshold=max_len): + if s.ndim == 2: + description += f"{s}" + if s.ndim > 2: + description += f"{s}" + return description + s = s.tolist() + + if isinstance(s, list): + if all([isinstance(s_, list) for s_ in s]): + return truncate(np.array(s, dtype=object), max_len=max_len) + if len(s) > max_len: + s = s[:max_len] + ["..."] + return str(s) + + if info_to_print: + info_to_print_dict = {key: info[key] for key in info_to_print} + # Print the info dict, truncating arrays to 4 elements, + report_str += f"\n\nAdditional Information: " + for key, value in info_to_print_dict.items(): + if key == "statistics": + continue + if isinstance(value, dict): + report_str += f"\n{key}:\n{json.dumps(value, indent=4)}" + elif isinstance(value, pd.DataFrame): + max_rows = 5 + df_str = value.head(max_rows).to_string() + if len(value) > max_rows: + df_str += f"\n... (total {len(value)} rows)" + report_str += f"\n{key}:\n{df_str}" + else: + report_str += f"\n{key}: {truncate(value)}" + return report_str
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/label.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/label.html new file mode 100644 index 000000000..87432d63c --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/label.html @@ -0,0 +1,957 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.label - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.label

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional
+
+import numpy as np
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.preprocessing import OneHotEncoder
+
+from cleanlab.classification import CleanLearning
+from cleanlab.count import get_confident_thresholds
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.validation import assert_valid_inputs
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    import pandas as pd
+
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class LabelIssueManager(IssueManager): + """Manages label issues in a Datalab. + + Parameters + ---------- + datalab : + A Datalab instance. + + k : + The number of nearest neighbors to consider when computing pred_probs from features. + Only applicable if features are provided and pred_probs are not. + + clean_learning_kwargs : + Keyword arguments to pass to the :py:meth:`CleanLearning <cleanlab.classification.CleanLearning>` constructor. + + health_summary_parameters : + Keyword arguments to pass to the :py:meth:`health_summary <cleanlab.dataset.health_summary>` function. + """ + + description: ClassVar[ + str + ] = """Examples whose given label is estimated to be potentially incorrect + (e.g. due to annotation error) are flagged as having label issues. + """ + + issue_name: ClassVar[str] = "label" + verbosity_levels = { + 0: [], + 1: [], + 2: [], + 3: ["classes_by_label_quality", "overlapping_classes"], + } + + def __init__( + self, + datalab: Datalab, + k: int = 10, + clean_learning_kwargs: Optional[Dict[str, Any]] = None, + health_summary_parameters: Optional[Dict[str, Any]] = None, + **_, + ): + super().__init__(datalab) + self.cl = CleanLearning(**(clean_learning_kwargs or {})) + self.k = k + self.health_summary_parameters: Dict[str, Any] = ( + health_summary_parameters.copy() if health_summary_parameters else {} + ) + self._find_issues_inputs: Dict[str, bool] = {"features": False, "pred_probs": False} + self._reset() + + @staticmethod + def _process_find_label_issues_kwargs(**kwargs) -> Dict[str, Any]: + """Searches for keyword arguments that are meant for the + CleanLearning.find_label_issues method call + + Examples + -------- + >>> from cleanlab.datalab.internal.issue_manager.label import LabelIssueManager + >>> LabelIssueManager._process_find_label_issues_kwargs(thresholds=[0.1, 0.9]) + {'thresholds': [0.1, 0.9]} + """ + accepted_kwargs = [ + "thresholds", + "noise_matrix", + "inverse_noise_matrix", + "save_space", + "clf_kwargs", + "validation_func", + ] + return {k: v for k, v in kwargs.items() if k in accepted_kwargs and v is not None} + + def _reset(self) -> None: + """Reset the attributes of this manager based on the available datalab info + and the keyword arguments stored as instance attributes. + + This allows the builder to use pre-computed info from the datalab to speed up + some computations in the :py:meth:`find_issues` method. + """ + if not self.health_summary_parameters: + statistics_dict = self.datalab.get_info("statistics") + self.health_summary_parameters = { + "labels": self.datalab.labels, + "class_names": list(self.datalab._label_map.values()), + "num_examples": statistics_dict.get("num_examples"), + "joint": statistics_dict.get("joint", None), + "confident_joint": statistics_dict.get("confident_joint", None), + "multi_label": statistics_dict.get("multi_label", None), + "asymmetric": statistics_dict.get("asymmetric", None), + "verbose": False, + } + self.health_summary_parameters = { + k: v for k, v in self.health_summary_parameters.items() if v is not None + } + +
[docs] def find_issues( + self, + pred_probs: Optional[npt.NDArray] = None, + features: Optional[npt.NDArray] = None, + **kwargs, + ) -> None: + """Find label issues in the datalab. + + Parameters + ---------- + pred_probs : + The predicted probabilities for each example. + + features : + The features for each example. + """ + if pred_probs is not None: + self._find_issues_inputs.update({"pred_probs": True}) + if pred_probs is None: + self._find_issues_inputs.update({"features": True}) + if features is None: + raise ValueError( + "Either pred_probs or features must be provided to find label issues." + ) + # produce out-of-sample pred_probs from features + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"Expected labels to be a numpy array of shape (n_samples,) to use in LabelIssueManager, " + f"but got {type(labels)} instead." + ) + raise TypeError(error_msg) + + knn = KNeighborsClassifier(n_neighbors=self.k + 1) + knn.fit(features, labels) + pred_probs = knn.predict_proba(features) + + encoder = OneHotEncoder() + label_transform = labels.reshape(-1, 1) + one_hot_label = encoder.fit_transform(label_transform) + + # adjust pred_probs so it is out-of-sample + pred_probs = np.asarray( + (pred_probs - 1 / (self.k + 1) * one_hot_label) * (self.k + 1) / self.k + ) + + self.health_summary_parameters.update({"pred_probs": pred_probs}) + # Find examples with label issues + labels = self.datalab.labels + self.issues = self.cl.find_label_issues( + labels=labels, + pred_probs=pred_probs, + **self._process_find_label_issues_kwargs(**kwargs), + ) + self.issues.rename(columns={"label_quality": self.issue_score_key}, inplace=True) + + summary_dict = self.get_health_summary(pred_probs=pred_probs) + + # Get a summarized dataframe of the label issues + self.summary = self.make_summary(score=summary_dict["overall_label_health_score"]) + + confident_thresholds = get_confident_thresholds(labels=labels, pred_probs=pred_probs) + # Collect info about the label issues + self.info = self.collect_info( + issues=self.issues, + summary_dict=summary_dict, + confident_thresholds=confident_thresholds, + ) + + # Drop columns from issues that are in the info + self.issues = self.issues.drop(columns=["given_label", "predicted_label"])
+ +
[docs] def get_health_summary(self, pred_probs) -> dict: + """Returns a short summary of the health of this Lab.""" + from cleanlab.dataset import health_summary + + # Validate input + self._validate_pred_probs(pred_probs) + + summary_kwargs = self._get_summary_parameters(pred_probs) + summary = health_summary(**summary_kwargs) + return summary
+ + def _get_summary_parameters(self, pred_probs) -> Dict["str", Any]: + """Collects a set of input parameters for the health summary function based on + any info available in the datalab. + + Parameters + ---------- + pred_probs : + The predicted probabilities for each example. + + kwargs : + Keyword arguments to pass to the health summary function. + + Returns + ------- + summary_parameters : + A dictionary of parameters to pass to the health summary function. + """ + if "confident_joint" in self.health_summary_parameters: + summary_parameters = { + "confident_joint": self.health_summary_parameters["confident_joint"] + } + elif all([x in self.health_summary_parameters for x in ["joint", "num_examples"]]): + summary_parameters = { + k: self.health_summary_parameters[k] for k in ["joint", "num_examples"] + } + else: + summary_parameters = { + "pred_probs": pred_probs, + "labels": self.datalab.labels, + } + + summary_parameters["class_names"] = self.health_summary_parameters["class_names"] + + for k in ["asymmetric", "verbose"]: + # Start with the health_summary_parameters, then override with kwargs + if k in self.health_summary_parameters: + summary_parameters[k] = self.health_summary_parameters[k] + + return ( + summary_parameters # will be called in `dataset.health_summary(**summary_parameters)` + ) + +
[docs] def collect_info( + self, issues: pd.DataFrame, summary_dict: dict, confident_thresholds: np.ndarray + ) -> dict: + issues_info = { + "num_label_issues": sum(issues[f"is_{self.issue_name}_issue"]), + "average_label_quality": issues[self.issue_score_key].mean(), + "given_label": issues["given_label"].tolist(), + "predicted_label": issues["predicted_label"].tolist(), + } + + health_summary_info = { + "confident_joint": summary_dict["joint"], + "classes_by_label_quality": summary_dict["classes_by_label_quality"], + "overlapping_classes": summary_dict["overlapping_classes"], + } + + cl_info = {} + for k in self.cl.__dict__: + if k not in ["py", "noise_matrix", "inverse_noise_matrix", "confident_joint"]: + continue + cl_info[k] = self.cl.__dict__[k] + + info_dict = { + **issues_info, + **health_summary_info, + **cl_info, + "confident_thresholds": confident_thresholds.tolist(), + "find_issues_inputs": self._find_issues_inputs, + } + + return info_dict
+ + def _validate_pred_probs(self, pred_probs) -> None: + assert_valid_inputs(X=None, y=self.datalab.labels, pred_probs=pred_probs)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/multilabel/label.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/multilabel/label.html new file mode 100644 index 000000000..a5555e9a8 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/multilabel/label.html @@ -0,0 +1,819 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.multilabel.label - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.multilabel.label

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, List
+
+import pandas as pd
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.multilabel_utils import onehot2int
+from cleanlab.multilabel_classification.filter import find_label_issues
+from cleanlab.multilabel_classification.rank import get_label_quality_scores
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    import pandas as pd
+
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class MultilabelIssueManager(IssueManager): + """Manages label issues in Datalab for multilabel tasks. + + Parameters + ---------- + datalab : + A Datalab instance. + """ + + description: ClassVar[ + str + ] = """Examples whose given label(s) are estimated to be potentially incorrect + (e.g. due to annotation error) are flagged as having label issues. + """ + + _PREDICTED_LABEL_THRESH = 0.5 + """Internal variable specifying threshold for predicted label.""" + + issue_name: ClassVar[str] = "label" + verbosity_levels = { + 0: [], + 1: [], + 2: [], + 3: [], + } + + def __init__( + self, + datalab: Datalab, + **_, + ): + super().__init__(datalab) + + @staticmethod + def _process_find_label_issues_kwargs(**kwargs: Dict[str, Any]) -> Dict[str, Any]: + """Searches for keyword arguments that are meant for the + multilabel_classification.filter.find_label_issues method call. + + Examples + -------- + >>> from cleanlab.datalab.internal.issue_manager.multilabel.label import MultilabelIssueManager + >>> MultilabelIssueManager._process_find_label_issues_kwargs(frac_noise=0.9) + {'frac_noise': 0.9} + """ + accepted_kwargs = [ + "filter_by", + "frac_noise", + "num_to_remove_per_class", + "min_examples_per_class", + "confident_joint", + "n_jobs", + "verbose", + "low_memory", + ] + return {k: v for k, v in kwargs.items() if k in accepted_kwargs and v is not None} + + @staticmethod + def _process_get_label_quality_scores_kwargs(**kwargs: Dict[str, Any]) -> Dict[str, Any]: + """Searches for keyword arguments that are meant for the + multilabel_classification.rank.get_label_quality_scores method call. + + Examples + -------- + >>> from cleanlab.datalab.internal.issue_manager.multilabel.label import MultilabelIssueManager + >>> MultilabelIssueManager._process_get_label_quality_scores_kwargs(method="self_confidence") + {'method': 'self_confidence'} + """ + accepted_kwargs = ["method", "adjust_pred_probs", "aggregator_kwargs"] + return {k: v for k, v in kwargs.items() if k in accepted_kwargs and v is not None} + +
[docs] def find_issues( + self, + pred_probs: npt.NDArray, + **kwargs, + ) -> None: + """Find label issues in a multilabel dataset. + + Parameters + ---------- + pred_probs : + The predicted probabilities for each example. + """ + predicted_labels = onehot2int(pred_probs > self._PREDICTED_LABEL_THRESH) + + # Find examples with label issues + assert isinstance(self.datalab.labels, List) # Type Narrowing + is_issue_column = find_label_issues( + labels=self.datalab.labels, + pred_probs=pred_probs, + **self._process_find_label_issues_kwargs(**kwargs), + ) + scores = get_label_quality_scores( + labels=self.datalab.labels, + pred_probs=pred_probs, + **self._process_get_label_quality_scores_kwargs(**kwargs), + ) + + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_issue_column, + self.issue_score_key: scores, + }, + ) + # Get a summarized dataframe of the label issues + self.summary = self.make_summary(score=scores.mean()) + + # Collect info about the label issues + self.info = self.collect_info(self.datalab.labels, predicted_labels)
+ +
[docs] def collect_info( + self, given_labels: List[List[int]], predicted_labels: List[List[int]] + ) -> Dict[str, Any]: + issues_info = { + "given_label": given_labels, + "predicted_label": predicted_labels, + } + return issues_info
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/noniid.html new file mode 100644 index 000000000..f8be9be6c --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/noniid.html @@ -0,0 +1,1121 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.noniid - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.noniid

+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Optional, Union, cast
+import itertools
+
+from scipy.stats import gaussian_kde
+import numpy as np
+import pandas as pd
+from scipy.sparse import csr_matrix
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]def simplified_kolmogorov_smirnov_test( + neighbor_histogram: npt.NDArray[np.float64], + non_neighbor_histogram: npt.NDArray[np.float64], +) -> float: + """Computes the Kolmogorov-Smirnov statistic between two groups of data. + The statistic is the largest difference between the empirical cumulative + distribution functions (ECDFs) of the two groups. + + Parameters + ---------- + neighbor_histogram : + Histogram data for the nearest neighbor group. + + non_neighbor_histogram : + Histogram data for the non-neighbor group. + + Returns + ------- + statistic : + The KS statistic between the two ECDFs. + + Note + ---- + - Both input arrays should have the same length. + - The input arrays are histograms, which means they contain the count + or frequency of values in each group. The data in the histograms + should be normalized so that they sum to one. + + To calculate the KS statistic, the function first calculates the ECDFs + for both input arrays, which are step functions that show the cumulative + sum of the data up to each point. The function then calculates the + largest absolute difference between the two ECDFs. + """ + + neighbor_cdf = np.cumsum(neighbor_histogram) + non_neighbor_cdf = np.cumsum(non_neighbor_histogram) + + statistic = np.max(np.abs(neighbor_cdf - non_neighbor_cdf)) + return statistic
+ + +
[docs]class NonIIDIssueManager(IssueManager): + """Manages issues related to non-iid data distributions. + + Parameters + ---------- + datalab : + The Datalab instance that this issue manager searches for issues in. + + metric : + The distance metric used to compute the KNN graph of the examples in the dataset. + If set to `None`, the metric will be automatically selected based on the dimensionality + of the features used to represent the examples in the dataset. + + k : + The number of nearest neighbors to consider when computing the KNN graph of the examples. + + num_permutations : + The number of trials to run when performing permutation testing to determine whether + the distribution of index-distances between neighbors in the dataset is IID or not. + + Note + ---- + This class will only flag a single example as an issue if the dataset is considered non-IID. This type of issue + is more relevant to the entire dataset as a whole, rather than to individual examples. + + """ + + description: ClassVar[ + str + ] = """Whether the dataset exhibits statistically significant + violations of the IID assumption like: + changepoints or shift, drift, autocorrelation, etc. + The specific violation considered is whether the + examples are ordered such that almost adjacent examples + tend to have more similar feature values. + """ + issue_name: ClassVar[str] = "non_iid" + verbosity_levels = { + 0: ["p-value"], + 1: [], + 2: [], + } + + def __init__( + self, + datalab: Datalab, + metric: Optional[Union[str, Callable]] = None, + k: int = 10, + num_permutations: int = 25, + seed: Optional[int] = 0, + significance_threshold: float = 0.05, + **_, + ): + super().__init__(datalab) + self.metric = metric + self.k = k + self.num_permutations = num_permutations + self.tests = { + "ks": simplified_kolmogorov_smirnov_test, + } + self.background_distribution = None + self.seed = seed + self.significance_threshold = significance_threshold + + # TODO: Temporary flag introduced to decide on storing knn graphs based on pred_probs. + # Revisit and finalize the implementation. + self._skip_storing_knn_graph_for_pred_probs: bool = False + + @staticmethod + def _determine_features( + features: Optional[npt.NDArray], + pred_probs: Optional[np.ndarray], + ) -> npt.NDArray: + """ + Determines the feature array to be used for the non-IID check. Prioritizing the original features array over pred_probs. + + Parameters + ---------- + features : + Original feature array or None. + + pred_probs : + Predicted probabilities array or None. + + Returns + ------- + features_to_use : + Either the original feature array or the predicted probabilities array, + intended to be used for the non-IID check. + + Raises + ------ + ValueError : + If both `features` and `pred_probs` are None. + """ + if features is not None: + return features + + if pred_probs is not None: + return pred_probs + + raise ValueError( + "If a knn_graph is not provided, either 'features' or 'pred_probs' must be provided to fit a new knn." + ) + +
[docs] def find_issues( + self, + features: Optional[npt.NDArray] = None, + pred_probs: Optional[np.ndarray] = None, + **kwargs, + ) -> None: + knn_graph = self._process_knn_graph_from_inputs(kwargs) + old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") + metric_changes = bool(self.metric and self.metric != old_knn_metric) + + if knn_graph is None or metric_changes: + if features is None and pred_probs is not None: + self._skip_storing_knn_graph_for_pred_probs = True + + features_to_use = self._determine_features(features, pred_probs) + knn_graph, knn = create_knn_graph_and_index( + features=features_to_use, n_neighbors=self.k, metric=self.metric + ) + self.metric = knn.metric # Update the metric to the one used in the KNN object. + + self.neighbor_index_choices = self._get_neighbors(knn_graph=knn_graph) + + self.num_neighbors = self.k + + indices = np.arange(self.N) + self.neighbor_index_distances = np.abs(indices.reshape(-1, 1) - self.neighbor_index_choices) + + self.statistics = self._get_statistics(self.neighbor_index_distances) + + self.p_value = self._permutation_test(num_permutations=self.num_permutations) + + scores = self._score_dataset() + issue_mask = np.zeros(self.N, dtype=bool) + if self.p_value < self.significance_threshold: + issue_mask[scores.argmin()] = True + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": issue_mask, + self.issue_score_key: scores, + }, + ) + + self.summary = self.make_summary(score=self.p_value) + + self.info = self.collect_info(knn_graph=knn_graph)
+ + def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: + """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" + knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) + knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + knn_graph: Optional[csr_matrix] = None + if knn_graph_kwargs is not None: + knn_graph = knn_graph_kwargs + elif knn_graph_stats is not None: + knn_graph = knn_graph_stats + + need_to_recompute_knn = isinstance(knn_graph, csr_matrix) and ( + kwargs.get("k", 0) > knn_graph.nnz // knn_graph.shape[0] + or self.k > knn_graph.nnz // knn_graph.shape[0] + ) + + if need_to_recompute_knn: + # If the provided knn graph is insufficient, then we need to recompute the knn graph + # with the provided features + knn_graph = None + return knn_graph + +
[docs] def collect_info(self, knn_graph: csr_matrix) -> dict: + issues_dict = { + "p-value": self.p_value, + } + + params_dict = { + "metric": self.metric, + "k": self.k, + } + + statistics_dict = self._build_statistics_dictionary(knn_graph=knn_graph) + + info_dict = { + **issues_dict, + **params_dict, # type: ignore[arg-type] + **statistics_dict, # type: ignore[arg-type] + } + return info_dict
+ + def _build_statistics_dictionary(self, knn_graph: csr_matrix) -> Dict[str, Dict[str, Any]]: + statistics_dict: Dict[str, Dict[str, Any]] = {"statistics": {}} + + if self._skip_storing_knn_graph_for_pred_probs: + return statistics_dict + # Add the knn graph as a statistic if necessary + graph_key = "weighted_knn_graph" + old_knn_graph = self.datalab.get_info("statistics").get(graph_key, None) + old_graph_exists = old_knn_graph is not None + prefer_new_graph = ( + (knn_graph is not None and not old_graph_exists) + or knn_graph.nnz > old_knn_graph.nnz + or self.metric != self.datalab.get_info("statistics").get("knn_metric", None) + ) + if prefer_new_graph: + statistics_dict["statistics"][graph_key] = knn_graph + if self.metric is not None: + statistics_dict["statistics"]["knn_metric"] = self.metric + + return statistics_dict + + def _permutation_test(self, num_permutations) -> float: + N = self.N + + if self.seed is not None: + np.random.seed(self.seed) + perms = np.fromiter( + itertools.chain.from_iterable( + np.random.permutation(N) for i in range(num_permutations) + ), + dtype=int, + ).reshape(num_permutations, N) + + neighbor_index_choices = self.neighbor_index_choices + neighbor_index_choices = neighbor_index_choices.reshape(1, *neighbor_index_choices.shape) + perm_neighbor_choices = perms[:, neighbor_index_choices].reshape( + num_permutations, *neighbor_index_choices.shape[1:] + ) + neighbor_index_distances = np.abs(perms[..., None] - perm_neighbor_choices).reshape( + num_permutations, -1 + ) + + statistics = [] + for neighbor_index_dist in neighbor_index_distances: + stats = self._get_statistics( + neighbor_index_dist, + ) + statistics.append(stats) + + ks_stats = np.array([stats["ks"] for stats in statistics]) + ks_stats_kde = gaussian_kde(ks_stats) + p_value = ks_stats_kde.integrate_box(self.statistics["ks"], 100) + + return p_value + + def _score_dataset(self) -> npt.NDArray[np.float64]: + """This function computes a variant of the KS statistic for each + datapoint. Rather than computing the maximum difference + between the CDF of the neighbor distances (foreground + distribution) and the CDF of the all index distances + (background distribution), we compute the absolute difference + in area-under-the-curve of the two CDFs. + + The foreground distribution is computed by sampling the + neighbor distances from the KNN graph, but the background + distribution is computed analytically. The background CDF for + a datapoint i can be split up into three parts. Let d = min(i, + N - i - 1). + + 1. For 0 < j <= d, the slope of the CDF is 2 / (N - 1) since + there are two datapoints in the dataset that are distance j + from datapoint i. We call this threshold the 'double distance + threshold' + + 2. For d < j <= N - d - 1, the slope of the CDF is + 1 / (N - 1) since there is only one datapoint in the dataset + that is distance j from datapoint i. + + 3. For j > N - d - 1, the slope of the CDF is 0 and is + constant at 1.0 since there are no datapoints in the dataset + that are distance j from datapoint i. + + We compute the area differences on each of the k intervals for + which the foreground CDF is constant which allows for the + possibility that the background CDF may intersect the + foreground CDF on this interval. We do not account for these + cases when computing absolute AUC difference. + + Our algorithm is simple, sort the k sampled neighbor + distances. Then, for each of the k neighbor distances sampled, + compute the AUC for each CDF up to that point. Then, subtract + from each area the previous area in the sorted order to get + the AUC of the CDF on the interval between those two + points. Subtract the background interval AUCs from the + foreground interval AUCs, take the absolute value, and + sum. The algorithm is vectorized such that this statistic is + computed for each of the N datapoints simultaneously. + + The statistics are then normalized by their respective maximum + possible distance (N - d - 1) and then mapped to [0,1] via + tanh. + """ + N = self.N + + sorted_neighbors = np.sort(self.neighbor_index_distances, axis=1) + + # find the maximum distance that occurs with double probability + middle_idx = np.floor((N - 1) / 2).astype(int) + double_distances = np.arange(N).reshape(N, 1) + double_distances[double_distances > middle_idx] -= N - 1 + double_distances = np.abs(double_distances) + + sorted_neighbors = np.hstack([sorted_neighbors, np.ones((N, 1)) * (N - 1)]).astype(int) + + # the set of distances that are less than the double distance threshold + set_beginning = sorted_neighbors <= double_distances + # the set of distances that are greater than the double distance threshold but have nonzero probability + set_middle = (sorted_neighbors > double_distances) & ( + sorted_neighbors <= (N - double_distances - 1) + ) + # the set of distances that occur with 0 probability + set_end = sorted_neighbors > (N - double_distances - 1) + + shifted_neighbors = np.zeros(sorted_neighbors.shape) + shifted_neighbors[:, 1:] = sorted_neighbors[:, :-1] + diffs = sorted_neighbors - shifted_neighbors # the distances between the sorted indices + + area_beginning = (double_distances**2) / (N - 1) + length = N - 2 * double_distances - 1 + a = 2 * double_distances / (N - 1) + area_middle = 0.5 * (a + 1) * length + + # compute the area under the CDF for each of the indices in sorted_neighbors + background_area = np.zeros(diffs.shape) + background_diffs = np.zeros(diffs.shape) + background_area[set_beginning] = ((sorted_neighbors**2) / (N - 1))[set_beginning] + background_area[set_middle] = ( + area_beginning + + 0.5 + * ( + (sorted_neighbors + 3 * double_distances) + * (sorted_neighbors - double_distances) + / (N - 1) + ) + )[set_middle] + background_area[set_end] = ( + area_beginning + area_middle + (sorted_neighbors - (N - double_distances - 1) * 1.0) + )[set_end] + + # compute the area under the CDF between indices in sorted_neighbors + shifted_background = np.zeros(background_area.shape) + shifted_background[:, 1:] = background_area[:, :-1] + background_diffs = background_area - shifted_background + + # compute the foreground CDF and AUC between indices in sorted_neighbors + foreground_cdf = np.arange(sorted_neighbors.shape[1]) / (sorted_neighbors.shape[1] - 1) + foreground_diffs = foreground_cdf.reshape(1, -1) * diffs + + # compute the differences between foreground and background area intervals + area_diffs = np.abs(foreground_diffs - background_diffs) + stats = np.sum(area_diffs, axis=1) + + # normalize scores by the index and transform to [0, 1] + indices = np.arange(N) + reverse = N - indices + normalizer = np.where(indices > reverse, indices, reverse) + + scores = stats / normalizer + scores = np.tanh(-1 * scores) + 1 + return scores + + def _get_neighbors(self, knn_graph: csr_matrix) -> np.ndarray: + """ + Given a knn graph, returns an (N, k) array in + which j is in A[i] if item i and j are nearest neighbors. + """ + self.N = knn_graph.shape[0] + kneighbors = knn_graph.indices.reshape(self.N, -1) + return kneighbors + + def _get_statistics( + self, + neighbor_index_distances, + ) -> dict[str, float]: + neighbor_index_distances = neighbor_index_distances.flatten() + sorted_neighbors = np.sort(neighbor_index_distances) + sorted_neighbors = np.hstack([sorted_neighbors, np.ones((1)) * (self.N - 1)]).astype(int) + + if self.background_distribution is None: + self.background_distribution = (self.N - np.arange(1, self.N)) / ( + self.N * (self.N - 1) / 2 + ) + + background_distribution = cast(np.ndarray, self.background_distribution) + background_cdf = np.cumsum(background_distribution) + + foreground_cdf = np.arange(sorted_neighbors.shape[0]) / (sorted_neighbors.shape[0] - 1) + + statistic = np.max(np.abs(foreground_cdf - background_cdf[sorted_neighbors - 1])) + statistics = {"ks": statistic} + return statistics
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/null.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/null.html new file mode 100644 index 000000000..cc2ba17ff --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/null.html @@ -0,0 +1,879 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.null - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.null

+from __future__ import annotations
+
+from collections import Counter
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional
+
+import numpy as np
+import pandas as pd
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+
+
+
[docs]class NullIssueManager(IssueManager): + """Manages issues related to null/missing values in the rows of features. + + Parameters + ---------- + datalab : + The Datalab instance that this issue manager searches for issues in. + """ + + description: ClassVar[ + str + ] = """Examples identified with the null issue correspond to rows that have null/missing values across all feature columns (i.e. the entire row is missing values). + """ + issue_name: ClassVar[str] = "null" + verbosity_levels = { + 0: [], + 1: [], + 2: ["most_common_issue"], + } + + @staticmethod + def _calculate_null_issues( + features: npt.NDArray[Any], + ) -> tuple[npt.NDArray[np.bool_], npt.NDArray[np.float64], npt.NDArray[np.bool_]]: + """Tracks the number of null values in each row of a feature array, + computes quality scores based on the fraction of null values in each row, + and returns a boolean array indicating whether each row only has null values.""" + cols = features.shape[1] + null_tracker = pd.isna(features) + non_null_count = cols - null_tracker.sum(axis=1) + scores = non_null_count / cols + is_null_issue = non_null_count == 0 + return is_null_issue, scores, null_tracker + +
[docs] def find_issues( + self, + features: Optional[npt.NDArray | pd.DataFrame] = None, + **kwargs, + ) -> None: + if features is None: + raise ValueError("features must be provided to check for null values.") + # Support features as a numpy array. Temporarily allow this issuecheck to convert a DataFrame to a numpy array. + if isinstance(features, pd.DataFrame): + features = features.to_numpy() + + is_null_issue, scores, null_tracker = self._calculate_null_issues(features=features) + + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_null_issue, + self.issue_score_key: scores, + }, + ) + + self.summary = self.make_summary(score=scores.mean()) + self.info = self.collect_info(null_tracker)
+ + @staticmethod + def _most_common_issue( + null_tracker: np.ndarray, + ) -> dict[str, dict[str, str | int | list[int] | list[int | None]]]: + """ + Identify and return the most common null value pattern across all rows + and count the number of rows with this pattern. + + Parameters + ------------ + null_tracker : np.ndarray + A boolean array of the same shape as features, where True indicates null/missing entries. + + Returns + -------- + Dict[str, Any] + A dictionary containing the most common issue pattern and the count of rows with this pattern. + """ + # Convert the boolean null_tracker matrix into a list of strings. + most_frequent_pattern = "no_null" + rows_affected: List[int] = [] + occurrence_of_most_frequent_pattern = 0 + if np.any(null_tracker, axis=None): + null_row_indices = np.where(np.any(null_tracker, axis=1))[0] + null_patterns_as_strings = [ + "".join(map(str, null_tracker[i].astype(int).tolist())) for i in null_row_indices + ] + + # Use Counter to efficiently count occurrences and find the most common pattern. + pattern_counter = Counter(null_patterns_as_strings) + ( + most_frequent_pattern, + occurrence_of_most_frequent_pattern, + ) = pattern_counter.most_common(1)[0] + rows_affected = [] + for idx, row in enumerate(null_patterns_as_strings): + if row == most_frequent_pattern: + rows_affected.append(int(null_row_indices[idx])) + return { + "most_common_issue": { + "pattern": most_frequent_pattern, + "rows_affected": rows_affected, + "count": occurrence_of_most_frequent_pattern, + } + } + + @staticmethod + def _column_impact(null_tracker: np.ndarray) -> Dict[str, List[float]]: + """ + Calculate and return the impact of null values per column, represented as the proportion + of rows having null values in each column. + + Parameters + ---------- + null_tracker : np.ndarray + A boolean array of the same shape as features, where True indicates null/missing entries. + + Returns + ------- + Dict[str, List[float]] + A dictionary containing the impact per column, with values being a list + where each element is the percentage of rows having null values in the corresponding column. + """ + # Calculate proportion of nulls in each column + proportion_of_nulls_per_column = null_tracker.mean(axis=0) + + # Return result as a dictionary containing a list of proportions + return {"column_impact": proportion_of_nulls_per_column.tolist()} + +
[docs] def collect_info(self, null_tracker: np.ndarray) -> dict: + most_common_issue = self._most_common_issue(null_tracker=null_tracker) + column_impact = self._column_impact(null_tracker=null_tracker) + average_null_score = {"average_null_score": self.issues[self.issue_score_key].mean()} + issues_dict = {**average_null_score, **most_common_issue, **column_impact} + info_dict: Dict[str, Any] = {**issues_dict} + return info_dict
+ +
[docs] @classmethod + def report(cls, *args, **kwargs) -> str: + """ + Return a report of issues found by the NullIssueManager. + + This method extends the superclass method by identifying and reporting + specific issues related to null values in the dataset. + + Parameters + ---------- + *args : list + Variable length argument list. + **kwargs : dict + Arbitrary keyword arguments. + + Returns + ------- + report_str : + A string containing the report. + + See Also + -------- + :meth:`cleanlab.datalab.Datalab.report` + + Notes + ----- + This method differs from other IssueManager report methods. It checks for issues + and prompts the user to address them to enable other issue managers to run effectively. + """ + # Generate the base report using the superclass method + original_report = super().report(*args, **kwargs) + + # Retrieve the 'issues' dataframe from keyword arguments + issues = kwargs["issues"] + + # Identify examples that have null values in all features + issue_filter = f"is_{cls.issue_name}_issue" + examples_with_full_nulls = issues.query(issue_filter).index.tolist() + + # Identify examples that have some null values (but not in all features) + partial_null_filter = f"{cls.issue_score_key} < 1.0 and not {issue_filter}" + examples_with_partial_nulls = issues.query(partial_null_filter).index.tolist() + + # Append information about examples with null values in all features + if examples_with_full_nulls: + report_addition = ( + f"\n\nFound {len(examples_with_full_nulls)} examples with null values in all features. " + f"These examples should be removed from the dataset before running other issue managers." + # TODO: Add a link to the documentation on how to handle null examples + ) + original_report += report_addition + + # Append information about examples with some null values + if examples_with_partial_nulls: + report_addition = ( + f"\n\nFound {len(examples_with_partial_nulls)} examples with null values in some features. " + f"Please address these issues before running other issue managers." + # TODO: Add a link to the documentation on how to handle partially null examples + ) + original_report += report_addition + + return original_report
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/outlier.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/outlier.html new file mode 100644 index 000000000..a1ab2c86e --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/outlier.html @@ -0,0 +1,987 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.outlier - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.outlier

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Tuple, Union, cast
+
+from scipy.sparse import csr_matrix
+from scipy.stats import iqr
+import numpy as np
+import pandas as pd
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.neighbor.knn_graph import construct_knn_graph_from_index
+from cleanlab.outlier import OutOfDistribution, transform_distances_to_scores
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    from sklearn.neighbors import NearestNeighbors
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class OutlierIssueManager(IssueManager): + """Manages issues related to out-of-distribution examples.""" + + description: ClassVar[ + str + ] = """Examples that are very different from the rest of the dataset + (i.e. potentially out-of-distribution or rare/anomalous instances). + """ + issue_name: ClassVar[str] = "outlier" + verbosity_levels = { + 0: [], + 1: [], + 2: ["average_ood_score"], + 3: [], + } + + DEFAULT_THRESHOLDS = { + "features": 0.37037, + "pred_probs": 0.13, + } + """Default thresholds for outlier detection. + + If outlier detection is performed on the features, an example whose average + distance to their k nearest neighbors is greater than + Q3_avg_dist + (1 / threshold - 1) * IQR_avg_dist is considered an outlier. + + If outlier detection is performed on the predicted probabilities, an example + whose average score is lower than threshold * median_outlier_score is + considered an outlier. + """ + + def __init__( + self, + datalab: Datalab, + threshold: Optional[float] = None, + **kwargs, + ): + super().__init__(datalab) + + ood_kwargs = kwargs.get("ood_kwargs", {}) + + valid_ood_params = OutOfDistribution.DEFAULT_PARAM_DICT.keys() + params = { + key: value + for key, value in ((k, kwargs.get(k, None)) for k in valid_ood_params) + if value is not None + } + + if params: + ood_kwargs["params"] = params + + self.ood: OutOfDistribution = OutOfDistribution(**ood_kwargs) + + self.threshold = threshold + self._embeddings: Optional[np.ndarray] = None + self._metric: str = None # type: ignore + self._find_issues_inputs: Dict[str, bool] = { + "features": False, + "pred_probs": False, + "knn_graph": False, + } + +
[docs] def find_issues( + self, + features: Optional[npt.NDArray] = None, + pred_probs: Optional[np.ndarray] = None, + **kwargs, + ) -> None: + knn_graph = self._process_knn_graph_from_inputs(kwargs) + distances: Optional[np.ndarray] = None + + if knn_graph is not None: + N = knn_graph.shape[0] + k = knn_graph.nnz // N + t = cast(int, self.ood.params["t"]) + distances = knn_graph.data.reshape(-1, k) + assert isinstance(distances, np.ndarray) + avg_distances = distances.mean(axis=1) + median_avg_distance = np.median(avg_distances) + self._find_issues_inputs.update({"knn_graph": True}) + scores = transform_distances_to_scores( + avg_distances, t=t, scaling_factor=median_avg_distance + ) + elif features is not None: + scores = self._score_with_features(features, **kwargs) + self._find_issues_inputs.update({"features": True}) + elif pred_probs is not None: + scores = self._score_with_pred_probs(pred_probs, **kwargs) + self._find_issues_inputs.update({"pred_probs": True}) + else: + if kwargs.get("knn_graph", None) is not None: + raise ValueError( + "knn_graph is provided, but not sufficiently large to compute the scores based on the provided hyperparameters." + ) + raise ValueError(f"Either features pred_probs must be provided.") + + if features is not None or knn_graph is not None: + if knn_graph is None: + assert ( + features is not None + ), "features must be provided so that we can compute the knn graph." + knn_graph = self._process_knn_graph_from_features(features, kwargs) + + distances = knn_graph.data.reshape(knn_graph.shape[0], -1) + + assert isinstance(distances, np.ndarray) + ( + self.threshold, + issue_threshold, # Useful info for detecting issues in test data + is_issue_column, + ) = self._compute_threshold_and_issue_column_from_distances(distances, self.threshold) + + else: + assert pred_probs is not None + # Threshold based on pred_probs, very small scores are outliers + if self.threshold is None: + self.threshold = self.DEFAULT_THRESHOLDS["pred_probs"] + if not 0 <= self.threshold: + raise ValueError(f"threshold must be non-negative, but got {self.threshold}.") + issue_threshold = float( + self.threshold * np.median(scores) + ) # Useful info for detecting issues in test data + is_issue_column = scores < issue_threshold + + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_issue_column, + self.issue_score_key: scores, + }, + ) + + self.summary = self.make_summary(score=scores.mean()) + + self.info = self.collect_info(issue_threshold=issue_threshold, knn_graph=knn_graph)
+ + def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: + """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" + knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) + knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + knn_graph: Optional[csr_matrix] = None + if knn_graph_kwargs is not None: + knn_graph = knn_graph_kwargs + elif knn_graph_stats is not None: + knn_graph = knn_graph_stats + + if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( + knn_graph.nnz // knn_graph.shape[0] + ): + # If the provided knn graph is insufficient, then we need to recompute the knn graph + # with the provided features + knn_graph = None + return knn_graph + + def _compute_threshold_and_issue_column_from_distances( + self, distances: np.ndarray, threshold: Optional[float] = None + ) -> Tuple[float, float, np.ndarray]: + avg_distances = distances.mean(axis=1) + if threshold: + if not (isinstance(threshold, (int, float)) and 0 <= threshold <= 1): + raise ValueError( + f"threshold must be a number between 0 and 1, got {threshold} of type {type(threshold)}." + ) + if threshold is None: + threshold = OutlierIssueManager.DEFAULT_THRESHOLDS["features"] + + def compute_issue_threshold(avg_distances: np.ndarray, threshold: float) -> float: + q3_distance = np.percentile(avg_distances, 75) + iqr_scale = 1 / threshold - 1 if threshold != 0 else np.inf + issue_threshold = q3_distance + iqr_scale * iqr(avg_distances) + return float(issue_threshold) + + issue_threshold = compute_issue_threshold(avg_distances, threshold) + return threshold, issue_threshold, avg_distances > issue_threshold + + def _process_knn_graph_from_features(self, features: np.ndarray, kwargs: Dict) -> csr_matrix: + # Check if the weighted knn graph exists in info + knn_graph = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + # Used to check if the knn graph needs to be recomputed, already set in the knn object + k: int = 0 + if knn_graph is not None: + k = knn_graph.nnz // knn_graph.shape[0] + + knn: NearestNeighbors = self.ood.params["knn"] # type: ignore + if kwargs.get("knn", None) is not None or knn.n_neighbors > k: # type: ignore[union-attr] + # If the pre-existing knn graph has fewer neighbors than the knn object, + # then we need to recompute the knn graph + assert knn == self.ood.params["knn"] # type: ignore[union-attr] + knn_graph = construct_knn_graph_from_index(knn, correction_features=features) + self._metric = knn.metric # type: ignore[union-attr] + + return knn_graph + +
[docs] def collect_info( + self, + *, + issue_threshold: float, + knn_graph: Optional[csr_matrix] = None, + ) -> dict: + issues_dict = { + "average_ood_score": self.issues[self.issue_score_key].mean(), + "threshold": self.threshold, + "issue_threshold": issue_threshold, + } + pred_probs_issues_dict: Dict[str, Any] = {} + feature_issues_dict = {} + + if knn_graph is not None: + knn = self.ood.params["knn"] # type: ignore + N = knn_graph.shape[0] + k = knn_graph.nnz // N + dists = knn_graph.data.reshape(N, -1)[:, 0] + nn_ids = knn_graph.indices.reshape(N, -1)[:, 0] + + feature_issues_dict.update( + { + "k": k, # type: ignore[union-attr] + "nearest_neighbor": nn_ids.tolist(), + "distance_to_nearest_neighbor": dists.tolist(), + } + ) + if self.ood.params["knn"] is not None: + knn = self.ood.params["knn"] + feature_issues_dict.update({"metric": knn.metric}) # type: ignore[union-attr] + + if self.ood.params["confident_thresholds"] is not None: + pass # + statistics_dict = self._build_statistics_dictionary(knn_graph=knn_graph) + ood_params_dict = { + "ood": self.ood, + **self.ood.params, + } + knn_dict = { + **pred_probs_issues_dict, + **feature_issues_dict, + } + info_dict: Dict[str, Any] = { + **issues_dict, + **ood_params_dict, # type: ignore[arg-type] + **knn_dict, + **statistics_dict, + "find_issues_inputs": self._find_issues_inputs, + } + return info_dict
+ + def _build_statistics_dictionary( + self, *, knn_graph: Optional[csr_matrix] + ) -> Dict[str, Dict[str, Any]]: + statistics_dict: Dict[str, Dict[str, Any]] = {"statistics": {}} + + # Add the knn graph as a statistic if necessary + graph_key = "weighted_knn_graph" + old_knn_graph = self.datalab.get_info("statistics").get(graph_key, None) + old_graph_exists = old_knn_graph is not None + prefer_new_graph = ( + not old_graph_exists + or (isinstance(knn_graph, csr_matrix) and knn_graph.nnz > old_knn_graph.nnz) + or self._metric != self.datalab.get_info("statistics").get("knn_metric", None) + ) + if prefer_new_graph: + if knn_graph is not None: + statistics_dict["statistics"][graph_key] = knn_graph + if self._metric is not None: + statistics_dict["statistics"]["knn_metric"] = self._metric + + return statistics_dict + + def _score_with_pred_probs(self, pred_probs: np.ndarray, **kwargs) -> np.ndarray: + # Remove "threshold" from kwargs if it exists + kwargs.pop("threshold", None) + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"labels must be a numpy array of shape (n_samples,) to use the OutlierIssueManager " + f"with pred_probs, but got {type(labels)}." + ) + raise TypeError(error_msg) + scores = self.ood.fit_score(pred_probs=pred_probs, labels=labels, **kwargs) + return scores + + def _score_with_features(self, features: npt.NDArray, **kwargs) -> npt.NDArray: + scores = self.ood.fit_score(features=features) + return scores
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html new file mode 100644 index 000000000..5cf7369f0 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html @@ -0,0 +1,926 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.regression.label - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.regression.label

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional
+import numpy as np
+import pandas as pd
+
+from cleanlab.regression.learn import CleanLearning
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.regression.rank import get_label_quality_scores
+
+if TYPE_CHECKING:  # pragma: no cover
+    from cleanlab.datalab.datalab import Datalab
+
+
+
[docs]class RegressionLabelIssueManager(IssueManager): + """Manages label issues in a Datalab for regression tasks. + + Parameters + ---------- + datalab : + A Datalab instance. + + clean_learning_kwargs : + Keyword arguments to pass to the :py:meth:`regression.learn.CleanLearning <cleanlab.regression.learn.CleanLearning>` constructor. + + threshold : + The threshold to use to determine if an example has a label issue. It is a multiplier + of the median label quality score that sets the absolute threshold. Only used if + predictions are provided to `~RegressionLabelIssueManager.find_issues`, not if + features are provided. Default is 0.05. + """ + + description: ClassVar[ + str + ] = """Examples whose given label is estimated to be potentially incorrect + (e.g. due to annotation error) are flagged as having label issues. + """ + + issue_name: ClassVar[str] = "label" + verbosity_levels = { + 0: [], + 1: [], + 2: [], + 3: [], # TODO + } + + def __init__( + self, + datalab: Datalab, + clean_learning_kwargs: Optional[Dict[str, Any]] = None, + threshold: float = 0.05, + health_summary_parameters: Optional[Dict[str, Any]] = None, + **_, + ): + super().__init__(datalab) + self.cl = CleanLearning(**(clean_learning_kwargs or {})) + # This is a field for prioritizing features only when using a custom model + self._uses_custom_model = "model" in (clean_learning_kwargs or {}) + self.threshold = threshold + +
[docs] def find_issues( + self, + features: Optional[np.ndarray] = None, + predictions: Optional[np.ndarray] = None, + **kwargs, + ) -> None: + """Find label issues in the datalab. + + .. admonition:: Priority Order for finding issues: + + 1. Custom Model: Requires `features` to be passed to this method. Used if a model is set up in the constructor. + 2. Predictions: Uses `predictions` if provided and no model is set up in the constructor. + 3. Default Model: Defaults to a standard model using `features` if no model or predictions are provided. + """ + if features is None and predictions is None: + raise ValueError( + "Regression requires numerical `features` or `predictions` " + "to be passed in as an argument to `find_issues`." + ) + if features is None and self._uses_custom_model: + raise ValueError( + "Regression requires numerical `features` to be passed in as an argument to `find_issues` " + "when using a custom model." + ) + # If features are provided and either a custom model is used or no predictions are provided + use_features = features is not None and (self._uses_custom_model or predictions is None) + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"Expected labels to be a numpy array of shape (n_samples,) to use with RegressionLabelIssueManager, " + f"but got {type(labels)} instead." + ) + raise TypeError(error_msg) + if use_features: + assert features is not None # mypy won't narrow the type for some reason + self.issues = find_issues_with_features( + features=features, + y=labels, + cl=self.cl, + **kwargs, # function sanitizes kwargs + ) + self.issues.rename(columns={"label_quality": self.issue_score_key}, inplace=True) + + # Otherwise, if predictions are provided, process them + else: + assert predictions is not None # mypy won't narrow the type for some reason + self.issues = find_issues_with_predictions( + predictions=predictions, + y=labels, + **{**kwargs, **{"threshold": self.threshold}}, # function sanitizes kwargs + ) + + # Get a summarized dataframe of the label issues + self.summary = self.make_summary(score=self.issues[self.issue_score_key].mean()) + + # Collect info about the label issues + self.info = self.collect_info(issues=self.issues) + + # Drop columns from issues that are in the info + self.issues = self.issues.drop(columns=["given_label", "predicted_label"])
+ +
[docs] def collect_info(self, issues: pd.DataFrame) -> dict: + issues_info = { + "num_label_issues": sum(issues[f"is_{self.issue_name}_issue"]), + "average_label_quality": issues[self.issue_score_key].mean(), + "given_label": issues["given_label"].tolist(), + "predicted_label": issues["predicted_label"].tolist(), + } + + # health_summary_info, cl_info kept just for consistency with classification, but it could be just return issues_info + health_summary_info: dict = {} + cl_info: dict = {} + + info_dict = { + **issues_info, + **health_summary_info, + **cl_info, + } + + return info_dict
+ + +
[docs]def find_issues_with_predictions( + predictions: np.ndarray, + y: np.ndarray, + threshold: float, + **kwargs, +) -> pd.DataFrame: + """Find label issues in a regression dataset based on predictions. + This uses a threshold to determine if an example has a label issue + based on the quality score. + + Parameters + ---------- + predictions : + The predictions from a regression model. + + y : + The given labels. + + threshold : + The threshold to use to determine if an example has a label issue. It is a multiplier + of the median label quality score that sets the absolute threshold. + + **kwargs : + Various keyword arguments. + + Returns + ------- + issues : + A dataframe of the issues. It contains the following columns: + - is_label_issue : bool + True if the example has a label issue. + - label_score : float + The quality score of the label. + - given_label : float + The given label. It is the same as the y parameter. + - predicted_label : float + The predicted label. It is the same as the predictions parameter. + """ + _accepted_kwargs = ["method"] + _kwargs = {k: kwargs.get(k) for k in _accepted_kwargs} + _kwargs = {k: v for k, v in _kwargs.items() if v is not None} + quality_scores = get_label_quality_scores(labels=y, predictions=predictions, **_kwargs) + + median_score = np.median(quality_scores) + is_label_issue_mask = quality_scores < median_score * threshold + + issues = pd.DataFrame( + { + "is_label_issue": is_label_issue_mask, + "label_score": quality_scores, + "given_label": y, + "predicted_label": predictions, + } + ) + return issues
+ + +
[docs]def find_issues_with_features( + features: np.ndarray, + y: np.ndarray, + cl: CleanLearning, + **kwargs, +) -> pd.DataFrame: + """Find label issues in a regression dataset based on features. + This delegates the work to the CleanLearning.find_label_issues method. + + Parameters + ---------- + features : + The numerical features from a regression dataset. + + y : + The given labels. + + **kwargs : + Various keyword arguments. + + Returns + ------- + issues : + A dataframe of the issues. It contains the following columns: + - is_label_issue : bool + True if the example has a label issue. + - label_score : float + The quality score of the label. + - given_label : float + The given label. It is the same as the y parameter. + - predicted_label : float + The predicted label. It is determined by the CleanLearning.find_label_issues method. + """ + _accepted_kwargs = [ + "uncertainty", + "coarse_search_range", + "fine_search_size", + "save_space", + "model_kwargs", + ] + _kwargs = {k: v for k, v in kwargs.items() if k in _accepted_kwargs and v is not None} + return cl.find_label_issues(X=features, y=y, **_kwargs)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html new file mode 100644 index 000000000..b1e105a95 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html @@ -0,0 +1,1046 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager.underperforming_group - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager.underperforming_group

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Optional, Union, Tuple
+import warnings
+import inspect
+
+import numpy as np
+import pandas as pd
+from scipy.sparse import csr_matrix
+from sklearn.cluster import DBSCAN
+
+from cleanlab.datalab.internal.issue_manager import IssueManager
+from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index
+from cleanlab.rank import get_self_confidence_for_each_label
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+    from cleanlab.datalab.datalab import Datalab
+
+
+CLUSTERING_ALGO = "DBSCAN"
+CLUSTERING_PARAMS_DEFAULT = {"metric": "precomputed"}
+
+
+
[docs]class UnderperformingGroupIssueManager(IssueManager): + """ + Manages issues related to underperforming group examples. + + Note: The `min_cluster_samples` argument should not be confused with the + `min_samples` argument of sklearn.cluster.DBSCAN. + + Examples + -------- + >>> from cleanlab import Datalab + >>> import numpy as np + >>> X = np.random.normal(size=(50, 2)) + >>> y = np.random.randint(2, size=50) + >>> pred_probs = X / X.sum(axis=1, keepdims=True) + >>> data = {"X": X, "y": y} + >>> lab = Datalab(data, label_name="y") + >>> issue_types={"underperforming_group": {"clustering_kwargs": {"eps": 0.5}}} + >>> lab.find_issues(pred_probs=pred_probs, features=X, issue_types=issue_types) + """ + + description: ClassVar[ + str + ] = """An underperforming group refers to a collection of “hard” examples + for which the model predictions are poor. The quality of predictions is + computed using the :py:func:`get_self_confidence_for_each_label <cleanlab.rank.get_self_confidence_for_each_label>` function. + """ + issue_name: ClassVar[str] = "underperforming_group" + verbosity_levels = { + 0: [], + 1: [], + 2: ["threshold"], + } + OUTLIER_CLUSTER_LABELS: ClassVar[Tuple[int]] = (-1,) + """Specifies labels considered as outliers by the clustering algorithm.""" + NO_UNDERPERFORMING_CLUSTER_ID: ClassVar[int] = min(OUTLIER_CLUSTER_LABELS) - 1 + """Constant to signify absence of any underperforming cluster.""" + + def __init__( + self, + datalab: Datalab, + metric: Optional[Union[str, Callable]] = None, + threshold: float = 0.1, + k: int = 10, + clustering_kwargs: Dict[str, Any] = {}, + min_cluster_samples: int = 5, + **_: Any, + ): + super().__init__(datalab) + self.metric = metric + self.threshold = self._set_threshold(threshold) + self.k = k + self.clustering_kwargs = clustering_kwargs + self.min_cluster_samples = min_cluster_samples + +
[docs] def find_issues( + self, + pred_probs: npt.NDArray, + features: Optional[npt.NDArray] = None, + cluster_ids: Optional[npt.NDArray[np.int_]] = None, + **kwargs: Any, + ) -> None: + labels = self.datalab.labels + if not isinstance(labels, np.ndarray): + error_msg = ( + f"Labels must be a numpy array of shape (n_samples,) for UnderperformingGroupIssueManager. " + f"Got {type(labels)} instead." + ) + raise TypeError(error_msg) + if cluster_ids is None: + knn_graph = self.set_knn_graph(features, kwargs) + cluster_ids = self.perform_clustering(knn_graph) + performed_clustering = True + else: + if self.clustering_kwargs: + warnings.warn( + "`clustering_kwargs` will not be used since `cluster_ids` have been passed." + ) + performed_clustering = False + knn_graph = None + unique_cluster_ids = self.filter_cluster_ids(cluster_ids) + if not unique_cluster_ids.size: + raise ValueError( + "No meaningful clusters were generated for determining underperforming group." + ) + n_clusters = len(unique_cluster_ids) + worst_cluster_id, worst_cluster_ratio = self.get_worst_cluster( + cluster_ids, unique_cluster_ids, labels, pred_probs + ) + is_issue_column = cluster_ids == worst_cluster_id + scores = np.where(is_issue_column, worst_cluster_ratio, 1) + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue": is_issue_column, + self.issue_score_key: scores, + }, + ) + self.summary = self.make_summary(score=worst_cluster_ratio) + self.info = self.collect_info( + knn_graph=knn_graph, + n_clusters=n_clusters, + cluster_ids=cluster_ids, + performed_clustering=performed_clustering, + worst_cluster_id=worst_cluster_id, + )
+ +
[docs] def set_knn_graph( + self, features: Optional[npt.NDArray], find_issues_kwargs: Dict[str, Any] + ) -> csr_matrix: + knn_graph = self._process_knn_graph_from_inputs(find_issues_kwargs) + old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") + metric_changes = self.metric and self.metric != old_knn_metric + + if knn_graph is None or metric_changes: + knn_graph, knn = create_knn_graph_and_index( + features, n_neighbors=self.k, metric=self.metric + ) + self.metric = knn.metric + return knn_graph
+ +
[docs] def perform_clustering(self, knn_graph: csr_matrix) -> npt.NDArray[np.int_]: + """Perform clustering of datapoints using a knn graph as distance matrix. + + Args: + knn_graph (csr_matrix): Sparse Distance Matrix. + + Returns: + cluster_ids (npt.NDArray[np.int_]): Cluster IDs for each datapoint. + """ + DBSCAN_VALID_KEYS = inspect.signature(DBSCAN).parameters.keys() + dbscan_params = { + key: value + for key, value in ((k, self.clustering_kwargs.get(k, None)) for k in DBSCAN_VALID_KEYS) + if value is not None + } + dbscan_params["metric"] = "precomputed" + clusterer = DBSCAN(**dbscan_params) + cluster_ids = clusterer.fit_predict( + knn_graph.copy() + ) # Copy to avoid modification by DBSCAN + return cluster_ids
+ +
[docs] def filter_cluster_ids(self, cluster_ids: npt.NDArray[np.int_]) -> npt.NDArray[np.int_]: + """Remove outlier clusters and return IDs of clusters with at least `self.min_cluster_samples` number of datapoints. + + + Args: + cluster_ids (npt.NDArray[np.int_]): Cluster IDs for each datapoint. + + Returns: + unique_cluster_ids (npt.NDArray[np.int_]): List of unique cluster IDs after + removing outlier clusters and clusters with less than `self.min_cluster_samples` + number of datapoints. + """ + unique_cluster_ids = np.array( + [label for label in set(cluster_ids) if label not in self.OUTLIER_CLUSTER_LABELS] + ) + frequencies = np.bincount(cluster_ids[~np.isin(cluster_ids, self.OUTLIER_CLUSTER_LABELS)]) + unique_cluster_ids = np.array( + [ + cluster_id + for cluster_id in unique_cluster_ids + if frequencies[cluster_id] >= self.min_cluster_samples + ] + ) + return unique_cluster_ids
+ +
[docs] def get_worst_cluster( + self, + cluster_ids: npt.NDArray[np.int_], + unique_cluster_ids: npt.NDArray[np.int_], + labels: npt.NDArray, + pred_probs: npt.NDArray, + ) -> Tuple[int, float]: + """Get ID and quality score of underperforming cluster. + + Args: + cluster_ids (npt.NDArray[np.int_]): _description_ + unique_cluster_ids (npt.NDArray[np.int_]): _description_ + labels (npt.NDArray): _description_ + pred_probs (npt.NDArray): _description_ + + Returns: + Tuple[int, float]: (Underperforming Cluster ID, Cluster Quality Score) + """ + worst_cluster_performance = 1 # Largest possible probability value + worst_cluster_id = min(unique_cluster_ids) - 1 + for cluster_id in unique_cluster_ids: + cluster_mask = cluster_ids == cluster_id + cur_cluster_ids = labels[cluster_mask] + cur_cluster_pred_probs = pred_probs[cluster_mask] + cluster_performance = get_self_confidence_for_each_label( + cur_cluster_ids, cur_cluster_pred_probs + ).mean() + if cluster_performance < worst_cluster_performance: + worst_cluster_performance = cluster_performance + worst_cluster_id = cluster_id + mean_performance = get_self_confidence_for_each_label(labels, pred_probs).mean() + worst_cluster_ratio = min(worst_cluster_performance / mean_performance, 1.0) + worst_cluster_id = ( + worst_cluster_id + if worst_cluster_ratio < self.threshold + else self.NO_UNDERPERFORMING_CLUSTER_ID + ) + return worst_cluster_id, worst_cluster_ratio
+ + def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: + """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" + knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) + knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) + + knn_graph: Optional[csr_matrix] = None + if knn_graph_kwargs is not None: + knn_graph = knn_graph_kwargs + elif knn_graph_stats is not None: + knn_graph = knn_graph_stats + + if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( + knn_graph.nnz // knn_graph.shape[0] + ): + # If the provided knn graph is insufficient, then we need to recompute the knn graph + # with the provided features + knn_graph = None + + return knn_graph + +
[docs] def collect_info( + self, + knn_graph: csr_matrix, + n_clusters: int, + cluster_ids: npt.NDArray[np.int_], + performed_clustering: bool, + worst_cluster_id: int, + ) -> Dict[str, Any]: + params_dict = { + "k": self.k, + "metric": self.metric, + "threshold": self.threshold, + } + + knn_info_dict = {} + if knn_graph is not None: + N = knn_graph.shape[0] + dists = knn_graph.data.reshape(N, -1)[:, 0] + nn_ids = knn_graph.indices.reshape(N, -1)[:, 0] + + knn_info_dict = { + "nearest_neighbor": nn_ids.tolist(), + "distance_to_nearest_neighbor": dists.tolist(), + } + statistics_dict = self._build_statistics_dictionary(knn_graph=knn_graph) + + cluster_stat_dict = self._get_cluster_statistics( + n_clusters=n_clusters, + cluster_ids=cluster_ids, + performed_clustering=performed_clustering, + worst_cluster_id=worst_cluster_id, + ) + info_dict = { + **params_dict, + **knn_info_dict, + **statistics_dict, + **cluster_stat_dict, + } + + return info_dict
+ + def _build_statistics_dictionary(self, knn_graph: csr_matrix) -> Dict[str, Dict[str, Any]]: + statistics_dict: Dict[str, Dict[str, Any]] = {"statistics": {}} + + # Add the knn graph as a statistic if necessary + graph_key = "weighted_knn_graph" + old_knn_graph = self.datalab.get_info("statistics").get(graph_key, None) + old_graph_exists = old_knn_graph is not None + prefer_new_graph = ( + not old_graph_exists + or (isinstance(knn_graph, csr_matrix) and knn_graph.nnz > old_knn_graph.nnz) + or self.metric != self.datalab.get_info("statistics").get("knn_metric", None) + ) + if prefer_new_graph: + if knn_graph is not None: + statistics_dict["statistics"][graph_key] = knn_graph + if self.metric is not None: + statistics_dict["statistics"]["knn_metric"] = self.metric + + return statistics_dict + + def _get_cluster_statistics( + self, + n_clusters: int, + cluster_ids: npt.NDArray[np.int_], + performed_clustering: bool, + worst_cluster_id: int, + ) -> Dict[str, Dict[str, Any]]: + """Get relevant cluster statistics. + + Args: + n_clusters (int): Number of clusters + cluster_ids (npt.NDArray[np.int_]): Cluster IDs for each datapoint. + performed_clustering (bool): Set to True to indicate that clustering was performed on + `features` passed to `find_issues`. Set to False to suggest that `cluster_ids` were explicitly + passed to `find_issues`. + worst_cluster_id (int): Uderperforming cluster ID. + + Returns: + cluster_stats (Dict[str, Dict[str, Any]]): Cluster Statistics + """ + cluster_stats: Dict[str, Dict[str, Any]] = { + "clustering": { + "algorithm": None, + "params": {}, + "stats": { + "n_clusters": n_clusters, + "cluster_ids": cluster_ids, + "underperforming_cluster_id": worst_cluster_id, + }, + } + } + if performed_clustering: + cluster_stats["clustering"].update( + {"algorithm": CLUSTERING_ALGO, "params": CLUSTERING_PARAMS_DEFAULT} + ) + + return cluster_stats + + def _set_threshold( + self, + threshold: float, + ) -> float: + """Computes nearest-neighbors thresholding for near-duplicate detection.""" + if threshold < 0: + warnings.warn( + f"Computed threshold {threshold} is less than 0. " + "Setting threshold to 0." + "This may indicate that either the only a few examples are in the dataset, " + "or the data is heavily skewed." + ) + threshold = 0 + return threshold
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager_factory.html new file mode 100644 index 000000000..ca7e2cfd7 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/issue_manager_factory.html @@ -0,0 +1,950 @@ + + + + + + + + + + + cleanlab.datalab.internal.issue_manager_factory - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.issue_manager_factory

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""The factory module provides a factory class for constructing concrete issue managers
+and a decorator for registering new issue managers.
+
+This module provides the :py:meth:`register` decorator for users to register new subclasses of
+:py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`
+in the registry. Each IssueManager detects some particular type of issue in a dataset.
+
+
+Note
+----
+
+The :class:`REGISTRY` variable is used by the factory class to keep track
+of registered issue managers.
+The factory class is used as an implementation detail by
+:py:class:`Datalab <cleanlab.datalab.datalab.Datalab>`,
+which provides a simplified API for constructing concrete issue managers.
+:py:class:`Datalab <cleanlab.datalab.datalab.Datalab>` is intended to be used by users
+and provides detailed documentation on how to use the API.
+
+Warning
+-------
+Neither the :class:`REGISTRY` variable nor the factory class should be used directly by users.
+"""
+from __future__ import annotations
+
+from typing import Dict, List, Type
+
+from cleanlab.datalab.internal.issue_manager import (
+    ClassImbalanceIssueManager,
+    DataValuationIssueManager,
+    IssueManager,
+    LabelIssueManager,
+    NearDuplicateIssueManager,
+    NonIIDIssueManager,
+    ClassImbalanceIssueManager,
+    UnderperformingGroupIssueManager,
+    DataValuationIssueManager,
+    OutlierIssueManager,
+    NullIssueManager,
+)
+from cleanlab.datalab.internal.issue_manager.regression import RegressionLabelIssueManager
+from cleanlab.datalab.internal.issue_manager.multilabel.label import MultilabelIssueManager
+from cleanlab.datalab.internal.task import Task
+
+
+REGISTRY: Dict[Task, Dict[str, Type[IssueManager]]] = {
+    Task.CLASSIFICATION: {
+        "outlier": OutlierIssueManager,
+        "label": LabelIssueManager,
+        "near_duplicate": NearDuplicateIssueManager,
+        "non_iid": NonIIDIssueManager,
+        "class_imbalance": ClassImbalanceIssueManager,
+        "underperforming_group": UnderperformingGroupIssueManager,
+        "data_valuation": DataValuationIssueManager,
+        "null": NullIssueManager,
+    },
+    Task.REGRESSION: {
+        "label": RegressionLabelIssueManager,
+        "outlier": OutlierIssueManager,
+        "near_duplicate": NearDuplicateIssueManager,
+        "non_iid": NonIIDIssueManager,
+        "data_valuation": DataValuationIssueManager,
+        "null": NullIssueManager,
+    },
+    Task.MULTILABEL: {
+        "label": MultilabelIssueManager,
+        "outlier": OutlierIssueManager,
+        "near_duplicate": NearDuplicateIssueManager,
+        "non_iid": NonIIDIssueManager,
+        "data_valuation": DataValuationIssueManager,
+        "null": NullIssueManager,
+    },
+}
+"""Registry of issue managers that can be constructed from a task and issue type
+and used in the Datalab class.
+
+:meta hide-value:
+
+Currently, the following issue managers are registered by default for a given task:
+
+- Classification:
+
+    - ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
+    - ``"label"``: :py:class:`LabelIssueManager <cleanlab.datalab.internal.issue_manager.label.LabelIssueManager>`
+    - ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
+    - ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
+    - ``"class_imbalance"``: :py:class:`ClassImbalanceIssueManager <cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager>`
+    - ``"underperforming_group"``: :py:class:`UnderperformingGroupIssueManager <cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager>`
+    - ``"data_valuation"``: :py:class:`DataValuationIssueManager <cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager>`
+    - ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
+    
+- Regression:
+
+    - ``"label"``: :py:class:`RegressionLabelIssueManager <cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager>`
+    - ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
+    - ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
+    - ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
+    - ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
+
+- Multilabel:
+
+    - ``"label"``: :py:class:`MultilabelIssueManager <cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager>`
+    - ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
+    - ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
+    - ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
+    - ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
+
+Warning
+-------
+This variable should not be used directly by users.
+"""
+
+
+# Construct concrete issue manager with a from_str method
+class _IssueManagerFactory:
+    """Factory class for constructing concrete issue managers."""
+
+    @classmethod
+    def from_str(cls, issue_type: str, task: Task) -> Type[IssueManager]:
+        """Constructs a concrete issue manager class from a string."""
+        if isinstance(issue_type, list):
+            raise ValueError(
+                "issue_type must be a string, not a list. Try using from_list instead."
+            )
+
+        if task not in REGISTRY:
+            raise ValueError(f"Invalid task type: {task}, must be in {list(REGISTRY.keys())}")
+        if issue_type not in REGISTRY[task]:
+            raise ValueError(f"Invalid issue type: {issue_type} for task {task}")
+
+        return REGISTRY[task][issue_type]
+
+    @classmethod
+    def from_list(cls, issue_types: List[str], task: Task) -> List[Type[IssueManager]]:
+        """Constructs a list of concrete issue manager classes from a list of strings."""
+        return [cls.from_str(issue_type, task) for issue_type in issue_types]
+
+
+
[docs]def register(cls: Type[IssueManager], task: str = str(Task.CLASSIFICATION)) -> Type[IssueManager]: + """Registers the issue manager factory. + + Parameters + ---------- + cls : + A subclass of + :py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`. + + task : + Specific machine learning task like classification or regression. + See :py:meth:`Task.from_str <cleanlab.datalab.internal.task.Task.from_str>`` for more details, + to see which task type corresponds to which string. + + Returns + ------- + cls : + The same class that was passed in. + + Example + ------- + + When defining a new subclass of + :py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`, + you can register it like so: + + .. code-block:: python + + from cleanlab import IssueManager + from cleanlab.datalab.internal.issue_manager_factory import register + + @register + class MyIssueManager(IssueManager): + issue_name: str = "my_issue" + def find_issues(self, **kwargs): + # Some logic to find issues + pass + + or in a function call: + + .. code-block:: python + + from cleanlab import IssueManager + from cleanlab.datalab.internal.issue_manager_factory import register + + class MyIssueManager(IssueManager): + issue_name: str = "my_issue" + def find_issues(self, **kwargs): + # Some logic to find issues + pass + + register(MyIssueManager, task="classification") + """ + + if not issubclass(cls, IssueManager): + raise ValueError(f"Class {cls} must be a subclass of IssueManager") + + name: str = str(cls.issue_name) + + try: + _task = Task.from_str(task) + if _task not in REGISTRY: + raise ValueError(f"Invalid task type: {_task}, must be in {list(REGISTRY.keys())}") + except KeyError: + raise ValueError(f"Invalid task type: {task}, must be in {list(REGISTRY.keys())}") + + if name in REGISTRY[_task]: + print( + f"Warning: Overwriting existing issue manager {name} with {cls} for task {_task}." + "This may cause unexpected behavior." + ) + + REGISTRY[_task][name] = cls + return cls
+ + +
[docs]def list_possible_issue_types(task: Task) -> List[str]: + """Returns a list of all registered issue types. + + Any issue type that is not in this list cannot be used in the :py:meth:`find_issues` method. + + See Also + -------- + :py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here. + """ + return list(REGISTRY.get(task, []))
+ + +
[docs]def list_default_issue_types(task: Task) -> List[str]: + """Returns a list of the issue types that are run by default + when :py:meth:`find_issues` is called without specifying `issue_types`. + + task : + Specific machine learning task supported by Datalab. + + See Also + -------- + :py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here. + """ + default_issue_types_dict = { + Task.CLASSIFICATION: [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + "class_imbalance", + "underperforming_group", + ], + Task.REGRESSION: [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], + Task.MULTILABEL: [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], + } + if task not in default_issue_types_dict: + task = Task.CLASSIFICATION + default_issue_types = default_issue_types_dict[task] + return default_issue_types
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/model_outputs.html b/v2.6.5/_modules/cleanlab/datalab/internal/model_outputs.html new file mode 100644 index 000000000..b5116fb9e --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/model_outputs.html @@ -0,0 +1,801 @@ + + + + + + + + + + + cleanlab.datalab.internal.model_outputs - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.model_outputs

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+This module contains the ModelOutput class, which is used internally within Datalab
+to represent model outputs (e.g. predictions, probabilities, etc.) and process them
+for issue finding.
+This class and associated naming conventions are subject to change and is not meant
+to be used by users.
+"""
+
+
+from abc import ABC, abstractmethod
+import numpy as np
+from dataclasses import dataclass
+
+
+
[docs]@dataclass +class ModelOutput(ABC): + """ + An abstract class for representing model outputs (e.g. predictions, probabilities, etc.) + for internal use within Datalab. This class is not meant to be used by users. + + It is used internally within the issue-finding process Datalab runs to assign + types to the data and process it accordingly. + + Parameters + ---------- + data : array-like + The model outputs. Not to be confused with the data used to train the model. + This is mainly intended for NumPy arrays. + """ + + data: np.ndarray + +
[docs] @abstractmethod + def validate(self): + """ + Validate the data format and content. + E.g. a pred_probs object used for classification + should be a 2D array with values between 0 and 1 and sum to 1 for each row. + """ + pass
+ +
[docs] @abstractmethod + def collect(self): + """ + Fetch the data for issue finding. + Usually this is just the data itself, but sometimes it may be a transformation + of the data (e.g. a 1D array of predictions from a 2D array of predicted probabilities). + """ + pass
+ + +
[docs]class MultiClassPredProbs(ModelOutput): + """ + A class for representing a model's predicted probabilities for each class + in a multi-class classification problem. This class is not meant to be used by users. + """ + + argument = "pred_probs" + +
[docs] def validate(self): + pred_probs = self.data + if pred_probs.ndim != 2: + raise ValueError("pred_probs must be a 2D array for multi-class classification") + if not np.all((pred_probs >= 0) & (pred_probs <= 1)): + incorrect_range = (np.min(pred_probs), np.max(pred_probs)) + raise ValueError( + "Expected pred_probs to be between 0 and 1 for multi-label classification," + f" but got values in range {incorrect_range} instead." + ) + if not np.allclose(np.sum(pred_probs, axis=1), 1): + raise ValueError("pred_probs must sum to 1 for each row for multi-class classification")
+ +
[docs] def collect(self): + return self.data
+ + +
[docs]class RegressionPredictions(ModelOutput): + """ + A class for representing a model's predictions for a regression problem. + This class is not meant to be used by users. + """ + + argument = "predictions" + +
[docs] def validate(self): + predictions = self.data + if predictions.ndim != 1: + raise ValueError("pred_probs must be a 1D array for regression")
+ +
[docs] def collect(self): + return self.data
+ + +
[docs]class MultiLabelPredProbs(ModelOutput): + """ + A class for representing a model's predicted probabilities for each class + in a multilabel classification problem. This class is not meant to be used by users. + """ + + argument = "pred_probs" + +
[docs] def validate(self): + pred_probs = self.data + if pred_probs.ndim != 2: + raise ValueError( + f"Expected pred_probs to be a 2D array for multi-label classification," + " but got {pred_probs.ndim}D array instead." + ) + if not np.all((pred_probs >= 0) & (pred_probs <= 1)): + incorrect_range = (np.min(pred_probs), np.max(pred_probs)) + raise ValueError( + "Expected pred_probs to be between 0 and 1 for multi-label classification," + f" but got values in range {incorrect_range} instead." + )
+ +
[docs] def collect(self): + return self.data
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/report.html b/v2.6.5/_modules/cleanlab/datalab/internal/report.html new file mode 100644 index 000000000..065c3bea7 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/report.html @@ -0,0 +1,870 @@ + + + + + + + + + + + cleanlab.datalab.internal.report - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.report

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Module that handles reporting of all types of issues identified in the data.
+"""
+
+from typing import TYPE_CHECKING, List
+
+import pandas as pd
+
+from cleanlab.datalab.internal.adapter.constants import DEFAULT_CLEANVISION_ISSUES
+from cleanlab.datalab.internal.issue_manager_factory import _IssueManagerFactory
+from cleanlab.datalab.internal.task import Task
+
+if TYPE_CHECKING:  # pragma: no cover
+    from cleanlab.datalab.internal.data_issues import DataIssues
+
+
+
[docs]class Reporter: + """Class that generates a report about the issues stored in a :py:class:`DataIssues` object. + + Parameters + ---------- + data_issues : + The :py:class:`DataIssues` object containing the issues to report on. This is usually + generated by the :py:class:`Datalab` class, stored in the :py:attr:`data_issues` attribute, + and then passed to the :py:class:`Reporter` class to generate a report. + + task : + Specific machine learning task that the datset is intended for. + See details about supported tasks in :py:class:`Task <cleanlab.datalab.internal.task.Task>`. + + verbosity : + The default verbosity of the report to generate. Each :py:class`IssueManager` + specifies the available verbosity levels and what additional information + is included at each level. + + include_description : + Whether to include the description of each issue type in the report. The description + is included by default, but can be excluded by setting this parameter to ``False``. + + Note + ---- + This class is not intended to be used directly. Instead, use the + `Datalab.find_issues` method which internally utilizes an IssueFinder instance. + """ + + def __init__( + self, + data_issues: "DataIssues", + task: Task, + verbosity: int = 1, + include_description: bool = True, + show_summary_score: bool = False, + show_all_issues: bool = False, + **kwargs, + ): + self.data_issues = data_issues + self.task = task + self.verbosity = verbosity + self.include_description = include_description + self.show_summary_score = show_summary_score + self.show_all_issues = show_all_issues + + def _get_empty_report(self) -> str: + """This method is used to return a report when there are + no issues found in the data with Datalab.find_issues(). + """ + report_str = "No issues found in the data. Good job!" + if not self.show_summary_score: + recommendation_msg = ( + "Try re-running Datalab.report() with " + "`show_summary_score = True` and `show_all_issues = True`." + ) + report_str += f"\n\n{recommendation_msg}" + return report_str + +
[docs] def report(self, num_examples: int) -> None: + """Prints a report about identified issues in the data. + + Parameters + ---------- + num_examples : + The number of examples to include in the report for each issue type. + """ + print(self.get_report(num_examples=num_examples))
+ +
[docs] def get_report(self, num_examples: int) -> str: + """Constructs a report about identified issues in the data. + + Parameters + ---------- + num_examples : + The number of examples to include in the report for each issue type. + + + Returns + ------- + report_str : + A string containing the report. + + Examples + -------- + >>> from cleanlab.datalab.internal.report import Reporter + >>> reporter = Reporter(data_issues=data_issues, include_description=False) + >>> report_str = reporter.get_report(num_examples=5) + >>> print(report_str) + """ + report_str = "" + issue_summary = self.data_issues.issue_summary + should_return_empty_report = not ( + self.show_all_issues or issue_summary.empty or issue_summary["num_issues"].sum() > 0 + ) + + if should_return_empty_report: + return self._get_empty_report() + issue_summary_sorted = issue_summary.sort_values(by="num_issues", ascending=False) + report_str += self._write_summary(summary=issue_summary_sorted) + + issue_types = self._get_issue_types(issue_summary_sorted) + + def add_issue_to_report(issue_name: str) -> bool: + """Returns True if the issue should be added to the report. + It is excluded if show_all_issues is False and there are no issues of that type + found in the data. + """ + if self.show_all_issues: + return True + summary = self.data_issues.get_issue_summary(issue_name=issue_name) + has_issues = summary["num_issues"][0] > 0 + return has_issues + + issue_reports = [ + _IssueManagerFactory.from_str(issue_type=key, task=self.task).report( + issues=self.data_issues.get_issues(issue_name=key), + summary=self.data_issues.get_issue_summary(issue_name=key), + info=self.data_issues.get_info(issue_name=key), + num_examples=num_examples, + verbosity=self.verbosity, + include_description=self.include_description, + ) + for key in issue_types + ] + + report_str += "\n\n\n".join(issue_reports) + return report_str
+ + def _write_summary(self, summary: pd.DataFrame) -> str: + statistics = self.data_issues.get_info("statistics") + num_examples = statistics["num_examples"] + num_classes = statistics.get( + "num_classes" + ) # This may not be required for all types of datasets in the future (e.g. unlabeled/regression) + + dataset_information = f"Dataset Information: num_examples: {num_examples}" + if num_classes is not None: + dataset_information += f", num_classes: {num_classes}" + + if not self.show_all_issues: + # Drop any items in the issue_summary that have no issues (any issue detected in data needs to have num_issues > 0) + summary = summary.query("num_issues > 0") + + if self.show_summary_score: + return ( + "Here is a summary of the different kinds of issues found in the data:\n\n" + + summary.to_string(index=False) + + "\n\n" + + "(Note: A lower score indicates a more severe issue across all examples in the dataset.)\n\n" + + f"{dataset_information}\n\n\n" + ) + + return ( + "Here is a summary of the different kinds of issues found in the data:\n\n" + + summary.drop(columns=["score"]).to_string(index=False) + + "\n\n" + + f"{dataset_information}\n\n\n" + ) + + def _get_issue_types(self, issue_summary: pd.DataFrame) -> List[str]: + issue_types = [ + issue_type + for issue_type, num_issues in zip( + issue_summary["issue_type"].tolist(), issue_summary["num_issues"].tolist() + ) + if issue_type not in DEFAULT_CLEANVISION_ISSUES + and (self.show_all_issues or num_issues > 0) + ] + return issue_types
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/datalab/internal/task.html b/v2.6.5/_modules/cleanlab/datalab/internal/task.html new file mode 100644 index 000000000..a3a23a7b7 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/datalab/internal/task.html @@ -0,0 +1,813 @@ + + + + + + + + + + + cleanlab.datalab.internal.task - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.datalab.internal.task

+# Copyright (C) 2017-2024  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+This module contains the Task enum, which internally represents the tasks
+supported by Datalab, so that the appropriate task-specific logic can be applied.
+This class and associated naming conventions are subject to change and is not meant
+to be used by users.
+"""
+from enum import Enum
+
+
+
[docs]class Task(Enum): + """ + Represents a task supported by Datalab. + + Datalab supports the following tasks: + + * **Classification**: for predicting discrete class labels. + * **Regression**: for predicting continuous numerical values. + * **Multilabel**: for predicting multiple binary labels simultaneously. + + Example + ------- + >>> task = Task.CLASSIFICATION + >>> task + <Task.CLASSIFICATION: 'classification'> + """ + + CLASSIFICATION = "classification" + """Classification task.""" + REGRESSION = "regression" + """Regression task.""" + MULTILABEL = "multilabel" + """Multilabel task.""" + + def __str__(self): + """ + Returns the string representation of the task. + + Returns: + str: The string representation of the task. + """ + return self.value + +
[docs] @classmethod + def from_str(cls, task_str: str) -> "Task": + """ + Converts a string representation of a task to a Task enum value. + + Parameters + ---------- + task_str : + The string representation of the task. + + Returns + ------- + Task : + The corresponding Task enum value. + + Raises + ------ + ValueError : + If the provided task_str is not a valid task supported by Datalab. + + Examples + -------- + >>> Task.from_str("classification") + <Task.CLASSIFICATION: 'classification'> + >>> print(Task.from_str("regression")) + regression + """ + _value_to_enum = {task.value: task for task in Task} + try: + return _value_to_enum[task_str] + except KeyError: + valid_tasks = list(_value_to_enum.keys()) + raise ValueError(f"Invalid task: {task_str}. Datalab only supports {valid_tasks}.")
+ + @property + def is_classification(self): + """ + Checks if the task is classification. + + Returns + ------- + bool : + True if the task is classification, False otherwise. + + Examples + -------- + >>> task = Task.CLASSIFICATION + >>> print(task.is_classification) + True + """ + return self == Task.CLASSIFICATION + + @property + def is_regression(self): + """ + Checks if the task is regression. + + Returns + ------- + bool : + True if the task is regression, False otherwise. + + Examples + -------- + >>> task = Task.CLASSIFICATION + >>> print(task.is_regression) + False + """ + return self == Task.REGRESSION + + @property + def is_multilabel(self): + """ + Checks if the task is multilabel. + + Returns + ------- + bool : + True if the task is multilabel, False otherwise. + + Examples + -------- + >>> task = Task.CLASSIFICATION + >>> print(task.is_multilabel) + False + """ + return self == Task.MULTILABEL
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/dataset.html b/v2.6.5/_modules/cleanlab/dataset.html new file mode 100644 index 000000000..9435a11cb --- /dev/null +++ b/v2.6.5/_modules/cleanlab/dataset.html @@ -0,0 +1,1199 @@ + + + + + + + + + + + cleanlab.dataset - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.dataset

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Provides dataset-level and class-level overviews of issues in your classification dataset.
+If your task allows you to modify the classes in your dataset, this module can help you determine
+which classes to remove (see `~cleanlab.dataset.rank_classes_by_label_quality`)
+and which classes to merge (see `~cleanlab.dataset.find_overlapping_classes`).
+"""
+
+from typing import Optional, cast
+import numpy as np
+import pandas as pd
+
+from cleanlab.count import estimate_joint, num_label_issues
+from cleanlab.internal.constants import EPSILON
+
+
+
[docs]def rank_classes_by_label_quality( + labels=None, + pred_probs=None, + *, + class_names=None, + num_examples=None, + joint=None, + confident_joint=None, + multi_label=False, +) -> pd.DataFrame: + """ + Returns a Pandas DataFrame with all classes and three overall class label quality scores + (details about each score are listed in the Returns parameter). By default, classes are ordered + by "Label Quality Score", ascending, so the most problematic classes are reported first. + + Score values are unnormalized and may tend to be very small. What matters is their relative + ranking across the classes. + + This method works by providing any one (and only one) of the following inputs: + + 1. ``labels`` and ``pred_probs``, or + 2. ``joint`` and ``num_examples``, or + 3. ``confident_joint`` + + Only provide **exactly one of the above input options**, do not provide a combination. + + Examples + -------- + >>> from cleanlab.dataset import rank_classes_by_label_quality + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.model_selection import cross_val_predict + >>> data, labels = get_data_labels_from_dataset() + >>> yourFavoriteModel = LogisticRegression() + >>> pred_probs = cross_val_predict(yourFavoriteModel, data, labels, cv=3, method="predict_proba") + >>> df = rank_classes_by_label_quality(labels=labels, pred_probs=pred_probs) + + **Parameters**: For parameter info, see the docstring of `~cleanlab.dataset.find_overlapping_classes`. + + Returns + ------- + overall_label_quality : pd.DataFrame + Pandas DataFrame with cols "Class Index", "Label Issues", "Inverse Label Issues", + "Label Issues", "Inverse Label Noise", "Label Quality Score", + with a description of each of these columns below. + The length of the DataFrame is ``num_classes`` (one row per class). + Noise scores are between 0 and 1, where 0 implies no label issues + in the class. The "Label Quality Score" is also between 0 and 1 where 1 implies + perfect quality. Columns: + + * *Class Index*: The index of the class in 0, 1, ..., K-1. + * *Label Issues*: ``count(given_label = k, true_label != k)``, estimated number of examples in the dataset that are labeled as class k but should have a different label. + * *Inverse Label Issues*: ``count(given_label != k, true_label = k)``, estimated number of examples in the dataset that should actually be labeled as class k but have been given another label. + * *Label Noise*: ``prob(true_label != k | given_label = k)``, estimated proportion of examples in the dataset that are labeled as class k but should have a different label. For each class k: this is computed by dividing the number of examples with "Label Issues" that were labeled as class k by the total number of examples labeled as class k. + * *Inverse Label Noise*: ``prob(given_label != k | true_label = k)``, estimated proportion of examples in the dataset that should actually be labeled as class k but have been given another label. + * *Label Quality Score*: ``p(true_label = k | given_label = k)``. This is the proportion of examples with given label k that have been labeled correctly, i.e. ``1 - label_noise``. + + By default, the DataFrame is ordered by "Label Quality Score", ascending. + """ + if multi_label: + raise ValueError( + "For multilabel data, please instead call: multilabel_classification.dataset.overall_multilabel_health_score()" + ) + + if joint is None: + joint = estimate_joint( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + if num_examples is None: + num_examples = _get_num_examples(labels=labels) + given_label_noise = joint.sum(axis=1) - joint.diagonal() # p(s=k) - p(s=k,y=k) = p(y!=k, s=k) + true_label_noise = joint.sum(axis=0) - joint.diagonal() # p(y=k) - p(s=k,y=k) = p(s!=k,y=k) + given_conditional_noise = given_label_noise / np.clip( + joint.sum(axis=1), a_min=EPSILON, a_max=None + ) # p(y!=k, s=k) / p(s=k) , avoiding division by 0 + true_conditional_noise = true_label_noise / np.clip( + joint.sum(axis=0), a_min=EPSILON, a_max=None + ) # p(s!=k, y=k) / p(y=k) , avoiding division by 0 + df = pd.DataFrame( + { + "Class Index": np.arange(len(joint)), + "Label Issues": (given_label_noise * num_examples).round().astype(int), + "Inverse Label Issues": (true_label_noise * num_examples).round().astype(int), + "Label Noise": given_conditional_noise, # p(y!=k | s=k) + "Inverse Label Noise": true_conditional_noise, # p(s!=k | y=k) + # Below could equivalently be computed as: joint.diagonal() / joint.sum(axis=1) + "Label Quality Score": 1 - given_conditional_noise, # p(y=k | s=k) + } + ) + if class_names is not None: + df.insert(loc=0, column="Class Name", value=class_names) + return df.sort_values(by="Label Quality Score", ascending=True).reset_index(drop=True)
+ + +
[docs]def find_overlapping_classes( + labels=None, + pred_probs=None, + *, + asymmetric=False, + class_names=None, + num_examples=None, + joint=None, + confident_joint=None, + multi_label=False, +) -> pd.DataFrame: + """Returns the pairs of classes that are often mislabeled as one another. + Consider merging the top pairs of classes returned by this method each into a single class. + If the dataset is labeled by human annotators, consider clearly defining the + difference between the classes prior to having annotators label the data. + + This method provides two scores in the Pandas DataFrame that is returned: + + * **Num Overlapping Examples**: The number of examples where the two classes overlap + * **Joint Probability**: `(num overlapping examples / total number of examples in the dataset`). + + This method works by providing any one (and only one) of the following inputs: + + 1. ``labels`` and ``pred_probs``, or + 2. ``joint`` and ``num_examples``, or + 3. ``confident_joint`` + + Only provide **exactly one of the above input options**, do not provide a combination. + + This method uses the joint distribution of noisy and true labels to compute ontological + issues via the approach published in `Northcutt et al., + 2021 <https://jair.org/index.php/jair/article/view/12125>`_. + + Examples + -------- + >>> from cleanlab.dataset import find_overlapping_classes + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.model_selection import cross_val_predict + >>> data, labels = get_data_labels_from_dataset() + >>> yourFavoriteModel = LogisticRegression() + >>> pred_probs = cross_val_predict(yourFavoriteModel, data, labels, cv=3, method="predict_proba") + >>> df = find_overlapping_classes(labels=labels, pred_probs=pred_probs) + + Note + ---- + The joint distribution of noisy and true labels is asymmetric, and therefore the joint + probability ``p(given="vehicle", true="truck") != p(true="truck", given="vehicle")``. + This is intuitive. Images of trucks (true label) are much more likely to be labeled as a car + (given label) than images of cars (true label) being frequently mislabeled as truck (given + label). cleanlab takes these differences into account for you automatically via the joint + distribution. If you do not want this behavior, simply set ``asymmetric=False``. + + This method estimates how often the annotators confuse two classes. + This differs from just using a similarity matrix or confusion matrix, + as these summarize characteristics of the predictive model rather than the data labelers (i.e. annotators). + Instead, this method works even if the model that generated `pred_probs` tends to be more confident in some classes than others. + + Parameters + ---------- + labels : np.ndarray or list, optional + An array_like (of length N) of noisy labels for the classification dataset, i.e. some labels may be erroneous. + Elements must be integers in the set 0, 1, ..., K-1, where K is the number of classes. + All the classes (0, 1, ..., and K-1) should be present in ``labels``, such that + ``len(set(labels)) == pred_probs.shape[1]`` for standard multi-class classification with single-labeled data (e.g. ``labels = [1,0,2,1,1,0...]``). + For multi-label classification where each example can belong to multiple classes (e.g. ``labels = [[1,2],[1],[0],[],...]``), + your labels should instead satisfy: ``len(set(k for l in labels for k in l)) == pred_probs.shape[1])``. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to + class 0, 1, ..., K-1. `pred_probs` should have been computed using 3 (or + higher) fold cross-validation. + + asymmetric : bool, optional + If ``asymmetric=True``, returns separate estimates for both pairs (class1, class2) and (class2, class1). Use this + for finding "is a" relationships where for example "class1 is a class2". + In this case, num overlapping examples counts the number of examples that have been labeled as class1 which should actually have been labeled as class2. + If ``asymmetric=False``, the pair (class1, class2) will only be returned once with an arbitrary order. + In this case, their estimated score is the sum: ``score(class1, class2) + score(class2, class1))``. + + class_names : Iterable[str] + A list or other iterable of the string class names. The list should be in the order that + matches the class indices. So if class 0 is 'dog' and class 1 is 'cat', then + ``class_names = ['dog', 'cat']``. + + num_examples : int or None, optional + The number of examples in the dataset, i.e. ``len(labels)``. You only need to provide this if + you use this function with the joint, e.g. ``find_overlapping_classes(joint=joint)``, otherwise + this is automatically computed via ``sum(confident_joint)`` or ``len(labels)``. + + joint : np.ndarray, optional + An array of shape ``(K, K)``, where K is the number of classes, + representing the estimated joint distribution of the noisy labels and + true labels. The sum of all entries in this matrix must be 1 (valid + probability distribution). Each entry in the matrix captures the co-occurence joint + probability of a true label and a noisy label, i.e. ``p(noisy_label=i, true_label=j)``. + **Important**. If you input the joint, you must also input `num_examples`. + + confident_joint : np.ndarray, optional + An array of shape ``(K, K)`` representing the confident joint, the matrix used for identifying label issues, which + estimates a confident subset of the joint distribution of the noisy and true labels, ``P_{noisy label, true label}``. + Entry ``(j, k)`` in the matrix is the number of examples confidently counted into the pair of ``(noisy label=j, true label=k)`` classes. + The `confident_joint` can be computed using :py:func:`count.compute_confident_joint <cleanlab.count.compute_confident_joint>`. + If not provided, it is computed from the given (noisy) `labels` and `pred_probs`. + + Returns + ------- + overlapping_classes : pd.DataFrame + Pandas DataFrame with columns "Class Index A", "Class Index B", + "Num Overlapping Examples", "Joint Probability" and a description of each below. + Each row corresponds to a pair of classes. + + * *Class Index A*: the index of a class in 0, 1, ..., K-1. + * *Class Index B*: the index of a different class (from Class A) in 0, 1, ..., K-1. + * *Num Overlapping Examples*: estimated number of labels overlapping between the two classes. + * *Joint Probability*: the *Num Overlapping Examples* divided by the number of examples in the dataset. + + By default, the DataFrame is ordered by "Joint Probability" descending. + """ + + def _2d_matrix_to_row_column_value_list(matrix): + """Create a list<tuple> [(row_index, col_index, value)] representation of matrix. + + Parameters + ---------- + matrix : np.ndarray<float> + Any valid np.ndarray 2-d dimensional matrix. + + Returns + ------- + list<tuple> + A [(row_index, col_index, value)] representation of matrix. + """ + + return [(*i, v) for i, v in np.ndenumerate(matrix)] + + if multi_label: + raise ValueError( + "For multilabel data, please instead call: multilabel_classification.dataset.common_multilabel_issues()" + ) + + if joint is None: + joint = estimate_joint( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + if num_examples is None: + num_examples = _get_num_examples(labels=labels, confident_joint=confident_joint) + if asymmetric: + rcv_list = _2d_matrix_to_row_column_value_list(joint) + # Remove diagonal elements + rcv_list = [tup for tup in rcv_list if tup[0] != tup[1]] + else: # symmetric + # Sum the upper and lower triangles and remove the lower triangle and the diagonal + sym_joint = np.triu(joint) + np.tril(joint).T + rcv_list = _2d_matrix_to_row_column_value_list(sym_joint) + # Provide values only in (the upper triangle) of the matrix. + rcv_list = [tup for tup in rcv_list if tup[0] < tup[1]] + df = pd.DataFrame(rcv_list, columns=["Class Index A", "Class Index B", "Joint Probability"]) + num_overlapping = (df["Joint Probability"] * num_examples).round().astype(int) + df.insert(loc=2, column="Num Overlapping Examples", value=num_overlapping) + if class_names is not None: + df.insert( + loc=0, column="Class Name A", value=df["Class Index A"].apply(lambda x: class_names[x]) + ) + df.insert( + loc=1, column="Class Name B", value=df["Class Index B"].apply(lambda x: class_names[x]) + ) + return df.sort_values(by="Joint Probability", ascending=False).reset_index(drop=True)
+ + +
[docs]def overall_label_health_score( + labels=None, + pred_probs=None, + *, + num_examples=None, + confident_joint=None, + joint=None, + multi_label=False, + verbose=True, +) -> float: + """Returns a single score between 0 and 1 measuring the overall quality of all labels in a dataset. + Intuitively, the score is the average correctness of the given labels across all examples in the + dataset. So a score of 1 suggests your data is perfectly labeled and a score of 0.5 suggests + half of the examples in the dataset may be incorrectly labeled. Thus, a higher + score implies a higher quality dataset. + + This method works by providing any one (and only one) of the following inputs: + + 1. ``labels`` and ``pred_probs``, or + 2. ``joint`` and ``num_examples``, or + 3. ``confident_joint`` + + Only provide **exactly one of the above input options**, do not provide a combination. + + Examples + -------- + >>> from cleanlab.dataset import overall_label_health_score + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.model_selection import cross_val_predict + >>> data, labels = get_data_labels_from_dataset() + >>> yourFavoriteModel = LogisticRegression() + >>> pred_probs = cross_val_predict(yourFavoriteModel, data, labels, cv=3, method="predict_proba") + >>> score = overall_label_health_score(labels=labels, pred_probs=pred_probs) # doctest: +SKIP + + **Parameters**: For parameter info, see the docstring of `~cleanlab.dataset.find_overlapping_classes`. + + + Returns + ------- + health_score : float + A score between 0 and 1, where 1 implies all labels in the dataset are estimated to be correct. + A score of 0.5 implies that half of the dataset's labels are estimated to have issues. + """ + if multi_label: + raise ValueError( + "For multilabel data, please instead call: multilabel_classification.dataset.overall_multilabel_health_score()" + ) + if num_examples is None: + num_examples = _get_num_examples(labels=labels, confident_joint=confident_joint) + + if pred_probs is None or labels is None: + if joint is None: + joint = estimate_joint( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + joint_trace = joint.trace() + num_issues = (num_examples * (1 - joint_trace)).round().astype(int) + health_score = joint_trace + else: + num_issues = num_label_issues( + labels=labels, pred_probs=pred_probs, confident_joint=confident_joint + ) + health_score = 1 - num_issues / num_examples + + if verbose: + print( + f" * Overall, about {(1 - health_score):.0%} ({num_issues:,} of the {num_examples:,}) " + f"labels in your dataset have potential issues.\n" + f" ** The overall label health score for this dataset is: {health_score:.2f}." + ) + return health_score
+ + +
[docs]def health_summary( + labels=None, + pred_probs=None, + *, + asymmetric=False, + class_names=None, + num_examples=None, + joint=None, + confident_joint=None, + multi_label=False, + verbose=True, +) -> dict: + """Prints a health summary of your dataset. + + This summary includes useful statistics like: + + * The classes with the most and least label issues. + * Classes that overlap and could potentially be merged. + * Overall label quality scores, summarizing how accurate the labels appear overall. + + This method works by providing any one (and only one) of the following inputs: + + 1. ``labels`` and ``pred_probs``, or + 2. ``joint`` and ``num_examples``, or + 3. ``confident_joint`` + + Only provide **exactly one of the above input options**, do not provide a combination. + + Examples + -------- + >>> from cleanlab.dataset import health_summary + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.model_selection import cross_val_predict + >>> data, labels = get_data_labels_from_dataset() + >>> yourFavoriteModel = LogisticRegression() + >>> pred_probs = cross_val_predict(yourFavoriteModel, data, labels, cv=3, method="predict_proba") + >>> summary = health_summary(labels=labels, pred_probs=pred_probs) # doctest: +SKIP + + **Parameters**: For parameter info, see the docstring of `~cleanlab.dataset.find_overlapping_classes`. + + Returns + ------- + summary : dict + A dictionary containing keys (see the corresponding functions' documentation to understand the values): + + - ``"overall_label_health_score"``, corresponding to `~cleanlab.dataset.overall_label_health_score` + - ``"joint"``, corresponding to :py:func:`count.estimate_joint <cleanlab.count.estimate_joint>` + - ``"classes_by_label_quality"``, corresponding to `~cleanlab.dataset.rank_classes_by_label_quality` + - ``"overlapping_classes"``, corresponding to `~cleanlab.dataset.find_overlapping_classes` + """ + from cleanlab.internal.util import smart_display_dataframe + + if multi_label: + raise ValueError( + "For multilabel data, please call multilabel_classification.dataset.health_summary" + ) + if joint is None: + joint = estimate_joint( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + if num_examples is None: + num_examples = _get_num_examples(labels=labels) + + if verbose: + longest_line = ( + f"| for your dataset with {num_examples:,} examples " + f"and {len(joint):,} classes. |\n" + ) + print( + "-" * (len(longest_line) - 1) + + "\n" + + f"| Generating a Cleanlab Dataset Health Summary{' ' * (len(longest_line) - 49)}|\n" + + longest_line + + f"| Note, Cleanlab is not a medical doctor... yet.{' ' * (len(longest_line) - 51)}|\n" + + "-" * (len(longest_line) - 1) + + "\n", + ) + + df_class_label_quality = rank_classes_by_label_quality( + labels=labels, + pred_probs=pred_probs, + class_names=class_names, + num_examples=num_examples, + joint=joint, + confident_joint=confident_joint, + ) + if verbose: + print("Overall Class Quality and Noise across your dataset (below)") + print("-" * 60, "\n", flush=True) + smart_display_dataframe(df_class_label_quality) + + df_overlapping_classes = find_overlapping_classes( + labels=labels, + pred_probs=pred_probs, + asymmetric=asymmetric, + class_names=class_names, + num_examples=num_examples, + joint=joint, + confident_joint=confident_joint, + ) + if verbose: + print( + "\nClass Overlap. In some cases, you may want to merge classes in the top rows (below)" + + "\n" + + "-" * 83 + + "\n", + flush=True, + ) + smart_display_dataframe(df_overlapping_classes) + print() + + health_score = overall_label_health_score( + labels=labels, + pred_probs=pred_probs, + num_examples=num_examples, + confident_joint=confident_joint, + verbose=verbose, + ) + if verbose: + print("\nGenerated with <3 from Cleanlab.\n") + return { + "overall_label_health_score": health_score, + "joint": joint, + "classes_by_label_quality": df_class_label_quality, + "overlapping_classes": df_overlapping_classes, + }
+ + +def _get_num_examples(labels=None, confident_joint: Optional[np.ndarray] = None) -> int: + """Helper method that finds the number of examples from the parameters or throws an error + if neither parameter is provided. + + **Parameters:** For information about the arguments to this method, see the documentation of `dataset.find_overlapping_classes` + + Returns + ------- + num_examples : int + The number of examples in the dataset. + + Raises + ------ + ValueError + If `labels` is None.""" + + if labels is None and confident_joint is None: + raise ValueError( + "Error: num_examples is None. You must either provide confident_joint, " + "or provide both num_example and joint as input parameters." + ) + _confident_joint = cast(np.ndarray, confident_joint) + num_examples = len(labels) if labels is not None else cast(int, np.sum(_confident_joint)) + return num_examples +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/experimental/cifar_cnn.html b/v2.6.5/_modules/cleanlab/experimental/cifar_cnn.html new file mode 100644 index 000000000..845c4668f --- /dev/null +++ b/v2.6.5/_modules/cleanlab/experimental/cifar_cnn.html @@ -0,0 +1,777 @@ + + + + + + + + + + + cleanlab.experimental.cifar_cnn - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.experimental.cifar_cnn

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+A PyTorch CNN which can be used for finding label issues in CIFAR-10 and CleanLearning with co-teaching.
+
+Code adapted from: https://github.com/bhanML/Co-teaching/blob/master/model.py
+
+You must have PyTorch installed: https://pytorch.org/get-started/locally/
+"""
+
+
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+
[docs]def call_bn(bn, x): + return bn(x)
+ + +
[docs]class CNN(nn.Module): + """A CNN architecture shown to be a good baseline for a CIFAR-10 benchmark. + + Parameters + ---------- + input_channel : int + n_outputs : int + dropout_rate : float + top_bn : bool + + Methods + ------- + forward + forward pass in PyTorch""" + + def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False): + self.dropout_rate = dropout_rate + self.top_bn = top_bn + super(CNN, self).__init__() + self.c1 = nn.Conv2d(input_channel, 128, kernel_size=3, stride=1, padding=1) + self.c2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) + self.c3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) + self.c4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) + self.c5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) + self.c6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) + self.c7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0) + self.c8 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0) + self.c9 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0) + self.l_c1 = nn.Linear(128, n_outputs) + self.bn1 = nn.BatchNorm2d(128) + self.bn2 = nn.BatchNorm2d(128) + self.bn3 = nn.BatchNorm2d(128) + self.bn4 = nn.BatchNorm2d(256) + self.bn5 = nn.BatchNorm2d(256) + self.bn6 = nn.BatchNorm2d(256) + self.bn7 = nn.BatchNorm2d(512) + self.bn8 = nn.BatchNorm2d(256) + self.bn9 = nn.BatchNorm2d(128) + +
[docs] def forward( + self, + x, + ): + h = x + h = self.c1(h) + h = F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01) + h = self.c2(h) + h = F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01) + h = self.c3(h) + h = F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01) + h = F.max_pool2d(h, kernel_size=2, stride=2) + h = F.dropout2d(h, p=self.dropout_rate) + + h = self.c4(h) + h = F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01) + h = self.c5(h) + h = F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01) + h = self.c6(h) + h = F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01) + h = F.max_pool2d(h, kernel_size=2, stride=2) + h = F.dropout2d(h, p=self.dropout_rate) + + h = self.c7(h) + h = F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01) + h = self.c8(h) + h = F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01) + h = self.c9(h) + h = F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01) + h = F.avg_pool2d(h, kernel_size=h.data.shape[2]) + + h = h.view(h.size(0), h.size(1)) + logit = self.l_c1(h) + if self.top_bn: + logit = call_bn(self.bn_c1, logit) + return logit
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/experimental/coteaching.html b/v2.6.5/_modules/cleanlab/experimental/coteaching.html new file mode 100644 index 000000000..7ad543837 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/experimental/coteaching.html @@ -0,0 +1,915 @@ + + + + + + + + + + + cleanlab.experimental.coteaching - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.experimental.coteaching

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+
+"""
+Implements the co-teaching algorithm for training neural networks on noisily-labeled data (Han et al., 2018).
+This module requires PyTorch (https://pytorch.org/get-started/locally/).
+Example using this algorithm with cleanlab to achieve state of the art on CIFAR-10
+for learning with noisy labels is provided within: https://github.com/cleanlab/examples/
+
+``cifar_cnn.py`` provides an example model that can be trained via this algorithm.
+"""
+
+# Significant code was adapted from the following GitHub:
+# https://github.com/bhanML/Co-teaching/blob/master/loss.py
+# See (Han et al., 2018).
+
+import torch
+import torch.nn.functional as F
+from torch.autograd import Variable
+import numpy as np
+
+MINIMUM_BATCH_SIZE = 16
+
+
+# Loss function for Co-Teaching
+
[docs]def loss_coteaching( + y_1, + y_2, + t, + forget_rate, + class_weights=None, +): + """Co-Teaching Loss function. + + Parameters + ---------- + y_1 : Tensor array + Output logits from model 1 + + y_2 : Tensor array + Output logits from model 2 + + t : np.ndarray + List of Noisy Labels (t means targets) + + forget_rate : float + Decimal between 0 and 1 for how quickly the models forget what they learn. + Just use rate_schedule[epoch] for this value + + class_weights : Tensor array, shape (Number of classes x 1), Default: None + A np.torch.tensor list of length number of classes with weights + """ + + loss_1 = F.cross_entropy(y_1, t, reduce=False, weight=class_weights) + ind_1_sorted = np.argsort(loss_1.data.cpu()) + loss_1_sorted = loss_1[ind_1_sorted] + + loss_2 = F.cross_entropy(y_2, t, reduce=False, weight=class_weights) + ind_2_sorted = np.argsort(loss_2.data.cpu()) + + remember_rate = 1 - forget_rate + num_remember = int(remember_rate * len(loss_1_sorted)) + + ind_1_update = ind_1_sorted[:num_remember] + ind_2_update = ind_2_sorted[:num_remember] + # Share updates between the two models. + # TODO: these class weights should take into account the ind_mask filters. + loss_1_update = F.cross_entropy(y_1[ind_2_update], t[ind_2_update], weight=class_weights) + loss_2_update = F.cross_entropy(y_2[ind_1_update], t[ind_1_update], weight=class_weights) + + return ( + torch.sum(loss_1_update) / num_remember, + torch.sum(loss_2_update) / num_remember, + )
+ + +
[docs]def initialize_lr_scheduler(lr=0.001, epochs=250, epoch_decay_start=80): + """Scheduler to adjust learning rate and betas for Adam Optimizer""" + mom1 = 0.9 + mom2 = 0.9 # Original author had this set to 0.1 + alpha_plan = [lr] * epochs + beta1_plan = [mom1] * epochs + for i in range(epoch_decay_start, epochs): + alpha_plan[i] = float(epochs - i) / (epochs - epoch_decay_start) * lr + beta1_plan[i] = mom2 + return alpha_plan, beta1_plan
+ + +
[docs]def adjust_learning_rate(optimizer, epoch, alpha_plan, beta1_plan): + """Scheduler to adjust learning rate and betas for Adam Optimizer""" + for param_group in optimizer.param_groups: + param_group["lr"] = alpha_plan[epoch] + param_group["betas"] = (beta1_plan[epoch], 0.999) # Only change beta1
+ + +
[docs]def forget_rate_scheduler(epochs, forget_rate, num_gradual, exponent): + """Tells Co-Teaching what fraction of examples to forget at each epoch.""" + # define how many things to forget at each rate schedule + forget_rate_schedule = np.ones(epochs) * forget_rate + forget_rate_schedule[:num_gradual] = np.linspace(0, forget_rate**exponent, num_gradual) + return forget_rate_schedule
+ + +# Train the Model +
[docs]def train( + train_loader, + epoch, + model1, + optimizer1, + model2, + optimizer2, + args, + forget_rate_schedule, + class_weights, + accuracy, +): + """PyTorch training function. + + Parameters + ---------- + train_loader : torch.utils.data.DataLoader + epoch : int + model1 : PyTorch class inheriting nn.Module + Must define __init__ and forward(self, x,) + optimizer1 : PyTorch torch.optim.Adam + model2 : PyTorch class inheriting nn.Module + Must define __init__ and forward(self, x,) + optimizer2 : PyTorch torch.optim.Adam + args : parser.parse_args() object + Must contain num_iter_per_epoch, print_freq, and epochs + forget_rate_schedule : np.ndarray of length number of epochs + Tells Co-Teaching loss what fraction of examples to forget about. + class_weights : Tensor array, shape (Number of classes x 1), Default: None + A np.torch.tensor list of length number of classes with weights + accuracy : function + A function of the form accuracy(output, target, topk=(1,)) for + computing top1 and top5 accuracy given output and true targets.""" + + train_total = 0 + train_correct = 0 + train_total2 = 0 + train_correct2 = 0 + + # Prepare models for training + model1.train() + model2.train() + + for i, (images, labels) in enumerate(train_loader): + if i == len(train_loader) - 1 and len(labels) < MINIMUM_BATCH_SIZE: + # Edge case -- the last leftover batch is small (potentially size 1) + # This will happen if, for example, you train on 35101 examples with + # batch size of 450. The last batch will be size 1. + # If you update the weights based on the gradient from one example + # if that example is noisy, you will add tons of noise to your net + # and accuracy will actually go down with each epoch. + # To avoid this, do not train on the last batch if it's small. + continue + + images = Variable(images).cuda() + labels = Variable(labels).cuda() + + # Forward + Backward + Optimize + logits1 = model1(images) + prec1, _ = accuracy(logits1, labels, topk=(1, 5)) + train_total += 1 + train_correct += prec1 + logits2 = model2(images) + prec2, _ = accuracy(logits2, labels, topk=(1, 5)) + train_total2 += 1 + train_correct2 += prec2 + loss_1, loss_2 = loss_coteaching( + logits1, + logits2, + labels, + forget_rate=forget_rate_schedule[epoch], + class_weights=class_weights, + ) + optimizer1.zero_grad() + loss_1.backward() + optimizer1.step() + optimizer2.zero_grad() + loss_2.backward() + optimizer2.step() + if (i + 1) % args.print_freq == 0: + print( + "Epoch [%d/%d], Iter [%d/%d] Training Accuracy1: %.4F, " + "Training Accuracy2: %.4f, Loss1: %.4f, Loss2: %.4f " + % ( + epoch + 1, + args.epochs, + i + 1, + len(train_loader.dataset) // args.batch_size, + prec1, + prec2, + loss_1.data.item(), + loss_2.data.item(), + ) + ) + + train_acc1 = float(train_correct) / float(train_total) + train_acc2 = float(train_correct2) / float(train_total2) + return train_acc1, train_acc2
+ + +# Evaluate the Model +
[docs]def evaluate(test_loader, model1, model2): + print("Evaluating Co-Teaching Model") + model1.eval() # Change model to 'eval' mode. + correct1 = 0 + total1 = 0 + for images, labels in test_loader: + images = Variable(images).cuda() + logits1 = model1(images) + outputs1 = F.softmax(logits1, dim=1) + _, pred1 = torch.max(outputs1.data, 1) + total1 += labels.size(0) + correct1 += (pred1.cpu() == labels).sum() + + model2.eval() # Change model to 'eval' mode + correct2 = 0 + total2 = 0 + for images, labels in test_loader: + images = Variable(images).cuda() + logits2 = model2(images) + outputs2 = F.softmax(logits2, dim=1) + _, pred2 = torch.max(outputs2.data, 1) + total2 += labels.size(0) + correct2 += (pred2.cpu() == labels).sum() + + acc1 = 100 * float(correct1) / float(total1) + acc2 = 100 * float(correct2) / float(total2) + return acc1, acc2
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/experimental/label_issues_batched.html b/v2.6.5/_modules/cleanlab/experimental/label_issues_batched.html new file mode 100644 index 000000000..dd122d482 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/experimental/label_issues_batched.html @@ -0,0 +1,1435 @@ + + + + + + + + + + + cleanlab.experimental.label_issues_batched - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.experimental.label_issues_batched

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Implementation of :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>`
+that does not need much memory by operating in mini-batches.
+You can also use this approach to estimate label quality scores or the number of label issues
+for big datasets with limited memory.
+
+With default settings, the results returned from this approach closely approximate those returned from:
+``cleanlab.filter.find_label_issues(..., filter_by="low_self_confidence", return_indices_ranked_by="self_confidence")``
+
+To run this approach, either use the ``find_label_issues_batched()`` convenience function defined in this module,
+or follow the examples script for the ``LabelInspector`` class if you require greater customization.
+"""
+
+import numpy as np
+from typing import Optional, List, Tuple, Any
+
+from cleanlab.count import get_confident_thresholds, _reduce_issues
+from cleanlab.rank import find_top_issues, _compute_label_quality_scores
+from cleanlab.typing import LabelLike
+from cleanlab.internal.util import value_counts_fill_missing_classes
+from cleanlab.internal.constants import (
+    CONFIDENT_THRESHOLDS_LOWER_BOUND,
+    FLOATING_POINT_COMPARISON,
+    CLIPPING_LOWER_BOUND,
+)
+
+import platform
+import multiprocessing as mp
+
+try:
+    import psutil
+
+    PSUTIL_EXISTS = True
+except ImportError:  # pragma: no cover
+    PSUTIL_EXISTS = False
+
+# global variable for multiproc on linux
+adj_confident_thresholds_shared: np.ndarray
+labels_shared: LabelLike
+pred_probs_shared: np.ndarray
+
+
+
[docs]def find_label_issues_batched( + labels: Optional[LabelLike] = None, + pred_probs: Optional[np.ndarray] = None, + *, + labels_file: Optional[str] = None, + pred_probs_file: Optional[str] = None, + batch_size: int = 10000, + n_jobs: Optional[int] = 1, + verbose: bool = True, + quality_score_kwargs: Optional[dict] = None, + num_issue_kwargs: Optional[dict] = None, + return_mask: bool = False, +) -> np.ndarray: + """ + Variant of :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + that requires less memory by reading from `pred_probs`, `labels` in mini-batches. + To avoid loading big `pred_probs`, `labels` arrays into memory, + provide these as memory-mapped objects like Zarr arrays or memmap arrays instead of regular numpy arrays. + See: https://pythonspeed.com/articles/mmap-vs-zarr-hdf5/ + + With default settings, the results returned from this method closely approximate those returned from: + ``cleanlab.filter.find_label_issues(..., filter_by="low_self_confidence", return_indices_ranked_by="self_confidence")`` + + This function internally implements the example usage script of the ``LabelInspector`` class, + but you can further customize that script by running it yourself instead of this function. + See the documentation of ``LabelInspector`` to learn more about how this method works internally. + + Parameters + ---------- + labels: np.ndarray-like object, optional + 1D array of given class labels for each example in the dataset, (int) values in ``0,1,2,...,K-1``. + To avoid loading big objects into memory, you should pass this as a memory-mapped object like: + Zarr array loaded with ``zarr.convenience.open(YOURFILE.zarr, mode="r")``, + or memmap array loaded with ``np.load(YOURFILE.npy, mmap_mode="r")``. + + Tip: You can save an existing numpy array to Zarr via: ``zarr.convenience.save_array(YOURFILE.zarr, your_array)``, + or to .npy file that can be loaded with mmap via: ``np.save(YOURFILE.npy, your_array)``. + + pred_probs: np.ndarray-like object, optional + 2D array of model-predicted class probabilities (floats) for each example in the dataset. + To avoid loading big objects into memory, you should pass this as a memory-mapped object like: + Zarr array loaded with ``zarr.convenience.open(YOURFILE.zarr, mode="r")`` + or memmap array loaded with ``np.load(YOURFILE.npy, mmap_mode="r")``. + + labels_file: str, optional + Specify this instead of `labels` if you want this method to load from file for you into a memmap array. + Path to .npy file where the entire 1D `labels` numpy array is stored on disk (list format is not supported). + This is loaded using: ``np.load(labels_file, mmap_mode="r")`` + so make sure this file was created via: ``np.save()`` or other compatible methods (.npz not supported). + + pred_probs_file: str, optional + Specify this instead of `pred_probs` if you want this method to load from file for you into a memmap array. + Path to .npy file where the entire `pred_probs` numpy array is stored on disk. + This is loaded using: ``np.load(pred_probs_file, mmap_mode="r")`` + so make sure this file was created via: ``np.save()`` or other compatible methods (.npz not supported). + + batch_size : int, optional + Size of mini-batches to use for estimating the label issues. + To maximize efficiency, try to use the largest `batch_size` your memory allows. + + n_jobs: int, optional + Number of processes for multiprocessing (default value = 1). Only used on Linux. + If `n_jobs=None`, will use either the number of: physical cores if psutil is installed, or logical cores otherwise. + + verbose : bool, optional + Whether to suppress print statements or not. + + quality_score_kwargs : dict, optional + Keyword arguments to pass into :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + + num_issue_kwargs : dict, optional + Keyword arguments to :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>` + to control estimation of the number of label issues. + The only supported kwarg here for now is: `estimation_method`. + return_mask : bool, optional + Determines what is returned by this method: If `return_mask=True`, return a boolean mask. + If `False`, return a list of indices specifying examples with label issues, sorted by label quality score. + + Returns + ------- + label_issues : np.ndarray + If `return_mask` is `True`, returns a boolean **mask** for the entire dataset + where ``True`` represents a label issue and ``False`` represents an example that is + accurately labeled with high confidence. + If `return_mask` is `False`, returns an array containing **indices** of examples identified to have + label issues (i.e. those indices where the mask would be ``True``), sorted by likelihood that the corresponding label is correct. + -------- + >>> batch_size = 10000 # for efficiency, set this to as large of a value as your memory can handle + >>> # Just demonstrating how to save your existing numpy labels, pred_probs arrays to compatible .npy files: + >>> np.save("LABELS.npy", labels_array) + >>> np.save("PREDPROBS.npy", pred_probs_array) + >>> # You can load these back into memmap arrays via: labels = np.load("LABELS.npy", mmap_mode="r") + >>> # and then run this method on the memmap arrays, or just run it directly on the .npy files like this: + >>> issues = find_label_issues_batched(labels_file="LABELS.npy", pred_probs_file="PREDPROBS.npy", batch_size=batch_size) + >>> # This method also works with Zarr arrays: + >>> import zarr + >>> # Just demonstrating how to save your existing numpy labels, pred_probs arrays to compatible .zarr files: + >>> zarr.convenience.save_array("LABELS.zarr", labels_array) + >>> zarr.convenience.save_array("PREDPROBS.zarr", pred_probs_array) + >>> # You can load from such files into Zarr arrays: + >>> labels = zarr.convenience.open("LABELS.zarr", mode="r") + >>> pred_probs = zarr.convenience.open("PREDPROBS.zarr", mode="r") + >>> # This method can be directly run on Zarr arrays, memmap arrays, or regular numpy arrays: + >>> issues = find_label_issues_batched(labels=labels, pred_probs=pred_probs, batch_size=batch_size) + """ + if labels_file is not None: + if labels is not None: + raise ValueError("only specify one of: `labels` or `labels_file`") + if not isinstance(labels_file, str): + raise ValueError( + "labels_file must be str specifying path to .npy file containing the array of labels" + ) + labels = np.load(labels_file, mmap_mode="r") + assert isinstance(labels, np.ndarray) + + if pred_probs_file is not None: + if pred_probs is not None: + raise ValueError("only specify one of: `pred_probs` or `pred_probs_file`") + if not isinstance(pred_probs_file, str): + raise ValueError( + "pred_probs_file must be str specifying path to .npy file containing 2D array of pred_probs" + ) + pred_probs = np.load(pred_probs_file, mmap_mode="r") + assert isinstance(pred_probs, np.ndarray) + if verbose: + print( + f"mmap-loaded numpy arrays have: {len(pred_probs)} examples, {pred_probs.shape[1]} classes" + ) + if labels is None: + raise ValueError("must provide one of: `labels` or `labels_file`") + if pred_probs is None: + raise ValueError("must provide one of: `pred_probs` or `pred_probs_file`") + + assert pred_probs is not None + if len(labels) != len(pred_probs): + raise ValueError( + f"len(labels)={len(labels)} does not match len(pred_probs)={len(pred_probs)}. Perhaps an issue loading mmap numpy arrays from file." + ) + lab = LabelInspector( + num_class=pred_probs.shape[1], + verbose=verbose, + n_jobs=n_jobs, + quality_score_kwargs=quality_score_kwargs, + num_issue_kwargs=num_issue_kwargs, + ) + n = len(labels) + if verbose: + from tqdm.auto import tqdm + + pbar = tqdm(desc="number of examples processed for estimating thresholds", total=n) + i = 0 + while i < n: + end_index = i + batch_size + labels_batch = labels[i:end_index] + pred_probs_batch = pred_probs[i:end_index, :] + i = end_index + lab.update_confident_thresholds(labels_batch, pred_probs_batch) + if verbose: + pbar.update(batch_size) + + # Next evaluate the quality of the labels (run this on full dataset you want to evaluate): + if verbose: + pbar.close() + pbar = tqdm(desc="number of examples processed for checking labels", total=n) + i = 0 + while i < n: + end_index = i + batch_size + labels_batch = labels[i:end_index] + pred_probs_batch = pred_probs[i:end_index, :] + i = end_index + _ = lab.score_label_quality(labels_batch, pred_probs_batch) + if verbose: + pbar.update(batch_size) + + if verbose: + pbar.close() + + label_issues_indices = lab.get_label_issues() + label_issues_mask = np.zeros(len(labels), dtype=bool) + label_issues_mask[label_issues_indices] = True + mask = _reduce_issues(pred_probs=pred_probs, labels=labels) + label_issues_mask[mask] = False + if return_mask: + return label_issues_mask + return np.where(label_issues_mask)[0]
+ + +
[docs]class LabelInspector: + """ + Class for finding label issues in big datasets where memory becomes a problem for other cleanlab methods. + Only create one such object per dataset and do not try to use the same ``LabelInspector`` across 2 datasets. + For efficiency, this class does little input checking. + You can first run :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + on a small subset of your data to verify your inputs are properly formatted. + Do NOT modify any of the attributes of this class yourself! + Multi-label classification is not supported by this class, it is only for multi-class classification. + + The recommended usage demonstrated in the examples script below involves two passes over your data: + one pass to compute `confident_thresholds`, another to evaluate each label. + To maximize efficiency, try to use the largest batch_size your memory allows. + To reduce runtime further, you can run the first pass on a subset of your dataset + as long as it contains enough data from each class to estimate `confident_thresholds` accurately. + + In the examples script below: + - `labels` is a (big) 1D ``np.ndarray`` of class labels represented as integers in ``0,1,...,K-1``. + - ``pred_probs`` = is a (big) 2D ``np.ndarray`` of predicted class probabilities, + where each row is an example, each column represents a class. + + `labels` and `pred_probs` can be stored in a file instead where you load chunks of them at a time. + Methods to load arrays in chunks include: ``np.load(...,mmap_mode='r')``, ``numpy.memmap()``, + HDF5 or Zarr files, see: https://pythonspeed.com/articles/mmap-vs-zarr-hdf5/ + + Examples + -------- + >>> n = len(labels) + >>> batch_size = 10000 # you can change this in between batches, set as big as your RAM allows + >>> lab = LabelInspector(num_class = pred_probs.shape[1]) + >>> # First compute confident thresholds (for faster results, can also do this on a random subset of your data): + >>> i = 0 + >>> while i < n: + >>> end_index = i + batch_size + >>> labels_batch = labels[i:end_index] + >>> pred_probs_batch = pred_probs[i:end_index,:] + >>> i = end_index + >>> lab.update_confident_thresholds(labels_batch, pred_probs_batch) + >>> # See what we calculated: + >>> confident_thresholds = lab.get_confident_thresholds() + >>> # Evaluate the quality of the labels (run this on full dataset you want to evaluate): + >>> i = 0 + >>> while i < n: + >>> end_index = i + batch_size + >>> labels_batch = labels[i:end_index] + >>> pred_probs_batch = pred_probs[i:end_index,:] + >>> i = end_index + >>> batch_results = lab.score_label_quality(labels_batch, pred_probs_batch) + >>> # Indices of examples with label issues, sorted by label quality score (most severe to least severe): + >>> indices_of_examples_with_issues = lab.get_label_issues() + >>> # If your `pred_probs` and `labels` are arrays already in memory, + >>> # then you can use this shortcut for all of the above: + >>> indices_of_examples_with_issues = find_label_issues_batched(labels, pred_probs, batch_size=10000) + + Parameters + ---------- + num_class : int + The number of classes in your multi-class classification task. + + store_results : bool, optional + Whether this object will store all label quality scores, a 1D array of shape ``(N,)`` + where ``N`` is the total number of examples in your dataset. + Set this to False if you encounter memory problems even for small batch sizes (~1000). + If ``False``, you can still identify the label issues yourself by aggregating + the label quality scores for each batch, sorting them across all batches, and returning the top ``T`` indices + with ``T = self.get_num_issues()``. + + verbose : bool, optional + Whether to suppress print statements or not. + + n_jobs: int, optional + Number of processes for multiprocessing (default value = 1). Only used on Linux. + If `n_jobs=None`, will use either the number of: physical cores if psutil is installed, or logical cores otherwise. + + quality_score_kwargs : dict, optional + Keyword arguments to pass into :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + + num_issue_kwargs : dict, optional + Keyword arguments to :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>` + to control estimation of the number of label issues. + The only supported kwarg here for now is: `estimation_method`. + """ + + def __init__( + self, + *, + num_class: int, + store_results: bool = True, + verbose: bool = True, + quality_score_kwargs: Optional[dict] = None, + num_issue_kwargs: Optional[dict] = None, + n_jobs: Optional[int] = 1, + ): + if quality_score_kwargs is None: + quality_score_kwargs = {} + if num_issue_kwargs is None: + num_issue_kwargs = {} + + self.num_class = num_class + self.store_results = store_results + self.verbose = verbose + self.quality_score_kwargs = quality_score_kwargs # extra arguments for ``rank.get_label_quality_scores()`` to control label quality scoring + self.num_issue_kwargs = num_issue_kwargs # extra arguments for ``count.num_label_issues()`` to control estimation of the number of label issues (only supported argument for now is: `estimation_method`). + self.off_diagonal_calibrated = False + if num_issue_kwargs.get("estimation_method") == "off_diagonal_calibrated": + # store extra attributes later needed for calibration: + self.off_diagonal_calibrated = True + self.prune_counts = np.zeros(self.num_class) + self.class_counts = np.zeros(self.num_class) + self.normalization = np.zeros(self.num_class) + else: + self.prune_count = 0 # number of label issues estimated based on data seen so far (only used when estimation_method is not calibrated) + + if self.store_results: + self.label_quality_scores: List[float] = [] + + self.confident_thresholds = np.zeros( + (num_class,) + ) # current estimate of thresholds based on data seen so far + self.examples_per_class = np.zeros( + (num_class,) + ) # current counts of examples with each given label seen so far + self.examples_processed_thresh = ( + 0 # number of examples seen so far for estimating thresholds + ) + self.examples_processed_quality = 0 # number of examples seen so far for estimating label quality and number of label issues + # Determine number of cores for multiprocessing: + self.n_jobs: Optional[int] = None + os_name = platform.system() + if os_name != "Linux": + self.n_jobs = 1 + if n_jobs is not None and n_jobs != 1 and self.verbose: + print( + "n_jobs is overridden to 1 because multiprocessing is only supported for Linux." + ) + elif n_jobs is not None: + self.n_jobs = n_jobs + else: + if PSUTIL_EXISTS: + self.n_jobs = psutil.cpu_count(logical=False) # physical cores + if not self.n_jobs: + # switch to logical cores + self.n_jobs = mp.cpu_count() + if self.verbose: + print( + f"Multiprocessing will default to using the number of logical cores ({self.n_jobs}). To default to number of physical cores: pip install psutil" + ) + +
[docs] def get_confident_thresholds(self, silent: bool = False) -> np.ndarray: + """ + Fetches already-computed confident thresholds from the data seen so far + in same format as: :py:func:`count.get_confident_thresholds <cleanlab.count.get_confident_thresholds>`. + + + Returns + ------- + confident_thresholds : np.ndarray + An array of shape ``(K, )`` where ``K`` is the number of classes. + """ + if self.examples_processed_thresh < 1: + raise ValueError( + "Have not computed any confident_thresholds yet. Call `update_confident_thresholds()` first." + ) + else: + if self.verbose and not silent: + print( + f"Total number of examples used to estimate confident thresholds: {self.examples_processed_thresh}" + ) + return self.confident_thresholds
+ +
[docs] def get_num_issues(self, silent: bool = False) -> int: + """ + Fetches already-computed estimate of the number of label issues in the data seen so far + in the same format as: :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>`. + + Note: The estimated number of issues may differ from :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>` + by 1 due to rounding differences. + + Returns + ------- + num_issues : int + The estimated number of examples with label issues in the data seen so far. + """ + if self.examples_processed_quality < 1: + raise ValueError( + "Have not evaluated any labels yet. Call `score_label_quality()` first." + ) + else: + if self.verbose and not silent: + print( + f"Total number of examples whose labels have been evaluated: {self.examples_processed_quality}" + ) + if self.off_diagonal_calibrated: + calibrated_prune_counts = ( + self.prune_counts + * self.class_counts + / np.clip(self.normalization, a_min=CLIPPING_LOWER_BOUND, a_max=None) + ) # avoid division by 0 + return np.rint(np.sum(calibrated_prune_counts)).astype("int") + else: # not calibrated + return self.prune_count
+ +
[docs] def get_quality_scores(self) -> np.ndarray: + """ + Fetches already-computed estimate of the label quality of each example seen so far + in the same format as: :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example seen so far. + Lower scores indicate more likely mislabeled examples. + """ + if not self.store_results: + raise ValueError( + "Must initialize the LabelInspector with `store_results` == True. " + "Otherwise you can assemble the label quality scores yourself based on " + "the scores returned for each batch of data from `score_label_quality()`" + ) + else: + return np.asarray(self.label_quality_scores)
+ +
[docs] def get_label_issues(self) -> np.ndarray: + """ + Fetches already-computed estimate of indices of examples with label issues in the data seen so far, + in the same format as: :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + with its `return_indices_ranked_by` argument specified. + + Note: this method corresponds to ``filter.find_label_issues(..., filter_by=METHOD1, return_indices_ranked_by=METHOD2)`` + where by default: ``METHOD1="low_self_confidence"``, ``METHOD2="self_confidence"`` + or if this object was instantiated with ``quality_score_kwargs = {"method": "normalized_margin"}`` then we instead have: + ``METHOD1="low_normalized_margin"``, ``METHOD2="normalized_margin"``. + + Note: The estimated number of issues may differ from :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + by 1 due to rounding differences. + + Returns + ------- + issue_indices : np.ndarray + Indices of examples with label issues, sorted by label quality score. + """ + if not self.store_results: + raise ValueError( + "Must initialize the LabelInspector with `store_results` == True. " + "Otherwise you can identify label issues yourself based on the scores from all " + "the batches of data and the total number of issues returned by `get_num_issues()`" + ) + if self.examples_processed_quality < 1: + raise ValueError( + "Have not evaluated any labels yet. Call `score_label_quality()` first." + ) + if self.verbose: + print( + f"Total number of examples whose labels have been evaluated: {self.examples_processed_quality}" + ) + return find_top_issues(self.get_quality_scores(), top=self.get_num_issues(silent=True))
+ +
[docs] def update_confident_thresholds(self, labels: LabelLike, pred_probs: np.ndarray): + """ + Updates the estimate of confident_thresholds stored in this class using a new batch of data. + Inputs should be in same format as for: :py:func:`count.get_confident_thresholds <cleanlab.count.get_confident_thresholds>`. + + Parameters + ---------- + labels: np.ndarray or list + Given class labels for each example in the batch, values in ``0,1,2,...,K-1``. + + pred_probs: np.ndarray + 2D array of model-predicted class probabilities for each example in the batch. + """ + labels = _batch_check(labels, pred_probs, self.num_class) + batch_size = len(labels) + batch_thresholds = get_confident_thresholds( + labels, pred_probs + ) # values for missing classes may exceed 1 but should not matter since we multiply by this class counts in the batch + batch_class_counts = value_counts_fill_missing_classes(labels, num_classes=self.num_class) + self.confident_thresholds = ( + self.examples_per_class * self.confident_thresholds + + batch_class_counts * batch_thresholds + ) / np.clip( + self.examples_per_class + batch_class_counts, a_min=1, a_max=None + ) # avoid division by 0 + self.confident_thresholds = np.clip( + self.confident_thresholds, a_min=CONFIDENT_THRESHOLDS_LOWER_BOUND, a_max=None + ) + self.examples_per_class += batch_class_counts + self.examples_processed_thresh += batch_size
+ +
[docs] def score_label_quality( + self, + labels: LabelLike, + pred_probs: np.ndarray, + *, + update_num_issues: bool = True, + ) -> np.ndarray: + """ + Scores the label quality of each example in the provided batch of data, + and also updates the number of label issues stored in this class. + Inputs should be in same format as for: :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + + Parameters + ---------- + labels: np.ndarray + Given class labels for each example in the batch, values in ``0,1,2,...,K-1``. + + pred_probs: np.ndarray + 2D array of model-predicted class probabilities for each example in the batch of data. + + update_num_issues: bool, optional + Whether or not to update the number of label issues or only compute label quality scores. + For lower runtimes, set this to ``False`` if you only want to score label quality and not find label issues. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) for each example in the batch of data. + """ + labels = _batch_check(labels, pred_probs, self.num_class) + batch_size = len(labels) + scores = _compute_label_quality_scores( + labels, + pred_probs, + confident_thresholds=self.get_confident_thresholds(silent=True), + **self.quality_score_kwargs, + ) + class_counts = value_counts_fill_missing_classes(labels, num_classes=self.num_class) + if update_num_issues: + self._update_num_label_issues(labels, pred_probs, **self.num_issue_kwargs) + self.examples_processed_quality += batch_size + if self.store_results: + self.label_quality_scores += list(scores) + + return scores
+ + def _update_num_label_issues( + self, + labels: LabelLike, + pred_probs: np.ndarray, + **kwargs, + ): + """ + Update the estimate of num_label_issues stored in this class using a new batch of data. + Kwargs are ignored here for now (included for forwards compatibility). + Instead of being specified here, `estimation_method` should be declared when this class is initialized. + """ + + # whether to match the output of count.num_label_issues exactly + # default is False, which gives significant speedup on large batches + # and empirically matches num_label_issues even on input sizes of + # 1M x 10k + thorough = False + if self.examples_processed_thresh < 1: + raise ValueError( + "Have not computed any confident_thresholds yet. Call `update_confident_thresholds()` first." + ) + + if self.n_jobs == 1: + adj_confident_thresholds = self.confident_thresholds - FLOATING_POINT_COMPARISON + pred_class = np.argmax(pred_probs, axis=1) + batch_size = len(labels) + if thorough: + # add margin for floating point comparison operations: + pred_gt_thresholds = pred_probs >= adj_confident_thresholds + max_ind = np.argmax(pred_probs * pred_gt_thresholds, axis=1) + if not self.off_diagonal_calibrated: + mask = (max_ind != labels) & (pred_class != labels) + else: + # calibrated + # should we change to above? + mask = pred_class != labels + else: + max_ind = pred_class + mask = pred_class != labels + + if not self.off_diagonal_calibrated: + prune_count_batch = np.sum( + ( + pred_probs[np.arange(batch_size), max_ind] + >= adj_confident_thresholds[max_ind] + ) + & mask + ) + self.prune_count += prune_count_batch + else: # calibrated + self.class_counts += value_counts_fill_missing_classes( + labels, num_classes=self.num_class + ) + to_increment = ( + pred_probs[np.arange(batch_size), max_ind] >= adj_confident_thresholds[max_ind] + ) + for class_label in range(self.num_class): + labels_equal_to_class = labels == class_label + self.normalization[class_label] += np.sum(labels_equal_to_class & to_increment) + self.prune_counts[class_label] += np.sum( + labels_equal_to_class + & to_increment + & (max_ind != labels) + # & (pred_class != labels) + # This is not applied in num_label_issues(..., estimation_method="off_diagonal_custom"). Do we want to add it? + ) + else: # multiprocessing implementation + global adj_confident_thresholds_shared + adj_confident_thresholds_shared = self.confident_thresholds - FLOATING_POINT_COMPARISON + + global labels_shared, pred_probs_shared + labels_shared = labels + pred_probs_shared = pred_probs + + # good values for this are ~1000-10000 in benchmarks where pred_probs has 1B entries: + processes = 5000 + if len(labels) <= processes: + chunksize = 1 + else: + chunksize = len(labels) // processes + inds = split_arr(np.arange(len(labels)), chunksize) + + if thorough: + use_thorough = np.ones(len(inds), dtype=bool) + else: + use_thorough = np.zeros(len(inds), dtype=bool) + args = zip(inds, use_thorough) + with mp.Pool(self.n_jobs) as pool: + if not self.off_diagonal_calibrated: + prune_count_batch = np.sum( + np.asarray(list(pool.imap_unordered(_compute_num_issues, args))) + ) + self.prune_count += prune_count_batch + else: + results = list(pool.imap_unordered(_compute_num_issues_calibrated, args)) + for result in results: + class_label = result[0] + self.class_counts[class_label] += 1 + self.normalization[class_label] += result[1] + self.prune_counts[class_label] += result[2]
+ + +
[docs]def split_arr(arr: np.ndarray, chunksize: int) -> List[np.ndarray]: + """ + Helper function to split array into chunks for multiprocessing. + """ + return np.split(arr, np.arange(chunksize, arr.shape[0], chunksize), axis=0)
+ + +def _compute_num_issues(arg: Tuple[np.ndarray, bool]) -> int: + """ + Helper function for `_update_num_label_issues` multiprocessing without calibration. + """ + ind = arg[0] + thorough = arg[1] + label = labels_shared[ind] + pred_prob = pred_probs_shared[ind, :] + pred_class = np.argmax(pred_prob, axis=-1) + batch_size = len(label) + + if thorough: + pred_gt_thresholds = pred_prob >= adj_confident_thresholds_shared + max_ind = np.argmax(pred_prob * pred_gt_thresholds, axis=-1) + prune_count_batch = np.sum( + (pred_prob[np.arange(batch_size), max_ind] >= adj_confident_thresholds_shared[max_ind]) + & (max_ind != label) + & (pred_class != label) + ) + else: + prune_count_batch = np.sum( + ( + pred_prob[np.arange(batch_size), pred_class] + >= adj_confident_thresholds_shared[pred_class] + ) + & (pred_class != label) + ) + return prune_count_batch + + +def _compute_num_issues_calibrated(arg: Tuple[np.ndarray, bool]) -> Tuple[Any, int, int]: + """ + Helper function for `_update_num_label_issues` multiprocessing with calibration. + """ + ind = arg[0] + thorough = arg[1] + label = labels_shared[ind] + pred_prob = pred_probs_shared[ind, :] + batch_size = len(label) + + pred_class = np.argmax(pred_prob, axis=-1) + if thorough: + pred_gt_thresholds = pred_prob >= adj_confident_thresholds_shared + max_ind = np.argmax(pred_prob * pred_gt_thresholds, axis=-1) + to_inc = ( + pred_prob[np.arange(batch_size), max_ind] >= adj_confident_thresholds_shared[max_ind] + ) + + prune_count_batch = to_inc & (max_ind != label) + normalization_batch = to_inc + else: + to_inc = ( + pred_prob[np.arange(batch_size), pred_class] + >= adj_confident_thresholds_shared[pred_class] + ) + normalization_batch = to_inc + prune_count_batch = to_inc & (pred_class != label) + + return (label, normalization_batch, prune_count_batch) + + +def _batch_check(labels: LabelLike, pred_probs: np.ndarray, num_class: int) -> np.ndarray: + """ + Basic checks to ensure batch of data looks ok. For efficiency, this check is quite minimal. + + Returns + ------- + labels : np.ndarray + `labels` formatted as a 1D array. + """ + batch_size = pred_probs.shape[0] + labels = np.asarray(labels) + if len(labels) != batch_size: + raise ValueError("labels and pred_probs must have same length") + if pred_probs.shape[1] != num_class: + raise ValueError("num_class must equal pred_probs.shape[1]") + + return labels +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/experimental/mnist_pytorch.html b/v2.6.5/_modules/cleanlab/experimental/mnist_pytorch.html new file mode 100644 index 000000000..2cdcba27c --- /dev/null +++ b/v2.6.5/_modules/cleanlab/experimental/mnist_pytorch.html @@ -0,0 +1,1054 @@ + + + + + + + + + + + cleanlab.experimental.mnist_pytorch - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.experimental.mnist_pytorch

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+A cleanlab-compatible PyTorch ConvNet classifier that can be used to find
+label issues in image data.
+This is a good example to reference for making your own bespoke model compatible with cleanlab.
+
+You must have PyTorch installed: https://pytorch.org/get-started/locally/
+"""
+
+from sklearn.base import BaseEstimator
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+from torchvision import datasets, transforms
+from torch.autograd import Variable
+from torch.utils.data.sampler import SubsetRandomSampler
+import numpy as np
+
+
+MNIST_TRAIN_SIZE = 60000
+MNIST_TEST_SIZE = 10000
+SKLEARN_DIGITS_TRAIN_SIZE = 1247
+SKLEARN_DIGITS_TEST_SIZE = 550
+
+
+
[docs]def get_mnist_dataset(loader): # pragma: no cover + """Downloads MNIST as PyTorch dataset. + + Parameters + ---------- + loader : str (values: 'train' or 'test').""" + dataset = datasets.MNIST( + root="../data", + train=(loader == "train"), + download=True, + transform=transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] + ), + ) + return dataset
+ + +
[docs]def get_sklearn_digits_dataset(loader): + """Downloads Sklearn handwritten digits dataset. + Uses the last SKLEARN_DIGITS_TEST_SIZE examples as the test + This is (hard-coded) -- do not change. + + Parameters + ---------- + loader : str (values: 'train' or 'test').""" + from torch.utils.data import Dataset + from sklearn.datasets import load_digits + + class TorchDataset(Dataset): + """Abstracts a numpy array as a PyTorch dataset.""" + + def __init__(self, data, targets, transform=None): + self.data = torch.from_numpy(data).float() + self.targets = torch.from_numpy(targets).long() + self.transform = transform + + def __getitem__(self, index): + x = self.data[index] + y = self.targets[index] + if self.transform: + x = self.transform(x) + return x, y + + def __len__(self): + return len(self.data) + + transform = transforms.Compose( + [ + transforms.ToPILImage(), + transforms.Resize(28), + transforms.ToTensor(), + transforms.Normalize((0.1307,), (0.3081,)), + ] + ) + # Get sklearn digits dataset + X_all, y_all = load_digits(return_X_y=True) + X_all = X_all.reshape((len(X_all), 8, 8)) + y_train = y_all[:-SKLEARN_DIGITS_TEST_SIZE] + y_test = y_all[-SKLEARN_DIGITS_TEST_SIZE:] + X_train = X_all[:-SKLEARN_DIGITS_TEST_SIZE] + X_test = X_all[-SKLEARN_DIGITS_TEST_SIZE:] + if loader == "train": + return TorchDataset(X_train, y_train, transform=transform) + elif loader == "test": + return TorchDataset(X_test, y_test, transform=transform) + else: # prama: no cover + raise ValueError("loader must be either str 'train' or str 'test'.")
+ + +
[docs]class SimpleNet(nn.Module): + """Basic Pytorch CNN for MNIST-like data.""" + + def __init__(self): + super(SimpleNet, self).__init__() + self.conv1 = nn.Conv2d(1, 10, kernel_size=5) + self.conv2 = nn.Conv2d(10, 20, kernel_size=5) + self.conv2_drop = nn.Dropout2d() + self.fc1 = nn.Linear(320, 50) + self.fc2 = nn.Linear(50, 10) + +
[docs] def forward(self, x, T=1.0): + x = F.relu(F.max_pool2d(self.conv1(x), 2)) + x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) + x = x.view(-1, 320) + x = F.relu(self.fc1(x)) + x = F.dropout(x, training=self.training) + x = self.fc2(x) + x = F.log_softmax(x, dim=1) + return x
+ + +
[docs]class CNN(BaseEstimator): # Inherits sklearn classifier + """Wraps a PyTorch CNN for the MNIST dataset within an sklearn template + + Defines ``.fit()``, ``.predict()``, and ``.predict_proba()`` functions. This + template enables the PyTorch CNN to flexibly be used within the sklearn + architecture -- meaning it can be passed into functions like + cross_val_predict as if it were an sklearn model. The cleanlab library + requires that all models adhere to this basic sklearn template and thus, + this class allows a PyTorch CNN to be used in for learning with noisy + labels among other things. + + Parameters + ---------- + batch_size: int + epochs: int + log_interval: int + lr: float + momentum: float + no_cuda: bool + seed: int + test_batch_size: int, default=None + dataset: {'mnist', 'sklearn-digits'} + loader: {'train', 'test'} + Set to 'test' to force fit() and predict_proba() on test_set + + Note + ---- + Be careful setting the ``loader`` param, it will override every other loader + If you set this to 'test', but call .predict(loader = 'train') + then .predict() will still predict on test! + + Attributes + ---------- + batch_size: int + epochs: int + log_interval: int + lr: float + momentum: float + no_cuda: bool + seed: int + test_batch_size: int, default=None + dataset: {'mnist', 'sklearn-digits'} + loader: {'train', 'test'} + Set to 'test' to force fit() and predict_proba() on test_set + + Methods + ------- + fit + fits the model to data. + predict + get the fitted model's prediction on test data + predict_proba + get the fitted model's probability distribution over classes for test data + """ + + def __init__( + self, + batch_size=64, + epochs=6, + log_interval=50, # Set to None to not print + lr=0.01, + momentum=0.5, + no_cuda=False, + seed=1, + test_batch_size=None, + dataset="mnist", + loader=None, + ): + self.batch_size = batch_size + self.epochs = epochs + self.log_interval = log_interval + self.lr = lr + self.momentum = momentum + self.no_cuda = no_cuda + self.seed = seed + self.cuda = not self.no_cuda and torch.cuda.is_available() + torch.manual_seed(self.seed) + if self.cuda: # pragma: no cover + torch.cuda.manual_seed(self.seed) + + # Instantiate PyTorch model + self.model = SimpleNet() + if self.cuda: # pragma: no cover + self.model.cuda() + + self.loader_kwargs = {"num_workers": 1, "pin_memory": True} if self.cuda else {} + self.loader = loader + self._set_dataset(dataset) + if test_batch_size is not None: + self.test_batch_size = test_batch_size + else: + self.test_batch_size = self.test_size + + def _set_dataset(self, dataset): + self.dataset = dataset + if dataset == "mnist": + # pragma: no cover + self.get_dataset = get_mnist_dataset + self.train_size = MNIST_TRAIN_SIZE + self.test_size = MNIST_TEST_SIZE + elif dataset == "sklearn-digits": + self.get_dataset = get_sklearn_digits_dataset + self.train_size = SKLEARN_DIGITS_TRAIN_SIZE + self.test_size = SKLEARN_DIGITS_TEST_SIZE + else: # pragma: no cover + raise ValueError("dataset must be 'mnist' or 'sklearn-digits'.") + + # XXX this is a pretty weird sklearn estimator that does data loading + # internally in `fit`, and it supports multiple datasets and is aware of + # which dataset it's using; if we weren't doing this, we wouldn't need to + # override `get_params` / `set_params` +
[docs] def get_params(self, deep=True): + return { + "batch_size": self.batch_size, + "epochs": self.epochs, + "log_interval": self.log_interval, + "lr": self.lr, + "momentum": self.momentum, + "no_cuda": self.no_cuda, + "test_batch_size": self.test_batch_size, + "dataset": self.dataset, + }
+ +
[docs] def set_params(self, **parameters): # pragma: no cover + for parameter, value in parameters.items(): + if parameter != "dataset": + setattr(self, parameter, value) + if "dataset" in parameters: + self._set_dataset(parameters["dataset"]) + return self
+ +
[docs] def fit(self, train_idx, train_labels=None, sample_weight=None, loader="train"): + """This function adheres to sklearn's "fit(X, y)" format for + compatibility with scikit-learn. ** All inputs should be numpy + arrays, not pyTorch Tensors train_idx is not X, but instead a list of + indices for X (and y if train_labels is None). This function is a + member of the cnn class which will handle creation of X, y from the + train_idx via the train_loader.""" + if self.loader is not None: + loader = self.loader + if train_labels is not None and len(train_idx) != len(train_labels): + raise ValueError("Check that train_idx and train_labels are the same length.") + + if sample_weight is not None: # pragma: no cover + if len(sample_weight) != len(train_labels): + raise ValueError( + "Check that train_labels and sample_weight " "are the same length." + ) + class_weight = sample_weight[np.unique(train_labels, return_index=True)[1]] + class_weight = torch.from_numpy(class_weight).float() + if self.cuda: + class_weight = class_weight.cuda() + else: + class_weight = None + + train_dataset = self.get_dataset(loader) + + # Use provided labels if not None o.w. use MNIST dataset training labels + if train_labels is not None: + # Create sparse tensor of train_labels with (-1)s for labels not + # in train_idx. We avoid train_data[idx] because train_data may + # very large, i.e. ImageNet + sparse_labels = ( + np.zeros(self.train_size if loader == "train" else self.test_size, dtype=int) - 1 + ) + sparse_labels[train_idx] = train_labels + train_dataset.targets = sparse_labels + + train_loader = torch.utils.data.DataLoader( + dataset=train_dataset, + # sampler=SubsetRandomSampler(train_idx if train_idx is not None + # else range(self.train_size)), + sampler=SubsetRandomSampler(train_idx), + batch_size=self.batch_size, + **self.loader_kwargs, + ) + + optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=self.momentum) + + # Train for self.epochs epochs + for epoch in range(1, self.epochs + 1): + # Enable dropout and batch norm layers + self.model.train() + for batch_idx, (data, target) in enumerate(train_loader): + if self.cuda: # pragma: no cover + data, target = data.cuda(), target.cuda() + data, target = Variable(data), Variable(target).long() + optimizer.zero_grad() + output = self.model(data) + loss = F.nll_loss(output, target, class_weight) + loss.backward() + optimizer.step() + if self.log_interval is not None and batch_idx % self.log_interval == 0: + print( + "TrainEpoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( + epoch, + batch_idx * len(data), + len(train_idx), + 100.0 * batch_idx / len(train_loader), + loss.item(), + ), + )
+ +
[docs] def predict(self, idx=None, loader=None): + """Get predicted labels from trained model.""" + # get the index of the max probability + probs = self.predict_proba(idx, loader) + return probs.argmax(axis=1)
+ +
[docs] def predict_proba(self, idx=None, loader=None): + if self.loader is not None: + loader = self.loader + if loader is None: + is_test_idx = ( + idx is not None + and len(idx) == self.test_size + and np.all(np.array(idx) == np.arange(self.test_size)) + ) + loader = "test" if is_test_idx else "train" + dataset = self.get_dataset(loader) + # Filter by idx + if idx is not None: + if (loader == "train" and len(idx) != self.train_size) or ( + loader == "test" and len(idx) != self.test_size + ): + dataset.data = dataset.data[idx] + dataset.targets = dataset.targets[idx] + + loader = torch.utils.data.DataLoader( + dataset=dataset, + batch_size=self.batch_size if loader == "train" else self.test_batch_size, + **self.loader_kwargs, + ) + + # sets model.train(False) inactivating dropout and batch-norm layers + self.model.eval() + + # Run forward pass on model to compute outputs + outputs = [] + for data, _ in loader: + if self.cuda: # pragma: no cover + data = data.cuda() + with torch.no_grad(): + data = Variable(data) + output = self.model(data) + outputs.append(output) + + # Outputs are log_softmax (log probabilities) + outputs = torch.cat(outputs, dim=0) + # Convert to probabilities and return the numpy array of shape N x K + out = outputs.cpu().numpy() if self.cuda else outputs.numpy() + pred = np.exp(out) + return pred
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/experimental/span_classification.html b/v2.6.5/_modules/cleanlab/experimental/span_classification.html new file mode 100644 index 000000000..3a3a84a1b --- /dev/null +++ b/v2.6.5/_modules/cleanlab/experimental/span_classification.html @@ -0,0 +1,775 @@ + + + + + + + + + + + cleanlab.experimental.span_classification - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.experimental.span_classification

+"""
+Methods to find label issues in span classification datasets (text data), each token in a sentence receives one or more class labels.
+
+The underlying label error detection algorithms are in `cleanlab.token_classification`.
+"""
+
+import numpy as np
+from typing import List, Tuple, Optional
+
+from cleanlab.token_classification.filter import find_label_issues as find_label_issues_token
+from cleanlab.token_classification.summary import display_issues as display_issues_token
+from cleanlab.token_classification.rank import (
+    get_label_quality_scores as get_label_quality_scores_token,
+)
+
+
+
[docs]def find_label_issues( + labels: list, + pred_probs: list, +): + """Identifies tokens with label issues in a span classification dataset. + + Tokens identified with issues will be ranked by their individual label quality score. + + To rank the sentences based on their overall label quality, use :py:func:`experimental.span_classification.get_label_quality_scores <cleanlab.experimental.span_classification.get_label_quality_scores>` + + Parameters + ---------- + labels: + Nested list of given labels for all tokens. + Refer to documentation for this argument in :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>` for further details. + + Note: Currently, only a single span class is supported. + + pred_probs: + An array of shape ``(T, K)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>` for further details. + + Returns + ------- + issues: + List of label issues identified by cleanlab, such that each element is a tuple ``(i, j)``, which + indicates that the `j`-th token of the `i`-th sentence has a label issue. + + These tuples are ordered in `issues` list based on the likelihood that the corresponding token is mislabeled. + + Use :py:func:`experimental.span_classification.get_label_quality_scores <cleanlab.experimental.span_classification.get_label_quality_scores>` + to view these issues within the original sentences. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.experimental.span_classification import find_label_issues + >>> labels = [[0, 0, 1, 1], [1, 1, 0]] + >>> pred_probs = [ + ... np.array([0.9, 0.9, 0.9, 0.1]), + ... np.array([0.1, 0.1, 0.9]), + ... ] + >>> find_label_issues(labels, pred_probs) + """ + pred_probs_token = _get_pred_prob_token(pred_probs) + return find_label_issues_token(labels, pred_probs_token)
+ + +
[docs]def display_issues( + issues: list, + tokens: List[List[str]], + *, + labels: Optional[list] = None, + pred_probs: Optional[list] = None, + exclude: List[Tuple[int, int]] = [], + class_names: Optional[List[str]] = None, + top: int = 20, +) -> None: + """ + See documentation of :py:meth:`token_classification.summary.display_issues<cleanlab.token_classification.summary.display_issues>` for description. + """ + display_issues_token( + issues, + tokens, + labels=labels, + pred_probs=pred_probs, + exclude=exclude, + class_names=class_names, + top=top, + )
+ + +
[docs]def get_label_quality_scores( + labels: list, + pred_probs: list, + **kwargs, +) -> Tuple[np.ndarray, list]: + """ + See documentation of :py:meth:`token_classification.rank.get_label_quality_scores<cleanlab.token_classification.rank.get_label_quality_scores>` for description. + """ + pred_probs_token = _get_pred_prob_token(pred_probs) + return get_label_quality_scores_token(labels, pred_probs_token, **kwargs)
+ + +def _get_pred_prob_token(pred_probs: list) -> list: + """Converts pred_probs for span classification to pred_probs for token classification.""" + pred_probs_token = [] + for probs in pred_probs: + pred_probs_token.append(np.stack([1 - probs, probs], axis=1)) + return pred_probs_token +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/filter.html b/v2.6.5/_modules/cleanlab/filter.html new file mode 100644 index 000000000..9a991a523 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/filter.html @@ -0,0 +1,1635 @@ + + + + + + + + + + + cleanlab.filter - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.filter

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to identify which examples have label issues in a classification dataset.
+The documentation below assumes a dataset with ``N`` examples and ``K`` classes.
+This module is for standard (multi-class) classification where each example is labeled as belonging to exactly one of K classes (e.g. ``labels = np.array([0,0,1,0,2,1])``).
+Some methods here also work for multi-label classification data where each example can be labeled as belonging to multiple classes (e.g. ``labels = [[1,2],[1],[0],[],...]``),
+but we encourage using the methods in the ``cleanlab.multilabel_classification`` module instead for such data.
+"""
+
+import numpy as np
+from sklearn.metrics import confusion_matrix
+import multiprocessing
+import sys
+import warnings
+from typing import Any, Dict, Optional, Tuple, List
+from functools import reduce
+import platform
+
+from cleanlab.count import calibrate_confident_joint, num_label_issues, _reduce_issues
+from cleanlab.rank import order_label_issues, get_label_quality_scores
+import cleanlab.internal.multilabel_scorer as ml_scorer
+from cleanlab.internal.validation import assert_valid_inputs
+from cleanlab.internal.util import (
+    value_counts_fill_missing_classes,
+    round_preserving_row_totals,
+    get_num_classes,
+)
+from cleanlab.internal.multilabel_utils import stack_complement, get_onehot_num_classes, int2onehot
+from cleanlab.typing import LabelLike
+from cleanlab.multilabel_classification.filter import find_multilabel_issues_per_class
+
+# tqdm is a package to print time-to-complete when multiprocessing is used.
+# This package is not necessary, but when installed improves user experience for large datasets.
+try:
+    import tqdm.auto as tqdm
+
+    tqdm_exists = True
+except ImportError as e:  # pragma: no cover
+    tqdm_exists = False
+
+    w = """To see estimated completion times for methods in cleanlab.filter, "pip install tqdm"."""
+    warnings.warn(w)
+
+# psutil is a package used to count physical cores for multiprocessing
+# This package is not necessary, because we can always fall back to logical cores as the default
+try:
+    import psutil
+
+    psutil_exists = True
+except ImportError as e:  # pragma: no cover
+    psutil_exists = False
+
+# global variable for find_label_issues multiprocessing
+pred_probs_by_class: Dict[int, np.ndarray]
+prune_count_matrix_cols: Dict[int, np.ndarray]
+
+
+
[docs]def find_label_issues( + labels: LabelLike, + pred_probs: np.ndarray, + *, + return_indices_ranked_by: Optional[str] = None, + rank_by_kwargs: Optional[Dict[str, Any]] = None, + filter_by: str = "prune_by_noise_rate", + frac_noise: float = 1.0, + num_to_remove_per_class: Optional[List[int]] = None, + min_examples_per_class=1, + confident_joint: Optional[np.ndarray] = None, + n_jobs: Optional[int] = None, + verbose: bool = False, + multi_label: bool = False, +) -> np.ndarray: + """ + Identifies potentially bad labels in a classification dataset using confident learning. + + Returns a boolean mask for the entire dataset where ``True`` represents + an example identified with a label issue and ``False`` represents an example that seems correctly labeled. + + Instead of a mask, you can obtain indices of the examples with label issues in your dataset + (sorted by issue severity) by specifying the `return_indices_ranked_by` argument. + This determines which label quality score is used to quantify severity, + and is useful to view only the top-`J` most severe issues in your dataset. + + The number of indices returned as issues is controlled by `frac_noise`: reduce its + value to identify fewer label issues. If you aren't sure, leave this set to 1.0. + + Tip: if you encounter the error "pred_probs is not defined", try setting + ``n_jobs=1``. + + Parameters + ---------- + labels : np.ndarray or list + A discrete vector of noisy labels for a classification dataset, i.e. some labels may be erroneous. + *Format requirements*: for dataset with K classes, each label must be integer in 0, 1, ..., K-1. + For a standard (multi-class) classification dataset where each example is labeled with one class, + `labels` should be 1D array of shape ``(N,)``, for example: ``labels = [1,0,2,1,1,0...]``. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted class probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to + class 0, 1, ..., K-1. + + **Note**: Returned label issues are most accurate when they are computed based on out-of-sample `pred_probs` from your model. + To obtain out-of-sample predicted probabilities for every datapoint in your dataset, you can use :ref:`cross-validation <pred_probs_cross_val>`. + This is encouraged to get better results. + + return_indices_ranked_by : {None, 'self_confidence', 'normalized_margin', 'confidence_weighted_entropy'}, default=None + Determines what is returned by this method: either a boolean mask or list of indices np.ndarray. + If ``None``, this function returns a boolean mask (``True`` if example at index is label error). + If not ``None``, this function returns a sorted array of indices of examples with label issues + (instead of a boolean mask). Indices are sorted by label quality score which can be one of: + + - ``'normalized_margin'``: ``normalized margin (p(label = k) - max(p(label != k)))`` + - ``'self_confidence'``: ``[pred_probs[i][labels[i]] for i in label_issues_idx]`` + - ``'confidence_weighted_entropy'``: ``entropy(pred_probs) / self_confidence`` + + rank_by_kwargs : dict, optional + Optional keyword arguments to pass into scoring functions for ranking by + label quality score (see :py:func:`rank.get_label_quality_scores + <cleanlab.rank.get_label_quality_scores>`). + + filter_by : {'prune_by_class', 'prune_by_noise_rate', 'both', 'confident_learning', 'predicted_neq_given', 'low_normalized_margin', 'low_self_confidence'}, default='prune_by_noise_rate' + Method to determine which examples are flagged as having label issue, so you can filter/prune them from the dataset. Options: + + - ``'prune_by_noise_rate'``: filters examples with *high probability* of being mislabeled for every non-diagonal in the confident joint (see `prune_counts_matrix` in `filter.py`). These are the examples where (with high confidence) the given label is unlikely to match the predicted label for the example. + - ``'prune_by_class'``: filters the examples with *smallest probability* of belonging to their given class label for every class. + - ``'both'``: filters only those examples that would be filtered by both ``'prune_by_noise_rate'`` and ``'prune_by_class'``. + - ``'confident_learning'``: filters the examples counted as part of the off-diagonals of the confident joint. These are the examples that are confidently predicted to be a different label than their given label. + - ``'predicted_neq_given'``: filters examples for which the predicted class (i.e. argmax of the predicted probabilities) does not match the given label. + - ``'low_normalized_margin'``: filters the examples with *smallest* normalized margin label quality score. The number of issues returned matches :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>`. + - ``'low_self_confidence'``: filters the examples with *smallest* self confidence label quality score. The number of issues returned matches :py:func:`count.num_label_issues <cleanlab.count.num_label_issues>`. + + frac_noise : float, default=1.0 + Used to only return the "top" ``frac_noise * num_label_issues``. The choice of which "top" + label issues to return is dependent on the `filter_by` method used. It works by reducing the + size of the off-diagonals of the `joint` distribution of given labels and true labels + proportionally by `frac_noise` prior to estimating label issues with each method. + This parameter only applies for `filter_by=both`, `filter_by=prune_by_class`, and + `filter_by=prune_by_noise_rate` methods and currently is unused by other methods. + When ``frac_noise=1.0``, return all "confident" estimated noise indices (recommended). + + frac_noise * number_of_mislabeled_examples_in_class_k. + + num_to_remove_per_class : array_like + An iterable of length K, the number of classes. + E.g. if K = 3, ``num_to_remove_per_class=[5, 0, 1]`` would return + the indices of the 5 most likely mislabeled examples in class 0, + and the most likely mislabeled example in class 2. + + Note + ---- + Only set this parameter if ``filter_by='prune_by_class'``. + You may use with ``filter_by='prune_by_noise_rate'``, but + if ``num_to_remove_per_class=k``, then either k-1, k, or k+1 + examples may be removed for any class due to rounding error. If you need + exactly 'k' examples removed from every class, you should use + ``filter_by='prune_by_class'``. + + min_examples_per_class : int, default=1 + Minimum number of examples per class to avoid flagging as label issues. + This is useful to avoid deleting too much data from one class + when pruning noisy examples in datasets with rare classes. + + confident_joint : np.ndarray, optional + An array of shape ``(K, K)`` representing the confident joint, the matrix used for identifying label issues, which + estimates a confident subset of the joint distribution of the noisy and true labels, ``P_{noisy label, true label}``. + Entry ``(j, k)`` in the matrix is the number of examples confidently counted into the pair of ``(noisy label=j, true label=k)`` classes. + The `confident_joint` can be computed using :py:func:`count.compute_confident_joint <cleanlab.count.compute_confident_joint>`. + If not provided, it is computed from the given (noisy) `labels` and `pred_probs`. + + n_jobs : optional + Number of processing threads used by multiprocessing. Default ``None`` + sets to the number of cores on your CPU (physical cores if you have ``psutil`` package installed, otherwise logical cores). + Set this to 1 to *disable* parallel processing (if its causing issues). + Windows users may see a speed-up with ``n_jobs=1``. + + verbose : optional + If ``True``, prints when multiprocessing happens. + + Returns + ------- + label_issues : np.ndarray + If `return_indices_ranked_by` left unspecified, returns a boolean **mask** for the entire dataset + where ``True`` represents a label issue and ``False`` represents an example that is + accurately labeled with high confidence. + If `return_indices_ranked_by` is specified, returns a shorter array of **indices** of examples identified to have + label issues (i.e. those indices where the mask would be ``True``), sorted by likelihood that the corresponding label is correct. + + Note + ---- + Obtain the *indices* of examples with label issues in your dataset by setting `return_indices_ranked_by`. + """ + if not rank_by_kwargs: + rank_by_kwargs = {} + + assert filter_by in [ + "low_normalized_margin", + "low_self_confidence", + "prune_by_noise_rate", + "prune_by_class", + "both", + "confident_learning", + "predicted_neq_given", + ] # TODO: change default to confident_learning ? + allow_one_class = False + if isinstance(labels, np.ndarray) or all(isinstance(lab, int) for lab in labels): + if set(labels) == {0}: # occurs with missing classes in multi-label settings + allow_one_class = True + assert_valid_inputs( + X=None, + y=labels, + pred_probs=pred_probs, + multi_label=multi_label, + allow_one_class=allow_one_class, + ) + + if filter_by in [ + "confident_learning", + "predicted_neq_given", + "low_normalized_margin", + "low_self_confidence", + ] and (frac_noise != 1.0 or num_to_remove_per_class is not None): + warn_str = ( + "frac_noise and num_to_remove_per_class parameters are only supported" + " for filter_by 'prune_by_noise_rate', 'prune_by_class', and 'both'. They " + "are not supported for methods 'confident_learning', 'predicted_neq_given', " + "'low_normalized_margin' or 'low_self_confidence'." + ) + warnings.warn(warn_str) + if (num_to_remove_per_class is not None) and ( + filter_by + in [ + "confident_learning", + "predicted_neq_given", + "low_normalized_margin", + "low_self_confidence", + ] + ): + # TODO - add support for these filters + raise ValueError( + "filter_by 'confident_learning', 'predicted_neq_given', 'low_normalized_margin' " + "or 'low_self_confidence' is not supported (yet) when setting 'num_to_remove_per_class'" + ) + if filter_by == "confident_learning" and isinstance(confident_joint, np.ndarray): + warn_str = ( + "The supplied `confident_joint` is ignored when `filter_by = 'confident_learning'`; confident joint will be " + "re-estimated from the given labels. To use your supplied `confident_joint`, please specify a different " + "`filter_by` value." + ) + warnings.warn(warn_str) + + K = get_num_classes( + labels=labels, pred_probs=pred_probs, label_matrix=confident_joint, multi_label=multi_label + ) + # Boolean set to true if dataset is large + big_dataset = K * len(labels) > 1e8 + + # Set-up number of multiprocessing threads + # On Windows/macOS, when multi_label is True, multiprocessing is much slower + # even for faily large input arrays, so we default to n_jobs=1 in this case + os_name = platform.system() + if n_jobs is None: + if multi_label and os_name != "Linux": + n_jobs = 1 + else: + if psutil_exists: + n_jobs = psutil.cpu_count(logical=False) # physical cores + elif big_dataset: + print( + "To default `n_jobs` to the number of physical cores for multiprocessing in find_label_issues(), please: `pip install psutil`.\n" + "Note: You can safely ignore this message. `n_jobs` only affects runtimes, results will be the same no matter its value.\n" + "Since psutil is not installed, `n_jobs` was set to the number of logical cores by default.\n" + "Disable this message by either installing psutil or specifying the `n_jobs` argument." + ) # pragma: no cover + if not n_jobs: + # either psutil does not exist + # or psutil can return None when physical cores cannot be determined + # switch to logical cores + n_jobs = multiprocessing.cpu_count() + else: + assert n_jobs >= 1 + + if multi_label: + if not isinstance(labels, list): + raise TypeError("`labels` must be list when `multi_label=True`.") + warnings.warn( + "The multi_label argument to filter.find_label_issues() is deprecated and will be removed in future versions. Please use `multilabel_classification.filter.find_label_issues()` instead.", + DeprecationWarning, + ) + return _find_label_issues_multilabel( + labels, + pred_probs, + return_indices_ranked_by, + rank_by_kwargs, + filter_by, + frac_noise, + num_to_remove_per_class, + min_examples_per_class, + confident_joint, + n_jobs, + verbose, + ) + + # Else this is standard multi-class classification + # Number of examples in each class of labels + label_counts = value_counts_fill_missing_classes(labels, K, multi_label=multi_label) + # Ensure labels are of type np.ndarray() + labels = np.asarray(labels) + if confident_joint is None or filter_by == "confident_learning": + from cleanlab.count import compute_confident_joint + + confident_joint, cl_error_indices = compute_confident_joint( + labels=labels, + pred_probs=pred_probs, + multi_label=multi_label, + return_indices_of_off_diagonals=True, + ) + + if filter_by in ["low_normalized_margin", "low_self_confidence"]: + # TODO: consider setting adjust_pred_probs to true based on benchmarks (or adding it kwargs, or ignoring and leaving as false by default) + scores = get_label_quality_scores( + labels, + pred_probs, + method=filter_by[4:], + adjust_pred_probs=False, + ) + num_errors = num_label_issues( + labels, pred_probs, multi_label=multi_label # TODO: Check usage of multilabel + ) + # Find label issues O(nlogn) solution (mapped to boolean mask later in the method) + cl_error_indices = np.argsort(scores)[:num_errors] + # The following is the O(n) fastest solution (check for one-off errors), but the problem is if lots of the scores are identical you will overcount, + # you can end up returning more or less and they aren't ranked in the boolean form so there's no way to drop the highest scores randomly + # boundary = np.partition(scores, num_errors)[num_errors] # O(n) solution + # label_issues_mask = scores <= boundary + + if filter_by in ["prune_by_noise_rate", "prune_by_class", "both"]: + # Create `prune_count_matrix` with the number of examples to remove in each class and + # leave at least min_examples_per_class examples per class. + # `prune_count_matrix` is transposed relative to the confident_joint. + prune_count_matrix = _keep_at_least_n_per_class( + prune_count_matrix=confident_joint.T, + n=min_examples_per_class, + frac_noise=frac_noise, + ) + + if num_to_remove_per_class is not None: + # Estimate joint probability distribution over label issues + psy = prune_count_matrix / np.sum(prune_count_matrix, axis=1) + noise_per_s = psy.sum(axis=1) - psy.diagonal() + # Calibrate labels.t. noise rates sum to num_to_remove_per_class + tmp = (psy.T * num_to_remove_per_class / noise_per_s).T + np.fill_diagonal(tmp, label_counts - num_to_remove_per_class) + prune_count_matrix = round_preserving_row_totals(tmp) + + # Prepare multiprocessing shared data + # On Linux, multiprocessing is started with fork, + # so data can be shared with global vairables + COW + # On Window/macOS, processes are started with spawn, + # so data will need to be pickled to the subprocesses through input args + chunksize = max(1, K // n_jobs) + if n_jobs == 1 or os_name == "Linux": + global pred_probs_by_class, prune_count_matrix_cols + pred_probs_by_class = {k: pred_probs[labels == k] for k in range(K)} + prune_count_matrix_cols = {k: prune_count_matrix[:, k] for k in range(K)} + args = [[k, min_examples_per_class, None] for k in range(K)] + else: + args = [ + [k, min_examples_per_class, [pred_probs[labels == k], prune_count_matrix[:, k]]] + for k in range(K) + ] + + # Perform Pruning with threshold probabilities from BFPRT algorithm in O(n) + # Operations are parallelized across all CPU processes + if filter_by == "prune_by_class" or filter_by == "both": + if n_jobs > 1: + with multiprocessing.Pool(n_jobs) as p: + if verbose: # pragma: no cover + print("Parallel processing label issues by class.") + sys.stdout.flush() + if big_dataset and tqdm_exists: + label_issues_masks_per_class = list( + tqdm.tqdm(p.imap(_prune_by_class, args, chunksize=chunksize), total=K) + ) + else: + label_issues_masks_per_class = p.map(_prune_by_class, args, chunksize=chunksize) + else: + label_issues_masks_per_class = [_prune_by_class(arg) for arg in args] + + label_issues_mask = np.zeros(len(labels), dtype=bool) + for k, mask in enumerate(label_issues_masks_per_class): + if len(mask) > 1: + label_issues_mask[labels == k] = mask + + if filter_by == "both": + label_issues_mask_by_class = label_issues_mask + + if filter_by == "prune_by_noise_rate" or filter_by == "both": + if n_jobs > 1: + with multiprocessing.Pool(n_jobs) as p: + if verbose: # pragma: no cover + print("Parallel processing label issues by noise rate.") + sys.stdout.flush() + if big_dataset and tqdm_exists: + label_issues_masks_per_class = list( + tqdm.tqdm(p.imap(_prune_by_count, args, chunksize=chunksize), total=K) + ) + else: + label_issues_masks_per_class = p.map(_prune_by_count, args, chunksize=chunksize) + else: + label_issues_masks_per_class = [_prune_by_count(arg) for arg in args] + + label_issues_mask = np.zeros(len(labels), dtype=bool) + for k, mask in enumerate(label_issues_masks_per_class): + if len(mask) > 1: + label_issues_mask[labels == k] = mask + + if filter_by == "both": + label_issues_mask = label_issues_mask & label_issues_mask_by_class + + if filter_by in ["confident_learning", "low_normalized_margin", "low_self_confidence"]: + label_issues_mask = np.zeros(len(labels), dtype=bool) + label_issues_mask[cl_error_indices] = True + + if filter_by == "predicted_neq_given": + label_issues_mask = find_predicted_neq_given(labels, pred_probs, multi_label=multi_label) + + if filter_by not in ["low_self_confidence", "low_normalized_margin"]: + # Remove label issues if model prediction is close to given label + mask = _reduce_issues(pred_probs=pred_probs, labels=labels) + label_issues_mask[mask] = False + + if verbose: + print("Number of label issues found: {}".format(sum(label_issues_mask))) + + # TODO: run count.num_label_issues() and adjust the total issues found here to match + if return_indices_ranked_by is not None: + er = order_label_issues( + label_issues_mask=label_issues_mask, + labels=labels, + pred_probs=pred_probs, + rank_by=return_indices_ranked_by, + rank_by_kwargs=rank_by_kwargs, + ) + return er + return label_issues_mask
+ + +def _find_label_issues_multilabel( + labels: list, + pred_probs: np.ndarray, + return_indices_ranked_by: Optional[str] = None, + rank_by_kwargs={}, + filter_by: str = "prune_by_noise_rate", + frac_noise: float = 1.0, + num_to_remove_per_class: Optional[List[int]] = None, + min_examples_per_class=1, + confident_joint: Optional[np.ndarray] = None, + n_jobs: Optional[int] = None, + verbose: bool = False, + low_memory: bool = False, +) -> np.ndarray: + """ + Finds label issues in multi-label classification data where each example can belong to more than one class. + This is done via a one-vs-rest reduction for each class and the results are subsequently aggregated across all classes. + Here `labels` must be formatted as an iterable of iterables, e.g. ``List[List[int]]``. + """ + if filter_by in ["low_normalized_margin", "low_self_confidence"] and not low_memory: + num_errors = sum( + find_label_issues( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + multi_label=True, + filter_by="confident_learning", + ) + ) + + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + label_quality_scores = ml_scorer.get_label_quality_scores( + labels=y_one, + pred_probs=pred_probs, + ) + + cl_error_indices = np.argsort(label_quality_scores)[:num_errors] + label_issues_mask = np.zeros(len(labels), dtype=bool) + label_issues_mask[cl_error_indices] = True + + if return_indices_ranked_by is not None: + label_quality_scores_issues = ml_scorer.get_label_quality_scores( + labels=y_one[label_issues_mask], + pred_probs=pred_probs[label_issues_mask], + method=ml_scorer.MultilabelScorer( + base_scorer=ml_scorer.ClassLabelScorer.from_str(return_indices_ranked_by), + ), + base_scorer_kwargs=rank_by_kwargs, + ) + return cl_error_indices[np.argsort(label_quality_scores_issues)] + + return label_issues_mask + + per_class_issues = find_multilabel_issues_per_class( + labels, + pred_probs, + return_indices_ranked_by, + rank_by_kwargs, + filter_by, + frac_noise, + num_to_remove_per_class, + min_examples_per_class, + confident_joint, + n_jobs, + verbose, + low_memory, + ) + if return_indices_ranked_by is None: + assert isinstance(per_class_issues, np.ndarray) + return per_class_issues.sum(axis=1) >= 1 + else: + label_issues_list, labels_list, pred_probs_list = per_class_issues + label_issues_idx = reduce(np.union1d, label_issues_list) + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + label_quality_scores = ml_scorer.get_label_quality_scores( + labels=y_one, + pred_probs=pred_probs, + method=ml_scorer.MultilabelScorer( + base_scorer=ml_scorer.ClassLabelScorer.from_str(return_indices_ranked_by), + ), + base_scorer_kwargs=rank_by_kwargs, + ) + label_quality_scores_issues = label_quality_scores[label_issues_idx] + return label_issues_idx[np.argsort(label_quality_scores_issues)] + + +def _keep_at_least_n_per_class( + prune_count_matrix: np.ndarray, n: int, *, frac_noise: float = 1.0 +) -> np.ndarray: + """Make sure every class has at least n examples after removing noise. + Functionally, increase each column, increases the diagonal term #(true_label=k,label=k) + of prune_count_matrix until it is at least n, distributing the amount + increased by subtracting uniformly from the rest of the terms in the + column. When frac_noise = 1.0, return all "confidently" estimated + noise indices, otherwise this returns frac_noise fraction of all + the noise counts, with diagonal terms adjusted to ensure column + totals are preserved. + + Parameters + ---------- + prune_count_matrix : np.ndarray of shape (K, K), K = number of classes + A counts of mislabeled examples in every class. For this function. + NOTE prune_count_matrix is transposed relative to confident_joint. + + n : int + Number of examples to make sure are left in each class. + + frac_noise : float, default=1.0 + Used to only return the "top" ``frac_noise * num_label_issues``. The choice of which "top" + label issues to return is dependent on the `filter_by` method used. It works by reducing the + size of the off-diagonals of the `prune_count_matrix` of given labels and true labels + proportionally by `frac_noise` prior to estimating label issues with each method. + When frac_noise=1.0, return all "confident" estimated noise indices (recommended). + + Returns + ------- + prune_count_matrix : np.ndarray of shape (K, K), K = number of classes + This the same as the confident_joint, but has been transposed and the counts are adjusted. + """ + + prune_count_matrix_diagonal = np.diagonal(prune_count_matrix) + + # Set diagonal terms less than n, to n. + new_diagonal = np.maximum(prune_count_matrix_diagonal, n) + + # Find how much diagonal terms were increased. + diff_per_col = new_diagonal - prune_count_matrix_diagonal + + # Count non-zero, non-diagonal items per column + # np.maximum(*, 1) makes this never 0 (we divide by this next) + num_noise_rates_per_col = np.maximum( + np.count_nonzero(prune_count_matrix, axis=0) - 1.0, + 1.0, + ) + + # Uniformly decrease non-zero noise rates by the same amount + # that the diagonal items were increased + new_mat = prune_count_matrix - diff_per_col / num_noise_rates_per_col + + # Originally zero noise rates will now be negative, fix them back to zero + new_mat[new_mat < 0] = 0 + + # Round diagonal terms (correctly labeled examples) + np.fill_diagonal(new_mat, new_diagonal) + + # Reduce (multiply) all noise rates (non-diagonal) by frac_noise and + # increase diagonal by the total amount reduced in each column + # to preserve column counts. + new_mat = _reduce_prune_counts(new_mat, frac_noise) + + # These are counts, so return a matrix of ints. + return round_preserving_row_totals(new_mat).astype(int) + + +def _reduce_prune_counts(prune_count_matrix: np.ndarray, frac_noise: float = 1.0) -> np.ndarray: + """Reduce (multiply) all prune counts (non-diagonal) by frac_noise and + increase diagonal by the total amount reduced in each column to + preserve column counts. + + Parameters + ---------- + prune_count_matrix : np.ndarray of shape (K, K), K = number of classes + A counts of mislabeled examples in every class. For this function, it + does not matter what the rows or columns are, but the diagonal terms + reflect the number of correctly labeled examples. + + frac_noise : float + Used to only return the "top" ``frac_noise * num_label_issues``. The choice of which "top" + label issues to return is dependent on the `filter_by` method used. It works by reducing the + size of the off-diagonals of the `prune_count_matrix` of given labels and true labels + proportionally by `frac_noise` prior to estimating label issues with each method. + When frac_noise=1.0, return all "confident" estimated noise indices (recommended). + """ + + new_mat = prune_count_matrix * frac_noise + np.fill_diagonal(new_mat, prune_count_matrix.diagonal()) + np.fill_diagonal( + new_mat, + prune_count_matrix.diagonal() + np.sum(prune_count_matrix - new_mat, axis=0), + ) + + # These are counts, so return a matrix of ints. + return new_mat.astype(int) + + +
[docs]def find_predicted_neq_given( + labels: LabelLike, pred_probs: np.ndarray, *, multi_label: bool = False +) -> np.ndarray: + """A simple baseline approach that considers ``argmax(pred_probs) != labels`` as the examples with label issues. + + Parameters + ---------- + labels : np.ndarray or list + Labels in the same format expected by the `~cleanlab.filter.find_label_issues` function. + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.filter.find_label_issues` function. + + multi_label : bool, optional + Whether each example may have multiple labels or not (see documentation for the `~cleanlab.filter.find_label_issues` function). + + Returns + ------- + label_issues_mask : np.ndarray + A boolean mask for the entire dataset where ``True`` represents a + label issue and ``False`` represents an example that is accurately + labeled with high confidence. + """ + + assert_valid_inputs(X=None, y=labels, pred_probs=pred_probs, multi_label=multi_label) + if multi_label: + if not isinstance(labels, list): + raise TypeError("`labels` must be list when `multi_label=True`.") + else: + return _find_predicted_neq_given_multilabel(labels=labels, pred_probs=pred_probs) + else: + return np.argmax(pred_probs, axis=1) != np.asarray(labels)
+ + +def _find_predicted_neq_given_multilabel(labels: list, pred_probs: np.ndarray) -> np.ndarray: + """ + + Parameters + ---------- + labels : list + List of noisy labels for multi-label classification where each example can belong to multiple classes + (e.g. ``labels = [[1,2],[1],[0],[],...]`` indicates the first example in dataset belongs to both class 1 and class 2). + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.filter.find_label_issues` function. + + Returns + ------- + label_issues_mask : np.ndarray + A boolean mask for the entire dataset where ``True`` represents a + label issue and ``False`` represents an example that is accurately + labeled with high confidence. + + """ + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + pred_neq: np.ndarray = np.zeros(y_one.shape).astype(bool) + for class_num, (label, pred_prob_for_class) in enumerate(zip(y_one.T, pred_probs.T)): + pred_probs_binary = stack_complement(pred_prob_for_class) + pred_neq[:, class_num] = find_predicted_neq_given( + labels=label, pred_probs=pred_probs_binary + ) + return pred_neq.sum(axis=1) >= 1 + + +
[docs]def find_label_issues_using_argmax_confusion_matrix( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + calibrate: bool = True, + filter_by: str = "prune_by_noise_rate", +) -> np.ndarray: + """A baseline approach that uses the confusion matrix + of ``argmax(pred_probs)`` and labels as the confident joint and then uses cleanlab + (confident learning) to find the label issues using this matrix. + + The only difference between this and `~cleanlab.filter.find_label_issues` is that it uses the confusion matrix + based on the argmax and given label instead of using the confident joint + from :py:func:`count.compute_confident_joint + <cleanlab.count.compute_confident_joint>`. + + Parameters + ---------- + labels : np.ndarray + An array of shape ``(N,)`` of noisy labels, i.e. some labels may be erroneous. + Elements must be in the set 0, 1, ..., K-1, where K is the number of classes. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to + class 0, 1, ..., K-1. `pred_probs` should have been computed using 3 (or + higher) fold cross-validation. + + calibrate : bool, default=True + Set to ``True`` to calibrate the confusion matrix created by ``pred != given labels``. + This calibration adjusts the confusion matrix / confident joint so that the + prior (given noisy labels) is correct based on the original labels. + + filter_by : str, default='prune_by_noise_rate' + See `filter_by` argument of `~cleanlab.filter.find_label_issues`. + + Returns + ------- + label_issues_mask : np.ndarray + A boolean mask for the entire dataset where ``True`` represents a + label issue and ``False`` represents an example that is accurately + labeled with high confidence. + + """ + + assert_valid_inputs(X=None, y=labels, pred_probs=pred_probs, multi_label=False) + confident_joint = confusion_matrix(np.argmax(pred_probs, axis=1), labels).T + if calibrate: + confident_joint = calibrate_confident_joint(confident_joint, labels) + return find_label_issues( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + filter_by=filter_by, + )
+ + +# Multiprocessing helper functions: + +mp_params: Dict[str, Any] = {} # Globals to be shared across threads in multiprocessing + + +def _to_np_array( + mp_arr: bytearray, dtype="int32", shape: Optional[Tuple[int, int]] = None +) -> np.ndarray: # pragma: no cover + """multipropecessing Helper function to convert a multiprocessing + RawArray to a numpy array.""" + arr = np.frombuffer(mp_arr, dtype=dtype) + if shape is None: + return arr + return arr.reshape(shape) + + +def _init( + __labels, + __label_counts, + __prune_count_matrix, + __pcm_shape, + __pred_probs, + __pred_probs_shape, + __multi_label, + __min_examples_per_class, +): # pragma: no cover + """Shares memory objects across child processes. + ASSUMES none of these will be changed by child processes!""" + + mp_params["labels"] = __labels + mp_params["label_counts"] = __label_counts + mp_params["prune_count_matrix"] = __prune_count_matrix + mp_params["pcm_shape"] = __pcm_shape + mp_params["pred_probs"] = __pred_probs + mp_params["pred_probs_shape"] = __pred_probs_shape + mp_params["multi_label"] = __multi_label + mp_params["min_examples_per_class"] = __min_examples_per_class + + +def _get_shared_data() -> Any: # pragma: no cover + """multiprocessing helper function to extract numpy arrays from + shared RawArray types used to shared data across process.""" + + label_counts = _to_np_array(mp_params["label_counts"]) + prune_count_matrix = _to_np_array( + mp_arr=mp_params["prune_count_matrix"], + shape=mp_params["pcm_shape"], + ) + pred_probs = _to_np_array( + mp_arr=mp_params["pred_probs"], + dtype="float32", + shape=mp_params["pred_probs_shape"], + ) + min_examples_per_class = mp_params["min_examples_per_class"] + multi_label = mp_params["multi_label"] + labels = _to_np_array(mp_params["labels"]) # type: ignore + return ( + labels, + label_counts, + prune_count_matrix, + pred_probs, + multi_label, + min_examples_per_class, + ) + + +# TODO figure out what the types inside args are. +def _prune_by_class(args: list) -> np.ndarray: + """multiprocessing Helper function for find_label_issues() + that assumes globals and produces a mask for class k for each example by + removing the examples with *smallest probability* of + belonging to their given class label. + + Parameters + ---------- + k : int (between 0 and num classes - 1) + The class of interest.""" + + k, min_examples_per_class, arrays = args + if arrays is None: + pred_probs = pred_probs_by_class[k] + prune_count_matrix = prune_count_matrix_cols[k] + else: + pred_probs = arrays[0] + prune_count_matrix = arrays[1] + + label_counts = pred_probs.shape[0] + label_issues = np.zeros(label_counts, dtype=bool) + if label_counts > min_examples_per_class: # No prune if not at least min_examples_per_class + num_issues = label_counts - prune_count_matrix[k] + # Get return_indices_ranked_by of the smallest prob of class k for examples with noisy label k + # rank = np.partition(class_probs, num_issues)[num_issues] + if num_issues >= 1: + class_probs = pred_probs[:, k] + order = np.argsort(class_probs) + label_issues[order[:num_issues]] = True + return label_issues + + warnings.warn( + f"May not flag all label issues in class: {k}, it has too few examples (see argument: `min_examples_per_class`)" + ) + return label_issues + + +# TODO figure out what the types inside args are. +def _prune_by_count(args: list) -> np.ndarray: + """multiprocessing Helper function for find_label_issues() that assumes + globals and produces a mask for class k for each example by + removing the example with noisy label k having *largest margin*, + where + margin of example := prob of given label - max prob of non-given labels + + Parameters + ---------- + k : int (between 0 and num classes - 1) + The true_label class of interest.""" + + k, min_examples_per_class, arrays = args + if arrays is None: + pred_probs = pred_probs_by_class[k] + prune_count_matrix = prune_count_matrix_cols[k] + else: + pred_probs = arrays[0] + prune_count_matrix = arrays[1] + + label_counts = pred_probs.shape[0] + label_issues_mask = np.zeros(label_counts, dtype=bool) + if label_counts <= min_examples_per_class: + warnings.warn( + f"May not flag all label issues in class: {k}, it has too few examples (see `min_examples_per_class` argument)" + ) + return label_issues_mask + + K = pred_probs.shape[1] + if K < 1: + raise ValueError("Must have at least 1 class.") + for j in range(K): + num2prune = prune_count_matrix[j] + # Only prune for noise rates, not diagonal entries + if k != j and num2prune > 0: + # num2prune's largest p(true class k) - p(noisy class k) + # for x with true label j + margin = pred_probs[:, j] - pred_probs[:, k] + order = np.argsort(-margin) + label_issues_mask[order[:num2prune]] = True + return label_issues_mask + + +# TODO: decide if we want to keep this based on TODO above. If so move to utils. Add unit test for this. +def _multiclass_crossval_predict( + labels: list, pred_probs: np.ndarray +) -> np.ndarray: # pragma: no cover + """Returns a numpy 2D array of one-hot encoded + multiclass predictions. Each row in the array + provides the predictions for a particular example. + The boundary condition used to threshold predictions + is computed by maximizing the F1 ROC curve. + + Parameters + ---------- + labels : list of lists (length N) + These are multiclass labels. Each list in the list contains all the + labels for that example. + + pred_probs : np.ndarray (shape (N, K)) + P(label=k|x) is a matrix with K model-predicted probabilities. + Each row of this matrix corresponds to an example `x` and contains the model-predicted + probabilities that `x` belongs to each possible class. + The columns must be ordered such that these probabilities correspond to class 0,1,2,... + `pred_probs` should have been computed using 3 (or higher) fold cross-validation.""" + + from sklearn.metrics import f1_score + + boundaries = np.arange(0.05, 0.9, 0.05) + K = get_num_classes( + labels=labels, + pred_probs=pred_probs, + multi_label=True, + ) + labels_one_hot = int2onehot(labels, K) + f1s = [ + f1_score( + labels_one_hot, + (pred_probs > boundary).astype(np.uint8), + average="micro", + ) + for boundary in boundaries + ] + boundary = boundaries[np.argmax(f1s)] + pred = (pred_probs > boundary).astype(np.uint8) + return pred +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/label_quality_utils.html b/v2.6.5/_modules/cleanlab/internal/label_quality_utils.html new file mode 100644 index 000000000..b3b5c09fe --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/label_quality_utils.html @@ -0,0 +1,802 @@ + + + + + + + + + + + cleanlab.internal.label_quality_utils - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.label_quality_utils

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""Helper methods used internally for computing label quality scores."""
+import warnings
+import numpy as np
+from typing import Optional
+from scipy.special import xlogy
+
+from cleanlab.count import get_confident_thresholds
+
+
+def _subtract_confident_thresholds(
+    labels: Optional[np.ndarray],
+    pred_probs: np.ndarray,
+    multi_label: bool = False,
+    confident_thresholds: Optional[np.ndarray] = None,
+) -> np.ndarray:
+    """
+    Return adjusted predicted probabilities by subtracting the class confident thresholds and renormalizing.
+
+    The confident class threshold for a class j is the expected (average) "self-confidence" for class j.
+    The purpose of this adjustment is to handle class imbalance.
+
+    Parameters
+    ----------
+    labels : np.ndarray
+      Labels in the same format expected by the `cleanlab.count.get_confident_thresholds()` method.
+      If labels is None, confident_thresholds needs to be passed in as it will not be calculated.
+    pred_probs : np.ndarray (shape (N, K))
+      Predicted-probabilities in the same format expected by the `cleanlab.count.get_confident_thresholds()` method.
+    confident_thresholds : np.ndarray (shape (K,))
+      Pre-calculated confident thresholds. If passed in, function will subtract these thresholds instead of calculating
+      confident_thresholds from the given labels and pred_probs.
+    multi_label : bool, optional
+      If ``True``, labels should be an iterable (e.g. list) of iterables, containing a
+      list of labels for each example, instead of just a single label.
+      The multi-label setting supports classification tasks where an example has 1 or more labels.
+      Example of a multi-labeled `labels` input: ``[[0,1], [1], [0,2], [0,1,2], [0], [1], ...]``.
+      The major difference in how this is calibrated versus single-label is that
+      the total number of errors considered is based on the number of labels,
+      not the number of examples. So, the calibrated `confident_joint` will sum
+      to the number of total labels.
+
+    Returns
+    -------
+    pred_probs_adj : np.ndarray (float)
+      Adjusted pred_probs.
+    """
+    # Get expected (average) self-confidence for each class
+    # TODO: Test this for multi-label
+    if confident_thresholds is None:
+        if labels is None:
+            raise ValueError(
+                "Cannot calculate confident_thresholds without labels. Pass in either labels or already calculated "
+                "confident_thresholds parameter. "
+            )
+        confident_thresholds = get_confident_thresholds(labels, pred_probs, multi_label=multi_label)
+
+    # Subtract the class confident thresholds
+    pred_probs_adj = pred_probs - confident_thresholds
+
+    # Re-normalize by shifting data to take care of negative values from the subtraction
+    pred_probs_adj += confident_thresholds.max()
+    pred_probs_adj /= pred_probs_adj.sum(axis=1, keepdims=True)
+
+    return pred_probs_adj
+
+
+
[docs]def get_normalized_entropy( + pred_probs: np.ndarray, min_allowed_prob: Optional[float] = None +) -> np.ndarray: + """Return the normalized entropy of pred_probs. + + Normalized entropy is between 0 and 1. Higher values of entropy indicate higher uncertainty in the model's prediction of the correct label. + + Read more about normalized entropy `on Wikipedia <https://en.wikipedia.org/wiki/Entropy_(information_theory)>`_. + + Normalized entropy is used in active learning for uncertainty sampling: https://towardsdatascience.com/uncertainty-sampling-cheatsheet-ec57bc067c0b + + Unlike label-quality scores, entropy only depends on the model's predictions, not the given label. + + Parameters + ---------- + pred_probs : np.ndarray (shape (N, K)) + Each row of this matrix corresponds to an example x and contains the model-predicted + probabilities that x belongs to each possible class: P(label=k|x) + + min_allowed_prob : float, default: None, deprecated + Minimum allowed probability value. If not `None` (default), + entries of `pred_probs` below this value will be clipped to this value. + + .. deprecated:: 2.5.0 + This keyword is deprecated and should be left to the default. + The entropy is well-behaved even if `pred_probs` contains zeros, + clipping is unnecessary and (slightly) changes the results. + + Returns + ------- + entropy : np.ndarray (shape (N, )) + Each element is the normalized entropy of the corresponding row of ``pred_probs``. + + Raises + ------ + ValueError + An error is raised if any of the probabilities is not in the interval [0, 1]. + """ + if np.any(pred_probs < 0) or np.any(pred_probs > 1): + raise ValueError("All probabilities are required to be in the interval [0, 1].") + num_classes = pred_probs.shape[1] + + if min_allowed_prob is not None: + warnings.warn( + "Using `min_allowed_prob` is not necessary anymore and will be removed.", + DeprecationWarning, + ) + pred_probs = np.clip(pred_probs, a_min=min_allowed_prob, a_max=None) + + # Note that dividing by log(num_classes) changes the base of the log which rescales entropy to 0-1 range + return -np.sum(xlogy(pred_probs, pred_probs), axis=1) / np.log(num_classes)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/latent_algebra.html b/v2.6.5/_modules/cleanlab/internal/latent_algebra.html new file mode 100644 index 000000000..868b2bbd6 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/latent_algebra.html @@ -0,0 +1,998 @@ + + + + + + + + + + + cleanlab.internal.latent_algebra - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.latent_algebra

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+
+"""
+Contains mathematical functions relating the latent terms,
+``P(given_label)``, ``P(given_label | true_label)``, ``P(true_label | given_label)``, ``P(true_label)``, etc. together.
+For every function here, if the inputs are exact, the output is guaranteed to be exact.
+Every function herein is the computational equivalent of a mathematical equation having a closed, exact form.
+If the inputs are inexact, the error will of course propagate.
+Throughout `K` denotes the number of classes in the classification task.
+"""
+
+import warnings
+import numpy as np
+from typing import Tuple
+
+from cleanlab.internal.util import value_counts, clip_values, clip_noise_rates
+from cleanlab.internal.constants import TINY_VALUE, CLIPPING_LOWER_BOUND
+
+
+
[docs]def compute_ps_py_inv_noise_matrix( + labels, noise_matrix +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Compute ``ps := P(labels=k), py := P(true_labels=k)``, and the inverse noise matrix. + + Parameters + ---------- + labels : np.ndarray + A discrete vector of noisy labels, i.e. some labels may be erroneous. + *Format requirements*: for dataset with `K` classes, labels must be in ``{0,1,...,K-1}``. + + noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1.""" + + ps = value_counts(labels) / float(len(labels)) # p(labels=k) + py, inverse_noise_matrix = compute_py_inv_noise_matrix(ps, noise_matrix) + return ps, py, inverse_noise_matrix
+ + +
[docs]def compute_py_inv_noise_matrix(ps, noise_matrix) -> Tuple[np.ndarray, np.ndarray]: + """Compute py := P(true_label=k), and the inverse noise matrix. + + Parameters + ---------- + ps : np.ndarray + Array of shape ``(K, )`` or ``(1, K)``. + The fraction (prior probability) of each observed, NOISY class ``P(labels = k)``. + + noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1.""" + + # 'py' is p(true_labels=k) = noise_matrix^(-1) * p(labels=k) + # because in *vector computation*: P(label=k|true_label=k) * p(true_label=k) = P(label=k) + # The pseudo-inverse is used when noise_matrix is not invertible. + py = np.linalg.inv(noise_matrix).dot(ps) + + # No class should have probability 0, so we use .000001 + # Make sure valid probabilities that sum to 1.0 + py = clip_values(py, low=CLIPPING_LOWER_BOUND, high=1.0, new_sum=1.0) + + # All the work is done in this function (below) + return py, compute_inv_noise_matrix(py=py, noise_matrix=noise_matrix, ps=ps)
+ + +
[docs]def compute_inv_noise_matrix(py, noise_matrix, *, ps=None) -> np.ndarray: + """Compute the inverse noise matrix if py := P(true_label=k) is given. + + Parameters + ---------- + py : np.ndarray (shape (K, 1)) + The fraction (prior probability) of each TRUE class label, P(true_label = k) + + noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1. + + ps : np.ndarray + Array of shape ``(K, 1)`` containing the fraction (prior probability) of each NOISY given label, ``P(labels = k)``. + `ps` is easily computable from py and should only be provided if it has already been precomputed, to increase code efficiency. + + Examples + -------- + For loop based implementation: + + .. code:: python + + # Number of classes + K = len(py) + + # 'ps' is p(labels=k) = noise_matrix * p(true_labels=k) + # because in *vector computation*: P(label=k|true_label=k) * p(true_label=k) = P(label=k) + if ps is None: + ps = noise_matrix.dot(py) + + # Estimate the (K, K) inverse noise matrix P(true_label = k_y | label = k_s) + inverse_noise_matrix = np.empty(shape=(K,K)) + # k_s is the class value k of noisy label `label == k` + for k_s in range(K): + # k_y is the (guessed) class value k of true label y + for k_y in range(K): + # P(true_label|label) = P(label|y) * P(true_label) / P(labels) + inverse_noise_matrix[k_y][k_s] = noise_matrix[k_s][k_y] * \ + py[k_y] / ps[k_s] + """ + + joint = noise_matrix * py + ps = joint.sum(axis=1) if ps is None else ps + inverse_noise_matrix = joint.T / np.clip(ps, a_min=TINY_VALUE, a_max=None) + + # Clip inverse noise rates P(true_label=k_s|true_label=k_y) into proper range [0,1) + return clip_noise_rates(inverse_noise_matrix)
+ + +
[docs]def compute_noise_matrix_from_inverse(ps, inverse_noise_matrix, *, py=None) -> np.ndarray: + """Compute the noise matrix ``P(label=k_s|true_label=k_y)``. + + Parameters + ---------- + py : np.ndarray + Array of shape ``(K, 1)`` containing the fraction (prior probability) of each TRUE class label, ``P(true_label = k)``. + + inverse_noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form P(true_label=k_y|label=k_s) representing + the estimated fraction observed examples in each class k_s, that are + mislabeled examples from every other class k_y. If None, the + inverse_noise_matrix will be computed from pred_probs and labels. + Assumes columns of inverse_noise_matrix sum to 1. + + ps : np.ndarray + Array of shape ``(K, 1)`` containing the fraction (prior probability) of each observed NOISY label, P(labels = k). + `ps` is easily computable from `py` and should only be provided if it has already been precomputed, to increase code efficiency. + + Returns + ------- + noise_matrix : np.ndarray + Array of shape ``(K, K)``, where `K` = number of classes, whose columns sum to 1. + A conditional probability matrix of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + + Examples + -------- + For loop based implementation: + + .. code:: python + + # Number of classes labels + K = len(ps) + + # 'py' is p(true_label=k) = inverse_noise_matrix * p(true_label=k) + # because in *vector computation*: P(true_label=k|label=k) * p(label=k) = P(true_label=k) + if py is None: + py = inverse_noise_matrix.dot(ps) + + # Estimate the (K, K) noise matrix P(labels = k_s | true_labels = k_y) + noise_matrix = np.empty(shape=(K,K)) + # k_s is the class value k of noisy label `labels == k` + for k_s in range(K): + # k_y is the (guessed) class value k of true label y + for k_y in range(K): + # P(labels|y) = P(true_label|labels) * P(labels) / P(true_label) + noise_matrix[k_s][k_y] = inverse_noise_matrix[k_y][k_s] * \ + ps[k_s] / py[k_y] + + """ + + joint = (inverse_noise_matrix * ps).T + py = joint.sum(axis=0) if py is None else py + noise_matrix = joint / np.clip(py, a_min=TINY_VALUE, a_max=None) + + # Clip inverse noise rates P(true_label=k_y|true_label=k_s) into proper range [0,1) + return clip_noise_rates(noise_matrix)
+ + +
[docs]def compute_py( + ps, noise_matrix, inverse_noise_matrix, *, py_method="cnt", true_labels_class_counts=None +) -> np.ndarray: + """Compute ``py := P(true_labels=k)`` from ``ps := P(labels=k)``, `noise_matrix`, and + `inverse_noise_matrix`. + + This method is ** ROBUST ** when ``py_method = 'cnt'`` + It may work well even when the noise matrices are estimated + poorly by using the diagonals of the matrices + instead of all the probabilities in the entire matrix. + + Parameters + ---------- + ps : np.ndarray + Array of shape ``(K, )`` or ``(1, K)`` containing the fraction (prior probability) of each observed, noisy label, P(labels = k) + + noise_matrix : np.ndarray + A conditional probability matrix ( of shape ``(K, K)``) of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1. + + inverse_noise_matrix : np.ndarray of shape (K, K), K = number of classes + A conditional probability matrix ( of shape ``(K, K)``) of the form ``P(true_label=k_y|label=k_s)`` representing + the estimated fraction observed examples in each class `k_s`, that are + mislabeled examples from every other class `k_y`. If ``None``, the + inverse_noise_matrix will be computed from `pred_probs` and `labels`. + Assumes columns of `inverse_noise_matrix` sum to 1. + + py_method : str (Options: ["cnt", "eqn", "marginal", "marginal_ps"]) + How to compute the latent prior ``p(true_label=k)``. Default is "cnt" as it often + works well even when the noise matrices are estimated poorly by using + the matrix diagonals instead of all the probabilities. + + true_labels_class_counts : np.ndarray + Array of shape ``(K, )`` or ``(1, K)`` containing the marginal counts of the confident joint + (like ``cj.sum(axis = 0)``). + + Returns + ------- + py : np.ndarray + Array of shape ``(K, )`` or ``(1, K)``. + The fraction (prior probability) of each TRUE class label, ``P(true_label = k)``.""" + + if len(np.shape(ps)) > 2 or (len(np.shape(ps)) == 2 and np.shape(ps)[0] != 1): + w = "Input parameter np.ndarray ps has shape " + str(np.shape(ps)) + w += ", but shape should be (K, ) or (1, K)" + warnings.warn(w) + + if py_method == "marginal" and true_labels_class_counts is None: + msg = ( + 'py_method == "marginal" requires true_labels_class_counts, ' + "but true_labels_class_counts is None. " + ) + msg += " Provide parameter true_labels_class_counts." + raise ValueError(msg) + + if py_method == "cnt": + # Computing py this way avoids dividing by zero noise rates. + # More robust bc error est_p(true_label|labels) / est_p(labels|y) ~ p(true_label|labels) / p(labels|y) + py = ( + inverse_noise_matrix.diagonal() + / np.clip(noise_matrix.diagonal(), a_min=TINY_VALUE, a_max=None) + * ps + ) + # Equivalently: py = (true_labels_class_counts / labels_class_counts) * ps + elif py_method == "eqn": + py = np.linalg.inv(noise_matrix).dot(ps) + elif py_method == "marginal": + py = true_labels_class_counts / np.clip( + float(sum(true_labels_class_counts)), a_min=TINY_VALUE, a_max=None + ) + elif py_method == "marginal_ps": + py = np.dot(inverse_noise_matrix, ps) + else: + err = "py_method {}".format(py_method) + err += " should be in [cnt, eqn, marginal, marginal_ps]" + raise ValueError(err) + + # Clip py (0,1), s.t. no class should have prob 0, hence 1e-6 + py = clip_values(py, low=CLIPPING_LOWER_BOUND, high=1.0, new_sum=1.0) + return py
+ + +
[docs]def compute_pyx(pred_probs, noise_matrix, inverse_noise_matrix): + """Compute ``pyx := P(true_label=k|x)`` from ``pred_probs := P(label=k|x)``, `noise_matrix` and + `inverse_noise_matrix`. + + This method is ROBUST - meaning it works well even when the + noise matrices are estimated poorly by only using the diagonals of the + matrices which tend to be easy to estimate correctly. + + Parameters + ---------- + pred_probs : np.ndarray + ``P(label=k|x)`` is a ``(N x K)`` matrix with K model-predicted probabilities. + Each row of this matrix corresponds to an example `x` and contains the model-predicted + probabilities that `x` belongs to each possible class. + The columns must be ordered such that these probabilities correspond to class 0,1,2,... + `pred_probs` should have been computed using 3 (or higher) fold cross-validation. + + noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form ``P(label=k_s|true_label=k_y)`` containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of `noise_matrix` sum to 1. + + inverse_noise_matrix : np.ndarray + A conditional probability matrix (of shape ``(K, K)``) of the form ``P(true_label=k_y|label=k_s)`` representing + the estimated fraction observed examples in each class `k_s`, that are + mislabeled examples from every other class `k_y`. If None, the + inverse_noise_matrix will be computed from `pred_probs` and `labels`. + Assumes columns of `inverse_noise_matrix` sum to 1. + + Returns + ------- + pyx : np.ndarray + ``P(true_label=k|x)`` is a ``(N, K)`` matrix of model-predicted probabilities. + Each row of this matrix corresponds to an example `x` and contains the model-predicted + probabilities that `x` belongs to each possible class. + The columns must be ordered such that these probabilities correspond to class 0,1,2,... + `pred_probs` should have been computed using 3 (or higher) fold cross-validation.""" + + if len(np.shape(pred_probs)) != 2: + raise ValueError( + "Input parameter np.ndarray 'pred_probs' has shape " + + str(np.shape(pred_probs)) + + ", but shape should be (N, K)" + ) + + pyx = ( + pred_probs + * inverse_noise_matrix.diagonal() + / np.clip(noise_matrix.diagonal(), a_min=TINY_VALUE, a_max=None) + ) + # Make sure valid probabilities that sum to 1.0 + return np.apply_along_axis( + func1d=clip_values, axis=1, arr=pyx, **{"low": 0.0, "high": 1.0, "new_sum": 1.0} + )
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/multiannotator_utils.html b/v2.6.5/_modules/cleanlab/internal/multiannotator_utils.html new file mode 100644 index 000000000..a54f994b8 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/multiannotator_utils.html @@ -0,0 +1,1037 @@ + + + + + + + + + + + cleanlab.internal.multiannotator_utils - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.multiannotator_utils

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Helper methods used internally in cleanlab.multiannotator
+"""
+
+import warnings
+from typing import Optional, Tuple
+
+import numpy as np
+import pandas as pd
+
+from cleanlab.internal.numerics import softmax
+from cleanlab.internal.util import get_num_classes, value_counts
+from cleanlab.internal.validation import assert_valid_class_labels
+from cleanlab.typing import LabelLike
+
+SMALL_CONST = 1e-30
+
+
+
[docs]def assert_valid_inputs_multiannotator( + labels_multiannotator: np.ndarray, + pred_probs: Optional[np.ndarray] = None, + ensemble: bool = False, + allow_single_label: bool = False, + annotator_ids: Optional[pd.Index] = None, +) -> None: + """Validate format of multi-annotator labels""" + # Check that labels_multiannotator is a 2D array + if labels_multiannotator.ndim != 2: + raise ValueError( + "labels_multiannotator must be a 2D array or dataframe, " + "each row represents an example and each column represents an annotator." + ) + + # Raise error if labels are not formatted properly + if any([isinstance(label, str) for label in labels_multiannotator.ravel()]): + raise ValueError( + "Labels cannot be strings, they must be zero-indexed integers corresponding to class indices." + ) + + # Raise error if labels_multiannotator has NaN rows + nan_row_mask = np.isnan(labels_multiannotator).all(axis=1) + if nan_row_mask.any(): + nan_rows = list(np.where(nan_row_mask)[0]) + raise ValueError( + "labels_multiannotator cannot have rows with all NaN, each example must have at least one label.\n" + f"Examples {nan_rows} do not have any labels." + ) + + # Raise error if labels_multiannotator has NaN columns + nan_col_mask = np.isnan(labels_multiannotator).all(axis=0) + if nan_col_mask.any(): + if annotator_ids is not None: + nan_columns = list(annotator_ids[np.where(nan_col_mask)[0]]) + else: + nan_columns = list(np.where(nan_col_mask)[0]) + raise ValueError( + "labels_multiannotator cannot have columns with all NaN, each annotator must annotator at least one example.\n" + f"Annotators {nan_columns} did not label any examples." + ) + + if not allow_single_label: + # Raise error if labels_multiannotator has <= 1 column + if labels_multiannotator.shape[1] <= 1: + raise ValueError( + "labels_multiannotator must have more than one column.\n" + "If there is only one annotator, use cleanlab.rank.get_label_quality_scores instead" + ) + + # Raise error if labels_multiannotator only has 1 label per example + if (np.sum(~np.isnan(labels_multiannotator), axis=1) == 1).all(): + raise ValueError( + "Each example only has one label, collapse the labels into a 1-D array and use " + "cleanlab.rank.get_label_quality_scores instead" + ) + + # Raise warning if no examples with 2 or more annotators agree + # TODO: might shift this later in the code to avoid extra compute + has_agreement = np.zeros(labels_multiannotator.shape[0], dtype=bool) + for i in np.unique(labels_multiannotator): + has_agreement |= (labels_multiannotator == i).sum(axis=1) > 1 + if not has_agreement.any(): + warnings.warn("Annotators do not agree on any example. Check input data.") + + # Check labels + all_labels_flatten = labels_multiannotator.ravel() + all_labels_flatten = all_labels_flatten[~np.isnan(all_labels_flatten)] + assert_valid_class_labels(all_labels_flatten, allow_one_class=True) + + # Raise error if number of classes in labels_multiannoator does not match number of classes in pred_probs + if pred_probs is not None: + if not isinstance(pred_probs, np.ndarray): + raise TypeError("pred_probs must be a numpy array.") + + if ensemble: + if pred_probs.ndim != 3: + error_message = "pred_probs must be a 3d array." + if pred_probs.ndim == 2: + error_message += " If you have a 2d pred_probs array, use the non-ensemble version of this function." + raise ValueError(error_message) + + if pred_probs.shape[1] != len(labels_multiannotator): + raise ValueError("each pred_probs and labels_multiannotator must have same length.") + + num_classes = pred_probs.shape[2] + else: + if pred_probs.ndim != 2: + error_message = "pred_probs must be a 2d array." + if pred_probs.ndim == 3: + error_message += " If you have a 3d pred_probs array, use the ensemble version of this function." + raise ValueError(error_message) + + if len(pred_probs) != len(labels_multiannotator): + raise ValueError("pred_probs and labels_multiannotator must have same length.") + + num_classes = pred_probs.shape[1] + + highest_class = np.nanmax(labels_multiannotator) + 1 + + # this allows for missing labels, but not missing columns in pred_probs + if num_classes < highest_class: + raise ValueError( + f"pred_probs must have at least {int(highest_class)} columns based on the largest class label " + "which appears in labels_multiannotator. Perhaps some rarely-annotated classes were lost while " + "establishing consensus labels used to train your classifier." + )
+ + +
[docs]def assert_valid_pred_probs( + pred_probs: Optional[np.ndarray] = None, + pred_probs_unlabeled: Optional[np.ndarray] = None, + ensemble: bool = False, +): + """Validate format of pred_probs for multiannotator active learning functions""" + if pred_probs is None and pred_probs_unlabeled is None: + raise ValueError( + "pred_probs and pred_probs_unlabeled cannot both be None, specify at least one of the two." + ) + + if ensemble: + if pred_probs is not None: + if not isinstance(pred_probs, np.ndarray): + raise TypeError("pred_probs must be a numpy array.") + if pred_probs.ndim != 3: + error_message = "pred_probs must be a 3d array." + if pred_probs.ndim == 2: # pragma: no cover + error_message += " If you have a 2d pred_probs array (ie. only one predictor), use the non-ensemble version of this function." + raise ValueError(error_message) + + if pred_probs_unlabeled is not None: + if not isinstance(pred_probs_unlabeled, np.ndarray): + raise TypeError("pred_probs_unlabeled must be a numpy array.") + if pred_probs_unlabeled.ndim != 3: + error_message = "pred_probs_unlabeled must be a 3d array." + if pred_probs_unlabeled.ndim == 2: # pragma: no cover + error_message += " If you have a 2d pred_probs_unlabeled array, use the non-ensemble version of this function." + raise ValueError(error_message) + + if pred_probs is not None and pred_probs_unlabeled is not None: + if pred_probs.shape[2] != pred_probs_unlabeled.shape[2]: + raise ValueError( + "pred_probs and pred_probs_unlabeled must have the same number of classes" + ) + + else: + if pred_probs is not None: + if not isinstance(pred_probs, np.ndarray): + raise TypeError("pred_probs must be a numpy array.") + if pred_probs.ndim != 2: + error_message = "pred_probs must be a 2d array." + if pred_probs.ndim == 3: # pragma: no cover + error_message += " If you have a 3d pred_probs array, use the ensemble version of this function." + raise ValueError(error_message) + + if pred_probs_unlabeled is not None: + if not isinstance(pred_probs_unlabeled, np.ndarray): + raise TypeError("pred_probs_unlabeled must be a numpy array.") + if pred_probs_unlabeled.ndim != 2: + error_message = "pred_probs_unlabeled must be a 2d array." + if pred_probs_unlabeled.ndim == 3: # pragma: no cover + error_message += " If you have a 3d pred_probs_unlabeled array, use the non-ensemble version of this function." + raise ValueError(error_message) + + if pred_probs is not None and pred_probs_unlabeled is not None: + if pred_probs.shape[1] != pred_probs_unlabeled.shape[1]: + raise ValueError( + "pred_probs and pred_probs_unlabeled must have the same number of classes" + )
+ + +
[docs]def format_multiannotator_labels(labels: LabelLike) -> Tuple[pd.DataFrame, dict]: + """Takes an array of labels and formats it such that labels are in the set ``0, 1, ..., K-1``, + where ``K`` is the number of classes. The labels are assigned based on lexicographic order. + + Returns + ------- + formatted_labels + Returns pd.DataFrame of shape ``(N,M)``. The return labels will be properly formatted and can be passed to + cleanlab.multiannotator functions. + + mapping + A dictionary showing the mapping of new to old labels, such that ``mapping[k]`` returns the name of the k-th class. + """ + if isinstance(labels, pd.DataFrame): + np_labels = labels.values + elif isinstance(labels, np.ndarray): + np_labels = labels + else: + raise TypeError("labels must be 2D numpy array or pandas DataFrame") + + unique_labels = pd.unique(np_labels.ravel()) + + try: + unique_labels = unique_labels[~np.isnan(unique_labels)] + unique_labels.sort() + except TypeError: # np.unique / np.sort cannot handle string values or pd.NA types + nan_mask = np.array([(l is np.NaN) or (l is pd.NA) or (l == "nan") for l in unique_labels]) + unique_labels = unique_labels[~nan_mask] + unique_labels.sort() + + # convert float labels (that arose because np.nan is float type) to int + if unique_labels.dtype == "float": + unique_labels = unique_labels.astype("int") + + label_map = {label: i for i, label in enumerate(unique_labels)} + inverse_map = {i: label for label, i in label_map.items()} + + if isinstance(labels, np.ndarray): + labels = pd.DataFrame(labels) + + formatted_labels = labels.replace(label_map) + + return formatted_labels, inverse_map
+ + +
[docs]def check_consensus_label_classes( + labels_multiannotator: np.ndarray, + consensus_label: np.ndarray, + consensus_method: str, +) -> None: + """Check if any classes no longer appear in the set of consensus labels (established using the consensus_method stated)""" + unique_ma_labels = np.unique(labels_multiannotator) + unique_ma_labels = unique_ma_labels[~np.isnan(unique_ma_labels)] + labels_set_difference = set(unique_ma_labels) - set(consensus_label) + + if len(labels_set_difference) > 0: + print( + "CAUTION: Number of unique classes has been reduced from the original data when establishing consensus labels " + f"using consensus method '{consensus_method}', likely due to some classes being rarely annotated. " + "If training a classifier on these consensus labels, it will never see any of the omitted classes unless you " + "manually replace some of the consensus labels.\n" + f"Classes in the original data but not in consensus labels: {list(map(int, labels_set_difference))}" + )
+ + +
[docs]def compute_soft_cross_entropy( + labels_multiannotator: np.ndarray, + pred_probs: np.ndarray, +) -> float: + """Compute soft cross entropy between the annotators' empirical label distribution and model pred_probs""" + num_classes = get_num_classes(pred_probs=pred_probs) + + empirical_label_distribution = np.full((len(labels_multiannotator), num_classes), np.NaN) + for i, labels in enumerate(labels_multiannotator): + labels_subset = labels[~np.isnan(labels)] + empirical_label_distribution[i, :] = value_counts( + labels_subset, num_classes=num_classes + ) / len(labels_subset) + + clipped_pred_probs = np.clip(pred_probs, a_min=SMALL_CONST, a_max=None) + soft_cross_entropy = -np.sum( + empirical_label_distribution * np.log(clipped_pred_probs), axis=1 + ) / np.log(num_classes) + + return soft_cross_entropy
+ + +
[docs]def find_best_temp_scaler( + labels_multiannotator: np.ndarray, + pred_probs: np.ndarray, + coarse_search_range: list = [0.1, 0.2, 0.5, 0.8, 1, 2, 3, 5, 8], + fine_search_size: int = 4, +) -> float: + """Find the best temperature scaling factor that minimizes the soft cross entropy between the annotators' empirical label distribution + and model pred_probs""" + + soft_cross_entropy_coarse = np.full(len(coarse_search_range), np.NaN) + log_pred_probs = np.log( + pred_probs, where=pred_probs > 0, out=np.full(pred_probs.shape, -np.inf) + ) + for i, curr_temp in enumerate(coarse_search_range): + scaled_pred_probs = softmax(log_pred_probs, temperature=curr_temp, axis=1, shift=False) + soft_cross_entropy_coarse[i] = np.mean( + compute_soft_cross_entropy(labels_multiannotator, scaled_pred_probs) + ) + + min_entropy_ind = np.argmin(soft_cross_entropy_coarse) + fine_search_range = _set_fine_search_range( + coarse_search_range, fine_search_size, min_entropy_ind + ) + soft_cross_entropy_fine = np.full(len(fine_search_range), np.NaN) + for i, curr_temp in enumerate(fine_search_range): + scaled_pred_probs = softmax(log_pred_probs, temperature=curr_temp, axis=1, shift=False) + soft_cross_entropy_fine[i] = np.mean( + compute_soft_cross_entropy(labels_multiannotator, scaled_pred_probs) + ) + best_temp = fine_search_range[np.argmin(soft_cross_entropy_fine)] + return best_temp
+ + +def _set_fine_search_range( + coarse_search_range: list, fine_search_size: int, min_entropy_ind: np.intp +) -> np.ndarray: + fine_search_range = np.array([]) + if min_entropy_ind != 0: + fine_search_range = np.append( + np.linspace( + coarse_search_range[min_entropy_ind - 1], + coarse_search_range[min_entropy_ind], + fine_search_size, + endpoint=False, + ), + fine_search_range, + ) + if min_entropy_ind != len(coarse_search_range) - 1: + fine_search_range = np.append( + fine_search_range, + np.linspace( + coarse_search_range[min_entropy_ind], + coarse_search_range[min_entropy_ind + 1], + fine_search_size + 1, + endpoint=True, + ), + ) + return fine_search_range + + +
[docs]def temp_scale_pred_probs( + pred_probs: np.ndarray, + temp: float, +) -> np.ndarray: + """Scales pred_probs by the given temperature factor. Temperature of <1 will sharpen the pred_probs while temperatures of >1 will smoothen it.""" + # clip pred_probs to prevent taking log of 0 + pred_probs = np.clip(pred_probs, a_min=SMALL_CONST, a_max=None) + pred_probs = pred_probs / np.sum(pred_probs, axis=1)[:, np.newaxis] + + # apply temperate scale + scaled_pred_probs = softmax(np.log(pred_probs), temperature=temp, axis=1, shift=False) + scaled_pred_probs = ( + scaled_pred_probs / np.sum(scaled_pred_probs, axis=1)[:, np.newaxis] + ) # normalize + + return scaled_pred_probs
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/multilabel_scorer.html b/v2.6.5/_modules/cleanlab/internal/multilabel_scorer.html new file mode 100644 index 000000000..da516c9d6 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/multilabel_scorer.html @@ -0,0 +1,1336 @@ + + + + + + + + + + + cleanlab.internal.multilabel_scorer - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.multilabel_scorer

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+"""
+Helper classes and functions used internally to compute label quality scores in multi-label classification.
+"""
+
+from enum import Enum
+from typing import Callable, Dict, Optional, Union
+
+import numpy as np
+from sklearn.model_selection import cross_val_predict
+
+from cleanlab.internal.label_quality_utils import _subtract_confident_thresholds
+from cleanlab.internal.multilabel_utils import _is_multilabel, stack_complement
+from cleanlab.internal.numerics import softmax
+from cleanlab.rank import (
+    get_confidence_weighted_entropy_for_each_label,
+    get_normalized_margin_for_each_label,
+    get_self_confidence_for_each_label,
+)
+
+
+class _Wrapper:
+    """Helper class for wrapping callable functions as attributes of an Enum instead of
+    setting them as methods of the Enum class.
+
+
+    This class is only intended to be used internally for the ClassLabelScorer or
+    other cases where functions are used for enumeration values.
+    """
+
+    def __init__(self, f: Callable) -> None:
+        self.f = f
+
+    def __call__(self, *args, **kwargs):
+        return self.f(*args, **kwargs)
+
+    def __repr__(self):
+        return self.f.__name__
+
+
+
[docs]class ClassLabelScorer(Enum): + """Enum for the different methods to compute label quality scores.""" + + SELF_CONFIDENCE = _Wrapper(get_self_confidence_for_each_label) + """Returns the self-confidence label-quality score for each datapoint. + + See also + -------- + cleanlab.rank.get_self_confidence_for_each_label + """ + NORMALIZED_MARGIN = _Wrapper(get_normalized_margin_for_each_label) + """Returns the "normalized margin" label-quality score for each datapoint. + + See also + -------- + cleanlab.rank.get_normalized_margin_for_each_label + """ + CONFIDENCE_WEIGHTED_ENTROPY = _Wrapper(get_confidence_weighted_entropy_for_each_label) + """Returns the "confidence weighted entropy" label-quality score for each datapoint. + + See also + -------- + cleanlab.rank.get_confidence_weighted_entropy_for_each_label + """ + +
[docs] def __call__(self, labels: np.ndarray, pred_probs: np.ndarray, **kwargs) -> np.ndarray: + """Returns the label-quality scores for each datapoint based on the given labels and predicted probabilities. + + See the documentation for each method for more details. + + Example + ------- + >>> import numpy as np + >>> from cleanlab.internal.multilabel_scorer import ClassLabelScorer + >>> labels = np.array([0, 0, 0, 1, 1, 1]) + >>> pred_probs = np.array([ + ... [0.9, 0.1], + ... [0.8, 0.2], + ... [0.7, 0.3], + ... [0.2, 0.8], + ... [0.75, 0.25], + ... [0.1, 0.9], + ... ]) + >>> ClassLabelScorer.SELF_CONFIDENCE(labels, pred_probs) + array([0.9 , 0.8 , 0.7 , 0.8 , 0.25, 0.9 ]) + """ + pred_probs = self._adjust_pred_probs(labels, pred_probs, **kwargs) + return self.value(labels, pred_probs)
+ + def _adjust_pred_probs( + self, labels: np.ndarray, pred_probs: np.ndarray, **kwargs + ) -> np.ndarray: + """Returns adjusted predicted probabilities by subtracting the class confident thresholds and renormalizing. + + This is used to adjust the predicted probabilities for the SELF_CONFIDENCE and NORMALIZED_MARGIN methods. + """ + if kwargs.get("adjust_pred_probs", False) is True: + if self == ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY: + raise ValueError(f"adjust_pred_probs is not currently supported for {self}.") + pred_probs = _subtract_confident_thresholds(labels, pred_probs) + return pred_probs + +
[docs] @classmethod + def from_str(cls, method: str) -> "ClassLabelScorer": + """Constructs an instance of the ClassLabelScorer enum based on the given method name. + + Parameters + ---------- + method: + The name of the scoring method to use. + + Returns + ------- + scorer: + An instance of the ClassLabelScorer enum. + + Raises + ------ + ValueError: + If the given method name is not a valid method name. + It must be one of the following: "self_confidence", "normalized_margin", or "confidence_weighted_entropy". + + Example + ------- + >>> from cleanlab.internal.multilabel_scorer import ClassLabelScorer + >>> ClassLabelScorer.from_str("self_confidence") + <ClassLabelScorer.SELF_CONFIDENCE: get_self_confidence_for_each_label> + """ + try: + return cls[method.upper()] + except KeyError: + raise ValueError(f"Invalid method name: {method}")
+ + +
[docs]def exponential_moving_average( + s: np.ndarray, + *, + alpha: Optional[float] = None, + axis: int = 1, + **_, +) -> np.ndarray: + r"""Exponential moving average (EMA) score aggregation function. + + For a score vector s = (s_1, ..., s_K) with K scores, the values + are sorted in *descending* order and the exponential moving average + of the last score is calculated, denoted as EMA_K according to the + note below. + + Note + ---- + + The recursive formula for the EMA at step :math:`t = 2, ..., K` is: + + .. math:: + + \text{EMA}_t = \alpha \cdot s_t + (1 - \alpha) \cdot \text{EMA}_{t-1}, \qquad 0 \leq \alpha \leq 1 + + We set :math:`\text{EMA}_1 = s_1` as the largest score in the sorted vector s. + + :math:`\alpha` is the "forgetting factor" that gives more weight to the + most recent scores, and successively less weight to the previous scores. + + Parameters + ---------- + s : + Scores to be transformed. + + alpha : + Discount factor that determines the weight of the previous EMA score. + Higher alpha means that the previous EMA score has a lower weight while + the current score has a higher weight. + + Its value must be in the interval [0, 1]. + + If alpha is None, it is set to 2 / (K + 1) where K is the number of scores. + + axis : + Axis along which the scores are sorted. + + Returns + ------- + s_ema : + Exponential moving average score. + + Examples + -------- + >>> from cleanlab.internal.multilabel_scorer import exponential_moving_average + >>> import numpy as np + >>> s = np.array([[0.1, 0.2, 0.3]]) + >>> exponential_moving_average(s, alpha=0.5) + np.array([0.175]) + """ + K = s.shape[1] + s_sorted = np.fliplr(np.sort(s, axis=axis)) + if alpha is None: + # One conventional choice for alpha is 2/(K + 1), where K is the number of periods in the moving average. + alpha = float(2 / (K + 1)) + if not (0 <= alpha <= 1): + raise ValueError(f"alpha must be in the interval [0, 1], got {alpha}") + s_T = s_sorted.T + s_ema, s_next = s_T[0], s_T[1:] + for s_i in s_next: + s_ema = alpha * s_i + (1 - alpha) * s_ema + return s_ema
+ + +
[docs]def softmin( + s: np.ndarray, + *, + temperature: float = 0.1, + axis: int = 1, + **_, +) -> np.ndarray: + """Softmin score aggregation function. + + Parameters + ---------- + s : + Input array. + + temperature : + Temperature parameter. Too small values may cause numerical underflow and NaN scores. + + axis : + Axis along which to apply the function. + + Returns + ------- + Softmin score. + """ + + return np.einsum( + "ij,ij->i", s, softmax(x=1 - s, temperature=temperature, axis=axis, shift=True) + )
+ + +
[docs]class Aggregator: + """Helper class for aggregating the label quality scores for each class into a single score for each datapoint. + + Parameters + ---------- + method: + The method to compute the label quality scores for each class. + If passed as a callable, your function should take in a 1D array of K scores and return a single aggregated score. + See `~cleanlab.internal.multilabel_scorer.exponential_moving_average` for an example of such a function. + Alternatively, this can be a str value to specify a built-in function, possible values are the keys of the ``Aggregator``'s `possible_methods` attribute. + + kwargs: + Additional keyword arguments to pass to the aggregation function when it is called. + """ + + possible_methods: Dict[str, Callable[..., np.ndarray]] = { + "exponential_moving_average": exponential_moving_average, + "softmin": softmin, + } + + def __init__(self, method: Union[str, Callable], **kwargs): + if isinstance(method, str): # convert to callable + if method in self.possible_methods: + method = self.possible_methods[method] + else: + raise ValueError( + f"Invalid aggregation method specified: '{method}', must be one of the following: {list(self.possible_methods.keys())}" + ) + + self._validate_method(method) + self.method = method + self.kwargs = kwargs + + @staticmethod + def _validate_method(method) -> None: + if not callable(method): + raise TypeError(f"Expected callable method, got {type(method)}") + + @staticmethod + def _validate_scores(scores: np.ndarray) -> None: + if not (isinstance(scores, np.ndarray) and scores.ndim == 2): + raise ValueError( + f"Expected 2D array for scores, got {type(scores)} with shape {scores.shape}" + ) + +
[docs] def __call__(self, scores: np.ndarray, **kwargs) -> np.ndarray: + """Returns the label quality scores for each datapoint based on the given label quality scores for each class. + + Parameters + ---------- + scores: + The label quality scores for each class. + + Returns + ------- + aggregated_scores: + A single label quality score for each datapoint. + """ + self._validate_scores(scores) + kwargs["axis"] = 1 + updated_kwargs = {**self.kwargs, **kwargs} + return self.method(scores, **updated_kwargs)
+ + def __repr__(self): + return f"Aggregator(method={self.method.__name__}, kwargs={self.kwargs})"
+ + +
[docs]class MultilabelScorer: + """Aggregates label quality scores across different classes to produce one score per example in multi-label classification tasks. + + Parameters + ---------- + base_scorer: + The method to compute the label quality scores for each class. + + See the documentation for the ClassLabelScorer enum for more details. + + aggregator: + The method to aggregate the label quality scores for each class into a single score for each datapoint. + + Defaults to the EMA (exponential moving average) aggregator with forgetting factor ``alpha=0.8``. + + See the documentation for the Aggregator class for more details. + + See also + -------- + exponential_moving_average + + strict: + Flag for performing strict validation of the input data. + """ + + def __init__( + self, + base_scorer: ClassLabelScorer = ClassLabelScorer.SELF_CONFIDENCE, + aggregator: Union[Aggregator, Callable] = Aggregator(exponential_moving_average, alpha=0.8), + *, + strict: bool = True, + ): + self.base_scorer = base_scorer + if not isinstance(aggregator, Aggregator): + self.aggregator = Aggregator(aggregator) + else: + self.aggregator = aggregator + self.strict = strict + +
[docs] def __call__( + self, + labels: np.ndarray, + pred_probs: np.ndarray, + base_scorer_kwargs: Optional[dict] = None, + **aggregator_kwargs, + ) -> np.ndarray: + """ + Computes a quality score for each label in a multi-label classification problem + based on out-of-sample predicted probabilities. + For each example, the label quality scores for each class are aggregated into a single overall label quality score. + + Parameters + ---------- + labels: + A 2D array of shape (n_samples, n_labels) with binary labels. + + pred_probs: + A 2D array of shape (n_samples, n_labels) with predicted probabilities. + + kwargs: + Additional keyword arguments to pass to the base_scorer and the aggregator. + + base_scorer_kwargs: + Keyword arguments to pass to the base_scorer + + aggregator_kwargs: + Additional keyword arguments to pass to the aggregator. + + Returns + ------- + scores: + A 1D array of shape (n_samples,) with the quality scores for each datapoint. + + Examples + -------- + >>> from cleanlab.internal.multilabel_scorer import MultilabelScorer, ClassLabelScorer + >>> import numpy as np + >>> labels = np.array([[0, 1, 0], [1, 0, 1]]) + >>> pred_probs = np.array([[0.1, 0.9, 0.1], [0.4, 0.1, 0.9]]) + >>> scorer = MultilabelScorer() + >>> scores = scorer(labels, pred_probs) + >>> scores + array([0.9, 0.5]) + + >>> scorer = MultilabelScorer( + ... base_scorer = ClassLabelScorer.NORMALIZED_MARGIN, + ... aggregator = np.min, # Use the "worst" label quality score for each example. + ... ) + >>> scores = scorer(labels, pred_probs) + >>> scores + array([0.9, 0.4]) + """ + if self.strict: + self._validate_labels_and_pred_probs(labels, pred_probs) + scores = self.get_class_label_quality_scores(labels, pred_probs, base_scorer_kwargs) + return self.aggregate(scores, **aggregator_kwargs)
+ +
[docs] def aggregate( + self, + class_label_quality_scores: np.ndarray, + **kwargs, + ) -> np.ndarray: + """Aggregates the label quality scores for each class into a single overall label quality score for each example. + + Parameters + ---------- + class_label_quality_scores: + A 2D array of shape (n_samples, n_labels) with the label quality scores for each class. + + See also + -------- + get_class_label_quality_scores + + kwargs: + Additional keyword arguments to pass to the aggregator. + + Returns + ------- + scores: + A 1D array of shape (n_samples,) with the quality scores for each datapoint. + + Examples + -------- + >>> from cleanlab.internal.multilabel_scorer import MultilabelScorer + >>> import numpy as np + >>> class_label_quality_scores = np.array([[0.9, 0.9, 0.3],[0.4, 0.9, 0.6]]) + >>> scorer = MultilabelScorer() # Use the default aggregator (exponential moving average) with default parameters. + >>> scores = scorer.aggregate(class_label_quality_scores) + >>> scores + array([0.42, 0.452]) + >>> new_scores = scorer.aggregate(class_label_quality_scores, alpha=0.5) # Use the default aggregator with custom parameters. + >>> new_scores + array([0.6, 0.575]) + + Warning + ------- + Make sure that keyword arguments correspond to the aggregation function used. + I.e. the ``exponential_moving_average`` function supports an ``alpha`` keyword argument, but ``np.min`` does not. + """ + return self.aggregator(class_label_quality_scores, **kwargs)
+ +
[docs] def get_class_label_quality_scores( + self, + labels: np.ndarray, + pred_probs: np.ndarray, + base_scorer_kwargs: Optional[dict] = None, + ) -> np.ndarray: + """Computes separate label quality scores for each class. + + Parameters + ---------- + labels: + A 2D array of shape (n_samples, n_labels) with binary labels. + + pred_probs: + A 2D array of shape (n_samples, n_labels) with predicted probabilities. + + base_scorer_kwargs: + Keyword arguments to pass to the base scoring-function. + + Returns + ------- + class_label_quality_scores: + A 2D array of shape (n_samples, n_labels) with the quality scores for each label. + + Examples + -------- + >>> from cleanlab.internal.multilabel_scorer import MultilabelScorer + >>> import numpy as np + >>> labels = np.array([[0, 1, 0], [1, 0, 1]]) + >>> pred_probs = np.array([[0.1, 0.9, 0.7], [0.4, 0.1, 0.6]]) + >>> scorer = MultilabelScorer() # Use the default base scorer (SELF_CONFIDENCE) + >>> class_label_quality_scores = scorer.get_label_quality_scores_per_class(labels, pred_probs) + >>> class_label_quality_scores + array([[0.9, 0.9, 0.3], + [0.4, 0.9, 0.6]]) + """ + class_label_quality_scores = np.zeros(shape=labels.shape) + if base_scorer_kwargs is None: + base_scorer_kwargs = {} + for i, (label_i, pred_prob_i) in enumerate(zip(labels.T, pred_probs.T)): + pred_prob_i_two_columns = stack_complement(pred_prob_i) + class_label_quality_scores[:, i] = self.base_scorer( + label_i, pred_prob_i_two_columns, **base_scorer_kwargs + ) + return class_label_quality_scores
+ + @staticmethod + def _validate_labels_and_pred_probs(labels: np.ndarray, pred_probs: np.ndarray) -> None: + """ + Checks that (multi-)labels are in the proper binary indicator format and that + they are compatible with the predicted probabilities. + """ + # Only allow dense matrices for labels for now + if not isinstance(labels, np.ndarray): + raise TypeError("Labels must be a numpy array.") + if not _is_multilabel(labels): + raise ValueError("Labels must be in multi-label format.") + if labels.shape != pred_probs.shape: + raise ValueError("Labels and predicted probabilities must have the same shape.")
+ + +
[docs]def get_label_quality_scores( + labels, + pred_probs, + *, + method: MultilabelScorer = MultilabelScorer(), + base_scorer_kwargs: Optional[dict] = None, + **aggregator_kwargs, +) -> np.ndarray: + """Computes a quality score for each label in a multi-label classification problem + based on out-of-sample predicted probabilities. + + Parameters + ---------- + labels: + A 2D array of shape (N, K) with binary labels. + + pred_probs: + A 2D array of shape (N, K) with predicted probabilities. + + method: + A scoring+aggregation method for computing the label quality scores of examples in a multi-label classification setting. + + base_scorer_kwargs: + Keyword arguments to pass to the class-label scorer. + + aggregator_kwargs: + Additional keyword arguments to pass to the aggregator. + + Returns + ------- + scores: + A 1D array of shape (N,) with the quality scores for each datapoint. + + Examples + -------- + >>> import cleanlab.internal.multilabel_scorer as ml_scorer + >>> import numpy as np + >>> labels = np.array([[0, 1, 0], [1, 0, 1]]) + >>> pred_probs = np.array([[0.1, 0.9, 0.1], [0.4, 0.1, 0.9]]) + >>> scores = ml_scorer.get_label_quality_scores(labels, pred_probs, method=ml_scorer.MultilabelScorer()) + >>> scores + array([0.9, 0.5]) + + See also + -------- + MultilabelScorer: + See the documentation for the MultilabelScorer class for more examples of scoring methods and aggregation methods. + """ + return method(labels, pred_probs, base_scorer_kwargs=base_scorer_kwargs, **aggregator_kwargs)
+ + +# Probabilities + + +
[docs]def multilabel_py(y: np.ndarray) -> np.ndarray: + """Compute the prior probability of each label in a multi-label classification problem. + + Parameters + ---------- + y : + A 2d array of binarized multi-labels of shape (N, K) where N is the number of samples and K is the number of classes. + + Returns + ------- + py : + A 2d array of prior probabilities of shape (K,2) where the first column is the probability of the label being 0 + and the second column is the probability of the label being 1 for each class. + + Examples + -------- + >>> from cleanlab.internal.multilabel_scorer import multilabel_py + >>> import numpy as np + >>> y = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) + >>> multilabel_py(y) + array([[0.5, 0.5], + [0.5, 0.5]]) + >>> y = np.array([[0, 0], [0, 1], [1, 0], [1, 0], [1, 0]]) + >>> multilabel_py(y) + array([[0.4, 0.6], + [0.8, 0.2]]) + """ + + N, _ = y.shape + fraction_0 = np.sum(y == 0, axis=0) / N + fraction_1 = 1 - fraction_0 + py = np.column_stack((fraction_0, fraction_1)) + return py
+ + +# Cross-validation helpers + + +def _get_split_generator(labels, cv): + _, multilabel_ids = np.unique(labels, axis=0, return_inverse=True) + split_generator = cv.split(X=multilabel_ids, y=multilabel_ids) + return split_generator + + +
[docs]def get_cross_validated_multilabel_pred_probs(X, labels: np.ndarray, *, clf, cv) -> np.ndarray: + """Get predicted probabilities for a multi-label classifier via cross-validation. + + Note + ---- + The labels are reformatted to a "multi-class" format internally to support a wider range of cross-validation strategies. + If you have a multi-label dataset with `K` classes, the labels are reformatted to a "multi-class" format with up to `2**K` classes + (i.e. the number of possible class-assignment configurations). + It is unlikely that you'll all `2**K` configurations in your dataset. + + Parameters + ---------- + X : + A 2d array of features of shape (N, M) where N is the number of samples and M is the number of features. + + labels : + A 2d array of binarized multi-labels of shape (N, K) where N is the number of samples and K is the number of classes. + + clf : + A multi-label classifier with a ``predict_proba`` method. + + cv : + A cross-validation splitter with a ``split`` method that returns a generator of train/test indices. + + Returns + ------- + pred_probs : + A 2d array of predicted probabilities of shape (N, K) where N is the number of samples and K is the number of classes. + + Note + ---- + The predicted probabilities are not expected to sum to 1 for each sample in the case of multi-label classification. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.model_selection import KFold + >>> from sklearn.multiclass import OneVsRestClassifier + >>> from sklearn.ensemble import RandomForestClassifier + >>> from cleanlab.internal.multilabel_scorer import get_cross_validated_multilabel_pred_probs + >>> np.random.seed(0) + >>> X = np.random.rand(16, 2) + >>> labels = np.random.randint(0, 2, size=(16, 2)) + >>> clf = OneVsRestClassifier(RandomForestClassifier()) + >>> cv = KFold(n_splits=2) + >>> get_cross_validated_multilabel_pred_probs(X, labels, clf=clf, cv=cv) + """ + split_generator = _get_split_generator(labels, cv) + pred_probs = cross_val_predict(clf, X, labels, cv=split_generator, method="predict_proba") + return pred_probs
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/multilabel_utils.html b/v2.6.5/_modules/cleanlab/internal/multilabel_utils.html new file mode 100644 index 000000000..967ac0b5a --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/multilabel_utils.html @@ -0,0 +1,774 @@ + + + + + + + + + + + cleanlab.internal.multilabel_utils - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.multilabel_utils

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Helper functions used internally for multi-label classification tasks.
+"""
+from typing import List, Optional, Tuple
+
+import numpy as np
+
+from cleanlab.internal.util import get_num_classes
+
+
+def _is_multilabel(y: np.ndarray) -> bool:
+    """Checks whether `y` is in a multi-label indicator matrix format.
+
+    Sparse matrices are not supported.
+    """
+    if not (isinstance(y, np.ndarray) and y.ndim == 2 and y.shape[1] > 1):
+        return False
+    return np.array_equal(np.unique(y), [0, 1])
+
+
+
[docs]def stack_complement(pred_prob_slice: np.ndarray) -> np.ndarray: + """ + Extends predicted probabilities of a single class to two columns. + + Parameters + ---------- + pred_prob_slice: + A 1D array with predicted probabilities for a single class. + + Example + ------- + >>> pred_prob_slice = np.array([0.1, 0.9, 0.3, 0.8]) + >>> stack_complement(pred_prob_slice) + array([[0.9, 0.1], + [0.1, 0.9], + [0.7, 0.3], + [0.2, 0.8]]) + """ + return np.vstack((1 - pred_prob_slice, pred_prob_slice)).T
+ + +
[docs]def get_onehot_num_classes( + labels: list, pred_probs: Optional[np.ndarray] = None +) -> Tuple[np.ndarray, int]: + """Returns OneHot encoding of MultiLabel Data, and number of classes""" + num_classes = get_num_classes(labels=labels, pred_probs=pred_probs) + try: + y_one = int2onehot(labels, K=num_classes) + except TypeError: + raise ValueError( + "wrong format for labels, should be a list of list[indices], please check the documentation in find_label_issues for further information" + ) + return y_one, num_classes
+ + +
[docs]def int2onehot(labels: list, K: int) -> np.ndarray: + """Convert multi-label classification `labels` from a ``List[List[int]]`` format to a onehot matrix. + This returns a binarized format of the labels as a multi-hot vector for each example, where the entries in this vector are 1 for each class that applies to this example and 0 otherwise. + + Parameters + ---------- + labels: list of lists of integers + e.g. [[0,1], [3], [1,2,3], [1], [2]] + All integers from 0,1,...,K-1 must be represented. + K: int + The number of classes.""" + + from sklearn.preprocessing import MultiLabelBinarizer + + mlb = MultiLabelBinarizer(classes=range(K)) + return mlb.fit_transform(labels)
+ + +
[docs]def onehot2int(onehot_matrix: np.ndarray) -> List[List[int]]: + """Convert multi-label classification `labels` from a onehot matrix format to a ``List[List[int]]`` format that can be used with other cleanlab functions. + + Parameters + ---------- + onehot_matrix: 2D np.ndarray of 0s and 1s + A matrix representation of multi-label classification labels in a binarized format as a multi-hot vector for each example. + The entries in this vector are 1 for each class that applies to this example and 0 otherwise. + + Returns + ------- + labels: list of lists of integers + e.g. [[0,1], [3], [1,2,3], [1], [2]] + All integers from 0,1,...,K-1 must be represented.""" + + return [np.where(row)[0].tolist() for row in onehot_matrix]
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/neighbor/knn_graph.html b/v2.6.5/_modules/cleanlab/internal/neighbor/knn_graph.html new file mode 100644 index 000000000..8bfe6e213 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/neighbor/knn_graph.html @@ -0,0 +1,1247 @@ + + + + + + + + + + + cleanlab.internal.neighbor.knn_graph - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.neighbor.knn_graph

+from __future__ import annotations
+from typing import List, Optional, TYPE_CHECKING, Tuple
+
+import numpy as np
+from scipy.sparse import csr_matrix
+from scipy.linalg import circulant
+from sklearn.neighbors import NearestNeighbors
+
+if TYPE_CHECKING:
+    from cleanlab.typing import FeatureArray, Metric
+
+from cleanlab.internal.neighbor.metric import decide_default_metric
+from cleanlab.internal.neighbor.search import construct_knn
+
+
+DEFAULT_K = 10
+"""Default number of neighbors to consider in the k-nearest neighbors search,
+unless the size of the feature array is too small or the user specifies a different value.
+
+This should be the largest desired value of k for all desired issue types that require a KNN graph.
+
+E.g. if near duplicates wants k=1 but outliers wants 10, then DEFAULT_K should be 10. This way, all issue types can rely on the same KNN graph.
+"""
+
+
+
[docs]def features_to_knn( + features: Optional[FeatureArray], + *, + n_neighbors: Optional[int] = None, + metric: Optional[Metric] = None, + **sklearn_knn_kwargs, +) -> NearestNeighbors: + """Build and fit a k-nearest neighbors search object from an array of numerical features. + + Parameters + ---------- + features : + The input feature array, with shape (N, M), where N is the number of samples and M is the number of features. + n_neighbors : + The number of nearest neighbors to consider. If None, a default value is determined based on the feature array size. + metric : + The distance metric to use for computing distances between points. If None, the metric is determined based on the feature array shape. + **sklearn_knn_kwargs : + Additional keyword arguments to be passed to the search index constructor. + + Returns + ------- + knn : + A k-nearest neighbors search object fitted to the input feature array. + + Examples + -------- + + >>> import numpy as np + >>> from cleanlab.internal.neighbor import features_to_knn + >>> features = np.random.rand(100, 10) + >>> knn = features_to_knn(features) + >>> knn + NearestNeighbors(metric='cosine', n_neighbors=10) + """ + if features is None: + raise ValueError("Both knn and features arguments cannot be None at the same time.") + # Use provided metric if available, otherwise decide based on the features. + metric = metric or decide_default_metric(features) + + # Decide the number of neighbors to use in the KNN search. + n_neighbors = _configure_num_neighbors(features, n_neighbors) + + knn = construct_knn(n_neighbors, metric, **sklearn_knn_kwargs) + return knn.fit(features)
+ + +
[docs]def construct_knn_graph_from_index( + knn: NearestNeighbors, + correction_features: Optional[FeatureArray] = None, +) -> csr_matrix: + """Construct a sparse distance matrix representation of KNN graph out of a fitted NearestNeighbors search object. + + Parameters + ---------- + knn : + A NearestNeighbors object that has been fitted to a feature array. + The KNN graph is constructed based on the distances and indices of each feature row's nearest neighbors. + correction_features : + The input feature array used to fit the NearestNeighbors object. + If provided, the function the distances and indices of the neighbors will be corrected based on exact + duplicates in the feature array. + If not provided, no correction will be applied. + + Warning + ------- + This function is designed to handle a specific case where a KNN index is used to construct a KNN graph by itself, + and there is a need to detect and correct for exact duplicates in the feature array. However, relying on this + function for such corrections is generally discouraged. There are other functions in the module that handle + KNN graph construction with feature corrections in a more flexible and robust manner. Use this function only + when there is a special need to correct distances and indices based on the feature array provided. + + Returns + ------- + knn_graph : + A sparse, weighted adjacency matrix representing the KNN graph of the feature array. + + Note + ---- + This is *not* intended to construct a KNN graph of test data. It is only used to construct a KNN graph of the data used to fit the NearestNeighbors object. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.internal.neighbor.knn_graph import features_to_knn, construct_knn_graph_from_index + >>> features = np.array([ + ... [0.701, 0.701], + ... [0.900, 0.436], + ... [0.000, 1.000], + ... ]) + >>> knn = features_to_knn(features, n_neighbors=1) + >>> knn_graph = construct_knn_graph_from_index(knn) + >>> knn_graph.toarray() # For demonstration purposes only. It is generally a bad idea to transform to dense matrix for large graphs. + array([[0. , 0.33140006, 0. ], + [0.33140006, 0. , 0. ], + [0.76210367, 0. , 0. ]]) + """ + + # Perform self-querying to get the distances and indices of the nearest neighbors + distances, indices = knn.kneighbors(X=None, return_distance=True) + + # Correct the distances and indices if the correction_features array is provided + if correction_features is not None: + distances, indices = correct_knn_distances_and_indices( + features=correction_features, distances=distances, indices=indices + ) + + N, K = distances.shape + + # Pointers to the row elements distances[indptr[i]:indptr[i+1]], + # and their corresponding column indices indices[indptr[i]:indptr[i+1]]. + indptr = np.arange(0, N * K + 1, K) + + return csr_matrix((distances.reshape(-1), indices.reshape(-1), indptr), shape=(N, N))
+ + +
[docs]def create_knn_graph_and_index( + features: Optional[FeatureArray], + *, + n_neighbors: Optional[int] = None, + metric: Optional[Metric] = None, + correct_exact_duplicates: bool = True, + **sklearn_knn_kwargs, +) -> Tuple[csr_matrix, NearestNeighbors]: + """Calculate the KNN graph from the features if it is not provided in the kwargs. + + Parameters + ---------- + features : + The input feature array, with shape (N, M), where N is the number of samples and M is the number of features. + n_neighbors : + The number of nearest neighbors to consider. If None, a default value is determined based on the feature array size. + metric : + The distance metric to use for computing distances between points. If None, the metric is determined based on the feature array shape. + correct_exact_duplicates : + Whether to correct the KNN graph to ensure that exact duplicates have zero mutual distance, and they are correctly included in the KNN graph. + **sklearn_knn_kwargs : + Additional keyword arguments to be passed to the search index constructor. + + Raises + ------ + ValueError : + If `features` is None, as it's required to construct a KNN graph from scratch. + + Returns + ------- + knn_graph : + A sparse, weighted adjacency matrix representing the KNN graph of the feature array. + knn : + A k-nearest neighbors search object fitted to the input feature array. This object can be used to query the nearest neighbors of new data points. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index + >>> features = np.array([ + ... [0.701, 0.701], + ... [0.900, 0.436], + ... [0.000, 1.000], + ... ]) + >>> knn_graph, knn = create_knn_graph_and_index(features, n_neighbors=1) + >>> knn_graph.toarray() # For demonstration purposes only. It is generally a bad idea to transform to dense matrix for large graphs. + array([[0. , 0.33140006, 0. ], + [0.33140006, 0. , 0. ], + [0.76210367, 0. , 0. ]]) + >>> knn + NearestNeighbors(metric=<function euclidean at ...>, n_neighbors=1) # For demonstration purposes only. The actual metric may vary. + """ + # Construct NearestNeighbors object + knn = features_to_knn(features, n_neighbors=n_neighbors, metric=metric, **sklearn_knn_kwargs) + # Build graph from NearestNeighbors object + knn_graph = construct_knn_graph_from_index(knn) + + # Ensure that exact duplicates found with np.unique aren't accidentally missed in the KNN graph + if correct_exact_duplicates: + assert features is not None + knn_graph = correct_knn_graph(features, knn_graph) + return knn_graph, knn
+ + +
[docs]def correct_knn_graph(features: FeatureArray, knn_graph: csr_matrix) -> csr_matrix: + """ + Corrects a k-nearest neighbors (KNN) graph by handling exact duplicates in the feature array. + + This utility function takes a precomputed KNN graph and the corresponding feature array, + identifies sets of exact duplicate feature vectors, and corrects the KNN graph to properly + reflect these duplicates. The corrected KNN graph is returned as a sparse CSR matrix. + + Parameters + ---------- + features : np.ndarray + The input feature array, with shape (N, M), where N is the number of samples and M is the number of features. + knn_graph : csr_matrix + A sparse matrix of shape (N, N) representing the k-nearest neighbors graph. + The graph is expected to be in CSR (Compressed Sparse Row) format. + + Returns + ------- + csr_matrix + A corrected KNN graph in CSR format with adjusted distances and indices to properly handle + exact duplicates in the feature array. + + Notes + ----- + - This function assumes that the input `knn_graph` is already computed and provided in CSR format. + - The function modifies the KNN graph to ensure that exact duplicates are represented with zero distance + and correctly updated neighbor indices. + - This function is useful for post-processing a KNN graph when exact duplicates were not handled during + the initial KNN computation. + + """ + N = features.shape[0] + distances, indices = knn_graph.data.reshape(N, -1), knn_graph.indices.reshape(N, -1) + + corrected_distances, corrected_indices = correct_knn_distances_and_indices( + features, distances, indices + ) + N = features.shape[0] + return csr_matrix( + (corrected_distances.reshape(-1), corrected_indices.reshape(-1), knn_graph.indptr), + shape=(N, N), + )
+ + +def _compute_exact_duplicate_sets(features: FeatureArray) -> List[np.ndarray]: + """ + Computes the sets of exact duplicate points in the feature array. + + This function groups indices of points that have identical feature vectors. + It returns a list of arrays, where each array contains the indices of points that are exact duplicates + of each other. + + Parameters + ---------- + features : np.ndarray + The input feature array, with shape (N, M), where N is the number of samples and M is the number of features. + + Returns + ------- + exact_duplicate_sets + A list of 1D arrays, where each array contains the indices of exact duplicate points in the dataset. + Only sets with two or more duplicates are included in the list. If no exact duplicates are found, an empty list is returned. + + Examples + -------- + >>> features = np.array([[1, 2], [3, 4], [1, 2], [5, 6], [3, 4]]) + >>> _compute_exact_duplicate_sets(features) + [array([0, 2]), array([1, 4])] # The row value [1, 2] appears in rows 0 and 2, and [3, 4] appears in rows 1 and 4. + + Notes + ----- + - This function uses `np.unique` to find unique feature vectors and their inverse indices. + - This function is intended to be used internally within this module. + """ + # Use np.unique to catch inverse indices of all unique feature sets + _, unique_inverse, unique_counts = np.unique( + features, return_inverse=True, return_counts=True, axis=0 + ) + + # Collect different sets of exact duplicates in the dataset + exact_duplicate_sets = [ + np.where(unique_inverse == u)[0] for u in set(unique_inverse) if unique_counts[u] > 1 + ] + + return exact_duplicate_sets + + +
[docs]def correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace( + distances: np.ndarray, + indices: np.ndarray, + exact_duplicate_sets: List[np.ndarray], +) -> None: + """ + Corrects the distances and indices arrays of k-nearest neighbors (KNN) graphs by handling sets + of exact duplicates explicitly. This function modifies the input arrays in-place. + + This function ensures that exact duplicates are correctly represented in the KNN graph. + It modifies the `distances` and `indices` arrays so that each set of exact duplicates + points to itself with zero distance, and adjusts the nearest neighbors accordingly. + + Parameters + ---------- + distances : + A 2D array of shape (N, k) representing the distances between each point of the N points and their k-nearest neighbors. + This array will be modified in-place to reflect the corrections for exact duplicates (whose mutual distances are explicitly set to zero). + indices : + A 2D array of shape (N, k) representing the indices of the nearest neighbors for each of the N points. + This array will be modified in-place to reflect the corrections for exact duplicates. + exact_duplicate_sets : + A list of 1D arrays, each containing the indices of points that are exact duplicates of each other. + These sets will be used to correct the KNN graph by ensuring that duplicates are reflected as nearest neighbors + with zero distance. + + High-Level Overview + ------------------- + The function operates in two main scenarios based on the size of the duplicate sets relative to k: + + 1. **Duplicate Set Size >= k + 1**: + - All nearest neighbors are exact duplicates. + - The `indices` array is updated such that the first k+1 entries for each duplicate set point are used to represent the nearest neighbors + of all points in the duplicate set. + - The rows of the `distances` array belonging to the duplicate set are set to zero. + + 2. **Duplicate Set Size < k + 1**: + - Some of the nearest neighbors are not exact duplicates. + - Non-duplicate neighbors are shifted to the back of the list. + - The `indices` and `distances` arrays are updated accordingly to reflect the duplicates at the front with zero distance. + + User Considerations + ------------------- + - **Input Validity**: Ensure that the `distances` and `indices` arrays have the correct shape and correspond to the same KNN graph. + - **In-Place Modifications**: The function modifies the input arrays directly. If the original data is needed, make a copy before calling the function. + - **Duplicate Set Size**: The function is optimized for cases where the number of exact duplicates can be larger than k. Ensure the duplicate sets are accurately identified. + - **Performance**: The function uses efficient NumPy operations, but performance can be affected by the size of the input arrays and the number of duplicate sets. + + Capabilities + ------------ + - Handles exact duplicate sets efficiently, ensuring correct KNN graph representation. + - Maintains zero distances for exact duplicates. + - Adjusts neighbor indices to reflect the presence of duplicates. + + Limitations + ----------- + - Assumes that the input arrays (`distances` and `indices`) come from a precomputed KNN graph. + - Does not handle near-duplicates or merge non-duplicate neighbors. + - Requires careful construction of `exact_duplicate_sets` to avoid misidentification. + """ + + # Number of neighbors + k = distances.shape[1] + + for duplicate_inds in exact_duplicate_sets: + # Determine the number of same points to include, respecting the limit of k + num_same = len(duplicate_inds) + num_same_included = min(num_same - 1, k) # ensure we do not exceed k neighbors + + sorted_first_k_duplicate_inds = _prepare_neighborhood_of_first_k_duplicates( + duplicate_inds, num_same_included + ) + + if num_same >= k + 1: + # All nearest neighbors are exact duplicates + + # We only pass in the ciruclant matrix of nearest neighbors + indices[duplicate_inds[: k + 1]] = sorted_first_k_duplicate_inds + # But the rest will just take the k first duplicate ids + indices[duplicate_inds[k + 1 :]] = duplicate_inds[:k] + + # Finally, set the distances between exact duplicates to zero + distances[duplicate_inds] = 0 + else: + # Some of the nearest neighbors aren't exact duplicates, move those to the back + + # Get indices and distances from knn that are not the same as i + different_point_mask = np.isin(indices[duplicate_inds], duplicate_inds, invert=True) + + # Get the indices of the first m True values in each row of the mask + true_indices = np.argsort(~different_point_mask, axis=1)[:, :-num_same_included] + + # Copy the values to the last m columns in dists + distances[duplicate_inds, -(k - num_same_included) :] = distances[ + duplicate_inds, true_indices.T + ].T + indices[duplicate_inds, -(k - num_same_included) :] = indices[ + duplicate_inds, true_indices.T + ].T + + # We can pass the circulant matrix to a slice + indices[duplicate_inds, :num_same_included] = sorted_first_k_duplicate_inds + + # Finally, set the distances between exact duplicates to zero + distances[duplicate_inds, :num_same_included] = 0 + + return None
+ + +def _prepare_neighborhood_of_first_k_duplicates(duplicate_inds, num_same_included): + """ + Prepare a matrix representing the neighborhoods of duplicate items. + + This function constructs a matrix where each row corresponds to an item + and contains the indices of its nearest neighbors (excluding itself), up + to a specified number `k`. + + Parameters: + ----------- + duplicate_inds : list + A list of indices that represent duplicate items. + + num_same_included : int + An integer `k` representing the number of neighbors to include for + each item. + + Returns: + -------- + np.ndarray + A matrix where each row contains the sorted indices of the nearest + neighbors for the corresponding item. + + Explanation: + ------------ + 1. Extract the Base for the Circulant Matrix: + - The function extracts the first `k+1` elements from `duplicate_inds` + to form the base of the circulant matrix. This approach ensures that + even if the set of duplicate items is larger, we only need to consider + the first `k` duplicates as the nearest neighbors, avoiding conflicts + with the items themselves. + + 2. Create the Circulant Matrix: + - A circulant matrix is generated from the base, where each row is a + cyclic permutation of the previous row. + + 3. Slice the Matrix to Exclude the First Column: + - The first column is removed to ensure each row represents the neighbors + without including the item itself. + + 4. Sort the Neighborhood Indices: + - The rows of the sliced matrix are sorted to ensure a consistent order + of neighbors. + + Example: + -------- + Given a set of 5 duplicate items `[A, B, C, D, E]` and `k=2`, the function + processes this as follows: + + 1. `circulant_base` for `k=2` would be `[A, B, C]`. + 2. The `circulant_matrix` might look like: + ``` + [A B C] + [B C A] + [C A B] + ``` + 3. Removing the first column results in: + ``` + [B C] + [C A] + [A B] + ``` + 4. Sorting each row gives the final matrix: + ``` + [B C] + [A C] + [A B] + ``` + + This matrix indicates that: + - The nearest neighbors of `A` are `[B, C]`. + - The nearest neighbors of `B` are `[A, C]`. + - The nearest neighbors of `C` are `[A, B]`. + + For `k=2`, the neighbors of `D`, `E`, onwards could be any of the above. + + The function constructs a sorted matrix of nearest neighbors for a list of + duplicate items, ensuring an equal distribution of neighbors up to a specified + number `k`. This process is necessary for tasks requiring an understanding of + the local neighborhood structure among duplicate examples. By using only the first + `k+1` elements, the function avoids the need to construct a larger circulant + matrix, simplifying the computation and ensuring no conflicts among the rest of the items. + """ + circulant_base = duplicate_inds[: num_same_included + 1] + circulant_matrix = circulant(circulant_base) + sliced_circulant_matrix = circulant_matrix[:, 1:] + sorted_first_k_duplicate_inds = np.sort(sliced_circulant_matrix, axis=1) + return sorted_first_k_duplicate_inds + + +
[docs]def correct_knn_distances_and_indices( + features: FeatureArray, + distances: np.ndarray, + indices: np.ndarray, + exact_duplicate_sets: Optional[List[np.ndarray]] = None, +) -> tuple[np.ndarray, np.ndarray]: + """ + Corrects the distances and indices of a k-nearest neighbors (KNN) graph + based on all exact duplicates detected in the feature array. + + Parameters + ---------- + features : + The feature array used to construct the KNN graph. + distances : + The distances between each point and its k nearest neighbors. + indices : + The indices of the k nearest neighbors for each point. + exact_duplicate_sets: + A list of numpy arrays, where each array contains the indices of exact duplicates in the feature array. If not provided, it will be computed from the feature array. + + Returns + ------- + corrected_distances : + The corrected distances between each point and its k nearest neighbors. Exact duplicates (based on the feature array) are ensured to have zero mutual distance. + corrected_indices : + The corrected indices of the k nearest neighbors for each point. Exact duplicates are ensured to be included in the k nearest neighbors, unless the number of exact duplicates exceeds k. + + Example + ------- + >>> import numpy as np + >>> X = np.array( + ... [ + ... [0, 0], + ... [0, 0], # Exact duplicate of the previous point + ... [1, 1], # The distances between this point and the others is sqrt(2) (equally distant from both) + ... ] + ... ) + >>> distances = np.array( # Distance to the 1-NN of each point + ... [ + ... [np.sqrt(2)], # Should be [0] + ... [1e-16], # Should be [0] + ... [np.sqrt(2)], + ... ] + ... ) + >>> indices = np.array( # Index of the 1-NN of each point + ... [ + ... [2], # Should be [1] + ... [0], + ... [1], # Might be [0] or [1] + ... ] + ... ) + >>> corrected_distances, corrected_indices = correct_knn_distances_and_indices(X, distances, indices) + >>> corrected_distances + array([[0.], [0.], [1.41421356]]) + >>> corrected_indices + array([[1], [0], [0]]) + """ + + if exact_duplicate_sets is None: + exact_duplicate_sets = _compute_exact_duplicate_sets(features) + + # Prepare the output arrays + corrected_distances = np.copy(distances) + corrected_indices = np.copy(indices) + + correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace( + distances=corrected_distances, + indices=corrected_indices, + exact_duplicate_sets=exact_duplicate_sets, + ) + + return corrected_distances, corrected_indices
+ + +def _configure_num_neighbors(features: FeatureArray, k: Optional[int]): + # Error if the provided value is greater or equal to the number of examples. + N = features.shape[0] + k_larger_than_dataset = k is not None and k >= N + if k_larger_than_dataset: + raise ValueError( + f"Number of nearest neighbors k={k} cannot exceed the number of examples N={len(features)} passed into the estimator (knn)." + ) + + # Either use the provided value or select a default value based on the feature array size. + k = k or min(DEFAULT_K, N - 1) + return k +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/neighbor/metric.html b/v2.6.5/_modules/cleanlab/internal/neighbor/metric.html new file mode 100644 index 000000000..1f192d629 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/neighbor/metric.html @@ -0,0 +1,776 @@ + + + + + + + + + + + cleanlab.internal.neighbor.metric - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.neighbor.metric

+from scipy.spatial.distance import euclidean
+
+from cleanlab.typing import FeatureArray, Metric
+
+HIGH_DIMENSION_CUTOFF: int = 3
+"""
+If the number of columns (M) in the `features` array is greater than this cutoff value,
+then by default, K-nearest-neighbors will use the "cosine" metric.
+The cosine metric is more suitable for high-dimensional data.
+Otherwise the "euclidean" distance will be used.
+
+"""
+ROW_COUNT_CUTOFF: int = 100
+"""
+Only affects settings where Euclidean metrics would be used by default.
+If the number of rows (N) in the `features` array is greater than this cutoff value,
+then by default, Euclidean distances are computed via the "euclidean" metric
+(implemented in sklearn for efficiency reasons).
+Otherwise, Euclidean distances are by default computed via
+the ``euclidean`` metric from scipy (slower but numerically more precise/accurate).
+"""
+
+
+# Metric decision functions
+def _euclidean_large_dataset() -> str:
+    return "euclidean"
+
+
+def _euclidean_small_dataset() -> Metric:
+    return euclidean
+
+
+def _cosine_metric() -> str:
+    return "cosine"
+
+
+
[docs]def decide_euclidean_metric(features: FeatureArray) -> Metric: + """ + Decide the appropriate Euclidean metric implementation based on the size of the dataset. + + Parameters + ---------- + features : + The input features array. + + Returns + ------- + metric : + A string or a callable representing a specific implementation of computing the euclidean distance. + + Note + ---- + A choice is made between two implementations + of the euclidean metric based on the number of rows in the feature array. + If the number of rows (N) in the feature array is greater than another predefined + cutoff value (ROW_COUNT_CUTOFF), the ``"euclidean"`` metric is used. This + is because the euclidean metric performs better on larger datasets. + If neither condition is met, the ``euclidean`` metric function from scipy is returned. + + See also + -------- + ROW_COUNT_CUTOFF: The cutoff value for the number of rows in the feature array. + sklearn.metrics.pairwise.euclidean_distances: The euclidean metric function from scikit-learn. + scipy.spatial.distance.euclidean: The euclidean metric function from scipy. + """ + num_rows = features.shape[0] + if num_rows > ROW_COUNT_CUTOFF: + return _euclidean_large_dataset() + else: + return _euclidean_small_dataset()
+ + +# Main function to decide the metric +
[docs]def decide_default_metric(features: FeatureArray) -> Metric: + """ + Decide the KNN metric to be used based on the shape of the feature array. + + Parameters + ---------- + features : + The input feature array, with shape (N, M), where N is the number of samples and M is the number of features. + + Returns + ------- + metric : + The distance metric to be used for neighbor search. It can be either a string + representing the metric name ("cosine" or "euclidean") or a callable + representing the metric function from scipy (euclidean). + + Note + ---- + The decision of which metric to use is based on the shape of the feature array. + If the number of columns (M) in the feature array is greater than a predefined + cutoff value (HIGH_DIMENSION_CUTOFF), the "cosine" metric is used. This is because the cosine + metric is more suitable for high-dimensional data. + + Otherwise, a euclidean metric is used. + That is handled by the :py:meth:`~cleanlab.internal.neighbor.metric.decide_euclidean_metric` function. + + See Also + -------- + HIGH_DIMENSION_CUTOFF: The cutoff value for the number of columns in the feature array. + sklearn.metrics.pairwise.cosine_distances: The cosine metric function from scikit-learn + """ + if features.shape[1] > HIGH_DIMENSION_CUTOFF: + return _cosine_metric() + return decide_euclidean_metric(features)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/neighbor/search.html b/v2.6.5/_modules/cleanlab/internal/neighbor/search.html new file mode 100644 index 000000000..50616b42e --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/neighbor/search.html @@ -0,0 +1,744 @@ + + + + + + + + + + + cleanlab.internal.neighbor.search - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.neighbor.search

+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from sklearn.neighbors import NearestNeighbors
+
+
+if TYPE_CHECKING:
+
+    from cleanlab.typing import Metric
+
+
+
[docs]def construct_knn(n_neighbors: int, metric: Metric, **knn_kwargs) -> NearestNeighbors: + """ + Constructs a k-nearest neighbors search object. You can implement a similar method to run cleanlab with your own approximate-KNN library. + + Parameters + ---------- + n_neighbors : + The number of nearest neighbors to consider. + metric : + The distance metric to use for computing distances between points. + See :py:mod:`~cleanlab.internal.neighbor.metric` for more information. + **knn_kwargs: + Additional keyword arguments to be passed to the search index constructor. + See https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html for more details on the available options. + + Returns + ------- + knn : + A k-nearest neighbors search object compatible with the scikit-learn NearestNeighbors class interface. + + Implements: + + - `fit` method: Accepts a feature array `X` to fit the model. + This enables subsequent neighbor searches on the data. + - `kneighbors` method: Finds the K-neighbors of a point, returning distances and indices of the k-nearest neighbors. Handles two scenarios: + 1. When a query array `features: np.ndarray` is provided, it returns the distances and indices for each point in the query array. + 2. When no query array is provided (`features = None`), it returns neighbors for each indexed point without considering the query point as its own neighbor. + Optionally, allows re-specification of the number of neighbors for each query point, defaulting to the constructor's value if not specified. + + Attributes: + + - `n_neighbors`: Number of neighbors to consider. + - `metric`: Distance metric used to compute distances between points. + - `metric_params`: Additional parameters for the distance metric function. + + Optional: + + - `kneighbors_graph` method: Not required but can be implemented for convenience. + Responsibility shifted to :py:ref:`construct_knn_graph_from_index <cleanlab.internal.neighbor.neighbor.construct_knn_graph_from_index>`. + + Fitted Attributes: + + - `n_features_in_`: Number of features observed during fit. + - `effective_metric_params_`: Metric parameters used in distance computation. + - `effective_metric_`: Metric used for computing distances to neighbors. + - `n_samples_fit_`: Number of samples in the fitted data. + + Additional: + + - `__sklearn_is_fitted__`: Method returning a boolean indicating if the object is fitted, + useful for conducting an is_fitted validation, which verifies the presence of fitted attributes (typically ending with a trailing underscore). + + + The above specifications ensure compatibility and provide a clear directive for developers needing to integrate alternative k-nearest neighbors implementations or modify existing functionalities. + + Note + ---- + The `metric` argument should be a callable that takes two arguments (the two points) and returns the distance between them. + The additional keyword arguments (`**knn_kwargs`) are passed directly to the underlying k-nearest neighbors search algorithm. + + """ + sklearn_knn = NearestNeighbors(n_neighbors=n_neighbors, metric=metric, **knn_kwargs) + + return sklearn_knn
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/outlier.html b/v2.6.5/_modules/cleanlab/internal/outlier.html new file mode 100644 index 000000000..badd58d63 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/outlier.html @@ -0,0 +1,797 @@ + + + + + + + + + + + cleanlab.internal.outlier - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.outlier

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Helper functions used internally for outlier detection tasks.
+"""
+
+from typing import Optional
+import numpy as np
+
+from cleanlab.internal.constants import EPSILON
+
+
+
[docs]def transform_distances_to_scores( + avg_distances: np.ndarray, t: int, scaling_factor: float +) -> np.ndarray: + """Returns an outlier score for each example based on its average distance to its k nearest neighbors. + + The transformation of a distance, :math:`d` , to a score, :math:`o` , is based on the following formula: + + .. math:: + o = \\exp\\left(-dt\\right) + + where :math:`t` scales the distance to a score in the range [0,1]. + + Parameters + ---------- + avg_distances : np.ndarray + An array of distances of shape ``(N)``, where N is the number of examples. + Each entry represents an example's average distance to its k nearest neighbors. + + t : int + A sensitivity parameter that modulates the strength of the transformation from distances to scores. + Higher values of `t` result in more pronounced differentiation between the scores of examples + lying in the range [0,1]. + + scaling_factor : float + A scaling factor used to normalize the distances before they are converted into scores. A valid + scaling factor is any positive number. The choice of scaling factor should be based on the + distribution of distances between neighboring examples. A good rule of thumb is to set the + scaling factor to the median distance between neighboring examples. A lower scaling factor + results in more pronounced differentiation between the scores of examples lying in the range [0,1]. + + Returns + ------- + ood_features_scores : np.ndarray + An array of outlier scores of shape ``(N,)`` for N examples. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.outlier import transform_distances_to_scores + >>> distances = np.array([[0.0, 0.1, 0.25], + ... [0.15, 0.2, 0.3]]) + >>> avg_distances = np.mean(distances, axis=1) + >>> transform_distances_to_scores(avg_distances, t=1, scaling_factor=1) + array([0.88988177, 0.80519832]) + """ + # Map ood_features_scores to range 0-1 with 0 = most concerning + return np.exp(-t * avg_distances / max(scaling_factor, EPSILON))
+ + +
[docs]def correct_precision_errors( + scores: np.ndarray, + avg_distances: np.ndarray, + metric: str, + C: int = 100, + p: Optional[int] = None, +): + """ + Ensure that scores where avg_distances are below the tolerance threshold get a score of one. + + Parameters + ---------- + scores : + An array of scores of shape ``(N)``, where N is the number of examples. + Each entry represents a score between 0 and 1. + + avg_distances : + An array of distances of shape ``(N)``, where N is the number of examples. + Each entry represents an example's average distance to its k nearest neighbors. + + metric : + The metric used by the knn algorithm to calculate the distances. + It must be 'cosine', 'euclidean' or 'minkowski', otherwise this function does nothing. + + C : + Multiplier used to increase the tolerance of the acceptable precision differences. + It is a multiplicative factor of the machine epsilon that is used to calculate the tolerance. + For the type of values that are used in the distances, a value of 100 should be a sensible + default value for small values of the distances, below the order of 1. + + p : + This value is only used when metric is 'minkowski'. + A ValueError will be raised if metric is 'minkowski' and 'p' was not provided. + + Returns + ------- + fixed_scores : + An array of scores of shape ``(N,)`` for N examples with scores between 0 and 1. + """ + if metric == "cosine": + tolerance = C * np.finfo(np.float_).epsneg + elif metric == "euclidean": + tolerance = np.sqrt(C * np.finfo(np.float_).eps) + elif metric == "minkowski": + if p is None: + raise ValueError("When metric is 'minkowski' you must specify the 'p' parameter") + tolerance = (C * np.finfo(np.float_).eps) ** (1 / p) + else: + return scores + + candidates_mask = avg_distances < tolerance + scores[candidates_mask] = 1 + return scores
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/token_classification_utils.html b/v2.6.5/_modules/cleanlab/internal/token_classification_utils.html new file mode 100644 index 000000000..b857cc5a1 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/token_classification_utils.html @@ -0,0 +1,960 @@ + + + + + + + + + + + cleanlab.internal.token_classification_utils - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.token_classification_utils

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Helper methods used internally in cleanlab.token_classification
+"""
+from __future__ import annotations
+
+import re
+import string
+import numpy as np
+from termcolor import colored
+from typing import List, Optional, Callable, Tuple, TypeVar, TYPE_CHECKING
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+
+    T = TypeVar("T", bound=npt.NBitBase)
+
+
+
[docs]def get_sentence(words: List[str]) -> str: + """ + Get sentence formed by a list of words with minor processing for readability + + Parameters + ---------- + words: + list of word-level tokens + + Returns + ---------- + sentence: + sentence formed by list of word-level tokens + + Examples + -------- + >>> from cleanlab.internal.token_classification_utils import get_sentence + >>> words = ["This", "is", "a", "sentence", "."] + >>> get_sentence(words) + 'This is a sentence.' + """ + sentence = "" + for word in words: + if word not in string.punctuation or word in ["-", "("]: + word = " " + word + sentence += word + sentence = sentence.replace(" '", "'").replace("( ", "(").strip() + return sentence
+ + +
[docs]def filter_sentence( + sentences: List[str], + condition: Optional[Callable[[str], bool]] = None, +) -> Tuple[List[str], List[bool]]: + """ + Filter sentence based on some condition, and returns filter mask + + Parameters + ---------- + sentences: + list of sentences + + condition: + sentence filtering condition + + Returns + --------- + sentences: + list of sentences filtered + + mask: + boolean mask such that `mask[i] == True` if the i'th sentence is included in the + filtered sentence, otherwise `mask[i] == False` + + Examples + -------- + >>> from cleanlab.internal.token_classification_utils import filter_sentence + >>> sentences = ["Short sentence.", "This is a longer sentence."] + >>> condition = lambda x: len(x.split()) > 2 + >>> long_sentences, _ = filter_sentence(sentences, condition) + >>> long_sentences + ['This is a longer sentence.'] + >>> document = ["# Headline", "Sentence 1.", "&", "Sentence 2."] + >>> sentences, mask = filter_sentence(document) + >>> sentences, mask + (['Sentence 1.', 'Sentence 2.'], [False, True, False, True]) + """ + if not condition: + condition = lambda sentence: len(sentence) > 1 and "#" not in sentence + mask = list(map(condition, sentences)) + sentences = [sentence for m, sentence in zip(mask, sentences) if m] + return sentences, mask
+ + +
[docs]def process_token(token: str, replace: List[Tuple[str, str]] = [("#", "")]) -> str: + """ + Replaces special characters in the tokens + + Parameters + ---------- + token: + token which potentially contains special characters + + replace: + list of tuples `(s1, s2)`, where all occurances of s1 are replaced by s2 + + Returns + --------- + processed_token: + processed token whose special character has been replaced + + Note + ---- + Only applies to characters in the original input token. + + Examples + -------- + >>> from cleanlab.internal.token_classification_utils import process_token + >>> token = "#Comment" + >>> process_token("#Comment") + 'Comment' + + Specify custom replacement rules + + >>> replace = [("C", "a"), ("a", "C")] + >>> process_token("Cleanlab", replace) + 'aleCnlCb' + """ + replace_dict = {re.escape(k): v for (k, v) in replace} + pattern = "|".join(replace_dict.keys()) + compiled_pattern = re.compile(pattern) + replacement = lambda match: replace_dict[re.escape(match.group(0))] + processed_token = compiled_pattern.sub(replacement, token) + return processed_token
+ + +
[docs]def mapping(entities: List[int], maps: List[int]) -> List[int]: + """ + Map a list of entities to its corresponding entities + + Parameters + ---------- + entities: + a list of given entities + + maps: + a list of mapped entities, such that the i'th indexed token should be mapped to `maps[i]` + + Returns + --------- + mapped_entities: + a list of mapped entities + + Examples + -------- + >>> unique_identities = [0, 1, 2, 3, 4] # ["O", "B-PER", "I-PER", "B-LOC", "I-LOC"] + >>> maps = [0, 1, 1, 2, 2] # ["O", "PER", "PER", "LOC", "LOC"] + >>> mapping(unique_identities, maps) + [0, 1, 1, 2, 2] # ["O", "PER", "PER", "LOC", "LOC"] + >>> mapping([0, 0, 4, 4, 3, 4, 0, 2], maps) + [0, 0, 2, 2, 2, 2, 0, 1] # ["O", "O", "LOC", "LOC", "LOC", "LOC", "O", "PER"] + """ + f = lambda x: maps[x] + return list(map(f, entities))
+ + +
[docs]def merge_probs( + probs: npt.NDArray["np.floating[T]"], maps: List[int] +) -> npt.NDArray["np.floating[T]"]: + """ + Merges model-predictive probabilities with desired mapping + + Parameters + ---------- + probs: + A 2D np.array of shape `(N, K)`, where N is the number of tokens, and K is the number of classes for the model + + maps: + a list of mapped index, such that the probability of the token being in the i'th class is mapped to the + `maps[i]` index. If `maps[i] == -1`, the i'th column of `probs` is ignored. If `np.any(maps == -1)`, the + returned probability is re-normalized. + + Returns + --------- + probs_merged: + A 2D np.array of shape ``(N, K')``, where `K'` is the number of new classes. Probabilities are merged and + re-normalized if necessary. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.internal.token_classification_utils import merge_probs + >>> probs = np.array([ + ... [0.55, 0.0125, 0.0375, 0.1, 0.3], + ... [0.1, 0.8, 0, 0.075, 0.025], + ... ]) + >>> maps = [0, 1, 1, 2, 2] + >>> merge_probs(probs, maps) + array([[0.55, 0.05, 0.4 ], + [0.1 , 0.8 , 0.1 ]]) + """ + old_classes = probs.shape[1] + map_size = np.max(maps) + 1 + probs_merged = np.zeros([len(probs), map_size], dtype=probs.dtype.type) + + for i in range(old_classes): + if maps[i] >= 0: + probs_merged[:, maps[i]] += probs[:, i] + if -1 in maps: + row_sums = probs_merged.sum(axis=1) + probs_merged /= row_sums[:, np.newaxis] + return probs_merged
+ + +
[docs]def color_sentence(sentence: str, word: str) -> str: + """ + Searches for a given token in the sentence and returns the sentence where the given token is colored red + + Parameters + ---------- + sentence: + a sentence where the word is searched + + word: + keyword to find in `sentence`. Assumes the word exists in the sentence. + Returns + --------- + colored_sentence: + `sentence` where the every occurrence of the word is colored red, using ``termcolor.colored`` + + Examples + -------- + >>> from cleanlab.internal.token_classification_utils import color_sentence + >>> sentence = "This is a sentence." + >>> word = "sentence" + >>> color_sentence(sentence, word) + 'This is a \x1b[31msentence\x1b[0m.' + + Also works for multiple occurrences of the word + + >>> document = "This is a sentence. This is another sentence." + >>> word = "sentence" + >>> color_sentence(document, word) + 'This is a \x1b[31msentence\x1b[0m. This is another \x1b[31msentence\x1b[0m.' + """ + colored_word = colored(word, "red") + return _replace_sentence(sentence=sentence, word=word, new_word=colored_word)
+ + +def _replace_sentence(sentence: str, word: str, new_word: str) -> str: + """ + Searches for a given token in the sentence and returns the sentence where the given token has been replaced by + `new_word`. + + Parameters + ---------- + sentence: + a sentence where the word is searched + + word: + keyword to find in `sentence`. Assumes the word exists in the sentence. + + new_word: + the word to replace the keyword with + + Returns + --------- + new_sentence: + `sentence` where the every occurrence of the word is replaced by `colored_word` + """ + + new_sentence, number_of_substitions = re.subn( + r"\b{}\b".format(re.escape(word)), new_word, sentence + ) + if number_of_substitions == 0: + # Use basic string manipulation if regex fails + new_sentence = sentence.replace(word, new_word) + return new_sentence +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/util.html b/v2.6.5/_modules/cleanlab/internal/util.html new file mode 100644 index 000000000..b33f67ae1 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/util.html @@ -0,0 +1,1439 @@ + + + + + + + + + + + cleanlab.internal.util - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.util

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Ancillary helper methods used internally throughout this package; mostly related to Confident Learning algorithms.
+"""
+
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import pandas as pd
+
+from cleanlab.internal.constants import FLOATING_POINT_COMPARISON, TINY_VALUE
+from cleanlab.internal.validation import labels_to_array
+from cleanlab.typing import DatasetLike, LabelLike
+
+
+
[docs]def remove_noise_from_class(noise_matrix, class_without_noise) -> np.ndarray: + """A helper function in the setting of PU learning. + Sets all P(label=class_without_noise|true_label=any_other_class) = 0 + in noise_matrix for pulearning setting, where we have + generalized the positive class in PU learning to be any + class of choosing, denoted by class_without_noise. + + Parameters + ---------- + noise_matrix : np.ndarray of shape (K, K), K = number of classes + A conditional probability matrix of the form P(label=k_s|true_label=k_y) containing + the fraction of examples in every class, labeled as every other class. + Assumes columns of noise_matrix sum to 1. + + class_without_noise : int + Integer value of the class that has no noise. Traditionally, + this is 1 (positive) for PU learning.""" + + # Number of classes + K = len(noise_matrix) + + cwn = class_without_noise + x = np.copy(noise_matrix) + + # Set P( labels = cwn | y != cwn) = 0 (no noise) + x[cwn, [i for i in range(K) if i != cwn]] = 0.0 + + # Normalize columns by increasing diagonal terms + # Ensures noise_matrix is a valid probability matrix + for i in range(K): + x[i][i] = 1 - float(np.sum(x[:, i]) - x[i][i]) + + return x
+ + +
[docs]def clip_noise_rates(noise_matrix) -> np.ndarray: + """Clip all noise rates to proper range [0,1), but + do not modify the diagonal terms because they are not + noise rates. + + ASSUMES noise_matrix columns sum to 1. + + Parameters + ---------- + noise_matrix : np.ndarray of shape (K, K), K = number of classes + A conditional probability matrix containing the fraction of + examples in every class, labeled as every other class. + Diagonal terms are not noise rates, but are consistency P(label=k|true_label=k) + Assumes columns of noise_matrix sum to 1""" + + def clip_noise_rate_range(noise_rate) -> float: + """Clip noise rate P(label=k'|true_label=k) or P(true_label=k|label=k') + into proper range [0,1)""" + return min(max(noise_rate, 0.0), 0.9999) + + # Vectorize clip_noise_rate_range for efficiency with np.ndarrays. + vectorized_clip = np.vectorize(clip_noise_rate_range) + + # Preserve because diagonal entries are not noise rates. + diagonal = np.diagonal(noise_matrix) + + # Clip all noise rates (efficiently). + noise_matrix = vectorized_clip(noise_matrix) + + # Put unmodified diagonal back. + np.fill_diagonal(noise_matrix, diagonal) + + # Re-normalized noise_matrix so that columns sum to one. + noise_matrix = noise_matrix / np.clip(noise_matrix.sum(axis=0), a_min=TINY_VALUE, a_max=None) + return noise_matrix
+ + +
[docs]def clip_values(x, low=0.0, high=1.0, new_sum=None) -> np.ndarray: + """Clip all values in p to range [low,high]. + Preserves sum of x. + + Parameters + ---------- + x : np.ndarray + An array / list of values to be clipped. + + low : float + values in x greater than 'low' are clipped to this value + + high : float + values in x greater than 'high' are clipped to this value + + new_sum : float + normalizes x after clipping to sum to new_sum + + Returns + ------- + x : np.ndarray + A list of clipped values, summing to the same sum as x.""" + + def clip_range(a, low=low, high=high): + """Clip a into range [low,high]""" + return min(max(a, low), high) + + vectorized_clip = np.vectorize( + clip_range + ) # Vectorize clip_range for efficiency with np.ndarrays + prev_sum = sum(x) if new_sum is None else new_sum # Store previous sum + x = vectorized_clip(x) # Clip all values (efficiently) + x = ( + x * prev_sum / np.clip(float(sum(x)), a_min=TINY_VALUE, a_max=None) + ) # Re-normalized values to sum to previous sum + return x
+ + +
[docs]def value_counts(x, *, num_classes: Optional[int] = None, multi_label=False) -> np.ndarray: + """Returns an np.ndarray of shape (K, 1), with the + value counts for every unique item in the labels list/array, + where K is the number of unique entries in labels. + + Works for both single-labeled and multi-labeled data. + + Parameters + ---------- + x : list or np.ndarray (one dimensional) + A list of discrete objects, like lists or strings, for + example, class labels 'y' when training a classifier. + e.g. ["dog","dog","cat"] or [1,2,0,1,1,0,2] + + num_classes : int (default: None) + Setting this fills the value counts for missing classes with zeros. + For example, if x = [0, 0, 1, 1, 3] then setting ``num_classes=5`` returns + [2, 2, 0, 1, 0] whereas setting ``num_classes=None`` would return [2, 2, 1]. This assumes + your labels come from the set [0, 1,... num_classes=1] even if some classes are missing. + + multi_label : bool, optional + If ``True``, labels should be an iterable (e.g. list) of iterables, containing a + list of labels for each example, instead of just a single label. + Assumes all classes in pred_probs.shape[1] are represented in labels. + The multi-label setting supports classification tasks where an example has 1 or more labels. + Example of a multi-labeled `labels` input: ``[[0,1], [1], [0,2], [0,1,2], [0], [1], ...]``. + The major difference in how this is calibrated versus single-label is that + the total number of errors considered is based on the number of labels, + not the number of examples. So, the calibrated `confident_joint` will sum + to the number of total labels.""" + + # Efficient method if x is pd.Series, np.ndarray, or list + if multi_label: + x = [z for lst in x for z in lst] # Flatten + unique_classes, counts = np.unique(x, return_counts=True) + + # Early exit if num_classes is not provided or redundant + if num_classes is None or num_classes == len(unique_classes): + return counts + + # Else, there are missing classes + labels_are_integers = np.issubdtype(np.array(x).dtype, np.integer) + if labels_are_integers and num_classes <= np.max(unique_classes): + raise ValueError(f"Required: num_classes > max(x), but {num_classes} <= {np.max(x)}.") + + # Add zero counts for all missing classes in [0, 1,..., num_classes-1] + total_counts = np.zeros(num_classes, dtype=int) + # Fill in counts for classes that are present. + # If labels are integers, unique_classes can be used directly as indices to place counts + # into the correct positions in total_counts array. + # If labels are strings, use a slice to fill counts sequentially since strings do not map to indices. + count_ids = unique_classes if labels_are_integers else slice(len(unique_classes)) + total_counts[count_ids] = counts + + # Return counts with zeros for all missing classes. + return total_counts
+ + +
[docs]def value_counts_fill_missing_classes(x, num_classes, *, multi_label=False) -> np.ndarray: + """Same as ``internal.util.value_counts`` but requires that num_classes is provided and + always fills missing classes with zero counts. + + See ``internal.util.value_counts`` for parameter docstrings.""" + + return value_counts(x, num_classes=num_classes, multi_label=multi_label)
+ + +
[docs]def get_missing_classes(labels, *, pred_probs=None, num_classes=None, multi_label=False): + """Find which classes are present in ``pred_probs`` but not present in ``labels``. + + See ``count.compute_confident_joint`` for parameter docstrings.""" + if pred_probs is None and num_classes is None: + raise ValueError("Both pred_probs and num_classes are None. You must provide exactly one.") + if pred_probs is not None and num_classes is not None: + raise ValueError("Both pred_probs and num_classes are not None. Only one may be provided.") + if num_classes is None: + num_classes = pred_probs.shape[1] + unique_classes = get_unique_classes(labels, multi_label=multi_label) + return sorted(set(range(num_classes)).difference(unique_classes))
+ + +
[docs]def round_preserving_sum(iterable) -> np.ndarray: + """Rounds an iterable of floats while retaining the original summed value. + The name of each parameter is required. The type and description of each + parameter is optional, but should be included if not obvious. + + The while loop in this code was adapted from: + https://github.com/cgdeboer/iteround + + Parameters + ----------- + iterable : list<float> or np.ndarray<float> + An iterable of floats + + Returns + ------- + list<int> or np.ndarray<int> + The iterable rounded to int, preserving sum.""" + + floats = np.asarray(iterable, dtype=float) + ints = floats.round() + orig_sum = np.sum(floats).round() + int_sum = np.sum(ints).round() + # Adjust the integers so that they sum to orig_sum + while abs(int_sum - orig_sum) > FLOATING_POINT_COMPARISON: + diff = np.round(orig_sum - int_sum) + increment = -1 if int(diff < 0.0) else 1 + changes = min(int(abs(diff)), len(iterable)) + # Orders indices by difference. Increments # of changes. + indices = np.argsort(floats - ints)[::-increment][:changes] + for i in indices: + ints[i] = ints[i] + increment + int_sum = np.sum(ints).round() + return ints.astype(int)
+ + +
[docs]def round_preserving_row_totals(confident_joint) -> np.ndarray: + """Rounds confident_joint cj to type int + while preserving the totals of reach row. + Assumes that cj is a 2D np.ndarray of type float. + + Parameters + ---------- + confident_joint : 2D np.ndarray<float> of shape (K, K) + See compute_confident_joint docstring for details. + + Returns + ------- + confident_joint : 2D np.ndarray<int> of shape (K,K) + Rounded to int while preserving row totals.""" + + return np.apply_along_axis( + func1d=round_preserving_sum, + axis=1, + arr=confident_joint, + ).astype(int)
+ + +
[docs]def estimate_pu_f1(s, prob_s_eq_1) -> float: + """Computes Claesen's estimate of f1 in the pulearning setting. + + Parameters + ---------- + s : iterable (list or np.ndarray) + Binary label (whether each element is labeled or not) in pu learning. + + prob_s_eq_1 : iterable (list or np.ndarray) + The probability, for each example, whether it has label=1 P(label=1|x) + + Output (float) + ------ + Claesen's estimate for f1 in the pulearning setting.""" + + pred = np.asarray(prob_s_eq_1) >= 0.5 + true_positives = sum((np.asarray(s) == 1) & (np.asarray(pred) == 1)) + all_positives = sum(s) + recall = true_positives / float(all_positives) + frac_positive = sum(pred) / float(len(s)) + return recall**2 / (2.0 * frac_positive) if frac_positive != 0 else np.nan
+ + +
[docs]def confusion_matrix(true, pred) -> np.ndarray: + """Implements a confusion matrix for true labels + and predicted labels. true and pred MUST BE the same length + and have the same distinct set of class labels represented. + + Results are identical (and similar computation time) to: + "sklearn.metrics.confusion_matrix" + + However, this function avoids the dependency on sklearn. + + Parameters + ---------- + true : np.ndarray 1d + Contains labels. + Assumes true and pred contains the same set of distinct labels. + + pred : np.ndarray 1d + A discrete vector of noisy labels, i.e. some labels may be erroneous. + *Format requirements*: for dataset with K classes, labels must be in {0,1,...,K-1}. + + Returns + ------- + confusion_matrix : np.ndarray (2D) + matrix of confusion counts with true on rows and pred on columns.""" + + assert len(true) == len(pred) + true_classes = np.unique(true) + pred_classes = np.unique(pred) + K_true = len(true_classes) # Number of classes in true + K_pred = len(pred_classes) # Number of classes in pred + map_true = dict(zip(true_classes, range(K_true))) + map_pred = dict(zip(pred_classes, range(K_pred))) + + result = np.zeros((K_true, K_pred)) + for i in range(len(true)): + result[map_true[true[i]]][map_pred[pred[i]]] += 1 + + return result
+ + + + + + + + + + + + + + +
[docs]def compress_int_array(int_array, num_possible_values) -> np.ndarray: + """Compresses dtype of np.ndarray<int> if num_possible_values is small enough.""" + try: + compressed_type = None + if num_possible_values < np.iinfo(np.dtype("int16")).max: + compressed_type = "int16" + elif num_possible_values < np.iinfo(np.dtype("int32")).max: # pragma: no cover + compressed_type = "int32" # pragma: no cover + if compressed_type is not None: + int_array = int_array.astype(compressed_type) + return int_array + except Exception: # int_array may not even be numpy array, keep as is then + return int_array
+ + +
[docs]def train_val_split( + X, labels, train_idx, holdout_idx +) -> Tuple[DatasetLike, DatasetLike, LabelLike, LabelLike]: + """Splits data into training/validation sets based on given indices""" + labels_train, labels_holdout = ( + labels[train_idx], + labels[holdout_idx], + ) # labels are always np.ndarray + split_completed = False + if isinstance(X, (pd.DataFrame, pd.Series)): + X_train, X_holdout = X.iloc[train_idx], X.iloc[holdout_idx] + split_completed = True + if not split_completed: + try: # check if X is pytorch Dataset object using lazy import + import torch + + if isinstance(X, torch.utils.data.Dataset): # special splitting for pytorch Dataset + X_train = torch.utils.data.Subset(X, train_idx) + X_holdout = torch.utils.data.Subset(X, holdout_idx) + split_completed = True + except Exception: + pass + if not split_completed: + try: # check if X is tensorflow Dataset object using lazy import + import tensorflow + + if isinstance(X, tensorflow.data.Dataset): # special splitting for tensorflow Dataset + X_train = extract_indices_tf(X, train_idx, allow_shuffle=True) + X_holdout = extract_indices_tf(X, holdout_idx, allow_shuffle=False) + split_completed = True + except Exception: + pass + if not split_completed: + try: + X_train, X_holdout = X[train_idx], X[holdout_idx] + except Exception: + raise ValueError( + "Cleanlab cannot split this form of dataset (required for cross-validation). " + "Try a different data format, " + "or implement the cross-validation yourself and instead provide out-of-sample `pred_probs`" + ) + + return X_train, X_holdout, labels_train, labels_holdout
+ + +
[docs]def subset_X_y(X, labels, mask) -> Tuple[DatasetLike, LabelLike]: + """Extracts subset of features/labels where mask is True""" + labels = subset_labels(labels, mask) + X = subset_data(X, mask) + return X, labels
+ + +
[docs]def subset_labels(labels, mask) -> Union[list, np.ndarray, pd.Series]: + """Extracts subset of labels where mask is True""" + try: # filtering labels as if it is array or DataFrame + return labels[mask] + except Exception: + try: # filtering labels as if it is list + return [l for idx, l in enumerate(labels) if mask[idx]] + except Exception: + raise TypeError("labels must be 1D np.ndarray, list, or pd.Series.")
+ + +
[docs]def subset_data(X, mask) -> DatasetLike: + """Extracts subset of data examples where mask (np.ndarray) is True""" + try: + import torch + + if isinstance(X, torch.utils.data.Dataset): + mask_idx_list = list(np.nonzero(mask)[0]) + return torch.utils.data.Subset(X, mask_idx_list) + except Exception: + pass + try: + with warnings.catch_warnings(): + warnings.filterwarnings("ignore") + import tensorflow + + if isinstance(X, tensorflow.data.Dataset): # special splitting for tensorflow Dataset + mask_idx = np.nonzero(mask)[0] + return extract_indices_tf(X, mask_idx, allow_shuffle=True) + except Exception: + pass + try: + return X[mask] + except Exception: + raise TypeError("Data features X must be subsettable with boolean mask array: X[mask]")
+ + +
[docs]def extract_indices_tf(X, idx, allow_shuffle) -> DatasetLike: + """Extracts subset of tensorflow dataset corresponding to examples at particular indices. + + Args: + X : ``tensorflow.data.Dataset`` + + idx : array_like of integer indices corresponding to examples to keep in the dataset. + Returns subset of examples in the dataset X that correspond to these indices. + + allow_shuffle : bool + Whether or not shuffling of this data is allowed (eg. must turn off shuffling for validation data). + + Note: this code only works on Datasets in which: + * ``shuffle()`` has been called before ``batch()``, + * no other order-destroying operation (eg. ``repeat()``) has been applied. + + Indices are extracted from the original version of Dataset (before shuffle was called rather than in shuffled order). + """ + import tensorflow + + idx = np.asarray(idx) + idx = np.int64(idx) # needed for Windows (reconsider if necessary in the future) + + og_batch_size = None + if hasattr(X, "_batch_size"): + og_batch_size = int(X._batch_size) + X = X.unbatch() + + unshuffled_X, buffer_size = unshuffle_tensorflow_dataset(X) + if unshuffled_X is not None: + X = unshuffled_X + + # Create index,value pairs in the dataset (adds extra indices that werent there before) + X = X.enumerate() + keys_tensor = tensorflow.constant(idx) + vals_tensor = tensorflow.ones_like(keys_tensor) # Ones will be casted to True + table = tensorflow.lookup.StaticHashTable( + tensorflow.lookup.KeyValueTensorInitializer(keys_tensor, vals_tensor), + default_value=0, + ) # If index not in table, return 0 + + def hash_table_filter(index, value): + table_value = table.lookup(index) # 1 if index in arr, else 0 + index_in_arr = tensorflow.cast(table_value, tensorflow.bool) # 1 -> True, 0 -> False + return index_in_arr + + # Filter the dataset, then drop the added indices + X_subset = X.filter(hash_table_filter).map(lambda idx, value: value) + + if (unshuffled_X is not None) and allow_shuffle: + X_subset = X_subset.shuffle(buffer_size=buffer_size) + + if og_batch_size is not None: # reset batch size to original value + X_subset = X_subset.batch(og_batch_size) + + return X_subset
+ + +
[docs]def unshuffle_tensorflow_dataset(X) -> tuple: + """Applies iterative inverse transformations to dataset to get version before ShuffleDataset was created. + If no ShuffleDataset is in the transformation-history of this dataset, returns None. + + Parameters + ---------- + X : a tensorflow Dataset that may have been created via series of transformations, one being shuffle. + + Returns + ------- + Tuple (pre_X, buffer_size) where: + pre_X : Dataset that was previously transformed to get ShuffleDataset (or None), + buffer_size : int `buffer_size` previously used in ShuffleDataset, + or ``len(pre_X)`` if buffer_size cannot be determined, or None if no ShuffleDataset found. + """ + try: + from tensorflow.python.data.ops.dataset_ops import ShuffleDataset + + X_inputs = [X] + while len(X_inputs) == 1: + pre_X = X_inputs[0] + if isinstance(pre_X, ShuffleDataset): + buffer_size = len(pre_X) + if hasattr(pre_X, "_buffer_size"): + buffer_size = pre_X._buffer_size.numpy() + X_inputs = ( + pre_X._inputs() + ) # get the dataset that was transformed to create the ShuffleDataset + if len(X_inputs) == 1: + return (X_inputs[0], buffer_size) + X_inputs = pre_X._inputs() # returns list of input datasets used to create X + except Exception: + pass + return (None, None)
+ + +
[docs]def is_torch_dataset(X) -> bool: + try: + import torch + + if isinstance(X, torch.utils.data.Dataset): + return True + except Exception: + pass + return False # assumes this cannot be torch dataset if torch cannot be imported
+ + +
[docs]def is_tensorflow_dataset(X) -> bool: + try: + import tensorflow + + if isinstance(X, tensorflow.data.Dataset): + return True + except Exception: + pass + return False # assumes this cannot be tensorflow dataset if tensorflow cannot be imported
+ + +
[docs]def csr_vstack(a, b) -> DatasetLike: + """Takes in 2 csr_matrices and appends the second one to the bottom of the first one. + Alternative to scipy.sparse.vstack. Returns a sparse matrix. + """ + a.data = np.hstack((a.data, b.data)) + a.indices = np.hstack((a.indices, b.indices)) + a.indptr = np.hstack((a.indptr, (b.indptr + a.nnz)[1:])) + a._shape = (a.shape[0] + b.shape[0], b.shape[1]) + return a
+ + +
[docs]def append_extra_datapoint(to_data, from_data, index) -> DatasetLike: + """Appends an extra datapoint to the data object ``to_data``. + This datapoint is taken from the data object ``from_data`` at the corresponding index. + One place this could be useful is ensuring no missing classes after train/validation split. + """ + if not (type(from_data) is type(to_data)): + raise ValueError("Cannot append datapoint from different type of data object.") + + if isinstance(to_data, np.ndarray): + return np.vstack([to_data, from_data[index]]) + elif isinstance(from_data, (pd.DataFrame, pd.Series)): + X_extra = from_data.iloc[[index]] # type: ignore + to_data = pd.concat([to_data, X_extra]) + return to_data.reset_index(drop=True) + else: + try: + X_extra = from_data[index] + try: + return to_data.append(X_extra) + except Exception: # special append for sparse matrix + return csr_vstack(to_data, X_extra) + except Exception: + raise TypeError("Data features X must support: X.append(X[i])")
+ + +
[docs]def get_num_classes(labels=None, pred_probs=None, label_matrix=None, multi_label=None) -> int: + """Determines the number of classes based on information considered in a + canonical ordering. label_matrix can be: noise_matrix, inverse_noise_matrix, confident_joint, + or any other K x K matrix where K = number of classes. + """ + if pred_probs is not None: # pred_probs is number 1 source of truth + return pred_probs.shape[1] + + if label_matrix is not None: # matrix dimension is number 2 source of truth + if label_matrix.shape[0] != label_matrix.shape[1]: + raise ValueError(f"label matrix must be K x K, not {label_matrix.shape}") + else: + return label_matrix.shape[0] + + if labels is None: + raise ValueError("Cannot determine number of classes from None input") + + return num_unique_classes(labels, multi_label=multi_label)
+ + +
[docs]def num_unique_classes(labels, multi_label=None) -> int: + """Finds the number of unique classes for both single-labeled + and multi-labeled labels. If multi_label is set to None (default) + this method will infer if multi_label is True or False based on + the format of labels. + This allows for a more general form of multiclass labels that looks + like this: [1, [1,2], [0], [0, 1], 2, 1]""" + return len(get_unique_classes(labels, multi_label))
+ + +
[docs]def get_unique_classes(labels, multi_label=None) -> set: + """Returns the set of unique classes for both single-labeled + and multi-labeled labels. If multi_label is set to None (default) + this method will infer if multi_label is True or False based on + the format of labels. + This allows for a more general form of multiclass labels that looks + like this: [1, [1,2], [0], [0, 1], 2, 1]""" + if multi_label is None: + multi_label = any(isinstance(l, list) for l in labels) + if multi_label: + return set(l for grp in labels for l in list(grp)) + else: + return set(labels)
+ + +
[docs]def format_labels(labels: LabelLike) -> Tuple[np.ndarray, dict]: + """Takes an array of labels and formats it such that labels are in the set ``0, 1, ..., K-1``, + where ``K`` is the number of classes. The labels are assigned based on lexicographic order. + This is useful for mapping string class labels to the integer format required by many cleanlab (and sklearn) functions. + + Returns + ------- + formatted_labels + Returns np.ndarray of shape ``(N,)``. The return labels will be properly formatted and can be passed to other cleanlab functions. + + mapping + A dictionary showing the mapping of new to old labels, such that ``mapping[k]`` returns the name of the k-th class. + """ + labels = labels_to_array(labels) + if labels.ndim != 1: + raise ValueError("labels must be 1D numpy array.") + + unique_labels = np.unique(labels) + label_map = {label: i for i, label in enumerate(unique_labels)} + formatted_labels = np.array([label_map[l] for l in labels]) + inverse_map = {i: label for label, i in label_map.items()} + + return formatted_labels, inverse_map
+ + +
[docs]def smart_display_dataframe(df): # pragma: no cover + """Display a pandas dataframe if in a jupyter notebook, otherwise print it to console.""" + try: + from IPython.display import display + + display(df) + except Exception: + print(df)
+ + +
[docs]def force_two_dimensions(X) -> DatasetLike: + """ + Enforce the dimensionality of a dataset to two dimensions for the use of CleanLearning default classifier, + which is `sklearn.linear_model.LogisticRegression + <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`_. + + Parameters + ---------- + X : np.ndarray or DatasetLike + + Returns + ------- + X : np.ndarray or DatasetLike + The original dataset reduced to two dimensions, so that the dataset will have the shape ``(N, sum(...))``, + where N is still the number of examples. + """ + if X is not None and len(X.shape) > 2: + X = X.reshape((len(X), -1)) + return X
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/internal/validation.html b/v2.6.5/_modules/cleanlab/internal/validation.html new file mode 100644 index 000000000..5f614f711 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/internal/validation.html @@ -0,0 +1,912 @@ + + + + + + + + + + + cleanlab.internal.validation - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.internal.validation

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Checks to ensure valid inputs for various methods.
+"""
+
+from cleanlab.typing import LabelLike, DatasetLike
+from cleanlab.internal.constants import FLOATING_POINT_COMPARISON
+from typing import Any, List, Optional, Union
+import warnings
+import numpy as np
+import pandas as pd
+
+
+
[docs]def assert_valid_inputs( + X: DatasetLike, + y: LabelLike, + pred_probs: Optional[np.ndarray] = None, + multi_label: bool = False, + allow_missing_classes: bool = True, + allow_one_class: bool = False, +) -> None: + """Checks that ``X``, ``labels``, ``pred_probs`` are correctly formatted.""" + if not isinstance(y, (list, np.ndarray, np.generic, pd.Series, pd.DataFrame)): + raise TypeError("labels should be a numpy array or pandas Series.") + if not multi_label: + y = labels_to_array(y) + assert_valid_class_labels( + y=y, allow_missing_classes=allow_missing_classes, allow_one_class=allow_one_class + ) + + allow_empty_X = True + if pred_probs is None: + allow_empty_X = False + try: + import tensorflow + + if isinstance(X, tensorflow.data.Dataset): + allow_empty_X = True # length of X may differ due to batch-size used in tf Dataset, so don't check it + except Exception: + pass + + if not allow_empty_X: + assert_nonempty_input(X) + try: + num_examples = len(X) + len_supported = True + except: + len_supported = False + if not len_supported: + try: + num_examples = X.shape[0] + shape_supported = True + except: + shape_supported = False + if (not len_supported) and (not shape_supported): + raise TypeError("Data features X must support either: len(X) or X.shape[0]") + + if num_examples != len(y): + raise ValueError( + f"X and labels must be same length, but X is length {num_examples} and labels is length {len(y)}." + ) + + assert_indexing_works(X, length_X=num_examples) + + if pred_probs is not None: + if not isinstance(pred_probs, (np.ndarray, np.generic)): + raise TypeError("pred_probs must be a numpy array.") + if len(pred_probs) != len(y): + raise ValueError("pred_probs and labels must have same length.") + if len(pred_probs.shape) != 2: + raise ValueError("pred_probs array must have shape: num_examples x num_classes.") + if not multi_label: + assert isinstance(y, np.ndarray) + highest_class = max(y) + 1 + else: + assert isinstance(y, list) + assert all(isinstance(y_i, list) for y_i in y) + highest_class = max([max(y_i) for y_i in y if len(y_i) != 0]) + 1 + if pred_probs.shape[1] < highest_class: + raise ValueError( + f"pred_probs must have at least {highest_class} columns, based on the largest class index which appears in labels." + ) + # Check for valid probabilities. + if (np.min(pred_probs) < 0 - FLOATING_POINT_COMPARISON) or ( + np.max(pred_probs) > 1 + FLOATING_POINT_COMPARISON + ): + raise ValueError("Values in pred_probs must be between 0 and 1.") + if X is not None: + warnings.warn("When X and pred_probs are both provided, the former may be ignored.")
+ + +
[docs]def assert_valid_class_labels( + y: np.ndarray, + allow_missing_classes: bool = True, + allow_one_class: bool = False, +) -> None: + """Checks that ``labels`` is properly formatted, i.e. a 1D numpy array where labels are zero-based + integers (not multi-label). + """ + if y.ndim != 1: + raise ValueError("Labels must be 1D numpy array.") + if any([isinstance(label, str) for label in y]): + raise ValueError( + "Labels cannot be strings, they must be zero-indexed integers corresponding to class indices." + ) + if not np.equal(np.mod(y, 1), 0).all(): # check that labels are integers + raise ValueError("Labels must be zero-indexed integers corresponding to class indices.") + if min(y) < 0: + raise ValueError("Labels must be positive integers corresponding to class indices.") + + unique_classes = np.unique(y) + if (not allow_one_class) and (len(unique_classes) < 2): + raise ValueError("Labels must contain at least 2 classes.") + + if not allow_missing_classes: + if (unique_classes != np.arange(len(unique_classes))).any(): + msg = "cleanlab requires zero-indexed integer labels (0,1,2,..,K-1), but in " + msg += "your case: np.unique(labels) = {}. ".format(str(unique_classes)) + msg += "Every class in (0,1,2,..,K-1) must be present in labels as well." + raise TypeError(msg)
+ + +
[docs]def assert_nonempty_input(X: Any) -> None: + """Ensures input is not None.""" + if X is None: + raise ValueError("Data features X cannot be None. Currently X is None.")
+ + +
[docs]def assert_indexing_works( + X: DatasetLike, idx: Optional[List[int]] = None, length_X: Optional[int] = None +) -> None: + """Ensures we can do list-based indexing into ``X`` and ``y``. + ``length_X`` is an optional argument since sparse matrix ``X`` + does not support: ``len(X)`` and we want this method to work for sparse ``X`` + (in addition to many other types of ``X``). + """ + if idx is None: + if length_X is None: + length_X = 2 # pragma: no cover + + idx = [0, length_X - 1] + + is_indexed = False + try: + if isinstance(X, (pd.DataFrame, pd.Series)): + _ = X.iloc[idx] # type: ignore[call-overload] + is_indexed = True + except Exception: + pass + if not is_indexed: + try: # check if X is pytorch Dataset object using lazy import + import torch + + if isinstance(X, torch.utils.data.Dataset): # indexing for pytorch Dataset + _ = torch.utils.data.Subset(X, idx) # type: ignore[call-overload] + is_indexed = True + except Exception: + pass + if not is_indexed: + try: # check if X is tensorflow Dataset object using lazy import + import tensorflow as tf + + if isinstance(X, tf.data.Dataset): + is_indexed = True # skip check for tensorflow Dataset (too expensive) + except Exception: + pass + if not is_indexed: + try: + _ = X[idx] # type: ignore[call-overload] + except Exception: + msg = ( + "Data features X must support list-based indexing; i.e. one of these must work: \n" + ) + msg += "1) X[index_list] where say index_list = [0,1,3,10], or \n" + msg += "2) X.iloc[index_list] if X is pandas DataFrame." + raise TypeError(msg)
+ + +
[docs]def labels_to_array(y: Union[LabelLike, np.generic]) -> np.ndarray: + """Converts different types of label objects to 1D numpy array and checks their validity. + + Parameters + ---------- + y : Union[LabelLike, np.generic] + Labels to convert to 1D numpy array. Can be a list, numpy array, pandas Series, or pandas DataFrame. + + Returns + ------- + labels_array : np.ndarray + 1D numpy array of labels. + """ + if isinstance(y, pd.Series): + y_series: np.ndarray = y.to_numpy() + return y_series + elif isinstance(y, pd.DataFrame): + y_arr = y.values + assert isinstance(y_arr, np.ndarray) + if y_arr.shape[1] != 1: + raise ValueError("labels must be one dimensional.") + return y_arr.flatten() + else: # y is list, np.ndarray, or some other tuple-like object + try: + return np.asarray(y) + except: + raise ValueError( + "List of labels must be convertable to 1D numpy array via: np.ndarray(labels)." + )
+ + +
[docs]def labels_to_list_multilabel(y: List) -> List[List[int]]: + """Converts different types of label objects to nested list and checks their validity. + + Parameters + ---------- + y : List + Labels to convert to nested list. Supports only list type. + + Returns + ------- + labels_list : List[List[int]] + Nested list of labels. + """ + if not isinstance(y, list): + raise ValueError("Unsupported Label format") + if not all(isinstance(x, list) for x in y): + raise ValueError("Each element in list of labels must be a list.") + + return y
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/models/keras.html b/v2.6.5/_modules/cleanlab/models/keras.html new file mode 100644 index 000000000..726437fdc --- /dev/null +++ b/v2.6.5/_modules/cleanlab/models/keras.html @@ -0,0 +1,954 @@ + + + + + + + + + + + cleanlab.models.keras - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.models.keras

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Wrapper class you can use to make any Keras model compatible with :py:class:`CleanLearning <cleanlab.classification.CleanLearning>` and sklearn.
+Use :py:class:`KerasWrapperModel<cleanlab.experimental.keras.KerasWrapperModel>` to wrap existing functional API code for ``keras.Model`` objects,
+and :py:class:`KerasWrapperSequential<cleanlab.experimental.keras.KerasWrapperSequential>` to wrap existing ``tf.keras.models.Sequential`` objects.
+Most of the instance methods of this class work the same as the ones for the wrapped Keras model,
+see the `Keras documentation <https://keras.io/>`_ for details.
+
+This is a good example of making any bespoke neural network compatible with cleanlab.
+
+You must have `Tensorflow 2 installed <https://www.tensorflow.org/install>`_ (only compatible with Python versions >= 3.7).
+This wrapper class is only fully compatible with ``tensorflow<2.11``, if using ``tensorflow>=2.11``, 
+please replace your Optimizer class with the legacy Optimizer `here <https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/legacy/Optimizer>`_.
+
+.. warning::
+
+    For those on TensorFlow version 2.16 or higher, please note that direct compatibility is not yet fully established.
+    We are actively working to extend support to these newer versions.
+    
+    In the interim, users are advised to use TensorFlow versions up to 2.15 to ensure stability and maintain compatibility.
+    This can be done by specifying the TensorFlow version in your package manager, for example:
+    
+    .. code-block::
+        
+        pip install tensorflow<2.16
+    
+    This approach ensures that you can continue utilizing the full functionality of this wrapper class until an update accommodating newer TensorFlow versions is released.
+
+Tips:
+
+* If this class lacks certain functionality, you can alternatively try `scikeras <https://github.com/adriangb/scikeras>`_.
+* Unlike scikeras, our `KerasWrapper` classes can operate directly on ``tensorflow.data.Dataset`` objects (like regular Keras models).
+* To call ``fit()`` on a tensorflow ``Dataset`` object with a Keras model, the ``Dataset`` should already be batched.
+* Check out our example using this class: `huggingface_keras_imdb <https://github.com/cleanlab/examples/blob/master/huggingface_keras_imdb/huggingface_keras_imdb.ipynb>`_
+* Our `unit tests <https://github.com/cleanlab/cleanlab/blob/master/tests/test_frameworks.py>`_ also provide basic usage examples.
+
+"""
+
+import tensorflow as tf
+import keras  # type: ignore
+import numpy as np
+from typing import Callable, Optional
+
+
+
[docs]class KerasWrapperModel: + """Takes in a callable function to instantiate a Keras Model (using Keras functional API) + that is compatible with :py:class:`CleanLearning <cleanlab.classification.CleanLearning>` and sklearn. + + The instance methods of this class work in the same way as those of any ``keras.Model`` object, see the `Keras documentation <https://keras.io/>`_ for details. + For using Keras sequential instead of functional API, see the :py:class:`KerasWrapperSequential<cleanlab.experimental.keras.KerasWrapperSequential>` class. + + Parameters + ---------- + model: Callable + A callable function to construct the Keras Model (using functional API). Pass in the function here, not the constructed model! + + For example:: + + def model(num_features, num_classes): + inputs = tf.keras.Input(shape=(num_features,)) + outputs = tf.keras.layers.Dense(num_classes)(inputs) + return tf.keras.Model(inputs=inputs, outputs=outputs, name="my_keras_model") + + model_kwargs: dict, default = {} + Dict of optional keyword arguments to pass into ``model()`` when instantiating the ``keras.Model``. + + compile_kwargs: dict, default = {"loss": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)} + Dict of optional keyword arguments to pass into ``model.compile()`` for declaring loss, metrics, optimizer, etc. + """ + + def __init__( + self, + model: Callable, + model_kwargs: dict = {}, + compile_kwargs: dict = { + "loss": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) + }, + params: Optional[dict] = None, + ): + if params is None: + params = {} + + self.model = model + self.model_kwargs = model_kwargs + self.compile_kwargs = compile_kwargs + self.params = params + self.net = None + +
[docs] def get_params(self, deep=True): + """Returns the parameters of the Keras model.""" + return { + "model": self.model, + "model_kwargs": self.model_kwargs, + "compile_kwargs": self.compile_kwargs, + "params": self.params, + }
+ +
[docs] def set_params(self, **params): + """Set the parameters of the Keras model.""" + self.params.update(params) + return self
+ +
[docs] def fit(self, X, y=None, **kwargs): + """Trains a Keras model. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + If ``X`` is a tensorflow dataset object, it must already contain the labels as is required for standard Keras fit. + + y : np.array or pd.DataFrame, default = None + If ``X`` is a tensorflow dataset object, you can optionally provide the labels again here as argument `y` to be compatible with sklearn, + but they are ignored. + If ``X`` is a numpy array or pandas dataframe, the labels have to be passed in using this argument. + """ + if self.net is None: + self.net = self.model(**self.model_kwargs) + self.net.compile(**self.compile_kwargs) + + # TODO: check for generators + if y is not None and not isinstance(X, (tf.data.Dataset, keras.utils.Sequence)): + kwargs["y"] = y + + self.net.fit(X, **{**self.params, **kwargs})
+ +
[docs] def predict_proba(self, X, *, apply_softmax=True, **kwargs): + """Predict class probabilities for all classes using the wrapped Keras model. + Set extra argument `apply_softmax` to True to indicate your network only outputs logits not probabilities. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + Data in the same format as the original ``X`` provided to ``fit()``. + """ + if self.net is None: + raise ValueError("must call fit() before predict()") + pred_probs = self.net.predict(X, **kwargs) + if apply_softmax: + pred_probs = tf.nn.softmax(pred_probs, axis=1) + return pred_probs
+ +
[docs] def predict(self, X, **kwargs): + """Predict class labels using the wrapped Keras model. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + Data in the same format as the original ``X`` provided to ``fit()``. + + """ + pred_probs = self.predict_proba(X, **kwargs) + return np.argmax(pred_probs, axis=1)
+ +
[docs] def summary(self, **kwargs): + """Returns the summary of the Keras model.""" + if self.net is None: + self.net = self.model(**self.model_kwargs) + self.net.compile(**self.compile_kwargs) + + return self.net.summary(**kwargs)
+ + +
[docs]class KerasWrapperSequential: + """Makes any ``tf.keras.models.Sequential`` object compatible with :py:class:`CleanLearning <cleanlab.classification.CleanLearning>` and sklearn. + + `KerasWrapperSequential` is instantiated in the same way as a keras ``Sequential`` object, except for optional extra `compile_kwargs` argument. + Just instantiate this object in the same way as your ``tf.keras.models.Sequential`` object (rather than passing in an existing ``Sequential`` object). + The instance methods of this class work in the same way as those of any keras ``Sequential`` object, see the `Keras documentation <https://keras.io/>`_ for details. + + Parameters + ---------- + layers: list + A list containing the layers to add to the keras ``Sequential`` model (same as for ``tf.keras.models.Sequential``). + + name: str, default = None + Name for the Keras model (same as for ``tf.keras.models.Sequential``). + + compile_kwargs: dict, default = {"loss": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)} + Dict of optional keyword arguments to pass into ``model.compile()`` for declaring loss, metrics, optimizer, etc. + """ + + def __init__( + self, + layers: Optional[list] = None, + name: Optional[str] = None, + compile_kwargs: dict = { + "loss": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) + }, + params: Optional[dict] = None, + ): + if params is None: + params = {} + + self.layers = layers + self.name = name + self.compile_kwargs = compile_kwargs + self.params = params + self.net = None + +
[docs] def get_params(self, deep=True): + """Returns the parameters of the Keras model.""" + return { + "layers": self.layers, + "name": self.name, + "compile_kwargs": self.compile_kwargs, + "params": self.params, + }
+ +
[docs] def set_params(self, **params): + """Set the parameters of the Keras model.""" + self.params.update(params) + return self
+ +
[docs] def fit(self, X, y=None, **kwargs): + """Trains a Sequential Keras model. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + If ``X`` is a tensorflow dataset object, it must already contain the labels as is required for standard Keras fit. + + y : np.array or pd.DataFrame, default = None + If ``X`` is a tensorflow dataset object, you can optionally provide the labels again here as argument `y` to be compatible with sklearn, + but they are ignored. + If ``X`` is a numpy array or pandas dataframe, the labels have to be passed in using this argument. + """ + if self.net is None: + self.net = tf.keras.models.Sequential(self.layers, self.name) + self.net.compile(**self.compile_kwargs) + + # TODO: check for generators + if y is not None and not isinstance(X, (tf.data.Dataset, keras.utils.Sequence)): + kwargs["y"] = y + + self.net.fit(X, **{**self.params, **kwargs})
+ +
[docs] def predict_proba(self, X, *, apply_softmax=True, **kwargs): + """Predict class probabilities for all classes using the wrapped Keras model. + Set extra argument `apply_softmax` to True to indicate your network only outputs logits not probabilities. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + Data in the same format as the original ``X`` provided to ``fit()``. + """ + if self.net is None: + raise ValueError("must call fit() before predict()") + pred_probs = self.net.predict(X, **kwargs) + if apply_softmax: + pred_probs = tf.nn.softmax(pred_probs, axis=1) + return pred_probs
+ +
[docs] def predict(self, X, **kwargs): + """Predict class labels using the wrapped Keras model. + + Parameters + ---------- + X : tf.Dataset or np.array or pd.DataFrame + Data in the same format as the original ``X`` provided to ``fit()``. + """ + pred_probs = self.predict_proba(X, **kwargs) + return np.argmax(pred_probs, axis=1)
+ +
[docs] def summary(self, **kwargs): + """Returns the summary of the Keras model.""" + if self.net is None: + self.net = tf.keras.models.Sequential(self.layers, self.name) + self.net.compile(**self.compile_kwargs) + + return self.net.summary(**kwargs)
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/multiannotator.html b/v2.6.5/_modules/cleanlab/multiannotator.html new file mode 100644 index 000000000..d7e3f3079 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/multiannotator.html @@ -0,0 +1,2608 @@ + + + + + + + + + + + cleanlab.multiannotator - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.multiannotator

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods for analysis of classification data labeled by multiple annotators.
+
+To analyze a fixed dataset labeled by multiple annotators, use the
+`~cleanlab.multiannotator.get_label_quality_multiannotator` function which estimates:
+
+* A consensus label for each example that aggregates the individual annotations more accurately than alternative aggregation via majority-vote or other algorithms used in crowdsourcing like Dawid-Skene.
+* A quality score for each consensus label which measures our confidence that this label is correct.
+* An analogous label quality score for each individual label chosen by one annotator for a particular example.
+* An overall quality score for each annotator which measures our confidence in the overall correctness of labels obtained from this annotator.
+
+The algorithms to compute these estimates are described in `the CROWDLAB paper <https://arxiv.org/abs/2210.06812>`_.
+
+If you have some labeled and unlabeled data (with multiple annotators for some labeled examples) and want to decide what data to collect additional labels for,
+use the `~cleanlab.multiannotator.get_active_learning_scores` function, which is intended for active learning.
+This function estimates an ActiveLab quality score for each example,
+which can be used to prioritize which examples are most informative to collect additional labels for.
+This function is effective for settings where some examples have been labeled by one or more annotators and other examples can have no labels at all so far,
+as well as settings where new labels are collected either in batches of examples or one at a time.
+Here is an `example notebook <https://github.com/cleanlab/examples/blob/master/active_learning_multiannotator/active_learning.ipynb>`_ showcasing the use of this ActiveLab method for active learning with data re-labeling.
+
+The algorithms to compute these active learning scores are described in `the ActiveLab paper <https://arxiv.org/abs/2301.11856>`_.
+
+Each of the main functions in this module utilizes any trained classifier model.
+Variants of these functions are provided for settings where you have trained an ensemble of multiple models.
+"""
+
+import warnings
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import pandas as pd
+
+from cleanlab.internal.constants import CLIPPING_LOWER_BOUND
+from cleanlab.internal.multiannotator_utils import (
+    assert_valid_inputs_multiannotator,
+    assert_valid_pred_probs,
+    check_consensus_label_classes,
+    find_best_temp_scaler,
+    temp_scale_pred_probs,
+)
+from cleanlab.internal.util import get_num_classes, value_counts
+from cleanlab.rank import get_label_quality_scores
+
+
+
[docs]def get_label_quality_multiannotator( + labels_multiannotator: Union[pd.DataFrame, np.ndarray], + pred_probs: np.ndarray, + *, + consensus_method: Union[str, List[str]] = "best_quality", + quality_method: str = "crowdlab", + calibrate_probs: bool = False, + return_detailed_quality: bool = True, + return_annotator_stats: bool = True, + return_weights: bool = False, + verbose: bool = True, + label_quality_score_kwargs: dict = {}, +) -> Dict[str, Any]: + """Returns label quality scores for each example and for each annotator in a dataset labeled by multiple annotators. + + This function is for multiclass classification datasets where examples have been labeled by + multiple annotators (not necessarily the same number of annotators per example). + + It computes one consensus label for each example that best accounts for the labels chosen by each + annotator (and their quality), as well as a consensus quality score for how confident we are that this consensus label is actually correct. + It also computes similar quality scores for each annotator's individual labels, and the quality of each annotator. + Scores are between 0 and 1 (estimated via methods like CROWDLAB); lower scores indicate labels/annotators less likely to be correct. + + To decide what data to collect additional labels for, try the `~cleanlab.multiannotator.get_active_learning_scores` + (ActiveLab) function, which is intended for active learning with multiple annotators. + + Parameters + ---------- + labels_multiannotator : pd.DataFrame or np.ndarray + 2D pandas DataFrame or array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + ``labels_multiannotator[n][m]`` = label for n-th example given by m-th annotator. + + For a dataset with K classes, each given label must be an integer in 0, 1, ..., K-1 or ``NaN`` if this annotator did not label a particular example. + If you have string or other differently formatted labels, you can convert them to the proper format using :py:func:`format_multiannotator_labels <cleanlab.internal.multiannotator_utils.format_multiannotator_labels>`. + If pd.DataFrame, column names should correspond to each annotator's ID. + pred_probs : np.ndarray + An array of shape ``(N, K)`` of predicted class probabilities from a trained classifier model. + Predicted probabilities in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + consensus_method : str or List[str], default = "majority_vote" + Specifies the method used to aggregate labels from multiple annotators into a single consensus label. + Options include: + + * ``majority_vote``: consensus obtained using a simple majority vote among annotators, with ties broken via ``pred_probs``. + * ``best_quality``: consensus obtained by selecting the label with highest label quality (quality determined by method specified in ``quality_method``). + + A List may be passed if you want to consider multiple methods for producing consensus labels. + If a List is passed, then the 0th element of the list is the method used to produce columns `consensus_label`, `consensus_quality_score`, `annotator_agreement` in the returned DataFrame. + The remaning (1st, 2nd, 3rd, etc.) elements of this list are output as extra columns in the returned pandas DataFrame with names formatted as: + `consensus_label_SUFFIX`, `consensus_quality_score_SUFFIX` where `SUFFIX` = each element of this + list, which must correspond to a valid method for computing consensus labels. + quality_method : str, default = "crowdlab" + Specifies the method used to calculate the quality of the consensus label. + Options include: + + * ``crowdlab``: an emsemble method that weighs both the annotators' labels as well as the model's prediction. + * ``agreement``: the fraction of annotators that agree with the consensus label. + calibrate_probs : bool, default = False + Boolean value that specifies whether the provided `pred_probs` should be re-calibrated to better match the annotators' empirical label distribution. + We recommend setting this to True in active learning applications, in order to prevent overconfident models from suggesting the wrong examples to collect labels for. + return_detailed_quality: bool, default = True + Boolean to specify if `detailed_label_quality` is returned. + return_annotator_stats : bool, default = True + Boolean to specify if `annotator_stats` is returned. + return_weights : bool, default = False + Boolean to specify if `model_weight` and `annotator_weight` is returned. + Model and annotator weights are applicable for ``quality_method == crowdlab``, will return ``None`` for any other quality methods. + verbose : bool, default = True + Important warnings and other printed statements may be suppressed if ``verbose`` is set to ``False``. + label_quality_score_kwargs : dict, optional + Keyword arguments to pass into :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + + Returns + ------- + labels_info : dict + Dictionary containing up to 5 pandas DataFrame with keys as below: + + ``label_quality`` : pandas.DataFrame + pandas DataFrame in which each row corresponds to one example, with columns: + + * ``num_annotations``: the number of annotators that have labeled each example. + * ``consensus_label``: the single label that is best for each example (you can control how it is derived from all annotators' labels via the argument: ``consensus_method``). + * ``annotator_agreement``: the fraction of annotators that agree with the consensus label (only consider the annotators that labeled that particular example). + * ``consensus_quality_score``: label quality score for consensus label, calculated by the method specified in ``quality_method``. + + ``detailed_label_quality`` : pandas.DataFrame + Only returned if `return_detailed_quality=True`. + Returns a pandas DataFrame with columns `quality_annotator_1`, `quality_annotator_2`, ..., `quality_annotator_M` where each entry is + the label quality score for the labels provided by each annotator (is ``NaN`` for examples which this annotator did not label). + + ``annotator_stats`` : pandas.DataFrame + Only returned if `return_annotator_stats=True`. + Returns overall statistics about each annotator, sorted by lowest annotator_quality first. + pandas DataFrame in which each row corresponds to one annotator (the row IDs correspond to annotator IDs), with columns: + + * ``annotator_quality``: overall quality of a given annotator's labels, calculated by the method specified in ``quality_method``. + * ``num_examples_labeled``: number of examples annotated by a given annotator. + * ``agreement_with_consensus``: fraction of examples where a given annotator agrees with the consensus label. + * ``worst_class``: the class that is most frequently mislabeled by a given annotator. + + ``model_weight`` : float + Only returned if `return_weights=True`. It is only applicable for ``quality_method == crowdlab``. + The model weight specifies the weight of classifier model in weighted averages used to estimate label quality + This number is an estimate of how trustworthy the model is relative the annotators. + + ``annotator_weight`` : np.ndarray + Only returned if `return_weights=True`. It is only applicable for ``quality_method == crowdlab``. + An array of shape ``(M,)`` where M is the number of annotators, specifying the weight of each annotator in weighted averages used to estimate label quality. + These weights are estimates of how trustworthy each annotator is relative to the other annotators. + + """ + + if isinstance(labels_multiannotator, pd.DataFrame): + annotator_ids = labels_multiannotator.columns + index_col = labels_multiannotator.index + labels_multiannotator = ( + labels_multiannotator.replace({pd.NA: np.NaN}).astype(float).to_numpy() + ) + elif isinstance(labels_multiannotator, np.ndarray): + annotator_ids = None + index_col = None + else: + raise ValueError("labels_multiannotator must be either a NumPy array or Pandas DataFrame.") + + if return_weights == True and quality_method != "crowdlab": + raise ValueError( + "Model and annotator weights are only applicable to the crowdlab quality method. " + "Either set return_weights=False or quality_method='crowdlab'." + ) + + assert_valid_inputs_multiannotator( + labels_multiannotator, pred_probs, annotator_ids=annotator_ids + ) + + # Count number of non-NaN values for each example + num_annotations = np.sum(~np.isnan(labels_multiannotator), axis=1) + + # calibrate pred_probs + if calibrate_probs: + optimal_temp = find_best_temp_scaler(labels_multiannotator, pred_probs) + pred_probs = temp_scale_pred_probs(pred_probs, optimal_temp) + + if not isinstance(consensus_method, list): + consensus_method = [consensus_method] + + if "best_quality" in consensus_method or "majority_vote" in consensus_method: + majority_vote_label = get_majority_vote_label( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + verbose=False, + ) + ( + MV_annotator_agreement, + MV_consensus_quality_score, + MV_post_pred_probs, + MV_model_weight, + MV_annotator_weight, + ) = _get_consensus_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + num_annotations=num_annotations, + consensus_label=majority_vote_label, + quality_method=quality_method, + verbose=verbose, + label_quality_score_kwargs=label_quality_score_kwargs, + ) + + label_quality = pd.DataFrame({"num_annotations": num_annotations}, index=index_col) + valid_methods = ["majority_vote", "best_quality"] + main_method = True + + for curr_method in consensus_method: + # geting consensus label and stats + if curr_method == "majority_vote": + consensus_label = majority_vote_label + annotator_agreement = MV_annotator_agreement + consensus_quality_score = MV_consensus_quality_score + post_pred_probs = MV_post_pred_probs + model_weight = MV_model_weight + annotator_weight = MV_annotator_weight + + elif curr_method == "best_quality": + consensus_label = np.full(len(majority_vote_label), np.nan) + for i in range(len(consensus_label)): + max_pred_probs_ind = np.where( + MV_post_pred_probs[i] == np.max(MV_post_pred_probs[i]) + )[0] + if len(max_pred_probs_ind) == 1: + consensus_label[i] = max_pred_probs_ind[0] + else: + consensus_label[i] = majority_vote_label[i] + consensus_label = consensus_label.astype(int) # convert all label types to int + + ( + annotator_agreement, + consensus_quality_score, + post_pred_probs, + model_weight, + annotator_weight, + ) = _get_consensus_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + num_annotations=num_annotations, + consensus_label=consensus_label, + quality_method=quality_method, + verbose=verbose, + label_quality_score_kwargs=label_quality_score_kwargs, + ) + + else: + raise ValueError( + f""" + {curr_method} is not a valid consensus method! + Please choose a valid consensus_method: {valid_methods} + """ + ) + + if verbose: + # check if any classes no longer appear in the set of consensus labels + check_consensus_label_classes( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + consensus_method=curr_method, + ) + + # saving stats into dataframe, computing additional stats if specified + if main_method: + ( + label_quality["consensus_label"], + label_quality["consensus_quality_score"], + label_quality["annotator_agreement"], + ) = ( + consensus_label, + consensus_quality_score, + annotator_agreement, + ) + + label_quality = label_quality.reindex( + columns=[ + "consensus_label", + "consensus_quality_score", + "annotator_agreement", + "num_annotations", + ] + ) + + # default variable for _get_annotator_stats + detailed_label_quality = None + + if return_detailed_quality: + # Compute the label quality scores for each annotators' labels + detailed_label_quality = np.apply_along_axis( + _get_annotator_label_quality_score, + axis=0, + arr=labels_multiannotator, + pred_probs=post_pred_probs, + label_quality_score_kwargs=label_quality_score_kwargs, + ) + detailed_label_quality_df = pd.DataFrame( + detailed_label_quality, index=index_col, columns=annotator_ids + ).add_prefix("quality_annotator_") + + if return_annotator_stats: + annotator_stats = _get_annotator_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=post_pred_probs, + consensus_label=consensus_label, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + model_weight=model_weight, + annotator_weight=annotator_weight, + consensus_quality_score=consensus_quality_score, + detailed_label_quality=detailed_label_quality, + annotator_ids=annotator_ids, + quality_method=quality_method, + ) + + main_method = False + + else: + ( + label_quality[f"consensus_label_{curr_method}"], + label_quality[f"consensus_quality_score_{curr_method}"], + label_quality[f"annotator_agreement_{curr_method}"], + ) = ( + consensus_label, + consensus_quality_score, + annotator_agreement, + ) + + labels_info = { + "label_quality": label_quality, + } + + if return_detailed_quality: + labels_info["detailed_label_quality"] = detailed_label_quality_df + if return_annotator_stats: + labels_info["annotator_stats"] = annotator_stats + if return_weights: + labels_info["model_weight"] = model_weight + labels_info["annotator_weight"] = annotator_weight + + return labels_info
+ + +
[docs]def get_label_quality_multiannotator_ensemble( + labels_multiannotator: Union[pd.DataFrame, np.ndarray], + pred_probs: np.ndarray, + *, + calibrate_probs: bool = False, + return_detailed_quality: bool = True, + return_annotator_stats: bool = True, + return_weights: bool = False, + verbose: bool = True, + label_quality_score_kwargs: dict = {}, +) -> Dict[str, Any]: + """Returns label quality scores for each example and for each annotator, based on predictions from an ensemble of models. + + This function is similar to `~cleanlab.multiannotator.get_label_quality_multiannotator` but for settings where + you have trained an ensemble of multiple classifier models rather than a single model. + + Parameters + ---------- + labels_multiannotator : pd.DataFrame or np.ndarray + Multiannotator labels in the same format expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + pred_probs : np.ndarray + An array of shape ``(P, N, K)`` where P is the number of models, consisting of predicted class probabilities from the ensemble models. + Each set of predicted probabilities with shape ``(N, K)`` is in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + calibrate_probs : bool, default = False + Boolean value as expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + return_detailed_quality: bool, default = True + Boolean value as expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + return_annotator_stats : bool, default = True + Boolean value as expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + return_weights : bool, default = False + Boolean value as expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + verbose : bool, default = True + Boolean value as expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + label_quality_score_kwargs : dict, optional + Keyword arguments in the same format expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + Returns + ------- + labels_info : dict + Dictionary containing up to 5 pandas DataFrame with keys as below: + + ``label_quality`` : pandas.DataFrame + Similar to output as `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + ``detailed_label_quality`` : pandas.DataFrame + Similar to output as `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + ``annotator_stats`` : pandas.DataFrame + Similar to output as `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + ``model_weight`` : np.ndarray + Only returned if `return_weights=True`. + An array of shape ``(P,)`` where is the number of models in the ensemble, specifying the weight of each classifier model in weighted averages used to estimate label quality. + These weigthts is an estimate of how trustworthy the model is relative the annotators. + An array of shape ``(P,)`` where is the number of models in the ensemble, specifying the model weight used in weighted averages. + + ``annotator_weight`` : np.ndarray + Only returned if `return_weights=True`. + Similar to output as `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + See Also + -------- + get_label_quality_multiannotator + """ + if isinstance(labels_multiannotator, pd.DataFrame): + annotator_ids = labels_multiannotator.columns + index_col = labels_multiannotator.index + labels_multiannotator = ( + labels_multiannotator.replace({pd.NA: np.NaN}).astype(float).to_numpy() + ) + elif isinstance(labels_multiannotator, np.ndarray): + annotator_ids = None + index_col = None + else: + raise ValueError("labels_multiannotator must be either a NumPy array or Pandas DataFrame.") + + assert_valid_inputs_multiannotator( + labels_multiannotator, pred_probs, ensemble=True, annotator_ids=annotator_ids + ) + + # Count number of non-NaN values for each example + num_annotations = np.sum(~np.isnan(labels_multiannotator), axis=1) + + # temp scale pred_probs + if calibrate_probs: + for i in range(len(pred_probs)): + curr_pred_probs = pred_probs[i] + optimal_temp = find_best_temp_scaler(labels_multiannotator, curr_pred_probs) + pred_probs[i] = temp_scale_pred_probs(curr_pred_probs, optimal_temp) + + label_quality = pd.DataFrame({"num_annotations": num_annotations}, index=index_col) + + # get majority vote stats + avg_pred_probs = np.mean(pred_probs, axis=0) + majority_vote_label = get_majority_vote_label( + labels_multiannotator=labels_multiannotator, + pred_probs=avg_pred_probs, + verbose=False, + ) + ( + MV_annotator_agreement, + MV_consensus_quality_score, + MV_post_pred_probs, + MV_model_weight, + MV_annotator_weight, + ) = _get_consensus_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + num_annotations=num_annotations, + consensus_label=majority_vote_label, + verbose=verbose, + ensemble=True, + **label_quality_score_kwargs, + ) + + # get crowdlab stats + consensus_label = np.full(len(majority_vote_label), np.nan) + for i in range(len(consensus_label)): + max_pred_probs_ind = np.where(MV_post_pred_probs[i] == np.max(MV_post_pred_probs[i]))[0] + if len(max_pred_probs_ind) == 1: + consensus_label[i] = max_pred_probs_ind[0] + else: + consensus_label[i] = majority_vote_label[i] + consensus_label = consensus_label.astype(int) # convert all label types to int + + ( + annotator_agreement, + consensus_quality_score, + post_pred_probs, + model_weight, + annotator_weight, + ) = _get_consensus_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + num_annotations=num_annotations, + consensus_label=consensus_label, + verbose=verbose, + ensemble=True, + **label_quality_score_kwargs, + ) + + if verbose: + # check if any classes no longer appear in the set of consensus labels + check_consensus_label_classes( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + consensus_method="crowdlab", + ) + + ( + label_quality["consensus_label"], + label_quality["consensus_quality_score"], + label_quality["annotator_agreement"], + ) = ( + consensus_label, + consensus_quality_score, + annotator_agreement, + ) + + label_quality = label_quality.reindex( + columns=[ + "consensus_label", + "consensus_quality_score", + "annotator_agreement", + "num_annotations", + ] + ) + + # default variable for _get_annotator_stats + detailed_label_quality = None + + if return_detailed_quality: + # Compute the label quality scores for each annotators' labels + detailed_label_quality = np.apply_along_axis( + _get_annotator_label_quality_score, + axis=0, + arr=labels_multiannotator, + pred_probs=post_pred_probs, + label_quality_score_kwargs=label_quality_score_kwargs, + ) + detailed_label_quality_df = pd.DataFrame( + detailed_label_quality, index=index_col, columns=annotator_ids + ).add_prefix("quality_annotator_") + + if return_annotator_stats: + annotator_stats = _get_annotator_stats( + labels_multiannotator=labels_multiannotator, + pred_probs=post_pred_probs, + consensus_label=consensus_label, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + model_weight=np.mean(model_weight), # use average model weight when scoring annotators + annotator_weight=annotator_weight, + consensus_quality_score=consensus_quality_score, + detailed_label_quality=detailed_label_quality, + annotator_ids=annotator_ids, + ) + + labels_info = { + "label_quality": label_quality, + } + + if return_detailed_quality: + labels_info["detailed_label_quality"] = detailed_label_quality_df + if return_annotator_stats: + labels_info["annotator_stats"] = annotator_stats + if return_weights: + labels_info["model_weight"] = model_weight + labels_info["annotator_weight"] = annotator_weight + + return labels_info
+ + +
[docs]def get_active_learning_scores( + labels_multiannotator: Optional[Union[pd.DataFrame, np.ndarray]] = None, + pred_probs: Optional[np.ndarray] = None, + pred_probs_unlabeled: Optional[np.ndarray] = None, +) -> Tuple[np.ndarray, np.ndarray]: + """Returns an ActiveLab quality score for each example in the dataset, to estimate which examples are most informative to (re)label next in active learning. + + We consider settings where one example can be labeled by one or more annotators and some examples have no labels at all so far. + + The score is in between 0 and 1, and can be used to prioritize what data to collect additional labels for. + Lower scores indicate examples whose true label we are least confident about based on the current data; + collecting additional labels for these low-scoring examples will be more informative than collecting labels for other examples. + To use an annotation budget most efficiently, select a batch of examples with the lowest scores and collect one additional label for each example, + and repeat this process after retraining your classifier. + + You can use this function to get active learning scores for: examples that already have one or more labels (specify ``labels_multiannotator`` and ``pred_probs`` + as arguments), or for unlabeled examples (specify ``pred_probs_unlabeled``), or for both types of examples (specify all of the above arguments). + + To analyze a fixed dataset labeled by multiple annotators rather than collecting additional labels, try the + `~cleanlab.multiannotator.get_label_quality_multiannotator` (CROWDLAB) function instead. + + Parameters + ---------- + labels_multiannotator : pd.DataFrame or np.ndarray, optional + 2D pandas DataFrame or array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. Note that this function also works with + datasets where there is only one annotator (M=1). + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + Note that examples that have no annotator labels should not be included in this DataFrame/array. + This argument is optional if ``pred_probs`` is not provided (you might only provide ``pred_probs_unlabeled`` to only get active learning scores for the unlabeled examples). + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of predicted class probabilities from a trained classifier model. + Predicted probabilities in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + This argument is optional if you only want to get active learning scores for unlabeled examples (specify only ``pred_probs_unlabeled`` instead). + pred_probs_unlabeled : np.ndarray, optional + An array of shape ``(N, K)`` of predicted class probabilities from a trained classifier model for examples that have no annotator labels. + Predicted probabilities in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + This argument is optional if you only want to get active learning scores for already-labeled examples (specify only ``pred_probs`` instead). + + Returns + ------- + active_learning_scores : np.ndarray + Array of shape ``(N,)`` indicating the ActiveLab quality scores for each example. + This array is empty if no already-labeled data was provided via ``labels_multiannotator``. + Examples with the lowest scores are those we should label next in order to maximally improve our classifier model. + + active_learning_scores_unlabeled : np.ndarray + Array of shape ``(N,)`` indicating the active learning quality scores for each unlabeled example. + Returns an empty array if no unlabeled data is provided. + Examples with the lowest scores are those we should label next in order to maximally improve our classifier model + (scores for unlabeled data are directly comparable with the `active_learning_scores` for labeled data). + """ + + assert_valid_pred_probs(pred_probs=pred_probs, pred_probs_unlabeled=pred_probs_unlabeled) + + # compute multiannotator stats if labeled data is provided + if pred_probs is not None: + if labels_multiannotator is None: + raise ValueError( + "labels_multiannotator cannot be None when passing in pred_probs. ", + "Either provide labels_multiannotator to obtain active learning scores for the labeled examples, " + "or just pass in pred_probs_unlabeled to get active learning scores for unlabeled examples.", + ) + + if isinstance(labels_multiannotator, pd.DataFrame): + labels_multiannotator = ( + labels_multiannotator.replace({pd.NA: np.NaN}).astype(float).to_numpy() + ) + elif not isinstance(labels_multiannotator, np.ndarray): + raise ValueError( + "labels_multiannotator must be either a NumPy array or Pandas DataFrame." + ) + # check that labels_multiannotator is a 2D array + if labels_multiannotator.ndim != 2: + raise ValueError( + "labels_multiannotator must be a 2D array or dataframe, " + "each row represents an example and each column represents an annotator." + ) + + num_classes = get_num_classes(pred_probs=pred_probs) + + # if all examples are only labeled by a single annotator + if (np.sum(~np.isnan(labels_multiannotator), axis=1) == 1).all(): + optimal_temp = 1.0 # do not temp scale for single annotator case, temperature is defined here for later use + + assert_valid_inputs_multiannotator( + labels_multiannotator, pred_probs, allow_single_label=True + ) + + consensus_label = get_majority_vote_label( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + verbose=False, + ) + quality_of_consensus_labeled = get_label_quality_scores(consensus_label, pred_probs) + model_weight = 1 + annotator_weight = np.full(labels_multiannotator.shape[1], 1) + avg_annotator_weight = np.mean(annotator_weight) + + # examples are annotated by multiple annotators + else: + optimal_temp = find_best_temp_scaler(labels_multiannotator, pred_probs) + pred_probs = temp_scale_pred_probs(pred_probs, optimal_temp) + + multiannotator_info = get_label_quality_multiannotator( + labels_multiannotator, + pred_probs, + return_annotator_stats=False, + return_detailed_quality=False, + return_weights=True, + ) + + quality_of_consensus_labeled = multiannotator_info["label_quality"][ + "consensus_quality_score" + ] + model_weight = multiannotator_info["model_weight"] + annotator_weight = multiannotator_info["annotator_weight"] + avg_annotator_weight = np.mean(annotator_weight) + + # compute scores for labeled data + active_learning_scores = np.full(len(labels_multiannotator), np.nan) + for i, annotator_labels in enumerate(labels_multiannotator): + active_learning_scores[i] = np.average( + (quality_of_consensus_labeled[i], 1 / num_classes), + weights=( + np.sum(annotator_weight[~np.isnan(annotator_labels)]) + model_weight, + avg_annotator_weight, + ), + ) + + # no labeled data provided so do not estimate temperature and model/annotator weights + elif pred_probs_unlabeled is not None: + num_classes = get_num_classes(pred_probs=pred_probs_unlabeled) + optimal_temp = 1 + model_weight = 1 + avg_annotator_weight = 1 + active_learning_scores = np.array([]) + + else: + raise ValueError( + "pred_probs and pred_probs_unlabeled cannot both be None, specify at least one of the two." + ) + + # compute scores for unlabeled data + if pred_probs_unlabeled is not None: + pred_probs_unlabeled = temp_scale_pred_probs(pred_probs_unlabeled, optimal_temp) + quality_of_consensus_unlabeled = np.max(pred_probs_unlabeled, axis=1) + + active_learning_scores_unlabeled = np.average( + np.stack( + [ + quality_of_consensus_unlabeled, + np.full(len(quality_of_consensus_unlabeled), 1 / num_classes), + ] + ), + weights=[model_weight, avg_annotator_weight], + axis=0, + ) + + else: + active_learning_scores_unlabeled = np.array([]) + + return active_learning_scores, active_learning_scores_unlabeled
+ + +
[docs]def get_active_learning_scores_ensemble( + labels_multiannotator: Optional[Union[pd.DataFrame, np.ndarray]] = None, + pred_probs: Optional[np.ndarray] = None, + pred_probs_unlabeled: Optional[np.ndarray] = None, +) -> Tuple[np.ndarray, np.ndarray]: + """Returns an ActiveLab quality score for each example in the dataset, based on predictions from an ensemble of models. + + This function is similar to `~cleanlab.multiannotator.get_active_learning_scores` but allows for an + ensemble of multiple classifier models to be trained and will aggregate predictions from the models to compute the ActiveLab quality score. + + Parameters + ---------- + labels_multiannotator : pd.DataFrame or np.ndarray + Multiannotator labels in the same format expected by `~cleanlab.multiannotator.get_active_learning_scores`. + This argument is optional if ``pred_probs`` is not provided (in cases where you only provide ``pred_probs_unlabeled`` to get active learning scores for unlabeled examples). + pred_probs : np.ndarray + An array of shape ``(P, N, K)`` where P is the number of models, consisting of predicted class probabilities from the ensemble models. + Note that this function also works with datasets where there is only one annotator (M=1). + Each set of predicted probabilities with shape ``(N, K)`` is in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + This argument is optional if you only want to get active learning scores for unlabeled examples (pass in ``pred_probs_unlabeled`` instead). + pred_probs_unlabeled : np.ndarray, optional + An array of shape ``(P, N, K)`` where P is the number of models, consisting of predicted class probabilities from a trained classifier model + for examples that have no annotated labels so far (but which we may want to label in the future, and hence compute active learning quality scores for). + Each set of predicted probabilities with shape ``(N, K)`` is in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + This argument is optional if you only want to get active learning scores for labeled examples (pass in ``pred_probs`` instead). + + Returns + ------- + active_learning_scores : np.ndarray + Similar to output as :py:func:`get_label_quality_scores <cleanlab.multiannotator.get_label_quality_scores>`. + active_learning_scores_unlabeled : np.ndarray + Similar to output as :py:func:`get_label_quality_scores <cleanlab.multiannotator.get_label_quality_scores>`. + + See Also + -------- + get_active_learning_scores + """ + + assert_valid_pred_probs( + pred_probs=pred_probs, pred_probs_unlabeled=pred_probs_unlabeled, ensemble=True + ) + + # compute multiannotator stats if labeled data is provided + if pred_probs is not None: + if labels_multiannotator is None: + raise ValueError( + "labels_multiannotator cannot be None when passing in pred_probs. ", + "You can either provide labels_multiannotator to obtain active learning scores for the labeled examples, " + "or just pass in pred_probs_unlabeled to get active learning scores for unlabeled examples.", + ) + + if isinstance(labels_multiannotator, pd.DataFrame): + labels_multiannotator = ( + labels_multiannotator.replace({pd.NA: np.NaN}).astype(float).to_numpy() + ) + elif not isinstance(labels_multiannotator, np.ndarray): + raise ValueError( + "labels_multiannotator must be either a NumPy array or Pandas DataFrame." + ) + + # check that labels_multiannotator is a 2D array + if labels_multiannotator.ndim != 2: + raise ValueError( + "labels_multiannotator must be a 2D array or dataframe, " + "each row represents an example and each column represents an annotator." + ) + + num_classes = get_num_classes(pred_probs=pred_probs[0]) + + # if all examples are only labeled by a single annotator + if (np.sum(~np.isnan(labels_multiannotator), axis=1) == 1).all(): + # do not temp scale for single annotator case, temperature is defined here for later use + optimal_temp = np.full(len(pred_probs), 1.0) + + assert_valid_inputs_multiannotator( + labels_multiannotator, pred_probs, ensemble=True, allow_single_label=True + ) + + avg_pred_probs = np.mean(pred_probs, axis=0) + consensus_label = get_majority_vote_label( + labels_multiannotator=labels_multiannotator, + pred_probs=avg_pred_probs, + verbose=False, + ) + quality_of_consensus_labeled = get_label_quality_scores(consensus_label, avg_pred_probs) + model_weight = np.full(len(pred_probs), 1) + annotator_weight = np.full(labels_multiannotator.shape[1], 1) + avg_annotator_weight = np.mean(annotator_weight) + + # examples are annotated by multiple annotators + else: + optimal_temp = np.full(len(pred_probs), np.NaN) + for i, curr_pred_probs in enumerate(pred_probs): + curr_optimal_temp = find_best_temp_scaler(labels_multiannotator, curr_pred_probs) + pred_probs[i] = temp_scale_pred_probs(curr_pred_probs, curr_optimal_temp) + optimal_temp[i] = curr_optimal_temp + + multiannotator_info = get_label_quality_multiannotator_ensemble( + labels_multiannotator, + pred_probs, + return_annotator_stats=False, + return_detailed_quality=False, + return_weights=True, + ) + + quality_of_consensus_labeled = multiannotator_info["label_quality"][ + "consensus_quality_score" + ] + model_weight = multiannotator_info["model_weight"] + annotator_weight = multiannotator_info["annotator_weight"] + avg_annotator_weight = np.mean(annotator_weight) + + # compute scores for labeled data + active_learning_scores = np.full(len(labels_multiannotator), np.nan) + for i, annotator_labels in enumerate(labels_multiannotator): + active_learning_scores[i] = np.average( + (quality_of_consensus_labeled[i], 1 / num_classes), + weights=( + np.sum(annotator_weight[~np.isnan(annotator_labels)]) + np.sum(model_weight), + avg_annotator_weight, + ), + ) + + # no labeled data provided so do not estimate temperature and model/annotator weights + elif pred_probs_unlabeled is not None: + num_classes = get_num_classes(pred_probs=pred_probs_unlabeled[0]) + optimal_temp = np.full(len(pred_probs_unlabeled), 1.0) + model_weight = np.full(len(pred_probs_unlabeled), 1) + avg_annotator_weight = 1 + active_learning_scores = np.array([]) + + else: + raise ValueError( + "pred_probs and pred_probs_unlabeled cannot both be None, specify at least one of the two." + ) + + # compute scores for unlabeled data + if pred_probs_unlabeled is not None: + for i in range(len(pred_probs_unlabeled)): + pred_probs_unlabeled[i] = temp_scale_pred_probs( + pred_probs_unlabeled[i], optimal_temp[i] + ) + + avg_pred_probs_unlabeled = np.mean(pred_probs_unlabeled, axis=0) + consensus_label_unlabeled = get_majority_vote_label( + np.argmax(pred_probs_unlabeled, axis=2).T, + avg_pred_probs_unlabeled, + ) + modified_pred_probs_unlabeled = np.average( + np.concatenate( + ( + pred_probs_unlabeled, + np.full(pred_probs_unlabeled.shape[1:], 1 / num_classes)[np.newaxis, :, :], + ) + ), + weights=np.concatenate((model_weight, np.array([avg_annotator_weight]))), + axis=0, + ) + + active_learning_scores_unlabeled = get_label_quality_scores( + consensus_label_unlabeled, modified_pred_probs_unlabeled + ) + else: + active_learning_scores_unlabeled = np.array([]) + + return active_learning_scores, active_learning_scores_unlabeled
+ + +
[docs]def get_majority_vote_label( + labels_multiannotator: Union[pd.DataFrame, np.ndarray], + pred_probs: Optional[np.ndarray] = None, + verbose: bool = True, +) -> np.ndarray: + """Returns the majority vote label for each example, aggregated from the labels given by multiple annotators. + + Parameters + ---------- + labels_multiannotator : pd.DataFrame or np.ndarray + 2D pandas DataFrame or array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted probabilities, ``P(label=k|x)``. + For details, predicted probabilities in the same format expected by `~cleanlab.multiannotator.get_label_quality_multiannotator`. + verbose : bool, optional + Important warnings and other printed statements may be suppressed if ``verbose`` is set to ``False``. + Returns + ------- + consensus_label: np.ndarray + An array of shape ``(N,)`` with the majority vote label aggregated from all annotators. + + In the event of majority vote ties, ties are broken in the following order: + using the model ``pred_probs`` (if provided) and selecting the class with highest predicted probability, + using the empirical class frequencies and selecting the class with highest frequency, + using an initial annotator quality score and selecting the class that has been labeled by annotators with higher quality, + and lastly by random selection. + """ + + if isinstance(labels_multiannotator, pd.DataFrame): + annotator_ids = labels_multiannotator.columns + labels_multiannotator = ( + labels_multiannotator.replace({pd.NA: np.NaN}).astype(float).to_numpy() + ) + elif isinstance(labels_multiannotator, np.ndarray): + annotator_ids = None + else: + raise ValueError("labels_multiannotator must be either a NumPy array or Pandas DataFrame.") + + if verbose: + assert_valid_inputs_multiannotator( + labels_multiannotator, pred_probs, annotator_ids=annotator_ids + ) + + if pred_probs is not None: + num_classes = pred_probs.shape[1] + else: + num_classes = int(np.nanmax(labels_multiannotator) + 1) + + array_idx = np.arange(labels_multiannotator.shape[0]) + label_count = np.zeros((labels_multiannotator.shape[0], num_classes)) + for i in range(labels_multiannotator.shape[1]): + not_nan_mask = ~np.isnan(labels_multiannotator[:, i]) + # Get the indexes where the label is not missing for the annotator i as int. + label_index = labels_multiannotator[not_nan_mask, i].astype(int) + # Increase the counts of those labels by 1. + label_count[array_idx[not_nan_mask], label_index] += 1 + + mode_labels_multiannotator = np.full(label_count.shape, np.nan) + modes_mask = label_count == np.max(label_count, axis=1).reshape(-1, 1) + insert_index = np.zeros(modes_mask.shape[0], dtype=int) + for i in range(modes_mask.shape[1]): + mode_index = np.where(modes_mask[:, i])[0] + mode_labels_multiannotator[mode_index, insert_index[mode_index]] = i + insert_index[mode_index] += 1 + + majority_vote_label = np.full(len(labels_multiannotator), np.nan) + label_mode_count = (~np.isnan(mode_labels_multiannotator)).sum(axis=1) + + # obtaining consensus using annotator majority vote + mode_count_one_mask = label_mode_count == 1 + majority_vote_label[mode_count_one_mask] = mode_labels_multiannotator[mode_count_one_mask, 0] + nontied_idx = array_idx[mode_count_one_mask] + tied_idx = { + i: label_mode[:count].astype(int) + for i, label_mode, count in zip( + array_idx[~mode_count_one_mask], + mode_labels_multiannotator[~mode_count_one_mask, :], + label_mode_count[~mode_count_one_mask], + ) + } + + # tiebreak 1: using pred_probs (if provided) + if pred_probs is not None and len(tied_idx) > 0: + for idx, label_mode in tied_idx.copy().items(): + max_pred_probs = np.where( + pred_probs[idx, label_mode] == np.max(pred_probs[idx, label_mode]) + )[0] + if len(max_pred_probs) == 1: + majority_vote_label[idx] = label_mode[max_pred_probs[0]] + del tied_idx[idx] + else: + tied_idx[idx] = label_mode[max_pred_probs] + + # tiebreak 2: using empirical class frequencies + # current tiebreak will select the minority class (to prevent larger class imbalance) + if len(tied_idx) > 0: + class_frequencies = label_count.sum(axis=0) + for idx, label_mode in tied_idx.copy().items(): + min_frequency = np.where( + class_frequencies[label_mode] == np.min(class_frequencies[label_mode]) + )[0] + if len(min_frequency) == 1: + majority_vote_label[idx] = label_mode[min_frequency[0]] + del tied_idx[idx] + else: + tied_idx[idx] = label_mode[min_frequency] + + # tiebreak 3: using initial annotator quality scores + if len(tied_idx) > 0: + nontied_majority_vote_label = majority_vote_label[nontied_idx] + nontied_labels_multiannotator = labels_multiannotator[nontied_idx] + annotator_agreement_with_consensus = np.zeros(nontied_labels_multiannotator.shape[1]) + for i in range(len(annotator_agreement_with_consensus)): + labels = nontied_labels_multiannotator[:, i] + labels_mask = ~np.isnan(labels) + if np.sum(labels_mask) == 0: + annotator_agreement_with_consensus[i] = np.NaN + else: + annotator_agreement_with_consensus[i] = np.mean( + labels[labels_mask] == nontied_majority_vote_label[labels_mask] + ) + + # impute average annotator accuracy for any annotator that do not overlap with consensus + nan_mask = np.isnan(annotator_agreement_with_consensus) + avg_annotator_agreement = np.mean(annotator_agreement_with_consensus[~nan_mask]) + annotator_agreement_with_consensus[nan_mask] = avg_annotator_agreement + + for idx, label_mode in tied_idx.copy().items(): + label_quality_score = np.array( + [ + np.mean( + annotator_agreement_with_consensus[ + np.where(labels_multiannotator[idx] == label)[0] + ] + ) + for label in label_mode + ] + ) + max_score = np.where(label_quality_score == label_quality_score.max())[0] + if len(max_score) == 1: + majority_vote_label[idx] = label_mode[max_score[0]] + del tied_idx[idx] + else: + tied_idx[idx] = label_mode[max_score] + + # if still tied, break by random selection + if len(tied_idx) > 0: + warnings.warn( + f"breaking ties of examples {list(tied_idx.keys())} by random selection, you may want to set seed for reproducability" + ) + for idx, label_mode in tied_idx.items(): + majority_vote_label[idx] = np.random.choice(label_mode) + + if verbose: + # check if any classes no longer appear in the set of consensus labels + check_consensus_label_classes( + labels_multiannotator=labels_multiannotator, + consensus_label=majority_vote_label, + consensus_method="majority_vote", + ) + + return majority_vote_label.astype(int)
+ + +
[docs]def convert_long_to_wide_dataset( + labels_multiannotator_long: pd.DataFrame, +) -> pd.DataFrame: + """Converts a long format dataset to wide format which is suitable for passing into + `~cleanlab.multiannotator.get_label_quality_multiannotator`. + + Dataframe must contain three columns named: + + #. ``task`` representing each example labeled by the annotators + #. ``annotator`` representing each annotator + #. ``label`` representing the label given by an annotator for the corresponding task (i.e. example) + + Parameters + ---------- + labels_multiannotator_long : pd.DataFrame + pandas DataFrame in long format with three columns named ``task``, ``annotator`` and ``label`` + + Returns + ------- + labels_multiannotator_wide : pd.DataFrame + pandas DataFrame of the proper format to be passed as ``labels_multiannotator`` for the other ``cleanlab.multiannotator`` functions. + """ + labels_multiannotator_wide = labels_multiannotator_long.pivot( + index="task", columns="annotator", values="label" + ) + labels_multiannotator_wide.index.name = None + labels_multiannotator_wide.columns.name = None + return labels_multiannotator_wide
+ + +def _get_consensus_stats( + labels_multiannotator: np.ndarray, + pred_probs: np.ndarray, + num_annotations: np.ndarray, + consensus_label: np.ndarray, + quality_method: str = "crowdlab", + verbose: bool = True, + ensemble: bool = False, + label_quality_score_kwargs: dict = {}, +) -> tuple: + """Returns a tuple containing the consensus labels, annotator agreement scores, and quality of consensus + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted probabilities, ``P(label=k|x)``. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + quality_method : str, default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the consensus label. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + label_quality_score_kwargs : dict, optional + Keyword arguments to pass into ``get_label_quality_scores()``. + verbose : bool, default = True + Certain warnings and notes will be printed if ``verbose`` is set to ``True``. + ensemble : bool, default = False + Boolean flag to indicate whether the pred_probs passed are from ensemble models. + + Returns + ------ + stats : tuple + A tuple of (consensus_label, annotator_agreement, consensus_quality_score, post_pred_probs). + """ + + # compute the fraction of annotator agreeing with the consensus labels + annotator_agreement = _get_annotator_agreement_with_consensus( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + ) + + # compute posterior predicted probabilites + if ensemble: + post_pred_probs, model_weight, annotator_weight = _get_post_pred_probs_and_weights_ensemble( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + prior_pred_probs=pred_probs, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + quality_method=quality_method, + verbose=verbose, + ) + else: + post_pred_probs, model_weight, annotator_weight = _get_post_pred_probs_and_weights( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + prior_pred_probs=pred_probs, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + quality_method=quality_method, + verbose=verbose, + ) + + # compute quality of the consensus labels + consensus_quality_score = _get_consensus_quality_score( + consensus_label=consensus_label, + pred_probs=post_pred_probs, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + quality_method=quality_method, + label_quality_score_kwargs=label_quality_score_kwargs, + ) + + return ( + annotator_agreement, + consensus_quality_score, + post_pred_probs, + model_weight, + annotator_weight, + ) + + +def _get_annotator_stats( + labels_multiannotator: np.ndarray, + pred_probs: np.ndarray, + consensus_label: np.ndarray, + num_annotations: np.ndarray, + annotator_agreement: np.ndarray, + model_weight: np.ndarray, + annotator_weight: np.ndarray, + consensus_quality_score: np.ndarray, + detailed_label_quality: Optional[np.ndarray] = None, + annotator_ids: Optional[pd.Index] = None, + quality_method: str = "crowdlab", +) -> pd.DataFrame: + """Returns a dictionary containing overall statistics about each annotator. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted probabilities, ``P(label=k|x)``. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + model_weight : float + float specifying the model weight used in weighted averages, + None if model weight is not used to compute quality scores + annotator_weight : np.ndarray + An array of shape ``(M,)`` where M is the number of annotators, specifying the annotator weights used in weighted averages, + None if annotator weights are not used to compute quality scores + consensus_quality_score : np.ndarray + An array of shape ``(N,)`` with the quality score of the consensus. + detailed_label_quality : + pandas DataFrame containing the detailed label quality scores for all examples and annotators + quality_method : str, default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the consensus label. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + + Returns + ------- + annotator_stats : pd.DataFrame + Overall statistics about each annotator. + For details, see the documentation of `~cleanlab.multiannotator.get_label_quality_multiannotator`. + """ + + annotator_quality = _get_annotator_quality( + labels_multiannotator=labels_multiannotator, + pred_probs=pred_probs, + consensus_label=consensus_label, + num_annotations=num_annotations, + annotator_agreement=annotator_agreement, + model_weight=model_weight, + annotator_weight=annotator_weight, + detailed_label_quality=detailed_label_quality, + quality_method=quality_method, + ) + + # Compute the number of labels labeled/ by each annotator + num_examples_labeled = np.sum(~np.isnan(labels_multiannotator), axis=0) + + # Compute the fraction of labels annotated by each annotator that agrees with the consensus label + # TODO: check if we should drop singleton labels here + agreement_with_consensus = np.zeros(labels_multiannotator.shape[1]) + for i in range(len(agreement_with_consensus)): + labels = labels_multiannotator[:, i] + labels_mask = ~np.isnan(labels) + agreement_with_consensus[i] = np.mean(labels[labels_mask] == consensus_label[labels_mask]) + + # Find the worst labeled class for each annotator + worst_class = _get_annotator_worst_class( + labels_multiannotator=labels_multiannotator, + consensus_label=consensus_label, + consensus_quality_score=consensus_quality_score, + ) + + # Create multi-annotator stats DataFrame from its columns + annotator_stats = pd.DataFrame( + { + "annotator_quality": annotator_quality, + "agreement_with_consensus": agreement_with_consensus, + "worst_class": worst_class, + "num_examples_labeled": num_examples_labeled, + }, + index=annotator_ids, + ) + + return annotator_stats.sort_values(by=["annotator_quality", "agreement_with_consensus"]) + + +def _get_annotator_agreement_with_consensus( + labels_multiannotator: np.ndarray, + consensus_label: np.ndarray, +) -> np.ndarray: + """Returns the fractions of annotators that agree with the consensus label per example. Note that the + fraction for each example only considers the annotators that labeled that particular example. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + + Returns + ------- + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + """ + annotator_agreement = np.zeros(len(labels_multiannotator)) + for i in range(labels_multiannotator.shape[1]): + annotator_agreement += labels_multiannotator[:, i] == consensus_label + annotator_agreement /= (~np.isnan(labels_multiannotator)).sum(axis=1) + return annotator_agreement + + +def _get_annotator_agreement_with_annotators( + labels_multiannotator: np.ndarray, + num_annotations: np.ndarray, + verbose: bool = True, +) -> np.ndarray: + """Returns the average agreement of each annotator with other annotators that label the same example. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + verbose : bool, default = True + Certain warnings and notes will be printed if ``verbose`` is set to ``True``. + + Returns + ------- + annotator_agreement : np.ndarray + An array of shape ``(M,)`` where M is the number of annotators, with the agreement of each annotator with other + annotators that labeled the same examples. + """ + + annotator_agreement_with_annotators = np.zeros(labels_multiannotator.shape[1]) + for i in range(len(annotator_agreement_with_annotators)): + annotator_labels = labels_multiannotator[:, i] + annotator_labels_mask = ~np.isnan(annotator_labels) + annotator_agreement_with_annotators[i] = _get_single_annotator_agreement( + labels_multiannotator[annotator_labels_mask], num_annotations[annotator_labels_mask], i + ) + + # impute average annotator accuracy for any annotator that do not overlap with other annotators + non_overlap_mask = np.isnan(annotator_agreement_with_annotators) + if np.sum(non_overlap_mask) > 0: + if verbose: + print( + f"Annotator(s) {list(np.where(non_overlap_mask)[0])} did not annotate any examples that overlap with other annotators, \ + \nusing the average annotator agreeement among other annotators as this annotator's agreement." + ) + + avg_annotator_agreement = np.mean(annotator_agreement_with_annotators[~non_overlap_mask]) + annotator_agreement_with_annotators[non_overlap_mask] = avg_annotator_agreement + + return annotator_agreement_with_annotators + + +def _get_single_annotator_agreement( + labels_multiannotator: np.ndarray, + num_annotations: np.ndarray, + annotator_idx: int, +) -> float: + """Returns the average agreement of a given annotator other annotators that label the same example. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_idx : int + The index of the annotator we want to compute the annotator agreement for. + + Returns + ------- + annotator_agreement : float + An float repesenting the agreement of each annotator with other annotators that labeled the same examples. + """ + adjusted_num_annotations = num_annotations - 1 + if np.sum(adjusted_num_annotations) == 0: + return np.NaN + + multi_annotations_mask = num_annotations > 1 + annotator_agreement_per_example = np.zeros(len(labels_multiannotator)) + for i in range(labels_multiannotator.shape[1]): + annotator_agreement_per_example[multi_annotations_mask] += ( + labels_multiannotator[multi_annotations_mask, annotator_idx] + == labels_multiannotator[multi_annotations_mask, i] + ) + annotator_agreement_per_example[multi_annotations_mask] = ( + annotator_agreement_per_example[multi_annotations_mask] - 1 + ) / adjusted_num_annotations[multi_annotations_mask] + + annotator_agreement = np.average(annotator_agreement_per_example, weights=num_annotations - 1) + return annotator_agreement + + +def _get_post_pred_probs_and_weights( + labels_multiannotator: np.ndarray, + consensus_label: np.ndarray, + prior_pred_probs: np.ndarray, + num_annotations: np.ndarray, + annotator_agreement: np.ndarray, + quality_method: str = "crowdlab", + verbose: bool = True, +) -> Tuple[np.ndarray, Optional[float], Optional[np.ndarray]]: + """Return the posterior predicted probabilities of each example given a specified quality method. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + prior_pred_probs : np.ndarray + An array of shape ``(N, K)`` of prior predicted probabilities, ``P(label=k|x)``, usually the out-of-sample predicted probability computed by a model. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + quality_method : default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the consensus label. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + verbose : bool, default = True + Certain warnings and notes will be printed if ``verbose`` is set to ``True``. + + Returns + ------- + post_pred_probs : np.ndarray + An array of shape ``(N, K)`` with the posterior predicted probabilities. + + model_weight : float + float specifying the model weight used in weighted averages, + None if model weight is not used to compute quality scores + + annotator_weight : np.ndarray + An array of shape ``(M,)`` where M is the number of annotators, specifying the annotator weights used in weighted averages, + None if annotator weights are not used to compute quality scores + + """ + valid_methods = [ + "crowdlab", + "agreement", + ] + + # setting dummy variables for model and annotator weights that will be returned + # only relevant for quality_method == crowdlab, return None for all other methods + return_model_weight = None + return_annotator_weight = None + + if quality_method == "crowdlab": + num_classes = get_num_classes(pred_probs=prior_pred_probs) + + # likelihood that any annotator will or will not annotate the consensus label for any example + consensus_likelihood = np.mean(annotator_agreement[num_annotations != 1]) + non_consensus_likelihood = (1 - consensus_likelihood) / (num_classes - 1) + + # subsetting the dataset to only includes examples with more than one annotation + mask = num_annotations != 1 + consensus_label_subset = consensus_label[mask] + prior_pred_probs_subset = prior_pred_probs[mask] + + # compute most likely class error + most_likely_class_error = np.clip( + np.mean( + consensus_label_subset + != np.argmax(np.bincount(consensus_label_subset, minlength=num_classes)) + ), + a_min=CLIPPING_LOWER_BOUND, + a_max=None, + ) + + # compute adjusted annotator agreement (used as annotator weights) + annotator_agreement_with_annotators = _get_annotator_agreement_with_annotators( + labels_multiannotator, num_annotations, verbose + ) + annotator_error = 1 - annotator_agreement_with_annotators + adjusted_annotator_agreement = np.clip( + 1 - (annotator_error / most_likely_class_error), a_min=CLIPPING_LOWER_BOUND, a_max=None + ) + # compute model weight + model_error = np.mean(np.argmax(prior_pred_probs_subset, axis=1) != consensus_label_subset) + model_weight = np.max( + [(1 - (model_error / most_likely_class_error)), CLIPPING_LOWER_BOUND] + ) * np.sqrt(np.mean(num_annotations)) + + non_nan_mask = ~np.isnan(labels_multiannotator) + annotation_weight = np.zeros(labels_multiannotator.shape[0]) + for i in range(labels_multiannotator.shape[1]): + annotation_weight[non_nan_mask[:, i]] += adjusted_annotator_agreement[i] + total_weight = annotation_weight + model_weight + + # compute weighted average + post_pred_probs = np.full(prior_pred_probs.shape, np.nan) + for i in range(prior_pred_probs.shape[1]): + post_pred_probs[:, i] = prior_pred_probs[:, i] * model_weight + for k in range(labels_multiannotator.shape[1]): + mask = ~np.isnan(labels_multiannotator[:, k]) + post_pred_probs[mask, i] += np.where( + labels_multiannotator[mask, k] == i, + adjusted_annotator_agreement[k] * consensus_likelihood, + adjusted_annotator_agreement[k] * non_consensus_likelihood, + ) + post_pred_probs[:, i] /= total_weight + + return_model_weight = model_weight + return_annotator_weight = adjusted_annotator_agreement + + elif quality_method == "agreement": + num_classes = get_num_classes(pred_probs=prior_pred_probs) + label_counts = np.full((len(labels_multiannotator), num_classes), np.NaN) + for i, labels in enumerate(labels_multiannotator): + label_counts[i, :] = value_counts(labels[~np.isnan(labels)], num_classes=num_classes) + + post_pred_probs = label_counts / num_annotations.reshape(-1, 1) + + else: + raise ValueError( + f""" + {quality_method} is not a valid quality method! + Please choose a valid quality_method: {valid_methods} + """ + ) + + return post_pred_probs, return_model_weight, return_annotator_weight + + +def _get_post_pred_probs_and_weights_ensemble( + labels_multiannotator: np.ndarray, + consensus_label: np.ndarray, + prior_pred_probs: np.ndarray, + num_annotations: np.ndarray, + annotator_agreement: np.ndarray, + quality_method: str = "crowdlab", + verbose: bool = True, +) -> Tuple[np.ndarray, Any, Any]: + """Return the posterior predicted class probabilites of each example given a specified quality method and prior predicted class probabilities from an ensemble of multiple classifier models. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(P, N, K)`` where P is the number of models, consisting of predicted class probabilities from the ensemble models. + Each set of predicted probabilities with shape ``(N, K)`` is in the same format expected by the :py:func:`get_label_quality_scores <cleanlab.rank.get_label_quality_scores>`. + prior_pred_probs : np.ndarray + An array of shape ``(N, K)`` of prior predicted probabilities, ``P(label=k|x)``, usually the out-of-sample predicted probability computed by a model. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + quality_method : str, default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the consensus label. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + verbose : bool, default = True + Certain warnings and notes will be printed if ``verbose`` is set to ``True``. + + Returns + ------- + post_pred_probs : np.ndarray + An array of shape ``(N, K)`` with the posterior predicted probabilities. + + model_weight : np.ndarray + An array of shape ``(P,)`` where P is the number of models in this ensemble, specifying the model weight used in weighted averages, + ``None`` if model weight is not used to compute quality scores + + annotator_weight : np.ndarray + An array of shape ``(M,)`` where M is the number of annotators, specifying the annotator weights used in weighted averages, + ``None`` if annotator weights are not used to compute quality scores + + """ + + num_classes = get_num_classes(pred_probs=prior_pred_probs[0]) + + # likelihood that any annotator will or will not annotate the consensus label for any example + consensus_likelihood = np.mean(annotator_agreement[num_annotations != 1]) + non_consensus_likelihood = (1 - consensus_likelihood) / (num_classes - 1) + + # subsetting the dataset to only includes examples with more than one annotation + mask = num_annotations != 1 + consensus_label_subset = consensus_label[mask] + + # compute most likely class error + most_likely_class_error = np.clip( + np.mean( + consensus_label_subset + != np.argmax(np.bincount(consensus_label_subset, minlength=num_classes)) + ), + a_min=CLIPPING_LOWER_BOUND, + a_max=None, + ) + + # compute adjusted annotator agreement (used as annotator weights) + annotator_agreement_with_annotators = _get_annotator_agreement_with_annotators( + labels_multiannotator, num_annotations, verbose + ) + annotator_error = 1 - annotator_agreement_with_annotators + adjusted_annotator_agreement = np.clip( + 1 - (annotator_error / most_likely_class_error), a_min=CLIPPING_LOWER_BOUND, a_max=None + ) + + # compute model weight + model_weight = np.full(prior_pred_probs.shape[0], np.nan) + for idx in range(prior_pred_probs.shape[0]): + prior_pred_probs_subset = prior_pred_probs[idx][mask] + + model_error = np.mean(np.argmax(prior_pred_probs_subset, axis=1) != consensus_label_subset) + model_weight[idx] = np.max( + [(1 - (model_error / most_likely_class_error)), CLIPPING_LOWER_BOUND] + ) * np.sqrt(np.mean(num_annotations)) + + # compute weighted average + post_pred_probs = np.full(prior_pred_probs[0].shape, np.nan) + for i, labels in enumerate(labels_multiannotator): + labels_mask = ~np.isnan(labels) + labels_subset = labels[labels_mask] + post_pred_probs[i] = [ + np.average( + [prior_pred_probs[ind][i, true_label] for ind in range(prior_pred_probs.shape[0])] + + [ + ( + consensus_likelihood + if annotator_label == true_label + else non_consensus_likelihood + ) + for annotator_label in labels_subset + ], + weights=np.concatenate((model_weight, adjusted_annotator_agreement[labels_mask])), + ) + for true_label in range(num_classes) + ] + + return_model_weight = model_weight + return_annotator_weight = adjusted_annotator_agreement + + return post_pred_probs, return_model_weight, return_annotator_weight + + +def _get_consensus_quality_score( + consensus_label: np.ndarray, + pred_probs: np.ndarray, + num_annotations: np.ndarray, + annotator_agreement: np.ndarray, + quality_method: str = "crowdlab", + label_quality_score_kwargs: dict = {}, +) -> np.ndarray: + """Return scores representing quality of the consensus label for each example. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + pred_probs : np.ndarray + An array of shape ``(N, K)`` of posterior predicted probabilities, ``P(label=k|x)``. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + quality_method : str, default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the consensus label. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + + Returns + ------- + consensus_quality_score : np.ndarray + An array of shape ``(N,)`` with the quality score of the consensus. + """ + + valid_methods = [ + "crowdlab", + "agreement", + ] + + if quality_method == "crowdlab": + consensus_quality_score = get_label_quality_scores( + consensus_label, pred_probs, **label_quality_score_kwargs + ) + + elif quality_method == "agreement": + consensus_quality_score = annotator_agreement + + else: + raise ValueError( + f""" + {quality_method} is not a valid consensus quality method! + Please choose a valid quality_method: {valid_methods} + """ + ) + + return consensus_quality_score + + +def _get_annotator_label_quality_score( + annotator_label: np.ndarray, + pred_probs: np.ndarray, + label_quality_score_kwargs: dict = {}, +) -> np.ndarray: + """Returns quality scores for each datapoint. + Very similar functionality as ``_get_consensus_quality_score`` with additional support for annotator labels that contain NaN values. + For more info about parameters and returns, see the docstring of `~cleanlab.multiannotator._get_consensus_quality_score`. + """ + mask = ~np.isnan(annotator_label) + + annotator_label_quality_score_subset = get_label_quality_scores( + labels=annotator_label[mask].astype(int), + pred_probs=pred_probs[mask], + **label_quality_score_kwargs, + ) + + annotator_label_quality_score = np.full(len(annotator_label), np.nan) + annotator_label_quality_score[mask] = annotator_label_quality_score_subset + return annotator_label_quality_score + + +def _get_annotator_quality( + labels_multiannotator: np.ndarray, + pred_probs: np.ndarray, + consensus_label: np.ndarray, + num_annotations: np.ndarray, + annotator_agreement: np.ndarray, + model_weight: np.ndarray, + annotator_weight: np.ndarray, + detailed_label_quality: Optional[np.ndarray] = None, + quality_method: str = "crowdlab", +) -> pd.DataFrame: + """Returns annotator quality score for each annotator. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D numpy array of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted probabilities, ``P(label=k|x)``. + For details, predicted probabilities in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + num_annotations : np.ndarray + An array of shape ``(N,)`` with the number of annotators that have labeled each example. + annotator_agreement : np.ndarray + An array of shape ``(N,)`` with the fraction of annotators that agree with each consensus label. + model_weight : float + An array of shape ``(P,)`` where P is the number of models in this ensemble, specifying the model weight used in weighted averages, + ``None`` if model weight is not used to compute quality scores + annotator_weight : np.ndarray + An array of shape ``(M,)`` where M is the number of annotators, specifying the annotator weights used in weighted averages, + ``None`` if annotator weights are not used to compute quality scores + detailed_label_quality : + pandas DataFrame containing the detailed label quality scores for all examples and annotators + quality_method : str, default = "crowdlab" (Options: ["crowdlab", "agreement"]) + Specifies the method used to calculate the quality of the annotators. + For valid quality methods, view `~cleanlab.multiannotator.get_label_quality_multiannotator` + + Returns + ------- + annotator_quality : np.ndarray + Quality scores of a given annotator's labels + """ + + valid_methods = [ + "crowdlab", + "agreement", + ] + + if quality_method == "crowdlab": + if detailed_label_quality is None: + annotator_lqs = np.zeros(labels_multiannotator.shape[1]) + for i in range(len(annotator_lqs)): + labels = labels_multiannotator[:, i] + labels_mask = ~np.isnan(labels) + annotator_lqs[i] = np.mean( + get_label_quality_scores( + labels[labels_mask].astype(int), + pred_probs[labels_mask], + ) + ) + else: + annotator_lqs = np.nanmean(detailed_label_quality, axis=0) + + mask = num_annotations != 1 + labels_multiannotator_subset = labels_multiannotator[mask] + consensus_label_subset = consensus_label[mask] + + annotator_agreement = np.zeros(labels_multiannotator_subset.shape[1]) + for i in range(len(annotator_agreement)): + labels = labels_multiannotator_subset[:, i] + labels_mask = ~np.isnan(labels) + # case where annotator does not annotate any examples with any other annotators + # TODO: do we want to impute the mean or just return np.nan + if np.sum(labels_mask) == 0: + annotator_agreement[i] = np.NaN + else: + annotator_agreement[i] = np.mean( + labels[labels_mask] == consensus_label_subset[labels_mask], + ) + + avg_num_annotations_frac = np.mean(num_annotations) / len(annotator_weight) + annotator_weight_adjusted = np.sum(annotator_weight) * avg_num_annotations_frac + + w = model_weight / (model_weight + annotator_weight_adjusted) + annotator_quality = w * annotator_lqs + (1 - w) * annotator_agreement + + elif quality_method == "agreement": + mask = num_annotations != 1 + labels_multiannotator_subset = labels_multiannotator[mask] + consensus_label_subset = consensus_label[mask] + + annotator_quality = np.zeros(labels_multiannotator_subset.shape[1]) + for i in range(len(annotator_quality)): + labels = labels_multiannotator_subset[:, i] + labels_mask = ~np.isnan(labels) + # case where annotator does not annotate any examples with any other annotators + if np.sum(labels_mask) == 0: + annotator_quality[i] = np.NaN + else: + annotator_quality[i] = np.mean( + labels[labels_mask] == consensus_label_subset[labels_mask], + ) + + else: + raise ValueError( + f""" + {quality_method} is not a valid annotator quality method! + Please choose a valid quality_method: {valid_methods} + """ + ) + + return annotator_quality + + +def _get_annotator_worst_class( + labels_multiannotator: np.ndarray, + consensus_label: np.ndarray, + consensus_quality_score: np.ndarray, +) -> np.ndarray: + """Returns the class which each annotator makes the most errors in. + + Parameters + ---------- + labels_multiannotator : np.ndarray + 2D pandas DataFrame of multiple given labels for each example with shape ``(N, M)``, + where N is the number of examples and M is the number of annotators. + For more details, labels in the same format expected by the `~cleanlab.multiannotator.get_label_quality_multiannotator`. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + consensus_quality_score : np.ndarray + An array of shape ``(N,)`` with the quality score of the consensus. + + Returns + ------- + worst_class : np.ndarray + The class that is most frequently mislabeled by a given annotator. + """ + + worst_class = np.apply_along_axis( + _get_single_annotator_worst_class, + axis=0, + arr=labels_multiannotator, + consensus_label=consensus_label, + consensus_quality_score=consensus_quality_score, + ).astype(int) + + return worst_class + + +def _get_single_annotator_worst_class( + labels: np.ndarray, + consensus_label: np.ndarray, + consensus_quality_score: np.ndarray, +) -> int: + """Returns the class a given annotator makes the most errors in. + + Parameters + ---------- + labels : np.ndarray + An array of shape ``(N,)`` with the labels from the annotator we want to evaluate. + consensus_label : np.ndarray + An array of shape ``(N,)`` with the consensus labels aggregated from all annotators. + consensus_quality_score : np.ndarray + An array of shape ``(N,)`` with the quality score of the consensus. + + Returns + ------- + worst_class : int + The class that is most frequently mislabeled by the given annotator. + """ + labels = pd.Series(labels) + labels_mask = pd.notna(labels) + class_accuracies = (labels[labels_mask] == consensus_label[labels_mask]).groupby(labels).mean() + accuracy_min_idx = class_accuracies[class_accuracies == class_accuracies.min()].index.values + + if len(accuracy_min_idx) == 1: + return accuracy_min_idx[0] + + # tiebreak 1: class counts + class_count = labels[labels_mask].groupby(labels).count()[accuracy_min_idx] + count_max_idx = class_count[class_count == class_count.max()].index.values + + if len(count_max_idx) == 1: + return count_max_idx[0] + + # tiebreak 2: consensus quality scores + avg_consensus_quality = ( + pd.DataFrame( + {"annotator_label": labels, "consensus_quality_score": consensus_quality_score} + )[labels_mask] + .groupby("annotator_label") + .mean()["consensus_quality_score"][count_max_idx] + ) + quality_max_idx = avg_consensus_quality[ + avg_consensus_quality == avg_consensus_quality.max() + ].index.values + + # return first item even if there are ties - no better methods to tiebreak + return quality_max_idx[0] +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/multilabel_classification/dataset.html b/v2.6.5/_modules/cleanlab/multilabel_classification/dataset.html new file mode 100644 index 000000000..371a939a6 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/multilabel_classification/dataset.html @@ -0,0 +1,1011 @@ + + + + + + + + + + + cleanlab.multilabel_classification.dataset - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.multilabel_classification.dataset

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to summarize overall labeling issues across a multi-label classification dataset.
+Here each example can belong to one or more classes, or none of the classes at all.
+Unlike in standard multi-class classification, model-predicted class probabilities need not sum to 1 for each row in multi-label classification.
+"""
+
+import pandas as pd
+import numpy as np
+from typing import Optional, cast, Dict, Any  # noqa: F401
+from cleanlab.multilabel_classification.filter import (
+    find_multilabel_issues_per_class,
+    find_label_issues,
+)
+from cleanlab.internal.multilabel_utils import get_onehot_num_classes
+from collections import defaultdict
+
+
+
[docs]def common_multilabel_issues( + labels=list, + pred_probs=None, + *, + class_names=None, + confident_joint=None, +) -> pd.DataFrame: + """Summarizes which classes in a multi-label dataset appear most often mislabeled overall. + + Since classes are not mutually exclusive in multi-label classification, this method summarizes the label issues for each class independently of the others. + + Parameters + ---------- + labels : List[List[int]] + List of noisy labels for multi-label classification where each example can belong to multiple classes. + Refer to documentation for this argument in :py:func:`multilabel_classification.filter.find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`multilabel_classification.filter.find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + class_names : Iterable[str], optional + A list or other iterable of the string class names. Its order must match the label indices. + If class 0 is 'dog' and class 1 is 'cat', then ``class_names = ['dog', 'cat']``. + If provided, the returned DataFrame will have an extra *Class Name* column with this info. + + confident_joint : np.ndarray, optional + An array of shape ``(K, 2, 2)`` representing a one-vs-rest formatted confident joint. + Refer to documentation for this argument in :py:func:`multilabel_classification.filter.find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for details. + + Returns + ------- + common_multilabel_issues : pd.DataFrame + DataFrame where each row corresponds to a class summarized by the following columns: + - *Class Name*: The name of the class if class_names is provided. + - *Class Index*: The index of the class. + - *In Given Label*: Whether the Class is originally annotated True or False in the given label. + - *In Suggested Label*: Whether the Class should be True or False in the suggested label (based on model's prediction). + - *Num Examples*: Number of examples flagged as a label issue where this Class is True/False "In Given Label" but cleanlab estimates the annotation should actually be as specified "In Suggested Label". I.e. the number of examples in your dataset where this Class was labeled as True but likely should have been False (or vice versa). + - *Issue Probability*: The *Num Examples* column divided by the total number of examples in the dataset; i.e. the relative overall frequency of each type of label issue in your dataset. + + By default, the rows in this DataFrame are ordered by "Issue Probability" (descending). + """ + + num_examples = _get_num_examples_multilabel(labels=labels, confident_joint=confident_joint) + summary_issue_counts = defaultdict(list) + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + label_issues_list, labels_list, pred_probs_list = find_multilabel_issues_per_class( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + return_indices_ranked_by="self_confidence", + ) + + for class_num, (label, issues_for_class) in enumerate(zip(y_one.T, label_issues_list)): + binary_label_issues = np.zeros(len(label)).astype(bool) + binary_label_issues[issues_for_class] = True + true_but_false_count = sum(np.logical_and(label == 1, binary_label_issues)) + false_but_true_count = sum(np.logical_and(label == 0, binary_label_issues)) + + if class_names is not None: + summary_issue_counts["Class Name"].append(class_names[class_num]) + summary_issue_counts["Class Index"].append(class_num) + summary_issue_counts["In Given Label"].append(True) + summary_issue_counts["In Suggested Label"].append(False) + summary_issue_counts["Num Examples"].append(true_but_false_count) + summary_issue_counts["Issue Probability"].append(true_but_false_count / num_examples) + + if class_names is not None: + summary_issue_counts["Class Name"].append(class_names[class_num]) + summary_issue_counts["Class Index"].append(class_num) + summary_issue_counts["In Given Label"].append(False) + summary_issue_counts["In Suggested Label"].append(True) + summary_issue_counts["Num Examples"].append(false_but_true_count) + summary_issue_counts["Issue Probability"].append(false_but_true_count / num_examples) + return ( + pd.DataFrame.from_dict(summary_issue_counts) + .sort_values(by=["Issue Probability"], ascending=False) + .reset_index(drop=True) + )
+ + +
[docs]def rank_classes_by_multilabel_quality( + labels=None, + pred_probs=None, + *, + class_names=None, + joint=None, + confident_joint=None, +) -> pd.DataFrame: + """ + Returns a DataFrame with three overall label quality scores per class for a multi-label dataset. + + These numbers summarize all examples annotated with the class (details listed below under the Returns parameter). + By default, classes are ordered by "Label Quality Score", so the most problematic classes are reported first in the DataFrame. + + Score values are unnormalized and may be very small. What matters is their relative ranking across the classes. + + **Parameters**: + + For information about the arguments to this method, see the documentation of + `~cleanlab.multilabel_classification.dataset.common_multilabel_issues`. + + Returns + ------- + overall_label_quality : pd.DataFrame + Pandas DataFrame with one row per class and columns: "Class Index", "Label Issues", + "Inverse Label Issues", "Label Issues", "Inverse Label Noise", "Label Quality Score". + Some entries are overall quality scores between 0 and 1, summarizing how good overall the labels + appear to be for that class (lower values indicate more erroneous labels). + Other entries are estimated counts of annotation errors related to this class. + + Here is what each column represents: + - *Class Name*: The name of the class if class_names is provided. + - *Class Index*: The index of the class in 0, 1, ..., K-1. + - *Label Issues*: Estimated number of examples in the dataset that are labeled as belonging to class k but actually should not belong to this class. + - *Inverse Label Issues*: Estimated number of examples in the dataset that should actually be labeled as class k but did not receive this label. + - *Label Noise*: Estimated proportion of examples in the dataset that are labeled as class k but should not be. For each class k: this is computed by dividing the number of examples with "Label Issues" that were labeled as class k by the total number of examples labeled as class k. + - *Inverse Label Noise*: Estimated proportion of examples in the dataset that should actually be labeled as class k but did not receive this label. + - *Label Quality Score*: Estimated proportion of examples labeled as class k that have been labeled correctly, i.e. ``1 - label_noise``. + + By default, the DataFrame is ordered by "Label Quality Score" (in ascending order), so the classes with the most label issues appear first. + """ + + issues_df = common_multilabel_issues( + labels=labels, pred_probs=pred_probs, class_names=class_names, confident_joint=joint + ) + issues_dict = defaultdict(defaultdict) # type: Dict[str, Any] + num_examples = _get_num_examples_multilabel(labels=labels, confident_joint=confident_joint) + return_columns = [ + "Class Name", + "Class Index", + "Label Issues", + "Inverse Label Issues", + "Label Noise", + "Inverse Label Noise", + "Label Quality Score", + ] + if class_names is None: + return_columns = return_columns[1:] + for class_num, row in issues_df.iterrows(): + if row["In Given Label"]: + if class_names is not None: + issues_dict[row["Class Index"]]["Class Name"] = row["Class Name"] + issues_dict[row["Class Index"]]["Label Issues"] = int( + row["Issue Probability"] * num_examples + ) + issues_dict[row["Class Index"]]["Label Noise"] = row["Issue Probability"] + issues_dict[row["Class Index"]]["Label Quality Score"] = ( + 1 - issues_dict[row["Class Index"]]["Label Noise"] + ) + else: + if class_names is not None: + issues_dict[row["Class Index"]]["Class Name"] = row["Class Name"] + issues_dict[row["Class Index"]]["Inverse Label Issues"] = int( + row["Issue Probability"] * num_examples + ) + issues_dict[row["Class Index"]]["Inverse Label Noise"] = row["Issue Probability"] + + issues_df_dict = defaultdict(list) + for i in issues_dict: + issues_df_dict["Class Index"].append(i) + for j in issues_dict[i]: + issues_df_dict[j].append(issues_dict[i][j]) + return ( + pd.DataFrame.from_dict(issues_df_dict) + .sort_values(by="Label Quality Score", ascending=True) + .reset_index(drop=True) + )[return_columns]
+ + +def _get_num_examples_multilabel(labels=None, confident_joint: Optional[np.ndarray] = None) -> int: + """Helper method that finds the number of examples from the parameters or throws an error + if neither parameter is provided. + + Parameters + ---------- + For parameter info, see the docstring of `~cleanlab.multilabel_classification.dataset.common_multilabel_issues`. + + Returns + ------- + num_examples : int + The number of examples in the dataset. + + Raises + ------ + ValueError + If `labels` is None. + """ + + if labels is None and confident_joint is None: + raise ValueError( + "Error: num_examples is None. You must either provide confident_joint, " + "or provide both num_example and joint as input parameters." + ) + _confident_joint = cast(np.ndarray, confident_joint) + num_examples = len(labels) if labels is not None else cast(int, np.sum(_confident_joint[0])) + return num_examples + + +
[docs]def overall_multilabel_health_score( + labels=None, + pred_probs=None, + *, + confident_joint=None, +) -> float: + """Returns a single score between 0 and 1 measuring the overall quality of all labels in a multi-label classification dataset. + Intuitively, the score is the average correctness of the given labels across all examples in the + dataset. So a score of 1 suggests your data is perfectly labeled and a score of 0.5 suggests + half of the examples in the dataset may be incorrectly labeled. Thus, a higher + score implies a higher quality dataset. + + **Parameters**: For information about the arguments to this method, see the documentation of + `~cleanlab.multilabel_classification.dataset.common_multilabel_issues`. + + Returns + ------- + health_score : float + A overall score between 0 and 1, where 1 implies all labels in the dataset are estimated to be correct. + A score of 0.5 implies that half of the dataset's labels are estimated to have issues. + """ + num_examples = _get_num_examples_multilabel(labels=labels) + issues = find_label_issues( + labels=labels, pred_probs=pred_probs, confident_joint=confident_joint + ) + return 1.0 - sum(issues) / num_examples
+ + +
[docs]def multilabel_health_summary( + labels=None, + pred_probs=None, + *, + class_names=None, + num_examples=None, + confident_joint=None, + verbose=True, +) -> Dict: + """Prints a health summary of your multi-label dataset. + + This summary includes useful statistics like: + + * The classes with the most and least label issues. + * Overall label quality scores, summarizing how accurate the labels appear across the entire dataset. + + **Parameters**: For information about the arguments to this method, see the documentation of + `~cleanlab.multilabel_classification.dataset.common_multilabel_issues`. + + Returns + ------- + summary : dict + A dictionary containing keys (see the corresponding functions' documentation to understand the values): + - ``"overall_label_health_score"``, corresponding to output of `~cleanlab.multilabel_classification.dataset.overall_multilabel_health_score` + - ``"classes_by_multilabel_quality"``, corresponding to output of `~cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality` + - ``"common_multilabel_issues"``, corresponding to output of `~cleanlab.multilabel_classification.dataset.common_multilabel_issues` + """ + from cleanlab.internal.util import smart_display_dataframe + + if num_examples is None: + num_examples = _get_num_examples_multilabel(labels=labels) + + if verbose: + longest_line = f"| for your dataset with {num_examples:,} examples " + print( + "-" * (len(longest_line) - 1) + + "\n" + + f"| Generating a Cleanlab Dataset Health Summary{' ' * (len(longest_line) - 49)}|\n" + + longest_line + + f"| Note, Cleanlab is not a medical doctor... yet.{' ' * (len(longest_line) - 51)}|\n" + + "-" * (len(longest_line) - 1) + + "\n", + ) + + df_class_label_quality = rank_classes_by_multilabel_quality( + labels=labels, + pred_probs=pred_probs, + class_names=class_names, + confident_joint=confident_joint, + ) + if verbose: + print("Overall Class Quality and Noise across your dataset (below)") + print("-" * 60, "\n", flush=True) + smart_display_dataframe(df_class_label_quality) + + df_common_issues = common_multilabel_issues( + labels=labels, + pred_probs=pred_probs, + class_names=class_names, + confident_joint=confident_joint, + ) + if verbose: + print( + "\nCommon multilabel issues are" + "\n" + "-" * 83 + "\n", + flush=True, + ) + smart_display_dataframe(df_common_issues) + print() + + health_score = overall_multilabel_health_score( + labels=labels, + pred_probs=pred_probs, + confident_joint=confident_joint, + ) + if verbose: + print("\nGenerated with <3 from Cleanlab.\n") + return { + "overall_multilabel_health_score": health_score, + "classes_by_multilabel_quality": df_class_label_quality, + "common_multilabel_issues": df_common_issues, + }
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/multilabel_classification/filter.html b/v2.6.5/_modules/cleanlab/multilabel_classification/filter.html new file mode 100644 index 000000000..033c85a5f --- /dev/null +++ b/v2.6.5/_modules/cleanlab/multilabel_classification/filter.html @@ -0,0 +1,988 @@ + + + + + + + + + + + cleanlab.multilabel_classification.filter - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.multilabel_classification.filter

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to flag which examples have label issues in multi-label classification datasets.
+Here each example can belong to one or more classes, or none of the classes at all.
+Unlike in standard multi-class classification, model-predicted class probabilities need not sum to 1 for each row in multi-label classification.
+"""
+
+import warnings
+import inspect
+from typing import Optional, Union, Tuple, List, Any
+import numpy as np
+
+
+
[docs]def find_label_issues( + labels: list, + pred_probs: np.ndarray, + return_indices_ranked_by: Optional[str] = None, + rank_by_kwargs={}, + filter_by: str = "prune_by_noise_rate", + frac_noise: float = 1.0, + num_to_remove_per_class: Optional[List[int]] = None, + min_examples_per_class=1, + confident_joint: Optional[np.ndarray] = None, + n_jobs: Optional[int] = None, + verbose: bool = False, + low_memory: bool = False, +) -> np.ndarray: + """ + Identifies potentially mislabeled examples in a multi-label classification dataset. + An example is flagged as with a label issue if *any* of the classes appear to be incorrectly annotated for this example. + + Parameters + ---------- + labels : List[List[int]] + List of noisy labels for multi-label classification where each example can belong to multiple classes. + This is an iterable of iterables where the i-th element of `labels` corresponds to a list of classes that the i-th example belongs to, + according to the original data annotation (e.g. ``labels = [[1,2],[1],[0],..]``). + This method will return the indices i where the inner list ``labels[i]`` is estimated to have some error. + For a dataset with K classes, each class must be represented as an integer in 0, 1, ..., K-1 within the labels. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted class probabilities. + Each row of this matrix corresponds to an example `x` + and contains the predicted probability that `x` belongs to each possible class, + for each of the K classes (along its columns). + The columns need not sum to 1 but must be ordered such that + these probabilities correspond to class 0, 1, ..., K-1. + + Note + ---- + Estimated label quality scores are most accurate when they are computed based on out-of-sample ``pred_probs`` from your model. + To obtain out-of-sample predicted probabilities for every example in your dataset, you can use :ref:`cross-validation <pred_probs_cross_val>`. + This is encouraged to get better results. + + return_indices_ranked_by : {None, 'self_confidence', 'normalized_margin', 'confidence_weighted_entropy'}, default = None + This function can return a boolean mask (if None) or an array of the example-indices with issues sorted based on the specified ranking method. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + rank_by_kwargs : dict, optional + Optional keyword arguments to pass into scoring functions for ranking by + label quality score (see :py:func:`rank.get_label_quality_scores + <cleanlab.rank.get_label_quality_scores>`). + + filter_by : {'prune_by_class', 'prune_by_noise_rate', 'both', 'confident_learning', 'predicted_neq_given', 'low_normalized_margin', 'low_self_confidence'}, default='prune_by_noise_rate' + The specific Confident Learning method to determine precisely which examples have label issues in a dataset. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + frac_noise : float, default = 1.0 + This will return the "top" frac_noise * num_label_issues estimated label errors, dependent on the filtering method used, + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + num_to_remove_per_class : array_like + An iterable that specifies the number of mislabeled examples to return from each class. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + min_examples_per_class : int, default = 1 + The minimum number of examples required per class below which examples from this class will not be flagged as label issues. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + confident_joint : np.ndarray, optional + An array of shape ``(K, 2, 2)`` representing a one-vs-rest formatted confident joint, as is appropriate for multi-label classification tasks. + Entry ``(c, i, j)`` in this array is the number of examples confidently counted into a ``(class c, noisy label=i, true label=j)`` bin, + where `i, j` are either 0 or 1 to denote whether this example belongs to class `c` or not + (recall examples can belong to multiple classes in multi-label classification). + The `confident_joint` can be computed using :py:func:`count.compute_confident_joint <cleanlab.count.compute_confident_joint>` with ``multi_label=True``. + If not provided, it is computed from the given (noisy) `labels` and `pred_probs`. + + n_jobs : optional + Number of processing threads used by multiprocessing. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + verbose : optional + If ``True``, prints when multiprocessing happens. + + low_memory: bool, default=False + Set as ``True`` if you have a big dataset with limited memory. + Uses :py:func:`experimental.label_issues_batched.find_label_issues_batched <cleanlab.experimental.label_issues_batched>` + + Returns + ------- + label_issues : np.ndarray + If `return_indices_ranked_by` left unspecified, returns a boolean **mask** for the entire dataset + where ``True`` represents an example suffering from some label issue and + ``False`` represents an example that appears accurately labeled. + + If `return_indices_ranked_by` is specified, this method instead returns a list of **indices** of examples identified with + label issues (i.e. those indices where the mask would be ``True``). + Indices are sorted by the likelihood that *all* classes are correctly annotated for the corresponding example. + + Note + ---- + Obtain the *indices* of examples with label issues in your dataset by setting + `return_indices_ranked_by`. + + """ + from cleanlab.filter import _find_label_issues_multilabel + + if low_memory: + if rank_by_kwargs: + warnings.warn(f"`rank_by_kwargs` is not used when `low_memory=True`.") + + func_signature = inspect.signature(find_label_issues) + default_args = { + k: v.default + for k, v in func_signature.parameters.items() + if v.default is not inspect.Parameter.empty + } + arg_values = { + "filter_by": filter_by, + "num_to_remove_per_class": num_to_remove_per_class, + "confident_joint": confident_joint, + "n_jobs": n_jobs, + "num_to_remove_per_class": num_to_remove_per_class, + "frac_noise": frac_noise, + "min_examples_per_class": min_examples_per_class, + } + for arg_name, arg_val in arg_values.items(): + if arg_val != default_args[arg_name]: + warnings.warn(f"`{arg_name}` is not used when `low_memory=True`.") + + return _find_label_issues_multilabel( + labels=labels, + pred_probs=pred_probs, + return_indices_ranked_by=return_indices_ranked_by, + rank_by_kwargs=rank_by_kwargs, + filter_by=filter_by, + frac_noise=frac_noise, + num_to_remove_per_class=num_to_remove_per_class, + min_examples_per_class=min_examples_per_class, + confident_joint=confident_joint, + n_jobs=n_jobs, + verbose=verbose, + low_memory=low_memory, + )
+ + +
[docs]def find_multilabel_issues_per_class( + labels: list, + pred_probs: np.ndarray, + return_indices_ranked_by: Optional[str] = None, + rank_by_kwargs={}, + filter_by: str = "prune_by_noise_rate", + frac_noise: float = 1.0, + num_to_remove_per_class: Optional[List[int]] = None, + min_examples_per_class=1, + confident_joint: Optional[np.ndarray] = None, + n_jobs: Optional[int] = None, + verbose: bool = False, + low_memory: bool = False, +) -> Union[np.ndarray, Tuple[List[np.ndarray], List[Any], List[np.ndarray]]]: + """ + Identifies potentially bad labels for each example and each class in a multi-label classification dataset. + Whereas `~cleanlab.multilabel_classification.filter.find_label_issues` + estimates which examples have an erroneous annotation for *any* class, this method estimates which specific classes are incorrectly annotated as well. + This method returns a list of size K, the number of classes in the dataset. + + Parameters + ---------- + labels : List[List[int]] + List of noisy labels for multi-label classification where each example can belong to multiple classes. + Refer to documentation for this argument in `~cleanlab.multilabel_classification.filter.find_label_issues` for further details. + This method will identify whether ``labels[i][k]`` appears correct, for every example ``i`` and class ``k``. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted class probabilities. + Refer to documentation for this argument in `~cleanlab.multilabel_classification.filter.find_label_issues` for further details. + + return_indices_ranked_by : {None, 'self_confidence', 'normalized_margin', 'confidence_weighted_entropy'}, default = None + This function can return a boolean mask (if this argument is ``None``) or a sorted array of indices based on the specified ranking method (if not ``None``). + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + rank_by_kwargs : dict, optional + Optional keyword arguments to pass into scoring functions for ranking by. + label quality score (see :py:func:`rank.get_label_quality_scores + <cleanlab.rank.get_label_quality_scores>`). + + filter_by : {'prune_by_class', 'prune_by_noise_rate', 'both', 'confident_learning', 'predicted_neq_given', 'low_normalized_margin', 'low_self_confidence'}, default = 'prune_by_noise_rate' + The specific method that can be used to filter or prune examples with label issues from a dataset. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + frac_noise : float, default = 1.0 + This will return the "top" frac_noise * num_label_issues estimated label errors, dependent on the filtering method used, + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + num_to_remove_per_class : array_like + This parameter is an iterable that specifies the number of mislabeled examples to return from each class. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + min_examples_per_class : int, default = 1 + The minimum number of examples required per class to avoid flagging as label issues. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + confident_joint : np.ndarray, optional + An array of shape ``(K, 2, 2)`` representing a one-vs-rest formatted confident joint. + Refer to documentation for this argument in `~cleanlab.multilabel_classification.filter.find_label_issues` for details. + + n_jobs : optional + Number of processing threads used by multiprocessing. + Refer to documentation for this argument in :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` for details. + + verbose : optional + If ``True``, prints when multiprocessing happens. + + Returns + ------- + per_class_label_issues : list(np.ndarray) + By default, this is a list of length K containing the examples where each class appears incorrectly annotated. + ``per_class_label_issues[k]`` is a Boolean mask of the same length as the dataset, + where ``True`` values indicate examples where class ``k`` appears incorrectly annotated. + + For more details, refer to `~cleanlab.multilabel_classification.filter.find_label_issues`. + + Otherwise if `return_indices_ranked_by` is not ``None``, then this method returns 3 objects (each of length K, the number of classes): `label_issues_list`, `labels_list`, `pred_probs_list`. + - *label_issues_list*: an ordered list of indices of examples where class k appears incorrectly annotated, sorted by the likelihood that class k is correctly annotated. + - *labels_list*: a binary one-hot representation of the original labels, useful if you want to compute label quality scores. + - *pred_probs_list*: a one-vs-rest representation of the original predicted probabilities of shape ``(N, 2)``, useful if you want to compute label quality scores. + ``pred_probs_list[k][i][0]`` is the estimated probability that example ``i`` belongs to class ``k``, and is equal to: ``1 - pred_probs_list[k][i][1]``. + """ + import cleanlab.filter + from cleanlab.internal.multilabel_utils import get_onehot_num_classes, stack_complement + from cleanlab.experimental.label_issues_batched import find_label_issues_batched + + y_one, num_classes = get_onehot_num_classes(labels, pred_probs) + if return_indices_ranked_by is None: + bissues = np.zeros(y_one.shape).astype(bool) + else: + label_issues_list = [] + labels_list = [] + pred_probs_list = [] + if confident_joint is not None and not low_memory: + confident_joint_shape = confident_joint.shape + if confident_joint_shape == (num_classes, num_classes): + warnings.warn( + f"The new recommended format for `confident_joint` in multi_label settings is (num_classes,2,2) as output by compute_confident_joint(...,multi_label=True). Your K x K confident_joint in the old format is being ignored." + ) + confident_joint = None + elif confident_joint_shape != (num_classes, 2, 2): + raise ValueError("confident_joint should be of shape (num_classes, 2, 2)") + for class_num, (label, pred_prob_for_class) in enumerate(zip(y_one.T, pred_probs.T)): + pred_probs_binary = stack_complement(pred_prob_for_class) + if low_memory: + quality_score_kwargs = ( + {"method": return_indices_ranked_by} if return_indices_ranked_by else None + ) + binary_label_issues = find_label_issues_batched( + labels=label, + pred_probs=pred_probs_binary, + verbose=verbose, + quality_score_kwargs=quality_score_kwargs, + return_mask=return_indices_ranked_by is None, + ) + else: + if confident_joint is None: + conf = None + else: + conf = confident_joint[class_num] + if num_to_remove_per_class is not None: + ml_num_to_remove_per_class = [num_to_remove_per_class[class_num], 0] + else: + ml_num_to_remove_per_class = None + binary_label_issues = cleanlab.filter.find_label_issues( + labels=label, + pred_probs=pred_probs_binary, + return_indices_ranked_by=return_indices_ranked_by, + frac_noise=frac_noise, + rank_by_kwargs=rank_by_kwargs, + filter_by=filter_by, + num_to_remove_per_class=ml_num_to_remove_per_class, + min_examples_per_class=min_examples_per_class, + confident_joint=conf, + n_jobs=n_jobs, + verbose=verbose, + ) + + if return_indices_ranked_by is None: + bissues[:, class_num] = binary_label_issues + else: + label_issues_list.append(binary_label_issues) + labels_list.append(label) + pred_probs_list.append(pred_probs_binary) + if return_indices_ranked_by is None: + return bissues + else: + return label_issues_list, labels_list, pred_probs_list
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/multilabel_classification/rank.html b/v2.6.5/_modules/cleanlab/multilabel_classification/rank.html new file mode 100644 index 000000000..39c927632 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/multilabel_classification/rank.html @@ -0,0 +1,863 @@ + + + + + + + + + + + cleanlab.multilabel_classification.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.multilabel_classification.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to rank the severity of label issues in multi-label classification datasets.
+Here each example can belong to one or more classes, or none of the classes at all.
+Unlike in standard multi-class classification, model-predicted class probabilities need not sum to 1 for each row in multi-label classification.
+"""
+from __future__ import annotations
+
+import numpy as np  # noqa: F401: Imported for type annotations
+from typing import List, TypeVar, Dict, Any, Optional, Tuple, TYPE_CHECKING
+
+from cleanlab.internal.validation import assert_valid_inputs
+from cleanlab.internal.util import get_num_classes
+from cleanlab.internal.multilabel_utils import int2onehot
+from cleanlab.internal.multilabel_scorer import MultilabelScorer, ClassLabelScorer, Aggregator
+
+
+if TYPE_CHECKING:  # pragma: no cover
+    import numpy.typing as npt
+
+    T = TypeVar("T", bound=npt.NBitBase)
+
+
+def _labels_to_binary(
+    labels: List[List[int]],
+    pred_probs: npt.NDArray["np.floating[T]"],
+) -> np.ndarray:
+    """Validate the inputs to the multilabel scorer. Also transform the labels to a binary representation."""
+    assert_valid_inputs(
+        X=None, y=labels, pred_probs=pred_probs, multi_label=True, allow_one_class=True
+    )
+    num_classes = get_num_classes(labels=labels, pred_probs=pred_probs, multi_label=True)
+    binary_labels = int2onehot(labels, K=num_classes)
+    return binary_labels
+
+
+def _create_multilabel_scorer(
+    method: str,
+    adjust_pred_probs: bool,
+    aggregator_kwargs: Optional[Dict[str, Any]] = None,
+) -> Tuple[MultilabelScorer, Dict]:
+    """This function acts as a factory that creates a MultilabelScorer."""
+    base_scorer = ClassLabelScorer.from_str(method)
+    base_scorer_kwargs = {"adjust_pred_probs": adjust_pred_probs}
+    if aggregator_kwargs:
+        aggregator = Aggregator(**aggregator_kwargs)
+        scorer = MultilabelScorer(base_scorer, aggregator)
+    else:
+        scorer = MultilabelScorer(base_scorer)
+    return scorer, base_scorer_kwargs
+
+
+
[docs]def get_label_quality_scores( + labels: List[List[int]], + pred_probs: npt.NDArray["np.floating[T]"], + *, + method: str = "self_confidence", + adjust_pred_probs: bool = False, + aggregator_kwargs: Dict[str, Any] = {"method": "exponential_moving_average", "alpha": 0.8}, +) -> npt.NDArray["np.floating[T]"]: + """Computes a label quality score for each example in a multi-label classification dataset. + + Scores are between 0 and 1 with lower scores indicating examples whose label more likely contains an error. + For each example, this method internally computes a separate score for each individual class + and then aggregates these per-class scores into an overall label quality score for the example. + + + Parameters + ---------- + labels : List[List[int]] + List of noisy labels for multi-label classification where each example can belong to multiple classes. + Refer to documentation for this argument in :py:func:`multilabel_classification.filter.find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`multilabel_classification.filter.find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + method : {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default = "self_confidence" + Method to calculate separate per-class annotation scores for an example that are then aggregated into an overall label quality score for the example. + These scores are separately calculated for each class based on the corresponding column of `pred_probs` in a one-vs-rest manner, + and are standard label quality scores for binary classification (based on whether the class should or should not apply to this example). + + See also + -------- + :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>` function for details about each option. + + adjust_pred_probs : bool, default = False + Account for class imbalance in the label-quality scoring by adjusting predicted probabilities. + Refer to documentation for this argument in :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>` for details. + + + aggregator_kwargs : dict, default = {"method": "exponential_moving_average", "alpha": 0.8} + A dictionary of hyperparameter values to use when aggregating per-class scores into an overall label quality score for each example. + Options for ``"method"`` include: ``"exponential_moving_average"`` or ``"softmin"`` or your own callable function. + See :py:class:`internal.multilabel_scorer.Aggregator <cleanlab.internal.multilabel_scorer.Aggregator>` for details about each option and other possible hyperparameters. + + To get a score for each class annotation for each example, use the `~cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class` method instead. + + Returns + ------- + label_quality_scores : np.ndarray + A 1D array of shape ``(N,)`` with a label quality score (between 0 and 1) for each example in the dataset. + Lower scores indicate examples whose label is more likely to contain some annotation error (for any of the classes). + + Examples + -------- + >>> from cleanlab.multilabel_classification import get_label_quality_scores + >>> import numpy as np + >>> labels = [[1], [0,2]] + >>> pred_probs = np.array([[0.1, 0.9, 0.1], [0.4, 0.1, 0.9]]) + >>> scores = get_label_quality_scores(labels, pred_probs) + >>> scores + array([0.9, 0.5]) + """ + binary_labels = _labels_to_binary(labels, pred_probs) + scorer, base_scorer_kwargs = _create_multilabel_scorer( + method=method, + adjust_pred_probs=adjust_pred_probs, + aggregator_kwargs=aggregator_kwargs, + ) + return scorer(binary_labels, pred_probs, base_scorer_kwargs=base_scorer_kwargs)
+ + +
[docs]def get_label_quality_scores_per_class( + labels: List[List[int]], + pred_probs: npt.NDArray["np.floating[T]"], + *, + method: str = "self_confidence", + adjust_pred_probs: bool = False, +) -> np.ndarray: + """ + Computes a quality score quantifying how likely each individual class annotation is correct in a multi-label classification dataset. + This is similar to `~cleanlab.multilabel_classification.rank.get_label_quality_scores` + but instead returns the per-class results without aggregation. + For a dataset with K classes, each example receives K scores from this method. + Refer to documentation in `~cleanlab.multilabel_classification.rank.get_label_quality_scores` for details. + + Parameters + ---------- + labels : List[List[int]] + List of noisy labels for multi-label classification where each example can belong to multiple classes. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.multilabel_classification.filter.find_label_issues>` for further details. + + method : {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default = "self_confidence" + Method to calculate separate per-class annotation scores (that quantify how likely a particular class annotation is correct for a particular example). + Refer to documentation for this argument in `~cleanlab.multilabel_classification.rank.get_label_quality_scores` for further details. + + adjust_pred_probs : bool, default = False + Account for class imbalance in the label-quality scoring by adjusting predicted probabilities. + Refer to documentation for this argument in :py:func:`rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>` for details. + + Returns + ------- + label_quality_scores : list(np.ndarray) + A list containing K arrays, each of shape (N,). Here K is the number of classes in the dataset and N is the number of examples. + ``label_quality_scores[k][i]`` is a score between 0 and 1 quantifying how likely the annotation for class ``k`` is correct for example ``i``. + + Examples + -------- + >>> from cleanlab.multilabel_classification import get_label_quality_scores + >>> import numpy as np + >>> labels = [[1], [0,2]] + >>> pred_probs = np.array([[0.1, 0.9, 0.1], [0.4, 0.1, 0.9]]) + >>> scores = get_label_quality_scores(labels, pred_probs) + >>> scores + array([0.9, 0.5]) + """ + binary_labels = _labels_to_binary(labels, pred_probs) + scorer, base_scorer_kwargs = _create_multilabel_scorer( + method=method, + adjust_pred_probs=adjust_pred_probs, + ) + return scorer.get_class_label_quality_scores( + labels=binary_labels, pred_probs=pred_probs, base_scorer_kwargs=base_scorer_kwargs + )
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/object_detection/filter.html b/v2.6.5/_modules/cleanlab/object_detection/filter.html new file mode 100644 index 000000000..9cef911d5 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/object_detection/filter.html @@ -0,0 +1,1090 @@ + + + + + + + + + + + cleanlab.object_detection.filter - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.object_detection.filter

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""Methods to find label issues in an object detection dataset, where each annotated bounding box in an image receives its own class label."""
+
+from collections import defaultdict
+from multiprocessing import Pool
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+
+from cleanlab.internal.constants import (
+    ALPHA,
+    HIGH_PROBABILITY_THRESHOLD,
+    LOW_PROBABILITY_THRESHOLD,
+    OVERLOOKED_THRESHOLD_FACTOR,
+    BADLOC_THRESHOLD_FACTOR,
+    SWAP_THRESHOLD_FACTOR,
+    AP_SCALE_FACTOR,
+)
+from cleanlab.internal.object_detection_utils import assert_valid_inputs
+from cleanlab.object_detection.rank import (
+    _get_valid_inputs_for_compute_scores,
+    _separate_label,
+    _separate_prediction,
+    compute_badloc_box_scores,
+    compute_overlooked_box_scores,
+    compute_swap_box_scores,
+    get_label_quality_scores,
+    issues_from_scores,
+    _get_overlap_matrix,
+)
+
+
+
[docs]def find_label_issues( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + return_indices_ranked_by_score: Optional[bool] = False, + overlapping_label_check: Optional[bool] = True, +) -> np.ndarray: + """ + Identifies potentially mislabeled images in an object detection dataset. + An image is flagged with a label issue if *any* of its bounding boxes appear incorrectly annotated. + This includes images for which a bounding box: should have been annotated but is missing, + has been annotated with the wrong class, or has been annotated in a suboptimal location. + + Suppose the dataset has ``N`` images, ``K`` possible class labels. + If ``return_indices_ranked_by_score`` is ``False``, a boolean mask of length ``N`` is returned, + indicating whether each image has a label issue (``True``) or not (``False``). + If ``return_indices_ranked_by_score`` is ``True``, the indices of images flagged with label issues are returned, + sorted with the most likely-mislabeled images ordered first. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + This is a list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image in the following format: + ``{'bboxes': np.ndarray((L,4)), 'labels': np.ndarray((L,)), 'image_name': str}`` where ``L`` is the number of annotated bounding boxes + for the `i`-th image and ``bboxes[l]`` is a bounding box of coordinates in ``[x1,y1,x2,y2]`` format and with given class label ``labels[j]``. + ``image_name`` is an optional part of the labels that can be used to later refer to specific images. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. + + For more information on proper labels formatting, check out the `MMDetection library <https://mmdetection.readthedocs.io/en/dev-3.x/advanced_guides/customize_dataset.html>`_. + + predictions: + Predictions output by a trained object detection model. + For the most accurate results, predictions should be out-of-sample to avoid overfitting, eg. obtained via :ref:`cross-validation <pred_probs_cross_val>`. + This is a list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model prediction for the `i`-th image. + For each possible class ``k`` in 0, 1, ..., K-1: ``predictions[i][k]`` is a ``np.ndarray`` of shape ``(M,5)``, + where ``M`` is the number of predicted bounding boxes for class ``k``. Here the five columns correspond to ``[x1,y1,x2,y2,pred_prob]``, + where ``[x1,y1,x2,y2]`` are coordinates of the bounding box predicted by the model and ``pred_prob`` is the model's confidence in the predicted class label for this bounding box. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. The last column, pred_prob, represents the predicted probability that the bounding box contains an object of the class k. + + For more information see the `MMDetection package <https://github.com/open-mmlab/mmdetection>`_ for an example object detection library that outputs predictions in the correct format. + + return_indices_ranked_by_score: + Determines what is returned by this method (see description of return value for details). + + overlapping_label_check : bool, default = True + If True, boxes annotated with more than one class label have their swap score penalized. Set this to False if you are not concerned when two very similar boxes exist with different class labels in the given annotations. + + + Returns + ------- + label_issues : np.ndarray + Specifies which images are identified to have a label issue. + If ``return_indices_ranked_by_score = False``, this function returns a boolean mask of length ``N`` (``True`` entries indicate which images have label issue). + If ``return_indices_ranked_by_score = True``, this function returns a (shorter) array of indices of images with label issues, sorted by how likely the image is mislabeled. + + More precisely, indices are sorted by image label quality score calculated via :py:func:`object_detection.rank.get_label_quality_scores <cleanlab.object_detection.rank.get_label_quality_scores>`. + """ + scoring_method = "objectlab" + + assert_valid_inputs( + labels=labels, + predictions=predictions, + method=scoring_method, + ) + + is_issue = _find_label_issues( + labels, + predictions, + scoring_method=scoring_method, + return_indices_ranked_by_score=return_indices_ranked_by_score, + overlapping_label_check=overlapping_label_check, + ) + + return is_issue
+ + +def _find_label_issues( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + scoring_method: Optional[str] = "objectlab", + return_indices_ranked_by_score: Optional[bool] = True, + overlapping_label_check: Optional[bool] = True, +): + """Internal function to find label issues based on passed in method.""" + + if scoring_method == "objectlab": + auxiliary_inputs = _get_valid_inputs_for_compute_scores(ALPHA, labels, predictions) + + per_class_scores = _get_per_class_ap(labels, predictions) + lab_list = [_separate_label(label)[1] for label in labels] + pred_list = [_separate_prediction(pred)[1] for pred in predictions] + pred_thresholds_list = _process_class_list(pred_list, per_class_scores) + lab_thresholds_list = _process_class_list(lab_list, per_class_scores) + overlooked_scores_per_box = compute_overlooked_box_scores( + alpha=ALPHA, + high_probability_threshold=HIGH_PROBABILITY_THRESHOLD, + auxiliary_inputs=auxiliary_inputs, + ) + overlooked_issues_per_box = _find_label_issues_per_box( + overlooked_scores_per_box, pred_thresholds_list, OVERLOOKED_THRESHOLD_FACTOR + ) + overlooked_issues_per_image = _pool_box_scores_per_image(overlooked_issues_per_box) + + badloc_scores_per_box = compute_badloc_box_scores( + alpha=ALPHA, + low_probability_threshold=LOW_PROBABILITY_THRESHOLD, + auxiliary_inputs=auxiliary_inputs, + ) + badloc_issues_per_box = _find_label_issues_per_box( + badloc_scores_per_box, lab_thresholds_list, BADLOC_THRESHOLD_FACTOR + ) + badloc_issues_per_image = _pool_box_scores_per_image(badloc_issues_per_box) + + swap_scores_per_box = compute_swap_box_scores( + alpha=ALPHA, + high_probability_threshold=HIGH_PROBABILITY_THRESHOLD, + overlapping_label_check=overlapping_label_check, + auxiliary_inputs=auxiliary_inputs, + ) + swap_issues_per_box = _find_label_issues_per_box( + swap_scores_per_box, lab_thresholds_list, SWAP_THRESHOLD_FACTOR + ) + swap_issues_per_image = _pool_box_scores_per_image(swap_issues_per_box) + + issues_per_image = ( + overlooked_issues_per_image + badloc_issues_per_image + swap_issues_per_image + ) + is_issue = issues_per_image > 0 + else: + is_issue = np.full( + shape=[ + len(labels), + ], + fill_value=-1, + ) + + if return_indices_ranked_by_score: + scores = get_label_quality_scores(labels, predictions) + sorted_scores_idx = issues_from_scores(scores, threshold=1.0) + is_issue_idx = np.where(is_issue == True)[0] + sorted_issue_mask = np.in1d(sorted_scores_idx, is_issue_idx, assume_unique=True) + issue_idx = sorted_scores_idx[sorted_issue_mask] + return issue_idx + else: + return is_issue + + +def _find_label_issues_per_box( + scores_per_box: List[np.ndarray], threshold_classes, threshold_factor=1.0 +) -> List[np.ndarray]: + """Takes in a list of size ``N`` where each index is an array of scores for each bounding box in the `n-th` example + and a threshold. Each box below or equal to the corresponding threshold in threshold_classes will be marked as an issue. + + Returns a list of size ``N`` where each index is a boolean array of length number of boxes per example `n` + marking if a specific box is an issue - 1 or not - 0.""" + is_issue_per_box = [] + for idx, score_per_box in enumerate(scores_per_box): + if len(score_per_box) == 0: # if no for specific image, then image not an issue + is_issue_per_box.append(np.array([False])) + else: + score_per_box[np.isnan(score_per_box)] = 1.0 + score_per_box = score_per_box + issue_per_box = [] + for i in range(len(score_per_box)): + issue_per_box.append( + score_per_box[i] <= threshold_classes[idx][i] * threshold_factor + ) + is_issue_per_box.append(np.array(issue_per_box, bool)) + return is_issue_per_box + + +def _pool_box_scores_per_image(is_issue_per_box: List[np.ndarray]) -> np.ndarray: + """Takes in a list of size ``N`` where each index is a boolean array of length number of boxes per image `n ` + marking if a specific box is an issue - 1 or not - 0. + + Returns a list of size ``N`` where each index marks if the image contains an issue - 1 or not - 0. + Images are marked as issues if 1 or more bounding boxes in the image is an issue.""" + is_issue = np.zeros( + shape=[ + len( + is_issue_per_box, + ) + ] + ) + for idx, issue_per_box in enumerate(is_issue_per_box): + if np.sum(issue_per_box) > 0: + is_issue[idx] = 1 + return is_issue + + +def _process_class_list(class_list: List[np.ndarray], class_dict: Dict[int, float]) -> List: + """ + Converts a list of classes represented as numpy arrays using a class-to-float dictionary, + and returns a list where each class is replaced by its corresponding float value from the dictionary. + + Args: + class_list (List[np.ndarray]): A list of classes represented as numpy arrays. + class_dict (Dict[int, float]): A dictionary mapping class indices to their corresponding float values. + + Returns: + List[float]: A list of float values corresponding to the classes in the input list. + """ + class_l2 = [] + for i in class_list: + l3 = [class_dict[j] for j in i] + class_l2.append(l3) + return class_l2 + + +def _calculate_ap_per_class( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + iou_threshold: Optional[float] = 0.5, + num_procs: int = 1, +) -> List: + """ + Computes the average precision for each class based on provided labels and predictions. + It uses an Intersection over Union (IoU) threshold and supports parallel processing with a specified number of processes. + + """ + num_images = len(predictions) + num_scale = 1 + num_classes = len(predictions[0]) + if num_images > 1: + num_procs = min(num_procs, num_images) + pool = Pool(num_procs) + ap_per_class_list = [] + for class_num in range(num_classes): + pred_bboxes, lab_bboxes = _filter_by_class(labels, predictions, class_num) + if num_images > 1: + tpfp = pool.starmap( + _calculate_true_positives_false_positives, + zip(pred_bboxes, lab_bboxes, [iou_threshold for _ in range(num_images)]), + ) + else: + tpfp = [ + _calculate_true_positives_false_positives( + pred_bboxes[0], + lab_bboxes[0], + iou_threshold, + ) + ] + true_positives, false_positives = tuple(zip(*tpfp)) + num_gts = np.zeros(num_scale, dtype=int) + for j, bbox in enumerate(lab_bboxes): + num_gts[0] += bbox.shape[0] + pred_bboxes = np.vstack(pred_bboxes) + sort_inds = np.argsort(-pred_bboxes[:, -1]) + true_positives = np.hstack(true_positives)[:, sort_inds] + false_positives = np.hstack(false_positives)[:, sort_inds] + true_positives = np.cumsum(true_positives, axis=1) + false_positives = np.cumsum(false_positives, axis=1) + eps = np.finfo(np.float32).eps + recalls = true_positives / np.maximum(num_gts[:, np.newaxis], eps) + precisions = true_positives / np.maximum((true_positives + false_positives), eps) + recalls = recalls[0, :] + precisions = precisions[0, :] + ap = _calculate_average_precision(recalls, precisions) + ap_per_class_list.append(ap) + if num_images > 1: + pool.close() + return ap_per_class_list + + +def _filter_by_class( + labels: List[Dict[str, Any]], predictions: List[np.ndarray], class_num: int +) -> Tuple[List, List]: + """ + Filters predictions and labels based on a specific class number. + """ + pred_bboxes = [prediction[class_num] for prediction in predictions] + lab_bboxes = [] + for label in labels: + gt_inds = label["labels"] == class_num + lab_bboxes.append(label["bboxes"][gt_inds, :]) + return pred_bboxes, lab_bboxes + + +def _calculate_true_positives_false_positives( + pred_bboxes: np.ndarray, + lab_bboxes: np.ndarray, + iou_threshold: Optional[float] = 0.5, + return_false_negative: bool = False, +) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, np.ndarray]]: + """Calculates true positives (TP) and false positives (FP) for object detection tasks. + It takes predicted bounding boxes, ground truth bounding boxes, and an optional Intersection over Union (IoU) threshold as inputs. + If return_false_negative is True, it returns an array of False negatives as well. + """ + num_preds = pred_bboxes.shape[0] + num_labels = lab_bboxes.shape[0] + num_scales = 1 + true_positives = np.zeros((num_scales, num_preds), dtype=np.float32) + false_positives = np.zeros((num_scales, num_preds), dtype=np.float32) + + if lab_bboxes.shape[0] == 0: + false_positives[...] = 1 + if return_false_negative: + return true_positives, false_positives, np.array([], dtype=np.float32) + else: + return true_positives, false_positives + ious = _get_overlap_matrix(pred_bboxes, lab_bboxes) + ious_max = ious.max(axis=1) + ious_argmax = ious.argmax(axis=1) + sorted_indices = np.argsort(-pred_bboxes[:, -1]) + is_covered = np.zeros(num_labels, dtype=bool) + for index in sorted_indices: + if ious_max[index] >= iou_threshold: + matching_label = ious_argmax[index] + if not is_covered[matching_label]: + is_covered[matching_label] = True + true_positives[0, index] = 1 + else: + false_positives[0, index] = 1 + else: + false_positives[0, index] = 1 + if return_false_negative: + false_negatives = np.zeros((num_scales, num_labels), dtype=np.float32) + for label_index in range(num_labels): + if not is_covered[label_index]: + false_negatives[0, label_index] = 1 + return true_positives, false_positives, false_negatives + return true_positives, false_positives + + +def _calculate_average_precision( + recall_values: np.ndarray, precision_values: np.ndarray +) -> np.ndarray: + """Computes the average precision (AP) for a set of recall and precision values. It takes arrays of recall and precision values as inputs.""" + recall_values = recall_values[np.newaxis, :] + precision_values = precision_values[np.newaxis, :] + num_scales = recall_values.shape[0] + average_precision = np.zeros(num_scales, dtype=np.float32) + zeros_matrix = np.zeros((num_scales, 1), dtype=recall_values.dtype) + ones_matrix = np.ones((num_scales, 1), dtype=recall_values.dtype) + modified_recall = np.hstack((zeros_matrix, recall_values, ones_matrix)) + modified_precision = np.hstack((zeros_matrix, precision_values, zeros_matrix)) + + for i in range(modified_precision.shape[1] - 1, 0, -1): + modified_precision[:, i - 1] = np.maximum( + modified_precision[:, i - 1], modified_precision[:, i] + ) + + for i in range(num_scales): + index = np.where(modified_recall[i, 1:] != modified_recall[i, :-1])[0] + average_precision[i] = np.sum( + (modified_recall[i, index + 1] - modified_recall[i, index]) + * modified_precision[i, index + 1] + ) + + return average_precision + + +def _get_per_class_ap( + labels: List[Dict[str, Any]], predictions: List[np.ndarray] +) -> Dict[int, float]: + """Computes the Average Precision (AP) for each class in an object detection task. + It takes a list of label dictionaries and a list of prediction arrays as inputs. + It calculates AP values for different Intersection over Union (IoU) thresholds, averages them per class, and then scales the AP values. + """ + iou_thrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) + class_num_to_iou_list = defaultdict(list) + for threshold in iou_thrs: + ap_per_class = _calculate_ap_per_class(labels, predictions, iou_threshold=threshold) + for class_num in range(0, len(ap_per_class)): + class_num_to_iou_list[class_num].append(ap_per_class[class_num]) + class_num_to_AP = {} + for class_num in class_num_to_iou_list: + class_num_to_AP[class_num] = np.mean(class_num_to_iou_list[class_num]) * AP_SCALE_FACTOR + return class_num_to_AP +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/object_detection/rank.html b/v2.6.5/_modules/cleanlab/object_detection/rank.html new file mode 100644 index 000000000..d355bbe36 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/object_detection/rank.html @@ -0,0 +1,1795 @@ + + + + + + + + + + + cleanlab.object_detection.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.object_detection.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""Methods to rank and score images in an object detection dataset (object detection data), based on how likely they
+are to contain label errors. """
+
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypeVar
+import warnings
+import copy
+import numpy as np
+
+from cleanlab.internal.constants import (
+    ALPHA,
+    CUSTOM_SCORE_WEIGHT_BADLOC,
+    CUSTOM_SCORE_WEIGHT_OVERLOOKED,
+    CUSTOM_SCORE_WEIGHT_SWAP,
+    EPSILON,
+    EUC_FACTOR,
+    HIGH_PROBABILITY_THRESHOLD,
+    LOW_PROBABILITY_THRESHOLD,
+    MAX_ALLOWED_BOX_PRUNE,
+    TINY_VALUE,
+    TEMPERATURE,
+    LABEL_OVERLAP_THRESHOLD,
+)
+from cleanlab.internal.object_detection_utils import (
+    softmin1d,
+    assert_valid_aggregation_weights,
+    assert_valid_inputs,
+)
+
+
+if TYPE_CHECKING:  # pragma: no cover
+    from typing import TypedDict
+
+    AuxiliaryTypesDict = TypedDict(
+        "AuxiliaryTypesDict",
+        {
+            "pred_labels": np.ndarray,
+            "pred_label_probs": np.ndarray,
+            "pred_bboxes": np.ndarray,
+            "lab_labels": np.ndarray,
+            "lab_bboxes": np.ndarray,
+            "similarity_matrix": np.ndarray,
+            "iou_matrix": np.ndarray,
+            "min_possible_similarity": float,
+        },
+    )
+else:
+    AuxiliaryTypesDict = TypeVar("AuxiliaryTypesDict")
+
+
+
[docs]def get_label_quality_scores( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + aggregation_weights: Optional[Dict[str, float]] = None, + overlapping_label_check: Optional[bool] = True, + verbose: bool = True, +) -> np.ndarray: + """Computes a label quality score for each image of the ``N`` images in the dataset. + + For object detection datasets, the label quality score for an image estimates how likely it has been correctly labeled. + Lower scores indicate images whose annotation is more likely imperfect. + Annotators may have mislabeled an image because they: + + - overlooked an object (missing annotated bounding box), + - chose the wrong class label for an annotated box in the correct location, + - imperfectly annotated the location/edges of a bounding box. + + Any of these annotation errors should lead to an image with a lower label quality score. This quality score is between 0 and 1. + + - 1 - clean label (given label is likely correct). + - 0 - dirty label (given label is likely incorrect). + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + verbose : bool, default = True + Set to ``False`` to suppress all print statements. + + aggregation_weights: + Optional dictionary to specify weights for aggregating quality scores for subtype of label issue into an overall label quality score for the image. + Its keys are: "overlooked", "swap", "badloc", and values should be nonnegative weights that sum to 1. + Increase one of these weights to prioritize images with bounding boxes that were either: + missing in the annotations (overlooked object), annotated with the wrong class label (class for the object should be swapped to another class), or annotated in a suboptimal location (badly located). + + swapped examples, bad location examples, and overlooked examples. + It is important to ensure that the weights are non-negative values and that their sum equals 1.0. + + overlapping_label_check : bool, default = True + If True, boxes annotated with more than one class label have their swap score penalized. Set this to False if you are not concerned when two very similar boxes exist with different class labels in the given annotations. + + Returns + --------- + label_quality_scores: + Array of shape ``(N, )`` of scores between 0 and 1, one per image in the object detection dataset. + Lower scores indicate images that are more likely mislabeled. + """ + method = "objectlab" + probability_threshold = 0.0 + + assert_valid_inputs( + labels=labels, + predictions=predictions, + method=method, + threshold=probability_threshold, + ) + aggregation_weights = _get_aggregation_weights(aggregation_weights) + + return _compute_label_quality_scores( + labels=labels, + predictions=predictions, + method=method, + threshold=probability_threshold, + aggregation_weights=aggregation_weights, + overlapping_label_check=overlapping_label_check, + verbose=verbose, + )
+ + +
[docs]def issues_from_scores(label_quality_scores: np.ndarray, *, threshold: float = 0.1) -> np.ndarray: + """Convert label quality scores to a list of indices of images with issues sorted from most to least severe cut off at threshold. + + Returns the list of indices of images with issues sorted from most to least severe cut off at threshold. + + Parameters + ---------- + label_quality_scores: + Array of shape ``(N, )`` of scores between 0 and 1, one per image in the object detection dataset. + Lower scores indicate images are more likely to contain a label issue. + + threshold: + Label quality scores above the threshold are not considered to be label issues. The corresponding examples' indices are omitted from the returned array. + + Returns + --------- + issue_indices: + Array of issue indices sorted from most to least severe who's label quality scores fall below the threshold if one is provided. + """ + + if threshold > 1.0: + raise ValueError( + f""" + Threshold is a cutoff of label_quality_scores and therefore should be <= 1. + """ + ) + + issue_indices = np.argwhere(label_quality_scores <= threshold).flatten() + issue_vals = label_quality_scores[issue_indices] + sorted_idx = issue_vals.argsort() + return issue_indices[sorted_idx]
+ + +def _compute_label_quality_scores( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + method: Optional[str] = "objectlab", + aggregation_weights: Optional[Dict[str, float]] = None, + threshold: Optional[float] = None, + overlapping_label_check: Optional[bool] = True, + verbose: bool = True, +) -> np.ndarray: + """Internal function to prune extra bounding boxes and compute label quality scores based on passed in method.""" + + pred_probs_prepruned = False + min_pred_prob = _get_min_pred_prob(predictions) + aggregation_weights = _get_aggregation_weights(aggregation_weights) + + if threshold is not None: + predictions = _prune_by_threshold( + predictions=predictions, threshold=threshold, verbose=verbose + ) + if np.abs(min_pred_prob - threshold) < 0.001 and threshold > 0: + pred_probs_prepruned = True # the provided threshold is the threshold used for pre_pruning the pred_probs during model prediction. + else: + threshold = min_pred_prob # assume model was not pre_pruned if no threshold was provided + + if method == "objectlab": + scores = _get_subtype_label_quality_scores( + labels=labels, + predictions=predictions, + alpha=ALPHA, + low_probability_threshold=LOW_PROBABILITY_THRESHOLD, + high_probability_threshold=HIGH_PROBABILITY_THRESHOLD, + temperature=TEMPERATURE, + aggregation_weights=aggregation_weights, + overlapping_label_check=overlapping_label_check, + ) + else: + raise ValueError( + "Invalid method: '{}' is not a valid method for computing label quality scores. Please use the 'objectlab' method.".format( + method + ) + ) + return scores + + +def _get_min_pred_prob( + predictions: List[np.ndarray], +) -> float: + """Returns min pred_prob out of all predictions.""" + pred_probs = [1.0] # avoid calling np.min on empty array. + for prediction in predictions: + for class_prediction in prediction: + pred_probs.extend(list(class_prediction[:, -1])) + + min_pred_prob = np.min(pred_probs) + return min_pred_prob + + +def _prune_by_threshold( + predictions: List[np.ndarray], threshold: float, verbose: bool = True +) -> List[np.ndarray]: + """Removes predicted bounding boxes from predictions who's pred_prob is below the cuttoff threshold.""" + + predictions_copy = copy.deepcopy(predictions) + num_ann_to_zero = 0 + total_ann = 0 + for idx_predictions, prediction in enumerate(predictions_copy): + for idx_class, class_prediction in enumerate(prediction): + filtered_class_prediction = class_prediction[class_prediction[:, -1] >= threshold] + if len(class_prediction) > 0: + total_ann += 1 + if len(filtered_class_prediction) == 0: + num_ann_to_zero += 1 + + predictions_copy[idx_predictions][idx_class] = filtered_class_prediction + + p_ann_pruned = total_ann and num_ann_to_zero / total_ann or 0 # avoid division by zero + if p_ann_pruned > MAX_ALLOWED_BOX_PRUNE: + warnings.warn( + f"Pruning with threshold=={threshold} prunes {p_ann_pruned}% labels. Consider lowering the threshold.", + UserWarning, + ) + if verbose: + print( + f"Pruning {num_ann_to_zero} predictions out of {total_ann} using threshold=={threshold}. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered." + ) + return predictions_copy + + +def _separate_label(label: Dict[str, Any]) -> Tuple[np.ndarray, np.ndarray]: + """Separates labels into bounding box and class label lists.""" + bboxes = label["bboxes"] + labels = label["labels"] + return bboxes, labels + + +# TODO: make object detection work for all predicted probabilities +def _separate_prediction_all_preds( + prediction: List[np.ndarray], +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + pred_bboxes, pred_labels, det_probs = prediction + return pred_bboxes, pred_labels, det_probs + + +def _separate_prediction_single_box( + prediction: np.ndarray, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Separates predictions into class labels, bounding boxes and pred_prob lists""" + labels = [] + boxes = [] + for idx, prediction_class in enumerate(prediction): + labels.extend([idx] * len(prediction_class)) + boxes.extend(prediction_class.tolist()) + bboxes = [box[:4] for box in boxes] + pred_probs = [box[-1] for box in boxes] + return np.array(bboxes), np.array(labels), np.array(pred_probs) + + +def _get_prediction_type(prediction: np.ndarray) -> str: + if ( + len(prediction) == 3 + and prediction[0].shape[0] == prediction[2].shape[1] + and prediction[1].shape[0] == prediction[2].shape[0] + ): + return "all_pred" + else: + return "single_pred" + + +def _separate_prediction( + prediction, prediction_type="single_pred" +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Returns bbox, label and pred_prob values for prediction.""" + + if prediction_type == "all_pred": + boxes, labels, pred_probs = _separate_prediction_all_preds(prediction) + else: + boxes, labels, pred_probs = _separate_prediction_single_box(prediction) + return boxes, labels, pred_probs + + +def _mod_coordinates(x: List[float]) -> Dict[str, Any]: + """Takes is a list of xyxy coordinates and returns them in dictionary format.""" + + wd = {"x1": x[0], "y1": x[1], "x2": x[2], "y2": x[3]} + return wd + + +def _get_overlap(bb1: List[float], bb2: List[float]) -> float: + """Takes in two bounding boxes `bb1` and `bb2` and returns their IoU overlap.""" + + return _get_iou(_mod_coordinates(bb1), _mod_coordinates(bb2)) + + +def _get_overlap_matrix(bb1_list: np.ndarray, bb2_list: np.ndarray) -> np.ndarray: + """Takes in two lists of bounding boxes and returns an IoU matrix where IoU[i][j] is the overlap between + the i-th box in `bb1_list` and the j-th box in `bb2_list`.""" + wd = np.zeros(shape=(len(bb1_list), len(bb2_list))) + for i in range(len(bb1_list)): + for j in range(len(bb2_list)): + wd[i][j] = _get_overlap(bb1_list[i], bb2_list[j]) + return wd + + +def _get_iou(bb1: Dict[str, Any], bb2: Dict[str, Any]) -> float: + """ + Calculate the Intersection over Union (IoU) of two bounding boxes. + I've modified this to calculate overlap ratio in the line: + iou = np.clip(intersection_area / float(min(bb1_area,bb2_area)),0.0,1.0) + + Parameters + ---------- + bb1 : dict + Keys: {'x1', 'x2', 'y1', 'y2'} + The (x1, y1) position is at the top left corner, + the (x2, y2) position is at the bottom right corner + bb2 : dict + Keys: {'x1', 'x2', 'y1', 'y2'} + The (x, y) position is at the top left corner, + the (x2, y2) position is at the bottom right corner + Returns + ------- + float + in [0, 1] + """ + # determine the coordinates of the intersection rectangle + x_left = max(bb1["x1"], bb2["x1"]) + y_top = max(bb1["y1"], bb2["y1"]) + x_right = min(bb1["x2"], bb2["x2"]) + y_bottom = min(bb1["y2"], bb2["y2"]) + + if x_right < x_left or y_bottom < y_top: + return 0.0 + + # The intersection of two axis-aligned bounding boxes is always an + # axis-aligned bounding box + intersection_area = (x_right - x_left) * (y_bottom - y_top) + + # compute the area of both AABBs + bb1_area = (bb1["x2"] - bb1["x1"]) * (bb1["y2"] - bb1["y1"]) + bb2_area = (bb2["x2"] - bb2["x1"]) * (bb2["y2"] - bb2["y1"]) + + # compute the intersection over union by taking the intersection + # area and dividing it by the sum of prediction + ground-truth + # areas - the interesection area + iou = intersection_area / np.clip( + float(bb1_area + bb2_area - intersection_area), a_min=EPSILON, a_max=None + ) # avoid division by 0 + # There are some hyper-parameters here like consider tile area/object area + return iou + + +def _has_overlap(bbox_list, labels): + """This function determines whether each labeled box overlaps with another box of a different class (i.e. virtually the same box having multiple conflicting annotations). It returns a boolean array.""" + iou_matrix = _get_overlap_matrix(bbox_list, bbox_list) + results_overlap = [] + for i in range(0, len(iou_matrix)): + is_overlap = False + for j in range(0, len(iou_matrix)): + if i != j: + if iou_matrix[i][j] >= LABEL_OVERLAP_THRESHOLD: + lab_1 = labels[i] + lab_2 = labels[j] + if lab_1 != lab_2: + is_overlap = True + results_overlap.append(is_overlap) + return np.array(results_overlap) + + +def _euc_dis(box1: List[float], box2: List[float]) -> float: + """Calculates the Euclidean distance between `box1` and `box2`.""" + x1, y1 = (box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2 + x2, y2 = (box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2 + p1 = np.array([x1, y1]) + p2 = np.array([x2, y2]) + val2 = np.exp(-np.linalg.norm(p1 - p2) * EUC_FACTOR) + return val2 + + +def _get_dist_matrix(bb1_list: np.ndarray, bb2_list: np.ndarray) -> np.ndarray: + """Returns a distance matrix of distances from all of boxes in bb1_list to all of boxes in bb2_list.""" + wd = np.zeros(shape=(len(bb1_list), len(bb2_list))) + for i in range(len(bb1_list)): + for j in range(len(bb2_list)): + wd[i][j] = _euc_dis(bb1_list[i], bb2_list[j]) + return wd + + +def _get_min_possible_similarity( + alpha: float, + predictions, + labels: List[Dict[str, Any]], +) -> float: + """Gets the min possible similarity score between two bounding boxes out of all images.""" + min_possible_similarity = 1.0 + for prediction, label in zip(predictions, labels): + lab_bboxes, lab_labels = _separate_label(label) + pred_bboxes, pred_labels, _ = _separate_prediction(prediction) + iou_matrix = _get_overlap_matrix(lab_bboxes, pred_bboxes) + dist_matrix = 1 - _get_dist_matrix(lab_bboxes, pred_bboxes) + similarity_matrix = iou_matrix * alpha + (1 - alpha) * (1 - dist_matrix) + non_zero_similarity_matrix = similarity_matrix[np.nonzero(similarity_matrix)] + min_image_similarity = ( + 1.0 if 0 in non_zero_similarity_matrix.shape else np.min(non_zero_similarity_matrix) + ) + min_possible_similarity = np.min([min_possible_similarity, min_image_similarity]) + return min_possible_similarity + + +def _get_valid_inputs_for_compute_scores_per_image( + alpha: float, + *, + label: Optional[Dict[str, Any]] = None, + prediction: Optional[np.ndarray] = None, + pred_labels: Optional[np.ndarray] = None, + pred_label_probs: Optional[np.ndarray] = None, + pred_bboxes: Optional[np.ndarray] = None, + lab_labels: Optional[np.ndarray] = None, + lab_bboxes: Optional[np.ndarray] = None, + similarity_matrix: Optional[np.ndarray] = None, + iou_matrix: Optional[np.ndarray] = None, + min_possible_similarity: Optional[float] = None, +) -> AuxiliaryTypesDict: + """Returns valid inputs for compute scores by either passing through values or calculating the inputs internally.""" + if lab_labels is None or lab_bboxes is None: + if label is None: + raise ValueError( + f"Pass in either one of label or label labels into auxiliary inputs. Both can not be None." + ) + lab_bboxes, lab_labels = _separate_label(label) + + if pred_labels is None or pred_label_probs is None or pred_bboxes is None: + if prediction is None: + raise ValueError( + f"Pass in either one of prediction or prediction labels and prediction probabilities into auxiliary inputs. Both can not be None." + ) + pred_bboxes, pred_labels, pred_label_probs = _separate_prediction(prediction) + + if similarity_matrix is None: + iou_matrix = _get_overlap_matrix(lab_bboxes, pred_bboxes) + dist_matrix = 1 - _get_dist_matrix(lab_bboxes, pred_bboxes) + similarity_matrix = iou_matrix * alpha + (1 - alpha) * (1 - dist_matrix) + + if iou_matrix is None: + iou_matrix = _get_overlap_matrix(lab_bboxes, pred_bboxes) + + if min_possible_similarity is None: + min_possible_similarity = ( + 1.0 + if 0 in similarity_matrix.shape + else np.min(similarity_matrix[np.nonzero(similarity_matrix)]) + ) + + auxiliary_input_dict: AuxiliaryTypesDict = { + "pred_labels": pred_labels, + "pred_label_probs": pred_label_probs, + "pred_bboxes": pred_bboxes, + "lab_labels": lab_labels, + "lab_bboxes": lab_bboxes, + "similarity_matrix": similarity_matrix, + "iou_matrix": iou_matrix, + "min_possible_similarity": min_possible_similarity, + } + + return auxiliary_input_dict + + +def _get_valid_inputs_for_compute_scores( + alpha: float, + labels: Optional[List[Dict[str, Any]]] = None, + predictions: Optional[List[np.ndarray]] = None, +) -> List[AuxiliaryTypesDict]: + """Takes in alpha, labels and predictions and returns auxiliary input dictionary containing divided parts of labels and prediction per image.""" + if predictions is None or labels is None: + raise ValueError( + f"Predictions and labels can not be None. Both are needed to get valid inputs." + ) + min_possible_similarity = _get_min_possible_similarity(alpha, predictions, labels) + + auxiliary_inputs = [] + + for prediction, label in zip(predictions, labels): + auxiliary_input_dict = _get_valid_inputs_for_compute_scores_per_image( + alpha=alpha, + label=label, + prediction=prediction, + min_possible_similarity=min_possible_similarity, + ) + auxiliary_inputs.append(auxiliary_input_dict) + + return auxiliary_inputs + + +def _get_valid_score(scores_arr: np.ndarray, temperature: float) -> float: + """Given scores array, returns valid score (softmin) or 1. Checks validity of score.""" + scores_arr = scores_arr[~np.isnan(scores_arr)] + if len(scores_arr) > 0: + valid_score = softmin1d(scores_arr, temperature=temperature) + else: + valid_score = 1.0 + return valid_score + + +def _get_valid_subtype_score_params( + alpha: Optional[float] = None, + low_probability_threshold: Optional[float] = None, + high_probability_threshold: Optional[float] = None, + temperature: Optional[float] = None, +): + """This function returns valid params for subtype score. If param is None, then default constant is returned""" + if alpha is None: + alpha = ALPHA + if low_probability_threshold is None: + low_probability_threshold = LOW_PROBABILITY_THRESHOLD + if high_probability_threshold is None: + high_probability_threshold = HIGH_PROBABILITY_THRESHOLD + if temperature is None: + temperature = TEMPERATURE + return alpha, low_probability_threshold, high_probability_threshold, temperature + + +def _get_aggregation_weights( + aggregation_weights: Optional[Dict[str, Any]] = None +) -> Dict[str, Any]: + """This function validates aggregation weights, returning the default weights if none are provided.""" + if aggregation_weights is None: + aggregation_weights = { + "overlooked": CUSTOM_SCORE_WEIGHT_OVERLOOKED, + "swap": CUSTOM_SCORE_WEIGHT_SWAP, + "badloc": CUSTOM_SCORE_WEIGHT_BADLOC, + } + else: + assert_valid_aggregation_weights(aggregation_weights) + return aggregation_weights + + +def _compute_overlooked_box_scores_for_image( + alpha: float, + high_probability_threshold: float, + label: Optional[Dict[str, Any]] = None, + prediction: Optional[np.ndarray] = None, + pred_labels: Optional[np.ndarray] = None, + pred_label_probs: Optional[np.ndarray] = None, + pred_bboxes: Optional[np.ndarray] = None, + lab_labels: Optional[np.ndarray] = None, + lab_bboxes: Optional[np.ndarray] = None, + similarity_matrix: Optional[np.ndarray] = None, + iou_matrix: Optional[np.ndarray] = None, + min_possible_similarity: Optional[float] = None, +) -> np.ndarray: + """This method returns one score per predicted box (above threshold) in an image. Score from 0 to 1 ranking how overlooked the box is.""" + + auxiliary_input_dict = _get_valid_inputs_for_compute_scores_per_image( + alpha=alpha, + label=label, + prediction=prediction, + pred_labels=pred_labels, + pred_label_probs=pred_label_probs, + pred_bboxes=pred_bboxes, + lab_labels=lab_labels, + lab_bboxes=lab_bboxes, + similarity_matrix=similarity_matrix, + min_possible_similarity=min_possible_similarity, + ) + + pred_labels = auxiliary_input_dict["pred_labels"] + pred_label_probs = auxiliary_input_dict["pred_label_probs"] + lab_labels = auxiliary_input_dict["lab_labels"] + similarity_matrix = auxiliary_input_dict["similarity_matrix"] + min_possible_similarity = auxiliary_input_dict["min_possible_similarity"] + iou_matrix = auxiliary_input_dict["iou_matrix"] + + scores_overlooked = np.empty(len(pred_labels)) # same length as num of predicted boxes + + for iid, k in enumerate(pred_labels): + if pred_label_probs[iid] < high_probability_threshold or np.any(iou_matrix[:, iid] > 0): + scores_overlooked[iid] = np.nan + continue + + k_similarity = similarity_matrix[lab_labels == k, iid] + + if len(k_similarity) == 0: # if there are no annotated boxes of class k + score = min_possible_similarity * (1 - pred_label_probs[iid]) + else: + closest_annotated_box = np.argmax(k_similarity) + score = k_similarity[closest_annotated_box] + + scores_overlooked[iid] = score + + return scores_overlooked + + +
[docs]def compute_overlooked_box_scores( + *, + labels: Optional[List[Dict[str, Any]]] = None, + predictions: Optional[List[np.ndarray]] = None, + alpha: Optional[float] = None, + high_probability_threshold: Optional[float] = None, + auxiliary_inputs: Optional[List[AuxiliaryTypesDict]] = None, +) -> List[np.ndarray]: + """ + Returns an array of overlooked box scores for each image. + This is a helper method mostly for advanced users. + + An overlooked box error is when an image contains an object that is one of the given classes but there is no annotated bounding box around it. + Score per high-confidence predicted bounding box is between 0 and 1, with lower values indicating boxes we are more confident were overlooked in the given label. + + Each image has ``L`` annotated bounding boxes and ``M`` predicted bounding boxes. + A score is calculated for each predicted box in each of the ``N`` images in dataset. + + Note: ``M`` and ``L`` can be a different values for each image, as the number of annotated and predicted boxes varies. + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + alpha: + Optional weighting between IoU and Euclidean distance when calculating similarity between predicted and annotated boxes. High alpha means weighting IoU more heavily over Euclidean distance. If no alpha is provided, a good default is used. + + high_probability_threshold: + Optional probability threshold that determines which predicted boxes are considered high-confidence when computing overlooked scores. If not provided, a good default is used. + + auxiliary_inputs: + Optional list of ``N`` dictionaries containing keys for sub-parts of label and prediction per image. Useful to minimize computation when computing multiple box scores for a single set of images. For the `i`-th image, `auxiliary_inputs[i]` should contain following keys: + + * pred_labels: np.ndarray + Array of predicted classes for `i`-th image of shape ``(M,)``. + * pred_label_probs: np.ndarray + Array of predicted class probabilities for `i`-th image of shape ``(M,)``. + * pred_bboxes: np.ndarray + Array of predicted bounding boxes for `i`-th image of shape ``(M, 4)``. + * lab_labels: np.ndarray + Array of given label classed for `i`-th image of shape ``(L,)``. + * lab_bboxes: np.ndarray + Array of given label bounding boxes for `i`-th image of shape ``(L, 4)``. + * similarity_matrix: np.ndarray + Similarity matrix between labels and predictions `i`-th image. + * min_possible_similarity: float + Minimum possible similarity value greater than 0 between labels and predictions for the entire dataset. + Returns + --------- + scores_overlooked: + A list of ``N`` numpy arrays where scores_overlooked[i] is an array of size ``M`` of overlooked scores per predicted box for the `i`-th image. + """ + ( + alpha, + low_probability_threshold, + high_probability_threshold, + temperature, + ) = _get_valid_subtype_score_params(alpha, None, high_probability_threshold, None) + + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(alpha, labels, predictions) + + scores_overlooked = [] + for auxiliary_input_dict in auxiliary_inputs: + scores_overlooked_per_box = _compute_overlooked_box_scores_for_image( + alpha=alpha, + high_probability_threshold=high_probability_threshold, + **auxiliary_input_dict, + ) + scores_overlooked.append(scores_overlooked_per_box) + return scores_overlooked
+ + +def _compute_badloc_box_scores_for_image( + alpha: float, + low_probability_threshold: float, + label: Optional[Dict[str, Any]] = None, + prediction: Optional[np.ndarray] = None, + pred_labels: Optional[np.ndarray] = None, + pred_label_probs: Optional[np.ndarray] = None, + pred_bboxes: Optional[np.ndarray] = None, + lab_labels: Optional[np.ndarray] = None, + lab_bboxes: Optional[np.ndarray] = None, + similarity_matrix: Optional[np.ndarray] = None, + iou_matrix: Optional[np.ndarray] = None, + min_possible_similarity: Optional[float] = None, +) -> np.ndarray: + """This method returns one score per labeled box in an image. Score from 0 to 1 ranking how badly located the box is.""" + + auxiliary_input_dict = _get_valid_inputs_for_compute_scores_per_image( + alpha=alpha, + label=label, + prediction=prediction, + pred_labels=pred_labels, + pred_label_probs=pred_label_probs, + pred_bboxes=pred_bboxes, + lab_labels=lab_labels, + lab_bboxes=lab_bboxes, + similarity_matrix=similarity_matrix, + iou_matrix=iou_matrix, + min_possible_similarity=min_possible_similarity, + ) + pred_labels = auxiliary_input_dict["pred_labels"] + pred_label_probs = auxiliary_input_dict["pred_label_probs"] + lab_labels = auxiliary_input_dict["lab_labels"] + similarity_matrix = auxiliary_input_dict["similarity_matrix"] + iou_matrix = auxiliary_input_dict["iou_matrix"] + + scores_badloc = np.empty(len(lab_labels)) + + for iid, k in enumerate(lab_labels): + k_similarity = similarity_matrix[iid, pred_labels == k] + k_pred = pred_label_probs[pred_labels == k] + k_iou = iou_matrix[iid, pred_labels == k] + + if len(k_pred) == 0 or np.max(k_pred) <= low_probability_threshold: + scores_badloc[iid] = 1.0 + continue + + idx_at_least_low_probability_threshold = np.where(k_pred > low_probability_threshold)[0] + idx_at_least_intersection_threshold = np.where(k_iou > 0)[0] + combined_idx = np.intersect1d( + idx_at_least_low_probability_threshold, idx_at_least_intersection_threshold + ) + + k_similarity = k_similarity[combined_idx] + k_pred = k_pred[combined_idx] + + scores_badloc[iid] = np.max(k_similarity) if len(k_pred) > 0 else 1.0 + return scores_badloc + + +
[docs]def compute_badloc_box_scores( + *, + labels: Optional[List[Dict[str, Any]]] = None, + predictions: Optional[List[np.ndarray]] = None, + alpha: Optional[float] = None, + low_probability_threshold: Optional[float] = None, + auxiliary_inputs: Optional[List[AuxiliaryTypesDict]] = None, +) -> List[np.ndarray]: + """ + Returns a numeric score for each annotated bounding box in each image, estimating the likelihood that the edges of this box are not badly located. + This is a helper method mostly for advanced users. + + A badly located box error is when a box has the correct label but incorrect coordinates so it does not correctly encapsulate the entire object it is for. + Score per high-confidence predicted bounding box is between 0 and 1, with lower values indicating boxes we are more confident were overlooked in the given label. + + Each image has ``L`` annotated bounding boxes and ``M`` predicted bounding boxes. + A score is calculated for each predicted box in each of the ``N`` images in dataset. + + Note: ``M`` and ``L`` can be a different values for each image, as the number of annotated and predicted boxes varies. + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + alpha: + Optional weighting between IoU and Euclidean distance when calculating similarity between predicted and annotated boxes. High alpha means weighting IoU more heavily over Euclidean distance. If no alpha is provided, a good default is used. + + low_probability_threshold: + Optional minimum probability threshold that determines which predicted boxes are considered when computing badly located scores. If not provided, a good default is used. + + auxiliary_inputs: + Optional list of ``N`` dictionaries containing keys for sub-parts of label and prediction per image. Useful to minimize computation when computing multiple box scores for a single set of images. For the `i`-th image, `auxiliary_inputs[i]` should contain following keys: + + * pred_labels: np.ndarray + Array of predicted classes for `i`-th image of shape ``(M,)``. + * pred_label_probs: np.ndarray + Array of predicted class probabilities for `i`-th image of shape ``(M,)``. + * pred_bboxes: np.ndarray + Array of predicted bounding boxes for `i`-th image of shape ``(M, 4)``. + * lab_labels: np.ndarray + Array of given label classed for `i`-th image of shape ``(L,)``. + * lab_bboxes: np.ndarray + Array of given label bounding boxes for `i`-th image of shape ``(L, 4)``. + * similarity_matrix: np.ndarray + Similarity matrix between labels and predictions `i`-th image. + * min_possible_similarity: float + Minimum possible similarity value greater than 0 between labels and predictions for the entire dataset. + Returns + --------- + scores_badloc: + A list of ``N`` numpy arrays where scores_badloc[i] is an array of size ``L`` badly located scores per annotated box for the `i`-th image. + """ + ( + alpha, + low_probability_threshold, + high_probability_threshold, + temperature, + ) = _get_valid_subtype_score_params(alpha, low_probability_threshold, None, None) + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(alpha, labels, predictions) + + scores_badloc = [] + for auxiliary_input_dict in auxiliary_inputs: + scores_badloc_per_box = _compute_badloc_box_scores_for_image( + alpha=alpha, low_probability_threshold=low_probability_threshold, **auxiliary_input_dict + ) + scores_badloc.append(scores_badloc_per_box) + return scores_badloc
+ + +def _compute_swap_box_scores_for_image( + alpha: float, + high_probability_threshold: float, + label: Optional[Dict[str, Any]] = None, + prediction: Optional[np.ndarray] = None, + pred_labels: Optional[np.ndarray] = None, + pred_label_probs: Optional[np.ndarray] = None, + pred_bboxes: Optional[np.ndarray] = None, + lab_labels: Optional[np.ndarray] = None, + lab_bboxes: Optional[np.ndarray] = None, + similarity_matrix: Optional[np.ndarray] = None, + iou_matrix: Optional[np.ndarray] = None, + min_possible_similarity: Optional[float] = None, + overlapping_label_check: Optional[bool] = True, +) -> np.ndarray: + """This method returns one score per labeled box in an image. Score from 0 to 1 ranking how likeley swapped the box is.""" + + auxiliary_input_dict = _get_valid_inputs_for_compute_scores_per_image( + alpha=alpha, + label=label, + prediction=prediction, + pred_labels=pred_labels, + pred_label_probs=pred_label_probs, + pred_bboxes=pred_bboxes, + lab_labels=lab_labels, + lab_bboxes=lab_bboxes, + similarity_matrix=similarity_matrix, + min_possible_similarity=min_possible_similarity, + ) + + pred_labels = auxiliary_input_dict["pred_labels"] + pred_label_probs = auxiliary_input_dict["pred_label_probs"] + lab_labels = auxiliary_input_dict["lab_labels"] + similarity_matrix = auxiliary_input_dict["similarity_matrix"] + min_possible_similarity = auxiliary_input_dict["min_possible_similarity"] + + if overlapping_label_check: + has_overlap_label_bboxes = _has_overlap(lab_bboxes, lab_labels) + else: + has_overlap_label_bboxes = np.array([False] * len(lab_labels)) + + scores_swap = np.empty(len(lab_labels)) + + for iid, k in enumerate(lab_labels): + not_k_idx = np.where(pred_labels != k)[0] + if has_overlap_label_bboxes[iid]: + scores_swap[iid] = min_possible_similarity + continue + if not_k_idx.size == 0 or np.all(pred_label_probs[not_k_idx] <= high_probability_threshold): + scores_swap[iid] = 1.0 + continue + + not_k_pred = pred_label_probs[not_k_idx] + idx_at_least_high_probability_threshold = np.where(not_k_pred > high_probability_threshold)[ + 0 + ] + not_k_similarity = similarity_matrix[iid, not_k_idx][ + idx_at_least_high_probability_threshold + ] + + closest_predicted_box = np.argmax(not_k_similarity) + score = np.max([min_possible_similarity, 1 - not_k_similarity[closest_predicted_box]]) + scores_swap[iid] = score + + return scores_swap + + +
[docs]def compute_swap_box_scores( + *, + labels: Optional[List[Dict[str, Any]]] = None, + predictions: Optional[List[np.ndarray]] = None, + alpha: Optional[float] = None, + high_probability_threshold: Optional[float] = None, + overlapping_label_check: Optional[bool] = True, + auxiliary_inputs: Optional[List[AuxiliaryTypesDict]] = None, +) -> List[np.ndarray]: + """ + Returns a numeric score for each annotated bounding box in each image, estimating the likelihood that the class label for this box was not accidentally swapped with another class. + This is a helper method mostly for advanced users. + + A swapped box error occurs when a bounding box should be labeled as a class different to what the current label is. + Score per high-confidence predicted bounding box is between 0 and 1, with lower values indicating boxes we are more confident were overlooked in the given label. + + Each image has ``L`` annotated bounding boxes and ``M`` predicted bounding boxes. + A score is calculated for each predicted box in each of the ``N`` images in dataset. + + Note: ``M`` and ``L`` can be a different values for each image, as the number of annotated and predicted boxes varies. + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + alpha: + Optional weighting between IoU and Euclidean distance when calculating similarity between predicted and annotated boxes. High alpha means weighting IoU more heavily over Euclidean distance. If no alpha is provided, a good default is used. + + high_probability_threshold: + Optional probability threshold that determines which predicted boxes are considered high-confidence when computing overlooked scores. If not provided, a good default is used. + + overlapping_label_check : bool, default = True + If True, boxes annotated with more than one class label have their swap score penalized. Set this to False if you are not concerned when two very similar boxes exist with different class labels in the given annotations. + + auxiliary_inputs: + Optional list of ``N`` dictionaries containing keys for sub-parts of label and prediction per image. Useful to minimize computation when computing multiple box scores for a single set of images. For the `i`-th image, `auxiliary_inputs[i]` should contain following keys: + + * pred_labels: np.ndarray + Array of predicted classes for `i`-th image of shape ``(M,)``. + * pred_label_probs: np.ndarray + Array of predicted class probabilities for `i`-th image of shape ``(M,)``. + * pred_bboxes: np.ndarray + Array of predicted bounding boxes for `i`-th image of shape ``(M, 4)``. + * lab_labels: np.ndarray + Array of given label classed for `i`-th image of shape ``(L,)``. + * lab_bboxes: np.ndarray + Array of given label bounding boxes for `i`-th image of shape ``(L, 4)``. + * similarity_matrix: np.ndarray + Similarity matrix between labels and predictions `i`-th image. + * min_possible_similarity: float + Minimum possible similarity value greater than 0 between labels and predictions for the entire dataset. + Returns + --------- + scores_swap: + A list of ``N`` numpy arrays where scores_swap[i] is an array of size ``L`` swap scores per annotated box for the `i`-th image. + """ + ( + alpha, + low_probability_threshold, + high_probability_threshold, + temperature, + ) = _get_valid_subtype_score_params(alpha, None, high_probability_threshold, None) + + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(alpha, labels, predictions) + + scores_swap = [] + for auxiliary_inputs in auxiliary_inputs: + scores_swap_per_box = _compute_swap_box_scores_for_image( + alpha=alpha, + high_probability_threshold=high_probability_threshold, + overlapping_label_check=overlapping_label_check, + **auxiliary_inputs, + ) + scores_swap.append(scores_swap_per_box) + return scores_swap
+ + +
[docs]def pool_box_scores_per_image( + box_scores: List[np.ndarray], *, temperature: Optional[float] = None +) -> np.ndarray: + """ + Aggregates all per-box scores within an image to return a single quality score for the image rather than for individual boxes within it. + This is a helper method mostly for advanced users to be used with the outputs of :py:func:`object_detection.rank.compute_overlooked_box_scores <cleanlab.object_detection.rank.compute_overlooked_box_scores>`, :py:func:`object_detection.rank.compute_badloc_box_scores <cleanlab.object_detection.rank.compute_badloc_box_scores>`, and :py:func:`object_detection.rank.compute_swap_box_scores <cleanlab.object_detection.rank.compute_swap_box_scores>`. + + Score per image is between 0 and 1, with lower values indicating we are more confident image contains an error. + + Parameters + ---------- + box_scores: + A list of ``N`` numpy arrays where box_scores[i] is an array of badly located scores per box for the `i`-th image. + + temperature: + Optional temperature of the softmin function where a lower value suggests softmin acts closer to min. If not provided, a good default is used. + + Returns + --------- + image_scores: + An array of size ``N`` where ``image_scores[i]`` represents the score for the `i`-th image. + """ + + ( + alpha, + low_probability_threshold, + high_probability_threshold, + temperature, + ) = _get_valid_subtype_score_params(None, None, None, temperature) + + image_scores = np.empty( + shape=[ + len(box_scores), + ] + ) + for idx, box_score in enumerate(box_scores): + image_score = _get_valid_score(box_score, temperature=temperature) + image_scores[idx] = image_score + return image_scores
+ + +def _get_subtype_label_quality_scores( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + *, + alpha: Optional[float] = None, + low_probability_threshold: Optional[float] = None, + high_probability_threshold: Optional[float] = None, + temperature: Optional[float] = None, + aggregation_weights: Optional[Dict[str, float]] = None, + overlapping_label_check: Optional[bool] = True, +) -> np.ndarray: + """ + Returns a label quality score for each of the ``N`` images in the dataset. + Score is between 0 and 1. + + 1 - clean label (given label is likely correct). + 0 - dirty label (given label is likely incorrect). + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + alpha: + Optional weighting between IoU and Euclidean distance when calculating similarity between predicted and annotated boxes. High alpha means weighting IoU more heavily over Euclidean distance. If no alpha is provided, a good default is used. + + low_probability_threshold: + Optional minimum probability threshold that determines which predicted boxes are considered when computing badly located scores. If not provided, a good default is used. + + high_probability_threshold: + Optional probability threshold that determines which predicted boxes are considered high-confidence when computing overlooked and swapped scores. If not provided, a good default is used. + + temperature: + Optional temperature of the softmin function where a lower score suggests softmin acts closer to min. If not provided, a good default is used. + + overlapping_label_check : bool, default = True + If True, boxes annotated with more than one class label have their swap score penalized. Set this to False if you are not concerned when two very similar boxes exist with different class labels in the given annotations. + + Returns + --------- + label_quality_scores: + As returned by :py:func:`get_label_quality_scores <cleanlab.outlier.get_label_quality_scores>`. See function for more details. + """ + ( + alpha, + low_probability_threshold, + high_probability_threshold, + temperature, + ) = _get_valid_subtype_score_params( + alpha, low_probability_threshold, high_probability_threshold, temperature + ) + auxiliary_inputs = _get_valid_inputs_for_compute_scores(alpha, labels, predictions) + aggregation_weights = _get_aggregation_weights(aggregation_weights) + + overlooked_scores_per_box = compute_overlooked_box_scores( + alpha=alpha, + high_probability_threshold=high_probability_threshold, + auxiliary_inputs=auxiliary_inputs, + ) + overlooked_score_per_image = pool_box_scores_per_image( + overlooked_scores_per_box, temperature=temperature + ) + + badloc_scores_per_box = compute_badloc_box_scores( + alpha=alpha, + low_probability_threshold=low_probability_threshold, + auxiliary_inputs=auxiliary_inputs, + ) + badloc_score_per_image = pool_box_scores_per_image( + badloc_scores_per_box, temperature=temperature + ) + + swap_scores_per_box = compute_swap_box_scores( + alpha=alpha, + high_probability_threshold=high_probability_threshold, + auxiliary_inputs=auxiliary_inputs, + overlapping_label_check=overlapping_label_check, + ) + swap_score_per_image = pool_box_scores_per_image(swap_scores_per_box, temperature=temperature) + + scores = ( + aggregation_weights["overlooked"] * np.log(TINY_VALUE + overlooked_score_per_image) + + aggregation_weights["badloc"] * np.log(TINY_VALUE + badloc_score_per_image) + + aggregation_weights["swap"] * np.log(TINY_VALUE + swap_score_per_image) + ) + + scores = np.exp(scores) + + return scores +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/object_detection/summary.html b/v2.6.5/_modules/cleanlab/object_detection/summary.html new file mode 100644 index 000000000..7dcdd96f2 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/object_detection/summary.html @@ -0,0 +1,1428 @@ + + + + + + + + + + + cleanlab.object_detection.summary - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.object_detection.summary

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to display examples and their label issues in an object detection dataset.
+Here each image can have multiple objects, each with its own bounding box and class label.
+"""
+from multiprocessing import Pool
+from typing import Optional, Any, Dict, Tuple, Union, List, TYPE_CHECKING, TypeVar, DefaultDict
+
+import numpy as np
+import collections
+
+from cleanlab.internal.constants import (
+    MAX_CLASS_TO_SHOW,
+    ALPHA,
+    EPSILON,
+    TINY_VALUE,
+)
+from cleanlab.object_detection.filter import (
+    _filter_by_class,
+    _calculate_true_positives_false_positives,
+)
+from cleanlab.object_detection.rank import (
+    _get_valid_inputs_for_compute_scores,
+    _separate_prediction,
+    _separate_label,
+    _get_prediction_type,
+)
+
+from cleanlab.internal.object_detection_utils import bbox_xyxy_to_xywh
+
+if TYPE_CHECKING:
+    from PIL.Image import Image as Image  # pragma: no cover
+else:
+    Image = TypeVar("Image")
+
+
+
[docs]def object_counts_per_image( + labels=None, + predictions=None, + *, + auxiliary_inputs=None, +) -> Tuple[List, List]: + """Return the number of annotated and predicted objects for each image in the dataset. + + This method can help you discover images with abnormally many/few object annotations. + + Parameters + ---------- + labels : + Annotated boxes and class labels in the original dataset, which may contain some errors. + This is a list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image in the following format: + ``{'bboxes': np.ndarray((L,4)), 'labels': np.ndarray((L,)), 'image_name': str}`` where ``L`` is the number of annotated bounding boxes + for the `i`-th image and ``bboxes[l]`` is a bounding box of coordinates in ``[x1,y1,x2,y2]`` format with given class label ``labels[j]``. + ``image_name`` is an optional part of the labels that can be used to later refer to specific images. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. + + For more information on proper labels formatting, check out the `MMDetection library <https://mmdetection.readthedocs.io/en/dev-3.x/advanced_guides/customize_dataset.html>`_. + + predictions : + Predictions output by a trained object detection model. + For the most accurate results, predictions should be out-of-sample to avoid overfitting, eg. obtained via :ref:`cross-validation <pred_probs_cross_val>`. + This is a list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model prediction for the `i`-th image. + For each possible class ``k`` in 0, 1, ..., K-1: ``predictions[i][k]`` is a ``np.ndarray`` of shape ``(M,5)``, + where ``M`` is the number of predicted bounding boxes for class ``k``. Here the five columns correspond to ``[x1,y1,x2,y2,pred_prob]``, + where ``[x1,y1,x2,y2]`` are coordinates of the bounding box predicted by the model + and ``pred_prob`` is the model's confidence in the predicted class label for this bounding box. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. The last column, pred_prob, represents the predicted probability that the bounding box contains an object of the class k. + + For more information see the `MMDetection package <https://github.com/open-mmlab/mmdetection>`_ for an example object detection library that outputs predictions in the correct format. + + auxiliary_inputs: optional + Auxiliary inputs to be used in the computation of counts. + The `auxiliary_inputs` can be computed using :py:func:`rank._get_valid_inputs_for_compute_scores <cleanlab.object_detection.rank._get_valid_inputs_for_compute_scores>`. + It is internally computed from the given `labels` and `predictions`. + + Returns + ------- + object_counts: Tuple[List, List] + A tuple containing two lists. The first is an array of shape ``(N,)`` containing the number of annotated objects for each image in the dataset. + The second is an array of shape ``(N,)`` containing the number of predicted objects for each image in the dataset. + """ + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(ALPHA, labels, predictions) + return ( + [len(sample["lab_bboxes"]) for sample in auxiliary_inputs], + [len(sample["pred_bboxes"]) for sample in auxiliary_inputs], + )
+ + +
[docs]def bounding_box_size_distribution( + labels=None, + predictions=None, + *, + auxiliary_inputs=None, + class_names: Optional[Dict[Any, Any]] = None, + sort: bool = False, +) -> Tuple[Dict[Any, List], Dict[Any, List]]: + """Return the distribution over sizes of annotated and predicted bounding boxes across the dataset, broken down by each class. + + This method can help you find annotated/predicted boxes for a particular class that are abnormally big/small. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + predictions: + Predictions output by a trained object detection model. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + auxiliary_inputs: optional + Auxiliary inputs to be used in the computation of counts. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + class_names: optional + A dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + You can use this argument to control the classes for which the size distribution is computed. + + sort: bool + If True, the returned dictionaries are sorted by the number of instances of each class in the dataset in descending order. + + Returns + ------- + bbox_sizes: Tuple[Dict[Any, List], Dict[Any, List]] + A tuple containing two dictionaries. Each maps each class label to a list of the sizes of annotated bounding boxes for that class in the label and prediction datasets, respectively. + """ + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(ALPHA, labels, predictions) + + lab_area: Dict[Any, list] = collections.defaultdict(list) + pred_area: Dict[Any, list] = collections.defaultdict(list) + for sample in auxiliary_inputs: + _get_bbox_areas(sample["lab_labels"], sample["lab_bboxes"], lab_area, class_names) + _get_bbox_areas(sample["pred_labels"], sample["pred_bboxes"], pred_area, class_names) + + if sort: + lab_area = dict(sorted(lab_area.items(), key=lambda x: -len(x[1]))) + pred_area = dict(sorted(pred_area.items(), key=lambda x: -len(x[1]))) + + return lab_area, pred_area
+ + +
[docs]def class_label_distribution( + labels=None, + predictions=None, + *, + auxiliary_inputs=None, + class_names: Optional[Dict[Any, Any]] = None, +) -> Tuple[Dict[Any, float], Dict[Any, float]]: + """Returns the distribution of class labels associated with all annotated bounding boxes (or predicted bounding boxes) in the dataset. + + This method can help you understand which classes are: rare or over/under-predicted by the model overall. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + predictions: + Predictions output by a trained object detection model. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + auxiliary_inputs: optional + Auxiliary inputs to be used in the computation of counts. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + class_names: optional + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + + Returns + ------- + class_distribution: Tuple[Dict[Any, float], Dict[Any, float]] + A tuple containing two dictionaries. The first is a dictionary mapping each class label to its frequency in the dataset annotations. + The second is a dictionary mapping each class label to its frequency in the model predictions across all images in the dataset. + """ + if auxiliary_inputs is None: + auxiliary_inputs = _get_valid_inputs_for_compute_scores(ALPHA, labels, predictions) + + lab_freq: DefaultDict[Any, int] = collections.defaultdict(int) + pred_freq: DefaultDict[Any, int] = collections.defaultdict(int) + for sample in auxiliary_inputs: + _get_class_instances(sample["lab_labels"], lab_freq, class_names) + _get_class_instances(sample["pred_labels"], pred_freq, class_names) + + label_norm = _normalize_by_total(lab_freq) + pred_norm = _normalize_by_total(pred_freq) + + return label_norm, pred_norm
+ + +
[docs]def get_sorted_bbox_count_idxs(labels, predictions): + """ + Returns a tuple of idxs and bounding box counts of images sorted from highest to lowest number of bounding boxes. + + This plot can help you discover images with abnormally many/few object annotations. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + predictions: + Predictions output by a trained object detection model. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + + Returns + ------- + sorted_idxs: List[Tuple[int, int]], List[Tuple[int, int]] + A tuple containing two lists. The first is an array of shape ``(N,)`` containing the number of annotated objects for each image in the dataset. + The second is an array of shape ``(N,)`` containing the number of predicted objects for each image in the dataset. + """ + lab_count, pred_count = object_counts_per_image(labels, predictions) + lab_grouped = list(enumerate(lab_count)) + pred_grouped = list(enumerate(pred_count)) + + sorted_lab = sorted(lab_grouped, key=lambda x: x[1], reverse=True) + sorted_pred = sorted(pred_grouped, key=lambda x: x[1], reverse=True) + + return sorted_lab, sorted_pred
+ + +
[docs]def plot_class_size_distributions( + labels, predictions, class_names=None, class_to_show=MAX_CLASS_TO_SHOW, **kwargs +): + """ + Plots the size distributions for bounding boxes for each class. + + This plot can help you find annotated/predicted boxes for a particular class that are abnormally big/small. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + predictions: + Predictions output by a trained object detection model. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + class_names: optional + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + You can use this argument to control the classes for which the size distribution is plotted. + + class_to_show: optional + The number of classes to show in the plots. Classes over `class_to_show` are hidden. If this argument is provided, then the classes are sorted by the number of instances in the dataset. + Defaults to `MAX_CLASS_TO_SHOW` which is set to 10. + + kwargs: + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). + """ + try: + import matplotlib.pyplot as plt + except ImportError as e: + raise ImportError( + "This functionality requires matplotlib. Install it via: `pip install matplotlib`" + ) + + lab_boxes, pred_boxes = bounding_box_size_distribution( + labels, + predictions, + class_names=class_names, + sort=True if class_to_show is not None else False, + ) + + for i, c in enumerate(lab_boxes.keys()): + if i >= class_to_show: + break + fig, axs = plt.subplots(1, 2, figsize=(10, 5)) + fig.suptitle(f"Size distributions for bounding box for class {c}") + for i, l in enumerate([lab_boxes, pred_boxes]): + axs[i].hist(l[c], bins="auto") + axs[i].set_xlabel("box area (pixels)") + axs[i].set_ylabel("count") + axs[i].set_title("annotated" if i == 0 else "predicted") + + plt.show(**kwargs)
+ + +
[docs]def plot_class_distribution(labels, predictions, class_names=None, **kwargs): + """ + Plots the distribution of class labels associated with all annotated bounding boxes and predicted bounding boxes in the dataset. + + This plot can help you understand which classes are rare or over/under-predicted by the model overall. + + Parameters + ---------- + labels: + Annotated boxes and class labels in the original dataset, which may contain some errors. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + predictions: + Predictions output by a trained object detection model. + Refer to documentation for this argument in :py:func:`object_counts_per_image <cleanlab.object_detection.summary.object_counts_per_image>` for further details. + + class_names: optional + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + + kwargs: + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). + """ + try: + import matplotlib.pyplot as plt + except ImportError as e: + raise ImportError( + "This functionality requires matplotlib. Install it via: `pip install matplotlib`" + ) + + lab_dist, pred_dist = class_label_distribution(labels, predictions, class_names=class_names) + fig, axs = plt.subplots(1, 2, figsize=(10, 5)) + fig.suptitle(f"Distribution of classes in the dataset") + for i, d in enumerate([lab_dist, pred_dist]): + axs[i].pie(d.values(), labels=d.keys(), autopct="%1.1f%%") + axs[i].set_title("Annotated" if i == 0 else "Predicted") + + plt.show(**kwargs)
+ + +
[docs]def visualize( + image: Union[str, np.ndarray, Image], + *, + label: Optional[Dict[str, Any]] = None, + prediction: Optional[np.ndarray] = None, + prediction_threshold: Optional[float] = None, + overlay: bool = True, + class_names: Optional[Dict[Any, Any]] = None, + figsize: Optional[Tuple[int, int]] = None, + save_path: Optional[str] = None, + **kwargs, +) -> None: + """Display the annotated bounding boxes (given labels) and predicted bounding boxes (model predictions) for a particular image. + Given labels are shown in red, model predictions in blue. + + + Parameters + ---------- + image: + Image object loaded into memory or full path to the image file. If path is provided, image is loaded into memory. + + label: + The given label for a single image in the format ``{'bboxes': np.ndarray((L,4)), 'labels': np.ndarray((L,))}`` where + ``L`` is the number of bounding boxes for the `i`-th image and ``bboxes[j]`` is in the format ``[x1,y1,x2,y2]`` with given label ``labels[j]``. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. + + prediction: + A prediction for a single image in the format ``np.ndarray((K,))`` and ``prediction[k]`` is of shape ``np.ndarray(N,5)`` + where ``M`` is the number of predicted bounding boxes for class ``k`` and the five columns correspond to ``[x,y,x,y,pred_prob]`` where + ``[x1,y1,x2,y2]`` are the bounding box coordinates predicted by the model and ``pred_prob`` is the model's confidence in ``predictions[i]``. + + Note: Here, ``(x1,y1)`` corresponds to the top-left and ``(x2,y2)`` corresponds to the bottom-right corner of the bounding box with respect to the image matrix [e.g. `XYXY in Keras <https://keras.io/api/keras_cv/bounding_box/formats/>`, `Detectron 2 <https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box>`]. The last column, pred_prob, represents the predicted probability that the bounding box contains an object of the class k. + + prediction_threshold: + All model-predicted bounding boxes with confidence (`pred_prob`) + below this threshold are omitted from the visualization. + + overlay: bool + If True, display a single image with given labels and predictions overlaid. + If False, display two images (side by side) with the left image showing the model predictions and the right image showing the given label. + + class_names: + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + + save_path: + Path to save figure at. If a path is provided, the figure is saved. To save in a specific image format, add desired file extension to the end of `save_path`. Allowed file extensions are: 'png', 'pdf', 'ps', 'eps', and 'svg'. + + figsize: + Optional figure size for plotting the image. + Corresponds to ``matplotlib.figure.figsize``. + + kwargs: + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). + """ + try: + import matplotlib.pyplot as plt + except ImportError as e: + raise ImportError( + "This functionality requires matplotlib. Install it via: `pip install matplotlib`" + ) + + # Create figure and axes + if isinstance(image, str): + image = plt.imread(image) + + if prediction is not None: + prediction_type = _get_prediction_type(prediction) + pbbox, plabels, pred_probs = _separate_prediction( + prediction, prediction_type=prediction_type + ) + + if prediction_threshold is not None: + keep_idx = np.where(pred_probs > prediction_threshold) + pbbox = pbbox[keep_idx] + plabels = plabels[keep_idx] + + if label is not None: + abbox, alabels = _separate_label(label) + + if overlay: + figsize = (8, 5) if figsize is None else figsize + fig, ax = plt.subplots(frameon=False, figsize=figsize) + plt.axis("off") + ax.imshow(image) + if label is not None: + fig, ax = _draw_boxes( + fig, ax, abbox, alabels, edgecolor="r", linestyle="-", linewidth=1 + ) + if prediction is not None: + _, _ = _draw_boxes(fig, ax, pbbox, plabels, edgecolor="b", linestyle="-.", linewidth=1) + else: + figsize = (14, 10) if figsize is None else figsize + fig, axes = plt.subplots(nrows=1, ncols=2, frameon=False, figsize=figsize) + axes[0].axis("off") + axes[0].imshow(image) + axes[1].axis("off") + axes[1].imshow(image) + + if label is not None: + fig, ax = _draw_boxes( + fig, axes[0], abbox, alabels, edgecolor="r", linestyle="-", linewidth=1 + ) + if prediction is not None: + _, _ = _draw_boxes( + fig, axes[1], pbbox, plabels, edgecolor="b", linestyle="-.", linewidth=1 + ) + bbox_extra_artists = None + if label or prediction is not None: + legend, plt = _plot_legend(class_names, label, prediction) + bbox_extra_artists = (legend,) + + if save_path: + allowed_image_formats = set(["png", "pdf", "ps", "eps", "svg"]) + image_format: Optional[str] = None + if save_path.split(".")[-1] in allowed_image_formats and "." in save_path: + image_format = save_path.split(".")[-1] + plt.savefig( + save_path, + format=image_format, + bbox_extra_artists=bbox_extra_artists, + bbox_inches="tight", + transparent=True, + pad_inches=0.5, + ) + plt.show(**kwargs)
+ + +def _get_per_class_confusion_matrix_dict_( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + iou_threshold: Optional[float] = 0.5, + num_procs: int = 1, +) -> DefaultDict[int, Dict[str, int]]: + """ + Returns a confusion matrix dictionary for each class containing the number of True Positive, False Positive, and False Negative detections from the object detection model. + """ + num_classes = len(predictions[0]) + num_images = len(predictions) + pool = Pool(num_procs) + counter_dict: DefaultDict[int, dict[str, int]] = collections.defaultdict( + lambda: {"TP": 0, "FP": 0, "FN": 0} + ) + + for class_num in range(num_classes): + pred_bboxes, lab_bboxes = _filter_by_class(labels, predictions, class_num) + tpfpfn = pool.starmap( + _calculate_true_positives_false_positives, + zip( + pred_bboxes, + lab_bboxes, + [iou_threshold for _ in range(num_images)], + [True for _ in range(num_images)], + ), + ) + + for image_idx, (tp, fp, fn) in enumerate(tpfpfn): # type: ignore + counter_dict[class_num]["TP"] += np.sum(tp) + counter_dict[class_num]["FP"] += np.sum(fp) + counter_dict[class_num]["FN"] += np.sum(fn) + + return counter_dict + + +def _sort_dict_to_list(index_value_dict): + """ + Convert a dictionary to a list sorted by index and return the values in that order. + + Parameters: + - index_value_dict (dict): The input dictionary where keys represent indices and values are the corresponding elements. + + Returns: + list: A list containing the values from the input dictionary, sorted by index. + + Example: + >>> my_dict = {'0': '0', '1': '1', '2': '2', '3': '3', '4': '4'} + >>> sort_dict_to_list(my_dict) + ['0', '1', '2', '3', '4'] + """ + sorted_list = [ + value for key, value in sorted(index_value_dict.items(), key=lambda x: int(x[0])) + ] + return sorted_list + + +
[docs]def get_average_per_class_confusion_matrix( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + num_procs: int = 1, + class_names: Optional[Dict[Any, Any]] = None, +) -> Dict[Union[int, str], Dict[str, float]]: + """ + Compute a confusion matrix dictionary for each class containing the average number of True Positive, False Positive, and False Negative detections from the object detection model across a range of Intersection over Union thresholds. + + At each IoU threshold, the metrics are calculated as follows: + - True Positive (TP): Instances where the model correctly identifies the class with IoU above the threshold. + - False Positive (FP): Instances where the model predicts the class, but IoU is below the threshold. + - False Negative (FN): Instances where the ground truth class is not predicted by the model. + + The average confusion matrix provides insights into the model strengths and potential biases. + + Note: lower TP at certain IoU thresholds does not necessarily imply that everything else is FP, instead it indicates that, at those specific IoU thresholds, the model is not performing as well in terms of correctly identifying class instances. The other metrics (FP and FN) provide additional information about the model's behavior. + + Note: Since we average over many IoU thresholds, 'TP', 'FP', and 'FN' may contain float values representing the average across these thresholds. + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`object_detection.filter.find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`object_detection.filter.find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + num_procs: + Number of processes for parallelization. Default is 1. + + class_names: + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}`` + + + Returns + ------- + avg_metrics: dict + A distionary containing the average confusion matrix. + + The default range of Intersection over Union thresholds is from 0.5 to 0.95 with a step size of 0.05. + """ + iou_thrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) + num_classes = len(predictions[0]) + if class_names is None: + class_names = {str(i): int(i) for i in list(range(num_classes))} + class_names = _sort_dict_to_list(class_names) + avg_metrics = {class_num: {"TP": 0.0, "FP": 0.0, "FN": 0.0} for class_num in class_names} + + for iou_threshold in iou_thrs: + results_dict = _get_per_class_confusion_matrix_dict_( + labels, predictions, iou_threshold, num_procs + ) + + for class_num in results_dict: + tp = results_dict[class_num]["TP"] + fp = results_dict[class_num]["FP"] + fn = results_dict[class_num]["FN"] + + avg_metrics[class_names[class_num]]["TP"] += tp + avg_metrics[class_names[class_num]]["FP"] += fp + avg_metrics[class_names[class_num]]["FN"] += fn + + num_thresholds = len(iou_thrs) * len(results_dict) + for class_name in avg_metrics: + avg_metrics[class_name]["TP"] /= num_thresholds + avg_metrics[class_name]["FP"] /= num_thresholds + avg_metrics[class_name]["FN"] /= num_thresholds + return avg_metrics
+ + +
[docs]def calculate_per_class_metrics( + labels: List[Dict[str, Any]], + predictions: List[np.ndarray], + num_procs: int = 1, + class_names=None, +) -> Dict[Union[int, str], Dict[str, float]]: + """ + Calculate the object detection model's precision, recall, and F1 score for each class in the dataset. + + These metrics can help you identify model strengths and weaknesses, and provide reference statistics for model evaluation and comparisons. + + Parameters + ---------- + labels: + A list of ``N`` dictionaries such that ``labels[i]`` contains the given labels for the `i`-th image. + Refer to documentation for this argument in :py:func:`object_detection.filter.find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + predictions: + A list of ``N`` ``np.ndarray`` such that ``predictions[i]`` corresponds to the model predictions for the `i`-th image. + Refer to documentation for this argument in :py:func:`object_detection.filter.find_label_issues <cleanlab.object_detection.filter.find_label_issues>` for further details. + + num_procs: + Number of processes for parallelization. Default is 1. + + class_names: + Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}`` + + + Returns + ------- + per_class_metrics: dict + A dictionary containing per-class metrics computed from the object detection model's average confusion matrix values across a range of Intersection over Union thresholds. + + The default range of Intersection over Union thresholds is from 0.5 to 0.95 with a step size of 0.05. + """ + avg_metrics = get_average_per_class_confusion_matrix( + labels, predictions, num_procs, class_names=class_names + ) + + avg_metrics_dict = {} + for class_name in avg_metrics: + tp = avg_metrics[class_name]["TP"] + fp = avg_metrics[class_name]["FP"] + fn = avg_metrics[class_name]["FN"] + + precision = tp / (tp + fp + TINY_VALUE) # Avoid division by zero + recall = tp / (tp + fn + TINY_VALUE) # Avoid division by zero + f1 = 2 * (precision * recall) / (precision + recall + TINY_VALUE) # Avoid division by zero + + avg_metrics_dict[class_name] = { + "average precision": precision, + "average recall": recall, + "average f1": f1, + } + + return avg_metrics_dict
+ + +def _normalize_by_total(freq): + """Helper function to normalize a frequency distribution.""" + total = sum(freq.values()) + return {k: round(v / (total + EPSILON), 2) for k, v in freq.items()} + + +def _get_bbox_areas(labels, boxes, class_area_dict, class_names=None) -> None: + """Helper function to compute the area of bounding boxes for each class.""" + for cl, bbox in zip(labels, boxes): + if class_names is not None: + if str(cl) not in class_names: + continue + cl = class_names[str(cl)] + class_area_dict[cl].append((bbox[2] - bbox[0]) * (bbox[3] - bbox[1])) + + +def _get_class_instances(labels, class_instances_dict, class_names=None) -> None: + """Helper function to count the number of class instances in each image.""" + for cl in labels: + if class_names is not None: + cl = class_names[str(cl)] + class_instances_dict[cl] += 1 + + +def _plot_legend(class_names, label, prediction): + colors = ["black"] + colors.extend(["red"] if label is not None else []) + colors.extend(["blue"] if prediction is not None else []) + + markers = [None] + markers.extend(["s"] if label is not None else []) + markers.extend(["s"] if prediction is not None else []) + + labels = [r"$\bf{Legend}$"] + labels.extend(["given label"] if label is not None else []) + labels.extend(["predicted label"] if prediction is not None else []) + + if class_names: + colors += ["black"] + ["black"] * min(len(class_names), MAX_CLASS_TO_SHOW) + markers += [None] + [f"${class_key}$" for class_key in class_names.keys()] + labels += [r"$\bf{classes}$"] + list(class_names.values()) + + try: + import matplotlib.pyplot as plt + except ImportError as e: + raise ImportError( + "This functionality requires matplotlib. Install it via: `pip install matplotlib`" + ) + + f = lambda m, c: plt.plot([], [], marker=m, color=c, ls="none")[0] + handles = [f(marker, color) for marker, color in zip(markers, colors)] + legend = plt.legend( + handles, labels, bbox_to_anchor=(1.04, 0.05), loc="lower left", borderaxespad=0 + ) + + return legend, plt + + +def _draw_labels(ax, rect, label, edgecolor): + """Helper function to draw labels on an axis.""" + + rx, ry = rect.get_xy() + c_xleft = rx + 10 + c_xright = rx + rect.get_width() - 10 + c_ytop = ry + 12 + + if edgecolor == "r": + cx, cy = c_xleft, c_ytop + else: # edgecolor == b + cx, cy = c_xright, c_ytop + + l = ax.annotate( + label, (cx, cy), fontsize=8, fontweight="bold", color="white", ha="center", va="center" + ) + l.set_bbox(dict(facecolor=edgecolor, alpha=0.35, edgecolor=edgecolor, pad=2)) + return ax + + +def _draw_boxes(fig, ax, bboxes, labels, edgecolor="g", linestyle="-", linewidth=3): + """Helper function to draw bboxes and labels on an axis.""" + bboxes = [bbox_xyxy_to_xywh(box) for box in bboxes] + + try: + from matplotlib.patches import Rectangle + except Exception as e: + raise ImportError( + "This functionality requires matplotlib. Install it via: `pip install matplotlib`" + ) + + for (x, y, w, h), label in zip(bboxes, labels): + rect = Rectangle( + (x, y), + w, + h, + linewidth=linewidth, + linestyle=linestyle, + edgecolor=edgecolor, + facecolor="none", + ) + ax.add_patch(rect) + + if labels is not None: + ax = _draw_labels(ax, rect, label, edgecolor) + + return fig, ax +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/outlier.html b/v2.6.5/_modules/cleanlab/outlier.html new file mode 100644 index 000000000..ca77188e5 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/outlier.html @@ -0,0 +1,1267 @@ + + + + + + + + + + + cleanlab.outlier - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.outlier

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods for finding out-of-distribution examples in a dataset via scores that quantify how atypical each example is compared to the others.
+
+The underlying algorithms are described in `this paper <https://arxiv.org/abs/2207.03061>`_.
+"""
+
+import warnings
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+from sklearn.exceptions import NotFittedError
+from sklearn.neighbors import NearestNeighbors
+
+from cleanlab.count import get_confident_thresholds
+from cleanlab.internal.label_quality_utils import (
+    _subtract_confident_thresholds,
+    get_normalized_entropy,
+)
+from cleanlab.internal.neighbor.knn_graph import correct_knn_distances_and_indices, features_to_knn
+from cleanlab.internal.numerics import softmax
+from cleanlab.internal.outlier import correct_precision_errors, transform_distances_to_scores
+from cleanlab.internal.validation import assert_valid_inputs, labels_to_array
+from cleanlab.typing import LabelLike
+
+
+
[docs]class OutOfDistribution: + """ + Provides scores to detect Out Of Distribution (OOD) examples that are outliers in a dataset. + + Each example's OOD score lies in [0,1] with smaller values indicating examples that are less typical under the data distribution. + OOD scores may be estimated from either: numeric feature embeddings or predicted probabilities from a trained classifier. + + To get indices of examples that are the most severe outliers, call `~cleanlab.rank.find_top_issues` function on the returned OOD scores. + + Parameters + ---------- + params : dict, default = {} + Optional keyword arguments to control how this estimator is fit. Effect of arguments passed in depends on if + `OutOfDistribution` estimator will rely on `features` or `pred_probs`. These are stored as an instance attribute `self.params`. + + If `features` is passed in during ``fit()``, `params` could contain following keys: + * knn: sklearn.neighbors.NearestNeighbors, default = None + Instantiated ``NearestNeighbors`` object that's been fitted on a dataset in the same feature space. + Note that the distance metric and `n_neighbors` is specified when instantiating this class. + You can also pass in a subclass of ``sklearn.neighbors.NearestNeighbors`` which allows you to use faster + approximate neighbor libraries as long as you wrap them behind the same sklearn API. + If you specify ``knn`` here, there is no need to later call ``fit()`` before calling ``score()``. + If ``knn is None``, then by default: + The knn object is instantiated as ``sklearn.neighbors.NearestNeighbors(n_neighbors=k, metric=dist_metric).fit(features)``. + - If ``dim(features) > 3``, the distance metric is set to "cosine". + - If ``dim(features) <= 3``, the distance metric is set to "euclidean". + The implementation of the euclidean distance metric depends on the number of examples in the features array: + - For more than 100 rows, it uses scikit-learn's "euclidean" metric. This is for efficiency reasons reasons. + - For 100 or fewer rows, it uses scipy's ``scipy.spatial.distance.euclidean`` metric. This is for numerical stability reasons. + See: https://scikit-learn.org/stable/modules/neighbors.html + See: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.euclidean_distances.html + See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean.html + * k : int, default=None + Optional number of neighbors to use when calculating outlier score (average distance to neighbors). + If `k` is not provided, then by default ``k = knn.n_neighbors`` or ``k = 10`` if ``knn is None``. + If an existing ``knn`` object is provided, you can still specify that outlier scores should use + a different value of `k` than originally used in the ``knn``, + as long as your specified value of `k` is smaller than the value originally used in ``knn``. + * t : int, default=1 + Optional hyperparameter only for advanced users. + Controls transformation of distances between examples into similarity scores that lie in [0,1]. + The transformation applied to distances `x` is ``exp(-x*t)``. + If you find your scores are all too close to 1, consider increasing `t`, + although the relative scores of examples will still have the same ranking across the dataset. + + If `pred_probs` is passed in during ``fit()``, `params` could contain following keys: + * confident_thresholds: np.ndarray, default = None + An array of shape ``(K, )`` where K is the number of classes. + Confident threshold for a class j is the expected (average) "self-confidence" for that class. + If you specify `confident_thresholds` here, there is no need to later call ``fit()`` before calling ``score()``. + * adjust_pred_probs : bool, True + If True, account for class imbalance by adjusting predicted probabilities + via subtraction of class confident thresholds and renormalization. + If False, you do not have to pass in `labels` later to fit this OOD estimator. + See `Northcutt et al., 2021 <https://jair.org/index.php/jair/article/view/12125>`_. + * method : {"entropy", "least_confidence"}, default="entropy" + Method to use when computing outlier scores based on `pred_probs`. + Letting length-K vector ``P = pred_probs[i]`` denote the given predicted class-probabilities + for the i-th example in dataset, its outlier score can either be: + + - ``'entropy'``: ``1 - sum_{j} P[j] * log(P[j]) / log(K)`` + - ``'least_confidence'``: ``max(P)`` (equivalent to Maximum Softmax Probability method from the OOD detection literature) + - ``gen``: Generalized ENtropy score from the paper of Liu, Lochman, and Zach (https://openaccess.thecvf.com/content/CVPR2023/papers/Liu_GEN_Pushing_the_Limits_of_Softmax-Based_Out-of-Distribution_Detection_CVPR_2023_paper.pdf) + + """ + + OUTLIER_PARAMS = {"k", "t", "knn"} + OOD_PARAMS = {"confident_thresholds", "adjust_pred_probs", "method", "M", "gamma"} + DEFAULT_PARAM_DICT: Dict[str, Union[str, int, float, None, np.ndarray]] = { + "k": None, # param for feature based outlier detection (number of neighbors) + "t": 1, # param for feature based outlier detection (controls transformation of outlier scores to 0-1 range) + "knn": None, # param for features based outlier detection (precomputed nearest neighbors graph to use) + "method": "entropy", # param specifying which pred_probs-based outlier detection method to use + "adjust_pred_probs": True, # param for pred_probs based outlier detection (whether to adjust the probabilities by class thresholds or not) + "confident_thresholds": None, # param for pred_probs based outlier detection (precomputed confident thresholds to use for adjustment) + "M": 100, # param for GEN method for pred_probs based outlier detection + "gamma": 0.1, # param for GEN method for pred_probs based outlier detection + } + + def __init__(self, params: Optional[dict] = None) -> None: + self._assert_valid_params(params, self.DEFAULT_PARAM_DICT) + self.params = self.DEFAULT_PARAM_DICT.copy() + if params is not None: + self.params.update(params) + if self.params["adjust_pred_probs"] and self.params["method"] == "gen": + print( + "CAUTION: GEN method is not recommended for use with adjusted pred_probs. " + "To use GEN, we recommend setting: params['adjust_pred_probs'] = False" + ) + + # scaling_factor internally used to rescale distances based on mean distances to k nearest neighbors + self.params["scaling_factor"] = None + +
[docs] def fit_score( + self, + *, + features: Optional[np.ndarray] = None, + pred_probs: Optional[np.ndarray] = None, + labels: Optional[np.ndarray] = None, + verbose: bool = True, + ) -> np.ndarray: + """ + Fits this estimator to a given dataset and returns out-of-distribution scores for the same dataset. + + Scores lie in [0,1] with smaller values indicating examples that are less typical under the dataset + distribution (values near 0 indicate outliers). Exactly one of `features` or `pred_probs` needs to be passed + in to calculate scores. + + If `features` are passed in a ``NearestNeighbors`` object is fit. If `pred_probs` and 'labels' are passed in a + `confident_thresholds` ``np.ndarray`` is fit. For details see `~cleanlab.outlier.OutOfDistribution.fit`. + + Parameters + ---------- + features : np.ndarray, optional + Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. + For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of predicted class probabilities output by a trained classifier. + For details, `pred_probs` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + labels : array_like, optional + A discrete array of given class labels for the data of shape ``(N,)``. + For details, `labels` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + verbose : bool, default = True + Set to ``False`` to suppress all print statements. + + Returns + ------- + scores : np.ndarray + If `features` are passed in, `ood_features_scores` are returned. + If `pred_probs` are passed in, `ood_predictions_scores` are returned. + For details see return of `~cleanlab.outlier.OutOfDistribution.scores` function. + + """ + scores = self._shared_fit( + features=features, + pred_probs=pred_probs, + labels=labels, + verbose=verbose, + ) + + if scores is None: # Fit was called on already fitted object so we just score vals instead + scores = self.score(features=features, pred_probs=pred_probs) + + return scores
+ +
[docs] def fit( + self, + *, + features: Optional[np.ndarray] = None, + pred_probs: Optional[np.ndarray] = None, + labels: Optional[LabelLike] = None, + verbose: bool = True, + ): + """ + Fits this estimator to a given dataset. + + One of `features` or `pred_probs` must be specified. + + If `features` are passed in, a ``NearestNeighbors`` object is fit. + If `pred_probs` and 'labels' are passed in, a `confident_thresholds` ``np.ndarray`` is fit. + For details see `~cleanlab.outlier.OutOfDistribution` documentation. + + Parameters + ---------- + features : np.ndarray, optional + Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. + All features should be **numeric**. For less structured data (e.g. images, text, categorical values, ...), you should provide + vector embeddings to represent each example (e.g. extracted from some pretrained neural network). + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to + class 0, 1, ..., K-1. + + labels : array_like, optional + A discrete vector of given labels for the data of shape ``(N,)``. Supported `array_like` types include: ``np.ndarray`` or ``list``. + *Format requirements*: for dataset with K classes, labels must be in 0, 1, ..., K-1. + All the classes (0, 1, ..., and K-1) MUST be present in ``labels``, such that: ``len(set(labels)) == pred_probs.shape[1]`` + If ``params["adjust_confident_thresholds"]`` was previously set to ``False``, you do not have to pass in `labels`. + Note: multi-label classification is not supported by this method, each example must belong to a single class, e.g. ``labels = np.ndarray([1,0,2,1,1,0...])``. + + verbose : bool, default = True + Set to ``False`` to suppress all print statements. + + """ + _ = self._shared_fit( + features=features, + pred_probs=pred_probs, + labels=labels, + verbose=verbose, + )
+ +
[docs] def score( + self, *, features: Optional[np.ndarray] = None, pred_probs: Optional[np.ndarray] = None + ) -> np.ndarray: + """ + Use fitted estimator and passed in `features` or `pred_probs` to calculate out-of-distribution scores for a dataset. + + Score for each example corresponds to the likelihood this example stems from the same distribution as the dataset previously specified in ``fit()`` (i.e. is not an outlier). + + If `features` are passed, returns OOD score for each example based on its feature values. + If `pred_probs` are passed, returns OOD score for each example based on classifier's probabilistic predictions. + You may have to previously call ``fit()`` or call ``fit_score()`` instead. + + Parameters + ---------- + features : np.ndarray, optional + Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. + For details, see `features` in `~cleanlab.outlier.OutOfDistribution.fit` function. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of predicted class probabilities output by a trained classifier. + For details, see `pred_probs` in `~cleanlab.outlier.OutOfDistribution.fit` function. + + Returns + ------- + scores : np.ndarray + Scores lie in [0,1] with smaller values indicating examples that are less typical under the dataset distribution + (values near 0 indicate outliers). + + If `features` are passed, `ood_features_scores` are returned. + The score is based on the average distance between the example and its K nearest neighbors in the dataset + (in feature space). + + If `pred_probs` are passed, `ood_predictions_scores` are returned. + The score is based on the uncertainty in the classifier's predicted probabilities. + """ + self._assert_valid_inputs(features, pred_probs) + + if features is not None: + if self.params["knn"] is None: + raise ValueError( + "OOD estimator needs to be fit on features first. Call `fit()` or `fit_scores()` before this function." + ) + scores, _ = self._get_ood_features_scores( + features, **self._get_params(self.OUTLIER_PARAMS) + ) + + if pred_probs is not None: + if self.params["confident_thresholds"] is None and self.params["adjust_pred_probs"]: + raise ValueError( + "OOD estimator needs to be fit on pred_probs first since params['adjust_pred_probs']=True. Call `fit()` or `fit_scores()` before this function." + ) + scores, _ = _get_ood_predictions_scores(pred_probs, **self._get_params(self.OOD_PARAMS)) + + return scores
+ + def _get_params(self, param_keys) -> dict: + """Get function specific dictionary of parameters (i.e. only those in param_keys).""" + return {k: v for k, v in self.params.items() if k in param_keys} + + @staticmethod + def _assert_valid_params(params, param_keys): + """Validate passed in params and get list of parameters in param that are not in param_keys.""" + if params is not None: + wrong_params = list(set(params.keys()).difference(set(param_keys))) + if len(wrong_params) > 0: + raise ValueError( + f"Passed in params dict can only contain {param_keys}. Remove {wrong_params} from params dict." + ) + + @staticmethod + def _assert_valid_inputs(features, pred_probs): + """Check whether features and pred_prob inputs are valid, throw error if not.""" + if features is None and pred_probs is None: + raise ValueError( + "Not enough information to compute scores. Pass in either features or pred_probs." + ) + + if features is not None and pred_probs is not None: + raise ValueError( + "Cannot fit to OOD Estimator to both features and pred_probs. Pass in either one or the other." + ) + + if features is not None and len(features.shape) != 2: + raise ValueError( + "Feature array needs to be of shape (N, M), where N is the number of examples and M is the " + "number of features used to represent each example. " + ) + + def _shared_fit( + self, + *, + features: Optional[np.ndarray] = None, + pred_probs: Optional[np.ndarray] = None, + labels: Optional[LabelLike] = None, + verbose: bool = True, + ) -> Optional[np.ndarray]: + """ + Shared fit functionality between ``fit()`` and ``fit_score()``. + + For details, refer to `~cleanlab.outlier.OutOfDistribution.fit` + or `~cleanlab.outlier.OutOfDistribution.fit_score`. + """ + self._assert_valid_inputs(features, pred_probs) + scores = None # If none scores are returned, fit was skipped + + if features is not None: + if self.params["knn"] is not None: + # No fitting twice if knn object already fit + warnings.warn( + "A KNN estimator has previously already been fit, call score() to apply it to data, or create a new OutOfDistribution object to fit a different estimator.", + UserWarning, + ) + else: + # Get ood features scores + if verbose: + print("Fitting OOD estimator based on provided features ...") + scores, knn = self._get_ood_features_scores( + features, **self._get_params(self.OUTLIER_PARAMS) + ) + self.params["knn"] = knn + + if pred_probs is not None: + if self.params["confident_thresholds"] is not None: + # No fitting twice if confident_thresholds object already fit + warnings.warn( + "Confident thresholds have previously already been fit, call score() to apply them to data, or create a new OutOfDistribution object to fit a different estimator.", + UserWarning, + ) + else: + # Get ood predictions scores + if verbose: + print("Fitting OOD estimator based on provided pred_probs ...") + scores, confident_thresholds = _get_ood_predictions_scores( + pred_probs, + labels=labels, + **self._get_params(self.OOD_PARAMS), + ) + if confident_thresholds is None: + warnings.warn( + "No estimates need to be be fit under the provided params, so you could directly call " + "score() as an alternative.", + UserWarning, + ) + else: + self.params["confident_thresholds"] = confident_thresholds + return scores + + def _get_ood_features_scores( + self, + features: Optional[np.ndarray] = None, + knn: Optional[NearestNeighbors] = None, + k: Optional[int] = None, + t: int = 1, + ) -> Tuple[np.ndarray, Optional[NearestNeighbors]]: + """ + Return outlier score based on feature values using `k` nearest neighbors. + + The outlier score for each example is computed inversely proportional to + the average distance between this example and its K nearest neighbors (in feature space). + + Parameters + ---------- + features : np.ndarray + Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. + For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + knn : sklearn.neighbors.NearestNeighbors, default = None + For details, see key `knn` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + k : int, default=None + Optional number of neighbors to use when calculating outlier score (average distance to neighbors). + For details, see key `k` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + t : int, default=1 + Controls transformation of distances between examples into similarity scores that lie in [0,1]. + For details, see key `t` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + Returns + ------- + ood_features_scores : Tuple[np.ndarray, Optional[NearestNeighbors]] + Return a tuple whose first element is array of `ood_features_scores` and second is a `knn` Estimator object. + """ + DEFAULT_K = 10 + # fit skip over (if knn is not None) then skipping fit and suggest score else fit. + distance_metric = None + correct_knn = False + if knn is None: # setup default KNN estimator + # Make sure both knn and features are not None + knn = features_to_knn(features, n_neighbors=k) + correct_knn = True + features = None # features should be None in knn.kneighbors(features) to avoid counting duplicate data points + # Log knn metric as string to ensure compatibility for score correction + distance_metric = ( + metric if isinstance((metric := knn.metric), str) else str(metric.__name__) + ) + k = knn.n_neighbors + + elif k is None: + k = knn.n_neighbors + + max_k = knn.n_neighbors # number of neighbors previously used in NearestNeighbors object + if k > max_k: # if k provided is too high, use max possible number of nearest neighbors + warnings.warn( + f"Chosen k={k} cannot be greater than n_neighbors={max_k} which was used when fitting " + f"NearestNeighbors object! Value of k changed to k={max_k}.", + UserWarning, + ) + k = max_k + + # Fit knn estimator on the features if a non-fitted estimator is passed in + try: + knn.kneighbors(features) + except NotFittedError: + knn.fit(features) + + # Get distances to k-nearest neighbors Note that the knn object contains the specification of distance metric + # and n_neighbors (k value) If our query set of features matches the training set used to fit knn, the nearest + # neighbor of each point is the point itself, at a distance of zero. + distances, indices = knn.kneighbors(features) + if ( + correct_knn + ): # This should only happen if knn is None at the start of this function. Will NEVER happen for approximate KNN provided by user. + _features_for_correction = ( + knn._fit_X if features is None else features + ) # Hacky way to get features (training or test). Storing np.unique results is a hassle. ONLY WORKS WITH sklearn NearestNeighbors object + distances, _ = correct_knn_distances_and_indices( + features=_features_for_correction, + distances=distances, + indices=indices, + ) + + # Calculate average distance to k-nearest neighbors + avg_knn_distances = distances[:, :k].mean(axis=1) + + if self.params["scaling_factor"] is None: + self.params["scaling_factor"] = float( + max(np.median(avg_knn_distances), 100 * np.finfo(np.float_).eps) + ) + scaling_factor = self.params["scaling_factor"] + + if not isinstance(scaling_factor, float): + raise ValueError(f"Scaling factor must be a float. Got {type(scaling_factor)} instead.") + + ood_features_scores = transform_distances_to_scores( + avg_knn_distances, t, scaling_factor=scaling_factor + ) + distance_metric = distance_metric or ( + metric if isinstance((metric := knn.metric), str) else metric.__name__ + ) + p = None + if distance_metric == "minkowski": + p = knn.p + ood_features_scores = correct_precision_errors( + ood_features_scores, avg_knn_distances, distance_metric, p=p + ) + return (ood_features_scores, knn)
+ + +def _get_ood_predictions_scores( + pred_probs: np.ndarray, + *, + labels: Optional[LabelLike] = None, + confident_thresholds: Optional[np.ndarray] = None, + adjust_pred_probs: bool = True, + method: str = "entropy", + M: int = 100, + gamma: float = 0.1, +) -> Tuple[np.ndarray, Optional[np.ndarray]]: + """Return an OOD (out of distribution) score for each example based on it pred_prob values. + + Parameters + ---------- + pred_probs : np.ndarray + An array of shape ``(N, K)`` of model-predicted probabilities, + `pred_probs` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + confident_thresholds : np.ndarray, default = None + For details, see key `confident_thresholds` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + labels : array_like, optional + `labels` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + + adjust_pred_probs : bool, True + Account for class imbalance in the label-quality scoring. + For details, see key `adjust_pred_probs` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + method : {"entropy", "least_confidence", "gen"}, default="entropy" + Which method to use for computing outlier scores based on pred_probs. + For details see key `method` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + M : int, default=100 + For GEN method only. Hyperparameter that controls the number of top classes to consider when calculating OOD scores. + + gamma : float, default=0.1 + For GEN method only. Hyperparameter that controls the weight of the second term in the GEN score. + + + Returns + ------- + ood_predictions_scores : Tuple[np.ndarray, Optional[np.ndarray]] + Returns a tuple. First element is array of `ood_predictions_scores` and second is an np.ndarray of `confident_thresholds` or None is 'confident_thresholds' is not calculated. + """ + valid_methods = ( + "entropy", + "least_confidence", + "gen", + ) + + if (confident_thresholds is not None or labels is not None) and not adjust_pred_probs: + warnings.warn( + "OOD scores are not adjusted with confident thresholds. If scores need to be adjusted set " + "params['adjusted_pred_probs'] = True. Otherwise passing in confident_thresholds and/or labels does not change " + "score calculation.", + UserWarning, + ) + + if adjust_pred_probs: + if confident_thresholds is None: + if labels is None: + raise ValueError( + "Cannot calculate adjust_pred_probs without labels. Either pass in labels parameter or set " + "params['adjusted_pred_probs'] = False. " + ) + labels = labels_to_array(labels) + assert_valid_inputs(X=None, y=labels, pred_probs=pred_probs, multi_label=False) + confident_thresholds = get_confident_thresholds(labels, pred_probs, multi_label=False) + + pred_probs = _subtract_confident_thresholds( + None, pred_probs, multi_label=False, confident_thresholds=confident_thresholds + ) + + # Scores are flipped so ood scores are closer to 0. Scores reflect confidence example is in-distribution. + if method == "entropy": + ood_predictions_scores = 1.0 - get_normalized_entropy(pred_probs) + elif method == "least_confidence": + ood_predictions_scores = pred_probs.max(axis=1) + elif method == "gen": + if pred_probs.shape[1] < M: # pragma: no cover + warnings.warn( + f"GEN with the default hyperparameter settings is intended for datasets with at least {M} classes. You can adjust params['M'] according to the number of classes in your dataset.", + UserWarning, + ) + probs = softmax(pred_probs, axis=1) + probs_sorted = np.sort(probs, axis=1)[:, -M:] + ood_predictions_scores = ( + 1 - np.sum(probs_sorted**gamma * (1 - probs_sorted) ** (gamma), axis=1) / M + ) # Use 1 + original gen score/M to make the scores lie in 0-1 + else: + raise ValueError( + f""" + {method} is not a valid OOD scoring method! + Please choose a valid scoring_method: {valid_methods} + """ + ) + + return ( + ood_predictions_scores, + confident_thresholds, + ) +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/rank.html b/v2.6.5/_modules/cleanlab/rank.html new file mode 100644 index 000000000..234b575ff --- /dev/null +++ b/v2.6.5/_modules/cleanlab/rank.html @@ -0,0 +1,1268 @@ + + + + + + + + + + + cleanlab.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+
+"""
+Methods to rank examples in standard (multi-class) classification datasets by cleanlab's `label quality score`.
+Except for `~cleanlab.rank.order_label_issues`, which operates only on the subset of the data identified
+as potential label issues/errors, the methods in this module can be used on whichever subset
+of the dataset you choose (including the entire dataset) and provide a `label quality score` for
+every example. You can then do something like: ``np.argsort(label_quality_score)`` to obtain ranked
+indices of individual datapoints based on their quality.
+
+Note: multi-label classification is not supported by most methods in this module,
+each example must be labeled as belonging to a single class, e.g. format: ``labels = np.ndarray([1,0,2,1,1,0...])``.
+For multi-label classification, instead see :py:func:`multilabel_classification.get_label_quality_scores <cleanlab.multilabel_classification.get_label_quality_scores>`.
+
+Note: Label quality scores are most accurate when they are computed based on out-of-sample `pred_probs` from your model.
+To obtain out-of-sample predicted probabilities for every datapoint in your dataset, you can use :ref:`cross-validation <pred_probs_cross_val>`. This is encouraged to get better results.
+"""
+
+import numpy as np
+from sklearn.metrics import log_loss
+from typing import List, Optional
+import warnings
+
+from cleanlab.internal.validation import assert_valid_inputs
+from cleanlab.internal.constants import (
+    CLIPPING_LOWER_BOUND,
+)  # lower-bound clipping threshold to prevents 0 in logs and division
+
+from cleanlab.internal.label_quality_utils import (
+    _subtract_confident_thresholds,
+    get_normalized_entropy,
+)
+
+
+
[docs]def get_label_quality_scores( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + method: str = "self_confidence", + adjust_pred_probs: bool = False, +) -> np.ndarray: + """Returns a label quality score for each datapoint. + + This is a function to compute label quality scores for standard (multi-class) classification datasets, + where lower scores indicate labels less likely to be correct. + + Score is between 0 and 1. + + 1 - clean label (given label is likely correct). + 0 - dirty label (given label is likely incorrect). + + Parameters + ---------- + labels : np.ndarray + A discrete vector of noisy labels, i.e. some labels may be erroneous. + *Format requirements*: for dataset with K classes, labels must be in 0, 1, ..., K-1. + Note: multi-label classification is not supported by this method, each example must belong to a single class, e.g. format: ``labels = np.ndarray([1,0,2,1,1,0...])``. + + pred_probs : np.ndarray, optional + An array of shape ``(N, K)`` of model-predicted probabilities, + ``P(label=k|x)``. Each row of this matrix corresponds + to an example `x` and contains the model-predicted probabilities that + `x` belongs to each possible class, for each of the K classes. The + columns must be ordered such that these probabilities correspond to + class 0, 1, ..., K-1. + + **Note**: Returned label issues are most accurate when they are computed based on out-of-sample `pred_probs` from your model. + To obtain out-of-sample predicted probabilities for every datapoint in your dataset, you can use :ref:`cross-validation <pred_probs_cross_val>`. + This is encouraged to get better results. + + method : {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default="self_confidence" + Label quality scoring method. + + Letting ``k = labels[i]`` and ``P = pred_probs[i]`` denote the given label and predicted class-probabilities + for datapoint *i*, its score can either be: + + - ``'normalized_margin'``: ``P[k] - max_{k' != k}[ P[k'] ]`` + - ``'self_confidence'``: ``P[k]`` + - ``'confidence_weighted_entropy'``: ``entropy(P) / self_confidence`` + + Note: the actual label quality scores returned by this method + may be transformed versions of the above, in order to ensure + their values lie between 0-1 with lower values indicating more likely mislabeled data. + + Let ``C = {0, 1, ..., K-1}`` be the set of classes specified for our classification task. + + The `normalized_margin` score works better for identifying class conditional label errors, + i.e. examples for which another label in ``C`` is appropriate but the given label is not. + + The `self_confidence` score works better for identifying alternative label issues + corresponding to bad examples that are: not from any of the classes in ``C``, + well-described by 2 or more labels in ``C``, + or generally just out-of-distribution (i.e. anomalous outliers). + + adjust_pred_probs : bool, optional + Account for class imbalance in the label-quality scoring by adjusting predicted probabilities + via subtraction of class confident thresholds and renormalization. + Set this to ``True`` if you prefer to account for class-imbalance. + See `Northcutt et al., 2021 <https://jair.org/index.php/jair/article/view/12125>`_. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabeled examples. + + See Also + -------- + get_self_confidence_for_each_label + get_normalized_margin_for_each_label + get_confidence_weighted_entropy_for_each_label + """ + + assert_valid_inputs( + X=None, y=labels, pred_probs=pred_probs, multi_label=False, allow_one_class=True + ) + return _compute_label_quality_scores( + labels=labels, pred_probs=pred_probs, method=method, adjust_pred_probs=adjust_pred_probs + )
+ + +def _compute_label_quality_scores( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + method: str = "self_confidence", + adjust_pred_probs: bool = False, + confident_thresholds: Optional[np.ndarray] = None, +) -> np.ndarray: + """Internal implementation of get_label_quality_scores that assumes inputs + have already been checked and are valid. This speeds things up. + Can also take in pre-computed confident_thresholds to further accelerate things. + """ + scoring_funcs = { + "self_confidence": get_self_confidence_for_each_label, + "normalized_margin": get_normalized_margin_for_each_label, + "confidence_weighted_entropy": get_confidence_weighted_entropy_for_each_label, + } + try: + scoring_func = scoring_funcs[method] + except KeyError: + raise ValueError( + f""" + {method} is not a valid scoring method for rank_by! + Please choose a valid rank_by: self_confidence, normalized_margin, confidence_weighted_entropy + """ + ) + if adjust_pred_probs: + if method == "confidence_weighted_entropy": + raise ValueError(f"adjust_pred_probs is not currently supported for {method}.") + pred_probs = _subtract_confident_thresholds( + labels=labels, pred_probs=pred_probs, confident_thresholds=confident_thresholds + ) + + scoring_inputs = {"labels": labels, "pred_probs": pred_probs} + label_quality_scores = scoring_func(**scoring_inputs) + return label_quality_scores + + +
[docs]def get_label_quality_ensemble_scores( + labels: np.ndarray, + pred_probs_list: List[np.ndarray], + *, + method: str = "self_confidence", + adjust_pred_probs: bool = False, + weight_ensemble_members_by: str = "accuracy", + custom_weights: Optional[np.ndarray] = None, + log_loss_search_T_values: List[float] = [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 2e2], + verbose: bool = True, +) -> np.ndarray: + """Returns label quality scores based on predictions from an ensemble of models. + + This is a function to compute label-quality scores for classification datasets, + where lower scores indicate labels less likely to be correct. + + Ensemble scoring requires a list of pred_probs from each model in the ensemble. + + For each pred_probs in list, compute label quality score. + Take the average of the scores with the chosen weighting scheme determined by `weight_ensemble_members_by`. + + Score is between 0 and 1: + + - 1 --- clean label (given label is likely correct). + - 0 --- dirty label (given label is likely incorrect). + + Parameters + ---------- + labels : np.ndarray + Labels in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + pred_probs_list : List[np.ndarray] + Each element in this list should be an array of pred_probs in the same format + expected by the `~cleanlab.rank.get_label_quality_scores` function. + Each element of `pred_probs_list` corresponds to the predictions from one model for all examples. + + method : {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default="self_confidence" + Label quality scoring method. See `~cleanlab.rank.get_label_quality_scores` + for scenarios on when to use each method. + + adjust_pred_probs : bool, optional + `adjust_pred_probs` in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + weight_ensemble_members_by : {"uniform", "accuracy", "log_loss_search", "custom"}, default="accuracy" + Weighting scheme used to aggregate scores from each model: + + - "uniform": Take the simple average of scores. + - "accuracy": Take weighted average of scores, weighted by model accuracy. + - "log_loss_search": Take weighted average of scores, weighted by exp(t * -log_loss) where t is selected from log_loss_search_T_values parameter and log_loss is the log-loss between a model's pred_probs and the given labels. + - "custom": Take weighted average of scores using custom weights that the user passes to the custom_weights parameter. + + custom_weights : np.ndarray, default=None + Weights used to aggregate scores from each model if weight_ensemble_members_by="custom". + Length of this array must match the number of models: len(pred_probs_list). + + log_loss_search_T_values : List, default=[1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 2e2] + List of t values considered if weight_ensemble_members_by="log_loss_search". + We will choose the value of t that leads to weights which produce the best log-loss when used to form a weighted average of pred_probs from the models. + + verbose : bool, default=True + Set to ``False`` to suppress all print statements. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabeled examples. + + See Also + -------- + get_label_quality_scores + """ + + # Check pred_probs_list for errors + assert isinstance( + pred_probs_list, list + ), f"pred_probs_list needs to be a list. Provided pred_probs_list is a {type(pred_probs_list)}" + + assert len(pred_probs_list) > 0, "pred_probs_list is empty." + + if len(pred_probs_list) == 1: + warnings.warn( + """ + pred_probs_list only has one element. + Consider using get_label_quality_scores() if you only have a single array of pred_probs. + """ + ) + + for pred_probs in pred_probs_list: + assert_valid_inputs(X=None, y=labels, pred_probs=pred_probs, multi_label=False) + + # Raise ValueError if user passed custom_weights array but did not choose weight_ensemble_members_by="custom" + if custom_weights is not None and weight_ensemble_members_by != "custom": + raise ValueError( + f""" + custom_weights provided but weight_ensemble_members_by is not "custom"! + """ + ) + + # This weighting scheme performs search of t in log_loss_search_T_values for "best" log loss + if weight_ensemble_members_by == "log_loss_search": + # Initialize variables for log loss search + pred_probs_avg_log_loss_weighted = None + neg_log_loss_weights = None + best_eval_log_loss = float("inf") + + for t in log_loss_search_T_values: + neg_log_loss_list = [] + + # pred_probs for each model + for pred_probs in pred_probs_list: + pred_probs_clipped = np.clip( + pred_probs, a_min=CLIPPING_LOWER_BOUND, a_max=None + ) # lower-bound clipping threshold to prevents 0 in logs when calculating log loss + pred_probs_clipped /= pred_probs_clipped.sum(axis=1)[:, np.newaxis] # renormalize + + neg_log_loss = np.exp(-t * log_loss(labels, pred_probs_clipped)) + neg_log_loss_list.append(neg_log_loss) + + # weights using negative log loss + neg_log_loss_weights_temp = np.array(neg_log_loss_list) / sum(neg_log_loss_list) + + # weighted average using negative log loss + pred_probs_avg_log_loss_weighted_temp = sum( + [neg_log_loss_weights_temp[i] * p for i, p in enumerate(pred_probs_list)] + ) + # evaluate log loss with this weighted average pred_probs + eval_log_loss = log_loss(labels, pred_probs_avg_log_loss_weighted_temp) + + # check if eval_log_loss is the best so far (lower the better) + if best_eval_log_loss > eval_log_loss: + best_eval_log_loss = eval_log_loss + pred_probs_avg_log_loss_weighted = pred_probs_avg_log_loss_weighted_temp + neg_log_loss_weights = neg_log_loss_weights_temp.copy() + + # Generate scores for each model's pred_probs + scores_list = [] + accuracy_list = [] + for pred_probs in pred_probs_list: + # Calculate scores and accuracy + scores = get_label_quality_scores( + labels=labels, + pred_probs=pred_probs, + method=method, + adjust_pred_probs=adjust_pred_probs, + ) + scores_list.append(scores) + + # Only compute if weighting by accuracy + if weight_ensemble_members_by == "accuracy": + accuracy = (pred_probs.argmax(axis=1) == labels).mean() + accuracy_list.append(accuracy) + + if verbose: + print(f"Weighting scheme for ensemble: {weight_ensemble_members_by}") + + # Transform list of scores into an array of shape (N, M) where M is the number of models in the ensemble + scores_ensemble = np.vstack(scores_list).T + + # Aggregate scores with chosen weighting scheme + if weight_ensemble_members_by == "uniform": + label_quality_scores = scores_ensemble.mean(axis=1) # Uniform weights (simple average) + + elif weight_ensemble_members_by == "accuracy": + weights = np.array(accuracy_list) / sum(accuracy_list) # Weight by relative accuracy + if verbose: + print("Ensemble members will be weighted by their relative accuracy") + for i, acc in enumerate(accuracy_list): + print(f" Model {i} accuracy : {acc}") + print(f" Model {i} weight : {weights[i]}") + + # Aggregate scores with weighted average + label_quality_scores = (scores_ensemble * weights).sum(axis=1) + + elif weight_ensemble_members_by == "log_loss_search": + assert neg_log_loss_weights is not None + weights = neg_log_loss_weights # Weight by exp(t * -log_loss) where t is found by searching through log_loss_search_T_values + if verbose: + print( + "Ensemble members will be weighted by log-loss between their predicted probabilities and given labels" + ) + for i, weight in enumerate(weights): + print(f" Model {i} weight : {weight}") + + # Aggregate scores with weighted average + label_quality_scores = (scores_ensemble * weights).sum(axis=1) + + elif weight_ensemble_members_by == "custom": + # Check custom_weights for errors + assert ( + custom_weights is not None + ), "custom_weights is None! Please pass a valid custom_weights." + + assert len(custom_weights) == len( + pred_probs_list + ), "Length of custom_weights array must match the number of models: len(pred_probs_list)." + + # Aggregate scores with custom weights + label_quality_scores = (scores_ensemble * custom_weights).sum(axis=1) + + else: + raise ValueError( + f""" + {weight_ensemble_members_by} is not a valid weighting method for weight_ensemble_members_by! + Please choose a valid weight_ensemble_members_by: uniform, accuracy, custom + """ + ) + + return label_quality_scores
+ + +
[docs]def find_top_issues(quality_scores: np.ndarray, *, top: int = 10) -> np.ndarray: + """Returns the sorted indices of the `top` issues in `quality_scores`, ordered from smallest to largest quality score + (i.e., from most to least likely to be an issue). For example, the first value returned is the index corresponding + to the smallest value in `quality_scores` (most likely to be an issue). The second value in the returned array is + the index corresponding to the second smallest value in `quality-scores` (second-most likely to be an issue), and so forth. + + This method assumes that `quality_scores` shares an index with some dataset such that the indices returned by this method + map to the examples in that dataset. + + Parameters + ---------- + quality_scores : + Array of shape ``(N,)``, where N is the number of examples, containing one quality score for each example in the dataset. + + top : + The number of indices to return. + + Returns + ------- + top_issue_indices : + Indices of top examples most likely to suffer from an issue (ranked by issue severity).""" + + if top is None or top > len(quality_scores): + top = len(quality_scores) + + top_outlier_indices = quality_scores.argsort()[:top] + return top_outlier_indices
+ + +
[docs]def order_label_issues( + label_issues_mask: np.ndarray, + labels: np.ndarray, + pred_probs: np.ndarray, + *, + rank_by: str = "self_confidence", + rank_by_kwargs: dict = {}, +) -> np.ndarray: + """Sorts label issues by label quality score. + + Default label quality score is "self_confidence". + + Parameters + ---------- + label_issues_mask : np.ndarray + A boolean mask for the entire dataset where ``True`` represents a label + issue and ``False`` represents an example that is accurately labeled with + high confidence. + + labels : np.ndarray + Labels in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + pred_probs : np.ndarray (shape (N, K)) + Predicted-probabilities in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + rank_by : str, optional + Score by which to order label error indices (in increasing order). See + the `method` argument of `~cleanlab.rank.get_label_quality_scores`. + + rank_by_kwargs : dict, optional + Optional keyword arguments to pass into `~cleanlab.rank.get_label_quality_scores` function. + Accepted args include `adjust_pred_probs`. + + Returns + ------- + label_issues_idx : np.ndarray + Return an array of the indices of the examples with label issues, + ordered by the label-quality scoring method passed to `rank_by`. + """ + + allow_one_class = False + if isinstance(labels, np.ndarray) or all(isinstance(lab, int) for lab in labels): + if set(labels) == {0}: # occurs with missing classes in multi-label settings + allow_one_class = True + assert_valid_inputs( + X=None, + y=labels, + pred_probs=pred_probs, + multi_label=False, + allow_one_class=allow_one_class, + ) + + # Convert bool mask to index mask + label_issues_idx = np.arange(len(labels))[label_issues_mask] + + # Calculate label quality scores + label_quality_scores = get_label_quality_scores( + labels, pred_probs, method=rank_by, **rank_by_kwargs + ) + + # Get label quality scores for label issues + label_quality_scores_issues = label_quality_scores[label_issues_mask] + + return label_issues_idx[np.argsort(label_quality_scores_issues)]
+ + +
[docs]def get_self_confidence_for_each_label( + labels: np.ndarray, + pred_probs: np.ndarray, +) -> np.ndarray: + """Returns the self-confidence label-quality score for each datapoint. + + This is a function to compute label-quality scores for classification datasets, + where lower scores indicate labels less likely to be correct. + + The self-confidence is the classifier's predicted probability that an example belongs to + its given class label. + + Self-confidence can work better than normalized-margin for detecting label errors due to out-of-distribution (OOD) or weird examples + vs. label errors in which labels for random examples have been replaced by other classes. + + Parameters + ---------- + labels : np.ndarray + Labels in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabeled examples. + """ + + # To make this work for multi-label (but it will slow down runtime), return: + # np.array([np.mean(pred_probs[i, l]) for i, l in enumerate(labels)]) + return pred_probs[np.arange(labels.shape[0]), labels]
+ + +
[docs]def get_normalized_margin_for_each_label( + labels: np.ndarray, + pred_probs: np.ndarray, +) -> np.ndarray: + """Returns the "normalized margin" label-quality score for each datapoint. + + This is a function to compute label-quality scores for classification datasets, + where lower scores indicate labels less likely to be correct. + + Letting ``k`` denote the given label for a datapoint, the margin is + ``(p(label = k) - max(p(label != k)))``, i.e. the probability + of the given label minus the probability of the argmax label that is not + the given label (``margin = prob_label - max_prob_not_label``). + This gives you an idea of how likely an example is BOTH its given label AND not another label, + and therefore, scores its likelihood of being a good label or a label error. + The normalized margin is simply a transformed version of the margin, + to ensure values between 0-1 with lower values indicating more likely mislabeled data. + + Normalized margin works best for finding class conditional label errors where + there is another label in the set of classes that is clearly better than the given label. + + Parameters + ---------- + labels : np.ndarray + Labels in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabeled examples. + """ + + self_confidence = get_self_confidence_for_each_label(labels, pred_probs) + N, K = pred_probs.shape + del_indices = np.arange(N) * K + labels + max_prob_not_label = np.max( + np.delete(pred_probs, del_indices, axis=None).reshape(N, K - 1), axis=-1 + ) + label_quality_scores = (self_confidence - max_prob_not_label + 1) / 2 + return label_quality_scores
+ + +
[docs]def get_confidence_weighted_entropy_for_each_label( + labels: np.ndarray, pred_probs: np.ndarray +) -> np.ndarray: + """Returns the "confidence weighted entropy" label-quality score for each datapoint. + + This is a function to compute label-quality scores for classification datasets, + where lower scores indicate labels less likely to be correct. + + "confidence weighted entropy" is defined as the normalized entropy divided by "self-confidence". + The returned values are a transformed version of this score, in order to + ensure values between 0-1 with lower values indicating more likely mislabeled data. + + Parameters + ---------- + labels : np.ndarray + Labels in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + pred_probs : np.ndarray + Predicted-probabilities in the same format expected by the `~cleanlab.rank.get_label_quality_scores` function. + + Returns + ------- + label_quality_scores : np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabeled examples. + """ + + self_confidence = get_self_confidence_for_each_label(labels, pred_probs) + self_confidence = np.clip(self_confidence, a_min=CLIPPING_LOWER_BOUND, a_max=None) + + # Divide entropy by self confidence + label_quality_scores = get_normalized_entropy(pred_probs) / self_confidence + + # Rescale + clipped_scores = np.clip(label_quality_scores, a_min=CLIPPING_LOWER_BOUND, a_max=None) + label_quality_scores = np.log(label_quality_scores + 1) / clipped_scores + + return label_quality_scores
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/regression/learn.html b/v2.6.5/_modules/cleanlab/regression/learn.html new file mode 100644 index 000000000..d70f8c77e --- /dev/null +++ b/v2.6.5/_modules/cleanlab/regression/learn.html @@ -0,0 +1,1556 @@ + + + + + + + + + + + cleanlab.regression.learn - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.regression.learn

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+cleanlab can be used for learning with noisy data for any dataset and regression model.
+
+For regression tasks, the :py:class:`regression.learn.CleanLearning <cleanlab.regression.learn.CleanLearning>`
+class wraps any instance of an sklearn model to allow you to train more robust regression models,
+or use the model to identify corrupted values in the dataset.
+The wrapped model must adhere to the `sklearn estimator API
+<https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_,
+meaning it must define three functions:
+
+* ``model.fit(X, y, sample_weight=None)``
+* ``model.predict(X)``
+* ``model.score(X, y, sample_weight=None)``
+
+where ``X`` contains the data (i.e. features, covariates, independant variables) and ``y`` contains the target 
+value (i.e. label, response/dependant variable). The first index of ``X`` and of ``y`` should correspond to the different 
+examples in the dataset, such that ``len(X) = len(y) = N`` (sample-size).
+
+Your model should be correctly clonable via
+`sklearn.base.clone <https://scikit-learn.org/stable/modules/generated/sklearn.base.clone.html>`_:
+cleanlab internally creates multiple instances of the model, and if you e.g. manually wrap a 
+PyTorch model, ensure that every call to the estimator's ``__init__()`` creates an independent 
+instance of the model (for sklearn compatibility, the weights of neural network models should typically 
+be initialized inside of ``clf.fit()``).
+
+Example
+-------
+>>> from cleanlab.regression.learn import CleanLearning
+>>> from sklearn.linear_model import LinearRegression 
+>>> cl = CleanLearning(clf=LinearRegression()) # Pass in any model.
+>>> cl.fit(X, y_with_noise)
+>>> # Estimate the predictions as if you had trained without label issues.
+>>> predictions = cl.predict(y)
+
+If your model is not sklearn-compatible by default, it might be the case that standard packages can adapt 
+the model. For example, you can adapt PyTorch models using `skorch <https://skorch.readthedocs.io/>`_ 
+and adapt Keras models using `SciKeras <https://www.adriangb.com/scikeras/>`_.
+
+If an adapter doesn't already exist, you can manually wrap your 
+model to be sklearn-compatible. This is made easy by inheriting from
+`sklearn.base.BaseEstimator
+<https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html>`_:
+
+.. code:: python
+
+    from sklearn.base import BaseEstimator
+
+    class YourModel(BaseEstimator):
+        def __init__(self, ):
+            pass
+        def fit(self, X, y):
+            pass
+        def predict(self, X):
+            pass
+        def score(self, X, y):
+            pass
+            
+"""
+
+from typing import Optional, Union, Tuple
+import inspect
+import warnings
+
+import math
+import numpy as np
+import pandas as pd
+
+import sklearn.base
+from sklearn.base import BaseEstimator
+from sklearn.model_selection import KFold
+from sklearn.linear_model import LinearRegression
+from sklearn.metrics import r2_score
+
+from cleanlab.typing import LabelLike
+from cleanlab.internal.constants import TINY_VALUE
+from cleanlab.internal.util import train_val_split, subset_X_y
+from cleanlab.internal.regression_utils import assert_valid_regression_inputs
+from cleanlab.internal.validation import labels_to_array
+
+
+
[docs]class CleanLearning(BaseEstimator): + """ + CleanLearning = Machine Learning with cleaned data (even when training on messy, error-ridden data). + + Automated and robust learning with noisy labels using any dataset and any regression model. + For regression tasks, this class trains a ``model`` with error-prone, noisy labels + as if the model had been instead trained on a dataset with perfect labels. + It achieves this by estimating which labels are noisy (you might solely use CleanLearning for this estimation) + and then removing examples estimated to have noisy labels, such that a more robust copy of the same model can be + trained on the remaining clean data. + + Parameters + ---------- + model : + Any regression model implementing the `sklearn estimator API <https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`_, + defining the following functions: + + - ``model.fit(X, y)`` + - ``model.predict(X)`` + - ``model.score(X, y)`` + + Default model used is `sklearn.linear_model.LinearRegression + <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html>`_. + + cv_n_folds : + This class needs holdout predictions for every data example and if not provided, + uses cross-validation to compute them. This argument sets the number of cross-validation + folds used to compute out-of-sample predictions for each example in ``X``. Default is 5. + Larger values may produce better results, but requires longer to run. + + n_boot : + Number of bootstrap resampling rounds used to estimate the model's epistemic uncertainty. + Default is 5. Larger values are expected to produce better results but require longer runtimes. + Set as 0 to skip estimating the epistemic uncertainty and get results faster. + + include_aleatoric_uncertainty : + Specifies if the aleatoric uncertainty should be estimated during label error detection. + ``True`` by default, which is expected to produce better results but require longer runtimes. + + verbose : + Controls how much output is printed. Set to ``False`` to suppress print statements. Default `False`. + + seed : + Set the default state of the random number generator used to split + the data. By default, uses ``np.random`` current random state. + """ + + def __init__( + self, + model: Optional[BaseEstimator] = None, + *, + cv_n_folds: int = 5, + n_boot: int = 5, + include_aleatoric_uncertainty: bool = True, + verbose: bool = False, + seed: Optional[bool] = None, + ): + if model is None: + # Use linear regression if no model is provided. + model = LinearRegression() + + # Make sure the given regression model has the appropriate methods defined. + if not hasattr(model, "fit"): + raise ValueError("The model must define a .fit() method.") + if not hasattr(model, "predict"): + raise ValueError("The model must define a .predict() method.") + + if seed is not None: + np.random.seed(seed=seed) + + if n_boot < 0: + raise ValueError("n_boot cannot be a negative value") + if cv_n_folds < 2: + raise ValueError("cv_n_folds must be at least 2") + + self.model: BaseEstimator = model + self.seed: Optional[int] = seed + self.cv_n_folds: int = cv_n_folds + self.n_boot: int = n_boot + self.include_aleatoric_uncertainty: bool = include_aleatoric_uncertainty + self.verbose: bool = verbose + self.label_issues_df: Optional[pd.DataFrame] = None + self.label_issues_mask: Optional[np.ndarray] = None + self.k: Optional[float] = None # frac flagged as issue + +
[docs] def fit( + self, + X: Union[np.ndarray, pd.DataFrame], + y: LabelLike, + *, + label_issues: Optional[Union[pd.DataFrame, np.ndarray]] = None, + sample_weight: Optional[np.ndarray] = None, + find_label_issues_kwargs: Optional[dict] = None, + model_kwargs: Optional[dict] = None, + model_final_kwargs: Optional[dict] = None, + ) -> BaseEstimator: + """ + Train regression ``model`` with error-prone, noisy labels as if the model had been instead trained + on a dataset with the correct labels. ``fit`` achieves this by first training ``model`` via + cross-validation on the noisy data, using the resulting predicted probabilities to identify label issues, + pruning the data with label issues, and finally training ``model`` on the remaining clean data. + + Parameters + ---------- + X : + Data features (i.e. covariates, independent variables), typically an array of shape ``(N, ...)``, + where N is the number of examples (sample-size). + Your ``model`` must be able to ``fit()`` and ``predict()`` data of this format. + + y : + An array of shape ``(N,)`` of noisy labels (i.e. target/response/dependant variable), where some values may be erroneous. + + label_issues : + Optional already-identified label issues in the dataset (if previously estimated). + Specify this to avoid re-estimating the label issues if already done. + If ``pd.DataFrame``, must be formatted as the one returned by: + :py:meth:`self.find_label_issues <cleanlab.regression.learn.CleanLearning.find_label_issues>` or + :py:meth:`self.get_label_issues <cleanlab.regression.learn.CleanLearning.get_label_issues>`. The DataFrame must + have a column named ``is_label_issue``. + + If ``np.ndarray``, the input must be a boolean mask of length ``N`` where examples that have label issues + have the value ``True``, and the rest of the examples have the value ``False``. + + sample_weight : + Optional array of weights with shape ``(N,)`` that are assigned to individual samples. Specifies how to weight the examples in + the loss function while training. + + find_label_issues_kwargs: + Optional keyword arguments to pass into :py:meth:`self.find_label_issues <cleanlab.regression.learn.CleanLearning.find_label_issues>`. + + model_kwargs : + Optional keyword arguments to pass into model's ``fit()`` method. + + model_final_kwargs : + Optional extra keyword arguments to pass into the final model's ``fit()`` on the cleaned data, + but not the ``fit()`` in each fold of cross-validation on the noisy data. + The final ``fit()`` will also receive the arguments in `clf_kwargs`, but these may be overwritten + by values in `clf_final_kwargs`. This can be useful for training differently in the final ``fit()`` + than during cross-validation. + + Returns + ------- + self : CleanLearning + Fitted estimator that has all the same methods as any sklearn estimator. + + After calling ``self.fit()``, this estimator also stores extra attributes such as: + + - ``self.label_issues_df``: a ``pd.DataFrame`` containing label quality scores, boolean flags + indicating which examples have label issues, and predicted label values for each example. + Accessible via :py:meth:`self.get_label_issues <cleanlab.regression.learn.CleanLearning.get_label_issues>`, + of similar format as the one returned by :py:meth:`self.find_label_issues <cleanlab.regression.learn.CleanLearning.find_label_issues>`. + See documentation of :py:meth:`self.find_label_issues <cleanlab.regression.learn.CleanLearning.find_label_issues>` + for column descriptions. + - ``self.label_issues_mask``: a ``np.ndarray`` boolean mask indicating if a particular + example has been identified to have issues. + """ + assert_valid_regression_inputs(X, y) + + if find_label_issues_kwargs is None: + find_label_issues_kwargs = {} + if model_kwargs is None: + model_kwargs = {} + if model_final_kwargs is None: + model_final_kwargs = {} + model_final_kwargs = {**model_kwargs, **model_final_kwargs} + + if "sample_weight" in model_kwargs or "sample_weight" in model_final_kwargs: + raise ValueError( + "sample_weight should be provided directly in fit() rather than in model_kwargs or model_final_kwargs" + ) + + if sample_weight is not None: + if "sample_weight" not in inspect.signature(self.model.fit).parameters: + raise ValueError( + "sample_weight must be a supported fit() argument for your model in order to be specified here" + ) + if len(sample_weight) != len(X): + raise ValueError("sample_weight must be a 1D array that has the same length as y.") + + if label_issues is None: + if self.label_issues_df is not None and self.verbose: + print( + "If you already ran self.find_label_issues() and don't want to recompute, you " + "should pass the label_issues in as a parameter to this function next time." + ) + + label_issues = self.find_label_issues( + X, + y, + model_kwargs=model_kwargs, + **find_label_issues_kwargs, + ) + else: + if self.verbose: + print("Using provided label_issues instead of finding label issues.") + if self.label_issues_df is not None: + print( + "These will overwrite self.label_issues_df and will be returned by " + "`self.get_label_issues()`. " + ) + + self.label_issues_df = self._process_label_issues_arg(label_issues, y) + self.label_issues_mask = self.label_issues_df["is_label_issue"].to_numpy() + + X_mask = np.invert(self.label_issues_mask) + X_cleaned, y_cleaned = subset_X_y(X, y, X_mask) + if self.verbose: + print(f"Pruning {np.sum(self.label_issues_mask)} examples with label issues ...") + print(f"Remaining clean data has {len(y_cleaned)} examples.") + + if sample_weight is not None: + model_final_kwargs["sample_weight"] = sample_weight[X_mask] + if self.verbose: + print("Fitting final model on the clean data with custom sample_weight ...") + else: + if self.verbose: + print("Fitting final model on the clean data ...") + + self.model.fit(X_cleaned, y_cleaned, **model_final_kwargs) + + if self.verbose: + print( + "Label issues stored in label_issues_df DataFrame accessible via: self.get_label_issues(). " + "Call self.save_space() to delete this potentially large DataFrame attribute." + ) + return self
+ +
[docs] def predict(self, X: np.ndarray, *args, **kwargs) -> np.ndarray: + """ + Predict class labels using your wrapped model. + Works just like ``model.predict()``. + + Parameters + ---------- + X : np.ndarray or DatasetLike + Test data in the same format expected by your wrapped regression model. + + Returns + ------- + predictions : np.ndarray + Predictions for the test examples. + """ + return self.model.predict(X, *args, **kwargs)
+ +
[docs] def score( + self, + X: Union[np.ndarray, pd.DataFrame], + y: LabelLike, + sample_weight: Optional[np.ndarray] = None, + ) -> float: + """Evaluates your wrapped regression model's score on a test set `X` with target values `y`. + Uses your model's default scoring function, or r-squared score if your model as no ``"score"`` attribute. + + Parameters + ---------- + X : + Test data in the same format expected by your wrapped model. + + y : + Test labels in the same format as labels previously used in ``fit()``. + + sample_weight : + Optional array of shape ``(N,)`` or ``(N, 1)`` used to weight each test example when computing the score. + + Returns + ------- + score : float + Number quantifying the performance of this regression model on the test data. + """ + if hasattr(self.model, "score"): + if "sample_weight" in inspect.signature(self.model.score).parameters: + return self.model.score(X, y, sample_weight=sample_weight) + else: + return self.model.score(X, y) + else: + return r2_score( + y, + self.model.predict(X), + sample_weight=sample_weight, + )
+ +
[docs] def find_label_issues( + self, + X: Union[np.ndarray, pd.DataFrame], + y: LabelLike, + *, + uncertainty: Optional[Union[np.ndarray, float]] = None, + coarse_search_range: list = [0.01, 0.05, 0.1, 0.15, 0.2], + fine_search_size: int = 3, + save_space: bool = False, + model_kwargs: Optional[dict] = None, + ) -> pd.DataFrame: + """ + Identifies potential label issues (corrupted `y`-values) in the dataset, and estimates how noisy each label is. + + Note: this method estimates the label issues from scratch. To access previously-estimated label issues from + this :py:class:`CleanLearning <cleanlab.regression.learn.CleanLearning>` instance, use the + :py:meth:`self.get_label_issues <cleanlab.regression.learn.CleanLearning.get_label_issues>` method. + + This is the method called to find label issues inside + :py:meth:`CleanLearning.fit() <cleanlab.regression.learn.CleanLearning.fit>` + and they share mostly the same parameters. + + Parameters + ---------- + X : + Data features (i.e. covariates, independent variables), typically an array of shape ``(N, ...)``, + where N is the number of examples (sample-size). + Your ``model``, must be able to ``fit()`` and ``predict()`` data of this format. + + y : + An array of shape ``(N,)`` of noisy labels (i.e. target/response/dependant variable), where some values may be erroneous. + + uncertainty : + Optional estimated uncertainty for each example. Should be passed in as a float (constant uncertainty throughout all examples), + or a numpy array of length ``N`` (estimated uncertainty for each example). + If not provided, this method will estimate the uncertainty as the sum of the epistemic and aleatoric uncertainty. + + save_space : + If True, then returned ``label_issues_df`` will not be stored as attribute. + This means some other methods like :py:meth:`self.get_label_issues <cleanlab.regression.learn.CleanLearning.get_label_issues>` will no longer work. + + coarse_search_range : + The coarse search range to find the value of ``k``, which estimates the fraction of data which have label issues. + More values represent a more thorough search (better expected results but longer runtimes). + + fine_search_size : + Size of fine-grained search grid to find the value of ``k``, which represents our estimate of the fraction of data which have label issues. + A higher number represents a more thorough search (better expected results but longer runtimes). + + + For info about the **other parameters**, see the docstring of :py:meth:`CleanLearning.fit() + <cleanlab.regression.learn.CleanLearning.fit>`. + + Returns + ------- + label_issues_df : pd.DataFrame + DataFrame with info about label issues for each example. + Unless `save_space` argument is specified, same DataFrame is also stored as `self.label_issues_df` attribute accessible via + :py:meth:`get_label_issues<cleanlab.regression.learn.CleanLearning.get_label_issues>`. + + Each row represents an example from our dataset and the DataFrame may contain the following columns: + + - *is_label_issue*: boolean mask for the entire dataset where ``True`` represents a label issue and ``False`` represents an example + that is accurately labeled with high confidence. + - *label_quality*: Numeric score that measures the quality of each label (how likely it is to be correct, + with lower scores indicating potentially erroneous labels). + - *given_label*: Values originally given for this example (same as `y` input). + - *predicted_label*: Values predicted by the trained model. + """ + + X, y = assert_valid_regression_inputs(X, y) + + if model_kwargs is None: + model_kwargs = {} + + if self.verbose: + print("Identifying label issues ...") + + # compute initial values to find best k + initial_predictions = self._get_cv_predictions(X, y, model_kwargs=model_kwargs) + initial_residual = initial_predictions - y + initial_sorted_index = np.argsort(abs(initial_residual)) + initial_r2 = r2_score(y, initial_predictions) + + self.k, r2 = self._find_best_k( + X=X, + y=y, + sorted_index=initial_sorted_index, + coarse_search_range=coarse_search_range, + fine_search_size=fine_search_size, + ) + + # check if initial r2 score (ie. not removing anything) is the best + if initial_r2 >= r2: + self.k = 0 + + # get predictions using the best k + predictions = self._get_cv_predictions( + X, y, sorted_index=initial_sorted_index, k=self.k, model_kwargs=model_kwargs + ) + residual = predictions - y + + if uncertainty is None: + epistemic_uncertainty = self.get_epistemic_uncertainty(X, y, predictions=predictions) + if self.include_aleatoric_uncertainty: + aleatoric_uncertainty = self.get_aleatoric_uncertainty(X, residual) + else: + aleatoric_uncertainty = 0 + uncertainty = epistemic_uncertainty + aleatoric_uncertainty + else: + if isinstance(uncertainty, np.ndarray) and len(y) != len(uncertainty): + raise ValueError( + "If uncertainty is passed in as an array, it must have the same length as y." + ) + + residual_adjusted = abs(residual / (uncertainty + TINY_VALUE)) + + # adjust lqs by the median (for more human-readable scores) + residual_median = max( + np.median(residual_adjusted), TINY_VALUE + ) # take the max to prevent median = 0 + label_quality_scores = np.exp(-residual_adjusted / residual_median) + + label_issues_mask = np.zeros(len(y), dtype=bool) + num_issues = math.ceil(len(y) * self.k) + issues_index = np.argsort(label_quality_scores)[:num_issues] + label_issues_mask[issues_index] = True + + # convert predictions to int if input is int + if y.dtype == int: + predictions = predictions.astype(int) + + label_issues_df = pd.DataFrame( + { + "is_label_issue": label_issues_mask, + "label_quality": label_quality_scores, + "given_label": y, + "predicted_label": predictions, + } + ) + + if self.verbose: + print(f"Identified {np.sum(label_issues_mask)} examples with label issues.") + + if not save_space: + if self.label_issues_df is not None and self.verbose: + print( + "Overwriting previously identified label issues stored at self.label_issues_df. " + "self.get_label_issues() will now return the newly identified label issues. " + ) + self.label_issues_df = label_issues_df + self.label_issues_mask = label_issues_df["is_label_issue"].to_numpy() + elif self.verbose: + print("Not storing label_issues as attributes since save_space was specified.") + + return label_issues_df
+ +
[docs] def get_label_issues(self) -> Optional[pd.DataFrame]: + """ + Accessor, returns `label_issues_df` attribute if previously computed. + This ``pd.DataFrame`` describes the issues identified for each example (each row corresponds to an example). + For column definitions, see the documentation of + :py:meth:`CleanLearning.find_label_issues<cleanlab.regression.learn.CleanLearning.find_label_issues>`. + + Returns + ------- + label_issues_df : pd.DataFrame + DataFrame with (precomputed) info about the label issues for each example. + """ + if self.label_issues_df is None: + warnings.warn( + "Label issues have not yet been computed. Run `self.find_label_issues()` or `self.fit()` first." + ) + return self.label_issues_df
+ +
[docs] def get_epistemic_uncertainty( + self, + X: np.ndarray, + y: np.ndarray, + predictions: Optional[np.ndarray] = None, + ) -> np.ndarray: + """ + Compute the epistemic uncertainty of the regression model for each example. This uncertainty is estimated using the bootstrapped + variance of the model predictions. + + Parameters + ---------- + X : + Data features (i.e. training inputs for ML), typically an array of shape ``(N, ...)``, where N is the number of examples. + + y : + An array of shape ``(N,)`` of target values (dependant variables), where some values may be erroneous. + + predictions : + Model predicted values of y, will be used as an extra bootstrap iteration to calculate the variance. + + Returns + _______ + epistemic_uncertainty : np.ndarray + The estimated epistemic uncertainty for each example. + """ + X, y = assert_valid_regression_inputs(X, y) + + if self.n_boot == 0: # does not estimate epistemic uncertainty + return np.zeros(len(y)) + else: + bootstrap_predictions = np.zeros(shape=(len(y), self.n_boot)) + for i in range(self.n_boot): + bootstrap_predictions[:, i] = self._get_cv_predictions(X, y, cv_n_folds=2) + + # add a set of predictions from model that was already trained + if predictions is not None: + _, predictions = assert_valid_regression_inputs(X, predictions) + bootstrap_predictions = np.hstack( + [bootstrap_predictions, predictions.reshape(-1, 1)] + ) + + return np.sqrt(np.var(bootstrap_predictions, axis=1))
+ +
[docs] def get_aleatoric_uncertainty( + self, + X: np.ndarray, + residual: np.ndarray, + ) -> float: + """ + Compute the aleatoric uncertainty of the data. This uncertainty is estimated by predicting the standard deviation + of the regression error. + + Parameters + ---------- + X : + Data features (i.e. training inputs for ML), typically an array of shape ``(N, ...)``, where N is the number of examples. + + residual : + The difference between the given value and the model predicted value of each examples, ie. + `predictions - y`. + + Returns + _______ + aleatoric_uncertainty : float + The overall estimated aleatoric uncertainty for this dataset. + """ + X, residual = assert_valid_regression_inputs(X, residual) + residual_predictions = self._get_cv_predictions(X, residual) + return np.sqrt(np.var(residual_predictions))
+ +
[docs] def save_space(self): + """ + Clears non-sklearn attributes of this estimator to save space (in-place). + This includes the DataFrame attribute that stored label issues which may be large for big datasets. + You may want to call this method before deploying this model (i.e. if you just care about producing predictions). + After calling this method, certain non-prediction-related attributes/functionality will no longer be available + """ + if self.label_issues_df is None and self.verbose: + print("self.label_issues_df is already empty") + + self.label_issues_df = None + self.label_issues_mask = None + self.k = None + + if self.verbose: + print("Deleted non-sklearn attributes such as label_issues_df to save space.")
+ + def _get_cv_predictions( + self, + X: np.ndarray, + y: np.ndarray, + sorted_index: Optional[np.ndarray] = None, + k: float = 0, + *, + cv_n_folds: Optional[int] = None, + seed: Optional[int] = None, + model_kwargs: Optional[dict] = None, + ) -> np.ndarray: + """ + Helper method to get out-of-fold predictions using cross validation. + This method also allows us to filter out the bottom k percent of label errors before training the cross-validation models + (both ``sorted_index`` and ``k`` has to be provided for this). + + Parameters + ---------- + X : + Data features (i.e. training inputs for ML), typically an array of shape ``(N, ...)``, where N is the number of examples. + + y : + An array of shape ``(N,)`` of target values (dependant variables), where some values may be erroneous. + + sorted_index : + Index of each example sorted by their residuals in ascending order. + + k : + The fraction of examples to hold out from the training sets. Usually this is the fraction of examples that are + deemed to contain errors. + + """ + # set to default unless specified otherwise + if cv_n_folds is None: + cv_n_folds = self.cv_n_folds + + if model_kwargs is None: + model_kwargs = {} + + if k < 0 or k > 1: + raise ValueError("k must be a value between 0 and 1") + elif k == 0: + if sorted_index is None: + sorted_index = np.array(range(len(y))) + in_sample_idx = sorted_index + else: + if sorted_index is None: + # TODO: better error message + raise ValueError( + "You need to pass in the index sorted by prediction quality to use with k" + ) + num_to_drop = math.ceil(len(sorted_index) * k) + in_sample_idx = sorted_index[:-num_to_drop] + out_of_sample_idx = sorted_index[-num_to_drop:] + + X_out_of_sample = X[out_of_sample_idx] + out_of_sample_predictions = np.zeros(shape=[len(out_of_sample_idx), cv_n_folds]) + + if len(in_sample_idx) < cv_n_folds: + raise ValueError( + f"There are too few examples to conduct {cv_n_folds}-fold cross validation. " + "You can either reduce cv_n_folds for cross validation, or decrease k to exclude less data." + ) + + predictions = np.zeros(shape=len(y)) + + kf = KFold(n_splits=cv_n_folds, shuffle=True, random_state=seed) + + for k_split, (cv_train_idx, cv_holdout_idx) in enumerate(kf.split(in_sample_idx)): + try: + model_copy = sklearn.base.clone(self.model) # fresh untrained copy of the model + except Exception: + raise ValueError( + "`model` must be clonable via: sklearn.base.clone(model). " + "You can either implement instance method `model.get_params()` to produce a fresh untrained copy of this model, " + "or you can implement the cross-validation outside of cleanlab " + "and pass in the obtained `pred_probs` to skip cleanlab's internal cross-validation" + ) + + # map the index to the actual index in the original dataset + data_idx_train, data_idx_holdout = ( + in_sample_idx[cv_train_idx], + in_sample_idx[cv_holdout_idx], + ) + + X_train_cv, X_holdout_cv, y_train_cv, y_holdout_cv = train_val_split( + X, y, data_idx_train, data_idx_holdout + ) + + model_copy.fit(X_train_cv, y_train_cv, **model_kwargs) + predictions_cv = model_copy.predict(X_holdout_cv) + + predictions[data_idx_holdout] = predictions_cv + + if k != 0: + out_of_sample_predictions[:, k_split] = model_copy.predict(X_out_of_sample) + + if k != 0: + out_of_sample_predictions_avg = np.mean(out_of_sample_predictions, axis=1) + predictions[out_of_sample_idx] = out_of_sample_predictions_avg + + return predictions + + def _find_best_k( + self, + X: np.ndarray, + y: np.ndarray, + sorted_index: np.ndarray, + coarse_search_range: list = [0.01, 0.05, 0.1, 0.15, 0.2], + fine_search_size: int = 3, + ) -> Tuple[float, float]: + """ + Helper method that conducts a coarse and fine grained grid search to determine the best value + of k, the fraction of the dataset that contains issues. + + Returns a tuple containing the the best value of k (ie. the one that has the best r squared score), + and the corrsponding r squared score obtained when dropping k% of the data. + """ + if len(coarse_search_range) == 0: + raise ValueError("coarse_search_range must have at least 1 value of k") + elif len(coarse_search_range) == 1: + curr_k = coarse_search_range[0] + num_examples_kept = math.floor(len(y) * (1 - curr_k)) + if num_examples_kept < self.cv_n_folds: + raise ValueError( + f"There are too few examples to conduct {self.cv_n_folds}-fold cross validation. " + "You can either reduce self.cv_n_folds for cross validation, or decrease k to exclude less data." + ) + predictions = self._get_cv_predictions( + X=X, + y=y, + sorted_index=sorted_index, + k=curr_k, + ) + best_r2 = r2_score(y, predictions) + best_k = coarse_search_range[0] + else: + # conduct coarse search + coarse_search_range = sorted(coarse_search_range) # sort to conduct fine search well + r2_coarse = np.full(len(coarse_search_range), np.NaN) + for i in range(len(coarse_search_range)): + curr_k = coarse_search_range[i] + num_examples_kept = math.floor(len(y) * (1 - curr_k)) + # check if there are too few examples to do cross val + if num_examples_kept < self.cv_n_folds: + r2_coarse[i] = -1e30 # arbitrary large negative number + else: + predictions = self._get_cv_predictions( + X=X, + y=y, + sorted_index=sorted_index, + k=curr_k, + ) + r2_coarse[i] = r2_score(y, predictions) + + max_r2_ind = np.argmax(r2_coarse) + + # conduct fine search + if fine_search_size < 0: + raise ValueError("fine_search_size must at least 0") + elif fine_search_size == 0: + best_k = coarse_search_range[np.argmax(r2_coarse)] + best_r2 = np.max(r2_coarse) + else: + fine_search_range = np.array([]) + if max_r2_ind != 0: + fine_search_range = np.append( + np.linspace( + coarse_search_range[max_r2_ind - 1], + coarse_search_range[max_r2_ind], + fine_search_size + 1, + endpoint=False, + )[1:], + fine_search_range, + ) + if max_r2_ind != len(coarse_search_range) - 1: + fine_search_range = np.append( + fine_search_range, + np.linspace( + coarse_search_range[max_r2_ind], + coarse_search_range[max_r2_ind + 1], + fine_search_size + 1, + endpoint=False, + )[1:], + ) + + r2_fine = np.full(len(fine_search_range), np.NaN) + for i in range(len(fine_search_range)): + curr_k = fine_search_range[i] + num_examples_kept = math.floor(len(y) * (1 - curr_k)) + # check if there are too few examples to do cross val + if num_examples_kept < self.cv_n_folds: + r2_fine[i] = -1e30 # arbitrary large negative number + else: + predictions = self._get_cv_predictions( + X=X, + y=y, + sorted_index=sorted_index, + k=curr_k, + ) + r2_fine[i] = r2_score(y, predictions) + + # check the max between coarse and fine search + if max(r2_coarse) > max(r2_fine): + best_k = coarse_search_range[np.argmax(r2_coarse)] + best_r2 = np.max(r2_coarse) + else: + best_k = fine_search_range[np.argmax(r2_fine)] + best_r2 = np.max(r2_fine) + + return best_k, best_r2 + + def _process_label_issues_arg( + self, + label_issues: Union[pd.DataFrame, pd.Series, np.ndarray], + y: LabelLike, + ) -> pd.DataFrame: + """ + Helper method to process the label_issues input into a well-formatted DataFrame. + """ + y = labels_to_array(y) + + if isinstance(label_issues, pd.DataFrame): + if "is_label_issue" not in label_issues.columns: + raise ValueError( + "DataFrame label_issues must contain column: 'is_label_issue'. " + "See CleanLearning.fit() documentation for label_issues column descriptions." + ) + if len(label_issues) != len(y): + raise ValueError("label_issues and labels must have same length") + if "given_label" in label_issues.columns and np.any( + label_issues["given_label"].to_numpy() != y + ): + raise ValueError("labels must match label_issues['given_label']") + return label_issues + + elif isinstance(label_issues, (pd.Series, np.ndarray)): + if label_issues.dtype is not np.dtype("bool"): + raise ValueError("If label_issues is numpy.array, dtype must be 'bool'.") + if label_issues.shape != y.shape: + raise ValueError("label_issues must have same shape as labels") + return pd.DataFrame({"is_label_issue": label_issues, "given_label": y}) + + else: + raise ValueError( + "label_issues must be either pandas.DataFrame, pandas.Series or numpy.ndarray" + )
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/regression/rank.html b/v2.6.5/_modules/cleanlab/regression/rank.html new file mode 100644 index 000000000..53d696911 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/regression/rank.html @@ -0,0 +1,859 @@ + + + + + + + + + + + cleanlab.regression.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.regression.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+
+"""
+Methods to score the quality of each label in a regression dataset. These can be used to rank the examples whose Y-value is most likely erroneous.
+
+Note: Label quality scores are most accurate when they are computed based on out-of-sample `predictions` from your regression model.
+To obtain out-of-sample predictions for every datapoint in your dataset, you can use :ref:`cross-validation <pred_probs_cross_val>`. This is encouraged to get better results.
+
+If you have a sklearn-compatible regression model, consider using `cleanlab.regression.learn.CleanLearning` instead, which can more accurately identify noisy label values.
+"""
+
+from typing import Dict, Callable, Optional, Union
+import numpy as np
+from numpy.typing import ArrayLike
+
+from cleanlab.internal.neighbor.metric import decide_euclidean_metric
+from cleanlab.internal.neighbor.knn_graph import features_to_knn
+from cleanlab.outlier import OutOfDistribution
+from cleanlab.internal.regression_utils import assert_valid_prediction_inputs
+
+from cleanlab.internal.constants import TINY_VALUE
+
+
+
[docs]def get_label_quality_scores( + labels: ArrayLike, + predictions: ArrayLike, + *, + method: str = "outre", +) -> np.ndarray: + """ + Returns label quality score for each example in the regression dataset. + + Each score is a continous value in the range [0,1] + + * 1 - clean label (given label is likely correct). + * 0 - dirty label (given label is likely incorrect). + + Parameters + ---------- + labels : array_like + Raw labels from original dataset. + 1D array of shape ``(N, )`` containing the given labels for each example (aka. Y-value, response/target/dependent variable), where N is number of examples in the dataset. + + predictions : np.ndarray + 1D array of shape ``(N,)`` containing the predicted label for each example in the dataset. These should be out-of-sample predictions from a trained regression model, which you can obtain for every example in your dataset via :ref:`cross-validation <pred_probs_cross_val>`. + + method : {"residual", "outre"}, default="outre" + String specifying which method to use for scoring the quality of each label and identifying which labels appear most noisy. + + Returns + ------- + label_quality_scores: + Array of shape ``(N, )`` of scores between 0 and 1, one per example in the dataset. + + Lower scores indicate examples more likely to contain a label issue. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.regression.rank import get_label_quality_scores + >>> labels = np.array([1,2,3,4]) + >>> predictions = np.array([2,2,5,4.1]) + >>> label_quality_scores = get_label_quality_scores(labels, predictions) + >>> label_quality_scores + array([0.00323821, 0.33692597, 0.00191686, 0.33692597]) + """ + + # Check if inputs are valid + labels, predictions = assert_valid_prediction_inputs( + labels=labels, predictions=predictions, method=method + ) + + scoring_funcs: Dict[str, Callable[[np.ndarray, np.ndarray], np.ndarray]] = { + "residual": _get_residual_score_for_each_label, + "outre": _get_outre_score_for_each_label, + } + + scoring_func = scoring_funcs.get(method, None) + if not scoring_func: + raise ValueError( + f""" + {method} is not a valid scoring method. + Please choose a valid scoring technique: {scoring_funcs.keys()}. + """ + ) + + # Calculate scores + label_quality_scores = scoring_func(labels, predictions) + return label_quality_scores
+ + +def _get_residual_score_for_each_label( + labels: np.ndarray, + predictions: np.ndarray, +) -> np.ndarray: + """Returns a residual label-quality score for each example. + + This is function to compute label-quality scores for regression datasets, + where lower score indicate labels less likely to be correct. + + Residual based scores can work better for datasets where independent variables + are based out of normal distribution. + + Parameters + ---------- + labels: np.ndarray + Labels in the same format expected by the `~cleanlab.regression.rank.get_label_quality_scores` function. + + predictions: np.ndarray + Predicted labels in the same format expected by the `~cleanlab.regression.rank.get_label_quality_scores` function. + + Returns + ------- + label_quality_scores: np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabled examples. + + """ + residual = predictions - labels + label_quality_scores = np.exp(-abs(residual)) + return label_quality_scores + + +def _get_outre_score_for_each_label( + labels: np.ndarray, + predictions: np.ndarray, + *, + residual_scale: float = 5, + frac_neighbors: float = 0.5, + neighbor_metric: Optional[Union[str, Callable]] = None, +) -> np.ndarray: + """Returns OUTRE based label-quality scores. + + This function computes label-quality scores for regression datasets, + where a lower score indicates labels that are less likely to be correct. + + Parameters + ---------- + labels: np.ndarray + Labels in the same format as expected by the `~cleanlab.regression.rank.get_label_quality_scores` function. + + predictions: np.ndarray + Predicted labels in the same format as expected by the `~cleanlab.regression.rank.get_label_quality_scores` function. + + residual_scale: float, default = 5 + Multiplicative factor to adjust scale (standard deviation) of the residuals relative to the labels. + + frac_neighbors: float, default = 0.5 + Fraction of examples in dataset that should be considered as `n_neighbors` in the ``NearestNeighbors`` object used internally to assess outliers. + + neighbor_metric: Optional[str or callable], default = None + The parameter is passed to sklearn NearestNeighbors. # TODO add reference to sklearn.NearestNeighbor? + If None, the metric is chosen based on the number of features in the dataset. + + Returns + ------- + label_quality_scores: np.ndarray + Contains one score (between 0 and 1) per example. + Lower scores indicate more likely mislabled examples. + """ + residual = predictions - labels + labels = (labels - labels.mean()) / (labels.std() + TINY_VALUE) + residual = residual_scale * ((residual - residual.mean()) / (residual.std() + TINY_VALUE)) + + # 2D features by combining labels and residual + features = np.array([labels, residual]).T + + neighbors = int(np.ceil(frac_neighbors * labels.shape[0])) + # Use provided metric or select a decent implementation of the euclidean metric for knn search + neighbor_metric = neighbor_metric or decide_euclidean_metric(features) + knn = features_to_knn(features, n_neighbors=neighbors, metric=neighbor_metric) + ood = OutOfDistribution(params={"knn": knn}) + + label_quality_scores = ood.score(features=features) + return label_quality_scores +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/segmentation/filter.html b/v2.6.5/_modules/cleanlab/segmentation/filter.html new file mode 100644 index 000000000..78c75b032 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/segmentation/filter.html @@ -0,0 +1,903 @@ + + + + + + + + + + + cleanlab.segmentation.filter - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.segmentation.filter

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to find label issues in image semantic segmentation datasets, where each pixel in an image receives its own class label.
+
+"""
+
+from typing import Optional, Tuple
+
+import numpy as np
+
+from cleanlab.experimental.label_issues_batched import LabelInspector
+from cleanlab.internal.segmentation_utils import _check_input, _get_valid_optional_params
+
+
+
[docs]def find_label_issues( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + batch_size: Optional[int] = None, + n_jobs: Optional[int] = None, + verbose: bool = True, + **kwargs, +) -> np.ndarray: + """ + Returns a boolean mask for the entire dataset, per pixel where ``True`` represents + an example identified with a label issue and ``False`` represents an example of a pixel correctly labeled. + + * N - Number of images in the dataset + * K - Number of classes in the dataset + * H - Height of each image + * W - Width of each image + + Tip + --- + If you encounter the error "pred_probs is not defined", try setting ``n_jobs=1``. + + Parameters + ---------- + labels: + A discrete array of shape ``(N,H,W,)`` of noisy labels for a semantic segmentation dataset, i.e. some labels may be erroneous. + + *Format requirements*: For a dataset with K classes, each pixel must be labeled using an integer in 0, 1, ..., K-1. + + Tip + --- + If your labels are one hot encoded you can do: ``labels = np.argmax(labels_one_hot, axis=1)`` assuming that `labels_one_hot` is of dimension ``(N,K,H,W)``, in order to get properly formatted `labels`. + + pred_probs: + An array of shape ``(N,K,H,W,)`` of model-predicted class probabilities, + ``P(label=k|x)`` for each pixel ``x``. The prediction for each pixel is an array corresponding to the estimated likelihood that this pixel belongs to each of the ``K`` classes. The 2nd dimension of `pred_probs` must be ordered such that these probabilities correspond to class 0, 1, ..., K-1. + + batch_size: + Optional size of image mini-batches used for computing the label issues in a streaming fashion (does not affect results, just the runtime and memory requirements). + To maximize efficiency, try to use the largest `batch_size` your memory allows. If not provided, a good default is used. + + n_jobs: + Optional number of processes for multiprocessing (default value = 1). Only used on Linux. + If `n_jobs=None`, will use either the number of: physical cores if psutil is installed, or logical cores otherwise. + + verbose: + Set to ``False`` to suppress all print statements. + + **kwargs: + * downsample: int, + Optional factor to shrink labels and pred_probs by. Default ``1`` + Must be a factor divisible by both the labels and the pred_probs. Larger values of `downsample` produce faster runtimes but potentially less accurate results due to over-compression. Set to 1 to avoid any downsampling. + + Returns + ------- + label_issues: np.ndarray + Returns a boolean **mask** for the entire dataset of length `(N,H,W)` + where ``True`` represents a pixel label issue and ``False`` represents an example that is correctly labeled. + """ + batch_size, n_jobs = _get_valid_optional_params(batch_size, n_jobs) + downsample = kwargs.get("downsample", 1) + + def downsample_arrays( + labels: np.ndarray, pred_probs: np.ndarray, factor: int = 1 + ) -> Tuple[np.ndarray, np.ndarray]: + if factor == 1: + return labels, pred_probs + + num_image, num_classes, h, w = pred_probs.shape + + # Check if possible to downsample + if h % downsample != 0 or w % downsample != 0: + raise ValueError( + f"Height {h} and width {w} not divisible by downsample value of {downsample}. Set kwarg downsample to 1 to avoid downsampling." + ) + small_labels = np.round( + labels.reshape((num_image, h // factor, factor, w // factor, factor)).mean((4, 2)) + ) + small_pred_probs = pred_probs.reshape( + (num_image, num_classes, h // factor, factor, w // factor, factor) + ).mean((5, 3)) + + # We want to make sure that pred_probs are renormalized + row_sums = small_pred_probs.sum(axis=1) + renorm_small_pred_probs = small_pred_probs / np.expand_dims(row_sums, 1) + + return small_labels, renorm_small_pred_probs + + def flatten_and_preprocess_masks( + labels: np.ndarray, pred_probs: np.ndarray + ) -> Tuple[np.ndarray, np.ndarray]: + _, num_classes, _, _ = pred_probs.shape + labels_flat = labels.flatten().astype(int) + pred_probs_flat = np.moveaxis(pred_probs, 0, 1).reshape(num_classes, -1) + + return labels_flat, pred_probs_flat.T + + ## + _check_input(labels, pred_probs) + + # Added Downsampling + pre_labels, pre_pred_probs = downsample_arrays(labels, pred_probs, downsample) + + num_image, _, h, w = pre_pred_probs.shape + + ### This section is a modified version of find_label_issues_batched(), old code is commented out + # ranked_label_issues = find_label_issues_batched( + # pre_labels, pre_pred_probs, batch_size=batch_size, n_jobs=n_jobs, verbose=verbose + # ) + lab = LabelInspector( + num_class=pre_pred_probs.shape[1], + verbose=verbose, + n_jobs=n_jobs, + quality_score_kwargs=None, + num_issue_kwargs=None, + ) + n = len(pre_labels) + + if verbose: + from tqdm.auto import tqdm + + pbar = tqdm(desc="number of examples processed for estimating thresholds", total=n) + + # Precompute the size of each image in the batch + image_size = np.prod(pre_pred_probs.shape[1:]) + images_per_batch = max(batch_size // image_size, 1) + + for start_index in range(0, n, images_per_batch): + end_index = min(start_index + images_per_batch, n) + labels_batch, pred_probs_batch = flatten_and_preprocess_masks( + pre_labels[start_index:end_index], pre_pred_probs[start_index:end_index] + ) + lab.update_confident_thresholds(labels_batch, pred_probs_batch) + if verbose: + pbar.update(end_index - start_index) + + if verbose: + pbar.close() + pbar = tqdm(desc="number of examples processed for checking labels", total=n) + + for start_index in range(0, n, images_per_batch): + end_index = min(start_index + images_per_batch, n) + labels_batch, pred_probs_batch = flatten_and_preprocess_masks( + pre_labels[start_index:end_index], pre_pred_probs[start_index:end_index] + ) + _ = lab.score_label_quality(labels_batch, pred_probs_batch) + if verbose: + pbar.update(end_index - start_index) + + if verbose: + pbar.close() + + ranked_label_issues = lab.get_label_issues() + ### End find_label_issues_batched() section + + # Upsample carefully maintaining indicies + label_issues = np.full((num_image, h, w), False) + + # only want to call it an error if pred_probs doesnt match the label at those pixels + for i in range(0, ranked_label_issues.shape[0], batch_size): + issues_batch = ranked_label_issues[i : i + batch_size] + # Finding the right indicies + image_batch, batch_coor_i, batch_coor_j = _get_indexes_from_ranked_issues( + issues_batch, h, w + ) + label_issues[image_batch, batch_coor_i, batch_coor_j] = True + if downsample == 1: + # check if pred_probs matches the label at those pixels + pred_argmax = np.argmax(pred_probs[image_batch, :, batch_coor_i, batch_coor_j], axis=1) + mask = pred_argmax == labels[image_batch, batch_coor_i, batch_coor_j] + label_issues[image_batch[mask], batch_coor_i[mask], batch_coor_j[mask]] = False + + if downsample != 1: + label_issues = label_issues.repeat(downsample, axis=1).repeat(downsample, axis=2) + + for i in range(0, ranked_label_issues.shape[0], batch_size): + issues_batch = ranked_label_issues[i : i + batch_size] + image_batch, batch_coor_i, batch_coor_j = _get_indexes_from_ranked_issues( + issues_batch, h, w + ) + # Upsample the coordinates + upsampled_ii = batch_coor_i * downsample + upsampled_jj = batch_coor_j * downsample + # Iterate over the upsampled region + for i in range(downsample): + for j in range(downsample): + rows = upsampled_ii + i + cols = upsampled_jj + j + pred_argmax = np.argmax(pred_probs[image_batch, :, rows, cols], axis=1) + # Check if the predicted class (argmax) at the identified issue location matches the true label + mask = pred_argmax == labels[image_batch, rows, cols] + # If they match, set the corresponding entries in the label_issues array to False + label_issues[image_batch[mask], rows[mask], cols[mask]] = False + + return label_issues
+ + +def _get_indexes_from_ranked_issues( + ranked_label_issues: np.ndarray, h: int, w: int +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + hw = h * w + relative_index = ranked_label_issues % hw + pixel_coor_i, pixel_coor_j = np.unravel_index(relative_index, (h, w)) + image_batch = ranked_label_issues // hw + return image_batch, pixel_coor_i, pixel_coor_j +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/segmentation/rank.html b/v2.6.5/_modules/cleanlab/segmentation/rank.html new file mode 100644 index 000000000..14a71b9ec --- /dev/null +++ b/v2.6.5/_modules/cleanlab/segmentation/rank.html @@ -0,0 +1,915 @@ + + + + + + + + + + + cleanlab.segmentation.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.segmentation.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to rank and score images in a semantic segmentation dataset based on how likely they are to contain mislabeled pixels.
+"""
+import warnings
+from typing import Optional, Tuple
+
+import numpy as np
+
+from cleanlab.internal.segmentation_utils import _check_input, _get_valid_optional_params
+from cleanlab.segmentation.filter import find_label_issues
+
+
+
[docs]def get_label_quality_scores( + labels: np.ndarray, + pred_probs: np.ndarray, + *, + method: str = "softmin", + batch_size: Optional[int] = None, + n_jobs: Optional[int] = None, + verbose: bool = True, + **kwargs, +) -> Tuple[np.ndarray, np.ndarray]: + """Returns a label quality score for each image. + + This is a function to compute label quality scores for semantic segmentation datasets, + where lower scores indicate labels less likely to be correct. + + * N - Number of images in the dataset + * K - Number of classes in the dataset + * H - Height of each image + * W - Width of each image + + Parameters + ---------- + labels: + A discrete array of noisy labels for a segmantic segmentation dataset, in the shape ``(N,H,W,)``, + where each pixel must be integer in 0, 1, ..., K-1. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for further details. + + pred_probs: + An array of shape ``(N,K,H,W,)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for further details. + + method: {"softmin", "num_pixel_issues"}, default="softmin" + Label quality scoring method. + + - "softmin" - Calculates the inner product between scores and softmax(1-scores). For efficiency, use instead of "num_pixel_issues". + - "num_pixel_issues" - Uses the number of pixels with label issues for each image using :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` + + batch_size : + Optional size of mini-batches to use for estimating the label issues for 'num_pixel_issues' only, not 'softmin'. + To maximize efficiency, try to use the largest `batch_size` your memory allows. If not provided, a good default is used. + + n_jobs: + Optional number of processes for multiprocessing (default value = 1). Only used on Linux. For 'num_pixel_issues' only, not 'softmin' + If `n_jobs=None`, will use either the number of: physical cores if psutil is installed, or logical cores otherwise. + + verbose: + Set to ``False`` to suppress all print statements. + + **kwargs: + * downsample : int, + Factor to shrink labels and pred_probs by for 'num_pixel_issues' only, not 'softmin' . Default ``16`` + Must be a factor divisible by both the labels and the pred_probs. Larger values of `downsample` produce faster runtimes but potentially less accurate results due to over-compression. Set to 1 to avoid any downsampling. + * temperature : float, + Temperature for softmin. Default ``0.1`` + + + Returns + ------- + image_scores: + Array of shape ``(N, )`` of scores between 0 and 1, one per image in the dataset. + Lower scores indicate image more likely to contain a label issue. + pixel_scores: + Array of shape ``(N,H,W)`` of scores between 0 and 1, one per pixel in the dataset. + """ + batch_size, n_jobs = _get_valid_optional_params(batch_size, n_jobs) + _check_input(labels, pred_probs) + + softmin_temperature = kwargs.get("temperature", 0.1) + downsample_num_pixel_issues = kwargs.get("downsample", 1) + + if method == "num_pixel_issues": + _, K, _, _ = pred_probs.shape + labels_expanded = labels[:, np.newaxis, :, :] + mask = np.arange(K)[np.newaxis, :, np.newaxis, np.newaxis] == labels_expanded + # Calculate pixel_scores + masked_pred_probs = np.where(mask, pred_probs, 0) + pixel_scores = masked_pred_probs.sum(axis=1) + scores = find_label_issues( + labels, + pred_probs, + downsample=downsample_num_pixel_issues, + n_jobs=n_jobs, + verbose=verbose, + batch_size=batch_size, + ) + img_scores = 1 - np.mean(scores, axis=(1, 2)) + return (img_scores, pixel_scores) + + if downsample_num_pixel_issues != 1: + warnings.warn( + f"image will not downsample for method {method} is only for method: num_pixel_issues" + ) + + num_im, num_class, h, w = pred_probs.shape + image_scores = np.empty((num_im,)) + pixel_scores = np.empty((num_im, h, w)) + if verbose: + from tqdm.auto import tqdm + + pbar = tqdm(desc=f"images processed using {method}", total=num_im) + + h_array = np.arange(h)[:, None] + w_array = np.arange(w) + + for image in range(num_im): + image_probs = pred_probs[image][ + labels[image], + h_array, + w_array, + ] + pixel_scores[image, :, :] = image_probs + image_scores[image] = _get_label_quality_per_image( + image_probs.flatten(), method=method, temperature=softmin_temperature + ) + if verbose: + pbar.update(1) + return image_scores, pixel_scores
+ + +
[docs]def issues_from_scores( + image_scores: np.ndarray, pixel_scores: Optional[np.ndarray] = None, threshold: float = 0.1 +) -> np.ndarray: + """ + Converts scores output by `~cleanlab.segmentation.rank.get_label_quality_scores` + to a list of issues of similar format as output by :py:func:`segmentation.filter.find_label_issues <cleanlab.segmentation.filter.find_label_issues>`. + + Only considers as issues those tokens with label quality score lower than `threshold`, + so this parameter determines the number of issues that are returned. + + Note + ---- + - This method is intended for converting the most severely mislabeled examples into a format compatible with ``summary`` methods like :py:func:`segmentation.summary.display_issues <cleanlab.segmentation.summary.display_issues>`. + - This method does not estimate the number of label errors since the `threshold` is arbitrary, for that instead use :py:func:`segmentation.filter.find_label_issues <cleanlab.segmentation.filter.find_label_issues>`, which estimates the label errors via Confident Learning rather than score thresholding. + + Parameters + ---------- + image_scores: + Array of shape `(N, )` of overall image scores, where `N` is the number of images in the dataset. + Same format as the `image_scores` returned by `~cleanlab.segmentation.rank.get_label_quality_scores`. + + pixel_scores: + Optional array of shape ``(N,H,W)`` of scores between 0 and 1, one per pixel in the dataset. + Same format as the `pixel_scores` returned by `~cleanlab.segmentation.rank.get_label_quality_scores`. + + threshold: + Optional quality scores threshold that determines which pixels are included in result. Pixels with with quality scores above the `threshold` are not + included in the result. If not provided, all pixels are included in result. + + Returns + --------- + issues: + Returns a boolean **mask** for the entire dataset + where ``True`` represents a pixel label issue and ``False`` represents an example that is + accurately labeled with using the threshold provided by the user. + Use :py:func:`segmentation.summary.display_issues <cleanlab.segmentation.summary.display_issues>` + to view these issues within the original images. + + If `pixel_scores` is not provided, returns array of integer indices (rather than boolean mask) of the images whose label quality score + falls below the `threshold` (sorted by overall label quality score of each image). + + """ + + if image_scores is None: + raise ValueError("pixel_scores must be provided") + if threshold < 0 or threshold > 1 or threshold is None: + raise ValueError("threshold must be between 0 and 1") + + if pixel_scores is not None: + return pixel_scores < threshold + + ranking = np.argsort(image_scores) + cutoff = np.searchsorted(image_scores[ranking], threshold) + return ranking[: cutoff + 1]
+ + +def _get_label_quality_per_image(pixel_scores, method=None, temperature=0.1): + from cleanlab.internal.multilabel_scorer import softmin + + """ + Input pixel scores and get label quality score for that image, currently using the "softmin" method. + + Parameters + ---------- + pixel_scores: + Per-pixel label quality scores in flattened array of shape ``(N, )``, where N is the number of pixels in the image. + + method: default "softmin" + Method to use to calculate the image's label quality score. + Currently only supports "softmin". + temperature: default 0.1 + Temperature of the softmax function. Too small values may cause numerical underflow and NaN scores. + + Lower values encourage this method to converge toward the label quality score of the pixel with the lowest quality label in the image. + + Higher values encourage this method to converge toward the average label quality score of all pixels in the image. + + Returns + --------- + image_score: + Float of the image's label quality score from 0 to 1, 0 being the lowest quality and 1 being the highest quality. + + """ + if pixel_scores is None or pixel_scores.size == 0: + raise Exception("Invalid Input: pixel_scores cannot be None or an empty list") + + if temperature == 0 or temperature is None: + raise Exception("Invalid Input: temperature cannot be zero or None") + + pixel_scores_64 = pixel_scores.astype("float64") + if method == "softmin": + if len(pixel_scores_64) > 0: + return softmin( + np.expand_dims(pixel_scores_64, axis=0), axis=1, temperature=temperature + )[0] + else: + raise Exception("Invalid Input: pixel_scores is empty") + else: + raise Exception("Invalid Method: Specify correct method. Currently only supports 'softmin'") +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/segmentation/summary.html b/v2.6.5/_modules/cleanlab/segmentation/summary.html new file mode 100644 index 000000000..972f4afba --- /dev/null +++ b/v2.6.5/_modules/cleanlab/segmentation/summary.html @@ -0,0 +1,1035 @@ + + + + + + + + + + + cleanlab.segmentation.summary - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.segmentation.summary

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to display images and their label issues in a semantic segmentation dataset, as well as summarize the overall types of issues identified.
+"""
+
+from typing import Any, Dict, List, Optional
+
+import numpy as np
+import pandas as pd
+from tqdm.auto import tqdm
+
+from cleanlab.internal.segmentation_utils import _get_summary_optional_params
+
+
+
[docs]def display_issues( + issues: np.ndarray, + *, + labels: Optional[np.ndarray] = None, + pred_probs: Optional[np.ndarray] = None, + class_names: Optional[List[str]] = None, + exclude: Optional[List[int]] = None, + top: Optional[int] = None, + **kwargs, # Accepting additional kwargs for plt.show() +) -> None: + """ + Display semantic segmentation label issues, showing images with problematic pixels highlighted. + + Can also show given and predicted masks for each image identified to have label issue. + + Parameters + ---------- + issues: + Boolean **mask** for the entire dataset + where ``True`` represents a pixel label issue and ``False`` represents an example that is + accurately labeled. + + Same format as output by :py:func:`segmentation.filter.find_label_issues <cleanlab.segmentation.filter.find_label_issues>` + or :py:func:`segmentation.rank.issues_from_scores <cleanlab.segmentation.rank.issues_from_scores>`. + + labels: + Optional discrete array of noisy labels for a segmantic segmentation dataset, in the shape ``(N,H,W,)``, + where each pixel must be integer in 0, 1, ..., K-1. + If `labels` is provided, this function also displays given label of the pixel identified with issue. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for more information. + + pred_probs: + Optional array of shape ``(N,K,H,W,)`` of model-predicted class probabilities. + If `pred_probs` is provided, this function also displays predicted label of the pixel identified with issue. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for more information. + + Tip + --- + If your labels are one hot encoded you can `np.argmax(labels_one_hot, axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W) + before entering in the function + + class_names: + Optional list of strings, where each string represents the name of a class in the semantic segmentation problem. + The order of the names should correspond to the numerical order of the classes. The list length should be + equal to the number of unique classes present in the labels. + If provided, this function will generate a legend + showing the color mapping of each class in the provided colormap. + + Example: + If there are three classes in your labels, represented by 0, 1, 2, then class_names might look like this: + + .. code-block:: python + + class_names = ['background', 'person', 'dog'] + + top: + Optional maximum number of issues to be printed. If not provided, a good default is used. + + exclude: + Optional list of label classes that can be ignored in the errors, each element must be 0, 1, ..., K-1 + + kwargs + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). + """ + class_names, exclude, top = _get_summary_optional_params(class_names, exclude, top) + if labels is None and len(exclude) > 0: + raise ValueError("Provide labels to allow class exclusion") + + top = min(top, len(issues)) + + correct_ordering = np.argsort(-np.sum(issues, axis=(1, 2)))[:top] + + try: + import matplotlib.pyplot as plt + import matplotlib.patches as mpatches + from matplotlib.colors import ListedColormap + except ImportError: + raise ImportError('try "pip install matplotlib"') + + output_plots = (pred_probs is not None) + (labels is not None) + 1 + + # Colormap for errors + error_cmap = ListedColormap(["none", "red"]) + _, h, w = issues.shape + if output_plots > 1: + if pred_probs is not None: + _, num_classes, _, _ = pred_probs.shape + cmap = _generate_colormap(num_classes) + elif labels is not None: + num_classes = max(np.unique(labels)) + 1 + cmap = _generate_colormap(num_classes) + else: + cmap = None + + # Show a legend + if class_names is not None and cmap is not None: + patches = [ + mpatches.Patch(color=cmap[i], label=class_names[i]) for i in range(len(class_names)) + ] + legend = plt.figure() # adjust figsize for larger legend + legend.legend( + handles=patches, loc="center", ncol=len(class_names), facecolor="white", fontsize=20 + ) # adjust fontsize for larger text + plt.axis("off") + plt.show(**kwargs) + + for i in correct_ordering: + # Show images + fig, axes = plt.subplots(1, output_plots, figsize=(5 * output_plots, 5)) + plot_index = 0 + + # First image - Given truth labels + if labels is not None: + axes[plot_index].imshow(cmap[labels[i]]) + axes[plot_index].set_title("Given Labels") + plot_index += 1 + + # Second image - Argmaxed pred_probs + if pred_probs is not None: + axes[plot_index].imshow(cmap[np.argmax(pred_probs[i], axis=0)]) + axes[plot_index].set_title("Argmaxed Prediction Probabilities") + plot_index += 1 + + # Third image - Errors + if output_plots == 1: + ax = axes + else: + ax = axes[plot_index] + + mask = np.full((h, w), True) + if labels is not None and len(exclude) != 0: + mask = ~np.isin(labels[i], exclude) + ax.imshow(issues[i] & mask, cmap=error_cmap, vmin=0, vmax=1) + ax.set_title(f"Image {i}: Suggested Errors (in Red)") + plt.show(**kwargs) + + return None
+ + +
[docs]def common_label_issues( + issues: np.ndarray, + labels: np.ndarray, + pred_probs: np.ndarray, + *, + class_names: Optional[List[str]] = None, + exclude: Optional[List[int]] = None, + top: Optional[int] = None, + verbose: bool = True, +) -> pd.DataFrame: + """ + Display the frequency of which label are swapped in the dataset. + + These may correspond to pixels that are ambiguous or systematically misunderstood by the data annotators. + + * N - Number of images in the dataset + * K - Number of classes in the dataset + * H - Height of each image + * W - Width of each image + + Parameters + ---------- + issues: + Boolean **mask** for the entire dataset + where ``True`` represents a pixel label issue and ``False`` represents an example that is + accurately labeled. + + Same format as output by :py:func:`segmentation.filter.find_label_issues <cleanlab.segmentation.filter.find_label_issues>` + or :py:func:`segmentation.rank.issues_from_scores <cleanlab.segmentation.rank.issues_from_scores>`. + + labels: + A discrete array of noisy labels for a segmantic segmentation dataset, in the shape ``(N,H,W,)``. + where each pixel must be integer in 0, 1, ..., K-1. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for more information. + + pred_probs: + An array of shape ``(N,K,H,W,)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for more information. + + Tip + --- + If your labels are one hot encoded you can `np.argmax(labels_one_hot, axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W) + before entering in the function + + class_names: + Optional length K list of names of each class, such that `class_names[i]` is the string name of the class corresponding to `labels` with value `i`. + If `class_names` is provided, display these string names for predicted and given labels, otherwise display the integer index of classes. + + exclude: + Optional list of label classes that can be ignored in the errors, each element must be in 0, 1, ..., K-1. + + top: + Optional maximum number of tokens to print information for. If not provided, a good default is used. + + verbose: + Set to ``False`` to suppress all print statements. + + Returns + ------- + issues_df: + DataFrame with columns ``['given_label', 'predicted_label', 'num_label_issues']`` + where each row contains information about a particular given/predicted label swap. + Rows are ordered by the number of label issues inferred to exhibit this type of label swap. + """ + try: + N, K, H, W = pred_probs.shape + except: + raise ValueError("pred_probs must be of shape (N, K, H, W)") + + assert labels.shape == (N, H, W), "labels must be of shape (N, H, W)" + + class_names, exclude, top = _get_summary_optional_params(class_names, exclude, top) + # Find issues by pixel coordinates + issue_coords = np.column_stack(np.where(issues)) + + # Count issues per class (given label) + count: Dict[int, Any] = {} + for i, j, k in tqdm(issue_coords): + label = labels[i, j, k] + pred = pred_probs[i, :, j, k].argmax() + if label not in count: + count[label] = np.zeros(K, dtype=int) + if pred not in exclude: + count[label][pred] += 1 + + # Prepare output DataFrame + if class_names is None: + class_names = [str(i) for i in range(K)] + + info = [] + for given_label, class_name in enumerate(class_names): + if given_label in count: + for pred_label, num_issues in enumerate(count[given_label]): + if num_issues > 0: + info.append([class_name, class_names[pred_label], num_issues]) + + info = sorted(info, key=lambda x: x[2], reverse=True)[:top] + issues_df = pd.DataFrame(info, columns=["given_label", "predicted_label", "num_pixel_issues"]) + + if verbose: + for idx, row in issues_df.iterrows(): + print( + f"Class '{row['given_label']}' is potentially mislabeled as class for '{row['predicted_label']}' " + f"{row['num_pixel_issues']} pixels in the dataset" + ) + + return issues_df
+ + +
[docs]def filter_by_class( + class_index: int, issues: np.ndarray, labels: np.ndarray, pred_probs: np.ndarray +) -> np.ndarray: + """ + Return label issues involving particular class. Note that this includes errors where the given label is the class of interest, and the predicted label is any other class. + + Parameters + ---------- + class_index: + The specific class you are interested in. + + issues: + Boolean **mask** for the entire dataset where ``True`` represents a pixel label issue and ``False`` represents an example that is + accurately labeled. + + Same format as output by :py:func:`segmentation.filter.find_label_issues <cleanlab.segmentation.filter.find_label_issues>` + or :py:func:`segmentation.rank.issues_from_scores <cleanlab.segmentation.rank.issues_from_scores>`. + + labels: + A discrete array of noisy labels for a segmantic segmentation dataset, in the shape ``(N,H,W,)``, + where each pixel must be integer in 0, 1, ..., K-1. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for further details. + + pred_probs: + An array of shape ``(N,K,H,W,)`` of model-predicted class probabilities. + Refer to documentation for this argument in :py:func:`find_label_issues <cleanlab.segmentation.filter.find_label_issues>` for further details. + + Returns + ---------- + issues_subset: + Boolean **mask** for the subset dataset where ``True`` represents a pixel label issue and ``False`` represents an example that is + accurately labeled for the labeled class. + + Returned mask shows **all** instances that involve the particular class of interest. + + + """ + issues_subset = (issues & np.isin(labels, class_index)) | ( + issues & np.isin(pred_probs.argmax(1), class_index) + ) + return issues_subset
+ + +def _generate_colormap(num_colors): + """ + Finds a unique color map based on the number of colors inputted ideal for semantic segmentation. + Parameters + ---------- + num_colors: + How many unique colors you want + + Returns + ------- + colors: + colors with num_colors distinct colors + """ + + try: + from matplotlib.cm import hsv + except: + raise ImportError('try "pip install matplotlib"') + + num_shades = 7 + num_colors_with_shades = -(-num_colors // num_shades) * num_shades + linear_nums = np.linspace(0, 1, num_colors_with_shades, endpoint=False) + + arr_by_shade_rows = linear_nums.reshape(num_shades, -1) + arr_by_shade_columns = arr_by_shade_rows.T + num_partitions = arr_by_shade_columns.shape[0] + nums_distributed_like_rising_saw = arr_by_shade_columns.flatten() + + initial_cm = hsv(nums_distributed_like_rising_saw) + lower_partitions_half = num_partitions // 2 + upper_partitions_half = num_partitions - lower_partitions_half + + lower_half = lower_partitions_half * num_shades + initial_cm[:lower_half, :3] *= np.linspace(0.2, 1, lower_half)[:, np.newaxis] + + upper_half_indices = np.arange(lower_half, num_colors_with_shades).reshape( + upper_partitions_half, num_shades + ) + modifier = ( + (1 - initial_cm[upper_half_indices, :3]) + * np.arange(upper_partitions_half)[:, np.newaxis, np.newaxis] + / upper_partitions_half + ) + initial_cm[upper_half_indices, :3] += modifier + colors = initial_cm[:num_colors] + return colors +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/token_classification/filter.html b/v2.6.5/_modules/cleanlab/token_classification/filter.html new file mode 100644 index 000000000..702021eba --- /dev/null +++ b/v2.6.5/_modules/cleanlab/token_classification/filter.html @@ -0,0 +1,786 @@ + + + + + + + + + + + cleanlab.token_classification.filter - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.token_classification.filter

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to find label issues in token classification datasets (text data), where each token in a sentence receives its own class label.
+
+The underlying algorithms are described in `this paper <https://arxiv.org/abs/2210.03920>`_.
+"""
+
+import numpy as np
+from typing import List, Tuple
+import warnings
+
+from cleanlab.filter import find_label_issues as find_label_issues_main
+from cleanlab.experimental.label_issues_batched import find_label_issues_batched
+
+
+
[docs]def find_label_issues( + labels: list, + pred_probs: list, + *, + return_indices_ranked_by: str = "self_confidence", + low_memory: bool = False, + **kwargs, +) -> List[Tuple[int, int]]: + """Identifies tokens with label issues in a token classification dataset. + + Tokens identified with issues will be ranked by their individual label quality score. + + Instead use :py:func:`token_classification.rank.get_label_quality_scores <cleanlab.token_classification.rank.get_label_quality_scores>` + if you prefer to rank the sentences based on their overall label quality. + + Parameters + ---------- + labels: + Nested list of given labels for all tokens, such that `labels[i]` is a list of labels, one for each token in the `i`-th sentence. + + For a dataset with K classes, each class label must be integer in 0, 1, ..., K-1. + + pred_probs: + List of np arrays, such that `pred_probs[i]` has shape ``(T, K)`` if the `i`-th sentence contains T tokens. + + Each row of `pred_probs[i]` corresponds to a token `t` in the `i`-th sentence, + and contains model-predicted probabilities that `t` belongs to each of the K possible classes. + + Columns of each `pred_probs[i]` should be ordered such that the probabilities correspond to class 0, 1, ..., K-1. + + return_indices_ranked_by: {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default="self_confidence" + Returned token-indices are sorted by their label quality score. + + See :py:func:`cleanlab.filter.find_label_issues <cleanlab.filter.find_label_issues>` + documentation for more details on each label quality scoring method. + + kwargs: + Additional keyword arguments to pass into :py:func:`filter.find_label_issues <cleanlab.filter.find_label_issues>` + which is internally applied at the token level. Can include values like `n_jobs` to control parallel processing, `frac_noise`, etc. + + Returns + ------- + issues: + List of label issues identified by cleanlab, such that each element is a tuple ``(i, j)``, which + indicates that the `j`-th token of the `i`-th sentence has a label issue. + + These tuples are ordered in `issues` list based on the likelihood that the corresponding token is mislabeled. + + Use :py:func:`token_classification.summary.display_issues <cleanlab.token_classification.summary.display_issues>` + to view these issues within the original sentences. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.token_classification.filter import find_label_issues + >>> labels = [[0, 0, 1], [0, 1]] + >>> pred_probs = [ + ... np.array([[0.9, 0.1], [0.7, 0.3], [0.05, 0.95]]), + ... np.array([[0.8, 0.2], [0.8, 0.2]]), + ... ] + >>> find_label_issues(labels, pred_probs) + [(1, 1)] + """ + labels_flatten = [l for label in labels for l in label] + pred_probs_flatten = np.array([pred for pred_prob in pred_probs for pred in pred_prob]) + + if low_memory: + for arg_name, _ in kwargs.items(): + warnings.warn(f"`{arg_name}` is not used when `low_memory=True`.") + quality_score_kwargs = {"method": return_indices_ranked_by} + issues_main = find_label_issues_batched( + labels_flatten, pred_probs_flatten, quality_score_kwargs=quality_score_kwargs + ) + else: + issues_main = find_label_issues_main( + labels_flatten, + pred_probs_flatten, + return_indices_ranked_by=return_indices_ranked_by, + **kwargs, + ) + + lengths = [len(label) for label in labels] + mapping = [[(i, j) for j in range(length)] for i, length in enumerate(lengths)] + mapping_flatten = [index for indicies in mapping for index in indicies] + + issues = [mapping_flatten[issue] for issue in issues_main] + return issues
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/token_classification/rank.html b/v2.6.5/_modules/cleanlab/token_classification/rank.html new file mode 100644 index 000000000..0db58bbf7 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/token_classification/rank.html @@ -0,0 +1,959 @@ + + + + + + + + + + + cleanlab.token_classification.rank - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.token_classification.rank

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to rank and score sentences in a token classification dataset (text data), based on how likely they are to contain label errors.
+
+The underlying algorithms are described in `this paper <https://arxiv.org/abs/2210.03920>`_.
+"""
+
+import pandas as pd
+import numpy as np
+from typing import List, Optional, Union, Tuple
+
+from cleanlab.rank import get_label_quality_scores as main_get_label_quality_scores
+from cleanlab.internal.numerics import softmax
+
+
+
[docs]def get_label_quality_scores( + labels: list, + pred_probs: list, + *, + tokens: Optional[list] = None, + token_score_method: str = "self_confidence", + sentence_score_method: str = "min", + sentence_score_kwargs: dict = {}, +) -> Tuple[np.ndarray, list]: + """ + Returns overall quality scores for the labels in each sentence, as well as for the individual tokens' labels in a token classification dataset. + + Each score is between 0 and 1. + + Lower scores indicate token labels that are less likely to be correct, or sentences that are more likely to contain a mislabeled token. + + Parameters + ---------- + labels: + Nested list of given labels for all tokens, such that `labels[i]` is a list of labels, one for each token in the `i`-th sentence. + + For a dataset with K classes, each label must be in 0, 1, ..., K-1. + + pred_probs: + List of np arrays, such that `pred_probs[i]` has shape ``(T, K)`` if the `i`-th sentence contains T tokens. + + Each row of `pred_probs[i]` corresponds to a token `t` in the `i`-th sentence, + and contains model-predicted probabilities that `t` belongs to each of the K possible classes. + + Columns of each `pred_probs[i]` should be ordered such that the probabilities correspond to class 0, 1, ..., K-1. + + tokens: + Nested list such that `tokens[i]` is a list of tokens (strings/words) that comprise the `i`-th sentence. + + These strings are used to annotated the returned `token_scores` object, see its documentation for more information. + + sentence_score_method: {"min", "softmin"}, default="min" + Method to aggregate individual token label quality scores into a single score for the sentence. + + - `min`: sentence score = minimum of token scores in the sentence + - `softmin`: sentence score = ``<s, softmax(1-s, t)>``, where `s` denotes the token label scores of the sentence, and ``<a, b> == np.dot(a, b)``. + Here parameter `t` controls the softmax temperature, such that the score converges toward `min` as ``t -> 0``. + Unlike `min`, `softmin` is affected by the scores of all tokens in the sentence. + + token_score_method: {"self_confidence", "normalized_margin", "confidence_weighted_entropy"}, default="self_confidence" + Label quality scoring method for each token. + + See :py:func:`cleanlab.rank.get_label_quality_scores <cleanlab.rank.get_label_quality_scores>` documentation for more info. + + sentence_score_kwargs: + Optional keyword arguments for `sentence_score_method` function (for advanced users only). + + See `~cleanlab.token_classification.rank._softmin_sentence_score` for more info about keyword arguments supported for that scoring method. + + Returns + ------- + sentence_scores: + Array of shape ``(N, )`` of scores between 0 and 1, one per sentence in the dataset. + + Lower scores indicate sentences more likely to contain a label issue. + + token_scores: + List of ``pd.Series``, such that `token_info[i]` contains the + label quality scores for individual tokens in the `i`-th sentence. + + If `tokens` strings were provided, they are used as index for each ``Series``. + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.token_classification.rank import get_label_quality_scores + >>> labels = [[0, 0, 1], [0, 1]] + >>> pred_probs = [ + ... np.array([[0.9, 0.1], [0.7, 0.3], [0.05, 0.95]]), + ... np.array([[0.8, 0.2], [0.8, 0.2]]), + ... ] + >>> sentence_scores, token_scores = get_label_quality_scores(labels, pred_probs) + >>> sentence_scores + array([0.7, 0.2]) + >>> token_scores + [0 0.90 + 1 0.70 + 2 0.95 + dtype: float64, 0 0.8 + 1 0.2 + dtype: float64] + """ + methods = ["min", "softmin"] + assert sentence_score_method in methods, "Select from the following methods:\n%s" % "\n".join( + methods + ) + + labels_flatten = np.array([l for label in labels for l in label]) + pred_probs_flatten = np.array([p for pred_prob in pred_probs for p in pred_prob]) + + sentence_length = [len(label) for label in labels] + + def nested_list(x, sentence_length): + i = iter(x) + return [[next(i) for _ in range(length)] for length in sentence_length] + + token_scores = main_get_label_quality_scores( + labels=labels_flatten, pred_probs=pred_probs_flatten, method=token_score_method + ) + scores_nl = nested_list(token_scores, sentence_length) + + if sentence_score_method == "min": + sentence_scores = np.array(list(map(np.min, scores_nl))) + else: + assert sentence_score_method == "softmin" + temperature = sentence_score_kwargs.get("temperature", 0.05) + sentence_scores = _softmin_sentence_score(scores_nl, temperature=temperature) + + if tokens: + token_info = [pd.Series(scores, index=token) for scores, token in zip(scores_nl, tokens)] + else: + token_info = [pd.Series(scores) for scores in scores_nl] + return sentence_scores, token_info
+ + +
[docs]def issues_from_scores( + sentence_scores: np.ndarray, *, token_scores: Optional[list] = None, threshold: float = 0.1 +) -> Union[list, np.ndarray]: + """ + Converts scores output by `~cleanlab.token_classification.rank.get_label_quality_scores` + to a list of issues of similar format as output by :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>`. + + Issues are sorted by label quality score, from most to least severe. + + Only considers as issues those tokens with label quality score lower than `threshold`, + so this parameter determines the number of issues that are returned. + This method is intended for converting the most severely mislabeled examples to a format compatible with + ``summary`` methods like :py:func:`token_classification.summary.display_issues <cleanlab.token_classification.summary.display_issues>`. + This method does not estimate the number of label errors since the `threshold` is arbitrary, + for that instead use :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>`, + which estimates the label errors via Confident Learning rather than score thresholding. + + Parameters + ---------- + sentence_scores: + Array of shape `(N, )` of overall sentence scores, where `N` is the number of sentences in the dataset. + + Same format as the `sentence_scores` returned by `~cleanlab.token_classification.rank.get_label_quality_scores`. + + token_scores: + Optional list such that `token_scores[i]` contains the individual token scores for the `i`-th sentence. + + Same format as the `token_scores` returned by `~cleanlab.token_classification.rank.get_label_quality_scores`. + + threshold: + Tokens (or sentences, if `token_scores` is not provided) with quality scores above the `threshold` are not + included in the result. + + Returns + --------- + issues: + List of label issues identified by comparing quality scores to threshold, such that each element is a tuple ``(i, j)``, which + indicates that the `j`-th token of the `i`-th sentence has a label issue. + + These tuples are ordered in `issues` list based on the token label quality score. + + Use :py:func:`token_classification.summary.display_issues <cleanlab.token_classification.summary.display_issues>` + to view these issues within the original sentences. + + If `token_scores` is not provided, returns array of integer indices (rather than tuples) of the sentences whose label quality score + falls below the `threshold` (also sorted by overall label quality score of each sentence). + + Examples + -------- + >>> import numpy as np + >>> from cleanlab.token_classification.rank import issues_from_scores + >>> sentence_scores = np.array([0.1, 0.3, 0.6, 0.2, 0.05, 0.9, 0.8, 0.0125, 0.5, 0.6]) + >>> issues_from_scores(sentence_scores) + array([7, 4]) + + Changing the score threshold + + >>> issues_from_scores(sentence_scores, threshold=0.5) + array([7, 4, 0, 3, 1]) + + Providing token scores along with sentence scores finds issues at the token level + + >>> token_scores = [ + ... [0.9, 0.6], + ... [0.0, 0.8, 0.8], + ... [0.8, 0.8], + ... [0.1, 0.02, 0.3, 0.4], + ... [0.1, 0.2, 0.03, 0.4], + ... [0.1, 0.2, 0.3, 0.04], + ... [0.1, 0.2, 0.4], + ... [0.3, 0.4], + ... [0.08, 0.2, 0.5, 0.4], + ... [0.1, 0.2, 0.3, 0.4], + ... ] + >>> issues_from_scores(sentence_scores, token_scores=token_scores) + [(1, 0), (3, 1), (4, 2), (5, 3), (8, 0)] + """ + if token_scores: + issues_with_scores = [] + for sentence_index, scores in enumerate(token_scores): + for token_index, score in enumerate(scores): + if score < threshold: + issues_with_scores.append((sentence_index, token_index, score)) + + issues_with_scores = sorted(issues_with_scores, key=lambda x: x[2]) + issues = [(i, j) for i, j, _ in issues_with_scores] + return issues + + else: + ranking = np.argsort(sentence_scores) + cutoff = 0 + while sentence_scores[ranking[cutoff]] < threshold and cutoff < len(ranking): + cutoff += 1 + return ranking[:cutoff]
+ + +def _softmin_sentence_score( + token_scores: List[np.ndarray], *, temperature: float = 0.05 +) -> np.ndarray: + """ + Sentence overall label quality scoring using the "softmin" method. + + Parameters + ---------- + token_scores: + Per-token label quality scores in nested list format, + where `token_scores[i]` is a list of scores for each toke in the i'th sentence. + + temperature: + Temperature of the softmax function. + + Lower values encourage this method to converge toward the label quality score of the token with the lowest quality label in the sentence. + + Higher values encourage this method to converge toward the average label quality score of all tokens in the sentence. + + Returns + --------- + sentence_scores: + Array of shape ``(N, )``, where N is the number of sentences in the dataset, with one overall label quality score for each sentence. + + Examples + --------- + >>> from cleanlab.token_classification.rank import _softmin_sentence_score + >>> token_scores = [[0.9, 0.6], [0.0, 0.8, 0.8], [0.8]] + >>> _softmin_sentence_score(token_scores) + array([6.00741787e-01, 1.80056239e-07, 8.00000000e-01]) + """ + if temperature == 0: + return np.array([np.min(scores) for scores in token_scores]) + + if temperature == np.inf: + return np.array([np.mean(scores) for scores in token_scores]) + + def fun(scores: np.ndarray) -> float: + return np.dot( + scores, softmax(x=1 - np.array(scores), temperature=temperature, axis=0, shift=True) + ) + + sentence_scores = list(map(fun, token_scores)) + return np.array(sentence_scores) +
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/cleanlab/token_classification/summary.html b/v2.6.5/_modules/cleanlab/token_classification/summary.html new file mode 100644 index 000000000..57fd99a39 --- /dev/null +++ b/v2.6.5/_modules/cleanlab/token_classification/summary.html @@ -0,0 +1,1024 @@ + + + + + + + + + + + cleanlab.token_classification.summary - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

Source code for cleanlab.token_classification.summary

+# Copyright (C) 2017-2023  Cleanlab Inc.
+# This file is part of cleanlab.
+#
+# cleanlab is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# cleanlab is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.
+
+"""
+Methods to display sentences and their label issues in a token classification dataset (text data), as well as summarize the types of issues identified.
+"""
+
+from typing import Any, Dict, List, Optional, Tuple
+
+import numpy as np
+import pandas as pd
+
+from cleanlab.internal.token_classification_utils import color_sentence, get_sentence
+
+
+
[docs]def display_issues( + issues: list, + tokens: List[List[str]], + *, + labels: Optional[list] = None, + pred_probs: Optional[list] = None, + exclude: List[Tuple[int, int]] = [], + class_names: Optional[List[str]] = None, + top: int = 20, +) -> None: + """ + Display token classification label issues, showing sentence with problematic token(s) highlighted. + + Can also shows given and predicted label for each token identified to have label issue. + + Parameters + ---------- + issues: + List of tuples ``(i, j)`` representing a label issue for the `j`-th token of the `i`-th sentence. + + Same format as output by :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>` + or :py:func:`token_classification.rank.issues_from_scores <cleanlab.token_classification.rank.issues_from_scores>`. + + tokens: + Nested list such that `tokens[i]` is a list of tokens (strings/words) that comprise the `i`-th sentence. + + labels: + Optional nested list of given labels for all tokens, such that `labels[i]` is a list of labels, one for each token in the `i`-th sentence. + For a dataset with K classes, each label must be in 0, 1, ..., K-1. + + If `labels` is provided, this function also displays given label of the token identified with issue. + + pred_probs: + Optional list of np arrays, such that `pred_probs[i]` has shape ``(T, K)`` if the `i`-th sentence contains T tokens. + + Each row of `pred_probs[i]` corresponds to a token `t` in the `i`-th sentence, + and contains model-predicted probabilities that `t` belongs to each of the K possible classes. + + Columns of each `pred_probs[i]` should be ordered such that the probabilities correspond to class 0, 1, ..., K-1. + + If `pred_probs` is provided, this function also displays predicted label of the token identified with issue. + + exclude: + Optional list of given/predicted label swaps (tuples) to be ignored. For example, if `exclude=[(0, 1), (1, 0)]`, + tokens whose label was likely swapped between class 0 and 1 are not displayed. Class labels must be in 0, 1, ..., K-1. + + class_names: + Optional length K list of names of each class, such that `class_names[i]` is the string name of the class corresponding to `labels` with value `i`. + + If `class_names` is provided, display these string names for predicted and given labels, otherwise display the integer index of classes. + + top: int, default=20 + Maximum number of issues to be printed. + + Examples + -------- + >>> from cleanlab.token_classification.summary import display_issues + >>> issues = [(2, 0), (0, 1)] + >>> tokens = [ + ... ["A", "?weird", "sentence"], + ... ["A", "valid", "sentence"], + ... ["An", "sentence", "with", "a", "typo"], + ... ] + >>> display_issues(issues, tokens) + Sentence 2, token 0: + ---- + An sentence with a typo + ... + ... + Sentence 0, token 1: + ---- + A ?weird sentence + """ + if not class_names: + print( + "Classes will be printed in terms of their integer index since `class_names` was not provided. " + ) + print("Specify this argument to see the string names of each class. \n") + + top = min(top, len(issues)) + shown = 0 + is_tuple = isinstance(issues[0], tuple) + + for issue in issues: + if is_tuple: + i, j = issue + sentence = get_sentence(tokens[i]) + word = tokens[i][j] + + if pred_probs: + prediction = pred_probs[i][j].argmax() + if labels: + given = labels[i][j] + if pred_probs and labels: + if (given, prediction) in exclude: + continue + + if pred_probs and class_names: + prediction = class_names[prediction] + if labels and class_names: + given = class_names[given] + + shown += 1 + print(f"Sentence index: {i}, Token index: {j}") + print(f"Token: {word}") + if labels and not pred_probs: + print(f"Given label: {given}") + elif not labels and pred_probs: + print(f"Predicted label according to provided pred_probs: {prediction}") + elif labels and pred_probs: + print( + f"Given label: {given}, predicted label according to provided pred_probs: {prediction}" + ) + print("----") + print(color_sentence(sentence, word)) + else: + shown += 1 + sentence = get_sentence(tokens[issue]) + print(f"Sentence issue: {sentence}") + if shown == top: + break + print("\n")
+ + +
[docs]def common_label_issues( + issues: List[Tuple[int, int]], + tokens: List[List[str]], + *, + labels: Optional[list] = None, + pred_probs: Optional[list] = None, + class_names: Optional[List[str]] = None, + top: int = 10, + exclude: List[Tuple[int, int]] = [], + verbose: bool = True, +) -> pd.DataFrame: + """ + Display the tokens (words) that most commonly have label issues. + + These may correspond to words that are ambiguous or systematically misunderstood by the data annotators. + + Parameters + ---------- + issues: + List of tuples ``(i, j)`` representing a label issue for the `j`-th token of the `i`-th sentence. + + Same format as output by :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>` + or :py:func:`token_classification.rank.issues_from_scores <cleanlab.token_classification.rank.issues_from_scores>`. + + tokens: + Nested list such that `tokens[i]` is a list of tokens (strings/words) that comprise the `i`-th sentence. + + labels: + Optional nested list of given labels for all tokens in the same format as `labels` for `~cleanlab.token_classification.summary.display_issues`. + + If `labels` is provided, this function also displays given label of the token identified to commonly suffer from label issues. + + pred_probs: + Optional list of model-predicted probabilities (np arrays) in the same format as `pred_probs` for + `~cleanlab.token_classification.summary.display_issues`. + + If both `labels` and `pred_probs` are provided, also reports each type of given/predicted label swap for tokens identified to commonly suffer from label issues. + + class_names: + Optional length K list of names of each class, such that `class_names[i]` is the string name of the class corresponding to `labels` with value `i`. + + If `class_names` is provided, display these string names for predicted and given labels, otherwise display the integer index of classes. + + top: + Maximum number of tokens to print information for. + + exclude: + Optional list of given/predicted label swaps (tuples) to be ignored in the same format as `exclude` for + `~cleanlab.token_classification.summary.display_issues`. + + verbose: + Whether to also print out the token information in the returned DataFrame `df`. + + Returns + ------- + df: + If both `labels` and `pred_probs` are provided, DataFrame `df` contains columns ``['token', 'given_label', + 'predicted_label', 'num_label_issues']``, and each row contains information for a specific token and + given/predicted label swap, ordered by the number of label issues inferred for this type of label swap. + + Otherwise, `df` only has columns ['token', 'num_label_issues'], and each row contains the information for a specific + token, ordered by the number of total label issues involving this token. + + Examples + -------- + >>> from cleanlab.token_classification.summary import common_label_issues + >>> issues = [(2, 0), (0, 1)] + >>> tokens = [ + ... ["A", "?weird", "sentence"], + ... ["A", "valid", "sentence"], + ... ["An", "sentence", "with", "a", "typo"], + ... ] + >>> df = common_label_issues(issues, tokens) + >>> df + token num_label_issues + 0 An 1 + 1 ?weird 1 + """ + count: Dict[str, Any] = {} + if not labels or not pred_probs: + for issue in issues: + i, j = issue + word = tokens[i][j] + if word not in count: + count[word] = 0 + count[word] += 1 + + words = [word for word in count.keys()] + freq = [count[word] for word in words] + rank = np.argsort(freq)[::-1][:top] + + for r in rank: + print( + f"Token '{words[r]}' is potentially mislabeled {freq[r]} times throughout the dataset\n" + ) + + info = [[word, f] for word, f in zip(words, freq)] + info = sorted(info, key=lambda x: x[1], reverse=True) + return pd.DataFrame(info, columns=["token", "num_label_issues"]) + + if not class_names: + print( + "Classes will be printed in terms of their integer index since `class_names` was not provided. " + ) + print("Specify this argument to see the string names of each class. \n") + + n = pred_probs[0].shape[1] + for issue in issues: + i, j = issue + word = tokens[i][j] + label = labels[i][j] + pred = pred_probs[i][j].argmax() + if word not in count: + count[word] = np.zeros([n, n], dtype=int) + if (label, pred) not in exclude: + count[word][label][pred] += 1 + words = [word for word in count.keys()] + freq = [np.sum(count[word]) for word in words] + rank = np.argsort(freq)[::-1][:top] + + for r in rank: + matrix = count[words[r]] + most_frequent = np.argsort(count[words[r]].flatten())[::-1] + print( + f"Token '{words[r]}' is potentially mislabeled {freq[r]} times throughout the dataset" + ) + if verbose: + print( + "---------------------------------------------------------------------------------------" + ) + for f in most_frequent: + i, j = f // n, f % n + if matrix[i][j] == 0: + break + if class_names: + print( + f"labeled as class `{class_names[i]}` but predicted to actually be class `{class_names[j]}` {matrix[i][j]} times" + ) + else: + print( + f"labeled as class {i} but predicted to actually be class {j} {matrix[i][j]} times" + ) + print() + info = [] + for word in words: + for i in range(n): + for j in range(n): + num = count[word][i][j] + if num > 0: + if not class_names: + info.append([word, i, j, num]) + else: + info.append([word, class_names[i], class_names[j], num]) + info = sorted(info, key=lambda x: x[3], reverse=True) + return pd.DataFrame( + info, columns=["token", "given_label", "predicted_label", "num_label_issues"] + )
+ + +
[docs]def filter_by_token( + token: str, issues: List[Tuple[int, int]], tokens: List[List[str]] +) -> List[Tuple[int, int]]: + """ + Return subset of label issues involving a particular token. + + Parameters + ---------- + token: + A specific token you are interested in. + + issues: + List of tuples ``(i, j)`` representing a label issue for the `j`-th token of the `i`-th sentence. + Same format as output by :py:func:`token_classification.filter.find_label_issues <cleanlab.token_classification.filter.find_label_issues>` + or :py:func:`token_classification.rank.issues_from_scores <cleanlab.token_classification.rank.issues_from_scores>`. + + tokens: + Nested list such that `tokens[i]` is a list of tokens (strings/words) that comprise the `i`-th sentence. + + Returns + ---------- + issues_subset: + List of tuples ``(i, j)`` representing a label issue for the `j`-th token of the `i`-th sentence, in the same format as `issues`. + But restricting to only those issues that involve the specified `token`. + + Examples + -------- + >>> from cleanlab.token_classification.summary import filter_by_token + >>> token = "?weird" + >>> issues = [(2, 0), (0, 1)] + >>> tokens = [ + ... ["A", "?weird", "sentence"], + ... ["A", "valid", "sentence"], + ... ["An", "sentence", "with", "a", "typo"], + ... ] + >>> filter_by_token(token, issues, tokens) + [(0, 1)] + """ + returned_issues = [] + for issue in issues: + i, j = issue + if token.lower() == tokens[i][j].lower(): + returned_issues.append(issue) + return returned_issues
+
+
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_modules/index.html b/v2.6.5/_modules/index.html new file mode 100644 index 000000000..ad4f0b3c9 --- /dev/null +++ b/v2.6.5/_modules/index.html @@ -0,0 +1,729 @@ + + + + + + + + + + + Overview: module code - cleanlab + + + + + + + + + + + + + + + + + + + + + Contents + + + + + + Menu + + + + + + + + Expand + + + + + + Light mode + + + + + + + + + + + + + + Dark mode + + + + + + + Auto light/dark mode + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+
+
cleanlab
+
+
+
+ +
+ +
+
+ +
+
+
+ + + + + Back to top + +
+
+ +
+ +
+
+ + + + + + + + +

+ + + + + + +

All modules for which code is available

+ +
+
+
+ + +
+
+ + Made with Sphinx and @pradyunsg's + + Furo + +
+
+
+ + + + + + +
+
+
+ + + + + +
+
+ +
+
+ + + + + + + + + + + + \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/benchmarking/index.rst b/v2.6.5/_sources/cleanlab/benchmarking/index.rst new file mode 100644 index 000000000..7a2e1607d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/benchmarking/index.rst @@ -0,0 +1,12 @@ +benchmarking +============ + +.. automodule:: cleanlab.benchmarking + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + noise_generation diff --git a/v2.6.5/_sources/cleanlab/benchmarking/noise_generation.rst b/v2.6.5/_sources/cleanlab/benchmarking/noise_generation.rst new file mode 100644 index 000000000..d408ad79c --- /dev/null +++ b/v2.6.5/_sources/cleanlab/benchmarking/noise_generation.rst @@ -0,0 +1,8 @@ +noise_generation +================ + +.. automodule:: cleanlab.benchmarking.noise_generation + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/classification.rst b/v2.6.5/_sources/cleanlab/classification.rst new file mode 100644 index 000000000..cf4430548 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/classification.rst @@ -0,0 +1,8 @@ +classification +============== + +.. automodule:: cleanlab.classification + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/count.rst b/v2.6.5/_sources/cleanlab/count.rst new file mode 100644 index 000000000..33f743584 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/count.rst @@ -0,0 +1,8 @@ +count +===== + +.. automodule:: cleanlab.count + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/data_valuation.rst b/v2.6.5/_sources/cleanlab/data_valuation.rst new file mode 100644 index 000000000..8a05136b1 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/data_valuation.rst @@ -0,0 +1,8 @@ +data_valuation +============== + +.. automodule:: cleanlab.data_valuation + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/datalab.rst b/v2.6.5/_sources/cleanlab/datalab/datalab.rst new file mode 100644 index 000000000..8a38a27f9 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/datalab.rst @@ -0,0 +1,9 @@ +datalab +======= + +.. automodule:: cleanlab.datalab.datalab + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/guide/_templates/issue_types_tip.rst b/v2.6.5/_sources/cleanlab/datalab/guide/_templates/issue_types_tip.rst new file mode 100644 index 000000000..5b8ee6144 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/guide/_templates/issue_types_tip.rst @@ -0,0 +1,10 @@ +.. tip:: + + This type of issue has the issue name `"{{issue_name}}"`. + + Run a check for this particular kind of issue by calling :py:meth:`Datalab.find_issues() ` like so: + + .. code-block:: python + + # `lab` is a Datalab instance + lab.find_issues(..., issue_types = {"{{issue_name}}": {}}) diff --git a/v2.6.5/_sources/cleanlab/datalab/guide/custom_issue_manager.rst b/v2.6.5/_sources/cleanlab/datalab/guide/custom_issue_manager.rst new file mode 100644 index 000000000..dd7ddcc09 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/guide/custom_issue_manager.rst @@ -0,0 +1,225 @@ +.. _issue_manager_creating_your_own: + +Creating Your Own Issues Manager +================================ + + + +This guide walks through the process of creating your own +:py:class:`IssueManager ` +to detect a custom-defined type of issue alongside the pre-defined issue types in +:py:class:`Datalab `. + +.. seealso:: + + - :py:meth:`register `: + You can either use this function at runtime to register a new issue manager: + + .. code-block:: python + + from cleanlab.datalab.internal.issue_manager_factory import register + register(MyIssueManager) # Defaults to task="classification" + # register(MyIssueManagerForRegression, task="regression") # Alternative for regression tasks + + or add as a decorator to the class definition (currently only works for classification tasks): + + .. code-block:: python + + @register + class MyIssueManager(IssueManager): + ... + +Prerequisites +------------- + +As a starting point for this guide, we'll import the necessary things for the next section and create a dummy dataset. + +.. note:: + + .. include:: ../optional_dependencies.rst + +.. code-block:: python + + + import numpy as np + import pandas as pd + from cleanlab import IssueManager + + # Create a dummy dataset + N = 20 + data = pd.DataFrame( + { + "text": [f"example {i}" for i in range(N)], + "label": np.random.randint(0, 2, N), + }, + ) + + +Implementing IssueManagers +-------------------------- + +.. _basic_issue_manager: + +Basic Issue Check +~~~~~~~~~~~~~~~~~ + + +To create a basic issue manager, inherit from the +:py:class:`IssueManager ` class, +assign a name to the class as the class-variable, `issue_name`, and implement the +:py:meth:`find_issues ` method. + +The :py:meth:`find_issues ` +method should mark each example in the dataset as an issue or not with a boolean array. +It should also provide a score for each example in the dataset that quantifies the quality of the example +with regards to the issue. + +.. code-block:: python + + class Basic(IssueManager): + # Assign a name to the issue + issue_name = "basic" + def find_issues(self, **kwargs) -> None: + # Compute scores for each example + scores = np.random.rand(len(self.datalab.data)) + + # Construct a dataframe where examples are marked for issues + # and the score for each example is included. + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue" : scores < 0.1, + self.issue_score_key : scores, + }, + ) + + # Score the dataset as a whole based on this issue type + self.summary = self.make_summary(score = scores.mean()) + + +.. _intermediate_issue_manager: + +Intermediate Issue Check +~~~~~~~~~~~~~~~~~~~~~~~~ + + +To create an intermediate issue: + +- Perform the same steps as in the :ref:`basic issue check ` section. +- Populate the `info` attribute with a dictionary of information about the identified issues. + +The information can be included in a report generated by :py:class:`Datalab `, +if you add any of the keys to the `verbosity_levels` class-attribute. +Optionally, you can also add a description of the type of issue this issue manager handles to the `description` class-attribute. + +.. code-block:: python + + class Intermediate(IssueManager): + issue_name = "intermediate" + # Add a dictionary of information to include in the report + verbosity_levels = { + 0: [], + 1: ["std"], + 2: ["raw_scores"], + } + # Add a description of the issue + description = "Intermediate issues are a bit more involved than basic issues." + def find_issues(self, *, intermediate_arg: int, **kwargs) -> None: + N = len(self.datalab.data) + raw_scores = np.random.rand(N) + std = raw_scores.std() + threshold = min(0, raw_scores.mean() - std) + sin_filter = np.sin(intermediate_arg * np.arange(N) / N) + kernel = sin_filter ** 2 + scores = kernel * raw_scores + self.issues = pd.DataFrame( + { + f"is_{self.issue_name}_issue" : scores < threshold, + self.issue_score_key : scores, + }, + ) + self.summary = self.make_summary(score = scores.mean()) + + # Useful information that will be available in the Datalab instance + self.info = { + "std": std, + "raw_scores": raw_scores, + "kernel": kernel, + } + +Advanced Issue Check +~~~~~~~~~~~~~~~~~~~~ + +There could be different types of issues detected in a dataset. A local issue which affects individual data points in a dataset and can be tracked via `Datalab.issues` dataframe (to see which data points are exhibiting this type of issue). Alternatively, a global issue which affects the overall dataset but is not easily attributable to individual data points (hard to say one data point exhibits the issue but another does not). Even for global issues, we recommend trying to assign a per data point score (and boolean) if possible, see the Non-IID IssueManager as an example of this. Note that a global issue must have num_issues greater than 0 in its `issue_summary`, otherwise it won't show up in `Datalab.report()` by default. + + +Use with Datalab +---------------- + +We can create a +:py:class:`Datalab ` +instance and run issue checks with the custom issue managers we created like so: + + +.. code-block:: python + + from cleanlab.datalab.internal.issue_manager_factory import register + from cleanlab import Datalab + + + # Register the issue manager + for issue_manager in [Basic, Intermediate]: + register(issue_manager) + + # Instantiate a datalab instance + datalab = Datalab(data, label_name="label") + + # Run the issue check + issue_types = {"basic": {}, "intermediate": {"intermediate_arg": 2}} + datalab.find_issues(issue_types=issue_types) + + # Print report + datalab.report(verbosity=0) + + +The report will look something like this: + +.. code-block:: text + + Here is a summary of the different kinds of issues found in the data: + + issue_type score num_issues + basic 0.477762 2 + intermediate 0.286455 0 + + (Note: A lower score indicates a more severe issue across all examples in the dataset.) + + + ------------------------------------------- basic issues ------------------------------------------- + + Number of examples with this issue: 2 + Overall dataset quality in terms of this issue: 0.4778 + + Examples representing most severe instances of this issue: + is_basic_issue basic_score + 13 True 0.003042 + 8 True 0.058117 + 11 False 0.121908 + 15 False 0.169312 + 17 False 0.229044 + + + --------------------------------------- intermediate issues ---------------------------------------- + + About this issue: + Intermediate issues are a bit more involved than basic issues. + + Number of examples with this issue: 0 + Overall dataset quality in terms of this issue: 0.2865 + + Examples representing most severe instances of this issue: + is_intermediate_issue intermediate_score kernel + 0 False 0.000000 0.0 + 1 False 0.007059 0.009967 + 3 False 0.010995 0.087332 + 2 False 0.016296 0.03947 + 11 False 0.019459 0.794251 diff --git a/v2.6.5/_sources/cleanlab/datalab/guide/generating_cluster_ids.rst b/v2.6.5/_sources/cleanlab/datalab/guide/generating_cluster_ids.rst new file mode 100644 index 000000000..5209fc8b3 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/guide/generating_cluster_ids.rst @@ -0,0 +1,29 @@ +Generating Cluster IDs +====================== + +The underperforming group issue manager provides the option for passing pre-computed +cluster IDs to `find_issues`. These cluster IDs can be obtained by clustering +the features using algorithms such as K-Means, DBSCAN, HDBSCAN etc. Note that + +* K-Means requires specifying the number of clusters explicitly. +* DBSCAN is sensitive to the choice of `eps` (radius) and `min_samples` (minimum samples for each cluster). + + +Example: + +.. code-block:: python + + import datalab + from sklearn.cluster import KMeans + features, labels = your_data() # Get features and labels + pred_probs = get_pred_probs() # Get prediction probabilities for all samples + # Group features into 8 clusters + clusterer = KMeans(n_clusters=5) + clusterer.fit(features) + cluster_ids = clusterer.labels_ + lab = Datalab(data={"features": features, "y": labels}, label_name="y") + issue_types = {"underperforming_group": {"cluster_ids": cluster_ids}} + lab.find_issues(features=features, pred_probs=pred_probs, issue_types=issue_types) + + + diff --git a/v2.6.5/_sources/cleanlab/datalab/guide/index.rst b/v2.6.5/_sources/cleanlab/datalab/guide/index.rst new file mode 100644 index 000000000..de902196a --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/guide/index.rst @@ -0,0 +1,41 @@ +Datalab guides +============== + +Guides for using Datalab and understanding the issues it detects. + +.. note:: + + .. include:: ../optional_dependencies.rst + + +Types of issues +--------------- + +Guides to use Datalab with greater control, selecting what issues to search for and what nondefault settings to use for detecting them. + +.. toctree:: + :maxdepth: 3 + + issue_type_description + +Customizing issue types +----------------------- + +Guides (for developers) to create a custom issue type that Datalab audits for together with its built-in issue types. + +.. toctree:: + :maxdepth: 3 + + custom_issue_manager + + +Cleanlab Studio (Easy Mode) +--------------------------- + +`Cleanlab Studio `_ is a fully automated platform that can detect the same data issues as this package, as well as `many more types of issues `_, all without you having to do any Machine Learning (or even write any code). Beyond being 100x faster to use and producing more useful results, `Cleanlab Studio `_ also provides an intelligent data correction interface for you to quickly fix the issues detected in your dataset (a single data scientist can fix millions of data points thanks to AI suggestions). + +`Cleanlab Studio `_ offers a powerful AutoML system (with Foundation models) that is useful for more than improving data quality. With a few clicks, you can: find + fix issues in your dataset, identify the best type of ML model and train/tune it, and deploy this model to serve accurate predictions for new data. Also use the same AutoML to auto-label large datasets (a single user can label millions of data points thanks to powerful Foundation models). `Try Cleanlab Studio for free! `_ + +.. image:: https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-with-cleanlab-studio.png + :width: 800 + :alt: Stages of modern AI pipeline that can now be automated with Cleanlab Studio diff --git a/v2.6.5/_sources/cleanlab/datalab/guide/issue_type_description.rst b/v2.6.5/_sources/cleanlab/datalab/guide/issue_type_description.rst new file mode 100644 index 000000000..20c45c316 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/guide/issue_type_description.rst @@ -0,0 +1,421 @@ +Datalab Issue Types +******************* + + +Types of issues Datalab can detect +=================================== + +This page describes the various types of issues that Datalab can detect in a dataset. +For each type of issue, we explain: what it says about your data if detected, why this matters, and what parameters you can optionally specify to control the detection of this issue. + +In case you didn't know: you can alternatively use `Cleanlab Studio `_ to detect the same data issues as this package, plus `many more types of issues `_, all without having to do any Machine Learning (or even write any code). + + +Estimates for Each Issue Type +------------------------------ + +Datalab produces three estimates for **each** type of issue (called say `` here): + + +1. A numeric quality score `_score` (between 0 and 1) estimating how severe this issue is exhibited in each example from a dataset. Examples with higher scores are less likely to suffer from this issue. Access these via: the :py:attr:`Datalab.issues ` attribute or the method :py:meth:`Datalab.get_issues(\) `. +2. A Boolean `is__issue` flag for each example from a dataset. Examples where this has value `True` are those estimated to exhibit this issue. Access these via: the :py:attr:`Datalab.issues ` attribute or the method :py:meth:`Datalab.get_issues(\) `. +3. An overall dataset quality score (between 0 and 1), quantifying how severe this issue is overall across the entire dataset. Datasets with higher scores do not exhibit this issue as badly overall. Access these via: the :py:attr:`Datalab.issue_summary ` attribute. + +**Example (for the outlier issue type)** + +.. code-block:: python + + issue_name = "outlier" # how to reference the outlier issue type in code + issue_score = "outlier_score" # name of column with quality scores for the outlier issue type, atypical datapoints receive lower scores + is_issue = "is_outlier_issue" # name of Boolean column flagging which datapoints are considered outliers in the dataset + +Datalab estimates various issues based on the four inputs below. +Each input is optional, if you do not provide it, Datalab will skip checks for those types of issues that require this input. + +1. ``label_name`` - a field in the dataset that the stores the annotated class for each example in a multi-class classification dataset. +2. ``pred_probs`` - predicted class probabilities output by your trained model for each example in the dataset (these should be out-of-sample, eg. produced via cross-validation). +3. ``features`` - numeric vector representations of the features for each example in the dataset. These may be embeddings from a (pre)trained model, or just a numerically-transformed version of the original data features. +4. ``knn_graph`` - K nearest neighbor graph represented as a sparse matrix of dissimilarity values between examples in the dataset. If both `knn_graph` and `features` are provided, the `knn_graph` takes precedence, and if only `features` is provided, then a `knn_graph` is internally constructed based on the (either euclidean or cosine) distance between different examples’ features. + + +Label Issue +----------- + +Examples whose given label is estimated to be potentially incorrect (e.g. due to annotation error) are flagged as having label issues. +Datalab estimates which examples appear mislabeled as well as a numeric label quality score for each, which quantifies the likelihood that an example is correctly labeled. + +For now, Datalab can only detect label issues in multi-class classification datasets, regression datasets, and multi-label classification datasets. +The cleanlab library has alternative methods you can use to detect label issues in other types of datasets (multi-annotator, token classification, etc.). + +Label issues are calculated based on provided `pred_probs` from a trained model. If you do not provide this argument, but you do provide `features`, then a K Nearest Neighbor model will be fit to produce `pred_probs` based on your `features`. Otherwise if neither `pred_probs` nor `features` is provided, then this type of issue will not be considered. +For the most accurate results, provide out-of-sample `pred_probs` which can be obtained for a dataset via `cross-validation `_. + +Having mislabeled examples in your dataset may hamper the performance of supervised learning models you train on this data. +For evaluating models or performing other types of data analytics, mislabeled examples may lead you to draw incorrect conclusions. +To handle mislabeled examples, you can either filter out the data with label issues or try to correct their labels. + +Learn more about the method used to detect label issues in our paper: `Confident Learning: Estimating Uncertainty in Dataset Labels `_ + +.. jinja :: + + {% with issue_name = "label" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + + +Outlier Issue +------------- + +Examples that are very different from the rest of the dataset (i.e. potentially out-of-distribution or rare/anomalous instances). + +Outlier issues are calculated based on provided `features` , `knn_graph` , or `pred_probs`. +If you do not provide one of these arguments, this type of issue will not be considered. +This article describes how outlier issues are detected in a dataset: `https://cleanlab.ai/blog/outlier-detection/ `_. + +When based on `features` or `knn_graph`, the outlier quality of each example is scored inversely proportional to its distance to its K nearest neighbors in the dataset. + +When based on `pred_probs`, the outlier quality of each example is scored inversely proportional to the uncertainty in its prediction. + +Modeling data with outliers may have unexpected consequences. +Closely inspect them and consider removing some outliers that may be negatively affecting your models. + + +Learn more about the methods used to detect outliers in our article: `Out-of-Distribution Detection via Embeddings or Predictions `_ + +.. jinja :: + + {% with issue_name = "outlier" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +(Near) Duplicate Issue +---------------------- + +A (near) duplicate issue refers to two or more examples in a dataset that are extremely similar to each other, relative to the rest of the dataset. +The examples flagged with this issue may be exactly duplicated, or lie atypically close together when represented as vectors (i.e. feature embeddings). +Near duplicated examples may record the same information with different: + +- Abbreviations, misspellings, typos, formatting, etc. in text data. +- Compression formats, resolutions, or sampling rates in image, video, and audio data. +- Minor variations which naturally occur in many types of data (e.g. translated versions of an image). + +Near Duplicate issues are calculated based on provided `features` or `knn_graph`. +If you do not provide one of these arguments, this type of issue will not be considered. + +Datalab defines near duplicates as those examples whose distance to their nearest neighbor (in the space of provided `features`) in the dataset is less than `c * D`, where `0 < c < 1` is a small constant, and `D` is the median (over the full dataset) of such distances between each example and its nearest neighbor. +Scoring the numeric quality of an example in terms of the near duplicate issue type is done proportionally to its distance to its nearest neighbor. + +Including near-duplicate examples in a dataset may negatively impact a ML model's generalization performance and lead to overfitting. +In particular, it is questionable to include examples in a test dataset which are (nearly) duplicated in the corresponding training dataset. +More generally, examples which happen to be duplicated can affect the final modeling results much more than other examples — so you should at least be aware of their presence. + +.. jinja :: + + {% with issue_name = "near_duplicate" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Non-IID Issue +------------- + +Whether the overall dataset exhibits statistically significant violations of the IID assumption like: changepoints or shift, drift, autocorrelation, etc. The specific form of violation considered is whether the examples are ordered within the dataset such that almost adjacent examples tend to have more similar feature values. If you care about this check, do **not** first shuffle your dataset -- this check is entirely based on the sequential order of your data. Learn more via our blog: `https://cleanlab.ai/blog/non-iid-detection/ `_ + +The Non-IID issue is detected based on provided `features` or `knn_graph`. If you do not provide one of these arguments, this type of issue will not be considered. + +The Non-IID issue is really a dataset-level check, not a per-datapoint level check (either a dataset violates the IID assumption or it doesn't). The per-datapoint scores returned for Non-IID issues merely highlight which datapoints you might focus on to better understand this dataset-level issue - there is not necessarily something specifically wrong with these specific datapoints. + +Mathematically, the **overall** Non-IID score for the dataset is defined as the p-value of a statistical test for whether the distribution of *index-gap* values differs between group A vs. group B defined as follows. For a pair of examples in the dataset `x1, x2`, we define their *index-gap* as the distance between the indices of these examples in the ordering of the data (e.g. if `x1` is the 10th example and `x2` is the 100th example in the dataset, their index-gap is 90). We construct group A from pairs of examples which are amongst the K nearest neighbors of each other, where neighbors are defined based on the provided `knn_graph` or via distances in the space of the provided vector `features` . Group B is constructed from random pairs of examples in the dataset. + +The Non-IID quality score for each example `x` is defined via a similarly computed p-value but with Group A constructed from the K nearest neighbors of `x` and Group B constructed from random examples from the dataset paired with `x`. Learn more about the math behind this method in our paper: `Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors `_ + +The assumption that examples in a dataset are Independent and Identically Distributed (IID) is fundamental to most proper modeling. Detecting all possible violations of the IID assumption is statistically impossible. This issue type only considers specific forms of violation where examples that tend to be closer together in the dataset ordering also tend to have more similar feature values. This includes scenarios where: + +- The underlying distribution from which examples stem is evolving over time (not identically distributed). +- An example can influence the values of future examples in the dataset (not independent). + +For datasets with low non-IID score, you should consider why your data are not IID and act accordingly. For example, if the data distribution is drifting over time, consider employing a time-based train/test split instead of a random partition. Note that shuffling the data ahead of time will ensure a good non-IID score, but this is not always a fix to the underlying problem (e.g. future deployment data may stem from a different distribution, or you may overlook the fact that examples influence each other). We thus recommend **not** shuffling your data to be able to diagnose this issue if it exists. + +.. jinja :: + + {% with issue_name = "non_iid" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Class Imbalance Issue +--------------------- + +Class imbalance is diagnosed just using the `labels` provided as part of the dataset. The overall class imbalance quality score of a dataset is the proportion of examples belonging to the rarest class `q`. If this proportion `q` falls below a threshold, then we say this dataset suffers from the class imbalance issue. + +In a dataset identified as having class imbalance, the class imbalance quality score for each example is set equal to `q` if it is labeled as the rarest class, and is equal to 1 for all other examples. + +Class imbalance in a dataset can lead to subpar model performance for the under-represented class. Consider collecting more data from the under-represented class, or at least take special care while modeling via techniques like over/under-sampling, SMOTE, asymmetric class weighting, etc. + +.. jinja :: + + {% with issue_name = "class_imbalance" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Image-specific Issues +--------------------- + +Datalab can identify image-specific issues in datasets, such as images that are excessively dark or bright, blurry, lack detail, or have unusual sizes. +To detect these issues, simply specify the `image_key` argument in :py:meth:`~cleanlab.datalab.datalab.Datalab`, indicating the image column name in your dataset. +This functionality currently works only with Hugging Face datasets. You can convert other local dataset formats into a Hugging Face dataset by following `this guide `_. +More information on these image-specific issues is available in the `CleanVision package `_ . + +Underperforming Group Issue +--------------------------- + +An underperforming group refers to a cluster of similar examples (i.e. a slice) in the dataset for which the ML model predictions are poor. The examples in this underperforming group may have noisy labels or feature values, or the trained ML model may not have learned how to properly handle them (consider collecting more data from this subpopulation or up-weighting the existing data from this group). + +Underperforming Group issues are detected based on one of: + +- provided `pred_probs` and `features`, +- provided `pred_probs` and `knn_graph`, or +- provided `pred_probs` and `cluster_ids`. (This option is for advanced users, see the `FAQ <../../../tutorials/faq.html#How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?>`_ for more details.) + +If you do not provide both these arguments, this type of issue will not be considered. + +To find the underperforming group, Cleanlab clusters the data using the provided `features` and determines the cluster `c` with the lowest average model predictive performance. Model predictive performance is evaluated via the model's self-confidence of the given labels, calculated using :py:func:`rank.get_self_confidence_for_each_label `. Suppose the average predictive power across the full dataset is `r` and is `q` within a cluster of examples. This cluster is considered to be an underperforming group if `q/r` falls below a threshold. A dataset suffers from the Underperforming Group issue if there exists such a cluster within it. +The underperforming group quality score is equal to `q/r` for examples belonging to the underperforming group, and is equal to 1 for all other examples. +Advanced users: If you have pre-computed cluster assignments for each example in the dataset, you can pass them explicitly to :py:meth:`Datalab.find_issues ` using the `cluster_ids` key in the `issue_types` dict argument. This is useful for tabular datasets where you want to group/slice the data based on a categorical column. An integer encoding of the categorical column can be passed as cluster assignments for finding the underperforming group, based on the data slices you define. + +.. jinja :: + + {% with issue_name = "underperforming_group" %} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Null Issue +---------- + +Examples identified with the null issue correspond to rows that have null/missing values across all feature columns (i.e. the entire row is missing values). + +Null issues are detected based on provided `features`. If you do not provide `features`, this type of issue will not be considered. + +Each example's null issue quality score equals the proportion of features values in this row that are not null/missing. The overall dataset null issue quality score +equals the average of the individual examples' quality scores. + +Presence of null examples in the dataset can lead to errors when training ML models. It can also +result in the model learning incorrect patterns due to the null values. + +.. jinja :: + + {% with issue_name = "null"%} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Data Valuation Issue +-------------------- + +The examples in the dataset with lowest data valuation scores contribute least to a trained ML model's performance (those whose value falls below a threshold are flagged with this type of issue). + +Data valuation issues can be detected based on provided `features` or a provided `knn_graph` (or one pre-computed during the computation of other issue types). If you do not provide one of these two arguments and there isn't a `knn_graph` already stored in the Datalab object, this type of issue will not be considered. + +The data valuation score is an approximate Data Shapley value, calculated based on the labels of the top k nearest neighbors of an example. The details of this KNN-Shapley value could be found in the papers: `Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms `_ and `Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? `_. + +.. jinja :: + + {% with issue_name = "data_valuation"%} + {% include "cleanlab/datalab/guide/_templates/issue_types_tip.rst" %} + {% endwith %} + +Optional Issue Parameters +========================= + +Here is the dict of possible (**optional**) parameter values that can be specified via the argument `issue_types` to :py:meth:`Datalab.find_issues `. +Optionally specify these to exert greater control over how issues are detected in your dataset. +Appropriate defaults are used for any parameters you do not specify, so no need to specify all of these! + +.. code-block:: python + + possible_issue_types = { + "label": label_kwargs, "outlier": outlier_kwargs, + "near_duplicate": near_duplicate_kwargs, "non_iid": non_iid_kwargs, + "class_imbalance": class_imbalance_kwargs, "underperforming_group": underperforming_group_kwargs, + "null": null_kwargs, "data_valuation": data_valuation_kwargs, + } + + +where the possible `kwargs` dicts for each key are described in the sections below. + +Label Issue Parameters +---------------------- + +.. code-block:: python + + label_kwargs = { + "k": # number of nearest neighbors to consider when computing pred_probs from features, + "health_summary_parameters": # dict of potential keyword arguments to method `dataset.health_summary()`, + "clean_learning_kwargs": # dict of keyword arguments to constructor `CleanLearning()` including keys like: "find_label_issues_kwargs" or "label_quality_scores_kwargs", + "thresholds": # `thresholds` argument to `CleanLearning.find_label_issues()`, + "noise_matrix": # `noise_matrix` argument to `CleanLearning.find_label_issues()`, + "inverse_noise_matrix": # `inverse_noise_matrix` argument to `CleanLearning.find_label_issues()`, + "save_space": # `save_space` argument to `CleanLearning.find_label_issues()`, + "clf_kwargs": # `clf_kwargs` argument to `CleanLearning.find_label_issues()`. Currently has no effect., + "validation_func": # `validation_func` argument to `CleanLearning.fit()`. Currently has no effect., + } + +.. attention:: + + ``health_summary_parameters`` and ``health_summary_kwargs`` can work in tandem to determine the arguments to be used in the call to :py:meth:`dataset.health_summary `. + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.label.LabelIssueManager `. + +Outlier Issue Parameters +------------------------ + +.. code-block:: python + + outlier_kwargs = { + "threshold": # floating value between 0 and 1 that sets the sensitivity of the outlier detection algorithms, based on either features or pred_probs.. + "ood_kwargs": # dict of keyword arguments to constructor `OutOfDistribution()`{ + "params": { + # NOTE: Each of the following keyword arguments can also be provided outside "ood_kwargs" + + "knn": # `knn` argument to constructor `OutOfDistribution()`. Used with features, + "k": # `k` argument to constructor `OutOfDistribution()`. Used with features, + "t": # `t` argument to constructor `OutOfDistribution()`. Used with features, + "adjust_pred_probs": # `adjust_pred_probs` argument to constructor `OutOfDistribution()`. Used with pred_probs, + "method": # `method` argument to constructor `OutOfDistribution()`. Used with pred_probs, + "confident_thresholds": # `confident_thresholds` argument to constructor `OutOfDistribution()`. Used with pred_probs, + }, + }, + } + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.outlier.OutlierIssueManager `. + +Duplicate Issue Parameters +-------------------------- + +.. code-block:: python + + near_duplicate_kwargs = { + "metric": # string or callable representing the distance metric used in nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, + "k": # integer representing the number of nearest neighbors for nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, + "threshold": # `threshold` argument to constructor of `NearDuplicateIssueManager()`. Non-negative floating value that determines the maximum distance between two examples to be considered outliers, relative to the median distance to the nearest neighbors, + } + +.. attention:: + + `k` does not affect the results of the (near) duplicate search algorithm. It only affects the construction of the knn graph, if necessary. + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager `. + + +Non-IID Issue Parameters +------------------------ + +.. code-block:: python + + non_iid_kwargs = { + "metric": # `metric` argument to constructor of `NonIIDIssueManager`. String or callable for the distance metric used for nearest neighbors search if necessary. `metric` argument to constructor of `sklearn.neighbors.NearestNeighbors`, + "k": # `k` argument to constructor of `NonIIDIssueManager`. Integer representing the number of nearest neighbors for nearest neighbors search if necessary. `n_neighbors` argument to constructor of `sklearn.neighbors.NearestNeighbors`, + "num_permutations": # `num_permutations` argument to constructor of `NonIIDIssueManager`, + "seed": # seed for numpy's random number generator (used for permutation tests), + "significance_threshold": # `significance_threshold` argument to constructor of `NonIIDIssueManager`. Floating value between 0 and 1 that determines the overall signicance of non-IID issues found in the dataset. + } + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.noniid.NonIIDIssueManager `. + + +Imbalance Issue Parameters +-------------------------- + +.. code-block:: python + + class_imbalance_kwargs = { + "threshold": # `threshold` argument to constructor of `ClassImbalanceIssueManager`. Non-negative floating value between 0 and 1 indicating the minimum fraction of samples of each class that are present in a dataset without class imbalance. + } + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager `. + +Underperforming Group Issue Parameters +-------------------------------------- + +.. code-block:: python + + underperforming_group_kwargs = { + # Constructor arguments for `UnderperformingGroupIssueManager` + "threshold": # Non-negative floating value between 0 and 1 used for determinining group of points with low confidence. + "metric": # String or callable for the distance metric used for nearest neighbors search if necessary. `metric` argument to constructor of `sklearn.neighbors.NearestNeighbors`. + "k": # Integer representing the number of nearest neighbors for constructing the nearest neighbour graph. `n_neighbors` argument to constructor of `sklearn.neighbors.NearestNeighbors`. + "min_cluster_samples": # Non-negative integer value specifying the minimum number of examples required for a cluster to be considered as the underperforming group. Used in `UnderperformingGroupIssueManager.filter_cluster_ids`. + "clustering_kwargs": # Key-value pairs representing arguments for the constructor of the clustering algorithm class (e.g. `sklearn.cluster.DBSCAN`). + + # Argument for the find_issues() method of UnderperformingGroupIssueManager + "cluster_ids": # A 1-D numpy array containing cluster labels for each sample in the dataset. If passed, these cluster labels are used for determining the underperforming group. + } + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager `. + + For more information on generating `cluster_ids` for this issue manager, refer to this `FAQ Section <../../../tutorials/faq.html#How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?>`_. + +Null Issue Parameters +--------------------- + +.. code-block:: python + + null_kwargs = {} + +.. note:: + + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.null.NullIssueManager `. + +Data Valuation Issue Parameters +------------------------------- + +.. code-block:: python + + data_valuation_kwargs = { + "k": # Number of nearest neighbors used to calculate data valuation scores, + "threshold": # Examples with scores below this threshold will be flagged with a data valuation issue + } + +.. note:: + For more information, view the source code of: :py:class:`datalab.internal.issue_manager.data_valuation.DataValuationIssueManager `. + +Image Issue Parameters +---------------------- + +To customize optional parameters for specific image issue types, you can provide a dictionary format corresponding to each image issue. The following codeblock demonstrates how to specify optional parameters for all image issues. However, it's important to note that providing optional parameters for specific image issues is not mandatory. If no specific parameters are provided, defaults will be used for those issues. + +.. code-block:: python + + image_issue_types_kwargs = { + "dark": {"threshold": 0.32}, # `threshold` argument for dark issue type. Non-negative floating value between 0 and 1, lower value implies fewer samples will be marked as issue and vice versa. + "light": {"threshold": 0.05}, # `threshold` argument for light issue type. Non-negative floating value between 0 and 1, lower value implies fewer samples will be marked as issue and vice versa. + "blurry": {"threshold": 0.29}, # `threshold` argument for blurry issue type. Non-negative floating value between 0 and 1, lower value implies fewer samples will be marked as issue and vice versa. + "low_information": {"threshold": 0.3}, # `threshold` argument for low_information issue type. Non-negative floating value between 0 and 1, lower value implies fewer samples will be marked as issue and vice versa. + "odd_aspect_ratio": {"threshold": 0.35}, # `threshold` argument for odd_aspect_ratio issue type. Non-negative floating value between 0 and 1, lower value implies fewer samples will be marked as issue and vice versa. + "odd_size": {"threshold": 10.0}, # `threshold` argument for odd_size issue type. Non-negative integer value between starting from 0, unlike other issues, here higher value implies fewer samples will be selected. + } + +.. note:: + + For more information, view the cleanvision `docs `_. + + +Cleanlab Studio (Easy Mode) +--------------------------- + +`Cleanlab Studio `_ is a fully automated platform that can detect the same data issues as this package, as well as `many more types of issues `_, all without you having to do any Machine Learning (or even write any code). Beyond being 100x faster to use and producing more useful results, `Cleanlab Studio `_ also provides an intelligent data correction interface for you to quickly fix the issues detected in your dataset (a single data scientist can fix millions of data points thanks to AI suggestions). + +`Cleanlab Studio `_ offers a powerful AutoML system (with Foundation models) that is useful for more than improving data quality. With a few clicks, you can: find + fix issues in your dataset, identify the best type of ML model and train/tune it, and deploy this model to serve accurate predictions for new data. Also use the same AutoML to auto-label large datasets (a single user can label millions of data points thanks to powerful Foundation models). `Try Cleanlab Studio for free! `_ + +.. image:: https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-with-cleanlab-studio.png + :width: 800 + :alt: Stages of modern AI pipeline that can now be automated with Cleanlab Studio diff --git a/v2.6.5/_sources/cleanlab/datalab/index.rst b/v2.6.5/_sources/cleanlab/datalab/index.rst new file mode 100644 index 000000000..c10cb3ede --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/index.rst @@ -0,0 +1,31 @@ +datalab +======= + +.. automodule:: cleanlab.datalab + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +Getting Started +--------------- + +.. include:: optional_dependencies.rst + +Guides +------ + +.. toctree:: + :maxdepth: 2 + + guide/index + + +API Reference +------------- + +.. toctree:: + :maxdepth: 2 + + datalab + internal/index \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/data.rst b/v2.6.5/_sources/cleanlab/datalab/internal/data.rst new file mode 100644 index 000000000..15392d4a5 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/data.rst @@ -0,0 +1,9 @@ +data +==== + +.. automodule:: cleanlab.datalab.internal.data + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/data_issues.rst b/v2.6.5/_sources/cleanlab/datalab/internal/data_issues.rst new file mode 100644 index 000000000..bd750c03d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/data_issues.rst @@ -0,0 +1,9 @@ +data_issues +=========== + +.. automodule:: cleanlab.datalab.internal.data_issues + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/factory.rst b/v2.6.5/_sources/cleanlab/datalab/internal/factory.rst new file mode 100644 index 000000000..5f4d901c0 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/factory.rst @@ -0,0 +1,9 @@ +factory +======= + +.. automodule:: cleanlab.datalab.internal.issue_manager_factory + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/index.rst b/v2.6.5/_sources/cleanlab/datalab/internal/index.rst new file mode 100644 index 000000000..f3cbdedee --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/index.rst @@ -0,0 +1,25 @@ +internal +======== + +.. warning:: + Methods in this ``internal`` module are intended for internal use within the ``cleanlab`` package. They are not guaranteed to be stable between different versions. + +.. automodule:: cleanlab.datalab.internal + :autosummary: + :members: + :undoc-members: + :show-inheritance: + + + +.. toctree:: + :maxdepth: 2 + + data + data_issues + issue_finder + factory + model_outputs + issue_manager/index + report + task diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_finder.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_finder.rst new file mode 100644 index 000000000..3f5709723 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_finder.rst @@ -0,0 +1,12 @@ +issue_finder +============ + +.. note:: This module is not intended to be used directly by users. It is used by the :mod:`cleanlab.datalab.datalab` module. + Specifically, it is used by the :py:meth:`Datalab.find_issues ` method. + +.. automodule:: cleanlab.datalab.internal.issue_finder + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst new file mode 100644 index 000000000..7d6dccf43 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst @@ -0,0 +1,5 @@ +.. warning:: + + This issue manager isn't set up for direct Datalab use yet. + + Register it first using `~cleanlab.datalab.internal.issue_manager_factory.register`. diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/data_valuation.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/data_valuation.rst new file mode 100644 index 000000000..577e097c7 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/data_valuation.rst @@ -0,0 +1,9 @@ +data_valuation +=========== + + +.. automodule:: cleanlab.datalab.internal.issue_manager.data_valuation + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/duplicate.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/duplicate.rst new file mode 100644 index 000000000..e929de020 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/duplicate.rst @@ -0,0 +1,9 @@ +duplicate +========= + + +.. automodule:: cleanlab.datalab.internal.issue_manager.duplicate + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/imbalance.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/imbalance.rst new file mode 100644 index 000000000..0910bb056 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/imbalance.rst @@ -0,0 +1,9 @@ +imbalance +========= + + +.. automodule:: cleanlab.datalab.internal.issue_manager.imbalance + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/index.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/index.rst new file mode 100644 index 000000000..68e80edf8 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/index.rst @@ -0,0 +1,29 @@ +issue_manager +============= + +.. warning:: + Methods in this ``issue_manager`` module are bleeding edge and may have sharp edges. They are not guaranteed to be stable between different ``cleanlab`` versions. + + +Registered issue managers +------------------------- + +These are the issue managers that Datalab has registered. + +.. toctree:: + Base issue_manager module + label + outlier + duplicate + noniid + imbalance + underperforming_group + null + data_valuation + +ML task-specific issue managers +--------------------------------- + +.. toctree:: + regression/index + multilabel/index diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/issue_manager.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/issue_manager.rst new file mode 100644 index 000000000..f0f9cb4c6 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/issue_manager.rst @@ -0,0 +1,8 @@ +issue_manager +============= + +.. automodule:: cleanlab.datalab.internal.issue_manager.issue_manager + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/label.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/label.rst new file mode 100644 index 000000000..2a90a6224 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/label.rst @@ -0,0 +1,8 @@ +label +===== + +.. automodule:: cleanlab.datalab.internal.issue_manager.label + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/index.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/index.rst new file mode 100644 index 000000000..7f9f2f550 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/index.rst @@ -0,0 +1,8 @@ +multilabel +========== + +.. warning:: + Methods in this ``multilabel`` module are bleeding edge and may have sharp edges. They are not guaranteed to be stable between different ``cleanlab`` versions. + +.. toctree:: + label \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/label.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/label.rst new file mode 100644 index 000000000..92ea3494f --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/multilabel/label.rst @@ -0,0 +1,8 @@ +label +===== + +.. automodule:: cleanlab.datalab.internal.issue_manager.multilabel.label + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/noniid.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/noniid.rst new file mode 100644 index 000000000..0b65f1ea4 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/noniid.rst @@ -0,0 +1,9 @@ +noniid +======= + + +.. automodule:: cleanlab.datalab.internal.issue_manager.noniid + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/null.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/null.rst new file mode 100644 index 000000000..615faff5c --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/null.rst @@ -0,0 +1,10 @@ +null +==== + +.. include:: _notices/not_registered.rst + +.. automodule:: cleanlab.datalab.internal.issue_manager.null + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/outlier.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/outlier.rst new file mode 100644 index 000000000..db5fa2574 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/outlier.rst @@ -0,0 +1,9 @@ +outlier +======= + + +.. automodule:: cleanlab.datalab.internal.issue_manager.outlier + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/index.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/index.rst new file mode 100644 index 000000000..002d83a4e --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/index.rst @@ -0,0 +1,8 @@ +regression +========== + +.. warning:: + Methods in this ``regression`` module are bleeding edge and may have sharp edges. They are not guaranteed to be stable between different ``cleanlab`` versions. + +.. toctree:: + label \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/label.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/label.rst new file mode 100644 index 000000000..e87c47685 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/regression/label.rst @@ -0,0 +1,8 @@ +label +===== + +.. automodule:: cleanlab.datalab.internal.issue_manager.regression.label + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/underperforming_group.rst b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/underperforming_group.rst new file mode 100644 index 000000000..214c7e316 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/issue_manager/underperforming_group.rst @@ -0,0 +1,9 @@ +underperforming_group +========= + + +.. automodule:: cleanlab.datalab.internal.issue_manager.underperforming_group + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/model_outputs.rst b/v2.6.5/_sources/cleanlab/datalab/internal/model_outputs.rst new file mode 100644 index 000000000..59364125a --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/model_outputs.rst @@ -0,0 +1,7 @@ +model_outputs +============= + +.. automodule:: cleanlab.datalab.internal.model_outputs + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/report.rst b/v2.6.5/_sources/cleanlab/datalab/internal/report.rst new file mode 100644 index 000000000..43032d8c4 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/report.rst @@ -0,0 +1,12 @@ +report +====== + +.. note:: This module is not intended to be used directly by users. It is used by the :mod:`cleanlab.datalab.datalab` module. + Specifically, it is used by the :py:meth:`Datalab.report ` method. + +.. automodule:: cleanlab.datalab.internal.report + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/internal/task.rst b/v2.6.5/_sources/cleanlab/datalab/internal/task.rst new file mode 100644 index 000000000..42ded02f5 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/internal/task.rst @@ -0,0 +1,11 @@ +task +==== + +.. note:: This module is not intended to be used directly by users. It is used by the :mod:`cleanlab.datalab.datalab` module. + +.. automodule:: cleanlab.datalab.internal.task + :autosummary: + :members: + :undoc-members: + :show-inheritance: + :ignore-module-all: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/datalab/optional_dependencies.rst b/v2.6.5/_sources/cleanlab/datalab/optional_dependencies.rst new file mode 100644 index 000000000..bd2d909dd --- /dev/null +++ b/v2.6.5/_sources/cleanlab/datalab/optional_dependencies.rst @@ -0,0 +1,11 @@ +Using Datalab requires additional dependencies beyond the rest of the ``cleanlab`` package. To install them, run: + +.. code-block:: console + + $ pip install "cleanlab[datalab]" + +For the developmental version of the package, install from source: + +.. code-block:: console + + $ pip install "git+https://github.com/cleanlab/cleanlab.git#egg=cleanlab[datalab]" diff --git a/v2.6.5/_sources/cleanlab/dataset.rst b/v2.6.5/_sources/cleanlab/dataset.rst new file mode 100644 index 000000000..1433f8d03 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/dataset.rst @@ -0,0 +1,72 @@ +dataset +======= + +.. automodule:: cleanlab.dataset + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. testsetup:: * + + import cleanlab + import numpy as np + from cleanlab.benchmarking import noise_generation + + SEED = 0 + + def get_data_labels_from_dataset( + means=[[3, 2], [7, 7], [0, 8], [0, 10]], + covs=[ + [[5, -1.5], [-1.5, 1]], + [[1, 0.5], [0.5, 4]], + [[5, 1], [1, 5]], + [[3, 1], [1, 1]], + ], + sizes=[100, 50, 50, 50], + avg_trace=0.8, + seed=SEED, # set to None for non-reproducible randomness + ): + np.random.seed(seed=SEED) + + K = len(means) # number of classes + data = [] + labels = [] + test_data = [] + test_labels = [] + + for idx in range(K): + data.append( + np.random.multivariate_normal( + mean=means[idx], cov=covs[idx], size=sizes[idx] + ) + ) + test_data.append( + np.random.multivariate_normal( + mean=means[idx], cov=covs[idx], size=sizes[idx] + ) + ) + labels.append(np.array([idx for i in range(sizes[idx])])) + test_labels.append(np.array([idx for i in range(sizes[idx])])) + X_train = np.vstack(data) + y_train = np.hstack(labels) + X_test = np.vstack(test_data) + y_test = np.hstack(test_labels) + + # Compute p(y=k) the prior distribution over true labels. + py_true = np.bincount(y_train) / float(len(y_train)) + + noise_matrix_true = noise_generation.generate_noise_matrix_from_trace( + K, + trace=avg_trace * K, + py=py_true, + valid_noise_matrix=True, + seed=SEED, + ) + + # Generate our noisy labels using the noise_marix. + s = noise_generation.generate_noisy_labels(y_train, noise_matrix_true) + s_test = noise_generation.generate_noisy_labels(y_test, noise_matrix_true) + ps = np.bincount(s) / float(len(s)) # Prior distribution over noisy labels + + return X_train, s \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/experimental/cifar_cnn.rst b/v2.6.5/_sources/cleanlab/experimental/cifar_cnn.rst new file mode 100644 index 000000000..e66d9ba9d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/cifar_cnn.rst @@ -0,0 +1,8 @@ +cifar_cnn +========= + +.. automodule:: cleanlab.experimental.cifar_cnn + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/experimental/coteaching.rst b/v2.6.5/_sources/cleanlab/experimental/coteaching.rst new file mode 100644 index 000000000..5519d4e99 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/coteaching.rst @@ -0,0 +1,8 @@ +coteaching +========== + +.. automodule:: cleanlab.experimental.coteaching + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/experimental/index.rst b/v2.6.5/_sources/cleanlab/experimental/index.rst new file mode 100644 index 000000000..40090b16d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/index.rst @@ -0,0 +1,22 @@ +experimental +============ + +.. warning:: + Methods in this ``experimental`` module are bleeding edge and may have sharp edges. They are not guaranteed to be stable between different ``cleanlab`` versions. + +Useful methods/models adapted for use with cleanlab. + +Some of these files include various models that can be used with cleanlab to find issues in specific types of data. These require dependencies on deep learning and other machine learning packages that are not official cleanlab dependencies. You must install these dependencies on your own if you wish to use them. + +.. automodule:: cleanlab.experimental + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + label_issues_batched + span_classification + mnist_pytorch + coteaching + cifar_cnn diff --git a/v2.6.5/_sources/cleanlab/experimental/label_issues_batched.rst b/v2.6.5/_sources/cleanlab/experimental/label_issues_batched.rst new file mode 100644 index 000000000..1262958fe --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/label_issues_batched.rst @@ -0,0 +1,8 @@ +label_issues_batched +==================== + +.. automodule:: cleanlab.experimental.label_issues_batched + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/experimental/mnist_pytorch.rst b/v2.6.5/_sources/cleanlab/experimental/mnist_pytorch.rst new file mode 100644 index 000000000..ee794ff72 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/mnist_pytorch.rst @@ -0,0 +1,8 @@ +mnist_pytorch +============= + +.. automodule:: cleanlab.experimental.mnist_pytorch + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/experimental/span_classification.rst b/v2.6.5/_sources/cleanlab/experimental/span_classification.rst new file mode 100644 index 000000000..7f368374e --- /dev/null +++ b/v2.6.5/_sources/cleanlab/experimental/span_classification.rst @@ -0,0 +1,8 @@ +span_classification +=================== + +.. automodule:: cleanlab.experimental.span_classification + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/filter.rst b/v2.6.5/_sources/cleanlab/filter.rst new file mode 100644 index 000000000..2a5eb7a79 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/filter.rst @@ -0,0 +1,8 @@ +filter +======= + +.. automodule:: cleanlab.filter + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/index.rst b/v2.6.5/_sources/cleanlab/internal/index.rst new file mode 100644 index 000000000..df59cbcbb --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/index.rst @@ -0,0 +1,23 @@ +internal +======== + +.. warning:: + These ``internal`` utility methods are intended for internal use within the ``cleanlab`` package. They are not guaranteed to be stable between different versions. + +.. automodule:: cleanlab.internal + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + util + latent_algebra + label_quality_utils + multilabel_utils + multilabel_scorer + neighbor/index + outlier + token_classification_utils + validation diff --git a/v2.6.5/_sources/cleanlab/internal/label_quality_utils.rst b/v2.6.5/_sources/cleanlab/internal/label_quality_utils.rst new file mode 100644 index 000000000..e7f5e6b50 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/label_quality_utils.rst @@ -0,0 +1,8 @@ +label_quality_utils +=================== + +.. automodule:: cleanlab.internal.label_quality_utils + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/latent_algebra.rst b/v2.6.5/_sources/cleanlab/internal/latent_algebra.rst new file mode 100644 index 000000000..fe951447e --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/latent_algebra.rst @@ -0,0 +1,8 @@ +latent_algebra +============== + +.. automodule:: cleanlab.internal.latent_algebra + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/multiannotator_utils.rst b/v2.6.5/_sources/cleanlab/internal/multiannotator_utils.rst new file mode 100644 index 000000000..9c2753597 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/multiannotator_utils.rst @@ -0,0 +1,8 @@ +multiannotator_utils +========================== + +.. automodule:: cleanlab.internal.multiannotator_utils + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/multilabel_scorer.rst b/v2.6.5/_sources/cleanlab/internal/multilabel_scorer.rst new file mode 100644 index 000000000..9e9aa27f1 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/multilabel_scorer.rst @@ -0,0 +1,8 @@ +multilabel_scorer +================= + +.. automodule:: cleanlab.internal.multilabel_scorer + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/multilabel_utils.rst b/v2.6.5/_sources/cleanlab/internal/multilabel_utils.rst new file mode 100644 index 000000000..6a7af5756 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/multilabel_utils.rst @@ -0,0 +1,8 @@ +multilabel_utils +================ + +.. automodule:: cleanlab.internal.multilabel_utils + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/internal/neighbor/index.rst b/v2.6.5/_sources/cleanlab/internal/neighbor/index.rst new file mode 100644 index 000000000..27439ece9 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/neighbor/index.rst @@ -0,0 +1,21 @@ +neighbor +======== + +The `neighbor` modules provide functionality for performing nearest neighbor search and pairwise distance calculations in those searches. + +This submodule consists of the following modules: + +- `neighbor.knn_graph`: Contains functions for setting up a nearest neighbor search index and constructing knn graphs. +- `neighbor.search`: Contains a helper function that wraps the default implementation of nearest neighbor searches. +- `neighbor.metric`: Contains functions for selecting distance metrics for nearest neighbor searches. + +.. automodule:: cleanlab.internal.neighbor + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + knn_graph + metric + search diff --git a/v2.6.5/_sources/cleanlab/internal/neighbor/knn_graph.rst b/v2.6.5/_sources/cleanlab/internal/neighbor/knn_graph.rst new file mode 100644 index 000000000..1486a76e1 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/neighbor/knn_graph.rst @@ -0,0 +1,8 @@ +knn_graph +========= + +.. automodule:: cleanlab.internal.neighbor.knn_graph + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/neighbor/metric.rst b/v2.6.5/_sources/cleanlab/internal/neighbor/metric.rst new file mode 100644 index 000000000..f78f47cf5 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/neighbor/metric.rst @@ -0,0 +1,8 @@ +metric +====== + +.. automodule:: cleanlab.internal.neighbor.metric + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/neighbor/search.rst b/v2.6.5/_sources/cleanlab/internal/neighbor/search.rst new file mode 100644 index 000000000..056bfbc0a --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/neighbor/search.rst @@ -0,0 +1,8 @@ +search +====== + +.. automodule:: cleanlab.internal.neighbor.search + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/outlier.rst b/v2.6.5/_sources/cleanlab/internal/outlier.rst new file mode 100644 index 000000000..26c516758 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/outlier.rst @@ -0,0 +1,8 @@ +outlier +======= + +.. automodule:: cleanlab.internal.outlier + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/internal/token_classification_utils.rst b/v2.6.5/_sources/cleanlab/internal/token_classification_utils.rst new file mode 100644 index 000000000..443cb185a --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/token_classification_utils.rst @@ -0,0 +1,8 @@ +token_classification_utils +========================== + +.. automodule:: cleanlab.internal.token_classification_utils + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/util.rst b/v2.6.5/_sources/cleanlab/internal/util.rst new file mode 100644 index 000000000..126b86289 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/util.rst @@ -0,0 +1,8 @@ +util +==== + +.. automodule:: cleanlab.internal.util + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/internal/validation.rst b/v2.6.5/_sources/cleanlab/internal/validation.rst new file mode 100644 index 000000000..da5d4dfca --- /dev/null +++ b/v2.6.5/_sources/cleanlab/internal/validation.rst @@ -0,0 +1,8 @@ +validation +========== + +.. automodule:: cleanlab.internal.validation + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/models/fasttext.rst b/v2.6.5/_sources/cleanlab/models/fasttext.rst new file mode 100644 index 000000000..78efe7677 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/models/fasttext.rst @@ -0,0 +1,8 @@ +fasttext +======== + +.. automodule:: cleanlab.models.fasttext + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/models/index.rst b/v2.6.5/_sources/cleanlab/models/index.rst new file mode 100644 index 000000000..8c34d0e26 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/models/index.rst @@ -0,0 +1,20 @@ +models +====== + +.. warning:: + Methods in this ``models`` module are not guaranteed to be stable between different ``cleanlab`` versions. + +Useful models adapted for use with cleanlab. + +Some of these files include various models that can be used with cleanlab to find issues in specific types of data. These require dependencies on deep learning and other machine learning packages that are not official cleanlab dependencies. You must install these dependencies on your own if you wish to use them. + + +.. automodule:: cleanlab.models + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + keras + fasttext \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/models/keras.rst b/v2.6.5/_sources/cleanlab/models/keras.rst new file mode 100644 index 000000000..c9ff1b313 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/models/keras.rst @@ -0,0 +1,7 @@ +keras +===== + +.. automodule:: cleanlab.models.keras + :autosummary: + :members: + :undoc-members: diff --git a/v2.6.5/_sources/cleanlab/multiannotator.rst b/v2.6.5/_sources/cleanlab/multiannotator.rst new file mode 100644 index 000000000..b094fb69d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/multiannotator.rst @@ -0,0 +1,8 @@ +multiannotator +============== + +.. automodule:: cleanlab.multiannotator + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/multilabel_classification/dataset.rst b/v2.6.5/_sources/cleanlab/multilabel_classification/dataset.rst new file mode 100644 index 000000000..b1c254454 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/multilabel_classification/dataset.rst @@ -0,0 +1,8 @@ +dataset +======= + +.. automodule:: cleanlab.multilabel_classification.dataset + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/multilabel_classification/filter.rst b/v2.6.5/_sources/cleanlab/multilabel_classification/filter.rst new file mode 100644 index 000000000..299184841 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/multilabel_classification/filter.rst @@ -0,0 +1,8 @@ +filter +====== + +.. automodule:: cleanlab.multilabel_classification.filter + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/multilabel_classification/index.rst b/v2.6.5/_sources/cleanlab/multilabel_classification/index.rst new file mode 100644 index 000000000..a73dcd25a --- /dev/null +++ b/v2.6.5/_sources/cleanlab/multilabel_classification/index.rst @@ -0,0 +1,22 @@ +multilabel_classification +========================= + +Methods to detect data and label issues in multi-label classification datasets. + +In multi-class classification, each example in the dataset belongs to exactly 1 out of K classes (e.g. if classifying animals as: {dog, cat, rat}). + +In multi-label classification, each example in the dataset can belong to 1 or more classes (out of K possible classes), or none of the classes at all (e.g. if classifying animals as: {predator, pet, reptile}). + + + +.. automodule:: cleanlab.multilabel_classification + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + filter + rank + dataset \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/multilabel_classification/rank.rst b/v2.6.5/_sources/cleanlab/multilabel_classification/rank.rst new file mode 100644 index 000000000..4c7b2c35b --- /dev/null +++ b/v2.6.5/_sources/cleanlab/multilabel_classification/rank.rst @@ -0,0 +1,8 @@ +rank +==== + +.. automodule:: cleanlab.multilabel_classification.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/object_detection/filter.rst b/v2.6.5/_sources/cleanlab/object_detection/filter.rst new file mode 100644 index 000000000..81f60befd --- /dev/null +++ b/v2.6.5/_sources/cleanlab/object_detection/filter.rst @@ -0,0 +1,9 @@ +filter +==== + +.. automodule:: cleanlab.object_detection.filter + :autosummary: + :members: + :undoc-members: + :show-inheritance: + diff --git a/v2.6.5/_sources/cleanlab/object_detection/index.rst b/v2.6.5/_sources/cleanlab/object_detection/index.rst new file mode 100644 index 000000000..5d80b4f74 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/object_detection/index.rst @@ -0,0 +1,16 @@ +object_detection +==================== + +Methods to detect label issues in object detection datasets. + +.. automodule:: cleanlab.object_detection + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + rank + filter + summary diff --git a/v2.6.5/_sources/cleanlab/object_detection/rank.rst b/v2.6.5/_sources/cleanlab/object_detection/rank.rst new file mode 100644 index 000000000..45b935e48 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/object_detection/rank.rst @@ -0,0 +1,9 @@ +rank +==== + +.. automodule:: cleanlab.object_detection.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: + diff --git a/v2.6.5/_sources/cleanlab/object_detection/summary.rst b/v2.6.5/_sources/cleanlab/object_detection/summary.rst new file mode 100644 index 000000000..8de4222d1 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/object_detection/summary.rst @@ -0,0 +1,9 @@ +summary +==== + +.. automodule:: cleanlab.object_detection.summary + :autosummary: + :members: + :undoc-members: + :show-inheritance: + diff --git a/v2.6.5/_sources/cleanlab/outlier.rst b/v2.6.5/_sources/cleanlab/outlier.rst new file mode 100644 index 000000000..d5aa54d50 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/outlier.rst @@ -0,0 +1,8 @@ +outlier +============== + +.. automodule:: cleanlab.outlier + :autosummary: + :members: + :show-inheritance: + :exclude-members: DEFAULT_PARAM_DICT, OOD_PARAMS, OUTLIER_PARAMS \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/rank.rst b/v2.6.5/_sources/cleanlab/rank.rst new file mode 100644 index 000000000..d62a14356 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/rank.rst @@ -0,0 +1,8 @@ +rank +==== + +.. automodule:: cleanlab.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/regression/index.rst b/v2.6.5/_sources/cleanlab/regression/index.rst new file mode 100644 index 000000000..37e7b2b95 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/regression/index.rst @@ -0,0 +1,15 @@ +regression +==================== + +Methods to detect data and label issues in regression datasets. + +.. automodule:: cleanlab.regression + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + rank + learn \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/regression/learn.rst b/v2.6.5/_sources/cleanlab/regression/learn.rst new file mode 100644 index 000000000..94c20f163 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/regression/learn.rst @@ -0,0 +1,8 @@ +regression.learn +================ + +.. automodule:: cleanlab.regression.learn + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/regression/rank.rst b/v2.6.5/_sources/cleanlab/regression/rank.rst new file mode 100644 index 000000000..24320ac2b --- /dev/null +++ b/v2.6.5/_sources/cleanlab/regression/rank.rst @@ -0,0 +1,8 @@ +regression.rank +=============== + +.. automodule:: cleanlab.regression.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/segmentation/filter.rst b/v2.6.5/_sources/cleanlab/segmentation/filter.rst new file mode 100644 index 000000000..0b306746f --- /dev/null +++ b/v2.6.5/_sources/cleanlab/segmentation/filter.rst @@ -0,0 +1,8 @@ +filter +==== + +.. automodule:: cleanlab.segmentation.filter + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/segmentation/index.rst b/v2.6.5/_sources/cleanlab/segmentation/index.rst new file mode 100644 index 000000000..06ea1149d --- /dev/null +++ b/v2.6.5/_sources/cleanlab/segmentation/index.rst @@ -0,0 +1,16 @@ +segmentation +============ + +Methods to detect label issues in segmentation datasets. + +.. automodule:: cleanlab.segmentation + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + rank + filter + summary diff --git a/v2.6.5/_sources/cleanlab/segmentation/rank.rst b/v2.6.5/_sources/cleanlab/segmentation/rank.rst new file mode 100644 index 000000000..043fd6ef8 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/segmentation/rank.rst @@ -0,0 +1,8 @@ +rank +==== + +.. automodule:: cleanlab.segmentation.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/segmentation/summary.rst b/v2.6.5/_sources/cleanlab/segmentation/summary.rst new file mode 100644 index 000000000..d03d230da --- /dev/null +++ b/v2.6.5/_sources/cleanlab/segmentation/summary.rst @@ -0,0 +1,8 @@ +summary +======= + +.. automodule:: cleanlab.segmentation.summary + :autosummary: + :members: + :undoc-members: + :show-inheritance: diff --git a/v2.6.5/_sources/cleanlab/token_classification/filter.rst b/v2.6.5/_sources/cleanlab/token_classification/filter.rst new file mode 100644 index 000000000..6133d4c0c --- /dev/null +++ b/v2.6.5/_sources/cleanlab/token_classification/filter.rst @@ -0,0 +1,8 @@ +filter +====== + +.. automodule:: cleanlab.token_classification.filter + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/token_classification/index.rst b/v2.6.5/_sources/cleanlab/token_classification/index.rst new file mode 100644 index 000000000..69ea1dfcd --- /dev/null +++ b/v2.6.5/_sources/cleanlab/token_classification/index.rst @@ -0,0 +1,16 @@ +token_classification +==================== + +Methods to detect data and label issues in token classification datasets. + +.. automodule:: cleanlab.token_classification + :autosummary: + :members: + :undoc-members: + :show-inheritance: + +.. toctree:: + + filter + rank + summary \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/token_classification/rank.rst b/v2.6.5/_sources/cleanlab/token_classification/rank.rst new file mode 100644 index 000000000..b0c7c7f4f --- /dev/null +++ b/v2.6.5/_sources/cleanlab/token_classification/rank.rst @@ -0,0 +1,8 @@ +rank +==== + +.. automodule:: cleanlab.token_classification.rank + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/cleanlab/token_classification/summary.rst b/v2.6.5/_sources/cleanlab/token_classification/summary.rst new file mode 100644 index 000000000..f1be1bef7 --- /dev/null +++ b/v2.6.5/_sources/cleanlab/token_classification/summary.rst @@ -0,0 +1,8 @@ +summary +======= + +.. automodule:: cleanlab.token_classification.summary + :autosummary: + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/v2.6.5/_sources/index.rst b/v2.6.5/_sources/index.rst new file mode 100644 index 000000000..14343416a --- /dev/null +++ b/v2.6.5/_sources/index.rst @@ -0,0 +1,211 @@ +:og:title: Cleanlab Open-Source Documentation +:og:description: Get started, learn about capabilities, and follow tutorials to improve your own Data and Models. + +cleanlab open-source documentation +================================== + +`cleanlab `_ **automatically detects data and label issues in your ML datasets.** + +| This helps you improve your data and train reliable ML models on noisy real-world datasets. cleanlab has already found thousands of `label errors `_ in ImageNet, MNIST, and other popular ML benchmarking datasets. Beyond handling label errors, this is a comprehensive open-source library implementing many data-centric AI capabilities. Start using automation to improve your data in 5 minutes! + +Quickstart +========== + +1. Install ``cleanlab`` +----------------------- + +.. tabs:: + + .. tab:: pip + + .. code-block:: bash + + pip install cleanlab + + To install the package with all optional dependencies: + + .. code-block:: bash + + pip install "cleanlab[all]" + + .. tab:: conda + + .. code-block:: bash + + conda install -c cleanlab cleanlab + + .. tab:: source + + .. code-block:: bash + + pip install git+https://github.com/cleanlab/cleanlab.git + + To install the package with all optional dependencies: + + .. code-block:: bash + + pip install "git+https://github.com/cleanlab/cleanlab.git#egg=cleanlab[all]" + + +2. Find common issues in your data +---------------------------------- + +cleanlab automatically detects various issues in *any dataset that a classifier can be trained on*. The cleanlab package *works with any ML model* by operating on model outputs (predicted class probabilities or feature embeddings) -- it doesn't require that a particular model created those outputs. For any classification dataset, use your trained model to produce `pred_probs` (predicted class probabilities) and/or `feature_embeddings` (numeric vector representations of each datapoint). Then, these few lines of code can detect common real-world issues in your dataset like label errors, outliers, near duplicates, etc: + +.. code-block:: python + + from cleanlab import Datalab + + lab = Datalab(data=your_dataset, label_name="column_name_of_labels") + lab.find_issues(features=feature_embeddings, pred_probs=pred_probs) + lab.report() # summarize issues in dataset, how severe they are, ... + + +3. Handle label errors and train robust models with noisy labels +---------------------------------------------------------------- + +Mislabeled data is a particularly concerning issue plaguing real-world datasets. To use a scikit-learn-compatible model for classification with noisy labels, you don't need to train a model to find label issues -- you can pass the untrained model object, data, and labels into :py:meth:`CleanLearning.find_label_issues ` and cleanlab will handle model training for you. + +.. code-block:: python + + from cleanlab.classification import CleanLearning + + # This works with any sklearn-compatible model - just input data + labels and cleanlab will detect label issues ツ + label_issues_info = CleanLearning(clf=sklearn_compatible_model).find_label_issues(data, labels) + +:py:class:`CleanLearning ` also works with models from most standard ML frameworks by wrapping the model for scikit-learn compliance, e.g. `tensorflow/keras `_ (using our KerasWrapperModel), `pytorch `_ (using skorch package), etc. + +:py:meth:`find_label_issues ` returns a boolean mask flagging which examples have label issues and a numeric label quality score for each example quantifying our confidence that its label is correct. + +Beyond standard classification tasks, cleanlab can also detect mislabeled examples in: `multi-label data `_ (e.g. image/document tagging), `sequence prediction `_ (e.g. entity recognition), and `data labeled by multiple annotators `_ (e.g. crowdsourcing). + +.. important:: + Cleanlab performs better if the ``pred_probs`` from your model are **out-of-sample**. Details on how to compute out-of-sample predicted probabilities for your entire dataset are :ref:`here `. + +cleanlab's :py:class:`CleanLearning ` class trains a more robust version of any existing (`scikit-learn `_ `compatible `_) classification model, `clf`, by fitting it to an automatically filtered version of your dataset with low-quality data removed. It returns a model trained only on the clean data, from which you can get predictions in the same way as your existing classifier. + +.. code-block:: python + + from sklearn.linear_model import LogisticRegression + from cleanlab.classification import CleanLearning + + cl = CleanLearning(clf=LogisticRegression()) # any sklearn-compatible classifier + cl.fit(train_data, labels) + + # Estimate the predictions you would have gotten if you trained without mislabeled data + predictions = cl.predict(test_data) + + +4. Dataset curation: fix dataset-level issues +--------------------------------------------- + +cleanlab's `dataset `_ module helps you deal with dataset-level issues -- :py:meth:`find overlapping classes ` (classes to merge), :py:meth:`rank class-level label quality ` (classes to keep/delete), and :py:meth:`measure overall dataset health ` (to track dataset quality as you make adjustments). + +View all dataset-level issues in one line of code with :py:meth:`dataset.health_summary() `. + +.. code-block:: python + + from cleanlab.dataset import health_summary + + health_summary(labels, pred_probs, class_names=class_names) + + +5. Improve your data via many other techniques +---------------------------------------------- + +Beyond handling label errors, cleanlab supports other data-centric AI capabilities including: + +- Detecting outliers and out-of-distribution examples in both training and future test data `(tutorial) `_ +- Analyzing data labeled by multiple annotators to estimate consensus labels and their quality `(tutorial) `_ +- Active learning with multiple annotators to identify which data is most informative to label or re-label next `(tutorial) `_ + + +If you have questions, check out our `FAQ `_ and feel free to ask in `Slack `_! + +Contributing +------------ + +As cleanlab is an open-source project, we welcome contributions from the community. + +Please see our `contributing guidelines `_ for more information. + +Easy Mode +--------- + +While this open-source library **finds** data issues, its utility depends on you having a good ML model and interface to efficiently **fix** these issues in your dataset. Providing all these pieces, `Cleanlab Studio `_ is a *no-code* platform to **find and fix** problems in image/text/tabular datasets. Cleanlab Studio integrates the data quality algorithms from this library on top of cutting-edge AutoML & Foundation models fit to your data, and presents detected issues in a smart data editing interface. + +.. image:: https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-with-cleanlab-studio.png + :width: 800 + :alt: Stages of modern AI pipeline that can now be automated with Cleanlab Studio + +`There is no easier way `_ to turn *unreliable* raw data into *reliable* models/analytics. `Try it for free! `_ + +Link to Cleanlab Studio docs: `help.cleanlab.ai `_ + +.. toctree:: + :hidden: + + Quickstart + +.. toctree:: + :hidden: + :caption: Tutorials + + Datalab Tutorials + CleanLearning Tutorials + Workflows of Data-Centric AI + Analyze Dataset-level Issues + Outlier Detection + Improving Consensus Labels for Multiannotator Data + Multi-Label Classification + Noisy Labels in Regression + Token Classification (text) + Image Segmentation + Object Detection + Predicted Probabilities via Cross Validation + FAQ + +.. toctree:: + :caption: API Reference + :hidden: + :maxdepth: 3 + + cleanlab/datalab/index + cleanlab/classification + cleanlab/filter + cleanlab/rank + cleanlab/count + cleanlab/dataset + cleanlab/outlier + cleanlab/multiannotator + cleanlab/data_valuation + cleanlab/multilabel_classification/index + cleanlab/regression/index + cleanlab/token_classification/index + cleanlab/segmentation/index + cleanlab/object_detection/index + cleanlab/benchmarking/index + cleanlab/models/index + cleanlab/experimental/index + cleanlab/internal/index + +.. toctree:: + :caption: Guides + :hidden: + + Datalab issue types + How to contribute + +.. toctree:: + :caption: Links + :hidden: + + Website + GitHub + PyPI + Conda + Community Discussions + Blog + Videos + Cleanlab Studio (Easy Mode) + Cleanlab Studio Docs diff --git a/v2.6.5/_sources/migrating/migrate_v2.rst b/v2.6.5/_sources/migrating/migrate_v2.rst new file mode 100644 index 000000000..ca1c2e000 --- /dev/null +++ b/v2.6.5/_sources/migrating/migrate_v2.rst @@ -0,0 +1,87 @@ +How to migrate to versions >= 2.0.0 from pre 1.0.1 +================================================== + +If you previously used older versions of cleanlab, +this guide helps update your existing code to work with versions >= 2.0.0 in no time! +Below we outline the major updates and code substitutions to be aware of. +A detailed API change-log is listed in the `v2.0.0. Release Notes `_. + + +Function and class name changes +------------------------------- + +This section covers the most commonly-used functionality from Cleanlab 1.0. + +| **Old:** ``pruning.get_noise_indices(s, psx, prune_method, sorted_index_method, ...)`` +| --> +| **New:** :py:func:`filter.find_label_issues ` ``(labels, pred_probs, filter_by, return_indices_ranked_by, ...)`` + +Note: ``inverse_noise_matrix`` is no longer a supported input argument, but ``confident_joint`` remains (you can easily convert between these two). + +---- + +| **Old:** ``pruning.order_label_errors(label_errors_bool, psx, labels, sorted_index_method)`` +| --> +| **New:** :py:func:`rank.order_label_issues ` ``(label_issues_mask, labels, pred_probs, rank_by, ...)`` + +Note: You can now alternatively use :py:func:`rank.get_label_quality_score() ` to numerically score the labels instead of ranking them. + +---- + +| **Old:** ``latent_estimation.num_label_errors(labels, psx, ...)`` +| --> +| **New:** :py:func:`count.num_label_issues ` ``(labels, pred_probs, ...)`` + +Note: This is the most accurate way to estimate the raw *number* of label errors in a dataset. + +---- + +| **Old:** ``classification.LearningWithNoisyLabels(..., prune_method)`` +| --> +| **New:** :py:class:`classification.CleanLearning ` ``(..., find_label_issues_kwargs)`` + +Note: :py:class:`CleanLearning ` can now find label errors for you, neatly organizing them in a ``pandas.DataFrame`` as well as computing the required out-of-sample predicted probabilities. You just specify which classifier, we handle the cross-validation! + + +Module name changes +------------------- + +Reorganized modules: + +- ``cleanlab.pruning`` --> :py:mod:`cleanlab.filter` +- ``cleanlab.latent_estimation`` --> :py:mod:`cleanlab.count` +- ``cleanlab.noise_generation`` --> :py:mod:`cleanlab.benchmarking.noise_generation` +- ``cleanlab.baseline_methods`` --> incorporated into :py:mod:`cleanlab.filter` + +Internal and experimental functionality, marked as such and not guaranteed to be stable between releases: + +- ``cleanlab.models`` --> :py:mod:`cleanlab.experimental` +- ``cleanlab.coteaching`` --> :py:mod:`cleanlab.experimental.coteaching` +- ``cleanlab.latent_algebra`` --> :py:mod:`cleanlab.internal.latent_algebra` +- ``cleanlab.util`` --> :py:mod:`cleanlab.internal.util` + + +New modules +----------- + +- :py:mod:`cleanlab.dataset` : New methods to print summaries of overall types of label issues most common in a dataset. +- :py:mod:`cleanlab.rank` : Moved all ranking and ordering functions from ``cleanlab.pruning`` to here. This module contains methods to score the label quality of each example and rank your data by the quality of their labels. +- :py:mod:`cleanlab.internal` and :py:mod:`cleanlab.experimental`: Moved all advanced code and utility methods to this module, including the old ``cleanlab.latent_algebra`` module. Researchers may find useful functions in here. + + +Removed modules +--------------- + +- ``cleanlab.polyplex`` + + +Common argument and variable name changes +----------------------------------------- + +Here are some common name and terminology changes in Cleanlab 2.0: + +- ``s`` --> ``labels`` (the given labels in the data, which are potentially noisy) +- ``psx`` --> ``pred_probs`` (predicted probabilities output by trained classifier) +- ``label_error`` --> ``label_issue`` (a label that is likely to be wrong) + +See the documentation for individual functions for details on how argument names changed. diff --git a/v2.6.5/_sources/tutorials/clean_learning/index.rst b/v2.6.5/_sources/tutorials/clean_learning/index.rst new file mode 100644 index 000000000..172604156 --- /dev/null +++ b/v2.6.5/_sources/tutorials/clean_learning/index.rst @@ -0,0 +1,8 @@ +CleanLearning Tutorials +======================= + +.. toctree:: + :maxdepth: 1 + + Text Classification + Tabular Classification (Numeric/Categorical) diff --git a/v2.6.5/_sources/tutorials/clean_learning/tabular.ipynb b/v2.6.5/_sources/tutorials/clean_learning/tabular.ipynb new file mode 100644 index 000000000..46b07c2a6 --- /dev/null +++ b/v2.6.5/_sources/tutorials/clean_learning/tabular.ipynb @@ -0,0 +1,506 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Classification with Structured/Tabular Data and Noisy Labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Consider Using Datalab\n", + "
\n", + "\n", + "If interested in detecting a wide variety of issues in your tabular data, check out the [Datalab tabular tutorial](https://docs.cleanlab.ai/stable/tutorials/datalab/tabular.html). Datalab can detect many other types of data issues beyond label issues, whereas CleanLearning is a convenience method to handle noisy labels with sklearn-compatible classification models.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use cleanlab with scikit-learn models to find potential label errors in a classification dataset with tabular features (numeric/categorical columns). Tabular (or *structured*) data are typically organized in a row/column format and stored in a SQL database or file types like: CSV, Excel, or Parquet. Here we consider a Student Grades dataset, which contains over 900 individuals who have three exam grades and some optional notes, each being assigned a letter grade (their class label). cleanlab automatically identifies _hundreds_ of examples in this dataset that were mislabeled with the incorrect final grade (data entry mistakes). \n", + "\n", + "This tutorial shows how to handle noisy labels and produce more robust classification models for your own tabular datasets. cleanlab's `CleanLearning` class automatically detects and filters out such badly labeled data, in order to train a more robust version of any Machine Learning model. No change to your existing modeling code is required! \n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Train a classifier model (here scikit-learn's ExtraTreesClassifier, although any model could be used) and use this classifier to compute (out-of-sample) predicted class probabilities via cross-validation.\n", + "\n", + "- Identify potential label errors in the data with cleanlab's `find_label_issues` method.\n", + "\n", + "- Train a robust version of the same ExtraTrees model via cleanlab's `CleanLearning` wrapper.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn compatible `model`, tabular `data` and given `labels`? Run the code below to train your `model` and get label issues.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "_ = cl.fit(train_data, labels)\n", + "label_issues = cl.get_label_issues()\n", + "preds = cl.predict(test_data) # predictions from a version of your model \n", + " # trained on auto-cleaned data\n", + "\n", + "\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `pred_probs`. Then run the code below to get label issue indices ranked by their inferred severity.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "\n", + "ranked_label_issues = find_label_issues(\n", + " labels,\n", + " pred_probs,\n", + " return_indices_ranked_by=\"self_confidence\",\n", + ")\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import pandas as pd \n", + "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", + "from sklearn.model_selection import cross_val_predict, train_test_split\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.ensemble import ExtraTreesClassifier\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "SEED = 100 \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and process the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first load the data features and labels (which are possibly noisy).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "grades_data = pd.read_csv(\"https://s.cleanlab.ai/grades-tabular-demo-v2.csv\")\n", + "grades_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_raw = grades_data[[\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]]\n", + "labels_raw = grades_data[\"letter_grade\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we preprocess the data. Here we apply one-hot encoding to features with categorical data, and standardize features with numeric data. We also perform label encoding on the labels, as cleanlab's functions require the labels for each example to be an interger integer in 0, 1, …, num_classes - 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "categorical_features = [\"notes\"]\n", + "X_encoded = pd.get_dummies(X_raw, columns=categorical_features, drop_first=True)\n", + "\n", + "numeric_features = [\"exam_1\", \"exam_2\", \"exam_3\"]\n", + "scaler = StandardScaler()\n", + "X_processed = X_encoded.copy()\n", + "X_processed[numeric_features] = scaler.fit_transform(X_encoded[numeric_features])\n", + "\n", + "encoder = LabelEncoder()\n", + "encoder.fit(labels_raw)\n", + "labels = encoder.transform(labels_raw)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own tabular dataset, and continue with the rest of the tutorial.\n", + " \n", + "Your classes (and entries of `labels`) should be represented as integer indices 0, 1, ..., num_classes - 1. \n", + "For example, if your dataset has 7 examples from 3 classes, `labels` might look like: `np.array([2,0,0,1,2,0,1])`\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Select a classification model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we use a simple ExtraTrees classifier that fits various randomized decision tress on our data, but you can choose any suitable scikit-learn model for this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf = ExtraTreesClassifier()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To find potential labeling errors, cleanlab requires a probabilistic prediction from your model for every datapoint. However, these predictions will be _overfitted_ (and thus unreliable) for examples the model was previously trained on. For the best results, cleanlab should be applied with **out-of-sample** predicted class probabilities, i.e., on examples held out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. An additional benefit of cross-validation is that it provides a more reliable evaluation of our model than a single training/validation split. We can implement this via the `cross_val_predict` method from scikit-learn:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " clf,\n", + " X_processed,\n", + " labels,\n", + " cv=num_crossval_folds,\n", + " method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the given labels and out-of-sample predicted probabilities, cleanlab can quickly help us identify poorly labeled instances in our data table. For a dataset with N examples from K classes, the labels should be a 1D array of length N and predicted probabilities should be a 2D (N x K) array. Here we request that the indices of the identified label issues be sorted by cleanlab's self-confidence score, which measures the quality of each given label via the probability assigned to it in our model's prediction." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ranked_label_issues = find_label_issues(\n", + " labels=labels, pred_probs=pred_probs, return_indices_ranked_by=\"self_confidence\"\n", + ")\n", + "\n", + "print(f\"Cleanlab found {len(ranked_label_issues)} potential label errors.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_raw.iloc[ranked_label_issues].assign(label=labels_raw.iloc[ranked_label_issues]).head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These final grades look suspicious and should definitely be carefully re-examined! This is a straightforward approach to visualize the rows in a data table that might be mislabeled." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Train a more robust model from noisy labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following proper ML practice, let's split our data into train and test sets.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, labels_train, labels_test = train_test_split(\n", + " X_encoded,\n", + " labels,\n", + " test_size=0.2,\n", + " random_state=SEED,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We again standardize the numeric features, this time fitting the scaling parameters solely on the training set.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scaler = StandardScaler()\n", + "X_train[numeric_features] = scaler.fit_transform(X_train[numeric_features])\n", + "X_test[numeric_features] = scaler.transform(X_test[numeric_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now train and evaluate the original ExtraTrees model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf.fit(X_train, labels_train)\n", + "acc_og = clf.score(X_test, labels_test)\n", + "print(f\"Test accuracy of original model: {acc_og}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "cleanlab provides a wrapper class that can be easily applied to any scikit-learn compatible model. Once wrapped, the resulting model can still be used in the exact same manner, but it will now train more robustly if the data have noisy labels.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf = ExtraTreesClassifier() # Note we first re-initialize clf\n", + "cl = CleanLearning(clf) # cl has same methods/attributes as clf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following operations take place when we train the cleanlab-wrapped model: The original model is trained in a cross-validated fashion to produce out-of-sample predicted probabilities. Then, these predicted probabilities are used to identify label issues, which are then removed from the dataset. Finally, the original model is trained on the remaining clean subset of the data once more.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = cl.fit(X_train, labels_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get predictions from the resulting model and evaluate them, just like how we did it for the original scikit-learn model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "preds = cl.predict(X_test)\n", + "acc_cl = accuracy_score(labels_test, preds)\n", + "print(f\"Test accuracy of cleanlab-trained model: {acc_cl}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we evaluate on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "if acc_og >= acc_cl: # check cleanlab has improved prediction accuracy\n", + " raise Exception(\"Cleanlab training failed to improve model accuracy.\")\n", + " \n", + "# this file contains true and noisy labels\n", + "true_data = pd.read_csv(\"https://s.cleanlab.ai/student-grades-demo.csv\")\n", + "true_errors = np.where(true_data[\"letter_grade\"] != true_data[\"noisy_letter_grade\"])[0]\n", + "if not all(x in true_errors for x in ranked_label_issues[:5]): # check top errors are indeed errors\n", + " raise Exception(\"Some of the top listed errors are not actually label errors.\")" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "cda20062bc42cfdcaa0f9720c0b28e880bba110e9dfce6c1689934eec9b595a1" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/clean_learning/text.ipynb b/v2.6.5/_sources/tutorials/clean_learning/text.ipynb new file mode 100644 index 000000000..d0caf0038 --- /dev/null +++ b/v2.6.5/_sources/tutorials/clean_learning/text.ipynb @@ -0,0 +1,584 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Text Classification with Noisy Labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Consider Using Datalab\n", + "
\n", + "\n", + "If you are interested in detecting a wide variety of issues in your text dataset, check out the [Datalab text tutorial](https://docs.cleanlab.ai/stable/tutorials/datalab/text.html). Datalab can detect many other types of data issues beyond label issues, whereas CleanLearning is a convenience method to handle noisy labels with sklearn-compatible classification models.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use cleanlab to find potential label errors in an intent classification dataset composed of (text) customer service requests at an online bank. We consider a subset of the [Banking77-OOS Dataset](https://arxiv.org/abs/2106.04564) containing 1,000 customer service requests which can be classified into 10 categories corresponding to the intent of the request. cleanlab will shortlist examples that confuse our ML model the most; many of which are potential label errors, out-of-scope examples, or otherwise ambiguous examples. cleanlab's `CleanLearning` class automatically detects and filters out such badly labeled data, in order to train a more robust version of any Machine Learning model. No change to your existing modeling code is required!\n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Define a ML model that can be trained on our dataset (here we use Logistic Regression applied to text embeddings from a pretrained Transformer network, you can use any text classifier model).\n", + "\n", + "- Use `CleanLearning` to wrap this ML model and compute out-of-sample predicted class probabilites, which allow us to identify potential label errors in the dataset.\n", + "\n", + "- Train a more robust version of the same ML model after dropping the detected label errors using `CleanLearning`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn compatible `model`, `data` and given `labels`? Run the code below to train your `model` and get label issues using `CleanLearning`. \n", + " \n", + "You can subsequently use the same `CleanLearning` object to train a more robust model (only trained on the clean data) by calling the `.fit()` method and passing in the `label_issues` found earlier.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.classification import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "label_issues = cl.find_label_issues(train_data, labels) # identify mislabeled examples \n", + " \n", + "cl.fit(train_data, labels, label_issues=label_issues)\n", + "preds = cl.predict(test_data) # predictions from a version of your model \n", + " # trained on auto-cleaned data\n", + "\n", + "\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `pred_probs`. Then run the code below to get label issue indices ranked by their inferred severity.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.filter import find_label_issues\n", + "\n", + "ranked_label_issues = find_label_issues(\n", + " labels,\n", + " pred_probs,\n", + " return_indices_ranked_by=\"self_confidence\",\n", + ")\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install sentence-transformers\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used:scikit-learn==1.2.0 sentence-transformers==2.2.2\n", + "\n", + "dependencies = [\"cleanlab\", \"sentence_transformers\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import re \n", + "import string \n", + "import pandas as pd \n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import train_test_split, cross_val_predict \n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "from cleanlab.classification import CleanLearning" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "pd.set_option(\"display.max_colwidth\", None) \n", + "\n", + "SEED = 123456 # for reproducibility \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and format the text dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = pd.read_csv(\"https://s.cleanlab.ai/banking-intent-classification.csv\")\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw_texts, raw_labels = data[\"text\"].values, data[\"label\"].values\n", + "\n", + "raw_train_texts, raw_test_texts, raw_train_labels, raw_test_labels = train_test_split(raw_texts, raw_labels, test_size=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_classes = len(set(raw_train_labels))\n", + "\n", + "print(f\"This dataset has {num_classes} classes.\")\n", + "print(f\"Classes: {set(raw_train_labels)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print the first example in the train set." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "i = 0\n", + "print(f\"Example Label: {raw_train_labels[i]}\")\n", + "print(f\"Example Text: {raw_train_texts[i]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored as two numpy arrays for each the train and test set:\n", + "\n", + "1. `raw_train_texts` and `raw_test_texts` store the customer service requests utterances in text format\n", + "2. `raw_train_labels` and `raw_test_labels` store the intent categories (labels) for each example\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need to perform label enconding on the labels, cleanlab's functions require the labels for each example to be an interger integer in 0, 1, …, num_classes - 1. We will use sklearn's `LabelEncoder` to encode our labels.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "encoder = LabelEncoder()\n", + "encoder.fit(raw_train_labels)\n", + "\n", + "train_labels = encoder.transform(raw_train_labels)\n", + "test_labels = encoder.transform(raw_test_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own text dataset, and continue with the rest of the tutorial.\n", + "\n", + "Your classes (and entries of `train_labels` / `test_labels`) should be represented as integer indices 0, 1, ..., num_classes - 1.\n", + "For example, if your dataset has 7 examples from 3 classes, `train_labels` might be: `np.array([2,0,0,1,2,0,1])`\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we convert the text strings into vectors better suited as inputs for our ML model. \n", + "\n", + "We will use numeric representations from a pretrained Transformer model as embeddings of our text. The [Sentence Transformers](https://huggingface.co/docs/hub/sentence-transformers) library offers simple methods to compute these embeddings for text data. Here, we load the pretrained `electra-small-discriminator` model, and then run our data through network to extract a vector embedding of each example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "transformer = SentenceTransformer('google/electra-small-discriminator')\n", + "\n", + "train_texts = transformer.encode(raw_train_texts)\n", + "test_texts = transformer.encode(raw_test_texts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our subsequent ML model will directly operate on elements of `train_texts` and `test_texts` in order to classify the customer service requests." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Define a classification model and use cleanlab to find potential label errors\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted embeddings." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression(max_iter=400)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can define the `CleanLearning` object with our Logistic Regression model and use `find_label_issues` to identify potential label errors.\n", + "\n", + "`CleanLearning` provides a wrapper class that can easily be applied to any scikit-learn compatible model, which can be used to find potential label issues and train a more robust model if the original data contains noisy labels." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cv_n_folds = 5 # for efficiency; values like 5 or 10 will generally work better\n", + "\n", + "cl = CleanLearning(model, cv_n_folds=cv_n_folds)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "label_issues = cl.find_label_issues(X=train_texts, labels=train_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `find_label_issues` method above will perform cross validation to compute out-of-sample predicted probabilites for each example, which is used to identify label issues.\n", + "\n", + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled). Note that the given and predicted labels here are encoded as intergers as that was the format expected by `cleanlab`, we will inverse transform them later in this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 10 most likely mislabeled examples in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "identified_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_quality\"].argsort()[:10].to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\n", + " f\"cleanlab found {len(identified_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 10 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors. To help us inspect these datapoints, we define a method to print any example from the dataset, together with its given (original) label and the suggested alternative label from cleanlab.\n", + "\n", + "We then display some of the top-ranked label issues identified by cleanlab:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def print_as_df(index):\n", + " return pd.DataFrame(\n", + " {\n", + " \"text\": raw_train_texts, \n", + " \"given_label\": raw_train_labels,\n", + " \"predicted_label\": encoder.inverse_transform(label_issues[\"predicted_label\"]),\n", + " },\n", + " ).iloc[index]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print_as_df(lowest_quality_labels[:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These are very clear label errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the intent of these requests, whoever produced this dataset made many mistakes that are important to address before modeling the data.\n", + "\n", + "cleanlab has shortlisted the most likely label errors to speed up your data cleaning process. With this list, you can decide whether to fix these label issues or remove ambiguous examples from the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Train a more robust model from noisy labels\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fixing the label issues manually may be time-consuming, but cleanlab can filter these noisy examples and train a model on the remaining clean data for you automatically.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To establish a baseline, let's first train and evaluate our original Logistic Regression model.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "baseline_model = LogisticRegression(max_iter=400) # note we first re-instantiate the model\n", + "baseline_model.fit(X=train_texts, y=train_labels)\n", + "\n", + "preds = baseline_model.predict(test_texts)\n", + "acc_og = accuracy_score(test_labels, preds)\n", + "print(f\"\\n Test accuracy of original model: {acc_og}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a baseline, let's check if using `CleanLearning` improves our test accuracy.\n", + "\n", + "`CleanLearning` provides a wrapper that can be applied to any scikit-learn compatible model. The resulting model object can be used in the same manner, but it will now train more robustly if the data has noisy labels.\n", + "\n", + "We can use the same `CleanLearning` object defined above, and pass the label issues we already computed into `.fit()` via the `label_issues` argument. This accelerates things; if we did not provide the label issues, then they would be recomputed via cross-validation. After that `CleanLearning` simply deletes the examples with label issues and retrains your model on the remaining data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "cl.fit(X=train_texts, labels=train_labels, label_issues=cl.get_label_issues())\n", + "\n", + "pred_labels = cl.predict(test_texts)\n", + "acc_cl = accuracy_score(test_labels, pred_labels)\n", + "print(f\"Test accuracy of cleanlab's model: {acc_cl}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "highlighted_indices = [646, 390, 628, 702] # check these examples were found in find_label_issues\n", + "if not all(x in identified_issues.index for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from ranked_label_issues.\")\n", + "\n", + "# Also check that cleanlab has improved prediction accuracy\n", + "if acc_og >= acc_cl:\n", + " raise Exception(\"Cleanlab training failed to improve model accuracy.\")" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Text x TensorFlow", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/datalab/audio.ipynb b/v2.6.5/_sources/tutorials/datalab/audio.ipynb new file mode 100644 index 000000000..940294291 --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/audio.ipynb @@ -0,0 +1,785 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "eVufWTY3jRPx" + }, + "source": [ + "# Detecting Issues in an Audio Dataset with Datalab\n", + "\n", + "In this 5-minute quickstart tutorial, we use cleanlab to find label issues in the [Spoken Digit dataset](https://www.tensorflow.org/datasets/catalog/spoken_digit) (it's like MNIST for audio). The dataset contains 2,500 audio clips with English pronunciations of the digits 0 to 9 (these are the class labels to predict from the audio).\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Extract features from audio clips (.wav files) using a [pre-trained Pytorch model](https://huggingface.co/speechbrain/spkrec-xvect-voxceleb) from HuggingFace that was previously fit to the [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) speech dataset.\n", + "\n", + "- Train a cross-validated linear model using the extracted features and generate out-of-sample predicted probabilities.\n", + "\n", + "- Apply cleanlab's `Datalab` audit to these predictions in order to identify which audio clips in the dataset are likely mislabeled.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have a `model`? Run cross-validation to get out-of-sample `pred_probs`, and then run the code below to audit your dataset and identify any potential issues.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, issue_types={\"label\":{}})\n", + "\n", + "lab.get_issues(\"label\")\n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eqsqBq3PiUHA" + }, + "source": [ + "## 1. Install dependencies and import them\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i7nT-U9qc8MS" + }, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install tensorflow==2.12.1 tensorflow_io==0.32.0 huggingface_hub==0.17.0 speechbrain==0.5.13 \n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: tensorflow==2.12.1 tensorflow-io==0.32.0 torch==2.1.2 torchaudio==2.1.2 speechbrain==0.5.13\n", + "\n", + "dependencies = [\"cleanlab\", \"tensorflow==2.12.1\", \"tensorflow_io==0.32.0\", \"huggingface_hub==0.17.0\", \"speechbrain==0.5.13\", \"datasets\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\") " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x-oboEbRdhf6" + }, + "source": [ + "Let's import some of the packages needed throughout this tutorial.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LaEiwXUiVHCS" + }, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "import random\n", + "import tensorflow as tf\n", + "import torch\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "SEED = 456 # ensure reproducibility" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai \n", + "\n", + "def set_seed(seed=0):\n", + " \"\"\"Ensure reproducibility.\"\"\"\n", + " np.random.seed(seed)\n", + " torch.manual_seed(seed)\n", + " torch.backends.cudnn.deterministic = True\n", + " torch.backends.cudnn.benchmark = False\n", + " torch.cuda.manual_seed_all(seed)\n", + "\n", + "\n", + "set_seed(SEED)\n", + "pd.options.display.max_colwidth = 500\n", + "tf.get_logger().setLevel('FATAL') # suppress more TF logs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SOen_sxQidLC" + }, + "source": [ + "## 2. Load the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uHVskN2eeNj6" + }, + "source": [ + "We must first fetch the dataset. To run the below command, you'll need to have `wget` installed; alternatively you can manually navigate to the link in your browser and download from there.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GRDPEg7-VOQe", + "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "!wget https://github.com/Jakobovski/free-spoken-digit-dataset/archive/v1.0.9.tar.gz\n", + "!mkdir spoken_digits\n", + "!tar -xf v1.0.9.tar.gz -C spoken_digits" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tRvNnyB0e_IE" + }, + "source": [ + "The audio data are .wav files in the `recordings/` folder. Note that the label for each audio clip (i.e. digit from 0 to 9) is indicated in the prefix of the file name (e.g. `6_nicolas_32.wav` has the label 6). If instead applying cleanlab to your own dataset, its classes should be represented as integer indices 0, 1, ..., num_classes - 1." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FDA5sGZwUSur", + "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" + }, + "outputs": [], + "source": [ + "DATA_PATH = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/\"\n", + "\n", + "# Get list of .wav file names\n", + "# os.listdir order is nondeterministic, so for reproducibility,\n", + "# we sort first and then do a deterministic shuffle\n", + "file_names = sorted(i for i in os.listdir(DATA_PATH) if i.endswith(\".wav\"))\n", + "random.Random(SEED).shuffle(file_names)\n", + "\n", + "file_paths = [os.path.join(DATA_PATH, name) for name in file_names]\n", + "\n", + "# Check out first 3 files\n", + "file_paths[:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xi2592bVhSab" + }, + "source": [ + "Let's listen to some example audio clips from the dataset. We introduce a `display_example` function to process the .wav file so we can listen to it in this notebook (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the implementation of `display_example` **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import tensorflow_io as tfio\n", + "from pathlib import Path\n", + "from IPython import display\n", + "\n", + "# Utility function for loading audio files and making sure the sample rate is correct.\n", + "@tf.function\n", + "def load_wav_16k_mono(filename):\n", + " \"\"\"Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio.\"\"\"\n", + " file_contents = tf.io.read_file(filename)\n", + " wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)\n", + " wav = tf.squeeze(wav, axis=-1)\n", + " sample_rate = tf.cast(sample_rate, dtype=tf.int64)\n", + " wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)\n", + " return wav\n", + "\n", + "\n", + "def display_example(wav_file_name, audio_rate=16000):\n", + " \"\"\"Allows us to listen to any wav file and displays its given label in the dataset.\"\"\"\n", + " wav_file_example = load_wav_16k_mono(wav_file_name)\n", + " label = Path(wav_file_name).parts[-1].split(\"_\")[0]\n", + " print(f\"Given label for this example: {label}\")\n", + " display.display(display.Audio(wav_file_example, rate=audio_rate))\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import tensorflow_io as tfio\n", + "from pathlib import Path\n", + "from IPython import display\n", + "\n", + "# Utility function for loading audio files and making sure the sample rate is correct.\n", + "@tf.function\n", + "def load_wav_16k_mono(filename):\n", + " \"\"\"Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio.\"\"\"\n", + " file_contents = tf.io.read_file(filename)\n", + " wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)\n", + " wav = tf.squeeze(wav, axis=-1)\n", + " sample_rate = tf.cast(sample_rate, dtype=tf.int64)\n", + " wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)\n", + " return wav\n", + "\n", + "\n", + "def display_example(wav_file_name, audio_rate=16000):\n", + " \"\"\"Allows us to listen to any wav file and displays its given label in the dataset.\"\"\"\n", + " wav_file_example = load_wav_16k_mono(wav_file_name)\n", + " label = Path(wav_file_name).parts[-1].split(\"_\")[0]\n", + " print(f\"Given label for this example: {label}\")\n", + " display.display(display.Audio(wav_file_example, rate=audio_rate))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2bLlDRI6hzon" + }, + "source": [ + "Click the play button below to listen to this example .wav file. Feel free to change the `wav_file_name_example` variable below to listen to other audio clips in the dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "id": "dLBvUZLlII5w", + "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" + }, + "outputs": [], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/7_jackson_43.wav\" # change this to hear other examples\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-QvbZA7yHwkh" + }, + "source": [ + "## 3. Use pre-trained SpeechBrain model to featurize audio\n", + "\n", + "The [SpeechBrain](https://github.com/speechbrain/speechbrain) package offers many Pytorch neural networks that have been pretrained for speech recognition tasks. Here we instantiate an audio feature extractor using SpeechBrain's `EncoderClassifier`. We'll use the \"spkrec-xvect-voxceleb\" network which has been pre-trained on the [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) speech dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vL9lkiKsHvKr" + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "from speechbrain.pretrained import EncoderClassifier\n", + "\n", + "feature_extractor = EncoderClassifier.from_hparams(\n", + " \"speechbrain/spkrec-xvect-voxceleb\",\n", + " # run_opts={\"device\":\"cuda\"} # Uncomment this to run on GPU if you have one (optional)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vXlE6IK4ibcr" + }, + "source": [ + "Next, we run the audio clips through the pre-trained model to extract vector features (aka embeddings).\n", + "\n", + "For this tutorial, ensure that you have `ffmpeg` installed on your system. This is the backend used for loading the audio files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "obQYDKdLiUU6", + "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" + }, + "outputs": [], + "source": [ + "# Create dataframe with .wav file names\n", + "df = pd.DataFrame(file_paths, columns=[\"wav_audio_file_path\"])\n", + "df[\"label\"] = df.wav_audio_file_path.map(lambda x: int(Path(x).parts[-1].split(\"_\")[0]))\n", + "df.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "I8JqhOZgi94g" + }, + "outputs": [], + "source": [ + "import torchaudio\n", + "\n", + "def extract_audio_embeddings(model, wav_audio_file_path: str) -> tuple:\n", + " \"\"\"Feature extractor that embeds audio into a vector.\"\"\"\n", + " signal, fs = torchaudio.load(wav_audio_file_path, backend=\"ffmpeg\") # Reformat audio signal into a tensor\n", + " embeddings = model.encode_batch(\n", + " signal\n", + " ) # Pass tensor through pretrained neural net and extract representation\n", + " return embeddings" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2FSQ2GR9R_YA" + }, + "outputs": [], + "source": [ + "# Extract audio embeddings\n", + "embeddings_list = []\n", + "for i, file_name in enumerate(df.wav_audio_file_path): # for each .wav file name\n", + " embeddings = extract_audio_embeddings(feature_extractor, file_name)\n", + " embeddings_list.append(embeddings.cpu().numpy())\n", + "\n", + "embeddings_array = np.squeeze(np.array(embeddings_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dELkcdXgjTn_" + }, + "source": [ + "Now we have our features in a 2D numpy array. Each row in the array corresponds to an audio clip. We're now able to represent each audio clip as a 512-dimensional feature vector!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kAkY31IVXyr8", + "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" + }, + "outputs": [], + "source": [ + "print(embeddings_array)\n", + "print(\"Shape of array: \", embeddings_array.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o4RBcaARmfVG" + }, + "source": [ + "## 4. Fit linear model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y9BIVyI9kHa4" + }, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted network embeddings.\n", + "\n", + "To identify label issues, cleanlab requires a probabilistic prediction from your model for every datapoint that should be considered. However these predictions will be _overfit_ (and thus unreliable) for datapoints the model was previously trained on. cleanlab is intended to only be used with **out-of-sample** predicted probabilities, i.e. on datapoints held-out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset, by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. An additional benefit of cross-validation is that it provides more reliable evaluation of our model than a single training/validation split. We can obtain cross-validated out-of-sample predicted probabilities from any classifier via the [cross_val_predict](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html) wrapper provided in scikit-learn.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i_drkY9YOcw4" + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "model = LogisticRegression(C=0.01, max_iter=1000, tol=1e-2, random_state=SEED)\n", + "\n", + "num_crossval_folds = 5 # can decrease this value to reduce runtime, or increase it to get better results\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=embeddings_array, y=df.label.values, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FW1yI9Ryrfkj" + }, + "source": [ + "For each audio clip, the corresponding predicted probabilities in `pred_probs` are produced by a copy of our `LogisticRegression` model that has never been trained on this audio clip. Hence we call these predictions _out-of-sample_. An additional benefit of cross-validation is that it provides more reliable evaluation of our model than a single training/validation split.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_b-AQeoXOc7q", + "outputId": "15ae534a-f517-4906-b177-ca91931a8954" + }, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "predicted_labels = pred_probs.argmax(axis=1)\n", + "cv_accuracy = accuracy_score(df.label.values, predicted_labels)\n", + "print(f\"Cross-validated estimate of accuracy on held-out data: {cv_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SPz8WBwIlxUE" + }, + "source": [ + "## 5. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "laui-jXMm6qR" + }, + "source": [ + "Based on the given labels, out-of-sample predicted probabilities and features, cleanlab can quickly help us identify label issues in our dataset. For a dataset with N examples from K classes, the labels should be a 1D array of length N and predicted probabilities should be a 2D (N x K) array. \n", + "\n", + "Here, we use cleanlab to find potential label errors in our data. `Datalab` has several ways of loading the data. In this case, we can just pass the DataFrame created above to instantiate the object. We will then pass in the predicted probabilites to the `find_issues()` method so that Datalab can use them to find potential label errors in our data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(df, label_name=\"label\")\n", + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\":{}})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can view the results of running Datalab by calling the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We observe from the report that cleanlab has found some label issues in our dataset. Let us investigate these examples further.\n", + "\n", + "We can view the more details about the label quality for each example using the `get_issues` method, specifying `label` as the issue type." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled).\n", + "\n", + "We can then filter for the examples that have been identified as a label error:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "identified_label_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = identified_label_issues.sort_values(\"label_score\").index\n", + "\n", + "print(f\"Here are indices of the most likely errors: \\n {lowest_quality_labels.values}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iI07jQ0BnTgt" + }, + "source": [ + "These examples flagged by cleanlab are those worth inspecting more closely." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 237 + }, + "id": "FQwRHgbclpsO", + "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" + }, + "outputs": [], + "source": [ + "df.iloc[lowest_quality_labels]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PsDmd5WDnZJG" + }, + "source": [ + "Let's listen to some audio clips below of label issues that were identified in this list.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p9jLn3Lp85rU" + }, + "source": [ + "In this example, the given label is **6** but it sounds like **8**.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "id": "ff1NFVlDoysO", + "outputId": "8141a036-44c1-4349-c338-880432513e37" + }, + "outputs": [], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HwokyN0bfVsn" + }, + "source": [ + "In the three examples below, the given label is **6** but they sound quite ambiguous.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "id": "GZgovGkdiaiP", + "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" + }, + "outputs": [], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "id": "lfa2eHbMwG8R", + "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" + }, + "outputs": [], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "wav_file_name_example = \"spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav\"\n", + "display_example(wav_file_name_example)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-rf8iSngtV83" + }, + "source": [ + "You can see that even widely-used datasets like Spoken Digit contain problematic labels. Never blindly trust your data! You should always check it for potential issues, many of which can be easily identified by cleanlab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "highlighted_indices = [1946, 516, 469, 2132] # verify these examples were found in find_label_issues\n", + "if not all(x in lowest_quality_labels for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from label_issues_indices.\")" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "audio_quickstart_tutorial_deterministic.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/datalab/data_monitor.ipynb b/v2.6.5/_sources/tutorials/datalab/data_monitor.ipynb new file mode 100644 index 000000000..72c2c2c2c --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/data_monitor.ipynb @@ -0,0 +1,845 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DataMonitor: Leverage statistics from Datalab to audit new data\n", + "\n", + "Once you've fitted your `Datalab` instance on some training data, it stores some statistics about the training data that may prove useful to monitor new data.\n", + "This notebook shows the process of applying Datalab to find issues in training data and then using the same statistics to monitor new data.\n", + "\n", + "This involves a new class called `DataMonitor` that takes a Datalab instance as input to, then run similar issue checks on new data in a more efficient way, especially for\n", + "smaller batches of data.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + "\n", + "Already ran `Datalab` on a dataset? Already have (out-of-sample) `pred_probs` from a model trained on an new set of labels? Some numerical features available for the new data?\n", + "Run the code below to examine your dataset for label issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab.experimental.datalab.data_monitor import DataMonitor\n", + "\n", + "monitor = DataMonitor(datalab=your_datalab)\n", + "\n", + "for batch in new_data_batches:\n", + " # Process data to get labels and predicted probabilities\n", + " your_labels = get_your_labels(batch)\n", + " your_pred_probs = get_pred_probs(batch)\n", + " your_features = get_features(batch)\n", + " \n", + " # Find issues in the batch\n", + " monitor.find_issues(labels=your_labels, pred_probs=your_pred_probs, features=your_features)\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab\n", + "from cleanlab.experimental.datalab.data_monitor import DataMonitor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Create and load the data (can skip these details)\n", + "\n", + "For this tutorial, we'll re-use the toy classification dataset from the `Datalab` quickstart tutorial. The dataset has two numerical features and a label column with three possible classes. Each example is classified as either: *low*, *mid* or *high*.\n", + "\n", + "Here we show a workflow for finding label issues on data unseen by `Datalab` using the `DataMonitor` class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(800, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.1, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(800, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.1, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_X, test_X, train_y_true, test_y_true, train_y, test_y, train_y_idx, test_y_idx = train_test_split(X_train, y_train_idx, noisy_labels, noisy_labels_idx, test_size=400, random_state=SEED)\n", + "data = {\"X\": train_X, \"y\": train_y}\n", + "test_data = {\"X\": test_X, \"y\": test_y}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_data(train_X, train_y_true, train_y_idx)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` and `DataMonitor` rely on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "\n", + "Similar to what is shown in the `Datalab` quickstart tutorial, this tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=train_X, y=train_y, cv=5, method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use Datalab to find issues in the dataset\n", + "\n", + "These steps are pretty much identical to the `Datalab` quickstart tutorial. We'll use the `Datalab` class to find issues in the training data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data=data, label_name=\"y\", task=\"classification\")\n", + "\n", + "# For simplicity, let's leverage the cross-validated predicted probabilities to find possible label issues\n", + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", + "\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Great! The `Datalab` instance has seen some training data and found some issues. This would be a good time to look at any major issues that may be easily resolved. For example, if there are many label errors of a certain class, you may want to investigate why this is happening and fix the issue at the source.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Use DataMonitor to find issues in new data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Now, how do you monitor new data for the same issues? You pass the `Datalab` instance to the `DataMonitor` class, which can then be used to monitor new data for the same issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up the data monitor\n", + "monitor = DataMonitor(datalab=lab)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For new data, you may be running model predictions on-the-fly and want to monitor the predictions for issues. \n", + "This requires a slightly different approach than the one used for training data, when feeding the data in batches to the DataMonitor.\n", + "\n", + "Here, we'll simulate a stream of data points annotated with some given labels and some model predictions. We'll then use the `DataMonitor` class to monitor the data stream for issues.\n", + "\n", + "Generally, you would have a model already trained on the full training data and would be running predictions on new data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tqdm.auto import tqdm\n", + "from time import sleep\n", + "\n", + "# Fit a classification model on the full training set\n", + "model = LogisticRegression()\n", + "model.fit(train_X, lab.labels)\n", + "\n", + "\n", + "# Here, we simulate a streaming scenario by processing some of test data, 1 sample at a time\n", + "batch_size = 1\n", + "def generate_stream(data: dict, batch_size=1, sleep_time=0.1):\n", + " n = len(next(iter(data.values())))\n", + " for i in tqdm(range(0, n, batch_size), total=n // batch_size, desc=f\"Streaming data, {batch_size} sample(s) at a time\"):\n", + " batch = {k: v[i:i + batch_size] for k, v in data.items()}\n", + " \n", + " # Simulate some processing time\n", + " sleep(sleep_time)\n", + " \n", + " yield {\"labels\": batch[\"y\"], \"pred_probs\": model.predict_proba(batch[\"X\"])}\n", + "\n", + "singleton_stream = generate_stream({\"X\": test_X[:50], \"y\": test_y[:50]})\n", + "# TODO: Add seamless Singleton Support designed to intuitively\n", + "# handle single data points without requiring the user to wrap singletons in additional data structures\n", + "\n", + "batched_stream = generate_stream({\"X\": test_X[50:], \"y\": test_y[50:]}, batch_size=50, sleep_time=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Process a stream of data to provide the necessary arguments for the find_issues method\n", + "for processed_singleton in singleton_stream:\n", + " monitor.find_issues(**processed_singleton)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same principle works for larger batches of data, but the main idea is to not exceed the memory limits of the system by loading the entire dataset at once." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for processed_batch in batched_stream:\n", + " monitor.find_issues(**processed_batch)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `DataMonitor` keeps track of the issue masks and issue scores for each data point that is streamed through it. During the call to `DataMonitor.find_issues`, any time an issue is found, it prints out the troublesome data points in the batch, along with the issue type and score." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Learn more about the issues in the additional data\n", + "\n", + "TODO\n", + "\n", + "The data monitor has several properties that allow you to inspect the results of\n", + "the full monitoring process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# View the full issues dataframe (analogous to the Datalab.issues DataFrame)\n", + "display(monitor.issues)\n", + "\n", + "# Look at particular issue types\n", + "# TODO\n", + "# monitor.get_issues(\"label\")\n", + "monitor.issues.sort_values(\"label_score\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Look at a summary of all the issue checks across the full monitoring process\n", + "monitor.issue_summary\n", + "\n", + "# TODO: Align the behavior of the DataMonitor.issue_summary with the Datalab.get_issue_summary method " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Finding outliers in new data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data=data)\n", + "\n", + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {}})\n", + "\n", + "lab.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up the data monitor\n", + "monitor = DataMonitor(datalab=lab)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Here, we simulate a streaming scenario by processing some of test data, 1 sample at a time\n", + "batch_size = 1\n", + "def generate_stream(data: dict, batch_size=1, sleep_time=0.1):\n", + " n = len(next(iter(data.values())))\n", + " for i in tqdm(range(0, n, batch_size), total=n // batch_size, desc=f\"Streaming data, {batch_size} sample(s) at a time\"):\n", + " batch = {k: v[i:i + batch_size] for k, v in data.items()}\n", + " \n", + " # Simulate some processing time\n", + " sleep(sleep_time)\n", + " \n", + " yield {\"features\": batch[\"X\"]}\n", + "\n", + "singleton_stream = generate_stream({\"X\": test_X[:50]})\n", + "# TODO: Add seamless Singleton Support designed to intuitively\n", + "# handle single data points without requiring the user to wrap singletons in additional data structures\n", + "\n", + "batched_stream = generate_stream({\"X\": test_X[50:]}, batch_size=50, sleep_time=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Process a stream of data to provide the necessary arguments for the find_issues method\n", + "for processed_singleton in singleton_stream:\n", + " monitor.find_issues(**processed_singleton)\n", + "\n", + "for processed_batch in batched_stream:\n", + " monitor.find_issues(**processed_batch)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8. Looking for both label issues and outliers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data=data, label_name=\"y\", task=\"classification\")\n", + "\n", + "lab.find_issues(features=data[\"X\"], pred_probs=pred_probs, issue_types={\"outlier\": {}, \"label\": {}})\n", + "\n", + "lab.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "monitor = DataMonitor(datalab=lab)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Here, we simulate a streaming scenario by processing some of test data, 1 sample at a time\n", + "batch_size = 1\n", + "def generate_stream(data: dict, batch_size=1, sleep_time=0.1):\n", + " n = len(next(iter(data.values())))\n", + " for i in tqdm(range(0, n, batch_size), total=n // batch_size, desc=f\"Streaming data, {batch_size} sample(s) at a time\"):\n", + " batch = {k: v[i:i + batch_size] for k, v in data.items()}\n", + " \n", + " # Simulate some processing time\n", + " sleep(sleep_time)\n", + " \n", + " yield {\"features\": batch[\"X\"], \"labels\": batch[\"y\"], \"pred_probs\": model.predict_proba(batch[\"X\"])}\n", + "\n", + "singleton_stream = generate_stream({\"X\": test_X[:50], \"y\": test_y[:50]})\n", + "# TODO: Add seamless Singleton Support designed to intuitively\n", + "# handle single data points without requiring the user to wrap singletons in additional data structures\n", + "\n", + "batched_stream = generate_stream({\"X\": test_X[50:], \"y\": test_y[50:]}, batch_size=50, sleep_time=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Process a stream of data to provide the necessary arguments for the find_issues method\n", + "for processed_singleton in singleton_stream:\n", + " monitor.find_issues(**processed_singleton)\n", + "\n", + "for processed_batch in batched_stream:\n", + " monitor.find_issues(**processed_batch)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "monitor.issue_summary" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v2.6.5/_sources/tutorials/datalab/datalab_advanced.ipynb b/v2.6.5/_sources/tutorials/datalab/datalab_advanced.ipynb new file mode 100644 index 000000000..d2832d402 --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -0,0 +1,812 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Datalab: Advanced workflows to audit your data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleanlab offers a `Datalab` object to identify various issues in your machine learning datasets that may negatively impact models if not addressed. By default, `Datalab` can help you identify noisy labels, outliers, (near) duplicates, and other types of problems that commonly occur in real-world data.\n", + "\n", + "`Datalab` performs these checks by utilizing the (probabilistic) predictions from *any* ML model that has already been trained or its learned representations of the data. Underneath the hood, this class calls all the appropriate cleanlab methods for your dataset and provided model outputs, in order to best audit the data and alert you of important issues. This makes it easy to apply many functionalities of this library all within a single line of code. \n", + "\n", + "**This tutorial will demonstrate some advanced functionalities of Datalab including:**\n", + "\n", + "- Incremental issue search\n", + "- Specifying nondefault arguments to issue checks\n", + "- Save and load Datalab objects\n", + "- Adding a custom IssueManager\n", + "\n", + "If you are new to `Datalab`, check out this [quickstart tutorial](datalab_quickstart.html) for a 5-min introduction!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you have some `features` as well? Run the code below to examine your dataset for multiple types of issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(features=your_feature_matrix, pred_probs=your_pred_probs)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Datalab` has additional dependencies that are not included in the standard installation of cleanlab.\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib \n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create and load the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll load a toy classification dataset for this tutorial. The dataset has two numerical features and a label column with three classes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(8, 6.5))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-3.5, 9.0)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.75, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.75, 0.45], title=\"Type of Issue\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In real-world scenarios, you won't know the true labels or the distribution of the features, so we won't use these in this tutorial, except for evaluation purposes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` relies on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "This tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=X_train, y=noisy_labels, cv=5, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instantiate Datalab object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we instantiate the Datalab object that will be used in the remainder in the tutorial by passing in the data created above.\n", + "\n", + "`Datalab` has several ways of loading the data. In this case, we'll simply wrap the training features and noisy labels in a dictionary so that we can pass it to `Datalab`.\n", + "\n", + "Other supported data formats for `Datalab` include: [HuggingFace Datasets](https://huggingface.co/docs/datasets/index) and [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). `Datalab` works across most data modalities (image, text, tabular, audio, etc). It is intended to find issues that commonly occur in datasets for which you have trained a supervised ML model, regardless of the type of data.\n", + "\n", + "Currently, pandas DataFrames that contain categorical columns might cause some issues when instantiating the `Datalab` object, so it is recommended to ensure that your DataFrame does not contain any categorical columns, or use other data formats (eg. python dictionary, HuggingFace Datasets) to pass in your data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = {\"X\": X_train, \"y\": noisy_labels}\n", + "\n", + "lab = Datalab(data, label_name=\"y\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 1**: Incremental issue search " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can call `find_issues` multiple times on a `Datalab` object to detect issues one type at a time.\n", + "\n", + "This is done via the `issue_types` argument which accepts a dictionary of issue types and any corresponding keyword arguments to specify nondefault keyword arguments to use for detecting each type of issues. In this first call, we only want to detect label issues, which are detected solely based on `pred_probs`, hence there is no need for us to pass in `features` here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}}) \n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check for additional types of issues with the same `Datalab`. Here, we would like to detect outliers and near duplicates which both utilize the features of the data.\n", + "\n", + "Notice that this second call to `find_issues()` updates the output of `report()`, we can see the existing label issues detected alongside the new issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {}, \"near_duplicate\": {}})\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 2**: Specifying nondefault arguments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also overwrite previously-executed checks for a type of issue. Here we re-run the detection of outliers, but specify that different non-default settings should be used (in this case, the number of neighbors `k` compared against to determine which datapoints are outliers). \n", + "The results from this new detection will replace the original outlier detection results in the updated `Datalab`. You could similarly specify non-default settings for other issue types in the first call to `Datalab.find_issues()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.find_issues(features=data[\"X\"], issue_types={\"outlier\": {\"k\": 30}})\n", + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also increase the verbosity of the `report` to see additional information about the data issues and control how many top-ranked examples are shown for each issue." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.report(num_examples=10, verbosity=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice how the number of flagged outlier issues has changed after specfying different settings to use for outlier detection." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 3**: Save and load Datalab objects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Datalab` can be saved to a folder at a specified path. In a future Python process, this path can be used to load the `Datalab` from file back into memory. Your dataset is not saved as part of this process, so you'll need to save/load it separately to keep working with it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "path = \"datalab-files\"\n", + "lab.save(path, force=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can load a `Datalab` object we have on file and view the previously detected issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "new_lab = Datalab.load(path)\n", + "new_lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Functionality 4**: Adding a custom IssueManager" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Datalab` detects pre-defined types of issues for you in one line of code: `find_issues()`. What if you want to check for other custom types of issues along with these pre-defined types, all within the same line of code?\n", + "\n", + "All issue types in `Datalab` are subclasses of cleanlab's `IssueManager` class.\n", + "To register a custom issue type for use with `Datalab`, simply also make it a subclass of `IssueManager`.\n", + "\n", + "The necessary members to implement in the subclass are:\n", + "\n", + "- A class variable called `issue_name` that acts as a unique identifier for the type of issue.\n", + "- An instance method called `find_issues` that:\n", + " - Computes a quality score for each example in the dataset (between 0-1), in terms of how *unlikely* it is to be an issue.\n", + " - Flags each example as an issue or not (may be based on thresholding the quality scores).\n", + " - Combine these in a dataframe that is assigned to an `issues` attribute of the `IssueManager`.\n", + " - Define a summary score for the overall quality of entire dataset, in terms of this type of issue. Set this score as part of the `summary` attribute of the `IssueManager`.\n", + " \n", + "To demonstrate this, we create an arbitrary issue type that checks the divisibility of an example's index in the dataset by 13." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab.datalab.internal.issue_manager import IssueManager\n", + "from cleanlab.datalab.internal.issue_manager_factory import register\n", + "\n", + "\n", + "def scoring_function(idx: int, div: int = 13) -> float:\n", + " if idx == 0:\n", + " # Zero excluded from the divisibility check, gets the highest score\n", + " return 1\n", + " rem = idx % div\n", + " inv_scale = idx // div\n", + " if rem == 0:\n", + " return 0.5 * (1 - np.exp(-0.1*(inv_scale-1)))\n", + " else:\n", + " return 1 - 0.49 * (1 - np.exp(-inv_scale**0.5))*rem/div\n", + "\n", + "\n", + "@register # register this issue type for use with Datalab\n", + "class SuperstitionIssueManager(IssueManager):\n", + " \"\"\"A custom issue manager that keeps track of issue indices that\n", + " are divisible by 13.\n", + " \"\"\"\n", + " description: str = \"Examples with indices that are divisible by 13 may be unlucky.\" # Optional\n", + " issue_name: str = \"superstition\"\n", + "\n", + " def find_issues(self, div=13, **_) -> None:\n", + " ids = self.datalab.issues.index.to_series()\n", + " issues_mask = ids.apply(lambda idx: idx % div == 0 and idx != 0)\n", + " scores = ids.apply(lambda idx: scoring_function(idx, div))\n", + " self.issues = pd.DataFrame(\n", + " {\n", + " f\"is_{self.issue_name}_issue\": issues_mask,\n", + " self.issue_score_key: scores,\n", + " },\n", + " )\n", + " summary_score = 1 - sum(issues_mask) / len(issues_mask)\n", + " self.summary = self.make_summary(score = summary_score)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once registered, this `IssueManager` will perform custom issue checks when `find_issues` is called on a `Datalab` instance.\n", + "\n", + "As our `Datalab` instance here already has results from the outlier and near duplicate checks, we perform the custom issue check separately." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.find_issues(issue_types={\"superstition\": {}})\n", + "lab.report()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/datalab/datalab_quickstart.ipynb b/v2.6.5/_sources/tutorials/datalab/datalab_quickstart.ipynb new file mode 100644 index 000000000..0f4f42bbe --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -0,0 +1,823 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Datalab: A unified audit to detect all kinds of issues in data and labels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, drift, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", + "\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Compute out-of-sample predicted probabilities for a sample dataset using cross-validation.\n", + "- Use `Datalab` to identify issues such as noisy labels, outliers, (near) duplicates, and other types of problems \n", + "- View the issue summaries and other information about our sample dataset\n", + "\n", + "You can easily replace our demo dataset with your own image/text/tabular/audio/etc dataset, and then run the same code to discover what sort of issues lurk within it!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you also have some numeric `features` (or model embeddings of data)? Run the code below to examine your dataset for multiple types of issues.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(features=your_feature_matrix, pred_probs=your_pred_probs)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Datalab` has additional dependencies that are not included in the standard installation of cleanlab.\n", + "\n", + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Create and load the data (can skip these details)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll load a toy classification dataset for this tutorial. The dataset has two numerical features and a label column with three possible classes. Each example is classified as either: *low*, *mid* or *high*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "SEED = 123\n", + "np.random.seed(SEED)\n", + "\n", + "BINS = {\n", + " \"low\": [-np.inf, 3.3],\n", + " \"mid\": [3.3, 6.6],\n", + " \"high\": [6.6, +np.inf],\n", + "}\n", + "\n", + "BINS_MAP = {\n", + " \"low\": 0,\n", + " \"mid\": 1,\n", + " \"high\": 2,\n", + "}\n", + "\n", + "\n", + "def create_data():\n", + "\n", + " X = np.random.rand(250, 2) * 5\n", + " y = np.sum(X, axis=1)\n", + " # Map y to bins based on the BINS dict\n", + " y_bin = np.array([k for y_i in y for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_bin_idx = np.array([BINS_MAP[k] for k in y_bin])\n", + "\n", + " # Split into train and test\n", + " X_train, X_test, y_train, y_test, y_train_idx, y_test_idx = train_test_split(\n", + " X, y_bin, y_bin_idx, test_size=0.5, random_state=SEED\n", + " )\n", + "\n", + " # Add several (5) out-of-distribution points. Sliding them along the decision boundaries\n", + " # to make them look like they are out-of-frame\n", + " X_out = np.array(\n", + " [\n", + " [-1.5, 3.0],\n", + " [-1.75, 6.5],\n", + " [1.5, 7.2],\n", + " [2.5, -2.0],\n", + " [5.5, 7.0],\n", + " ]\n", + " )\n", + " # Add a near duplicate point to the last outlier, with some tiny noise added\n", + " near_duplicate = X_out[-1:] + np.random.rand(1, 2) * 1e-6\n", + " X_out = np.concatenate([X_out, near_duplicate])\n", + "\n", + " y_out = np.sum(X_out, axis=1)\n", + " y_out_bin = np.array([k for y_i in y_out for k, v in BINS.items() if v[0] <= y_i < v[1]])\n", + " y_out_bin_idx = np.array([BINS_MAP[k] for k in y_out_bin])\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_out])\n", + " y_train = np.concatenate([y_train, y_out])\n", + " y_train_idx = np.concatenate([y_train_idx, y_out_bin_idx])\n", + "\n", + " # Add an exact duplicate example to the training set\n", + " exact_duplicate_idx = np.random.randint(0, len(X_train))\n", + " X_duplicate = X_train[exact_duplicate_idx, None]\n", + " y_duplicate = y_train[exact_duplicate_idx, None]\n", + " y_duplicate_idx = y_train_idx[exact_duplicate_idx, None]\n", + "\n", + " # Add to train\n", + " X_train = np.concatenate([X_train, X_duplicate])\n", + " y_train = np.concatenate([y_train, y_duplicate])\n", + " y_train_idx = np.concatenate([y_train_idx, y_duplicate_idx])\n", + "\n", + " py = np.bincount(y_train_idx) / float(len(y_train_idx))\n", + " m = len(BINS)\n", + "\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.9 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", + " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + " # Assign few datapoints to rare class\n", + " random_idx = np.random.randint(0, X_train.shape[0], 3)\n", + " noisy_labels[random_idx] = \"max\"\n", + " noisy_labels_idx[random_idx] = np.max(y_bin_idx) + 1\n", + " \n", + "\n", + " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate = create_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a scatter plot of the features, with a color corresponding to the observed labels. Incorrect given labels are highlighted in red if they do not match the true label, outliers highlighted with an a black cross, and duplicates highlighted with a cyan cross." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(8, 6.5))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-3.5, 9.0)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.75, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.75, 0.45], title=\"Type of Issue\", alignment=\"left\", title_fontproperties={\"weight\":\"semibold\"})\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate):\n", + " # Plot data with clean labels and noisy labels, use BINS_MAP for the legend\n", + " fig, ax = plt.subplots(figsize=(6, 4))\n", + " \n", + " low = ax.scatter(X_train[noisy_labels_idx == 0, 0], X_train[noisy_labels_idx == 0, 1], label=\"low\")\n", + " mid = ax.scatter(X_train[noisy_labels_idx == 1, 0], X_train[noisy_labels_idx == 1, 1], label=\"mid\")\n", + " high = ax.scatter(X_train[noisy_labels_idx == 2, 0], X_train[noisy_labels_idx == 2, 1], label=\"high\")\n", + " \n", + " ax.set_title(\"Noisy labels\")\n", + " ax.set_xlabel(r\"$x_1$\", fontsize=16)\n", + " ax.set_ylabel(r\"$x_2$\", fontsize=16)\n", + "\n", + " # Plot true boundaries (x+y=3.3, x+y=6.6)\n", + " ax.set_xlim(-2.5, 8.5)\n", + " ax.set_ylim(-3.5, 9.0)\n", + " ax.plot([-0.7, 4.0], [4.0, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + " ax.plot([-0.7, 7.3], [7.3, -0.7], color=\"k\", linestyle=\"--\", alpha=0.5)\n", + "\n", + " # Draw red circles around the points that are misclassified (i.e. the points that are in the wrong bin)\n", + " for i, (X, y) in enumerate(zip([X_train, X_train], [y_train_idx, noisy_labels_idx])):\n", + " for j, (k, v) in enumerate(BINS_MAP.items()):\n", + " label_err = ax.scatter(\n", + " X[(y == v) & (y != y_train_idx), 0],\n", + " X[(y == v) & (y != y_train_idx), 1],\n", + " s=180,\n", + " marker=\"o\",\n", + " facecolor=\"none\",\n", + " edgecolors=\"red\",\n", + " linewidths=2.5,\n", + " alpha=0.5,\n", + " label=\"Label error\",\n", + " )\n", + "\n", + "\n", + " outlier = ax.scatter(X_out[:, 0], X_out[:, 1], color=\"k\", marker=\"x\", s=100, linewidth=2, label=\"Outlier\")\n", + "\n", + " # Plot the exact duplicate\n", + " dups = ax.scatter(\n", + " X_duplicate[:, 0],\n", + " X_duplicate[:, 1],\n", + " color=\"c\",\n", + " marker=\"x\",\n", + " s=100,\n", + " linewidth=2,\n", + " label=\"Duplicates\",\n", + " )\n", + " \n", + " title_fontproperties = {\"weight\":\"semibold\", \"size\": 8}\n", + " first_legend = ax.legend(handles=[low, mid, high], loc=[0.76, 0.7], title=\"Given Class Label\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " second_legend = ax.legend(handles=[label_err, outlier, dups], loc=[0.76, 0.46], title=\"Type of Issue\", alignment=\"left\", title_fontproperties=title_fontproperties, fontsize=8, markerscale=0.5)\n", + " \n", + " ax = plt.gca().add_artist(first_legend)\n", + " ax = plt.gca().add_artist(second_legend)\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_data(X_train, y_train_idx, noisy_labels_idx, X_out, X_duplicate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In real-world scenarios, you won't know the true labels or the distribution of the features, so we won't use these in this tutorial, except for evaluation purposes.\n", + "\n", + "\n", + "\n", + "`Datalab` has several ways of loading the data.\n", + "In this case, we'll simply wrap the training features and noisy labels in a dictionary so that we can pass it to `Datalab`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = {\"X\": X_train, \"y\": noisy_labels}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other supported data formats for `Datalab` include: [HuggingFace Datasets](https://huggingface.co/docs/datasets/index) and [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). `Datalab` works across most data modalities (image, text, tabular, audio, etc). It is intended to find issues that commonly occur in datasets for which you have trained a supervised ML model, regardless of the type of data.\n", + "\n", + "Currently, pandas DataFrames that contain categorical columns might cause some issues when instantiating the `Datalab` object, so it is recommended to ensure that your DataFrame does not contain any categorical columns, or use other data formats (eg. python dictionary, HuggingFace Datasets) to pass in your data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Get out-of-sample predicted probabilities from a classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To detect certain types of issues in classification data (e.g. label errors), `Datalab` relies on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example. \n", + "\n", + "This tutorial uses a simple logistic regression model \n", + "and the `cross_val_predict()` function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with *any* other classifier model and train it with cross-validation to get out-of-sample predictions.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=data[\"X\"], y=data[\"y\"], cv=5, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use Datalab to find issues in the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create a `Datalab` object from the dataset, also providing the name of the label column in the dataset. Only instantiate one `Datalab` object per dataset, and note that only classification datasets are supported for now.\n", + "\n", + "All that is need to audit your data is to call `find_issues()`.\n", + "This method accepts various inputs like: predicted class probabilities, numeric feature representations of the data. The more information you provide here, the more thoroughly `Datalab` will audit your data! Note that `features` should be some numeric representation of each example, either obtained through preprocessing transformation of your raw data or embeddings from a (pre)trained model. In this case, our data is already entirely numeric so we just provide the features directly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, features=data[\"X\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's review the results of this audit using `report()`.\n", + "This provides a high-level summary of each type of issue found in the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Learn more about the issues in your dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Datalab detects all sorts of issues in a dataset and what to do with the findings will vary case-by-case. For automated improvement of a dataset via best practices to handle auto-detected issues, try [Cleanlab Studio](https://cleanlab.ai/?utm_source=internal&utm_medium=blog&utm_campaign=clostostudio).\n", + "\n", + "To conceptually understand how each type of issue is defined and what it means if detected in your data, check out the [Issue Type Descriptions](../../cleanlab/datalab/guide/issue_type_description.html) page. The [Datalab Issue Types](https://docs.cleanlab.ai/stable/cleanlab/datalab/guide/issue_type_description.html) page also lists additional types of issues that `Datalab.find_issues()` can detect, as well as optional parameters you can specify for greater control over how your data are checked.\n", + "\n", + "Datalab offers several methods to understand more details about a particular issue in your dataset.\n", + "The `get_issue_summary()` method fetches summary statistics regarding how severe each type of issue is overall across the whole dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.get_issue_summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the returned summary DataFrame: LOWER `score` values indicate types of issues that are MORE severe *overall* across the dataset (lower-quality data in terms of this issue), HIGHER `num_issues` values indicate types of issues that are MORE severe *overall* across the dataset (more datapoints appear to exhibit this issue).\n", + "\n", + "We can also only request the summary for a particular type of issue." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.get_issue_summary(\"label\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `get_issues()` method returns information for each *individual example* in the dataset including: whether or not it is plagued by this issue (Boolean), as well as a *quality score* (numeric value betweeen 0 to 1) quantifying how severe this issue appears to be for this particular example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.get_issues().head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each example receives a separate *quality score* for each issue type (eg. `outlier_score` is the *quality score* for the `outlier` issue type, quantifying *how typical* each datapoint appears to be). LOWER scores indicate MORE severe instances of the issue, so the most-concerning datapoints have the lowest quality scores. Sort by these scores to see the most-concerning examples in your dataset for each type of issue. The quality scores are directly comparable between examples/datasets, but not across different issue types.\n", + "\n", + "Similar to above, we can pass the type of issue as a argument to `get_issues()` to get the information for one particular type of issue.\n", + "As an example, let's see the examples identified as having the most severe *label* issues:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "examples_w_issue = (\n", + " lab.get_issues(\"label\")\n", + " .query(\"is_label_issue\")\n", + " .sort_values(\"label_score\")\n", + ")\n", + "\n", + "examples_w_issue.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inspecting the labels for some of these top-ranked examples, we find their given label was indeed incorrect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Get additional information \n", + "\n", + "Miscellaneous additional information (statistics, intermediate results, etc) related to a particular issue type can be accessed via `get_info(issue_name)`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "label_issues_info = lab.get_info(\"label\")\n", + "label_issues_info[\"classes_by_label_quality\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This portion of the info shows overall label quality summaries of all examples annotated as a particular class (e.g. the `Label Issues` column is the estimated number of examples labeled as this class that should actually have a different label).\n", + "To learn more about this, see the documentation for the [cleanlab.dataset.rank_classes_by_label_quality](../../cleanlab/dataset.html#cleanlab.dataset.rank_classes_by_label_quality)\n", + "method.\n", + "\n", + "You can view all sorts of information regarding your dataset using the `get_info()` method with no arguments passed. This is not printed here as it returns a huge dictionary but feel free to check it out yourself! Don't worry if you don't understand all of the miscellaneous information in this `info` dictionary, none of it is critical to diagnose the issues in your dataset. Understanding miscellaneous info may require reading the documentation of the miscellaneous cleanlab functions which computed it.\n", + "\n", + "#### Near duplicate issues \n", + "\n", + "Let's also inspect the examples flagged as (near) duplicates.\n", + "For each such example, the `near_duplicate_sets` column below indicates *which* other examples in the dataset are highly similar to it (this value is empty for examples not flagged as nearly duplicated). The `near_duplicate_score` quantifies *how similar* each example is to its nearest neighbor in the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.get_issues(\"near_duplicate\").query(\"is_near_duplicate_issue\").sort_values(\"near_duplicate_score\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?). \n", + "\n", + "Other issues detected in this tutorial dataset include **outliers** and **class imbalance**, see the [Issue Type Descriptions](../../cleanlab/datalab/guide/issue_type_description.html) for more information. `Datalab` makes it very easy to check your datasets for all sorts of issues that are important to deal with for training robust models. The inputs it uses to detect issues can come from *any* model you have trained (the better your model, the more accurate the issue detection will be).\n", + "\n", + "To learn more, check out this [example notebook](https://github.com/cleanlab/examples/blob/master/datalab_image_classification/datalab.ipynb) (demonstrates Datalab applied to a real dataset) and the [advanced Datalab tutorial](datalab_advanced.html) (demonstrates configuration and customization options to exert greater control)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "from sklearn.metrics import roc_auc_score\n", + "\n", + "issue_results = lab.get_issues(\"label\")\n", + "outlier_results = lab.get_issues(\"outlier\")\n", + "duplicate_results = lab.get_issues(\"near_duplicate\")\n", + "\n", + "def jaccard_similarity(l1, l2):\n", + " s1 = set(l1)\n", + " s2 = set(l2)\n", + " intersect_set = s1.intersection(s2)\n", + " union_set = s1.union(s2)\n", + " if len(intersect_set) == 0:\n", + " return 0\n", + " return len(intersect_set) / len(union_set)\n", + "\n", + "identified_label_issues_indices = issue_results[issue_results[\"is_label_issue\"] == True].index.tolist()\n", + "label_issue_indices = np.where(y_train_idx != noisy_labels_idx)[0]\n", + "\n", + "label_quality_scores = issue_results[\"label_score\"].tolist()\n", + "Z = (y_train_idx == noisy_labels_idx).astype(float).tolist()\n", + "\n", + "identified_outlier_issues_indices = outlier_results[outlier_results[\"is_outlier_issue\"] == True].index.to_list()\n", + "outlier_issue_indices = list(range(125, 130+1))\n", + "exact_duplicate_idx = [index for index, elem in enumerate(X_train) if (elem == X_duplicate).all()][0]\n", + "if exact_duplicate_idx >= 125: # if the random index selected to create a duplicate >= 125, then the last point is also an outlier\n", + " outlier_issue_indices.append(131)\n", + " \n", + "identified_duplicate_issues_indices = duplicate_results[duplicate_results[\"is_near_duplicate_issue\"] == True].index.tolist()\n", + "duplicate_issue_indices = [exact_duplicate_idx, 129, 130, 131]\n", + "\n", + "\n", + "assert jaccard_similarity(identified_label_issues_indices, label_issue_indices) > 0.4\n", + "assert roc_auc_score(Z, label_quality_scores) > 0.9\n", + "assert jaccard_similarity(identified_outlier_issues_indices, outlier_issue_indices) > 0.9\n", + "assert jaccard_similarity(identified_duplicate_issues_indices, duplicate_issue_indices) > 0.9" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/datalab/image.ipynb b/v2.6.5/_sources/tutorials/datalab/image.ipynb new file mode 100644 index 000000000..39bf5d7bc --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/image.ipynb @@ -0,0 +1,1321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in an Image Dataset with Datalab\n", + "\n", + "This quickstart tutorial demonstrates how to find issues in image classification data. Here we use the Fashion-MNIST dataset (60,000 images of fashion products from 10 categories), but you can replace this with your own image classification dataset and still follow the same tutorial.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Build a simple [PyTorch](https://pytorch.org/) neural net.\n", + "\n", + "- Use cross-validation to compute out-of-sample predicted probabilities (`pred_probs`) and feature embeddings (`features`) for each image in the dataset.\n", + "\n", + "- Utilize these `pred_probs` and `features` to identify potential issues within the dataset using the `Datalab` class from cleanlab. The issues found by cleanlab include mislabeled examples, near duplicates, outliers, and image-specific problems such as excessively dark or low information images." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have a ML model? Run cross-validation to get out-of-sample `pred_probs` and provide `features` (embeddings of the data). Then use the code below to find any potential issues in your dataset (you can also run this code with one of `pred_probs` or `features` instead of both, but less issue types will be considered).\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\") # include `image_key` to detect low-quality images\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", + "\n", + "lab.report()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib torch torchvision datasets>=2.19.0\n", + "!pip install \"cleanlab[image]\"\n", + "# We install cleanlab with extra dependencies for image data\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install \"cleanlab[image] @ git+https://github.com/cleanlab/cleanlab.git\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (this cell is hidden from docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"torch\", \"torchvision\", \"datasets\", \"cleanvision\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install \"cleanlab[image]\" # for colab\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " missing_dependencies = []\n", + " for dependency in dependencies:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")\n", + "\n", + "# Suppress benign warnings: \n", + "import warnings \n", + "warnings.filterwarnings(\"ignore\", \"Lazy modules are a new feature.*\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader, TensorDataset, Subset\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as optim\n", + "\n", + "from sklearn.model_selection import StratifiedKFold\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from tqdm.autonotebook import tqdm\n", + "import math\n", + "import time\n", + "import multiprocessing\n", + "\n", + "from cleanlab import Datalab\n", + "from datasets import load_dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Fetch and normalize the Fashion-MNIST dataset\n", + "\n", + "Load train split of the fashion_mnist dataset and view the number of rows and columns in the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = load_dataset(\"fashion_mnist\", split=\"train\")\n", + "dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get number of classes in the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_classes = len(dataset.features[\"label\"].names)\n", + "num_classes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert PIL image to torch tensors\n", + "transformed_dataset = dataset.with_format(\"torch\")\n", + "\n", + "\n", + "# Apply transformations\n", + "def normalize(example):\n", + " example[\"image\"] = (example[\"image\"] / 255.0) # each pixel value was originally between 0 and 255 \n", + " return example\n", + "\n", + "\n", + "transformed_dataset = transformed_dataset.map(normalize, num_proc=multiprocessing.cpu_count())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "torch_dataset = TensorDataset(transformed_dataset[\"image\"], transformed_dataset[\"label\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Load any huggingface dataset or your local image folder dataset, apply relevant transformations, and continue with the rest of the tutorial.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Define a classification model\n", + "Here, we define a simple neural network with PyTorch. Note this is just a toy model to ensure quick runtimes for the tutorial, you can replace it with any other (larger) PyTorch network." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Net(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.cnn = nn.Sequential(\n", + " nn.Conv2d(1, 6, 5),\n", + " nn.ReLU(),\n", + " nn.BatchNorm2d(6),\n", + " nn.MaxPool2d(2, 2),\n", + " nn.Conv2d(6, 16, 5, bias=False),\n", + " nn.ReLU(),\n", + " nn.BatchNorm2d(16),\n", + " nn.MaxPool2d(2, 2),\n", + " )\n", + " self.linear = nn.Sequential(nn.LazyLinear(128), nn.ReLU())\n", + " self.output = nn.Sequential(nn.Linear(128, num_classes))\n", + "\n", + " def forward(self, x):\n", + " x = self.embeddings(x)\n", + " x = self.output(x)\n", + " return x\n", + "\n", + " def embeddings(self, x):\n", + " x = self.cnn(x)\n", + " x = torch.flatten(x, 1) # flatten all dimensions except batch\n", + " x = self.linear(x)\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai\n", + "\n", + "SEED = 123 # for reproducibility\n", + "np.random.seed(SEED)\n", + "torch.manual_seed(SEED)\n", + "torch.backends.cudnn.deterministic = True\n", + "torch.backends.cudnn.benchmark = True\n", + "torch.cuda.manual_seed_all(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Helper methods for cross validation **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "# Set device\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "\n", + "# Method to calculate validation accuracy in each epoch\n", + "def get_test_accuracy(net, testloader):\n", + " net.eval()\n", + " accuracy = 0.0\n", + " total = 0.0\n", + "\n", + " with torch.no_grad():\n", + " for data in testloader:\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " # run the model on the test set to predict labels\n", + " outputs = net(images)\n", + "\n", + " # the label with the highest energy will be our prediction\n", + " _, predicted = torch.max(outputs.data, 1)\n", + " total += labels.size(0)\n", + " accuracy += (predicted == labels).sum().item()\n", + "\n", + " # compute the accuracy over all test images\n", + " accuracy = 100 * accuracy / total\n", + " return accuracy\n", + "\n", + "\n", + "# Method for training the model\n", + "def train(trainloader, testloader, n_epochs, patience):\n", + " model = Net()\n", + "\n", + " criterion = nn.CrossEntropyLoss()\n", + " optimizer = optim.AdamW(model.parameters())\n", + "\n", + " model = model.to(device)\n", + "\n", + " best_test_accuracy = 0.0\n", + "\n", + " for epoch in range(n_epochs): # loop over the dataset multiple times\n", + " start_epoch = time.time()\n", + " running_loss = 0.0\n", + "\n", + " for _, data in enumerate(trainloader):\n", + " # get the inputs; data is a dict of {\"image\": images, \"label\": labels}\n", + "\n", + " inputs, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.detach().cpu().item()\n", + "\n", + " # Get accuracy on the test set\n", + " accuracy = get_test_accuracy(model, testloader)\n", + "\n", + " if accuracy > best_test_accuracy:\n", + " best_epoch = epoch\n", + "\n", + " # Condition for early stopping\n", + " if epoch - best_epoch > patience:\n", + " print(f\"Early stopping at epoch {epoch + 1}\")\n", + " break\n", + "\n", + " end_epoch = time.time()\n", + "\n", + " print(\n", + " f\"epoch: {epoch + 1} loss: {running_loss / len(trainloader):.3f} test acc: {accuracy:.3f} time_taken: {end_epoch - start_epoch:.3f}\"\n", + " )\n", + " return model\n", + "\n", + "\n", + "# Method for computing out-of-sample embeddings\n", + "def compute_embeddings(model, testloader):\n", + " embeddings_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " embeddings = model.embeddings(images)\n", + " embeddings_list.append(embeddings.cpu())\n", + "\n", + " return torch.vstack(embeddings_list)\n", + "\n", + "\n", + "# Method for computing out-of-sample predicted probabilities\n", + "def compute_pred_probs(model, testloader):\n", + " pred_probs_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[\"image\"].to(device), data[\"label\"].to(device)\n", + "\n", + " outputs = model(images)\n", + " pred_probs_list.append(outputs.cpu())\n", + "\n", + " return torch.vstack(pred_probs_list)\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Set device\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "\n", + "# Method to calculate validation accuracy in each epoch\n", + "def get_test_accuracy(net, testloader):\n", + " net.eval()\n", + " accuracy = 0.0\n", + " total = 0.0\n", + "\n", + " with torch.no_grad():\n", + " for data in testloader:\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " # run the model on the test set to predict labels\n", + " outputs = net(images)\n", + "\n", + " # the label with the highest energy will be our prediction\n", + " _, predicted = torch.max(outputs.data, 1)\n", + " total += labels.size(0)\n", + " accuracy += (predicted == labels).sum().item()\n", + "\n", + " # compute the accuracy over all test images\n", + " accuracy = 100 * accuracy / total\n", + " return accuracy\n", + "\n", + "\n", + "# Method for training the model\n", + "def train(trainloader, testloader, n_epochs, patience):\n", + " model = Net()\n", + "\n", + " criterion = nn.CrossEntropyLoss()\n", + " optimizer = optim.AdamW(model.parameters())\n", + "\n", + " model = model.to(device)\n", + "\n", + " best_test_accuracy = 0.0\n", + "\n", + " for epoch in range(n_epochs): # loop over the dataset multiple times\n", + " start_epoch = time.time()\n", + " running_loss = 0.0\n", + "\n", + " for _, data in enumerate(trainloader):\n", + " # get the inputs; data is a dict of {\"image\": images, \"label\": labels}\n", + "\n", + " inputs, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.detach().cpu().item()\n", + "\n", + " # Get accuracy on the test set\n", + " accuracy = get_test_accuracy(model, testloader)\n", + "\n", + " if accuracy > best_test_accuracy:\n", + " best_epoch = epoch\n", + "\n", + " # Condition for early stopping\n", + " if epoch - best_epoch > patience:\n", + " print(f\"Early stopping at epoch {epoch + 1}\")\n", + " break\n", + "\n", + " end_epoch = time.time()\n", + "\n", + " print(\n", + " f\"epoch: {epoch + 1} loss: {running_loss / len(trainloader):.3f} test acc: {accuracy:.3f} time_taken: {end_epoch - start_epoch:.3f}\"\n", + " )\n", + " return model\n", + "\n", + "\n", + "# Method for computing out-of-sample embeddings\n", + "def compute_embeddings(model, testloader):\n", + " embeddings_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " embeddings = model.embeddings(images)\n", + " embeddings_list.append(embeddings.cpu())\n", + "\n", + " return torch.vstack(embeddings_list)\n", + "\n", + "\n", + "# Method for computing out-of-sample predicted probabilities\n", + "def compute_pred_probs(model, testloader):\n", + " pred_probs_list = []\n", + "\n", + " with torch.no_grad():\n", + " for data in tqdm(testloader):\n", + " images, labels = data[0].to(device), data[1].to(device)\n", + "\n", + " outputs = model(images)\n", + " pred_probs_list.append(outputs.cpu())\n", + "\n", + " return torch.vstack(pred_probs_list)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Prepare the dataset for K-fold cross-validation \n", + "\n", + "To find label issues based on `pred_probs`, we recommend out-of-sample predictions, which can be produced [via K-fold cross-validation](https://docs.cleanlab.ai/stable/tutorials/pred_probs_cross_val.html). To ensure this tutorial runs quickly, we set K and other important neural network training hyperparameters to small values here. Use larger values to get good results in practice!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K = 3 # Number of cross-validation folds. Set to small value here to ensure quick runtimes, we recommend 5 or 10 in practice for more accurate estimates.\n", + "n_epochs = 2 # Number of epochs to train model for. Set to a small value here for quick runtime, you should use a larger value in practice.\n", + "patience = 2 # Parameter for early stopping. If the validation accuracy does not improve for this many epochs, training will stop.\n", + "train_batch_size = 64 # Batch size for training\n", + "test_batch_size = 512 # Batch size for testing\n", + "num_workers = multiprocessing.cpu_count() # Number of workers for data loaders\n", + "\n", + "# Create k splits of the dataset\n", + "kfold = StratifiedKFold(n_splits=K, shuffle=True, random_state=0)\n", + "splits = kfold.split(transformed_dataset, transformed_dataset[\"label\"])\n", + "\n", + "train_id_list, test_id_list = [], []\n", + "\n", + "for fold, (train_ids, test_ids) in enumerate(splits):\n", + " train_id_list.append(train_ids)\n", + " test_id_list.append(test_ids)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Compute out-of-sample predicted probabilities and feature embeddings\n", + "\n", + "We use cross-validation to compute out-of-sample predicted probabilities separately for each dataset fold. However, we use only one model to generate embeddings for all the images across the full dataset. This ensures all feature embeddings lie in the same representation space for more accurate detection of data issues. Here we embed all the data using our model trained in the first cross-validation fold, but you could also train a separate embedding model on the full dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pred_probs_list, embeddings_list = [], []\n", + "embeddings_model = None\n", + "\n", + "for i in range(K):\n", + " print(f\"\\nTraining on fold: {i+1} ...\")\n", + "\n", + " # Create train and test sets and corresponding dataloaders\n", + " trainset = Subset(torch_dataset, train_id_list[i])\n", + " testset = Subset(torch_dataset, test_id_list[i])\n", + "\n", + " trainloader = DataLoader(\n", + " trainset,\n", + " batch_size=train_batch_size,\n", + " shuffle=False,\n", + " num_workers=num_workers,\n", + " pin_memory=True,\n", + " )\n", + " testloader = DataLoader(\n", + " testset, batch_size=test_batch_size, shuffle=False, num_workers=num_workers, pin_memory=True\n", + " )\n", + "\n", + " # Train model\n", + " model = train(trainloader, testloader, n_epochs, patience)\n", + " if embeddings_model is None:\n", + " embeddings_model = model\n", + "\n", + " # Compute out-of-sample embeddings\n", + " print(\"Computing feature embeddings ...\")\n", + " fold_embeddings = compute_embeddings(embeddings_model, testloader)\n", + " embeddings_list.append(fold_embeddings)\n", + "\n", + " print(\"Computing predicted probabilities ...\")\n", + " # Compute out-of-sample predicted probabilities\n", + " fold_pred_probs = compute_pred_probs(model, testloader)\n", + " pred_probs_list.append(fold_pred_probs)\n", + "\n", + "print(\"Finished Training\")\n", + "\n", + "\n", + "# Combine embeddings and predicted probabilities from each fold\n", + "features = torch.vstack(embeddings_list).numpy()\n", + "\n", + "logits = torch.vstack(pred_probs_list)\n", + "pred_probs = nn.Softmax(dim=1)(logits).numpy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reorder rows of the dataset based on row order in `features` and `pred_probs`. **Carefully ensure your ordering of the dataset matches these objects!**\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "indices = np.hstack(test_id_list)\n", + "dataset = dataset.select(indices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Use cleanlab to find issues\n", + "\n", + "Based on the out-of-sample predicted probabilities and feature embeddings from our ML model, cleanlab can automatically detect issues in our labeled dataset. \n", + "\n", + "Here we use cleanlab's `Datalab` class to find issues in our data. `Datalab` supports several data formats, in this tutorial we have a Hugging Face Dataset. `Datalab` takes in two optional dataset arguments: `label_name`, which corresponds to the column containing labels (if your dataset is labeled), and `image_key`, corresponding to the name of a key in your vision dataset to access the raw images. When you provide these optional arguments, `Datalab` will audit your dataset for more types of issues than it would by default." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `find_issues` method can automatically infer the types of issues to be checked for based on the provided arguments. Here, we provide `features` and `pred_probs` as arguments. If you want to check for a specific issue type, you can do so using the `issue_types` argument. Check the [documentation](https://docs.cleanlab.ai/stable/cleanlab/datalab/datalab.html#cleanlab.datalab.datalab.Datalab.find_issues) for a more comprehensive guide on `find_issues` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.find_issues(features=features, pred_probs=pred_probs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View report\n", + "\n", + "After the audit is complete, we can view a high-level report of detected data issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "Let's first inspect mislabeled examples in the dataset. Such errors occur when the given label for an image is incorrect, usually due to mistakes made by data annotators. Cleanlab automatically detects mislabeled data that you can correct to improve your dataset.\n", + "\n", + "For each type of issue that Cleanlab detects, you can use the `get_issues` method to see which examples in the dataset exhibit this type of issue (and how severely). Let's see which images in our dataset are estimated to be mislabeled:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above dataframe contains a `label_score` for each example in the dataset. These numeric quality scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. It contains a boolean column `is_label_issue` specifying whether or not each example appears to have a label issue (indicating it is likely mislabeled).\n", + "\n", + "Filter the `label_issues` DataFrame to see which examples have label issues, and sort by `label_score`(in ascending order) to see the most likely mislabeled examples first." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "label_issues_df = label_issues.query(\"is_label_issue\").sort_values(\"label_score\")\n", + "label_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_label_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_label_issue_examples(label_issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " label_issue_indices = label_issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(label_issue_indices[i])\n", + " row = label_issues.loc[idx]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {row.given_label}\\n SL: {row.predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_label_issue_examples(label_issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " label_issue_indices = label_issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(label_issue_indices[i])\n", + " row = label_issues.loc[idx]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {row.given_label}\\n SL: {row.predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View most likely examples with label errors\n", + "\n", + "Here we define\n", + "`GL` : given label in the original dataset\n", + "`SL` : suggested alternative label by cleanlab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_label_issue_examples(label_issues_df, num_examples=15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "Datalab also detects atypical images lurking in our dataset. Such outliers are significantly different from the majority of the dataset and may have an outsized impact on how models fit to this data.\n", + "\n", + "Similarly to the previous section, we filter the `outlier_issues` DataFrame to find examples that are considered to be outliers. We then sort the filtered results by their outlier quality score, where examples with the lowest scores are those that appear least typical relative to the rest of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "outlier_issues_df = lab.get_issues(\"outlier\")\n", + "outlier_issues_df = outlier_issues_df.query(\"is_outlier_issue\").sort_values(\"outlier_score\")\n", + "outlier_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View most severe outliers\n", + "\n", + "In this visualization, the first image in every row shows the potential outlier, while the remaining images in the same row depict typical instances from the corresponding class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_outlier_issues_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_outlier_issues_examples(outlier_issues_df, num_examples):\n", + " ncols = 4\n", + " nrows = num_examples\n", + " N_comparison_images = ncols - 1\n", + "\n", + " def sample_from_class(label, number_of_samples, index):\n", + " index = int(index)\n", + "\n", + " non_outlier_indices = (\n", + " label_issues.join(outlier_issues_df)\n", + " .query(\"given_label == @label and is_outlier_issue.isnull()\")\n", + " .index\n", + " )\n", + " non_outlier_indices_excluding_current = non_outlier_indices[non_outlier_indices != index]\n", + "\n", + " sampled_indices = np.random.choice(\n", + " non_outlier_indices_excluding_current, number_of_samples, replace=False\n", + " )\n", + "\n", + " label_scores_of_sampled = label_issues.loc[sampled_indices][\"label_score\"]\n", + "\n", + " top_score_indices = np.argsort(label_scores_of_sampled.values)[::-1][:N_comparison_images]\n", + "\n", + " top_label_indices = sampled_indices[top_score_indices]\n", + "\n", + " sampled_images = [dataset[int(i)][\"image\"] for i in top_label_indices]\n", + "\n", + " return sampled_images\n", + "\n", + " def get_image_given_label_and_samples(idx):\n", + " image_from_dataset = dataset[idx][\"image\"]\n", + " corresponding_label = label_issues.loc[idx][\"given_label\"]\n", + " comparison_images = sample_from_class(corresponding_label, 30, idx)[:N_comparison_images]\n", + "\n", + " return image_from_dataset, corresponding_label, comparison_images\n", + "\n", + " count = 0\n", + " images_to_plot = []\n", + " labels = []\n", + " idlist = []\n", + " for idx, row in outlier_issues_df.iterrows():\n", + " idx = row.name\n", + " image, label, comparison_images = get_image_given_label_and_samples(idx)\n", + " labels.append(label)\n", + " idlist.append(idx)\n", + " images_to_plot.append(image)\n", + " images_to_plot.extend(comparison_images)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " ncols = 1 + N_comparison_images\n", + " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " for i, ax in enumerate(axes_list):\n", + " if i % ncols == 0:\n", + " ax.set_title(f\"id: {idlist[i // ncols]}\\n GL: {labels[i // ncols]}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(images_to_plot[i], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_outlier_issues_examples(outlier_issues_df, num_examples):\n", + " ncols = 4\n", + " nrows = num_examples\n", + " N_comparison_images = ncols - 1\n", + "\n", + " def sample_from_class(label, number_of_samples, index):\n", + " index = int(index)\n", + "\n", + " non_outlier_indices = (\n", + " label_issues.join(outlier_issues_df)\n", + " .query(\"given_label == @label and is_outlier_issue.isnull()\")\n", + " .index\n", + " )\n", + " non_outlier_indices_excluding_current = non_outlier_indices[non_outlier_indices != index]\n", + "\n", + " sampled_indices = np.random.choice(\n", + " non_outlier_indices_excluding_current, number_of_samples, replace=False\n", + " )\n", + "\n", + " label_scores_of_sampled = label_issues.loc[sampled_indices][\"label_score\"]\n", + "\n", + " top_score_indices = np.argsort(label_scores_of_sampled.values)[::-1][:N_comparison_images]\n", + "\n", + " top_label_indices = sampled_indices[top_score_indices]\n", + "\n", + " sampled_images = [dataset[int(i)][\"image\"] for i in top_label_indices]\n", + "\n", + " return sampled_images\n", + "\n", + " def get_image_given_label_and_samples(idx):\n", + " image_from_dataset = dataset[idx][\"image\"]\n", + " corresponding_label = label_issues.loc[idx][\"given_label\"]\n", + " comparison_images = sample_from_class(corresponding_label, 30, idx)[:N_comparison_images]\n", + "\n", + " return image_from_dataset, corresponding_label, comparison_images\n", + "\n", + " count = 0\n", + " images_to_plot = []\n", + " labels = []\n", + " idlist = []\n", + " for idx, row in outlier_issues_df.iterrows():\n", + " idx = row.name\n", + " image, label, comparison_images = get_image_given_label_and_samples(idx)\n", + " labels.append(label)\n", + " idlist.append(idx)\n", + " images_to_plot.append(image)\n", + " images_to_plot.extend(comparison_images)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " ncols = 1 + N_comparison_images\n", + " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " for i, ax in enumerate(axes_list):\n", + " if i % ncols == 0:\n", + " ax.set_title(\n", + " f\"id: {idlist[i // ncols]}\\n GL: {labels[i // ncols]}\", fontdict={\"fontsize\": 8}\n", + " )\n", + " ax.imshow(images_to_plot[i], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_outlier_issues_examples(outlier_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Near duplicate issues\n", + "\n", + "Datalab also detects which examples are (near) duplicates of other examples in the dataset. Near duplicate images in a dataset can lead to model overfitting and have an outsized impact on evaluation metrics (especially when you have duplicates between training and test splits).\n", + "\n", + "The `near_duplicate_issues` DataFrame tells us which examples are considered to be nearly duplicated in the dataset (including exact duplicates as well). We can sort all images via the `near_duplicate_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue, in this case, how similar the image is to its closest neighbor in the dataset).\n", + "\n", + "This allows us to visualize examples in the dataset that are considered nearly duplicated, along with their highly similar counterparts." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "near_duplicate_issues_df = lab.get_issues(\"near_duplicate\")\n", + "near_duplicate_issues_df = near_duplicate_issues_df.query(\"is_near_duplicate_issue\").sort_values(\n", + " \"near_duplicate_score\"\n", + ")\n", + "near_duplicate_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View sets of near duplicate images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_near_duplicate_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=3):\n", + " nrows = num_examples\n", + " seen_id_pairs = set()\n", + "\n", + " def get_image_and_given_label_and_predicted_label(idx):\n", + " image = dataset[idx][\"image\"]\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " return image, label, predicted_label\n", + "\n", + " count = 0\n", + " for idx, row in near_duplicate_issues_df.iterrows():\n", + " image, label, predicted_label = get_image_and_given_label_and_predicted_label(idx)\n", + " duplicate_images = row.near_duplicate_sets\n", + " nd_set = set([int(i) for i in duplicate_images])\n", + " nd_set.add(int(idx))\n", + "\n", + " if nd_set & seen_id_pairs:\n", + " continue\n", + "\n", + " _, axes = plt.subplots(1, len(nd_set), figsize=(len(nd_set), 3))\n", + " for i, ax in zip(list(nd_set), axes):\n", + " label = label_issues.loc[i][\"given_label\"]\n", + " ax.set_title(f\"id: {i}\\n GL: {label}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(dataset[i][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " seen_id_pairs.update(nd_set)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=3):\n", + " nrows = num_examples\n", + " seen_id_pairs = set()\n", + "\n", + " def get_image_and_given_label_and_predicted_label(idx):\n", + " image = dataset[idx][\"image\"]\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " return image, label, predicted_label\n", + "\n", + " count = 0\n", + " for idx, row in near_duplicate_issues_df.iterrows():\n", + " image, label, predicted_label = get_image_and_given_label_and_predicted_label(idx)\n", + " duplicate_images = row.near_duplicate_sets\n", + " nd_set = set([int(i) for i in duplicate_images])\n", + " nd_set.add(int(idx))\n", + "\n", + " if nd_set & seen_id_pairs:\n", + " continue\n", + "\n", + " _, axes = plt.subplots(1, len(nd_set), figsize=(len(nd_set), 3))\n", + " for i, ax in zip(list(nd_set), axes):\n", + " label = label_issues.loc[i][\"given_label\"]\n", + " ax.set_title(f\"id: {i}\\n GL: {label}\", fontdict={\"fontsize\": 8})\n", + " ax.imshow(dataset[i][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + " seen_id_pairs.update(nd_set)\n", + " count += 1\n", + " if count >= nrows:\n", + " break\n", + "\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_near_duplicate_issue_examples(near_duplicate_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dark images\n", + "\n", + "Datalab can also detect low-quality images in the dataset, such as those that are abnormally dark. It can be challenging for both annotators and models to assign a proper class label for low-quality data, which can hamper model training and testing.\n", + "\n", + "The `dark_issues` DataFrame reveals which examples are considered to be abnormally dark. We can sort them via the `dark_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue). This allows us to visualize images in the dataset considered to be too dark (you might consider omitting such low-quality examples from a training dataset)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dark_issues = lab.get_issues(\"dark\")\n", + "dark_issues_df = dark_issues.query(\"is_dark_issue\").sort_values(\"dark_score\")\n", + "dark_issues_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### View top examples of dark images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
We define a helper method plot_image_issue_examples to visualize results. **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def plot_image_issue_examples(issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " issue_indices = issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(issue_indices[i])\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {label}\\n SL: {predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + "\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def plot_image_issue_examples(issues_df, num_examples=15):\n", + " ncols = 5\n", + " nrows = int(math.ceil(num_examples / ncols))\n", + "\n", + " _, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(1.5 * ncols, 1.5 * nrows))\n", + " axes_list = axes.flatten()\n", + " issue_indices = issues_df.index.values\n", + "\n", + " for i, ax in enumerate(axes_list):\n", + " if i >= num_examples:\n", + " ax.axis(\"off\")\n", + " continue\n", + " idx = int(issue_indices[i])\n", + " label = label_issues.loc[idx][\"given_label\"]\n", + " predicted_label = label_issues.loc[idx][\"predicted_label\"]\n", + " ax.set_title(\n", + " f\"id: {idx}\\n GL: {label}\\n SL: {predicted_label}\",\n", + " fontdict={\"fontsize\": 8},\n", + " )\n", + " ax.imshow(dataset[idx][\"image\"], cmap=\"gray\")\n", + " ax.axis(\"off\")\n", + "\n", + " plt.subplots_adjust(hspace=0.7)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_image_issue_examples(dark_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see from above examples that too dark images can also lead to label errors as it is difficult to see the contents of the image clearly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Low information images\n", + "\n", + "Other types of low-quality images that Datalab can automatically detect include images whose information content is low. Low information images can hamper model generalization if they are present disproportionately in some classes.\n", + "\n", + "The `lowinfo_issues` DataFrame reveals which images are considered to be low information. We can sort them via the `low_information_score` which quantifies how severe this issue is for each image (lower values indicate more severe instances of a type of issue). This allows us to visualize the images in our dataset containing the least amount of information (you might consider omitting such low-quality examples from a training dataset)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lowinfo_issues = lab.get_issues(\"low_information\")\n", + "lowinfo_issues_df = lowinfo_issues.query(\"is_low_information_issue\").sort_values(\n", + " \"low_information_score\"\n", + ")\n", + "lowinfo_issues_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_image_issue_examples(lowinfo_issues_df, num_examples=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we can see a lot of low information images belong to the Sandal class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the toy model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "assert set([53050, 40875, 9594, 34825, 37530]).issubset(lowinfo_issues_df.index.values.tolist())\n", + "assert set([34848, 50270, 3936, 733, 8094]).issubset(dark_issues_df.index.values.tolist())\n", + "assert set([47824, 3370, 3952, 37119]).issubset(near_duplicate_issues_df.index.values.tolist())\n", + "assert set([38093, 22628, 44031, 25316, 40329]).issubset(outlier_issues_df.index.values.tolist())\n", + "assert set([45561, 11262, 54078, 53564]).issubset(label_issues_df.index.values.tolist())" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v2.6.5/_sources/tutorials/datalab/index.rst b/v2.6.5/_sources/tutorials/datalab/index.rst new file mode 100644 index 000000000..f1819d3fe --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/index.rst @@ -0,0 +1,13 @@ +Datalab Tutorials +================= + +.. toctree:: + :maxdepth: 1 + + Detecting Common Data Issues with Datalab + Advanced Data Auditing with Datalab + Text Data + Tabular Data (Numeric/Categorical) + Image Data + Audio Data
diff --git a/v2.6.5/_sources/tutorials/datalab/tabular.ipynb b/v2.6.5/_sources/tutorials/datalab/tabular.ipynb new file mode 100644 index 000000000..edf3b7ee1 --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/tabular.ipynb @@ -0,0 +1,557 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in Tabular Data (Numeric/Categorical columns) with Datalab\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use Datalab to detect various issues in a classification dataset with tabular (numeric/categorical) features. Tabular (or *structured*) data are typically organized in a row/column format and stored in a SQL database or file types like: CSV, Excel, or Parquet. Here we consider a Student Grades dataset, which contains over 900 individuals who have three exam grades and some optional notes, each being assigned a letter grade (their class label). cleanlab automatically identifies _hundreds_ of examples in this dataset that were mislabeled with the incorrect final grade selected. You can run the same code from this tutorial to detect incorrect information in your own tabular classification datasets.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Train a classifier model (here scikit-learn's HistGradientBoostingClassifier, although any model could be used) and use this classifier to compute (out-of-sample) predicted class probabilities via cross-validation.\n", + "\n", + "- Create a K nearest neighbours (KNN) graph between the examples in the dataset.\n", + "\n", + "- Identify issues in the dataset with cleanlab's `Datalab` audit applied to the predictions and KNN graph.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on your original data labels? Have a `knn_graph` computed between dataset examples (reflecting similarity in their feature values)? Run the code below to find issues in your dataset.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, knn_graph=knn_graph)\n", + "\n", + "lab.get_issues()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "from sklearn.model_selection import cross_val_predict\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.ensemble import HistGradientBoostingClassifier\n", + "from sklearn.neighbors import NearestNeighbors\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "SEED = 100 # for reproducibility\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and process the data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first load the data features and labels (which are possibly noisy).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "grades_data = pd.read_csv(\"https://s.cleanlab.ai/grades-tabular-demo-v2.csv\")\n", + "grades_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_raw = grades_data[[\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]]\n", + "labels = grades_data[\"letter_grade\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we preprocess the data. Here we apply one-hot encoding to columns with categorical values and standardize the values in numeric columns." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cat_features = [\"notes\"]\n", + "X_encoded = pd.get_dummies(X_raw, columns=cat_features, drop_first=True)\n", + "\n", + "numeric_features = [\"exam_1\", \"exam_2\", \"exam_3\"]\n", + "scaler = StandardScaler()\n", + "X_processed = X_encoded.copy()\n", + "X_processed[numeric_features] = scaler.fit_transform(X_encoded[numeric_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Assign your data's features to variable `X` and its labels to variable `labels` instead.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Select a classification model and compute out-of-sample predicted probabilities\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we use a simple histogram-based gradient boosting model (similar to XGBoost), but you can choose any suitable scikit-learn model for this tutorial.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf = HistGradientBoostingClassifier()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To find potential labeling errors, cleanlab requires a probabilistic prediction from your model for every datapoint. However, these predictions will be _overfitted_ (and thus unreliable) for examples the model was previously trained on. For the best results, cleanlab should be applied with **out-of-sample** predicted class probabilities, i.e., on examples held out from the model during the training.\n", + "\n", + "K-fold cross-validation is a straightforward way to produce out-of-sample predicted probabilities for every datapoint in the dataset by training K copies of our model on different data subsets and using each copy to predict on the subset of data it did not see during training. Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n", + "We can implement this via the `cross_val_predict` method from scikit-learn.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " clf,\n", + " X_processed,\n", + " labels,\n", + " cv=num_crossval_folds,\n", + " method=\"predict_proba\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Construct K nearest neighbours graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The KNN graph reflects how close each example is when compared to other examples in our dataset (in the numerical space of preprocessed feature values). This similarity information is used by Datalab to identify issues like outliers in our data. For tabular data, think carefully about the most appropriate way to define the similarity between two examples.\n", + "\n", + "Here we use the `NearestNeighbors` class in sklearn to easily compute this graph (with similarity defined by the Euclidean distance between feature values). The graph should be represented as a sparse matrix with nonzero entries indicating nearest neighbors of each example and their distance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "KNN = NearestNeighbors(metric='euclidean')\n", + "KNN.fit(X_processed.values)\n", + "\n", + "knn_graph = KNN.kneighbors_graph(mode=\"distance\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Use cleanlab to find label issues\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the given labels, predicted probabilities, and KNN graph, cleanlab can quickly help us identify suspicious values in our grades table.\n", + "\n", + "We use cleanlab's `Datalab` class which has several ways of loading the data. In this case, we’ll simply wrap the dataset (features and noisy labels) in a dictionary that is used instantiate a `Datalab` object such that it can audit our dataset for various types of issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = {\"X\": X_processed.values, \"y\": labels}\n", + "\n", + "lab = Datalab(data, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, knn_graph=knn_graph)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "The above report shows that cleanlab identified many label issues in the data. We can see which examples are estimated to be mislabeled (as well as a numeric quality score quantifying how likely their label is correct) via the `get_issues` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "issue_results = lab.get_issues(\"label\")\n", + "issue_results.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To review the most severe label issues, sort the DataFrame above by the `label_score` column (a lower score represents that the label is less likely to be correct). \n", + "\n", + "Let's review some of the most likely label errors:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_issues = issue_results.sort_values(\"label_score\").index\n", + "\n", + "X_raw.iloc[sorted_issues].assign(\n", + " given_label=labels.iloc[sorted_issues], \n", + " predicted_label=issue_results[\"predicted_label\"].iloc[sorted_issues]\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dataframe above shows the original label (`given_label`) for examples that cleanlab finds most likely to be mislabeled, as well as an alternative `predicted_label` for each example.\n", + "\n", + "These examples have been labeled incorrectly and should be carefully re-examined - a student with grades of 89, 95 and 73 surely does not deserve a D! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "According to the report, our dataset contains some outliers. We can see which examples are outliers (and a numeric quality score quantifying how typical each example appears to be) via `get_issues`. We sort the resulting DataFrame by cleanlab's outlier quality score to see the most severe outliers in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "outlier_results = lab.get_issues(\"outlier\")\n", + "sorted_outliers= outlier_results.sort_values(\"outlier_score\").index\n", + "\n", + "X_raw.iloc[sorted_outliers].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The student at index 3 has fractional exam scores, which is likely a error. We also see that the students at index 0 and 4 have numerical values in their notes section, which is also probably unintended. Lastly, we see that the student at index 8 has a html string in their notes section, definitely a mistake!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Near-duplicate issues\n", + "\n", + "According to the report, our dataset contains some sets of nearly duplicated examples.\n", + "We can see which examples are (nearly) duplicated (and a numeric quality score quantifying how dissimilar each example is from its nearest neighbor in the dataset) via `get_issues`. We sort the resulting DataFrame by cleanlab's near-duplicate quality score to see the examples in our dataset that are most nearly duplicated." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "duplicate_results = lab.get_issues(\"near_duplicate\")\n", + "duplicate_results.sort_values(\"near_duplicate_score\").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results above show which examples cleanlab considers nearly duplicated (rows where `is_near_duplicate_issue == True`). Here, we see some examples that cleanlab has flagged as being nearly duplicated. Let's view these examples to see how similar they are\n", + "\n", + "Using the one of the lowest-scoring examples, let's compare it against the identified near-duplicate sets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Identify the row with the lowest near_duplicate_score\n", + "lowest_scoring_duplicate = duplicate_results[\"near_duplicate_score\"].idxmin()\n", + "\n", + "# Extract the indices of the lowest scoring duplicate and its near duplicate sets\n", + "indices_to_display = [lowest_scoring_duplicate] + duplicate_results.loc[lowest_scoring_duplicate, \"near_duplicate_sets\"].tolist()\n", + "\n", + "# Display the relevant rows from the original dataset\n", + "X_raw.iloc[indices_to_display]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These examples are exact duplicates! Perhaps the same information was accidentally recorded multiple times in this data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let's take a look at another example and the identified near-duplicate sets:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Identify the next row not in the previous near duplicate set\n", + "second_lowest_scoring_duplicate = duplicate_results[\"near_duplicate_score\"].drop(indices_to_display).idxmin()\n", + "\n", + "# Extract the indices of the second lowest scoring duplicate and its near duplicate sets\n", + "next_indices_to_display = [second_lowest_scoring_duplicate] + duplicate_results.loc[second_lowest_scoring_duplicate, \"near_duplicate_sets\"].tolist()\n", + "\n", + "# Display the relevant rows from the original dataset\n", + "X_raw.iloc[next_indices_to_display]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We identified another set of exact duplicates in our dataset! Including near/exact duplicates in a dataset may have unintended effects on models; be wary about splitting them across training/test sets. Learn more about handling near duplicates detected in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial highlighted a straightforward approach to detect potentially incorrect information in any tabular dataset. Just use Datalab with any ML model -- the better the model, the more accurate the data errors detected by Datalab will be!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "identified_label_issues = issue_results[issue_results[\"is_label_issue\"] == True]\n", + "label_issue_indices = [3, 723, 709, 886, 689] # check these examples were found in label issues\n", + "if not all(x in identified_label_issues.index for x in label_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_label_issues.\")\n", + " \n", + "identified_outlier_issues = outlier_results[outlier_results[\"is_outlier_issue\"] == True]\n", + "outlier_issue_indices = [3, 7, 0, 4, 8] # check these examples were found in outlier issues\n", + "if not all(x in identified_outlier_issues.index for x in outlier_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_outlier_issues.\")\n", + " \n", + "identified_duplicate_issues = duplicate_results[duplicate_results[\"is_near_duplicate_issue\"] == True]\n", + "duplicate_issue_indices = [690, 246, 185, 582] # check these examples were found in duplicate issues\n", + "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")\n", + " \n", + "# check that the near duplicates shown are actually flagged as near duplicate sets\n", + "if not duplicate_results.iloc[690][\"near_duplicate_sets\"] == 246:\n", + " raise Exception(\"These examples are not in the same near duplicate set\")\n", + " \n", + "if not duplicate_results.iloc[185][\"near_duplicate_sets\"] == 582:\n", + " raise Exception(\"These examples are not in the same near duplicate set\")\n", + "\n", + "# Function to check if all rows are identical\n", + "def are_rows_identical(df):\n", + " first_row = df.iloc[0]\n", + " return all(df.iloc[i].equals(first_row) for i in range(1, len(df)))\n", + "\n", + "# Test to ensure all displayed rows are identical\n", + "if not are_rows_identical(X_raw.iloc[indices_to_display]):\n", + " raise Exception(\"Not all rows are identical! These examples should belong to the same EXACT duplicate set\")\n", + "\n", + "# Repeat the test for the next set of indices\n", + "if not are_rows_identical(X_raw.iloc[next_indices_to_display]):\n", + " raise Exception(\"Not all rows are identical! These examples should belong to the same EXACT duplicate set\")" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "cda20062bc42cfdcaa0f9720c0b28e880bba110e9dfce6c1689934eec9b595a1" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/datalab/text.ipynb b/v2.6.5/_sources/tutorials/datalab/text.ipynb new file mode 100644 index 000000000..0375f650f --- /dev/null +++ b/v2.6.5/_sources/tutorials/datalab/text.ipynb @@ -0,0 +1,605 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Detecting Issues in a Text Dataset with Datalab\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this 5-minute quickstart tutorial, we use Datalab to detect various issues in an intent classification dataset composed of (text) customer service requests at an online bank. We consider a subset of the [Banking77-OOS Dataset](https://arxiv.org/abs/2106.04564) containing 1,000 customer service requests which are classified into 10 categories based on their intent (you can run this same code on any text classification dataset). Cleanlab automatically identifies bad examples in our dataset, including mislabeled data, out-of-scope examples (outliers), or otherwise ambiguous examples. Consider filtering or correcting such bad examples before you dive deep into modeling your data!\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Use a pretrained transformer model to extract the text embeddings from the customer service requests\n", + "\n", + "- Train a simple Logistic Regression model on the text embeddings to compute out-of-sample predicted probabilities\n", + "\n", + "- Run cleanlab's `Datalab` audit with these predictions and embeddings in order to identify problems like: label issues, outliers, and near duplicates in the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on an existing set of labels? Maybe you have some numeric `features` as well? Run the code below to find any potential label errors in your dataset.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data=your_dataset, label_name=\"column_name_of_labels\")\n", + "lab.find_issues(pred_probs=your_pred_probs, features=your_features)\n", + "\n", + "lab.report()\n", + "lab.get_issues()\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install required dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install sentence-transformers\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used:scikit-learn==1.2.0 sentence-transformers==2.2.2\n", + "\n", + "dependencies = [\"cleanlab\", \"sentence_transformers\", \"datasets\"]\n", + "\n", + "# Supress outputs that may appear if tensorflow happens to be improperly installed: \n", + "import os \n", + "\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import re \n", + "import string \n", + "import pandas as pd \n", + "from sklearn.metrics import accuracy_score, log_loss \n", + "from sklearn.model_selection import cross_val_predict \n", + "from sklearn.linear_model import LogisticRegression\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "from cleanlab import Datalab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "pd.set_option(\"display.max_colwidth\", None) \n", + "\n", + "SEED = 123456 # for reproducibility\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load and format the text dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = pd.read_csv(\"https://s.cleanlab.ai/banking-intent-classification.csv\")\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw_texts, labels = data[\"text\"].values, data[\"label\"].values\n", + "num_classes = len(set(labels))\n", + "\n", + "print(f\"This dataset has {num_classes} classes.\")\n", + "print(f\"Classes: {set(labels)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's view the i-th example in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "i = 1 # change this to view other examples from the dataset\n", + "print(f\"Example Label: {labels[i]}\")\n", + "print(f\"Example Text: {raw_texts[i]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored as two numpy arrays:\n", + "\n", + "1. `raw_texts` stores the customer service requests utterances in text format\n", + "2. `labels` stores the intent categories (labels) for each example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own text dataset, and continue with the rest of the tutorial.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we convert the text strings into vectors better suited as inputs for our ML models. \n", + "\n", + "We will use numeric representations from a pretrained Transformer model as embeddings of our text. The [Sentence Transformers](https://huggingface.co/docs/hub/sentence-transformers) library offers simple methods to compute these embeddings for text data. Here, we load the pretrained `electra-small-discriminator` model, and then run our data through network to extract a vector embedding of each example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "transformer = SentenceTransformer('google/electra-small-discriminator')\n", + "text_embeddings = transformer.encode(raw_texts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our subsequent ML model will directly operate on elements of `text_embeddings` in order to classify the customer service requests." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Define a classification model and compute out-of-sample predicted probabilities" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical way to leverage pretrained networks for a particular classification task is to add a linear output layer and fine-tune the network parameters on the new data. However this can be computationally intensive. Alternatively, we can freeze the pretrained weights of the network and only train the output layer without having to rely on GPU(s). Here we do this conveniently by fitting a scikit-learn linear model on top of the extracted embeddings.\n", + "\n", + "To identify label issues, cleanlab requires a probabilistic prediction from your model for each datapoint. However these predictions will be _overfit_ (and thus unreliable) for datapoints the model was previously trained on. cleanlab is intended to only be used with **out-of-sample** predicted class probabilities, i.e. on datapoints held-out from the model during the training.\n", + "\n", + "Here we obtain out-of-sample predicted class probabilities for every example in our dataset using a Logistic Regression model with cross-validation.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "model = LogisticRegression(max_iter=400)\n", + "\n", + "pred_probs = cross_val_predict(model, text_embeddings, labels, method=\"predict_proba\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to find issues in your dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given feature embeddings and the (out-of-sample) predicted class probabilities obtained from any model you have, cleanlab can quickly help you identify low-quality examples in your dataset.\n", + "\n", + "Here, we use cleanlab's `Datalab` to find issues in our data. Datalab offers several ways of loading the data; we’ll simply wrap the training features and noisy labels in a dictionary. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_dict = {\"texts\": raw_texts, \"labels\": labels}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All that is need to audit your data is to call `find_issues()`. We pass in the predicted probabilities and the feature embeddings obtained above, but you do not necessarily need to provide all of this information depending on which types of issues you are interested in. The more inputs you provide, the more types of issues `Datalab` can detect in your data. Using a better model to produce these inputs will ensure cleanlab more accurately estimates issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lab = Datalab(data_dict, label_name=\"labels\")\n", + "lab.find_issues(pred_probs=pred_probs, features=text_embeddings)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the audit is complete, review the findings using the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label issues\n", + "\n", + "The report indicates that cleanlab identified many label issues in our dataset. We can see which examples are flagged as likely mislabeled and the label quality score for each example using the `get_issues` method, specifying `label` as an argument to focus on label issues in the data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "label_issues.head() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method returns a dataframe containing a label quality score for each example. These numeric scores lie between 0 and 1, where lower scores indicate examples more likely to be mislabeled. The dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating it is likely mislabeled)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 5 most likely mislabeled examples in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "identified_label_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_score\"].argsort()[:5].to_numpy()\n", + "\n", + "print(\n", + " f\"cleanlab found {len(identified_label_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 5 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review some of the most likely label errors. \n", + "\n", + "Here we display the top 5 examples identified as the most likely label errors in the dataset, together with their given (original) label and a suggested alternative label from cleanlab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_with_suggested_labels = pd.DataFrame(\n", + " {\"text\": raw_texts, \"given_label\": labels, \"suggested_label\": label_issues[\"predicted_label\"]}\n", + ")\n", + "data_with_suggested_labels.iloc[lowest_quality_labels]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": true + }, + "source": [ + "These are very clear label errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the intent of these requests, whoever produced this dataset made many mistakes that are important to address before modeling the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Outlier issues\n", + "\n", + "According to the report, our dataset contains some outliers.\n", + "We can see which examples are outliers (and a numeric quality score quantifying how typical each example appears to be) via `get_issues`. We sort the resulting DataFrame by cleanlab's outlier quality score to see the most severe outliers in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "outlier_issues = lab.get_issues(\"outlier\")\n", + "outlier_issues.sort_values(\"outlier_score\").head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lowest_quality_outliers = outlier_issues[\"outlier_score\"].argsort()[:5]\n", + "\n", + "data.iloc[lowest_quality_outliers]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that cleanlab has identified entries in this dataset that do not appear to be proper customer requests. Outliers in this dataset appear to be out-of-scope customer requests and other nonsensical text which does not make sense for intent classification. Carefully consider whether such outliers may detrimentally affect your data modeling, and consider removing them from the dataset if so." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Near-duplicate issues\n", + "\n", + "According to the report, our dataset contains some sets of nearly duplicated examples.\n", + "We can see which examples are (nearly) duplicated (and a numeric quality score quantifying how dissimilar each example is from its nearest neighbor in the dataset) via `get_issues`. We sort the resulting DataFrame by cleanlab's near-duplicate quality score to see the text examples in our dataset that are most nearly duplicated." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "duplicate_issues = lab.get_issues(\"near_duplicate\")\n", + "duplicate_issues.sort_values(\"near_duplicate_score\").head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results above show which examples cleanlab considers nearly duplicated (rows where `is_near_duplicate_issue == True`). Here, we see that example 160 and 148 are nearly duplicated, as are example 546 and 514.\n", + "\n", + "Let's view these examples to see how similar they are." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data.iloc[[160, 148]]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data.iloc[[546, 514]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets. Learn more about handling near duplicates in a dataset from [the FAQ](../faq.html#How-to-handle-near-duplicate-data-identified-by-cleanlab?)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Non-IID issues (data drift)\n", + "According to the report, our dataset does not appear to be Independent and Identically Distributed (IID). The overall non-iid score for the dataset (displayed below) corresponds to the `p-value` of a statistical test for whether the ordering of samples in the dataset appears related to the similarity between their feature values. A low `p-value` strongly suggests that the dataset violates the IID assumption, which is a key assumption required for conclusions (models) produced from the dataset to generalize to a larger population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "p_value = lab.get_info('non_iid')['p-value']\n", + "p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, our dataset was flagged as non-IID because the rows happened to be sorted by class label in the original data. This may be benign if we remember to shuffle rows before model training and data splitting. But if you don't know why your data was flagged as non-IID, then you should be worried about potential data drift or unexpected interactions between data points (their values may not be statistically independent). Think carefully about what future test data may look like (and whether your data is representative of the population you care about). You should not shuffle your data before the non-IID test runs (will invalidate its conclusions)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab's issue detection can be run with outputs from *any* type of model you initially trained.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Easy Mode \n", + "\n", + "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "label_issue_indices = [981, 974, 982] # check these examples were found in label issues\n", + "if not all(x in identified_label_issues.index for x in label_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_label_issues.\")\n", + " \n", + "identified_outlier_issues = outlier_issues[outlier_issues[\"is_outlier_issue\"] == True]\n", + "outlier_issue_indices = [994, 989, 999] # check these examples were found in duplicates\n", + "if not all(x in identified_outlier_issues.index for x in outlier_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_outlier_issues.\")\n", + "\n", + "identified_duplicate_issues = duplicate_issues[duplicate_issues[\"is_near_duplicate_issue\"] == True]\n", + "duplicate_issue_indices = [160, 148, 546, 514] # check these examples were found in duplicates\n", + "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", + " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Text x TensorFlow", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/dataset_health.ipynb b/v2.6.5/_sources/tutorials/dataset_health.ipynb new file mode 100644 index 000000000..4d4625ebc --- /dev/null +++ b/v2.6.5/_sources/tutorials/dataset_health.ipynb @@ -0,0 +1,313 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "uKlKumjJyIAL" + }, + "source": [ + "# Understanding Dataset-level Labeling Issues\n", + "\n", + "This 5-minute quickstart tutorial shows how `cleanlab.dataset.health_summary()` helps you automatically:\n", + "\n", + "- Score and rank the overall label quality of each class, useful for deciding whether to remove or keep certain classes.\n", + "- Identify overlapping classes that you can merge to make the learning task less ambiguous. Alternatively use this information to refine your annotator instructions (e.g. more precisely defining the difference between two classes).\n", + "- Generate an overall dataset and label quality health score to track improvements in your labels over time as you clean your datasets.\n", + "\n", + "This tutorial does not study issues in individual data points, but rather global issues across the dataset. Much of the functionality demonstrated here can also be accessed via `Datalab.get_info()` when using Datalab to detect label issues." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have (out-of-sample) `pred_probs` from a model trained on your dataset? Run the code below to evaluate the overall health of your dataset and its labels.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.dataset import health_summary\n", + "\n", + "health_summary(labels, pred_probs)\n", + " \n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install dependencies and import them" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```\n", + "!pip install requests\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: requests==2.28.0\n", + "\n", + "dependencies = [\"cleanlab\", \"requests\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_UvI80l42iyi" + }, + "outputs": [], + "source": [ + "import requests\n", + "import io\n", + "import cleanlab\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wd2FlGn4sL0V" + }, + "source": [ + "## Fetch the data (can skip these details)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for fetching data **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "mnist_test_set = [\"0\", \"1\" ,\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\"]\n", + "imagenet_val_set = [\"tench\", \"goldfish\", \"great white shark\", \"tiger shark\", \"hammerhead shark\", \"electric ray\", \"stingray\", \"cock\", \"hen\", \"ostrich\", \"brambling\", \"goldfinch\", \"house finch\", \"junco\", \"indigo bunting\", \"American robin\", \"bulbul\", \"jay\", \"magpie\", \"chickadee\", \"American dipper\", \"kite\", \"bald eagle\", \"vulture\", \"great grey owl\", \"fire salamander\", \"smooth newt\", \"newt\", \"spotted salamander\", \"axolotl\", \"American bullfrog\", \"tree frog\", \"tailed frog\", \"loggerhead sea turtle\", \"leatherback sea turtle\", \"mud turtle\", \"terrapin\", \"box turtle\", \"banded gecko\", \"green iguana\", \"Carolina anole\", \"desert grassland whiptail lizard\", \"agama\", \"frilled-necked lizard\", \"alligator lizard\", \"Gila monster\", \"European green lizard\", \"chameleon\", \"Komodo dragon\", \"Nile crocodile\", \"American alligator\", \"triceratops\", \"worm snake\", \"ring-necked snake\", \"eastern hog-nosed snake\", \"smooth green snake\", \"kingsnake\", \"garter snake\", \"water snake\", \"vine snake\", \"night snake\", \"boa constrictor\", \"African rock python\", \"Indian cobra\", \"green mamba\", \"sea snake\", \"Saharan horned viper\", \"eastern diamondback rattlesnake\", \"sidewinder\", \"trilobite\", \"harvestman\", \"scorpion\", \"yellow garden spider\", \"barn spider\", \"European garden spider\", \"southern black widow\", \"tarantula\", \"wolf spider\", \"tick\", \"centipede\", \"black grouse\", \"ptarmigan\", \"ruffed grouse\", \"prairie grouse\", \"peacock\", \"quail\", \"partridge\", \"grey parrot\", \"macaw\", \"sulphur-crested cockatoo\", \"lorikeet\", \"coucal\", \"bee eater\", \"hornbill\", \"hummingbird\", \"jacamar\", \"toucan\", \"duck\", \"red-breasted merganser\", \"goose\", \"black swan\", \"tusker\", \"echidna\", \"platypus\", \"wallaby\", \"koala\", \"wombat\", \"jellyfish\", \"sea anemone\", \"brain coral\", \"flatworm\", \"nematode\", \"conch\", \"snail\", \"slug\", \"sea slug\", \"chiton\", \"chambered nautilus\", \"Dungeness crab\", \"rock crab\", \"fiddler crab\", \"red king crab\", \"American lobster\", \"spiny lobster\", \"crayfish\", \"hermit crab\", \"isopod\", \"white stork\", \"black stork\", \"spoonbill\", \"flamingo\", \"little blue heron\", \"great egret\", \"bittern\", \"crane (bird)\", \"limpkin\", \"common gallinule\", \"American coot\", \"bustard\", \"ruddy turnstone\", \"dunlin\", \"common redshank\", \"dowitcher\", \"oystercatcher\", \"pelican\", \"king penguin\", \"albatross\", \"grey whale\", \"killer whale\", \"dugong\", \"sea lion\", \"Chihuahua\", \"Japanese Chin\", \"Maltese\", \"Pekingese\", \"Shih Tzu\", \"King Charles Spaniel\", \"Papillon\", \"toy terrier\", \"Rhodesian Ridgeback\", \"Afghan Hound\", \"Basset Hound\", \"Beagle\", \"Bloodhound\", \"Bluetick Coonhound\", \"Black and Tan Coonhound\", \"Treeing Walker Coonhound\", \"English foxhound\", \"Redbone Coonhound\", \"borzoi\", \"Irish Wolfhound\", \"Italian Greyhound\", \"Whippet\", \"Ibizan Hound\", \"Norwegian Elkhound\", \"Otterhound\", \"Saluki\", \"Scottish Deerhound\", \"Weimaraner\", \"Staffordshire Bull Terrier\", \"American Staffordshire Terrier\", \"Bedlington Terrier\", \"Border Terrier\", \"Kerry Blue Terrier\", \"Irish Terrier\", \"Norfolk Terrier\", \"Norwich Terrier\", \"Yorkshire Terrier\", \"Wire Fox Terrier\", \"Lakeland Terrier\", \"Sealyham Terrier\", \"Airedale Terrier\", \"Cairn Terrier\", \"Australian Terrier\", \"Dandie Dinmont Terrier\", \"Boston Terrier\", \"Miniature Schnauzer\", \"Giant Schnauzer\", \"Standard Schnauzer\", \"Scottish Terrier\", \"Tibetan Terrier\", \"Australian Silky Terrier\", \"Soft-coated Wheaten Terrier\", \"West Highland White Terrier\", \"Lhasa Apso\", \"Flat-Coated Retriever\", \"Curly-coated Retriever\", \"Golden Retriever\", \"Labrador Retriever\", \"Chesapeake Bay Retriever\", \"German Shorthaired Pointer\", \"Vizsla\", \"English Setter\", \"Irish Setter\", \"Gordon Setter\", \"Brittany\", \"Clumber Spaniel\", \"English Springer Spaniel\", \"Welsh Springer Spaniel\", \"Cocker Spaniels\", \"Sussex Spaniel\", \"Irish Water Spaniel\", \"Kuvasz\", \"Schipperke\", \"Groenendael\", \"Malinois\", \"Briard\", \"Australian Kelpie\", \"Komondor\", \"Old English Sheepdog\", \"Shetland Sheepdog\", \"collie\", \"Border Collie\", \"Bouvier des Flandres\", \"Rottweiler\", \"German Shepherd Dog\", \"Dobermann\", \"Miniature Pinscher\", \"Greater Swiss Mountain Dog\", \"Bernese Mountain Dog\", \"Appenzeller Sennenhund\", \"Entlebucher Sennenhund\", \"Boxer\", \"Bullmastiff\", \"Tibetan Mastiff\", \"French Bulldog\", \"Great Dane\", \"St. Bernard\", \"husky\", \"Alaskan Malamute\", \"Siberian Husky\", \"Dalmatian\", \"Affenpinscher\", \"Basenji\", \"pug\", \"Leonberger\", \"Newfoundland\", \"Pyrenean Mountain Dog\", \"Samoyed\", \"Pomeranian\", \"Chow Chow\", \"Keeshond\", \"Griffon Bruxellois\", \"Pembroke Welsh Corgi\", \"Cardigan Welsh Corgi\", \"Toy Poodle\", \"Miniature Poodle\", \"Standard Poodle\", \"Mexican hairless dog\", \"grey wolf\", \"Alaskan tundra wolf\", \"red wolf\", \"coyote\", \"dingo\", \"dhole\", \"African wild dog\", \"hyena\", \"red fox\", \"kit fox\", \"Arctic fox\", \"grey fox\", \"tabby cat\", \"tiger cat\", \"Persian cat\", \"Siamese cat\", \"Egyptian Mau\", \"cougar\", \"lynx\", \"leopard\", \"snow leopard\", \"jaguar\", \"lion\", \"tiger\", \"cheetah\", \"brown bear\", \"American black bear\", \"polar bear\", \"sloth bear\", \"mongoose\", \"meerkat\", \"tiger beetle\", \"ladybug\", \"ground beetle\", \"longhorn beetle\", \"leaf beetle\", \"dung beetle\", \"rhinoceros beetle\", \"weevil\", \"fly\", \"bee\", \"ant\", \"grasshopper\", \"cricket\", \"stick insect\", \"cockroach\", \"mantis\", \"cicada\", \"leafhopper\", \"lacewing\", \"dragonfly\", \"damselfly\", \"red admiral\", \"ringlet\", \"monarch butterfly\", \"small white\", \"sulphur butterfly\", \"gossamer-winged butterfly\", \"starfish\", \"sea urchin\", \"sea cucumber\", \"cottontail rabbit\", \"hare\", \"Angora rabbit\", \"hamster\", \"porcupine\", \"fox squirrel\", \"marmot\", \"beaver\", \"guinea pig\", \"common sorrel\", \"zebra\", \"pig\", \"wild boar\", \"warthog\", \"hippopotamus\", \"ox\", \"water buffalo\", \"bison\", \"ram\", \"bighorn sheep\", \"Alpine ibex\", \"hartebeest\", \"impala\", \"gazelle\", \"dromedary\", \"llama\", \"weasel\", \"mink\", \"European polecat\", \"black-footed ferret\", \"otter\", \"skunk\", \"badger\", \"armadillo\", \"three-toed sloth\", \"orangutan\", \"gorilla\", \"chimpanzee\", \"gibbon\", \"siamang\", \"guenon\", \"patas monkey\", \"baboon\", \"macaque\", \"langur\", \"black-and-white colobus\", \"proboscis monkey\", \"marmoset\", \"white-headed capuchin\", \"howler monkey\", \"titi\", \"Geoffroy's spider monkey\", \"common squirrel monkey\", \"ring-tailed lemur\", \"indri\", \"Asian elephant\", \"African bush elephant\", \"red panda\", \"giant panda\", \"snoek\", \"eel\", \"coho salmon\", \"rock beauty\", \"clownfish\", \"sturgeon\", \"garfish\", \"lionfish\", \"pufferfish\", \"abacus\", \"abaya\", \"academic gown\", \"accordion\", \"acoustic guitar\", \"aircraft carrier\", \"airliner\", \"airship\", \"altar\", \"ambulance\", \"amphibious vehicle\", \"analog clock\", \"apiary\", \"apron\", \"waste container\", \"assault rifle\", \"backpack\", \"bakery\", \"balance beam\", \"balloon\", \"ballpoint pen\", \"Band-Aid\", \"banjo\", \"baluster\", \"barbell\", \"barber chair\", \"barbershop\", \"barn\", \"barometer\", \"barrel\", \"wheelbarrow\", \"baseball\", \"basketball\", \"bassinet\", \"bassoon\", \"swimming cap\", \"bath towel\", \"bathtub\", \"station wagon\", \"lighthouse\", \"beaker\", \"military cap\", \"beer bottle\", \"beer glass\", \"bell-cot\", \"bib\", \"tandem bicycle\", \"bikini\", \"ring binder\", \"binoculars\", \"birdhouse\", \"boathouse\", \"bobsleigh\", \"bolo tie\", \"poke bonnet\", \"bookcase\", \"bookstore\", \"bottle cap\", \"bow\", \"bow tie\", \"brass\", \"bra\", \"breakwater\", \"breastplate\", \"broom\", \"bucket\", \"buckle\", \"bulletproof vest\", \"high-speed train\", \"butcher shop\", \"taxicab\", \"cauldron\", \"candle\", \"cannon\", \"canoe\", \"can opener\", \"cardigan\", \"car mirror\", \"carousel\", \"tool kit\", \"carton\", \"car wheel\", \"automated teller machine\", \"cassette\", \"cassette player\", \"castle\", \"catamaran\", \"CD player\", \"cello\", \"mobile phone\", \"chain\", \"chain-link fence\", \"chain mail\", \"chainsaw\", \"chest\", \"chiffonier\", \"chime\", \"china cabinet\", \"Christmas stocking\", \"church\", \"movie theater\", \"cleaver\", \"cliff dwelling\", \"cloak\", \"clogs\", \"cocktail shaker\", \"coffee mug\", \"coffeemaker\", \"coil\", \"combination lock\", \"computer keyboard\", \"confectionery store\", \"container ship\", \"convertible\", \"corkscrew\", \"cornet\", \"cowboy boot\", \"cowboy hat\", \"cradle\", \"crane (machine)\", \"crash helmet\", \"crate\", \"infant bed\", \"Crock Pot\", \"croquet ball\", \"crutch\", \"cuirass\", \"dam\", \"desk\", \"desktop computer\", \"rotary dial telephone\", \"diaper\", \"digital clock\", \"digital watch\", \"dining table\", \"dishcloth\", \"dishwasher\", \"disc brake\", \"dock\", \"dog sled\", \"dome\", \"doormat\", \"drilling rig\", \"drum\", \"drumstick\", \"dumbbell\", \"Dutch oven\", \"electric fan\", \"electric guitar\", \"electric locomotive\", \"entertainment center\", \"envelope\", \"espresso machine\", \"face powder\", \"feather boa\", \"filing cabinet\", \"fireboat\", \"fire engine\", \"fire screen sheet\", \"flagpole\", \"flute\", \"folding chair\", \"football helmet\", \"forklift\", \"fountain\", \"fountain pen\", \"four-poster bed\", \"freight car\", \"French horn\", \"frying pan\", \"fur coat\", \"garbage truck\", \"gas mask\", \"gas pump\", \"goblet\", \"go-kart\", \"golf ball\", \"golf cart\", \"gondola\", \"gong\", \"gown\", \"grand piano\", \"greenhouse\", \"grille\", \"grocery store\", \"guillotine\", \"barrette\", \"hair spray\", \"half-track\", \"hammer\", \"hamper\", \"hair dryer\", \"hand-held computer\", \"handkerchief\", \"hard disk drive\", \"harmonica\", \"harp\", \"harvester\", \"hatchet\", \"holster\", \"home theater\", \"honeycomb\", \"hook\", \"hoop skirt\", \"horizontal bar\", \"horse-drawn vehicle\", \"hourglass\", \"iPod\", \"clothes iron\", \"jack-o'-lantern\", \"jeans\", \"jeep\", \"T-shirt\", \"jigsaw puzzle\", \"pulled rickshaw\", \"joystick\", \"kimono\", \"knee pad\", \"knot\", \"lab coat\", \"ladle\", \"lampshade\", \"laptop computer\", \"lawn mower\", \"lens cap\", \"paper knife\", \"library\", \"lifeboat\", \"lighter\", \"limousine\", \"ocean liner\", \"lipstick\", \"slip-on shoe\", \"lotion\", \"speaker\", \"loupe\", \"sawmill\", \"magnetic compass\", \"mail bag\", \"mailbox\", \"tights\", \"tank suit\", \"manhole cover\", \"maraca\", \"marimba\", \"mask\", \"match\", \"maypole\", \"maze\", \"measuring cup\", \"medicine chest\", \"megalith\", \"microphone\", \"microwave oven\", \"military uniform\", \"milk can\", \"minibus\", \"miniskirt\", \"minivan\", \"missile\", \"mitten\", \"mixing bowl\", \"mobile home\", \"Model T\", \"modem\", \"monastery\", \"monitor\", \"moped\", \"mortar\", \"square academic cap\", \"mosque\", \"mosquito net\", \"scooter\", \"mountain bike\", \"tent\", \"computer mouse\", \"mousetrap\", \"moving van\", \"muzzle\", \"nail\", \"neck brace\", \"necklace\", \"nipple\", \"notebook computer\", \"obelisk\", \"oboe\", \"ocarina\", \"odometer\", \"oil filter\", \"organ\", \"oscilloscope\", \"overskirt\", \"bullock cart\", \"oxygen mask\", \"packet\", \"paddle\", \"paddle wheel\", \"padlock\", \"paintbrush\", \"pajamas\", \"palace\", \"pan flute\", \"paper towel\", \"parachute\", \"parallel bars\", \"park bench\", \"parking meter\", \"passenger car\", \"patio\", \"payphone\", \"pedestal\", \"pencil case\", \"pencil sharpener\", \"perfume\", \"Petri dish\", \"photocopier\", \"plectrum\", \"Pickelhaube\", \"picket fence\", \"pickup truck\", \"pier\", \"piggy bank\", \"pill bottle\", \"pillow\", \"ping-pong ball\", \"pinwheel\", \"pirate ship\", \"pitcher\", \"hand plane\", \"planetarium\", \"plastic bag\", \"plate rack\", \"plow\", \"plunger\", \"Polaroid camera\", \"pole\", \"police van\", \"poncho\", \"billiard table\", \"soda bottle\", \"pot\", \"potter's wheel\", \"power drill\", \"prayer rug\", \"printer\", \"prison\", \"projectile\", \"projector\", \"hockey puck\", \"punching bag\", \"purse\", \"quill\", \"quilt\", \"race car\", \"racket\", \"radiator\", \"radio\", \"radio telescope\", \"rain barrel\", \"recreational vehicle\", \"reel\", \"reflex camera\", \"refrigerator\", \"remote control\", \"restaurant\", \"revolver\", \"rifle\", \"rocking chair\", \"rotisserie\", \"eraser\", \"rugby ball\", \"ruler\", \"running shoe\", \"safe\", \"safety pin\", \"salt shaker\", \"sandal\", \"sarong\", \"saxophone\", \"scabbard\", \"weighing scale\", \"school bus\", \"schooner\", \"scoreboard\", \"CRT screen\", \"screw\", \"screwdriver\", \"seat belt\", \"sewing machine\", \"shield\", \"shoe store\", \"shoji\", \"shopping basket\", \"shopping cart\", \"shovel\", \"shower cap\", \"shower curtain\", \"ski\", \"ski mask\", \"sleeping bag\", \"slide rule\", \"sliding door\", \"slot machine\", \"snorkel\", \"snowmobile\", \"snowplow\", \"soap dispenser\", \"soccer ball\", \"sock\", \"solar thermal collector\", \"sombrero\", \"soup bowl\", \"space bar\", \"space heater\", \"space shuttle\", \"spatula\", \"motorboat\", \"spider web\", \"spindle\", \"sports car\", \"spotlight\", \"stage\", \"steam locomotive\", \"through arch bridge\", \"steel drum\", \"stethoscope\", \"scarf\", \"stone wall\", \"stopwatch\", \"stove\", \"strainer\", \"tram\", \"stretcher\", \"couch\", \"stupa\", \"submarine\", \"suit\", \"sundial\", \"sunglass\", \"sunglasses\", \"sunscreen\", \"suspension bridge\", \"mop\", \"sweatshirt\", \"swimsuit\", \"swing\", \"switch\", \"syringe\", \"table lamp\", \"tank\", \"tape player\", \"teapot\", \"teddy bear\", \"television\", \"tennis ball\", \"thatched roof\", \"front curtain\", \"thimble\", \"threshing machine\", \"throne\", \"tile roof\", \"toaster\", \"tobacco shop\", \"toilet seat\", \"torch\", \"totem pole\", \"tow truck\", \"toy store\", \"tractor\", \"semi-trailer truck\", \"tray\", \"trench coat\", \"tricycle\", \"trimaran\", \"tripod\", \"triumphal arch\", \"trolleybus\", \"trombone\", \"tub\", \"turnstile\", \"typewriter keyboard\", \"umbrella\", \"unicycle\", \"upright piano\", \"vacuum cleaner\", \"vase\", \"vault\", \"velvet\", \"vending machine\", \"vestment\", \"viaduct\", \"violin\", \"volleyball\", \"waffle iron\", \"wall clock\", \"wallet\", \"wardrobe\", \"military aircraft\", \"sink\", \"washing machine\", \"water bottle\", \"water jug\", \"water tower\", \"whiskey jug\", \"whistle\", \"wig\", \"window screen\", \"window shade\", \"Windsor tie\", \"wine bottle\", \"wing\", \"wok\", \"wooden spoon\", \"wool\", \"split-rail fence\", \"shipwreck\", \"yawl\", \"yurt\", \"website\", \"comic book\", \"crossword\", \"traffic sign\", \"traffic light\", \"dust jacket\", \"menu\", \"plate\", \"guacamole\", \"consomme\", \"hot pot\", \"trifle\", \"ice cream\", \"ice pop\", \"baguette\", \"bagel\", \"pretzel\", \"cheeseburger\", \"hot dog\", \"mashed potato\", \"cabbage\", \"broccoli\", \"cauliflower\", \"zucchini\", \"spaghetti squash\", \"acorn squash\", \"butternut squash\", \"cucumber\", \"artichoke\", \"bell pepper\", \"cardoon\", \"mushroom\", \"Granny Smith\", \"strawberry\", \"orange\", \"lemon\", \"fig\", \"pineapple\", \"banana\", \"jackfruit\", \"custard apple\", \"pomegranate\", \"hay\", \"carbonara\", \"chocolate syrup\", \"dough\", \"meatloaf\", \"pizza\", \"pot pie\", \"burrito\", \"red wine\", \"espresso\", \"cup\", \"eggnog\", \"alp\", \"bubble\", \"cliff\", \"coral reef\", \"geyser\", \"lakeshore\", \"promontory\", \"shoal\", \"seashore\", \"valley\", \"volcano\", \"baseball player\", \"bridegroom\", \"scuba diver\", \"rapeseed\", \"daisy\", \"yellow lady's slipper\", \"corn\", \"acorn\", \"rose hip\", \"horse chestnut seed\", \"coral fungus\", \"agaric\", \"gyromitra\", \"stinkhorn mushroom\", \"earth star\", \"hen-of-the-woods\", \"bolete\", \"ear\", \"toilet paper\"]\n", + "cifar10_test_set = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "cifar100_test_set = ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']\n", + "caltech256 = [\"ak47\", \"american-flag\", \"backpack\", \"baseball-bat\", \"baseball-glove\", \"basketball-hoop\", \"bat\", \"bathtub\", \"bear\", \"beer-mug\", \"billiards\", \"binoculars\", \"birdbath\", \"blimp\", \"bonsai\", \"boom-box\", \"bowling-ball\", \"bowling-pin\", \"boxing-glove\", \"brain\", \"breadmaker\", \"buddha\", \"bulldozer\", \"butterfly\", \"cactus\", \"cake\", \"calculator\", \"camel\", \"cannon\", \"canoe\", \"car-tire\", \"cartman\", \"cd\", \"centipede\", \"cereal-box\", \"chandelier\", \"chess-board\", \"chimp\", \"chopsticks\", \"cockroach\", \"coffee-mug\", \"coffin\", \"coin\", \"comet\", \"computer-keyboard\", \"computer-monitor\", \"computer-mouse\", \"conch\", \"cormorant\", \"covered-wagon\", \"cowboy-hat\", \"crab\", \"desk-globe\", \"diamond-ring\", \"dice\", \"dog\", \"dolphin\", \"doorknob\", \"drinking-straw\", \"duck\", \"dumb-bell\", \"eiffel-tower\", \"electric-guitar\", \"elephant\", \"elk\", \"ewer\", \"eyeglasses\", \"fern\", \"fighter-jet\", \"fire-extinguisher\", \"fire-hydrant\", \"fire-truck\", \"fireworks\", \"flashlight\", \"floppy-disk\", \"football-helmet\", \"french-horn\", \"fried-egg\", \"frisbee\", \"frog\", \"frying-pan\", \"galaxy\", \"gas-pump\", \"giraffe\", \"goat\", \"golden-gate-bridge\", \"goldfish\", \"golf-ball\", \"goose\", \"gorilla\", \"grand-piano\", \"grapes\", \"grasshopper\", \"guitar-pick\", \"hamburger\", \"hammock\", \"harmonica\", \"harp\", \"harpsichord\", \"hawksbill\", \"head-phones\", \"helicopter\", \"hibiscus\", \"homer-simpson\", \"horse\", \"horseshoe-crab\", \"hot-air-balloon\", \"hot-dog\", \"hot-tub\", \"hourglass\", \"house-fly\", \"human-skeleton\", \"hummingbird\", \"ibis\", \"ice-cream-cone\", \"iguana\", \"ipod\", \"iris\", \"jesus-christ\", \"joy-stick\", \"kangaroo\", \"kayak\", \"ketch\", \"killer-whale\", \"knife\", \"ladder\", \"laptop\", \"lathe\", \"leopards\", \"license-plate\", \"lightbulb\", \"light-house\", \"lightning\", \"llama\", \"mailbox\", \"mandolin\", \"mars\", \"mattress\", \"megaphone\", \"menorah\", \"microscope\", \"microwave\", \"minaret\", \"minotaur\", \"motorbikes\", \"mountain-bike\", \"mushroom\", \"mussels\", \"necktie\", \"octopus\", \"ostrich\", \"owl\", \"palm-pilot\", \"palm-tree\", \"paperclip\", \"paper-shredder\", \"pci-card\", \"penguin\", \"people\", \"pez-dispenser\", \"photocopier\", \"picnic-table\", \"playing-card\", \"porcupine\", \"pram\", \"praying-mantis\", \"pyramid\", \"raccoon\", \"radio-telescope\", \"rainbow\", \"refrigerator\", \"revolver\", \"rifle\", \"rotary-phone\", \"roulette-wheel\", \"saddle\", \"saturn\", \"school-bus\", \"scorpion\", \"screwdriver\", \"segway\", \"self-propelled-lawn-mower\", \"sextant\", \"sheet-music\", \"skateboard\", \"skunk\", \"skyscraper\", \"smokestack\", \"snail\", \"snake\", \"sneaker\", \"snowmobile\", \"soccer-ball\", \"socks\", \"soda-can\", \"spaghetti\", \"speed-boat\", \"spider\", \"spoon\", \"stained-glass\", \"starfish\", \"steering-wheel\", \"stirrups\", \"sunflower\", \"superman\", \"sushi\", \"swan\", \"swiss-army-knife\", \"sword\", \"syringe\", \"tambourine\", \"teapot\", \"teddy-bear\", \"teepee\", \"telephone-box\", \"tennis-ball\", \"tennis-court\", \"tennis-racket\", \"theodolite\", \"toaster\", \"tomato\", \"tombstone\", \"top-hat\", \"touring-bike\", \"tower-pisa\", \"traffic-light\", \"treadmill\", \"triceratops\", \"tricycle\", \"trilobite\", \"tripod\", \"t-shirt\", \"tuning-fork\", \"tweezer\", \"umbrella\", \"unicorn\", \"vcr\", \"video-projector\", \"washing-machine\", \"watch\", \"waterfall\", \"watermelon\", \"welding-mask\", \"wheelbarrow\", \"windmill\", \"wine-bottle\", \"xylophone\", \"yarmulke\", \"yo-yo\", \"zebra\", \"airplanes\", \"car-side\", \"faces-easy\", \"greyhound\", \"tennis-shoes\", \"toad\"]\n", + "twenty_news_test_set = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']\n", + "amazon = ['Negative', 'Neutral', 'Positive']\n", + "imdb_test_set = [\"Negative\", \"Positive\"]\n", + "\n", + "ALL_CLASSES = {\n", + " 'imagenet_val_set': imagenet_val_set,\n", + " 'caltech256': caltech256,\n", + " 'mnist_test_set': mnist_test_set,\n", + " 'cifar10_test_set': cifar10_test_set,\n", + " 'cifar100_test_set': cifar100_test_set,\n", + " 'imdb_test_set': imdb_test_set,\n", + " '20news_test_set': twenty_news_test_set,\n", + " 'amazon': amazon,\n", + "}\n", + "\n", + "\n", + "def _load_classes_predprobs_labels(dataset_name):\n", + " \"\"\"Helper function to load data from the labelerrors.com datasets.\"\"\"\n", + "\n", + " base = 'https://github.com/cleanlab/label-errors/raw/'\n", + " url_base = base + '5392f6c71473055060be3044becdde1cbc18284d'\n", + " url_labels = url_base + '/original_test_labels/{}_original_labels.npy'\n", + " url_probs = url_base + '/cross_validated_predicted_probabilities/{}_pyx.npy'\n", + " NUM_PARTS = {'amazon': 3, 'imagenet_val_set': 4} # pred_probs files broken up into parts for larger datatsets\n", + "\n", + " response = requests.get(url_labels.format(dataset_name))\n", + " labels = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " if dataset_name in NUM_PARTS:\n", + " pred_probs_parts = []\n", + " for i in range(1, NUM_PARTS[dataset_name] + 1):\n", + " url = url_probs.format(dataset_name).replace(\n", + " '.npy',\n", + " f'.part{i}_of_{NUM_PARTS[dataset_name]}.npy',\n", + " )\n", + " response = requests.get(url)\n", + " pred_probs_parts.append(\n", + " np.load(io.BytesIO(response.content), allow_pickle=True))\n", + " pred_probs = np.vstack(pred_probs_parts)\n", + " else:\n", + " response = requests.get(url_probs.format(dataset_name))\n", + " pred_probs = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " print(f\"\\nLoaded the '{dataset_name}' dataset with predicted \"\n", + " f\"probabilities of shape {pred_probs.shape}\\n\")\n", + "\n", + " return pred_probs, labels, ALL_CLASSES[dataset_name]\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# names of classes in each dataset -- SCROLL DOWN!!!\n", + "mnist_test_set = [\"0\", \"1\" ,\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\"]\n", + "cifar10_test_set = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "cifar100_test_set = ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']\n", + "caltech256 = [\"ak47\", \"american-flag\", \"backpack\", \"baseball-bat\", \"baseball-glove\", \"basketball-hoop\", \"bat\", \"bathtub\", \"bear\", \"beer-mug\", \"billiards\", \"binoculars\", \"birdbath\", \"blimp\", \"bonsai\", \"boom-box\", \"bowling-ball\", \"bowling-pin\", \"boxing-glove\", \"brain\", \"breadmaker\", \"buddha\", \"bulldozer\", \"butterfly\", \"cactus\", \"cake\", \"calculator\", \"camel\", \"cannon\", \"canoe\", \"car-tire\", \"cartman\", \"cd\", \"centipede\", \"cereal-box\", \"chandelier\", \"chess-board\", \"chimp\", \"chopsticks\", \"cockroach\", \"coffee-mug\", \"coffin\", \"coin\", \"comet\", \"computer-keyboard\", \"computer-monitor\", \"computer-mouse\", \"conch\", \"cormorant\", \"covered-wagon\", \"cowboy-hat\", \"crab\", \"desk-globe\", \"diamond-ring\", \"dice\", \"dog\", \"dolphin\", \"doorknob\", \"drinking-straw\", \"duck\", \"dumb-bell\", \"eiffel-tower\", \"electric-guitar\", \"elephant\", \"elk\", \"ewer\", \"eyeglasses\", \"fern\", \"fighter-jet\", \"fire-extinguisher\", \"fire-hydrant\", \"fire-truck\", \"fireworks\", \"flashlight\", \"floppy-disk\", \"football-helmet\", \"french-horn\", \"fried-egg\", \"frisbee\", \"frog\", \"frying-pan\", \"galaxy\", \"gas-pump\", \"giraffe\", \"goat\", \"golden-gate-bridge\", \"goldfish\", \"golf-ball\", \"goose\", \"gorilla\", \"grand-piano\", \"grapes\", \"grasshopper\", \"guitar-pick\", \"hamburger\", \"hammock\", \"harmonica\", \"harp\", \"harpsichord\", \"hawksbill\", \"head-phones\", \"helicopter\", \"hibiscus\", \"homer-simpson\", \"horse\", \"horseshoe-crab\", \"hot-air-balloon\", \"hot-dog\", \"hot-tub\", \"hourglass\", \"house-fly\", \"human-skeleton\", \"hummingbird\", \"ibis\", \"ice-cream-cone\", \"iguana\", \"ipod\", \"iris\", \"jesus-christ\", \"joy-stick\", \"kangaroo\", \"kayak\", \"ketch\", \"killer-whale\", \"knife\", \"ladder\", \"laptop\", \"lathe\", \"leopards\", \"license-plate\", \"lightbulb\", \"light-house\", \"lightning\", \"llama\", \"mailbox\", \"mandolin\", \"mars\", \"mattress\", \"megaphone\", \"menorah\", \"microscope\", \"microwave\", \"minaret\", \"minotaur\", \"motorbikes\", \"mountain-bike\", \"mushroom\", \"mussels\", \"necktie\", \"octopus\", \"ostrich\", \"owl\", \"palm-pilot\", \"palm-tree\", \"paperclip\", \"paper-shredder\", \"pci-card\", \"penguin\", \"people\", \"pez-dispenser\", \"photocopier\", \"picnic-table\", \"playing-card\", \"porcupine\", \"pram\", \"praying-mantis\", \"pyramid\", \"raccoon\", \"radio-telescope\", \"rainbow\", \"refrigerator\", \"revolver\", \"rifle\", \"rotary-phone\", \"roulette-wheel\", \"saddle\", \"saturn\", \"school-bus\", \"scorpion\", \"screwdriver\", \"segway\", \"self-propelled-lawn-mower\", \"sextant\", \"sheet-music\", \"skateboard\", \"skunk\", \"skyscraper\", \"smokestack\", \"snail\", \"snake\", \"sneaker\", \"snowmobile\", \"soccer-ball\", \"socks\", \"soda-can\", \"spaghetti\", \"speed-boat\", \"spider\", \"spoon\", \"stained-glass\", \"starfish\", \"steering-wheel\", \"stirrups\", \"sunflower\", \"superman\", \"sushi\", \"swan\", \"swiss-army-knife\", \"sword\", \"syringe\", \"tambourine\", \"teapot\", \"teddy-bear\", \"teepee\", \"telephone-box\", \"tennis-ball\", \"tennis-court\", \"tennis-racket\", \"theodolite\", \"toaster\", \"tomato\", \"tombstone\", \"top-hat\", \"touring-bike\", \"tower-pisa\", \"traffic-light\", \"treadmill\", \"triceratops\", \"tricycle\", \"trilobite\", \"tripod\", \"t-shirt\", \"tuning-fork\", \"tweezer\", \"umbrella\", \"unicorn\", \"vcr\", \"video-projector\", \"washing-machine\", \"watch\", \"waterfall\", \"watermelon\", \"welding-mask\", \"wheelbarrow\", \"windmill\", \"wine-bottle\", \"xylophone\", \"yarmulke\", \"yo-yo\", \"zebra\", \"airplanes\", \"car-side\", \"faces-easy\", \"greyhound\", \"tennis-shoes\", \"toad\"]\n", + "twenty_news_test_set = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']\n", + "\n", + "ALL_CLASSES = {\n", + " 'caltech256': caltech256,\n", + " 'mnist_test_set': mnist_test_set,\n", + " 'cifar10_test_set': cifar10_test_set,\n", + " 'cifar100_test_set': cifar100_test_set,\n", + " '20news_test_set': twenty_news_test_set,\n", + "}\n", + "\n", + "\n", + "def _load_classes_predprobs_labels(dataset_name):\n", + " \"\"\"Helper function to load data from the labelerrors.com datasets.\"\"\"\n", + "\n", + " base = 'https://github.com/cleanlab/label-errors/raw/'\n", + " url_base = base + '5392f6c71473055060be3044becdde1cbc18284d'\n", + " url_labels = url_base + '/original_test_labels/{}_original_labels.npy'\n", + " url_probs = url_base + '/cross_validated_predicted_probabilities/{}_pyx.npy'\n", + "\n", + " response = requests.get(url_labels.format(dataset_name))\n", + " labels = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + "\n", + " response = requests.get(url_probs.format(dataset_name))\n", + " pred_probs = np.load(io.BytesIO(response.content), allow_pickle=True)\n", + " print(f\"\\nLoaded the '{dataset_name}' dataset with predicted \"\n", + " f\"probabilities of shape {pred_probs.shape}\\n\")\n", + "\n", + " return pred_probs, labels, ALL_CLASSES[dataset_name]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7PixDik8JFiX" + }, + "source": [ + "## **Start of tutorial:** Evaluate the health of 8 popular datasets\n", + "\n", + "This tutorial shows the output of running `cleanlab.dataset.health_summary()` on 8 popular datasets below:\n", + "\n", + "- 5 image datasets: ImageNet, Caltech256, MNIST, CIFAR-10, CIFAR-100\n", + "- 3 text datasets: IMDB Reviews, 20 News Groups, Amazon Reviews\n", + "\n", + "`cleanlab.dataset.health_summary()` works with several kinds of inputs (see docstring). In this tutorial, we input:\n", + "\n", + "1. out-of-sample predicted probabilities (e.g. computed via [cross-validation](https://docs.cleanlab.ai/master/tutorials/pred_probs_cross_val.html))\n", + "2. labels (can contain label errors and various issues)\n", + "\n", + "For the 8 datasets, we've precomputed and loaded these for you. See [labelerrors.com](https://labelerrors.com/) for more info about the label issues in these datasets." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Want more interpretability?\n", + "\n", + "Pass in a list of class names ordered by their indices into the `class_names` argument in `cleanlab.dataset.health_summary()`.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dhTHOg8Pyv5G" + }, + "outputs": [], + "source": [ + "DATASETS = ['caltech256', 'mnist_test_set', 'cifar10_test_set', 'cifar100_test_set', '20news_test_set']\n", + "\n", + "for dataset_name in DATASETS:\n", + "\n", + " print(\"\\n🎯 \" + dataset_name.capitalize() + \" 🎯\\n\")\n", + "\n", + " # load class names, given labels, and predicted probabilities from already-trained model\n", + " pred_probs, labels, class_names = _load_classes_predprobs_labels(dataset_name)\n", + "\n", + " # run 1 line of code to evaluate the health of your dataset\n", + " _ = cleanlab.dataset.health_summary(labels, pred_probs, class_names=class_names)" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "cleanlab_dataset_tutorial.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/faq.ipynb b/v2.6.5/_sources/tutorials/faq.ipynb new file mode 100644 index 000000000..f3fc4dbd1 --- /dev/null +++ b/v2.6.5/_sources/tutorials/faq.ipynb @@ -0,0 +1,1031 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ffe0d62e", + "metadata": {}, + "source": [ + "# FAQ\n", + "\n", + "Answers to frequently asked questions about the [cleanlab](https://github.com/cleanlab/cleanlab) open-source package.\n", + "\n", + "The code snippets in this FAQ come from a fully executable notebook you can run via Colab or locally by downloading it [here](https://github.com/cleanlab/cleanlab/blob/master/docs/source/tutorials/faq.ipynb).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2a4efdde", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai. Execute it to ensure all other cells below can be executed in your own notebook\n", + "\n", + "import os \n", + "import logging \n", + "import numpy as np \n", + "import sklearn \n", + "import cleanlab \n", + "\n", + "np.random.seed(123)\n", + "\n", + "# Toy dataset:\n", + "N = 50\n", + "K = 3\n", + "num_errors = 4\n", + "labels = np.random.randint(low=0, high=K, size=N)\n", + "pred_probs = np.random.random_sample(N*K).reshape((N,K))\n", + "pred_probs[np.arange(N),labels] += 4 # make pred_probs accurate\n", + "pred_probs = pred_probs/pred_probs.sum(axis=1)[:, np.newaxis]\n", + "data = np.array([[label+np.random.uniform(), label+np.random.uniform()] for label in labels])\n", + "# introduce label errors in last few examples:\n", + "og0_indices = labels[-num_errors:] == 0\n", + "labels[-num_errors:] = 0\n", + "labels[-num_errors:][og0_indices] = 1\n", + "\n", + "your_classifier=sklearn.linear_model.LogisticRegression() # toy classifier" + ] + }, + { + "cell_type": "markdown", + "id": "d504ec58", + "metadata": {}, + "source": [ + "### What data can cleanlab detect issues in?" + ] + }, + { + "cell_type": "markdown", + "id": "5e70efbc", + "metadata": {}, + "source": [ + "Currently, cleanlab can be used to detect label issues in any classification dataset, including those involving: multiple annotators per example (multi-annotator), or multiple labels per example (multi-label). This includes data from any modality such as: image, text, tabular, audio, etc. For text data, cleanlab also supports NLP tasks like entity recognition in which each word is individually labeled (token classification). We're [working to add support](https://github.com/orgs/cleanlab/projects/2) for all other common supervised learning tasks. If you have a particular task in mind, [let us know](https://github.com/cleanlab/cleanlab/issues?q=is%3Aissue)!" + ] + }, + { + "cell_type": "markdown", + "id": "eca36874", + "metadata": {}, + "source": [ + "### How do I format classification labels for cleanlab?" + ] + }, + { + "cell_type": "markdown", + "id": "38c50875", + "metadata": {}, + "source": [ + "**With Datalab**:\n", + "\n", + "Datalab simplifies label management by accepting both string and integer labels directly. Internally, unique labels are sorted alphanumerically and mapped to integers, facilitating seamless integration with lower-level cleanlab methods. Below are the supported label formats:\n", + "\n", + "- **List of strings or integers**: Directly pass labels as a list of strings or integers without manual encoding.\n", + "\n", + "- **Using** `datasets.Dataset` **with** `ClassLabel`: For advanced use cases, you can structure your dataset using HuggingFace's `datasets.Dataset` object, specifying label columns as `ClassLabel` feature objects for formatting the labels. Refer to the [datasets documentation](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.ClassLabel) for detailed guidance.\n", + "\n", + "```python\n", + "from cleanlab import Datalab\n", + "from datasets import Dataset, Features, Value, ClassLabel\n", + "\n", + "# Example 1: Labels as a list of strings\n", + "labels_str = ['cat', 'dog', 'cat', 'dog']\n", + "datalab_str = Datalab(data={\"text\": [\"a\", \"b\", \"c\", \"d\"], \"label\": labels_str}, label_name=\"label\")\n", + "print(\"String labels:\", datalab_str.labels)\n", + "\n", + "# Example 2: Labels as a list of integers\n", + "labels_int = [1, 2, 2, 1] # These will be remapped to [0, 1] internally\n", + "datalab_int = Datalab(data={\"text\": [\"a\", \"b\", \"c\", \"d\"], \"label\": labels_int}, label_name=\"label\")\n", + "print(\"Integer labels:\", datalab_int.labels)\n", + "\n", + "# Example 3: Advanced - Dataset with ClassLabel feature\n", + "my_dict = {\"pet_name\": [\"Spot\", \"Mittens\", \"Rover\", \"Rocky\", \"Pepper\", \"Socks\"], \"species\": [\"dog\", \"cat\", \"dog\", \"dog\", \"cat\", \"cat\"]}\n", + "features = Features({\"pet_name\": Value(\"string\"), \"species\": ClassLabel(names=[\"dog\", \"cat\"])})\n", + "dataset = Dataset.from_dict(my_dict, features=features)\n", + "datalab_dataset = Datalab(data=dataset, label_name=\"species\")\n", + "print(\"ClassLabel feature:\", datalab_dataset.labels)\n", + "```\n", + "\n", + "Using Datalab allows you to directly handle raw class name labels in your dataset while ensuring compatibility with label encoding requirements of lower-level cleanlab methods, which we'll cover in the next section.\n" + ] + }, + { + "cell_type": "markdown", + "id": "d5d0fbb3", + "metadata": {}, + "source": [ + "**Without Datalab**:\n", + "\n", + "Outside of Datalab, cleanlab offers various lower-level methods to directly operate on labels and diagnose issues. For instance: ``get_label_quality_scores()`` and ``find_label_issues()``. These lower-level methods only work with integer-encoded labels in the range `{0,1, ... K-1}` where `K = number_of_classes`. The `labels` array should only contain integer values in the range `{0, K-1}` and be of shape `(N,)` where `N = total_number_of_data_points`.\n", + "Do not pass in `labels` where some classes are entirely missing or are extremely rare, as cleanlab may not perform as expected. It is better to remove such classes entirely from the dataset first (also dropping the corresponding dimensions from `pred_probs` and then renormalizing it).\n", + "\n", + "**Text or string labels** should to be mapped to integers for each possible value. For example if your original data labels look like this: `[\"dog\", \"dog\", \"cat\", \"mouse\", \"cat\"]`, you should feed them to cleanlab like this: `labels = [1,1,0,2,0]` and keep track of which integer uniquely represents which class (classes were ordered alphabetically in this example). \n", + "\n", + "**One-hot encoded labels** should be integer-encoded by finding the argmax along the one-hot encoded axis. An example of what this might look like is shown below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "239d5ee7", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np \n", + "\n", + "# This example arr has 4 labels (one per data point) where \n", + "# each label can be one of 3 possible classes\n", + "\n", + "arr = np.array([[0,1,0],[1,0,0],[0,0,1],[1,0,0]])\n", + "labels_proper_format = np.argmax(arr, axis=1) # How labels should be formatted when passed into the model" + ] + }, + { + "cell_type": "markdown", + "id": "4181cac7", + "metadata": {}, + "source": [ + "### How do I infer the correct labels for examples cleanlab has flagged?" + ] + }, + { + "cell_type": "markdown", + "id": "6d4db5e1", + "metadata": {}, + "source": [ + "If you have a classifier that is compatible with [CleanLearning](../cleanlab/classification.html) (i.e. follows the sklearn API), here's an easy way to see predicted labels alongside the label issues:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "28b324aa", + "metadata": {}, + "outputs": [], + "source": [ + "cl = cleanlab.classification.CleanLearning(your_classifier)\n", + "issues_dataframe = cl.find_label_issues(data, labels)" + ] + }, + { + "cell_type": "markdown", + "id": "6d4db5e2", + "metadata": {}, + "source": [ + "Alternatively if you have already computed out-of-sample predicted probabilities (`pred_probs`) from a classifier:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "28b324ab", + "metadata": {}, + "outputs": [], + "source": [ + "cl = cleanlab.classification.CleanLearning()\n", + "issues_dataframe = cl.find_label_issues(X=None, labels=labels, pred_probs=pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "b386dfc8", + "metadata": {}, + "source": [ + "Otherwise if you have already found issues via:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90c10e18", + "metadata": {}, + "outputs": [], + "source": [ + "issues = cleanlab.filter.find_label_issues(labels, pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "ad9ca03e", + "metadata": {}, + "source": [ + "then you can see your trained classifier's class prediction for each flagged example like this: " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88839519", + "metadata": {}, + "outputs": [], + "source": [ + "class_predicted_for_flagged_examples = pred_probs[issues].argmax(axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "a668b74b", + "metadata": {}, + "source": [ + "Here you can see the classifier's class prediction for every example via:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "558490c2", + "metadata": {}, + "outputs": [], + "source": [ + "class_predicted_for_all_examples = pred_probs.argmax(axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "f9450eed", + "metadata": {}, + "source": [ + "We caution against just blindly taking the predicted label for granted, many of these suggestions may be wrong! \n", + "You will be able to produce a much better version of your dataset interactively using [Cleanlab Studio](https://cleanlab.ai/studio/?utm_source=github&utm_medium=docs&utm_campaign=clostostudio), which helps you efficiently fix issues like this in large datasets." + ] + }, + { + "cell_type": "markdown", + "id": "bcc97591", + "metadata": {}, + "source": [ + "### How should I handle label errors in train vs. test data?\n", + "\n", + "If you do not address label errors in your test data, you may not even know when you have produced a better ML model because the evaluation is too noisy. For the best-trained models and most reliable evaluation of them, you should fix label errors in both training and testing data.\n", + "\n", + "To do this efficiently, first use cleanlab to automatically find label issues in both sets. You can simply merge these two sets into one larger dataset and run cross-validation training. On the merged dataset, you can do either of the following to detect label issues:\n", + "\n", + "\n", + "\n", + "**With Datalab**: Run `Datalab.find_issues()` on the merged dataset, then call `Datalab.report()` to see the label issues (and other types of data issues).\n", + "\n", + "```python\n", + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data = merged_dataset, label_name = \"label_column_name\")\n", + "\n", + "# Run proper cross-validation when computing predicted probabilities\n", + "lab.find_issues(pred_probs = pred_probs, issue_types = {\"label\": {}})\n", + "\n", + "lab.report()\n", + "```\n", + "\n", + "You can fetch the label issues DataFrame from the `Datalab` object by calling:\n", + "\n", + "```python\n", + "label_issues = lab.get_issues(\"label\")\n", + "```\n", + "\n", + "**Without Datalab**: Run cleanlab's lower-level `find_label_issues()` method on the merged datataset. Calling the [CleanLearning.find_label_issues()](../cleanlab/classification.html) method on your merged dataset both runs cross-validation training and finds label issues for you with any scikit-learn compatible classifier you choose.\n", + "\n", + "---\n", + "\n", + "After finding label issues, be **wary** about auto-correcting the labels for test examples. Instead manually fix the labels for your test data via careful review of the flagged issues. You can use [Cleanlab Studio](https://cleanlab.ai/studio/) to fix labels efficiently.\n", + "\n", + "Auto-correcting labels for your training data is fair game, which should improve ML performance (if properly evaluated with clean test labels). You can boost ML performance further by manually fixing the training examples flagged with label issues, as demonstrated in this article:\n", + "\n", + "[**Handling Mislabeled Tabular Data to Improve Your XGBoost Model**](https://cleanlab.ai/blog/label-errors-tabular-datasets/)" + ] + }, + { + "cell_type": "markdown", + "id": "21f42f24", + "metadata": {}, + "source": [ + "### How can I find label issues in big datasets with limited memory? " + ] + }, + { + "cell_type": "markdown", + "id": "089f505e", + "metadata": {}, + "source": [ + "For a dataset with many rows and/or classes, there are more efficient methods in the `label_issues_batched` module. These methods read data in mini-batches and you can reduce the `batch_size` to control how much memory they require. Below is an example of how to use the `find_label_issues_batched()` method from this module, which can load mini-batches of data from `labels`, `pred_probs` saved as .npy files on disk. You can also run this method on Zarr arrays loaded from .zarr files. Try playing with the `n_jobs` argument for further multiprocessing speedups. If you need greater flexibility, check out the `LabelInspector` class from this module." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41714b51", + "metadata": {}, + "outputs": [], + "source": [ + "# We'll assume your big arrays of labels, pred_probs have been saved to file like this:\n", + "from tempfile import mkdtemp\n", + "import os.path as path\n", + "\n", + "labels_file = path.join(mkdtemp(), \"labels.npy\")\n", + "pred_probs_file = path.join(mkdtemp(), \"pred_probs.npy\")\n", + "np.save(labels_file, labels)\n", + "np.save(pred_probs_file, pred_probs)\n", + "\n", + "# Code to find label issues by loading data from file in batches:\n", + "from cleanlab.experimental.label_issues_batched import find_label_issues_batched\n", + "\n", + "batch_size = 10000 # for efficiency, set this to as large of a value as your memory can handle\n", + "\n", + "# Indices of examples with label issues, sorted by label quality score (most severe to least severe):\n", + "indices_of_examples_with_issues = find_label_issues_batched(\n", + " labels_file=labels_file, pred_probs_file=pred_probs_file, batch_size=batch_size\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "13228a99-5d3f-47c0-87e5-2290d16461c4", + "metadata": {}, + "source": [ + "Methods that internally call `filter.find_label_issues()` can be sped up by specifying the argument `low_memory=True`, which will instead use `find_label_issues_batched()` internally. The following methods provide this option: \n", + "\n", + "1. [classification.CleanLearning](../cleanlab/classification.html#cleanlab.classification.CleanLearning)\n", + "2. [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues)\n", + "3. [token_classification.filter.find_label_issues](../cleanlab/token_classification/filter.html?highlight=token#cleanlab.token_classification.filter.find_label_issues)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "20476c70", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai, and is only for internal testing. You can ignore it.\n", + "\n", + "issue_indices = cleanlab.filter.find_label_issues(labels, pred_probs, filter_by = \"low_self_confidence\", return_indices_ranked_by=\"self_confidence\")\n", + "assert np.abs(len(issue_indices) - len(indices_of_examples_with_issues)) < 2, \"num issues differ in batched mode\"\n", + "set1 = set(issue_indices)\n", + "set2 = set(indices_of_examples_with_issues)\n", + "intersection = len(list(set1.intersection(set2)))\n", + "union = len(set1) + len(set2) - intersection\n", + "assert float(intersection) / union > 0.95, \"issue indices differ in batched mode\"" + ] + }, + { + "cell_type": "markdown", + "id": "438b424d", + "metadata": {}, + "source": [ + "**To use less memory and get results faster if your dataset has many classes:** Try merging the rare classes into a single \"Other\" class before you find label issues. The resulting issues won't be affected much since cleanlab anyway does not have enough data to accurately diagnose label errors in classes that are rarely seen. To do this, you should aggregate all the probability assigned to the rare classes in `pred_probs` into a single new dimension of `pred_probs_merged` (where this new array no longer has columns for the rare classes). Here is a function that does this for you, which you can also modify as needed:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6983cdad", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai\n", + "# Add two rare additional classes to the dataset:\n", + "\n", + "num_rare_instances = 3\n", + "small_prob = 1e-4\n", + "pred_probs = np.hstack((pred_probs, np.ones((len(pred_probs),2))*small_prob))\n", + "pred_probs = pred_probs / np.sum(pred_probs, axis=1)[:, np.newaxis]\n", + "labels[:num_rare_instances] = 3\n", + "labels[num_rare_instances:(2*num_rare_instances)] = 4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9092b8a0", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab.internal.util import value_counts # use this to count how often each class occurs in labels\n", + "\n", + "def merge_rare_classes(labels, pred_probs, count_threshold = 10):\n", + " \"\"\" \n", + " Returns: labels, pred_probs after we merge all rare classes into a single 'Other' class.\n", + " Merged pred_probs has less columns. Rare classes are any occuring less than `count_threshold` times.\n", + " Also returns: `class_mapping_orig2new`, a dict to map new classes in merged labels back to classes \n", + " in original labels, useful for interpreting outputs from `dataset.heath_summary()` or `count.confident_joint()`.\n", + " \"\"\"\n", + " num_classes = pred_probs.shape[1]\n", + " num_examples_per_class = value_counts(labels, num_classes=num_classes)\n", + " rare_classes = [c for c in range(num_classes) if num_examples_per_class[c] < count_threshold]\n", + " if len(rare_classes) < 1:\n", + " raise ValueError(\"No rare classes found at the given `count_threshold`, merging is unnecessary unless you increase it.\")\n", + "\n", + " num_classes_merged = num_classes - len(rare_classes) + 1 # one extra class for all the merged ones\n", + " other_class = num_classes_merged - 1\n", + " labels_merged = labels.copy()\n", + " class_mapping_orig2new = {} # key = original class in `labels`, value = new class in `labels_merged`\n", + " new_c = 0\n", + " for c in range(num_classes):\n", + " if c in rare_classes:\n", + " class_mapping_orig2new[c] = other_class\n", + " else:\n", + " class_mapping_orig2new[c] = new_c\n", + " new_c += 1\n", + " labels_merged[labels == c] = class_mapping_orig2new[c]\n", + "\n", + " merged_prob = np.sum(pred_probs[:, rare_classes], axis=1, keepdims=True) # total probability over all merged classes for each example\n", + " pred_probs_merged = np.hstack((np.delete(pred_probs, rare_classes, axis=1), merged_prob)) # assumes new_class is as close to original_class in sorted order as is possible after removing the merged original classes\n", + " # check a few rows of probabilities after merging to verify they still sum to 1:\n", + " num_check = 1000 # only check a few rows for efficiency\n", + " ones_array_ref = np.ones(min(num_check,len(pred_probs)))\n", + " if np.isclose(np.sum(pred_probs[:num_check], axis=1), ones_array_ref).all() and (not np.isclose(np.sum(pred_probs_merged[:num_check], axis=1), ones_array_ref).all()):\n", + " raise ValueError(\"merged pred_probs do not sum to 1 in each row, check that merging was correctly done.\")\n", + " \n", + " return (labels_merged, pred_probs_merged, class_mapping_orig2new)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0a01109", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab.filter import find_label_issues # can alternatively use find_label_issues_batched() shown above\n", + "\n", + "labels_merged, pred_probs_merged, class_mapping_orig2new = merge_rare_classes(labels, pred_probs, count_threshold=5)\n", + "examples_w_issues = find_label_issues(labels_merged, pred_probs_merged, return_indices_ranked_by=\"self_confidence\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b1da032", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden on docs.cleanlab.ai, and is only for internal testing. You can ignore it.\n", + "\n", + "rare_classes = [c for c in class_mapping_orig2new.keys() if class_mapping_orig2new[c] == pred_probs_merged.shape[1]-1]\n", + "og_examples_w_issues = find_label_issues(labels, pred_probs, return_indices_ranked_by=\"self_confidence\")\n", + "examples_of_interest = [x for x in examples_w_issues if labels[x] not in rare_classes]\n", + "og_examples_of_interest = [x for x in og_examples_w_issues if labels[x] not in rare_classes]\n", + "assert set(examples_of_interest) == set(og_examples_of_interest), \"merged label issues differ from non-merged label issues\"" + ] + }, + { + "cell_type": "markdown", + "id": "3868ee8b", + "metadata": {}, + "source": [ + "### Why isn’t CleanLearning working for me?" + ] + }, + { + "cell_type": "markdown", + "id": "d13c9cd0", + "metadata": {}, + "source": [ + "At this time, CleanLearning only works with data formatted as numpy matrices or pd.DataFrames, \n", + "and with models that are compatible with the `sklearn` API \n", + "(check out [skorch](https://github.com/skorch-dev/skorch) for Pytorch compatibility and [scikeras](https://github.com/adriangb/scikeras) for Tensorflow/Keras compatibility). \n", + "You can still use cleanlab with other data formats though! Just separately obtain predicted probabilities (`pred_probs`) from your model via cross-validation and pass them as inputs. \n", + "\n", + "\n", + "If CleanLearning is running successfully but not improving predictive accuracy of your model, here are some tips:\n", + "\n", + "1. Use cleanlab to find label issues in your test data as well (we recommend pooling `labels` across both training and test data into one input for `find_label_issues()`). Then manually review and fix label issues identified in the test data to verify accuracy measurements are actually meaningful.\n", + "\n", + "2. Try different values for `filter_by`, `frac_noise`, and `min_examples_per_class` which can be set via the `find_label_issues_kwargs` argument in the initialization of `CleanLearning()`.\n", + "\n", + "3. Try to find a better model (eg. via hyperparameter tuning or changing to another classifier). `CleanLearning` can find better label issues by leveraging a better model, which allows it to produce better quality training data. This can form a virtuous cycle in which better models -> better issue detection -> better data -> even better models! \n", + "\n", + "4. Try jointly tuning both model hyperparameters and `find_label_issues_kwargs` values.\n", + "\n", + "5. Does your dataset have a *junk* (or *clutter*, *unknown*, *other*) class? If you have bad data, consider creating one (c.f. Caltech-256).\n", + "\n", + "6. Consider merging similar/overlapping classes found via ``cleanlab.dataset.find_overlapping_classes``.\n", + "\n", + "Other general tips to improve label error detection performance:\n", + "\n", + "1. Try creating more restrictive new filters by combining their intersections (e.g. `combined_boolean_mask = mask1 & mask2` where `mask1` and `mask2` are the boolean masks created by running `find_label_issues` with different values of the `filter_by` argument).\n", + "\n", + "2. If your `pred_probs` are obtained via a neural network, try averaging the `pred_probs` over the last K epochs of training instead of just using the final `pred_probs`. Similarly, you can try averaging `pred_probs` from several models (remember to re-normalize) or using ``cleanlab.rank.get_label_quality_ensemble_scores``.\n" + ] + }, + { + "cell_type": "markdown", + "id": "9ae3899c", + "metadata": {}, + "source": [ + "### How can I use different models for data cleaning vs. final training in CleanLearning?" + ] + }, + { + "cell_type": "markdown", + "id": "a2ce1518", + "metadata": {}, + "source": [ + "The code below demonstrates CleanLearning with 2 different classifiers: `LogisticRegression()` and `GradientBoostingClassifier()`.\n", + "A `LogisticRegression` model is used to detect label issues (via cross-validation run inside CleanLearning) and a `GradientBoostingClassifier` model is finally trained on a clean subset of the data with issues removed.\n", + "This can be done with any two classifiers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c9e9030", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab.classification import CleanLearning\n", + "import numpy as np\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "\n", + "# Make example data\n", + "data = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Introduce label errors\n", + "true_errors = [97, 98, 100, 101, 102, 104]\n", + "for idx in true_errors:\n", + " labels[idx] = 1 - labels[idx]\n", + "\n", + "# CleanLearning with 2 different classifiers: one classifier is used to detect label issues \n", + "# and a different classifier is subsequently trained on the clean subset of the data.\n", + "\n", + "model_to_find_errors = LogisticRegression() # this model will be trained many times via cross-validation\n", + "model_to_return = GradientBoostingClassifier() # this model will be trained once on clean subset of data\n", + "\n", + "cl0 = CleanLearning(model_to_find_errors)\n", + "issues = cl0.find_label_issues(data, labels)\n", + "\n", + "cl = CleanLearning(model_to_return).fit(data, labels, label_issues=issues)\n", + "pred_probs = cl.predict_proba(data) # predictions from GradientBoostingClassifier\n", + "\n", + "print(cl0.clf) # will be LogisticRegression()\n", + "print(cl.clf) # will be GradientBoostingClassifier()" + ] + }, + { + "cell_type": "markdown", + "id": "b71fef02", + "metadata": {}, + "source": [ + "### How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?" + ] + }, + { + "cell_type": "markdown", + "id": "e7ec1956", + "metadata": {}, + "source": [ + "The code below demonstrates CleanLearning using a `GradientBoostingClassifier()` with no hyperparameter-tuning to find label issues but with hyperparameter-tuning via `RandomizedSearchCV(...)` for the final training of this model on the clean subset of the data.\n", + "This is a useful trick to avoid expensive hyperparameter-tuning for every fold of cross-validation (which is needed to find label issues)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8751619e", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.classification import CleanLearning\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "\n", + "# Make example data\n", + "data = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Introduce label errors\n", + "true_errors = [97, 98, 100, 101, 102, 104]\n", + "for idx in true_errors:\n", + " labels[idx] = 1 - labels[idx]\n", + "\n", + "# CleanLearning with no hyperparameter-tuning during expensive cross-validation to find label issues\n", + "# but hyperparameter-tuning for the final training of model on clean subset of the data:\n", + "\n", + "model_to_find_errors = GradientBoostingClassifier() # this model will be trained many times via cross-validation\n", + "model_to_return = RandomizedSearchCV(GradientBoostingClassifier(),\n", + " param_distributions = {\n", + " \"learning_rate\": [0.001, 0.05, 0.1, 0.2, 0.5],\n", + " \"max_depth\": [3, 5, 10],\n", + " }\n", + " ) # this model will be trained once on clean subset of data\n", + "\n", + "cl0 = CleanLearning(model_to_find_errors)\n", + "issues = cl0.find_label_issues(data, labels)\n", + "\n", + "cl = CleanLearning(model_to_return).fit(data, labels, label_issues=issues) # CleanLearning for hyperparameter final training\n", + "pred_probs = cl.predict_proba(data) # predictions from hyperparameter-tuned GradientBoostingClassifier\n", + "\n", + "print(cl0.clf) # will be GradientBoostingClassifier()\n", + "print(cl.clf) # will be RandomizedSearchCV(estimator=GradientBoostingClassifier(),...)" + ] + }, + { + "cell_type": "markdown", + "id": "d228decd", + "metadata": {}, + "source": [ + "### Why does regression.learn.CleanLearning take so long?" + ] + }, + { + "cell_type": "markdown", + "id": "de5c984b", + "metadata": {}, + "source": [ + "To effectively identify errors in a regression dataset, the methods in [regression.learn.CleanLearning](../../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning) estimate each datapoint's aleatoric uncertainty (by fitting a second copy of the regression model to predict the residuals’ magnitudes), as well as its epistemic uncertainty (by fitting multiple copies of the regression model with bootstrap resampling). These uncertainty estimates help provide a robust quality score that accounts for the model's imperfect predictions. \n", + "\n", + "These uncertainty estimates help produce better results but require longer runtimes. Here are a few options to speed up the runtime of these methods:\n", + "\n", + "- Reduce the number of bootstrap resampling rounds by decreasing the `n_boot` argument (default value is 5, set it to 0 to skip the epistemic uncertainty estimation entirely).\n", + "\n", + "- Set `include_aleatoric_uncertainty=False` to skip the aleatoric uncertainty estimation.\n", + "\n", + "- Include less elements in the `coarse_search_range` argument of [regression.learn.CleanLearning.find_label_issues](../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning.find_label_issues). This is overall set of values initially considered for estimating the fraction of data that have label issues.\n", + "\n", + "- Reduce the `fine_search_size` argument of [regression.learn.CleanLearning.find_label_issues](../cleanlab/regression/learn.html#cleanlab.regression.learn.CleanLearning.find_label_issues). A higher number represents a more thorough search to precisely estimate the fraction of data that have label issues.\n", + "\n", + "Below is sample code on how to pass in these arguments." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "623df36d", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab.regression.learn import CleanLearning\n", + "\n", + "X = np.random.random(size=(30, 3))\n", + "coefficients = np.random.uniform(-1, 1, size=3)\n", + "y = np.dot(X, coefficients) + np.random.normal(scale=0.2, size=30)\n", + "\n", + "# passing optinal arguments to reduce runtime\n", + "cl = CleanLearning(n_boot=1, include_aleatoric_uncertainty=False)\n", + "cl.find_label_issues(X, y, coarse_search_range=[0.05, 0.1], fine_search_size=2)\n", + "\n", + "# you can also pass coarse_search_range and fine_search_size as kwargs to CleanLearning.fit\n", + "cl.fit(X, y, find_label_issues_kwargs={\"coarse_search_range\": [0.05, 0.1], \"fine_search_size\": 2})" + ] + }, + { + "cell_type": "markdown", + "id": "1677ba25", + "metadata": {}, + "source": [ + "**With Datalab**:\n", + "\n", + "Datalab runs CleanLearning under the hood when looking for label issues in regression datasets. Here's how you can achieve the same behavior as calling `CleanLearning.find_label_issues()` in the code above using Datalab:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "af3052ac", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(data = {\"X\": X, \"y\": y}, label_name = \"y\", task=\"regression\")\n", + "\n", + "issue_types = {\n", + " \"label\": {\n", + " \"clean_learning_kwargs\": {\"n_boot\": 1, \"include_aleatoric_uncertainty\": False},\n", + " \"coarse_search_range\": [0.05, 0.1],\n", + " \"fine_search_size\": 2,\n", + " },\n", + "}\n", + "lab.find_issues(features=X, issue_types = issue_types)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", + "cluster IDs to `find_issues`. These cluster IDs can be obtained by grouping\n", + "the features using any clustering algorithm of your choice (E.g. K-Means, DBSCAN, HDBSCAN etc). By default, Datalab will detect the underperforming group using the DBSCAN clustering algorithm.\n", + "\n", + "Below is sample code on how to generate cluster IDs and pass them to `find_issues`: " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab import Datalab\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "# Make example data\n", + "features = np.vstack([np.random.random((100, 2)), np.random.random((100, 2)) + 10])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "\n", + "# Train classifier and generate out-of-sample probabilities\n", + "model = LogisticRegression()\n", + "pred_probs = cross_val_predict(model, features, labels, method=\"predict_proba\")\n", + "\n", + "# Group features into 8 clusters\n", + "clusterer = KMeans(n_init='auto', n_clusters=5)\n", + "cluster_ids = clusterer.fit_predict(features)\n", + "\n", + "# Find underperforming group\n", + "lab = Datalab(data={\"features\": features, \"y\": labels}, label_name=\"y\")\n", + "issue_types = {\"underperforming_group\": {\"cluster_ids\": cluster_ids}}\n", + "lab.find_issues(features=features, pred_probs=pred_probs, issue_types=issue_types)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "# Make tabular dataset with 1 continuous column and 1 categorical column\n", + "continuous_column = np.concatenate([np.random.random(100), np.random.random(100) + 10])\n", + "categorical_column = np.concatenate([np.random.randint(0, 2, 100), np.random.randint(1, 3, 100)])\n", + "labels = np.array([0] * 100 + [1] * 100)\n", + "data_df = pd.DataFrame({\"Feature_A\": continuous_column, \"Feature_B\": categorical_column, \"labels\": labels})\n", + "\n", + "# Train classifier and generate out-of-sample probabilities\n", + "model = LogisticRegression()\n", + "features = data_df[[\"Feature_A\", \"Feature_B\"]].to_numpy()\n", + "pred_probs = cross_val_predict(model, features, labels, method=\"predict_proba\")\n", + "\n", + "# Find underperforming group\n", + "lab = Datalab(data=data_df, label_name=\"labels\")\n", + "issue_types = {\"underperforming_group\": {\"cluster_ids\": data_df[\"Feature_B\"].values}}\n", + "lab.find_issues(features=features, pred_probs=pred_probs, issue_types=issue_types)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to handle near-duplicate data identified by cleanlab?\n", + "\n", + "cleanlab may identify near-duplicate examples in your dataset, these are examples that are very similar to each other and can potentially cause issues in model training and analytics. When near-duplicates are present, models may unexpectedly emphasize these examples, especially if they were accidentally duplicated. In such cases, it is crucial to remove the (near) duplicate copies from your dataset to ensure accurate and reliable results. A common strategy is to remove all but one of the duplicates from your dataset. Here's how you can achieve this with results from cleanlab's `Datalab` class:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Callable\n", + "import pandas as pd\n", + "\n", + "\n", + "def merge_duplicate_sets(df, merge_key: str):\n", + " \"\"\"Generate group keys for each row, then merge intersecting sets.\n", + " \n", + " :param df: DataFrame with columns 'is_near_duplicate_issue' and 'near_duplicate_sets'\n", + " :param merge_key: Name of the column to store the merged sets\n", + " \"\"\"\n", + "\n", + " df[merge_key] = df.apply(construct_group_key, axis=1)\n", + " merged_sets = consolidate_sets(df[merge_key].tolist())\n", + " df[merge_key] = df[merge_key].map(\n", + " lambda x: next(s for s in merged_sets if x.issubset(s))\n", + " )\n", + " return df\n", + "\n", + "def construct_group_key(row):\n", + " \"\"\"Convert near_duplicate_sets into a frozenset and include the row's own index.\"\"\"\n", + " return frozenset(row['near_duplicate_sets']).union({row.name})\n", + "\n", + "def consolidate_sets(sets_list):\n", + " \"\"\"Merge sets if they intersect.\"\"\"\n", + " \n", + " # Convert the input list of frozensets to a list of mutable sets\n", + " sets_list = [set(item) for item in sets_list]\n", + " \n", + " # A flag to keep track of whether any sets were merged in the current iteration\n", + " merged = True\n", + "\n", + " # Continue the merging process as long as we have merged some sets in the previous iteration\n", + " while merged:\n", + " merged = False\n", + " new_sets = []\n", + "\n", + " # Iterate through each set in our list\n", + " for current_set in sets_list:\n", + " # Skip empty sets\n", + " if not current_set:\n", + " continue\n", + "\n", + " # Find all sets that have an intersection with the current set\n", + " intersecting_sets = [s for s in sets_list if s & current_set]\n", + "\n", + " # If more than one set intersects, set the merged flag to True\n", + " if len(intersecting_sets) > 1:\n", + " merged = True\n", + "\n", + " # Merge all intersecting sets into one set\n", + " merged_set = set().union(*intersecting_sets)\n", + " new_sets.append(merged_set)\n", + "\n", + " # Empty the sets we've merged to prevent them from being processed again\n", + " for s in intersecting_sets:\n", + " sets_list[sets_list.index(s)] = set()\n", + "\n", + " # Replace the original sets list with the new list of merged sets\n", + " sets_list = new_sets\n", + "\n", + " # Convert the merged sets back to frozensets for the output\n", + " return [frozenset(item) for item in sets_list]\n", + "\n", + "def lowest_score_strategy(sub_df):\n", + " \"\"\"Keep the row with the lowest near_duplicate_score.\"\"\"\n", + " return sub_df['near_duplicate_score'].idxmin()\n", + "\n", + "\n", + "def filter_near_duplicates(data: pd.DataFrame, strategy_fn: Callable = lowest_score_strategy, **strategy_kwargs):\n", + " \"\"\"\n", + " Given a dataframe with columns 'is_near_duplicate_issue' and 'near_duplicate_sets',\n", + " return a series of boolean values where True indicates the rows to be removed.\n", + " The strategy_fn determines which rows to keep within each near_duplicate_set.\n", + "\n", + " :param data: DataFrame with is_near_duplicate_issue and near_duplicate_sets columns\n", + " :param strategy_fn: Function to determine which rows to keep within each near_duplicate_set\n", + " :return: Series of boolean values where True indicates rows to be removed.\n", + " \"\"\"\n", + " \n", + " # Filter out rows where 'is_near_duplicate_issue' is True to get potential duplicates\n", + " duplicate_rows = data.query(\"is_near_duplicate_issue\").copy()\n", + "\n", + " # Generate group keys for each row and merge intersecting sets\n", + " group_key = \"sets\"\n", + " duplicate_rows = merge_duplicate_sets(duplicate_rows, merge_key=group_key)\n", + "\n", + " # Use the strategy function to determine the indices of the rows to keep for each group\n", + " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n", + "\n", + " # Produce a boolean series indicating which rows should be removed\n", + " to_remove = ~data.index.isin(to_keep_indices)\n", + "\n", + " return to_remove" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The functions above collect sets of near-duplicate examples. Within each\n", + "collection, a single example is chosen to be kept in the dataset. The rest of the examples in the collection are removed.\n", + "Examples that are not near-duplicates of any other examples are kept in the dataset as well.\n", + "\n", + "The choice of which example to keep in each set of near-duplicate examples can be made in a variety of ways. Here, the example with the lowest near-duplicate score is chosen.\n", + "You can use any strategy that best suits your application by defining the strategy as a function and passing it as the `strategy_fn` argument to `filter_near_duplicates()`.\n", + "Below is an example of how this is applied to a dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab import Datalab\n", + "import numpy as np\n", + "\n", + "# Assume you have a dataset with a set of 3 near-duplicate examples\n", + "features = np.random.random(size=(15, 3))\n", + "for neighbor in range(1, 3):\n", + " # Make examples 0, 1, and 2 near-duplicates of each other\n", + " features[neighbor] = features[0] + np.random.normal(scale=0.001, size=3)\n", + "\n", + "# Identify near-duplicate examples with Datalab\n", + "your_dataset = {\n", + " \"features\": features,\n", + "}\n", + "lab = Datalab(data=your_dataset)\n", + "lab.find_issues(features = features, issue_types={\"near_duplicate\": {}})\n", + "\n", + "# Pick out ids of near-duplicate examples to remove\n", + "near_duplicate_issues = (\n", + " lab.get_issues(\"near_duplicate\")\n", + " .query(\"is_near_duplicate_issue\")\n", + " .sort_values(\"near_duplicate_score\")\n", + ")\n", + "ids_to_remove_series = filter_near_duplicates(near_duplicate_issues)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Near-duplicate examples to keep:\", np.where(~ids_to_remove_series)[0].tolist())\n", + "\n", + "print(\"Near-duplicate examples to remove:\", np.where(ids_to_remove_series)[0].tolist())" + ] + }, + { + "cell_type": "markdown", + "id": "3a28168h", + "metadata": {}, + "source": [ + "### What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?" + ] + }, + { + "cell_type": "markdown", + "id": "1a117547", + "metadata": {}, + "source": [ + "These questions are automatically handled for you in [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- our platform for no-code data improvement.\n", + "While this open-source library **finds** data issues, an interface is needed to efficiently **fix** these issues in your dataset. [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is a no-code platform to **find and fix** problems in real-world ML datasets. Cleanlab Studio automatically runs the data quality algorithms from this library on top of AutoML models fit to your data, and presents detected issues in a smart data editing interface. Think of it like a data cleaning assistant that helps you quickly improve the quality of your data (via AI/automation + streamlined UX). [Try it for free!](https://cleanlab.ai/signup/) \n", + "\n", + "![Stages of modern AI pipeline that can now be automated with Cleanlab Studio](https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-pipeline.png)" + ] + }, + { + "cell_type": "markdown", + "id": "3a28168f", + "metadata": {}, + "source": [ + "### What license is cleanlab open-sourced under?" + ] + }, + { + "cell_type": "markdown", + "id": "1a117546", + "metadata": {}, + "source": [ + "[AGPL-3.0 license](https://github.com/cleanlab/cleanlab/blob/master/LICENSE)\n", + "\n", + "**What does this mean?** If you're working at a company, you can use this open-source library to clean up your internal datasets. You can also use this open-source library to clean up a dataset used to train a model that is deployed in a commercial product.\n", + "For non-commercial purposes, feel free to release altered versions of the source code as long as you include the same license.\n", + "\n", + "Please email `team@cleanlab.ai` to discuss licensing needs if you would like to offer a commercial product that utilizes any cleanlab source code." + ] + }, + { + "cell_type": "markdown", + "id": "1520a93f", + "metadata": {}, + "source": [ + "### Can't find an answer to your question?\n", + "\n", + "If your question is not addressed in these tutorials, please refer to the: [Cleanlab Github issues](https://github.com/cleanlab/cleanlab/issues?q=is%3Aissue), [Cleanlab Code Examples](https://github.com/cleanlab/examples) or our [Slack Community](https://cleanlab.ai/slack).\n", + "\n", + "If your question is not addressed anywhere, please open a [new Github issue](https://github.com/cleanlab/cleanlab/issues/new/choose). Our developers may also provide personalized assistance in our [Slack Community](https://cleanlab.ai/slack). \n", + "\n", + "Professional support and services are also available from our [ML experts](https://cleanlab.ai/about/), learn more by emailing: `team@cleanlab.ai`" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/indepth_overview.ipynb b/v2.6.5/_sources/tutorials/indepth_overview.ipynb new file mode 100644 index 000000000..5894a308e --- /dev/null +++ b/v2.6.5/_sources/tutorials/indepth_overview.ipynb @@ -0,0 +1,1156 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "Sfmml1VCqCHm" + }, + "source": [ + "# The Workflows of Data-centric AI for Classification with Noisy Labels\n", + "\n", + "In this tutorial, you will learn how to easily incorporate [cleanlab](https://github.com/cleanlab/cleanlab) into your ML development workflows to:\n", + "\n", + "- Automatically find issues such as label errors, outliers and near duplicates lurking in your classification data.\n", + "- Score the label quality of every example in your dataset.\n", + "- Train robust models in the presence of label issues.\n", + "- Identify overlapping classes that you can merge to make the learning task less ambiguous.\n", + "- Generate an overall label health score to track improvements in your labels as you clean your datasets over time.\n", + "\n", + "This tutorial provides an in-depth survey of many possible different ways that cleanlab can be utilized for Data-Centric AI. If you have a different use-case in mind that is not supported, please [tell us about it](https://github.com/cleanlab/cleanlab/issues)!\n", + "While this tutorial focuses on standard multi-class (and binary) classification datasets, cleanlab also supports other tasks including: [data labeled by multiple annotators](multiannotator.html), [multi-label classification](../cleanlab/filter.rst#cleanlab.filter.find_label_issues), and [token classification of text](token_classification.html).\n", + "\n", + "**cleanlab is grounded in theory and science**. Learn more:\n", + "\n", + "[Research Publications](https://cleanlab.ai/research) | [Label Errors found by cleanlab](https://labelerrors.com/) | [Examples using cleanlab](https://github.com/cleanlab/examples)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XBK4cAOUyLgW" + }, + "source": [ + "## Install dependencies and import them" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use pip to install all packages required for this tutorial as follows:\n", + "\n", + "```\n", + "!pip install matplotlib \n", + "!pip install cleanlab[datalab]\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# Package versions used: matplotlib==3.5.1 \n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")\n", + "\n", + "%config InlineBackend.print_figure_kwargs={\"facecolor\": \"w\"}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "avXlHJcXjruP" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import cleanlab\n", + "from cleanlab import Datalab\n", + "from cleanlab.classification import CleanLearning\n", + "from cleanlab.benchmarking import noise_generation\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "from numpy.random import multivariate_normal\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I6VuupksjruQ" + }, + "source": [ + "## Create the data (can skip these details)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
See the code for data generation **(click to expand)**\n", + "\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "SEED = 0\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8], [0, 10]],\n", + " covs=[\n", + " [[5, -1.5], [-1.5, 1]],\n", + " [[1, 0.5], [0.5, 4]],\n", + " [[5, 1], [1, 5]],\n", + " [[3, 1], [1, 1]],\n", + " ],\n", + " sizes=[100, 50, 50, 50],\n", + " avg_trace=0.8,\n", + " seed=SEED, # set to None for non-reproducible randomness\n", + "):\n", + " np.random.seed(seed=SEED)\n", + "\n", + " K = len(means) # number of classes\n", + " data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + "\n", + " for idx in range(K):\n", + " data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " test_data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " test_labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(data)\n", + " y_train = np.hstack(labels)\n", + " X_test = np.vstack(test_data)\n", + " y_test = np.hstack(test_labels)\n", + "\n", + " # Compute p(y=k) the prior distribution over true labels.\n", + " py_true = np.bincount(y_train) / float(len(y_train))\n", + "\n", + " noise_matrix_true = noise_generation.generate_noise_matrix_from_trace(\n", + " K,\n", + " trace=avg_trace * K,\n", + " py=py_true,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_marix.\n", + " s = noise_generation.generate_noisy_labels(y_train, noise_matrix_true)\n", + " s_test = noise_generation.generate_noisy_labels(y_test, noise_matrix_true)\n", + " ps = np.bincount(s) / float(len(s)) # Prior distribution over noisy labels\n", + "\n", + " return {\n", + " \"data\": X_train,\n", + " \"true_labels\": y_train, # You never get to see these perfect labels.\n", + " \"labels\": s, # Instead, you have these labels, which have some errors.\n", + " \"test_data\": X_test,\n", + " \"test_labels\": y_test, # Perfect labels used for \"true\" measure of model's performance during deployment.\n", + " \"noisy_test_labels\": s_test, # With IID train/test split, you'd have these labels, which also have some errors.\n", + " \"ps\": ps,\n", + " \"py_true\": py_true,\n", + " \"noise_matrix_true\": noise_matrix_true,\n", + " \"class_names\": [\"purple\", \"blue\", \"seafoam green\", \"yellow\"],\n", + " }\n", + "\n", + "\n", + "data_dict = make_data()\n", + "for key, val in data_dict.items(): # Map data_dict to variables in namespace\n", + " exec(key + \"=val\")\n", + "\n", + "# Display dataset visually using matplotlib\n", + "def plot_data(data, circles, title, alpha=1.0):\n", + " plt.figure(figsize=(14, 5))\n", + " plt.scatter(data[:, 0], data[:, 1], c=labels, s=60)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + "```\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "SEED = 0\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8], [0, 10]],\n", + " covs=[\n", + " [[5, -1.5], [-1.5, 1]],\n", + " [[1, 0.5], [0.5, 4]],\n", + " [[5, 1], [1, 5]],\n", + " [[3, 1], [1, 1]],\n", + " ],\n", + " sizes=[100, 50, 50, 50],\n", + " avg_trace=0.8,\n", + " seed=SEED, # set to None for non-reproducible randomness\n", + "):\n", + " np.random.seed(seed=SEED)\n", + "\n", + " K = len(means) # number of classes\n", + " data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + "\n", + " for idx in range(K):\n", + " data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " test_data.append(\n", + " np.random.multivariate_normal(\n", + " mean=means[idx], cov=covs[idx], size=sizes[idx]\n", + " )\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " test_labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(data)\n", + " y_train = np.hstack(labels)\n", + " X_test = np.vstack(test_data)\n", + " y_test = np.hstack(test_labels)\n", + "\n", + " # Compute p(y=k) the prior distribution over true labels.\n", + " py_true = np.bincount(y_train) / float(len(y_train))\n", + "\n", + " noise_matrix_true = noise_generation.generate_noise_matrix_from_trace(\n", + " K,\n", + " trace=avg_trace * K,\n", + " py=py_true,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_marix.\n", + " s = noise_generation.generate_noisy_labels(y_train, noise_matrix_true)\n", + " s_test = noise_generation.generate_noisy_labels(y_test, noise_matrix_true)\n", + " ps = np.bincount(s) / float(len(s)) # Prior distribution over noisy labels\n", + "\n", + " return {\n", + " \"data\": X_train,\n", + " \"true_labels\": y_train, # You never get to see these perfect labels.\n", + " \"labels\": s, # Instead, you have these labels, which have some errors.\n", + " \"test_data\": X_test,\n", + " \"test_labels\": y_test, # Perfect labels used for \"true\" measure of model's performance during deployment.\n", + " \"noisy_test_labels\": s_test, # With IID train/test split, you'd have these labels, which also have some errors.\n", + " \"ps\": ps,\n", + " \"py_true\": py_true,\n", + " \"noise_matrix_true\": noise_matrix_true,\n", + " \"class_names\": [\"purple\", \"blue\", \"seafoam green\", \"yellow\"],\n", + " }\n", + "\n", + "\n", + "data_dict = make_data()\n", + "for key, val in data_dict.items(): # Map data_dict to variables in namespace\n", + " exec(key + \"=val\")\n", + "\n", + "# Display dataset visually using matplotlib\n", + "def plot_data(data, circles, title, alpha=1.0):\n", + " plt.figure(figsize=(14, 5))\n", + " plt.scatter(data[:, 0], data[:, 1], c=labels, s=60)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "true_errors = np.where(true_labels != labels)[0]\n", + "plot_data(data, circles=true_errors, title=\"A realistic, messy dataset with 4 classes\", alpha=0.3)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AM6E7tNS9pZn" + }, + "source": [ + "The figure above represents a toy dataset we'll use to demonstrate various cleanlab functionality. In this data, the features *X* are 2-dimensional and examples are colored according to their *given* label above.\n", + "\n", + "Like [many real-world datasets](https://labelerrors.com/), the given label happens to be incorrect for some of the examples (**circled in red**) in this dataset!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Workflow 1:** Use Datalab to detect many types of issues " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Datalab offers an easy interface to detect all sorts of common real-world issue in your dataset. Internally it uses many data quality algorithms, and these methods can also be directly invoked — as demonstrated in some of the subsequent workflows here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Datalab offers several ways of loading the data\n", + "# we’ll simply wrap the training features and noisy labels in a dictionary. \n", + "data_dict = {\"X\": data, \"y\": labels}\n", + "\n", + "# get out of sample predicted probabilities via cross-validation.\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All that is need to audit your data is initalize a Datalab object with your dataset and call `find_issues()`. \n", + "\n", + "Pass in the predicted probabilities and feature embeddings for your data and Datalab will do all the work!\n", + "You do not necessarily need to provide all of this information depending on which types of issues you are interested in, but the more inputs you provide, the more types of issues `Datalab` can detect in your data. Using a better model to produce these inputs will ensure cleanlab more accurately estimates issues.\n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(data_dict, label_name=\"y\")\n", + "lab.find_issues(pred_probs=pred_probs, features=data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the audit is complete, review the findings using the `report` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lab.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZmUd-5tljruT" + }, + "source": [ + "## **Workflow 2:** Use CleanLearning for more robust Machine Learning\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AaHC5MRKjruT" + }, + "outputs": [], + "source": [ + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "\n", + "# CleanLearning: Machine Learning with cleaned data (given messy, real-world data)\n", + "cl = cleanlab.classification.CleanLearning(yourFavoriteModel, seed=SEED)\n", + "\n", + "# Fit model to messy, real-world data, automatically training on cleaned data.\n", + "_ = cl.fit(data, labels)\n", + "\n", + "# See the label quality for every example, which data has issues, and more.\n", + "cl.get_label_issues().head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "78udGSU6jruT" + }, + "source": [ + "### Clean Learning = Machine Learning with cleaned data\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Wy27rvyhjruU" + }, + "outputs": [], + "source": [ + "# For comparison, this is how you would have trained your model normally (without Cleanlab)\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel.fit(data, labels)\n", + "print(f\"Accuracy using yourFavoriteModel: {yourFavoriteModel.score(test_data, test_labels):.0%}\")\n", + "\n", + "# But CleanLearning can do anything yourFavoriteModel can do, but enhanced.\n", + "# For example, CleanLearning gives you predictions (just like yourFavoriteModel)\n", + "# but the magic is that CleanLearning was trained as if your data did not have label errors.\n", + "print(f\"Accuracy using yourFavoriteModel (+ CleanLearning): {cl.score(test_data, test_labels):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rtEh09G7764o" + }, + "source": [ + "Note! *Accuracy* refers to the accuracy with respect to the *true* error-free labels of a test set., i.e. what we actually care about in practice because that's what real-world model performance is based on. If you don't have a clean test set, you can use cleanlab to make one :)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_b8O6_J2jruU" + }, + "source": [ + "## **Workflow 3:** Use CleanLearning to find_label_issues in one line of code\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Db8YHnyVjruU" + }, + "outputs": [], + "source": [ + "# One line of code. Literally.\n", + "issues = CleanLearning(yourFavoriteModel, seed=SEED).find_label_issues(data, labels)\n", + "\n", + "issues.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8OOsvMoMjruU" + }, + "source": [ + "### Visualize the twenty examples with lowest label quality to see if Cleanlab works.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iJqAHuS2jruV" + }, + "outputs": [], + "source": [ + "lowest_quality_labels = issues[\"label_quality\"].argsort()[:20]\n", + "plot_data(data, circles=lowest_quality_labels, title=\"The 20 lowest label quality examples\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wdtPREswG2fe" + }, + "source": [ + "Above, the top 20 label issues circled in red are found automatically using cleanlab (no true labels given).\n", + "\n", + "If you've already computed the label issues using ``CleanLearning``, you can pass them into `fit()` and it will train **much** faster (skips label-issue identification step)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PcPTZ_JJG3Cx" + }, + "outputs": [], + "source": [ + "# CleanLearning can train faster if issues are provided at fitting time.\n", + "cl.fit(data, labels, label_issues=issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XYFkRMk-jruV" + }, + "source": [ + "## **Workflow 4:** Use cleanlab to find dataset-level and class-level issues\n", + "\n", + "- Did you notice that the yellow and seafoam green class above are overlapping?\n", + "- How can a model ever know (or learn) what's ground truth inside the yellow distribution?\n", + "- If these two classes were merged, the model can learn more accurately from 3 classes (versus 4).\n", + "\n", + "cleanlab automatically finds data-set level issues like this, in one line of code. Check this out!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0lonvOYvjruV" + }, + "outputs": [], + "source": [ + "cleanlab.dataset.find_overlapping_classes(\n", + " labels=labels,\n", + " confident_joint=cl.confident_joint, # cleanlab uses the confident_joint internally to quantify label noise (see cleanlab.count.compute_confident_joint)\n", + " class_names=class_names,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZXkMIKlGjruV" + }, + "source": [ + "Do the results surprise you? Did you expect the purple and seafoam green to also have so much overlap?\n", + "\n", + "There are two things being happening here:\n", + "\n", + "1. **Distribution Overlap**: The green distribution has huge variance and overlaps with other distributions.\n", + " - Cleanlab handles this for you: read the theory behind cleanlab for overlapping classes here: https://arxiv.org/abs/1705.01936\n", + "2. **Label Issues**: A ton of examples (which actually belong to the purple class) have been mislabeled as \"green\" in our dataset.\n", + "\n", + "### Now, let's see what happens if we merge classes \"seafoam green\" and \"yellow\"\n", + "* The top two classes found automatically by ``cleanlab.dataset.find_overlapping_classes()``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MfqTCa3kjruV" + }, + "outputs": [], + "source": [ + "yourFavoriteModel1 = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel1.fit(data, labels)\n", + "print(f\"[Original classes] Accuracy of yourFavoriteModel: {yourFavoriteModel1.score(test_data, test_labels):.0%}\")\n", + "\n", + "merged_labels, merged_test_labels = np.array(labels), np.array(test_labels)\n", + "\n", + "# Merge classes: map all yellow-labeled examples to seafoam green\n", + "merged_labels[merged_labels == 3] = 2\n", + "merged_test_labels[merged_test_labels == 3] = 2\n", + "\n", + "# Re-run our comparison. Re-run your model on the newly labeled dataset.\n", + "yourFavoriteModel2 = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel2.fit(data, merged_labels)\n", + "print(f\"[Modified classes] Accuracy of yourFavoriteModel: {yourFavoriteModel2.score(test_data, merged_test_labels):.0%}\")\n", + "\n", + "# Re-run CleanLearning as well.\n", + "yourFavoriteModel3 = LogisticRegression(verbose=0, random_state=SEED)\n", + "cl3 = cleanlab.classification.CleanLearning(yourFavoriteModel3, seed=SEED)\n", + "cl3.fit(data, merged_labels)\n", + "print(f\"[Modified classes] Accuracy of yourFavoriteModel (+ CleanLearning): {cl3.score(test_data, merged_test_labels):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bi53hnRxjruW" + }, + "source": [ + "While on one hand that's a huge improvement, it's important to remember that choosing among three classes is an easier task than choosing among four classes, so it's not fair to directly compare these numbers.\n", + "\n", + "Instead, the big takeaway is...\n", + "if you get to choose your classes, combining overlapping classes can make the learning task easier for your model. But if you have lots of classes, how do you know which ones to merge?? That's when you use `cleanlab.dataset.find_overlapping_classes`.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BxI7bgn8L_1K" + }, + "source": [ + "## **Workflow 5:** Clean your test set too if you're doing ML with noisy labels!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iZ43QfbrNk0K" + }, + "source": [ + "If your test and training data were randomly split (IID), then be aware that your test labels are likely noisy too! It is thus important to fix label issues in them before we can trust measures like test accuracy.\n", + "\n", + "* More about what can go wrong if you don't use a clean test set [in this paper](https://arxiv.org/abs/2103.14749)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9ZtWAYXqMAPL" + }, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "# Fit your model on noisily labeled train data\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "yourFavoriteModel.fit(data, labels)\n", + "\n", + "# Get predicted probabilities for test data (these are out-of-sample)\n", + "my_test_pred_probs = yourFavoriteModel.predict_proba(test_data)\n", + "my_test_preds = my_test_pred_probs.argmax(axis=1) # predicted labels\n", + "\n", + "# Find label issues in the test data\n", + "issues_test = CleanLearning(yourFavoriteModel, seed=SEED).find_label_issues(\n", + " labels=noisy_test_labels, pred_probs=my_test_pred_probs)\n", + "\n", + "# You should inspect issues_test and fix issues to ensure high-quality test data labels.\n", + "corrected_test_labels = test_labels # Here we'll pretend you have done this perfectly :)\n", + "\n", + "# Fit more robust version of model on noisily labeled training data\n", + "cl = CleanLearning(yourFavoriteModel, seed=SEED).fit(data, labels)\n", + "cl_test_preds = cl.predict(test_data)\n", + "\n", + "print(f\" Noisy Test Accuracy (on given test labels) using yourFavoriteModel: {accuracy_score(noisy_test_labels, my_test_preds):.0%}\")\n", + "print(f\" Noisy Test Accuracy (on given test labels) using yourFavoriteModel (+ CleanLearning): {accuracy_score(noisy_test_labels, cl_test_preds):.0%}\")\n", + "print(f\"Actual Test Accuracy (on corrected test labels) using yourFavoriteModel: {accuracy_score(corrected_test_labels, my_test_preds):.0%}\")\n", + "print(f\"Actual Test Accuracy (on corrected test labels) using yourFavoriteModel (+ CleanLearning): {accuracy_score(corrected_test_labels, cl_test_preds):.0%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GluE5XAAjruW" + }, + "source": [ + "## **Workflow 6:** One score to rule them all -- use cleanlab's overall dataset health score\n", + "\n", + "This score can be fairly compared across datasets or across versions of a dataset to track overall dataset quality (a.k.a. *dataset health*) over time.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0rXP3ZPWjruW" + }, + "outputs": [], + "source": [ + "# One line of code.\n", + "health = cleanlab.dataset.overall_label_health_score(\n", + " labels, confident_joint=cl.confident_joint\n", + " # cleanlab uses the confident_joint internally to quantify label noise (see cleanlab.count.compute_confident_joint)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "M85Fta_bjruW" + }, + "source": [ + "### How accurate is this dataset health score?\n", + "\n", + "Because we know the true labels (we created this toy dataset), we can compare with ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-iRPe8KXjruW" + }, + "outputs": [], + "source": [ + "label_acc = sum(labels != true_labels) / len(labels)\n", + "print(f\"Percentage of label issues guessed by cleanlab {1 - health:.0%}\")\n", + "print(f\"Percentage of (ground truth) label errors): {label_acc:.0%}\")\n", + "\n", + "offset = (1 - label_acc) - health\n", + "\n", + "print(\n", + " f\"\\nQuestion: cleanlab seems to be overestimating.\"\n", + " f\" How do we account for this {offset:.0%} difference?\"\n", + ")\n", + "print(\n", + " \"Answer: Data points that fall in between two overlapping distributions are often \"\n", + " \"impossible to label and are counted as issues.\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8hxY5lxJjruW" + }, + "source": [ + "## **Workflow(s) 7:** Use count, rank, filter modules directly\n", + "\n", + "- Using these modules directly is intended for more experienced cleanlab users. But once you understand how they work, you can create numerous powerful workflows.\n", + "- For these workflows, you **always** need two things:\n", + " 1. Out-of-sample predicted probabilities (e.g. computed via cross-validation)\n", + " 2. Labels (can contain label errors and various issues)\n", + "\n", + "#### cleanlab can compute out-of-sample predicted probabilities for you:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZpipUliyjruW" + }, + "outputs": [], + "source": [ + "pred_probs = cleanlab.count.estimate_cv_predicted_probabilities(\n", + " data, labels, clf=yourFavoriteModel, seed=SEED\n", + ")\n", + "print(f\"pred_probs is a {pred_probs.shape} matrix of predicted probabilities\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ftWk9CTrjruW" + }, + "source": [ + "### **Workflow 7.1 (count)**: Fully characterize label noise (noise matrix, joint, prior of true labels, ...)\n", + "\n", + "Now that we have `pred_probs` and `labels`, advanced users can compute everything in `cleanlab.count`.\n", + "\n", + "- `py: prob(true_label=k)`\n", + " - For all classes K, this is the distribution over the actual true labels (which cleanlab can estimate for you even though you don't have the true labels).\n", + "- `noise_matrix: p(noisy|true)`\n", + " - This describes how errors were introduced into your labels. It's a conditional probability matrix with the probability of flipping from the true class to every other class for the given label.\n", + "- `inverse_noise_matrix: p(true|noisy)`\n", + " - This tells you the probability, for every class, that the true label is actually a different class.\n", + "- `confident_joint`\n", + " - This is an unnormalized (count-based) estimate of the number of examples in our dataset with each possible (true label, given label) pairing.\n", + "- `joint: p(true label, noisy label)`\n", + " - The joint distribution of noisy (given) and true labels is the most useful of all these statistics. From it, you can compute every other statistic listed above. One entry from this matrix can be interpreted as: \"The proportion of examples in our dataset whose true label is *i* and given label is *j*\".\n", + "\n", + "These five tools fully characterize class-conditional label noise in a dataset.\n", + "\n", + "#### Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SLq-3q4xjruX" + }, + "outputs": [], + "source": [ + "(\n", + " py, noise_matrix, inverse_noise_matrix, confident_joint\n", + ") = cleanlab.count.estimate_py_and_noise_matrices_from_probabilities(labels, pred_probs)\n", + "\n", + "# Note: you can also combine the above two lines of code into a single line of code like this\n", + "(\n", + " py, noise_matrix, inverse_noise_matrix, confident_joint, pred_probs\n", + ") = cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba(\n", + " data, labels, clf=yourFavoriteModel, seed=SEED\n", + ")\n", + "\n", + "# Get the joint distribution of noisy and true labels from the confident joint\n", + "# This is the most powerful statistic in machine learning with noisy labels.\n", + "joint = cleanlab.count.estimate_joint(\n", + " labels, pred_probs, confident_joint=confident_joint\n", + ")\n", + "\n", + "# Pretty print the joint distribution and noise matrix\n", + "cleanlab.internal.util.print_joint_matrix(joint)\n", + "cleanlab.internal.util.print_noise_matrix(noise_matrix)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fKEsc-rBBbuW" + }, + "source": [ + "In some applications, you may have a priori knowledge regarding some of these quantities. In this case, you can pass them directly into cleanlab which may be able to leverage this information to better identify label issues.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g5LHhhuqFbXK" + }, + "outputs": [], + "source": [ + "cl3 = cleanlab.classification.CleanLearning(yourFavoriteModel, seed=SEED)\n", + "_ = cl3.fit(data, labels, noise_matrix=noise_matrix_true) # CleanLearning with a prioiri known noise_matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cfeJAGyxFFQN" + }, + "source": [ + "### **Workflow 7.2 (filter):** Find label issues for any dataset and any model in one line of code\n", + "\n", + "Features of ``cleanlab.filter.find_label_issues``:\n", + "\n", + "* Versatility -- Choose from several [state-of-the-art](https://arxiv.org/abs/1911.00068) label-issue detection algorithms using ``filter_by=``.\n", + "* Works with any model by using predicted probabilities (no model needed).\n", + "* One line of code :)\n", + "\n", + "Remember ``CleanLearning.find_label_issues``? It uses this method internally." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "p7w8F8ezBcet" + }, + "outputs": [], + "source": [ + "# Get out of sample predicted probabilities via cross-validation.\n", + "# Here we demonstrate the use of sklearn cross_val_predict as another option to get cross-validated predicted probabilities\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# Find label issues\n", + "label_issues_indices = cleanlab.filter.find_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " filter_by=\"both\", # 5 available filter_by options\n", + " return_indices_ranked_by=\"self_confidence\", # 3 available label quality scoring options for rank ordering\n", + " rank_by_kwargs={\n", + " \"adjust_pred_probs\": True # adjust predicted probabilities (see docstring for more details)\n", + " },\n", + ")\n", + "\n", + "# Return dataset indices of examples with label issues\n", + "label_issues_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4-ANXupQJPH8" + }, + "source": [ + "\n", + "#### Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WETRL74tE_sU" + }, + "outputs": [], + "source": [ + "plot_data(data, circles=label_issues_indices[:20], title=\"Top 20 label issues found by cleanlab.filter.find_label_issues()\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BcekDhvFLntB" + }, + "source": [ + "### Workflow 7.2 supports lots of methods to ``find_label_issues()`` via the ``filter_by`` parameter.\n", + "* Here, we evaluate precision/recall/f1/accuracy of detecting true label issues for each method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kCfdx2gOLmXS" + }, + "outputs": [], + "source": [ + "from sklearn.metrics import precision_score, recall_score, f1_score\n", + "import pandas as pd\n", + "\n", + "yourFavoriteModel = LogisticRegression(verbose=0, random_state=SEED)\n", + "\n", + "# Get cross-validated predicted probabilities\n", + "# Here we demonstrate the use of sklearn cross_val_predict as another option to get cross-validated predicted probabilities\n", + "pred_probs = cross_val_predict(\n", + " estimator=yourFavoriteModel, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# Ground truth label issues to use for evaluating different filter_by options\n", + "true_label_issues = (true_labels != labels)\n", + "\n", + "# Find label issues with different filter_by options\n", + "filter_by_list = [\n", + " \"prune_by_noise_rate\",\n", + " \"prune_by_class\",\n", + " \"both\",\n", + " \"confident_learning\",\n", + " \"predicted_neq_given\",\n", + "]\n", + "\n", + "results = []\n", + "\n", + "for filter_by in filter_by_list:\n", + "\n", + " # Find label issues\n", + " label_issues = cleanlab.filter.find_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " filter_by=filter_by\n", + " )\n", + "\n", + " precision = precision_score(true_label_issues, label_issues)\n", + " recall = recall_score(true_label_issues, label_issues)\n", + " f1 = f1_score(true_label_issues, label_issues)\n", + " acc = accuracy_score(true_label_issues, label_issues)\n", + "\n", + " result = {\n", + " \"filter_by algorithm\": filter_by,\n", + " \"precision\": precision,\n", + " \"recall\": recall,\n", + " \"f1\": f1,\n", + " \"accuracy\": acc\n", + " }\n", + "\n", + " results.append(result)\n", + "\n", + "# summary of results\n", + "pd.DataFrame(results).sort_values(by='f1', ascending=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vNkStbegYk7y" + }, + "source": [ + "### **Workflow 7.3 (rank):** Automatically rank every example by a unique label quality score. Find errors using `cleanlab.count.num_label_issues` as a threshold.\n", + "\n", + "cleanlab can analyze every label in a dataset and provide a numerical score gauging its overall quality. Low-quality labels indicate examples that should be more closely inspected, perhaps because their given label is incorrect, or simply because they represent an ambiguous edge-case that's worth a second look." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-uogYRWFYnuu" + }, + "outputs": [], + "source": [ + "# Estimate the number of label issues\n", + "label_issues_count = cleanlab.count.num_label_issues(\n", + " labels=labels,\n", + " pred_probs=pred_probs\n", + ")\n", + "\n", + "# Get label quality scores\n", + "label_quality_scores = cleanlab.rank.get_label_quality_scores(\n", + " labels=labels,\n", + " pred_probs=pred_probs,\n", + " method=\"self_confidence\"\n", + ")\n", + "\n", + "# Rank-order by label quality scores and get the top estimated number of label issues\n", + "label_issues_indices = np.argsort(label_quality_scores)[:label_issues_count]\n", + "\n", + "label_issues_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qe-nGjdeYu3J" + }, + "source": [ + "#### Again, we can visualize the label issues found to see if Cleanlab works." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pG-ljrmcYp9Q" + }, + "outputs": [], + "source": [ + "plot_data(data, circles=label_issues_indices[:20], title=\"Top 20 label issues using cleanlab.rank with cleanlab.count.num_label_issues()\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ol57ouSTNAfZ" + }, + "source": [ + "#### Not sure when to use Workflow 7.2 or 7.3 to find label issues?\n", + "\n", + "* Workflow 7.2 is the easiest to use as its just one line of code.\n", + "* Workflow 7.3 is modular and extensible. As we add more label and data quality scoring functions in ``cleanlab.rank``, Workflow 7.3 will always work.\n", + "* Workflow 7.3 is also for users who have a custom way to rank their data by label quality, and they just need to know what the cut-off is, found via ``cleanlab.count.num_label_issues``." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gRfHlDlEKyRD" + }, + "source": [ + "## **Workflow 8:** Ensembling label quality scores from multiple predictors" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wL3ngCnuLEWd" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier\n", + "\n", + "# 3 models in ensemble\n", + "model1 = LogisticRegression(penalty=\"l2\", verbose=0, random_state=SEED)\n", + "model2 = RandomForestClassifier(max_depth=5, random_state=SEED)\n", + "model3 = GradientBoostingClassifier(\n", + " n_estimators=100, learning_rate=1.0, max_depth=3, random_state=SEED\n", + ")\n", + "\n", + "# Get cross-validated predicted probabilities from each model\n", + "cv_pred_probs_1 = cross_val_predict(\n", + " estimator=model1, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "cv_pred_probs_2 = cross_val_predict(\n", + " estimator=model2, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "cv_pred_probs_3 = cross_val_predict(\n", + " estimator=model3, X=data, y=labels, cv=3, method=\"predict_proba\"\n", + ")\n", + "\n", + "# List of predicted probabilities from each model\n", + "pred_probs_list = [cv_pred_probs_1, cv_pred_probs_2, cv_pred_probs_3]\n", + "\n", + "# Get ensemble label quality scores\n", + "label_quality_scores_best = cleanlab.rank.get_label_quality_ensemble_scores(\n", + " labels=labels, pred_probs_list=pred_probs_list, verbose=False\n", + ")\n", + "\n", + "# Alternative approach: create single ensemble predictor and get its pred_probs\n", + "cv_pred_probs_ensemble = (cv_pred_probs_1 + cv_pred_probs_2 + cv_pred_probs_3)/3 # uniform aggregation of predictions\n", + "\n", + "# Use this single set of pred_probs to find label issues\n", + "label_quality_scores_better = cleanlab.rank.get_label_quality_scores(\n", + " labels=labels, pred_probs=cv_pred_probs_ensemble\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z-ghgvqVcOJa" + }, + "source": [ + "While ensembling different models' label quality scores (`label_quality_scores_best`) will often be superior to getting label quality scores from a single ensemble predictor (`label_quality_scores_better`), both approaches produce significantly better label quality scores than just using the predictions from a single model." + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "tutorial_cleanlab_2_0.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/v2.6.5/_sources/tutorials/index.rst b/v2.6.5/_sources/tutorials/index.rst new file mode 100644 index 000000000..3c5a10395 --- /dev/null +++ b/v2.6.5/_sources/tutorials/index.rst @@ -0,0 +1,19 @@ +Tutorials +========= + +.. toctree:: + :maxdepth: 1 + + datalab/ + clean_learning/ + indepth_overview + dataset_health + outliers + multiannotator + multilabel_classification + regression + token_classification + segmentation + object_detection + pred_probs_cross_val + faq diff --git a/v2.6.5/_sources/tutorials/multiannotator.ipynb b/v2.6.5/_sources/tutorials/multiannotator.ipynb new file mode 100644 index 000000000..0726b2ac7 --- /dev/null +++ b/v2.6.5/_sources/tutorials/multiannotator.ipynb @@ -0,0 +1,789 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4c7436b8", + "metadata": {}, + "source": [ + "# Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators" + ] + }, + { + "cell_type": "markdown", + "id": "4b432513", + "metadata": {}, + "source": [ + "This 5-minute quickstart tutorial shows how to use cleanlab for classification data that has been labeled by *multiple* annotators (where each example has been labeled by at least one annotator, but not every annotator has labeled every example). Compared to existing crowdsourcing tools, cleanlab helps you better analyze such data by leveraging a trained classifier model in addition to the raw annotations. With one line of code, you can automatically compute:\n", + "\n", + "- A **consensus label** for each example (i.e. *truth inference*) that aggregates the individual annotations (more accurately than algorithms from crowdsourcing like majority-vote, Dawid-Skene, or GLAD).\n", + "- A **quality score for each consensus label** which measures our confidence that this label is correct (via well-calibrated estimates that account for the: number of annotators which have labeled this example, overall quality of each annotator, and quality of our trained ML models).\n", + "- An analogous **label quality score** for each individual label chosen by one annotator for a particular example (to measure our confidence in alternate labels when annotators differ from the consensus).\n", + "- An **overall quality score for each annotator** which measures our confidence in the overall correctness of labels obtained from this annotator.\n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "- Obtain initial consensus labels of multiannotator data using majority vote.\n", + "- Train a classifier model on the initial consensus labels and use it to obtain out-of-sample predicted class probabilities.\n", + "- Use cleanlab's `multiannotator.get_label_quality_multiannotator` function to get improved consensus labels that more accurately reflect the ground truth.\n", + "- View other information about your multiannotator dataset, such as consensus and annotator quality scores, agreement between annotators, detailed label quality scores and more!\n", + "\n", + "**Consensus labels** represent the best guess of the true label for each example and can be used for more reliable modeling/analytics. Cleanlab automatically produces enhanced estimates of consensus through the use of machine learning.\n", + "**Quality scores** help us determine how much trust we can place in each: consensus label, individual annotator, and particular label from a particular annotator. These quality scores can help you determine which annotators are best/worst overall, as well as which current consensus labels are least trustworthy and should perhaps be verified via additional annotation. \n", + "\n", + "This tutorial uses a toy *tabular* dataset labeled with multiple annotators but **these steps can easily be applied to image or text data**." + ] + }, + { + "cell_type": "markdown", + "id": "03385f84", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have `multiannotator_labels` and (out-of-sample) `pred_probs` from a model trained on an existing set of consensus labels? Run the code below to get improved consensus labels and more information about the quality of your labels and annotators.\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab.multiannotator import get_label_quality_multiannotator\n", + "\n", + "get_label_quality_multiannotator(multiannotator_labels, pred_probs)\n", + "\n", + "```\n", + "\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "e6a48d31", + "metadata": {}, + "source": [ + "## 1. Install and import required dependencies" + ] + }, + { + "cell_type": "markdown", + "id": "6c6e5b15", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install cleanlab\n", + "\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a3ddc95f", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "markdown", + "id": "dd0148e6", + "metadata": {}, + "source": [ + "Let’s import some of the packages needed throughout this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c4efd119", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "from cleanlab.multiannotator import get_label_quality_multiannotator, get_majority_vote_label" + ] + }, + { + "cell_type": "markdown", + "id": "345b6678", + "metadata": {}, + "source": [ + "## 2. Create the data (can skip these details)" + ] + }, + { + "cell_type": "markdown", + "id": "82aeedc8", + "metadata": {}, + "source": [ + "For this tutorial we will generate a toy dataset that has 50 annotators and 300 examples. There are three possible classes, `0`, `1` and `2`. \n", + "\n", + "Each annotator annotates approximately 10% of the examples. We also synthetically made the last 5 annotators in our toy dataset have much noisier labels than the rest of the annotators.\n", + "\n", + "Solely for evaluating cleanlab's consensus labels against other consensus methods, we here also generate the true labels for this example dataset. However, true labels are not required for any cleanlab multiannotator functions (and they usually are not available in real applications).\n", + "To generate our multiannotator data, we define a `make_data()` method (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "69b5ddaa", + "metadata": {}, + "source": [ + "
See the code for data generation **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "from cleanlab.benchmarking.noise_generation import generate_noise_matrix_from_trace\n", + "from cleanlab.benchmarking.noise_generation import generate_noisy_labels\n", + "\n", + "SEED = 111 # set to None for non-reproducible randomness\n", + "np.random.seed(seed=SEED)\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8]],\n", + " covs=[[[5, -1.5], [-1.5, 1]], [[1, 0.5], [0.5, 4]], [[5, 1], [1, 5]]],\n", + " sizes=[150, 75, 75],\n", + " num_annotators=50,\n", + "):\n", + " \n", + " m = len(means) # number of classes\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + "\n", + " for idx in range(m):\n", + " local_data.append(\n", + " np.random.multivariate_normal(mean=means[idx], cov=covs[idx], size=sizes[idx])\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(local_data)\n", + " true_labels_train = np.hstack(labels)\n", + "\n", + " # Compute p(true_label=k)\n", + " py = np.bincount(true_labels_train) / float(len(true_labels_train))\n", + " \n", + " noise_matrix_better = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.8 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + " \n", + " noise_matrix_worse = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.35 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_matrix for specified number of annotators.\n", + " s = pd.DataFrame(\n", + " np.vstack(\n", + " [\n", + " generate_noisy_labels(true_labels_train, noise_matrix_better)\n", + " if i < num_annotators - 5\n", + " else generate_noisy_labels(true_labels_train, noise_matrix_worse)\n", + " for i in range(num_annotators)\n", + " ]\n", + " ).transpose()\n", + " )\n", + "\n", + " # Each annotator only labels approximately 10% of the dataset\n", + " # (unlabeled points represented with NaN)\n", + " s = s.apply(lambda x: x.mask(np.random.random(n) < 0.9)).astype(\"Int64\")\n", + " s.dropna(axis=1, how=\"all\", inplace=True)\n", + " s.columns = [\"A\" + str(i).zfill(4) for i in range(1, num_annotators+1)]\n", + "\n", + " row_NA_check = pd.notna(s).any(axis=1)\n", + "\n", + " return {\n", + " \"X_train\": X_train[row_NA_check],\n", + " \"true_labels_train\": true_labels_train[row_NA_check],\n", + " \"multiannotator_labels\": s[row_NA_check].reset_index(drop=True),\n", + " }\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c37c0a69", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from cleanlab.benchmarking.noise_generation import generate_noise_matrix_from_trace\n", + "from cleanlab.benchmarking.noise_generation import generate_noisy_labels\n", + "\n", + "SEED = 111 # set to None for non-reproducible randomness\n", + "np.random.seed(seed=SEED)\n", + "\n", + "def make_data(\n", + " means=[[3, 2], [7, 7], [0, 8]],\n", + " covs=[[[5, -1.5], [-1.5, 1]], [[1, 0.5], [0.5, 4]], [[5, 1], [1, 5]]],\n", + " sizes=[150, 75, 75],\n", + " num_annotators=50,\n", + "):\n", + " \n", + " m = len(means) # number of classes\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + "\n", + " for idx in range(m):\n", + " local_data.append(\n", + " np.random.multivariate_normal(mean=means[idx], cov=covs[idx], size=sizes[idx])\n", + " )\n", + " labels.append(np.array([idx for i in range(sizes[idx])]))\n", + " X_train = np.vstack(local_data)\n", + " true_labels_train = np.hstack(labels)\n", + "\n", + " # Compute p(true_label=k)\n", + " py = np.bincount(true_labels_train) / float(len(true_labels_train))\n", + " \n", + " noise_matrix_better = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.8 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + " \n", + " noise_matrix_worse = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=0.35 * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=SEED,\n", + " )\n", + "\n", + " # Generate our noisy labels using the noise_matrix for specified number of annotators.\n", + " s = pd.DataFrame(\n", + " np.vstack(\n", + " [\n", + " generate_noisy_labels(true_labels_train, noise_matrix_better)\n", + " if i < num_annotators - 5\n", + " else generate_noisy_labels(true_labels_train, noise_matrix_worse)\n", + " for i in range(num_annotators)\n", + " ]\n", + " ).transpose()\n", + " )\n", + "\n", + " # Each annotator only labels approximately 10% of the dataset\n", + " # (unlabeled points represented with NaN)\n", + " s = s.apply(lambda x: x.mask(np.random.random(n) < 0.9)).astype(\"Int64\")\n", + " s.dropna(axis=1, how=\"all\", inplace=True)\n", + " s.columns = [\"A\" + str(i).zfill(4) for i in range(1, num_annotators+1)]\n", + "\n", + " row_NA_check = pd.notna(s).any(axis=1)\n", + "\n", + " return {\n", + " \"X_train\": X_train[row_NA_check],\n", + " \"true_labels_train\": true_labels_train[row_NA_check],\n", + " \"multiannotator_labels\": s[row_NA_check].reset_index(drop=True),\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "99f69523", + "metadata": {}, + "outputs": [], + "source": [ + "data_dict = make_data()\n", + "\n", + "X = data_dict[\"X_train\"]\n", + "multiannotator_labels = data_dict[\"multiannotator_labels\"]\n", + "true_labels = data_dict[\"true_labels_train\"] # used for comparing the accuracy of consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "4a705e28", + "metadata": {}, + "source": [ + "Let's view the first few rows of the data used for this tutorial. Here are the labels selected by each annotator for the first few examples (rows) in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f241c16", + "metadata": {}, + "outputs": [], + "source": [ + "multiannotator_labels.head()" + ] + }, + { + "cell_type": "markdown", + "id": "4a705e29", + "metadata": {}, + "source": [ + "Here are the corresponding features for these examples:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4f0819ba", + "metadata": {}, + "outputs": [], + "source": [ + "X[:5]" + ] + }, + { + "cell_type": "markdown", + "id": "0cb8131d", + "metadata": {}, + "source": [ + "`multiannotator_labels` contains the class label that each annotator chose for each example in the dataset, with examples that a particular annotator did not label represented using `np.nan`. \n", + "`X` contains the features for each example, which happen to be numeric in this tutorial but any feature modality can be used with ``cleanlab.multiannotator``." + ] + }, + { + "cell_type": "markdown", + "id": "946726ad", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "You can easily replace the above with your own multiannotator labels and features, then continue with the rest of the tutorial.\n", + " \n", + "`multiannotator_labels` should be a numpy array or pandas DataFrame with each column representing an annotator and each row representing an example. Your labels should be represented as integer indices 0, 1, ..., num_classes - 1, where examples that are not annotated by a particular annotator are represented using `np.nan` or `pd.NA`. If you have string labels or other labels that do not fit the required format, you can convert them to the proper format using `cleanlab.internal.multiannotator_utils.format_multiannotator_labels`. \n", + " \n", + "Your features can be represented however you like (since these are not inputs to `cleanlab.multiannotator` methods) as long as you are able to fit a classifer to them and obtain its predicted class probabilities! \n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "id": "51335def", + "metadata": {}, + "source": [ + "## 3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities" + ] + }, + { + "cell_type": "markdown", + "id": "c1857cc7", + "metadata": {}, + "source": [ + "Before training a machine learning model, we must first obtain initial consensus labels from the data annotations representing a crude guess of the best label for each example. The most straight forward way to obtain an initial set of consensus labels is via simple majority vote." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d009f347", + "metadata": {}, + "outputs": [], + "source": [ + "majority_vote_label = get_majority_vote_label(multiannotator_labels)" + ] + }, + { + "cell_type": "markdown", + "id": "7287b733", + "metadata": {}, + "source": [ + "Majority vote consensus labels may not be very reliable, particularly for examples that were only labeled by one or a few annotators. To more reliably estimate consensus, we can account for the features associated with each example (based on which the annotations were derived in the first place). Fitting a classifier model serves as a natural way to account for these feature values, here we train a simple logistic regression model to get significantly more accurate estimates of consensus labels and associated quality scores.\n", + "\n", + "We fit the model with our initial consensus labels, and then get (out-of-sample) predicted class probabilities for each example in the dataset from the trained model. These predicted probabilities help us estimate the best consensus labels and associated confidence values in a statistically optimal manner that accounts for all the available information." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cbd1e415", + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "\n", + "num_crossval_folds = 5 \n", + "pred_probs = cross_val_predict(\n", + " estimator=model, X=X, y=majority_vote_label, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "4eab5188", + "metadata": {}, + "source": [ + "## 4. Use cleanlab to get better consensus labels and other statistics" + ] + }, + { + "cell_type": "markdown", + "id": "4d392ce5", + "metadata": {}, + "source": [ + "Using the annotators' labels and the (out-of-sample) predicted class probabilities from the model, cleanlab can estimate **improved consensus labels** for our data that are more accurate than our initial consensus labels were.\n", + "\n", + "Having accurate labels provides insight on each annotator's label quality and is key for boosting model accuracy and achieving dependable real-world results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ca92617", + "metadata": {}, + "outputs": [], + "source": [ + "results = get_label_quality_multiannotator(multiannotator_labels, pred_probs, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "98042e7f", + "metadata": {}, + "source": [ + "Here, we use the `multiannotator.get_label_quality_multiannotator()` function which returns a dictionary containing three items:\n" + ] + }, + { + "cell_type": "markdown", + "id": "76d7c0e2", + "metadata": {}, + "source": [ + "1. `label_quality` which gives us the improved consensus labels using information from each of the annotators and the model. The DataFrame also contains information about the number of annotations, annotator agreement and consensus quality score for each example.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bf945113", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "results[\"label_quality\"].head()" + ] + }, + { + "cell_type": "markdown", + "id": "984d65c4", + "metadata": {}, + "source": [ + "2. `detailed_label_quality` which returns the label quality score for each label given by every annotator" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "14251ee0", + "metadata": {}, + "outputs": [], + "source": [ + "results[\"detailed_label_quality\"].head()" + ] + }, + { + "cell_type": "markdown", + "id": "db02e63d", + "metadata": {}, + "source": [ + "3. `annotator_stats` which gives us the annotator quality score for each annotator, alongisde other information such as the number of examples each annotator labeled, their agreement with the consensus labels and the class they perform the worst at. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "efe16638", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "results[\"annotator_stats\"].head(10)" + ] + }, + { + "cell_type": "markdown", + "id": "a0d09bfa", + "metadata": {}, + "source": [ + "The `annotator_stats` DataFrame is sorted by increasing `annotator_quality`, showing us the worst annotators first.\n", + "\n", + "Notice that in the above table annotators with ids A0046 to A0050 have the worst annotator quality score, which is expected because we made the last 5 annotators systematically worse than the rest." + ] + }, + { + "cell_type": "markdown", + "id": "20ca8dd2", + "metadata": {}, + "source": [ + "### Comparing improved consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "1b49657d", + "metadata": {}, + "source": [ + "We can get the improved consensus labels from the `label_quality` DataFrame shown above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "abd0fb0b", + "metadata": {}, + "outputs": [], + "source": [ + "improved_consensus_label = results[\"label_quality\"][\"consensus_label\"].values" + ] + }, + { + "cell_type": "markdown", + "id": "1fd7a5fd", + "metadata": {}, + "source": [ + "Since our toy dataset is synthetically generated by adding noise to each annotator's labels, we know the ground truth labels for each example. Hence we can compare the accuracy of the consensus labels obtained using majority vote, and the improved consensus labels obtained using cleanlab." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cdf061df", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "majority_vote_accuracy = np.mean(true_labels == majority_vote_label)\n", + "cleanlab_label_accuracy = np.mean(true_labels == improved_consensus_label)\n", + "\n", + "print(f\"Accuracy of majority vote labels = {majority_vote_accuracy}\")\n", + "print(f\"Accuracy of cleanlab consensus labels = {cleanlab_label_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2c20b2c9", + "metadata": {}, + "source": [ + "We can see that the accuracy of the consensus labels improved as a result of using cleanlab, which not only takes the annotators' labels into account, but also a model to compute better consensus labels." + ] + }, + { + "cell_type": "markdown", + "id": "f82dd4d5", + "metadata": {}, + "source": [ + "### Inspecting consensus quality scores to find potential consensus label errors" + ] + }, + { + "cell_type": "markdown", + "id": "fddb5453", + "metadata": {}, + "source": [ + "We can get the consensus quality score from the `label_quality` DataFrame shown above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "08949890", + "metadata": {}, + "outputs": [], + "source": [ + "consensus_quality_score = results[\"label_quality\"][\"consensus_quality_score\"]" + ] + }, + { + "cell_type": "markdown", + "id": "5f150a08", + "metadata": {}, + "source": [ + "Besides obtaining improved consensus labels, cleanlab also computes consensus quality scores for each example. The lower scores represent potential consensus label errors in the dataset.\n", + "\n", + "Here, we will extract 15 examples that have the lowest consensus quality score, and we can compare their average accuracy when compared to the true labels. We will also compute the average accuracy for the rest of the examples for comparison." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6948b073", + "metadata": {}, + "outputs": [], + "source": [ + "sorted_consensus_quality_score = consensus_quality_score.sort_values()\n", + "worst_quality = sorted_consensus_quality_score.index[:15]\n", + "better_quality = sorted_consensus_quality_score.index[15:]\n", + "\n", + "worst_quality_accuracy = np.mean(true_labels[worst_quality] == improved_consensus_label[worst_quality])\n", + "better_quality_accuracy = np.mean(true_labels[better_quality] == improved_consensus_label[better_quality])\n", + "\n", + "print(f\"Accuracy of 15 worst quality examples = {worst_quality_accuracy}\")\n", + "print(f\"Accuracy of better quality examples = {better_quality_accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "4fdf4d91", + "metadata": {}, + "source": [ + "We observe that the 15 worst-consensus-quality-score examples have a lower average accuracy compared to the rest of the examples. Cleanlab automatically determines which consensus labels are least trustworthy (perhaps want to have another annotator look at that data). Here we see these trustworthiness estimates really do correspond to the true quality of the consensus labels (which we know in this toy dataset because we have the true labels, unlike in your applications)" + ] + }, + { + "cell_type": "markdown", + "id": "06cae16a", + "metadata": {}, + "source": [ + "## 5. Retrain model using improved consensus labels" + ] + }, + { + "cell_type": "markdown", + "id": "8d4e31ab", + "metadata": {}, + "source": [ + "After obtaining the improved consensus labels, we can now retrain a better version of our machine learning model using these newly obtained labels. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f8e6914", + "metadata": {}, + "outputs": [], + "source": [ + "model = LogisticRegression()\n", + "\n", + "num_crossval_folds = 5 \n", + "improved_pred_probs = cross_val_predict(\n", + " estimator=model, X=X, y=improved_consensus_label, cv=num_crossval_folds, method=\"predict_proba\"\n", + ")\n", + "\n", + "# alternatively, we can treat all the improved consensus labels as training labels to fit the model \n", + "# model.fit(X, improved_consensus_label)" + ] + }, + { + "cell_type": "markdown", + "id": "e59f7d4f", + "metadata": {}, + "source": [ + "## Further improvements \n", + "You can also repeat this process of getting better consensus labels using the model's out-of-sample predicted probabilities and then retraining the model with the improved labels to get even better predicted class probabilities in a virtuous cycle!\n", + "For details, see our [examples](https://github.com/cleanlab/examples) notebook on [Iterative use of Cleanlab to Improve Classification Models (and Consensus Labels) from Data Labeled by Multiple Annotators](https://github.com/cleanlab/examples/blob/master/multiannotator_cifar10/multiannotator_cifar10.ipynb).\n", + "\n", + "If possible, the best way to improve your model is to collect additional labels for both previously annotated data and extra not-yet-labeled examples (i.e. *active learning*). To decide which data is most informative to label next, use `cleanlab.multiannotator.get_active_learning_scores()` rather than the methods from this tutorial. This is demonstrated in our examples notebook on [Active Learning with Multiple Data Annotators via ActiveLab](https://github.com/cleanlab/examples/blob/master/active_learning_multiannotator/active_learning.ipynb).\n", + "\n", + "While this notebook focused on analzying the labels of your data, cleanlab can also check your data features for various issues. Learn how to do this by following our [Datalab tutorials](../tutorials/datalab/index.html), except you do not need to pass in `labels` now that you've already analyzed them with this notebook (or you can provide `labels` to Datalab as the consensus labels estimated here).\n", + "\n", + "\n", + "## How does cleanlab.multiannotator work?\n", + "\n", + "All estimates above are produced via the CROWDLAB algorithm, described in this paper that contains extensive benchmarks which show CROWDLAB can produce better estimates than popular methods like Dawid-Skene and GLAD:\n", + "\n", + "[CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators](https://arxiv.org/abs/2210.06812)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b806d2ea", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "if majority_vote_accuracy >= cleanlab_label_accuracy: # check cleanlab has improved prediction accuracy\n", + " raise Exception(\"Cleanlab training failed to improve consensus label accuracy\")\n", + "\n", + "if worst_quality_accuracy > better_quality_accuracy: # check bad consensus quality score corresponds to bad consensus\n", + " raise Exception(\"Cleanlab consensus quality score failed to detect bad consensus labels\")\n", + " \n", + "annotator_stats = results[\"annotator_stats\"]\n", + "bad_annotator_idx = [\"A0046\", \"A0047\", \"A0048\", \"A0049\", \"A0050\"]\n", + "bad_annotator_mask = annotator_stats.index.isin(bad_annotator_idx)\n", + "\n", + "avg_annotator_quality_bad = np.mean(annotator_stats[bad_annotator_mask][\"annotator_quality\"])\n", + "avg_annotator_quality_good = np.mean(annotator_stats[~bad_annotator_mask][\"annotator_quality\"])\n", + "\n", + "if avg_annotator_quality_bad >= avg_annotator_quality_good: # check bad annotator get bad quality scores \n", + " raise Exception(\"Low quality annotators have higher quality scores than good quality annotators\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "vscode": { + "interpreter": { + "hash": "50292dbb1f747f7151d445135d392af3138fb3c65386d17d9510cb605222b10b" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/multilabel_classification.ipynb b/v2.6.5/_sources/tutorials/multilabel_classification.ipynb new file mode 100644 index 000000000..b05148d09 --- /dev/null +++ b/v2.6.5/_sources/tutorials/multilabel_classification.ipynb @@ -0,0 +1,644 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "64053c0f-3582-465b-9e4c-a83da332da88", + "metadata": {}, + "source": [ + "# Find Label Errors in Multi-Label Classification Datasets\n", + "\n", + "This 5-minute quickstart tutorial demonstrates how to find potential label errors in multi-label classification datasets. In such datasets, each example is labeled as belonging to one *or more* classes (unlike in *multi-class classification* where each example can only belong to one class). For a particular example in such multi-label classification data, we say each class either applies or not. We may even have some examples where *no* classes apply. Common applications of this include image tagging (or document tagging), where multiple tags can be appropriate for a single image (or document). For example, a image tagging application could involve the following classes: [`copyrighted`, `advertisement`, `face`, `violence`, `nsfw`]" + ] + }, + { + "cell_type": "markdown", + "id": "adaefc8b-b639-4bdf-af0d-337519e37ffc", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", + "\n", + "
\n", + " \n", + "```ipython3 \n", + "from cleanlab import Datalab\n", + "\n", + "# Assuming your dataset has a label column named 'label'\n", + "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", + "\n", + "lab.report()\n", + "```\n", + "\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "6a6261a3-6ea1-44a6-ac91-d375c8aa5535", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and get dataset\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install \"cleanlab[datalab]\"\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7383d024-8273-4039-bccd-aab3020d331f", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs.cleanlab.ai).\n", + "# Package versions we used: matplotlib==3.5.1\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import sklearn\n", + "from sklearn.multiclass import OneVsRestClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import StratifiedKFold\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from cleanlab import Datalab\n", + "from cleanlab.internal.multilabel_utils import int2onehot, onehot2int" + ] + }, + { + "cell_type": "markdown", + "id": "6fe047ed", + "metadata": {}, + "source": [ + "Here we generate a small multi-label classification dataset for a quick demo. To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb)." + ] + }, + { + "cell_type": "markdown", + "id": "6b283ecc-ba52-4bd7-81d8-5397966b1621", + "metadata": {}, + "source": [ + "
Code to generate dataset (can skip these details) **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "def make_multilabel_data(\n", + " means=[[-5, 3.5], [0, 2], [-3, 6]],\n", + " covs=[[[3, -1.5], [-1.5, 1]], [[5, -1.5], [-1.5, 1]], [[3, -1.5], [-1.5, 1]]],\n", + " boxes_coordinates=[[-3.5, 0, -1.5, 1.7], [-1, 3, 2, 4], [-5, 2, -3, 4], [-3, 2, -1, 4]],\n", + " box_multilabels=[[0, 1], [1, 2], [0, 2], [0, 1, 2]],\n", + " sizes=[100, 80, 100],\n", + " avg_trace=0.9,\n", + " seed=1,\n", + "):\n", + " np.random.seed(seed=seed)\n", + " num_classes = len(means)\n", + " m = num_classes + len(\n", + " box_multilabels\n", + " ) # number of classes by treating each multilabel as 1 unique label\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + " for i in range(0, len(means)):\n", + " local_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_labels += [[i]] * sizes[i]\n", + " labels += [[i]] * sizes[i]\n", + "\n", + " def make_multi(X, Y, bx1, by1, bx2, by2, label_list):\n", + " ll = np.array([bx1, by1]) # lower-left\n", + " ur = np.array([bx2, by2]) # upper-right\n", + "\n", + " inidx = np.all(np.logical_and(X.tolist() >= ll, X.tolist() <= ur), axis=1)\n", + " for i in range(0, len(Y)):\n", + " if inidx[i]:\n", + " Y[i] = label_list\n", + " return Y\n", + "\n", + " X_train = np.vstack(local_data)\n", + " X_test = np.vstack(test_data)\n", + "\n", + " for i in range(0, len(box_multilabels)):\n", + " bx1, by1, bx2, by2 = boxes_coordinates[i]\n", + " multi_label = box_multilabels[i]\n", + " labels = make_multi(X_train, labels, bx1, by1, bx2, by2, multi_label)\n", + " test_labels = make_multi(X_test, test_labels, bx1, by1, bx2, by2, multi_label)\n", + "\n", + " d = {}\n", + " for i in labels:\n", + " if str(i) not in d:\n", + " d[str(i)] = len(d)\n", + " inv_d = {v: k for k, v in d.items()}\n", + " labels_idx = [d[str(i)] for i in labels]\n", + " py = np.bincount(labels_idx) / float(len(labels_idx))\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=avg_trace * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=seed,\n", + " )\n", + " noisy_labels_idx = generate_noisy_labels(labels_idx, noise_matrix)\n", + " noisy_labels = [eval(inv_d[i]) for i in noisy_labels_idx]\n", + " return {\n", + " \"X_train\": X_train,\n", + " \"true_labels_train\": labels,\n", + " \"X_test\": X_test,\n", + " \"true_labels_test\": test_labels,\n", + " \"labels\": noisy_labels,\n", + " \"dict_unique_label\": d,\n", + " 'labels_idx': noisy_labels_idx,\n", + "\n", + " }\n", + "\n", + "def get_color_array(labels):\n", + " \"\"\"\n", + " This function returns a dictionary mapping multi-labels to unique colors\n", + " \"\"\"\n", + " dcolors ={'[0]': 'aa4400',\n", + " '[0, 2]': '55227f',\n", + " '[0, 1]': '55a100',\n", + " '[1]': '00ff00',\n", + " '[1, 2]': '007f7f',\n", + " '[0, 1, 2]': '386b55',\n", + " '[2]': '0000ff'}\n", + "\n", + " return [\"#\"+dcolors[str(i)] for i in labels]\n", + "\n", + "def plot_data(data, circles, title, alpha=1.0,colors = []):\n", + " plt.figure(figsize=(14, 5))\n", + " done = set()\n", + " for i in range(0,len(data)):\n", + " lab = str(labels[i])\n", + " if lab in done:\n", + " label = \"\"\n", + " else:\n", + " label = lab\n", + " done.add(lab)\n", + " plt.scatter(data[i, 0], data[i, 1], c=colors[i], s=30,alpha=0.6, label = label)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + " plt.legend()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "from cleanlab.benchmarking.noise_generation import (\n", + " generate_noise_matrix_from_trace,\n", + " generate_noisy_labels,\n", + ")\n", + "\n", + "def make_multilabel_data(\n", + " means=[[-5, 3.5], [0, 2], [-3, 6]],\n", + " covs=[[[3, -1.5], [-1.5, 1]], [[5, -1.5], [-1.5, 1]], [[3, -1.5], [-1.5, 1]]],\n", + " boxes_coordinates=[[-3.5, 0, -1.5, 1.7], [-1, 3, 2, 4], [-5, 2, -3, 4], [-3, 2, -1, 4]],\n", + " box_multilabels=[[0, 1], [1, 2], [0, 2], [0, 1, 2]],\n", + " sizes=[100, 80, 100],\n", + " avg_trace=0.9,\n", + " seed=1,\n", + "):\n", + " np.random.seed(seed=seed)\n", + " num_classes = len(means)\n", + " m = num_classes + len(\n", + " box_multilabels\n", + " ) # number of classes by treating each multilabel as 1 unique label\n", + " n = sum(sizes)\n", + " local_data = []\n", + " labels = []\n", + " test_data = []\n", + " test_labels = []\n", + " for i in range(0, len(means)):\n", + " local_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_data.append(np.random.multivariate_normal(mean=means[i], cov=covs[i], size=sizes[i]))\n", + " test_labels += [[i]] * sizes[i]\n", + " labels += [[i]] * sizes[i]\n", + "\n", + " def make_multi(X, Y, bx1, by1, bx2, by2, label_list):\n", + " ll = np.array([bx1, by1]) # lower-left\n", + " ur = np.array([bx2, by2]) # upper-right\n", + "\n", + " inidx = np.all(np.logical_and(X.tolist() >= ll, X.tolist() <= ur), axis=1)\n", + " for i in range(0, len(Y)):\n", + " if inidx[i]:\n", + " Y[i] = label_list\n", + " return Y\n", + "\n", + " X_train = np.vstack(local_data)\n", + " X_test = np.vstack(test_data)\n", + "\n", + " for i in range(0, len(box_multilabels)):\n", + " bx1, by1, bx2, by2 = boxes_coordinates[i]\n", + " multi_label = box_multilabels[i]\n", + " labels = make_multi(X_train, labels, bx1, by1, bx2, by2, multi_label)\n", + " test_labels = make_multi(X_test, test_labels, bx1, by1, bx2, by2, multi_label)\n", + "\n", + " d = {}\n", + " for i in labels:\n", + " if str(i) not in d:\n", + " d[str(i)] = len(d)\n", + " inv_d = {v: k for k, v in d.items()}\n", + " labels_idx = [d[str(i)] for i in labels]\n", + " py = np.bincount(labels_idx) / float(len(labels_idx))\n", + " noise_matrix = generate_noise_matrix_from_trace(\n", + " m,\n", + " trace=avg_trace * m,\n", + " py=py,\n", + " valid_noise_matrix=True,\n", + " seed=seed,\n", + " )\n", + " noisy_labels_idx = generate_noisy_labels(labels_idx, noise_matrix)\n", + " noisy_labels = [eval(inv_d[i]) for i in noisy_labels_idx]\n", + " return {\n", + " \"X_train\": X_train,\n", + " \"true_labels_train\": labels,\n", + " \"X_test\": X_test,\n", + " \"true_labels_test\": test_labels,\n", + " \"labels\": noisy_labels,\n", + " \"dict_unique_label\": d,\n", + " 'labels_idx': noisy_labels_idx,\n", + "\n", + " }\n", + "\n", + "def get_color_array(labels):\n", + " \"\"\"\n", + " This function returns a dictionary mapping multi-labels to unique colors\n", + " \"\"\"\n", + " dcolors ={'[0]': 'aa4400',\n", + " '[0, 2]': '55227f',\n", + " '[0, 1]': '55a100',\n", + " '[1]': '00ff00',\n", + " '[1, 2]': '007f7f',\n", + " '[0, 1, 2]': '386b55',\n", + " '[2]': '0000ff'}\n", + "\n", + " return [\"#\"+dcolors[str(i)] for i in labels]\n", + "\n", + "def plot_data(data, circles, title, alpha=1.0,colors = []):\n", + " plt.figure(figsize=(14, 5))\n", + " done = set()\n", + " for i in range(0,len(data)):\n", + " lab = str(labels[i])\n", + " if lab in done:\n", + " label = \"\"\n", + " else:\n", + " label = lab\n", + " done.add(lab)\n", + " plt.scatter(data[i, 0], data[i, 1], c=colors[i], s=30,alpha=0.6, label = label)\n", + " for i in circles:\n", + " plt.plot(\n", + " data[i][0],\n", + " data[i][1],\n", + " \"o\",\n", + " markerfacecolor=\"none\",\n", + " markeredgecolor=\"red\",\n", + " markersize=14,\n", + " markeredgewidth=2.5,\n", + " alpha=alpha\n", + " )\n", + " _ = plt.title(title, fontsize=25)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "672bfc2a", + "metadata": {}, + "source": [ + "Some of the labels in our generated dataset purposely contain errors. The examples with label errors are circled in the plot below, which depicts the dataset. This dataset contains 3 classes, and any subset of these may be the given label for a particular example. We say this example has a label error if it is better described by an alternative subset of the classes than the given label." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dac65d3b-51e8-4682-b829-beab610b56d6", + "metadata": {}, + "outputs": [], + "source": [ + "num_class = 3\n", + "dataset = make_multilabel_data()\n", + "labels = dataset['labels']\n", + "true_errors = np.where(np.sum(int2onehot(dataset['true_labels_train'],3)!=int2onehot(dataset['labels'],3),axis=1)>=1)[0]\n", + "plot_data(dataset['X_train'], circles=true_errors, title=f\"True label errors in multi-label dataset with {num_class} classes\", colors = get_color_array(labels),alpha=0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "144ad4c2-49bb-4147-a743-a83ed1656a11", + "metadata": {}, + "source": [ + "## 2. Format data, labels, and model predictions\n", + "\n", + "In multi-label classification, each example in the dataset is labeled as belonging to one **or more** of *K* possible classes (or none of the classes at all). To find label issues, cleanlab requires predicted class probabilities from a trained classifier. \n", + "Here we produce out-of-sample `pred_probs` by employing cross-validation to fit a multi-label **RandomForestClassifier** model via sklearn's [OneVsRestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html) framework. \n", + "Make sure that the columns of your `pred_probs` are properly ordered with respect to the ordering of classes, which for Datalab is: lexicographically sorted by class name.\n", + "`OneVsRestClassifier` offers an easy way to apply any multi-class classifier model from sklearn to multi-label classification tasks. It is done for simplicity here, but we advise against this approach as it does not properly model dependencies between classes.\n", + "\n", + "To instead train a state-of-the-art Pytorch neural network for multi-label classification and produce `pred_probs` on a real image dataset (that properly account for dependencies between classes), see our [example](https://github.com/cleanlab/examples) notebook [\"Train a neural network for multi-label classification on the CelebA dataset\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/pytorch_network_training.ipynb). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", + "metadata": {}, + "outputs": [], + "source": [ + "SEED = 0\n", + "random.seed(SEED)\n", + "y_onehot = int2onehot(labels, K=num_class) # labels in a binary format for sklearn OneVsRestClassifier\n", + "single_class_labels = [random.choice(i) for i in labels] # used only for stratifying the cross-validation split \n", + "clf = OneVsRestClassifier(RandomForestClassifier(random_state=SEED))\n", + "pred_probs = np.zeros(shape=(len(labels), num_class))\n", + "kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)\n", + "\n", + "for train_index, test_index in kf.split(X=dataset['X_train'], y=single_class_labels):\n", + " clf_cv = sklearn.base.clone(clf)\n", + " X_train_cv, X_test_cv = dataset['X_train'][train_index], dataset['X_train'][test_index]\n", + " y_train_cv, y_test_cv = y_onehot[train_index], y_onehot[test_index]\n", + " clf_cv.fit(X_train_cv, y_train_cv)\n", + " y_pred_cv = clf_cv.predict_proba(X_test_cv)\n", + " pred_probs[test_index] = y_pred_cv" + ] + }, + { + "cell_type": "markdown", + "id": "41c1efab", + "metadata": {}, + "source": [ + "`pred_probs` should be 2D array whose rows are length-*K* vectors for **each** example in the dataset, representing the model-estimated probability that this example belongs to each class. Since one example can belong to multiple classes in multi-label classification, these probabilities need not sum to 1. For the best label error detection performance, these `pred_probs` should be out-of-sample (from a copy of the model that never saw this example during training, e.g. produced via cross-validation).\n", + "\n", + "`labels` should be a list of lists, whose *i*-th entry is a list of (integer) class indices that apply to the *i*-th example in the dataset. If your classes are represented as string names, you should map these to integer indices. The label for an example that belongs to none of the classes should just be an empty list `[]`.\n", + "\n", + "Once you have `pred_probs` and `labels` appropriately formatted, you can find/analyze label issues in any multi-label dataset via `Datalab`!\n", + "\n", + "Here's what these look like for the first few examples in our synthetic multi-label dataset: " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ac1a60df", + "metadata": {}, + "outputs": [], + "source": [ + "num_to_display = 3 # increase this to see more examples\n", + "\n", + "print(f\"labels for first {num_to_display} examples in format expected by cleanlab:\")\n", + "print(labels[:num_to_display])\n", + "print(f\"pred_probs for first {num_to_display} examples in format expected by cleanlab:\")\n", + "print(pred_probs[:num_to_display])" + ] + }, + { + "cell_type": "markdown", + "id": "5a973506-c30e-4409-ac65-495537d13730", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "Based on the given `labels` and `pred_probs` from a trained model, cleanlab can quickly help us find label errors in our dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d09115b6-ad44-474f-9c8a-85a459586439", + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(\n", + " data={\"labels\": labels},\n", + " label_name=\"labels\",\n", + " task=\"multilabel\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " pred_probs=pred_probs,\n", + " issue_types={\"label\": {}}\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "439c003e", + "metadata": {}, + "source": [ + " Here we request that the indices of the examples identified with label issues be sorted by cleanlab’s self-confidence score, which is used to measure the quality of individual labels. The returned `issues` are a list of indices corresponding to the examples in your dataset that cleanlab finds most likely to be mislabeled. These indices are sorted by the *self-confidence* label quality score, with the lowest quality labels at the start." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c18dd83b", + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "issues = label_issues.query(\"is_label_issue\").sort_values(\"label_score\").index.values\n", + "\n", + "print(f\"Indices of examples with label issues:\\n{issues}\")" + ] + }, + { + "cell_type": "markdown", + "id": "d6af5833", + "metadata": {}, + "source": [ + "Let's look at the samples that cleanlab thinks are most likely to be mislabeled. You can see that cleanlab was able to identify most of `true_errors` in our small dataset (despite not having access to this variable, which you won't have in your own applications)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", + "metadata": {}, + "outputs": [], + "source": [ + "plot_data(dataset['X_train'], circles=issues, title=f\"Inferred label issues in multi-label dataset with {num_class} classes\", colors = get_color_array(labels), alpha = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "32465521", + "metadata": {}, + "source": [ + "### Label quality scores\n", + "\n", + "The above code identifies which examples have label issues and sorts them by their label quality score. We can also take a look at this label quality score for each example in the dataset, which estimates our confidence that this example has been correctly labeled. These scores range between 0 and 1 with smaller values indicating examples whose label seems more suspect." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c1198575", + "metadata": {}, + "outputs": [], + "source": [ + "scores = label_issues[\"label_score\"].values\n", + "\n", + "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" + ] + }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "### Data issues beyond mislabeling (outliers, duplicates, drift, ...)\n", + "\n", + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, drift, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", + "metadata": {}, + "source": [ + "### How to format labels given as a one-hot (multi-hot) binary matrix?\n", + "\n", + "For multi-label classification, cleanlab expects labels to be formatted as a list of lists, where each entry is an integer corresponding to a particular class. Here are some functions you can use to easily convert labels between this format and a binary matrix format commonly used to train multi-label classification models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49161b19-7625-4fb7-add9-607d91a7eca1", + "metadata": {}, + "outputs": [], + "source": [ + "labels_binary_format = int2onehot(labels, K=num_class)\n", + "labels_list_format = onehot2int(labels_binary_format)" + ] + }, + { + "cell_type": "markdown", + "id": "a58200c8", + "metadata": {}, + "source": [ + "### Estimate label issues without Datalab \n", + "If you prefer to directly run the same lower-level mathematical functions Datalab uses to detect label issues, you can do so outside of Datalab via the methods in the `cleanlab.multilabel_classification` module such as: [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues), [multilabel_classification.rank.get_label_quality_scores](../cleanlab/multilabel_classification/rank.html#cleanlab.multilabel_classification.rank.get_label_quality_scores) \n", + "\n", + "### Application to Real Data \n", + "\n", + "To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb). That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d1a2c008", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "A = set(issues)\n", + "B = set(true_errors)\n", + "jaccard = len(A.intersection(B)) / len(A.union(B))\n", + "if not jaccard > 0.7:\n", + " raise Exception(\"issues does not overlap much with the true errors\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/object_detection.ipynb b/v2.6.5/_sources/tutorials/object_detection.ipynb new file mode 100644 index 000000000..5dc44320e --- /dev/null +++ b/v2.6.5/_sources/tutorials/object_detection.ipynb @@ -0,0 +1,689 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d299c1e8", + "metadata": {}, + "source": [ + "# Finding Label Errors in Object Detection Datasets\n", + "\n", + "This 5-minute quickstart tutorial demonstrates how to find potential label errors in object detection datasets. In object detection data, each image is annotated with multiple bounding boxes. Each bounding box surrounds a physical object within an image scene, and is annotated with a given class label. \n", + "\n", + "Using such labeled data, we train a model to predict the locations and classes of objects in an image. An example notebook to train the object detection model whose predictions we rely on in this tutorial is available [here](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training.ipynb). These predictions can subsequently be input to cleanlab in order to identify mislabeled images and a quality score quantifying our confidence in the overall annotations for each image. \n", + "\n", + "After correcting these label issues, **you can train an even better version of your model without changing your training code!**\n", + "\n", + "This tutorial uses a subset of the [COCO (Common Objects in Context)](https://cocodataset.org/#home) dataset which has images of everyday scenes and considers objects from the 5 most popular classes: car, chair, cup, person, traffic light.\n", + "\n", + "**Overview of what we we'll do in this tutorial**\n", + "\n", + "- Score images based on their overall label quality (i.e. our confidence each image is correctly labeled) using `cleanlab.object_detection.rank.get_label_quality_scores`\n", + "- Estimate which images have label issues using `cleanlab.object_detection.filter.find_label_issues`\n", + "- Visually review images + labels using `cleanlab.object_detection.summary.visualize`\n", + "\n", + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have `labels` and `predictions` in the proper format? Just run the code below to find label issues in your object detection dataset.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.object_detection.filter import find_label_issues\n", + "from cleanlab.object_detection.rank import get_label_quality_scores\n", + "\n", + "# To get boolean vector of label issues for all images\n", + "has_label_issue = find_label_issues(labels, predictions)\n", + "\n", + "# To get label quality scores for all images\n", + "label_quality_scores = get_label_quality_scores(labels, predictions)\n", + " \n", + " \n", + "```\n", + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "8d552ab9", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "You can use `pip` to install all packages required for this tutorial as follows\n", + "```ipython\n", + "!pip install matplotlib\n", + "!pip install cleanlab\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0ba0dc70", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "dependencies = [\"cleanlab\", \"matplotlib\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c90449c8", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/predictions.pkl'\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/labels.pkl'\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ObjectDetectionBenchmarking/tutorial_obj/example_images.zip' && unzip -q -o example_images.zip" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df8be4c6", + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "from cleanlab.object_detection.filter import find_label_issues\n", + "from cleanlab.object_detection.rank import (\n", + " _separate_label,\n", + " _separate_prediction,\n", + " get_label_quality_scores,\n", + " issues_from_scores,\n", + ")\n", + "from cleanlab.object_detection.summary import visualize " + ] + }, + { + "cell_type": "markdown", + "id": "2506badc", + "metadata": {}, + "source": [ + "## 2. Format data, labels, and model predictions\n", + "\n", + "We begin by loading `labels` and `predictions` for our dataset, which are the only inputs required to find label issues with cleanlab. Note that the predictions should be **out-of-sample**, which can be obtained for every image in a dataset via K-fold cross-validation. \n", + "\n", + "In a separate [example](https://github.com/cleanlab/examples) notebook ([link](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training.ipynb)), we trained a Detectron2 object detection model and used it to obtain predictions on a held-out validation dataset whose `labels` we audit here.\n", + "\n", + "**Note:** If you want to find all the mislabeled images across the entire COCO dataset, you can first execute our [other example notebook](https://github.com/cleanlab/examples/blob/master/object_detection/detectron2_training-kfold.ipynb) that uses K-fold cross-validation to produce **out-of-sample** predictions for every image, then use those labels and predictions below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2e9ffd6f", + "metadata": {}, + "outputs": [], + "source": [ + "IMAGE_PATH = './example_images/' # path to raw image files downloaded above\n", + "predictions = pickle.load(open(\"predictions.pkl\", \"rb\"))\n", + "labels = pickle.load(open(\"labels.pkl\", \"rb\"))" + ] + }, + { + "cell_type": "markdown", + "id": "35d49e5d", + "metadata": {}, + "source": [ + "In object detection datasets, each given label is a made up of bounding box coordinates and a class label. A model prediction is also made up of a bounding box and predicted class label, as well as the model confidence (probability estimate) in its prediction. To detect label issues, cleanlab requires given labels for each image, and the corresponding model predictions for the image (but not the image itself).\n", + "\n", + "Here’s what an example looks like in our dataset. We visualize the given and predicted labels (in red and blue) for this image using the `cleanlab.object_detection.summary.visualize` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56705562", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "image_to_visualize = 8 # change this to view other images\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "visualize(image_path, label=labels[image_to_visualize], prediction=predictions[image_to_visualize], overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "ff36d97f", + "metadata": {}, + "source": [ + "The required format of these `labels` and `predictions` matches what popular object detection frameworks like [MMDetection](https://github.com/open-mmlab/mmdetection) and [Detectron2](https://github.com/facebookresearch/detectron2/) expect. Recall the 5 possible class labels in our dataset are: car, chair, cup, person, traffic light. These classes are represented as (zero-indexed) integers 0,1,...,4.\n", + "\n", + "`labels` is a list where for the i-th image in our dataset, `labels[i]` is a dictionary containing: key `labels` -- a list of class labels for each bounding box in this image and key `bboxes` -- a numpy array of the bounding boxes' coordinates. Each bounding box in `labels[i]['bboxes']` is in the format ``[x1,y1,x2,y2]`` format with respect to the image matrix where `(x1,y1)` corresponds to the top-left corner of the box and `(x2,y2)` the bottom-right (E.g. [XYXY in Keras](https://keras.io/api/keras_cv/bounding_box/formats/), [Detectron 2](https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box)).\n", + "\n", + "\n", + "Let's see what `labels[i]` looks like for our previous example image:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b08144d7", + "metadata": {}, + "outputs": [], + "source": [ + "labels[image_to_visualize]" + ] + }, + { + "cell_type": "markdown", + "id": "8f62da67", + "metadata": {}, + "source": [ + "`predictions` is a list where the predictions output by our model for the i-th image: `predictions[i]` is a list/array of shape `(K,)`. Here `K` is the number of classes in the dataset (same for every image) and `predictions[i][k]` is of shape `(M,5)`, where `M` is the number of bounding boxes predicted to contain objects of class `k` (in image i, differs between images). The five columns of `predictions[i][k]` correspond to ``[x1,y1,x2,y2,pred_prob]`` format with respect to the image matrix for each bounding box predicted by the model. Here `(x1,y1)` corresponds to the top-left corner of the box and `(x2,y2)` the bottom-right (E.g. [XYXY in Keras](https://keras.io/api/keras_cv/bounding_box/formats/), [Detectron 2](https://detectron2.readthedocs.io/en/latest/modules/utils.html#detectron2.utils.visualizer.Visualizer.draw_box)). The last column, `pred_prob` is the model confidence in its predicted label of class `k` for this box. Since our dataset has `K = 5` classes, we have: `predictions[i].shape = (5,)`.\n", + "\n", + "Let's see what `predictions[i]` looks like for our previous example image:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3d70bec6", + "metadata": {}, + "outputs": [], + "source": [ + "predictions[image_to_visualize]" + ] + }, + { + "cell_type": "markdown", + "id": "cf95ea28", + "metadata": {}, + "source": [ + "\n", + "Once you have `labels` and `predictions` in the appropriate formats, you can **find label issues with cleanlab for any object detection dataset**!" + ] + }, + { + "cell_type": "markdown", + "id": "3daff923", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues\n", + "Given `labels` and `predictions` from our trained model, cleanlab can automatically find mislabeled images in the dataset. In object detection, we consider an image mislabeled if **any** of its bounding boxes or their class labels are incorrect (including if the image contains any overlooked objects which should've been annotated with a box)\n", + "\n", + "Images may be mislabeled because annotators:\n", + "\n", + "- overlooked an object (forgot to annotate a bounding box around a depicted object)\n", + "- chose the wrong class label for an annotated box in the correct location\n", + "- imperfectly drew the bounding box such that its location is incorrect\n", + "\n", + "\n", + "Cleanlab is expected to flag images that exhibit **any** of these annotation errors as having label issues. More severe annotation errors are expected to produce lower cleanlab label quality scores closer to 0. Let's first estimate which images have label issues:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4caa635d", + "metadata": {}, + "outputs": [], + "source": [ + "label_issue_idx = find_label_issues(labels, predictions, return_indices_ranked_by_score=True)\n", + "\n", + "num_examples_to_show = 5 # view this many images flagged with the most severe label issues\n", + "label_issue_idx[:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "66d5fae1", + "metadata": {}, + "source": [ + "The above code identifies *which* images have label issues, returning a list of their indices. This is because we specified the `return_indices_ranked_by_score` argument which sorts these indices by the estimated label quality of each image. Below we describe how to directly estimate the label quality scores of each image.\n", + "\n", + "**Note:** You can omit the `return_indices_ranked_by_score` argument for `find_label_issues()` to instead return a Boolean mask for the entire dataset (True entries in this mask correspond to images with label issues)" + ] + }, + { + "cell_type": "markdown", + "id": "5b501dc9", + "metadata": {}, + "source": [ + "### Get label quality scores\n", + "Cleanlab can also compute scores for each image to estimate our confidence that it has been correctly labeled. These label quality scores range between 0 and 1, with *smaller* values indicating examples whose annotation is *more* likely to be wrong in some way.\n", + "\n", + "Each image in the dataset receives a label quality score. These scores are useful for prioritizing which images to review; if you have too little time, first review the images with the lowest label quality scores." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a9b4c590", + "metadata": {}, + "outputs": [], + "source": [ + "scores = get_label_quality_scores(labels, predictions)\n", + "scores[:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "349521e0", + "metadata": {}, + "source": [ + "We can also use the label quality scores to flag *which* images have label issues based on a threshold. Here we convert these per-image scores into an array of indices corresponding to images flagged with label issues, sorted by label quality score, in the same format returned by `find_label_issues()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffd9ebcc", + "metadata": {}, + "outputs": [], + "source": [ + "issue_idx = issues_from_scores(scores, threshold=0.5) # lower threshold will return fewer (but more confident) label issues\n", + "issue_idx[:num_examples_to_show], scores[issue_idx][:num_examples_to_show]" + ] + }, + { + "cell_type": "markdown", + "id": "5a3b8aa0", + "metadata": {}, + "source": [ + "## 4. Use ObjectLab to visualize label issues\n", + "Finally, we can visualize images with potential label errors via cleanlab's `visualize()` function. To enhance the visualization, you can supply a `class_names` dictionary to include as a legend and turn off `overlay` to see the given and predicted labels side by side." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4dd46d67", + "metadata": {}, + "outputs": [], + "source": [ + "issue_to_visualize = issue_idx[0] # change this to view other images\n", + "class_names = {\"0\": \"car\", \"1\": \"chair\", \"2\": \"cup\", \"3\":\"person\", \"4\": \"traffic light\"}\n", + "\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "de0d7205", + "metadata": {}, + "source": [ + "The visualization depicts the given label (original image annotation which cleanlab identified as problematic) in red on the left and the model-predicted label in blue on the right. Each bounding box contains a class-index number in the top corner indicating which object class that bounding box was annotated/predicted to contain.\n", + "\n", + "This image has a **low** label quality score and is marked as an error. On closer inspection we notice the annotator missed the reflection of the person in the mirror that the model identified. Additionally, the chairs visible in the reflection were not annotated.\n", + "\n", + "Notice examples where the predictions and labels are more similar have higher quality scores than those that are missmatched, and are less likeley to be marked as issues and the number of boxes is agnostic to the score.\n", + "\n", + "Better trained models will lead to better label error detection but you don't need a near perfect model to identify label issues.\n", + "\n", + "\n", + "### Different kinds of label issues identified by ObjectLab\n", + "Now lets view the first few images in our vaidation dataset that are clearly marked as issues and see what various inconsistencies between the `given` and `predicted` label we can spot. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ceec2394", + "metadata": {}, + "outputs": [], + "source": [ + "issue_to_visualize = issue_idx[1]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "9b5c87fa", + "metadata": {}, + "source": [ + "Notice the armchair to the left of the TV is missing an annotation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94f82b0d", + "metadata": {}, + "outputs": [], + "source": [ + "issue_to_visualize = issue_idx[9]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "05610be0", + "metadata": {}, + "source": [ + "Similarly, the woman in a red jacket in the foreground is missing an annotation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1ea18c5d", + "metadata": {}, + "outputs": [], + "source": [ + "issue_to_visualize = issue_idx[2]\n", + "label = labels[issue_to_visualize]\n", + "prediction = predictions[issue_to_visualize]\n", + "score = scores[issue_to_visualize]\n", + "\n", + "image_path = IMAGE_PATH + label['seg_map']\n", + "print(image_path, '| idx', issue_to_visualize , '| label quality score:', score, '| is issue: True')\n", + "visualize(image_path, label=label, prediction=prediction, class_names=class_names, overlay=False)" + ] + }, + { + "cell_type": "markdown", + "id": "05c9229d", + "metadata": {}, + "source": [ + "The people in this image should have had individual bounding boxes around each persons (the COCO guidelines state only groups with 10+ objects of the same type can be a \\\"crowd\\\" bounded by a single box). Individuals in the back are missing annotations.\n", + "\n", + "All of these examples received low label quality scores reflecting their low annotation quality in the original dataset." + ] + }, + { + "cell_type": "markdown", + "id": "03d5a521", + "metadata": {}, + "source": [ + "### Other uses of visualize\n", + "The `visualize()` function can also depict non-issue images, labels or predictions alone, or just the image itself. Let's explore this with a few images in our dataset.\n", + "\n", + "We can save a visualization to file via the `save_path` argument. Note the label quality score is high for this example and it is marked as a non-issue. The given and predicted labels closely resemble each other contributing to the high score." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e770d23", + "metadata": {}, + "outputs": [], + "source": [ + "image_to_visualize = 0\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path, label=labels[image_to_visualize], prediction=predictions[image_to_visualize], class_names=class_names, save_path='./example_image.png')" + ] + }, + { + "cell_type": "markdown", + "id": "6c9464e8", + "metadata": {}, + "source": [ + "For the next example, notice how we are only passing in the given labels to visualize. We can limit visualization to either labels, predictions, or neither." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57e84a27", + "metadata": {}, + "outputs": [], + "source": [ + "image_to_visualize = 3\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path, label=labels[image_to_visualize], class_names=class_names)" + ] + }, + { + "cell_type": "markdown", + "id": "d8744ab9", + "metadata": {}, + "source": [ + "For completeness, let's just look at an image alone." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0302818a", + "metadata": {}, + "outputs": [], + "source": [ + "image_to_visualize = 2\n", + "image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + "print(image_path, '| idx', image_to_visualize , '| label quality score:', scores[image_to_visualize], '| is issue:', image_to_visualize in issue_idx)\n", + "visualize(image_path)" + ] + }, + { + "cell_type": "markdown", + "id": "46d6282a-4601-4cc3-b8a8-187ea6d5f8bc", + "metadata": {}, + "source": [ + "## Exploratory data analysis\n", + "\n", + "This bonus section considers techniques to uncover annotation irregularities through exploratory data analysis. Specifically, we consider anomalies in object sizes, detect images with unusual object counts, and examine the distribution of class labels.\n", + "\n", + "Let's first consider the number of objects per image, and inspect the images with the largest values (which might reveal something off in our dataset):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.internal.object_detection_utils import calculate_bounding_box_areas\n", + "from cleanlab.object_detection.summary import (\n", + " bounding_box_size_distribution,\n", + " class_label_distribution,\n", + " object_counts_per_image,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", + "metadata": {}, + "outputs": [], + "source": [ + "num_imgs_to_show = 3\n", + "lab_object_counts,pred_object_counts = object_counts_per_image(labels,predictions)\n", + "for image_to_visualize in np.argsort(lab_object_counts)[::-1][0:num_imgs_to_show]:\n", + " image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + " print(image_path, '| idx', image_to_visualize)\n", + " visualize(image_path, label=labels[image_to_visualize], class_names=class_names)" + ] + }, + { + "cell_type": "markdown", + "id": "e5ddd4fe-4477-4b68-ba79-e5cbb62822eb", + "metadata": {}, + "source": [ + "Next let's study the distribution of class labels in the overall annotations, comparing the distribution in the given annotations vs. in the model predictions. This can sometimes reveal that something's off in our dataset or model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", + "metadata": {}, + "outputs": [], + "source": [ + "label_norm,pred_norm = class_label_distribution(labels,predictions)\n", + "print(\"Frequency of each class amongst annotated | predicted bounding boxes in the dataset:\\n\")\n", + "for i in label_norm:\n", + " print(f\"{class_names[str(i)]} : {label_norm[i]} | {pred_norm[i]}\")" + ] + }, + { + "cell_type": "markdown", + "id": "200cdebf-b24c-4c2b-8914-6a2fce218daf", + "metadata": {}, + "source": [ + "Finally, let's consider the distribution of bounding box sizes (aka object sizes) in the given annotations for each class label. The idea is to review any anomalies in bounding box areas for a given class (which might reveal problematic annotations or abnormal instances of this object class). The following code determines such anomalies by assessing each bounding box's area vs. the mean and standard deviation of areas for bounding boxes with the same class label." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59d7ee39-3785-434b-8680-9133014851cd", + "metadata": {}, + "outputs": [], + "source": [ + "lab_area,pred_area = bounding_box_size_distribution(labels,predictions)\n", + "lab_area_mean = {i: np.mean(lab_area[i]) for i in lab_area.keys()}\n", + "lab_area_std = {i: np.std(lab_area[i]) for i in lab_area.keys()}\n", + "\n", + "max_deviation_values = []\n", + "max_deviation_classes = []\n", + "\n", + "for label in labels:\n", + " bounding_boxes, label_names = _separate_label(label)\n", + " areas = calculate_bounding_box_areas(bounding_boxes)\n", + " deviation_values = []\n", + " deviation_classes = []\n", + "\n", + " for class_name, mean_area, std_area in zip(lab_area_mean.keys(), lab_area_mean.values(), lab_area_std.values()):\n", + " class_areas = areas[label_names == class_name]\n", + " deviations_away = (class_areas - mean_area) / std_area\n", + " deviation_values.extend(list(deviations_away))\n", + " deviation_classes.extend([class_name] * len(class_areas))\n", + "\n", + " if deviation_values==[]:\n", + " max_deviation_values.append(0.0)\n", + " max_deviation_classes.append(-1)\n", + " else:\n", + " max_deviation_index = np.argmax(np.abs(deviation_values))\n", + " max_deviation_values.append(deviation_values[max_deviation_index])\n", + " max_deviation_classes.append(deviation_classes[max_deviation_index])\n", + "\n", + "max_deviation_classes, max_deviation_values = np.array(max_deviation_classes), np.array(max_deviation_values)" + ] + }, + { + "cell_type": "markdown", + "id": "b260142e-b760-490c-818e-c037fab5c6c8", + "metadata": {}, + "source": [ + "In our dataset here, this analysis reveals certain abnormally large bounding boxes that take up most of the image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", + "metadata": {}, + "outputs": [], + "source": [ + "num_imgs_to_show_per_class = 3\n", + "\n", + "for c in class_names.keys():\n", + " class_num = int(c)\n", + " sorted_indices = np.argsort(max_deviation_values)[::-1]\n", + " count = 0\n", + "\n", + " for image_to_visualize in sorted_indices:\n", + " if max_deviation_values[i] == 0 or max_deviation_classes[i] != class_num:\n", + " continue\n", + " image_path = IMAGE_PATH + labels[image_to_visualize]['seg_map']\n", + " print(image_path, '| idx', image_to_visualize, '| class', class_names[c])\n", + " visualize(image_path, label=labels[image_to_visualize], class_names=class_names)\n", + "\n", + " count += 1\n", + " if count == num_imgs_to_show_per_class:\n", + " break # Break the loop after visualizing the top 3 instances for the current class" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ce74938", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "expected_values = {0: 50, 1: 16, 2: 31, 9: 62}\n", + "\n", + "for idx, value in expected_values.items():\n", + " assert value in issue_idx and issue_idx[idx] == value, f\"Assertion error at index {idx}: Expected {value}, got {issue_idx.get(idx, None)}\"\n", + "\n", + "assert all(i not in issue_idx for i in [0, 2, 3]), \"Unexpected values found in issue_idx\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/outliers.ipynb b/v2.6.5/_sources/tutorials/outliers.ipynb new file mode 100644 index 000000000..7e8cd3c9d --- /dev/null +++ b/v2.6.5/_sources/tutorials/outliers.ipynb @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1043b220", + "metadata": {}, + "source": [ + "# Detect Outliers with Cleanlab and PyTorch Image Models (timm)\n", + "\n", + "This quick tutorial shows how to detect outliers (out-of-distribution examples) in image data, using the [cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset as an example. You can easily replace the image dataset + neural network used here with any other Pytorch dataset + neural network (e.g. to instead detect outliers in text data with minimal code changes). \n", + "\n", + "**Overview of what we'll do in this tutorial:**\n", + "\n", + "Detect outliers using `feature_embeddings`\n", + "\n", + "- Pre-process [cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) into Pytorch datasets where `train_data` only contains images of animals and `test_data` contains images from all classes.\n", + "\n", + "- Use a pretrained neural network model from [timm](https://github.com/rwightman/pytorch-image-models) to extract feature embeddings of each image.\n", + "\n", + "- Use cleanlab to find naturally occurring outlier examples in the `train_data` (i.e. atypical images).\n", + "\n", + "- Find outlier examples in the `test_data` that do not stem from training data distribution (including out-of-distribution non-animal images).\n", + "\n", + "- Explore threshold selection for determining which images are outliers vs not.\n", + "\n", + "Detect outliers using `pred_probs` from a trained classifier\n", + "\n", + "- Adapt our [timm](https://github.com/rwightman/pytorch-image-models) network into a classifier by training an additional output layer using the (in-distribution) training data.\n", + "\n", + "- Use cleanlab to find out-of-distribution examples in the dataset based on the probabilistic predictions of this classifier, as an alternative to relying on feature embeddings." + ] + }, + { + "cell_type": "markdown", + "id": "70016f64", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have numeric **feature embeddings** for your data? Just run the code below to score how out-of-distribution each example is.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + " \n", + "ood = OutOfDistribution()\n", + "\n", + "# To get outlier scores for train_data using feature matrix train_feature_embeddings\n", + "ood_train_feature_scores = ood.fit_score(features=train_feature_embeddings)\n", + "\n", + "# To get outlier scores for additional test_data using feature matrix test_feature_embeddings\n", + "ood_test_feature_scores = ood.score(features=test_feature_embeddings)\n", + " \n", + " \n", + "```\n", + "\n", + "
\n", + " \n", + "Already have `pred_probs` and `labels` for your classification dataset? Just run the code below to to score how out-of-distribution each example is.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + " \n", + "ood = OutOfDistribution()\n", + "\n", + "# To get outlier scores for train_data using predicted class probabilities (from a trained classifier) and given class labels\n", + "ood_train_predictions_scores = ood.fit_score(pred_probs=train_pred_probs, labels=labels)\n", + "\n", + "# To get outlier scores for additional test_data using predicted class probabilities\n", + "ood_test_predictions_scores = ood.score(pred_probs=test_pred_probs)\n", + " \n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "45cb0f90", + "metadata": {}, + "source": [ + "## 1. Install the required dependencies\n", + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib torch torchvision timm\n", + "!pip install cleanlab\n", + "...\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bbebfc8", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "# If running on Colab, may want to use GPU (select: Runtime > Change runtime type > Hardware accelerator > GPU)\n", + "# Package versions we used: matplotlib==3.5.1, torch==2.1.2, torchvision==2.1.2, timm==0.6.12\n", + "\n", + "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "markdown", + "id": "41733949", + "metadata": {}, + "source": [ + "Let's first import the required packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4396f544", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "import torch\n", + "import torchvision\n", + "import timm\n", + "from sklearn import preprocessing\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.ensemble import BaggingClassifier\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "from cleanlab.outlier import OutOfDistribution\n", + "from cleanlab.rank import find_top_issues" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3792f82e", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This (optional) cell is hidden from docs.cleanlab.ai \n", + "# Set some seeds for reproducibility. \n", + "\n", + "SEED = 42\n", + "np.random.seed(SEED)\n", + "torch.manual_seed(SEED)\n", + "torch.backends.cudnn.deterministic = True\n", + "torch.backends.cudnn.benchmark = False\n", + "torch.cuda.manual_seed_all(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "be38283d", + "metadata": {}, + "source": [ + "## 2. Pre-process the Cifar10 dataset\n", + "\n", + "Each image in the original [cifar10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) belongs to 1 of 10 classes: `[airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck]`. \n", + "After loading the data and processing the images, we manually remove some classes from the training dataset thereby making images from these classes outliers in the test dataset. Here we to remove all classes that are not an animal, such that test images from the following classes would be out-of-distribution: `[airplane, automobile, ship, truck]`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fd853a54", + "metadata": {}, + "outputs": [], + "source": [ + "# Load cifar10 images into tensors for training (rescales pixel values to [0,1] interval):\n", + "transform_normalize = torchvision.transforms.Compose(\n", + " [torchvision.transforms.ToTensor(),])\n", + "\n", + "train_data = torchvision.datasets.CIFAR10(root='./data', train=True,\n", + " download=True, transform=transform_normalize)\n", + "test_data = torchvision.datasets.CIFAR10(root='./data', train=False,\n", + " download=True, transform=transform_normalize)\n", + "\n", + "# Define in (animal) vs out (non-animal) of distribution labels\n", + "animal_classes = [2,3,4,5,6,7] # labels correspond to animal images\n", + "non_animal_classes = [0,1,8,9] # labels that correspond to non-animal images\n", + "\n", + "# Remove non-animal images from the training dataset\n", + "animal_idxs = np.where(np.isin(train_data.targets, animal_classes))[0]\n", + "\n", + "# Only work with small subset of each dataset to speedup tutorial\n", + "train_idxs = np.random.choice(animal_idxs, len(animal_idxs) // 6, replace=False)\n", + "test_idxs = np.random.choice(range(len(test_data)), len(test_data) // 10, replace=False)\n", + "\n", + "train_data = torch.utils.data.Subset(train_data, train_idxs) # select subset of animal images for train_data\n", + "test_data = torch.utils.data.Subset(test_data, test_idxs) # select subset of all images for test_data\n", + "print('train_data length: %s' % (len(train_data)))\n", + "print('test_data length: %s' % (len(test_data)))" + ] + }, + { + "cell_type": "markdown", + "id": "1be5ff2e", + "metadata": {}, + "source": [ + "#### Visualize some of the training and test examples" + ] + }, + { + "cell_type": "markdown", + "id": "47514fe7", + "metadata": {}, + "source": [ + "
See the implementation of `plot_images` and `visualize_outliers` **(click to expand)**\n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "txt_classes = {0: 'airplane', \n", + " 1: 'automobile', \n", + " 2: 'bird',\n", + " 3: 'cat', \n", + " 4: 'deer', \n", + " 5: 'dog', \n", + " 6: 'frog', \n", + " 7: 'horse', \n", + " 8:'ship', \n", + " 9:'truck'}\n", + "\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " return np.transpose(npimg, (1, 2, 0))\n", + "\n", + "def plot_images(dataset, show_labels=False):\n", + " plt.rcParams[\"figure.figsize\"] = (9,7)\n", + " for i in range(15):\n", + " X,y = dataset[i]\n", + " ax = plt.subplot(3,5,i+1)\n", + " if show_labels:\n", + " ax.set_title(txt_classes[int(y)])\n", + " ax.imshow(imshow(X))\n", + " ax.axis('off')\n", + " plt.show()\n", + "\n", + "def visualize_outliers(idxs, data):\n", + " data_subset = torch.utils.data.Subset(data, idxs)\n", + " plot_images(data_subset)\n", + " \n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b64e0aa", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "txt_classes = {0: 'airplane', \n", + " 1: 'automobile', \n", + " 2: 'bird',\n", + " 3: 'cat', \n", + " 4: 'deer', \n", + " 5: 'dog', \n", + " 6: 'frog', \n", + " 7: 'horse', \n", + " 8:'ship', \n", + " 9:'truck'}\n", + "\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " return np.transpose(npimg, (1, 2, 0))\n", + "\n", + "def plot_images(dataset, show_labels=False):\n", + " plt.rcParams[\"figure.figsize\"] = (9,7)\n", + " for i in range(15):\n", + " X,y = dataset[i]\n", + " ax = plt.subplot(3,5,i+1)\n", + " if show_labels:\n", + " ax.set_title(txt_classes[int(y)])\n", + " ax.imshow(imshow(X))\n", + " ax.axis('off')\n", + " plt.show()\n", + "\n", + "def visualize_outliers(idxs, data):\n", + " data_subset = torch.utils.data.Subset(data, idxs)\n", + " plot_images(data_subset)" + ] + }, + { + "cell_type": "markdown", + "id": "eb28f354", + "metadata": {}, + "source": [ + "Observe how there are only animals left in our `train_data`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a00aa3ed", + "metadata": {}, + "outputs": [], + "source": [ + "plot_images(train_data, show_labels=True)" + ] + }, + { + "cell_type": "markdown", + "id": "df819e85", + "metadata": {}, + "source": [ + "If we consider `train_data` to be representative of the typical data distribution, then non-animal images in `test_data` become outliers:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41e5cb6b", + "metadata": {}, + "outputs": [], + "source": [ + "plot_images(test_data, show_labels=True)" + ] + }, + { + "cell_type": "markdown", + "id": "92caec8a", + "metadata": {}, + "source": [ + "## 3. Use cleanlab and feature embeddings to find outliers in the data\n", + "\n", + "\n", + "### Represent each image as a numeric feature embedding vector\n", + "\n", + "We can pass images through a neural network to generate vector embeddings via its hidden layer representation. Here we use a `resnet50` network from [timm](https://timm.fast.ai/), which has been pretrained on a large corpus of other images. Note that cleanlab's outlier detection can be applied to numeric feature embeddings generated from any model (or to the raw data features if they are already numeric vectors). Outlier detection works best with feature vectors whose values along each dimension are of a similar scale. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1cf25354", + "metadata": {}, + "outputs": [], + "source": [ + "# Generates 2048-dimensional feature embeddings from images\n", + "def embed_images(model, dataloader):\n", + " feature_embeddings = []\n", + " for data in dataloader:\n", + " images, labels = data\n", + " with torch.no_grad():\n", + " embeddings = model(images)\n", + " feature_embeddings.extend(embeddings.numpy())\n", + " feature_embeddings = np.array(feature_embeddings)\n", + " return feature_embeddings # each row corresponds to embedding of a different image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85a58d41", + "metadata": {}, + "outputs": [], + "source": [ + "# Load pretrained neural network\n", + "model = timm.create_model('resnet50', pretrained=True, num_classes=0) # this is a pytorch network\n", + "model.eval() # eval mode disables training-time operators (like batch normalization)\n", + "\n", + "# Use dataloaders to stream images through the network\n", + "batch_size = 50\n", + "trainloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False)\n", + "testloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)\n", + "\n", + "# Generate feature embeddings\n", + "train_feature_embeddings = embed_images(model, trainloader)\n", + "print(f'Train embeddings pooled shape: {train_feature_embeddings.shape}')\n", + "test_feature_embeddings = embed_images(model, testloader)\n", + "print(f'Test embeddings pooled shape: {test_feature_embeddings.shape}')" + ] + }, + { + "cell_type": "markdown", + "id": "ad857d69", + "metadata": {}, + "source": [ + "### Scoring outliers in a given dataset (training data)\n", + "\n", + "Fitting cleanlab's ``OutOfDistribution`` class on ``feature_embeddings`` will find any naturally occurring outliers in a given dataset. These examples are atypical images that look strange or different from the majority of examples in the dataset. In our case, these correspond to odd-looking images of animals that do not resemble typical animals depicted in **cifar10**. This method produces a score in [0,1] for each example, where lower values correspond to more atypical examples (more likely out-of-distribution)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "feb0f519", + "metadata": {}, + "outputs": [], + "source": [ + "ood = OutOfDistribution()\n", + "train_ood_features_scores = ood.fit_score(features=train_feature_embeddings)\n", + "\n", + "top_train_ood_features_idxs = find_top_issues(quality_scores=train_ood_features_scores, top=15)\n", + "visualize_outliers(top_train_ood_features_idxs, train_data)" + ] + }, + { + "cell_type": "markdown", + "id": "756333f7", + "metadata": {}, + "source": [ + "For fun, let's see what cleanlab considers the least likely outliers in the dataset! We can do this by calling `find_top_issues` on the negated outlier scores. These examples look quite homogeneous as each one is similar to many other training images." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "089d5860", + "metadata": {}, + "outputs": [], + "source": [ + "bottom_train_ood_features_idxs = find_top_issues(quality_scores=-train_ood_features_scores, top=15)\n", + "visualize_outliers(bottom_train_ood_features_idxs, train_data)" + ] + }, + { + "cell_type": "markdown", + "id": "2521aefb", + "metadata": {}, + "source": [ + "### Scoring outliers in additional test data\n", + "\n", + "Now suppose we want to find outlier images in some never before seen test data, in particular images unlikely to stem from the same distribution as the training data. We can use our already fitted `OutOfDistribution` estimator to score how typical each new test example would be under the training data distribution and visualize the most severe outliers in this additional data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78b1951c", + "metadata": {}, + "outputs": [], + "source": [ + "test_ood_features_scores = ood.score(features=test_feature_embeddings)\n", + "\n", + "top_ood_features_idxs = find_top_issues(test_ood_features_scores, top=15)\n", + "visualize_outliers(top_ood_features_idxs, test_data)" + ] + }, + { + "cell_type": "markdown", + "id": "2c645c58", + "metadata": {}, + "source": [ + "Many outliers identified in `test_data` depict (non-animal) classes not present in the training set. These non-animal images have very different feature embeddings than the animal-only images in the training data." + ] + }, + { + "cell_type": "markdown", + "id": "0b5de6f6", + "metadata": {}, + "source": [ + "### Deciding which test examples are outliers\n", + "\n", + "Given outlier scores, how do we determine how many of the top-ranked examples in ``test_data`` should be marked as outliers? \n", + "\n", + "Inevitably this has some true positive / false positive trade-off, so let's suppose we want to ensure around at most 5% false positives. We can use the 5th percentile of the distribution of `train_ood_features_scores` (assuming the training data are in-distribution examples without outliers) as a hard score threshold below which to consider a test example an outlier.\n", + "\n", + "Let's plot the 5th percentile of the training outlier score distribution (shown as red line)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e9dff81b", + "metadata": {}, + "outputs": [], + "source": [ + "fifth_percentile = np.percentile(train_ood_features_scores, 5) # 5th percentile of the train_data distribution\n", + "\n", + "# Plot outlier_score distributions and the 5th percentile cutoff\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))\n", + "plt_range = [min(train_ood_features_scores.min(),test_ood_features_scores.min()), \\\n", + " max(train_ood_features_scores.max(),test_ood_features_scores.max())]\n", + "axes[0].hist(train_ood_features_scores, range=plt_range, bins=50)\n", + "axes[0].set(title='train_outlier_scores distribution', ylabel='Frequency')\n", + "axes[0].axvline(x=fifth_percentile, color='red', linewidth=2)\n", + "axes[1].hist(test_ood_features_scores, range=plt_range, bins=50)\n", + "axes[1].set(title='test_outlier_scores distribution', ylabel='Frequency')\n", + "axes[1].axvline(x=fifth_percentile, color='red', linewidth=2)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "74c39ab1", + "metadata": {}, + "source": [ + "All test examples whose `test_ood_features_scores` fall left of the red line will be marked as an outlier.\n", + "\n", + "Let's plot the least-certain outliers of our `test_data` (i.e. 15 images with outlier scores right along the threshold). These are the images immediately to the left of that cutoff threshold (red line). The majority of them are still truly out-of-distribution non-animal images, but there are a few atypical-looking animals that are now erroneously identified as outliers as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "616769f8", + "metadata": {}, + "outputs": [], + "source": [ + "sorted_idxs = test_ood_features_scores.argsort()\n", + "ood_features_scores = test_ood_features_scores[sorted_idxs]\n", + "ood_features_indices = sorted_idxs[ood_features_scores < fifth_percentile] # Images in test data flagged as outliers\n", + "\n", + "visualize_outliers(ood_features_indices[::-1], test_data)" + ] + }, + { + "cell_type": "markdown", + "id": "cb4c0a06", + "metadata": {}, + "source": [ + "### How does cleanlab detect outliers from feature values?\n", + "\n", + "Outlier scores are defined relative to the average distance (computed over feature values) between each example and its K nearest neighbors in the training data. Such scores have been found to be particularly effective for out-of-distribution detection, see this paper for more details:\n", + "\n", + "[Back to the Basics: Revisiting Out-of-Distribution Detection Baselines](https://arxiv.org/abs/2207.03061)\n", + "\n", + "\n", + "Internally, cleanlab uses the `sklearn.neighbors.NearestNeighbor` class (with *cosine* distance) to find the K nearest neighbors, but you can easily use [another KNN estimator](https://github.com/cleanlab/examples/blob/master/outlier_detection_cifar10/outlier_detection_cifar10.ipynb) with cleanlab's `OutOfDistribution` class." + ] + }, + { + "cell_type": "markdown", + "id": "937c7e97", + "metadata": {}, + "source": [ + "## 4. Use cleanlab and `pred_probs` to find outliers in the data\n", + "\n", + "We sometimes wish to find outliers in classification datasets for which we do not have meaningful numeric feature representations. In this case, cleanlab can detect unusual examples in the data solely using predicted probabilities from a trained classifier.\n", + "\n", + "To get `pred_probs` here, a Logistic Regression classifier is fit on the already generated `train_feature_embeddings` (from our pretrained timm network) and the given label for each training image. We use a simple classifier here to quickly generate `pred_probs`, but in practice [fine-tuning the entire neural network for classification](https://github.com/cleanlab/examples/blob/master/outlier_detection_cifar10/outlier_detection_cifar10.ipynb) will be more effective (our approach here is equivalent to only training an extra output layer appended on top of the pretrained network)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "40fed4ef", + "metadata": {}, + "outputs": [], + "source": [ + "# Preprocess data\n", + "train_labels = np.array(train_data.dataset.targets)[train_data.indices]\n", + "train_labels = np.unique(train_labels, return_inverse=True)[1] # MAKE SURE to zero index training labels for sklearn\n", + "test_labels = np.array(test_data.dataset.targets)[test_data.indices]\n", + "\n", + "scaler = preprocessing.StandardScaler().fit(train_feature_embeddings)\n", + "train_feature_embeddings_scaled = scaler.transform(train_feature_embeddings)\n", + "test_feature_embeddings_scaled = scaler.transform(test_feature_embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "89f9db72", + "metadata": {}, + "outputs": [], + "source": [ + "# Our classifier employs bagging to better account for epistemic uncertainty \n", + "model = BaggingClassifier(LogisticRegression(max_iter=500), random_state=1, n_jobs=-1)\n", + "model.fit(train_feature_embeddings_scaled, train_labels)\n", + "\n", + "train_pred_probs = model.predict_proba(train_feature_embeddings_scaled)\n", + "train_pred_labels = train_pred_probs.argmax(1)\n", + "accuracy = np.mean(train_pred_labels == train_labels)\n", + "print(f\"Model accuracy on held-out train_data {accuracy}\")" + ] + }, + { + "cell_type": "markdown", + "id": "03e3f7b7", + "metadata": {}, + "source": [ + "We can use these `pred_probs` to again compute out-of-distribution scores for each image in our dataset using cleanlab's `OutOfDistribution` class." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "874c885a", + "metadata": {}, + "outputs": [], + "source": [ + "ood = OutOfDistribution()\n", + "train_ood_predictions_scores = ood.fit_score(pred_probs=train_pred_probs, labels=train_labels)" + ] + }, + { + "cell_type": "markdown", + "id": "dcff8e5a", + "metadata": {}, + "source": [ + "We can repeat this for additional test data, to identify test images that do not stem from the training data distribution." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e110fc4b", + "metadata": {}, + "outputs": [], + "source": [ + "test_pred_probs = model.predict_proba(test_feature_embeddings_scaled)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85b60cbf", + "metadata": {}, + "outputs": [], + "source": [ + "test_ood_predictions_scores = ood.score(pred_probs=test_pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "702aa162", + "metadata": {}, + "source": [ + "Detecting outliers based on feature embeddings can be done for arbitrary unlabeled datasets, but requires a meaningful numerical representation of the data. Detecting outliers based on predicted probabilities applies mainly for labeled classification datasets, but can be done with any effective classifier. The effectiveness of the latter approach depends on: how much auxiliary information captured in the feature values is lost in the predicted probabilities (determined by the particular set of labels in the classification task), the accuracy of our classifier, and how properly its predictions reflect epistemic uncertainty. Read more about it [here](https://pub.towardsai.net/a-simple-adjustment-improves-out-of-distribution-detection-for-any-classifier-5e96bbb2d627)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "17f96fa6", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "# Verify the top identified test outliers data are mostly non-animal images\n", + "top_ood_features_subset = torch.utils.data.Subset(test_data, top_ood_features_idxs)\n", + "num_animals = len([i for i in range(len(top_ood_features_subset)) if top_ood_features_subset[i][1] in animal_classes])\n", + "non_animal_frac = 1 - (num_animals / len(top_ood_features_subset))\n", + "if non_animal_frac < 0.81:\n", + " raise Exception(f\"Not enough non-animal images amongst top-ranked outliers in test_data, only: {non_animal_frac}\")\n", + "\n", + "top_ood_predictions_idxs = (test_ood_predictions_scores).argsort()[:15]\n", + "top_ood_predictions_subset = torch.utils.data.Subset(test_data, top_ood_predictions_idxs)\n", + "num_animals = len([i for i in range(len(top_ood_predictions_subset)) if top_ood_predictions_subset[i][1] in animal_classes])\n", + "non_animal_frac = 1 - (num_animals / len(top_ood_predictions_subset))\n", + "if non_animal_frac < 0.50:\n", + " raise Exception(f\"Not enough non-animal images amongst top-ranked ood datapoints in test_data, only: {non_animal_frac}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/pred_probs_cross_val.rst b/v2.6.5/_sources/tutorials/pred_probs_cross_val.rst new file mode 100644 index 000000000..f5e7f9573 --- /dev/null +++ b/v2.6.5/_sources/tutorials/pred_probs_cross_val.rst @@ -0,0 +1,60 @@ +.. _pred_probs_cross_val: + +Computing Out-of-Sample Predicted Probabilities with Cross-Validation +===================================================================== + +Recall that cleanlab finds label issues in any dataset using some model's predicted class probabilities output. However, predicted probabilities from your model must be out-of-sample! You should never provide predictions on the same datapoints used to train the model, as these will be overfitted and unsuitable for finding label issues. It is ok if your model was trained on a separate dataset and you are only using cleanlab to evaluate labels in data that was previously held out (e.g., only searching for label issues in the test data). + +To find label issues across all your data requires obtaining out-of-sample predicted probabilities for every datapoint in your dataset. This can be done via K-fold cross-validation as described below. Conventionally, `cross-validation `_ is used for model evaluation, but we'll use it to compute out-of-sample predicted probabilities for the entire dataset. + + +Out-of-sample predicted probabilities? +-------------------------------------- + +**Predicted probabilities** refer to a trained classification model's probabilistic estimate of the correct label for each datapoint. For example, a model trained to classify images of cats vs. dogs may predict that a new image is a cat with 90% confidence and a dog with 10% confidence --- these are the model's predicted probabilities for one datapoint. Whichever label with the highest predicted probability is often considered the model's class prediction (i.e., cat for the aforementioned hypothetical image). + +**Out-of-sample** predicted probabilities refer to the model's probabilistic predictions made only on datapoints that were not shown to the model during training. In contrast, in-sample predicted probabilities on the model's training data will often be way overconfident and cannot be trusted. For example, in a traditional train-test split of the data, the train set will be shown to the model during its training, whereas the test set will only be used to evaluate the model's performance after training. Predicted probabilities generated for the test set can thus be considered as out-of-sample. + +When using cleanlab, we will typically want to find label issues in all labeled data rather than just the test data. We can use K-fold cross-validation to generate out-of-sample predicted probabilities for every datapoint. + + +What is K-fold cross-validation? +-------------------------------- + +.. image:: https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/pred_probs_cross_val.png + :alt: Computing Out-of-Sample Predicted Probabilities from K-Fold Cross-Validation + + +The diagram above depicts K-fold cross-validation with K = 5. K-fold cross-validation partitions the entire dataset into *K* disjoint subsets of data called *folds*. *K* independent copies of our model are trained, where for each model copy, one fold of the data is held out from its training (the data in this fold may be viewed as a *validation set* for this copy of the model). Each copy of the model has a different validation set for which we can obtain out-of-sample predicted probabilities from this copy of the model. Since each datapoint is held-out from one copy of the model, this process allows us to get out-of-sample predictions for every datapoint! We recommend applying *stratified* cross-validation, which tries to ensure the proportions of data from each class match across different folds. + +This method of producing out-of-sample predictions via cross-validation is also referred to as cross-validated prediction, out-of-folds predictions, and K-fold bagging. It can be easily applied to any `sklearn`-compatible model by invoking `cross_val_predict `_. An additional benefit is that cross-validation produces `significantly superior estimates `_ of how the model will perform on new data. + +Here is pseudocode for manually implementing K-fold cross-validation with K = 3: + +.. code-block:: python + + # Step 0 + # Separate your data into three equal sized chunks (this is called 3-fold cross validation) + # Data = A B C + + # Step 1 -- get out-of-sample pred probs for A + model = Model() + model.fit(data=B+C) + out_of_sample_pred_probs_for_A = model.pred_proba(data=A) + + # Step 2 -- get out-of-sample pred probs for B + model = Model() + model.fit(data=A+C) + out_of_sample_pred_probs_for_B = model.pred_proba(data=B) + + # Step 3 -- get out-of-sample pred probs for C + model = Model() + model.fit(data=A+B) + out_of_sample_pred_probs_for_C = model.pred_proba(data=C) + + # Final step -- combine to get out-of-sample pred probs for entire dataset. + out_of_sample_pred_probs = concatenate([ + out_of_sample_pred_probs_for_A, + out_of_sample_pred_probs_for_B, + out_of_sample_pred_probs_for_C, + ]) diff --git a/v2.6.5/_sources/tutorials/regression.ipynb b/v2.6.5/_sources/tutorials/regression.ipynb new file mode 100644 index 000000000..75356e774 --- /dev/null +++ b/v2.6.5/_sources/tutorials/regression.ipynb @@ -0,0 +1,769 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ea0a577e", + "metadata": {}, + "source": [ + "# Find Noisy Labels in Regression Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "e15b9f2f", + "metadata": {}, + "source": [ + "This 5-minute quickstart tutorial uses cleanlab to find potentially incorrect numeric values in a dataset column by means of a regression model. Unlike classification models, regression predicts numeric quantities such as price, income, age,... Response values in regression datasets may be corrupted due to: data entry or measurement errors, noise from sensors or other processes, or broken data pipelines. To find corrupted values in a numeric column, we treat it as the target value, i.e. label, to be predicted by a regression model and then use cleanlab to decide when the model predictions are trustworthy while deviating from the observed label value.\n", + "\n", + "In this tutorial, we consider a student grades dataset, which records three exam grades and some optional notes for over 900 students, each being assigned a final score. Combined with any regression model of your choosing, cleanlab automatically identifies examples in this dataset that have incorrect final scores.\n", + "\n", + "**Overview of what we’ll do in this tutorial:**\n", + "\n", + "- Fit a simple Gradient Boosting model (any other model could be used) on the exam-score and notes (covariates) in order to compute out-of-sample predictions of the final grade (the response variable in our regression).\n", + "- Use cleanlab's `CleanLearning.find_label_issues()` method to identify potentially incorrect final grade values based on outputs from this regression model.\n", + "- Train a more robust version of the same model after dropping the identified label errors using CleanLearning.\n", + "- Run an alternative workflow to detect errors via cleanlab's `Datalab` audit, which can simultaneously estimate **many other types of data issues**." + ] + }, + { + "cell_type": "markdown", + "id": "612a355a", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "Already have an sklearn-compatible regression `model`, features/covariates `X`, and a label/target variable `y`? Run the code below to train your `model` and identify potentially incorrect `y` values in your dataset.\n", + "\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.regression.learn import CleanLearning\n", + "\n", + "cl = CleanLearning(model)\n", + "cl.fit(X, y)\n", + "label_issues = cl.get_label_issues()\n", + "preds = cl.predict(X_test) # predictions from a version of your model trained on auto-cleaned data\n", + "```\n", + " \n", + "
\n", + " \n", + "Is your model/data not compatible with `CleanLearning`? You can instead run cross-validation on your model to get out-of-sample `predictions`. With that, run the code below to find data and label issues in your regression dataset:\n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab import Datalab\n", + "\n", + "# Assuming your dataset has a label column named 'label'\n", + "lab = Datalab(dataset, label_name='label', task='regression')\n", + "# To detect more data issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=predictions, features=features)\n", + "\n", + "lab.report()\n", + " \n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "f9a290d6", + "metadata": {}, + "source": [ + "## 1. Install required dependencies" + ] + }, + { + "cell_type": "markdown", + "id": "8430ca39", + "metadata": {}, + "source": [ + "You can use `pip` to install all packages required for this tutorial as follows:\n", + "\n", + "```ipython3\n", + "!pip install matplotlib\n", + "!pip install cleanlab[datalab]\n", + "# Make sure to install the version corresponding to this tutorial\n", + "# E.g. if viewing master branch documentation:\n", + "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2e1af7d8", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fb10b8f", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.ensemble import HistGradientBoostingRegressor\n", + "from sklearn.model_selection import cross_val_predict\n", + "from sklearn.metrics import r2_score\n", + "\n", + "from cleanlab.regression.learn import CleanLearning" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "284dc264", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "import random \n", + "import numpy as np \n", + "\n", + "SEED = 111 # for reproducibility \n", + "\n", + "np.random.seed(SEED)\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "2035042e", + "metadata": {}, + "source": [ + "## 2. Load and process the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f7450db", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = pd.read_csv(\"https://s.cleanlab.ai/student_grades_r/train.csv\")\n", + "test_data = pd.read_csv(\"https://s.cleanlab.ai/student_grades_r/test.csv\")\n", + "train_data.head()" + ] + }, + { + "cell_type": "markdown", + "id": "aa0165ef", + "metadata": {}, + "source": [ + "In the DataFrame above, `final_score` represents the noisy scores and `true_final_score` represents the ground truth. Note that ground truth is usually not available in real-world datasets, and is just added in this tutorial dataset for demonstration purposes." + ] + }, + { + "cell_type": "markdown", + "id": "82285102", + "metadata": {}, + "source": [ + "We show a 3D scatter plot of the exam grades, with the color hue corresponding to the final score for each student. Incorrect datapoints are marked with an **X**." + ] + }, + { + "cell_type": "markdown", + "id": "c8173840", + "metadata": {}, + "source": [ + "
See the code to visualize the data. **(click to expand)**\n", + " \n", + "```ipython3\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + " \n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "def plot_data(train_data, errors_idx):\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(111, projection='3d')\n", + "\n", + " x, y, z = train_data[\"exam_1\"], train_data[\"exam_2\"], train_data[\"exam_3\"]\n", + " labels = train_data[\"final_score\"]\n", + "\n", + " img = ax.scatter(x, y, z, c=labels, cmap=\"jet\")\n", + " fig.colorbar(img)\n", + "\n", + " ax.plot(\n", + " x.iloc[errors_idx],\n", + " y.iloc[errors_idx],\n", + " z.iloc[errors_idx],\n", + " \"x\",\n", + " markeredgecolor=\"black\",\n", + " markersize=10,\n", + " markeredgewidth=2.5,\n", + " alpha=0.8,\n", + " label=\"Label Errors\"\n", + " )\n", + " ax.legend()\n", + "```\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55513fed", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "def plot_data(train_data, errors_idx):\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(111, projection='3d')\n", + "\n", + " x, y, z = train_data[\"exam_1\"], train_data[\"exam_2\"], train_data[\"exam_3\"]\n", + " labels = train_data[\"final_score\"]\n", + "\n", + " img = ax.scatter(x, y, z, c=labels, cmap=\"jet\")\n", + " fig.colorbar(img)\n", + "\n", + " ax.plot(\n", + " x.iloc[errors_idx],\n", + " y.iloc[errors_idx],\n", + " z.iloc[errors_idx],\n", + " \"x\",\n", + " markeredgecolor=\"black\",\n", + " markersize=10,\n", + " markeredgewidth=2.5,\n", + " alpha=0.8,\n", + " label=\"Label Errors\"\n", + " )\n", + " ax.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df5a0f59", + "metadata": {}, + "outputs": [], + "source": [ + "errors_mask = train_data[\"final_score\"] != train_data[\"true_final_score\"]\n", + "errors_idx = np.where(errors_mask == 1)\n", + "\n", + "plot_data(train_data, errors_idx)" + ] + }, + { + "cell_type": "markdown", + "id": "add939ae", + "metadata": {}, + "source": [ + "Next we preprocess the data by applying one-hot encoding to features with categorical data (this is optional if your regression model can work directly with categorical features)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7af78a8a", + "metadata": {}, + "outputs": [], + "source": [ + "feature_columns = [\"exam_1\", \"exam_2\", \"exam_3\", \"notes\"]\n", + "predicted_column = \"final_score\"\n", + "\n", + "X_train_raw, y_train = train_data[feature_columns], train_data[predicted_column]\n", + "X_test_raw, y_test = test_data[feature_columns], test_data[predicted_column]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9556c624", + "metadata": {}, + "outputs": [], + "source": [ + "categorical_features = [\"notes\"]\n", + "X_train = pd.get_dummies(X_train_raw, columns=categorical_features)\n", + "X_test = pd.get_dummies(X_test_raw, columns=categorical_features)" + ] + }, + { + "cell_type": "markdown", + "id": "1ce924cf", + "metadata": {}, + "source": [ + "
\n", + "Bringing Your Own Data (BYOD)?\n", + "\n", + "Assign your data's features to variable `X` and the target values to variable `y` instead, then continue with the rest of the tutorial.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "4b14309d", + "metadata": {}, + "source": [ + "## 3. Define a regression model and use cleanlab to find potential label errors" + ] + }, + { + "cell_type": "markdown", + "id": "81ee2349", + "metadata": {}, + "source": [ + "We'll first demonstrate regression with noisy labels via the `CleanLearning` class that can wrap any scikit-learn compatible regression model you have. `CleanLearning` uses your model to estimate label issues (i.e. noisy `y`-values) and train a more robust version of the same model when the original data contains noisy labels.\n", + "\n", + "Here we define a `CleanLearning` object with a histogram-based gradient boosting model (sklearn version of XGBoost) and use the `find_label_issues` method to find potential errors in our dataset's numeric label column. Any other sklearn-compatible regression model could be used, such as `LinearRegression` or `RandomForestRegressor` (or you can easily wrap arbitrary custom models to be compatible with the sklearn API)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c2f1ccc", + "metadata": {}, + "outputs": [], + "source": [ + "model = HistGradientBoostingRegressor()\n", + "cl = CleanLearning(model)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e1b7860", + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = cl.find_label_issues(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "43bd6c7f", + "metadata": {}, + "source": [ + "`CleanLearning` internally fits multiple copies of our regression model via cross-validation and bootstrapping in order to compute predictions and uncertainty estimates for the dataset. These are used to identify label issues (i.e. likely corrupted `y`-values).\n", + "\n", + "This method returns a Dataframe containing a label quality score (between 0 and 1) for each example in your dataset. Lower scores indicate examples more likely to be mislabeled with an erroneous `y` value. The Dataframe also contains a boolean column specifying whether or not each example is identified to have a label issue (indicating its `y`-value appears potentially corrupted). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f407bd69", + "metadata": {}, + "outputs": [], + "source": [ + "label_issues.head()" + ] + }, + { + "cell_type": "markdown", + "id": "4ab5acf3", + "metadata": {}, + "source": [ + "We can get the subset of examples flagged with label issues, and also sort by label quality score to find the indices of the 10 most likely mislabeled examples in our regression dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f7385336", + "metadata": {}, + "outputs": [], + "source": [ + "identified_issues = label_issues[label_issues[\"is_label_issue\"] == True]\n", + "lowest_quality_labels = label_issues[\"label_quality\"].argsort()[:10].to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59fc3091", + "metadata": {}, + "outputs": [], + "source": [ + "print(\n", + " f\"cleanlab found {len(identified_issues)} potential label errors in the dataset.\\n\"\n", + " f\"Here are indices of the top 10 most likely errors: \\n {lowest_quality_labels}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "aa2c1fec", + "metadata": {}, + "source": [ + "Let’s review some of the values most likely to be erroneous. To help us inspect these datapoints, we define a method to print any example from the dataset, together with its given (original) label and the suggested alternative label predicted by your regression model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00949977", + "metadata": {}, + "outputs": [], + "source": [ + "def view_datapoint(index):\n", + " given_labels = label_issues[\"given_label\"]\n", + " predicted_labels = label_issues[\"predicted_label\"].round(1)\n", + " return pd.concat(\n", + " [X_train_raw, given_labels, predicted_labels], axis=1\n", + " ).iloc[index]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b6c1ae3a", + "metadata": {}, + "outputs": [], + "source": [ + "view_datapoint(lowest_quality_labels[:5])" + ] + }, + { + "cell_type": "markdown", + "id": "f2be7a93", + "metadata": {}, + "source": [ + "These are very clear errors that cleanlab has identified in this data! Note that the `given_label` does not correctly reflect the final grade that these student should be getting. \n", + "\n", + "cleanlab has shortlisted the most likely label errors to speed up your data cleaning process. With this list, you can decide whether to fix these label issues or remove erroneous examples from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9131d82d", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai \n", + "\n", + "label_issues_cl = label_issues.copy()" + ] + }, + { + "cell_type": "markdown", + "id": "e2761486", + "metadata": {}, + "source": [ + "## 4. Train a more robust model from noisy labels" + ] + }, + { + "cell_type": "markdown", + "id": "043bfb52", + "metadata": {}, + "source": [ + "Fixing the label issues manually may be time-consuming, but cleanlab can filter these noisy examples and train a model on the remaining clean data for you automatically.\n", + "\n", + "To establish a baseline, let’s first train and evaluate our original Gradient Boosting model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "31c704e7", + "metadata": {}, + "outputs": [], + "source": [ + "baseline_model = HistGradientBoostingRegressor() \n", + "baseline_model.fit(X_train, y_train)\n", + "\n", + "preds_og = baseline_model.predict(X_test)\n", + "r2_og = r2_score(y_test, preds_og)\n", + "print(f\"r-squared score of original model: {r2_og:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "0d01f715", + "metadata": {}, + "source": [ + "Now that we have a baseline, let’s check if using `CleanLearning` improves our test accuracy.\n", + "\n", + "`CleanLearning` provides a wrapper that can be applied to any scikit-learn compatible model. The resulting model object can be used in the same manner, but it will now train more robustly if the data has noisy labels.\n", + "\n", + "We can use the same `CleanLearning` object defined above, and pass the label issues we already computed into `.fit()` via the `label_issues` argument. This accelerates things; if we did not provide the label issues, then they would be re-estimated via cross-validation. After the issues are estimated, `CleanLearning` simply removes the examples with label issues and retrains your model on the remaining clean data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0bcc43db", + "metadata": {}, + "outputs": [], + "source": [ + "found_label_issues = cl.get_label_issues()\n", + "cl.fit(X_train, y_train, label_issues=found_label_issues)\n", + "\n", + "preds_cl = cl.predict(X_test)\n", + "r2_cl = r2_score(y_test, preds_cl)\n", + "print(f\"r-squared score of cleanlab's model: {r2_cl:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "3aea51da", + "metadata": {}, + "source": [ + "We can see that the coefficient of determination (r-squared score) of the test set improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any evaluation metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." + ] + }, + { + "cell_type": "markdown", + "id": "167fca90", + "metadata": {}, + "source": [ + "## 5. Other ways to find noisy labels in regression datasets" + ] + }, + { + "cell_type": "markdown", + "id": "5b4f8e14", + "metadata": {}, + "source": [ + "The `CleanLearning` workflow above requires a sklearn-compatible model. If your model or data format is not compatible with the requirements for using `CleanLearning`, you can instead run [cross-validation on your regression model to get out-of-sample predictions](https://docs.cleanlab.ai/stable/tutorials/pred_probs_cross_val.html), and then use the `Datalab` audit to estimate label quality scores for each example in your dataset.\n", + "\n", + "This approach requires two inputs:\n", + "\n", + "- `labels`: numpy array of given labels in the dataset. \n", + "- `predictions`: numpy array of predictions for each example in the dataset from your favorite model (these should be out-of-sample predictions to get the best results)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7021bd68", + "metadata": {}, + "outputs": [], + "source": [ + "# Get out-of-sample predictions using cross-validation:\n", + "model = HistGradientBoostingRegressor()\n", + "predictions = cross_val_predict(estimator=model, X=X_train, y=y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d49c990b", + "metadata": {}, + "outputs": [], + "source": [ + "from cleanlab import Datalab\n", + "\n", + "lab = Datalab(\n", + " data=train_data.drop(columns=[\"true_final_score\"]),\n", + " label_name=\"final_score\",\n", + " task=\"regression\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " pred_probs=predictions,\n", + " issue_types={\"label\": {}}, # specify we're only interested in label issues here \n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dbab6fb3", + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "label_issues.sort_values(\"label_score\").head()" + ] + }, + { + "cell_type": "markdown", + "id": "3a0db9b2", + "metadata": {}, + "source": [ + "As before, these label quality scores are continuous values in the range [0,1] where 1 represents a clean label (given label appears correct) and 0 a represents dirty label (given label appears corrupted, i.e. the numeric value may be incorrect). You can sort examples by their label quality scores to inspect the most-likely corrupted datapoints.\n", + "\n", + "If possible, we recommend you use `CleanLearning` to wrap your regression model (over providing its pre-computed predictions) for the most accurate label error detection (that properly accounts for aleatoric/epistemic uncertainty in the regression model). To understand how these approaches work, refer to our paper: **[Detecting Errors in Numerical Data via any Regression Model](https://arxiv.org/abs/2305.16583)**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b39b8b5", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# This cell is hidden from docs.cleanlab.ai\n", + "np.random.seed(SEED) # for reproducibility\n", + "random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "4366346a", + "metadata": {}, + "source": [ + "You can alternatively provide `features` to `Datalab` instead of pre-computed predictions. These are (preprocessed) numeric dataset covariates, aka independent variables to the regression model (such as neural network embeddings of your raw data). Internally, this is equivalent to using `CleanLearning` to find label issues if you also possible provide your sklearn-compatible regression model to `Datalab.find_issues`. But you can simultaneously detect many more types of issues in your dataset beyond mislabeling via Datalab (simply drop the `issue_types` argument below)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df06525b", + "metadata": {}, + "outputs": [], + "source": [ + "lab = Datalab(\n", + " data=train_data.drop(columns=[\"true_final_score\"]),\n", + " label_name=\"final_score\",\n", + " task=\"regression\",\n", + ")\n", + "\n", + "lab.find_issues(\n", + " features=X_train,\n", + " issue_types={ # Optional drop this to simultaneously detect many types of data/label issues \n", + " \"label\": {\n", + " # Optional: Specify which type of sklearn-compatible regression model is used to find label errors\n", + " \"clean_learning_kwargs\": {\"model\": HistGradientBoostingRegressor()}\n", + " }\n", + " },\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "05282559", + "metadata": {}, + "outputs": [], + "source": [ + "label_issues = lab.get_issues(\"label\")\n", + "\n", + "label_issues.sort_values(\"label_score\").head()" + ] + }, + { + "cell_type": "markdown", + "id": "c1353758", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset (a default regression model will be used if you don't specify the model type).\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks).\n", + "\n", + "**Summary:** To detect many types of issues in your regression dataset, we recommend using `Datalab` with provided `features` plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use `CleanLearning`. Alternatively, if you don't have a sklearn-compatible regression model or already have pre-computed predictions from the model you'd like to rely on, you can pass these predictions into `Datalab` directly to find issues based on them instead of providing a regression model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95531cda", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "from sklearn.metrics import roc_auc_score\n", + "from cleanlab.regression.rank import get_label_quality_scores\n", + "\n", + "if r2_cl <= r2_og:\n", + " raise ValueError(\"CleanLearning did not improve r2 score\")\n", + "\n", + "label_quality_score_cl = label_issues_cl[\"label_quality\"]\n", + "label_quality_scores_residual = get_label_quality_scores(labels=y_train, predictions=predictions, method=\"residual\")\n", + "\n", + "label_quality_scores = get_label_quality_scores(labels=y_train, predictions=predictions)\n", + "\n", + "auc_outre = roc_auc_score(errors_mask, 1 - label_quality_scores)\n", + "auc_cl = roc_auc_score(errors_mask, 1 - label_quality_score_cl)\n", + "auc_residual = roc_auc_score(errors_mask, 1 - label_quality_scores_residual)\n", + "\n", + "if auc_outre <= 0.5 or auc_cl <= 0.5:\n", + " raise ValueError(\"Label quality scores did not perform well enough\")\n", + "\n", + "if auc_outre <= auc_residual:\n", + " raise ValueError(\"Outre label quality scores did not outperform alternative scores\")\n", + " \n", + "if auc_cl <= auc_residual:\n", + " raise ValueError(\"CL label quality scores did not outperform alternative scores\")\n", + "\n", + "# Test that CleanLearning label issues and Datalab label issues match\n", + "pd.testing.assert_frame_equal(\n", + " # CleanLearning DataFrame\n", + " label_issues_cl.rename(columns={\"label_quality\": \"label_score\"}), \n", + " # Datalab DataFrame\n", + " label_issues,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/segmentation.ipynb b/v2.6.5/_sources/tutorials/segmentation.ipynb new file mode 100644 index 000000000..89ae5bf93 --- /dev/null +++ b/v2.6.5/_sources/tutorials/segmentation.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d0d2e007", + "metadata": {}, + "source": [ + "# Find Label Errors in Semantic Segmentation Datasets\n", + "\n", + "This 5-minute quickstart tutorial shows how you can use cleanlab to find potentially mislabeled images in semantic segmentation datasets. In semantic segmentation, our data consists of images each annotated with a corresponding mask that labels each pixel in the image as one of K classes. Models are trained on this labeled mask to predict the class of each pixel in an image. However in real-world data, this annotated mask often contains errors. \n", + "Here we apply cleanlab to find label errors in a variant of the [SYNTHIA](https://synthia-dataset.net) segmentation dataset, which consists of synthetic images generated via graphics engine." + ] + }, + { + "cell_type": "markdown", + "id": "07936a54", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab uses two inputs to handle semantic segmentation data classification data:\n", + "- `labels`: Array of dimension (N,H,W) where N is the number of images and H and W are dimension of the image. We assume an integer encoded image. For one-hot encoding one can `np.argmax(labels_one_hot,axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W) where K is the number of classes.\n", + "- `pred_probs`: Array of dimension (N,K,H,W), similar to `labels`.\n", + "\n", + "With these inputs, you can find and review label issues via this code: \n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.segmentation.filter import find_label_issues \n", + "from cleanlab.segmentation.summary import display_issues\n", + " \n", + "issues = find_label_issues(labels, pred_probs)\n", + "display_issues(issues, pred_probs=pred_probs, labels=labels,\n", + " top=10)\n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "1da020bc", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows: \n", + "\n", + " !pip install cleanlab " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae8a08e0", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ImageSegmentation/given_masks.npy' " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58fd4c55", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/ImageSegmentation/predicted_masks.npy' " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "439b0305", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1349304", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.segmentation.filter import find_label_issues \n", + "from cleanlab.segmentation.rank import get_label_quality_scores, issues_from_scores \n", + "from cleanlab.segmentation.summary import display_issues, common_label_issues, filter_by_class \n", + "np.set_printoptions(suppress=True)" + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAFfCAYAAABa51gvAAAAAXNSR0IArs4c6QAAAMJlWElmTU0AKgAAAAgABgESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAAExAAIAAAAxAAAAZodpAAQAAAABAAAAmAAAAAAAAABkAAAAAQAAAGQAAAABTWF0cGxvdGxpYiB2ZXJzaW9uMy42LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAACSaADAAQAAAABAAABXwAAAAABKIHGAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAB62lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPHhtcDpDcmVhdG9yVG9vbD5NYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88L3htcDpDcmVhdG9yVG9vbD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ch5LRhUAAEAASURBVHgB7L0JrG3HWe9ZZ57uuYPHxHZiZ4IQE5IQ+sGj+wFOghLUiKcmamiQHtODRupmCBI0CEQjgRQpIdCgZnhqxpYAgUir8xKlHzS8hM57iTsDJMEkcew4ju3ra/te3+ncM4/9//2/qrXX2mfts/c599hxm1X3nr1q+Kb6VtVX36qqVWtsTyF1odNAp4FOA50GOg10Gug00GmgoYHxRqpLdBroNNBpoNNAp4FOA50GOg1YA52T1DWETgOdBjoNdBroNNBpoNNAiwY6J6lFKV1Wp4FOA50GOg10Gug00Gmgc5K6NtBpoNNAp4FOA50GOg10GmjRQOcktSily+o00GmgqYE//uM/TmNjY+kTn/hEs6BLdRroNNBp4Hmsgc5Jeh7f3K5qnQY6DXQa6DTQaaDTwNE10DlJR9ddh9lpoNNAp4FOA50GOg08jzXQOUnP45vbVa3TwDOlgR/4gR9IJ06cSI8++mj69m//dsdvv/329Nu//dtmed9996U3vOENaWFhId15553pz/7szxqiXLp0Kf30T/90evWrX23ckydPpm/7tm9Ln/70pxtwJB555JH0Hd/xHaZ1yy23pJ/6qZ9Kf/3Xf+3lv7/7u79rwH/0ox9Nb3nLW9KpU6fS/Px8+uZv/ub04Q9/uAHTJToNdBroNDCqBjonaVRNdXCdBjoNNDSws7Njx+ZFL3pReuc735nuuuuu9GM/9mOJ/Us4Kl/3dV+X3vGOd6TFxcX0fd/3fenhhx+u8L/4xS+m97znPXawfv3Xfz39zM/8TMKxwqk5d+5cBbeysmJn62//9m/TT/zET6Rf+IVfSB/5yEfSz/7sz1YwJfKBD3wgfdM3fVNaWlpKv/RLv5Te/va3pytXrhj/Yx/7WAHrrp0GOg10GhhdA5y43YVOA50GOg0cpIE/+qM/4mT+vY9//OMG+/7v/36n5YhUaJcvX96bm5vb0wbvvT//8z+v8u+//37DynGp8tbX1/fkZFVpInKi9mZmZvZ++Zd/ucr/tV/7NePKoary1tbW9l75ylc6/4Mf/KDzd3d3917xilfsvfnNb94jXsLq6ureS17ykr1v/dZvLVndtdNAp4FOAyNroJtJGt2f7CA7DXQa6NPAD//wD1c5p0+fTl/5lV/pZbHv+q7vqvLJo4zZoxLkDKXx8TA/zEhdvHjRy27A/sM//EMBS3/1V3+VWMZjua2E2dnZ9CM/8iMl6eunPvWp9OCDD6bv/d7vNa2nn3468cdM1Bvf+Mb0oQ99KMl5auB0iU4DnQY6DQzTwOQwgK6800CngU4DbRrAWbn55psbRewFuuOOO7xfqF5Avmaaqiwclt/8zd9Mv/M7v+NlOBylEm688cYS9X6kl73sZfvovfzlL69giOAgETTD5Wvbz9WrV9OZM2fairq8TgOdBjoNtGqgc5Ja1dJldhroNDBMAxMTE60gg/I1v13Bs1/oF3/xF9MP/dAPpV/5lV9JN9xwg2eW3va2tx1pxqfMEv3qr/5qeu1rX1vxqUfYaN6FTgOdBjoNHEYDnZN0GG11sJ0GOg0ciwbe/e53p3vuuSf9wR/8QYMeG61vuummKo834z772c8mHCwOsyzhC1/4Qon6ymwTgbfk3vSmNzne/XQa6DTQaeB6NdDtSbpeDXb4nQY6DRxaA8w21WeWIPCXf/mX6fHHH2/Q0kZs5733ve+t8rXpO/3e7/1elSby+te/PuEovetd70rLy8uNMhIXLlzYl9dldBroNNBpYJgGupmkYRrqyjsNdBo4dg1wtpLeYks/+IM/mL7xG7/Rr///6Z/+aXrpS1/a4PWjP/qj6bd+67fS93zP96Sf/MmfTC984QsTcOyHIpTZJTaB//7v/76PJLj77rtNlw3fOF16A84zTO973/satLtEp4FOA50Ghmmgc5KGaagr7zTQaeDYNfDzP//zfvOMQyb/4i/+In3t135tev/7359+7ud+rsGLfUScf/TjP/7j3uhNmjOXcKze+ta3Vs4SSN/yLd+S7r33Xu9xwrFiRukFL3hB+vqv//qEs9WFTgOdBjoNHFYDYxwWcFikDr7TQKeBTgNfTg38xm/8hk/ePnv2rI8I+HLK0vHuNNBp4Pmrgc5Jev7e265mnQaeFxrQ4ZFJh1RWdWFP0ute97rEsQEPPPBAld9FOg10Gug0cNwa6JbbjlujHb1OA50GjlUD3/md35le/OIX+9V+zjr6kz/5k6RTvL036VgZdcQ6DXQa6DTQp4HOSepTSJfsNNBp4LmlAd5wY1M2G7aZPXrVq16V9NmT9N3f/d3PLUE7aToNdBp43mmgW2573t3SrkKdBjoNdBroNNBpoNPAcWigOyfpOLTY0eg00Gmg00CngU4DnQaedxronKTn3S3tKtRpoNNAp4FOA50GOg0chwaG7knim0jnzp1Li4uL1cFtx8G4o9FpoNNAp4FOA50GOg10Gng2NMBpR9euXUu33XabvxM5Ks+hThIO0ote9KJR6XVwnQY6DXQa6DTQaaDTQKeB56QGHnvssXTHHXeMLNtQJ4kZJMK/edPXpEkd/b+7u5cmJuPr32NpL+2R1neYdnZ20+yMrkpv63hK0lOC293eldc2lra2ttP09KTxk75TubG1m+am4/tNlG8Lnk8LCD1NTvAhS0V02d1JScWiqyt0trdVPuG4Pv5kOpMTrBryAUzg99KO8uENPiXIgozwmBVPeOxohmxbtKemlN7aSeMC35Gsk5QLAFobm7tpRuV4oJZR5ROSDXzSE/qTBkRf8OIjkqIzFvwoF0/k2hSdzz/+dHry0rXGbJxxRFv/TUfAokNuBD65gByUE4gvb2ynTTFC77u5YGFmKnSJ3OBDU/CUj4PkLOo0nqYFu7m5LT3uqO6TklF50wvpv3jz/5juvPsew5hZy09QbS1oyTxcVq7ifqTDF1Q0rgO1otEWGUj3uoHbCBwu71CyDSN9LMSOhUhNUjXm6w3HQKIuwjGTq5PeHz8ks0OCN/kNQB6QXcMdApGLrz39cPrc37w9TY7JRm5tpHHsmezm9NRMunptRbZ0PM3MzMrWyoqr7Oz5S+m1r7wj3bQ4nT73xSeTrHFaly37F//N29P8mTtt52pCpMfv/1B69BP/e5qelM3WQHLh6QsaoyY9NkByamLSY4LMdtqWbd/UGDU1OZkW5sVTtntzc8u2HTk8JmiQ2N3bFs+ttLq6lTZlQ/mDMWNjkn3d22PEIUd5GoMY82y4lcebmZuMIQKZxvaK1/j4pIqzQlTH3b0d0ZBEyiN3enJcY9akxzzwL11dSg89dk5wjEHjxjU68OI/rr8IAoj/HlsUTWN7jF0an7e20vrGpnQ7JflmNCZIDuNDA65ZHmLkQ9D5lCil//DPow2ljcA4IU2lKd3XE5Kd4Zw8xiwCcu+kaet0a0eybG5K79O6NzOC4T5sCpqmoHFeNGYn9TcT+qWOyJDFMb3yg5zgXVtZlb+xpbF7WnSnJMluurK6llbXd9LZJ654VazgjHId6iSVGzgh4VAqQiAMgaW4mVkpWHd9U47GpG7olG4CjW1Mwima9mgjUsqc4EKxwsNZUSPZ1E33TVCNZ5SW9qQUEVYjodFtC2FXGQzq3ERu/8w0dPPgL/onZqdpmx70aQBTcnKmBQtvVEbe/NyMZcQxmFAZtdiUJzcleXFsJnTdU/7swpSdvCRRcLYW5ybThpyyMcnA3yz1l3w4ZXvqdJPK2xYc6Q3JiAOlrDSuuvggc+RQXefUCGnodtykPfRm6STjlHCREXm5Un3zEy4dE3qkAwEV0SHlfAkWRw8HbXVjKy3Oz6gTKE+dsMDjsIoMTUpyWyFpT+Vz0tmE7teG7tOE9Ly3s54+8Te/q84yn17y6jcJp3S0YNv2S6NvDQOyW2EHZA4kcfiCisN1oFY0Dor06PdiA+FHABmIex0Fx8722AleR+X6UXOX6c8+avqYyY0uxoGMm4XN1Ogs9kG2EGrJ6kMbAtFSvDO/mOZnNTBqoJRVtd1nPMBRmZQNlWmyzSwDP+MLtmsm21KNEnog39MYtJBmRasXgtnM7JydjGk96O7syG7K1mKjeQhnfMEee8AWDcYXyuckz/TUlJ0vynB0PK5M4ZDspZW13bS1uSN6elDF9ssW86A5hk3WCJVNu2nzAD7u/Bgr92S77fCIJnU0nmwtVp/xgjFlnKEBHMmD3HPUVfQJa3IeLl26HOOHYLDzxblBWeiJmrtb8qMEl8i1esNBkpM3rXF0Rk7JzMy0dVDGCY/3mUh9HKAcgox/HrORNxLKj3HLDA0mfcpZnJQrRB3lo1qO3THpTP88bmrsYTyWCtPiiUXDbUsuj9FyXqn/pOBnxrctI+2BcayqjeWBWV+QXPDc3RFfeBMXLPd7wsoN+fuwDkxKmtECjtCWasQATyOj4dCYcIjSNjM8eMC1WZj1TQvIIMyAfk2e9zQzRxq4wcOb9Y3RD45PeO1ySJTGkcFB4gZvM8vjCtJQcMDkWKlxoG7SdhgUszKkxC05ATw1TKlR05Bx7Oy0qZNsCZeGS4NEx+tyLpAPBSLL8pq8azVKHKRZybSlm0Y5ZThIOELQxKPHWTEVFZq+6HFzEGtbjhVOl7RlXrPKd6dSmdDcsO0QCUbVNC3w4KuLnB3I8KNfwSCrAypQ2ppQprqgMsJR4slHTAxWZsLoQBGQFHn0Tw7oluo9qU6qnhr3T0ATeyvp3vf/msFHcZRqUoWsmVNPWGVQmSOEIjWoDRJDCxrQDc7XgdqgMyjRo9+LNaWppXogPXK14l7m8cba2PZzOJQYx06wX5qW9Cg8W9AGZR0zuUFsRss/UJhmYTM1GvkDoQYQHJDdR2oA1AjZmKh6m/Mg7ZxArkgoQnwKOyeEwInfsEV1ixTiGVfGFHvPzAm8nAea/mweydBgzxjD+MTMT8y06wFSNhJcHB1mNJjxWFvf1jiw45knrybItu9pxkODkujxh8MlBwwHyZXTeCQaPNB6rNHYxwpEjCuWxjaZGRScpAhy/LKDxLhGuHZtKV29suQVmbDmAUklgm/Q8rhotWDtIw9Ixu11rUKwojOvmTKco7IiY6dHMKF7oKGZr76EniHXo1hgAq78QiOgs4J7CDk/7t3mthxj6W1+btY+wbpO1Y+xUM6faEzjHE2wuoSzXGbIIFa/z/BQFs5aDmUyoKSpBxiuDwPrEcLoTpJurIXXzRvTjWNA1921E+JBWcztjauheWlNXj8zSDM0CgnKTafhOKhSTKghMo4zzgsNi/awrZuJQzEm2G0N+jtMPcoVZHqSWZlpvH83nJgJmlangZJ8I82MRCNjhsiNUMrZ1rIeMtBQYYjCJkWb6Tg/SXBDRBvHjKnNWKbTjQZcvJCRPzoGuDPqOF6qc6OXvJIR2sBP4zjpTpcnFORi+Q66OFB0OBoxVzd030AasJAVp9OVOPTII81MVwmmI96BIBwB4dG7Q0rfaUzeu67wIPi33ojIE/6e6o93XhylSTm4Ka2kj7zvXb7Pd331G3Xt8YXWoIBeIlCvWijZZDUKajBDooXEPvTWgtbMfRxaoUom0PuY7SMxUkadJPerSbaZqlTYRrkPtA3kuPKaMu+nemhRhhHcz+LYc54DIvTqNLIwTcBmqkfuumIDiA7I7mM1AOpw2aYJCn9uW9luOV3F6TthW7zFQfku5yd3HEdJKvCQfPX8Q+ncAx9KG3ogvLK+EstLmtLATkKNQZM/AuMaWw+w2zyUr+oBf0pjBgLZTut3Qw7S8uqmyrTMJhjGWz8U4xjxsOrxS4N5doCCcoxnOChsvZgUzXBMwCGoThrfdjWGYJMdJAtjHCsrxUFaWrqalpaWPDaWVYggQF30zxWBYrG/tV6qKOPVmuoEixMn5uwgMUYQQAUfbMukeMF2OqCisMqoIi7lx3pVdr5lkW+5iAIf94yhjoBzpLWYxOzR9i4rRYy9zDpp/BxjcoLZPpYiGcvlc0CjoicC0Cnpujga60oy9AK3nmYidbjfkZ0kZpHkZPtGsayDACz1MIjzjxsxpim2cTVQ4gzcamaeITKsGsO6vFgP5sqXv6MGFcJSLZbe7ABJKbuaFgu6gslPDsw0hRMhXK3bUm34bMgpQCk0sV2cBRwN8drTzBZ8uSlrmgEi0MAsizLZtwQPpjLpSOCRh4zA0IxZSmOPETee8g3JgEPFvcEBZDmLBGXA4BxSRt23/VQgHtIJdNgP1QvCEWDcztCl0IVHnAiQ/AhCjSacqmiILnIJrMVX+kKPnl3LDyI4bdaD5AMmgjAll3lIXsgz44UxGBvTsqJ0FPKsxoySQO66e3RHKXgEhcxQLIq0yiliUFjLLrDDrgPRWwtaM/exGAhVLyhYR5C5oJZrk2wv1STdTBm3B1pItV9bUNsBj547iijPghhVBUaRpwJ+JiNHFqSJ2Ewds8AHED+gqE+IFsiWLJAGZPfRaybLw53Mmu1E0JAdy2Bhv/2o6ZyST2Jb+5qefPjv0xMP/qd04UufSBtr12R/1RoFxFiBzc1DTkWPYpwdHCTGg+XVDaVj9kJm24P1lmY92NLALBJ7kBgn4ItdR84xLQsxq4/j4QdUlZUx0XyVz8x95SBlm4xjtMOqg64ExhQmEljNAIQVipXlFe1/Wrb8ZRywo+iKMz44YnikGmPsMzX9KMKqB04fTsjiiRltR4llvuKmgQiFIJdpGT/nlsIoMmRghHWHfZEhtFJx91hjYdCRaQYjxqbYA7bh4jKjNTOhSQXpUiOd5UUfZZyEB5QLHQ1lVSBauDqbnxwhvxqHuNlHCCM7SawjMoGzI+kYkIuiNrzMFpynVEk8v5npac+oeAOaimY0m7LtWomABMWJ2JITgdOCY8TMEcEDu+rBhjqcF9agaYjAsY+JG8KN2FKc6uJ5st+HjdHA4LTwT93BN84OmWBjc50QhMSMEXRmtanLjQ7F6Y+131ji42aQBzNNqwqfzX7I6KcB8cQ3mhKRKTlQ7lxKb0sPyAATpmeZ1YIEHXCBjXG64chHHeFHh3SnVdpx0WIZk/pCA/06lmGVKeeRTqtlT/GK2TQaKDqP+0G9qA740IkGRkohF1JO1E6V5PWMGo6SlhdxAtkbMKYnrw+/911gJc8oVabFWSP/RBsB3Brt4Yl/FSxclRopMhC9FDRoktnIaOVRUClsha4DDARqJT00s0m6l2rK0Uy1Eu2h7i8eAX0/0tFyDhLjaBSfA1jXVan9yPtznoE6jsBkBJAsWAtkSxbAA7IHVpCm6eFBkbAZUFAsE6KssmWCwU67lxoJ27uRHnvgI+mLn3xPuvLk/domsWEZsL1jsnGbckSYrcEu21aKsAdq21rsbmwDWV5ZN19vIxEeXHblqKzJLq5pqYqxzg/GQGmpiAdUgLBu7LuBJnHGDJwz/pABepPZ8aocCjkzODCVgySZWG3xJmpsvPg+8PBZb35enI+xCvvMLBkOjkZD10WiNAIjhyVCT3Lu1uTcTctBm9OeVcYvxiF0XOQwclF0oeR0Vn6mBw76cFARaUIPNfNlik3/nXKUWMACPK48zxrhEHF/yFNxj3rkVTLCwCQKRxEg5EumHHn8OsMIBslggdBL9OBHiI3sJDH64sGyW5xQv7lUkMoWr90ODXmCG9PAzwZhyifZ/KZ2xfJaqQwb6aQ2QWvAtsMlasrD4RBHOxCe3hQYDY4FMJRL/6DRwgsngzLPkiifTXGWRzRgFOvYsSaMjJTh1LDOTDkOQ5lt4u0vNuEVGe0QiiYdgA7CsptIyIHDoWH2St1CaWTkZvvtNzVkv6GnBomDtrQsj1my0NGrJyXBwp3+Dm3+FVcC+fjjKcTyZVgl0o0nF9KSnnZWNzaM63IoCcZUdAVN6OZFZ7Kzmg0KdJEXbhFXpy4zStq0yNo9Mk6x9FZ3lLJBQIbDByQrodQyp3sFVcMvkKNcW9H3Ze7LOJB0HboAcq8aYSSgBsahE00WzRTEejL1YgOZ7Edvgo5AoonwPEsN08/Q6jYJNFNDka8fYASGI4C0yNGH1ZcsCAOyS3H7VUg0O//ph+HbhiJfSpMstA0nm23nQglMEs7P3//1/5KuXT4n52jTNtP2VHZuk7TKPS7JKZkYY9ZcfPSDf4Sd88ZsGcxV7UfFhp+Yn/dqCXZ5Z4fNxXKSNIPEfp6yGsAg7xUOBJD0OFnQgR42mwdUZpsYk7wJXQ4SD7fFCjIWQHtPshGQl9kj9uby0M2qyoOPPp4uLV1LZxbmJL9WTGSXcXhENi0uzKSlNR5oCUVnok4h/2X/N7WdgnF3VhMWbHZni4wdJNUdHfAXI3RFxfeBgiJnnXZwAleICgwnHkP86yz/GBeQPN5InOCliDGFj/41xJofo0FQBD3zNu1ebpQEPBCFZuSo1LTJ1z8Kc6hFlWOipehQ15GdJA/6Io1zgbPkGRlmVdSacFTwgpndoCG5kehG4zD4n+DJm1Dj4LU+GsPkBJ49DVmv9KtheHOWarWuRkmFeFWyqAk4GpkubvTAotp5LX3tSh5mnODNPik6BPKAMyW4yelwuGiPyIg3jeMCXNQlPFd5X5YdGuzOYeM2dQ4ZkZUZMsGqvsjGnWd2iY3i6AL5JljzFq75S1Y6DZu2cZ+pC/oQiuJ0Upy20GNMBfs2mi4NEXj/yijQYaHFvycvLqUX3HTK07KXllbcKYEF2suMgg18R3R/mIELCIP5J2gajjKBMqM0v3hGHWxJ9WNzojLTap5R2kt3vuoe6Tgc5EyiR+5QsaibmQoPLlWoi9koqCAOjLSi78ssGYdjULD6BWhQaQNqAPRjX1+6x64X66fYY9+L9cM4PZhED3wIiR7gcyw2St2Gitwj0osNRTp+gBGYjwAyglw1KrVoHXFAdh1kxLjsJo6HCDIW8CY12xrK9gWshMxf2ETZK+whMzlnTp7QSsJMOvvUY364w55Bg9kWnAQcHPYa2TnQnsuwixpMhc+45X2uosp2C17imZ+b89tyXgXIqwhsQ2C5itULAisl43J6uEIPB4m30JAf+4xzZAdJ4wErIuynsYOEnVXwQ73e5iuTDIwvjIc4SdBaW99IDz72eLq8tOwKU5e1tQ05SCHDLTecdP2vyUkySY0PjC4871Mv9sSy/4hxmLe6Z/PbawB7Nk5X5A5tIlG2x8oKCSlH45ECIgLp7KA4Rm6kiRGCriKSo0eNuILzehGSVZbicW8oJ2TewZLCXq6i1JVQ4efykgF0lOmXCDj6Yww9ShjZScLJ0S32rAtLZ7zOSEODsddIVcomZjsQuZI4RFTey2mqGTeOdUZeQ8dJwTmAKjNIRNi0DT3KWEZj3dJ3XryA85EA4g1fwrYcDSpPJcijIYfDwZIYcIWeHBTkgKc6DjKaAj/Kp/FQP5LQQGZwvWncoiF7NBsauSG114glunhyCKeJrVJCtSevPuMGG004+MRGvKgfhoAGLTLWH1WyOAIloANC6XwkqeOano6eurSUbjp1It18ejGdv3LNxgQ90dzF3o2CH+LUDUo2HoIxVf24wyjfaf2qumn56iUbKYwHU7vsAxuTo/Sf3/OOdPHc59Nr7/m3cgSnhZURqWukapGcURVE2h0oG5ac40u9mzVQXBGBNDIDc5TfVvSSCYH8pHNkBlmIOkmTzfnVpR+gFaiCPvZIj30vVmeSW0Q9a3C8nUQT/oj3q0nkCKlRZBuJbO5DI8E+C0Aj1GsEkEMIWqNWixYCLVmlaLRrPwG1F7KYQaGvM8xgq7CVDAvM5ANBO6VpXbi0nJaurcrx0RvSAlhaXvVDHcjYbJwOZs7XN9ZtL+eZRdE4RBmMoMEfzgtTUYxNPKizRYT0sjZm72ojMbQ3tWrA7BJXzIUf5IWnEcNjBDLyNhy2FKKMT8iPo4fD41mkvKohlqLLW3Fa+kNOoTBugl9eaLq2upoeePSsHSXbSxFlTF3T+T5SRbr1xjNpYW46XZDNJ4iEQ1zFW3VZlUNFyaI2aMcbdpJVfKCHmBEUyTJXRCioACrAHhOXB7Yzcc5QpIJ7jFFyRmRHiWnCj7LSt7gGbMHtcezFKjJEatkWXeg9Kg1IJ6DuP1gbnXYRPPdDH5wzspOkJiYXSTc202MjN2LoFug3nAycCouBApUXzowcInAlIIOvvIpKWKYjeRuLgLNRZp7s4avB0XFwrMBl4xxnTECTzdQ0HoJvvhwvlsdiIM5aURmNFkXSIGkA3mieFSWUSkak9r2U8DwVhIwoV7iCUxdxg0YWZq2oD28foPRp7cDf1kwRHZMnkBk6O/wU0EJ0XOoZ+iDPZXRaBcRhj5bpKs70MI2dzo5M4fRFnJmt0wuzaUVTv0/KUbrx1EK6TU8WxAnAm77ouREqgzyCueYfSksnjIZTgORoaoqWTYbMpPEUtaEnslnJ8pl7/zKtXTmbvvpf/rdpQvu5tjdW0+WnvpBuefFrTN2kiSnSaIy5YHNtScuE6+llvDWHUquQeStdOg5FhV7RpcGrTKdG+ulRr9EEsyooda+TOwKjjF6RrZNTvEGxDagB0If8DCZpC8NCabPD4Fw+nNxIZJ4JoBDtOSrgCGKNAHJItfVR7EsWYgOyS/HwawuBehaDOA/Uq5pFwXZgs7D5mEg7IOLA8/KcHJmHHjkvm7iTTi3Oh03WvptdZmY0HuGcQGubWXD9ZxxZ0GwKjg4HHJOH1eWBGYfHD9Yqm9QWEmzeNTlIO9ASb2w9B1XyoG7bLEQ/eIuGzLCdOOgX+bZk/8FhTONt6jg/iRmmqGndQUJhMYOk2SPJzBhxbX09PXLuST+c2j5LWGw049rU7FS69YZTrsuWZNrKYx+Om6lLJiYaVuQg4ZzNs/9IdGN2rmfrgfY/ZNJf2FuuCv4JCCdVjspyaR4veoAuqyESZbSNQCkh0rBjjNOPskpeXAsUdS1YvUiGAa/QUqxujwqVgpvJQ7YWAqrci1rBSNHRnSRJ4UMX1Vg4sBBRCbgq+DkxSyIYNVKXyFdg2cbLZMqb016fHd1IxMUzJ8KBTwKw8mi0HAxWvGroQWdKnYe1WBo2eBxKCQ3zEQBwsR+IjdGc8q2r8j3jY+WGjEIxLEqElvwnHhzcCYJWHPRFY6MTQBP+fnoQD0+hCo/ZLqZwcdI4X4kbhvJXN8JpY4PfnBq1qmwH0gdZ5TrCk46J/NFIuSil/8xgsTzIuUi7cjINBw392XAoAiyy7mhvF47SU5e1Zi1jcdtNp02zvJlnXBAdTKCK0ujdIKUbDBGycyWURoSjNiXnjzOmmFHy6axymh763L1p9tTt6Wvf+N+nrfVr6cnHv5hOvvDV1hP4u9pAubUe08SkSwcjvrr8ybS6dCFdfvqxdObmF0e9KWiEInOvu1Ec0ilSihuZJEYLB6LXC2FUMYV2IzEasz6oBvk2iv0AffjHIEI/xZHT9fvYRGrqpZlqQj4bqZ4Ke7Fng+/IPA4p1iHBRxCjj2Jfsp/AkOJ+8GZ6AHIvO2KMJDwyMcPC8hhOiWeV1Aexe9gmbPI1PWCxhEbwzAgdQqdfb2hv5kZeDpvVrBGvlo9xDErZByT7VtolNpyHegw/Dg3tGjiMLDNIm7Jf3sMkofjaArLg9OB4bEOHgUX/ybODlG3slsYE6LHlAwfJB0XKltu2Cx6a2+xBEhzBjpRWShi7qN/TV66mJ56+aBoGsGrYiqFX5VWnW288FQcZa+xg2W1F+6fk5gk0HEkebDkFnLOP5uQUxtaUsPNV35X8NqC+ZlOa4/BER5aXRA4lbRqgy9ExnKIVXccDwSBEoau/wCeXvPjjnmZuygpqRYwMadjCM8ZLOcDQGBRAFCnomHzmBbij+uFafBTyDxMO5F0nxAzSjG4qfg1eMB4uAzZvV3FTGNZQCkpgRogre4C2dE6Rp/2ET7Nk38zcvM4tspcSszs0GjbgzWbvlxmZNQZqpam89zrhvIgujYEZJWSgEdsxktOwISeFRsVbceygj5O6kTEUZB5WZDgFkUZGOVlyvuhgtHkcKBygWTk6OECsPcPHTx7K5228SeXxaRBmt3hiUPXdaejM09BTo8VZQ/5yTAK64UYRcKqpl/VFRBk4KDhgFNlpA4Q+pQzkEpQDHXUGnjNj6Zr4X7y6Ykfm1jMnrXPjo0/pFxwfIZBxIUZ5FEA30vEbHOBFx2VZksPUmFFC56zZE/+ne9+dVi+fTV/1VZpBWnowPf3Z/1N0ePVVTuzGclpbOu96uQ6iAy06w9rypTR78pWW58rTj6TTN99ZpKmk60UsZRbUKnBR0YETBYREo8ClQ3/q6K0kGgA50eDTSAzl1w/QIJ8LD6TYhlAneiByHfA4402hmqlR+fQLfjQqo3J7RuGuQ/TrQB1QpT6Kfck2pBFA2tCaeS1Emlm1lG49M/A4ERzcu66ZJGw/doYxg7HiwqWrzsNWYVNYBlPUbxbzuvvqmpbVMAAqsxOEc6K/8iYbWxoIMWA7JtvIlQdyVgP0gCuaW3Ji7MzI1uMgsdeUMYZxgsMiie9pPwUzNOAhA5RxjrDblYOEcyanqtSSWS/eMgvnQAO1xgWfuo2Nlm28KAfp3IWnvfUCHGhiMQmLOvTxhTcsemzBiQxHUbJKtgnph/GB/VTIwIwZLx0hB45gjDdFimz3bXGjzAxqP3X9VMKrvMqvOUit5aYVkqtaIGYZekyQoj4L1LPsPZgqlkWnDbBPWB8YyUVxP+syVDjOjHLQK9mVgLdX/HrAI8dGdpJY4vL0o24IU5MxCHqhyjeYxo6zxI1n0MRhKJ6zvWwpjWlC4sya4J0zBUmVmMbkhsvjSeNSCKqkUbLcw2BPBynTkuhhXU4NeQJx5d2gaRyUqdGYvmUUbeEL1DNLaAU8O3JybOxkiSfNksYGDzohy11bO3xPhlf/N0Fz47OwPE1IbhFxfXmDwK/2iwcdm/rhmCAT+cr2zUIv/OGE+TaKf0RCHpww5Io+DRZQ/FEODVhCL+o9qYxFPY3wLbcrWqOnAZxQuoLL8J7mhIrTmSLkFWyIxJDv60HXwbxCRjZz0+FZWqSedlDVEb90/0fS9tP3pTtuWtBG8vvsvIKda2teuh35/nC/dB8l+4P/+NH0FWru0ydu9Bkmt774q3t8g3vfb5YpC1ZPkYV2HOoFVWYpHO1aJ1HHaJBrANUSDaBGok5qaLxG8UDYVg7XhXwgu2e4cFTBn2ExDiJ/HSJeB+pBEvWV1bjUon1AVXIEkAp2pEgLwf1Z+3NoxzgRPIDzYMmKATaT2ZLlVRwV7R9VPk4PZ+N5lkf2lxOjeQBd0ywSb20xG4T9i9fsw6GJjdWMLdFbGDC9KqAHTGyzHSnx4k0yHxGgAYihAAeJVQQCD4kTelnFm7U1uHDmHTZTw5vtPE4ZDhLjob8TJlvJuFYCD/68WFR3kNikHS/w7OoBdyk9ceGix8+Cg7SWWOo6oWUz6slsPnuv+KYcqwUYWJbo4o3ssXRS+498MLBkpJ7VP4w+oboSd07tRxnxPwoLijNzQgJ5wqAHuJ+MKeaxDUq6IYx1AHILuD+EfInEoF/hFZ2BwMxhL8RI1XS24AefOvXAiXyw6zR61EaJjewkwczfLlPDQpTYN9PzqNEEMsZUH+cQaRZFjaoSXPjs4J9XhekIDL40esppsOEMiTD01VhRBQ0SR4V5KpbqOAGbRiMQzzzBC+WP660yZPIsFTv61YCcxmFRGUom7acKIpIFJ29Ob6vRiYqMNH7ORKKMDoOMOHJ+W02dUeKqLOoOGQIb7/xmn+JsANQmJR/YxewQTgZLckIxTeBxydAlwXUWLzKsB11jD1K9MYlTho9IOFLQmBCPBWbVFC/GAEfF9VFe5XhJYe48yuMeERT1FDN7sHi64X6CRzEwsZ5NXfXkpgw6NwYLJ5T4oxeWBDuW7rz5hB1a6JH2f124Z7he3CvOCbGetzfTR//D/5r+xZv/BxmPrbRw8ua0ePrWLI0uBwY4EHIFFNufU8tsgpI6Uig86sg9CXJuA0iJBkAjUSdz5HiDXR+VodyuC7mP2fMpeZBehtTzOlCHUG4r7uPWl+zHGFLcDz56uoVwS5botecGI1uMeJiSEWMJiweqZe2twWbiCHiM0CwPg0LZlDynJbUp7U/a0rfMOJKGWSAMjWe0ZaDJ2x5nxinGJG/d0PICe4+wYatsidDSFBaKfbS8ju+N2nKO7EDJuIq1xwBGHxwfbCRVwTbGQzS4Gsc8JsWbaf0OEmMWCH6gl1yMfzz8M4HwhGaPrlzjsMueyh0VD2tMCb4wwcP7qvYrsQfLTp7HCh2QrCU3eLNBm3p5UDFuyBlUNPaZWCGacyPTjHmILiBkRJxfxySE/xuWrJwb6dov+cjva/lhcCaTm0kwQJNCTZSAqf2ia8YtxtDhodClTUWdwCq5w/EHQ4zsJOG4cHNhzGyJ6yuvnNkYNhT77TAyVULj9IyNUjQonA42enumRleWrLzLX1rwwCwYzp1AKVsM6CYjeOXh3sBzTY17VwqLWRvlIgM3QXmhFpq8PHvJE46M0qLFJ0h21Pi9D0lpOymipwlQdyrkpT44XLF0pyMCVM6nRPiQIfAC0RNH7K/iEynsnaJ1I7udNuFzM1mm26pN1VIhniQ4dylmtFQzcPWfSjI75zhZipY1amAAowy6dnqcDEQ6GrKqSHu25IRpdgdHEzjyoAUus3vOUDJ45gLSClC7tLzuzeA4eujJ4lXMgz+Z1IMZpXCU4gvSj8lR4qypl9x6Sg4lRiX40yt4nnJTVTl8+LYg7WJ7cz19/P/+3fTG73m7l+Cmpmf1YeHTgsgB4AMDdSghgOs5lFQk6gVVZsE9+rVOtk6lYtEAqCUqALAaiTqZ64rXuA2ls0+CwyDXqe8jVC/8MsSPWo8+UY+JTB/VUZM17rXoIOwRQAahjp7fwqQlS/Tac9sY4QitaOaI1+w5msXjBs6RbA57kHjwjQfv2JIgT8EPr3ygdXNDy0vjnCYtfrKJnAe0oNmXBZ33dlE0NnSoJA+B2GhWMXA4Li1p1l00pnGSsoPElgjOv/Onp0SHsWJHMDJnminStg9ZMxwwZMHuMl5g6xjPeADkHD7LkCvIOOD9t6oDmvAWDcnhTeUqs4Okz4xEKerCxgeyNacfrCYz9/Oy7WdOLYYTJxl5cEcvLPnN6wyl+GICj6QEIfq/LK9ohv0Nui6lDF3lhHkqCW7OBcDxIo9B808Ppsrt4ZFVpXJlGIj47/opj3guMnjrj4BqzF2PInMNPkvZqzdlQi1hHOdPvDz6VPlDmRf0xnUUF80IfvOMyuofjQ72OEA0GDYrh6OhgV6NjAZDwwaO9Vd/e0WNjFcxmbqkM+C520HKcjM1SaNlPRWHgkZIHhX1W2rwFF2cIJQ4pVO86Rj8zc6wThydoXj8NMyyNwqd89o/sxnINy0vCgeMfUPMBHk9V/g0wLLhj/rwF/qNqUM6yC7v+YseYkMXfQBjt1HOEN49fMjjyWFCjRkZgfdsiiJuqLr6+3fKx+nR/8qh9LoyGaovdAjgww8Z7CApDR3AOP1bmTFtLL2RRC5woAB98vTfwXpXjHvE09uSvkm0pg44KXkBKvDgO8N8dc/kqAKP08uMEjQfPX8tPaI/sVc6++4SlPtX7q9lANgSaClSb8Z9+N+/U/XfTJ/52L9PK9rQ7cpldpWgpA8MhWYTqDW3ZJZrE+VYUoV0/dogXC/wDalnNCCflUSde3/8UAL0I3+50yMKP0zMEckcE1hNmtJZS1Yfh5Jdv/aBHE+yzoB4DvXskhfXUtLMbU0JFPuwtLymmaN1OTGyrbIhthtCYMELB4qxBFvNzA+OAS+UcGU2e0z5ZSkM+89sC6dLY/v5ygNWlzEAGvy7fG0trWiDNi/HeKlMD76MRX6LV/YPe8oeJD29+qEdW44t9r4kycqYxUQB45EdJM1mcRZSmUFCXm/X0DIhdcOO8dFcXuThAZgjVc6dv5Cu6JDI4iBhY1Vty1QcAl+FfEWb1XkjOD64G1tUqIc3aJcTtKlbrp8uKiWNLc5X0Y48ZSoWoVxzWc4vuWH3MyhYmb5zIF7RYZzhD00XbEPFT8MjshSGr0E4WsmaZS7lsOpjV4par3CoB+s1V4YSbslRwshOEsRxXmCE88CHZdkkzVlBTAOWwyZxBBhkBWrlUoYSyAOZpSsqg1JxosCHDnhs8mamIj5Jopkl4XIkPN48S2XelC0yTMCgbejSMHE2aLx2rkQfP8ZvoeEE6C82hIur4PnbRAbRKEcExGBOB1Gm+FQyZng/CagMtjt6l9SvyYuul6kkB2vD3j/FU49wUKqXCKGlP/ZmcQUfvtH5BaM4af7ceqQD/c9105Wo0uUpBTmRH1jyQeOPcrsn4FJMmfK4iqLhxV6B2TOucS+B4UkER3FZTg+vwNpRChD/wg44eFAPHCU2VuJs2lHS9ZHzS+nhp9Txg6HwSl2NrDTXeNqxGMpZvnwu/d1f/M8+SuCh+z6oWaXLrouZ8oOc5a/KHBRpByy55drALpn1awPgeBJ18sT3hQpAkVC2QKrMHN+H9Yxn9EtwlPQzLeRRZKrjPNPytdOvS6B4uef17BpiPbvEa8XHFy3E69c+6qWoL1vJwSUN2ALGVQFzwYM2MyPYfWxVmZ3xwxhbLeSwMFPDzBGrDczGYI9PaFsFb/baHoo/W0HIHxdRHrY9HogHVhsY1EzgBZ1pL9XFh2rX9cIPJ2pTjCOTLWmkRQ++GE2W5XDkPIMkOThXyecgKV6IszRYNmnDjwkCZoJwsqjjY088ma5eW1YtCcWxgHOMLWHnczq3i9jbCgvGVGTQwywP9Bp/DK98/zNarqfzIBu0XBlz0Y8ThSfXDKb8PERkmCgo+g0e/AYFXXIsaES6+cv9JRRcI0dW4zfG38gqOAXA964kWq74Yf5zmRKkFYc1fwTGPtpWSUfu6L8jO0m8zcYGX8/kSApmMyqHQjcDb9pLZtwYDYh44HQAvpq8Ic8az937W1SMw0Bn2JRTxPowDc/7etQYaaikcSR8iJemzWgoePVUnoYRTxs4ARqMBesjANRo4MfbX5QTCp3ilLjjiT4zRp5y1RMJNMBnOQ1HjalS1AwuTyWQYpaF5URkpMHj3JVZIfRBI+AXHVAvZqjoWMhKfXAPiLtRi140eNhEHZABeg75ygV4cvmjU/BHAJ88cJCPzqOsCEo7qiv4xNF9kRc8kMknbgeXJzN1Zm8E1L0L+VQKgHDdvIg7qY4qxxWDhDxssoT3o09dlaO0lHUumYTFX9wrIVooZIonM7z85StPpi9++j+kG256Ubr41MNyQHm1NUDLVclmRqbj/H0/BasdqF5aj1dk6pn1eAVw/ZE62Xq8Qble4Lh+UHLbX6WxBoXnRGJfNSTVceY9JyrZECLXru0+VXl9Ssj4g/TSIH8ciSGMBhWT3wx1yGZJI9UCVrKwe5wwzXKX7absK22ccQRbin1BbZge7BzWDPuLc3TzmRPptltusC0GQubWtoplu0tX9Zatrh6c9UsZtpC9Oye0h4e31HioxTna0PhDKA5SvOgSfNhegAzwZ4sFNsubtOUgcfUMUhaQt4H5w17CC+eI1/djnNtKD597QsuK8UFX+EWtym/klF+qQm1ZgZnX0iEz90DyoV3GXWyonQd4C47/KIpLXMlzymUuNlxoxGBKN2i4lhVklAXhoAuSQh4GwI5SWCmfvypk3tj/Al/KCpxxSkKFQa1A7b/SVoJ7P8UmbI+k4ITD4zqo5a8JPVpqZCeJWZMZbWqe1YmfNBwaMg2HZUf270Q1NTORnQi8fwTGsZhVY6MRojQvy6lsSg2AaU9mddwhdOOZMuXmwgseeOKcvM1UKz4+Mx7M9uAwuRNwM8QaJ6E4SkxvMuB7Bkuw6n9u3HZs6GkKtDnvvFcch400h0Da+VCcMy1cRxSsP6Zk6Zzc8aiH8JWGPfVjWY0ZMfANpyvTwHwPKN6kiKeAsoE8ZBCyQ1y5nfyz0qRXcr2niFxl00igbcepKkd+aZWbYIyg6FoqyxSVoJP5RiuPayyngYO6Q1beDPHTWjYK0Cj45p9lAx6Hi2llb/oWPIYJER6Rk/TohfzlbeFjXuAtFNcBjp4y1z4kaEJn+fKT6RN/8+/SyTO3pguPPyBDU75JJGAFcPhrhNbMBoQSBWgfdj9gA7JgNYBKZv3aALj+RJ10f/xA6hWwIii6/2+/9g4k1xUO00BWeL+enRYuxQeEjL2vzR2AcvSiNmY1akOKa5D1aMGq5/XFCwjXHFqyXIKdZBaI8QJbjJ2Og3oplh2UXtl7ip0jsNR0Wo5OmUFwpuBwti7qJGqcH0LYJuwx48aUZpC0V2lxVvYTOtgv9ixphUIpeGOteMuaG4id9TEEeQxjVYKHPd4gq2aQNH5FQDbewubhOmwrL/+wxIbtu7K87FO0OSizHsLC15tLPPjSf/mHgcTG8tDOSgoTDEwC+MEXmNpfvc+7BiojBKWok2GgS35cHOcHHTBCmK8KQ7ZCAwjFazhFdkr2hQyHKrmfEXoYFZlahLpAv0AXmq5jSbRe0YMKCq1MgAu8w7EKuuT1028l2ZI58sZt9vSM63trE3pjjeUohGDQx2ngcEnH5V3zIcDiwOS6h9JVEZZodnT1DVcDwEnCqaIxMGiqqemq24VyleGOwXc7FKDPxjucFxwi0kw94qTgiLDJGqdi145EOA8MwigaJ84yKo4XzuFf69rUR6DR4TRss2lZaWRkozUN0vXUHaDTksbhQkY6NrMz3Bt4IjNPQ9BBRtMTPDLi+dsJlFwsGdJpuXk4jHQi9MifnS/lO0gmaLvxCI5s/oqhgH6AwjOcN+oKUnGiqAwS4uiModOMg84pIc0/0v4wotJ2wkTPvDP/4GMU00f2kE6dWFPIbFwEgXpj7B7V0hu3765bTmiWT0V6qwT7Rh4ybuizKns67E3JcNikj6vnH0z3vu/X0jf8129LX7jvA+llr75HjnL+/IngCMhUD+C3Z9ahSrwfu+SbSkk0rkMxhgI0yF1XYhCrNqL7amTkEShUN7qN6j+TPPeNw9d1BO0enuhhMIYIMKS4hdPhMfb1RVEdRgV1M9syozeQeSlnRuMAD+LhrBSxwk7ZlstGsX+UVQps2NXlFW9uxk5i38dlMhb1RQJsLGMQ2wOYicEGb/DgK79GJsu2nJUBQtg87D3SxoPorGyaZ4mUAy62HzhsHQ+T/qQJ0LbdmkESbcYBzsxj8zh2EJmuaGntocf14V3GN8G36aP0V3ThP2VQV69uyKZuaXN2OEgx5jH+QdtjQ74WiywWpuFrnVtm7AtMKMt5MsYRrWWBT8glGTYQ+EXmSm4A64ECPFguhYdTQUbsGvQosumpYAvlgqSCFpxcGpcaSoly5S/GxSDAxM5RwshOEoOvvX3ViJkctWs3HBTBbJAPmtSV6UUrQj92OFTOZjmG63E5NAzOaA8HAa+DWRicHN6eIo83vtzoVcbyGJVEiZ6BwkHKzgf7jtACS3IBEw5DcTY4HZwNzTRuZNwQj2nR54mAPP0KP2TkJqyoU8FoPM8IgYSI8OCphI4Ss1XcM2FLlq2tWIIrN6LQZu06nJd4+mG9HXwCdcHJ8hsUekJwg1c+uDhV6BlYZEZXGAz0YscKTwOZFCiHluMIqjLSMR2rNHAuR1ri/EIPOQLZ+bndhBzRLSxjYSRs0uFURaOjvrhSyMRbiixLglkdD3D+KqXpxToeYExOLrQRsQTKbtIx+7ffctrthaez9c0n0vlP/mFanrgjffGf/p/0ite8yXgFp/9aIxf1A6A1sx+znq4jlHxrpST2XYdiDAXYR/JYM9rY1xkMrB0N6tChRq0WPTSZ40LYV4V9GUfidDxUjsR6P9IQYYYU76fnnKNhNfpbpnwYStgFb2pmpohHJhkJ2zw+U+CBNuyRtwTIntNEeVBc0Ubvpy5eSWef1CnV+QEb5+QGvQXGMhhv0c5rxolZGD6rtMFMjGZ7eOMM54izkLBpxUEa02Zw3K446kSrHhrDCOUkbbZnsIrB+OfxS2U4SNvaHhCzSLLdEo5xgvEMQS/r9f4vPf6kZTAxcIjkqqGn/V0mHqrXNV7iWDFrxtvewCGDFaDHdPRQD/AOYkBSWANwNNKGqxWFMEGpnh1ab5IJqN5vHb5iJ/b766Q8ZeZRqEegxEyInxqmkpahYkKkStTiNZxCL18Z5TSKZt7MJs6mEwsL6YuPXeqDHJ4c2UniJOkY6CS+KyEhNJjjEDAbhKPjsVo3lYbk5Sxph8Y0owaOojjvAEeAgDMwOaWlLG/UVuNTw2RaE12xpwd8kdWorwYCvpoxDQdsmjCNFu8dZTITQ+OEZgnRcLQnRjgsl0ETGcvsDeU4cTRB9lrNZYfMMqoMUsBMCYYpXHcAnCXJCE/yp/TUg6OAwzCWnTvq4/4tuFkt/eGToA+eTLjiDNGx7bwhu/DhFT/oK+CpB7BRp7j6yAODcvOjYwJX4lwjjRpVTkLEPeunq8vNLJocU9ssboEVIlDvcNTs+Dkfw4VzpEQORSaQoMkepSk2OIrSumaK4hyla3Zs77x50cumNXTphw9QbmjpVk99Io4u5qSfp85+Nj2mwynvuvuedOMLXppuuPWllqfwHXR1PXNhxaeeWRCrwpLRdu1HHI7UjwHVBtZQgDY5npm8NlHqnBpy1wta4zVqtWgr6HM48zkr+hDBhhQP0PjRsMKYtJM8IkWbPJlN2zho2DfSFRuNHcJU8ULQvD5FxQoAn3VdXlnT5ueVdNPpBR2iOC9nRG/GyZ6e5Bwh2ZF4/Z79pThCMT6tawkfx4kzmFbX9CIQ44BgeVhlNGF/Knw8JnnQ6TlIjEvVa/6Si8CeJt68ZgaJno5dL6eEM+tzXgdEPnnxUthbFMeA4I4V+KahfGw0lSSXX8ZTtmhgr+d0cGR5U7vYZOQc11kqxrB+JH/G98REpgR9BxRI0AX9RVRce2IYI/KVWcs3cP8P5YgcCP2lka7RyMORZYyxR1HrQaAVXBXJ+KGPQgzwik4PKYrrvwBW9YWmxlohcpbg/MyM3nycti9QRxk1PrKTtK23uiZZOvHd5lV8NRDJ4grQOPFv5BjQYMbU2seBVaEHet9cDfpKc74RJJjx4e0yOgSnOZcB3MtpavRsDN7AmRDuupbCaJ/Qs1OlMvNVXtBRg5V88fabGpsYoGo6jBsiKfFlVoZlNZFUjpbM0KUIIYfPLJKSwcWxQx4cpk3Rpcwna4uGO5SEYfkxeOMc6oYoDQ5xOi1lzHLhFMo9suxxpIBkUR6yISNwyAhP7jE0uN/Q8QyS8r20pzI6i/VpiEj7RguHjqVLJFWOvuIGZafLjSjoG0jlbC6cVR2vqWMWXMqQAVnCUTKhqv3hEJqNdJljSoejxAwjs0q86srs0OMXNR0ufX/Fbad9P81XyDh73FcOQnN7EDOeFnEeVx/+Unr0/g+lF+g0bozQzbd/hfVk3BF+Qtr9gJZ5UCHgBtiPZx22ZTtvIJJkbg8VxlCAdvxnOneQWM8033/W9IcofUjxANUdDWtgw81cjkh1gIyyMep4PBBDF5uF3fGnnogQl33kAbPYJ9I3nF7098xY9sLp4cUgbCPfcQMwbGhcp3lFXw/AV7Q0t6qN2vEyELYNnthl8dUfD+Lww+bxh63G6bKDJJvmlQEsncY43vAtWx+wY+XNOvr2k/oG21OXLlteZHJ/Fy+HfHEeGSrHzgPEeMABkYwNJ+T8eUVFBdAwHcGAPqeHUd5EloU3SecCo3LssIP5gKcUZRkyIJxZgVWlPaAKuhEp5eXaKGxJIK9hewjlHlbQFrfIjCQ5bgDhkdSlmV9hO1JoUnfi/HFPcG5n5RydPnHCYyOrM2zPOUoY2UmCOIMYFccFobE6KM2Njo3RcoComdIIi8MUjkMojClD0gz+OCA0vPgILk5DdjpUD7x6ngS8+U4402qYnrGCrlq1l+GUBx9mdnDC7qbaAABAAElEQVSO6G4SpWq8dD5kFAgSWUYcr1huisYHCW6BWAguGlXM8IS8zDTREdfVCakz9JmKZcpWReYFD6ZhqRc3gaeTGRH29Kjy6B+lzpYXR0t50fFxIqMe0EZQZCXOTY2nHfGFDk5QpuV9RQIsjUfFlh9saFMS18g3D/L4J1UhDziX9TmTk4sLPkxySafcbpHpoHKoQEQR01e63E/ouI+qDIPC/QeG9sHG7DEZFY7Sx3hc0pPe5x+/kr7qRWeiW6s3m55IsKF/m68jK4C3JXjC0qUn0j/+5z9Ld//L79LnS5bSHS//OsvuwiP+WC19uNSxCkMBKshapB+pQbEG14v2Y1DSwGoD6KH3AdcLuvhzVgPD7mlN8EOAXjcW3figMKT4INTBZQ2ikeC36gM6S49BLmZ2wm5j3bF9jBnMHt0sJwn76b06Gie4YlSgg9MDNV7Pn9EgyfIbgQf3S1fXzIcHXQwhdgib5gdkwfCgid3lQZSXiBhnGNfCQYKFnCc5SMAQkIHVAuTlwfj85cv+Fht0CVxy1Gn/kBHVlj1URGneHGfjObJymrgdtkwEE1zxB1UZyOwH/EzK9VbcY5Rp64erYG3DFQ1ByLf1Jkch4MgJi5/zDAyBHGrRktV2RVZCqb9n6gpu5ht3CSCDVj+Alay6PHb+GjJXKFWE+8I4RBuhvnzkd0ftCAfJ47dOLPcSahGswhwtMrqTpBrwnRx7YxrY8cK950iSUTk8ayvaiZidYbqTG5HbcJpUGf4Msz6bqr3mcuy00ChxnHCE8PyZLaLBMt04pnFzS2vKnIWEZ+8lIpVDF+97Ssts3gOkNA0A9jhc3Ckaob1KXYuMSOkgeizvITeK5Y/ZsGnwJAv63CJfMoJBx0AeaM+oMdMpzFfpCX1sFkcEmZnW9YCvhs+Nt3OnzgY9L0FCGwGUEQ0DXs6x/NGopQ/Vlewoo24kqLUcSPFBRl3srEnMHIIWMkA9eEJWcYAB1MUhmKermr4+oc2NpzS9e0UHuxGAt14UB9yNVsS4T9AQ65DLtETbOJHH7I8Nkxpp2aOEo/S5xy7HfjJRK3OuiIAhckDGIG9ZL537fFrSh3Bn50+l1aWL+oTJTQjSkz+wrusXcoNCrlp7sQvbioZSbENytVoLapkVy4NY1OAdrZD6C7r0dWvgMPehxuyIaJnCEbCHoAwprkl+HdE+JtgTAr+2TU4oZdsS9oWXZTbkoBB4CGOG5bQcpFP6wwgsr6zog6+rcjC0PKVxwLZOD7TMYLOXh8ERG4bzsayvCiytrmlPqujJhnsWyTR5OJOTI2cHWJwtHoBJY8O8UVsy0I3sPPGw7DENB4k34HgjWkfE6BiUJ59+WjPyYT+pGXUDjz8/ROrqQIEC4ydC8zDJy04zbGCX7DhIFbyQ7SAJhzywGH/80MtASl7O98XcxNvZXMGpBaWrHGByETL2UsgcJaU8g41+AdFE97teQWQQ5cgHlfuJGOS0QRdfAzjGSBwktxPVkThYjNHj2ibEeOzxclc6O0IY2UmaFDN40/jkEtlZMT9lIiTqpxwnpJxIuiehcNrD747KUhHSOAE4RjS+MV6DEg2cCAbgeR0zUPbt4BxxXMCa9rrQkFE+r/hzvgWvWlJ5nhr4OCKHRuJAwIlpUZ9XhJCiCyJvecGDRsYSFg6Xmrt5IzzKAJIfN0rB0hlCRnUu4fE0Q32ZJUFGHDfKgWfal/Vqynlrw41fTpyXzcSff4jCrUJKO1XlSsWViTEg3zdeGdaX0m7wIBIPKa0rPGg7Xyoi4MiaLgyEjzq8lJfpGyZTmNXu+zXp95pmkeh8p/UmxYQcrDXkQFDTiDiyRxrZiEbaRo4MhcBR45QT6+PytecMI4AjhKMESf8InmjIbsyYLcMACcgNemcrfeqDf5he94Z/K1h47qQTp/SdNxBLCLYldazXOptCuGJ3YGGB7r8eCaki0oZdFSpSyVbPPBJSncA/4/gw3bWo5ggoLVRK1hGoDUEZUlwYH8+1hVmxW3UGBYwrjglOAVs5sBUMbhgwXuH37BJP2Ro9trZkrxTnjVr2F3Hg5KwcDD41wuwFdhknio/CcjwJ9p58HwUgWLYA8IBcZooYjxgPvP1DY0IssXEIZDhpMqjat6olLsYqwbI/l7eqCTwInrtwQXxwkFRqI0d/BJIkV9Vc9JGeNP+w0ThwW5owmJvngMv4kK7LMw3w+cSKxwAcQeHxeS+JI9kyfYBgawNAhLGrjDDmCASMKXIImXKiyi3pvmtB6svuT0KTMctBF6ORdFaPiI+rIa+XFTj1X+OUDKx/kAGl4lGLw5sxg2DYjBDjq8Zw3VN0yIGeRwkjO0k4CNM4Btr8ZoVIHJwDhKax2VHAYRAc05d45ehMIJFWwyUNLo4ATk3ZLOdGo0L2MXn/TW6M9tqFw8ZrlpiQAVwva7FPSLLA3w6PZKAcZe2xPwiF6YflNZRFh6NjeADOcsSMUyi2yGxE4SIn5XROnBzy8VA5G8plosmVt/LsIOlgTF4xpN7k83XpibwxHRmRAQLEFXOg3qRwGKFBPeLYAZ5UgOUJJqDBQ3bqz4wOnY5pYxwk4Kgn9GgqiIvs0CRNiAZDvSiX3CDp/7TSW8Jd1dMQX92+YXHO8MZUWXlyIhPe4Og/KdNC08oNwrpQH0izLwmjxxMhS6p2mpQ/qddoOTqAABx0kAci6A1a/FK0K7xPfuAP09d841vT+upSuuVFr0onb7jdsGAa2JH8Y3r1jOONu559JCuWBxb2IVXJfqSKWgUxaqSfUj9eK+VhSP1EDptuZXpYIgfAP9Py97F+5tgdgfIBKAcU9dXoGJMDmEb2gMLMnlLsLLZzXXYIe8jZeCxnYSuwVVxpTnwGxPuCZOM5qmXxxIJwY7vDmj6vtMLMkT7l4bFB8OOCn9K4ZRuj9J7ecpve0zfdxG98clY52FhmkLSPtOYgEYcfjhEOUpmt4nNYvCTEgyefVGEGiWNNHKpqYhvjr9/aA4JNX9UbetBfWJiRbWRGikmIwMGumVRMiYS9Fqx1hO2kMNvKgJW9zDi20SquG0foOgc72wj96Sgk9zBdl7rWQ6Si5qX+IUMeK+rAOc745mBaEW/IoaxCq1xd9xbehZTHWhIQYrKGh/AjhJGdpJC97BsKb9aHP0oGtS8N8KoEDoMaH85I7OdRQ1SDp1ET7N8Cr+WzaTkB3HQUDC6OCN6xsry0RkMqZwqxkW9K3jt0V+VcMSXJBuwZfbMNHTB96jfYxIsMZn94KoAus0XoCBmBxZmDL84OTgd8y5ovQ3d0pnAA+cabl71yI0Pp8IYNVWKzNktwODbQBFa9WNPA6oTyPnBU0BE0qWe5ScVBQad4/dx0z6pIFmSMo/WjU0h5zotOIK94WjqTnqmPHS/RoH78QoNNiDRI5KE8u4sBQUcUsEAMj1w4QfLlrBx0uLSyLsfLAKEwRaEDDrgwUy2ddsN2QfB0o8zUyeGJkHtRNnPbo5dcOEqxLyAcQ2BLWxDp4CFmY9KttJwe+OT/lf6rO1+bzj30Cb0RJ6Mow9cf4G2nt79gQBqxOYF3cloH01GpI4ZBmNbxoEJ4GaCf6UEIBbYVsRQOvI5CeSDyEQqG1v8INNtQnu16tclwcN51SDgEdUjxwWIdpXQIw2ZxMzWIHf2Wxzu/ISv753OQdPUDuIxsfNEgDohkiOVB9MTCCe1NWtC3zTQerF9L12SzrslhYdYIu4+jMCEbw9iDXcHGcUjtmL4VKauoPMkm0+KTt2XHsXuxvJaX2MSD9usH1uwgYVtZmfA34YTO0tpjTz0lur19umFHVMj//OeEiPHYB01muVa0QRvZ5rX/aFKz+RolPT6gI/BIG1orLDz46/tcwleBnaaKcMYhzX/9ECSniUSqyq9ky/kDL5CxvLrmeCFdxzG9zLKZb3TLgCgExr7ysO0qRHbrr8cUcCh1VSASjEKDkSqOmUtNP5jFb+CCH55HyFQcZUgfJuwfbQZgb26owWpgZhaH2Qv260xo95gdAOHwthdTkLtyXnAGtmmIEzgbzLTotiOtsnzWkK4M3iiOcyAsvDSKUzSlRg1gbLLWwKf8HS29rGzoqgbDwZArckJYOttWI2KmghOy8Yg2cQokF2dj0BFQ5NY2DUyiwFtTm0yV7mo5iL1C7iyS2bNggvWqnyRjOhZcGnYszUEBqdQBt1neE03xxwGi88ATh2Bnk83b8eo/b11wk8a0MZnDyYwvOOCh7Rkt5JUOcNKUZV52tpTGMWHQ56YbVnG2j69I9kVNz7JEaQOCaAKicUEXeDKgR/0i7UznFf7R4EJHTBzvReUDkLT4E0TWRoc0PKKhZabSiHUiZtANhLhwG8lDf9xXjmzgDUE0QX3ZMG4qKt/RXLH3UQkeKuTjUOEcE8Z2N9PH3//OdPfX/+v05EP/bzp14x3SvU7tdmn8cg8xkoTzj9+vt+Je6fo2FeBi/yDulcc/lW5/5RtidqpXdCwx6tAfQtKcOxSgH7uk2xBLWYNDyfyyXA+S8ssi0DPK9BhqO4TEkOLjr90Qhs3iZmpUYWitzIrzgfI5PfhgS5jRYYygfzJ2ePyQvWAlYE5LT6dPnUgL8/Pu60+cv6zzkpY8a4TRYHmMMcgP5qLl1/S3N+Ry6GFW5WOiIWMmrnKCZLNsu7SMz8Mt+5jYthHjj2wXZyvJpiMPwkCXPUhgcwTBl8496T0vE6YXNgsZsLtQLv+EbLuJLWeDNnXDFs6wjCa+DJOGFSL68GiFbEogI/udFjhqBijB8uOxibjy4jdwsZ6R42zTLeWlAB6RlyO6gFPynVsjQr6X8mp5yLsfyZiNH+x/fA0CcMmInTfBfvTg3pO+WRPGncgJviFKPd5jS5lZENGfKfOj8doP5j3QkWMjO0kcfM0nPybkJEyowTBTVKThFk1MMMuk77Gp0WmewI4EAx2K4nwijdhyVLT+OsEnQ5g5iKeFaVWg7JkpzgJ0Ic8s0FQenKlkDMSxjISDjSOBLrxvSIM8jYpGPq7d3uyhwuGAFk8WyAgtGrU3dEkenB32GEFkQ40XGelMC3S0SkYcGYREpzzJhGPoXqwcOo/av5QTm7MBo4N575L46b87CY6l5RV98nB/aPRMs9qRkBxlv5PXxsXfegFIgY4BT76vxlLlGS2LTavz+KRw0aMahEpUxblHlgcZxJQ4Tg5XNOLlS6WRC97juj+7cjjt+AZbxwXu+wVtZA+HhlzqEIBiZbpQjpLgQZynLQwCb7MxDc75WP7UjEBjkTDo+ilCTOCDTtiPRsDJ2l1bSQ/pNO7X3PMj6dL5R9Itd7xKDHjiow3ovgvm1AybOnWWysUpGdPTjlO3AsM9DXmD7u7qLenyhUfSzNximpk/afjqJ0Cq5HFEQjPtlMzuIICCdqBcoxAohPqvBxLuB36ep69Hjy2qGZHciGAtDI6YNYTh/uL9OUfkHGgix1YNxgIOZsRh8oCopsgVWzM/P5dO6KUS9h2Rt6JZoy+dPZ8u6vtsT11aiodd2V7GGs8a8dAlWkkPVnyCBJum3bsaAxiVcJdUJMJ8iJYHW/7GZUfGZ+fEgxkcbGU4SDho8MTGlxmkpatX06OPP6UDKsMmZnNns1edRWSbGHYWgjhImzog0g6h9tvygV14gWuHx9pAumKfhIvcGvMkgW0kNizGP9C4D/k323PKCWHf6vepHjeIsQM40oEZ8f7fbN4zOAIrCgLiZZ6Bk/kUYhjx+l8AVfaXsbqObjTBF/QYY6QHaKh9xMM5RLIMETPVgkOCOJpvku/hGOGQPyM7SV52ksAsN7EfhhtYNi7TyGmgTE/iWNMIOeGaaUzwyh4aJGf2hYow48JbbtTZuGrcnh0RbjgymoGgwauh4gHu6hVO+ODgcDQANBj0NjXoyr0RHZwwXZFRkXAKmIUKfHAp9pOBrjgpzBhpjdAyKktRzf4Izs6dOgEy7kpGeOGweepTcV6VZx2cgbx8V2dMHY1OTV2QcWoqBm+48gSBDpDXwXVVifRBIwjHJYwCzgr9I2aYciMRHDcdeO+tEn02Qi/o+0CLbHLXDI18U8mJpIFj2ko5L7Jdf6Lwo8Ppv8uhjRzwJp+9UTh1llYwlDtwBQciCkAQLcXklTT0gIuOz1Oh7qcgvele+5WYkWT5lIDOMBo2HM7ZS7fqA5Y3Ls6YNnVBd8ylPfWx35UOptLWY7en+RM3SbYQBhmQEz5bl8+lp5fucx2sX+FyN2gDBOrIWywry1fS6Vf9d+mJR+5Ld37FN8iRi3ZloHqlnKGfYFVSx3ptY1cYNNgeBNiKUDKHXUchPIxGvbwhdb3gGOPHLfMRRDuCCEdAOYJgfSgHMN1ftD+nj9r1JTN5LtjUTU7AhqJ+bFvUkenji35LTVsjZO+WV1a1FWDN8JysLYPg77GNq4zArBGOlqbz1dPZNyt7MsFszZSGKg1KLLnBS6sM2GMOtMWu8GCPGVq/djXtzi/owXPGeyEZNxCG2aN4EN5NV5eupquXLloGXBoMjuXWNWxX0Vu+Ch97tK4ZbmzcvF5N5yw5YIWiEGNAQGd7i8Xzf3KxWlhQQBmXxJP6BnJ1LXbfcAGtXxMBM4d6aYXqsuPpqUGFX8e4kfrzMpvGxmCEDAHXi0VR/y/o8VCb6y8A7tegUMa7MiKB3wgWpz+zATEwMbKTpNujmQAaFEsoGtB186kEbJkpYEaAGR1OuORmespUecDzJhhOCx2iHBBJvtqplKgBWftsSuDMIZbQYhBX5xFPqSccCcHCg/aJQ8SshAdP0fISmKThCk0Ov+QmufEK1uvLUrKdHQbsMTYURwcDblYdksYGHM6RG7JIIBmy2DHMN4klvxl1YvKp056mablJvlHKswwavCeVhx5or9DmFkvUaOOIJxhw7HyRr87jjeGCw5HhCYRymglmRKoNh0L6ohOv6A0/9HnmhNa2WdoUL5FR0H1BNnhAV3h0GsosAwUK5f5RgP/gegqC2TQgSMM7oJWhSGzept6SHaRciJxmBmFFS5cn7ixdOR5gfC/uL/XDkPlgNm2kggyyZnKeYr7xZGwiD13EVDz0ONR0b/nxtLpyznWABX84Xhgl6K4+eSl0Bx/JSS2AoU6e2VQ+dfjkf/zf0uvf8rb05KOfSS+862uM05NCCApFJhOIrOZvBdDMPq4Uch8U9rEfhnAQsVK2j2gpGPV6HEKMyus64Y5Z1GMmd/jKHSDA/qL9OYdnOAJGHxsn1Rd5aMV0YD/4LhoPgewPImxqqemytlawT5LTsoE5pZO1T2rJDZvJJu0dnYGzh2Okp0TMkbwiOSILdo6gsaNBhrfhtoQPDraEWeckO8QjGn88aLFP9urlS5q5WtBG73g4Y+WE8YJx5rJO0F7VQ5UftOAjY4xFIeoKFONAZRwYgzj/iAMitWqht9c4rgZLBQh18R94ZJT+RlL/sPV+G9u0YvyLEn5LTGjgGUeXzNtSAeRQRSq4Xn4wBaKwryKmSR2rkkA76FegQPvBVDH2HccZhv1IPZlMPbPIF9cD55XxCXvu+uW61SlRd1PST4XrnJIC+lA1qJOv4iM7SeyV5fwiOyXIoL8QksFYCZwXCcssyua6BmvFvQ6sfAajGMAkMLBquHjWexrsWIbxjIyUgc8yrRkYbT9SA5Pnb2+flSwt06gzKdsOmlAZ7ewwIU8s/cnZEkNeyQwZQ3Pwo/F4ZkmwyILzwfIa6jMuzgn81YnYjI1DMik8ZrRcDzlF5PERXa02atmOGRecw5ARbcbeKOEKjyrS8ahHzJKMuaMjf9xrN2N3WOBL43Ynlj7EwvX0jJiQkLPMyFE3iODEscTJK/ZPL62m22486bf6zF/wGANCvohmpC2D9EfjC07kEAICXsgPV3LcWV2suArsHImUnRxDRTsArtSl8AreUESO4I9zx9MFxiZXxQRML0ACnkLxRwd0VZZRp3R/DSJaXE03X3XREQ5aBpb+0BErddY9UMK1kysYXG6/2qu60FbPP/ZP6XMffXd66Wvekq4+fTaduumOSlZoErJYisGxGZzTA2gWktqPsh/mOnMOYn9k0iL6LIh+ZPGOC/EZ0d1xCXcQnQMEby9qzz2IxaHLDmDRVkT7Ys8KzoPPCNLAyPLXNb26z+v7a3oIjAfF2JPEydnz8zgwu+nKlctp9doV7VdkuUx9fkpLWHoRY1zfYcNOsZ9o00tqcsLEB1swqVklZuixRdhvxiE+SeX9pLL95K+vrhj3pA6sZNWD7QxPPHE+rWgWaXYGi9mriU2aeFd5KnKpaDNW8qYe9ZrWcTDYJI95GR8442Vb5uzIVInKkM8MnDS+KmZ9gUmxfxh2TSNTtAAUVhESDiUHvsavYHop7Hh/x2/JyhTzJdCtdyhPa5lzVoaW+1I4ARn8xV3ygmI06pTjjAHFOQJeRVSuohGxgKecYBoRtbrQm0cu8PQX+IVzBjzkZWQnaUubkqe0l4Rq44lTATs3amQePDUqTekbOwxSIVI0TMrK+QQMTlYPuMqXDq058vjzkpSm5qgbqihLZAxmvCHHDYTvuDZIoVD2rHg2wy1eDVPTtswioBy+rUaAJvj0CuSdUkfxrJNgzDeY2es3Tz05xDY5o4SMooOTpX5mR4rXR5GNU09p+CxN4dT59iGgKKMFdGHHC+dL+DgYdBbkw6FwT81yCNx4zGR5U6Hy0V3kBmikhY8gKvMeJgHgeNAgwQOGmikqeSK4USofcrCJxtMrNxSFDuG8SFTDQY+aZfF6SnEvpiOQRd0yXWgALPwiP1mhG2DIFw5OmhLsSQjORfZgAV2OQbCsJsndQt+YSPHVHzo1XeoLjH6giY79lh9Egrh56nYoGfWTfXQRDtuDn/yrdOMLX5FWrpyVQZtP84s3ilpbgEszhFTNPFKZbeiiv7gq7C94bqX31/a5Jd8/C2kOuAntRe25x66rA9gcUNQQg77KzBD2lFmXK8vL6aqdI94zVp9Wh53KS27Q3NULPNeuXEpLF9k0LedIT+6T0/N6OJ52P+Mhc31j3VswsD3YCgZdDAM2x7ZEYwd2mDHJ9lhl/gyKZMCeYEtXl5Zs98/coAdPHVa5odf1BZZtDLamr4ZO6kc8sIVsAYH+3OxsnN0kOYzPD31fV/8jTXCaK//5l0OGR250he1qWDzDAwuG8HqImUC+9OUfZH7MPcPDi+h++LC6FJQyHkKn5BzN6A0tz9Qhqwor1jWJjJMRGWegwqZ57lVkxy/1iWEmqNQdOENU5fv5GEMCcAU2KMLr8GFkJ4klND7iBzOmPnE0GCF5CvDGXNWIfR4IxayHxjc1lFjOYh8TythSw+EmxKDK6/OaIVJFeJOtVGJVG9zw4AkMvDghilkL7EUivaEZHRTGbAq3K2ZZuDmx3ltk9BpulpG37mhodATLKFxme3Bu6FyxyVxOkGSMwFRffGZjSwRxeOKmM1vF1G1WPlcISg7oeLO55ERGls6KbPAuIfZFKa08mj0Bp8oOjvLcIcysFwfdS4coElT9U9VMH3iXQcjkonmruBeMk5OC91ONePAkB214w9IEdIWmZYMILA2juCIBKz2aJgXk6yfTglBxbuwMIjAw8RO0lMJRpg7cYcp69VcKnsrDkJm8YcgPOXHcgjayIpbqZCq0m+DvJVYh04Sgh+PEPCHBbTDT4u3Jf/iPv59ed8+/SRfOPZBuf9nr1R5keEcKYt4SIhfJ94doL/vzndOOMgC4y35eaKC9Cblqg4sGlxyLTg4gf0DRoVjT1Hkd/pKWzPiwK8ta9GOOCIkHavqpeuzWuiJaIdCS2o6W08Y0YzSjL7pzThLlzBgxtjDrhC1hHMAoYCoxNvR97AvntWHvCdhL7AKF2Hl480IMD9TsWZqcWvdbaFcvXvahjzOaxY4HXOFIAVhHQu83bBUrGdifBW0299lwGjd6+gpba+wwnj06pKGnaw+enJ5BgH8tSWFLaGIXYv1Um4j7S8PqtrDDZoKsnwLD6D2jVY0ZP9QyriJnsc8hD3a7YPCAGnLJOdK98r2uxO7VFza94NEIBZmvyakwq81gFQmE6wuGqwP3lR+UHNlJYmlpc0wbhCUJT/g4G9wzlOEZEzVQlOOBTkrgi87cVJ4QtDfaDYfmgpw4DrytwBr0upaLCHYi5ImytMYSHMthbtB6hZ4lMXj4bSd1FHjgfnHQFzyYZfInU+gAlCOjeoCXlBTXfzteOG3ISCPWEO0ZIOrAPQOWbDsoSiMor+6zQZvOBU8cCw44xKlDHo49KDNIlBVnj8G5NAgv64kuM150ykLHsyDQFB3ynC9n0nu3lHZDg4ri1JFZMM+SoUP9o4EC4z8qQVywBNcRmjmOLaDO1jG4eHi6EoRmHuAYA1mVD19xjDiAGQUoI+US619Z8MrsM1bkgQo9nJLgH7IYGIQ88wdcCchEKA5WwQPceTATTN38MCMUH62kKOouDVnnUceCC8/QW6GL8BxW+ZmPvjf9q+/8ai3BfTa98CWvEXYWxNIc5acNH6n2B6rk0FZYyiqgktFd/3+jgYPua65EO0h77rHW+wAWBxRdtwjYpPN6hX+PmXDZWfbthPOCjdZjkJbSZPlkd2U79NASy2nxQM0eok05VyyVYUuw0zNynuhc7ia502OLWfoiE1vlh3vBY0dwqpj1WdEXB9b1cG4bZSMdVeNV/wuXl4w7pj2s2EhC0YntA7ZEtLDnOEisKpzQlwt46C6rGsAjE/C+VnRU4v9BkfISyxEjuj6ZbyVDA0+FCnW4Cj+KVIbdCeo5q/USlnN/UWDmUtUXXkxRTOve4BwxG1dgPP6YBFCCFTxluljHyMG4h4OUVWHo+DFkL22i0ht61h/3kBAHLyMHo1TckyiJhFeYMq6FFVRVDoFDhJGdJJwevqHGzQ+m+maNGhbOAgEFlD1ELDFNSwE4HqgJR4kGw54SGuaWlsVorDzBoyQGOONrIOawSPb3gEutaFYTWmcmlLfWwCkbohm87aSJB4q3M5BlYrrVe5RQsACRhtkE6LKxm8Mi6Rj+s6x6+4pDKxXnb0fraWyIpsLwtGOj1IpknBUeMJQSGHCR2WcnsSFGTDh1GkRmjpALB4g0NxtdOE90ouFHOY2ASRkfigZdyWhHSTg0idLUJY55+NYrQdoOFwoRTeShXoSC74SI25NH8iCibFOxY1lkArPgASZyYPhPhHNjDR6woe1SHoFYEK/L5ywVQSvKQwdqGjaOoYegwGzltRWdh0Wh4FEdAVTwSc/r7T4caNoC+xdCyLhXbpUCtB6E43NOdG+NC6ESRCvk0Yd1L55Nn/nwn6dX6cO6Vy48ms7c/OJeYeZf0I5+pQb7Q5jP/fnkVKzbUYcgtRd3ucesgUPcm8Ggg0uORdoDyB9QdCys24nIvrKPSPae/sq4wZKa3kBRv+WhUCsD2h7h5TSVe9ZIp1tzDh6zPzyYxuqBbK86CbaCwRO7xaeR/PCszu3tFcbHmQnHiL2cfNaElzg8+Gq84usJcbI2s0vFttP7ZMVQkP6AdRx+ZOnKflvGGWaOOMsJO1x3kIpdwxaCw0N8xOJXWabLFeKGAUK09886B2NDQacIFsjGdRRS+seIQYDmsYQ8prDvSMdbeQyt6wNG6L8YbKIZxVnIVFaEjDdEKOTGDWJvF76HV0yEyP1hSdMnsWtAsz6oqpSG3qK+zu3Zz1psCNtG8chOEqdA46l7sJKQrLZN6K01xGFARyrOpGDJjRvNAM1+E4IHWw1mNFAtxGnGRf1AcAxg+h/l0NSTBM4Yr2cWv5QzLLjVmntq4IAHfb7fxlStPA7T4s2zIiN4c6JJII8OhP+Ec0Pj4uZ59kfr1Ip64Pe+JXU2HdfouiCjb4yAxdJTwbP6oK2X6CCswHQhDhDeNFe/TaUreDhqC3pNnw7NXiJuLrLjVCAAVOFpOpJNxcoXTQEgH7ort9oOIMgCQN56cOcVDkcWlEJkhwYoBd40lXIZBFyA8YgZQpN3TTMM5DINOHOj6bjoU7EgDpkchS7ZyF3JbthSC+oumCBmPZIIvkY1l0eeupo+86UL+T7RrnjaDKeW/Vfo5xu+6oXpltPz6ekry+nvH7wgtkgk2Owwwx/aGK1X33VTevltp0wb1lEWerecWYBH7/+wD6JkA+jU1ExaPPMC4yAv1AaGAwsHYtUKskJqOSVqPZfEqNc+ctct3qh82+COk3lfvdrYPVt5RxPlaFgj12kA+QHZI5O9bkAL0JOCGF2OV+L3dOCjX9/f00yMeplXGaZ0Ej5vC6njMWvEidzsQwIPe8u2hjAa0Tt40MZZwTmCrjdzM0iJHnaTsjUd8MsbcVv6hBT5WCTKGFXjYTleKMLx8rc55azx8g7n0fHJLNstMEHRlV8GapbqZuUccSAlsgNneyygcGKAjDyjgZntTbmaWhAF2MaGbuPzhDJssfrQMox/cMgKIlRyUQDk316uAWzJmjiRP+BXgiALv5x1WJbWYmN20LEItvkGMzSKsvxKcbwKkxIMHDLjRciA8y90gkvJtPlWYkp+x+yMPiFTq+e47v+EVp3WhMNbkOimKiaiv0YNm6QLi5GuIztJOEIsHXFDGKA0Dtn7p2Lwp947Gj2RT8VuSGvrHBwY5wnhONCQmegAHwAGPRokgxRPEdDhyC8Nh3bCOLKdzPhqs67C9TIb2hMjnAuWu3B0WEtGxk29Zo56mKKFYnG28N1gi4zcIbE17RX2QAkfBwrZXRvR8ZttMBQgU6jM6HBkAJ1pQsSA5WmBE7w94CouNMtFNU08/7LGHYOyZLAeDOj60sVL5wsnKGNKzuhsSgscDBytG3Uc/5JeK+X0avL4o15E4ItOY8YqjIBKVISuwyC49gifg+shfUCkklHJ0FPQ5v0Q6g0Wsrjy5sw9ifzIsxi5ONpCBrMM6L3UH1qhwxAE+uZvBvCR06nOwb41eOzqCXJehghjR/04soH75nsjQrz5Ut5s2dW3mebm5uxYMR0/o1d6oUO7iLdbol7u5PBFFsRQfFdT/J/84B+nb3rrHXJoNWM4f0qbR8v37ELW+i+4DiZQEvlaFfblHzrZRryfyMHMRqHQT/G40u5yx0Tsy1mP0arwLEl4AJsDikarwvVAmXlPgl5sP9HpuZPpzC0vTVfOflr7WjcEINs6reNM9PJEOEb6zEheKmN8ZYWBjmrLpj5ftizgPDFrhL1klgKedpo0NvBNyg3+5MjwSr1tDDZL9s7/1OcZN3iQml+Y9Tlu2FNWBPiUyeKJOX+sfHV1tWGwhBYf2JU9mtP5R+WASHAZI8sftVaS3/xXi0VBLq8AqaBDr0djo1zrKODXhSbcyyuxRnYjUSB6VxUz81J4AV3iJQJvphFmtKrCR9HDOZIN7VHBdBqcq+0oadWP2Z8FfX6F/cwse7K8id5HDZDDGdKvUYwrgeGNrhkHcKAtAGRNusmBVFa1aRz2Z2Qnyc6RGhKVxkGPBhoyxbkzmomQJGUwRqoxfb+Mxofjw7rtxKQO6lKjUpu0U0NDlB/svT0IzlMAr9gzy2SnSrNIDIjwYqaD+tP4wcMx8k1S58DBoRQZOZeBpxM22jGrRRGNABoMxMjHTSYOwRk9JUCXV8xZG5/StB7r2HQm+iedjs6Ho0Ng0GUjd8Hf1XkbtA4P5JAUfW/gFh4fQpRUltmOUMETHUUd0IVTxo185DF8lPgGIzNOGgeqndYbIetbE2lVDY7PurgCokjdNAsaugNXZe6s2XEijtzOExPKYW88XXFGQwLRoDynbFgUhw9ykV8ADIcuyc34OGqk0QkBHYQedB8zf+RgVs3lIsIsm9/aUwZY8JnlbUlmL3WPcWoXFuZ1T2N/AQez8XQSFFh6kyOk6W5w2bB/cvGEnzyvSV/+WKbaBJSpIY0CJ5A2QT3Iq/SiLJ5q733/b6T/8l//T+mps/en217yNdJRdFLQ68H06hn1uAqRpzUMLGiFHiHzQElGwD8qyPCKfHkk+/JwPaoWW/EOqMIBRa2kji2zYlxFok8dgcGJU7emb/7ud6QnvnBvevDj/0e6dPYztq/xGj7LaQyyPPwEL1nuqr97rGCcEF9/KF2zTtgpbAV2kgMcl7XCwMMzD1KyKC4LmxjC0nJnNMt/Sg9RLMlxbh0OF/iT25qtkg0/tXDSD0sbm7IT2Ar9gedtHLJZc9qgHTLyxnXM6hhOMJbavDEzUQdyw+qG3clAmKEItqHAw0WZqpP+OxoY2f5m8LZLBt9XBAvK6sFsGwXBpbL5wuCNNcZTxlZbdglkPBEq9KiT/3EP9McYsKjT0uf4uDDjAQispOLMMttWF2JI3LJIQbkZiFRwRxOs3jB54G/zFaqCrfQJ7azLntRDGPYVj+wk3Xb7jfaoYyBkz44UgST6w3FxI9AN5oaiLJwF10VKibLIR9CoNM2WEAM3jTsqprQGT3DKwAVNylC2naeKn9ApFA32QxHlftBYSTA7xZ4V1raRieBBXiOrZUR20YU3vOiBNE7e+OLzI16Wg7pgKPaymCLIxgCLgxf7sAAAjvVvNQBP8wIvx0q0WP6ZVGOZ0HWP5bAc6Pw4EtAWKf2POmMc/FaH8mmY0EVe4K+q829KP6f1hHNGTz5X9tY8wwcJ6hD0XJGoK/mCx1DYJxAP618IXKGN7Dgv6Aa/RWwsCzz5TwDMsMT1By0C+Y0AimhRzP3CKDkAh7JVouKgBT/pJJwV8CjthTP6vhvT2OiCt1eYHWIvAnrg6cSrveY1lk6fnPc3nZg93NjYUPm8DR4n5vIhyXmdVULbow5lNgnZzU/XHa3zMnFZwtq1i+m+//Sn6bX3/GDsT7rlrqr+BWaUa41kBV54Vhn1SF0B9fznbLyths9ZYZ+7gg1Q44DsZ6ceZt6ToBc7PvZ8YPpFr7pH31D8V+nKE5/X4a7/Tge7/qMeMBlcxVG2POwFe3/0QJwfViljn6HtiWwMzg1vp8Xr93r7WLNIfggTCZbnsDG8bcwWDQ4CntLDMasc2HACtpPZJj6UywMxH9G+8ZSOJ5D9XdceWm+XqBm7eIjTNgrsfd05Egw2BqrebKwrzh3B9kb926UA6K/YVAPYPka+oUI0FxlHuFjWyA4eLqz/ZJyAqxGow2QKjaxawuOD+ExqLGT2iC0sjEnVi0EZNkxV2HPsrvHEcloPtid1wDFj4TpveevBNra9MI4NCgNKyNYfNYm/Wp2U76VZOdJbWmnwuYv5HtWgLJe/IUdDOkIY2Um676GnfOI2PLxsZgEliu88DUI3T3mIYQdC+WWGpwyaFFLOuqYbvhTPFXqxbKLGJJLc4BKisuEkAKsxXADRQAIK6EgjihuzYQwZDTaImGpxguwUQUq4lkUw8pWcA91o1tyEQAae6CQOGFn6A466UW/rQRccKZI4G5PZOcPZuri05qcV1q0Z8HFmmDFz4+NtQcGQF/zCWUIwcJlmhua29MQmdYzF01dX9FmSaTtLdG46LX+uka52mIREJ6R+OIzM6rkhK01/pIPjICKznQfxj3sVdETM1cKQoGXouO5clS4dHO1T7lwBiYyCckWG+uAoRV7IY0D92ClzIu6gxSctfGjffusZvSmyYAOIjPP6sKWfIKW/k3ISJ7aWRVszSwo3nzmZbjhzSvrSWy+afl3QsiTO6Yo+Z3BKztbM3rrqylfA4z7DK7iCrZlCZh111eqpjQFVOK/PlZz9/IfTxN33+M2a0/qw7nEEtNsWstraiiLPAIOLu5LnuAYG3XiJfUDRM1+pinkVeXbkEbvgyIrDVLrh9rvTLS/9hvSUDnh1iewnNhEHiP7PGOG301RKb62/us9Sjh92Bcfp2jFjJOo8NStwkjdvnfFxWR60bbNFww/esulsBue7cJsa1LFn8MJe8n1IHDWMGTYJPFYxNPnk8tigTXEup0KuFFTIM/veT04bzIU5I/ftgFee/ttWCxO7lInWrj2SQPTK6/nNeGU+MkujCcR23aBh4yd4yzy/tVacQ+oNWqHB1X/64V7wD8eWGX3P7Og+XLm2pg8Rc7izvlDh7Q5mUqPSJ4hKGEn+P/butFmz5LgP+9P77b1nxzYQABIkTYoUKVGmZDsUkqywrZAdZsh2hF44Qh9AL/wd9MLvHGGHX9phy2s4JDlk0RLN0M5FEkVQXAGCBAmAINYZzExP73179f/3z3Oee29Pz8ydnhmApFDd9znnVGVlZmVlZWUtp44wv42oDPW9I5tJIdstTMCmP4+klv65ThFECcqHv5XaxB7+99BO0lNZ3rCuOB3qdHpmOczUpIutt9gZEI5GuMGYjpGyedaxV5HywCkyu8GTV3IdafyEdpq5JKQBLL1qL4ERr6CzFJep04wU0KiTgYc86MzRWHlMcivMMqB7+1nAyzczUrnhcElPpHQNIo9tDJYG8TijhcQFhyBd4cYRyRWTiey/tCe8q5L72SAIL7hTaVhX0gi9oXcusiR4HX7TV9kE75RjaHUkkjiOknj7t84n47Xs9UqfvrmeWSVHKFxK46+DlDjBZZX1zJqQselmfBakvJqOZnTkdZyCupJPcEFTmQT5WyeNS0RQ4R2c/FAL62AIQKpZYvnpM/KBhZHpYr9MaQulGyTSONfqjGHT8EQeDX/r/jX1ojHQm7Xxdlk3MhYeHDeDGIcwj944cVDZER9mThqeq28tT73i5rF056iHI5HHMhEYvX6Y07j/TjZvf3Bz7dUvbc78yF/KYZNnC/9+/Cj7W4Z9AIu43xL8fUn8thF+l6XZJ7t3iekdZ/82kt7jtUzscbJ3twfynt8tRA5Liw04eeZSTHAGkvfzyZHM6Ji9MCNROxHd03dwiOw18oZy33IOjHa9taXsTNq3rROW5U/lLVhGhBNVuDT7dfXgTJb0qTQHqW9h575HpNRO6AtmGS03jBSrVntnpcFz7Vlo1f4qqDgGq9dc4JvowoaByZN0iXmc0MeJ20bkRvIKgran9XngPCWfsL0sNxP7xt99CFb6k8PMkdOyM6ueMtUmL7m3GJNhuMB77pLALnOO2FmD1Gs+I5NZvb7VHZBTPjumvEKe5Rdct3gb88hPEtn3UswN2PndwzGp4y/og8bGL4jDnz6MkF22PDxC5u0eD+0kpcvJLvLdKKv1v3FwfC/HmwKrQ9PX1aOIOmNxc8T4nDpdJyjF7Pptrnd0iMmvMjg3t9Pxc1w4OJ1GTaHg0SB6KFdKolI0nOMZDTxcpvC8UacyzQQQwryKmRGITj+VZ9cK5Z/GEdh0ytK8BaaRbTvX4NZcdJAcAt6wqdt02dNBp6E68qA8Jr+9SsKR8GjkolzK4iyn++EZj5uc8WQWSKPBx06QB7yvtst/JutFRkPDH2zTAN0JlIIMjvQYgjhVypG4rCDVSbIfyX6wl1+/lu+3xVGqVxL+IwflpZdkC1MVOneNzzOZcUZu5NtIpkLPZvq59VonEh9TL1UyVJfZu1RP8eK15gAtFBBrGFpBXWdkpYuHmcUDLHfKtvAID49qns2IQZSyRY67d3a7R4BR272TQzqNKjPqu5M9AhFOnU20ODi3o59mzOQ7lunXORjOxs0YzJ65kixoBTenUD5heLXfjjHlgOFnEi2Z/tI/+Z83f/RP/3j2J31285FP/Mjy1k1z+oHuWx4qom851RDcR/jbUOx3VOJ9rL6jfH+ggbeFnpvt4/tZqIXIe0Hrkz/8H+bE++c2n/3U/7O5/Hu/EPvaV3Vqm7ys4kwjbzObKbI/VltlL9h/NoIdPnvuVDdT9zDh1Y4YsDK+gQenXzF773wl9uJW8No6oT/Irtl2/Dp9y/AGq6PrriG29DmdkUoaR0o8W1tblriG5bpfLuNMTUxxrrCToe1L6pifJaeRZ/5XEgcanYcFRv5HHkUdCAvoOB6TwgHxfCIzRzvHDcTZfVgHeD8594aVeHNPVpyjkxmI6lM5R75Vpz8zwCRrdWRvrvuDrK4Uguhtwkh1rYMAlzUcJORiy4Z+Zv0rrST414B2R+9Tpok8/O+hnSQK1W9nhc76JXqv4VGkuIwVHGXphrPA2ExnBGCmKavL5XuWd6LMqW0jAwKPvs7eIQq/8G3mRAU4l0lGnafnI2kI/VhuCu9tJktPnb1KOgV1yvXawamcHkYZ4dTDxWMUoSdM15nJrFKcFl7weM0qH97wlcbUtyXSgCwjagDO4cEDJccnHtG/Y1YDPpVU7TPtOKMTTppZC8JxJQuOSacjk//1rH/b2HaqzlKchOCqUxR8aMyM2NBT3WiLo8Rwqvt7eYifVPrKoSnhuCD5AdOnRV/aSBNvhqmJuXc2lVm0C/kuEhngrwoHSYLyU9GWPSTgrxyDPODbUFrlK/ChqwwN7hdGgG+VOQ81NAskEKHX4LmTD1M+fEhF6ZdChp7ltWwkVOYTiRvd5/DmGAhf/65W5ZqlNaeYHjlq1u1OHWDGjrOOAIOpXGuozqXcXF9VBj8+/N3Zvb754md+LssBP7h57eUvbZ75wCcSL6+/vcs8kM8alru9iDXhD8V1Kf0firL8gSnEAaHPw4Go96Mg+wjsu30/KMXGnth89Ht+bPPhHOb6c3/nr2+++Ol/2oMenWtk4G0lwSqCMKsJacVpsDrqM9mzePqMfULsJ1vpjex7myvX8tq/WeK0WTbcK+M6cm9NXb2ab7XF9unf2NbjGYE+RCO2Rf91Z3c2GmeTauDzin8MyO2786YbfO3zwsvce0Z5nvHIRtRUzIMEUdswtwfjVoB1UAlnitK/zp5vcx+8GTr7kG8t0b644BlzxIbH1udpx1trmfxg9wv5iL2qvUdqy0Oco2wb0W+xo9dvjnPUt7jzHDegcmBf7QHTDx4M+/jZnyB6H+39j6K3ufY9rDOLhV35WwDVhBJVWw5Uwn6ib39/aCeplaOyIoSHmQFScaY68cszl15HITFgdKj98nKUkpAxeiRODKemny9JulgzFqbl0r9lvTjCTAEVbp2J8qK7rr+zA6lEy3bw6cjaQbviIT94kFvlawR41PmZbVmXneqEBAy8oGIfpNMNaHncDbxlpylncMfxgYcyGH1Y/pF1VVxK4ORtRwbA1YMt08jqMAWuvCWvxs1BQkfF4tQSnP1EZkFsROZEKadiwJ8SVaZ4ad7mUkJ/FCBOXe5RETfORyMm/zBa3sUOzkQGmPKoI7N9ZKNOXr9+e/OBp87FJwm91CmcM7sDNyojd3WmftBb9YKRAVO2c21dLHnQ7ijODdqpRzfgQyY6scQ1MyC0ONpxYiOjNubkqWOdTN6A5AQfCw+RUFBNA59N7ng1PY8Gh3ec2aOBpXHC6Gcc3tS7gGzloMzJptz212vaa/O+HOfo87/y/21+4N/5K/mw5sV+323kCcPBIP+E5S6XoSx2727/7ZLhO5fvSGBPAltFmpvt4x7Ee3+3EPmW0Fq5D7GD9GKXsqH7e3/sr2x+7VP/aHMn305jjzoiSvNhN2TwlYWzeYPqXN4wM2Nfm6MxL/bF2X5mh2PeNi+9crnt3IGR+iWBnYeXDTYoNhviuAD4te3anwyaz+UNODZy5+SpbG/IyTzldyxwB52BBb/913QUlptc5mm5aWnZI8/yHrAKA7z8rja7kwRhzOnWt5LW/mVFVywyLBEuWzOzAhHcwIhhC49n75FX+k0UEFkht/kCLksiXfW6HMKz2YxlosLzzOplpp88A1MZBE/z5cezPWArW/tuMHLowP7rh1j0ymNbJCspecM7RzXwK4QOfnPbAX1j5mds/77C7Ut7u9tDO0lY0DEh044x0ls/KRLOEztM+qwIz57SdfYpnVUdpjx3WjIIdO4cjr5eH1gfrFVInmykUWdh0ubDhxR5Tr9O55z8HCXkwGgczmMiRHDTkQ6P6BqBYPpoOk4cIkH5lUFnqWF0X06eTdlyADgDCHBYnNUE3gTiyRww2PvkS1Q38FHeneTrFGPiqsyhe5sDGYKeTzuaNPfoVVT4yLOKWw+/vJ6pSrNYZ73NFZ7QxjgngaNnbZ6ywKNcZkRS3PKB59ndnwYHsRBQ8C1Jie45NUtyFc4SqfND2gwC762O+/lOkrxt9MFXulDCt+BCgEMhiCdPtPwAqXPVNFHkisbgKu48lqpCuPOA51wEtJ1fok5Ud4j0Sjat61zBKi/cnLY7gYWuS565dtSZePLj2rbuA5+oPIWCLxQnb/+55i9kirfHRwRWGXMpf7/7mZ/pcQI3PvGjm+/50R8P/OpCJf1tAhQT9u5CuLQmfin5clmhv3P9N0AC+1SiipYiH4h6P0SwEHjf6TzKewgepHnwaT/4Cy/+wObF7/rRzed//adr/zRGs/Zmi3wbbSd7jWa/KBuQhqr9BkHbcGxa7ULstrN0nNh8P1s0nLsExtlG4vVRd/otTrY5eTJj1A3Ivr0W23v+hCNhcpZe6MZyZPbKbPXYiumw514q+v0rhbkXdTCsEa7ySoVxwtr8xddGxTl7kBWVh4xQJid6nwKCV8434pewINtiXaLAJ5Fz1NOyM+NmcD+0k7jkY69XO+gKgINIhvqhG3FafXOPczR2fmTNrrPD5OKf/be1+y3MgnxhbWiufL71dfhJ/kcKi97NLJOuy6wYZduP6ARy1a2V6rIa9NZU3jz1HThJqDpX6MQ4BKk8QsCVGZBu7A3TGDZdqTIotBkQh1BysCzTcWRMk7ZzTnZ1r4Pl+Fge0+kpYx2e5JnZqulkVQh63i7wOufNOEfeRhCNl6Cqg3FyUX4NYGLlD5/xmPEDz72sUXcWYuVx1yxQeIz2SH9odijOm0pWN/jCi86TIDhLPcgyjo2ZKhWpLJSoe5LiLDo9XB7fBcIbJ3CUCoY4JEG8NmSjIp27NwK8rq4MPWU2+cnHHyUQKMfqaHhe1ZyCll+RAa3C5BbNtRy5Da7JU6MQHuojkUYEPwqe7Ao9aDzkTrnnstwtspUSHBA3eEJ+8lcu4X3rICbavTBolWXiimOLJ8tpGQUePTozd2bfUoo4q+on8jiWV/rveWNtdO74CeeVnJxRYSBNJD9o40g95nwuy2/ebrubvEiklvK8NKbwwvhw4stXfuxt4GAf5eSTfTL597lf++nN3SOn4iT9pwq5FUszPsHPSEnG5W4vothWqT4e9VunPj7PY2LfIzSPwfwHO+qRunjywrwR0Rtjnhz7Y3MuBN53Oo8SfyzdJ+PiaAZsJ3bOd9ZiJzPtFy9caD9iQK2/0b/MoDD4Vx3OdUyI1ipYrYhNCkgHn9p0+g9p+qBz55y9ls3G1+92ye6pi+fqeBncavby3bPtI3j8txe29hMC6eu/OmmJa1gybu1mnoVeVsu499y05WeB7BNrpHzHHYxc284WcQbDz2In92Hbj2ZojQASn5vAxyJmac0Kxt7S2pYekMIVWlGLw3EJnEkm+1a+lXcrzpElTKZzQPRp8kxfiz8OqzoyAbDFDx15NCIZKreiOPAjZX+Y/mj6yQPIAmS/6I1bt4p37a/kxVqtdcqMZPsn8I8iB3yIcGgnaWZIzJjM6+a87AdxItqxhpB9OEbsnBAjeJ3aCGw8SpVsg1U3YXdDs7wzAyPvsTgD5Hc30ldIG6LHyYlzkQ5rui+lTJFDA+OW5zoTlCsBmO0BcZ+3H+n4DtuDOE91TJJgQzj+8PkgCB9kJqHrsIH1VlPT4jz1NdETU8k6bo6YuL79FTyW5NBRAZy5OiBRjk75BT43LYvymNnKXFadquN5cyAimIoLmPI9lC/w3uaibEeyznMrU75xkLMEl9cpOYoadpChQ9nN5pCRcgnKOk7KPJdAQPEj3r/CBLbPHIWWQOZxmMpwG+CKq6RSh3nGWEED3KsfcPOArfK+4BRffhK/NSJ4CHiz4D9AnLpCGM2E9hi8gVFe5xs5jn5O/45znNHMfY5rjNqJOEV1fGK0hNNxLHcyFUwnOTtgH3qFOM9gj3I2c88hxK8yjfzWJmTEFn6iF7gC5BTdY/mos8a+Li3fzUbyr33uX25uvP7S5sIzH8b+kSTMhQAAQABJREFUNjSfp+3NNumJb/ahfwyOt059TIbHR70Fmq2ePD7nu499nKzegp93T3DFMES+JaRWku/HdSnAt7wcj6X73nPxzAsf3bzw3LObpy+erQ2+dtPew9DRiBv2GBl7NINV9sf5PGP38nkqS0Sxt3eOZY9i2rmZf4Mg/RgbDc6fPuB2jO+p2H+6ryP26ZEYizgH2dydvsXcABbY4TVfWVo5wps0kdsEij4x0h4NTXkk2kA8hqrg52ILy4cVhsCxY8IW6zbv0qAKkBLk0Xfwuu8ojMNZ9pbMA7385tKeLVd7fr0ZiK+b2Yx9M7NH9vyOjJM5SNhLf5yicYz0ZdNvzqZ5RBKKnqOzlcDE7//d8u9m+FmT16RFekvywzi2NzozaOZvhWmeMNkB8FbOIwd19STh0E6SN4UU8Vg2eRmh3620wm+u1jRt/N0NzBLdgjhTqIIk/CTYF3IscBSUAmJaZ29picPACRC/bqbu21zJx7ma0XyAyU/lJF6RCd6sj0rrfqWkczqs2ZblwOV/RiCzydpBjJ77FzyW09zXuWuFx9FLxi7pIUawyruPRxvqzDp1D5FZpCgyzxqPUcGW+QjvP4jxuOcMGAGtzkHQBj4iqtMmL4ets3Ihyy+/nsaqLDbJIbDus6oDQhQtRG6wmL9OOeexsk5k0DQxJBrwIq7poUXWkxA+UiZwYPBidgxO5dqDGzrItu6W8lHepT0PxuTDW1C2HsAL6xXGte77On8SYpMGZi7hMTfFQ77qcOQ59zDMM4LwAp+01AVYOpK/xi2w4gsfWPcc6zUv3fNmnHTlYVCNNNUHw3IrBiK35elGDpr82hd+aZykRK1hKUJh1rj9Vzw2bG/WiN+/V7J4X8P7jP595f0R5Pfu5IiPV//l5uzJtKW0Lzqlk20HooEkeENW9Yt3Evzu0sbpWjvdpHHI6RzdNQhzJab9ajPxPvx5vB9VvZCDZW/czMGyWToyM3I2S1IxeVVwdlRrNxAxcDB4sow9fEx7D2TpaDMorTR1Nn1LOPaum6eD+0z26OAHqOUrg9huCUh5veCiHUk7Hd4MVOFqyNX+zbbDYOhgVdqS3FfGA1jcwXHl2s3NmeN3NhdyUOz58zlINiPboxlo4pFtWtEO8uSLwXkYua7tXvHxbz8R2faQ30Q60Jde+0c2ZkpmT6K3fc1Ox9aeyZuu+I2DhM5u3pb1MVVp2PU3NYoujhNynTu/+euDH9B9OHhZ0yU/JtSOsUORIx0ir+njxlbvz1JZMLgJQyn3idxJf3M6fZx+BL8rq1gCPVqgr1Cu9M+pZ2+s0d/bGaxfz9vP3bM1BJo/bEQOcDlIc8rHJ7NapL7ZzL3+IQkL0eGrbK1MNmm4xvmbhDXjmhxevPXMSereVPSUegvHIaPrE5fqT8n2+scVzWGvh3aSNDABXa+eVzhhdl1CynJpBbceEQC+x7szDoGzqVbj1KiqVJFqcSwF6yxMkNvM7C0tI32bohkDimEpiuFQla72Q7k63wZ+MAwNOPjrdIUe4fBuW6m5JzB7kNrQAl+DlGeOAXz4qFMWiWtKw6NKlznXws1nUeDYCX3Ki8/OfIUWBUNz15Je4L1tQQEL0wYe3OFZcAHjyjHJ7fAi331v+OXr9NmvZO+Vc6ocRMnpmpKhFRzBk6gaQpqC59WQkEWVpdTAyMmByD4d+4+y6U2AsSEXsoJziZmHJUbDrTNW/smaEUwG0DIkXlz5yj0w9CQmus/kKJ6svaymrim5f3shy6lpoD5w7GvdDJ1KMKtmaezY7SObM4mLmBM9sGd2pkHfNSWeuqRrd1K+27fzwcrAUvZQHDrJJ29DeFGu6mV5pTOZhSKI8Ciezp/sfXIEFg/vNKzkDhQTuhXR9maN+M71D5IEXvryZzb3P/03Nt/9kaeqZU+f57jcjrpHF9Mg1rd/aI63NI+aKc4HVzuzQStj++gIVT+W2Q2vU7MZ1cMksCuezX6EQI87OZY3Uk88fWlz6uypzY3XrmxuZ7ne8tCJOE1HjTzoaXR39oDmZOI4GucvnC5/dPxGDAy7Izhaw5teFNJqgBsL3KezORrI0cyiOAbm5KUczhoezIIHMG/HZpDb41TyqaTXrhVW7ruxexfjrClTmlCcpgymU6bdZWuDgaeBtT2R3rBl0+Mfpu1N2/zyN17dvHL1ZuxGlr6ToK/Rgl3YjzTHcMjG+AuDiXNfpyiQgnaNF1dl65aKLOPbewmXlZGTmWnmGDg+5m7+xJMve3Q8cN0cHNlYtqszy9imTmuvFEyOXOfW88QdvMpTyPWyB5f44krMcAuOaMdW2Sf1+vWb6WfyId3oheNz9Asp0r6Qh+XZpa/0R46OndEfwLuwWjAwBc/Pw8w0gTm9s9M+l3N04+aN1AeHO7wt/JHtvehPaqDwiJvuCEg+CJ8DI8Nb/ic0w5RznvIbQsrvb18oDwciJ2YfyPZWL6HQd+Kwvnr59erBScoifh/e8ks5Ch8eIy/1oy95knBoJwlyG4s5BGm1EVYUJozcTeOwRwgTJ/JnPxJFWhuZUQUHiYw09q0zEViNtB5+cBMNb1fnbtmM0qjYbtwNTfEU/VQaWrLmrKBcg1az6SbpSilOW5RilvuS1+g/PWHaQR2j+fTEOBCQmD2CA086fng7y0UZlBNPUdAjetNF0CoKLzatjfKZCRojlGylveN7cEFmmUbBlE2aP4GyqULyG2cmpc39LAEVZPZ1BcjR8Jw6xoRHb4ToOzr2K5FQmQ7/QtjqI9kpS3FjQXzSxeFLNqrubKW7D05tLqcBOm4BjIAXZQM4zoP8/qV8ydsGB6648lS6+RGkh5HV8TOjBxdZs2PFspY/8TX4C+FVLmAtP56L4d9Jw1U6tDRieG3MsxR3JAZXJ4A+2FOJe3h0d3P8/nxUcfd4HOk72XcgPoac9Y49LnwLU4bh9mfpNg585OVZOj0+kqVhtBkLIQOlcczm8T35Ra5he7NGzHWR7CEiD4J85+lbJwEzGL/5qb+7+UA/E3RpczF7W2J+skQUnV0U6kTepqz+ppfvcR9R3NNn40REp7UbiqddF6Z55giR1n9g/RN09CzIhQsGg3FSHN6XAYVZkWPZaKztcGqu3dJygoMeZw/ftfBzIzbkzlXLRyEXumyEWS3XDlSTQ6eiLdY+J//l6zmpPnbQAPTO3SObb77ueA2DurGvGov8Dx7EIQxeL++0AQXo+q3s98k+FrNKR/LhaSquPc1gJ+2cxxM+TmcQeCrl0gfAzdE5/7GP1DYbkHzp5Subyy1PEATLkXTsGnJfaNGvsNdkFHuTS+3W2HC2LOVXHjLVkUdG9pMirU+CfycO6604rPKGjZDITcL8eh6+ZwAYWvnPlq3lUabaLzT6f65F0p+BXW4H4SO/0kDtp8z+6pOoyJn0K2g87JJjmEzcNiSTfL5mYd/R6TjI3R5SgOlvlE1wCZYtv+tBkGYKX82Zez7v0r4DN6EhX6o3OaJLJZr6zhOTmO6/uOpILPzIgzk0etdn9wvAxOZ30vv4Fj/luwPr7O/dvb25fOVK6nte/CqtlS78y/3wHJ0MXmVxJNFap29B6rFJh3aSToRI6aTDzgCglWF+hOPUEB66oTZcY9CZSl615P2vMzdGEGZY7EsSwI2Xh/84W9FOit39HynY7ANKG4oT1koLDY6CVzLvphHNHpMoRZTHG26W6cjIJuiw2MY4PDa2VbLMIxRuZo0SE545Xzp3h2MSPJzBUB7xxHBpiOLxYu9UR2edCs3HWLuhPTMbaXiUrd8KU8CEOhq5wtFaw06SenS6qNxXoXNvFNhlyuSlkFWCAHv1837yX08DQQN+UjQSMqJjLLuvJxnQY5gZAWWrgxIcnQFyTYLG9vWMPJ++cG7zQj7p8dq1Gxk9jJFooYNbXvKrHHqdOOyvRiG3kvcu4dFjDUboP3S2EZDgIl+K6h7QwChjc8wzmgGTdtWx9tEZBlVg0IB6c9Lo7lhk5TVfbznCYCSsswpg5JL7NCQjTLDHc23ewLmSERrC8BdppyNISuN0YuQEjs7RWQ3TVPKaD579odgG5f7od33/CJnB99jItyf1WPYeG/n2uP7QQjxGto+JOlD8b379czlL66c3X7h3K3pzfPPn/+TT1ZPLV25vXnk9n8+JjKvvi9JMJzU2Qcf7dJaULmb2x2zKK6/fqI3p7Gk1G/UiaFth3+jmB5+92MHaN165UqU2Aw68bU2OtDfkODhszwcCfynOgGUts1R0u39pL3hjM1Bq28gVDbjYvdM74wj5zMRxdAIJTwnmV/717ygPrZjY5pObC7HXeLEU11meRRZpkmlzAU2YGbOxTdMg7XPNGXIG5vqblgFezljoJrM8tSlLfva4eIJ/bBxT4LX+HD6bzlVfY9bsxAnLSWN36jjBGnzsPHi01re+AlYHJSB1KvOUm7ERZAMPmJYdDMB9YZ79himhEfuhxj5ukwq0wOZeneh30800WJ3gnNpDW5UQG9nDcjJ8ncnp1nsHQjax+QZiuKB7atpLWDvZd8k+Xr5yvTNpXojCJLoRR+ThUSVNT2DmqA5SwCS5V3YzgO63EgjP/EyyEaRIC9otSB7fPiRj8eclnZtZTr5+M2dUBdsc+aAuBsn0IYN6vVcUqfpOfMwWmrcn+SjEoZ0kCnTvvhHFNFDKeV+HFyliqocvRphmcThC1t5JhmK6wbATTe/dTfqDdEZ5ppCddQoEHJT8aDxGBeLkeM2QgFrpHJ+l47p+a85FIB94LevZxK0x41PoMlzwe8OsOl3YxUEIT5bWutaKv6QJLUeunKAHGQZyOtpZop046fXqZQhh6TfDCx6MPqyP9sykwJs+7nJg8kDPURlZjOLXEEUepQlBAodSeWWgYMrnYZJDLzen0zjM5lgrNgtjQ6LNhA8yDdq8zYG9wekyI8RpjLjZS3uYb8Bd796Ip85n3T9TzmA7jb6ofDlY+FBnq9KLZ2CUiaFAp41PeQO/Gi/lU5gUVVHmp1fQIwsNctgVM+U20vu13/hCn9fIDz17YfPiC5fCQ3Rl90ZHS2YK8X4rncutK6+1bHR0d1djoktpwDnbxFobvRwew3NSZzp5ZqIY75mOnaYeFCkbHXCNHtkwHroGC/OGI65aEDcNa/FIYg3bu+3NmvLtuR7keOHhsZF7/L0r1t9V5j0eDty9Db8HYB95eBdZH8G096g9/eYv/J0oyu22Zw712XwqiE5/9osvbf6nn/gX1Uv6spPeTrsd5yTaGCB24j/+Mz+0+VN/7Ls3v/fNK5v/9Sc/1Y5rn2naahRYbf7pzFT9l3/pxzoz9Lf/ya/U7sFF3No4/Oxh9T3PH3r+qc1/8Rf+eF8G4cP83Z/99doQes9mkwt+4ZB3Iuj+w82ltK8f/3N/rIORn/i5T7fdzMG1Qw/RaSMQlIH++L7iv/8nv2/zwtOZVYuN/qmf/818w/JG7ca6WbrwgcZHmlnpw+oL8n/2R79n8+ylc/msSJa9Lud8onSS5S/9gKvAvrDXljUdo+JFF+2TTSruFmoG52Dt2cJrbU6ud7K3xVvXcPjn+27nwveZHAEAx06W2zLBVDq15MEhyO+PoFrkRuen//euC3hgAPh13QtTijxPcnFJFe/Piikb1vIuyPBqINkQua1La1Z02G+oViornl6XenW48unYevph31dPyY4shke6Y7CO/jjJ6MjPJZbmPsnVE1doDVYbSnilPlH9lfxIWtl5DOi+XLmNHmfA+8rlLDdGh+i/bSIG/Oueoy2K0ph6IapZgk0fGyx8jYd16g9iP8zToZ0kiqSBl1iYeZDK0OkICqsSXRXC/bnMdFBGkinDuevbRypYD5RgFqRTzS1GcAW+DTTPcJu10RiNkCzb7WT9nSNhponD0LRUtI3NHCifAtkJMTxq3A8zotvyGHo6bjxaknPTz4IEdnRvyuKVxyphykHd7jq5MIFDVO3ID0dMg0tJY3Rs+stdOlS7/8+cPpHnmRF7qFLNvMX7x6tSV6nCB5rw14nQoIMLXbhWI1U+kk8ZlEmeNoLwjjrH7UpO7TaLdTJ/XSoMnADv1EkKnOAXvRU3OX4kTsdXXr2W6fB46VmHfjqvwzLgZku8Q9L8zZzcypt4+XHb+9D3AM615UkavrfZQnlJLg/bBCD5K77gha+yKMA0OnUMyC/cOxHg+fz1ld7EWiLDy4kYkWNZyminUD6SljpQP5VzDMlDI1G8FleuSVgdajBCR7nB1cL4Be+x1IeT7sES9ZZhQRiY7V1vimybc/u0vdkm/b662ZbhSbh6V5mfhOC3Ps/Nq9/cfPXzn6rC0EEDv/yPPmUUGzuow6VHdHztXM1Zajd03oyJ/Zf00yZounkkHYHtCxRone1wD96MJ3jBLNHx2Kwj2dDc72XF5oAbemEiN5bNLmWmqpt32aEQupGZ9xvLJnI8IWUWy+vdtVQrrdA4X96zITe2wajBHiR4W57gC2jbsfYkv2d8ns4ydwsVemh7K9jeopZ7WWUIaJ81AXk6GxQ4b7VubULizz394uab17+UNn6tdhy/AShdqxnkoF8wi6VzlJeNC/aZkbJUHx7OnLVkk6NAfDU+na9Z/9M5qVvQtglCObsUmTLarM2RQk5afsonXscyPRLf9AIPuOdanYnrb9Ao75sHdKIb+esqgAFaeFenk5Ib8s8XBc6knKdTfv2GMLTmFzw6/gxUlatvgoX3a+k3TGRYgZCOS/oa0Uf/xjkqLXH5M9nAVvcv8GC5VWi45osmhcN1xYRmAhnBUy7mpnlse1gem7r+iJscQbgEhy2jYk9uHdPKXhlpKrj8reAp5/gUiYoe2JfaPBXGCrRiPtz10E6SWRcF8DcfiqWgZhLGK2/HGOa7Tp0rxu7ZzY3//FFajotOfnW0CNBHYGEd54oHm+f85xj0FFTlCAINeJ2lqTokrq/8B59lPSK7k1kqDPLdpgNU8WZ/TKGG/iQXTvvhjZrdstY+wk++ODUawNHwgW/4lM3ZThq68itH334KDtxTMx260ZK9Q8oCH57QBqMDlrkjgAUnY8GAbQmFHlolG35taCQrGa3zcwTXvV7Kk8SOgnxz7UboGmHa8EkxkJNPu+cchp2QGQHktnQcxHU2xnY3DoaZL8tvL1w6vznXDxIu+SuEwZH5qkVO6jnygCih/PpxV0ITJ0aZC+ZK3iohYX7JheziAPoa7b74ZlocloVM6ZnJ0QjEGdkok1oh76MpO2r0BgX1KHDKNWRpk7PCyfM08sL2af2paMv4ioPBrRNaLOtPru8orCWZTNun7Y34VTKPR/yG1DdEPD7fd2LfLwk83PzOL//k5tbVl9vhRAtbhZqNv7NZQvuR7/9Ea1WbNQihS9L8eNWaTp/KQA+Q166//5MfDa6xWeNwwRl9XvIbcO3mzBpxjgn5Ez/4XdXN17KfxCciVlvmnDGzWvZjPJvN2lH+BgO3f+u7X+zsqyh4DeyuZlbhWmaoxWkztXd5sMelcGm/3/uJj/RFEvZVeXS86LFTbLT8gjTLHB3opFza/ic/9qHNBzLbw1HyssXJnoM2KwQKzxZa8t+NY+IliZithe6RzSd++C9tjjz/6mb35//m5vqVl2ILvap/qw7PxQvnI7fTm2efjvN341bs+53iTxG6d1Fanc/wde+eD+dmJSJ9k32Y+LQh+lSODFFm/Zc9OWdyUCVbfMVr5rG7TAkZqDZXd2zD9t9iayZxrAzIgV1zyrfGLHa+mOYH7jXoOzzrPywTWU1ZsUQy2ZJxd3M258LZyN23ydaMyTR40kc1buRq2ROCm9mu4ZV++rXypz+7V68lAos8IGCXHb0yNjZR+snE6+tc0QDj6jdsNr4k+5OUQbWUeFIW9FuwoFhFsi3fYE+8tMTaZ3UsEx7r5ApWI/0VANAWh/YiNapXB8o+U53gjRu7m9euXi/oO/05tJPUfR8hzAGgD+ssEYIcG8p2MmkERjU4RTbi6azNsGCeUvmkyepQaVwKo9+0tBEXNtjyxyZAnB8xdqQ43K9ebGiZORFs6qYgZrj6Jt2Cpx1mcnKA0ERbo+735LQcSPODRweWoWsjdjeRK0N4QQt9Bi0yTmPPY2jnwjbVgLSswQFdmlH3Z1Eg5TudWTByMtsz3xiaeHTBwzsyhFFMruslV3JDCP9wckwlK0NpJK7yC2+uFNp+AWUyQ9bl0DT4liP51tBlMIylQEEZnLPf6Wjy9AiHANaxQzv3ysqIaiQ4z2Nxty7z1HTIA+OhjlgekWiR3CQeH/J7xH/Tcpk07KwylyhPk4ZiHuVNUfvHFYKtDTj3azCvpHpTqbKXT/JwT5z0LKhaP6tc85gQ7N42ysGV6oUu0xmjrDXMTJ7cZa3XlnGJQOO9CUPjzXC9IZViHjK8AfINEYdE9G8K2CPCfuSxUrh59ZV8rubvx37Y7MpOMRaSCPdITtA/ufnBT9qAPO3JPhDtlT2ylM+JYQNv35q9FjY4/9D3vDizIonnvMzLKIEPgdPpvG3M/uKXX2pbOpFtBp/8Ix8I/L0si53eXM1LGCufXm44f/Zsnh2xsTfA4fx84qPPh+dpc9I5EbfTed7I2lLPnstzy5K042mb2hGCH/vIc3UizFqJsnTDPpjtN4tUByglD4nNjexzLDOB0yw/9uHn4tTc21wPDQOjnkOW9mY2R9k8u3q+cuVq5IImUZoZOr757j/x45sPfvef3vzWL//U5guf/pnNzW98IXyPXZr+KYfwxpzfu+e8NJ18/lInN+yFTV9J3l7p13EaT7HTNi0b/Jw4a5bF3tbdzdUrGXBmoPhwcyEvjuSstDtZlsuKvfLOmW25ib3tv/DIlpTNXud+GA/vwiTu3S+RjZ7Yx/7SoG5Ed10gUqQ6n94U9GIQXXoUj36p2pe0nZSPc+EDvj4M3P1MiYen8sm1w8x0cvLod9hnvQ0YPR5Zzp/n4WWN02Wv9OlRO8peEwuhAKAXvMIrYeERUOESv8AVeM2bB2U0UyiQx4Slf2pk7pNXOWeywuyfet5sLue7fZz3s3lB4sUPPbX53FdeXvIf/nJoJ6mNPPxxPBRvZ3Fa+op2RgY2TZvp4UQRII3iHJCQfSM9wyK9VAWxVJJ4G+R2o7wq517waMBw2EDmVcfdjArqHeaZcSBgG/fsEVGLfeMiDo6N1IStkfFq8GgjeECq3Hbh6wCdk0ToKtNMjT1QaCd5eAzPrb7AKIeZH/nqIOXerI0awafXwnc9hyZDAYmGDYN9Qvb2dIkv6Z3xWGDgp4ga1xqMjLo0mLgklb/85H6Z5UqkeLirNLmn5JU11cs9Y6vA9ivZ9M4gMwxGDeCQG+cADmYLhUUJnaWRBw4ivtGoMssDbuHVfSNcheCFGKw0j0Lz43iNmNTy0HpM2vCUOkj+ddP55B4kpSXCYx7ACeq41FIHojpTlng8eBU5raVGGSxHVK4HaKSM+EFL+dcygfNJYp9j6abYIk1dcqB9NFc2ki+uyQfnNuThwPM2Ybkhhkfj3rPnt6R8gMobIN8QcQD8MQ97pdi72wf22Mh96e/37WPKczDq4NO7ZYe+ffmzP725/MpX66T4yKpvf33z8jUmIXUemxUb9NSFs+2cxJzMkgG96ycd0tY4SazVnTtsJKfj2Ob5py9klid6F8NkcGifjbfe6LKzlfhh85bv2M9zmU3aDcy9u5ktSh20XaVw9gRdzH6itkH7SYOfBEJpcz4O1O0Tc2Zdv3GWGS0z0eeypYF99aFZ9ohduXubA5cQ3L6TZusFPuGdpakMKOJosDmXdGbojEFP2VAbm3Yh+31OnjSy9z+fxsjsjULrB+wX0aFbRrwbm38/Z06t7XOu7FeW3S59YPPH/+xf3fzRP/WfbV76vd/Y/ManfmLz2tc+s7l+/XLYC54jsXmZGe+gLvLyfUbHLfgQed/ayhJbjzpgJ8KHt9p8gwz/PnWymyMOHLPCccLX8ez1vBXnb3go4xVF7pofDgHt+ZeHJa4J++8fSZIueW02e/drzAKRBPjH1qv7zKqU2pqf/QWbAEnkBMaWA86sU7I5R01Omr5nFnCiSHlWO3B35mjBw8KCE9/9YsnseeVDvH/I9R6epHuen/UKYWP3XZMz/S6f4B2FFU0x7eUN6dr7e9GbljeOroG+A4XPX9zZvHj+6eqrDepPEg7tJD1MR3sk7jdnSeMxEjK60AGbyXHvjCQC17AFy2CdzUld1AkgrJStHl9wqDizRCcdOKbPJrjgURngGCEepCvjQvF1iJbQjK58rBD9+5GSqdr71qTT+ZkSnJmaVGLwrjM7dcDCG3zrNLGzOh7EE0JTZc9+F7VhT9SJOH45KyJ0nAtyNJ3sHUfCJy02cGiQQzrT8uiDOKH9MCd5a1T1fjOC0wDxEwqhMXILRO8ZU0lGQmSqwoe6Bq8cmR9JBGcQDWVwbUiCNHXCYRI818kMrruZWnYSte8O9YyWwoyTtcURau7xa0rX/e3w6w07YRyS3pYvP3gX2MGOMN3nbwxJJVA84lbHhl4IWJCHDrQBKnPodv9F8A4USfkbOvIVT+r4jlf18RscUo/l3lQxJwhu1KV03EEXwBZNRtNJn5FgoDjJwPNDp5SW1iqTzK2n5F9Qln7c3mIPxDsLoVFab5YrRErnzdJ/38TvlWLvbh9zj43cl57bg+U8+LQHeRDRwac9qG/33d28HPD5X/0HnX3QTpWGc3M5Z/tUR0fxqqvapNKvZTFbaYCYSx2p7b6jQIHtLEGgDVja5mN/nEVjdoeTpK3Rd/ikn0hn3reIE9f4pNceuybDvRhYbRtfbRPoMzzR9WOxUWlCwYvH2LnAZm0gfLAvyXOXXV9oLfn6Mk3A29qUs/FBpkzBczSzTx1cLvkg0G8cz+aW2fc4+37IDFxZCQ7ls/ReeYVXZRmtwcEEZT91+vzmo9/zb29e/OSPbm5kNu+rX/jlOEx/b/PNr30uZTFI3MnxCk9tnn7h45uLz3xkc3zn4uYf/t//7eZe9iJ1IJ12fiGneNtgb0+XpUZHiJw9e6anSysDu2CG7nbyNGBhkfnYOhHL3x57S1xStnG5eYNDILGFK4Y8LGHiWu78sEAg9Q21Pmu9JQ6MWFZz6kE/khnA/Nk+ceNaDsZMviRWX/SDHh+kjtjP5s8PO2uWPcnFN3inX5FKZ5LU9DUPXZp+AyP5n0OmJ3hQ3uVx/0WcP0iKcX4fB7o/W+8XoGYXURxz7XlbGZxYTVIGy6P2Xn3oA8+0beynV1zv8OfQTpKGZoMc5eA0EDKm5s0AVaVbUvgIP5wOs/Hmkscsj4YwnzRJow+MTs+sjsZmV1gVahFEZ1RSa7OZUQVGBZJWHOnFVPZu1lZtkq6HnPR7UQqvi6qE4zFYZqXwKr0fvQ0+b+OVR/BGEgE2LadBTsdrTdoILkuHUTQzBz1oTYUEtf00cnFKGDEOGproFHN+LP/ZGuXZ2SV4pDPwj0MxxgqfNX6UFj9kRBYJGjH5VSZ5LvmkaSh1TpPAyCJCFpyCPgYwsQ0mTTgO3hBE1xIcpN2otw8OMF6F5s2D57SjLW7PGgSG/BPQFdSjtF7zvDTXxrkvriWfciqMrI1niFImZ2vxUFb6C4kcdMfdTWzzPNh8+iuvbX7rG6+HDUb1yOaHP/Hc5plzpzZf+MblzZdfyWvTxRv8kR9nubwwCEHxvR9+avPis+fbweAbL9jByJRpHtrVBb5OXPCYSrQMC1496zhiN9/bEHr5/8Sh5Xji3N/ajAfLefDpW8vJu6X2cPOFz/yzzde+lAMko8MGVOyCt2qpTXUw+m1Wxr7LKakuRzPSZjLYooNg46TQXTrGOe+Bu5AkU9PTPgzL4LybpZ+MYJKVPYEitiMzH3hgPXayDAMPO2Tg0T0Z4Umg4f3NjTeGzIrPYCD40MJkCM4lg8fk94UAAd/ydlAZWuWn9lD7CkzydbY9ZTHibesLH/4JZMPhqF1u2YegviJNisCSP51cBpjlOVFyKpPriie3eyH8eXnj3KUXNt/7x/+jzXf/0J/fvJoluK98/hc3H/rYD26eeu5jm5OnzxXm5a/+dsr733RGjtwvnDu7+eTHX2zfcj37mBT+lezpciq372baw4OuL0uQe48EiMCNkUO2wbX3rpVaopfEAVkARU+WA3fbKDcAQmtKq9zqMHqVCQR71qR1G0Ds2W4eDZrpDHEjaRbvRBwDS55Xr+Tcu9SREI5TxuhUZ844pmMP14E1HIb9o3tDfb2f60i+9h8seeAz/8svvtVO5CdKQfyb+0bs/RR277FAj8Y1WeQ+DHlUxpJNdFeSUj66qH/nj9Bds5+n0k+ePnpq82yOtZk+ch+efaTfye2hnSRvJhi1z/6aGY1wPsp5KJqW1bHYFEagCmV0xJFSIR05JV1z11Enukt0OncOgoqUSZHgYkh4wToo8fJQ2DpKgeekdYYnxsmmckYiA57OEJk1wZflsPK4SAR1RszeHYIO4nZ63TcU2COmmcOj+G7W67fdZsRVmOA0A9EOdOHRFLgRGGUz03XbEQepKOV2HSctU5/BWkXL1SwW/vAsKKti1sj0OcpNVugFMcXkhBQHuDybmZMvT1A0f2WWtEWKNTA7aWDax7VsXNOQTpuRI8uFPzwkS+ngBh0SEA+fJoKKxrXyQyGH9jQueSYMrHvp/beFTRkSv0K458hF4FvYPCXjlE/+U/kWmw176sJeguM5BI6eHI9hNPrrkmHg1KeDQo+aJUx93M3SwjlnzmR0wSh3U2yMC9wpbeuK8Ri2MRgBqP+JANY9SmizQp7NCtoXZgO9owOEgo/4+7zvts+H/dEGxoGessPT+sYa4gmtoyR4BitPipp6TEc3IO/ud2H+Scvw7oh/+3MvYo6AD8eLb/j98s/8XxmE5LXz6EbbQNpa23ZwrLrErGlr2hEb6B/dZ/PYOXaih84mXdDeb0fXtTWz15wYlV97lXutyCDOP0GHVcelMHOmF1t0N7TO7MT2gks+ti8gy9+c8camaS+W87onlB2LjsPsPJ7OWqVt4MWgyBUt+VzZvbg1hYeHMzHbBkKNX0YO+adkyd32yDbbI9IDJ4N7XQ7nIFkC0tbvJ722Rj5ts+XNQ8KUeu4f/WUfXngxRw7kby9MjnMXn9187Pv+9OZzv/JP40wc3XzXxz+8OZ+3eYX1jS99lz1ZbIzPkKhDqwT6BCsMbXxLmWozFiIo7OdrrZsleR/UIzHBr5xrICOSOhla2XqWFYBxbmuT6Y7GH/jWhzrJ36nYI06dOrmcc+Xo0/CS/rP1wTpEZ9gyISTEpPtov+Ba7RRfnOxKHgI4z7lf0hq7/QGCYxoJZr91JypcjG5s5RF48VCsEtsvtyWhqX4KlzzCtBlvkOdUdIOC8IhN/cmx9Gm2+9j6Y4nUkvHaX610imRQ9fad/BzaSbIpW2E7yxMKnW4NQzb73o9jYORilkNHzHkxm2OEYXO1Ds6MUtexVWHiNTACNovj7IoKO4U4lp7zgZmlxCgwYTAKysdxoAyW1tBSmbfTQUIZ8gt+HiXRH81bGVHu3IP1qQo8aaQcp7TFOHHmtCLs/FmvVibH0BO8//AYSOFRPkqn7o9mapGpY8Ccz2T9U4edS40kesrqChEe8a9UGuCDGJg2vDAtvgZhQPNEWUXGeKW8SlJVpMC5G6dsjDIlhlXZ3XuSpwoU2jpTziTn1giJsb4S2maVOA6zMVn+yHxR6BIMPrwKNRTDRB3W4SU8pQ7bMSx1U+hhp/Fj5AKd9CmBX/hgnXtF5khOXrCDU3zLsoyA5QFnI+qFc9kTEcNgGfHkySQkEY/PPZNNlklXR/aFXLp4IY7hzUyd76bR5OwTn0cIuHqyByOUkje0E5dHO496OCfeEHf4ZDuOsVOJHN0gzxoAGXHu0lCtWR/WqO3zWnbZZEEzVZX64qjDDe+Aq7dEtf6k539qZ/JUMLkHq55v5ETjG7dj5hB4N2GhvVzeGabQfrfk3xnBx0OX9ycqwOPxvVXsS1/+jc3LX/1cBxM6qVGFRTfWjBGKceSlfAdMfbEhNgKrX4MQn1ewWbmWsPslooPR+efyORPBzPsxg4HAt8PjmPikRnTj2UtnYlNtQciykdnq/DsVY3Uheq5dqg+/nDaz/Tbu9gC+pBkeXtALh6fqvo418VYKHmbZzjYGsxfyGfjdigNjJYE93zGLFY5zqH0dLMcRaJtsiVn5h8k3WxlydECOR3GMS9t1aJ6FPzjPJs5sGaF4WSKXlHUGmjvh6z5blf0lnc2vg6R0ZTe/S3hsPT82shnOnntq81f+2n+3+Z1P/+zmF3/mb22+8Lu/tvlm3ub90AvPdC/Sqcw4XbqYpbX0VXeW8/nKX1DWBqoDmCKDNuD52WOmpFP/hVl/cJ0gcrntsyh4XPsrOXWVuNPpkXdSZ40PSGXHVAFvIx9ZqJvz58/G7h/ZXMkA2PEHAl71i5xq3BzNHi3lENQTu3k1uuCNPvt+DaD1N9C3D+mzJzgk5DqXwniudi284At0zWkuKC1SmPg8S1eOyZuHhHI0bE3Evt+izrM82gk77I1FOjbOUXiI7dbHTv8xVNlz5eMfmGkji1XOKCrHk4RDO0ntcBcKZI7526Z+IwIdz51OKRN6Zm/CpI7IdC7nyRsbHBxFSRtqAXU2FUDwzFsUcE4nyfEwi7QWct7uiJGJkIx0eP4OlEK7Ak3h6wyEMbMuAh4ZmXt3VPI4Y7fzNofXCR1o2bcyEl/HJ/BnglNvpGLk9cfYwGfUxPkwYuT4iGc0epp0yJkx44zZ6GtWC10N3Oa5Tif3raks04SOvGQ0I7Y9pxPPaxglU7bIMH81ermGq06pGrVx6qZzjaxS+00ORKHCezKNUiyakce+FaFRedtQo+o5VClHz50KX7IJ7oZaHnJTZyyJ4tWJUKXv7UJ7iW/i+rPkTRtPCHCe6zMt6Xje6lXuCzCQhehMYu44hms9mSFySmw3sGbvQRnNz8W82XMuU+iWS2/fjkOVxsKseUXaZtNTeQvGaPXetlVzLEq0tDr+yiOfaI09mg5iTkWnQ3F8CVGeFaA515+Ry/rU674otxyhHSfiGghAs9BXj7463pmGAProMlj1jiQZlXRwMBJlIfndw4WfOkoHiH8LH8JC/v8bEx7cv7v51//s/8h3vrKPJbMXgoHSOAfTjqZ9pB1FdzlH6tbm61meTyfI+cjr+tpemmA3TatY+xdvxLlnLzn7Z7JnxuCtA8LAnz6d+k/aBwwKYrOuO4U4r6nrGDgpPuNTexqdkNaZosAblBrAMmytK294GSyG5uW8habFn05bEfqmb/iOVsbepfONnpmxqB3IM9tnH6kNwRy8+5lxNwj1dpw2yxGk09qeM+zCSgI9tT0hZ9nFubuVe+EUpyhlvmqzLfuug0iGfhw3/LYPSN7y/DgbUyxv/bPmPXnq9Ob7/8R/sPneH/5zm1de+t3Nr//8389epl/dfOyP/oXNh06e3vyrn/zvu8xGjidjy830PbjrSIP0CQb9ed5nGRNfzAvxuWff9scefKj425b1D4qjbVtSg/ekds+rDp38T924nc5+4kY/zl48HzlmBSVnXXHq2AFyoiMcCdLqwbhmdxKvH1LX3ix8yudyUrdXU0YOEhrqNVlLS7Wg6a/1nYQk9Q8P+GxMIpVTmji21lYFtJVr4qfewMH/aBA/YRLllvFBlmO1J3poiVak/XUhn342upe60D7KwUorRNl8B2rWuZtUGHtHT8tUn9/Zz6GdpK5pWksOczqsTq+GFieI0Ob8mzg2SzpNMOszQgvMUhgdnuLZHCidkbcjfd1nQpgEMyenjkPS06uDd7zImb4eB2o6kp7hFKScMwLiMLkaBalo3qZnuCnR+nr3OutC2Cq2SpC8DMc0CGWYfVVOJVWWdurBY+2XJ9vzgsKbJRhpAWllJltO7c78BF7QzY91YtLiVJETwDqGhRGfOHzI0Ev4CCwYs1rk9XI+WWAmyB/njeFV7gZ8J3+dKhHDTnUjSY3XBruvJrxYplIGB1EyVOSljALnbm3wyiV/Gw+0+F8hEUxiG7O0/Ot94sleskBH5Oud4hVhiho6dQ7IYwWWIfAaAlHAyam1ef9CXmnm6PYQzxiIhzlQTeA0aSR3suZqKt8BcZxpnydxeu+JfFfqWMoXLiL7oVsekhdXNRa5mjmMu9zQukqqPGTKUcK6DEuxBvAQv2TuC9k7p/IXR0mZKwblT5pOJf+rQ9qEjgiMOGIhOyKjR/SBbFOF5cv5YN4sNWs7DB5kqDwfjPrO07uQwEu/95nNlz77z4PBrEmchTgzdM1zdTl32gAlSRV2dDu1HacgDdCSv/r0NlkPPQ2MA/xUMHvB+akdja1i9LVRNvd+O7sMOClEeri20ZDhIHXWJ/VPj8Ajv5OOWJo37IK9elS+3GMsNO05mlmi4El7kz4zOLmGj+P5OsKdo+xzSpBBRvU0+CZoSylzXaX8Bt/x6Lj84Np2kcm/aGwdtT4F12oLuAf2PrHR+hTxWOty3ELlsJdkO1Q4ltm4Fz78yc3zf/m/Snn1MUdz9tLLm1/+6f9tcy6ze944dOq28u7mQ69HUhD1cVSBNLASWqmt1yH96FOKU3jnGXlt/3QOnbKqol2TdfullNsyJfuiL9O21Z90FBuWmw4yY9+yqWVzJC8KwSdwKu5l8HsvkxXxV+OshnCA9bcXYhvR9NaziQZzTqv90Nd5ri5lBQfh/ku+lYfeILJwgxVjTc/0Cgd8W3U4YWqc/fY3rE9Z2FJ4hbnuldGMkT6Nk9p9RgGQv4OPXOlydT84qj/0KPE95yo6xyFX3mE8ZSx/0adSw9OThUM7SR2Ap3D9DEmuGFc8THNweMHtZPOs4mlGRyq5B6MBtmGm4Byr1UHxrTINIiDBBscIXoOpMgU3w9MON8X1JptGT6EE+cARDiFUEBUUZyDiSUTjg8cUMuyecQisjg7nBY9Jr6OTVI4MHk9lR/HuMjNU3hKveMpkJowRQ6fLjaUb7IxT8qKCjnw1LimHTk7ghK2BvIJuyh4+rRFXGQKDBp7ArI3GByM5jk41NxtEoRBCE1pw8M1zIxbBTMdKnlMH4Sewzs8w2jiejW9mweQXRu7klOcgJCMjxTCXVI1atPsyXxj5RC2xHhMoKFmoYel7qWvZj/FOEuZ3rsA4jmt5KufIm2TXt4k4jvhQdxwp+MiuI4qUQ+PX0NJiKvtykXh51MUqU29kmiUc1vC3V4bynQHCdIDJuMhnoAran5X3vZjBYWaI49PZoSVRnRJjjyVI3IpLOU4zfnGmCh8gaatzZO/Vwxxvi3+GlZMO18gUojdyseJeSL/x8sYsW5i3SNrC/EG7eVt5vAWAqv/tX/3HmTW5EbtjqYiRzizM0t7VqcAUpLW0XnQe4qubS316ZsdOZUnK4goHty584h3dIfedfJxZGx69ow+5Dz36ZFnMkjfcZ7MHY529PxV7oB203jARQvToga0F5W3aIFye6Y0ZH7aZHdYGDCQ5ZXCD00bYJDaYrrGNBo+lkXuOX88hit7CZxM7nsnKs/ajPBy5NbRJYg/d7JexV/J+aE3ZQcd5K4622D3DUEwrlre5trxvDoM3G7+Fsxee3Tz34g9sbt24nDh8+GwHp2OcJnK/313SeJvQ8i/3e5fgDN8cz9M7KVfqw+BI30OmtjzYAsARcF95r9fIvhMQEdyKmwwFViAs1Ja1vS96Ud1ST/qhOGEnQ08WqyXd5J8PEq/23JUTdjUzkuzmajtTDdEnf/1BLsoaLIgv/exEqpWpG2amA0o6mL8zmd3HS53JMGr1Z3u2UXivnWe5I7yiDZ6WMg/STDrYlqO/A1DdCw5tZPpSdUXyI9/uA0yaKH8XM+PaPlN66JDrKsTcJW1Ppnl8R2FPa98mG0Il05vcpZK8Wq7hcJdcCUAnWoOeghMphduNAXBseWTYAt2Nl2sEw1Hg2WqI0HbZKiUmMB9vU2iGgAOk/jpCyvT00EgjTbqRXBt0BINiT/nGCH5ydaLEKq0tj+FtHY1ztlQChfF6eDumZLcklujiqQOWuLWSbKjEI7qtkvDRvUbBgUe00dJBc0LMXOXSsO7F8lzFCV58oqWMVZLE6CzFh0p+3UYWwYeedVYytrZ8Y/do9iGcakOk2Ay2xgDO1b/9QRnqbRdlDF7SLRWavQPJwAV9RiN26YSyRlIGBosG6nl4x8tST0kmU/inrPvpTvw+NM2nHOQ/e9CQSp5mHkiP6LcceIqAGBY8388eBku6A+k5upRG1in7wNnAaOlt3uJJ402c6gzCpTG5empU64seHKeXiTdpvXQ1hXOgHgdlc2SWD5pviMPQ8MjjIE+kIvUv1FqbeQZLluUhz9ui516cJZYTWYJzLxwzKgxvU78TqRNuG4F/wPK7ZNg+H+LmLbI8PmmP2ptiPwTIm+Y9bMLjmXtM7kMDPibvwagrr35l85lP5fDIjNjPZhTfkS5nqXIffaSv2n2Myub1bKb9Rs5N0gF1VjqzGPTLW52OC7CHQh06afujH3gqo/3bmy+/dLn6oCNlT2ZQyCHOnqR0DKM32Xz84nP9ZtlXX74cJjMjX/g5VwnXNrkq+box+SMvPDUDyrSN3/vGa8HH0YF3jk7RMbFbRvMUambHFONBvpn4VDA93Hz1pdfbAWm3+JNHu2GPiicUddTKZIbmw/nWYgcvgf96vktnxp1q3M7ymkbhU1VsvCVJbX1gx/58ODTnJHLtJn1I8r0hPGHVPprNctrpc0+3LKeyMeiZnG11Z/d6N0WbeVLP7T+q17Ek6rf3bOCeU3Q2e8IcidNjbSqjHLCZsl7JoNaKiTrpNfc68rUvY0/XPoP+7A99yg86rXt2I/zMFo9xkMzecUJNGHCY1MuJfMfp5OlYyyNxQGK/Tp89kU9Q5ZTyyNpLTUNzbE/Lk3p2RT5WfMpX4sONOHLjHLXfCGD8vzjX2SydZVNONn1Fm0eHX/0/tFF4P8t/Dpr+M9fooL6nKzyLHOm4fp1jCoeAMqfLLKyywyvlSN4APJtlVL5DIlN/4Sy06F/JlX/6o//YVxhIDxkeq3ePy3sqowSFIkDuiOUwnVoFkjijobgvbdwKsBN4SzgtbJRB5cqvQclXhydXnifHwMhDqcYIzJHwBGQDltBpuHjHnXUCm07DCEbwOQpr+zYE+uhYlSy411HQCDpCDo8am1ERb9+BmKWdSqWww2O6sfBEqlXEkDqaUVsdpdBa6qIjBHmUv8uDwbeuoSqLNePbWeoxMgLHGClhG1rxqPTc7AvjGE0Eh8M/Af+MrrwaRs8xSRI5MmDXMxN0Id9hu5cGaMpSHa0NGgZ08UT+7VTz7H5V+jz2TTMduO/5KHe/kxNEyp22Xl5XfhDg7KEBTwnkQn5obSN6P891dKSkLKsc8MmQtn4IYzIHCm9xECM/aavMskEgcTnYLjL3RfHTGdk5mFLGW7v5hl06rdVJup+9aPLLezsd2ok0nIOzVcm38IJuHbRh1W+Pp3gYOoN/WKNtyjEUC/bWPwATmie01EGX0mJZTmXJrSP8yjD4CSOhYmiZyt409uChKsleGZN5naXEAQ2bvcr/rQlLwd6K2CFA3ir778u0NIRf/xd/e/PqK99o+9ZOhNrAXEeHppUovvbw1VeubP73n/yFtBO2Mbqz1C1YTUd71MH92A99fPNinKRXspz+t/7BL027gzyB89F2pl0E3t8Lz1zc/NX/5E/l6+03Nv/nT/1icc0AT3ua9r/qHVvygecubv7yn//hzXP5YCwH7+/+9K/3u4/wg1MWHay2rTNhp/NQvB949uJ8aDZ8/oOf/2z2MN1sHiqrjGtwb0arlitpl7Kx+C/+uz+wef6pc3XI/mHyfvP160g0/5Rl7smCvfamn3v7CP9iHBX7pNrJIrJHaiX5ttd3kuXDH/9jm9/91Z8sD7d2b7ftn8gMyTrb5P3/Lc/YiaDPxfF47ukzmY3jKM9WEW/VXrueQxyzRcM+Lc9eTtJP6CM4hJ2tSzkJw+VASMSB2BVAxa4htx7ZSXKng3WS0i+fqJMWRyP11RkmDgfnIn2H/vj5p09tXg9/V25ku8LSv6ajbZ2szCC5yn1re8Jr+/6kxS8KLn/2np3MgMFAPc7kYozIBncd2FoCzGSIqA4Wsh5IB8lBO9AG7FUrr8mvb57cU9h5OcDggqETt6Tn3oHRdJcTZHCPb30Kg6nN0O1VfHt3cBw+HNpJqqcXZnT4Dv8bQx2PLc6Kt8TuxoCoLIz4tWxTJq2dh5+7WS8VdGKed+NJa5SERKA8W+3ydhSpxic1xK1RyArAzEoyyu2WRHjl4zzMnhTLTmYn5jqd+Dozw/lyLhNHBE6CprRCO+Hg7N6mxHf5Kjzt7s5basiBVxIdXV4snwoLmiNRMl5sUEdJZyNkQDMTFVrpDE0h2i+C9zXU4IVPeCkIpcADWcBPHj3gMtly26zgyMVVpLzOVyEc8LzsY0d50ItDBg7+QJKrIhdvbtTT1mB7DuzQT3mjYO6vZ5aK8ab4PT08cagqBjkUPvelsqShV94SuTawAiS9kLkageLD8zhgob82jNDeE9MiC8zTueQ5422Z8NTpbNd79onRkzhtaaw9hTj65jT2bv5PGhrq5URwOHfExnUB/2uluNNAZ9lykX+w3koj7lKC1pfAkZmviO/lbcLb/NA50++m3f2dzAyRP50CY0GHcaVedHSJbp2JK+UhX9maNjbr6aWJ67fykdK83Wappnq08LlPiG/D2RuTV1JvTPnDHTNa8dZlvPr6S5vP/dJPLhtEZ2k3ZqWyJ7eqddpjqrH3dNZMSd+6jP5NHQH0X7tU11kiSad2Pk4BHrzt9lTOeOmbldpL6tqJ0LWlwQe32ZanLy2fG8n9pWzkZee0C84NmNGocpW9h7v5PEkOTdSWggOcj+7qH8Nu6cqHfgdTrmmL4MRdyKvybI/n08l32wxU20/aDQGgV8XRZgO38Hk67XXa+tA4niU1y1hdUgpes6XStUVx2mDtW9LsMex9EStNCSTljQGPhw5vAexbd7aMXLl+O593iWMZ525O3Q/2kCcN2fF88fypHFb4dJwk+yDvbV6Ps2oZzdYFzpH+TX/SfaOxI2wL55ON96+Y9vOSciqh+LlbSnSg2Psecks0YNlaMzJsE97YG7Ks3YudXGeYOE8mJ8Q/e/7E5uKZ4/me2Z2UdzZ/owjnsBWbkuf5S1+WBMtqzt5Sb5bT6G0352cWiVN7NLjRh8P+Wzqp3CYw+A9kS2+u5ft96lb/Dwc7aNJF3tL2ExwNuW88xyfpwlzwsbS94KzcwAKo3g4sPO7IqccJSX+H4dBO0sJfhdxZl1SEThQTpm0FzCg8o+/IAPOjGk1nXJYGR0iEpxPLbYQz6+DW2dFgOGw+g6eGIUAaKE9Vx61BGd2D7YbjKN061WtN1jR2O7xYAKKjEIQMp/5xHJGZHtZxCTpptNAUUx41WrUgPYasZQgcXDoySimoy9mno/NzmBenKDNo2VNiBEdGR+q4TMcMnrFZy9fOOqjsEUI8etSOnRxECcpao5Syo0/Q7Q8jF2YObBUpCeDgbwgxU9nUfaTRrGW6y36BVQrQRiJgBMtYPjDpjCHevnV1e3zmw7kD099t/mAYwRVZzHR4CmdBrnzwtwyuyz+RM4uY6ffUmZFOA8QyJCTrlDP3omqQh3zrsQVZgNFh9Ps2Wu5LFWz+1G3+p+HmuSmTMLM3gY1iiKGr5ImuuuzyQeLm4L/wECY6ZYuZPCxs5uHxAXxnj7SV6Pc4RqM/DA09Wvz01qFnexfGUZo6PYBZGVMQM2P9inscpJv5LtVuHCb6uQ1vx9gW8I0326wE8g7DE2R5hxTeHHzL95uDPD7lkBm1qy/95r/Y3Lz2WurS8ksGdBmksS+amz96w1a5cs657z618YOf/GiW0W7WudFZCOB8rsQmYXV+NraLnhqV/2g+WPBsrcoAAEAASURBVKueveV2M+cwXckX29F3NpglMB3T+dgX8PD/yA98YgZ44aEz8VE8LaA2IzyYbbqQDjHgGfAYcGw23/ddH+nSl07Mm7Y6KfjsTTR7r0M1QNJeHuZtPoHGf+KjH2wn11fMg8jmbmEGo1YIls3iEcitlLn586utf/RDz+ftqpwCnbLoME/FIay9D08233IoO5sV+Jt5Y8++y6coVVSbTMP24cMhgfeD7Zx7ZnPi3AfTz3wlBB9sXr66u3nq7HSR2FBnPmPyfJzYndSTt6Vffe165evEbrPwnSnqMv8M0MiUcVEfaNVOp8M3sK4tX/DqD2q7Qfm/MCZ/B5OBIzd/gn6siPvUmN6BH6cpdiGnTuoLOsuU+uUsqV+rG7ZVeH7+4onNpZTx1SuZ/coBzfQOafOB+gG9ghn4k7VLwRE88jqOxYsy6x44jlltcOwQW0TP6Vb/8qyPVOcmSaQZOHhxoTNBIThjV5SnfGWiJfKzxG2fVzuZlCXJhfVe+0ezSXo3/Sm+6O4i0i2Ww96MBhwC2qyK/T6MAUZ4ihRc11bhhJnTMRj26qjgO1miUjmE45wjBTUC7vfdUhojJc6JqUiFi16NwUlRdCx1XFLCu5yb4LgaD51Pg6a3sjgJljnB3YvHLtwO/t1oyCgb5y14Ao+6P7TPpmJ2bzm3KCJMXkZOpUlPVA+s9JFGHRUJw38rjo9Hb/jxeh9kP4wO1exFqKUseEmHVT68Lms5CI9RnBic7o8JThWJDnn13gMPOYFjaa2XkSvOIG05Isw2oFwddlkHKHDNFroqRH2MQUy8e4pe3DAvaRQlPCvkwAKYTlyjEt+yoYtWkh1Eia8eGRCFt9auDih6kASGIsKHSsoFTWibBcMHHKMfwBMnPUE8TrqOHHmKKHxTB19vk8PMT/kLmD1BHB11j9cu1YUq+ZgSvx+d49iEpc3dEOaAcJyyjTR6QL44XPmYkXFyJm/qMEa6DSvwQmegGJbI4F720N0LDafRNCwXfD8aFIfzTdTDl2cHnNnEOY4R3ZJVe6jsck/nLTXYyyD/ohYjs6SDQ5bjfTd6qApqQPPMsEl/T8Mbi/a26N8yy3vF31sSeVsWnxhg99a1za/987/ZelOvbXoZPAlYUp/anZc8emp/U+L0ZJT9/d/1oc0rl6/WXphlUJH2Vnzo+UudMbEEcS1fKNe2dWIf//CzwfFg8+rl45nRiFNklB78ToE+veN7bDv5wsB828xbU9/14vOxiWZVo0cUMIGN0U7p9NP5/Ebmg7e6JA4NbatLQXH28GNGRMdn9oPzpROjWNeuXk3ZWKXN5o988Jk46JlL185CcH2rz9YKbcYLENqmdvPSy/RyKh5vH83MCxs5MwyhlY6S3DrjkqVxzzpgjtzXsmfl8tVbmw9lG8FbBojfJhwCpBiez8bt//yv/Q/9xMnnfuUfbb75e78a/q4lLbYxzuCFs+d7BAt+X4lz9NrVG5vX8wma65l5Uq8GleROUCl5xBPK+a9OyKQObAwDftY0hD2PlOZG3jUciRwB7IdBom+CReYcErPzzZGE6uGCr7KPfdAHW8k5cuROeaFjjmnoX+TNWXrhqVNx2k9srsQxvH0juhTdMXBvXS52iW6YSfRRYH2BcuFLH2EwXYcoOrA6SejSCf3r2Kj2EJ3EMHlg4E2vV4u8lvnRq76hBUuCWw4Zp22knPKl8LTeClf7uPBT+QeYbZdGZvqNJwmHdpKU5nQKhWFTbe3gEMZ1WCIEjY+SjEJwkrI0FYWPrNoJmCxwLgbBEK8OzVokR2J2w8MVbHmecxF0GMkUOmcTT+AVRmgqtA5Doi9hS4N4hw+caLNJOh79Ij5EngqPnBs8SuPkmFHx2RR7PKzZ2pZ7Km8lMIRgVL6JcB1SlSJxioxHeOVXXuFM6MJt6piBQZtcekJz8ijd6izUKUgEvI1TpvzZY6S8wsqrx8k71z4EVkd6JI5DO+PCLBkDjC4+w27A4d7DATd5iJsRSR8TFdr74ChaZ+1yeKY6NFIiM8o9RwaEHj4CtxpDHJDB1JOiIALT0MDPNuS+ssNoYNRh153hS5zG6ypvlyUy0jxhk16QnEpDzbx/dMDWdnsYsi8gfxtnJyUHI/+wjlNGrDk75tjdjGpjiAX8lc89UQcn54+zjXNcc9BAeYohjx4Dcn6lsBaDIXGoZXVtwOuYK+e81bYYxSUDOa4Go1WdPJymOvOLcKBBulxWviUZXeHoO5zVZkeb03WEQ5QI38wIDMTg+Lb9rgL7tjHw7gh/8dP/ZHPl5S9OvUfY2hx7oaKqoW1gBnDpYNIw1/ZnhuZSZow4I9oOm6VuOcLnMhth+SkGMLMu7BwbylHydthygGPsC+eIflmSM5t0Ma+n3+zGg9R50s/anJviBWWu9JeOZZn5fu7Di07xuI83L3XAbjiVGKyZm907+ahs9JvdcgYZneasyIene+Fn7JU9OLGGaQfaP2Ho+KXNjIGB78yM9biL5NeOBOWy5Hfy5LxQAV4nDcnx416wyJt+kQW7uZ4zh9+ZmUvpoBlU0B0IbxJ9AOZtH4okbXnn7Obj3//v9XTul774i5tf/Ht/fd5AzGz6nTgaL2cT/uXsG7uSmaNrnKOsblhOWu1oeY58Oohersqwx6O7fS1Shj5OXOW8MCumdjU3dAaoH2aCU7se/ULX1HdfVMm1fcp+GsU3etd6Sl07M+lkJh5Opz+mX2aXTqSMzzyVZdgLJze7cZQeplz6Zy8VmOE8HZtKX9gq/KC7zgzpy92vDpLK4kidznlTV7O8xsk2CKAv6rdlUb5HJCPfWOcyvYVT9JY9unvKhqiG0a7KPlHkJQVuKXWQ8MrOh+E11+Q9/O+hnSQVg7jrQw0qNzp0nVxZDROdkUm8vT89Hj0ZOBJGDjrzTv0lbr6HA34cDw1I5Wm8iuKfb7GpCQUP1dDmqPCYxwkjBp26xp3mGqWJYjZuHCCnxvLCx9NePNYIy6Fn+PD22h1ruMmLxwqaMBMDj7mm26HnrSlKwVkz0mIYAxYnMftJ6p2zcXg3qqwkqixggqJ/FMitxtIyKFf/yJRSKKo4vDBsuYnR1UlLhwRf4MJS5RSoPpcikIQ6Gbm2SaqnQuS64PG80lrl6ap88oyTMvRaltwaJeCLAUZYwzAN3rXt1VmShM8FdqWsse4P6GBAueqo5Kou1pnGyxmZAcBB//zsR5F7ZakAwJR3BkmH1VInVqAbYOfJ71YGjRu5VrQFGYrwtRyJg6+0cj8yTn2nPOcYvH7kWPwYCoeKnj0TI59ZoEaGxupgwQePWcjr0QMyAIf2dpk6cs12qQ4W+mkdOpf0h2RjJJR7ovSpiJs5XfvG7Vwzs+vP0puZpYoaQ/vKnKcG0e82PAbtu0X5bcn/JLK4n8/ccJKqDxEEnVWBWiT7IpBP7VzsQPUoqcD8cYJ1LpwPuqqu1tkFz3P+y7Szca5mAKeNld/QYmd9l+1IGqJ9crsQR6/wwFHq8m3iFp85dKNjMUlmX0Mecx1w4FVAV26zl44TsH3ADA79RIdNFpBhH2sj8mCgywHI+bjlzSAGbAec6JFP8phJQgNQ/o+NzvMMirwBJd1MNNi04SNzbIrBrV5tZvJbxEDgdPDk8i7CwswjGODeH9Tz7esvb1798s9uzmeju72vnTnKpvMrZo7S6dt75APu2rnyG9Ap2+o0wqls69V9I+Ynv42J7RsoMgO9Xj0JK2988IaAL/NGfaRr1aHoncErdH3TOnq5dVpKY+itSOrc3Eo/HVt+66RDSOMU12HKEhjnJnuulOtsnPJLGXxyyNDSf7Fbq1NcPLFr3lKvo5R7e0MvxJG/lL1s2HaOmPKSTwf+VkQwspRp//2+aLcTyv/ootUq8Kv8ACiZenCeVVQqoRZ72mHiZH+UBqjDhkM7SdZiHTNvtz5jMDMrKoWBtizFw0xBwjJmOUCaIaF0CjV55LsTYZp9sbQkFD7CB62yGYZ6mxp1S6cRBio0Hj7M/qUIWAPLQ0b342RpVBTExjLGB22Ok+x1OnJjaQOPvm7PGSDZos8NZTiVVzcpAENhKbEVGp4q9KQ35IoXhsUJtBSjPKaBlMfgKk1LjSkLG8FjZ2D4PWvHCRea0JJj6zWE0Pe3dqxg/JEbPnj1ln3QTbbmLf3ga55cE42L/A4N/JR+nqfOyDLyTgKDNCOQ9ayqxTELLN7AtOT4hCdXosfTNBIjz8wMhl4d5MSD43DKW+dzWGlePM1jkLgp7OBVwLUshUv+O9ZgwwHceLcHxDeV7mUZ1Z6IczEXMam5z+nC2bcRaeW1agdMhp/oBAMwG8WzVJFDJ+lHEoszHBwI5TsxUoWOfFKelacuI9Cvxg3M+stROR7n5XReuZ3XwpfyuZRk8kV4Zn04NHDGlqRcg4EjZJktqFsWs68k345JZIJ9R95GuXojy7qhZeO2v3UmaTED28tgftzvWsLHpb153HCxpD8ZijdH/n6nHGD+nRP72hd+ZfP1/NEJlaT+1vYL26ojHGt6otGMvUqbTp17VZ7NkMeShcAu0WGfJrE8v6hlrtlLkhnbGv3AGemzD5yG6m80Q54J0952Y5MN1Myzm8VSXPpvljWq1Ebb4zLUG/5TDjytMwGWReZN0tjytLmH2UMpzQfYtG2hE2W57/EA4buyYNdCD/Pwz7KK2SSzBTMQwgvblNJmkKntwo2pzNwmT3uJPPc0/DT327cSl6U2jhPYcJucwptV4r74fbfN8ha51vT9V3V2/fVvbL7+O/948/Lv/mwOmHx1Y6/Ra5k5ej1XzpFTxjlN7JF+7GxmYeoYBdH+ZrHer1d0Iga/fvrbtPyQQus/P4UZwMKQ3QH4fXnpXf8KMT/g9XExOD3jTzWyo33JyUPD3lVfaanQBMDJlOtOylOHycxSnJ0cXrF5eDsb1U9lBjH0DAr6SZPUzeogdak1suO8P/fsuS4h22vHVVHXHGi2rE5xy/iYigpf4Mni0SCeYOyN1RbW9gZOeUcF+QfJHXodeIv3l3/6rf1976P43+750E7SV1/f3Tyble0PP/dsX+m8mjX0V159fXMz53poUFRZR2AvjmcGwWjC/YNM2/Ey6xBoWGtBNPxUpg1wVEWfqFB9gygF5jDoyDV7zpFUQkeHLDlUcGqCxM6ZuJ2NrPL0LSZCa66k4SP/zC5ZU+Y0ycN4EeCsi+MxVLT70slN/jNQ9inpcDkHpzPquZ5nOFd+eNqdMVIhiU+xgsMGYM7j4pjliqbKk4+Myl+uCtS03AlgpKn4GlTX5H/hqbNVziv5crVX/+HBhzDOZAyYezISclmfnbUTNAn5SfyrOcOFYpvi9laheN+3G4iFn/BRTPkZOlO3A5UNlmlg+PMZAYY6QtrSlrM1EHJV0gWRy/7yKT7JDHxZU/DILkdB4DnwaKzr6Db7OT/lGCcoSiO/ZQDr5Ua2cFtuIy+6Jv5InFUKVr0IxnZyCpq8ZMKwP4hhx5swnRzay0Ag5XLwI3k33c8KnFufBdm8nnwXN5un8uZIR8KJtx+Js7iCosWxseH6VmaElM1eJX/0moz7emwcQTqkajlD127ey4bZ+U6bfXrinyysnDxZ7uY6FIonZvD9Zuwd4//a5/91KiIz29UtS1tTtlUM63KKZ7onDER0Jg4wO6YTsty0m5kIbcFbmtq2NAZHtubhjeQuVR+diV2K3ornSLFV0ZB2VqXC6U8onti+TBr1XifRQUuS2cTaIaPSpMPL9cADXTagYSq6VAM2qWDMFox9Cn+BbfvEZOA5Lxy8sb/4D4hyJE2nW5zNkfgkViYpF/sALyoOilR26ZVBaFiG0Wfg5al8Zui17ElSFrOsE0JIWC7zML+Pidqf/Lb3d+/c2nz2l/7+5qXf+n/zvtGtOkUvvXI1e45uxDnarXNkUzZ5GkB7+44j14pbsK88TK3skVQ/DdWfNT5yEd9Ma07yShDvf6LBrDrlWvWQaV98YSdn639wQA2BPs7+nywXRgftGVbviUZo6AcXfbl1MxMEKePunRN7y3Bx0q+mXu21O5O+wf7gDpDTD8pDJy9l1slbft4EpAbrDOjaL3kBoHUcimib0ECfni2MuEso57lKdb/YzTw6rTyqUb1t+wOyBHhoqBxhtStBkugs5e5Aku7uyyP9sOHQTpL1SNP9n/niNzaf/0p2xT99frNz7kKcogjrbtYcQ9H3bsx2CHv8pALSMIzAZy+ThquYOv005rTgvtacitLxclBogtkom7sIt0s+Eb7+m6L0EMs8t8NCOHk5MBTWSE6H6pVFyOqcLQ2XAfA2nbX2k0kO+eojEatw/PB6GScjwGAsPcuKeFQBYFVd+t/wlv1Lyhta67R792oFr1GGetGolKFOQu4Jpo5dEou/7DNUwRnaDAxYpPDDSLQoeb6eN11ei1N6MdOYz144l1NG7/fMEkor6JjXZSc0hJCrk1Yj1ggxYRmdXK9l1GozpdO7yUUj4GytPCDeRhr+xuCHf9wFDf44YxrD1bwZYZqe/LpZX+HRWcqifPKgOxIc3lqH5XJgp7Dr+DVxxQLRerPc5tmM2PYf/GWrCdsMslV+gUVXvaHcjoXFKUCuCfO670wFT7liTLJmofyep6GTg79m6U+SMkMwm7xvZQnsaA5v8+kR9WHTt2u/yxTZnMr+Jc8Xz9kHkjqIPOCaDinOVt5Yc9jbOhLvq/43xznS2JVlvyz2sbHH0Du8g/K9D+8FZ+89V4fB+CjnZy88nfZAcVLvqex1eVi9q7/RYe0vI13p+4jo9J/OLPWlHFBof+P3feTp4Jh2bqbHifnq/gOxp/LRjXNmFYMnVmrzVD7ozNlX6ZwIsxb2Mx1Pe+2+uzgr53z3L522DlAHbmB2Ny+X3Mqr/6eil2wU+zZ7gMbunQ7KE8FBn27FrjyfzeB4Xx0fpsoslnZi4spqAC7OxOk/c87gJV8i6DJK7H5mkx0I64RnHxW3vwXL9+/s9E28tb2cD76zMbxsCyeLPDmY2nGKFjmGjiXr43mtfjdvll3IHsMEzZRs9re5JrwnPxmwXL+8+eWf/V82177yc22n38zM0ddefj0b569lEsDp2ByC6cN8+qJn9YWh/e3GPR7XK9ZqN+emcpTGDm9hUqCWa4GJYvmf9MRKEDxHXs2jspJQe7RPGEtqwVce+rDkXQnSA32qPnG++RaBD+KCe7D5nBPMOd/Zubs5ezf7xLKK9OBUHKjo1fHYoCDoJ0AuPHVmmelkr6cf0CfoA+cEedyOfVuLY8nZ9/nW54Xw9rIXv1eScfLYX8z6Wy5bYDJZ4pOujyEef9WdXPV1K0Tzv4OfQztJv/vVb8bwc1oY6oebL3/91Tbks4n70KU05DQO+5A6esdcYHjeXqPX4GtMeLGB4zSJu9/GPx2EAnE0bqfT7r6flEqnFPA0qnQ8gdf44VHJvHiNCl3TfqS+HmSmHuHqLFTSY1e6u58DYSkDj0FXsRm11LAlgp91N7MTnqecwcnAJIHTQ8z01ImpHD6Cv58ywddlnTwzUgxNDVbpTAe7Npi14sxUUBUbOyFtQwhutNUmOipbTW8rPfjJ+NUrWRvPTNK5KO+z+WDhFCWOWOiNE1IUoyTKpIzBg89Q2iaKa1lDzOndJ/NK2PN5E8b34EY+qxzixKX44OvE4il5yGh1LJ3PpHHZy7U6yupAudMmCou053HA8pDgWVnhGvOBveHRJwHckvxO5H0hH6k9cS9v9WSW5e6dfFzUG2tJvBQDfySO+m72jnRZITjvXd/tffUweU4ENlVTWYmbspeFNiQdXfUAP4kGg7fKduFTHrxK11H5KC0HEUzlkRZZh6hnIKXcKXhpBgBuBoKOGfFL21l2gZMHh4ljZFntVmalrsUxsqy2f3N2yExYmVqf38kV84+Ed4PuEVR/KB//yPf/mc3P/9T/uLkfZ8L+IYa3bbKlnTfEbH6lCKssb2TwqO51rjcy40t3nJl25li+IxggezodeFrHO2kzIIzmR5/YMwsL60esY8hCaWa77/cliqlEr2Z7oaCn42e0zonSbh9y6KJojuywdeBBnaHMEgfGESWOZ+nAij7nn3v86YzkNyhtOXJdl2J2doInMJbbUG+7YieSwesQ8pfvPPvyvPwXzvrA7fHMhI49wQ9njRHBq8DpA2xgZYAWI57YKd8l308rsWmTzfAEPy2LfNubQaIM13L21c/8xH8d2/e12qmvZ/bo63GQLLHdyPKavkbZfDZlnKM9JHt3C75c4IzheJTUAVsypZtSavsrnu01+Sc113pNg6/5Ai/PIqLkzT9gj6EJ8ZK9elVaqR+6po/qMpw6ie1rKO/u6ETOYMvMNZvOjp+5n03beaHpQfJejPP6bOqmL/WEiBKYSMB1++VU8f4ybh9KZFuy5Wn/Zc0F0wSrCd7uZGelVhIpVFmdiJZdykpVHbSfWWLWfOKeJBzaSdK9avBTKUNMx/XB7IYf4z9dXD1uLS3wnJ02ijR4jFM2hbMxTONSavtruhwVD1aHq/IUyvSekP6wccVIUEtlcBbgKnAhbWzVgAlIox1DgAzheFvODJbAKHCuVO/wmDxJgg9foDrrlR4Yz12GgUfm/OCRk2dqUh6vY1IO/AsrjwyU+7BdvKvjVUcycJSWvNDzw6j27bYQKd8iEspTYCn36ZCwPGnvjT9r5ecyy8cgdfYseGBcFQVHq3JUkROh5OLhtX6Nj/LWODMnlhI5OKQ5+ZUBk5xFtzWkQeJeIyKnHLKe+DhyqQd1yqkN4jZQufHR+sm9+mm5ghjtJBYZfOpC+U8k7xpOJfJcOoWdOGOwtL64T6Wb6e/sYyBofBip2yuhM+Mggnf67NRPnoI/kCg1P1w6P4Yh2zAmkEt0c2CXzixZyl8gzuWNog8+E5nzABPAKYK9RfYlrTNJikY+GrkZomk/dIixwmd4zEnyHCKzUJbVXr/m+0oOYx16JfBe/Qy77w02wvj9HN6DsmpHv/WvfyrHhlztEv3sKJp6aWcVGl3ijc5RgmkdmZ2JbaDDO4k/kxkUwbNl6Q6MVO59M69Zjo8SECVa0ewOtMTNsrLOeWxi20z07YRljThBWsK0MwcGZgB53yx5lnoXnPYLHo8Oi+OM0cMbmSG4mNOhzRobALbts7VhoC8eaBPhowPD2HczSAZ+zoqz9NM2HRicdnk997VnySYtl5ZT+wv6HhJ8OW+BOQoBzX6SStvX6BK0Ozywk8rHLutP2EVMJam0RkLN8tgfdBu2N2vE469k/aXf/oXNb/zLv7E5ee+btVkvv3Z181JOSH/9ys187iVn8oWH03nbb5052o9puJ+YksyPIo2NI8LIJ39re09K2zpdEeZ30gfL5Om9QgduW+aFwFwSLz3Bb3VmbhqHPt1ZQ+nhg/Ll2kF0GAVjX62ysde3owN12Bfc8sNtQkBd+OMondp5uHk9tszhzx/MiepmSumVbLZu5Lbl3qNfTH3EVmf/9/G3wiVl73a5o9uncywEGyp1skHivjF7cQMBqnfVKSCFJQ8PTxYO7SR95JnMMIRb3y2zw3xG0BSbczL7gKbCdCgZIQSOYDUW3vh6eCQYBoRAVRgnpU5FEHW9OhtsFUmhFMtbZIVLg5WXVHTg6BcmFzyIYyhUmMpfZaKSOTU8Yo5P48FHMRgfo3fC9xpnnZ88oONsoDix7UopVBUoFNH1dhfDIY6aL/pXRTFTgHOV1HX9JBph1REIr9KUr9wHpg5M44M7z+GwofELHPjVeMjMUbkXD8B5JY4XUEZLXafxVJzhOzBE1Fm4yBCOabShnQf01wbVdW98pZwrXWWWpwwBTgjq4mgZkr4N5INuIvx1SjXPRsIOlzPrYl8aucJfJy6AeBTEDwmyDw7RbtbgPoINls2xOKRt8MlBBn1rMvdm6TlHEHVWL/Wgw7L8J5L7HDXsfX+zQbb85EGzmi+ccxD/f/bu7FvTJDsP+pdZWTkPlTV2dXWXenB3S5aQbQlZBgzGC5YZLljLN7C45Ia/hXvgjktYLGxjXdiAl/Ag2ZZkWzJSy5Ksnru6uuYhq3Kek+f37DfOOZmdqcqq7hZYdpzzvUPEjh07duzYsWN4IzQ98QsRDCBl6x2OkbnIbehhCNlXRMPix+AxiiQn5d1Eal24kUMmu+FjCkTlNhxt6tooEfzKyfD0tcictU1+6hC3oZmXH/J6gKM/JKYt+o+SuB8NRY/EcoheUTlTPtzdrCvs5199e/Tl6sV3d7/3G7+UcksdjL7gZBsWd/I8i1TzEscQ538+nRb3W5mreiIHuBo5TosSmR+ZMupbABfIg3BEPjKRMDJmo77Zj2ZkrtUggGTaF5Xwc+3wBUfbjbyLC6f1l5ZAMF7uWYQd/UDHxTvBQ0uq1NTDLQ461D8nKaBV+rdXPU0ggwhuuo/scsjf0x3BQxMIc5eWrQ50CtC39MvdbE9AZ9Nl1aKhTycFSvFm5N4LXQpi0snth3Z3sznm7//W/7H77u/+9Wzpcb2bFFt/9N77l/ppvy/XtDk1kFh6m0PbQVeaeOB172jPq+cDDmuTiwYKw4OVn2U0CVy8ESjO5DoR8lwewznMbhpwwcO5K3d0G6lWdj/g0BnvwiTG0vEzspTp04wy+kl7XB7yYvTwUnYg144xlE7cOdqy0+l+7lSm3GLo1pAPOL1VWnLdQ1Nq814Ppcvth05aP3g9dfJE6I2cbAThMvpFhWVkbsOkUTvgBnuuy/vA4wGwx3rcl4CPAD9rvUkqjFQxVxHu7uY9heGLDBVVxbFuQiMGwoKt3hNXAWKgTDtElJvKHTQJY3T0CAwVIoAqVKeH3BVumFAhCELp3w2A+WHxLqanwlmk2/VKaBAnfifTiypn817BCX4NknjwrakhYNiNFgucO2KSZwqLXjAKRQF2WDxwpTF5gZN1HJCGM4bkH41+jMEz2ZNkCe2sx5JWUisbcgmhVSB54NX0gidoRiHGD96u9QmAYU7K54n0zm6l9zijT8W4JzgQiS/vcIqPxtILFJ0J47ZbwihAdBFosQhiQIOh3BzwvWcgoFoeEMWjOHNvWolsKsCmnvjMiOjUgEhbZHhTFFt60lnPcy++4Gl5Jk7p2iqinCUbRbXyh96SSY5K3IT7HHrhGlKFAxj4J9OI3u4wktjKlIEvhXlv+gt3IOyBxDC1i/YykuQDD9FgyUWoTSFJd4xUU2rL3Yw86VwA6anuCVA/9MT8hhEL+kdzl5M/Lref0z+uFIdlD6amDI5cf3P33NVf39278V47Q3rO7984tbtw99nd57/wlfA7PeZ7MWrOfG5kZ0MiD//yN//27uL7b6SMGNA4ODI+dSRpppIt2SBwIOiQ0Q/5OCK7Xb/61vvtMJJRIyeDJwZU6gY9xO9cFip/9vnzbaS/+8b7lV0ySAeuEWpGBXln6BgdsjmjdUffe/MCMeoXa8IYQ9XF0ytIGo5/eDIbQT7duDqt3339vU6DSUgHEm3tfCSPYwBFBwYXh4bPJi3ue2++F7qNNE/jiQ/C6RW6rZ3VxKuxGP+XsmGm0ShrPN/IKE0/B4+A98vg4Bg9PDyr0YQ/iSejT509kQXcJ0sb+n4YNyWXjsiVD3e/+0/+2u6Nr/1fadgPZWH2tY4evZ9yupQvZC33wMwzGcGQr+Wk7jd4lm/8kn88FJaCvU9+5i0hieS5MAGr7ADn0bDcPVa+PMyv4XlsvKRBLUhLsLT2nHT5585WYAQpH3oZMvdJe6MgZYWGvTIPlLbClCJZcYwNGR5CJo4ZoatXtUHBnfI7HkNJe0QWnk8ZPXUk9UcbnVhbKnka1/oROjYuLe8H7iEAuVvk047RSQd76EjM+Fc+t1jFKcqWd/kWdy+NeoynK9xgP4l7bCOpc9/pj2OiTzdVxHsqYbiLWaklYXoUfhpChbIagK7dCWMRCa4Lm+U48TQoLNCZJsuIy6Y0biWDjItxKm0yH3ltcvFcBWjUSL6NIPk67UbelyLCVTR2/idArGA9qtsxs9GIXQy6jijVP7ial5mDJqDSmRGc0BJDUD0lFB0ODp4qMNYKmsKK/FeQCezQmPdE6mZjibsqh3v50CJN/ITBwp/bbh3eD8urrIy4RfLLe7BELnW8nWHD8oa+77AElgO0XBAuAYEbz/DmEIZy8ZBfFQXmuQ0CsHyoC9UTD8DxI5ADxW+/gozBTLCN8IyBYKGgEZWz+QoNrhlpTPobArjEG6OzLBmaN2aII6xGyJaJGyFmW087cQNTKjflhlYlIp7J274nrj/lQizLc3lKeKpkYGLQixZHac/C7Q1OyEYvw+hkPvk33GykbEtyCBc5cGnjikuDoSeNbF9VSpvjv2WvRq/RKNN0cFuw3XpeyEddFqWPCn+E/yeM9ghsD/VecvHQwD9GT6MGv/tr/1umY9/NCHjWoFy6GFmdkeJvv/Lq7uTPfbl19ZvvHto9/7P/ZeXyU6cv79659MTurTfe2H3vd//P3c/+5Mu7r3/3zSxSPZZeta93U7Bx1to4IqSKuoIxsiXvqwP4bhrfv/2Pfq9pMEbUJ44M7Omv6MBf/Le+UCPmQhrqv/kPfqfhZJMRMR05OiURE1/d+/xLz+1eyGLvD7Nu5pd+5atjhDHs/UWYxSVb1bHRbz/xYr5KDjy9ejP0//I//cMccpov7VIJ6KpVf0c2R1/A5f+zL5zPIa45iiOdgl/76re7y7Tevcay9SdkNedJb+kZ2XTA7X/+F3+6mxH6TPwf//Y388XaHI47a5PIPzz7fBMfPc9kreWf+fJLu2eyT1GPBQq+j3LSfJSTwofvv777J7/8P+6uv/f71WHvvndl98572Rxy+4LNtgi+7nVGJH4cdN5WtRle5c3/Qbh6Sals60W8gzwRtrHV0+BIfhsnd7D9CTuIO4hKkTQC13LiB2aLJ0pa5SwZCF83PVMUcArcrpQ9H2mCqzeYAFk2cjoG4tUsnCefEwiSzFovme0mpJ9fZSzx3wictb7PZORn2rVmay+5RkYr2vPiN/Q05P5LAk44nibTnO38Jx3509aib+oAZPlf+RIQVy5CvuemfZrc8rwvcA/qox4e20hiQGjYVJQl2IfyzPAhKGFbGwwJKkANh4rUKYvAtFeS+DJsPZHKa9gYI4IhIwy+IDBFlcViiX9722tIvvpVT7giFdMVeksO2tOc2TSyRlrSJbxPhCaKQKPXQo7AUATTDGbenAD5Cx016JIvSuVo4uYxX5jli4/Q1H2VAoduAsEyd7eeyV5FjC49QMpQnoRDVOxRVu29JS6hnTNwxogKIS1cFIGBk3NX1INvK/C847t8END22JI20RUtWQl+SoVFPwvwEnyfAycF+RXW3lE8lJGwJuqi4gTgvuh74UNfjRQA8S8+0fte8czboBtFO+UhXwyyo7Fm8Mi+Uf0CLjgY0iu+B/Fa6ZNADU483ZCaWks97OfAzVPSvZcRSeUs3o2UcXElB+5VFnnuJ/9oDOCR5BHdNdviN5IggcQtyJRV34OkpbmRcDhTJpEowHVjJBkVmHzyhLvge3EG1kijPHeqLbSCS3HWEPK5P/kmuwykQ5kGwucLl271Szd5fbSTg0/gZPYj3SfC/JFY/7gBlNutI8/uvv21r7e+rvSvfPBuFhw/tfs7v5dDST94fXf2uc/tfibHUjx5NNtIBOj82Zu7P/jt/3733juv7a5n4Sh95autz+U4D3vOWAvoSIoZdRnZU1atQylL/oTKF2UvvuAIEAaFDl0+BGldzccSMXCUtY6ihd/ingj8p194pnWFbNERq05AyLD2e+7pGA+h0wjR00+fq44gDeDhFEbOJn5GRtI5Eb/0JS8vvvB0FuKmMTS1tOmr1o2EodUO95OXGDvZMRwtRkRfePZ81omcDH2zrQFdLjH1vOklL2P8m67K6HHwkG2Lvs8/dSabUKbxiz7Tg7Ao1xYiRvbwy8hBYRNmjaU1Slw7RtLv2wOXh3oegAldt669t3vl935595u/9kv5us4am3z8ciFb2GR67WKM0rUxpNE567igxL+HoVaGnTptEqNrpnzi3wibDsUPeHIf3T6wjfbAhY5vVLjFITtxC++6j5biL3Qfv/CW3Za+MDghqxFEj2qbhp1R9YFPcKVE3E0nheGlQxtxOrJxPVPFszWM9MZJx/KOth8rXoLeTX0wOvjCmdMtw8U8GIfehWHhuf99vVkj5atNuGRHevlHWvPTG9qDFN7q6A2uzFuI1guG5nn+xP747rGNJBYiQmdodkZsMHnNbWNsMxQa0KVcZMCLyuUzSsYNYolA161gcv46RBz8pi44DGjjmjucPq/GKBWJcaLSKCS2D9j22rb0Was+tSVoaOgwZMJgVnk9VAYTT6MrX6mTxWNE68nQAJaRVIMld7SgsXdGUeKk2e+UXyt1YDonm3ilMYpDntdcupE3cbmml7tXRmRQ9dfCznuNrfAEFXDrrbmP4ptwPJFvrsKae9+b4YO8m7IYXFu5yFf44EvAl5+Nosy6h3ezYPG97CYruszLN15IV21SifqY8FUuWAlePh50C9a9OAKA5tqTWWB9PbOjFkZSsP0UODgYo/1yZkP4ZHoSl2/fCCcaefdBKuY/f+W9Mkte4f7Jz5zPSdZP7t6+dH33B699OGTEf4gaPoCTqS986lzye2rwFXL4O8HBt6Vbmcb97ouTEaKMzpklQ4cyLYNyPRaDxrok+SJP+GJ3Y++Iq38e8Um+OcYSEVeWnNGlmxldu5mF2/1kNgzl91S2BzBKZQG39UnWMwk/QHzjuwymvdcf2QMJ/JPglNlP/4W/GkP9yO6tV/5FFmDbHi9fXj3/xd0v/JX/dvf0C5/PFEzOVXvSkTf5SnLL953bN3evfuO3Wp9TcJ3KsonjBx9eqv5xztinY2jQYw6htegXXsVPR3m2rse0wc/99Oen8xf/ozESHHarg+VoC4aCztppXz3EnUwv+me+/HLhlQCjSn2sHsi7DofRpeP5yk24qayf+dJnIkMxwiKI3ls5EkYXdSF38D+RkXBy185p0nbArammi/lKltFg+wtp0GN3Anskh/jSE2T3KKWajKl3X/7CS5kyu11+mDqz7hIh2gUjPg6tZUwa2b586Ur4MLoPtV/5fOJmxJ9hZETuZEYeukFj8DAc8dRyho4ybYfqqkd42Xr8cUQy8W7HOLr8/V/ffff3/t7un/3uV2PgnQ3ue51eeycG0jpzTSfbeWQa6FXJDia1dC0/xkUzjK6yxb0U1nuC6ad9DPtP2Ah2c4GZv3mX0xVvQQHXjtCjXaycO17C6Vf+UMR5MY5olFSo+IVMGdJNZEMbs/A3RTglEJg9PHluvITZC4q8rB2zG8clcRi2jQN3flnPvbucoGORo/OOrlnAfZg3ND3KgWBDOEJqRpCG17I2bcjkSfzhhfueYn042vsSlPeHg32U72MbSRihIliI60sHB4Z2+iw9ZBVF48967W7BgW2PKRUCtzTkFm4zAFpIIV7De2tbhGukhyJgmGBFpy8Sz6iNdBk9GEhYxPdHsZjGUollfqz7GBWEIbCUYkeaUgE0wB3qDje6IDB4NNAUVLcj6AiDNVTOCgtQ6INTERAGeaALusg8LxSAgyUJmF6RiscITLIbLRrA/MInI2MhqY7SaS8qbweFNdluPlv4CVuVQF4oROnj4X649xlal6bREmRzFagQXwEuJvgO8D1pSQ/cz//sn8pw9pnd7/z+t9MQfz+GS04b39JpotJNHmug5b7SGH5Pegefm37KRWXs6NeWDtrJBppCSsrAkKrTzLMfSmSEfxsD/A8S6Rx+IuvNYojYfdcomYXOH16Lco5ydQo7GZGGuIbJr8WQUO5glZme+az5yKijwgihIWFG4YJ/8QfN8qgdEI4ANKCEvN2+S4riF34buRrqEp58+nnvCGhnDsUJvlzg5Bp3HvdkQ5BpumPZrOZ28shIUm/WqJJ4JzLyZrTqcrYCMKp0OfsniQevNB7LPS7cQ5DJ2Z8Il3I/evz07mf/4n+1u/5z/9nu2uX3my1+p849l9Kz789T92VVfXnlD39jd/3im9UbAskLnqh3He2O7BlN6prDLF59+cXnKs+//S+/s18+iWCd5UtZa2RqTrwaRZFdsv9Mttsgp+TuyqUYb9ETjITPxviin+hC+7oxqHw+L20yfjwG1R09jTg66/Ofea6jkve671I6b/EnKwwPm66qbzevpW7Hc3XCpH02dF/p2WM51y0jbvSt/Oi40J90CyPwdqZeOLL3bKa/yOrVxDOi5qtRukwHh3FoStLXfGYG3tBgJ29o8fDs+TONezl7vV3PAb2nT5/KlNzJroGx7ciZ7P9GL8B17cqVrreS7ox0eHq4Uy7LKbu7Oafx0nf+we7Sa/8kI4Fv7H79X3xj9/wzGcVKht55/8McNux4EeuPHApsF/QYyOFx9WQQ7VWb7QHfOHlp/XfPi/Lpe64FyWu0RF8GNDB7xIEfaLGkJdLAQ7cffiDSXhqjoxi55DCYAg/PpBNUUQrotLVEjakNRhp0vXSqh5VJ+CCe+E0rMNJHU/EksLowUORX22yd0kwzbzETRzldyR2etrnBeyFTuNq5c1mHe7CNQ8dKc90lvxzYEyey5QOPDTbiXplD/6Qib37oi3AWUWMMmr4P9gO+DeM7uR7Qj3N9bCOJYmZgdMHdxpgaCqFYI+qQWNNKq/F2JITMMXxq0ESpKNwaVoHv3hlhvt5We0qJ26mtVDQsqUEVuNtpQMqM4Jdx+NFimg08phGgVn60hHk1RDSg+bNeRzyl7ky5gQ2t4Zphw45oBUDBCpdWqKrRx4K2pspoQuydCtneF3KwK0V5gn/KpqNbpRFdNeKGPx3+DBhjby20FiVg3UQzTCx+tM5iRoK7Tcfha36rsqLVqIR38AuPOwGrXxAzXNHCT0LSakXKKy/lM8KtZA51Z9m34v/C2dlYrriKr5iLtyNhW1z4lgFUhPAmudu55DEvphij6KXrNWWjtyoOoqXdMle2CJJWfirxlSs5fTuHZXoG92Tino0SZQzrrVKmFDrE5O+lLCyFgtLXEz0TBWy42HC/dSNncrYaWZRu/vPLM5r6F5rj43DjcbkHGRlRxuC7hitpe+aEeVYu3PCV0RzlkUaEN7oAHU66w2vGM05PmHI+eXyMLCNG18MoBhc6rXHDX+/Xs38Vv5vWKYW/DLrHcTX4Hwfw48A8ZtofB+UfB6wRpROnnuqv6SmER7jbacC/+qv/a4yYEznQ1KjwALYO5pGxYxqrU04pk/dvXcy0zdUcDnpm99NfejmbvKaBCJwfEVgj6Opt5SghRmxMR1l74biRm9dyAHMcmB4CnkP86CZ1ht5lEtE0RJhhZH0fwujOU2nkHYgbsz31afusP3Ji0z771Nnd+t7NGekfPTJ66Eh2eU9QGrvopOi8mzdN9zmYu7U2OMdIupGDoT/MxzEvMLhCt1ogXSNGRqrUz5t5xw/Tf0Yg7h65s/v0c+cq9/gXVOmsRBfnpdsI3PPRjY0xjaBFfyfMVKO83Hoy+6NlJG+MGBmfBjZoHunU47u3M3X25ld3l1751d3VC99vmfz2N17Znc2ieNsPmB59JxtEWqBtI0w1UXrtBMKcStuUsNY7wrdE1W91OqnkMnVYWBvtDVSUodQDXLkpMG7D03u8YFA/ea8g+PdHjcYXvzrakzsaNFHKTLrLeVqd0KYnDiWxD5JHkZAVulJO9FHzJ+6Ge+FE+eh1USJD0aGzTsnIoYUQ+87gw/VM2ZIHbRtevp/RSWXcj6YC2nZoS2PjRnkzWHAsSw1SDkPPvDcsyo7cDI+nnZWl0tnsDA9bMPEvbgAe8nPz2usD/Kj3Y14e30hKcoyPtd+QuduuI0qFwjgVwPQRwliYGObQVxXdompCypBRgXwWq8cE2iema+jOKMEqTPTDk/IsrHc9Hblu5vXEE1ejmaIp4zQk7a3Fv72i0EggHGlyOyMRyxgLyoZLK77pRcw2Bf20NshLa3phaEsb1SMBKBdGlMXqFWRTKyl4I1EEpcoieGs4JU6FMDQ6q8nUFeMA7Yh3azh+5R3da78dsrsqJGFAW6cYGyvxws8JT8Q4uFxUDvlaFQjMuOQy4fwDMgImIOF7n+cLqIuxGzorhBtsRwgbNxcuyFYa0zMJPVt86YAqtg0lWGJf4znPQz+gUSc1CAPUNOHnNtoHv4ZhjI7TWRuiF30yPY6TUdAnjmRTz5xZQNmeTw9X7/daetiG8k+fOp1h4usddRLv1BMx2u85WiLpVumOIVwZiIxci3zcjUFs7fuR5n3oUEnx9VCtFvkbfqK3eWngGEEpqu6zZGTPwms7EA/vwU4DaBt/X7PBizMRjdYLWSbrtgVQT/C0G0yWtwnMf40n6T2mUxafxCWpR7tPivTRGP8/DXlYdr7z+/9o98Yrv9fjlxhXRjvBMQLGsB+1OXVDg0IH3M4i4IxSZNr6C1lUfen67RwMml2VUrDqdsyYljmpJyd00fEYCMKMKtIH9zZFTmceyiiir1jvRJbAHM3daIfzKukEp7eNwRP8gS8OepDeRWfkuM+VOx2vyem6jn5O5yN629YIRvMZ8NI2cpW9MIuX3Kovpsgq80EQkIYVB8GUxwAmWsOEh23Bp+N3QGCTHzjU+cPRrYXLew2uwOKL0fonMoqKXu0DHTAN/wNikjSMeF2//O7uyoVXdrcvfm9358LXdzc+fD2d35tZeHxz99VvfK8fdvi62PS+KdEZQZov2Owvpw5zlfnQ0ofkZ6hWWhPeay7eD9YPtE1cYXHyeOCujVj6jPfSlXtwPDcHFJbqd08bLvgFefc8epEei68f5bGFy0Dbp8QoJcXZ4D0Y+MlOcbr6L57Erm6cSNOGTDpkjEFpRGnO1JSSqEbBM/K4DKUUIlRvph58Jov9ySpZOOia1qbXaEKGNeN+42Tjg++aZnK1ldHIy9A69CZG8uEPxZJB03BjaMtrPeq/Aur5+JfHNpIuZYj0qWyRj4L2HDIvzZjAbDu/KjjCz+Ah9EZ0utYotHRTs/gFPJmK+CVsNhNb57alQqWGwdX56GR5TdewtssB6cAbTmGMs7YUBlo0KhgqDj8VE6yt1Y02UHSdHgwMq/huhqUxWdxFI8uXotLTE99IjXh5bWNF8NDIxSYqrXhuvdGeFZ+0kWuzTPBdoExJhOZlHLRI0UqwSkOUQhREvIoT3+DFixCSf0gDEzr4R+TaA8EXSnurkqWhYYDyq+AkfwQLCR1pS1CFC0jo+9o3vxuj4Mndm+9cGN4FGP3LVQCDC+3wiIus/qTtvVSVxPFXyeKf//IAH0tQPNQLbxSqBa2dyvSezEmDPxew4AIc7Ft6jRPD6Fx2elVmep2mF+QLr1TGowmvXGXk6FgW4JJHFJLTw1GopWTDZ7SL0cGRA9PBlG4blgA2+YYOPUf6dSOjespK/ojDyiuikY9P1iapD9YSVcknDI3yqCHyFZuptJ7FtdJyz59pRfHcL13J+o1sMGlkqmtOgke63FB+8KHeP5LLlsSPBNe/akic4fV7v/bXIispu8iIOuboJeWnLJWxMlcCrZOqd8qVn9Ghi2ksXn3j3d3//ve/uvsPf/5L+QLtdNbmXCsbpk5mQ9isA0yVjw7IgaL53Um81vfUFSPtPcBWAROm6INoo1ZijZGRxRulaxoGuurKlZhMAVV7fNDCD92WBdCJ9JCNZtWpyYdjJ25UZ1iyAH20ZN/FoRvaqUtmfT3aaiLL+V1JO6Ajaqpt1kdFqWdvMY3/3UyN301HxEhULrtDmz6WefXwypUs7iXLiYuFlkjjifMXbyTOvRs6nTOtiA+SHONx+AvP7Zv5VP/9V3YfvPWHuw/f+fruzqVXcywL+tW34MnsgE7pN7//dgy927vnnzrbGQNrkC7kS8NrGWlupz6FJzykh2+jf0YfJ8N0f/BxveJbnvmWqIZsF0RuDuyMPA8c+IpKLsIK6jKoWxZeK08FzLNyAr+VF5oasQiGLu2NcgSjzEcegzbvnjtyIzxlArZiFDSVmPiXqC0cbnHQ4SK4jn+elb00hKHF1OQu5cRQEt7MJBJ5eOKaDmAkCX0Zm3wzJ0N8Kl8pxqN7NxVN24Om5jW60Ghkjj3BlOJLOlv+pDdG1vBDrFK6pSu/jdMbSTpAP+RxA7KFjdfHvj62kfTKWx/srtw6W4G2e6qe/I1UFlZeC0uFSsVQACqyHrnTqWd4Nr3iVD5ZlHEjL3oMtXgTX0/t7mak0EIy1q8yku1W6lYYGWU8EdgYOyk66Uubv8LUKGroKLOOFoSrFgpiXg0nuFVghRAYS0wMu2p0W0jBkwTaWDtEVB6atxSydVGOBKBwKmTBKS/22ujoizSSR4YVxYQq6SpFigFPoF+uglneSXIMjipbMdAmLOxsZYjCo5FbGZKm8MG9j3DyPNhrtNFTG94aUwHt3k8BUWZwfee7b2QEJUZt1vhYtGh9QBhTMpNK/hKphkqekyBeMGi4kIDQPsMlPB7jlWh44+dPkKs4sIJ1HhD0RuLksXmDIWGJ1neGcGPGkzwc76JQB0vOGYGHo8EpOflZw/xSYGiuYyIkag3TEzmy5F72axpaIn+BQd9y0rcpoONL0GzsQN8GPg6kzviKkSSb7shHFBNZCc/lxQhQF2NrEPqs0ZIHiyGjzoNSeTF8ihufgs9owImsUZIkvIypOa5k43eh57Lo2CPoQNjjPE6u9iHhS/VQ/KVvP+Rfp6d7u+/8wT/eXX73m11wrS4rB7tPKx9GShsBLymkke1pnMnn2g7gqUzv/OWf+8LuH//Ot3Zf/Ozzuy+9/FxHN+EyKnw7I533IgeVp6Rh9GbJonKBtzou/tTGjE5b95nySdrkKEez1aFEnVS3qCaFJx2SDp5gRkVViqezSEeu+qYOqO/0Mz9pqxtQ9+Jh7x1dDEGOTpkePgJhiHxHgNALhpqli0PK5lbc6Es6tmklMIn601Fp3hL3TuqMtlQu5AuKG1cv7N763b+5e+3r/2B35eLbuzPpJD2dKfUjqSOMo8vR4+7y+NaFfIhy+fLuhWcs1L6b0b0r+TDlynYOW4Zug/RWKiud3kyjED14Gzq0I3TM0sdDY+hASOnxMG7prYe9Kwe/ujJ38opXnLgNDwxu9x0/xAGfe3VjQvfTAUnH4U3ClWXKfckPvJDVUEqY8JW3WjUH8cMUHPdSaPJaIopAgAfpbnlgOAZEOvYnVP5+jQRH0rE9AFlUR3ygcimjTt6fzzKJxC7S2khQx5nJsIbNQEPTk2bAkKxNrEt6w8cJK1xpyrtoeLDi14N3/Fzh8+sliOvh/eO5xzaSTFl9cPFymPnE7p0MpXEYcCYLEJ0h5pwdJ/UaRUnr0op9LwKnt2yUZ05fH+L0TiicLvALoxkpLMbmJ1zSWPDDsX7ajmEJxHyGEXa76JEZqdAbmgILTZnGU5oVmsSx63MNOX5T+4M7BASXgs1OA31XJBqyKkb4QwNrmTGoIMztdxg8ErkUmNEHja1pwRpG4Q26jVD4+ZNW5/mDUnpTMaZBIjgdFg+ONdJDgbRyVmkdHF0xyhbB3LhUhiAzdHZRevImPWMnQOAgEymCOGErxuSTr3wdlZ/0qLozcPyM0MgfHk5PAbc3gYO6ZakXPcasd+lwVdbJI0dwhbXuEXR0BbMr5wBjFVmlwZP9Sr6Pr0TPpVdlNIohXFhfkgVBk0yyMwKY+PkbmeMJ1m/ogagL3cuvktJLv/BpYaA/DR/DNjLpIOQ9l/yU/o3mylXDh2Z5VR4aMSNFytSRNclejWSGMl6JdyLrQeSbH9nlH3GrYeTw23OpROdO5wy3nJ/03sVMD2TxttEleukgSXu0fcyH5uOBOOrgnRS6jsi/js4oxu/8w7/e+pCaExaM/K5OjCmByurGHPKtjH0mfTZTBuRPWePtS1mP81d+8cu7v/Mbf9j1lz//5RfTabyRT6uf2D11/EwLkW6+qgWTAABAAElEQVQz3aXe2D8M1yM6u/M58oaf0WYNiUp0Lxv3Wo6g3gm7d8fHCx3/2Z2JYa3zxgAjf4cPoyUyHMMBLBzXrkcuoxvjXXcqrRhj4F7oZlzcy7vRdHlC18mcK1j8SfvSZV+9hY5QmAUI0RHZIDfhdJUMMxAhNiqGPyFrdyiXK6Gnh3YnTXh9JXcscn8qXxLKG1IYVPfih3b6zXmI95LWldQbB9wa8f0gGzx++zf/evZ1upL0s33BM0/tzmYKHd1XMiJmRBo+aX945fLuG99/a/d8vmTj7IH0ftorI2BGmeiZQ8k3R0/gh3vfU37W1gbd7lo2iACLf/KHV2ukuw3+RBF5L37rFPzFnct4DEzyjwdo9OMYQ55zCx10N3bSiQnnmTsdLJ50VvuVxzr00Z/C6bvmjV9C/aLaOxDAyO57CBI66S8sfPBB+g/SHhxiJKz6M7KFcvFNvTlwfYywgTH6ZzsF7fRp++EF/gPbXCTWKUJxwBmFPH0qXxujP+23dpcL6qZXeuRF2iFVur2mE9tZnrxNWAKblSlL8XjMLfeJVT/185M4kv9YrseDJGVK31SJRc9XI7zmqt/JWTdPHP6gU1tOk38mO6Xa58K6I+dVobQnQ4cxRl3mENJJVsFTym0Agr9fLaUnMQZLjKnEB0NIzfsTBEJrZOpyTp6Hm4IISAvM9FS/pEs6S2kYURGfQUNcaqW2d5hIwYcmfv1cNjTX4Al5acahr1CgVsOpwS0tW+Pm2X4/rVDyksqqoCgmFvK18Mh8+DSoU9SIJXQ+tdVgy58KKPRQ8qLijrCEhuAQt/lMvj2jjxHGm2vFyrsRJM9LwBqp+INTRQkuuMVbcfED7VVWCRujtFWjuOVfeHFtaTEWl4AKa/oJU2HAb2TVXxgPlV0+Q0Jh+HlfX57BJ2TSGgw3c8CtPFGeoTyNzJXd9SwIvZsKdyfHGpx+IuWaENAXoxxP3T1WwxaOOxk5uqZRSdilezd3J7N2KV/VB0toCU58zP/QFgxd8MqgoaoS/3BGn/DCwtlQHcCC7j8lrqwxiNy58jYXfn7SIM94gKZ+vRbZdk7bSY1Fvm6ztuROPk7oCGmS0Xlwdp74Ohin0mDKoO0xfOl2MVNwj9oOoERsl6H4oM9HP/tqyXRgBkxT/z4a/k8axOUP395dee87yZYSV07WrmwKl+9W0FtxTz1LGfuQgJJXduo154w0o5n//p/53O7v/fNvtQH8yc8+0942+VNXbsaIOXo0X7zFUPG1m5F49UCny2TU6BJ1kp6YNZrkaIwjsjcj3BY4P5nOXA39qFv2DDzqjTo2n+ozWJ7YXcp0E2NY3p44bORlRvJl7dCh5CMp340cVOiCSL1lIDHmCL/pqhs6E3GtH0nH4vMkU10NDz0Lb5KJkRFj6VqOJ8oLQ2XpG7Thwa3oW3G830lnrfszBZl4IWf3SkaANLSX8vv0M+d3Lz37VPhyt/sb0a1tFEODuymfb772VvZ1Olne2IfKQbW2GejB6cndqWwzID1OSVVnJa5nbRvdqtMCn5kOvJBPkfB+GUzd/yl0tm5DFpcojQeXJJTzvtvXmQCNnGGaOKNfRm/XcNraAnggoo0BolV6fg1r8KSmvKv3+e2Fi5nw4BNe2UyYnLv1MW9SELbKpvERtrn1rg1RtsjBC+uLrVEaCgb4dtrCK1dyuHjyxk6gSy5kIfehGLUno8/kgyH/9LmzXWbCjsCntg2hoW00Y2ZDim7pI3b44BmaAGy/uU0Z8vMOQe+rLMla5OOTuMc2klj0adVDa3rXEWwV9E4yi+LJ4K4V72IMlzfyiaUQo0zPZCMyCuBciDTi5Fw1lcemebfy2TwG+FLJguh+XSYX8SOoRhoYDyzT5jjMVGk9+9rJdJj41vRM71cxRzkEl4LwCT4L+14S1GDpKTHaMO/OHUJPfhSc/+n5H0ql6CLsQ7c6GqBCEs7jGbW6rceVNOGs+CWesKFxBIBp3DOiAoO5eHXt8CiJgO5VwJBd2glbvFMRp1VCkzwJr2AnVDw0M9CsdxHWePVESxz4ABoZ63v9wsfAxKu4RBSXk6YAU0T8xh/NKzbPwTlMD7z3pjnxh86tcg/4Hv6VrybUxCQ4boXJl/yOI9Rbhdh8yJWenNTI27GM3FljRmG399q9VAaBqakTOaX60A0KyEgOA3d69srgcGClt/I5RmNR5xK+5I+CJj+yiMbDiXcsRsP1jODYzNJmlPc7/ByjSJrhROWqspd4DA5Mjnin55VR0OBhIOkAXIrBA5sRJ4aUtVT8yRMdcTN35wfyq1GcukfG9yjY49v9FK23jwieAlzAB+5NI4k8LP5KGw9rHCYeXnVtV+574fAtBJvnCjuQ1Ec+FsUDeET6JLgOJrZQHvTrcyrD0+ngfXAxU7NpLK8YiUlmja5WmTfiVgYpFw073aRBR9XogpExh09z8P2lP/v53d/9rW92ZOQrL89mlPfSybPAGko6MeJVp04ZjYeXZujay8iWuq0B7TogjR4uiJOfTiHdditx1RP0dOlDt6/YDPWA0mWX0tM/kwXlOkXqFjlfzppLrx15CHph1a+BGzBTwEObMjBSQAAYbRxVSnY1ev7oRTz6MJ3Es9IMjRDBqf6R69bNvOvQ5nuedizR+H4a30uJZx3R8XRYvvKZF9tOMJYYjQwX/LaGsNORuX/rtbczk2BjzmxSCUdGkOaokewSnbSMfignGrO6K7RXv1SgRseYCKGHGEg1mIxwJZ1lNKmXihY/lJGycw+H6ld+Jn7+kyb6pp1pcSUSfxRo37Q9uG/kaE2xVeeTC36lNhdOguLCndf9cpt01zqm8iS6RPzlPJXnUk78CUMLTOPQScYG9wa/wjdUXkEMZZGryIt9vYzmDX1ihz9h0NWriRQafPzE90JGnY7EUDoWWTpz8mQNayOjaDA7VbpCA4fX4pCfGmV5njSFlghAAwd2g3dvXCDywshNuVenJsxs2Cdxj20k6U0gICmnssVYSEF2Lj0ZI0Q3I0wdmgxjVAAF8UE+G/XzrPKeirKxz8b5M8djMMXKTFwZUJFksFKRXLSBi79P5ePbo0MwbAQghZnKPoU1UxesV9EJtYJ5IuZr57WDA1MrUPE3LG40qHxOhBZCErXmgDHB/3BGHHwdNTt+KrSpMDdv5i5fCjL/thYQyrhBiy+Z5FHhSXXiEUhGVVEXToh4HDi8U1ny3/yFulaYJFU/tikcIk12BlkFPQHiCy/7Qpu8lpcBW/ESuy/1355F2KuGUCImEeBVzp0Kq6cKPRSPX8DGboFpYOU7sGM8qsCjxJWXNEsTYPg2/BuT4rkpkZpykw7Q5dBoh1ghDHRPS0HI3/iD7hOg8pPytL1E0TaYoo9iyrOs1okSpzLpRR6uUTN+lLbyBIvv16KYHe58jId85F/60p08juHQrz8T4U6MH6BVsAo1znokxhxjSR7mLDfKcspROuLAS5TJFhi/61nAfeU6I6yoPsZly+SDMR7hvS8jD0aQU07jh8apu3xajxHutzny3LJLpAbhWVxZtwe397DFcht5YGjCq7qVfQEVtw3X8jgQ60fxOFI2dFOu7XQwglPu8osWDhyd4QuqM0ccwjn+MqqOcDbUw0tTeC/mOJBf/NOf7ZEejgY5fyqjRAFjXPRrruS1Zb/xaBqGcq/p9liS4IaZrOggaGTRhEdReJV5HfWpG6lzgRUujtFasmzUmqEiyu3ki/7jutQhaU+DTn8aqdV7EjrGQ8s7MHiBbjoikl+dhSauOiuPbfpzVwcj7rtns6UIOqFEn3psvZLU0SW246IuBeDSxTGO7GVkpOhLn3kh02vnOrXmE/7KZyJoMxiQOsT48fVX39xdvnlj91y2YTCtxri6mAXz1skwDjXm7RAjNLxkBNUlH8MzdE2WqzbSGy5/wjtp0mXaBEsw8lq/LrNI21NjKZ3oGpmJXKMHLukkHvWJR6NxRfa8tSdJVPqNE4ICOvgJRHlVnyHVIwj0oHsrv8235T0L7UfvKrPlPHlvXsQV5ieZUgMAanEHlvT0fSHJfdqGgiYWAzw6MVPBFssPvok/nYpgCK4MCGbE/F4N35fPn8t61GwYGV4qwyWjklj0SV89avuM8Lp4crlNeUwZzvOUz3oGtIwkuNpCN18bjsH02NfHNpII/PEItPqAbgaDSjENIcNmjCgNJcYhp8OWtH0cYp1j9Fb2qSAwrHqfZj6dRY6m56z9YWT5EgmweePDGRaBwzC2YbsqoDDP4bazASUlYxQptCSO4eQ8ND10oZVAYr53MsFLQ6aOoEnhUhwqcyuFPEkPMJc7WhRAlVe8u/EhoQ+sk8EVdufn8z6Cm7QSPptdTo9N/PIjaVIOFQ50IcI7fHlmfOKDZ5DI8IR+jlJpfvNemhovAQn2biSpEcIjQl7/3FoRIYi7v4INDYUNcI1F8YKnZSv/iVMBzj2pJh0+8cufxz3e1jt++RPWRX9gCi2PQbrll5dHtDitnEysNAb74E1/cUYqYmnasPOG6bbEjbjtjiWOQpYag8Jn974M0wDczUhhzw/MXWbYP3s6pfTznzT7FAOKEj/U3i78s/OvJGr8Z6fkUNTyyMMPOMVjkTY68KPxXOLaeOW5i/czAWiqbfI+efTsJ3zJA8PI9By8DK21Izd8ePvDuKD8I9yjcQvpKFnKqzhywdNlJJG/NRKlbij/ZewMryW7jx+v5G05eIxQGVmb6Uo4NvjcKL5bmWa9Hd6I57eX3oZmH9vC+jHuSUNyGsIq/eQSjb7A4RQn3k8dUPdn3LV+yftKGx+MRHEa6jezgSGjKwOdu1/559/Y/Ue/8Kd233/97Tbe4loucC4fTehAXskIyps5CBYyOla9Hd0wBqJ6Qh59MfxCjAcfvbz+7gcjPxu8cB6zZojOGMPm2RxfYr2nNTyvvf1BaUIjnYPaxgs90/vO1CtdvDlnqdE97+Qz+uKNf/WN8sOX3FrvQ29HeYXnZ7NaI7905DsxfIwyhLrKuU4wnFci97dzv5q8OC7E7+mc+/bzX/7chGdESZm0XkXgdIrpfQaS8no3u6B//933d596LpuCJlGjTXYzZyCZrZjZCzyZ8i29LnFo9Ksy70P4LSh89iePZJCcy5fBArSMsVRJCD9Mgc+JEsd9/BG4ogqapdfJKvmBfFJOkuQkP7yv0ZL7GEtiT9pSWGErHhzD+83IKMGJsqUKHq+8L526R48w6SYcbQfdwI4OUkZo2P7nOfgSdSuHyQfdeyLTrXCOvCUOmJTpMpTgyEf+u+uHskloyuxslAMjHI1kDhXwUHbokoi22BYY8DJyBmbS1o6Sp/IvzFNPPJe43Dh8mz/PP5zbrwUfgUfFcTBiiU/GcI9BoMFeDZzRLIpRPvGfsNgLknNTITyJ84ENvSLsb75/uThNZxmaPp8F4E9npMkXdDZTNOWAAdeyKNAwqtErBgxMBJdBQwCl2XPZkkYredLQ4KMtIFW8aDZNpzEiIBXc3K1J6gJzeQlei/cqRNJBc/KiKPUerV2p8RO/EaqMUGX9QRUNGhhcUXoUvum+oJjKEbwsiuioPadchctfzL3kLbRv4W79BU8boZCBb1PZEhJ/IyBElRDB1Qju5fYgUmF4NXwDqF880A+q4a6hb2KlAQqPavAVboBWhVvow8oKuvjKxB3/uOYrAhwyt7T5BiLv1rfBJQBPV6wRdK+hI+F2Cy6iKE+LTo/nzKijGYHsV25pJJ64eakLwOXn3Jkz3bH1UHYN17PTsN09nEWDCfMFxZHswnv3TkY1kRHnjjZunl3lwHue80/WtzpbeuQx/z/g0BqzJ+WOB8MBVZthT0ZX468MTuan4mvclaUG35dwnuWfkUdmvc8oku0Axr8JPyR9/ge9Jxc/QOaex0HYPc8HHx5EkkiqgrVR8inP8Mif1NFLMR7JJlOMTe/g5V1+OHHVs07VJT4lCe4gT+EVR1zxJn6jB354h49+a5dyOIgRQ3IZlnDnf9y6hwxpoaZeuaz7Btkb5a4++1rNupZh7tBZGQ0Cyv2JGttoSeJbJtoABSm9IZ130jH8pV/9F8UXpbN7Kmsxvv6993b/4uvf333r1bfLR3rx53KI7n/yF34qB8Be2/2Nv5cDbpNBnU042lCUT+F5eCJvL2dXbofH2r36b2S7AeuXODzDQ3TCq2H37IDa//Tf/emM4p9o/L/7T7+2u2iNEF0XesuXxpOf0Q2jx8aA+7d/6uUcknt+96u//a0eUtuGKnFHl0ycFQ8uOJ+NgfQf//mvZHTndOv5P8wBtx/GaMTzjiKE1ueef2r3uZ94fnc9htD33ng/Sxru7H7qcy/mMN5zXZvVT8uTj8KHf8vwW4ZcKN1989W3Mn0zZ65ZI2u7GmV4K3qjo7819oYn0l4Ob/3qEL25wuBL3kl5g1zyby2Ssmcs3WAc5SffMtyRpZSDMEZsO90JWvxQjlJp3Wkig1P8tlUBbNm5J/VVjspbuYtbZAnDd/K9cHovgUU57Z54dY3Y0HZqVVnxMmky6CbmXn7R4w9KNAjwDkM7vt7z87xRmoX+R7PYPofihm8lNOG+XFYOZFJbgsY3P7iUZTjZNSzPlVUEokU627P3vpWOBAel9OWnI1BJQ/lro1FVYhrZ88AOguWZe/A3Lwe8HvfxsY0kCBE0c7Wj3KKTagW3h5ycYLzCNqrUxYd5jjzFnxKdBt5ogsajxk20KUGC93oqxxvvXd699k52Wo7P2TBShT4fw8naJrvTGrqG0Dw2fIyo7jGkwQnTGCAVmsAo6I78hC5fWCg7jLOYuo1fGNxelYoUgaZQjFEweLpGJENLmr4q4NCjgBQk61YejG4pPbSYHrxrnDMZoTD11E7loFw01vBJmvJIKAoUzEP/yFM8Sy+aF23dIoEQoDv+FKZGE4zC1nObgg/e4GNcLeFuMoFBL37wn5Qm7sIx9EyDBgSV4q7KXbjElL74g2dQabz4qnDu7QHkzkMuuSX48KK5dMXfO1xhY14CjXYR6vKUfzjEKe6FsIDgN4/gaP4CSw74Fs/WeI1GUDkmiuRWXOkvJSIOPAfpI2veyRC8GpOuAofjIQ6tKaKWMbliDGjEpdGREQZUEjIywUA6nLJ0r9KJ3KkjZMgxpOih8vE4+r6ywjABPxn8QQLkUZrqm+m8JPPDOZneHD7A7bw6dCi3cLV3Bg+HPehrnmeJSsOXDOKPuA7xNeXoV2NrS8MNfzqSmfuU2aSBn/5GbgaOQbRGoqSt/G4xJpN3/mNgNkZpgx8/0Vu5C75RuokXXFO/k370CELc+XUBscibU28pakY4GrmyQNGkUo5cT72TdzsJv/CcA2sZI2Ts8O5rr7y1+3N/+gsxoLKgNTgc/TDnZOHPk7tnc4is8+DoJDzB/0hKG2fv8trjQKQdI+jM2dM1kuDv13ClymXol+8zOUMOHk5ZHLOQNvoTXRJhTPGvaZB3hoBOLhzWZClxDd0zMV7uZW81Z76pEzNqBPHKu3itabtTmSmwrsgUo7gMxEPRiww6I2bPPX9u95kXn+7Iz2tvXdg9lWNSvvzlT1X/aFzhlz/6VPmbElcm6Ky+T9hrb7+fhd3XshD4VPFod65lPRIDKSSVH8lO6duyP8JVv1Kdy/YSvGDKp5QTfgrpPc/KU9q5lD8nD0fHr5GlLDpvox24G9tyDZ/KT3kMfyrDcOY3eNCFsyPbypVer15OGtKWnAdxOK9cw+ZRYJ7Qtjw8xy/vK629ICABhF1brsN6n9sAN5TV75OogJXq6N3yI36wyY89lC5FbtsWbOCMGVstHDkSfRrGKss3Mhppo0ntDLlYeROvejaJS2m+EmcMsR3ya51sZZ84W4aHNWLsOzSNw+vtaT3sgz3W08cykqSFGQene1ajjhLK4nAyMiMtU8jXIzByTNjRjbHd9C/MYR17d7iiLLbCpnD1SH3RcDlz0t9+80KVxdlUOIv/nk1lYDRZEDa0TIEZPdDLUAFNgRF0Q3oKpo1S7gqg4uGecIYZAXNEytF7plfGnwGUWfzQMb2EGmKhjziBiXSVbiNOl1MhgyqVIYWdJwUuzSv9eqTi0/yr3KsYCXCNjHjIg/h7gkJA/OLHH52S1OoZlveOv/IKRw2aBLeCFT4A+YdDNPCDKTfp1W+rgNszQV28Cco6FDAPhubxHBqnzJIdiTQBcRo2wI0jv8I3r4anWPMu70kv9zESoAgPGCO5L3j5uRPZwZ0Oqye561lzYL1ZcptyTm8tSjPjRVWcl9JDvX08Rm56kjezUP7WnSy2DTza5C0fE++ObXQiG70a5JUnu8NbGD+0aBCmobwXueA3jUHCy51HX6R3KMaAxphRwSkD8VCuzGZ0tOypP0XF/0ga+Ds+gS59KfcnNV7KOI1DPE0nCnuY429EtCMcibOMjYfBfhw/+ZEPWxZYZG76jCPjjBfvDHkK7UgK2GiRMPHWVFs7UYmzeMJQ8jw/irIomzedkhRX4+soSA3/5I9MESt3a8NuZ+oNPPz1j6eROXzodGWeJ84o8oPpTIqDlxzSaddD1/v5ZFyC+Nc6kWdGEVeZ9rA1LHQX5x5y2jgop47qIDj+J9PZcwAt/Pzdv5ONDrlf+JnPd6TqRAyjU/bPit+xjKj/1Bc+3WkthqkGhvxhhK+FGFnq6+Fu3BjjNXrwSy9/qp02jYkvzYCjlWxbvtB1SJHt9zOqdTYj9crncznvzailaSP1y0gM2dGoJSdt3H2dZ0HxnXxlCpcsff4zz+f4lRvdi0h+GItkd0bzoqPSafQhDudQ3bWAXZpfyJ5RFmV/mFmEOxnGOB1a5piQ61l79Kndcxl5YuR0jWjoID/DSxRNGck/emXycnbXv5Rd9T8VY4tBKc/9qCP6/2w2Pl6jPmhRUuiHp1KFpRglXwB6mXCvDfOw3MG4/ER1dwkO+oxOrow0MTiMnvpQSdsAgQDgjflAGsIb3Hgr/Q208T3D2cQHdK4Ln0rHweMx90VPs/pAGDqkc18YmLiNK5XthWzR0nBxJbIl2Ui5nL99qjK+3pW79pP+1H6RMYbC9cjjsdwpj464B9HqSIjr2RSmNvyg8dRCDGxZdZCglWDui3cHaSutjXQA8DEfH9tIcrSDwm4PIompFMqEnx23J4MozI/WjH8LKE0thq8CQSd/FZfCgOdQ4lvncyjrR2wodit+FBRcCpCSUrFM0b36zsUe9WFK7pmMNPli7lwqhGSP6vEkHpyUVYeri2MqsQqPrzV6AvNkFD+6y9Qk5OsmFT5BzRe6VVpD59bhKPA7UVrUCKfgfbVESfq8kBFwLPRQYhYP6ofhjwKqApKnwKCBEkYznPzksxY4aM/x41Q+cfHPtAylQwmZesQ/aydqaCYdbirgwjH5XbyvoMAp7SSiHPqXeytLKULgwMC3J3Dbszj9LiswkzfFJL3gEzH/3GRLDuPqPQFtUJo+uQgfoli0OeJ7l29xva9eGHoZwcez+NJWEj4AsAHmIZ+fRjYCmj03ckhldtluYx3ZMlUnb86tOpYezhMM4nzhBj+q0Iov0mwOND4qcN8mfbSWrsjzwO1lb5AUev8Clus1l8G2Hy49+8DMeqeZGjKKgSYjMDdydpZGXh7w2ehSjSfKJBQwBpzxlqCHOv5kxAhNWBAl8wjAh8bePFeUJCk7cI2RFJ7GiNgvmzFyyC8j4wn5CAEato6c9T70y/eimWHUEa/QJ2/9xU8O29AmfenipeJwV/6qzgpvuQWOvza9MpkEqB0wfvvrwyZf4oAVJh5YiUo3r/FLnT2VEfDIozwaXV5lL3+ThzHwQ27dSCwkeUJg7pczcuIOMVbSa5/NuYI94HYzeEyRfff193Z/PkbS+1k7o8N35dLlpkFngUcDHWl9DUxk8VR08JHIvT2Vrl292k7m8eigz730bD9KwaQZ4cooZuqFTMqH40/Ad5fsYKNPPvfpZytnFkf7yuhYFzZvRonOR4yf7q6ctNFmV+yQtHs666ZOZVTqqK99wytwHYUPc33QczT1Tv2kv+/kqyef/deFGUZ7rqmv6a2cyAHW72UX7KPpIP/0T7xUfbYWi6/GEt91SuGvHo6OM71lf553Mm1jx+xPf+r84M9VOe65Pu973BcmIwfcPtTy3Hzuv63A++5QFV1h78c0pvV94HsvIGewZxHD5/74gJfvXsjeg9D73dCy8N0f1lbrQNwDj/cDbm8T/gDU9qq2rg50uqj3xQeCgvJ7vRwkacNxKe2WH6c+ncvoJP0x9SieDM6t0NQ9COd1H5n6ud42tMWn+m1U5LYgHsbdgn/k5bGNJASpcKdDDcH1BRgKZYTgrhOV+RFq64004ovI5L+9Eo2dcBlnTKx1HnBSuD4HVMFkuo04xnnudQwVm4hdyNz9rBfIIaGpsOY5rWPy1dx8DTLGRRmNu6GfHqOUzSWvBt4cKjZKi/FUmgLTHgz2JXDt5CouPBp2Bcoybq9mM1CqCKMEirvphTdZENwDX+VjyKiAQbVGMvhL39RciUnj2OHSJD9D3glPjTM8aofsqzGUpEG5OkRw0dFeVvIDVytgaChp0s0fTiao6VfoEl5BQ2uJS+AGJ+t4AW7CBsfA5xnT4uSh5g6akyn+FDpF17C8F2v8KuyJs4Rb2atiKFt+oNHIwbX3HKj+88xvGTB9Daz3FWeehxZ4vScFbUbTWvFbno2VNEPvGEm4RFZG7pBSvqVczag2FZeNxkZ/zAtauKDJFDADxHQHfRDZy4Gl6JGu9xkJidSHv0cyl8pAMQIz00mPTryGRAytyWuT+3iXkJjqmbLHN8aCnc5nFKlTZTGaGEJj6AyPiQ6a0Y7XzqYT7j5fwIZdgUEbhw3y6icd7342NpXmnhwFVgzxOloUPngH2/LJC5TkM8VXv76Dz0+a4I1Md+g+fOEPHn/qpJcHcDeyiWd1T15WWUlxlPToAVNPobgxSn+IWR2tllWmXyZuYiad5ivGjhj0HvcTMVB+5w9fCc/udMH28YzQ3bo+R5eIa+qNDqPXLmfPGfIIUUeEUiftA3TUTtnBr46eifH0ZPRC0KTO4Wt0bHRciiBlFeM2D/duZ9oqeqN5D8yZGFqM8CNHbsQAynE+oVvZGVkyrm9/MJvgYuKdG0d2V2OQoIGBL02bOQYqfsos+KOg7t0LnqTHuLqXka7bodG0IUcXfPet93Jqw0xLWTf0Yr500vmGBl1tL8CmUuBDp2nCs84QpNwuZhftN977YPdBDEv7HjH28PU+pyAf4u7zXi97kZfHRFxv6/4D6BKwF1UgwAMeK96608X77r6XRt0P29DcD7IfvKXxqGCAwu5Pbz/6w57A7+Pbf3oY7I/K78FUdGRPnM2UbMr8QWbyimiEvZuu2YgAS0YaJWFkkQwNAxalB8ODI4Mxn8Q9tpEUGa2iUfFVFBV+NSzCHP2gEs7oEA20LzUqVaeK4qvRp1RkSHwKcTbmihJJowH/7cAHKDBTWXAp/60UhdniUXimRa5kiuV6DKd3P8SqQ7sXslDw8y+cKz9M41RhJsT0wBgiM7VDQR+nlUOuEZr9Q/aGPoaIbNhTxDoHtFHGSsYXWVNATSY7FUeJxWjR6CkKa6hQozevQD1zlDsIBdyCTgIhsYaLMAIOAm7h9cu9CgFy8AmTp6tZP3U1I1YMxKeibPrliMD8jzKET9qNlvVUNWf6XkXEf8MXEgYu11HuQZJneKAEx5+b24T3Gm8wwtEsnuveppONM3HzWIcqja39svCiuFf8vPOrMRpoptSRlHO4m9HGTKVlL6R7Wch/lOUYtM5zu51NVtoTjTK/m2H+W1HSsXRbLjfyfjRnStmLCAdRgj4PQy36k14arbuMgPgeTs/mTtKQn/4wqBFCW54an9cncEEZNxiMwsKfVGqcmAKpiCSta/nk37lhxNBU1+mT6s69TDOYVlZO+4mD8e5XGd2CpHUQbj8G+RoyarCkLDhXoz0tx7x0VCqNLPzgZy3RGE1GxdaUGJoZMkt2xFO/yMDRGFnwot0PG2uEJQx9wtgPZFwaPNw4tDde+CTq6I2EbzDxCtDIePPuwjPhjctAyg+OJp3LeoZDXv3Be/XCJouiJ2yv0Q5DGQLdcVt6CeNq5EdHyTPaBXRZQUPn0tG1MM8ULBxRIx1RMQp9IZ+0f8aoEbku0YOavFdXBaaGe/Dj8/EYrNGIoRl9ZHn4Ta4ZQmq3+q5eMYAYTVNu5VIICnz+3JGrVI7mAR6Mp4szeWahQeMHTeBCt6wEpGWbR3GVLzlrfQoPwJUtuUwHb1KyW9Sb6dB+LYvUIwxdyHsiX4o+//zZ5CPyHJ2mfegaosT1Tu8yjCBktL2VNSy+YLuYmQRrlYzSd51SCknn/MfhFscehbt5fUTgg3H/KNhHoPghvFdqD1LxaJQfCblQPhrFDxVicf2L2X27lT9preTUwc7g5MEzh9a2FeD6mwB13ZOvA7nmqQAbPgCf0D22kXQzwshYMHx8O70B5w/pHRzJfhIqP/9RIpTQrEuieLqnUohbDaFK79fh0+CL/qoyinpqIxUOREGkugev+Ksx75xmemTDoFEp0wtVOfcZFd1Qgwk/jhqVCrtWr9NIkXVIFD285q/v5l1BUCyG+ii10Qp6iGNYwS4tYfbcMALg3ZoklNwLPygYJWOKzV2+KSr0rvQFleaNXkZiUq+CEdYRNg/ynV/+64x2abS8o3MahQlHLmmhnEORpMvrKsz44Ht5H0Bfw1NdcC0DEI/lD3K4+jwo4wU6QdGEiVI8G+hG24TLOiefmAeW4gPUtMNr6QidndvRMQ1e6cvzpDXweY2ipjCp2En7RBrJ47dvRN6ywV9GXTS+PSAoib2Qqde7N/P1mjykfLrVQPyP5teRjExB2QMpS1hKT6ddQ8H6i2/9jWJS+/BwBxu8egWfe3+F+OEv8o8bT8bgWPtR4WON8vgbjanBEiizydePWkeSAhkSy2soIiKVVw2YBktRKALYx0jYi1I/Zw72A4XA1FAIEiydOjXxAEp7GuypI+SPwdYv1XqfESMGA5KWzEgXXTXANgFB06oLwqTVoDyD54Yf8zzX8CBp+uH7Po6R1/sgt3A0wH8QftYtpcQRuTkwdAcvcexurhN2J0OGZMBIT+VXolk4gV6O3GyP1SPLmNJ5hLMwiY939gP6MHvFrXpvhMazkRz7/nwq54vdupXRohIxZWg6rgZQrhoQ6eGjemjU/sOsm3o3yw7oC52+D7POh/NM9umiLpjNPk5oO5m1nLYkMNL9xhsXQlN2rM5IjDStv7RJrk0Ye1Zi8ooj1e3BJV2dL1sNfDPp3N4yCG8fkx90lb4Ya0cipB9cu8ojI2HHdi99+vndV7/xao08SxLOnvAF88mmjb94pC0IitIsT9aioPWDy1fz9fMHnXJcxpHRpdZP/AqdV+5ketNT3/u4d9lI3Xt/EGQrqr3w+x4W8AJa7/cB/ZAvC/cPieb/D9Efxv/HpeuuAYUiCEPweY8v9DKdANN4rqDWy/iKJoqWeMWbotrgN3zg2y5A9THdYxtJFuQRZoZDRzVU9pDWodYkqlKCIeQMCf4qwOEnTjQTs6htGqA5hFavSoWkpK13sHA6IwDBM27C4GgPU+VPAAUz0xEzV20hL0YJY5x5VmH5mObqUy4WR2LU8ZxNAad5ekaRHVTHpZEKPPxwMIRYpXos0BnqrgEVv8nzKMEqiC48tz1/Crs0DEHy5dBbCMuXhGkkgqLpVCFv76igvBY185l8PBN3hRGHGh8bxTVKEke+SmTundNNePkWnlEobTRqIMAnn5NKN2kUxzscW1rSYTjyhwdu94VLbO/jV2imUVFM3JEHZFZhF/3AQ9cMxU8J462Giren5SJGyct6i4wk6OyJLEJNwKQbXjVycEBYAyflnMXOzQ6jMQ81XvE9sPMF4BicpLdTvUnCF4n37sYgq6E5aZJFtO5V3tIm7j5NP6qnll9obe/cnF6cPMjn1AcybyHjjCjdzohCBg87DUZeOUaVhd2MQvKvbnXEJDw8nDBrlSoHAT/p/LAcnc7gAcOA4MSLyNSVh4FlnPRrtHQw1rRbqkbjio9m4RsZifswBvGL3sht6uaksa7N/3p54H4wTHkoUzjIjmm0kK/0p3Ty0E5K3uTjYFx5xEsyVfiNzOKcgg5PR8cgYYKnDlCu0qt/bhuLqm8IifMkLXwGosyWC8crY6dPmLZa9TvhMSbsD2cEXJl0TVLyJKq8+TClB2+Xv6KSVSPaKdsYYlczBfc733htdzNHhNyN8dL6k/BVB+U7r8XnSdnoFKHtte+8tccXfJB+5SR372DUC3EW//ir+/RNdUeeyR0dVXiyce7k7li+YrubRd6nDh/fffrcOdnc/e43X40shj+pW/58wVYDKzglCN9KP8l2ZPy1dy7kUNpLmaq70ZGjmxk5svwhoKVR1OXQsehcftWjiH7A4ckPIHgA5gdeH4LnB2Ae02M4PMAtoR8h7o8i4Y8xqR8gRbm2U76FoIWcP50ZALMA50wXUypxYHPtvXLcd8W2HhI7QNM00APj5j4wnj2RDTNXZrHaFhOgT+Ae20hiADTRpMOa9wXZIXP8aUz0QCyUXZmS0U6phaBuCJVGimJ5MoqE/5Es2mNw6MVYTMiAQH7agDqVkWFktIejCCnHMi9XCqPwNRBGsSmEQ6GjxlhgVX4mkrsRMHs2GEmqYZHa63NhNMiLvFGgHfaNUdR1QJIOHBqPx/ijkHGesqCAl6J08C2+qOxV3Z4p5KSnsjoqowom4R1FiSyAF7Z6YwwSbnI4igP1GvJEK19nBEkjHVjg/EPEKEFKTeOoFzaGIRhGn/iNI0pe9tZ84V3il7eBBSd8FE7oS9zSW8I25ZhEkxIZLeyWEp++b6BugYQrD+FjG0bPSYOr4eIh6XVxcgp0KTogeLtPD0C5DEbyEDwW93MRv/oXOPzG18ED1qLAwDXNgZ8rL/nBHyDJURJzrK9yux2DNzZI5I+Bm/UTEoo7HP+UbJ4Wlnr/yC7orvERY09uLTyWFD6McaqRNOVmndAYJYwT8mz9EqrEY7QY+THNa0quAWmcZjsCspBF7hkxOX82C3qTUdN5l6+l85OsMYiMaEkHXOu7hjn+yhDeGkzbCNIaYVIcq/wezRAU/vBuL50wBl0aYpjRgFfLeR/nIXIfD/X7QZiFr3oi+fJO7wzP768/+zhTJuGvP3VuvihbCe4TARdePplE4b+RXdOPRx9czOJuZ6f5GOWV7A300rOnd89niYCYDJRToeNUpqNMJT2TRkRnir6wwNrC7N/6g1dbh46mcbl+6EbWM8XAV+8TV7mRA7Tu3flHThjQD8Lgx+QkeQqMBb6WDuDXQRwLDk/pDB3hVJHdqayPeiqf8dtB/Fp06cvnn8nC8hNdM/S9N9/NSfDXu9+UNUSffe7p6qcWQhAyPrUfjCQfBL2fA2zfuXCxR4rcCLy2gY7EmMVd6e+5eJ4Jf3zMsRwe3sxZcWsGwrv48ijv/vq2BViOMU4ZzZN8T4rjtx93+eMB7Tc8mljBuiFYONe7+Jwz9LR/dUnD+jZ76a100aUMSmfC6z/kFnc7yH3fMMpXgJbeGzwrbNKEa4zQ0dZgShdewHXQPRjmfYVvsLCT/bbvBOExHPk9FyP6YCmeSd6/+Pz5jYahBa3LLR547xTaRhtNJ1W/Qm9xPOOD0VQGl19tgr3ytaZwZiYC+rHcYxtJciPR9rBDoik301VPxk8mzCmbRmPcGD2xnsT025xEbXO/SUrm21BnnYg9QYzwGP3Q87U2aZfplFv3MvxKCYUT/eotWcIaCoCyPqLBCp4O1yZsGQFgrAVCp/LDOOca3dWI5MUPIw3dVrjiwUBjCNV4irHCQFIAcBNnO6jCS9A60iR/BBOuxCc07Ynn2TAxmtEGZtHYSgxp4lB2fcg7OsXfq0xbXMqs9GgB8i/tNghiBneduh1UDA5+0kWThzzOez2KYmjdAqQL2BC7KAxIdN0zigFRHJx45XV85Ic5NO/8kICcpr2lJd97Fb3Q4PO36QbI4OXEs34IBLmpK+KEz3+8wA4vsUN8FzIHjVDXQDSoo0dbHCGjENwD1XQHn8e+whdc4sUeUECBxYcxmuGYPMWI4C0l8JOw4B+Zm7KFvySVT7O1xEZrUjKKat2S/DBo/KGPDFrUbcTI+6kYUmD8OPEUO0PIiNC5HI3BoMKfW1nUezsjsoweU2nHM6KyRo3c1ZGDNMn6vC8+/BiYUaoffRleMSr2YR5dJoCM5h4A3o+2PY0hqHzVN/B0gdEeuqv5Da/aACbY4dQ+TjkZZb/0T2UNTGJfzNQUiT4cOfLhhzIxKk1ur2Ut4fk0Gl/6iReqzB3sWr0Db+TvYhdrK2fnRyonH0EET/TW+9lb6TU7cseh6XiGFG+kYK/G4Erkps1fTS3NuaAHv/Lx5J6/+GMITbj35po87FXWxHsADzi4jmck7Gw+vT8cA+WdLKQ+e/LE7ksvvSA004FXd2/H2Hn13Qs9r84Xei/lcNqgrrzR93QQo8+Glm+892G2Xrhcw+p6DAm7ZJuZQM+DrnU2ni0igfKXXzPpPYlUv01mps5Lt0FTd9fsh/Lym/Ib/QEFHKMrlOBGM7+VVvxsJKpM8bY0uMfFK2k9gDOe/C3Itz/UStd6qydjNOt+Lec0iRUfzXUbTs97MwkQxqGBa577tNFQ/6F5yf2Ajn5ovlMGLf2tnYFpZiLiuzFaKawOPcOTfBpcmFQl6Gmf/j4+4AWqMBuYG57v6fyGA9nHU8Noey1dIX7LasEmfkaJUkfHIBr7pPkJKiJMhm5mXan6Z1TSLuyfxD22kWRzvSPZPCs8isKVOPaZYoqRE+oVls+xEXwiFbf+CY9MlKm3owjayCbjt1l0YYhy6Nqk2EarYfVVh6k3GVxMUzAzf11WNx6Rjj5vmWgsPGFiG88UPgPOCBJNdd0i3oRlWUuNr65FSkF3EXciWVtEgTHaaniqDPAzCoJaj+fGdV93JI8xqGzXr5c+PTMKM8KYStPKqoDyZySiPdI0Tl1ciMSGzUjcVLh4NK0GVdBHKInFFLJ8oQH9XJ/XA9qaboOAbjSovJPgSmf4u6EJvdJ598KVlJe1A9l3KnzPPm/d8r8KCkx+kp18jRLxXuUfQhI8bpIqfBVOy2WMrDW0PoooeYJziwgjFJUfla/pCa9nw7xs6MOf5Cq/xg+MEBiYtavD0JwHhvkHzVKmfd4MNTLMUGsY5ERtowM/tKVPRGYsp83TpkTHkJR7acL343KMl5PZN4d8TYM9KSkH5XjzGF6NwYMnDCAOrFElBpNnP+HOjDt21AjJ8J8hRHGC7ajU4kVwKFuGka0tTMt53nfl0v7rv0JPI8N/NMGp5tVVmEvf2M5DR2+51fhW/pQF+fC/KmXiWU/p1UgySTmJl1kTROZM2RsJuslgzQiQrTzAgpxGjn+mlU87iDVGzY3IgHoZXaLeMFa/9+YHwW0l48is+MfyFZoG52qMkdMx2vjlvxd6wDMa9/1GDxz038uDeOQ7CVSqek+tSnz5Nj779Avnd08kTfsu3YtB95WXX+xWLEbHdI4vZVToe++8n1Ge490S4YytO6KLO7IdmdTIvvXhxRh7FzqaRj8yAO9fb1RCekGn+mon6y5RSNvg3LxHukQovQFQX+ielT95iFf1yEE/zMK35lleC7TxbYtf4yCtbw2IwDIx4OO//NBEJyuvGjS5QywPRub3DoSNv+NVrh++mY799sXkgJYIeIszfkGHukkLXvTlp5A8S4shs2dAFb7BQ0dgyBUX0MbRZjWNzb8ECi++GEORX6OFP2gUFc12mTxqr31haWsKX6p9K9tbGHg46JC70qj/orEBSXcBL3q295ZRaMUL8m8gRYeCvPuKs+WcyDXk2kn0pf2tbD1xI1+GXt9dydeV1/JRT2eY8rXlJ3H7GuAjYmvsjkRxWDiI4Qi2JYB9Ks7lnJ2nsn/Gu+9e3F3IYrtnspumAnjtjfd6SOHzOWNIhWqPNJqIctBLokhknhpGvoJTGSyAvJvek3B4HENhXpHDDHzswmiCkRfCUSZHWMXxpQdpYPjcDN0hNa9pFPo1VBqPxDdHDoYh49PjJ0LTGuGQEpxoM0KmYva8N4WBxlCgESNAEhbPKNqslbIBVobVwxsjXnDt7bmiMhHYwC5ZqPGS+PIJd10CKVuN3fLDG40eiKlyfWgFXNIHJ36s6Tu4oKw/QraY0vJM0ND8QRQdGKeDn4rA9xDg0DkCuFUmcYs7NAW2ePNOuYesLZ1ZOyMe2PLKg2dAccLWvXB5AUexoGtCM2Se9wyY7LlDefnWhWvlHSZY0PyZp3O4aCDevnIrX3xtU2NwSD/+UvSjSD59nqKe0ZWOeMYPrzhc9Xjwx/BiLFUGE1Z5CO78/9gdA8YiYmtkVnorWQp51vINjxGDf2MYDWnyhQfyJT5DiYzGq3WB2Cp36/nwEYy8u7ibUpP26oGuMhvshZzHP6HXqRcZzQhjJu/DfTlX593JPd6N00h5Aj8+51KXVLnb6cl2jU/43w7cipKwJadikP2pt3rEA0TvTAOf9JKq0fXXt1GkF5850yNM6DjQOn6fe/m53b/3s5/bpxlOocjf0u36u8oE2TL6eKfrgD6MDuDOZb+xp2LcSHd9MEJ26P+vZ9H31cjf29nf6L233s/02TO7L2ZzSfpOT51+snbo1RhINsU0Yh8mZgPgM21w7d1kxMhZdva8YxxZb1Sjb1g8tJaSIVmbYSSPobjkUBvwRzkbGDvcWhyu+i74pyOFH8prGviFE0y8mu+SoiDzgF86ydinPQhY4+6VXeBa0xKAZ6i283rjNo0xYoog3vJjdmI2WU4blfaFLDlfbnKca/CQPTighK4uL5UTyJqUS2jOD7zf0MB3g4mf0aF7SaMu3lBPXqYtxAszRB9tFI0uMRByLlOqNnY+n5/je+RLG/VevkQsGya1vTTvfx3arBPlJnvzXLKDQD60gcrQYAb9u/grAlm7kRFZo0TXInv2J7sc4/xKRnDteG6GwhehDLizZ7M9kIGbyOTbv/3tg6Q81vNjG0nWFoXbafyP7D7/8gu7X/jZLzYDf/it13d/8M3Xdr+fn8qC2d9//d0QOQKnd/BWKoXM6p0RCnPXBJ3leSWAzm17QoQYTlilAG0s2cLFkJo1esUxZjAtPwsYx7KPyZPCafQwpr2RvFxPGkynRIewzFDRFQmGV9klTxocSgnc+tF4husCOJZ1QlR46VdhSC/KAJ1LkQonKGMM6KUHQTJD4GvgJO2GxQ+eSQ3plGNeAyccmzmN3nhP4yasDV344k5Ixoia9RONlMhwFYdLXuY2aWj09sIDp1crDTRQVEkyeRraVP0apBAUoYYVU7BlaDpYmeXRO97KW/GGxsJjhPCESWtQjpFmZG5oAImf4U/AyVHM26alIbhxOZXgxnsdebQT8InIzAs5Xdx5fa/nsM7vX3BOG6MvX14m7rEY1uJp8FTqZ05laiNyk+RLizUU84zaKSPpckM9asLzALWM5T1Zk8YQPLA/6isecmRXJf9Bl4r/gKcskQWGjzyleCqb7lUsG5o9+Qre2PB7Tpnge+MpQ/H72yLuQf7Jf8ALBWwkXFmUD/GqrIdJdI7GvrtR7zWG6axFxtQZDp/9tG7vfnAlO2zTh6mv0SvqAFE699TZwrq8memmDz881E0h7f32zXwur+6pA0HSH5m8mgagi73jw6jRiBiUX87GkOoxfbriLZpG2OUsWw9kd/rX8nXc9/Mztfcf/NnPZV3UmUx93dz9zjff6skGf/ZLL3b0B25Th98K7PXQo67dzDq2n/3CZ7Po9mT1rXzhG9587dU3pgLn2fEgpuDQ/E4+4dcO+HJPT7+LsTECux9w9ItRo06jjCBunB3Ah0S5DwMe6NwyrjpKQ++EHj/lyFhVdEu/rXJGy9LnLcnt0ikocdYvqY0em/ImJPt1KOkED74rs3mebIL23jWueTDdJp62g960RcuKqd6WFjlvxLm5Wg+VlqgepQBdwVsaYMj7pLg9Jw1h8Cw5VGaPYxQpC4MaT2V69emzp9pmm2LuocFNZ1KqvCe/eIqPD3N4shyQBSbv6oX2s2uKtO/8Fv6UG/3GsJxRouy03lGiG13nhY8YYH2wvb1eeDobnsYosubLzBR7QT5upW34JO7xjaT0Lv/0Fz+z+6//i7+4e++Dy7u/9ff/n90f5NNOTNF4Esj2WKMsGEv8l8ApH34IpfcJnUK1uJTRcymVRg9EwR0Lo04EB00NXws1cTGQ0Pk3mjUGE6MkuDNCBNbqoav3MucbpkoHc8RROODvBQcEmN9CDS4VURp6e6tgiDd8aEOXHpWpO/TDlggVuLy0EBS99ELKXkM8sKW4DZX4+CQtApuoxQOuv6Rfv3ijD7+8V1ACr9J87qXndz/5lZ8I7Xd2v/Hb38gnxFeiOGezNhjlIf8lrzzOC67BsecfXGWisPJUVvIXOvDL22Rv0mz6Gx2+Jmv0wRA0+ETAE19B1D/4+19ONV20SXVFbnqh0/Rrk0yCG8RgSC9QxTmWvbcgEFc659MjvZWe+amsfzjVkT+KIjSE+Q7w9AGB6VvudL6iuXLtWt7tOjxGtbwETclY+QArbaNWXZOTxPRClamE8Y3UOP7EJ/qMwR+3W/JRGpLYKoNHphuaGMBr5GfBPRgvxbTnDobdn6UBku9/HR0dxKlveyzIA53CaCGXkdo9GA+mRfGwbVxlZuQXDy/k8/9f/s2vVbcteTob4+Iv/+LPFIdEXo8Bkl5XjSQGhUNk29gEgh7S6NMdz50/U+WPLnrp2adO1QAZRPqYt3d/+N23O6q0/NzBL0f/fOPV9ztarJd9Osc90TV64Abgv/jpp2ooWU7xUy8/k47Jrd07CbMf2zsZQXrmzOndZ77wdOnTGenodnDS56bPbsTvZPZBuhhDzAjSd99+L9P6l7rzdo2jGC+Lx+VHCFOj0KiOa0fo5Br3iC7xuSQNcEuHeHyUg+dmgM1WyJvGcta7ij6pjXwrt+DNr+UqmSAFIrVVR9zxbcnEwbhVEIlDWsjIGh1B9960WwRDNqJWXIvfWlzGTtuExLMWy1Sc8jaimGvTX21T44aupo2+xO36OCjjtCF7ZTFezYO8NJ2UJ17gPTrj/VCnnWVgPOWrs+1Ei1P52pI/PsiCK14URxJAo9/GuIfifdBTZ1N+O+AR3Ogv9lQ/bfOtKGTl58Bi02amcK/42jF+6oYtXXQGzpw7Fhk+W5qdQlHDGq4ppNJomlNn+ZPq7sc2kv6bv/qXdv/On/vy7n/+W7+++5V/9gcdKpUx84IyTDA5xLWBT0YsujZ0r2BKNMamoNaIxvVkmgua9ooom3AgghNlFFhGCjPHugmuhZzRIve7CfNVWtcuNZSg5CEoCJRCiw1Wy3RVhBaqsArL1rNLFAvJTTHpXIeXdbfSIB6GIHjQgxZmizlXiVBIBrhYvtRqCyDghr2NZjVecB4KQkeHVDgTf8qu4tAdnCVGvmxXIM8qKw8GD5ySa6XJ3Zl353O+EfE8HUPBPP6FDy8HIMZa6DubKUDUqWgqzKQl/lQKuITR5rImH/2LV1V/0lZOYEbwA4G4uPWFk2decLask0494MiPP7z7acaTj7yVoMEnnLALleU8ila4dVeOKB+cORcoU7qBTOU9nU/9fTQQ+amRdGT3Ur6cMbp4I+e1qWRnTp9OL9lXlHpC5DDpBtYfksmr3kvlMgnhv3n4U8dVMOmWnGatL3nXNG7ikacfr8OXx3XNw2MAPwruUf6PgfJPFMjTTz+z+/RLL+1e+94rBHFPBmRS/dWgqWf03jiySe7z3n91dmuIAsBwsPv0Z7JXkOkouoVs6olzS8bOncln8fl0HhojVF/8iRej4xIaBBoRh8RezQjMiehSZWVtk2mGt95P3d9zU2fBOqbpB1zQkX2EOh7E9kkikQAAQABJREFUSLsGxZqp97IUAt4JzeHimSp858Oruzuvpq7EcjLicCtTG0aFrF9Ub+X74F1j9kp21D4fw82zBcq+WDOatLcYWySJHHA4iQ4L1Ec3jW4sCIYkjj9wi8YHcRxA10fTWfZLc7IC3a1xNRrypA9+Uuerm9AS/JX9LS/Kse9S5JfLvE8Zt+NJZ7SwR4/0QxG8C4H8GSBLPuoXPPtTdnKxyiFfBsZIcCAsmcHja4eyfUL8ms9Etiln6QhOHdGJO3zYM0rwaHPiLfnTRpLX+42iEIP2Pfi0KdGZDOWnIoNncvcz+tL2PKDyNHo7z6LXyTvalEyLqBcShN49sA36YTf4GUnNX+i8nuUSRtSUlWkzI0W+BtRBaD2InDJ2z6cz7CiyjhKl/Wf8LPo20nIbWV7pOpdTmXRgZHl+jPtjG0k/+cWXdv/d//S3d1//9uttgBkN02v3KWiISKKIcEc4x5BgQLFkGxZCrTeyuE+BGuXAJcw3WsO5MgroCA19LcCEYUTPXIv/0eyGrIISBA3jLbstJw0jCdIDO4u7wqzAdw1QcKKqQhQ/NOu1EM45jiThGyNZzf3aLpUX3b7ga1pbBVOp7RTNVVhCtMphsdr10MGiza34LAS2oDFJVnrc8YMjrviw+IXYvQpciIFBF1h3Q+zSqktc9MF/82TWJmShbRBuwjxxwJXXiYsIUZcwr56I8ELnjoY95RDYLaWWBRooslaNomPEMRIHqriDQx7g5I3/4nGrUpWUhm2VDOAGtAQerN5yQlrWdxl2eT+VPWdmdKwoG01SykQ530m52t2YQrPu7Egql4bniSyUlQT8QVW36ELr0fR+7VyMNvnIpt5ZuL9B5OYJtftcHRw/jmt59+NA/G9w/pEcOHEy0wlnz+1eT7lX/qJfiACDpKOsXkYQgkdHJq/e48iNBunDrMl8Np/z81aOJ9PofOVzL2ZN5qX4bVMrkcsC5N3DU5nGuHFN420K/Il89fapNA4MkeloWoT6yvffir41LRP49PLfupDz1JLeQQeb8M/kqzPP97l48EPXS/k5ocDSiY38CQhdV6OzD6UDdiRfAtF5jKNTR4/tPvvpp1vH+LXh3fDNRx53d6/kc3/IrD3t/kYxjroYWx2WsN8eVdMR00DTwQ/Ke0ELPnoEjcoDIrAPwgM96NRxa0I1xBbt4hPD7dhR61tnGnXIyVUB9n+MTGktHVTCpQtmgPZ14wZH/+4xcVCV1j0aE3fRXrzFlawkHphTMaKdRScZ+u7GkZSLcymDf5Je8bdkAlfjq3iiq4NHZ9oo5w8aRUFywOmAK3MnNFhofT4jReRTWymPQZ22g46Tdu48POehfp7rM+Hoq7G25RuMrYGGXxvgQ2+j299591KnX9fUWUeJ8mW79tBWGU89dbwG3ElHjR0YJcKJYaMU4zDkAVc697y1qzNw8ADYY70+tpH0P/wv//fu9TffC3lGYKwpCuNohlCj0tzI3hSEQCVn/WEyQq0RWdsBFDaFKYfwqGDtnaWiEBp4Vu++wpf4elT9FDaFe7gb7aUhi+Exhg8c5iOnkWRUkawpvHjnAX7Lp2cIMwg3xnXNi3VP2LRV/B71kFe9D6jsEGvxZI0SQhR8lFAPe9TS5t3oV42KCKCFsPb9IbRGXsBTsLWGJVQcY/CpIMJrZCV9rMQ/I1M4RxnhLzqEld8hXjyL0myzsCqaLDUuWgMvfntl8ecaJ4jcwUq3jPACJ1//6z0PYMAHVfMsLbKIHvgH08AxKtG38K6pRXDwyhOjk7LCP3irMBJYg3FLo8kjaXNGIktqLkYNj0ehnEzlnq/xknbOuxIuXTsYH8qBaPLNELd3zZVrmY/O+0lnUKVXotFhfOdfpNLcpDwnrKNLiAh9N/Ll160oh6M5jNO6JHEENW5hGvPfXP6EcaAy2ILe6mbKfqshldsWfS5kbmQ4z5FrFpMwBy+3Fx5JUX0Y7y9lP5h++JE67dwxdaiCtAlVv3LbDl8W12LYG/kMvlsDxHhXt9Y0Mn1o5OdBR0LXtil0MFrW9ItGZ+nTFe/Yk8fSiTWadDjnqd3ZvZM1f9dDny/R3sgHOKO/YlA983SXGoinEyivyXrzT3dZ+vB2ptPscWQ67VqMkU5zZZq7dWUl6B6G0AWdUkvDXP2yhaO3DAtO+PGOqx7KfbibsD090+BeNjbueySuspEOfbP2J9II45N1SsLFq+7O86Q3+qxfjvHbwtunygujYXQc+sRPGQd/9XDunI4nPbPwjt+GF8YBm/jJqPJmLBr1Qk/DY2dsy3D51KvpJi6uKtcaqymvGqx4Usj7LzU2ojdN7T199kQ28jxRI7FTZ6HXX3U6+YVgy/NgiTyN1x6t92PHi4m2EofimYz2H2x77o+zT6fps6++90ozZ5seX4A+nY8RupYonVoyjP5VLgtPS6WeGyNXQO+hYPE37+hZbkakHhZnQTz6/thG0qtvvFMGS9qftR6+OFP5GBI30vXWOxkyVJ7phSlMgsooiVrpgq+OEITDnY+MkIjEODLFRLjEITyddmNVxorEMHC1CBNOaMCYvtPASWMo2wwZ+A/59Dk0xi4jTJzKPwKexjv01y94zJ4FvA4NDDif38of65ixtQpNBcN0FR6tAS9Ow+j2/bDVwPIjADUieNRtHMq7Ale3lrJIUpsS2mADIy0xTNu9//6F3a/8+le7IdvF9FjxgCKoAIBJNLabGOhe+Wx84R6Keiqt5/Is/nvkxUf8wgY8j1UC7mjhMXdxhs5JC/7Bi1fwKhN5ak8n/F/xahiBDbZOTeZpzyCS5n1u0uC18Es3RV6DZ7CsCBtscQvR0KGfEph8jRSIO4qseQAPHwPeriV5tzkqQ9QUx7XMj1vj0J0mSnXA4N1n2h5tixJ3eP6N+1ePA+SZwdF7ynh0z8h+i5yY5VXxaiDpC4JmdDozPXVAyAgYa3984WqLFDowMQZou9IP6ooIZEo9kebhKCSNsLpeZIWX3hZx8xWHHuJfmkpkYuRdJ41e8pNCz1UTP4ri3csXs0P24d3bnW473K/VXs2UGR3JgPp09jZCG90Jdzs5SYD+tnjdXki+VOuZakaOklZHlvbJ2yhswtX9+EDPc8hYriTnIqh5SMDQm7op8EBYA7aIhVlItjv4ZjGBRkkOp3PlbE4GndEt4UZwpKAFKP6NJrpPmbY9iR/8wpXJ4Nzo2dISDmgfZtO7q5AKAGQ6hCnV5A8u+mjiGd2yx95qdwwACDS4UL8oJzrVzuWM5NJ7kHlICLx22FTZU+kwPp1NPo0WrZH/fs0dOPjKndBXYxCeB3AxnAJWN3fyeqBNyHNx1BeYnIy7t9cLXT77oQeT8aXZS/ky/lTkUvvOFpg6gJxA+s9vsRG2th8tk0XLVhZb8vCL09fCDQ14dy3l3vMBx+tjXR/bSLqZng2KZ7QmhIQSDZxGWqHNuUV68YybnBeUzCNaZbMmB+GEg+GjkkHQHYMzKtLRI41ojA49f/oCrMo6jEnSwdmRK9n7f9m7s5hNkyw/6G8ulZmVS2XtW1fv3bPbM+4xngHbjBfAloXAMpIvEEKWjIyEhIRAvoIr7oBrfIUsYxuQBUKWbZAM2IB3z9izeGZ6pqf37qru2res3DMr+f/+54n3+3KrzurpGXvQROb3Ps8TceLEiRMnTpw4EU88KY/FvjwTt8z6g1N56FOGHe9jGGX2Enw8Gcq0mc5rr5XDfB+u3pqtYTWOE6vhSNHt9GhzRhSvlEHUzJDI6HwMEp4jszzGmrdAfDqAwnKit44BWMMJriGhdKpXO0vKUo+GxPUNBzCBXXyAD51vR5ldzyuW0Km/pcZHsv9A+QxGMDapKZYizqWKXnt4sJougKmByriNMQuh8gwKLbQRAQy4OkBZ2hPVAQESaVu6x8GR/InL77Rbrq1v0epYyR9eo5PMtLODDwkMqeYFu6VbRoWA5zIrDbuLF98L3niM8rHaG4E5zQ2c/Gh658J7NbQs8V7P/g5fNzeDtP/t/ZvHdmePZuliXw9lTz40KbidlJW5hc4OU/FRjjmA1Mw4s5szKTBFRsbI3JSPXkOf0KYMQKJ+O/wW5IBWHGNZW8Y4yB8DXiBrpHv1XU1O9t7LPgpfswelT5MnoX0lMPTYKR72CHr1g+/jHA53PKYrd++jk+WheyKepW9+y2Rv9ET7afKTYdsU5hnl0VmR/5ffmL1K3vS5kuUyb8LZx1E9EKIfSvyF6POXo0/eyQZrBz0+98SjOdTx7RwHwkt1pBu06aLq0KBek8wL2Wvk8EcGkg21fY0/ZZaGIaF0YAGdRE/q54wAtLkaMxhL1UdJU4/hrTrpU+q9DYCeg3EN3E0TIzLBWHL4xG1x00MP8KJjeY+8Hm4sO3r0evZj2Rs2iKa/p8wWNm3XsScQqqUtRxdMjvWMcLTLD27Lvqd/5OEgoRN6CvWOwFBy9pPxsgZv2pVXTptVT4Ivf/tT/AxYxp5ls8eyBKuNeWBM3hGCc8ZBMjz8TDQCExad8zS/TVIfBW0A2tW/yTeZ3c+d69wNVTmOJUdUrEn7YdxD/JYrwAyjZ5/MG565l9ef4Qc644Hbg1LUBFVzVX7bIkBj6A2NzSP/lrM058E4cCVyW7ujeD/czwMbSX0lVuF5C6OkooCFuxk8imVQ+PTIrVjtRgmb506n4ZYHBkxdvJmSr4bvRuXEE560ZZfGWNLSa5CkkhrZplqDkcG0wpsBbTw5szS23MA6hKUZbjtwobL5prFLcj5BESUUY27N4BhNTApW96mUzWvDSBLsWSIhBnevGC7G6xQEUmeBK5fdmeDgIm+52JMex/L3PAM/BTyKbj7RhZP4hh/gzRKlT+HilIdHrsSkpk/u1ffG1dn4HmdZeJQPaWbvwlKaQck+a+jMJHf4iD9oZvSdibfk3OkxalnawVr4dqjtXgS60JKK7HlKLIXiQlsI9E89haVcES6qwpx0JxXLCr4z9GyHRteUsQl70xW3+MaImUMR+2HVVJjhe6wVxF/tOekpue06LwyMt9Bba0cyMHGDU08oTxP3D61iVn321wBZ1jxyJPuZAnwiyxBH84wmvPCh5Mv5IzND52BC55opT8xv//5W4sCSdeew0SEXs4Sk55GREW33fazMkmMHTlaPJcnzBh6ZHw/PhRgp+qckL3Yccf7EoUCHTh+Y/vRezhCiJiq3Me4ZFB1EY4ytsJZclryueB5+OlZZ19+bySgZfTOnYNMN13J/MccSvJ431c6eOpXN2M92OYbh8428idaXbaIj1gZt9UHfO5cu717N99SWceSzITwz1Qs61BaUa8Jh8zRdU14kzVbyenIyNtjIbTLDw3Yiy5PtU+2Vwz9tICh7tUfxBPf01K3AXJY+3bI3X/PmB9SGqmWgSX5l8yihk4eF3gK3YS3NLbeIpq3Wc2kKXWLlSc7Cq0MNxRGSxsku39QvUerD6GANqIu/pLctIQOftHdivG6PjQOrPPyysZpB5Jwib511L2bw3hbgbYTxZcYYjwMW2jd8sCp/Hw7FL3j2HPq1JVikT5gyPfZu3WyrMQvKdZ9lfzP1NMlc6coYcdmIKF0HGbTbcH0rT0YF46f7PhzANyqPYkyyTXx+w42k5UXR0BrmZqxc7uUKaZSBziWtr3lGCC1lybMqUEaW2azazYVb4r3ttiz6CLA9PKnY+s5asrRxyqBIlY3C4niLfBepa8ApRQMqS5obnp2oiBoKBi5hG59rlPCg9Cyl0jTGDSOvg3zirhi40wCUVY2poOi+AKgUkjJu5LyQGmcaKHRpaPyQXAMgMJQfWgXxeKQfSa/QSUB7/hJdvHMD5Qi0aOXV0Ntgx2PE8zQdDw4zD8K8hG3Pk+SVjofLWDOjezleKW1JAfvDz6sxvChVxzMMQ2Ue2qsEtvvSmp+FL+gT0onCr6241nXqOJ0RXQYTfKIwDURo6sb/LR7ercSkpNz+m3zjqp/8eAmgNiUYfMWv/MPbPsckUpb78jdyigvD6bmf8gxmkTpIb2XekAvXdV3bgZ66TV0LkqKv5Dtcly779A6PJu9ljOYYar6HdiJGXI2nrLvCr/z7BXTdHdAcUu5I+yA8d+P47ZjvhgNtr2Qs6/OgD+apz2uGDq829yYOQ2p5msSTrsmctk8jRozyAc+TkXdvpOX15eiHy9FxhwP9VL2TSAb2I4GndzLspvyZmH0830f71a++PANqEk1O0HUQhk5eK4MnfDPwjPx/+Vtv7m6lj3vb7NU33t19Jm+qPfv4+eB7PwbUxd2Lr7/ZbQU+CfJClkGq+1LO2xcv5QDLt3ev5y3aS5mEeQOpg83hotGdck/k7bHuA7pD3oGiztk69t8wUpx541ynq0dv1MtjH2NrVOBA5zo9dDKvrnAH6iQOF+BvkA9wItLdyyd8MEkDcyp7vMbAzCGa8S4cfThLUsaU8Isu3/exwOPx0h/y9jnXwsC5EQVzNzcXR/K4bnD4mJGkeNQH3HqTthPa1ZYybAFaOOxVO5+ls+UlsjRlLErRCVOflW1P90YTiEWfDODUpVz1kPui8ev/XGZiLT1/aFVnxmRXbpoqcdLnMkaesjgbvDy1IS7Y+mmR6yFXZOpDJUl8yq+23OjPY2meH7RMnsKVhOmTbldfMPZOneVOB0pQS/HG4RoAjf1wPw/sSbKcRhmomI5lEKkrMOWJtx+J25PX4qG8+dUOGg6AN2jJ04aIQKpIl13CgSR3rbCNAacI8anY8rAQ6jF0kpb6K7cVBykqcRqRoPDqGOzXQNlEXqpw+aG8Is+bgHHLjYmdZnfHjs15IWW0uDZ2kGeNhuFxhKGVwuD1p37j9dFIBFC9GEThT+B8+gH8jSy7nbIfIPA6TDtQ4rkk3Ws7A+peAScNvgpQ+OCkVPflJ7jsU2B0EZoC5oInoXBEOPkbxGHMFsSqN2ERX29HSPQFcwaTvVSq+GgUNHxodVVQseSnd7mGjNZHmy2hVNTwAO0joNKVMzAs+jEaSnviVxswknpYaWEHvzw38md/F2NFu3SfW0giYzxJx3PMfC7FT/6SkIEovEkBWWGrMr6ZJdX3s6H+RBANZ/Kb/0M79SVWG0PU/8Un/XBQp/eLY/hxKQbyK2/Na9tddgvwudNmeqH5qsHRhvEYTJHFoyqxD8mP6AR1vJaZP5kRyIg0eSsvSZcCvHIT/qFT2m+H3xgO0FPku322Ep+HJQuHbsnH1mz79hjDYiZEZNAf+c8Lmbuz8URei0549tHTOTvp6u7lt+d8M7WwrPXs4+daoZad9j8eXXUtRhU1RNd+Om+XfeWbr6Wf8iYdlqdm2+LGQPp4jJwVfHHgtSyp3coS27s5s8l3LH/XZz/eSVG3JCTdq/u3IqPXLuWspmeebF97JSdjW37ztpoTjZ1uTCcfLpkU1hsT/el6t77ZqMC/QzJrssOYsvRlM/XFTMxuvJ8XM7L8VbAl9MmOz+R96c3VFKt+97uaPK3+BEfzBxjNvGSOKKjBGq+WYxpsw1h9buUDrU1rKCdjdWxwVXfClbjizo1/2iVohmYNmXrUmxiZovsYRR1fViV6lU8b896NUfRIlm7Px1vkmVFUOgpLfw58Mx36WTq2UW2kpe/US2zqEjljOR4JLUDWn9RN/YX21kLUiH3y0ubGum6JSLqqWcJyyrWT0y0TWomwsb/jMsR3knlHHB4b10yUV4mqCLe8DNx9yHMsgCbMJHuf0jpcux7jPR9SHm8XevPG96VLHVPYJsaXX094YCPJEpTB6UQETOddBgKDgbsZc32LZm2GbmOGEe0MYaKgE9kMPe5lBofZTuLzw2jiqcFky2Vt9MC78nJUUHPPlSzgIa+TU6O5sjG2BkDctyfzCuvJuCMJGE/JSAlhjyikxQm2BiEzxGXccFFojU9zpD51JacMBkyobH3bYdGaGAK/dnrDw3N4NG9XnYpyI3E1ZBKnfY6kzg9RAClL/RQ+wmQJ0WNoC/2B7J/7GoWNcz9LZIwFNLRjgtzyJgpzK1iE73CAu+ngk9Slu9z7lhJDkPWvLgwW/Cusnu5/MujceNCI0O9cLOUL08ZDP3aotyTtuToB/mo7Qi/f4B/c5AH+MQIHH3iDCxwn42FM7jzHQ6ZdTz5cmTmVZQInbR+/8k7rhL7z5x4pj3e7S5UJcnY9eMhH9z9cfScKj2eTwZm/kEvZqZk4xNvUikfC+/EsoQvNojoIxDfpHg/fy3e1XnzVq7tgnDeSZYwrN7M/ZV4WYCTXu1QjGz9ibweGEa9sQan4QSTw/1qEqMbpllbjWT3zV+N/+0ahvL8dfmM4wEjSWJ0YkQ8NnjYiq+Sky9xpK4bL6muuvQ/s7Kk8kgNyvU0ZD3uyX4lei4hGP0a/BdfSYasGI//Tr/QHp1KTMRMp+ovskUN6MUI22dC1DwcPJFpXfDOGzds5QfvVLK3ZC3Qt59A88+j5fogWNHmjg7700ivRXdkvFAPp8Xxe6s0LF/N229u7t+Jd4nWiY9F3OOibdIezjdrXkwjCH9y9YhzhFpe6VA+5z597dDKKeHEuZe9h34gL7+dAxYFv3uKhtvVNuYJz0Eq+dwhcemXhZFfq3kuUCP3PHqVLMc7sq72S/UkPpy4N8gb/5JuoZSiJg46e7FiSezR57gCdRHnJUL995hoeq+8BzVMP7cozZB+RPUVn4/2zHDieohI9MjUkbPRsmgO+O8LosINIEOQAnSPLJtvjIJitDxJDy0bbwuhaPqeo3jupkPJOWEawVvjiS6/vXssxFBOmPTHnHqQdqvsGfugychHqW8To0jL5EEwP5Qw1w5XwMzwfSRi68Nt4HeaFxs0JE6OumysCMryp5BzC+uC3D2wklWNoSm10Wh+F7V4ckpM4nYWhw+DgUcmo1gaftFl64xm4HguegrG/Z1rBctvsi1FxikCjcuvy8FAuBM3QgqFr0KpQ5vlqOth0nlEO7+TVwm+99k69CGnudMLQTJAD245TVo9gY+i11MNMTifMbVNByle8yUtxGUCdlzRxEcCN+YQMW+qOLH3pGMWD4uRNnBN1X8+MbAa9vOFn5sVwUjl5gkwd3VdJoztpSIdbWfVeJW55U1of5SSugpa8rWFgCbNmUZvyax6Gf8kDN8zX0hbJlgE+Ci/tpawlSviLFqBFJTV4lAUdPqDJ/YGBFQogSQAnp3/oqZIrpuFXWrPtDjcDnGGEptYafv9SuDZpp0gbjWISnx6s3gqXJ88jK6ifdG0boKZJXzzZyFNqYVuBRGoDMdrBacMmBLfsSWoJI3cWBPw7ltenn/jID2a5JQPIhvByABk5PFkP+zhsjOVLMZoE/QTP020OZCAfnF1KR9lX8gYdOTPJOBljygQCj1NcjS2yOwe3whhaW3f3HxymHQZma5LW6UHzfzD2//+kXr18affi17+0O5fzWZxsTT7I/sOnYuDkSTN7fZ98MHScobU1fRJz53+u07emT4h3Ls3D2j5/1yNTXrY4Hi9k/Of5m+DzM/QnHC4249ZIioeXPLT/RDYqL0mf4GZPQaP0Ry8XfP7lt/o5FMuBVgBO5e/jzz7Zft6+GrrI3BvxFr1XfRyjP4aZt9RsxmYc9WUU9WqYQtXhXmcbgVrUzH14k7wrDh96n8Sm56FaIA+MhbNHT9Vgsf/z4q0r9ezMCdmBGoSlooZO+vLW7Ye0+/xO39kyb4RM2R5m4lmPUibwDDS8xacNtOX2fuVFSGCUHdbtjS76lZ5cB1fqw+1zCtvaR1vaT9TPe2T5zDlX9oN687n6G8KEykDvWtR2ty4IuXfAy8FA95HbyFmUjT+6Z502bj/oHi6o1IX9I27iB/+UpK5it3JdDgEV54AfwGx3h8AKoc9UHhS4hfLIozjycZC0QPZXtZMMb5vBdTPcVs1vL3OewGb4aB1bzJYnUR8qPLCR5MTX4zmVU4NzZc0O9iiFCJZAWGzu1tCs8xoxqRZmIJl3xnUx60iWSuQBh0Mz4DKWMjAFx7jJDFTp0GXyGEvgdfQj408t53iSlM1AcybEI7HOH/eRxiiNtkM4VVdhHjw7YZsAsPYJuA4lnYDrAcrXGspCx2qhbvwNLIYLPAU8at1AHjzqoDOIrzETdF41v3zpZGZmlvqCNvgv5UypDMVFy0DkbeuSH14gQX3dyKCsXCpoud2KHv4WZOBqTCQ9HNvoHwMpUcUVqlvP0pA4Xin4OwDECr++dVRvjWUsr9LQ2ShpZfdQvBwoeiGK1L4F7X8mbmHnE5kJ/fyvfD2fSckBd8GpDGF1sj4nDu3lba5A/E27JyV8UuelKNx7BVZeMyByMcsPeTvxWmbWIfwMDAGQbkng2LHAeA0uAc0O39NDKNfjgaMIDW1oHCNBfnTO4FWZ2vClF2a2PAMUfO/nhYX6oQo/Bs7GMsmlk1Hk78g7Dv0bHjofxwbcxRdLc+55mh45Q3GOXIiz9FZlnY/L2tt0Nh+59aHb0lpZS+GbBFTJtOT5mfqgA8xB8OT8rzH0DQ4zYB9A/It7py4340q/fvXy7sTpc1X+U/2R5e8V5TciJ3/5z/1Xu3/w//6t3fXI0TM51XcfNpbTex9/9ondL/gUU3c7HlbcA0QeVjs8djZLOEFimaoey8ge2W4fuENZT5wSR0brYQ+s3tmlneT1NXPfdbtXUOa5nINzJm/BXczk8kg++KwkBsi5eF2ffMRJ9TZObxvE3UdHfyPLbAb3S+9c7VfTr0Qvtc/pFA28mD52bM+oQ2vzttXWl7o9IO2zsafyr3LqInauC4s4vJnnfR6weWB8nc3eIPgtATLuvB3dE7KLbeEd42ueBte9fvd9IAX2XsH+FJbraiOTfa/MO7rAPin8Sm8r+n0+Bezpnr5Lp48nDj8nrhXciNHODCDLZrPJ+lR5SJ9MGA4gSX5lka9KR8nc0iENELIbNjoQ1Kg8q4txSl36lzq0bQJDL2rnC+k/6FXXbS46VdrwKr/1TSG9n9Qpo2lK32CSBw6ytCenxBVk8qzn7Uoe9nU4lNYyg6SeujuQrcdVddnEwSMO74StR81Df6XO38HdJN+LhkMZ73v7wEaSwYwgCd5gW8KhUzlHSCOjvI0eGLCYoxr1SCSdEIKDi2BmcbQNaeausRk1Zuv+E7RpvNxHAAyQM5Mag8ogiGOYJN7MZ/bqxLgJ3lgaxZ0xobjAK6P0HZm3kipqEaShMgOIyhlUIwWMA3lt6CVsZvEGXQLJ22VQYywIt4JP3Xy/7JZ6pywHEBqYdIvjwWmlhHAZkDXWEhw16Ed/o9zEVeCDizubYRkyAAdqGQspI6zroDtJRuPyQX2GbxvvZEyQN8VOuejKgLs6pTLxz/JVLsEb4yNG5sOZzeJ/FePNrDlnk+UXvvxS+cdbcjbLmTa/v5G3Zr74jSjabPBsaUGC5BY6xXvaP+O/dsADAb1Cnw/DN42LOFnhzB85o2fwuod4Zu+PjNJ5J4/GG7b4dywzapv/wTJAs2I3hnLKGJxzbeEtf/jAsBv6cDPAKQKFFDmvIXKjI/fxK/+dV2Uwqsjk5TsT83w0MvruxRvZNJuNsGmPGuhb/U/FSHruiRycmSvDCT3K523CJ2/u4YMyVvu5E7SfGTmcIwtYFKjEM9jg+a0SvvX1L+5+7m//z7sLb7+5e+faQ7uPPPPY7ujZZ3Z/7I//8fDr2O6lHG7LmDz/2BPZBpCjIQj5dxFef+Xbu1/5Z/909zOf/2onWjyPdBbdpvENPiYMv+eHP1lvALnHU/wlJWQRf9NMDSZOdABPp03Rn//Si20dOIW06O65Z5/qvZ8XX30ruuPm7vs+9nT2eFza/dKXvlX8zRQcmqz9vfkP2k/pJ7JMc/b86e4JfTufEvnY04/XO8TYsEzxWL4TZwJIh8FHHt+Ot93bbK/nbTUfzb2Wvk0/JrlBH3o6hwI+lOUfBpLXtX/8s0/vvpIllp/5wos9IVqfstzGC998G1nu3S5cbqr3yqmJPZyOZwuWYXQs5zbZ70LvnDkdQ8/hdaG/MM3ofuUYeof52/2hKHzTBtpKH0IZPhzWfb4PacAvzoiPNJPn0QFT0mGjSD+Fb0gYvPoUPp2PUfRoJueW0XipjCHaaIJ87vyMPsNxT6UHfQWda4vYsjabrAlkbum4hzIm8RbVax4g8uWtwzezV4hnkGF9xVJmxi1jFTluOIRXOR5b/MYrMetZ2kH5S0dmU0NwCwdpG/mNvePnMNA+iXE5/aE5hzktdw9y6Gah2LRyCh4aD4Hcddt6iV2Z1/UuyA+OeGAjyfIYj4eG4Okw+Kikztt9RomTbm3w/TTI6nQEsANYuE7wvPHm2o4f2mbQHCNkpenIKkh4CBoYGykpLeWp9DQiQ2Y6wTKCxNcDkrzdbxMaCRVLGh34xLPQTZUhYspnGXON542m4FeG80XUByx3eJVMFAKDLkPfdJSNtzxT8BiEBt+8NmvAQqz6lO48uXZ2KCW04YUBj7IR5NFJuxdAXRPM5tBuHxFeW55CT/dxhd/qot4jbLnJQG82Kl5blZlBleiW104euuRRxCj8bByMYWTPGXp9Ew5Ph+7wJOPFxa3t4LuQc4kgVs4Kq+6eQ1HkGHL/NwWx1WeLbNmUjplPPUxTiaLDF3HJXlkhC3Uhh00MyBotYJSVaw2h8JABjlcUQt3NuS7lALb4AiPnMtDQTRFCJt0Pw7yzytzjj3ZpnXoN78D1x829wwclW5qz0fG2sGXABqx6+z2vSTsLJXXIEtzNK3mDMUs1NoM/HAMqIJU3BqR0edSl19zjLZRhXdP1OQG/fiuE8088t3vp4sndV79xcfdoDKEf/czvSTuF8uOPdEJiEnE1GzZ/6Rd+Nif+X9w99fQzu49+4jO7kw/nMI4PUcerV6+kv83r9Vrkocj5v5wB73QY949zmvQ34zlnbOgLil8B30cC015Y2kQ8zz9MT/p7Gex/7kvf3vSC9slni9LPnnvmwEh69a2L8Zhd2/3AJ56Nznp/93NfzKef0veKP3hdlXwuey3r2d4IOHnm5O6RfCvt29le8PT5R3af+thTu9di+LxlwhJGfTybsNt/IwdezrBc+M3X3swHyn1w9uromMAtafB1+k8899juJ3/4YzHSH9n9vV/8RmRwPufz5Zfe2L3yxoWcqfRID1d9xTlJGYgt5/HeH+Y3+cP+4dXwA/0tR10C4F5671u/qRRvhxSHP/Zt3XiYWn9IhQPE83yP3+EXPb1qFiDZ88hw3O8x0mjRUT1eIYaZMcInjPBszii6t6fIEpa9RF7Dt5fI24hwTHsdKnOjrSSn/LmOgbQYYCyg21q7LevSo/Rf9V7S6bROnK2C5F+N+HiJLI/6rIkTrBlE4umCkz7++siJ3dMnz1YfcFrYm9ki/OSvsrv4EjrQt0LTCrNimmUqkaiLv/LN7CU72JM0UIcQHGTrXVO2skRM24wO1h6VmX2eA/mYqAO85dNwK0hup3lFF1kAO+FdcrPH/eFvHthIYnjMLDSdPx2OCFoyuBlCa8FGyGqlh9MGKrBcsz4VYZBSTQaHQfvKDUsjMVj6HK9O4A3MyyjixRgja2NeGzAYIpysZ6FGSxlh5hyjiqDl6jMoOh7eGEyO5O2mziYyr2dsMMQyPlUgCPV0yrzNkj0iM1CmjMTztlBNDJI8tuPYu3M0syr1RTvPgroxVjpoO4snnS7o02HCp3DJ7MjH+NQNHnl1QmU3bLSgWdwJNOZehxByW147AI03Rwiq1qVvHG6dEyAci29LYGpoJF5p7HZUifOvCjT4H4pn7OyZfGQzbWPJDI/QoiZDpXol4xZqmOZePQeHuxFY1WpedEf4G3JpfZXr3jVw004xQPLQ9ADLsfIHeWFEhtrwOUdLpPLOvUBQVUuu2rVLlPHopWEiB5GBlsVDk8HGgIOR+e8tx1YlhKwq4Ud8UKENh1CQX/ClC73TdkfiwkP3Cjj0weE7Q9wrv+MFvvHK5fYvS3LXzzmiwVENUZYxStPTKgNkDotNtveKtQRu7Z064KUBTHVWULfDg9qKP3xd8Ifrezj9N+P+TD5S/Kf+zH+cN1cuxzhIP3r44T3d+uXzH3mhZLzwiU9HZm/sXn/1ld0/+Ud/t17Q3/G5n8zbrAfwD0IveTeY/EiWkP/tnFiMpz+R+//may/vLqdPHGr63nv7SBzWpikia4zYGajK3zDPYPqZTzyfZWovFBzrUtLibWlK5nMZbK/HKwoXffTR7B+6kHOJLN2vpQgt2k8Rbe14Jt6jhzKgv/Pu5d0PfPS5LN0+nCX9vK7/5tvVAS88mQ8+p3z1YdC8HM/RG2/nNf4sZXW/EVFPUOaTWab7wU88vfuxzz6/eyL11j/br5tasOjo8P/02dbhifQdb+xdiTfvW6+9HUMwH9/N23uzzDNIW8cgr+xt5RRTEsjk4JcwfQQd8oB3VAA9ZhLh22sOfWz6wuNhCxs77uqJ8CjDtTS4h2UrCF9btkK3cCVeNd8J86aft+4g1ceqw9PWZ6PHGcuMImMBvIBgGJLmF7omuVkBHds9+NVf6dU2Ra5d9o+CtlJRb7nxxjiSDLzDV7IH8kr2zjGIGKjGOslOrz6dBnkse+nm9OpEJkGN5SeXD6u/gQMyBNwRsGFqkoR7pANv+pZmewuPmUd7rfDokfQVY/mv5KgKRvnhcE+UdDE9HN5U3yojgHfxbkO0x5EbtKwxY/EV2B5my3NwuX/KAcy97z6EkRRSwuT3b2S9O4z3WjNDpRauc2HCHBXUwRgtrkczWKXKXRdF4hhB27fdDF4xBBDA2DBA+yZbrWeDXhpWR1neJbhxL0XViMANZdYwS1kEQMOsgVcH40GKZhkjKfiMgTFtMtBA5RTl8WpVerUpgU2ZOkZHnwxIOj6BtTxYgd7wenOKElNp5aQ66Vzc2aMwNSLjTL1mM/t4I9RD2f6WhyMldzBXZxQ2ICFIGUsd2PMa+5Hcg8BHr/ZySYsIqvJ7eZy6wXywlB9rL4IyhZafyoZ9u3Nnz+xOR8G+njOTrkUhocE/LAA3iiaZFDzZ2+k8itPO5XMedcZGT2OVLqoBjgWPhCYH0H3bGfMCsdoOrDcN37+e1zrzwFl17vit3flb2ZsSxXy89Q689k0n+0heq37/3bcUvTuTuKM3L++OX8/MKw1+M17hetNiZDCcZmlEWVOlZvKwdVZVRC1aGM1p3YKQL98OnPRGPcAPNfWdwr0hkMRreSkG0+5IXmLIfqsepJmJiZnsHC0wSlw7aUtePbKrTUJ4+UsmGYg1qBKP1dj2nUMQNNybvu+c/9cPoV4nM/j6+6AA7niWTZ59/oXd088+v/v8L/787q/+lb+w+6k/9G/snn7h05XjD8q/0tRYuz+aVns5vH89959N3//RLD39wwxK5Qi+bswlv9pJnmWM9nyx1eqJ52H41AtPxdvzdtrvaLw52R8S3IeD172v0KeB14c/mjORXk1/dN6RiZFyhHfjCaLXzoYeWxMcK/Dxp55o/3s3A+c3c9YRo+jx9Gl5HA754qtv1nhiANADqxJ02kefenT3I59+dvdDn3gmA16snmSaolRqK3SKLl2Px5jyuQuydv3Kxd1HH3ty96mPPLn7xS+91GVFS042dh8OeAaT68a2Pb860R1uDlAA8RId3ny7eStHD0Tv0i8Mp3TR4llUblhh3oeWkycy0XK3tvEAt3TlmsAbW+is0btJ32DoZaeV/4Ef+/Tukx95YvflF9/sMTW6VQMkvZ/S3B7QtNIWrcqde9Dzx2BJP0056rb3EuVZPHif0Hjv3Sv5YHI8RWlbLyiF0hqppyIXTzx5ukt8POj6u/oKo3HG8IQn8/fGNV0EmFyq13MvfvGlCYUYOnsLOKgnp8xT1x/85HODSM2Dg04Bw9nxha+/koI3RPe7BC/+W00ZWuC5L3Bww77qOHe089FDcgpGO4Dsn5+Gg7wr5sNcb5foD8jZ1+wdtJfi+y+VbKeLodG9Iul0KklRG9Q77jFzA8eYIQgoN9iMcUM4DQDyZADKHwHhlfHeLFxrE6HNZ9ygYBkc9Q4Ejz1AZkWJ7kBqILiZeDO2kwbFdADl6QjtABEyb5SV/sRZyiMgyvddJZ6ZW7lHqAGq6715rpGRuBvx5qCZUMDpbYEZNgnHagjpvFizXDMejFGihIFA51LjqYKL54F3L5+/LSoPG+0yBEia2SH6GIuzRDcZQPB+XYvbXlCOzq6OXaJLXHMyHAJHMZzPRvxTceE7Sp6XJlnaBorzN0UFFvIEy3eC+Frx87ilD5CoqUvako0cOglu4xWwhXrjksVMp3wgKwkLoqBQJkIbZXzZxdmXU7bN6MlNcKZtw9EYEFp02oWcFqfCQ3gNBLAbYp1SU+15l3hG+jEfGA0NMdVLT2Vyq692Y2i9Hy1dkuTZ/kr0d/EDz4SDuxWzrvh+Ocu+t+INdXxVPWapuva7knqSd3Roi4ey6e14PJnvR16tWEjjdSIH7ol1X08fNrd9lbP4ssr8rX41gfjh3/m7dh/9+Cd3/+v/+Od3P/UHfmr3yR/8XOq5VfwDKhhW6lrdQ3Yx/fyNGBYfi2FwgRyFUWswGYNoENEHZDkcD6/De0saYCOlfrXB+XgfLHUxbk+mPR+KwS+sludpvkX+YIne8IFbX0a3mXk+uh38SeRxfbienqO7F/LhWUYJryrD6Cv5tiajnlH1Tmrwa994OUZVlmCy19FkcxXG8Pq+F57c/USW1J5+LPuOqu9Kjq4WsKGqvJjo/p6NAJ7JZOoTzz8ZObq1e+uN13ZPx8j65PNP7H74k8/s/vL/9g9272byYuBar9PTIZC6zuC/9R/lJLJ82q6Ahm9TKLnlQfKavjN4KuPbKoK8d4WtLPFtJ/hyr+/6HIzJao0ium/LT/btv/S2sRPJ5bPR/mQMJDrExuuXXn4nen90I9assrVuC5ifck2aOqDVakDLRw+i8jBOAvoqn2UxPrQ+Vi3iJUod39q8RA65tG0l4pRxL17+c1k2O3W+XsZjyVtZDj76GO4Z20rRlCUuMrvaUnXRUtg8lJ7tWl4lbWVceUQJrdPcBgl9A9PonGItMnCJLE1Nvvtng1sJxk8GcPfvpX0Y17UBBv0Cu+916hSkGzwdftu/jZ77IvgQCQ9sJFleupEBOPWJ+/taG3yMoQxO6TTm2wR7dUjGTIUxxNYISXqNm1RmCYvvm9WQSeZxC1I2aXijQwKmdbAPlUtJYUrvKS6Wd0Axxz6eekGCX4dgPGn4qqusR8jTpZpyN4OJqzICAYcinSdiIJKCkr7mKyF5zbzgOJKDMgXCoiNEB3qKu5HBpY6zH0t9lGFAhgJtydKrHOpVpRCGVugDuzoZ40Yd0KISo4SVMh2weHR2OFvJIC4tqWMUcQsqLZTmxpfAaQdKUV24Z8/lrZeXcyZKG1U9kmflVYao/jReEW6Eg5kD42Ephn3+QIBVR1mKOjftuLmqr7/WK+k98RbWFNqiet3uNwLgwe+WrfzAMJfQ6affuaJVwpOhk8Ez8Iu+FClH2hvuyetZxcdHF4zVOGjNVCh4/VMWmbUcN/DJ8usM5e0D4AgL02YMpJEZdTMmqzfxQFvEpbUYdJMu3+FYMkimzLzkVWd8cdtHUfcIB21+kCjfv8gBfecffWz3J/7dP737K3/hv9390RMP7z766R9qfb8T3SZzPx+DJqztZ5X+aj7f8cvZ86FfqfbwNdwjZ/mnj16MPtT/a7JXyAKYdtpEaXRYGslbjmuicZiOMWLxdGTNXsjRe3RIpFjbpdFPZjkDDR958rFMBLez3JL40mtvdVnKgaoXYhi9dPnNDEBzzldIjHwc2T2bpRheo9/xqWe7LLL6Jjnw/6BN0ZGI/h1Q+Ui8XU8/+eju0/GKPXLmxO5Xv/jl3fNPnd99JpvNP/Hs2d0v/NL53YUbJ3ef/9orNTIZSjAJw4fIW/VBC2sfHTEKlArmwaWZ5rH6ikdpbyg9jMeBX4iLPMDJyGu/AmORLufVMKFYMowPloY+8vT53Y986rndD8W4+2Q8YY4++C///N/cvRXeeUHIcpe2/fKLb3RprXofaSnDuECPCmt8A1vaE6cK+pr60ONgXencYxmH0GLrxIULV7OkGi9R/niJfALJfjP0PfF4vETZctI8ilK3MLG4t8of1FahUlAxMPNYqvZ0lSYwQIUiOPTcKG1wCMDAmLLhbRZpW8HgCpofeta9MjgU8OvuEJj8g0CqyYWXC4zJvGnkcbh3d84VM7nX01wH5xYXADACmes1Earx6wkPbCRpaBSYGZ3JhkEznKP5rtCeH0mrQIZT9RCFa32FOpVnNZZxEZjFoLZ7GOXqe0PHstkMbkrKYX8EfS+MgdMQHaiCgZdoLek55Zv3AB98n6vGUWAeivu9hwcmgbHFG9UGCZzD3ZRLCB3wRgh0AB4oA4l7/2oYGljSiIw/s7wONEnPbYSeNy0F5L+N1ug18PP22OwdE66bxwlPoioIqVYFsQKm5JaVa/mkEsMvHdAehHoLgmev1IIn6IpPWuHRqID8F9DtmdfMW2vK8uFe+eqJy/3jj57LRsx3u9lvXL5OSUeb/OF/yh7DzuAg56BHb2lPlOLwZiKQckDDMlgbF7hiSN3Bq4s/acrZ3Rx+wjedL/xAtxJkzMDjPKtLMYQtWegABiSeRHiuhl4nh4f7pQnek/Gs9NyitLt6nc0gpz1KRyoAd+sR9PvQOrXULOtllhM8V/M5CXCtRxXVpKPV32900Hec7u1ICccL6CPrLTXsJgM8FJrBEpxNm+SvRw8cj6GdBIMDHrQOrhvR8sPXQTrXqeO0AZkVwPiTS9u4H1zibg/Nn6gDRStvM98O+Jv0dP7RR3f/zr/3Z3b//Z/7r3d/+j/6T3ePPPHsfempzKfSaL8U+v62yUOk5P3Inhca0mXGqA8fVIkeMBDbi+EtsKWb1HeTsvIZPub6+ehMesqylsG7AY+D64BFU37USLxP9r04CmK+cnDhYiamSXjqkRyaGl2sH6Ph7fcu7r768mvdwOuzIZZpVtvJ+6mc1M1r9JEn44nIM9rIsx+UDgGoGWKmtcYYELuCDcpP5piBJ87nY6pPnt09ei5HC+T+ieyNupWJ45no4T/4kz9UfvyjX/56deGJ7EedwoKl8tSf8hifRp5ct1JS+Iqj/0w01dVbdI4qaL8/YNYi7a6rTd/X4hECqn2eicfs0/F4/YHPfXb3TDae84rx7L2ePVr/9Je+lkMR81FfNORvT0t4Q4dWT5VrkhkEdE/0FuM190NOOKkfpn0cicMrYizwr16i0PNuzsmzl4iX6Fq2rOh3J/NCxpmzy0sUo7K6MQNLwpCjHRA1LdU4P1ucq/ZCM9rwbmAKBHDCVqmJrQQUxSROi7tv7iLc7hs5OIcxG/6tnyiMnseLrqy4j4yTM21wW7iDJGn0iLFckfdu1o2YPSJIxG2/G86OlYnDuQODKLS23vcoGIIPER7YSLqZQaOH2cVFWKLCDEbGDHZRtpaq8o8xoh5jrGBEGiWwN8I0QsAIwkgGh9B6BMY6fa3u9isGUZCE6QYHMGZOgrJ1MFa3Mm6m8zBuiMv1CB+WUB423mE8t6YbM41rlFMGVgjB+8ghmNmHNJ/oII6eGfB18xL2wBtoagDlORUqDqjUD94OBsmnfAN6bacospkNpBA0SER//qlfhTp1XDOsNuo2EEvXwSzjyTaiJH/ylfrcJwRzcYLxpD6jgFrkZuiMQbeB7J7cDsu7EX7hsVdEL5e41Cf1MztmOBlo4e+SQtphvbKpjClvyuAVal3ULfRNGyFnOneNZPVNWYKiuuldG+NveJuYluXXE0jXVRJ6zp32sdlwIgnStAdcBpMTx7NkkXvGk1Bj7Fg+f9CN7eofvMlUj5O82ioZ+ieDRAiUv/W0nsBOZuB1VehGVSMPeuSheDDf20AGZjmX8auvjWGjnWsYhX8MHQZkN3eHH7NczFjMEk/6B/k9Fo+voJryhqU18l21OdzYIK1GbmDFTRj+uQ9o4dy3n7oRghi4UuSvEb+1h+QV4P/NCo8/8eTud//+P7L73/+Xv7j7k//Bf9ZB7F5lmwE7n0effySD1+/+mNfbM9vNgVx/7xvZ41bDZPoA2QkHMjgc8LLVLO8G+8jQ9AV7iSynqPZ8rWD69KJjed1xhUw7k843MPV5Xof30k8z/9udyeZ1G8F5ibzF9mI8SG/k7TtvqvnaAb4r4+m88WYj9o9uG7H1nRWU0VBg9OdG5Pa8T9/A1uWr33hx988+/4Xd//F3w5fI07vvvJtvyb2y+5t/x8QxS4jpC8r5wz/+mXrWfukrL++OnYkeQdC+LPSN/trLCpkBsi9/4GmBRZutC7wO9NDRHPb5ft7yFPrrp3n70/hzWaY8cfbY7nPf93w8Rs/EULKx+FRl8pe//K1sYr/QM6eME0sP0Fl3hZAy9FKTMZAC4hmnvTjg47iWzkxSunSWdOPfxfeudeM9L5E3ztSPMWAZ7+lzZ3uQpP23+K6efqfnpCr4k7JKzUbTxrHySLwczLVF8mH45ivMypWHe4QFt65AbEWAs8ObEtABoNekhQH6tU+HdUwI//SbeuzSNgJ+Wv79zkG7q7WrGn24gKzyAW25Hzq3yINL0/I4V4DfRfgQRtLMOqseYigdy7o6hni7jeGDUW3utL14xgHync+gA5/qDGoGphpXYQxr+ggXJFbpAOlkNZaimTV88UQYGU8+9Egh13JNWbOeu4ynKS96qAKJ5xi/XNK+VcNjIc9qeGu+NcosxQWvhmUBa2tr/deyFi6/OpiRdeN27sFR/jYBCyMQ6jKKiNCUEWrlVczitOQ1QiRPj06I9wSdB4PMDHRbc1ZQpTHCQv7US+Y889gJ0npFT+/ym/YQJPlDv45IgTFWxD0WL9KLr75dTxWj4mQ6LIXRxOS1dHk1hqw2UAY+dZYUhYAmJUjrOnCJ2+ihjJOIF8rSqQqHjsCjhOePd0NZcg3f1AnfxnhMNMKTp3f90W4d+BNXxVucw0syw1CWwanu6ohpSNNWZdeQVr6iBT7Ldy1i/eAjvBXy3BdXaApUJKN0TN5Ws3w4oLBIDh7veYewX18ISVHE6VdoYlyqRwbykN6+oX88FA8S+ddWvLTXT2ywKVo8UdWui2L8Ohav8MjbyGTLCV8Ph4EjD/phm6v8xRPio2xh4W3/3p61g+MMDCjkZjFvceS7UZQt7Dv8wPsv/eTv3f29/+uv71755hd3z3/yB++Zo3WIoNA5z+WNwkdPxHuXOn3uuWO71y8d333xTX14ZHp0ReQ4E8N90BT5Z4I1YWpGNz4VT4YN1zzD3oy6GANoQYGlI25cDV9CKz49kT1JXsfH59d6Cva17qE79/ipbMZ+s5ux38gnIWzGRi9+61JOcf7+HAPwR37P99WDAvdqC/dkpephMV2cRk38Xfw/DBOw964dzadOju2eOHU6h8eeyTL9e7urR5yhRGeSvzk3h678oyn/lSxTOkPN6eGjMbaiQhHU6GqZZKH3yBg69E1pntsuuRobnATOeFTnFcpz8JtAqc4T58+Wf7xo58Jv37v7+V97efZnRXCXnJL36vJ97oV1rigj0nhmUn+KUZQVijV+vU9PxnP3Vozgd9JOzg66HoNRu9lndi57iZ45dSbtO57GCj0C4fWjfik7l6E+SdWpyjw0XqCjofBb3onYEpJRnv3T9O0++4F3K0eJ/QdX8+QaYmav5sabVBiPLPGSWR5QdbVH2DjhhRm8Y/g7goBhL9DBnfBveqCR208nyBstB/GlsHQPVw5S5m7S3VdM0Zl/GwvvBN6eW6kyY6gavtwb/31Q3BF9qJffkXLHozX5Kt3MYvDEAGOGiv0MpKvbG0fOM+KhAUvQGQ0Yh7kYbxZMyDMkVvAcZBZHRAQrhlfguh6cesJp9jx4DNxZY5YnDcTgMLiCF3peUIR1NYQ8wjJ8lLeMBOXwQE15lHaMpMAeiyCro2YhMMe6e4MAAEAASURBVIyySGw6fzpncINx/MD7mV2qS5fw0iE6qIYX04izxFhBCSZlElC0LiVURRBc4IemWXJMVEONqSQaxPyjMJSdIhvnXl6I4aqkK6TCg+e5C+wogmmDgm35bIDXMWuUwJ0MVUpQJtQASSFhRYIypsPhZXmTX3nwrbxTt8ThfcsOTuUJrUPaYnl8kGkQcbq3D0zyLMLBaOL58/r0Cl3qqiFJhm7sLudNt3e/kK+gJz/3+8mcVP1jn3yitP/y117dXQ2sctcREF0ajez1wLuU8aOBPc2129nLlNIqusWzqdwkeG48j2U8n2n/hq1eSW6eXiflrt8N9I74e8feAfSAj9rQjC44I5P6Aq/r1RzGR+zwnpHSfpI343w3boyWMXLA6MfaTN4aL1uF8KLuc9Zl4uylofjhuhH++aKGchcMEirXQQZXy89VAAefeJ6utTQoVT9dZc9HgD03W+jaiJnHX9evb/393j/0x3Y/99N/f/fcJ37g/rhTJJo++ZiN8vHG5UWVJ84c2b3w2NHdr715ubxCl72QwqKxcr5RqO6YNv01+PLEwFZ3m+3P5LBBx3y8mVOxVzAwPuENzVzV+ng6sC8GvJg34l7JeWU8ReT4n/zK13ZvZ9nmWvRr+Qo2uBgCT+QlDMcH2HtkiUkwoLQB90/RBymjsXfx9wDW3XSAZuyPfvpcNmp/9uNP7x7N0uGbb7y6O/PIo7tns4x3/Vo+6fLNb7Q8utEbfX/yD/7O3f/wf/5cjge4vn+Ff2Fb5S9dSD6MAco0rtAXyzvRAThyijGOXHBcwaXU/7V8k26Fe0kKnCZV2qjenXgJBTp1jSnS0LJ4WYDtB0668pFsuq/3OnqQx+9Svof32nvv1lPEo3crfY+hyCh69ulzPWeuxwNU/ocyZfibQE9NG0zk9I+m56dp0nWqhNlrNXLRiI3mVed1NQ7NYJT6bKUpBR8ktb/CG9lqfcPjeoNytbJDL9MH9Ktxly65YctBnh106nozzg4q4Vj4ogxGkiVnQXXpF/tLlfudwnijNijgqyL3ydiJVcFa0Q18yyT/KnJd4VH570F4YCOJcPEo6Mi+aeVE2azSNFjS6Lepk0aQuj4frnWPD84nL3L1y7qWIwAnIvDiGUX94GPSGB4DO7Pa5m85y5UcPMm7DncsvqTLU2NiNFQaNKUFH9hL6aQEDwE6x9q/RFDyFIOOwTP5r94Yo0LnISyr43q2j6lLfuhMOfJzwaMMevVCT42K8ijxqQ8BdEJvvTihdAkQfgodxNCdxwpqClWe+vA4gRuhH0NTGdKHVeJgzD9VzM9gHRilya8DiUfb88883vwUuwEKLlyvMYugDQF8bpVT5R0eBV0BSl/4czl1xmpBPfZ/qU/G5ObrG4pg8gwF42yoMugyWhLpf/K0nYptOuuJbNoUlOHNw3PnzmXmdnWOLYjcOMTTW4kk4NFHHykvbIIkp6fjcn8vZ82cydk6lBj8KrA2zk650wpe274cj2eXqzKkUSStbGgrnCd0JlTBho99mqjG3/nzAUl3gn6Xz8N47SToZpZkotaizMZ4QjvlhWZGTg2YxJmoCGSgaWGNq0Cu4SJTy2OpjPavwOf/tPNmdJFr8HArI9ka3BdlopRTGQrXfAj4xOZRmpcIkhYcQ0eA0QnP9zDgwyc+/dnd//S3/truD/9bl3anctjknQHZjPVbMTS++tbN3e9+PntEYhy/e/3h3RffcGjieJzBLZnAC6ETG4ZTGHUysqe+F+L1IM9O2/eCS2U78alq/4ZNxVa5Xf0Frw1QZPJXc4AjD4W31C5eXPuN0ntSrg2+zqV5NH/63dA0WIcq3eowH6fttM+iH9zU4QBu3U38wrSLMfTI7vmc5u3ttjNZ8vryV7+2e+a5J3deBb8RI+lbL32z7fhqlv/eiyFxNkvjP/79L+z+9s9+KUuWmazEC324f+OVsPaz8AbTDTWKkkQeLC3yvH382cd2n8yxCM88fnZ3LnH/4Je/sfub//gLza8uaD2o+aqBZLEkGT79P6HAiQOWe2TQ/4d5Qvejw+GZr2bfkkm/N0fTkt2CwBFw/ryvEpyrl4i+CbLimhLzmJve+0mQe9GJD40G437jxZ1xiybtKH/pLa6i3LDmImP+9DG4jBfd8B9h45GCnvHKMNkbRHQ348dfJqEcB7cy0TR25l2ftuUu3mWZT/TFrNBQfGN0KguPtilyCVLO/YK6Y/kC0Q9Wve+XZx8Pdst/gGGf2puNo7dH5qk0bYXeD+auTHdEPLCRxGocA2iEwYSSK87r5RisQZ3WrMP2vKIUZODtXqVQan9Ll6ySj1AZiG7En63hZvkle4KilK7m+xGUDI4ycjBTY8CPqQY7DWlZxcFZXFI9bymdSn6GlsMRDar1XoVG3iDM0k/g5jGqQDGEUg7LHx0VwlzARjxqCFJG8FCSZsG5DQ6D9nhBwPaUcQkJZh02GVZ8AngmAzT8QkDbWTsQGYgjlOoJfztEABhm0tGFVjxYe5Zi6wecIHszwHhiIAogxFtwK8pf8+e5cVu8t1SefeqxHln/Sr7dtAyx4lk40LHyp4IGwNIME2QJlDrDgakb6PKLsWsDu7D2NpGHff1D9wyWZmnxBqWdhMLE0D6R2fK0k1rCn7+tPEruqScya71xLa9IP5KPUSbxptkkY/VoPlnxeI2pS5cvtw3OnjmTgzEv5KC+vCmSck69/172eEQxKBC9QUwGdRzyeCLLwalk663MK1HaBnHFDwnaBFVVV5CUxt58D362an54TEhKUB8vEZDNhUt/SVe5LRTcT+INRPMXWco9o4jRo/6yHVZiKw4y2VdeMGRn7ZMqnLjgc+SAb1jZN8WTpc+Ei5HpNF3KIjUMiOXxwt6mb2Uo63sVXvral3a/9oVf3f303/+/d//qv/Zv3oVW25IDdH/1nRu7N7Kf5OHQ/A9fvry7EO8cGe7kLzlHDg7aP1kaqJD2ozx34pfaMAhNrtQNj+3fq4f5EAU88g4LhREqexz/cT7/8YVvvLp7L+fk8IRojxV4jPQd+vW1eJYOB8bZmzGspgVhWzkP3x/OseJdBfCja7/x6jvRqfPiQzZm7l7MUSGf/9q361n8ta+/vvv6m9d2X/nWa/FO3YxBd2H3+pVf3b2ZT6P40kH7dOr1Qowbb//dimzezB99Q8YOn1NEhvQ1S4zPPn4uxwo8ntPCH43X6HS9Yssjv6pi47WwKDYWkbuGPBh/nKu0DxI1gP+5tg1SHny8QSbSaBbQ8m6WCYUvvvhKjKF81iW64IdzlpQzoiyfwuGIhpdy0vknPvJM6j86YfrLEII2xXqa+NyU4InsgN3EiXe7AvyeK2fNA8fcwNVsua4JirdujZEMztg8uTJ+MgZFPma5zIst9goZP4Ir/FentEJkOvovcTczvt+8mZUSfbOMIstpl8isOQszkL6Xv1toAngjXrTiC0FD/+q9AbojgHuQgGcp5vaQ55ZzKHaVtzE1KfTWZL4tu7im9vJd/RySpA/OfzKz+jYaDRcqcnRLB2tvUzBcrLsicjp0CA6MhnBuCCOGIgHTpa7Aa+oyI3nqAozSBGcWRZlQVpROuePSBpKLt8om79nLhGqWv2bkqi2NyVSG5RkuiMYwCp60NgUWM6l0I6JvuyXPyRh5CKV8ekiVk/hgFhf6rkRhGIwo+xt544hg5nHgA8PYuxEDiaLUsb1RdsEMMPjQAbb4QpKKweuWaAnot7cWHPqlow8fZLVZXf2kMVqUb5YGC0onDaaBr0ESFIzEVbiSukYePHDLB3c5i42JVn6LzqOyl0dBOevrywChEJSjfmO0bfuR4En9r+ioCkhAH+XZWXkzU5rqYQAxJ9noCHxlKbxEi3riq43myvAiwPs3M6AFHsnlRwDhXzy9ZumO8ki+jHE7PqkhA7eH4w5qWwE548lMjDKOxjiGM4/lARpr604c+O9l+PWi014NueIRGQ1LR+mFwSYBeOlvY0R5j4GiKrPRhowdb65qlzTdwA/m8mK7rfyRQcEQvnndV3KvaHo4/ebGtsx26iSZLnvzo/XSLgFiJPHidTkweVZVCvA9+nn12y/uHj390O6Vl75xX4yrXEu170RO3wsPb17OUiU5CE/JobDa3mBDz+2/3bYlwvNE3gTDPAe03oi84nsnJLlZeIALeF2DPd4K9wbfn8kbYjOQpW0wsjAD71V/f/cK9gF97eU5WPVe6d9t3GvxqNwd3rgt6uuvjXGxjwzZZ2LQLA+8PZoX3r2aqkQONhnlCXsqh2N+NK/lO7eJkfRoPpiNh6Trtuv28Oob3jwUaCSR8wt+/vweBOPKyXig6GfLQfSZ1/7/0ee/3I362iMkNRTTyg51grZ3ZtXJbJwf/Jbychp4DAttaqyQX736F6gaGsmbmMHhl7AU58CLIkurOM/Siyu3+lf/JaJ9LYDKGwOTYUQPhvbQwrC+qp+nbrdiIJmAHHX2Fh0YXMQlIOH7eNXVSUF6obY4GqP7VhSlN8T7Afh2z2xLKb2pD+MrsKU2/LqeP3P8mfYgm1a9f5jyZA+Usu+A3kffH8V9U0rihvFeNODh3SXeF91dCQ9sJPFiOOdB3XrycxqEh2NaVd25ImMExToldFIMOiM0azlqFCOPz2GmeYODx4nbWiUN4u77FO7123ARhHqgEm9GR9n2TZEIkkEXvrq9A6+5zF7TK0ILoZmNvYTBq+ImERq9a82BZkQswTueOpqpUdiFz6ukyj2WPQqR0HYOXFQK40xeA7wZxhKA1k09FBRGUKJoRF+t/00iKER8gn8UZTpDnpUrY68Gkfyl6N1b2ZtwMYO/+BobyQev02Fn+XPEOJnL9xaeey5VNMG6hAgJ6BEPn3jLNYXJDGJgxaYjqUdulzIxvkkBI69rf3OjHlIpI23kxOwJGXxTiW7+SxvggzxEiIzA/U4+3SB4RteJuOirKPLc/QF5M8Ss6WyW0E5G4R7J5xDM4hho9mU4DBItp3ISMVnsZsu0JW/gsfCtmyHVjbIaije5MchnMEyb91/K1iaWSnKb2sSQJi+h8Xzpy0/CvME093f/KuO7C8rsUlSOMRgvTGQstKX4eh15jOo+j0LUELw0PDb4QG5dGR3eqJFfO5h8XM7Ssnx4P0d46Jf2hzlTBl+Krm2I/4xCA8rCq2175EWqpXaradf1ztqKdxhmOFc+3shy9vVj+ox66efexhsPLbrHSPru+XZn+Xc+4+v9ApkjA/Yfnn4sm24/dqoyeTpLc9/62Tdz2Ogsd6sTWBXC24WSIh5hMaCxPEeXfTvel7/zs1/c9280kM0f+b5P7Enx4dir2fT7uR/4aE7Hvrj72V/9Zvuzfnc6cq2v8250Y+yqxEHBfd0aSf+8ApLOZgnOSzx3hluRu7cvXdw9kj1TJqo+ZXE+dTq/lgnDQUagM4os070bD40387w8A+9MerYBGItTgE+k1LtOKTbg/ppkbVH7FHmO7C5dyBtn0S/OJvI2L2PDFwtGDx3Kc3cVJjHErOoB8WfM89FzHQUllQvQGw7lrvu1XC85kHPJb83uNJ6q1Oh2DV5jCxq79Jd7E+7u080E35W+5y3qdoPw+Epk7lrgFZiu36NfjvUzTUEYPcqREU4nPX/0ZGhOr8wYRYdv5ETOfEnCv/mihqNzUkZwc0y8H13RsWIjn8xtt8E5d99ZDldhh/NO+TCs1D3e7WbxvpALcA+00R9q5t/B84Jv/rvgF9wHXx/YSLKrn7LsPqRwwn4SDOTdYCBwcRI4tazBkHJZuQya9bkLg9bxWONRzWn8jDoRvA7SgelrpDGULLlQ6NIpdOF4BgudQvm3aqiNYUQZ+TyHRpzBfowyypz7lNAmqQNOB4c8zx6eIA2tBgEB3UgH085nJr01P+YSyj4mv/rpvI4WMLDXcAgO9UeDQZ3QjYEHFq48F7aqdKM1QEGG1uYJD4JyC4yGxGeAGqEktIRbnqHXLMLGxFtxFVta9DqqvWICMhsCjgdwMOTQ5b51yaV1TTpwcHuFscEtPDpvg+rLnoQhJQ8CXI2IXKQceOrxSRJY7TZxZAOCXDMoUoCtJ5ggWe09uIp5cPdW102YgosXfXiHvMkTnAFSx8Ju+SidgAxMMuG5Z/ngoEAMQNE4yYc+SiHGNFoTaiQwuvLttglp93x/cDIflLQlbhclPFiAgefnzMM+FnosS4QP7R4/70viWTam8RIYG5djqfkAqjrjW/euRFZXexBT5OMBI2sMrOk3D0cbZpxqaH1SHuNbP3n1rasZnPM1eIowePEHg65lbxNkDLRHQhPWX7kWhU3uAsN9D/SDgvQr8bpqE21+M8ZGXoqqHKBD3eGavXza6IOwffdpH0zmpPLkqvuRfH3+aE8wzxLw0/km1gtnd29/dTwpyNvL1yI2eciyftLzyODoTCL4Mii9ncG/y/lhqn582mykEjj1wcee85U2k48h6lMl72azcV8cSBs9maWeRxO3lq4XJ9D7pW+90XZccXddby/uruQPHXEHPgb5j338/O6tK3cPJ+QJfV7KOHs8Hw3OhOXxeorCr7Bd3wxIdWwWFrtlQh51tZfQ0pplOHwg03jv1HDXm9vA3FEiNN3ZxmmFyteFfPD3pdde73fZnnoqbw5uWyhezDlx9OjhfJXF1i9jTIyL8z4qHMXcCfrGqMGa8kInHf0+93/oaby8Su11u89FnSYEPvfNGwZoP8/LGKJ3/NnCwWi3MmOcvZLObSxjHJko8sBm2h0+wJtxWS1CA3wmi7hx65iJI81qAsWLNroB76L0MgkUB99QVtVcZm7kBw3ZNMbRFdC2tOSX171xusNWBkrtKeyrPo/9bZqEfeLcFF8xLeA9wG2xK/We1y3LVvxWhMjwYJ/B3cHTPvoBbu6W6vtk4nWpUvOGF8MkAwYDieGjaCRd9cZSbghUOZoHyrxWrIEqnOp5SYmvoknDicP8m3XzmTGb+W7KdFPGYAk8geE6daQAwSo9Ka84AqHBlqGS5PIETEqOlA4tKbIwQTRGUfDWAAsIBUQIgcOTrEWCHsaVq78eDZACeDrqHYkQWcLrvoXkKzNSLwJLOCfCoAwxnIrYbrZLY1ZaBI5CaIcNrLqqhTACXhKRWSz4206QPMrQ4aYOgU/xim0nDP6KjXJC5/FM51EnXfwR7arTp7zhbwweiID7K335WdemoE3EDNyUXvmF5mSQB35BPHRtjyQYMCbtQJgpj1vpzWIssZX28JcRfSXHMjA6fRYhbx3vTsG5FXAxM0Tt2G8cpQxyCT7Tn9QpA5M3wFo8agOA5Py5TEBrU0qz2TtKpe/5scHfyObxv/bf/Re7H/rcT+0+/Tt+3+7Jj3wmy8qoOcA2OL/zL/INMg9nQHgsH7I9myUhxhKjhOwuY4ihYQBe7YkmwblIjBh8GqOJoTMGvxVHRgkDLMNKDS7KDjwvk/uT8ZBql0fPzuSEoXTRhzTjdYJPMTxV55OOHgM4wwoMflGii5Y7a6tu7UdhZbLGQ5t6xuOAHjTyUvmQxXHfxEu7rnrI95sbFDjtr+zzT+WARN/AiZPgbN7kunLqaid+0/dGdxFkucipliAtIi7EI3Tz1vnyTbq3nj75sefGAHWeUCY0xQN+C+djALGF9XcvwXz0+afy+vzF3bvffLn9BeIXnn0qeu/qIV5P++/dGwvZHdfFy0KHIDQ1JGLDsGLuuK7UfY6D9JW0xYCIqLTf7JGKBLdlnzFji8hlv2x/CD0Zdh7Si9kL5SwjExdvyjGKGDaPeTMwcU/mCBOyQs0dhGRWWUXsw7SNb879K7/r0/UcrYmYz7d0rIkg2hNm+WxtK2jPDy6fXPm+jz1TPcWYuqJDhchFMh2hSDK+3aTkIYAemwn0pk+TTz+Bhy42htUYypjlai8no8i9fOVX4Lu8FpTpdi1H2bN1IGMSWkSk79h83jlSnvXT9OqQkm0uOSsuv4FjUEVPgG8wIQx/Uha+tw55DprkE5e0xNOzDlQ9Hv3k4GWC7dugrV/gQm7DcNptMt0jiF1FH76/B2jLvTO+ZB2OPFzMQaVaOrrnxiU8zN984+1wpsPIPvj+gY2kDviIKQMjnRsjLTdh8PE0hj09nRkwbjbBqTcpabU4I1QGRksufaU8DDdkaeR6QzJoEyCVdHKpV5s9a9y1l4lgn3joVIoPXPITCKwgdB2ENVryr71B0cMDk3J5N0AnG5BejYUEguImoNDpMNIZHg4NM8NUDqFkvBBmuMSbAVsuhONKZvtmP2BZ144LaEcMziS3HtiCCB0BvSmh8TqQJOXCZflvBHfor7EZAPiEBRewwKnLCLUajmG2eNvipmyVU0pgGZzffiObmYNPZ/fnVF0GCF7KDfxWegncDBCFtjMofAsMtCTv61diksbwLZFbreQDN9RIGyTtuHncD7RIFJo8PPJWhRnTsaOMYAqB2C8YN9Dl7cPIjEH8eF55x6ZeM8BTyOoQSgMnp0JGFuQdL5+9ZKknT6W0ynVvp51Uf6NZu3/pi7+y++qXf3V3+m/8xd2zL3xq9wM/9vt2n/2dv3/35POfjvEZg6kNDfv9A5YykMgLw+OVN2/u3njnag2J0zEm8KivMYcesnI6hxwK48lZRYwRxJCx34CnyWZb8lImhg4DCnL0pWy2Kq7KWPqK+FPxMllqlEc5rlfjMWL4mxzAKYy3i6zkHLHEOQn8wqXrNZgMMHBV9sN817WEBqd6ys8467JmgMFL49GtZzHPv3GhkvuB6PUBHuK34jV67DM52ygD2JVXru7eeykfVk483YXmCQzTkSunKJ/OEq/lpBMnTqYdBkj/tcH6Ex95qst4Pfg2ezst0ehfK1hauhXjQEDDR57JZ0diFHw5G4cbF7zPPv3o7rXX3ow38eCYjOkEBbnr5wD7lpSIu+LuyvXdRZCRt96LR9saakJ72OpmrvcLC0b6gsuVnNKPXi+3BOe7auTEGUxWMD76ZD7PsuXp+HjQKFPShmvB0Gtn8hmmfRmBIuNeqvnay29XLn8hh0y+mz2K2nSRQmdYRXCYsPHrSpb3l55ibDHgtCMdHLOm+Ls0Fdy+hWk8wRteIcafMc+mZ8/wTn9Mtg0/4g+3EbzGRteA7C3xDsMZfx2lop+RM/wxHgpU75y3hDCd3JiaOoRanz+RJ/8zeRyDDO7uQ0oaDIud1/O1AfTgiDGvhlvq81B0JD7MsnKKoDfbEGAP1yCZVxB9r6Qh+ba0FSXryoLG8mCLWPETif9TtvIPWhAG2G6PEfthwgMbSVfyOvWxnBlhULzpbYX80zhpq7aK51GQ2UeSRqkiCOPaeGGwzt+GCLhzFuARrjtroq00sATCXqPiTjpXJ4F2ymuKKNM0MFtI0ZjVvUUZJK6z9BOs5c9eoT6GLobOMFHjGjR0gKCuIDtXBB44CcPJDlB5SP0MSOqlk/S4+Yjg9QjT5Qh86xSY9aYJOB0AYnRbxyVwhzveavaQOO3b64hW+RBK5MlvDZMaRaWdV2PiXNv0lRplMLUa0wrLDwNlrZ4tHx1h2OJrkjs7duUNc1Q+z+CZ0K07ySckaR/gbcdNTLpIZhTTNhM/8tCykweftf2iFYXJXlpqGCW9nTqR2lNx0rXV8AG+dNJELiWA3wDbyQMbMSusdHzyB7flXnjsi+oVHR2DhkvJ2jKHosHfZdEa/lEAKcOMb87uAR344DtiWrXRiw8MA58aeO8Lv7z7yhc/v3v4r//F3XMf/dTu+3/09+6+70fHYHoo3w1rxQbNbb/qzBhhNICBz2HCFy7ZeDkhjw2e8XN4SubHOGJcCE1L3e3zKX8bu/3EMJGuTYa3U2dGi9ycJt2ccDhP7tGn7zGIDAru4RAYcY+fH5yMMv2k7ZBy0KY8obKXLPLVY5toV5MNcKMz5gpee//zCGnZ0nT8yEO7i9m/8rWffq1t8lYGQh9aZTtvVSrPOohn9t83NMkp2UzAe5VY1SCzPiR9IhOomxk4j2fZ9lK23h3J/Qp4xcDShfHGG6heeFgBX8/mY6tvtgz837C7aKTbwnreZP3g8W7Q++Sb6FWD24DueBjktNeto/wbCcl2Z85FwgAc+l2NvdVBPfdhizPBIXdWGq5niRtn375wsfK4YOW6VxnjCUVdaMpPJ3SBDMq252Px4L35nsNrpE/ZS77FzRlrB3tlxU0Yw4d3iwfoSt7Itu3jZsYEE8waRBnD6iHqRMPKx3hc2//QEhrQvPay0jko2LpXAKbvkYd9E8tQMt0EPvfGwOqPXLvFIUnjmJAvqU5rBwQ+E2DnOnUiGKT9bFcSTfSV7zNbRQpH/kzcFHgrvL/KoIpMAjkWWaV23At7+ubx7t/SfGd0Mje/n3sCNMNB6sHdnZjmWX3B+BNSP7/5WfSta5M/xM8DG0mWLxg0R7PEpKObFTEcrkWxn44b1GBECBlHDt9DsEa8GsOFh6lCmDizcIrEH9i+opjGPJZZsMaF41ROadVoBJBynhncDJ4MIIMhw8CufjRkW1qXV471O1sMJWWkoTfFzOIOC8WOMEQouhFtpCceIK5XxwBEkMPUy9nISnjNBioktZLNsCNtAVA39bUBHXwVbIy4unJTrmURHdsQlJoWRifBA3mn8Q4G+8UTHaKJqZsb8HDWA5b7IEu9RhnntqAB8r+CoDS4hNZ/u4cHv/B0BAmqzO4zAMDZfCnHLK3P4IMDXt4VdZRPnVw7EASiHSttMe0pDXtauw3ntEORlSo4twE010IWfsraQHIZHtXbpp1Trract33M7sKb5Du50Q6FWSfZsRHZ0RLv1wAO73L6tMnUia28oX2j9aDA0qXWpa94R6nBx3BmwDAfwUwVh8ZWIvDKuJiJxJdiMPn7f/7GX9o9H4PpMz/yE7tPfP/ncojhD+9OnTlf/IeKzbMT3fOyQP7wl8Ex+wBwp82xB8eHkNHyU93I7T5pf4P+GpG5ev38bJbutIn9Scnetjp7Wv3Dp3h3Zt+S/pRKJLTUpIHFc3DjERr60GbwcZK3/WXyod8+KnUgd/cKQdOwFXMXyCr/roTfhIhzj5zfnTn3SEviPfKiyLG0OX4ztO03xHR81I95AdCrr6kPeM/u9WEsADusCP/C+4fyejVHS7RA9VnmWRMCpL2634bRmKVhEyx7+1Z+GHmyDni0MbMYAjWAG8K5HIbYJ9wDbmvwQ5mSU0U+ZChtKxt9uY2goqALO0bmwlMGRY3jJSwr3xBzUPI+XhQE4V/w8hbD1zDRvd2K3BJ2PfWb7J6Kbna2ES9hJ1PaKLiPZ5J3Iqscbc/iO4Q3AD4n43t4vhYxpMwoogBeIMcdHD+Wj+JmLLTSwShimJAb9gn9RQ7Quli6pAKtActS8/DGfeuXK97IR0R4sVYe5QITwNgX1L2wxqV4iC2rgeb/uXU9f4YraSGegaSvW29DVw2qEHUrPDBGCfUjISz/uxi3Fabu3u6mC0yM6VD0wWGEBKZ+G3iuw61E3zNIHYiV43aww7lBHEDlzoPCVmijD20d34sZFxL6E9jmGZiV7cNcH9hIOl7jKMzU+GEQWrhXDUyMGyduOyepDAyYWb7KMD4EMDQoQYqUN14jQqXhHCVgv1G9ARFme5cI7xhOmJKmzICsbIPJ8uLAGVHMuVeUysRbM5VOkKQLLT8QBMvAb4Ps+xGsVmXQ59h5yg5PDTQpKwqrAhVcZE3dWNOCLN7Cs0ZOkHs+UO49y6/TdLNb6laFEBzq2/ZNZgMQQRtM06H2SjDxHZzMUANyeOmtBcsVRDqjK1rU92bqypAQ9qi3AuED59qQB8anyBpe63lrFLBoBAAMrE3E3P2LbrRZCuviVzJUXpOjufKsE6ELjWtDKyDtV/oDSx6Upd0Pgm5rdh3xDP+sp9erlGUem9OPZUOiD/cevX6xa+Zk8PTDTsb1+ZjABo6s7I6SMx8KTRvdvBRa4THQqfPwbZWprugQ0N/0RNQtLkPyzfo92vOYMvESLJa6m/yk8FYPsmQsffnXPh+Z+Eu75z72qd2f+rN/bnf63GOK2Ad5vV3G8LAkNSEKKG2J7/gk1EANjcr7oIAmRqTg1XN7Gob36IxhGblXp6vXjtcblMOAynvq9c6wcOHN8vrMp0UoyeGRPOic/nhA7524tmrcGf0vxPOjjz+5+4mf+td3v/CFr+RbaO+2ru9ZAgu/7CkiC/6cfG1Cpa14kGwJIEXqNq3k6pneGyOnG9Ij4w+ZxUeM6ITL+sAdNe+sv1io+ugx8BsMXPX6BS95MUCvNDSKOwiLkoOYu+5ugz+Uer+s4u+ZZzIovxPEQ6jcMvSERZ8zn9wfiZyfi+48F94ecK6gBz+rzBaxPay4exNzkLd3t3bffv1CluouduO3N1zPZX/ZOoSTIfrGO/n+3Suvpy8zAralJvVsmdlPliU6J/tvzZIEif4m+Nbf+zcvd4yoYbTy5npcW6WTdFITcJzwV90ZGdBuUHXJLeX1caKq7zvGeoYn+XKZkIdkj2NAYKjnkszkk0Hf7Qj238Z6cV9+twLkks4yPmQyCWEQzbLcTKB95WDQkT0ynwkBnVMCgi/tyeBXh47DTQi6yGfz5XZq2ZvbfqQXyLV1WRUS8cEBZPNvYHfmHKqHt1sNCtm+QVElAxV+G5IN14NcHthI8kE+g6mlNG5FzB6XeshCRxhebwnGh5nGKF4erjkDIVi2LuHE5LZR4iyj8SY5XmD2IUUAkvkyRbApAy5Mrk2CoAwz+6PpZH1FMvdCSi0dGCPd362UtYwVTFqMxkh1IQoGDAaRgcAbFBiqc699SXD3QLXEcf1mElOOu1Bci0bGVNec482CDzFmPD5vYoCDv/VOvtlERgjzEBoMQFMD3QgzFcHgi3HRArdBEhTG7YN7lKh96A493pI5HDvQA2PgrXHiUTElQHvlLx0Lf4suyWjt83Yv76m4/H0HyZKipTneEwq8sFNE85ihLaVZAy8Uqc+QjoYg3fBWSXg41NHQiCaeLe2mczOg68GM4eoNydJ2I4fmNS3ex+wJ4UM/eizfuUo6GTp2PCfl5sO3vKBHo8wSleqlntu1hChLnMQUhjR/2qzu5z6hAd0bj5JeJVfYQG/1yWNCGBHeSV8f03UO1ysv+6QKD8RA3f57ILMbhtSvaAZMW7XB8hi8cGD3BwV1qnymHhcvZ/l6e14Z1c83xOx5upy9RfY04Zk85K79Nfdp5q3t1P+DSvzep6WqCYdrem8aBm7K/25oJFt/4t//D3c/9OO/d/ef/9n/ZPfFL32x7c8Qp5vIsP79+exVGrmaiR95EBZbRiam7Yca1Oc097j8yHnlLvJqO4GevgL697XMjZcQLuVQSEE8/Dz3jHTnIL2WT5Xs4aWlLe8ZFmH3TNwiC/MAgAvkHkXp2195+c2Rj5Ue+BfyyZKzNYRSh/CqE1V4AjPotoc9fRO750YfV9wAebo9Bj6FkvB9zt7MOJA9c3k9QFMdf2t0s/1JxiF7lT7z0Seqy76eb1m+F6NHG652rSFcHaQVF+4pK4/Vew5pnMmTmAnooNOrX8Mb5GmihaNy0odJM17o3/SoStBRA7vpYA+HgnRmcje/67PKMhlPvLL9Oc6YY6MTJpXP/75hGfmjXGp8pTzjYGpdj5Dc6n49Y/xDudIJ3esbPXAs40O0QmQ4tMYyo5vhyLpSjN759mlJnCocovb2WzUbKu+q1Fb3oX/lUhdh+HF72qQEW2h6+GT2qQXY91nDya5g2TKB7/2kSRLZSd9NeGAjqV6LNAaDh3tZpyX04V87fxu6PT8kpjMzeGpAhEqGEuYTDvFBU4HglamBZERIRZ3n04MiuUZ5qVKjGhbJO/cMk+DNPwxosyWfgIkGOoziVhwDboSMq9AYyFUoXajVTbhyZjQFVhdwhAoNFKKOr06lOfR1gEO4AAmB3kKN1MDynGgUKtTnVuBg6QP319cmt44Ak/SFZvgzsxloGQboFtQF7kt540gez8UdOtGORvu90DuGzlZoc88PngXrMCp384QKIVcEugvuKongBNMOnat6wa1Dvp+1rNkkzdmaeuF7rp05AYwBPTQlNp236NtMkR+DxSorSdpMvvH0HZQHL97A039g+ocH+WuBAACiL63gf2C0n2RwTqF1uv4xyGByachNHsAJ+F2lVtoYZVQCz9Okw1ucecztlCsphvMBjrRTjsroEnLKFso/dWhZYBcBk4v4ksLDA52U1rugC77o+iMdXQd1OUhzJ42C89o/o4e8iMN395YOr2WjO8xXcpbKzZs5wbke0FkmZ/haQusZRomXZ4XKxnp4wGt5cAfson3Vc9/PD4oqj1ftRePVyqc+dwc65u7YxtwvfgM/nnb7/h/6kexHzH6geIsYRvZi3Lo2eqDtQ0ZS8Cq6ffZQcZ7JHNoKF9ngxXz2sTORmchldCaDjHPirQvxqmx58bdL3Xl2/9wTZ/M8bQbEuW1PnX9493WTvujMNQFpQRuOPVHr+YOuqwIIWESsuA/KJ+0+cB3gFy5wub+zLSRTA8MjiA5nyONdz6ICs8oEnvs7c8kZVh/AiTgUKmN5NokFpH21z+vh8UwMTKa3ybb21YAJp6PDH478v5f9ZDVIDpWsOOp5ZNtEccYj8boLXeJN4enxhu3EwRuA0SXR2anbVtS+j5lUV9+lnY0GKIGzbPCQP4c4XodfOjkJUxkx+Goya0kyzvQo5tCSvmwrpQ+yX4zuHQKSHjnMyn71hO0oDB6GF4OCZmBwnQzubKRJfpNeaTxUHBrBkjzkUD/p+YnBnGzrx81tAekqsXh7kNhMSp42zB1aJiRtksunQ7Hly8BoL2cFersYfOrRtWxEilIrDJjkyfPhfh/YSKL4M0JOI4RB7fSYdNPMPef0xLNTGQgjWJvLugY3xolGHeFRWZ1FBv8OD5yWdHgqDP7y+lseEEK1FArhrLcoSGcgSKM7giD/lHMyQiDEpup3uQwQ4uHVMZwYalmO8guqlpHC2vjKAKtBwQ4dBMQAbMli9nlw8nSZUBvknosVbGrfjqAzSOhV2SkTHf2XMvK/gr3n11YmGo/lFEawMxOYjvdweFzlHfz7JRSDdPDAVX5u1zyNYIh2OxUq7bcnTDoYgPHyl8eZTGyZRIcfQeAfI3aF4gSGbwU/MIDwUECbP8K7CG1bJLPrQ2YkaarBoKwJOjxhx0L8wzty4QC17mULz2OOhK756weW01nAHLueQ+I6i7KRMi8GxKjLiSEtbxWw2kS91IgxRT2l9hvNqTXtExp1QjPDoz3JdqMxhIL2VOXiNrgezoGXDga8njdhTuaU3vVdpLb5qhzY5B65nvotbE3afoBXFvFgMbs5U2riijMkGogt1ZFNBhBeIU4TiOdh9AamwNDAWzNI8WjAA55Tsu5vvINWxRmk4VvqDk57KVi5QiUi5YR1iCmNyJS62h9uoZckkJXKbvKgF37lOAeqy1jRMesTJzDh+36Td2hDAjp6DU1L6SrT8sLh4En8hwn4XJqLKrlb5zEub8cO65SAn5bVwDrTB3/Ui/hog5uRR5Mcx1Ooy+FN28WS/I/l7KDmCc6bgYuyGfQBgONoJm+Y6HX417OEdDgk+bsLSE4VkH4Qbq/l4aSVMnGjI/dEDivKkTu5Dl5bC77H9sy5M5WzRmghwlGkg3ni81uhcc3fHUl7mPvF7wEO3ZSEtG/ytN+HxcYQnyVZEytyW8Mi9H47xxD4rJHDPxXjb0iauiCs/TKR4vUHUH5VV09pXDodHW8SS7cfyVh6lHwExvYIuoc3xKdUGDOMr/ej/53BBBdal5znsfoqvrFiN8oxmrJzJPXKTeSLEj+SzU6XgjeYR64CwHgymbQ1hdGH9tKffF488BmTrcRc5Yz+sOwbWDrmir2e9D+dHZk1bhtHr/v+KdmPPhl6UfkBARCac/G3ftCvTMxsvPuE1r93SS1AHw5+RDeDG4wIjbmll7UDqoZbB1k+zN2DG0k6aRhCmOy/4a7sjCZEaEBnKNjsnNt6BVjSMztNMyayhoBGCZ5c5i+4pDnJs28TUdpRihoSmyhuZVDa3cionBy1fjPl1GujgVKuV5/hSdEDm/R6EOCOoJmV8UDlMeVQvJlhhz5CofNOkyjXckiuIcubDdapzTAMEOqSbeZJ3wQrZXUzL/jUx+CigzlraGux1tkgSYDGK6VeJTVlUKzbffKIF4KiuNTbsIaeGZxyfsuZh/c8lhcO7aFsm9jhIFCueLGQwuHZ39ngmBAoODwkzwwOKV8dmnnKXsjgEAxw2nIDaXm9V0b+Sgu8+NoKBk+0Evzg1EUZeGtmJ4/25SZ1j3Y8KK62I5kJ3rSfFwB8juRMNvYHNJ9uu1SFgp6HsxToO2BO0/VxW541xhRYs/ddvulWngc/stBjXV15ONOytzZpWujT36pRhypgG39Sn5UzcaeyHwo9ThO+LlMeyMTJfD/u/SvZ2Jn+sgYicCsoZ0PT/Cv+8HXx7XC+lR62xeidTd/kk9Fz4eK17IdiXM5ymjdUxiM0bZYqtq7wkWX9FL9rrDBKw+sjUYSdeMQ4FH80cfYwLGW92gf3HHD5dt4Qco4TmVU9dDAG+pBnba481dW/XeEdPs+5S16WIFuMcPDq5UwltMPnbTpnSaFrz8vggFfbVa62+8Uf17YTNit0Cwf3MuzJbKq0tsuGC+7cBkj+kc8C+lF+mIEmMJbu65HMg2VpuuVUBjsTnYhoQvgYNAbBwwFpBmuvlOMLT4dPIK2AJgakK3r2Ifk8RhsOc5MQiNLi56CeSpZvy3Angj5vRCFmhf1tWjrZZyCCSxCRS2AOgXUgXu1TsDt+tBMdMTi2xMN1KrakHqZjA1bOoqE5F5Lb8t9RIPrA5Vrwu2D31MNePW0rgRdByLN2scwvHCapuRJR428eml9B9FD38rhvTnlzH3xATaZ9iUBbkSGN2PGR/kmGRtGxqez6N1WtEBVjx0jI0vQ3Ul496dU9yshEPmlXg8jWB3puVmzGXJCNdDHI4igdxqTsbi/oc+Q1OOrpCo5b0Z969g0ymfSRK4BbwJghcMXcfU36nbILj/rKW2zwzGOvt/1o+HuWobaSJM6fe7xlFE7qfbLeVsD9Hx7YSFJBX0M+EUVF0AkH7xFjBW0dOHNfpZv1DZ19XJRpkAgaZW3ZrcIQZnTJLkoFo2qohFvK0MSMkhkc0tgMrwjMDN6xdmNk9VCrxM+gZ4YWQyRKRF57lxgkBK8DejqkuR1YtAUkHS20pXFGqSsvFn4SeIqcHeHUb+zWZgw1GwzBG8xthj2RK4F3OJ5lO8A6hc5/PZk0ksPK7HEyKChHffANDa0nodzqiW7lMRTGCxCagsusQ5AXP1/MOSmMBTw324EP7Q63PJVy8tg0SrgzBhFbcAvHCtrBWx/TmZPmJOQk+p22nLLx/XCn0OE2fd96Nw1fEyoXCs+jNl0GF+8B4qZNA5jHrmkHlzrmkoFmcLTjlJLpONLyPwGX8i8RzqviDtYVCp9nZbR6ua/XM+UNbMpKVdA8JbjCiOeDGW+obXImBhz+Fz/I4PT6tmdleD7AFbd8ZpsMb9+cejF7MwQ4iyk37smc/KtMqR8mrPIO54kIRc7yUeh4YRgUXhowmAqtUzLh75VowlvcdVvQLlfz50pmtVv5kevrr35r9+ij+bjoE4+1vVb/Jmf5P8bTlof35FjOrGLIXI2RdDl7n3hL+jZraqq94dcHXGtM5NMkiktS5ZG8azt9gUxYRiCnKHJVn95HruSZMPfqLxhM1EU90Jjbsl5jtpz8LFgTGzhb5+TTF9EjizAym1ZKHvG3BchEbte+pBHEwJASTHs8Jmn6wJHoPMbP5MtFPWsAzVI1/Mp0uvoKjiS5nFl7aYMzZdIl4CqgC9AVH5M+HJsEVKBf++yr0Js78+9Tk3HdY9rgue1Xne8MQO+MXmg2WMl3gYC5LXI9SNgSF4zrFrdnvajDoTCHIw7dJ22hOohV3opd14miV+2TnVWK8PAg01130tR/eKCdFkh01CZwiz9kHHz1TOA0ZfVxMpFFnpkyBb7cjVQtfHdcmz8/+W/8Ae/krUh55VCEienE5IFeCyGJSlkZu9znLyQlpO+lfF50bwCn+qVxcEwHI1s1yhRZwkfa8lguJluukB3+g/tQGKBEyDVhZHQ9HVzReQB1EA/F4eCxVRC5PdwBUnBtAOcetrEP/nPQM79Dnm7CZjyE4bVwN6NG4aUwNahXo0sTFPI2m82MCpE6vnSvIgr2Np2O65in5kiMKt3ZjJGkUai3bmXTbcpi1WNmZ1IxUAxeAoaJ12ZsiQpZI6Wu2ZtGn2UyCoaivxLPzpWcmCxIo4B4NQRvnrCa0VmrP2n2AzBycNhmuBCb9KmDPVexazIQUdLZABcjUjk9ciBXcGtwWC3E81V+JULZW0U85ZbgzoDRmbhiAoPF6mfAy1y7ePG0nSBx3th4IR+GxGg4u2yUhpmcJb0dsYjgSl51P1uPDBpEKirGQI5swNcC6YDuE/Z17pOfZJKnmWfABesfiVS1lReGjJP7GbRB4zQPj6ZMnmHDohbuUSDvp50UTw34IvuRa5fj1cimvAtxVwff6cSph88cXL7wrpLjBYmH6mKOSsY39znkLm/D7k5Fxk5usietyqq0D50UTAtLHDyrZuqApz3PJF7MAPW59ZQf8ckgDzOuxvgWISn/pxQ33/MwlBLHSzFQ/K0gJeNs+wsDf30QlVylC6Q9I0uJ1waV0QwM9jC9+cbruzdf+3Zy//DuTIw/h6PWq+QzHekbAm+PdsEbB6iq2vlz+YxK3pT7mZ/+xd3HPvkDGWhOhp4YTjHiKms5ImB5gnBL2XjoRPD3szRgWdCgwWPE+EAT/ulP7nmWunTY/j/5azaHBrTAl0bVCLlusiQ+ifC6CiYFXsRAU4MyUpA2nknJ3EMqS7pA69n7wMqFnsqFdkakmmyw7dO591kNkb5CoGxQlaykkZGG3B8OY+hvkSuPOgkKyH94bguNGBqkAxgMeIDDq9y7ciZF+sTfnTpYbitrg104kXQQFoZEDkChxTZlAffBzwa0vy5Mh+PFHYbN0z7/gh+YGYcOx637Ztjy3R63UbYie4WfLt8Tv09demHjb+BQujXLUJmItj9ZylhVPPIfajtYRvcMYtQNhVtL5CFquDJS/TkVblkbYMWcYaN8FWO4zFtrgww+6Z1Mpi7wHdsYZIuJ/bfEihwb23iduAX+P+LePMbT5Lzvq+6Znp7puc+dvQ/uLskltTwl6qCuSJGoCLYUGbaixLL+MKEkUhADQRAgCGLAMYwkcKwYThwYVhzLMRRZByRFlCVZB0WKFO9juSf3nmNnZuc++pzunul8Pt/nrV//enZmd0QpdnX/3reOp5566qmqp546380ICmUtrZJQDM1dahUS111qMx8KG4x5sA1JtT5V0xL0Jo+Crfwm0s1hRTgCEkTHBg8939wAbgzpCtmBLtrfPOIbQ29fSaJdW14KkklmcTJdSOoySYXHExsaVjq4mZQ1dYExCihnOoRxJkmCrwKrn8sgCi2zYwH0NUmjuu9HY+joNAg9bQlNSg+YTQjwfKgToaNIUNt11OpSYE4mpBBJjwu1tlIhpL0UMeYhqDQRlOCZ5ySJ1G4yTRI3fSuZo/++rJhd/uBTkVDZ8tSZs1wKahVHOx0VOGevqqFIvZsFuanVJUHiRlgCa+V3BKColD9ESz5VzExbHhkvszbAW6GJnu85yS8VFn8Z7YDHfT1Gklca36YXJvnCJB01lcE4+3bqwpV0EBlV429nuJPOKJ1G4gtsA6wGnEbSEzEIu37SJz29s/GNM3xKhyAvSbryVnSK3tkXRzY28t5xRLCA09Lv36KThp14bHezsQ3ZJUzi5EPLwO6mg91+rRRfBcCEC/SmCY4J9hFJn2nJZ6em9V/nFjCmB27juBxbGetLZKUYxM9Y5CvCq+PA7edPvKPrKoqEcOkDteoaeOTbulNiosL+Yp9DggPS7rLOD2MACKh6Je97HZX/7gP0aL9maXG+/ea//Ln20//N/8oMxWFO/AyXvRJmuTpYscxtOyozlqmG7GV/xcXL8+0A7WkSzdQlOA2TR+3aXCn5Mx6rJp4KjwRVG6zyl0e6bUddSdKd5Tvqpm2b5kBiIFThpQG5tGFZSkZ+PLpdsBDGa2RIRPpVHDUBAad1I8ASUba8jW++nRWvmgMUMOZbd/ytUzIVYGVQfvDdwvfzIk8+fyz1wA4pnRk8v//eOws/Tz+0eu7chfa2ew+lTT/5wmvtAh98rXxxXw8XlvqR3AWutyjqRlE3WAyzQyxj7G6kTerW86CrTPGuwo3f/dchBkBeA9PM9yi+oYU/cEYfc8Zv/BH0PEYwI8sApXudhvIc97sRfhz5m9nfirCeLGVJEkllIHOUIpaNlFWIz47ddmX81FEsVgu3fFgB9NctrJxMG4wd2Wk9pvDiTz1303eM5VH/cQY1bvsbqbTeWnW93qQmEGhLuFViIluB3UKjmVLO8ufhoW2ZlFBu03dDVIkt6i192gQduwNy6+kEd0jlJDEzAak5fIpIf/s/5b11LeRBlHSVwXPd0T3rfSv/jVBxiVf+8LoluptEK68hHeMW74rWW8K/RUBpIm8BZLAdqOQuM9NQHaJCCz9yoxBREZC2qzxSUawNFgACMUfrgVM42bFrhNGWSyrxsxP32KudpUc0Ha26Ni/SUm6i1jLbg9BF6tuZmv41OkGBkqZvXBFqCCT0gMwSSXsd41cYwzBoc9ZIuxXCZScZqmJkjROLOBTKKmjOZk0AY8UUv3E3o0wkEhHTYbMMltMTli7GJQhHhsK71Khg1a3JiBy3a77+9ZvIjSoJ4Y2zUzhko0alas8uPnrJnhMrafIOTCmGKms0DeInCeLYCRAl/EyO9CtUozQkrk8LG6qCsMPOSzr4C39whK7wQl4TiEdm2kJ/nMHZlQeVO43lJHhXEHWU8iadlf/uDn/wM7vGVqGQim60zUCbez7ki/FpskncPWcq3YJPMSsR3PDIJia8DVsVvi4VrbRNxT/f8tvTb6ZhTVDITOWERCn13kyrEBLauq8xThhDvPkrs4kze5llk507o/jjneAOK3jZ6/0X/yy6bgdv0VbwKpX9ZI9xr8wtt0N8WmX5+tZ27iJXLCTXb4bVjK2nPUv8y+xR2rrVsqpMpy6Rjp+YcObJWaFdO6bTznMhpSUVZQe+06ZV2qzflrPGOmJbVGEKTrxdbvW+Mz9yStGk7AVf/+GwTPGgKoxoEVdmjCHZepIISUUU0FFJVrzElTZH2D1A4MGuNXgMj+DgNuiFtn/PjqrnIFPcvXJ6NiN2ZZv0Oat+/71GLqPydB6l6FECoba9xueCznNRYWers4Cv8PmMvXzx4NZG3kAM/z7ywrZO6VC/IbPaj7JBv4LobWEj/o5lo++oYutthvKuV7nX48l/y3txSYEEbMCHOEOUN74M7zj6e92v+xjvrTCt47415MaQjn2j7zqedVvnXfcxRqSKKFKWJbed/S9TMt1+Rh0I6VKsxO7+mR7fQbedYxQV5ZfoCmVs1lFXL2w79iFeSDktn+nn6Daz5cM0trGqY1lPTTIbzEGWKPLAuirkEF1R5qEqNLL0txLjYDJ5cG8iYRPE9fSaA/FdW8gJcSIjkYn2MTahXgjS2O1axw05uqkZiz4K737pT6Bftyb4y3rbz8QNkd8oBvrr202tCxuVGjsMbzW2ELPzn7dCrV+xbsdbQsO7h+rIvgW0jIA04yo4ziytrqJw4XafTfzhgoqGYyhhTNOOvkb3FA5+KkzGdT9UKQRUOPycGnSD7DT34jjadfRqlZWzdmyqN+6NSqeMtxMGdntWVvFaFPpFkSE/mYqkZzVfbuKLwgM9up0tSjh4rYTu8I/mr520DcsyIm7TUwjmOD95lQ8Ky1QAKDSfCitp1a4xTDgVuIwGUj3ojLmMzdN0VwU3f+YDWktxMB9FnwE5MSF7qvveAABAAElEQVQyaACh/5W3ipbTCvtZEhCV/MnIxHQBt0zsQPxLGeCn2w5OgzXKZ3fkZE8cBvIPPP8x5n8goWgwsv/8uul1q0cyriwJHwZElo/Lm+GfdmBydxcsE87j1ZaN4OFi5zEzDuJyb0ioQhhBEpGqE1bQJR29OlG8BTFNRZQxPUlnRvpIu2gr4gInQcTzFIj72swzHvUnXmnQS8sGU74bvP4tO0b5Jl2vMPjAd/8V2qSbVW+k9WaEbYTxI6yrV/nYMEfp5YdlKx7bSWaFBmWnRqvyeVB+qPt91ij1mEKqulP8KX5uTN+6oF5QCnVRK76kSTTt6Yh8D2wWpzNTFkmUJFBKm/jNiTVIe+E1C0Uj3gUgEIG2WQd8zjTPsqXAU1seDukjb6BiplkKv/fOAxkoZcvCMKPZw30rI7czBR/U0Hf/3Yc4iDDH99BQlDDKhRkOJqR+O/AYM0O2BvIknEAQWSfLFP05sUX7QUzGuPTpbJ68ctba04UEV6xEHfI9wHdsSY/8D8kUfDwFHCVesXDKy8hXLO71UZ6F+aM4PV5FqaepGbmnemPY4CY4aDbgGofVPuCywEdw3TKEdbAhaiVrGGZ4lQMURBWVxpc/sQUjERMGUNwEpr8gPJABJoQyVslJPOyWgTLXn3/KGLxLBnbcwTHmIE7q7eCfyyuJN5z85wCRChBtK7QMsNqNJxrvBSANiyMHaMRD21RByy5e5KaX8goA2hj7eg8I0QFXxpP7dR4U1NhziKePOMzvuBkLHveO3bDA98SHtN4AeAuPoQTCzxHImyU4Anqj5baVJJeklpgmkslWenNtQSMqIjDSqUJECUM6fsJdotrMPgWNQkUtVUGR/Tb4KaxWPMnBur2zKRorlUIjU9NwKbNIxCPZsEl3lul4eyu3PKyZGSILg4cCeIszPakFPv1Egxu9w/bgAiQVaM2pR7wVjl1JsYIqqLdB01UqhHlWMaultxL4KjrSb9p+BFZ6hVubUmE07SoRFRD55dJERpKE2GlrUmGlGbv58GHTseI6UyPl8lF2h9dDGjhCa8W3LApXcgd8yoLYta+q8ibmpIG/8OZxhT0/jjwMMI75W3STbxQMAUuB6p2VR8HF4WZ2v/dlviS7G3kWN4+uDFofjKOSaZojePw7H9KQDSS/MbH2al6+4klBBSAJZGZIuvW3cWvVpBwG/1Jm4JF8HYSYWTZeTz/xh8immqREFL+BJihXeA5JGJpw3QO58Vqc86PBdAbk57pHuQGQnsJp6W404Vj3vBH/RtB/S6419iS91u6672HKS77dvjEbly6ea2fPnGi79tTN4vLcspMfzujW3iJHqDV4CO+Y7/fyuj5bdPnC6faZP/rttu/Qne3Ou+9rD7/jcYoCJZ2lwG3bd1hCpCTn4Ges1rEqH4PiB0Qp6wJYCLwwlkXkF3bj+x9DOOONtNGAAyesxsGgYaahUQYpp5whts1s4dtuafOA+zaWoL7d03jfXQdQQtgbx2DLD9cuO0M+ZsTh7FLRPtEO7d8N7fC+kk9aO2dQOh29j8XrVsm0ZgWchM13IssT86tMpe16qOQQG1AurphzFSQ6UmYjtkL/zu1bkGHM5nPgxMFQxM/NEgtmZpxZlnEm73KNRjspG+kzfsdBYiqM1oOer07jSBnqsGLrja3nZZSClnHADQG3cAC/Ac8QP6/UgsIYmBtQ4CdYyn6Itk7/WFYCcwNllKG8t/7bD1gu9BKZaVbVtXXVxa3YCHfQniSAT92zgEyfiFW6ODAZlMofnK4hWOO8MkZwVZywTsFON0QIDyuvEfkBo6wczToi6+33JvxoODQ4ARBAaM+MFhGsW2WgD/jaqkKqqY814HerTGgfwQ5RfBHgqkI+izLmfSvremoF0d1DAuueleC6exyh+cQ9ipvI4xHGgd/cfttKUo5Rgyt7b6joCrk1Tvx4skZ7zRjVBtEsS1liGD9jYZgCopPoya8sxZAFlY/MYqD6KixqhOYXoDnq7zQPsSazX8JOtaYIHakrhGKwOIPkfidnfLbznZ3goMBzbYBwkJLZGyMATzlTUatSWLNcMwac2QI7fgvUimS1rAoQoQh+FaG6RBGasfs1+k1oC+KqPCOMyEOfRRLemTcbmJUrHTrpdGGbjppURkoItKRBkc+uFNhY0skw6jPNpAtt5ilNSnxyljx5X4ZV1T+pxzdvHglXyenG0YNKrMY0rAjepC5NUVrww5pZMWGcJdzMEXw7OvdQ+E4DH+hwNktBUHkhgpExKVupEB9uXgNvcQETvkmvAXiZvsIjPBtwVEmIDWHji7flZadqHI+x6k4+TYs/WZTmjoARjanLR0o0+IuvQUZYSAltIhySjX9BGF8olUtslWzS6/6GSXPtzfOG69bmWIYTdmSQXuECflW+A94Ok3yYvpkZzJi1e93y3fHcEqAH3BrQWd3D9zxEOwBmAPP1VmQElMdWLnXbwFv8kMFpV3bIzl70Ddgue1mGVY+CIUlOMsW/a/8d1A3K0WUCgpwFnrtyiY/PXsyHrPejQG3Ztj0ZMqb0CVdY4h27HZN+vZxiL48I+/EInhIbIaEMbGtirpnfSiADg3QyyDxms81rFCPehbuQhwdEcVbZD6lOMcjMABFZOKcClNrJCyOv/cJ9WE50D2Lo7rnpafQl9UQaeyRlk7Xe8I41savN2S4Ng/0CsZRKO+BuG7Mb2UK9dGZ++/bNbMDflj2jS2y490Z25bvxwxqjD8arDdiiQlpd2hAgfn69rhjSjfFVGASJd7fk3aF4d/d61CHCGMyYdRxMe48+BjJmHYce8x63Dhm9GR7rkrT7skzGzc0wB9UApt3aVAhQZZipUaEJR+gbrFdOFFSfUJxLeqNEenq8+VexSX0BaQYitKO4CYwiyky5NLJSBuONA05RhFDsA3JXHJa9ViedngDCKJfpj71521UecLpfyr3I6gFr7PFN39o3eIcjFXVIYPQKOlH24ME+pDQWsu4zBpqIkkryyfcobITQ2t8d/S3awmc8bQ7nq+8YYbhty20rSbY/C6FGTJAFc1UkbGSSpoLivpB+07SKioWloPEjt8LZ0SY+8Gt0tCo9xtXP2YnsCwHO/U3GN8xH2T2xVtmsjlx6nD3AH61Zv8xWSBM/N1WLwYoi7bJSZjkWs9Gn8AnQL+loGYzx/Sm8ImCAEncfgW5DEVMRstGryOnvRw5tBtLq955U3Jy9quUygkyEn/T2BiZPQncC7MDBIE8GGEmykHN3DLToL5qep9hxVzUAN2lLtwoLqANrKNGMpLW/YtHHoBjCFd0aabIRxA7O4MLPfO5AgO/KBx/ljRQPeMWENXnDKq16GGqeqCzBU9ABHdxVf0xLagw3l/Pw13arh53U1fPz7SIbV+WvfHdZ61337U3eXj47i+AvnMJqpMN8KHgsx3fes4cbdFVYpY1wshc7sJaxa+1eFbHVGU3qrCO+dFYsg+zevbOdPXc5nZydeo8XPFJrVjEDizc4epiekBEY6TEPiT/4aU+58zYLck4+DKgL51/Y89ZYHfg8/7XPtP0HDqME8KkXTJXireNYZmbM98OPPsYMpZ+BKHjLQX/zrGKdiy8pO2dhS0Gq0bbhVXcn2v6Dh9r3feRHi58yFeZMMttx6K77wqOlxYX28vNPtp2792XGSwptS0lLeIz28Dc8xK+8N8B0v0QYHlGIqA9Sb/3pbSFlAo2id3+g6Iak8h7ZxUOgGEATeqXNPR0UOfWu8ptCFhYjraAuu25+8qKMSPI/PAbv4WXc/Zws3ITsdSnEC3WNuonlzutcYukg1CsZnL3KLQN0nrs2KwUZ8EHQzHbuFMM1yb6UKb5zaNwp9nnu3DPT9lKO7hOdm+dgAp2lWwkMd7C0ldPHqwsrbad5goZNzJRnHym0+mmk4i3A/I9Mz0f3wD0eHmf3I16VXwfm3cN8j5sx99A3Vih0Jc6NsNJEnI5uPHjcHnkrERhlqoNHFtJTpkYWfegPSMH1/BiWFkz8QqHHYIeJ1oeowQS6dUXY65PIPN+gVZZvJFD8JlhPy87+Mp+48oQo5ZCbtqlfocSDDTHWQ1Z0IlMMI6USkSm3axxYyZUpwFpnK8/W8cpn3KGu5JfLtunpQGItkqKkxKPy2T2S+OgRcdBJEqSyMgofslbucTh9xtw9Qo++zpGNQCmbDtzfG0G671u+b1tJytISBWCDcERkUakgOJpyrdkZo+z5QQCaq3QCsQlKVviX4bnUigoSgchU4GZ30+OvAmUHKJyzMRQT+N3LQ8On0WWab0jf0ZnMkRaVEdGLQ7dvPSxw4+t047gNWJoUeip35sEwTdw27DF39h0p0ESOScUlgorBCpUyChpx7AK8+E3hpxInLmn2unhna6yQtcfHhMRU+LSFVt/k23i6FaiSIW0mbWde33qrmPJBW8fS8yysVda4hlX8wolTn+Rd/1FjqIAAGy8dDe+Kr0+ZTqf+ltuIJ1HxO/w6bKe958vpWeN2usTnKb3NtBzpjyIJ3mRYuMFvBwJcv0VusHYDoSfcl1C4d8zMMKKpOmCVuYIQvz7pVD63wjLytS6psC9w67Ub6KMaSxTGp7yuThW7bpjsMojLwDtmptq5SyvtsjOkrMHvAtciCtvC0EH0vHVai9GFeEgiSMMzErNcOqwzJi57WH+d+dTImcBgd+bROhsZZjzCxGm7sN7ezASMgJuF9jDj3Sz8Zvj8SPDjH/we2kztSSoc1qxUk2o/iThgH72sVRPt0oVz7fKl8+2e+x6qfJlwZTXuUhBrAJLRsG3M8hjKJHIBnJ0nN9Joclu3zrRHv+lb2umTx9uLT32+ve1d35wR7kDKjVE24roVkLGSbrUhnaEpxJOJUacTsIINVwgaI7ZbTca9JZadd2xtZqY8s9dpCylhIKpUenuwiP0JzzR9wsWj3NrNx1ln5/TbaKT2AEtouw7ubUsXz7Ok5qZcTjTt4Y75NZSjy5fazMHdbenSpTbFLN91ZgGuzc8Ti9Liyoft+/e0lYV5BiFn21Zui7dMFrFPsVy6urzAgG+67aV9THEJ7QrxNrPcOb13X1tFUV08/bqaZGb6N3vT/OXL7dSyWxTG6KwsFtHyg7xtR+bPu/WhM0s+8G9eR37Axl0xDeBXyLyLaySThniGrEPowCUzN/jiJ9CAJ9YBLnaDMJUK2xHgVR+YK5Om+T7kEt9361fGrENWvAF5OeCZct9lVnkdwyt9EsVvsqYJK1i2qnAHa/li3xDW44wiD/7GtU/I/khlMNFzO3faWU08WI7mf5UOSBnjN1e96FiumpzSM30N/Ynh/mdZufeLtEdKi/pb/STB0F59qovFyqM68TmiDguIKyvlOXre1LNgDRJ5IsYyiqXFvN7MjKIl8Gb4jcgvCNbb9M1wvZXfbStJCnAT9W6jydX6SCNcVkJEEDjLYAeuEpFlKZbIupLiVG5A6cSk2U5COMNViKxE9YkQ4tIhmT0bgcKTZ/C75qnbDlBjIUVJw+3oz/XuBUZRFYcChVxhrdxeEyAbrfBWHjvo4AKfbtMyTWEtLOmatiPjp8przqO20cGl7uEhjPkg8XSuUQqZIp+lEeXDmPg7q2bCVsJQIBH+SCaClbcNw3TNg2+DO0zRQ2zgpIw6GnrTYeLhZnHtwgW228VhJNw2CK2lumspoy2NZIijr3yIYhN44sl//cDhTyOuNBD99OAR/EOY7iixwNlAdQeOZxpjRYmSY95tmNKoEq4RdxowaXd+SIfLQIcO7EEZX2r7du/iRCJQKFnui/C6hz379uJmKZCbtf2Oz1aE++XZWe75oWOwk0IxDwWdL9JBun52YBFldoE1uxVG3ttYQrVOuGxkPV5aWGyX0c5WqAfbqASWv2ZgUdEIoioDcZpbQgUYcp4X6fpBzR0zLFmitPcrLmq5WT6gNKJ8r/ILiiGu9sx00fFY3/3rxiR62dsZ+5dkBSC9Xi7BV0gT1b0nDhK8APKV4/Pt6Ikr7a47ZjiVta2dOcMsEJeWzr7gHUfyQjyV6TlmDl589VJwVD5jHWhw+p97gY7/y3Zt8Uz71NP7EMx+T6nTWJ297S51VX/oPbhvW3vskf24oL4Ijf19jx3K3Uv6WSe+/tL59vg7D7X779qWfLnB/PDd97H/6fV25KVn20Nv/yYwBAt4h3aE+63MOD9F0Pk5ijfUF3F2fhqmQm0naIqZvXQGEpNONf7QYDXgp+JuXVJc2PG64Xu4cSFxqkTNf9Fvx1o3bpsPfsiGdLbBmygbHte4guIa+wuvMZjYumt3ZpBUhDZv28aHnenk/CwKMaRlC+FX8bOebEERSn6xe//YmveS0U4mULQMpzgjAx0siM89KFMoCsoN24gyf2rvnszyrTGTvtkOlXy+wUg3COW1beiB7WvtmVlTGDMjZ3FjLGSwlr+onOGUbuvGoCMA0+ONEG2IF0foGMJHYD1eoRh549zNSdUdyIf4kR653oBTn1GyoDF/yi6FxJZpDy7Yn6n2GGI6lqdyHDgskd36isa8YH+jqXjd33xblpto72ynJQ44VYB8mz/eqUgKVf5tuhODHK5JCMNLUZJ39l++HKjSNPMznhMTbs9IrqkP7pGjeFPXpf8qDvsj/suM7GL7M5iAi+WN8d7ocyPeW0HcxH9E6I043tp920qSqCwEL0dTQVAw5P4iOHvNCsRvCkUlyhKzSgoCFSGPHvq9l0k6BuMLZ8nZ6U2iRrv5Oh+rFQeVazNHh9334yxM4lubUkDDui2SRjxOHCp0RJdKwYvkiOeRZpfrSBMAq7WF79ea/a7SKjNPGdFRAeg5mf0aOgLbNlIhdxoV0nROVgSTMA07DJU6hYdv9XKXaTxZtcqRsyiHdPb5gjf+ChNnNIpEq3OvyNBqcvykLw2+kgjOuEkvELztJLuRBmk2TLtghlYDKaUoZUBAhQlg+YhhwKNX/+mNSXBZBygBoA8CvYsmaRmOXcXGNORDFJ34V9mmfIloWZimDbPnW6FgQqaVHwARFDiiNIpnMILWyLs6ITt192lMbdqKYrMVRdQ4jCipH5bF3t3uT7F8KBuEusupKyx77mQErDK1iSUGO/HOW/G7vr64vESdsa5K5YhDoaKXi3ijMDvBnPwLCAKMJVG8j5N9MpwYhNYV6vUm6IBbCJe6vHD/3pm278CO4DK/tiOXqas9Vf3ZRLvRyBcVVos+0+qUg7Om8tWUpdUykS7fzpRaFvobqmJZ9iqDZcJPnZlrTzzxVPviF7/U5lcPtcmtd6McbgdvCXIVSXH54/Ye0vHd65hlVXbznlFn3gp3IW1rC23rAgrsjsfaESYZWNmJkQdlxmYYBuqeOzrXPvXE3BA+vMC7adMJU46CUIr0GmX5Ytu89Ey7fumP2oPv+pH2I3/pB9oPfPjx9uk//H/bPQ88nM/DJCnJBkdxqaPuNHR38XFEmlHGHF3R79DjsS1vlfo19k0O2Sgw0s0XAijbcG6YNbznwPa4/a6gMu4yp1QvXFnqqGlLDALwt074d9e+Geq3dbVA/NzN3Xu3tRNnN274HiWKxboSuYhyD6K2yid7NBm4IrPNm3mYRMHo+0tdkitTCV1nAKKSlEoX6KJhE3FWFhaYHad+sOyZzBiRdKb49M7kFDNWXOYajlphN5iq/3oZ4mXj5+eRnNkzcyPsWERJGgWXg+oXv+2cJOxyxhipJ+Pget5grA6VSyziLcdgGSW0niQhdx3c0w7t3cl1DCiIuK3lHXIUfSMyoKpdXlPRpExVKpf9JBIEJFkewQGC4BzckSOJzSOAvAIIXGArxZQxHipIE5mNG+CJJE9UdlZZLjU97UbOys+QXpokMlNdtsveCHJkY67GoPxs/m6yTl+6ejXXC/j9StNz9koaPK2d8jC/A+4iXzr9rb8qw3oMmU3YAKO9w8d++4+Bo8QWV7l67MLe0xsY2gP/jO/bVpJyuovbcNUiVUIsuMye2DiliJ8f7XPUblWK4Ad2mQ/gbmUNW2McC6wqOKMqlk4cecl0iiCVyoLTOFKJcoDbKT+NYfmSNmEKMRcmpCudEJ3i9plpurHWTl2cy6kS2SYOhZDl456IdO4QEj+9wekdSoBhr+nIJOaDMGkV1gvwhHEfhcKMoHRwvIIj0+oAOMKUTt12Nnbsu3duZbbCqVv8jIiRF9JkZ6ZJ+jz0l259xREBqkAGVl4FR9LvUACaHjHEYSVWKSishvGLu+jGVQaATkOQEyMY8XQPkfwfIQGnfNIIk4AhAf3Nb0YiROg4ozzhHzAexTNpqyqtvx2NHa/CpJQp4WzGwsFracHlnjU3/+dLzwgf9wq5Jj/BqNyThdK6M99uIyZ1ZcblOEf2pG8H46zN5tU52FB1TUXHSyW9KHGVjusa9uTPfJOuObSeOiqcRDhYL/xkzcRU0UXwwDxeAzvix0MlaZnOZsLvxjHjtYYSNjdbQnYnSybWhc6L3BkGgugodIpuaF5Z8YqJujcsd6c4IAFv6fQIPKhL3SL/tgHzJk9XWM5B17MEQkqe5gX6zl1YaL/6sa+2T/z+r7aF2TNt/0M/1qZ2PMy+QDpdhTk8J2cRnBkU2IhyIsZyN32x+bNsgpm3VssbLuHlmx0ubWX3R/i0CIqpsODWSEOZstTT+jaY4FACdEO5J2pPU75zqeIC9Fx/Zzvz2mfal7/yP7TPfe1C+/KPfHf74W97sB154an2zvd8KOSZnjSRckd4e+8B3LTkLYxO3RaNdbwvM9tmLYPIBMqHapz0rEPWH5OO7CK+9cPvN6aMkHfZVoB7A23E272DGU8Skt85UGEvNhjzcoC7l85d9t6qjca08vMRgyX5GDLD6xpXMqAZpUhHYDLpBnNdOMpirMCAQP6heHlrvTNKk8jZkRHHOB5Rxj1KJfETBwVfY/3czCWFE1a0mxrjDmFViCOotDVcboRXttJM3mjG6RkLDUXjZI2FbbCSdAe788DudogvGVzgQtCOdgNJHbAjkEAAVExXkU1RKpFdkfEU5zi4OfQiRyuIuG1/2EZZN1yTOAAgosolftydjmzAJtB6ZzutauMkBBjw62KcIVjkKKVb/rRv740zjvRlIAbSanduhVDWIBtCCIhEh5JkfOm1r7EMao+xfcB6fTWJN5ogEk1MsvNGoL9An+KrhJtm8fgbQz9W498cgSMVR0I5bk9DWnUJgxKQAEfyCgWZ5tqoM0ASpwKjcBDGWScFREY817k2wIImvncuKXAcCW9jP4jKlTXATsoRuUqZftMs2SUOuBQ61yccpdO5Qof4hdnqhmk6p8vzSznlVgqRYVWg15hlUomxI75Gr6PQk4We1jKdVCofmChRvKXf7AhniMshPWwBoaeCBUjCxXsVqChS8MK9OM6IbUe5LIUgiEQfI86OV5z8J+/iS0eIxfQ1vsSRuQloldzELrID0BuPYT3OpvFvdkFfLw8ix15J8uTfeClHEgsuPOX5gC44g5tH4AjvCqPUCOvEX8m/IZYJaMSDl/nwLX4hjK+l3NX4DRfQ+qR0EKYrFn7fbpMXnJmQYP6ASx0E1jqmXbjcDM9M5iiNxBCeD8Eu8L0z1jxcPJL3Tifbzi1l4Z2J8oOPcQMv7ydUHGKGTIxcuCVkzFQW5GMoJBycKHql1JjfqpPFZyMKZydLfUJ3cSbUmUmqbAQV0UMnsYChw3aWAppkUYWJc2N9MY0nnj3Tfv5f/F57+rP/jKWYR9q+t/0Es1xz7eq5J0oRINWrV16irS2kbe/k7qyqc7SRlcttZfZIeCpP9jOqdpZ3ZCT5GzB+vicdD3nzW4hT2w63zTPDDdQQfYX2myUsPly9be+7KC83DdsjMjO745524G1/lf0xJ9vJZ36+/XLb3i5fvK/90PsWoiR1ksL/N6FtVKuNIPCYobhT/qvIEpVTZVbq4lBGRpGeUTRotqw0qae8L3F3koNJb7CvEOVByZ4q64DnkbpgIYJQuwOhZaeoB+Pt+CfPzY7thekhw5u6qxFF3rHjpwf/+cg2y8hDj1dA488hXmbGTHZwd4uzRzWLxEb+Ia1Eh9jlyxfbppk6ZbhO8RhyaKh2XKHz8Ol1dxlnOCucifWYlbA8qLxgMWhET9lPnT4XeY9rMB2g4+n+N7yDC9jq+YfAirMh5uD40tMvtSuzh5mFdn/eGw0lGuUl6EJCyU2VZuX3GjM6WX4lEyMKsSBJQKbaoil7RJ12M6/hZcgQHDZ0UeLA0gB51HklDdYbr6zZNk09A2H6S2DELXDBA2iFNC4vYVSIavN2Dcb1d7DtlpOQY91mwMMUAyHK90F201DcsK/g9IMFGuNWW4lz7BEiRBw/XWXKHYISu/v7XoeS9s6LcYhb2oFPHAFIYmS/ZYRbB4xJvFsDGeL+GhUVGe7HUK0d+WAtmrKjcZWcjL5kOn4OW5w/UuBm9oiIjvgV7LLYwslmavzt0KxGChVh3bORjstCorNwVkBlQyZN02AtjyhgxE0nQxqmmVkp4HegLN2xbzsdSQmPLriOnZ1rF5jqNo6VWGXubpY/9u/elk7fGmEcaTb9/s6sSigsf5Wvy5z6eOkUJ57A0Zcp7LjvO7iDO09q02twDDywYpqX6oCq0DKCJ02ylbwZhjPu2PUnXennVQLYOlXO+PkYvMCdCEMc80GoP/KqUb6NQHC7kdj0DJUnVm7zpo9+STdhpaAZ12nYnqL4c2t4oScU/HimY9Ex5m/iI1hpMhwjvH+2205daIQey8h60n/GsX5c48iqfcgUjdOslQJfs4Eqy5ldpApWvaSjU7EAj/RqriJMPM1T/K7cEBweyBB5UbT49je48J+j3G3o/g3oBjzCONsg38SFmwQLe1BEsen1q9dbYTJ4IIK0W2cshxpgmDfyAxax+2dYyop4SWegw7z5yzJzqv1Ee+r58+1/+6cfa89/9h+2e7ir512P7UC5+HUA2atF572HEXnxv5YstefoOXjWzUHSqbqknzDS8uam8/BWUG4q9uRclTEqB/ZjATanfrbIPHqaSn/L/yKjeZWFidVdLGevtpVtZ9qxC6fa2Zd+sf3exE/msyf/wV/xxOnNO7Qg90EC42Uy8tdCtuSp7Xmao2DXmA2wDoaxFZynNJa3fKhw4SKz8NGUfKmUwi1xI1syUyoCTF6Dvbe71CHhxhqRS6VnLszSOcGPIKv4wYG7ioTaEQu++pkR3bxTC6lHCTBSh9OOAQo4Ko1x7BDjMQTcxF7tw/ZEPWUD9wRKxKSKBDjQa2l4psUGe5bFPvj939qmnnq5PfXlZ5PhrTu3tx/6mz/W/uiXfodZzXmgYMDAg+pAx/JhI9L4go7hhUyrzjpht/Po+AO7wVGIwdyz2YnRZxVlDkkxSsHSlJvCytOKM/4kNuitB+4ftA6kyAAZpYpF9ne38GKYsK+C9/oXxlGy8QgMIZU6YfBaZYyaVuHaSc8+WNhSjLW791cZyoyWMlhlmVQE30Rh5T4ulRwGKzW5QWz/+dmfrSFo14bytM6vci9WnCYy/MbzKI+8E3CBgdCbm4EDN83wm8d8q1DJSgZuAIz/DX6347xtJUmmlbJBrhQINGJH1mq1uYWbimGn64jDGRY3ay8wmopWOdQKp5Kd9k3RORKj4UYporSd9hM2yySDMpGpaS8+oyaZnoVkITjFZ4Z7R9IVr/69Gz+SuYd9K9Oc3rAkTWeezZN+Suo6FUVhIy6XWZwxUEmyAmmUE1ZuFaMSOpW+eZc+/6ThHJ9eoJslv7DQCk74muHE38Oyip9W0IhLPOkc0e7Mi27TrxYkFJFwG1eThqNdP9PDI4JJjacbgTCGJ56PeBX+jmtAMgqT9iRgXKKEFtuNdhESXpgrirlIst0Td3DjTodNRpKXikygDVAe8dNuwxzC4gfdChFN4vHWXbyOdwiJEp0PykqudYUOcg2eU5b0oShJYGNhvnhznY5zPvXiGsu7TABwuEBB5UkUlY/WdkU4kCZ0XXWDNIknbuhQ8ar6iLoQIpwuN9+IncBl5pTqJNvluf/jpvhNmoSbL7PYQcxbeF0x4x8/qw0CRT6qIKV+AVh0lRLfFf1rtDXj+O0ljfgsKPmkxfbh7J4jQljUnn3xYvvHv/An7aWv/Iv2bd/8ePvZj/5Ue/HpL7QL5/zGXY38sQTPFHtKrO/LLA12Y303jcpvAZq393/L97RpTpet561iVB6LqOeffaq99MKz4BuGl4IQZOhWkD5InodshNaj5H0pnTP5G/bwBRa43bt3ZylqCWG9bVv/LAffRDt/sP3+n060p198ti1efqV95vlH26e/eKT9e9/xSCVmmjHyBzO8ynHD08QGk7YPjV4Cucjb1mCwv47C91iUxOxKToAA2MMm/TU+r7TMpuoY6yuRenmVZ+GUd/LfemPZJ72xxKRpjgMhzpCOiBgQ0MQwN1LTA/GH0aZrOXaUQ2heo5jAbWIA6uk3r4GQpjLIKhqUstUN4otXLpMJZhXspHfuapu4ImPTlm3sgWI5G7k86WZBl+0wf+knfrB9+w98e3vp6C/E7cO2c98j97e/+d9+tH3pDz/bPv+JL0VGjgCk8kZCJaX78V6nrWL1oHUcY7Yh0FflqOerw9wYez3cz8vs4lMw8/A+ZsSTdXI6lpBtVH62Y7eeKD8Gr5Rrh+1zkEABUPI2qyogyUpLoRnoHWIFUc+FiRA7R+PsVECD2+V6V1ii2k246mM/A07CvQjatFgxZVBGdJUrpaF7w0IHb8khj/mCBPSrhBnXk96uwKgcXcWfdZyelZswYj3oRpvUdzNuj1/3MJ9vZno48JHDY7ApHvyL7x1wDOAbtN62kiRJ/l9jeclRlstn3u/gDjI3zyrMLW7zWuuUWIRHYitAVHhsWBEC5GakPCgcYDxqC0VFceE2s46k3FCbQqJ09MtsEcpVOg6ZRGC0dvzyeRRuS1NrdrP0Tk4RWVk1E2jMZy8v8V2qxQgaaTBMWvfs2JI9LlYO07JzsGLpNnb3L4XGmZbyP3PRderS3O3g/AaWutL2rbvTYfVORs1e+R8z4DQzgFKYpCAtvnXzk+TiIo546zvQgUdRzZs48k1FJEbiEw7E4FdoO27C+TfeECH5LXcRGAwECxF0PigPHUbr5Ws5mUZgCnqwF/8KWGEfTBH+pqnbvygDvBUI6fzBHDpAKO/ljeml4+FtPuWjsxzOKOY2dfzUfnp9sszdc7bCyUvhxLe0zCEAO2TzQz0c0a9iSyrG1ch/dHdFRvIhXJ3sILxAIkC0GsV4fXYuyIOFB3iMqxFOEssFqcy2Hn3xqTZ74UTV3+Rfmip/Haf7kVT+nWV1ZvTCpXlO6bGJGoQHDx3m/qKDjNC30Qa5B4c82b46Tey6TT6ffuF8+ye/+ER76au/1B69f1f7r372p9uVC6dZlmI3Nemm/SARXaqW5vd88Du5ZftEO3HsJeVo8R5+i1/ceshP29aefQfY87UTTzEND8KstyrER199qT337DMlcG0QghBmWSps3UJ8wjSocvrLoyV+1wmvNoMS66wxxjinXj/bJu7Y3775276zPfZN74m/tFzhaLsLAC8d+7029/onWUp8sP1P//iT7T2P3dUO7NsROB+hf+S6wWLebjB62cZrVrzyKO+rLCuC+a7OR7cu4gz88nuT+zlEEN6RV5f+nz9yKvDxA5HK5p2HDyaej0UGlRf4Xts9h/fl+PwLR063i0OZG249cCbNmb8hOb1vaXqe5a+KywS9oifXNJWDG6KaBX7uPZq45kk2NtKPAbpXyXrtTP928E2hHFkG7hVdZiYpHW5wmGCVuSns43oBT7y5d6sb+44HmG1fQSZ/349+bzt35iLK+0sEjyUorjFn4pKerct/9x8qQ9KHGBj49QjrNsMGZHpqHZkNUBuTC9xau2P/rux/Uknq0fu78IJsqBsVpeRY9R8mjS/hcsRN0frHhCbblCHKkpK/mWVUARHZRvIq3pC4exVdWnM5rK05iKOdOuNDvPSjyEFnLeWPfY+9Tfot2pOztIgi+in9aUEAuO/SbyBKrzx2pt066vpOzf7La/sx2qYzTgoJIXklT1r4l2xxqAnEDK/YE4itB/H2YE7FCsRtPIwsom7G3APehGDvyXVIPWzH34i5bSVJIaixIGr9HUuY6quEqCChg4cFv5XZJAlzpimjIMJzsyeFlZkhClGynUaXX1N0blN8okDBX6PiUoK8KM1MKqhMwH1PdojGsSI4LX9tjePbLLNZzMLwH8Ft+nY6567UpsdMQxOWvU74G98/NWXL3q7dhMhScEV9A4eVzJ/4rqIcXuFjnUL0BiEOaTaewj0dL/Dyyr1PxlW5sFvMCQGzwg/vvIeUgyNKBHGMWx3HGKwFQAzj+tS1bqQWqghMOgkVcqPpPpXHchVWcOrEYZn2SlVp8CSs7MBgT/qFpPwLVRLTuxtxlfFdQNlcbhr4hIdJuKAqd5UHODlEJW7yLg7j0YCJ7wEPE69yHGCSngEGVT4omjT6+JKWIOt0BUXgLQ/jFGW8C83Ib91d+Zcm8xB/8JoN+Va801HuRU4H/aP/5e9Qv21yCjmUIDod41pvVOy8BoOEgkx63ffyAsfELnm6hgSm6cS8muDHf+Kn2n/yUz9NPJUYyhxgP0Fzjc7oIoOBX/nXL7YXv/J/t73TZ9vPfPS/BPeW9vQrz4OY2aLrpDO9j3QnmH27mOSeOtLa2bNbUKI4ig++5EihmXxYo8zPsJn8S6+1+eVpTlqtMjrl1A5CU9q8X+meg1Nsqn62zc/vHhiSzGB34EN7JU+ZKSYF8zzN5tIdmy+1XdyxowJhO57azJ6KTdx7RfgO5MdFZqPPnL/UTh15jhNUZ9q7P/hdbZoZpb379rdv/9Zva5/83NfaE8+/0Jbnj7fnX51ov/axr7T/9Cc/TJLrSjAZ2GCkSr7fzKiQyFfboPulVHpsv848WjeUY94D5N6sRTocDwa4tLCdixidPZ/NcixKFnDW0WVk1ddPXAJPXahrh6ZcHFeScvLw4gLXGxwIf45zceoFlCTbsHRSDNlk6/tGo5d1L3UZh8f9nQ1KwUKzed3MNRgrmdEaR1D2PAfvSeA8Lu6skCZ8IlE/r+NlrVt2cRISX68CyL08UOfVGBNeYAmc8P66+dSfPJGN3qvkvZsZZp7e/65H27Gz59sv/5vPtoff9VB7+dmXKe8O0d8DUWYuXNAfO/8qXcrYDTMaPVqghrgjP9uxfuPUjduL9g7eY3cl6fjpiz0ofBZaWS6+Duu7p+CgGdbHWGe2qrDgciBtOW2mrXdl0sGWAz/JMyzSbogbBIPdsk+64NMurpnrKp8qSUyVs5fRlQ0HG+JWNYuMIciVFv6zijLlcrRKFbPp8sTJKJUVFmwUxNR9Z4sc8LN9Bb8twLja4gDJLxssWx8ALRnhWwfP8Hdwl68hMaTUraO3ySkDyoyHj9tH4Mm0IT3GCOXIYwwWa9oDQD24vzdC3Z7rtpUkT1yomCjYZb77k2omR4XHoqWAKBCJdxSskLEiR4gjVBZRhBzVa+qEmiPTiqAAFUVmmmScDYA4WZ4buOGslcJLIeVOepf5FGgaGWCHqSWMx654scA1hnsXjnR6468MtCJ7p4fXAmz2BBOwjnRLESKC6PTkHdxYFNwa0627libZ/IsiiN8aStoMG4FrFqM6beO5ub13ZuLiH2O1qU6+XPWUV06RdigVN3EnDg8bh9mMD3YboEZ/nj5GsKYgbFIiKOJWjwILbH9kVAaSQmcMcXY3dJJQ0hIfP921IbnyMJpVKgQpy6QMcNHWU/ItLgGLPumRr52GgixEpqEya3gaKa3WjpSiTMclbPCLA3yu7hh+FYluGivAuwHWUVylaPZNdyC0EotAs650WuWVQjtFMSSiO1fk8kpsGSIvxSWNA18naQTOal2zk3RPS8LACNheTjDNsE9DUJUCDxlEQcTtVRmWt8mkniWRiXb85Lm2MGo33H4864bgWnq5ulDLhK8e51MdLJUt0RH+n7/05fb1549B+/V24J4PtV/42HHa5Yttnk96qEgtsOy8cPUUqdC+spzJPsBP/gY4OY2TrEgdv+RHrkqRzsH/syhbCTPPwsUBRJWnvO0CqjgF0vC76nLg5CD/jpw9bOE+CWd7EdmNA6rcJ7UDu4cdphmQXGt7t861s18lz1MX29fOHmvvf+wAbZkPy14/1B556OH2zCtnmU36kzb9yE+1n/+lL7Xv/653tLc9UDM1RV5Rn4yAeURyz5dZgB6CMlutHNIov0wnp9roBKyj5i1bDbBPuaEZt99uSxhxtOtn+xGh8uYQMyrnLl6J/PTSXa8/GTd2Qh5rlwjlz313M1t3aaGdvTQbPMoPRpoJl8wbjcqNx/AnkEVLFy8UTSxTSoGfWpmAJggci6b0AZM0Et6Np9BCt/TjKYyDXZUuT4NOcxWAsn8NpWd+YSmKoDdHKw83A1dxOrbWXvz6EcLW2ukzdbeWISoEz790tJ1i0Hri5IX28EOH+R7fNj43U1cWVGzp6njEqsN3mQuX55Jmd7/1u+O4EfJm/j2difaZr369PXzvHegcVV7j9UZMIbGD34BqGuFxVV7hb5B1aAv7tuy7nDSIkmSY9cqpHZBRUjcSuMGddmV5IWy8qmYJ6zS/SQYWGvtRa7rt0lkfJjGBs4/j+pStpbR76EOiMpMbGaYiDxxKkyd40wdCe76lCK5cZEya7jBSMbN+mB/JkJ78gaekRFAnXHq6Ef5mRhxiqwMnQuDxFuatIdYRhFIF75/TbGytb4LMJuCMj9Ola3zXx4arAFGwyzE3dpdgqE60OgAuQUMoKAQSDwZrX3JTCWYrR7ldUnMEpimh5KizZfOzI2kbpd8P0rjcpqKTG0rB5WjNQgJlOkUVt6vz9d0sy9+O0gqjoL0yzwjLkqTExO9lWd5+LM0ucfQNb6kEwFkBqhOw6OjYVeKshFRyR4suCZgeQVGiVbq2IMhUEO3QQy90lZ5lOtX5VQhPPKRDGuOHXWQRiPhE0OLTw8WTKgVwwogvrdqTqbGnp+rilzCsGgnwl3S0JtWkHbvBBbj+xEOlk9nx2rCcRo5nbxFARjQal5/JiUsFtvB3+np6lTig6VTsjEaKrjjER3qWnSMZl1BlpX5+XX2r3+pi6n8bnWjUiewVYOM89WDXjp3Q4uZ/T0lyLw3ELGonjvVqculiynPg9og+U/W0nJ2Jl7Lptryt2xEouom/CUU6omKgc5x/k9Rj64P1aO7S5dDjDMNJ7LXHABwoIV945ghKwOb2ze9+kEsUd6LEeVCB2SRwOoaUH5a3jFRZtoN9js7TZeJeH6TuyGuX28/9H7/Zfv/jn29XFy+106dPU+8WSYsBDOlYKhMcN3mR/Tpc2xfGKsZQIwkbN44kXYZRJXmjqTjVVm8MDZ2Dp+WWTAy8uRFW5efmKTiLbImwfyf89XYm7tFJWahsKAsm2il+ExPH4ctU++QXnoS/tjtw4vY6iF13fji3Q19fPt/OXtyJoviF9nf+64+kTZu3jOzT+AcyYfjyyiJyiJNZ8Pz8hePt7sMu5VX9JDHKe63duZsBzrXN7cwsbZphdLU1i6fgNr6rZkmz8Xt78BDKPXfspQ4jH9gOcJF6rdIeE8ahWAGz3T1M/Fn3DvOBWzdCi188/uxcDR+iVHyeui9SRFfOc08RS80uMVs2UyjQ17njxrsMp9kasMqelJmp1bbLO3sUmCC1/ikqHGquOdskj0wMe2YkUIqWkJ1LS8hhALeDN4MVl5+A8zZul29Uv/we55KbepGD3awyw3SGWZjTp851r3bx4mz7n//BvwLnSluem29vf+QuPi1zZ3vxmZdHMFUO0GHmwqqRJTDKBMnUDK9yDE+5uG5uBtFDC24EPbJUOD3cSEHqMQaCcFZ5x39IouQuPri9L0u55d5Jy14ZolLt/Um28wnX95EXVhd0kxoM9kytJ5b89RyYr+SNuum+2kXKT9mXLxe4yRpcS+zJnLxeKzjOLG2mj3K+egFZaH3yw8QTLr0C7zdRxUcRIx2qb3Nq3m0g1yFKhV1j2S+SF/cjSRDBZTphuLTqHfriGjx4dafWcWN2k+XgK6TW/2wXGcOdOKNExzFo7ynf4A+64Pc9Cqo0Rs7btNxMNt40qo3Cxmznwf1YGbFb+N71YEGr0GQWBpLcPGqnnhNpZNqRl51FpqDT21MANFQZ4of+XIKTuTY2FRNnqIxrB51R9ZBNN89auXIqzk6MyiZd6bCw20CNXz+ZZCm0NqtSx1uBpZgRr4JzL9888pLJLfySvnkhjktysrOUohJM0uF3bmT4eUbz5qVmtTqNTsUPXwaHdpWuzUyHyqN0vUP5pKxFMhR6FDGd/PSWDoO0+4gSoh1TVCUkFb7gi76CKKiCwC5vgtnIIB3SDF7pGgEOxFWqw9M44mtt/45JNi/WrEelWf4+ZbFG0NixJE/6aycRlUpnEvfuRWFBSVikoE+ev9zuPbSPDoP1cOk0cnBVxJAaRgyITATT09BuZxAFiDfFXwpJCCGQd8FicfQUDxo/dtOy/ctPwYvH2vQf4z8+48pAcBiPXz6LQh2c4JCAbtbKuItpNflUgM16gZ8VWnz+8X75+BlSWGsv8r6HvP/o972PDnRP+/Xf/2r49MgDh9uRE2dTj20vh7nM7tIcez4gVoV8bvF6u7ByL3cefR4h9sfMBHEf0xoKFDlwU7uKY91IBn0Z+4WhENHNuluSba85cUUZbKVc9vBx0z07++boyqd5Tv6IauydO7k75vA97dFH3pZ7q+bmZtuXPv+pzA6rzM0zKLLjdeOzbSAzu8Tz24bKjnQYuC9e4bMWdJTz3BK9dh0FjzKx3mykEMAxwxArArxUPTsMZk5Q765PIJAmp9vcqT9sUzP3tF/+zSvth7737e07vvmh9swzT7af+/v/Y1u4dLbdu89TdWyCnr/Yjp78dHv2hV+Hzhn2V863D73vZ9odB9+b1OSNS4GPHGSmi4HPHz7HLB2JygfDRr+U7aiFyakRjIjMjzw+yNUJF67MMcu8qc2RZykfN5Zvv3TWuupy3AzKXxlhx/kyHrPq+OlL8i9gCQz2JU6d4VL2bmImSN15cnmxbUcW7uWuLhWcZXjvIMWB68TMDgYVdqvgZM+ZitM1lKQrxDnHlMV25PROFCIhpNflVb/JKT9nYc7rLBHama669NMNZW6974NGvV0hOPHa2Xad9uEHVBc4bfyeDz7WXn7uVeqGcUPB2NtYmnWe9TZa/rfz7DiF1d6NOMfc60kE4NA+9yRtz36wHmMEraU7fI9QdU/4HSt1IkqRwoC6Aj9cqkwYbbw+1o4yhTweGStaCnTkQ1pD3TLIH0EednCJfop9SUhRWn/VOduaS3wOIGjgkfOiT/siYk7SUU52xeJSrzXM/m4aRT69YdLADoCHJuZRspaNQxoEjZ7aJNV60EP0i9HrTUzhGQMqjzeJ8e8m6PaVJApURcj1c5mpkiB37ASX6ARlUhQDCkdjoTvzk5EybsvdBmlhaHKaCKsKSc0ouIziSHg1ykemdYGrDZFEBoHr3jkGbIWx1HEXNgoTtxc2uqRgRfSHvh6NGxLbfYf3hj6VLzsgZ7GcKVhgrpGckSb0Qot3GlmBxTfvcTiMJGeJj3iuh9th3cWmPoWF05Ma13xro7l8YjmSTkIBKRWZTZAI6SK1onq9RoRekZiQWfWh6SC+zSu/ypvOEs7EiJ+MWMfbBTepk2YqMG9xrMOZQCUhzigKJh+4gJF8YVShrDV9G/6AsxANSByRgEH0NKopGmanc5Y9Je4Hs4znX7+UBurt66fOXGm7Pqiw5kQNEeW3qWYkzjvlj1CWbdYVl4P8Fpu3Q8/zqRBTdHuuaTorOJs9HDRo936Qlr9lhtELwlIOXOtY5VoUR6AQFWPdUXFGyQdGP+lxRs88ZxZEt3VXhR4yrzGLsWsXH729eIkj0Et8U4s9NMBYb5y19C4kFXJnBxxAmDUVQZcmHmApxY3YJ89eCu27uZfIT054EszOZJZOo8+uyQPbnGaSPS8Xl/eQvwVUAzZyXyf+dY9QQ6cAzKpcZybJ5vfIQw+0/fuZvSD+ubOvU6en+BxKKQgPPPRI27lrT3v6ya+0fbu2tfvuf7C9/bH38sHYr7XzZ06Gb1aB4AQtZKfMXRazLO66+/722Hu+xQThT2uvv36qfYW3d1J54eFh3in70OTDUq2HbT11EecDd5bs6J/bsF3PzteMmeDdqHhZvt3MI2tUvKTHsk17JoE1Rs/XrvGJmeVZyuRc+yf/1/72gcf/s/Yrv/Ir7dd/82PtXW+7GyXp4XbytWPt1ec+3Z5/5fPtde7b8Vtc27h5+sjM8+3M8UU67VmSspypg3QM/FcGOkM6IbxtHxr5UAyz/saLONorYDMdj/UhS/0B7UAFGyge8rczax0CW/JHXRyFD2kInuBOiaAj6ZEwaTCayrAiWxok1rSsZ1F0cGQlYIht2u71C9fNAz9nEZa4xXvPoQO1zCgMBC3T3l7nA9PuTTJt08qDaLZRdLSkXQHISdI/eOcB7t+aaxePHG8nPvdE+9Ch7ZkNcc9LReZF21s3IOkIsM1Q9vZBtQtnHerWto5LPBgZab6G9Hx1CIOF8neYyyT3sVneTfMJJ04w8OjvwkNoPCqisDoLmnquTESp1D88inaCDQ+3fDgwl5fCZ/aUNiyJ9huFp3iofHFQaJmvUp62i0UH+fQ108yGX0v7r8jKgU1ReFzZ4AcmphWYFLAP40SigyjwePo3J31VpvjbAn4FlorcqnboWKJfVkFyPQef/DoLcWKKzlgl+FZGBoyZOM3MG4x+NwN+AyAeN4mPV3jP+wYsN0Pwln63rSSlMpC0SowFuo1btBXCTs25XLbkUAvjpkY7A9m2mdH1GnsNIjQpYZcjDLPT8tMajiqyCx88MeTITNmAzbsdnYrGdUrcQqlRKBXOhj64pcUwN8RqtzM6w8203vI9z6jJTniRiqFQtW7mIlJwe9voZQSws0IqNI6kdzOKnuHzIo547RRPczeJlWIXRwH8nIl1xm/EzbE51ny/zs3eKkYuLUrnHVwlYIdr5e7KSS2foVikwtVMlJnrnYV87QpPCVUzr6lOJH546RuBZ2YHYxdui8m7e47CgAdWzpLd+pFWLLjFUjSs+wknMw1zqeueuw5m2njz8gVGiFwGCl8euu+uVAVPutiBqxTYwV9ltOrFmsZ1f4T8SBp82VreWmbOADrDck2lAH58+bmjCE05XDwQnyQaMQq3y202WApOeqxnsnEXexhc9tzkZxSQ5Ar+HRzVBX0U7XxvCUQqVvVZEvjvxlUkf1IjDRXo5JfkVMTXQEwNwkUYcbO0i1uouEljxo98Mj104siJ9hrLCAqfuw7tZbQ5lb1ozoq8fu5yNjg69X6Bjc3vfOdD7coVvi925HJwHYG/1nk7zZePn25vf+BQ9ivArjeYUCgTMWdnWfogD3y2lz0hfvPD5d4t7QPf/G3t1fOH29lzF9rlo7/T/saP/+X203/jr1LfmQXgg6N/+vHfoW0yw4MysIUp4O/9938wHczawhmWYq6mbh9/9XlOpb06Us4qxY1PFb89jKod7XunSioSfNrBZykeuP/+9trxY5EHOZixMeqtXeR5K3ywSm8Dv6fCbsaHjkBWzOzY1b7/+3+AU34H2m//5q+2E5x+O3dpjm/QnWFJnXvLXGKCN5/4w99qn/n8d6YObENJlH7Nn/7Jx9vv/e5vU19X2/vffk9u6T/JfT1//LF/SJmywZoydG+OvC+5RaReNhCQ4pBg8m5bVwuIgi/h+OUUJeG93Vl/vTxzFwqzGd2/e2aYOQ85edgOMxDBpV3FxbIZUqt2lITX43Rb6RJFYF+m6KCdbPfmmYftdqbwoWb0hSKP1HsVzdx5h+Jh60+/RXAGw7R5VxCWOILoloXp81zkuIPhCf5rtNeLnL50n5uKqkZAIwAAQABJREFUgGmk45c44jtjtYNBwGgPFvyx7m+jrbo37/wrRzlRebJd3XSw7YWu06vVhyRvxC8KB2TxrId5sA/pZpRm90jMkeMGC1iNCp99+xo3Iydh2wa5ZfgotcEiXNWRIXQUUTd4rQtlS5maG7emLFNnlEJFM7IA/rtfqUc3W8ob+7KeqGHpP/BXjrrfyBO+foPP39JKLeG610kVuA/oJ5GRylQH/1MqTCBaRn5JgRvx8YrMzL5Zy1546uvoO6rAO+BfYAXHfjVmxAj7Y+o5Gal9ThX8Zs+xqEN+8Rn33Oh4M1TrYePxBxJHzFyH+nPZbltJUqhbgDYYmWPDlyaVk4xGBrvXmycAhnsyxAZC2Vprok2LIx2/fgQ4gjSK08LOylgZrAi02ygbGUXiV3HqsjsbshVBPwb3KEHsBWHjakbd+F1Z4tg0e5O8PXiTe5FMHpoVRFa+WTYdSpu/XcDYydrBn0fYXpBYcDqSXKBjcW+JnajC347/KILU0f4S7sx2gE/B5t1MbYL7Qqhkwpmp0AftUZwGeksxsdLLgIBV3kjUsM4bwMFDl15gQGqpcMDiZMyeSlpSTVyGEzZE0tqXDhPHoMEkDDjhY8cinzS6pW8HSsFOhNnVJRSmyV0ojXNRVIKTkcfKdY/GwlPi0lRilwZvMJdEee7xZsvTejLhbdIeMjSQh9PCXnJmnJ53BY/lW6a/K29RovDSVzjQj2gWfpRHLcWIAdYGjZdxA1SZFo8m6fuOq+MpmgxLOrwfe/x9rPFvba+f/K1SDqmk2VM3tAmVbtGrxHmFwJ333tv+2n/04+2Ln/9X7ZVX2DgNEWfZk5HrCojzhSdfaR9+/6PtILOSdlTO9hzCbr2SfJV2v1Pnx05Pzbm0iIKyxP4OlAAVnp/9L/5Wu7b13e3pX3umXT79B+1OFLa/9iPsxYHfjvBffuE5FBc23SJIk0eUm899+o9THzMzRsbOMBN08fKVlLntQB4Ia1vp/JAttlNnwO4El8vp1gFL4fy5s+21YyhI5C11V+C3MNbroXiSjolvhh/WE4387ia0WHgYU1xmGWmGI+CXLpxj78UqJ+p2t4fYXPsgM3Qf+8QTsGaxbbp2kRN20+3v/9w/a1tWXgze3t5Mt2aj2NBKJ+jFrw6SVPrPMehhyw6m2pF3nXntj51W9l4ahMmXBuBR+dnR2Y6kzphlrAcSvInOR/IXWGbzw9fWkWLyACgYcSMzBjusp1NaxyWiAf16pJGtpzjyGFmkwYMLFtVW9p94j45pjWgVgH9l4grlu4UBoO1Kv6THw8HlDuqf+0Ivsedo4spyO8igye+/se2pneM7bNdcVyYa/0P+QYDrDpaLdzxwdzvOnqRL586HrikGr/e//aF0rCeefJY6Nd+Oc3rz/Yd2tN89eqEQiEgjmkIVZ7efow256qCJDB5SLaBbPIOHR94SW/ZOc0/S2AUy0T7xxWfbw/fckY/c3oj15uWRmAUKgC6NsE4oeF2OnioVloknylSQqr53CvCMlspLBHrzS3vFYj0NJG3ZPlBlbAn7NHvnvBxSKb4V7cePddNtRRGi2lFnadMkNL25ZoSd4hZ2mj1K9u1OGixTvtdVwJj18mqW5ausppDeiiNRjDFMm9YRt/2as3kkjJ9/5S/ZtzJvFnarOG/mP46vUr8ZdPUo47A3g7qV320rSc4UKdxszH3a3FGSQsyKqmBeoqGlMpAaZUBBqUhQCChKa5Peb+NGbWYdgIviocCF0Xam1nkvklNJykc/wV3CFCFDGvkJq/pLbjNyScGoTFC4GdyWpm24M1rXEOrSltkc/HwriGfZ9u+slsaN5RobXaXnKSnv9qjRikdx55j9qLxcy8cpE2F4mH9NKjv02aFN7IJPpFMbT2kYVMYSTMDyb/dTwkhhTAUDhw3JX4qzUAauGgy+SccAgSqe6ZY/fsYcaMlLfALA/whGrOvCseIJL0aKakOYuPy3UdgBTHMvz04K9DSdiO7sNYGv8kuiKw+WiUJANwjBnRG2CWD0CvzgKJrChZSt3kkWAWJYFHGW26TQmQtqAR2gypd7SuZzNHUGux3YFmaZrrDnQ0771e1Fv1hunWB2a54lAtPeQaN3M66UFEkDnfiQWHwtlxVvkxcvHbA266/ffFtiaefXf+NfJ08qEJoPfdND7cPvezQzotaRf/4bn4r/eU7faK7Mv9T+9n/3d8FR9TyePOS7s29HOd3zO598sj1478EoTiwS0uEfKj4CVwMGRtjszF1BgG3meyVrKKaa97znve2dj39P+9v/6Ctt/sLT7PE42T76M/95lPrZK1dYGpltZ06ivJCWwlHjpvFDOyfZH0Odpl57EtN7UnYzspc1lqv9nRcHOmC5SAcmrVVK7jOaavu2c3fRkWfalu3cgTO1rR0/+spoliaJDI9KUdaa142bv7eimEQmwOdZlAaXr/fvZjO+0hzW9v0ZLg8sUYZ+MHqFOgApkRVHX30lnUZO5xFllQGSd+f4Ta+TZ9047xLdYvvKV7/Wdkyfq3ZtCYMgOEg3bQF8ygPYEBjt8e95IDwj+PGMjdmpYlaVKE1atXuC0TbirI58cwP+4T1b28Fdh9LBve2ufbkDaSlnrgtZZiqNE7r4TttO9lihCBsflFTZojdpVJTR03DzlUY3zOYkkwOEbXEaBcltBM6oKYP7knbJ4NpfpPweN6JMhnhaLlEEKUuLaJJ64AzUDJf17mbgc34eWolQEnWIBtzy9PZ28G33t51ff7XyEVyTbQ/3Xqks3fkI39z76tOZxf3otz7cXrjyTHuZqxB6uuZXMnr96/5VJhWatlhAQA4Qg5IRD2KHH4JrZEhlTsR6rLt1jhmvqyhedU9KCHDpEY08UUZabqIxsOwBCqwxJU8ZUB8WLhjrjlGUJMVbLJiQZoDh1olOK0iE09gu7MukQR9aBgoryhFl4uGAaWbnt0yy/D7Q5b5fIYkSfM4QGs/rHvLpJcId4spXL1u2DbBXn49gMwi0Y4WGSssEoSnpiqHw9T1npuLvZuam/h2PyN/CyNdbQVXu1hEIZ5syzzdNdx30tmy3rSS53KEyYofq1Fs2YfKWiBAJUbkDho+A5iv1uC0UC8SRp92cBV4bv2u5zUroFJ+niqwAmRocBJbTsjYA/b1+oI9U+zfgzJ3pKlAt3Elw2NUplP11jqq0jbutXOm06Ag02tXSIS2dSeqh+eJnPJUsadBuZ6P/qOIGQ1UUeZOlJ6YnVQYC790VSZ88mkD9hzSL0FGApgSzimCRbeNIeAL1w5X/gu/VRZQDCvBXgy18xZvEGXCm0nRggTSFLlY70zK+Kz3LoDqTUkakX8Eqv81vRv+cqPF7dpoRnTiDTm9RSQM/y1DsYYV+FY23tUojb60zzFjyu05HoZ/8OLhtsu2frGPqEyvsxTEyI2OV0zt3sqF3cTYd0nZ5h5Jrmc3Q+NdUyqk/k3wXkEjgJJyo/Is69Dh/skkFD+PJScM24y44KQaOOiJxKhKGy5d9dOwPsiRJKhxDP5kRWeoa4fJJpTEniEDhEoHKgHtsMuMpTvA5+7GDDv6977i3veOBO0OY9cx6aloLKF+LnFjydnu/r1YUW+83t3/6y89lf9al47+PcnW4fdM7Hmxff+7ZdvTYCZSgy+3g7mGWzoplTPZSOfp3GTp7ZFCanBXZNMwEaDdf1ziSz+efskTX9wOZZ+8DepWN5VdQnh577N3t9eNPo8AstDsO7EmZDVxNvuSJLDUfJ7kwMAozOMQ/59nkweh2xtdlbOuo9dBrFFKXgJl2VCsixjJO/QPCPqiTbc8eNv07+MLtnUVrlPHbH7wzy6CKxsm1eeQQm26vHWJj67b2/CkulL1yiiqzktGz6Xz6q68wm+RJOQd08Nf6iT/R83b/ZT6kTKKm29u9IDjzk7PZdkB9M1y8huEQTcwyAzHro593sC7bM/YwAZSBu6gDYrR+OiBdGfZDGi4vrE/y6kYjLW9mbKcqx7mWgnQdoGrs2Kyr0uzqgEe+K0cJzsN6eJ7lND8E7UD2AKzaw97Nq9RJaZliSfeAH33mHPo0mfLowDmKlh0LMWfoaR/MQNnyLOOMvCfiNjPweuAD72lHvvZce/7KVWb/V9t//Pg97e998gXZMzKV5fVMalt3jcCw9BRuHjoOOQLd4DmG4kb/wd0x95KVtkm3C9i+/KccLX3rsXyXIsu9bFU3rBeecLO+23fJV5f6aXWVL5Hmvzp4+Wx6emcQA05nJ0kh9VXlxj8veXTT0ARtfNM1lSQVPDlJ/0XcyCVmibxA1qXVCb6fissIxVDlognzdgO/X6iw7Vo/7KcE0/iKkoWlpHYPW+fOABr4HmfkCAZdHb5wrof/Bdg6sQOq9ZS+Mdy3rSR5MqMYxJN/BcNmBJjasYLBhug+CEdjizQilYMc7YXRVhQrjoVlx3qAvTu7WZJQqZrJWr2F6do4hUPc0xfm2xnuCTlHA7WQ3LeSW0HBZSXLjIW9LsYwBQjfK80IuFheAkB6hQrPcBA1Hr0jMx81yi7aqjIaS1hd9TYvCmp/xu1lUBQEHL8SkubVDkjcpufPSpX8E5ZGIV5+lVLF73TrEkZFNDiHeqy/8OKX35r1qdo46yFQBRd+3L2hVeUeS3WMCOkzX2R1MDVjpCPTukOawvhLvghTwbHJlv86bt2lvKYpAgk/FSYxvtcTN21N5av47og1vonCbCT59u4RE85pSeIgFkiDE1d2dAN9lk9mJIhnB2qn5AklR0gizL4A9Z2kOKQxcllW5ccrQMUXOi7q5qEDu+jA3EC+3Payf+bZV0+1546cSr5M9+BebyJmCYJlW08o7WJj9En2LjkLmT18wBg+kBoF3GTcGPqFp15t93GZoLM7Atk2pNGNlYurblSFL6s1Q2WcExd2ovwR99i/QaGZb9/7/ne3F7/22fbcCTqr6zv4sKp393iIoPYQWp+vsKy2MDsbAeiMgvsD3XsVQU7GdcsjYfVb2rWaTtL0pJv/5qWYFoMb6GdYHpxGm3VQEBxVYonfFT3jXmLWynt1NNZF27yKovXBfO6Dl6bd25ADF5pa1TviKFP6jLB1+NKF89yrg1JMmG0giit88qi9e13c67ipcdpqlf1FW3Zwn9L9XP7K988W4D/a1j0zR9g/eK0d3LO9vefRu5Fla+2FY2fakVMqc3Advi3R0Xz+Vdr8tUWUVHhvYZCWPBh7xK5f6h3hgi2giHzx66+Fnh3kdc++3VnWk0eW73HuDXrleC0/ic6yePheNkRb5mRc3pwABnQx1kEVbOOX8W1K5mfw0xk/35hEhr8UljLyPPsol92F3qMKSwNBUqZD378HmcwsWOKRWdFd5MDFpTkP5chnkSKLbUZsEvbupQk6XEawbRsD6Fy7gWI3hQDxfiDN7MsvtWNrc+3K0TNJVhQedHjhDz4BLSttq3uQyO/rnNr81a8daz/5gQfbPj7lco6Zw5gha+UIuZLAz8e60VXZGvw3xMMPt1Hi3cN6pHU0sQ0YbvCtZJO2WMQBf/tgUTlDZQXIsOJ3tQlVGGWKszu0LcovdwIleim+zjg6gLBse2naDjQqISpbtiXRW69N3H1AKu9bWYp3NsgwDdUWxQsl1XJmRiltGzg0IvDb1lCg3JRLHKiHVIeHGJQnV9REv8hKyCLtzxI0nQkKflTHTCP5tr/ENz8p0k5gHrz//zB/RtzjNP95ybltJem73n9f204DV4Yf4Oi8I2035S2yA0zG+jFRNwheZ5rvEvdfZFQG89wYfYWGYaEq7NxIfYBpce922OtxYxrYNAWYG1xZU73C8shhPjp79tJVOqHX634eavhWZg0cAVtd3SfkjnwrzSIar/yz0KyYVVY8iROhEkEw1KKhMlYlHPx4ZdSvAkZsK1a1wcIhTjsN3ypL48a0CovxKn9kqyo39KQikefRDIqRE6kqlVaNb/MgXRG2djoJGcCTig1Mzb7g9DJtf7HHzQMS9TPtISNRuOIWFASjoIGASrvS0ktlRXj5pyBQc+oNN41/CBPOpm0GDAc8aScN8NiBic/fuInbciG+QoPSD3+9DqB3nj1SZpmAMy2FRfD5hiw7TAWENyPrH1rBlaI0QTyz/Mt7Aume2BEQpfCHEdDYjV2DI0OXm/rGy1z8ltOPm9rJ17l5d8j7BRShbsyHpjdMl5Td73Ypy1UhY+joa4akuqAeu8KtI4f27SH/dVmr9Wkny2Bra0dJkk2/LP9x9XHyaWrnTny1bbvvXW329BfafYd2Zj/TybNX2Jh5KHzdPs1xbT4l0GdKXTZcYgCSfTTkQeErMt+OLJ1pME09Kz/M8DDa97MoKiihmYRnuWneQxErHA23w/TyRNuPdaXXEeNbj7ti42zNLFcZlPGm71o2lW0qNdu5hdlSsEz1y3f3EPQqiBbPSNkGp9dwIE6yD3LP9i3hq+FbuKnfjtfvbZ055x4rJD5XC0wwozQxwdlGkWPYlcGG+v1t19UTbKaebodR0LzL5tipYfNr+OJABDpRQheZDZE2R9W97otHvgGSPO+gs5InaS8SzK3GJ9jAf/K8J+Vqk62SaZqBptcsZCN3Zo7EVPk7yP4dZ3TkYdLjWX+Vxrc+/hA3r89xRQR70rqxIpheYuipff2lgrQTHi0iN71gVfB6dKAgsHlTX1dZslRmklc6SctuDgbYPjXV3cNSlerdezOLhPbfltnI7VLdFHvkVlcomEKZOHfs4mDBXdShM8ziXSw8KlZbzhzPtxSv00lLozN2n3rtYvv2+/a3xw/tah8/Qh4D7qMjpC4kA2a5cCWR0WMIjHvcXgAjdB3+Fihu9B7HNLIPPBFVL6/UBUsM/kXu2R6sI1E4VJzsalVwaCv+YLTXPDgxgLiI27qf6mMhkFlEVfDJAgeq0hY5DtAM9c2JCfmTgXdg4JFx8FtNX0G/hZtpBCkDt2kbxYSMCT2Us3KVsR+XRRIPO6FijRwwvXF+J78SKZ7AdevgEd9xu7jK9PfgrNdG0PUg0xgzuiS7p2t+3mACVL7j0W+a7hsi39rjtpUk5afLFsfPzbeXTnABJG4VnzAaiuzELqEQXeA49PnLnMAZSthp3Xk2kZpBp/OnUXYUoG6eNI6dkcqTxgrjVGwyCLyFZ7zAYVGQOxKbnVLIDkwbClPlBvAIM3GlYHGLS4YKH74GuY4yVgaNaaQCGgd3wHikAuKWRukeBQqfToW4ShmMnYPLE4EjSwpW6dDtj2CAwKlFOwklXXhZyo3cFL7wKXQThUfZkpnAdIlRjYbo4E8+C6Tw46MxbvDwlJ4kPcBpl4YiruAFsLN+jdueiw8A4acycvI0mzYBs6zMn3BXaWFpxOaRP4WZmIRzzVvVVg9xedIiM1pBKU8G2nxLB0a2eoJDV7yI6OjU3TjmVyHU6540XCF964V7h0zX/REu65r+IkJZerbxQwcjXAjSSNmVK+kYD7zSRk4rH7i7yQlH8mdnouKRegquKr91OIke+VHWjuJz3QTEeEy36qUplrGMD+7hOgFuVz7GBtfXTp2Hp8w8sX/kez70bg4gkBadyBSKmspkN9evnm4LR/9527HVdrfQfvdPn2t3P/gd7AN5kI3Yl9vzp2eSf+uSgk8FPzM08MZcOxunoO4dv3W56hJ5kTzybp1aWj4w1N2iWZb42/y8lPgtMbHx53v4BQC/blZW9yRt4da9K3xqdlP78jmXQkXVy3yoFyRp+8sMbjpul8UZEdMWD7PEtxXZsn/y+TZ76WiUt2Pw7gKbgJMGcdnRRNukU55aZAloJ3HlH210bTuDr1IE5MF1Zn7m8pmhUDEiUQqdKbc+madQzEOFU+P1BSpI27kOwj1VH/nOxzkttzVy8tLsYnv2pdf4naQ8UVDIh4cYzrKvz/q76wH2HQ3GDeP/+//z8ZRF93PmzbrdzXnyNT+2TBl/aBlaT/LsicqirFigQmz9W5wdlnI6stFb+J4XT6nSjhiAml0V/Zq56MDUF6xr3IKe03/k4RoztGjYKTe3VEAwdbXD2w5ae+Au7tU6yudvXquZMVPztmiXmHfzIfAZPriskjSLPPmdF0+39927v/3x0fPr+TKCDbgX6ijP5aVyohHipqZHNXDcLr6U601jleeANK/BbkDnMiyoqq4f7XhUTwgw7zG87SU3wRuzQW3ODI19RtoeMjWzvZa14UN+4iAl1mqiuKrzV3utvtILmZ3N7VezFH+MVQiEkk5/fhTbthXljbcQzmB5cMY6DCnQwj4zZ43MBx4uDVs3zIf9tnIqZvTCEkSUM3CmvGlEvG7MAFuO23/eNJooZXhMlUB3DZ7Fsu4YwXaPb/x920rSb3/6xWxmVgnYyTS7gkphLvPrO2qlhaodv/+d96f+WagKXoWzRgH3tnsOsiyxY0SxhZCOjwJSKfKYeAoUd8UpUGEixFNwVQgZDVMSChMvp6y01IwpNkCkUSx2WoGBHjtpl0vcZK5xr4idmHmxU1ARM44pOJqycqiAiUshp/DYgtu8GMcNrm7OdFq96OPDjiyzuPFbI4y4vvtb3p2OyjzaWqywmqxLk6Iun3pbUTXSI075oZf50E/qfJvHGMK7dfAJnvQJhJgHcRj1lVOXc7XBd3Oq6r2PsgfGiKZJeDfmrdKxIzXQJaT59qsff6L99Y98gI5ZQWoTKhq0CxT6OlHEsXEdOXUhF7J5cuozT71C3qwTk9mbY3p3cGGbG4k14nn5tXOceOGzA6MMlUWlRkXoEB8kvtAvtiSD5skZEI/ryhA5ETWANIzphWqVN2m1w60sz3hsCXfykSS0V2xpse7qbZ4Sf+CfnY51aY+dI2l6/DmHBCDEsjXMfU0KwD7zCIqh7Ks+KTZrCdMPTU6PeC+8xSDPrWdHXjvD7KnKijTXqShxWR76XL96Pp2g9eY0Ny5fuMJlijuOtV0P/SQd2Fb25NjRce/Ssp9xWMTuYGWoU74Rb544hFLeXHHhtDx10yKXhghlZnrNT2akwOeeEunMzxk8CE4dFR6eG6fKuOInnLD4De/MDnKvE9N7CGsOfHAZXpt0qcc2Q+KWXfKoVusnNbjjye6CvKvoOEp+9dyptvDar8ADrjJYYVaPsEQJa8o2OUEHzAwc10xyrwzXC3CNhXncPb3Y/sPverz95e98LEtu7tN59MHDmeFS+f2tP32mvcas3A9/+F20kXtSJvI4ezPEj90UrBv5jph7okj/njv3Z1nMtmO+P/Dg/nb+gw8NhBGDf8OOMSP55Ess0wZXa4eQhz/4LY/gokxBJMxRYJ544Vgg3JB+9/6d7TTxs0ds7FtiAsiroijg+iR9N2xLWLXlHjb+tqWUMV0PzLj058wQd5SCRYYHOUBSq5ulzMhDlrCvMWzBPTe3wmEJ7gvzdNSAz9ccM1gnuUOp72vTzzZygcH0fq4HGNE8MOLJCwvtr38vPD95sX2VmaUw1UiGUy/z6m7fg+mb5Ls7gN1hBnvEpJNH4e6ZByRtnHfqsm5+tzLmEXJ85s+y1+hvG8gHqJkVVAGx8timtzHjqtK65rUlwKVXoHqvMMPnnX+RswT0EhnxRsQi4N8y6tdvOHDIQZSeuJQIA7j4vVOw53uLKzW01UnbeugBEKPcykEj/FzN8RMkSNRKx/jio7yUVc5G6R7RVSjiJ67IUQGGZPUbGQm6lVknEwgBO+KK0KOu+3bbep+3bhtLZOBZJ6jY1LGNwd2GtXry2wD87z/6w9lLoJLh2r9r5OHJkG4qGXYVBjumdEgymArQSesV0eS0jxeYuPSTBYEnVz1crTvHxcGnAuEoWKCcPMKqAmPDLcFthRuWvghT6ZIGO2k7LkdH3gpsJbPTVQGyY1Npqs5WZUdh5Mjb03BewuYsFW7iarIsQfr1KQo7GisokSDKSpURgp1F/IxReUnHA5gFFr5gScX3nZYnLACiwghXKCqSSmFPi6AAiHMAD8/liXmzsVkGhkKKJCSfpz/+lDFzqeH3f+id4XEpm/KzZmKMZ97liRe3adyv8Xuf+3p7B52J+0e8OFDeOGJW6L94/Cybl09lKfQMR3RVRL29+e3339E+99SRwDn6UWk8iuLU64XLr+bTgwF7mVGZ3j7TDs44C4LyS6eMVEg+96IczaBQuKS+FVgKoWDgN987zXH5EMpDHtmhWRau2ZsfT7opYNaYTppm0zMTNe0umv5mbhrOcit4rTcqWy4HyfcVRmrS6bUw+eQI/s4k+Z0tj+bPoAiztS74HR1fmGXmwsxgMmsD/tCCn7xUGfdepW0uL5GWkN7oqzl4aH+bY4lp207255A3P0h6ig+77tuzu+3keO/Kyu62OPHOdn32WT4xsf4tLJG473rzZpQMjvdu2YJgvvTb4EepoC5Mwu9J8u73oSYpX7/mPcFyUL5HhYKSyoFgZ3qA4SRMYUTZNlnmvA23JsGM/NwMav5SJlZYfuG1ihEM8yfj+EfyJ27s4nAo7Ewf/HTGT7yaPMUnrrxVVoXVj5f4k6TtmPLj5/v68gKfCmHGgQ2o3YjLpH14+ebUzF1YDiftreTlsUPn2qN3TbUf+573tg+8894MbGwfkvwI9bSuRbjWvvzCa1GS3vHAHe0j3/qO1A+RCqdJEeOwfiVN7NbXat/V7qTx/gPc59UORS51WSYfn3jxRJSkwoaizADru973tignBAfXc0dOt7/3Czbc1u4/vKf9g7/1I9SptfaJL7/Qfurv/mLR0BEMGffVjUXhFgXr9MiMGNR9KkOKU5durHfdeAJxegsnRTkGPm4m+W7gBNcwcPtZW/NDuC65sX/rEj+lh22tmwUUgJdOXhk+Bl6+5m83S4B9RUFFyplOzRWuXPnsk0fbe/bNMFBaas+dq+VK45Qpi8uwt2MsH+XYG03hqae42M5BX5Db4nH25FToxBGjJ0qEtPRwC98+p+rD4E9b2sbdYfaBl1EcJzj2L7xtfxPlseZ9bURcI70pltOzD5c2Ou1yHMhz6Mlw/3ra2A2zjaU8dTLTbhmHPt7uN5phyVPJb19FAO8hnLdtatUTkyq9UFQz5tY1wzzNygqOG7uJqwxLPqM0wUPbLB41+57oPMqIDfTDo/z+LE/TikJngoMJvsKKTwiE9cqQdZgOe/tvOfqNmdtWkh7n4rU6gVEJRWiSrG+Z3BUUrFEewmQzpUVG8K4OHXhR4O4wBVKVwkKz07aAnf7N3UkAWEBbGBlZcT2JImobdRQY/Bx5m0ZtRq3CtgImKR4KQC8XFJ8VgeiZFneTWyok6Rl2jYZqRaz8lSK2SgUSd5Qf3ul0yZPKEs64U0vAYUW24iokTSR5DRU8iNPxii9E8FChsOPtQkoeWnlUDo3f07MfUeZleW+I3vcMuAdMI35HLARn1sREggO3QtbNqnbgbtJ8kc2qe9hXZgNzOn+O27EPEK4i4J1RwqksWhaOsD2+/Gt/8BVmoq4gVFSEWzvJ3gvvgHEzqnRadi4vWNbCfO3Fk1F+JhAC29A2Du/Z1T783R+KwiM/7777UBq0F59tR2hc5aKaVQUJ+VjgKP91Ovct7I2RkwrzrXyjzU/TTCFktvu9NnjkUlEEIkqNZhHhnRk/1u2XuUhxmm9RbUKxkr4du3blqonwBfpVnrxAcIX8zV+5XLODftKB9DM7iUK4e+/ejIYvz7uU/P+R9qaxmm7Xnddz6szzqVPzne17HcdOHMdJxzZxnFa6URTRiEAr0KGRLNFIoBYf+QASIPGNL4gIRKuF+NCNBES0RCchaWgaMjjB3Z3YcdKO5+GOVbfqVtWpM88Tv99/Pft931NV166EXfWe53n2sPbaa6+99tprT7vwQioheO/ueLbOASc1bwWGV21IT0gQvKY4zXmFBd0rl5e755+73t26weWlCFHLJ+7me8Bi6ENguCD5hAMoVZAOHXGCn2sZDk6nuv/xn97qptxFuMDFlY++Az9DD67UcGHy5AyLfqdXOHR7hcbDgY+M+uT3IxSIUxSnU+hzis5jG63dfU6R+KMc4GFZz1jvdHq47Seu/Aw3LO0DJhAf+VI6hifxMzzCm6d1HqdfwPRPIeLhl8+pmWXqr5TDSiDv8jMDn/zCzwj2c6w/Y/zGqe8z7qU6B8/zE6bzL21189dZf8W6o1PuYDtjx6P4n3FVi2fCTCw8z31kL3UT858Cfw673XvYPTh7ofsPPr3Q/czHr4JHyQzLo8VT+WKnJK/707n7VlkgWlqwbLOWKzTgTRqUXKh36et5M6MWaOE4mLITlkf95zrKx12ucpJGyg9g32FHYDIm4p37m92v/C+/F1zeYAocEDgxqYdk16toDN68LMzSRlDilY+eBeVaMt2FriaJ6oy31eWZsiAhR9Y3PUGeDRFz8A70zjVQpKSPp0NDjsinZmb5+3xP7XxDH4GWUwF6b+OApRVDRVYKip/wXcu6hjIkLwtO9/e/9Eb3iRuL3atYz77E4vaiuHgP4doHSPt46e2vTy+M5qwHl3UYbhTdaLRRmG6uqLDyFb79hzJwkI4I4XeejRcSyB/jBw2eaVdCM19/8JoW2FhurV0j8hMW40zq/BKbPBYyi7GxieWNAVVciCvOPaxKlqDkNkKHHFHDzsP0bT1+zlaEN8SBVGfZhVy82tpxBojU+UmOPDEnEid24df67MKCMINx/SNlSNmbRwXXXzP9c7qWRLoFZA9X/6dl8X7gL8QdAGrQ3y/V0/2fWUlSoNuQJa7vjVHNVkL68z1MwR87EtpnGEZmMJ2NLUIFgWTECKW+c7cydQqZCHiYSrKoOLjTS9NgVSz9gOmNa0/EbhXhh2l55l8Py4dWp5Z/w9UJNWQe+PKPF8CHL4SWw2kzChZ3PHA+fFfgNCcuo+FRoMjLuVxbgdaIwrfWUJSwpWyUV2GpQBWelrcdFLMt1nK1csWyhak25loyVHkTvvj6dAfgBlNUvoub+Xj9hwVxm3bgUKa7XnrZh7uQ2A7e6VCZ+quY8p1Cy9oi6lVYHjZnoVQwHrGuTJyFZTnF2dGR8coixJQT04paVC5zN5VTDa+89FwOoJQ3NNm7jicH9QHf/I+5nNbFtUuso5kct/M7Z3fWm9Qj7+A5zUhoQrM0aefm2aG1uBiFw8XBwvSnZWefqyN2WGty/927uSohuKMQOeKZwwrlreJTSB85co7LbkmWE9O9/HXn0UYsVPt7LEjmO7vG6IwvoUxMclfVDOnnr6xSbneCUF6e8sUUlohV7rBbYCXkAQrMHguRrcMZDDhHxJtYoeMl3gRwpvFcZJ3KJUeLbWFzrDIqOBvd5v0HXKPCgXgoQ0fQRIuVdWJn7dO2lCmPicXuG2vXut/5U06H32c32tg2h5++RDnnmXLEvMU01ClTaMeb1QlxVCEYlLLqWpwoFTI6iAk3TM5f8aTF5C8U5Wm14+uPaMaNsOTzUz803n38pekoqPEjQgniOgjWgYLWQXes2aGoWDzYsa4ASjnurB11X/ou/KuVKjmLx4gTmd7Vq+2KETUAgrN4I0ugTr6LH/kW/jl4TS5AKxQi+Ol8hgHO+V736suL3e2tZcovX9nGrd/5bu14sfuP/8FZ98++8b3uM69Rf4C2c3E3pBZNreTy7CaHxepuo6h8+Vu3M4BRyZE87lIynuW1rOLp7egGNvylSUqJcmfb1B2yQ876NZ70GnWWswZvFdf692TuOoLD9n/KYONO9/qdtW4dvqtYQGi0A6byj2SRJ7O041nORbId2Za9o1KcVUoGayZ7BFw4rVVHeeUl5MqhbbYKi/bC7ARLI2Y5ZJPpcFAWhgySbPtyCUZ/LbDuAA1uPYKW6x5KkvfVNacMk2ZZpyXvBQ4JULIM2wLHP72PJfqOvFyyzWcPMnmHL/TENRLUV/0VpFb/KDiC5l9hPoTT0G9w21OIviszmmtp/fZ9kOfgBb8oiT6lh7vGgEPxhJPTqj2lFDqNyXS4MwZHp6xD9OgKcVE5dkBkv5nyNdhBlI9KNsjcT4fQCebDNqm12sMm9XSwWv1yPxNi24RHkjfxgxOfyngL5ALvuD4fH8b2uIHWtxpeEOpv/1GeSYd/8uiBmADXx66P0b9BfsSjZTri1Qpu6yqoQOvB98UZwjeji1kPIX2/sGGsp749s5L03/2D34+mG+UAtOzIFeTUBQ2zBGUWRoJkBC7ZKdC8xkTCWRmptJ6IWh+axShz4Yx6bNRq//rL5HaKCgjTqlAYT2K5LkRnByxDGa7gMY74mIUw/GVhMcxjHGWZDUd8XXvU8jKt71U2ygOz5myd4A3dwUPFwHu23FVgrVh+G7v+ClUPs7N8BKX8HlIpnioX+juq03nmk+ZllYZNBJ4nfm9pliXMsti4xFElSEEpnjXCNaxobX7yV5QhgeJ8N700U2lwyk38fNey4XSjFqs9hL1pjStOHiToeiqnT9NwzISW7knbWrckZqoMBF2LZFksU6wHwLbEKi5OvdlZnJ0fcXKvI1iaMFMiBwfV2Xkn0NwM0zUzHhZat5N7vo2LCs/BXTy9e2yfEe8+uO1g1RF/8VaRVGGUNjZYUZT+Ot+t51N21ojHHumioBNXBVl6WGGW1zzkkWMUiOrQKRTwwmOs3dGas7uliV9XAsjy2oE1XpfzVPb9njJfhJ5z/iIibMvgqdAP+MlPRGGWCRqAm4uAxVVcjqhjw8cRqBPgoILn4MAO2+mENx9Mdb/LzOj21tsoQjVlcca82iPmGy8vTOZ8pHMUAjNu7S1I6IMVU56h2CPO8hiXcAS6z8THr+JZk/KYVMYLPH3eunGt+9iPXCu6p5jFu+7mkp8yrcDZT+4q2+bATXmGlh4F2H7jn331ve7Lr7sBoPKMdapy7tGtPMWtnE/iSjj5DP7QnWIVs37teKL+Et8kJ6yLOUqhqqPA+NGtcZ3Q5jaLkGly44df6xZQfsenlrvN0wXgzHS//iWsM299NTxqu/cnMh7TYH17HZGj+9//8ve6L37treTj2iPXLq1ggVV+RKniqUzSX9kQHgYnYZhIHpWGftcSBBYtIy/ucXL9ODj1BGDR/m73K7/6+ZTPosgjHkhqeeGq8NWHX76egdA6i/Qfd9LOOjV22jwwJuFRWlnyllevrXIuD+V0x5rr6FIo4s/TJm0nKi0PHrHAHSWlOIA2iAXIHXmWCyYcKEmD/C0cbpljIKaYCr/PeUfudgZAOZ5b+ycM6nrLCL5aN2RNcVBpU5YMIlMOarjb4AoU/zWesZ7zTsQhn/TJHnuIkgOxU+jcnH62NV1xufDyWbjy3j7jG3pW/D5Z4snPA2eaARB8WxjPYC+jxk/k4QEAjVPWgoqXvOx6JNr8Oe3a+lNuyXfWo0RKWUfglpLTPBomodQge31Nl93iTJ/BPjIUfuTJp8qUtLCOR/EPzw6gFJbmZFxpNsjVIPqH/oFuOwgJ/FGYxIwraO3rac8hjCJ0SDZMTB7J72lJ388PkMHFgg/caD4Dzx/48sxK0onrGPg5BXF5dZXGR8dGJ2vnHGWIys5owAroEbNtWVwrQAawsdrw60dF9kxj/Db6shhWQQTiSPkssGBDrLw7MqNxo3R4ie5ufzqwU3QKmW2sDbtMY9jxhGkCSxjV+MRMvMQhgpJpHYWB4ZbN6ASlk7Nha+15iHXFReviaBzdDrtQdhiFac4mWmDaWdq509sljp2w+LvFV0uO8bx7R+VFmqzmTizFA+Uzf8KX2PmRs3bYMqzyKDzTybQKZeGZjzhTBShbLNRFCIahobXKgcqYDUsFJtuLCbWh8786IZ52OF7u2uop0zjSJXSqUWxSSIs0Nho7RQt9hC8ZiH9Ix27+diZONXpCsunSnMjQTttOQ5pnnQkhOQBNsUhe1SHUe0ZTpInyozAhM6cQG26ZzgM6IOEBS+CHaIBMqgUq6E9eLtRV4bYjcF1bLIdEt+lLHxXZ1DewapBniK7nE4nOf5Vt/WLt4e0I65dO3OV/6ZUenPiH2XXi7s86TsIwQuHVunxXGKBGOsItBP9HNwOss4D1rS++3X0W68jqCsoT8d87vtSt72N548yk0ymuPZlaxDIym0XPQhcP/9WlvEXHiDYFmrj1zvdWvubnM20UfCqMlJRDy/E//uJG99t/2lsvejA+JMvQ6cNZOPglSh9Pwp26HiqR7TyJ4H++k7z/I3omya9PG2U4dZtIJLJspQQIJp2rCe0ICJhk7ccsp/q/MLfdXWbB9ivzp92NGc6zQhdZdmcgUR8dcozD8VT35YPnuudf+ED36o2qY6eZbaNaAMTt4BtvZ+BykytPlmnvygfz1krrZcHi5j+onDYBo/Hmt3Fcx0bnTxqLolwTV6dqxUElyR1uN28Md7fZbh4hv8gCp+I8xjEqXvlTPlqD7mEVNr34PeHMKLmlGZCHih+DNOjndUlzPD2wUD5dYcE0S/96V23WAZ1TYi7iFZStVmd+u+DhTlKaSXmMZm8E3CRt7AirnevEa7gXb9bhTOXsvC2nvLImTaVsggFYbXjY4GTTWZQry19tk1j2DyoYvQulyTM59X+UbbBDj2WLOXwGBo256NWjDU1Fvc0cDMjYvzhArNJUfBOLR9pVC+sjyH89Ksk0cPvsjf9oYyuynZKY4xNxWmJlgEhFSkbOyWcNeA9w8AD/4Oqz2H6AsHHIJqKPF3Ms7uMdMdyPz4ON4qbJIyMKs+CaCpdH5eFHpGvvNwj2u6FJeUPYBOrJb+Ch56gLoFGPPuqIf16F4YtPne8jceL3Pn9aUtJW6gYDaMPX90n8dO9nVpI+8fGP5E4qmSBMSo4+aXvB34qW2E0BskON8hSmN3MKyX8FgP+M5y3eJ3QoYRZG4FbeEWsyDEuFN7oANx0mjO9Tp9nYTm2afGTosf405gmsGAr8nQnuveKUZW9xFq9HHNjnQrrrTA152qlQauQvI1MWYeCZRtHng1cvIMGYbNTOtWoo+OywbYzGj8KIn+hqocgomPd02jyrAyUeGaiwRMCbawrJCwnFx/zEQ/g6hXMEsogRo+FnmD46y2C+No0JrAyFG2UishYQI1bH3qenzox/xshRF8Wqz7xUrIKlYpgG1OdkuYI3ca1XG4/9U+glQB1pygLXKwHUg2ksR87isey8SzeVuybMTHpMuYWrMigdTri2IZYVYKgkWnYtVVw1FHqXpUGMqwwpE+/CVXkOvjRYaa9g8ATjCD2sPhbdd/MjYghvfUbxJXJ2jhAmzFicqCjrwXcJGisdZVBx4xFn2Am7R5qlJLzfl9W0wQOCqRS5Vkg+kJdS1p6PBCTvfo0pngkWJZ8i3TbouHdYzH5G5zwze9q9RNqZw93uJ1cfZLHsg+OZ7sEJ98kdYZE8me52zzjDSJwAnFFpQ1BCWSL+S8s4OyPj4aHFsq6sECd4hJ+WKxWlU6xsxIpfn3IIo3nwFK5llUbNSWKVwT7rgiH8xIfH/EeZUWeTJHXEm/nrG1g8MkUOMO+vs2ZmJ7BisePv6tRhd3Nyt7vM9+VJBw8n3TYDuZM5plzB5QA6T2G1HsP66kh+hgHVNWj71bc+0X30RRa64nd1mbVtwDRP1zTm4D/el5l6+5FXb2KZKOsvaIa/LKjtLJskwgdtE0EpR9JAi2AGKvCVSo7rgkIbwlxjdIfdc81plXrtxVVw6afgycjdbb/z5W8nitvlP8kVOD/xUaYKOXT0N3//K6FfS9+e0tQALZG51JZSeXLyNAO4ZWShcs96lsescynsf9cd7tM+UicNGM9Z2splZMoyh//u5hiBntlb7smwEkyAO0W+4Gzftn3LpbP/NO8bHFz5LabTdlkUHus1uMTSDrwRkANYgrX9aPH356BuNN5j2aZOvYuuuZSV9LoW1y+5sHis2nmFDSErP8U/jE364tqAScoGcegPBDy9nPicDRLyk2ldVqCkMp5c7jNKHmEN2hazCg7wtYI1Koi3rlA3N2VUvBB6hbm+qckBLMMLI1P7Jv2jNFEBxlfOVZ9EWuCdR5D3uDSUBBNqWQbh1Fe8/9x/qryjyZINfy5kN4hgbhfd0+NVnCdjD9NWiYfff5G3Z1aS5hkmTDBas+K9H0ayWS9WoAS3QosZ6T7zjj8CiD+E0wiZyjhiLU0pO8AhzDUhTscpRBSUWXAMTKekXHezjBXF+CpEa5iZXWTs2jPjerWBJuwzpysQbM7BS3KtLzL2KtNKPqsjUxAuoCAtIbDF3UZRHWyms0ST8khsBZnlUjBarnlN8HxbzpSLOIYbpp9wSuhU+AQMl86WeCoEClJxELgdp2nTXEisohFrhuE4hYqjNnGwIy7rj3kZWviZr/iYh3lrsbH8pplgh5KxyDL4WTaRVPGQxtaHSlFTJITqSebWqSeyOvWjlUaRZhzztIG588JdbubtAm79zF9lRNTEz/zbwXC+SxPLY7h4SDvz1sN5bqmQJzxlhxNIxDG+IsX1UaeUKziTL0UmE9Z2YNHRWuUIKfyGdzuEz6kPncLYMz/Cq8Ih7hSdlGfhWIasV6Ks4nnAyN/RtrvQvQxUS6npjWeeKpjaV1Rq3OnjWVHW5zi0Tn2itUUIUe8qc6Gf6UmTqQVKE76BSE65OboWcBP4Tjl6QbBHUVhHTnfcYXHurTmmRqYYSECydXYOylceiGnTW6FMC+4GnIfvFye6F7m7bHd3k7NmmKo4HOvWj7gA9mi+2zyZ7bZPwSklkDBmXfwthvHgr/jZLno2DH71BxqSZ9oqdSdPSpdUEuksx6iTVlpGH/MeRDepifLIn0rtq2lCJxQz86lsCOF9Bt5cmDjkAMLdbvHSdrdwiWnqyVNowCBJ5RF6zHBqs8fu34U/t5yy5cR+FxjaPuZYO7cKLS/R4R9i2Trjepe7d97D+vsy68z6QU8xsUikXkVIHKZYbyavq/xHqSZeFGCe4SM7Q+JWchi057ta9G2bN74050ebkNNVxEaKDx/2bQRfp/ptV7mJQPIQZltawLIs332Ik7kfd0NYw7cWB5aDp+AllEfrLu0ZGZm7JYlk27OtV920VPUUr+AM/la6HFOuvtuXzwPX3Clu4Db/SkflU+QOwBtmtmfLp9VqndO8a6dawQsO5hnA8kmlqm9lEvSLLAn4CzirdPTJ8rBtC8i0Bsn3cc0PT+skych4EF6xhnEDoAEfBkKxfIhzwaiw9CN4RkZa5/FG9uWNvoDY+qmXOOSSdwRwStt3mUHii7uAdYGfP31KPXu4RmnR+qeh0r4Hm3BxUhYrP0MXovg0izx7s9woiMDJn55GvI+GB88WiQC/L/i1sP7pWqkpZNzAjUS2uE91+L9f0FPj957i2XBtT+G09++X9mlhI1g/LXjo9zIXYy7MOZ5zpFJTWFlTYiPjZ0etK4XBOW61/prCUoBs76lsVJHTeSL8dHaca6y/cUrEef3AofZM67bJe1xRopL04vWVNHLX45h+5nKdbXSAomXDc/SnQpIRPd8hCvHSTcsN/Ldx2jDkjuDCu1u3VetjrYBjtSjI4HZoCiUFhSfkWi7TqIDUNBbI867gcdqstm7KdKyPAqbCR2uau7bsrF3H4tMFoOMonJZJFnCLumwojcStrYVSsIqH+GQNFmllfq1ZnhB8hpZgGVUKRaQEkgtV9S3LxTinEEsb60JY0nQyC2hL4BAxoxyFpErhIfWK7pCyCMXO0WcOTgRvF2b6bVnP6bikR9Yh4afwn7AHF0+ceKowqMha1qIfaYEpvxg2g8CbYNoxMPH3HCovq23KmnAcEVO1Fil5OC3lFKsXpGaqlXRWkgqanTQUC38q0UVFRcx41qc8oiIl/7gWqnCxw9JSZf0i4KGrGMmPdo7WkpsGxjkDRtVumk7TKZPUJdvMXStlfVgmp2PEy4w167etyl4HYVtRFnmwangAnLNz0KKR9wlxPNrgjbdrh9vUEmt7oLEd3LjKm+Xv6f/INRcoCfedxniPNVgsDveKkHl2Jr5AGa+B3z7HBBwePMBae068ue7+0RIKE1vSPZ9IBy59VQX31jaDJGEDRyQHObHw8G5d6dKBGa95DPyIY6Px2zzMqHeWM0keS1cyWk/SWg8knOCgnuWxDe4G2+yWZz3lmzaOQuR0dXcGT6H8PWKgdMA28TOs0VMo8SuUe4OfUsqVUXBpLI+H0GmMKR7rbI71M9n9tvdO95U3bnSf/SjWJOpcRVt81eNtSzrr3zqy/Rjo+hythb7PEL+s2tVO52gf+skLJAx/q/hKCZV6j8NQnsgHX+MmgTexFDXnAOSTH3kpsk/lSDn4ZxxE+Su/WnRcom7/ao4IIL201Vty9c5yNSe926GS0lVnafay1f6sW8RPGk9Sp3UJN7TiolqtmsqogSOPSQehyKqxKdZbcoI7Wy8HwSKRvPAxG2WiOydFxW9RVObYjpRBOsOkp9Nv7ipW1rWwROj/iB//E3/UvyAXbP3NI848+w8fyt4pLh8Ujq7hI1DbsK7xZZFO3NlROjQ+JY1tQrkV7POn0gq2wc6zzyD1kEDLXrysXHBNIgwGHeknuI1C/j6DR2AGjgQopVJM/ckz3lPoDRYDN4IAUBPPuPHOC3984nz0r/k2ju1A3DJIJd+0TwJkJXmYaiJGSxWoSZs/eo968R2+0q9PUhj1SRqYYXDeis5DUCPRknA0Cz0eD0+k9ofACm+1WN9B6XFApGle3xdmg/2U5zMrSe588DwPFY2MJgHmSDlMABb6iUSYivdLdJgeoNVGKUusqMwiTNLYcBREjdlucSS/FSghLVDr2IW9wtZIA7IuR6aC+WSg795e677DEf2O9Mw4uxvhO+e2tXwI+5C46YjEB+ZQe1fhqdFu36mSoZV8YmdsC4Jj0vmTRuE4Q3mzvgWAKSHCZYaIKksaRGQ+8RSG9LD8CgsZzzLZiIQ3gXBWSLpgl0FU8LKdSCM7WoWn00vSUX+xyogTAZ5OnbR2VEQjHu3Lc23AKJ0X7SmjLBQIlR2FRCBYISgYKoLCnnEXVnDFjzxLyBEJ/PyZN+Iy1goVKg861OQszRVo1oPCUIEUxcCygewMSKmEWNYDpoNUzsxHvAW9wm4zzyBRaCqMKVryzlot4MlT+lkvJWyrU5Z3VBDDK6TwWxxVniFFrFt7dJDSAM4DPvTjzbpRCZIM8cP/GKStJ837Li5WcdMqZJm8RNa6EVcVNPlPRcn6qynlwkEaS8cxARPuMf4uxqb0+Sf/qByZ/xHKjR2nnOGoUxwnaROn+IMV+Xl3mtYjcCBf8dqng3+de67syCVJ6Adjy3f+zuQtLCFOfslPaGvdFR5jTIedsTZu9+FGt4/FdHphulviJvlJtoFPzKOoslB+ae2NbpuDKXfPlrr3uMssqmBffxPwhfAtqw6QcX5ZZ9ID9HCE8LS0eW8RDYorHkp19D5J1r8XkL7TaX4++0jCXTq9282e3u6mxw5QLLASoSB43INKsNa8NSzSaJrdFDuDkCie+Z06fwgNdpBRu9TZLP6xGFuX1LObVdNBAH8KOMt0oHtH2903WVD+qR9+nmk5ZQ9+g11YVT47rA9w7IXt0cHKKopOtvJDDNv5rPLIqPzxhHT533pUFkg324ZlUi4ovySvcd5jTdKoM+wlzp4znvxuvU+aKXB0tiUtTPr3pIp/PkbrIHmn76XNVF0kIomUfa5VOvKcIw5zlJar8IhKmflf5l0LnOBU6pVr2V1HmGtPw382/NH8iBt8+JMmIePjEoXXKyjti5wJdnAXpZ3pL2Halj0C4YA8IhtldKCYUrqV67/SG1d4+Y+G91H1at6DJ5AG7wW3fRaGfV54Vjzjtxg93AH4wuopRQ8PVP8H1PofGVN+MB1+9Q5slKRLWuOZVrsEI5y5JpUdsOcctXLK9Jw166GtkChwferMvVpM7+GjR7VwthAVTxx9k5qVpo+od++00nqhdUtrDPunqgEj6dPn5aduAKb8i8Px5/N9yDZMEgAFYwB1AK8FPuX5lDhP8XoioXn4s3yps0GmT5TqibTv5/HMShJ1mnMybA8tRmUAAEAASURBVKgKTZ2dVVMgGrGaQHXEng411V8VgahJQ1GA2GDkiHR8faXIULEQINgUcppqFW5eGOro/R0ONNymM/jSN97pvs0UxE//+Ae7F2+sRjPOIljR4qeipBATXuDwPU4HpdIj8WyXWnu8+sKLe2thdQkSpz6sDONpGDGu62nkFMtkOYXLLFGEluXdd0Eu4UeUx6klf+7gUsmxS7TzkWT7pI8ThrBBNkfLkzYWMNLXeilgRqkgDsJSpXCezsIOVeuLJw6rLCjoXMRtHMsdJc3y8elo0nTS2U6LB/Xh9Jz1Vxae1gFaNhupAtqdX9bJ/ORU7sciKGtVtCbFsgZRLItdfxslntPJZIc7mSjQpYV5hj8osDAPtX5Ql06jybxRAAWEU5H1zR12WgMtk0Ld+wGzLonQUr5JS0QFrHw4TaaWQauUlZV8SedQR6VE60zOioFmKkvmr6VSXhJPL8wVntNY8qpWq1He2cNS4cDAg/Y24TsVqFjXoLG8OS7/W5HAtQKMG6sRXk4LWqfmb/3IO1rB3EGlgnqJ0Tuox3Knsu2t3Y+4UNSptut04vKVliSnSg8Jzzkr0Ma1WyeUb5/wKXG2vinrof6WCX7++Y+/0L10bZHzlVgQzMLb3/+zO1xNwSj2kGmqcY4cGLvaPTy/FpzlowMPDMyt8/A+8PxZ75Y17VSSylRxhvFrLlHlOfgCfU+dT1pIV2muAB6mDdjUdZJb6boe3AxrjG5132bN1hFtDAWPBeo/9Pxy94lXr3UL1IEGxS9842739TdRFKEFdo7gon3TM7n3oLc8fgJBvVrBeoEzOReLDKCRXYE66iK0f2+HzR5rd7ovfudm95kfrl2xr9xgoTbrkL72vXfZXbbH9Pw89+Jx/hTJ5RvrzjYifezsM/iBLA4QohyTvzsLZccMWiifFirpcUhH6G5cufSc9hDXl18ab7JDUD5pU+NuBgkRk7ranAvLY6ms1IO/kq+REhbI1n3blFevWA+Gqm/4SpXmG/2uqpHEUZLYSeuibvnu/vpuNqKYImsILSuAOdHgggsbCJdM5BUVSWncnJdBP3eFw1BZU7XPqe9BhvykG5ve8tn4Cwh9sno2fwD6P6E+n9WJW/iYBA1WSXbhF48npyLQU8Eaf58NO2Moe8oW07nppOCYxEwCjffC21mFeQaF5qlsUgY4lebRNhDIwsscgUOF885wzG9pKESzAajtMm9++/Oz4cp74hqhdxW7YdGoWepMQBqPF0GIl1Z35U5g4+87TeT7uD6HPPzTQ+1fG60DMsrtk6AsWw/lsUDr4zGvYQ5PBjyzj0D7HH08PfMfCO2ZlSRP6D1BA/VgLHdmKSxKAy1Tq0xkxaoQWBETdg7gaIdrVdmA7BxVTjIN0dfINiNDG76HErrrwwWOCimF0J0Hm1xT8SA3kW8gRKwIOzdN1x/h5GcXYauwaJ2RcVUaPAhRWoSRie/Iz4yzRRbEVCRUNsTXi0y1PcAzce6Sk4HE2Wkiy2KnZzlPCLMTT6dC+n12g6iALWCVOOMMlCiPlh+8DzzwjrQHHkJpQ8BFgACnOj9EJWlVJyyP9LDT1R2RfzWQipN1HlgdXDujAEo8y0BHjwEkvDqL0LfQKjLVkIoCUR7AyU4KgxR0YrqNTtfO2jM1LFdTem2kTt3J3wrGA4Ss7drOAd2BfGq9jcLff4iA0Mr0TgkpwIWn8hNllHh+ezDaJOsyLGcUQeBqUTxk9420Nn6NzllkyuXGE0w5uTDTfCY58FA8rVc74RSyr0PryD5SbSp5g5PKDyQtnCmDvKECfIq1aRLlTN5oW8q1EqRsxLODc5rUDkprTps2kG92sFqoDFoP5pdp03AYBg0EqBZAaa4VzJG6ZbfOz89pI7QBnQqbXHCsCZG0KoLWo2SlR+/Lf869bdvckr7POU+MOsnMawcmUZTGp6E4eaQNWSfQVQXE6Z1z+FMFT8X5CBItwAt7wL7PSejS1etXbl6e69bubXL1AAd0ns91W90qGTvNWP9C18KmZ59UOHGkuXWNo+wRhKkG/uBpe5YXio+MVK7FC9/hBer8AMALqFcefX4tjc99bEMH41e6q5fuJi8tti9c5QRy2oqWzG0GDirZLibPpcbAVXGVuMqkPQdX4os/LTl00qo5zXqkCc1JODu5GfwWgXl2stH9kz/e7l6/jQJzdgfFYL97Dqu2PAcYprze7X78tee5J26p6hScVXrkW4LT1tc5DNFFt3UsBEsSkAdS1TONPFh0BuXuI6/cjOzYp65I9UTJbXu1IaQGbMaSd5MJZQFrS5W2a76POy2UKqdG9ZcjK5Qv8I9tuPkP0gGkZLV1UkpLlCDyjFKAJ8nTHuRBp/jOWbe3fyRfF1oNVraA04bNR/4sV1hqIX+da4bWadc609qMlK0f/cCt4GB7edgfZOtZTcoTocgnjQCjecpb4S+DR1zFLw/TBxMStmdgKdzieAoUqpas7eP1oe2hr4Omfc5FyxqzZFKyIoKSiJFLPSz7GGWKlmqntCyClkXl3jjl1Ioz1p+yLb2Ooc8ZNJ9jk4FxdA4ODDN9wFYJEibG/nSGVbjxKsSyJDwNs8Ws+JXGRNY9P2iRu9ZAsnC1P7cfK+DiLgR/7W97S9XEv0IGZKXEo2F9lJHH4+FPxn7SZ5hcXN4vvPAcxr3w9n0DL8R86sczK0l20pNUnI33PSw7Hkyo8/C1m6sqKx5WdpLrJ9YR0AoSOxevXXD769eZh1c5ecj5H/e4pduKlcG+/vq9CB7Xc2wzcrfT0d/GssLONBvUh165nkMLn792GSb0klxOb3YUD8Ws4DR4GNAdW+Jnp0ryagBWvOtMIFStDxJrVCTiabHwlmZh8p+TizFpqxzARXaWmrwzDgRXG6aKUuQAsHL2EALTeKk6wrUa2DFEMVRgp0ZhRl4mUDKkIYULkyrctZIceVQ8ZVDWq1i5fkFrj3f6SMNT1kBkYTLsoTIZpYu8PCDPs4coJZ2GCpamfgXQNPm4NkllBMGq5Qb8VY7kFWnlaFtlUYVOWquYSszazVHrBGI1An9IGauIRUlnD5AoH2hOwhujUbu2wfqyyfAaJYtMI0eq4ZUVRxz8RZEmvyhJZNA6W0/tdb7eEbth5uA0hvmpNLv7KtOllNsytLVi4qiQ8VA8rzcx5Qm7oNwAYF1W/coztSZJQeTCa/GQF0xv+VQypZX5K+ClnULPMJU2X/STF4SrAm2YUOzIVYWkp35ajtzybxZaK02Xk9WZwjRCBBN5GT/WD8j3lddPuiXin7mTiDRaP1VslmmlZ1qpqGYv+vV6kVPyHqftzaAOoIvTycNn8Ifn1OxxFo6HfO4yrWJ5NrZZnE7ZjlAE3zj5AFYn2g446gr/vi7L67G/ls54FbM9+8+EWQZ/uuKDPhZ5J179IZQ4AVcwk2AQRhl5f/30A92Via1uiem2M5TaHUwO61jDVEJNv8uU0AQ0uEZZlSfycdoM9F13IMEUph3+Au0ok4iTdPLgwdV1qGBltTzBajYP/xxPsJEDpeUbD650/82/92GmjU+6z3/5O1wZcidTfM9xia5XMN3k3jRaXJWNdMo1247tQWV7matkbFfymTj5/oHnr0XZsuN/iIVwmutilFtaV+WTUQoUkYoP7Iy1Bk54eayRQlboif8k/G9bKDcIzKf8qfItyXWlTPgCb7awhKgAsZsReiqnlCfyMl7hQ3nU9YRXmH47ZRTGMUrd6dY6Z/rQHsj/+IQpe491GGREC0LmsLk45U72wVn0VdKGOImLg1Pb7Re/cS/KtfU6zzSU1ibp7eBbHLSk7XI0g+sUe7UpvJwi9H/6otZX++jzlgP7V4lBHCP0fGkKvGwbBqncPN2VAuKAxjsOB450tmthyPdDUuDBf5cqZFoe4IZbFx7BoCxBmKfcQYfIE9NYm2n7pql6AAB1PNlb3gUonm2wTegTTj/RMZ48Kd0ZW5VTg8l7wcm7OMK/4q3s1i9wwVNZqGzUs5ZY9HAauJHPgO2/zbuGXSMReDXOBZxbooZ0i977t6q4kCZx+rpq8X/Q83EAj+f3g9KPhD+zkvTOPU7yJaECSYXHO7u0rKgk3OFKCgWAjOFBbHZokuYNbuV2BG46Gd8XK1CnguKCxboHjrn/57mza3UBRuFcExYu5kRbOh5HqXaYTmGpRKhIrTOCXwOGcQIfkGSThkX0MKPwm9VDwb3IOUIe3GjHqL8i10MUxdmGrNDztGzzE0utLSoZWhgMd92NlhkVrRJUCGkVIfxNW5wAk5KX8GshaHWCjqKdbrJjVEmQPo5QFKoqVSokGrxUbux4FRzTuRIAixUdhcC1gCgEnTnQ0hJLHv6038BTubRM3h4e65aNBbrYebuTRCVMq45CPXVgMSmruGptsYxaJBQISc+7+bijS5x1Uwh468C4lldhbph0cN2ItISVI+AVDLEwMIJ3hKmCp8BzHYcWDhWSM6wtoSXwFFSx3gk6ZQR/cCOpvWcJCfznZulkwOGYznOCjtGpDgfo0syR+yJbno768k7ZYUI3y2TdGcefnYNCST/52TwUGoDKdKY0Y2FbFnyLp3hZLq0FKscGSzP7Ky8RdTRcwt0pxWrMfqv9qfDacZKEclVHqBIvzyRv8rTAtx9e6r6+zTEb117rdic5j+fw3W7heI2FtrvdDAJ6/HQ3p+JqRVEgbVC/pygMx9TBGFOjHk63Ly0YgLyhsk/eKl+PNva7PaapJ1Fqv3dyq7t/ihUJ1HR2GRFK9ac8B39BTNo3RwHEX9c/6j2RKmLVuZ0ldSf/gKt+zXqXBEUJXkeBV4h/91hR9B0UpU+Mfbubg5fffutRt4U16ebqPMrfUXePG+In2LxxQD24iPsU+E417qMYknG3Qps9pz44CL2bZWAyTn0cji10u2xfvD/Gadrj17t91nPtzt/ojqdvdEecTzR5fIeDW+e7H/vgSvdjr93qvoIl2zp97upyaO1mEfnF+oqcg66WSZ5Vtji1JU1sL/K8MkIev8rWeRUSeVylWzhb7NI9UBaOODtSFXceg/Yg04dC/LG+IxvgRQ+eHbiqjuRvbeqImvY+P+O3bVClfxwrGR19fOqP5yJR+2lXllW3hTKNhpTjAlQEtXQsTdHeoe0EJ9Gfc5r8OVf8nG5vMp3Zw6NdX/LY+Szq7uvUR9ApBSHA/YO/dJqhzeiknWv0bJ9ON971xHgi2N48j+7568vpI2zvLrPwBgHbdrAVfp9dgF3408uoJ8JFoE9HPkFxJF37HiYbvpmXclP6JmPqvvhdKjZXfvK9gzbL6n1osEO+rVHl9CTCWLmfelf+U/HKUetZP4ob2u8zIyFOwvE4juAnTMJVmqKAAdv2pvO7lN4avMWz/QG28HVtYX8sjvZdOGW68Ksv0pplX6A8H5YuEfs/o76+t9+AqAIbjWS6Pn9f41Kgem1RLZsuD8tan3m2OL1XPZpnizgS/zGv1NeFtM/48cxK0n/03/5aOpx0phA2SgUIKgDsaNMhwvTt5GkVIC83tcNVMbnMNtwFGD9TBRBLRnD9jVM8Vm7W8sAomrqtHNd3WKkxVdLZFX1pQIzEYy2AMWRShZbpHbl7NL4doBW9RL5RYvjWAhHrDpmqYato2Ez3GSnJGtI5CgyCylG/AomiAN8FnjUtcs67mrVKmeVRwck9WCBmp+m0EVGCk6Mg8S2FyM7UUZ7KxkQUOTtua90F1dKzrtAwTrHkDuZ7F02raNVZOmJYFqDzzH1Bd8pubK1Ul9D8xcc8ZsnDVqlFzE6S46xTdqdnpLGKgXVng1VhsFx2aLYzGXQWWtnRq+xZD9LVurRRazp2Kk66Gz4zybk8CC/p4CjJjkGBq1LoVJAKxmEWwzqlxGJirBs2eGnjiDkdKfmKppZE11tZHpW6jLqIN41C4Zom1+TAPFn3Ja9lihI/OwHxOaJ8lm1zq3Y/WhjxdUQuH1kH6bQhvEJZ3hARyJbyOVUnH2kSd+2YO1Kkp5dGSn15YRzmidWOd4+GyM5KaOXRC9u73HEFDuEPQHua8Dw7qty9aGUXL/iuQKrdRnZU+qg0re/Qke7e6w6nrnJI5BL5LaOAu6NqOjRARQA/zrk5foBlZB+lgc7/4Ro4cL8deE6cbHeXjjbDFw/eWO/2OItHhXIfa9LxyQQWpOe6bx6/RH1X51BlInNf+JOLa3mTlvxPHelvsPS2wfhIAJ6xhPXfXkSsQpuFvpRVWqt95eRvSmhdBy5hwrP+5RGfvPETkC4Au7vnN7AWdd3Hjr7bnTBdc7i22d2Fn7axyJyiHM9wAe8RU9xHyovpa7UMYJqpuKtXuodnN4DDYO3SXLdzibOHMLMdjC9gDSV+FshSEGMccqL7zjucy4aShBnkztpJ99GXa6r0Jz78YrCKFRGU3NWp8ylPqCx5mGgGXPC97VRnHdsuzugYiZa2DstCvyrl6lId+HpvbSIwjJ+pZHj1kINvJXBgAOtIq3NzEMr766Bwz08GSKvHXAhrh0z6ESunfG1027fvs8g4n8qWDBiglwMAO80ZInlUxjiwWPdPm6Qzhte1FmFqp22C1wSWI+o8MFCexqM41S0A5tGc7a51zM3Pp8eclKsyiLbyyKeCyMX3TmV7gKYxlFOxbPOu1XuC/B9u7ZiiCGsyfrqCyEvvEZ7tQ4p/yQskgxv+4e2ED5L0QAaQgFmy1mjCUF7VeylFxqzseOvrUNziJw0IV2zXGl0GpCxotT0Y17T+/OvTqpqC3vLFyUnPTwIATvCQSLQtI7f6HB7jorWK/ACiSmUW8mhmN+BT+z77G8tOUJ7Ka9+DD09pIw4tvFkZRaG5wlQfY+mEWc+C0/yHMYoYxixnjGGs3pOHslEX8vDeF3WQriA8LWWlu/h3GK/lezH82b6eWUmyY7/FyMpGrLZqxzmHIiJBtfx4K7wdnIucrWALqfVFrdXOynVDMqQCdJvpNw9Qs+Nx9GWjURnawwxuR2diRzKhPGkzrwv1zFsnyzrasEMSnnqzpnQJIT7eAVZrBDQra8lipInQUSGz0rVq+S6rJD15pFMmzMWGuUsM3NCPwE/LkR0sHT4eU5iFtTTIXCd2rOR3KXjpJ/MrpISMUtMrNNVxosiR3nLOsjC3lBWVARQ9fmUq1xA/xk6TuewGC21QHJz2s1P3UlKFXwQx5FFg1JRaKSfi5EjliKm4jChUumB6t75LW/NXwLtOQkXJHWpOX9hwzENaiat3LeW4BN5zXQk4z6tg8ZTGllGN0N0w0maBHSyeW7VHXUovhZr52Rhn3CFH52KnoSKjqX2ezttalB+MryJxed6ySX8sPHzPczGsl79qcRvDImCmsYjxZFAFb9VOODtrhbVWJEDy8xDAqW4DU/0cdWyZnQYVjgdUWj6tash+aE586twF7irHrutxF6c7ohQdB9SfU3ia/YWr5VKlaQv+vYQwcupkH3yzY4i8PQcEEvLN1B/5+FS4S2vxcyecU7buyJTmC6S3c1CIfef2NqNqeGxf4W9xKaf1wvSh98Hdj7RA2WB92til+e5o7qB7b/xHEbisf0ARRLVllx3KCvUiD80e3WHhO7hwN7B3lnlat2f2LLL+wYHG3h73Y+1x9YVzdTjbCFkSR2VfQtLupD1v1mcsJ4lozGCY+P6xQxXfEpCE9kzijizhxF9AOAVsoKO8SwPbIzEIAWsqRoVfEf8uSuLm2MvdChfZXoKXuAWQdTHUGZ3y8cwNlG/WAak8T3J8NHAWJrnXbua0u7eFtZj1bt5pd3J8jz4Xmpzf5adcgZ7UR2jLLkwioVQyaIAvH2w5RckFy9SZODvlajm0CMqjW1g6HDxJnz0UYEmQU+7Bn2qs9kQ9W5KchUVi26O7bj2N3sHkGGU+gAc/wKXOf/vfWCauhCIe6eQ3edMOzuku67E562OaXbDyl1NeTzjB9C4QKapb7AVvGfylDnixrUh3w2LNoP06eJrluqAcKIkMs13OMqBdQU5N8zR/r1FxV5YnijutAnR2vTHAxd8jGHLNBjBHnXCUb+qQkDrO2lZ+GiaMUYeXDDJwDZx09Cfazdkf2Uqf7pQJVW7DA9enFAe+lG2d74UMjYwboqB8ou+CJvYT/JdsA1flkxr8k48JrFqjDYKf/skc7eQS52k5mDG9sllItm+S5Zmo5Vv1Qhx5xvqS71p4sIOPJZ58qTWz2quJC2ZlwjcuiiywxrAMRGEijW3ONbHibBniWqH5FkfxTh2Rl+WKXyK2N+PVe0sqUX0XpE9pPJKw9wyQwR+jPJsbjWm+j3/j1VDjpYU2L8vQ/J4tv2GsZ1aS/uYvfBJr0FwEv5WniU8ylVnRSofpIbodiZ2CDc84CgAbVhGuCO9OLQWvI3qRN45z5NRiRmUqQ+7uslBWsk/XdNjpOGo701hCDWiZsQOTSVRyxjWv866CdQnhphxUuVAIugbIkb64BT44ibvTT9M0ds3hWQwKolppNFG75sfOQTP5IcJ2HmWg4Jk/u5lQ9ByJubvtgA5FZhaWCpxTWyosO24vhxZpGDBorGA8VS4m6PBkxC3M2QoM4Uk3rTda5NydZWPznB6njmysdtqygBRX+OxAp2NGHPrVKbt0lsBQKIqLtIgFhAycqnF8qkVC/c0RyAzl1KLmgYouONyMQsCIkk7C9RTeVZepKdLayGaIR2Ypr+X08EPTa6madkecCoJnq5B/Gg31cegZLUzb6RXEeREvLU2ei6TQzuJ7/FWyNVF73YvTebGcEW49OBKzflWWFLTm78jeeovyTnp5cJdwuUZabkPbMYSUljnXrFlv0sxps0UWSMuDxpEP7KTBILzjrdiXsXxpkXNR8Lx1Cg3e45DCOeBq2TL2rhsP+NZqN2cHqnUI+gQ3rA22i0vUnZ1xdi5hAXHnmx3UERHtvOfgk71DEjUHjmVpoWzwwDQCTnxpIJC+LAz3H7Gg/HSbXUIMDwZJewFHnvIDYEKf87Na4W/5zigvJ8JEeQCF8IA4mp/V05Qk31lTHqefrrIpz/ztwxPY/5FfU/ejnv27ddM6aDMzufUJMZJG/vDEbHOyBNhjuwfctWadjXHeU2HA4qLdNxKeeJwFJaBLs1vd/V3a53ETaSjE+MNKTHnawZYSYpnNJ50LL8ohT2f+0rc3ul/6zC7W7toSr/zR4mJ/hNBgIDCFdbrOZnN7vbQ1jum1vrqzVUUmgxnwtr7MR/6sKVLlSlFQy/ZK3wFafnQiimD7RR7S72cAQ56JHVyBQ/s9R8FyGvX9nDg156Ar9AGudHcwZVLlqIDlRXnLNOKYGYF0nMgN2vwLL1yPglNISDOVb9r/LufWMUWWb/hCbI42WYqRE6aJZ332uosYaBGzHoKNT15WaXduMNhG+W3wq8OVCkTiv65/JM0gYgWFtv1r/zAHYyn3OFLhykp3n6UfDo4bXSqPProPKqilGviWxyBv5du9te3wqTRSyVZxTnuEpiqt8mf7ZcaiB2ZZzNNy+BS0A37bh3Lf72SXF+qCelLGOrC130scwnynecYJK+1LP4VpX7iKr9GglKAMPslZHjRn+zpEVMHQsw+zXxL30IKn+MEOwdl1uw6eTauraOQpRJL404mPPNZ/pt/TL3ArSv1tEfjKKwBGvBJHzJJ5vtqfcIW5PhmYBMZrLwVR/uxLYWDc43k1/x/0bBLlB8Wjo/BSR0d6VjTMj7CXeF56aoVAoxDF83DssByVu3vMBujuI9ePuLsIX0a4jEjogG1QNcJjCkRhAhw7rJx9RLy2ricVoJCjsxGejKo1xIXil4Bb28mxrNCRycC7wHZUbiVGgCHt7bSEJ34e6OeobYWb5p3j39nfy+nes+DpdJ+L2ewYnOaJ8sCR/gecZOz4KacBU1jhOUUzjnBI+fGz3Ao9UMA8HU2u8yA4md2j6lUOrSjTaUkjKoIRq8n8fJQL6QW7IZhR8og4RefoGi9pO491RFbJGVCBAr2BO8WUl/P1M8Ij44x0MVW7A1ArigqoN0/bKasoSGeVTa05nguj4qFC5FTCNtYFeU18zdPfNrCK4RlVA+P4ACWMfFQGVA5UZJzGUoDYQbj2SwVoBvqp3LlE2PuvDLP+2913Kh4zWMKkmesRckAlSpudqBYt0KT+rPMytYNSKYsoM6fc+WTj1jIlP9SCbneaQVwiKmTcmq/JfoFy2lhtMq6pyvQhT6dmFQjSR0VRehzaE+Esi/U8E35DMUPB8aRmO5p5Rtd2YmMcJLkF3bWWqIySJBYA6a/CuEd9KzA9C0n+UPiJq3nIO+JkuFNRLju7v6ngkccoqGVQKtLQrQPbygLbisWriYvjc+7FmuQUe64hac7URMf5V3jUpYoVeMfH8h7sdgcoHOalYPWMJMtQo1vzzn/SV3uLYgMS1ovwhNP+5pX4vWfgORiJ4pPAQVBFsr0buYCUn0DTq/o0jJ8wcQHdfxs6LN8gSuL5Z4KF+senNTgoT2mowFcRsKx2bk3cCbkQz+AJen/lu/e6X/v8fveLf/ljQUOL4ha73WpaGSUWuSEOwqm1VqUIq9g4SHCqWf6Qj1X0rW/bmTQ2qyMGUm62kA9hHhR25YzKIe2StA74XKMXKxJRXKYQDMnUqXRvG7ANKfsGrogSvIx70TWK1SDUabNd2u4+P/l9ibO05Md0uEmo5QtZTbL4wX9e5VMddMUbh1fMJ+1dWkK3Y+7I1JJ0jkVTwlncROIhz0g/j7dAFYu3fpGhxLVuRF5M4wgD5CC9vJ5vvAjKe+t8qx1UsgAYIYBt/M131xJfWRaij+ZjMjMlKMngD1395aX/bpi1NiB9PBV71NmHxQJK4ks9TcLj5GtZUz4e9pnibnvWGzYiSB5tGaOs2E6B08rW8PFpPdj+k5B4RhRexRVIHwceYpQZf/k/MOAxVHHkWMl08XJgULyJp0j4A54P68U2HNhkOabpfsQZRyc8klS88kr5LNsTjniPuyZv9Tc4YPt4F6NL0Ys+fewByEH6+PhVv1a0x+MPEj7DS5MaPzgq1Nin0XtGzRQjpstsK3b6wNufJ7EgTDANMU7HN4e1Rd638530kDqJrrKkJ36x+FDZ0U4J9AJMp62OaWgnXK/g5YCabk/oZEhAx1pWAt8VLpOYd11UPYFgubpM5wvMm5yVdI6ZfpLO3oXUNhKtCApAOyEtMI6cxEOntUNh5zTXNut/Dg8PuwMUpd3tnW7WDo71AcacoUy5/BLhpKBSOKiIHRHfKRnXQ1l5U5adsu4D/4Xnr4LHTDcLHWToJtRqjYqCSQxk+MJHPBSeChPhO/LaVzhzztLW5mZ3HWuTiz2tctuI62Asl6MlYZwwXeJ5OsIIsakn13pFkIOd06IT1M8M0yxz7MJxfcH8AlOjSjPiakmhC+G7LDVav9IICLMRZb1L6gsLCLgdHdIx73EZ59pacPT6GGmrwNfE7y4rhYoN7ZCwMZURhLG8ssjVCrl/DdgS2Lu13Lk0w9SaCtz1m9e7GaY8ZukgVPDE0foTXk2Z2TBLWKiwyWMqnNaNxTm3wwK3zUfr3YP37rPri/UolM8D7bQ2baAQW19eHuzp4godrX+TWO12WeuigrzENR9HmB9efOXFbvnK5W56dpZyaREyb/PBChZ83IGH1QpFbI6Fq9ZjHMQTbjo0kHr44GF3753b3ZgL98HRKVJ5K4ozfiruBxyEdMCgwwg1AipQrWFbH3vkM0s+KqjyzzE4LrBz64IDfoDHsz4Ggm7gRznge2FWavnOBefG5wcO+psu4cbzl/T6y2uDjwrov1VGAqMPNrCw6D0GCRuA0Wf/TgdgmoLTwvv07/NQOVE2QPkkM5t0xjQJuwvrRmUcqqcOBCNfnWoq47/15S0m/9P/+eXu/sP1KErXWMjtcgLbmjfWOz2vQq3F2XYnz+0wUIic4fuIqWfbeiySIOAGE9u0ipnyxkEKmUK7siRaMjeKKIBPsN6Ou5tPxKG/SnSbBpXetuVtZFOsFP30qGWIqySB27x8lryqunKKfp4BrvhFaYRvLYftUpjxo3NtdG9Pj+OIg3Ti7T8rX/5Hz/KrO+PIiubk7yglyjgCX33+Snedtvan377TopicTpfdcwsoobS55tLhk16YyYsXhs2QIxyMb2FVMfpUejXv3ksAegnHPw7KXfKhGyxwFlFdItXr42DKtyKVskGMRBomsiyuXXSjgC5KB5FOgJ/1eeIOzS2DakrDzG7okibO/NdfmD51Pql1cfRVwWZ66ql4SHoIt6I6mBY/XfBMXtRpBZu08pf/iBZ+gh+UXQaaMnzHt3jSy2I9MoeiFyxc2Aknvq2cPPvvpBeHEk3gYeof4IiedESTr1Km0SSPgYgldDT8z/FuGf09BvKZITyzkvTaxz7WXeZgsChENJ6cNIxiYMO3obluJBYkGEbh4ByyisQBZ0ycMIo6VhFB+dhi5IFHt4ECwDiZjvaYDqDOSlK50TrktNYKV1XPMd1xgCC7cnmZs2MYSaOczbrLAoVIZcj1MlZ01XfPNVDDtTOaCcVDbXefhrzNLhYv090j/0O+j+nAte5sYz523cI8nZX3yHlcgSb0M75lTKewnPrSupSRAkrLKgrHMjhNztqhsw2bjtQwaWKaUhAhLczid5nPS7u3omRFz+7ZYvHh5sYmjYzdeizCPTzY79ZREhGlSavst+FZHm8fd5pJAR1hBRwtDO4uJDgd3zjK0DgK2wrrw5a5tHMWC9Viniq0KD82CmBm1Arza0FydOQvLNTnlzlwlAoVokdrj1ikudOtr7EYeGeH+/f2qZ8pbgfnnbpSGFtnKh4kAVadxaRAyl095KlFya3sDHDS0F3HsMhps1euXe2mUIpU3hYW5lOfWqGIFHwihMBJL3krjdhGaxnI18sgL3HM/+7WRnew+ajbAMf9fQ7C45obp0pgTIQ50yHgm1PHqVuVyj1OntYS6do4lcjL0OiAunr+ymq3euMaytFK+FxrgtaALNTNzBk1Z/7BTu5l6kBcSauAkg+1AMnnu+t3u521B92jhw+irGntXOfYDPnIaU0tDdanAvP2A07LdjqySRlysKw6y+qrCr6L5J0K0XJmXKdRXbjuzpehE7vCsegngBbqS4UnjoWBP5urTrC+LJtOGAJoICp1/5WPIbzaNaPgHfqZetRFLAO0YrR47TmC6lNhXMSiwZ0c12KqRa3KIvRBPSmX+o6q0dTCtNGx5bNNuRD/r//Cz3T/5He+QH1sdv/hL322e045h8Kigr7rmjJotYpcEo6Dviu8y++PqFeVAwW5Co9EU5mVak61OVWrwq+iq4xQ+XIQ4EDxBB6wjfM/eNp5ZT0ffCVV5Cnlh7zuWs8cI9IK/tSnvEPbhv9dYyTfWEYVpUWulRKm8A5R/LSCqID5I/fgkVOfieXAwHTCql/xgPg4lTeOluSxAAIkSpzlcLDkQE73wReudh+4ttx98Zvv5Ns/wpyCX1dodwz54i98AREUV/Ukbw95UyRaPnauw9gkaQF9+oaTcM1vGNeI1U5Nk2R9pj5a/gFjWv0KgD1VHyGpKkpwgqOpd7EzvnkaQ+UpChr9l/4OjeyhfHf3I1xXH0S25Yto8jOOL7rAhw7QtekdpVjgRyQHO7a5UInvTHWSzHw88qbFFXysUMRVIc6VVsBO2QiTr6FKeNj+slmReE15RMd6D8I8aU7BMeWzwAkDjvimzsrD9L71wfXOh0l09Wyh5ff43z7qAMbwRQDGfjx9n6uP/tVY/3/cMytJt156hRG/6wNAC4rZsPbpZLwmQcvKAQeGHbmYkgWTRyhGW1uY9WOhYbdROk6n65wSorPTwkTF2DEu0EE6VaQCtLi4QDgCxR+dup2B7JcKooJLGaPkVIQLsxWE7lhxq6oKzxGWKHeJ7GxvB5dxziDao2PZ3d1HOduN5Uez+TJTUfNYe/ZRVOwA94B1hOI1PTPf3Vpe7eYJ9z6sec54mkPRUAlywaxKRc0p20ExHZeF2TAp71ZVmfP5phG4q+vMtUooZEf8VM4eonDMYM/eQDE6AKdtfo48V7jIV6G5ybedp8LBxewRxtBZy9k2I1UbywIKWqZsFha7Geg36UJcFA0teVE0wNEGIc2mUJpkWukkx/iM0sYoRvq1e820Xll3G1hgDrHEbG1sUH9b6dz3wN1ORo5exkTvwXkuYrW8KnGe1+OUm4usXZO0wfqt8XEEP/G1aC3TkUwzJbm4vNzduHmlW+DajEsqc/1UlmUSR5Xsfawpl1ic7plSKpoNXxd/qsjZqI/hrc11Tl5ff9TtbqyhEG0mbxVyO6ZSnGtqbhHF2hHzOkqTFrMVzw6i/rWWHR6PdfPU9a0Xb3YvvnSTy3RZk0V8LZ1Zz0FeLiQfp949GFKBJA0UJlnoQtnTDvGTvIfw0iOsRg9u3+7u3rmDIs7WferWTs9pjWWmIV0MbAeyCQ21FriuIYqu820SFIiAIz8hNxdKJzOFXk5i5+n6l2Om2qbHufLhpM5eSooA4I04sU6Sf/CEzmbSFAWhBjLxAnw0S3x0Caq3Qi/v7//HrKWQ6ZKPoHXxN7/mUd7f/2/h+/Q4F5Gd4/Lbg1MWcJs7WUjzKnWyjn8rd8ELlnlVqdU6uYeSevMDP9J97peXuv/tf//d7j//7/+P7r/49/8a15JcidxbQA64vkW5p5JDTZFXLfC+eYUT2WkTOyhB1rntT6VcRXwJWeIBuh7+6pRprFFO3YGnvKpF1HVt9jxaB71kOQdmpquzDqQZnRvtIhb5Ud7oyXCBrkQ3hZ2hVa76IwiVpEuXHIB6/x18A/+l7RGuDHJQ64CAeYAk0Gosvzk4EZ4/p/plUPldoOeUq0IKEeVErZ1LhPDAPDJq3Q0eDlpwTsP/9PWbDEhudfsT73S332PwBT1i2SAXcQ0f+Qc3qDc+Q3PiRP3sw4MY8cTPP82byLhqT74NXcFt30+jXQAJMECTcfI2jfHFow9MFHEUb8N8ViEKX6OKk8qMT+vTdYGxPvEdRZBnIW4cZZ2KK1SmAs/hibIqVXrrNBiYlg9pUZlXuLmKh/FCp3zp11DWqqpFswbbsU4ZSL5a+NpuYduEuAAGeawSFQhCiVLmDIP8YXlSJvGNNZJ4JvLH6zDV0I+3i864T3EXvAU0yvvG1w8cfbmQj2FPcaD6F3LPrCR9/U/+DO2YEQK/RxwIOcUCMafKnO6QmDY0dzm5K8PdZcucEbJ8aYHOm30pdOSLCIsZLC8TCHdqFz0Hq4uNikZj469Rg1YTTaxWYjVsD3u0E9/F4nPANNTpMQoY1hZ35rD/JFaiyxynv4WC4ejOxrbFtmfN4K52UxDN0hkdgZM7ra5cvYxAQgEDr2soZQvcDSd+UyiAmSIjb5lIJcgpMpUKFzjLtK7f0Lzpu/ieMCXmSb5axza32IJ9ehgF7QBcPT1afLVoqAzZyXswomukXMNQNVxrs+z43CE4C85aLxxo5HoUcQHPOU5pnQfXWZS2GdZRLSJ4VCwVYDWvqwJZViwFnXjaMVNQ6AgTgbO8ZP3t0kE7rbjNYsv9nc1MB+3hpxnITtXIjpydBlKB3N2lk3cqD7e15RED7q6y43cNCI2UVZlajl0q7VTa6uoSyscyFqL57hpWmSWsNJ7WThWn07BhaXGyqalwuM5M+oqjgl3eoAjg4sja6VAsVtDzvXfvsZ2dm+4316MMyyNRVBE4jnzEwVPCT1CMV1C8N1CUVdhzpxy5wRY5T+gKuF2+dqW79cJN6LqA8svUCXm6JsspJ5U7lUeVNHE8PUXJxE8LVwQK5fQ964pAch2Fbe3e3e7N773e7W1zSCqFc+rwAOukW8GXqTvrt9KXon/kt3xP+pXFqe5bdy2+C3UphD+1T504k3e+fOef7yrUto8daLcys9sv3jZdUuWP8aIsENH3WPGAxX+/ElUeFv5oOkONX398eZpLjAsBQhzJnvQX4zz22ac1RbC7AGv4IW6EXxCOF+GafprzAjaPisestqYg2VFE0KfQF7AzgHgKeHKj/hX6Wnl+8mc+063As//z//qPu//07/5m9+/8wk91P/+pHw7/uHhb66gWIY+rUAkStGtsrnN1hfefuTtWRZutldnVqfVPHFTYbTPy/wyWaS1DKlzjrBVa5UqQTOsrB0FH+O4C1YmjrdIjLzKtTDsfuEaKFI0/jcj4W/fKMfPUWzjZ8ICfgw4tXA5ILIAWCERJlDOnAMXXOzMFL75EAoYyGqswgyiP5ZCfS30qnlSGq4Dl+o0ewT/62lsMopEJTF1uqgjithkQKCf+9U//UPfhv/Sj3SPo9affut394Vff6L755nsMBusA1B5E8vVdNMzJokZKidaIa03GkhpJBSFpQpuKmKKkVJS5969+p4A9BnIEOq8mAMCQy4eAS1Ho8+hTBZ8kqcG8sJOCP8Iwjc5NRY876W/HrKJyRr0gNbLRRiXUsteSfgEJiX/ihrN+dAHdw7fe9ddaFWWG/NI1SEui217axe9aEc3X+MEBPo4cDNiCLX0tmwOBNtXXymKa4NCiBpvhH72r1OVnfA0fDW99xalHPWUT/4F/3oYw3iebip/ULS4wRjPu4TzrQ5o8k3v3re8xEkL5ofEsL8+wCJmLZxHSMzR+rUFLdOJIGRocnSsjlTLhUWi+bbCN6C7izrH/5KpgcvcAvXfW4WjxcWvvEaNwLRsHdN5aqrJmiUXUElDFIFYsrUc0QAXSbtaamH2diXQLi4VrcFia1l1eXelWmBobw3TuHLvWIHHy57RaM0crKNJgIKb42nFn0S2N3zNRtJZtYWlZf7QJrnTcrGHap/O+xBY6F2HeX9+KJcJRowcmanFxxHbKTjLN8KCWBqHRQFpoyXHtjWW4LE2h4TkKyCrXIoyzRmeJ6SgtblqnpCdoDJjHMqtEePaLzclv3zxywIs63WliS3BKbAeL0A5TmwcoclsoGNLYheEKT/FykTQGIuoEIUoab6J31Onid9caWecymBaZzLMrYPkWN6exFpeXuus3rnSLKxz8hvLmGjVxVqi7oJmo4ETFAdtpIcvt9KWLxr3c16k/rWe19RqlBPptYsnawVK0vb7W3bv3ILSnL8mI0wWtdlaujVMhlN4uRNVqKW9MoJSqxGeRPHSeha7z4Hjj+Zvdyip8gGVois4tii9KjHRksw78ipKpchTroOg6FaFiK34KBeux1nBpKV2/d6d76/U3uj2n+uAFFUw7Nq2fLnbP6eHAtGwqxlsoRm69t2G7U1GSLFMOYRqfHCCq9VidoIJHelvpWUtBfNM2pxVzfYdLV9nir8LYQo0TvRh85O0onqQkG/5WOzRc4WobLStePJKXAqpg8GLl/Tlci276iy4QL3oNvgxrKRoEA1saniDfOp08RxBzN4/2j6PToltSBpxl9Susl2c6fAoozUuwm8Y8/ebE82/e737qx1/pXvuRj3f/7udmul/7jf+7+x9+7Qvd2xyK+4uf/dHuEofdaimS71xGMH3IRhKUBeWF9a6y7u+AaWqhyqvG3WLA5CoRO4R9lIU9MnMQZ5jWKZVv09mGdcKaYICis7yWw+l2B5BaGYaucB9+D9/k46lZBq80HK8NErZldmOM+FrgWfJ0kNJoqr870VSipJEycniyNgGkEc9cU6JAao5Xbwjopl2jNzzf6TIW8p/9xAeRjdvdP//GW4k9RTn+7h+/2f0WNy0cTM91H/rQS91PfOSl7l/+9Edyi8OffOud7k+YnvsmBxY/YjZCnKu+zJ6MQIP/PaUaAhefYlb1K871Xspei2eMcsIaxm++PA3AtfyTpzQpkBU4+NtHTgLhmakKiLgrW6zbHm88LMYAP4gP1EAqP2V4AdZXLrCf0gk3/4CRKTqeKoMtPQKMuiSxFWojxyWc1wHPm5Z6bvTwyAkQpK7Jix/cIJj8osDgpwHENZbuylWWl/wQpmUiAnkW7mSIX5xlSHiCe89hsB4qWsrsADJ6n7bRpgcRelhGv59w8ewzMn2L5DsA2+cw4AkIP9DjmZWkn/6rP4s1Yx69SHOyFgqYAMTtoO1gqhD+LSYQRwX0EVqBa5K0qrguyRuPt7G6OCXm4uwxRv4e0Of9OJvcg2SnvYTiJcHcEu+uoj3CcmAhBLVtTmNdeYH1LHNMMx1g4nOazmmdMXBT8fDcGKfFFER2fC7ctlMUZ3G1qqpCtFiVkDsBz7NTpuaYljsnz63NLawWW5k2QQvKmiY7Yhd7y/Q5ERzYVqhl1QTvPLTTT9tM+y2jpMk/jpoUNkuMLA9gNBdNq0xcmkYRYu3QKkqceC9QFoWg8Oy8FKAKMAWmilQoS3526vBq4mgatVDuVJCWd999j6scmA7DurGDUrSDxcipUYjH/7J+2ECmUSq0hLggFcpkBKjC5T1f1pms5UWfZIUQr0Xw81hEVDRvoBBdvX6Vqb7F7MpjGCIKmZITd/+d2JBQiLTClPVFiot7OBeFiATUh534sVOkKMX3sBSpFJ2Dv+uytL7YsKWb92/ZN3gYqVN+Wvg8W2mRs12OwEnLigpZs/pdYR3EFfC8wkLwhaUlpnb79XLWT8pXPKHCLn7SVgyLLzR3u/ODBqxmhr/CI0ryxqPu7u3b3TbrjDbXOWUeOiZv+HL3gNOeHX2Dl8LF6RW3nt/nCp9VOgtH7ttMyXhZ7hgLBnahq7g4jXdwQgYoYZfG4CFOhm4NeqC4echM9WQJysiQtCpme6Q1ryNhQC9pZrhceUrbUNnTD4/winVFhAhepzy1Gia8gvlrVIWe0eFH+KVPyrdv5YZvw++seYuyJy2H/u3dZ9INg/EZ/ai8hvHFu8+/T9xwaDGdblxj6/9+jlCoDic8R0aiq4JpGstYtGHkSv2Yr+34BOuvVlfUlG5jC8sw4sFrGT74kY92v0yb/k0UpX/0ha91t++tdX/rX/tU96GXrlOHKuUez+DdbLW70OlcB3xzKP7ucHMq3yngBQYE1vku8s/zz5RvtmctnK4bsn17e4FrnrSMSg7X+KnopwB4qBits3kjlqRRcoUmrSbaswhFkWhDtWZQHivLcoG0TZu3g9TzcVt5DXykl2xmR6ty344sqGwIwD9x7EVHdTUiKG83N1haEakhyLHuBU7M/ihXSmmV1om6sv21j36g+y4XlJ/TL8ywC+3HOeX8EMVylRmBn/vJ17qf5eJy7+r87tv3uy9jZfr663e515M1pbShKHiBVvD614sPUBV/W4FO9vfXXOSU5UyAcOpfCx99yiMmNarQAjF0aLBHAPcJ48MfJYv/m6Uk+YIXVO+BFYzGy/VlkiG/Jt+e7gFvBRieJ69EsN2lLMhc23aVy3jBpHA2Df+UZfbfdiTJz/jWJ/+jV5lh7/QH3YQre8e5u8/BcvqUFkk8SKIVVj5r7dNg82tlM7PkNwQfD+uzxTHr+plSOWYU+heY0m9xeX9n5GEEs/HX55q3v+ifZ1aSZhdWooxEoCBkcpEsAkhLwAEj4S0UnyOe+7s7WCucbtpFKy0L0RaLpi1wrhGgYWpJ0szYCKpG6QJad5C4c84pOvvTcywqM4uT3ZWXGcGhdDi/nRuWyd8FsCof5i8BpW6e/NUqob/MaWOxg/LgRKdvzhFsO+C2sc6Fn1z3UIu4WU/AIuo1BJPTJVonJLg7txRMN7hIV2XOiyQnES6a2j2fyRGai3BzyBvxrKL5uUUsWCpy0yhxKkLLmc67zHPMDglmqrVLoEw5alrQ6qRThoHFVyas4w7AGauQ5QqtUHTG6MAfPXqUhdQzrP05OWSx99oGAt6F1NAbnLPzDYJrCXuHaypyUCJ0f/O9jW6Vs66uX1lCiaqFoG45XqdzcGu+UwPzKEcqwucoMVevrbJWB8XoJgopiugE9SO7OrLJOgYUQhuko4tTrVcUI6MU5K51alynU61v2mTqXGXuEdfYbLBQXWVOftESF4ENPzW6u27I3YPrTJ2KvwtCHeE+5HZ2nWe8qKhCRPCa7lZZbL1w+XKm0Wa1aMFHyRcscqQA5Vd5SUNjmkFrlG1K5dvTvqWxSod45+44wtz1tcO9Vev33+vu3X6323f9E7zhGizPUZpCoXEHpGWe4qoLlSL0uVi1hOHtC5fZxdN2U9rp2ODl1SU6BBe7O7K/u0HHzYGRHdPTiLGEW98KaJV87UtV/3IYTnbhVb/jMS1+D1G6qoM1WP8ISo3n4FAJEpLXEn5axfwN26FpKl3FjYIkHtCk/AVWOAziWR7++y0fUNVimzw9CqFwoa0SrksbrdcC1ZfFMPklqSuLejcgIdUGhN2Sm82NJXG6lbN3tIrZ5ktJcjcm15ew0UAa6pewPrEK6snxXhQaLdkOIr7z5gZtmrV1DCBch/Hyaz/U/Vt/g/ZA+f/gi9/o/utf/YPuc//qp7uf+pFXsJhOZopse9tDKN3divUceXdCujm/UdpVnLR4TnBMxyyKVxZkg/0ySjNkzUDAgWH4h3bieXLyrcsWnFoJGcBXPlDR0K/RMWThT6OF8IqgFaK/a+tULEad/uanoqQsn5vFWgqvWj1eF3KGTNtkDdERykuWHeCv5Yis0xHuoaylTgHb1HmzVr467RhnJjgHYZucRG+b82d+4vPKrVWUoQ+B+1h3jWlK4VlG24ZWV+M5iLuFnPoUtLau3nz3UffH33y7+5Nv3eneYR3TI5cINCcCPX+Vl/wPNfAXdhGyQqRf/okj72VR6RWXijIkqjB6CpvFEA4BfX7x79P1Xg1Ki5JklV0p5qqM5pvlDSPoQQJc/gSGCr7Nq/lF2apIKZdFa3lWOWl8qQJoSSp/aQs+rUCf8Ocku2Jh94Qb3TjJFYDmkXZC6CXas3nIx9aBdWJ/6MYeca8BlOUAFhUsXYNHchohV/+dDNs7T9vywKLlNzDEWUePEnjWV/ABRzwG4cYZxh3STH9d6lniEGkUpwr98/19ZiXJDm2Tjm0PS8sB89IqQe4KO3MUS+PewDRq56x51+3WEtHpGhUTrUf0rBCE7xFFYYW5eCQQZmG2NmNZmWQ6Yh6LyiwddRZzW7EUNCa+UEjzXJn+vAoi0yNWDhWvmVchknuBGHltg6eWq03W3uxgEXK9kLvHnLq7g7LgwsSX2aL6nbcfcJQAa6WoBPF2O/dV5tDXSb+0wAFyKA8qLm73vUKD1jm37w67lRWEIR20O+5WHDGyrmhxkQXV4K9FS1OilWV6R4+pZZQPFylnWy5pVIa8xsR5YTssncy4gdLpdN46StABVrfX33qXNUsqB+6KK0FlWbW2KfAcjbr+yZ1nziMvYfk5pX4+/mEWJSMsX3/nYffB5y6nw5Z3phgNqyB5VYgHXGolnEPRWeUS4SWmJ502U/mTEf0pxKSvZZEl992+SzmsD6fQFGwqfCoyzHqHno6AvVV8A6vLHlN+r7/xNjvlmBYDYh2tULekqzx7c71WSa1+KsvCtINf4i62WgfiLshap2Gjvnx5oVtavdzdeI7Lj8F3whE98ctKoJKpAq/lCJrFMlRHQijatXIdOAVBwVQA6uBK8qEsNsjTo30WsT/ovvKVr3dTWBe9M8zyy2OO9u0MPBlaxV5ri0KCxhALl3x7wLEGTEB0V5me2aITlMYeXPnueyqs1BeahPRDJesmFm926wcbKEnQe+4a9cLicfGgjCp1MXmDo3xkHs3lmw+vqzh69MVu60hLqTVV9ZVKy0cvvPqajEAErumNnzRWKO8RWMKo/3gaoLKo+MORpuXrZxx+JVSNwW+Q1lA7evLvhW3i9zjm/cIf0uY/lVgvI7Asl/B9VgcjvvrMzGHdnv0QWfE1krflmqFDXqDuAw5ePWE94yFngWm5FrNLXG9iWzxFNhxjibL55aoh4MLG8M5p9/wrr3Sf+1t/g3x+o/vtP/gX3X/59/6v7nP/yie7n/vkhzPo80gHOw1xcbRtvvfX69R0FXF3dm4xoHJQMU97t52sMUBR6XFqdZrpXHevOm13lUGVbdUdq5JJmJZS2fEugx3heTZMPh7VAABAAElEQVTXqIsVIbEadQwddjYNSj37EGDvYmWCA+B9edsrb+B7rMmIBfiZdZ0bdWbasj06VTKPYrfN0oF3GFBdcCKpE2HgxfnA/3f++Nvd7335u9C02ppl1Or5d/7hF7rPfvzV7ieZZnMX8wrXtSh/7Yzldw9PdaezYKaRwbaFK5eXuh/7oee7v0nbeeveo+4/+Tu/0X2PK2viGg58JGt50gD87TtGHUED2ibcP7gn+FrPFKcvDI+0Ff2f4tKe9E8aH9XuRqMWpEEE8gRLsheDyt9M/DAvHw03ofjet1ffejCGJGYBGQQktnEQTpaZTiHxBOPVYJ647ZwBrYP6EXLldwpOsSz1356yLp9YdvlcWezgTtnuBeIqT/YJ1q3LNy7SsZA0+6c7IeOS/zCub5YvNOTFdc5jtEV1iJ4MBS4aZLAbKJOmGbgUvIB9v7obxH+fl2dWkr78B19IJybFkdkUwpOAa22MZ4Jogck8OMJ+hZH8AgrDw02mz+hsP/ziYtYtTaNMnMHwho2T1nl3dyS1NTW1A8OOlzNoYG7p0vycCzdvOz2oFlOyW9T32c3mbdX7u1vsGONqBxQjd4sc8LPiNANT60x/cYI0UzilCR9x9xX3OaEoXaOBauZdZ63OBJaifWB6iKRzsB7IqOVHGDeur2Z6TwVikt1uKhVaXTzQUAHo2hVHbgo5lQfELGtN3D5egtjKSydMJ6tlAbCUAUsW1iwXwLszbxtlaO3Bg+6YMq1hHdpBUZMISwjXPS1XgoVL5qCpZfFnQ1KIumjyyspcTpl18aPKiibrKycsmEcJun51CSZ32y+jRYSdxwNcw0K0cnklu/hkfvr9vm4lmdeUYDFDMdC6gXqKFYXGBf6aVlWCbVyuM9LMankyGgTfbRSiPawud96+naMNxrDIeJfeMQpTqhG4TlmMcbeZh3nWXVcoNiiBoNFd4Z6/t9/bpBEyeoFXVLQcELvIfmHlcrd68xpnKl2jg5FPtFY46nBhPdNexHW6xAOaqcLwkmu6XHNFG+e7FFcVyawdI38XWjt1ebS70T24e7u7rTJHfb3xxt3uOher2vl56rr97eIKh/ohqGFbcCpBrvVhA2VIgeyVJU6vqNyt0dGo2JFlFoY/ZKu4mwscKLz06svdBz78avfrv8cC+pN9FOur3fLq89DW6a9SYiIk30fCNG/rYG7xRrfEUhDFmQqh13VYPyovCgfX8Dm9o1vAInjt6vXU1Tq7LLeoJ+NcEC5+2W5wCSOtnwpAhWv8zbh3Za5vClSJdtMlZo9Ds0opzYSV/HqYgQtjtHLL46OucMGv/vdB1N8k7Wv++e6IC2yDLuGFVf0dYyepV7GY3o7/bByr0Pwi26PtHqAH1uFLO3cZOCFD4JWtXRbiY6mcnGDw1gY4CJyFxcvdX/83f5FB1fXuV3/9893f+81/3t15sNH98s//ZBQf8XcN4jZTavMMsvxWGVjjlykyMHbn2yMGNwSl/VpPtl+VLAcfFu4hhzU5FWJbdBquuW8z7fRv/2d/P2lz6Gor7IBOlle6V7lbuno2P57tFRzahx1cZFYCkS3U71V4fAPlSb7RQDyhSRQcT2xAybMBGoAZeQnwgBfNU3cMBF+ikPaYNv011iP5G/+Nf5qrrl7jqICf/rEPdj+OEqTV3k0sspfJlMP2D8oYWdj3F68zkEOhvOD6bPtiwPvSVBiFq4/iSehEUEWHYna0/G/JH4cZOA3GhUDSkCjQe9iBE0AVEB4XhxE8Wj5Jm8QF1Ff9CkaLVX7VdIeR5a9oBb1XK2NLZXhAGa29CxqiVlEcnkFLMvOsOjOG/RNWPCRdbOvKSjPhl//ISAwE9pMOiO0fXJpgv3JqPwa/WD81UCXZ464hiH8P9fEY+Q7uvCU6eBQde/5Gxja6Bgh/Et9ylMcAZqUf5pXvQeizvzyzknSANcjOWXNondkDYUB4immw63RcV9nVpCXoHCG/gHLhbrYfpnP2FnSnb7x+QkXHe7zkUhWKKEJUFdPxVFA1AmsL2RIFzI7eM44Oj7GmYL1ysfT6ozVaHgIGBeLQqSamyLzHy8Wwb2MhcputZmLvVZpDufBsmiPWBzglmAoE5nNX3S5sp4mwRBnwEls76nlHpeB52R1aLJzOzjysXFcx+9q7qyxp6ciZSVSKo55J8c6Phb38c8eLo7MsXJ5w6grcYCjX2GiBYtFQ5uI3mDK7/957GBzquAQXLAMu8RYQnE5derbQEspYrl5B2LiNnO4TzBnpwZxaXLRCeUeZp20/eLST6YMZtI1dzNz+5meZekKpW+bevefZtfPcc9dy3IJHMXjqtcczpJFE+2S0bWshFw/aO+UE41O2V1hXLrJ22sFGl+2pShpHiNSva4q2Nta7d2/fjtVrm6lMRxlatRS621ht3D3mERBaHKU9RUvHtcKo5MHGLrhwaSWdxFWmAx+s7/ONUsu6jzMsJK9+6BWm0lTmlrC0OLJUZntQJlNlDqyZPrNhqsDJo26jzkJr8vYfpA9/aepP/RHXcpwzYj3nnq+772LCf/0NrEfcQo6S5yndNvwbq4sIAgQ0/1TYvPdsDVy1fF3DkuXOThUmlRFPNL6OkvqQS1hdh/aQNRReYHsNmte6IMI5Z+z6rRusyXgtB1WqRP/2H73BkQhYT1F0UPNA1Bruf9BY/P3vn3oX9/qKeEDwncx8pLt55XtMBXuBKlenrNE2uKpmRrM6deQxFA5gTO8UprssVUh8HuxrQbXtyVflzC7v8LvWJbpRCeh/ay6067e2BBcrpIRxwxX8HgOmsFVIC0T8A8/sTIKHv0nXxyRwgMEgXrBLGFHG52gLbCpAed04fw0cmxgrgSmW7Sf2/oOTaOt0DfKsChJZqBiP5+43p8Q4KoI1fOsM7K5dYRMK9FGZVbnSqjG3sNR9+i//bKyu//Af/UH3W//vV6Mofe6vfbKzk1/hRPw6oNEbByawHE7F+ryGYmT7z8GzlN0NC8oBrYtOczlgUgF3ik3rks3Q0XnWfkge0tjeHEyUa4StLym1qjJomXSSuB4Wceh6khpW/lIFqib+kG6A6sYYaF6hbZzRftKxIvP2XRNF5Msonftk5dmnlWMBFq5uyEX1HWT618cfKmi3mXq/fX+9+/yffDd0uoms/fDLN7rPfPyD3cdevcV0nEqTVxcx6KHutDgpo82v5SncwTvoSOtrWNIfYNGz/oq/HMQx9KEMFVe5zTu/lKAHgCgfut7P9KaqQQd5kUbXqFbM3tMhQS18GFcYyrzHnbDEwyDLqPM9OPOURronkqYttLJU+ausxCWJwZEXYBlDATBEW2iBVRHaF6268snhmMgQATQcChipII7TdtoB9pGHysZp5K0K/d6ehwmzyUpFKbiZYf/j8YSr7IKjimrhSiyQNKiBENcBGF6a/5PwkqovXMBUFABIQsteBX8i5Q/0aNLlB0acX7kSa8qNG1dRgJhHZrR+CeJ4T5gj+DIfh/wwprswuoxGJpmPn7rEnUbHLtxFe0VxcBG158qYJtYNmF+L0A67sc5QGk6YFvPwQqfHPDUZKYFwwZLCu4qJO3tcZ2QH4AjDmZ81FCadSpy7lxRGM2wNniJ8gs5ARqRvRUFaYjsqoyTEitNjM1hUPBhyma3hmn6tcJlKHcBRoK4WVKf/LMUIS4wjvuJfOzJroToKOxuvE5lG2nji9B4Wrjc4/dlDGXddDI61aI4Otc5F0oohrFrMaSUqlHaxRmgdUcF00boLbGvbN1M3WL0svyeR2/EpaD1xW61+c4sF4yh3lmd+ZYWt7quUiYXLpC8TKkKGvGQYrT5auzyTapd1MZPc8H2I5Mv6BCjltR2OdHV2cB4iqmVOy4hrdQ7Yjr/24F63dv8B2+C1SGznAM9llNRFlIw3Udi8GsT8eGTEoTlfBdbGbEfhtNLalmfGoHASxzUId7gnaZnF7Fdu3Oh+7MXnWCDOYZMou5I4ogpl0XVBTpOsbaooYgWi88s5Syg24yhMrhmLEg7u6Zh51uimpgzPmIbcRNn+5jtvdbffegcL5C5rtTgGAjp6KKh4etCk7coza25hdbzLjeTea6clyAW6ayh02aHYK21eqrrGVMSsigr1TqWRN3QCp0V4avXale7Vj3y4W+IUb8stDf7oX9zt3rrLcRVzN6gfLQcKJjpymY9fWVZ4UlcqTvJH/VHAUzZ+dvnHY9foGVa4kY21Aigas1dQ2vCfPn8YRSAdg5FNjZQ5wCKomyTN1euLWEM9uR4LCH7T3Rqd4UbC88d8/JfktAullO8Foo8n3sMkT7yNwGgdk/COJl5h7aGWl1JY5ibgmQAfQhCs2VUZfKetTNyiHbLmBf51j3SNdocoBYY9BZn4z+me2q3o9IC4olADU1zGocHZCZC0Xh+rPLruwhPrab+EH9AGlG/jTM3RqLuf+uzPRVb82m/9bvflb74Nn511v/RXPt79pY++lHbsbjUtiEtMT11mUOMgwOkzZaLWD62OGXkjv5y29XYBjyjRKmlBPYbEjsb4fssnuljSeWYwKfGao5zLyBqGpz0BoJjBF+pDeUa5R5JV8mG9+j1Icka7z2CpYg3+EmFpWoUauoDeOtOwu7xnH0ZSP5HBIOnTX4bxrV9p89bdR/n9P3/4DQa8M93LN1e7f+lHX8nU3A+jPLkGNMUfJn0CtAOY/+pv/2LWmP4hxxD80dfe7O7cZ4cv8E3WyikPuLsr381zJFzA4pUn4SpJurSBvNUfvytaJBTh5a9fyd2+fQSUHDmEa9o6k2gEYF4LrwZrNLS152QTmC0uPiTos08+so8+pkkfaHh+4iDUshI3+OY3KA8R/K71ooncW5js8xgs0x9kAwLtwqUzWk+d8bCfqNgN6vd/Br+Wwgz7xK0cPhu8ot73h/e0UNM/yf9Pi/mk3zMrSZ/5K5/G0sKCQ2DYYP1Xa4I0JatB1ryko6ZZOi7Pq/EwPgs4QeeDhQ6zNgsCsW6ss0bFbf6uufHnOhvXOG2xrsZdS5rwnsfyIVO/+3A7Z4xkMbKVCwJaETRrZ5pP7RZ/t5U7T+q9bCpJIuo5ICpCKnOYT1jcu9zdunUFuer2de/CqvGXCoYjcOE4Qj5CwbIjMy8VJDyjhHjKrC67U8DT0Z7WKRWBQ3Zl7Wz+f7TdWZBf2X0f9gugsTSABrob+47BYGYwK4fkcIbLSBRFSdFmSbFjKZU4Valy2Vkq5Tc/6MVRqvygSqrykKqUX1yVVCpyKbZVjqVYFimJNEVSHJKzcPYN22BHY+kGGvua7+d37u1uYIbUkAkv8O+7nXuW3znnt5/fScDIBBScyZYd/HAWhUhe549lsIW5w9SI+3T+cnx10jbM0Z2sAINM+cbwLdIGUiNmwga7l2I2vB2/mHUJwshWPxPJlMqd5kLNNmwcD2lMsMbY7Dc+Ek1RTGjlHI6KBPrgBpFrh/bBfQgAxksKz5GMVdHcXEzcJ5olDKbZwTRlImFUT89MddNZ1XXo0NGY0sLIhLlbma0OzkdjwqSxcSIar6zwWhZn+5kseWZKvRCn66tWBMZ8wGTIIZZ5AYNBkjZmOFWntd3KtRPdhm2buu1PCTGRtqbPTGrM2s34MfHjafVJharGmfgBgAjEHNQz+pKe2Y/fgxV5SyvAn/brI6ZN295cu3guS/eP1NYltn8xUEzuW7cxiYkdky4GL6pmPl4m5cE4jbbAn1lckPrXvnPGWJy1wSrJS4PJt+l2fIQw6jVHktfS+Bg98MS+bnPiMnHyxtTPRivqeOvdENkrJ7LC72piVp0OzIyDhEXIeUnM1iP52YYHgcYIpmPr3GYV2a/NQ5Lb3fR3vHCqT8Wu0vd3u9Xlc1CF1Uysodhu6690qWP/A9noWXsNgTf3HsbCh5GUPHz54aOe9q/miI20/bPGFs5/F73b3E2r2XDbPhiYIRoNhxai5rXSJ5O1fZNnGRgEqHrOHMv8GOFLjDV+lCEXeZ9nYWzv8um6cjaWt2gzs1LuxvULcb4fyxy8GrjH/zFjY/Hd+MjFZ8kKNAsRHszKt/8spuLuX361e/29o92R+Mj8l7/2me6LWe4uYCkmXfBXgUJpNfSPeXcuYULMbxJ4mcNj2gsq7daHqBvbV5O/CPy04TbTxYxgmOTxT//hr5RP5Ov7T3T/8x9+I/VOO/V7Wn08wk0bCQv74r7rpG0H+ORquC9YNkgOKfqEP+L0w1Le/1xBC4+F9y3tvV/M3yHuF6Nhe33/8fqNxMS5MZpdjNLPPPVA5t19vlFD1snC3BuPMMn94NEHtnS//Yufymq6s9mf73jFZDp0/Gzwqk25AzdF+jN8n9u5y8CmmNX+WfjrgnMbaD7sP/VBfvVdnVt/eILXLS1qvZz/vrRSvkjZVYf+PZzXjsy09roVoog8mPtJlPdSy7/ll+v+ozbfWt7VxMAkpK1P375tdzLKIZHMnPo6tLK8kk9rb6ULwlPPoNv6RjDnZmXgzsD3OAy/o/9kyLc9/Oi/yuiLr8/gmWpbJW/taBVsAqKsVamvgrs+ZZ3qrj2ZT0eg/EmOj80kfefr3w7hok1oEZYRfBIRnw0E3koiQE0TSqPAX+eNbBppgo/lGmKwtPtWiKa4NkxKJ6I1sLJobZy1DWwICeMzLnBPIGCi0LTYZJb2AFG1EzsbfvqiOkP+5URWTE6X0ADjFW+DuUu0W7b1a9GwjMX0A1GeOXkqHdkIMGdpZjDdMRZ/KY5pGJ9V8V9CKBE75pVlMRNhjNSZZFkO4iGSVKFMKosTq2VpBqowBhA0BibcR7QOMQmFMSBdikhNCuSkuS5xpjYsGu0OnZwp2HBwUS5nZswZAs/Hocxr+WZdkCin8ZNx3qSFq6CUqRPny/OpHwR7K0hj0eJsgXE2K7Gi9QBv39NA2QBX/dUXQ8dnaXNiBgXfVzRqhF+/CSVAqjkdxmciGij9ShOn3afOztQ+d1bBLc1s0zd2Q4dEjAXMjiX5F6MNpIFiViWBr0uYA6tZDhw7010Pc7hi+Vi3IchOFGyMj/6biaNztLdhqm+kvmGk89u1ZSJjwcqtDPWMq+kgTIzt+Syp3xwGGvFgLr1JxYvwBOZgY7LwS+IQjwFcnbGzbdPa7mS2mjCGMDscrjFXK8JAWXE0EdheiDnBc5KVIJTU+vrRfm8QgLhL9k6DWCv6eaq1JOUdjYnXKq4Hd6wreFYcnfS1rXXCudR4Ofr+oe70keNZRn4+9TTlbCq8tDtz/FIYlJjGAofrVyNJm9owT/qAxqT8v6JhagwSjRLtUmOU+C55PmJVVbS69uer8By5ru+TD41JPkp5TZneiG4QXNrQlv/7tmkWkyhlpuwcA0LscSXwt+dVfuq2ANe0L9p7f+df5Wrups9Z0+qZP5l1cxm1+yFjyM/7Wh0X2BpjLVQHyTW/fMcUpl+ar1UYovSb9LUXZPpPoFeCj/4keGGmBt81RGVhvUfuRPC4G9+4MFMvf/uvu3P7E44jfYhRL/NqGBZBQcXtsTLtRszHEK5xrB+l+V//1bcypq92P//MQyUUgLiVplPnL9aKUg77S6Px8e3l4KS10TBtzSIJMdjOhVkyXow/wkVrfmu3tmurObRl3ViFkQCdhcd1Y2Y4Fl7f08ohwYK09ei++/tuh68+8jzXlwvf1sM8kNHCzIbnQ9p2P/+0pfV3/pm07bk5fiJ+YH5fj0N4GyN9XvnA/fAdmMHF3BAWZcsaLlV7t0102+Nm8fMJMcBX840Dp7JS7ljhJebOjzrk18ppJHyYF+YP7aTDM2lK61sP5v7UcC5mIum1Yi5trudGYMZyqtsf5sRQpkf9XEtZA8NST1OgWS3TyjO5VdurwslbJsODqp/S88C1q7xvSSpRPavM5NMepX25qE9Sh5ovvmyp5FNlS9IeZ6718Kj8h9zqk7k/VfbcXZ/Xffd98XnaMp67V5c8de/c3ubivkO1h3fw5f8fx8dmkqwQuxjGgx9MKFcNNMT8ciR3HUXinwmhQVgvhHk6HEKlSeNja+JpEXt/HJG1kDYBgRMnBsOFCFuPuDISs00YN68Txv9Odzrmmrb0kI9IwuinzLtlouETczcajPjfpGNWxjdhJASMXwsmhH+K30RCByxJvsviUHYrEmPmSgIURmIPM2IFnpVHZ8/GnykIyHczYSTs+m3bik0x+0CQvlvBIS2BLa9kYs2mPFocjmvhr2LaWlkM0yjuOW2aDvNhuxUaA9sS0GKIwMtxemW0DtrdLWoBBM9cyNLkcCmI9O2ZfBcEv7wYG+p55iSxohZlr6g4DpeKOc7nYSYxiqSgy9HErc+7s1HtQ9TSYtDuxPF8OrDYljbcuHInfhNZUZXyb4QAYO5mZ8MUJu35SKyQCWbm2lXmQRMySBxzk44Sx4r252aeTSUgJfMYoiweFE0N5nBlaUbi+5LyaRVn47wsRMK2mDSnoxUUI8Yy4KNxwiaB68NNicTOGXM62qTxEB6aMgq6q1l1tGRNNH8Z1xjmo0dj9kmdMG26teoWbePimPqOHjtVZkETQB6zMbUeOj4dxip7walL4LB0kTrGmfbGou5g8rZAQF/fTv0w4xjgmnEZk22C5yJtpfLHIAHnbDQBtHo26pxNe6/GR4qGb1s2d87r2tB4Z5DvpSBZzA9m0fiqbSViFhwJchEv64KVQsn7ZnyDFt2OP4WiwtxZsYGHwdoZ04h8oeO8d5AKF/EVUljQYos/BSF6kDEYOIkZxgTtE9Ik9X5peDPWBC5kboQsqsw+X4y4EBWDczBmIsnmDvkXIi1iQBhpyBNMlPuhI4/U2/vyDWsJq83SzmfdruTgKqV4Xd/Vue78mf/C9T0lqktSRNdZ9Zqrm89wYGBW5Uul3s6IjPcNZuau+taR55z/zQUa0dXL0/dhXEbTz4vzfGNWsGL6XVupezaBEVcF16n7IzuzzU5w1p99++3q9z/4ykvRVpzo/sFvfi6MfIQMuIDGO3gFfFeFYb+b9OKHLc6ctDE2H7tVYf6VT3NuHHFcngrjpB0EDf28LuYMAoo5yWXgeASmapS2alv7k/M90Gq39b5a2/8ZHvRpnYZHUgzX9Xy46T9deFK/4ARVaH8Wvuy6B2Iq2xQB75X3j2eeN9P9fOYt7ZD7MBbu6+35DPuqetD6dK4H59OoeP4TBgmJ3DlYJaSnExbvbjS4fyLWhEd3b+5+64tPBn9e6t5K4Mr/889e7F585+i91WsNq35QT2OtNfV+E9l85Yq5mKvjUNd7s1UV7a15rVrJVx2HcdvzX/WsjfYG3qHFVa17Wt3KL8ZN3rmFA5qpb0iYElPGcEhT+Q1n9WlPVK+0TgQBNZduKLNKyh9ZVW7qnpf1XOaV8dydJ/ce9ZGyCcXNamLMl1tG6FNlPJ/bPd/61BSfO3LdcOPck7qodOoEueLd8Bh1DOf+9mOePjaTtCKIdVGI1ro4os5YdZWGYAJw5SQgexdlpod4hQjkvGfb+hD0EOk45jEtAcSaEHkIB0NRK4SCiEhQzF22fsChi8khPhEtyPRszB6BglD3YvhgCpRTQdcgoBA8MqQVWFaikdZOnYvzbWBxOZI5xITIWp5PS2Oiiho6Ep+qE2dmqz85pV4tbRBtkgi50Uyk82x2eyMTjVaFNsiEQ/wMGfvBRS4tbQg/povR6FxjIos0Px3tx5qxtpzVJrsYyWJOgihFr/Y9SdJENilWhnFYETPa0phWbDHCGf5oNA5bOJfn2uoxjshX+FwlPcbSxBe48Fwk19oyIwPBVgG0ReUwnTwPnZzOfRjMSL6cusejKZMvSXgy7aexo2XbECd1WiuaF4PrYuqPsN4Mc0fT1vZ5yoa0Y1k5FhhyvJYHZk+wOtKa/hE8bySSMobWSi8DtMyw6Xt9iRE1Lt754HS0M2I5YdxAUWypMGNhvKwsMh5sC2K138rspWfis4mXFiz1sb3D4tQb86LN57L57vqo1UdGLtbS4E3rE5wzcLqYNODHfwtCOjp1PvtwrY+2JVq3lLUiedHwMXtog+jXR+K3wNlc+TRHGGJMMzjr/xHOrGFkLhIAksb4Mz4xVlcDGwysqNur4yyP0eeUeybxZswDsZUIEmI72dB5ecIT2BevEFDqN+CHmsY1yxd3j979oNtxYypjLX5EYfyv3olWMm27IDGNUvxnbtyMBjSOzHeXbQxma/FuzP00L18NEmgyhNUyTlLdgmeakRvpwjiES1Pk/IFhy8wIRuJEbBmw79qR6yHx3LP2RluW0mpl3CfbOhoyHT5ozz70N6+haEf7bEH6+y+HMmPKXnrnfLcky/cZszxelrEwGvOZZf8wQ6BUOjTxiw6M7u6mF8UUnXIaMVKao7WReU7Djp253k0ET+l7TH3bdDurR/Vh4DQTTfipM9MRWLLCNQywyPhfeHpv9+JbhysMx0vvHMu8+Eb3O7/4dPeZ+CkZo6PL4q8RfCJ/WnVEhfB0NuY3+zUyB9PuasO5EO0LGdvHMEF5YC80c+MP//zlgqtQH49s31jCDSIzwDldlD5DEVqfOgOdfpRPMdBJjBg54GwaaGd97FvBLici+NHe6zf7MKov0/hAYGnCl0cTDza2UNobPC9P32gH2BaznzInM++Z4f/JP/9q99Xvv1d5DhqHqkT+6A9H+zt/Xw/rD6g4+vO9p/bqvr/2g/tP/8n/0X0yq+W+8OTuOQfwsVVC0LQ2a9/t0LPlwbM05T9471hjkoa8+nKK6Qls1M+jxhDkLu2sf3kINg0+ddPuh3x805IvSNdegpU8/TDUznX0F4158iTppM3zdoZL0Te1mu/zweQ1VHYY65JJ6ai6tku5tmfD276eHmKwmijQEg/lu6v21OM2a2vu9HmpE3z9kcdQif6luXXuAg2v9ofxLHrZwp5QxrSV73BJa/9H5jn3UOZzEKyn7S5/C3nd+27us49x8bGZJMwFp97zWQHCedWSd6tBav+sAMWKroCnGw2RsAT6xNkLadziUknfyLc0FneC2Di4YhYwNckmkWWvlBbIShVEGXY3oe1SPZl0oXHJNf9i5+TcSBtA5bon5g2EkuS+O5J+OeYh9kFKSVxEFdgqr0iG6i/gn2CKm2Ku2Z8YG8xq4yHKV5Pn6Uj71N4IWvkhhHjq8Fv5dv2WtUGGK7oDh2LOKok/CDhVhRwuBWmpA9QTgTD1i0NpfE74SJFSNmRJ61SIrNgSV6NqF3tlIj43s1ena1DQrEEcE0FE05nc/Hm2xmQIafHdoaXBkCDeJ2LyQpiVK9qvfiBpIvRw3yUagWiO1dv+bWUizPfCA5zLKj9Em5P2lSvTVSatn20d1gTZgw+tDuag+fA0h1WTUdv118HLIdghHhjmi1lVaGk953J18P7oqbO1slEIBciZCXZz2n8l2i2+GkdON4fWCNDVLxiQHZvGC0mfs+otHSZO1fkw4bRJN/Vb6lz+SYEvpC12lfhPaxJ3qAWBzKq+mO5WR6NkjGFYaHuW5vvVYZ4gDtF9V6afjQ3jTNRuGjwqfKp2PmEV+C75lO9UmOETp88neOmK7uFdG+NLkpVqUd+PZ+zwM2GuwajOhDHEgj22Z1MxneeiqTQQCAJFMFIHMWAQREzWzi3jYUgRQ6a4rPYLUx8jcyEujTemGgYy9uJvNbqrm7x+slsax2KvILXLSTRVTt65D929E5Pn1Egcy5etzYOMFQdElXHWEHcyMhFgIkdOFdsEg5pn88xPS1LPkqaQXSqh/1sG8yfZ1DOvVOyeY0H6+597tfDIt0O12uP7EyxM7Hr+/d07VwOb97vNty5GY5xeyCt1X512bcw4QCCkNi9nA5t3lqyfwwvVJG8ru6TLN+2GWZcQF4EleWAIShoPPrIC1tgiBKyLNjS6oDyLA3/m/7pobT+HUYqD8Nnzs907ib32B195JazZkortM5axtzxCEJ+1qfMRBLIi6DuvH+7+5K9eq2eIABwCFgQb136Ai3iax//mP7xRwla1KeltNks7q82DJnHQiOo7Y8W30iNi8h4YpTwqQnYjgGh7xDVyeSnCy4mYpZnAU0ThCD4m/AjViw+n9tuLTUDNp/ZuLSaLZhi+MuYJwGCJ6GnXVBZmpPqFIwwVWx8V8QtnrocqHlLq1oaR2t5/DM9aimqQJP3twtQeSQ338CM8kN8f/YfXi8l7Ys+W7hMPbe2ee2xX9+DWyeAR2jtwikUg12jb/AEeLWL4r372sYQrONkdPJYYgZnX99YmLcgDzxrEA+NqN83twMSoaquZtC7rm7ppJVZ/9Rm3UbugJoFhfa9DckjbCmwph3ct65amOi+JPGtltU+GtMOd/GTreaX2+YJ61XsVzn/tkaE8h0P/Fs6q7xvcZdFXdUj2kechH2dl6wtlNBN55mwvNJh/5cMXGkMra4zB6c6O1qa6/PCfVEQd1b8q7vwTHB+bSVIpDWD6oZHB6Zk0NBsGhoaIGGsiho+I1GXfr7YhJIZJUMbJaF0gn4tBRKExRaTWhpm4soSTY1TcIehMLMmwIm4vz4Tk22MLAEiQBmY8m7xujPbjrdiUmUz2hEHC1GCe4oVQAxkjcyNIBlPFRMTRFsHm24RxgwjEe7gdh+DLlyGj+A6lHgIzIpx8YUIdYr5pzIqAgDMzNFhMNjRXicUT5GGyc9zFFJCstJtPAY3C8TPnC1YXyuy0vCTK82GWfGfJ6yVahMBqejbwCgxPB7li+raGgcMsromaWu+CO2ZA2yEscaNuhoFkiql30bqt37gmauSR7lSWsC8KAt4Y1TyiL9ik2CzqeF6MnsDyVvqJlo9GzkAs/4rgNZLuaLQ7BiDGAWMrXsvdMGA0QyTc0zE1iGNCQ3Q69xgZQStHklaAS870U5GAEZeNSXcnnbYiDNqKlYFN0qQp1QezaftzCSR3IM6Uxm05TAcWNHlMiSYOJ+yzMUnalHg8SHpRltPcjC+UPtgUU+n51Cm2qNwnMnhgpf76jqkS/Ew4Ky9NvrEwO3zSmEFF8MZkGq+VJtc0W0nWPfLA1vJVcr8yTJ10GDn1ob7WT/rscpzAPaQlpHm8GDPzudSH39Sm+Ohh0s5NZyPhtGXLhoz5jE/MN58ygSyTRQkV02Hqk3PaoL2N6ZY/8xgCd275RPfCrt/pVl85WpqvEZqjMIg3rh4sUx5PMr9RYSWs2grDq64kOX5d2udfww1540KC/DDrTeLnA9OQJFhhoOo76fpj/lJuP+LwMmUqoE590qHYer7gc3P63mPBg/6ynYbnC8/RXsTnS9TzG4l/dHPZZBGQaxlnl5dHozoy1t0c3ZZn8flZtSMBPs+lD9sqM+2sY4BPBDCLQYQEwGhPhSnGmOiLPdvXFXym0780SetjakXYaTSXZhxY4m/VmvAQ2xO/5xsvvhumfKqEsP8lDta//rNPdj//7KM1H5g4JyO8mOdP7N1e+q9/+ZUXS/gBL/NJ1cC/iG3GhTo4BqZDB6i9tIPuAXOk33Sw9HDw0A+uk1tetb5r6YxnTFSfTI71nZWnImWHYethBF/XnEydwG0qWR+M4/PrMaHt3rqu+9Qj27tHdm+KYBcfx9SJvycBwpiq3QiCD80jddauPC5t7rNhsv7eLz/bvfD6oe5rgZko2ubI/OGL1tYGgfk3w/N7nyy40/w+kTN89u3XDtXvn//xC2UC/GxWzD33+K7EZ3qg2xQBlvA5HMrzwzz9x198ovudX/hkBQh9LW3+/ltHOnGr4M+humCZ/9Xm4SwD/aPN9Sz4o9qfCjXFhhLakW6od63Fw9PhXBlL0NqUW/lUXpIoOyffVlku5rOu7yrN8Czv2xdJl0OXFNZw0R+Fg+RbZXmoDS2DapN7j/uy+8t0bPLKGJmrmxcLDx/NF9PKpsGtx61W87CsxzUe4fQQpODMCJh9PdBCtIoAzW0ALSSs1/uUo6gqTnsXtK3l+uP9/dhMEsKPUJDATSRB80gX6yJV4MoRgsyRDPRIHJl9l2JewlTdvsMxNcte04DTcShmNhHRuiZi0l/J6i9EDeK5lf2nLoRwgCMiNhW/JMjKiiAI6EwYibPxRUJMH4hdmUaKyvn0WSax7I8WgiyQJGCtWCr0f8x3IZTOEzEx1WRNmfZgU+9LCTsgoJytTqhhMWqQwrUQPs7BGAxE2vfX4gtTavLUh4SYkVXSnkGBUM+G2RoNcqae5gg9kfwhL8zG4sXLy5naZEUQt2VFWk3KIC6IgclmgyCV6XhwuHwzmpqpiyUp8iuBuAOQmISi9QrxA98Lgf+yZfGRyVA4fPx8ty3aJyvgrPrgsEyVru0QF3jcvJXNaKPq4qCMieFbdCbaIAocaYUWoGV7+8DJGmjMBBy0l4YRuRx46TcSpM1YJ7Jcns8Fhll/YxaNBRJy+KhuYnmYlrTbN2ezyq+CMWZrmi1ZXYhxMHg57VtubwJYHaTu/J5oazimn4vD68SqkTBDl7vbiZMiavHVjL2ZSxcCCnGwIs330ugHMWltiIM4QoJBsA+dftmxaUU5VjPtjYZAnQpzbFNem+DS8ukfY01EV460nGjXVLybUsdlNdSt7mxiDpmAfLDsGcdvxETmoE07tDnOtBhckv9kNFR87Jihaato8Fakrrs2r+0On+JDsiRaq9EQncTFCUM+ORZNxcl+JWO+gXTmp3eS377YnbtysTt7lwmwOWiXnL7qU0kqPeITs1vWsN2MOXakX1VSPkbpF+SxpItqZbIGeUXk3pjGVA4IEbzql+f+1ZFTXc3ftufDS+f+XT0a8s7DuqyH9/+Z/2D+akGalN+OBefhsi/M7e3Fa7qjY893R9gN47w+kgUB6X1vYp66GiLPrw/DGNPoldOBXyBl2kJSyUD7FaXNHFPTTUkfH8poKgPWzAnbh6wsfEKYYD6dDAOMWRpLHx4Io1ALMTJGMBS0RPDcJx/bXXjiwJHTxQz9i3///e74qenuP/ny06Uh1icC29K+/NzTD3Z745D9v/+7F2rVFQam8EEqPg/BofGYGuS0gbzqnVSNqJjjQeUapHlOOiBnXzNZ62dbrUBd2p4q5x3cVaOkvmk+kxiwkEJzCWySzrxytHN7Ruh85/DpYhjg40eyp92XPvNQ9+TebYXfwYTgwpWh8pVRDoKwVWpoAE2U1Wp/N7Cx8wGH7O+99UGF22haMc1p39XHf8OfhSn75s+Nw+EdenE0ZvWjX3u1+6OvvxqctypO8RPpZxriBQXkuvBi+lrVCeMPRAP1i8/tKyGbpoqGya/RqZqZgFtMh2/At5H+tKKvALhW3fr3Q4meLizezfBEveQlj0qTP/rdIU2f9ZBVzi1tPchHQ0p5DIkrz/5D40GiobyWkTx8OZ9XzZnce2o8GRal2XLvn0zbyyqm2vzhylX2fbJybZCkfd/yrQT5U/WSU5+Hkzb4lnC6KKFM2h6f7QvzAw1FjzBPZeKey6el+Un+Lvm9HD/qw+shkL//+7/f/dwzjwTJhOlI4QidjR35DqmIzRc5NCLmKiegoknIlIYx4FxrgkkryvGiEF4AsHLJ4AQifjuIrtgh5XeSpzRFdpK+kvKE41dmOTEHULhIE1VwQOYMmE3dEE5MCxOUPZUs48b121uIv4qRhrMkcR7O6jIDga+TlW1rw0hpQy0ZjnaIo6ZlpDqfGllbBFfUGWUzhXXzzrV934qZSVsQZXVAyPnj0GxBtCXQJb22L8032kyjVdoQTFuIJ58Aq6ouhEETh0KEYwwn5krdIQ8O0WvD1Mibj4uyrwa21OLeYTasuqJ1co+A79u1oRi4E3HkptEolXfqvyk2eRowGiUIBDPArLUhxN8SXPlzHrfaB3NFI7MyvldMfzaeRVzU/0aWIVsJdixO2nxSmPcGfyJwxKjZrsGAXx1myibEopWTOjEOJhytJKf5S/F1UmexZjiA08AZQ7SMmJOJILZadVjwi29HGB4EypgoJ8CUxRTJf6OZgRN80xgIPI3JseTlwMQ5IHHM8WwYdGNUXR1WzyFa2jG2Mv5A0SoZk0yp8EFpU9PW2t4lhEJuGBTaSr5ixg0zjY5nwqC94XdWsajUPddvHzUuwuoW1lCqo93U3/Q505yl6nfCqNuGJIbIPIv2KKEhupid7kaTtCRzSh6h8+1c5UOmCB75bziasIMQzhHdlKGNhQSVl6P9XXgx1KqdK9F8qrpV/iAJtvcL/vYVcCq0PlfAgjTDu3pUKL2vyJB4eEY3wiGXlg+TInRFthu5adNs+y8GLt6FQbLUf+GBEaIxqkCSGbsBQ9KKvxackkUan3448bKC56zOpaGcit8Q4BGwCFZTWRQR7r7wmBfGHYGApnfnphDbaNO3RavCNEPjjtEQnXt/VnfuyMIC2k24Kl1fY87YY7oypvjSwCGYJb8KxFtjPJrqjEkmLd3TmJfG6KibYdzA24hxI1w90cobfVLf5U+DIJKUZqcOQ6BBDxrhbd81ApV887xdN7wFjxs75lqNn5RNsDsZoefFt492r71/ouYaLbTAkKujYfvmDw52+8NUquXWDWu6f/aPf6d7PhG2+YvCq3A6R+pfCI35rZ99ovtsNDy1NVPwDxj2Q3KuG1tb2636CFJb9FwJqY82XQ8emz/ysI6FX6ZdeUZYt+WLaPhwrbnPBUJd4eKf+/QjgYFAiUMg2sQECv55YNuGxMba1X0u7Xg8QS/VF+6At+CMqnPaB35DqaCub7wbnnvnecEzMHWuuVnfDl9K366dwb3d51ndtz7TRMmk9NOf4FM4oJIqyexrdaj0/uSQX0FJ/TzIH+f6VWM87PNOWuV43KeuMYk2GZvGKavSwgNcl2ZMyE/dXMgDZmp1aqnlWWhZ3gvKbW+HZ8qXi9zmD2XDv1YxW1lKcFeafyU+5Y9V1b/7u79bC1fmv/zRVx9bk3Q9UvbdEEIE3yoNCL9Wb0W6T7/mPjFtsnKDlsa2CCQUcXTspE7iNpE4AEIe7x85WxNofZz6aDRGs0LnvWwBoeEYIf5IGnjw7HQhHqBAvEn0jANMWpAIacwEqZ3VA1AOyAYQCaDSh6tct351zFDZroTkk5UnJq86cdq1/YWl4JaFG7znEv9nW5blnjwTH6swXjQdZxMg8M1oV7aIKB4ERxLI/yDM0Vrevv/4mWKw7PQ+FglRpG+OvqfPXQrBH6s2W4JP+7It2jDaNHVwYIJuROq9niXLZjf/IxHCOS/T6pB+rwQJyxexx6SpQxHeAGV9tC/46pE47I5GzU0qOh5tCaaFuQsRN3D5vszGNPDeB6eKYNLU0BQxZzLLnUwsKk7mjz24LW2GJJZVXa+EmcAIC6dwJ5oLZkoTAPIoLV6+vXTZ/m8oTYhRCNKu+G9hzGazssyS94d2bEifBBmF8RkJ82yiICR8oDB1i5L3SMbTTEyw11KWcSYUQNsOJea5Wjrdwha0rQma1L9pXTR1GfSLEsNGXCCMislhHz6IlaM/BMGXi8M0DWW1LTCZSh/AqrfDfNBYGkdXr13utsc/Cmz4adxIO+Vv7PLZIrlACIgiTSGJRfgFzBjBwD2mlbAwHb+jldEiYfowZXZDh2jdj4QAp3tqfosPVpQKg2JA5FyTn5aIyO8oXJC3EmQ89Kdc54V3jvq4P+cZxGMOSDLgGWY+R6pb36lPocs88GjIQpq6zp+Fz+pmKE8ix5AwOSmrSkClPP/ItPVV3i/MeeF1/3449elaigXpkneP0oeUfZ4L0qiEOgyP6pzZon4LWixJ+UJWwozzjIVFS9NPYZqM3/V86iKk2YhWX5rny7MC7krMv4iZMVKq/kQ359NIt7cj/X1z346E7hjrXs2KKWPm/Zho/rd/+63uP/rco4km/WDhESEkmOrgny+E2K6PNvRf/Nn3C0dUw4a65wZ8/SlG1mXdtvsiTIEVAgtk8JN0FkY0prURFd+071vGlWdfRus28JFKUZW6XSst/7VX8mLCclHkp+oUXBZAXMtY0k7hPv702291nwwMbGR7bxBHAnHmZXAduK0NTdAujA0hzYKEpx/e2T3z6O6Y9y9l77f3SwvPnUE7VUv5/LkwN/ccfVs865Ug97z+m27gkGsVADaCSMphUvxv/8c/7J7Zt7N7Nozbnmj91Fe9aeuFeBFG5LEHNnVPx98Jg4TRfSl9/nqYxSPxayw/Jp0SaJm98m2QA8DceOecX73K7cBItfq2Pk7CJGlpKp1c6qIxXi6917/tsT5viZyZ4+VRNcncd+2o+7rK9841eFre8pKi9XOfyJM8r1cty6pvjYk+Scu53QzXC98POcmjyujxWntetah61bdJNIxJFeyh1NqZ+6rHkOFwToNbLi3/dGsu8r+Q35Do458/tibplz77eHH912Lu8TMg+I2wQVspxV5oGTn8ruKWnZP2MSEkBRoTvic0NswydnVHjPm3fHAikYEzAWmCrJjQIn4dWyKRIXSkcPZhALUJLa6dpA5kZQIM44XpQRj4H9kXiOaGTxJbtzyYfCz7N3mk5cOEqcBo4PyZr7anPKu73v7gTNp6J8t/EeJb3e7N42FUYloKAp1YE5NK6sbHZ+o86SPxgfIODEiMSwIDGhj+WlbtgQutCk5ajKUdMYth0g4nsiwVvoCXmWtp65pi5k5ndR5Nib3tDGlmxNJCpKc3xVx1PP5MHDZpdEg8GAeq7aMpm3YG04iJYT60FYhJyukd08m3iJYLcwIpqVftxVOwj4NmtCV8cE4mLxuwComAYZtJuvPRVmE41JWT9iRmJIzbqUiQtHyrs18fKZlPDmmRCYqGb0vMlrQ7tCYbI5lD2q6ZJQ1l5SnDlh76V6C3ycBzc7aGADMMjGiuGBBIGsz0JYkAUuXzZQWePkD4meXGw5AifBhl2kT+Im03cpJ/mLPAX6wu2hNtmUpdBS91D0bahanXxxhNK5DU2+pJTDzNpDEO9uBYjHPKw7irmxlK44VwGNMECHFblAXBYnyNuVPT17oDJzHIWfkW4XU0CwuWZYUg94jBR4ZkJL4Pwg7NauP9R6qiyP5oV6YH+EIwqVp/7iVWDFKe++f/cMgnRdTRn+bu29Mf/rfKS0EEprpekO89XyXjhqqHp3Ml1YMPf1YfDIlzzv2Cas9/DZk7pG9PG0PkObj5WaGWWF1hgkTEV0+EF3NPW0eT9Jl9a2vOM18NuwFA8ASYMr/BK/kGW2tewluYG4w4bU/DW7Y9SpYhTJMZ16djOsYg01a8FYHLnpGWxgtFYsVshlH18ZoIQ8/FV8acOHjyXAESjryeeUToHJgU82TQgg7agjnzWMpt/R56l2+AQhMHM49GV9/nDErDr4CXG+nBUVl+0rY8GjNdPGb/nbHvAMchT197zA/yUHDcn3/vve79Y1OFJ81nsHzi4e0RnjZmQciq+CwKmkogCM7P3NBOc55QYk4/uH1DaWqejAD36Ud3xfl6W2fbkm+/erCYJ+2yqXRVumrT+hSdaa3rH6pkHa3Ocx94vPDXp3IyR5nSfhBm6auJAP6V777TvfLe8RLy0B10qFZmB8A0Ulwztm6a7PY9sLn7fBjh5+PMvyNhEBzoAE2T9ldN8qf1XYOxNPrV+/xvh4S5BltpnVW2XudSukrfJ3cviTHpN3w3aJIkq35KHpVVnVu+lWfeK6cqmAftWStork5z33rf17X/uD71J4nBo8+gaqdthEsFJ0V/5MMIGfV5cbV5XC9b/VzWO3m6Th5V/1ZQPavnc1ctjXR9lebL6+tl5ehPTZNkHxwEZ2UiKl+LBFyxZkIPVoWwToxNFgctwB1TiwCCTCTU/GOZ5BCBpeaI0RRflEwGRI95A9Hmn0O7wqRh3ywIhfSBAFpNZFl8LcMv01l8dALYtr8WLVDMcCFeVnDYLoNf0a6ovTlGp/jyGTHZhSo4KS5Sz4RZ4s8Xxf5cgrxdCUMwE0ZgZQjqg2GKGnMWk118mxDkJWmDvYPe/eBsVilla4nUG4NByjwbxmYnKSOMnHrr0tnE9OHoaek3ZguSPRLfGe1vmqRF3cmo8jkVB9emDTHRRIuC0TuXmFSr4z80G2bLRKWRgugEs8PYQTBWi72ciM0nzlzKpM0S5ThHrwi2Df+W+iZmVIirjXuXJ/6UMAwjI9HE5SUn82vR2kDwVpJxgmYuIPW88f5smbWYRKPiyfVozASna7uQ8UjQglcW8SgT0u0wdqvLxIa5pJXh8M7n6Z1DU7Xn0mQ2U8VQY4rKHysUlPMzjr7gwI8s8DZ+r6VTyycpJs/D8eHAZEKSNGdW3Zj0kOeqjEGmDXupYUQ4otNuIXLMqPr1RBhjviMcq6cTSNTeZBDppYwVmksBKIVVSFUC60ul7XsjsVIejNaLjxHEaJIxt9A0abu4V5h8fVsr5wJvY9PWM5fSObSETLzaQvvUpM2YwdIODvPmBMaQVtM1RnoyPleI9d27V7pndtzttsd3CSPO/++msWU8J4p5rbJKyRgkwsFMtHeEboem384upCHPqWMk3LQ1YEj9IVxn2oV8l1+6r94ZU2DWECmmK5VW8TogYdftJ6+/6Whf5i/kRGOVvO7/Tpr2LBVOCe1G5kMBrVREcu4IRRZraslifUvLNpjK2ld3wvSMhuGx55tVmhjLOtJwZaXbwhBhQgK79M3K4KcMtxC3xgCciC/jiwcSYPQGwQzb05zrt66L9jHazWtZlcn3iJC3fVMi9ZtT2fz16KmZEPiV2aYm5vcMIj+aJq4CVqaeOJsVu3HcX5nxu3YszHtyfuXd44WrpoOH/u+/eqO2uPmtLz6VcZOFGqkbPIHBxrT9g9/8bGkf//jbb9bq4KngrFN9vDPdgpBhK6TVl40YAnvrA8/gr4Jk/mg/gIAOourdAPaBoPBsw3AU4HLC4Es/EOeQ6YyzjJt8L13VIXMySdtQSWowb+W2mHCVR57RBvtmXxy8Cdd/9Jc/yLy5lSX6O0rwook1Hgmm+r/mdVZt1jgNzPW92hvn8E/+l3Ci6I86qk73v1C5jzoWPv6oD/tnfGNPB3f7ffOVA4XPd26e6Kya+3z2mRNehGXlVuKy0bfRMAl/8AvPPtJ9Ob9jcX94L+FP3jxwIjTkdOFydK4x7xkhJuuC8qu6YJ2+U8XqW2fTNQ8aw9Ce+7S+79tnXNSKRvfJQ16GgDyGfLxq13JPv+UnHThX+ty3ETT3cVVP6vaFv/Jr37SH7b4e5u39R/ui/1598mBosnL9V6YxpH3Vjjwc6i+/Gq/9A2XLoPJon1eR4OEjY1Qh9b7PvxL8mH9gh491MLHRJPADEkBs+8ZV9R2/j9PxpaEtQBwWxZxAi+Oazw1H4tVhfi5FGmfSwSwhyvblwVQwRXEIlq9tOcqMcfFSCEmWdGeTVZCrYRIiSDPh2v4w6rI5DtCzGXC2vsgoKadfGqy1Y/GjyTLe6Sw/vRZfm4thWMq/JyOMLwLCR8uCQFpKr2wDZlmYsdCsCgh5OczO1WiKaCNoXvgAmbTMObYZWB54YGJIdHaj56/iPUTCVFaTPnUSOG722tVueeouAjiCV9qGvLuVvaI4KGsrJAiGu7fE/yeEknnKhLBFCqaH3xTt0IUwOFMJDXA6qv2lQT7rwuSJCyPUAKdUqsWZMKjUwSJD06yJRL0qjssT66ONS6ZnYhI6HO3dpmxlwmwKmYEbBgxc9akNg9s+bV0YsdlIQtdKKtL3/ChmYoak7VkBDoFR8HyYponSsugLDDWtz6I4HF9JME6MMHOYSYBB4He2NsSHNM1xe33awcxGs4fR4ysmcrhxsmZ1kHHgei0wwZhgECFdfmZ7Eszx3cNTIXxxWg9DZs81iJwGy/gzNujkLocJJu2fD2NKowM+tngZD2HaWFok7ES0jBkvwV0ZI0F16VuaqamME/VUJ5o6Y1j/jq3kn7akmNHmn9eIxMn4a3EkN24wZSYroULAU4sCMJRXMiYEIkTY79y4nBVRMzFTHDfcayzyjxCXjNCxnPCR+oyIpp1Kjmf/rEHKL6IU2C9NPcKaFcYopiD3WRtfiwI8VHfxrK4EHt997WAhmXGLjQAAQABJREFUIKZFSIRGGN6BXMDOGQKzLCAsSqAyh2b6q5r67U/SDQ8rVf40LW//OPfziDlzOb5UxkrhrzorKHGDol2x2OGph7anzso0BlL/MEDmfPihum/FZZxzVs9fZFo/qbd/EKsAnFbu8elJ4O3ucgQDc9NeYy3fVr55tszeb3cTHiBjNkO02zIeoSUwzpRK+xd3O7MhNBjzYbyZNOuXJ7hrxp/QH8zKdoEkvEyUmfd6dyihRTDzkxljqyMgjkT42Z3VpGOJvfT9Nw8ncn2L/P6X33u3tOp/50ufyMbHa6o/CVjGFQ38zz69pxybX3r7SLf1c4+VBuO7CRugHerjsGej9hbjknkNprAlbV71SYBlvoF/QSf3YJrpG8aMtiHjK0x8PUu5ym5Mqo7JF8mbyU4aeRhzRaSSvTLzQT1XlhqVhi39hPku35o8k35JMe53uyPRLNmLbWPwzIE4atNQPxaty4NZJdfGd+qacUuINp7vJsbFBn6igad+Rx8wVIQNQp5DuXOHGwlzGL+qWEAZHtab4U+fcGEO9z8a7odP+rPHmL13P5gK4zPV/fFfvV5+m59+ZEcc17eW9gvTZLW0uhN8NgR/P7D1se43f+4ToRtXi/n+fpzUX8zvVMyGN6PNLJDmD5iBIQ1QO1o/u64q5X31aW70qzkAH+p/EPF9e+9tPaqz/nXod305ACtf5vt2n08LqC0vMJTvkLevcyg3CStvt/310Bd3TdaWrM7+DO/ag/alZ7TxQ1uUmbu+/FZmhmD/7b05VD7qkX++aTlKjIHP24KB25af9MypP8nxsZkky1cBkq8IDclNZjcIPwhoZbCLYITU07RGo0EMtisRY0gzOMDqSr4yo9m6Ym2Cqx2Pgy9i5DgWyQxjQRNkQDExcGS8lb3fDmUiiaRsvGj7osXNUXfFpUQ+ztL3x+Lwd/jU2RDBmyGq9l8KQru5uiTtCjiYuokMPZJAYunv8hliS74yZaPZtgs3P6vVUXXTZMQgE+Ia81zEUDbx9fE9gnSYgxBbTsKYCGYYRN8y2AuJ6yOmETW5Sk5kV3B+CZvCRJCOvv7i/u6OaNkpd1f8Xuz4zUSFIWSuY7IUGRtjeTNttsnltfgp3Qg8wch3GCLM5JUbF7oPoilhboPQBIMbj7ZLMDdmRLs4W2V1NkxUmXuy79dEophrCxX0xmhKILe9mcScs5kjNyY0w4HEEkrx3Z4HN3YvvHax27KJc3OW4Sd+FKTKCb0xiWOZZIknkxhZgktiWLsQbapU5YMJxHApsZgKqab+BqoBum6S87Xl8YkSHi2Q7mfepE26FMSBkOgBWh4hB7SXlL03K0vUMwAq5HQ+2ioqerA7Gc0MiczqQn5OW7PknnM6Rk5sKnUxgwT/owkUBwozpuyJML4rOZGnftuDvK1+w0AimCOBG/8omyoLFLkozI4FC+B7OyuggsJiMp0uxlY5AgvSntqaYkVi4nRZms40R9OprqYxJnfk1kh3Jv5qQhEwF65ekejxWWUpfAPYqauJ7mjzGwrIvf/5YbiMY3XOqRBeIdSMBauXmnYI8ct1fsaIeceUwcxLo7k4c4gES0MCYZaGIGMMEi1CB+n5xT+j0Er/Z7hu5/o7X12VaTV10Q719K/Orc5FQFPmUGftQejtcSg45sWL2Yg0fo7Grijxc3XL+GlhC5w51DcH52KO1L2vswrlshHxXHheBD018lw1B/Ru/q1YnnG+JDGmMiKYTzjVX44WemQkwmCECyY05el7YUzCt6bnG9wRaoyNeUubdDm+aMxtyzMXMAlHTp0LvltaKzet5nomK99eStBJfonm0l+HWbUy8z//lWdq1/vJaJ08r8UqcElq+8uff7z7TpavPx5m4pGdG8rXhylbv2kP+NWYSKtSzeq3gncRN3AI7s11wVvdFzBFeVVz1PfmKjiBu7FRR57TbDuUVwxo35eeIU++QaSL8Kbt7tVLPoDd+j8XOeAfWpQDYSQJdawJzGYPx3wmlMDOrFgmgEjNlEejylG+zJiBNQYJbWhOuZkrP+TQr/py3nm4la/GHz4WPuvTaUAd7odrD4Z86mXdeUvg0qd/+tdvdn/6nbcKt2EGMYBfeHJP93BW/tl0N9CJG0NwSL7R1ofS7r/z5U9VkF/M0g/ePVouG/bwcyhNXwb6+VI/6u8Gd08dQ/+7Hsa5a0f73jhpIx7OkN7ZIT/fwE2Oeu6d9O1Rq0B/X7nkufzad/q9Pk0e/TzP98bbwmO464ude1XjrmcEK+/6VgGtbhJKMxxVP3UZHjhX2gablrQxTRrvS3UdhvPCz36c61goksuPOC5mS4q1a9d2//1/9bdijthYTnk62lJ7DMSG7NhOY3E4NnQIeEOkIhGMayPWzFrSPIYCseGrcigajLu1QszKn/ijhLjwD7qYIIqmowHHzEJ6sdoLgRFvgx+TeDQrE0SQbfdsYplY8cSMQsKgXsSVIjwkeE7AzBO0WupFe4FAk/D44phIGDEIDsGkwRAHAzKhNuVUzjxolCrXapcKChjiTgJ6MFFvDRB1sR0LnGB5PlOV+myYiGN3yjpLexBNFYJZsVcCbhIzXxXmRBqtpl6GlPVstG2ZUOfDNFwNQ8o8iNBZwk5awJicjHnPKitM67pIZRtjMqOJ+dp33ikNDWbE/ncYWlon/la0J8YzBGiiYdS8PxTHcxKPOCfazvfofBzYlbUhMCl/mZR9JFGGMTq0FIJwXsjSfMhrUyQkqxTFFsLc2WU9TSpfjDNhdAxiPhtnosHBMK5JvdbGf0k7xJhZhzkOkRNM0iTYkhWIM8n7RhiurdEUYoAwKxhwjAWkTSsDVCT6YsqSL0SN6TkfE66xMhm/pH0J8ng6UhpzIw0QCb+kNsxJ6kC7iZmwtPeJR7Z0337x/cAk26xGw6bi5xKnyThhCqFJfD9LnjlqM5E09Xb6JWZRGkligBhSiA17vMnNrwLjwWdqRbRG/KFwOM4BZebE7e7bb12Ms+u5BAE9XhpW8NK2OsxMQyLfDHgHihheSyvx3H1/0U5zT/O+ITCEG2yY/+5Ey6RfPNOvpZFIPyBumIIBFembKqdHTlVastYumKOQUBXVl9oXqy/br29DTiKZD1oJuJG2zJhTJmZ8eTaeBl9aJflW/lV4PtbW+VOr3z3P+ptKVbWsK9+BXaunyrV8Ac1YWrEsTvkjO+u5rYx+/Zk1GVM3Q7g31vwQDwzE7V2I0eRkvT3m/ICt25F5Z6/BYxHOBIglbC1OOAJ7LRL2RKc3vpQKFhgJ7f7rH+wvB2cV9N4c+KXnHskGuQ9Gq9w09BZLGPNw1VhcEF7bf7KYcsvVBaJ8KQS1HJ3VPIACR32iXH0KzsOBoHknDe3E0Lfe6/ciRAUjTxoc1dfV0N/a0PIJNHJTmoiWoMrXhwOMlV/fV7ktP22XoTwcw1/5S8sXlRvBEw9u7Z6MEzTGYjxaJIyS1Ez2tDeykdd/F4fql+MgDX7jYKZSfa727/xHf/tnur/43juB1aFEUY8Akvq199INR6vFcPc3nxd++6NSz+fL3I4ZfDQM0TNxZH82K+Ks4CWgYKhVmxWCGVEf2WPy5UT/fiP9zdRLIDcHwchR8yJnd555XM8C13Zuz4c+BZKhv4c+kU4OznP5Vt4tX5n7vvqsSspL7+tPK2fuvn+mIuoiEfwhvAzU4fBYXuOhqa3C9bjovRA2vsvfeqhOwxjxYL7OLY96lj991nXRBAFv2lPNqzzzR7n+FX7LCzEbL1xI3MY1cPzHOz42k/Q//De/WZVfLSJyzGEIB9NGIdlAg1RFi8RJEQFeF4DUoA75sjKB4xr19PUMiJkgGgeGBTrGDG2INgMxeeeDk3kTCYaUlknBJGdCMjlZOWZJOGRl8oj+apJYpm4puUEHOZiwJD/MVcU6ynsrlkgikJol6LCV+ltWbhBjdpg2bLnxwfFzIaKjtXqCahejVf4kIbbi6QigaP+kE2FWSGOQj7ZAgKQAsX9o2UbDbGEgrerje8XMCDGbFCaJXcVJxJ7RmGAIMRK4GWYvS/j541DnM8WxgYMpxouWhaYMwcVU8nNCdDlHT4SR5Fdz9NSF2kJDW/jV0EwFREXEMUvgpO4YWUzUbPqB2Y1zOkdneS8JzIx2W5psjuO49kFoGNKL6QuDGpNX239kQAqjMC0mUkxYxeCEodH/8tIHwgmIao3RM5ibg2WXUARrSg0NHgglnxzMG0aQkzWGrhicaJkwLAY95pv2EVN7Pr5H4lipD8m0SfdxPg9zXOr7aOIQumUZH5gsq/P4Y5lAp8NI3krfFFLI9zSA4PXWwQSNSxs/F+KFaTsSQeBCNFbgUM7jYY6NuzS7GNBUO32QLWMCb2PNeNgaTePLbxwqnzplIaTGvDGOeT9w4mr31RePdbevHg1xDnf5UzwgDrGy6LXuRBuIIbWAQpwuiHQggvpNPxDBGoJW25g38xx8B62Daw3HxBWKSwHt3BqhPA889c84L21p8nbP6TXsWpg2knhCRwRgVzNvCE8Fop8iLGRNaFoeJunWyLZUMvGsNq7ovviEPdKyYjZjjxmymKScmY7HMiZOZeEEjZYxXJrc9KFVbXCbhQ42vRUOY0OCThKAjGNEg38SXMXU4kwge+vA8ZoD6sKca3PcX3/+8TCvCcuR8U2rBKeZo65pYL71yv4yvfMR/frL+2t8D0zJALTql+RpPPsWQ1/965wug2fUXX9Xz6SP8qr6tvov3xqh8jHPHMpwDOOhOjb3iGn1c66lV0+HNspbuQ75KNuY8k1de54L33kGx9EAwW2csy2tF07BPQ2TbwhF4PqP/qf/q3s9/j3KWRucMhB7Zdk78vf/69/InIvPYtK/cfBE9xfZFuWlMB98IWnm7z3a/fB0gMF8mg8/mX+38GrIYeGzBd/mUvuERng0TPgXe5Pq5uAhOFi/aCNcB878F5n0Xs5WN29HQMMwV58FVtUPKWZo99AHwN1qYT63Xiq8lrTyVht5zB+u9Ud75q+xUcxJrou56OGlDONJXw3H3BgyPPJxjYGM97MlOLZnUqvD2vAEQ32lxcYvS171L4mqBvWn5dNfztVNujqG4pNgnkHyTXu9MFkl9Sfv1O1ENH4/LpP0sc1tK1ZlJ/r1kwnBP9mNrsmKpTA0CCZOGXNhsFI9+4V+ZvJe7q5ihm4k4vPM+RD/tmJBlGGAQlyux+xBu4R5QFiPZX+trXGAFfGWJgNS3Rykg6NmypoI8lgaB+TZaJ3sM7Q8cXogERNnJvkSGffu2lyMxIpoNCzDHwnymY0fD63S9ThibomJ7lIYACtdIK8uAaloDGxNsTXEke/BVUQi5juqcs7lJinC8NCO9WGAIPHr2cw2sXtShxMJ+oiJwdTQ7iDAeguSNdi2xg/IijwamFPxcaKxYXbhwIlx3Ll5XZgegSMj5WPwUiVwvZF68R+Rz2QkfjAT+0jQRfU6GWZ0Rcx0YlSRQo6FgcOovZ+6WI5q1aCtOjaEoGN+bO54Pg7hyt+0KnvghcGazD585UMRWMxeDQOoPSFWl6+HqYv2CJFYFCQvpIM+xhTxv8qQD7OY/ajC+NC2kX45Zpe/WRDYWBjAJj/HlJT6MKWScFciPoFTmZaSJ78DgxwBohG0co/PBjX1sYszYTDTX6k/nyqIQzuZa2kNjQ0aBzCGeEZGaDdvdnuiFeJ/NJtJoV8xK2MJUbAsyJmaflmYo11bE9Qy/k1btmzoDhw+GeltOprEVWmzPouTf/ytTmf7COOD0zzHfPvfXQwcp2diJk0aJmWm3ZGsTuRfpU6Y1NF0II1VgJYxETNqxm6qGG1BTHvJ/2S0DuYIAg2BbxrPis6M0StXkshE9ieXcwihn/f/X04DApSruYYYxdBbdSjCFAaS6XU4IEYMm75hfrSaj9bJeLda8nT6yB54GGHjEoPDrLk5TBctbjWgzyyv5w6w1W5+ZQLD0iwxI1yP74l0N+OrxWcPCH6aB3gUfFOOPgZz9zs2jkVLOBZ/vXNZyGCuTIbJaYtICHE3Mu+3ZrHCRBYkWDxgQcds8ASTLQHOD+xOTJ/rPv3Y1sDpUndpUYuVxJyMwBBmCEl7smoLrhC92tywGuzPv/teMdG/kVhBmHR+VRdn49LQM98ksl/9QvyTsns9xv/v/8bnuq+F+NugFbFCvBAjIHevTwhDjYniJzTfM+opof4ropn0jcBhglse3hHevCdQ1SF9vs2pfo0pauZdD5RVTFmyr7Gcj6RthDrEOPD2fdVT+lRCubocY37hElx+tbS/34sPF7OcoJOfSoR+K90IJ8YQHPrhQy7aHkYjMNZ+8/rzn3goqwb31DPL87/5gwPdC28cnmM6ChD5Dtza0fKp69RRn2FgvPem6ps6g5Jr7alnw9mHfZvqA/c58qhw+6EI4X5feeGdohtW7D27b3vt9Wc3hNICpt/QOKEHnsk7+E94Fxsov57dJk5mDrJQYJZafRqcC9gpS12NNzXWf61H3UmXu76xzTSmPxsTXM+rkS0/uCtkYO4oDXL/8XwZVUylkXcxwXNffMSF/PsDTNRPG3zbzu2la0er74JKeJhXRo0kQzqNkkp6R3+qZ3Lqs6t3P86fj80kffL5n+0mExXapGBOIhEui/aM/w7n09Onz3azMc3tP3C4mw3Rj692dyUO06cjvdM0WOGFmG6Z3NC9m+0oMCojcXacyZm6nwSuoyBku2zrjMd3bytEIvLz7qz8wUgJR/Xw9qymi9+JybglqlVbX5DyDmXn+JNZpXUmqnsInZZIfkxVy0LUVmeTV3UX8Zq5aGNMYhiVw3EotET7dPxCONfuTqAwsU3K5yCTjWMyrdC69YLFXYwKVHiB+ClFAtADlvnSfvB3uXA5kZzz7bkwRGIVXbx+uTQ3u2ODpgHB1NBkcYRmAjotInWYChmZFCIxv5WYUVPZ1sQA3bzWiqgrIa6JQB3TmmXppXGKRiUqgG5nmEpRoidixuIwbCIx5VlVw0ldhGx+FrYFMSFETBcbqTRbYYCstErVM1mb4z3YQy6Ythg9aiIuCpyFFaBtE1+JxhCDsmvz+sSxWhcT6pm0KysRaaryHaalAjxGc0SyRoggW0j6SMytTFjiwzDJCpppFdnB+CpAxBwe7cNnLztjDNN6IxwPRKTMRfFb4Zi+eV0LpYBwmMS0SaXRSh4z8Q0xIbbGkfxSxuCSpDkRTZg27AqTrA+On4kP2Y2jYRXuVnR1+2txIKd5VDcRl/mbVZT45Lk25jurKLOfafo7BCzflVSVTlJHJizbN3DYvtb74hlb2jQRZvXipazWvJL9CAOP/WlrgFzm1aCUzIll3f4Zs7ghjEIy6bthspvQhQjM9LR1QHieu597l1tJMDdgbIECpiO0Ns/zJv/V525MbUJV1LfpewwtZsmYp925Hoaapo1fmDnHJ/BQYt/wSzsRZlzEZP4e5iyCr57G5vEIOU8/sqvmLs2h/I0F7zFXxsFSiwjMkzCwRZzR3qSLh1nmUJB+6qfztMOhreWU6jrpjIP6ToLcOwpOw33O81/371qy+gtWAU+OSljjZMiIC8HFy4mYn362kbcI7xg5DLkDM8MEXd+nMjY8tsSbRpdWm/mL1hmc9gcXmVcV+yvPmRPNd2UJZmouwYdg8WYIHwaBSYjGQzTn3/iZx2s1GHNumWXy5WRgKhzFF7KaygbWr0Yz8qVon4TjYHoSH6zglboVoxMiCUeifwvHTBtXtIQRUCKsuDfmnIspKhj35jmMbca4RYuVPgJkSwsirRxX4KoM8Gp+9/qp76+U45uhTuacrjNH8z/vaCdyUWkaQwYHmafwN0byLwOXp8JM/OynHur2ZhUq5uD+Q36OEpyCDwiY3DwIeawPNDi//vyT3a/lB5/+s3/9V4m6/Ur7aO5vVeSeO3XHKNEG6i+x3hoMk2xoRLWl/gTmYQTTl8ayevKvMm75U4FhaZPrnOvA83sJwvnCmx90S//tC6njWLcvpsbnrZiLaVWA0tGUyZJh8Y795zBMBF/WAr6tZ6MJp3Fi5ies2g1DOeZgzffUvzGpQ3VTn9DcYZ5oX3VImqNdCyHrFVrgWeGZXFUaD/JOHgvHVp5WWufhWJiflwvvfVu8XOa//Nr8boy07/OoldsuKsu+6Hbdd/rQH87t17cl732qHS23+uzH+vOxmSSOw5C+qL+z8Vm5OH2+uzgTc060RLevX+mOhDM2mfjQlB09SBZSscSefwh/HvbV0nyEYG5OMECIYTYSJeaIacXySgiI5mEk99SNozG1MLmQzmkC1kSDkbEQhJMgZDkwAaci7b4XdeRjezaX/4q4OCSJbRlgiBsCWMxdntFsLE4hzUYftXCIg8jOnIYR2qVB6tTtJBBEvChw6sQhl/bF5OV7QitgGevDkW4OnTzTzZrQSU8Vj0CRvEl7y5KfbTKuxSH7UqROSGv5SFa/pF6QKVgVockgEYiNlkgcHURMHZYFnmNhgJZlHy+D9EriF3FO5uh6Kysilsb5XFtItg/t3BwJdTMRIoEOs/FnzhiNnVsnuuMxFSGatF0C5F2IyXQmPzA7ncmGaYsCpup181aYHIHx0p8IPEJZBDdth7QQR0P9HD8SUlbaac85o1EsqGZOjB9Oyqbl4zi8JHDm4D8d+LyTjYIficM9baKl1lYG8fNaG2YPg3Q5zNa6MJSYqqXhgGgAn35wU/dillELM8FMBGGpA38OPlLLRi4Xs0aVLuDfMhM7UZcxijQ8mBd+DYdjgsRMMZdsCZNr9dmRU2dLMydekz38kkUx//yZ1GEqmpKjYb5pCsbzoyk7l/4W74ZD+NLUiabUVhgCgzKjGR/MyGl2GIQgssDTMnLMBgLJrAuZ0ip9dt+67tTJI910ELpl5MrXdw4IDB6APBxMW0wWNfPd519J7rl25uysTTSUjfHJisDMGw7kmMzGhFRO3c2riV0mRlC+M7YEwvONvrYJtL7eML4mc3VtaX4w6Nq0fDaMdPoRgy0wJwdUvk7ia5nz5hjfHfMAg8FfTiw06d3TNlzM+8F8px/ryDzTTu110BbIl++Zeg1zmOnduJJuIYIvJO7b/AYCgMEaYOWZb8AYzlwaar5oUTO9A/cj27NSNOMKrhlNP79/5EjatrEYPFiWWYTW8amHd3U7IwW+Heamgk8mU9slrYoQRsgCe+EmrCxFrMCTGdyBaPLhuxUYlDY8YwWDxWmXaZgbwaFosv5Vlsl/8VN7u5//zMM1h+Gd0fQrXAgP+ea5x3dm37P3ajz/rZjpvil2kPAVYODIRRGMumxMUY2rNB7czNtb0d4V3HJfTIzxFljciSYevO+mn/Ooeki+mKgG80FXPBRWBc4xBAQIMJZndFhVhvzgFN/L009/owNymXvXpymtRV44G4vfii+Xvd7Ez7PJeZWokPsOMBcM2D6ZBF1MyuL8mOtpfGmkaZb15990aDONeWn7wnzMREikTacVNybB10yteahN1ep6EHdODHb8rQKzpqlpsJLnMBaHNg4aNjjq5QjJLyWeFoEU/fxMnNqfDJ5+MuEG1gVXGqMTN0dj+RDbzZgOHnnuoYI17T9/NhYeYxGuRleNKS4oIqMPMeYIdfpEHm3e5dwDRJvUseGdVm9Nq77XysCv2ppn2qMvHYMAAy41rtpjgPnQIVd9JW0bYfNJPCq8lotWZu5zXdlUm9WuL7s+a2NdmUO5le1QsPz6ZsyX8vGuPjaT9ObLr3THj52olW3HozUSeXRNJiqgYAzWx5zAl8BSbx3JL2ftGsu508gMlpNBIlZCkVCtxLqe7/iBVCygIADOzONJz8GXZkGDMFSQkCCQJFFMD4ft63lm8CNgiKAVR4jXdOygO7MSit1/RQjzwWw0uT1ao+UJ0nc3sYQgeBofy+BpY2bDcAheOB6CfO16VrKFU5+MTw1kdeVqzFkhdFaD2dKCDw7HYD5GeoeUnWwSeDJ7zeUepy8S+NlokBCxNWFG+CpgBEg042nfpbThaAjyo7s3VkfOhnjV6EpGOHsEBNPBx+itBMRcGgZp+VU7xWeyTIzXjuPLstWCOFVgBBGJOsvPxsSdSp2YMhDDiTjV30469XolK2r4EY1mYrdtTq4HzoFtKv5+JF7EiPTB4fRSzAtWlyVhvmlS5IUQpVSvqrorJqqDR0+HYchqv/SrepdZMGOB1mAiWrU7IdTXI4VjHjAEBjZECK4cu5nQbMjrnToHhYXJSnTy1I+J7XK44HRXQ66ZtmByMJOcRH0hnNy2dRNhSmkiRBOPvxszWmAgVtGxEDEaIOPqavpKBOwnE7zuSEyVFghUqITkfeu2GFwx0YWBIfWRlkpzFcaXqeNKVji1oJyeCygZwpR+QfBsr8IUor9Ib2vT1/pEGICK6ZV0d5L/nfS9cQ0ZgRUtjPlQQQoXpdzA3+KB2uok/WQBgLGV/4W8IIe7RTAC57TVOHPUEn8Io2GBykdekAPN3W//8me7zdGw0m6dCRPzkv5flhWYF2ZrHkFMMgNXzE6FG0heNCmq8NDOTcWk0QpC4jpQ3urj91Di3fDVEvcLE5JXlUbdBuQIOXs+lIXI6+9KkwxLO5T5Q4tAi6TR0jJNGy9Mn3wK90Sr+9xTcWgO03YzsD4eZvWvX3m/THzmZRUdwjAgRmew8AOe6CjyLyaiKqAxCr6pNuV0N9HqVwQ/7NlsY9bL0TDeqLlNeCo/o5RBE7FseUzHMQUxr/EngucQnSZMZMVm5sjM7Klifu11KNyHOcLMdu3a1TDzzUxkIQXcQ+C0ig144Zl9D2yJ8HCqcI3q0W6f+/prpYH6wlO7w2BPZuwwmcXRO2NK3DiM5t/75Wdq01UBdP92lpeL9/W9N49EC0ar5EDoGqOh3RhA/YqAAwJGCczAvkJ2pD8xNg5n32CsC5b+5Fcwz1/nAd4NxvWgnmNiMT2YMmOifilSv9Bu5jTHFKloUGbqmbrma/WTCfxWz/LcA2UZRwfjm4Vpqj6UkdfyqFTGlFhLfFPDsAefMM/Js62Sa7s/EOTk5avhu9zMHQufDXUoF42EkWCKvhx8AG9oFysGoU1w3yhKW1srX+1OltpfJzDXDm1VVNNGu0rn5k8YKo2p9vgibiuB49diGvxGQkGsj0C4JYLGp+KrtSNuKrRM8JEYaMviegHPwC+1m0Jw99qERxGi5PEwWLdvPVBjjsCIvaF1hNPgHCEnXBNaavV2YGt8lkCMQUw7Cw+kXr7WD8UEp4papo1g5LlDzY0dtKFu6un8ZRtBrZnqgkF01Nd93gPu81z+4FyAk861cz4Yyq18giMbpFt6jGmftOqGmfxJjo/NJL38vRdDcEN4MxCsB1uaYIPRBJeG5PpVjp7MG5Pl4Ls82g0xdPgzIDhltw8i4DMDeYIJFTWnbFLdnqhPdTCGx8oumqB34isiGOL4uuxpFF+VSzFV+JaZ6Ew0IHviH3QxvkY4fEijYBgQnQohYg5alJgyJHqE6+7tDOIwEUVIUnasVFmpty7SW5BdBpkYRXx1aAZuJBgYBLQyBATiKN8ARDTpbO+xPiufDDxtOBO/IEyQCUhbwn+BKY+kS5JkjhNg0WBhZyfRQ/wIvoG8PYxBdo+r0bMs9ROHxeA1+RA7W7ycD0H+1MNZpRXmi/MwjVdQR74SPThq4PxoIwzkx7Oay0qOY1l6XMxqJtTFmJ7UTYiCnQk/AMnWPm9hVm3VQUo3dCZ6xvRWCBGTE6dmpjeTZkfadD4mxiIEaRtNFAbWINwV89iN2MdJwPpAzKeDCScQsBTy3xEzo35VvrhHS8I48e8h7Yj7sz72qxrsGVUHs5feaIJfRlGU/LJdylQL9LghTHe6IxJk/IMss4+phhbOeBD76Fa0m0JOUEMjh5cD6y1pK0Kuf/QT/5+x5GPrGpIkk9r2IJrDMbEBgP7ekYCgRxPIUiBSmiiIPgJp+ZxgzBHl5RkDxiDmZzrjMHi8tDT62binjbwaRm5x+nlL+nAycLVNydH4uGyetFO67XtIoF3G9YWYLCeqzFqOP8zo9MdAWMDGY5N/QEIBaI2ZoKViAJyhGJqaJx/a0f2bP38xWsKs4Ayhf/qRnd0nEr/lxfh3WEFqrCJSt+KHBqkvj0+VM6RkNZFxRyNEg4OhfJNzcXI3xqxuhTiPBUaChE7G9IRxPZSIyqNJb45hvBBGZ6E3mOUQS1I3R3sHBEoQILBUu2gT0gmDPxKG3zcizO8Nw/an33y1fNVoAJ/q2/Pn37k4z6AVjEjQzXRU8GogafBxrRV5UUxdylOuNj+1Z7J7cNua9MOq4IfEGAtOYTq8GeKAgRNAdFm02cejZeMfuSHjm2DyYPAPQUWQQLjLvmwbJ63Ki5N2xgDT5cngLXURYHXtWEKFhKmhhdR/tOJWAfMDhBf4NYkR9fr+Y0WgmhB3rfurHxwqs8kvf25fVn5trjEg5ttYNOnrshpPf/7isw/VSlCr3p55dHsCHG7q/uSbbxajZRxpJ0G1jaFmAroeWJXmpmdivMepFEMUaGGeitlMH7nWjoEwFjR7mDLhqw8HfPCi6ZL2bsY5AlZaoqRV1kDo5OMo5iP94p3D6X7CJq/5uSC/RrDbmO/zUMfguFKy9vnSRo+NxgSfsa0cpie0YmVCczC9jYbhsILOAhx4yTz7YUerXSPKTGWUAsMzdbdS16KUOZNcBPaaUz0s5Av2w0fDt/eXp/41TFOXdEUu868AUBkk6GmsOBlT72UsYphXp21PpA2P5vdk/DjRTm29kTrSiDOdy8WzmwE5v1lwsKp4LIqKtZmD+3auDzz4CLe4eklaGnfzpNGi2+UjTCBguhTrikANH9BI+c4cp22Dn4BRedXeXN9/9E2ce1xCVO6kL7ikvSXgVPsHkPUQq4GVxD1SNF4IeOpc0CoA5pukmxtv7VXLyPc/wbHk93L8qO+GDW4/naWLJG1mCxx4ATWEAXGo6KKFXGN+C3PArjoaQuJ52MRiNki/JQ2n90XL3hNpXzBAQfuYt6jvONmaKaIk2wiUuYpGheOulQ60OfxvSN7ytvM97QAYnQ9BvJ1O3BnCdyvAgnQEZFy1Miar0VXd+9lq5IOYnDhn829i2qI54STNaRWCRzxrQ9RkaHKvTlkiaX8QHwFxgLSdVoGJbGUIHeSmM6TleKkPIBTMFAakpJ20EcE3gCAA+8FlDMcBOPbkwIqZjGO4CWb5pwEgCjeCISI2YncmTIFIymzPU/GbwugwkZ2JVo1ZhKlnJnGLMjpLW0eTQvNGk7UyJiQB2iyD5wOBYeJUj2kQ4wqsTJwtsddzXj8T5242cMiAWETrxil8W5gOjAQJzIDkBwF2lku3wJGk7EgnYWJIWlY/goN+t9pkKpqrU9kjjimIGhyiIUGI+YIpNeFWhQFcG+TFdEELxVyzY2u0FiHMk+NrM2kTkTzPK+5WqmeSYIinpiPth5l5IyrqNSH0FWcpWsUao5nc1Y6kNyZMXx1lrGEASUwYPsQQMduS5f2XY8qsfgyicTa2MEbSCU75AAfSjAcqfPG+aE1NTOZCyEO51N5XYmI9FoJKejOe12eFzoWMnU3xabJ1Ct8x455aWZgGyAUjoW6kOuPJn5KqUn8oCFGEwIYDaiFopCphclaGMM9UPRE7WgOrEo1R7Th9bqbKMBa1B5FnllZusi7mBkMvLa0PKRVTb75jWMx/zCnnb/2IKcMcVX1SJf6B8kZwESLpBShVR4yTPLXrSsYJCRacMBMEEAw4R1RSv7SQJ83gd17bX0ybb43pD06eTf0SMiTzC8HElCDOSzPepCkEGZg5gwl43UVxCphOrS5gSvP52Sd2Zew3nHYxKxdFqDcPzU1jXYR3wo5tRIz1RyLQafP5RNjW78a6Pdos6DAP1Z/GAeHgn0QpK46WBQW2DhLyBIyZdtWPQCKYJCK0I3NsRzRGGHsMuV6WxrJlOEewVmMmAE4Z3BAiIAQvWIRgjD0cE/ZbiXZvLn35M48Ehvk2bQHLGjdpMwbFisYBxvIHi2JOUh5YGmd5XLACL7/8qSHHXGg8DO+rktLmJy+40KHPjQu4yngwLipB8immzdn7/JQtAwxWDcSWW+XT+hjunP9O3Wlwh21RLPoYGK+hbP0Fp+sr/WylG8blauY53KoOQgU8nxVmDwRfGjtWPg1Ha23uql5d93D6/cvZhw6DYFzM+USlWeYPTQv/Iu9osWmawKnqrY3VTlCpLHOe/1ewTX1aYe15e5Ynyu8rBYQF+IDJJcHtaOr8Ulb5fSs+TW/FLwmDxMpC6FK2emEOCbHGK06SqR9smAKNNTgQTjXf0WOuILTm8sBYMUvuzC4U+7Io6vPZY5AZ+MvP7UvYin3dr3zh8e6Ln94bOD6YbWN2Vjyvh8K02dCY8DAc4K2fqkF92wlOn9yb+FgRFLmnEMr4O8JLzIU1ztLQoR3aXMAAkNwQ7mtc9c+lK3hlPDlX4gCNSsGBoWep+KltS1IMShCkwjEHgJ52ZFKvKwdlu1wjEAYMx2naGkCBIGajzrNlhFhDnKfPxaR2TsWTlwGMCBcDkZUgzEUC++Fa4TZxmEiQfE1Ez8ZgkZBpIRDQ770ZSSsICYEg4b5zbLq0IEsWia1jJ+4Qn2gSTHuSIF+mQ4kgPZ7YT8yDE1mWSBKguuboaxCdjgYs8zq0NczIubZrvCWpVr3MJNgdKXDLhjAccYCdsoIu6TCFVr/ZpuVCNAfxys1EDIFNW7VZ2ATmDP5WEPvmMHNMduvDoKXIgut4IoXzuUpTu0cjGSBgCMPSEOTZMCRMZ3syAL/72oGo38crINk7B0+GmKzp1t6OH1fqsDYaOx2zJitwzl440y0OMUJ0N4eZAr9F2bvKBNmaJcps1mIWk0CupG7vhBnkhG7gCeXAbwenbuAakDbWBRM+QOqMeEB09qQ6H0aODxXHeIix7P6ZcALq0R5B7LQU20IEMHTHYjbZGQ3VtmjTKt5R1Nj8r+6GceOf5keLB0akJsErqWkxH1YGYiBPheisv4Kxig9a6m/yz0aLM54xd/iD6TK18qkyfoxbjFuGbbRDTZqyug4TkEfdtYw7iIF5TpiLYlhC5BExsFm9Yk2Z8cRw4g8mWCSJTBBSJj++Z8JDLF5yrfYO3L5xsluWlXjF0AVG20PwTXpRrw9mRSQfsAnm6MBKWfvib/CrcSg1id+I9uZPvvFqIfKa3PmDMDQEkIbkUOd2hIDkBlJhtsGYItDhGStfaSBBhHIwnUkPcTJ9kzaNf75FhdBBGTZWTAps5NJqoQv9o54pyxtjuipSaVNOTJcVKbmvHSdeRNdtqdRzDukopIWJcowGp2BwEJgUnDIaQcU48mNUZwi2pMucMXAVtLQndBmABUPjsFW6si1YwVkfdTSCbUjWiCpzLdMM/74b8dEZC8JenPKtPkOMBarl6HsqplxzZUNwhsCk9hQ8lEUoGD31XxHNGYHrdNKZa9qwKs7dmQa1KokgQvtpZRLGkNC4KNupEBJvRitnrK+KhvO57PuFGTK3W7913avvn8x4+1b3W196upih8WiRmmYngmbG67rxzIsw8194+qHSIH3rtcOlVbRa+Gvff7fy1r/GW/VHAGPMYKaNv0C4ngMcXAxHDQ7HvhtMbyBqLOoPDIw8hnvPlmVOqbN3mJ78r3zlYQApK8OgfvJK0jxXfv712idJHVJWfV0nb3NXNxtSQ5pKOPenfWhu/cGffq+I7sMJwGnbEMEdwas26056OxnQgKU6tR+csB1CBKifyuV/HXI0/sbD7P/933q++7u/9JnucPxvv/XqgcSqOlJ+Ttqq7WBpHC7OLgvy5p85E4Fv0DCtjhCKJsKP8q3a5g8QDUeVm2etfFCZP4Y2w70tAQjlJi9omd4KfXo7igD5bUh9t0co257x+FhoBitCSFLSR9MeBk5/0AIvz3ijNebDRaOkQ/gTlqY/JrzSDKZN5i/3BBoz9W8NiGCSdloYJNDq7i3jwXE6tOu+mhhVp0JDFh7apOr1JzcsS//4v/j54gHgLK3FOAWUJTyfDe20EImrBEUFjR/Bw/iSpuax7GQq84JGbiKk1MMkGmDmwpj+SY6PrUn6XDhIxO58JjIJf0MIpEphRGgGmDoMEAR5gl9POuLtQ6dLU2KVmcmkHbhV5ipEf0XsdZ4xxawIxzrBrymIlu8PCZvfiSjBNC2QLcdRE9hgJA1wxKuYNyF0nGotL9dhpVrNjMKRMl0dDaEWFp5xgj8IRizUOOe2mgfBoAVB2KQlDSI2pIWpEE2rVg7H8ZTWA5JjJhjaS2Jxzawk5g9JQggD0px7nLpl6xgcBFnvIqaPP7S5NCZMQu5pZc5E8yMwIf8qB00HqV3bZgJP2guaPYODZoczLgQ1fSFOuakjmKgfhtQyeCYNcZX4GmDyqMDf2H88jMlE+cu8dfhUIfM0J0ST+j3SSSQtRFUMJ5o8ZqkWADQmxzANpH2rKoQfoI2gzl4euIMV/xqaA86eD+/aUtKZ1RYceQ3W2jcuDCa40EhYsm/YKpNfUzlTR+skzyNhePmFLMk4AFNmrOshPGsSBJIpR31p6JhsOdhj5GikNgcxYCw9p8kgIXKGND8gegQNzDjvG2dWH0FcVovcjF+R40wctREcKnyMk/E7nZWb+hlSQOCWhvjxIcHM74ztnwbtgKW9tI6BS/ktZG6kK0r7R3PCnwYy5pOHoTRGmB4hGEjL5PeDHCwRLuIVuA02+EYUYQRHO5s/xoN5J/3nP7G3MT5BaBggS81ppzClFXwwn0H6GDbj2fgUPoNZupjy1PlSfuYIOBIkzCdw5ONEE0RbgClwtiKrnuVdbWKd+YW5MbdKqg7BMp4IK2BsNU79goiZoOEPwgcETMNh7oEZODiezdJtmkRzXniBJyN5MvcKgqodoFCwy3vfuParY+7sbmD32it3DcnWVeXJvFragNRz56a1+SU2T/4xjfNZYxojoNEm0OrS0mm7cmmCMJ8c84150rx6kMRLMxQY0HAa03BSmefzHSZaXC5aqtI8Jb/zwR+bY/4Hh+ngBARYf/MbMS+YQcYyjmjzir3JawxXxaFLX5mHAhZ+K0vd+VmS8jHftFHlxIwJqi8DK0Q99wW3lAFkeeSqhpg541CFIu5JC8+bA+APhpgEh2+l815+3uE5inHwrPJv7+qD/FGP6sekb+f2rMrLPIXv1WEY+9VbeVmaJJmnTPNXGcNRV6mTccc89IOETKBJrz0Xmbq1PZ/CM2iadlkk9I3EoFKuQ1to3u3FR6PCLP7sY7uLvmCUhST40qcejmlza1KnPpkrcHgxgakX5t61H/piLlzKuPCDG9TR3C8NkwI9SaHVD/25OuIjnre+8on0ra4NtpVRahOhJjj2ZOjHO9HovJD2vxaLDOGfBYYFhUBJSALbxrQFz+abOzU2IlAmHaZCXVtbYq4LDSPcaJM26/eaQ0kHH/PTRH/l9/9k30F0oo7UUd/qJ3VXwfwtYf1XP/tYMcLwou/AH01X5q5or2jwnnl0R2n8fiYbBj8af0hj2gKxgTF1ViNH6782lmrsgpHn/Tt46KemSSIFvRuTlUrsi1rXqgjctZUvvOdNfKvIxMDBdZLe9z2wYW5A0ApwsGW6KCkxwL92PaujQmx2bopvTrQvGBje/A/vmuxeeTtOkOnEi0EIyxKJ1wojfjaAMxMHypHkvz2msPezEkDniB+0e8vaIM/zGdTRfKSipM5vHTgWwt1WMdzJ6qP1QXSXMhhoL64FGe2NxmZ9pIypoydCtJojG+nlbt7rKBNpXZbhm6QkU+YxxJJJiO/C1PmZDIDF4XTDiKXuo7kWQ2f6Ik1WCHAIFORrRZzgkBcycXdtSGTqOHNShRsu4/HLGQnTwZHzcpAZc+KJ+KtgJpjeSCXPPrmruzyb1X+Bv20TrEyDqOz/ZSuTgLPgQ8Wjfhyh1dmKQquPJlP+WJy5+edAaTNxWr8bJgADw8TECT+0shDpUw9vC3KZDmJN6IMwi+qDqRyPlmtFJjazG6YEY3QkNvKNcSrfuDYr5lKWpdPj0ZaNpq8ezIBGeK8n5tN4+sfqL0wojSON3vJ+DzLtY1Iw6TB6d0JMMDmkdc6WEMmySPmkXUgGnM5GqtiSkBTgI8QDGCLapCNMEDhgulYstX8fM0iLeE3KEsmcqhlDKio6h/vrt7IFSjCniYW5QNhms12I6ONEM6Y6TNWFjJE33z/WPZRdyffsiENk2rT/yNnS7I2l3QeOnStBYptJnzI3ZEuYazeulUkmrv8F38UZB+D54PZ1Nd7fzcpMMKElJV3ZpoZmFJP8Q49+5hdSCCLQdgjrxThpC6b55KPPhKG+1b178HhMzS28AiRUKmxjOe00vsQ4GpCdvDCgmCIHLRkkyZRjLmEGECN+YJgW2t3hW0hQ/vV9yjV3MG60zqRD6X1PA23cQlvKI2xWf2lPDtfmOeaJD9Xbh04EQT5U33KEPhj/p9feO1rCljyNjUKR+V5+ub3n8A6azKt29BdOrT7p57gMnJmJo37MpcmwNJSf3Lslms7J7vVoc8bDmIvuT2iwCTet5d27CSoaYrMpfnLH4kunPdvDVK1NIFfO3JMR+DBOxhk/O0yjvQd3ZW/GW2H2p2hqM3Yxn6+9l6CIqbi4U+qEuafl2p55CQcSbEjo2gFnXLrybsbh5e5LWfn28I5NgVf8vZY27SdmjoB6/frS7rd/6ZnyRXs5K+d+McToqWwo+5eR8EvYzKAeYAMwaFeyr35DyBrBasAyZxz6NOBp/ZWvB8ZEzC31TncUMZS2GK9o2mVaeTvnW300HNUHGQ/GpDIXMlM1hZNYmbV4wYPqWwSwMXVDPvd1ef+YqakVJmjwd9/4IA7uH5TLxJ4s7nk8mtu90bBYgMQcSHNdx1C/ZIqo/9N/+GslKIGx/j8ZywF6Q2tL0HvuyQe6z0aBAM++Grzw3QSOfS1nztDMqkyw2l3CfbSGBA1CBHcL86KW92ccYHgJCNXIlK1N+ru1eb5S7Sp/Ay9p7j3akyG1dzZ2ZgA9EgbpcHDmX7x+uHssjAcfJj/O31xHKs5f5nULcAyfJJf81mS8C12hDwmbaAq84GzbMfMVfmBBgMNsI1O4IWnvP+6vL5zBfUUjCczgBK7gQqkBt3jnzIKwPjHlMP+YfjSVIIv5PZrf/vjBWuwAZ6qLcdOEC6BqY/D+8u+v3w+7X/J7OX7YS88Hn6Sns0LI8nSaBat+SMbi1dQO7cF5djzGTZMsDRAaBwBkY38sKzdoniCBK1l2LDItqQZhBCiNgjh1kNVlpxKEjdYCU0J1ijhaTnsynCnCbGCbAAgfRGRF1Y2spiKRMh3wW+EzwJzEl0I0aFIFlSvH2zNxgi6/gHT26ZhspoOwaAh0MgZu9YpsvhqC+PSjuwtZl3q8OOu2coAmzf5hyiE9rAxxY0+ldSg/i3QgJkCZZR4IkX43GzrS/GBIDpy4EOR/pmzi7L8mHY0GBLc+hP9CGDHaFZG6IUwmJNq221nFIEbT6PJo2jJoEHISpUEEju9noGyOJgY3zzRGG2A5Mgf6/R+cipmT83f8KKKBcUBsmD4MrLZrD+ZENF9MK8LARLXvgU3h7m9V/JZnn9xbSEpEcWYPPkcTGdCYLH4UJ89GAxRksj8rUOzTRHo2Zpj4MLqWEDOfsX3j6iEfSPJ20mEoEe4LiW1E2sGccVJXB6YQY824mIqmxSRFZEho9X32GeO/dS51115hBYpZCwPFl4jPGKSmHph4bQdjdn34oPUjSSnEI8wSuIMfgoPYg/GaaD5pERaFieHYS8sJQcDFNASQAyoAqdA4rIzj6PWUuwJDmPwwcNoHyWMwhJ5w35bsUtG34I0WSCD+4jbNHf1EhzQWHnlcByEFcqHlPBhtBkbu3TAYCKJPECBzs0lyyCN/QI6dtBCYw6bpLT+PHsuaE+awbzFgzvqvnFcDNDAxX6Br6ZyrL6RVsb5uVWZfjn5rSCuzOuU0hgnYUqPcq4tPzW9z3Rg5GK0RzdG7h08EKU63tMlP/UqgybXy1aeKHYCSsyq0NudiwaGJnm+JOerREEyMGZ80Y+0T0fKOrxypZdO0Y3eSNyJoDqizxRB3syO9fib4cBK2Mldp9p2j+RK242oQPxywKsw638bzMdXa363MahFuHgyxgkMFZKW1RKzVycIVW+YYM3Ac36wzwX36Vvk0gh+EIBBKaJA44GIDxUIzBpNNCRckchpkGtaX3spGudGKPPv47vK5UhfwchTscy6mIuW7d9D+6/PSduS5e/XznbSStZRJk+d+vl04ZuQDLtJ5p38r/3qQd4GtNubTSulbDJrxo+w2jpqWtfo3eTnQGuPDrX6QdjhcMfXWkXzM9VYuAdMiipmYxE9GuJnKvL9WG2ZjVr+aTYe1yaE+5tMX4rPGn8k4hevghVpRFhhggIf2wv3b4q7xmfjuPk/jEZonT7tL6C/zBMyG9rvXHuYrq7FZTeACR4Nfg4G2gF/7V82tyg3wHs7g5FrFh2cLr31fIMr7sxnnb6btL4R59jsdVwl+bXfj37Y8tAP9wLT5Rn3hBGMRzja+aM/hG+3SxjJ/Z+zB+3AlLdVXvvtOjetqUKqlfphOdRoOjOnzT+5Oe+EV9N5PUOrQrsCCkDk4wBsj/GN1OQZOGvNlXYK8ipv1mcd2RtO3o/v0vm0VZ4p/H4Gt6u+jGndZZBN+4qemSeJzQY1rwIlNxFRQq8pKL7GoVlVhAvgksIPrEXu82YMs9K+YHVIyGBnUW9a3FUYceOW5KgRo1Wik+xA6DR9FgIIE90ZrZYUX5IjAX09HbZxcX6YO+4xB2stG1kSzEwYgREZwN/sb2QQWd7l4cWLGBGA3bZ4brt7AtwWGgTQawr4+DBaVtgjAJESdtC6MC33sybNtR+9UrxDjmlVpU+qE4HIC25x8N+WlfKkbr14XlZn0uKQ0ASKDK2cyzAZnTjF1Dh85FdNb9nWLFgoCtdEhe/DtO1mqGgYOoyhwZXeHY+2qEPxE40bMAsPpEDwqdZMUSRO6oGCXQb1qcjTpszt96kLV+ljUwJA+eDI7DhOIjxhNgXd3M9j4yjC/XYpm63zggLhjSCbWIOTR7OSHEVicOlkByM58OMEjN2UZvkCN0tDq8BMS9+WBRIzdGcf4r3znTMISNJ8XfQe2mEHITCRqDDcn8VNnbRBqGT8n2YSViDR/5TqEFN+TEJnxNWFq0/9L04+QDLMoh/XLmai301c0g2XWidOtPfY49W6Nn5ytW1ALGtCALm2zEi2+P2H4MF6HTyVMRBABZmU6jA+/NgyYQJ9nM7bXxI9saTQAa1eb3DbFDYHMl+vC7K+OhhCzhekSGyuK1DBXMe0Frp7xeXJv4i9ehujHVBIkiBExuUejQXty77buRJB1Jko9hzARW4j/xu0bpTEopjGEzveYGmkNBEjU5C8Sl8eQDOdthMPYk0d9k2ekyAGBQvCFqPM+n7Q80n8YF8jer33XkHkxXamXMo338lPJbT5P2yy4AJeGKBFSCFSd1a0EDvnluXyL2IaxIOENBE3+6m7+FBJMxtJS+1eIj4JNQ6rahLA4MGLywHTmaf41GGBwi3AiCAFVsqr2+Ea78knVjZYxZLnqKsL74Qhmj+3Z2E0EbxCerDo8dDymxMgSYDYRPHEtU/BYYmyZAxPRLB2KAznTbWlXUtCKaMRtnGy/PoKhg5tAiw3HCbsxkszKa6NlcpiHhCsaaY7fGqJv4QXmIGMoozwPs/gh/nuESjiWX6C2vRoNE20oPPv5px4oAccCAdrf1aPZaijlazc8vSMagz/L5qsHU+avfO7R7jvRePzgvePVhhqngU1znAY3falfMckYg7Y4RqHDGNEV6gBfOjyX9v+l7T6eN7+y+74/jc4554zUjTQABjOYxKGGIilSYeWS7bKqrIX/Aq1cpR233nnhlatkSVZZKm/EEiUmM3M4Q04AMMAgNEKju9HonMwViO4AAEAASURBVHMAGu336377AWcgcgqcKn2BXz/pG24495zPibd/62nj3An6Msbd952rg17RuvPN+aCLrphfh5+hI7M6rp8ue/AecH4A9H3/4Bi3nn/o1WdtmNMZpQRNoh/P972+Hc7roHDnb33nzU8V75+4zWj7ULYS+oSr+wiyN+dcaOgNSLbG6spsWcA6O2n0sbRCyFtm/6hxFlOjttMf//DtFMdzQ3ag0UIwu/+0Fqw/ChKQdHnw4Kng6nCptsbmIFKfHGjpwZsxjtOHT7+a/zTG4dOxGZc8uK5BcA8ATTww0Gju8LT9yaPHylh+pGzNbcXm2ehdeZXIKDpIMVgenxryr/CKQAg+4K7GhBvY2hy04Z/PHPN5mX+NNwg94B1C/3cbY/zLmlO0kytbfO+0dq3p1lC0yLo9QFwPNg+sSuYXn96xeXGB+FtSQCnQajPeHvGER4vVkgT2H//kR/PHf+7Xz21JUqfD9gmCu1TWZXKzRxvCMTiABhAgmwAxMt9Bm7QqZkTmZPE1Gquq9DDd1UwBiq6xMS7LgAUptVoRSYBAEUeL1sABNYoWsgwt4QbqPv4uh4QtdM/zXNYJNXIUe1zQ95Cw/dm2BjpYXxRHFHTKJVSXhsZ+/PTlBJOA2jsBgFUDhRLSNDgxG9tzX+mfopAAQd0OYHVe7UUo0cgQUjebaIXe9mZ6l8n0VnE/LGFMviMmIcCzqaDpbZnpbdGiSrVMMYRG0N3LhIkRiNdgOmRmtLfVloAdDZR7hMC2aNXkEQtj/NYH7BDacD81pgJxubruthCUJKDpyNC7m6lfwDANlAaLAG0kuyD3z1ef3DXbu79NjIslYx42H7SKN2LGUD5fsFo/BP3STOnrVio8mAUlCxdiFrf1zef2jdRmpk/CeW7GXplJd+umlZn/j0UP1UiqHaxuQIWUc6nRSxI04qtU07YdiIJxV/vMoqMP4rpYFwlVRSTR0Y1cJQQKq4L+sgSoh8VtyyfO6nG6rC7XYkLcHsZ0ZRampx/eNOb7w9q6NiBruxF9Y9kEltARq5RgbcG1QOCdni3IcJS3CHBuWLNmdih3mb6KLeKeBRCIjpOBQ5Yn7hrtYBnUticO7BgV2a/WdhmeRMIQKmmmV1vUf9nu8IQ3YYKBSm4Yv9d3gtMzCJn+H8+dAmRp+pPAMj6YDcZB0GAug0Z/gm/5HmNzeI7f59IF0HG4n+f087gHWvHnPN8bc+3CxLFu9/Msz3ZPWuW4b78SSnNmr08O17rP9JwETdfhE4QI1wZBzZpobYu16+Hj+c631seYdD5LiT7TLNGH9aOYp7boMh7lcB/NR7OCabUPI1Xo0Zra3ivLtfbvLZbraJY8RUTxFDxI2YPjzSkrOu2ZtRlvcF+u9Y2VoQBU8UJrQvYfK6a1SrFEM9ousw3A5Gro44hBU1ds0siVIKj4bevzduPLQolurV9ZQOKWKGkDkDROLG2KgMqaXdZ9ZTChbwkC5kS27nh+1mjxHMD6H7WR847qbHw1LZ51Vn8AE2PjwL+5+4yfMTY2c4DadA26mk6caGdc4/vO9bsno70BBpoL32FwmoQXz+kIjRCE8+vxv3Fi/45r+30cSO7BPfTbAxTcdY77fjYmyTV2CUBb433noAFCeaIJoE07xs/D63Ci9eZ2U+vdtjXT2K/IqmfnBMqk+SLr5vTvdzQ76LH7WQ9AMr4m7hYN8p7YVuWXv/T42JuPwj5VxY5/1z/jat14He+7D8A0LEwB4qspYQLAHZ5D0dLu8efL3szHc/46fvRbhy4+6OZff35w8RTr6GZTr7VfnOJbH5yZfe/Qsdn3Ckw/Fr9HY5NVsXU9eMEEOmUbU1rJMOuTMr8gJbXuzH77O6+Pe80fOrckGdf5dwLG//6XDox7k/vWJL6EZ7D2T6ETk3JhjNAUQhi01Xo3XnCBVU6+kCV444iLcp/mBg+nYDxTtXYbJ//b//K9v7Ml6XODpF968WCDQeuXtiy2AXIrtbKOMmGylij7jnBpWIhQ4NuIW2hkCX0CHCDQcL51vzHvsarMqvxrU7wVBTmrLEtQ3ShuBlInrNVkWZZmzzLCD6ktzKDOFUCMDV5KwGAQtDcBkbK9MDEMRg0bla+P91xVRzGL5zOrq+zMnSVl0YBrM2Yjjkn8DoKTWjtcH/Upfpiwa4PbNMqbxayIsRHXA6AIkLaIMGvEdCOGJVVXuxe3OzhCwnC5QI6dVEOFhphPuIlVruCj7vFJ2vaN2xFE/RFnhaQEjArmrmtDqCNGAteYypYbdaH6DcPnUkE8wCl+clFQfO4ejJwQv/2RPc4Cef22ItDHnDnFlGX+rdHH06Kjv8F4BNKOMejBTMkAIjAmTghDP30x61MxQoibdQuR8i2fKntQ37YFLJmkFTRUTO9+1rzFCxXoXFu7rg03hHYw5fKL9/bBXAUWKlNgwYyMtYDF4zF4VisFKQXwArtrYmCr8pmrd6RD6mkBIxY7q6c2CLoGTO4ntO53vyXRK0uFtiqjcLhimh6s7pYDvaj+XZMCnwI7p/Zxi07a9bQlj2DO/G7du7pSCUUg7GYMclvuzSMVMRXH9kx1bbj0tNu9RmBkJu2bgSMuaYVMtxRormSGPQxjPbmUztSm860jFNC2NIFjxVnNzRBCfTd+07cah3F6xfwJkPG5flp/GNNc0BkLWlesuHMmAKXjkcoYJ+eypAEbznX9AFI9z30BG+f43h+g6zyAAj+gAM2BGSGBkTnPM7Tdc53vz+F1EqT6ic119E/TNw59ddBMjZ9nOHyLvvtirLNJuE/t8/toQ79jkPO1oBlr0u63VqdKQVrnABr4lnaIUfnlLz+We56bX8xjikVu7aUBab+LF1SeggY9ArJ7jiy2odDFR9AvpUemK+vCUBDDdMcqD0HZeyohubV51ssRc9f1tGFryD3NH3AGtFFCgX58kcK2tHGeaHoa04PFkTjXb8bBeOA9LOHsA4/v2z7aABTot7WwOD7IKoHv2fbnsepdKYeC9v7+lw8Oni1BZSR9dA/HNP7my/w/sNB5mMPrg/fT2dN8DtqY/+61i/1unt3PWA6Q8+AZ7us7czhoe9CLC4Hy6TePYd1znnv1Mt5bS3OQ9F+52zpnCXqNbud0NIGZ1kvfD+HbmDuMIXlEsLq3w9hZR+bhfLx9bAVT7JHnKMqrPZSVkWjQKwVA64Ai9DPWSfel1N4NWJORQg6UkHmueM9/8vWn2nZk//gsGH9kbD0YA8orrDjGsnsAkmILueTsnUkJN4baba2K5xTnNNZJ7+ev1vr8N++HxeXB6wg36L7GfYy99er5D/5cx82MzigKLxUD+FdvHJ1J9EkkfGrkQL9CJxz4nDnxHKD8D4p9Q1PjaFyNifH5dJD7Dg/9tejP3DKa8BRRiM0bJQk9cu1ZMw5jAlt4hvcsUACVYHSKKUs+F5vyKgAYHu8ZDDH6BHj+6//8V39nkDQFJYwm/Ox/aGgL2t1aqjT3h+WpvsQPChTl6xaUff6DNO4axYSM4E4L6G4ypfRLK9y4btnshz8ueK7FqTNcZbKXDMZH2R+vxJgExiJiTFimFGElzsgeWkOrDHSwTAE+jXjXp/3nnhD7wYrA4iBFfZNA4c6Ya/a0Omh0e0LnRBMvYO1OqZovHy5lsnICT+zfNVJzpevfqdzzhTYyVZX6+XzMWPzYb+1WAZkBFgx2WxtdLitA+3bAiNZm8dEiaRf7qkp9M9M7y5NYKRYYB5QO7N2+UyHHtDdAJ8ndhpUn6muxSYG4NatzDy0IyFwpXqtrEIHFgOE73z1URI7qxmeMQraQmC33xAzPpH1oD6YrtkcdGC49lpodMXfp/ZsTGBfbyJXFCfA9UQ2jD9v7zfVAJ3/wosARq4KFANQQBPagunm7uLLAgYBnFkWxEDIcxejI+EGwX6/+iDlQ12ZLljNxH+KULl27ONx/exNMFhZ3K00esGWlunrzStdVWbZ2irVY2Xhfo51nzQGC70R/lxsPgohwWDCCYK91D9lIG2tDzKv52rGRZW2qV7M7QAvUL6ovV6MlVsZz968Pa5V9/0iTkcHVfYcm0ncKeyoiuPiumiNZgFqAH2XlY5K2ZcPxtPdVWYgsULWo7jY/NNWdaejvBdAgWgBfMDbwv2X9puazmk4BMwxYkUSxJ557MWvg2M8sa5zihLikOTeHLHFbA5uycD5IsFkr1hS6mDJF1YyZ0mfRu4y/oYl5H2OYCxcc3+8EsoM8oLlPomcCXsWVDgCBoQH3gwk/eJZ7ze87KUm1rzYQPn7DbD1Am11n/Q9G39gCddM9PbWj7xw+eb5r3ce33mOSrnWTITwTSg+aPa4BBtyfYLu3yF6S00bHwA+riz76AxAmQfZQykgbc6cQsOygNYLbs/Ehqcsnslra0kP8kOKnYn64qHxWFsPek6yJRo+FE+CiVInloORcbiPacykkyn6Iz3xoIUva/WisEiPxvtMBKGDHRrksSaxKlCUCgHWcoD4aaN7XusDgudhYvwljsXWKnLJAsyoD1WqacR8MoFCbCKQ/+t6bub4vz76WheipClNKaGgoRz8BTdv5cNexdP/TX35+9p0fvT/7w4TZV57eN7KIfue7bwxlEEAZYKYpmGZqogtzgp7mx4Mp+vS7IXD7Eg2gDfM8xnlcMlmA+abMzQAS3d3rwsbRg+aKwfitaz3be2Mxf65bTb/MWzG9Tt//9Hc+oVnXDvDR+A/wZVC6uWu0c6IF1oilI/nII103eR9WzbYlhw4XurGvuDJAifxBo4DubWEcjS0LNXc0wazNKtmvxRtbPyM7s+ehT2OjfM3B9iV96pHds3/+j786ykP8Rdbj71RWQCKMcbCc3Geyfk3rZ25hAgbwv/nRqWOs5p/nr/pHhpin8ef9+GJ+hlejHCj5ya8efO2X+VhfnF0fwHpT/XuuDNOJPoCprOGDb+bBCbQAdQocj/X72Xv2WZvc12FegBg8biigAaVF0bUafotMQrKdEg8jZEAbABSNGRuKmPE2d+6qJMyguT5RfiaQjQbdJhqL5ig1P8+x8Dc6ftaF88BtdXsEbGPqqg0TviZKxonJj/4GozOBBLmJY6aV9XX2UqbMJh6gkQa/q/RaDGNRWWv8iFvaHwoDImylCUPjikSKK2GZYVUyKdA4IMTyxLxtAAReNoZjk9Gh6UXAUrAbpZh3bqrcLlwoRKf6FuJrbGAJhLE2MV8i4qmKcG4WAq4bmiOA4d2yafj8AR6I/0LuH8HTgsfeaeHQDsThXIhJyZoa7jeLqOuBBWmMLD5iBzDp+7m1Rlpp/UUkQ+ghrPpLaKnX9ElWNdWZBYwzdWL8E4Ke3IkQvj4ZS5YSBMHlI/CaUNFOTMGYMu/qM4HRMKUdiM1iMckik4VL4Tx9ZRUUQwHt64exQ2xWT6Q4BNLVwMVwRRU/NoLVi88xfrIMgCGxXMZP+jIi1n6FLAGU42nV6HlPAJLmxUzL+sBixyVwq8VGeDyyc8voA8JX6PJk7kV+a4BjMMwaS6Dq+4E09Ia6TZTtVB8wfLA4cwINNyt6mLY/qRhi4JhwG+ncjTU/tq1blLRYF/i8GK3RwpZm0VJTSoaZvhpbc831qfzAOKd5FEeCbmQpyfYChM3hsUCiFH4+8wuNiyKRLJrGfGtmXzWvPqqv5nnSgOtpfXIvyQDclMAugAugei5LH5eC+bDWADXt+jR4tXltCj9lEoSQds7BRsM4zvccf7QqDAU9YDJe3cCa9H5YbQbzmZgkQe0XsMLXGKB2YD7eY1x+1SY3Ah4IC21Aj+ZNW8azO9e1AB6GOp0/BZzrg3MGP4lfaIv3rnXeuH4IkIkW3Fv7CR6/axs6135t8H23G3SlndzBgIn1RBD1/yheihcA/V96Yt9sbQCd5dO9acbGXAakTWkP54agIFon7uc3VgJWTXS2q7VuPQONBD8LE9oWgzismfXIunUdpq3/QDkLtIxUdZfEZh5uLR0tXkZ/8BA8QFyI36w3tKkmG0DMimmtoj3rXC0Z8aKsAjKEtEGG4Qg6brH43Ei2Ni8PNzvl609eemcIIxlfeAdFk+Az/trgb9BJ4zUfc5+9Nw5O9IoezNHcNTLm3Mw0B3Ma6NQxXoNmusZ1boFfmUM3MzfuM34Y30z3n86dzv9Jd9tnLUnao9Cre7ijBqAJbmntHuD/Ae159nTK9LwBOvvS9+ZfTItYsFdKo39TyY8UO7Gg+o6GWazxTABhWUrViI9pXsgpHgB/ZAIlyD3Np2Buc8VCZN4YFZ4v8/AXX3g8l+i2cd8h91IOrckxzg/G2hjM1wNwhoYGOLV2H/yxdPnzwDFfXatf/sZv89eunX4HPP76nPHePcYame4xrJadsy+X79boCt/jgtYWvzkXDVNYWEP/P4HbrZVpcKf5x8PGvI4Bb132+ZtlBlIwKQv6zJJEsZlKPEzKIvoH7q0bz2BFlR1s7Fhu+zBArbHFE+d91L5Ga9CTNSJM5v/+7b+7u+1zQyvAZSyAB0SFcfKtEm4Yx8oladMxC9aEkZ6XxUElZi4H1hVZVKwqi2P8lzJns9IMZl8nWZkIGpqY57Bc0M4MDP6I4RkMgkUAMO0Pwx5m5sCJGiMQrUyFRRFt5DL7cYXB1E1afWmqDHyxYoQrCgqGTBUfRLjAiKKX2UuKASnAOpP6o2WDIJy7FQw8letpcQtMZe9D758cAv9azHRnrhGapVeWiQ8L/sOsEMjK7vdGeztJFx/7pQVigD9mfjEzH3fO1dpyNNDAYoPJ0j7PXVDDxDYoakzdShuVUdNWIhHlQy1GJlJxVNxPLGwYPeK8e6dsqsDQvoLV7I0nTiKW09iI/u++BTnbysMYcs2dCsCqNGvhs5DsjrHbvJjwYOWK3EfbBb1bLJuXrhnuNGZP7dE+NYJWlnIsfgbTERhuY1dM0pYSiwJfqzZsnq1J+IhlA94+OHNhMlc3d6yRiBlAYh2bioQJbr0/Aq1v37w+O3/67GDkCF4dJKABvRAMMuEIeanbXHvJpKGR7MrSJZbn4jUFSTcGfE/NrjfPqniz/nFTYlTqTSnTIGZsSyCXFYH7RFtsLHw+rR8gZ03hvkUPrbHZ8Sw5vt9Xn2RnitEjrFjPLlzNqtZ4AtTmUykAwdkLFtiORiD3vdnLpSDbWkW16NhGC1scU4pG4yDbiLXSGgMW1S0CBo2p0hhAPG3Ld8zGc4GESWGShB2GimEItp8A+STcMLBuO9bWEBAopO8ILle4hjAxl2MD3fm3fQY0fO+EuZD6a8bboPSb361Xrw3VuBpjA5Rp5J4zfvNjB7qSYek+jsE4u3b6pG3T/I7nYOR+60/fgSaHdun7HIj5fX4/NNLjx2eC0bq5ch1wzP09njduMXjOM1XyP5CLijXuXvP2bFm8shjfrHr7vqx9R8oCeru1IKje2NnLUaba6ZQLzJogxfdkx+1dsqF5ujj4BeB9pTn9uHWT+Jn9ekG8v1OchvaIUbuYxXznpk0Jy4BYc712VWs85cwGukptrLSGog08Dl1yLVvzrOTA6J1c388kWCmr33316OC5cwvfWylM6nVRHMTDUMru5manTBrjUQplCLprtSGrVJWTbZT7YetDBWVu4O++diTAJNliGntzNJ//8b7vBw01B/rkQGP+odCaMwJ8gCMApd9cp/7d+L3rR3xSDfKbGJ75MyKZB4dnT28968Hb0X+P+tuOcb+eOei+GR/Nc8F4Vp/91n8DjPW18URL1rttgwaROL231hILNqWS0H/9/TPxwOUDzDxbjIsyDSyBrH0LF5bw00Ex1NrrWYaj8gGSgdOliyk5rCes0ZMye7PNu5c17itbP4sWrph9q2rWv/TFx+IHt0YGHuvSy7m7zlRah7LWbmCdlwK0oDixB4Pg5W8dj/HD3/DrfDB/4idv51/rx08dD34ANqxB8tM+i5Hk4GNkzZoUQ3NoTf6t9/mpm06GFVgCRthcMpCemDeJUO5jEiiLlA/0j9bshNF0JXuVTcm62wfxpNzHeCSDgmttjA5vmG+81rk/z/G5QdKCXA2HP7g6TM8f56ZKzg33F+a4s1gkAY0CIpcWeyPbKF0mV1Sl3u9eH/EaOyMksSusM9KqoUWEaY8z8UG7AwPiBui3GCsGceZCC63Bsnv8ks5dVvzJ3kzj7mshK1o5RbZnCWkwno7hIVCDBBTYJkKwLaZj81tutSsFeV9oosWIPLqnfcWaEFaN4b/M1Lc2pnMkJiMFl/AnXA/nJmLvE2RL81NHCAA6VhsIq1//hy/O/tW/+/20isWzJwKFLFaLC2xe2oLgzdmwraDrFswju7aMkgNSGXdu3ZQZXirlBBxX5pGT/fXlUk4PnzibEL6W6X3aS4zF7Yn9O0LekxCndC1otfjPmDI72r/snIKHAUXjClQKaFdBGlhcFlO8EdNc15hg6ph4FDX2/TkdoL2bW2lo3o3/pT7TctSBsah72GB4mIrxlwLtAOpkE9I+MZclAeUvPPfUbNOu/bOlbQdDiLgGU9l94EEmSMwBE7QgWTxoAzuB3Np0M6Fy5si7sysX29surYxVsqEaAOGRAmlZ0LhZR8Ak60z3ItCWplnbYFJJ/suNKZABWMnyYeWSJbll/fKep8qrrVcUJ6wd9evhYjQIKYCcm2uTPeBq97A+FnOEZm59XJmJmODR6MD3Wy+rQVWKfqBpffQsvk7A4r0sAieVQIi2WRNseqsCO0uY0hNcooCy8hD2ABOkvDdLnzi5O30vZXuAgNpFSwW6WT2NLeUAA8LGCB7AyGe0zqq2IiaBMQAg6AHjx1QwGe0BKll2h9DqudO9WJ/ccxKAaBlzIxzGt+N5ab+1w/2sKYVK7T1HE3Yv5zuXBcezhyWyNrm0lgzmNrYO6jr3YAlxwSdd7yTXOm/6jXSchC8hS4kQCOvgjpozXvcmZCZL1GRtciMMPKk0lCj9nfc/ET0Yr45xI4/79J7VUyat8bl/q+cGrl5qM1HgAA+6HrhSLJabGpCn+QIaaqQBgQO8aW/jvTYFQwYtq7L5ZjkSgL13W+C76vcA/q4srGL4PB9vOd8aF3e4PBphoadF2wNOaYiTgSUWHQohVw8Q8WixRNwT6jJRuiinD0WjT2YBeiNQZ/4HbfQAytt/av+2k1lZv/n8w4GhteNerOwANB69ce+WspJTEKLF/+lXnquY4uHZn2VV+mZ1aPaW5fQH33trKoNgrhrDyGMcw6pQL8yZ9Y33oFv8w/yZC7+hDjTBcmnOXI7u/Fk/iYjx+7CE4TOdb0wdzh+v/eMr93GdX1nJprPGKb33308e3CtobWrfELbj5549eI++dK+e4d7A70O50H03Htx3AxB2DQqdu3WsH+tXDCqL77d/9F7xbJsqcbOtJJBtIxVdJuHixdFZ/GCKYRI/meU8/jJlQBPsKvOLNc211G+sJhdSXrnm8XPnCzkRaP/kIzvG+vvzl9+ZvXzog8maZTxryxjQB20cw/VgzOaD8dNjMk6cX2Kop2M+0A8+/vUJ8y9++hVov5x1XJa0BuCH1j5erc3DopYsbrr+xuMnv/ZohYevxbPxaAqurZuMsz/GEvMuhELX4mqj3edS+sdc1YkRJx3t4UvuZZ2x7knsWlqpHPJFuRoxXWTCz3N8bpCEWVhwahgVdzsWsroKNOH7EeTT1YWIbQ+tTZVfwdCDgReIDdQczZIgq8pgYAg6gligc9Ynr9wy0id3bREUOZmru3XMUmBWrrG0/5PVOLLIxYPIEBnadoNnKwdMA/NgHeA/JiD5KglpbRFPQxi7nsn0rbSCzTEpFgb+6HO5Nd599+SwTDlHoDPGaEHLfjPxmMzbBbDR7pZX64Rp+7VX35s9f3B3EzVljMmaY/oTq3L7fvWDrrECqb5cCm/MawStNw5irFguMFjzv7HxQSiCpcXz2BKDRWhLe32xbGHmu7dtqubRueEeWtxOz/dLI33x8b0VDDw7dmU/dbnilrUXCITu1Z0COPe1mI0BqwRzPQ32WsHRx8reUZdJsLnCmCszHV+vlpWaUixuglnvf1K9pSwgVyqUJ2j+bsHlrofgf9y+QevXrJ1t3/3I7OGDBwOZ6wdzEGTIKrgUM4wuBoEnYZihVVf2PCDifoLhxvVqG31YJsXh9yqymcbbFQoJOofbioAQB6T2DC63Y8umxuna7PViuZSKUFzSZsFM2sokGPsjuXkxOPci8DjjD5a5tyQN/aP7VVXvB0HXOUYGU0KT4qBeOLh3dvzE5ebpbnNQUHjlDI6ePh+dZN25XvZEiw84vFDxQane5tBzd7Q1zOqY3OP7ZIEuTqheGe5irhyxIcvbRf5MFeIvRIMKRf6ocecKFhx8KQYKYKFP8TBiWrgK9YNAoo0CQnOGPvFygn8SHITMJ8XAMFkDf/qL+dKehjl+CDLAyWhMbrkpsDdLJGbbMYRXo8V9O7/viA2Mhlw2grETTtYFq9XcksMlOSy7Ne6TTOCY4CQwJ0FlXD1jYo5dN0BZ09EXgKDvCVTPJHCnZ48WjVgPvwNI+IG147r5oT/ajZGO//pRnJL3+j3FIUxxSrRVDNzWRBbyJ123K14xNivt+fbkuxpIt5u6EAP7H7rvG++dHFaCJYFlG1g/VBmQU2XBvp8iY3z3tScb5UxxW4kXK0uRRvd4mtdrbcx98sLZ0u1PDQau+TJ81yxfMbtSAsW2yg4cj1Yvpszgc3t3sS4RkpPVDI/bEZBeEP2j16NZiFhgDlX3jGa8tbIfT1XWgnXq26+82/iZG/Ey0UN08cNDx4cgkcl2MMuY8Ah9Ltpp4IFdKafohcKi6OzrxTn92Uvvjn79z//wy7PvlY365y+/Fy+tnEnjBHyYtAEQa4fPAAXB/nGKG0V5AhbRZu0YsSX12e+umea/8Q8gOTzbHFqo7kNxmQOlobRNJDv6D8w4CMgHX4/P2vPZo1sNIhv3CORSKgao7hbmbU7vwyJb3+c3HPfVhgcNnAMnbXMPNOrpzmMNt1+kDOZv/2jN2LvsYMAGUCJzjIWQFEoqWl+SFXp5CjseLJtYqIl1isdR5vXbUAhH8BwAmPK/PH6w59e/PPsff+WFB9ask4OXU9gBfWsGb9dXPIOMm1zBCgHbo63+Oca9JRNN7n2AYkPttC6MlzlCGw704H4DbDZH2qldwk7Ibu2bQkuAQcDV+p0Cx3mYjNVnD1Oif/PD+lLdf8SC1ZcxJ/FWxYpt9YTvuI9xwSMUVtUu6xt/ZMVlVVf2wjg/tCBLUeTJnbm4NQxMk4FcnmIL/4YmzZvyM18/N0g60n5TGwIffIJX1P+poWtjMjom44j5WYMcMn12Z4a0x5k6EQfaaZjbwk72JlH8hUDru6toIMUpJcS5ZOxyDxBY3Je6p7TMUaSxPc0y8gyLk4HG4DG7d2IUNFNgyzYPqpfa/2dd1oDtWVSgW9sxMKXbZ8vqhk6bm+H+I8ge3bk1q03VrRPYiAkatQS4TC6EWBGf2bobUBALZdF/EsFsDkCwZKR8VozyynAf0NZMHEFlIXDnqbh8oCq7/+G3fzD7oDoZzOYYKDBiAdpM1f4+FpVURUFqW4pHUo4AAai3sb17sHD84I0TEQNgpScRRgBQ5spbR8/FoO/NHsttcD6NRAbanpivbVtskSKeQhXgUTciLYg7j9vsTKAI+JXWLqhT0bz3s5asD6ApnSAe5qtf2Jur7NLs9/7izcFgZf8p3iXuLK/W7Knnvjh75gtPFWvTBEXMmB7rkwwDtEJImq9VKxamJa8flWbRhb7Tmk58cGx25K03Z5cvXup6Fc0rwVD/96fl2hLjtbQnII+FbPuWlaNo2O9+59AoM6AMAZcCQHgo4GghTYUYA3zFGAFjXzywe8RIib06H7BZuSwLT1mTqqMLun+p+xNu2wLmTdvs1WrHmO81WY7SL6PDFlugUPkJzO793Ggbu69MTsxCELxYIlYzwBsdXr2vAGrm3ebaYpbB8vDOdYNJPVGl7hFz1DxuT2u6nqDETO9GS6uyilE2ZEIdTxlZvrzxyc3mwlGpt/G4nvLB6jk00/iQujvGHVBhxaEoiEEZzDwmI7PjU80Mo04Qx4eGAMMUKRkYJCYoS1JbMCEAxPz58958WR8EjTml3bmurydA1m8UCMKFa5goAd7cSxsw8qGxu6DrpJgTUP0wAjXxEaCY1u6EAeh6gDkFymiraKtLx/WElixHz+FGBt5ouZ7ZXcdYGycgwtj409gDuzc2b7nTEmz4FiFyvjk80Lhrj9pV9u471drhWsXLHsmlerhisMaWe5z7fWPrVRS3th2pfpIHnjl3cfZY1t8aNfprw1z9x/CNnfsRXlf7DPzciOcYF8KIFUEG6N5Nq4p/OVUfjRPwmPs3vsmVK9Mt5hKwXhxwv5D14vGxn9y2TcuyJm2Kfj+avZriIA6KcEtejLFV1NWcSff/WvWU8JAxT7WZZcS4IgpCf+PqpbNfffGx2Z++9N7snfps01Jg7K+ysL2fhfzjxph2bn7G/Ot57RczBbyNTMRpBgI2/ej3/hvz2SsaGMBl/ADgNl/Niz83nKw7vY6JnngxIemzcwZQqa1zIDUe8Jl/jDklji1r/lx0NHg3emvO7j9w2bvUOeh7/gwuQe+NEe/BAIZ60TnOHW3oek3UF5mz4i//+AeHZq/ET+yryboELCnPQikCSFixgB7jbU2iBaBVtvC9rHE9cNwTDbOQuIB3QUkciiLX0dr49je/2ObFjSNLKWDCm0M5cF/XzsssCGNhBQZGeG4ANWtjAmAB2OZsuLD6UlvJvqGk1EdyjIw3X66Zxp5VWpgKkCL2LgUopoln44VoemlWUTL9U2DWtT/rEDpBzlE8gS7vzdVoc+2g3PjNd1xuk+yYrNq8Hb4zD773ChCR8UG8QZfq391cNGWg3rxZ7byf4/jcIEksDGGkxL4BO5f76kqL6tEKEQpm5s8dWkQEZrJNGrO1ST1d3AjTI/dNcxgiLFuoBWuiBVPJXAMSRmpiCNvEqd2zs3iZX/vWs7Mfvny4+y1Kg6t6bcwC07FHEuKzjw6XEqF8LgAANB06fLYNXG2ZsiKgdXUU8RJgDcQN9JtW6NlSYW/eqURA7eFyeSqTqWKYb1YnaFvB5bYk2LFpw8hOsm8YkLG8UgJHqhO1LhP687nWbkaINheUyScQXM0IvmMAa/uG0t03LI7B5j4LcBAWinVhvITnmRaWfhlX9YwUQ9TO+SaRu2O4n0QE/OKyYwDG1bnLTuTSUXCwRJbZQVksjQfgiXlaJHt2rE9gKT1QQUqgs3gEIFU5fARMayEQWJeW5R5lPr4TcLC4NpcldivmvSiLz/00md/JZM8CKKhz3452ea8tK/q8cvu+2f7HHmuRV3CsBcI1hGAtMvFnCHYI5O7ptx6X9VEGQlufFNh86NC7s1Pvv5Nr7eJA/ICDBcFaIB308ce2z9ZlhbuRVfJsY7u4PqrW/tIbH45d5FkLP8qaJFuMS5T1RqHHR5pTIHllqPpKwHBzZk/7bIlpQieXW0Csc+8cnTINlZc4f6n+1kAxXTVmgBuC5n4aKCCnsOS9T4rvykr1eMJ0bYJkReP7xaf2DoHxH37npZGVxt3ydDEtJ4s3u3OnYpU9E51ZGxcL9ufqAS735X7dmwWC1eu9DwvQ7Xf0B2QICl6cxXRndbZs+wP4SMe9GZia3DjcdVNhzW48QJZYG8xGxpSDZmYuRqxI409IoT1uL7QOYBGarHoYp21bCJW+GvM2GOmD64ZwifliwHNrAEFhLdDegBMSBdjC+DE3cz+Brqmekza5ZnH0VJM7neUhRtDYTGPE6sOiULxYNOI3zxqgrPeYuh/9ziUF8OyKPzzZetVHW4D02ED0utGfE4H6bt04LikTZ+eIH1P88eGsNDauBaw3RSt7A/tXAs7LAvW3c4/JINsVkLdZs/5xqbAkXwso74gfcLHXmuJTquQf37nbQ/amDC6N5/3JS++3TgMBiearAXRaLOsSq+2eXevbHuZUYGNp7aqhdURcnwrG71YVnYJzJwD8K197bFiVFXkkhLjdgEOV7BPPxbOtHQKTkPpqlbPVz2Gtup/gutQzKUwHsmq9kzVICAM3IF5trt+tLAV+zD3+aOOgLAjL48oEsblPKxp0JaaOW/vXvnYwq9KpMubeKrZu++x/+JVns1Qdmb301gfRS66Q5pvFagIOkyUQvPYZHTjMn3lHEKgCHeK/QxB3nnP7vwNA6QwfevU9wdhSHMKddcnvvkeH7sPd+enhur/hAHKQDhoGZrQCGAIYJiodj/M1XNtdfe7Dg8NtBz03l/o61kLyYW6Fda65GPTZNddz2eJFNvwGKHkb1ElSwBbvZrW5z9JYH/DqLbl6lXoQSzvcQ42NY1gCm3f9nSslPDBaiPYBFf1YsHoCUb5zHvDWyFUtXskX60J9Npaqagm25skb65Jsdo21L7PY2tGPhVliyAfvY/HjfvgIoCSTb0luRPG/ss/WpMCJObZ+yWs1AJ1nC6bbjcOk7Izu/PU/n5kmfaB0S3owhsaF0oE1aD8liDW45gwFaMxd1+iTedEHuAJoN2b4qz7Z/5URBmAHQGXOj/Ce1uLPc3xukPR+JmF7Ye3NZ45J86WzHn2/HekBlY2BEoKI74+WqEw/7X5vZmsDrVgfq47YCoUCZQIsXpwbIsbxWkWrbsRoVDcVDM0kSzhxr7xZsCsXFM2dWRKxnwkkfJAv/UB77yCe5WmGUrIHAXTOzs0bZ6cuXa69VV8u9Xfx4qqDB6JGlkLmc4tY2jx0/60XHis4euPscs8TvEwbXdVzBSkrLrepis/3PioNd9eGYcJmIhVgicG8kqmVNiqDCdEP119MZ0L+LcwITrHDrWXvHcyUTfgjrI8Kcu6nCMEmisVBpWGKV7l6o0ymy1dj4lMxxFUxZfj45UOnRoG6r6QFsl6tjfjtM7c+oCaWJa/fAFMvtxWFomeyMPbkCrqWQAH61Dg6eeHiEKIb7XHWfmMsVh8X/Plx1i76hX7ILATyFM6cYmBaaIEm2V7vHv1wtixT8dY9j8w279yXMJCaXB2sxnKY4qM+BDqEX4QMICH0wWQicprRy69/MDt7+szstZd/NDt65GiLOXNz42huafzifv7yx4cDEpeyIL0/wN9b759NWFRuoU5q09gLzFwVTEn73ZKwwxy4KtSSsohVA99Vn79bzMA7AVQassBIzzJH6mvdL67uw8Auk7V2YhSrR0DtlNnDjep7xdwG3SXU/L4omt27bevsx+++P6qU371WoHU0wQq4tbIQY0wThGKUWJfmi106sP30JsvSR83Hzeih2LDWkew12g+hKQ4NqP0g9+5fvPT2GNNfSbNn7Xvv2PnAeWbj7r8jEGW8WAs/SZMFFgh2QAl44cKzv5eigfZvsmXLN9pShjJxsswmm5/aEkPwJZceYYbpY7bWMTAs/gsoUQ1dvJQ1afsMct5n4H6Y+7vGekBDrEEOjGwEmvYec9NXAsE8WX+TsJyUKbQCJO1LgRDTU2e6V6C5uZJdhIHaJ4pgq6WjrayLgjUxyceyVIsZcg81pb7ROvn9vzw0zlV+gRUZs32vWEPV4O/UFvQDvO5tXQtyvnhW3a4V0e+CgEQ7pjd/BJ1xMKYC9Vlg1eIC4J5I8D3/+I7ZLxXo/J9/9/uD0X/5K3sHr3vr/alGmbm/k6WY1ce+ftxl+q7QKTqUaWlfyo9qmzivN94+WS2jaRNac8Cqq44aZUYdpLcKKajLQ5kDoN589/QA1ImR3DfVmTP38RLlN97MDS5DjoRZmIUQMFF08v/6re/mtvli+/tt7ppqpcXTrVuWA9ZKc0yxZXl9KmuIkgV/8L23x07s36i2j9hR7jfhEe6JVxsjB2HWVCc4JyBk3kZWWfxl/NdvBLA/VOLVQXYCIF4BJQIWQHCIOR0AO2AwLI/TJZ/+Pk7qnwdfj3v4jrLc/4M3mK+Pq2+hn+47P3cAoj6Mz9rVddNTvdHi7tPcAFv42kOZxnzWHvfRNxePPnWOdhPwH+ViZcVW5V9SyOvNxd7CP54pvmhb/ErpnNWtUS63jwsuXtirhAkAwTg0CGVra5iiqJMVcoUx69mUYCCM8sTir+4cmsI7Pm5CF+W+B7rMJ8XRHOknQb8+0AZ0a7ttlazhe/E/h+9A2xspor0dCitLEb7dLQYQMV1ifrnk8ZoLKaEO+6kprOzA74cl0+D/DUe3+HSMtQt/vRnIAXTwBrzceFKIlc7QXldYL1H5OG8a+xrZebbzEj+M//AiSD5a3Tpet3qiS/NGKb6eEcA+sD/PUbyTrv/tx9WCgdeuXTv7X//5r40Bu5N/idXj4Z2bG1Dp6Qkg1p2YFfPdiQIOmbkxQfstGcBoapjjaHBM1raD4AozgYARc6FWhMlHx5nvGquCi5e3GFv4CSGMlCZPg/Ace7OoGG2DXYxaSihTnTgezImfFYqE+rdmwhbPA8y8XszRe5mRh9so5rMhq4P2ncGc6htNe3sCFmNXcM1C528V6Mi6xRwM0CzOGqVStD13bJT43MFdA6jJtvphwI7mjnDUjfrg9PnZF6tm/eyBnSOeiCnf/nGEyPZM9+sCZWKLaLDiEYBRhLF4AKeYeYOjxIB6Rszjxoo1yPXMpNYqSxXNdUuAhkXKRrlcghbTlyuEdqvF+FoZfzIIpdMPn2/jJN1/aPHdVL9efffMQOgbAr1MqLT0LYGO1Vt3zp57/umEdYTc3Bgf1irtlKbPCsSVStuex+n4zk7TiPTNQ8dmb73x1uzUsSMRf5p8Fq4dzYsCo8dOXi7W6UrMvADnmCHf8/lcmMb+eK4MGsW2xt64CGL2fKAYA/VHaIsVUmOGxdPc3m4cjxbwirjFnPFzA0y7CtTeuKo4sRYWFwpL0kJMvZtqN4ZDK+nRjTcNZHFj31zVT5l6GMvOwJDsP/3rsZ3LtTbtc3cu65aYOuKc9e5EblPuHYyHAADkvQdGaOQsR0dLTTee+o2Bqr/FKnChdfBxzOhaAv1W1oazMV1ZSueyKj5ZIL+xFsCPXu2zB0BipG8fPTu2Pfioa60dzwRSWClZ7NRwYdUQT4SpGaR9bbaLSYubsnb5SrgOWSEAJUqNYFRxfoT9ZPkru29PwrYbcEOdiPa5HtX8moK9Jw3xBstVIIf17+DDW1tr18daJVCGhTqBcSbg5qCZEmoUF0KGFdE51j934EgaaKw2R58sP+aPsoP2asgQKkDO96rHptq5NcP6qwzJsq7/Qtanc9UHu9l4AnT4hKr6gLp5QU+b0vq14YPAU9rEsBpKeWapQheSVL7V5rKnm1u1a95v/sSMAToUHm5qLmcbRLMi//N/8uIAPFyqRysia8dzVjwxaTVhgBm1m4D2XyyzSYbdletlwib07uZeZdmRVas0AfeK7LovVEHY2LD2LIwXrWr+AfX32vaIZSrcPJ4NGLHE6BtwTcAD1wcCSV9+Yu+0b11jgEaSyQPk4c1oYT6mNPw/y5pvb8ivP1v9s+bxj3/w9uzHKZz4Iv5h8N17Ogjmwcr7aAXOQUWfGoO5hcu5fp0sICmN8Wt/FGFgwBpyDFBVB+ZuPjz9eGM1uaSSE8kQVgSHFvS02f7GAuyiIOm3O2nmeB6a7zdA3jwTgWTR3BrjVzLEmE13JJ67th+mdd041oYB7OZd7nf30Fb3dU+AanLHTc9npdmevHqhXe3VpnqsNeeexg9sHCCocfdM3+FRnmgND3ddnyh6+gfh6oZn6hSPhHXCqsNyD6R5NnlC4TDurEZT4kT8rXsBEPooG1Q7yKx522vq6DM6EHICdOnvVJgZWJuUoAFAO8fYmVe0ghf8i//9N5MlJzRtHMD02viyB86HbHv0/3/8i/+u8yumHI/hUuTNMG7uIyscxsAT3Ju8Q5tAEiAugUd9Pm3Ht/EyYMl8M1o4R5tZnMyX0IFf+F/+tzwMVwqnqADx5zw+tyVpRxqEfWu4BfyJ87l0Lk2rBkq9A5LUAqKxmiDWpb1dA0UfLK5mdUG/H9+jYazIUhBQqhNLG5zboV6ma4P9ySeYcECqQo6qWt8KTdPIV2WxIDwXh5IN+oksUgYEOBqBXH2JodNooHlWgHtNyr0WrUKPr6VxKSJJS9od810eqKNVsJys+zjhVjuUKhA7ArkaTIyOZozoZBgcDzCNZZtAXFKb9FFskrYbBIua0DSpGO5jxT5wgUHbD++0z9mdTNfvpEmsKc1zf3vPnc3icy7m2ca3teOFmI+qvvfq/+40agHTMvJMMI3z2vXJPLoqwlJPghazeNH9inm+P5geIIWQlsectwaU7hYDhEAstO+UtcJ8zWwvldX3sgq3paVerGr4igTJjjScW5Vo2Norq8bq5nNnVsOHDxyY7X300YKdG6/KDbQsh0CYMgWmLWAICIfYMqnQgkZZmJZE6BcCO9/+ix/MXnn59ZGlWBz/bFUCbm1xZhbah6cnLf3FGMfR4kFYbZSHUB0dw1SIdKSTd08AmxazMjCxO0FxNgvjzVuTmVWcyNfTdL/9yntjGxVC6pnSn/+0LRgwLhoGd9/+LdOWLB9Fi198ak99vtNGvAW9Z7kRL6aAIPfXnVyOGwOHX3/xkdmR907N/vB7787eeo+lbl21kMSdZWkxX9HczdvAv3i7CeTbvw/AfO7xPT174chUUgBQVuOdaNKCNpIsrtaU9GHumIW5oxQ0FIi+L5r5s1w4I/07EC3YdFTe/mQK1sVEFLsDjrjbBBVfS7Bea22ywCyqzzuidUwV2ACKAI11xb1guMP1Ft0DezdqNjeBCvdrswDfbU2yIEjTx3wBhI967uYKdK6JQX1yX4zM5NoacQHN44hN6DrxcOK5bl34eMRlLOkZPy5OY+2KdfGCDyew1jO2ZeGKEGPcq4cVGr2tLzj+g1xch7KEKh66v7kXEM+VzZpFabKRMqsiQHmn4orA8Ib69O4HBb0P5lr5heOXhpWVdZIFhoJAK12ba+zE+bZ5aK3Khnw4d5tg+XWr2uYmBv5+lc6BF9Y5tMntaTuhh7dP8UqifAAh7bh9816lNUoxrg/c0bZFIJDuxR8Ay3WBZm6NhQ9tGXGBYiUICLGGXHCLorHr3WNt1m58UlueycUsjVpB3beLtzxYHNuB7atmrx4roypBBQxQioDF98usVfBSqMI/+OrB2bnm/lbFbh/Ptaey9pEUD0KCm/ydBzFJhIu1TZF8o6QVwoR15vmydfFPxWGJMMCHa47QYl3Hi5QG2Ne8fDteIlD9n/3al2Yv7z0+KiuzhJLU+ArCHoIbfQ/QlEiMFklGigCr1tJCNrhpxbB4pSSPcIuUCsrsnuZd/JY1Al7g9YA7BRZPJSz/z9/89gBtrGGTOPc6HZ77T3/1S7NHUohGQLN+t36WxBMI3gil5+DhKp5nJW094vk/Son8Ye5Ez7C+HeSLfhk7xwBU9ccrmeVZwMiDn8d5k0yaAJN7j3O6j/EWo3uqOfvj+NKBvAsvtDHrwb1tqBxvsi6XRDMDLFBk4iGsOdrDICCcxTiN2L0GVN8a8cGDxERRhCh4w83Z92ScewK1sh3Pp2wBf/gL/mTNT6C0eLfoHtAxDuKgWM+Ak9XdQ+LV6vgIyzgeN9ytDQe+ZZ7wFaEDI9yidnHnD/BpwObHmKf5h+nVvJKv6IDcYIHSHvWeWqLNy1TPDegbz6xvnqUPi5r4j+LdPFeDtprTkeUbzXODm4+Puo5iyjjTo8azfroFn+/T5wZJ0t3/4Ls/HouAJsPfZwsKmT1nYzQytjBsQm5bVWbVfIEQBXA/lkmb5v+9Hx9P89w2BnZ5wYNMylIJdVoqvN2+uQ1MKkvInbbnWNzAiBW5VCmBUcStfu1JUwSEMPVVK1pETezVNC7+dAOrGi1NXBE/jMQCYSWgkamntDZ/6lS4ihl+/YgxgLJpTixKYdkWU4AhQWHHebE8THknC14H7hAjBj7AS6Dwcq69779aVd3iAhSPnN0LADQ+WxMEJs75NIV1jcnLb36Yhneh+Ih1uRakz38UWDo1O88yEmVYUO/GILkmtyZAgBlBnYTK0pg2RqnI5vHmA6HbzsL2H+JWzAXCxVgWLlmeef5URJTvvnuqDQS4qnbOUne9/tFWVpUmub091biqPsmSRQisyXL45DNP9fdklqO0+zJxbqXpjjiWmJW5MaaO4cro/rQkBGyhYc42q33t5R/PvvudHwZmLhXnVGHNLZsDllPQL20B2AU0NiVkThTHc6057RaNXYsxhg+Yt4Yak4BVAIwWPfb2apxOFpBl0W6r/7R55mybNWJEa9PUFTTjIsE0/LcZ+Ou7kV1ZRfXLZRvevH1jLCYbli7eMe18vaLnKCzJnw8Ev50LRPDfssbl3oNtWVa1Z922zVtmf/7DI7VPbZvJHYxh7X+gHYqt+v7rhwcdyPaUcWF/O3PAzbVd9eQA1PvFirBimWMuENXF9wVuBv3WcXXIPr487RcnZZj1y/ViZZ4K2DPbEyDA9LQmYzRNzahQ3rrE6G50D683A+NKEgDYargsCBhsDEicb2uWu8sT8ABwdHD92tXWa4yudklA8Lq64PV7AbFJg7yXO3NSbFg/91cA9L2yvSgO3EA3YlyM48dOnRnu9JUpSOIHny4+6KGHuKWn2LmbxW1hZNxEnypeKQn2WZK8wCJKoLDsrGuOBcmjgc2LFbOTDbYoALMhmp+E59ETl5qzqD/GaB6tB1YsfGBVNHEs99PVxSxvawdvOnL8VHsQpjjFo97JFScI/pFde6qJZKPOMnILMZA1BjAoW7KuOh2EHiv2m0c+TOGqiGw0JkB2/aq27Qkc3Sp2DI265lRWRbR7ub6zHmHUlo11BCy8ffJUrrF9jRfLXC775ujjeylfOdll/VzI5XCmHQEA/PXN2YXG+kSAxNhu6H6EIDd+WHa2vPWkZtKRU+cGj0Zniuk9Eu/90hf2zX7rj18dLvvJwkF5ujN7I9Cj0O31FKcXy36jSLIQEsKstkIPRtXvngNM45H/6BtPzr73+rHZb/7pq1mids/++19+brjjlEnBMwEKPAy9sShSIkfx4fgSYMvijxer/4ZPABiAG9ftAEMBAcoqwGuXBH1Ef5RXFmlhHoTeHLQMJvTZfxpj9egIUTQy1lL8aV3PBwDxx3F9tFRzaqdYz6WzZwOpv5Cr8i/bkPblQ8cHn0VvLMXzfhk/oM/nkosHIKSIABVAoL77rwcMANO0dUzWpfHMLncOmvn+G0fGjhXknfjYJwOftiEy35uB1ubBmgaWyumYlNyucz0gZGyMXXaSZCYrjazgeeHFxrA2qOfHs6OwsDbei365pwBZRRw/TkPSfrLEHDiHweNG8pSCTcHE15dloNi0fkn0wUUfgul6axBIx4vIRXzM67JKSrhmftSs6ajv2jg/ap5haq1kLWp+zMEAlWao5y7Oa8Ba6L09TW8m240974TbmFveDLIHfdy9zfKWXbsxYXWUbYyO0A2L4jWxdz/HsfA3On7WdfOK27/29SeGaVul4dqZ9UNtoQi/CQCAFCjcUZr404+GigMU/ItcNSaUe8cCAK7UDhEYzKphB3VxJr4TzK04oEra63PFfCktnyuLawrzAWAUaHwkcIHRfJjmr/qpPdTic2lHt0Y6psrRk8XLZpRtkdHgaMOjudYOVz2b5nisOiM0dIwTsTNXc9dgjgQILQJKX5nGatLUaiEATOjKrA17Egr2DEMwYrVu6V+DooIz7ZE/VckCtVIezhVHA2XmVKkbEgcQD7TrOMsIJks40iIRmT9E8TErWuwQEULY4qS4QLgMmOYFf/vDACw+2svOtG6uUHUshjUkIqdJiAUh3Fiz3N93LHaEE1fDex+cHxamZatLJ3722dmL3/z6bPuuXaOv4qj4y4HKoV1kWUDrFtSkSTUmCWoWh2GupoCluS/++Mrsj/7gTwNpBe03toKOmXxZ+lgopiDjhFlWPXFWV5un8E0LYPmQRBF+AABAAElEQVTsxeceHSX9aeYA2fO5Ms2rBTD2has9sqvQnlgUe8HRiFmZLFwAhysJk3UPjBWAxxgE4ANKy2oz14rOcCGhR+dxnWLwBNnZaO/NXAoyJoEscUXGedSKyjpzL5Aj1s6K/ebzjxXEX4Bva+BbL2Z9y5J4JvDE1ffCU/tH9gswpW1THFf7BeaKISQIInM4XAO1V6C5LBnWDVQgqJNAEWBrjH/9a08OumSxeihmAByKtxNrY0uXTbbR6FWBTO4dQe89JmrKyij2K4uNPfq4MI05lyzBhXFfiiYINbEw9hyk9GBGwDfGjOmzTInpE1+1I1cfhUg/WDnMCdcwzXJF4FqFdxfR/mmk5to+fTL4aPHuj36s5TNdxxq7tjWGNik8n0R/lC3a9O36N+iwNptbB0stYWCdsjhyQ7M62/vv4d0Vp4vejAumCmgTkLT2c1k4T569MHsuQf/1YpiItFo3+0rZnNbUjxKSQPHaYhIJd20x9xQtIQIsOZQb878h6y46jATHOh/u2tbwxuYBf8Fb0BRhJI4EoAXkuCBu3LhR+YoVWT02DgAkjszGzcdyJQJCNsqWxr+muMat0TkAyoroHkIbKIvKcrBOoQ2WGIf4LoT5UMxxY2NNY2cVwofxb210PqGKh1ln+I65FnYATOCd1jzeweLHlcHyyuruuz8pA05wO2XFvfCEx1s/L1QO5Rcrivj1wNmjrQOyAQDjcRCXpwGnW6csCICAuWPVMLcsGb6zRdHRxpjiaC1SXFivAX2fv/f60cE7zetPbnDrM34vsN2a0SdrHD8f+6RFI4pDcl8bG4CANVSCjz4Ado8X2K4EChBCgOs3Xgc44yHjlv4xvj1Qe9G/Yzxv0EHf9T1rsd8GgGrORzLFg/NGWx+sezL0UBmXdgUYsULd31yhZy4ufeEmFWcEABh/Cgye4f68I87n6sLvKfWya40VK+zgI/UH4KrZQ86KYxrrO9qkVF6PttzDWHmdtpqqtEW0T9ZxxU0WQJ6YybqG3jjv1PRi8bG5s3n8/Spun2vOHPppuHhyAHCf/bFu/6N4Jflg7I0tusYLFSXWT4YRNeZYv8wNHqOtMAH+Qe5SSoTWAEtAWj8Pg4lyKyMbrmdPVsuFs3/9c2xw+7ktSR/GVJl5TTZ0iTBoDgTTwX2bZx+VjXEnU/97TTRmSKN+7f3LQ5tiJjTwiileLR7geoFtK5Ytn524cmmgR4vHnkTDCpJAstiYeE8HIjAGk3yrxcG1wcpzLIuOisoY9ajj04CbVFunACDv5cKyBcrqCGZBE2Fi737S81uw4kQud53K03sSEmWRD3PvawlDDBBy5WYDltau3D57sroXh1usNPMVXID18ezZ87PTEcz+4rKkyfKHC+rVluu3HmyFEgFfuFqMBtdRC1IWn4A67oO7gcRDBSRbYNuKy1GP6e0y6hTHFK+xMuuOeAUCX6DtpixaAma3blgXOLzQNWvbt+lM4MBimAonIqzX3zvdHLGYWTjXhzBmvhR3xKfMqoWQWYu2FIuFsHds2JCw3DA7+IWnZ5t37496+X/vF1uSUGoeMU0LHyHa+wzTHEyj39ACPzhmz7p1plpY77/1xmzRnZuz9bWfNm1hJxEGICCgLIIdMaAVq4t/atPErRvT0Ot3SyRLRtt/xMgPvVugegRuM+TZgptZEIpFi1mJqXmygFkMYAKY0UcgeWQNBSrPnb8xxkxAu4UlIxCoN4aAgJIPD7WQBOWqiaV9XGxAsdgwW5JwLbFMGW/jvr5MtjVdTzBd+qiK743jn/3og0RqmkyZgYuqTyTg989z81moMj7fKrvIZqeCuNcFnI+ePDc7FdO36ebZgJLYL5smG2eAlSBVJ6kRHkqBOD7m5ytpcywZY/PjNFquH+DiavO2PJCIIVwvzXzT5k2zd3JlrczFKsX9uSd3Ztk8mgsxLa85x7Q8o47lAlydRjZtcHwmepVRx7W4YEHMtbFhQVAc1obOI9CxccCgbfxrDLmVN9QmQIG2yFpxOqseaykmR+sHpli5li8VnzNZsyg56M1cPfTQitZgTLf+s2pymdwIWGPYxp3mR4jhrObj8VXupQxEoKpxyWkyhLU5E1+4qnFWMmFZ52wpo5Xbn9XtnSPnxxhTTigNgvpXphFfv2FLmirNBywEwx8+njLVegWyJAoQiNy1+3I3n4lmxCTuzxp4vvW8ZOnKoVAAkbapAc65LoE7wFzW69kAmJpRlCY0QlBdK/2YYolW7geub5e8wUV3u+8f3h7/q323AqmykAgXoPJkLtyT0SkL1tvFUrI0ERTqsOENt+K5O4qTm4LppwrO5oEg+bD4sDPxT+7q94pRe3x3GVathb/KSmJOAD5CxXpmJfv/vv9O86IQr8QN1oz2JYy+lAV5qH4RxBviifgMHvi1it5qy0uHTjT/LIHRUGtCmIKCreIf8Q+uNHyiyRztB84cQJu95ygRO3oesIK/swQPq0DXOk4Hlm2HNOJeuxegSWHV9r/tiGyax5Oz02fafaH3/R93cajNJolITNiUqs7q456eLRiZy0gTxQFtjy+ydBsf8am8Jbezyg451E2t/U8ak3Hn+jj+65XAl2hgzem6Nljr88N7o+B8DRvj01vuP0VBDyULWAKfKswDv1OPjfWTguVpQicAfrKM3AN0zwoHqR/AOJA4+txvgIaxBr6MhHuMwovR590BYqZzKUnaRJ5rhz4wJAA2aNHhunOVjfE8fAtfoKyYU+NEDrJscWfzFPxNh2fMD8/gBkRb5qWPjVVSonb7b8SM1SdrUyuF+DhXH72i9UsZR07GG42hskCscqy2+OdQ3LsXEH7m4rSV1/zZf5fXzw2SABdaENUTM7yca0x8hgYxiQsqtHGfhXWqgTx9KddNmiimSJDTbNxjZBvlppOyzC+s2Nr/89svjyBUYIbmN2omxSSlTQIuNpi8HHV8kEuGVowpCeCV6uvAlH/9G08MgnitYLERfJm5XrFHRC3QkhBf3USK69iWq2NVrqvbw2yr9P+sNpei38JDFAIgCVITfbwYgstpw6tjVNKGMVAp7tqKmakPsixQo7jljszvl2PQxzJ5mzRZRbZDYb1Q34b1RiD6nsoKiIOiCQIt9lfjE6a9AQJH086k6hJCBAdBcovpMeYEUJ6/eDPL2JYB/MKEs4sRgWwmQaiu0Udrt6HsvhFyY325go3zGKs7BQYhxIf3Vlb/4cdmO/ftT9ss0NHiikgxKdo2xg8M0/KMMaIUP1VTmjtMduGo2Hure585dmR2/P0jCYXJIvLKoSOZkDcPLRwh70lTJrDRw7LcL2datIhYwDmT/9Ily0aK9qlqzVzqO+1WkJKwPHH2WNa2rZnq1QRSLOx2fSy7MmEk01BhPzEfgDHhxY8vYP7SlTIaEjzr1y+bvfjUziyTG9J+DxffMTGTRW0jwKdOuzIPhL1FDtzo32AAi5blOlxTLaoTZUiujvYV4ywzqfO2ByYE7YrtEnB7rPcsT1cqiWF8bVlgzDCGRx/U2gEqZT9erNoyFx4GzSUMyOyNfuyJt3f32gK2l/bMC4Hnk8PS9AtVTf6r3BwyPTGJbVtTEgLu6PGWLXcKMhf7VrNG4VP0LGtLcVVW1u2b08Ci7zM9N246hIHA4/VZQmhep6PFUfyzTVkJpgX1cUftF8Mmxg0TvTCEYcHQrVvWpNVZivzWlA9NXGKDeIYF1evhqnktwc7dI6id5e/hXAoTw7o6NGBrjbDC9IkNGw8D5bJ+WHocy+qXQEtxags7d0cp+nZCfzU36CsJ6KcrgaECtsKwu7O6sCq+++Hl2TMP7xjuhB8ECliwl8eD1q/eOCunKDfTqdnt5nFv8+agxaN7Wvirh04GELgnihPLBfdYlhHjciqwRjjTaJMBQ3CYWwL06YTZJ1lYAEnb3bCMrW59Lyh6+llxcm08+8lHNOhKp8Qn3QMgulE/t/Ssi1nQ7+VmG8I6SYG+BmggqBKG1vPRlCNWdiG+t4HVMOSGtWuGArZw+cLZIwXQHy62Dl/iAn6oOXquGkdc2G+nvEheudGcAHuENEsfYY/e8SqKz++X7n88F7gNcrlGrSUWr4+WTJlQhKL6YoSXMdkX8PrFFw5WW+zD2X/6s9eyrJ0eygvX/S9kRWJhJMRlxBHWvAtocGSB1QEWXbzaGIrjHL8H2mUQs94DbNrImmMDWbxDbB/LIsVM4cv/6qi9+NivvPj4CIkYAKQx02fKD+vr9dztxlf8lwxkQM3vlxsToBcteLbAYDRBprGkvF5MophHdMGC4xrzMSxGPXccvQoR4QWo6+NemBZwA2AS7gCAa13RS3NJQQos1Sfn+P1CsuUvetbr750YwfXiwGyuzhWn//60W+0kuyisjpcAvKNGWuCJkgjIuPeSRcmNrMdjnqPdj5Lhvl+61HMnxWY8v7Z5Pte4orbkgM+UVfe2hjcVT1r3Bl9gJGF9ZlAQxuF5wll4gNx3fvz1u/k3Xln+S17YuG70ZV03ZSXzPH3AP4VmUI7xZs+nhPKSMDosz9e5aW1Z8o0Dqxqeho/ISp+XQgHeRghKXhhKIKPKz3Ms/I2On3Xh3N327ME9Q6uVMmyCdreAEM/ZmO6eANC+guTq30hPN/GCr5QDZ15cnUN1BJ9dKVOuzCLwWXYKMAKVEnAYv8A88SGsD6xKovJlPRHuFhs0PYLv0og3bVg/kKutIXrEACQ2lRRAqromSe57W1ZcK3ZpU4sbc2WyvdsiGRapMqeYWaHZKTZqGlTWGARAe/1KbpQFLSQuPNk0OsnCoGij+wu2JmiheGnmkAk3owDo3cVmfSO3IUBAsKucqySChS8VmbY7GGcLAlpnScIIZDsJxFtcevCI0i+zCGgTu+P5COfwh2cCdAtmv5obdEvjxnd+Mu1xuBojXMUj7a3GgnQvZkxgY0JAxYbim77y9a/OvvLNbw632tLALDM3Jj1AUlYN2QDoXMbDmM/em18maId28RNfPnNi9v3vfHd248L5wQC3FCPEPWQDTXVAMBdgUUwSxqBO0NttFIqRiCEbTKLFoDjf+sDb+7lExXIZj80BXa6oFbXBQhgp7o0VBvdoad8AloXAXL5k1HuaLCPqgljg4rkwYXssuZ+gSVlC59PQWRU2FfBLKLAgENbcNBY083a9H1qTAPGJkdybaD4wi3os2jEunWesTmVxwNj51WlrQAXmydJiDljmnn3y4ZEA4BliiWwWea6YN2ALqJC5oQFijswlwaLwn0U/gEQMTko/F6Xg+P3R0PsBcoG4DUM++bbryb32xuFzMZL24GsNiVNxT5vqajP3LuBDY0TfrGiny/zaHLOyHmn+rEG0Qg5OQtezuJvO1FYgnTIBgGuHuB19035bx6xLqDtPbBIlikYMJHMRA/FDc+zZMt1kdXJJY9oYLOZobLVJYPXt5oVgfrztg1idbhYgR5v/qPnGFLnBuJCPnQrk9J8CqLfqNysJJg/gsGCtyyryWNWmVwRguJfNB56kxhaaV8tG+4bm38TLYpOqLaMPL5FppuwGmlZS44n9m8YaBcYfKa5QPOTrAYQ18TFjDeCLETT2YbwAZfGajZX76+f2zblE43/qaV2s/VcK4D4XsEajFAYxHwQPqx0ew7pqDQEsFE78w9pmYRAku6dx3xl4xGsXl8l3vXH0nBOBb1msXM6sk9caz5MBQu5F86z/QxgZvQfEbA9KFiiH4FgiXV+ABjRA2bOOBzhPeLG8sDgonlgTR+KBEIn3A+hKxexL2VMYONQ2YsPc415/xomQRBMs6XjasDxTzqIPSTiUcfNjPrnryQ3zvyRr4BtZW7ghHXN3G17qf2Dgl4otsjek67l4AVswFQ8EPO8GOMWb4mcSTEbf0GJrGE/RJ/EuZNAn1T/bFE9/uNpm3Hj7y6JtquKZYmDVEaqtjQkB3+NH39Cj/wE2fHN87yfj3KcHZ45rACfX+k2fvQKBDmDsg+QO5d8uAlyFrHboZAC11sFQ2uI3Xt1dhX+g93T0ap4UIgWaQaJ59hpakUiiXtYUKI7LBTC7xxy0DUDX/SlEYk/ND4+Pg6VGO401WpXNyr3FCmW+/vN33hy8fpz84B+GATzRof/k5TeqNYe3c9NRHgEi6993ytEMd1r3gw9Wt754BYabtnbymNgZ4XZKgTbYAw8vHtlxxqL2Wessnyy71t+//Z2XZv/yX/7L5NeUbPSgaT/z5XNbknTew/iILRqLjKBkPTpaFWIDu6WaOgJRZcZc7DNUuaTzmXf5tJuVkYFDExXPULMHM0YQR46eb5EVbJvgezQN5WDI+UdlFdkM9WCuCZrLzQbk8hWm9rTbrVtKqd8V04rJ58o4lxWA9WBLA/lUzPHVtFhCUdaRAbYIbVJpUa8IiK3J3bciV0ujO5gagcKcx82FYS6vjeKArrVItmaaf+vYyRGgrmKyJEwEdllQ9P3+omdZN4ebZGBOfNWWNLcTaY03Pzo1ux5hSQNfmGa5psk5mVZ4+MO7s2cf3W3dj609nig1elf7on33lfdjTp1XPAp/767cc9LluQ5ttPlKmi4XEkBIY/yD777TQl80NrG1hcav/b0Ds/MFqP7+996bXUk7FQhM6B3PRbl9+9bZE8+/MHv0wOMBv3Rq1rII53ruFvNnl3F9uZRbQT8mwTVVIpf+/UkFFTFL9UKOHj4ye+vV12Z32oxWsCd3qkJ83bGqvNUIKUPxrVnWxjQ/gg/xAgFXqgW1Avjrfnu3F9Dc+NaE4eZZEdjclwvT4ifAMWjBtNyD0qJZRH63TUIfK1tyecKLRsFCqOLtzi3La/+i9s7b3rNms+9UB4h1BtN7PeuO/a2cz/IHLD/35O7Zlw/unP3ud98qM+r8YJJi0z5uMaFx42IfLcHCj+zY3DxVZ6YYN/Et3CoL+rw+a4PzRnxUdHe5+Rd39PFqabvKCeQCSYjpz7BGBMgsXNakGwl8FZkFTHLFPiK7slikq62VDYttUdBayMKAUT+6f9cIcLZtj7iIUb4h2vijto/AFbeJy6sdrEysdY/t2zQEIEEqjV0sExeMkgG2gXFNDRkKCRfx8iyhXDbA4esxY4xnay6QY92PAuCZGKj7iBWau8/vP5TA7D+gdNeadcPScqz2i8fb3dgQ1h9mrbrYGtR/axuAEEDfNDSOrIRiC3OBpCAIUmfZeDRXPQXsTNathR9XuiMlB4hduPDu7JG9m2ZXE+7PtMVMJDvcmzuj+x9kZTuadZu7RlDwqdydx06/GY1tjCKzeIrNildcj3dQxtAjEMqFyVpwoyzPvdHe4E19dzmmzQot2P5y2WYE6toUInFTs/cDpMn5PVs3xWMutj7FC60pAzSA17ypkG2Mr966WJZaFewDhHcLWFd6QVXti9cz/xfUvbb4MEUsMXXWYskZo05Za0YsICVzrM+SGPBE8UAC3LenoBpH7ljWznMAevMKZBJ+Iwg+mhqZQ1knVy+/NawfBBq+vS8+owacEgIn41EEp988C68glIEGsXPiiqa061hDCyvZNcvRh4AGzyCETgaKWGOfP7B7xK1++9UjWVUvzn73L98aoQ9/7/lHByC629jvCpBynbHGax8eB9ACzCxzsu4oyCzqlKKGdHpW683ciNGh1Iz0fz/9LQccJssP6GAJ0b/rPY/SBNAAL6yWlHduYDKC9cX61I57rVuWGi5c7Xs3ty5FEk+wCTqLpTpaf9rGwLaI0VbzO6xBrZUe19E/Pd/z/AcYuP9cGR1gPt7XV+P7ATj6TJmZ+Kx1AkDlnmyNHC770jMp0gqjPp71kLeFkYGhAhgiS2XwuRfaADYEulv/ABMg7v6MHcYGfxTcDPAZC7TDAsh6CUDjGXHDcR8ZouZt0ErP+VfF94gtcx/y8xeb5y8Vj7Z6+QT0Pjs1Y0h+4ksyxubT12/K/Eu5KZwHCLeugWTzrM3WArr0HP0AbLWBAv9Qg3etZInbd/Ia1dbIKfCVKzD+e4O3qvGj7DBiXLx89See/vnfLvyNjp91+tyS9I9LAZWpAP1fzswv3fxiTF38DBWCW8PEQmy0P1YCk4ZQHi4W6VIuAROshsuFrtN5KJEwRMS0CRrjU49EgAWD0iIFGSuOKACVQKexcfmtiAHLeDt++vyYtFbvYLhL0qIEIGK4mBsCULjNOoOxVyVEEe223Here38oszsf8GO17+EsPEObCSAxa7oGMbJScONg7Le69/0AjwA3DMmO4CiYoIfcZXTxrRLOZ2OUGBb3F0ZA4xgxQQSBSa4/R8rGeTeAKUBOACzt38IGAOwdVcTAcC+6l6DLP684InC2N6EN7BE80tehe9lRYsNYE9TROTuYXxaLBPLu3dtm+x9/YvbUF784271vbxlrU6onZK0t5kDcEmFHo8EsCSl9ngtlNIKpHX7vyOyPfv+Py1x7tWyntp05c35kHxkHu2ELuOQ2VBl87uemwbp2WMrSXFgdaN2YB0YBvADbhDNAdCCt9GQuUtZG48IqdKX5Ph1gwRBYgtQu4g6U1cE90sQ2jpmGiwm5GphalQXqzdLqxx5WMQbjejgATzjK8GLeVzyP1s4qooYWxge0qLcF9BFYC4sVMW8yLy04zBV4S5Eai5PLSBaNJAQBr1zK45w4gvNpSI3osKYYF9XTk6O1q5o5WUGZqwX4Lq0vtuURtMxCY27FHW1JcF6g8dcHQkItKe6Ji9em+kHAA0YY+Q2mUgtzG05BqPplSwmB0kszaeypfhMF4Hxt1XeCFvARfMzCZ39CweKymFgvBLuLQzRerGRoEH1g8rTtujIAhvaIRRHHNFxNjaEyH9y0ACUhJGiWm4l7noCrO8O6SGhjfsaMO8RamxjjFK80rNUBE+uQtvhYFc9ZWQVsUxI25EbYV4V5LusVDyyiFi+my+I1LHQJDeuPQJce/EhWJW22vtH8kpgo7RTD5g7SV1vXDDDc3D3a+sFvbKp9Kss2haJhHlamZfEcGW1Pxre2FpT8YVYtIMCmsc3KyObanTLA6iXWituwQJZh5ZC0wqIq3o2CtrsYGIKJoGJpplhyNQnkNXbA0MImdX9WYRlprAl4I8CC1lhogHi8mKAbFtz4DRvBcGMOIT0bFgnFNAG7SdOeAnvNK2AwFOFo6mh9EWOlPIGSLAADK+6wopqzaAHv5fq2vvGTZ1JSns7VuaD2oAEZfu+V+cZVsqeq5ar7s9Kz6HB1iQ8SBpHNrPlFp1MMzel4ntpPBL2QA1apJdEK+gKUlJb54aEPsaVPLUneo0/t+lZuTjs8eC/5JdYwBD+eZo2y5Mp2k7WlT0CCoHC/idOLFAcPIMfQEsuotXYrOhoGgXjdk/Xz2cd3Z1ma9ttjabEm0DLgM2/PnKf6HiAe7rnGCmD69LfGq5/HtX63vub38fzpXuPf8Xx9ErrC0+L4OJoFBICLEezdeAlLYfEZ9Y8erAkKFk8Q5cdcj3Xc/a1B740/vmwNahvFSXya8QeE8UKb1LNK/fvffymAeGaEkBxr7X87xfT3/urNSimcGCEjgN1PHoCLwG0HwGhN/LNffaGQAHGx66OFdkro/socAMrjWZ7fe/XQRoxU7UPrziF/Ze7pC76NVwz6rT9zgDUBYplzleSoD/+m7cH+rpakzw2Sno4YFE8k0A26QN6LgaXLFQbkBxQfgjJMjAWgYxYVIWhHe8JIx+1+LYXPxN9JoDuXLxjSRguAgmFEFojEAhSjxGwuRuWRCHJByF7sA5M1xmahcU3R6AWbCnyzGMVLyCpTuZpvUjVak8OcLHuEBqk96vu01oew4nNXL4RwoZl7rhgjr6L87etEiJu0mjcRXPdWZwQo3FqbaBXA0uaYEJOg2imbqrkDDXvmyKZKKGuPXY8xRgvmnZiJzBomdbEpFh3TKoEN5slWAGgASBoRVwPhyiSM4R5Oe/vx4TMxQYG092dPPfno7PmvfnX2zAsvzHbv3RMgahwiVG2w4BEQIUEwYHDDVFmnMNUB5HoP8NKyzlYT6/yJ92eH33179sYbhwfT4QJ6NKH1dNY1hcEIEGnbiJVQYmECIAVyEooCagVdK14GcAORhGKP63lZZHoWgc2tQICvbcsTdX82pqmLezMehJm5ZK3EAIe5u36IH0A5zPG0ci4JQfEYBi3L3lwANAaHfwFZLDyCu9+qMrxlq5bXosCEgm93cyWiwaWNt4J8UmIF3gNDXBIA9ZrGMoQyW7t0wWznhmowZY4nTG3u7O9eFi6uYmO9NFAupo0mJmV2aJNmtQUvk/FawcU2V1UnBSg0TxIhbHujOvqK3NSEr/WC0bAqCSxWRoLbVjYcYfLCE/sHuLmeZUSAL42QdgnsYCBmV6DtV6rLNbcQjBTcxhsY2pSVcqzB5n4ARv1L6VDfByPFuJjzCUU0bv1Y18YEHa/PUkKBAoxkgnoGc7755IYllAfAiSAEzW9qfn71Gweb/wWzl978YAgswpAVU5zD+uLAVBUWAA3gTcHbrYGezbKHOXPXCe4FJDYH8naVYcitvidwor36jWlSDjZlvQFsAWExgipho0tKlLHnGnzz8OnmQOxZxSfbkuNWWy1Yuy33wWPwlY1dx1WoDMqerRtHcUpp/HV+mt9oUsC3Ta/vRBPWGYsNS/XaXDeAzLYRj0HoVLE9MLyqmknWhrHtcbO9WQqUjnAfile3Glm6ixsfm3paZ6wfIyu2H7dk/eNO58pUZBd/EtNpgalfBeRSLMRmDLARzxpbtbQGjcEQKK0pwvF+DRBoLrUffahdNOcJQBJFasxp/Io8sM4c4jQfLg7t6QKOBYDjdQD3kVx/9pHcW4yc8b8QfbhGLKZx9R23F16zIvrq7VCqrR8yRR/QESWRdfZHeQr8uXbubuvtaDu58Q++dCAFqjIIfYeXy16lKPFWUDbE8ljzLae+m1ykAILxYrEGZsz5yLaLDlxjfNA4AKEkzpXkn3WK9z8VOOSGw8fRFb7k2T7PD2/JuQER5uNcG/CqOWAawLPvzMEEqqzbGtnhPGsLTxY35BxA+XAehrdy93JzAnrkgTnrpoOOlTBx36GQUgDIsgdAdV5bkLXM+ANQxpQy45VFUOasZwsj8Dt+Apj81rd/PMI69MfhX65d51MwPnt8FiRx5X+9cBT0Lt4PPzY8tvcia/FqcqmmDz6J95mHKe6ujMdoiIcLrcg2R+N4oDWPV6IpgIryzY2nz//+D175bweSfuG5x2Zb0nSuNgmOJREiQSELYDIblmafb5z2Hx0NhqPQG5QNLEHnBIhdp21Fsqd7sbJciQkQYhgZ4oda1RBBfHtz39C+r0S4Fo9Fh0hNkEm9mPYqXXlrcTDHY5aXAmyTebTJ7pnDQtLgsFhZFGI9MFeDj8EwuzPrIja1Iyx8MTUG9HiFDVWunQuSlVlGLCJlCDDP4ROOENQzockDhTSjH5SxJbiMDxgYYU3BuLkexYNgwggCEGJ1U79IaXU+cptJssbQEvVXu4AgfSZINwUYlzeOFjIA916WkQN7NxQjsXlsqsgUCWHv37979qWvfW328JPPtPP0qqHRI0D300dER1AzWxJ8tkHBiAAD2jdwgLg6s7YVb/Hqq7P/8pu/N7t48tTYIPN4+2Axrx7I7Ky8PWuTvaGMg2xAwhGx2hCZMOrrsWi5dnZuTqg3f+I7nitWiAWMiZVFo2kZFkAMg3anfVeLBzna3ApaNZYYKPr6qLbqk/5oK1qkjWPg/OPieFgegPMlWRheq0gcn775B9LHTRoIdUnEPS0pXoUb2SKlSct84nKgWRo3NLe9fQpbtbPtCUXgW4n+S821rD9tkBkGwKCJ42cmMzQBt7Z5AeLQuzHlEjJWhB6rxfoYEuslmvKsDQO4V1Om/qFL7VBbiBKANjcWsKid1spwOdZXjJObCYO8mLsUGAI0mNIxZ7VezmTBVdcIwzQvygWIMSI4jR9NS8VswhDwEefGYrk2y612XStdvZe0552BgpSArmep3ZPgY/14KHp+qt+sM4zsSq89OnoCtgM2PVMqtzEhrD5sXt3XuBNGBEv8bjDGMa/NH8FKOC0oDRXfSHoPAIZGCIznWzP2LdNfGa+YKvcrAYMfGMNRqiQGz6VzPlB8IcGtDhPlw6bYFIrlBaHjaVcaHzFMXHFqkLHyoamlFIvGhRJlbRIJNmLG+AlTfQDkWMwAfvyFwJDBZs8sNb+0mSWL5eqRALVrL6TkjfNaMzdKEMEjATrgC5+5EX3JZMJnxRvebIxk6+kXSxCLsfgtyhUXIXeygF8FJB/KZMlCT1jMy6jIUGqIskavL6Zp7YizJNxlzIpRAg47ZSix5g6vFET8RlZZIM+hXYApNwhNfiQ74Kk9Rx9H3FDvBbQ/nhWKcGLdlFFMEcQbBHMD6yw2YkAJWDRh/aBZvJss0R6AbhKWrJda1UbUhWK8qjxH7z8LktDUV6smTqFyPboi3Fns5i4eVhMCl+ziRrQ2KYcs1XijrEo8Fg8CmMTOChHBG52Hfw9hTQnoecZGQdsvF7NEIQMguXKtH2NoDAYdd642+2f0xD+9961xx68cE58eZ47z9ElbKVVkEhqhaLGuCEcRTygb/JWsOG+n9KFDbSAPjbF+WxNzS45nCoa3vYySI8IW8Jbl0SZe5sk2vCWHjYk+AmAUA3Og2f/lO28Mmaa9Uw9GR0Y/pu/++l/3E5M0f77+WkdfLIxiFB+uLzxR+sQDhJfjSfgCWrdGKI/mSbkD2zlZoxOo42IuFCfQZLzNCws1MEc5YazA29Dsv/vd/4aWpK/mb7TYMPhGaTSG1o/AdMbcSldWf2V51hYdJuiY0IfvO4IzSUbQxNFmxHA8vi9B2UQTtg4aOE3reszeejiaS4LQYiaFeq9kJsYATOpDuUIEaqd8pfVM1hZWHJoV146JBcIwMVYXn5nmFxXUTbO2+KFnWWbaJdjaXmjnWiCIOjWwv4LMAzkWmOu1SSwAdwitmMCd9mAKdWedUimagLHId2YOfKSquWfaN42mbPJV9bXoCPLN63M9FHdirFjWRu2HiF92CHO5TDgbzS7NpE8zEF/yVFab9bXH2P7ylx+LUa4qRmFjv+ffX5U2uuOR2Ze/8bXZmvX2rFMHRBos7Tbza0Q5nlUf9M/3gITxnWsz5qClNGr+nD1a9eqXfzh7750jBSzujeAWj332LKIRwBvB2j4CUP1xWRj6bCd7sSEb1vJrt7lxjJBGJ17MuIhzEGfEBTTRQxbJQNqt2i8zjrDRtjH80QutwNxwOaGxnQEVlibbjIj9gjT0CaPe3P0xVGDje2U1cal8EnF8lFtwQ2P2wtN7Ord6LGkWNNgtMWHA14bCGLXAQOPKzUSIEuo0UAxJGioLir6zYqrMzYID9BNSZypOefhUMXBtmHolWpTpCJBNlqEphRVzc70SACPAsf6y9rj+YvTOXTVVMi8otLaztMmq1DaMAiNwPaZvvnxHUWBhYZEDXCkUsofutaljcCOaanuNQG1T3hhknm7MgC1AiIYvRoE7dDC+xpnQQ3vG6Xw+fK71Q7nIrfHtubQe2bVtuDtZVE+2bgSWP9R6uhYgsakkywbLj2DdI7nXCccdjRWBwzqhmCwhWzcGULX2BF6fzg2lvIJsu04bcVqE5seNmXlqIhN6VbruM3rQfwX4CKezjYGtUlga8BXjBM1tXrs24TEpWiPrJobLwuaQUIBuZNQRmO5nn0UAghDnxsVsjak1j+3hIYTXCB6vkfgBCycBLo6QdYgQsO5G5mqW8g9TtlplY0sjggvNEpZKmgz3MjDVWHMnChEgzMyRoG30x9puXPEa7l+AT5Vh/E4Qr4kFlAFedY24TQlHpSIEKLP2j/VU/7gLl7c+niimjxhUTFBMGEFJOIqVU9fKfSiWdW8IZQKK8JEgQIgBEXty+ePbEw+RWj6tHbxdeQhJE2I2lSA4mOJkTbleGQ71gLiJWKfwVfNuDaBzsY/iYICBsSZzk1jTAuiHByPeae0qhMndhso/C5KImV/54sMjWUUNHuCCcAV4KONoQr9ZucYWQP1OaDvH/KIHcwhguhd6BSI3BrTN3+r6Mlkr5r9Pla3FiqIdrvxnK4j6fDGzXLr4jTE0nubXf3if5wzgMl4nZc/6xoHR47BcNQ8O/QSU/LEsGR982npQKwsfP7B3S3M7lRZ5OxmpIObh1iDQOTJ1u3Y+rtoippjigS9rewyndVfoAFnZNebSfbUZbXCzGU/rwVz+3l8dGmM4GvigjRqqrZ89fPdZkMTC90+++uQAOvpKJmuXf3y2vtAl8I0GPJfRhNLIOj+sxI0DpQSgNrdGi1ubZVsM8kMpl9Pc5kaOdv/Nz1En6XO72158cv9oCOZNA1SLRqAXd9goeBgD4gbBMK7EMKWYMus1nwPcIECpzlwXGCbTL4tD5DDcR4ISr3bdyBBqQQBDTPwpAjGsUvYbpKa4hSdTIg0pQo2X5qevFlGmYprqADFjES+dHSlLioAbYKfRZXKU1j7tGP7JQMeQ9LGCqJkWG+q0fXujZfkAumKYkCcmiSnrL5AoXoQbSSwCSxFQJfPsasyFGwHhA3O7C7gWeClTjUb/blW2D4s/6hmEH+3CgqIxAimsUOKcCD6bThJW4leYLcUkQPnqQOwMlEjDx6yOtIO84N+Va9bPtj58cPbo01+Y7du7e7QBYXCvAQEQ9VwzoQkbY5/tDaeKtzbTfLmzxEi8e+i92Z/+4Z/MXn75tWIsYqz1G0O1XQNGDTSy6thCw0I6XF0qSxYzomksz/QJuYtpeK+gRgxHoU5uFIKJe9Q4oxuCWibRwsDopgL/R+xRcQzcNTejNUGHJhqTBizFr7GWKBSqVhLtwoIFjLka0J4MiPO17bGKdKILKehXEzbcIQQKRrAjsCU2hsXoRt/dauEJ1Mc8t4sDygrCjeyZtHkB3ObMGrZILxbIu7TswoPFJXDzPZvmyt3zH//4lYD4psEY0eWqylAcKBNvRYuda8ziN16sau4jO1ImGZc0rQ1NEhiscMz22zduiP5kyNloViB2xUtbK8DUWGP6kKvZVi2AD0agoKixPBijBhgJeGuLs21XlrM3qiHDAkMTs7m0DDygF01NioBNKlmBstTE6PcGjtT+AbiP586kXCisyQ1lHmWILqoNXIn6/Ea1hvY0BjL9xA2IQURv1tHtAKsAbtYZjJdyIGB6WFp6IkspKx0liOtcnMWKXJV3yzBiuVEDTaCwArUXszKuy6oGpN+P9uZuBXMEdHAXWitKktwO5L2LTmOqwJe6VawM0/NYKOxxNQWvElTABOH2QYVngQhAFO1qG8VrxGu1vsyB1GXChxWAhRAYJqxefGp3tLissUPPtigqVrD3l7NWiYEhnMSsSTCZBOnHY19LgLkWZWFv7uuMcVwcHV+Phik6hIN1wYpHuH0cf+Bidoy6V9EzngKc4cH7u88kHG3tUTxm64GbWaFRoEiMpz4AzDuzkhJErNWAM95gPKw/vMk4mLOmchSJxNetQddIiDAHhCohRrFTqVt7WasUkuQ+E+zLNcT6zHKt9pXYpZEdWB+6/RhLtOw+Q/j1PPTp3gDjK5Ud+FGWJOPzUyCpLwCPgz1vVfyGIiOuRv+BGwCSsoonARz2VsRzAFNr09yRGXixV1ZvSp5+E8Bo1iH+cKyXnsXSz6IxRjw6B3DcG/3Z49RmyGSAtQIQGzu8RF8G8KnNXvVlvPinD9rjPH+T7WboFQ8Umvm5E/BiObfFFZ7I4/Bk1ixFSSkyL7WX6PfzcFDC9KHHDvkrFEJ/zetoVL9S4NGxGENrHf3YZJf1d26NHK7n2vhnL787+LfxmB9a/lPH/IteyRj4YPSzfygCijyTJdoEkA2FtDYB33iRuUJfYww6Ce1RjFiktZF8BKLc13jiK2gR+K5Tg4cC5LCK9fv//uHL/+3cbV9MCJwPkNDAaLJffvrhmGbVfrOeADzQvZgWdRwwcASkYRr81tFTwzxJA+NyQsQDmKRJM4shGu4wVqqrCbJpA0yEOmUFyYKiUV+NyKS7QpeDAWJWETHGoT4JdwctpGYMxsmqJN5olCVP+KizdPO2+7IQyCxaPvaJwviWFoB+s2BNwAe4YCGQNo+oCEuLTJsJnEtluwBEA+A0FjZp5S7iRpNhtqtYmF+uTge/6KtvH2/i3Xf57Jniur6YcOLq4K642wTb9+hChC3oW+FMLkqaFQJSaoBwAl4ISenT59Luh1+6Rb5vTxlaWY12Pf7kbP3mTQP4IRIMbSyz/rFgDbDvgTzaFEKzACFwhM/ahwivXalUwbG3Z6+89Mrs2PEYUIf0dNcJgB3MprlT3JO2DuTQdmm24bDG3VNno1I1N9FzB/cNZn0j4b4uZi59WtzWouYP4BLXZiEAKzWj50yCSYA+ISCQjyCzcFk/xAWN4oQWW9cpWHo+8DJ86SvaqoJg7bnmEBDcG6BkYTDnmxrbhfV51PXJLYJWGQr5tTFDcVMEIxereCVB3uK8dmUF0XYuYTEk2gy1mRPzpTjfzdolxupOLlXxATtzJdszTF2lxT2H9snCaJG6p+c9mhtCLAoLB8sl192wmDY/sqH0YX8ZTfp+pm1vbjaGAsv//otPjLgvbR9xO9HIo8XNPPbY3tnrxSWhJ0J2TUUwrxdQ/PJbx4bLbkduzh0Blm0VW9ycViwoeEfuAS4B61G8AXcrgYj2gBDb8Fys3pkMtW999UBbYGyOOV0tjbxM0gQ34Ow8CsW2QCdBz/0I4Fk4aE6WHsCD2RJ23MEEL1phTcQxbf9yIAvvc49uHcCa625YcAIuNMR17fNHGQMqxGLhITIpKU6yxd4qiNecEUL6wuonUBMvAIq4ShZkdcZEuTXRDoChPaweMtfUXcMXLqecfZDiNPbMygrDai3e4/+n7U6b7ryy874fAAQBAsRAYp5ngABBEk2ySXY31epBo205TiqKX/htXqQqX0JfIq9T5Uo5dlyVlMuxY1mWpZZb6pEDCA6Y5xnERAwkCJLI/7fvhmzLTkdSVR82GnjOc85973vvtde61rWGLYGXwdy7zcG7yvQx2OVepRu0t6Do6SsGXL8t4JLM6qv10ekOUk4GXt2/aZzETga8dy8HhwOCEdgVC4B9sV/pT54wMGfvOiFgAmiz2d6YOCaTkpOTiVUw3sEKNAaNGYWRnquac0Pg1rNiFBS1YPmA5s2rVw6w5HkdmcPAAjv0nDLqFckUJ0U1M0ViTt2HsbLGysHpui9iLKU1uK75UK1oD6saJhf0i4aT9hLwzHHc0TpjolyDo3A0Zl0hgca8KioxwuSGAAF+QMWUSzgxzJK+re+fHzo9O1zishdHzRiNlXMIkP/9WqM8m6yN8DH90R/vi0jQ5ZMRraq2dXmiOQLS6CEsrPwvYFeBBvAiT8wRFwAdIGn/en8Y/JaiSR76FFsEGHJ+rlXlqYiF46INxtaA6teq/OKMPAacQOgw/q2xF2Dwi392/fHWGLNn66NDfr3rV+7vW9M3p/DckP10jMKGUznn1oueER6X40OWf/L+qYqVLo7n84yqVZvwATzc3Ht0wLCJgOS496Tz3QtJAMwYoO7q9jIHmCwNVrHP/GevMdjpHXb6L8Ntxt/9vlafMxhAnjHdbU7YpjGX6e5b6RZFBpgtOpGedA2tI0Y4OjnECJJr9lhzz0U5c/Mauz0iB5YuMTdA4f/1p+/96kDSb76xK0F+Jm85xJ0MOz5CEzdluysypEpfLYqE5n0piNttCs3ysDm9nYBNcXwswisBrtWxB+sTGPFIVUhXE1Kls8JCvDpHJjiz6dnCZliVM5VPY2ZGHkZ/8+wpAPkZqG5eE49CBRRDOiHOKPnyZnxuWSDLYhBKG9Gp54wfqpJikx+0PMPC87vX9eUf2KCSbSkQilaeEtbI9QBASb4SEG060moTKtlfXgJwmn8YoPdOXhvz4gR5RtVBuVgQGxiT5IBMvaNQjYzJCs/MYFWWr3oP5X/ghe1jY0jOpURffmHPbNOefbMXX3t1tiymgfBC+oAjmbQOBI3CsJmG0DdGyscmALK8T/HaPADRn/3xn82OvPdepcTKe6dNQGj1ORHieiUm8WZChkWz/lhAc6+ahtGSK6QztFyxFRqXJcxexiEUZNy8ODHiszFMw4Mx720KiXrLUqaMhFwAIHxb1X2Sgh3iiznaut45eB17EHUvSc/5fRCrtQdcdVoH4jAxlJN1ZVhR+sYg54uRdFzFgubaPDBw8rGEBR2NI19DdaA5l5TOO3zeqfXkPJCib8yzyYjncF5e+26ECPd1/MXbrY3YPuPAS5ZkL2Shr9edjO0nbXYez+kqyHillNcnsUe7YpeAFc7E7hgnShqjgZX5pGcQblaFw+BgtJ5q85sfeQ96mtyqapRx2bNtfet4dYS3yA+gocvy1jw1gFFD1hVLlozE/rN5VljNYx2ybD9QIIONaR6FeBk8uQBC1vaU8HfB2QGYrD32I3yQ3OfgJEcMgjEBzOTJ/pPYzJh8HADZHqu0tJw+DBgDur5wh/2DFRTacb4UT5lBk2sC8HC85KEtC0hiHFLboxoUEKKoJYeSMOHKLVXtbegsOeyfPKq9VZpd777OagMm9b9SRTjl9mVsc+AYRCCT/vH8DuGW0yTPRyGJHDSVhrt7H6PzYoYmQaqlRbk863Jm2jujr1ZrTB8APsNIkIlYGQ7fe3WOP3qmIz96xjUlk3+9LtWugVk5HwDlSDpwm7KXE3i1UJQcQC0uOEgYs5N1AxemJNsbAz3XkyXtJ1akhxWyWC8ODL3KieLl81iOn7syGEWMCQUh3GKvWZMnyu/yeVXH1kEX/2+/unvoD46lY3jk4tGLwC2z7LtYHWOmX7DIQsYjhzGhoM/oPyw58PA4l4cWwnYBHlgCPal2VL6+sz9YXSyw6l3HvPgsHYlxGPkm6QpzTPYB6aZ67ClAx1Eq79SuwgtIGvduHbyU4f/9bz4fo1KlZvpbztrpGHHr7LrWSZEIPcABBAjoTonBnAZ6Uj4TEE5nMNj91WdVYja/jXSo/PYqXWpO+kUyml7tZ+yzXk9CRPaEZHYM1K4A6Z7W9sWAgecEqOx71zamobN7BrrZy9/TH7ZlYuq9P8nZ9DvP7XfT8ScBCGvQ93zGHsaiSHlQtaqNivm3zz6oEadweLce+s4dpRrQmSr/tB5x5Ne6HCtzZu19BtgF8tgrYcWX92ya/dbrz42/6VQpDuy0tRqv6VHGPweTZOJ6eURg6/cCs5oOE1t6d8qVBYCESOUA18SZ05U9/aIu9XS0tYIz2OLpWtPc0MsqhOUmyW/WHsDeMgQOkX33j//VT391IOn1/VsnL6vNfTFAo58Kek/DtP8Y850SprEeq+rtw/PUiE0Vy8t7NwB2vaLAegiK5Eb5G1OuR0myTTDlBdRQjInAMMAftygESVURxuVeRo1xIxwOsmVwykkdSJJRtzm9VmXATYq1Go3+GhNw9HTKWjKmqhjUL8XtyBFAiFEeSLcFs8jiyedjn8Q1r6T4NSejEAExlN+Ua5PyzzB/VEUdhSIuvLQDUHmWqtpUVCgzJbjHYtTeybOH3l/bv214WZr8TUdlqOxIGFvUT1OUcp0c//C9770227tvdwfgfjxbvWbNbPeLL832HfjabP2GdQ1yiqMr2faClCk5ys0mIR026qQY+6H3eLvA0SirjNGZ3el8pOvnZ5fOd9hlc21slMmvVx2yteop1Kv8ks8zPgAFxTgpt3qLJNQ2j88zmpiUZQmw6j/HpqCsbTx5JssCjtZGeI0Xt6ENiH20WXiHquLu5jEAp0qH3Ve8nNdsrUdydZvmTp+Rd+HZPRdGiEfNKDuXbIQD+i7WQU7Dw5QWw+lAV7lxlLL+N5S5DWkT2UCAqpJaIVY9RHxH7tD++vH85IOzPcvUVgCQ/aicCsnqmhpiHJYtq3AgtsUxC7xIyk4Og/WcnzJRIedvytzzex6GmFwc7XDZeR3foSJoW+ceHjpcV+1rKjbL8ej7SzOGDLUEcyEbHXgZE40pVWYdTaaO5SFez6BiOjgZGJRxvECy8NvfemEwBYycIzmGsk3W5VdR+MCCfC3gl7wQG8oJ2KHEyTGDuTVGzX4H4uSU6WnyYR5p9mi0nnhxt2TVqajA9YQMhTTlmJxOdiUfrygEqMJMjpSwrkR6ydHCnfcfzhmh4l3bNww54eGTY04RZousyZ0CCOkKck2G6IQL5YIBQ8KG8nDWrlkSW1Z/rr4HLGKPrsbuvLhnw+y51vOlFLvDRbVV0EMLu3k28IpZBgDtPflOZGTkNsQUAqQ7tqyb/dGPj+QUyAnqvZ7BOJqC5FQoRl5ODlJjudPcU/wAJ0CCXXvnw9Pprwcj9LSiRrO3aiCpQaZ8r0sdAv1qJ8LziAFGVUUYpsGWZbg4K1INzIU9c7Yu2vQk54OzCux+55XdGYlasDRXnMRRaJIcqQTVtFTY0Ps7arVCV17MgGLRPIA1pwcxpNIm5BAqunFdBgcI9mK8yIi9pwrMXpWc7vcMK6ZVwq9rmhd6j+GmO43rQrbDuDblBLMPKpL0nuJoHY9VcvyH8ynlZdLJ0hAwVK6BmeeQmq+3jpwfDTyNiY7R7sCL3aCjf/f1qtuSHbrOGpmrs6V70H9P9lk6x7MAQebQfrbeI7SWjqDje8xhuOkrbjj9Zp0lyWPMmpqeCZB7PCd0h2+NJx86rB+GE4YtBlgAMjLNMXt+e+ecBp6EXgEae9R8m1v625UI02PQ4x1r72c6ZnJ4p/wmazK+0z/83h8vw2E/pbjYb1I3OGiAqnvJXTrUHhDyxcSQEVWNbmSfuSawQVe0tMNxpIs5g0LHbN5UUVqD4uT3Gy9sibFe1joLIU9M5BhI/2dvWMfx6lrW6bsHtpRLWj7aADM9YfpFiF10gHPnZzAHo+6PtAoOj3FaW3mw7B99wd67B3YTMUAOsaPC+9hIIdJ/9u/e/dWBJEcONNeD+uKlE2ALxfChIy2sEMrlJpsXCBxB0SvaBE8/nVfSZF7qfKXVGTJU69z64ixK0NZ3btHDWBNHIKh4wOS8sGvTmEy9eyRTEkz5JhZHCanQxpMpX/SdsAY2Q9xULw8bZmp4V1JxHuz5YrKqSCSV2wSMp01DcNC5vAAhQh43D9d5SMIzAM65DsAUo99Voz+MD4ZCrsMoUzeqFmFUcgSizsZ0YQ4o04udIXY7Kv2tjk5gtLFW5oHhkTthQ/7ovZMjXg84WmThD6dRQ+LyLFZ1ptqN2+V7xLownKu27pi9/NprszVrVw8KcRjDNisvxwYDjqwJGbTZKD0eGCFjbB6ftUVJAGKnjx+f/fBP/mT21FcBxd7T3oGC1JxMFY3DgI/WGZvil3BK0LQdkOsj7MjY8lIfAyQbyFwqT9Y/a2NMD6rz/RMXYhY6hy+AolLp64HDuXlZPEcs3Y6M0e3O83tUTtIbL24f41bxY46wchgySf3P7yh80dxp1ijR+0Fexd7WRZhTlc379bvSOFRSPbCkpwewM4xWygUwoRTl01CMFLaqMkpYntZnzZ88M6eUu7d5Au7lgZFrzIDz7igGzA9vlnwvip3ZuW3zbG2J2ubIswHK9KRQGtkc927TArGUpPkju6hs5xxJCHVG3NlCdebX3sAMySNyBtrqDCpA/9NDZwY4cd9DR8/OjgeQJG4/Atgbm/CKvlj2H5n4LFlOJIdx0HcKuFJld/DouWQemJoSOh9mhByFQyF7ThVTQo/mmxJ07pO+QRQPh+PjZJphcW+f/6zvV9LRnoxlCsQCne5/PnD0/K7V5cSsGPmFeoMJw24qHE35KoffWdjsVuv/ccBDzhMWSviWZ8zLX1eI0x56GABiNISqE+mhb8gtz5ccCjA7mmdDCcXzShx/UBPKOY3DntSx/W6VeU/QN8kUFhSbqZfXN1/cOVgbrO6xs5eHgsUwAwqXUsTH2wMaCKLsnykn6kjOoWIF4QEhJ4cUc/iw3ys67oinDohczUg4Xw9YGgAAQABJREFU71IIFWMFeF2/VYuMdI7zHs/ESgtnYYiWd4iuZxIqe5RMUO6XAsr2sVweeRdfdb8Rim9e7dUlsalCWftjuDDun3ct4eBdOSjC20cC8pwTaQEYbxaOM6cqC/vPAGIszSGWEROG8TKXdMeigDv20/4m7wCU8ZBr8jwxKoHBdIZ9zWBzHMnIYGKbA86y9/TqYaAcTDodTjrpKnuQ7gN2PSPDd6Fn+6hjP+gcjAZmGeBXtWeM9hR99kGf8cdrgKTG6TVAUv/+9Rc4oVPYlzFVwIAdpLcc1wP4eVZgYuyVrgmsYLwAH04Elk37DXrvsa6zR6w7sIHptAcULci1JbtGwRaSWSEo9+FYsX/GDwSOs/2aS2X8mK4DHW4OaMA1HCtrJD9xyifVbRzIiz1Jpwlz+9sJERhjOszvtFPw85pkgT4DEOkZ4IFDDPx5fnMnN4mO4FjSVb4LpAJLx9JBbBobr6IaaPey5uaR7iTTwI55Jx8Ih9M9F0KAvtnafqcfsFVjQsYVAMpfhNumpRqg65Xkl3NlXL5DrvxN/3LcACL7RBGMfNh7ohXd2zwN57rfm2+Az7wBtAPYNZn2NHYQK+iWDgL/f350+G8Mkia+6hcP8cv+0o2YQtoaZXixcBFDcjwUei+PanmJw8DSMy2cxRFHVJGFhr+boFCGwiAUgU2DQuN7PdkxFPpLqPi6cevWaNjlbCGbVRiLkebdSYSGSueUMzdOEE8ZaNMu/GOhgCBhAeAIctTnaOpRVMO4FK+Fkzvl9POnFy0dbILNjRmBenknkDaDIJ4vpEhi165cP/I7fnLwRAMvR6hKsrTuyCEhpNsDP8sSNJtBZ1oJiShwYOHDjLYNYtNCyQ5xFWp67YWt9Ry6MYTS2FGHDnN944VdAQIJq+VkVenTdNV1O3bhud2zdZvWdx+GcsoHg54ZjM9TPISUAI9wTJuXgiro0/tTFSFgtiTvmldKUT24dW129uyp2YnT56N+C/lU7XO8ktEjGVzCz2DrPYUFutA6Uxiv7Ns6PCmswrm8EWHJD2tiSQ5eLM9KC4P8mkIR9QHKYBL4j7vGquRl/7YNY4xa1iutHko0Af9e9L7w1LsfnBnro8EflgG5L9kS+Ps4plHp++fNy5/87FjKIlamn4FUbAnlfKP8MMrhcTmv5nfurxIJcFBoICdg6ZoaffY+ICkXwryTM31ojiV/aFphH4wHhb+3sJ4cqh+8fTIwk6IKgF/pfhTk4u4tnPiwUvMVkonPXBrKz/VV71F2NuenHXZ8suR6YUne8eiVk5KR3K4vDsN6+EyVlHll12/OL/l74/j3oeOFSgJ/FIUcp0RyrL1jP+ylCyklrBcljsYf85HCt2ZCF9phkBFsiAOnVUiRgxOFYL4TQ/hGBsShtiKr5VH3b4pvNgoB0PK+uySvXaibcv/kfsYlIHCs/Yj51Mzw8zbzs53v5VDg9YWSMAinOubniYwLBbu+k+3/3ref74zEHJQly2NCVsx+/tGp2JNuVPfpjwsTbn6qMFtzKLEaqLkQm8LA7+izmBrGnNHk3Oj3dLRnkZiMIdQjyR7emiNkjI/DkPdbd/t9cQYCE6zJHrZaHt329p/9SLlSpFgcjKUKPOyiztnyATUilZj95RdXhwG5k065WsuKm8kjlgz7wlhxqBxyKzlcsvzOZJgRIeuof3lPChjsUUDqmYw2p05+1J48+Uuxj8vSXS9urx9SrAyWFjOKYeRk6FdFj85fUMJvMiIcDdRgDLEr9uDcfo/t0lH/xp0js18vFxI7KjTtbMSzgbHrhZiFgJ6sWePIgerZG+YAfpJ8FQ3MCUhxABhTQPTuvM77S0a3FeZmlLCqb9dGYyQ2p9/oH44C4yQnxOkIwjDSLjhWjpCik+TweI15775C2PYIO7Cg789tjQ4UBnoup+BP365gpA7W2Nb/8O7J8fd3OrOQEQQmhfToTMaP4ftlr4c94Kheax8COAvMa98lHEJdWB36Y2utGAAVwN5QAQF73DrKhwPesEjYH0ZeGH56SSou+pF8jb5vhaWGPkn2yZ12Na7HeZ1YnzRb35UfSwcKk2sO+myghs18dd+WKuI2jmsACcCcucWesFNsCiAF0ADh5lpBDmfQ7JI384SdYc/ML2DQZXomDYyb94aO8fOMGEDhz8cAyz3l3nE2NX12BJefgX6tRbQYME4Vf92+Z7KHhpkcBRXug5VmpxEFbNJffU2S8J+/y5EebUj6DjeoR+ql4ICjOoFMedCJ1WCKMHjyvMbN+5y5RHqYY0AY+63D9mDMu9ic5oU+lx+I3f/bvOb9Qa9f9sXHHbdffX7b2HyXUk5YGwZhYxsBHUwYGWIHzj2ZgHz2eVVGCYtFk3fAaDkU0CaEZsUTeSUqKFBkRzPSaGQbwflmwIDkM0m7kLCEVcYNEyC+e7jFg4ZHUl9ongBbfHlKr+7ZPBobCgFSsMCccJawBW/8RF6chRAmUVUl+fx+VToSH22IU/Xx0NH504wIb4ugOowXUBvKKcECovZsWVd+x6URepHrwPPGOPA6CDGl+VxVDSvbPMCHHBNUrD024rYpQAplXsJ7M9bpRPkTPLeLN27ONm5cN3v+wIHZjuf3zZ6KXWKQCR26lZc9qj7a+DYyjwZgMDdQ9Gh50OYlaIPtafNT0CdPnJkd/OlPZveuXZzNLb6LkXFa/dkaT54rpKgs9njs0YIUyZPNyY0Ap/njcQhv8pJUPF0rJKe0UpdrCpdX/v7RM3ln05EQBJjnTOShBcbI+gOgqukkZDMiQieSZOVQKC13NMf5Qgjmj+FbWG8jmxjzQmZOl4ioOoXCZjCEjmxm4Mj8kyVz4Lbxw0PZOMHd8Q+AMgOs868KO5uF3AEhFzN+Q4k1DvLw4p5OnO+aeudgnW52XWyPuV2Zkt7RQbWPGoN+Lw0jIIW5y4NOxjBe+n/xAG/GjFDOWANhIDkKLd+QKewV7w5o4h3JS1mWAZWnMjy0xggkoYixBeYf2CK/crAGw1IncgCJgqFEecDWS4Iu5UlmXR+TRTbF/62Xsakmspb2xK3uYY1GflxjXFf4C8uleIHCA/R5dJSvz2xdv3qEjuKRm+hyY1LyGAnHgFhvhz0/Mffz2fdf2RojvG7kEWFJVXYBdpwYCZjy13y2rwyQZe+eupj8dW9ss/3NcMnlEa4ayfjtR8rf/mI8GCNshbEKyw4d0ToRgWHogYq8Dc/w2PA4KoXuAsYkwzPe6HnJ1m90phnGgiL+eY0tKX2tIMiKA6eBNqwaUI61th+dITi8+vGM93McbjYOoK5+b42FocUYAjcSSiWeAyKAO30h1/FEnfcxzw4ldni1AAOnTXoA3aUKbWHj2l/FHHY0s5vcTnsWI2auNN60T+Tf0Av0hTAWBh7wB3jpxHz1sUfkCWkA7DMMMOfOGpMnIHt7Cda/8639s7M9D1aEbnTECzaEXABiXsNJS96GUUv+Mdfkzt+cQ0U2WnA49gXAlgfUtIz94BpYJuMiy3sKvzHGwD89M1XACdUGirrmyEPtXpiVg+nev8xJ6mfj8LKe/rcpkIJlAbBHKDC5sk/JOviAYbQfRpVo+2ewh7UvwVpYq5a2z8egpFOWNndCfQCfebVH/c7LM9I78uTsc4UK5kJ+GaMP1NFRnFdyggFhA8y1vW1PYzjooDGG7J09QK9qewAEkRWpIBxHzI4TGegLubqemm6SmqDi2/3cyz2xMoDdY1CJxTOG0a06AI9xMlmAhWuLqKjEwy65BnvtbMbTsUQICHpcwRH2jQ7yMh9+tr9ENwAWOlH14eFA/Bjg+OR/wiT1s3H73vdffW58T4EN4N80jHFbTukYyBfpMaqUvTCMdKb14OhymKyxynQ6DpvEyfA8cq/kMHof403O//m/P/irY5JQ+pIkHVpJadz65PKoekFRMoA8MLQ5BbsqJYfCfbU8JsrE8R8alT2mvsSG9diwWD+tSoFnbtLvt4n+1Z8dGuwSupGRYgCgd4smXLGiBOxlKwJkK5qkJkqcnsG9e5/SLcG1z71dyaNNw2BrAPhVoZzhXfW70xc0fUMd1icpI71904qMb/1yWgTtACjglR1AKdGa8Ag/fVjIiHLS5FFYZHPfEX6DcPUc2Rkl/sP3Tg3jO5iyDCDFbXHeqbJkU8pldwpAKfOiFMLp87PZhfttjOZUpRAhf6LT1x8FBL/7m9+dbduxve01eQR2KwCX6IwN4PBNSp7S8kwoW2CO0aOceHE2OYFOV5aIHVN0/Ojs7bcOxig8GGHFYxl4HuHnAbWbCb8wDTApTwAzuOnJTtouh+h/+odvjuReYT8KQk8YIUee2Ipl6wZokaCvQzWvVY7BrcDg1BOqhN4An/Pg9NeQNIIJEMaQ9Cwsy5Cr6sMIPASs7xQ+WR7FXkWV8lWeOUV5po7nQrG8sqv37hRWKHG2Z3m989e2byxpuvW+07lQZMxBxvt3rp/N3TR39kc/+qAKuy0DbLENz3SvYlOtZSG1QqooXDICcEnP2rzm6aotVs/+9z/6cBgvXg5HwAYT1jstp+H053n5z45nBugcCXMr+aPIHcyLwVoXUDqZ4ZMPsy3At7lwzSjR7yZ6D13t2c/mbHAW/Cx5mSH1H+PO4A/F235LhEoKP5+i/2ooL7mKDzGC/SzP5IXYnGXd+0HPdahKSgmxC+eXoD6vEFa//7TPWY91GT9swoMMltPpHQH0zRil9zI2f/z2mSFjCxYE6CmXQCwAQ+GsXf307MbJKVfF80miv3lHPsq9wEyGt/nTFZ0SB4A6G6O+UxOgb9qGzOtNgiYnk3NL9r51Ty5BFHhjFvL+qDAXQL+wcX7Z969/8klgbE3VS5eGE6N8n8M1Wj2kRSljesZryfz6oaX8eeWLk33hUYD7bIqdl8kwCqfwJkd+UgCFh2ydKOln6uo+b05Nb2OFzxUyuRITx2jzoDkfQOYAAgFvLMBoD5HMywmS7H65FAL5PQze0vb33bvlpDUu7BKmgoOHnQM8fvCzwwNA0aHYtsECJmPyQhb2Jfpk25qVsy/bK4dzKneXn9kUtj9r+Bn4FTqWJ3QyPfW1DhzfUW6J0NhXPeeRQiW3ut+ixiTsK6wquf+jkxeG0fr8YexI15XsioVgxJ2zyaBvKVQM/Kmm0yBUg1eGWbUjUCmMwll8veqsN1/ZNfvH/+LPh/G0Zoy79aY/gCnVakJ8b5SkPnduoC4dJ+w7rGJ6/IvOugRjfY/RBkixeIoj6MwNgeJ/+Bsvzf70reOzH5cLKDH9X/zgUKzoys4F25CRTBY2Nset63/tBbgCIDsq/OBQ6oqt0hErMRyZxml9Odh67IF6dMmfxpxsb245/eZc+IleDc60F+8MJkLSMJAFiHDqyb77Kc7o7T5fCLpn17pCbpzcyfuBWMUj5pUzh9FZ8vTERLNra3KiscPWATHARvpjvgcYbR2b5iHLAM+jL8uTi3n9+EYV4gFdLCnZBoiAK2OjS1ReYv+AEfpVjo/1mmSZA62yuVYw/X5Z682G0if2DDugMfR3Xtk5QvU/zWGQz3S6MKWws+fZFNMpBUd0gbNi/K6PsbGvypzryv/fL3M85jlZFQ43fnLp2ekp+9uzWCf22jOyQeZCNMlRQHq4afJqr7o3GbxbZGHIZPOm1cUI29XmArhnb/82r3l/0OuXffExk/TffO/F2bc7WVlGO8aDkEiYfTGqdG0LvW758pHTYRifNdgFeU0UDuVg8T00pUuB8AQ0kqT4dJ9VPaNpHEOwPoFxrpoT5o/FbJi8R33O4bYMh4q5eKBBPaKmnUB+JiZEpQ02a1VswIDqKYTRY6HrUkjHUjrtya5bAnIxZJ6psJ+QneZ575bjYVNoZrii59qYQcA2Kf1FEQMmt6Ktr6Yg91T6qOwR0BPaw24pC1Y6y3t05pCy6BtRqhJT15ZTsqfu0piIblHY4ULhAcxTVUG9cWD/7tlLr75SOf/rs5WrVw1wIwwARQOkI0+kDcdTeVyhB+QQKuXyBAA4Mx9oV4monzS/R987NPvg0MHZtSvXmv/mrZ2sQkMPKgoEw0TxqhaTB7S8/BoCJzQnAflKeRHA2Mq8Fuvg2WxECH8kvNfZmSfP48EoYDysKcYNm4GpkMBr7XnkvkMx8tyFdOQOHYtdMO7lv2DMsAE2nM3K8BB+nZ5frMoMo8H75qXfb50wMrxL4Qux+NcC5TYFZej5nA2EKvbMPy9pFnCXEAtwOyvOeBxzw9A4RJiS/8mHF+tV88QAx4T1mZ5NlRGA6Nryq4A0ilYljFDZtoDJSka1OcaUXUnZPJmBnTzgnr/7KRiw4U8XPlveNXcGrh3KCpQAwT7DM6JYOQzAJGA2ZCQwa543ZSzXJk/Dw4t5lBRtnXZ0fMXvfP/F2cHAlJ44FIoQotwwrIxwgqRMeWHyI4Se9hfiSbcPsHws8OdYDwzqmkKUeomtLjQtLMlrU2k1wg2Nyz4A4raWaK6yhUI6E8uHAXbw6rsl1Ea19Vwxpu2JD45X/h3TxBwB8NohkFlN/IBMHh/mA2CUXwMVflH473GrEWPcEGu2tRJxB4hqFinUxeoyWI5FaqunZ6aDP4Xn30mpe92OvWgLDfkC0HTUdsbbAePunvYTR4h+wl7K81GtJBfRfJOPrTlAL3d0wsN+tjZT08cKRFpf50gyohhOAEpLDCFbzoJ8juuF56wF1hVQuxAIs4+2NYahA9MRDAq2HNtD7pdWQEDPyXE053STSt83v757drKeY8JEd5pPztF5Byb3n30kpxNTLalYV24hLfK4YeWzY36zjumy2PP0t0a9Qn37tm6cvVmirf5Gt+/fG4nEnz3A4t9p7e8HeK42yx2p1DjAAcn2QLLogL0ggmCsWIQJAExNUumlczlTW0aYpn5kfZYhxXyYLyHIxRkw/5anRt4xFeSaswo07ErHar9hTwK92sLQ8xgbuvv9CkPIeMMbYbTHTFIXHUDgtwrnC5nTneQYm8LAA0H0lf5o9IA/mCHzaQ2sj8pt4Hbk9PQenUQPYXXIKl3aX0Mn+D5nCuuJOR6sJ3CdvFljDiGgeDzWmyxYny9UGrXuYkiAAF1i/xuDqAPWFeMrZGfPmK+RLN57nsPnNAv1GZexzsbgz+jX1ODoQBWTyAZ6aOzTgCC5x4SyxdhsYUtFJdhenfOnViaB6BxOsrmnOXwlcPxc7JIxclTkk2KYrvUZLB1bJXpAL9Nh2CS94OQ4WZ/HL99/3ALAe67/W19/boAy3/E8gKfK4CnM6ADtAF1zizlzkLd5XpDtcCqBuVjcs2PcgX7sO6bMmpgXf4BX88OJA1D/2R+99Tdmkv7aIOnNl3ek/O8NZmRDG1IfodEpu4W/mgALwVBwDMFnAZw1Jftp9DgnFkerfWEbp2hDsECL8ADKGDsUkOfg97v+bvIYVF47KtpG0ilYiTghsyFvVhVyrNJap7ND/8nv7KmUIQTKUKNrGTJlniZcjgGU7AgStJxk4I2Nz2Qfzmi9uHvzYEgYdyDESfIv7lg9O3HmYhUyebYZFl7C3nqPLE8J3gwsnUtBSUDXA0mjN0nXBA+176gRCJ3HpGSSYK0q36GpKLG27tSVBqui2rR9y+x3/873Z7/2nW/NFi2NsejhebiM5ihPzpswHz3yAA0Yp6l8H10NsDidWTVEgKqNbLNh9n72k7dnb/3Fj2a3rpUAmcefEzxeYu2Uo00mnEUR2O2PaVrei2Rdhxaj+hng021uyltY6uO8pDNVJgFllBjlxZMgmHcKXYj5o0WxHIzSADEp3M9ibQCyqzdvN+7aNrRJsQHi4p/kDbjX8jYB9kzlpDDHl8nRhjqSW9MdlcmTjxN18pYHQv5sfAzNkiqmyBbu4kE7QlWaygpejwREYxAmEOIUinqqflU6HQvlUhg2zoVrU7M/zB+2JGJh5NB5Ds9HaZuXx6B1cD59FhO1KY9115a1Y0PKSXAfgHVtSsd8ytVZHTj7ovDtV80n1kj/rWOFmLF/cmn2dLL90pTEOBcxJSGHQCPMvj6UDi8arU8adK8+f6VclgwOGdEvZJwZlZx+mZIAArW7cIDu/dgDYQ8KSO7B2nLGTuZ4yEEC9u7EvjYFrUty3B61h3YHfnZ2SjxZknekHH80QmwPAMmUOpaP7pNDoy3BtnKfeK4cBnuFshaKxghil3j/KzLklODIhWrD67xM8aP4KTVAlU5YklyQO0rPXiSba9urWA0KWSdshvnMhauzp8s/21PfIAxjItRcq4z8pOuqVM0xiS3bF+tr3QBzBkSuSmq3sZUz1xqRXY7SALitnXuuTd+8HnhQOfdeYYNNKeczMQJkijPEUHtmz3a5/SQZ+2aMIN2kwzHge2DP+gEKADjJ+PcCc7tbR0ctOVuOdlAxuiXgO7d5vtFeohvJpXXaX34KECixWX+reRnUOV1M1Re2254kk0LScjo5RgzXucJjKo55zZwUVb6YqrXJtfA23YiB2JLeVKW6ufufCdBwfv7H/+FbY/0+6PxH1g2zs3vzuqGjsXCMoWOCRpi79dKDzvUYO3oIULGHOEp+PlV/J87MtloNuB6m30JxavS9UaAg3+/z5NE5lu4nh0p6weryTtf0R/8k+wBYsrfO93wcEU7qmSoSCSK981dB0t+pk7O8Mk4mkEcX6LcjzEgeVnF0uh9nDUA3f/QooMlp44Saf9+fgMq017RS8LxkGbCQ7sCRITeOvZHDCSjonQf8cU4wWwCXtgn6mAl66uuHDSO3rJ79xjEk28Yof1RjyNHyIrmVCwQQW6fHIS77xn0Bv5HAnRNuXHSj63AOjZWjsbB9BSTSR5LNsS6+77Oq8+hCYwHugFzODF0KuNLz9sremEksPfDqM2cD/XImB3Bvbcii69ARzvyTN2x9Hr8GSJoeeLxvbG8W4vZsjpkCUAfL2N/mfoS+ex6ybq+5p2gW0On3QptkBYiUl2weNXfV98vzcc4x+E3C0F1Yt18pSPqNPBmKmYEQAlEBY3KPRpVL0HZUhsXb2Kbb2JlAvEsPgfgR94XcDZoC4w3Kk5CczVsaZ161QKueWTh6hGxOmdwLfAgHEZ6lLa4/8nomDzNQkHG41vcJs3WwCUYZoFhugp2cDw/atSVmGvupKHgLw/CJ9RMcgOET40goTLwYOoMGoGnKdzWGRW8XDItwFqVI8N0AKBJO5IlIxr1fyEcOgDJFiW8SuQEpJcebM6Z/9vaRjNOns/Wbo62/++bsW99+fbauHA8CDQBRfrwUPzeU4QXoNs6AEQzeAEHwN8+GkPPEbQxeybvvHZ79m3/1b2eHDh5EmQV2xJWdQXRjKHvKi3Fcl9HRV8hGgMyFGZLtgE3Jcm2IFbEqFMfi5uJqay05XUWPzchga+CJTRyC2Dp45gX9bk5HYVBijLwyUscsYFt4K2hU3rl5FGrxKICUOczpHobGeL8q3ILxQ4GPqsWu60R13zefPAyKIvwyKGDFA5rRqaZ0dhW50rIBIHo2YIohkwhq3Xm7qwJjlNCh4+ftnRiE5c2leZUr1nh7fnOJ/n8upRCMGBte7pQjP4xZ3oZqONfkWXIGzNMIGfc+4HAvFgKosG6Scs/3+2Ekug/lx9jtbC53b342o1l4us38KCSIEaBkFTpgQhghwPixTFDSQCEwPir3msilNVtkmA8drTql5GrgBbAAtiWubw1Mmjf0+o7CSooabhbavBY1ff5K1XE9L4p+ZXtEovO1W6oZ7xeqXDcUuYq0e58mf82BuSfTxgc8Ofy2ryb7WDa9j6bzxNY8Wwg31L+88QpbjbB88oX6p9h8SU8iOQXdvj3bPmXIcirmZzxHKKFnYuy1G6H4fmD/JAPODJRTp5JQqF4Oo72DYbjXHpQz6HnjC5vt5DMNIZyA4cVUOH9ynFLfmlhv4WZzcr17WFc5FcIzjIryenLv6JqNGe0bOUjyViTeC6kBxK/XWfvrlT+/3tE9X7aGJ+ptdLv9MfqGNQ77REUmNgkT1XKOajUsOKW/IaYZo6yjuNPQD7eG1j3RG/t8eOytHUbEdYX3yBC9wJA4eoRziD06cf5KTkRNG3MsVlVtpwcdoCzM1jSPNRzFBz2TbtPy4DiNWhRopssoC4NjGV7YU7f1wKA2E1+14TCF2BJVdkszyC8UReAoX2jPk3Ob2n90ir85DXQvp2Rr4Rv6lkwARqykXWf95Qd5D1OjUg9brO0IwOHP2vYbNtOceN+za3AqYd9D/ddA0t9/U58k+bBThR5wDaw4YocuAZjJDNkA7JrqdMfEFHH0jf2LxgVIMdJ0LhlmyO17ehqzzVGhh7GMbBPgys4JXdqfcrDYTEUCHBXsuD0ApBv8ADTNKdDI1nmPLOg3J0Sngk6rBnqGDcNQ2qsNY+h++8ihv+wAlvdxA1JRFOtunELaDb81ao80VveU6qLrOnaZLWFD+mt8H9tvdfxs3rRPQGxwXu2xvVVQ6ii/Owab/vY7+Z56V9HR2ubo6m9OutBfvszLXzJJvW8ef+2lHa3TxMhaC/tWzi17SH/Se4P5a3zs17CpOSoIBcRFFxnjGoA3x99cmEtd7ekpa6KgBUuIXfvf/vXfvE8SLfLXeh2pQ6yXkJiJc1P9Uvx7CMztNkNC9Mq+/U3v/PqPJMCPUggLy8Zvhb5MUYyclDbnshbfIbZi7uhk/TU0mxOWco0jxy7PjuSJUigQPy+m9Q0YPTnb2GamoLRb1zTqWNTflwmIqhNJto+aCCeL36hiQxM+FpeYUjCEVqKlfjlCImLhQJvjUgCE0Vspunt9G9IRBoyDVSZgR9tcTt4WJiFAUDNl4PBK3U0Jj+TmRc3Lq+XBABUW++lye7Tq/7c/fH+2ev262Tfe/MZs1ZqeO6Bh0Smo8yUV22iEghfOqNrAwh5ysoRd0Ks28jjQsjkkYJ/mpRGOSxevzC6cPFqySkzPmXONTi+JqtMyJDz1u5/VNyiP0gnoKtfmNw9L2tyEh9AxGk8+nFiCxQGIJ/q9UuSny9dYlkf+VM90rvlemhJpQlPwNneK8L5cKMcQFCqI3RO62JbnzmM4E+tDYazPK15UGAOY3R5QpDSxh5gk4RYKjxKitK48rMN1+TwL28TK+R1FcaXkUvlfCwO+z+XFfBgLh151evnDRwubuxJpe0Y5Gw+TR1VqmAggBCDcEChr25Tcen2MR7gUmN/e+lzoTL3D5WwIKVEcgC6vRp+rB1/lmWTwlvacS1tDit41byQDq/LshWQXZ3B/XsXPs4VqyJHPz30UiArsM76Lk/H7abMFjd2BjKcvfxxILK+n8esxwwAI/R46eX0oT4pxaYSsc7mc7bUmB2L3gbWzP62yj3JBGV8DxrBxhXAAWwnrP3vvzFDWWBINEXnKmFPhH0b3dEzBxubBPYcxDhAAO309gBet3rXd+4u8W+E5XrvSe9d5qS7YkuePnmmPJC+ffj4l1NuDDMnP6jekdxEvT/Xi+WsZ6cJj8gc+zogs6SbW50Hg5V776dNkZE4gaIQNY4so5307N84uN0Z9mDCtnh+w5gkvwmo2PgBX764VgVzhMfud7sHEASFCGwzZk4XdFz0pod2xLnVOj/0BKvbtrl1E6/xhIQAyxrEhB2R1W4w0wwVMC5cta69gKsYBvD37mar2eKGLSyFYV/hKyMkZk0LEjjc5UlPOO4FO4VBO2QhdF65kPBg2emBxhuZBe3l+YOVUwERqgPChvA6J9M8u+TLA0vl2rdknrROwj7Gjf4SusFQqhZeW4zcnVKl1ht9/kJ4U5rBPJEG/WRuN+TE1F3LSzlxM9pKxT+5+NRpGOuPuwN5NqeUKQFoHrVe+6vmELx+2pz8ONAPI8oQ4DguqeHtqYdas8QPi49y7QkXOSJTr49gg1Vbf+tqu2Z93RMV/CpQYXjIASL9VbziOtQO8OcWAFuYQKACmwqQZ/0CWp+12WHGyKy9oU7mha2LyhPOFN//Xf/0XMaTZltYcWODY/hev3rpcjtXc5oyO4eAAEQCOfBZMGPDrXubXOP2AAaHTsTgAGFDlc8CBwh2kAMAwPdvEdrCH9DJmH9OJPZF8rq8ZcA2cPlFD3PlPyIXkZDxRGLJUjsYk1wtoE1rHrpFfzg5dQr/fynapTHXfm+ltjhHHlrMDHxi7pGW60/UAdsnoqg6FODGFQAxw4HrW3LVcnxPAbnth9O0FRQaOGwJQHsyf2qewQxjuLREfbI3E8cuBYqyvtf/uyzsLu28cjvYPqkj8IIB/onw9p0ksSq6kq/zXlojy4RwBu9g8bDDwCtB5joY7dIBxk316ixMNK3zZ+Iz/7qc1n063Yu383nNaMwy1ExZ8l90BlE+XI6pi9m/z+muDJL1QKC6NDhmfiMiawNXptYlYVNahZEF9Zv787XPTxkzRCpVAtrwdSk4L/A9PX5gdv3Q5ozTFp3duCHQ0Yffmfhn7okdMk9LPEn6/ejSdqP3sgiqBureFlDAq2ZVX68X7s/H6yqDbn0wBSy4mONgErdiFeFbXF+a3v/Niya0XZj9+98RsdUI80Xxtnr5skc59fnO29lGlmy3Kc4VQeGojQ76FXhDzsjCBR8dShMJK6NzVy1Rj1FwvAXKGFo/6UrlYULwO5TpDXwpQH/jW3tmWrZsTcHkVnycgJY2G5ikMNLL8EpUOlDEDZky3AjpeFh0g4skANhQ0uv5m4atjH344O3jw/dm+cnb2NGZlpPKqJNNiINZmWFXqbS4500Z/eKteRxmnORmCwYBlHEbiXJ8lzS9UiktYD5ajdZ6iaVPNuTu3Eu7OH2sOGChKDBuDEbBhJc9TVozBjapzGDUnmi9dpPFm8fU78zNuxYo760w83GbXI+uLBRn1QjtYi5V5WFC/aqt5DG4/X7hyr5yg4ulz2yQBkDNVeG2rZHds+mbgTEbVmFbnMTtCg7elJUESNIzvoeNVbbUmQlWLt9Yzq81tjp0TtkHn7vM1hGvcS7rfhihkFUW6gzukdvRfag7nz3OIpZDv4tkHxy4G1AsR9W+0NMZIF+RtG2PHUr5OvT9zIeDd8ysNJzvpvNi8QorNo/lakLfjkOKDh8+OfD1J/Uue6jT1nAShO32xut0AqTxvneiFqZVp385ofBaAcF0eIdA+AcJFGdKevzV08juDby4oh6cC3dgnQMVhqwyLtUP7U07AlgTfS4FgncE1+8OWyR/5LEX4QR3jz3ZtHmzqcnb3wVcjTLuu+fqoggZGnnIXzloVwMGIAUByuOa0lxg57PLBwlaMi5DPqMrrvudKyF8SeNNI0f75Zl7l9WSAYRvGr+vqK6P0WeVWCzGUKG/TkSi3sIcdY6RKjTHSAFFpMmZ75L80kfbS1pyyX3t51ygSeXnv1sYciGt/nSofTvXSWyW8L+xvFWDYa38c1OxcxOd3rQmECalUudqcMug81UetJYBqHxv7p41ZygGWUTm3OZQsTVdixd44sHv2aeBqXsDoQcm3B4+dT191dl6l88Lb2B25WhKm9yWrjneRP/aUvZaesVe/rCp1fnto9nn3bAwDlPSjed0SW6ip6IXyCDGwDJh5vF6zWLqEfJFRexy4BUiFJsjRw4fligV8vkze5PZ9VWGDMPv8k0/kRFxrf5Zb1TUWNC9aMNB9ZAjosJf9LU9JxEC4kGHtr6HbhF+Ac/KDDfzmgZ2jmtMZlAMkNR5OJ4dKAr59ZV7Hevcb7AQ9TM7k/m1Ont46fGb2TAZ9afe8nEz/1Rd+6E46cFVAXzjM9YF4BtRcAdV0lBdQgkmaLxTYi1H/6iuH2zrLDWs0K/zqyKNSA9Lby/qs6ANQJ+/S6B366pxNOTGS8v0txDm6V6e/gP2F7VXzYgzYswefS/avC362CxhkN55JJ69Yt2iA+aZl3HvuqFrP8HcvObL0lQacQN+cZJ4DY37MM6bUY43qyvY8PSTxHeuvJQPZBEAGY9M8DEDRdQdzkwwbw/FyHbVgcRyVuXJtzjxaEzO9NiBpHEAuBx6btitGST6oQ33/l//zh+WyXRvAETtL39xpT/vTVP0XL+sA6LBxZPNxVAUJQb5Fh/wBgux7egEgJdOrn03TN6cq3m4k074rpQajj7XqIwMo0dnICCHdv81r3h/0+mVffJy4jS5dnCL0oAzwJz3ErliZtQnr6ZKzIXAAR2UVo78+T1PyMwUthLAzz0eyJ1aBANh4SmJ3FG7SxlyoSndt7BSlci3BkfsitwDC1WDtfAZEfhOA5RTq+1XqqPayaUflSR4scEShQOYYAlQ/BWGSVyYkZzqOQX7ExhTl5Bk8NXmsGVsARZgJTd3cD0FA6WmQp3SXoInMXCw8JfFaPtKVXwg4YMUTIRSS0u+kEFX5bdqxZ7Z2Q80Gq7I7XWjys0Io5QXXIbmE9piF2wG+T3vvixImr8ds3LiZwSjI88nt27NPYxl8/kbvf3av5nJtrLuBxKUt+oeHPppdPvHRbO2Skncbt4Tgo1URSkwni9dLqubNnEnJoI8ldwIXqvaEpTa1NhJ4eZwSVB/G2mxIqJ/qMzwgCdUaeal8UUHwbAm9QmA8FMZeKSihFdbB/mFr/I6Xy5PB9AATyuK/9/ruFGUs1+U7I9lSLpqxMFBTmeuULyK3hme0KXkhdw44Fla9HeASvjTH8jP0j1GFpxeMoyiWJke3kjklraq3Pmm9eMRYLoARWwPMCXeIqTs25fM2IKaNXDDwujPvq9uzGPwHhSgwenImhOBWxIZB8m++vHv2nW88P/ushPzLMViu5zgT88IZAMY/b/cKO8mzkOtCCcirwJbZ4J5BYqZFElqYFwAEGrBLXyY7q7uXnJSDJUDrZ4JBAqRpBZV7S7uf/DxhS9Vl8u4YbQ4EJaFVx0gsT5m/1nE2evUwwOPA4AxQmmj87Hw4+VHOw8OKAfVvVYn5bkBQGMYZSO8crZt3+S4H6lTtnDkAfyieFPHSFJvQ9LzYBjkiFKeePg79BWS1X7if/Dzq/REK6tmBaYYDgHH2mu7XjCz5OdR9v2qPba70XLjQkSp/51vPByQCMzG1vmudHGzJgGKvXItcWQcJyZ4f6+kIpMvXCyEHlje1765k4M6Xv2J8GEOAxpwzvK+k3AHIH/z0cPLbPuk69MmHp6u463q81CzQ0G0SRzUO5PkD3sIn1hh04kAyxMq5zasKUNezfqpwHdvzetWEwIm8KfIIACqTlr9jT6wsB++//c7+jGWtJspJe/VrW2KFYir6cyfA9kRnDn6WXB0tpHa6OQGGrQdrCvACPw5r9f7rL+4YuhAwwRQ5Z+t++hSD7HgdCfo9VjqyhPYYKM/C6yav9rUGj/aAnlCeG8gJxkzr3y0ZSCFlToq8sfWra2MRyMSy0Tde9DwgBEQP+e+90R2857UX6ABrRnYnVmj6Dlka7E7va2SJ/RaGdUzGN17YMdbi0C/yXVYlB55dKgRmlg7GDp4oZ5Sd2hJr6B4AAUZpbnbBHgDsNBflnDL4AIEBF8gaYzY+48LGyAVbEzMpt5Bcy1WcmjNyoPpef7AWQsaSiQdgz875lRxQc8xou6doAbmwbuOe/T3yiBq/nE8srmehg72Mg2PunlhBc2lc/u0afp7mTqpIz9KcOsoFfPOcwCw2E5tq73hC4IwCGsCx8VjzLtM7ta4ArgLmji3i/AtlApGKfVyPQyA0CpxwpuVEeh5hW0D3e1XEvV6hg5YNcuSwqdoTrEhvC81iSEV0Rv5qf1/NnjnNwvl5oilSDcyh77AN7K+wnep5QUDPbk8ZM/YMwJLG4G9rIWJEh5t7cmHefU8/N69/+oc/+9UlbusGi8J2dhZhRC1uTaFRJPocSa5mlHjq4p1bKhOkzC5WrvhFntjazlYSr5dEej+jR7mJNcu+V9EhVtuzZEQejW64chHQkkIzFBFhVSbOEN+oRPhsXuiR+vxIrryYIqB4VacwBqhaG21th82i7+Q6ELYLhdUoREoQtS5L//MWWE8KCyiRDqPEqGzpu/vrduy5z0bZSxwDErEe6YuxgPqmYHUoBdV5cnie37F+bAaeHIbs7OkLs3OnTs8+ev+D2a0r52c3L5+ZfXm75oPHjs4+PPj+7P71S7Mf/sXPZu++897sxoVzs9tXLs+Of3S4z12YvX/wg/KLqlB776M+dy3W6Mjs2EdHZl/dKfRxqwqc7m2svFwMwt5YoOeKFyv5JuwS4Ak1owmVy2Vh9LE5FIZ14nW7hmRzzJY1YESUsq4qKVpeBlZADohKA4JM6bRMgaypp4g5A4y/9/q+5mDu7KXKf9fGNJxtvp+MOTmRMVif57h3+8bmZAoJLS2Ut2nz+qj0PpfXel0y/tmPu9+SwXKcyDhvqVKLIhfalZi3LCVE3nAaaxw7McS+SqieScEIxQKkfVZ4cUmJ8Kfa6NfvTlUzmKZXx5mBS5LbFWONLglv9MU9MXDK6iUT2/h7Y3p4eMqi5a4tCIjwqM4F0jcls4eLt5sTPaVsaGDqQtd/OiPxzkfnBvBi5Hmcuh0DmpQVL9vzU1hkdHTezoOigI5mLClLn9GzRu8bCl0fLY1I5UdIQsdwYf70uEI96zBOJoWChF8mIOvQ4Xp/db0jlburspQ7BwSmW1KFGcK0iL0KtBmPZHK9gShpe8zzUzwM7qbYsnkxvW8eqAdZIXGG74NYJN23vXyegyFEp+0ABkQyc8OcvVaezthDhaw4PTpPYziEbTF2OsHv3rx2GHJssdCvHCM9ux6vhzU51BEoQCNDhOrHAIxwQetuj9M1Qm7yMnY194zRotggrQcmprY8s0JSCxq7thUXgbjGvTgjublEauu/PuCpbP9a+QyKBITMde0Xrl+yEHsae1wo9ko6be6j2KwUOGWdEA1mW280IEmvMgwy4MSbV3F3rT5MOnozTKPoolCsNf+1l3YOuRW6Wxrbui1m1aHIc5PLr+535EiygT3QoXtF88t4/G79i1SD2fcAEGDAyxfO2VvzVjoOw8hxvJ7BEP5hQPSMOlbfrh51sKmYxk3pcA18twWirP215PLFnZuGUZY+YO2eLAyruOJ2rB2GRSiK3mCQObB0imN25HbpaTMaYza3HGcsBRCC6QCygSXhcikU1qhHG58DIOgoTgsnl8PtD90qUdh7ogKAwCu1P3h+tDe4OOZ6XbIrN4htATDMB2OqgONCc/RrsVfGz7BjmbC5mpi6t7nFxvTPMVZjnqIQJXU31wAXp9y42Adz6fr0k/e0dxjjNN/NJ3kwBsBKr6KtsdbOHHPkiucF7H1+yE33pEs5QYAH55IdlK8kV4h+ZtfoNew9nWtNMWEwnfwuLI+mnEsCAVpq2FuIAdc3Z1gVYMwfHbbldUkvYRdUHPqMuQIWMXlk2vbkCAA09BRnVa4P0Gwtu/WYb/PWlA7bqtEnwCaUKaz3Wmzq73/3wGxN8yMvki2gw6dxCROCLuWetr5Y7Q/OFDbOBm+OhVbyrzKPw+xTUlOmfT8xs2RofL8xmZch/z2nZ53yhLPlyRIWTfNW7NlgBpOxf/JvfoUg6e/+2v6x8V6t+zLjASHu66gIC6W542vPby2eWbv/lPs3o5Yl9x2tw6+qKIJN4VuAQ+UbqQZYF+Bakfcixovmm7xi1VpTvFx8ncU+lDEYpYopvOc66wYgBNBUIsi4l4hKAci5kDPhhGOeKI9Jh9rpBO8p6RGiJ0RCRmLu29vUNoqKNy+G1GZFG0oUPNixImdLQkNhP1P4RAKdhGQGDyu2bfMzs5spP8//TAvZmg0EK/xHGB1EycM1Ph4K2lAiH8H8siRnVD2mRJ4Khd0bI4GcEpHEKLQInOwNeP340InGUm+WNtHovNuzjLBK29sZdmh6jJ58Drkk8i94rDdS+krOlcIyLjbqhRQ5AwT8qXCjiHZuXJOwLZxdKDz24/dP10k6ANvYVvcsFPfJEvPmJGzAJ2qdV6XhpA7cpi9cHxOg+edTgYgrI5lZf5JBdRbu4+1vDBDZMDxaNDhm4FrPZ7yOj2G056WQn3mWpzOtsz5EAApga0NQRHLTrleRdTJqGKtk0zizSqXa1Y6EkfMiJwtDIQSDfuZRuIbEz/djing9ctCwaZcz7HebL5ttUXPVw4x72sTzA77CgJSBdg4q8yhrXh92EAugCsRxGK+/sHMAcsoC7SvvjcGSTwGE67PFW7cW22OXNqdw5XeQZ4UJEm5fq/fTvjqhn76ULAYkJFV/WtgGA/Hz+sZgJ58rlw/jpFu48nJGieIHXk5f/ng8q7PgKGsgCMOwtH2mYeLNwnbWiJPCUwPyPCeFBExgvcbJ8CkXCtip7S9XqeV5nccoPCN8gBEQ9sMifOOlXbM3+rOgjs4YPt7lqpgKva1OByyF6wbrFmgMT6TEO14oBlm/qWuN514sCWZMi41FyQLZ5xgBvE6OV1UjbGXvYB+8GAwVtr/7nZfqJJ0zErOiAg1w0wFZ1135TCr3sFBYPgBf6Ep1msODhXwpUnLsxQjYqfSUika5S/IeD5++mHFbMHSN44WeKT/nvfQMeZJ/9VTOmfxF4eyWYFSxOdfPocoMjWaE1njkV3Rt4NjPqiO/EbskmXxNuU6YxYcBCaCQU3glEMkxAbJulS/kLDwO2ujFE9ATGtsRILSe2FMVt4wagzSKWLr3nA6z3Rxr96ODJ4fcAxLCvRKv6YE7Oax0M2bCs2guSX9yKuUTqSadjJJGfqVadF8Vd5wsc8Xo0c+em+7EogGvQsGA89B1Y14oxya56wK7QlL2O31CbskRQAJM+c9eByYYQ3PlOvbesYClIh2gaHshRmEvDgG9bu58lnCwHlh/umV7ckb3AXMcEgCe7sSGcX451sA1na30XViVDGB32RlzyvD7o+2B/FWy5Dw2LAfDbA6Mia7nDNgjwE9bfRh40QzX1toBMNCAlVwO0JjOxoqIwgiBSuZvIsa1+2t8zjjNFdsgmuKPQ7c5uMZl7wK5HAG5f9IyBmnRM8sHY689t2IqayY0aq9YZ86QsLR1Mf8YGOMhr/YEO0tvaT5q7smFogNEwzSnOWrJhSgGoCdkKrRvPsm6s+I2JVvkYnXzJAXk2d53wP2q1nRF/16TnnTuJ13rWva7IinOAMfrRhEXYCdxGE7UqDhPhowRoJqAKie0ti3pGfNOZug3MnIpHKJA6Y9/euRvzCRNHBQN8f/zEvtfnyfz03q78FLEwK/USM2GnJNXpWx0Q16HM9JOhZpVfgijOf9qaaW65wNGBIgBEauXFMxzQr0dj9E5F/Cy8RhFDbZU/Dxowb69bPfIOyIgSqY1b/u0kvI1VS45lkNjK5tcPojzxuQjfat+ThZrRaGJE+fbOD0bYbJIUOrGjR2TkPJ/70QdmANflxJ2JcZisUJUdzO4lypfvlnOg826o7CizXEnpef07b/33f1tvCWzH79zPMVSx+O6lG6NLWAI/FEa+bCNgOK+kPHHjvFAUOp6h0S8jEM9hRU9P3p2+eIp0ZR3Qmk8XzLr5gzWyTOBvvLAXs57IhBQP9CAyjSPgKowgmaXlItzgc5ems7BYSQxSzYUT9Pv3/zaztm//MHBYTx31axR3otjLm7HApaHPdZHIqu+Urzgj6psoYT1A5qXF72eh5wyMN8YRSDIRtmS180bJoiUwPAYWmtC+uDBRPd+UJI0RUZ5AmkSVSlcCuXFnvejwMu9Ntb9vBgAirK7fp9X1fr0PdR7k5DiezR7bv/G2fk/uTWuoav5OQm6rTEZWplHtSKZ2xob+GVe3P3PCoF+OW0+R5XMK3xhntatWlF/o0r1U4QUvpwvLAZge6Hnw8xI/HYYqpYJc1Z1NEO9iLA7TvIGPqwf9kaJ97/8wTuxmrcD2ZtmpwOVNzNs+wK4h/OSAGtl3cCunWzTCtUJRWlq2oQVRqm8uX9jUBlXx/boGYYxwIJtLX9pX20o5DAsrl7ffrr9yRcVI6xNiUyMq8adiiLmpTiEfOcFDrABWCXJn/o+2TPHzh+ZPUoRMbyYKqBHhdPW1pFhovjpamG1KwHP909ca90KKbfex8oNA1bl7T2dQiJHDrvF6hYNqoFpSZjJVds/iWu/pSAP3jw/u3b/k2G8tQtgrMnIouYVYzG/vDchjOP1AuJJbwigaIU3txDTwXotKYwAYm+OUOed+jxtKM/h/uzt90+VyBsITPm+fmDXAIxYZmsiZ2ndikLwjfn6nbzhxna1daVf5qYLfG9OwO5QDCblS3E7F21bc3Cntb1eyFuirDyTNYXnGYqbgS6NGp2pl8oYXr62ChiT1Y1/WWcnCedjCFR9cX6WLP6iIpXSA9INfSyD7YDcWJx0geOLAHTVrxdPZwja/wl+c998ZEQAfMCQR74nvfVBib4308WfhZY2xc5/UZjc3Pz4vRON984o8GDYViydX7uIJRmyWwM4fKPQ67LFAbvmYmFsLzZ5QyEyRplRwohbW8mxCgTkVDGgGkEKjWDr5X6taT9cScat1TgxIF2lh93d5B8jqJWFpPQt5WO+V5GFhFkGDIBKGPiB/hqFGQACT98cq8banRwBd+OzrT19NWfBlFjNMTQPXyvx3NluEog1m5WDiFlh1O1ffzBB41zG5hAzhEWZQkMTEJg+i40MoHVNLBNmdTQtTi4Ud9Ajo6K5Z5/GM1WHKcJJLaUb5/wiDJkz2v5k1DFeeuWRbUCpS45nIHeux1YAI/KsgJGRI9TfQt3GuPDJQHpOqRfda57ci2wCsYy+F8YNWKJ7sKeuDeBMNrIUCrmXVaOKJuiB90X2es4AnWRJiAzTNoElLWfksgF09IT8S/OuHyEeB1gHMLXREVXgVMgD5mxvSWbpFW0F6HzOtp8zSePfvufZHcmkuSfgyWkzP17CuuZotB1o/PQiFhq4sm6r083mSyNrF6LLOJj2ljUbeaPd88OYfXLteRUEyWnDcj6RHTE3mNvFzQOW82/zmvcHvX7ZFx/nJP3ed18em8ZhdktSjBL4eDRKzBk0dLUSad7G4iqCeG5Q5PweUv+h6xmluwGNvSV5/ca3XxqMAkDw5HzxfYZWHwxnj6UMbdZYCHSnRSH4gBBkvyq6f1ne891ymL5IuAjjqmXL+q6Oy5+Ms9EwTkqF5RegK51tpTpMTEbzskdzai740cUMiSTTMuNaAEZSUzix3yR4ACq9ZpwvJsYp/DA/12TLuioter5rKdOfH77Q4ixKkOeOxlmERfhQ12NGhnciXsvDkBczr2fwnr5KEt4oIWEDHZ9Rhbx5PSmUnSuFJxDAmc0hLjwMapuRx6cBp82LJl2ZcJsrm0YF0O//g+8mqM8ULlxf7lRzGMigqDTahKohckpOJROB4t0QRhVOY1cmk8ZsXlDUjJl8LMwD9kKS/kDqfcc8S86m/D6qcgi7oJTWJrSZGPTHGxNQPV3oDfLX2wIgcR9VhsaBTcRCPBPrAcwCi77v3oyG/JWdMYeUhCRrnhdWSZhGEv3mVXnjATXGdU6ycXKENyq9bXOjkjEjSmrpGnS7ZMFX920bay0UwruSJLz2meU9U1VGgQyb9a0q2MT1VY6omCTXQn6UGAUN5Innk0/Kzwa2J8BW4JSX7z1zTynf4nU1gQwlul9LBvI5P40xhYGmpqaYEwc+G4tQqATwj2LpKC+gUQ8jBobMAmyUEgUD+MwpYd3RKKMbdYpnhJFjDXyGceIdWteR44Nabx3O1APLHBkbz/VkDpD2CuZpTQr+q/bPykK43b65CNw3N8J479dOQe6b5z/VERpAOxAvPCnkOJR7z8bDA5Cxz0DIweRFdSMlJvcFa2fNOGHGM7eDarG4EjN1t7ZLRxuFhE0vIBVWKr7snzsBB3uFUudR846V4HPUJNgKlX//G/tny8v7cYSOOVy7vDBN71Pa2F+NbzFdPG75NgAOpw9w0Rn/D//i8GBosXA+ozljQ27v6A3maCFH1VRZlPF9P3bZunhe8+kAVMyJebVWA3y17gw1gzNSGJIlzw5McSLIvPEJu0z9akpmzdA4GUBbkg05AfTul2ulttkAAEAASURBVN0HMHJtOsXaTuXi01mMnMO7Je8OxqV7rA+AqtYEsvcG3G/efdhBvReHQyi0DDTBNPoD2f9yloS36VKGEpvJOV7XfegMjq890GOOnBD7FBCf07xPwIWbSq3SV5NhlBRtrGRGOEe5PhYBmAFqFfoAD3QVXcLoPXYSsds+J6LhPXlmntFc0SvCXIy+0Pwwso1LhZbPeh5/yLDPSLXwN/0rokCmgR32S1jdnnUM1wB6zTWQBLDY72wbHeWYI/J6uKgHZ3NV7S/on8cMGD1BsNyfDIscGNfp5pA9MKfDKWkc5p9ONP9cN89JZ3j5DvA0jH6fce+mcOQsGTeA4zPYa/bMMUWX21+qFTnDC9on/tiPAI1xAYyjgKhribAA2pik0TizBRX+J49GLleJnE6NGaeIBP1sTdlYtg9Y48g3mBEm47Sxa5wI4bkmYfy76U++CzW2Ru7nOQFC4Twsp3kABNkaayNcRhfLuP2i/Y9RVVno+9rkiBjQJWS3KerznrN170b2kXnywP/Hv3vnb8wk/bVB0oE9W8ZCmxSGAdJkzB9WcaHCB9X7dO99u8QtzaVQyZ8lYLxZqFvi5zivqcUtLpPSnrrGDiPSZBw+dWXQeGi0T/NY9UkySUrJL3UgrEmDCtF9l0LKgBTjuKx8pnc6O0yipHO1dhWq8EKlHq5tAWRqESkFHcAlugJjDL5r6tRL2HjTNqREY834nomJkNtAEb9/7Gzs2BWWdXihO0owBgzeP3F5sCzrK4+0IaDoTU41z1DZoBr/WVinUTdlCXs9ICReViZJ8MVNF5TrsKtupj8+dHL2o/eO54EtSwlNzcTkcvGEJTHy3FVeEWjl7BS68atAW9Wmk/9A8feR2enYp5ON97mt62Z/9OeH6p9zvvcfRbeXH5Wyx0TZbHpbTeXkhcUam+oaaFzDP5tDt2qCa85eKcxqAzxIwZunJ9qMmjTytr5eQ7DfefOF2cHycXhxvI7DMQInMroUKpZCJSTh97qbYrBxnRfXbWNusDnljGVItLunxGyq3eVYyfPAoGDbRlig+2ITJZU73Fa4jfd5MzC7Mu/YTqCMbxe6AbhWBgyBgtHfqPvsbq49m+8xLBKwHTbJkwSEgRyeOc9kot87sy5wx1DpW6K8myJ02Cwa2yYlsxqqahoo50gOj2Rm9LR5BpJsUuyQ9v6UJEXGsNo35iw8NAwMY0pmfN44KQ9MYFup9dYqI7DW2HbWDHBdcvJN3aBTHbqCb8gw6WG1NQZycWtwpfAag7Uo5a8z7alCdthMCtShu5msMY9zk9unCiMt7/kociW+KHznxNkH9qj5x3LZg1tjGk8FCIBIFawUnwGTj92b1o3QyWcl0O/bua7vPMioFxZtf6jqYcSEK2gye4AsyRkky8Ob7jPmBvOmIsUzsBiAshejwhlYlccuBKlABCMp1wOQsWZrY7wxfsIo2FzrAIhvW7eqMWbE+q5wNFBxJJYPyHDQNTCm1YQ5NjZ6w7MDqwC0feN8yn3b148eQhuSJ5V8np/C5xxomvp8v99VSFR+kvw+QAtb+2RzSGYcW0G+H7SojO/40z0+iTGmj4SiMYf2c4uUnMdqZsyFjIWpOIO8bgZRQiv5kwP3UqyKsK79Ku9ESCmxitE5N4yHwgYGTAsU7LY5UKjyfGfsXUgODzy3sftuGi1VsHlyiIT8gZVFXZej5no765Ej1wfAWbky3dYz6tZOts2hRHX5pnSU3CP7W18tzzz0XvcGDDGWjLVKLW0OsPaMpxCXxHqOhT2MTRMe54QOx7LrmAvMx/FAtftLPPd9+3iUudtD/Qc40PV0PAfAvQZgymADR95zTSyH39E9GEOyuKloySACejYMkeOrhkNkvYcup1eU9mPMK0aIgVQddyzd5/uaSwIhPEj72b+lkWgxAGyILtjr9octRO9jhtgJIfwuMebcd8mIawq/6+U15RFpPop5jPFrLTlAwJrPmx+5qJxhTBd7aF44eECY35uTwdx1BT8rtAGEAZMpnDXNA8dRQjWHnO4xZnsZ0F8ewKMD6G76AYsIxFlH4MffdApgaczyoNgzv+NEmHuAGXBjz82LtQYaOUYiDaNoq2OcOC1LY4QWN4dkku61BzyvtSMznpej5ABsTok8Ms8NwFnrf/pHb//qQNJLtSZ/vCBPlgSwJkaHshVfVD5s467NIDpMFABiqLYV0urZRzKXjHTdbZXo8p70Zki2hlHXwAwwocSe37MpkDFVBaHlMUWYg6fKL9AV9UpGbVS2NBlAF89V5RkhI2CPvppbDHRNHjBKu0Sv2AxVEe7phHqLorycUnZdChEd6eBeRMrS2uXrx8G4UZByrI5XTcIb/dqejQOkCMkdOp6nmK43Fl4bQbha2EAuhedS/jjOkQpkUdxi1wygvIVnCjNuWL2kRMcYkhbZBqd+blSR9u2XO/Cv55SMrGKAd4zGl1D5WXOxt+MkKF9KEE3paBVeFLaIxwvtqwQxCCeXoxhRrhg4zd/WpSiv57Ubs/FQAg23suQYreaPEmSICLSx2biYwNOqyxLurSWyWjTgx2GaJ6L/nbd1b6yZ84Ri+VKePJg7GRYysDR2R9KefkdYCWwSr1EO045yZ4S3TtZBWSXO6ATenFKUFBxjLSdg8VPl7iQ791qrj6+r0khBpH8oRonMr+3bUUXSpeQwZdt86COjJQPADoABJLxb83E9hoVyliR5ulwWeQ7CPtNnAbRi21knlZbWdXug+KXOSCMTNvHOekHt371m5Nooadf6guMwOn+nyIAtFLC8AL2UPLscKYrVvA/Pt/cUMggZL1uM+o5pSRED2nrpMGKAFiN5NwZodJJO+VAK5PbpnhFLI4dqChMsjGW6OCmzPkcJ6VoNDOnZxJDwkCkd4abPAwuHmy8swOYAlzwdPX+E9rBUzw4WYerGjiL3h1dNQarwAUAShMI6juCZQOCLgSJVZeSJriD3HwVC/J5c2r/OZxReG9VS7Vll6RQpIEzGHZGhEgzYswYAg/xAwJ1sUuAAGKUNkGpSiy1yT+AcWFAtYy/qwyY3jANBRo5kvBjB0yX0Mw4Ts/VwAIt5KV0He3ICjZsxkZwMXAPZAzynDxiYFYHJkX/RWjub72xMCCYNsObIXM6o9qvWuZAphd49zd/WHCjMNZmy5/WnOtSYVBoK4elZpWv4roCm/YeFpkAZzeFEpGfpUV3Vye+oLGtOsUt+1jzPZGqPwuBZc3taTlxvDT0JrEiBAEB7a4CWa4FIJdrYg0Wt04c5rHI5z1651v6ajTP+WKKF3QsjiX28QF9akGaePHI6/sFvvFoPtidHTyZdnbeVgsARYgABFoaaDhkgoAGRUXPr994H9OkeuhnAY1/odcafDPud9wGvAXjGHnY8C/tTRdP4/MReGRlwDbhjb4TzyKx5Mq8AIrkc187h4ghJSAfmMX3YSM4uNg1YPl71MNZXMQxWZrTzaL2Ng/1hV+xZIEOahOahGDKNOcnTAEuNQwg4FTbArjwhcktu6B463b/JPHmRuiEnzpg44d4zTt8T3nJvrWEw9IAFm+vZ2AyRFfvV/nY4M3bNUSHkG7DhrNA1GLv/yEy1Tq2LvQFUcMzlXY0igP4t+mHt5RBbc3nH5hFweyIgi90/VeJ2l0xOreHE7qpABrrd+/H4kBeAjYNtzfM0ZvZ6OidytMpJZ3Jk3Mv46VNhTddyNh7wBjhLkscYAcjkSUEL/WAt5NyRKz3w2KX/+4cf/upA0rcO7BheOHaBYV7U8Q7i8xTmY+9bIppwzN1i1wDAvvJheKKUHm+ZF3qzxZPk5niI9GXexq3hhQs3PJUyMyE8Sd7T/BTGhihpyeIEepQaJwhotlWFRGxyBpant6XS9s1ri/u3aCvLNVEKCPxQipSSe+9NCVLQNrYXj/6FkrR5xIz2yL3pcxikZDujXQVMAsHYbKuDLVr9VtT0nx8603OXSJpAA2oaMmq2CGVvT9kLlakYIWwqjyQIy1PgyWHUbNh0wvBAeHXvl8wu/ANtf1FCt47eb9e7BXjk9W7NiAnXodf3Vy00zQPDnxfTXNgQlDnK0UZSDbE6RQ74eG6eEyM99RKa6GlMkA0MnApNQO7CV1r478j7Vq34mApVvSVpXS8ZggYIUloS0/fWn0nuzZk2xzg3p1Dk883p1/dvG2GzK8mITbwmQ/B65elTbxZnpenpMac8nfXNM/bQeXxR+o3HOCUFniqvx1p7hrZ7HqF8h8pJC7c640Xy+LOjMrJQSfNvvOtTCBSDrq/oV54wFogSYzDchwLktWAeJDI+t638ohTSh6eqWstgqOwgIQyiZFpgVA4RZaVXytPlCQmd6lrtGAiKnHXSOZbiAazJ0jDkXYmi5kUbv9wxzAmFJdmX8d6e8ZxfWPR6CoFiZYiEsyRWXg448lTJ0DioM3mkCJwXKJx3NIN/ogR2P/PQNPyUkKsXkBCsnAMmSnNJRoDSB6gde9KkjI7YX+Q8PJ3sYdZUpVpboThhUQB8RWzc11/Y2nXmzP75v/35UDj0wBv1NQKk7SkhENWvGoBqzaE/EuXKKGBXyI0wkCAl9ogmHYYlA28uKEFK3zpggegU4T3K3xiEP27fvTsAO6/X+rxQHhs2xrpgFp8u9Cf3AhCUOAyQY0rkWo02EM0rg+w955cxQDxwJ85zaHaVN4FF1C5ACwxhgg1rYjHTQ4AH44L9kFKAbRBKkjTPg9XPiEJWCLCia526eHWS1e4tDGSPAl4rA0kfHL8QM1bTzoydwgpzsbDnX5P8mxoGQ1sP4PdeunRzuUUSchnm5/dsGblgDvdU1EFfcmI4C0C90us+NtIaNNu0Bhg9zIScspXpTUAfUL6WU+YZtA+hI+nKj3MgpAOsSh9rzCo/TuiCXCgtV2VIVw4Al/wogGHAXROTJQ1DygSQCwwBbtdyxMylsfksRsAaAj1dYqyvtRf+s+/pXIDHnrGvOEyjkWmfp/MwWrYcdhAQcC2yzhHCFJoTssVmMKyYjk/aW4M9aw+M95MzukgKA+bN/ewP3yNbDPww6I0fsKJ3AOPTMagYKAB9ymkqUpDs0y0TgzIl/jveaHm2D5v2eXoWU4WJAQCBNuExidUjnJejsLr14PSwTfFFA6Q0Za1rznz3pdfptzG47m296FWVc4CF8O/iroNxkkvJmcLELO2axjV0WfJAVoEdjic2T3NN90sEx73tN3uJPWG/6GQ6VN8neoyD5zPmyTwLoVlnL8VD9rgXsEfuRZHcnzNlDPa5ggchRowwfWDtvVT0uZZcLXu+W3SNKW3aeIwXK+S91MHQj+RJQj/dw4llU+hOuhcwxWwpwiB/Umf+8MeHf3Ug6ZW9G4dScWSAHAAeEwpYvxwgYV6bdKLyYh+aAE2/jp27HpUYA9HDWvqn8tZNqrJcSnRzyX1Hzl6a/eTQqcJMKwb4up1Q2izOvuqZE+JyWloUNLI+HIAQA0QREDj9VpxCf+7KnVFSS0gIJHaAEFNO4dpQbHkgCZr7WyS5QF5Xo/MlFz9dQrZQhLJfx6UwzJf6HaQKpAAuWA7Jw4froSK0sbdw1gvF9FdVaQRFQ72eFBUp9OI4AYqHd+51PWMinwF6xhTd6+wshla4wxl0BN9GuJjhHdU9zRn2YTQPK/T2MKl57+i52c8PnUt3TEncgCBhXt74B8CMHVlXSbMKNGGXz0PQvDS5JSZtfowc7+NmIFL3XipheWCDcsNmMfqqD9GnFIWE7XT18G7mV87+aeO4khdpXDxS9LrE8jmBFlU0QouXr3YYZQmbtz5pE/d9Z3rxjLvVMDA9VoZT3F3PnhRm19qb1//MEt2e5UgFPExY413aBuDzaqTI0FPuL5Vzpu/TteYcUAbaT8Yo8rZH4mFrBkhSaiv6nZJYDBcQRx7IAboWiNJE0kGSQoev1zPHmXS8o+Md7mkDyhFrhw25MCgJ/mT/Xm0GnHZOuZIJYQQ5GGRJQv6B9gvQ7LyvUdqbslpdSwXe9KgYymArmX8+R+JOoeXrAU3lvSoZr9yqP1RzBsSTH0m2DDRFL77OQwIOhvfV+IAQyoZSZDhR2prbkUfziOIXZtWAkYcL6B3LMHJAdLzHUlFFnA0Kcl4VUetjOikeimtjrRh+/et7BmjSn4aC5F0zUqdiBUdVY2FjfaeufhyAvueA05KWM04LY3p8noxu6jrD4MQKrqzwgndHsTpgk8xTbJv7zPdf31NSaKGInkuO1rSngRJ5aw5bVuFSZ97kSbIwJgENzPhiozCtbY+hLClN83w2psda+Z9xA0W0sPYU5ssa8tBPyROJFVxUjsU//N1vpKdWDMN7ps/pL0bn+P3F7qNn0fmemZzoLYWBUEWo+aTwPjALrAEcwuSOfMHQ8KL1K9u3Z+tY3wuBsvfrE0WH7E4enttVQnzJTjo1a96LweB0AQEq/uhRVYhYKoZecYH3j8TqCudh6emwczk24d/Ckp0zmbOCUQeazaOQvbCFHDvPhKHiXDlzi5HCssm5YaR//zdfnu3L6TmZE6E1A3mjJ73sra31xcKEqNg0x0LEnzcXZwIU+gRJhSCz5JgzRh4AREAccMH8eq//DV0/WJxkFyNL+TiVXhjFdzl0/jDW2E8ASWiWAZYXA+hzbNgioSdryzn1+0XdR76T9+hLvaAABMn6AJyz2ICdZcJqPbdcNfdxTewRw44V1oQU0MCq+t3ElKUb0xuPQ2p+Tx8Lxz4RWOCkcr4GE9XPytrJBIDFcTHf9ojr0TdYPc9vXoyF8+Vv748+XT2L55BTZX6REHIXAUjzQf8/ZqUBBOBDfpB7OcePoyD6o/+cvYyFGSxbwIsuA1JsIgAVAFW88HQ9sZAPwAoQaF7Ns/d9H3jikGtFYTE5UNbCvhY2BXDGvDbW0aqheQBoPLvxWmeA0PoD9wAOcAXoia4AQRgwz2hPkFe6lf5STUenuxaywdgxlfa/a1krwO2f//GvMCfpO1WOSI68k2d4KWP1cZuQYhaXtrgHims7QXhRXjZwcrpB26woZxPBoAgDHaq/yu6MnOqDVatsnP60AX508NSIi8tDwiD5DiWLirOZKKKJMktppKT8zCjeyRDLSTibEpPDIZzBwFOYKswAKsgfrSgcwjASnrHJElr5QZQmkIAWlewGOQvrAVJoPwvgXjur5qGsADdGX18iY+SlyscSzsBivHP47EDd2h8QUL1ghHDcHzBguNCl/CF5OhaPB62KRM4Lgdb3xoamkOStMG7rSsjlgUz9USqjzqA4fR296Lqu4xwn3WGvpIj1yFHxdbH1mlfoSYffqylifWWwI5TT1Qwy74Igy1HiJatQAYgwUYAQ4wrJL3t6/uyFqqt0mF0YE3gvz1S+DPzDA9cmgFHVa4Zn89joOZIBy3EsBSvsYu5sTAplNB3s2W2MOb3nhHNnc1EUEuk3pWR4RpSs0m45UzYx5ezoAQzKUE5tTIwGD9y6uTcloqJESIvSmvIsHlaZ5pDGZY33+lgToTHeMePgGSTGYi4WPBnw7FoO1MVeie3rfu1gWMYRiOQxn0xpurcmgHJKJDNTRBJ5sRzKmzGKwliqLxhkBy/Ky7JHAFFMnUaIqhHNy2gt0KZHocvHwb5oYTGvaizhbfLdtBcC3hTI0vlW89XOFItBwmjNCXjo+h3eSRnenv1ePUv+53/0G7Mnl+ZQtA6ny/XDWInZ/6Pf/XrgbHW5DlVmdigpNnhP1WOq5j6sQSnDylvjge9sbSgnTtCe2kb8sDw6Py9tjexDTsiOSn6xxcIHgAdjQ6ancId8MI0RCyc1Xo1Dv/XSttH3ifMB9UrCX55SlOsYmVTeyRU6b8xbOrtnLwzV3iGT9hhjlCoadD6DRc9giYBh4AZjoafXpkJjAKznxEgYE93F4237FBosdNz1JXk3MbOXO0bj0wea+1UkEQiRH2lMI6k1fQDUYMgcrXAqMLxz07PjWX9Updn5jA8mjHxobQAMANF0w3/3va/174B7TWu3NKaPuw59BGS9Uo7ZjsK5K/rdyD+qslC4QvwOyF/WETn6fEkzeOvDU82DPEm5J4VVY50cwr0n/SqJGIBkUOhUc80h6MfypAo1t49Uh5FJqQByC4UmKSfracxX6122bNHiAWjeeu9kuZ/nhi7F+gvRCTHPS6eMOWv9T+ZYyEs627PTo6uS86ZtGHp6zMU19QMMgH8OIyNG3jk3HAPPMwBT/9I/x+84NowrgwzQyQ2jT4Ax7WXoEkCanvdv18D4uUfqeDB10iWwXS3r+J6f6W7rT0+wHxqF+tl1OSPGBliZDzqLnGFTOIjyaI627zl5nHgsMWeU7rV3fdb1rSkmUs4cgDFSB5IJgM/akOGRI9rY6XbAjozbR5hD+TWcAYz6yDdr38htZOc41EDiIBHSd8gCxUyYbLMgJxbjYl59DvDh9Au1Y0alldBtKgwxfu7PXtsXgIZ1kDcrRYT99D7ghkA4nF5gS0cOarJrg448s7QSAOP52Tc6Sejd/gLEvegRy0JvA9Xs0NB33YetVyDDsaOvHd3iw1hRa+P3WDKAGHDtqgOk+vedihM4akKyrskeAlUDBPY9z/FP/vCtXx2T5ERmi+Y8lgnFp0h6MbgoSwCDkKD7NZTSIsBhqLz5eQ1WPyDnga2K5cACCNXIpvewULaTrCnOzXn0FpVihaopR+c1UUZ6lOggTGmguVF3zodqYL1f9VnfZ5TQwpK95JJYMIIqiUsFnQ2BNZAEe/oXCtRYVxVrpgiFNPZH40PD2vtrP8Ygq6ZxP0JL4dj0lPqRFDhDjwXCNllsno4SZmE8SNpBqT4D8PmeDa8vEaFUTmuDMp6AhiRT4RWJ73f7PNbCJgIKlwZMdsZ08PYpPB4tRaoRpOe1uRYnSCoGbZQlMUXyb778Ej0Z4KoHkRCKZoUkbyiOBG5xf4AEnkVTmZLWCHE6SHVzRkG3Wec8uZejF4AmVRKAx4olPC19XpZXKVPjwIDbucI/1paQorI1tKOw/BvwYqgYKfQ2AbYhKT3tA2wIm0lVo82M3rYRNc3jlU3HR5Qs2Droi8RDICOSM3W5VgVz7VbN/noQilJfpPWtrfi6EIqy6+dqiCpccrTGes8kW9ZbXgjvyr2EOXglQCUvxPlzgNe5EXIrPt58ravCEBCgUD2rMNpIim78GKRR2ZVsA0SUIYUDxKcTRs7M+YAvFkCVDNVh3FsL6UpE1shQcqacPM8A1JuXkYDa54DFdTFq//33Xk1uMzjduylLTvLeM56jVDb5dfivXiryLoA/eS/f+96Ls2difW4Ezhg7fbIA+T9752SsV32GkgHHo7xRx2ZGBWCxf94t/Ks/lDJ/wHFnydscJUn5w9Mvdw3bJZFYXiKFemD3ljF2ciY8hM0F7nSxvvfp/RryXa09wLKJRU7p37x1e7am0BLFqn8ad4KxXZinymEQfrkd48YwckbMmf5a61uLaf9kPNIRwquKFuRTvFA9MrZ3AM320NWOQGFQ7VftOThkdBe5J//jzLv+lnhtvU4kM/SJz2A/hAjoEMATC8aLplew3/b2/h3reu5NsZKbxp4XlldFyhBh9jgVPG6gtAzp2b//yYfJ2ZTjx+A6nUCy++ETVwNaVbgx7K39r7+ya/zOehfpDcg3L/ZN+hXYuNdecSQRIOE5zPnzOQN+hxmhZ5XRD/YuQISdNSY9mDbFCgFw8j3IqXwi4Ef4XQifE2Zv3mvPbKiClL7HSpmHYxWIvFOn9iuxz4QUcMSgYV0UrygGUPW8oX2nRJ2jwZGxXmSBDrAevktHPH4BI0AuR4QBB0zoQGsLLGIf/Q4ry3DSI3Q9uQAehNissW70U4iuO7SnJebTNa7dG4EmYdm5MYuKa2IEG5/v61Xknpgjxt93R6l6Y8YuAy6YChVqZytQsefJIwM/jH6XB4D62Pib/rF/AROHDptPDA2WRL88dgO5IApC13kO33cfrRZEJyYQVR+3fra/zBfmesjzL+4jTUJVN8Dwnq79yQdmCUvs856XPLFBbIvrcJKFyYTpPQ+dNoVtMT/TuXCeqWF2DXiIA1sebewtnUDezLUcOXPg5R4+B9xh5pEpxs+Zn+w6Nn4KjwJ0qnCto7mny/xNvjBDQrBHcmDkopFP+tBzsxvug2Xys38/W1pCkHs46/LIyBhwBXQBZ3+bxO0p4Dce65f/HyMsmUtsfPvG1ePPeVVnCcfcqqIwBzYGQd1Z7o9JRysnwqODLKaExwxIXblWX5Q24eqSic/luV4sf+SVqioYcD1xlqYoJBp/VjLg/Ds8jNlIevwsAXIKNmN7OxqaJ7Y6pcHTWJhi1n3Y5tq6bVXnbJ0fFTiDFlxemWbgCpLkPUPkjz10Cp8ikwtCyX3/tb0DiWKXKL4eJ6UWq5KQH08hML4QO4HSs4VH8HnXHYAoAaUAnOnF+K4svKJy5nwgiGJxfYyI60o2PVyoUczaIppXzfEc2EngRgJ4c8UbITzD20qaKDDK7mIhLwD0d96oj1Qs3amM3upYhOfrlvsffnZ0bDqsUEMb9+uyefL1ism7RVECgzbmpxnW+fX/uRRY21xoQVWDkI12AVNF4uejf5EEW0brWoZ0beXA51IMI3T1xVQtcS/QsqdQEVr8ZOc9qdazeYWyVDnezpjygJwF92myAADMa3Aak936KgOaEcXmrd7Rid+t1Y021Ycnzo9GY5SXDXmueTxWd3c5U0JFwwtNLiXAPsizB4ofZXjkrvD+nHuGFbGxUNQ7yG2hAWE6oYiv7dkyvKIuPc5E+9F7pwaQtKlvf1KfnDuO2+lE6bslkqfAFtSzByt0KNmynjsKL7xRrs6rVQU9GDJQi4uMK29Gg0IVhk5OH55TY+BdKe3mCAAC8pyA8KcWTn2RLlXu/ujLy+M4nyfXq1zsMOAUBNYVe2EsmB15cI+++nT2g3ePjVYPZBnwPHd5CkdiTuRiCO9+PJRIjSb7zB/+2TsZ/Yt5x3ICSt5Nq1hDIUEyZ33WL4jlyptlHJkuZxxiRnTYFk65FtOHdbiX/PalkciPdXTKuaTSkYeQsHEmOC1P1udmSeGhJTVgXBdYOFi4zn6giIVfVJr+h7dPtL4puPbLG/v3DOZDroTme1+VowdIapdgL6p0Mvfy5CS6P5XBcgSP/mhH659D/2A4FCl8Y/+Osbfs39Tv7GDFAfY+p+hUjB+AIURBPoQWf/sb+9pLd2b/roZzvNGfHDyRjM0tjHVl5IZR7ioq9Smyf+62N8eh2Aucudi+Sa7e+uDM8OAZZjkQFPjoYdU6chrIz9GStZd1NM63DmwZOulEhunpwuDmjs4EouhLR24ojpAv9n5nTuo99Nz2ksur0l3Y3P7ed15ujB8FcI+X69lez5DLHXJYsLzALTk41ztL8Z0jZwOJy0tqj2E6p5qv1IEM1oWOQCIr22L+ADgOGgdIlShG2nuMvwrcYdB7X24QMAUk8egdJG5dtCEBkDmpg9FpQe/HzIR7u24pDX2WcTOv9rMKQUBA2FKOXJcgTgO8kEU6DyiSr0K+nXVn3bV8IDfWzJ6kAz6J/ZD3g2Hk5Aitcd4BIX88A50rN8/nOQUA6aQ/fAZAm5Lc51VM8e6Hp0euKwcRs+N5rKfr02kOgTXGB+nnrTmF7MqhWDZ7ELDy4uhpStmvxr2Ngw6ne+W2ynP9i3frs4ft6ZpTflZsTb8fEYRsHGcZSGHTpryddEhzx+ZyXrDL8lv72GBHdeT/4supwMbzmgtV4x8VhtUORpWh7wJiKFv6v8EPZg8J8VyHt2ta+kHM+unadyBDgCnMEQdZuAsrJpQvEtIlGm/6MQeb4371egxwuspCkgNgucv3XXPniJOc135Hv1hv+0EbGKwWXWFN2Rj/7mPDTgC5yBPPgnWXw8xJdfKHI6qshQPX3QM5YazAFf1vzjDK75TjSG+M57U4f8PXvD/o9cu+85d9kt7cP5AiFG2QIz+kvAKxSMoCSgYCJE7Ldndsw5VYDEJzMw9yecppinuW7BqK5qXxaniizuBSNr04RgKd/HHxc2zU/0vbnfXaeaZnfl+kKHEQKVEiKc7zPIqURJWmUsmq8uxqODYSIAgQdHLiA38Cn/VhPkKOEyAdIAfdCNIO4k677S6XS1UqlWaJpDgP4iiS4kxRlPL/PUvbOTNsA9pVFLn3Xutd7/s893Dd1z08hmI5u42z5zBGayjjlGHVpWGTRHciHhtiQ6VDOJMLV6vrafNuBwJEetMDNtGkdRukvP4YXti3I6JwDYzVqlA41A+02KyZ2Q+6NzgVn300Y7ujUQOvPbup+34yw3o7oNewzIqvoXanodsoE0QBGa2hwI4v10Z3E4iAdo56dYKtA2HpAFDOHiNYaE0bu7E6H/ds/L1OPTS+Tg6RzdZoeQXQhzLil7qH3tagx85Za60VW6rNwMq9um999zKlqVGcqHZFokbJi/Q2NNfJJN0xVDBBxIqgc62NeopPc8yjqK4UAeeu7sJaeI/6rnRnCLsuGsXWDKEcNLpV6tK+/LBzzxQBfhF9Kt0CPO0stSS6wXQAnb7MY0nLUoxvJ3/40qbJTw5uHUrncMITKciplFfdmnlHhF5NnPXRPKx7TvS1sVlcpqBrvRdh+HzpoU0dpnwsudItxuiJcLWKmnOyMeDC8I2Ju+0Z57YlUCV9RaPvtUeMK0Ag3au13J6odXFunHsWQ2FjKOtT7Qs9Ee3eCTCIZC7kMe5naM0/ofgzqWDPji3k6KQTMFKMwcVYFEZFysrV6QEnKJ1GhxhihvFS3X6HOonefQJTDgCVhlSEr4HiYMX+L+5bNxiBE2dEvqVKMmKcD53Tvo7e9xxkEXtxOgZP7Zr7IAjkeW3DB7FF0pPmYTH6GDZsgNfZlyXZBIzz7cBUlx2M6II+A1t8p8na0irmYTnXUfoYYzgKZHv9nNlSMrMnv/zo5PiZoxqAW3PBTDc3wR9oGdOZ2x8A81Lg/mb7vLRU56pkR32MvVlQqlRdkCG4dPvXHx8f0fHO2td1ymFwr8T0quO6defm5NXSXGu6L7WGUotq9j4MpLfwowgek0Te1bBgznRichhqTIAGrNxvv7R7AHZrbw3Mf/O8F+v4szkc4NpqvYBJgyLV16kV4xFGI0DrR2cEnAJBA2TtkX3R3CDFdjXw/tnpRoA0fV8dl9/v7jxCgRvDYToxsJKJGcGnIOi157cNwCHlKB0j7X832cc8GQ2BCVAfAzi8/sKOsfZqo16uMP8//OyDAaSBWQCOQ1/XrDJranq+dNQLHUP0o1f3DeD7RddSQqH+hOwLKsk0HTNmQNHthsD2qI/pdQABB8jRsimACxZIesh72cnBqAQI1D05EPrR6hkd0xMuqp4zwJDdpmsCc7rOuWNNB5OdEHouOoZ5w+z6PO3n6oIAIKBLOsxkdEzPRsCnHTuaLQNEEASAkIAYMARi3TeWA/hhN6T16YJaxlQ9eQjAZ3s9L/aRX+BPBMm+ACr2Q+DEBqrvcb9Te5qd8fzpN/s9/rSeY0RF9+ue6L/nwUJiVufHCOr09FypcM9YINT1dTmqtWJDDim+Tu/56WH/6Hv3j20ZIwSyTc67sz4yOfab/bYXAlcNVTPrq5B9UTLDxuiAHrVSvQeoG+uRjgw2KFZMY8GoKev31pnOYehgg1HAnXwA354XC8b3mZP3VHVjxgzwweyPwnaBmrVFFCiDcY+Yxa+TeQCWvXBvqe3QDUyd/VXUDmD+nz/76PtLt/3k4LZhFE8m6A6HNRLf2WXnOL2k1WadjRW5VSGyVl95yLW1YatD0Mr7VA8LMJgjIU0xCjATDrUfL+5bO9mwYkGR+cJOxb44+fd/8/EQCJEb2vfpDO/TPTgD80SASp2BtI+IeCqsivWiS1MyYCn7NIzMzqKVa7EsDCtqfM3Kjn3Yu3bMAhGprMxQza7gGFgRr7pPQ8DCJiOy5NgZRd15WB7ggUEEXFDQWLEjpQk/Kf8v8qYIs3oeRZlAHFBI+BmLd6pFuFL9j7Sj6bZGxzPoezNwPl/dheFlDDSUfCcrR9CllByzUa5yABFpQiMIFLUxsorgr1Q7gBL2TChhYEnUlfwPgYP6HSuhXVzunDIDLNJKWjdH7Va/Uy9EoF2DoeW0OUJAU6TB+DjuAY1uPohCUtEvJdZZw/gaMqfVWiQHoEhvmRsjKvRF6RyvAvByPK75Wc/O2SvewyYRZilNZ/WduHhjrLHnFFV8nYPbWxpBxDETrWhzJ3PGEqQpw5kta+yAmiYpNNS+4l6GHm1sTzgm9wAMGfvgc7eXorFOOg4HgEjWrsdSqEfy/hFVt/5qQO5ljNDJCvAZZI5NcLAuIIGtVI+0MOM9N1l/LOVliL7q3nULOTqGTKid6zFGhI2ddbaauh5DOKURRWlA6ZqVHU6aEZFWG91+3bcjPUSFY6+qE8RWMWy/+/LOwcq+F9UuxbIjUHB6gMvrpbe+CKTF+DSIFZB3DaycWT5oeQ6J4RLZc2LqZ07GGErHAPmiRGAOwM3fDxlnEBnaZzJu/tjP0xeujGOH1IIx2AywmpmF6RFZpLuiaSlTzEWiPaJhzky7suAJqDIKxGwhzkCkOhiWfo6N06q+tFEa+7etGuwkVsj9vdoxHwDx6QzoSJd3b2OGTRE7nTFN+cNA/4ZVyydrS3ljH9f1O/vHSf/y4zOTvw+ksRuAj9TZgc6hOhBgcWDvExnuJzqeRXqaUfY8IxWefRu1T13HngEkuheXlY7m1F7cta7U34qxxqOm8bH5ow6LLqoXhCgXFnwYO4DZ5GzIrQGQitnVAAESIzpP+oGU0wUMx0vNAmJ0H/CZX4r9yeF84/C7v02xRB807BMQAjbmZ0+k2KbFwtNDbj+uIHsMvqSj9iv9O1p6Q5DhqCnNGByl+kbDRB33Yk/Jr+Ge0veze8YlydvO0o0Pe6bN1WsCBFeqsdQcYEK9FPe0bnTBCIDZiJY8EFrdIN+Q3ljLxLDbqAmj+x/sQt9z6mwRxhDjubZyBvWcUlNsgT+uJZBh5zhz18TCcLrKHqb65hDpaQ2X0wLYKKCbHQBSMEct6HDqgN2J1ljxvfUCBAQtdNe92FegDgAgB4IjjvxsQY46MGwGvzPGPfQ+oz28v/9n66pF7R6VcEiNemaBqc/3LD3GeDa/8B6AUVDL5ngP5hNLfjGSYRx71GeZ4wSEqM/RScd+DFDX6/lc/oL9dWYpEIFZYnMFzoA7EAfYAPjYNfP3lKGohRQ8AmFPZWvproegLwAwIDNsY88jBSntNpinrqW2mGzy8/wZPeWY/AzrK6MgbbY02/14zy8Yd21BwgBZ2e8n+0z2yB+f4zoKv7H0Xiv7ITCXOhz3kY9SU8avPkyezAIkS+qT/u33WZN0cPeGgbqdYabwcbAnKR5BURBmEwxiVDd0L2fAqN5r4R0dQPjl5dcHLlB9hAzyZ3AVjq5qvP68InRO6/i56mJKuh+MLpbOUPTsZPEz5y9OllY47JgGkauhgyhpZ+IYA3C6qEqk93jUvo1D5zPg/ZWhWJJiVPtUtIqmHzRcRpDxObB13TBqv/+jfdXT1GGX8F7OCB+qFkFqwCnd8voiiR62aPXJFINBa9J2ovaj0nPrq88guPO7Nykq6RGH7R45da73NjG0TRMx20SMQHFjh7XWot96fdy8JelHAryqei31PTMRm6hndoIkSi4P0yZHPbb5SUZ/dCKhQKcdLhw0JSa4AI7DHYFDhd2chfveEcMibaU9HvWMntcKTQEokw4wLI/zrYAEqT9FnQTRgDgGqn8GaGY1eG71YF9Gwa7ajt5PuXT1EW7KAkwzVopU57YvXbp7jlEr5ae49txlgzwbqpmBAF6ALU/mfrxORK7OZkRH/ZwRYzxEZxwSNmMaZZdWy5lgGtCuUkhkAOshgjCbZkTPvcf9kFVRkBy3lDGFkwr4y59/kGx0QGrF+fMX9EGtlWnd6qywclhSfgTzpTZvbhHOlwEUTIjPvd97Fbzqgjq4a9PkxUD266/umpyM1WLkRVybGuPw7Ja686rxEygwPAq9AT6DUv3tHgGesctpuiJqNQXDCLc3DCmaektBCEYCuykixcbO7nUKZwUkcx7tuId0aqoTj47OyCDJSPVK9y5p4vQXnQ+m0L7tqo5m/TAmn9aiLhqbtrZP19qRJuqKyJTZYAICholeaPEes2vSZX9L1TKAhxv0pxbhfPJGTjlf066BILqgY0YUvKL7ll7GBC5LDxhrMsHxqCUEOgRD53suc1z2VJzMUGMGb/f708kfp/BYwONonVzHS+Gr7zKlV9pP4bVoHaNztLlYaiP2dhAsY6vFXwH9R8cvTd4JWHIO+7o+hkBqTsGolKe6E128UnW6XQ1LlJKy7oP16H2On7neXmxq2r10ofIC+vxaxyQNRmSABGuECdDxykmUMkoGpAmW5eAM/ARo6J86RkIAPJJn0/QBn1Pdi+f5V28+V71j3ZDJpnlnBtU6UwuAEIDdjZW+8mXnXnXfo4wh2wSI3e84o4vJmmJ/82a0SGudp7PWnd7Nbc1E7Zx9bm3YuEPp16bWFXDr9tqTKajTKbaw51TILLp3DYdWc/AYAwM46S7gmjEYMs4GT5kiheJzxzoDKvwKADLqgKxQ17AGnB8ApfaILtNxM6rYQbVq7BbgZm9HGq3ru0f1PoCFTslV34FnjlgAPtL/7qf3kjmfSffYJ2DU9VYlo9bUzDrAFWDnu7Cs0pEyA2yp5/PlOoZEum2dYwAPECblKw1MrlhwflOAA+zyVa47DXSn2Q42aRRtt5iuNQOU6A3m3GwmIM57gR72NBcwgJZaTmsgiGd3XGD4ntZOsEIv2Bqd52y17IsaX9f1HGyycTxTX9PswPRAVkSgpomIjtCpUa5hzVszfwBOzJzPxZQL6DE7Xu8+BLnKLTBGCA1lDW3RkHUzvbrRkcq3hp4HIeF+AEJrpk6st7UPrRdfEcGBATVUFPt1LVAPBJIRe46Vs/5jX9Mf7Pn3Wrj9XJQ9ug34mVar1zre4mFzeuYUoTSYCDCWxAL0LGPwFOZHhw3ECs1JgVGGXUUcFIsBFC2eqW383UO1XccYrA31qxUyONAwwhVLozV7WJSy04gdGcBAS4WMgxQTaHTqM9+l/0TtnOZpjFNoWxU+xUPvq94/UpqNYbOIGCiBHKG9kYNTFMvxrojixzwY7EXARQUieejcteTo1S+YCHzkZGeOJUA273TnRtm0b5sf4rOxM3MCFaJC2j4i5JTL2XTSXL+uhoHB47xGYW+v2V89xdYiQJQ+BRH5eT5pAk7PZGyt0Tdy0BgAoBMin5PCAw5AKSd3oCgYI/PtN7Fa3Y+fqZPAlmi1l0Lsl91Xz98HOadNMR2DxEG5LirTvhL21zpNG8szjlfoGsCUSFhh3cKB9KdtmhjG66UzW95h4B6ft2ByrLQUoDgGJPas2DB1CQpgAQJDBgE8hld7OANKMTyzwXdqlygroPtNA0M5Z07WOWmUE+CVgnO8BZDJGGkf1b1ztfSt1McYWZ+S2jssFqMlt09TgS4H765c2myZbzuLzlys3iMcMcfn6wwnYKCjkPMEwFwb+Jf6BKgYFRT8htiQbzrP8GiF/T+vMPeLQJ/7UehOLi8DJjkua70hQEYGsXWirBmAybBgTwQCgx3sM9zvFEB1VEn7L1hQWDy7j8cAvfLc5sm7HfXRZdOT6ZEFzlfjDHRRSe85ewtzIqol0wotgyTJRhN625NRM1gtlzMGH+RM1ep5fjqPLVZITh7IpVQ5xosecGAYVE5Oi7lITv0gQ/qD0tKbAxbOdtyxMeYqJg3w+Cqd0w10t/TnzFylt6sHwQo6j8+aibJfe27rZEHM4DPZH3IKqX+dgTSTSF2SDkz1EsPRZyztg/vkTKWxMEvvHjk5ItIDOzYEVqepEIMr3/nkzORUwE1qBLhQNI3dknaRlpbKZnjnZGQXxUg8mQwAHTNdmU6+ZxeWFWC8dmDz0FPsqfZy6SEpkivZPOM75rXe1kwaUbpoeYGb/WYb1TJiRA1VxQwx+rht9zXmC7XXfduzaSaY1uKwx1i/wxWoYsIwu4INfp49UmupqBpTsK+g849e3zt544Wtow5RHaPup8OxSKJ8x9/QL/VXUhnSkmuzrz5LOYT0mcn0AkiBy6Pd4xgD0D3ZK6UAgE+7M4IGgGIEq9lZzwj4KXvA9AhesUwcINmXdhrnpfVZd9NhMshh22rggM1tO4edZHvZQCwdULYu0Iopcu+YxAUFpAAmu0deOV5BBXsPQHk9lt0ohqkuscvpf5/N1o/RIX3GlCGNscu3YGpGuj/gRw8wPt1WezRlbOgqGy7oHYXL3bjnE+Sq99MgMBbG3fQ7zyBo4PEFZZ7PwwKpQBcgLJTu1+PLfQMWvqxpb4990bwwHaAI+ABV9sazYaiAGuld6yeAs4/qlwaA7ALqggQA0uR8C99suRSeP8KW9T7rPwWpap2yzcnkdI7ancH+I0cwRa7FRntIttDa8BFtU/+239P0nwsK3tR/jUN8e4d0resIAGVe5g8WqLqvwI/yD3r28dHzA+BgkgTIbIo18kVX+A0BidQiWRgdpwFAvkNac2R4Wk/P8L/85a++v3Tb1oq6Llf7gNLd0YGvWgehRQK4r0nUNztQz7lSMzUdWCLFviJ085Qg3193bMXR2q4twMY637Z3MKyF/NVHp3OCaOppN8XT1XPMD0DJV/bsPezDyftFeQdjL0zNvvRlOfcKwu+12auLdqTwfM6eusgMbQQ4KImCMGwGBREBUj7HUIzNzek7FFN90PGiS5022CAzfRxf4j27i+CxQuqvdLhwxhgXxorh5FjlqS9fr/4qY/VNDwN4Kdw9fupKNS8V1iXuukjOVE9wMqDAwKxu2KUUDyO8KDpe984QHM4+g67dEotlzViHL27U9dP4f0Pakt/xrNqEt/W8zu9SfAoYjcg8QZYfX119xmMVGnOsDsJ9fsf6Ybz+7r1GLcS6adMm1qKiQSUHhnbVOrwiVo+TE+FYP8I7LYIM2BQ9Y0qwfxyuc9Swdyavep08MgMGlDqIVe2P+Sx+BxzcunOnAtInBuMxJ8/+YodungzIimTMoBpOPCB8Jacrutu2fulkRyeWY2q69Cjk0xEGWJtrtSIjRPApOFbA91gVaV/RPqDFIUsHyckDElJFHAgQKNJ5sQGXUiczadsBeBiMnJHDPT+rA04xI2MOiFF4xtA9qC/CAJryDXBYRwBd3Z7C/ytffhmzOG8cbDs9NyvWofu82fuwk2oV0Nyci3EGlB1QAhLQ2uQaw8Cgbkvn6Jvoyp4CnIwBg6Z49LFkQ+Ew4MVwuD+pU9ezLpgajkqKbn4O7CzmNTDJmUnVSTsbNHirmU3SXNI+DIz1A+zXNg1/X3uBKRYtSqEAOV/eMf18Mnk9IPTTNw6UplJb0qDUZIKjkdLTap4fTq/qbOp3WA9sMfBP/hSCD6CfXD0Tw+Z6bIRUipEVZkftbU7PmZyiIAAwpY9qV4xNGBF99wlkbIhdu1M6UX2UdJkBnQYyWivGkuM0w8e6Hh9DFHWKNbYhHXSMgzS5lIkRDa4vCvU+LLl0EWDm/he1joZZ0iX6DVDwWppHnt22egBorKq1U5z8VQ9uPzgPs2SASUXgHtYxTBwhZwngbY4hIxMcpkBQbaIgZXmBG7A/ugILEBwNI531k1d2DkfFqUmxCljZzl3dn25YqUPOEjO/pIJxgaIyiLcDiH5uUvq57KL12tFwWPVzGC56KSWqw/StRj0AfgqAMSxSHaOQP9tn4vGGQLggYDDCOb1purpO5+p6DhcsYJSGjUh2bgiggKhsLafPh7DxgkS2hcz4PbAGLNELOk73pv+xZrEy7eHJbLeOrgHwEzx7di3Z7Vfj2mSQfguKdMndbn90A7sm8I+lc01AEbPBZvSrIYMAgtKCUSzd3xouLiaP6oEExL4wv+xJyzTAj88fE+57Fnoqy6He5ojxEumL9bb2ns3xNDIA/B7QdzEwdSN2j+2YMk3OYxTMBt4KEgEgIJJ9ls0RBKjJBfBkN6Ta6JgxDH42ps3nnwRE5BjD4nk9z6jtSx6lCs0fxJKqZwPFMC4yDAI3oIYNIY/+DJuRrAJTdFMgL1AGgNnYEfwNm2Yky61+7rzC6vnSBZ8tUIUNsPHjDNDWhF2zVnzOtIQCw2aY57TEg8P1ucpsMHijfiv7M0oSuhe+WuCLLaMDUsCDweraJ0tHA1qemZ7++7/98PsDSdubuUEwDIRrpxPwbqybe7R/H4qqnpdDNpVXVEVppMkYhVkVHKD/gQogRUpIHc6ejtfgUC/m5LUiBnpT7orbUiIHRCrUvl0H26ql5j8YG7Bo8kFdU2evOkC3TrYWXrupNl8OdCGjljCJWggtGtx5c1iJzXUcWVA5eQicEHG8lM57OMGHsRPTEeY3m5PCcdwdzJPiPWwNJkvxpBZJikBwKBDjBtliHaQiRbTo3HzNZH+1DH/w288X6U8PByQkBEFNC2NnMrnUhJQhx3s/Y8nBmDh8oyhc4aSaAyzRvliXebXwm/9DwBkYTBdhA5K0Mvsd8PqgPXCI6MoU9JvQNHr9yYW19Pd6qVACrjsMwJFOU3diL3765rNFY9P6HU5OR5GuEZGCNRZlSd/57NHFl0Ph5L/qs4AUkZh19XpD+Az8c7zFle6PEfi6M/tEL+t0LwZWFM7/8oOT43NUFbR07b9W9hxaIGhu15FvNvPFOigGf+XZLWP/3Rs2UYG9qMK6nazWSbs6J/d16Um0MqOB2aF03xTB+Hzt4BwN5V7YiejvdTYf0EEZpULSp8GCPJk8Ypo4I7OI0NvADraUEWP095eGvpMsoqLNOuKwgXSzdq4F9qTDEE2fnPw8EGK6+XT+iPtI7IezHvVEKbaT4Aer1rWcfA2UccxSpOtiVJ9LnnvLMNSCALqGwhbtSqle7744GbJ/x14k74Anh3c1xwHgqp0TdTKi5JGRNBpift2hvy5YcbQJ8M9YqSXjuOnshhystIJjbQA4tXc3O80eKLQOjgjwHFIMjKC0umns6vi4HNHqobpsyPnorGsvrLdAgeHntOb0nFLYipLpn6jV7LWzFwID/exMQBIwk2oki5hREbL0kMWUqtP9KXpXn4Ztc08YKezo08mU/TGUk97fbf+1HjPwiwtWFO52+YIBLfKTkXYFCkXDwOcnsQ+uvzQAIoXLma5MlqVmHEvyybHzreu0bgzbQKeAVfwKncViAOycO9aDz7cGGI0NOWCMirotz4eV2xrgAzwwtUACRuNs9kehtiN2fvbuZ4NpE40/HKnebGNy57WMmxSO2W7W4D+/fagg9XQ6gI1KznOA7MfeumH3FBy5j1PtESAhgGNz6Daw3K0P3QSYdIUCfopplThggwSPZy91JmHlAmQeI6Co27E3MgdAJtZYKtG+sYFScNaEnAPsdBgDjxEi41gYcgw8c3zWzD6yM3TdF3vuWQ/FhnHqQAN9B2783B6P7Eb3osvJpj7oGVzTPim8x2ADLYDa1I5IJXW+YPudWWsZS9e4Vvfsfp5pj2QWTE0HAvgb93s/nbXfbGGXHnLuOX2W69ER17JeABzddD/8BXYKWJIacg2AURA16hj73rpJdff2AQjoPjYK8AFGyYtnJtuyOOwfPTPihPwBzdO5TDrrpgwUwMMWWKceYQRaOhZ9Jn0awVn7M01jVk7Q6/0MiNQsQ79lEtS2dolxXQEgv2Mdyc64x/7Nrg/CJHnkh6XTPCddIG/IAIEdfyoHJc1IJ/h4z2XeG2YXCHQGKRlysLp9wdx5Fn54WlSPf51++Rlm3+eRQ+vxs/eOfX8gaX9nt6H8BtBphs7SIj4PfzFHS9ifiblQGGdRpRNmlW5AdXPeUlKMFAdmoW32meoU3j1yLvQs11tdQsABNe2gQ1NjtTkz+ITl0xNRlg1VY9Q25SzWlm9nTKYGa+FIfVBqBlMKREqiTovlAABAAElEQVTQUhGAa0Ut6gOgVqPVGXzIdhQNdn3o0sGU0jyMociF8ZjXrCGRLsE2X4dmugbFJPSQK13laO2KvOn6lc0UQr8n/Db7XopzM+fr+AuFvxRksGNtqinV0LXcqxTO6wd3DYVSeLlRV1WMy7uHT6WINyc/eXFXEaphk9JNzty62FpPD/MUmTAcaEYggrNRHzQo6JwIwPgwoHqimStOkXdMzPpVKyY//27g3a2cvrSNCPLNV3dPfl0b/Lw5Fd63jg6Hnc7/qfslx4CJoNQcs+ex14ZW6lZQvCd3b9IvR4+Fuds6crYbqtlinNbXwYfNAbYdGInqFZXraADwxr2mMA4EVewI7FF23wMbf/zjvUW785s4fqL0xrTolKMU+ZhYjp4dByDnTDkYrdOcjDWZ279XFH1jeRhxRo/TV9htX7CdhnQCjID60u5J4SpnBWRLnZHvEa10vVulZaSxgMde3hEPHSYbq7K4Y1UWi8Bbd+8zEG+c2t5r1ZaplVEPAYg52PJWwIY8cnoKi2d1QcX1NwM0RzOOGEaR+/GcMOP1fsYZCEEtmwF1J7kACtSXOdgVm4TNEV27B2kSbCnjZ4+WxdJyOPZRUMLZiWSlMzmpP/vT16qpqTYvhwyYzq1WUDQILL1Xm7NGCsX+5nAdqaPOsEHrm5p3pp5J6w2ya0Gm3ZcVeGfU3ukAanV4UghYsgPZEoEPQ8vAAajSp9N0XtO3i6hNq+8iyVPBUMwkh+T4G4BhdQWlWAcOwJEMWMO9FXDrVny+g2HVuJBVtgZjoyifDRAwMfbsEEZya8BP/Rk7tjJQn8EYRvuS9GH3gxF+snU8mnGV1mXgzTm62YiJwaYGuvbEGgErF3uGXc1kUt/E8F+9lo3JDilAJd+QslS+oAQrwLFx4OppMlODhfI8nLwuxserb1SHOEocul+2idMAOOjDfwr0AAXrs4UbO/9QWlLdkb2azsaZzrf68GjpxNJE9kiacfp3KeXWRmrPbLeHD6cTns/GJnFIfobx7i2DIWUbXqtx57Fk5UQ1X3OqTwD4NrbuGCVMAD2TSgM4lGEo5sYObKww/r/68YH0IJve85oR5OuVjrkyA+tYbB5nRs+lrdhlwELwu7Z0ILnDIrCx5Nb9C8I4EaDJmqXGI2DWDv54NhDwd39S4qbxa4YBWq0dRtjPNRiYuaTziw2ni5ws/0DupqmvbGfPoMbH5/sggNrvVmWfgWN6pTPZweaCL7bvyQL2xdkVNZomYisaB/7YIFkM/9YMAbiMuUbZNgy3wmz3zjYq91iWTzTgVrAw7GPP6r7tI5vreVzD9fhXftiz0W2/UwOJ1ZeW9NWStZ7TjjmyTBcwdoJbzwJ0uG82VeCl1V+grVP6qZ5JCr0NaP0riehzkBXkTrbFWro3euyzBRoACjIFkJGqU/P6dGldPxMcYbAAH3WLGFYF35g3z+PaI8ORLvuSZgN2jN7gi9SDahIyFw6Qcs/9NfZDWpHueB4YQJZA8411+15rkv78v/utHEanzWcYtKk7fdl06Gf3bxtCZXCVqcI6aVDl++vmIOQHSvPsiqJdML/ptm0AB+nG75c2YzbXZ5wYDGMC0NCcG+fLCX+aET6f4R3HTbRB5vP8wUvbRzT/yw9PBliqSWhDGA9TaEVMx5omzPAqzv3gyOlhmHZU//SffnF4gChUKUG0sISjZczo6nzpSISEkWFFERM+Q/1OFcWaw7KiuU07SzlC21gyiiw9N0BDwmeIprzs7hyASdfYBsBgdJ9lGDFPDD0jiNXY2MyT33ptR7l9lPG1iTSY6aLA35cZmgcppunSOjEwPqOjz/EVAVBFxIDc3F4LGDAS2C1UpoiIkwcAGOFbrbMZNncCH1dD4LNzWu4Zu0HZAV+KYArS6dgVxhFlOtijnk8ETfGBMT/TOXKuQnM1DQztyYyLllnsA6cCnFI8gxh1+MxOsM1uuhaAUI9BGS6VgtPODHBqwcfKcJQv798w+c0np4c96kcNqnyidetGi7IYq1mBIdH6iT5zQ51JKH6s3dXAzAu7N2fkHhnslI47ERPFwQRhnSiIYZ6iF6CCg1ZM7uBkc5yAC89g1pNho2/+8Nm6LjdNPmyqMQockJJ6w54qHub4KPsYkpiDYJQXtR+YBYGE9MoTdQUBicCeomRGRnGtuhcpI6kmDAujwNgbfzDj2O2lfX2yqN7aq22TyrZnusG2VjNir33POCv+9gzYN0zlNM/fRO/W9UJA2zN59ssBABGnlC5AOejw1kVdzHMdpaIoWreTMQDmpQDxic40jdU9qge8GC0vjQ2ISK+g/zkL7ezLAiKAmZsHFv7mneOt3/30esVgNdQVSpGgzQFkQYg/2E2AjV4pkP9RrejSA1+398CpyHtBrd/Tc6k6uicHiw1xdAsH8UI1k4wnO8Bpi/ovVrQsAANsrCcHAZACY5jSDRXRA3NnCiB0CWFIBFhei6Vk2B1Z4Tw/HYnLA6aCoW5rpKal7p/N2V8CDgOxavF0N/Koh89cGGuCfdGxOGxVdlE6mEPijA3UxZqyDS3xcFCAFBsptVMFRzZTMWxrxNhnY+j+Z9leNlJw9NyutWN+G6e7u+45AZ1gTnQuNYmlB9TZbk0I0lKcz0exs9aCE8WAGuOi7mrxE50x2R4ez44qydOMYpTCoWM1RWRHpKSwB/TbZ31w5OxIQZL5811HSQAGATPyh6/vqsHDPV3s6Qpie05NAmTT+AHAxLgLw4VNZ3dsj9okwy910DnPEvBXzqDmBGtC3q3zqOlpnYEm9t76Oe9zBBA9pxMOgGVsGufJgUv5YUK8GKCgUy1rNnQ69FXGQ8Al/et3XoOtIav0H9vBFgqOPcs0MJ12W9tTOArz6wvg81lsscyK711DEM7euQn2wH7rBBupJmAle+t1ZFRASWbJCJDAntFZwFLmwkHLGjq8xmRsMmGNgAkAEsDUsKOmjc6NNGE/G8/Sgw+GrPfwr95j33S6IgfGnLxsyuUCE+wUFl0t5twYZCCEzvrMAUh6GiCe/dRZJ6izjvy81K6O6NG4AXi1j3RLnZTXqTE2IJgsq+HD9lhL9mkw5L0OC8SG8/NsjWuTb2yx7kF2fXoMGZsuIPpuYCih6I/rWHcd2f/7X32PE7cBBIdYqr3g6EQb5gJBguejSz+qhgbKFrFBjCh0Y9h1s1AQN65DwPs4S85g1BMEJsbGZADMf5HGYXw8nQXYXXQGlW6tM2t1dC7DCzBwyBSAUBK0h6Vy5mRMCID8r3oPQGvUhOT4CILaBHloLAdHLuUFsTKqa4rGTmYYKD2DBDSJipLVUlhPTP7kJ/vbvG/LcTZ/aUyx1hba3IgEFLqenlmToYg1Gx1WrRGwaKgdevvbkC0q+rde2DT5nZe2TF4PEGAzdLYdSej3bVk++emPnh3sy68/PTGeaQhLa8zRSq1QAILPiIaCoozr/mnNpSamCpPTzejIU98qXWcW1Nwi2yWt35c5uAF8er/UkZ9jxBZlULSBj3O1EkjpDGDOZ6J97Y0puaLp8YztG+VijBYESjimbmWAjuVR5IBYjxqAa2ZWgq2uxVA1MiPKYRQ5H516T9VKzTECHAc7mmJzwNF6YgTl2EVRnhFgBc52bW3+TdcFJvcU2atDs3emD2vFd59SgWhfR1AAVs4oc1SDwmD5c0B6NAW09gsDIN9mwNwnJdaC7+uTDvG8nDNy8Ke1EAmi3+kcYwaEAadSWib4SoPMqrB7FMrGjmLIeuRhZBl0Rk5RvTP7yB+jxrAbvbC6CdNSLYyiXLu5HgYSGkOgbVoH2vJAPJ3xRwTovSurHbuUnnDyioBHIWwyLXoDrKU/6KDWWrUzYxBiz6L93EBRoBTLknVrL6p3idmZXyCD9P/s3IUxOVo347FGXDxsL7zGGpkUjonbXhpHQbm0E++gjgIAWJ6sTecHBXBznBzytvUr09/l3Y8atZsDeBzNwYog7bPXM+Bnkg2Oyr0uyoYsTH/+2z96uc9z7mGDW3MSJmiTXwbZe40MmF8EKn2KlX63lNIvPz7R8R4b+pzprDNdmjoBRbQcgcjXeu/csro1qNC/NTGl3rMJdDj6H4x6udKs6ZExHEYFAE+6Fp+qiPxINYfOHzxVQKXEWsBnwr30C13lZOmAz8BIfta+K6x+tiBqxUjR1SDRfdMvKWpgbleMjfbxscf9XFOMiflqHYE1qV4pREGOlClQy7Y+jOhQ46KjjfxL1w9HlXPHSkh9WG8Ay7wp6RL/FoSRJQ5PB5b3YvuwMdLHx2JVAdY7BWdKDaTqd1RHuiDHpzOVncQAmdfkOoAyHTF6w3y1UwUjahLVYqaK2WdNPsaHYNSAoeksNgwUVsrk9HPNt1uZrqo5A4wFaQC+VLHPGimcYSMUQKRj/dt9YIP4FOBF+YGCd+wW57u8ifkYjnvZfzOPPC8mw5caUt8DNOZfYbzOFLipy5ISZWjtEfsFeHG2gw0f+4xpmzcYWMfjeK9UnBoyTpwc2HP+wH2rVZICpDB0yHq5FvvjNYleu8mZm6M3nUEmaBjlHUNOvgpIxiBFNpwogFdHNMMgsXmYNuydZ+U/vRdTLaWsI9VnIgD4COm/4Ud6pc9Ui2sPW8rxjGy/wGV0ssbCCJy/rHxCza9THTwn9toz+PIM/JM9waYKAAHDkW3oveYm0vFPGm7pz9vVJ6tR/iDc4KgyqWB+XfDzq49OTv72N0fHzz6oEUXG6f3+Vqf76xoRPj52ITv6xfj7w4q6rQNc4fQLTCXG3X35bPcAwLkf3//bfwFIitP9J37l+dDxWlwVRu1cX86/xf6bn380okkdM5gVaSYzb3TFKKhS4Kk2Zfm6xUMpUd17Mv4HK5gVsTqfZYFoudtQ1GnJzXDZ1rBGNOz1AM3R0kvvHT1dUfPi9n7WOADVXUO7KO0DUd7bOtVcfc7xs6eGA0NTixAUramTmBODog7EPJr2djh5gguozStaWrG82pFOVNZtplhcBxmQBvRR/L/+5dGE8OsxlVTUpEDTGV7ftC5qV6QhFnf9bc3aOXbyfMJmynOAMgZFmzNKVlH2U8YYFCVduX5vcu58YwFybH/8+u7aeG9O3mlKtYiUoGoNvxfyvX23c52iOjFjkU6tZWfs9HvAQsE5p6jGx0Tx9xMYoPVUPxdtoJazICHphKU/jMHdBNnzXL17e9C5wI5DLc0fejXgdra5IHRMoePmteWAe+2VgNPCQM3j1e9sWKme54vJMzkxgyyvlf5bXH2BtWScgIN56mD6e5yz1vPp/nNg55MxJShgjsQ9iE7UUN3LET3IEC+ohZsxxZztWL+qdNOlAJcx9CngLNHciuEsMTuKSTFJomHKyqEvieV0T2dK12AUv03RATJyiFnavW1dQCrmpn1568NjgeCYuwWxYDkE6R2KNqe9Wtp9naoGhlN2Tp0aAAAGKyONAOjNyYhyps9vi0locvFbHxzOCAXQqs0zpgLDyWBtj/Fh0ETgo9i/fcBi7srZiGwPNVMKW8aBv/Px6Qwx49+BpqUopUcfNI18W2uxpsJpI/cBim8eabBexmR18jT2NGf4jOg+WUeFS8e+vH193YoZmE9PDgOsg5Tjc4/AKqPIMRjtoBYCu+ceb3wZ+5fLx44Ac5nc4YS+iE05VvChboAxBvbo+cpml+1sCvS/+8/vTZ1uE88FMHseXzXapw1tfLS995xAiP3EnDHICqg5c3umVf786auBsaj2AIA0/bFSnP/T//zvxjrvDWw8FQj5oMnL99M5xs/rgFxr8HkAmW4I4gROHx+hC9IccyfX2jcMqRShlBRH93Kg/EwjAc7HsgGmX1xrUvScmMCAPmN6Jh1an02znoCKGgj2BHs3GhNqvT+XjBwLUC8NlGIYLwc6OW3gBqARQDyWMu3INs0LgG6tm5X2mYRujIZATGqTrrpX9Y+9oOMkTo9gQSffhsCZQm6MJ8b96+7tQXsAVGGnAMGv7lfw3/uOnH1/APrdrZVndQaiIy0AJYzS5oDqu5+eytF1ZEhOzv5iHS90DXVaV65/UzPGtLNVsCSQ1DkIID89mNjbk1UxdTdiADE46riUOQhivH9r7C6dNklejY77Bc4cWP0nb+4fAZMawwXpleBuOlbibqm3bemCA5Kv9p5qmVrTZaWtBbjjjMOeVbBlDpdhtVNQqUh3yspgWhOCwTBc/bIAq3//vLKB5wOkAAm2w1qzhQPMVdgvtY8psm+PtRaASe8c2QKMrUyF6fyK2QVuswNMHC8YINjBynYDQ1993rN1Ejv8+b0jn0+2tGebCrpv18ykNIF+uUW64z39fwBAbKcAkj2k/2wURmfUzeVnp0xMgKR9GMHfXPVuAPhjY24XwsAZalJdxg4AdcCd+k+B7KPZIcwK2ywz8WQ6tnTbyhFkHs4mkyEdirrMdXqyydg3P3fP1wKmt7MzZH5JnyHI/OWHRwO3zVzKt+hSx/TyEZirUSvV34t6HuN//IydVtNJBpTOSO0DijOAl+76Yy/ppb20Vr7c96j9bf3tlV/wjdbP98Cx13uveyfPSATfe352hh1W6ye9r0b6X/L1TwZJzsU6Wm4bpb55zYohVBysuglpB+mDZU9Fc2XALl6p1iYWZln06TfNOJJeUEsA1Yv8gCuTo1dHpQIxBu9JW9hsRYSvNB34ZNdV3PvCi7sn77x7bPJ//OVbfWbIOOHRReWQRHnZP6g4GpV89btIw9RdkTvWBtUoGnHui9bCPRU87ty0Zpy4fTODqoD0z//s9ybbYnEuB07uFI1B2Bzvhag/97uudl4G5ZEmQBsE+UTdIViF9GhsylOLYhm6L6+RcrNbNxOQR2K10MSiThODvyyaPBbSXbajtvcoTK3Dp6rL2pxCPVL91v3qAhRCGnz31JOkJFCSkOto4MClGgiEWiFRtohpW0YJ2/V4Z7rdqehbcdvSp6d56a9Demq3Dje7xTEFHKS0DAep9gvqF60crsbFzIlnirY+T5ABEGhsycjlN7+qz5xfZxVnZ3Ly5asxQjFoj89H40/PZxMRKr50RMPiJ6ct5SLBKXNwIwBWNPqtoz5uDWaOgP/kpZ0T7caMtomoDND71bygtHVZqXVTdKwrcGXshEF+f/uroxUwL5u88dKeIQfd2jAwWAHdciaQU0IRHSO/vPWYSWV9lTFalux9XAr20pUp1Ws4HoAlBcrZiPy/aS+lUwEB6k/hyJOBfAzUOAU9Y8Zgc1wiLvUTOiDnNeUZsxW1MLldIe3yolUH3jIIogAHIAMmiubVpmAtHBuB3erHg6VSUC1VgU0AFhnEK9e/jH1YlAzVSZixA9B0hzlAFcv1sEBDZ4kcfX6zvXlk8oc/3NY9kpOvJx9272qrihMGAwH4SXGcn1N6NLm19lJkivQ/Lspzuvy9jgNhhNcku4vml9Lti9xvWr14GDnDT+emU18HitR96JhTC6NWb3vOmNEyt6qHGc/iPjgBYA1w3bRgaWnDqPZ0ynV0YG1f31iQnBlH2W1N/vW/em3yX97+dADToxV9c3ACMYEWoKHTCnMrUqSrjnjQdKG5Qirw8ab3P9b8kTXLl0z+S0e4cMwcOEBCP4BCjNSzOY53b18oeMqOBSiuVXNEz+4/mBXQPDN50Gswr+Tgr96Khf3OaUmNzA3UqT0xX+1agRNmQXellMDcAids9azWdlPOCJstXbIrgPXx8XOjHEGalT6rGyNLy7NpswLWap5O9BxqxX7+xbGxX9Jld7+6N0oeBHofBAQ/Ty914c4qwuRUpmeZFfSlM5ybtcK+ri9AoAv364j1s68qmTDmYXlMpdQ95viv3vq4dVMzY15SG9C6AkpA0HBQk/kFdtcGy4N9VlPJoXKOGNXN3bdZVBjinY16eOv9o8nWvcnrz22cHIj1utGgYQHJrGyBxp2Xn9sy+Tad+Q8N+Dt/KR9R0KLWblITDTCpqJrNAa7VHAogMLscJ/uHSeZgfa9Y2Dw2jpncmp/zdx2a7sggtgnI3lz9mZQ8J60mTfcuwGZ9BgvzUAOBgui6STta69NSklKl7L45XCOSBwkId3couMGE95MRmALIziI8nb29GkCcCc7si/ui+35maTF/mC9gE5DxXqySCJ6cu48edwTxGNwZhsi/ZUm8zwc/WUqfLfm8sR17C1YEHA9jssbIgPZPZsW1BfaANHkD9jGHbMYnERWD0esZ6MJg51M+Mm1tp59bBoVd6yOt3fWbX8SkXhjH15hDxWZ5Bp/Flszq+dk8rDs/r2xlGpyoLZIOM3oEs66DDS3y/wMl9tbn+gIS+QrrcS87Y1+ASK8HqMpGMy9DNr3F62bPztb2M78HyjRpYdsEVFjMf8nXI/+mr3/sjTPHkkgpoMYWxfpgK9yEtAgajtFe0uZwVvKZblYa64kUh7BuqN1/ZUhXzQSBEe310mG0Pg3Riki35ogZ3McCVWqI9jTsDWV6st8POrfPQmG/8cK2GI8tg1ITJS7vc4G1QbEVLUprSL04z0sL8cKO42CUHRxpSJi5StIy6HkFdq8c3D5ZkMBApbe7P8ZA2gRNKs8vkhA1LwyIHC/V9tFnn5f2iMbt2WwyECPddS/nLLd8smJI1yaYPg8b5t8QrtqAE13ji0AS4KOQ9rGc4IZ1da61JgzniHgSApSvTdaOjTHbV9rOgC8ysSpnT1gBCikTBwcbJSAyAUzAFFEmQbU/FM7AOPl892IGypqOq/B6h9dKByrYsy4oajOsgAcADOC73vpejTV7kONUuGxaLOPIYa1vjVDiI42VEo6aje7RidqcLQFdUdQhlSD6v140smIxx1+bf05BbdqT6txyotgA030Z8+G4+wyM3jd5dwDmds+MoaQkPnt0rHRNxbEcMKqVA2BMnRWl9kwaacxUiZW4VOSvJkKdmDOgTMBmlBQLDsfcNaWHyICoDNh6UBpXekN6al1G1nWtPcMshbyx4t9vmkNFSW8kf7fv15HRPb24c8Pk02OnOves1Fl7QPHV8wHt0g3jAFssWfeNKrcv0k9qGDABfo6JMy9Lp9/QtUDp3FkdiVLxN6YgH5LOAaMVGWfM0fJSYICMqfAKwRlEXVnu3wTsNw7uGHKDQTJjB/DTaeK1In/7TUf9TCrisa6vcFVUzxmr8WJoR01GrCDQbQzF6BZNqUf+356kq4ymmS0Ag5QXoGRK8pTqnx6TQ0aBK3N+Vix5agDO/T3/g4KtE7E5dESakZEXiJwPMAIIom/Frtg9IyPuFd0DQ0sWLx4s6Jw69hhUum9KuShYcKbIW80JwGT452bduukHxlhx569j3j6LhcREPxXIun//Vg5+bc6oCeSlBNRFqJtx9pn1dDAyVlfd1KrmLFkPwFiqeOXTi8fzmt+FAbE2WKaVnTe5vgYUDLn3SFHT9bPJp9IBB4MvK9hb2Z+9AUHOXpCDld9SbZdUloYTQVNutqBy8wgaBD+ji4qNUKeW3GA8yJqalnUN4LUGyg6kh35dWvKr2HPAVDH4iuq7TnbvKxo3IsVIXzH1InCp/7ldA3PEcXFmAl96CLi/mlytj/E61/vZkusFRBdac7ZB+jeVHQHB0ew52/rqs+tbh4Kt5MKhycaukLs1rYcjgvYkA/Ozz9Ji7llQAgwrVqeD7kE6id4BK56TgxdgzNjBlmGwJsCtupwBSL8DRRCPFHVvbQWnXwIcz8z2ACHqt+yLFBBZcn3Aik0HQth0YILDJ+fKRZQFuFd2ki7Pbc84d7V7GDl64/VSZkCTWimvlR2wpnwoIkL3ncJmv9fEMhieXsdOOBeUXbVvvleXR8/5F/WWAief5XPIU0vT50pFTu8du2hf2Bg+EnOlNEb5yphsnW/DjvGvWundA731eeqSxmTv9sVz2h9ySU/5LmelKutY3HvVL8kcAEXD5mX32PatAVDF9J4BjnB/nsN6wgL21l6M7/s5XyNoBJrUc/FnAlg++x++us7M18y/vN4aA6gwAt+gHuov/uIvkuVpQfjMe/6xv//JIGlTDkJkogBW4R6D+nlRnMVz4vaKDIL8oQ6nwVhUcLim6JdwKQxUfMVxK3rFqqDNCZH8tbSFQ0O/auMUM94J5MzkNb3uVx+dGoyOKMDGemCOnSE2pNBE5jEvIoe7sGIzU4dPlN9kTQnvl0WmIjILprgca2BuwvPb13bcyaOTTzrX6bPynv/vW0cCQRfGpnJUL3XmkQhX4R7nTYDGpFBOss0SQX2T0MO2S6va9zye82qUMsAhcpSGY+RPxsLJy3q11nSOFqVJQSjOM3VLSIFwBtIzonaFvAYEbok2nxZsXhzCgWGB0gEiSqXYVE5YHcuJ01e6F+mvaR4cU0dodPZwoNYOU+K92rgXF6mtCkApypT6mMnvOw2b4xMRYWFmpl5vCBTdKwpVbAcAS60wcgpUCe+JHIzcOwBBSBUGXwkUApgXYhgfb703l2L4KgdFMSjpmAYcvb6x4mc1EShwxe3qUG62nhzTzH157mmjuJRgc0KavTQvh+/ZGMod1R/t6lgX7MTe0rAGDDKsZJBxwLaN2p8+9/PqKp5uTwEmhnFVCi5azxaPe1NPBPBsa/zFrmYEvTHOn2sAW5GtrhgD+h4pDXg1x70x/bC2Op82rlwx+UFngf3h7+6bvNR7VgRgFabqnjNYUk0Ux6PGQYccdsMRAxwrQwycqqc7X9pQlOike4Amv5+OZPC755PqsFpnawzYGoQKqKtBEE1KaxzPYJp7BNiQTUBNpxc95JDsG11FTZuHsrx/q1MwlA6IJcNky8nzDJrDTM2ZGXvbtUbaLjnAaDGyZGRxz2We1qhbK80uOnXWIcBHDgcwa+9N0Ve4DbxxVnQCa7Ex9tO1RsF49zhAVCBLkwXnBNRt6UgRxluAwok5DsPrZhhJdmpNQRFgKc2G1TSeg+062LwlxdDSqYKY4WyzDwuTS0GO1BOjr3DYtPyf/mjX5LXX908ezQj/6oOTsT+NwEinFHmrbZQKN70dClC4/Hn7BWBiPgB/nYCeURABDEqbLItpMaNtbo0D9FwxPGYQmwNMbayg/JW960aH6+4ClqfSXYGp95pNZqaW1KsvdXECNvvHxkm5asOmC58V7X8UU6yeyRr3oxxGp8Kn/z9oXIvnNJTWSAFyLk2vg9bZa0aQCASAJNeii9i36dypgoFknUypUyIzwAr5P1SgAlTMKe0MQBhaqz6ypRhNA1KQ48iKdP9u9/mryhuwgmQS4MXKPiwYc8YineQs2TKACADiVLEC6rkEUNhAgMafmRQsQbP3gjByqP6Jg3wymQEIMOeyERyueh0K7/V8gt+pW2Kf45EH64tJ03HN2RvcqPSBA8caakYSvAIlAixr4g//hTVSE8hHAgdkzcTpebIC3Rc5xVBJ6wMB6maAf+eBuj4mmd5ZMwGu1K9AATAFurCNgyHpPZ7TuBVM05HqdfgU159brR2GWAF1opi/YF8d9aOIfdoZPcBNOgukYZd8D4jTMfeM8BAw+d5aAOeaCACNuYBVOkC+rI/PgDrtm9dKyQFOgnT2ns7bV3oka8Sf80V0Bc4hR74QAD5Hvdr4vnt1v/wZPz71b9O6NL7B6wEn//flWVzPD/zF9mHuERvfG0j6ndIjHBH6mNKfKI8OKC1KqdzFjKMZ0Vub7QbvmDkTJTamzrbhhHZuCn3wwJao13L2Ucs2ZUlGw2RtdKh2fIWFHIoZHSJmxZOmZQNTIn4D3IxBb+9T0AStBcJgaeMmZBYQiobs0YAiyVN1sFB8p2oTlOfLIZvF4aR2lfHHOvjzzIXOzEIvt+GKYW+nUKIPmyPn+5Mf7JrMz2C989HxlCgquHtQJOd4CZSsuixRDcbNZq4sVaGtkbBoqVajZLIxwTPcT/u24y0o27EKoz8rpSAita17Op9s2/pqcIrSr/YHq1HSPAGvrT00bCo4wXgkqZymeqJ9+16HngytgZycrtShSMA1HZjK6W2NKnd0iSLadXUpqTswcJDCG6qGYqVYACEDJnp62tiHlNUxBZgZEax6LM6CIwL2nOtkraRNFZFy8orSRQIK6x8GKJ4pir9b6habduTU5QxqnTcBrz5q8llHz2iD9TyfVwOjUwlbAEQxboOW7vrzemaRMOPtkErGnMCtqcBep97orEgh1Y4ArWjWBTkkRYha8DkNc338YcCwJK69JdZGpGHPPSsnAjgCn+oN3mpsgiJUX4Aa+VHAeDVgBMADECZ+W7v11bgtzrjMTw5+UyGie1iSXD0ViLfeHBVjp+4E64bWd1o8GZE+XhEwuRvoETMBTGT2tw9urrg0Vm7z2gBS7EQgSE3JxrXLhwGwN6M1Psd7q3qIS11Psf0oxO85gENAFvjReWnEgzP3sCqPdv+6VY+dvTDWZdv6ukVzTG+W7lYPcigmDtg0b0uaWn2ePaOT62KtZuSA8ebMhuPvnhk9XVYv7tow1u6TaihE1osXOoLH3nnCaeqX88GAOIxaMMOoXSJ/rZFieUYaqDCfhQxjO60hA4wxxFxylADWmhgioOpcdL8ghaMmM8AfB+T7FTmww8ng5Z6bk5rzyGNj3ICaC4xz6pRjmhNIvTm5lgxKGwNjWuAFKudLLY0jKJIHDvJycgLgcRqM9HAaXfdQ6U6p7WH4u+bGGJ1VsVac4Oe9B3jyHJev1bVaaQK2RhQPFHF0hk5iF3RysgPSfWRfQfKrgZ2v0mmjU/bWzMAO0uHb1d04GuT3X9k+bOvObIlBmc5VvNE+qr/jxOn4nAKK52LL7mZT2KUP6yAdICid5tA8C4BkoKbUl05koGJa/qBppLR81wKW2O3xlWzYq8+yr+zET3+4Ox2+HQjK7uUH1lVP6GBag0JfavbZlkAlgIqFMI2Z7A1WLPlRBkDvjHyRphJEWAMA1T1JlbUc2e7pESMCDU4Rg8AJK+rmU67wNekdYO21alQFDbMCG3drBmDLARyO1cRp15AVwZ4gBs63xoIQKSNMs7QXveRvvBa7ZK260LBB1mGMw+jvfjquZV2lbgHb0RnN4fcZ5AooANrcA9lZloywVVjDGdCh7oa8pBp9lmuyw2qzpCdjt9v/TTGR6qYcBp6pzac2ysbntNd3S8tiCTHzZhzqNPR+vyfL7KdZWFjxKTs0f5AAghgAjI/BWmGtFahP11lTVGm2rsfX+hk70F99lmYqz1v3eP5xHCXTz4000ZXsvMznK5lBZgiAMZbux59ppdE07WYtrS0wzMfQbdfvW78ZPwPCxhp2j17jPnrJP/xtX79XJum1fVv7sGmOU8QKdRMSkTCBVZMwPZ6gNEYPSkEAHBNhtaKbnyP3uS9wAqg4XG9FtOrlHOmDmAn0vyh/UP0p4OGT5wIuFweD0keNxZFaGpNWUwgPzLGphUL5GUAlQqEY0KrWaoDAeS6zitI4ApEOo+PPnTbTuWyYKJt1o+nQcxIc0aY8s8mqI7UQo6HwWeRvg4CB+20m5UQ/SuPpqqMY6GfGXdE1qnZO9RDOpHMSeyrb8wMyzeSI5Wq/RzrPVFugCeOiwNs5SIqZtZcyCtIzImaf73kpkfbcwzkbmodS5zwWxx4RXmAIKBWVSvupzwBqGDVRx/pqoKYFlboOZ03e/MGO7qWDWQNXooX3Y+5EUX43TscOFOrWupTxEyGivrEUnzSeQVrryww4kKRATmTHiLwQi6JlUycO+dhWfYJJ2zvqkLxQhyMjd/u2AW5FVykHhbyX8hqYuCol/az75vylaLWai64ZK8ZQTYez8jjsC1iZfo66tl6cjlTHtjqZMDCiU0zGglKlgJ+5H4yRazFWQBNWRCRjQ0T7OiQMb2OkGD/yQCEBJw5d/Q3QgT3BAJmKDcgBN7o3yKoo/0ER9qnPO5w3J2xKs4hRtLln24aeP6ecQotKARfRVuKTHMyKil4y9MQp9PZbimZrzJgmAjL9t++fGoZI4IAhtb7kxzqQfzqimF8Kc38zg84UUACLggcWBaMFfDB4wCszgt0RVast2FlB+Z/916/2e9OEnbze2V/tl+60F/dsHszT54EDwAkAkwogz8OhtYYYI85SemjQ6X2WDkUBENaCDWDo1Zw42mJTxcwiV6DDxN+3Pz6ZPEx1zp7qujQTzBrZN+yrtT4RO6UFWSG+ugPB1qMZbakkRbAOaP2w1PilPlPUSkd8qZlSj+LgVoZ01Eplu+7nTQRiUhxmJPndM4F+hv+9CurbhmHXdPaM9FX3I/20KsADdAJumDVGWHv2SAV3ryNtHQPn/m8GSJ0hs6t0g8JXs+CUG0itAMuz08MeKV2vYzJnfjudWBOYME7COAY21TqRMR227JniYn7iVjJ8qb2enVNib43S8Lv/8U+en7yye1WMbINX01XBh2BAE45nE3DRBQ00DsrGsnNWZJ3DYYOw9ORfsGUaNgBH7nwv7Xi5jAJ5xWZLpXFOZJfNudDvsBYc4Z6tK8fanojpWF+amkNmJ47WQcnW2l/7uGtjAzC7L/IpPflpAF2A7roYGbOX1q5YlO3aVUH5wsnlbBI7yaaSrRlwJHgm9/QbcJJKxioBSJ5nOPNkZtp9/J1O9Hq6RHZ9AdQcbZcdmRF6cia/JijS3esaQy6TGWwe/8Bxu3drAPD4vU0apwNkBwAIX9bnq+7N7+gb5lqaS/YB+BFsrXpmyQA0Us9GXmBRgI76FcZzAmbulQ3wNWXeFNV3BFFroylHt7jXs3Vmx40UVN8LT7yXbeTLepihX9vLXPBFIzBK97uVUfuEMQN2PCMGyX3w13TF4t+ONHEfANh9wDV49WVlGnzz7QbPsgsyR4I6TUyyBb85dHqQHsoKXtqzYcg9v03WBQLWBgAcoMkG9+WvfwBLPb8A1J7TZa/vMfrCLk3/9t/x1ff87PfGJL1cSyyjwCFJYRgyCKu4WYzNg/pQl2acl2XYIDrF2GpCABL1Ns9tXTdZt7QzlGpvP9eGQ+DXKjqcX8eU6FGhoagf3WqYHHoRKnVOF8MrncFxXa5lF/VrBRRxcxwnEwRUsX8vqxBRZGkjx1TrFkUHACSso2HMH2khdcKY36STjrFhMMx1er6ISqrGfWCAAEBKdq+6jw+LcH/xzuHR6UKJRc8risafNMskw6guhEBoN1aQaj4OobAxx+sIMzLgiYbvYcPk6Xf3+QCY55V+sq4UluL5TFEcIdTpg+Jn/OiCcfOMvvwtwXuQEXXyNuWe5r9TcHLbn+05WHOMHCmwuQhDpGf+FGeK9bva3CV7SEkAEMWEIleCp/XXnBKnwQMADI73uCf0qmGEABUDZZ8xfFuqLTMAUBru6wymrjtOSTpIhwUQ2Ac2kl+6r1qx2DZdXlrqZ6UMmJjlpW61losURdiMtWcGFrAtQAAw90LsBOp4VtfD2klnikTUVjhjyyBD59QxvI+0Ttgfv9fKzRF43hMNP/Rcirc9J4D5Wt02P+xQUpG6iM/rpLQUBWMZFeKTfZ03q2PBnOt0KDB0s/XSiZafGvKiff88oNjaavcng9IZ0nxLMmDAx+PJF8YUwANK0emGJd6Lhf3VJ6eGYfvB3q05laUFDsBbzra1G+cL5mRmtckO1CVvm80YSwawIjouyRFd0YXULY3UhPqMEY22Nyh5KTvPP8MQY2GkHL9qHR6Z7dDIOvsCys6AU5vnjC7GULS/pbEcI51agwLQNWrfCn5M4nZWm7PQNC9IJ9g/+2CNAU3g0PvJq+4uxhqzJCBY2u82JbPb6wrb0fiCz3KSQCQQwlgKwh7p858sRWtQ69sV/6s90j1k8OD8Uj3OKDze+BF1GoCZoGEcK9PacF7YUQyD6HRW9zBqHpKlU+mieo0x3LZ70SkoZSSNz0bcz0nSFYCAc1D4a/aLGgugmk3C/Goa0RGqq8ah1wt6NoBB6/6WbBlrbnQFhohTYDMEOdKEnJhO3Xu8U44Gk4oZUCzL8Y9gsr2jw3RPm/2tmMWLyQHQoxNPreG+bcvHoFodiwDoByeaeN2zqOlxTNNnZ3u2bJG917Ku3R+7bH9cl7MBdoEcp8Fz3NZLOu8jM7Raa6BRPZv6PrZJV59gS52gYaqb+hzB2Yp0yXli6wOsbP+ZgC2mgy3B/vkwPpG8bl27MmBWKq39sV4mgA/GN8e/LPCoPlPn7pqA3tYA1cwARHsvCAKCABBOllzaTz6J7bKuipyBesGLRg+Awh8+w2vUgMpoADp+LngBdoGcNenmhoYGj1EevVa5gnovLBTs83V2HNMErACR9pLw+nzvZ6/Bmb7NFpVZaS88oy5ngROQQa78nDyx8Wytcg8zCHW1+mJvp/c7BVQ+n52cdslVQN1e+jwlEWyucg3pcusIAJmjZz8FYXzcN63X/PL52CEnE0Ai/Ib04+E6FAWd1pUOeDaZFOCZXo1U+Fjf2KD2zMw2uoUVZFv4FPOQUrTuCUs6HeyJuRIMCGSxlxgsPvi1TpqQ1VDuISsAAPny2eTfc/L/bJr1Rd5Yi2DReC0ZGCCq12GjvJIt9Ezs+/cGkhTzoic59ZNF62ZHiJ5+7+XtRb91ldSJ5Ya08uom8ECciKjPpqM1Cdo3dTYcqOOAc/00AyRtYAOkNExkpTCLMhYmuRJS6TypI5HnPMWVRd+PhrSn0WedMD20qM0isCmmKivaVqgpQno6hT/ZvA/odiCHFoxRIqyoWKzMF3UNGZuuoFL6BAOGIRGtcYiXM0KXv8gABayWpexm7jAWDnzEJHEkjI1U2doUl1KfaI0IP6p27TJDDxm6+yNS4xRFaiIMDJeUh8GLhLrFao0GjpimEVNWAyA/K3LWiXCv7pa97YUzmXrZ5FIOHJAgRkCROgqCp/aHXMi9o0YpyaGckbQOVuBHL2wZbZ8KrQdj0HXeLvrU3i79B+wNwNE+YInQpn/8xv6uvbDPLpIrtaVQVv2L6FE9BCc4WLM+WB0RAIOWFjlxGgwUul2eHO17P8Os3ovRuFT7r5qgEV0lWxSQcQIuYuuHTGmHtkbkRXeNqFJEKKqxn0AlpVVYqxvOM1ARzMmd2Eq1TiaOm2hswJ0RCmpoKBpKGw3/XMDLdHlTZi91VuH15BNbwmBwslgksuYzgHY0s4Ly2V376epe1L84kgG41Cl4JUfLYVxp/50HRzbNb+IQBQJAl8J7aZTsa/Z0Vi3g54bxJjsbV1YMW1pNYTJZfJAOXYgNSPzSsYzqrCldTg90AwHKnIN1xQooOAbuBAIDEHTv5IIe+1pbWlANxILkxbNtKHW2JXbk/cOfB6IqaO7eH8vRWDus5TjAuvvfWZeU4ACbpeiWw9bpYm1HkWzOGqj37HsCOkA92WIrGcAVdb5yIgIgIBQ4216Nwo6OrzidrJshNlLFOTP1FDqpPJdnBJ49P7nXYSmaBqCWPtkxPO01x+hnmEwt6ftjr8kHB86pY1Id1YAlIG+cOl0iLRhvKVZAEkAbYzaSEUZ4pHF7RmtJfxl33YFs2bCNfZ+4tQ7V8FXMf7bnuh1wxrQ+TIjZOoW0bMiH1W/+ojZz7KZOMo7Fel2+fn2kW1enWzMDLo19WJKTVDeENQNGpeTsp5IFaS+F7vu3ryoQyyn2bGrmPm4A5LHT14aDvVIwpGFBK3eLNAIa7M2e1kaqHzsmumcTPZfPsGZ/+uPnx+dIj3F6glkyLzD+o9f2TX7/h3uznY9MXqoB5pls76lsDPaaPPIR2MnEezBbmEfA72/ePpy9KhDsftQKAr26oATeSgQEiJ7dNaYsJSfffLpbDyYHdm0Z+uLQYO/78NOOcGrd1paVoO9kBsM9w6wIBNhZzppdHQ62vTZrjQxJkwqkyA958lpyD0BpqKCvHPw0RdVkcCC5dSNnQK5BhtYRmGSbdAoC4PTQKAkBojq6Ye/7m1/k9KU7yROfQPamDCjwgsH9ukBjWmTsGuQC2+PAbilbxdlkUIpqAKP2ibzT+XH97tFFAS0gCGgQOPLDHzWTCLg1ekAJg4CRn2QPPLexM2wm2VWXSp4VYfOJRulg89lLGQUZGyBzNH/0mey7dQFErDsGGyjSKQo0CXAwcQiGAa56TnVNdFRXuvt5LyJCGQGwtLczBWdsrNfbLzJvvdjg6Z/pv4Ei1/eMU0Da5/YeP/M7a+7P91qT9OMXd2RwF5XrbgMTCB/+RCDALWuFJmhy/9ggB5uKHkQYcp7LzOVIANGd5kaIRI4UlXKeojLRjUX172U5F6PHHeVwvvy3Vn/IXo0RpuZMC+hUZR1JzxSl3coRQdpqgkQHIlLdKbrC/DufMoRMR4vvAS1niG3LIEPp66t72Vfn1dJFzhvrpPGuGVYdESEDfP7KNNqxWaMGp+dTI6J+Y5ys3mfr2sMCMS7SiNIonpNTeKoajoeBgTOBAEphsymi+yNkwBznRImhZHUuhBtAwCptLh2xOor7h89vadbE1QEOpcZQlZyxYzBWxdAR5hu3ipBi5tCOQMbx0lZOAf91hkTECnHrjFgV8DHw83h7MMMitSXDEahpcLENddEsie3SmqzWwx4wPKJ9U15FbWokrjcnSbqSkgEt6jHUFTl4deTJkxdgydRvsiNqXbLwiYz7ogFcFb/fKUVnvof0ipQXcGyvFEiHAfoze/I7r+xp32+MNnfvUSPw0t66elJMiq8zTMSoG3F/BdVSSJ7XcEMF8ByZ8/8orSgKeJOG5WQ8n0muFJBDeynW9E408UcNLftNbM6no44m1iBGxrRp4HhLxdzSq8djTE1I11yK8ftFc0S+6aavlrrgrLWTqwVIBKp9cUTGI5P1MQmKNBtzPrnRPp4tOtzeeuuSvNq1dwRAfvzy7tKPdT61zpwjcCrCP37uYlFush7AoIMMFOPJgdlLoF8nKkPSsg0mz35ovfacAC9GFUA52JRqRuuD5tJwSs92tAcjqMngXNH2D2saWBUYBhpOp4/3OgNQvZjA42GKpUBfagw4VrRM/q3zqYwpMMNgra3NXArUmXCAiVlnAhwOTnAAXEgR/V3t4vbMfB2BCnkG8HQGToe/TmdAKRS+317tq7ECc/i7TeB/vun+0tEtR4yiEQUdyJuMqy9E54tc2Q+g37yfDRlg6VqAQwBGdhSO3i+Y2JvsYII0qgjqThdgKQXYUWef5zzde6SdTek3rFXaCQO4IKAgIKEf9BYTMhxtAIyuSBmui4GQcsX8YmmXZ+uWP40Brfux/bKX/gDQAi02gcMBdunzhfakLR42S2pREKZB5WzXViSNIVrWiBLpaw5NJ6g6pfeqp/vrd1vf1pLuAP1LAmqAwY6Na4YDJDCcCu86Y6M4mz1lAJb1rCO1Gds66idrLMF4OlvSYbXrKjT/qM4/tYLkcvuGVa3x00Me2VN+wXRua7u0PaVn/81vv9B6CK7nTo63xoCXAJisv1224fEAOLYdUALkpObdr/Tqx45ayXZx9BsKItSXSePTD2yH1CWgZU19FnuLefGMM6wE2QRwPLNCdVkIn3UpW4zhxZhaQz8DUvgCMgOcCMyAGHaQzREc2Cv2HCAAAIEW8ub1QDkQpWYRUHctMic4MNxRcMYHYAutvUBDIE+fyY6J50oH2DoMjiBE7ZuObkDBZ/Mt7D5mVuBCTqwFVUqlxxqQTXMCrwXkPm3UB1CCEVWvhVEm34IENlj9mkyOOi4yyJax0Z7Xa524gI0X5LNbbAG74rP93M/Y/2FX87fsAh9JBl3fnrArV/PffA9bLIBRW2jPPqiR6uOaALBgjiLDiLEZI/Dt9748+8yXfw/W7rufk11BkDWcAcrsMBv1z2WSpsnRmU/6R/7WuaJw0WI4YkFu0uJf6oyiI6cPDaHgvBfMY7iniA6rBFUDCSc+r4agZ9sWi6EYjUJbEGemAQdQu6jjUOerycuiyNfVUkrSb7aYF4skUOuESM3OMwGvEbHH3KhL+iAj7H4MFRQFra6dmJFblSE6VmRqXduHeM7m5eQ0KS6H8JODW4uU5S/rIInCNc3TdGnFgvKkWIuT0cLLSgG5P/cG+UL+K5oAPjfj+GzKfzpjJcrigh+mgM83LLNV6F6mXR2chboS90bxPq0t+8nW0Gau6jpPFwUf7xrywADm47EMCll1R2CwRMVSZS92DIFUFiVm1B+ZNR2Xv7wc/avPr63YfMrG/ari8h8f3NT7HD2QACekohARsloaEa1J3AvmL0gYp5+5u5qh/1iUZ/YTZ4ghQq2q37hz79vJhQZQKmpFKadDrWWzaVoLYOE7uc2IVp9WuvLTDPr1Ij8pkw1R7qYp38xoD2c1/8E4KPfUocuBnSj0xWagFIVlOApzR+RzpX87Z21BSvJEoMmogL/P0I86pwAUivhEtQy6IRWNUoR9TWPGOoyBcxS/UQ6YSQWwt1oXSEX7qeJ5+2wNGZetDS61NwZFilzVRK1qbXQKAfKK74fB6Dl9zs0iYHVVUkNA/NKcpPvxvfTbnTvVJhTZn0pmFew2xKb1rzau/7l/0Sla/1xjHgDCxyusVHuFTbn/bWubMfn4szMVhNdkAHD1WYc65gJzs2G1w1d1THVYbWCDs+XgMYgGUAI/QCewwIkeOy3VHLjLEUuXf5sSSG+qSbnaXBqpsD/5rf3jmR3+qNVYzdmbzbBRR3a0tcD+SlVK1UkLX/qy6P+banAGMBEkPTJ0mYH0pf5DQfeqdHBO6XLF04YNAnw+j6PaV2PCRyeb0VJXqPOrhrmrXu9wheMr01nBlxSEtQCYv/q6A4ST27v37wwWBcO4b8uK4SDeLfr8+87z27J6+TTgCsxtre7hR7EbACcbpI6G8TUF+qNDjaEITGNN1ueosWTHSrsaLCttZhwJBkC6nLyyxSJn9SW7gY6cOGZaYCZAwhIvnrd+dFaOcQvtMSegON4JAq7huTE1Cs6PVmsJqDwagPqbtzv3rfc/3r2YVXbj1teVD1QcHXu9KmZGug5TzkEvSg4NxhN1sxOifQZydvfFYRrmeP1mqdgcmOLg34npcSCro5UoKEA6q79d40ZM+bxH5w0Ay+ljAJY9Xvff/rWTn79zYpQbmOF2vDlrGzetGye+A0ocsWDWGBCB490vv5ocKQ0s5Wgw4YkC2PPkutlvJ2Mf5nxeQJUNdaj57xfoGGIoQMGQTNmq2ZP//o8OjunK7zQpfE01ONidg01MvxxDuSEfAPTYO/J0vUBw9qxpsww2hn7rCrYXT/VcRj9Iax/+Jv1OnwQS4z5z3IJP9m8EStlCDpR9V0rwUp8HaBruyfcAUcAIP6chYtxDr5cC02W2dnmjXRKMB42t4XfovwAXCKbzg3mMmeFjgAMy1NsHw/7wYWN0kj9Onfy8e/hMdqD62gJ/tt89SptJv9FFB77TKXoz1qyfa/O3JlglQEqrvSBEET/WyTUAFOyW9/peCtX795SJ2FbpxSfZfWUEWH4ddGSEH+ZjH/ZnpPBaB35DUGcNgDBngw5GKenzWmtsH/wMoEISSH/31rQ4kJYu8MX2Qefg8Tqw2fpVBSv0qEcdQb+64Jk9uhxb/lElFY6u8Xy7IjXUStmrj0rN6aIfmZehAVilrGL3OQOcMGzWZ3Z6NW1QUGoxZc97yz/r65F/09c/9o6ZOUk/ff3ZmICvyh2eTWFvJCCELbSaAYAIMR+KWC36/RaEkOnwMq323c51s0AKajfE3KBDPczJmAIjxR+XpihSUHhqE0eR3aAtIekicRuRwHHYCqLViVzJcKhBUDwOpUP7CrgVX4pOFNyKdDjImdkv6obMA3lQfREqeUudTl9mfMw9ulN098nxUjAZqBXLnm6W0Koc3hNFaRnH3qe4krETKaH7t29c1vN3zEQFoo4nMHlUN59Cwn0VzEoPoME5IvNUCBf2yyDB80VkjOi2amzQ9S1jxmc64h3t7HgFikgoCB5wJyIxW0XBrqGLmCQUJuAm5fU7r+xszVPW1kO6DRVLiBT/6TxUOKwOwcnPIhc/01pM0RV2m1b9XPd9OiB6sloO04QPlnaScxc1qvnx7MCB1Mya1gh7oTbAPWKmOJ3zgaP3iwIedhbhtgAAQABJREFUljZyrIa8M3ZRxCZtKKkBIBzYs2Z0jDFUmEAIn0oRZIXknMjXzXDR8jz2LcZs1O4E3kzEZYQogbox0S2Z8rwMPhCq7mvUFLQW6nOkQKTU7DuZ+Vlj7wEJ8kiTHQLqGltbcy3/IlodQwPEt/6M15IMkWNkrJkUjf15Yee6/NS3de3FgvXZaPWHX2dYMrh0glOhsPaBUX8+lkrRKgaHDswY7PU5UK91ZIUCS4b5ZOnAJdXnuL66h6V9vo4TEefQm4A0J+xnapKMFMDGSU0DZEDujQrkyYL6A47TTB5pTc0JPkPNBR3eUISJnROxGtMhcgO+Usexv4bEYofWPzM9PoJ+Y7fMTGG824pRCI9tNLiPo3k/oEfvgT8Tdx05InVkHhYwJ+IEYKSp1XGQzVu3p0dgWBsshDlc7+dEROPAkn0BTO3dNIBp3k8sBkO6sb1Ux6C2wd8cEEYIe2Kf7Qc9Urzu80Wp7JV0NNszTkvv5w4E3RzIWt+a6FxdFvtKHxV3W8MuM3RSwb4UrwNrPyxI03ELVGJFdlQrg0nwb04T8D5YKlfAcy6wR344Sekhe8eJ0Qs2wsBIgNiB3JoGhvHvQ41r0G1HtrGP5zBQ2eHXOwBbXdU7h041WqAaqJ6B08ZwAXbAi/1SwC6l9WwAVRAkzcIpHguA0y3z7nbGqv/fnaLwyp5NA6QdqSTiw8PTtCD2G7tLZjnVMSiwgPJ6gIt+SBXlRnvmztvLhvEdGBH26fXnNo10tWDEWA/6PU0VTTutFLAfL1VnTtLuUq4m/2OWsD1qP01AP3vxSqCv2sRq2fgCsotBVD+KOVQczOlKez/xRHYuluLud0CKLeDQx+DZ1oqu+3zpcXV8bAYgoKYGOOCsR1DZ74eT7edsbluf3f2ufjS9UcvWFgy7Mjd9BOo1NdG90QHWfbJT9Mg17U0fkK5LB00Lys3ZIivAMoYQSBzgt+vzExiRkWTqOvwIfVPng90hs1J7wAOwgsnH3LOh4wiWXuv9nkGa22sFM4JzTB6dMBEbM8x++72idA1SXyUr9nra8DK9125sahP6LMBk1IB1Lc9EP9Wvef7R/dpnA3qaJax1UfVYYzJgmKW5YJgle8YHkAlAnH6xP4adslU+RyAvDScj9Mq+xngEhPkK68aHdDvDnvafsd7ukw3hcfze57sDqb5/LpP0TwZJ+6Lix6GZGVcbs72I/I1Ohh4F1t3orebVOKzUycXza7eGuKct2NNDLD2sL4bfzRNYSB9SBz6+bXOsPiFGL2NqPJAUhpoZBsjZUhYGqOgSo1IfgOJEGIX5gRULwfABbJ8VBakVGimtHKt0y84coAP3GHGUoAJlRcPvFsVIM3SpGJntk20dzPtZtC5Ujvk6XTSmHR4g4FQY9kvN/WE0n47t8fnujbJhvEzdBVqASY5WIah8++2UyMF8Tu52bV1j8sg7MwycFGDJeDlvTMR3q3WQxnonR3Gi+xPhbum9rx2oE6AaKhGEFnrGGFVMKjiMsxmpk+crnm5N+5ihzATW/QFt2s7H1PHWYWNAZHOGZ33RxbcpL4C5LAf1WFHZwxbk0Yw4ocUgXbxap1vGeXmgyTRxCn2kdaa4lAQda/9F6qarY2ZOlm5BIQcJMmYYuQrec3LWW7SGFRDl2GfKqzbAc+ludPCqORubiihP59zMkOKI3SMnzgmjiYFrRgJ9TCmAAmCIodNAgHXcltMDTNXPiIbJs0hdygRAxDqgiMnuzbulEQKlyzLwqGf3tTlQ7TNG+jD5cp6XWqdRdN/nGY1xvzTd2upJEqtk+9GRwtLtJqVMdt54edcwqAwywOmLI8RG9QRjHccexgxx7p9Wh6aQmcyOgas95+wKqhVw2k9ypk0eiFD/J51G71DzhraK2qVQgQOGM+zaPgBt0/oNaWHpJKDgrYYWDmPWnltj0aG/6ZTDIQ0H1JHEuAIh2DXBA9BzKmDN8ehWk/aQIkDn2wtyC6T85OV9gaomAiejWFEF+KapO/MMQDKN2yn0O4sagV21fz5dp4s9s6dL268/rDbuXMGLmpYtMdPS2thRs4nUTpAHQyPtPQeFPcFkmcMmcAknxxysDQAVfScbHITrf56TMkcIU6PLbUTIPROdU1DsHMoH6cCuujV1KLIhZFy7uknRB7avH0b5k2YTqV/DUiq4ZefMAOMMOe7LfU/fpOPmtodmFgG97CL5w9gBvmzkxWr4BAT02IDLx9ItacZZ1WVuXbeydV02eaGuw8W9nkMla2o7peFOnnWI9FcjCndyAHsnoHTI8AhqcuoABrsVhp/8+f/wk9JW1ybvVpuoHtMIEmyO1CEGdAC+4Wxi09s3qR8yTTe+7Ll0hpLzxGJ87q3eZ4zGzpjaHZueqnboxuQ//uLwALVsFRBHjqVvyA5HDjQeT8fJnHo1k9OlINXOAJGj6SLZJlMKhoFrzRG+gFGzkMYAxRTQ/fvCxvgZJhUI4DuAUnuNReRndB8aVQF8sMdkTgcnwABILAl0YWb5K8F5yzXYMEAf2LFnQAYQjwGl39rxx7yk1tk12RWyjzUaQW73AmT4Us5AB5Ry0HtBzAAY+Q5B2RS8dD5bOjAeoOuoNRQkAxgK9c1yOl2AwBdhmhywDVQpxhYIK4GQ7pcKZK+VFmC+nJuHrRQ8kDN2UTAppgXkgUjrIviiz4gH+z7GR1gL99ezFUunazFnrceoB+pWyYyaRuttncg42+M6WHcpQJ3aOvDUavJ11kednuvKpNAx4wNawnzNpXF8D709ENhnnwGlmWvS9+kXgDQFR8pqyJPP/F5B0hulpUTOa5/JCD4hBeT0anSiyK+opMVYEjOxqPTN1GFXiNrvFKY6AuFI9DCFtAkq7EUeFoAhe6KNMmCPo9NGbqaOIY7oeUcNjJxrC2gx1Jx82++xGGtytHK8oiQoHK1HoEQZWlcZVfOO5EClEUanXcKnNM3GS/2JPs1EkcJqfwejcbWuu2+L5pbEjjhiwRRVIC1+YGw+xef0CSCBI+hP1Gb+eCAttzxYLRs0zj0aKNn8oTqoWicCQDEZa1O3PffGhMUwTrM5KJ2vIxkcBoBxk193wB/ntjVAsz0wYyCZvDDKXW2QE7DnzBblRqtmtNH+LWf7FNXb/9RhOW9OvQPgBiQATNKO6i2kY/7X/+ut0R0jnWifvGak11IIoNB9JGcjvWkwo3oUBe+687B3ClN1sHDIg3Hq/t/+5MRwMJyI+T+P9TOG8LkdGwPbC8fAO0BnaYW81sxzMQKcpKNFnshQiWYAL1Gs4aKYRmfkYZEc/QFUjrqg9kJ0pfYG60IxOIU17bEIXrGsVKoZXRsDXSIsLfI+d9Rw5GwxATqBVuQoHc9woq5ETvixRjls7tgTLfIiRBGyozym8ip3Px16qV4H+AXyHw8kYdIMg/QeHTMc7ky9hH8bOMrYeQ9GVm3X6YKNJe3Tvu3rh6yYXUPeHqt2h5FRREreGUOAgEHyb/wRNgubxKCrrZOu21Ua0gGrzIYIVprOHnif1JZOM0Xl7xcUoLFdSyoc20WXyLdusXudEQYA/fKjM+nitEiUE3jnk6ZUt26cGqaXniZirVVDCvuf1MqmCn/V4Fyoxo9MvbBz47AfQDXnxFFiX5am0682gBNL+psYoqnJ6777PJG4YnVRJIYZKGDM324goc9A84OALzWB+uX9mwfAI7cX2k+1iI4nAqYEZYqLyaP6KaDSuszp+pw3O4QFcRitA37ZEs6ZbAPK0pWMLeYaMN0R68we6pgVtBnOqNYNuNbVtyHgOLt1NHICs2M9BYI76tJaXP0lZkjbt844xzyxn0Dl7QC3fzPuGCMBiRqrb0s3satAnMnWR6rJO1VdDxv36oFtrbHao2mNJPtB/8n1L0pJAoJqZ9QRsl9GcIypyYN9qgkgXfug88fo38v7Ngz7qgCbDNIbdsE9caqvHNjaPWZDAunkBtjvo4ajFMgaFzAvWQWIAeB1MfNfdGYlUA2UGnooVfpeAeDF7hkLQc8EG9rLMU6cXw88AIOgY0Ny5JidbfkijKWzNgH5TN0AJTpmZ5pk1Js6KkkApqbLtQRgZIoz9W/ABuCXDvILjhxDOe0+raP1O7+Rux3+hF4BGEAV++h5XR+LTe6BPWyIoIXTB268Rn0QW88X8UNk+ctYU4MapeOAMr5tT8XKUqvTGlLjAFix3p9tA0at/wgI+9u/BUE+ly8GJJAMwM4UaM8dzBX5IXczNYMzwQ8w5LmBUPVf/CnQqutwHF2UDQD0fa7gCTCasmM1PHTPAJH6QWsoEAGUfLkH76GfxSOhE+xcIDi7AmzJarDpmpWsg4B5bvZdKlxtGEeMqbQ/9MzByA7WXZMtddgxAKUr+XC2XKBiePCGfs53AvzWZ2o3xpa6g7HfvuPzvjcm6c0Kt2da7qdRRbR1UduRblTtiEUZiL3FAppmd6MEAu0DbFjMNRUuyp1zWCO/3QaMNMuQA3nNKQV5YNu6hFAbaYg18RfpQ8weEHUrt79/87rBPJzNuQ/DklKfL49p9IA0CVaCoVJnYGGNunewo+4PQMKGD+YjQyYyk0p6MyCotshBlTcM4yvfbogZxWlfot1FvNG5FfCiCFHmj4f0natGGQC0YnU6MYRbJb1vGB4to2h59QKuebpNNiBPxEt5nTwvEiAUI8WY0Is+AEAOyfNwytIVN4vq/7f/5zcNarw01im8n7NEYfdsrfOpHIMiOJG+ibR7mhZt6OKF2CXOiJPyWmkYVPxzpYDOtG4KI9Xs6BaZzmZakEG7HgtTV1qORLFg2zueicBl91NGtRLSQxXhxvqIPE62hhz1C7EzDngFWHSmuR/zhSjEExVvmxMj0sVMKcrXLcL4MCY3os7Xxlg0v3YM1DTsDYvEaA1jlAGiFAyO1INcuP3U3vrc3o3pWfUGXRdL+PrBLQ1YK21TEbtUDCOvo+dsnyey4rQAagW+omPXUAx9MUcmTXS51tm6ynvkKQA/e777DCiTG4CD85rXMzkeQCHj+pgkBxUDGbrAXN9gSM59zOBKPhUAHyq3brq10QlHSq3ouJOrFyV9G3gSIXJW9ILB0DmDaSEjRhZslxZsQ9T/TAHKk4O9IXOc5JmMHTbnYnqxPkfN+FonKQiGhBGT3tHBdyhQ7d4XZsjox5bkwDpfjVG4WP3T6YaxkhtdUDv7neaJ40Xz6iie27FuNBgA/1KfgLSzCRXpS0cw2lLkaHd1DZ6BLJupJVhxXUDZ8R2i0Q2l5R0BorYMCJSm2139kToNwO7Z7WvSJUMhZ41p/Aq3f/rmsx0QfGoYd3p/sgJ3tTCcsTShNId9sEcKxm8mT2bmbIvRkc4xuVpq0zOQHZH3qeooXUMDip85lDZvEDPaCJPWifxZK6BeyozTkGpQ6yZI8HvvH10/Pffc7MXSont6bm1ut+7KBgR6bIfC9V0BrK3rOyQ7cCYl4VBa8r0tPaIbxkkc2L62117P7l0cugVoYmWk0k7HdnGKnAXZxhqRK4GLGXWcKcApHYy1wMgAMID7u82Duh6IwWYb+aJDU80Lpgw45qgwD2b2YB/otuvSfUMerQ0HPLu1sdYOvrZfbJA6vS8693FVjAdgAKQBFnSEwPzrP/3hYPbo8HTYavOPAqZSjK6BeUmUBqv6bP5he/WTbAGgx0aR8zGrLzsFtGAp7aUvAbVr8B8cORvKkfsSvPIt5M+Xbi12WVG/DkHXBQx0eQLHWJS2eext0pBdNn+OzNd+jzHqZ0afPDJLkXHZkOoKvWFW6Wq/A3YERMMmtEbAEz/CLst6YGGWF6QCwB/nE9wz3R8zidJZQYL6MWyWYFHQDaSQQXZiTe/dFDjks8yfst9ScFLxw/52D2y3oMDrgR/BIlnFuKiZs16HIzX49dGB234JnMioNReoAaV80igOz0dZM1+YMuALE4q/ofdtb0vA9k87mT2/e1JTC2QDgmwRG+Y5EBZsERYPGw6okRm/kzZ1niR/Qv/ZIAOLMVA/rI5SvTKfIjj2fNbKuvOj1vR7BUl7OhgWPScKQU9bKDePRhPhAjVP11khpbS4fPq8FA0AkrZZnbP70Uvbat2cjJPOOS/onYBxAnKRon9oF31OIOTICbvrew0lQdvdz7EuSlEp0oWiKJuCngUk0H/oUDBSzQJAtLZ2ZjU6F643fykjpDqegEpJ6bhw3tdo++1+dIl8nuG881WOJ2aII5kTAwPQaceWuwVGHuToOTBdQ18ECNf0fOpJ7pZ6mVvEejLGw6YPhB9AYjgG7d+aoZRXxxoxDsCQnLtNFL1QUJGI9AiB0aVyIWfod2hWz6rVdWPImVBjBjh8AzOtpYjA6+9WzPt8g7mAD0p5MCciojdEDoixbwQZiF2eY7ic09axo/3d2huOp1PBoEv3Jwq1ZkDEAGIZQ9E4x19Co/VOaXs2NSDq1tYlwNJk0miz+92rz28ejvAMZ5mzcgDluVKBf98Ea44fI7SldA+H+9A5aK0HRmiwfwGAcQzAd0Zqf0PpADBKsbK6qDF0rDUGbhh3NQ0ifwPfOMjsYS39ayY/++WhkVLlePzcl/w2WpzcWE+FyAoxR9Fkb+wxJ08nzwd2rJ68WCfYtcCCIkvMKAOPqRERmSvlWJdRyNy1MKWcu/tkhD5rkjqWaCrrgakcl44tz6UuxswjcvFCxaOMkajMImAeOTzXs19LSm9KvTmwWHrlRuv/e68eKIp6ehh7oJNeYmwZTjWAUogfFK3bn9WxCiOCbm0BW85fnRRdk05av2Jpcu0Mv4YD5rz9MZEaELAX1pzBN8PqZOvL+Tu014nf7AIDjuaXXvrrtw8N9tjnCaAwU7pD3ZfuLmCQIbPXdEVKulscgEZXGhlcV4oKgFJvKKgRNGANTKrHGtMJtUVqF96oy+2NH2yfrCwQOpf+OaDaZ9AJRdsbSp1ywNg7aWZM4P3W1pd6Iuc10oeRquz6gAEHhOo3L0s9jrSkDh+Gu5sZwOJ668aJOdZEmsQVpfqlmS/HvnEeOsDIGH39TUcgkQnDUjkCzIQg0Pt+sHf9iKDdNwNvvffv3jT5VQyQ9PW6nN+FQICz3dzrs4ElthPj9EKNIntLP0gJSjNj8TEDWBmfJa3xRSkxIGHUNnW/7kcanXzo1uKIgOv1y5eO9DZ9PnuprsZSjC/v2TL5ccMbFy0MzKbX7Irn1amlZpHtYrP4Aef0GQ9iDIg0HDuq400X39XW1tDKeXNr/GkP2Q/dpAfTa6zIK3XxnsrOslMbS4+THzVtnpdakH8duoAwwO/IJjbrkxPnRvBgfzH90udSdYdOfj72EiOqhg6oA5jIGoDEbtJhLBY59HnWwNojAdhufzwfMOG9U5DTocCtgwDVzvr319kg8oYpucVRZxM0efBNAyR0/7mW8Rn02juxTYJN4Ag7x2foAgZG2VrAmb0CTpQYjHRe901H+Ev3QrfJoPtTP0SnzMWjOyZbX2sP2FP1c55xxjd5TvaXrFkD/trvgCR+4WqyxieKA1K98Z+Rnek11mR6LY1IBRnJgkXlvxAhAJ8veusPUAZUSTHTBYw3tgthAgvQR1/8Pd/tXvkdQE0AAtKOGVA9J4ICi2ce4saYXaAXqHVg+v/X3p0931llZ54/AqEBzWiehYQmEAjEnECSZDrTQ9pVabud3RUV5W53RF/2vS996f+ioyOqox1d4XB3l8tTe8rZJFOCEAg0ogkJITQhAUJAfz/7pG4qbFemo/OiOn4nLQv9hnPed79rr/WsZz1rbev0xJ7Ng1UTsxAQ45l1DZJcCebPyyQFQX+2F6MxaweSZswyUGj25LlmEKVd2T0ynqZnFzwACZnKyrK2DzMcRzrIZpSEUNAMYQT5Fl5JQ4kBmh+UXTdlY2t3F/RoViBKTl2wEORm9983A2YGiR3JiavV0y+grcd5WC2qAXV0RJ9+unaUmCIAB6OjPdjREOq0VyuJiEYLarcV+CwqUayHqkaqzrswHdTGHOz+tCGO8kBNE1K/F+i6lth8VUF5R3qi98vWBcG9nRd2rfcx8dcDX1eHEOd88zMCc7Mooto7fgCK5swYsmyIwTF0zgeFbx6HmTT0VahbQMLwyd2d9AzlPxAtO3vn+slLZdyyfZv4XYLv1kuZbnaWrSOHuNTG5yA4Hk7bULoX3zw+nIcAaBqyTcJQaaG0bI8yUr/HqGScewMaOvRM2H0vXRLgyCYEV9c3ss0cF3DFOdm477WznouS5xDG5itY2WxrKot4PvRAhiRibjhbG95UWZsVQNY1J1OZGwWPMRpfy2kohfFPH6UbMlp/cev1+ef0GgHUrn15We8nBWJ2yGn98V+8OK7J6APsgecCTKB62Qutw5xs62xgAev3m994pIz8/ViGVZNZnTH2g0TenIxnZZ4N5kV6ZF6KPcFhyMaxhCsE1ADSlEGKui8wOPZEN5GjItznW4EmDN7SWFFr82jlIeMYlNQ8v4tdhwyWfgcQ0SliCrOAo1zk+Y4Bl33v+6+8NflKa/zGsTQeJSnXy16VKR0Lc1tgHtMl+yLsHOLOPs99CTa0eibLy7CmZZrAVxn4+oD4qYL8AO7ZrJklwKSgZNDq4bI3Z5ut29bcqO6H7XDYrn/p9YBhz2RbAQ7DIBFg87qO7G/O7xbAcHiuIC+TNt36UOyPqf0O0WZfLXrgeUXvHcjKZv78h/sD4CvQtMOuMdoruz/A6d//x38YgXNWz1OHo/1yvfszH2ZfIPetgiUg4o/ntaX1XxlI9nN0QA6NpjVzvTo2f/Dq0aF5wdhcuSbwmzWlLJOgvG7Uj0tcNgdOTZqWDZsVtDiGedhc165ZAFthCK31BYyUSF0A2zuZaBVIV2oQYI68pwO3DqCfBgTMgvX7zvMHTIrIn5xrnYXjWaNEjrnWUUaHdXsOadXyqYaK6N/PXMVSZXtsAdgWbJWq6L/eOHx26Bk3OyPukT2JYv/v8WwEeuz3kli6Y5XvPspep0ETGzBtdrGfBPycVsCt87i6RyUaDDa2hdhXwP8oBmX+rMpBPZ+FPeP9x06O4HjpbI09gYBNq2PQ8zd8kgCn5XtxJxJYC8y1Kdu4l5XFGaCMlos0wkdLijVRAN9YA/t3hbJatuWgYn+/VAkY2CRJAP4WlHg+mfbLJHLnhDpaxb0BT/y995r9eZWLMiP27Fn5Pay/a+Iz5s9tBE1xKvP5qS1NO+d6cCN2eCaAF9ABMPTlcc+AKT1YW2D4AgHesxRv+MOp76cTmoyklH0amcNv83/8CZ/vOpWcxNbMcFyXn8EgKseyKwx3fwWMYmV7Rl/r4GFaMd3USl10WXwZMKOlfpATfRabyQiyKQlLQEQs6rOX1cXIx5NlADlAPR85tFs+qP/z9fmto3/KSjFc/vNS/w2Eqkrw3RJBCYb3sID8goSd37evPAvxb7yyaeweIKUKgxlcV7wQS90XlvD21pEvlGw+mGZamZDd/KfID92733h8Rz7sSg0Np9tv06Rp+uY/3///mUESsS8HqRSiPu+msSmYBhNILbwN9NaJC0N7gVHwOwNMtXqCgxdUKPBaRYgVa0KAB3jJ3N4ro3Psyb6oYZmkDhlshGylfTocqiM4iFAJy463YWxUjpk+6mZzVC4kInfyPL0Qg7cRR8DrSACZOiYKy+RJGW0wqwAH6XpYm3SQFJDQlAxGF9byNuoV91uHlc4Xc6Jkr65dd5eMUABValCW8ACNQ1Dmo/e4HNI2NA1jAA1rM3Z2F6aGsWF5gACZnXUyI+rxSkbLGg6nLGSD7ipjenzvlmHwP+4sMC9GLuMQZJSwiGqdjSNYfffFt4eRKXnZ1Ch+m4mGgZOQMftM64N+p0M6EjBwIKZsWTvrg8oogd930g4AoWvLZKZlpPZCO95/OyRVECM6HyWV7n1PJQOzWS4384deIS8+RL+60pz7JRsqd+k5VCoLyBJgGx6ozETgr3wKOAu8At7CQAIHsaAShe4RJR8A+hztWOuAHVTScc3WyubG/Lk/WQT91Lo1K39awkionh7px7FYnKlOC6fBo9TndU9za4v+yx++niOIRcrO5i2cHgNw9Ey18vKZO7OBVT0714PBuzemhqh+2i21KG2O8+cWTH79y2luepMXXj822C7ZmOs59d709HZJwaX3G1aa01OCUh6VQeZnx/O8bdbHrWnHNnx4fuhWHMr6UjObUPvYWqzbvDL1D2MpvvvyWwHbSiDp1XZsXTl5uBPWDx48k+O6Y0yd1hrtqBUB0PpgCGRYU4AS+GkPK6XyclgiWjnPBAN74+aHAUyTeucNJ3z9Su3iLrLXgvkGvnbwbQFsdgFyz5oN0eAra9E9EWtwOeC1begsdF0px5gjpN0YUNWVRGR8qOC/dW0dT/kEmgWHM7OZHWnONEpgBJXKMFlYAOylPWGgJieCYXMkh0DgrEDAXRa9afXykVQp8W2NUeNsadrmzvliDAt18O+JnOojMRiSm3P9rmNwBFNHdDAADN3CHLBy36WCjkQN+3Xtw/xUa3g5QCfYYNAcZIuZXpYfw5BQvmByLvd7NHvsWRDFmAy9ZWum/Om5Cy7WW0auVMdvAQo+S7lSEDWe4vUYn021+X/35aMldbXx97U/rySzLYaYPSqZ0RsuCWSevq2xC/mH97tG/hEYv5TfvrO9YX2NLrl63Rl8jUsJsHxcQqYrTCbu83TgCfb2zvsFmk/SFi5s7xKFS2wlV372esF+XvbDtugjJVqSvxsFNX7u43zA3E+nQ2UFzlvdeYvubLRGjSf2nbhxuK5iQ1z/9HuvB9wD7wG7ue0X4y+gB+WbHZvS6wQYjLt4IR94b4kiRl7n6q70SSazK+k4A+5CDAUWcFXBEigxuPbTAu/aYsqKOqCff+VQsWZqQ2wZIw2wtBXzASXU2SqWAwOHjQFAnnhg69gz1sfP0cPZT3wXdsTXgGHXNOJRX7gaQHCoreD+5k9b7oneDefUTADg8f+6jecVQ83bUj692egMzRJ8wx0bQZgvRuOKBNY0e7aKQPjwerKWEktrvjjfIKbSmRVaRoJtJtJ9yS0kyy/mP+z7wST27PhGwIX9AT5eQJcvKIHxx9bT1wyZ9IxHaa+fw96Jl2LkjWxgSA5aD8+fjMN7AHvK6pnQiJEH6x5HeChjOmUD58X+jBVydBGbwvr2Nr13cSk3AxcAmRLmt0qsjR+6tw5MzStL26vWqsc/mbPkjlFZ2Jk/xkC9nv70T/5+fz402UdJ0kPZyquH3538rb39c75u/4Ne/9zv3BoBIPiO6cQZheyZ09am6uyZebE6SgtHKqFcKYNBS8uIBR/GBemh7xx3IHPT0cLJsyqL2jqOQIBWNWfHAMXWN2dViazPMtdmTwwH9uW9nGPPZICLW4f/YaXm50x0nNzMMTzYLJMNgRgPGvPEyRr+CFhR+HNEHBuKVYfM2Bw9MmIxxrumzNn9YZEWLag7pTlDhNUQPDYI8/LUg9uHowe2dHTQENCoYFT84WBotNRAj+Q83T/NDraD/okI3PdQk5z/LT3DAzkK6FhXkw2yfmWHvLZe5znVHISSFacnAzhf+YdgVN3V/2w494Byl91hZJRTnCcnaCkXHirA6NrQGm19PCubYFEsBNbCML9feWp31xhz06a43GfSYjmuACjiEKyDQAIAcrgyImDLfbt2JdbhsAMGGBGdNgIaNksGpTaOLpZlfFa2KRgI0gLnjuYq0RhcKJDKKmw0manRDRhIoPxav4daxWwoa90qA9rA3tN9yzasCarfTBfZze4t66vZJ2QNtO1MVMw5HGydgUKBRiY/SrutWXt0UMNmflnDLGc8O/errIrhM9qAHkiWJYNUNlGGBL48U1koZ7+rgA9AYlI5nWc69oT+RdAEnh2Yil3htDhVwAP45bYIWZW9AEyiRuu6OgcDKClREnlzdIKIeUimKh9pbg3GQNPD6YK578uMMQXAhiNGdtVBdkSZOnsWlL8IdAoqewPG9FKAs7KB96BVAJg4evsbCFUyBZ7YIs0WhhJ4knUCFQLfhTqjTqf78u/BFi1reGI6F6DMvXu2GiLs31FqyA4kXmOKdd9XoqRZMuYAW3w4J8kO1lU+EoQwBYKTTBWgUpLxb3bpMGuaGp2REjplAwECm4ItMkmbg6YfIeZ3Gj3A9nn3o6S9uPlNGFG6jlfePDlmGj1ODN5e8Txci/KHOUQSHScSvBRLgaF2VqFrkdnq/rvQ/QpzTz+4dfg3Y0IAZusq0F3ueqYBYv4AU33EsE2Bgq+YiuynZYP1yskFjIvWvN/VkPFh7z+mITd64tHdW1rvKRO8MDBD47QnAOHz+C570DPTSNFSxciUHAUwr5VYmdW1POCaKY6XwMTefA6fK/gLwpIS60/vx4dZD0N36UxGJ17rYTaeY3mUnLy/z58Ty6NTznlsblBpF0uNtbeeOnwNhsVwaunf1/w5s8+UV7AVnpv9jVnRFXy8pgrX5PkDDwDX2rRwY5Bp680eVQgk13O65wONr2HvJ2PJrLH7x4p5T/5h2r01bdUfP9Aq+Dn7ho1i7YmjaWwBYTaMjR7loO4HmyMh50em7FFauOx5lMj6+u7GxmAr6RyVujxbmh+vhdan9wI8AS//7q/sJd2r9e9ilea7rYiBC332VFDtefqavUrKwM7GuIP2kuvrW4OJm2pGG4XSDUkoAT1lKjGQrxkNPV2jxNQzFr8kLvaI61Eqn2qXprOM+NppmbmZWcUc7+X+VZIwp3R2fKkjaNiQ+wZugDE6IgBUORHTrcN2YcB+rN1YDVpcpwm4l8Bfvs2g0vUBPTHLnCTdoL7Pt7lmzxBzi32iz1OG5etMDT+YP2Q/99Z08w/p7n7ectvPDpJyoFCyzGl+QIbwERshOMzpmIlj0VkuBCB5JA2MzhabRwYHLABAgsc0iDVbJIPnbLfSybQwhk0qKaD2TftFExN/blq3OFZoUVnE6uGM1CENksS4yHgNPAMKdCShNGkiVuREOfE7Utsa6Oaw0SF6zmKwPPdsbJp0PyejtXkZk40rS1VHl3XZHAb1ERRPJ6JqA55O95aZCjqMFUOj1OXhCYTWg16KcTEEszzMdUHnKptwqE4LF0QxckOND+S0CFtiAgzNcj3Aj/kjHKLjLWZHmznr6kQGboOYSq4rTaCyIWcF/tTq/fyR1sO1OhQS8FC/998EqgSYJt/SiaFe1e+xNcsWV/JoXc0A0anixOvz3SN9hYNJj8QmYd0+BEJjpzj6VzozCxPzcdfLORnoptasFNSXRjZg6q+uN9opfzgmLF2j2Mpsy17b5ECG7BdLgk4WHK2NZyXAqW+PgNH6uj+b8JvN7doRcH7xtWMjQChdWGcAeFDnrbdN7H5R7tbDxheEp/ZyeQBwDu7hPZsGlS/Acyot57BlBzoKxJwFx2NDu7+NAVfZLBsx1I/zEJhtWkEDYBTYXA+nNcrJOVo2OsBC1zpsqvuW+RjhcLgSKAeyqu8B+wKQUgJQJZt1lIUJ3OzGMwXWdJShxcc5Y9m+TMv0YY6PPkTJxOfrEnX6O3DCidijsk8BbVGBi01qhuCwAX7TudlunmrcL6C5Lv2XwOheNueAMDTAOQaNw8QCEUTL2gHZcWxGwUkHDsEzRylRsT4odgFB4BEETPr2t1ldWNCF3bu1vCs2QvlVByDfQW/oWnSgeZb2nZL49OyohMiBMUCaHg7LKjCMa+n+6HHsT/qd/YfOjWAMYNNPPrRzzQCuEic278gb74kZ0un1fskIOwUSgWpr6sV3aLwA2E3F/59+58nJqgKGrOuLNrROLiV6fwiNneUm+dCA8GpHzxhWq8TAZr03zZhnfik74U8wsljoUXrL7jwf7MwY9Nr9OQ5DEiphudw8LMHZvnHf9jobtId06T335O5xgOin7S1+Vvu7tcFmb1m3qmdUaaRNi/0E1pXNK6CMP8ZKuD6z33SD8pH0YQvbS3wVFoZ/d/DslwKCxwOgQLJlYudmrrER/obEwb7AQvCRu5NMCGbs8Xy2h7lzLBXNnSqCtdYY4KB0pWs/a39jGOmcsPsOy7YfMokxvZ0/pE3UUbgo/+vaHc8hHpkBZgo/4DH2ZuttzQVlYGAwQW1sMQAA47P9N1uTEGNj7C8djNZQQqbD03NoSUZi5r2UcD3bASpbz35g+K3lJWxAltI3+xMvJDg+W5XBfsGOOneSNARAY8sSOe/ubL+t+W5xQBefJE1SSsTcR3RtWL4+rv9Hx4tY4L88D/cJ1Nmzki7gEmC2ptgz925djDTpLUrcu6euC2q2hvx2tzVADT/u/q01cMKu3Qtf6BockbK0eCR++GylNXbJl6lOiHtHSkrEeWwRP2xd2cRtMX4IggH22FGf5X29Dx3l2nwtBslpB8bSKMXNK47N9ad14s+Uf++JbDGmRYzSnbu/KeNi0y8MJP33v/bYYIIuteBzWwSiYIsmMGtBl5UKSGPeSyvpwFmg49MeMCGoID3qjxkM9olQ0IKpoQMoymAC64dlHqujqc1KGSPIPzOn4YvEle+Os95MGr6o3l6wVO6icr9cYLCgDkt1zg7Bsw0ja7jcsRCfJcb1sC+0uS/mpOlKBGxaGk6XIJxj+DyggfaDfn3vQp91M23LLVoRQDM7CH2OQjRrxMG7NoOscsvqFYP6kyUQEN6RoTNChlXeMoKTrHXKXnU9bXzHIiiHyAjoWsxr+ixUfrzyiMyIhdjcXquip4+evhiTV3dMxr4yNkEwErAheUFcsFaXxsLoVPhSJY8vygIIT+kUBBtrRayLLraJla1OlvFrq1QbNg0dqPSMsUMAqUDBSTBAJzzbREYxOAtK99oju9eN+VAC95jTlBOwaWxcgRlzs6H1USb7OG2HMp0XZ8fpKue5J07owWZUcYw29caAgXlRgq+sgQjVxvzb59+cfP/FQ6MLZ3dB2yA5wlallvsCj0pe3temA8wNtpzTcR6m8546czHgcH0ECW3Z22OvlIuVoQAlgx9tTMzQeGVLshWBmVZrCNpzcAI+xs5NYmFs5MFi9cw9B4CGbsYfgRDQEwh1Uh0PyBo94TlIJLzYivlVn36qLDudJyKzdDHra0AIg+RgSwICs2gmjmfoBnIS2DZIW+CkNzLwlHiXg7Xmpjd/NX2CctKm3mtVznpDerkx9K/rcO3q+cc71uRG1wN8O2oIkBEABCb7BDPy1MO7sguT9xtrkaPm7DGbkhptvUTpykdDYxCIA65G5tna60wZDjrNyl3ZjeAmy1SWf6fnsq7gticQ79kBzwIUwGZtRoLV2nneALAg4fktjfVxjUAte3aMhUC8sv2Cvfb+mBqDAomHzfriOJ2BSCRqrQx59Rmy/JdePzE5mL8x/NFsI47VPqBRcQgodlrwlwkrXbCDszF6mKPzJTYACpCqtKgPaEEBgMhfwuR5YkGU02gJ3ZNgzg9aYwEN6NgVqNqc7c9qjfkiwVJJ22f5/AGOYrrG2uc7HXLLz1gTJfZv/9Ij6aKmcgDC37+sjIVpXNF6OPrmQMBuPJdKssP+2qcYqLPZM8Dj/qy9Z+g+OVQzoqaBsGcR2FIyxoyb5H1/4ww2NbMJ062Ll2RCA8HrtevvS6f58P0bJnd0j5fad35nME79vgGXWBJShOJqe77xIe0VpTAgaFQfug++72IAmq4QG4n92B7zBAiQOyhLsheVCX4kz9Per7W950wa4YxKySl/wDa022PdF9Sg4/5pEyU3/Jq/R9mp/3a/1sFzwoAL5PSDWvT3Zmf9YGxke6x78qx8pvvJKQzgyd8qlWH5DfxUUhcTzeLyXIjDAVkgxV6VAAJMQBnJgPcBXpTGp6AO6KbpqvPXHmiNJSB0mcCVOAZgANl+z6wh8YDd8XHi4Oy0gON4oPybhh02B6gtzD8CvZ4N27AOwJH3wQqJG/64R/YgsRmdzX3PGAP3iPFhm2KZxH2wQ/2bnIUfE0sBVs9A3DCiw7gbbB8pBh9p9Vzr9My86YiGLnvcnyGXBqA6XJ0eD5mg1O4AdUmEZMa9ixWeGwCoPGlIsHEcf9OJEr8wkOQgQ0JBweWLFomjG+g6oKOk4gFuysGhLS2Yh61OCm0K3tP2w7QhOSPlGg9LWc08mJutEJru9soOph2joV9pqjRgxeCPxmKgxzl7YAKtp8RDTIhGB7BmV6M0TwF6WdsG8NlQLON+M6Gsg10zmwEMZFzqwcR+2rIZhgWG/lGjylOcNEfMYLFOggwjgNwZDDC1pA0GyGFjFs3RZXJjCM45Nef6bEt0CkgREx6NKQMMnmuUgjKWEhHU7gEqJ9hgdxXc1ucEfvfffG2ysM/lnAw/FLTXl+09+8SeNmaahp8ydDRQ2d8Ai8OoW3OgZWUG9Nh9ZV89I9S1e2B8+YHJthwZMau6re97hkPwLiPMEcsgowjafB9OflTd/5HdG4bzYfjPPrxj8vW6FNfmcGSHMgOlJGzI5rUBtj6AUJVjGEPLAok+yyGtl66UsQlSPQcZv3XnAGU2bOJrT9zbs5KZBBzKpD3r150plrPkkK3pLWrZPQloZqWYv8NJun/gDFOgDEnX5efuTewuE17cc3ijoWUc6az2OGd6f8L3rbFzNBaCz/OvHc9RV9oLYC3tIFwba8paNoMrm8dC+bmt6W6uB8pQ1lgvNgoEWDtOBGAmtGWnmdy4X04IiFsWc3H3T532xcT/BpzKuJRn+Nby+cnDu9aO7i5Mp9O8p4dUAsMfda3zRgAXTNTbR4ktYMXRc/H0AMZdsPED6cuAO5kW3RhG0TEg7PFwYOj1o4mF+x0AYEXP1DoPB9lX3efoyumaOHczZzQr0B6Yam/PGdz4ysHjAdjKfdndU/vubt0AiDrIuh5NGmx1Z2wB52VdsCLOq/JZ+dnBxmIRrJUSNi3M3+XIZIHAzeaSIHOODNvjSXvsk0WxnjRAQBCguP/tdwOPdw4nOJhuwbjP3dDBvUrEL1Uuwx7f6AMBAGy1Q2AFiztrvgiv5HvSg3QfslpjKoA2pad9AfZnmtwvkcNGuQb38T/Wsm5kxsudi6ikwuFjQvkjnXofNp/MZH1stP01ZVFjxLrX19PrjRJHYIdv8wyATSVDoIQkgT35GQd9K9V32yNg6w5i59iAezZrSgnsBeaUoj4PJGNdARQJqnlzn8RGsHlB/3gg7nAt/YAi/7W69+aLTLMGVj0r7FmXM4ChZ6l0YVL9K2+dmPzql/cEiDSafDGaRIqB3XcDcnsPz1vydCR2fU12ZjL2b371/tY3EBboW5bd/dbXH0xHmo3ma+m1qoe15zHF10YsYIf2k+AL9Pzeb315aNx2ZD/WHNO3P4H3Vx+/r+adZtiltTHE2PE9fIcJ3QI6/+M5+rc9e6J7Pn6ybszWxrMAfIB4Sb5Sv7WRAEni+R+JM38yEuj2tpdS7WCkem97HONJYsF38dMf5w/EvQEsgJJAC1sUp0a5tN8XP8U0Pq+ly7c0hLhrOdx+4MdvdU6yRZ8PPN1KNIExtg8Is3m/D/hg3I6M8990SkY4/PSz2SlwJqEEsPgBsWtoJ/sdPkvSv1t8ye/TLPoNZxuqVDjlANgQx5EZrlkstVa0c3yS2EGCgxlg3zpcx5Tv/g2MiqWemf1xi6kCmgj2PSP3sIlut89U6h6211exStbae7BBrJD4iElakC76FuPWrw/wa97ZhZITc9BIIGhYgSR2Zi0l9ggBTRL//s9+/IsDSXQ4uiUECxegJkgMBv3JtGgSBHhokcGadWBkACpyVXoeqJCGRMu9m98YbSi4YaEEYEJvL8LAM3WU2JwL2wijo6iH7MG5eZuOQ/BirBbOy6Y0zXnMmKkvYmm/o+1YxogWh/x1xwmA6EGI1oA05RMbxybXKskoOBB0oIdIa2Ve0+cBAAYw2IV+RvfU6iWLY76qu0Le3Z/p2MAc6vPZRx0O2rlmAS4tvJvLKr/+2M4C5F3pH04UoE4PI1ajf+D+exJkLp/8w/6jkztai4fSVB2sNj83Q9FlY74RRHwugOHQ2kc6MsDFCUZmV9HeMOAtlW1ksbQwq9J/HO6MHF1kUwZmOuNkw9olkx+++nb1+dODBbGW7tUhj2b4DH1Rxk38Z5PsNp8lh8yYbdQLOf7jbUpAB8W5adXySkTLJmvXVYLJwXvdneDVpl+SA6epIsa3KThf5QIHl3JS6ugcwT11QskozCUS5AEiToKYnNhWBsAhaM83CVgZ5r/5pX0NW9w4xMwXyoxNt7VJZVmAOocieJOIO0GcTWkrx7yxA7aK+SCg14bLWQr0Tim/mQ5pMFGdE7Wsg4+XBkb8rntQ3vo0R4d5MCZCRmQDtotHsiCre7jxC0CL9zMXZl9zfRYGjoCgbQEsIyd+3LNmg5z4nJwX1m5La/xMZ2fZ3B8EKl+t1IMlxCxwWutj2+g+AAnA2QGft3U9SqHsA3O0dV1jDbJH4nK0vpKKNlrP9VBzdThGuidJjnK5+3+6tuv1HWS7cEGC22zhS2lvhnPs+aLDAYAvP9Q5gB9cTLdWGSrG6WAt15/HLOzrLME7Yr2ebgDkgu7lw5zUjZik7ZWkgVzrABgJxp7twp6Ta1IePRhoxRC63sMFZ6UeDJVguz/7/FETwA9GkQtQEha6OmWX02cr4VaaoQGU2IyELD+jzAa0T0txypLTzjXn/vFVnoGJ4PaDqfjs0efbw2PWWzaHmSFE3ZDdKjHKawFyIEKAo7/AAG7qOZ7WAdZ62RdYIaVlWhxszMla50cponsTvHS+GSpKb7V+zHlZMX72SGDVfWEo2CxA9CvP7B4CcGAGeCYr8DcGBqDEVCjzOST6k65V9yR2iB/g91Z1HuKqZTGvvScJwqn2kLKLUjXGQ/Bnv8DzkfyJeUvf/sa+yf/8u1+b7GyaP9YSKwZwSHD5ayM2BNLFjQBYEOOA3btrsWHAlXPbd4Kh9WT/5AiYZ9e5qyDsbEys4fET5oGd7+y7k4PdMSPMXmSH/BoQs6CgOy033RbIdRZojQGBQjHiG998Mh94afK//V/fm3zErtpHBPQ3OlvQgdOOubDn2Jp9t37VwuznbPuqtWoPY/j5Rz9j5pHgbF+MtW0PtywjYcZ50E4CBON//c3O2CnQAsy5N+tCH3O3ZD8fJXjTdEoy+1bvN/Vhrl3gB/7Y8jiFoZgEaNjrfO9b+WplUz6RH1YN4UR5VASC/S6RsDb8tYGyA7j1s0C/mKt5gy8j6gdKvA+/OcpU/R1eGN+flqCBxCnrJEa6foNVJf0IA4CKcB4xQILBxg1TBa66rKm/6R6v5hOHHrHFw6IjQ1wLrZcKgvsTb8VHa+Z5+lsSZ11oHO3H+wO8knn6RaBcDBUrBiuUHXsW/Vo4AsEiNsW+9t4+s28NBloiNzSwVbV0AvsdYBtwBOL4oT/+m1d+cSDpvtgCrA/Hs2xZYrTQogfhEFuIEjOgXGWc/zTzVdfEyqh9VsNuYTEnXjaYxSRYBYLcLAPDUGGHttXBwZkShDIIToLzETghdUZtczIYi00ACLxwFFdqCwfklPQ4sOmsimnZZlWLrk3Vw9Nir1QhW1PWAdgwDoakCc4Cn446jNcQvPZwr/fwB4jKuGlVTCu+0ZNTwjvc+UeYBaBRUFGuONaxAGcqY32lIVdmh1wquzTM8PV0DT4bCHx0z92T//a3nxvg8O3j76ZJWhcdO6XrndSMmnV/KO1Mb4gWlRqVjaznKA9m/dYCBcuo1b0fqDPus5zHts3dT473eN1Z2tO3b1kxKHkglsPgUDASnDMGxteAT8b3ZMHe86MxOFeJ72q1/5sdKWIysk0kgzAWAEg8UuCkucFu6XJRk3ZsSVF8lGdvdapYvy8/vD3HsKDMIR1O98R2svOcxJQhEpjHWUJdh3vnPA5WHjD/iQ5GxmuSunPUdLII3LJAYxG2bryrjPf+4dSVtTxfdvNAp5mb/9IlTy5nI9ZuTaAazT6cZDZoE44Mp82P+l6QcN+E7fsbf0AvdPid94ejdTI2WziYzgcbNwBF13mpjYkJmNrpVNchOzR5W8BzAK1Ywln7Wdmd4MLpGhFAhHuugHCxYOGFlWDvXu7DFFxOxsuRA3OyY2ezPVqp8xsdZnxf16oFncMjsFcqI+bEcAHR5iaZIcTZSRxWrqjE2fUCF5y4vSbIYlZzR+Nn9lSmxGycSZh78J13f1oq6siKhnNyhjqsPBOTtmXVr1YuJtSVsWLJNpcUyKCt32B2W1eaEMGJNu6xujgP1G1p/94aoqczVbKEnXaWmPdG3QPSGg0MyVQO4+yH7wmcASRYWeVPnXT2oqDXl4cu4UBln0vtcdnq0QS/mC22wNkSDws42GXrtixwf7yyEYEwp8vBAuE0REoXNHbABaaPb5sTiw0o6CRDHZoK73BRz3bMvSl5Eqg47V3p6DZUolsS04CtAypMWcaaEZ0DWlsaMTCv56Kc+cOAIoBG4E+MLki5Br+LxXGfF40fyR9h7R/bvbY98UFBJ2AQUDiTvpOW61p7R0bNX5gmvfeeTYGPq5U6zo6uJTrSndnHzvyDoPnLX9oxhv+++EZT2FsHXUefpO28t1J2rjzf16yskrGf1HGnNNLN1uFYcO0+iNElnkCy45GwuQ7SPpJUgJbEOAIMBLbf+vJnxOeSPrN5AJKdgV1n5vns3nqURP/uR69PjsUWvBNYE0+Ip8fk8e7L5wmuAq4urIPHYsRaz1z4ZFf3daWDf63DuvWNMcEuZByYJOWmqf8nNJ5qJgXVHtXwSUPYna1iQOwZe52UwfP0bMXAH6WLHF3TxTJ2xIcaTWJ/jJJT19A/x16WANqXHwdQgITBrGSkgJKEmpRiUTqrNQFpA4CV1DCEqi8C/rDp7FrMxGApp0GnGN6NJcnuh05W2Y3EAsBUkmSP/JyWeDarUuL6hv30DNiO2EEWgMjQwS028Cd+zrPBdvKXyoQSt3KjcbqDqsOI8V2JTlMJMLvGYNqjLhFBIrkAPv0ut8bfkpRITIB/oB5TSYN4OL0R1lSDD5+EoMCuAqbi8ugmzDAAJqBrSHlaew0tU8a/bssA9Ghuat/Ttprs/5c/fOMXB5LuLTAKLCtyWHNCpRy7mh9U7GEDPhYKU3O9+RoWeHWb7SuVaB7dvXEcdyHQWRAzYm5peUZwjgLHaHAARF0eoLkQMrc7a22f2+YDgMxOsVBmN2CJiN8cjYFWFWDNfFnaRnAshynB2leFGE6OnkIGJcs818NDITIu14M6pW9ibgIc9P1WzsP3ZDruk3ESNwogaMSVAQAOx1EffaGH4dDOOWPTEzfOmW2MQEPeavk1DuBCxvZFhv5uG1nGvGdrHXixGRsa1X9PbI2NhWqWQb9y8J1m8xwa4OTuHDPwo+Sh3dIEXw7SwbnuxT3ZEDatAG/YJoctA9SFqKPlr/7h4ChpoiWBjt0NnXv2yw9OXqgNljGvCTwRxsvcBJlRGooF+zAKmRFb6w057jWVN2wya+F1uXW2tm+1qejOPA/G7ogFToYDw25wDIIx8Gr4IGBLIIulArY/6We21JYPoK7ooFhOhEMfYvrWhANEMQOvtDNq7sTYSncf93PE0GyTsNwUbQ5Q4J5btkUrhIFRE8cCuSfiPkCQg/OMsRjs1RTk23JInDSwo9x0MKd8LKr+eHotwMmk4L49NviH2TzHQ1BPW7E5nYFuqbOtw/zKQZzp3K7XGtns9+X4b7bejopQ+kJvG5SIuSKmfu6x7cO+X37z+HDcLVMmmgPMVtfUhQTILC6L52RcN2Hnzk3LJ1+p5X/3xoY6dv8nzpkj1Vl3Mb/HczTH0vnI6u/MNgEVDmhklosWDTE3IGJ93z2vQYBIOCbXuvZeykfm2dCyDdFl4nq6GloA4Pg3OkPtm88+MHk0puxErMqfff/13gcrMndMXbfGywJsc3PoIo7xGZ4bZ0V/o3TIiS2OwXrs/m11gWmOuBrjujsgvXPyS4/sHKAQsDGv6FxnJT7e0MT7KpNifp9MJAz8aQuW/Xr2NF5KkW90pIoAAD3OSURBVBhgjA2QaXK3YAu437tj00h6FuRXJGFmqTmjb0Gso4BxrUOqvRYlIvcZkrFb2hHBvC3cqxLltTogMwQMDbYMYylTtT4ctht+queyNOZldRoyGpi7Y5/Q/6OxITuRPe9OF+V3TLGeHpW0Nj+qKeZ6IONsTRgXhrZpQfcnscJCAhaSS+30AmC3P7pDP+s92fsvPbJ18qtP7WrvBiK6j4NH3x++9RZzCRRg+U1enzv3tmzIcNpPA7mOm0ozlJ/zbIBRjB8gBEA8/sA9g+3UeaX7Mfc6Oi6Vc6yJPTvAREFsfYNJd5bwmdV2+szlATrZMj0JW8ceWT9dpQIvsE2CIJjyFz4fmDrTXrJuOrv4Jn5D8CVW3pdvvXWAsQGr/AZmnR7Gc7GHlZOcWk/CsadWcAeTL12QSDhtmaRzaMFaQPf//qWpaP9bX9s37Mg1EUC7TraBRfLHfYy/80PTZ35nbFwdxfn90dWaHQKDyv1Dlxhowdza6/YeW+SXJd/uhT6XQF/ShCQAirFG4qHPlaQA87cGSGLw28bDh2EXgW/gAWjS/APwvHaohKZYMdazNWXDPktssCeAPeACeLC3SUw8Yyy8z3Z9rl2s0QTl+jQgSFh9DWPGFjX1SEr87LTJILDZfyv76iyTgJi3JgHTkMK+kBeSJH+TgUiexE+d3uKRdTHkFKuttAwPmKVHwoFtMk3ceoivQLCYbZ/SI7pGCSWfabq+vUl6Yb6c+/7eK4d/bpD0M89JMnL9InSZIQAvMpfBHkUpulGbREZ6KTAjG3OOkiGNAs60DXnOoAV1o9h4VOqLFyTizElijbxsnss9xM9zMhv7GSW6PXW+CICnzy3se9GrLRphKlpwXkDkjtubAFyr6cYcIpr787Jx4wVm9+AYgYzW63RZObHX/Bzy0oVEcmYGXZ883/wPeqN1y5eVaai7TiefantVktHFx9gMs1tRoHMuklrz5HYMQlRo772iLADljZq90YNw/hjNxd5d60YK8Ub11pNd28XYAhmyjosbXefsNsTxnPT/8h/+bjiNzwMXSgg3C+TEi6vKOAVa9W2ALLse72cdMDCAEGP5guPu/QhRZWdzMyjZ4OM5aWJczkXJTOs60Pfo3rsn12fPS1NRl0lr7VnRvixovTfGBnD4Ppcg9pGml5pjcS3mY20AR1fHidby+QOnh86LvmVzuiCO49Oe+8gUClKC8rkCG0E5fZFWclkeQaaDkLF5xM2GB2JHthbsOcY3KkOiw2UKveUAIdqVDRU0U+hv06vY6ES0o8MvB0+cea71MgMKxf3n39k/mKrHm2siIBw/8n42VKbWzwAWBJE26Q9+cmjYJ/0J52BEAmEgwAd8Eo46Y0433Ge975UE5zLL2T2Is+fOx06tHYwEVuyltClE6EZYrOv9MIcAAkAJIOvwOt33nV12+7t1BpWZjyAQqLjYBOKHEqorAdz2Ycf3dJ+6lAh3ja2gnZkdzXxXz8NB0GxX6XnDmkUNUdsQcCppiWVgHsAoR6QUoVFBSW5R+9JgSvPGZvdcDGf7KC+r3m9mibb197Nr+4YjwfICVisqJ29NlwXE/+i1owXN8+NnJRUAm06vR7OPlwtQrtf7E44vaT1khRKYJV3vzeaTbUkcj8lxjtfx1lOGrITApgEcTJCSGof8woGTo43+2Kmz2Wz6hfYD//K73356cl8ATWOzI2vobr7Iv7wZSDeDCbPL6S9bMi0tsCWTnQFSInTskX26sIC7pNEei0q2jDG5ln3TkAFuAoUSnAnXHKxymOA95qF1Pz/4ybGRcctWvSSEkqij/ZxS5lOPbp781vL7Jz+qqWD/4XMjm1eStS+8D3bAa06fdbCZWgOI9e9nA4ULaij5ycETMXEXYuCa2ZQPkoy+2bV53hoGlMi07dNcYU6cB4hVXFaypqzxasBq67rGLGRTHxXYfE1iieHYWlnbc5LUEoEDIMDbb6Q3PVxSCPDbz9iDPdtXjWROQmHavED+1Ud2TP7se6+2d/Lv2YZ9/c2n9gx70lkkAWPXs/s6n8WWMopmKTWEs0Rg17YOF+9ann/1/VFmd7g4NueZvfeMES9H0/hc6pr5bWeuefYSE4DQXKs1lfWv9f1DldAkq5hooJptSDid5YaBliCZtXQ+0PNG7d9LF2Npv8hnnQxwGoLs6IuLo4EBSFwdOHS+3qqjC0epkNbsW889NPnjv3pxgEBGCvAL3gCJKgN7lWD4ugnzfDHRvOTloWKW0Tlri0mE5vaZ+wbgNQUJ6ACmuMIPAQQAPBDcl0cyg8k0FgV7Kbn0e32nWNse7jMdjNyjHaB71lwi8RKg7vFGfgCb8tQDs0dnprWk/6KrxbCxN6BLGWwAyd7E9bgOtkS7OAVLDYXsmn2vtxigr/8czw3gER+MBTDzC7Dh5z0nLJJ1Gcem5OMBxXcqfym1I1qwjtACYOMGXPNgmFsve1ipG5xQZltWlQqLdTSw/mL+VQIgwdRNb/3tV3qvIZnI0dItSaIxbpg9n60Mi7kd5dwY3X/J6/Y/6PXP/eKtOUlP7N06mdUNnSpjfLfgh1YdeoIyMq14gpSNyHh1UNgAqEDiRcwLR+Ihby/DhQhpmj4Iba7KsT24c/NoASf0BBJocYwZWJpA8+l9Wycfl2HqZjoeQqfNuLUQC3KADNC/LaZNqntnzCapDMGoH0+/gyXyTBijLgDslzKWDBqw2d68GUZMv+OIBYtrvsriKGJOxZRpm/WuHAunRbCqxCRQmO4se/q8J8tpoMiBR+fniPIyXZmjjezBEox6uGvbmAKEjM7fQKcsa0nO8HKf6X4GSCvgXUjTAxhwbq7NRl3RRuAwXD9GSUYk63m1sgKQ5PkQ9f7RX744AIkzqt4++e4EVf1u66groRE8YxMAJYKHDYLlgdxlPA4FvafgJlioS3MEdjcB8ZWe1fK7EnYuV9rr+VWiWLdixQAKmDLXKquzGQAFZ2EZ88AKFvfMHHVgtolSig7FI+kiDhc0TLrWVei+vA9HMKaut8k4J4fUet60TM6kw37ZlITY1hCIk1EqnwpsshVzqnTI6cBSqrABnYtkDo5ARGdCyH4gfQE20vMEltmNIyV08dwCx6Z9o4QdVfGNJ3YPUfB3msg9N1uUMQkySoGu553A4M1sDUADmrEtmEfjE9iD97U2np1nOM4gzL6ee3TH2BfKzNaR01Kjpyk5VmAjeF+T/RieOA7ijQX50YFT0dNKh4HAnJ2EwOGhzjUaQuCcohIVpw6gxv9WSlw7DhzGICzs6/QFN3r+Ag1Nluf9Zkd2yAwPBDhou2iiPMuNq5ePzJUdvfj6O2MWFoYYGCNEfrTAZz8YNKl7i5NUjjNEbn2lGlnzomYeyZq/qCwMQFxvPThljJ/nQwdj3zqT6Xfqrr139/rJjwPJs0uOMBEmnBPPCiKSJs5bxonRNrpDWVOJBJhC+3umwO9dgYqbST7Y29vvnBkMiLKf5IvvEYR0PmGuldWU4QnHf+PpveP+ZdCYybHvM2iziwjHv/ml3ZN1MYrA5guVYN6/9FHl7TWTf/Prj6e7Wzn5TgNeF6dxW9Z9K+kdaLieEsv1mh1MWMYsmlF1W8BiaFWys4cCodcLjO9mS5sKuBgDzRnY84W6dPNXWCv3ihl13tmOztbzM+wGuGBj2DsvbA/7uDudzvH2o5KMDPxsPh3z+FTaM89YskVHcjpmkg7QtH/MFOZCMwU930edbykBwNToDF2VzABjjwHh8y+1d7AB87sun2MAJP+pI9pzF1SVhjQDYVrsGV2uv/b0A2Pv82f8MoZECvBqc4qA1pZpgDzlUnOzpmUkTMFnsUt3D6bYkVHKYcpPklrPVQLLJ1SoG/ZwrDMY2Qq/wUcMlqc9dsvHqjbwfa5L/MKw+Wx25r+xMZgNNmutBWe+BchUISFVUF0wckHZbYCqfk83nHWUHAiL1lnynKsbNuc9zATy/obTChDplcdnWVe+wFw9jCkt5VQLFKvS77FZ4Nfe0918W59rTp2Yww/woa5DjJJg8y8DDPnd1pjeUmIpdmIprSnf5b0BI4BfdyUhtz2N1UFu9O0BcuZ3oWyH/8YI8q0aqTxvp24YsmqWHv+tcmL9ZvUHVlBSdHCu8R+9Xb6yikL3K4lmo2Ym0iyRwLgOiS0/cq3k1XX6OlzuHl2PGIi5/aikz+R2Gqf/8IvUJP3SI9tTlqO11UWn5QHlH8MdR1msm0DnE9VudyRBm5Mx+VmlEg4Pkp0ekttRCP3ssozQIY/AiQdEIL20m2ccH/U7QJiMXO383TIDXRJKOD3ZfrognFP3O1fL5tCS0zJJJZQ6Hizsg1Hr5r+g+Uo5x6LZMD4bza/OKkOj1XixDWhDoSV9n55Ai/66QJx5EeYvaRcWzDwEjBjn5ORvDBaDE5gZV18O7F0uICSoy7E43RjLhtUiIAY0VjRNWUstR2AdvWb1gK90r4LnV+v22rV5bUZTjbt1M9PCjBMZ+qBibbB+x5gD1ww42cE6kI7rmOmfjr+4M3ExlgKYxJS4Z471fLVv04ABqUVExb0ZcTthJaHputbtcuvIGLEYgtIAaTk0OqP7o65lPh91Mvz7lQae2LM9B7ciUfrR3rfOwZwEbZHSpWzxzp6l9yLudc8M2DPDHtjkJ8s2PohVsikEbYO/iHYPBIqcl7YkZ7guYbP3lvX4XQsAkLgOz2VWXTfsUfkRQ0KYKZvF8JhNM6VlJ5MvFRCBi688ee9kb+yb562suKzNb8q4wz1tuqs5u6uVPohYOcvVBUOgS32cE9Z6OrfS0uOda/WVSkRfKpEwmZojw6JgSpTssJhYSzS7a6IfQFsDLGzOZG3/TetFvyHIvHboTPdUsAwQsGtOQ8ARZAQXtqQEpZRrvpBDlwncdXF6VqyBPnBlgMRzZycc5cK6uUZbb//9za89FMvTXhtgO2ajzJyd/M7XHx2jFzg6z4ZDNdxTIKWvYtcrYjMGgOx9BalR9upZ3qXbqd+53ntqSgAw2KbRCfYNWxjvVwAxoFT5DDNhxpKyOhum1+BTiIYE1J2tyZn0Z2/UFfZ2nWz7m5x7oD/mE7FnJX0Hxx7KjwD8006cZlW1N+01WouWsH3VME0BC0TMdjavXTnKv9iS040FACQA8PvraLsaI/5J++SJjox5okn3yxJDY/XstU+6Z0Edhcumh+g/X4ZBGIegtkcPVO74YDCEG0e5946+FsfR89Md3CHg3X9uLD+ydGiZPGNsPRZ+TOwumC4rCVmzcmHi5zWNGLhScOoZ50eMFqEfUvLBvGQgk3cb4yGwKoMqNTryByt6tWSGTxaEAcTZ2Ra/ARBcybYlDsAVdh+Tu33LyvE9gdL+w4C91d/0Y3QwW9qD2KlTBd4BEnuzUQYuyTKLjNyC7ZmIrrzjw5QHBTOC7q/n156pjKr5g90MJi1bfK19/nasj8+gOcHOfP3x3QPEnDx3Pi3chRoGzk3ebS/xx+Zyra45hV3RKLIFzQt86bH832tvnco+p12FbGRzAJ7fISWQfPEj7FsyAKQAl1h1JVr+URlNFyuxNb+HPeVTASKBnR+wjzwD+9RaAGX8jeCty29nCabExpBeYH2IoLNtfp/DBQZcj5jGhwnsU+lEJeTskAwCwHozfZWY4KgpbKOkSxyWHLhf129Ypmdp8e1R14p10ulq3ICp4UDLithTU+EZn+txb354XuBmCs51lQFFJf7tE4N0kR/sxz2TW0iYAUf+lN/FaA6GLZ/uHpxh1xKN63VCh5lPu4jb+2yNTRpPvBeZhGft8wFE4N3+wy5h+/nBHlrXiDVrP1SxMU7DUF3labGQJslsKfebWUzjgHvrAlyft+//epspgPo//p8Xf+5y2+1/0Kv3+Cdft5ikbz1738hAbVqt+2aAjCDXTT39wN3jHCMzH2wiGeUZtegyz48T+6mFm9gtVyJY/aKHM6WAW+A21o0ONdUhYzPbnDawGqe6oszngwTPN1oBAdxiEODJhgVhC2QTMg7TtD0sBiY427xn6zKhO4CfOWiAzQNWAkT/OzrECPtVOX1DICHPaeeVmTMFvBC7c4Jog2g06GacDn79Y4JVtd3KKWW0XvAvZ+d/pv1C4AfKxAVyKJ5xdLmDmvw8Ax6ZS/fPIJ2/dNuYalqdu/vR2gssGiIIFHA4gisQhg62SY4WpHWuQPlYD2yJjPpKBo2GzBcEBpYMK1FSOXV+OlxQBkMzcKjuoo8qZezZubmAEhhId7O1AwP37lg7ZlVNu6bmFTBX5og+LjCdG4zK7Z1nhio+fOJSmWPPIkfCeaCb32iqLePkFExLBWIXFMTXVj7gEAUuz9jmHNnYMPA2SUadSbeu2mTL4E+/11rKrU3mNYl7dStMi5T9DMesA2PaKQGwytQe2rFpOGrrKVACb2ryjIbjI2g2x2dkSf0bK4oxcO7gV2rzHpNfC7YChkOBOV7ZDsADONI6sQfDFrVTu8ftm9ZG6a4ez4BjAJrZO2eJeUQPz49t9ezM58F8GbpnGJyOTM+LA9izc+O0Jbu1OVEAUhpcFjh5oU5IejvXbO04+g2tpdESAIGSqRKXZOREItludQSW19K2LS4AsGfjD+wL4AVDOT3NXhnwWtlfSUaJii4gU3I3BKpoVdDo7E/W5xmMjDyDQuVjidmkPWy2ltIZHQ1D25staWpwvI0AYh1Mqxd0dJQBixzh7gTAmB3D3twbptS1YqIBrqlYO8eWDb/4xpn2XJ2dlZLYCI2XwEir98tP3Nf9O54g4J9t2H/ukd0LRp7vAwX4D3uO/JWyA+2ZI498n/Af0/tea/dBwOfh2unffufdsQe39KwEKQ0pGdgYXcAGlE0lRF47s0u2KYiyFYyO+zx8XEKSQDb7ezT/yCYNvqWzM5PM77lHwcKLb8K06eYc3UQFBus/O7+omo41FbAutc5sWaDDJiitXs+GBFHdjC3QYNT3t/7frzP2zYCH4xjG2IDsVbBYGijHhPldyQrfJEoB6q8H7l4/dLYxDEdGhn4hNkzpS/nCmh5Ulmwt+FxlNesNnCiFf9r13Coh8YuSAyAJu2nPAnD8hMTI83sxqQMNm3K598YYARsXem8jKsQYh1WbWE7bxHkCkCZqY3vGpPeShX/7r55sIOiGoSt64cDxfEh6q+zTDKttMeiAsTEtKgh0SPNje4FZ8UUSQJDsOnT8ff3J3aOb9UyMBS2cEuoDdRsbZCnpBxhuASV7QOLh5flafPbus7HfprUrr/axA0BhxVQy+EW+cDBC/ZZ158/5Zb83tKV9DkIBaOSPyFLey749K+BG8jFrVmUlQG0gAf6ztQWCW3trTN8E/ImXALTxF6Zde0lYli1ZXNygLwuY9zt+j86H73QvmGTvR8+lygEMumZ+2Z7VYcp32f+YUOBw+JnsU5JJGwX0TX++CePdG9mE5in+Rrnvtt7TuBy0h/cHiACvwZ73uWKJhEks19FHl+XMRL7njXwc1gyQVT0Rd8XUAZCyM7bpujwTsQII/qNKqL+wOUlG6ncnY9Ofrfzzk9qTBQOUG32Ajh+iXUYBvHwYwvcHUt7XxNf76lKB+rvTNmQzgBhoC/1pCynLABKwO4IHRA79Y0+gcIJJglM1SUHGdUCvaHMPhYNguKj//jkyUcKzK9HEWmA9UJvclGCLRtc0tAn922dppfX6NF0PLY8Sgbq2hwsoMX+zTYxzf6hBbfsPnWiTYwI6VTwwgp0CzIAUgAUrwUBkdzL/UX7qTVCgDEkbuiF1vm6DOlLgXJmXTNEsoXE8CMfXtRGdujeOHlPgQGHBdlegzXwNgUUwkokAlDYQA8JYABeytdVlEgZKyhxlHebyjPO7Mj4MD42R312/atFw5FvqLnx+/ztDuHmjUQdjfkVnCTG6HtSgL2/eVJq7bXI8p+76zwaI9zfbyswSjoR4WMZDYCmDebtSz/FKfajm6XVOZ1nYEOhprIvADASha629Z/hsnXD/7ptPjGf4tz8+ODrUXLssQnmLTcjmOSziPOUKNvLInm09rwByz4yOyCYRgNmdcogDHzcHCL9SVnu6LF23n7IxoITWpTEBcj0/mi0AS0eh36fj2Lhq+XBqK9K5mHYMwAyBYMwQXczaWCeaKaVDe+C5smKziJSb2P04vBgoWaWbctk4/02544PLdA3XamFOeNyfl5sLozUXINPssL1uRSUD82EAl/1vn61scmFyKid+pPOvDte5dSTggvq3H3XEzckRyjinYm/n/bUXcr7aZE+2PkSrWAAMGTCnswWAYveL+n0D61YFngwvBRa9jwYCXWLvJabm3JTqNBcQ8yvLWScbtcc4sr2hCSgw6Iq0bwEEyQp9lLVXFvS8AJxlC5sb1dpwjgCmPYYZ5hMcCvzIfVtG0kXfRKshQDuLDPOM4QEw2Q9t15YcqiG37/e7Yy9mZ0o02Cy6DtFbOQ54AMm/nWhXYPjui2+WtTb+IQBqojydIQaFg9HlqYT03CNGJyzJ7uisKmm0D7U0f9BxLHJjzPnOhMO0ZVgBQyRPdrajpMnZdHOyycvtF+CAPu+uEiMjHwAaoMDZXUqd1nGImlsTWbQ9AuCQBhAXX+xn+BVlQqBsZUmd4ZJ+9b2LDbrMx/ADmg4Eewye1nn7QTClQXM49rKFDhA17y3f+VHsSwmhYGqvKUcL5kaseA5sWbMNlpsPnhMTIUhJfjwXwwpds9I3MMxHv1HC+MGlK3VAHhvXwW+YfebYFM0VO2LM6EMBJmws9pbvIyDn/0ka6Bolq0kERwDFEtPtnKp0rxRjpAyWdRqwMXU1POSnPSMjWhyyvKH33xqLmFuIwTo11sPPA0l0Ta5dKZuPYE9sWdKN/Se/sG5dXqFsKnDmgwELiZ4XKYakgH7M2vOHdEH+W7kf+OCjsSDiEDaFbdlbEgiAix/3PmO4bwCAXAJAsbdHolO8VH8Qg8Uc3ZCuCbAGFPgx79UDGaAD2CCSt0fe6Aw5MQb29xk+31q7NswhhlgyiAQYkpruCxDzTMSaKUicMpDWorcecYi/9vx11NIp9eWR1Ll/mivXptOVz7ynhMEeJdMRAzR5Aaw+EyNmFAKwA9gsyP74TB16ftZnSt7IZ9im4c6A+Eiz+x1MFPuQtCzrs8bv9Hs+/3//i1/gnCQdauaJHGiBPQQo0oNVcyS2QvOjkaFg2dToUOoBPvnApkoIqycvvn1icvTs+2OR0N0yGcHES2boaIW5rTbHpJwgm7UAbsziMRz0KcGdbJThcjQWT3cIR+JhyCYNZzTYsV/tj66LAEobhcEQhrrOpRkk5yiDY+QLEokpiXHUNCf7dq3JkG9rQufhsrHaz3tPSN30ZA93qitqPlCloa82E4kTx5IRrkPw2myd5/RkXTsCN4OR/QNHhJB+9gcp7TlXoEHQGsFDJt9nuR/aDPeum+iJh+4eWYj2Xmsh45LFMwBvzgnKVLSRT7tT1NPLOLun1XfF9txZKVMAbF0EYdk6od62huzdkyO/rzbkNzoG4IOcPHqXM7ZROH3P0/tzdox/06pV6WKatH7pckDF9GAHrSqn6DxcMITcAN7JmJrzOafrbUBAiXEDGpgIf4hBBS6Ad273b0MAdMptPv9Mvws4C8KO67ChOWiMAGBtjd27AD/ambEhbRb3t2H18oDMXZM//e7LraWmgDKw1kcm5hwyP/9k5TGH2MquBK65wENgBLvJQdqsNr5AuKlgS3TOQcjuBC/2dVuZPkbS2VPE07IdJSJMogNDsRI+j8bkJwdPjmetBHcyPQQWiXO1pgTdhJBYTCCa01vVWvpMZ1rRyMnclUDeeudMGhVlh6kW74NYvjPvAwEGDRaIy64sDF2fwI19ykpGqiiAsF+MEPYFeLKvrCWWVZB1j56J0sO51glVD8zbP9bdTCd6PjofgcBwScyCQAYgDVCa7SoPKDtjF2nNPDefy3nTKNAfelZjSnf7GAjXKePQYAHBGAvAdZSXe3bGYGCNxhDY9v9bGiI6DkmpRnuxrhaMojXlKCVXR/p9foZPuZmDBnzfSnB+tJEddCH3xRJc676V94dWqzj3WuVdgNt0cMMk+RVBZFsyAgkGUO/keqCEPU/HPkyzc4zYCc+m98GqG4MBpFlr73GhxE3Sxh+4XmJlYILdYZBl3kDedBxGM8OGPQeIW/OxByUDrZvOIUNjrTX/sThbU04U8LTrXwoc0Xh67j4vdzESuR7RyNIPZ5cSSMmZso29IcjTbYyOrWx22EEM9o0EXNcDGLQnfC2/wJcBy8Pf9/72pcTSs8IsA6GSGUHR3+4X8JYQYLy21VG4LTZvSwDySw/eM9n3wJZR2hZb6J3uDTDl5cb7S5YBMuv14O5Nk435Q2w6LdFdgYyflJxhzsQi2jC+hy71xmfTGU70jjpiaf+8j7lzSo/mhd1d1UNCKcCaRO/PJ8k3lK+dg3g8EMbfEv3v2FwXcrEKEz5liytTtW6SDDcoBoyhvT0Ptj5lmqaiaNIQ3VZ8nsQUEAcu3BO7nxM4BZq9r8QGgwnYSFqs6bXuSdFdSYrN2D/8LbEyZi9zD3A5/0wjFU2oJHZ6ZAgmCdPMj4sNu9KsYbzta+/J/lyPNQKG6IwwXXRAniufIWFRVVrWuiBBAGP/s2esD/bT/XQZww+6ltnF3DtKLpAHQ7Devge6+FSyijtKgBZ2f+Kr0Tj2rPUENcUa+xgw8yyV3+xjdgTowhfdZEl4nbyVcX3vRAm7+0YYWJMpqzUdmwG8iXl/9Bcv/OKYpHuqz+4p6O9KK4LBsDg7Q7ecPyDjZuhQBBvdah6gEo/OgZfSEZxqANzkM8xL7YI5DLV3tV204bMdl3BnTlXrvo4GNPio+WZAqGUCZQ/ewEngRGbv81BsKNfP2oiyK44dOILSOWLXJWNH5WGxMCIMcrFOp4xMGYUOQJlt8+rKbjm4+2uPfy72gv7no64VoLq991PSsQk5BxTn/Dv6u2sW1A5WBrS53UuXNYIk48Mcnc8JmS+iS85kakPt6GNeL6tiMO4H0LBeAJuM1ZEmjFMgcm9MT13+egHkZCAR2gcm4SPMF4Czsc2NdhzTqrsu2gCA4MyFixl2AtzD701+2ERpQZDIGJikhbkrtuNygRVAejxAt6uA/ONOrjc8k64HuOAY57e5AJYFidl3bl47mRc7gU0j7O7SB6sBIJljY+3slqGNCaTu7sBP5QngQhlRNqK+LKChXDldHXSEhjLqd85dKFBWXvB8WnvlQ4J4AQ6rga1ShkDp2gwflvk4Q83kWbS1yckPbNs4Niy2xQaxgwEzzCf2Qpff9uxXpiZrx5TYpPQ7QACA/kTdga4nnzeuU6Cx0QR2dLDPB0TZlDIDSnpkWsO5NTTRM4zxoYtzVIPsFLNFw/ZWtugzBA4sFCf2BcFuG1xRQFeMjiGPX2st5yu7GsxYdk1HAuTO6mvOozJbSwZozIMSk/emQxqt2j0LHZEyL/tCJwpvY11kxl5E+oJ4D2MEYwFZGU4yNAa99qzQ/spTwO7eyoNmpx2tU+1IAGh7JUcBiD5HUM4kEuRXlm9IJcf/G8/smTydKPjtHKLgCngoFwo4HDRb21ZJ3lRc7d6YJpm3R7clptrGkjE71JfdstF52ftzj93rkgfIcbyO8qGg53w3z9nzQbdjejlNh6naI5KVrZ0LeaLSOfGxBGhXyZwM9VzPSTAhsHdcxnjOPW9sCDGvfaqcjUk90zWO0mM/L3k7nv4QWFDSA4wkARK+v/7Rm/kCeg6arCkzMac5cd6bJorfMJBS16YJ1N5zCIF7XwF2iGpbM5m2YOYBWqse/9A3mdGkI85B4JJZxh8/MZg9wMsi3ddhsQAU4K4RhZ/kX/kfTDvW6NN+Duvq+xJLs7rYtvcbc3sExJ9qVvh+ehprB5CaNK7JxV4HBjDDkjlJqHKkYLqj41Z++1cfHtrE23t/oybcuw5Te8REbQw4/ydx9Pn0SYI/lklijrk/1XMEzLE77GThvBLrQI1rlZAZ6cHfiCUCrANPv93nAvnmqrFBMYZMAZt2rATeSAXgRJlrfswku9lfidf+vNE9OzDYGrgWYN66+plRHcgZ88tiGnsf69/PeY5AtGRWMsau2YEXlsO9mg9oH9hXNDz8kBewwD58HjBsTwMI2DzztE5339PKQUCle/DMCLfFu2n1RDI6TWwy2d6nY4X6GfeALTObio6PDdCjDT8f0DPjCQjhH/gZ166kNjtQ4xoweoALEC3hYufiHdAqwQO6SRLERNdkjdgvG6SrnGrlPhmkhJiKXXfP75TcSXJ9xsp8g2G17l+Sh6e80XXeauJxL8gI4nL7+q7WZEPNUtM4f258tq5oiQNGyjq4jn8Jk8SX/UyvdaHg7SHQFxoupqOLMREfLq1U9dRDO3oAt9XlcnRysezu/c8TJXZTykNvn6iVMYNfv8wskrmTO9ssjIGT4ogBHqfcX7SRYldOFdQHAu/9pjSattQEnTlLWTqHipY0WVQAgBQMs7KZbG7HmkCuBjPKkC3wZxkAxL6zTEBJDvi4WXBUDlFvvVhw+TwNzLS1mSh7UUzG5cHUPHP/lsmqkGofP/mrBlG9nqDWYjN8gI6jkVGv735uX94myXCcXQUw3R2lS2D23vnrI+h99kldfe+lA8iZfOsrezPA2uC71j/6q5fqIjKMsXXrumg6BBs08fJKD5FDgz4nIgbShr6r9SGyxJiggv+67r8P2rQL5+vEWdQa3dFnn58sEHQZbt+7mLMZWVaoW1s55uZizJegQeyndBUQH8yJkpMShC6E2zLGswEiQXt+a/nasXeGA0fTnzl3tbV3qGwBP1E3UEnYy5HK6vbUJo8BAC6U+ziR47F1V7MJoFpp4Gz2QDSNZte9ggoXXIA8WdonOTX159k93496H1+j6QJWrD+HYKM5ymLz2sScbSZCYEHbEQoAtUGXSmb0D953S6xAsGOABsGIhk7GKuvFTmJRvv/y8RHMdU3a/Byr7AkYH2WUmAKA1/EPD9SK75BTWQxGBtDFvpwvUBBx7ilA/fpX9w2H9HrDBtcV+AmbPfPbauF9MA0Uh6eE4lksbD2WFABml1x8cDntVAAUS2C2jgnJq5an/Yvd8uzPnAXSp/OXHIWTyU+er+PsR/tPtFYNlSv4KjUI3tjEoXf6vA6V1tP1Cgqzko/IUt0nnd/py5faJ5+MAAdkc1bnK7OzoXk1cOCmMGzA/ezbp4LyfFUBZypQ/TzbuZKjtRYGA2In3i1hMFfFtHqZqUxVCdEIBfcnibg7oPy//sl3ywobPNhacML2EwdAR6I8AvjYC9valx+V9SdsGGCK5uL4yY8Gg6PkQ3viHEIOX8DRPSjjfCL92a99aU9lmia6B1p/tP9UrOi1dEQxxt2zsiMQ/nwdam3H9mh2mm1OO6GaXJ3dLcwmsLSOYgJGv//K2wPcWAPlv9EF1jW473LFURK2VjooOfVfqXV++I5YQM9Q5gx4yZ6//uT9471eaFI/1hHAc4bknQ03nd/cpZXLG7GQ3Z+IjbxW8jcORe29zS/iQwdDWMecAbw0MIL//pIga0fQrdw0t3IHtsA63QzQWDtMkSG8RpTQ83jWyuP8rNlDWK0TMXeC5OquwaRnLMQ9+dU7OnMRgL6R3/o8H2gPfpENXOu+FrfnFuYDDOvscU7++nsHOnetA8uzs2dqeDiY7/vBS0fSMF3Mh3zYfV3ILh28CkQbPPj5OJ6FX1uUDQCuElTC3wGyu3fA5LOcl2Qau0kX5NXHNV5k9eigJWjfViBd3oyw//NvXm7vvje5uuWT5ibd2Zpo8Plo8sP2jUTjjquzxpE4v/rUfZO/+fFbJfk6xm5vn28cw3kxMSMJ71oweZ6H9Ry6otbcfgGmxUUzkyRVSkp/+r39ky/v2zZijZ/HmuqA68eycMDDWXDtNWCh9xzB/WYzlAIoQOYX8wxsnj15rrUww+1Uz+P24uLy7v2T7PxS8/PYl9dgofJX/HjZ1NhvEkq6txFQ+zFz68hIMDtiEcbHfQGS1z7q0OB8Bn9irSUIl68GTtofxN09lmF79jIANCoNxQTaL77K3iXvEPdNmudblLi9v5c1lFRKVNn9vjqTAcmXG4NBNO8czmXtMwwn0O192DMQlomNOAqo0erxt0gH7Cpts8PXjXLBXH8wrzgQqBLf/yWv2/+g1z/3i7eE2w+nA3AYJq2ALhds0vyMePP6RKvd6Ct1EziyArqfIlCTMHOGLdqKKOd7cn5oO8yJYGhzomqVNDxMI+9lgTrKdAGhta2Esgik7r+VW2R4X/SA5vd7WCSZ1RiM1oMylhz9TU/CMX5RC4usUqYvAKld21QyJ0Hb9TAAh/Geev+DhLOLE25uHu8JwNlmJ3Pqf/eSmSfvZmzTgY4eEJYM4HCEA43Kq7Vbq2n7LBsFo3arFq4zy6nU71/pOInP6pgJeD33+M5a6Lu2nN+xsk9D/BiXeR+cMjtSu9VVR3h7vixZOUb78Kgn97NaO7VKW3taEJuB0Vlj9L1WXa3ABJAbOmKBQ1PaZDB7m6R86z5sVhvSbJjrOTUg8LG0V1rG6WywLssK2JzUnETbWLFrtf9+48kHxzEbDsYc7UK5JOVBzIwS2c5AtcxvU9ofgc56AZ/AgSNgxoBEWo+er0zDc1EXx24Qgw69UBvasEfznqbatNik7mtHjAKAq6V+W3NhHokB3LUVM+R8nzk58/fHvaLWgW7AXGapnGo4HYDgfW1ObCOb834cm6CtVMJZczjmHmEeUfTWZmsD2xyLYm7U/DbtqZgh9+2QT1qVNysvCVQO4xXYL6VhOZRDBuqwVKazo+aV2yQa3vf+DgEVUA9lu65Fx5egYwyA0gKm5rH24DWUd+XgX3n6/s47em/yduL7yzk+2pmdWxvIWfliYfd0oHKh5EHg5aitLy2TMohDmjl29H6mHHCgT+i/sjnAnx0DuvbV8j5rY2AMYAEGFgXgJEgYKUD26Yd2pinZMNgDpexZBS9JjYOugVEC27M9c63umIcHmjtlsrYkAlMjm3+jhMa65kXTOk0H0Hl/7LAL9N9bYplGB2JM5IKSDDa7OEYUu6CT7p5s7fH7tsbWXQpQl8gEXGWkjsX41af3DAEuFhUDsOeeNQPgLOxZ6dxiV4C3aeQANSC9rynrNE02iQz7k0CHxGGgptbJeVLuB1uiZAV8mkL9UEFUiR8g8pqKaRul0XUoHT5VWek3v/ZgP7u8n7mjUtGJcdq9feL9BFe+CejnJ42k8GDsTwnFOO8r39cWz07nlzwFZFo6Poet8iOHjmX7NbsA99ZgWyCGbk+Q94effPjeDZP/7lf21b23edgFJlNSoTyqLDOvD7iSLwac7AdByvFCubfB1rNPQPLdNGkYOyyQgAVcGYopOK2s01FpcDBzgSz3q+t5SSCFnwcSadr4f80zjqm5GIuGCbJ6Y1ZQ92dv2QN8v4SIVEHzg/IzwA0UeR58I6aCAJ7eB/vBZ2FrxCLsLIZJSQZL+lplOuzpeyVQYoyftx8lvaW7xYpYvxIEayaw20dAP9G/0h32hU/jX7wANL7X9frbe4qF/vCH/LZnCAiMZpCemevyc8ai8EmufzCt2UAOvTVytEdfb9/7bMcQ+Rm+HnB39AhAgKEd+7zPAVYkEkAthgahYAinvYGxF3fFUkwPP8COvCdQwx/YW96LL2QX3gPbT2Ps3jCF7Mx+0pzg2Bm+gFaKhOVk+0ScsS7ButbI0MgkOv0emQ1Glm/RhIAVHd2GXRfJBrabWB7BgRUE0seZoP0eX+1wetfcA7E1x9p4Np6pz8FEWdMR9/tbZYBWjb0W2Cd/Xyz/hQm3XTidiAunW9m6ed3QXcjE1M8FI/qGT7tQiyog2SzoTRt0aEVyRoK4gCUgQP+ybfNO0HqoW11mjEEg1LmFKkNBc6JE1Eo0zlzzb4DEQzTxlciQwwV6Hq6N25h9tKSHOkoZfR0S52xuRuOt7X6UZmyKHXevaPDjhsm/em5vxjerQytPtvHTYXhI1bXVoT0IgE69XDZ2b7T2Q2mL/nUO73stvBLK5oLmxrrG1I8ZA5p95+b1Y3bKkkUyxF1tbALzgnj14OfLFL/7ytHBrDDYqUNK41XwxFQRPS9PvKvTA+OzPrEwNu3tBLMnW29dLcot6wvo1hKiBxqVyGj97w0Uri3AM3j05JgCGwCZMjsdathm9ZnqycCtc8uwSdig+Tm01xKrm4gN4G7ovjAtp2P61q5wLIkzojrmZMPSfqcuq46qWYM5bOwAfc6WHDFGjhMRYGUULxx4ZzA2gConAaS6Jg4lPzQErAbe2ayu4UDaEed4fe2ZBwsyKyqFrp0828wctL4p18fSPAFbDzWkjrOQvRw+QQBs8vK1WMzz41k5d+wbj+0Ym9YGFQwMcrQupuDKpAYwSShLkGyzcp4GzdGhsIPjAWnO/N/+2qOT3/vWk2V2tweuL6RTWNVzmQJQYOWVN5UqKzkHWrAJS3sWSmrX2vQLc3ZTSprzmJ1927zTybxn0vL4XPZKmKxEAajvKtP85rN7a9OPeem+fxIj4JoBUVm3tQOqsaGGR7oPDMDZSqOcrj+cs/f13wKnPWgvOetQt5AuKR5H0rE6MKxUZO95Tg9VVgMeDeo0lRo7Y/gbUTJ7dH2m43NM9tmW7Me5bcrGToBXCrEvHir5UMp10Cwh8ycxWxcvX5l8KeH8Qx2ibICschtQxcFz4lOW4I7J15ob9dvPPZh9NkbkRlqo1uXGjYBDz3w42Jy36xEshzC+e3quVnPjPZz+DuQ/0yBE50/yN0q97mF9QYaGiqgUw2SNPPfH79vYOIcN+bfE1hc/SUvJD00BhnvENpollmlOGcjWfgkND76qdby3jNhLgsPvYcsW9ZmEswZ/uk4NETQUyo6SAv5FmVFi4fkIEgT2/KASIGCLHXVqvfMwlfawDEo22EDHuiiBODBXMNH16O9dd68bpSJMUZFu+BZg3QuQe+PIe+PeBHH7gZ6NH7dvlY/Yv3Mb7UtlHyDWOBesy6YYXyVgAc8MMCAaK2tfb9/U8UfNdjJGQUncAber82VYUuJ0AN6sun1pjFwngP1h9kZULuAZbqsMid2gcbI+bBCLcH82+Wh7ZJwHV7KObXJ2IKAEoEvIBFBlNMLouwL6KxunoDMZQ2I0w198/7WxfkZoKNEo4WNbdzdAFuC1xmc/qBkpMCDWAH3AgUSTPnCA4ACjmDXKTdn/FCxNT2xwTV6qG17Wl1+jx5HA8jni4IYS83eqgsyK6aEdGseq9OwNG6UZ6yOKA83U6/cNqmWfPpsfAwqU4Rzj4+sY4tWV82h0XC9wy7/z92vIRWoMWtUzMBpkbXt/Q/cO6AFJtH5mvCm1KckakGyfqNqM5odiOB/LbyhRbo0JVyJd2MBoEhKjBdZ3KsP2mGxnd0ruaJeUgP17fbIbvwsQkoiI2faBkphkZFV/L03vJCHCxHof4Oto60RuYK/xX+6bpss+9IwlFPYQxljVo2UbuIPGVRxUdSE/EF+t93f/BRO3f2YmiTOmmF+f0M0kUX/oOxwjsjvxY9c7nEy2XMAuyDHSvs+AGBcnI+uDqnUkODCUZseGAJA4RUYm8B3vz42AjM/cEmrniG1UD16nHMP8cYPJBAq/Q1c0QFeZKGAELGCOOD65nNlLBuSpIRvAhVL8OAdgM+2tdfTph7bHgiViLFP6XoMBtYN+nuMUfJzZZINevHp10KzoP9nW0j7nWzluorM/+euXx2A+avodOSWIeli3jLKuDxqQdzragjbJ4ZAYDJuGI+JgZgkwXZ9MZ9CCAcihvQlUDrq+9bHe5hPdTKyLVs5jDfpSVgU0XOpnF2dEi6ql3957bQnMufcXY5kOVRKC+jlTIHHMNem+WJlBmhgNQz3NEsGyABCEy0pQ/m2Sst+n8whPdQ9aZythxNr8xnM7C/6dMfXy0XE9shdlN6XWtYmwBSUsgnkh7/RcHfr79SfvGxk+u+AUGPLNrplDsYk4k+MBkKebf/M/fPuXJ1s7uuV2zEAlPTbFmXg/m2lh975tXUG5DU7/Iks73+fRvtk8Ztc8cI/BeeejlGPY2vRYQBsH20g3JSuS6TzaIDrrT3gNdCqDcCgCkT+ekTZWzJ77+iCb4JRlyDo6Xqjc7DmsqHyMbTMMVAnrSIzP3TmLbzbZ2P169o770IX3YMyDEpkODoBiZOPdl3PhvDfgh9HCclyISrdXlEfZjv1oqrc/gLyzm4ZWqv13qGB5qTlYHKl7FLieaaqzGUSaJJypprNE1qp0Qa/H7iU579U9yRkBRxhH+4zeSZC0B2XR2Ab3gS2S/RsrcFstyfnF4XC12hM/e+8ROPs5m+Jkmd2blRt3bblr8nvf/tLk0UoPG5yn1dpy6IC00jjRvYOQ72o+kWYIWbBp6trRdWhhNtD/T9ReD1TwA28cPzMOwP13v/3sACof9nuuFaNrBIis0tEofIOuMk6avSoFKMxIfqzV0oLEssW66q6Nic2LCgTzurbL+RMHPwvGyq6YXwHewNp5AUs2lC+f7C3w01pgcgVYtiAI3d+zBn51mTk7kn1i9zhwXWr2g6OEBB+siiCnfEDHpLSnqxVQmpONan0GSuj2HArrub9bl6avYZsI1c9dmQ7mHeWr9j0QJJhIYJUOlcoPlUj4byyNTjVdc9hHwMR7CGZKV5gqe5KN3hdzuD1Zg/V8/vUjfW6HkuYbboGIT5qwDbwKgFhdiZcBhBgR5cBd2bsxMvyzMrpjfIACgMBn0Xp91PEwYy+2bgPstP7TxLjDhQu62NeXKo1J2sUJz0qsYbNsw7lvuwwJLhH++LOYsQDXZ/0N4EmurQW7AbqUcwDzvTs3Df3SlMFp+nv3RHfJJxlfYPbT5dZIsmQN7Qf2JUEAVrxHW2IEb34W6PYz9F6uV+xjN3yYBAgwlAgYg0FriO2ga8QeifYYTHtGQ8QYuNi/+CWsp2SLlom2lw1KSiWjx/P1fCMAPfxXtsFfqvq4L3GYrRN1i5PAnGt21AlxOt/r36uLN3PzrfRfQLNkzr1gITCAWCYMFeY+Mx4Mo+syl4uWbW9sLZCz/+h0gDDmfBAEPUeMp+uzD/3d1h/3YHWsJWAqaQd67kvADwyJhzq/gVTbFc6w9p49Rpy/wsLCEcM/ZQukHQaIqkpI3qz9f+ropP/PmaSPQ9d/+Id/OPn1KOtFGQcdi81w4tz5UQPlvFB5NpeFsMCyJxcmwCqhMEZZNcGWeqi2Sg/DYqP3BS1gyYGubgTKBkyU1DjgQf9mOCNL6MFwmurEDG97VDKticW1KKhyJQ3gg+iU5oPgF+PVvsgw0/3kZDg49Xytr9pyZYfEcBwYvY4FP9NcIYd6Xrl6ZfLwzrWTB7evmXy/4wYwapfaEHvKjB0DQZ8Ckd/fIaqjlTz6mfEKUCtjxj7LkGbfMS0/HUywLbi4BiVGL4Zv0xq6ZTT7J9WgrQ3B4uq0XAvvXDB568y5UbI51tEQNo7M4oOCJScJAAiyuvIwA4zw+HtXJ9/5ydHRWu6sOowcdsu628ycmGzTAYiyTJS0TiozRUa7bBuOU2LEHAK4iaWQXQrc53KMGwM8BqbJyp1VxkHTKRjQprNG0ACsNoz5KGk1ViwcZSwnsdtkKG+2oVwha8Y4unalHyU8QzCvX+zssXc76DdAa67H8/uPN7BSC/GVkSFiOK3FgsDhgq7dZOwTPU/lRxmsjATL+VrlUno0oliaL47vVranrOlzdWgCGhzJgznMpx7cMRwvXRlQxckBi9vT2BzKLj4uYDl090CMm10LbGGiiGi9H4ZUWz96W4amfPKDdC4CDvvjCHSj+X6PJ1C1ZACfwWoAQYGCj1tHrILnwLZlI4aT3oj1EmD31n0lMDhUVqCek+2ivu0Nzx0zAyQAlBg0jpTz+fuX3m4d3xk/N1iCrkcgAfAlE/c0G8s9EIfSByg1mTVzI6CPUeQICVABgTznCDa661yfY2cOHO9A2XyCRMqauf7B1LT+5+rQ3J7dOC4gydhkVj5Aqf31utR++NqR7OHDEUTHERklDAJhPzLsUvfYtEHD4bCCkk7bRnp0bcCc+7ungHEoFtLX2beutnntzwONLTEAdHHPEti5kj1zrhov+CeAz3mA7F2y5fBi9n4hn+AZDbaje5FsFBe6VexGgwzTYcps7w9Q3h9AMjn8pTrk+tLY25pXlASPBkgwXuzcLDn7RcLoufCX++5tVlblGNmul6npEhL7QzA9f7n7S6A/Du/u306H96yV0wEYgFcm7jwzzxzwoe1SKhFp+EHlC75V0ug9+Q8gCVtf6BzBetfWNQ193B4rl260cQD8uQAqyTOSxAGox892LmD+CwuBnWSLkgvPx/N6p3EUwA0f85VYPGsKvBwviTkTeMZ8qBqcy4dJdL74qW/i6wGzIVpvhYH709kTEMJH7R6Ha98xZpPlKMZQUSXU/QFvf7MxYOxkv0OTOSJw90WbiJkxUuLN7EwZkx7We7oWCRC/Oq/Dis+m81He+uRTCQRATXRu7pA9HkPb2lrnT0suVUuABYFbAgXw2j+ABZ/GblRWJD9ABv9LV2vt2YwSlGQFcyOueLb0WOJhPz4SuSkwmrLBmCh+CxgQ7zx/YM7nYn7YrUQA0/h512U9rMEYUJrN31EcJab+qLhOXM0eaHQlXeyfX3btKip0SnSoYhHA6sBw920d7fX+cySFQFymPn7Hf/C9VpNtbC5xdSzWoaofPlc1R8mMbXaLA+S0rAP4TckIeuFp1cdaWfuN7WdJt/hEa1yY7Drbga2pn2HXfIW4RsvLVsQeAMoeU5XB/FrT//i91ya///u/HyiUtP1sr8TyLvGffp061ZkpGzf+0z8w852ZFZhZgZkVmFmBmRWYWYGZFfivYAVOnjw52bBhw898pf9FkCQjPXPmTCzSopBY0HbmNbMCMyswswIzKzCzAjMrMLMC/xWtAD7oahKJdevWjcrNz3rp/0WQ9LO+0czPzazAzArMrMDMCsyswMwKzKzA/59WoKrgzGtmBWZWYGYFZlZgZgVmVmBmBWZW4D9fgRmQ9J+vyMy/Z1ZgZgVmVmBmBWZWYGYFZlagFZgBSTNmMLMCMyswswIzKzCzAjMrMLMC/8gKzICkf2RRZr40swIzKzCzAjMrMLMCMyswswIzIGnGBmZWYGYFZlZgZgVmVmBmBWZW4B9Zgf8X6T/QCxt3dRIAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "9ad75b45", + "metadata": {}, + "source": [ + "## 2. Get data, labels, and pred_probs\n", + "\n", + "This tutorial just loads `labels` and `pred_probs` for our dataset, which are the only inputs required to find label issues and score the label quality of each image with cleanlab. For your own dataset, you will need to properly format its `labels` and train your own semantic segmentation model to produce `pred_probs` (pixel-level predicted class probabilities, which should be out-of-sample such as computed via cross-validation). Our example [training notebook](https://github.com/cleanlab/examples/blob/master/segmentation/training_ResNeXt50_for_Semantic_Segmentation_on_SYNTHIA.ipynb) demonstrates code to train a Pytorch segmentation model on the SYNTHIA dataset, produce such `pred_probs` for each image, and save them in a `.npy` file (which we simply load in this tutorial via `np.load`).\n", + "\n", + "Here's what an image looks like in the SYNTHIA dataset. For every image there is a `label` mask provided in which each pixel is integer-encoded as one of the SYNTHIA classes: sky, building, road, sidewalk, fence, vegetation, pole, car, traffic sign, person, bicycle, motorcycle, traffic light, terrain, rider, truck, bus, train, wall, and unlabeled (annotated for pixels not belonging to the other classes). \n", + "\n", + "![image-2.png](attachment:image-2.png)" + ] + }, + { + "cell_type": "markdown", + "id": "dc888c2a", + "metadata": {}, + "source": [ + "In semantic segmentation tasks `labels` and `pred_probs` are formatted with the following dimensions:\n", + "\n", + " N - Number of images in the dataset\n", + " K - Number of classes in the dataset\n", + " H - Height of each image\n", + " W - Width of each image\n", + "\n", + "Each pixel in the dataset is labeled with one of *K* possible classes. The `pred_probs` contain a length-*K* vector for **each** pixel in the dataset (which sums to 1 for each pixel). This results in an array of size `(N,K,H,W)`. \n", + "\n", + "Note that cleanlab requires **only** `pred_probs` from any trained segmentation model and `labels` in order to detect label errors. The `pred_probs` should be **out-of-sample**, which can be obtained for every image in a dataset via K-fold cross-validation." + ] + }, + { + "cell_type": "markdown", + "id": "6c2202be", + "metadata": {}, + "source": [ + "**pred_probs**\n", + "dim: (N,K,H,W)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "07dc5678", + "metadata": {}, + "outputs": [], + "source": [ + "pred_probs_filepaths ='predicted_masks.npy'\n", + "pred_probs = np.load(pred_probs_filepaths, mmap_mode='r+')\n", + "print(pred_probs.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "f2eff12e", + "metadata": {}, + "source": [ + "The `labels` contain a class label for each pixel in each image, which must be an integer in `0, 1, ..., K-1`. This results in an array of size `(N,H,W)`." + ] + }, + { + "cell_type": "markdown", + "id": "1e625c33", + "metadata": {}, + "source": [ + "**labels**\n", + "dim: (N,H,W)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "25ebe22a", + "metadata": {}, + "outputs": [], + "source": [ + "label_filepaths ='given_masks.npy'\n", + "labels = np.load(label_filepaths, mmap_mode='r+')\n", + "print(labels.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "9b71eb4a", + "metadata": {}, + "source": [ + "Note that these correspond to the labeled mask from the dataset, and the extracted probabilities of a trained classifier. If using your own dataset, which may consider iterating on memmaped numpy arrays.\n", + "\n", + "- `labels`: Array of dimension (N,H,W) where N is the number of images, K is the number of classes, and H and W are dimension of the image. We assume an integer encoded image. For one-hot encoding one can `np.argmax(labels_one_hot,axis=1)` assuming that `labels_one_hot` is of dimension (N,K,H,W)\n", + "- `pred_probs`: Array of dimension (N,K,H,W), similar to `labels` where `K` is the number of classes.\n", + "\n", + "**class_names**\n", + "dim: (K,)\n", + "\n", + "Some of our functions optionally use the class names to improve visualization. Here are the class names in our dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3faedea9", + "metadata": {}, + "outputs": [], + "source": [ + "SYNTHIA_CLASSES = ['unlabeled','sky', 'building', 'road', 'sidewalk', 'fence', 'vegetation','pole','car', \\\n", + " 'traffic sign','person','bicycle','motorcycle','traffic light', 'terrain', \\\n", + " 'rider', 'truck', 'bus', 'train','wall']" + ] + }, + { + "attachments": { + "synthia_errors-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAMRCAYAAADFlIE5AAAMP2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAghICb0JIjWAlBBaAOlFsBGSAKGEmBBU7OiigmsXC9jQVRHFDogdsbMoNuyLBRVlXSzYlTcpoOu+8r3zfXPvf/85858z584tA4DmCa5YnIdqAZAvKpTEhwUxRqemMUhPAQK0ABUYAnsuTypmxcZGAWgD57/buxvQG9pVJ7nWP/v/q2nzBVIeAEgsxBl8KS8f4gMA4FU8saQQAKKct5xUKJZj2ICuBCYI8Xw5zlLiKjnOUOI9Cp/EeDbELQCoUblcSRYAGpchzyjiZUENjV6IXUR8oQgATQbE/vn5BXyI0yG2gz5iiOX6zIwfdLL+ppkxqMnlZg1i5VwUphYslIrzuFP+z3L8b8vPkw3EsIGNmi0Jj5fPGdbtZm5BpBxTIe4RZUTHQKwD8QchX+EPMUrJloUnKf1RY56UDWsG9CF24XODIyE2hjhUlBcdpeIzMoWhHIjhCkEnCws5iRAbQDxfIA1JUPlslBTEq2Kh9ZkSNkvFn+NKFHHlse7LcpNYKv3X2QKOSh/TKM5OTIGYArFVkTA5GmINiJ2luQmRKp+Rxdns6AEfiSxenr8VxPECUViQUh8rypSExqv8y/KlA/PFNmYLOdEqvK8wOzFcWR+shcdV5A/ngl0WiFhJAzoC6eiogbnwBcEhyrljzwSipASVzgdxYVC8cixOEefFqvxxC0FemJy3gNhdWpSgGosnF8IFqdTHM8WFsYnKPPHiHG5ErDIffAmIAmwQDBhABlsGKAA5QNjW09ADr5Q9oYALJCALCICTihkYkaLoEcFjAigGf0IkANLBcUGKXgEogvzXQVZ5dAKZit4ixYhc8ATifBAJ8uC1TDFKNBgtGTyGjPAf0bmw8WC+ebDJ+/89P8B+Z1iQiVIxsoGIDM0BT2IIMZgYTgwl2uNGuD/ui0fBYyBsrjgT9x6Yx3d/whNCO+Eh4Tqhk3BrgrBE8lOWo0An1A9V1SLjx1rgNlDTAw/C/aA6VMb1cSPghLvDOCw8AEb2gCxblbe8KoyftP82gx/uhsqP7EJGyUPIgWS7n0dqOGh4DKrIa/1jfZS5ZgzWmz3Y83N89g/V58Nz5M+e2HxsP3YWO4mdx45gDYCBHccasVbsqBwPrq7HitU1EC1ekU8u1BH+I97AnZVXUupS69Lt8kXZVyiYLH9HA3aBeIpEmJVdyGDBL4KAwRHxnIcxXF1c3QCQf1+Ur683cYrvBqLf+p2b8wcAfsf7+/sPf+cijgOw1ws+/oe+c3ZM+OlQB+DcIZ5MUqTkcPmBAN8SmvBJMwSmwBLYwfm4Ak/gCwJBCIgAMSARpILxMPtsuM4lYBKYBmaDUlAOloCVYC3YADaD7WAX2AcawBFwEpwBF8FlcB3cgaunC7wAveAd+IwgCAmhIXTEEDFDrBFHxBVhIv5ICBKFxCOpSDqShYgQGTINmYOUI8uQtcgmpAbZixxCTiLnkXbkFvIA6UZeI59QDKWiuqgJaoMOR5koC41EE9FxaBY6ES1G56KL0NVoNboTrUdPohfR62gn+gLtwwCmjulj5pgTxsTYWAyWhmViEmwGVoZVYNVYHdYE7/NVrBPrwT7iRJyOM3AnuILD8SSch0/EZ+AL8bX4drweb8Gv4g/wXvwbgUYwJjgSfAgcwmhCFmESoZRQQdhKOEg4DZ+lLsI7IpGoT7QlesFnMZWYQ5xKXEhcR9xNPEFsJz4i9pFIJEOSI8mPFEPikgpJpaQ1pJ2k46QrpC7SBzV1NTM1V7VQtTQ1kVqJWoXaDrVjalfUnqp9JmuRrck+5BgynzyFvJi8hdxEvkTuIn+maFNsKX6UREoOZTZlNaWOcppyl/JGXV3dQt1bPU5dqD5LfbX6HvVz6g/UP1J1qA5UNnUsVUZdRN1GPUG9RX1Do9FsaIG0NFohbRGthnaKdp/2QYOu4azB0eBrzNSo1KjXuKLxUpOsaa3J0hyvWaxZoblf85JmjxZZy0aLrcXVmqFVqXVIq0OrT5uuPUI7Rjtfe6H2Du3z2s90SDo2OiE6fJ25Opt1Tuk8omN0SzqbzqPPoW+hn6Z36RJ1bXU5ujm65bq7dNt0e/V09Nz1kvUm61XqHdXr1Mf0bfQ5+nn6i/X36d/Q/zTEZAhriGDIgiF1Q64MeW8w1CDQQGBQZrDb4LrBJ0OGYYhhruFSwwbDe0a4kYNRnNEko/VGp416huoO9R3KG1o2dN/Q28aosYNxvPFU483GrcZ9JqYmYSZikzUmp0x6TPVNA01zTFeYHjPtNqOb+ZsJzVaYHTd7ztBjsBh5jNWMFkavubF5uLnMfJN5m/lnC1uLJIsSi90W9ywplkzLTMsVls2WvVZmVqOsplnVWt22JlszrbOtV1mftX5vY2uTYjPPpsHmma2BLce22LbW9q4dzS7AbqJdtd01e6I90z7Xfp39ZQfUwcMh26HS4ZIj6ujpKHRc59g+jDDMe5hoWPWwDieqE8upyKnW6YGzvnOUc4lzg/PL4VbD04YvHX52+DcXD5c8ly0ud0bojIgYUTKiacRrVwdXnmul6zU3mluo20y3RrdX7o7uAvf17jc96B6jPOZ5NHt89fTylHjWeXZ7WXmle1V5dTB1mbHMhcxz3gTvIO+Z3ke8P/p4+hT67PP5y9fJN9d3h++zkbYjBSO3jHzkZ+HH9dvk1+nP8E/33+jfGWAewA2oDngYaBnID9wa+JRlz8ph7WS9DHIJkgQdDHrP9mFPZ58IxoLDgsuC20J0QpJC1obcD7UIzQqtDe0N8wibGnYinBAeGb40vINjwuFxaji9EV4R0yNaIqmRCZFrIx9GOURJoppGoaMiRi0fdTfaOloU3RADYjgxy2PuxdrGTow9HEeMi42rjHsSPyJ+WvzZBHrChIQdCe8SgxIXJ95JskuSJTUnayaPTa5Jfp8SnLIspXP08NHTR19MNUoVpjamkdKS07am9Y0JGbNyTNdYj7GlY2+Msx03edz58Ubj88YfnaA5gTthfzohPSV9R/oXbgy3mtuXwcmoyujlsXmreC/4gfwV/G6Bn2CZ4GmmX+ayzGdZflnLs7qzA7IrsnuEbOFa4auc8JwNOe9zY3K35fbnpeTtzlfLT88/JNIR5YpaCkwLJhe0ix3FpeLOiT4TV07slURKtkoR6ThpY6Eu/JFvldnJfpE9KPIvqiz6MCl50v7J2pNFk1unOExZMOVpcWjxb1PxqbypzdPMp82e9mA6a/qmGciMjBnNMy1nzp3ZNSts1vbZlNm5s38vcSlZVvJ2Tsqcprkmc2fNffRL2C+1pRqlktKOeb7zNszH5wvnty1wW7BmwbcyftmFcpfyivIvC3kLL/w64tfVv/YvylzUtthz8folxCWiJTeWBizdvkx7WfGyR8tHLa9fwVhRtuLtygkrz1e4V2xYRVklW9W5Omp14xqrNUvWfFmbvfZ6ZVDl7irjqgVV79fx111ZH7i+boPJhvINnzYKN97cFLapvtqmumIzcXPR5idbkrec/Y35W81Wo63lW79uE23r3B6/vaXGq6Zmh/GOxbVoray2e+fYnZd3Be9qrHOq27Rbf3f5HrBHtuf53vS9N/ZF7mvez9xfd8D6QNVB+sGyeqR+Sn1vQ3ZDZ2NqY/uhiEPNTb5NBw87H952xPxI5VG9o4uPUY7NPdZ/vPh43wnxiZ6TWScfNU9ovnNq9KlrLXEtbacjT587E3rm1FnW2ePn/M4dOe9z/tAF5oWGi54X61s9Wg/+7vH7wTbPtvpLXpcaL3tfbmof2X7sSsCVk1eDr565xrl28Xr09fYbSTdudozt6LzJv/nsVt6tV7eLbn++M+su4W7ZPa17FfeN71f/Yf/H7k7PzqMPgh+0Pkx4eOcR79GLx9LHX7rmPqE9qXhq9rTmmeuzI92h3Zefj3ne9UL84nNP6Z/af1a9tHt54K/Av1p7R/d2vZK86n+98I3hm21v3d8298X23X+X/+7z+7IPhh+2f2R+PPsp5dPTz5O+kL6s/mr/telb5Le7/fn9/WKuhKv4FcBgQzMzAXi9DQBaKgB0uD+jjFHu/xSGKPesCgT+E1buERXmCUAd/H+P64F/Nx0A7NkCt19QX3MsALE0ABK9AermNtgG9mqKfaXciHAfsJHzNSM/A/wbU+45f8j75zOQq7qDn8//Aj3efGJbY0XcAAAAlmVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAhKACAAQAAAABAAAC0KADAAQAAAABAAADEQAAAABBU0NJSQAAAFNjcmVlbnNob3Th9RGUAAAACXBIWXMAABYlAAAWJQFJUiTwAAAC2WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTM0NjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xNDY4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MTQ0PC90aWZmOllSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpYUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WFJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgo1033FAABAAElEQVR4Aezdd6wlyVU/8J6wuxM2J3sdZ702NjhHsI2NyTnnbBEENhIC/gELIZCQ4B+CBAgJgYXBP5OzTcawYDDgnI3Drsfeddj15jQ7+Xc+p+95U+9O3xdm3ns7O1s107e7q6tOnfqe2NV979t2PMrQS0egI9AR6Ah0BDoCHYGOQEegI7AmBLavqVVv1BHoCHQEOgIdgY5AR6Aj0BHoCCQCPYHuitAR6Ah0BDoCHYGOQEegI9ARWAcCPYFeB1i9aUegI9AR6Ah0BDoCHYGOQEegJ9BdBzoCHYGOQEegI9AR6Ah0BDoC60CgJ9DrAKs37Qh0BDoCHYGOQEegI9AR6Aj0BLrrQEegI9AR6Ah0BDoCHYGOQEdgHQj0BHodYPWmHYGOQEegI9AR6Ah0BDoCHYGeQHcd6Ah0BDoCHYGOQEegI9AR6AisA4GeQK8DrN60I9AR6Ah0BDoCHYGOQEegI9AT6K4DHYGOQEegI9AR6Ah0BDoCHYF1INAT6HWA1Zt2BDoCHYGOQEegI9AR6Ah0BHZuFATHjx9fN6lt27atu8+DvUPhtGjudb3mWeeL2mu30rWi0/drQ6Dw1rqOt29/YO8zi4+WJzJ/IOS+Ei/ttQeCt9Uk3PJXbdVN8Vr189fU11Z6Md+maD/Y9ua1qKx3jotorZfOIn5Wq2/Hr+OS12p913O9aNvban72dbweehvVtviaoreIr0V9FrWfoj1VN0+3zk9HHkXDeHV8OvSm+G7raoyqq/PNGrPoG6+ON1OnaoytGq9wfLDvtwVwi73mg312Zyj/R48eHY4cOTKcc845w0oGqN0999wzHDt2bDj//POzfU3JtcOHD6eT3rFjx7Bz54bdC9UQD+k9+dxyyy2J60UXXZT70w0kpwvooUOHhjvvvHMg7927dw/nnXfeivpzuuOt1B8+t99xx7Ajbi727NkznHvuuQOdpKv4OtML/u+///60ob179yb/xbM53HvvvWlv5rIk93CVR2O7/bbbhvvuu2+4/PLLUw76LbUpIn1/RiBATnwoOe7atWtTdJMfvv3224e777479eHiiy9OmzgjADiDmJBqHDhwIG2HvcCJLzudwlY//elPp/1deumlSW8zbdF4NQe8iw2nO4eV5m88+mvbCr0ynrhHVpdcckn6wM3Ec6W5PxiunXbWJRDdeuutw20RVAQd521OXuBLFG0SPY5MQmgTvCSSZ3upZPiTn/zkcIxyhvOgoLCowjBheUckJnfddVc6GoYDzwsuuGApUYGXeo77YQ972PDwhz88jauwLnp9v3YE6C395YxhTwYf+9jHhsc+9rHDs571rMT/gcBXwnzTTTclbxybDU9XX331cMUVV2xpAi0ZufnmmxMfeoqvRzziEcNnfMZnpP59/OMfT/yuuuqqTC7Z9plQKnCTLbmyM/ZjPgIGPusGVaIlsTbPxz3uccPjH//4pZun+w8eHD7xiU8M73vf+3KeT33qU7ONwPZA6MZGYnsw5mbO9A0+/BXc+Bo3CpdddllitNo84SkW0FN2hA6/L8mAsSSnAvNG8l+0jE83yZo901HyvOaaa4bHhN2stmhRdFbbw4YOGYtPL7tQzyez0cc85jFbmkibO9lJ5snAvOFfRex1402edNZNL9m4MScrc3ETUDGczNjDlVdemX30X03+NVbt2Rh+6FXt0ecjnvKUpyzdgFb7tezpKrkWvY9+9KPpC1/wghekn14LjfW0oUfwhJG9uZDzox71qOEzP/MzNzSBJkNy46fYkL3xYPbsZz87dWo9vK/Wln7QGfZiHHO84YYb8sbgec97XtprX5xbjOJpJ9DAf9Ob3jT88z//8/C2t70tHQkFUMrJUHgGw7HYBP8nPOEJGXg5NtcIiTGv10AXT+3MuUJJKeb//d//Da977WuH8yMZ/qIv+qIM3BJo1zmx6667bviP//iP4b//+7+Ht771rcP73//+ZZO4MrB74hOfOFwVCfOnPvWpDAbf9E3fNHz+53/+cOGFF26oIS8b+Cw/oad09vrrrx/+5m/+ZvjP//zPPHb+ile8IpMkq6z0cysLvvDwp3/6p6kP9IcD/8mf/Mnha77mazIR2UrnJmj99V//9fBf//Vfw3ve857U55/+6Z/OYCwx4Qf+8R//cficz/mc4fnPf34GF/UPlE3Dj21JdPbv3z/8y7/8S9oWO3vnO9+ZonQTIni4QRWg3BCwxf/5n/8ZfuZnfibPJX6SCcnFtddeO7w2bPiDH/zgwPa+6qu+anjGM56x5bqx0XooeMLn3//93/MGQeCWODz60Y8evvEbvzH9lRuG1fSNr6cH9MReYgk/CTid+IIv+IJBoiOJ3oxC3u94xzuGv/iLv0gdpaf79u0bXvayl2VScHGsGG5EsXjx4Q9/OPF6wxvesHSj8Pa3vz116Yu/+IuHl7/85Zm408OtsAE8SebZJz/Gd0iKjc13kYGk9eu+7uuG5z73uRmL1dNrfLPdf/u3f0t74Q8l2W4iv+u7vmv4wi/8wpzXeldbJYF06o1vfOPwlre8ZbjxxhuHZz7zmcPXfu3XJjYS+rXio51CV//hH/5h+Pu///u0Qze0sH7yk5+8KQk0TNm9uGwO/MVnf/ZnD9/wDd+Q+Ijha53DaronURbb+Z/Xve51qctok5uFMjdlG1n4OosCsGT/fKO843u/93vTbuhAL4sROO0E2h2qpI6QrS4QBAfGaAWXWr3j2Ci+IHxdGDal114i/fSnPz0VUiKtbIWzWQzJxl5hEOb9v//7vwNHCy93rebqGC6cjMTZdcorcD3taU8bvvM7vzONhoGic0sY7gc/9KFMpjgiys1BClq9nB4CEj0rLc95znMyCL33ve9NgpIvMnqgCp4EO6u7kjb82Di+CihbxZubNEFK4sDGFbwI3AKra3Rd0qIOblanJVAPRMGD1Sk3o26KJM14IuNv+7ZvS3nXDayg6AaF/Qko7Mtc2Fbxb44e2Trno6xcs+GzoZgLX21+VtYkoG7WFImVG4vP+qzPygR6KlmoOgsq73rXu4Y/+7M/yxt8Cwf81Jd92ZelHlswkTRtVpEQ7ouE2eqZJ0jGslLJp/KhG2Ez6NAXOvX6178+E0ExDG0riGzVvLXbykI/xVRy5M/+8i//Mm9g8EEG6slB/HHDWAsCFgfI5Uu+5EtyxfyP//iPUw/cUEqc2TU9P5W4zGfID9xI7Y+bWPZIr+rpz3rwqfHZLJof+MAH0rbRcBOwWX7azR7Mag58gznQdfLeyEImMGODZCJPklAbjz/b6OKG2Pzor3Eq7vF9xtsIe9lons8keqedQHsMJEgK9JywO1nBXbEy8/Vf//UpIMKggO6KtZFQuksmQKsS7nitXLnDWm2V40wCcDVeOG6B2124BOjbv/3bM5C4m+TwKK2Vmte85jW5auORsRUaKxj22lUC7U7YHbCgjq7COW60Ea82p7PtOscsQMDaygJH70ZQ4dDKcT8Q83ajJRmQ3L373e/O5O6B4qkcLV6sxuCDDsOHHxBoBW56ild6KlALBNpsJY6CqZtLSY5k0GqOIPjiF784EwXJRD35Yj+16iNgVOLIttogwg6f9KQnJQ0Bjn/j9+DwYC98t5t2K45uEDxRrCeJkkR2ARfzJfP5QrYSCskFP1dt1UnKP+/zPi/1GIabqQdkYQ7k5onoh2LBgUw3Ukbm9JGPfCT9thsuT4PEMLgYR5JY8XAep808Fzcl0Dbj403sESvYLn3F5/yqopsMT4XpNBpWItHgdzwp9dT4VIux2B0e4EIm5TNOVQ/oqqch/LSbBKXVSfI+VdpT84SFFWBJujHf/OY3n/YcpsZRB3+ysrDIf1m5dyOofiPnVOPz155MuFmykPd3f/d3eanFs9r2/ckInHYCXSQFUI7SvgrFk5TstWITld694twYplU1xWqV1SyrWj/yIz8yfOu3fmvSKWVZ7Q6o2iWx+Njo9kXXfn6s9tr8MT5skgmrMYxB8HanxyGhxcm7w3zlK1+Zd34cDWwqyRbIKLi2cLUKJBAJ/K553Cb4tysd650/vk+lz/x863wlWvP4LWrbtptqs9r14qVtp26KVrV1TfDjnDkwuspxrdRvJXr6zY+fxGYfK/Vt++HJCpFXDTi6qZXnRbRaOoZda7spPvVFT7CFD17onvqiy+nWI3867zG+lSJ+QCDdKqeMH8FOAoEHySDb+ZZv+Zbhy7/8y/O9Zqs8FZTwxU95FQqv/Bi7ZFe2mp/kj/+SnJADG6xXe6pNi53jVgZTbVa7XvTaduqmaFXb+f183/nr7bn5kC9slHq6JRG1OuVGE0ZTRQC2GCDJUKpvJQV0Z57v+fPsOPuY4nul9tWXPMmGnyVLfM2XKTpT47X99NHG6hwsrDQbB150g45/9Vd/deqGObeJ6tR4aE+Nuahty8tUP9eLRxi4ecWf13Hg4LhssNoVTfTEGHbBFsQYNlPxfC08FS37lj802Ax50IlFtBbVz9Mr+dJD2LuZqb7tvuWhPW75rPZtXR1XH/taYDEPvmVRmafnvOjo0x63NOb7kQMZiEee8rk+36btv+h4pT7FS8UY+iruKSv1W3St6M3zsqh9tZvvt1L7+bZF44Hab0gCbcKEwGnYV5H8MZ6dYczqnVcA1va7v/u7c3VIIsgI3G1ZrXI3xDCU9QK22e1rbmvZexRstd1Ngrv/z/3czx0e+chHJk71zq2VeO87WbGRHH/FV3xFtp0KUvCj4LCDkT6cSRvk1zv/U8F4pbmvZ/y1tF2tzWrXW15XalvXYAtnW5W6Vue1X1Rf11far6cv22FHnHhbikbt22tTx2tt1/atPrWXKOADP1XXtpeASTI9SZFMeR9TIKf7W1Xw5Yb8b//2bzMRNr4VHTftVskFpXneydtNgfczJUieGKlzk1tPeMiB/7KdSpkfc57Gatfb9utp2/Zb7Zg/Me/y45Iuj9sl0FbzfTluyjeh67UGPlxf/o5PV/DKrqbKeuex1vbmQUdbOy5e2v0UT4vqamz6YEGEnpgXm6AT7GLeRk9lrBpnER9rrcebTXyGwyIZtPS0YR/kXjeHpzKHliZ9MD554MX8puY4VdfSaY9rbmhW0b/0tupW2691THSNNSXfdox5evPnbdv2uG1Hd+kTOZgnH3SqpaW7Eo1WRsZXFvVdVL+I/ma3XzTuVtRPe7VTHHkeqKk7iapzJ+f9Kk7X42DGaiVagslJu2P2qIzz9j6ZO1eOm6DdUavnuOouTb1E0rV6H8o5Z0cJKaRAWitP6tE0Rr1Xip5xPW5SVyso+qp3h+Z4tWKOxvaOlneb8bov3str3weVQHtX0OMgbW2CvEfLkuRyNFNjMSyr1XivgFfYqzN/e6tkRdvc8G/+5XQYJj7MFcZouXFRV5hLKqx+chwwXlQ8MkfH2Obr3BxsxoO98Wts2ApC2lc7TlY7WMMZDfK04XWejrkJYmiQGb4Vfc0TnUqW9MdXK1eYKN6RVLS3wRJPbSl8qw7/MCp69EkfGMEKjuYC07avdmRjTHvn5qGYH37xXnzXePbzPOlr7vAxf3jRdeOjIQg61871akcv1BWeZNwGS2NVH/TNEX7mAWOP6fFe/LTzM3/4Xx2PhCWrbBt9rz7Qo3LOxtiMgifzk0C/+tWvTp4fHitfXkFggzApvqfG52PYlpVqfghG5qcPmbe+wTX07MmTfhVtMih/4xh+pe+wLRmxCZigXbqMjnP15EInyROu+pbNaoeudvhwjYxdx7M6vkRf562cpube1pkHmcHA8f5YVXZTYZWebI1Z9IonK7LeN3dzr43X9RTtCpcag67is/wMG6BTCr7ZDxugv+04MKKPZIyGsV1v8eZHarzao6sdvIyJDvyUig9whnc7t2wQHzVHcrb6DA90yN4xvaHnJXN09NGGTMwPv7ayEfM0JhoKXvFHx2x0QOGnXEPHHMhT/DTn1Upht1q79rr5wwSf1R8vcC++8GOOeIClenPDa2HRyq6lP39c8y4/Diu6YY8+Gymc8NQWGCvGhrWnhuiU/ZQN4JVeVNFPG7zbHKNhvtrSv7JNY+KxNjS0K2yKpv4wKjzKv8Ok4hp+4FIFTWNbDNO39ES9V17UVZyqPmvdGx8WcCmfj275LXNEuzAV8XKOEwOohxma5oceXSWn8j/owa6dn/kUHmWzaBnT2HTZ5hx+5ROMo68xqz29smk7j/0Ey1tSdUKSGzCcia5WauKUWUD1xRQrr1ZiOVx7701zbs4lmXXtm7/5m1P43k/1Hqb3oF760pfmu3uE4R1rq9lWQRzbFM5GMBdEfRNcUCHM+kkq72UZQxvvYXt8a1VYokCAHkN7/UJQleSuVuBA8T1C9vhY4uyxWDlK/RmNFRrfeoWFd6ys2lFCCrkSlq5rS/EomkdjlAqvjM7Kn+Td6yOcLhzw4P23F73oRfmYXVtGa2VJ0DNfDsM7b/sjIMARPt/xHd+RXwYVEKcMmcS9nsOBwlHCZO/cZh6C8Atf+MJ8r9sNEh2ArffX/vVf/zXPGSOM4C9I4xeG+PAYnhHqS4a+7OLY3KxwukkhczdgHjvqS6dsXpmBuxs1gc9cOVl1+yKhgoN3/vCpvV9WgC9jXlS09c6sMemNZI0+cVYcPR35iq/8yuF5seLpvByKsei1d0TpMBmRDTlwrF5/sAIKq+J7EQ8wpEN0DIaedNwZjnJvODArwG5OfVmOPuHLUxDfXMez8Tm6etrj2+R0X4JGjxSOjB1oT6aSPzIyLscG+0Vle7RxY4t+/TpP2Z8kYzMLuUly6C6Z41dCR6/4G0XdfCl7syeH7/u+71sK3vQB1mTundLSId/XQBfGvs9B7+EHJ3Mnx5e85CX5biletCEr19kTn1K/buDL1RJUq7zwplP7Qj/5BTToJr3GB7/ouxDeM6c7goobb3L2rjf9lnzyrX5BwXcpJCJT857Hoc7J2I2ElWSyR7NetcMHLEuvteXL6BUe+Cb6/Ad/8AdFbtkexuXffXGav/GaBRp8TN3AsAX6An9FH77tf8LmPhp9zJ1N0VtY8e2w4seqmLPxSr74s2gBazYBT/Kjn/WFOTZbYxYd9sC3/vmf/3l+X4Vvgot2v/7rv554k6knLei4+WAj/Kp3yPli+kP25AVDT0TogHeP8QdH/gBfdIyP5KfQ1Q8d4/Hh5Fr91iPXms9a9/gyNv3kY+gAeYlZMKMH/C8/qC3/651wv9xinvM4To1b9N8Sc35bbORqDPGDnxcPyJVdTsUgNMlVrsA28ANHtihe8On0mC4VVuROp7XlF8UG8hSryM6XLcVL8yufWH2n5mDuYjEfUHbMRumm/IENmoNXNOmn9oq44WfjPC3Tnt8yfziyYTZhX+2nxp6q4wfNj/6xMbpLv2x8M3/hdSOxqr2xONkzjtSND2Mxi4+im3TCGObj+xPyIzrBnsruxG140B08OFfMiZ9gL/QZTmxKPkSX2IC2ZGIu2nu1lVwcr0WvRs4393NDE+iVFGxqGpyDpIkzoXgAJBCOx2oGR0fB7RmGIEA4rkkcFIGGkTE2hiDoUwhfwpMkMKRa6dXPGJRZ8ommYEXAAmMFXQJDQxsJpnqCrLtH4+F9Uank3FwoBF4kua3Qy4Dxy9EwGIl9q8yL6MOZk6d06HAq9pRawsnRMnwBVDuBzTwEcM6KwrqpYJyMAcbwZwicAP45e85S8sE4zHnSeYVh3Ri4Mn7jwlcfzgqOeHJNYOcYJOjkzQgYL958cUGAwZefWIIHp1UyMAcOTiDRlxzKOeCbU+C0GXDdEJirgEtO6DFeyaCE27xhx4AlAZw13SDvL/3SL10y/hb/cmBwLieCFhzJ13zKwdBX+nhTYMhpkq3XmO4ObPBARpymoO86nOgiXfCLB5It/SXR9H2+4IUO2PBDx9kDbDhoAQBtc+eEjEnHzZUDMke4m8c//dM/JX5fGQl/JVp0nQOT/MINPfprPPI0bzaxsEQ7+ieRN+b1gTf+6ONmJ9D0G34wUWAFQ8GXjBYVc6tCv2xtYQ90EJZ8huBB7wRmdiNIwvPaa6/NBN78JdhWnpRzw3dpR+/4BMnT4x53TeJjMUCgY2/au2klfwkyOVQQYQ/4YkfGwgs74DfUoe9Ye/XsUkAzd4kB/7nWAkcJmkUK/pMNS1bt2SFMK4HmL8iX7ZmX8eg0fOYLnNWj6SZSYGWH/IIklR82Br21ckZfYWJ+8KeTZOvmBBbstr5cSzfxsqjwKcaHLfuDoQAuUWc77HTRjYa5wldCRqfYkzmQp0RLf76An9SOPxOP+CfzYpd0olaw4YVf/hIPMOU/2CW52ip5wive+Qg40GN+crNL2QRZVmyW2JOZWMYHsHF4iOPwJCM4uPGzwcL1qVL15CmBZFfij5tF8uWX4cyXu8HyHQY3ptUPTTpZsZxu8IfqtKmEjU7QJTe77MM1eQO67JhfIld84N/8yAwvYgo7mCroFC98Dmz4fr5C0k8v2KGbPn4WD/RLPBXT2AH9sIBD7nyjeSt4x4cY1uYNU3zM19Fv+sVPsw06KSbDxnjkhF96hH/+vWx5nlad8wcSW/Pgr8xBzKCz5iePoNsWP8U0vgqe5qCPQq7mT6/hDBt2Qr8Uev5Xf/VXKWu2gmeyNJdXvepVmR+QC5tbLyY5wCZ8bGgCfSr8MTAOtxJHSlt3HgQAbArJWRK+gEV4ziXIjJwQJB8///M/n6tunIu7TobMyDlqKweEw2AIgKMnDIpkDMmhcRiWRILDoxyct3ElmZyEZIwRSk4oXzmZdu7oUgb0GEr1a9tW4sOIKBAcjFV3uy29+WN04GUrDCgvxcYnR/KjP/qjqciCE2X9kz/5k+HXfu3Xkl/KyekwNAHInBkI5yyAuTuFD37MlxJPFfM3D/T99BEn6L12P1/I0SmCKhytNnMuFB9dAUPCDCtOsuZDFzgSOJATXrXFp0BnVVVhsL6ohjeGaVWaDDkN2BuL45T4SSLoFFnTh9IB+mE8hmovKcBfOcUcqPlQ7+bOKqLfZubkfu7nfi4dib6cnbmQA7zpFfnji75KnNxI/PZv/3YGA3xzssaEu1+LgBMHJ2DRiakABBu4kxenDDsJnCTEti+SZ44KDbQ4MDc3P/7jP55YcZx0mk1Y3efk8Cfgmcf+CFxsRgIggZJw2xsXPcGMnq1U6Be9J2vyEPzhs9mFPZFv+8Ux8zUvmMwXMqUn/A687NFQ2Bk7p4eSUjZWe231JVu6Ywz65eZIcV4JNNycW/khG3bHvp761KfkmJIlvglmvgMhiJIvGdAx+sbO6SsbwBOZ46GeBPA1bJ3fEjDJh04JoFZ0jT01/2R24gMGZGdudEsSwUeg68bXzZ25w4B98wF4oNPa4tu1qYK29r/5m7+ZGEs2BF78SWrY8KsiYPryuVVlfMAWTrAwn5dEkMYHG6O79JIcF42JD7ibgz2a/By8jSF5XikowxyGNvjSL3MkMyvOfBlfRWfoiGTwt37rt5IfN/dW++BIh+gI2+ML+CM+jM+je66jrV78K7nDlGzhUH5qCtvNqoMNeYtV5Aw/PtmNmcRUEuo6f87n0726mViNJ/PlTyVKYi8d4m/4UbToBB/lmljQxlG0yeZTkQPQAXZV/l4McAP6u7/7uylbuLHlSvp+4zd+I/WO/OgSv8Hn/eEf/mGOCf+ynXm9cl58kB//xn+TD9sQA8nU+OZHp82D/qiHlbbixc/+7M/mz2p6GsHXmg/e+XZ08buWUjySj3nQM/rjhxnIiH6Jh/Rfss+e2HctJIWyLhyGbbmxlUPo42bGGwHsiX8Tj61001M3I/SFDquXj8jJzM385Wr4Mjd+Dn54FyfERjeUZF03z2iwe+34jprnQma38MIDnkBLMIAqIChA4kQkygCUJBAEp8RJuesRRLQjOMrGWbmLcxfFeFwXsBROzQqhJJuAbRImBi8Zk1hRchuH6reXXZckUzQGK4mxMsiYJZv4mCplVJSKcZgHQ8GLfRkcJ8TRUGiFUmjDuKtN7afGaeuqHZr4ZXQ2jl1gEZQEB4ajCLgwhRtFp8D7I2FiHJJlAQVejAR/aHA8hWc7Nr5vjnkK0hyEceDFcZqLgg684MEQOAyJQDkSKxgcDidBxmjhlWM2J6s0DI1MODlypw/auSP2g/zGK+Myb4GKEzFXiSJnTNZl1AyYrKwucHTqOQhYcW7kPHVHDg93zca151zxSVe0p8PqYIgehyAJMh/JJEfCcZkHRw8r/eixVQC6LbHgLK6NlUxORMJlbko5DjKHC1pWwdD4oR/6odR9vJQtcdz0VmAxJh60pZ/kgvdyzoIhmmRqNQSvsGATZEQPjKsP2zFPAQ9PxVcyOfvQFp70hl4KTnRtLWWKXtuvdL6tq2NzqyS3xqaLAr65o932hy3erP4KOPSK7ihw3Bf4C2w2iS1dYdf12g96O4IuGVuFpMuCHzzJBg+uHYq5u4Fie+jQWT6A7UkO+BUBib8yB3TJEk196BtdRh/+/BZ7ostk+dJ4lY2d4U/irr9VbfQlerCHwfz8C7d2Dx8b+9OHruLdzRasJDaSCzqB1xtCb1w3NjszX4mtc9fnC8zNHY4K38gGbOwX5mzwPv4s5nko/IX2xmaD5StgyJfUDQd+50vN15j4hiO8JQ3+WIQbff7N2Gst2rY65LjqjCOWSJb4PD4WJmxJMT+6ZO5snN6xTe34A3t6yhbZl2M+iq8yBr/Cd5u70vKRFRv8gT47Nh5/RC6eGKrj5zxWJ2/6QI58nmM+RCK0UiEbhc/hq9kdGuW/HIspNjKn83xJG4vwRzf4KYs3dJUNubnkt2DFp5IJe4QxG+cX8Y22uIcGuuyNztNd/NAXvrkds50TnTNfdii2wYg88UX3+R46xg7pA9+AV/ogF2Gjkk5JvBskczY2Pt1YoktH1lLgCScyMj+FT+Cz2Spcjc3XkCFsjLWSDpWMymbJSiF/+kg/2c++mc3CXf5hHhZM2Cwc1PHLsDZffJEl+raya/T1EbscG0fcYjNsXSme8uQB/njAE2iCAVQLCqFyNO5SAG4vaaLcVsk4P20URuWaBJAREqTrgFcoDQGo09fjBgmZAEeZGBHlYkCU+okxBuVlMIzDOARqtYADrmCUxBd8cHKMSuAzPv7xU4paimev2Atw+lWBR7WvupX2DJWhe/eMctrMi0PDt4CGBwpOWY3JUcDGDYJ5uplxA4KOBHe1gt+Ph6NHG54Sb8YBu+LdGG6GYO4OXfByg6OvNsbnaDmr/eFkyLFWvMiEbGHOwXBEjNG5gM25MUoOg3MyB+dom4t9zZUemRO9UsiYgzXXtugzhT1e6Zq5GtdY9LFNWNVxyFa0JLdu7GAuMSYfqzIcuTELY3SNR0ckPubO0ZMbzOgevax2xiBPvLhGrzntCtLVzpzIGt7wQpszppOVaAjinD27oQ+u0UPYSta8SrAv7Almpatkix92I8Abb1HhXMuRuoElT2UK36LBH5BxyaHq7Y3FnmxwWGsxnm2qoEk2EgQ3WuQr4JIbWbIN2NFTOJg33aJXNXfvfGu/L7Di6Oky+QmW8NVHsNgf+k0mkmC6qA7W5FNBw9jO8QszY9BdcxaQnONDkgBb5xXA2B78FPrtmD1UMJqa/6I68tafXtZqoKdMxhOABXXYkJOEhGzZEx5ggf9FMjIXTxF/8Rd/MbHkD/Sn76WjcKKLB6Kevgr2xkNbO8k8nN1MkJ1VS/hMJTpkxabKbuDPP9pPtV+ESdVP6VPpF8z4LKt7kmArb/xE+R2Y8BmwMr6FB/KmG+ZB1vSu2u8LndKWX9jqUnMiczZC5+i+Irbgl092jVzoOr7ZUGvvi/hGV0H3+7//+1Pe5ipm1A2oPTshW3KkE63M0KArbIwewYldkAOdEhf4XfpaT5XJxQ0wnB1bEFHIRvvd0R9P7MqYxmcHbYGNseUu5sombBYWyBNPdFbiKKmFF7+GJ33U4Ym9my975RPKz9J1N8auld23408d40neIR6yI75IPKdTeGV37NNTSskozMhsyU5n8mhpl4zMxc3dL/zCL2Rf8zQ3snazJB4p5gcz+JMDfaEb4p6nq2RARuSMDzHCdePY68OuxU669Nxof0Fg53s64g4cl/htGX2Ajh/wBJoQKC2lUgiK4jKSEgqlIhSOh0AIRx3QGZT+BKkA2UYwbaEwlGl/OKpqz7EtGUI4ae+p7ozxlaqncJSbk6CcNkqyUjEXyQkjIWyKQXmr4JuiUAYFrwKd+VZyU23XuoeXGwT8Ghs+eBWg3TQIcmXExjA/pbBUV07SXn0Zj3btsXMF9hyccciFQyK7KsYwNzy5CxZsJQothtozKk7O3biN4QvaMNGW49kXgUQSI8mTnHBanAvMBNQq+IS3pN2ek9Cu5lvz4PzL0apzHWbVrui1e2OVc+TgzLd1rPoaS1JrXIUj048uCKycMb7oIwfRjkf3ORYbPIzFmRireNSXc9EWXasUkucKbMUvusaCFX2FPV7QrDHNV3+yl4iQlZsDbdBnR5yvdlX0pct0pEphWue1V48O+ZEjHlYqdA5OdARW+hVt45q7wFY3fXWtpWkOcK3A45r5w8I8552vufEr6O4LHZNs0kG0BQmJmWSLvPgq9bbCEP1KzekDXbYy7AYEHTd+dN+c+B1z4E/gymfRXXoOJ9fLNmscshe46Gr5IThVMR99ix97Olm+hd+Ee12vfqvtjW8csqbLfCU88EpHro3VU8kTX/e/MU/zkRDCntwUNOYLPtCEk5tIsuFHPCVxQ1Y3fPoZH317foJ/c2Pq8fSv/Mqv5A27p5Tk4ybHnGExX8jNUx3j8EWeMvIvMMXPFJ/zNNZyXpixS7amkB/dKRlpY0z14pGkC3/8tPOSmzZkS6daP1V8rIVnbdbSrmi2+9X6nhfYsR36qpgf2dtL+Gx1raXbHhdv5ugvg+pDRnSMD3IDSidqIapsY4oGf0RHCmdt+FFyhiU9Y4NkIz7aJKj8DP3CS+nCE0LXHxe6TUb8Quv/auxqSz/5aPySHf/lmN+tgjZdL9/EVsyTzI3v6aq+rqOrVN5gb96FVdGc2psHXuiUebJbdkF/FLT4Bqv0xkRTnfnVuFN01aHBF+pXNkvH5RVilRsRpWwWPdjRaYtiblK09dTCqxwWmWBi3vwBXvh19N1YWM1H/xtiQfDz43UtsuSnyXktWCQzW/CxPMvcggHbIYBs9YuyUUTKz9kASkLYBiz9CNoGwAKRsxYc21LXqk4fgpIQGINBMiaBZaktxZ3RLfr2+lI6d4eSAAHJRqldmyrmRZHKMIte25bSMHhGg47gCQt91lOMVXNABx774ybB42jzpJSCH6WnxBRxUan5Fr9Fd1F7MsMzYzU23vHTFjRgTp5kC0Pt3aEfjv7qJZzFF2MUoCUX5oFvKwucGVrGlORwsrDzaNMKtsRknl/ncKZPjmvDH35tbZ16521p50Puxub8Kqi116s/IzevKjAiCzwrKeNmnBrTfDhXc6WbbhL0awOR8dQZHxack8QKBu2NgmBkXDijKQnzKNiNQ+ll8eecfSiwN0eOFXbl3Kpt7YvnOp/aa1MOml7id37stp825O59basV+CcjBQYCrdV275N6ejTFAwzZOdsq2fAPsBdQWrnU2EWHDrnuZkQgkhCQBf2tUm2LdtXbG5OtSZitLFZggb+VJnohaBfW9IgfEszNzSscAg7M2nEcw6FuIIxd1+1rw0Md13V1U7yqX1Ta9ujAVCCWrHr0S0c8fpa4asuveJTPTs1xmV+dGEQfmJK3lVoBk3wkyJJymEhC2gJDgV/Coa2bE6vK2rqhrCdv2pXOVH96pw9c+Vnt6QIdUrdRhW4bi+1VMddWFuqdiykSDHtxjq3rN9+29VHz12qMqb22+hYW7Ad/qxX8kov+rR7q147PSzqvujq2R8O21mIcfobt0wcJIHuAD53gw9jjSjSNW1gZ1zls2TIbJndxh2/jV5R9+/blEwK+cV4PjEXv9ecHpoox4Ioe+vh8SSR7/KyxC3t90XNuHDpqrnhhK+bettUe7dqqv/1KxRh4YSP4EiP4s3ZuaJrXekrhzv+wN9+DkAzzX5Jgq9jmYtwqxmFj/LV62OvDV7BtcvZudi3+4PHqiGMvfelL89d7vBOv7jX/7/8Nb4/FCKvVFiMs9JxJZX1IrsJ5Ab1Ks6XL2kuoPFqjSAIfYdRqGiG0NNvjIkLx2gBXCS4laZWSku4K567ORjjor6UYl0Iq6EwpfEvH2JIZyss5VvIw30ZSLnkUQN2NUk78M/i1lpoD/GApsFBwNCWlHpVSZAquVPu10l+pHRwZKcOCkbtv/M8X7WAiccAjHuDv0bc9ecPByrPEn3Ox+uBRFNkystaJCQTGQ4ejgqPkfL5ohx/t4DOvP/Pn8/3nz8ldgmAuEnvzJdv5Yr7aVnFuHnhV9PF+ZznPth0sbfTNOPN6ak4SFdfgQ94SNzLmzIzRzkt7vOKBg9oXQWOq4MmNLKeoj/b61flUn9Xq8CGhUMgezyvpn2twImu62yYUeDJPwae193kejOGmER4K/OicFU43D1MJND6Nba993Zyg1coRvSVso/180Z4PkwRb+bJaalzzsJJWCUHpgf7mZTMunyHBbnW9xiAfslBK54rnarNRe3RtbcEX+7Sybk6CoBsdWNGVfaFX2sBrCaOWwOwYXfNFw0q9QKq/1WuYkRWs6iajSKALWzwYky7jha/gO9kLfHyZGM5tQYsflODQce/311MHK9Ir6VNLZ7VjczMXelCFDbmBI1PXqpA3X2KvX+3reu1XwrLaTO2NRc/oOxp8Db1ZjR7Z0Ff9+aGW53acldLjed1p+7XHxYtY5YazXmeRA/BxeBcTW3upPi2dqWM82Mii5kDOcK5invRgpaRMQjrvp6t/7cuGncOM/tGrGrfa2ddiH109HDLhH9WhMVVqvmvFdFvIreYo9tH5yl1a+ujSB3TnfVzbzrE2+HTD6sbZog1fRUYWDMinnri0feEtNrNJ+m9V2aIC22e3eMCjL9KjJ+/xZAq//LenUdp6emTRCJ7kCdspP96OvVXHJyx9q0acjUN4nKUkgGCAxnDqjqTYWU1xCElQZQiSRBu6nFPrGCno0VAC42hPQJR9pULA2jM0KwQKIRMevkq552kYVxA3jtUaSjKfwAkC5uuxKKV0h+ZxrsBUyfc83facQqOJP/NghFZyvGfsG/0/9VM/lStG6Ev0JFobXczTSgEsYeROkzPEU1sS+6iDF9wkzIJaGTrDkEB7rMMQGY35wMIjH6sQFVC1dVwGZGWPEasjc8U4NroAf7oB03l5raZbaLVtOAGri2jhzXzNu+alvVLzHc9GncGDBA49ztOKCpmrr4IO7GwcBR2ib+WIqy8bkUzQAe+fcUxWCDkyOGpPJ5zb74+VfO3YBR7aYI1XTtYKiuTCGOaJF+1hqM1KZR7Xaqsf3eeg3eCQD/qL2pszfbKyaSWSfmuv6MNm4KVN1ddYtUcDNuZpTO3oAP1nC3QVPm3/9rjGauva4xpn0R7ekkF+TYInYNTNsVcHvP+njYJXWNNluqCt4JCPewX6GVb0oV6VMq+SzyIeTrce1iWj2sNdguvGhr6RhXei6ZuV3HqFotrjYXkKPnJFJ9i2xPmXf/mXE4Pvj/dfrWCbFzlN4U1H6aL5+04BOyRL77JKcqxYSVYlyngtPuz5G180pIu+XCVBd6POvrzCJMgnvzNdGzld/ye+yZTN0lH+AW+SQDd/lQjiCQ7s154/wUNdX//IJ/dg43XDaRx8+BnNed9cPfFk45voIpttfXS1W8senbWUasc//c7v/E76favBfrXEK3h03ooljCpWrIUuOaBt3vxzJcD0RUwunK2I8nmwIYPys8agS+rxQJ70Time61gf9PRn12KXmETnbHjHjz1czRWuzv3KjOLpSC20tb45L84+2nHb+vbYOJcEr3SJD/RaBX7YijGLhrHNT06DZ3PTVyG5ebst3tmaX85hNz/8wz+cq/f0xLy0mS/qbXwE7PHhCZYFPj6gfh2FvxQb6B79fH6sWvMzfj1KvfzQghqM+cr62VjzKb7nx96q8y1JoE10frKCs8e0AAWmhMKPw7crCNVvHgz1VTgswpFEMRiBi9IQsgSvaHDAFFUyqf2+fftSOARfQrCnPKjrR5jufPBairDSikXRqYSBA6MU5kdh28Lo/LQMA4UDY+PY/RQcRbGKpbRzdW4MdYIJY4SboGyuHk1KojkJeEhCBDpzLzo5R/OMbVGptouuVz3ajEKwMD/BT8JrzuWk4MuBcWQc0r7AvWSDjrE4DbwKxH7+DQ6CjsIRoF9JB2zhyqnp6+7UypebkUrQ9CNnyTg8vebhbllp5+bY1mIxVVf9jMsZcEacj4SnXrGYd75krninS2KgD6yujpUzgdyXKszZ/BQ80F83IHQNH9rDCu2WT05EMkPObpjI/Q/jj1ZkwAx6lwaf7AIedIkeu+MnH7iZQ80ZLxya+eDT6olx1XNcZEJ+VfSz4UdZhJdrZI8OPZHM0lGlxs6T5sM84SQZe3gEgeNzTtl18kdnJRrGk4TyJ24mzc1NqiTK3ODWzmGeJ9eMZb9onJj4Cc6bY2OTDT8EG3ImB3Lmd2yVDNBpyR7cJfmSO/qxL2zk/JAbC4Uhu/E9BkHEnMh5USm5LLq+Wj1dqZVKY9NJ+0oMJaiSHD6WndMnrw8JwjDTfomHwG++0Ac3FJ460nXBU8BHBx5o4KH0Sn8yqC9+8Zl8G71k9/j5oz/6o9QztujGVn0VfdGCGR9g//u///uZmGlDLyswV9tFMkenvbY0z9lgdZ1+uemHI74lVJUgVx/+kg/nm+k7XyAG1PWWf8dFu+oX7Ys/8qJb9I6c8OCn3vBUpcaqeUvixDo88zF8AXubKiTbWMCyJsVD0W8vqqu50Cvxi5+2eGRMsjMuGzcHbelD0WxpOZ6vrzHRhq+bGFiLD/vCruhZxSbYu8kVP70exA4VNOgom6OPYjE/3JYa13X6Q+bkZxWdjbtZR891BQ/mKNaLCXhh6+bKJtgDHaAL1acdz3xWK/oZGx1+1A0C/aaLdKFkKRZ7TUZs5A/95C8fVXKpcQpLOFmAYfNiAVsvmy3ZtPwVNjDks/gH82K75sw/slmLNjY2izcx36qzBSI2Dk9t3ey+5jWvyZsdPHgt5EwpG5JAA+xYKB1wAVqFsdoYBmFIKjhNQEn0Xvva16biEK4kx0vq7jwEIYVCcMjoMiZK6LhVMIYGbKAzfMmXR6ccM8XGGwciUaXAkjG/tEGBvdJRSoNHisLorgmet0WCezSUVuIhGFIQK6TGKf5qnvN7gcA45mW+lYC3SkZhKKJAQIE9FuFMPF6k9Pii3OZQBRaCqbtmBqc9AxSQYSMI74+kWpCAsXO81k0F3MjANTQYmnH0xRv6jLmMosZdtDcHcyQzMmBkNg4R/owYLQbCYNEmZ3NmsFXIiGMzX87Ko13OHNYw8tf1SuawlQAyRMkj2V577bVpbJwk58hBmDt5mz8+6A9eSj8l2OZcdMvoYameLigwocNwQgc/HC7HS6fM1dzpk76SXzrommDgvVHOw/zMmyzovpUVc9W3HDqe4ORGrx6PcVR4xoetCocOd/qQQSjGlIDtjvm/KByW6xwQ50nWdNB1c8MH586WBBirgdpKOumeOvOVeHJoEm+JChsxFsdofvjWho1UclhOGm280Tf66MZzNbsxN3KyLf/Oe816bXtyoB++rMJBWznBb/2gv/mTTeFeVPFM7viGkw0OVegIWainN6VLpUPaGptNGt8qGp/kOp2BUYsB2xZo+QqruvQCr2jgD5b0iU3DGI54xgdeiz96UfqLVzbBphXt5q/nhYmPoksPzY0dsUM6oRhb8McLvTA+3Wbr/IBiruyFrRdPaOFDwYtEl5+1GYu+s1f92JNj/ekO/ZIEwlHwhB/fQVfz5jOwYG94Kjs1rs1YNgVf7IVdsAe6IEGygOMaX8MGiufsNPdR1+yNVbpgDLJXjxbZvTBsEM/GMo5EgPwLHz7YfMjYXCqBRhe9ki38jaPfegq6/GktLMDTzRxb95gcDkXTePwDn4ZXuspe+Qi6qJhf6ZJzfEblMhp0rjChg1UKL/3Rc01/9XeF/PmU2yJO8vNsj/9RxDj+Ugw1Pltmx7AhK6Xki545usZ/aM9u0FDnpk+SLNElB77XOBI8fo0ekhtM8CD5FD/EfLqNb2PkvGNcczAf+ce+8P38uF+GIW836+zCGGxcH2Pxm/gVR2BLNtrRXYsY6jx9s2cb/IE9WbIRcZTe0HtznC/w5HvouTEqgaXj1Q8WeIEr2vguPSBPNqeNrbA1T23xYKOTZIFvxxXv8MNfoQ8XdsyeYVBxmy+hJ27o8GAMY8GofHTJxzzMx/hivbbake2ZUk6Wwjo5K8O6NQDlMDhdDo4yExohAk2CfVuA/5HrPzK86c1vylUzyZbEwh2FH+bmiAGtMESKbAMgJeZMjSGQEAqlJigGT9EloRSY4nFOrlM+zoGw9OconxErERyIayUMwQG/BE6AFNvYaNWXGig3I6zkj8JOFTxJfGrlFM8UjqIoxtTX+Hj3Mr05+u1Q8/cHQjgNL84zakFDH0ZOaSVfnCEcOAbOzry14yAYhES8gp+VRNiYFwOBDcehHYMwTzxTbHTgBQ/0Fs3RPFzjfMxBooge/iQB+kt00eaU8Wsu3mHkwOcxRItjgC854J1MBQHvdVWBD6OXGBobBuZCvuiiwYjNGV9+61UyQy/Ny/xhRB42bfGKdxjjt5yEephXEDeWvjCHkzHIgpHDj1On724A9BE0PVHhCMia7tElzoPTgYngSS70ncNmE9q6a8c/Hjgk+mAO7ABP7Aue8OJYrcRLCrTxsz+SN3Tc9eNF4JQI00W64EYAxmhrV7+vbjxY4st1geTVr351XqfTrpGn+Zvv/ghSVuLxwiYrsOG3/IF+tXJfctzsPZwke2Qp2Hlf12N+81VHt2AgENE9bfDLiXPU9Ix+2bvOduGhrySbHtAl+uKcH6NDCr/Dv1gQYIelM5WI1twFSkEW1grsBDuYu4Eiiwqkbjz95jka5M9G8Ewn6QI9rgRCQkLmruFbe7zray5TRTu6Y/700LmxyRuf+tJx/NJh80W/kgBYwQ0WaBhfEKfXFRz5KTYGJ7RspU98jfHppvH1rblrj3+80zWFrhnf72vb4w9ebBH+8KCDxjaO/hZEyJwf5wv4DY+RtTGeJBZd7edxwjdMtCVz9BX1/Ahe0TCPfZFQfW487fBnqS3miCHsHZ9wIg8YsnWy57dgww7pF95gob1ztPHPZ5pb6VkysOADLTbJT7ph5Jckk+Yr1vAb8FLMxzU/1UoefDkfCwfFHMUGegVTPMCh9Mp52bt29Jge3Bk800mbOcEJvs7N646gRSbGqeRZEs/n8+Pw4SONY+4wRJve0zu2C3OyN545mlONL5bTJXGYP+V/yYecxVbxls3zC8ZC03WJn3loR98rF6DTZEHHyMcc+AD+zQID3WKX+v/SL/1SYqyvtnDlS14aX5LTlnzI3g00vvmn0jH08CWOwtx8yAgWYhkMFyXQ2pL7vmiHX3rzq7/6q0sLMuxxf/hs9T/4gz+YPpKM4ZcyiXHoHRnpj5ZCxuRE98hBLKEDbobFQDEIX2yfDOHnGp9QuQbdt+GBfyY3vhGecIclWxGzYIMP47nm2MZOnJ8pZcfPRTkdZigHAN19eTxhlQtoCgXmENUJ7u7M3vu+8W/OA80KkXffBG8GS/gExVFJTrxjhy7lJmDBjyIRDuA5cY6OYgKX4bnGaeljfCslghiFFFCt9gpOhK1QXsrAMDgBSmNsj2LcFUo8GKVETEBsg24SmPjAEwPhZDkrNCUQZTi6aGOjDLBgrAyY0uFJkkXx8MCQ/EEOewGE4nocDTd0zQXmlN488c9xMGTzoowckiQLfowHTpIgc3d3x0lRftfxTXEldrBdqZiDAMtJMTDjMyAGBftM3EI/rPb7XWEJNCOoxKWlbUwbvjnc7/me78kAACPjVNFXHePmDNwQcM7m7JieSF7pl+BxTximpJajpKPl/ODgmHxrXH8hTDvOCs4wglU5a3omOSIzjpwzqZUSiaX5wl+A8qsKbgpLr40DU1iZI/0kZ/3Zhg0fkm6/NEGf3ZCQj6c15oBf8yNvmHBG5u6nvVxDC890Di0O2vjGE7Q5+I8EZsZ2zIlJzAQYczJPuqu+kgx94WF++tFR2NAX9iDRp7+cIrkIBOSiPft3g+wvzWmL9lYV+ghvvgWP8KobmNa+2ZXkwSNNyStb8Y1vryPRH05fPz6MP7KxFz6mgp5x2IFz48Dehh5cLBAIfq3eawcPeiFoCh4wtcGPLPk9yT6doNN0Du+/93u/t3TDpC1aCrnwFa6jU0mOcS+NeZFxtW3lwE/QIa9QmR8/Q7crgSNXeiuR4Se1p9t4gy0/gQ+vzNRf2eMLSk/oTCVfdMux8dgWndKWr3SNXZs7zOn2vkhIxQVJSCWksGfrztkNHXeTwcdrZx7kSW9rbHHF2tWxsBn+ia3C01h03JzoDB7g1RbzcJ0/Nj82yX5s/AhbQYtvEJckduYBF/7QXMyTbxCPjMl38xFsT3t2i375Kf7c/MlQcsHP00U8Tsmw5dcx/aNb/C0/AS/2CDuvfXnqwa/QfbGGjL1fWjf9xlHKr/gLfeYuRpCfen6o9PxVr3pVxhj1dG9P6Iq2ZTvmxXfBUYy5L+bHbuDFV2inn/hHZni3+IB32NFJcZ+vYS9kBHM0XeP/+VMxTULK9ui7155gTK70iK7w4+SmPX7oLlzwYDx6Lb6KyWzAawR0m21oT+7kQn/NAcZkj2/yNm96iCc+3HXY4gPv9MJc8EN38GFsfegzfuirelizPfrCFvjRkk0KaPZROlH+WzUZ4xEPdN5GL71nLp/Bs7nQA69ViDH0jgzYI5r8Gl5LP/mkirOwwg86bNF8Xefr6Aa50S3z0IfekzUZkS1d42O3Bw7vj2uvfOUrk0c4wEM7/g5d8uCTa/413xaDrT5e7iVOYXSTIExBR4JYCi+QKJSg2ni8fFEIg0AALrABmjLPF4pF4QFmxYCRGkcdZ+NcKdpA5QDUu+uj3JQUHWNx9u4mCYvBKhXsHFMEgQ7/DBcdzopD/owIEJ8XiZ8x1pIA4MnYkhdfUuF4OAZ3kwypVX7H+OMcYcgYKW/d7VNCvOHFvCmyxMqqhcS4cICpOg7Fdcov2DmWwDAi/SVW6mHk3Payl70slR1WxsEP/tdSzJVDEtzJmnwovuIavp4eenF14OrVgkq0p2jD3Zy+IL6Vy3HZ9C9dKpr4NC8rJWRu3hyWIGdu5CiBJTvHghA6vm398pe/PDHCG70zfzJFk0M2F3jRFeOiTybawVpbc3CXrA994VDJUX/YkTEHbBUYPe0UNOgEmuo4tYMhJ3TxzUGi5wYPDuhpR+ZumPAPY23pojldNrumnuPSB4/6GHtfOFzjmYt5cZZ0g3zNyzh4hWfxycFLINExpgCiD93Qh5zoZAUPCRS5l167xlELYIIdv4A+vlubS1A28aPkwd7xTRc4cfMRlOiLYG+e5gYv2JMf32Tu+sEWNuiYC+z1RV+AZrtlh/RKqbZuhGBNDjX/dsqFsf54oBMCuzHhLNh54mHcCy+6cLjzjjtTj5y7xt7hTmbk7BjPkkl2RBZ4IR+/c1/8tTw4Nr7+dJs+WK1T6Cy/hE994WAuEj948d/lK1zTng4bk+8yDzip1750yJxe8YpXpF+EpfYw11eBq6TW2BUj0CIbvt08zQ2m7JwOsnnt2bt5wEDCUtiSm/izd6bfeFHwjQ7+ap55ofkwd3TMlS67uaf/NWeYo6GNja7xEeiZm8RKvfZsk13gme/iM2DgOh74HvTYnDr96RgcF8mvYXXZIRzZPT74fHYpeTUe+nA04omJsAAAQABJREFUJl/Ih4uP/G7JtOzVOezdCJu3+vIxRYPtmBe6xqMnMKFXZEhnjKuv+dBJNBxLcvWn+8bCK33QBk3naBY22sCNjvODEiw3Gephhm7RoANwgL1SczUXPO6PZJVOwRYW5Et2bIzeumaPH7yag6ItOZMLeYn1jsmVjynbxAta9JNemoeCf/JnJ/ITsRl25oAHNm3u8IYf21BnjJUKPCo+GcMNRvk5umQs141BdvSBrymfgh88lHxdM0+LX66xL7anDiZ4k3RrLxaaI9rmSdZ1nR7ohz86iQ/65hymV4csfuInfiLjmDHJ0Xjo+SuT8sBWN1fCYKuubYsJntYLJbqbJABsnNxUoZzlhOwpc22AUtcWNClTS7P6ETrh6FcFH8bWh8IRKKVRKA3h6UP5ajztrY77++72XqXwWIMx4I0SMRyO1pjq5vms8ef3hYs7MN82NzaHLhGi1ErR0tZGufDP8AR4d6bmwQnpw3jxhI+aS9Gp8SRRkknOpBRfH7Rd48j15VBgoR7WVWCj3nzti8e6vmjvFZ0jMx3AMx7wVDzjYTUMCwNGSIbmTG5ThezwDitOF17mYc4M2d48YYUuPYKtPs4V12qujkt/tHOstDqnbdFzvWjCNW/YglePIs3VZnz9C0Pj1hzxbY50tGTMIetjK+zxix9jOS6eXNeOvMwbPTzVeC2dwsk4HDvdMJYNTng1r5bPGpcc6Qy+2QFbMlZhTaalK8WLMdw0evXD7/NaZeAstdvqUpiXvEpm5kRn4M+BC6r2cINFyaB8BTyqL1roKiUHc9O2iuvau2GBK5+C5lRBD570Ad4Cmv5sB1/lu4o+uiUD7dDHBx7wTl9sxaN+xi45T/GgbfUz1/m+JWN98YqHGrd0pzByraWhT/GAD8dosFvB2DldLD/rGh+An0q8jQEfxfWyGzyQm75wgkPxhw/YKjW+6/rUXPNic72dZ12rfclJX2O0GJUemB/6rtnwgG+2h2f9aq7VB2/6oK89+i1+pY+lY9quteCh6OKD7dN72OOFryx/iT7+jYenKmjgh87hz7miTfWp6/ZV0Cq89ZvCjE4qsCFze3pvI0+8sAmbtrCjE+jiA014Fcb8sD7mhLfaCuPiDZ94Ihd9+Cw02Rv6Ym4ryym5oKmNMYxZNNHjX+CFZ7yUbhce+Chc8V5xGz98LJ1Gk5zI27yNo7/6lXQA3ZJ5yRuu+uIFtsUzOtqXPZT81Lfyda4NOZCT/ngSPxybK1s2LvquKerRL6yLD9dhUj5JG23h4Jhc65gewKNiOl5sZ0I57QT6TJjEFA+lFPYEMFUoi8eyEmiPE93l/NiP/Vje6elTCjTVd7U64xIyZfM4yWMISlF32uivpATaMiZ7BkN5GMBqxbjmpZ/2bR/XKLJxGf5mljIc4+B/PQXvDLEc2Gp9zYtx62O+mz23eX6Ma3z6Ynz7tRZzJZOt4hufxuP01oJTzc18yFEf+gXzVrdqvm762JRH0Zz3D/zAD+QqA6e6HlyK3mbt4SBwwd+c2ONa8FgvP7BWYLWSvRdd2OoD3wpyde1s3PMT5Y9afAo3OjelN+RGhvoIwlNtziS8yveS7wPJLz5gDju2jZfVYtFW4UimZY9tzICZrXSh1ZOWN21anVjUru3jGA58wUbqEj6KZ3a8Win9MP9KKvVxjq8Wj9VozV9nS0cCG393Ae3TKaU/+Gn9pfqW1yns8WFjq/iYalO8kQk9VbYqNtbY69mvnpGtkRoA11tWAhCtRTTX0k+bVlnQmu9XTreESgEcV0BteZjvu9pcq73EwWMayYQk2jtolM+jc3e684ZRc6Y0+ralrqkr+u31qtfXprTz1qeMuaWVDec+FtGfa3bSadGdx17DtdIs3k8iPlFR85sfb2qs4m2eTNt2LW3a/trTI0GoSvFU51P7GmdeVtq2/Divto7b0rabajN1nfzndaBt19JHc2pupbM1pv6ChdeOvIvo3XcrBh6d1jvYLd0H6rj4NX6LQ/HTXl8Jk2pf+0VtXW+DTLVftDc+bAtf7dRN0W95LXrVbuqaNnW92k/tT6cveov611gtD9ousttFuBX91m6Kdruvdm2d4xp/tevz/drz9fbV3rhld2hVXUu3jtdLv/qttq8x+arWX+lXYxY+U7Sqzfy16jN1faVr6NR1x61Mi1f18zahri01rnZWjqu0NKpufq8NH2eBqsqifjVOtat9O4dqMy9rbdt21bf2rrU+qXioWFjn1X6te/3YUmtPi2ipny/zPDsv3an26mztGC2dajfPR9umjqstmaxXlkVjK/cblkDPA70RkzhVmlP95usIygqvxwQ2yWw9RsrH8XGHxCDn+613XozCu3eSCcbwT/GqCPoe03hPqA2WaK803krXFvG1qM+i+kV01lo/RXeqbq30Vms3RXuqDp1F9e0Ya2mzWvu10JhqM1W3UXxP0Z6qW8/c2v5uPH0Jzuoznfe+Gp2XSJ8ppeV3iqfVruuzljZTtNdSN0V7qm41Phb1OVUe1tKv2qxn7Pm28+dFs92vpY32q7Vb7Xo75vzxevtOtZ+qq3FWulZtTmW/Et2VrtVYq7VZ6fpK14p+u19P+0VtF9WvNs6ifovqT5Ve22/+eH6s+fP59ovOp/pN1em/qH49tKfarofuoraL6qfG28q6DUugt5LpjRjLe4Z+PcS3a31DVBLtW+e+IW212BfAro6X4xfdVa2VB4KXUPgCht8G9SUXibTE2WOKXjoCZwMC9NkXfnwBzZd32I73Cc9Ux3c2YN7n0BHoCHQEOgIPHAIP2QTa6xpeiJfM+napFTSvTAj4Xty3Gr2RCa5HRPtixfnySKDrvb/51ecHTg36yB2B00PAIzeJsy+n+qa4R/P1OO70KPfeHYGOQEegI9AROPMQOGu/RLga1L404KflfFvWsWAvCbBaLNm1UmxFbSOTXGPUhj/j9RW61STVrz9YEPAeNP1mM12vHyxS63x2BDoCHYGOwKkg8JBNoOubt1aip4pE2ipaTwSm0Ol1HYGOQEegI9AR6Ah0BB66CDxkE+iHrsj7zDsCHYGOQEegI9AR6Ah0BE4HgbX/YO3pjNL7dgQ6Ah2BjkBHoCPQEegIdATOEgR6An2WCLJPoyPQEegIdAQ6Ah2BjkBHYGsQ6An01uDcR+kIdAQ6Ah2BjkBHoCPQEThLEOgJ9FkiyD6NjkBHoCPQEegIdAQ6Ah2BrUGgJ9Bbg3MfpSPQEegIdAQ6Ah2BjkBH4CxBoCfQZ4kg+zQ6Ah2BjkBHoCPQEegIdAS2BoGeQG8Nzn2UjkBHoCPQEegIdAQ6Ah2BswSBnkCfJYLs0+gIdAQ6Ah2BjkBHoCPQEdgaBHoCvTU491E6Ah2BjkBHoCPQEegIdATOEgR6An2WCLJPoyPQEegIdAQ6Ah2BjkBHYGsQ6An01uDcR+kIdAQ6Ah2BjkBHoCPQEThLEOgJ9FkiyD6NjkBHoCPQEegIdAQ6Ah2BrUGgJ9Bbg3MfpSPQEegIdAQ6Ah2BjkBH4CxBoCfQZ4kg+zQ6Ah2BjkBHoCPQEegIdAS2BoGeQG8Nzn2UjkBHoCPQEegIdAQ6Ah2BswSBnkCfJYLs0+gIdAQ6Ah2BjkBHoCPQEdgaBHoCvTU491E6Ah2BjkBHoCPQEegIdATOEgR2niXz6NPoCHQEOgIdgY5AR2AdCBw/fnw4evRobrrt2LFj2L59+6Detm3bttzUbUSp8eyNhb7jY8eOLY2jbqXS0tBu586d2XelPv1aR2AzEOgJ9Gag2ml2BDoCHYGOQEfgDEZAInr48OHh9ttvHz75yU8mp5dccslw+eWXD/fee+9wzz33DLt27RouvPDCYe/evRuSpEqUjXXw4MHhqquuGnbv3j3cf//9w6c//ekc4+KLL15KrBdBd+TIkeGWW25J/iTPV1xxxXD++ecvat7rOwKbhkBPoDcN2k64RYCjPnDgQG6c3kUXXZSOUptaceDQq9TKRNW1KyBV17Z13NYXzWrT9x2BjkBHoCMwIiCRlcR+9KMfHT71qU/lsbr77rvvJL+sB9/a+uTyr/oozmvluq2rdrU/dOjQ8N73vjcT5uc///nDlVdeOdx2223DW97yluGxj33s8OQnP3k499xzl2ICmvoaH13HaNx6661JQ4IveZbgF481VjLWPzoCm4hAT6A3EdxO+gQCVhk46k984hPDeeedN1xzzTXDnj170iFyeOUk7SXYHu9Juq02cIznnHNO1jlW77Ej51ptq56TVc8J1yPCE1z0o45AR6Aj0BHgP++8887hbW9723DTTTcNT3va0zIxVWezCm3lmT/mg61G89d8rwSWD+drHdvzz3wxP4+2Y4UftspcRft3vvOdw7vf/e7hYQ97WPr2G2+8cXj9618/vPjFLx727duX46HJp+vPnzs3Nn4k/nfddVfyaVHm7rvvziSavzeuNr10BLYCgZ5AbwXKfYxEgGPljCXSH/zgBwePC60ccKrlgDlLKxGXXnrp8PGPfzxXGvSrtpyoek7e6oO2F1xwQa5sW8ng6NF4/OMfn48Iu0PtytcR6Ah0BJYjwOfylRLURz/60cPjHve49KnqJMd8qdc4+GuLHnzw8573vHzdY//+/dmeL3ZNcuvVC7Te85735PljHvOY9MmS5Gc961nLkuha2JD4Wo2+4YYbsj8/LgHn373SgUfxQWwwhmvGwJ++ruNRQq69WCBOuN5LR2ArEOgJ9Fag3MdIBKwMSG69v/b2t799ePazn52J8vvf//6lpLnehfNYzmO666+/Pp0l51rOlOOWQFuJsLpxxx13pNPl9B1buZA4a1/v1HURdAQ6Ah2BjsCIgIRUAmoRgp+04syvWtn1Ggf/ypcqH/jAB9IXe9eYz633pbW57rrrcsX3EY94RK4Cv/nNb86Va4mzlWU0rW5XEQOsZEtyvXttDD4fba/1WVH+0Ic+NOyPJN0x/rzmoc+NkVifG8n0wx/+8PTvxseLxRbxgd/vq8+FdN9vBQIb89XareC0j3FWIMDJWUm4+eabB073UY96VK5AWDnwWgenznFqZ3Mukbay8aY3vWn4yEc+kqsfnPJll12WDtMqyFvf+tZ8n48ztqLBeUuorZz00hHoCHQEOgLLEahks16PsJrLf1oBtsIreeWXvcohcbaYofDTEm1JrsUQx3w6f62P1exnPvOZ6dvnnwBaQJEMW1Xm1/WtOqvLfP/HPvax5MF1CTrakut7Y3Xc6yYSZ3EBrxZi0BJLLJY47qUjsFUI9BXorUK6j5MOFgwcba0eW/3gwDlejtWxpNejRI6Uk5dkv+9970vnynFWcq2dzbkVDU60vpx49dVXLx136DsCHYGOQEfgBAISWz7XKxoWGqzkSmbLp2rJF3vdwqsRfKzFC32e9KQnZTs+nL+1Auw1EG3f9a535d6TQYmxFej5ot51q878tDHRqraO0RQPrH4rVqGf+Yxn5Cq05F7xlNKXDiXYEmttJNDm1ktHYCsQ6Jq2FSj3MTIR5tisMkiaPeLjRG31iK6uaVdfXOGwOWmrC/acrkd/EmwOv77ssi++fKKNDX2P+TzWq1WWLoKOQEegI9ARGBHgY/lHPrVepbA4ISlVp/CdfKlVaH71jW98YybQfG4teFi11r6+ECgh9mQQffWSY4l1FceuP+EJT8hEnD83rieGYoEEGC2xAC/6a4/Xx0QivyPoSpbxJW5I7q1aixcSaXtj99IR2AoEuqZtBcp9jHSie8JBcsaPfOQjh6c85SnplK0ycKacLadcj+LUS4K9j8eJPiJ+M/TKcKyct5VpP7/EWUqc/Z4oB+/LiZwrZ3vp7PWODn1HoCPQEegILEdAkunVDL7XCrRV31oZ5mMdW3WWyPLL6vThZyW09hJer3Box0dLap/znOdk4st/e5XDtfa1CsdPfOITB18ylPyiLfHVVx9Ju9fzrEYbz7j4xI8VcWOLC9qihb56bT2F7Asmy+XczzYXgW2hgCd+fHdzx+rUH8II1AqB1QaP4KweS5Y5Pe8we2THiXrvzV69d9y05zz1t3rBsXqU6IsmVj9e9KIX5S9ucKBWpbXnWNGzgqFPd6oPYcXrU+8IdASWIyDixy+9Cf0SZwnsoYPxc3THx5+j27M7Etnt428v8718qySV33bMPyv6WeBwTaLN75b/leC6rki00VG0rT78c/l2/Wqlml/n78tvG1M7bZSdO8+JscafOjWHSmG0wYP2Q2U1/RftErP+sTkI9AR6c3DtVDcBAY7VioeE2yM/DtqKh8eGffVhEwDvJDsCHYGOQEegI9ARmETgtF7hcOfnjrKXjsBWIGBlwcrGeeftytdALrjgwnwPbseOcYVkK3joY5ydCFjtqu3snOHyWZXvttJ37Fgs1+WKXS3bLW/bzzoCHYGOwJmJgEcM4bfCf+dTie3xxDmenmxVOaUVaM7XO0/enfKTN1YGnfdyBiIwe8QVD7rOQObWx9LxCPSHDh0c7ozXP+igd6p3R0Kdj+zWR2rLWkdalsZdjyO3bOA+0JoQqKTZe5bezbf3OPpsLmzHY/QbP/bx4R1veddw26dvH44d8Ws2Z/Os+9ymEVgk9Fliwn9l7Kg9Ko6VRX1dm2qvXql+U3TafmPrxZ9TbYvm4l79yoMfARpUkj56LN6/v3Dv8PRnP3W45glXDxdfcvHSK0ObPdNTXoH2LqrH6Ndee23+BE59CWF73AFs37F92L5tfOepTGXeO59w1t5hYlLVMo5yVdsf3diWK9wc/rag5x2nqUTkWACoGFuxKg7UkU5W5bUdwdfYf4T+6FGrL/EnQ41dw4/N5z7H69UEDTyttbQ8Z69Z37YeraKIuxjCp48sNd6IxYn6uj7rMCMyUvKN5XPP2xNJ5gXDOefuGuc+31XTtq7OF+2XBpwdzLdTXXXVts5rX/XV1n6Kh6V2Jy46Svxjn5igqZxoMp63n1Pjttc36VjCf/TIoeG+e+8cDtx3d+jjViQp85OdP9+kyS4gS4/TvufshQxP6H80KvmVPJfRGyvLBpZdihNdq1t7PK+IS9fwkgZ2PP2Udy+vib9c6U8JexXooZBAH7j/wLD/+o8Of/X7rxve+y8fHOL3C4ajQ3+aOK9b/bwj0BE48xCocBEZ3XBfeK/HxhdLf/Bnv2e4/MrLhosuHn9FZiu4PqUEWiDz6M9vR77hDW8Yrr/u+vwpGcFnbzxW37Nnb/zFoHMjqEk0TSM+4mAMgJEUx/mYuMb1SGCPRCJ7NOhly/giw6GD9+UXCs4JGvcfqC8pnDfsihXHnTtO/FA62sej/YED9yb93XvOz8B48OD98YWHu4bDsVrpixE7IrH26B9fvoAgYFoxv+cePwAfP4ET4+Mt+UuGT/Da1gkvVhQl6sY1B48//YuZzBKCEq3ZxHEEaon/9thnyxwnEcm6HXFNm6IVlcPOqNsRezcNCgiPBb94Nm7SW3YzMY6zBDWeYpwLL7l0eOS+Jw1PesoLhisu3jfsrCQ6qT5YPlo8R57N8+TaNcxnxU4rXlwD8eVNUDt8+NBw523xZ8v3Xzd84J1vGA7GO9tHjtTvop5IVlJuus8O7KjhmGTOdCDkrjLzPm2VWfslzuPgeGzbZvUjSCraZFVHPaqR87a4piy6Pl4daZxol3YSfezZSI25LfSU7vIXJ/oMaYNu8Nhi3mxHlxzxpGGjIu1stDc3IUUbRkpi4ngcNrFz8xLOZbzYzt8Nc9PRl47w+ILnvyB/HcAXW3MOy4DOYc6uDxgc3TbsPn7BcOWjrgLxcPzoDNDEp/TAtGf1qTfz53VNfdun2s3XqVeqX1133h5r47zqq716Zepa9Xe92lddS2eqb9G0X1QW0dC+rlXfOrdXig/HdW3qWF3Ln/O2FD111a6O7VvazudLXa+961M0W36rTY3XXmv71ljVbv687VfXirZ99VvUrvrUmG37qmvp1HHbr2i37auduvZ6e1w0aszqU/Xz+6JV47S06rj6rNSm6FRb+2pfdfM8TfWpttW/eKi28/tqX/V13vZ3TSlajqt97dVVmaqra7WvNvZVWvrqZFJGjfoIjwePHRguirxz+9GdEfvm2xaNzdmfUgKNFQnfwfjm7u3xpzht9953bwbCPXfdE4nurljFkfD6O/YS6fgncPHSMek8Dyft7NjR8Q9nHI09YKwK33vPnZHo7hh2nbc7kuO4v4jEQ69zI0HftWt3rBJFIh3XJZj6HToU3/YNRA8fieAdwfD++GbxPffcmwnL0UhYrFB7zK/vuO2KsYb4i0a3x6PMe4fDVqKDjuRU9BU/vEeTSW8cH8u6YzHemDxLbs1BH1NyXbytFe7jIURBmCx3xIUxGR7rxPWjPqKoz1X12KvLcWd9jB3VwYh+2BoTCO1gb8JjogLRsZ3EPo8TrWG4+74Dw6Gj24dde64Ytp0TgfKqfXFjsztpzhombrqfaWVEaDFX4zznrp9UeVLFXIf50/W2n/XH7KwrPaCL5HZ0OBA6ft5w34FD8fN6n4gkMnT04IFZJztadKKQc9EZpVv8jLqhfepE9hw/aGKWHHg8HPVI0hzn40eRzQbtmGOPE5814lKHbNwwdqLp0tFIj/1E1ax9Jv9hi/SbLZR9m2DeAEqcXXeTWING35HWSJrOH4/km77nsQGqwayP6S3daOY1WI2NimwxqjZvLvSZVfIpbmzu+Mw78vWg0baqx9m7H2UVWMUPGxyLv0vBZx0bf+QgTgqdmv9K5/PXqo/9eq61baeO27oao+pqX/VTY1ebRfu276LjlfrWtepb57Wvevu2bi3Hi/rO05o6b/u21xeN27Zp+1b72te1+fNF9YvazY+3Ursp2tW+9lNtpurm26/Ex3zb+fOi3+6rTe3r2vz5/Ljz52tpv5Y+Nf6itjVO7av9/Hnb/1SvFe2pfdGs/Upt4lpksMcirh6zrspvVXyY6rYJdaecQHMCXtWQIJ8XiemReIdOIhmhbvyrQpHESqLPiZ/EyeQvIt2xDOZmEe1iol64OBZB1CrUmCAej1XjMRG1MqsejcOReRycrRSPAU4Q3hVJsfGtYu1JaKwul3M6duz8uH5O0Ds0HDp8f6xwH43EOhLx4EEfCbUAbgz+7Ni2SFAzSR2Tmhw/shWJTM4r5iapHeutCmoficExq8fRKqp25qsrEt5InjJCVQI9ckW2EmALPY53xLiVXMMju6iLLf5n7mNMB+NKd4waycShw5IKFHAXWzTJhFsCHSc2FI4dPTzcdtMNw4e2vzFuPs4dLrjokpi7FfgSO9pJJvmJo/EkK8eztX8itHFl3dQWdlh4YUOYzQR2hvcSbLMlYK8g5Y1YyIUuHj8eTxBC70bpT3wSabKLKh2blVSMmbzj+tIKc123Tx4cSCDH5Dn1IBRzRGCJuEZL8tZtpqpL7GeDsVMeLjV2ph6pLCdosppMXGfEjF2JsqodO8abU3xuz+QZjyNvRa4S35G0G8XQYe2NycByYAxni5EXGPunOurzUsND1qif1eF/fL1sJJI+ZuYLRrwM9lAs8ADUQ3Hufc4dgY7Agw2BclXj3mfVbN1MKpM6hRElbpFQxisVOyMpOyd+GcEdgOTUY1avXtQrB7lSazUpglj+vmQkf7kaLTgaOfZHrORGcujd5WyfATMCbwQ3SfrhQ4eD3uH88osV6b3xSsbe8y+I35jck4F6DMaZziRf50Q/gdXrG0Li4fh3LBKYI/Hutt+8zGgbgEtyMuGI5Dei9UwEwWdksRIAUTq+aZm0BGnJ7RjKBfZorzIqso3j2LLquFZKCTb2Kd9oMytOJeHbYxuP45qDyJD0Tt6QVDXbu+HYJuePNvCCY44UeKFlXuSij6LNLTfdOHzyxo8MD3vk4+OpwPnD7p0XjBfrc0Z7PM3R6srSHlsPjlIz33hul1Mu0JbXjqNWnTZ0ir6Tlxuuo0uyGTEdZb/EbVaG/EKoIbqQZ3wQPtkGndSDeWEYrq0LO6SXY845fj9g1IhoVKzNBkyyumd/H9Gy6BXNGt74zVAtqXGOM0JxIb8JjX9V0csNsvb4oLMeOG2Lm9a2jCzEZzDjtQ+6m4xR8PHibI8QPkeQUu9VIRZ19pqjkcVJNE0fEcfHYsnCfLNdJPZu+pc6jT0eep8wsvXSEegIdAQ6AmtC4DQSaDEn3teNRPW8eLd2XPUag9fBeEzttYl87BpsWNm9L95T9sVDX9DZGSugktMMeHE91plylSnifiaDuRKkPoLkzkiez404aoX78OF4ZSNeyZCY35fvRo/vYnvVQ7vjlrQzEzgeiX1GzKQRH5GIe03D6xzj+86CrvErgY7DSDricXMkpuJIrh4mg2Oi7PrsVMs8riCcCYeaqBh7SxgqGo01eVlPCVFcclWTCt5SiVxUjr1xjueym8whR1UT/yBevI0JviSjVrLjUpRx3Bwf/ZjvwYOHh5s+cf2w/0PvjAT6gmHnVeeF3M4dsRk7rfqZPK3aaiMb1Lw3kuZaaS0fe5TvWvuu3K4oz6SUOrAkYl1dIPalokdsoZfx/+QSl1QX3TyyKjvF9IlGI52GnkupX3NtssmJj5l26R4Ns9NMv6uNuoZGmgHe8RNtRr3MxiOtJT7zYl53s1F2MnYqgrEf/zOCdhgMxbXRPpKjIDcbMvfjNXTGscdhERvtKPlzuZeOQEegI9AR6AisAYHTSKAF6XgFIhJo7xFaFhWEDh8+GMOKXmNCKGDaDsTPJt199x3D7l17IonzHrNXMOILPBnJYsVV4hqB3yNVK9r1fvD2oC+wZ6IYx0fiHQ9fzvKlQ+9d++tER/YeyS8InhN8eDwrDqKbOWi+oiHRPycS73ilI76gOI6ZjeJYWzxi+USgV+HfWBu7KM60k+grNTd1LmYyPOsjIVYiJY/EfsyItDOP8fWLsT1S6CXd7Bv1wdS2wDPpqvM/TiT94yqzRCH+RRIh0c8E2kR0yCzLO9XGGTeY3H7LJ4YPv+9Nw/kXXhry2j1cfOnDQnaFf7K66sds2qu2m28QXK2znOpIi4dZO8W1t1w8Gq0Zi70NBlU3Xhl1LuuJLS46pgtE6HgpY44KddosK9VH07ww+5xqON83B1hG7ST6o/6faIPE2I321clYexK5qBjrmivq8vREHVscq8aLY+Icx8iah+1E81lV3ViOF0Z71kGB64iXxks2HZboOOeU9UjH9dwmkvGRWP/sCHQEOgIdgY7AJAKnnEBH3MlHxDsjQfVerVRRcueXLyRvywLlLAYePnwkkt+7hnvuvTu+zLcr/tTyhfEKxvjLGPF2cCbRvhx4wd54xSAGyHd1Y78zMsRMuGPl+nAkfd6hlEQfiyTa6rZf3ajEe1v0V4RTAXO7x8SZv/rYMfieTCa+udwr2I5BvRLbYL3CbCSyLo7XJfEZ6iNh3Z5jRN9ofDReaM6AHVfjDZCTikfpric3OZgmzsedo9lZHM0S7TjCXr7akRnVyEO+EhMXMjmPpNhNB5xyjKDihiGTCft4dSUW/IPH+IWTbfE0IORy+603D+9/xxtyxCc+9YWZTJ94HzqqN6mcDMvJNaczNPyWUVx2sojymhot6rxifVKOjxMjnDiqjni25UfqmWRu7CPJy1ecUPB/pqtLBBtyDvMUsVCffK0B3aVCb6OcBNJSgxmB5jzb0/gZj82lGbWsSf7HWTQt2sO4gcu7w1lddBhtYTakCUeRNLupdJZVdDpsJe0tjvN1EFc9vYl2x7f7Qi9bOdEfZs7zewqIxGU2rTrHDIzzfXTXsi58VPopN6Uzf4VELx2BjkBHoCPQEVgDAqecQKMtWcvffPY4NZI0wS1f3fDuoWA0C0jaSXCteEp8JdKSQcmn1zp2zVajd0Rimn8UI1aaBUOxzpfuJIb1pT+rrjaJn1XoDLQZgAXB2fgRGOu3oXNsMTMCeQZkbTJgRsiN42QzPvKxseAcG8aT9ei3NIdZXYZ17Wdb0yAajyE93z+ddUQiSxKEWcR2Hwqe4tClpXaOozLzA22UHMtH/Nc4Drz2ksfREcuSg8QGbtEiZRNJdGThcabt0fgi5r3DJ2/4UPwqx/nxc4OXDI+55qnDhRddHtfQ0ymHcDQeZOXsOCvX8lGdptriZaXrU30m6oIE2R85cjCeKNyfiVLqV7yPvz30Ag5KYeCGy7Ey4peHp/WxbBbtScoH6agsOU+O5Ho1dtxgHyfkmbyOH5MUllWS/0njqZu1MtQy+Jux61DTap8Ho14s6zYj03Kr21RJsg3g4zCzz/FikGGV4zip8+qjzxIb42nWGePEHPWKxiM5l6CWn2P97IJdVPMhyhKmcbB0LNHupSPQEegIdAQ6AutA4PQS6IhMfpVCUMvkNZJiqz75GHYW2dQrXqE4N96VzmjmFYx4R/qee+6On6i7L3+u7vz4QuB58WqH1ex8PzpojuFQcPNFuaATdfnahwQ6ksPjXo6OaonUmHAci4Q8EvP86Tq/lzz++kEmllagonH+MoCsIv6PARR3J+KwQKvenDJYRz8zyONZwpuddYo29cdbnCrJsw+d4sxhljhwLLdDHzc1xth8No42s7EzKdZZX2PJMCTEySAa402DUwhFk9hib/kN/Rhs+86ojFXobXnTcDR/quuTN3w4X+OQPO/de1Gu6GfncSgj5qsEeeBjZHDpdPGBhiuV1a6v1Hd2bUbiSLwqdNedt8TvLN80HImfMTwnXkvZvTeeaMQfjfGKysh0wBXJ8/Z4HSZ1KvRh/AWI8SnFGkabbLJsFksns4Ol8+X85llzLfUpK8dkkbrYskl8jNfHJK/plj1O/pjp6th7drnRPYSXlbZiadSxRZ0aNPQdVyOltk9LbORuTIPb+tnxSGJ2EjTa81Dc1Hr6njcAMZq7wWU8RNfQ3bFEZ/8pepT0LTO2ylaSnvaMQkm6oz1ke8ly0o+PNJixWfYbD/tnR6Aj0BHoCHQEVkXg9BLoCEASWX/4Y6eEdke8hiFWZZQcg1xxINH0axpWhvPb8RHgvPLgy4EHjt+XzQ7GawZ+ts4va3ivWlAUCP3CRQbOiHwZCiVC51SC4P3owxFjfWnRCrRXOg7m+9G+rOh9a7/9PK5Q7si/NFYBuPbJcQbxiLfJyRhwZ3F6nEKwsjSiY1v80kaG6dlH0Us+9FKPbmzjlxUjl434nb/5HInC9ng1xe9Eo3UkVuPxru3OSHqzfswW8np+qTHISY/BkalHHIxfuMqKMWfIMX0EboGf5NFbLMf9sZj86YP4Qmf8ZbxPfOyDw01XXx9/bOXK4cKLL48xxplHxyzB0vJyUsXyy6dyhsv1F/M/Fr/ycu9w8yf3Dx/78LuGe+66LZLni+KvED06fmnk6uHSKx4VZLfFr60ciBu0e4aD8YVTuO49/6Lhonj3e3fsczqAbMvkHCcr214rHDf0MxlFyzbWOwrRjLw0e5ezRfAnMT25zHhyKcQ26t2sLunEcTWZdV+6ujTnpZqGvMbVsaqXp8bLe9VZamN2OEEB73Qqrllpd/MZ/7TMouvskOJmcssQcnNNH/+DTtSpzvZRl69maBr/JMhjvZb+jfXpO2ZnaNe71UlLnyCorVLX6nys7Z8dgY5AR6Aj0BFYjMBpJdBFtgJUhKX8hQ3vRcffAMx3k/2hEnHO+9Hju9JiVyQ38eW//FPa3mOOxM4fPzkcf/b4UOzV7zkWf80wkmnRMYPnSES0y2RU8qqgm+NH8plBONpJSsb3ra10o380E/JzYhVcEm98v06RwTTa5j7qMtxHFB2D8FhvDHTzHc2Yx7g6rHYMwLninq99mDsEYgtayUsezoK/KyaSTWIkg8V51S29fqEuLs0XXSULEuYcM06TnBXnWJX2F3iqZ65ChwwkLcciMbf6eswvjsef69X/SNyo3HXHp4fr3v/W+BPfu4cnfNZzhz2RgNarD/Njb9a5Ka0vaRmRMU+/uuILkZc97NH5Ooqf57vw4isiSb54tgI94iNFhbE533dv/OXJSLy9wnLhRZfl3mtFSwI/aaJTkjip0QoVJ2Sy1ChJRr07zdCrfDIwj0KCEnzPwKFLqSdLRGYaGiTG+jk+Z6fRbanMeszOV2o/6lI2rGaZ/C+nECPPaJ0YxJEUdtTDuj6eVStnZRtIjDzO+lSXahz0RvuY9ZnVJ8U0CAM2jbWfjV6QZkpd/dwkLhuD70imMb50KWp66Qh0BDoCHYGOwIoInFYCPSaW45+Y9k6qd4slb345wwqQP5OtjH+yN/54idczPFLPLb4QGEnNEcldJLji2JH4S4JHj0advwwYCfH5e+Pn6NBaCpZBP9pZQIp0eZY8W16NbRYYvZPtz317Zxr9+w/cn7/77M9479k7JuXoJZ9BCGmbJLP+yp9kOX84Iy4IsBZu/SU17byebRXYsUx9vDYmOPiyUpxlthsbmt1YkWN7g0DAVuUj4roV5xN9ta8tDmtysYf5YbxEbb6OEuNJ6mNRProkwSAZv8cdP1OXNxexOm8MTwDiL/fm72DD259Wft87/jVwPjpcdMnlsXJ7Tf7EHZpbWXC8vJxcs/x6nMV8JMr+0uUVD39MiD9+yi/m6+bIu/GSqAQovox6/Pj4jveBSJ5vufmG4VMfvy717ZGPfeJwyWVXDbuiTb4WNN7RnDTU6VQsm0mezPQg+PclzwA/pjJL4lLeMZom8VHJs7Ocj4MoMwogSBzGiealZR9jXpnEZvUzTAAzV63B2H5smklw8ju2zcPCtO27jNDYd2y7/Fh6vHzQkfUc04fJwCQ2p5lgR4+8qXStbo6NzWZt4WesHIcJBlbB8ay/15zoA91HTPey9zhKPnIFewlJNN2EutZLR6Aj0BHoCHQE1obAaSXQhqgAJej6k7h+EUOCtidW+Xb5ybr4gqDXJ6R8ApcvDwp+Eh3vRB+JVWd/3CT/wIQgGDS9jqFIpA/F+9KKxE6i45URRdCU6hnftSAdfSWT/jrhOfnXEY0jUbTa7HejHfsz417p0EeMzQERzBIBPAkiilr8cx5DjsF8HE/TWkUzN+OgMwbh4EGD6JfxPo99zAaLdg6dKZmsOI/ktxKHrI122aMaRtuRHzcgY1uXJP14jduWGH+WMMTc/OVBP4W3fYe/xBi/WBKYphxgK/E4eijanzfc/KmPDu9+678FnWPDoyKpPG/X3sQQb0oz/Fix4qfJbXKZDUEuO7efG/OjwuZNVicn/+p02RXvRl/x8H3DnvMviVc+bh3uvvPW/JPxXl+5MurPDZ0Y8V95DpNXl1UuO0kwUodm1eTtRidfS8pj6WXWLgEH80ygi5T97Hisr4pqsNR1bHiS0GDTtGmPozrtAIaO4zMvR+VJZJZVLDtZIq52jnxSnRE/cTwbxz1fUjJe3gCOssza5GE2jgn4r/3/Z+/Nnuw4sjw9zxWJHSAI7lVk7dXV1dXr9PRsZjMa6UWad/2NepBJZnoZmUYyjaTWTKuX6emu6tpZVWRxJwhiR+76vt9xvzcykQBIgt1FcsIz7w0P9+PHjx93D//FuSc8ksSEJ8KpF4Acjccdo7dlgOKF/hn38bGGbowXrwPedC9o5DeHWQOzBmYNzBqYNfAYDTwRgBaU+VZAHwS8e/d24i5EG7wsRfcLP4LegFWAntupxVrKNlQF5g7JZzeNdQG01rhaHXfYq9kFVMAtuHanDsFNgDGAXP4CZcldVU03vx4QW4JzAeQaDxTu7NzLrg0B45RRHq2VAskjgTxlCIgeGT2tXCSsTWDRF+7UbhmBG6u6C7sWxTrjfEAjQYHZ/GXdL1qt6K78ARF8xWpGWtxEtIghZzUSPkENlIdRgIGVWI+Fo4gCPpylvHq1jeq/8UPADtZ4LXNaog8B2gfcnBj0H371x3/VLl15Lm4NV57hhmcDGoG5rNPikH4mv+zLjxJ01YjVmhs7t058H51df/8t/KPvxHp9Gd/oU1vnSpUfheGgUeGLcOSk+mWaNPRpGv1ZfboovIhMi5iYLh659r/9nT4fiUePjrNlkH55djyWYZXEInoE6aTolP8kmajlw+MYI09txxAtbe+Vm7wgl7W6MS2JVai+q/hIlyp0nU/mhpz8t0BClzUHdJEb40obJOM4SszHWQOzBmYNzBqYNfA4DXxiAO0CqEX39u0b7fr1D9qdO7dd99p59nY+k72dYc0qpn+zYMwFLZjQPZTxJeBVH6T5EOJGOwDs1c+qukpgdeZdLJ7LT6i6Cwi+fw8UCI8zPGDojh2Cc0G4ofyaBc7dOk1FgmoB9dqeLiBYs3kToQBSjlrBV1drC7wwqGW4otCOn88HwMlCzervuXsvQ5ISnuvuIdZMimXDReBMCl/GfCmML4nx3JsO9WHZ0FiGz+BlXCa0pl6oEn7Fa/xkLR+DWlSHBagiQU/Dqgao12XGBxKjW+rc2a39slOXTPjsY52+e8uHCn/My1WeaefY3i57QytX2dI5fjqhi/3pMDvC5eESHs2x/1bxmb6UV8+7W8u7b/2ivcUDldI98/xpdDluWo5UcOzkKNdjmQ8/7Tc79lfGIndTjo+hF49yPsKdk5GeHneAZJA8rJrBLdRF2hlm3CS7OA7KZHeaEqbyq4ZB9bD6SIekD6cj9S0a0pGzVQTkQrwYg6QtbhhhZHqYWV3GtoX8mM4x3VNjPjMxvEgnZD54kbFi0uNSZjHnLEnVt0Wp/qGArH9MnsOsgVkDswZmDcwa+Iga+MQAWv4udrWX8w6uG+Vqod9zgCw/iQvgyloKneAVei2G8fcFNKe86Xxc3ASjENWfUWIBwWu4I6yWG8I9+AvcfbHKKXbq8Cjgq10ulmBEkOLDjAUwAdkumHz2AJEJWWBdZF20FYG4NOO8r8MuxkmrUvVNG/RdrTJj0YeHZU4IbjFXizoHK7NdrvGmChI4EqENBc5NiCqQp7IoTzkBwZBX+o4maBf0FCrsYF0GHpzDW2OfctnRRPJYondKp1Se7f7YH3qfV5y/8YsfclNyGivt5fbcS1/HX/wCOg+jT+0r7fxUuMkp2vvo3HqR6Bsr/Cm2unvupa/lYcQ3f/XjduP6u+08Dxa6DZ5jbhk+Pakjc+9/+zNR2NeIyAipsWDlVturrm4YN0oPk8d0OY0w6OvcMTzNrpky4XU0ezDheIyvVUyKhZBzk6bJR+KcxEVpKgD0Ga+9VG4qBw/nRMY3UjIRwsu0Ph4zH70RtXIz+Xj9CF3Xb9prPpX453wpHfT5arEkV56kx8RL0vw1a2DWwKyBWQOzBk7SwBMB6MEwa3MWrrIgC6L1Xz7LA1paisea69FFLAtXL5zt2ljkyge4tqLLQudqyGd9tV4VLj+t03tYDQXRWqV17XAbPIF0WZzrgUOLujhbn/tUY4YNM32zBYvmG6znMNvHCaALYJcbhZn8KyiRyFNJSRM4C6DJKF/WtElbosF0DpbtUcuLhUe906NxwcKijjDBaiwn6jF9FZcXmRHNx5oSFzaT5qu/DeXOQF6o6QuOOMu0zY11bjJEH2HeDrnZOQQjSnmITvQ5v/nh++31X/xddrTwwc3nAdGbp/CH/oguEjD/ewpDW8fZPyz9OB3ng3QcTaJd532JDDq+9t4b+O/fjW+0fvnDr3pZ8ASej0myS6xO8Batj07xbCRM5QnthOkkL1zC8EjihPh4lFqHAMezjpw7juEZeY5kHDux3k70UBHI0NKbVh8r/tDTzszBbLl+WoepUGNuncxo1JnxTLFQd3adJeInN8dK87s+qT5fJ/OfU2cNzBqYNTBrYNbAcQ08IYCuhVrrr1bnWIGwBgt27wFIdK3YxF85Ow0EDAoE6+n5ARgtI8h1ufTnVBe/scDpQiCY22SRF9hqMd3dXW33jYNIBdJuh3dq6xQPLZ6Nb+sAigHQMPV13P5EHK4BCy6knvNnPnKV5RkAbY6CGBCion2hDTgwzYwlUflULopUIWil8GNpySul6Oq88kJAcuTQlAyt8oJcQ+zPz90QnfMCPOHKeaRJBbFCUy6v/06OwBsXFh608+FC++gUvwq4m4gPbEbXK7jPUM8BbhxaXe/cut5+8v3/gBX2HPq80K488xLpbiX4pEF5PwvhQTk2uMG78vSLPFT4Pq86fyegepOHXxddfILYds/jA0Sd8Ci5o+JoWOZbxrwpzQDDS6qjpcfZKFP0SxmFl+SRkDEYMnkNeqKD9SSp8kfGqOMjHFNkUk5BwrduAlMZSZEKJXsdMC5ZxrbE0tsBjM0FwPecuWrInBvzo/MYHRY+07zwq3Ipq6VaIkJSLc8Eyy87SZ2/Zg3MGpg1MGtg1sDjNfBEANqFSEvexgYPDJ6qB9ROAZj3sPLeZ9eLAqaCw4P4SO/y9rgtfjof/smKVz6IRoTWuFoAmNfxk3a9NFiHD8Jtscge6NcMKNzbc8HDhxoa8wWFe7we/EAZXBv7Ygz0DKD03CBEtiIXbfnnaEqSXcYJgl/PjfLHWZWijp64AOTFh1qgt6zWWuWxvH7WHgWu8fFUV9Bg8K7Fuudl0zXyUGToE8VarN+0ITpWjiFUypcsqYs8KUkOCEcLbQWrvPpoa1jbNzE1r5Rl3g0rtk6rOz62R2TOftoH6JS7k7x45NaND9rrr/6gnWePZV0aNrDIqoGSRolOCpWrDL/58GhJj8iHTtfZ/u7chcvtxofvYoV/l7H1jZDY8yj/CPknOukswirxnsBgz/ZriyfrpnXVuLNnq9w0r0uhso/JV+z9TmbGjsOmPrbHMj2bQ0KRjrN+HEQnZh6j9XTQL7MWJY0QHKuKVafEmWc1cit/QS8v85gPCRG+15D5Zdz6nEeOYSIWgX99bK8V1bwtSvMnwJlyYz4dHOJKFm7z16yBWQOzBmYNzBr46Bp4AgANMATkbWplxg95Hwdgt4PSEn2wXdvQ1SLFQsZitsPrln11t7tq6JPrS038qbxAp4tbLXL6M58CtGkRkldcCMhcBwQestgJVjd23JVDwJ5CLKJlUdUVwb2OtSjp7mHIq8YFiATJh7/0WIST4Rd5+GewmPaF11WVAkkWcLooIweS1kJNtq4TJiuLeWMRN811PYUtw8IfKzjMVmJFC9eipw4fbNNNo2CqD1Z6XnUHeMAoYAGW6tKXo6Q+66BUADo0yYO/4NhfAVa4kVndEyDDk5sS9e0OJqfQk64vWu9RVvpt/wAAj950kXn7jVfjynGFN/u5e8UpHgp9eLAtFapV4+w3cVzK8pFqh1xrpm3cvn+nffDem3nRyvmLvmTHnv444Rj15DR9SJcdCcfP6ccaMEVl7zN00s9Hyo2TCX+TipTvY+mDPMcjVUjYR3sebjxCOTkZhYp+kjGJThozyEuiCY1ReXTES6xKFV+/02Anz/GQzJE4OUldfKko/5PFV01Kzmt+Rv/GZUFerkucZL6RXrr2ew6zBmYNzBqYNTBr4KNp4BMDaBcrrcG6Bfgg36FvBiTRPZfL8uxCVZYeFzABiVbZW7dutRV27NC1Q6BseeMByixpAkdfkGGocrXwHQoyqdMHAzc32ZqN5U63A+m1bLv4uUBaxw57UfsGRLdyU7ZyIykQq7+0S2UAeOSqelxMAye4EfDBO+XRP9t6xBf6Q1u/ezAXICbHCv2C1spNr8UaoE45E33N+RplwipApcC2vremFy+Ognf5EGxTAWiOFrRuyxKUTefmAPoOBta9cSE74oSKONXEv3mFtzHCb23FLQWVCpcYbnoOsERX/+xzc0Ld0sPYm5DbuHK88aufsCvHs+kLX7JSDejMH3EoKR9B8JGzHsHpEVkfmf0gRGn+YnL75vX2/juvtTts62e7N0+dgeJjVjQhN5o+H/VMj2ZG3ybaayMse3CAvpFz9AgDeTgWiNQQMaFCyhIVKGas96yQJy2lqDlMpOxiDB5TmeQ55Br0pk2D5YvH2PGiBBw0x/kV+SgTPfFV3ItXZHUeMO+tfzreMx+YK84d52zEo0DV0usqpUQ34cXNoTnZf9u64K2enF9eR2LxHs0fYs/HWQOzBmYNzBqYNfAQDXxiAC0/FzDdMdxtY21XK3D5JgugE/paVrRaQDeAaAWwt/Pqbn2l74WHwNYXnGTvaBa0sfKVv263JLPY6ePsYjfq1urtg4F8UU0HDBx32anDfZ+1sm7wEN2CN9ZGF07B49bh6azz7iASqxRya1UOJvbIIuuq6yJ+iIWYpFiHda8ISKGZByuFhMyrBZmj5SyDPrJAy0tWfFax9GKGjlW4yvRygucOAqDOn0mph5aNow89Wk5YYcQWa7HOVnkm8ee/wfgachygiz2T8XmO7nBbwPU3wbL3uOEYb3wsK7R6u5tfDdx2Lwqx0k81fNr8Polw6o8/Le+Mle28bIdfN8b4fRTLhY4fQTQZ/0sq66Nn7A/yTyJJXz+g76EvS1jQ887nGK03Qwb5HOU/zqrdnYrDSB9HeY94US2/hxymTGhKnCXZItaBbVCsiVU+NXS5Q+HY56YySYzZkMG+fnkhYlVkBvgSzXaQ0+oXYoVzSWad/pOUcd/r82BdfGWOJj5ti2LOYdbArIFZA7MGZg08QgNPBKBd5VZ9WQkgTIupvsgubO52kdAXNRevuAJgDd4FqNTbAfeJA3IPeN02O8vt7pxOOcG3r6HW5UAAOMCMcf8KOJdP73iDmEAkFioqdYFVJn2z93bctYNXefPgoW/scz3VhUHLtOBC3+pN6jNdufUdJkpe+VLH+su5xnWgsOt3ytmeiqsB/2rhT3PJ8CjAzS4eIQzTDpgKUJi8CMZNoPIF5OlpU7qOB2jfhHeKlv7Djzx1VICbPgkoQT5AtO1Zoe2C+1V0fKozzxaDjZfZWCcAX/34eu+nnuZV1/waUC0K94/xJbPPclC+ktEbHUGU1vfxq4mSm5vx4Mk0fKymDS4wWJST68mhumRBuCAaKdOSplXfGHMM1tG5YPqC1khOikuifHnsQ4DYCEWzbP1ID/U4OXaseqeJg8uDfJZU01KO7WWZSSkzRoBglMkN7yKrMsbpIs9kPsyG6Ca64hx7Nhy9Hliif0Z01DUfZw3MGpg1MGtg1sAjNPCEALo4D0BZQKRcA5Z1sjKxiglWddeoV2LvAljLEi3YFjTfxwrstnS6XvimuNO8MEWwK7rNXzB5vXzlDK/jFiRYn6C9FkJrdKEUrOumgKsGcV069Ie+x4tYBO++WlxrtJZz+Uq7BeB0h4+VFeSK4PKpFowF2BehmNSTe2ZfoEdiP7oWI1XW5uIzCMjocitzHhTEPGa8duEQ+CAVcqemmM6qqkHjcehbmjqXxhuHktsbGtvnnia727y+/FR1s7ooGmuBtm8ROECjvNbWV3mZylPtS1/5TvvKN38Pd4bnqG8if4mTb9t5cjiZ/mTav+/UR8lSLQjFlIx4muzxY4s3KWF/pPzyKEe13/+PcrfSoWtFW5Qvsom0nUx68xwT4Rq+3szav9bhV/0ZX4bi5fky1pktiR6ITWmPZZrlZ1Q7RAtZP0lxvjg1lNtQJM1NoTe/DEFzkmfMdmU6UMh2xCIdGjIzJycVUdgxHCaW46MuRoUZ59NfFzqN16TI1OWy3jnMGpg1MGtg1sCsgUdp4AkBdF/JshK6iNerufWx9SfxKWzQ/7ZArYvaGoDVfZ0Bt7wR0NdKawV18XNzCF0v9EvMwk+a65oP/9VWeXIdnLW2llvHAL6uhD4spyuIR8GzwDmuCPDRtWMNoC7IdOEc1lrrxsGBtLXsMS2wryU7y3ktzJSvvaH7SkuZIWMp2QW81m/5GfehwQLEFjavbjC0eApwJVrhJ/0pgC5kUa/c1vItBqjt9krfnpcc8B8gIMd+3nViW4DMVCz/srKvapFegyu6Ucfrq9xoIIN9oUyCmNNnz7ELx2WO5+OeE1CirMeCKSXRsYy/p9MHJXhcRY8pQTZqW4YenyYtMx8TS6FjJT3tSd4LRY9dYUu9FUHkqK+qyP7sVS5pF1mJpO8HjYOtl0g0PSOHh3HpBReHQTcSjlV+dMUAAEAASURBVNc60sdR+gnNKD5twyAdxxQZ5WhffFhsZ+dDVnKZD0bCyggN8s8QrZjBv0k1Niu+ANsqO6HPQUuXUsK0NCu/Tjfyeqn5MGtg1sCsgVkDswYep4EnBNCydyGqxU3rptvQHeDPLDzUClqLleuWlmF9m90XGosvAE5XjtV9du3gs6avrdRZNQF0bsW2gguG/s0scIJu95XWvUDQW6GsrqYd9L2OLS6o1i9bgLi/r7uG/sgF0MfP9Fqy/Gm3RJd/uUEI0gXX7mKRF6/4s77g3g+Vxh86C7o7Y9BKgGfcR8gkWvKbL3A2H1kikzL4581Gv1k4CFCo/DC3jCLh5yxA9uUyCnjAUQB9FASoAfOjtSpOvNuukRPdoG/5WL/11sOd6By55LsmeEava+gqD4IimnQ+dBn9yY26qbnXZG1HQ0lwNO3TPZvUMIl+OnXIsDNFJVHLOE8FH7HCE8iWST1mJxBO1KVZyR+l+piQ3q6iVAXTpanzQd0zF+kp1Otb5j0qNjiNeh5Fa96gP0bXkx+SG2LzUkuIaI9njvNFRufZ801n6Mf9aVRbOrCkA/aoDHIsXmqabBUYGnIyOaSQhm8/jH9+HOvXlFR6lOF8Nmtg1sCsgVkDswZO0MATA+gsUmHcAR6LkmBMVwndI7KYme+aBZh0N4kBggWtBwcCaCzF+iCzwrnu72MxdvnLHxX4wOHOzjY7cOBucfp0O40LRj30Br38SHcbCoFvFkYWzbgqAIbjMiKI5U9wuMurvF04lVtAmcVYemhrId/PLhVxgQAR59Xh7qkMrQG4zLe0Luzl8x2wTKr8y0WCuIA3aTTIiA2jHhd0P0oQqUhWDwtwDKk3ALW1XcktA4okeKRIvnI0z3O+wiM3C8SpT1nUiQ9e5gYgTIAdtOUAK7xt17Iv7F7HYr/FuTcEsfSHr+C9gPfwN7eqTzdUKz5dnh+Fm/Uu61aLXZM9fZkXbsdOT6rhOInnlcY3elyeV7r9lrFQyO4BlqPPK4OxQP84EHI0TkjfJ1Z5pjjPzBjtqdG+pLXOqteC8llyCavJV9Uih0FTKQ8rM3IHiyoVYYYyFloXN0/Z2q6MYRPFxuTXHEmk005lh84sxrisQoCe1Rv/SVNNK4z/cdMd/mR6Q+41xGuV9a5zcz70G1bz16yBWQOzBmYNzBp4hAaeGEC7VAUsBozqbuBCL5ClVj55iM3ljFUtBiAXO366dWEzSO/b8NYOa3cMgcY+4C6roPksdPLTCrWDn/LBXUHwbqzbgr968YovWBGEytG6KOe+bgiAYTp1mOXuB3u7BSdcmAXyhrLM1sLsuQspJXngjpsBgKX16wriRyCRRd3GwE/3jEMrWZQzoty9nrRzAIMCxjHsImwWbOoquckT+PRgPQPoVFLVIe/RRmkSYFBggzPBMgf3gl7xFeDwX7iroHddNbKDAf3lntxW7gOe+kOv0962Rj56vnf7Zrt39ybAmhshwQZvJLTdqTuVfryvLumxQsv2Hsv4mKcTPpOoTI6dnsg3vyLYt+gkOqWQ5VDdCeHExBPoZHAseaKERPnKWMt4K+JBUmNilEfzZIdiCJU+HxX0UkWwGE+jtAUHMJXviD8ooAyGBFX66NmC40Mj8o9rBpWmDbppjDCJmpTaIjMnAmb3Qh800YlUJCyQtsSlC3Mqbn7NhNTbyxVbmRFLeYa2N9TM19zIM6YHiJZmAOywnb9mDcwamDUwa2DWwGM08MQAWtcCrcP32QrNRWidrepYmwCtHdBmcWOB47iiFS4AgMWV41i0gN1dTHfyKFCXdRQarae+bnkP4KdbxS6uHbu7dwMK19meToCrv7MPHAqoC+SxWFo/XIcVS9i7H+uUlsBaXgeAtXatxwGsSpJVXIBbu3boL+wLRoZLRwAo9AWSKR1hWYaLrRwItDHfOUnMfG8YKDgS+7EX5GDMcoufrR+glG+vkMOiTuKm5sNXfL7RZbbfY+/n7Gqyym/VVHC4a39gWUancZxBV/h70G/Q0Rd77Kt97b032ms/+367xOu8z5271C5cvsrDl2cQnc79BGG06xMUfUwROVdY6GIkPO6YolrZ+00F+kgwfcl2wuXExEn+JBpSvjyOYuNIkv1kesaD8R4kSV7/lqja1QvnBIoi4miEz6TxJnk6kkIiVcrki7zBt1f8yEOVeSSJmZLxyZyLED2tiy7JMlSiMg5AP+SUxtzU6g8+3nAnkZTRqMo1lRBKjlDZriQ5Szw3z5jbaPochePcm3g/Ugr0HQODh4XnMGtg1sCsgVkDswYerYEnB9CADt8w+OH1DwIot9g9wx006qfRDmJZmwJQsfC5mLmcCSF9kcghgGwsYD5IWPs+F9AOjQ6K0Av2VtyOzocOoQtwx7XCV1br4nEa144zPvSmKwbrouthgWLdKgSILpQuqKUQ69SSHZ9nF1UApHxNG2BaYO+i60JrWnbuoNw2NwveNLgDSDEsMCLPWt89HxUtSCpC8nHQ5NLdl31iCs4hofNYxAW+lSn7/FRvSckstrD26aaB77a+1PqYsyOJ0Lj20C597tBOdXqIH7ptW9vA0qzPOsx27m/zIpUft9d++fP29LMvt+e//I321W98rz3zwiu8ofDSoo0l40f/nrbmo5eS8pOXfHQ96nJ8pKT/ONUtqMI49tPjh8dkF+/jhTpny6bjikmHe0eJyTfXLveeS3LHaMaWv7gQN9RYKyBondNfMtK8UBWdvMpCXHwjQsYUzBfjpxdY6F0djTCNV9oYkzmTzSD1eOTEhF6+t82U/EyEzm1HPU+ANuICFWGrfRHU4oJdCzkXYM+89oVH2UmD1HrYFr2QKZk8nf7KIXjOr06dl3wOmcN7/RO2kM5h1sCsgVkDswZmDTxOA08IoF2kBGsAT4CYixorVs4L1J6JdVghCrxi9SHOUp8/F7mxvpZlVneOskzXGldxH2jbECwAGvYBhHFDYNET+I1QD9kJrAtkaLGWd1w7dLEgw3rjL22hLqeLvwtx+WX7lkP9spcgfdRhvoux9Nnhg1XZ3T1stzQu+JreCnuphy4ZUYGJFnfTrMssF3zB+7DC+0Bl2gWvYR2Tb16RTonSh0hgvKYc3ZBoemlR/nwk6cF8q9/fY+9t0su3WZ0Cpvm5fFcdIrf7XrNpNkfibGOn3/M9Xipy/YNr7caH19oH195q199/s33lG7/bXnrl21ijn2ZLwjPhV60ZNX6Uo60/HqKk44kPnO9x0+Ir4ZWvwBDbHBKiS9o0QNQDBY8kWL/1eTA+PkmpnIjIl8ePJloVfuD7KO/j2akmiaOioqBXJ6T2ccmbsTOyPOlhCmADpm3XoPPIuTwWRY63yXHzQJimhckDFCPhSG54k7LgOfiYMT49zcNyCo9eKbZhwaD1aEmFt7jBBL4CjomHK2PCiNeB5FK/IkQfiRi3WAqHJiAdvexyo3nAZ8E/ufPXrIFZA7MGZg3MGni4Bp4QQMsYQAYQ9IGcWIZZh7TQ3sEqLWATbLpmufuFAFGQk0XN1arWurEegv18INCn4hGLvNAKqAEAgmjPjwBoiAKQ4R0gyiKrFXuXtw8qg2lajQWMBVTZqg45BZxxRVgRFFcblF153enj4BCXDSzb+jybbkg9HYGEZ8xa5VO85wJMntvBpa3QL5fpFM/CbbsFAlrE3QN6A+t6WcTUj29P1JVAoLssn0VeHNHNaN6IxHIMYHAfES3r/ml11IpeKMna9UeXUd0Q7OG20ZqvTK9dTASg6srWKZd9o9KRqsAKaWKRGx++325cf7f98sd/FreOu7dvtFe++b32NK4dp89e6Pqj6EcKD2ill3pY+lGmu4D8e/duZ8/uDXyzeZa0xol69VeEfPRzfRi/kd6PD6WDLyRSiUU/SbBPRqjbmHFWx5KxaEoM4hlfHP23TWN+HJFTOv975pEjeZN6rankGOC5j89RtEQ54Vs+I0g8+D6koPIp7KRYoqR7TKlEJgSDPUli3yKCchCTHh2lXE+3jn79KE7JpIg3gvKwMHVa1pr977pz3tWNRtFYvTHL5ebbBIMs5zBrYNbArIFZA7MGHqOBJwfQLFADeLoibW7yum7AmA+oCf5cply47vIik7t3bwcg66+crdIAkILmWtL4hk6r6Rag21UwgIija2N22ODogihYr1daF3DUKpnlUEZw0w3E3TP8iVugKGje5Gl7641LBlQ+OHcGACjAl/7OrQ8jp24O+gELPt0dRL/reoAQdwfks/76sPByHqsx5QegISnBQ4/mvIyIfXUG90pvXQLoxAXTyLtLfeMmQ81QHaFAQTHCosyrEQXa6mvFNgZU0JUdMIClI6Ng2W26VrU+kube2z4YuZK3R66kD7xBOPTGBn6CCWnypkj9p/Opm5ONrcvtzV/9hBez3KfNO/TjJm4z5+2YiPXJv9RSGvlYFt6oeYPjeFvnTYq1c4pvsdwGWN9J3qYvyclN2yeTa0hy9DjOHiHiCSQZJynSM8eA8KYnN0TpwgnToiN3kmZ0nNOP8PBM3uPXEeOmDpC4kgdoSYI2v45QyL9FCDvPB99xnKZN6KdlF0yMDEmrXEpElMHvCHFVd/yOhEIlvxFdvuTCJ/81/usXGZP469kUIu6cjBiMca4kDnxLM5CTzvXHv0rle1E2ZPWVTDPmMGtg1sCsgVkDswY+ugaeGEC7ZuUtgwBUFzXB3OHhdiQYC56LmS9Lub99L26W69uAWoC2r+wOIAJEauEVB7gQlrVYkKEVlMJ84q4AWNPFIxYjQGG5MLiIF5jIYikwcSGm2B7gcP+AV1QL6Pls4HIxgPs6fsGC5/MX8Omlbh+c21U+y7vsUnYbYOZirBwBujANSGFhFmQGaAqerSylcuixrMyL1CUF6bbT9tIWyyqfFuQC0/KAOmTqQLXyNQkCx7iEkBarN2WPPBgVeoCDPKXlr25DsDTzMOThir8EaJXXlQOdwn5nZ/ifC6JtkwjdYJvdsWM7H+X9xY/Pt6vPvYxP9Mv0IVbualyRf8Rvizgm5KccuWl4TFnHywpW51HGm6EE5FfG7ft3wtObJv3rj+vtZPZR8MlZph7T/cMJP0YObfavgsIT42BIdZM4pIsw4knq/TNt4xBVus5iKX8VWvAqigUV6aMij8fTp+cTFlPBe6nBZUqVeIDzCbmyFuiaZZtG9ab74fwwd3fMFU6LwCOZNFiSRTiqoEXXBYB7U8F8WCRS0rLF8wiXBbs5Mmtg1sBDNODFxl+KWV9YPFg0xnrxEPo5edbAF1ADTwygXYZ0adDCazwPAaKoWhArUqBAsIi1EMu07hUrd8sHeGtrC39arMOTl6QUmBbIUqYDVNMWtiTmLjam1Lfok1ToQljW49rXVSAN2AWo7WKRFhCf2j2VBw61UgrgBK7GvQkQJCqrbhKW2b6PnOQLtDcA3C63guZdLLDuyuF2e/J/MCjHCMalWaYJegSMFg24h2esq1qjSdS1ImAiZuvSW4ASeeq4wHdZWKXXHSR73QL+B6CSTrNzeX5Dg9XZtu7QxrTb3VK6HFp0V9cE0PqQ1yeuI71p1qHfsUBXeX3A8J03f1H+0JeejjV/tPYjH20n7fZhx1iMBVjo5FHBXw38HA/2naBZAK2LhzRbZ86lT4/THjmnSvub/2WYnpv5CcOi6JTFiKNX9WnNdEkJMXSdVCs1g/7uZcY489y4H8fBkL5u9OomlKyMOL+Lxio6SF1yXpQd1CT00IXJWRdgZB07Spmx5lidFut0R5OqTcdYpFi1r89pCzmmOaS8v2TZKIPtj0idNnGze36IzCtaueTmzJu0oczQVH7xnZYdmfNx1sCsgYdqwLmEEYyF0UWsPjXrHlpkzpg18EXTwBMDaFd4wcuw0O7zAF52B2B+aWXL0sTiphVoDZeCffcmJpguYNPVwh0tYjUEQAaMA1h9HbhA6MiaB+goP2MWxViKx8K5XACl1+oa1wzkEhCu8ARdAMao16fusUbfu3+3tevXAjLu3rmtRIuFWEDvrh4FVMpVRAAZIA/oczHuraPc40KW8yUR+hgLfvQSiymWYNJ14xBUCrBifU8prfK2ufjYWssvdUOeieAp0zgLoN6Fz969fV5qo7uDbh9a7fWLhr/uGYK49J2+2AUwfIBSK3Vhli4nTNW7vtc7WOnZuqO99nO2uHvq2fbN7/5Ju8hDhWR//BChayxY/JiWTuZ3IpFuPRvsEHK53bzxfnv3rV+2q89/uV0A3JeeTypEjUsFPljXosjjJVuQDi5JQGcjYyhnoqORdaTRi0QZQbygr0i++XIc1FgYBWp+WYDhs6gXqvR5bjdTWPoxaovnEHl5HOnFWx4jmPPwUQ/dQ0B0ylfVg9UDx7RnKMyKtEoPKtNzbzWRBZ2GYkFE9dxQhE/0vSzvOM84GP3Q+ZrWofaoaT7OGpg18FE04NxxPjkl+Sxn5kcpPNPMGvhiaODJAXTXg2ucL+8QZJV1jYzFrCqrqdukrQkQycjihQ+jW8H5WeGhPX+S38N9wHOx3Sbzc0zSNXbSCHBwkYS16QUw3VkDUKgVlTxdQA7WSItbSLkvlK9sn/DUWUCjXiRy984tQMZBgOEGP0m5Hsvf7fguXDoTC7gAfxc/6yzJ1KsV1voXzYP+44UCQAOQBx8AkG1z6pCZbecvbe4Veb0y5LSnBXMQ97gAOwAZy+nmobVOMOzNikV8KUrK2E/pC47dci2ItoCWdXWpZVr/7wqWto/tn7X25ms/zUOETz/3ZY5sH8gNR8BLEX/E7whdtLKvKo6VPTHxGI0Gy9XsU33t3fsB9/q3X7h09QG6ZQJ8h0IXidUv5U5SYyl9cEywMUYWxYxMxBz5jPrIVQofNBJWR6YfLHtCyLiH6ZL6SBWTEkjY2yE/P5GZfixLraRmUKfVVtWTiDVMw/S84hYx5mdRvBdZtCGVjQoGdSfykILHSnN6LKUSbM+CMWVLDPIeoA5d1daJAparXvVgyByqSM79qjzzB/NF1hyZNTBr4LEacO44i1wH53n0WHXNBF9IDTwRgB5TKGsdi5svpIi1p4O1oTFhgODYn9oFbfsUCHgDy2brNPIFw05FwZ4gemcVvyqCDwq5yAmCBXgCwNQrvYiTPK3FLpICvrEgCgA1Uqdura4EJMxrwk23tuyVzO4UWs2VR75ZpOGlBfz8+QuR6x4PP9aLVHY57mEx3ykQLf0nCMo6AKog+gCLsOf7WHbjRpF22Tbkl5bPkC1H1/xERmvr1DaZLKDyI8/1tL30GyNeQB03Clq0sVCrQ0FyfKLtI3S4y81HflUgvoeyFpbwYA1vbg7YmeO99tqrP2hf/dbvY4G+yucZrN6Ac4X+2MGerzCOJ509im1ezIP893mY8PVf/F17+Wu/03Uk76Nc5aOejqc7Pnz41e3y9vLrh+OmK9pCDw2l7+JZfUbH5aZrt7vMVMfAIKJQM/2zCBPxKJYhaHbiENmXAYEmwGgKmKUrVoOG834jJmYuP/vONBVavsu4EGBEiv8481i4mDLTxEVc+hEUhLgfK35A56Y9KpBvZdWYInQOJ0b9WqSTVzKm75zf6MT5kXLkL8bqqIqsoTvLGB/6e1DGUWg+zhqYNfBIDfTp6gQ9abY/suycOWvgC6KBJwLQ6sBFSetf7a/MIoeFUuCW4CQLjWCuHpLTguki5nGPo8thPoAyf4bf1KeKUqYJyLX2ut+ywFWAPLZ+i4WZc984KEgYC6MvE+G0rSNDQVDX1pGPdVWJOHcRdfcGgbllDVn3E2vtPq4lu/vvFbCNry6WWMpkDUe6AH4b90kC1Y06l0C6/LVTB7pQzLhtwJ9aO4BIcsDXAGARIeDf9tpibyQKFB+usCWdOuLGQ17hDU3AiBrWJYVGB0T74CB8Vn2jI7rzE/o0WJoORAUgvZ5tweovf9ieuvpCO4f7RN3APEwhpeOjuUo/lOhYOInmaImHnVky3JAzD0pWR51AXnXk2y/7vtPqA3/zgzfbB2+fw4f6LFnqYMqiToo8vZJ8/f598NK3aFpGn27nhOP2+rW3293b11NF/TJzhOGU+aKuGo4lpwTjBip90AWfNm+MJdOKZpR1nMNgSqyWpwM9Egz647LJ0Dw/x/Ms6LjwWEGNFC30qaN6NCR9jg3acUzNIy/VDJmh8Jco0/on3KBVxyGtBjMX+XUlVZOaf2nGp+ZRLkkWmsOsgVkDn44GnLdOrMzfMfc/HdYzl1kDnwcNPDGArkWUhU5LMQuaW7OdAoQZfK13FjYBrqAMMBdwzVwbW21l8XexAyi7zZw+0Pon12Ls3ASsggt3dgQnu213dTfuGW5lJ2jXYpo451pR4ZS/qqfAYh6Wk88EBJQFnBQsjq6rLsICSOvLntP6CfOGw2VAaBds8wFI7DlCdBWL591q+5Lw8TGvNT1Yn3rx482CwLVeSSNRX/GpN/rg1NbZyrELx4Sq5JN2wZ8IJ6kDvknmK4APi16ufXJMNbSfPtQ32jLDqmdZC0aCMBbgVL77bb/F1nYvvvSN9vxLX4vetKg/GHo7RsY4hU+2OlSwkTZoTjqWoEdzIlNPgofyIuGCn2cVxnFZXJAraP7g/bfaTfa73qW/P+QV5ud4qPXsOfa4VkHKllCRoQd1EK1wtN92KHv3zk3IV7iZuEh/rgdA3+RFNHfdItGbHE3DI3RxIt+ijqrOrDSV9F6LKSlZ9Y4+G8ykGu2r/km/pfRI77SeTuqr1FG+tGUbHwxTPtP8JcOUVv/pgyWHUXKUqvNRjqPjwEw/g3gcO5viXflmHc22ThM96jaTaG6sx9z3ONJTV+d7YlNH3nycNTBr4KEayK9brFtjjTg2KR9abs6YNfBF0cCTA2gWvXrwbIdjgTVf4y0Y1mWjEHRZ0bKICUoI2pBc9FzwjOiHKyDO1mQCaK1KUAnINzb4aR2Q4o4cWn7vu20OgMU1U+vqKQEt+//m9eGdfyqBVjC1sORyLmiyXhdOXRfqbYKCRlgCwrVK+1rwdV7UsYI87hRhphZvj5Z1K7xhbd3BUj2BRan2sV/WT/BQQKdAdFxUaK/y7vtmNOrzexkCI1Rmyi7TjVWjSqee9UrCobh0ClsRPWKOz41MWcGpDZDnDh32JydUg1x8bJ+uJcUFmfw5HZ90La7vvf0rrKzvtHt3b8UnerG13FHhTjirn9vj9pMa4D5EfoB6ZBTQKp11Ihs8ol1Z/TDht6QZtLZVV5wPr73bXv3xf2pv//rn8YP/EIvx+fPn6AN3Luk3HRaaoC57xfGZ7RQ5FoC+zxsb3y397V7N2Nft587ND3k1+h3olWqMlBr7EwGtwFo4BP7XGK2E5IwWyCZuT73dxde0EFcJaEwPkCU9nDv7JdXxmKNiMPFogXE+jS/LLfuhQDuINXIs0+UweByVMVxgq5xpQ/TTqzWTBoWPDUteb8BUFLLkP9o5jrkxtHz4VL1Mq+KX1M6r5xehJ3OYNTBr4LEacGI5hQTPmxhMMuE4z4SblJ5Ms0nqHJ018IXRwBMBaOeL65sAzE8cJARhzC6Xr3r7IDDYfAi1TLtvsG/cczu7WvwBaeS7F3H2Mh6LZRZKLdruzLEJgANwCaAB0rEeU48Lqzx2ASpru/pI6/5hsqCmHpob7h3SaoES/LrQCoLk56wf55bJriDwO7W5zdZ8p2OFDFimfKzUqdPt+HYAXPVa6bqaqI2PGB64sFTZAgDEyQ+wEKhqwrdu473u3BCoeD6BCZNjdApd/Jq5ARHoHqBzW1qgr/RnD5kmYON3AY4luzraTz3ol7rL9cPs8oVOtfa1fQbdNtvGbe/ci4+4/BNIhz0hX5V25Nt0gDl9KPhcWKEfSk/99j301qGVOzdeSDVuwI6w7yfW0pt1NBv59nir4a9/+eP2w//8p+2nP/yLWKF1D7rGzcDFy1fauXMX83ZDCy552AeVUrrkBHnsGzMc5/t7h9xM3GacbZFU7iTxtUeX6RuKq8NlkGHpY5lGTJa95sylqpiyy8LRm30/kqAJWU9bjCdrmNQ/rWdRNFUqyzTUeepP8jRf0GyifSAFnPwPw14OQH0kmFxkSXYMpqGDyMLhRWrawnhySCW9iLyO2OfWmdsbijhmneeVN5iNYtbhZ3xP25Dk+hpkD8meUM7RWQNfLA3U9Kg2HYsvThOZTA6ihyy3h5vMRTB0pnqm+4TmiJZg0LNymJKN+DgeKTefzBr47GrgiQB0mtUXNBevgDRniSsrn2GhOwzgcYEDZGAKgjSL3gBnLoYumIKygAaLh0+B83XenrdJvmDrAP9eLaQBLdIYUpfpgYS17zOWZPn60KF1GgQ4gmHTBWP6P3seK2gHqJE5bh0C/3IPESQdjjopa7rgpXxaw/rjfR29KvWyBUhoSlql37ZAtjCGurR9oAnzeROhbVCRskpcLqYd8uDfqlsJ+rIUj4JF9Mrryc1WV5Tuui4eavFAZ9PwlBHBuqXjWyv0oX3DDUbSTPRDONjDzQXXD0GM+1F7MxTwU9n1HV6yFACbVAD/PuB7Z5utBDswrp08eq0dfI222fZsr0e7fAlOACFp9mHcRiJ7F2rUbRr1TVOt/j7bF7731q/aT77/Z+0Hf/Xv23tv/iqA2neDf4jLxe1bN9hTmu363Nt8AgIdkwHBNGIAvDomp270sODfZ/9wa83YSttKBkaOHIZ0HI2XdMvYJHsSTVMgsr6hk0l2ogGkzLGoYsJ3SWdd0/qXOY+KVYmTyi3TrHMalHHIPE1P9R1XRxpZDLE4jmiV4Qxa0wY/+8PrhmM4/x78kFaj1ZIw9T+HiqibVeaC43QOswZmDXQNjPngcfpxjnIeV8FMbtYAr4XEXSq8sV2/xK/GV3h77h6/1K5sVjrTzbm3okUsgZnneS78zkXXMI9kupx4nH5SZv6aNfD50MCTA2jamUXJiZVJYsNdPAUZBWoD5jIJu1KI666QbdMyS8VQ0FI+26Yx97IYpoyAlYmKpCvsIx1r3gEAFlqzBd37WIMHqLBOfzq/zb7O0gig19meTuv0Zo4ln3VRmLtnAPU+wIa3ncnDGwGBT1w24G99qTOyCRRxKQFYKZMWy50VwdLHDFQ9rhlV0jODrhXUGfDsGQL0LAGAHxMWZWmrKRZKGsf93KAIuLfamkBbufFQEeSu6ZNO+9RZePejNwI+XOmFbtWro+nqJQpWBt0ZKt1rnpVZXl0cujUh9OuCGhkcsoc0QJvuTP9LHP9f9JgdRjh6vo8F+Ma1N+I3fO/MhXaON0JubZ2RMdULitPhqQNBamxQRh6bgFTp/DVCl5G8hCeguiMzZSR/cVB2QsYGN0fX3n2jfR/g/Hd//f+0t994FVm1amNRh5/bGt6+dZPXzt+hWsHa8OlWw/JwXBv36A2B7asbnLo5wy9++3b45ZcTLezQRWOK0eUillBcj8bt6RD2TMTIuc0YdYcfOi95TCcFgingD5vIqaxVx/HvhySnvqKV4jjVshFVZ+cKmU0VzEZ+Gut1IMG8ZbGRVHl+p4/6NaQaEz7yd07KUpKFpTllGKc9XRGtKbUl4g2ufUMa55Zb26gZZNERLD+HWQPRwMcZCxlon1O9OWe0Grv6+4ZOwiougyt6K7pW4CG5bJ4xr/Zcg7kWHpzneIZ5urXSLr6y3y68eL9dP7vSbr7Dr8S6HTrZtuHJaxVWdinFG25Xb/HZLfNacS6eMC4ZeEfZAY9NeX1gI6p8Aq4lmMOsgc+wBp4cQDMX4mYBwnUHDt/gZ3Ah1yLpChfAFCDq6lrAKwBbQicck1MgIIgJcDo8XeexLmq1g4I7WstI48OCFCROGufb1DuswbXgFh/BuIBrH39p/V3vI9P6BuAY0EXBgHW3zDO473NAc9qjpdr65OMijTXYtgHU72NxdV9o5ZW/bVuGaovnLN1JhkvObOMIybNcAJiplWe6IE5L67gpyB7X1B/AH5alU2VC86qzVCgvYLAAfBcAe/vOXQApb3kE7G+u625xwMNsN7i5EHy69d9W2zp7ljZz5eK8QHXJnS7xapY6FI8+g7tvO1QEt8ALKIbn2bOX29nTvIiFK+b2zV9jfd0BgN7CreN+bmQObAsIvm58KE0Za/Fcn+FbN2/kIdCnnnoa3+OL5BGUB93niG5s64A+yqkFes3XerMKKM+p0+fa+YtX8cG+jC7Uq6mGcZQVfbh30N769c/aD//6TwOe33nzl/i8u2KwAwxjLTdx9Mvt2zfaDSzR8vGB0rCJnpV/9CzH3LiYZjLa9yaB9u7QdseNN457tF2ZqD6hHxJfSld5fo98+6v6GOmox/KeF0Cm7kUbq2zlGx9cB6dxHOlF//hv6UfZKfU0jThkU0q77cRgsS6Cokcflu0fI2OuWa1sYml2jqdxJU1FTZvUAg/nh3qqj2OAfIgW44j+kMNEjGIg3Rz+y9PAdPyM1o/B4ZgY43g6PqZlRnyaP40Pnp+1Y5f7ALvPHvv576xttfWvrrarL91vVy4BiC/iankJg9P51bZ57qBdOLPbrmzttIsbe22T6/8G10nXRmwzbeMM56fZrvMe174d5l7az5dHllVsUlwTD9sO69EOx1s7q+39+5vt1j3eGnub9fcmhpbb++329ZX2y9c22q2fcs27xfsgttypCx6fB31+1vp3lucfVANPBKAd32OMuzSVpUiQxYKfha8sRIIfXRKcFUVfACAgDB6Wdb6sQOOClxeauLImvUqs5k4Z3pyOxdMFN8GEmr0pP/aclhdTFFDa91cm7p7P+2u1lZ5+2C68gqfUAh/lri3yBECk8i+YGeBKgLTbQfMAMQVqlCStKPmMGmRMPLSppKgG4FoDZAkUDnG9EGgJLGtfanfkKH0IIAp2qjcBVYErmx01WU0iJnDR4oK1ve2DmApQ1n7L6LqwfZ+t+9TbmUN8vAHPtN0yA5ytcNWr/grTaov5cqLC7Md96hTeDWfwEz7fLl681E5vrbV7N3iQ8OZ7+P/eBYACoHljoTtc1EOJ2rcL2NrTjhPHyC6+woe7dwGxh+3u2k5b3XMXixobSt5rjQzKpDXYmzUf7hT4r65u4OZywAOrZ7iIf9jOXLja7t26Rl69ptzy4Uf/K8+HH7zTfvKDP2/f/8v/s73J7iHbPohKw/xUEIAdAOqvt3fffj3W6PKrj4Ki7FIz5/4P5VtY1btYAJ7vsb3f3Y1bkUNfec/lu+isXtvxQ82OIcz0SGXT4KmfQWJ02YhQLrKPFJ2eLChC//AvKxnl7L2Tg6qYiiDdtKSljpynenqVRMdDrheMd/7Tlrh7md4/Q4Ji4hgpdZpuP3geEI0VrG5sSp6VvIBJoi4AB0O1xNExh/9iNeB1Nx/GA5fBddwDdRdc3XBdYSB6/Xfe9pBxximX17Z3wPqg7UXLbegG1Wf4SBtXN3GH5Ie+81cO2+Xn99u5F3fbhedX2pVn99vl84cYMci/xJpxDgCNZfnC6dYuU+aCv+Ciq03mY1z6ejPzA5MTm3DSXHJO7uTT2q29lXZtB1PLPYA7Fuq9W6j3zkG7c+Og/eqNvfbWzw7auz/db9ffwM0OUL23rf6L9/w9a+CzqIEnAtDVIH1sAZV8nEBZCF2emGguZFqEnFqCH62Htdi54IW6QLerJjQDQI7lzdW1rHdYTC3LbPV6JsQjg4+xOgZ8uNhC57Z27gLiWw8tv79PM1MfZbHwLuqRnpoFyO5pvMfkzuvD3YWDHEGPVuayngJsvXLatljAFRkg2/mOhT4c5ZuLCl9pWrV3tD3WSdLlp+5gVCBeeTnztyxBeazCtIdLOufJieyH/lSWABNksLIC8QIQJaj63Fptjzc8eqPgbia2XXGsP+CcFeDQflNYXCZIrnqhiV6rkvC3Id5onMKqfeHSU+3qs8+1K1evtrNnztE3rb35+s+y3qhnpbPvBUHukrLCb4VDfvkMsHcKIH5wcMmU8LYNpaPSQ3RQikx6dMxYEeS3A28QeGMile3dBRzf/aDdeO81fJhvsouKvss1duR3lx1C9HP+2Y/+AteN/5u9q39EvUrp+Kg221Rp7fObNz7gRuPuQibzQuhRBY7Q26qc6dOMd28WwjRU3iT6wKK7ucj/5FDp3iQUe9s4aOuXlqrYfnUMKnPdVNnXXUUT1sVFDpkXi3pNH3ynDZkUPRIdtPLp9FMWvZ1J4iv1VaXhsiy9rLZzSb48UV3GuZcA21RHE/1Xk2lBmEevdr39pO6pINeYhcxy5+O1Jm2GgD4JoF4H7djngIiMDctIfkRIE+fwhdaAfe4Y2Cdyl3F2hrFyll+1zgMmtw7bmcsAx0v8wuVY2WHO6lKgQrwx4wHhHUDdvfur7dYdHszGitrucg3RPeEUAxO+AXyPG1PKcFJ4XLmTynzUNERdO7XSTl/A2vzNw/atf3TYfuePWnvlpZ125Tw3D9w4aFmOGx5bxa74QU7nioB51TsMAzIulp9KecwcYu1moq1zPTtNHVcwXh2eRq+XKOalDH5cInF7222vv9fa93+w0v76/zhsr/2n1m6+xzUO48oMooei5+NnTQNPDqAnk16gGWDCxBNsxWoMGBSUuJ7luuFkFBRy4sQJIMhiJ2hgsjLRBR1ZJLEW1yLb6ZlxVjf4SO+ZPrg+cJd0U4ikfhEhYY1Xe2fRpLzbzunGIGiuK6My4PZAmj/Br3bArOVRHtmbelWgpw8xNwpYFP24KLNSp43GDFV/taNuGJTejLJqr9M4XUbkpTzWd7DNQxgAXGUIUJccuVexSMdFBTppV/nNTN0SJQgeqtYA505jjgSDtzSrfHyorQBeFG7pPCRXbaybBml1wTkAwZifOjySLj8/586fb1efudqefubZWJ7P4AIiXx8GvHXzZu1KkhsU28LNBXn1Ehf7T8HhTBtSF3wTrEKwyH9RhCwn+ljXQ6cFotRmLOCAcoG8bjfJp4i6wfkiDzWePXuKm6E72SFEd4/33vpl++Hf/of2s7/7y/YOPs/2XxQeAR78Euxut9KZguXGSXERsNrBUXkVWN3QzqSrQ9uVDPL6uWNtAN8Ha3tYiq0l8CXPwbKnptDQilUaBo0ypyDfPSu8Kj70741UarDoI4N1Dj7LSK+BjOSdyGpRalqs2tVrVG/6zyt7WHQ+HmxX6Y54xg2JZMjVvMVYMoX/XrQ4c7LoK9tJH00UVDRHS/S0+fCF1EAfHBoL9nc22qXvrbSr3+AGn10k8GJopwGRl3Ff2DrPr1ynV9uLZ+63Da5l1+5s8IsjwHMDgH2Kc6yn1wDeXrdvYiW9cR2L6s219uHPcZH7sdc8ru2M1SMDfqrQxSCFZhqWk7dSp9mLMtMCxKc0x7KOnIp9ueQ9RXt/+1/vt9/+3mH72ldX2rPPr7VL52hzx8aZDsdFf0Qdj8hK9UfF5owp6D5Z02uYPDw/hzvIFr+KnjuD28jWQfuP/Dj6t/+ObWXJP9AS/bjKUuP8NWvgH1YDTwag+6AeC5WiL+J9zNck8lviWoql8ePdrg/M8Z/zMbEOSHfJ1rrodcW4/qQBraycgjYS/Q9X/YRN82Oa34JVr2NSuaev9WmBlQBuKZhsSQgCHLMFftLt4lKwoZ8tPMFr8OpWr9BWvSkHQ8sGOJGQNlCXLfCBPC3yPsio64FgMkDPOhBuhXIeR1Cu8LEdthM+pSf4yYc2pR3k2U4/hujIOqMbb1y01o8bF5+S9jJEMJ+D1hdvUvQ3lx/PT0c+GbnDh3z8y97P4VnA9dLlS+3yU1dyw3KXhzT9eBNwF39rAfT9e/diaVV/e1jX5e0DnB4DpmmD7S3gozsNeuu6KI3aXuRb6My2aMHuLeVoH/sLw2nA8+kzZ5C750NiXJ/lLVbDD975VcaW/tE//9FftR/9zZ+2d379i7iYyG2pdRVzNJiXfqDtArhxY6gccT9RP3xyjq7RGHE1a0FvUoa8atG0k2s7LkdKjaKW63Gji9ALLTka64STKJUu0o35mYZS6ZJmmlfxXhEny7KPol9IMaQ5yrKLmMNgyEnk6EfVlDlOjYnz5fQY8YUgFJJFxqmZhM5+Ea/UnC6K1ZmU09xKnb+/wBqwy5meqxtcj/DtPfXSajvPZwMr6CoGjQuXD9vVr61ybeP6s8WzPOxt/KUrq+0s69CZ66vtLg/FnWKlvICF+uDmOu4HXM8Zd+vvcX6KN45Shl1P+bVvt+29ReSeCwl1jmFm/X54FgVTbK5vXEi4THBOOldFQDfXmV3GPUUz6HUNGeVJyoW7X2LCV7qPEuSP5Xn1FG367n77J//ysP3WN9falQv+qlvzyMeA6npQc022uYRRv/PPPOfaNvIdaH7ucmkgW+fDJRAaG1jBa/wedK6nuY6ODI7llljXeS7lXLO9plfzziHny8/yCwDr7a0P99vbrx22935Cvb7PTPa93gm7OTpr4DeqgScD0BG9wISzLCCprggBSu7GMMa8E2zMgYWFmUzTtIQJjKQVwMprzZ+MmFwmOgmTzklAizOO+OLth1yYcEAIcLSsZQTVTn4ns+AXYv4FQ4LdCH70q6d5KKuXFwveMIcfby4Oo0wawVfqEWSWRdk2JS0tsl11kSgrdp1r+dStQoum7dXXWt7KeD9XiXLrsIrwSjV+lY5QCMl1YZUmOq1sS9AuADJXM8H6Ony1qvvgY9qMfJYRWKtvrd63bn+YPZzP8Npq37y3yQOHtj26Um/2Hzz9CU+L71l8ngW3r/7iF+369eux5I8LpEeL1prgLwLFh6IJtnWTF94MwBs9wz+Wf6z+0R+Uo38DhvOgYDXQPkv/pZ668ajdPnSxwXcRoH7+3Ln2wovPt+eeXW+v/eyv209++Df8grDV3nrj5+1tXEx2cWeJlV9mjwzm84nCJKxImsJXtlO0v0lf55cCBl90OtqashYb1ZChf78JI8nsB0Iq6KlhBjWyZvxNiB/kAU1knBAlOig9jniNS7OX1Y2YNJ0TSXluIeUqfehhQXOUiWdFEnZLiWz1qGFBM8Th6FDxSlG/OhFj7JldJHXTOOoec1mdZOxJBPOaC4kQ5zyF4QNzQYk3PupycI0c89cXXgMuI+42wWWrbV5cbRcBj1e/e8gLjg7br/4jvwj+ar995V/st+de3mz38cu9p3UZkP0Brg4Nt58DrhlsqtNu48pxnYH2xjuAujusNWfYgQmwfPNVHoa+zUvDrmLV/v31dtNr2q8dvxnUXrJ52Qhj1RttQOyaHx5kbwJ1TL8BjyLYO6wN+APv3WO8es4DzxpRlN2xvOKPZgBJvdcO2U2mATa9BOHF9vAhTZu9Nq1De/7bG+3rf9jab399rz2Npd0/Z8OuPPg7xfwQGw987FRxV41t/JY31gXEPIB9bR+9ce3dFhljtd9axWK81ra4iVjj5iQTj7m7w84bt2nH3bsYonB7GUGwvYXFX+PWGjcSm8h1mh095LOFadr8DdKf5Ubmm99Zab9+A//ot1fa/ZvVf7m5GMzm46yBz4AGmF6fTgiAYtbpAZoJz4Qci5zzuKYrkSxiAg7txJ66yAlEKZc5WOUilXmm8Seg0tbnxDV0NuGjpbqSvRqM+qlDWYb12QJcBFJwFC5W9a0wPYQXNMqVi1hvi4u3RXXPiHWYNliHQM7ahhWygJ4Wc68pAlqBL9dEADkcU4s0Q+rEOQ1wB5Abxk2F5aMrjvpeC2qsz7RKhxaW8i1dWikM2LKOvYO6bFWvfSC/ADJoBPI+SBdRSKd1AfXemMhL/rZZq+5TV56KJfvtt99p7733Hg8K3qGS0rryhicVC5T9CIiLR7XXet0V5NKly1w0z9IWQDYLxY43FeyEkReqIEhuwvKQoHw24OFNELxsH0d3ebGcuvStkb5KPa9+h/DGjVvRtQBslwXo7r0dPvfaLXyafe24dUxlVu6TQ8ksbenUdqqdHJLmTY9p+44NHiiiOQ8G2YSsl32QIl0VvraPiOOkQqVWwkjsaRAo1wiWWdSQZGfMw0P11TR/yasELlkqPuikkWtxztlS2EG0PIa0aL0eVA313U+SmFmQ/h26hkWnl1rrXD2AXKyryrpG5NcAmKe1Qxb0MtWNHJJlB5U4Sxnn2BdTA72fueS0VdwxNgDO56+2dvFLuBCws8TN11u79hqg+PWVtnP9VDt7dbtdubzbfvw36+19/Jpf+aP99tSXDtrLWKifx7d5+yrXEy4dO/xyhzdfW7990E5f2m33sFy/d5rx9uZeu3Fwut1f5Vex73Jt3uSB7R+CuHmD7gHm1L0t9q0/3GxbX19rF39ntV25uNvObfrwuL90+isb11p4v/X66fbBW1yHP9xu26/utL03XRSQ/RsH7cqX99pTF/RNRm78r99/E9eRtwC2PIB3YkAH0m7wIODVrx22f/rfbbd//Ce4qVzgVzoWjB3A8V3A7Q2AuQaSq1jX7yLyHT7arZwrt9mp450PV/JwoT7MP3h1rf3q+6vt5i9ZF0DeW7T9/IWDduYse/MDoi24At97d+EL6L13kwcB4W845E5m5Qw3Ghf4VdcHGWn7GX7lvXRxv119br+9+DJuM8+jG3f/4KGaL3+5td/5vf3207/EZeYthOGdBu7sMYdZA58lDXwqADogkQXqEF8xwY6gS/BlyHcmJF99cTu+gLvg1UNTtTBaroAL85jJrdUzacIEaF1ga7309t7F3jTyOpUHUvmWb6f11rpTyDPUVUBygnWMhMGr6g2I5UKnj7D1RCZ4LNq4Spspq+VXs0DwNPleiNxRZBMAmvbwE5jyCI4VWb6GWMk4V3eCvNDEkuyWe1gs0KXgOTtQUEY6QbxAVdVYRr9upRcMq3+BqPt26j4SfedGQoLUCE0dtTLsHLKPdvY95pmaMzx2nZsZ+9D+gAeuJ3DkAb0bvKnvGrtK8AZGZfDiT/22TUBZ9PI1RBqO1aeQReazWIkvX34K2X27JNYaLOGxQgOKY/2mffo+66ZhG63HreYCtAH7nvt2RVrFT5PWQ028AMV0d894H/mk1aquTm5cFzz7G+DHCVFO2qXu0kY7xTFCln2XMUdK+rUSHlNB8TyZSN7TIO3xNPNN63PA04eEGr3oZ+Q/pOqRfzx7jP5RfHl8mFwPlzZl1R06cgwpv2FRJ/3mOKh8+ESookt0tKJXPSSIjCErqjCFts/sOvVchvVPmhE+9tccvrgaoIvxS+OCw17FL7X2pd8+bC8BIreu4LOMNfkXf8muElu77Zl/xA45PMj8le+19uXn2Qnib7DEsu3kl87ttxfO7Lfn8Q8+5OO13SFzn/Vtncvjs/d38Zle4TqIVfqZw3b9rXvtnQ9W252DXbb03G1vACx/9hrXTCzNF17G95iH9vRHvPjVw/bi72LtvrjXzvM8zRoX6233uwdQYnJob725395/GyD7/mH7NTth3Ht2pT3z3G57/uuH7fmXD9vTAHqH8M07h+3N1wCXf7XSXvsrHma8j4SsLUeCSwvtv/Bsa9/8w4P2j/5opX3jFYwSpA9Kl0TXqppzueznnMtu5ojulRrDMz3htb293l5/daX99H8gDoDm6ty2nuZm4gLXY/aF1j2lAcq32V3j9vsYSNAP7DXCs9vHarv0jbV2/hUs0FidBdb3b55q+zd22+VLe+3bf+L6edAuAvh1LXmKm56v0mev/MFKu/7+SrvzS/oCHUb40QD4zmHWwG9SA58KgBZIureyNsz6Sb4AnSAullpm6ACbgruAIACXk8sFTt9egaJx84bvLVeAlHOC6wNtnlcQAaXgykU01l8JSPfbGZa/LJIu2S6ipGqpIo25mdeGSx9aJmPFPBs8TFkGAXwso+Q7iQOqkCFHmJdFGt60w4utFrc1LowbAGd3mvD14bpvDHcPr8ZutadlegAwQbDtC/ilev2u/alrU4uuQJuPUgUgENngSig4Vxe32Q7uPp/kI09uODjRry4ykqNsBUjdq9iHKMvKbBmt/DtseydwtR98wU181VJOVxgv7m8CTPHxE6hzXpZmX8wyLOvs34mezJPG3UVsz9BV3RhgzcCPeu/8BQAyW80h0wZvsPKFIzUusOhSnv8E+9bxdJ8HP31D4I3rvCXwNlvdpX62VcI949TWWfZ/Ph9eWqNv37rePvhgN9v1Wbf1Sm/vGkw7EtTXJM348lPjVx2nNF/yG2HQqTeVv+RjL1VITP4qmdSRPnjU0VTrHakjMo4jXd1IO45HZR9UlpKXN2j2wbLOwa9Seq2K3mmWlMozUgffOi5pxnwJ12IGiWdJOVIsbYMmpckeZZzRuYH0po0/1aQ6E4jkutHb7Bgp9w5LWS6H6F0rWuYpZar2oaOiix68uxyFquj8/UXSgB3vVMRYeXgDkMbJV/7bvfYv/81h+/bXuU7ywqyfvrvergAkL50HQD+10z64t9ueu9Day0/xMPR/5fV3u3335cN2hZ05+vCCS41LjNntG0+39lXGkL9sHgAcDzjf/xZGCLbgdMMILbv/ngXgtR+dabffWWu/9S+22z/7N6BFHkC8zMNxX7542M6y6jpekZLxrom2Ruzeszvtzv3D9vYHrf05LiHb+F7/sz/AOos/9hmssmtrZTFwHtxk/+T//epqe/u9zbb9urv89OuSQsNuhR8gZf381/bb7/7jlfb8M/wCWJcpCFxbVtolrtfnkUVRNPZc5KbjPJ+Shh0zqO5LWOz1U97ZXW2/94399uGP99ob+Cmrk30e7nMzkzv8GLkCqPfP4PcqNyGr5yp+Cl399r8+bP/4v8aq/Fsr7Ny00t65tdr+8tXN9uf/U2uv/X+U5ybiK1/i4caXWdtY+zhtz9C+P/iX7B99/aD9zd8yv5+CMfpxGveqiMxh1sBvTgNPDKBdj9zqzQfVCqzU4jYAswPdieUCNkKANZPZSViT1TthwFbOuDjl4lI5Aob6ONEpkYUSYGB652k5F12P1uWCDGQc1RUt9JGBi5ugPnNQHlBZ05AjcQCT7gNajldjCRVIDRBFCWWAMPV1vvrW2oZ1rKEC51iLuUApRQHL9bgwIEXqUj9uDaRMAmxlrkVeiUoeLxS6tgSR8/tV2k69ocD3LTqA6B7A0ReXKLtyahmWSH6C5bzwRZ4KbZuti4/8k6QtAee68sMWHGPVwPcvLicCRoCz4Dn6sw5vKLoOqm9gpB7kHfO7dVQ7PEYO+Ght1mVEcH1mjQcAvQmCTEqPtnX4rEt388aHWJU/5AJdDyy6n/KwJte2cCwE+FWrH/vCkD2/vaofckOBLgbgNa7cR3ygI2K+UlZdJEyFMo1P8XdsqrNqv7Se26e6GQT8UY/U+U6eMkFD3IbWiJPCUN+JRgvT80qdfkcseYxIBFammheDNiAzdMrlSB9h2dZKqflSckzzhhzjKPU0v5cmKSJItiAlMaRdH5Imrwi8uUz2EX7qUzq+xtE2QmNb/HWqn8qN0Hn1KW7fhCfjvfRcNUhXoFrWUsmfT5gVp/n7C6QBLnv61j6DRfmFb7b2NHsbf4cdJ37rt9bac4BQXTDOn8fqi6WYnS4BchvtHqhX4+k5yn33FXUBcATgaQWdBs8cOrguS1KDmDKhIsMhxeiLq8fv//5+29jiVy94v/yV1r7+FYxD+BFTZbtImQXrjMniJW/9mi/xYpJT+Di/9QpWXuT96isb7SpWcH2fXbdGuIirwx/+8UH78NZ2+3//Z/ZX/qkujlxoOo52CThNvV/+zmH7+texxGMxnxSP3J5LZ3DGCKIfAATIa7Cl2D7axSvIgZV4jy3mdm+Rx/z0wfOi8VrjtbhCLoW0qd1t7cWvHbSvf2c9bhqn8Zfe5KblOhfGHwLQX3udmwPWB36njW5G+XN0zHdeOWhvfxtr+1fX291rAHbaN/J7NfNh1sBvTAMPzJePI4mTLgAJ0BSrI0DamehiJVgxLmAQKEuXhZ8yA4DU5Yd0Fz4xGH/mOUPGZA8AsCISRjnIUkbANqx/kdtyqbPXT5nUyazT33cJpoqOb1tgrYkps8C2wPNmHnrz7XuRaVRawGSDAABAAElEQVRQoiiCRSPncDXwDYWCZ319PVJ5wGL56HInD//SRpghTz0AJyOt8H4qlOVUALuP764ASZpY85FPqXc1swAyBe2CyroB0W0DOurdAJxr4Q4gjX4LSLnzRurp/RMg3wG3dfuznQ9+RF90yg5AevgzqwfbWoDN5vVfC+RPnVRWClFaz3swrhy25w7mitu8EVHrenycodHSbF9CospUKzcF99r1D95r16/pb32LPOWn5b39Uqm/3Lzp34w+jFefopq8YbB6Vj14Q7OBFSev/ebmaIBOe19Q7cOdB2ybeO4cb27Mw466kDig1DYhspXLyU3enqh86vHiRX26z0BWdOpq3AjlpgqZ9L/2Cf0Cs7auN5L2lJpMe1zo5ULmOKoFtdx7am6YVRZajplQLuldI6MdEiX0diV+vP5FqU774GFa+ggLMo6UPk6IHP4SVMtsfau70oOyTgqErtog00hJdlEYGTURhzaUNcyLhmmThzedPrbfgmHyYHvmlM+xBuxXAi9Xbed5Kch3/llrv/tPVtoLz2HFfJqt2nQLACie4pJ8HhpnT4aBXwDWEZ5jK7vHhUU5CMeYZeAlOHZ9lu5rX17H9cJrMCAdiy6uv6lTIm/wFjyIGPc5O32s3S5Ppl7uvYZvA1DffYsH8ja9RpEGwjUPKq73lCP+9PPUA5iOyWil0GV2bAK4fvWPDts38Ll+9qoP7/WKLTwJkeVR5xBYxOlzFkD73EtY4f8pO2T8bK2x9X7k3dA/mXzbEGPBlB/X67Po/4WXcUG5Ui5/gmC3znvx0kF7/jkeTvxtbnDwgz4PnS4mQ0R343iB3UK+iQvLb/2r/fbr7+OCgz/0Dq4huoc84LYyqXeOzhr4h9DAEwFoBQyoAkjEjUHAx8JdQEGgVflGAqJZ8Aos1RXHyetFR7oBHsuqWhc486QQyFiPwMSPcQGQP0PFmszFJqAld8M147Vye3UKP7goU4EwTgyUCWpP1Pp4M98qoJmdKPKqaEAXThVcpQokyif10pKyrltnpW1hlrCMLH1tteDK4M90Wkrdh1n3Ai2wgkhlzZUztZaOBHm6ZAjwjKuTAGzp4WsB9WGebhYmCUxNs159pOuhu3ot9SVejW2faJ3OjQM0gkit3T4UWC84UbfeIHAB7nLJT+Cnq8R9fJ0HeFaC9BaC6XqhLhKoPOKZaxr/grjjwTbb/mvXPoh+Tp95r51CFul92YttsTUmKJMA3m3x1Psa8h723UTGDZI1rAigSd9mH2qVsL94YoVczhMoIG/Hl29OfOrKM7iRPA3oPRddqmO343v77TfaHV7h/aWXvwYofir9UG3sfDg4fqT9xS9+2t5//x220jvdvvK1b7EwPBM57Wtddba37/NgJA8CcdzG/eQe/uW+BdK6ahwqXgfaroQnBsd4ZVRT6jx9TrouQvahVny4pY/LRcixVW22nAsuSy8fmfW2EO+sF+kjh4Set+xX044H6WMZltqTzkC+kZvIYoxYuBqxJDRthOTBoP67dF1CD0nvmZ7Km8QaZ85BEvliZlblKQO9tPJmwV4wH4KaNIcvhgbob6ZTO30Ra+8fH7Y//pOD9nvfc3cIgbPXzJoBo7E1MjhznDxBWBRfRIolhm0s1c4xM5yby/k4qhtj1uF5k/H51t0VdvNYw3WBB/NwI3nzx6vtb3+4yZtTcW8DYe/iQrEC2N/koUYuZRg58GbghS4fvtXah+/7TAwJ4ljaeqD7ID7Uf/zPt9v3vgeA5QG/iDiRc8jxuOMoYp26d/zud9baU7zy+5cA+w94SNBw5TQ7PTH3rrO/9jZuMnvcCGiIcZnb22XPfvrgy1/jdeCnuA7bcP41TD/DGxG/xm4buHC3L+MffeEyc7jny9foBnch3/yWbd9vP/j9jfbDv+FBxr/EwPKaBrG61s1TWm3N4TehgScG0F4gam10ISvwY0MCMjtIYB4keOEqcC0YcMHrOWQEVDpjcnUzHx6s/h6dcbG+cm52xaERF5DnxvXu9TzcFwSOshYYehTonj6z284L1KqClFPuVMeZ4EiQe/fOrbYjALReCMrdRJDCKcIo/x6guiyNVVqAugnwtU3y9Fzw5ImWzbu6HnDUSm9eFnXoShbbUXrzJSt+Cghrsa2HBTexmAqsow8FQbYCUj6xzNZwAMwNXU6wfMMtMp/Tz5idOMoK2v2dkU8QXXtxqhto+Rhsl2WVSR0IvGO9Jl3E0snSr1vcZFi/gHjc8FCUtFJbGEZ/iVW6N09cUdWLLhx3eeW3ANASgvdqj/TWZcd6ERZkkhezhgqzgiFLyeqrs7UcmyVA9WZLuT03eLReda9biDcGPmD49NVnsYycj+Vei/ONG9fJv9suXLjUnuLmw5sMZZCBulE+edjvZcVWjzxhz5iyf7Uwu02ebRNE50g8ZeCUN1xCX+NftvXrxC4PcKpiUvxahKFvEyquQt3lpMbKtN+qj/uNq233z4YbCm1WfPI9apPr8TDyjqc/eD4pTTQSKuxUeAt1WczPTRJjgf9li9PfUUIvqvyT2oxbuAfHR52aUdcdx67BtjNwEksh61rkhWT++oJpwK3eDnjByYVnDtr3/gmuAt9aY+eIWjtqzP3DNliw6ZVtj3H4Flban72+0t5/A5cMHq6rX4hw58DaevYyvr48cHjjg8P26k/xa2aLOAHjGczlv/wRW+b9Yr+9we4Y2GS4tjGmsUSv4wriWrePe4dryT7uEbvXuHYLJmms8+bCiwftW/8cS/HXeeDxEoammhpHlOAUieWbo9n6dx+fttMC0mgdvnJpjbUUq/YLbAXYn80+q/GI/LsdPCsDV6PIcsBa6dX8Jbam8zXgow7TztDW7+IT/QJW9Ev01xXeAumPftOgHezyxbX2nW+Qz04qX3kBtw9cc/7yf2PXEnYEya9Z3DjMYdbAb0IDnwKAVmwWKUZ67cpQC7xgLyCzg480jtkjsA7Q7aBR8JBFD4IsjM4YJpHWpGF5dtbVosmRfO9iBbMGD/qfCigEZALJ2u4NHpgeAuShE1DEYgV9wIfyMdHro3V0p7337ps8rPZ+HsiQ1rryJkLBq2YMiL1oCZoC7OSJsFqd93Z5YJCH2gTD5um2IaAbfr/7gKkC3QKdiN6/lMuoYLGA1wbbHxXQXWOLoHPZo/n0ad/61x86BMQJXLUEnwL8bW6exjJxigcWfYV1LRzSykMa2yKIVAfqqzTHkfZ1NVJ/ZQjgy1pe+0fTQIJfdfGzT3yAUJeRQ6ys0WmyC9BmyzFBWw8LIMe5ZEMOdcPL/orzkryXGgn2N59F/TU2FDoUMAxYBbwmwQomoXrHbuNGhv6wXwTcW1tn2gukxRJPO2rHD3TBmPPmxXODfaZvv+DYPnY3EAG41uUaCwftGpZoH3Dc8cZACzP8urhdpdWWjE/HUJbWsI9cAu2Fj28l8z3aT6z3p2nyGHPHpgrO4/OdOkmp/wWXxfkCRMrXkn6qjqGjKjTy6+zjfNc4ovxyQFVx9JxQ1aXWkVTptguaVF1EyqR+w2taPNm97yns2MjNnYxS3gilU0GN9cogs/4lmMMXTANaXfd5au788/vtW9/ebVefFp5V6MNnnP6DHQWo9wC9P/lVa//Lv91qP/6L9fYBO1gceOng0nf56wftWR7wu4g19+4be+21f6toGAu4Bu21U7zwZQ+/YNz3AMZcAmoYw3Qnbh51nrY57uu0diXiwcMXvrbXfu9PcLfgITytv14ejgeT2K4573yBpGUXuuNEJ5x7CTuPK4efMY+9bhpy2VeocXcc2ep6OLUsh5Yveb3y4lp7GTDute34pUM6wyZ3AJe54bjEmwov8EbI+7xk5ccA+VS17Ooinr9nDfwDauBTANACKi2kLOb8dOSiVucA2axagrQCwwLcdayicVEQGI0rAzNHa57puVo4mTI7vG4wPfNTNWDQdECfoDgg2DzK1eRjtprfP+owNE5ieMmuvowY5Y8riwBQ4HP37q08sLZYuF2codkXnBHWD9loiCtG7voBLgbBpLLoHqDV4ZCHU3ZxBPOBO+lkYRsFstazz673JXeKd3lLzmV6AVSBuw8xPvPsi7gcXI3rhTt3QJ1/5RzgVL0tdOdVzQ960NqZXUqW1SW2Ar19lG3w0F+00du2t3cn1uc7+B3rEmAdU9lkLaisukvfVb5EMz4NluU/mcYtb9kC0hEzeWkW+fXrgukFm9MNuZmy3HIlsJZQyM866zpdFnH71SpDlMqhrbFy9epz7dlnX8D9om5I6hXw5qpXC5Rs9ru+zjfYQ/ouO5wIwHXR8BeF27duAl71C9iJa4a6VLZqJgMhkUhQIihLJXKMtIuzZXrpRkotTKbnJqiP9/SnY4ixqjWqrPN1UxSlWtBQRYks21NWaPqRP7+LaBCaVqlDNtl8/JBGp28X48XOruQH2Fl7AjSOh5AGSPe+qI6nPAzMXAT7xzFJwkgmvuKDTCTmb634WUS6yFORSoCfxYtBxXI6f33+NJDuw4hxGde0y2yDdnqvneaSNrlUfOptOjIcT+CuSF6peL6vvfnTvfar/5HtMNiT/5J2Wdwg3GJvlT2cr7+D+wZbt/kD2xoP59U438dAdA/jBOfS2xajfjknjgNG0/tnlR/N1gG2X3rloH37q+wffa4KZ67IYxooU/Oe6wzxjzoLurrD6TjfZR6xKcNpfCoD8cX8PJb+wCk8mPbtXbb4+/4PNtgvmwTbsFwSHigyJ8wa+PvWwJMBaAawwO3K088BoE9lwc8ixqwIoOuzqBYw53/5bMaqyMUgd6XQmF/W6w6MOfcitQRvggkthAS+pla5urOVvoBPgAXgNa+TBvAE8HoOqDJeuzTw0xdXrbgO9KuPrgX6qSZQh68Zd3ILsvMAmKCM2Wo9Ai1lrnZZr4BZUM2FHL7Wo5tHtrHjSYg1wPAOCHubtzPRkMjvtnqpumrMxWxcDNSd1uR6Q+D5WKFNq3ZXvQU6Cnx0FiqsohFcOdWbvtUsLoA841oJcuNAZepkT7/hiMKNBKBRH99bPOQnaAwolNci1A2ErhCGgGCuatGJCaneL2U0oUKJVZfrQVNllkQZA8hX7az+lKF0QrxiWGMgnFIXFGEuXcXtf/Vo/Ys+Qgzj0p4COGvVj4tG0oaUHpWn38zxxrCzPLGfVOi2r70bX2atz1qmlUl+9nXdCFa7U6AaWdETvpet7pkWhVd0QD+rA2/K8utJ2lU3Qhm/9FndfKTQUe4TxrY/O4Mgi7IyEia0Eo7yxtOaSf6jopNKTiCzDUeC1RxLMqH8pyd5ttOCduQIlHOa9Jye6piW4YQuZ5y7wk5D6rXfJcjXhL+ZIZiWmOOfRw3QjSvug8zexF4bJj+AfaqtGUObS/ixgAB96NX1Clsy8nyIa8a1N3F14EUrjZeuNLZ9G3Tefu+fKKiMnK85HB2ivQ6zFsE0ifnoEXf5ZR7OexkrtNvWAdRPKmJZp9ApviiSK0PqM+MzGnoTMWq09vOfb7TbH3Jt1pT/sAZ+Rtsxi/XF0sCTAWhWN4Hv5StP8eDVFUAJfsDoR/eCBA6CsPKTJYX05IzFjKRxUaoCfrvgFTgZgHUAFZFR1kj5LmaOHMsqJYjVH9aftv253Z/38xO8P8ObBkB0R4RdQKP7Zkobl5AOTrfJ2zx1GiCJa0JsCNUWLV6WN2iw9Wlo4E3OlVFfZcGNDzUM67gA3B0StCSfOoULyDYPxuXn+rJYj5+fw4Qv26O1WB7K5KupfWOf4Ld+4lcnS0BXFzyBiHJEq3UdVaF+SMqvAVix3S9ZPgIzVa/bwPb2vXI7IF6Bp5u5ifBlJPcAzwUMC4APV5oAPGTTjcA6bJ/9ZXwpT047z2OHEjNFRp8KBgX2Atp8APoG3S0WQFGhraa+ApTCajJOpNUqrP4O2fPJfii566ZM2ZV3nbrKdaXfkHURM57gF/cb+loab4DcYcPxssGm/2urd8M3eqRc9XUfByUdqcuR2Vk/9GDf5YbBUtRdv96Ub/XCZQg96DLkryS28XEhXd/1HDDbdWdS9dFxDiPH3BGXpjM5Tn7sfFriWNby9CFEVaPffIKUIZxWC8DI/u1dNLPSp6E3keAY8M92TstWLt+OmsqXZBrU1cllplRz/DOtAbudz/pNruu8avoaewY/w8tNzuJfm77tw+TjtEF+KTYpy2WF6wA3zPkAfl0T+CVIu8kBR5cHL4un2T9aH2FtDO+8wQN+77pWcF3nldj9BQRLUQZ/x6Wfk8LD0qe08JGMd1O1F9mT+oUv8wIVtr7zIfuHBQG0G3PwZu3PTVDmPps59l/8PjfSz4J+ETXwZABajTBzHdSCAYGVi3Yc+7kKeYNtHit/Fn+BaCy0HbwGIJknMOYK5cs9TAt4EpBqzYW2gDRVQSdA0v/Wq+awNncxkp/6rdNPDpEO8AMw2XKLObccI8urnUF5s5Jy8cM6KUi/efOD+MraOPdH9oJqyCJNWtpUSalCYBYXDemRLX6q8B8+2T6kZikfMtNiro+tFmFdO3Sj8AGzDa5+An6tvztuy0Y7y4dZXy8E7kJEds4tExeMuHWMpgp46QPlKYGRi63o8Pt1D+XITx/UDY161lob+BEdCBTv3HH3DXYMoUy1F97yhF/dDJzm4buzkT+6Jk9rqfqMprnKRbdlOqRUacvyyjSOWv9vYk7IdnDo4BxvKNTirs+2hNXnAh8KqQELprR5BYiWDPVxLpeLm7xDNj7KUAtON7kRKes7T6bTD/oZunNHHkyc7Hoqe8fdXbbZ80ZLC/w2u6fIS7cNbzjqVwYWKoC1fWg7q+3Vxmgy8sLMMBo8kbtHcygXGpZX+kGQNwrY9vK7rjlQ/fQY8Ezx6Eq99/EclaWm0ro1nBymOcalrzIP0o/8ylmuv8VDGcZ8CmUJ8SA/MiNvfZEf6l51j6fUYGAaVOhqtC9FKZdx53zupKOEdF0VjOFy9UoCBeWWcTQKhfv89bnUAKB2BReJm+8ctB/+0Jc1HbRXnudXnDEklsPJXn9kExfGH0eVN3BQO57uYj1+8wN2nniX9YFdL27w4pBbt9baHXaiuH/zsH1wg+dt2CXjt3//sH3ztwCm2AFefY0XhryNxYV9nWsnmGPVP1qUR8o5zXTo7/PKb20PX+f11y99RRe95cyc0n6+4+zx/Uxrv/f7O+3PXl9t994Gc6y7hn2+WzVL//nVwBMBaP2WT22d6sDvQ9amAgPx0+SW3AVKsKs1c7xJUDAgOPToxSzXEBc0r1K1Ila6GZwLkg0uki6Vgosqazblkk+uwI17/QA5AV8WT9KQSdAqMBuWU/MqLmPLSZdqApjcgeIeu0TIX/ArKLVOwbfgaVgp9YnVmmv7IAFMwaQa1ME/VkN4CODit9mt1mkNcpmuddit87Z4AYtBEC+Atp6z5y5ivT6dPF1kBFy2p9pt25c6sB4vmdE18hjUjef1QGPdnHQB0+Y0GpFdKNa44J49u8V+nM/ysoGzAMZX0mbVm16KLrTInkZGXoKC7EOP0W3XubqeAqgIEmEWsfBVx2/8+vXsC/3Mc8+3S5cutS34prykvT9GqeI7zsyMojsh4wxTkDt7uPWdlmgtlfGrR2fDUiygVs9b6Nj+HmPQutb5pUDXjg1+LXBnE/U2xhKDK4A5/U09/pIQPaOTchkZV/Au01Q8F2FArUljjFUrSk+OmRpf9A91OrYyfxJncbCddnTaK5ceTDZNfZvElzNESsOgPFpn5X28bzkObqPkMu14fYNicVyQDkpzpvF+PpJGY0ZydGfjao7W/YEtJXiSC4cnJeVgkwQGb1Sn/PErn+aqq+PtSqn563OmAewubN920G5da+0HvKb75S8dtBefcV45N/hljW6/zjZxb7/NQ7/4Hbv0nNjzGhdwvdtkp4tX2PXhuefcVg5aPjfYIeM///Vh++XfAZZf59XS8LtzG/DMZ4ft527d5AYNAP3h2+yc8TP8sNk949UfrbX3f4WtFH75QXM6/D4tHfeGnHuBreL+aWvfYlcL9312PfqiBfvhKd4Y+a1v7/E6dm5mfuILwLgE1I/DX7Tmzu35HGjgyQA0gGQdy+ktHqq6dcuHzgCUWFnLVQJfUcGGAI5PAV0vXC5+LoZMcsoLHvIhHosroLz8P8vnNzSC4A7Q1KnXoVwanVGEWL7N58/gmloxTkKTGpNY/r8snqysflxhx0KqlXqLV0OvrZ/qP8+xPR2PJwcscnE9feY8+Vtp3w5uHr7+2rJs6AZvZSzJBFVacH3Yy/Yrg2B5g50ylNF9nNdwqdjwVdSA51MAc/cU1sJ76dIV+AGG0YPgPbtrCPqgc69prcHq1ZenaBnVau25+pW37ROEKYlptjFAcKii60yCEQ09cp5i+6RzV3k37dWrud4XWKegZSmwiVnFG6Z13lhgv6QPrdWbE/sRhqxZPajf6gjVPIJRgeid27qJ1NsPv/KVr7YLAGjbXwAanoIjQrGTr2nFz3jPqDTobKtuO9mZgvZXWeio3JsLf+FQN97QOUbv4e9+sI9F2vHG5zzb/unmkhejMAbUm24TurX4KvFhjd6133UDQu/6j/sLib+UpJ7oHv3bH8g/2l1tKIki2LEv6xo+++OGTHCfm8JFW5dc0rnh0dNGljo6xrsUZbo9OMIylsRFISPm+SE+yNIX5o18jxU65Tg9clxQPYxoyjIlJ/VGecXBHXdUQzCBAwyyqIVjPUtQMzjjg3LqM8U7T9NNW7TniJTzyedeA3083Luz0l79Cz7sxPHii4AttkVbx5XjJtvy/+iNtfYXf77Rvv9nGDN0p6ihtWy6PPBbPuRV0RfY8vS/+e932h9sHrDHcZH8+tf77S/+r7X20z/daHd+ITFjzuu94FhHYl9sxSM0v/x3K+31/9Xxytv6GLA+pJyxCNmnHmwGVuc1HmN58buH7ff+1Ur76iu83IkHCb+QAR36spUvv7Ty/7P3rk2WJMeZXlZ1Xfp+mTsAEiSXlEkrma32g0yf9Cv0A/Q7pU8yW9mura1JayKpJVdaAiSAAebWPX3v6u666XneN+Kc043BkEBhhjWYE1XnZGaEh7uHZ+SJNz09I5Yf/dnZ8vF/3l2efk5LZ3O/CRv/QRpy26jflwUuBKAFh8+ZM/jB/c8BFbxYBZDyhyN/gJI9Y2/13gG2HPEEPgGjQ/uEBpCXNOu5TVbzA/7c5eLw+pjASiI4spHez3rfMsMqBHmRXQH5FpjokfXRvGBF4CLwT/wxwE4wehWv7/VrN/E6PMwqeMbCuoLf+bnHewGogk55dWC2bQBKfqwFvupzCFi2XM/zq5ev41398KMfZdo5gaIe5Sxqwg3IHmEYhgQYYuBHsF29nYLIJbBfZ+aHADVNoS3Cux7LCRhiHwtjL36402Lp575Ao3ZtnQK3Y+Y/fvnsEctwvyaGTzB/PS/bHQLqD/E4CyyN+w7wR7ddZlKZNzQBzoCabKe86Fjp2mKm5PB1Rvudfu8q/LW7oRt7vGy5ekIwT3YqdgAqG89zupJnPjtr9l0s5fzsgHPYZcNf4432pUjB+tEzZhfRQ81HoL1DG97/wR8vd95zPuibuZHxxsdzYlvYZdpVbpq4ebl56076Sc6nBcOwgnZl5YaGc+RLqC49/vDL++w7P3WBfJqhoqNe7WG76jmfHu2EJkEkcLY/mbRezpk7pBUL+PVaWJ3REnzld8GzLJRZroPTChxbccW9+5E5BFu8Kl/3o83SoWkoV1+DQLHzXKnxukfCdRRkM/YzNaVMUr965fH6ptorIZuStcuU5W+C+/we+NvEeQ2/zWZu8Njufkct4PnkPJ8e8cIeC4v82//9YLnPFJn/8l+xZPfN3eWzz1iU5N/vLD/Dg/z0YxZnmg+Mvqq5/F4fEUv8b/9XFilhurQ/ZQnq58d7y9/+5f7y0/97Z3nxmJ57E4E4R/wpyCWhB3TooLfZ+3L73TmhJQwtLfsqWRfNQ8YVHDxXf7C7/CvCGv4nFk157xbjj3zzdVEBl6w+bbrKGPv+OyxR/t/tLP/w95zvj7G3N9Vfd04vWTO26vzhWOBCADoDk55VQMc5A76gz0GqoGodIzpBZenJx37rgXwa0yG1YKBl/CLlR8kBcf4aAFgHjZSVU3mR29EShgIQATQfthxGL+vE23o2gTVgmiuvnmJf1MKTzK/idV4cY6UNHukTE41E2yXAjad7pYtM8w+JO+OYrWDeZDv0bl6Dz03CMW6wEp5e5XraNwD/aOpsj/X00marFxRvtivaGRebUA2BgMJN/oqzG2+vh6qh3WI7CaTzoGmVnUO8JNxEPAf0Pf7ik+UVcb+C5qu033AKt+9gh7vvvLNcv3snL9UZS+pNkO3KTUvA3jxHDireVPTGIfaJPdRCxdSl7Vb8zZvY1+zo4hf1UdD6VVltzeB/0LUvVF7rFYx5I4RxALo+BTleHj94sHx536XAHyzPiLUWOPt5/cIBFG86wPjazdvLbRZN8abFMJpoUAUWZ0UzVW92qkaUTZ+CTg+150XgnGnulJ/2p2pqz700bHWwuYMErxmyvE40hipsptnOKEHBZnHLBnXsO/ZXRN2xL+WPQ7cVor3nxyxpSz+4/MaNPGKbFcUbmiRXTvbFyVH2Us3j7Pxa3gZniNcyrNVzvc5TzDo/ncSskVa3DVO1wU8J2/QHZgFOKbOEspz0+fKLv8YzyeKk93/OTfD1s+XRg53l478UbPHbxO+qvxO/MdFHTph3+Cf/4QozPQC6fyyAPls+/Ycry+Ofc32/4h2Xt+tPdkMH9Uia+b9R2AUKxhBwlbmR//x/OE3c9Y+c99mXJ2d/vwD7y1rVoe8mXui/+K93lp//9Gz56b/p9LI7Tmr9Tdr7shpkq9c/qwUuBKAFlTdZze3VO9yQ40lsmlevvZmhbh5aGDBVr5ADuGDQl9hmz5d0DZYFyGMItB5XTo9kVLq+hFdvbeLd9EIL6KB1sDbuWlDQ+acbCyvAOT3QiyxgAkDzg+rMHE5j13AIvbqsCSuD6LsG6maZJigfh6G1rPBe0F6Pu/UFmnORE4GaujWkADmAPgG9nuVz7GdYhqDMOYj1bGagh+8c8CMPnigm6/5eWJ4Cv4QWlrMfOnZL5U4TxJ6paWvB5pOHD5hy6QFe6KfDzoI5lsHF8/4nf/4Xy5XzP1tu37mFZ1wvMStK8WJeniT4a6b8yOi5POexpgDYt6RNekkLtN1X79pTDeZxnx7Ah3rxrIuW0dMmBNSlgeWDglQdo8eQXS8wgTSEVHgu9TR/+vEvlp/93d8tX3z2WfJQXEWHTrwlD+0Lltj2nO8Dpi0cYtR6TZ46WquV1e8Yt5L1XKL7CTcfep19EmOoh/m50YFuptpnHpWVbbP9uTnjBu2NNNo189bSzVEPc9YpOfJLVr8DjNckVLN9ow3aOe3V3gX9Bf7kovemvq3SepvsVtLeVIW67YGT9u2a83hurV67qx8Hg193ueI5TlYM5n759wUvdZXB4OHOpE+22rRs3Y+ssE1/sBawLzzlBvqvluUv/91YbIPGnt/WOTJa7W/Bb0rQ+ODo6IvT5ed4s39+RIwEFc8PyGR318t68vkqHl9X9lX0v2PeeEC13Lxzuvy3/9qp63QKbXT+35HvZa/mb8Q+Nzh/ShjHv/ivluX/+JP95ZhpAnecwjAX+2VvwVa/PyQLXAhAr0a78YuiZ48RmOwJjjgkK6AJkOBLcIY2GKJgX9f7aTyp23pfGxPtYOcj1740Z33CQASieLodRwWdgndDH5zurasPMthSz7CArMiHBD2DgrLbt28nL55wzx48upy107oVQMi3+hjjil4AIR/1B9zSLh+vdxBue+axAMh8PwL6fVcFJHTFEAH5CeaMEXdquJfMhNEX0QTPA6iMugGPYz9gBnnixAlsDEfJDzm6nPtD6Q819IJxjmJjSjjG/pQJdFdt8+ZjHEOeVPDaWO0XAGeXGleWM6h4s5JH6Mh6QfjDczy4xnTvE2bBa8+UQScwzg0INqKdshVPa0dvdNzOFDAdtbwpwLMOoefbc6jNqovNYR5teY/6jnPq5OwsuUFKiBA3IPhrz6CliI83ILScgwkGDanwZUJtfwK/E9p0zstBCKB96m7/3MUjzZLlfK4RwrGLLhqy51hL0iL4JlONqCtfQ38eP/qSx7tf5rzqgRa4N/Zaz7v9BFkzaY/8sg9Wk2XKtVMNNbeRbx3LoZXc5HFJSz8ootfMSd44SButiN5JqxMigXm0MEVu2cn/GkzPduSJDeW5tks0+Fl5LbmZfv+m/DVFSDy0Oic59hkuf02VJygU5RxM/dWPT5ox2qJOleZ3y7j1of/KxP/+ZX92zlDOr9aeR9vtH4AFOKV6gFlVmoBZDuwLeKVZ86hd85/SxMnDn9zbo57RWIZjXJbULr5cvcXDUlbzu33PsfOyKPfN6uHw50qIP/hoZ/nz//54+elTnhLwxMHrfPXb8s2qsOW+tUAscCEALQgSrN4kJkxAY+fNwC04AvAJ4nIMWBGUZR5evZeCQUZDAaagxMHaujNm2fFRmn1ATTzPHgdAG/4geCoYcmW+eEMFYWPQFKAfELPr0PnqFbMpALBuMUWaemb6MfgWXGzqpsfRJbkBXnqi45EmThoQHaCMuOi4EX6wCaDlh/qj/YJV3g7m0DhYvcqCdW8sBJq++Nc2F7jYFgGM+lLR/xwLDTbzyG5OdgocFKlsU+T77b880VWq8glJfmBW4ASZ0qnTMVO0GfpgOhv83BfMvkBfgehr2nLADBXnuGAKsBlRoLV9Z7xIp/1zztm6r1b9Rk5UVJ66EWN49JJY8ueZDs/p665ws7FPv1C0tpHQumIqz5+eevsaFNyYCGYFqt7wGH7jTCjOjGEcO+CcAum9MXPBF8IQfcUzSTV872dX/nRBPcYv8SJbZxh+TUiWnm37qHOJl5+g/PnyCI/948ePsmKj/WJtMiTkv9syQ6CCTW4lJuvXU4kmr4Tk5CZF4smg1Vt35IXfJsM1bQR5F7YSOMu6nbLkN/dr2wLp80wr6bXdmxPPXfvW1GjK7bmtXr/NN/XlqX6yQq1Vn9lgEyn5CvlKV3UO+NZOaQC1bRo85TQ4F5B74t9ISqq0uX2jeHvw3baApzsX/tvn/Z/YLKsJmgXfly3Zx/kIJHnfmRfPzwk7pBfPH/fLpu/vWx/a7Sx977y7s/zZvzxbPv9PhOf8jPZf44p34N2mrQW+JQtcCEDrIb4uANof05o5IAFQBVJ6h+f0ZgnFwOMaEMpFLmARmJycuEoeXltCBZy5w18FvZIOhgHb7AuYMyoyKDpLRsIIAGiv8A6bBMz+nph80c19eckjAyj1njG37ytmzNCD7Qtx+W0E9AkM4gkdoFrAZN3UE1QBQhOXigpX4Kd3K79c6ufAD41jtXYQARgGoqfZuY0Fb3pBzYsXG0LbaYVTYrAFIpmxBITnPqgTWYLD/mAjIvsTGJjrvuC0cgUNhovoLca2fNr6qAJoLajwxsMkv+ifEAu4IUfvoufET8ARNALoU8BqXuyC5iXn6SXe58xwwTLlpwBoZ1V5HZsxvgBcVdnzcs5y57lpor66KLNfyosaAaUPv3y4/P3f/2x57913CTV/LzObOD2edkwfSTVvagSx1dO27zGf6h7TVXl+nKrOebUDntFHb6Q3NdrBcCIB75FPElDuhLqqInD2DEYVdPRl0lcJmzld9pCTHgONdhE0O/PG0dGzvEjq8t0ub27YR8JrtDd87T+rpJC304b3eVW8qqKdcir8HjXVwnNl4rv/sXFyMkiuaUKHHp6DX0/lYsvk36NNql/PST/kOrqS5bD786C9FRCPL+0ukFagfXedL+fZf91Hra9OVQdiDYEdYeVZ9U6rLSPbBsnAf0VNXnNrljcHObavzYJxPXFJWa2p5W/oRoHSvOboyum3k3q7/QOwwPrk/+6N+X3w+N2lf21Nu/suq6Ac8rrOTabMu+psIN+rtLPcurvLbBwsmkMI6dlpf7NW3pLvlS22jf3nssCFALRKOwAJnvyMsYwtwyFxos7WIP4VCL12pgsG32tM2RbA90IA9CoAWu+ww5nAUB6JRR4DolPKCRKdKeMlntIrx8w9DRAOcIt8ASTgSQ8k/AVhAvgOlg7ugDAA0e7Oy+QL7KUTgClPgKxnWiBvXK8LmvjSX8IwUOYYui6kITh+nn3H9sQqA7LyUh+6unXKM4FzQDjHxsLGo4qeewk/0NwskMLzRYFiADC6CkwmmC0oExCZtwbG5msS89M2tkEWogv/zedP+0lXYCccoZAU8lEorywkwrG0IohzbJyFbACj2iWeaMCh4SwvmEXkJYD0EMCpba0vcE2Ccfl5DrCn7RRAQzM/yjapjW06ZCrAH/7Rj3KTJJ9jPnuA4VAMYvWKAwh9BKwea3N5yqNziVtWG9lAIy4ymwr0rirp4ie2C6IagPNuD7MNtln+PnEwhlm+hgKpi4vJPH78MDN4OF/1ago7QjX0bsf+NoikXm+n2d7QzXJt4GejwmoWjdAIJsc5hG6Fu0d9ryEB34TBzR6F5tIPEnZDlmK0R/WQmRluxg77tnemda4yTOYUXM4jmVWG11tzZTFtMbeRsslQUlJp3Wuh9OHDl08OPKf5XbDvpQx5nC/1GOIUJoPYRlvMJG+09StpAuu2sZTe2HdvrZwrtdlX3brwxJrj5Lzdbi1wSS1gN77GmHUb7/MBziF/PrxcvkfpNq+u/Pg9njC/izPEcX+XOB0v4vUl/j2yxrap/xwWuBiAdqBzwAsAFFg5vDPgOfozu7mPgHeP6yHVoyeoMyzDwTMAmAveutOLGE8snV/PoleBdPIztEMgqjfXi+OVnlySg5/gSvA5echfLzaVKQcoMboKekwCp909gH0GW/kyhRy8DPlwIQ293tY5cfqhM6chI0YYECyAFrzrgXTflEf7hngM3tqhy4bXI6vnV9Cv3t4AZDBHd7cNcSCkRR057guYBQtv/wJkUIcuybrszN8I7TNjoOOJHr+ga6pYMTazftgIuEcKb/b1/p15p3OOvdSJvAknTrDta0Cltohs2uJNk0l+BSnsy8MMzqe/5f1yxwS9/9bl42wkLlriDYZt0DOfc4P9w0MVoU/fYt9Dv2qnbq2nAqstcqWLTUZ/cIn1K8xtbT+RVo8nJlzOOPbQuGdvGh6wuoIrNfp0wps3Y9afMIWhTxA8/7YdZaqHuvwjCRGhVdZM0Y2DmeU252mc09K11JZ0r2fSsmlnY9RbODmlNNUrz3yldRtydt3+prTJSQPleHxlQ10vafmv4rl/E7ORn/My9t/US11kmP/sn/ubgI17vntDNF8uXp1f6rifZvAlrM6RGeg18yNSPYfs2Zgey2MWQENmprsk0ycnyVgXb/e2Frh8FrAj++Enaf/OznKDBWMOrzKWkDdvui+f0t+MRld5mfCdm8ty553z5fB9nDcMzR3pvxl5W65bC7xtgQsBaAc0wameR69q/5zxwrEowJh5hQWYghCBk0Dp2RkLaBg+Achx+jvrvSQm1hex5CfImoOhj+EdSAXelk2AaohE51Dey+P50zNBTsHoq1d4K6kniN7lMbRANprBw5hpPc5OJafXWy+zoKnzHAuc8bbyNoIviD1nSW29jwFPw2oNV1AfwXHBtYtp6P1yMLe+7bJN6htQD/jUK2s6I0wgYQaChXjX+NETmAHiBEiCSKFTvZz8IGCLwjYsolGT3I4PMgI0KCtINL8IYYIL9eA//MPCYsiUl4UAWKo8Zw87CCh3sCONGPYcQA4GnoMsBsM5jKzoIqngEjpAtTT5jFlIKkPrT/nsK3d8zgi/SV29g1EOHiqrjqQzebIvh5bbFmUB9KMjsnfsSz4BwF4Buda3kvoQToS+TjuV+sqIHG/gWDiGF0598vDwyy9YcveXOTd5kmGbVqk2CIA0T/Yb26H2SmeLOG3R2e+cB/NGvaoQgtLklIWjVPzxHabsJIVgHli42g81h2bFbJPNUFA+s2xurSytskycMpL91W15TfmTnfm9oSJnyDKvLMjzf5NYes7d5BNav0LquZC+dm1Zr48Z95288LQfFlgHXGtNrxv7KKnXTvPM5tcofC0PRdqvrb25W7cxlcOr7e1xGK52tztbC1xaC3i5ABZvvne8vPMjxtVDrrVcW5dW49+7Yv566cc5ZKnIe3dPlzvEQz/75RBjYX8ifu9ytwy3Fti0wIUAtGDXQVLgqHfQ/StnjWEusKu30DAAwaEg5+xl41X1+DiIOkBab67oZl6BmFfB9M46SDooK6/hDz5qF4w6UGcgZdDUUy0YPnSOXxZCcW7fGVcrMJqxyIJtQfhzYqPnhdbB2NAAHv/zclke2+ONbL6DtQN/PZh6NgW5hhQYCrIDCBXMxIs2LtwM/NTJ3xjQla9HuuABeluozQTOk5ZMoB/5YkRift0hFdhpBwj8KFGkZrIuH3lZpJ1X+8h0f8f4cW4gvMHRTgLTk+MXxB8fZhXAL+/fJ9aXuaZpVy1f71xucsgwFr2gKAKzH00BqdVQfQStHPWfY3ZTqF7jBgPbmSmtNuo5McsbHGPn0a2oLnVilzSqoDbHbXS+Uw8zpD8BpP1LGA+P5PWeHxPHbKx5ddvNjdd1Fou59d5tFlz8gNUlbyxPmDT2OeE5vvQpXeyEHu77SYvj3in464lLM1M2+5AHkqvuKjxjWGe1KbvWCz0ZypkE9pgyyA2UhOlXqxrJyZGs7AmSB3wmtzrwPY+qk0dFmSO/dNYtF7fVZdZN09MWy0jDFtU1FSucapPPyI305Mkyf9BkX0ZSte+WpW2W/YogDG2TN0FNtcuqP1Ahf27pU16n9nt/d0pjf1EOPGcaT18sf/PcTq0n4Xa7tcAltoCXDq8A3WHR2A8B0IeHXgnfs+RPBZ89APSNu3zuOc83NvBy/94Z43t27i9Rcy8EoLNcMY3Jo3UGJz2mBbXOuOHAJ3DSi1SP8ymxvwGklORls2M9hwXMqzAMgG68mXgxXdlwBS4BW/EUC6LJd6aLeETxYuuNzrzEA+BmOjlimR2kBbgBrvDVW+wj+gl+BcmZgo1B94xwCz2rlQcIBUg2PKNtEFgKzBzQBTS9aWg8rEDQi9Y2ZPDOVUw98h3Qz+IB680CzU0+2SvA4GDeGwHjfDvjRIFbQSMNiU3A6e7xGQAAsFrZ/cUQcK9+PRRE0hYuP379xm0+t/D640HGdr5A9+TRJ2xvLD/+8R8vd+/cAUA/aww3HvwZXnHr1s3lzr17eVqgTnL1W/YFIR7zp1qkgBO3+SMfnaVTz2nT/NzLC33tO/YZuQicT2NjRggZjjbI0/22qDKUpZSKtTwkofFJx7177yx/9OMfE3rDEwKInEHEpw5XXVmQF19vMbXhnbv3sDcx2fQfZThFHT1rOd9XH8J60EW9TPKYaXN/6lRd3qbdqBQea+ooarFZK4ZfUQ7BRu5UIduZH/skB4YRyVcK/VqfG8/7tKnks14krJilisVNYRmm43juu6WSumO7bJTlubIkm8mUjLjIrNP6DWOS0jR1bFlbPPMqovWGLWDbPXa8vnyBagM8C6RVYFCnnerntWtfzE1eZFZeb8yV1+PqtP3eWuByWiCXMardffd8ef8jf9votxuX2uXU+pvRyp/o6zdYMfaG1zx26A/RNyNsy3VrgbcscDEADfgwXtkBa3eHuGQ674xTFezWe6t31vALQhkAfIJdU72PxDoT8UCgRQa5SX9yzNDHZJ6C2evMzmCcotORZcBHhh7Cg33AEKvl3bjFanK372ZfwPr82ZPEsD4lXtl9XyRTQgAq5dPL6KD5itkljF/Q8xlvbgbdelvVzxAMZQVc6Y0mb8ZXx/tM+wP6BNuGpRCKAfH4LaPVDuroDfuARes7SBvkIQC3fdY3uVS4egI1A+TFG2fEkW+GjThRvrr4otwMoxC0d+AXjM6bAHX2xUVWQSRM4e6995nt4gesKPgeMjs/9dOnD4nnfoj9bywffvhBeNhe436d+3mCaVcLvAuAlk/kpE3+UKEu6NjZOjy/bDbSKKdk9XLboNkjJnnlLcUuey59S3v8eDOVJwUwQ/0mG0Jag70cNK8F2dd2NlodjWf/0Y//BOD/TqYk9ImEq0p2jnBXHWQucuxgbPeXD+4njCNeawBWXmDNjZDnltllDC4k1cY9V0Ng81PmuVppbKtX+qc2ZS19w0ijTeo96UtVVl4D9pQ0K1uN/CYHjzbq0GnejFEutfwCWEf91gjn9MtN3ZMrAVXtgzl2v1kjs3wzYEkA32yGLrmPU5dmpgGzTeE022E9dfN48Oh5Jt97KFnzad0yG2RtttV5lJKV4TYKZl+xhqnW7416Yp1X3u8+/ZFmynd/m7YWuNQWyG8Ss1DcOVne5QW6fbyw38dkqwmD5iXK0+UG0YBZ6eb7aYrv4+m/FG2+EIBOC4a3p97XAkHBqN48hy5BnWWCRfu2cc0OVg5yAkpG9pTF88uxw+61a86C4Qt+hmMcAnBcfAVVHWwB4Xq69dR67MwXXz74PIPsKR7mF8xZ7AIqpyzL7aN7PcwB+IJV6llHj7RAKbHZCTlQH4G+YLogSf30mGY2CvQV6FI1QE/aeHsHDdnED+O7FAiBHuYAXo/wGJwFFA7y/DuIRxf5CdZotzay0Dqq5H62kdu6BemEdRCGUVpvXDa8+tAaH+yKh9ev34qH9e6993hpj4VkstreAjB+vDx5zEIgD++zQMpjgCRxZLFxp9jzhuXOndtpu+3NMtecBxesUf22zTZ2P+DEgzQtimOn6rsCJdopwNt2kWBUyh7a5j4psD9YFmaxZcg1hMrIGRurx2QQasm1g9lsD/Z3l/c/uM5NwwfYk5lZ8EjnRcUsQa6NtBk3dU+f5iZJhg0d8YZGgN/49mV5kaceevE9/7M9blXBesrLPmA3KprPXvKyH+U4XpcOkuTMvtK2lSbtkwuHflaJA50spm7WUszpUSus+Zb+nPAWU578ICBAEt15kzVPCTbP66jRjd+ytHrazY4Kjjzr+anOnvmmSPMrNwcz12rsW0d919mjlhmj31vVT/hXZImm7ccRgs/pH5Vvntdy+ZTC7+pVmk3at+nWNbZ7WwtcSgt4TXHd8jx0uXP9dHnv8IwZOPjNupTKfrNKeT3rGDs8dLVfZfkr6+/D99Ea36ytt9y/2gIXB9B01niwBIL0W1ery4uDenft4fzbnQsY9TACaAAk9VA78PJyGgDNWRn0NMvDuZ2np/fUDPjoORXQhiHfToHngiemVwDmhGMA1l+TL52xuzN+Un38KCvzSlMng75bwBv+z+gYYATQ6HLUHXQNLzBfer3GqtPUgTx8/FEbDbWWfy013wq2wX0SDNJmbgis6w2G3ldgg7+LNjX5KFaQTkZBckFoblTw2MtHoNdUmoPr14npvQlgvsPS2/eWe3icb966G3DeZacfsmT3fT5fAKQfETv6gqXYr0ZefnRQICtF4q01PCYvYvLjzNmLnspT5/xFPu3Cfuqyap+lHE+TqJ/Hevptk7vRm+1M8rPh8cjHKx8jpP3aIyBV45Dk7I9m+PPtuQkYnCB78DmI/uhu/X5Ru3w9p695sVVvu08kBNnKFyTbbvuKIT2vCf/Q229fMt9yPzainvdUi1aythm/nkammyq9QWJmP7XLRtEbu2UuzdtJ+yQFjb5Np2XJS73K8WW6PI2xv1mRL3lMG0WG7XsD+Fo31GE1wzQm3/SJDeVyvqPUrDUOBpepjldek72v5zL9cJKHcB6wRdFqwf6Ql/nKk5leNMwJN/PWxlnVs7+8kaYMt3P/DYLtwdYCl8cCvT547+jm/nL92uvlDiN4BnH77ltd+/Jo/c1p4vB0yCIyhywo4+/a99EG35x1t5z/MQtcGEB73cZTq2vMA14YFJDo4RVsdDYMxHhxU64n8DoeZuNx9/AsW+7LfnfuvpMywwheE3bhgiQuXuF8vIJMH7nrTdYDrTfaFxNlKL/ENSNToFnwQ1wrsh0rA44YbPV8O61cwDkA3qE4U9YBpJzrOeCNCrbFhU7mQFvwPV52Q4bgQDlZ1ZCrV33m3MMFw31JUH71ujbMI/G+w8sssDdsxLmY1W+XUAhnBjFPHtpAD7u6qIcyihf6K3mKzqZ6Y8mjnYYl3HvnAzyvDdU4YIZ9p+cTcD988MXyxee/ygp6Lid+gnd+nA7k0TbknWHTPZ6HxVsb8Alg1E60NTY/b+jNJv5Qp4Il9fJjwkbeTMVWDcsw1x9+6V12O95mbJ66KGIbPafeVLndBQzGNrlB6HkyxKVhKwMw2wDPod98VRe1mHo0X6oUZqMOyKdvHjHbii8OOjXivBGRhzJ8cRPT54YpfWvcqMybvhpPkMYLrdgvbY8+CmuKTu7CM+2UeSqqV6yRwmRLt5Gix4ofbZRZUvUPH/KSPcuoNNs+s6a8bpU/bkLY7Y0pbWA/0096nidPruXcFFvFJO/xURPOMN/VS11t5CzvsTzNJ82tu+FvX66u0nZ/gwz69OtU7ld4WZe/tRztH+IQRafBt5TlmbqhUF91GIwje+yzsRlpyjpru7e1wOWywOi7rj90wvR1O8Q+ez+fy+ByafqtaWP7r93iqfVdx1lDG73IEb+9mL+1c/B9FnQhAC1ANExCELKzs0cowFW2Pg4HDOG1CyAC4PoIPC/85VF6X+ay3D6u59jPQ8IwvIMUsGbxChewgO8LtoyaTJSux/BFBlFfBAtoh0MADnUcjAWmThUn3wBmwI1eY1O9h8a4MmMIXvCAHwGsFUlzIHdfGpnIKYN0DsyQVr+ZK93xwlnAZcMBlNMX73onbD3Bq97Os7NXHfxlLo94AQH7KROU94bjCiv5KUpQbd3EVIvPAHOGOcjTjzZSk9kmb0huEQd+6/adePMbuvJ0eQJQfMZ0fA/xOj9+/IBlq5mWD1mwEIrAQUDSWG/1l5/gg18huUcXDyVNnVasHtb1M+yXdvnGILT41evTR2c5ySM3DfKln6Senmt5J+l95mbLX0MZYF8mpm77JeKtmd3dTp/n7+O6orRN6qGNZBt4pg05/7mJiT319jNzCufW1QedgcXlyQv0qWE7RJNhqZ31Nrsyok8IupiONPZpb448D6u2o8KqKRv6uFvzyFQZpYuICgqfUYV9SzY5vbmv+ZvaD2KakdOVIz2onGZPfnaiVp48PO/m9Bxayl70m3T2BHOHtmmI9u1x5ZRD7TDrVfKvfVs8hWe39KVTUlNtNKWatyqJvZXVVtlOFR7lQ68VddSUZjC2fdCmi614bspcS5o1ttutBS6rBc5Ye2yHWOj+ZlxWLb9hvbi2XX341p1d3nfxyTbXOCsSenmvLvtvWIUt+++3BS4EoAUZgok9Zrw4OGR2g1t3BrjQ87wfIJ07wnR06brISYDuAI9Z9e3hA0BrY6YdFPXAMr73QuBYYBcwhNfSi2NOfRZaAE5jiB0g5wt1gODXrnDHbBLwctB0BgaBvMAaWAVtQ00E7QFEiMvgHPkF1g7rWR6cgddx+hSlpFGfgDEA2nyZT52UpU38WB4gLGjzZbAM3oAytvJw7mK9zfWQC9qdM1tdAY7YJr8A2G3qZJ56Cr5TriFAPHxHH3U9Bhg6p3HCUtDVsA1jngWK9dJjH3QXSGjgK85lRwrQF2wiw5cj1VUek1b6fKg7Y2hzIlKbL5UwGQfMi48B/7YfGepl3WjKj50geUfPdvJHNdVQJ89MPNP6Ewt+bD8tDt9dXC8+6IhA8i0zhTbgGTq35ngDQps8L7bLmybnETfsJ6sUYhPPkRysI6B0O5M6x95QSGdfsj2p4E3hiEOXPu1bV41e0yStMLmOrXqPdqTZOZCBmbVXKMlK20aRNoudrD7qD47lkDxypI/N2IybgpyBeTdTAvScfKhiHdsfEYMRQmZ/dY5tu2VTBNRm3aWadTd0n6Tym/sIT/VU9AAAQABJREFUGeTJ0W5NYzvsUppZNuqT2fO9yYHaUXywycZ6rduiN+ltQ19sbZ3MO77SY5PPdn9rgctpAbvr4VU8rgDG73Oy9Y7ft27vMhUroSy8TLl7ktHi+2yWbdu/RQtcCEC79PEtYm33r94h9vY204PdjufZgU4PrV5Nww3cvnhunHK9yoIVwbReaT2Bekk7cA9ALsAChDqeSysgEyTP5XgDpiksyGExFUHbeeNVBbcBxPzKuK83vCEQPrpveMUu4DlgBENnUEbfhk/oCR6gljIB5CnHAgN56b30Rb79A/UDMvBDJjClcviVp+C4YBTuAQx67dTZctvtAiZtl3kF5OpRUD6nsbMXtMwfTAE3JKlX4BFoFdu4FPXTp4/gzRLngj10in5KtxJSEpoCOFaOH0HEVdZ/9QeooLjyiZ9JSIft9dMTQxO9MUietrAlQWMqWVnw1GMej27Am7ItE7DLBf48Ytvd5WYCPuqXD/XVRxtN3VKRfD3K2ql8htzoAUPZBw1Jwz50EwiHF3VzHtJ/xj706UdUiA1hI6NZt955M9XWDTLpP6ZTF8HBtq5IKShnKZ6Eu2gJ5bNpasXUl4vwP0V8TZLNvTRBkDvSGtxJPfLXFctN0w85qTbqS+Z5cXrJrrpYu0pTPSYjbW/uPHYfmvCsPT3O6VdiiH0KMGwFYfsQ9VeyazNZrLi6Q8Yad3dvnnspZa1cLSVP6a3GaWa77mNkDT2sA5FJ8lTpceS2YXIuzeqbY/6ltEu5l7qGybOT/BXtdmdrgctpAa/jPZ703bt1vFzlBcJMTXk5Vf1WtPI3ild2mImL8NBbjK0vuZLn78O3osFWyPfZAhcA0AUXV68y1RezHuwzrZxe5BfELr9kIRK9n8e+SMjQpDfaOFtjm1+xFLZeTueJdmo0gaVA2pHUsU/QFvAcECpY3c/AKvgVxDkKdsqzemQFdfvERyvHl8IEOY6GvpjoQDsByUnCNow3Nm7ZD/JYulpA9VpgzQtjHUbX3UEApz4CMfVGO+oxVZ4LsJBsQ2N2q/Muduj4LdiqN1lgbn2XADc0xCn75tBez3eBWcJGqLwPYBOoW6e2sDnYGlm222S8tPwNARHgBXjHa88LlOR5w1IwYvsL2gW953pwAQvWleYsM2vAW1DKn7YwNrYrerPleHqhz/jR3jH4jrsGAUgAio3F1vXsEgJCGEbANfnxFPtbRjDH9FqfnSF/EcSnGaH3XNtO85SXG4sBhieorgW0GoKt6/mLEdU9XSftlInt6wdeIdZ6tYN6KEsvuLoGGIa+ctVhsE2Z+31ZsDdM8ayjo08xlHHIx74tT0XVJlbiX77sluHmztQvpYOAmhFsvdZNW8mMDtHfvj/KRtVZJ/IGp4Bn99HJuqsX/mbdbMlfVSZjJHWeqcVVak1rebhG39KrsHq1b6b+5J1822tuvlI8KievRRs0o26fJPRanvLzNItam1P1TT3daq1JG/tvtGcIjkz3I5c6acPUt0Tb760FLrUF9vE8/+DeyXLrqr9t3+/k7/8NUMyNG9zgv8t7Og9xeBnz6DW98ZPz/bbStvXflAUuAKAd9ABcAFZnKxAgCpCf8uLfc17Qcno58wSQN5mrWZBxJuiD3o/AWVDoo3CnSnOU9c9erydTkCdg2UtcsLIKZjVEACJ0guMz0J6g8zwvnwmugWjyviIoml7M8s7gWhwSMOiPjzDLlwjVXR19yVC6hiHAh1htf6Xkq+dZ/RJiAvOdfQfsAhXzrR9gDlegWtp+Ba9wBvN4RAmhsAG2BRnxbsaG9bJrD3mcAtC8YUicuMCESoJtW6FugnaBsvZX/pwfmmJ4ckPBnNy+qCcgLcAcwAI+2mTa1ve3YxN4mj+T+zkkn//wKDzxPKg/H+/yBdP8eXPhbBbXuSFythTr8O/9hoQ9Nk9+ZGKKIUDwTJsNTTELffWUG/ECzF/VCw/KvaFJqAz2wdCrJw1XaGTip6NTWPGlLGXCSyNQ162x1uf0mSss6pMyW0CjVp/oaG3r+k19tjlXbGeIynHmKgdEswqYN4DzRkOp9QBTD76e5whCjvZqqrzYY8qg2N3Yd+hUXuRTr2Tae9xEwCj0MtSeG6l2tlx5rasuEpa/xB6v9THn7WSdaYMppDp7pLLeVLUP+OKfqSK7X5mT65Q1j7sNTfQPx2bCJE8T1BEd+rIs9dNx2Hqep+4eQp+bwAiXRRimrd0bepV7vtUGzhs5292tBS65Bdpplz2eBN29x4tzzD6x6vKXXPVvSj1NwoPU5eAqv+vvgANcBGt7WX9T5t7yfcsCFwDQDV9wSrT7D584lgbYCc4c0FzkRJAT0GwoB4IbJyyI7ND1/MXTxTAQAUhiVfGi+hi9oI+rAj7PWdRDULoPEK1n2lhjXvLjyom3UmCEt1nPp0B8V3AOEDOMoR7NyhKYOqK+dNYFgSWgzRX6MoyC2CwXfAqwlCPIfwkwPIH2gNlCrl67GuApOMrLeoJ2LtTXyDH2WD4Jz6CuP2oCg5MzvLJO2wfgFQDbzoSjUE9ZE6D0Jcu+VKnXVVq3J8aFw6zt9s66QMG2OaOI8F+gLaCQr+ElJu1lGwMshhyxh+A1Nz0cGBMcEI++6uHsGMZEK1tArj35p44/USbsKJBzmwZSFrnmC7R2c84PD3ligOyVJ1Sp8vLmAu+/NxSCbIFzuMorO/ChXsA9fUg9lU9u9pXBTrz4Xz56krbKM+U0W2+8nGzTimX49lyUjzpTDuPVS4uwte8pV/lWlsYtRZHpxqPEb3MuT1jVZ9XH0OnggD7CjZd1pMyfypeD1cm2P7MNGK69tLWyItv2SSaNN19hVR2aZ6H/FqAnaVTJfr6G/FnmDUd1mLzDfMiY1VrmkdVn22WeJwBcB2U72jWVodqKlnZ6jtUn5ymsbSN5fJTa7ynLcxqicY7LK/ygtMxzZJLf5Nnm2K9bN1zDnDq9vCmwvsz9VGc2/o88syt/VE3J9mtrge+MBXx58CbOj8P+3m/+zHxn2vB7VNR793OXMbjTbX4evbjHb8zvUdSW1dYCb1jgQgBasJvH94BS55edA59gZcbcOmWY4M7ZCwJS6dgdKAHghk1QZrkjnKASqBlQCrYIaD5+SVjCACyuzObA6kIiynIKvDm1mNPaqUtkAKyc57ce2soLgKPpbrOK4DFeZ3g1HrrgXxBQIIYXFFkBTNQp6G1ohG02dAPIBU0H98rUC4o5vXBJttGp6F67fDifDOXkqbNgUxCQkA5Qgd5LAb1VrSewUvfjsfjFxF7WUaYecJPAW3vUo1995GN9Aao8ck44H5ydVR3b9dKXLy0kJVQFe7cdbcJohgJTs+fM9toS6qFM2+/bz8i8zpMAVhmMhxedVr9e0HloffnnZgIQ7b6chIJVA13pB/L2RWoOlisAnbQZKgGr2VSLPGmVHx5pRstd+MY6ynOrqvKPrhy0DnxmOXk+DcmMKMjcY5YQ66bV1oNF284OabZhPknJzVyoDK3x5qD1S73xnUaGW/jZ16ojdvEmh35g6WDViuhBc6NzMmooFNJ25qubJfkaVcl0ROGo/PItEfRaO2cv5yQ0JUp+yoae8p01V3IqZuhtlaGHZwFi+XsP0n5HRugpg7TJvXKdenstzBS7zzaOzGl7a4Vv7h08jxL4VZ7pHzCtrNH2UR7dNmjtA1OPVdtkt01bC1xmC9i57f9cMgc3cdjo/2mHv8xafyu66Y/ZJ6Rl15Vt58/CtyJ5K+T7bIELAWjHJK/fzPWMC6igyA6sRxNgnAG14Qnx+F3pPL8OngGq7CTWkVFX4Ne5lXcDhD0pDp7ybOgHMdQCHOJ2Bary8AVBQy5eAcQFqc6w4BR3uwJsPdDo4aNdAW90ow7+bhFjZHTWDGRTLrBzUBUYFWhAy2wLglv5+HKh81Bn4CUGLTHEtD9gFXl5hCy6I8/B3Dr5RJZe+YJ0eQqY4sGEn1u98OqXD4QFEvIIWghI9lcTFsmLl3rQ6wU2+R3PKvna2qRD2hsZ2++5sG3OcewNQWKyT64G5HsujCIP7k3N8usunCsieq0O1MainJOx0l/kFvTOX/YVAAotHLMdtuFA1phqkifHwyRECPcC+WIXz/nuco2VE5cdz691/fIfIGwlb0ioNwGy+6WjLIKkXElI/YBhjUV29KWOzORtfYFikuUD+JYnnLDdfDlVrgf7evELomfbZ2X7unmTnQKtE9in8WHqcZPtbpptkFKaybe6jfqQts+xk4prTuWCfZCvTBulrSSL/ULQvpYuR4H2izi+lDfp1FB9zcstENvw8YsbPqtpm6SI8iAUzRqF0sUWGMP9JrgL/lfHzY085J5Dq/yCZWltjV9WUE7Tai98pJgMpa0d1jJRO3aZtbfbrQUurwXs8853fHCN33V/tFd9+/Lq/E1r5u+DU9jdwCN/Bdvgb9umrQW+FQtcCEA7qAo+Otg6nNZL6zV9FW+cYOeEbcIR8BCfM1PGdVbLs3+fMnNGQi4CBPuinYOnHx/x+1jb+XoFldeoI3B5xUuCRy9exgMtkLbMOaSN9xV/HPDCoR8Rys4AjOqWZaiVCdjxB+eKwFiQzfFcSEReE5js6oWEoXXNtz27u+iDV9o2u0CJ3uUdBl69uQJ3bxgSCwuxL0yqu6DcF/4E2XqbjRUWiPtipC8yyitDO1/u+0FQBnzL93gpkUzs17AUgYOpnu4++tf+AjYXo8mCKPJBftrCvp5Ob0y8WXh59HI5OnlGnDrLeTNzx/XrzKJy8wYvcyIXID51UI28fDZRRpSsjmYF5AzAYliGTwRsazzrtMjza8NGNY6TE/72Bc9NmsK2tLaTOma6tQ18criSXX7KuHbtUJLliBunmoQDMyJbewX/rnRQ57CRpzLZ+ue59XPC0wj7gTSWZ7o8aNr8ARApDZ9kNtQFcjBjz43n4RUvz3qzd3BwNfaQd85pNBtfsbM1Teqt6sNC9H3Z2xLbIy6M3h6PNPtoDkdhalPJw5Szsz5H4Sa7USbVyBv0CdUY9QeTUJQ93EvOVptwfmmDVuFUpL8mD7uZ6lmnb/MXYLqyN4WTUSinHl5TlaReb5AMurQv+7ZBGQpusizeeyrWjmpWuvZHD6QdNwGpbx+1USmwcJu2Frj0Fshvw+i27m977/qUHeydLXevvVo+xQP96qt+ONek272tBX5vFrgQgM4YhCoOXGcAYgdAxzYBo4OqF7kAM9AaABqQAYi0IIMdSMfBOI9m5QGI6QCqh5Z8wIjzN8cTzGj9etfYZ8M9MnzHCOHj4E2eoQQOrgJlAa7JY6krT+Cmd7zeXT2zIu96tEpjOWwCUsOLVfvUz/b4IlkftVOHHzJ5IjjlTtenGgGS8LSOXmq9wQJrtye8eGae3vbrV7v4yTVmMXEBmslLXdXHJcldOObF86cBZvJTt3iZ4y3nhiCmUIcmPenGRlt/vlS1CTbcd3EQFyWx3FlLjgB9gmgUiM6CmZ4P7KadaPdM7q6BWXO1izYouOcccqxZ5vl3H84hltTpBncSgmK9FPJNHSmQN8NlrFOYJE05RBT5uekhL084rKiQJNswpamVRYK+7isvf7aLfG+QpDGO3b4ZQvnIrsI8Sp3JwePww36rMAzCeWy/3n56QeqfnzlXdGO9pY+GfG2wHWqrc6XkWxp3TBttacb8LsWK7s3soW/rr4pCvK7R/kYpWWnPlDrplB295LDaKe/oCCEE3gzNMIyec2wKw/B32rvgaiq81RbLcw64VtZJOSrk/+CxIXvStc/1yJ7D5C6REy1VOqrlK7XnzSA5HM9vt02b/Gbedru1wGWzQLq23ZonPSfHjnPp8ZdNzX8WfU6xyasTxj+cTV7l27S1wLdhgQsB6DzOBpQ5EApA/Ph43QHp+MT5hKdXypfHOnPEEaAtMb8BmeBXOv58ocz6mc3AwZMfh8Q0Azate8WV6OArOE/YBGCxA5/gDQDjzBuAGj2tfvRgC1wFq87KoWdwgmrLBDzOogGT2DmzVghS9USah2Vs38mr8jLWOkABUOAPVwFjT5H6pw1BCwI2wiiI83UVuxPjnzlWijGyHLCM+e3lnXc/ZOnt97KCYFZWpK7AXhCmp10v8aPlPlOmMZsJ3uzzEQeOBfLzYFtpGuy0VetN20U3XzSxjN8SQbu2dVGYwyuEbeiNfvmcpayV83R5997d2lAww/nIDxAVA57hIZ9+KGI/ybt8eAsi/cmKPS0Y5bPN/pQFTEksHyCmyfymAjVvDuoJLbCK4iuS9iMPJ7/2N9ptA83tP1vqm2O++ylvTdtgCuga8zobD9+nGEw7qEFHGq3MkSys05cn5d5m2nY7Svja52wD/ec1K08K7vepOGP/K9u61pnc1ZHDJG3Mzsia+ymqAt3l2zItOdlkHuPJUip4cFWsWK9pa4/aJuzCLDcqaUvzYjKESFf7rWUlDAXulOTm11gQp3a0P+ZmVdIoH6m5nq2jNg03kqenpg33vM+mjGrQqZFQtzoMrYbC3Shj8vBGaL5EqF6TPpejepIR3kOQons8eY0q283WApfdAlxfAujXR/zuvp59/bIr/U3rx7oTLKDy5fODOEN2WGtg/VTrm5a95f99tsDFADSjkF5fwybOuZgFIs8AEibBoABW0Bgw5QCLB3cfsFnAK+xiIPPFO5JxpIIOwbEhEg6OCTlg+elrxDVfZblqwyCkOWeZ5ytMW5N6gENBuYBKTy5XUEIZHNAdgJ2Z4vSM1ecS6nEcGsMqTC/gbVLm61fPIjMvgu017jp6ooeDtasQBuBDb7sMQJvgQpBkPHZeTkQfmg7gR0c+QMvkq8shqzW++/4Plg8++hEA+oMcN/QBuIMc5ekVvv/FZ8tnn/1ycYEUGhv5eeGQfTSDpi9l6t0XcKuf7Y2+8BAyqMuOrjlSpvaLl9WXLDtvtC/hPX78hPhr2v4RdiF+LMCH32QXbQGxRyfzwl9PfvblaHlgCXke+uXW//6t8gJfJH/zxz5HqcZXZDacZg2iy9JC6ypisvDY+uE59ku3znP2FG1jEhvW+649FEptbPnCG4gnT+k/hgERekEbFVLug5ftsQpf2uwEwBdes80psm/PsIV6tzM7CmXyM1TJMJdeBzIzm06irBiC9sW+yB/qpQAZwbXcrHiDol69MRk2NgcG82YuvKhfAGr/t449kG+BamS5Cx+VsA3mK2RWlkg6ZUd4b5Bj85CmZsitkj4DN6uUpuWy1toOZA2H4sBjPmkLlXP+zItsS0cax8nfoFPp2Qflv5INjfuVT35bN2TJE1m0M78dybVt9mc/U76abdPWApfYAnZR+isX9HLGEgtnPNHkLrZ53+Pu66+Zzovj1/5ODntc4tO4Ve0PxwIXAtCawes2XiQuZD3FPl535g0Xm9jbNzYZT+mhXmMHK8Xh1QWsHDPoxSss4GYUM45YELp3ANBgcBOQxOvLIN7QCQEelwr1BOfOslHvox7Wep0dFON1ZmtMcgZu9tWPahlAlXl+RhgD/AUIDroOotND7iDrAC8AjVd0gjD0dpDOY391EspSJmjVw4uE6K+cgDHaYeiJnwOA/bVrN1kt6e5y770Pl7t338ULfSuDuKDcObNdgOYF82cbm/w54PnxWN68oEDQhpK42QIgAOYBSQEA619ObX3OgieFTcIXrS1YYGtb48XuIy495tr8yZMnBdLElDut3/H5MStDPl+ePiN0xFlStA91Bes5L8gosCrv6KMB/c92wpfay6wUurG3THWTn0zyeoMSe2P7htiMslFh2kFvuywmG/M9uW4nMLNfaNcJoNX9KnNU32I+8mvXr+Wmz6cQjx7h43/wIEt7T56yk7vbVdvMISNF7M8muS0decggEpw6fRKTEB7Delb1+gJta8PLPikvmNibTOaVeQ7N4SMBtuQc0P2zb2kAOGXKN3ulXBhEM7K6tZ505WVozOBpsSll3c238nLi3DY/9Q234tAs9TFBEVq30ngO2g8o5Di0Q3+PUp/jtJ8KAfNRMOxSR5pULAv4JmfoVLrmRWoySmJfHwrLgMxe4/YZeHBcOrfy9Fpv3swv9+331gKX1wJcYsvLJzhJXrLDr84fQppXba/037JFXrw48M6fUo8lAvLb8Tsx+i3lbsm/9xa4EICOVwcPr/Ml++i6HlcBckGyg9RrvLkuQCKIEaSuvD4Az2M+DrgBrIBQwa+g2UFVMHz9+g1ejtODXX7Ob7bLgGe5L+Q5dZ30jOahiReamGnrHgOQvJLcByvnxT18sQycejr1xO7EO66O6rTPXM8Cf2fzyMuF1E2oB+2CILNXqIc3/PLwU284nsyj5wFrt2/dha83C3odD7K0+S1A8x2WO79z7x3CNe7F6+xLf17fx+hvKMWTJw+XL+9/vnz54HPA7MMs6iJ/4cErQji0z6HhHyPp0RR0VXftgY4w9CYlHj/ngeM/L0EKeNVbfWm3NnJfm9H0zLP9+RdfrOz8imkDf/HLXy7/8A8/R5fHuRkQHHpz4+whnsd9zyNb7eGx+dpZoWQlX1W1caYJNJM0NtnPl0ZoEepXR73l9aQ7OJDnn4r6bxsC0Nr29B3y7Ie5EeGGoDcz0EJX+6AjHeCdd99dfvjDHy4ffvhhQPQRTx++uH9/+eKL+3lKMXVTXv/tO54BdWgS57loy6Qd2dnYDJeat47JNqiXN1MaWl38zBk6lBPuMPPPlHZmTxnmVXJKc1x7hF8rTJLWksaPNkmOX+Y1u1neCK0KsyNtbOURhWVDpehlqfqw9d92QABVdZSMfakksGsJTE22wU9uOsOmbR6F2axUgS684Z+krO7JqFmrjNWOEldlkuXGMjnKVl8/3kSTibBd9U+e9drX1sepuP3aWuByWsAuS5/mJ3x5fJ8ntM/bly+nsmutcqX5NZJX87ikk8PPJOM1Yz4FVyjodTypv37rtasj/uSIp7Nf4DQzrEUBbLZpa4Fv2gIXA9D0UoGqYEQwa78VrOj9dZTKAMqo5eMVL4o9wKUzQhQg88gcsMvlEvCTPs/o6zLgBXkFG3q0BWdeXPpO5bnHwatXxNJykRhy4ecMUJcBER5nXozIks/R6VHyfZxtuIShEEHBzB5xcvIyAHAPkH8cLzZebers4jG3McYv69UVBAq6XZ5cfW/evhUgJ1gVeB8eXgcMEwaALQSW12/eWt4lxvmDj37ItqEaetG1je03HXMD8Agv8+ef/2r57NOPlyO8z1kgBfl6yWectiBMmepXQAJ0IdzFfYGzdNERm7xmNgkRTMpADP5hiHykFcy9ygqRR8tLPN4ntMlFYD777LPlBp5ZQeczlikXVAqeA6qQIzyqPtiEI6fAQ0ja4Vf1Wh/PguRYf4N2lv36dhPY0AzOreBoxZWdPcJmPNfXWNTGE6T+3rT5WzlnQgn4tu8F0FeK5U/xtH9M+zwHN2/erPf5/gNufuhvzvnNOU6fbZWhADU1n/pzrmcMtHaJgnZKkvy1h0fOnrLP7Ckux37ii7XQanf7vNfFITc/3lzFZtaVFecpNgq78inLYTtp6AfeQCirZAJOUSFHI1N7IYh8tmTX7qFmf0JViSt3npbe/CSbalbsvt8Cz8qZ/Mi0rbOyh3wik20SZbmpob2xHZneXASDo7O2UE5ZZC/VcnOKvNyYpm3yVp/xieq2byUmbW97q/S6bPQdsr1OvbHJ412qur+yJ/ZSHz3R27S1wHfBAscnu8svPz7E8VInQa/Ar9c8V0cvkRDO3W+l1yPkBdc1w/JyyM9QXj1SMEqoxwsQ8C8eL8s1hsYPrp8v1w68XlWz2nn9zuva3M3kL+DT453lEdGYx1/4rhAZ/l606ibpdn9rgd+7BS4EoNOrHRDHy3J2WgIZAlRvACIdPB2cE+rA/hkvGwkSAy4SKyxwqPdST7J9vuDavHoOuXQCXvU2Gm8totHLGOIx8O1nbmhCEpwLOgC5dvI6sp7gVzkO+h1s9UrrFZefgyc0zgNM0gsunR43+Qac6jFGuVe7gnvBLVPW6ZGlbXp9b9HWZbkZlXxB8O699/KC4L13PmAZ8zvw4sfDWGzqGq4hiH2Cp1mv84MHnxEy8Zi45hfIsI3O2FG9cvMg8ED3LCIDowz+AL68GIne0TUrB9I+dCQrbbSd6mn7dtBVwO4NQDz3LFt+hDzPizTGQv/qk0+Xx4BM484ffvllQnDeAEk2Ij93fSyuQQqazLcE4exqJ1PL/C3zl5BM80tqcejCMkdf9SVxmclLW9P68B25lQGTzrIg0G1fOh9PDSZ/wZEhRSePHi+fHnwCAL+WlyefscqlU/95gqYXfao567Y9Mzek1SpKrHWcTQsluuaGCUptrP7eFNnPpJN34ujpf14j02a1gjAYgmRqVTj235rDcJqmIDRqWJHjuR8OolH+TZvnsbKktLAEbesgtsJIPYflGiBr/opsSHNwG38WTrulX3r3Mdpn203hOcUnhzy28o8MqvhisdH+tcGGyMjWXpU9txG6UaYO4m9NMI1ilfC30P90y/4m2IKp91Bpu9la4PJZwD5M3/VSevWTc8aOZXnw4nz5wFdy7Otfkcx+zTDw2ePz5QUhH3v8Fh4946ZeH8hwALxdTRnXbvMbBpA9AqTnZcVecm+Tfv0xda5c5bf1+i6rFaM3enz4/rK8e8eVhQlDeXW+XEX3Z7ThJ7TH4eo2vhHVOqPslJhm33X68Q/Plz/9oU87EfdWO7XFc3xkz55C/9SnfhD8Lrp+fUu2pVsLfKUFLgag6an+Ceoyg0E6Lh2dGShu3LgZ0Ohy1E5HdwbNMXeaxxwL2jJXMkBSgKUn2unqCrYMBREIca0w6rkoywnebUHzPuBUD98pYFBaB2m9pl5T6hFPH7zNF4T2cbmeZBWDIhuBR3U2Ptl5mf1Ytofee6ymlwOYqlPqMJjr0bx2/Ra8CLJiZPZFxAPqK/fmzdvE2N4E/C+A5/eX997/aLlK+EnisdHF9qq/wPnl0bN4ng3XMN5ZUG3ssYu0eHOhntpSef44qLLg0cfQ2tm2ecNy6kuXCLzKQjK2VRq97t6cyBPCxBJ7Q3HFuTGR/Xx4uZVTWTDHGj49+PjjX6atytADqBx5lMInC51twiz3NXq8eOEQspDHxOhlm3MefDJgZr9COA8FMYLiJs8PQJOPUiOfrcDLGwvb1hsob0Yam62M6R11XxpvxK5cwXBJBVu56eHX23Z9ire9gLtlkimvoSh4s5HvR/nZUqadPY453FrDu5XZJnerNDvapeeMHpXjhHNAo67aXb6u/L2PK+accydj+5EsKPJ7yLftOcyxdKEZtDmWr88avA7GNRE9oaye8mtShtTyLM3IH8dTvvxM1UVaz5F1bWY1mEymvaJLXMxQyJx+5KI9VrPd3gyWxygPL8ts6yhhJ3/0Zc+RfcHylg750vAxu2UyUqd1mvmehzeS9rH9ZAoemFAn184O1/NvAhNv1N8ebC3wz2wB+/0Os1vtP3u1fPKrs+Unnzkl6vly59CeTdq8FMgw78nR+fJ//b/L8vGvGMP4/fni493l6UN/T+dv72iU1yEV/En64C/4jbq9s3z6k73lJe+y5zczAgbtP7aRF9fftfd3lmsf7S6f/IQx7fXZ8t/86+Plz/6FIYmAf/i+g8f5jPCLn/6fy/LLL/eXJ6dXlscvd5eHn+wuRw+ZdOC9veV/+Z+fAbyPWSgFfdXBNrL1sve3+Tk3B8+/ZJw3DhoA/duo+Y81Y1u+tcDXWeBCANoBrt7kPqoWWMUDDMAVfOr10/N29epBALNzGzs7gaEUzrRh+IP0AcEMbuYLNvSOvsZLar6LnnhFCIKenj1OCIQDuheJYM+ZN/QkO9VbVgrkohIIHxjTPB6d37hxJzZQH4GWi5w4S0NBEcCTX4wr4xbe8I9cmPxIvQKoySMvJJJpm1wkQ6/iK0NWmFrvzt13lg9/8EfLbeKcfdR0eO06Hs4bAXPyF7QJeJ88/pJQjV8Cnr/IvM62x5cG5a230qRcp627wkuOAonWFSQCDAHsGsIbD9tgmw0VUHd1FDQI6j0nlksrKBBcew4McRDEx07xyBt+wq8Y9MawT9DhD9Lct8w2BLwyi4TbeIIFVONHTFrPhbrHm6pkeOwxsb2poRQUSofNDUKQrl52mcx6lvNjCo28A6SgE3ytQDXAyuSUg1LAEntgH/+spg7eSKDfCnyRucOPqpJmu9Q3ld2aRn9KeQopNptP2rc64AdbQSMFL1IWMIat2y/bBttq0mZyKogu0PU8yNe8LrTjzcmmSkqGX4CkuiDExibbtrhDMo+yeY7Mbll2kt9KktbutrVVrbtOaacMoINjCtRp1lfGTBFL461jdsuQzIGfFefslKZ1K3vNy37QviR3+cozMsnwpmaolL7TspUWcycVp+zqW90oWNGs9aJ/mDubo87eIJthY7Zpa4FLboFzHFG7h+fLz/7myvJX/35ZfngbJ84PuGFF780uzHC0PMWT+zOA9l/9m53lP//HK8shff0lYPMY0NppJd9sbK4+6t34a65NvMHPPufmFw/vxlX9ZoWvOfJS3ruJXrdZ9OohDhV+3x/83fnyNx8ZSgfvx4RDsoiX+b/62e7yBM/4a260Txh7T5llhBEcVL27PP4fXzNFneNvQ0AUadtsq+/MfHn/dOFhLmMBuKBD39dotS3aWuD3Z4ELAeiMTxlEuUgAv64gKDAV0L0gXECgWY+moA6PKccOVIK0Oc1dPK2AoAKMgo0OhsROA7d2uKAE5vsCV8CL4DCzcXD1CCqvMjWcgKSgsQNwBtoBipTl2OjX5BtZAGDhnF7iqwBj9RdcPicGeG8Ayy6w0WnxBHLWv3FjPzNq6I2+yUuB9+69mzjn63jcFRUAJyDGLq5Md0Ss8RFe54dffs70dL9aHj74IiBB77fytFU8zvnl48cEIDYfd5sVwIr22k5AIDALhvMHZOW99YcEwA8QnvHT8o8uUGlreWknb3hsvykvBdLuPXhXpsCjP0y21eRWsJuQg9gwmcOWtXcArvoIIvllO3cBDX/h0kHIEwjBWKm7w472gyT497xQT0RK9gRK1WEAHnlZRiXbkwOP/FdpcwYvj3zZtP0Avsh03+2vJ28QhFTtlxCVDzm2S5nR1XYN3aYcaUMQppS75UtZE/xq1z45CFF0MO/8bMyHDf3BwXy5sIBxsKmT2zaVLawjIcfhRlkS2XN3vTP0WBeU9iu+13YZ/FYSPDdWmPlrW8cqK95lOu0idUwz9A2HAdwHpRT51MS13ez3k2byU7zx5z2H4walpijpG9+zIFoMPWqfdSvGHv1NGTYyXvZZ9Q1+24OtBS6RBeyj/JCe41e6/5Od5W/+3bJ89C4Omj8/XVhY1gc/qyTp/Uc7y3/622X56X/ACwztlVs8ZcMTzNA3L9IV/WoHHg8/7rV/5tNbL1KZ/S7Jn1afCPLbu8v19uTnu8vHVw1LxPnGXNZ7+z5x9SmoY1x/pxXDrzHrNLBF/1/93dny138NkP7whPjo8SuoPly3TwHdf/uXy/KL/8J7TIZvAKh/Z10VvE1bC/wWFrgQgHbsEdzq7aW7xysq6HjpfNDPniTE4YBgJ4GkA5WeYUMwjpkezbmb9/f1XKMtdQR2XqeCtauuzgeojfcX0CcwF0DrrZ0LixiDLHgW7MajDBB1ieuAxNeAUlYtDIDiwnWKuMY755oLGLTsJcuCnwHeDwDRuwBOdXjy5DEA+ToXtVPyMVsHA7/g0TmABRoC0/c+YC7nD/+YmTXei56Cb2GONP4InJ4KZE/xNjPLw+fM5/zoATbBq244i+CJJgt4c1MxwKxtM0Qh7Q6gbUjCFeRb5mwc2lB9TFmw4/Q14Rn1DOutc65r48ATjsAzMu3pT9H08uVFuwnEKZlALy9hotcE0ZykyEo5MrWdnlTLlbvDD16Ah20WlCIIKEJZTqacIzdHlFM75WQmyde2q5t8BKbyF4Cb+oIXPH3GDk0awkZPss/drV/e5FE/upBRIFyATXb4NU/t0E9dowkyVxoJoP1Bty3k0sYC3oZzqE9uAAT3SZUnv2iHnLSfurlZUwa8nG/blJUXofVYGbZ7hjP49MV9bagn2icC5WsbzeeI8xpwZ4Nyjhg92U+bI8GG1kQ5RClJ0xZ0clo960/65ntDJQ/6EjSdNrBgsrRwkklbGF7yrt1rB/X0BuwN4VbhY5l1cwMy9Ak7ck3hwNfUMXnjuLZXt1KiXnStJ18TcI0l03M5JUk7+ZW+UmTS680qMu1Zk5gPKXZQX0kjM9nbr60FLq8FvFb4+Xz16HT5+X/cXf63V1eWj/6EMI67gNFe0unL9vlHX+wsH/9/u8uDn+EsulnHSd6Xhu5ru7ugFwKv8Hmt/E4G8Tec3yB/FnsNMu6he2TjL3PIYJhdeY4TKjJksnzDsnN9WX7y14SRoPoHPzgDGww+qkXdF892l5/+1ZXl0/+igwjG/iyQv01bC3wbFrgggMY7CHj0tteHoC4W8Yo4JOOeXxGCsXflNoMdFzqzdAgQrvKabR7zAxQENjvOWexVwIIfAW9cAIYoBNxwxTm+6531ipCf14XgStDubBYeG5bx+iUxvQmp6LUzAYcvkwlYHCT1YAkEBbvWU47e2iNiwtRBPfn5SfjFIaspqp/T8QlgrwKoncP5JmEafUHwfWatuAWo94bAXyz+9Wbx9+IlcznzguBTPoZt+DFUo4/t/fHgx4RfDz3mAghvGCaAk5e6KLvTpQk8YZ7fMgEq9fnltN4mADeMJeEY0NpGwccRi4QIvI259QVFVzZs/K2/MPn5yreAxVjdXYEpe/4qFXTyg6Tt/EMfspPiJc6vofkFrdZUJxlo67ZHVtXTAnWSVypVfOilsc2ytw+Zpic7AI0C+8aUwW54hdAvgaacEVDQaZ4F5SWotT/QZcDe2GYU5UZGnaOvkgutrBpQpcJJ0bq6jhz74GA/SCZt2+HR9PKPKmy4VmJrS41fpyG2G/2NQVcV+e6zKFFALPRps3Q2CH2s2f6mln4c3tyaQp1DeUnvR/v62XxcG1kh8omQyXMW7tDVlsnmK2TyZiefFFS2/XEzKdJzYYpWrRweeWo085URKr/cUz/V9TfBrV+zrFtlD670cWwpzUhDTPSb2ZEfbTy3PRqKlD951itfWXswOW63WwtccgvYXcGLLx+fLZ/8PzvLw3/ok6y3teYh5/ICmmOnvPMVm430td29WHuD+nfcfYuPIRZfK/ctMY43TwhBOX62LJ8Q7uEUsZsJ/9ryjBuJk+e1x2/FfJPRdn9rgd/BAhcC0MoTiBSkMpjzzGUOYI6ABTUFuQK8xKYCEjJrx7jtLDiqd9r9hGIwmDFGAnoEdq7wp+f5VbzN8cByDUnni3GCQj27gi7BqONgBmCAyYxXTYwzwFLlJnBy4MziKcRke+dq+IPgMzHVeFj1NN++fYcXB28udwjVuPvOu8yocTcvEh6yMqKyTBPIunS54RoP7n+G1/mT5cmjLwP61VPPdgA7Oqm/wBDtMngLGgScgsiCakNWzMMA0M8UEAsvQQsWDADT7t6sSBp6MIVtEnzobdYjLXgXPOsBF6yZhB79GSqQCXaCyTx36hOwhE6TruDU+gVlBYgIDjcAGJVdrdETUFCiFIGZNAXJNJUkoKEE+px76NXC+tpmhknIJ/1npYEwaPKWT/VQrwBu6gZrhvcAn4NH9FA4DVUf5U/Z8lS+7YyTeZRbpwkK+ux6CjtKYAUn2bFTG6bNyAujfoVFeMsYWvvXNLKe4alDYtSpGxtzbn03wHNgsl/EFgqLLHRl12wOsx1CETFspFqjXKLBglxl+LEulT2WNvvUdis9eWUsjf00GX6NfLbc/PpiqynV2VZO+4jtNXVTHdIWRbRo9d36s8BtdVEf/0ztf9Xf8jcAdMqplrbZJhRW5+htbXkUpHvU/SnPI6+pbdpa4LtlAa9xQfERc0IfEQN87vz/m8ku7iWqF/i72sHR+4QZNp6ySMpThxefQm4mf4snqP6utnGzPdv975QFLgSgBQANmXjNhUqc8r6PvwWh1xICoafYgW8mgYiPrY9YeESPcgdugQUeZcI0wo/yxO8GoOoFxqMNcBRc7h8AfgA4Z4DG4+PyFXTpVRb4GtaRsA+AZWKGGVADnskXqAp282IjOgmkDggBMf40vy4CAmj21YNb+2vMovHDH/44S2/fvHWPR0eCZs0lGOiVqv6274jFUFw58PPPPubN6F9kejrDOfRQ63l3wI8UgRhT+QV8AYhOeVlCmZbPtuupO4tXuuAkMgMYCrSVr74CMMHNaqYH2hYPHu0yCfAFuS9ePKXdTuMHFBEcbvzIFGiUXyrBO3TQKkd+3nAURAmYSqUKgqHGZSvLEBbkUm47/FCZ80qu5yuNl2XhkDL0eIZ1sqElTEbPojcFPbOww7Z6kP1LHerJWz2SaxkHAVOgytLZR6DzRsMy22wJdQLS1Yl29aYFmqmvBOqSr9pkgjbEpm2SyNOnEhoyIRap0BsExCS5yY2R+nK+7feSaf9xdjyivp5ovfzazacF8Bnts9/kXFAmYE4KY/fICEPKpg1oV/TkKwMrVGmz7Yd2tqVbWWiXMh5qyzgg1G37eG1tu9QlYsNr8h75g94bVmXKVd6RK7NhGM9PeFGWfUuokHM0+EYMX+Z5njw2ee1WJw6o4w1NiyrHfdsRGsv9pCdZPphQbrJsnp/0T2yuRuUQku3X1gLfDQvYbe3e3pt/1Wj+h9Ctbd9s49tnZbbP7TZtLfAtW+CrLrl/sgoOPnt4y4xRDqBiMBfMGkN8eGjcE49eeMYiiBUAH7lICt5ep885YO5kYYWDm2DvkLhn6V8THy0+kd4p77xyBD56sBOHTC1fHjzHIy3YMD7Z6eQEJ4JzAb11Axap7TB6fPwyvNnNgKze2WEghXkAkXq43LPzNt9gWrr33jfO+YfkOR1dQ04E54JGB19DMYw3fvH8yfLFZ5/wFvCnxH0/YmW/J+hgHPIc4Hvt76MnjRjgBmCIaNshyA5Ipi0CM73TtVtnALlyxVk6DMsQ9GmHw4B7Y8FfPH8aIGj9fXT0N8Swi1d4m51b+tlT5nXG5gE2KdWc6uWvkdQFE3MrsNDWTh2YYsiU6SF7Uhd8sKe91CmADN2HM7L8ZU8K+OWZXc4zx2ZTjaS3XaYCGfmQGbDMptkSDbnWq8bmKTOJKqiWPuCx5zn/8ilF5E0mEQFzb1rOuFlKHY5tcwA/1DOMYXCjD42QDxkjKx5O2jo1ah+TR4qjEGThaXuwZnQSCNpwz2tZFSDqwe1H3dWjYT08mM0585x6bcTDrsIyXyXqkGGZnanAuHyThyDbRmHorDb7UPPNGTyy6z45aUDhpMWykLcvh9oGbaQtQ5sq8+zafNoTuS33u6SjwjojfOXjua8+MmN/HHtjcOZNIsfWru5TH2ntO7VruPOV80BeTpH1UzNKSl5eCk3qeVN2+h+03Y7i7WZrge+KBXo5fFe0/e31/ENv329vkW2NS2KBCwFoB7x4iQAaZ4BLAawDfoEIIJPBSbB6iKfXESyhDABQY4xdkc0VCvUE6nEWeMfLzFu50s5B1fGuPPVkWuY0ddAiz6HQuOuEYjBqGubhICigNP6XgxwLkAxp0Lvr/NTq5GwhAhr39fbdvHU7U9LdvWuoRkM2XIZbRJFQEESrkwDdsJFnz54GpD4HNAueHxOyoTfRFQnVXx0Ew+pYAKQ3Tc+oq/8B8tHP2GrbYvu9WUCd0BSSCJgFWMrV0gVY8o1Xm2MXZdnF7SCdIHu2U+D8yBCSAZ4FGgUHAmRBBzwRpm7BxWIshGjdCSa1e+tEcmmlTyof23XKY0Nrtl7rWLd614McPugYGbaFctsaptKmvn1BDXrutbV/EgUQypBjeTW39VsWqtJT7k2A7CVMteGSFQg2lUNkhAAzoJ92qtzWlVZdKRyMzGB/JupWzlo3NfHfHEF0DmwDGe2/KUk7en4Nl9FO0MLPfW/U1CPMiYnm+YzoVLYyzXd3B/hDv4BzS0dx9M6xGX5aW/vFhpFlfYo2E6S1+2Bk2SDKeZTPrCNtWK9pU5SvFAzOLV/L6rF1G5vNOWVfM+fssn/mjZdkGC46U1L5Fd+y2iTfqsUn+d7N+aSH+h7nnFIYPp7nqVWIx0Elz4PtdmuBrQW2FthaYGuBr7XAhQB0Bns8ng5geoyMudUrZ3Js8pG8j+YPD/cDjl022jf+9Uwe4wkUKLiYxB4xTJ2RwLjQrvInsHSgExwLDlzsZAJpmet482uCIPkKwK+7gAmA9AUvLopArKOXGqhH+UnAu0PwGZ7uXVcwBJA6Bd1HP/jx8g7LbhvzLKi3PUdMaRcvKvsOzi4d7Qt5gtNPP/kF8c6fAmJdGKZLgM/5lvVO0zDkCwQYyIMcBN+N5T7CQ+yc1YJZp9AzqbveYgVptwDrA15B1rbw8BG2c2hLd3DE0uVsgYq0VdBXW1pmeIwzoASEScEr13kZD06CNNtG47DMGkxjdSjNRg4f1d2xXgAylNhbYJNmBGRa2wp+pSa78nDfNLfrXXXUlisQUyHhbVsC7EddAZy0IiB1EBDXMzpEwivYRxLKA6KVDp3x48Yaa4u0EhppA0hVmP8mpSDHviSo8qMcapEZeutEPi8f2i+lnW30eBhkxTNTiW80XbmrQnfRVdvUnuqOrsq0rb5YCMtZRZu8PufJCW1lQlSe0DYMCfJVmmEM6q8uyrN+b2bG+RrUbb8H2DN6WGUyi9RJCUXTvGGVf26UR4G8Uka1NQ9kk6++zVsRD24tz0FuQirT8xz7kzd5lU/PQRplJXS1XJXjjY7u0pR9zssQKXtXM1x5s9NfRt8b7Z/2kE36mud9MivL7ffWAlsLbC2wtcDWAr/RAhcC0IK8mzduLK+ZPuc5sz48ZWU9QbSDU0Aoq/oJZp2aLavwgRAcowSSZ8xR4+BluINeqENmSXc6NcGn4E8gx1AZ4CiwExTMR9z7rr7nS4kMvg6qM676KZ5XPbsu1Syo1VOswMSTCsSAIS7fXK/3wXLnzq3oJlj0pb+nTGGn7oIvgfcBU8Fl1gz0ML7akI3M7QyI9oVBPcDqFS849K6QV8+zL4D5KFkgCCgFLHsjoR4FO7utiyzt0sGc+Gvbj+zj0X6aGHClzbyR0Mtsm/R2K+caYS/XCTdxFoenTx4m3tkQkoRtcLNg2wU6+XMf2+zuGoKiLYZnXU09EXy0+G7oBKigOQPrrM/HOm7lIfDLPscQ8BG+UM6fvGyj7ZBGEmpB0xQQBK00gq3w5tyUt+CrnnexUHSHQV5O5Ng8pUUecvhvJpvwgUJ75/E/Wwu1WfrP1FWsSYkpTykGRwGrNdR1lqet9A1zA/Jme2wTH/OcelBwWV3bHu3gTZB2ij7WU5dw4stt8rrvDc4ui/KcYgdv8tRf/up3zvn2Jsy+45SNvi9Q/Ium8pBWm6OnwDHTQNnmadthpGwQ1y0tnO5ZNNMiyosNLRrEbwLt0vVphtXVkfbalnDwfPixlTNRMnjZP7pLvRRr5WkVM+xb7WfSldfoF8iJlLCz51ZOb5ysO3Uuz4J48iyIsXoObaPJdpravqmX1KmRsu3X1gJbC2wtsLXA1gJfZ4ELAWjBieD46lVnsjhdnmfg1qMjUHOYw2vGYLWKS0aTeEMzgDXMwcFOULiHN9hhLYAjAysHc0CWF49kBcpn58xbAzARvOhpFEha33pCOMHqyUnDGgROeogdMA2TEGy84IU/Y7YF63rG9wkBefmS+Z+fdro5Ae0J/PRkHgDUfYExLSEeNV7ytG0Ap+jRkBEH/LSb+TNth7J5PThAILpRzyQI4vWwgAlp5DlBYxZwWYh9Tiw3nv0BRgRigjRBlPZ6AYBXf+fL1pTSu3DNk8eNwdbTP0GQcKWA0puWAjxtlzAHdSQFHLINhOBLACPfnCb2pZVfgIeFsbQAqoB56omgMpHpKkUDmMnXutnNd/izp/yEynB+6EKxd84x+pEVOamrHjJIct8zXj3URfa+2Od5YCfgOXpbAGBMDRlIJ+PBhyPVS51VljvUk295y8OKQ47ltsk/1N+NXJk3P0J6lO/ZduuHX3LVadh/VqW84QvS+WTCFw09TxD4jw47GCkeYXmNeO4oYyOg8Xy5emX6XfhSR91N49hz1TaP7FHcoxLOKqu88Lf9k5gteWgRkub3nER5hLVklpdvymzcRtIm66S+48htHj94bLt6GJnsR6Z5/FU+e4OXx2EjMz/kv33eh5TtZmuBrQW2FthaYGuB38oCFwLQjo6GFgg6nd3Cl+D02p6xFLWD+FVnPWcIe/jg84RR5IW5AMmCTkMrBNeu+PeShVXcd/C7Q+zxzu4Bxy4Dfi2etiMAouV6rAUVDo7GEPviX7x9jI++vGgSVBeMFsxLGxAPEHFI9VH7GbxeHL0EcD9n9cEXAXGd/cMXBG2DHm/BiN6rAhlvCg4OnLmDhWOId1aPpoI1XzgUzAqKUQodXA1QsINnkbZoJz3bAVDk6UFTd2nUqwBXbzMhJwFNRILkRTJOE7SHgG9tlhAR6F8QrvEEz/Nz4rEFzy4YM28mAkqVwafylFNwlfMG/wANgGWXLy/YMU9v+/Se2uY8TSBfT31fpAtyyU2Gek9wcuZ83txwnOC9brv0zGJEyCVbJXjNWRVy8yAC9ZzE5nqhW8UdbTdT9lIoXBpASb0kMJ+P7QU5k1Edy0maepFTD/CsrJKkdurlPNBeCyxPSDZH6qqQQRla9wXqr5kNZpc48NyUCGz504azLWl69JqalE9CTyYwlIgkD2/u1MtwodoW25DsU+HLy5deEw0/QpZ+7SEvhGmppqhO3nDJUBG1pZYYAlOhrXLXcw2r8Js08sknfIfd5ACd505zp0VkNK/tW0kY8lf3K1JTybb4mbxX/Ug55OtdV031KI1ylG+9XptKUnxsqS6SkNpmS/tkwILVTZ7tKRl0oc65UmYEjrLtZmuBrQW2FthaYGuBr7PAhQC0ANL5kwW6GY0YmeJ5ZaBz1gyBbB+TC5jx9jKDhAA4gycA5SXe4AAZh7p4kwUrAFDA7S5v4Mv3BeDFcI7Xr10WuyBaL7aeb2fl8OVAZctnAmtBqoOhQFA9BEABNNAJ7BwrX+qZfuQUb7z4h7ybN1gYxdX74KPXWb6+lGi5eQJKp+fz5cfEVO/Yvj6mN2TCmwDBboA7g7m6OoTvHwCMAZTOjmGM9GuE67nXNvI9E8Cy1WusXEGUcdjq72qN2i9tA7B7sxAQJAKAj4Dc6fMKnAFYPpanPgIDXAX/AezK4eOUeXouA65hISgzfw0whCt6yfXguyiOLzaaQ2Iz9rCFVQrQJhxJGAHApnG5gzJgpXBFm8s9j+mJR3c/TyMoFizZrp43Mtgv2BMs8VH3aqGqKbf9KZNxSgWG7I186dQlUm2DuqC4Oc7uEBBnDYvKNbQBa9JZ12L5+Tf5mp9ybem+HNuGHeUIQuVk3Rx7kP/0Ie3vkSBPulb3fHFAsk9xBgYPaGREsq87paN1rXN+3pAOdSif3oDl3KPDCnRaXzXDhK+5766M+B8iOOetF1IyzZ9gVBtEEIXJzxY7chNQcOo2Nf3KvnTKWE33J0//2JpvP2x568Um1IlSbkLN9zSO6iokeikvWjklNc3gqYM8+aiPMtLnIY633npJEUB5bduyVJXJNm0tsLXA1gJbC2wt8E+ywMUANIP69D77kp9eVsFOACKeUocqBzJBpYOanlNBpKme664uKMg1TeBrTC8VAxqOT19kINTbJ5h19JwDvcdzmXA9nQ6nAj/HWz3BglS9wgJcl4Hep8wBM6D5GBB31hkz9GAJtrMUOEB1l4F5gsyutlYwbtiEbXFg9uUvafKSI1o5s4YrH7rkuIO8tlDXK3sO5noBHbD7st/0LhtWoA/RthUK2IaCcnZiy1e0MQASms440vhWby5cHKouGjkAAEAASURBVEUPtOcgL/0BvtTJJbDDU7nxcsJMcMC+5wTiASrU0QI+5Im/J4awDQWcaOa5SP1RnrJSWrZKZoXPILZSKkpByyizneE35IaLPARTgs/BLhu/ksFO/7O1qtnlAxiTvV9kmpcXN8mwDWdDcVqcMrIGsduNZN0IgaD/qV9yY5Pbv5QrmXym51Mu9glv9IwhT6GZELW+lUiW0UYKshtG2a/eoaF/On0e3VGm8ej3JhRqjvuUpjdE3EJyrfmyrW1N7dGGud/tKBplypoq1kbVwzyOB6i1jQGgbGPnVIIfxzSiO+7HELZoSjHPSmyT1rqFZOTbtwqg5e/H68PCDT6jQs/L4DYb2sOI6U2ZqkCJfeFMqbVWSuR4amluRFFum6VO29+QTeY2bS2wtcDWAlsLbC3wGyxwIQDtwOX0a878cHSEBxUv7AFhG3ppHQY9DtjE4/qShVMML3D88+XDAlBevAMY6n2VV2beYGA1PKKgU619pN+y60x/p3dUgOF80cZdA13D03jlWzfuhI9xz77gdx3w7AuFytTzLFD3Bb3MdgHAdgYMywKN2KrjC8I5IpUBPTcEtMTQDsND9KJnJg146512kD4EVKNQ6hwRm2y+wECvswO5A7XzVOtZPD4GwOOlFgS9Rn7r6jk8X27fuR0A8eQJ0+PxMqMv4a3CVeBj+wRf0y7a3LANwXNCRogN78toSLVRfDKTAwBcfQQPASro3JsYvX/1eBZmrMGG4Ti7zj+NnQVGAVJYid0cF7hit+HZT+OVgQBBnvQCEm6T2Cq7XlP5FYwJ7Ke8AizzDSWxbl/Ia3kATnh5TBv8w14FW+Ju69sWQC51wxdSedhv1iBN8Nk4dOmnHHUP58jojZ3vT+ZlPPK8AaqX0hs4AblAj0/uTTifOSfVJzc6G/pY1sTW9tHXd6xIauu6M+1pfcGn8ryZ3AEcn+7y5IIFVlImORXtG8tibL+rFnpTR6iQdkZMzr1nKaI95+oGeVvZ80O92HX0CyuGXlp45ykCGeZpK6unbWWUuuO2xZqDLgIVRDtrD2X2PMFBfvxNm8hq9pPIQRd/E6Tz/Fpm6rnNLrXTEHOToZyxmzZGLn3Icz5DiCRUh7MsWhT2wx7q3etCHuozmhfe26+tBbYW2Fpga4GtBb7OAhcC0DJ2cBJwubKgnt3Mycyg7kAuiNFT6iNc6RzY1vG1zhstCO5LdAeAWQE0HPk4aHdUqydVUCG4EFjAQzrIjpjxQ9DqQXmxSMseQDM8HFwZwAF+8tB7u0vw88kLdCU0QvCxd/NGwHE84+hpOEq9uQz0hlngRUfBjLpyEhwLwtQ5YIg2njCIy1cPcGJlaecZwGlFgzYHzuULLxdk0VMv0LW+gHKGiuwylZ9A3VkdnK5OeyVURJCDrh43JABgRT0BhnUDOvWOQgMchrZ21nyCpGJK9fNTcKN9drCnHvoJPKkWuwUwwasgjQokafTOW189JlCtB3YNa2QxPZihtbpqUVD26mZfoP3obNKuUd3zGyI2ZAQckbFe/rp9SPmmtkdAJghqnewgc7ZVXQooK0fb2L7UqTHSnmmrAqqhRLnGvgZDh5dysgCMwJr5y+mHqjPtYZWeow3bDtCuDA0ovW1QvHr42WEub28kOeuxl6E4nC25UWZoy17CTtIHqBuZ8M2NBCfYvmBfSfhHQOG6DbVX60Q/i4YOzm7i+QhYp14lShsCyPxD7VGSilMvmc0aEm2k6jnOr/pS1l4i74Jo2zVTqo925caFGharRr9KuRYzNbN8lE2d2fq7Yz37kO2bstZbi9VlbCeTstp+by2wtcDWAlsLbC3wj1rgQgDaIdBBKVOAMYgLBhoeUVAsCPPjYCWdL99lsKaeS3FbpvdU0Nhlnx3QoGN2DEF0vFDUO40n23AR5klm0N+5Vm+brVOegEs+z549Z07nW3ieu0CJcceCXj3cASoM43qf/Xis3juAVsHRCSEYBbX1ZgaQAJLkrSfalxzTHtopoLgCaBYIC3UCMdBTYG9b2y68uAze/KOyS4NfxxN9iJ7kQ5vVFOH96qW8exNQLzfxx/Ddz80C8vlTfrzWrtJI3TlLh6BLEGCa4GAFCpK/Biuz3K00blcfbC1ys4q2cCdeQOwHUUEoNwjazCTd9BDOvHqNBfKeOc+PTDg/8I1sDz13mc9Y2WSYqDB5eYi41MumLMyOTGtAjT6cI3TRjvLWKxzvo8JJ2h1OKXsDFHPjMetMYF3Z1it99zzETgOcek4Fp+qWtkBru/2kf6udhZFfYAaHKK1uFueGDHrlyc+0sr8gz1CTCO9WmlDBtwC3QF0P8UwC9zP6vQsSlacvrfZa8yzIMH/Ki0zbqODJwXrrfQv8M6g4518dBsHUtUqOOpZn1+9NxiN3VVciIXSvFrOD81Nn6DB4TXlhO74qZfKXd/mvaN4+hJe2SVuRkT7KQZrdTOxdruH2Vv0V3+3O1gJbC2wtsLXA1gK/wQIXAtCTpwOU4FgPqiA0YJSBPsAGAJFH0sFehmsAmAGaTh/n3M8OmNbRk3zldV/6u3X9DqBhD9DIwifwFTg/Z8nsl4aJ8Ch2B2+onl/T9RuEPjBYGu4Qzy1yfeHqCqsfGh/tTBUOnbsCZLyH1vKRt3vPKTvBE5oX/wBXB4fXAbaWqDO1+By/rndbz7QA0HzB9bHyM6MeYSvoaJsMyVDnIwE/L0NeuWJ4x/nyDN1ji2tnWV7bNguWrXcVmXquBX3xRjONneBwj3CRGZKhHr5c+ezpo8Q9C6idyq5ebkI3BGDOkBGdY5YANfcEXwIOTBRAIe9AGTK86RBg+tEu2afcm5ieO0MOAG58JZxFDzkfz7ceZMGj+3qiTbZrAqB4R7GXx+FLeUHNANSRm0ob9WiH2Jt22GfiSVR3+HgOJwCKDPIwEKXKLKSSXlUSKiI1x/YtU3lWx/BT0CoV3EkrP6ijc7clytMFd1uM7Y3n18vaDAF2nmQEuHFDxlOE2oW2cA5yk8g28cycvwDvc2m0vzeh/z97d9YdyZFkCRo7YmEwyayqh/7/v6zPmZ7prMokGTuAABBzvyuqiMjqKpKn8WqGcHczXWRT9ZCr4mJqAcOdB5ErZcN729WcD/inqLb5xNXRBV7mxt0tWfzakfsN9E9XvVmtUura63yGBjr7IMu2OZkLc1NtpkSqmUujZvt1zFPX8X6SBLVp1PnE9nvcFj88cNVvbE2mGYfOkVSWZmzYxdZa8LRT3vSdOVEibZOz0XfXmegtmzmkU2l2LhI/5bWPBdhebGxrtuvxdljgsMBhgcMChwX+0ALPAtCcLTAJVNnz2M/aAziT7/zptuX2Kn7x8kUcu+25vnb3i2519gRstkMN+AnWAzA+5ymCA/REo9M3Lztl3N7cpr+Hl7g5z64enjAYB885LkAd19wdLy7SvtFpgCZyXr+4ylMK8+CUAFdRaYCwQCAOVlTwrCkK61HdItYBRHb6uI78nPtNwPYD8J5zTpgO0KW0jP0gFfvzsoE87Vcv89CU0AB1pIYAq2dnw3cADjgwhzQFjzePJZKW8vnkMWD/JED+PA+ikevt4TQ3t59O3r9/2x03AJ4CsNiKDl6A8qQ9oAktQQ5zPgBigGajs4BM+jT6mjHRlDRAi0XG6mW40k5d9E2DpirEbq1IIzTo14VJGjdPF61FP0NRmtr0SB2e6h07tYd8T8CmNanL57Rqw7mOMGy1o7gDatNyke9Cgqy57g1li5aPoUc4/wZE4buPzWsXEZFd8RoQrmN6MkioddFG7rSpTcOU/dM8bWZBhE//LeKdp+mDh1ftlAZbjm0XzVeXqSsZgDALhrA/M04YrUN/88GvGw6LuYlam6uLVk7KB+Mcm1fPFzfy2cxiGSulW4pqXJktIP2SYlGA33zHjDC90B7b4tsof9nFThh9f7Bj2vtT970NOjdF5Ff5tqPr0lS+KOpn3jr0WGSfaA+P1ADLoZnhqu3or6+FT8UuhePtsMBhgcMChwUOC/w5CzwPQMdbbQD9+Dg7Z3BtDw93jRi/ePG6e9aKzM7NfAFAAZxu8uuNg424AZ2cPiA6KRCeKOgAvqU6iEbbAu8idL58CpBO/1cLuBfk5K6vccUiV6K1k7oB+BRIxUNeZ4s6N+rdZfeNmwDx+4BkT9sDpB8CGkUI73JD5M3nD42Gi3y/yEuUmAMXAea88euCITd2OeYJim7wSwQSSE4bNxt+zc1nwHQj3JFVdFHUUrQb+ODubVvX7e0CANwMxqnfBjADy3d3WShED6kjtsRzs6aos0VEgQ4K5RX7hR65Ag0KCtAO+0braoNcGxdAAWigj0VFbzxLOXDRn+wLFlMfuoBIPnCZ6+RX69uFg+KU0xVYBWAKnkMrpdM+dV8j0wY4rFUZCYGn95x7OQDT0WHkLhJtzbQuOKpAzmbB9DXb0ZVUyvWlj3nQhUTJpq0+eOCVc5f0034A/2qjZ9qkRdvEPP3EQPfSTyGyE10vA9VzPTVq81o2Y8SCu8hkjk5GTGjFblYkaYdJzB/Zxu5RYhinvHYlkzbaRubJEXaKxgbRI7vUHmUPD74vcu7n14L2Dw2y0YWenuI57JcM+Xj61SAt7Z5ClGljbukYvqFjP3f0Q6388o3Xo0cXYRFrzy9tZoyn/5Z4ZArJEQjpAlxE9D0Pf3V9KVPh6AlrtEeLpl2qGHLpqXqAdTqw7Wq+9cff8W3RuUi39Hg7LHBY4LDAYYHDAr9vgWcC6DiyODtONXdXxXHnFScuMsgxSXv4lPSFqysRUj8v56mFyW/+KUCWu/rll1/6EBOA8DI3/3F40jWAgKsAypfZ0QOwFZW2M4cbEF8nx7mpD4lqv8pjxF8kVQMgfpedK96/y6O8I8PZeaLLeagH/l6AhCcUPn7JtnUBy6GYj4emU/hpXN40QHB/n5sI5UfH275MxNqTCj81DSQ3HcbzA/F+Isf/S8BwU0YChIB/AOu39x8Ccj9Uh5uA3p9++uvJ6x/+UuAMKAPPP7yhe/ZQEEkHoCOXtI/KKaIe0HWTiPOHD28LjAfgWyBMygRTi8Jy/4BDgQikkwrn/Xk/9gNc0iA07CJy3eixaHaP1RZoK3B2Q5r2KbfrRDq2fBoDf8OrEV6gEJ/Ijtfkrw9wRcLYkcv45zIHueQe58xbjg140qhtQi6V00ebtlLoZPHG0/yQ77tBvAi/w/wrIA5ftPOWbsPd+6I45Sko/S42RlasRmbRcRTZMWXmXSPysWEWd6fhZy5+yVjSsxH4XKdlXivau+VHZh0WT8aGjOYieR4f82tE+ropsd+ftCUzjcjgVVtGkIlys3HKUmFBSd5J4aHz6KTM4nHGgG6zwJuoOZqhkUJj7ntSmWpD8ygLkEZjyYYmoiOzdtVRWa0XDaKL74JFSDZwTPnIS1fjdJonIXYs21ft9LWgs2DtgkRd58TAYf22fOa4NpqUrf7zD7HK1oL0j1XbaOTODZz9NWkAuKbsWrpDaNGl0+xC47NjMEUuj+OwwGGBwwKHBQ4L/K4FngWgN+VxdHaeSOTXz8hxVJ6WZkcO0da72zz17yw3yiWqJPdXO7nMQIdoFufWaFm8pS3fbm4nqirSCwzIDRZd67ZqcfRAJfBwk1SPmzxNcMDLjozlKYS2m0vEmL/0wu/927cFJ/aFHhDAiXPck+Ms4suB//Tzv4SXLepOG4kGsF96ZHbkAE4aMb5NrwBnIOI8Mk6ecaQoAAHwoo+fuQOsgR3b6Yk2O68+sdHNp89J23hR+4RZ0jOSJx1wYUcT4Nmjub8BqzSIIsDEgJkBkwNyAlwCWtKgL3hE5HenCwAVeGurf3NIo+dJAE6PFOLTqDZjARFI5YQ9fOrXQ3nP0QJcXIODAEpOw9zP5AVw6lI2MqZ9/yY6zeaVI3LuCahd2S6aI0SY5R/5tt7RrJHk71qXUfuj8Z90aFRa2ToqR+i13fSs/Xb/iJRjbOPXDMA+/2iYT3QYYOTSspT7BiRnPizg5zuhWU29+Jdn5QNM0SizUpwm5EJ08cF/W0VzIDclSqNCFkaz2wswrN0T/XS324uW084CT468finDe3q0T0ZjgHxk3m02PWP5/Tw01n6N+ZqnjV5mMfDlPPn+K/+a3PoTv3MgJ7PoGn5lmreZL1lkLzX32La+uus/6Um7z4wXHXcJPrnwr0yVTyXejupK53U+tcvG0dnhlwDtpq5Fx9thgcMChwUOCxwW+EMLbPzyhw3/qwbbqQGGAKMcWWkKpy9Ok2LxQ522NvJ/H/JAFABa7vLngFmPz5aPPLsxAHSJ5F6+PLlMZPnicgAgtKAvUO4GLRFcwPljHlkNIL+Pk/3w4cPJmzd/SRT5h+RKXwegv47DP+sNd+SSxwyAv83+yncBFf/yr+vmxTjNy+Rlk/c2+c0fPr5PdPuHk7/+9d8C+G8S0f7t5GPk/MvPf03u9KsCEnnQNzd5QmHoAM3SUl5cvCj4FBUFoD2+fKLUPkXQLSLm5krAf26IfJ/P2y4wgBk3QMpv/hwZqitABBgE0BSIxYZsiz4QBVwACQUGeQeSB3AAZvqkJsAg/2J3Y+JBK4BCDBpaxmR6A6fDw4Nm0BCdbLsI4Hzv6pCrgpdvoHoBMbIFJZIBb+0ck04x0ciCyLJGmxxapL1zstI1+gDVqlBIjUZtr4M+rUsSMPk794ZV5YoA6TcF+s5TCKe/fgXsi14BU4TadHZEGz8Lo4Lm8tQTZLUIya8aEpBjr21LMpm3cK5z+u/8Y8IWRC6p2jRyz9Mmo2fazu8IeJr/oaVtPmPK2CaXXgsyqwbzamNjnzrzex8FjdWpDUvTd6dR3RCUImT+6I9486m3DdgOg7yppx8GnSeE6XWreyr3Gb2rpEWd38lJ3ws048T6s4iaiPC2l9JR05iT95/HhH5puxTqfIi+laVl38a8bRaxjmHqidgFT/rMgmLGw1xGg9ozr9MuOu00KFyn78yHxf74OCxwWOCwwGGBwwK/a4FvHvh3m/3XlRwP53R1lSf+5Sa4y6t/CTC0J/RdUxzk73rMtJSEyUUeoNUHncQJc+gcKQDpMdjArJxnDtZjp6VJjDMUqX5Rpy0ifBVgoI10kUazAYXQcfOeVI0bEd7kC18HjL/+4U3zrd2Y6AmHb3/7JbnQP4VecrEBcz85Rz0yztMLJ+IMrN8lKiwt5Da7fwBnAIsbGnMrJC8cXm7w+xT60SN0AAtpJ7asaxQTstKvaRFJIxEJDnS1jd7j46eksPxH+9iBBO8CKQ49f9q5Jts+OP4+tzgfAz5F6gMopWLkDzgLk9btPgACGgBSsjkKIjpusV+PlKvfedQFQyqC6YxtwaHrEAB4gJSCuIZlc5129CrAT/sBKwGSGQuEv8RGQI5yBdIWlG/wWubo+kt5tS+oTxR4i1i+U9/Ietu6BkSzKFtR34mij9zOO7eS8z62GnCmbOQBcEVuE8nNLyURsOX0IAsDUHEA5YrWV27gVRqFiG7moMTmHK7Nj7aH1nKwPJ3wQ1+dA98Cu7QgZ7ehC1+HSPFEbY1x5tWWJvVjjlItXW/y7Mlh/twPs9LxZv54/LdiPJ8eurLlK7gcO1bG9GFPfLfta4r/NA4WHIC5VCb2tOC0IJzFV0Yw9OlX8B7maPcV+iygvgusGHhmxchoYrCRV0RmMu8UWWJ8Nx9LJ2/Lvp1Xq5XvxD7Q8GKDTY+O029sTu6t/+53fB4WOCxwWOCwwGGB37PAswA04AI4v3z1og6Js1MmyuwRykCFiBxHC8R4yAkABgRz5p4WJl0CoJZ2EbfWAxAp+Imj9smhnqe9XOM+3KSOEijzdL/kNief+bY7ZyQ3NPnNnKHomDxqMqTjyRfgOlHEm4D7848fT14UxJw2YmxrAzwB27e//Xry9ccBenQRwX6ZdBRAB1jPSVIycp3+wItUFfIBEJ4OmGB3dXYj4W0u7KABiWkjtcOWdtI1LCzI3q3rYgMOvnqmHUAEWhTsAc05V6bei7EHkLAYe6YuOd+xVspF9qDfoTN1uUzTDRxqZAzXAWg94pvrFrdteOUa1tjH8Ew/XX2kserKBnSROgUAYPUN3X1M37T1p9E6oskItz4UqyerZrUBfRz45jCXBIO3zVQYDxHPyrB0af/0tRjDUXu2YaMthzZ6uZ5/bD+H9ufpKxXJIqF9ga3C2jRP/W6LOBlKO21LN5Wlm1bVH8GesxGdSLVsta58J+g/dpkWm4vu6FdObZyL2uqTueoR8RZT3x/AYUF+Ok9/oHuAPkJbTn3I2EVe9pKeeTb89dv1HY9I19x9W/XlT/qVxWm+IbOQMnb5Q7xjTe78EaAydF7Q/Z9l/Z7HCNaSttP/SY6UbLrTYuw4Np4FTueQdhqsY/qXkomV8aSnhaE5sVsdn4cFDgscFjgscFjgjy3wLAAN5MwWbmcBj24Y/JwoaBxUnDZH65DGILq8I3TK5EWDCL1xL2DjLI8rBnhFjN3wZqeORtSA49VexLg/wcYjyh3m+KVgSJEQwQVGLy6zb/T1RfOsLy7eBLDOg1r683tkxUPE+VOi0aLFP775IekZP8R5nvbmRFFkj9j+KP84oAR4/vHHn1KXHOZEtn/79ZfeQHYd0Hx5avu+q6Z98NIFM3HEwLFHgr/O/tQfA9R/+eUfBVYFffHS6snbvaojO3c+YIDd4tSj7zj/AXJjR4uRANq82BEoAObJCzNuwAp8MfsAK+AhfykDqqJ+7beBJsDAht7wbX5vCoGJRgjTAc8CIdBoAq3pMKC2J3krQA8PNysCX5U9oBPNvjDy6hFq9AjPJ7BLG3Jo5i8K0bzaZ1w28Bw5Rtd9ro4OaHUP5vYL6A25MyBRf7g+h7ZlkjbDcGQPfE1/OgNeGg9177FG56p5GsHKR1l/tci140nf0LdryrdoZmyesXJDm6PgOhTNK7T3jXR4dmwDgNmJPUfU2GKbLe2Nn0u6st+eT2ODWayOjmmUjv0zlvmbfr4LM76X0deCscCb+Rkx7XDonEp95Uy5UkdFYYMKZbeY28zvD/3+T9qKexOGfm0YvRpJtwxj1vQjOxk3CC/hUKZLZQgz88+XgGy7fiRDYgxC3EnXWE3yMXoOfe3Km017TD+nvhvlj1ZlYe/pN22P98MChwUOCxwWOCzwxxZ4FoAWPf01APF//y2pCLkpUCTq8jIpDgFsAB6QyH1zX8BVo1b5Sd/57KTx8uTNjz8GqCZCHYc5oPW6ey+LKN/ZNSPO0h7N/N2n5AjbLu8q0WTRXzccvvhJBPxVUzDQfZ3zH9/81EiYiPL9/Yf08RP7ZXmKCn/JT85SPQBrN+3lcYQnr5LqgU5BKCcbWhzt50SK7zwBMXIA13aysI90dU1kHZAAxuU2A4wi5LMl39pGLEBCHd1Fyn0W/FRfzjsvUcOLooInZw5QiBQ6gJreCJhzzj4tx56REXAAYNiuoChbu7kxqu1aNj/xozMgsCepz2eRiGvABbBJBNWYJZr9NeCPnNqUVk6H/kTGCdEUg45xCOS64Dt0S5bR2+fbvs0DNsuub5VhoFmaDogyW54ATspcq4vw+asKPS+Bfc0mdCWTzwAni43STyf0vBw7D7iU6ZwxIfDw0AIXx/Bk2xf5xaG/ZCQl6SbjzY6Ib8A9PAPEzZv8GU42mx08Jk2kwpAh8rFP5cnYewy8/vjrE6N27hWkB3ASAxh0ot+kAw39Spm69s8868LnIXp3vnhCZ2xGzjSkfSTs/AMibUJ3eeqhKzM/0C4z6rOHl6IcimZRNjKgOVtF3uT7nnsP+j2wP/u3XwGoQkd0N0C2UHj0pMQIM+lAka+CpRH5/S3cXEC9eJNjnhxoDow+I1PenVRQ/3/QpWg9hakK/7ZuPbXU0WEK1PV82aidjrfDAocFDgscFjgs8Ccs8CwADQx++PD+5J0dLhLRuvxhciJFgz3wZCJrInzzGG6ffbBKdrWww0adYZyevGKpDiLDzYPO+Y6E2Y8ZKLVlHCBrP+TTAJqHhzwcJcD7KtHgsBvQEdD+KVExN0gBsfWscZZk4UwvA7xFwZr2kW3xXrx6fXKazrbIsyc0b87pT+TQDYb7MdsnjWpz8WgC3R7sAoBLRfHkRWXAJ6DRXUPSV961tI4+NTAgO5Aq9SHRtwEYxqggI4AVMGkudFGF8uFXYBa52jZvABM5LRikGDhaRocFCgo16BM7oYMU2ZxrW3DVnhGolWQDKAMrVjsPhsGnr5anbrBHiPmnrgqVJrqO4TcN+55OG6ygtaO0u12vEURchx15LhOaLJqqnOfPp2Poz1VELO1HCDYg0tEybzkA0Ubww8f8GlAYUAp41SbpQ9bo3/mQPmzs6ZltXyp5i81DwcmAw3wCZ4WAAYmEswCzVSJ9ydt/FabdRhH0UjZAb0BldzHBf9sVXfzYJoe5MHWhCljjFR5MX6Ca7+GjR3Gr0La95u3JFp6ASKAcl6f2Wd8gWtl+rbF+ImBsQzXXWpgrvkfs0x10YkMAtgKlXce5fek3ZPtrRXSJoE030aY0h+LoGD0rGX0XrzSaPrmesXHCrvloYw2WbLXTFNYGiKxjj/fQDZ80q11jvNpyNzw+DwscFjgscFjgsMAfWOBZABp4mqfzJYAax+3GsdvsUgEIu0FPrvBpImyAJmDLWf2cXS5++ulfCljev/s13t8TAfPAEYCzqRjZFivO8TqpH29+/MvJm+yMIaXjMfXdRq43ForIBhzEiXOVH96/T9rFp6ZU/P0//j1pE3/PdnT/1h05OPzbpJe42U9E102KosjAPIzlBi4PdXmIvDdpIyfbzhsesV394uRFvO24Acg0dSLAqNHxeGIPiZFKYtuwD5/eN2INXAMzbCBiCWRAHvXte0CAohSTvxHG83H0BbHhiXcBQIrZreA05+qnVz5cByyWbt4AErYrr1AGzL6sm9zAEjQGLAWAr3a1YYRAtnwAHBxCr6CydifojOMZQB4ApP0AoDbvm+ju0FjyplQkFbgkoz5SLdhDO9FduoyexnJSHHIS2kimBp+8SRFBJO/tW91X+ddsyTfRzwFkbiir/Gm76Wx9doSS/uga04lcRjZoLP8AVPanj/253STXXSuGacc2tZWNlJUTI/LRtSac8SvgSz+SR5XQJSOgyYYbaNJz2o+GqdYavYK7ubHQeEZolcMnsnbMU86mo4s+7O+pheZRFnXljEc79qqLyNhAmVQlv/KQiZ3aLOeO2SWnNW37bf7lu5/vrnmvj7nl9bXzba6rE73Wi27munbtE0OJSFdGbfJXrqFXZiNA5UgHQmSQyDcLA/Sm6dhRw027460yx4Du/en70p6USy0aI88wb5fj7bDAYYHDAocFDgv8rgWeBaA5IM6IE/4SoOVmQM7KrhxXeQiJQ5mHkwACAJMo8ufP71MvVcNDSeK8Ty8CXAOsQoNPQ1N6xmXSNPQBSN9mWzl51q4v8/AUESgR8Hd5eMlNor9yp21Dd389O3MAxfW4AZgvk8N8mfxngpLV47nraAOCRHCv089x+u705O2vO/oNYI88FgZyvRPHDsgCgJCyeMi2dNHNXtRzY6AnBgLnItqwTtrmpG48OuGZgvZt/4AbMp4nUffxa3bhAA1KX6Q0gKTRzGlfQIRoDqCJjdgCcAJiCrhTP1HIAXfw1qmc9HSbnu0eORAJ4E6FcvSARnL6JQHImXGdXniLyheIpO3CcKsd4JSeadodLEITHf2/f9HTv30Dmz6Th5v5U5p4jaw5KWCuTpE12oSndJVJz7BFnQjxvDYYHfuya8F0yKVZZCuaRXLpmZ8rymfxyvzY48SWtUVazPxIn+qz5fIp2jsR2w1elT0uEGbM+iCP2JEA8qJr57T5apyB+wDbRr3bRzO2ih6RV6SbHOWjzBiZEx5MknbkatoPmxizXJs/Fg0jD01zaLt+1Zj+Cmc8MQrVfH/w8T3BJk/6zHzCo9dp46y7+mmdrqWzz01dv0BEP3tCW2A40Bzd0p/tjcfSobYIAJ75tcclOsQOZNNuzkpqvWHMPiNDx9aiIHOm9Ntq2jhlg+/nXdXJG41r48rPdmvOR8nWMo3XcRwWOCxwWOCwwGGBP2GBZwFo0Uw31AHBIsLN7w24kJ7BSTYNQ5rDcswcsr2U9SuASrmfuu8ChD3IBFDmIJsrGWcqFeJDItcFUsEQ0y9943DPpHWEp10t4k2Tpyr/WqQ4OdhxuCLLHGzI5ObE5HsCMmnfHN841EZi463PI+fL7CQS7xr+earh5xflzwlLz7DLyFUizKJ614lCf4m8b38LaM6DUGy/d3ORx2snQtn0k/CgI2AIyJ0G2IgC2iGDvlz1BkcDRhaYqJwAwnhwvLobQ2xJAeWAU4FIHP8cQMUAvQ0a2zuF/tgEDaCoYAHt/CuNgmqtgYpNbuQbcDPnm492xE834lQXMhao4Ja6lkc0YJRu1T8VxjI92hYdMiG2QU7hS8o8WlpftCo/5klF6PXiq0YB2vjRx2fboJm/AVDhITK/2rcGj9jT/NopEEQjhzkYiqUHrHVupv0G1ubbzCU0yeWfdjMmYRU6dFwLGMZSBvjhG70eMxdkfVT26Po1bexU4y7HypdTi5+g3pSnPnMVkcqQ+wuyxhxZzeu0S8u2I0mZ7Xd9c06m1rUt+JhjGe3pBrzIFdX7C8zUbRAdWdNjabs+Z96VDlo5iDvzeG7o/XLvv5M8an6BW2ZwaEcW9KJRvpuRn61im5kH6KRugd/VQac5qow+aPl0EhmXMD7Kq2MwTIfn6t92M15KZo44Y0u8o2tto+w4DgscFjgscFjgsMAfW+DZANpT+jxoxM15HGQBQ7wSoAqkevIgICo9w019D3cPJ9cByn7KB2Tef7atm72iU5fyOtYgm8uLbPGWHEs7WXh64MvkKwOf3Z0j7a6A8vx9SToGwCO6Ja3i+sVPzbOOS42TPW909uF9onMBJNIA3HzYVIPYphHmbP52Kmc0TvYy8tpxA+gEZuRev/rBkwulgXyqHBzt3/6//3XyW7a724uBtg8YAJwbgbRAiDMXjabDvlFMX867IDM09WMj4KKRNQCyAA6AGWCXkwKG9llOvgAi5egBIWnq3wKCsX10AUZs4+cGLyBH6sl+uQYcRCgL2oxXgQRuAMYAC4CzeSZgT+gVLOkHFGaMyFHgEX4F/dHZ9mzaLgQ3cyLvMAwZF9KBXQYcwmXolH74QkIaoklIyuSzUcpefidLGpZu6s/zMj/0LWjXFxm6hKZF3NMDbTJXhj7yicR24UN2egHBztM/shVG5nwWRexmrGKL0G4kOp84mfek0Y9N73eUNIZN75Qjt2yT9vQam+KHQilWT4uMr27kTFHB/RovnPQxZXTBr3n3+uYf2Sqfjl45pgwt/KasFVNZuyeGrPt6zw4zeZDRpqVZxzg2qQbhT6PqmfmhznfW/QhSrCwmRaEhcxH3qoZIDnMGUN56t4xhQi8VDJpzktSi+YhcFblvmsdWWRCmXWlEn82fvMaj34c03z0G4M98rs0q0Iy1vuZK502pH2+HBQ4LHBY4LHBY4M9Z4FkAGpj9mLxfkdhGJANaAWGAQDqFrecAVznHnNUAzeQgJ+Xg119/LSgRtQYeAVefnHBvDlx5mV+SAtIodSLUnPZlUkO4V4/x/pRotvaCdWe3nOJ5QPivycfOjYQBs6+yldzsGw2QQGqJBl8CjTlLCgDA/jEvD34RvQYwm6MbAPDxIekYWRTYMo+D/ZDt5ywGnL9L7raIuaOR7IAL4ER/OcKPEE6Aghseyecmqzr64IPrRLQvHpKWkhvTAFhHI+M9gyOArAE++jjmc4OF0E8xG4A9O6KqaUFswAX7++ldRH8/YAKNypC6AcYooOE64L8AKbLUTsNfSgawBLwOMMx0gbTxjdG3fDCJ3RzkwQNN+SG/su16EdVUZAwAmQF5PtMox/CHtAqK0Kag9qodOVdGBjr6lPeMhMNn5VSedpU7hf4cO10Cw8pEnhx0d7CXcTQeG9zhp62/aN+WZJY+MikHw1d/POXoO0a2WCDjjlaliP3mc+madgXc2BOFXuwf2uaXOTB0VNI9uexNjQBIM5eV5i1sKxfA76Q2pQs5Q8Pca6NUoje00knnUT19cp6Lgkj65vX4mLz+LL4KRhcvff2jRxdzosiRyyKUvc0pfSzapIVMrvvkR2+5FsvqELK1231ypvGp/kRRPhqWX6/Iu47aMef6dHSip+qZa9Nu/i+astqLTrVH8070Tn82H6La7PPF5vg4LHBY4LDAYYHDAr9rgWcB6Dr2gOgCnji0OuI4+i9xqsCy63H+G0DPFm9urrMl3EsR2/TT1lZh2trNArjQ1wHkyDW2jZto0cWKfNrWysNXXr56k/r0iVN0w9qXL58K7jh0cl2/eN2fqOUqPz5mC72kY4hC89EFSGnz8JDs5q8c/5SRz02P79/ZXSSgPLw/Z29oUUiHbeyAkx05BFZE3ZRzxHhz5YB/AW4uyC4CR9+dEkAIMmqznX5/vg+9go7Q8Dnn7GERsC0zIAmQZTeMzwMqHXhrBdjMDY0AwkYLUwc3DVDJ9ffnuRzwlvYxiH6zSJh+hoWd2invgIn+BW2Ls9p/Or6jX57tPxRI5VVcjnbsUTCkDWCoLnp3rMIYv863lAJTHbOcs+s+So9YUZL8+rJxiC/gHx3za8SmOfqQQ880K9HCM8xnfNDJ3x7P0tU+bdtewxxkm+6rfAuzaHccUrYB8ug2tA3v0I/cAK9/4ds+IV+TrDJMcroObebUZ8GleZUW7ZvPsY9GfvkJox40+kaledR3Izcd9uJwZEiHykAKarPFzPtZBM82lnbU6eKhC4E2rD2iGcG+6TNEOt7i+X4FIkmpY/7d8TROlTY6lc6aHk2NMdgjT2rDZ+kUMvN/ST5FvksXL23xmHkztvtmh+9YH6eHBQ4LHBY4LHBY4L+0wLMANAcr//nracCp3Rnigzxc5Pbm4eQf//hH6jw9MDe6xdEClQAoZyxS6SbBN2/eFDBL7+DM9OcsPyVt4+tXD2mQvxtHFydZ0CsSmJ9wLxNFfvHyTR7TnV0SsuXdzc3HiYJznprHGXPqH+3hnCgwYPs5kfLb2+zEEZlFykSCX0kvWQ9oGcAtnSOR40SHP9vz11MEEUyZfmgCyoBDAUQcsbbYAvjAKkcOdGuvHL0CDDrkZ3nb8U1FmxZA0BuoLuCrvpz7ACHAZ0fIvoErEfU0aDN2D3gMEXRAIpWq8BZ9bUqA5gWfooab/gCrhwU+4AtAf356DzEQLGkwwBzQtfUGSqpfWnQ3B3WxuYUO3dimwuWjMtUO0YNB1JAvbQYITR5xiE95ZNOb7AWZLR9boCnK3wWD/mnTtqE7dlr9Mr+eZA2tPuLcIiWNtTc+2ltwjU1HN5HziQDPXKwu6WEO9ibP8LQoYg+7VniKXYQOxSUfeVxHv9o+c3XbXBtls1AyUNO30eu0J1lB7pioslWnyMlyxsWBnrla2RZvgHDIRe4ARX+1b/jtRR/eEaD8Z9El0l2KlcuZA/2OafT0Xfbrie/hzDH1Oo2Qs1iwcHQPw21/OfJkTvueP8TGFrkdB2Oa8zMDkGMvHpCho1J8HUukOSNzz9g/Y6RNGpzlu6RfF6KpL0hOOYDcqHv+L6Jr25TuzCU6kGPPDbS+JmUnRXMMu3VxfBwWOCxwWOCwwGGB/94CzwLQ25H6uTbQqzfZXWeHDDtiXFzksdYBr/PgCVtlBQbUWfqJ3QNF3AD4/uTThw8Fuj9myzoOexw/BxlnDxjafSEfgkrykO8CJF6/9tATN1ulLKkUnKZ0DPmXgLat6uy8YfeMAo48gc2uHwXBdsnI3XD3ycX+cpac68CTqzy9EJD+lCjzu+z24XNvqaePJ9EBIIAF2QsFC8IsBuamSaDk40f7WGc3jeWk9ZVCwmEDan6GdwA4nDsnb3cPAEVbgOTL6ZeVrzvpBOgCdV2EAAVpN2CI45/dFwrYIlUXKeEHWHxJVB4wmEhmIVWv8QfG0KhcaSR9wzWZdnSevL0RU454o3fAy7SBNzaYcT5AGPpwRS3n2uYz5xscdReEAiHlyTkHzMITKA7p9rm4AHJQWiAWjYJC1fkFIh2/nlsEBHDnNaB4ABqwtwHjLHYGbONv9w9PoiwYZk8LoYIrIG4i93Te4IrdLDw26CKUvx6xu/JoGBqTchFRpm0aNMKb+lF/2Ux/emU80Y52TFObs0F/zdhtFhsdCgJjk9o010BiQXw66z9zbXeYa98t84lecqRB02nBppEndUr6C0nOanp2DW0He/WJoknF2GPnO1BZtGsr+ppXWXZk/HxnZmGap4l+8iTR2D5/+lgY7u/E9CF7XgyUo++51qZPxJwCDFKX8vRnbzdjEpFMXehk0UZH8z1KpZ591sLAecbZQ4XYtv/3tG/OjV0nDrlm8WTcnxSrVMfbYYHDAocFDgscFvjvLfBMAD2OkRPi/ABZOZBymHkjTk4eMWfp8FknmU8A6P27d80tFrECRIFNNxm58Y3jHeDpZrg8cdA+zAUeAEjqwsuOGJOLHP5hMeBWdFRaSKLUkQMdqR7ytQFgINshMqu9nG1AH3j/GDD/29tfKzO5AayLbs9F7narMy4w2d6WbnkBA+TDDyKgMccOyDgKRAZltZIdCtDSXmpH24Qm5w6s6Ne0kIfZsxq4S2HSNCJLW4dM+GE/194BLjIETCQKt1MYlJNf28q3+hc0pFCfgop8OtK6QA0QLG36pbx0I0NB2Rpz9AYUpV+ZLLCzyksPuFxyeYQ1QO7Qr/nJeQrjXRY5GdQREuDKYmK1ajvAkRQjv5osAPLecrptvaN7j9PJSaaNY/KcRVIDqjJ3NlBGZ8/POdd69NVTP+Oo/T6vntMs7/MdSJeem4jb1kp6hEYPNnMiIps/Mkt9KcBLE3Pf6GpTDVNX27JlykaTWbw00lyySqfHHtuJos9CSS78WWR/WiwAj0lfEaTtwYgj/Fw/vc9CN7srtp4KOxK91ZnPWYi5j8ACcT9UxXc0KLzUqkP69wmZ0d2vFZn1FXtsT5jYIwSr4zJgRcwbrEvEWCr1kSvXBb5rHgU5p+/63mVxo0O/b6HDpg1Io7mOyhNqwyu0zPOMzXEcFjgscFjgsMBhgT9rgWcB6AESol25eTAO9Oa3X/rAEZGoiZKN0wXQAOR8xLkFVC5ga09ojtZWePYylrrB0f/rv/2Pyi8KLFoscugx2z/99a91dvKkRb2kT4gyI3sZ8A0oc+rA18cP7xrhfP2jXTle54mJH+Lg3xWc6wO8ov8h7T4mEg5c93HZAeUOuoEzgBOQ3p+r43JFaIE+8jY1I2DsJukeG5Bx5I0Sp20BwXLcoq9AfXciCE0gp3xKX1R8ImGUsbXepK+kLPQrSxRrhDTtCpSqqJ/Fv4vwhZc2A/8GmGEPtmneCHBsY/Ey0TmpBuyVHh5UkrYWGt+OgXOpKXimOxANlCUwXbr4bz3tf42GnSzYF+SxSMFEP/nrswvDcOjuF6kT/d+LLaAGoCkwzpxBkP7mhZvWpPM8gXa2BqPzaUzabu3B3SgwCbSJPfVhmz4ie5U/0Q5d81CbuQEPTMM6n7FXFypolNbsrtLdL9ghxzd5Yq+UpWV54q1/3kJvwHPBcmiRdfTKGBqktJ0xCoHIU/5D3pSYIyd4TZ2xHtA3OqZ/6irzbhG6XSjqbeFiHCzCYivjoZ+0m+pChnCq5nNannjYTaY6ZK/oHYluZd9Wv+joe0IHejn6nejZvJHdAax6SqNtHqds2o+eJIisMWTPQmvA8NDwXj0iuwMPc4xOxokObKDNEqby7Mi08r7Ssnzyy5kbYLdsaB7HYYHDAocFDgscFvgjCzwLQHM6l3lKoJQNePDxMdHd+K1xVvd54uBfCo6AYOBRZEhuMRADSJwH8F6cLyDK6YXedfJX5TjLMZUr/SEPXfnwYVIwpGZ4QuHZWZ78l905OD7gWlSZ036V1A6g9u42OdHh8fbtb90BxINT3BRoJ41ijE8DNLUVgR6ZOOFEqxP93Xm2nDMdQ7qg8zo3IOInTUB+9N0tR03viXYWmKcOOCFPnXhGwLkt9JQD0MArOwG6oMPX2Ke7FgQIAFpKHx8nHQG4PE85wA5INOi2sAEAVNAUGs3zLa+85XCT3OMDsLWifTkjB2Dqk+AFUUAHMJIispBqopXqgZRVmvYD4CNH2rRlPgpsp8nQTUVTUWLbprdk3HcaSoFxbFrQExtMRDfz4AFQnoUYG5oveyEwICf6FDC5wnPsPmMjii3SL+8ZQB6QTO6Rv6rWThs0DriXTy2VaMauY580D7Yhp0VGI7nsF6CnHkBTZ9yco7/tzx5sSjeHhUL1o7+yzBGR1wFwY1fm/Z5G9UI7uu6IaMdsgfi0Tl1oxQjsYBw6EiZhjg0OnVcP80VbOjnJwY57cYaIng8J0bJd3tq+1Kd5Gow9LDBHFg9Kmnsb9DYiBcRZVTUt5lK6zPyCcofnkg3vkdLJklchIVKjSOkSc5oA0dGhi9d80rb20q1gOX0W0F7TozJ+xzJ0nrjqVQa1B36pmzliPhmT/9S2HY63wwKHBQ4LHBY4LPB/WuBZABp48ECT5p5eBIBmezZOiTO+T9Tq7PWrpFFIvZBjnPQM4DA3Vokg99HIoqEBPNIlOOoX2TLOntKiSQOS6lJzA+Cnk9/OfmmkGggKmdDiTnnBOL4CAXv9XtUFPj7kASg5+xjQLKp9dZUHpORGQ1FpETj5wZ5UWFqk4pxDCrgFlMRwN37YnzUddmnoBYQMILQ7SKJ6eSmTawvl4sEh1zHrkyuRejw5ba8NFh7tnRwZghxDM3nQAcsV4MoTGdkYIAckUBn+JZi3goHQBEEL8sILqMExp3kP6ErdBj85Le8yJ5dG66hukevxPloX/LDtAKR5+l/OI2b7rH47x/Z7OiW3lCMH3bpAWHwASq+YqdHNLRtJKjcsQ1cFxja8zIl9PeCSjjrQQYfR0XxCe8DyjCN7+FcQnnkWFbROX/myZZC6AeK5Mkur/gMdQ6sXeogmO8qzH5VNkUVC7adPjo5XFBTR1j5vi79zdAa0VfZFtiIB6ct2+vSFX8/J9u3YZeRjDf2+jUOI5l8XAYte2z/JN3Rq28xdn/nWxiQWceT/Z1q+j0A0MFup0n5svGQyxuZvOotS3+X/hdHbx0iKrqPjsC9yTaQtN9o9WpizzANjY0wINpqmfaraRztHqzWwCJiyJ5ppowRLr1mo5GQdxmDIqD2OwwKHBQ4LHBY4LPDHFngWgOZMgeWJEHFMIqVTdptIs7zI169vTn7+678kspuffy+uT374wc/1drPIVnFXudEwQPbDh7d1fC9e/uXkzY8/d2cNoFlusqjzRIrd2Jf9nQHcRA6bcpHoYSNn8doikCLJHOHF5YvkYb+qI3335bc8qOW3pmrcJGWjKRRpD/hxsAUBoQlqyeHe4K4/cxeYAVwc89dGs6U46DM/ZUvluGukVXoD8ODgoO1MQNYCbfzyV2AXsAJAcNqAQaOaqSdLQUszHoDOrwH9t42Q2qN6QDcYkD765RS2axoEPuUVkBnwALBuEFa6aQjgOQB8ZbUbWikrKBJRJVvo6EvPGVu0Al9CQ3R+bvKTBhKN0m6Qi+uxZxcSoePTYex2RB9f9NXhq49x9Bh4ktCpNwfW3hYcmZ4pY6/u572Utvdw5x7++ad/H+sdFTXxy8T+Of80srMlXmTBZ4+FeVTdQn9GKOMQ+fyxYW2+bLKBqHo80jE2ncUTWdCuXsaWbgvIt13a4jP7ZMeexiMvgFzKLiX0NTdnvKIUInkpIwe52+epKpX5h48+58kjNx61X2gPVWML2FsYGlvzwzaMboaVurHmRH81mXEfHpiMTcg/Cusa+uHne+nKryMDoiMI3r6P+Q5dX79ulNr4ae+o3dDqufZ5EebpmPHHywj1yEcXTrFNf8XouJN55pGWdPdykO8xCyS/LNQm6fd0bFZpK3jd+RP9z7KI0naJ9tT8ODkscFjgsMBhgcMCv2eBZwFooMCeyfKIpWX4aRcwFt2diByvxdnFka6fy4HneeLgyckPedjKVcDhmx/fNMUCgAN2AhuSKpG7+aWG1MnPQ1heJpfZcR8aBcC9yi4OBeSegCbqy5fPz++fktv84cP7AIabpnngbeeKApICoXjSOlOAZhy9KG48al04h4wWAHeZ1A1AsGAwd1ZtJy1a/HAWIPU4zjraTl+AYoEoNHjo2c/a/tHDoz/xA04LIEl5aJC5OhBjQDfAM+AsYKFtSy4kU58X+t8DCWHKFBc8AXnOYYyd/7rbAlDqqNwGuWh6ST7J5JA/PA9H0STaASXa5QEYxrTtasbJMc7pRPANI0Bj/NJeX2DILxGhVIDuEeeATNulzY7oK6mM+qJN+AAztKfOwiQXSlJQgJw0BHm1zmcEzDvgKvJ28cBOAHLK8vfEg5656BZ8xim80mzAba4DbXtdPYbjkqLcn+S3UOrNsxHp5nNy5gMQAWTA2jG/PgDB6JNt5kvnRrjAmZFw9A4Nsuey9qvckSslseGSj72eXpEltlKvrB3ZLOfkxhuYnXmvf/p+yXdkxbPJ7lD+BKAxb+HQcdVxMCcjbL7ltbV7DyzK0NfXQgUf310739x5EFLKtv1mXoXmkC2L0Yw+OUv5WNbJyKBeSpInizqoWFlTb7Gjk9adM2ljis6B5lCJ2G1Xu6aPVJjKlI5dcJprx3FY4LDAYYHDAocF/qQFngWg8eBMP+eJgPzP5eUP9VYc2Xlv1JucUrtseCqfaHP3iA2Qla7x88//FvD8U3KXf8ijsX+Zx4HH0Z1lm7JXvdHwojf4caqv8ijvudlsInicJmfI+QHId3efCy4469s4bU8qxM/ezEAKh4uOPjtSyOsCcICu6DNgW3BLrygkmhavmxQKjj2NV7nFwkkApDLntg07y5Z4Fgq7ndZkk887LlzvyVWeyDPgNrI0Sr0c+ACMcfyRduRIXeWP7EAninX+tRVQlpP8GwnXddrsSGdFB9o1gygc02VO0nH6rvpcDNBQGn7pw66lF1vR8al9CLGZa2Kw5WZBF4C764XUTb+01L8vwA4vi6CMQWwaKoQY+oN6BohmzjgAYPaKJUojlpL9k3NAavpWx8Vv0loG3DeqnH49lpA0iXYd/4gwshOxEuSE2Tp/jAGu5lGIq88/dqELmV5kb3G8AehUpeUAUvUIzWIhNKKvhRBmAyzJMAss9nK/QFOJMreUz5jhNzqXdvouFapOmqV+7Dqc97vWXnPQizgj03flq6/vhmMWV+EfXaO+kkXGdy6y+oWiY51IdGpZ5iHRXL8oWFihL6XKLxl7IVka2hKAvPOW95GpJeTInzp/bRO798ilubYXjf1MlRH1naKYeWvR1N410MyP0nKd70/Jp8+i2vllbhzHYYHDAocFDgscFvizFngWgAYErkWaEnn+mFzjd7lpz3ZzL16+jlMCrD+d/PLL+zy2+9+7R7SI3Nu3vzTl4Yc3PzYw+OObnwK87f+cx3//8GNoXRdMn8cJAiW//ONvjR67Ue/64VX14pBFvO4DLD/nYSnvfvvHyeebPHhFWaLE/Ynaz/V1qkDOACvgAE1y86VAm0iyeoClkbSnuvsA+ttuy5cm2WUkUcVGMuOsEz0kJ/r6fvkiep2oaBYNsNWAIhHBOHR7+KotMAG4Afpx+PlI28ib/vpoR8aCzpzTU6F88a2LPsBKAW0irmfnVylJfmr1ni0D6TevgJikXahH6+4+2/V9HZAPlDXaXj6PATvSM6buKeUidPDtIiGLid64GXkAlMkbXdHQjCtTi3QCiWRz4G1f8FnI5CmQ0RNt8tC3MmTM8M3GHUlnyFto10Bptfekxn/fqOmmMQBNvq7+9FLPLgOWI0hkkNLRNIEALvPCg37IQTI6Sb3Rz3lBY2gVRBnA/EMxWKz08Rn9Js1Cg6ZfpHzX2clkosnEH7kIp+u7AABAAElEQVS0Qx+tPhEyue52isEP3iefcXLNLnu3i/PcJOs7kRkaYSc9CVitngV6mVn6ZSaQa2Sw/eM8fhstqT0F/AXd5hnNZ2zYftKVRi92cUwb8sRetvtjR18demgAyPYET9Hm1KSvfiLPFw/uczAPsttN5EdHh5kTbIVvwHXm7yxCEM1Rst7ok09DgPHmpQ3CKVDtoHP+5SXi7fvLpuhOty7qDGDa4Pkl3zufyOBRPjm/yLnUs6GP8nEcFjgscFjgsMBhgT+2wLMAdB1YPA9nf3Ul8ihP9jp5zz90D2YpFYCnNAcOjVN3c6F8VjnKHNqHj7mxL3UcOkctveNj0i7i4gqspIfc3GQ7u0Qnr7JjxoA8Tn72dv748bfeIOin4rsTOcMDRpseEYc6x4rwFTCJHAMLQA5oA0gm4hegy9/OUW9dp8pRp/GTPADPuOihKSJawLucMtpkP8vNktM23UOjTjs9HwEaFNoeoAECgIHwWTRyMWWRcTv65raWDkDdpukItE16i/SPRv+AhIwD8JSWbVj6rgowBrQpa9Q2+uPRGygBnnTrvsEEyzHt8AxASSS+RqkGOQOgAvCkK6C9rJY2A3QAUjdTAlcqq3OE3zqj7zD2jgL6sDAmJeYjcgKR7Oq0ICx8HSxJB3nZ+1DfP4A2fx2DdCQLgIWecSdj7ZGy5q/Txa8FbIofZvSsysOvdlo03IDo14XKlDbm3adPcvD1MXctXOYoYB2lUxfa5kzoaNtIL0lDaOgXFsdG0cI40jVzv/M1Zd/GY8a2NNrfryDAqwUPsQnOXgOaAdYB4FOWLt9kCJ+UppPvALvpH7uc2hZy/6Iw3xX2cVTPfJILYK8dLoD97K8eAS5eZ6eOzCcpXq5nwdTJrnNp4OkMvznPlbq8Kn+I+vPvVC545Hs6Wqyn13wA8rq3XXmMTdm7i6S0nej1dOmiuTnm0Tafx3FY4LDAYYHDAocF/qwFngWgeU2OUaTJzX4cJTDp2iN9z85en/wQp3afl+jtbW6Ki1tuKoZINed3F4BtKznn4wqz1V2eatb0iThM4LkRsg+JAhdAr10/AMbs3vFJ/nUcOEdcgBB5OHc3vBVcVL7kFsd3k3Wc/cgNXJC3aR3QRw5tHACOfN1x5RywbfUmygXMAjeigngM8PsGimqDgHIaoXcKsFEubUWvgTzyFgemLNhm+AAIfZFgAYOeAT8BKelQ4FXAOEDDGFxFThFkW+u58dA4lELq0qmgoXJW1+iQrnTfL3VNK/m+nPSAb4+JZOvnAPrw8Ffstfupy2t4RZfw6NgtVTZgHYi2dAlRvwSo82IzYN1hXMnIWGzKln3V7qEf0DMgaMalkdekDJCi/XJGZvT1m0jvREvxQhiodh7KGQcy644ncDcKuykxI5mKVbdsZw5gAMTD3p8/Z2tFsqY9mhOlnwgom1QmtNNvp/uApX1qX+QjDwKdX3St3Bl7xfkjET3kA7PTk3wVa+ZaCtMG6FWfc3IH9AK6k1Ov8dgTsGybXDs8kdLRvnOaPtNX2X4pG4navOX7O3ifnXjmhsqLpmbtxZF5YD6VFRt8d/wz3VWBR+ykDq/ac8mLyD9RSBvzsQu66GlXGxYaIM2kA6BHl1gk7ZFX73vt3NwYvb4T7Dg9LHBY4LDAYYHDAv+NBZ4FoAFPwI2T8/Oz6DLX5nHFbuDzk76f8a8CpuPC6vw51+uXL07eJIXjVR63zbF6IqFdN65z46CfoTl8kWe5zG5GAkQ4UCkAd9mODgAdQJXrtHHsm7IGtAA1gIjI50Ro4yILLHjeiT5P+kY7K0w7kAPtnIZ+0lOya4jzAW0cb1pHN9c9UjlRvYCzgD4yTorIgOdGxSNfHXTsxB7SdD2NbwD40Hn66TmOHKgB1LH6mpsVm3dcQJS2IdRoWvgAi4DS1VVuXovNLBhEoGun72RslDa02EduLboDND3hcGhO1HBA67ZN+UY/sl2kr3FhIX3UdZEQ/n5d0AfIoWf+9ZAOA6DQsxFfhkxlwVLokNPP/D6lN1QwAC7t0HbsxQ6QUxnD7z6Lpq/pU+gXhsCQ1uod6D/eBUARJueAHZkLP1MU8+ZXgLwByOHndI/nXtyI3qf46SjNgOvRc6Kc+ljk2caRDvsXD20B9too0Vu6TF6u/uaQx2RbMKRv7DqHeRdZjXN2sfnaPpnvsav5yHDGzkLLedMV6B56+imjr7E4vc+CJNFwMo1+PgeATpn5K1IMIQ8N49SFRNqhhqaUlDmAT/NczXw30iLnuz7n6xKIvc0ijvXevPnLyY95/fTzv8YGFye//uM/mnKFNnlG7sWiH8rmOtVPeqVx21fXyDA6qP/WlyTKtQWipWScGUODncO83XzNE1ZPq7Q19mOrNjzeDgscFjgscFjgsMCftMCzADRH6LVTFKRmbCDNUdmVgPPkoAEKx3VvtErucm48rKOuQw1YTa5st8UK8HqZGwaBQT//Am4iZwOmOP+A5pWzqX9zL/EQ9QsoeMIky2lylDktwCKTaF961dkCEfWxoVMHvQBFBV3RyAE94/RF01w7CgIQ7mucNAABtHDu5CKzT86doQsow5scV0lBGbBqZ48BpAUHm2JouMbt7GvAf/iwAzDmwBmIaRugLLwsTsjXNgsc7jGqrkBGDgDUHsdo+GWgYxOhN6Aj/4xNaGkf1O8abTYoMAuNxotbPpH4ym9O5K9ARk6zq5Tlo/2MHwOxgfYpXPVtMP2WjfXxIt/XIt8BQhUczdDpHKjdAbAZJ4C7ueV3sX/0c3S8Ik7Hb+mXXJXUGK8WfJMlpZsWEcho/JQ9lZN7Tzb9a28yrHaReYA68D5HRQ5LoP429bPYApQTIQ/o6+ItwNVWbP0rP/Mm5EtlxmCP6fdzsdFkcy9/tfeIPTYue1JMnfkxuvg+TWR+JPQ+0qKx6TcXPcWNJqd9layM00uPsW/mYb5fNyefT3779e9ZXF+c/PWv/5bddt50Z57379+ePHaRPf1iKiItWXo1FX0fOYhTm07TyDC/imwblG/qfE76CYK0GFstdUatgOq5jh16Pjx7M2TosslxHBY4LHBY4LDAYYE/Y4FnAehxbCJUs+0cgOiJf9Iyvl48DihOFPcqL2AYYHqZ/Gjb3P326y9xer9N/nSizCKW7tgXde7WcAFqItoFFwEYcqPniGMMYJxIE2AXUBRnzjFuAKewUajwU18QGxn9RD05kAFwqTtP1Ja3BVwKZgGZAIQCSeGp1Zdz1p7z9irwS0+AaIANJy9KN7m8ygu2EzEbQB1ChcLkDmCJrhYXZKPv/f1NbOin5BWlzI2FaJR6TgpYUxcRcg4aoDf85eHab1uRz4kuJsZWAtNu24XuO1K6c3TvA9zISi+gdkc3I3nlq50DoNXLYQf+yCrCNykGbLZtMtFOMmqfitptVKHH2Klghz3Tr0yqTd4YJC/0nPZIp14nqtxxX+OyavuB10Rq092I6JP+IsSP2XUBYKTbXsTtvgOYZi4pGzm7ZGgT9Wgp797S4T28mNfP/1UovEdmnZzjs3UszVWO0LTddAa8FsDp4w9a1l70uWcuNl18gP6Z6zPWK7qc+Y2nX2/8VQ7WUJaDPUWRI3bnb9NEardpQ2uAv3PNOea5Nnc6Z3REI/nYI5kGXv/8bqzuE0X/9dd/dEEnD9p3/uXLV03B8h3Xo73z1sVR7Pqdto20kwP/YTF86EX/tk1VF82htnUkS3+hSYy532lzkE6rTfuVVM762ZrOw4cpQOI4DgscFjgscFjgsMAfWuBZABp1DuvVyx8CCHMRpyQu+S6O6/On94mwBaAmVUNkGXgDwKQacO5fEh0soEsUjwP8kOiUBzSIPMuBdiOhKLUHPnBzQBCnWgdacAEMBiCLhIUexw2ITCQOdhugoS+5AD+xKxFJP4e/iMDSSwAiucPu0p+odx5BHbmlphR46h5agWjjnHNzIILKsABqt2PGC9D2sz1ZAyVy/9dErRv5jtx+vqdvQeuyCWdPvlTMZzTWpmAmROknCpiiFWULo3AFoDzVsSkQStJuos/0X/ZIn4LHtLd7RZERQXPgMeB6thsESHbuONrDgx3nUezo3yethOxf8rTCAmiyBST9U4Qbr/DPR6PdtUd0oqd2BUe5LhiNEf1KUcCTczzkyuI/NiCsJzuuGw1jWxDKkaaLFn4jJwDp6GIAaMYzY2KHlO7SEvsbiwqXuRoCMeqeKwt4IpwX/ntso2zpesMLl/7iEZtpbvw6N3OBpxtrZ1GE0wDf76PhUiYyodqXfqHW+WVOV6YlQ3tHDt+dyrQAtu+OOjyMmX5d4ETOQsZVn0blYfFBVSlE3uimQLqVR4w7Ohew77n7CPYju/OwmuxFPgcQKzfdWCnpW8q+nRtD889TQP/X//M/T3786ef8quQJoxYdSdnJwtj4dqzTPa0XGWXEMi9j/zIkZ0/SLpX01ycMu+1h7L9/OaGSyurGCmysM3nyws/RcV3XdGb7JyYaHMdhgcMChwUOCxwW+AMLPAtAc0iAg4jzvVSA+CfRZQ7qKvs8c7Ju/PsUQDx7NdtmDYBKCkPynTlBnQDmv//H/y5g5niBwtu87OLRNnGKHB33h0cdYXhwigXNgaoDBEWYNcorfhOIqr/NNfDCwV4GiM4+u/K3ATfNUwG45NO1Y5y4snG8rjdo0U5+qlDZeaLriR1XJjd3AbqAeW7ta0Q9SaGNyPVR2OUDgE0aCjANzE1Uc7aQYx9AgT7AEf6AGQAEHC7xCpgG/0UuIChtADpyajTgRN/JTwcy9K3tgJecu1nPDhZsA3xtAJiqtJsoaXmH9uXFPJlQOcBhXEolhID22j8yh3vpAHHDZcB89YkMxHOwwTztMAA3tHZEVN2Ad+MnejzjUr1GA03WEQ4UUT7/0jdLndpi8qbZcBZfI0+BHwgeWw59QD50YpNGuDOmIq4zT2dcLdIcMydix/AABvt4+vSTc+zQShvz21w5Tbuxy9jHdoe1f2yjfwGedhlzgNFfgW7HefNEWM0ctUcueh1bzvgENDedesbeWKqvzdcc8qAVvJmffJ0rubqP/MrUmYedR5HNd6ffk4yBcl8Pc0g+tCFRZiE1BwpkKqXyNifvvt6dvH33axenr2/fdAGzx8L3shHvdrSQIPHo6byy1i5hNuSrtBbzq8guDJ3MyUiMUo+hRU90UzRi5dzcdZm/CCCNg43OjDmlnhi12fF2WOCwwGGBwwKHBf5bCzwfQCca9SmP2PbwCIcoLucr7xEw+5SbAzk4UacBXYCRPW4DTuLUP+chKO/evT3529/+34DtT3XaO7d0+b3SQRdo5ehEiDlBQKbOHeM0Bkr6c3i85kSBU5h/6VaHLEoHNAMD+k2qyPz8D1CI5AFvjWgVCIVLwIbcY8Doq5+vQ4sMA+iyj2wACiDEaee94AsAw+Qx5dMWsMxfri8SwebILRKaIx0b1ccnCigSy3alFbAyAH/2EPbkOHHPobdAK97h0+h1TEC/ykUWMoQfIPMlAC+4vqkj6o1LQebltK9eCTAaJzKRYYD3PISGLW1HqO9+aSNw2SggdVtnIL4/n/boOrpdXGTrGC1AB7AB0xMxZwkHPUM0Fi3d6NG+aav9t2OAlmvqYsN2A8BtnRg6fgWJhdnoftUNiNbHAiv2Dnidx4OHAF2yqJDK4tj00Gf7Nsg7cNkHhSS1yFZvM2fQJIidPzJfw7OR74759Jyx3uOIWeYVPtVtwGE0WHMi9RVo+po/ZIgaaZ+3VHfhE8XnFxNzdW4i3PL6TuBBxm270vElWMBR2y5Glwwd29hfe/qbE861m/k5Ms/+yWSsVsTpWT6edHLuaaBuLrT3uzltXOS0+1YgioeXXt6Nn/lQkGtRiEje8e8YZ7zOaoS0S0H1ii4l8SQB0ubP9G3U3cJkGkUGtpzUHnwH2JfR8XZY4LDAYYHDAocF/tACzwLQnOnLRJr/8pe/ZCeI66ZC4MhJAUkFFbkWhXaDG4foSYR5b9lbTx/sNnV3eRDKpwCOAWzneRJh3OWTKyyICh2P/W5EMU6Vk437q0PnXDllwMABHAPX9wGd6gCAOc4S2f4GwG6bRjIOGCif/N/0b771AqEcfHihR44+9CN6010ErnqlHLARUXOD423AJvl2VPVpV4ToL/cZsLIgAOAAMaABvb2DRwFLaH+JHdmy6RChDQtMFG10LZgODEnH2hoIqO0DKhrhTB/XtR8ZAxrIdO7n8VwDTeix20RTA+Jzbtx6w2JkimQLTA7gKM/Q0S9mfjoAmfPc7OgA0GcMoln0K4hcKTEAPfpexnJsGF0zLGd5JPqUqx/w7CbSLmxKc6L1w8PiCagDBGfOkckOJufpM6DPHBibkYehyxsoW33IPeMqZSftMzZshiZ7e2eGlrlKYUTLAbxlYVLbS0uYvHVjKVWG/Z2TT505ZIzlv4dYiY8d2DK0rEbyMs8yRGkz4NVisouhMO4MmK7ZGcX3w0vb8AR2l8SXl5mbuQYs9/yko/HHqzzSem5cRCGUV/1pIsz+bBE5oDk8KtC00daC6jK0Oodi1y5+0sa1F/0qVygX3BIxBRbKxvMqC1W2YBvl5ZjPsfeeZ0PnMePxNOe0yL9w7iex2MT31tg/jRvZtNlHm4uqGzg2DkfzCS1y7HbH52GBwwKHBQ4LHBb4kxZ4FoCOB2zUFBAM3ByWdYQpj1PztD4A6e3bt/mpeG4+k0upzM2GADQg6WgqRhyfg1Pl1Xzyxz0AO84uwOHpUJYGjd4BQnGMjgGSK8e2xKZHo2wBNwUsKR/ANqBY2gWHfmaHj7DAhVOucw5PN0ZxwPtnfw9yIZt9lxu90j7XfUreAttYD4Ag18AbkcKhPhFdNY8rBQBQIMf11YuU6usGwTzpLc5+e3ltyKSd826JZscQ/3INzAQjFKCQ66ljGLmaGycX4KotcBrdTmPfaQVcKcuCJby23sA+Gw0wGxBunNkJcBIlHlAIAYZHxll7dWxu7AvKUmcsU9H2c6rN0EejQIzN8Hcd+TvHogS7zgsfoM0HyOQcTeMUcB5bdPGRxuoyWaoewObne7YCprT3op8DjcqddgWcmOnfw/mMK3CKDxrAaHd2SB17OLbes9izzsnYhwy7GNNAuKd2jQq7ihzSLbZsisyrJ+7VZdpdZD6endmlZmo7vy0eI+L3dldQS6Xd1mcAJ+r78F2esTJGALhFx+YbgjlPm8LXvLuBMpF1Dwa6z9Z5/RXDCKW45tpk1yd+vutoew2Inl9v2iQyk/80i4hyIutiPjJHAyzXfJpPqRsB4dpVwT02xhutmQvtWNo4+aLMuBLU/x0PkY1M+BzHYYHDAocFDgscFvgzFngegA4HT6G7DTC6vcnNbH0kdfwTxx5gASQBgCJPAAGABUxIX5A3PeB5O7rvwAtPyY3mo44+ztBRoNJz19MGGOLo0S8IAYbClxO+s3NDHONlIteIDWjQI/2XswTWRAVFEh0+yy31u6982dWrThadOuK84+vctnDaF7Cl5DL6E/E0u0B4kApdRuZ5L+jRJ7LL9RYOOw/6OD9/mR0LXuT8LDdVToQ7wkb3cEm9BUMBbeTcEWUgAD08+qldXxYks5CYyG9y0xeAf8i4oEtGH/OT9gCoDXQaFY8e8qTZUHRXBzuqVKbYCE/6629xIFr89Qrd/PT/pZUdN08k3NFd4yNL3HhpsQHslmWDPLTZ9EtslJOwpGN0Ct9ZHKxcY/xDi3gFkTEW2jCeruiOfubAjOse44cA3/PqwWbmAn3wSduwNL7m7EWfwhjWOVfe+WAHkyxCvo278WHzUKBYmIiSO86MV2TqHAS4Q1futUXcLMbMWDKMLg+epJi+G9RtedF1jovx6c2KkVsk3QLFQtX3Yeb03LCLl6gzvbZtv2bRVRnpiW8+u3CxWAFi+wRC/NOt9slnT32n9phpO3OmdPFoh2m7z/f30veIrfxKQyYL7IuLLAAyV4d2rLp4Gd9JnzIGymdhYIy7D3jkRRcPT420d/bQAPwD1FNmLPp9SMXobVzGxvqRBe3+/7HGqUSOt8MChwUOCxwWOCzwBxYY1PgHjf7b6uVcX758HQcd5/jhISkdr+qYPAjFjYNuEPzw4W0dWHzXcoaFAwWCBSpx4JO+AZBx6Byjf2XQvo3C5jLBowJ0MhXIcpSNDMeZx+n2p+H0t1MAoIkn4I7uY2SUs3txFjCT/F/QBo3uMBDn7rCX9TjWAQNujkxBy86yWwMaUjIauQpQGfDOaQ/YqaMPHcAYmJQjTQ2AYYADcBdHHuevDcc+T6Ub8A7Af04+uZzxPrwicl+7ITOO3qG9HSlECIEXchSUpTwbZEwKA337h1FAXOQFXse2sV/6kZtg2gHrO+pLdzw2L7nBJ4kwAsTkRY/+2uk7QCdnKdcPXZ/qyZiLXivThszDz0W4FBzNuAPIE/mU8sBOsVH6ifRqDOTRwSKl9FZZCRM4ddoM20Qn8Uo6w1OebJqYH174sGks+MRj+JRQaTljIwe9nsCiPvpn7vSVeqp04Rie5Ng2UM+2Yda0JbQcA6bHZpNmMcCZzlG5L+3oi3rpp66Lp9BzY6P85+7qkhb6kMlLYzbWtnOMDmyjXxrOGGk7/Rp5Xuk3hdMFtOyMq7GZ75G++IXAyJG5XcCfz6+XFkxDO53mqOzGfxc40QZvNvQUzfzKk+/cHtunlu3DviMD3mz5kN1fgrqrI9tg0aZ9M7fnqZm1Rfn4nmyqo29apUDhzKduURh7HcdhgcMChwUOCxwW+LMWeB6AjuuqUw042w9Q4YCBtQ/vf0tec3Kf3TwYx6eMU+PM6pAbYRqAlwYtCwRwuhxeyqrF9n4DdLi5ASRaoycFAyhyQ50OeavHVhaEMCVtx9mDjZrU8ZdDwE06FnikigPmswtcAhwa9a7zHoCCNH20L0AMjXHkZY5CGgxfnp19yIXfBtEAPXmVESbQJu2kG+Rx54nMe+S5yD09PRK9UV1Ac9kbgJFH/fg4u5pQo9wXHykPBSm96XFuQrTbB0B1+XXSCCw25oZKIMsCAP8AYwsBgucg+6JcINY9gFsVRjHSPNjF4mRsUyCY/vs6BEqDnmxUEBTajTi20aqv9BmDtJ+9m6UODLDvOIw0ehKqV5jkatWEf8rt8y26LRgpTaJt06671KXxBvs6tW9lygVgFvvmpHKyu3lQRVpNTjNnwPCM94BKILSyhuk3WX0LKm1pILW/J873uLdnCmqbtO+vFxJz9Q7hfl9yVboZLzLVlgBu5LUw2mM0PIZPKdSWM6bajMzDC33zx9HFZ8anIJospm/at0/aMRT9HJ33qattVml5aVM92GS+w3jMgefQU5buPXwX7gOG8bnI3LNwtLBh+y3rtEyb0prxyQypnZTteVX7aKNJFDgPPzJXNrqs7w562gLuZOphziyeND2OwwKHBQ4LHBY4LPBnLPAsAA20AM6//vLvfRw3sMwx2pcYEOQQr3LTHMDEaXGWjQZHsjrpfBawKU9buLNANtfxcPVn20l2N+iUuwYEG6EMiEOvN5oFkPZn7JVn2TaNqg1fgAPZvgDGOHrR4d48GN5kHlAKAHCugEI+8oqLHfl2edqLFI4zTgQt15xwI50Bbn4eb0pIyNCHzH2lHWAnMloQ4mf9tJkIcfbO/vy5L0JOn+EDrI5MkSV9T5ObILI4QGDRj038bE+WHbWtLZeN6YOGsQCWHPKo2Q/Y/vTp86TUsFHqCiUyIHapAPYH8Axg6y4qGmiYN3I0cpwUHnbvYkaVMczBxsCrsSZTJKksxtBBH0eBTnXHM+Mqzzufjval87KNHs6x0I/NjId+Xvf3cnM9Cr1LppaRYaKfi2/ax5xJlSiLvAF7czMnHRCfqCewJwI97fCRAxxu0ctYDd9Nu2P1nTw5rc7kcux5w8jKzBULGKkzX7MoKl89ap/QNtdCw/w6y9wyX3YUvmB/z8Uwmjmcz9pqg/D5zox+A+B9n8g9+1XP/JzhNJ4ZI3ajZ5U2Xkv38OqNmpFbFUCrvfnR9vl1p7tzpPypU7pqU1KU7uH/BP2SdhIwzwZusL3ML0NbJ3bc835H/3VVtn+9qW3ojy7SZDK8YWYMa4csm9mubdpolDEOXor6ifhxHBY4LHBY4LDAYYE/YYFnAei7REl/+fu/5/W3k3fv34XdgBgOjpPnlDhgToyXaqTHWRzeeYCKvFBOFjjyczQnKd+WQ+XARV6vs1+0Q1QWnR3N9smRA1kAdMicfPl8mzSJiXh7eMvVtfLL9M1ezI3YirjNz9jlWeQ04JRzrazLOQNMcfuRJ3RC6+XLlwOyIyun3b12CwroFacPlNpPOHqJbjV/MwDlgq7hCSwAz+d5OEUd9yrH9+ECeJ4dE9iO49/AvgAhDp7uACGgUgDhMxLKtQaENqi4tRCIjADty0SvX63Hotv9xGJnPwbd+Hz+DEAFdMeGaCubI3o4iSx0I+/wHEATdVo/OgFzo5sup6cevjHAJGIvvQHDLHraIG+h60E6BZRp1F0qUpZ/CBTYNyKZRYk2+H/pA1zCK7qFoenU+XSRmzmZnl3SrHMJnQI25GKfLraA3NCbrQjHxrTwJEfx7rHtLEa2fQvwCrwsAgb8bjvoa2/vb8Au9M1n42QRl37fFkHbfrPYoo9fBDqWbBe740VOiwKKdCESeuzge/MlDxkyB+ioPVMBv+pauOTsIiGpFzPHMjfzx1iufZ/MQSlLIupuQOwiKgakFxsUxOfcwmkvXvQxn8lEvzkyx8ObDsYfoPW9PoudThNFB6wzCqVrgTUzJsI7Qn+dsWIuzR+pQcDzvOZXqvBjj+lSWvQnK1v1/5VVP4vCVrZ96acxej0iDhmjQG2GfoVIG229o30chwUOCxwWOCxwWODPWOD/GkBzYhzrx4/v83qXXOcP4cdJT2oCt6eey6rjinMSRRMtnMhXwEEAwDjuBSYKC9I+DrWOcznHKpLOnDJnvOu5RrQBFsDqNjcnAQB1iHGcG3zpMyAtW+EFVANSBSzh09ST5PgC49gVxHD4uaAD4EHegoM43UhQmcfhcrrjdctzTtO3Eqdug4GpoGu9NNoBHgBJ6SZSXuBQZOqGtQFOBSx0LFiYGwoB/xoy5QU44Y9u24RmI7Vpj7ebtDxC+eTk0xNwtj0ZW1WW1MhpvVzXZABm2Es9Gj5n4TI8wjyAaUDUHgvjDEjRW38n6dYX89TW+WzqxnflvQ49+eoGjT4FjgG9ANuWsZVpMDRDIAeIVquGQT9bT8YsvuTJaoPmvOVzj0Wr8jYywpepmbmilL7smM/RiR0yBwD5/BW0DcOZz6FDP4eFjwVPt0fDr/YT+ZxxPg8dc7K/IpTWRGHx9EK/c5scec3cIzeGePt1Y753xuZ8PUHRuJlHvZlu0UmHXLNS/syffJ49rJzoENcfTXX2ZDYf0e9TLVNvK7zOB/WhSYSdKwx8s4+nbLJVo965vqidQjf9+xUaDuH1bb6Ra+vmnGbp2jd01n2nqmZMQvPpO7btnjIW3/p2TFCNTtOEsHkNo+oxF+lUZqinMvZxXfrTUcVxHBY4LHBY4LDAYYE/tMD/NYAeypyQV656Gjdt1wnOnJMLOKvz5X0b6eNIE9XN9ldAgeIBw4nWBViIEnOiaI3TtI3bTVkUjMfBTx36iVxqnwe1OHfAMTvfEVDUEUjTrhHltCPuWaLcm9+Odj88TKSzQCYERRPJANBx0IC5SBvAQYZJl0h00517KShwTPmc5ySMlKVr5ALKgMzpP3ZxLqVFhDTtI5uoM1UAMeDFoY+X6CB5RBEL6HMeDkO7ABZoTu/8E5UE5AqAQsPiofIHKA/YwMsCZh5IYwyAuvP8fK6+UdD0GwAfPtGFnRgaCwsWxywqUhZ57YGtL50nKrnH/lvaAh62DCv4S6RyANosGADLpvekTe3FcAYrCqWqNmBbZukvGQRJ/ffAvaCuZaMPe5CnoDXzgB5eQDbyTWeJrehxmYf7sLPorAjvmSfuRZYOCEt3DKNT/vx68m0xkLFddPeYqbNIS9PajT6e4Md4nZ/JzW8KiHSHjMmkh7BjxmDJ3IVcmD+cTUoQXf0BuIXa0esmvwBdJJXEUz2vsxjFcM/fzrXqmvEMf5a8i27mmF9VZpzy/cr35DzAWt/7e2OX0xzs+vho7Iam9uzB9m5uNR+9fCcsjLvAYC9HV8o9icoWoM7ZnTlJ73Ls4XTSRMZW82vGzNPvt7rr3NZ4HWzs/5HO1xCmL/uTYxYc5N6twzd1fg2qXbVPZUSrvQg0c+Nb++PssMBhgcMChwUOC/yeBZ4FoAtGEo2qM46DnUjzRIw4aekYHFqjckEsgFefnBZHenvLAY/jK4jlWuvUbJk24IqH4xgBgLjZOu+2qQvmkKc/5wwkAQcAfMFDyvASDuR8gbMC1cgJIBX8xaHqZ7MBn2n5RHMcqgj1AIgCNZHE5WyvA0BL82Zk4MgHpMexL3BK6sqyPHkdfACIB6TYPxq/8/QDKAfADjBzTmYgoTaOnnQs8AzIKvBUAgWGVgGzPOP0AZXoSd7Pn/NwmrSR1gKokQdoLqAsWJsor/YFr0teAKSpDeGbZiMfW0UvckndacpNbH0V4CYNgHz9+T98724T5V4653GMrbMo0HeD38m9nTH50rDj2DnC5x8ANYspP+sbK3bosUCay9rGQikHmwwwnzzwRjOTsoJOFyaLNzk7tvqw++qXYaVoyqz1Sjxzd8ZBlXbGsnM19WxWu0cvNEX1u8jIuXagoj70FKXt7hXp93CadIgxCbI5yrljLb/ZpZ1efKfYy7xXyAa2RGQfL18JqUKPAeHa9ZeffDqPdE0RGXBJ37SlWA7A3vwsQGbrVBZgo5m5wib06Vimjg6OAs7ohfrIUBgfwB8b+o6vuaEOv/zr2/AlF1uvOvK0vq0mFcZ1ZK+Ns+Dbc5j9pBnpP03ymXZlEEYzp/YvJ7Noi4KVu9+fyPxt7uhK3uk/iwgLgLFNGRxvhwUOCxwWOCxwWOBPWOBZAPqJfhxawdty0sr5XY56P/CDQ+agz79eNCIsKgp0cJiNgIrY5eAbBxC6BiTkX24wwdGNd67j56wXWOG0d+QUkflDL2eh7XHN4VQgCTAABs01DgD6CijljywFVyFGpnLr+QZMHD4HPvWQd8HH7hfZ2IHjBioGmMSp05GcIQgIOchFXldbluY7r3p6bll2+/2pPSDgIRZSUJwDxbuerncB/p4AOTnPA6qAo+7VLNIdGQEsET8HudEtpCFb9gHedW2w6rVplC+y51/1eJInNvty5yd9EdzVDk0Nqw+bmiupCz02aLQyHwVMiWwqQrhALadkzFv7S+sYGTVqs8qwz/VVb1zNNTbXf+ScRdJc48PypJk+w3YWYmzjej6dzbHtPPnvZCTlrheVncVkbZgu1dEKJCbu4nKV6dNUnFyXR5XGY75H6RjZxz5oNJqd2s55cym/Bjhnj5RmHsXmFoudA1uujA/p0r/k8zY2xwff2Kl7QdPBotJ4pk3kne/U2Hd/p2jJnvMAmgVKN83I22MmT3myrsux88gRi6RE37zawVvkiy6DYVk0LVJvAedzzx0pVv5fMF8EuPUb+sObLeb7S5fYR/uMsf5DY/SZnt4doREiG0iPxFNzvB8WOCxwWOCwwGGB37PAswA058yp9Wdh6QBJg/Czf0FOPdNEy5z6udcDOPpQEgU9AFlOcyJGomLNr81P7Gd15qKJwCInt8DAcnq6c/x1mkBF+kr32CBLvwHv5+U7QCKgUeiuTjz0AiLsxHF2mpvoIpsoYUFlHLD2ffJe+HUbLnLGIStH4SY3Jo7DDp1cb347mjf8ImEWCX52tz0bHe57MxrafkqfPHDn7Mjh6wde2Be7QCDn/hwcPflEi6+u54mG2/lrA6SJ2E2EMQ+sEA1OhBZNAHtHgXMZmZNOcS9n/K6AOB3bZv9iIJp6HrsaqoKQ0KKLsRV1LkhNfYjXDt0WLG3xAsJEusf+fmZPCk0WUBZN6i8ugXc3RE5aC7oD1NYYRz72uLqaCDk7z68UwFBZYpuT+Vm+tll2Yh/masQ3FeTV33g5Kh87F3vSL0CyAHDGdebu1ttnXun3mF9LzFVyna6F00Sjx77K6YkXHoTw7thlO/JvxtsFZsYV8JaalO8CAJzXKWCb6wK/0GJrutIdLePcvqlDpTcFPn7s+GHdxSkQmT83Wfo0Lx2+X1/XUzX7K0DmoO8OeWccchpe5/n1CHBHD8/yQ2DZduZCbKY+8rge/fyKMvJrPgTwnrGdolCrPClPf5YCivHIZe1H9xnLlLJFHwGe/1sWyfabtd+yNzuZV8Y+8ywn3xaVFbs8h8f+Ls/8sPDZCxzyHcdhgcMChwUOCxwW+CMLPAtA837AAvdYMBOny0FxeBzSPQfP4ecaUBNxbvQyDlabghnOtuBg2tVZ6h+nXoAbBy8itiPY/K5+orUAmsgUAKI+SHV4c/h5Ecxe0H1UNiH7imMO7Trn0EELDEFjgARdqDNOVlttCgbJmT9OOlRLsPmWoYv0vilJBFb0d34un8gYYNBWoRWCAQKA5vz8rgaPAZ1XWQgE2D4kTSIyKa89a8dBDID13aJDng2Og5xRqr0BQTspBLoOWGnYjt4LhANrOZoHHVoFEeGB39gCYAyApWlAZOktml+Tz1uZ0p+d79l6LJD+xpNBBpDlTrMBWLlOxcyF3Ox5n3auN2DqecpESY0Du+PpwKv2By7zR749LvQlc+cQG0U/R4rSR16w/ilXlxda2hsb+qHrtfW3iEGTDNpO/+njEu+hoUa7NnlqSw4LCLy+ZIu2yhfbmPfz5L3M55T2Zk480q6/PKTMrjTkwjv/MlYB1slQYROyzo2u86CfswhjoTT2rhVnTocO+foX2g/5JcHRFqHR+ZRa8/9UOglD9V/GLfbuuqI9LG7nu3naBwj5TnU2dGzNOXbT3/yYMWFjtiqBoVIbroVHKowFA5BL1XdN057Ue06UTcY57WPzOfJQodCgt3a+hTNGxl8LfOgwqUF0nLGa8orSXn4JSWuLpyg8Npi5hspxHBY4LHBY4LDAYYE/ssAzATTy4wILsOLFGm2MwxvHCioMEChgXW13H05PdI0j7k4McYiAEafHEZ/FeQKZblADSCaPdFJD0Ad2RJA38AVStMtbaHDqbnIKUEiYrGA8zlU0uLsTlIebA0ea7WgrcN4qQ9pw4JfAQqLEQEPpp57WX7N7BjkGoA1ocV2drgLM0mfr+pAbsgQ6WQQQQX8izkBK+gQU7IjgaQD0ADjAdW4aBFIGSExf9ixYALoil6crksBCQkTSAuAJAIUvHo5CoIKcsYmb1hzG7cuX8EgLYEj7q+uAishJXvQceABzj0kT8Yhy12xiZ4YN5gpmgaTIOHUDd4xBwSH9w48NGNIY174FeIaPHHPs/nh+i4imU6LAYZhGPvuvYzzwK9cL/AGn5tLwXSA6MpMREGM7x04X8IQ/chlT4jlcYzVPxcNrLRJUpvu016et55pN8td5n76i3GxauTRDL22edB0G6YsvQvMdCNTOuMx+zbotJgXVtUf0m+Jwi57o0gmNBM2R6VtHAF0ypMS8Ps0YdI5EtuGpbUlUVnVVnK3TlT4O5R2P8OlciMxdMBvvtGHbtgkvdOltUUF2Ef9+T8mS1vtwtcRbRaQcfmxY+XI5aSizSHnqW1q50iW8+uuI/0vSr1Knnp2f5uc01LSdyOMXpCGg7DgOCxwWOCxwWOCwwO9b4FkAmgOqcwzogK+kPOy784GWiZBNxHCAAYC9Ik/prH5uQpPCMdGsRrI4vjg9gcy5OUv6B+Abmo0YRuzwA7pvbr3s8+wn20mF4BmbKgKo5QW02MuZsz+5JfMGHXGyK6LoIQ7KJ90iDreR03Hwp7mJaT/tcAO6IN7QA+yBJPncwGLskJ+RX756efLzzz+H3nlu5LsZsBI+ddKRTZSUnpQAguyi8OL6VUGH/X7vH5LqAohE7p3qcRlA3keBhw+7WXTMjVsDwAEMMgDQN9nz+eryujQAN4CikfLw9gfc/NNiIOUPudlSf7qghYcxmMNCIhKFtpLrFwM8tU1yecdJn75Sn5Lhl/PaJDLU9nrnH738Fj9bCAbEBdxchd+ArAGAbaPxApmT8rEWDYBbdDKnHF2Q5NNcQgMwpYt54MWWjpGBWgPqzF3nHmADQEfKJ5rmQhctBbSjRxcquTnWHOg8yKcFnEXaPHFzbABMhnMXSF0Qpl2WJ+V19WAfcOkzaxcLbclJyoj5BFpzbs6RT0oGOzq6KEwf41kAnXo15EGDjB6NPTkqX57sbgFBFvfPbdvqh6f5qG4WbWverZsT0awOtc/IR0Z9fXdOk45DevIpC/XK3MVt5mgZpIYeT2k1ZAy9Edl3berb3RuhYpOxypTSz3zZh33e5xiu3vfNgPQ7717kSK2dZdK/NzXn+9bvAurpZIElDcUYdBg2g+PzsMBhgcMChwUOC/yOBZ4FoNEVmQRyAVygEICzzdU3ZzSALa6qZRt4cKiAxl0A4+nNpEgARKJBfQVkABptF+cHFE0UdIAiOqWVPo2YxhF6NDUQzTPKg5RK0Ta5LqBKDYARqVuubpzp/OQeGDB8gtyBE+DIwZ/fZdeQ84sBbGjRD0gXyaOHTzKiDVh4eAsADfSOTYBsTnpAN3Agz/SHNz+evPnx5/b9/PljUz/kcqNZoLL0m0dJT5rHgN/YzwMxloC1B5sGCBUoYpBrYGJSAIJY8RY1plDk9Lnt4pwtwrYHOsAaYIQ2sA5Qar8jnUAS2CSfeKctsAtQEsYgytOBPrZj/+HbnT/C02EOnWbuUEjb5kRnHCY3egCap/6RhQyVK/JYZGFE58fzjAt64Z1E5aHTMcm4RLDKWzlGydFtFj+zcBg6ZCy90F+4tTJqP/aaBcFpFxn4RI7Qt1DxSZcqEsHYIxW9HvA7UV+2oKfDPJ9jlJmHmMR+0aXAN/NY3300YlobL1vFaOw0ppy5vb8vMcvMh9y8i9YMCvlDLew6xvSMTQcoZ+57gueS+ZuMM3fnO6gvnuQiP91HB/OB/eRem794doFDvlxrOzbx3RrQvsew5ZRkhrQf6yhwGX75NE5dMOfT4hIvczxUtcpr5nVOCDay9SJzKDRSq6K21Wf6+v9K/+M4LHBY4LDAYYHDAn/OAs8E0ON0AAYgsc4rgGU71G9AmIOddIdpx6kCJ4B3tljjiBOZi3+r42y/5RQ5PX/Nq031gCdR7JS2wwCEcaYirQO6gZDHgCgHB45vgeCSg7Pd/bUBwtVPVDMR2IChq0R9t0MuuOgDOiaSVucbp1vHDmX5l5co26dsH4feAIjInHN0NSM/Xy1d48V6UuCLFy/yIJqPSb24CVD/3Dbx7aUN4KRb6dfHQ0T4hKaIXOtImUoA0esy0bceytjRK+VjST1Gd/I2+hiZbIN2mag1EGgxJELqk1IFPe018vcmLdfRyfEEQgidV8cAOElEFyg3zn00dGoB09oi+cFaGDdydIx6wyMgBubsMV/8qzwgPQummQfDX27waXR2o6LxaAQ2NEZPbcJpRBs7xR7KZjeNjEtAHmCGNhv4NcR8Jefonr3EU2/OxlQpE+GcqP7XpDeYr1enYztsjfcsqGZ0xh6ZN40kz9wl40RMyTbg02qATcozZUvl2oJsCujqc/qMndKgdjb2+mqrry3mqO2TPlkGdSwsBCyqZu4aGzbwOfMiVzMHWam8fM4CWB9QtmMWvuw2Npqxxth3B9BG94l2erHDXsQ4d1Te5kOHGGFLnxyt/vZGoZSR8yHzxPf5+iq/XCQS3V9Lot90T6P2rSWnf/Vf87Dfw4xZdCUj/sPY53EcFjgscFjgsMBhgT9ngWcC6HG4WHGMwBfPt509sLSjYhy4F8fJ+d3fu6kwaIS/y8+swA8gri8wB1gN2BpnCloM+PSz+dBByxZ1kws6gEf0FnhpNDXAaKJuwEKceSPjoZPyRt44eA57yVy5t6OP4BzzgM843OVoPZTFE9iqjx01/P6bPnXs0Qf/W/sgJ2q4FxBzo549qocfoARAv/7hx9rj7W//SOT5U14fK9t1QAHQ6UbEgtDqO3I/2iYuelcH9sshncMNaiLwUlncoLajbeRWHi2TnpKo3bIdnTs+uckSkGRLQF7ZxzxV8qOIZ0CGyCJdt47pdvIlOdrQyqZRGBd5w6LlXfSkoUXPqWhmyqtHMNOOcmujHKwHdZhRkSOiVJ5iphSy7QCdGavOi2k67ZdOxpRdLss7BEOgcyT0d/TcdRJj2u7hC+AcIL/GFl1RcTpr97T/cOq/Js3jPilDbRqZB3AHnKYdwOghNI0YV6+AvDXWA9KIknYZJzZDv3n/me9AdRdn7OdIOwC3i5MML7k7L6MOXuQylhad0mccygro0xefJ2AYXuREX5mxtz1evhW19bap8aeYnSvQdviO6ouufvQm+3wH8enwdezSuXKqN5aNOqcv2S1k8UlV+6tTrr+5cJqHobhon9isR65nTrkij2tn/tDKZ16T0pH6VF76jya6T/vp0wq9dc5bRpYQtWfeU2hez68GY4tcHsdhgcMChwUOCxwW+BMWeBaA5sQ4d4CgYDMObCJbiUy5qWwLsBykyzo/jjA+juN3NK0gjZXpBEA0LSORKcCcUwQ+RfaAHD+dA+sAibzX8ZBarQipm+jCE30AGBBAHKAL/C2T8k4bgABtjEcHTQEFkU4gmMsOXQ64YH0ekV3a9Cron/YF6yjFmRf0pKenyzWyt6J6aANcbprbUeRPeRR6wV/kHJsOyEAb2CZx7+MSNSNM3gaQrp/Fc9VoaXT1sIoKXGNqmraRhwx+pv8amhMxjl1Th5827CDdxOPVAeZXr149ybKjiO2f9ncE6jG50hYKIbGKZqyM4Sw+6A+wsXHsCEDlmgbk6qKqwC5AkXyhTaaMXO1dGY29McxRMJ85cZmtBzUmNwMBZaL/Z0CbeVWBjF0Ec77olkHodNeN9Ac4x8IzXzp/MUoXi5yr5MY3aloZJsf829xads/gPAJwOuWgQ6Oivl2VLW85+f/Zu/Moy66qfuC3pu7qMQMJSSAkHSYBJSCIiIBGnHCecMIpjmv5j/6hy8U/rvX706Uul7pUnF3OAyqgoqIiURxABgGZAyTMCWTqdNJjDb/9Offt6ts37716VV1d/ar6nOT2ve/ec/bZ+7v32Xufc897VVbj6SFo6b9UjCb6DK7L58IPWcLW4UOW9ku2Zyd77qFVaActpdhmjAvtlfI46NhOhR+lxTqehQ24BzN2zjaUoq+CSaAWm6UL1/EZLwXTkI9u6FL/qTv4rG0BCX7IRy/OwRLKgzb04v/4L9rAsQgRHZV7Mb6KnQR9fQ+eDnAKLLK+VsEH/suENmqTAeZsMQhHjVIp/nG9Rqlc6iuxY1d8Si0VgYpARaAiUBHYCALnnUBH5CqBVBIdlyWAlQBVArcgJ4mROLWBtQS4uKdIUCSIJdmSQERFbQVrAVJw99uuqktyCi3BNW44BFR1JU4+l1W44KMkQRpFsTfXYqqY6hDU28AfK9wYHhRttLfKZ/VNc3Ud+raSNr/Y/uRZ2WUd963c4an0H4mhHq0Ex78lgWhZaBMQ3ZQkN8541u748WMlaT0ZWz4kL5ISyYiEpU0Mi+Cl/3jQ4hN8lgSuJK3tNbomF0tzwU9JXFo8SoISzaDXyj/4QmfkomUi0gLeYqh9yLMQR5mclK0VErnQAwyCXwc8Iv0s+GBIwt4m0K3+so56UjA8lOS90Ii2wU+LS5BpmWoTt0iA3C8rkYXjwDxklEiXes5Rim0MzoV29JF73ckpFyzYRR244KdN1tq3FkWf8LIqG1i3X0aMRlbLowu2WAwmaBX7ipvsxRsR/ZVJkorleZvw6SPS4VYOHMfz9g1Kuwc4GGpttwiPv1a/dE0eR/u7z4i0PBRbiRVmfbNLMmrnvkptonxWJ+Riz8aP/0OaInuLdVuPgLZzxMN2PMb48vvk8GpxioYDOzQOqJpNlCQz7L+Mm5Jsot6OvVwVL5AECP6KY8pXcAna8MBU9lHeGoVccav0HQ9LQat8WTX4G1VSnkIyKtHH6Xgr4w+vLMTY891CfJK1La1duY6rcqvlp8WklT3otITbJvXfikBFoCJQEagIrIPAeSXQGfxLaJKsiIgC0SARlKT4bDUrwnYJ+lbTSjiNAJdbBiRoa0ljUBEAkfGyOZOg8np9tl3V8mew9+wJukHDSt6pWDmVOAqg6tkXqW80JG+S+5KIxFnALIlZ9BGXg+0i7cqdn6trk0H9W9Fqf2NaorM39isfjC0X+D8Tf4Ck/XPWQSuCfllt9II46utbInDq5Om1LwTSAbqlXoFoJbZ5tElz+fPmkeHbD60tniXwSruC27azraVNFNtV6pJABc4S57beTPQZ2wxK8m0vb0wQAh+8S3ZghT58YCYxooeCa/DW6rBNNnKvLgyLjm1RkJPMtvuEYYoeTPHl7HP8X/BdluT5gGrotiStrCNu4bUkVv6Me/AqASoJV3ymG3XUt9XAL4j4a4uZeKGnTkl60AusyKFRuzWlTWg9J1wrd5vQmkhZpSWnHHlP8FEmbkHfL5yws5a2rQvtpOf0TLvX1hdTvSEg5974xRTbJ2BAWWwEhnhwxmvZHiSZjX0pksX47mPUx32UqFcmS7gL+eAGY6VMHqK9e2zFREaf9OitS5yKfsvqdaxZ+4xvcpw65Qu5YYPRXyb7ZG0T7qAdmLA19Oik/R1qTLV6YXdK2x9eJMLkbHXp5/3w6RdjtGl1NFgpDz7KCjg7iGfatfYQD6IUGxpgI4nFt35a/k188TTAQoNgpozfuIy77a9kFMpaR3v/taTVVr3YwWr8SAd59+5t36Jo7RmdOK8VhhPPFP/it/1DR+VW/aciUBGoCFQEKgLrInBeCTTqgmMGS0FV8pfBzStWwSv2P5RIVQJmSY7a+xKBs7+skCth7TOJH0K2HEgKHRIUiaOApx/9iYACqi0RkihJR+kneJMklJ9+02fw4lcwSvIXNCWDeMO/L3RJYYTVti8ykKvdW1y2GkQCoy7ipb9YPZdk+At3viAnCZi1nzOK+1a08IdmSWokUpKI+K/0GQmdeu5ZiZf0kETypZDD6m5JduMejCWa+ItqhYZ6EmjJiAwBJlbt0W9fsdtLHsm/pCfa2Ju9FIkqWvAq/EU7eJK+JHZkjHvBWSSAUdeTkKNdhQ68CbQmA5kg1yYq6JJD8ldwjD3G/pgIXkqyGPXKPtygL5kr/QdJNDLRg7vP+iVLfnm0TbiCTvRBb+WNRvDX9o/lFm8N5wfY4jQaFLniVBLfkiyFvlo68Tj6movf6M6i/6BUdDPjT6KHDflrJnhhQ6UEBvSGp3byFLwGTTLjg40tlz9BH29Z5vcGLQla9tkmc/Z8t0kne2bz+jx76If+TSSKncJlgA16dOCLfaW/aFvsIiacy8ETOuQNVoIGaw27Cn7UxbNzmUChV8aLsTHoO/ikYpKW8Vs+Ba1iy+zVKjys23rlfvQFz2gw0Fk7uQoSA/7a9jAq9+AaPJQ2baWiJ0yXe/ZNU4k+CRE85L/tZ42iP3fL//iJS3ULjn7qcfALHSGjgudS2Qe8DtrrL2U/S1ulS6gUOGB/CclcRa0IVAR2BQL8lhjX+vTtFWnTCbTAIxjv27ev2X/gQOG6fc0s9ErGBsEwA12c2wS4XV0T5DNx8nNwuc9T0EZXcgEY2yOWzixEkIvtBVav42b55YjBn4HW8eLefWUF12poKVFHYmRF9uSJSOaChgRGyYSr8BjBtf1d6fht3vhPgPfrE/rFw/79B0py64YQ7st45IroXBInQfp0fGkw1iFjL3YkjpEIWy0kQ7sKFr8JvbLYBvPyu7oCuX2h7e9f5+txwV3CrP+5WE3HI/n1KYHDu+crK5JeckiQIsnESyQNrUwSsbNJktXmdhUz5Ni3nx2YGgAAQABJREFUWHA7EXj4YpxkA+/tyq9tKKGLwQqtFVMYl4Qu+s2zvabu66vl18p7TDyCL0XyEY8LRrDDt7+oqA98aLcaFSTuEsxTsbe4TdzD7MlRNNDqR6pDLkU7/Za+g0dJpL7aRJgNadtOJOhZfXbSJqUtNvgJ8sVuyNFi2PaoPjnQV5zI57+STLOJkKHQcy/+K/YZMpFFezo1eWmT2ExSw4ZiUrV3z2I8aydy6hIL3vpZiN+URstzNMjVnl23NlgS4KicY6fIXmxgoIuQGRbut/y3WLWfrZB749Pqs0gceJG1/EW/6JtdKWiQs3wfgZx49SB4lRgHR4XWYkzG2rrtW5vST8iCpmQa/6UfApbm0TKufUp8WqxbfItu4pl78KabNtmlh5DLUTgZ0OvKiX4c5V8Xgz599jN6fivaOHIf5oPKcUKrbZkToFI37KvlDc3dXwoCXo/sDYTZfHyhuJaKQEWgIrBjEPCHDfiueVGi9enbyfumE2jJgC0Y/mDIvffeWxwwxksQjiDquQTB1oV4WAJrG2zbFSyJWQZSATcDqWuvxQVRq69t8iKotjT9tNx80JVslhXXSHglq1ZxBWDBspQItNaebANAR9+Skbn8AxFxLXi2gTu2N0R7NP3yhVjrmT+u0v4kGl7aL7FJZv1yg5Vz+7MPHTpUeMeXHtsEoP2lEEFb4lW+ZBmJCtbwLGlBm0wSzXZ7gD8MEv3sbVeGyQLDgwcPlGRKvzBp6bermZ7jX3IFt4JVSWAk++0K3Fk5ImmPPhcX9w94kri1q/74KnvYw/7QL1tcon+JErnJK28pBhoXzNQfatkTuJe+4x7s0NEfXS7boiGhH/yHP6VN5lbjF0j2F9pl/3hgpHH7O95nf2/atKW0CV4k2eR1YCb50V/iiF+9FDsobds2+NFOPSlCmYAFbyY7dJF0YUkH6hX7jDYFg8Cp5aNNPos+o9929bZtI9E7w86irefkaSWO/CRwmpk5WGjgW/GGgj2WNy0wgm/8oz86KLIUuWMSEedMdJMv96KLYk+tfbdJd6FdbGAwXvwsH7li24Lb2sDMJCPrtsm5T+rQWPAVmJHJdh5/XIiTKjgZz1HacdPyTKQyCQr6pX3YvXv6hVE7yQnbDlr498zZ2wgJvusgv2YbaKBXVrdjosy28Fb+11gJOfDQFjqg2VY/8aEkzpLi3NYVnLm9VkipPtvwe+xXhh+zGHDWD61V3bUX7Mwv7txz973xrYbwVWV07Fpxq2AVgYrALkMgomBzojnerN4Xi1jxB+jaCL99Qm4qgRa4rHDecMMNzYtf/OLmvvvuG7zqbgOZREAdgbkE7whW7jlK5CvB61wh26SnDYraqtsmMtq0kU9zyYlkwvOyrSCCgMDeDaYon20vcLbt3ddPG3cj2EaQFoJbuu2rbUmokklVVCoVkpeWbpvAtny2PKuvSJrVsQ+6cB7/RDdr/KGT2JBLstAmS23wz+QtWgzqScaiZrRDtyuL/tBK2c993t4nayaQhb9CxxWxkh5dtZ9b/lo82+fn4hctoqL6rX5bDNxt1/VaftpV4qjYdqQv1/YtuIpLfKEvkSQbIdHM5Bcu6q6VgZwodAvc0WELhXD3Ybk+i0P3ETmV1Jv+Uxb30UweXSuJczkP+CkP/BNV2iQu77ScZmJHtgGZQYWUTb9utc/Vb/vL5231tu8CWmu3baPOGDkrfrbXpiToA9Da+y3ObAI/+lOvpT+gUT7HdYE0XFKMMW2R8W9bv+XLvzgddFFuqot2qVd0iu/4v8jWttCmJNgD/anflrxoe2tpxb32Y1ZaO4PhbNu126V68T8hpzqFybWTPtyMf9lxjPFrr72muf7668uiQGJRKuzCf8hn8eOxNz6medG3vrB5+vM/u0x4W/vYhQJXkSoCFYFdiUBEo9hhcKY5dPmB5klPe0IsaB5ci2XbIXB8+X9Y+Fm/a82snvozyFYpN0lmREediDekhgCwtf3pZESfoyL0EL42dmtEfxsjUmtXBCoC54FA60v8es5CWYG2On92UnUehKe4Kd9p0n78+InmgfseaE6fiD/IVCasU8x0Za0iUBGoCPQQsBTCn83vmWuueNQVJYH2owDbVTadQGMQ47mSt10M134qAhWBisCFQCAT592+Ag279N1lC1V5e3MhEK00KwIVgYrAhUVAEh0vEmMrXmwf9R0uH7apnFcCvU081m4qAhWBikBFoCJQEagIVAQqAlODQLtxd2rYqYxUBCoCFYGKQEWgIlARqAhUBKYbgZpAT7d+KncVgYpARaAiUBGoCFQEKgJThkBNoKdMIZWdikBFoCJQEagIVAQqAhWB6UagJtDTrZ/KXUWgIlARqAhUBCoCFYGKwJQhUBPoKVNIZaciUBGoCFQEKgIVgYpARWC6EagJ9HTrp3JXEagIVAQqAhWBikBFoCIwZQjUBHrKFFLZqQhUBCoCFYGKQEWgIlARmG4EagI93fqp3FUEKgIVgYpARaAiUBGoCEwZAjWBnjKFVHYqAhWBikBFoCJQEagIVASmG4GaQE+3fip3FYGKQEWgIlARqAhUBCoCU4ZATaCnTCGVnYpARaAiUBGoCFQEKgIVgelGoCbQ062fyl1FoCJQEagIVAQqAhWBisCUIVAT6ClTSGWnIlARqAhUBCoCFYGKQEVguhGoCfR066dyVxGoCFQEKgIVgYpARaAiMGUI1AR6yhRS2akIVAQqAhWBikBFoCJQEZhuBGoCPd36qdxVBCoCFYGKQEWgIlARqAhMGQI1gZ4yhVR2KgIVgYpARaAiUBGoCFQEphuBmkBPt34qdxWBikBFoCJQEagIVAQqAlOGwPyU8TMxO6urqxPXnZmZKXX7bfL+pIQ20r5b13W3r+71pH2r16W5kXZZd7P9Zvuddu7iRfbuZ7JcDDz6PIzCNHkbVT+fj2o/bfd3mhzJ77TinPxNqudhcqDhyGd5npTmNNcbhc9GZRxFh+wbpbUZvEb1v9V9d/tx3aXfvd6MDFvVpsvjOJpdfoe16T4fR2danu0GGaYFy63mYyaUM3kmutW9bwG906dPN465ublm3759axRPnjxZnMD8/HwzOzt7jkM4fvx44zhw4ECzd+/e8nyt4YgLMGlz6tSpUl9f2o4r6h47dqw5ceJEs3///ubyyy8vfI5rU59tHQJ0dubMmYI5G1hZWWkeeOCBZnl5uehiz549W9fZBijh4+GHHy58LS4unmN/bIyDd7/v6LVxHDp06Bxb30DXF70qnRibxoSxSZa+nBebSfpZWlpq5oK/ubCbaS/8TPGBwe/+jg/Et2fkYet9P0gP999/f7Glw4cPFz1Mmy6mHfvt4o8OxRKFLieNWxvhz5jUB5sxLtkEm5mmwn/gz/jkP/hJBT7GAH7lAo5uIRt7X1hYKNg577RCZjKQX+6Ssu80OXYTvztuBdpAkRTdd9995ZAQ5cC44oorSjDwXGC48sorm+uuu64YmwF09OjR5qGHHmo++clPlmT45ptvbq699toyqNYLHIz2fe97X/Pxj3+8GO5TnvKU5oYbbnhE8M8E4dOf/nThAZ933313SaAf97jHNddff31J3gzg9fpMQ5PwkfHBBx8s/BtI+ukX9IbdV0/y/uhHP7o4nX673faZjUg02YDzNddcU/Cnh/e+970Fy8/5nM9Zs43tkJ9Nsj08pe0KhIKUyZhgQM9HQ8ePetSjmhvDtnwW0NJutWXH7JYd7YSS44EcdEEWdsyGH/OYxzRPfOITp84m8Wqc08tVV11V/Ec/IF8M7GHJttlR+j324DP/xJ4uu+yyck7/8unPfKaZj2Tisz7rs5qDBw8WttGgg49+9KNlPPCR/Bn/uRMTi64uYER/5OMzjbv0ieSHj+TDeFuvaA9n+ErOFAkanCWYjguZxOjfmDepNm7uuuuuEtPEHXaJj/MtsDEuxSuy3nPPPeWAk3j12Mc+tvioi2kX7BUW6Tdhwd5hz2ZNJjyndzGOv/cs7QB+sONzYMfe6X/S+Hu+GG+2fY519udIW8A7v0mOWi4uAut7kYvL3yN658g4/te+9rXNv/7rvzYf/OAHiwMwiCQjT3rSk4pjueOOO5qv/uqvbr7qq76qDBqJ0z/+4z827373u5sPfehDxRG97GUvK+dxzoGDcTDeV77ylc1f/MVflKT7J3/yJ4tzEVhzIKrHYaP/x3/8x6WNZ+9///vL4Jf0fPd3f3fzghe8oNAwELTJ9o8QdnCDA/hg0Hx9yPuf//mfaw5du+yTQ3GtuM/Rkwsunr3kJS9pvvd7v7fIO0mfg6531Cnl4kzf+c53Nv/7v/9bHOc3fuM3FsdK/+wGnl/7tV/bfPmXf3nz5Cc/eV38twIE9vNf//Vfzetf//rmTW96UwlYbIXDl0ia4AiIdMVur4zAcO+995a6b3jDG4qdk0tQ+7Ef+7EdlUB/7GMfK3ZLH8aCgC2h+7qv+7rmyJEjEyUzW6GD9Wjk+MHvH/7hH5aJzHOf+9zmcz/3c4tvSftaj86Fei4BYEdve9vbih3deeedzUc+8pGyICDh4U8EXX5GcJXg3X777QXjH//xH28e//jHl5U5E7P3vOc9zd///d83//Iv/1ImZMYDv2TRYScXsv3f//1f88///M9rfjcXHD7/8z+/jPlnPetZJfFaT06TKD7DeHXN1/OpkrDnPe95zfOf//ySyKznv9frZ9TzT33qU83f/M3fNG9/+9uLniWB3/RN39R8wzd8Q7HH802g2Yp4Kib+2Z/9Wbnmf4xRyedTn/rU5ru+67ua5zznOcVPXSg5R8nvvjFnkiimwoIP/fCHP1ziLPktNkgm6VjyD58v+7Iva66++urmjW98Y/NP//RPTY4TenvpS19aJpLGxrSXjGPkEM/IbVJPH+K5xb+LoZNpx207+dtxCbTg9rd/+7clETJrfnY4wxsjCFtVMOgl1ByOYC2Z5jTNogUYSQpHyBjN4NXncNcLjJJRhirhMfs1+LRTugbsnoB12223lcH7zGc+s3Ho67//+7/LM0kRJ6VI5BSDokun3Oz8IzBeEbx/9md/dun/Fa94RaFFZomIAC8R4eA5RfLgFT7wMNFQhyPybLcWGJL5He94R/PWt751LQhICjyjR8mblRY4uTcO963AST9WTtgku8WblbBM6jl+b0QELbbNJgV4emJnAoTzJz7xiWK7Ah497qRC3lwVggVZTezImvbofKF1sR5m+seHifjTnva0kmSavLgvmRCUL1aROEsi/ud//qckdBJgfoV/efGLX1x4Tvvm4yQN7Iqv+8qv/Mo1X5cr6eqyTUkZP3mxsd8qXMlBT09/+tNLsssX83/khaGVSRMJK5ejChuADRxf85rXFF+irbH6zd/8zWXCcdNNN5VxOYrGVty37U/SZ0IgeTJZkrhvlR8nj+QZRvzlF3/xFzfkgs1//Md/lD7JnavvWyHTZmh84AMfKL7TZEaM/aIXvrB5XODCh/AnnjvIYjzgOVei+R1jhs85Fb5T/BYbd0IxVvn/9DviA53JZyTXtVx8BHZMAp1OTRD5rd/6reL4v+iLvqj5tu/4juZZkRxKJs1Arah43SHhMPBdKxyDmRvHYCuG+pzqpEUS4LW/Ga6EjBFnMMrgb3ALWJyuV4jqW2WzkiDYSZ7MGhWJtCOd5LgAJsHmSG+88cbSt2RcWzwJ9F//9V/ffMEXfEEJGBy/Q5Jupd6MXf8ZMPU9ri/Pd2IhM6cisXj1q19dJicmT1YjOFP6MAERFDlRuI0LoluFAZsQ+NjdP/zDP5TVQYHKCgKbNIliM57ZYsK5051JEzsz8XHPhJAerbrsJP3hlc1/3ud9Xgn8ggA8yDeNcuDJ2JZ0Clb//u//XvA3fkzCrUBuJ998Cz9mYm4CZqWQDT/jGc8oK8ZsySQ6/Rl/Z7LGD7KX9FGnw4aMEfTI4q3Hs5797FLHlqAjMQG/kNsRtmo8rUeHvCYEVuGNcckULCRS6Q/p1pscdYfpEk4m2SYhr3vd68rkxFg0Of/CL/zCkkRLbM53BXg9WSRO3grQo+TQ2NmKcZPxip+xui4xJbOJO3tiWxabxFC+80LLOQ4HkwVx85d/+ZeLf//Wb/3W5nu+7/uap8aWIwk0TPhOPt2hvjFAt+Kvz7Ajy2LUp+9hOh/Hw8V6Bner6/hlj3wAW9gKG7hYMu22fndMAi0RMds0YCTRHJiVBAPJIGdkBpSE1TODyT2DSVvPJEyeSUjd40i6R1e5OcjyrM1XfMVXlBWATG7yWbaT6BioklZOSFBz4FPC5NU8xyT5lVBx6LYQSDAEr3RsSa97zmRfws2ZcxDqWy0T2J3xlfJwiO4ZhG9+85tLou6Z+0mrS3+z130M9DGq9OuqN66+58PauN8vgoHkGa5WHH74h3+46AtW5M0JkMSB7t13r1vW4yXrTsqT+vqSMAoCnDmH+OxIXPChf3YluaR/n239UU/RzxXB55FIbjwzCcBjl8/udWk0wT9d/vvtu88mIHUOL/36aOXBbiWmxqpx3O8324667/ko3jbSZpK6xhb7uOWWW8o4+93f/d0yxuhhuxMKPsUqsZVwfHiD8qVf+qXNd37ndxa7YUeZPMPIeDdxTF9ny5mJADpsUTEeyHFLJEs3x0ot3ajPRyrDMOpj36+z3vNCOP7p1xvVX9bvnoe17T7Pa/WMKzLyjQr5j0UssLWPn2CL3UWQbOvMl9jyZ8zCTAxBT+G/hyXPfTxK5cE/o/ge10ZTeqJbcogRfHe/Tf9z9juqz3zubGJ2Z0wSTOBtVWIH3nbZDy95h5lxgAdlVF+eDeuvX1+d7r1hbdDKov/PxKKYCaOYaRJkcvSUmDDSgSK2Sqrp+Xd+53cKRsaIfowFdp1jJO0/6Tt3+eneH3Xd57nfvv98FB33+227ddFxiOlksHgmBogN49qNejaKr1H18TKszUbrd2Xajdc7JoGmOMbDmQkIgnC+WkpjM2A4GisqX/IlX1JmbRJp9RXGqI6zop1g6VivqGMAO/olDU0/+JPo6EdAcvacs1asiHDgf/d3f1f67TrxpNOn7zP5PXegmzyTJa+zHcfr8MzA42AkaBLqpJF1t/o8ToZhfW20/jAa7sHdaorXnZysV+5W7bPAgvyOUWWreOnSF/RsVbB6hT4bdtCPQneCcq6W/Nu//VsJ2mybzvfEiqfAljbbpe36fHnervbkZIMOgazfb37Oc1/OcZ830mbSurnXlR0Z88asibE3GpKKHI/j+NqKZ/yX7z2wC2/YBFFvJayEWkXt2wW7YuP4ZnvetrG9lcA8/SAMUhfejPXLJBitV2e9590+N1K3227UdeqGDhOfAzGGYABPe0qPxGTIPvG+70RTAs2P2BZgsivJzFiDHrr9shkZJmlDn3SVCfxW9itBFavE0oxVZHNk0tzvbyOfh8k37N4omvyEN3T8p+INnTcpWdCCDT9v64Y30vREJrav0Bf/OUxnnm+EH/X75XzaT9JWHbzTvzO5xrUb96zPu88Xuv6wPnfTvR2TQFM0Z5cDweC3v9dKgcFuluY5h+P6hTGY3htBr1841zxydcEgzeAi4c3gYvDpl9Hqj2N1uDZTF8wUWwfMeq0+mynnPY7JPkQ8c1D6MNv3SvHP//zPS5LPoVthkkTpOxPuQmSCf8gyqkjW0edY8Jry4IOjcbhGQ7/OsCBzOlQYkdczcnimjgIndHNgowcfZ5glb93kCQ+KZ10+9EN3aCUNPNEtBziqoKM/OEs0YG7C4BUuXj3HC/qpP5/xhC4Zuvola/ICA88kvO5nMCPzpHrCA5k4QIeExhsBCTPZEg/69ypeILDqrF+HPhPHxABNBU94I5e67qOHN5/h68hnXT24Jifs0HDtHp601++4gqfElP1nf854gF06/WG0UobsQ7uklzrAm37wQ1do4jHbeqaO/rVFw6Gopz794kfdvr2p676iLr126dOb5NmKruTZl5hsC6Cr5KE0vgD/4Esfn4lf0bAlTAJtVdDiANvBV8rV50VbeLEnr+WtusIhC6xgbE/o6bAd7dGir7SpxNGzxJEeFPbG36FDt/m86wfoJMcxWtriwaE+utrTn0O/+EbDkWNVHZ/Jwzb115c35crzsOc3xELCA+ELPxZv/eyJ9obQlj60s6QteF1uwmRSbrKCf6vRw4o2KUeOQ7KwNTLDNG2wy1fabY7PxJt8iVXirY/kLXnwWT98MVrao59jD8ZdW8526tEN2bwZI6vCB4hdYpF28MY7mvrCZ8ZJNJJfdbv8qu+Z+vhLG0BLXX3rC58Z89wfVoo88WxhYHfq3B6TGj7UdjwTxWxrMiTOyQcUbbMkdt17qTP84FNBK+0P/55126acsFXgDhPt++OgVBjxT+IDB219xo++9A8rfcAIz10e1mToyKcb7WGNnsNnB77SBvGf7dHMNtq5ds+hjv6NN5gkD/DIunhOvtLm2HnqY4Tou+72jkmgKUYAyZ9u8QrHQPrN3/zNsqpr8HjGYCS3zwwHeUOs0Cj5Gi+1l4bCeXg1KvHymkgxm7Wf2MqD1VsG/WDMgO8cvPqzMnFnrEj4drItHQxJQmSvnL1W9h9qI7n/vd/7vfJtcAaIP6vNf/mXf1lWnxmbfa0CpH2WXqHpV3D0bNKSA6J/1h4v9rd9X+wZE/hz4FqRgh1ZXOtPwskZWMX12dYSh1k/ecmUSak92AacZM+ecDhxBiYHvowChxxs+hTsBSsYeENgwHnOgasrWPlsZc/rSthZ/YGXLTn2AWozqtgKc1t8EYbzLNt6YvXNJEqha7QFBn2Rmd7p+ZZ4RW+ljty2BeWqk89sDWb2nNGPyYigov63fMu3FAeeDm4UX+6zR3YJS5hL9P0Sh2TNlh6BPAOl1cBbb721OK/D8UqSTvPo90Gm3NNJz7lKoy+JE33Y7kRudfVhHEgG2Zp6AqZfdKBzchpT9tPTK1nxPqoIMCYr+aU27a38GKccr8TNKqm3AWQdVtJmPROM2Bp+fOGHjmClH3Zgb6atLjBKW/CMzvHAlvDjHr7ZmbHEdsjqftqAPtSFGV3jmcy+IOZ1r8/JG18CT2MVzrAiH5vPOsNk24p7dGh8kg22AqEvkeHHeFTG8UCHfoUIHXhoDwfJky+lsXdjz300JSX2WfqlmgzCdAdHvskX84x7+HmDxnexKe3o5wlPeEIJsJJNEw548at45AMko/g3CcCb9sakI/f32uJk7PGp+OM/2KU3il/zNV9TfMQ4mUfhjv9PhD39X/gotkVOvPEXXX9rTOQ45Yvwym74tWEFntqQOX0LuzXBILOx5tc62GAmXmSiUxjRAxzgTS4+kI/JX/jo95lJCz3wk2IXv8ue0adn44S/hWP2mXTYO3/moHt2zTe8613van7t136t+au/+qvy+du//dvLViF2JmkSA8Q4fhJ+bEg7GNE/v8JfGpvsjT8wNuGiLd8v4SUz3+7tyXfE95e0lUgPK+jD8No4FH29MWKPgj/Y8gfGKxshM32SOeUeZivu8edszEEHcMXHTfG9FHaMf28q4Ky+McI2MzfQJ/z8kg0/nOOEnNqPKvrh67oxy5ul9NF0Rvd0OOwN0yi6FsqMN7bLrumHTcAQz12/QR72xq7ZDhugU/4QH3QIS7E34zWe0TcOjFX12bG6/LM4hm/2eymV0VnJlKFA6QaFJM7Ak8QZBH6uiBJdc3ZPikTlmhhoBpYBYQBksEmR0OIUBEOGL0hpz/ExEoNHEDZ4Gcld8ZkjuC2SNP0K8Bw652kgocGIGK2BwWHg1T3OUB2DnwPhSN3nQAVniZzgxVDXS1qS/zyTTWDFv9VvOODX4GDgnJVA52ePFM/ImY7X5AEfgiAeyKMNuu7DgTwCJt7VEWwkLIKGvm+JJJT8cJMYwpAzk4igZ5AKLM4GqISG/Phw38qaPg1c9+GhT86XPIK3we96WOGQMsBxHBwPOnhSyMxBcXb2Rws49MT5SprIqm+yklNgkcjhA130OScB95NRh4OSFHJ07GMUX8kr3Vv9klBy1mxHELKqKNDow57D3KcnoESn5Y94sNNRJZ2gYMQu2TpbY1+cGIdHboHR4TkHBw/jQXvO1TVsOEWYKOMSZ3igwd7YDx3SK/45fHRgaNXTfXoQeLTrl+49duPNjKDFfundJEhwM+YEA/bmC2DsSyLw0bBRPGijD3qhK7ajPjk4dpg8FAkNOnRA38ajw9jBL39gTBuHdJbFmBSU9SnRE3CMA7KOwynbb/YMG/KyD7IobFWAJ8+4vtNu2Cbeu0ViR0dp63wgnypBYIfkNW7hCnv9uW/SgG72awzRvbaCrfb4hBF9GC/skI+jW0GaTzHu+cYjsYWCfHxRfm8Bv5JsPEsq+RhjBQZ0gg9t0dxIUd+44sOyGDd4olc+Dd7kM/bdV9gUrGEyquDR+CODtnyKvowPdNwzDvxSCpnZGV8DIxMVEzH9sGdY8A/0bCyPKvh00CUd6ZsMsGO/xk2O8T4NOPL39EaH2uORftk0XrRVByZ8FN+uD34kxzMbISMc6RUOZKMjehUv2ZB2ki4Y8Jn8pzHIJ35u+ER98k3DChnxJSG12PD2oHl3jFeLQng0dvkJ456toU92fI/yy56xYRinro3pnJzDj+xsGb5iHTnx4GBD2jv4QXIZB/INNNjnqKJvvkf9nEiQA/9w5rf4KHzhDy6jsNEHfPAg1pPBl4yNLzbNbmHApv5x8NOt2hhbMKV7fo+NihVimcNYpTe0TQb4yLQTds4G2Ka64gv969MYEeMUcmp/KZThWckUS27ASQg5HLM/ivSrC5I3TsrPg5kNM2hOpetIUqnOgrRXsgYmQ2FEjImR2F4hgbKCxtgYCKfHGBmrkrQkIYI0xyNpMBA4CA7Kigle8cCYDR4OzKDLRMyKn99g5eQNym7wXk8NZDC4BS3X2nJs6DNsfDB+zxSDUoJhkOCV4zMI8Kx/A49D4pjQ8PzOmAwY0OpwngamAc+R6A9t/fvyG8dG3m/7tm8rgRdG+Pj93//9kjDiR32JHCwE8pKYBj8cgfoCMQeWQcg9A3JU8exo6AQdhQPVPnFEl/4k5eQhWzpA5yz6SXw4Tsk4GfFqZYXc+GcHgkMmVaMcddLFx/WR0HMu7BJt/MD1Z3/2Z8t9bzNMLNgQjNHEz7BCXnyyVxj6bMLABr0REcBhqD0e6ZmOfWbTEiJOkU0aI/okpxVyX07zeVzCoD/B5S1veUvzi7/4i6UPY+hFL3pRwV6wJBuMyCoplyQoo2TyDJ9+XUfiZDxY5TfWBZqf+Zmfaf7gD/6gYE8+dipIvzl4sCqGnx/6oR8qiZxriQmbhJHxoLAR900W0HfAhw3ik12oC1vYZOFD6F6fCh+gLru6kKXYdYxVyWPK4B77NlaHYYmntAu24VobhR2yC36TDRsPZIcj+mkPRyLJ044+JEXaGe9sxzXb5HONT3ZlMsF/Sjwk5b60yCdJpPgCiY2gS3+SEW3YHTqwNQb5FmNC8sEvkk8ygrZgzpb4EYmcvj2ftJCfDzfBQ98qOn+Gnphh0QVN9eDwyeDdOIeDZzBjE6MK/fhlFLHDW0sr/vqQCP/cz/1ca4thc2TpvqnTtwTml37pl8pvU9OXzyY09Jg67/dL757xz3RJb/h/ZiTPXxc2rR/+L31cvz3MjUk+DY9s2VjhF4w541hbcU0/bESc/NVf/dWyIuk7APwEW6AXz8RheLKXW+MNmmcSc4kiO5PYkgtvcEWX/m0fknSPK+Tlm7zpJDO/QydiCgzhLYbyf8YGHXf9ep82euxNoVdY0bO3T/xzJp74RMdYUR+/9MquXXvGtvnLO8PfGR98uLjPloaNT+PK2PCrIcYDHyRH0C/9y2PYkbfUMHN/pK0PxjUZ6MhEJbeFWnBy8IVisjfh94VuYAOjzGnoTi5gpRkf7JN/S58gVpOFXvlhCxzawhwOYqQFTLqnxwvtE/u6nIbPOy6BFsgYKkUy1l//9V8vimPQBikD5cgZBScxagbHkXzP93zPWtJAGQaTACvR4mQ5ewbMWBgfZ8BpKAwrC4dhUEs81FPwow8JkecKx+GeOulEtCNLN2iXyhP8w2jxqi9GnM5V0nxnDGqDv8ungS/QSeYMDqs7Boy+DSCB0CBA14Amv1d68PT5B3/wB8ugJ4/PzniHu0DnmiPhfARJfXMwJiLwlFxZcaYTiekL4/c8OUWrMZyUFZTv//7vLwOZs8EjHY/DRh/Hoy1Z1INn4u0Zmf1OOEeD3qdMHgIbz/K5BNKsWvLGIZCfU/WHZwRyuApSdGamL1nntCRzCjrDHKZn7gtGkhD4cVJ//dd/XYI0vARgf7QDXXhIgiWOaA4r6MGMTl71qlcVudg6ZysIsuHkha6NFWMCxpyzevSvDjshsyBqdUWAEBTGFRjqWzLK9iTPXhHqi13TP8zIRYcwc4ySJ+/TP7rsD16wQc94hwf65DaBRZeO2DcblUhkUBR42Bu6bEJBU1AweWSHZFaMbYmVwK4/ttINAmjAyZj1XIElOsk3Lc2UJ1v7D/p4zsQ+/Qlb5Wey/26v8JG4SAAlL3RAX8aDNvwh3bOT1L/k1thATx8CrDELEz7F5IKPkMRopw4d8C/0wmbQFqwlv5JAY4e9wwx2dGiygjeJMv74VImcQz/eyKjrLYA3jCaFArfxTGdkQV/9jRRy0infgH9/PMm4QRMfkgC2T/f6uzNsWgxQj2xsBT6jCjvEm9hgbJFZX3BkW1eG7McHk2Z2Sh9oaqM/+OKPT0y/zE927bDbN13CX8KET/ZowUJbvoVNp//rtstreJA141X6Vm3cE6+y4NF+cUkr/ydJZQdskB3QM/mtnEqw1DX24CDJJic7MUb5CG+PTDLIxt4kqybz4wp+4SixJ5s3qn/0R39UfIQxL4k22bsl3oSiz+7U6xf9kZEu4UbvJnRsgt9l73xHxm+8kY8/4ze1JwtM8JPjgI8R64ytYf12+TBG8GuVmY+DCUzpHl/GnXvGAp95ZozfTLqw9HaNLfGHZOTD00+kbRt3eBe39cW3OOiGnuCMf7KJhZ6hhb427EwfCtw9M0Yl6njle2B0qZUdl0AzcErOoMZQBF5OmCEwaMkNpRrckrJc1aNghqJwHAYIA85BrN2RSLYEDEGScRlAnKEBw4kwnGGFoeWRz/XHWLONz+okH/nZPSXvZ/v1zhyhQW+QCGZ4RIPc5JCUCTopMz4MEoYvoEm21PfZipJXsVk4e5ga8ArnLOhxjvpR1OGM4OXg5PCRjkS/9MO5cz7+KpSgZZVboqh/+EqIXOOZvji1SQreDW6Dl+61Yx8pLxp4vXzQDxkuGzirrOOsDRuQrLuGq4SNfQgY+ENHUqJPjoozTL2tx6s+yMfW0GaPTw6HbTL2iXDk6Kb9cqwmF3ChL/11i4DLAUtaJAH2ngoAnK+26jv0mdhbYYK9JFqCwhGSV3JmMqAdvbmXNBKf7DtpSgCsXCUPdIZX7RTJkkDGptQ1VslsPPZLtw94/9RP/VQZl2yA7FZH2BVnzqbpgc05e56TJcGBnepPIERLomVs5ARafWOe3tisiZyxiT92z/5zZbTLF561Tfn4F/ambSn0E1j3i+f4WavXqYA+enAZV9gX3BL7legrx96wdp6hS+/wspKVxRjkJzyDD5rsnWzdgje4SXQkvFZ9JVDsi561M9b4FpNuY1m/Aixbcl9dOGuLHwkfOTJR8Bl/xgEe0v9KPvFonHjG76rLpiRJ/DP9b7Tk+MW/BIXtku2jQc/Y4zfYAVvTj+SJr4ATOVYH/nlYv5IVE9hbIoGTeJDB+DKetV0KG8Czg8zw5WPYorMtZTCSgOkP7sa2WNMtcE+cJX6SIfbPzi184Hc9e0p6aLEth2ulew+PDjFQX8YLOY0R+sr6bMl4ExfonV8gN7+JHz5ALDCO+VETa7oVuyct+CAn3cEFvuxCf/TFF+uTLzPerI7Sg7rdsYKOcUsW/pBdHQnfRW/Gv/rqpGx0wg74Iv3oQ+zSxvhAW37Ah1ukgA19KkmnfOj8o08+GD3+VrLP9ukBPbZvMqRP8l4W+I6ilWSN36sjgYetv1DLfrTlM8UHEzv2T7/kNw7RTH/IVk2i+UPP+EBjBJbGHZtSlw7YLLwtMll8SZ8giUbHmFXW4zl53w3n8R58yiTMwU5BBhHFMTqrn14jeZ3LECUZP//zP18UaQAbUH3ngoZBY6AwYMXANjgYgsSMA2F8Shp5n0552Pmnbzz9z52q532JfwHMKywBEm/pCA0Wr4S8vmH4SuLnOvnikNI5DauT9ThEuHRpwOhjkQAaqP5SIudq0GUbdfV9JJwOPWUgyZkwevQFWwM3E5hhfLjXL9oZyGRV6I8+s/9+ffcdXRnU8TnbOKORmHmOR8EiJwbkIHvajTrjSvZHPxytYH1zBJLXxus1SQ7Hy86sPJFH0mUrkj6Tr6TPUfk9YAGX4xaQTIbSLrv1OT3JgeB1JHTAmQoEDrZDD5yn9pxhytylkf3mPXwKVmgYfwJrF3M8W4USlMidjndYIol20jVGf/RHf7Q4bvfIKSGTYOBR0kYGTh4t/LMptisovfzlLy9B1TYukwS2SHb16I+/ELQEA5PKO2NCh77XqOiwW/aYOHZ5c60d+6KfXDV0f1TxxWOTI6s1+E05YaIPfPM1eX8YHf2ZeJUxEjRgr29nNPpt8U/X5KEXwZ3OXZvcwkZwRk/Jc79vdNSzssi3esMkQJvYCazGu4RZgsQv0InP3kjwJ+zKqh3Mshgr7J4O8MNOFDKkHGxFmxwv7ErSbXwY47DX10aLvvUBb3bG3o21fYHvbbFlj53oG15WJtkvXtOuz53Cnts7Pd56660lOfaEX2BfVmRNIGCBf3w76FR/eLBiaysCrNghHUmqbomkDj/9whbwLQHD50/8xE+Un1Wkhy7W/Xb9z13ME3t18jrPZGE/9A0PCaVxRD9ZB0bsjf+An3GFtxx3bAyd9O9pc10aff66n9MWyEd/xjYbh52Y72zsmlz9wi/8QtGZvuGIt2yPX7rw5owt8cPedoqbdNItKRtb5sdMtowFq/4mC5JUY5BP4gclvTDQ37CSshq7xgh/kPE0+3K+frCIYZuM8c0GEq9H0I366KrHlmBjjCYPJvpsRU4kjyEL+9MGTXrEA5lMKPBFFm8U0x9qIyaIeyZK7ExOYeueCQx/IgbRPTyH2ewj+N5lN3ZUAp3GRgcGFIVRKsfDMXP6Xs9xXpyNs1m9wc8YsuSgYkhJ09lnBumsDsebdbv1ks7FPuOTcxbwMtAmTwKUV5CSawFL6crgui/zqDruwwXmScM9A9LeKistcwPc8NQtPtOTQYgPda0YcmJ4T3po9+nnsy697jXdcEb4UNQf12bcs2yP5jA65MCf0rWLcmOdf7r9ckiCyTNCdisHJkD2jUpUyOEVuK0hbFkQEAyUtEMJmZUsTp2ztAIFg1FFcEDHGLH3jrOUEAn8EmGrKn72j4Ok43FF8mQVhf5cszH0u/LByb1+UEI3ZRjWBxuRLEkmHAKi1RmBAW/6TNyd2bzJAxmsiki0BXArL87ecJA5nbrxYcUU35Jt/kAwhaMVPAfMcxLR55HuySQZQKNrc/26Pr8vAu5v//Zvl4kAfSlwggGc7dkWKPHXHzNZ15hhK3gqSVy0hb9Ekjz9gr66Dlg6rKjqz4qmoJnJXPbRp+EzOQVliQodC6wCrCRZ0iChkkTQjbowN67pQpJwSySA3kJ41pcNj+y2+zYv7cc5r/GRY849Nk7v51PokA+SFN0ZiZ5E15jwGT8maibHJoZiRvKS537fdEkWNI0rK/WSW7qBm3GXbzK1VR8mkjAYSU6t/JnIvfKVryyro+xQYiKu9Qs+TCz5AP4T/xI7/aO7lQWvbJ2+XTuG+Qe2JoHFgzFhtRmP6tOfswJ7R2KZ5/V47tbT3rg9EhNpK81s1Ji1JY7ujBUJNb8hH8hkMvsgD19h/Ery+Ql6ZufdfrI+TC1UiKPkMA4cbIc9oiVxlGMYq31bTzra0pmxa5yoxz5g1y3zId/8wN937693TS94xRN7YhfGOb2wbW8G6AYfKSffYF+5z7/yK79S6tovzV94o8kO+VdFXck53ebkWNywAs9X04XJ9Vbb4HpyT8Pz8RFzGjgc8CAIMV5GYAAZSAYU4zEIBAcGw4EzVMq1AqCu2b2ibbf0P3efbcd1GvNm+8K/Q2BxdB2W65tipcMgFegEBs6cc8923X4nwaJfB//wd+gf9pxUv+BFHU6DA+nT6def9LP+OYpMkrYiyKI5ir+8r45jvcJRdwOoGT9etaUHB6ePb7bsSxqKpM5hxUcCnf16xu7dVyTCkm00BBLP+kVf7MCqGqcnwHuF7TUrhyjpwVeuzvbb9z8bQckPfZNxVGETZKP/YSXpeCZQWzExgeDErSAfibHLbiQaKVvi7j67tqUID64FRCsvVqTZmaAhiUaLcyezuvrlG2BsFUtyKCERcAVTybl+1Mv+yJK2re9RMqWc5BY0jTu+q0uLrj3vyp/t8qxf9iE4p+zakU9QN5aGlW4/ZMandnk9rs+kp76gCX+BU5JpQgNfyYPJDNxz6wWasE5b4IutSnWT5KStbk4oMqh3n+V1/5x66N+f5HNi4ky3ZMq3G9obF2RmD/hmA2RIfY/qA09iDVxMgG0HEYNMisluoiF5EYuSf/qALVs0cVU/t2SwSZMUuJgAmjh2C5uhE7qXAKovcWX7+uQrsp9uu81eo5VJHt2yZzy4n/2Qh09jX/g2Thyw7pdh9/p1up9NFOkJff7JWX/GKZ8FO2OEj8Ubf2R7gYTXtpp+gZukm86Md79aAT8HfRvX3eKzPtiEldb0TSZKbJjP4n+Ng8Sp275/Tf70I/wCLEcVz9Rll6MKHagDJ34df2xRP/jytoUf5D+M2W6BpZhBr2iwXX7XFwv5Q/zBmezas2cYKOKPrTC5Kg9LK/K3xKSQLeo/7aPb5268PtdiplDCVAYjYfAPh2JfEt8W9prBrI+i1DGAJQqUyGh8M9qA4sQoN4u6F7PgN3neKl66xtq9NrEwuDkdgZczN2g4ha0oBpgArw8Ym51yTn3HQE5HOgOOjO60d7/L80b4Qg8tTlQR8Dg2DmG9cr7YT9KeU+eUBFeOyq9tSOayoMF5WxnlhDgvssBQgOTE+gXeVp3JyilafaFf949EcIVJF0/PrGYJKoKQlRpO9rZ4dY0nAYVzhOM4mTwTJA6H3uhOEdysNuGlH7zZg/vOxmbylX10z66t4HkFy4a8pvXb5ca4PuDXra9vvFv5JLdgydFbUfalV4FPMJHskZnDZ5NoSDTcs1LjC0l8heDjiztkwKsEtVu001/KKQnLgOlZF+9sh/cfjC+N8kHd8aC+tlau9DWsLRru00mOYTI5JFtWNvk6n0f1nzSSH/X6Zdi9rKN/tmrixXcIqjCVZErsrE5lAs3GBGSBVjt1LHawE0d3PMLDxM3Yl7R0scm+L8SZrA46pl/4K3yhtxf4NU6sDpuQ4o++xxX04OJvEUhm2ZYxDhtJs0SL7Gw/sSavWAYXX1SkR7YrXqkL65/+6Z8uiYhn2Q4fEkW+Qn2JogTGiqsxzCbZBdsaZVPjZOk/QwNWMNEP+5cwGnPpb7NN8sgO2IQJgmv3k5esk23GnbMdDOGCJrm9NcNT0mJvJju+sMgXyg8UPgm/3QJ3YwnmfKvVVvaMJh9iUsUeleQ5r40DPsmKs8m8bRH8Gmz0neOgNB7yD3rGh/FMT+IwOrDsjg1NySaG5WRFmy4/a+SjnkIuNug7LrZW4Mf2P29R4GORRfs+Df042OqRiBtk4g/hyOe65p/gDSO2px5Z+TaTavFKnT/90z8t9s4ujad+X2s878KLqU+gE3NK4Rz8JSnOg0Fydlk85/Q4PwEzB5kgYzBnUW8zCk5667XNetlf/+y5Ax2D0Kw9aea536b/Odu732+T/bufsnMYAq9AwYnAKBquYeR6vZL9JH31DZ4jMag4IEFBwLCHikxZ1M/kw+CkG7PUTECSrnNeZ9tJzoKTQW62jf56QS9pZl9dLPvP8nOes43P3et83j/Dn01aVeKUzOAlzPjNgn8ByX3YSKS1s7Kedquv7M8zzlE7QdvKoBVXSSHsOTEl5dJOXZhbNWQLEkbJJsfoVXwGjuRp2Dn7xxf7kXTD2is8CVV/L6EVCvyRyXP9K0nHNfnYCp5yRQNPDnYqAOhPm3PkCQxMMiTB6EtcTBA4dyt7kmirilbX74wkmsNXTBwEMLx67XhTJCi+MCMQwNG+Pglj9lUaxT/6z4CsDRpd3WS97pk+TVYFOPS6BT006KWLR7eOa7o2tqxGCmAmGYI+eemNztVRhvWBdtLPc6k8+Kd7r3ud8qNvssbf0jN/xT4lG5IKMiiwkBCyI3LzM/hmi+4nVhID+jBZMV69Js5n6HR58DlL3s9z3h93JgPsE/+8hhe+6dGbSV9Al6zwHcaPhCLH57laO7c3iQ/7klx6ZU6X7FZShb6JAtlSL3hXR1+2FuLDeJQAwkwsk7T4MqxJpKRIwuaZtik72uq6bwxLBH2PwliRvBhn+pm0dPnrt+HfrfQaY3TH/iTrkroscJUI5irwkYgHxi4e0o7U7cqQbSc5ixO5JcFPzaVukiYe+SJjn30qsO3aVdbFE7vkj9iq/ef/FuNJHz7zIfxNv+RE0thju2Qhr+2R9McfdmXtt0/d0ZExZbLG5/HbJhvps7WzaKIfE3vY0/UwWbIPfonv1MZiIRvMyS3dkDmxzzOfy8b4SDbDl+R3QYx3ExHP+UtjVAxD38STvOrTsX4s4OhH38a2/tnmpVJ2TALNiBgbA+PQOSqJB4eRQYRTY9hmruozfAM6BwUDSkfqufqONCzPJAXOBoRnWdTxmSNRsm0+d9Yu2zDs/qBizBJ/g94zg0QigGfXeBrlAPWvoC9ZxQd6nIZ72irderDihM1CBTWDNvlajkGkncGkXvJdiMQ/+POMTEqupGU/7nE8nJdgxMnqywpKrlKRFQ33zbj1LYnkqDzz2XM8kyexRXsj5UAElRtj4BrEAvywJDr1mXLqVyGPZ+R0L6/VSyzdw2s6aNfq5/NRvHI8bBQt2yaspNI9pygQaI82/TvQR5cNcLQcbvLjrOCR8/Lcyquga5X71ZEECgL7o40/JMQ2ugUfkkV1JUOcI71xhsaVsp486hhr+pfEee3HttCGCRtQ6IC95RdNkhd1HDCna7LCxoqRSQanLcDBwRgmK36tWLI/gds4uTeeGTdk0MZ9jt2qooDA1iTEJgpsQdKivcSFc8/VeDgLfpIgshhXqeMiSPwDd/e1VwQI8q6HFZ+Tfqc03OA/SR+/9iQmRnAR+CQy9jfiR1LVHZd4Jje+087TfrCRdpc2TAdde09W2cWR8J8mIII9PQjq/KpnqVc2wR+zJ3wI6LClE0GXrePD+LT6RteSGO3gnTw64zNlx18+d4/tdOVIPoedyUNncMAnLFxL6PVLrlvibaVElU0ZlyZfuYqLpl/fYKfJn3uuHfhhg2Shk/RnEnHjlg/kbyWXirrqKfAhCwzho0927zmbZfN4TVski1/zUGDCxuGHN7ZrcYRO+GJjXDKZuimNhvwDxxx/Hie2ib17xpUkCU94Znd8F9vLRBbGEicYJn5kQT+xSvopj8+TFPEFRsamFVb2ZUzxc2nv+tA33D0zXvgnbbOknGTjk41/GLJF/gttOvCMzdJlt7AZY4B/sUjEV/MpuZCQ8bzbpnudNm2cog9LfksewxbZJpvBJ3syicILH0+P7tMPWdGCI5tQ3DMuYaR4xuaMNZhI1vGqHr9s0gdTZ/2Qy0TfuGY3fBv+jAv1s52JJtr41IatwYWt8rWe6WeYHRXGduk/OyqBplwGx/BfFd8GZURerRg0rg0kipasULyVJkGG4SqcEiUrDJNTY7yea89g0skxBJ/VZ8DOEk2GonAcDJWho+U5g1XHPW3TgRuQBi/eM2ijwcFamTSzN3AYtlcwnFMOOvVc54AxeNXFE5pkFlzJot+siw+JBCyssOHPyiVZ8aUdWTidu2Mwk8VnsqCrvjopjwGXjoPDUDgxA4ozt6LHIdCNszocrTYcL73oS9CyysfBeSXoOUeNJ9jTR8qKj/WKOn6m7vExqN8RK4h4dnCy+ks8yKMvMupbf6lPMtMXHNX3XH0HXrQhP7qKdqlbNjmq0DcnA3Oy+f1S9NyX+MCIvDBjA/cH/VPRFwcFU9h2dUW/gqY2nJ0/VAFDf8TmQxHk6FnxmpKdwSYPPAiGtnDo3/igH8EE/pMWbY9E8iFYctocNB4ks1ZSYMep4pFOrDQK7sYGfOnAeGVvjsSYLRknd0YwlhBw0GhZxfaZfmCtz5x8wNKEjf5gBVNykV0yL4kR5Iwr/RoPmYii7UDToR4+4ZR250zXmSThkW7QzwA+KW6brUdWgTvtwOqQ1618hz98wV/khAxP5Ie95/TCdskBI8/Zt3vwdLApvk4buvC8W9gGXUui6NoKFZ3CLotrulcPPTbPr/kDOFarJQL4t5KIF7/zbOKGH2OKHSj4wgM/TW48STR8phf16IPv0zb1lHzk2XN1JQHGHVp0jxb+HHjiD33vQD0yZSKLDhzZjEQETzkW2TFcc8zggfzqSa7gwL6N6Zx0sC+f2bR28MbLbbGNCm/6Jrt6bJCuJHjsNvXpt361zcSaDdIFufhbk0N44cXKNlrk7GNEvyYGcCQLf4IHtkBHPqMBX/1LyI0xv9bgOwr21po8k8X4kzzxXfiyOMIWtSMfmrAjCz3woZJrPqTPV+rOOZ+phxZ9SuqstMPOF9boQ/+SR/7BooD6+GWH6fvJiQ914WoLqGf8qzcO5KWb3/iN3yjXL3nJS4oO+CL1kxf9wZWt2L6AB7KitV7p0jBhsrDgsMhAf870Tn8+k1c8VZfO9Qm71E3mLWyDPvHpoBOxFk9sCjbsO+VHh43CCS2fteffFPfZjT7pDE9sgy2wJb6XLMa3+KOtPl3jydmzlHc9XHbD87n/F2WaBUllMBaO684IsGaNob3ifDl1SUHOJDO4GOS+ZZoJtkEuwWBQggHnYVAxDIbDOLQ1OBiUQMuQJTmM1ysMM1XORGGw2uMPXxJEz28Lp8h5uGcQGvB41w9j1Bf6Bv1nwqk8MHDI+uF8reRwYCm3vjgnA8srazKUveDh7BgtOQwUiYYVTv2TIw/3OFcJhYDBIQlkVi7zVZEVYv0nnwKHhMgXrNDj/AQ6vJMnZXE2uMhl8Hieq9DkpxsDViCBZf6lK4NTkpV4w57zMKgNSoXD4gjgvF5JB0Kv2guEAgy+8IuP1B8s8MixZhDWnv5eEQ76tsAYLzAnn2cckFelMIO1z4kBWTidfsEHHcIUbXsV8QRHNkwHsMHXa8NuBCcy++MtnOeRSFLZILtmk7Cia4E6Jwfwkah4RmccYtbBD0eoDjkd9KO9unj2G9ImM+x00kImuGrjD9iQhT3Tt/4lbhECI5A9t8hBF+wU7jBkw4KuMcLO4QRDZ4kA/mGET9fqsF08kxUt9fFgTBjXVuHoBS9w1Rcd+ZWLW2LCxskbw+gbD2jg8wMROP01Q8HXqpVXxPxGNwjoV7CjB7qkHxPzbp1JsdtMPXjDQAIpoGWCBh+4C/74d/Ap7ImtCcpwFORtAYGDCQa7Z4+vCz/4uqhn7BkPORb0A98cd/r3jC2i+yM/8iPFj5Df/SxsSxtt6Q1mMHfQiwNt9ua1sLHADviy9Ln0kj4FLbLZjsNm0MRnjmv+Bi79ws+Qie9CFx765lvQ4A8kuJmY8efGiYRIQoq+pC/HHZuRPPIJivaSc/TIw25hjw76xgF/qeDRc/4HfjDL5FJCKG6RCX/q0B+79MYhf6EF/7lfF31+SSG7+MM+xTR9Gn/sHub4M8b5lG6RqPOT7MMWEPS11S8cyJdxT1vjDPxLId8AAEAASURBVM/ikjHG5tQlL59lgQYeePZGzHgnE1+Jbz4Onvple+jDYZjP7PLpmgzsXF9iSPovdkHHKYMYBRuTNQkwG8P3/0ZM/PvYcsE/imdwYVewY9d4McnGo/apP3bIb3ZXutVnm8YUu9IPO4YLvjxfr6iX4wZmfFXmCuIh2zF+jNcXBm2TerqyUgxL8rIjtpj+XH3Y0iH7gZc6dMVH8xnsAn22Q2b+kHzosnNy86UZk4xdq/32Ukvi9aeeHAM/aMON79UnO7wlFjJfGBMoNg+LSfBYD6+d8HzHrEAzPrNXq2hmygzAYDCYGSHjMHANDkmzmSgDF3AYTSZFZmaZpJYkIAa1Ac4RMUqzTANXfxyka4OGkQlAfp7Js1xF4xR8Rl8/6Hsdomh/Txgzpyb4MiqJKicjEHOinuEdbe3Q6hcGig8DDK++UOEzehy0e4yZ7D7rSxvy5IAU9K026j95tmKgbziiZRCi5bOze/DGL1ocKifkGfqKOgaN4KOOv7z13pCLTmBKT9pZcXpR/CICGfHu0DcnYf8V7OAFDw7MZ7JMUvTvNVT+ZI+BbnUV7cSHzOgLlBwOvvBOr8nPYtz7+uDlZPCGZ/XSmeIH75yPACOpw6u2wwraCn3S7Utf+tKCE5nhgh9t0XfNYXFWnGfqiT70gQ/4WonMBIOTJLeVlFtvvbXYKHoCR2KPzy6G9KM9XMhyJJJ0OGykoCHJYE/49lN8HC+b0Bfa5LAyaixl0FFXW8+MSfgIULAQuMn8Az/wAyVJNpaMTf0YTwK4a06cXnzmC8jODslr7MOJ/GjDS1CHPRkF7NyTDFcBwFjQF1uROOOXfhWyoIM/AYXPQVM9fW93gSu5yeOQ8PN9fIJEVGBOXRr/PnsTASOrhhJp9m/8knkpbAMNY4+sdEFH5OwWNL12lpTwg2wQRmnf6rp2CNZ8E53DKMcWv8Rfwo/PwT8fY0yxG5/JR5f0bEzggz7V48fZNro+0wnbVlJP5cPgs7Z0rA3fxd60lbSgDR+FzGzEiqU6fKWCj/RD5Ne/NuyXXea4ZIvsE4awRBt/bC1xMq4zaUo7RosfoDe0yOIZfo0DGNEb+fHMpi1+qMdm8UFG/BtPJn5sAa/woGN/uj7lLEIN/vEc5uRzzS+jwU/RE37oMeXFu3GTMkheJdF4zcI26FY9POCFjmBiMQC/+Ma/++SapKCFl3xbgQe6MXbpkwzsn23x/TDCi7cL8D0W2OHTWyO+MnVDfvKhLU9g9+jhk4073INPFs/oOxN/Y4JuYTZpIc+R8Ln0Sw7XsMQL/PGdcZLd4p2eyWLs3hKTYBiioxhf+DK2raYbg3yh52yGbaJJbhjoR9wiB1uHGf610b92+iMbn+G58QgLfdAbbCTb7mlDr+qKq2jr61IqM2EkZ61kiiVnOAYMBRqEBhPlpVLTqXIqnLGgzOgYBRENGoGDMaLF2CibMXGK6HjmYNyeMxDPGWk+Z4T5TP/a+uy5Ppy1Vxin5+rhw+88rkbdk1GPHGaLeMsVEfzqE71uQU+wYbSOfnKpfr9NV62u8YF+ymKgkCVlTV4zAcnBm/KgnwMGJuRBKws65EfXQR9K6gBd1/rBT9JPfbiHHrrow2wYFtlf/6w/qylWGzh5f2TglnA4+E7dpOPUl/v6Sv3gg30ktnjBA77ZSdoOObUnR8rE+Y4qbM3sX8IrqdAOPzBiA+iyZXbLqaVd6z8TDDrv6gHf+tYvmTyny8RQH7BWB520DTL6zWlbPnwBxkSTY9yM09MfGQT4HJN79li1ubwEGXLk2OjLgU+FftMu4ZRjgqwClTGc489YkaCQyfh2P8cC+uwpbckzbR10CAPP6UAbn+GmHR5glf2lzdEzPrwStRXBGPX7vJJSwThtaJTeL8R9fcI9dY4/PlHSQxd4l4iRBa7sIG3cmdxwhgEa8CKnwga0ybGXNqNPdeAvMTPxYqvD5FcPpmxacIc33OkAfvhCHy85LtlP8oEmnvHhICv5nNHWBi00HOTpFzTIBg99a6toa7ywH21hBQu8ou0Z2nDwWXs4wVi9lFefSUd998kKH7TYHDnZFFqeSfK0Mb49x1fyhj75ncmcdohPtNFMW/VZ/4mRc2IEdzI60j+gQc5uQUPfaCbdxDYxIBca+FffgT+6wg9+0VAnx5i+tMOfZ/SGPv7wlHyrA399rVe05ddz3LJt8ujfPX0obCuxTdp4pj/8pg7V1R4PDnzRs0Px2XN6IE/aqftoWZgRX7zhEl/4T3J5PmlJ/PFFNj5P/3AknzPfCZ+sm+N1lC3TH92wM2f8SHwTL/3wEfTCd8GLnDCEJRnSFtzXPzt0ZmPa8b1w7Ppa/LHz5BluaF1KZcck0JTFkaUzY2CpLAbIEBhODuSdoESGqRiou60YkHRGTwblhS4GtgDvdaa9xpIdq6BWgjiBi1VgAAtOjnNPZ8sZcYz45ngcAtaFKvqRyL/iFa8oQeBlL3tZWX3hAHMcbbZvjt3488d0rOKnjJuhhw7MjIkuX/g39ulyGE54MJ7gDMv1bC6Du3r9vvCNXgZMrzrZk0mHt1fTNF5hwo7S/5GdDzwfHQzTGzzowHgehv+wNjDGn/r42s3FeIYR2+ji456Dnbnf1wt7pTt1JHXwnfaCV2Mtx86F4jdjvv4U+CjuZ2LMR2TSXB5eoH8koX/yJ39StoJYuba9wduo8y1wZDvs5nx1b6wZo0pilfy5nzbWt0F10h/yr3gZVqdLC9/0wNd07T3rXCrnC5/ZbBGSFGrAOihOybMB5Mh7eb9vBHm/VOz8o96oZ51qQy+zj3Hts06XgPo5YFwPq9Ot73pcH/26wz5nH+PobKTOsD6Sds7wfc57STvb5f38nOd+vbw/7mzgS25sObFnzutRKwX48BrLQB9V9LceL+s9H0db39k+z/i1QqDkPee+7PlsGP1RfGvDIVr9svLgsyTLNh+vV70eFASsHIyjP6zP/j3tOdAcf567t1E5sl03OU3e0Mqxn/X6suMhE0ft1uOha59dmq5h5TWl1WeTDls7vM48Eq9cu0m9uherJDb4MQmyWqTk/Ty719dFt57rbhlW13P4D0sAu23zOvvuBvG816ef97NtnrPesOf5LOsOOw9rl/W67bNe917Wy2f5uX/ONuoZzw4l23kOM0e35HP31DG5cHbfkXQ979b1uVuyTfde97pLp3vf9Xp0+/W7bchjvCe/nvX72gz9fp9opt11+3c9yt4n5SPrDePTPauztjZIPI0xn+331c42Cyu551OyXzlANw9AM3lL+lk3P3fPWVcdfKb/zDaeu17Pf6Y/RFt9R9LOe9kvWl1b79fNepfCecck0F1ldBXbve/6Qjzr9zHs87h+t6I+GhvtY1i/k9LZbF/9dv3PXZ7GPevW28i1/Vu+5f/q+JUWXw6xumP10D6/cWU9XtZ7Po62Z+Pab/bZKLpWtSTKVk6tOMNAkiUg2GNpv5xXnqPalwcT/jOO9y6JSeqNqzPs2bB742QaVn/YPfsSX/WqV5VJmL2DvvfgPKxuV8btvB7Fy6j7fd4mrddtN2mbSeuhvV7d9Z53+eteT9puXL1xzybtaxiNYffQG3Z/2L1J++7W61+vR7df3+d+m/7nbptxz7r1JrkeR2vcM7Q389xKrWT55S9/+dq+dpNzX57jO73VTP85Cf/D6qzHV7fNJHXH1Rn1bCP3N1K3y/tuv96RCfRuV0qVb/MIcHS+FObLeJIer8fMmC+1Qm7762xDsMXpyti3em18ySO/bJmr35caLpPIaxXHWwv248tlju5bhElo1DoVgYrAzkXAXmK/MsKPOqw4iym+UOo7GP23CjtX0sr5+SBw6WUW54NWbbsjEPA6yms2ibTVRF+auJSK1QKvOP26ge0HtiFInp8f31D3TfUjsRUhX8FdSrhMKqvJhS0bzr6Mk6sveZ6UTq1XEagI7DwEjHPj3pcE+U7bOG6KX9yw+swv5DaJnSdZ5XirEdgxXyLcasErvd2PQH6porv/a/dL3e5h4/R98cXPu9nTa5+dVRS/oJB7hS8FLDYjI7vxGtcq06X49mIzmNU2FYHdgoA9vb6k6Evpfl3F3mIJtW0btsLxC3UyvVu0fX5y1AT6/PCrrSsCU42ARNCeaA6/rjpPtaoqcxWBisCUIeDL2N0v500Ze5Wdi4xATaAvsgJq9xWBC4WAlZR+qSsnfUTq54pARaAicC4C1Xeei0f9NByBmkAPx6XerQhUBCoCFYGKQEWgIlARqAgMReDS+rMxQyGoNysCFYGKQEWgIlARqAhUBCoCkyNQE+jJsao1KwIVgYpARaAiUBGoCFQEKgJNTaCrEVQEKgIVgYpARaAiUBGoCFQENoBATaA3AFatWhGoCFQEKgIVgYpARaAiUBGoCXS1gYpARaAiUBGoCFQEKgIVgYrABhCoCfQGwKpVKwIVgYpARaAiUBGoCFQEKgI1ga42UBGoCFQEKgIVgYpARaAiUBHYAAI1gd4AWLVqRaAiUBGoCFQEKgIVgYpARaAm0NUGKgIVgYpARaAiUBGoCFQEKgIbQKAm0BsAq1atCFQEKgIVgYpARaAiUBGoCNQEutpARaAiUBGoCFQEKgIVgYpARWADCNQEegNg1aoVgYpARaAiUBGoCFQEKgIVgZpAVxuoCFQEKgIVgYpARaAiUBGoCGwAgZpAbwCsWrUiUBGoCFQEKgIVgYpARaAiUBPoagMVgYpARaAiUBGoCFQEKgIVgQ0gUBPoDYBVq1YEKgIVgYpARaAiUBGoCFQE5isEFYGKQEWgIlARqAhcegisrq4WofM8MzPzCBCG3XtEpQ3cWFlZKbXRdejbkZ8nIZVt1N1Iu0lo1zoVgUkRqAn0pEjVehWBikBFoCJQEdhFCEhmH3rooebee+8tUh08eLA5fPhwc/LkyebEiRPNnj17mv379zeLi4slUT1f0fV3//33N2fOnGmuuOKKZmFhoVw/+OCDzd69e5sDBw40s7OzY/taXl5u1Mefupdddlmzb9++82Wttq8IbBiBmkBvGLLaYDMIcHqnT58ux9zcXHGUVg5qqQhUBCoCFYHtRcAKriT205/+dHP33Xc3x44dK6vAl19++dqK8Knw13z0ymB1eCs41OcHPvCB5oEHHmhuvvnm5sorr2yOHj3avOc972muvfba5vGPf3xJpMf1tbS01Nxzzz3NfffdVxJ8iXdNoMchVp9dKARqAn2hkK10z0HAakE6a87uSU96UnF6HLnSTabzlZxnViz6z4a9vks6eV5vFeMc5uqHikBFoCJwCSGQq7hvetObmk9+8pPNE5/4xJJQP/zwwyUpffSjH908+uqrywovX6q+c/re9Mn97Rjdz+qqZ8Ekr0+dOtXo873vfW9ZRHH/E5/4RPOa17ymee5zn9tcd911pf6sxZXBAku3LzxIwiXd4omV8WuuuaaR+GfJ+vm5nisCFwqBmkBfKGQr3XMQ4FitQB8/frw4vk996lNrr948y4SXs+UQvUrkIK1UcLJWKiTeVh/uuuuu8toxnafXfhyzV4P52vGxj31seUWYdM9hpn6oCFQEKgKXMAKSUKvOEmNbKW688cbiO/lRflWCamXac35VeepTn1r8sYT7cY97XElkXfPJ/DM//KEPfaj4+Uc96lHl/tWRhD/lKU9ZW1Xmy8UB20bQfd/73td87GMfK/Rt53DfZ8/EBYmxbSTJr/ignud45e+tXluNFjdsP7EiXUtFYDsQqAn0dqBc+1hbRbY6IAHmOJ/85CcXx8tRc8CSZisgXu1xlFYm7rjjjrIfL50jB5yv79ThWO3R+8xnPlPoSrg53Oc85zlre+rqikQ1wIpARaAicBYBSa99znynZPf6668vSam90HysswUM9Wy5sPBhAYN/tXoscbUP+d3vfnfxwTfddFOh8/rXv7508uxnP7v46SNHjpyzLYMvzj3VaH384x8vifpVV11VkmX9SIgl4ny7lXD8KRJrCyK2ekiSxQp8igfqHjp0qBylcv2nIrANCNSfsdsGkGsXZxHgnK0y3HnnncVhWv1417ve1cwOVp6tLOR+PK04cA7ybW97W/OGN7yhef/739885jGPKck3J2o146Mf/Wjz5je/udC0IsIBf/jDHy7trKDUUhGoCFQEKgLnIsAXK5Jaq71870c+8pHiRyW3/Cv/7GyFl09V7FNWV0Ir4dWen3at2J73/Oc/v6xq998AqisRt4rMr1v4kMhbPLHyjQ7/n6vLknd9Wd3Go0Q5i7Zvf/vbS/+2fki0LZ7UUhHYLgTqCvR2IV37KSsbYJDUSqKtGHhFVxxoOEjXnuVWD9s8OFyrz1asOWjOnDPlhK1cK+pzuJwomopXjFY6tK+lIlARqAhUBM4iILGVxGbCajWZH+V/+WPFcwmp7XD8q1Vhb/1uuOGG4sv5a77YNg2rwtq+853vLL65JN6REJ8Jmt3CH8/Pzxc/zoejITFGV3sr21aWbcXQv9Vubfhzvl9MkGDjVRv94g3/2tdSEdhOBGoCvZ1oX+J9cXicJ8fJwVp1kPDavuEs4fVMPU7RCoU6Xu9Z7XA/f2KJk1fHKop2HKmVaXV9zi0fAkUtFYGKQEWgInAWAckp3yoplbBaYba6KyG2Esyv8reun/CEJ5S6b3zjG0uyy8dqr66kVQJtqwV/zAe7z+9quxD+vuuDXfP1knLbPrRDw5tD/SmS9owJ+PIzdbnFz3Mr4ehYMNFeLLAgY4FF/Kir0FCqZTsQqAn0dqBc+ygOj2PjtDlDzpOj5cA5U9eeew2Xjj1Xp60ucKIcuUTZlg0Ol+PkQDlwdHJPnSSbk5ak11IRqAhUBCoC5yJgIYN/tR3DmzyLFVZ1LT7kL2FYGZYE882SZs8tTLjWls+1Ipy/Ic3n+qIhv6vd42JfNRr6yuL6SOyL5ud9uVCbTHxdS4wfH37+dCTj6Ps+jLpiwP2RTEvsxYH8siD6VtHVdV1XoRPpet4OBGbCINuNUNvRW+3jkkXA6oaVDq/orCpwun46icO+/fbby8qFJNkXB53d9wUTqxqcqjMn6XWefXof/OAHy6u8F7zgBcWhquOb45w85y2p5uQ57LqN45I1uyp4RaAiMAIBCaeVW8kpv+wz38n/Wg322ZnflZhKtD23AKI8+OCxWLS4vzyz8uuQDGed/C4LP8w/K2jy/+hJxNEXG/BhVZuvlsy7p430xMIKP462z+jjKVesM4WZj/b7gwd0aqkIbAcCNYHeDpRrHwUBzlPh8NI5c5iunYddq+u+c37r2qqHX+eQMD/vec8rX1qRcCdt9Tlf51oqAhWB0Qhk8jG6Rn2ymxGIP6IdDrn9IiE5098Ok7n/rKy8Dfxz1u/WSdvq++FR97s08jrPSSP5zfvdc9bp3qvXlxYC220DNYG+tOxrR0t7+vSZ+Eb2fSV5fuihh2Ol5HBz5IifT7pybYVjRwtYma8IbDMCmcxsc7e1u4pARaAisOUI7JgE2qqhVzRexXu9nquLEOnvCbEO6N5Wrwf2+9F3luyz+zmvN3pO3rO/cXK0ASlrbrCn7EizJDGusz75bvt81r3Xv1Yn6XefuZ+f+2fPuiWfu9e97tbJa883WTRdWWm/pe3ni9jb4UOHm8ORRO/dM+aH87uGkLKO42GcDP1nKU/2kfT79bK/UffzuXOXZvf+NFz3+Z/k83bw3ce/3+coPgf3Od39+w+UvZbeZHT3bPZJ7YbPfBSffe899zZ33P6R5li8il9ZsrYHkEuzzMU23QOXNc3i/tVmfsZbrz4OLTb+dSyF4zy1HFvLluebM8ux3eFMNPALa2fiLdtSvFEL/1RiQWA9tDyC/tBa9ealjMAw02E3M7Edxhcu5+NYiBsLq7FtJbbfLJxu9s7GtpuwX1/HbE1s9xva0rKtRrFt85qbYnvRNeHLD27b2+ezu/s3YKgcgz1KXqW/9a1vKUm0zxn9i44H9Fob8K/X8G2N9lNb4ax625ql3qDtuadwaqiUBmdbnb06Wzspnb0TyVfcXIl/8hWQc2wa6FbB4dpzDwTW2dl2a0F3ZpM+sT1Hm9Jhu9VgfmGxmd+zGL9rHPu5evTP6ewS+jBMH5sTH6XU2Wrz8bvav5CF1maxTmqb46e2GotAgptq2zpDGNvtRh7mGL/2mqubpz3tyc118SXVSyGBPn7iePOh2+9o/vr3/6b54DvvaM48vFSS6DK8plBPG9HpI+qyw2EydexzMZLnI89eba6/aaW58rLlZmGuRIpCqq129vNy0Dq+MtM8cGZPc//pxebYqT3N6WORRD8YMeDB5Wbl+Jlm+VTgeXqlWVHZ/5FXr0b8aePQbJwj2tjR5ogA4pnr+LeNJ+VicN27l7JkHMrPUW10QW8UDlqNezaa6vQ8mRb+W2M5F5fBvZK7uB4cPpd7kQ/ntdy4kXOUwy+hrMbHODr35/bEn0c/sKeZPRi/eX14rpk7HJO/g6eaq/fFW9mFM82+uZUmqjSaPDLLaW0Mg9jom4V7Svd+3mufnH3WrZfPtvKcPPRpuq+0/M/E1s5TzdzCo5unP+NbYiLxBbEX38/Xtr/o0ta8cP+eVwJ91913NW9525vjywWfLF/emg2PMB9eoMzgBzyvxj0J9/Jq/A37crQ+Q7JKFSZQ83GsxJcK3Im5e5zDwZSnUSPazgQNs6r5sIj5MKzyhYS4PxtWl19OaL1Oq1xt9MsqZ8IiVwPMh8OZPXTiTHPqzHL51u5q9DcX9OaC3lzUiZ244cSWm2VHPBNY95YvJSw2+xf3hmJAFbWCrhnPUqwwxCmS8lh0iG8B62/Pwp7muhufHsczm0NX3tjML+wr9zO5S8UHoU2UvhlvgsRFaHJ+Mm8Pwxce2elB4RGyPuLG5Jiv23TdCqP72mjTRDjb9T+P7il805kTzQMnVmN70LHmivjCk18d2O1lJZzXqeOnm+N3n2rO3Oe32SMBjGQPfrBLHOHQxzI/e5b1XSv9dt3Pnndp53XSS1r9s3ZK977Pw9r372cb9/M6z3nPORbgm9P3zzRX3bzSPOdZC82hA63Xltj0S4SXEp/OxHmpxIwTzWr8BLFV/DNL8Rv3SzPN0VNzzdETe5vjJ+L3jePviyw9GH/579hSc/ThprnvYX+yOlauH4zYdDyIHI+k+1gk3RGjloPGykoEJgl1oR/2GZ9XImEv2onEO/ZdhixxREwslfAYR+H1Efyq0950VUBzzlJuth86l+VGkkoK+bx7P8nkedgz97KtesPqdO+77pbsv3vPdZdm99m4/vrPsl33/qjrrOusTil5Eee8zEfO0pDCaDC7atJU8pFIbme96ViJhbZoNxd5TKQX85EPz++Za2YuX2jmroi3Yofjz6wfPh3HanPo8vgy/IH5ZvHQanPl4TPNlYunm4Ox4rwnkiJt0VmIi/mZ+NnAYETyPJQh93dDGRgFTO+7L35AIBYADh44FWNgaVul21QCjUOv0I+feLi5+9N3N3fd/an42ZkTjQR6TxOzd68QaDHK8iDZPBMO4FQc3nBFqlp0uxo09oQh7Q1tS1qXwoEvMbLBN3Y5quWoE26m2RNGtm/PbJznBkmzBHo2ZmiSX6VFVH28SaIl17NhWcuRQB87tdw8ePJMJPrLxclJ2NFl4a2Rtwm0JJpzwj4Z9u6J37uMb/bu37dY+tLLCsbif6sIS+HoTsbeXI7Tt4KXVmP2sxDfLt73uObgnsNh3DEqWgbzVLjd2D84ilL+2VjLi117IPpQNjYtTrfhkA6G3Bra//be7DJ94XsuGGwBEENJDL05mUwTN524Yju81qoPLkpu4boP+1pF/MaHGPwrKw+GXzrenDx1OnzQ9jrgyVDb+lr840r4rDMPx2LA0cCA1zv3b15sfadTSjHceNOcisT2jqa554mrzYmnxx/ueMxsc3h/iRBDuT7HjNSIG+LCUiwSnQiCkuiHTs1EXIwEOGgvP7zanI5E+viJ2PoYq9Mn4rx8IsyvPF9uTp2IP2ByOurEVhCJ9GpcW8E+FS92T52JrSJxLMWzFTqKZ0sRSE+cnm1Oxv1Vhy047sf59NJsHBH34ry6HMlZ8DUjww9bL5HEmMgD7547Z1kbM+fczaeX8HkAzACWVTMW1+UI3USesSofiVXjhYXlZnFvnBcjmY0dhnv3rjT7FiM32ht/SGZxJu7H3y+Iz/FjIvE5/qhN1FN/3+JSs3BguZk/ELnOgUic961EYhjJ9MHQUVwv7JsJu5xrDsXKY1SJhNkiYfCwprNzLne9rsJ0Iyc0iYhcco/cbXvLphNobJqjSzRLsCoz5siO40abuHpN5bWXGXQkzpLjway6CFkSV447nEvQ8abLqq4kekbiyyoYhWXeMJTZ+Bmbudio5k8+a2+FuKweS7bx4GbU14WLQiOS55mYlVmFXliYbfaHge8NQ12OPiTQEu0lQSRWpe2vnYnGVroXoy7XuRwry1aXH47Ee2Z+oYltRoWv2VDYvJlf9L0czlLifOr0UlmZvv8zHy5bkxb3H2rmYo/SgcPXRf94wFe/DL3Zr1Q+M5RSJm8yaDDdpxRrK7mcTojW42rrkDinp3M+bBzloc2H3pyM9sRNJ65Yhv8jO8/2ee7WWLsX6USM3/K6NAYon7L2qFt/l18XywvfV7YR7HJZR4m3HInpPbfPNO+IpHn+gN8uXm6edERwZhejWj3yvuUcvwe0L5Koq/ZF0rov0A0bM2GJlaGIKnG4tGoTZzGyXVyab05E0n0qkuQzkXCvnooEO45TkRTHi4KY3MWbTkn1SQm5ZHsl3prMN0ePRwyKPxy4Em9Qlo6vNCcl6LGqffREJPIPBZ04Zh+Kjo5GjIvJkpVsG2RXRX7nCJ9uLUeMVCSFVrjbD4XRwi9e1w4P87PLQfVyz7MseT8/T+u5q9+4Lvp2Lw8phuuS7MRFyFU0GWNm1h8/jEmONGT2UOB7RdjP5U1z2RWxFejylebQZZEfHJppLotnVxxcjv25kYvsj4W5SIQP7Ztt9pXPcyWB3rdntTkQ+5ktKM7FNgydzkbOUtiQZFldpZ+4Ue5Flfa9/bQCe2H5gkOkcHHEuDCcLoK9nVcCzeEuxe/unor9dCeOP1yMamZvGMPMQrE1rwlPx97oh2P02zohkW73FLcGUCxxNWZtkbCyjznG4ZUG3OOfMpiDavkcTshIX46KXjXOx76PubBajslz4MGvXcm2HzusMOrMxGuS08GHBJ6zQk0ftnUEN81yJMK2ZyxJqMuqdOwnWoxkOVbG/RnS47FKUAJsULTKXLZ4hNyC7Z5ot7h3T0nkFyJZNlnwO8T3fPrjzcx7/iVaNM1jnxB/IGTf5VEf1KnhIlF5Puk/jKUFYnSLpF5qnPNhdJuL/WQ9JPpirFf/Ysuz+f6HSdaXvqVeag6rvvnO11oOJTv05lqToRcbbrKBBhuoepa3IY3KLT6nDKwhFc623t1XzCyP3S3pSOlWIzdZjVWsez7YNG+LJHbPwYgtsVL4lOsioYk4UoLzhCayVi0uWtvSbfnQ6X+tVln0ifgfyZD4FXxIBso2johPEWvcs44k3pZn8eVF98/E6rK4ZjtieRarz21d8S7+LHfIVGJw3D8aSfi9J+eb+44vNCeOxvaRoxG7H1puHrg/ft/5/rnm7gcXm+P3xO8nfyrC5oOxZbI5HdExfoO/LHG1MRbzuM6jXESYlYivxacUc62SVlF8Hu7Oyv2hj4beLNTG/6OvTikfe/c6j8tl0a/+2EHqID661R6BebxfPxNH84TZ5qrrT8cfnFlqHn1t0+y/Zra58lFLzQ2HTjaXxdaKxdiAPB+J8J6wm1h3i8U3fxY9VpQj15izXSPwmo2z7wC2n9ucxPbUuN3m6YWrzj8DLAanzoNL+zLtjnrXUfEFAeo8EuhQpVXkSCqXIklejsNenplIiBWKNsitKJfBHzfKrM2KT0jaCtuuABWnUVqZccW9eNquBrXG5pFVZPcY+pkgaCXatX1gUbv0ZxZiC4dtIxLr+DJ0DP8lb7zKHmz7j6xMo8OA/Wc12TewF1baH47nD/YvzsfWkhhLxTFIvOOVS1h7WVGPjW/LMcJOn1kKB9W+MrBXeiEGh5FyejX2WZ98qLn7E++Lb3RfFTPNy5vLr35iXF8Rq+h+KD4S9wukaWRD1JAqzvkhrndy6Yrh+lIvBYMLBMRQskNvjtfChppsqHJr2+N7H/J0TB9jHg0hVG/tWgQ4zkieTh5tmrveOdO8/bEWSGKb383L8ddP5+I1ery9LPFgYwggu1bO+XDWV7eLRyUPbf8pIVR0UuLf9Yw0nf5aR3ExuFdWuOP6WCSFD8SWjwdPxtvSWJVeir3Yy7FifexYrGTHCvUD8UWs0w+diS9ARtvYTnImvi904qQV8IihsR61ahtKbBvxWwFWyU/HtpHlODdxrMZquP3fS7HAtRSr6GWVO/ozM7A6uByJvq0t7oulglPu4y58lllBMIlnJc/kzmvnxKF7rX63ZJ3Oud1qEdmH/CHu239shXe+nINsJLqzZdtFLMxFfjwb2ywWYjvF3sWV8sY6vsoUWydW4rsRsU3gYGyxuGKuOXxF7E++MvYjXznb7I2/K3PZZXPNNfv2Nocjl9gjwGf/Xd6GXYcsKeLaY5OlSduvNaoXFwOB80igk10JbLvneSGS2v/P3ps/SZJcd36eV91999z3DIABcQjE8lhpd6k1akWZyUy/SH+lTL/IjCvbNcq4WokESQAcXAQwgxnMhbm6p6en77qy8tDn8zwiKysrMyuzsqrP8O6siPDj+fMXHu7fePH8edgk21EDwAJm6QwNzCjqrQys7VkCWIMaWz+hmidU0B6KnucxzDjI6tE3NX+hcXbEibDfywTTAZ6hBa7lQeVhx9ZM7TPjIg9IC601r4PwGAsP/eYSxXONarN9A2xRxxJguaWBP6C4D5ju8fDnXY9My9rq7W0GHMw7dnAHZfsF0dpn86oZ4Fpb62tf/J66ANXYh59/6rW0un4JbTSmHfBSVJ6bcYJ/S4kUTZtKuZTigUxjIw/kuO8XZZvue8WnVGHR/WegPqnlJ3eTDtVwKOJoNucuMkeBObIeZnSo8NDp4XxVTCUBJcBjZT/pYZ/65Vu99LPNbtq83k3f+SFKx9dTeo7P80uuej+hMKA0ODlIePCUD04Oph+4cg4twiB7tIc5jXgwH9pR5ltsbBMeR8Jch3TnNjAu4NaF8KQLePnFQsh2EztuFv9vMUdj/rG3jTkjpiJ3uL6HiUgb85EwCyGtTfwWIHsLgL4n6ObHoqfUweRkGxMT8DhmJ03MTZh3/apL3hr232q5aoDvqFs5iEg0lSBb/GKqJN9RwSyiTif7AO8coStUULGXsDXuYy7RAww3Ma1ZxV3hugAZc4omNjetNWyNN1LawNyiidmFLg3PnavHb53j6tlaurTWTWeW2TYc8x7NR4UQDdzGJX5iFH82QXlGX/LCc4/zhHnzz0O7ynuiElgYQKsZDoCc7SICENuBXCC4x8OhtjhAL2wLHHw24sgJXS7A9MCsI9KMz1rlANrG+Y9j0weBoF2QQD0WKkaUIFxzERZj8JYsgM69FtBNWT9j+UR3+abV5fuJ2uv4xTbPPAUQz8DcZ1b766I0J0uAbrkJ0A1VAb+fXvoakTEA2MbbdzdDA33uzJkA2LzHoqXu41+VLUv/8Ou0ee9Guvj0q+nys2+mp1/6QVrduJwrgO6DDONqP/U3XweUBxnGNfo+8nMy1UtlfkH6DJ10GJAcnMxewzGK7BOfo/AcWffpV2dPpgR4rHoCQUwcPvtNLd293kgfv9tIP/y3/fSX/0MvPX2xERjvAQ/dh+/NUCcfOo18Xvsr57WIROuaQz7u/0VrTALOHtJlTrTPDh/haJb7+LzuxJxeKKmc2wGpXdI6aJnRV6FUogxfacMMwq+1pdaafHt8au5qXUmeLnTaTNTm39xrpBs7SwBsFuED2LssvnTxox4H+vckKEdHhADJzOWrzPh8Pm5oQgFQXl/ZS+eW2gBf1jZpWkGaerQl7I2xvkytIq6Buc4KZVaJ0/xCV3G+LLX4NTlvcFwGN2CJEbj+ADfFUDx2RC7FfKBAdfG4SGAhAB2gVpCJdrmPGyTBqprcmKjpTWBcNLP8Id44+1K8pXlOuQCrHLNGmoeOdIFszpnzamJRPvgeBbMtQHumI7TO3dZymm5kDxyQyLXFwTdFS2pCopcN/sRRe+nQSMNcPKJxlI5a6sxP1COPQSPIkCYjatTJo8kGizo6nT1AdBNvHatosdFac77L9647t66lnc0baevOVQaHu2lp5QxvxC1MO84V7Za3hyd4jxYJ+W5MoWAFR2aaUn6RpCmNm5K0SI2nWHY2jmfLVbI5+cZMpTM1saR98HiMIvsEphSekrRffvTMQscqOEqoun4sJMBkoOcMvWhs3aqnq++yCBwj6RdfxgvCm2gi0UgyPTySfWbwhA9O8h3LEJVI/jtXNzlqlbhmQ0uUYELM8sVd9pJky/rDWjObTXKhVYYRrlcKO26u0XHFzzTj25hNasO9hbeQ223NQiiCvaULOk0PYpiZ9FWAHRWco/06gJa9xmr/Og3Qs8UabuHOAJhdnLdCemiOAdt+LHYdlXN5g6N2yrbX9wpn9jLARTFfZTxgQ3mniFAc8kX194mUQPloHKPxoT8GLNJn6XX6LxRX2hntlLqi03whPmfY0+yJ0Rt9QHMeMann5mn7ZssTFg9ZgGhoQWeFX2ioKVx04QJ40ukLusZ7Gr4VeTi0i/aZ00OGsLnUVgeQ5ukNuyyAdAcTDIn0QMfaR/UE/2iWWz4ltCtKU3/+F1nlOOqqqYYmyKp2ZtsYi6mJNnV9fS000j1otWnQDq/ZvZtfwd872Fadw5xlNV1+/o94gHndHQ3QK8Q0mvJIXHsfpoVo21GZphGYM+0+VjUnZyeb/UA7D1zMU89+wf2zMeUHibP31EGRMeSOjJpSeErSkWTLDCdBo6RVHR8TCdC1nV90SZZqe+nqe/308x9jCqFvXj7zlwvLH5PWxpwWbSkfhuJ44AnnwmuTYoqOkywBTwUTAlDnTvVL2hbnmTnnKab1fBF/84xuvHSz8swzL7y2LlCCrkKkOy6YfZDGCaaXg2sv+YfOmZM8b5ckvLdlGJxLi9/gAzaXQ9ly9qBZlqyOT7oEFgDQiI6epymEXiwEnva+bAfkgwOwpC/vAox3sAfWxKJ8KJYB26vLaGF55dMExLR7O50wvyj6MKCXTyY8gMvxCNiNTSkDD0PR6/saOQGUBdnL8OEOUhkg5zdfXeOFmxOyefSR8KG2vIsIDALu+LzEZ6Y2muQGn6r0DCKAV6ssMB88SFEf15YHRK+QIlj3TXqX8vcw+JLqBiC6RjsF0T08c7TxTXTr5vWUPvpZWsGE49zFl9hNSC10BuLBSDAz5qEdJB7/5PDgdXxai5QcyHERIo952YkymphwsgIpHq0ZiO4ztH82QzGzHCqQn8UZS0e2QyQmFZ454yQCVfwTKQG6pAvoDPdu1NLHv+ulmz9krniNeQ7dRzkH5RxPxt/yURqMEWXESPMjmj8TkovcBaidmmlq4kitUy65l/OPMFPoVUmVBJDAYgAaArpmFwRml3JcDT1ZboqyA6jc1MQBkGkXNrkGKBUYx6pYjnxwyT8So7x5eOnUfGP/8fFhy2+s+3HSJBT5gfG8/e6D9wykXcgImAbg6oc6wLR0/A4DqoyHCq100PQa4y1XC+uQvg8tbZ+B0Lke/6rVjnIZROudo8XnoTp2Wj2cQu7gncNVEsqjhZHVsuYtfRYW8n3KBYdff/leuvT8d1J75w5mHOzZ7rek+xCU+7EHkGMXvA8NexiriM50PMYWKDpzhYfqOBQxM6n83ByVfSb6ZjrY0WYqNq7uQwX3I/bPrMurg3WOI1fFPcESKLrJ7nYtXf097t6uddIdFsxdwhxgaFZ4ggW0WNPj6VvgEQzFUPkYFw/3/jO+GG9V6UoCR0lgIQCt6UIAzejFVGXP5RcdmIciNkgRCeOZQvtotcR6ulhdBkBjzO8e785fbnaiQ/FlwGkgbMhor6wvZre7FBIHzWiNT5tXgl+PeRgLcF1kCtgN+FY7rRYZfXKUFDzHximg+Q509Ust6z2+N+nersVqWhcqqv2WtGn5HbkgDBUsssJkQ4qQjvS6G7zgQzRMQeBHrftXN26l82c3WNW7EZpxQbd+pNVUb2/eTpt3v0or6xdxk4OB1uClI9g8tT/7rZitiiw18lpwcDFb2ScyVyHgeeV82rKays/UxMOczZk9953DZMbG5GdtbNLskWMYHBMFvfGxs1dU5XwiJOC4R1fZw0b39qf19NGn/fTKl7o6ZaEdv0iuutID6wqDqbO6Bw/sHjzJFS8EoNXOttCwcogNTsTDxZDCUW2y9scsMiTBJLfeFqC2Cjtp82tvJG7OXi72nwL1sgGwOZboTUAraBaI5yBVzj3ks+JECN3ALnmHTVzaAdpdMJAdleOKCPDOItwAwgNf1QDb8FEJMbXlwnJtpwW3ByZ2mPDFIWt0he0EQbpu7FZWWCjYZtED3/0A/y4ibO3ssNJ3iQUMiJrMe/0ltNAfpI/e+buQz6Vnv5mWlvGf44vGQxZKKcuW9+hYobg3xyp7vwodt20j/J0QmRGqi10GTyfE2FQyUxMXa8PU0kfUe0TyYOyYWkeV+GRLgDEsfB0zhL/zT/W0jsuz9f/QTa++hH9oPDRUoZJAJYEnUwKLAWjGjgDDHDUvDqxUHLPzcqCnWmSwoWkCUQG0NsfYSURc+IEOUBo65OIuCLj9B5IVfEuTP/5iQeHgtVOq0s55cmFrUX+NWx1A8V1sq8PHs8AdoNvCgXoLYKxm2l8dYN0Iu2lZynbT4ckjE+NvOUBaB+YmkYedmnxroJawsWaRQw2ay5hsaAPeZ1Vx02W9ePnYwiZ6nTh9UGujbbh3+1r69P2foH0+Q/xyEkQ3YkFhriu3KrI+NH9KKRxm6GHkeQ4JjmnYmKjDzX7IYsbyPDZydsZnLj5zxlz3nNknMzxEaOh0cv7RlLIQx/J0NEt1XUmAYT7V1PQwd1z9eSP9EmXHufMdxu6UXn2BDVaYQwZTUiWuSgKVBJ4YCSwEoLOUMngdhiyaO6vN1ReywNrrAL/lRAV4xtI4NLBqewWhYF3HqSJw5kYmgGd3NAXnAlyzKYdLfLWTDnBtNs7dNKWvbxyCWm6nQ6/UCi/jOF0t8y7mE1t4w9CNHeNd2CavLmFKggbdXQT1B+kkmh3J60s6Lz40rhwcw2RFfmOZrhBdLTP+LDm6NbjaeIF1vQdd7aHRPrvhyr3N7bQOH8sry/CFZw742NnZTp9+8BPspNfS2tmn8A19EZvvsOKGrrVOCIWQ9mU1Id+R0VPqOLLs4QwTqU1MOEzj5GJOu9LFpT9rW8e2ZGzkrBT3881MZuaMPnknFKYQmpI0W+UFAQ/eSY/xjC9MeLbqq1yPpgTwWJp67E741ce19KP/1ODLYS+trffTM+fxK+ykQijnikezhRXXlQQqCcwjgYUAtJOPgNNBw19oaAHNLtZrA2jdRCU2UpEjMge2BRF3ALFuh63dsY7a2f8kJjKKCkXxAcnbvW5wAKTNcIVHHAA6m24IW6VXHJ3+LEfhvACReJghO2gaUMtq6QZpDQj28K7Ro243VtmVR3ZWaqChXsLjxsbKUlrDNlvn6QLypgCacs3wFJIHRyqxoqiL5OBpl8WBUEk6IWmgknC/+yb1r7hhC4yZb3dnlx2a2H4JbK8mWg8fex3c3t24kj7/+OcA6/X0wut/ms5ceJ5GH7GosGClOCiJQZC92cK40rOVrHIpAeU3s7CPJTKfp9MMY8mPjTxFLo5R3zGK5Ns10oySzmnLeaTa6vJRloDDPyB6h01Wrr5dT//yXC2dwa3d+p800qXzqD1Mf5TbV/FeSaCSwFwSWAxAF2AyDxoAV4Cnm5Ps4cFiB1CsCYUu6iKdvALcDoBZgCrC7cV19pBR2gCb1tM/M0C0h+q5j0P0ANWUR7dL4wZTXzQ0vGoAhj0K0E0VyAviBZSC7rC9FpFzLX13U2rjLWMP8Lsrv8S5K1EfApHfujiXb22zA5hbM8StQ9MPtesuCnRRYmjTrZcMblmuqQjsp/4SdtHIYnt3L21TlzbhayyWdMtzmWnj3u7rK+/DM1rxJdzeAbpX1s6jOcc5nhXNGUrJ5GIHr4yL+zAnzSr7JAmMyvf40h2lNOjik6qeMf4Q3Wnl5sq8/xROIzk17Yj6jkieSvpA4gihkcvqoTggrOpiFgm4TfXunX56/2coStgS+vxGJ73yKht2sC302qrrfGahUuWpJFBJ4FGXwEIA2sYLUp1Oga9hKuH2nNvs6bmt72eTCOZR8xvXIEsBpsHNUwJMU1bAKlCtkbnBq3yRJYCxs5zaYH/xD4AcoNa4HkAYjXVoqLX3MC/mH22AseYh4OjAI4JfTxrUU0cDrA/nHqhZvhzv1tjDU1OOGmWjSdAOEKtaISgApimv/bRH29jR7kRY70sC/qOpDhDtPqF5BI32CJbZeVA3em6o0mjsplUWG2Z7aEB4ezt99cVHaMr/PnXam2z1/f105vzzLHQEUJdMS5ffkcE2TglHJE8pOVvSgMfByWzlHrZcIae5hTVrgZMRztTapiYeLe2Fis9QeIYsRzM5nKMgeCy6xyo0XHl1/kRJwMeXiazLvHDrs3r67d81UISk9I0f9NOb3+6lb7+W0rn1rPyI4fuJEk7V2EoCT5YEFgbQIS4GFc0iQvusZhfvE26/2YzFehkY6zJOFLhkHD/waWwX2neXIUIsEuQoaDQu7JYBnGqLc8CtXZhXdBNulwtwqVs669O22Ui0y9TTYYTbVjusxtrFfkV+50rBr3W42E/tstpqLY/dDMbFhP0wxi7BM7wXtVOKMwgRBOGaanS7mc/wIk1Sn3bDCb8mWmTbrQmJdtho2YlXLmqjm9g6r+oLm598t3e30pef/y7tbt9Jt69/ml765n/LToVvYtrBRivyT9ngI1cfPPhn5HIQ/6BOBrIanDwoTh7meucXjq+nY8P8pMaSGY48kuSRGYapHT5fsHgmOIbImKjDlY+LmSDacVmruEoCAwnwkbTLHHfri3p6959S+hIw/fWVbjq30U0rq2zqVWqABgWqk0oClQQeNwksDKAFvi6464TpBqCVc+PC/zKDiG7sBKpuTuJc1UQjK3gV76rNVd9rvBrkMMOINOKIbGP+oHmD6U6QPeymjc/mGhGTugDlHqBX85HI3WXXP4i7KyCV858mQtNgvSLorFk2RrMQrUUKjxych5YbUG2ZrAE2X1E/+cPWGm5sxzK+8AT6ex2179Svlh0w76LChpvLqOmOhYykw7ibWtlOdz1cJm8dk40lQDQiS5t3vk6bt79Mt778HWyRBv1Lz76ZWisbsCyXBJuhMIowcllGV8fHRALe3xzG3On9xDLTsY4nRGZs3adCe4jo0OnY+meKPBEiM9VUZXrMJGDX6W4Dov+Q0vXftdIWuxW++Eqbr5nd9OLTjP/FvPOYNbtqTiWBSgKFBBYC0GpP99AQ76BV3cWkQWALag3Nc5gzcNkFjIIZAZ6AQEYcNcSG0DiTP/CgUZpW4PJO4DrMFDDW3AE8pWN94E/yGi1YD/0vudQmyw87/uEZQ5CqprfeolCAYdIpZP2aaewDaYE99QqAqZ+a4keGANfUEiHyBLP5ugboDk3ysrx0E+6fi4zkBByDozElgVE020vYRdfXV1JXrTSAX753sIlewr7bl4sVTT4w/ejg/m6X3yfv/zSAfK2xlC4+/TqaaPxEhxz2D0VtZawiOhBGLg+kVRcPjwTy0zCBnwOJBy4mFBiOProHTKU4NXG4nvHnCxYfdPfx1I9MnlRsPx4G5dEX8hLnLMzzPvXq7EmQgI8YP/UtjXV2KLxaT//p/1hlPN9NT/+PfRaS59nrSRBF1cZKAk+iBIax6tztd/wQM6tB9eeU5GTkL4wfsBMT1JpHmCrILScrwXa4iiNdEKzmVw2xJgvmLW2iLe8o5eRm2aDHtVpnZz/jS6LSFKhjXcHbvwpo7ZWtP2uHe2iKo4Tx1COgVsvc02QEN0R16KkhznXF36gbqsRZ1uBfr0jnvylu5y3vu+xWpSZavvy8pxEJlaCJZjEheWr1JfyJEospxy7mKZtb22ixW2l1dRk6bvltub1059aX6eZXn6R7t66ms9hD6y/6yCC7Q0HT7czvUGR1+lBJIG7ZyH07OQYz4dOp42DPOrIJR2Y4utVzkziiQJnssfwdzUWVo5LAGAk497Xx7LRVT5/9QzN9+VftdI+hn6E91teMKVFFVRKoJPAYSGAhAJ3bD7AUrPmHoElDmDNwXcY7QQlm+R9A0xlLLbILDtUUC3wFrtpMq60V1LoBi+W0qzZoMpGDsZm2CLGcyjPA1b46m4wItlEARHABXzdAtLmhy9bdqrD1AuKvhlZ6F/tnUXcfPvTE0RT85+JRiXrpsrYcnzXr+oF21bW89xkwS3OOWDTJAkesMdiJEb7IpMmKebEQJ18Hv9Rt2t2NNjcx53Bh4S6prIlMW2z3fefG5+niM2+kNX1EC/hDIiVTRxxpe9H8IzKOJA8afTB+QvTBTE/41UR5T0yYX2Bzk5q7QOZpejFTZ+wR0wkdr48eJTbqPKLaoyhU6ZUEZpeAjwLzSKyfwS3qV1dS+vRKPy0/12e7b+aXqjPOLssqZyWBR0gCCwDoDGIFvvp1bgMIBc66dtP3sx4qBNOOHYLLs2vL4flC0wei0c720iZaWDc4Efxql9xkYxMX3bUAstpQq0WtAyYDkAsfjRP0AoalK8Q1LeyqLQMNwbI8WYdabXOp1dYeLRYJGmU5UKoAXuVBH/5amm6gujZfeOjQ4oTyg8GveCGwdA4uVrQN2CtDbxXgn8E/mgh5DksNbLZ7AOI2fGGYUm577u6Nbu3dYWOVHWw/vr51J53d2KDtS7x0sNEKTG1v3U7XPn8nXXjqtbR+5qkw49BmelyIJo1LOE7chMF+QvR8NYxhdEzUfDSPkXumtsyU6RiVz1FkZhZmzniw8mMWK4iMlB65zJn27+7Y5IPsHP8K4qdK//icVSWfFAnQ1fu7KF9W99Lv3qqn1QuYcPxP3fQ6230vhVLnSRFE1c5KAk+OBBYA0IJZBMUPXAvgBUYS0WXx3h5gs8u5NsXG6+GiyWI5tcMZUlOMQk3i+4BCwbNa3xU2Mlnl56ZO0g76gFRNiXOebAJSwyxCrx8lQNbmuE/5WCQIuBZUUzwIhDYbQlQRgWRAKulkCC0zvMIBQBfgDc0A+LjDC4265fhlbXIUjDZaNjOnrQhaYwyee6Be4YJa5mWAeOxOiHFcaOSxy+5QZwdw3KJ9vhwIppsd2g8A323vpia7Fq5RPmSCXLqd3XQDM45PP/wZ24230rO4t1tZOxNyiIYM/Ym2Dl17SrMevjCG0fttahIsjOHjYRBW9Kv7xMhEEUxMOA5jmdh8JEc67gyFZ8gymfmFCk8mW6U8gRLwY2mzl65/2Ei//YdaeuYptNDsXPja884wzn1VqCRQSeBxksACADqLQYCsxnYJ7XEdwNjGHEL3cVoyCwiWSVtfwZWbb+FhFgH4BUzG4jn8MJcu6UgO8OyCuprpTmz8+oBZ8zbChMNIwSGu3wDNaoizaYeA2TIsEkT16+6AlsnlqJd/QawcxMjX0OYZmtIyVc2z4L7UXHs0zUFPoK5NsyFAjgWIk0k15jr8UANf46QZ2uUM9KNALHoUPGPz7SJFXPHVqLeuPFzkyIAL0+Heztat11cB4dwW6ttBC/3p+z+mLl0jnYkFhUvsWiioz+2JGsb+iSwyPyFMSZpQ4pSiaUq+q6dE/yEhe2Qbj8wwvSELFs/E5yAyR9bpjB9KlXLRO4tKTqOukuZD8xxGEFv3AABAAElEQVQckkMV8ShKgKkr7d3rpuvv1dJP/muN9S2YcZzppQtnXJsjjCaUne9RbGDFcyWBSgIDCSwEoAW5KFzDi0RNA2DMJ1ogYnf0E2kKSQXQq4DrJaI0dVAV3G1rZiH+dCTJU1jQ4jJcyuECzmtXNwuSBbZNNiNx4BHMuviwC4BuoolWa0001WnX3Eh3tvfSrU1siyErby7eW1bby4W/sMUWwAKwrSA0xNDbowD4Nuq3cI04YDP5rFTPH2qtaRPX2rqpxdbDiOYhS5hegJxdBhhadrf/jh0NFQM0ddBhdZLKAfrQ0mSlgbmHWmhaFeYs/a2tMOdQE7+1C7DevJO+/PRtAPR68Kx/6Hq9pXiPDlPylJpfs+Q7cDS5+XJMqXw+QnPkPp2WzMpAKcuy5XJTnu+fzErtcL4BrcNJs8XMSWDO7LPxUOaaQNxon/cJyWXp4x0hOkq35iATsaMpx6uiKvWES0A9C2P69t1++sPfpfSj9WbaO9tM/+Y7e+mF8045p9S3n3CxV82vJPAgJLAQgBbFZWDKbkygwx4L6gwBFEFoTkmaK2gDlt++Ac6BcQTFmneQt9AOg3OhlW2fLSO4DlMLzBkccupkDjMLytcFywB2tc4rgFCDeuQugFqtcs0NSrTBJhZsGvbWDTTB1hf8ArQ9BsgF0GcgL7eUgb4L/6y7LpDmn+f+gi/Su2TQ8llNO7kC2Koh1/SEqiOgVIaI5iscbYumKOTlpADtnHCtycbK2go22Iy6mHp0dcO3u5uWeVFwYaG7Km7evZ6++OiXaM1X2LlwJ5298FxaZWFhi90Kjx3gVRANU/nIqZeLB+X4ZAVubxaeshxqepwXMh6KPtbpMN2JBMw06SbORGCf8pzZ9wsOn03iZwLxMro8DpNa5DzoTSU6NXGRqquyT6IEmAZ72/j2x/H/+//MPMGc0L7SSz/4Xj+9+lozrS87vz2JgqnaXEng8ZLAQgBa4Bmu4lCvgvfCfMIFfDGLExF2ywwUDhZhvkEeNcjmyAsCsxs5tbFLZBJAZ82tBiAGFwYCYeOXgfCgzhqsC3JV7RLUBmv73ACQrq+vwgtgGAAcOySirdZ/dIBiIS8rE91OXM24ALxVoF53JdRsI8pBW+8c8itwr4E2YxtvfD5bj8AcQxHeEADyePBQDqYL0pXB9h6NpaxtcotwadsOIbk8tXnZwKse5RppjQWWK/iB7rUb6d4WA+82vjhA4Otra2jPW+Gp5ObXX+An+u/TvdtX0/Ov/CA989J309mLL9IWtdFZWpOwUwho3J9cbID6ysvICr/zhrnrn7eCI/PPz/M+ydm4P1RDGVEe9wnms0nxo/mK6zmz71MpC5bH/ZSJZ3NknUjjyISRSkYujyx+nAzF4zB7UZm6H4zNzlGV81GXgJMcHya3P+mk33/WSJ/9dCl9/b/tpb9a66VXn6untaWqwz3qt7jiv5LAQgA6xMc4UEIPgZya3bgO8Ji3vBY8hyZXAMnP3QFbZSnKC4H1vFHaiOWhxTL8AiBbWhDOX36CZtOoIugap/u5dmzp3Qsgq0Y7tN3kCdAumCZPNtnA+4bqV/hosEDPvNowu224NAW1Vuu5gNqg9jg2hQGYa8OtnfVeF55X5B/wCw+C7BIka8ayu4edNr+NVeoIetLKJihu+LLnqwR1t9ytkDpdZFgP7TleTSjX2NnGhm4VX9FNNl7ppHt3vmI78F0+D15HU43+u7GcNs49TRsYqYPHOOQ/8j50OfdpvglzFTtGkbnon27mk+J+PqlHrSdV9YwCmqu6uTJPZ2BhUkcQOCJ5InPHLTeRYJVQSUAJxJdMxnsWEm5d7aVf/zNKm8usc/mLfnr1WWewKlQSqCTwKEtgYQAtvkShGr+AyTEbeeaiiaGFE0gp8vLHo9liAClGESGyAJn/xFue4DnpAXwLf9Cl7XJRLNMSQKMxzbsUwgyFLK/2WnQOLI26YsMUgHSnk80tVlnc6KLFpsbP5LCejisCLRw0c/3S0xxE7x8BrNFMC+EbAmbc4VkanyBUpJ02FVJWv88KpYMmWm14yIKXBEG9IN56en0WHnKtBxFQeyzGbLGwsk05twQXgC8v9TCB0ZZbQN5OW4Dnzu6ddAbt8/mnX8WU4wJ1sR1icMGhDJCU9lFhhixHkajSD0jAzlP03wPxp3dhjacSjiB8RPLJskRlJ1LfEJGh05OhfbItrqg9DhJwfN9hvGeO+eL9pfTrX9fSn36vnV58JiuOnKKqUEmgksCjKYETAdAu6tP3swBU8CvoBUYGINYkwzFCoBZL5dDyChBj10BlRkIAXQCig0nObXQGIWqA1Syr8VW728AuuNHIi/viHd44SmXNctYwl36ig5qmE2La4AKeNBXh85nmFuvsALji9trYNGt6YdgG1OrNQ+8iGexmkw3bpLC0tfa31FpiESMAGWDfpU0Yj3CED0wqog4A9BJl4Jr2uq24u3rrfi/LxwWMNeWl5huKXXYp1NXfkgAaLI6Om8qyXBuWh58+AF1Q7SYs925fS3dvXkkXLr/MIkZsoWMgHhmNRy6jgSN/poFs71kVjpbAYTGPxIxcHqR4tJSnFj9IbLarGQjOkGW2uubNRcUnXfeA3uBkn6mQPvFH34X9MtVZJYGZJVB0LOe2nbu1dPXDerpytZ9eebGbzq8xlznvjOmXM9OvMlYSqCTwwCSwEIAWYAqEtdcV5HY4BvBlQND+WQCYgauL7XLejmYUAMISQJuuK7pmgONCw1uIw7ScL2uYs4lGO+ynBbgC6gDVuIKTF5AvwJYFhE6IIt74b4LXeZwqbZopGGYjmo700SgL+d0IRTpuWKKmO7YLr+t9Q74yL3r/KOt1MSPZUg9A6wJKF1I6Hrp1t6YqscHLCmAcOTSDTiiaA0h3Ae6IjE1o4N2tveVZLgDJq2ywoveSmnTRcLvZiu3VvnuJcm2017e+/jx99cW76dKzb6RlXNw1GphxKHdojAtZCmNSJhUg65SkMYQmRE2seEL+BxF9Ig2djfHDVR2OmUhpatbDgp6afWIlCyYsWOmxi1PwOGUHZQYnC7a/Kl5JYFQCPJouTK/dY5z/sJZ+8Y8Js75e+uH3a2ljjbnFR7fqf6NSq64rCTz0ElgIQAv5BLixVbZmB4BLg2BT+wGBpqYOBjDkUD410EJqzSBIB/F6bZT7Egp2S3MOy6oR1te0mlc1zYJU6xYEW2cdra51udgv7KStEx4yhi7qJ79+qvMixuxRQ3ttPWsImlVTu5hQd3jS8hqTZM5dVAjwBVT7ohAeOaw7yqgRJ58/Gmgbwgc1+Wv6e6ZMeP2AXvgSYUcYteW61svsg6DDxENNNnroPc1YaGthm11Ho7272w8AvQfIXqXhTTTfvhzsxk6F76Yz55+mTCNdwJyjUbj6C/EUIirPlYIs3/eQxX/fq30YK5wqiqmJs7TmKAIL3v2jyE9g8ZjFJlArokeIjlxOLzshtaSxoJQmUK+in3gJ0LHqLhy/ldLb/1BPG2fRQF/spjdeSukMA3vV7574HlIJ4BGUwEIAOkCxAJrX6x4/QWQENj+p8VodwwJgr0Me7YDdOlsttTv7CbwFqpZwk5E2+YWZerMQSLtroRpcwaJ4XJOLLhpiAasu7VzoF2YbLK4TFIuCXUhoUHsc/jahbx0ZEEOEc0eqHtrg7DGjgPcObqS1ALZqeIOe5fyHGzlwO8EpVnDNgkMQtaYbxgU/AGVfFaQhyNakowVYD5No4920xepVjfNf/txWvNXXczQsUU7ZdS2L0UdLExPaKi+px+LCTp0tw/dSwx9llwDYbQD37a8/S+/+4v+CJ3xds0vh6tr5WBQpcI9AXcMjs5eTgnxUYXEJTJPxROrHKpR75ESahxJGOsOh9CkRY/grqY1JmkJo8SSfv0VCWdz+Xp7HsXoAFhFrVfYoCRT9y6+O199N6bcX0T5fYn0LSpVXXmCNC67tVOYs2r+PYqNKryRQSeDkJLAQgNbiWcAoKA7wF6BSzAaY7gJOAbTtdtbOZhAt8FSjWwBt2uHk1WPgQFcLyNQ+uBngtI/mVaAZni3I5cAioG2h2RVE6p3DuGXAJtg5gHY228gjVcSJHou6stu8mCqjXHjFEMhDM5udZO2v5hruhBi1UYemFGB56FMPoLemVri7l7bwY+fmKisAXTXX+my25j421AL5Pbbn9ljDg4bblRdqc3IIwPtRXk26ts01ALYDq5p87DlUSmNfjc6atgqiO102VcH2eRsArezW8MxhfZ1eJ23eu5U+/eAt2GXr2BfeTOewiV5dv8hlbivNmxxkuAhmG7oso6vjHBIYK+qxkXMQnZD1eGTHlDoUdXQvKIuUxwksnkz0gpVYvGzRgBQng/OCy1kel5NpUEXliZYAu2r1UBZdfa+efsLYv3m1m37wJ5307e810sVzeq0a7ZlPtLSqxlcSeKglsACAzhpf3bG1223cq2mvC/B0VRqzkbBUPB2aVUBfLDA0iZ+AlIQAsp6qbY4dAgHSamp9E9c2WLOFKEcetbsC6rBFFnlCSLArLdPUX+fgUQ8X8pdNTJwc8y9req1bYL2zsxv0LB0boYCqw7MGyQLezEsG6hYxOqA1GuweWt82NNxFMPiAN2qJ8xpaBYSBJw3AMmC8hc/qBkDb7bvN04XYDlnqaO2X0aZr0mGKGvrQqtPuPQbZbgBzTDqwfW6yw+MO8t1F416v7bAD43KYegjGb1z7gBeY3dTevk17sKFevwA1+ZHjKSGLapDBy+OEI2o5DsmHpsxxZRINWKDwAkVnl92YSnxyj+w3s9ewUE6f2UVCWbw8Bq0DFwV14h7nPryIDKuyJywBOlqNeWn7Rkqf/gK//1foeyhdLr/QTxvrels64foqcpUEKgmcmgSO/7gyEAgq1Tx3sHHwJ1iOjU8AhJpILAP8BMelh4ys6c1A0xYJXAXEmk6sLOmPGbAaQBSzDujt7qLpZTvrPRbNOe8FMI0z4CHlsg1zBtWhkS4AtoA2MDIg1IkxdhB0NibSRXmakLiQUY2uQFtaSyz8W3WHKEcwssplBM4FFeVkrvZbsL/M9t09tNKCfD2QLOPBTvtlPN1Rp/l9geigiebXAETjZaNfz+LWxMLNV7ZF0eReXbYN1MNvBxcc8dIgn1202tbviwL16e25x8vKDj95lF+13+5OeOPaJ6nT3kwb55+LhYXNFg6qC95zQw7/VTbmWTScAInMQjC0ADcnxsgCPIwpeqJsHUHsiOQx3I2LWpTK0I0sSC1KcZTLQ/QORYyWmHwdRRcoP5lylVJJYIwEeDxq8bURM7wPE545UIJcT+m5p1lcyLBdhUoClQQeDQkcH0CDKAWeKyDHM+z810Irm+2Vs4mFLtv0aqHWWFOH0utGFkuerfwrcFT7KyjVzMIgWNUTRoPPWSsadzQBwoDzAOxqs6EXCxcBwnW1vVEm8xP2xRDN2t4MrsNbBjQ1a2gCYvvYaHcBtcEXRJ3u/WkeYR2yUZqDlMDZePMIuP0Zr8cPdxpcoa0ucgy+QaQC6ExHVGxB+S/qiUt4pc0tQDHFoq3adUddIGYwNwCespTR1rpDXGjI8c5Rwyl0ZxezDl4w3PJ7jVXcehJpo4G+deNKuvb5e+kiCwovPfM6dnUbRctgdkww1jY9NGE8mw8Ne8dh5MgmHZlh9lpPkNT4SmeuYD/j/tkoyWP2PAhOpjlax/TrYTrD59NLVamVBE5AAnzK7KEH6bJw/KurjfTe+wDo53rpwgZzpp2x6pAnIOSKRCWB05XA8QE0fGk6IYhUe1zr6R0iM2s8eJCQgWQ+K68zkPRKf815++wMXAW4AU4D1jGCoHnV33ILAC24VTMr6O2iWc5lC2BamGqE2zkAtUBUrxkCcgG14LUBLcG6g5M/ga+gVB4hm+2uZcq6IUAWuS9iuAIIwy4xuU2mC35rLOhTBrwrQEcTDO28yUjIZifmpw40DsF71GWq9tyWo67AypZRu83iQl4afDkxaGPO4u1g2s1Ummz5zZjLlt+YdGAX3cJ0pslqRXdxbKMN/+rKe2nt7EVePpbSeeyhW0urBTAPcof+5FoORU+MOCbsmUjvUU2YV25j23kMIscoMrbquSOHKh46nZvMfoHZqEzPNVtvnE6j4Gg2UvvsV2eVBE5AAg0Ac4PtvevsbeBi8vgmSV90+nQeq0IlgUoCD68EFgLQNkvQLOjVTMML5yG/TrHWLoLgNeCkaeY1H8Hz0PhSQrMIQbgpmoQ4cLipiFtct1y4R4TAVaQpKAZPS8E/8Vea5U/TDF3bqaE1CGI91wwim32ohRY8A1Y5CrBrgFjBeTleeQxtuExS3toDPGtPQShNQqxTDE7xqIfMYc6xjemJwFjTFGoBUAOE0dC7UlAPHjv4ne5pFw0glifpa8vsz3osGxunEO8CzQ4IGocdDLC8qEgT2egvusdqw62ddlpbyS8yQm89c3z4zo/QPq8HiHajlRru7ZRpGbLkyqv5jkNkphdcpJLplE839cgGLtawI8kv0roZiM+QZREOjiw7qH9wcmSRiRmmkpiaeJBkPBtz5D9YurqqJDCnBIq+1mAB/Orz9fT6H6f0wx/20rkLtbSFuaLzE1Z9KEvmpFtlryRQSeC+SmAhAC1wdvvstpuIoA0VKWcILcjgx8wkONZcIYAiA4JwMTxEUDZAN/kC2AIMTetxVLus8W8PMOxCPYNYNswqONfeWXtjQ0BrTgXKfbW3jDoMQQOwLo+iUsGuGmBxtQBYHpw4S5vmANJcyz8cQVewXtSZ0XPwKx1r1bbbMtarNlt7bPdjaaCR7qEFv7uzh7s5PGawy7bmLIJogX2blYWdyEgtAOJQNQjkkVGfwXOHjHU8b7SIgxHagRysEpvoDvbRGH7ERi2rqyuUwVMH9LS13oF29hGNbffdm+mzD3+R1s9cTmcvPA+fbjGutHLwVJKnGobqO9V67jvxoxo2WbJHlRzblDkKzZF1bFUnFjmBkQnRx6o20yooHkl48j0ZrXz2nKMlq+tKArNJwHmnx5zRwBTv+/+hk/7sL/Gg9HQ9fYwpxy3iXny6n14410vnmTuqUEmgksDDK4GFAHQ0i8FA4KuG1y2VnMvErIYAqQBLwWUGqAwajB4BoEnPXjsoBhDNoNay2CeDGNUIi50FrGE/DNEA0NbnuaOQPyuLU0Ao1/5yRLGQkPKhlQY8x+I8wLAWFsLkcDMH2FVTvLqyBB+ZXoDtAO65IUJyzwT2mmcEwOdanjUNUWPgr4tnjiagWWDbhS54mLrYhbBoExTgBVrQCdNoquthauKvhm225iDYwkS7oh2kK7uoEzr6l8YrIBpqvXJkn9k1fERvb23lDVy0GyetDmDf273H4sLtgXxg90BQSscJWSIjJSU2NmEk36N+WbRzuuzKVAVSnpcNL+OGj2XamONo8eNlGVNqTNRoXSWLw1lH48rroWM8fsNl5j0f4cPnJA8qxbGkZ7xhJH+OHP1rJsem4cwQgNk8Ys1IZpRsdV1JYF4J0AX9mtjiq+GFF/vpj/+0l771bRQcKKE+udZM17ea6dL5dkxr85Ku8lcSqCRwfyWwEIBWe7uM6cUaatYWwDHMNQS0Alz/OUfRngyYHTkAs8Rnmw4uAbdZE6xNs9ckARTL3fi0jQjQqhkD2uigC4Dt9vEP53TobM3P/IJwzyFBkC4/QK3RQQ+QPMyXvKqR9ij2j4WMAFDBbQetrhp13crlzVUAq9DOGmzNQ7RXo7p4MchAWhrarlhnuKVTQwwfYNngx8apOXeXwQzkafMe7v/cPIYcmma4ccz62kpa4kWkockHZZZZNGh7djF8ljd56OF+r7nUx/MHgHnJRZp44kA+eudYW22l8+cupmde+X66+NTLmHEcNN+Qm0WC93NsMIF7+NiGsuHl8ciGjstYxu0fhXAPPBTslFwFPwcuCg5H48rr0eMxG+TjfCiUceWxzDB6XcZPOB4Ez2QqKstk5iQ2oY4qupLAkRKI+aCWzj6f0hv/vp+++RKeN5g7/3ALU0MKP3d2L716fi+d04ajCpUEKgk81BJYCEA7CYUGFiDZ8ycKBgBnswkBbp6nYvISIMcvA2thgxrgMO0ILTFFiXQq04ShNLPodKlDFEzoACDzLoYAaAkUINqNStxOO5CwsVExJhiYSsTUyLVx1iW/BnmRrhri0ENFRgAwaWp/NbuQjG3Z3W2HFliN8h4g2W23pRe7HYJvzRc/6Aug/aEHDlvmZV4CQiaYWAw07vAAdKem3J42BuNuM44CG8CruUvRhuBGvnXz52Yr/izDUAvZFiYgOt7XXryBn+g2NtZrZ58FPP9xevH1P0kXLr0UpiFkvT8wzYqqMLMEsrgWEVo8BAfrOya5YxY7WPcRVz4jJx0mkpyYcNIcVPQqCcwuAa32+DiZnn3dDVRSunixgfIZ22fmi5ef66anVrvpLNppptOYo2anXOWsJFBJ4H5LYCEArfbWDU922Uykre81USkTl/Fg3QCJnguswxTD1nEdQFbtLXn9GbLJRl5QGKYYoEiT4icgBV3qw9ltv8k8VBc53Epcu2LBMT+gKITV/5pGFDO3deYdAQOdBsi1njA9MSfnwpHIG8U1h2Bw076YhXpbaH27YY+cteJqk0N7HaUsKd0MvjW76GKKodeMZV4G3JVRX9Z7gmjfEswoT/JLe8KXttprADS+TPLqEZLMB16On4sKYScAfZh0AJZdqNlngWC4uANgy8+Zi8+mp174I3xBv57WNthQxeqCUj4e529B4jhFn4gy3IYHFKx56O4EIwfj7jdvp1XfXHTnyvyAbl1V7ZMlgaJPaqW39mwtvfzNfvrWN+ppYwPwzCO8ttxPT5/rp8uAZ6YMp4UqVBKoJPCQS2AhAK05wb3t3XTz7mba3dkO04XVZX0jCyDViGJW4GYoLKhzK+8AnADH1ZVWOru6zKCR3bgFnhTgkkdAHQv0BLSMIhyEpgVMZVTh2o1IAqEbT57yJ2QvgTAMBEgNAmp8Ab9qvLuc63O5gSGaGugAsZp7kN0Q4xZ/pGkQuOrPWhOK9jabotBm61eTrS229QVgJy8YmDQ0z0iVr3LRjlKTHgsGSd9EHmrRwy4cRBwAnvr1FNKXdp8NU/DQYb2GPWSyBYp2RTbiyiYduxlIKwNeTajU7cQb7Gq4lM6ePZ82zlzCRtqNVErJBalj/ylEc+zy8xbMkp+31Pj895v38VzMEXsEw4eTD8dw46nwJKU4mf/yuZmcY/GUcS2MJi5OuqJQSeD+SYDhmI+F6blv99Orb9bSc5eZC9kMq8kQrrepNdIEz2P7+/3jsqqpkkAlgRklwCN7vCDAdEvqXeyBtwHKmha4mYgmD6EgFlYK4ACbbsCHXwwqMs7NV5ppmd9SYaphSgO7X7OYLrgUlAKNQ3OsewvNNwyaODQAmHsAzrx9eAa/WkpQRORbjEDSy0NRbMISdcMjfqVj8R9IPSZ/soQZicSpT941hfDlQDCsFlkN7wrlOriNc4FjXkjYgQ+ALLsFMvpFuy0TIBrC2mSHOzraIoy1TjgKN0Vttj/XZnmF9i+1yMs/bbYF+Hudtg430CwjNGi4sNBFgbbB94bwzkH+DvL2ZUOiWXuv7TW7Gq5upJX1c8jJW1vKgtNHKOS79ggxfJ9YnU8uM+YeZLN3Hh0G2Y/OOlsOCJ44zSk1R10jFcY4MKVMlVRJYFEJOBV2mEfqq7X0nT/ZS2/+US1tsAkWQ3uM4wJn55OqLy4q6ap8JYH7J4FjA+gBi2pi1cgCbMPvsZpTBoLwrMEJvi0YGYrJGcTnILEOeF5jcVxT0EwQjO+D2AyyQwNMfNbQutgva5ezb+gmGu3dtIsmV+BODQFQBZTxCxakQ/moItcTNsaCUEE4PIetNmWzKYecqNnVXbNAFpdxBai3SQGi2XURiizWA2ADdjsA7T1GwD0BPz/L8J9AO2modF186I/ND8P8xJcMfNmFLbVbc4ewzGMlgv8w89CXNfmsDfnqL7pm+22XbeKX/ViTg/rUXnc1YUHt3Wwthw9od18kZqGQpbYQiSem8KKyfhCCotsNhQMXQ/GeztcTplE6QHjmjAdKTb042KapWQ8mngIvByuorp5YCdi3GLuXz9XT09+rpW9/P6WXX8jem0xyTvRXhUoClQQeLQkcG0CrKRb0abKxsbqE/2Y+QQUoBriCYoF7eNzgL6CwRV6Bp5ObYLLFm7gAUCtlgbHB8SPMISKv8RnMuiV3TfMLIkKrCwB1573uTidtsZZwc4dFdWhzBcqQxPdy9oKhP+j8Vi8/0s+AtkXZJbSz1qWGO4B61C5IKNsECG3ibQMwuwtIVsNrW12st4FGuNXCNAW7aHcJ3MKExXR5chW1dtIRcF2nr8/cLijDf/CAbJYB4kt4L1ED3YRxyxtsX/yDYeN0ebeHfHxFiB0L4Vmb7Lvbe4X2Gnd55IvFidSnBls3doLoMHMJqsf/U7Tk+ASqkqcvgaGbNHR6+vWOqWFQ/+BkTKZTjOLxqEIlgYdLAvZJZ9ktFg7+62760/+5nl59tZE2WLNS9deH61ZV3FQSmFcCxwbQVuQAoGbWrawxbgB0CkAzWFa7KzgVHwtNQ4MMhIwFgpRzXBHAGvYHEmPVthLvz1CceiltXb2FdptjCxC6TEIHoBlA3HOIqUVuY24hQK8DUCkGAK2nNQCtHi20gc7wWdd0AFiYBGMHwBXKWrPmGw3LYpbhAkUOobGWliYm+o1eAmDLp+1s45IuFhlSv3X0zSjv0DIIn4Mu5yb5J+ygidUkRKAuHcG9dtbKrwtfewJjVedqlNVe235d0xkVdWWZU2GA+Aa2z27jbVoEDgL34AOaZVyO4KrINmAu58iMm1Y2wPgyb5nHY5keefnjm8xwxgPpXASNglCZJpGS3zKuyDKoqowf5CXCl5Wor8hlnrLc8LnJ5bVHg/nKuIgo/oyLM2lc/Dhaw3HDdCfRGM5T1lEep5UZzkO+stnD5OY6L+UxtlB+ERybFJFlo7lYgJGyC0yu5+RTFmD35JmpKD6WEmCdd1p6qpa+8Ufd9MPvslDwAnML4//QU/NYtrtqVCWBx10CCwHomC1Bq4JiEWhpthBgkz8CQ8Gt6CPmezXBZM1DR/bBbJrgdT+YmvMbZ3EBrrGx6A9gKxHNGlaWsWcGVEZ95IlNSkJza72aNWRwK2BdgYLmJGpm5bf0QW0doQEGFMtj7BaIHYZ8upCvFbbEmFTAiNpe/VhnIK8PbGlh8gH43W6zOBBNuK1R8xxu9QCsJBPkg78FgM0yyC8EQnlV5LvSpyE1vHeYLl2gPbwB0vEJLWVBuTsWrqws4ztamahxhm9kUe9jU76yDohepqyLE6PiaNsuG6qonVYzHRutBPq2tUOhyD+IKa5Lhfog/sAJmYbLxflwBJmHL0umShqDtMHJwfxlPo+DLOUJxzgtr4fzeD6hfUPZ92laQRGG08s4j+Pih+OK89EmDpMYS2M4Q0mvPE6qd1r8ML0x58OkB8llZHkcJMx6YsERec9atMg3VW5z0po1e7xk0sGj7mO3fdbaqnxPnATsU/zQd6SnvpPSG9/qpzee0YSR+cHHpepzT1yXqBr8eElgAQAtKATYAcwcDcI2l0m0NI3YZWGhADpPrHmSEvuC/wCgeezQpVvgYYChAC9PwfyVHiUtHQvzyKctsFphZ7vQbJNNu+mWHisEl3jVMF7cFAsZOS+14ALwZcoG4LZygnXF+AY96QiqXRSpXXMH3gXJqNYjPjTFEF4CeMrz7h6LAAG2LeyUNWHJdBuYk7SzfbTaaHlyE5QYJPd5Vj568FAL7gJFdXttaGoCQu0F7zbTgpirAKgF0R1dBRLVYuMUNdxN0vXMAWXsq3Nca3k1XhDUXNdpix5G9to76bOPfgO476TLz7yazpy7nOrylRnjOD0E+2RRXo9WKDk/Ta4PSuV+1DhTa8YwMiZqJlKzZ5pcQ3TlAaGDMhtEn9JJfo6mEJ/M9pRCVVIlgRkkYN9iqF1eATj/N730yjdqbDrm+D9D2SpLJYFKAg+9BBYA0I4C2XxAIJjwdZxjAv8GGLX12kObz7/aP7vltWC5LWAuALSaZbXA4mM1qvtB04nsO9lo84ELAa9qmF1oJ8QmQDy04NAPgBpwT9AqLxlIr8CjuyYOT6gCbMsGWEZzrA5aMN3UdjlmfcpSh6A5NkgR+AKkm2h7u2q4AaqaXrjpimYlK0Ff8xHb5o6FuO/r+MaQwX2mlXl2ELU9GZrmRYE1XgbK1djRrvgjL2YDXrNYUL1zo9WiTiJJAKazOFEqaMuXN9B2YL5hOQvRFgH0F394O7V3cdUPH8toqVtLuLibMwTNOcs8/tlnkQo35yTDhConRJ9kzQNaUdexK5xWcH5ZZV6m0RywPfHE0otRmEi6SnhSJUCH8kNfHYXH2RfYcfC73fTCS4zReF2qQiWBSgKPhwQWANBiNDTAmFDojk4Al+GcmmMnQoAf+DDD6iwsQa4gOsAnYDBgnwMNZ2DUGFzqeL6gZI6UTKBgYaOaYoA2ceHCjgV8bqkt4M3Zi2P5STZXGWlqa91eWz45De4kLQDnMoBsAGR5IF/QLKo2T/h+xo2GWnbTtPnW1lrTjZ3QtLNQEhCth41sn1242LNstBNPGZhouOhQ93MyIXSWF7LQROQCom7hDm/FlwQa2eUFwU1qMsbPcsuaaEwxAO7q3ZshdzdbQfKUa7Y04WAL8QDmVEDrlPWdm1+m7c1b6annXuealZc2WgFU4T5I4OSEbX85rTAX6bkyz8ZxJjkP4aIDjwhlHgpyJpXqUZjtHlW55pCAHZGOtXa5np77XkqvfaOfnmLXwUr7PIcMq6yVBB5yCSwEoMWuAsrSTZsDhhum+AvzCcEh/xxLnOcE3ILs0MRi3iFgVJMsEA13beHujjxmjpktA1wRXwDJgkZojqFp/RHIC9Uw38BimLyadJiiaQZ/UV8HeBdY5oQ4ah4i2GzxyxuqZO1wuM4LOoBsQPE25hP3trZiAaM+rFfwomG5Jvy7YYtsiItti1rlJcwxlpfUJgu6cXvHVuCatLTJpLbYhZBybBC4h2s7joJqvW34OtImY3vXXR4BvIQ16gwzFkB1FxOSDmB+D421Nt016LWWsPBm8SCMkTvzpKybaKvPX34+nTl/OV3guLSsNXhk8W8V7osEyo46b2W5j8xbKvLPUeUcWY/FymghH+/Fw2Eih2NGahmTwaiT4WekruryyZWAnYqZtX83pUvuOPjvmumpZ/ooRxyZq1BJoJLA4yKBhQC04DCbTuSJXu2wds97mDCocQ0QjaQcNMJMAs2pecJWmUjLC6bbaGkFnQJawXQTV2zZZAI8qO0GYLF0AyfuzKYX1A1YzDVnWjE4CZ6pr/zFjeJCIJ01s4Hqgyk1vRgLU1cxslmIEG2CaxfQiXUDBAN+e/C2C69tNMlrLGBsqnU2n7VZlrrziwMaaQExdAPP4hFE84s2QNxXAmWxzytnsoEsNG8JAG0iv12U9Ns1rKl9ISHKugT62nRHnPGauHgfqKjBAkILdtiMRVTQxzOHpNY3zlMF9nds7d0UZFfhEZGAd49QHPJF0UlHo3PiA/lLV5szzF1gQD+X3JdBJMxJbjj7CKVBPdVJJYFFJWA/66JgaXcY72OMjyliUbJV+UoClQQeEgksBKBtg8C0DE5G2idrqiAwdvdAFb6Cw9DwikiJEJDqPaM0vxAhCAA1l9hmq+vlJU0lAMcSZBFd4FPOXeSnZw09YggqzGMIFgTZ0uE6NNBxNBVa5pWHyGluCRMc1QhRz4ETksgmvraI7uO0O97ZYfOW7XYAaOveAIyWYNv8gn5fANzJsBOaaeyu0VKH32vStIvW1MUtu7UD92XDpni0rDQ15QjbaAi2WthG77XCu4f12MLMcW53vHxAoE+a7vzqAGhNP3a276YlrsNfNiYc9Toac/1X696ukJnNnRioxJcC71MV7q8EDkl8bETRMYO18jz3jJPg9lCVBdGyprKOuB5k9mQcD4MMZbEDx+mp+1lH6x6kzEqgKDCaffR6QLc6qSRwXAnYWbVQXE/p649q6YOf9tPXr3XTs+edCwrlyXFpV+UqCVQSeGgksBCAFl8JggXHWCOHZrR096aWVDBnELwJANW8Cg7dHEXU6vUSi960AZaGQLbbA3xuM/pwXppqBA3Kq4V1bAq6nOTJr5gCoRH43MxlivxRbgktdl4YSBLlpJH/UIaLsIUm7wCiUqbMI2hVC67ZhiA37K4pVIJLa4+80iToJs5lfB1sjWOXRMrYvmUAeH9VrXL2qrGzsxPaY4iHWUcdbbHeNHStYe35n+Ye1ABNtd1tzDl22QVRpXwd8w0XN5a8c0GeVQB8O929fT2dY/90qkZWe/EyoL9uFxEG3zI9KdC20HDDQXaHlzP7d7idk4pX8UdJACmWgiyFWtyP4nCYQJn/QMpwZHleHouMJcHyOFR+TNRIoaHME1L2aZRn5XG47AhPw0meHyhy4OJAznEp4+IOFJp0MVQwc8ffI9icRKqKryQwVgJFf9q93k1Xf9VN7/1xL124WEsvPpXnorFlqshKApUEHikJLASgbWm8Twu6AsxlDbGaUVSsg7mxBKZqgLWXFsQJ0tygxH/ZJthZjSsGnj2AovbEgttAf5GrgJRkU4MbaJr4+A+9/XzlXGjGDPDdREXXcQGLo25BcwafasvDBhtQKqDXu4UvBfJo9bZLPvQ7vVzT+wUglIgwpSCNWkIjrRY5+43OuyzyehB0FEXWyKsRpiwgWQ25RH0R6AKo1UK7y2G44KCc9fpH2vHCwYmLIAXkPTXyJGpnbrq5glPoRTn4VpOt7bNpHbxwdPEGog9o4+U7a82jcPCi/+puD6DNvwYvND1eYryHdV2CQC/Xk/nJpR6Ov+VLjNwo0hCah4c22K/oh4g12C35PHBRRhbHUvhcDp2OZHrQlzag5G6/MXQdAo2dKeyXG85eUh2OG1fXwfQpV0MEPfWLkG4hy3UPU0pWSZUEZpcA3Zkpjh1ze+nuZym9/S8sJsQbxzMXVIrMTqbKWUmgksDDK4GFAHRMQCAXAWKbhW2BawFeeVdANvmIdgPoYiQBjDKX9nq5Su2dnTIFqKqOdV/XYCIzrh/g2XS1v7qA08wB+2O0r+EJQ1AX5UiACRfRCQylYxnz9wvzDDW7amKFl1mjne2u1dyWNteCX3Ms4XJo1c1ZNKNQ8wutnI/SZBEQuPBRrx6xDJCKfE3YxFh5ewfTE0D2Otuaq60WLJvP9mgzbV1qkZcAtmqQZVIXeHu0Sa19mGjgHi84jXZwCm3jtY1WE91yq3TbJiqnfZpuCCKVifR2drYBy2io0VgLCLqd3bS9dYdFjJthgiKQ7hDX67uDYpAPN3dbm3cwTbnLS0IzrZ+5BD/5C0BjwxcPbKap42ELmsPo4jDb0yODQyCoaKCMw35uwYNrh3z6YuI98BicBF8lT+WxlLT8EyKPt4s25pgj/0bLI/OsJaaRzHLMXWAcPeNKWRc8B6+cR6EyblodphXtG+pr42o7SGWI9oTMwy9ZuZaCgvVwT/rcizbPR7O5zbVrCKpQSeCEJGD3ZKje3a2l939ZT6+81klvvNJNT11iHGc8t8sOdfeZKnXaM0wqS5fO6ROeh5x6//8GWwVvMv+QsXf/BfIY1+htHnd/54kf6ioDSUVcSYRjMYTH9GN0pA9y35+ThQC0wHMbU4S7m9sAtc0AqMZp5iDwzAHAijTdRa+PT+RuR3CnBjo3VxvhZTxI5C26BawADTSfdUwQBIHaSns7Ol3KAqyVkprUsLGOejAegVZgSBIFJy6wy8DSirFLxpsFhdMe5cpg9QGGAbVqoLe2d9hABa1wUxvudmiEW5pdkM+2lO7o1ATrfWMZtsIlHwSXAN2sm0xt6qizUNDeo2/s0s7bjVYEyWrdlY801XbrqcNOsA0A72nywUDboZxabtuQZZjBtfnUobupi0DcbcZt0w68+4LQxNPHza+/wuXeO+nmzRvpqWdfiZcPzTm2AcgQTF99+VFaurVGfrTg/FOeN69/nv7w/i/T7Ztf8QKxRLlX07mLz6RLT79MO7+VVlncOQpCShnGETaOH2B87uA97qbN21fT7eufcO/Qri+tpfWzl9Lq+kVkrkmQwJpXG9qp+VAsnARgh+Dnrm9MgTnZdqrs7O0i6yvp8z/8Nt386mPMiugD3Eu1nw1kHE5jy6rsIATv0SBwOnSVowf5Brlyv+fZkaYmOMMh1gYEHfuUA1BuSEEm+u2BSop2mk96DfYkzjb0BwXg1SHeDlSc21LWY7VBoajf++KLsvfJ+5X5OljHMLmDtVlzkddDVILEuffymuVgf7e9/vxC40tpfsHcwb3j7a8/TxfPL6WXn/pXkV6+lB2ss7qqJDCnBOx0/Hj0062PaulX/8S8caaX/vxf99LLz3LOdDTUZY8mDq02c9Qec8Mqyh63AhgOdn2NJo0++OQP53ow56GPKqdf+JRX/lfhPkgghsQZ6znQpaJz7hf0fg3SORlOFo5EKOKLqwOHKBt/DkRnmkPlTR2TLX/LLBOKY147pqKRMmXaQfKnerUAgKbF3BmBrIAmNjwBHMZkWEjTxkWjIqsaXzTJxIVZgg9TNLrIw+OkrbAycPvsJi7tYgIMDXS2l+5xblAr64LCZsPFesLKLD0BRx33b3AUk6STaDAgj44s0ZOyVjgALAC5zLLNIOcjbf1qeG0TNfAr4kkoO6I4PMxCvGtkCF/YbKKy52prNQvFJB1F+ZNfDgTETNoIIV4eEJV0YnOTJf01A76Rm3XvMUju8nLgi0iAQJmCs9i9kLMlZUgc1aUugN2Xjq0tXmK++DhdvXoFQL+WLj71fGyYssc23jvbm+HmTrAsQMmNFH930o2vPksfv/vP6e6tKwDmlXT52df5vZaefelbSc308y+/mc5feDaASMhTVoZD8DYccbrn5T3oYOutb+vd3d20tLpH+1Zp95kApNp9ZxBtn8r3VGC9tLwe2vkQ/Aib05uRe8FIkRkvmfCYQW9c/yK9//ZP0vvv/FP6+vN3+NLh144WLy1sr673FDvDUDUBdqMGIvP//Q5IfGSlbaU8zGoZO7Qvn7bXe53jIpF+5z3Pz2z2aW7e/MxZ3n4R9CTjedlRuBDcBs3YBr6sP3elKMufzFOmUxYtGbTPx1jBMZ4Pn5F4+HJpvz5pPpQBNLIowrj7MlzPaLpjgCED6OJFQtnCUHjNiZcWG+cmQ1tp696NdOfGlfTaa6+mzr/6LrlGKVK0CpUEFpBAv41LUsb1j37JOM/A3eBx3/5OL10+g3tSvvKt8JFvhW5nz4vnb0JdTBnps9v19PVWPb3+VDddYE1NCaJNc+nQdXQlq24dDm2f4YchdJiTr9/qpTubuY3r67V0ZgOvULQ7gDVMxktzCKAYRx4Gxh8iHg7cygMXRzMpTMmdqziOKTLc7xgas3MDTmLjOK4l4Sjq6CqU0uzUY04xPs9FezhP0IFCHoUjQ/5jB7WQx+HKyix2ZCuRqBPVmNADX/boSzGnDWX5+kYn3bzbTJd4iMaRHkPqxKIWANAIlzuzhDZWINDvtgLwKTllpGlGBpLIi3NBHtN15HdDEwGs8uo5keEjmQ/bzP0ZXJuidi5ru8gETW+emmcLWa8uo/vk2dd05/vSQ4M8AA1Rg/GC00xbkwuFHKYRUYdaXXxSA9ojTo2395K65C9oUbu20bZJ8K9JhaxwIAN5A2Bo+8xmLeRb4bfkyMCgqelGvFcEYKAc9RinjbfaaOXgxiw1fpqNyMM22uQtTDsweQ7wrW10vGkhK3LGSm6U0DkO1XcPoL2zs5VuXf0ythInAe26mmpNW3zpgEl+MUjJtLIzKmLV5vMSsHoprm/dvJ7u3rmZrnz6u/Txe2+lP/m3/yu7aP2bdPbcUwAo78KDDbZBcNRa2Ujr5/Br7dcCgP/S6hmO2ctIPbZ15wUDkK1pil5JNGs5y4vA8urZyAcRJOkNPM2Q3Rfe+vrL9CGy/Nk//nW69sUH8ZJkPzmzvpLW17BNF0gWId+WfIPi3NO4YXHbij85c76HOa/PXBFbnhw4ZgCLTOx3PG/2Qe+nX1R8rhDH2JD7v4nBTZHH8/wc5WLB4ZjyDqTRAJ7z/PXFl0J5UQPs8xLPeVk3eYIRR/CoYZ/kcO258xJTyq1gL3NhzjK3fSXT8jlbWVkOEyqp6ps9vjoxYGuCdvbcuZDNfo3VWSWBE5KA3ZFBduerlD75+5T+K16RPr1SS2+83EnPvNRLz1yupWfW8RPNLoXObQ7Rw8+jz7m92HUvv7+2nH51dYUefid9ExB9HufS5t1ku4Art/rp7Q+a6bkLvXTxm5gMluj0hJpxXDI7vED85oOUfv0esxfP9muvp/TmG7300iU3IBNX0cBoI22nEttfysB2n/owfdyGHadcburYkiTtD11FDse0QjzF0XG3IBIFhkgpLOMKQmYzON6WWSOOiyLLfjp9qwye7TAubgKEl3DzuwqEYLqK2yAGbjNMb/Fru4FbUUhli+B5s93glzFFmRZZ3L9tx8L8Yu1b5iHuLze9vwotbnptm3QqGWi0KSwd27zHeoIOjDl3ee38bdrt223Q40r6Hs/CM88XBTjcj7AAgEYgPLm6aBMAdgWAXHuzDHHwmhsTpg1ISk3tCoBbcCdQFFi7294ek7rbXwsCjI9f2LTmc6KiLutzgOnHjVOjlYUo8DTNOoHJ/okgaA/wLOwkXeBFVJ4omaxjoRyZNYs4s8brPOWc0G2B+aWvP2vpeBuJCuAck783XVouAuSGSsuy+n9WO627Il+vHRzube2Sx0WEaB0x2xCwNAW2et6w/QAay/rLbYdX+OsysUumj220vMSPOi0fAy1xYWdtOTKGa7w2nYk8vQ5+tXGD1+SFwry2JwslH+KRIl+/74JBte1FULbYqW8T1+v+IX3ywS/T2vrZtPLtP09rrfNlrsFxUG4QM+fJMQjY/pW1c7QNcw3k531VO+rn+ugHmkQg96yVXgU0b6BpvJWuX/0wbZy9zKYyz6SllTUEyT2YKWTZFRIsShzNeAfzkjs3r6X3fvuP6ddv/W26/uUnaWfrHjx3027cr11ePFfTKioo773BgcF+5f1xsao9PAbMstaotsxjl8185DKDrh/ljYtQ0PM6FsDypHV5qYyNevjyssyz6zMQfcRGDpVzJBvQJi2Sy/SCvIfhPGV0xFlncJMzBb/csx1kYyH7rV9ofKZy/ftS3j9TDmUIDkIm9OoykvQcXzIfzxh0bZvPlF/INje30k3XHfjCzrPlC6wmNH4h0BQo5Fw+JwPK1UklgROQAICERy7toIX94q1euvdRL314rpvWL9TTU6/W0qvfbaRX3kjppWdSehr3d5p42eejV/MnxnQiNpp8cbvXS//wIzb4erOb/uS7Kn9SeveDfvrJL5vpxpeAne+xJueVWlpHI8fQ/0BDVC//cHH7XiN9dRVzRhRWG+faKA8Yg8ACX2410pc3MTlDPpdX9tKLZ/fSxTVeKPgy23pEn8ey3aPCVw7eV4aeOBEDGVEqOOLSKMZG5/ttcMM2wHSHz8139tzUrcF+FKTv8NtlXAR/SENdgmvBxBN9TULdc4L4Xcre3GzwRVvnBdTLdRsae7t5bVncGGjUoFUHg5Elgrhmbxf8AXLWZDUwBCnyp+MDlTAqQ8pgOdPaMbYenLMij+31C71HMw4H7nEs/2KuqcFfpI9kkTExVD800BQulCxMGmlzh77Oc/T8c5jjfjNmmGHqp3q+IIDmpjHxhVaWm1d2hJg4baON9h8Nz9pVIpGP8d6qeDPiQkCxvVP4V6YnDD61ch5AMY753EnWCdHy0gnAxHurXjYiMGKQM+oJkwjTSgBpWesWtGK+sLXdLeygtZOl8wUvGURLIO+qmLXFPhCZF45cOHmXbYiXhigL8ciX85rHiVw6W3gWadqBSF/G3EOepKe70Hh4KA9bqYcYTRPQNOioNtJNWCy5x7kdxpcE6XAawMum1zEPEbTzP0Blj/Z17ZChgVZ2ApRs+0zRoCu3SDHTDNqZJgR4SNTe4oLp03cDQD/zwjcCiKo1JJcUIuyflTFzHiUgI8OEpl0XaZo+LC+tDAobnQnFSfEHossAaExalNru9h3MPm5G2tqZCyShtQZ4Hy8MMzxMIXMiYLtz++v00e9/kd799Y/Sh7/7MbfSlzLvOFJn7NH2vV7bjXuohxf7tf+GBZKvyrh8f6RjngNDBVHDb+2ZTtQUzMU1eaIO+pdfNBzs8ts8+WDb/nQg+EhZV/y3vhzyM2dabquxAX7jRkb2slhRhvosDC26YfDARf4yA4n4igQt+2gM1MrhADNck25tOZpryQ04Ks8yh6baTpoIizy/FMzrHHZ55hlnANHxzEJDu/+QgdSH2kNSFSoJnLgE0Feknc+Z7z5M6Spzk96aVl5opg/+XT392V+hR1vvpUuAR5fS3EXNd/cuG42xLxZTAF8Ze+nqh/1047fd9NF7y2nvGuM/5mobZ+rplz+rp3/8G+YAQNB5AOrLr9TS6y+mdGY1K4ROvCFzEHReeu5yP33njb30FZr2S5d5EVjmec8PMc8iY7PAjnW8u4C9zZuddLbVS2dX+uk8OptzmLmsLTsmzFHpA8rqlK2d+g7a1l20regGGesdW8QdWeHGsB+b6wQQJm+PQrHzMPhATCrI1ZShy73cIn2L/FusH7sFUNxynRQa3v42oz/XfdKdS8JclpcRz3ukdU2jvp09XlDuoRADNAuW29DZ5YVle1PzPmRK+foWirY7eT5RxI6fIhPgaPRPUimaZxunBKiTJiahsqGQc0iHivg7ersQQcSVo/VQ0SJvLjE9HRxDwZKWFHfg8+LT9bT5vyjrYaqnf74QgPZFosvspJY2bjw3JGtJuammkcE3GfM5ue/x2qVbHwG3N1wxeGAejw1UdthExYlzDY1cnVfwGq+kASrJGfkBgN6WmOcsHpMkt1JgahrXEQ39UptrnDxFmuiZ/zITC9FYAOkCv/X1teAzNFLkD5MKGOsKJOXZpwDCzQCgdEQbQz4BQZh6uJsh2mQZK7WFmT0mcYCw22zXoONW3ts0NoACb3UOHJ4v8xNEOKmrjbd9LkB0023BfocJX200FtEA/mzXaiezKQHqqVv5+JnFn945BHDh9o4e5ctBeOaQT8rQ+qhDmeWQwYk3Sk8par8N8nbnxtV09ZPfpa/Rnq6xo+E6uxna9BMNo/SmXQ+lFVzDipIYF3K8drUb5y6nFmD65lefoBW+Ep4Xzl16IRYf5l4zrvzx4rQtv4cZzGcf/Tb96qd/kz796NdwyNeGLjPhEK++wW/x4ug99J6Hr/EiR9mPMge5HfF38CfHlRxafjgcui4S89CWX7xWuJGD5xW+LHNIFso7HuB96iH3kfqG2xVJ/jmUR/rUTb+qs/6gNOvwGdNGtM7zblqkc4xJYb/aKBtMFnH5CSirGa7MtgBCeN7usMB5h5fXcCVJPZaP3k122xFyHhXWUJ3VaSWBE5WA3dQxFi0zXRzTPeY45tCvflRLt78HGNiu88WSryV8yv7401764L0+JnV1AFlK927U0mfvNdLVt5mDUHD88gpmG5+00sXnaumrD3rp1s8ZX5gAfg2Qam2gwf3LbnrtpTxvDYb6E23M0cRs7hKmKW++XE+vPiugbIdWs0VcNjHpp+fROn/nbDvdYOvzT76opd+/32DBtV+ru+mll3vpzdd76VXa6MJJFUR5IDi67vudQ5hw6143XbveS1eu9NJN7NU3NxljNUtg0BEr7XJv72DDfo/73AHo9rbBFxzVot5DK7y53cRMgfvL/RbYYkcBOLIwYxVjJBIkASGQBVwbfSnkoaD72kkUcebhAoiBxQQIXFUd5+5RBd/wxgAAQABJREFUoYPbdS/EMWIYIy7yK4NFHRP9lZO9R+uIUJyMGTcjapCvzH+w2EjsbJclzfJYlsKWl6Vw4MV9Vsuk+3FcAED7MPS48W0+zezghWM7wJ4gsJz8BQbOvW7tXbPzeBP8nw+eRl8QoAok1BLpD1kZCQLN6CTnnYtP9fRCJz/LlTfWN6OYEM3PeUyqjBYBoP1ELw1ImBJgE0AbhvE8iX7eVdub/SBnoOwKZ8Gs4DLOA9BCwHaRV01Y1E9tcmb7pG5/dUAMzTLXJcA1TV6W9a+MOYUmHoJ569gFTEtLbxzyFj6yubZeF17Is9pqaesKT5d3sdMj4JvhJ+ScXQYW/MkLtKku3j6tQ+23jCqD2EiFLGYzuJBN+1tpdwDc3jt2DoeGLzbKDR5x8XXj+mfpo9/9FPOHC/wuBs8ljSD0sP8JmTTTCqYc5y49H227e/taWl5Z56XgHECNx4A884RJue3Lm3dvpnd+9ffptz//f9JneN3YBEz3mPCiLw/V43MisLu7tRP3xyTNnOwLhvI5KvkyVhreyzIMzo0jQ+QZpHOS/0f2qJ+zIms8fHSVPI6aAwaiqP3A83xhSgR7ZD6JhJyXiIN1FhE554DGaB7bGl+NOLGvxbhBX/UlW5nEiycmTy4uNG+upSAaB3jIbATfB1Jg3CS7fuxeCs343Bj5SynkEpkEf/PJMJnqvJLA6UjACYufOpcemHf9mX568U/76Y03fO4a6Uc/r6VP3+kBltnJ8HNBNf0YbLQH0Nq+zVwAoFIhc+szru/W0tUzzK3Go/Vkf6109Z2UfkHnX0Jr2/7v+unNlznnIRqMFafTqolUfX6XMcfQJCMPFsXjVjxz4rcVxryVs/20Xsd+e6WX3vu0nt77fT39+G/66YvXeumH/7qfvvvNlC6gbbcdeUyYWOV9T+B2pNt8MfjFz7vpV//cT9c+wXQTrW4bjXF/j3Z7v/l1MMPQeo13eswRYFPTCjTOKhH30F457+c5nTaSXwyQsA8uxycxb3kex+FrW+21dEPQHgnGDUJ5sX+c3i/28w1IPEwnsKccp7fh9BheAEDLdNbybPO9actvToRs0+NAoNmGWmFGCXq72taykfud35uDRoi3KzVh5U0X+GW7Yx84fqZEepxGFNSiizjxHgxFvJ9BQLSxSBFNlG9aamIFq8u6AGJidjV07mfwKuhEQ5ttkrUj5iMGxXxrlHE7cnTesjKj4UnAFLxybVOJjRcLp+lS+62clIUa7GWAuyDaFwLBggDXSX5N39FoDmxt1EVemx5uzqDbJI92ohwC8KN096WUczR3ypDzWIxBeUG8QVtxbczBI/Em6kurPJVBvrxUlp7HvSuTSTBOberWvdvpw3d/mp56/rV06ZmX0+ra2eCrpPOoHGvcg3VMN3r4Yr5982osMGxv30vLtidMXRZpSe479+7cSJ98+Jv0zi//3/Tbt/6aN+PzTH7h4kXhFxVws4pgf2uzKmOrljXRayx0E0SXWc05KMWF99++5X+DB++TucwX10V6kYWr4qyMIGPki3KZrf067AsQKsqUp5FeVFAUK/LwbEf2gjiMD2hFjiKew4CPIof5wtSC+yLNLjOGX318JlwYayTrQUMTbb7hvhvUyiqhU6ZlWVhxVMgz4xcl7f3yc+lzEmkcymDWKlQSuK8SsPOrTl1pptUXa+kiW33v8K3+97/qpLd+spT+8NN6uvs2TxZKl5h4yBpTKXOUblt9PLtoKLfQbm59AS3pEfykv42V2meA8K6rv/iqw/L+dPkSYx+LrJbR/JZjSy5xf/7KcowT/rEtI9XK0xoAe+1CLV0CSK9uMK+CKn/xfi29904rtQHWLWTxTcD0ufVCEz1C44Fc2i5+N+9207vvd9NP/r6W3vqPzbTzJcoAF8w5boktgjnP85wbMuC8iC4Ewtf5iBBLFWngkDJETBFdxo09zpJnbMEqcl4JLACgfQrQdjLZt9CuLi/52sOd8z+ToHbN5eRoejw8PkUWKx6fuM/EudiquyzQyxtMaK6gtjrsbX2yCE6Qg0mUMmLVsmvlY44z1onaqvrSAQVvscmJQF5vIQ06bUv3XhTSREG6/vNzUoPX9wafOzTl2MFQqc1LgdA5djEkr0BVDbTEfWic6MvFSNLx07MG9ruAal8gXBzVI16Q7UtCuVhKm7A+eTW/baN5dyOWFto2f9IJjyDw6cuB/qfxbB0AvPzEr4ZSjZoAXADWE5DLEzLx50Mohg6TE46+nGiH5QvCIJB/R/MB3xwMvh6TXMqjlKmCcnvw6/iQ/uTDf0kXLr+QXnztewGic8FH5a/3Dl7pB7pLW15dp/33AkhfwgVeYzlr9I/XGmTPPd7euouf59+lX/74P6N5fodPY+foD9qRUXEh+oFc6VdGcrsVOl8BMPvYsvfyb4V+KogumIlnx9zcswhDh0GctVhNkVZmzNdDkWXZQdTgRAq5GH89K+s3MlKiAq8IQbjMUZQrLu1KRQlP4rSkHXSLN9FMs8hJ2fhSg4eChi+lPEfxconNuC+E2azDr0hFf82U8194ye0sKgvOMzM+cyFTZOxGTD6vkasoYC7HgqIFkVb9qSRwXyTA2Ft/fjXVn8bema+4f/t/NtJ1tMfdO8yH9M8Guxb6VX7Qtx2ifbbKzurRx8Gf5+VAQX9WwXKVxYo/AVDfu5fSH32/m775KuYSbOKiB6AHEaLWo6om3fnx9acb6cyfYc99vp/e+nGfjWiAKrwMuPj5j7+tH2ye6qNonXIjvS9MwczfvfT+h930t/+5nn73Y74Y8GLTx9a7EUt0yOS9IcR9LM6Ni1P/lHGRq7x+wI0reamOUyWwAIB23gcEAka1y+2xQUruEGp67OjaNGpKwQSmKYWTmj0o5j/O45KOJhKlZAuvERnQAvwoF8COJ8Td8QR1Je3IDZ0MHCK2aOA+uDXClADiTJqCYbXPaqJK0wkHKDV9MTFbDwx5DsPRLg3socgknt8wtSn2t0u7bKmbrHSgkTW8+WUhgCwk4I4/BbCVMnKqoV3zgbcKwboabnlqYaJRYwmqdtcuHFSj7OIuRSWIUn7xSQdejFN+lhfa67lE++g+9C1nMlUQgoOoq0WaLwTS4P1kIGMzW0IvJcHYoGyWXZCxTqnZdrJdARSewZb47PmnWXwF6Cy8XuS88/yV6v0MDrYIzhB9yr7WDJdyt/CNfYb2LOuVQwF7k+YJFLEv7rC8/oPfvZV++4v/L/3hg39Jd29/hby1eS5CkM33pbxHOYWroOF972ADtxsai7V4dug3ZoJ+3HtO80tALpnZzdQiJiJyM3IO222duY7IWWTPnJiLiCJO2oLJYREUSeQrShQR+dmOzk5+tLx82bE/a9a1RRt0lxedJ6qQg9x/9+mZUNRl+/JlvCTr2cdnMeyzeUE01T7MoBLjgl+PSjOXohgHKZTMU6IkSJTAfImXY1/ApaucHQe8b2W2Ugb79KqzSgKnLAEfETwd3P2M/v0Zpl/XAF83GKPtlKRFGHTQ4nr0UILm4XjK9FyQhwb0ytsCupQ+xxzi9l/001/89/10+SzPgXRHH8ZhGg/w3PGHaTE9fb6efvAm8yYvvf/M3PXRrxhn4HvjbC+9/jyeszBROUo8p9kMscF1Fnn+5lfd9NaP8ITyT7V061PmZm2WvS8PkrnTbHhFeyCBhQC0VMJUg5lXgNh3kjPOpx/AZv8Jl3MxmzmpEUOSi4OcgJ3QfIhduOYk57lxfnaNWRzQI4A0b6aVJ0anvZj8pDc0CUYcfEQc8XugATt5ELZqJuA9fgHuMc3wIW2yN7Za6QZMWK15rc9tvbWNdYGkWivxQEy6gmiWRYeZCXl7Lo9mMqYQZZFDaMuACyIR2ZMibXLCt7mlFt2q/Kkh84172W26ydOGbzdRcQHgMueCavkx2G7LiLBC7tZFRIBjZW9lBA9RL0fT5U2g74uNLyyZFwENuWTKY4SgTh2DmnJ9RdpNbKE/Axy+8Mp3WEx4noV5+o7OZXL5Wf8ep8ystA/ms42dzg6fAzHL4d4ZdtAU76J9vnHtD7x4dNI3v/cXEV/KLC5m+uNXAgAjG85c+eS99Pav/i69/Yv/gs3iFlr7nSHJDEu0JLwvA6Vt8D7u8jWmvkO/ByRqblSa4+QM8Xf/zwjDdrlMajghoGtE51ryHTtw2/cpBs9lvqHoQb81rTSbkrIvdPHM2o8B0PZXQXTi3SFAr33L/2QdsDdMeOTcPPEVJJ4ZJFOYIfnMevuUt2YdTRfOmodftNtyJa3RBpAQL8rx+TpzoQ2iz7AhZx+ULqlUx0oCpysB+/It/JFfxwwDIFbHM4U7zNrnI4z243m4sSzPyzaAfOdWLX3xU7++dhi7u2n5dTxbrBUv5/PQvI95HTb4IJueOVtP3wFE72Dmdu3jRvrg/WZ6mi3RL7Gj44bbAdvO+/zoyptfx67d7KffvttLP/ovtfSbv9V7CNgCbbQQpBhU7qPEqqoehAQWAND0Iic1PlF3AAt7u9tMmNkEw1m1zwQXi/PQwhnvuXa/mhzoEWJ5eTn83wYYDGBTgEOkENorjvo1rBeDiaBPn7HxrwSUskBvjgndc3st18Zpl6x1cIvZteYqVHklTncxdQBzgBWAqppuAapaXX0qq/1e5nO+2jRd7wm6SxtK+QoQTT27bbb+1uCfMpp4OJGrZ3eiFhAbKEq7Bba5bTlfJAV/AcxJW0IegoHQLCM3za7v4pFkk1n+7CpywvQkQEp8elPDL//Uh3w2GAj1a3tPTbRtl3y0Oddj3b6byIGyD3MS6ghtt3xRILilfo/KshxaB+MSJ967Nm2+hVeOzz/+TTp/8Vk8WLCgcJCpqO8hO6g915PILXYCdEGk7dCsYvPudRZ5XEcO+timfxDmbUrYsdPvr3zybnrrH/8jrureCvA80DyHcBBwyHiEeiE471nU7L1QzhzdSMevHefwDqPZzv79yEA8brLFOKFb+3fAvTTsS5LN/cET8+6Hg5c5PdjYzxLlS4HYM/QFGiZJZG8D8vUDmtctZLmp1TVdTfTqqhvasKp8k6XkhKiPZ096nkdd/pFX/sUp54ZB+oBpn4uske5iB+mC17ZeNaAfO5Y6LsR4MCSbTCr/laBB+sgl25dTK2BCOhFt+qgAjKtCJYHTkoD9knG8ht2zzyzakuj8Lig7sWAdgjmURHV2a/3sbXxF/6iWzq8BPl9l/uDZibpPrMKTJSTrLqg/x66F38ITx0d/Xk8ff9RMH/42pe++yiY0uMMrvm2fbMXTqCFTlWk38MX969/00v/91830yc8Zs2/zMsRLeQWepwnv8UtbAEA756jd22PC38UtCwCayS00qnzaF/AKNrXhbaP9E8jkhYC8ofmPnubufqENBSJotuADEyAPOoJuQa4gUW1cAGgmSifLrMHWNKSY/hwoDE6mRAVNRwZVVZhHCCicIAWNTVzKuTCvgJpRzHYw/4fXwyZuKNRau1titkmmDGDamvRPHaAEvrYpE8CLukMrxjJpbZXdURGmya0GHhkAZsN2Wr4iBlYi1UmcQYwXhPzPWOVivbxgsAmKMlIzT1W4v9NnMHzBi6BfOZnfNIGMso84I4iPNGoyF/g5BkvPhBlyppYw7gdZw5c3PFM1debiHgYBkn01Iwz42vle/ez36aXXv59e6P8RZehCUecg90Nz4n3fA4x+yqK+93/zD7gNugd4ZsJShpjg3LnxeTp34ZkA1IFElcWBhk9uivl26Pef4KrubTxufPT7X6abX19l4QgeNfh3JBlk5p3KwXvtWb6ffUZoxmJe0tBG09/ttyVfw6LeL59rs29K1CvToob9TMREZD7G6VDmImnAd3GSSdq/fAHNNOMFTipDbbBvxEsrfdEqy/7oS2IJtC1iML3gOAtcNkbqM5P5DJHmtfVB35c8NxCIfu+Y4BcZ8vGo+dc/U4Iy9tnNfFokXiLjZEqxKqmSwElLwK7Kc3OqwedGSzI6+a0rtfT+r1P6AfbQL7DpxAYbrZTP3anycAzi8rWNy9vf48rv2lXc/H1ZS9evEwnPraeYv5cYV2ibM+39Cg4Rm5jFfH6tl/7lX3rp5/9QSx+/Rdw1xhPXiTvZVuGJksDxAbTPPRORQEz/zZss1PN8BdMH5rQAY7EYjwlUW10X34FJ+Wn3q81vKzS7gmN3wwttHnmd/9wVbA8ziQ6g1E4bn18BEU6UAY4FFYDM8G0sG94yMgo+S6Cd4Spv3j6JAlrqF4xmkxDtki0jdM0A1ElZABo2zSwedIGeYLWliYflApwDhoMPxZbBbnjSIK8Tex/QH0vGuA7aEBcALVHWZ4sa4jO0U3evAM7KSmAcYIByDgqWUQuuW7vQfsOXLu/UiJdgKl4KSLecIMXNVpQhzZC13L6MKKgtAzrlKIDWdtv2CnjMzy2IOs01ABOQMVg22uoF9emV49bXn+OIHaedBV1zPHxBrrT/3ktffv5++s0//e8saF9Nna1bqbFxMW08/RKy22ETgovck/yyFp12poZg84yZxrUrH6X3fvOPbJTy98jki/gSo0wUasjEzjUsHK8J46OLRNItIsjz+RGIRp8fKuU9yyH332HguJ+W+8Ag636ROAuwXcYVx30O8ln89cUJIj4XNfuXfBiRE/OB8vYr69KPeQ93WsGH/ZMTXzDNYZEBP3FR0DKehEGatIq+S5JXHgh+daEP88CU/JuSuaKeGD5ybvtxVDhUVgplkF+/NrmdeYOXwKBrgbKqMmN1rCTwOEiAeYaPZen6J3iMuOFXLlzG6YXqIQ0OD3oYeft9XPL9mM1A3uNLKwqlc99gDdI5lEo8t06zmnmY97SD8/I24PnTL7rpZz/v/f/svWmTZcmRnheZN/esvapXNJYBMJghBxIlGmlGmqRv+qQ/oR8oMxpFo8wkoygzzIbBzBA70ECj96Wqu/bKfb2p53n9xL1Z1d1AT1X3GNA4kXnPEouHh5+IE2/48Yhof/tf0YTD15TNxqautjG+N77oR/B7Sf/pATS1VhAn2LNyCeS4oXMrEGuPGDvhARRqHmEntYYGeHN9nc1SVgGDNbEHS2VGm4f80LKKJq2NnAJWuQtYxC+2vmJTaNsdRxtFp+7n7q59tR77Ezy5W507jZnetEfwYsfr5LwsDxetKxpfl7kiBaRictHXhXZ5vgMmIYq/1UILqFed1IjmfIWzvB5jb2E5zT9aXRknP/O0vHbS2jYLIbS/VqsYEMKyaSUyO3DC0OSD4yw010xyIm4mZhHo5MSJa1ZLl+uAB7IREOvHtDNMaSibBHFCiALC8sHLBt46CJFnzVoERNIpCxnKwLXpBRbKLmYu0rE8uDqGc4WET+VF9s/syPqLdT6LJbb+PmPCJmtqLi45PbrqT0lL6Qxl+xROejGRWAYRt95/vf3o+/9Xe+/1H7Y91pQ+c7CnDAe5hEwv1zzxIMgu1SEzw42b9IMfJ2XbwXORqHR+DTjv6pkRw0gVsYIl8BhN01WELvNqW3g/TrIyj9/5gCHtUErvyqeyq5vOI20G/dCEpbOsZ7JiXKl9jGySl+SS+jGiA+1+InHnSJrliqqThh10eCed5ImsSj7zdDMCxHOSspyuMWCtL1qdelEej6ME/uAlUM2D/sYVlfyaVGYIv681vfOlieQjNiW5++Zie/gqSi3soJ2X/dGLy+0ha0If0A2xlcEX6vp78pC8X//grP3D35y1v/uPi+3Oe/QEMDBlIDKb8PmFcjIS/32UwNMDaEqTdmnHKGgWWNJj9Ul/6fhPBdTYTgo4AaHraJ7XsH0WwDopSHBq52ant4qtZ1brsD4KiLEF69a4veOts52xw87qFvM5V5CQn6AQvvhNWV1CcN9/AlwnkblNZl/dogPS8C+YRxOVMgBWJRKaAmN/vngwozhkm1RNOwS93S17Q5lE4AXDKlAZqDE2HwG0LU3smcl88bGbZ02PAHdsxImnwYc8wHq059Lw27SDCcG49tWGZUkuQLb38il493nkqQwygJhE4uuhX0E+tGA4wNkQci2ATlgHbT1hT9fvJ6y/p1yfzc2pOiHy83bWAcvpL2ZArhQTMyFNYRyp+ER8xn4VUANtfRm+THwqM2j7Dw8wYXkjmuff/OLv2u5D1pNmD1ppKOBMHp0X7XFKn+bv8xqengnkuQ7eWd+rVnlnJiHDocCviYuwx2xAZOGNOQjAO+vIzCVJpQnPdZgHJ6r5Gocf/4PXEEce5GngRd9Z1PLLWM65AORrUL4EUY7ORsp7nqWeAXlWviSahc8uKiMISjM2nNRv2VxmWQHbqZN+DTXMgW/eEkbG+zwVfOKqzbOZxbrzDLrveB4l8OWTAENZ5vmgQMrv97x8Q5udsh7fsSuKbPHGZu7SARrgnbd4DzPpcsrE/7xPvqB2K23nI91/dNrefGva/uHvF9pP/3bSbv6a/PnKht7vk18qv+eiHdn7/CTw1ADayuUvWlTAp8u6WY8FjHaWHZRiDh0N6BogWi2PphsCtJhLuIRa6LDt6Noaph3QoxM8cpULJ1OkdVRhh/bEjV0vgC8gmlsC3D1PQBfAawzSRSPOdcBq7tUcAmCdQAh40iZb7auT/LIqB5m7XrXl0DQk5g4pB8CL9ALUI9KfaUPLJxs7aDXLltfJf2qbK43AUm45DmDAs76ZhMVi8N5rPqEN8gIycPUSyx0ADX+GS7MwKgKSFiDJ/ATvnGKGEbMOQJ+fyB10UBp+xqeMFi4yMb9KT4AhiSINAbkP0BQBRAI1/Ipv/epXNL3TAz6WGQQhI+l2d+6yew3nTw+ZR6w4cuKzS/6DDOdxPutVyUvmpGo9WeKZLq2u8fywgeYzoDtRVqktPrJzl0Cerbt4/TZuj44O2ZXxVvs1Zhuv/vh7bDf7QdLW4Kx4D5YdWPjsHNczSd7nhIooIo+Sv9SIAe86w5Iv/JsudYuz9Vl/25j1sQaYpijA6VkNdi9nSUnfc87AZMNhiFinwFG8igflKHivO/lRBvJj++dHWcInB59rAC+k5cliGt5dadW9P8cRt6HdMzDykMT6WyCZ+ph3C4Mf6Do7XroJo3qnLklHHkh+npTk3EDHkDUG9+FXz9GNEviySYA2YHNzoKnZg+2H/8/V0cRm7Uv6z+Sg5aIBKxd4f2/QpkGyC+vQZ4m4k1v0mYDqzHGa5fhMuX0ssWU5QGl2+/60/fo1lqn7fms/xmzj3q/p59l6POD5Y6lGjz82CTw1gFZQdkZU66yWIaASJAY801LVEi8wa15ga2fql9LeqbnjnitSJP2gNXK2rQ28Ot5q7KW1GmiZIeGmqUN52OnNtKF03mnEHCBHh947dcAlaQNyBbu8QVxrVjB/yESwg729AOQFzCsEIvnBsGYaq5iAaG+tBngypbOFaEw2yMtNWg7RSqshFNxq4pEJjxZkcF5GA+rAAlmskqd21QJoNe8C3wB7mSXygvbggBKBbDTk0LFMHThJWZryuMJi8iuUZY/CSSskfB78sdAGYuJPQfgsZvxw5Q1EfcnJdzas4PO3wMbn5KZ8Z0zAnMk6iX3S5q281dSSCx7+frsL858QJdTP+cOzssWUJeY1MjLj+ly0z3gZWCdQ5Ce9xcky9Au8KRJlGrlyOGUVjgJ+n5YlciTew/u32utonV//5Q/a3Q/fhgAmA65IAfjWGeepXOT4hCBhsgCyjELV4ETx6fL+Js895h4c8tME6eLGWurAPpvjWCc31tzcaKkm5yJX6+CGG7TYHkkfTjkUyUjLAhBSfg4EKifjdgYS3GPUeSBm3dlnHoQmSraz9VUGo+RvvdRPYH9hA6NL4rtqjDw7SEz+oQQPlX38hsvHrs29xzdcsyMpZLBARZwApGlas0g9rumsqALsJ13qb0Y9T4aM96MEvlwSsPo7qd33n7/Py0lKen78cRlWuo9szf27+4ZP5qC32wk4YfO55bZ+FcDMO6SxVH8x75nfJ7TnT6b42X07yQMA+wd3Ttrf/g3A+a8m7QMmX26zTN0iG8adOWHwc5TfZ+dujPn7JoFnAtApDOBMLV9AIrVPUDZALYIFjTYotU8FoO3sBG2Cad0ZZ0HOKp28S1S5/rHdueDZuII/66oVW4CShprWX52njdT8Bd7kVnEIN1VA/LBFs2DEVieIjW0yn/QF0PHH74TRJmNbtqbnU37Kc9yOAMROaBRAl0YdIGYY8ZMDZTO92mxBKEbOgAI1nJbNF5XAq/IU8NbGLYBPeJUHeZm6bJ3gl1+AOWedRVd+avVSXG/JVZqLAmzLTfrICH9pBMCZJ4FJDks5E64MvSHnnC2tgMJ8fB7JBxoa1QiOfV5xRSB0iB63hKa+JnBW4BClAj/xWIwMXA0xnkhFntLX/twyKedPcwVUB2Y+LRL+53Nw58djBhvHfPZb4FxSrnpFplyUz/k0IY3HCV9Eth7eae+y0sZvfvaX7e6tN9oRS+JZT/NnWh/I+cSdvd/hV8HnI1U99xlW/XmcUI9pmGY8e8wdWDldDmC2/gienU+QwSJlFmg7yXSRZ6uWlaJXXRjIegpNLvJ8uel5dNH25xac2dk5FytFx9/l7bZ399NezD9zCyDqEnfH/NYB9boDO0Oc7aS/B+ZMKdVyqbX9ZvDz1AfWeR/QOOQ7PHDwXPWjJwgVbqpUT5btE8j3hON5lMCXTwJU+Gep82k/TzQib6Xp5PQdLtDrtHXeM77BP5YXHh/z+wQpJw4D7OUNBtprQwro2o0fYT5xsEdfdUQObKbS2/YnkPknewE/2n3MQ15/87T9hO3Qf8bmKB/8vDa4caWhdMafpQD/5JzHBH+IEnh6AG29xdm5BsjRc9lgAvy4DugTbAKOlwGaS3w6CjAS9KWjKwIeBWsrbHJgGpfLshMUZKoKta6qrfXnjcBBsJgbIqqlVZMVzRNpTMttOtWJn+5jQyJdJ+YN2wIDjDVf4L94UnseIFydsS+CUzTBbq+sOUkBVScllplHVgAhsUDassR4QqCiLS2sGb/4BhTDq3eaepwA2l2iLtp60+Pnrmpq46cAb1dcEOxMyN/P46azvCkuci7AAE2u9ddlkiCXsYEm7/NwATEQc+5Ks20a5cOBPGRUUaO8iwbBwUDU19w/nto0DkqQdTfhGGLISaKbZHD6Gb9+Be77PZ7xr6hDHG7c7OSAbbOkv7amZl+q/PJfz1bmS/vdzwDixCsezPe8CwXC3a3xhIIKon0W0jGFAxyXIywN9JMlKZvnrYe327uv/7S9+cu/bbfe/hH2b9Qj0lc9lJS0nnCf4BXe8P9YUPcgwnn+fcT+4pKOMnszxPck0PaZ2zy8rwHVIHuj9nDrt/H51aHiVKqeCef6N9YsnxDGv+c948koM17qQsAuNQdkctvDTdPrbNow4Uv8lKPOMpjO0tSRc/6LjnG6y7vBmKQ3H+2epanma8bbcCE1f7OVQMiuBmcSN8TwHiu342GUwJdSAvWllK9RMWP73UVMq6gmQmujDfGzL5oKJP3PyTYIqOW3i/99bJbXBb4rrJZhf9yzERzQ1m3uDuLp/kLD4P6O8Pq8M+0CtPwNbNDPYQ/NVtkC6GM2LTm7aKt/dmcZDjDNvPsQkw3A89/+5VL7u/+02k7vMTncfQLSyZNPZ+TZsxwpfAkk8NQAOpXbBmFLAJxE25uJWFR2/I9pXf7ZodtgsgqHoFG0ZhJO6b842yGK5WzgXJEGu146Rs067Bw7eBb4CAikkVUjoG9bnvK55ZR2hJ44YDq2n7YIw2xxcQJzNZsFus3/ZNjkRX/tZKsDhut0zIMmnLxsM2r21JBPlo7IYzDzgE95ivaWMCcpHkNXUCA+lXfNElw/OqYE8ClAXVwsM4WYKkBL7b2ge5UlAF15QzRkeuV4BA2BmgBZ4HwqbeybY5rhPfT9yaNyNayDCSQ6k6nBUE3+eHrLHWcveRC+7EiOXXjJqAhK1SfS45KCG/mt5+4zI/ATnDJV9toNHzHxzvMxvwxkMNPQ9EF+lNnJsEugZzdrcZLi2tpmBixOLLVu5QsHg48lwlaYiOpgJqusYNvsRLDu5uxYdnwtV2gwcTVbnzNQwbSom2x4du3mqatoEPd8eXyuLk/31qs/YJOUH7TbH7xWfEw02/AxScece679HM/O0uw8o22081FyjTQ8EzaLN6TMWKfnMWTh4GudTXbyZYQE1nkObR0aDo6yNbwDRfwyoMPfZ/JxN2RaBSFtPePUDZg0TVJ5kPZ5AufoOeDTbOPKpQupfw4U62uNOyo678HBpu3AycQ1CTWa5Bk9Asg79IeBXYLMM+8F78JJ3ge2yvzxHBx0Z3IweTzG30D7iPAjl5oivXJZYUZzba40RAjdot19xvMogS+NBIaq7QTC1eXTTOjntfDbHWnsYw94B6qQouW2feYlbe2iZd7ivQ14tfPlo2vbYb+kPT4qsWxz26Yj3mCez731advgg1Py8R3CroELaIuX+T2/OW2X2Dim3muy8cltzxbbf9XeK1738/zMDiLyIV55+0Nsnf+BiYJ/NWnvYLIx3XH/Ct7xfjD7XDJ7Zm5HAr9nEpgjj6dmrDpYq3Y62wBOAV6BC/v1mmQnlrETtblUQxBUWjHtVAUAAtMJje8YEKhJRG27bRRTqGWCBgRcD1kA2YGjdTug1zKYB+HaIpvS1RXizUHgbXrz03xBACTYzEohGpoYEI2kwE6qjNaJL6hw5O0L5YTP5scL2HkO4Fng6dCcoMRdBixkdzs8oAIgRQNNuZzTdwRNNd0aECxiKmKZTy2zICcTFwE8gG2XrDNPQbs7vsU8Qxn4IuIX4CB30Do8BLQTT/+4oGBZUmr85IszN1IIo5YsTnrDpX5eC3QEZZ2cwQmzgLmAPzfKgecep9Mwrp4OTO7fvd0++vC9du/2+6yZvIvcAND4u1pF/2UwBae1hrW7PPavBABltND5egBXPooAaWQ+wZZ5Wbt0tdTrF9qN57/SXnjpa+3ajRcIozrL5+CUocD47BSTBt6CrkHeFlh/nCewyBcGpXTkxjDv/JzJofttffPyXI6QUZuqrfO7r/8oZhuHu4+Qp3XCsjtgsn7N8ysBzXIPK7Pn0r09n08Sf59ouf5EIlNoS95n6MPp8h6icqJeOrAi0tGJ5hk8fK7l20k3gmfNhuRR0yjjOpB9jA50e+69LMXLkOk8s+Jh8JavJ119WULT70CIOilY7XXWuqrpRlasIU/DnUU/wS47/ISuzHAx0J5ngX885RT+E8WrNL28B06h5UBbWlU+Q8tpc721Sz2gp1yn475AhEzS5fnHLhr/eV491XgeJfDlkoDtQmWWoNZu65McXVnA8LvvT9v7H7JEKu/La8+dtZdeOGsX2dxrFwD92htn7cNfYirG7nvaVO8eEo/X6QmdnLh6lc/Bl9nohKZNf0LLIuNF7tkQoa2wguhXvzNpN17kHcr76Pr11m5cXWgXeXUL1GeOZK7c9dylk3blCu+5pqKENkwbr7belRezFP/kC7MTG9+lHK/+im25f9zaq3/f2vs/ZbDAFujOcYnm+Z9MeUzwxyKBZwPQ1EAbpY3RX3VDNAxussMePZ2NNcCViF1b3WP2XmsBO2Ci0UAI4QdkxJ5KLbMeakQJpGPFK/lJT+CrNracUJUoNC41gzZEJxQlmSCHsPBJBnby1dGTn52xWjEzB2aWRow4NPqACfLQBMXOexrG/NwvcKLx0vg9Z/ULGIs22bWt0by5moegZgEgQ/Z8guJNwLnSsowaNxPSBqw7EY2XjwBRcLgy5YcRmVxr0uFOj34yk4agPaCbvOVPQOSGM64bnQLilzIhnxrAVNnNXP+sPgGvprVU4kkS5tqD9ug1wFB29WcMohuNKEZyQIQNdMAongp55ozoboW77bVXf9x+8o/fa2/96od8crtP/mjdJzVoiH0swE7N5HJAFg8gD9f0naS0AdcALSehHbEmt7tTxpwHTYgv0Y1LN9o3/vTftH/97//XtrF5gd9FxDBnSBloFiI4Xjo7aBt8ZbBKCeyWqWNAdjaEedDefvWv20dsKaXWtOcuOPaLw/7eTtvb3UGeZZvtY0udoeCRY2RZfId5D8NtnR67SdCMw9lFpZzdDojZQVB/VoZJqcfxmVg/9g4OIhMHjWqANQHa3T9oy8fUFeqsbUUZ7jG5UBtoAWzVc4l1qgPLnXgP4vykMwljiI85+bGuOxhyC29t+gXvTmS0AuUZ8tXBdeD134FH11R3m/p6ZpbOX7m64kh+xdbs4jE5GNu4jA9i+uQA4XHnO2HKpgx8/aDeIIq8hzbd0cz6T+JqDZXj42nHu1ECf2ASsPr7s0+zyXjm3eB5kTm8rsu+CMD9WDMhmo7XbPvw0Vn7y39cat/7m4tt5epK+1f/br/9u0v77coy/TKmE2+/1to//B9sbvIr3jGVjDZkprYh+xP7DjOulmWITl+XGnj5f19t1/8cJQh937/67lH7H9aYn7Fpv1IUKjYrhvDqeO7yCcoReq+XQN72p/Z5fOY9PKq2nCx7gs94lkvf40fMe7qHvfMvftPaf/oPa+2N78H5Pd5dmJtK95Pec58xizHaH4kEnglA0ze3VRonX2cAs9Y4O6XSEK/SUdt8bDxqxuwkgY0AS80z9K1mpVbIBd6FeH5GEdacoB1Uc7tgRZbG0NqJWS8CAK6rVaDrom/G5tLemzDPWZYsK0gUIC57ScKhUcC5tNOCdUGSLxbJBxQlnw5aLA8vHcolXV8UAuuptLkXnNkKMwEPgGtxNAeI1hi6pR2nVGRUGnj4iT02y+IBxmot6KLrIENGpOuGKocAjZi+oC5Qxo6EzwBGU4bLypl3SHi3hSsbee+uylLydJABUYsRcNPjeDZFgpWvHpFB0YoY9Buc98rO55RP8QBRtepxEh+c9DTVuHf7Jrvzfb99dPOt9vLXvo0mApvhs12G+9tkg0yg5dcHy13PNhxw7X0nVmfLUF8XyB+5mkc+LaLy2GEXqPff/GG7cOlSu37jxfbK17/d1jd4E88cdUL7ZrTQapxdVWUZ8w9BnYO5Qz7r+xwOAMlnJ4c8J8skh5WHpgEOYKx3kWL4qwFW1Su7BOQ4y2+4GTx7URJ83i8BPbRSh9LMq3JcTHnr+YUGUXkEM3L17OHXQRjlkJNo9Ynn4C71O0IlBFr54kIcB1NxCtPLsJADN50JY3CNt3l238Tyxoue3qg4vwwJjo0saI0WGllbl/365CTDFb4waXIjf/KcgWbPushwrDpZ3kPOs4rROanIuYNBN13w3ZOKPaPjBZ02+buE5gGbHjivYWtnHz7W+MFrMuFgWUY3SuAPXQK0c7pFuwaqtt86mQjP2dq9iOnE0hWAKcvCLcas8OOF3QZQ/gqA/OartFe0sJe+2tqfXD9u37l40jZpLk7g40Mc/RRtbZP3lB0Jednm807kvc5/8tee0RUrYCfvj1XslVe/utx2bqpOYVGNF1f4OomCiK+obUNCac2cy9nP7RyoLEGjffWo7d7jfU1bd6fTQ3YpPOb9bblM5fmzuPQfRHy0y0Dg3ROUPKyy8f2ldutVFC3YVluebH3+WQl+lkzHOF9aCTwDgLbLt2O0z6oOz87QHfSqRQl2qoI7wcAaTvUEIA2tjbSmyo9aa0wb+wmfatryOlrYNRqk7AEeAZxnoMezU7YhIpZ2ugt8Tlpk4p15pMWmFWseAUX8FzLKppnaGgBRyUle/dmh89NusibTQW8A+cVolcdO1XTSL62dgLcAtCDYrY2XeFMB99PI1f75/uL7OYMASkNegjJBoBrbmEcIBIwD5SwfRwJfcyWXCpKGW3gvLWHrSycvDxZzIoAnX3eTEqAHUPZzeJWqpC0k/4qatNIzS6QIkJzH6ct6xXTFZEb/rQ55QDs7SFIes/EX4kO6vZ2t9uHNd9nm+g0WwH/UNl56uV25sM7uh+SPFtTnpaxjAqPdOWYXC0wWVTb15q081OhH+sjRdZoPD9ishLLG3AYgrEZx4e6DtvXoDhubvNbef+fXaCqeHwB00XBt5+PDPV60+8jL0guQYRce3LUu5g/QdOLiMTO6C+hVXSCjyNw4yjkDImVHgf0K0OtQtmRXuIMrsFlC1ts2Uo5nSNrUJ/1mcusXFTtxc2l7qOceRqwACtuwwQmWu4mGlHv9su4kZ/Mjify6dGMc6W1rMzdcFmd1I0e6fjb6LMXMs+LMAwTQrDRD3uZXAJnnRTRNSWwHDgyl04G/1VP5qik3YtryQFZ+SlaDx3B6jPfuh2xmcyWS4zkmCXMX0QvrTgD2q06vX8QxWgrmxbk0A93xNErgD0oCtLuzzZV2dhUzwusLbfPycbt68ahd2zxilZ6zdulyay+/0tqLLzkXwHb4eOnSCmiKfAhtE9DyxgsL7Wt/etheeeG4XVnBHhrQvEefvMBW2le/zeZnF2lLjkFpQ4LdIwDz7tEqZ/pt+sx1tMdXrh62SxdOGLzyDtpYaDe+gg32OpuhYDB9795Ku3+nta1t+uJL8EK+ec0NbNl/aiv98vPT9sq3T9o7O+SxB4MA5yPWgz5GC238eTt+vDxP3tkPHtH+P7g9bb/5DQOFn7BV+A+wd/4RdFCWnBGW94E0RzdK4DNI4BkA9Lzh2Hkd04JOqYTaLdswu31z7/AcEVuBHU0KOgq0qZm28xSM8Sl3aZ2R8Tr2rdewmeJzvAAa4HzKJ/iTYz5V8xleIHTMesyCLnpG2o6fgAWgmWLHPWcA7HQiaGZ2w3QP+ofgSf1lTN6qw46GFiEFeABG/NOVLXS1In3iT9rergICuV8EofoZynB3uVOjZht0JH4Cn2rejasmzrSCrgBHwETMUJCZpiBqrg0zkjxpD+1PpWLswlXx6z8AaFcTUZ7G9/N82RDjYSa8dSym1znDm6SVvX79eXAXvhMV2gZXeE7ROurVneVIHDwy4VIeua48KpZx9na3o4E+ZWKeXwhOj3bayaGDjkNAMAMMGFH8gprVRdYqXt7gWo0wZZRP5BZ7Z2Tk0OJMs42TvbbPRETrzgqaxKXJZptojrC8yw6Wa21/52H74L032jf/9LvY1D2PnOQMWmieD/a3yReA7PPhWVlHXf5N4JZBE8I53vdLhnWI2gSoX9G0BBOgDJooUw2MHJzVM/R5z8A2aSx3HPwrzy68XOdQfv15JK4Hw5K0LmZ0hiDDBNE+uwx8Oi3DISZQXYNXz5k0WJ8y2FVvLXKuTXcY8CDrNcw7YnZD2srTi4+7quXnMnoyylDU7n3+1smzmsGsw5NbxZuRsjJfQf3JaW1QZDzNd3SWOXUeP/+sZfPc51fF9HBvpk8EOXA3Sx/FvAzFXeSwsdzWeO+ELfLQL25GZ3ZR/uNxlMAfmgR4Z52hrFh4GQXUNxba1Rd32zeuH7VvAKSvMLv44kWA77UJ70gGtLz3nqzxvmfWmOT31a+ctRe/vdR2N5faV17ZbpcuYgKFHurd22ftzv5y20SL/C+W0ByjxVUBZb/kwFRt8Ye7q+3Ow/W2t42J3ZX99uJXpu3lF6ZtG2C9emHSvvNteEED/uF7h+1v/r9pu402+r2vLLVvPnfaNjExoWmmbXviVd++dhWb7G8yF+Uvpu3Om5O2pW0yeR2ykQrWi2nv+PxW5zvB3z7A+9a90/b3/3DWvv9fWdv5v03a/kNzQrmimtxLf6MbJfAZJfAMALo6PsHhPst6uYFDNgShptqhr9JhFo6ZN1M7tsKJgG0AjA12gpZ1eXkTjfKNtrjMJC5BM1rj0/1bgEM2OPHHJDBXdIgWkESlZ6YDXCTd0mWADZ/Zz/ZoJIJmQQ4AFdCgpnQyAYzDiC8MNbhLgOnTCZPKANdnTCxzSR+WmgzmscsX3MtXNIkQ83OU/tW9V9dsKxNcCd+XQINujLLIp+kDPg93MwdgnvCPPBxcqJmGCoBYoO+ScQrel48AecVNJwAexvXTt/bOZwwQdvm0NclkQ4AJwNg0fgrfIL6gQ9kfYMagLazANJDAwQl/8j1zghMFY6GI5x+ZVbABw2X5z8uaCIYRRcDm+tPKUlvtDlJndKAXcxqX/NHkpK2yJvBhe/e99yijRgNqfQGu5i8dtZJLu7ywWSh/TVBcGu3IidjK8YBPF5bNAYNbaDtQWlreA3ypjcb0Ai304RFAmoHMwwdbaKMfUg/3ooVGR5x0R9w7qVFYplbUrxnWPSe0rQ5y17TAfCzTBcxsIg6fl1rwEhlh1CmuqzYMMopQI6VPPwyyTYTz1+dSdLnHK3lUoI+ofnA/+PdgAfwqRoLK1noTQB0AjdZmk684uAzY8Ftji0U11cbNoKATeYKf7p0KYcEHD09PRMWnfIcos/BV8rl+1ZU4aNtpc9Vm1plR5OoXvhvk49KCm6pY/weezINKm63QQy1SIZeeAxHwt+50WejTg5VTDc6hQb4O4PXrTl74n21etkhdqs6fVkO8x2j2RON5lMAfkgRQDiw8wlTuzYN2iGb3zib9w+ZZu7m53lY3ltrGc4sA42n7X/7tcdtgU5J12kOv97aVQ75sHmPmtAqdVZQfR3un7cPXWBcZ843p6rT95/9zLRrob//Lo/Yv/r1KB0whAM0vALA3/bpD/7Z/8rD95Jc77f/5vzfa7tun7Z33F9u9GxfbMWj4O//yuL1yedq+9mJrL13UtOO0/fz1TSbwtfbdrz9qF+F1uTOE3G2vguirVxfb818/axuA6cW3eQMT58H2Mv0LTdcXDe+E8209j8yyEeT7wdMufclb7522v/7+pP38rxfazZ+hUd+mT6K8MDK6UQJPJQEx2VM5K2wm7QGKXP9YAKIWT2BHnQ0QtfObtYckqBp9BhhxX85FAPDSChrIFfboXLTTp1M7RdN4ssWqDQ/aycFDAPROwJKdndojgZW/dK9L1+mQWcqrOVFsi7Rom3GnaLNPAXkn2DkK0BcXXRmjOu9F4gPZANS8ACbbNFI2xABIhzNanKAjtPGwHLFIsazcGWeIGGMAwQCbJcVTrbXWsmoK9Q8Nj4A1JzTKfCb2GRs5GX7KSFrQJvhJZpwFELknXt4NlNl8/QkQBHHRfg7pMhABoEeTRxzNSpR7zAVIZBl0/ewDMS7ZhCY3Ad4JNxNc8uNQy4fNUkIEKZB+Atj3c720+I9TC77Nesl3b77R7t16Ha3uFi+ng7YNgK3JoAwQ4OKIz4DeR8vMM3AnxTVmZ2snLvBJOSinq0bsMaVbjbHMC56XGUwo76WlHbwoMxrmJQS+0HbaDttq33zrF+3alUvta9/8s2iRdxl47WzdjQaapxL5O8hzZRMHH2q+3fgmpjCUoss1j7SKVeUF5MXBh8Dcp6uMY/PHtX8y2V/YSnAQZflX6nO+pi43i2kZZ75DoFSsKz4vvOZp6tr8a0Mbog1xjFcT9+SiEmUJwFLw61P+xP+46zl8csjjKerOo6kqJXKBJycG6n8+C7XgLhTZc8gKHWZjfTR2EujhRT8S2wRW1vh/XELG7c72Ynu1Dfoe8n0BO8lDQG1d9XbGRM+0V+JOaDyPEvhDlAANYAGlRduitQBm7Q13ULt8wA/VQ1v/zmL7k62T9t1vAXZfod3R+6d5EM+vyG+/e9reemvatu4xkfDmlCUxj9pLmH9cYayrxvfVn63TpzJAvoQ98gZzHACfdx4stsvfPItWe51tt9VEf3CTpV736A/fQyt9e7E9wHRk4+uso/Gto3aD5e2ewzzkEpN4eSHwFj9u97Ym7QH9wgY2yJvMe7pIfiq8dHadVzAZeeXrZ+357y6ytTZvX2yht7Yw/2BFkC3KGWUW7TsrDNGmfYP47iGICc1oue+ctg8+OG2v/mKh/eB7y+32LwjbqvdqIpvR6EYJPIUEnhpAm5dVNZ++qa2CD7rztEjrfgeB6dipzEIO4QfVHOB6AY3tFSZ0XQWMoc1Eczw9fsRndj73ow2cau/sjzSLrPjgkm+C9WPfCuRl49D5Fda1kycLfLJGq3x6xJCUdC5OEzADTTAWI1YaDKC6LW6Q97U2Wb2B9nGjrS9fwlz5LiYG9+BMba/ac3mHBOfkYyfMrYDUDlpQqX8aLcUV0AlsdaWVhWf4FiITGw052mMmHro5SiZy0atrnLAcDZhadTTJfIs6OjWXJKHMvO4Ad2oN1Xwq2VOAFLgPktqMqrkjX8BlaWhh0iDz4LzAy1DzBK/rGE6gYqD/Xg08Ekmy2bgF73BtARWgwGXOVsIUTm0EA2+hJSlXejhot959rb3+s79qb/3k/2Vi3mFbjSYaebjSBlriE1dbQbN+jDz6sn0CLjBtBkXSEfSYvQOm2PLykNVsy44yW1nk5Sz7apLVdjNAaae7bf/eYXv9h/ssibTevvWtP8HmdaPtsF7z4e5dgDybnaO59wtFrZ5iPTKpMnXQp7wB8gA/Nf297pIL/FK/qBeudKJ/Fvb3zM86kLjQkqDiSr3zVtf96+7ckQDLgBtO86vuQRSTBwj6XL0hzNN5V+1rCMwzM1RQqhv8cz2/M1pqTIgSmDwpyxDvyVOnYnjVtErT/fvZdL2959pDnIwPQHkmoOJxZocPr6m954ghXhyHfh5uq1jU8YpQsjE1bckVa1xpxXal6U2WhTQe+c/J5KoEEv7qMPie8xkvRwn8gUnAuq51FGsw8+riXcm7jv7T99Y6NsMrD/B30t6sZ6g2vcvEvB/++Kz95/+w2nYxq1h6btL+u//psP2Pf3HcvvkKdsJvQhJge/eDxfaL7y+1D7Eh3r6NdvrdSfuz//mk/dm/bu35l8u04rVf8333Lu3Qr3rrLF25AAiHnwtsgz2ln9vDVlqA/NVrNMH/fr/dxNxjl/b561tMFqTv+zNstC+hHrdbtc9z7r0rcVz7Blr011CX3AHk35+099/Hlvm9k/Y8Wu1NvgKvsRlbLWFLGZHDLgD//Q9O2o///qy9+sNJe+8XrP4DmFbrnFff7GX2B/aMR3Z/byTwTADaHshP6bWTW+3yZ/ud2z977U9gLci91hZWXgIYYXYBUl3APvns6C6TAR4yAkaTzejVpaYcDdsLCrZkcAEA5ed3P+VnTWQ7WV8AaKsXpixRBhhewJ7WxnYGyKpQuStnYwlcpEVmeTyA9OmK05EvAR5XWaoMgH78APDEZ/0su1U0utYqn6JrbACAKJBnCxTIuSRbtO5cB0DzIhBYCv6NI0ywMXNHBORlOsE6WSwy2rasBzB+xi/xiHPGIELBqTlcgdgqdrmrrB6hWUpWAaEc2vE6g3kP4zQ1qgJlsvZYIAd5iX0F/oKaMODDwCUfLjXJML7hvqw8C2gGzBweEp/EDpA0b7GMrs9cg4WQS9jp8X774K1X2/tv/CLa3SmrWpAgINMF/CcUeAJwPsF+3cmbysZnqcpQmegEpHVVvHBMPH21SVbbvEJn4NKC1rkMtEirlE+wub719qtov7+LOuVeu+Kazs9faC+/9Fx77zd8rwQkW27BsvkKiI92AeDx4/PgYM6hoCybceVRkO1ydg5UFpC/QNwgw3u8xC1RzI5EkdSnux7WC9zj594y4RCP2vGAQjoIy9nd/GqIa4rzaRMxHpXEykGEis31IPNZNGQq/Tndit19OqWiElLULdIQUPXd4lbsDB5NgIxm8YeMjK/8ev6dbs7nb4iT+niOQBWh6kjohKZ86qwTPi95YlDGc7ON0P0ygCvzoMo4kXMwnXRImbx69vMY49UogT9ACaRiwzfvj9Rp25B9j+9a+jFewxlkWjKDdngfv4EW+M03mdj317z/n+d9t8sSnl/FNFMzB/E2lE7RRu18MG0ffXTU7vE+9xV/zGoYv/gvANWfoLFmUiFddNu6AyC+yasdjbLmEfRu7eHDlfbr15fa2j+etJcBwtefX2w3rp+2566jcd44aW8S/8c/pWfcm7QX/rfjdpnFlFjpsr33gHk1AG4nG97+5XHbfVMtN3z+6qj9N3h75+9O2waa76ULLCF7GaXT5VNMPk7w2cgAAEAASURBVE7aVTTk9+4stXdfW2o3f3rUHt5ibWc01qfwO5ps+DxH93lI4OkBdFCEE/+uMOGPTSym2BVHYyrAEIIV0KhOFJ0rJhqLkytl6+xkwYZdM6sjHDFB7PjgATjKz0wMcdEUax2gc73hZe7VRoN6AE6AGM0VCLOTnGCiYV5LrNrBEUC9zYIbFIleMSwQUVhgJ6lTmxjzCTXeAhNMOabaRCyzWx6d7RQzkN65m85rNdIxLxjuJWXp5NFJgpprnALao5EWSeSVxMkzGZtLBgPeAzjs/hV6JhFShil+rl7in2mkYOfvJMRFQJ4oXU07euzkIVhzfHEEaHZtX5fNM313ptcJPgQcFPMxl/IlF2jKEn8OCuTTqBYh/gkzfO68TjkH7bjLlikfn4+rb9y8+UG7dfs+ea61Y/1JkHLG3APwDzW/KEywyRWmy5vPMQMucyLj8Dfw3Iulltpl8wTx0rQGTAHSU3YlNA4S5tkvZWvX9957v73x2i/b889da9evbLABwPV24cImz9vcSW98QPQx8s3mIvgnU/w1M3CpO5/poqv440xjmZ0IJ2CWh86nYQWe8Yv0kuSTDx+LgkfKmUOl4TL14LyXzxF+w/hMIMYz98F7uDuXLGFybz3QVdwhBnVuiJCw8JGgqjMVv/gLP6bPg6noA5eeiq7h/AbqwxkO8Sg/qRhjiAVPXunCXr/p5wRw4D4geojt4G6WstM2TfypE56ToQl5zjQUv9Kc+tzy2ULCoxsl8EcqAdswShs/FPcGaPPZ2gEEv7HY3uU3ZSHoBbTR6KbaI2yGb72/0L7+ShoV70Am9GP6cODXP0w6qptn+2602vdetQ+RWpFeYCvv/sogemO5/fbmzxfbDituXIfejRcBz88dt5fQHmt68d4DwO4HrrwFra3j9gLAegcA/uPfTNqjQ7DBo9N25/XTdvgub3/0IccfYiryHgC7vue2E+ZUTL/K+/v5k3bjOTZn2TxuD+5M2j3KdHabfpQBRFfshcnxMErgc5DAUwNom8rCZI01Jb/SVi9fbGCmAeTwuR6AFBCd9sQhGmhaLa2jmhhgjTotWD7DDno6wUgKILPk5LQJNsvEF6wIaMQrgl0B4xKaQztUO0p/TjicsIrD4tJFGjfAlOHv6WSfhhxIRSdKI+YnUDPfmEOoBVUbTvojNtlYdmvojRcwH9EEBA33VJvo9L/2weL2AC0/DQm85GcNcDWblIVHeCV/SydMg3RAbgCsk/rMXGK8KHx3ZVUCykdhU27NfItHaRARc4fYMkNIgCrGj8DMf6Dvkn4nmH4IeyXty6teYfDDvWYrAdGG+CaTqSEWEbnkoD+FrZP8qPU3ByMkUk+R5IJdZbhK+ddYGWRj1QmFi217a7s9REVw+8Fue8Bs65WlDWzlLoTCFPmcmEGnR3wHJMofkUFfvqwvBUb78+3mLgQSH57I94SvDKcMeihdOoIz5IRIIuvQW5+019571M7+y9+0b3zzW+0v/vyb7drVS0yYWYN/IloPdWRZAyguKLZyc33gHcxOLL9g3eXYZNvl39a4N77P3ucTeXKdYnWCFsNiDu6J2+TZw3LO85j7WO6PuYGeZXssNDf9uZOK+1kM+XqS0CeGV6yk8/KxDJ4kQPCMvyEn49vb6Wb8zYkY3Xboc4y8rOvn3IzczK9qnbeP8fRYYaqOmwtUE6+31aSDqOMh05un7dIvPIu8N2yvT7o8P+jXxMVPkNuTCcb7UQJfCglY6YdGz+nR/Wn7OWYZt9+mv8XkAl0Y7WiBidmT9vbbmFT8Ge2HeGtsA87H0MZGvCjOEIQN0deq1pG+ln0d6EffrrVlrjnx0m6LWyh7WIbu5m9au8VqTLWANOZ8l5in9K2ldvVb7EYIAH7la6ft5n22+74KUCefn/xytd3G3vnK4mHbo6NcuACA5kt1IAX6tonro2LWt4rZJgbf7CUO8P41gN33wBIrQcH3GeYjM37kb3SjBD4nCTw1gDZ/wedFdoO7fnQFTSijRDswOqtMbPMTuzanIsOgFBusjgYAmEkHx3JkK+s30CCvlh8AaRFNdSaYCeRo5NVlooUFvEnfRpl86ClP2eRC048zWvACZgUrLFUVDXNa7tBSyCsARACFl7RXGK2eAaKd3CcwXuR+bfN5GhymAtMPAawMv+GToqQslueIjvgQNC3uFaG4q1sAfjz087MxXXeyETq4WxKAnJ+Lv6udz657+IPNYgOmXTMQlB88DDwLC9xyehK5oZOHv2UMrSOJ8E9exHE5PyfupUy+DINITB0vboUYYRU/fStMWajJc4BTPsTyPzQkU7FJECdAMTzmFbyNBJZXLq23566toSXweS0ym3mfFTBut3227HY5MczcoGPuyE+eJeD9QEt/QytLInOTOHiQvYkTdQio58czWNSEZEhovDPulXnAMB4TtCt7u7vt3Xfeb/fv3YP+t9rzL7zYLl/GXIe6uMgATW22GVc+clJspdx4OkCwTJU3z43oPiEO4SvL7BkKDWnJjhQi7RDVx0J47OG5Taxe1nkJh/hFKBHrkiP/0rAq9PhF6YljolaqcwTCRsmVS3gLDVmT93MkUhZl4h/hhumXUqRM5yKfu5SmkYuWx6RIXpq8uKyjmn9XmHEFDkNnMqlEiWvA7CtE6M+fs7fzfIpHAW/lNMsxF4Jn11bvZTCtbZCiZKWX4tSUlH/Iv87ez2mabnSjBL68EhgqPwWk92y7aJU//CW2ydg0N5ani3IL/72thfY6uw3+238zbS+xnffmKms4ixgA2ALnWSMEDweg4vWpzn6Rpnfiq9XlP9SEo0HxS+LZzbP2gPWd92/SV76Dqd97rBe9hIb6q6wa8jJ21/dd9g6b5j36d/rsM1ZQMm/m/ueXPNNRcWXRevFY5i482uRHN0rgC5DAMwFoQZgTypYAVYJYtaGCzQVseI+POXONpSuVmEpv6wEwBuAGZQqwicMKGRNW4rCmM8WBe1TZ0WzZyVdrcEKcy8UZR2AmrSnA+RigW+CYRugcf0w5AgZmLSgpEt+lzFwKz8lr2mTbcaJ3xGyDn52uLwRW6JgwlN5k0fgJK0Rk21BGvU5GOrJc8ki6vh1yBx7aKoO9AaaAdV4Kcm3JDwG5h9k8hPfFOqt/sCaPYVlSD0A2YQOZTC4MfDadMpJQdfCCCkf8MSExIb+I0Xwoi2YexI4zuGPUkCGyfpayH9X49utAfBJYHsvRnfLs8ZLhPIgoAGgGApdYrP/65VW0BJhQwPstNAA7LNDpgKYGFWUrLAPz7cOLP7mSZP9CEfIpr7wM/ABMswufskQGSUMdKD4pRGRkGKn9J548qw1X8ruA6J3t7Tx3wfMGuxM6EVFgbH487eGPm8GlTkHXOtllFvLyhI95ma1gNnly76CieJIJ+ZKY/HYK5vNx97hvxTDNzEG3u/A1gMLu91vPQ9KcBjppe3pYQeTI/0GuYXBIY8F+92fOgcZwKlqmnJc0Zj7KBoEJpEvulppERjOMi3mKeKZYcz/jxauS1OVjx3kqIlKePJ9BVprarDDwdM6A9UJSisM43fns8lz1GPLqYeN5lMCXUgK2Ad9VQ/s7wP5ZE47dN1EYYTIhrrXB2VaY1tLe/dmk3WbjkWtM+NtgU5N1lrPbV9P7tM7XK7TDAu9qzTIbkxtP9rGbxlzk9G2yv7PQ/tVfYObxdYD0c8wBop+7xaTF4x3VTLzjz7XhGRv62YYH/h/zn92MF6MEPl8JPBOAdlLfPhtVbG8f0lECYJ0uSy0WRJ8yw+CEX+yXqdUCGEGvm1tkZ0E10VOWn8N+lhQkszNTW8Sw0kYiJRuEmlJ/ag695c+ud4oJwxTARhfJ6BfbLCfeqWEcwPEQOQ0qa/+ySsQxJhvyqG2134CypJmTyUh7dHAAMD5hvUw2XGBzjg1mDAs8st0w5RE41QRGwbW2sIIp3ga+EHB20c6Nkz9ZVfMu/cPDI3hiiR7WOnY/FMGFaevsCwvC+JXGtvLJ5D7jUU5pGTcAgXxqMiXyRd0W4O8LQ0ccYvErjzLhSAB8CjaFL8YY3jFEU47GXwDIy1OFD36VlOOQJsiDMOgs8pxcT3tlUqscLPAMd3e2TYGmEc0+gxSpVJ7k4teCyNBBCBQpVOfFcllSJ5VqPlEl4PmqTkS4xheAqRk+Izy0CPPZKBfrRlgzR+WEW2ZC4CHrLh0e7LKpZWmdEx9qSsfrkpJH03hvnarn5aYrZ3ySLC6L007bs788P6+lYL6C0+oV8JlTNXzu+l3lXrHmoQMrstMJwGs9a/1MXSl7+u430H3s1PMiTviTJukCoovQTApW7nO8+0QGoRLx465KLS/ES7qiZI6GKZt1Vl5hGJUvNz5F62P6TrMKSWP2dOXT+TH4PEv11HrsJK6DYiBpp+etdcFmOWF1nk12H9zIcySOMvCf85AsNM4Vu2iOx1ECX1oJ0MJoG0fu5Meazy4A+4jl4+7v0ibuOCHf9y9uaCCnhB39ijWTby60K2iCl1fsx5jcl4Y8xEuCz3iQrs42Wlcch3aJOZ5f+fQ/0gyDCX+7qqtlib0Ojl/FtOQqfYD2jvPEMyq5+DT/x2ONd6MEPjcJPBOAFuQcHx0yu/U+YMVNTADIjBadrXuMfe4xANfartmEI0cxkZtpBPxmww1BKuDZOIInfmUlPO/s7PAKQAukvTa6LwJATv9uRLoCWWV7XZ2kEdM8iafG1uXx+Iwfu2l3O3QCokDaeIIU41KCqbuo+WHLT8+YjgDsSstNnjTQ+rmSQ32enjqBMAAPOhaFU4CeedrWSaAGTDq1RFrxKo+L0HBlCYGGbAiizUvwYD5ylgmEXPje8PO0AcY1rCINLz3CChtJS5oAy4o0aO+JbnpKpjMod5IU2rjqiY8gzyEJK0IQRsWW573dnfbar36O5oCZ1dg9f+fP/4JtWvfb3bsPGaDEsB22BqBsPv25YguhCUZ455BnKSO6PL/yC2eUMYMQgjyHBuWRi1CmYJYFCROoT/HrlwoLIRC/dfNWe/ON17Opx6NHj3hepNXkhTTunKXzWHDKm8pfc4PSWEY6RiPSIGMv+Qt4pjwZCMigvsgjgFKqRR5fXR1zOTvgp/cQb+bds5yFUUaK2Ouf8SqXIX08niSipwTKzUgp+F6pepIejXu9ZnFnd51KnY3jwK2eiWWehysXnUdE05bcBIhVYs6YlHTM7mZTvuqYQBrJK9FN5d05128J7xI9FzpcnoukT2jh5z9ltJ1oGqn9ukGJnUMln/kNYeeCKsJ4HCXwJZOATf+U1Sy27y22n/8IUwzsmb/1LeavAFK3mOA3dUMR34u9MXgJyLZT+/WvltrBGht7uXb+JsoL44oczjekZ5FXZZO8XdnjgGXt7sLT7YeYQWIPeKY5KHmfsRkKa6A+S05j2lECn6sEnhpAW41dRuyQFTT2t28CovlkPnUTlEOAM+AZrW6WzQGYnTnjALDq+YxPqmpmT9EgC2bSqUOswIedMq2y/mfX+QQMiDnfYfcUiStSTLpK3ycFzQjlrWDHry0ya/0GSBLKrOIzgTDa6SnbhfN+YYc6tJe8VNZZ72eF71kBZbx9emdeQAFeGBuIF5VDNk4hrevoZcczEMYpDT/ZkKfrGc/WdOZeQOgLzVUg/Pm5udjvWtWiq3ySX+QDfe6yQUpy9d5ik7HhAboCTgHkkF5/fhKXvQDqeJjynBvoGzWkiRPzGkGlfqQ3mXw/BIz+5Ec/bO+9804A6p1799u7799r7wNY9/eYwOkXBtCqgNJ002iO+9tWYoODoGXRhTd50C8Dj9IwK3PL4q8YqTgO3Pya4QY4841j2I/SXSxjw+ySTG/lk+OliyvtnXfeYummldiMuwOdE06lKdm5c2BSz8rBjq7KXDESV375Ga/krK/3FZdjRTbtcFUAMalnYbnoEc75Wv4nnWJ0sGBIqnkOPVb5V271jAwxrjzpQpJrbyPvFMobQwfX456/HfzilbjkFSYqUso8xA/JHp+zZbYOnDKozjPlebn+NiO5yG5IVjz1m086k99jxTWO+eCf8vXC6R8eOeFnm9JWn28P8T7PX2fTwtRg1YT4DuklNbpRAl8qCQx1+4SpPVu3Wvvp95i3gtnGQz4aHtMO3n8T5YyjXvUL3ZmGyXqLDHzf+dlye3C40jbZAOV4ha/GdnxPjRx6Bp9wJs8pn3HdXfbtt4DulybtIcvp7XxYSrasU8trZHSjBH5fJPD0zYDK7tq/+1vvt8OtN9vhnptVqDFT8wrwUwtpxx+QSGcqmpyw3NwyxlSaWQzgWQhACG6A0PSY3nvn2Q5PwJ0brsuZxpBK6SlLXA29eg/tcT0b09UV1tfUPmOvfexOedjtHm/DG5MXGN2etQvs3nSlHW8yyRAdLnpmElZHm9w4CK0E9K7NLIhym+7sykc8gbBAWQ1m1g0mrhBUraa2wUMJIx9XFXHVh0MmREjPzlzw7WQrl8fjP+AwmlP83d57GfBvOU7Q7mXCotQtM3Inefhx4wgHCtptB4wqG2byBXCQdkAeAfeCMyUTQCgt7gvASlJtuAMc0yRa0p5gBnO4z+L3AObXX3+j/eAHf8+OgZN28y4DEOzeFwHQE3awcmMa8zoF1J5i1+7gKaxy8C8065BrebAMmYRKvgGT3EfbS/mVUXfy6CKkC6y15Jra8s0q5HQGy8zFnrBD1gHg/o1259abLJF4D/OcfdIzcGNQZ1GkWW4oGOn5t/Aze/MAPxlCDoku39ybwkFVyd2bSpv4M2FJqoiGLgz2HHNfyTjqBh7qpmQxXBvXuhxa0u6JPUPTLLrzWs2r9UhnGeVbMx/rlfWCsUNIJMfOEHH7ZciaOAXWv0LkIXfk6dKFuh63cpv7FL/wIn98knUAdUJ7UHPNCyDpUtdpO909lv9wE7o9oEfkHJ70p5zGyXHORGRyxDtnhUFwZt8TpgwijyFLo4vn9e8NIe8n/Ec3SuBLKQGrOsvT7X+EmRqTBfdZYeOtd10Fi41JmLx3FGUE7el8m7Oh0IYP3uGLMlt2b/35Ost/GuE80v4cpUV+Z2ix9g8X26v/uNZe/wX9IqYlxw/py9yo+AvK9nMswUjqj0wCTw+gqytEO6bGmUrOL2YKAMU1bJFte3b8ftbfw4bpQNDHVttALHr3TUCIWRur99doh+loS9tMq00Ha4sS2KqJtfMkLRcdrETTbDwDjSoxDgK/MvEQMaRLT1qjnQK6DnYBe0wSXG4HLM3DYBpgeoTN8x7A6/iIHREPL7cjPlmxsjAdr+kLjCSjfOYCjPDikd+EQti+WOyillZ/46oFuwgY33QCoXbBgAgBt511TQBEiwq9U6Y9ayMsWD7BDk05hgLlEFD6UnMr8iXsSqMdhU60kp4tsxwSx0/WOmkJMgMuDDCSPy7LCUMqjf4lIXkXqNbPqJantOOAaXiWlP7unKiJzuEhW2Xv7Laj6QpLDjkB1IER5SESkEUKPDmfQdm5d5rSjZMgLv5c+1wdfMU8w0j8T+XJ33m+CNBu3h3n3BhHMsrf7b7NVbD24P79tvuItcZPdviSgGyIZLwzEk1NCAV59b875RzehryNX9wZ10tpzH8FUuu+iBupXAYE1J3ukj55mofMFgdDbE49bs+rcjaq0FP5e40YEtPrmePaVVlcF3yftZ+k706Wysz2Z/3zl/KYrphJ8s6XNzNv4lgnAsbNaLg3fcxpZhEHHgkosh6LX+VtO3AVDM264ng3uCqLgzvbuaB+2QLpzOcJunMP6fqzHiqNil4Fyq0+ubBmGGXKw7QeqY12sGroOpN4M7EQJvbRjh+wVbyjCsvqfep4JzeeRwl82SRgu+DDry1oi626d3dol7wKTzFqprsoV81oXnLupyiXpvcxxWITFbYMLO2z8Z6MO0/11Ffp27HR3r/LRi4wtbhPH6npxheQ11MzOSYcJTBI4BkA9FyGamLt9u28NJFwNz87WjtwtcdqaBcW0VbTuZ+e7hBmeE3uss8sbR4giXi1YYVsGULXls5X8GYLgk46WcGE3Z7gpfImkBcDgUTLhEXtmAWR+ZnWMEABWvMDtn5ewgZj9cJaW1vb4LeK6YlmB4dtC0369JRF2fmdus6w+ZF35UsZpU97tmy6ACU6akFbwvDzLFAWYK26jTVMaQ/ui8iNT7qWkEx4f1kKyiJQh4YT2RzlRwPMdXbBw1+t9AoAZMXl8yhzJjSSl8BJ0QhW5FHArfbb4g6HgXfv5664h9cqWM5eBxSSWO88Qy7ILs40mcw5e9lSLkwpTrJuHc9GmcMMEC7ZhzR26gu1LhK+OIWDq4GSV5a+nFeLhJuPAxedR+UtKPJZyJ++AxmjDOlliryUKAD54ADwzM6SS5mcEs6ljuyRcbQolTAhllHa8gLhqludK3PAGZFDAPRwy12AeTaLIXWYMr1Rc0yi3BWBgWbKoLfhPZ/zcSvIMho1X1dCd/DoSQYKKTl18PCQncJ2XZnG9VrdkAgAi591dW3FybNVTunGQdvLJ3JO+WsisHb+xqifmne/pmQX0aEMPq1Kb7klOJSftrzI0jQT2zzJTzFK1ozDTX8E9cZdRUW97Ah2yMFszEky0vSX++HK9mHdzhcu2715pB1CDX7yHjENieRb1n3ehwBotdLLAHYBtM/3kLa4s2dNpU7QhvZZm9Z0oxsl8KWWgI0Kpx3z6V3nKHHtC+TT6n73pw1Nb2GgzBk9yafHl+CzOBqhm6UtMKk/fb4v/k9l7lkyGtOOEnh2CXwOAFqzA+xL+bTvusQ1iVAgXZpdwfSSN7gTPvHbWu1i/RSsVlX74d5dBiykQ7TRVLMp8NY7x6FzNoUd5iyWdO0Kjcclv0kSSps0hNmR1sogrMGDrfYEvlbREKvRldYqKzes0TnvAziWWI2jQD6EBLZSGQ7mecbSO4KwXHNvZx1Aa2P3GjqH++5u6HAfDZgvK/Ivm3ChA7yS2A7evBWBC9W7JnVokpmAXKBgPMGz7sQ3HeAD07RomQWzghLT6AJ6SGNagYWyKIqeB/fkBXkJnPVOkAX1N/il9Ap0iOfZAUDZ5cIjYUzNxFuTD4zs0DaT+mNuRh+6mrNYJ2KWkezMhT+uw7e8FPOUpeTp1tspn5SLnXmZ8DJPS8Fm32itV9qRXwq0k+ZZakbizDblPdc+SwhtOujujHg6lJDtGvcpH/f1pAwp6pGJcuF5mJfx5O8QcOZA0XqWqMrHZByVS0C/PPPnuCBhCsQrZZtrbw2pG2mdSAevNeS1sc6a4OTlYLXSeSRQOemMT/jOIeCU8izxGUA5H6DBWeHrygW2tnVwKvnwmTQcvK+TPnHW3wPq7wFg/BgTI3OQjxXA7uYl1m6nrfT6JS3TVw31uu7dQGdK/lnmkkK7G+AZ7d9QQfSeuyRgcrMBTen7bJKSs4PHEouUDS0e3S10Z2uXz8lH+RqzfmEjZ3nJLqghBC3z4DnSNADNvmP4RE3aM2w6Uq2IF3Mz+DikrWhmVvknq/EwSuDLKwGblM72Vk2r7n/Xkba7wGpbpvsinWZmgvSZuYb5fcF5fpHlGWl/uSXwTADazmgFzZY7vS2g9ToAMK5yb6eVjpReSZC3vr6Wnd72mZUvkDyjI0+nB3j1bCfpX/VutmzSBSgIiGxRBnGtP7/EI346b1fiGBpZ8pQScc03naXxpIL96ykTBU8xNXHpPLVRZwIhO3beJHbqAk/Xi97e3gKEoDEP+BfgFp+Cl6z5HE0edCmfafJLh01OlE12Dlh9YBcbZwcUds6lESOc+JbBYluU9c3NduXq1XbxIvZlRwft3p3b2Oq6SYrvETt2uS93hnmHu++pAHAAIvgA54S2ZS1AZxoANNq9LlnTF41+NPOSqyEBw5TR6w5c9atP7wUApRl5IoP+Gd1npr+QxZ/LGgqgP8nJSwFm8xbPCmw6P+YFH5Q1Ayqfn7z4DPGDMjwCgJCdhTJuhJdYlZv040wLOJcv+V9wIqgyHOToWWcdvXJxg+2+L7Qb/FY0j8Fvg68RawwIvQ5INHKeuwOtytbyCzIF9ZoH1PKG8GYZiF45hNWqq6YjuH8NkVfLNsTgjLNI/PU8yg9Polnv1jA/iPkOAanfwzl5cbAOak8vP9aDLkf59KvF+ipmRNR5s02d6gk946fEzVunfNUSn/i1RBSqzOSD9hrNNnRsn1XaSldfBkxNGTj6aAXCE9LbtmqIAp9k4kR6V7HRhGN9FQ0092VyZPpklTLW3fzoIMV11d2e22ezTNoazNie5EMmzd15B04Ipb1SrTXjUAvt5kfRQFOkfUzK/B3bbuHxqy9eyRceWBndKIE/Dgn8Uyo7cRfU3PxzOLP5Z8rqn6M4Yx5fXgk8E4C2Y9e2185aDdAaZhlOdNMUIx0inbpYx3A1jk7eY+MhRr6AE/q5QFs6V7s8QUqcnbU+wynIIzd02gFrhKazJD5xNdcgJJ27IECe7OjtOHX2qXb0mOuyfiWduSuC8Il/bY01YtU6AywExfnsTaIVficszbfHRLjTY81R+PQdMCV4xhwjYFpNnuBRTTRlFGSQt6BW3iyRcQMYCVGDrJY3cQE0lkm+BDJrDC4uXLjYrlzZROs3YUc/7MdrQWnyKvlVOQagguCUp/bVgoZ1NOYBREQS+AigNOtYUbtvJskXEIo8I1K8dAGSXcbcL1LGSexmBVkKjYHOqaY3SrV4L0BZg43EIZr2rCdoEo8A90e8YGsylplIXKnwkwY/5ZHHm+fGU5Ep8jLmkwBXLeIiNC1TAWYJlQy6FldaoUfcaFO4V8mq6YJgc43fBRb+Fxz7uR+sxLPSvIHnDPi6dGG9vXjjSnvlhWvtKprVDdYN1kxG+VYds+boql5FLJVh8jU0t/KR61xwRanrP+WWRgYpyNRnFZlAzHrb3dAKLGJocUio5dIvz1I6Q/55FgRIeyYPZUV4/EyEU3bW2UxMtX7yVzEGWgM9oxtmZjV44glIy/AQNEj5J2Jo98MMvCbLil9JrKt4QsOvL3GkF0RLFrYSniw4JPlAtNevkmvlLV+l6ZdX03MM+SE3b61r/nnNwSi6XuaUgXBBcyZd0nQ177j24rUMqow7JPFydKMERgmMEhglMErgEyXwDADaHkoQOG3bO3uYKewDRpcD3uzO1FT5XRfIgGbMNaH9hGrHVuBTu9iyb67OrTTOpBzApTQMsaftnajUBGHdDtPOcRGQuYkmdp2NSrJ0FSBQTVtWHUhyOl1oHjJh6IBZyNNTdz0s/i5srpMOAA1oEihchM6FVWFNBzkN0w5APxkFAJC3YEytmXyoeTy0p8Z1cJgVPfB/7so6ms21pHUFCMsXLSEaNGUm75Yxgw8mNu49LP9rl6600wtq/UI2QEOAoazNqQMnARH4MK7bpIYfPlWfAOqzWyKhphW4i/EFV7qAIM6lPS6QI4DuWkXzEYToCoAokc5TgRPDpGaee+wktbV32h4d73FfIYlPBRD4CWYdpFhWeVMjqbZ0yMIEVVz5G+Sph3zOwZyDDgcm83IHBAGIwVXRdkpFALW8vNKusnzdlU0202AN4tj+kjeBAWCmUxYH8PBoey98aWp07fJmJtt1Ta98yY5gTtbMx7qoX+QT/3imBBTNgDwjfOOsTcavOszRAA6hYwwCA0AHYeTZGN84iWeUeIQeCf1PPvKQukp4ZKW/4WZiGv7P3ye+fvwCUA1OfIcrFddkScPzNszIIWUeFaRn6HuvK171SoJKx6XpajBCJG/wM4a/lImzkSsf/PzzMSWuEkqEOprWuHnYxVNC9eMiaeUx2dh+vUa2voMCvGvQmgG27Rm/nlIt9IWN1Ty3gVjyHA+jBEYJjBIYJTBK4NMk8AwAundvandd9/mkbWxu5FPxoppMOjA1tOnMkzuTm/gMnwllsZNFuziArTlz1anZ8dk5C94EjMuALz+9OhFKLeE62mOBrNpCP8ULkFyBImBUYAnIitbXLhI2BUsnp4D74/V0mqFNnL5phuDXLvgSAPr6JcxRuKvOFe0xeVuGk/7ZWLtp8tQJHk9OAOB21NDTqZFVIy0PHexKv9vyqh0WvMhrtIUCgICDKq/awuQez+JdfvSXj3T8nAV5DhQCUBQUzjzMX4AoUJhpxAHs+mkXqiN7j8nfK/kTeOqCTzgPUR4DWvrlCcnb4CyDmucHWwftaP9RBinS0za6S9HYxbsgvArrYKI7w0KRJF2bmnhyUWSI6gXJw2Bd93KYT4+3ijH5jctL7eXnNgHRq9SRAqgW2qwd0PXoBww2dvcP2ja2vu98cDdmGV976Tpbla+nXqk99RkmARkkPYeer2cHhXHzaGFFNi2XztMQC3r6COC6v88hsRJHQGzbyTNJIg4Q6HVFqFutQyrEhT/rgGfzkZT+8xwrn6SD4YB1SEraWPKhPX+ewOCZawJTdP1ws2dUt0kcbe85mubvoMxzHqTp+JNfaUWWEVrlXccCujJjMl0BXwQVelV2B4G63s6MGxMjMnPgF+CNX+c95S1GQrdollyl0yua7OSBesF/5yFxxsMogVECowRGCYwS+BQJPAOALorpsOx2AtiYmLe2BrhjdV7sYQMSiFadkp9N2UpbAIMTJNgB50znFdBsH8YvGktBASBxBTCuGYWg2aW4LgJuLrA0nH6C6Gi66bQFszoBpg4yw8ELeGCHwfSn3iSf6tgDcsI+PKDFXlhgwckiEWakYxzpCwIExvIqoBGUVtHVjJKeP4GhPAgWqkxSqHWZnWRpPLWxAhn5KZ6QYngojZ0sBjBBJ8DBfLWtJpJ8aAO6BDBcpvwBJdA3zHzzkylYc1Ji16bqL28dgCrn+qwOr5TJ/PkvPjhb1ipc8S990+jMX9wYLSayh3SA6ge34BFeqmyCMp9J5y3QNbL3MJAa+CYexPV7jI+OpmVsCPNrgjHlRW/PpjM3LwTQKJL5ArDarlzaCC81+LBuDM+LeCW3Bnhebe8d32+37j5qj3b2I7+XnrvcrmDecYH6VrtK+jzPySQ5kl/46ud5mcIIBdGMqZ6jUY1XMrRepJx4Ge6zUb4624SAmAUshjpksv5si14vfy+7tItenTuYDEF5RY6DuXk4V17KIrzJg/WCs/QiIviW4wBT/AwTkHpOMRIGn1QCgb4DDeOmLETybOSUk0HylPyNu2DbkQRhs/KaKc6T2RLiHX9+qeLSuPIqj8jJ52YMB6kORnV5NrxJikdDK6mlsIn2duhZJ3sONpW7WnPj1DOodIk0HkYJjBIYJTBKYJTAb5HAMwFoOzQ7vY2N9azCYc/k8mETlg8LiKKrs6Nz6bZ9jJAFnAJQd+ZbBRg7uUkNsp/PNf8oQLyESUZN4rLD0xQhgNNOmoLUpMVVAKRglw45/sSDESc9uWpAB9PRSkNDzWtAiD2njlN1pXau1cEO3gmLnSUeggOdcQUJTupz2Tb5SUTpSYDzCVpYLxFJOvoABDzSaSc/tcZlU2yH7TrQsQ8lTkCtFPGHQmRHdphqC9QFWwVKlKnySzG47nnpIWixnHgXyAAxCTpcyaGDfgMFGTWJUToFQEiCKxkpGwtMrJmMpO+zk3Y05OZhNM5d02w5NZvpAEeKw/CIeNCiLJApx4W8Dzfz0+BX8fG2fuVviDo7GbE0lKHJrbzomzJ3W2w9hgCCuRTkIQH8a5UWJnFiwvPSc1fzNeLR9m771Vs32aFrt339pRvYR19mUqErTkibslkO0SnOZ1I/6SlrMzCPeuazM2EmMZ3xlGrVWenUc5uBN9I6mDEfXQA4Mije67kWBK1BStGRSn0NgTz5mNBc9CWNNPnhBT3lU8u1dUAq8XBlOuOneJWLxHo5KtT082fns45MSGRu5i34pwhhyvx0+ptPnjl+8R7CKmp5ynX4tfITK3kNifSyPcSlodRESdtoDYYqTDmnXUFLU6GUk0RlulGy7XxN+yRWkjrQlMLAVuUzHkcJjBIYJTBKYJTAp0jgmQC0oK3P1ne2vx2+GuFVJuYt0dkds7TdEUvGLaHluXpxrd24tBpNsiYZdliaQgig+09gqr+AOuYVhLlklus0r6nZ1p+f6dSCHgGW3TL8CBMSwbOd97FgQdBB/unc6RUFLvaOgqYCO2iv8LI/jgbNHp84amgFyQJwO32yCYCQjs7O2P7cyX0dyOhvp2ueyiOdOfFLY118GEEWdEmHPLoToKgpNn4NSAiDnwBR6RGetZpNIr+UgbFD6AkwZM0yqVFLuXNf1MM1BzXN/hEzZfayA8mghkRPbK4EhHUtbTNK1vEC4nAjyPO2wJVmK64FXbKhKAGMYTZxKp7l9+chdDtt6etPLmYbut5yZc4JqlujxN9jD+k89BDr4Q4b5eyyPIkaZL9UDAnDt3UkdM0URhxcbGL/ahwHaw8Azx/e26JM07ZP/XoJEH0VTXbyG+qU8g7PkPAseJY1n4dXc9ApAPWZcbayRa6WMFl7THkzKBruOig1TsnA4/C8fMZmget59LopuAyPhBuny9IzHFE36vlU6sFvALpmYJzirGJ0LXL4IZ71zrK4hLbANKvJ6OEvzvbGhXMcPOVYh/B17j7L1Hmf+BzyX+nlo+edKCFUz0wuqy3TPoa2mWAiKhavlYuPoQ8+9LcM+fITGRmmr3H9VV2um3iPh1ECowRGCYwSGCXwOyXwTABa6gIxl6QSXAp+nZh3EVtoAfTh4V47WFIzLCheB6isYYaBdhkQY4clqMgOe4NmtoOh+IESCzADuk0HzVUAkWDDvFzOys1Z1Kip5VbzHABq50jHCOkyc+RWHtOJ2oGCKNJ9inpwAdr4l2atNK3S1z+AOGUMu6Stcwctdtj42K0DO+uzsGUw74As/OyeA2IEHfwED0kveFEGOdWZYuCIA0o1r/BtHH7yHL6kT6qsK02kgK8UCNwN4ve+zgw+uDevY1bmcCMXwWWVcwDr5i1dM/M6Bapyd76GoBoYEM04ytLwyBLZHrASyDbmDw6mqvyEF44iEjEH/gQ1potUIFS0lZ4RiqahuR/SJH4xZlBiJqiSFF8JqYNlfMSkVicHXqTeODirgsUoIM/VpMmbg2cleoGvKH4BcQWZew+32/sf3c9W69JzkFV296wyY3FIk/Thp56vVOQu4IzwgGmeo20i62ybj2Ue8p6lxyMgtQpKqFTw4z6g1QvcKSuzAIHnzwo/Q/LLQxlogx59nt3fczSxEC3gSGkFxIx05KFA/0CIk854+suHjWjRZ+jIibNZ1aX5VX1ONP3PPafE42D+0pNW5V/xul/an/GStvKtpqmGmWcGswHEeGZgR+ZG7W3QMoQWdQvKiWs78ae/X0z47pM/POI3H2zi76vIAqSwXoxulMAogVECowRGCfxuCTwTgFarcxlb0ReuX6RTdbOGtXZpvbHyQa0CsbC+3k4vsakF4NZOSrMLQYoATy2mneMSGkI3MXGt6GWu3a5awKyphl2bwPgQs5Cd3d12/94DQDkbPKBxdgMRtWDRQhPHTtEONx02KU/QugZI0NsGJNBBurtdgLSAANCkE3Sz1UY02sZXCy78qE4a7SqgUCc/gtPe09pfC0wEIzrp2GlrMmEeuvq8XJo7V88TgJhHAQJBBXkHAKjxrp5cbTGlIXLZU0upT1J0oFA8uppE0DYAEfo8ByTKJM71dunqlXbl2uV2gTWOtUUXAO7v7bdH9x+1e3fvs8b1Ln41oBAzSC+7MCZHcqXgAVxkLP/KQeBhbvKr+UdzPWpOR2j/Xev69r1H7YPb97OVdEAigQFEJYaAFlOHlk8oNCEY54BiuEqEIdzcZDCROeXa+9nFcFngqHzrmasNd0c+t7Z2qbplyiHv0boPuxD6jFIU6xEXykGeL7Eet+7Box0mRu61X7/1YYD0n7zyHKuqXESm1o1K2/nrtBw06gI+E2gZ+GkHjH8vf2JZzOFnPQ5GHcpqWbx3nXIHS+Zn3ABK7iVteeYgUsBY9PTrE18DIKFl/bF6GSe0OSQtNLvsu5jxIm/im09i18BQWj6LPogLQ/HyQBrLWZe59yAF45X5BOe0H+LaVoa48hF5ElfaEkmZKXufVyDj2k+faZaUdHJZeZK8Cs7SlOHa/Ehb/NUz5ZivSz6Dan/Fq0035QrNgSH8RjdKYJTAKIFRAqMEfpcEnhpA2+n5efz61YttcnKZnokdzwDGWUKOjm4FVd0GGmMBsh2Y4DkAmXN1cNWRqoFygpxnfNKJHqHR7Js4CJ73WSnhgN8xwFlzDZdA6yAlna6lhB/nFBVoTdcdUDwTAOFq8ezTddyW49w73uKgwgT3pe2207bDrYSWxUvT2wFL0GsByhngV+C+AEhT89hdwL0gVz8QQAdMxYsU7fTNXV4qXehDVKBMCvzNg1Dylhd5kt4q5i0b7Mi2cWGzXbh0sV2+eplNWTYzOHF1lK2tncjLpQRj223+lXEAmTmmZNCbyUQPC2me8LBApgJn7bwLaEKBYHnb3jto98lDsClYL9dpcke8np+aS13A1uCbcs0yrvCKZN4lkyFZ8Ulgl9S52OVnfBizThww8Dlgt7ujaMVNw5/B/oUn7WGLWLfvdmC3xnNfuGTePqrtlO+dm3dTbgcMz127lM1WBLOWo1jkuRC/Az7GF1VGMyLfnmcBYTOVPufw4Ung2PlLcA6ZkKo/d+E59AwqiUTa+PlMrGOCUevEhM1jEgv/AspFI7wS1OUaulIb6PayJDGBfi3xa4g0PlY/LT8RpWx4bUU/p1UcSIOrVFriFPqt/IY8a7dFn0n9iihUScY4L+eqc5VXeBtyjmDCg+1eXi2RYNn66qV+QwRO0ql8iI+/z7APfiIn4oxulMAogVECowRGCXwWCTw1gJa4K2RcYwOK1bMrdFjs+mYnxp82ytotb2yuBeCpVXZtXu2XBaY6wUEHyafY0O4BkPv21yeYHLhihb9oWun47BwDUDi7+oSa4SzLxr352U9KU3Bh32x8O1KBdsBssCthANzqWOnQjWhnDN+CJwhmGTiSpmMVjCyyOUyADHSkV38CZEpKOvlLvBRLDbP20cHJ6ebNv3YUBJixtIJ/ug5ilIfX8ZcV6CZ8dkiJ4McOX8rmwTrWrFetpv4qGucbz19D63w1QFrZyNPWo+12/879dvfOvfYA7fPRgdtsD9ybn3lBLsDDp0a2+oV/M9Bj4EENoohkyj6rasy7U34+I01EOjBJqoFWL2uP77mXM2SIV7nUURrJtucRpowzp5SYA2+5nsUdciFMeZbphFpy6iX39Yzm+aBmV6DJT+oO4tTc+jXC5RKXLvPseb73Hu6wUsd+e+O9j9Bouz37SXv+Ohp+zYkITwE4Z+BGPspK65UMe5TjwL2y1RFlOBBH3GyVJU5AKoFGG6JGpg4GvLce+WzykEwhIYgqswKGeOIWGSTKl+H+5sCSQAjlUZoP15EqZMImB4tjXiXtRBhoDIOD5El48q248q43x6y2UXTlREcATprhMWXlGce3/Cxf3xxFXisNZbZchAU846t801YSp/KrQTeBxO1llvfwx7nykbNyFWbaPiiArjKibvc1rIeo42mUwCiBUQKjBEYJ/FYJPBOAtgNbcYLf8jXsmzHF2NholwDUF9CIOvnPFTk0HzjiU/r29g7bVO/G5KKWT6MjU000dJR2ovUDpKl1Ta8uQNNulg4PsMMO3OlQBbLd2Xnbecbul3SxWcXTneYWAU+CyVW2QbY71QQimibC7ZyzZjNnO2c3YpGOBhsdDHWNmfd05+xQWKBeYOIkxwBo0itEP987Cc3y2IHDabTR0TZ7y9bax5ZVSvIP3w5AAvTwP2BbYTt4aQjYA9alJT/81DaegV7dUW8Ne90XXnq+vfjy8+3S5UsZpGRJO9LuYHrw0a3b7UN+W1yrhXZwYgk0nxFOCCikrHbWMrtZjJpmy3uWNYGNYIwBxHCr3MqeFI74N61fAiyDK6iELnFMo+OSeOfu46enrgBMXc+PAUQkV97KWDmVxJJl+NY/F0WmhDNcV86V/trljXaN3R39SiIwc7CVH7KVK2XhIMw8BNc+s9rsBypcw0LMk1wxRvvnu/e32rs377Wt7f32ja/st6+9dK1dv3whtPLFIRvwFCMkR16QSb6gxqHY1s0CevWMLUq/j5mOiXDWkfAKYA4YhKDgcYKZQgAnZRB5d3BcUBF5Ec9fn9BZ9bB4yZcE2ps24Y4VfUC9LWhjYn2rnfnquRcnRfmUOpcvS5zTNuDTv5jEkB//cEzclLvfkwcBlpGnCf/a5w/pyIvoyS8DMiJRVVJGZWXxNCOSB9tV5WkrIB7+AeOU/5Q9wXsbNbIycmBrvOSrzGyTeCnPDEJ4B0RGRFjI4MqNh0ibQWCikn50owRGCYwSGCUwSuC3S+CZALSa5QsXLwAgAXWr2jUXuVod46Tt7Oy2HSZzuTX2Np/5t7cE0NovV8carS8dYmmOq/Oaa6GCEdLJ09em47QjNrzf28XagdofT9JZCwrsaB/vWNNfC0rpPOll6eirE1Y0c0Bmxwsh/gu8ArSIni4fkmIbO2WdaQQM/gcccG8n771LYwlyTBnQCVrJLYEp50AjfBPAfozJ75gBRACHNMKf4KnyWkTOy6xsso7WcxN5X8bG+fkXbrSr169EG6+8le8uk+fuY+d858M77dGDLUAuEyuhcQZwy5J4lF8TExm1LAHy3AkuOEaOAv7u70CnT2hEj5s0lt0iCPwEY2tsPnMFk5GDwxPMODQXccdJQVTlQ9TEj5ylQd4+twjLo9F0oTt/tnrN6XjTU9S14QGFuS0QvMagTTv8K9h/P3/tSruIXb10i5eSq89EoJV6Vo8p99Lzuad0sGc8QaNA28GSduJ3H+y02/e3Q8+6JCB2oqJL3cV2XWNn+LR0Va+UQ8mrZDaEEcn6NHMIIc984Ed/eY4GlnzCfwRVA78MyobEsJm8zC91lPwFhMaxPCTOs1+kXlomS4hv2o2g1TSRc3ylJeEcZmfJ2HRSF4D35iV9Jw8nTxPlv8oKRYnE6WOLdACnJYe03E4954G/ITmxqt5kkGAhTEMG4cZy4GOYovA6RwK9dk5E0mE/Y1t0YOo4oZwUKlHiegmR/i4pQN7jjudRAqMERgmMEhgl8Lsl8NQA2i7JT95O/jsDwB0DjPf2tqJxjimGk/2wQbVzWsN0w47LDs50TnrT2XEK3rSt9a9rqMSi2jOb1k6uOnBMJQA0Tgib0jMKONVO62oSnHGBs8YnQYBcqC5gNz3YTBNXPip3tXp0zgDuDn5L6wdwES3g0nkT2U0got0yPoAqWi0jQEzNuMvyCSpMJcjIj+uaNInmGe2W2k350twksgBsxfSBePq7KYR8oWQPrZgCENdBxioy1r75xnPXYq6hnbMTL+Vzl0mBjx5utTsf3W23Pvgog5Qpecmjq52oyRPodvlnEMGd4dE6EyAf8uBfQIUgJXwpHwGoAErtKTSdtIhfJoOGRmtX2blEwGK5H2IL7UAhK7OQTviD2CzUIHefawGYehrGqTJ7Zb5RZZqWgLMz1/vW1xsD4TJh0JWw/0RcZfnEG9cuMKH1crvOZD833TG9WmYnxeVZkk5ZWM8CoIwwaCxT/0R6+OWvSFNenv0G8A+65nObJe7uPNjOyiP7fFn5+ss3sIsmYdIVf6kf4RHy1A2ZlFVlJqjNlxA8LIdWGUC/1GGfjXmkXIT7TIwrr7Yd6dgmujMt0fNzS3vrjPUfliOrrHpCBPnxlzrFMyw6Zozm2ah59tZ3aVV4soFOBjveQMe8ZaOD565Rd6BhG7KMYSY51HXkTlpJHNFebatu517l6flVMv2y1TvxLLtlO0PrroQiE6/iX+1xebFeX/J1Sv7WO68F0yVH6EZcPl2uYRAJcWWpoGFdQDN+xkjZMENGN0pglMAogVECowQ+iwSeGkDbIbkG80Psa3cefgTCOrK3i4bZjlUwENtG43Gvs3Pr4ERtmHEM8yeYBY0GUKvNNK6d26qdM5kdA7JdLs3+vQM/aQYckFZwZ49rJ0zSuHSShgFiBNsFUMiGrFT4as9qeic8HsKDoE8QHeABvaRPL45pB+H03emYC2TYDbvah8DGzpkOPKAeK1p4iBZMQIBNquD56MjP5N7buRcQULOpycYZk772DwtUyJtldwm/ywDBK9evtouXL8ZsYxPTGDf+UO772OVuY+d8DzvnPTT9msoIpqfwad6uk92BimUMcESelDw8WE5BhswoF+MKXxdZf652OBS4wAthCec8WQGIhXaZmyhn81IDW0sPTtD8sia3woWW8oFsZOe1z9yy+YwKsCf7enb4G8ef/NZW7NwT13z6wCh5QkfALpg3X2XvvXz4E6haFrXCxrduCcCUv6Yn7Yiyk0aHBFKGgFXCF5BRtoY3nHzkx+fu15bLaLZNcR+57+4fNScXahe9vXu9vfIizwlttHXNMko98uWcTKQFHeUZ+SAin7UtInVrKKd5mfUifJAkspCOaY0dOI6/cvdZ6C3A7s7LBc07SJPBDvQtu/fKsMeXJllGJqZVDtnSm4FdaBjfv/AywE4Sqz3uuQlAk44Bpmmi8SbUckl/EGGI+8yVvz+ve56OICJ7CMx56wMdBwSVtxmZF4855VHOlsu00nSQxRhiGAxYXuVimXo9HPKkQKYzLD9zJX0fRISx8TBKYJTAKIFRAqMEfocEnhpAS9fJfpppOEnNZey0F43GzE6Uji/aVnop+tJ0jumr0qvRZ9nh0ZH1TlWw3MNjm2w8VGnTLJkmEBJ42dnxI+IyeXVAVp2y/naMFVdgYoebvOk7qwM/hWRpy3qHbqrJpDr1AosFEBIvFKETQvTcALJ09mjuLJsZCJaOBK3aexg/wKGAjYBicQAL8hxgpdowfM4HFgV0qmjGMd0EoKKNqeBbO2bL5UokOnnXrlzA/PD+w2ENbNbG5itA8gdmqRkXSLle9GJsZ5UIyws6IIFvJ9d1ICPN0sZb0LmzrAL+bJmcstaApz+nmIOonRe8Amh8/nkWyol8YTll1s9NbJSZu1IKYvOcIORTsh4ksllzuURdkGaeNHR0AYt4KBu5NI0gygFINIvIXfoFDOWTSEbE3+dXtIofwVImvfqs+CkHeTWBrHiWP9NZxgwAudeemrEMYVPMVTBPYrOWw48sD4Mj/F55gcmcWT6QupI8oQ1d11GeQsyBCP+klz55Ekfgl+vKlnv4TdnkW34on2kHHi239zUo6DKS12RIOfnDjt2FOEpSEsYZnDKaZ9HQW6/ce02EmJyEr0pgmnpWxsaZFr/Oh+krXULNZgZ6TdtBdcUjrnzybkBCiWvZ44gg71DPs/f5+5O38+DW5xNQ7ZmEeV7yBMEz3yE6M8NP2Xku/ocEhhtGHMvgeyqrzOA3ulECowRGCYwSGCXwWSXwTADaDq9AmN2eHZWdFJ0S165BfIZKSECoq06sQKRAwt5vmcWR7bbSd3EwpvHSKSZRgbf0sQQGVHE2zw6c9jETEeTZyUrIOIKimERAXL2qAChL30Hb9ZxLe1cASaAnODGNHapmrGHOzjw8eQb8ESZNTUfkf03+yUuEZBktunkL7JWLoMqy6AR/gmQLm04buto+7wOMT04Bn4vshEeYLnKCH+2a1e7fY41l+VBbrVmKPGjrW9rHCCP5K5Now+WF3+pKbYeuv+kNEwyuM+FPEK3/AVpx42pq4u6PsBltqBrS2E0TJgAyjpMF1eK7Q5+TBkkOvTI7IWUA+xLa6xWeqWXsZiHBMBRuJTtULrJuNKY+fEkoV/Ihg5TfOmRa+Y3sE0x9IHINWACiKQfPG795/Pl1DXB4Jmjafc7+rBqm8xf6mG3kmZOXclQb//+zd2ftcSTJga6TIEEA3Jdau1vSHM38/99zLuaZ0Wik7q6uKu4gQBIAz/eaZ1a1NCN1PYe3ESSIzAhfzM09aJ9bmHugLv03k8B9en0iHQ+xQxfxeAtZkfbnTlzkif5TfXSxDxOS7lEM6Zs1AABAAElEQVT7cfP414zJBHNvJYRxo128ywPRWlHb13ef/8rzOplXncbwr/dR5yqX/vUhochi0uHzqNLEsw90seDTiHRu1a/NyjBpHQ/+Pt/oRJrkUNbS5bq37AAp9GVegrSvSBnqS4o5pm2TzvgyPtb9O+eTcSi367O1nRzqqayjaN/bPeloTR6EViwZJ1l5pqLS6irptE//rwnIKucwqVhyqGjB8+rf5CyPsexep7Opo3qE6cyEsywjkuK2Y9PApoFNA5sGNg38Jxr4IoA+AIzH54IpB1IYtsCEh4fhEtaQnZuDQWakmXNGjFG8E3CCyzH2zFenGTbQxBDOY+U5rxA/le/XGM8FQBUTmZaPd7XzE57QKXAAmHg8/YwH8LTwkPIvoASQyXqrEJLSeiR9HygmM3nmUXvlfd4/1ib7wQPKGNue7tAeukANDLRjQK/Py8MG2Bj9pAdRgCcYOantoGLa7mKHtoFwB/B3lmyfxater50vbP8nTAEcLlnXY3BpqUbbALzDtARq0Dd9Oi9NSVa5XT1c8zsVJM96NffK6dzSI13ZqQEcDxxVyALv1YYBxAGTnkSAokjMWFhS8Hov8J3x0ulfdp5IT2SbxpeaPvzoa7LPX0DlTPriMUyx63vnShQA1UbjxsDpyq9waTysfnJOvzjIMGOwz9OXefqVo/uMmdX/6l9pnde35DSZedgLWhwvbp0X+/+hNx9e7P77P/8wL1353TdPegV4ixjbxlHZJi5kXzCvbXuQ76wagK10DoB40yTFd6obvZRujZ917qgBTHZyauvAeboWsnKY8Exh/XOQWVrQSJIB5fJT+Wr0Ks/9I+ZYnsO4JtWM+fS63kjoflh6mtor5N8/vXDPrntFfyt7ulBlvxy6d+D+0M5gfvUdicrf+dRSXUsXq67VZyNbBZBN6vWzxulxW0XS8zQu2WYsTf/TcyWTpX/kmu/KGWGUtR2bBjYNbBrYNLBp4Ldp4IsAeqrIEjFKsGQZtuCgEILDlnRjfPdGi6EDDwwwI8eQARn51+4Ny7gp17UJ6+j3YEZpxlQyqIV1AEehCR7TjuFliPsBn7FlXs7lbTsASCWOwRRHPRBVPl7RA2CokxdvPMXFyH4KWBnwWXDWNZ7nAZ+RGeCu8swU7g5gHg3wLuhNDtCbwL7Po+TSa4Fz2mGSAMToAaAO3A2oB2gD1oFwoAqUgObkSVe8xRPPnR47vc/nM12oImDrmgmDsnlCSzQetiXHJJm8o9nSA7jxsla+9spn1wayaqffJiU8pe0IOH0zfd35lbY0XadLdR8FLGCtYkbnk7/zQFK+OTppIjEyle64erXhryclhOySOcZAnPIXXFevazV4QLvP/vg846ZyR5/JYetAx2gwyJTPn5kM8CyPDkdFSzFpGk8d5Jz05QFy4x0VhVyes+o47imLvnt1530x0ZezZ7TY6PeFdtgf+7uvHu/uteXgoYyZMCSLpxX0Rt7RVwX6TlTnlsTr88D1tEu1yVFeO6p4VTrQNEbda7f2ky3q1XbH6gMZ9mnkk6drk2IqUorxSHfrXuzf3VHjZk3c3G9Lr6lhL+P+Ht7rUgH0rpySDvwOAPfdmNTH2q4fR5YaYbxIo2wD5aAjfc4FvnSx6p57tIKURWTXDuOPflynnfnVp7pkxsbUVfnSGr/+qMd5ebzpkTZMsEaOznd1OzYNbBrYNLBpYNPA39TAFwE0Q31YXLfgZnlMvZXwmicrY8UzyCgxftmpBVRj5LNWGbpl+PaGdG++xmNXekZ9AfaCC3Vc590CMyDy1lGxyCCsUgAu76o9jXlnP7QQkWzAxDH7ASfPZWEQH0p3VhjEk0f3xugKAwFjAIkpHuMaYgDG04jRNQsbwbAEwISo0KMpQJBUuERp3/T6aOU7HnaOYX4vfrnv2g8kMtWTb5nqNYGwFRyQWi9cWSDDq5cKCbPam/cW4ABz5dIBeCLK3aNe/IEaqsPEwv62joEaco7ewAM92NWidLVFPDL46vIqk1c7KDRxadvqzu3hI9nAh/2QLdJbELLAQ9kqPng3lXtZ+MmDs9IlHF2vNLR1aLXSgF7/zl6BTWbyfvLKJ86SG1SV5hAfbkKgz3kNVTmAl5w3TXSUqnR60cYBv9JYJHqVks5qM70hOHuCNyp7w2Dxy0EuXRgvh50kfBamoqyTPgNW9S6ATs671ZkAhu5Zi0/tMEMvXrjyon23z4Pn//Wnn3ev21LQ2xn/2z9831jw0hU6NaZAat7WKr6+7qXtNfioSdFh0ST9HUIRyOBpw8fk1L/OE3gWQFYOPcgvD0ikqwXiXRiN/DpeDhM75fiZFOlf39CBsm5Vls905a2i9GiEg1Tn1XNR347ndq50tfMK06PKcG3BaDrq2kB8el9tKm1Ht3UZQGu/KmCV5/5QXpn6kaTS5t+ZFNGb9ndBEu2c+0Aq5/ptsr6+LFlm3NNhP/6vkmbqK1xk7uFkVedMtuhiatv+2TSwaWDTwKaBTQN/WwNfBNAsGeM2hi+DOx7BvQFlzGKGrgEG9nIZNbG0zJ1zjL/D5zHw5QUyvrOUzvkZz9+Ax1wY0OI94i3lxbVVWeG8AejndkUQE73Az+I+B2gE0LyxQIzBZFx9Jksmv59lkBl1ANDlznVlPvzaTovFrgqlWCAUxPQHaAqeVi5d+FG+P47xlneOroAOmFifA5LLwD85B3xLO4Z9X+YhTGLKmfKEIqiPZzoIQpjkrxpp1abcu7WXFxj4rYlG9XX1JnAw0RhoGNF+9fIvNgN1UHTpmUy0MJOYOlM+ixqnXwLjmXR0bopKCGX4AaDvAtTRUSf0vXanoNpnnCT7pF/16D9AteKGyVS15FC2xnUsfdf+ylbhddf628f+lKYonOnFqhpdTB+Th7dzCjBW1Nv1oFtegK9N0x+NJwnftzhzAeMCO/qdvuoaaPbZkw5lgmvA/biY5/Gwdu1FIG1njp9fn09d6hPS8VU7qty5U6y7o7aKKZaAF1tZhyc1JpzygENJyHzQs+8ufq5f6FMbSjaHJxrWHQxYIlSFVIJyfST3oV8nb9+0Yu7Lypmr/aYLY179h2PGlnr7kW7WH9BD9zbZqmzSq2tNivQXvQJn9+lKNyFeyb2AuXE1aVb/aMuUlG76O7I5pxzy+8HTc27+IV3S9DRKSNYaa6uMAWJSkdmAUOD+OPxfsv5fUmllVEdN2Y5NA5sGNg1sGtg08Js18EUAnd0Zw8VggaMxhQydH7Zp/ZrvjObBEP7qVVzerAG6DLZs4GtBKyALCg7hDEEDY3w4fARik7eTRPCZsb8VTY1R7PyASZIw+p+HzAoXaRs4cCicg3EnF+PO4CpD3sz+fF9wvGBlwUIGu3QHCF4xwXk6y8dYj0ecHOAf6FTugrnKnPoXbHxKRkafHB/zUpdl2ktZ5KAMXk+wQy/KXQCi7v2kpAvKcB24aCsZgcl4GStHfiEm8kgjfnlgqgoP25D9Wl9wmf7BhDb60ccDGaPLtYiQ3ohId9pHR0snv/bPCiFJ77y4JbYd3bSpcuiOR1bRQmV4kT9+pCcTqM6P/Ete56S3+NEh1McxZfZ79Z844wVJh/OrTdXbH3pZuvF7wal8PN4LLKeJ0wblaz856M6hbSN7v9fkJcn766mBerSaZ/5BnuZ5eU2J7YEOoo0BC1iNh6/bS5o32qTPIRRjfpd+wHx9Hd1OuQmy+naNgf2Fzi19082AIJ31Z8ZuZayFfiqYv0uf+0nLwGVyS+/v6Gs1c3nBjZPaNDvL7HV6CCMhq/G26qG7JBnd+L0f5wRepc+/xrU0xggdkFm9k6r27z+uE10a+UpPHytNY12WvlPXAahv1YajxvXhKdbc75MnWapj+kwBdY7J5mFkyj+wPTWr4/Aj8XZsGtg0sGlg08Cmgd+mgS8CaFWAZrB0/enDGGpGeyCOUc+gsa+MmZhTQCJsoPfDDaCwpcBKOvGwPEyMLODg6b1XaMOz9j52/e27i3ItEAKBVs47AA3oYXjBGvAZj2m/D0C9thXYG+WyjYc6T6pFfAskeF4zyH0TGgA+b/XduQmVyNWrtlUuY773qFXn5zaUkM7BI7mMc6BXO4QQ8NgO8Hqe3aEtszVderDlGQ/mRR7LVDFwYaEd/S1PLQ9eefoRTgAS76Q04HcAjQXlKy9IGHBP3/eFlZQZTHjNOuHO8676PhOECvU0IHHaBq8JgLbokL6vHfnIYHKx4BRYr/jo1Q59as9pQKQPAOpZ/aV9DnHcAyt9px2TJmBnwuEQGjOgsw9NUQ7PtnbZ5UN6UG0A0cX9QkLkfF+MsUO77cyhv+nl01We48pQvT4g37yaet83zlsgZ0yMfoHgPt28bCXAW+Xuoa6vU8a0rUlI8fLKv7r6NGFCRgQ4Jo974LT+AXhAWl+9CJ7fFdLzpnH7P3o8ImTkv9a+f/z91/O2RHpy35Ddzh9045y4YOWYYKz6PUVQQ23T7i4OkFbWJ2O+9k/aPs84TMbDdn7as/rj4FVe/UXHzq9rJpn0rOvTjZr29yrdTx+SjVB9V3dVdCx9zTh0gnD7Q7/aZca128UClWXGiPPKE4JyuE8O5UzWZFKq9KqbOvvut3tynhhUkUknr3PJ595Sljxk0IbRT3Xpr/nTxS6tDKVzT6vXOTpYEwTntmPTwKaBTQObBjYN/DYNfDlAZ9zu51W77kUnYpAZ9AWuGbkM1xjcDOkYTMYqozZbygUODCyAvHPc4rHy8iZ9Dpw8Yv/MEx3UCMngPeZpYzHHa5jpE0YBUMGKmE2GcwCdty+DCsDGpmYlD56vMZZTZ+XdPZ3YVedAjN+HH9/njWlBilABYE7OdVRqZc6kQRv6Oo/8O6lObXeMh3okYKoz1sBhf007WHzhAiD3AHIL7MCwnxVPfjfQBODKUw7AElcs7WGyMDgQFHRq4EmNQh2A5+lpey8HcPROcFAsLxkGHDsLvLVPu+0lLd0BmCxanPQhkYkDWY7qL3G5dAB6ySb/xAwn38dkOevV4zTxMeBMHH/7vDyptyJ0Y2DaVZnyXdrSr7I+N37IZaHo6EF5fRdbrA1nTQzAKz0r0+RJWcYCmSe8oPqv+m78naU//TJxw6WXh+4XrK8nIM6NLOlGqI/rxq0/p3eOR2f6aemniVHyAF5xwjeFy5CLnp4+urN71O4cZKIzP+eBs5CO3nczhzb+4cOz3fNHD+a6CWRDuU5ojMz4qO/6et0TCu2nw7XAsjG+L9NYv7m7AFXdZB0oLXEf+1H36mc6OECutMoQr69cY0CdtpM8HPK7/0yI5uj3LCj1pVNlX/d1591vyjnI/ddlSvypNMaJMidvmSut+az7Zj1ZONwvo+/OKYve6J7nGTTPvaTe/j/wxMJEYcW+H/qNRvZ//DfRn5mcUeDIt+7HBeFdped0RAb30+3+76Kv7dg0sGlg08CmgU0Dv1UDv1rO35rj36fLFvE8Ci+4vi7uFWSNtzVjN4YuK8iy9jPGMeM1UJ0RHeDJ+3YckDGK7BrjeXpdXHNfpLfP7lWABZKBgANEe8MfI882D7iW72O7Z1gYBo5OW9y3IDZbmZEEuSHFlMnzCj7Hq9i1AejKIaa04Jk8ytaGkGIgijxzHbwHsfIxvKTwopCBywoh14QI5H3r48i9gIonLmNdOWJd7dSQ9ANt9l0mgHy2MeMRLtkAsXNVXFrHAqZ5LF3dvHEu+TmAvD6QmieSbnhBtWftgZ1e05UEFjxqD2iceNSgQj7nZm0feUqrHHIvfe/DLBRROjBJL/oQZIKSO7VbLLvrN/XJ0qzJ0yJC4FUUTbC82juTourxAhBt5jleccp9SaLWpBo8A4l0rO8qvH7mNQeadKB/1+RtoGxkB8Tr1eslH/mVTy5e8wH6Ph/evKgdatTjAEyd9DeTp746ZWGrhX3S3C40AKBrlj7iOVe+nTjUQZnK4/m/6NX2f/zLgn1A/XffPp8nEOTTluvl9lfz5OnD6FJ7pw0NgT5O+RKYRNzUz58m9l6extT0+7onJmHCDKDX9/qOLMardk5Hz/faaHx1Vb+Md7e0if7LIa9+Jae8QFw6Y4p+JmSka/64viY3pTGO9+PTOKKjo/K6F2411gTx/xLGMuUnRfJ1eXRNYJ+JOzqqPqElc2/W3/pIff6/madCk97ndZ/OPVTWGQ+l0c7bTRbIQRva+xk8/5LvlyZvHzYNbBrYNLBpYNPAf6qBLwLoMbKMalUwZrxrF8ECg/+whVVHUdLH/Gk8oRMDGQn1MUO2dspguFY4woKzSgknAcPdIAnk8DRl5PbG2SNzXqiB0YwkEGTMecgYUTtwMPSMNoM9cJuQGunzX4c7DAQMfK30toxjqddeuAuAj8ujPQOatdIODGThDU3UKXOMMB0UUlL2McxA9upT0EE2bQR8XdQW6Rl0EFhtE4dMB5+kr5yRWTnTjuXhK+Pkp0OwcnZ/vQwGxL9+ezn1CgMo0V4fPRUo5OFuUEsmwAAqZhJSubPlXJJ6KYui7/RPTtw5xOeCLn07QORseVaozN7znRdYeI0dLWzZNkBTW8ENSJnwjHTguzbpm4OH1+SmU7VzGjnlaqW+OSFj7ZixUrp4kBCTlvdwPMDBq6xzVMe9aWdy1E9OL6Bbj/sTqewmW12oUrLQE53omxP6qTCykZvO9TfwAqNk5I8HgiBylFLeCX3pi7bIt3bwSE4F99f3e2cn086ZrLQbx/n7y9GT0A4vyXnTvtH/8N3z3fctMDwrrUWIxoYxoo9nAlLdZB5veb/JeZCdjPQ+wNp5R1WPboy/IXxnytffubZi3k1yqkdjXCupfubuXfebgpZOVnP2MNpkjwqknntyfelr1yeLupqk9EO3xpbyeHjVPwDfd/04+uIB7rtM04a9vieka1/edH+Za+oc+kcb1ahM8jmmb2qR7/thNXojJ1mcP/w/c3Vnv5ZiFTRlz+vJVVKZ27FpYNPApoFNA5sGfosGvgigGSfxxKcZxTu3gt7jtYMBgy9m2RZf94JaBg40OA8yFlABXHAUuDBySTsLCCuPRxCEM5IfPvHmMZags3PeUdwBCsHLgFjfwTtgYywHkgY2ljdqMvTPAQzJvGB2GW/yXQZmDPTxzVpwN4/R8zSLV3Z+F2COp7QKyKJu9cyOEnuDDvAGFKqLt1dowafieE95eEt/s4+l5mVbXl0Amze28v1R7izMKj/wAmpgymKpBU9CZI52T5/cm231Pny8SE9CDBbwgD91DglUJuiVH5zZKs8bDNW9YHh50fekNXqT1iQB5IAfexvzMB8VTkHPiZMcwfn9uyTcXeVp1SecqK4v+QdvxoM8uqhMaRdU8UguUCn51HPox9ttxWcs0BUPNJi0q4TXmF/mveWtn+tB+0xA9k8ljJ33PfnQR1Nfbb3bZOZpsfPKsZXcpDdeKp+cZFGW3UrUf1k7Vj8D1gXI+sd4WrHf8hk/ABF4r3hn5RwXG03/M2kaT/gCyBo95T9KDuEdb6rL67+Fd8xYTa9CVS4KmfEK8Mf7V4BfVT5ZStb46kmJsZMs2jfe3MoVgjFhS7V1Au/7RfcD8Ml/U376MmbcS8YevYNxu8UYD3TRtzlnDOpX9+s6XHF/gmftMaG4M2OCDLNI9ah7cb+IUI+r2zi1Tdw8WQG9+rjvMy76Ykz7o2JrHrTJhNiJz02CfVqH+3OBL91qqwlWRck95XUqvZsMGV9T5Pwz46C2rrUL656ayXSZ6dUPeQ7hT43cyb3uwClq+2fTwKaBTQObBjYN/E0NHCzm30z4nybIIE3oxkDJcWDQ4qoeU4O94x5zM7p+GD/AMtCcucRSqGQZacCX4ez87XmLHcMJdsqfAQe/A5HiN6uPEWcxx8PZd+dAnzTqYIA7uSCgmse75pF/ueTxm0dbPp4wMvPLlX2BSCkG9krHUN8JRE7OToPQk93D8vCUAqnxLle+tHZgGMip/Fnj+PZ9ANiCSLLXFpABYMnHGzgeuoGTBQCaBDCgDdgAPtOeX9pEPucBlTjh9SbACWlITpMUWgGSazs/8N4kZry0PN5LZwe9gG/y6oBEC2qqW53oZOQIvLzchV47v6BjyWWyo83OLzCl1+ruHEBXlTbYRm7gStUdgh9mK8BZBRZ4AaHSTXz1vg7btHnjIN3eFOdx1X7J+oiMoHpAsAro4cJTjvEQKx3KJUc/wHEWgs44qI67KxTiIJ8xSL8DiaXXFiI6Jy+Z6DFJqncBFxksnJx+LPFAVxWudq+xaCz7IazFffeKQbfnuIkB4V43sTQmZh/qKFk/gWBtelz8NLhVnn4hw2dxLh2KnHb3Yd66mJzOHTzI83pseefsSiu8JbyfNraD4fQL2bRZCFDJp2TtUO/dyjSBUz8QdU8rT71lGWBW4YLlVYbwmXmqosyRd7p+0k//p+fV//UxmZPDuD0cPpkEGRNinoV2qG+8wv2ee/m4+6mxQF739Xip3RP7n31D5trhni3raILc+k8a6wJmvCtHHf3for2/hJrtdXeQbfu9aWDTwKaBTQObBv4jDXwRQIMNXrLLd3m88oYCSFBmcRXAZazevFueYUb0tNAM29KxZ0CGd3Mda0cCnweuM268dLadA1Ylz3MEZdaiQ0DCwPO4vuvROPDwMgtHuDMGehnKjPfkXkabR5Gx5nmctxCWmrdshRrwePJeBhxVyLP48H4e0GS8FQg9fvRw9/TZ492TZ092D1oAxqADBkY8mz/WWtl08P7d+e7FTy8HyniE7bIhDATwgXbgfTsQZK/lF3Zw1X7QK0Qj3VU2KCFXSUdf4qLpgDwfP76ez5+qa+CgcuShA2BPr0JIZlLTefUCi9fv3q5dI+oACz/vn7b4M4iwW4S609LuKri7ubncy7a84Bal8dzRi8a+fnNJ9NX+dAZW7B7COzvw3PezoB2AXvQEQWywkA+yvnl3WTxwL67pM5CqCaMDFZrEeAHOLLzL86xNDwpvMKY+NmGwUPDikhy3Sne9e3d0OWPMWEmNk8748YTh5ZuLkRFwozbyGq/j2ZxvxYBXh/MgjWzGFF0Zm55ImDCsyYl+Nv0I2svguvE1Hk3jA2iW17haYTImOpVpMqbe8p7k2T9uVqVNXroyTyeSm1f6//2nPw1Y/6FwjudPH8zTgpPCnMhqImocTBw0OSsPbH5qYejBm0of2nHdWAPD47GtTvoVYuOafA5yXhX365EKfZjI9asEztuesBL2+rrdi4qwrvGkzRMaMmX0T8dMuKadtb/rJnCTrkzGypTvQ/JN+oMgfbXOYEFs9dZO9c5YVm4/2uHcLObt+lEyaL2i9INJ9sdkpmftd1Z7jQX3ibL9aVh2ZU1GlD8ea/VX5nVPmFa8fbvC1J9lWcdBzv3X7demgU0DmwY2DWwa+Pca+CKAPhT25vxiAJoFsgczsGTAQAIw853NBoWnt4r3zGKDTY/HAQVIYQIZX2kYQG+zAxDL61n68o93qX3jlOeEMk4CXQegkWZ5eoOg3vqmzDGknQdG2dOAxIKuteXZyFEqAHuvEBTlMrKM6u0KuxvwP3zc3r1PHu2ePX+ye/T44e7+g/u706DOUXHVB6RbzFWZL1+82r0NiF6/fL17+erNL4A2MdQZ8uM7tS05tUue5VVf4AZ2r1pIBpYmXrP66cP5o0BBWxzOvT2ASqDjOsAljXxgCFDwrA0QV542083sutGH0Uvl0BlZ6JWXnz7UBWRBKGgcEKy88Rp2HXjMzhqVrh5brFXZlKPfnBPaIj5bnpFF//dZnLk6tcFOIsBanRO603XApA/UoW9tr/exsQHEHAuwOj8e59pbDLP0WjqLTTsvdIYHWbukF2LysTAJXl87dEz909ZfnwBYGAizVmhN+vSnuR29iBenvM/B8YQ+jLyrHa73tzYs8AZv6jHuwTTwJ8OUnpqArW3uLhs/+uAyuYxFMilrJl+d++6rJ7unhXQMfZd72l05DmXxzqrLTxdHP+4jQGssTF+VLtUMIMvk3Dw16Lf2uK/ofiYGjSGl0790ADr1zThQnzJVzzvs/px+6gK5pn3lM3Eij9hnkyze59Xw5Ojz+vHkpHzp1uJHQ5Q3ned71V39EnTUs3PNZ3VOf1aOCacxucbmGp9zj3Rt5Cy9Mjx9MNKFHVXj/P1VnvX0Ya4krqcKA9ZObMemgU0DmwY2DWwa+A0a+CKAZvR4p2aLsVyJ4mfHcEXLh72FGViQaVsxgDWQktdT3mznMoQZ0GMWugf8y0Av4w0ueLh5L3mMYTb7OqEKys2Q3ut8GLMW+o3tdT7D2vWJS81YA1WhDF4XbVstQHtzk2c0QLZokHyg6xdYrJx79053j4Pm518/2z37qhjVIPok+LmdRR5JwdP+x64Mb1+/3f3xX37Y/fFff9i9evV6gAL4AUGGewAhMJHXCdBExikj+dRtOzHngY70k7Jr1+04AkCGYirhl90NKsfplN5voHWAQkBAt8FGv8XdqhMw3Quc1KVuoDe7iUy/0Fmp+se1sCI95bmrk5YncUHOQGWykS/2mINsB5Di0aRLnlPADuyurvO8V8f7tnQjGE+1ccNjTveuKZdyJr63cXTzmQcWoALLtT0iGAJH4y1PPdU6belUnulPTVg+5VlfMPvZ4OqA3soRinL5UX84u7+W3PaGXpOsdFk519oiRRn1w4T5VMHAZm059KNuXeWQYcEoj7B2ux8e3LQPjPNNJpQPLj/Wt3Rp/28g/abXfQvpEELwunCfFRMt5GdNsLx0xfiXB+Jq5+ikelY/gOH0mcC3a8dMEpPKGCLnjKn0q29mwWjnRs191y/SS7OOdb/QtzHZr5FLf006E7niQG6qz3h2uL9MMNY9u34D3f3FpZ7ZWaVzk8+46eP8Q8f7e5UMnV/3QmmmgjUOlTbf+2Bc+v9DmNEaw871uZ9OVW7/NJmxBaKxKe+0j8jJ5bv2iNVebUovpe/uGR2tnpdGwu3YNLBpYNPApoFNA/+xBr4IoBfcgNExTdmdwjTyKoKFdz2qt3DtrDABFglkLMPetl6FXTgetVMHo/nm4v0Y9Gzb3rCv2OLlnQyqM7g+HxYWygMKgBs4ASADYIlBFoZ2dilIDjJKJy+P4MP76liQAk6kJxdiOhW28fjB7n6JQPPXbTV2//79WcjFaGuH9ORknj8FoK/zNL/6+eXuZSEbr16+Cp57PB/4nwZIPLGA534eR5CI6ZaHFNSsrfukFZbxIGAn43HGH4SRexZN1ib6TH1VH0T1yzUiDBx0QvzrAdLogYzg+cH9k0DtpDCX5eXkdaQLulSWnSBsr6bfHp6eznle0RIluxquBuDIjHzIoXy6B2DqIND4+ko+LxGp/5U3YSsB7U0L9HxXdx0TVIIdwKKfwM9avPah/OuJgsWjLeqsYLJOg/vHBAh0X35Y/ZlwMwHQboAN9KXlCbXocI2P5amsioFZeTxtSD3T5yDquNhoIRGH/aRBMP2MJxcgVj4960sVvK9sEE7HNWvGO8/y9EmQqEwTM7LQ1Xh6px3BWrBpcmFhoZ1KhHJ8/tPPu7ee4CS3JwU3P78dz6/wpH/8wze7rwrpMMnD/QdYBfbGlYkiXZLHC12MZ/efxaKuz6SlsQQYyWF3m6PCMkbWlFLTph3a2McZQ5eFyNCzBYL6Tdu9sMVv/UF/B2/trB1oTJBHfx7KUDf9U1EqaEvK/pnuqc5OAu+ZtDYjmjE0mm3MKntkAvH2O18T6rKu/i3vVYtyhT/ZpWfaX3qyqmfAPz3OOoPCZcihnwbYjYH0MDuRNO7W/VI9tf2gj6rZjk0DmwY2DWwa2DTwmzTwRQDNGC5wZTozZAwxg9UPI3mAXIaaseO94j12jVeN5fdClAUtwG55gbuAtTKSGbqAkveKIbzJRchIXhYnC3Im1rrf62UfWdDyMfrq5d3i0eOVnPL6zsSDLQZ5xToHCNVxwttceMaz4pufPnu0uxdAP+hHuMbyOJejvwwt4H2f5/Ddm3e713mdXxWu8fbV293HdqwIZXbH1eNFLuoGc+oaaFV/7fV5AciSE5hYbAYkZ2Fknz/VJt8BkXKEU0zbUkXJB+bAbEkGaOii0gY6CAq8p16AKoMv65/VR3WI9K6JEQY/dOZIxCkX4PBWH7zPS+4FWfoA8MkjHr0aankwOTt48GwHaQN59Zl+62fFnPa5fCBM/DUIdxgfdPJ5H8ICyFb7u941ehfSsyZO9Xsw7anCh2DKmNOXABsEG3tCUPR/6htAOwCi/PYepgp1jkr6DAQdwgnUN/KWwCvffbYi1F7OLpNrPgDG0sxLfqprLWQk99pJRDKqr2smze0mk8afvpwdJcpjkvW0eHrCvMs7r08vRlcLfsnoKczzJw9mIqRu98oAbvKeBvXCH/Tj3IeVTwfCgKQFifR+I1yiP6svjTs9pi9rd3+ld4BZY+lOOqJzhz42nsYLnszacOhT5btu8kJW/yhDux1kkIMKD3mcl2e87Ol9Qq4qd+C2jMrURvHJAFh/WnyoJPmUSaepdw59AIInX/eKvpx1FmrufH+TIFn6rg3usRGVXipfO8G639q2HZsGNg1sGtg0sGngt2jgiwA6ixZLLO8ioHGAH8aIIWagwAz4YswAAoAeb1jGf+Ils+C8e+uRMs/f8g4q6+CBdY43TbnKAMXSM6IMqrf12Vt6YjcTgxl0TYgCsHBeHuUcwgHO8jbz1J21APFR4Rlfff1891Scc0BzDAoz5gw2w38wrB/yPr4Oln/484/L41zM86u+A2Xe6wceuQdyHvtbvMWoj9EORskEJIDDLUCcTAcAAcrTRnB5gIkeLZt0XJZeuwEifV/3SBy00bf8AzzKr8jx7JXmoHtQ1yq+0R096A990aYGAy7ix+kPDIPLm8oGgA7/6qeSjg4WuADu1a8fm8TQjTSu0bEy9DPAU88s1Oy89s0YqKzxxHfNQkpl09UBdMh3GTx5omBc0aknCfpx9t4u/UB/k4yb+sfLvY+rjwcYiJ13Tv+qy1ER/h39AavPNTzxO69vF0AteQPIyuEdd+geoG/yos/o1ri9m7f6XmPDuFCuvOry1WdpXZvXmHdOceslLwvehKyY/IFckEgBTx/dS4eB650mZIVxkFN7X7z2ivpPs8DzD9/1NOR5E7vqpmf6AYQ3DYmKGJ2c1LC5v2q/EB+TAd5WfbPGcf2bTCYWzh2Adsqbdq6JyABwTxyUZcxIO5OEygex18H43If0WZvVP/roA13on4NODjqSbiZQE1hRGp1QermN4Sm5etTlrN9+jH+n/JRMTfN/woJ5fTW1z79A23X/C2m/Q/lKnHKnjFWfNitQ2FNVlKaUK8vkmwJl3I5NA5sGNg1sGtg08B9o4IsAGsQ+CEBvXd1vgdiHWUClHh5VcAqo7BSxwjqKUe1x8gGumC2Pls8CKfAjXvRDhs8ODVbeC2kApLPoL+/fAODe6KoXdADwdwHis5PCLoITz3/Fwn6KgCZUoPI9Mgfo9lRm2A/gcCvP67e//3b3uz98t3v61dNJx9s80BEEgAKGH2gxyO/bqeKHP/+lOOc/7V78/KqQh5PdWXL8KVC2e8HNcV4zv7O+YEG9DL1yPF53rBfEJEefQRDvokPa83SzuxAS4PH0AmK7Y3iLoG3ovn56f7ywL1qkCCoHUtKHR/3HvW6avtcLTIDhQofLdHHxeYUzgOSL6vSCm5GjOkGclIBIHnDFmw/66PsQKjBPE+ovoRygWDiOnUkAJmClJ0ByfX0+EwjlP3/6cECRZ/X5k/sDQeD5ErhMPzTJqK/FWU+oC/6pDv1KPw7ypP456FI/zKSo3yYq985qd3UB74vAlA4e3C+WvH4H3PR72fgz5oDa3d6Q6KU7o7vajWHVoV4Adt2LfsC+vYtrVWfFmzcJKz+5rj7dnj2nVxjAGr/EM2HRR8CYNxP42XHDxOpVYTLG9+gtcNd3B30q834vpfnm+cPdk0dnu3/61592r9q3WuhCwkzf/vHHl90DlxPW8/3Xa3GhyRSVO7RbH8wEq+/KNH7E+dvR5KyQDt8PMCofgDRBudHOAqi1mY6EDhmv86bO7hmHe9h540Mnaiv96fOZCJTPZ2UIQdKXk8YkhW73gmqzSQgPvDqMM7CuGSYNF7VBP5LTJO64+5NX2ptF3T/6z6RLGBb9S6dofUSuLnUPrkmcMaI93mapneS1l/n1dU8RfO7H4TcvvlL015Tlwrrs03ZsGtg0sGlg08Cmgf+rBr4IoNkZRpAB89kPQzlWsXMM6fIWMYrLC3fn9kmgs18U2HWJGUIGcsroH58HATNwmcn12UXHlNP5fgNAux6It1bI8irKwau6PGQHiAV/9+6f5l0OfO/fa1Hg49133381XufTs7Mx3spgVOUhw8cA7LxwjTev3xWq8Wb3019+2v3004vduzyFVwG+iYKFibcCMzB//l7saLKlk/hg2gMQwCvPnBOzb24hKc4BD39spWcHDQnILR2gk8aPhY8DBQFoWUaXfgNfwKaugYTq7mtpVvjM1F059tMeTZZphZbk0T4JKEo/MqirssHlnbsqX/G749Xr6yEv9StT3cDkcyCzvM6uuGaCwsss9lfKJet4j6fMtYiOfmbrsrm+r6vP9DkTn2SjA4/m6UM7xSSLVVbfRyEi6ZvOGkr7eqtgPIrGXUCkD6Mq2ygnanLRE/BP7j7PExOQV7YJAaiOko1cRpBMFq+q4zDpoyvjwk1j/FEEeaaC8iy4XG12uZKn30s2xxqLPhqre7lcVFd7jH/b7htCZ3ii9ffE9jcRMPFI5KlLOx4/PJt7CGhO/1UG6NZPMxmt7bzgFvQaFzMR6be7zQRv6XLpVtna4Q/5l9zatYB2yS5P9Vf3Gstq0s4VVyyPCY17DPTOoX190HRlO1Z4RzLW/wfvuHKJwHcM6LWJbuWR33gA5fqMbrR3jbm9DF33afRQem3l4fY6+Vtc7o7yGG9wXan2pq+aaZNJ2S9jrKsrff/us64T27+bBjYNbBrYNLBp4N9qAAv8/z4YPyEalxn56zzQBwg+POL18gieKSaUYfMIm5eQR4yl5nnikZr0pMhoMZhXpXWOx2p2QejSLP5abDkGVl3ZxDHqb1uUaAswkPrXOzuAB69JBmwPinH+uh01Hj99vHv29dPdk35L64Ud4HHilauf/3P2hg6eQfMPfw6a//Lz7k07a1zUTlui8ZS9CKq1437gc33iFeZ54AM7xt8Pr2VbMc/n/hnYAM8fM+raBgJATmQwBvxBEE9+3jZGfUx9+UAfA//jq/Mpi86FtoA68Ly8dbyCQGSFVYAEkNKmHpMnnpiy6QHc8szyFmq3PgBl9Dn+wOokr4MMYqSB35Jn1SEfYDEpEp/Kj23ycti2jUf0+to+zE1yyP7y3bQBAD3IU6s8beSV5YkcT3wyLGwCZQmcCLPt3dS1Qj2AEsj72N7SH1pMCLgl9AcIrjfjASOwDNJOpl10SN+aRX/5JpuUALJyp5PPyasM4+W68wfdi1E2Xo0HfT6ZK2RAmMLLo1BjR3vWk5TlodXHrllAaozzfHrVvPF8ney0S++8xDy5wmmet4DVGNB3h7cWqhcc/+XFm+lz2//94dunExct/vy4uHNw6V6paYW0LLnWExifTR5MDlYfar++po/DEwTf12RkhXyQa0F7ifvr3qX3CprxM+Ouc+7t9br4NU4Hnmuz+owrcvV15Jpy+kJ3M5Hp8+FekWZ0WiJtMN6FH1kcqwVnPO4a0jeyGftlGbm0UyXGtZomvruL7q07zZ7Ioq3uM/fKjAtt6TCO6daTr7PJP6e3fzYNbBrYNLBpYNPA39TAFwE0SOAps8DLCzgYMN5lAACixhAz1AECzzSDe5ZXDySISRaeAbLPhGrsPW0M/NkhjKHy1iPoowENnkKeK3kmdrbrHlmfVi4w8xgdrDD+zt0p3Wne5nvt5fykxYEWCp7lOb4XrJ4UggFqeNQYWdDVr2T9sHsz3uafdz//+PPu4v3FwMDdaOsqw3uVseZ1tk2a9tw77RXHbcsHMM5OFzDQi5eBKN/Wfln46YjxklWPF4JYuMXI3wuwltdQSMQ+FncMfDtRpDuvcqYvYHAID6BDHljhAGSQXxv0hTYMPAS+uYnnGh8dPL3dPtSgAezZPq3LA8HKuM873+8Sdt1jea/yFsscyNRefckD7DqY4Y30QbuJq99WOxeIklkSkK3co2K6fX5YyA9YepOX9eCtND4+FD5xeeW13etlIKlu2gawTRg8bVihCGRZ+4cba0JYjDUqHl3s6zWxkQ6ILvUX3mOMJpP+MfY+fLIg0V7UeYBnYrdgHoxpz8f0f6/rjx+cBnFrFxkhKd4eqD9sdagNdHre68Rt06dt+pSHW6/fCf4+nBdO0u4WQHT6KWg27rSHzACwvy1AbUIWtN88bvFq5dilw441+t3YeVtIz7/+8HLCer59/nj3d98/K/RDDLXQo7UGwD1yHRR6QqC+8dymk5kcAMkUMOOpa0eNkeMZVyZRTayE0yQT7/3piacqjcEmW++SX/4JnejaPGVSkrqmzAXpV+3wMW2pjhXnnf66J4XUVM2kH29v+QakK6sZWCXVJ5VDJ8Y0mVen+b3yrXJJvyZ7Okg7PvWbd1l+EzRvDKX3kk0RIH3dD/p5TU7IrV0WiV62EHX1lEzbsWlg08CmgU0DmwZ+mwa+CKAZoomjzYDx7AzgMLAZQZ/ZQW9HY0zHI1p4AAOaxRvoYfQG+gIznkqepYos7XrFNA8Zw81DBowZWMe1sisckImj5llyyKvO4+JieZotDrzfGwTvPXxQ2MaK/fV4l+Elu7TygJ1PLRA8Py9co0WBP//4ojcJvuilKO8mAe8gI8x4T77SAx+eNPCmeiB1q10ktIls9OGcdPKoB2jxlPN6gTjnyALg6AXU8aYfQFAaeuOp9WbEz71Exo4K6gAGK97UDhDpBUSODtITj2myKVtfcK6pq38HLnjCz99/qmywq/4VU6ouZQ/0lp+X2nXeWRA08FLblOnQ7gMEgrUBoGRRxkAQiAOG5T2q/8ZTO3C3YlmJRCd+62O/pTU5kE/9vMx0MwDfbzIDOboFRI6DLu8UNkI0aVee1R/kJJNwH+CmTSZexk3FrXL6fQhb6OPo1wABi+SSp4oG1pCZtCZ9gHN0XLsc2qF/xf47zmoIUNPv965bnNp3ZfF665OBummHfOvNkvqVXg+ymsyAaJML7XjXpM59o11ke/aol/sE+mCULrTfFb8On/U8UJzvpXFfkUOfH/pdm0CzxXXjqS0NPdMVMCcwfVmvsLzS/e6POJhK09yRx2/tIsVNcnuL5Iyikqh3XtddPVYM3DJZ2efzNED8+TjRO6cfpnhVKL/fk7a8/rhO3lu1hyda+JR7uSpHzzPuurdmrKi36yY+Ja19TR7kbYLoacTh/xBVbsemgU0DmwY2DWwa+Fsa+EKAHps6hvj0uFdD520CD0DYPsI8nR7FMtoeEfv9vj2Jxwj2D3DjCbJQzuPtAygfgcHiHz71Ht4J4chSDsCMEbdNGlhZXid5kIS3m93kTTrKMD5+/Gj33d99X6jG8+Ke7w1wMZyLAUCWnwXnQi1sS/f29Zvdjz/8tPvhTz+2YLDXkvOqBysMfsLMRAEgMtgeo1tweNRnYR0DQQEPuNF2QCUmlOFWZ1/XUVFgFyAy2Cs9kFre5/N0wzPMo8i7Ol66egg0Aipbe32sjRZ1ATH7Lit7wKoyLboks0mNsv3M0wEEXfrDJAd5aMvFhEHYiu54d1kd0jsOHkDgPp7u0i6YXrB4nQygywRCG4XCgL5XeZVNeshg0qDPBsQGn+i8Pb9LM68Rz0O8QBNA72Eu6BLyIC/FeZHIjKFPl7VpPdHQjoGd2gD4LHhzzCRCnHR98rm0V/XpmrhUb0R1kGsmNgGh8A49OyBZmXRIJ3fqF9ugAfcFxi1U7dXm4Fvf2s5unoBUx4s3b+ZphH5Cdyc9OTHOLkujj4zRRBp9LHirvtLqX2MQmAJwerQ7Bw+5yYFrdKjP56lK98GvE830kG7ESf+vFh2qeSYVbXXnqYvFd2VPD+tpw039Kkxp4LTPQivo0kLb24E5b/NAtIlen7XRZNZBZrJZ0Ou8MgGzc2Q7QPjcm6PN7skqn/GvjbV/9Fp9+q1nKb9OGGrDep23yeea1ND5AtnK6Pr0j/7uunoPMoFnf6U59LHfxoAwKvVPe8unv7WDTqXp1Mi/woeWrs+9Hr7/n7Zj08CmgU0DmwY2DfxWDXwRQDOgjGm2LAPFpnlc6m16Pf4PIBiuAcmMGMMNAlwHEPIORPByMpDZr8xrxnSFHSgv19IYbmDDyPPMPnrQ3rnFitqZAIwJe7Bf89fffrX7qt007vWSClvTPczrfLfH8v/GQ52EYMNxDUouLopvfrH7V28PfNF+zm/fFcJhv1+ykXe9BEQbB4anpct4D5BlsC9qE8N8ACTeam8sBBIHeGDoecMYc2AMOHhe1w4a4oJPB1rVA86AbBIEtgFy1QHi271Fj454zqqQcmqLV0OvsBiecDqtZXPNThlr8aG3ATapaF/rRy0+4xkVFjCTgT0o8SA6D5DAjLYpTz+arGiLBXUmSMDJ4bd+JKt2fPjo5SleGW6ydDQhLMrT3yYYQBGo0wV4IxuAojex08bJYTzZQm4WulWvsBHn9f26zrO5+gcwnSTDfWE5pQNCJmRkWE9GtCc5PT1INeTwJIMXH4RNv9UWY2smPuV7VCiLPpRPGXQAKMlsvNKlid9JeQZSBywXDIN95eozP6BvQj0aD4k394gyB1Brt0Wtj0wS0hMd321fOjLJSR/3zh5NGe6bl6/Pd2+a2K0wn/qlek08/2cQ/a64+d9/+2QnrMOkg+5WmclTuWm6c3n00z9dCN0gx0ywTAa7zw5QfDfYNva1TSiIYyaItTm6ne+pYhYo8iR7sjBhPl1bIL3gPTXMd7ukfL67gJgQ5DD2/hrEjYEJvdrrUj/bcUN5xrw26D+TxrnPyk3PJg8TspIMJtrTP/Uxb/SMs9qY9JNHvdrRpbl/rBfQt/SureSl9+3YNLBpYNPApoFNA79FA18E0CpgyHiKP2fAxPsCpcxeBpphDonnXLGlbSEFGhkxufw+ATaRBXjj0Z1Xa3fegjxGlkEED34YeIYOfPDS3RWm8SR4DJ6/+eb57ut+Hj95uLs7McU8iDXtF3u4/6CujOrH4Ps8WH7VPs5/aZHgn/qxn7PYZODiVcvHWdqLD+q30ChQS1bbxIEnSGKLOF4rcpFV28Z7VpgKIGvGsHYV6DMv90cvswgMeGsTcbyNQgCAKhjywyP5ddu/gUCIMPpJWzU5XSwvHqgYoOg6qACod6IDEwWtpLOb+mPAAPS5Vr0TD9tngOY7UCen9A66XT4/UALaC/PYx6Wr82Z2GkmQHncDrwH2W2tCdNglRB5gDXaBjnTXN2LBA5cmCRbkeUSv7wHq+myXkQWo4BC8m8CAcIDjh4yJXDm8z9oS5HdOWmPNGHRAa9cpApxqJxnUD8Q/2+e6z+rXZ0Jm/KaLtUVfcexBJm860nNNYSYKs71iOgLEF40TtaoLUB8mPsY1iOZ7Poxz43u82U1SLpNXG0GfPP2qDxcUGnd0NiAfcJJZGQN3lSd23AGaed7JZnxKrx1rEnO1+6ZYf2NsPXExsZum7MePbRLvztOEmSjVX8oCzO4rYSI1z3xqJgDGwdRfmgO8Gj8rBro+TQsT2lGb5SOzCvWZMSo8gr71NSB20IcnAsoAzZ5w0Jvx6h5yTW9ql7G09KgXwDRdKWX1+YSCVA4Z6X08z/vr+p6OZ8KQcDNZShaXJyyH8jucOeh6ld3JKWMub/9sGtg0sGlg08Cmgf+rBr4IoBmlBVOiGQOhYHmehHYe8PDyHOUEutMLKBwDdfJkNO8W6AhUzt8X09niqAd5jsfgBSQgwW4XbNzaiYEh5hFc4Mawn947233z9NHu93//u93z589aHNguFlW+jDNwyNiOJcwgZ2CBAo/y+bs8eS9e7n7+4cfZYeO8eNKB2HmEvzyW8i5gAFor7vSmhYJCD06Sw04ZoDEEHbDRLt5moAccvIVP3fbm9fZF7QB7IOV++YVDgEwGHwh5HC9khIf32eN7wVDAFhQhCTCEGt633/XsbECRfY8bpr7xZpZQHSCMHF7HvcDYRGVBiNdbXzZxgB7jQc3L6jE26DVB0ZcVISo14AGFgKS3K1YXwASW2jSQWzvepjfQ8k1eT79fvbkYYN2dBX7tqasv9f/HYJ5H+eMdHr+8rI0RQMojbweJT1dCci4mnni8x0GuRZJ0bRsyUMXTPACULA7QMyCU/oDtzUVAlvQW4I2cpfvmWU8gKt/YUoZ9keuCKdsiVZMibfdj8vG4SdOD9pUeoKsPTbRM5E7b9lB/rVCYAK+JkL63Q4Q+FEazQliWh1y+zy0mvGls6wPj0X7ExoVxNkCafF6Iw7s/E7EmTkDzbpMveW6f9j3oU+dlsepg0tMIE1LXPd0xngZA0+1VO55on5/zJnbfffV45PLEw+JXkydj5/LDekoBZm8nH0AFtHRhvL1v3Bh04Br0ezPoTfHLF50Hmc7Te7sdznjzxbhLpMJmaqc4qk7qK4c23zQGDvufLxhuUjBPltY9Q2bp3LvCSdx7+uTNea8mN+76AeBg3IxxxmnlGwomCeTxj++qPezGoU/0zZrMLYAej3P6It20x39LZbyV7OrYjk0DmwY2DWwa2DTwWzXwRQDN6M/LDcR+sqIdYAqKgS4wxxgO7mT/JjSi78ceJZcX3NjVgAG/bi/nbNt4ecHuvKwj4za7Q2RkwSFP8+9/983u2/Zvvl9s81nQLXxDyASPE9hT+1hIwmQggYOY5ldtQ/fyp5e71716m/f5Q6/eBum8bn7A5IN76wUwC0IDl+oFe7cz3sodkKwuj4vBBGOufJ/vB31r9wZQbDFkWognGG0vdwFOt/v84vpdISiFU+QhVQ4vNMBXBpie7cuKh6U3xv/0tP2m1VUcNpBUDnCw8FC0xoVt7zrnUOcAWiqwaE0srxjah9WlD4DyePhKpyx1jt7SHdl5Hr39j7ebN/xJi9MAt649D+APsdjyPS1ERj9X1EA13esj1+QHrQ5goi1g8X06v/xQp5RJuU9mP2MhPSZencFI/SM9oLtO93TEOy+P8QaYpJGY7EoCldqnLmXRh3CHo/c8uguYPgVJZSpV7Sm9ycu8lKM8ZAapbzvnvO/qUZ43Q1pUR91ATx/5rSy6Btzio8k76ctr4lRz5l4gj8kEIL5X//N+qr8hN1AMEk0C9J1KV7+3Z3mPKXjap8/L52mEyYGxcPz2vB051sTPBJY8gPrntlYE8G+bgP7hu6cD0voELKpzADLdvi0+nEwmBsb3VOzfhHbv0TX5Z0LbGLQV5J41a/WauM31ZHFitce4X/pTjrG7yl5jRB/e7Lfvc52OAa5xNl75dKkwY5uX3BaCB31qs76fuujJod4+H/oycScfjzO5yacd9Ol/BXX6mcW4XRq91ReKs/+5sS3PvvRSbMemgU0DmwY2DWwa+I818EUAPZDIAGV5wAwDxAT5zICCl09Bm/ANhm5sXwZSQuaSt4z39iSDqawPbSHH4ws2eA953cQ738rIn+Rh/v67r4PoZ7uHnfPyk9vVwSgCYJ4yBpsMqgAC53lF37x+28+b3cufX86PXTaugwxgwwMOLoo/WUBa5hWOwPu4Qk54shhwoAxmjgNNxt+CMQ0a476XAQgv4AEh83cMNc8qQKWX0+uAqbxebvJ5Dz9AneFOXQFmIQyBm0Z8yHsLrsTGMvjgbQBv/9Y0OlP2YfcGC8gsqnvQ2+3etSARFIAU3kSefKBCX/oCaIEXnj/noKWyPw88e+S+QmZAEfilF8rl1dTmR+1qYkLxpknQAsrlAQcvvmsPGJp9gvsMdnjGeRH1jXKletDOFH0c0JHGuDmMpdMmJbvCFC4u98l+BwAAQABJREFU+cUXkH7okYbPC4bsZb3KoR8TH2Wrm9ebvAtMF0BW/Iw3Y05+4+6uk37KZbyuSdPapUPe93nuP3jDZMWZLAJSkwNlGAcPbWWXni0AFdPdx2lzo2rq1iZpuW1v011PXoC3hY7qJTd4X/Hgeyjs/PR1v0EkoNRXPp+1/SL9OEzM7KGtzcq0oFUfC+nQHtOAb3vL4aPCP2YRaHUCSnWuPmgS1ZOBFLVkGs0lg9yVCeAnJKvxQ1b6OPz8Aq6j4/LURmXr15Gu8zzYxuOEazSGXJ+xUgISrnTabGJR2VV85F7smvvTQXVrcr6gnhzSqk/4yEEO/wfIYl9yzuqqH71Tlc8KNx6FPWmDcdOnuejeNFHr9JJJxduxaWDTwKaBTQObBv4TDXwRQAMu8MYge5EGCwReQ7Lif3l1lpeWQQcnwPDhnRayYYfMtEfQ4OBxsAwYvFSCkb1dyMf9QOHZ0wctDHyyu//kye704aPdo/Zx5pkCP4zhgF/VAhqfeTGFDyRQXuf3u3/+X3+cn/dvim8ufIEMYBDwkE0e0i7Ise/xikk+1AEGyAVAGf5X7SkMrIEp+ANQwi5AC5ixPzAwpQ/wwgM8RrtawJ1W2ynDpOKHFvLRBx1MGELlLy/uccATJCWbHTne5pkfKE23ynUs+cHhmiiAviqqHYWIFHIAWsVuC5MAMMIE3uR1JLv6PdIXMnLd642BChnVp/x3eYm9ettuGLzYgF66tV/1Hqhqx+P7TW5amKgugniSwEtI1i6nk/J1Sfm8gvp15Awk1X8USK5xsSYPwhUMHuNBt/DiPm+P47fn4FRU8Xq0DzZBvImBxX6fmzjdpFu7Xgi5AOCz4LF2jn6Xyuq/oDW5AJl6xktJp524ld6Wl9Zkgac/2SOt8Up7QpJ+edyf9zp1ALteE178d/3/vKcJJ43fl3feT/8r36jSfnonw5yrUSB27okUBOAubvUCop5WGL9+yEd+2xC+SQ77GzsOkwpPSUz6jFeV0Mutt7t0fzkgafs3bx/Uz//0x5/HS/3h49e7f+iJjf2iVTBg2j0izblQqepV/twLXbe+QLoB07ZNnD3Bdcj+3HRuMrn3Z5zX58YOSbVBP5NvJs+10QJZ94vDxPi6/xfGSy60pnvLPbQWDrtjVrpKmjFCV35MGOjRb/ehOtYEbE3eAfEBgI/O1wRPm4ylmThUN1kn/KZ7dSYsleMpjhh2T8Du1sfKmcOvgyjrzPbvpoFNA5sGNg1sGvg3GvgigOaJ9Fj5Mk/hVaAFopxj5BkmoARQACKDd5IBZQDH+GZ0/bZF1oP7J8UBn0+s6K0M5fftqPH1N093j4pxtrOGhYJHvShidtXIoPIGM/jjQ8o1qE4Wb6AlT6BwjX/6pz/ufmyHjYvAkfuQAXUdCFi0xngD318N5fJ+TqxpMihTXCyYAgMWLC04WNuLiUd1nBdCkRkvfV7l47XrhPMe64PAu/vH7myzxZJgwx8wMbriaU9/XpKhfIDCq6h97Lj6nQcaB08w2XlDyfosb/zZSVsBlv/wCujlNayWdAUsxOCCmooc+Dxs4cULCZRSUPIEGeoOrH56aa/hAD8ZZ9/sMkpLdpgDNMA9IBbjvDygy/NppwdwC3LpzEtngDWg4UEFL+q8PYstTWTW0wvtG0kaEz7jl/fpAeD53jwjOJRiHfQDBhdwA8JCYbqsPHBMv9ok9GKa2O85b/yU0FOItUiySUfy0rvxaKEo+cDgcf3X848g7Hr6SDvWOCqmuv69CLz/9PPyTJv8kY48Z02qPibrVe2nw5lk1gefrhZAArezdk+xANQh5Odytl9b/bQmNfVfBc4uE6U5aVGsfvdjMsM77xX2wFK9vM/uNSEl4u615cXrz7v/3kVl/+6bJ70QxlOD2rrX0clne0dLu2DyAJxzrnoWUCZHupvxSJ7KNRm5SRe3eznOAtPlKT8+bSyXRj7p6UvYjvJXGQm6/+DJjrZIq88Gluvn+b+jNq03DOqV8k42chCkpz/6p3Z6pfuETZXG0xeArU6H9p/vQ4bmfHkHxvsNqsm0wmmM/a5V93ZsGtg0sGlg08Cmgd+qgS8CaIaHsQdzN73VjUfxTovtxrs3xmxs9RhA0OCHQWR0Gc4xxkkKrGw7d3q/n0I1/kt7OD8PnL1F8GFeZzAuLSPHiDKo/hmnd4uxeFM/5GG+zOv8tpCNH9rP+X/8j38tbGHt2csDOga9vIBQKIHFS+KBhYp0ej67BvSUzROnbRNfnJdTW8lO7vmpcpClLeB55CGTwvqyjD2jfWu8vuJ2E0+yMfSzjzRQqI6Bha58CqQYeWkcvLsXl+vxPN0dAKEqkyv9JYsS6U8+MA9QASwP8sSRBrAWGh5CNdbnJiDJddy7vnkYeX8XXC6YevVGjOydiZ3mcV06D6Jr79rd2C4iHwdQeRiFFxgDJklgmodRHmEq3gwH6AELvZnEAJe71f0gGSckojz0BGzPe+vdVb/btS9IT8fppKyTV/tXCMhagAaS49Upb2TUpsJKbBWoLhMfwPWLhz1tLU/vckvrO20q8UAhGZ4W901WutSVd49XH/NqnzZW4JyxqJ2uiw1/3/Z5yp39o+uLD8ZFMs8ErzrIQj5jCBL6a6x1emQ0QZJGX5JZOIKxvvp8gZ3yPxTeJM23Xz9Oby3qzOU8O3ukb6rxBIRc5Fc4yP/BK8DL6/N35fPSFQBujYExY+x8KmzCMTJ2Tr3XlTfhMWT3J9mJP9sLTmrgu54wpY7pg3I2bkxcFshq00E3q3VTyZQDdI0/oOtQi/5PM40n8dMmaqOqrqh3ecXdhXXpLlzuZUEguESE7ZgnGyli0itPP5lQ9H/EQVZjaLWl38qfcTkVTBnzzyru1+/bp00DmwY2DWwa2DTw7zTwRQDNTjP2AIUnjDHmgWTcwY3zvGx2VGDVXGfoGTURmiwpD6utvP4QND9+9mTeGviotweeivUciAhaqsexDHwFjIdtQQ9P4qvim3/8y0+7121L9+e2pPsJNASFoI73coHL8kAyrx/bs5hBBgoM61r0lhztCKEuhtgb0hwLuFZ4xWpnUFgeshwOscyAdh4N99mhHBMKMPmwkAwAJi5XLnltwwfEeMFv8uQ9KKY49QzIkRcYAFtABKqqsjRtzeYaxadB1356+Xbqkh7wp5rRK0iy9Zn2Hd3Ku92EQTiGx/5AC/SKY+alJieP4GyJVxkWfM2ExVaASUxXoPQyqBRSIpZXv6lKGcJYXL9Xn73NE6o8C/TIk/qnrgV2wBLULAB93CJCixxfBuzk0RCvw56wgdLlch6ABrozSTAR6s9l3nGToFmAmR5GHaORNTkxCbJA9aL2Got2gdAO5eoPZXnyYQ9msvB61qsB8nGA+aC0QkgK5ynt+8DzUzHQxjUdVd3uTbKKgTdRUZcnA35u8oi+vmp/8urW3gHjhAPD9HOa13mgznipTz/0ghihP/rUUwHpPAGwWwzQu18s+73yGcNv3rbTRrKI2z6i19oQms/E52GTzjVpbQLZkwF1GIVih4VW2dWGLJ4a/P13z3bff/1keb+7P40ldZVl6tbXyvL7qoWXJjsLOqd7Vt+ll0nnfi6v0JGP6fpT/WXiRZ9eEe7/AF7tT7fXUxRjXR+Y+GmTsXmA2YN3HbT7fHiKonzpZsx0ze8DdM//OeqvT0zMLBRVpz6Z8ZfuXOt/imknHXiluvLpmgzqv/LSpq65q+bw4dfbe39y+7VpYNPApoFNA5sGftXAlwF0IMCoi/VsZ6rxbI1Byhhd8WplvRjTqxbOgTOQxFABq7M8l8+en+z+/u+/6+f73cPAxcLAO8ctKMxgOhhKIQi2hWOwGT0GMqtdiMTlvPzkhz//2BsEi/csztnOGi9fvgnCerNh9bGB42W0H22GUuww2ziPiY8CzIAUIPAikml5sNQcDA84AYLlERvQrk0TJtLCtmfFvgIuYSvjza3sj594GUHF8i6Ky33/NnjNuPOCz4ssAEb5gMH7t20tFySrGzAMKKSf2z1iFr8Mbh4ER/J7PC+eGdyYHDjouhYu4E0/Qg7oST5vzOPdBeZeNIJHw4V0WJ6UAA5NDsQ5ywOsLSgDFQCzIqYeYSfqAeTCUeivE/Mq6g95+H948Xb3JFAH0XR1AKOviqPmdf+x67b9QyTaAGwGhmv/0+JygeWff3wd8C4v9AKb1RdmA1oY4ozc3rTnunrvRG30P3HqtUObTWAAeBWnM/At7pVv0+RpecKF1lzmyQV2iTA6p3/jQ59YMDgTtPI57BbzOW/tZeAlZEK8rD44C8rVwYOpHsnp8fN+3CtLeBN9yCOdLdncBwButg5MLeL2jQ1D3ng3doRGEJq+3F/kB4tnZ0uHP/zl1egQGNIQnYJ7W9bp49eFLR0gc4AzQCSjskZHjY3ff/usWPt75f1rrzpA7T6rHfrI7iMmumSakJzKdv++b9tAE4TVPvkrvwmAg9YO7dNXh4mU9Fd314LUmaD1XVq6n6cPE4+/h2o6r95pXfe7Sd6aDDSG05fJgYn7df3IW+1ed/8c+kCbZ3FtE+UJo+r6EahPHvfVvGSm+o2ZnNNNSNzjJlHbsWlg08CmgU0DmwZ+mwa+CKAZQIAKBm7nfQJsYygZxy4yjNm7AVYhBWJDeZttzWZB4JOnj3d//w/f7777/uuMJIgAzoz08liN8f8rCOJt9qbAy0D5VV5m8Pynf/lzu2y8C/bWrhnicoEocGEUFwgsECMMIwo0mHrgwphLI36TcR4oyWjfbrcHsZ7SggAw8P5iv2NChnce/Wp/aeRRxixsC8x8Bta8bVfFvYKOCQlh6PeeRnoDXBTFkPsO6DxuBwwVMRA7Hrjqnr2EJ+3BA7d0O2WAgDLz2CfKwJMQi9stwAMbFkG6oH+Wp3f4bO0uUZnAHFgBiHvJD0jIPLHTtY8+68V+A/BgJj2J2/ZdKAyPqwPk0Yc5jvCTHjTMeBgvazKMl7R0+rkiBkDl42FXv/4akKEIutGP9mQI5OgIkHsKQF4ygO+qmzpH3sbdhG20xwOZpZmX9PRZ32ofPZlMHADTSWPWswELL7VHvsMh3h4om+hMzHRpvfHP+AKkxgFIXwAONuVtPFSneGp6klcZJmuKJtvA/V5XytLnxoB+X0861kJJ5YHF2WGmz/TkKQD1PHzQDiBNiEzaAKSaJ9SjNLNgMznINjImt7E+3vJ+6wNl2KED1OtLL5qh48/B7K3CI1Zbmngmn74dvVTJnY/BqnbTfTNnbef1NTa0/eKSR3c/TrW5utwThz6hg48fq5zApQft1Oa6sgz8cndNzDidNY4TttOUM/qxeFQ40tVNu9T0kp/JW35FyrkWFTYZ6IS23q2CFRKTrkrf7TH6MK6MV9X+cvz1519Obh82DWwa2DSwaWDTwK8a+CKAZvTmcW9GkGHn2QEJoG6MntjDjCrv5f0WCj4Omh8HzfcfPtzdf/xo97Q3B57mHX3v8W+ev/H2BrU8zrxYAFY54iGBjP2c37RA8MfCNP78p5/m1dv8VGJtP1YnkGMIQTJAuXfWy0+qGywBC8dAJNBTXh5ihvl+Xl4AMMY8+T3yBwj3Ttd18AAmvAJb27yIQxjExJzu2wyybbn3VQsfpf2YfB7Bg5yyjGEHEj59svip9pFN2MN4/apj8QHgDtroIAAH1NrCpos/PirMZICvc9J8KA15F0xWQpWBBsh8nj48+gdkIIgHvgf8o1M4SU9Ht4TbAOLCBXqRyOP6g27eFYrxJs+x+FFQq90DYHmk6Ur88p08mCZP5BMukUSTVzu8WEWdD/OAW0SqjaYndKZvlfHPf/55wArgPGlHD/0/TzQq0zgCRcDLj5d8nN8UGlKbwak6LNxbE5OVZiZyeW/t4GKiYEyeX/A0Hh79mzQVqpEewJQxpa3n7/XHIT7bUxO7XazxsLz0YM0iSmEv95IrfQT1B9i3uDERJ59Jmc7SB550iEMXwmRC8/PL84Fw+U2wTBSBKzA8rg+EZtx81O7CN5ocfNNbKYWKgHpPSYwjE5x5OpHcxrKFiZ4maKN8E7pT+vdH9ldP74H7TPLKbFzqx3fFmf/3f/5hZPi+xYXPG7dkdS/MU5pmPp8CXONGW2ayUR1rCqIf3SmFsvSkxzoC/UYubaX38YYnn3729ES5jimv3zNhqH0D+zM2eN6Ns/0WhsZo3507aisXk/P5fyVFGSv05Y4QCuLJwNt0STZt4FFXjsWS/u8wIZhtJFujoV5lOj/16bRKukxPMxki56Fxfm/HpoFNA5sGNg1sGvgPNPBFAK1M3lcGyQFGloFanwHjwyBLmMaz521H10LBe+2ocdxWa8cZ3LWnLdDh4cuLmdEGLoBOkfIPuAWu7wrRAM8fWol3dX6+e9nbBG0r9zhAVS94AkRl8bbpgTrEASrmcW9Wl0HnDZxdBPoOTu1k8TCDCzKAKeiyup832QtPwAOAAYEgioVloAnI63nZ43Dlit0Esu9OvL0vCG53CsAAdpZV1iAg0SP34OHs1t2BKRAwHsCBWXpcgKwdpyen4zEkj4NuwIhwh/FgBgd0RcaDx5Ench6bBxMjX7LPJKd8QOthUK+/lve04Ih0xjv6+NHZbMl2P4h+w8N50c4PAdo8Aq9MsDpAX1oQI39aHkAhszrsZkG+tW3eh3R43PZpZ7OFml1Gfvj53RojZCbP6CiPYJMPMKgt3oB4vO+rvs5TgttHeZpT3XgSa5e2apt+vUoO6WhO35FBbLUzN59rx65dIMpbdeOh512frc3KoM9BpthwBQhR0UUD7bVHHnUZn+Br4qnLD5xBI90YQ+KW9YFxQBb3wL30zPuskNmesT5Utzh2EzC7cNDzvEQoAT80WQGUZKMLY197wB/d2TPdRM64nPCcvb7fdm9MGE4N4Jl/3CLB0yY3YqFf9YZLL01RRsMzGfP25tGlu3fV96efXs/9oL8O+0Vr++F+3vPz9LHx7bx+XiEnyzOtzTO5bTJqQqDNJnM840Jh4lP/SQzsmiSbUJ/M/VMoRWUdFR/tvjNZ8pITMo6nvmz8yaac3bCjR2sV6IQcdOx+0C+2gvT/RKfWmBCikw7d20oZgO+6cTAvEqocZbhXTGBP0oexOuFhpdmOTQObBjYNbBrYNPC3NPBFAM3WZLPmABu+MJBj3NrL2eu5f//7b3b/+F//bhYIHhe6AQz8gKEx1mXzpj/Gj5H+1KPZidPN6tov2V61r1++moWC50F0FjLICRh5rvosHhh4MN7gBaTID5QtVgQXDKhAC+Ag1ne96hpsL1iYcIRpSIY5agAcDPJ4ypIPoPOkAQFhEsAYzCgXAFtAeCvIUvZAYGnIRqC4aow/3fBaAq3xlAUL3pa34KyywH8GXVzprXYncAh3UYZdPgZe0pn0uATEnAaW8zrnyiRv//g7eegYu989DtiDroHf3gTHU4gShSOQbUB8hAwuyiyMwSJAsA1oxmu3pJl//QM8eb9nwjTy0Ylql4/SeRMO5x7dnM6Egb6A+nGhHcr0+N1YAUF+LyDWj8tbrB7lTZqAS3qACF6FIYxXtTSASv8bPzN5q90O17WH7nhxgan+A75VV3fUN36X0Y8AiHmFue8E76DLud5Xcg6w7fsITF/f5F0NYBUsx1Wy6EcAvMaOpyIXbTHXGEzXzpNfOTzFdO3HRIC+ePj1FQ84CV8F2O8r3yLAkgyYGlfS3pSOTrTRzhjTouSeSU8wSG86gE7utDcyyKfjgejyOZTLM05/FhvS7/37hUOU19OC1ZtLDzzTyjMhVSZPs7qMH32g/Bmb8pVU++lldn8pPS/9hEuoeIpaTzZmctf9o0z33vQb0u3o1DqmjWWrnZ5OyT8hG2C/FFIr2z3gyRGo13cO/89MazqhX3mktX7GVm1wL9o6057iJgyT7VDvlLD9s2lg08CmgU0Dmwb+Tw18EUAzQgwkj5GXFNwuFpMFOsnD/CSP89/9/e/m1duPnzya7cw8xgdRt3oky+vKA8TwsYg8a2sFfh6/jPp5nrMff/x590//8192P7WfM5i24GqgOYNtFwW7D1z2pjjWcox9v3ngHhUuAg6EaNhf2kI8B9jgnXXY6UAuMgk9uXu7F5jkHQQRL4qptrvFD3noAPk8mg4IGNtPbZk1YJYs9p61kG3FX7K6meb0wPADNWWDSQb9AHS++zk7Bb1E57ENPsrkUf+jPOp+TAD++MOrMehr8eHxTBYOe0kLjbAoTVgJiKfGg5f8JjgGwAMPTRLIdwuE7+NaQTzQA2yghacOAP1vUB33m24ApOO8wa9ee7vdp3nj3mnt5wzUZ0Dqdrt0mKB8yINpz91Xs3hNm9dCUWsH//jjmwFH4AOWPN43bj5VF/lMdoDomxZbgk1lgyleTC99cRygqmwDZvRmomIMeRow+q09ZNKuvxQfrxz1mDDYK1vf2SIPfF80kdBbJj6HtuirD8XTfjbroIHJb2SuMXNcaABZeVYf2N2kdC9ffxydA2DjhP5N2mxR6J54c/5x9y9/fqUJ1X9nPMcmJ3bjAOsXwbMJA9gUlnI7WYGcNgG9N+/Sa2V+ro/EUyujRo0eteOPLb60i4kQpEOMtScDs3tN6R43Rh6k7zelefHq3ehXfeM1Ton0VbKeDLweTzqY/7vvns8CWft3h6NUMWP5qPuDzoxX/UO3XZo+NBEWMmHi6UmQt2CaKBhDawwG9n12H5HzojQKXk9LCvuobeoyATmqrKMmfY6Js04P6jSRaTpXny84VrfzemgBfflk8j19uqZfeJy10T1gm8EVM9446R6gB958T6yOm0QobtU8BW3/bBrYNLBpYNPApoH/UANfBNBKZSBtZXbv2b3do0I0jtpF407G9Czv8+N21mDiXr56M+kYXYaLoWLkQAcP1oQ/ZNx4Sd8EvC8CoLdv+mlP55+9DKVYywGM0gO48cIFx8BjDGHGj/dr9myuvoOXewEsjxRIWV6/eWUyS5ulZOwTf8IsPKo/P+q1yL0MBeR4NA7CeQMfJu/DYA60irkVAsKzqVyeb0DM8JLHuWljZ4RvAK0CVgY0QTHoBJFg3S4gPNugRygB+AOyjL/fPNoHQ//gfjUA3wBN+8GK9LzpZOGRvmlxVMWUpvCI2jPezpNkCIhB6vv2yr7qteqEtUCQpxH82JaOrqjluPQWZCrDIUThbeAp09fPHrUH8Wke1Y8DSe/ARzKAIpAL+pQjDOKoHSNOe1kK6DPRwH4mAiYcvJ7arO4nvazm26dPmti8HQ+payYo+lP7lU9OIEQXJhvaTh6x8cDy9u315kZ6Iws9K19svJf0eLMiWFTeTGCSUev0vTG5vMBCFAKtk+VlrcrR04CdWUU7rAyQlVfokHH/NuC3BR+57ge/K0638fxpxdiDfF5a412oAK+z8aJvbpKdTMaApw7y8uRqp/EnjwmO3/SmDcoTznGYeBhb3KZ0BN6XXsTor90+1H1yt4lW341N6b2Rcr1dcvywbd1Y02rqy9rkUOe37x+tNyw29k2Qxd3fvj0zq+pa4Q9r3KxwDp+NyXp74J4+/HwI1r0aXjtNnuj6oH/XjZWSBNL9k+4tEnZop84wBt1rjtVj+2t979KMk+WBNxlYY9mkijyKuOrJ1qqv31Uk1tmxyu9Dyp3/I/Js3yMrZW/HpoFNA5sGNg1sGvgNGvgigGYQecu+7pXbTx8WSxxA3757kkenEIrA600A/PJlW5QFo4waQ85bxNhm8wfwAA8A4G0Ety+C7R9aJPj+3fkYNAZwvLwBwGkG/arfvJ5gO9M+Xkj5mVlGmkG01+ta4IcvhAsEhy0uc328bp2beMfMMs8kmSZsIXi4yACDL3ESK83Y2YEPW58BaGEj8gE7PwdvF1npxDmP6+8GjqCl4pMvGWofrxwZwMEBbHiQx5AHGzzKwJ0Mtn8Tdw2slHFS3WcBblHT8/j+vEmEuk9O1uN0/Q2qPZIHvrYhG3yuOR+CMh75y7b20hfaPJBS/gXL5BZeoHzgkkcuDTt3u7dAvhMnW7sArxhWe+5atKn+KSqdpmYS9JOHspPGhoWSwh2kIxfd3Jo6TRYA8ucg8l5jQr992j3YA6Y2y7N28NAXK+ZcDQcdw6oSTXvEvGpHqUY3E0udrud16uVRnrAVTypMYIDXjJfq/fDhfOB9ed3XdfWtmO9CROoD4T4f+m3vaZBPBsCqr8Cp+o1rgJwqxoPOs//Ns4cD9RYO2oXm/aWdNECovabXWxufFrNtAvKqBZ+vC9sA2FQJEmeiWdlPSkMfAFo79ZN20CdvtPji9VSlPOlefuPstEWi0j39bFvByqyeq+tCQupfY862e4Ccfn5+9Xb2zwbZ7795FrQ/mP5TxxHSrVT5p8/LY2vA8Lf2r3uEPo179wE9mMjQWX/nKYlxQa/GH1RWjnq1x3llq8OhJw/wnKqmD6RfITiNIfEWHfIa8zfFdmuffnHfSqdf9LfjMHGZMJbSmRisCe6a4Mj7y+HzyvbLqe3DpoFNA5sGNg1sGvhrDXwRQIuLtHPDozv3d2eFB5y/exc05TkN1v73Dy9m8ZQFeG97vD+P5AMIRm0MfkbvXqEeoMN3hpcRBQ/CLkCycAovA2FOwZbvQFR4wrwCvL2kGf+7xy1eAowMfcbZqnyPrC1SfNBiLrAEkIEFr5w43NtHxZr2WH7qDGgYUD+gQigF763YWZYUBKqP8X2Rp85LOmYf6MDEwbDzIH9882mg40khA2AbC9hxA3CBYe28KfDWK7ftV2wLMR5uAA0q1nZzwUL10AOI9uIRXuebVze7b4MxUPNNbXj77sPAlPwmH9rxogkLGe2gYb9jvu/r2sA76YUg2v/Mmx2ry6RGWxzk0PiPvQQEyD4DToWRkBvcPmh/7j//9Gq8lHfynPoDjoCg/vQo/hDGAmjokP4AFYg/6ZG810m/ePtudye44W21kE4ZPzXBslvJYRL19PHzOf8mHeln7VCPcslt0iFsAWx5W6B26FseXrAPat/lGZ6tBxsv9P5P73+aPvv59fnu//m7r3ffffVo6gNhFntOfHvAJGzB666fFAYEPi3CUwcgs+uIen5807iqbwEvD7QwA2PBZMG4W28wPCr05WJ3+8mtqcsOJT+9fLd78cN5ci+4FvJg7+wn6fn7bx5Nfy+QFIpTu7WZR7/+EJ/s7YwOExPQSV8mJjzYvPBX+/vFdWNW2I1xZkJGX+4d4+TwtGDtAqKOUvfP56NA1DiuT/7S3t3GnonD7wJp+gCkivaz7tm9p7/0vL52PgHaiTwyelGQfclPG8fGJPFdN17csw51u0lAr98TstHJgfQUdVNl8s3lrtO5e2omeskzkN335YWeS/MU6uP8X2GsiCf3/0OTu2svvln/dywP/JpAnfV/0Md0ObHa6W2O/a/1Zft308CmgU0DmwY2DfyfGvgigOYvAh8/vn2TVe0RcoBxnLfSrgM/Fj8MJryKOQbYfby4vbt4l+EEhFlFcJVVCxZ71Asws5ITu1ihPLwgTcypt/cNlGXkLsQtZ0QHNBnO0jLIQkhAqNhKMOsPY81Lp54B19ILLQAkwA1IAL+7QTC4UB9vL+N9OzAB9Cef1i4LPGpgDlAAFyEPe6s+UCdMYYx7+gBbQED5MGEtZPTYPm9c7ezvQIrv7y7yHNd+7ebNE4axQHR5cwEGXQFf3rIPwR4vpddjgyhgQUfau+pfscPa7Y11tqlDIJ+LORdNTC6QONBbGeSm/5IMBNWo3buPK8xh6ZwHu/x7nU74QPU9bDJh4nR0+36AtsI4ADw5yXPSb1DpnIkPr62J1Hheg2kvdnnctnUvizUHij832aF3gHzwYNKzicTIVj+RecXNCwcRMnAAMqErC4w+jzdzPbEAafrt0L7DokV6I089Fejpp7ULRCJPueAMtJt0CGu4NE6apEzscPIYewdgc37FyJsIGpfLe03Ojwmor5QnHOdF8K6t+pHe6dR5kyMTOW2lK+dnktJCUhM45wEoGNbHxvKhv6U/6YnEhDel93lzoJuttmBA+leegxwHz7sbwTgD0SZ+UtC/D6l1xvm05/aLqdN98aSX3lincIDfmr7yVb463FPjgd6PY2OBjunrrn6oDPLTnRFrwkE+B+j3aem1sTz9ZtEuuHav+dhTDDJ2qO+Qljwzzqtr6WVdI9zamce46X7ofl7hV3d3H06XTpVBzFuCoOdv/2zHpoFNA5sGNg1sGvgNGvgigGbggOKfWih1efE+YxdAZdAYOEZ/wC8QuDvng+HOfwzYQMe9duQAeg7GcbyYgdHBCycvmGJYr3o821K9DKs4yyAlOFQHDymjfPfu/XlRAuiRX561ldva4UFZYkuFC1wF+sDD424LtsDM6T3bZ+WJBPuMd3vGVnwHy22rt+CmyQDvt7J4pEEcAGCYP12tVwaDdsAwAFYdIAHcAGnxwcsDbfcPZdT+fUiLNg3MJwvZ6VE7/DjADzDX3hfF3CqLh5tX9KptwM6DMKBI5+M5v7sAldxCDI7bEYUu5ZutwCpXmWJy5fMZDAJYOrbQCuQk5uhDvwF8sPkmzzdo4Tm9Wz2AVL3QhtzCM+iAJ5cH9VVPE0xs6F4bLLDzFkoQDpKvg1RjyAKy85sF25hpAU1try4THN7M0XlC6Xs7T9BZcRDjddRv5NMHvNFivD22x1wAir5dUxdP9PKOix+mu56AVBYv6t0mgBZE/rG3/VnU6MmJRXp0LyyGzg7hAfQgDIOwYJh80vMMmyxcBLv//OeX4xUXnmQRnXpT0+jmwyXIFm5kYrhgXj8JJeGhv9fEUHy2Ba1vW5AIpumYDMrQd7ag018LtIW9pJfyDqDWizM5q1+ln0lVY0wd+tq1d71sRx8OQAfWxqZxr0+9ZZI33H31/ddPd88L1eLFnrFaG9VhiI6ua694aodRO8X0GwCrGyRfNwFcYL4mmTOuO3+7NPIYZ+r2o1yjUF6fyOrpEki2Aw84llwZExbVUBiY3v+fQn7t6paubYetMdckTz8Z3ybFnnQZEybqvxwHMX45sX3YNLBpYNPApoFNA/9WA18E0GBAmMS8eGQM0IIA9kdYgF0iAK5XC0u74ocLt/BotWsHI+j7V7004iyvJhAQwgE25QGrQBJkMKaMJnBwjtfrpXCP8vCOedTN42thnbLXo+uM7uRvT9yAyMGbeSfI49UD8wOiYC7II6+Fdow34Hv0YO0aASyvGNrKshuIMgG0ehlhHuUx5PNoeQHVrRbS2Zd49gvOmL+8eT95wKp89sgGtTyiA4eVJwSBDrRXzK6QBTRxnj7mzYAAPxnv3E7ezgPTD22TJr6Z3skkr4V/2sJ7OPsxP2w7ueOT3V9+fhN0gbmAMgC8Xfw0mAJQfoQVfPWkV2y3FZqXodTK9BpsldYuGxe9Qv36ZXASxPC0ilEGoRZpAl2ARB9k11czIUlGW/JNPHK/7Wt9cTtwqZ3a/TQY14eAVTscQFR4gnLpHOSAUHXadvBOj+WPmuhcf66dVaQtxgslSK9NYHNikvsNDI0z+V3jzWyKMiAFsAE9QAT+vOi8zxft8LLqDsQqU3ng+QCSxhBQFNIDoLUXVK6QnwWm5y3cnKcEXdOXJo3CN+71WTy/MWscC9nRxrPksouMWPfH9+/u3t4iw9X04e2jtoGsvsfFofstzMXrzelxYsWN1/rZy3uMIf1ioiVkQdlPaqMJHwimL7owDn8Cyu6vGgNUjX2TH7HF+uPPP75qPF3uvnv3ePdffvfVhPgox0TGPXPUy3boVB3vm3yAfuPQfQZ41UV3C9LD4RYlzvion+UzBhwmVMqkc2NXZ9bM+Vd52uy7cowF97ozJkbkWRNbC4vdm3Y+WU8hLIq1W89aZKyEffumDml2u/vBtLqnglJsx6aBTQObBjYNbBr4zzTwRQANZBleBpOxZPgZbZ4fBlOoQ4gRCLXNFivVuXl1cAaTsQSLwGy8o5lJnkDA5WDmQOoYw9KAJnDCxonPBAygFnic3uVFXUaccf0YSICV2GRAmjfQY16hHsoF1soCbKAXbCtHXYy9o4/jce7XQPadJgoL+C3+40lc6QBarDHwxksLXBYoLG/8PJ6u3WdBi7AGwAEYeBHJMfX2wg9AcTuoHI9o8oJQcPXowckA1+vCAa68YjkyGDtfmTx2QhN4eIXLOJQ7ba8d7/MWi+O9+rRiwR/e52UGXHnTA7sDMAk9AHTaDuht+yYuWR9efABiAQZvaG398InXP3gL0G/d6nNfpBPrfAi7MCa8pAMcre5M6xRJ8MoXn3te333uopAGcd7GwOOje6NHXktA5OmAPgG7+vpDguiDAabmFbyIE7uafIe4a3VcWxjXyOMp9SRiPNWlNi6l91TAxEA/WeQGQOeFKoHW8aVQGa7UPLntKOMgz1FPQRqs0+/jpTU+AjiTQrq6c+fR6AF8HiY20nnKYXwYy/rdd/KrD+SJX/ZCmWsTomS3tZ7JD5kaKiOLvF7Mwttq8uG+E+YxoF5/G4MmTc7Ts6ct7quzxqiwDWPSwlr3jZhoUEy3j5vA6bsJCymfMbf6U+tpt/HVffE2PfFCK8ehT759/mjG2uf+BzEO3VdXd91n+nofikLX3RPa7f8HE9Kqm6cV6+lA+ZKTngaQ92XTnzroA0j/m72fK0AZ+nmAt4/rsA5BX6aDrh8AXv9LN3DuPi+NspWhH8jX15GRLuhvOzYNbBrYNLBpYNPA39LAFwG0R6DepgaIzk5tSdZrq6sRzFncxRMM2MDvp16XzEvLK827tYw1j2Ke6Qwtz1W71Y1BXwC6PFKzg0cgwGMNehk5BnuAYehsebrGUGcQ77YN3efTsaGTjuEHTqByPHfJByr8gHneX3WL0V1gBhyXF4vx1kYAAFaW3Q6gaw/41B6L1BhnsAiIlOP7vbx9tpcDQezy/byp2sALPoCTrDVj9AVWgA2Q4BUcICkT7ziY5YmlJ20mkxAJE5IB1uoC5aBA/RZNfvv88fS7CcmfA1mo71XQ98+C3YCFDsGUScBxW99ZrLW8oxb21WfV64UedPShN0Re9xxcn0nviQMPvDAVulMWGAMsAAugADJbxoEXsoM51zVYiIftykCS7dmUSXZ7I3vxzqO2PhzPZRxkMeCHT2srOx5nITZ0wDudpkZ3A16FLRgzxofDk4LreY38HqCTj45AKd2H7vWNlGDXDg3L43+7ycbIL39yLrALxdPPTXXUgjkHYq+vLCAsHClZHjZx9CY/u8QI2/jLi3dzT+grsG5sXBXfwKMLUOnSJGOFh7QIMA+/sXcc/IFgfWBBon2i1V2njQ5JDO6Fk/Bk62sy0j+vskklXZLB9aWPxkZt0UYTxp9bzPi6HW7+299/O/lMmoA0PXoiY4IyY6nz4w2uTiBNby8LfXEvzdOX6v0umY2Hu/0ueQltU7gmPsbCjI35nizpwH10uH8HjPVFOqJYfW67Q7Kqf673GxCrkxTGkfxk1W66MaykJ7fxqO2dXvdjH/y/QD8Vm+7WVn885cow9kxKMLf7bvVwVZV/OzYNbBrYNLBpYNPAf6aBLwJosYsg4NmTh7vCiDN+y4M5XmWLCW94KHmjgzQexIycl5QwfqDC6n4eOd95GMEIUGXABsIyiB4dg+DTFvocVY76GD3GnZFluEGuN7a5NguqgrHltVrgITZ2HeKmAcJ+u7nqZbDfBsGAEDDeO2NUA4M8g2JLXxdDDOIBiDQTRtCiL4/JwQeoG1d3Bnn27a0ixpiBnoVrAdPDe239FkzyNtte7/JD24jVXnIw7l4ZDqh4n7Xtpi335NfGu3m77wc4VZ8cHyesAkyPV2+AEVCs8BGv4f7+60f9PBmAFf8MjjzqNtHBKrz+4NsEwERgILb2erz9Kc8kOBO3TPa3tlQLOrT7Ly/fjF68nEMIgrAFIDUQXhv0J7hJmtERWKR3Ewxt5G23uwmAnP6o/meFTHg6sbzKeYzbEUHIAZgCQyYbPJXaaveQixOL8d6l4fot+DJOBubyftsRhr78OPSrcaHfSGUx6//H3n0Ga5ZVdQM/ncNM93RPznOHIQ05KIKgtKiYUBAVUylaRsqyLD8b6vWTqcrSkjIBiqKIWQTFQZQ2IFFgEAbJPcPkPNNxOr7rt89dPXsOT7q37+2503fv6tPnec7ZYa3/inuf/ZxrnMjDyjaF/odnvsZbV4I2WHiyYDK3MfTYqrUtEookUfFEI1K4Qp/k7UhgtjfqmBBsjUTRKn7S4QeA5AvPfgvH2ng7DXytPD+86lv2nsdYkt31Ifcu3kPtjS/4sJ0C/f1EzZYcq6yS43jSETjeE4n63ngywX4k/vaW40FhG7aG0N3UX7plpd8fIMILPOBrPPIxibo7ftAJe7jqoyTPUbf8sFGfQf8td95XdMjbdq64uH/dndVltZ3RcGRt7C+Ovun14Xh1opX2Eyci4Q+e4kPhj47Q+YAj3s4SNsMbxZdgpyTcVuPpwqawN3rjCFJKKW3iHp2Lhw3FFvkSeuuPLuELRuV1jsF3SZaP9zrmFYd4M8G0TYdtbQq+iu5Ed2UQ51YaAg2BhkBDoCEwBoFTSqAlcttjP+aBY/H6unjTg5hjT25JboTeEqT71T3BUJJgJUrSJlGSGEkmBFGJgWDo0b2zACdhENTc99hZYiuAum+V1Apy3vfWg0i9yqqU8SUe3m5gX6xVYSuK2koOjkSgtRJrfPXckFhI/CWX2tivW1b/oo0VMMHbqpqkKP7v1kRupb3k6Hgk9+5JOuJfFI+IJXT9SiM+9CnJkRRabQbOtmObYrXc1gkrdP2Kc3lvdSyJrY3395bEK/pCc3k1XfCB3pJ0RMIDD6tpxyM5lLhJXOAp4ZLowPvi83eU+lbptHMf/nV+IEmxhcRREp7oc3MkjRKRfvUu2gYG64ImCaTkBO49ZvagwqHff+zPstOL47EaqfjsR23GVF87dJdVw+hzfYzh1XYBb+Ft08Z+/3hZDY37HsvDbcP6WLkvq+B+SBZ1o4G+Ch9xwWd80zOyloyuiW0XxsEfvk14JLTH4y8RlsmW64Fb3zZWlY/1byCJ5iXxig7KPbqIP9fhDyNPB0wWJGgHI+k0NlugH/fGK+zocS+fwCroNYb2RXZBtHFNtMoTh6AxICj0eYNNfC334W8iKdG1Raa0j/6NIQHu9dHbUCTkoQexdYI+0L+yfWqeN3x7D3rKzdh4sHVGkglEP7z0dpTz4lWJD8QPVf01R5Mk/KLdhA/WMc0rk1qTMn2gja7ZnkRXlPLEAbbHQs6x8n4k8GZDBzf0r6ak1z0oTuRkFVmCPI8Vkgymr/J/1In+TI7pAJpMkA9HGz+MLHqoQTwlICsTVXuey2p50F54iH7ognE9Yep9SdQvTxZiwOi7MBj3W2kINAQaAg2BhsA0BE4xgfbDnc3dgfhrxRKIE5EsSSisfFlllPhIXq16Cq5Wl21lsOpoxfJgJGwSCm28UqtfHfUINpLqCHYCnyKW2iZy4GAkq3Fd8qz99lhdFTf94QcBXqCXAB+OJAQN/Z9U9l5db1Dok29JR1k5jiSwT1piL2ksn/tDGRLdPlmTtMXK8nzwlWjIagRdiaB901avDsc1E4FY0+6T0wj3JSGJpMR1SbcE43A8NrfCa1VU4mFF1+pb7EqINxN417MfXQY2kRSjyZ5YfFmdlMTcH4/OH4g/dY0mibhkQybQr+rb1hFJvwQgih/+7Ys9tPrAU25bsS3A20fWRTKrwNZWGzSZCNgace/9+wNjfxzE69GCz+B3ZySFEhQHzP3BjkOxn7ZscQgio3nBHfbkZOLQ148E2s34bmXfGMaSzJpEkdN9Md79Dxwor7SDmx8aHjgrJgshT9sF5DL9I/z+R4loskpq6wTs6Q4aicfWB3u06ceaSNBORJKog/ha5GZ8ieOBogteTRcJsJw/aDoc+7wPRqJnm4ekcG3I1yp7ypAcJYWSPauq5HB8fouLt17A6467+z9ZDiN9nhuvfcs3VuBB4ifp1lfBPIQvybZiezgwldDDzap/v0ot2e4TT7pjIkJvraZLsmFtm4aJnnIs/gz5vfGOavoN850x/jnxx1cyqaVjh4P3/ncG8UQiJnFlUhH4WZ1fs2Zj/OXQreUP5UigjU1H4NnrLe5tfolpQ+C+/6D3YD9UntDYZ/+4yy8s7yiHGdqST/RKar3NY238ERk002vaKpGmz8XKA1cTzhigyIx+aRtfo33/p9Jtx1AliCoTuqPBp/be6c421V8fTw/Imo16rSZ5kYeEu0zKC/5W1KNOyKP86fC457P2pcyf+i/t/4ZAQ6Ah0BBoCHwpAqeUQEtkJMoeER/c79F6BD2JaAQpybCzoFgS4gi6klpJgtVmh1XGEtAjQFphjjhXVtLsoxQQS+COIC6Ql8Q0UlUBdX0ERUmoH3DZYytps+p031F/YlkYFLRjy0P5oWG/eihZkXytjcRHfVsqLr90Zwnk/uiKxNPbCvTfv5e430YhSRNX+72d/Xhnx9sRcouJd1NrVJLLmDAI1oqVZsmM5NskY1uMLXmUEliBvj+SFInSvsBQTlD+WEZ8Vuxl9Zf+1q09eDIB2Bx/4REdaPe4HT7xJZK0eAd20GgCsze2bOjXKnbZ6hIJB+zjX59YxtiS2X7FuX83sdVtmCEbJrBWX5IrAZO87YtklrzWbbaSG6/9iy0yDx22Ymgfc69CknkY2+cdrctnybj3H6MBRicO46lfKZdoeTWgrSUmOOqavEiwJDqw87i/vB0j9oH7ThZWWL1r/Gi8mcJfQsytGEVOMcj22FpzbvzZa6vDVmXtI8aTcehp0ZvAxzX6Geoasu3/xDjJFVjj/taQGTzgc18kpiYf6JH8SeTLG2UCEzSThUmh/qz674ytSZfFH0e5cGesykYfXgd3+93edW0fbrQJuRvf2y/Wrz9QXp93cfwo78LzzylvAfFHa0yavGsbpuwm6WFP+4Nv+9C3hx7SoUPRp20OAW33UBwmT/lny/Fm5VkSX1a8w9ZMao/HNW9nsT2lTAgjiT6Ex6CdjpAPnaZzZEdBPNkJ1IJPF01c+r+MeNOt95QtVJdddF53YfBhTDI0rpqKpyy+RJNyXZ/r4kexJsomhGydHpKnOuyrrCBHW2936f9ke/8UAAbsjDXR+33RGVo9JdCHlWhjefLhVZGKcTxhkVCT07Fj6sZYcc+rNcnDFKEUp2jfSkOgIdAQaAg0BMYhcEoJtKR2f/zy7/545deB/f2r6iSvkhkJtIBmFW5n/DBsXbw1oASuCJYPljdKxOpWBC4rXFYjJReSQ0uwVoV89tfVrIxKUgRGr9wSyP3oT0D2ijir2hLIg7E63T++nn+EHPclOVarN0eSK3GTOHpMjY4IwSX5l9CaBFghNLxkT70jsaqLvz4pssWiX0HtA23QEj/gOhHP0ffeebBsnZBIepRtpc3qsoRADO5XbiXsQUtJ3Pr92OWxenzfFGNJwLyiTpKnSHbwDz9JP7rg6oMkDk9lZRBo+ozx/KXBkgzHfa8VPBJ/VVAeIEmQhKFF0qGvsh+13JUy9PtWN8br7PBoPLRbudROnxI4iR+cSyIdWBoaVfaJq++NFP7C44bAHe3oK/hFRQkRHuEqgSFTOiLZ9OhfPQm0JxJH4tV0VhDLBCFGIPMd2+PHnrH/W7IYQ4WK4Cb4ccRHyeSmoF3/F8SP+S69aEf8CXl/hW9f0UNPOCRaViHPjsRYkl4mOiE/XZGxBB028zDHKeiOpPJYvDfcHmeJN+zJLaZLPZ7RQBty0qcEE25ei+hc6uM7+HGfDL1a7VBgJpk/GjqHizIubgIr9OAD//bbw6ZkeVHTxOmcmCDQc7Zh0rI3+mFrttyU1Vz2FG9ZwYru3SM/xZanrZEYw9c14xQ7izE8xSCzO+JHp8Ueo7FJmGS1rMxHfRhJdp1zonjcRCq+e686OzURPi8mPGiVmLNT/DnYVklwgzr9GNuhkCv8IqfubTDa+qud7K08DQp8bO+RKJc2Uc/ntfHHcMrWj+ivrxfX2T2ZxNnAhdboxzapE6HTqZsA8mfpbemASbExxPQk+bR6Cp5XI9+rR8KN04bAGYcAn/2w23r40+li9NQT6EgY98UbHiI+ldUeQd2Kjr2FflW/bdvZ3RWXXxSrWv0fqLg9/kCF/ZWCnZU6q0iRlcWfnI4gFkmG1dr+vcmx0hWP1h+KlVg5xNZICs8+K14DF4Fy78G93UU7t5YVO3+cwhsXDkXddUGEhCOqRGJlFXFLSQIlHOWHazGalTVB2VsObrtrbyQD/RaTdesiWYhfMVkJ3hE0COgSYlsw/ADJSp3H+3uD13UbDnc74l3JG2JVONZUy1m/a/dbWexflSVRkIxqJ5gL5BImP1g8EFsg1sR4kn+v1rNX++74kZ7H95IDEwjJi0fqHsXLQK2KR35R9oKWZMP+3sAYbweC9/32mUZuviNWpP0o7P5YNZU4bow/orI15KAcDJ4fOnKwJKVllTHeBW0Lwfaz/almCYShIqWO8SQ4Eqn1seK6ZUv8eC3eOmFFH//ef0xWfrTV/xU3K4K2HEQCGX1ISLwNIRZ/g3/8xav1QhZ+5CjBskq+P/YJX3LhjvID1LJ6XH5B1ieaVngldyYV2+IvFlp9LXvrS7IlIY2V4BgPnx7r2/9dJkiRnG4PfTsrfrR59z0HY4U63gYTSbkV+fWxar1pmwQ05Ba8SmCDzODZto3Y/x2ytmpNlwxDXyTN/QqzlUyVpdX90w19WqEOqIo+laQfLhLsWKV/IMY+EBhIhK2E2y8Csy3x3ao0WUqwTRDgZfzbYhsIeg9FUuoNLvsOxhOI6MNE4zCd2R5bM3bECm/gcyCecNx6x72hU0FPbFs4GnSXlfSggb3QR/RJoEOaJZnd7s+yx4TWyrBx/KC1X+k1eei3Te257b5ISE1YY1U99OKsaGOC4TWKtvyYcKlbXoEYZ3puD7b14HviKQ7bZ3+XbtgZ7UP2gXWZYIWCSGD73xX0CXQ0KrJZFz/qk9QqRY7RZnP0WybGQaMfK+LxRGBY3jkffZkAm5RIyrWks96OYjK5YYNXTZqExL2gxQRA/+Vd5baPBN5+nOx1h1vCBuPFPVG/f6NJIUKHp98Xl6FP+3+hrsVo4W9jvTIL/3Wd+WanDbN67J7i2f8fth1+n72n2XBaSH+Pdt3FYjGu3bjry8XntPGG94ffa7om3avrzfJ5oX0ttD4aFtNmlnaj+h11LXGYdC/rLOWZ/5LeRIrVg+B8+sqiE2iBS5Bftz5+vR8Jy0Oxv1HSujkC9Ob4Ltn0yHj9pvgjGRHcY9NB5BWRcEbiuC7+oMfGtRHIoq1ItS6SgE3Rl6At8X7w4PwqbSRe6+Nx9JYIqDtjVctqrr28/gJerAdGghZJaux/9PaGTXHELtjSXpL9UIy/NoJ+SZgF0QjAkevHHwPpV+Qk0RKETZslILF9IxJlyYoE4WjUtfq6KWhfi65IdDZEgD0RyYkEPXKd7o67+j+tvDESxGPxKriI85FsWGn31/3sVY4AHkG4rIZFwuNHUOVHcMHThvhxlfFjbhBJVn/evMUfL9lSJC/gC0YR8iNhjVW/SGhMJDyGPhF4WNuWDEjO1saP9s5eF4/co61kX9yPKt227dtKoiP5sq1BYnLknOCvBMpewc6KRK+snkZb8oSbFcd1kZisk6REEnn2hnizw1mRkGy1OtyvZFpJt+LtT5N7S4gVPj/aejCSvOMh3x3bN3fnbw9ZBxv+Up7VTXI9EFs41gY+27ZHgrQ5JiKBBRnCc00kuN42IhGVzNAd7eBPbh19CUAlQvRsQ0yo1kbSXb4HzUfi+kOxL3fPrQ9EIrq/2NL2eHPHtm3bShLsFWZWSvdHZ2sjyZPwwYTObTnLirLEt1+NhkX8K4nmxvjx3ab4gzhlUhCEmgCsDVrXhw7Su61bz46+7LGNJDmKJO7BeEJydH98D7rKhMgYkSh7NauY/+sAAEAASURBVOCJ4CEWtgu/niRsCFso+B2JLQbxdpb9B0IPo68ip+DvrJCdhNt2l7tj0rFu4wPl1YbEeDT0jg2tiz+PDqfNMUmB38Z4W0lZeQ5F2Bg6vDEmSsbfce7O8hcko0pg3v9FRnu3j8ZeZliwlfUbbZ0IgVDBAMFkRqK6Zcu+8hcR9eumJFQSrV3/NAVGkvCuuzcmghs2HQweY9JrkhN6Gt2FXfSr7bCNVuCKv14Y6EmOQ1nonrI26NY32R6NP7oS07iSmB/eHz9EDNLw6MnHkWhT6KD00ePxwFk/Jnl74z3n5SlKYIwuk4rCU4g5uo66sQ8/ML8n/EFciVcIxv9sPW6itXQZ5zO3WJiw1S4mxrGQwCLC05y57DbOGgINgTMOAQuw8Qy223hEbtbnb6eTyUUl0AKSlcnzz7+ge9ZzntdddfU18caG/i/IWfUShHLbhaS3rHbGdQHx/MsPhNMWoCM9jOCm2PIgaCkCoB+E6aNfvfM2iX5lWgQsP+Kyshf3/dGQs2MPtD2lthqUd0vHGP0PzyKJjZVciZjVVG0lQZIjK6sCpL2yEijbB/wwq7ylIK6Xx7+RNEh+81Gza2UlLWj1oybJqmI1UEE/OvHoiJyhFMlV+fFXjKt9bheQiMelEty9DtAqtGRWUaeQHG3LmPGlXIsEI7oubSTQmZj0CV/Pd1nNjTomAPArSZDPEoMYP/4VnvSXPwSUZAME3YJqaRd0oLGsMAZ9sHEfbq6ZIJl02DqgU3iUH3uFnO1L9yQBXa6bLEiGgQSjPjmKcQL7knTFfUmj8dCpjkf/hd6CrCF62goNUafwHP0Zk4wKrnE2ljpW9+3xJV+r9Lae9FuF6EK/Tce9omdBJ5qUxAixZSIT5z5B7P/4if3pZE7PrSiXrRrRH9yN68nKvkigbRchO8Vkyo8SvbfZ2LBkH14NZz+3RNtec1sjXMdTUFSw0T89pN8mYLZg5CsULwoZ2NaiHV7wq67v5APPfjW/X9nvt3D4cWgklEGbHwH60/B4giedMTZe+onW/I/+4rrx98c2GvzBSKG/ve6htahQuQgvtrktJtNW2NGkRNfB1fykIhrg0u8oshS8Stcq0lfQhM7GymhvE5Ewz+tHbj/xvcdKk74NTFKPi3wQN0+zfkkaD/SBvoTwu3MvuKTbee55ZSKunzO9bIg/EnRu/Hn2pzz/id3Oi84pf2adKGbhvIgoAMq6w++JnetZZ9K1vDfqPKqPrFffqz+Puj/uWrbLc9ab5byYNrP0O0udaWNPuz9qjGGb/J7nUW1cm3a/bjeu7rjrddtRn7OdcxY6l9fz2ko5J13DM/pGXZuV7mxb1x91rb7vc12n/pz1pl1zXxnaeX+1/z/7GJ7rOqM+Z/2J92LgI/GXo885f3t3cfyQfVPEnRKMRjVahmvxdy0ysiysd49X9+3b291zz72RwPbBXQ8lPBUN7tkXiwSkPij1yWU/YtzPQKVqVSSdvUAExPg834cqqpZrRorrAqj++h8Wue+L71Ex2/UDlu/lv/nvkg519FcuOWumXd/4ZEeuudf/17cpVfzXtyp95X1V+xKtorFaSsJdzuXi/L26TqlYqmtRPiRfebXvM3vNqz39vvX099dPfsZkkhu3+p77S/X1vlX1f7Qp+Mxf0oVkBw8SqNKP73HdWCWpAViUvFe+5H8VDQXs+bY1QX3rbPDwOaoWgvN+3X/9+WGde5iG+n4tky/tMMcrLfoB438c4jn7LjTMy+1hucJqfkI437xAEf/BKktfP9B6+FLpu6BYDdvLLjCWfcb4ZRL4iGS/x12/PV2lWp+8R5Mc2zApF59Lb8GLpJ8sCxlJTAE5KilxrdSfr4vueJjQ1+9rqPSI77pBS47X1zZiGaX879voMrgz/7W+Wvovjfv+Tvbja1R8GJGejsLsyUrxYVgvOrTVaMfOc8tWI9uCzuRChkfiL4ree8993Y2f/WK3N96tTg9CAc9kthtvDYGGwJmGQPhuv7/aHE86r7rmyu7Ci8+Pp8L9X9g9HawuOoHmhCXRtisU5/slUeph8otb9l8ErkHIe7jSIj8Vn78M/S6SnNZsHoEMxUst75UI8LxqnzbSFovtl+RHy2w3SecE13AymT0JXirMJFBPdnyy1SM/1H088s6XfpvHwGR6g/3RcZb8n+ml/MYhtuocKk9L+h+FToP1TMek8dcQaAg8NhHw1HNzPPW2pTSf5J8OThadQJ8O4toYDYGGQEOgIdAQaAg0BBoCDYGVhsD8Tt2VRlajpyHQEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUi0BLoFSqYRlZDoCHQEGgINAQaAg2BhsDKRKAl0CtTLo2qhkBDoCHQEGgINAQaAg2BFYpAS6BXqGAaWQ2BhkBDoCHQEGgINAQaAisTgZZAr0y5NKoaAg2BhkBDoCHQEGgINARWKAItgV6hgmlkNQQaAg2BhkBDoCHQEGgIrEwEWgK9MuXSqGoINAQaAg2BhkBDoCHQEFihCLQEeoUKppHVEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUi0BLoFSqYRlZDoCHQEGgINAQaAg2BhsDKRKAl0CtTLo2qhkBDoCHQEGgINAQaAg2BFYpAS6BXqGAaWQ2BhkBDoCHQEGgINAQaAisTgZZAr0y5NKoaAg2BhkBDoCHQEGgINARWKAItgV6hgmlkNQQaAg2BhkBDoCHQEGgIrEwEWgK9MuXSqGoINAQaAg2BhkBDoCHQEFihCLQEeoUKppHVEGgINAQaAg2BhkBDoCGwMhFoCfTKlEujqiHQEGgINAQaAg2BhkBDYIUisH4hdJ04cWJq9TVr1kytsxoqFKwCC2jMgtsQk+XGsaavHntI60LomKXtyTrz2NRjt8/TETiJ35iq4+Q1rt24+mO6XxWXYbXScEn5rTS6KETSNqtyrEQeZqV9MfXG4bNQHMb1g6aF9rUUfCznmHit+695r68vho/FtqlpGNXHOLrGtRtXf1Tfq+XaUO4rne81QfD0rHjAxZEjR7qjR49269at6zZu3Fju6sT1tZEYrV27thyDZqvu6/Hjx7tjx451GzZsWFG8k9NDDz3UoQ9tmzdvfoSzSmLVO3ToUAmQZ511VpF33pt2PnDgQOGdfhiDTlA1/emX8zDuSsNmGl/t/pmPAB3dv39/0c+tW7eOtI3ThQKbSV/LhlZ6QWtt3zW97jn4BPZfJxDa7N27t1u/fn139tlnf8n9up/2+dFHgH8XP8iLD5cLLHU5fPhw9+CDD5a4sWXLlk4MqnVmqcdr/T36CNApfsB527ZtRb8efarGUzDTCjRmOD5B5YEHHihKLQGTAO3YsaPbtGlTSYww7vvOnTvLvceCwx8PzSLuRLA7Hkcx/MDiROCWzkUi7Tosh3OWDCacUB7awReGS+k0jH3PPfd0X/jCF7ojQc8FF17YXXPNNSWokTG5ZgLBeR08eLDI9/GPf3wnmRhX8MWpak9PbrnllqL8V1555Ukdwf+NN97Y3XnnnQWXxz3ucd1FF100rst2fYAA/GBMPvQpC/0QyOgLW8wExX3yzomQdmTsmjbqk6n6q85WE7zqnDp86623Fvu4MGyDjkroliNBqIYe+5Gc2SEZZnJJxkvpE8YOPuEGHYIXneQj0OfM9p3hdc455xR9RDd677vvvlKPTxAcs6h/1113dZ/+9KdLkvTEJz6x2759+xkxuU6bdU7bwzebY3tscBbd0jZtH9ZKbff60edyFXpItvz7vn37ujvuuKOMd/HFF3fnnXfeTDzMQptxcgxx6rbbbis6wwYvu+yy7vzzzz/tiTQ9h7/8Bm10PwsZZKyW4Nd+VD1yT9z0o6hDXo+FBDH5PB1nWPERn/nMZwpuT3rSk4q8+buVWqYm0JSAwd50003ddddd133oQx8qyRFFZ7AcHcX2/d577+1e+tKXdi960Yu6K6644hHKtFIBWEq6mNWhMLDPffaz3T/+4z+W5FAw4AQEB8mjYAErhUH5DGMO4txzzy0K4yxhfcYznlGuzeJgS4dT/jMOB/DhD3+4+73f+73iCL/+67+++7Ef+7Ey7t13313k+7//+7/d5z73uc53Ce6zn/3s7pJLLikOXx+jgrcg/5//+Z+lb3w6nvWsZ3Xf9V3f1V177bVFV/T3N3/zN92//uu/lqT6Na95TfeSl7yk6MmoPqews+pu79mzp/vnf/7n7v/+7/+6+++//6Qc2KGJ6zOf+czuOc95TvfEJzyh2xwrNgod+/znP9+9//3v766//voyeXKNHJ/+9Kd3X/3VX9095SlPKcnOqgN0wDA/97GPfaz7l3/5l+4DH/hA99SnPrX4s+c973nFzw2qn5av/AVbZLNk/q3f+q3dE0K+ktI6WJ8WYgaDSOjoIrs3IZdUSXrQlsmcxRRJj2TapNr1n/iJnyg+If0a/XznO99Z+rngggu6b/zGb+y+8iu/8jE/uWZnn/rUp7rdu3d3n42YQH78vUNcePGLX1xsVgI6rcB197//e/fh//mf7uabby7V4aytOEFHJRyJ6bT+Zr2f/l5sF//Zh3hG1nwNfZQ4LlWSQ6c+/vGPF3/1yU9+sui4sSWvc3Nz3Td/8zd3YtZSjTcLDmii3//wD//Q3XDDDYUmslUkwuL1l3/5lxdfwQ8rGWvJ/e1vf3uxYbasaEP+3/u931vypMS43FzF/9Gpd73rXd273/3ukkDLJdmIRYyVmh9MTaDJk4PD2N///d8X4+HAJVSUWOLESUiYKJfEWcIkqV5NhUGZmXMwJhmUAQaci0mGQAIjwfn2228v0Dz3uc8tibIAQ0FgKchYKbz00kvLpOXLvuzLuquvvrokr0sVMNNJme1JjtMZcL4CnBnzJz7xie5973tfcZKCWq56jJMp+s3EObt/D0dPZ/TliYXZu/sCh5UmyRw9QUcrsyMAT6sWHDEdM1NXYPkt3/ItxR7Z5JrBo37t0lb/+7//uwSDb/iGbyiOnDNfKr2anZPZa9IZukc3cyVz9tajawpYVjsUOlvz77qJnkmk5ISOpn2M7m15r+LbSiUaJU67IxlD09Oe9rTOY+1HoxjfKr1Eh49473vfW2ybH+OrJMvrIrk7EH6EP4Cl5FF9CwOvetWrSv1M9sjXfYsMdFuyRO5nQmF3kiqyMoHlGxXyw6MYMSmBzuTKU7t3/NM/df8UBx+qfMVXfEVZgLD4YpzlKJm40D++QiKPhy9+8YtFL7/qq75qSWSFT3FCvyZTkmd6dNVVVxX7/5+YONA5k4XUjcRmOfiu+8Q7P4EeMfod73jHSRpMsiX0/HLqc7aFXcof7WRH3i94wQtKPsCfrfSSK+5iSO0nT4Vu8tOvPmsMcpVfniQHod+ureQyVYICykc/+tHut37rt0ri923f9m3dD//wD5fVGQZF4d/2trcVw5JUY9zxaAadRwNwQcVs08qz1aJXv/rVZRWFwTAyRmOlT5DgDGH1NV/zNd03fdM3lRUl7d37j//4j7JCC9M/+7M/637hF36hzPIFJgp3KiUNWnLO6AUqqxYZiM2krWSoJ7kmW/dmSVw4cQovYTaJ4OTT6NIJm0iYXNEhY1ndHjqdU+Fvpbfl8JXEY6H0Cibf8R3fUXRnYwRMOkNOrpupf1U8+bk49Kp2dD7THXJkywKgYPDd3/3dJfiSge8rtfAlVrzoSyYai8UveeSUTWLJgy3gX590kb2aVEpWJTmwXa7kJOmZdJY8P/nJTy42SJb8i6QUFmg9nbTBi183ybca+Rd/8Rfdf/3XfxX9etnLXlZ8iqcgJYEOLCXD14cveGfU9eSEH+ET6CEZpD8zQdfOSju/aEuZhYfHeiEvEwZy4lfJUvKJRzKUKH7t135tWY3E6yi9hrkFFQkYrGFHZ3339OgHf/AHO1tilnsibBKAVrSIc2IH+Y2ieTFyw6fYcUMkzn/+53/eWTgSJzzFNPGiO/QJHbV/W8xYC23Dd5Kj7Sp01eIQWvmNyy+/vLMYIZanPusfLr7TZYtnJojyKKv2nspaSRczs275sIL+yyTXYoJCZ08VdzI2WYadiYgtcvVWLvmBXIkfcF9ukiv6KwiaR5AyMYHm5AAokcIUp231GZOUiZJw4II65v/kT/6kzMwEPWApea5HTaObdC/r13WyXd7Lc9Zxv/6c9+vz8H5+r+uMG6euk5+1V1/A/cu//MsSXGxhYfiULpMTZys0HJ0gxBkwRnUokn4yqdQfR0XRrDTOxaMr9RjkLPQO69T8+Ewxf+qnfqrIinFnAi2B4OSNxTGYJaJ12F/y7pz3GBeHgEf8GMe9vK+uoOixjGDCIQoso0q2Sbrze9bN6/l9eB7Wz/vT2mW95Tqf6vjaw5gTNgm7LpISRRJt8iXhuyzkVpccEyacuGIiRwckz+SgjMIs25YKI/4b1Ua1xbQbttE33ROs3/KWt5RkX8LAfoZ1jZm0uFd/di9LXoeXx7GChIkEfaW/DsmJRMFKl0QQRnVgzL7ynH3md+dR9OX9rJ918nveH9WejCTykid+WALrSZatDq6frkIeEj8+6c1vfnOhxaT5O7/zO7sXvvCFJcngT1Kn+JLnxGRkW+gs32ZR4MHwaYJoriLCwb3nP//5JRGHNf+jrTILPsN6iW3pYP6/WfvJvuo+hm3re/UYoz7TKbzQI3wqfD/+rbI6JFl4zlhR96MemX/kIx8pk1+xNfGln+JwYlW3q2lGr+/T6K7b1H1pJzbwPWwFrZ4qDOsPv+tj2pg5Dt2SZ3wikmWLLzmWBMqTWnYJC/GltseFjpn1k678PolWdWEOb37TopfVZJMYOIjTqc/JT/aHL/pusUM8tWLPT6fM6vGHbevv9efFtMn22RZP9ee8n2cLLZ5C27oi72PX9FObxC7r1v3Un/N+nuU0tnyJVfTYoo8EOvv0md9lKzAjc/Ifjqe/HCf7zvOounkvx6m/5+c8T2qfderzxASaUtiWkIHXrJMhSZo5BgRJiqwquifYua4NxVEmETTpXhK50DrT6g/vD7/nuLOeM6jYvmJvr717jMSqAJxS0MZhhOn8XJcMcAYwdd13yay9qVZxHfqlcJRNmYXeaXUYhGNUSYfPgU3rZ0gPA0M/nUg+6zHcvzpWQ6eV4bjD7wttP63+6bjPhtgHbASgUY/8ZqGDfAQxq5ImIh6h6/s973lP2YeXq5XZVzqNtE+6JiAJvHXAXijG+l9Mm1nbmbxb6bG/9jd/8zfLKh1e8D+q1LTUn+u6rpt42EIkAHLUL3/5y0uf7jnIxzFrYjpurHrc+vOw/vB7XTc/45tdzcVEWsJqj6AtdRYzJBTujcMl+1iKswSAT9od20hs25AESAZMOMQA/ktBr4ImSePTIyja0iHh+OAHP1hiA/lmQb9DwByWWfDRZlq9affrcYd1h9/rurN+5ufzaQFeTYasstmaYI+nxZTaHrNfOEk61CN/SWbiq3726VpNZ/1ZX8Pv2X99nlaHPMmY7xrl36e1r8cafta2PPWM31pJSI1Dv4xDxx3Dspjxhm2G34dj1N/VtbAkFovLJj9oFZ9tO8gf49dtJM6SUJMC9z1p0UeWhYx/Km1GtR01Nj2S3NqWy0eKLeJM6tyoNvW1+nOO6Uzf2b8nMJ4oiGEmzUq2YSPswDGtZJtp9er7wzbD73XdWT9PTKB1wmgEXSVXQMyIKTZDyiIp2LVrVzF29QAuATfrMJtIA9cuE3D3OAj3HMZKp2BM7Tlt/WFWO/fdU19bfUti87N76uUY+lRXX1lHff2hxWf9u5djMF73fHdMKsY3U7O31MqCBMYKYc4wtTd+luzPtfp63ndNALeijzZPACgx+pXEBL0+6w+9OSt3HWbu6QseHDZ+lBor9VwnRzhlqWlLevOes/v6TzydXVMkavA0jmvZ3ndt4OXQBkZoV9R1zaG9QoZKttEHerWhB8lTqRT/6UNd7Z19d6QOw8KBprxW8539LMfZquHv//7vlwmEVXgJBzkvtnBAVmRtb7C30uPgV77yld2Dgf85oTv4zELOuaJgYmeLAv1KzOHlIB8YwwT2cNbPECMySpx9HocxnMlJe3X0XbcznpI2T4fVdV2iiydPdbQRqARYdNKb1I3UGWftHMaiG+qkvzC2YOYx6p/+6Z+WHwn6Aas+rSwZG7/aGs+RtLleY6COcdCS/OvfdXgZ04EGGLie9GUbtLmfeOhPW3Q4tE/byTM79mOlPfFj0r/6q78qybRJgB8k1fQVwpfwP/SjQcIncbd6L9mlS560SQgSO/WSXiRouyXw88NWdfkHvLvuUFKGsHAtZacfeLkOn+wbNvpIvdI+cVXHPRj67J72iTM5Zf8pJ/24nnQ4+57yyLauZ9vUCWNMK0l31vPkjU0aQ0JhewC5ki/+1c8znZWgmUyyWz7DJCRLYpjfkw805+eabrjgq6Ybtuon3/p0wAW/2jhnGY7petqDflJWtS3oqx4z+0Kj+nRLrLtvPtblE1j2aTHH+OSlHyXprWl23X30OnJM9BpD3cQFLfrMaz7TG8coOvWtnzIhjAUuMlMkeyY3vsuBjFsXfovP8eTGk3u2krEdTehJ3fVdwSf9Sn6THuOjl+7UfOMT1g6f88jvyX/akrOx9J9Y+WwcOYyFHnrpB/8m6SbJcpDEVF0l6XfOz/pIHI3vu3t+E+aH2Z5CwcIkhMwl6+rpM/lLGeEjcSgDxn+p0yl/bRyKftCoL22V7BNeiVmO53tin/JfiF3r/2Gr8G1QEGLmlzMCy/ge3wlA9icxaNcQa0WTE+BUBTjXPN6gXGbNDIKD0Jf9wIKWFVv3MKLkys+uSMQpY85YOBC06N/qrD4wbmZnNkMgDI2QjW2mZ4x07MaWaPjRFUfku6RRP4zWDN+qOcFbefI4UiKsTirvAJqTQtNOAmNFxqqegJb8D9v4nv0510fWpSCSLbS6z9nqk4AVicXuUO49wbtgFJXK3lf8qo8Wq5LoYmgegXjkJGFzX3u4MRKzzKtjRdgWHPJzX3F2pGKWi/P/5XV7SGFvJg5DRoJ2iZo3tpBFFm0YClmbfOFNe7/gNgulK9qZxZOP+65ZzceDMbRl3PixCkf3yJcxKMZWF09kQd4Fn7hHHvgjH+3Jld5KAvKxaulkGf8jPzSgC27shL7DGD4LLXTXyoBgam8kHEzknhZYwQbPClyMyYbIBKZ0W1BKmdCXvE+ObNOqGDvgQNkFeSjuk4W9rR8LXeMEFTzAlK5K7rWBs8ACY3SwU7yjGU3kya61kVzRBXX3RIJor68VEPJU/HDHuBwcffaUx5hshf3SOT5AwkHuZGsiy/nDyjUrtxy48X1nK7/7u79bAhpM/C4AJvRNf8aSnMIZJlk4b74JbnSWreEFRvQLz8b1uJdcjIVOus3u6L4+4WQViz2infMXZN2De8owx00dghecBDn+mS7BcbG6lP1POuOZjeIB/WTrSQY+cyI4To9dV4c+wZOPxRt64QabTBLpCZ8EAz4exsaUiMCSXsFXX+w55WVlnExgxBfaQ2tMuuQ3KfRIEKe/RS8l9LEaCG/f2Ub6Hv2gg++lR/SLnNAj+fGY2eSLHJRxfI/DE230VHwkd7TZAoheOpd90hv+ko7Bi42gy9OmYUED3rThP+kw22RzruHR1i0xFG45jn74b3GazquPT7LhI+gWf0Ifh3yqozjDzDYTOOGJrOgoG4AXXa/HzHZog2+++cZnduApkTjNZ87NzRU54V+f6ef5EjJTL5MuPkise37owPnRlj6ojz62pz6dI0d+AbbsD318Cr1jS6MK/h1snN7QQfKRGPIfFjTcg0diRW/pn+/oTz9CVuyJ3vJH4jK68E4+bIus8ANLfeLDeBbr6AvsXKcbcBnGN9/5B2PhER3w5XvlXOQrVyJfukE+dPFv//Zvu7e+9a3FJshTezixdbKEL1/HH9NhdoVPuoN+OsMGxRDf3ed7/aaLXhpbzGJz8rnaV/ID9JddywFhwN4Tz5xQwg1N5E5f3cerFX7Ywdk1NkDm+k27ZtNsG6/4g2vatb3scFNyzFG6kNcmJtBA0vFcKDDlSGOWQDNkhkJxAKYeoiilgR2YA7L9ckBhhIIfJjkLAAoCfjinCGBW0fStYIzSMy59edsAwAHGePK1aYDjIAiREZvxoe3rvu7rCviuA4sQOR/3gIgegtKXYEoZ8UOxCVkAlvSPKvhjuJQDb45XvOIVj0hER7Wrr1EGtBkPfwIxvDgz/eEpk4B0Pmj063ZGZwJCQbb/8i8X41QH3Yzx3/7t3woWMGMccyFDY5Ah5YW5Fb7v+Z7vKT+C4KhmKWSifw4O/mTI4XBUaEE/R5yFLOGEVxgb1/gwT4eubsqIrPGlHceOpwxsHIDihzOuU3TORUGXPumT9vSRjumX86AzDFpwhgXHAV+O53QU9NDd1FmOAeaZmC6UBrzhQ0LC+SvwwZeglckXHDkajg6vkhc2yilypuyBrrEJDpyToY/65KDpDAcncYGhR5HasCV6gC+2wE7JmC3C2RnWzhy1/iVDaOT86QSHK3kiO3pJd/OxnrFcN77+fWar6jhc154ekrn+jJO00AW6qB4bgjOe1dM3O/Idze7RYzjRXTrIj/BnfuwjaHDIsNQfZ2ySJnCiK4M6faVvnLsgpT4M1NEv2cNNu+///u8vvgn/eBdY+JJdsXhgDMlZyjB1A28CEr3RLyzJmp/D+3IW2EucyV+hG+RMn8YlHOqhWWGndFUwhHfKFM/wIkOY0jP88MN45VPojftkRRe//du/vSTI+iBHegsLPk9w51fQS/7kmBMm19AvqRazbo77aGczxiFXK+zoIAMJj0RJP/rnvxRvEeFX2SAfstCCBzRnIX99k6tFgSz0G/10SqwyJl84ruBP7OBf2TvZwJBeWvhi7/qS/NMf+mkMY3vVmiIBZCNsVH9kTBfJbVwhB/pgTBNUtoRHMmRrxhlVyM499mwsB1txXTt90gdYqaOknHbHNiL8GFsd9/FJdq7rKycLeGZfYo/kUx9sm9zhyS75RPjzFZP0GQ3G4xP4Kv3ybcZk4/Bjt3igr/wpX2TSJO9hp/zOnaH37wla5CrqwJzf5Q/cz+TQYhH84SHZQysdJVe+F0bim7HIai5iAtk66KdDX2zgg+F3HgjeYWMsvEtS0Q1H7ek9GaBHQYvv2rjmuzpsgk3yZXIkfl7+sidsyzX929rFflKe5Kg9meNHn67pn13CMfMDfMEXH3RPH/qEszpshh+RB6BLe3oPC3RIoskz9YVP50eMSw5iMR7YS9q133KwP5jBdpYyMYHWAWA5aYntG9/4xiJgweR1r3tdIVjS6xfYDIYzoXzaKK5hgLIzKrMpjHFeALfyCURKASBM6S8TI8oIPI4boOig+IAEiESeQhrfY3FjvelNbyrXGfIf/uEflvoMCFiSaAqqLyCjE41W0ykPY0DPr//6rxeHb+z6sVphqvqP0lJOiQTeOSzBNPmvqp78iE9FHbQwCu0zESdMjsi4+mJAjJWiKLDBLwwkD3imFAoszIq107cjgD1pFIkDPgULZRKtpcL8f0k3OZInhwvTH/mRHymKjn+OwMz1V37lV0orfWsHJzxSeryhPYv7SQND0IfC0Pwo1Q+lzJBhAF88W52kK1ZTOTOF8aHJqiUH9qM/+qNlNYFz+OM//uNyGJd8t4aBXBqOwxizluR/1vrDenRZQJYscPLwJyeOW3KRGAzbTfqOT0HKyok+YUOPvdKO81A4OzqaExYOiQNjUxzxG97whvJWHb8MZ9fk440JnJF3hXNuAreEmq5x+GRMlt/3fd9XEj60a2OV2Co4WUuWMlFnb/r9oz/6o6Kj7E2iQ5c4YTIzmSN7NOBHkkJvOETj4sm1dG7u6dPbIARF/smv4fmHTAhs/8Arn8SO3Fc4ebbB9n/6p3+6m4ugwx+wRTgJLPRJ4MJbykaQZqd4hQ299BTFqgU9RA/dNIEzoZCc+JFi4kD/OHpB6+/+7u9KUJXM8GvkqB0aYJ8rIbV9FOLjPxjxoZy//hzkPW6yn+0We8Y/fMinTvz4c3otkA0LujPY0kHYkYWiP3jRrfTLfDM++LdMsNk7mcGRvhpfgMv4IYlAAznSfwkRPWFnxiQLvo6d0VWLJvTW20PYioWdXOHjO9FI18gJrWzV2aqkvtEmgOuDjpGjdqkfQwzGfUeHNvSHbdJFyT+bob9Z4IEvvlVd58Qw69RnOHnszq7RxgfSez7w9a9/ffGP7BcfMMQvfVOf/f3sz/5siYVok2ywK7GFnMYVcnZfPXYm8aDP/Inkid8g61zoqPshZ7osueSX2JVVSvRKnshMDNanPvSPfvJDr2T3B37gB0odNJOLnAA/bINti4f8D39LnnvC9umGI7E04TJBEn/yWk3n8DNa2Cs9QxM/TIZ0Sl5jsgNb1+i1xB7e2qjL730sfIWnX3wrf4hP8qMH/KjDJJzu5mIGX2frlj5+/Md/vPhJ/ghm/Di9xav7fNfRiG93hg6xAxMxWJMLWmAMR4sh2rtHl8UPC4Fs9w/+4A+KbfmdiCNlCTu6YUsivH7yJ3+y5HJ0wer17/zO75S3h5EJnaaLtmzARN7IxrxoweKduK4d2ZER+2LnFuS0z2JMsse/RQh+NxNe/fLb4gte2SbZ06GUNVzIAb21XcMdfeTE76dds7V6/KRjeJ4pgWbUElvBi2CBxHkRAqGarQp6u2L1ZC6CEQEqHLq2FJ2gAUepJHKuIxzAGOUoXKdEhK9/zHIiwOTECFABiiANcMrKwAQpZwopmBCItoyCEhIUGgR4/RrXKpBEzFgELIBRRP1zbBSYYmXyWgav/tM3OgTbdB7qzgI8paEQ+DU+WgUTYwpSsKFk6MQPB6RNOh2BSzsFP4p76FBfYFAEPn8dEYaM26ycoXEwSrYtX0b8Z8wsPqOPkZM9x8NJkoFx0QR3MzyKqMCCHjBMTpaSCmpK9q0OmeOVcevDNZMieidAKvjVLwOjR7DTNwNCVwZhukK/6AJnxzkLGhyX8zNC5s8IGunMrGUWmU7qC53oEQjRz444KQkU3BbTP97o754IChJROPgMX3qrX07DNTbKeXIYOWm1KqUOzNFGd2FNRpJP/cEUvfqDt5UMTo4vECglFmgXBCWQHDJHrB8rEGzWCjenJwnyaI88XNenCbU2bFMgNjZ/wYE5MvCybTpiXIVDZDP0AD3qui/Boldsi07QU/UUdOE37Qa/dIBOsGV8OOOTb8G/knrKP+UKCVrxzwboGjr1y560FWDImC2wOzyzAXZnUuCJnuTQJBBNZAYnMuEH+BVtyLguaKRLmTCjSd258LuuL0fBPz9CfiYu+GTLMIcpvzMsfBid42/Jhwy0SR8lOZZQwI5P4kPhAtfEW13yER9gImDzDfQx65CRsdBFNyQ1dEVA3R0TfdckkWRM5/h2NgBr9FktgzNfK0aQnSSUbupLkCdn/evXWGjAE92l/wst8EMP32ahBx1swNNZdkMv4Y1niQ+7hRF/4RhXYKcvvNE5McABK/aduPAJ+IEv3YE7nvQNr7RL2EqkR40JRz6fvUg+jQk7PMGFXdBRdSYVNNBxshGnU9/lEGmbrrErOkKfLJ7Bh+6IGblqrx7/Qk/5KT4Rz/wJ/PANT/08IdrlHzKhl7Bjnzn+NJrpPh1mv8biv4xHZ8RD9ML0k2HX9AeNcGW/dEcMFYdhlf4QreKDCbQ4h1Z5CB1DO4zphEkB3o2PDnSblJE9HMUEfmdr+AMysUBJhsZSTx06wQ4yccRDYkln0KINPNDNtxpLIfO7g3Y2RsZ8gPt8oFhCt/FIt/jp9BP6pdvijzbo4PtghRcykCPiEZ6pd3QtZQc39Y2DXjqTvgAu6bvFG3TDk11b0Pjrv/7rco2MyJ5c2DNa8AQrE8qF2PVMCbQBKEUCAVSDCVCYFTjT+QmaBAMoxoFBDpDwGaMAgSkrUIwrhcNY9CHwEbIxgSmgEgwj0JfCAaHHDFXgIDwGxbFKkjLochKM4+K4TwkpoyDDSWjH2DhxAuAsCFDgAyqHjx604GVUUZ+SoBMv+p3FALMvdGqnDYcnyeU48OEzmvZE8kNJa+OmQH7VDqO6pCI56xOvlG9NVDKO+pQYX2kMDHpaUUefgrW2mXhxkvAhD/f1L/FHK+ehaAs/ssMvR463uqjDYDkFxqcfcqMnEjP96V+fHBGdIGfGQm/wyBk5yASvdE+BgTHJWfKDDt8ZIHlNK4ydE4A5GhZb8IhO+BvfxFOf6GTIcISB7+rOUuAID7bEAdFbjsdk1BjkwnFwrBwVGyAfSSVb5CzoHbmyT/qWZS7sA8aJLVzZE7vnzPRHx9AKY/ZoTEUb+ObEx3gmp2RqDPpNdniFLTmQo358F+BcgzeMFGcO1UGP8Mbu+QXYZeKBNjbJHyh4I8PsR/uUo7PvaKKjaMajoJL6UzqZ/w9t/IPgxk5NHrVR9EW2ghd5SCoEJXgJZvij3/SPvyRziZ36+EaHQGps/gQ+6B7lT/DORtCsLpmj2/ijCtoc+DTOI0rID6/rA9NJuqetIAPH1E/6l772EX3GF+PRA/TRM08Gs8DOyiF9JDu+iE2nzLOeszHgyReop69aB8k3tw/BT3/oVE8sycRT/xIrMkQ/vYcZXaHnxp4LnU8dTp0WlOkZPmDAbiQkdNo1fC60aMMOJV9oRCu6JB30AQ3iKr7IhG2jzbXU41FjopmusU3JBX9Ch9Cqf31pj2++ghzIDx50x8ocH0k34QNzMqS76tS80kE6KqFlr7DgiywIsIv0DdqkvoyiOa+lbuYY6Ezb1BffId/gp9AJO7jgNfv3mbxNqt8didb7YkWYjlkcE0O1Rbf+tH1hTJqeELmKsZJOGM1S6GUucvFn7JaPs1JLJ/VJ5z4V9i+GGc/Y8HRdXcV3/pkN44O82Db8yYdu0lFYO8gx45v6ZM6viG/iIwzoj/G0ZStkNBf6A0/xW3/GwTPZkp2+xU9yQLtDUcdn17PQmStjDPmXeM0H6s948qbEkB3yw3jUj/Gds8/0RfhAh+tkTFYwdd2hHxjhhU3sioVausYfZB3t5XN7Il9in/SYHtITfkF9hezlp2nX8ESfibQJkHHIDy2zlEdmMiNaZEcUBlhmyRIns0C/xkYoYSPcH1vBEKHOhcAASaCM2gzbI3bB3WM2BkEQDJnwBAMJrlkXprXj8AAqOGNasq1wDLZ/WKFMg6AY6dyArBA6cKzAoisFC0QOs3b+PuPP6iXhCcQU3ezFTGlUkVSoRwHRj2/KPamgI4vZuoMBoA0OgquZksfaHBPcrIJ4ZCM4KEVpJgi4HiPll2Nm+2l0Zv1s70weHAUFo5Toxnf2qY5+Kbaz70Na8EmXxhVy0EY9fSedrnEoghkHUxsnQyRnhSHTBWdFf/STU9Ff6kTyVSqN+Y/joH8ctvHSqYypPvWyMdFJZ/FiNi2AWom0VcXMlw7NWmCiPr0QOMiFLnoUatLKhqx40iM2CDtjp0Oi5/BRn00lJmzTpMU5dS6dn7M2gjBnk4FaYuhQ1IGV/pw5VpMudky/OWp9KO6TiQSYTcKldtal0vx/+HUodIzDFCDRwuk6Cxa7Y+UxJ0tsFD1Zsn39vb5G75K2rJNnfUlG2AFe6D/d0iYL3+IeH0kH1YdT+ht18aeeIws9hx850BGOnZxgWNOnPvuhy84ClKCl7rgC4/Sz6tehAZow51thOso2jU9v8n7iaUyYpA+ox6eXfLbgKpjzk3QdDhIaj4n5ed/p7Khx9ec62fI3Vo7EB4mkYOo6n2lCYzyYo2VPxCLJhLawF1BhjY+0QXjTHXijgVzcS9nrB8/5XXvjqasemtmHz4sp+pIsszNFAiB+ockYkmq+1iQrfVfSP2489m1LHZmg3aEf/IsjdFGhXw68sW/Y6ttfGpbE80fiEj0Wq2HhPj1S8AwPtkb3JGS2KtliNRdx37hZtJulqFfXzc95hjW581lkTafE65QPmsiUzkkmD4Zu7ok4IJmmp3jIunC6JNpuDh4UY9Q2PAu9xtMPHyT5cijwNj69Qq/4wbexA+Owff6YHvOdzpLnHD8xpstskm2SJ3kpeBHf2LG6+qRLdERcZJvqOpMNOzAmOkz+Tey1Qb96xk070D7pKIPN/6e+Iwua5F5iDsxhq38+XhJKhxQ0GNtYSvYx7K/cnL9PRmjQxqEu3yU3hBN/Oxc6dl6csz/t6QTcyR8uaFAfj3Q1+RraNV2FH96Nl3adNE07j89k5lvWRAKLUM1QEYURQV+yJ2nlYC2dSzjNztR3cA7qOvaEc3MABNEU3ONLwV7AEWAJ3riU0XXt9J3AApnxAIrzpCTaEqxxKZM+UghY0V8e+klAEyD3KL22xqKgnP60wMSwCcnY6NLPLAVtxoMVJ6Yd5TC2e/D1CJgTpfSwoCRWCgpfswwyps6sNGZz9WHN8DkFWKMvea7rqQvbUWO4lke2GXeu+/EZz/oVFJ19R5NCjzgz+Eg8GI/Amg5CPcasnWDhQP+0oh0doJ+SsxzP2ElT3Ud9LT87K9oo6EcbvZLw0jOTSs7UjDmDVak8w3/6x7stASZ89gZK8Ngj27Mvj15aTWK7MDEuWdIlSYkfbUkG8Zf0Jv3auCeow1cgYHPa003t58I+YctZKmb3Zvx45pAk0Ip+dsXqgRUZ+CeO5Wb8Bxt27UCn+/odVfCEJv6BrcMQrgofwJmaPOjDsZCC98RBu2xPZpyygAYrzhcdeV9dPPB3DnjwbxIMQarmxed6HJ9Tt/VNX+t+9Z1FW7I1NlroUGKfdeozm/C41aNhiWfNm89kRT/IjQ8aVdi6e/QzxyJbYycOdTs0krEDFnQNT3gjHzrL1yUtea778Nl1fNIJOk7WMBWs2bHxrfR7EkEX6Sg9UIesJINWBfmI7K98iP/QiHb+15mNJx0pn7puYu4aPhyLKeSKJ5iY2No+wmdJdCVb+OLv+VqPmufm7StpGzWmPvFAlhIsur8n4ixZoVtcg0faSNIg4dgVNsl3SH74OrYn2ZYc2ouf2A3HzSd+fKSxHGTLLpe64IPsjYkfB3upC3yMzWfRO7bBT9F/193Ht3baT8Kz7nfcZ33Cle8mSzTyjcYnB3bvDGM2QP/ZDJoUbeErh0IT2mqa0AhPfZMdG1ToCszxR4/SX8hF6Irx8G8cdgAzk1U/vuUvlXocn+mOsdjPkI7SYP4/99gGfhSLS1b26RV7ls+Y3JjoqJvHfPOpp5oulX3Hp5gmjsAErZ6YZV1jwMH4cqos+N8XuYp7aFac83N+r+9P8rulg8F/j9TAwU0Bw8wC0Zwnwg1OOJJoTg1gFBSAlMCjCffMUBgeJgmFU6AoFEHCy8CtuABGHxTNWO5xAARgxUI7/aFB0R8D51w4Tj8YoEwCJkWmxJLzLAlyfs8z0If3AJk81vXy8/CsPiy0SSXW7yzF2NmG0NKoOXOBDE/+pCm+GYHANxfGwZgercJABSw8ohnWs/K7FDQba9R4ZAA3ATQDj4kY/RTwc4LFiZjZS+RSn6bRpe9zA/N0LNPqT7qPds4AdrBk8Ga/maDSiVH8TerTvQzEVowk0IpJl4DjbBXJapfx2M5DMTbZsWXjW61mO6MKWtNRG8eqg+DKfmHM7mDJSQsYEhkrjBJGRVu8KuzEOC+Jx7zwHFX4HHShb1JBl2BkFUziYQWIP5EIoskkQamd5aT+ZrlXywZ9eHPmB9KXGA9vgmvWwX/ddpaxJtGtrzzU4zty/FF9kzn5sA1PDskr6VkT7Z8bmOWkRXv36v5858sFWDqkGNfqLj8taMFgWOp+cuUn8UEz/zeqXd1P9iFGWI2ldxI9q7WeDmqPDk9w+Ec6RoesWmmLZjohvhhzWGCjnoKeSUW9rFvjM6nNqHvZlm+RQPNP9JeeWJEkC0mShIm/MtlI2rLtsF/Xc6XOarOnW3DAO7/Ab4urSvZBFuyfb/CjLPR8ICbc7Bs9kkE0sde053pciaKEDK4Sb0+Y9Ycnfel/KQsMHPo12cFfXZIv+k1f5Ajkyw4Tv6yfcszvCz0by4F/W4zEFiu8bIxfmAtd5J/Ijw7Sf7TkYTy6yldZwBilm+qkP1wbev60kJPkWD4AbzJijxZLjGWCaRFGYq6QnfZkT4fER/nUqLHSDpz51sSydFT957r78jaxhT+Bc04k8FTnX1XTkx8Xg33anrMFvFE+lV4YPwu5O2YZb5Y62W99/lKPEnd1BigB2JsQJM8clEBPERR1CI+C2NZBoe3rxJwkmSCyHoERvJUnxm22a6Vae0wzXsGZ8/DrdE4SQDdEcJRMPjES6FroEnb1/NgDYF5r5pETw0FHDYbP9fdC1Px/w+uUzazFWcAwyxoX6HXBSVBMjoSScmDonlTqMYdK6h48JALG9l2AYJBkgTdlVLu63/qzur7X1ybRN+6efmAtMcB3TpqS33qMeqz6+ri+T+V6YgEzv8pF42tf+9rylgQ/0GHYAiw52fZDX6cF7aRHPc5xLpzh0AFnnYWcGfOeWKUR3GwxsJrrNWlsS4ASMMl/IQW+bJKTFij1Q4fZIucuaKJf4kp26p8V47AVjlig5nwVPCaevqurL85S//yA5Jiua4OHvOdML9x3cNTww1P6DMHFJFkCz66G49FzstIOrbBAQxaf8zs/Y/XDL8mtrJok8AHkRSf5kLpkO9dqHus64z5nfTRLbvBJlpJSdsD+s07277sxYUYOeKppGDfWLNeNzRfwsRIWycIkPwVLSRJZ+I1KXdCpD7qYqzc1L1mXP+T/8aNoY4FDAkC/YIK/um39Ofupz9Puq6uOftm35GAuVrfeHpiTvYkTmug8+8YnnUILep3puASDDBwpA/3SE/qokKHEIEvWy+/D87T7w/r19+SJr+KP2Cha4A9T8RP9ZMXuyJa+TytihDdPmWDg1dsRxE9xCQ7pw5J2Z7asfz7o8eE/YGwLoRgIm5/7uZ/rfvVXf7X4UfRm0ad4Tq9MZsRuyZQtKeI6X1TXz3aLPfNXsCBnY1tgMkkeyix1KvMFOMKVLih5f7F0DNvp10SODPHPJsnKpMgKvgkMu1P4M1inP/RUiN8ke/QO/SEZSE7d43deEU9SNgYOr/3t3y5vlTIeuyUnPPqxKXnwNXCBP5tgOya67IDdDhfh0EzntEFrYprn1JfkHV3GfuMb31hyE+N6ykPn+OK6DNu6l/pf1xv3WXt4WSBDO7un5/R2VN/6gTMsyX5bHHQn6y61/Ecm0MkMIgQ1giYIRkaQSQxCXTe7xyBFUBBZE0qg6ghuDECQFAC0l3ybgekHKPrw2Fl7AtGvF6Krq6RyAtJMx4rYXDhwiRJagZWOQh/aZdvSwfx/QxpdlhTo06MCjiSdQd2u/sx48MP5WoFHG/rhU/Nftxl+ruv5rC1sYKEIlgyodgKJf7ZVJycs2uA3r6mTh3uTin6z76yXNDlT4LnAmhNg2BKiXbt2lao5xvDspmvKsO9ycfBftq8vZ7tR9+p6PnMAHJojk1L6x4kI9vR3lD4M+/HdeIw3Hd6oOgu5xvHTfVsfvLWG7nKyJpcwXUxJbPFNZz0S9KofOkQ/BVBOljOBg2IsB0e4JxJ6K030mI1mf/TY6q7VKHjRP/LXJ8d6VvT3Qz/0Q+VxnaRKO4GTHc6FjnDe5KZ+BhDJuJWTT4Q/sUqFpiwcOJtmg/rI4Ju2bExH0id42rZhFYatkK1kxMRTYpsyVt+R33M8Z32zk1q/6vvDz3jxeFIg186jS+PmQkD2iR58qANT9TOgJ/3Zd47t+/Cea/V935XDEfDIl4xgKIGepKPoJl91Pc2rizFhTR/UG1fQT86eVuwJnaHDtlGYmHmySMZ8b5akW/955L1xZ/Wy3bAO+YkHFlOspPE/u3fvLjFF0iCRRiM/mEkDfRW7JNpzoZPaG0MhG8mLJ5j8Nz9W60jWG9KR1/M8vD/qO55Sf903tu9wZ1d0yqvMTPrEHvh6Vanky/0s47Bxnz3QR4ks/Sfnq2MSSzfYHWzq9nhFA5ujr54c0eXtYcPo8SRZMsRfSQ4lafQ4+YYzvTcOvaBbsLRoQRf4W2Onz0keFnuGFT8mHxDn6Z+kkA3UJXMWPKMLDfQ66VbXZ0eNR93HQj7DFV18Dz/OX5Iv/bT9hq6mn4MFO01f74ld8YfhZ/nu9JPGN+Hhf03Q9Y8PRftrYywTlFwU0e+OWIC8NuSXMsJfyoGcxGp2QCck0IkHWiWkbAlO4lFi45y6WgaP/2AvR/L0EX3iLH1xwAJ96bO1oWf6yfFcc5/+JP71PfezuK4OvNDNt/OrMIMd2jJOqKdPMU3//B37d384fvZfn5OGPCdtdZ1Rnycm0ABBhFUq+5wJknMimDQMTDBAySNiCVqSom2WdH7aEzxjFDAdr371q4uSeasEoShWqCm/R3ZA028yZCwC1AcHQGCMSALLiejTWZGwcEgUCJ1ZKIF79TXgm9WapSlonZZAEyxeKSQFRYPANiwpFIJFs+KaMdGQ931HLxw4fk4IrjBAiwCQbSk7w9SWAcAEToLYnnDAFAwt7uuT4qGXXGCZdKDJ4Voqu3tJl88O/VBK8jOuMThrThv/+iYHGHJe+jS+75xA0m6cxN1nR13cM57rSZex87sx8nPW0x5/6LHVBZ0Cgv2E+BWE6C1sHNrrc9ai/qkWdHOqEj6y/Zmf+ZmyUptJ60JpGtLDHjlUP4K1+ky/6YgEmnMj2yywkKSSCVkJfOqyN7KFO52ykuW+QK5/tkfeHNhD4agkwQIoH6FdBgcYk402dJJ+CC70kIwEQWUukhpyoPecsfHYnevo1TaDCpum0/o1juRH4k/v+QpjcZ7sH87OClunf8ZGl3ra4xdG+Ez91bf6qXfOjixoESjpGJ+IF0kHetPf6dP49N4EDt+Z3NHt7I+8a73ymY6gQXFWd5Sewh4/+JX88bnsb1zBc/rtcXVGjZN18x4Z0yd+Dv6w8xj3fTGRQStdNk76Ee3xRb5oxVOth9m/Ou45OxKjvJ9n+iDRkMSTO/nTYT9go1Pa6p+/FHBhQlae+JCTMfCgHh7oMvol4Hh0PX1T0pNjowkfris+q5/YZL1RZ/XoBQyU/Iwf7cWQXZHA01n2Rg/Q5KCrij6MmfS5hpakkz7smff77tFv47Ebiaa+2a/xxJSMkWINfYULjPhM/kI9yTP81Odf+VV0GBPOMGE76GRb/IIkjU7yL1aotan1AW2jivH0l/z57MiifzJGGzsU/+UJEk204xdddBK/bN6TMPpCD9zL/uDrMOapFryJL/wWfmHlUNg/PSTD1BUy5y/VJw+TJvJHn2sKH0S3LRCI+3PhX/RpskNe2kvM+WX94d8BI4eCN/mDtu7ByqSIjBU5EZrom9VydmAs/MA3dZPc6UryBN+cUInveEM7eyI7ctGngg9t9eEeGfGT+lLHGQbOOVHUF7oc5OVMfvSJ7BV6iR8+yHU8sw3fHQofAX/jGTv1KvsvleI/Y9R2rZ4xZ9WNh7Pc7DHO2RhhjMEAApz3P/ss0ALZQGa7AolHT8CnRJQWWMPC2KxWAIDim2XXSSoDcY1SUTwrdJSgLsZMEAiHUqnPIAiPAaMVLRwDhSNojjaBEdyMTxkoLX7xwSlTDkGPgqKH8LJdTYfP7qkjgDNY7SmG+nUhJIJRJ50oBUWHcc0a0YseydXbYi/Zu+IRiXaUkNIL3ImFgOgz2vHI2MgJ9pxzPlKDExphAE+GRG6wgomCLgpMrmjSpk440gm7bwxjwlIbY3uEznmjET/2gdEHmHLaEkYB3th4cSQGaEWHcfGPLmM7U3z1fIaDw5jwopeuMz5n9eiU/b+2CMEKjgyXgePZ+PRPMiPA0k9jzlLSHmapO64OjDgpSaCkU9ChO/peiv7phP7IgU2RBXnlE5qaV1ivw1AKAABAAElEQVSwQ7rOdiSuZMWW9AFPKymconocNR01ubTP0RMidUwa0/nRM4cx9UHmPhuXzngcfV287WNP2IgVcrYCB46c7NgumavnSRV941TJy31OXkARkF13je7QBTTYEka33LMyanuJQAN3q1VshE2TO14ELfz5HYUzWvXFp9BLtKRupfNFqxUatO+OFRt6LuFIWbJ7Dpzuwd+Pw/DCP6CDvjr0k3ZArxXf0QFXNKrn89CX+I5GNLiPR7zA3r1JujTp3ji9ra+zU/oFd77KaiOZsNmXhb68JJ5+8P2SaGOhR12Y0HtyYo/u5X3840M99fkf+MM+S9JNPvCkk34fAie6ZeIIB0XduUga6Kw/mESP6LI/7mBSLQjrWwCmc56qkhO6yAzudJbM1UvZo9F9PLivHpmhl+2NK3jSFgbaK8aFB5nhgfzsoaWL/CV9slBhQgJzJcdP+uDms3gDF99Tl/hI8Vh/5MRu+WU80z12LyawJX3QTX4TLe7jD56ZsLAp8Qa26bPVha0x2bqJu8f4JuP8iD8S4s1RsBUv0DiqpM7COfWAf/I5YwGcjE2vxGar9ewbX+zQfT4PL3ws+ycXe4Id/D8c3CcrMoSbMZaqwMBTRTFR/uHHq3xX0o5Pxfj001N3Cx14eMtb3lJkQ4/VNwGgLzC2xe9xkQjeGvmKBNibUug230sWeNMGZnA2JrnCW3KpbsZrfXqXOv8tuYT5nph0OfxmDf3q0jkxkmzFBXqDzr0P7u3uuPOOkzyxWbyKIWilR2IJGRhfW77QOHwuP4hOuq8/ekiHfOZX6R7ZuAan9ANkTwfFdXiQL/2lA7bt6Zs88eW64ro8lR/nV8mejeub3aZd+8xeRtm1ttPKuv8XZVwlCgZ0DApAlAChgpfZOyMFmINT4Ny8nsgqBQEAAfN18V0Q3RNC8R5BMwXK5zqHBTRCIXh7oykEYWQ/aMC0FSCCyoSPsAQWYwKKUgDJfYITINEOdLRSEvxxrmbOkk7gE7BxKZOxR/GAH3RwNA5jExKDF1AFGdcVgqFEAo2xPRZDRzofyiTAc5ycXK5Qaivg+2MvlEGf+FKMjTf056Msf3HolvlEBIYwclbg66AQeJVskJn2FF+/+NSGrNGIVkmLawyJkTIuSShZoF8QRz8dYQz4/EysWDAkPHJ4lNvYjI28jK2eoj80GZtM8G5vFRrognvkoVgJQTMnwhhgQIYcuzqwhzHaYY8m9GtHn4xJZ/RNTwSIdG6pW2WgZfrPhM1THPogAWDcdFJZivH1gW+4cQhkLzD75bXJk3s5js+cle8leQ2sUo7shizJi/6xZYkuGyRT+kaHOFWYs5+CcVyDs3v5NCblZyyOXv090TfZCGiCjX6c2ahgBxu+g3xNgNiWftHDxuiWuqlTgo0+4Kou3lNnOFo8pi7BgU7ig24Yly7dG232xhl9aNeOntB9uslG8EDXtMcLGmGmLzSRLx2TtMAEdgI9f2B81+muM9lkv2il+5w/3ccL24adoMHe6Kn6ClvkiwXSuQjEMDNxRpeSMi5flvg/fbM5NONf8gqXIs/A4ubAQFyAIV8KR37VQa+04VdtM5Ig6o8+Sd7YNvskc/oJczjzEcm7+nwV+6Vz/LPAS0fRoSSN2qyLfvg4+oxGONN3siV3NPCt9IIcLb6k/6FvMIU93adn7BetdJdu8CGpF+gdFjqMb/3ye9rSE7TRVz5UezJ2TV1tJNN4Qpf4BU/4OCQreFGMSVfQgkaFDrJBOgdLOkqvyS3A6W6MMWCivnEl9bAkB7ZzR9Rno3QMbpI6GEnGJMZW88kTDWjVDznBnV7LCeALI/yhwXjqpF0WQuM/7dEOE33qmx2Qr37pOjmgPWOFz3CHF3tHh/rkSufEAHxItCSxJgFkJ7aSAV+ivvbwS53SL71bbEGvPug/uti+xQs+2BiOLOrRLXSQufq1P0SvJJhty4PwC0f6U8c38iE78sYXPYE9/vnIxMzY9ITPM1baAVrRIJm2cCFBJSe80Buy5HPJwPjkK55bINEHTBX6hX51yZTfIg/t6CE9oz9sN/0rmtig8dmYdmjfHRMi4+Zkk4y0w49+kicYpexhqA0dwqffOpmgmIDqRy5jYgcrdkcP067xMc6u4T7KrlOOzhMTaMZrwExYBBBAMiREW4HBMGAFCrMYhHNMAsCwuEZAwPbZj74YKIEB1DWKzZnZW+MRTDrG7EtdTAGecCg9wWlLESgcxy6oqQMEj5oFXGByQnigwHhwZBINWGNyGJIGfdaKnzQ4u+5AL0PnJDgv7fCfBgk7eBEuIRMwnigC+hg9DP0JSnS4T0klEi+JXz+jBf0EXtOSCkB5D4SMnCnt1RFU/Vo3VwEZInooMKzQ6ODcKLrDmIIbfiXF7jNOsnKko4Grmb4+KTXdyABFORWKPhc06M9qQa7OwVwCLWmBDR4VfWvD6Dlx4yvwgSsHZCyJhTHohsQz+ecgyRYP6GZU+FBPn5wzXBknJ+Odx4w1V63QUuNaBl+G/+i85Am9giN5JK5LORze8K9vCcaLImHZGVgqyaf7bBmG9JdewJq9kxNHRef8PoE9wV8d8k48bwucj4YO4cvqCN2jMzCmz/QRDZIAukiexmK/ivH0Z0x1BAu6Ti/UU4xJrjkhS2fMNkzW6aZr5IxvDhvt+eOrTIDxSY/4lAxo+OQPnK1Ueq+o/vCXuo9+vNMR8uKQXaPbbED/HLlApC86yiELRGggZ/QIWmyffvMHfBJZ8Df6gaHAYmyy0UaBmzFhBzdY8HWSDK+4NNHnr9ildinf0ngZ/4MnOdFlvMAejgK5BBQebJW9mxSzRX4DHvnaLhiSF32BDfskb30n5rDBG96NgT+6Id7Ang3TT32Ti/uJge/aOxvHmc/L5FFyI17RCbGAjCQo6PGdX0z7QCt9luDRxUyayY8dGV+bYUEzXWIPJhN8k/p0AC36nwtfSd7oRidfZkLEd/Jz6okR4hba2Iz6aEqdR49+tBVT6In+2AWdFpNM6M6PNmWyGLyQnacF6mmDf/p3W+gzefGZcJeEWuTaFHbgD5NcH7KCQSYh5JFxBD/GhBXsJWHodZ8e431YMoGW+JpAkQ/+2Bze8UjX+DL6gVd944vvEE/gKm7wQfSQ/Vk4cMafe3SRftIDsnIYm/7qX39saDEFjejVB39gDAk8GbqGhrpk/MePdnyhPmDlTJ/YifiPV8U9eQRe9E9mxffGeBnfxD9PYdXNJ1/pY9gUu0k/gnfjeyrjKQx/n34JDurqhy6lftBLCz9k6b5DXfpAFnOhg+wR39ryVXCme3IQfNMNhd9mG/rSp3HInx9EG7ph46APcju+m47rU//4Jvs9kcPxu+jRl8kLDOkmvaZbbIcs0ODsnr70w67pvHt0VP/O4pLPk8qaENgj9xtUtTGpY0RSTAaNIYS67hrhp0ETgM+ENaoYilGYCREKw9YnQSpAJAzOlNEBncCHRR+ME2gCF4UyrkADHI6IcBTXGYi+zZh+6Zd+qdAt8Lzyla8sCspojQdA50k8DGnBP6XQ96/92q8V5+dRFoXUH1rhpM7Bg4fie78lIfthXA7YOMOCUsKQ8PSBv6ERUliOmIIwWv2jnWPVznd1tOXY4AJL2LhHSdFOkYwFO3Vdd1897RV1UqnQQy/IiQwc2uiD/NHvu7GMq52xjYVeCgsT/KjDUNCd941d36cf2utTe3SpaxxjplNmfK97/eu7/VGH00cnmZOttg4055MUT0p27dpVjGSIbcpmKc/sBY3okozhG65LXWCXDg9OHA/8hoW+pZO7L3C5Zz6ZRBdM2QB5kh+sYSQBtGVHgkRmJbCGzli9PRz45tgCGUdPdr/4i79YArV78IcDx8puFePkWM50wljoIzP12Tm9YBf0O50oXeCb2IDPaHcP3XTUPQGdXgvAghH/hW99ogNd+M0klW+rdT91FG1kp7ALeiWAsW1tjGccuMDb2QE7dckE/z4rrsPWuOSEJjzS2bQN+BlXv3TFWJI8k21J9M///M+XQItv/Z3OQj5oRXPy5TNMnfGAt8QD7viFIXzgmu3xxbbhql9yVkf7Oj4kf7CU7MEEPuSnTV1gmjbPR9EDcjUu/dDGkdiRC51MGaAjacaD7+7rE53449/QmHpbj5+f8QUTY9OR2nfBQlt+zHW6rn/fYUXurqfupF66puA/dU5fdACv4oG+8KZ/GKLVNbapnWT6orAV46ERbQ724ICTPmGFR32nbOk7PGBgfPXQDBd13HfP4Tr8kobEJc9pS3QI9ujRNxrhnxgbQ3+KNnQGLs7aKTDTJulGm77Ylrr4pHPw07++0YU+/J6qDenbxNE4kkj9DvWyEBr/wZg8HDCjW/ijk2SWuKNLf3zvG97whpI02uaqjvHoLbk5w0KSrb7FSTkO/w8v4/BXxoEHuoxl4cBrWumKsbKok5MqMjk39ODC0Blt1NMfPVNHX2kH+vEj5z2Rf2nnuoUA7fCHV+3QQU78OV7JiX6jHT++k0fKCL/GwTM+je+svuv8BdmTp7F8VuDC9tXVVr/oT9/rO1zUoxdozDGT18Rk1HliAq1zgjawomMDpAIDCJOAcG/Wop0+GNdQaTHBAF1333jjCrqADizGknWzj2KElGJecLtjJUACDSxK+JrXvKbMxI1H8ASx0AIj45oUeP2Ps1UTfz3QDAYNy13SOZMBHJSUTW0Uy0EHQyNL2BkfHgyATIayXY7x9WkFy1/F5DzMqGHPkBjykaCFntAJTtRjPAngc2IV88Wx6mkSl3qzXPTpFw2wgss0vT5VOlIGeKYPs8iBDTjQNrRLtAvMHkV7raVVBqsjVjnol3Z0wMG2OFUrpFZ9fuM3fqNMJtNO8KZeJlmZTE3iWX00KKnfWR+PfFTqXH0//QD+h/7JvdSLU9XVDGDpyJO2pTwbg2+Bv8mJ1UNBkv7W2C7lmAvtK+VKzxU+VaBajF+dNHbqA7vlX8l3kg3Dh47SE3XRNItNTKJhJd+jK2nLtT3Qd3GBPNjtEAO4sl91+AA2MwnXlYIBfUtfx5YfrULP4Oe8EOzIRSII61H+0OrpW9/61hLn2LttnRJP+pz5GdnBYXfkOOKgp3T2n9sZUMuZXtAPY7GDafmJ+rBF11AXjCn30EcdM6zIHop2CnkMx8AvnLQ5Fd8A5/Q19Hy5c53C0OC/iRkjwBBVE4ZoAjGzqIvryhDkuk5+TiUfVVffhKWMup99OBOM5D0LGrRxZB/uUYBjcTirkw7YvQRem4XwoK2SNFr5sn2FQnnkZuuCvq161fj1rWb7P/ueVBvNjDUThOQhMc7v2Vd+H/aZ911fSJ0aZ231k047+8m+87t6dTmV+4zRE4s3velN3Vw8QkIPo8R/GjW5q0cOHgMxXrPphTi5mt7FfEaTFQkl+V1MP7O00X/Kf9pYKRNYObLkde1hZ3uCVU/7xTz+vvCiCwue2nDE6qdj1MajOatKqQv6zT7ZuAlOlrw+jlb1kx9163o+uzfqvnupn6Pa1XaZNCRNw3M9Zt7LNvrJvvLasH5ez7Z5znrj7rsu4Fm1ERitcFlV8tjVyo6SfWSfp/uctKdch3qe98fRWt+vaR/HF79vrCzj6rmffdc+Mq8P22Xd7DfPWW/U/byXdUedR7XLesP26g6vqTupD/ezjXrj9BFuaQ/aZMm+Yer+qDrDuvk9z/X4eS3PeS+/jzonDaPujWufbWp689qwTV4f9j+sN7y/kO/6qn3oLG3RRS7j/KH7JsxWny3MWbwgX/6Ob9U24xsdl294wplP6ZKG5H+Unx+HgTY1P77XdemLSXKWHGOIQ93OZzSLGcrwXvZVn+sx83qOlf24nteG9fN6ts1z1ht1P+9l3XHniQm0RrN2NG6AUden9TntfvY5rt7wOkEfiyTAzNo9ZzOXBK52xtn3Qs8EacuJfXU+v/nNby6Pia10U+YM8Avtd1r9Ia9LUX+WPmepM6RlWpvF3DcZMkuWREs0GDSjl2TYW21/68GY1Hjkaw+cPVbkYf+kZJoOTBt3yMdiv5+ucdA361iz1IORFRIJMWz9KAPutilx6hImybNHZeRg36uJrSTP47mF0FMqD/6bRONy3BsMP/brpLGHjabVHXefr7LP095iuNsr7odz9LcOHsPxTuf3Ie3D79NoWWh9/c3aZtZ6s/S5kL5qnhfSblzdcdfrcabxMK6PcdeHfU/rf5b7o/pcbLulpHscXQu9vhCapvHN7+aihAUM8U2SLMax/9yuaUHIBFtsE+NMKOQitq0lPXleCD/T2ky6P+7euOvTsBjSPamfhdZdSF/Dvqcm0MMGj7XvHnHY42L1xiNlj44lXPZI+25lUKIlGJ3K4wRJuKTBY20zrJxVUnozxFaWBwE4cxReWk+eHneRr9U5ydsWTzPCEdEDdT369hhMm3p1dHmoOzN6TYw9VfFDlT3xow3bYayG+n0Bh07/cyWEPfnhiO009ROiMwON08sFTCXR9uN5g4XkWXCE+ak4/tPLRRutIdAQWAwCfK+FHn9t2Y/Q7YWWVGd8y0m0+MYHi232X3sCaLEjFwkXM3ZrMx2BMz6BFnz8YMiPx7wCyHcrafZpWikzoxPsJVOnkkAn1Da768/KnORZvy3QJTpLfyYzr/h71ateVWRplc77NetiNXpX/GDQvl3vKyWbfORe12ufRyMAKyseHLcff8CYMzdhycKRwzjfpuFX0JlYZ512XjgCAigcXxCvNtsR216sLtH55lMWjmVr0RB4LCHAxh0SYn8siO17Faa3RngCmEU884NBW0i9heLq+O1VxrfmJxKl5TlP/BHh8gx5enuVMFuB9hhUIp2b4m2p8OcvL4uVSqtoHkOn0p0qhfnohZJTYP0uxTaRU6XrTG1Pxn5lS862EXgrxL540iD5sHLH8UhCfDbBqfd1namYLDVfuY3DxDN/Ae1pjuvwtNIMY3v5PFqEedP5U5dCrkDzI3xWw/TUMW09NAQeSwhYiONr/ZA734TiO1/gt2i2KfK9583HN4uCrZweBM74BFoAskfIYQUtSz7aEJQE+5bkJjKP/bOEOn8dLLFrs/Cllym7grHCdtp2mKXHuPXYEGgINASGCIhvFgLFNYmzhaJWHh0EzvgEGqyS5TxqmDOxcs7P9f32+bGDQE6IUFx/Hsp1+P2xw+HKoLTGtv5c41p/XhlUNyoaAg2BhsBjG4H0t3lObmp/W3/O++28fAisigR6+eBrPTcEGgINgYZAQ6Ah0BBoCKw2BB5+meZq47zx2xBoCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYZAQ6Ah0BBYBAItgV4EaK1JQ6Ah0BBoCDQEGgINgYbA6kWgJdCrV/aN84ZAQ6Ah0BBoCDQEGgINgUUg0BLoRYDWmjQEGgINgYZAQ6Ah0BBoCKxeBFoCvXpl3zhvCDQEGgINgYbASQROnDhx8vNyfhiO4/vw2rTxF1p/Wn/tfkNgoQisX2iDVr8h0BBoCDQEGgINgcc+AsePH+8eeuihbt++fYWZTZs2dVu2bOmOHDlSjnXr1nWubdiwYUmYlfTu27+/O37sWLd169ZO/2g4ePBgt379+jLWmjVrOse4kvUPHz7crV27ttC7cePGcdXb9YbAsiHQEuhlg7Z1XCPA6R09erQ7Fo6T0+PwJjnJum373BBoCDQEGgJLiwB//MADD3T33ntvt3fv3rICvG3btu7CCy8svvrQoUMloeWvlyqBNuZNN97Y7Y8k+pprrunOPvvs7sCBA92NcW3nzp3dJZdcMnUsMQTNDz74YKmrTUugl1Y3Wm+zIdAS6NlwarVOEQGrHJyeY/Pmzd2VV15ZnHP9GE5C7XudWNf3kZD3htdHkZd1R91r1xoCDYGGwGpFQBJq1fmjH/1od+utt3bnn39+SZqtNivnnHNOd9ZZZ5VV4VwllkhP8rvpv4c+PK87iwPvf//7uy984Qvdy1/+8hIHbr/99u66667rnv70p5ck2njGGlX0IQm/5557Ou3EErRK/FtpCJxuBFoCfboRX6XjcdhWGu67777iRCXSHDSHzWFyug6P8Xbs2FEcY64ygOy8884rj/w8trvzzjvLIz+rDueee265zqlm35yqgMCpcritNAQaAg2BhsDDCPCXVp2tQPO7F198cUlMPSnkV60QS1L5bSvR/PLVV1/d3X///d0dd9zRXXbZZcWPS2L5ZH6Y377pppuKn+d79csPa5crxLl6bMWZH0fHF7/4xe6uu+4q41hV1odx+G6r4dqigX93DS133313mQCIKZ/5zGfKarQV7O3bt58c62Fu26eGwPIg0BLo5cG19TpAgDPlPDnMm2++ubvlllvK4zqOl3OU9HKMHPi1115bHC8nu2fPntJubm6uOGh786xecO726j3pSU8qTlMgUN+Z837Ws55VHCnnO241Y0Bi+9oQaAg0BFYFAvyoJNnWDFsgJLn8sASWH5bcWpk+FCvGtlzw3y996UvLqu/111/fPfvZzy6+9kMf+lDp5ylPeUp3xRVXdO9+97tL8vvkJz+5LHLwz5deeunJpFYCbExj8NWSceNYRZb8WhX/yEc+0n3qU58qctBejJAof/aznz2Z7Nv6gQf1xQJ9qSsmZLK+KgTZmHxUEWgJ9KMK/+obnCO2uvDxj3+8u/zyy0ty+973vrd77nOfW75znBdddFFZcYYOJ2l1wkqH1WpO1uoHB8xxpgO1CuGHKFZVOFsJuR+pCA4tgV59etY4bgg0BMYjwA9brMgVXTUlzRYhrCRbVeZjd4QfvTHquv75z3++JKgSZSvA6it8ssUR3/njxz/+8d2uXbu6G264ofRvjCw+88v65tclvg59uq7w155O8uef/OQnu6uuuqqsREu8HZJtTy1vu+227tOf/nT31Kc+tdy/4IILit/Psdq5IbDcCLQEerkRbv2fRIDTViTFHDDH67Gbz5ynbRpWQeyT4zw5WI7SdY7SiglH+8xnPrM4bImyImlW12NIj/zykSJn20pDoCHQEGgIPBKB/8/em33JkWNpfnCPfeVOJpO5Z1VmVdbS1d2lmm71zDlzpkcjvUov+k919FKSTs+0elVPrVmZWZmVK/clGHuER7i7vt93AXNzDw8yyOASJA0RbgYDLi4ursGAz65dgwFkGVsZixlzAcCMzx0dA2gJWHKx6DKmkoYFGEs1RokyZr/33nuVwYPxufgkYxzBNYMnjvVAvfDlR33FfxnAzDGy8MPqDO1vf/tbF6ce5gHqZdwnD5mpj/GeOQNQTpua0GjgWWmgAdDPStNNPbYsYF1g8OQRHJYOBkUGS4A0xwzYDI4Mkrh5kMcAzmDMwEpZBkpoGCwLPwZiwDWPCxlU8b0jrbE+Nx2v0UCjgUYDwxpgDGWcLGMtlmPG01MyagBksU5zjBEC8MrTP1wrytNBxlWMHvBg3GW8BWT/27/9m2nJpw4CdZRAnDKM91iMMXqQhgGEOgHCBUAzfuPCxx5Azu+TTz5JuJAwDzA3YITB2MJTTfbIWeotdTb7RgNPSwMNgH5amm34DmmAQbIM2oBnBmIGUgZCQDTAmcGaPAZB4uRjXcaKwWDOske4b2CNxhKBvx7+zgzG78kywgDKo0bSKMu+CY0GGg00Gmg0MKyBqQxAAb8YKgClgFfGzeJaB5AGJDMmM0YDkDFm8MPYgVGDsqQDhKFjfAYYM66zL0C81M4cAC3jO37U8MFyzZjPOM44zx6rMmM/siAT4zovlRcZANWkwx9aLNjQM480ALpou9k/bQ00APppa7jhbw0wYGItAEjz6A1wC4hm0P3FL37hQZlB8IMPPnAcWl4KwRJdBlVoy2DKG9kAZiwdtopgAZEVAusFgz4DMnnU14RGA40GGg00GhhoYCJbkAHQjJVYcAGjjMvlvRGOi1GDdN5TYVzmB7hmHCcAYAGujM8//vGPvWecBkwT6oB2cmIyvaMXwnlSCDiGf3nqSBnGa14iL2M7tIzn0AHwmSOQhT1pyMGPUMZ8HzSbRgPPQAMtdb5n8+3OZ9CYpoqTqwEGY34Mugy4+N4xCAJyAckMfgy0dV82BlHKQMOeclidWcXjiy++8KD/N3/zNwbdDMLkwx96jhlgGwB9cvtEI9kJ0ADD/yt8j/mqz35M/4ytBOKMl+VXPybO2NrS2Ar4JlDOZVWmrR8BOgJGj8KX8bgeSIeOdOqiRF9pZawu+c6ryUQZaKmp0Nb5kjYuvU5zUuJZXePFUSNDiwezH1juIPmrkYK+1CmiB8b2WTW8AdDPStNNPZUGPBDmAZREjsvANxpXlvJiQAEg39PKG6zUgcUESwjLJWGBnpBlo9+PgRleo4N2VXkTaTTQaGBIA1xjr2SoJt1XsvVNo5+XBgB8D6q79EuIwINlT/SBBR/E9CXOKzpSE5/1DcZju3Bwl8jj8nW9fIA1kTvIFyOU3jmQFv2XUOurJenA3n24Tlj1aiU680CRJuEoGqhdCKPkqLUnC8j6xnralsV6UhYOHvltqv9d7/EG+cjF87KeB3fWeo8d1VT9WEpAD49Upl6+1FOYPJpSy01RnePD4uVSGh0I6+klPsyryKhUxB4SdeggFwsiZOSHzyaPoNljPXu5Q19j9r58T9fS2iofs9iRDqSjSk1EyrkvmqinFcJCM3o8rkxJe1r7unyjddTzShxrZivt7bdSZ0crA+nnfnWg74zyOsLxk+BxhGqeHEk5f4VjOa/luOyL7sox+3rZ0vDDytfLPShe51noCu/6cYm/AHuLr7GmrZco53ppdj5b3EeayiFGpL2Ovtq4I3fHPV2JGo6mZltpZrqnp7SiwNxqvdf1TMn68TidFBr2hDqfkhc5g+249HFpgxIPj9XrH0dd+Jd9oSnHw+W7wp7t9rReNr2YFpdOawyf8ZheSj3N/WNZoH2CBZpZAP2zTz/RILyqQVhn+qEncKQp5fyNJB96eFT6Q+gYMns9/RgpyzkYW1k8Kip9VN1+hEqFazN8u83yOVOpLSvog0FD4UPlJQ7rclz2JY39IY0h6xUM9D0eJXKG2q22dK7HgEO6fBmVMugD7sP7HfVjLQ/lGX/Q3qrvKb1V9cf4/G5f9F1GY1npD4Z6X4Rt6f95X9dwjdR6rx0XviRxjXGt0bcHvXqUWHnKjEtJefFf2Dx0H+cd7oTgPXRU5xfZQcq2Rkg/uqAXoz788Ad+8Ykbs5c5YOxY043ntaufpy8+/aVuSK/rhvRgf3qZdUDb9nUprG1rPeJr7XTzS4FpQHS5PEr/eNmV0LTv2WlALivtmXZ65/u76a13O8IMmrtG+hndj5X/7t2eSN9+OZk2V7Sc4EIrnX0jpdcv76XlRfmdj5R5dg04eTWhiu0dLTIwdSZ9/8P/lN55l8/BX3hmT6AfywJdAPTN61fTr/75v6bVuzdTT5M6kxjzVJmrDp7negp+U+oLZbKuzs240uKr5AAITMxBDCXpTMJwdkklxISsyVl0pUbSdmV1ubO6mTZ39mTNLCNllKewy4tPVxP/vn5dMZ5QwcmJ7ONVmFGXgZv2bS39o9598coP0vnXP0wzswuZoYgUKFIr5rQjbQ4UOpBgNlVqFTkS94NExy1/kONQyhNnz8k6AtNyToeEeVIHx2VeK1+L1qQbTgWK7u9qzeuvfpXW7nzu9nfzjN9WP5ye0rJ+KrInZLBw9t106pK+zLV0SWU2Rf9VunfjD2l3S5/DVQ34LKI+rj/7Impw97WoxH1dG53OfursdwWE1ccFMLn2AJoM+gTK4gtpVxkuLi5CzQbw5XrZ1tOptY1t8dh3FukF4FPWP13IAG34YPWdQHjqooLBphyQWl3bk8qf4rpUGrx6ssoYr3NMglLhNyVCy4mM5ukstVFtU/1cv1zr3//gh9ULSrOzMyIqxPB6uQLq6XQ0Bu6vptOL36XXz95Iy0uM3Vbcy9XYMa2hlZzdriKae9Nv1f8+/d1sWvmsm/ZWlUBgeoDoearksPoPS0fuB4VSruwfRPsi5h21XUelO4oOCq+yH1eGPILG5/7kdPrgva30w/f30qzANNbkkg0JsGR7p58+Xuun3whA3/yqlRbOtdKpc+305qW99M4bjJnDZSj3qoVyDTPWr6zupvUtfUGzzafnd6WKZ3fRPhaA5mRhBdxcX03Xv/kird2+lvp6DEio5in1Ck9kaosnTnewsEYVOibVYhF2J9KGrgE9KrCluOJZQGwA25jQzUm0+qMe01KedJXXxGgAoHhbk+nm9m7609Xb6e79jbBiqlApGzWH6jsACE38e3INmJpspxlN7lOaaDNblVEdGnQBFu3JqXT20vvpzY122k3n05mLS2lmbslgA0F8KvOGXeGBfOOCSXOG9XeAaJSLjuN/QFlnMkgdExsQ0qbS8Uqs7KuCA/IadZX70AjFC0/2hMKyHEfq+G2hzQgpK5MeMwiFZrSeAcX4WKEntx7nYOjYxalz0OcGHKF8SKiTSFj3VQ2IruRh2hBY3u10081b99KtL34t6mk/+WGun1I/XJhj5REG4N109q2l1Jv9nvpkSlvrW+nWN9/JyvZx2l6/rptC3ozHTSGuv5b6N9cT10pXqGJHvuabW7v6qMK+B2uesACU8TMH6CIzfR83mriRpFF6jKYdoFWc0sqaxoZbt9PWrty7lGtrixubr3lfm+iwrxdIp/V4MlwnAOkxXohPpkdO90/qFS+9Upqm1c75KcmgPXLv95BfdFQmamQBPM9MT2reykDfpZUrPfLBiH3dIPDkaGtXq7moLaur98MdTTxcNaxe0oABQc4LsmjtpAun99P5s489FbywGqKv8CyLJzM3rnfTxyu9dO2WXBP1faYeD1Tdl17Y5jWCnyANeMycn0yd21o/e2o3vfkaX2SUgOVGLcuKcXB9s5+++1zj045eupddcnq6n86dn0hvXO6nt64IhDf9sjqz6GJuppdu3dvReK/ZLhuUKoKnHDnWqMkE50lVqyf0+rBiAgtQSh6TGAHwGpMhk1cAD+YyOhUTvvxIPLUx9fKPxYg+gm8LIXgynsGHCTQsXfCs8zWxNtAQNBenNhpWAABMTvXT1LTWHp4TsMb8kIMlHhwmvl83zQSv+gEEk4AH6jY91CUgTDtt3L+mDv9PElDWNoHuC2/IEj2zYJBdKNlX5apI5GZxB/n1QiWe21EOy36ElXmMPhYqtOyH6YeP6nQH4oeQHpJ8aPHD2jqazjG8R9MPMM4JdfpRmQqPw8qS/kCaB2aO4zooMIjV2qPEetsKhzptpCmlTiuAuC+gB/idmprW2Kueqs7eVzrLQ03oOpwQOp7g2XRfq51sCxDKwXNt5Wq6f/trWR131F2nVRb6+AgN1xSXApca/aYrV6z9nq6wlj6bK1ALsJwQgPa1lq/jsBYHKAXacn225ajH9YZ7QEeguSvf0umZxTQxLb66RsLinccHXVtuv2SnLUUWrtsYA9hG22MQUdyBVCTWdSxhp7Eu0379TUgHAGg0y7gjbG2+U1jlVT+cMwvJqBIt3RRMaMUW7dVKyUEba3RB/fJupQ7OAVuGFp//Bw0cL6kmJtT2997QjdZ/0apAE730zz19IvoPskxvSzPF4ykUdbgGHpZ/eMkm51XQQB564oLL15suOrAeY2fJRhVch1yQ7Wn5Sp9tpfMa4t/6QU8uH700L1cOj12vgs6O2EbGrtAjejtioSdIdiwAzZln0vPjWU1SdAbSqnZwmHuHdzmO/KYVMUnVxFk1LDqVH+ZmAqzRVXFXELUwOVJtCT1pE4VaJiVG/RnMi9ArNQjkhn9mKYXM0bFJYSLVfZ4mZHgxQdduFOFRiiGQ8jUTy8p3L1398lcCC1KpJqLX3vqJ3DmWVJ4rIkLIr9JVQ4qugiPJ9baUct4XRZbELESNFS0I1vXEQp/3JSvqKUcjROMODyEdTq40M45DpI2Ru05c53dYvE5fjxf6si96ro7rxFX8wbkV2REj5nYIy3pyiccVkJmXxJG6qmQiPtBmSNUc5J9OLCTr967qJbEtP0nZliPd9tptWTM20rRAY0tgkY7GDSqPDCmB5XlXFtntnY4s0LI8C2RyI+ug/uz+IoCKJZl0ADU3iwQAK8ebermTOnV3agsvN6/7qoNrva/8gV80FukAtpRFAq7L+oUBFrZuJIcDdOajdNH2kMm30pGPS0eUUb7EBlhjaadYtNCR4EEKvCRbr418IaNVGJtM/OrsQk+vTnurlqrhcwIrVy5Opr/6m30N5b30/3Sn063f9vQ0QtfKAxTjnuebtopbE2k0cFADdBSNSRpyqlC61Wj/4nhS/fGNd1vpb//XfRkKUjp/LqVLl1NaBkBXHJrIQAM1bDhIfCax4wHocjY56+4JJDDt0T1yJlGOIHEs55l+kObUIBh0NB9HIl0nrM3iS1mzJzXXSVKth2b2SpM0wcK1u0aKRLGcVuTIbJVHXX5cDYUZKDFP4JSlOBu/va7Ivqx7q3evuhwAekK+TqfPaaF4Wbyx0lc1wIOyBPFt2RI2eOu/LmpFF9TDWwhHCELvhWyQOYiVvNykwWHERDiOdpTs8OMxQmXiql2HkxzO9nFyqgofVPhIRIcyGO5Xh5I5Y7im4aMxBOOZ1U4OUfqo3aAU76vP4XbkY/WxndUbck34Vutq7wgIdNR15Y4k8DvlviiMKwaA5D39uMfDb3pHluNtrMdKc9/HbQk06obSV3HjyC4W9BSuNzUFYLy3uy+fZ/lar2+kWVl9J0SL+9PeHjei0eeph+CnQbI8w4s4fOm7oU8x5L9S7nB6cMj6y9c2pL5hzmXKcWZY8UZnHohyL/eYlFkF32b7qmpgRqDlvXd4kqqbyL1e+o2eUl79bFIrTU2FOwc3mu6XoSG6PnefLd10tuRWdcyB81VV+6vdbsYeD0oDNTB24Xp2+bUJ4Yd2mhV0mFff5L2SPLwNiJtYaOA5juHHA9ASn4EkLDiy5mjitUVJZ5p+ESc8t86T6OAOilTnu3wGle5Momk7IgsR+ok4tFAx0ToUtqIJGA0jbvSUkef8kC3IozS0ud4am6ih0DEuyjNOFU4YQNBxVa/ahsC4m3ggjepcJ8uriUB5E+n+nasCE9tpZ+NeuvLOn6ULl98Pn2hZ3FBWWMCxeKm+th6Tz+AzrS/0qS4H1VWFWrRKq0dyG6qkIXoyI2GUrNAPkZMoQpc6kFFKHGV/WG2UzYwfRHKUKo5E83Qrcd8dI8fDax2hGDkcw3KQZNoogCZtRc25uBttbOK4Kfcj+S8AmnflC82LsH7awnUiQBsAW11PDHB56AoE8HLtjgAwS5thiW7JHQPXDdwacL/iqgNQ424xobxyvXOti7t9plfXNtLG1rbPMNcNYN2uWQLmfmGXfq36Jux+Ej7Vdu0Sk7imxcz/bCJOgmIRSpKP4sDngGtSaQDuqlgu5eNBolNzD3RdmXOULwfN/pXUAH0Zl6DvvzuRlk9108LFVvr7f5lP33w1n/Zu6xroqOeoT+vRpOcXlDS52Umt++rzfS0DKNDtUHWwOGy2jQYeRQMMVxoi06KWrVsQcI4xTBwY5Jpw4jRwbADNCS5nt36OB1NfDfSCGiEqhDocHm9UCvCrP6dr0jXQLGojUWVLcSeLoOKRM9hRbqgs5UpB9iYa1G96M9T4qNEUvNzjEbUKVY+CS0V5b3aFJ3KwVJj8oLfW76Yb3/xBj8wFpNeupTOnz3h9WYAHdwVYA3v9dtpPs2nu1Jvp1IUA2f4YSK11IW+pNAvHTkljUkcUA2ERjngtHCg8nFDpqVbkSNHD5KoKHyJPlf/sIo/dxkNFHNO2MUmHFq9luNhQWR3Qv/L5JAbw7ejlJ27eANK4Y+zJAo3P/kR7RqtMCBDLnzksvGKudMAzN4b4PNMVeUkWqzWW5z0BAJ7W2MIsAGzXKGSQhXhSx4Bi3CIA6jxhQZR9ld+RhRvgvKVVN+jfUwLa01MxrOztark9bi7NBp4Df+ewGBfLczQ2rM6K+5+0km4WOoxjjhwtx6aHWn8DEusltEYiP24OKB1Hps9lasWCoNm+choARM8KtFw6N5H+3c966ey57fTNNfXxu+pFAGj8hOjamhBkd043b06kq59Mp/t/0Fh+b1cgOm5gXznFNQ1+ohpgLPI4lW1qT5R5w+yJauBYANonmpOdRdIQo0mLYyYqUklRKATETcDUVeW6twACbOnFhlzRZ6rMhuKlvOOHbKiC4J1YlEk0aiUnKoj0fIhZOcsrDG8SHmVTX5+RNbfHvAekFgd2dZl5q3tDHyjo7m2m3fVraffcmbS0MBuPYQyg8Q1NaaMzmWbOaqFHAZ5TcveYnccSHaACESLkmwkfDBSBCIRBShwfaZsLD4zdpUFH43ponSpunoVNEbAcU5B4YZDj5fBIsj+EqOp2pc5CX697NK/QjNkfJB1NKYxHCo+SjWSPHkJecRoqm3stDaPz6R8rcUfgeKfT9kt/uEjsCwgDqmdn9Ply/kQPCJ7W58y7spz1BWTbmvh5ebYj4Cssm/ZED3juyNcTXIyVmZs4biC5k7VrhfZ2tXD9SI0MAPYCnuX3vL1jX2duNP2CoyzXe3q0va9ODuhHjnjJMYC55VMdHiPg6/+ypw7Fc4gYJSKEjihbKLRHJPOrpZWo8oz3RY8sBI9P3ueafO3XGZqs2byCGuASm1ZHfvdSO5091Uvfe2s37W3o+pArkgE0k4Py99Vnrt6ZTL87N5N+1ZlJK131nzXdLGKJ1n8TGg00Gnj5NXAsAK0hJUJt7gGU2pLFrOZ0TVdEifOjED/F2TEeMZHyqBm6KFPtlJCLKM/FteHRcAQdGO3GUZWsCDyhp17AARa3Kn9QOsslGZllM1voKIvBIQgoUOqMPOZc8DVyA3n9OJqC+kHJJL0jYHGvd1dvc2+l7un5dEogmqeAsN0XaLm/siEUvau6Z13mdOtNfaVoaeDOQbUK0EftOcYuh5rYJeno+xofHq8PQq5nkHD0WJ0NperHJV72Of9YbciSmWXhW/Y5z7uSlvfsQqd1ouF4KTJIHUnx4UjagPjIMV8boj7I6WAKVl6+/LmjZQL2urI0C0hjFeZHe+iHM9MCzeqc+DXPa01jwHWns6u+h2tHVy8L7htY84Lfro6xSBssY2XG9UKgGQwAoPYScBLQN7jq2/TfPYFx1nle1cc4dllPWOlISvfHXQQ5+HEzOMl1aL4aaojzB9h1CW1VsMRVhFKxK7EgKEfKRdg49DWuzpMPq3JVpGQMWDpruD74IW0TGg2EBuhy+KGemW+lZX1Tp68lxOjbDrkv0evef30/XVrupnv3Z9L29kzqfK2Xbze1lNYuk02mb3aNBhoNvLQaOBaARiseJ/Jg4bkOIMYgk3eFphqASFCI4wDbHDMZwo2JOhhAUxjXcHLmm3NM4wmRdP0oE3kMcUz8mR3sy6imNA7rmNHZpi+coR8OozmUQW7ABqx5xG2+yCCg0+tpRQO5daz0tZij4r3ufFqald+zXrLi0XZ3TwuAb34tS6IW8M9flzt/+Xv+GAsgxiFXGvKRErFKFh2OpESxisCHD98MKsi0OWEMnwOkY7gPig1iY8giSQyPwvPQ8o+UEeeIIo9c5yMXOCiYWQzxGTpwgYMpwQdN0p/xVWaN5paeXNBPhFMdsPTO6yt6p5b0MR+1blvrngfI1A2ewLBv8uT8zJUBiMZijUUaoBvWZ5avk370A2yXdwC4pujbKAzXkK3tbS1cvx3gOQP3uNZkCRc/wDuyApRVq/ZheaZ8kQdmtLPawp9j7yJectkPAvGDfYrUoMr5cTAolvMHJSPmbbUZ5A4VbA5eOQ3QDzVMC0jT9DGdSakL6tvvv9lPf/sfN9KCnvz8/r9Np41Pe76pbenaGtNNXzk9Ng1uNPAya+DYALooh4mRkHclWWNInkwj1xNmmaY8ebqYJnHvtVFmBZzNr0yxHAzGJL/MZ3SsNKVjRCoyVDWaJ8X0l+NlUCuHIWiRCB65DiflA3YDkioODz78wGL8gGhb27Q3iKeACLAM8oLWStoRTfBbVCWAGAg62xv6lO6nAtV641aD8MyMQNG5N9P07KJyRQNZrW4dOZBcwpjsaO+4jFzoAVmFbewPqX+Y6ODRQL5HY3BkuXKVg3oOyvBEUx6xokPJhzIGB4PYIVKPEOBDPKHZHbcn3Iw5xn2CPjQrC/SW4garYgcY7gGgxaOlZbq4N/PqGOq0+CXzA0ADsulwsfYz5ZFFZyT3ZT6eBHje0FJ1fKxl9JrgGGt0+D3zQjEVFlcQ9WYEcHDPtnzcGpus9PWcjxymLkVyyWrnysnUzxc/OcTz3keZB0kjocjKvUcA/NDXCFlz+AprwGPRgwYk5Z3W0mL/w4/21IdxjZpJf9Sq4mufa3xfkyV6XwQPKv8K67ZpeqOBl0EDxwLQnvg0YdlnkvWSmbw8ZgjCMnBow96AVsSax2NSdp7ySctzHu4QA+txzIPxqDfKZHbBv0brl5HMyjOnC5IWk7cmUNF6PWfKeIJVGoIzc4J6IWCHHPrhfuJBT+mRo8wqYtJq4/bCCpDAn+LhK1KRkKAkPSqXr+kqMuADrb85gRzaizV6fnomzbYEpO99mq7rJUTWkj5z4V0BmfiARYCCOs8cz3K52nFEZBwivLNGWPqcjaT5cBzxOLpD0w5hcIheD2VTyzjA8UBCjfgpR131A+t/YObwmXsAKV2V64VPduOawXrOeq7hfkRnto+z+hdfEsRSjDvGJJ/qU2dv6wvFuF5gce7imyxeYb0WeAZsi7EtxgLRXudZpewaokp5MRFXjbA8b/nlRIAyoZxCrjF1c8knAE2i5Izrl0i+5nJLaaKvQYNrSKHxfy4IxZhQksWfKnI1AyFKPkVRli/IuFl1HWaZr+uch26m9bXCaV2D5QbcZM2m0cDDNKD+ht//Ka2Y8NPv6QLTRy92lpbT57qx7fy93Dmm8InOnfVhvJr8RgONBl44DRwLQDOBMYtVFtc8nTK3Oo98DTBMXsxXnrN8FJNYpMXUZosy9AoidYgvhunYSLXGM0+d0NnK5jryxEhaFI89BwhTCURUf37MLEhdS3exQq+DWtRZbEbTAOp9AwGBdvEFRFQClKgUAhgBhKxthO15fnZaQGfPYGVOiz3O63Od/e276fbmtgBNPIJfPntFE/uc+FHrmFBLrqKj7akLk1kEyQHCA9VkjDSm4ieUVAk94DcmaZD5HGOW65GEG0C2sWI/Eq8aB/WFtoGxLMYCvt2uXC305UD64bSOZzR5z+q3q5cHp7IVGtDdFzDuCEDj96z3+9SnVAars6zPnHhuAjn257nVZ7jRw6rGDSGfD9+Uz/OW3Db4BHYdPNOLuP4N0oXVKzAufnwdMHqZBHAfzuMAfTInoaUh4Gq6WntLVPSHhdD0gCBio8eUpj2xQ19T0lFbn/L2snvSFTI1odHAo2iALsO7MueXWukn+lpcmtlMy7sT6b/fnU+713dSd0MGkcad41FU2tA2GnhhNHAsAJ1nR4FDACLAUD9PQnkmYseEpb0nSc+meRJDRTkPv8sCf6vikOUfhICAmOBMMYjnQ1jFRK4I1jTtCAb3RJxgKo7M23sfIV+OQEKcvYKj9bxIrvKcZRSeiVygRqSoWWUQzaoHWOi2duLlr9mZaQGfAD0d+UGv31vRk7//zy92AW6Wz7ymT5ADojPPLFepoTpUvls9pv5CW/aFVTlmX/GpJY6jq2U/0ei4+o9awTOR85BKxiePTz1qe+p0hZP1w4H6Gn2V64lrYpK3+rT+OHGWj8N9YwZXIN2cYX3m6Qd4mZU7+PkGT8cGzHok1JIJjVu/lsFzuFNwcfhJiYhZCo8XBllpA7/rcp78oEZ4wdiZnofPdAH26rdc0fFirUeF3DcRPGSnjdTscUFpzmBXD04vOYMxIkhyJgwtFZLBMYciaHVYErQXkW8eFJnUB4+Qwb9B6cKl2TcaeKgGuB75dPxrS/208J6Wc1ybTCsC0N/9o3yiv1FxjfV93DkeFiA5AtnD2DT5jQYaDTwbDRwLQDNwRMgTV3WsVGZWjvUjymoVcaht/Oc8ZTJo5J35cUygQC1OLbVD5TPRZxLN6DERloKUjXxSDoQ6bzJpjJnnGnxcahuUtvXN8kebvfqB61ZdRSG1YlUU9lmejj6VvG+rhB6PywpG3VgV29yIdDvp3s0/2a91clLWMblxLJ1+zQAFKWjv2EDd+vnlQ0UfHmpE4lk7GhQdmzhegPGpA1YPi9nY+TCiMflF5WOyjpQ0tolVyQfnVmQl8ojkpdi4/XC7oq9xlgC7JXCElRkXCzoGrh0TAsT4Kns1DAFcLyenvkZ/25fpmc9rz+DWoQoAwfDE/xkgzvXjT8+7n/Z0k6f1neXzzJMSXjgcnGPoeFkQKzXAmXoB8ZJOQDqLYxmopwDUiLtKt0NZOVSRklB1yHoO7dVVNqDRcQmkcnQgVwm+sVYm5S0DtC4abfbSkT4eLl94N/tGAw/TAP2JNwiWdG199J7WVteLhb/cXUxfbep6vCZ3jjLT0kHLIM6FQshp3vEE0xHnNJtGA40GTrAGymX9WCIyDvALH2P5YHqCIi2AKxOWJ1ONCAGf2SvGzM0crlpj0mbMYNTIIQ8wWGodRGjf5IyySGbAGp5QxSFnADHM1+WDiesKboVlVeNgIg8pyiNqAAGSDQijzoqBIp7SJSjguTdgZJLxm3Dn8KTuFmBFDPBBRXxKtrO9mVZvf5luYJ2enpaC97QyxyJmMwFswDcvrfDIXeCboMfsKLPNlw2n59Mkbh+PEmjmuBCqG8kZJS76RROEUijrbqT0oYciN2eKj1ZRL1Tyy76e91jxemWFadmPYVgnH5P9OEl0m6ixigyxKVX6GlAO/T5AqS8jbZzipelwzdjYYnUXuVzkpxwA3bjRy1ZhgVy+QsjayXbbEAinrwOe8WHGf3p7d1dW521ZnzsGyq41C+InTrrY/AIiVmf1S4Az7TC8pxluUMjl86lM8pE7WkATiR8SqlMwTMMR40KA/1xWiaYiPfc/aoamsOHYAdqSSEKWy8IFRbNtNPDYGmC+u3hKPtEf6AZ0fye15+fSH//hYuqta97DCk2f1Mda6JgtPs7CP47UExr7+ZLour5qqI8TtfS0qAmNBhoNnGwNHAtA07SMdd1KX/K1696f8o1Z09MXILpka8jwZMq+mgyV6clNaXEjHtRl8qvqItkMIIyJ2ZMlBDnPZTLgribMnF0JARv4ECrmMUGbEZNrljyIgp4qCGXvNgjEClJExrhtlivki5JseZTO6gkIYjcYyTHFY/WuPo18+5O0sjCTJvvbaXHpvB6zT3mJpN2dTfm/TsuHcyZq0kctDBwm5/Vlw8tp8dRrskrq1FaNGyfQEdLcsIfRFQWqOpMOjiOlaOlhfHJ+vfi4IiW/7MfRPDDtQQVLXtmPMDokeYTqyIf10xP9TEVVx6HVqCNThh8TNYTcO2ENBjhzffFFwV29RLi6EStl8CJf9FSsxZTRNaiLJSzNYc+OFW14sTD60Z7Kr2uN5219SZAl6bhZc1k4qSr3U/Etn/oOdxCYK8C/aoHSolLviGaqr5IoJAAAQABJREFUWiSKVdtCQLfhV45NoAT9Rw1kKpCv3xCZM7TJJCU3wLuS0SM6qJOUMs2+0cAxNEAfn5tqpTfOt9Ivfi43vTmtw74wl3bvqL/t6PrSjWbS+tLufNu6eJnoRN+TI/X2Db2o+5VWZroqum2Bad8pHkOYpmijgUYDT1UDxwbQmlv9CJmBoTwqLRIzNnigqM1uJcokW81vitkCBr0IjAcUnfTkHzygBWQEUAY1FE61KjR6eb4WLXAWCljYtUIM4IF1Gf4OAxY5QXUoDdDBlwJZ09bGAdIqiuGiIVfIZnRR6EqBWl0kVWI7HdgbHAoZeji9OJsWtF70jCzQk9vfpK2rK2lvZk5yaUF/rImyEIbPaQbJStvXi2Tb/YW0fPmnepw+neYWz3hfQANiDe4RSm1F2AfsSzseQOKsQ1kelcHDKniK+U9FxGBa+uNRpT+yKNI35xOAuy/LVk9PKXDXwO8YINxVH8GaHL0+aOn3sVpGWKR7WguaD7GUrwTCMNw2tlJHSy/GkxiuOnjCA37xoqCXvsPqrPros3YdUp4t41wtNMSNIa8c5PTIgJWvN0dGNy5LInXmA1efr0mlcstQKuJqdy1Z4dQJsPdKIBqjIlfkDlBGW6pqck6zazTwJDSAT/QbAsr/+aON9GdXNtPK9oRcoXHy6OudFq4lXbv7cV0xh/IBw6++mUof//NE+vKX86lzezu19Z0Av8AQXfVJiNXwOEkaaM7rSTobjyXLsQC0JyxV60lTE5YBswYI+kWZmAwR88Rbn8RMJdDnoPzgEQNLngNj4hWz8pVAg08dx4QMrbjAO6fBn+OugAOTepGiRKnTvqGlXBHSQmTplOaSRt4hlyugjty2EPro23o1xMXKnBDdB9pEm6mcL8lNpsW5aa2owMtYeilFvqj7ncE6tZSDntU/StjRCHxXHzbc3NGtQ2sivfbWT9LC8nllD2p3HdRZSyvlsyA+NMkg42ixQTVHo3/BqaK5D2n0mOwDSQcSDldMwcP4M+OXrM9ZZn9nvSjITZVOMAYuzjN+0L728t2iu5rivoFkLx7FP7p8SAXAvasXBnf11cJ4ghzMiksTjHHVYJm7cNnAMq3rhh/Xi0I5pu58RQ2l+wA6Igg6Noz2wDiekHzc0NLr5TlSPe8p1KXuuCyyXFFRrovxIuqOqg+rf6xQTWKjgSNrgMthXnh57lRKF5b7aUPXY0eGDgL9mNDVhEaMXqjLMb1xdj8t6Z2Xzvp0uv4vWjXnuhjo6aKJKNCEl0sDnPgyeL1cLXtlWnMsAM259yRdU5dBYe3YFJqwy0BRYTcl9FsxoDCeMPETXF4dy5MvNKTpx4RXLGCl3wWAhkfcyQMATK8ksDnDE3wKqDA9skA0LuR6mYiZqCkNT168stna5UphpCCU49LGkh651VZk3ACQyy9YUYZacjoRBfxVATe0ubyUJZuh8/zIHnmU2W73JCdgRi+qCExtrq2ne+u/0ueZO2lu4UyaktV6emZBpAI6Lq1NFSkJZT+4PahIStNEUouWAq/M3vqolFKaHQkHkkv2UfZjCo9JqjjRUzgPPBnZ3hVAbmkVaCZYUtUx8j2fjtumqW4Wg8Kgmb7Fj5cCeZl1Vz87H9GfuBC1DnlcZ5JE/+6hSsaaywutuBtxTdE32fDnPXF1cGQIOVzYdAFsRV8PZlBPGB+nGgKgg+XCsOyZn2Vw7ZaBNK4D5EQkB2Ty9RFAP9oVWqSpJoQWOhdoNo0GnpwG6GJ9uRhidz6lbtnXV0AJ9LWIxdaJip67pBeBe7tpZV0W6dVWurGibwXIT7rffBrcKnqRN5zpMsYIgviGibncaSXjRW7gKyr7sQC0p1d6hhGpLnTtOcyjg1VK36jcM5TJvAl5FAvw6ESKKRFrF3CvpxkOfp4snW52UFXs4c0EOUgpNJCpUO6Y9vnUof4dSHacTaZxhgAA8gEAiNDRDT4lS8v+oaUg1IWbSSlQT4KgCgPKKqmKUJXzMxFtvr+x45fAAM+wZX3fhbkpAaC+LI/7BteQs+bvmaVw9wBA9fUYf3vrXrp9/fN06pvf+mXCc5fe81JdblhV6/gIMGJIVoTLYSSnJHuPql+GwLkfH8ZnjE8d4XAkoijzYFIpWQRhLZ7Ry3+TAsm6yfKHd8jQGdKJAFzjwlEC5yZeItQa0ALNrMTBp8Ad1zFg2n2cCV5Qmr5vOVSQclyNsUrHpPfhrgEFvSXqDcyquHi4n1mRyMv1FLSZq8WKtCLh4XtKhguVwLN4s9oIVXhc0N7L5DmNlUQAyfDyhojrnpqSG5SWiaROrPJY6vlSomnVRkv3kvRfN7rZnCgNRJ8MkQY9s95Ls7jK1KcA0mtnUvr5R3oH4dpsWrs5m3a+1rXKx1iYjJp+eqLO7SMJw7nTD7Sytd1Kq1u6WZrV+06MX+TVO8cjMW6In6cGjgmgNUGqAzCp6/ZafSADYrWofq1H31CK/hlQOGY8IBBncqvTx7rQIjetNmJvY3UQmw/0UYYtGYTY81IUgfKkIZUHMupxJCjNI0iVr0jh71JM2LEkl1+yIi/TwrWEqLEcHWUfjEbLceMAMEAvO/pwBZVNaOInCOKkGSX50T0vieUvyXGTsaS7WMTiJoK/vT2t13v/drr25a/TrJ4fzi2csivHpPyi3T5zPHxTyVVra0SrnAOFs0oPpL8sCUMtHzp4vBYOWCg2OHgoM0hZE/zc5Q/larGe1u5+l7bWbqS9zqbOfO4H7kdxI4oFGsC8j68z4NGWZ/Ux7SkQTzfC9QoAyjJ4/V7Q8sBDV42ui9oydboeuFYDAMc15bibkRtS2lP2waVqW5StDqsI5KXLEdewEqBZe7tt5HrJCxcS1Y88llGyKoO8KvhYwFrvDUzJ6RTadktfi+Maky4IA1lKzVXpJtJo4NlrQH12SV81fP/1frr7F/ro1no7fbyxkLpyqZro7DARDC6SZy9dU+MxNdDX3N2e3U9ff9ZP//qP++ndD/rpjdcm0tllxrEmvIgaOB6A5qwzc2lywmeilR9RhSKYlKJbeHrSxOVD6DVVglfroTpU/gEYriL+4IP2wcvzoOKGxnU2Ec91QFwAM5WbL3nOhxSCKMIOyQgAWWhplido0vKP/HrIxSMJBiWh7OvEVTwTlgpzoVKkLC02y+eaBWCm9ex6ZkZLhWExbGmpOhGiTnyk+RR4AQIBwPt6AWw73fru4zQ7v5zmF0+rHZNpYemslyyjPYeFUr/zC5kSS3RcuVLmQTSlHLTj6A5LL+Xq+wfRPiivzuOo8aPwG9eew/gP81PJIxYOsqBnmcJLb//U5/bWt79L17/+7+n+7a8FCvWxBlZjUSUGzorv78nvEmuzQHRZxxkLMiu0TPCRFdGSDrjGNWNOL67qWz4uz9UyIV96Phfu1TbUD+lnfrfA1496EiIhnDb80T7a5L2VQGYtjByWHCdrE/ewqlfXHa4aWJ0B0u6zuSzXA58sx3XJ/d53ycM1cvW6cVy/WHgMnnWg5SL5cmOxYB8YhIpAzb7RwHPSgIbzdHaxlX78w27a0io4N24sp5t63aF/Rxu5bdUuruckYVPtY2mAIUoAujXVSZ/+gyzQK5Ppo//YSn/91/r4joD0jOZ4j6WPxbwp9Lw0cDwAzTylR8ZM0H39Yo6LyYxJKkJMrOQ5nxmxCjDQJF5Inc4LgJrsRA0PXoWKiTqXU5rJS5nc6woNVFG16KDRjxIA4uL/GQ+mPS2rmrD6MnlnzpYT39I9gIUsWPFJ45C/VIuoWIvjAzHIyKSu2vXverO4Yjq4MFxYtQQZWQ5IEkABWn2SWa4Z81r+aGlRn/SWLiZkfp/WwDopsDM5qboEBLQxwJiZ0F2tblyojrLUzcoKO3LpuPHt7103q3dMvPmRwLSeDyLjIYGcIlNFcji5SR6SXbEhYtoDFeT0IcrDDx5U31De0MHh/B6U8zAWD8sfapmIH05/UBqXyQXZYSnmPLIKBmd9c3MlbazdTvubaxVYBjQDjOnv9AdA77S+UBjnfiBFlz4u6zSW6dkWLhqTqTeh1TvaXftt0sfoO3bbUAc1YFWd7N2NvC/86MWljVzzHGEyI3DSI9+HYzbce9vPmX4O6FVx15F7ZHyoJcDvvp7A8EJWfEQmnhINWEbN0c2oM9drfjGmlJcinSPCeFI14NDEGg08Tw0w1l9ZTunPf7CfNv+XtfSPuuH909/NaanoLT2eLNfU85SwqftxNcAXKbfl437zy3bqarGAU2f207nX+ul1vWw6JxAd49bjcm/KPWsNHBtA2/VASJK1aAOAMiPRjOgKTFJMhmVq9Zq1eVIDmDLB8zMJZApOJ0JG4WpCJ5pz8M2TY6Y1OYyiavO0TPBXXa7DfJQaB5RU3oBPZZ2Ch9oESLavpcplti7DhmOWEeOzxzxWxqoX7ci0owUis2prPszyIkPIgeWbzzBP6wKziwwvouDDgtBY0wSgDYp1CIyyft0GOIbvNr6e6ys3MSemea0hzYdYJqdn9VLhfK6FFhwMlUwHs6qU0WZVGUeJlAqOxeQoFR2PJsQswj6E1ygZbSOttHE0v8bu0KxaRi1KZxXQnZYF+lQ6c/EdPW3YlAtHJ3396T+kXS09Z2uzgDEC8CVLrK98qId+xIup/FiBA9Fw7cAfmv4NQJ3SjZs8MdOe+voE6zjKLYvOZR/p3L8CPJNGFUWyfOxGK700vmTnFHLqobDgdpkXBLE4ew10xQtI56rlmlQ3FhxnL4u5LOvIH+un1zjW6qt0X8v2DTTvCjAGIKPbpKgOSWlCo4GToAEuK73ykt640E9/+ZNOWrvXSvfvTKaN38iPX0+I3FmbDnsSTtWjycA500/viaatu/104+N++tVpfU12upv+x19o7fCLMnSJpBpWH417Q/0cNHA8AM3J1g8AB7YrfrykEegI5GHBKhMhc1cFRTMhE6ij+dhzGyV0zI8yPJYmTmBH3LxVGJDrFQfonfp3voUa0Fb0ilgGTaSepEUXf3AGDFOaV6eiDmSND1WQfzCoOj2Z0cSuv2ksdvCXST24KJNIDtDWDksyIg+FkA9ZQA3IC3SIP1vPBGzaAkl8SS5uBJBVcXFxW1QJPLBCbm+t2x96fvFsWjx9UaBjRkA/f8FwqFYdjAoymu/jaNvYrEdJHKeIRyn/VGilABSXNXmkKmjHOL2VtLH5kWgVeDOoqTpElEHyUIx0uve8QPTr7/yZAPRu+vrzfxM4Vn9Rz52W/8OUPhE/KUAc7hcBnjt72wLcnQDNsmTbJ1r9aIqP8shVg69eArT31Z/39UIqXys0ePY1Ei4TvqFDGi4odt5UUke6DumHXEMsKTkIAzpirPqBfzMv0gCeeUmwUAT7OOIy4GmQ3VDy+QHsA6DtUgJBLZQaC6841tMs8Sj+z1auMgpNrXgTbTTw3DVAn8Ui+d6FlG7/tJtu307p48954sQ1qdxw43/ucp4YAbiQNYa09JVHviEW1/yJkW5IEI852nS1IMAnfzelrw5PpNdf30tntersIm0Yom4OTrIGjgegdaaZ6MJaxOSXE9Ri4B6BNGKFxtakQIgiiq4CD9tutYeWidd7spVZ1aFDcw7WZCqPkgK8srTBO6xLkAH0xCD+KUg0QLciiMBxzO8A4CCwnMph6bqw0+XKkNX/lIpgqzbyqe6QEckJ0AwAfxyTVLSilAEbtxVgHPVJRqyG9j3VMkawE8hpywKNP7cgg8piUeTRdQbq5OX2RA0cUL+s0fKNvX/n63Tnxhfp4pUP/FLhpMAVgTJDoSbTUPrQwZGIhko89sFjyffYtUll6gU9PSbVyhbCcjqL9CydF3eOLIx06lQdkoI2oCHupd4oSJwNnYsMhbxTJK6HkdQ4rG2hL7iQvsIv+jd7CFWn9hOtbpqbm01nz11KWkFW55tl6OTWI4tytaSbCL3kIc7FYgRwbgM+uWYElttKJ+56qNSreCgdVypfX8oD3IqAXwlKVX45ijggeEKomBdv9yRbFTIdO35T8tkooBkQXdJDDmRkRZFYOYR4N/t5YaHGWj6tHy5T/Pn0VBWVCBwHgQ8Q7etaAEST43OGAkvFA9Im1mjgRGiAy3VBgPDH73bTzs/20rd/N5M27+uq63XiEj0RUp4QIXQp9/Ue1tb+gj4oNpPHyBMi2yFiaBXa1NW4mzb3043NjbS2K39orczhMemQMk3yydLA8QB0botOuUJM6LYIxQyVU53lTlGmNO9rEzHzWMbSA+Ics3lZPQryKC8AUhiJxhbZDE+CZaFSpgK8KVgVIV4d1Ag8pQattrlAAAEfU0e94kgU8ADU4qbCL9eX8w7sqDeU5SyicejpPKcF8BdmMIgAUITAoYO2ZQA2lEaIUI00uDK34EgDADuAqZ2t1bS5fidty1+2y1tiOVgPhbwkjuwfkj1C/YQP6/oqzX3CVRR2e/rq197WXQ1mX+vLurt6cVP+wNKdXXR0Mvizm45mNVZDsY+xO1d0FQAm+V3rnHPIDQynLtKJ+5xyrsCo/CmBZgFgdWj3hDit+OsDIOMpCe488IuXA1leLsoChDnvXa3EcUpfbWh15v0RFIAnopFX+f1TaZaHmy9kJV+Ola7bmywDLh7I5T4mwQtwDvA86HluYFEgvF3K1VRtp11RAYA8bizwccbqTLMB3CUgjm8k3Xa9DCtXjdBz6A6ZkX1K4HlShUMe2MPDFRVWeS89cQ5Zug4ALXcV9oPAWQh5y3aQ18QaDTx/DXCNvHaqld6Sn+z0+cnUn9G1uSMAfViXf/4iP3sJpIvWTDvNSD8f/Xw/nb8SBqU8HD2+POOGlMfndrCk5GZYXjzVS5fPaUk7zim/JrwwGngiAJpJDzDAj6XVmBOZ3Oh/TIoc2w2h1iFjUo6J0Z+nFjUTMP3H5XLZ4poBD0Cqy2X1Mv1RZwmUBagUGh5FIxvww/O08pCHXwkR1ZbCCjHBMjnHsSMuEAnUWYLGtgAi2pueDVdEjSZoo4w5FL5k5Gotc247yfix7uzs+hPLfJUQq5vX8cvCB46XJNK1/7B0EnM1VBCVmK+iPIrviicfW1EDnQupqYJUR8PBrLQ5JHuY+GkePWUBop29tLV+N92//tvUvfWP6fT0ll7gnE+bW1oSUHpzkHJZpWJ2ZkbreO7q/MgVQkATpbMSCv7qvNhH/9nd1YoY6gf0wynNgAvzs37hbVs+yry0ZwBOP1H/5AZpXqut8EIf5ThndGlelPNLrALyc7NyrVA9nT29HKovEAKgAbn0E04QfXxRL//taaWWvX0BaeX1vBwdVle5LUgmgKitr+q0uD/YouzGA6TjhUPa6U99u2NyLYoYgeKCVm5cf9YHG2Xp3xFYuS8qYowqmei25QVhrpUp9VO7a8jRL1hGadehcpQHNOOKYquz2smHKBgZfBbUj7GK+50EyUWOm4AIVYBnpJJrtw0J5KX8pHt0G2NBrrswKPuKTxNpNHAyNMD7AYwj/QW98TIjmbZPhlwnQgrpRg9k0/RZfX33LyfS//a/b6W/+LFGBibJfImfCDkfIATj0ZRuACZ1opnKGYoYdptw8jXwBAC0p1nfEfPOUZz3fPbVEwJGc8zkO6wQzbGmtzWsTIWZhumxcpFQni3bKs6kSF6ZJAtfp9Dzck7FO1fqMjm/TNhFoKgyMgE9npYLLQyVBht4Hrj1d6JIMn3wopCCD9gos87PmWYbybrYs5jG34Az+6rKX/Xc8oLcLqb12FpgXeUMz0EoKmOfUZYvkAy2QLM3b+rUXbjBBwklPQtBe0w3usn52lWij5BkipHUF/CwqEKidwU211eupRvfaNWSjZtpQp8N68mN4eoNrXAhEF3656Wzy+n82aV04/Zqun2PVS+AdXrsphVTTi3N2yq6pXN3b3XdIBAr6aLy3rx8Ls3Kv/ibG3cFyvWZbIFZgDRgDnD8xqUzshzvpVt315QW5xKQDUA+fWohXVS9xFfXt9L9tS2Dy2JdnhWoP7W06BVbOt1WWjf/PfGPFwZ3dgDcctnQCeWc4uvM81/f0NKPlMhKM7SRtvDvG1D3EV0LeU+PiRvTzAhCl4BrCeTp+tSOXHodXCfUR72KjIQAVCNLebICuPfNAO1VHFcN7gsQjU8d09/RiXozhczXtYmHGxRiOGl0w811R1/lJPj6QB6EUygyogtcxwHayBu5Jmk2jQZOhAbc1dn4Im566NBJkTdid3siXXhbL+L9B62t/F47nTkdKxQVuqIxhgrio/tCV98XmnpaPf6w/EJbpyNOGJJHBxp60qq+OLmlD+bMaHie1aA5qQFKw14TTrgGjg2gmYi4rploY5KKFtNJYpJyrOo0kQtIGGiGSa0cl4maXLsrGJnCoxZ0yGeDfSkQL1mKmE9h5vTShWsVkp4LVWWVIClcgjTYw2akVC6XMzObUo4CQ/QcmJnZjt9QB3S5IDrsaFUFrMVduRWcnhW40eP5cN2QTgoX0aMD68HioNNghjzRmrDAx5E163NCrKqw8POedOU4OwsUSUGueDk04YM2ufiDSJ5bHo3IDeGlsj2tZLF272q6de2zNNfeTueWluVWoZFZy7r1eSNF/sLuhqTJ3NHXr9eWfzrPV6Xrno4Be23t93UXua3BcFcfw5nSM7lpWYWh7wv8deSjt6ubmq5+Mkb7vE9o8NxXWcrtKt+WYvqRaPYFiMHoASTlOmKacq2oAeLZUxovhS4unU6thSupO7eXVu5eSxvrK1rabkPyAgyRUuBV6LUt/27VGAhVqcgcuqD/YDXnelYPse+zDhz3zmTkRyAvuoUrUOJQ75fC0A70rOk8rZ/E1THlBIzVRp4u0d6wtgeA5mmJn5hIaOdrH9BWLQDo5lrEpQolPtrluB780iBVRiOrMra6uw7aCgc01IRGAydZA6M9/CTL+mxkY3ieWGilN9/bTz/9qJ/OnJoyIB0ai56NKI9VC0PProDz7ZW+DCgpdXb66eLplM6faaXFeZa0ZXwS63zqiTKONuFkaODYALo0A9BWLm9OeExKTFxx7p0rAvLAeUyg5EFn4OfSpNRDWIzIr3irVLEilbSyp2SpB+Zwoy6/tawj6HxMxFXVSyotB8uvOBZCgidixQNYFHnN3VxLf2bCR4KhkGV3dfWMKJ5TALqlpFqgMljiABdY5/gZ6MBLv4qXkS7IJLdN3MiznU6NQLe0xZxBgP6hD9pE+vhAEQCfixaS6iAKIscDg5k8kOL5ZFbtQFcCa3qxbHPtTrov0Ll+/5YGY32oZupMOndmUR+vmZYLh5YoNFAWCJQvMi4Ir1+UlePMctah9CBdoPOZmal0RogXqzJrMbNO8Sm5gpxeDuv0W6+f12ApVxqZVzt6A5vzwmfal+anbVWenZuzy4XPu8AsVudZuYcsSA7W/ubDOkuydEe/pF71Ud0AzM/Np/mF5XTqwl+kU/1T6fp3n6dbVz/R291fSqYZWaPlMynwSf/s9bWGkmAo7wfyBANL8J5cQ7BY40pFT6I/R79BQ/Sh2Dux0l+cYB9qQ3eAioqIc1M9KcBOvoE7CTryh42UHxbyDJoBxrRFNwPsWVudXwWgYSi5JmXJ7vd1UxOslAZHq8HxcZuQPQhhw/gAeLZrhypDD6yRbTeph/Aax79JazTQaOA5aIALX4Gh+fR73fTGO1pL+bzc4fTBXUKMXxE/yVvk1Csa6d6NXvp//34q/erXs+nDH3XST3+8m95/u5/Oyv+dsamnsQrXtemZll405B2WQaset62MqhoOHx4kY1b3w2lfMYonBqCBdZxIJixCOS8ArRKvnwTieVqO3p6JCrA2E9MET7OFRgU9EZqvazVp6UTwxDe4gn+ipy6z18b1soGOVMczgeIx5ZMv3uSJxGWJUnEJNVr3Zeh47lwEKXTaVzwBsLlCszaPQhi82QKQtN66rJT9tLIpwCPwNC9Qhm4AHgAshJqUaW9xbjrN8Hy8aojANrqhAqXBD5ECTBdJctsgUYCmHqB1m7J8LmV+UIX1EB+zIX3UGRB3xaOJg+PROgc5x49Voh7GKhPQTl4evHvra61U8p1ettxMWxOz1i8vquGaMcPNS77lBwOi0XnpfGoGIAYjgT25Y/CiGi8e4gqxuDArviwPpwFdtLhykD4roMbSa7a+CmyjP1jj38iA2NNnfLvyYbYfsvoS5xkQCoBvyz+ur4+dzKlM3KhF4/YFfuHflrWctaFnF99Lc0uX0qUrH6b11Zv63RY9YL2ll0g30ndffZy+++M/CeTP+OVFrOE9Wb45H/Q7W56xPqtt7sqSK84/22HN+hTnE8mKMPQZ/DUlsih5j6Bc+6pDKRI99XRDwmRgP3BViHWdZSABzuiFru29QG4AfkC/Mmm3XE3YD0nBAT/k4FfLpBjnC/cPbkLRN5cohNwM4wvO0n2seIOOy9gFRRMaDTQaONka6Gs44Kb6yvf0e0cv4y3Ij9g36idb7gPSaZzi3f7tlV6681t9PfZqL93+fT/97ko/XbgsI8u05n3lT8oH/so7rfSTH/XTeQFrYWmPqQx7Rwp5fPQQqU1RVTk+wCMz9k4bxtMSr4+zB8q9QglPBEBbqSjNZyK0x2SFwlE5uzhJQeCJWSkGdUEuAiZYUeqfCRMa8l228DUNzOCd+Sten/ggDb65Lh2bnxhFHgTRGRQbBJNHGfPOOSF9lLV4yKaeF+QwKh0xV2CJVThYKT9HyvGgRsWijOWlwTnYHUZxHu1v6RH+jID0BCBDIGBHj3vwEVVJfT2uJUBFOf1IyMEyc6xkwx7RcUNR/gbCRQGq5mLiDhdAB7jwj7jTVFL51IEu94V2Oh1eciOtVnGw89Zijc9yPuyeR3A7VHERbXd7I9347tN07/Y31m+s1BAgjWXW0Bk6oE/QGznuiQmWS3JJEcTWckSAMHJbaV7guCugjIUXq7V91dXgsKBKpxQFEAPmlO4vWIoTrg5gRJ4+CNf65ZhYti3OBzeG01gjsjx2uRDw84dSqFlCTeuDObOL59Lpc1fS7s5m2ty4p8aydJv60tZGmls8n+b0ifeJ/rYG7c20sbGa7q/c1fkOgOkWiycKqq4rZEFmBbeQY/qF9vzIAywTx/uQSQx99dSI0LNkVgQf5576Mi8ImpM6m4rZih4gmj5OOf1syRY9pO5jEKoC7aI+b8nUbxBKd8Qyb+Cd84NfsOKGiK8uYnnmqUHcNMCvCY0GGg28EBrQ5drSWDglo8Ob399PV96akCFJiQyuw0PCyW8ObUF0jVmtld1071Yv3fvXifSx/N5Of6Avrmppu70dGVJOTaT3f6JvO2zspdcvt9Lystw8dNNwWp9+X5AeDgtlzmPgxFCh12LSplxFtrd44Z33RDQ+86pINi6Yj8bwljwWZV/QGCmwPqeX4ef07QE8G6XjUlsZbw+r+2VPfyIAmkmVPlusO1X/lXZRNCcwQG2os+SXdAoDBhxEyzUwOEXwjRIFzA6WchN/eJseHkFnsOiTrI6hsk7PhFBAVmhzUfNRqidsHh+X/MoSh0SDikTJAdxyonbogQDQiZDznKi0+qHTMpl26KcCuZZVR5ro5/RYf3Fh3lZmXria0N2oNSSwBLhi0AD0ppZWcNCOXHAtJ5aVGwiuttStPewjJ/L8aEjojQ9wAAIBfFg+pwTySLOFU3UYPAsA7ez20tqmfLS3eBEOxoWbq/PG1XkzSBuNHSw1SvHoxw+pcsBQumFlhk2tvnHtq9+m1btXvbZw6aforiV9o1rss6yS4aXqpLx9+qr6FcvP8dQB6+WMrJhe8UKj0Kx01hdwhldYl5FKetVuX3xsDRVPUgFznA+eGrR9DQAag8b5AHDx54YGv+hpRi+FcAORhVrnCku3b+pgRCEFfLhnBZRnZvU5+Hx+TqnuM+ffSO99+HNZpm+ozd+mO9c/F69fewk/1yF+IRM2Y5WEp2PBmxsH5LE7ixpE34tqdTZrJ9Q3rdIRI4NfDJTleV99hzFCmhAP+ZWjELUZd4rOHu1WvgG04r5uQwYJ4HPAZSXxrFfSkExkvp6JIwDXLdcJX1iEL0S0hz4OUOYJgJfBk2vMhO5WRO5ybJvQaKDRwIuhAcahtsa9+bMpvfV+K712hWtbF3ttDHoxWhJSIjY/jA4YV9qnNfZpoeit60p0szSW3uynj79J6at/0pPI96bSpQ/b6Yc/2k9//cNuel+A2kM1fLIO2DMexp45I15UvHa/lf50dUJPI3vp2o3JdPv+bOrc1Zy1NdBff17j/NleunS2ky6/pv3bk+l7VzrpzTPdtAQm8HjKWMxvUHeRQWK8EuGJAOg4STrBUqYnLO04aUBi9qHgCl6GYlF8kEPgR8aiHur/lCWNAO/CwUmRSU7UaypTOqbry2SUAxi4MqVR53AlSnOiNqqKtnQ10e8JbBAMgHS1msQpmUeVEDJzGJJCVGVGCR9W0jutEp9COrAOKw5KVBkDWyZ8PWoGN9lSRscVWDMYEM2E3kLTbULIDivXDeSL8wGAQRcjElXH1o94TumimNVSOgbROgZEczynl+BwEeEcAmpYeWJDde7oJTmrVYyjTjfr4KZq6MGsUZkOUjzhlDjRZtrX+b1/97t0XStvrK/eEuDq6FzPWC/4Hm9sbXsFDnyW0QVtx7eZJefI22GpOv2RjgV4Tn7KWFg7Wk0D/2eaDXBjibtl3bpzLlmdY3tbHztRGU474rAqRrh8aCWQDVmFxYMnDbFyhiwLWgIP9w8Gv20tbbil8pSjv/DyHX7WLX3aG3rSik7jmpM5m7dsnCg5VeeUPueOv/TymQtp+fQFHc8ISH+T1vZWDIxZuSJWv8nrXrvvBQBFcX75Trqjnbva20dfINj9V/XTbhrHjnq59pAFoSPOB1xUB94Y+ivtpS20Ef7IYHeo4OL+yw3djCbMGdwu9EPn8LRLiOSg/l61DwF8IyDdAdYDROt8cD3px/lwyLIiSxMaDTQaeAE0wISmKW/+oj53/letdOVNvZMiS2y5pF+AFhwuYhlDWXFWQxIYqgqyIOxt60mivkbZvttLK7faWnVpRl+r3BaAZvzKGENDm+wRaX1Tlmy5hazoBcW7+nT4vTtJL5i3013t79zc1zsy/bS+JlC9I2PDlpSqOkvQqyapPS8X0rlu+m65lxbP9dLvL3TTxQs9fTGxl06db6Uz51rpgm5gzp5tpyXpnxfFGVVfpZH02ADaE5dPOo9wOYF5YpIaHdfhICVr12kllVMW05cVDy8mXNJqZ4KknBzUuTgAscAG1+h0pQazOJuZljQnc0xEP/P0RscEpXU1ibOGNG3zxKtkipT6OcgszaZYejHGlnRYRaCig6lOIksc/Ke6yh+plECfTPShVy4ltVDHxSVgwpZulXJjxcx7hOAHF6Khi5DRFSqLTMWVBzC3pVl3vTO6AuYMllW36gE4z8/Jt9Y+1tILz39UbmJCd8cqG8BIMgVbqjsQOJdZlAN5zzIBEYsc6Lm7v+uvM373J30Ce3cbVSgVncQLbuubO+mmlqpjH+CrpRc6Fq3rVaWtrm/q8ZcGHgFXwPPy0pyKanUNActNQLL7Dhb8KQNgrPh37sulQsvi+TQhj3TM8nYAvG0tWXhrZd2+wQBsAk8D6NMARnzf77OMneotLaG+Wdaf1ufZl7C2EnQyfG4UDS7a0iy3j3w9XZiS3+/UWfv+7smNY1mfeO+sa/k+QK0sIHJq0AdhdBMmn2tbtjWM2zKs68KrlugGgXbu6kXIfd1gcMMRNwXURX+M+gxg1QbAri2/ullgjwWbGz8CrhsUoC8LAlufzBxY5FW0srDTziX8/QH0CCr5sDTH1wqpX9cHddNY/dN/qbetG4iQA6tJAdBqm2hcRjIQD392i/RqbqTrJjQaOPEaoJ8KtfR32unCu/30o7/Sh2Yu6cYaUP0SBcYkxjENxYPAMXOwjFf9+/tpoyNL8uR0uvkX+sS7XD3m5GqhoVmguifA3EvXrwn8fpvStaut9N037XT1y8l095PJ1F3vpRl9tRaVtaY1DusbAhg06sHV6vPxm1oJakPuHVT9sRSv0Tud+Vk3XXi/l15/q5fevqIXON/qptden0jnz7VlLBJu0MohGn5fiXBMAB2TpactaVi2I2aiUJx2Bn46S2WyKllMyigYAKA52WAD0AohZQIQRjm4cS5wFShAlWoCvEVZzYQ+wVSMtY4C1EXZAPiAz+Bb0s2UAqqvnGvXpQMDJhFCG/miKUQAFErkYx0G4DdjIICLWD5IzCMYuUzh4yTlm7EIOQYDDAKV86Nt+okAUGa/V1naAAiQQxEBuSqxlB7tsp50xB/BNHmDLDz2wuoMSAY8TwtEIwt5uAbYfSBfDWEZ1RJtgCbe9jI/EcLvkEBWOZ+HkDz9ZAkRzxBCC3298Le9eV9vPn+Zbn/3B4FCDSZqsDWGnnUidtTG+xs7aWVtU0AM6/yMbib2/WEVfMC3dpXPmszSw+KCXCkE7LAmd5S3bXcEuX+Ipwyr5oXnDVb7TZXDwsr5AwhO6EuAgMhdgdAt+ZUDyAGj6G2CZe/EgI+57Gpk3FbZzR2V15/sLeKBS4hW/5A1PPyKa31ADODhkONxHFvOydT0XFpYOp8WT1/WOtjfpq6W80PmObVjCnlVJx+NiQ/HaKUOHeP2Qj+kO5XzWtVT6lMeblD+IqJ0waVNoC/aRUjtBkh79Qt/KEgDs2ZAlnPCcsJYwNrRM/JTnpuVhV4vc/IS7az8lTkXtHVfb914JQ/JhOUZCzWAmes/+jzjj+K2Nke6osrPWuB8i1ai5ovIMY5ejZAbzqmMc5n7y4GT+Wqoo2nli6OBtgBaTzfG73zQSb/4cUoXzoCoJf/L2HdHhyUd+5rVONbXXNO/qu8VfCO3jpu99MZFWZrX2+njP6b0+79P6evfTaZ73wlvy8rMN9S6WsJ0blbGBlYq4b1yYWePzVj+OB4N6FOqbYkegD0zua85p5u2r6X03bV+kvdH+nh5Mi1f1pOAj1L60V/rhuaHcqnRk4FZjccaYh3KfpT9y3AsFRwnhJKYqDQzDRjpDBvsKQUdokCDE0XczzlW3IpV3D7NWsKKAH0ARVHqIF6wGpwMeo/dbsUJnp4sM1+Xh686F3yCF/wBhcAO/SGAN1ATLJHzi0CWjYlYdAZWYgTHup92lC1beER9jujQVVgIbaJSU5gyyGslaIfKQ2p5mPyxnuknEOG9kLoW8PKawz6WfH4U7jV9XWvewJyfmKEHMRXe8I82AGCwNAOcw0onAC2gzJrFFAEcgjEAIrTdZ8XlAc7yyRKA297BnzWjonrVh8R9jiqFhHTDpFne4cTHOAo+Ev+QgAZk9exs2+d5VWs/726v6vTgEkPfxNdZ/UptnxdoO3t6ybrnvCxr+bhTi/qioCzKi7rLZnk7LPLocHF+Rr85AcLJNA+gndVKHvBRXVwWAD/cBs6f1SoZygNYolsANFZ+vjaZWnPpgh6JBYAO8al3XivrhyVVq3Ms65wIqKNKyqPJrgAkN3xVIFk/Z1eJByPk8yLdwvL59M4P/kq+9jO6mfh12tCSfpuberlQwBlrOS4nLLlnMKxTXvqnq8mVhFajXmqyfJkSyy5fJyWRGwP8oLFYd2Q9wYqNXialU9+AqB1TLNGkvo9POS9jYqHnRg49UztfY4wLRZJw4yzwTDouTYDjuIEOWvSAngDdWJ/NwtSRzjGy+oZA6a9UcNvV36Q+3Su6v6o7us++UnpoGvviaIDLWj9url/78256+4OULp6RcUMvttma9OK05HiSMpwy/W5rRa5+J/3m/+6lTb0rfuH1Vlpb6aZvP0vpxh9baVX+0x35NXvpfw10qM8D3lFrVz0EvZKjQcJRr8PvERdmmnY2N1Sn1q++L2v1neu99M0P++n9H7bS93VuLmu512W9o+V6vQkeL9P2WAAa/QJmmbx4pOpn+Vnplb7KMZMt/4F+s1KDypO50zUpih7gyqN/JjgshwFuqCzXB1EtkA8P8omYqzbsDTTEG4spxQoAqBUf7lOUU8WCrUoPgASgCus3IDrXnXfFGkdl1MePQD0mtWxKdd3Kz+VMlIlDJ/lA+bTAdVKvwERLQLqlVRJ4pC2YoA1pAAIuivBFNj/XO4hZE1E11VtHABH8nef1gZawMAMw4ldAJOWgow18VtlfxRNYXNdLg6t6A3hTPlPCbW4fei8qKTWP3XMyc9t9roaIlPdEwiF8Kp0DtPSYSy4b+D/z+W40SCmTqCEAX0AYAPrCGYFfrdRAOLU8F3HR4JPusyReAMB5jeBzgGT5O6vHpHn1NbthaJSDN2s5Y8k/d1ouMnmNaG46uZkB3AGyvaSaXCsMoFWHb/i0F3b0i4Oc7ykB7VmVj+aIswAkftFYvg0wlURrDuqXFgwH+Pe6u/7NLyyleX2Ipa8XD7eFplbki71yf0OrduwIoOOuk2+odA65eaNNlUqH2JJDGM4t1wKWffQbe8VlOe/o157o+CYDEM9NCDcU89I7ywjOSifww3WElwKxTtvSLKWFvzQfk8EPPUA25zeC9vr3jYrS0HXJsXjSK2ML8xBFarm5/Mu9QxfcxNy4oa9Xruhl2k19Dl5v9S/p5nBeTwMqNb7camha9yJpQJ0WXMCTpLc/6Mr3mbE1rtwMK16k1hxPVoZYjc08Pf3TL9vp819qWdJ3NS/Jt1mfNEwTsxrZsMtobORa9ojMhgt/eHh+dDnEAzbGMprr9vVp+ZU/aS3r37XTZ5e01N6/S+mv/tNe+vFH++mdy225PvLuSi706LWd6BLHA9A6ETImpQ4nSecLpcZDUWVYw3GulK0gmrx3phJlX9XJDaBWP6mk6RoJHtoJ+g6ddLOBv9LNm/rpJU5SruIcKjXSzJxSA2ACSI4w2JcYVm/na49VC9KWJn7XW3gqDZC0l4E5IMiPj0e4GnAjTGFeyy+rdQTACNBVgBO3mAHameL107HXXvYaGzARqNCdOOChgPKAa9RF+6O9VMsNTgFYboUSadecQLSt0RIeEI2Ywjjew39P1sJtgWVeHNyWe8GW7nixQPPo3IY/NwrdI88RwlHpjsDqaCToQJVW9RLB/7ljF46OXBa4A7T+nUPbgwbdY5lfmJsyCGP1CxntQznKYwUU1uBGjzNYUbVH5UCySUV6uiCqmysV8/nD9YZ8wJtozE7nVWdHMpBGT+csusdbrkmANh1QRy3TRp4LIKPkmhZAD4u0yCDV5rBzYk4qty8f8PX7V9Ptq3/QMn6/12PAz+Qrp5cJ19a1/J2+hKl+PaG6J3kzxBzZWGJXjTwHw7g0S2O5uD64TvpawDU+lFJcVnQjIEs3PtUA6DndkOzr5RVp0KDZvsvSN+2cEMjnZoTz1JZvHhIBrN3sEYGQv9wkhuQHpfb5Lpkj5V/mQ07lmt7G/6f/Npk2VtrpvB7/viPr0Y8/aqf3BEyk6lDuy6yEpm0vlAbosz2NIW2twX/xwp6AGePewWv6hWrUcYXVfN2WC+HEjNwQZdzqa6m5/qTmCFwy+I0fko9Xa+apacTQxIOvzkNbLxv2hRlu/Vsr/fKLdvrTX/bTn//7XvrFz7VOt6zRxkei8zRyPAlOTOljAWgAgsGVQFbSnRCT47R6dEz4aqMUjI6t6Kz0UF5k9FmfVgn+i3naoFQ6diCdf8obiFbpOlbHMZQIVuIDINGf6JmcCeZt/lEecFh1KEhKRSZmE2WokLbZimiedcJgAViCBXVhNcTyWEAospWKhkuWVMCSZNULW+QjJ7wCPBMRqNJvCj9QfYp5WnoCcEFEK8lryT8WkGdspSI0hrZnhk6pb5BtXv6kZ5am05llWUwFnhd1jDUaEElZ/1RI9wUCM6xEwQtxWnFDvrcd/FO529QFomodXJ8rHNSUswYJD4o9EvGDGNXyaIdliv4QL6QqX3X55oHzpa8Psv7zfoev8qmAG4QwoU/Kc8OB5TjWcdbFr85tq7xl1oocspDyFUFUTp5BneIELqqeXr7A0oouo2uHtRp60i0jBwoMLIBnzgNQ0EsDqlzc+ES90E3i5iSfaYuA2GLupweyiBsIQqQQ5zIzj6RqC08+XX7v1hfp5re/TVe/+rVeMPljunXzhlYB2fJLgfTf0h/cTyUTdeaaHatztzxVDRGJ/HxznPOKjL4uVUlPsqBTPuQCYGdFjx0BaVw89mRdYQ+QxhI9pZdleJnSupK+uD5txecCQC/acYmwJ8DXPuboVr+cXO1pkNTtEHJFGyPl1dh2uhPp6v0FvWy0nC5I1/Nv7qSd2vX9amihaeWLpAENGUnvTOtJidzbtPaxLm1f0+PGoBepXceSVfALf2jejqlCLVqlPa0IdeknbxL9tMzttgxvKxN6uqj3aLRiyNZ6Sj8TmP7e+ynpQ78vVTgWgAbw8YECvsTW1w8fg75AB5bSMh2BTcq5HACuAGHkxZJZmuSYzcwP4EM6hxTOs5ziHJIRfDgunDknQVeBUKXExRWTOOB5iFz5HAMKoj74Bg+2gBOW2NIl6snY8zTVZSZFLMqAlw3aLRv1AajhZ4GVWwIyZ/mpK/+iVmQhqKTqkMerLJk9g+dJ3U6Gm4cFlkSUoLz+JRhsSnAOMjoSGTzqxhK3vDCpZWdm0sWz8uWVOXVG5wqA5JcDYa1y5qWL0S/KCTyva71n1n2GpX+lokP2NVEOoaglQyy+TyyIHzdlAOTe3pYAmfZSBFbLtgAY7jBYK3e2tZzc5orAYqywwUtoyIE4/OjTvCxXVpdgvWfyefFtUnrcldsBVvgSugKAU9nPHr9obqjQKU2jfwD8uFnCf5cvFAaAjtKAO6yu0Adf1i8GwQawjjrjMuUlPpaPC5XF9UBfaGsZO/yB6W4+f94U6WJPH0AftHnt3rX07ef/lL754l/Tte/+lG7dWbW/szqx+4O8NIZCvjRzWtTuA5SFoE6qpSvVVxX5JZm96bUnqpmQlTdYbYM7jK70sCedozv7XAOe9QNUSyjrUIYn34xEX8yMaWvmi5xE0TngGVcPu0KRTkYuUtFzTLqDJS4Hr8Rel0Q6+7oMVQIkF87r62aX+mlBwASQ0oRGAydKA/k6ZVXOKbkaTcxrLNe4vI3tToIKetiAN2boO1HNeGrC1MeyMs49tcoOYVxk0L6tVZY2b6X02f8lN7Gr0/puBCt97Ke35NKxpBsfu9RVY+8h/F6A5GMBaLsB6CWoJT3m9nIDTJvqwYPJKuKlU6MvABtTVV/WVQL0DvmkA1RVSjQBEIjB0FTe6BgQqj+sTHmqhlOuVyVMl3kr7jlaPJC3VDdUKVxgCxfoVAaA2RYwquYSxKCQ8pHNEiiTFxTBG5Sp2kIc2rKNA1UQ9VMPICryc1sxVZKh4J02dhEBSAh0AQSoV+gutyHaz2LytoySF8hCMsMbyS2U9wC/xflJfbVoOp1dxvVAuZop4dnttgVWBBoFVnDbYGUHQGScS8ksvXFD4ZB3cfAEtkU3T4AVLLoCiDvrN9LmnU/Slj4WsteTPy0rTZx5PU3OnU078hleufknvfjwnWi1wob0whJtxqx0Dv0D4O7IB/imgOWGlqxD4QC7c1rG7pxeLLy3uqFl7LQCh88hlpDptLQ4Z7C3qZfv1vX5dT68Avgl7/KF0+pPE+mb63fSGms9qz4CTce6evniabsv3Ly7pn24T5Q+e+b0gnyxl3xuKMuqIH6hDxb64aN97uyZNLN0weeSNPcD2qIDb3Uuu3pxcnP9tpbu+zxd/fo36dsvf59uXPtG64Sqzl210eCZplJiECwpwoyESCdxkOeSlFdS9NVcSEnDbOP6IdHk4u9rUzca4W8v4CyZd3Z31RT1S+k5+mY3LWtdbN+QwFoAnKvHUW9Dfp4GoPsJ/XwTHYINgKHlo0CR42C7M7uXdscpPXtqP/1Pf7Mmn+d1veDKJ+hxS5KPaR46XtrGNw17MTWg63hSN3izl2XdXGqlW72JtLMq330tGbQ800vLs5q3meNpnTcvUDNjGDuewE+Cx/EkiOmA8RVrtMaRPY3Ra1/upX/5P1JavdNK/+Fvu+mjD/U+0BLueMet7PmXPxaABr/azxDLs8Ch5ro8UWKVjbNJP+ZXzq0nVqW4f+dZ1VbjGr1NaZwEConQtJSJSJXBIZwq3opE2qDSwpt6o27l5ZCliCPqqzhl+ClmtMsh72oksuBO6XOaM/ILlpVWwMzyFbCBLKVMrq/sSjKyuVbt7DKiY1KY6bU4l5YR0yLomwJUatWsVmMAr2H5tIVSafiELi5obVzdxMCKsmgDS2QdXJDHDQFuGwu6c+fjKNTnMoB6dWTfOMj0OKk1nvfkfgCzngYrAMiWVt0I32dZMQuQRs4xIWQYkzEmqdCW/RiSKulBNOQRaLctjlhk23N6KW5RIErW5+kFWaC1TrPat7ZyPd2+9lna0ieu9/XxFJRA23kRD31Oaw/w8uN/nd+Wlu5BVwaWOi/EOT9t8fUqEByLbyTLHqyVLSjT0k0JlmuvoiL+lG/JEs6am7zWjMyk9eHpmyIBF14iVEZfbjv0jXBXiCc68dIhsk2pZ+Qy4oGLis9lPvvwtMuC+GKNxxK/vXE7rWvFkTu3vpbF+dP03defpps3roW/s9aydhN0yt1GFHkg0GOR+CFBdQ+FkcN6nnu6WAYJ+mEs0UY/dl1Z7ItVHv14HWruchT4MA2uNS4NcQ5uu8aiSb9UiXsNefEL1hGPukfbM+BT+L3Me8759FQvXdZHES6cbukmTIOAEkkf1czLrIen0bbQYdyc1brn06jq1eFJ99TLamde76fvyx3gsr68N6e1QXdYp1iuAlfv6UVqzWWvn91Pl5Zl1NBQyxX9QvTlLORLNwJpuO7r3PCV2VuftlNHa3drWvJZ+cuf6cZHmMRY5QXuxccC0AwUTN64L2Ch9EtvGjEOdATSRAP2irxBtwYoGJQpY0zJfAHkwShfECoiYj3+pYTKccwP3gXvlpkgamJiiMmBc1UGtbI3OzIUzJtaSdTP8NwEITk0RU7WsT29tKhOse1H66UMBYNa20GxiMMzp1Uy5bqiUkNg6VTLfOnZ1H09o+oJoJ0SksU9YEvWUdYEBuJr5bQ0PasXyeioIbj2Yk4d5qlNjvMiFi8M8uPxSVc+zVidAeVFHuGONC00PaUThW8tdBMCKhMCfVgAuwDrYI8ahgP1KeSmxcFDtoW27B9E/iCaKk+RCTnIzSyck/7kVrH8lsCk/Ly13vH0zJyWr9sVgL6Z7ghAd3awBOs2T221v6zaidUS0GvL8dxsuniOG5SFALi68Fkre9Y0Sl+cD7ArvYPlAHQAuPmFflqSgx59mqctrLE9p5cNiV/QMnZzOmn7On/Q6l96DheOGR1M6KuAnFueOHA+yaNOPh6CXBMC2JNa1i0s0NHHWJ1iVh9yiXEJlwe5ePS39NONlsDz7uaddP/WZ+nGt7I43/g63ZCv863b99OqLNl7cgfhGkI2ZImzl0+kT0al2aE8UutUJmVDojJ1pVVJVSTnVcc5YsqoXAXRmVjINBF+y9HveCLQZ/YU3/Bt1o2JLPdDQeVoB5/n5uanPJXhWkXe0DcxV+P9K72RKuhB3JOoC/mHokJDr7Rmjt14+j8GpDCwNRo9tkLplwLEvc12ev19vZj281764ArjsVaQ0Uoyd/W7vqpPUq9OpTU9tdrrddJriwLRclE6+NT52NI8cQZltPQUfsg4+cQrfVYMaQ/4RCB6/Xor/ev/KUPVzH46d7Gb3tHHVxZZ5u4FvkSOBaABxFiJWOoMJMYkzrtQ+P4CANCLJy5OlrTkSV4DizuMNjyejcBBKBJ3ASZCW9XoURB7F3EOMXUz8cPTL1qJwBZv0wZ/ilY+yMT1x+TswU3VYlk1b9jA0yEOoI1AO3LM7crJ2vmkK5NltQBhANGu2h3wV+Xd2CFOUVhZsCw1wKedwWpYDpUvvtC0BQQWFxe8hNq8gC/pfDgIFwAsrfHxE0CDjkMg6wGfMO4NnF8AAEAASURBVNaMxm866iE/HpP78bbqA4OzljF3h8jO4xT8pAF8lknys/cNhKXh2Io0T6vFm2hW1aB8+Lx2WGqnpma1JJdcGnRuAjjJoi/wvH7/Rron943VO9/qhkcAUw3HisxLe7gMcLJZpm3LPs49L60GGAMM+4ZCHcg6AfSKHP9q+iJnFGcY+zMrja8P2lItflJ1tiTzEqes4TpvAGDOC+rjxhK9kj6n5cMAzV1ZBiHAIsun5AHonG/Sev0p9TkuW5XWPyCYFUBoK18VTBs3dXOwmTpyQNtVfGv1Zrp9+7r8nG/pK4ar6fZdfUDm3qqu2wDpmAS4LiwM8hCvwugJjvajp3HBvXZ8lmWPMoWgVpH5wVs/ZbNutO3HuqNryRqP3zg/3GPK0wF4zenGAsbR97mmudkTeIYPysoh+kCkRO1saz9uOh3KPh++AjufbzX71Wv50zu57n/qXqVfPr2aXgHOuWPiqtj6cCa9/cNO+rN35U53Om5PzsiAdFlGi7fP7qYb63vp06+nZCCYSd+/0knfe62fLizpSve5OHm6quRSG5mzwVNxJTpy8gR+XInUnL7Wkd7fEk4S8Pj9f8Uw10r/5X/eTx++LwNXnlcfl/3zLHc8AC3wsaUlr9bkJ4qPJRNxPGoG1LGEFGsNa0ID7vpCAOhqso+eMhi084QHjcnQCGnMpjkF8DgIdcJB6hCFeZqNpsrMVTvYmE4RHn9X9cGmVt+A6/gYfDrqDBvyhWX5rQCaNVoqyfwCDtfyHKVmASfJgK64ESAlUi2h0vWin0AXa/9Oa/UF1NZWx6M9AD2WUpvUl4Hi8nOFbrDdAkRFijlJ2KhH9JTBmqk7nWhDgGiJIeAXYBHrHev1EpChAGtulMJdIOQ0waNsguXBwqTTcEKhiaPx21DS+DwxwlUD14kIYqj/ba00v3LrK7kyXBMYk4+y1FZuVFAELgL70olvCLHyyxeZvsu54euM6CGAmWjFHzHRH+DbQF0HnjB9PkkjH1DuU+K9zyc3KaDqXJ6zxPJ09jPnvCq/l/OpT9VaNZSgOzHYTCrdKqBO+enrrGgFjfW0d/OPaWL1jlbZWBeAvpe25fO8tnov3Vtb02/Tftvr2vMyo/lpS1kZq+HOhsuOrff0g6iJtEJRYhLGZdg/Soh6hktkHuiy1Cgy91ll9dT37Qct96WtLYFoQLJk68sKzTJ+0PHCIK4bnC/EKtJFe1SbEkjzOEJc/Zu+zBjjPs1dpCmGJWuOGg08jgYa8Pw4WhtThmtZF/H0pFw3/v1e+uBHvXReLxFqWtR1m8ck0SwpviA/6D2tHPXtrYn07W2ZkDQ/d+SidFEfqJrWvHnSAsPuykY/XdMHSL76gg+RSEaMYXoP6WUMgGjm2duft9JvNH5fuiAjlb6M+LZ82qdZJ/oFDAVlPIbomtRkfd4QgF7RJ413tzc9ORlwCIjx2JkPIszqNyNXhzKx2RqUJyosRiWgvqJCgwqOdeF4IFJ/wk2EydATYrYY0c34lamvAFXKBNhRJhQqZz9KiKsJGmYc14LzS+2FW8kv6RybUFZMvtIWn+jhfpg6ySpgH/BRcanVVcES0dvibgAdBHAupLATPrAVk1pBUJTFYq3+p1/IQRY5lHS7USty6DgoIhfQAXg2iNaAUt6ERTdePUJXNHUanEjf+nddAGh8qAGArAFBTQ5VpCTkfRYLXiZGFn6ZnnTnQVdLd+lBlwhm0NTqqaKKkOWQaahjEAZy9gWMO1q27v7tr7z+c0tuHX1dzfCir9iX2UKpjPlqyT4Nvnwpj/7Lp6RZLQLd0mdZE9ygC1oBL1uROSGq3y4hEc3tRY+cB/VS0QJ3HUQT7dIZldsMfcargYiSLIJdovKRwX4Gebx/i5x7elHRq1bobmBr715qba6HfALkrGCxpSXhVtb1VcEtvUAo4Lm+LlcjWdd5bwFhfU4QC8E51h9digkL6zeScENM0whQxYZICWQ6pyQcaV940Y6sCHEZ5kOWxw0BY1b5oa2ck7ba46FDDfBnvllSUD9cb7g+BvwUFUuvt845kF4KcI4lBmlhnEtunNBHExoNNBo4ORpgqGLUnJG/85/9dDu9/56e4vFUMF+r7LhuuepPCVT/7O1uOjPfTb/6Yjp99tVkWl/bT38hYH2WlTtEFOPN82sfsiL7jlwoV9Z76ctv++kPv0vpD//cStc+iTGqatzzE/Pp1Kx20/69bb3b9XlK//x3wol6enDmlH46P8xKz/v8PGrDjwGgB1VJJwbT8VhYn5XcyUBO2mCi4wUtVgtYkC/ogqypxAFlABKDXwMDz3Vm6klQnR1lG4wq7gkzV0l9BVxz4cDHtOT7IgGUlPIkchEqqCDpgFYHM4ro8DbAxXCajnJ56hqEOLDMQxlMzRbHsgZ9STGrEDAzKnIhmdssXv5j0vcv4IWtmnrBqt+W7ZBCCtRt4OyyKs8VSpZ0DwlW/4BtQQdwBkTPyl2jx1rQAh72h85KBFATxQqNu0j4Skf9USO1Hh4KUKa1VgJ7FaSs26lYOZ/UAxg1iQhoB4EUNTvAj+KAd+Qu+cjo1UKQVfkuFUV1VA/K5Z8X6vTxkH19RIUbP9+YKYOu55szF4F/uAawBvTd1fATnrJbQLi48MlzwKndP/5/9t7sy67jys+MnAdkJkbOs1SaVVWWyu4uu9tey162X9xPvZafuv9FP/RL97JdtqtqqUaVVZJITaRIcQaJGZnIebj9fb994uYFCIIEAYogiMg898SJYceOHXEiduyzYwd4U3zyyJSmLtBLdZAwvMB0MSLeInF0WCbqxLc7++KsEm3y+P7UQq8YuywEIZQS9eoDwAWGZe6B+AaL1xswyRJ1ZWmJ5lbVQX1hTyjc4+RIGOednXZ9c6tdpy67u7VpUjWeIopYFNGkoviLd6TwlKMxftNaf3WLs9gAdnLwk34qhKHNBGDd+vsrdF2V4G/FJ7D/JEOlCE493NQihLPN59ycaf2ODnLoSgoiWoscJzgePQub3nfIJ8SECQCCHdn+Q926+krMCdJuUDXtafkdE7M9co8o8IgCXzAFMmy4/+MQyw1Y22Dfj2P0pOuPMtueePf8Oe6ze+0vfjrXXnlnvi2v7LTvPMdmWU7EexDc1d0Rqiaj9uP/MdXe+Cn7nN7BXCwWKnY2mNeRx0UuVkPfg4Du/cVBRoQ6Knf83V/NtFNnOVHym6P2HVRxTi/0lry/RX6e0O6Rga4KO9FlcmJSl7EoJoB5C0bFcJkIJ7rlbRlojz3WckQxbsY5AbvJTWlTPpXDcAjZ+dD86VDD5CgxJsncJ1kDE066nrTj1ZnLnmYyf4hrBsopJzOuvz9XlEmO8+kb4sdenyvFmKEogBO/xFeSAO14jhN0kEQII2odjAqxLIHYUckjD3IGictAgo7oMdABkmWknGNaJMbiuaSxB6holcPNaSV9ri8KMsw+h3GGDp2hk2mLSDVIf5TRmAxJ0QMqdSMz/6CdTYnq7IqDdRR+Z2B9TpqJ+I63PKiMqPmsnP1MlZLgLgzx9i7TbZ8xIz9Kf2WUhHsE86WU1+Z1eeP9IywdYTqZ7PUbqCbBMO4OOv6eSrjCJsDN7R0uzc0VLPu2GwWtoxvethkdLDNfY+jnJzFxZ90uXd3ANFu341xt4eJlzY2FwNrg6Ow65VEG33j0ppF+a+rO90B1KVUYplTzAEeP3RbPWZhL6Vg2sMvkm/rCN8BzB1z8SiLTLz6zbEoUbnf6hiqTXxjSULp6WqCl0G7Q3fdUaXSpGomctCVnvELB8Sg983T8k6ghRcrq5eWhfoJTwoWpE8fu51Gv9ran92lPHmzvPerkQU770A6jgZFgmDV4xeN4VM/jcQk62Ta9rr5O5cZY9YBH90cUeESBB4QCChoWUONg2rqjc3pYwZzd7NnWXnp6nzFytv3uvZl2buWwnYEBz/zRB6M7Qrq/kY5f2zDOFy8ftV+/cdT+509m2s//O0KanzNiMpbpJobl+1v4gwaN6h5hnWPrSmtv/Hy6/fhvaVfG8K8/i2EEbEQzZWa+edDQvh0+98ZA0xGdjIfm58EJ1jClVEyk9Ga8mdy3kX5tcV25DrOMRFqmI+odg7rH4gK6vlBO1Y9Ip5ns+0Qv/JQC8PT94QVwss4ca5nWbgjXa3im/8ocKVbgkSaTvIgG8YLpZ+t6rlvgBpA/hAWOzEEvhHs4+3G2JOo4V67+OyBhlh6Ep5dhLPN6GAOjwzCjE+JdKxLT03y2glGWnp7eNuKTv+WowuHmtW4WTTgWYFXi8SbGAy17cBY0MGHGzTEodTqGKWFT4S7Hdnv6oEzGEdJupdVZ6JDFAUqm1DKqHJ4tRjTi8eE4bngivxJcBkFM6Cn51v6yMMOgW3lwMU1n7heInyW9aXT+lupKlW0+mXw3Qh6As8z0LndPTCxmspDxV4mqkomOpHjbN2TESHzcN2AYDZMx28a824467jCi65gSVHXgXGwyj2Ij+iLM8DamC8Vs7cQin6BWAmdTO9OoSsgQaxJv5cRC2kod3XcuXG/XseXcGTzrpgrCk2fF+7BduLKBxNiT+LTSoaoNRywPdqCtwxX07S9e22yLMPKLCwuJX8Aqh+UYL5MoHHGVefZ9K4k0tOe9Kga4aAniwX1ovTz19uv9QUZTmOJrf6sFrn1vMleypn3KZ9zARN8UWuVWqwz5gdufbR0Bp6z4C1ri8+MIwIFAB2UruuOzB6022Xlvf+I0m9TRl8nUI/puZ7Y702wn7WVWkSnZwqvAR7+PKPCIAg8WBYYXdvK9vROCTicKab73EkIMxJ1//7P5dunxI3RtPUHWefNOue9fnPg6pip/2UJt4f0PD9s//mzU/u6/T7ff/Bf4m/mDNo3kValz9qEkw/0r/0GGlK+bnDJ7+a2Z9jf/ia+LW6jD/ulBe+k5bESvqbLze2qkeyTSPTHQdkQ39CgBkyl2Yt2XgWEyyuTLpC4z49xkXDGXNUkqafPkMU55TIfuDHWOSGayj1QP28dLMNZ+RnazVphFAAnLjpmZULgDEQwyUMGZYV49LCx9Mh2nF07Sm5I48XMCV6rnpbPsSEsBlCJNR3ivS0Ire5UVOMlqqnjMZ1n1VHExNzdgVyH8WsZwGWb6yicEo3sk9wFYMWM93FTJpacnCVyfhdJhKs1doAEtLzHQVwnuIrpmu5j6cOPc/C4nPXHJOO3DrEoT+EL5k5vcgEpwHUcQWPSt9nVRtIT0cxk71MtIvj0FUboKyj4SxlmmepAyOwDKQEdtA7+wJtU3xDUb/7hHWi5+MtNe+CORBriw7YtbV1EbUlEdONJRxir0BHC1ZWEuPlp6WFtdas9S7w0kvvbVYnb5HEh/xBpdFiUesqLe7SpMsgd8zPAenIRGp0/uR3ob1QPilzGJpzWN558+hxlC4khju0VCTbwLimUKXlhcgN6cVgiRzSsDrSqJfXBfGvFerCDNVt/XhWZnaG2XfTYG3kCC7WErSp9jHWZcTyYU3k/IeBt3HGjdffIeN5yuKK6JA6dqg8lUx/l7tgkIx0FDbzxOLczjJxP28itTxVUP6elq0TU74GOfcaHiIsc2WsL6iZcbC43rtclCiTy0NEEdVpWSZwruoeO6D9GPbo8o8IgCXzAF+st5F2j4mq8hzTzFwIp1fWxFj9r1Hfwussdv+10AvMukoqxq2A3my/euz7TfvTpqr/1PTub7B3SdX2Wu5byFhlWKfEC+S9hf2uS9HR1kuVw0HGzypfdd9KH/P3iNa8x7/459R99wT8vvo5XunZL3wEBLjZpQ1Y90sofFgSow0ujnhumidzh52Zlr8iqGpjMs+QQfCRcST8yK7fD5e2tuP8yzDNbK/kL0c/3MXS5QChYtcOtkl05rw1Cm5E978ZN0hMXlZpyxPCQRt2FiNVrmbF+88C9QL2t267xL0OAGOP3Ruxl7ueUNTr0Mk4xz4Sn6HN9dKMywCtAU3Sy9bIblWtl9KAbfgzamYG6U2PqaFpNhoXUJu7tJfw/zLi7wqoMrzwxM9AiJtIzr7Kyf/I2GztBu5XA2Ul7IEsYVEiWu/0pemVX5FtveT+PiJ8Ml8xkGGunzKqchnlhiYQQTrURaqToFpP/UYgWIBImRTJCX+UM7A3EyzmGgKS8MMmXnGTieyq2/mGglqOLPZtfL2IfmpQwDaD3JYx/AO3apEk/ivwCjfErdXy5tM6sHrNlAPy+16YVQWt3lOfqpNqBlitWvFh+BR90GYinB3WSziHXjgfasci005CVsB+a3Kg3dodcsh6XMwFR7xLc4qhayRzq/JKxwiEgYZwgs7C0k3lswkKqVeDriOvrOqnqoEjWbFUP1iiBsoXfjQpCiSv3ePrM4Tro7pTWdqSff3p5+MmwSnv4xFkNiyzwQENc0BxltQd99FiDTTJgz7LOg1xBH4qT3hxy+aN0N3q47rSpTYdYTfHXvE1QKEQaSf3UJ8qjmXzoK+Kr75XQZe6PLC0g6N6bbO1dG7aRnJzCGO/7fT+c7o8jNeecGjPHFq6N2BXWNS5dae/vCqL3169be/dlMNs/tw8xPMycp6PvKO8+j2DxsH76+0M6+0Er4w5fDjNu3DkQPILHugYG2B3LRE+2sMjkzMHUzSi6ZrGS6lA4pCcwfSWUuZDS66kOYCokEF+NEpivJr1I6OCHc6SM2R/WJb3xPVBFZFHh0cjRaywXKmgzj5rSZxJmcE5jH4afi6reC8mIZILDAEhoMYU9EWHlT6pDJkP42VNmWa2ivu0+y5L0uBaN+BaKvPwnBJQMWfznUBObtCMsJMpsUKX4ykCIkzUM2M4oOP+btGBRBqirGfpJLHfmhKFyZtNvfhzGB61NqfHikNZX6LC6jantabHDix7aOZBvGTbz0C1NpsjrXmsk7wabFE0uchsh9EbvHMtHW3HTlyyM/wzMRxfikggkfwbDavyJFhuz6xUHnzXBxkdlPOjyXV1V7KCmsYZZlWsv1Oa4j4TN1cyHjIKzurRmkq2oQ1meB+hyxEPB5F6nxNY733kIircqEgHtdxF0GO7rm4FEMfRXcWbbUgzLFynSzmi5EtePwCN1nkkaPWSl4YLGUArctNkS6UVCVkGuaqFunfNU/eG/sH8IpKWyqkjr2Oldlj38HTaRCWlJ4mTiu8OpPiQx5qr9HLSSv7jjDcdJbfDeBpZCQfQj0VgG3ZDJYyqShKi7tjVd6OG64wLZtR0jZ4waYZkkDU5mq+y048qiqTN4jEid9QfjK/Rb96SvUnO4VF2pJI57in7gb0MMq9aPfRxR4sCjAMM347TVq73zAHpXZo/YH5/bbKjrS9vO77b+OV74aXubt+X3mYzpfD5Gmbhy2t95jg+Arc+1XP5lv7yN1Hr2+V5v+OX7cOcnCH2rmeSAOmqayERGmhT9zjpNv4IrKCtE6R+e15zho7IXZtnYGnudLtJnwHhhoq+2kA1tBr/AzuRPaHJ9QZYxlCjxxTYbYOMlkR4ulAeJkvjwkYQbmxAkxUsaeioS9c1YZdtoKCbNDfJgO0vuSmEYHmEyCYUycEBNaaeM1wFnSCycsfd0etPnjTCLPpJRXfWMLMXIcP+QnsXj0TOEjhqceap50nspSMASXdPz6n5sMBZ6hqASaxjctCWRcfawMphV7bT4P1SExDAW/mlyLZDX5DAZoL5/HOzmTia8Dj0eEy4ia3wNWZIBXT2ArCKf08wB7lTatxZRjMwAMpwwNrZ5w21Vmc9GFlRJc4cBQKpHuOs7HLWVR1g9o0iG3jni/Jyo4KeWlifg5jhMP84U+xnO5cXAR6TdC5CGzqQZnmuqeySgkyUU1oAH9mDobpsUPpdGqThiuRFqLMm4K3Eb6q86xKhSHMLo5AIX6RRJPXqXH0/Rz4URSDiwXGOl3BPouCN8l49zsPBeMOZf5lH6r02x5urFJus3tlKd5OnWxtUlu37De9klprPnIqj9t4cIV53Mc5YrP8XOeCOl3I5NyCDkOt+2dBHyvfTekR9rQJGN3nN6giqowwY5jU4Z9WVzEv+ihJZO84zybVmn6vJ0Spx3rfWlqO9Aey7TDKfTQTyKddy+F4494OR5lH4HY2ahcou4YFEsqqPvssUnD7uMiJWNSSviq/IT4NYZKA4h/HQtKG6ht2V2cAJXWLfPZewEmZI4Xbol+6wLSdurXV4Vaj+r55aGAPdv+ucd+nmtXsHbxOnsn0KfY/T6WiDi63vFrGJQ+sVKkTlrHiW0G6Q02Mp9AqHSC98Ppapt58PzFw/bqr0btzd+M2tvYOX73Dcr9gPJukPcUl5/L3DIjYg+DC1GOK+LwGjdIY0bU94jDYxH7tD1EqgunsaDyJF/SYY731zmC/XxtwJfBntnECscP99o/+1+m2gtP8pXV0wmPQT/QvntgoKtebo46dXIln+ad2IphppcwmeskREmXaxLT78SrhQ4nOP129DDQJM48Zz78xgsloDpjxbPpj90wORIApJTnZJnJExhJO5lhyFtTdsVbSgdpvkU2Zs2Alyom4lW1MEWlS8gYt8ppWJD23oEN9w6hogjs8WYZroqrEizlAJy1/rCOtQePNl5CwubnobLSYAomNJiKFaw/yIx2kL2+8pWhngFck+VY1ic5GZBSu5BhRHIKGBmMLBjwywiWlLdKhhxUv1QulHwmnnLFI0eIwzj3jYOmrfax7W7FREAV9pGoW5JaXtLcNmFN8lL08LCksSYzR8r0IaQp/Dtog5Xiqhqxg0TXjYQuUtQhFo59XMmvTK19PebiYGZldLXLLN3mYeJkrtXjTzHQwbS2XV80+CXGeGm8w8a/Iy4H6Hkkz3NYqbFMGWM3AorPDpBckG4g5V6XeeZyY26+6KR9pT2MI35NtklrVUDCnPOZ7JDPYtJchAaq9Sp/8l06DakEMQ0sdfcQuqTNs+HRFUGBvw08IoBQv/oKIKjmnfXeS7BNpcnMjHadS7rsJkkXLsbtQn+l7ofQxvqqg666zQl00L00kVmbZgsN+6jMtnQqhpzSLT4LU/FnkRyKiN1XyKUJmMzodOevTbUPt6ba9hRqWjSja7UFxlsZZvbltnX6zyafv69fJo7Pz4t8Fl87OdUePzPFuF+L9jTuV4h8j6r6e6RAxocML3dVqNkYMvkyOGqXP0DKucgpsPTlu33Tt8lzfau1Dy/xHjBazKwAYRcmmnlxZYGDUN49bL9+5aj96h+n2tu/nG3XXmf+2+LFmWUzOO+SzHqNcXeF/pcjsRM818h6InUaMW5Ps2H/xOpBWzl91FbPMFac2WunuC9h83n9Bqo0v+SLwHvwEOZx2mAB8gSnRj6LFY5TqwpF+tz94JPgnhhomYUFGLtnnjjDxL2PhY0b7dKVdXQykcQx6SupcgIv5thu2yVVSoiQtpFfKw+mqSN6lfhKPPPZ6/DLtHE5cftz3PnLb7iXL0uks6TIXD4kHN49YHafCY8nc54mHEwIE/Iim77gXWFWtsOQmEBw5gKjIb13Q1kQJMb+UzilrCQb0gZJi+V5yFbwBCG+PPEvA2W8Ws1OXBt8Eto+xGQaL/DZtcVYWNhgt+ouzJYMrczzc8x2UYUZQFsE5IK5EJbMggEAIxDfp3aiIiO8gJrFrQr9wrSMzkxbvbwJ0iH+qohFJwY4qeJAhySpqM/11+LEIcXyIwNWfUPiuHArpqoYcROLDkwa+vgXsYjx7gdXop98cnWlnT29FmCbWwfErber2FVWaummxTiyq86g9H11dRmrHMvo3vHZEOemQM3eaZ1DCakbY2/QjsvLbErU/B1S5KOYt9NsHZsRQVLm2ENQZBitg/rN11HV2HbDnMw2f5Zn22uD2rYS/TDqfiOjHj77HsmAi6dSbPua/Yz/cp1I/fm2wUKqvm10ymLE9H3Ilwjg+96GQU+pA/QQX1qXE0p3+jVf6NcBTxmMWhJhSpqXUGFZhQ5r2KNakSnmq5ZSbhcg16QJdL8BAy3qXrpImqmfCx0X9RZt+n0OO9L0n/awfbb9NaFpGYu0j9ZMPJjB0z5DmwL3lfh1UXV9b7q9d5FPzdcZ81BJevHpnfbdZ3baU1gHWIaBZghqF3Za+/Wb0+0v/3ypXXyLjbKnDtof/tOd9m/+2WH75hILHtvhK0GxR5X8Qihg53Ks8Ha3CCTvME4M0tG7BbFO/3+FA0/+/K/Zf0J///b39tvb7ywh9Gjt6dOb7Rf/Y6r94v9xnBs2iOOdQk1ENQWtTXxpnbTjyhgLsyvPNn7Wa2PAmzSk7HrDt7i/6U9m2wvfa+3r3z9qX/uD1r5x9qCdXfFrAOPIqwftR2wcfO/PEUhpacMycI7XdeCYkL487p4YaKU9p9ZOtAvnr7Qb6xtM8ptRAtcMl0xvSZdltph8mbhtCMkjAxbGLo0D02rjSMiBdk7V/iVwSCMDZtCYvINHwsvAGpk/AJnUoCQxgY/cxKmzkQkVNnEyUD7rlwGSWZJBlfHx87yfv5Wcq14Q6xkpgHLMD2LDsiDP4SyBI7ABkxSe8gjud5PoLLnCSB0OWrgyeiVdOwl9T2F5IZYrWO3OLRRz7+f/xUjf1OEUtypNEB6wonpDOcN7CT3s09+71PLmHMIXZggxROm/9XlAYsDtZhi/n6dOyxzmI3MKg1X9rxjfql/RTjq5KABdGDkYMRi3qUguqRmjh3QeoTOywMEdJw6hAUzc+o2t2FmW+eoDfKTCVE+LIrb4HGKIZRg22yxWRYA1h0rJLrD3YaQdeJY8DGRoqevAvHKNkxNvwKTHFB0bDSlrl/dKm6HiLD4y2jKzaXuexV/ce4vrFy8Zbd8SGelp9ym4uhKGTTC8H3q7q/D+xL2nHQcp7U5B1beBocrFNEy1eOUtSxgZmEWkaRZbguIqnEotaBaJhRLmUu/R+o6qGmUjviT0LBCH/j2NuoVtUIz6GJlU4YBFxc42Exh3A/gHD73osaM+dGphuegG3uIuQ+5i2X4B0LzHId4x2IfaZ9+4sTXTfvkb6LKw3r79wh5HJO+0cyc5yY2NVn6ezoZWusoTMAM/eJGDDv7NDtK2Us976lkkSx5q8VBT6VHlvnAKZArhC9IeJ/ftzrR1VAMQZdydG6ahu8tUqR1HGD7aaaSnLz6PjX8kz7tXOEkPhvo8kuY3NjmC+zVUElhpekJt9PBqavksxX1xeTLoD8UPQ7sjqPyOCwVVMlBObFOslpdOoRLJ6YGLqKasPTbVzj5x1M5iJnD18dbOnN1uZ1CROYmlqrXTfKHCJN1J9jvBV3MaLhs6lxHkoBLmZOkYdA9N88XRaqLke2KgnQ2V+l7FNu2lS0jr+LTthCVT6VTZCRRmOZ2qWN00TKU4npyhpBNvkgHDv8y2AilwmRQ77gZ3ZyfvTVHBQ57J1mGCV1oWXAJ7AgC5fUpRCVa2JuPBQ/CquJSTZVflNY2TO4KcrMamKKMXWSnEqzDrzx1vmR5xKdS5T9aZPKbzE7afpVfQ74TfStp5TPPUggQGGzrPT6tl1N9YSwGuTIzMPn7/E8ZvMTIDpawMhSTaJHfpxP+T3adJ88lQ7jVFmGhWaXOo5kx7qp8S+ao+oG/G0XZQ13kRiw5rSJFlrtTrV1XAcLu2ljBkrue35yKF9oQ/eOEsGJXqaZ4x0k8knoHOj4yfzKEtFX1nyneBZseRYRSf3cP9LEAv+yXn6nqYZzcoattZvKyH/S2HDsEAHjOSt9RBgtm+XKaRYTSf/d9Ld8xEk+5WGiTFzT+m0uV4cfuNcLlGwE7dfb8YbO1z0cXWR7zly6yGaQaHwqXClBYX84yKBlLh2IBP2mLLrJXl1tco1YZ4v7IIFpNJVwz6oSo0fA50FEmthrJVZZkfpNgy+AV1yM+zah5dFWYS6sPut4sc7E215x47aN97ftSe4qCJRRZ98gEZOyCAe3xP8pHkxBOtPXkGG+jP0R9R41hGEneGT9muEW/ufQ871R7V7/dNgSne+yO+oK0fzPBFViGGvdOx5vfg6NwK0w5gIOcO2bR9sbX3Xkcl5LWddulX4PMq/Z+jwqexPDZCqPKldB1th0YvpyPGYU/AnaduiydgmFlALK+hliFjfApGGOZ55QwLi3PT7bHHp9q5J2bb6rnZnBZ5ivECdiUu09DgrwB/e4GTEV9O/z0x0DuYj7pweZ2VxXYmOSfMckycNITSOiLo6MUg6nNCHXd8kpsjz1DaeyZofUzIdfW85CPY9Bbj5fOkS2MNcSawpJ4mE8KQPq9fzzvA4ZbyNRl24cJVVlscqMFhGpkgnHRNoCOfL7DOz8YyIvLUYh92VMbVaK8hj7j6UI9EiNsQ5vd0cwqz4ArMzLjcWdlCi0jPyZR6gI/S8NSPkC7hq/wyLVV8FUIq8vm5XEah20q2eNsoaXgIOpY5uAGDj4T3+C/TvdfFNgmdi4rDLzWR9tzCWkIrmU0ZupMry5DHtmFMoZ1L6gpzDf1lpnV+sTCvcG0jmTxVEqLCBGdpnDRWD3ebvsUbkLbYxG9emUbbxM2BqkBdW9+K6pBMufDIiupFTRri4fsjM2p4ue6pOvRQCza9zn5KUanLAUd0y+BPTbnZLrFJc8efDohE2fiYxAIXFyXOpQpzoOoIwfYz+5Z1W0I1wk1+2nd3U2reF5CXxp2p9s2wFtbJotwfEUCGGjHUY9J8YQ82vdGx/sIq042TvYxEkFAVl9DMF4NAGcS4ZOY0Q9pi302EPJviq+LWlg/bD797oz15+qA9tcIXFyrP+uMjNJBcDhUnmC0WH8MnnaQrg+NxP/yqUO1RPX//FLAHOj8Oizse+3v/efQ/YTt2OArtMZadxxzdz38x037xo9bO/5xNgzzvbvjlkHeARWcdhMILYb4H1fWBjbvsTF7y7vdRmrrJERN8zlHMTq39wXx74tv77flvtPYsh9I8z0L78TU2T64wP57gXAcW0cuoYTBV5mvrNJ+9mapCOGaCKkM6hi7sp0Ddg6mn1PVM9xC4e2KgZRpKKgQl6NzOT36O1qUTcpcBKSbEF6CuHi9TV86Jq9JV9jxVXoA6SeuK+RZGtY3BYxDm5zmTMp6ublFzZn1eifQp+DghDHgWAun7hojjHso6vDdURuaVOxHy8+V8KASiQxueQWmgsfnhPuA4lJXkRiUreBJQU7V301oI0T17nnyWDkbUVTfCJsOTl/wFgoQFU+ZagML0i0DZpzyASWNP7Ik9mDc3S/q5vDNkldbiqHbRNYUHjMGhv/C+bC50kw7+UYH0IysC7bL4GBjVcd2IkmldRUfZMKWT2dhmXyRghnzSD9l0Nguuw51qjcN3QVOOqkwoXVVFwE2IOyzElDq7oveUQ3V4ZRK38W+gF+3hJ24M3MSKhxLnkoYW02554qzr74/x7h0oRtF6fdTZHewaxuXixwXAKLs9lEQ7xMnQSpXu9I07Ug/01Q6sdDXqWD2sJ62erLqFi46cJqpkmWcXCNJR6b02szUJaF8UnqWmHw9FWmq8vXjrzZ/tI8PvJk03bHpoinrhcUNa8xWJ9BWdUg/jKexQSxu0Czfe61Jl8StE6EOWWORIp0/2r8SPpJnBssba0lHjHCDa6c7Vlr4KE2hKHB4ADOS/c8YvWSw1O3Y85Nnqpi99sXWe8lPnw0j0Y4p/rM9Rxm+th3REhNDM87QNtEj7fGyuu4+QvO4/UiXj2vWj9sbbo/bKT9GB5rjpS7+bbptIoA9QJ8lK08ReHYl+N+yLdh0X8dA/4KRe9hHSdANnPK8DPnlmmbER6fHa03xlegZVrqeO2uNP7LTHTu9EFWOFDcMrJ5kPOQH3BNLlWdQ4NKvr3DEbQZ6F4Cjj1qqznaidx+rGBTYhX3xvqr36ymx7+02+xKKOKi406Zfa3RMDbc0zwdObo7bBCz7RVsTS7Wtmwz/EKE0NofmRURtIzrzKAwwNd1iQIix5k5+wTLbAiA4yeZzGzTJ2pklITdAZ8IxM+b5t5vioE8bxhF7JnUvHXOSQKbdxXQY44mti3+RUwPDCWXqUhK2eZX5KB3uYuAMCXLlLA3H3LwHWm78xbbMgEClCiVNFQ38Si5MVGDugQWMlhd2ZZ5/PSxvbo/bh1d02mmMzG8yzetXaYu7SVbMI2ip16WdUBnxZqI8MkC9NlV3QpXNQ4G5dEntcdEfhvtxjAhEJqkxVGFlO/rPw9A2RuI2T7gcH++jHbvNFwU2hWr/AwjaqL+oEH8HEmqb619DtfAbWHP16CUZwn4EmEkwCs8LO6grdWmiiWob0E4ZOOC74bC0P43EwVorhAsbPfB54ogUNnZLPWNXI3oGyqGE5wnMjnHBuqhVFRMJt+6aTgi9pyFKNIFDS2KtuzWeUuMnMTtEXUnfgxKLGZP6AAEhVx2zVrqRJOb6dvk7WM3UtfKWpGyTdOOldk3PWg4QDLhZi3ywm1nu/UshQjoVZdOEv81wnDcbyiMwziw83byZvMpq6nP3CTZSQOa5KzJsUnH1NDlWv2VflxvfQNvFdAq/Q8xhWQXjYf32PitbSk6b6RGe6h9X5rronKq83ldRiwy4byNS/XUBvU31OBQ6fgkz3lUQhOf1zCpNsqih9pZzVtU1gtq5wIMk7b6KmxYl1tsMqktCzpxBjMCd9mr77SXRDdtGus8EtB6Bglu59LEW88vJMe+3vp9vlnzBeLNJBHC50ck4OKOKn2TVwGGWwJ8CwL9LZQV3ock1BJyctbWHPYQd71sXyEqpaJ7AgssLprat8VTrJxu3HoeUzU+2Z56bbk89OtSfPTbH3wY3nAvO6xVlHBgPHg+Kfbonn0TbZRt3rl78dtZeR4H+AusuF16Hx2/CALIcySXZ6fjT7lyLknhlo6SjTFQYEiuV56EEyu52xCDWkKFeaRMIP+ZKcZyfA6DhiI0smWiaumO1qwBq8izlwjuyHUtgGgpaRVTI3TbnC0omXrmAJP+0eRt3wivYF5GI2CRg+RegTl7ErMPU44bd/AbXwluEBGXEvnVk/+8NIwEx4wIYbwVICebyXGkb5A1i44jHgIrCp2KEupqUIzeqN+ilN95NJemHqKs48WyEu6X5Me+mCZYe9mXb52gGr+G1wwsLGYJc5AxB1l0lWsiq45AXOMp/FPTlQO8oy3cGWxUjRtcpJu/kWkTELB/FPhe7fj4uC/V1O2buxEYnk/PwiZnFOwNBjMznMZkRjVa40GJwLnI316+3ShfPt6qULbIjYi1qBDJMSzVjRGNL31rY+WrrQZJ2Sz/QG2lbphxtFZOBk7NRN3o9aBoURJ/Or1HlE2utY3dhkQJURtg8cciDO9Y0b7QqWNNx4qKQ5ViHIKqN+gk2GWlcJUyo+ltUr0e8EdPUEcayvPw7qMrMmSg9I+9kruzv2mcLxdFAJIY0SWfuV7xC9ZGh738VSyxCG6eeph4uF6ClTRyXM9mslzFr36P298K/3wNJ8tq9aJfFQej7iHVXqaz8zfOx47rj2YI82v4INKTdWatLPfpnFHQinjw+ZhRWcGZfTFYEkBWERU4ZrXJ0bnHfpA7XB2boNlkkq+iv2O1CZW6f3V4wA6XDOJfu81+vY991gcbntHMHfdcz7vf8Weq6XjtpTWBL44x+wSQprAvc8ad4lkX3XY/Z186BNY8ngq9RYDk80BWMt0ssfTbVrbx1xPDdmOtnZ990fHLZ//i/m2ODHGOv7/Vk6MfnMus/C5L2LR+2XHLn9a5jlN34xi8UZvhheY97hCPCG7q9fsBjKyl03HwWiyjB9uqz+TP2OwQem1NN8VesI4CH5fbvdWkeR1xGOFcpcMqZTmN0bUSfECe2AeXvlO6P25POjduaZUTv3+Kg9fu6onTvLhkxMUa6ssekPPWe2W8WEHAfhwgfQz8eVrSJu+h3wuBWdnsbxmGmj7bAg+cXfzrcf/9eZdvAh5l5dkKIqkmmHzB39nu/Ldr/HscDJ0bYr5kEGwlkxukoMSJmkoIiTqKkqThLR9czHTxixisoEGIqGqvz0O8yOXhtFl0mZh64vXcECEShMAXBlfmvyFow4OSoGigEJE5ZB4hIm0JcVf/2Amz0gWfKqDHFmSqKKo7zS56w3Sz1NYckghGnnzfZzeYULu1zhNH6YoIdh1oMLepYkG9g+io/hlB+zXZSdz3pBWmaBOF3HT3+CrCQLEsIdKLZ2YdSQqmxzl2mOdJWkgq+2MqNZtPPKgR4wgh6gYn08CEVJdOWphUrICi7mzUBW2e/77zamyK5evRZ6nmAF7aZAGSIPL5GZmmfj3wKMtZY2urPdZaAvnD/fLp5/v63ubLeT4HmR9HviCwNYvWvIQbjM8zXMxl3AXJ2qGUvYZtbWuXq8hzBflzFhp4lDJcibLIo8ht62mXOzGhJY7XbbFmUrmzRITrVQ4yVDuADj+fzjp9Jv1Iveh1HfZj/BNEy3zLmqTV3Hutdj8l7vWbW1TLTlZKFFG4y7gP12cHYZU08EkZ628x2lLNtdvW37rLDd2Lc8v8CCCb1lJezgm68USjJI3E85LDN69gUXiuqFy6wSz2V7yCy7cDzkq4H93XLqfScPaXUUh6u66OuuB88cqGPN+wR+4ltfQKzLUJt+G0DksYcNaayji1VzOSYJJwt1wsGK16XietmP7l8hCtD25znm+bWrvrdskFrC5BZqLVpeWFqhvz192NYx+3ASfU/WuAhnoM1Hu+vnSjCH8zAcjNkycXFDH/9cC34QgFNPyc3Bq+3yrzHt+naZzh3BUC8sHrRv/xCelUXNZ5135BHX+TL7szem2iv/MNV++3ej9gGqGtc+nGo7HoLCfDnteAEebhIcKTx4drY992+PcrjQBioeX/vTXQ4JaeSbam/+eKpdeQWgczDT99OE3e363EQfUChxuI2Qh/0m88/NtKde3G/nXjhoTzx91J5FFeMsutonoNMidpaXT8D3cxrwMjbcF7CNPc/hJnyMZgynvtbTdu93/ffgmAIQfiy2D69hZWqXcwn8mju/32YRhsixfNndMafxWWpCo8LKMTlx5+rMV+ff0ukyedkykMuATjQyJL0ZdeZHJJ005jGIwa3PbVFLSEIgWIDpeR43QWCPEyRfwTA9jUZ8JmsDcd5qEsZHnJ/t+nPVx3p5WUKlMd+kq3g/YWu+qxgSYThJx8ACo12YHbJb3qTreBtunjz7w2XHEl/ZMIyu5a7fUTQDOMkcSKdDH6TBPnc66idtx82n7qpeFiITwS8/gzZpT3J8J5vMtUyQ6gcyIfsHWkqAURwORakXruBDAjLQprYK7WMpEygdw/3MPsuBzkiclRrOoDKgTrF1yMY4pYqaTANfGWstZ8TiBnirvnH92tW2fuVKO80SeBlkr5PP/iNDpuWM3u9kpmVIlQZfgYn2pL81NvktL2N5Aw5QybEHeVy8tsEXBVUJ+DSm+gJMtgd6uLDRuobMqE4ps4yz9ovFbY0B7omzq+2Fp86mDS6zaVBJeFQziFfSeoPDUpRul5pBwHzkx75sWdYfFMJ0w74O/aeS9/4sjv7ZJ8LspiPMYhYPCTsMvJOIOsqeXiiz7ELhBIsRbVSr01xSdBKNGxRoFhonItXekC3vWMUULjKrqouYXrN+kVSDvO9+76OkvL0jQppqhcbidmFurKD00k52Kku4cWGIZS4ExgX0xBcuprH+BOnw9/B6zu+jn68QBewzdP22zifmt5E0v7U+184us0kKwzuPoecJf9H20fWU8eAAO0xR8pVIBrr3oS+AVjGTdlPH/QKQ+IKK1J7yLgeZYLa8bXIc5sHlqXb1AnvemMC0/sNLfdeYMdwiCDlsr7111P7bXy60n//X2XbjbwDIAmqKw4JmUXmYQj3Dr7KxRoHqw/LT9IlvHbVv/VOEUZiwe+2vjjhF7wi7xzPt0gccOrh21H7NOLcObtvr4IbENajdPXrH9bF6zq/Mu9NIt2dgAty/IEO/xwFIgl6EOT6D7vLyc0ft9Nem2ovfaO2pP+CMDiTOX8Nazmr6bo25HXDvykGNH3mWGjt7inu8A3Me+r340l7b+JesJ5BGb0CPdXShN1/5LC12j/h8DtnvjYEOQpK/GF0bxAnaieoI5s7BRsarZjUTJwXJBwZPBsDJDCZgPJkmszOhaXhbAh6/uY0zhrD4+AnTUMHjuHjIat5Im8qb4ImkwDh+AhXccYhTrFJj/yqmYoPDkE0poZcMepiErFR7jmRL/th3Pi6q4BXYSsRvMQDktXLAm+GahyHUdM4suyZk9AhKumKiAWiYeEsX/7lbTKoSvH3CQceir/6EDPdbkBiivJnMtkHAGhpKxx108BYHBtpBxY11SqNlqNMSlG+7k4P8/KUsfybKGXCsOKI+pRP/1bU1Vs/McIBTbUOJp+RaWlqGUd3nxKkbSJuvhTlbPXmatCsp2dL7tRnGFskz8ECfUcO6Vjvby2QCVU84yWEoTz12ms19O5HIejqlzOQM9Tt3ZjWqGuov7wJPW8JKqZXYy9xpTSMnFRJn33Zz3bOPnWqPneJAFq6THBAirEvXtto6DPo8ZWlPfQ1GUcn2ux9car977yKSa087FPPbOIMhrQypDL+MdPpm6jKRHgLZjoJRZ1upsoyx6hgbbFq8AgMvHU9hceQM9sY93bJbrVCS7AIwzC73vI+Ato+mn95cDIsGmXlH4Xq/XYDNc9DSAptPgmy6QvUL0S8YBNqIPufitx4T7GbMc6dX2+nVE1mYbEHfi1euR5KfTPY368dsqI68izrx765gDk+V9PhhKLF6e8/x6P5VoIBf4i4jYfz5u3zForv84PHN9gRMiCb7lD7rHB9WGSe0ia2jOz9yXzAFMlT4HoNHv8YDxqfEzXwMl6g0HqGbe9j+/M9UD+Er4PuMTag2KFUaoQLRkHLPYaLtzEtYoYAhfen7o/bSHxy2Z58uM46v/vKovQMH5bh7Fib1pW+29gyqHs+8MGr/8J9be+fnUyy+6DTqRlvo7dxkn+r+44pVDp93WDRsI+Q4O2or5w6wv8zUhQnKC2/OMffBLP/RXvvX/yfM/LfZ/Icd5hyAhslbGdh5mBum6Y91d4j62DyfFAFJMpeeRD3kP/x7Dl36V1sIskbtt7+baj/+b9CHUxv3kYA7h32Z3T0y0NXSdLswzk6IMhF2KEX1rmhcNY8nW6nKf9hhvVyOVTn4g5lPOLrqa/23mJse4wuUi3SWkzwGDM50eSLMe9fDlvk0YCJpyh+y3XQTL9P2ewAVAuO61CavSigD4+Ylgads8SIq+HkfoPd7pelFmrauhBOcdObjkmGz8xvmcxbbZiVcxi+fy7mbN/QHB6gf/JPY54SZqeA4EZhemJ/kShoLPJb6qjZsyUAzs6jKschMIyOmbvThPJJY6HAIcJmuqJ5QgMxXcKMgy+s08YFUCRuoFlSMFz/vt7qcMgdD9REHMy1DbUEyrDvb6MvCTFv2tBsNCVeaq8QVrWWyI8kwLOmLwYREcRYr/nVMupJPI1woFDMZCS1qGjtLHLKDCEt9Z1PIOHv8txJrDz9ZXUbt4/RKrHSsYM1jFQWzNexHa9JN2GaamVY8AR70HVVR3Ozo1mStf7zw5Ckk4DtIroGJaodM8E0UkUZmHujlhKA+s4x09UMK4N8F7Rpbp1dh8GXc51gcpA3I6rvnAkE40iqWNJD4Ko2WBtbLg1vE70gpMtSr9hvaWBzIl1YMMjVoWn6nYy2oh0hSBmZ+Ae4zaStMtPF7UYdaWA9tk/eLlmOmiMoOz5NOCPlCZbmJmIzX38uvcJKFNt4rpJ6T9dHPQ08B2/0ar947V/2iNGqPITV8DknzGgwHcoFxn7DXOPY64oz7yUNPnQe4gr0Rbr1/SpR7NhfZV2n3l19v7W//drr96i84kfM8X1g58nuEHs8sFice/2Okyt84aM89j/77U609/iS2jp/kkLWzWqPgqyUbTN9lY2nGP+A5pJ/GmsWJF1CPWDxsZ/ia8fccJPLyX6JDf42x2X3jdqiORMd5eM6NoVvn2BnnnbBFmOXHvj1qL35zD1xQp6Svao/53bdb+7P/NB897dUzO+3rX+fUv69hTQOVDMsaj3MDuC/ipqDtyXN+oZ9hfkR9FGZ/7QxfPZWzOAF1evQ6fxFI3kOZt+FG7gIalU/9bS8JwE+ng75Ih0kx9IswRlqHcMKridh2JgeEjJRLIMJ08qb1hXXrJFeTbOWrMoc06S0DHkO+ABvDsNS7cIUWE3nhW5k7BKWvSOq49pzUYS7CuFgbkQ7mVXrqMA6puAHicSi4p17JW2mk2QHhnla3g2RPBs4aaGPXtBakhG9BRnqglzgmLsiCi+m4tDwhNoIXv1xG+cw1oKvvNq7K22PAsJ4zrHrdgKiVhV2Y6AU2F+6wOVHVDpnpSCzBh/98slfSq+tlVfnFgBleseXRb37rNdazTgbTEVv/ZvuIk1FbWkY6TUkyWdtbm4F9YvVkaGL77MOcjnhz9xnsDhDdy0DLqE3yY9Vna+J04+TBIScI0gfU8bXPipsSW+mqiTrbXzUNj9hW/cIT8WSeHzt1giPuT7E5YylWKdxsJ446GVLbSZz0C+PGDZ7RFXbjopJipdVzc/PgtsHAg76YBLzFSRrfG1VLXNSIn7js+92Q9KEn5Z5Esvzk2bV2hoNhDNuB8VfF5DrMtPn9umA+1VZcpKga5OILNABjby3GWJwt068haWce7Hu9YWwjSHuTq3oKwX7Er1f3e6ds1WaSDlp0aXpZXCn6uDhV1cSTGA3fQ09cKMfONuTZd0F0PuIqrb+WIxLeOoj4P5LnUcDDTIFL65wi98FMewxG58lVmBKEATLLjpS3dqHqPQ8zNR7+uvmOO6w51qN5197/8Kj96K9n2s/+Cn3ndxBgMJ/NaePYw0GQNn/9n0y17/7hTHsJlQ0+HqIz7P4PRjg6h2bsdmDAPZraqVW5h887qFX49eIpNubN/4BTE1FZ+PBDysIMnhvn4hgg84EsY6hqbfUc/ge/RhD2byBAUEPN6QLYy2dbewFd7//9f4NBfgEptGolWNP42U9H7S/+M5k2GcPFgY2NO9hxXmR+ti/bkW/ty8Hh9/wT9gNE0gYIuqbcZKkwBjz6u5U9YsyHXzZ3bwz00EBhBNgo5+TkJ+dMUhJsTKBK6FQcJsSJd7gkpYyek7hz8fEEyMPgMrl2ShNmjH3LCdv0NowutzzUpG9YyiRxNtuZkXjhWX7FD/nyVD/Bf/w8UfAQZl4/2SuNlGHyxeyMl0hYJ19UI3LwBOnNY5owJRadBN5g7GAQZrjUkTXYTWT7Sv520IO9in1gPjVpg9EwN6zJ7PgWah3j7CqbvWBcxdkiZUYAM5TT6TzQQZSGKx78n9aF0aTYkrbzXvNZageFtNkdDpvhbZXBr4s68pxNZdKdegc38NP5LBPKLfiKkTTpjLcMt8zgQqTbwIQxl/kM0ybSZryDm2Pz24mVVaxubLYtmOilE9jpwZlrjoI83VHrIwf4t+2rxgUmfWLwe1eyf0JpLHEkC9Ms3tlpNCpp80VOC9SG8y52npXQWv81JM2Po3Jw9uSJSJ/tbzlNsID3SlPuiA2IezCtrMb583jwVRjdXUbl3d1dNkayeZHyZcYvgbP0jlR2TEdQGZh6JccrqGWoAmJZr757wWKtWOpRh5kw4hIWO9Tguwe++yzMfO+Eq962jPUcEvuoLhEmv6+K0iz9a366JNdAFXA1g3UCZrWvfTkPRo9djwujTHwsZbhwoFwXD24AdZOt5uX6IT/iohQ6kmjSaSFBXJWwi5MLuTiK60X1csYFD54aCfwl8eDiE1Wf/elAhvhHt4ebAvaF61fQe35juj39R1gh4FNyH1Ye6K7geMo17rPpwA93W92X2g2N6jjLMNLe5SCUf3x51H71/3Ik96swn8wxhwgsnvknh+37/2S7/cGL++1xVCVOIGlGDT7CjS2Ooe59g+EozDOaZHztRHp9FRvHWPCYRkcaUGkehtJ25rnZ9uKfTLVLv8HiE/rQ7qcakd4ejCLSAABAAElEQVQ9Nw468+hYzyFNXuBwouUXsXb1wjx5sfzyo+1241ds6GbqkvmcWxy1kxyZ/eSTmJgjrfO76pQy8lra8Jjtix8utL9DLWLhNHVg8+uSc/B9Id69A/HdSo3x5D3rhBT0MAjvbTMnIaEeHd0bS3rv2N4dhHvHVgJwZe6kZ/nXe9qYTqHewDOatlKFce7MVYVJ4JryBKK/VEJkPS1owsHM2BhJkzx0cJGwcP7N4V+YWFHCGyfM+Ie0Q3B/sgO7IChmpRjRwBnSeXMQW4aB9tSzTT+BA896lDN1+Suoh5OGFyivIUGG1iU+HacBRPCmBixPZQjnFxaQdlOoK9RpTlqDzuqjqucUaajZAlMqgr/5uxM3/aSP5Q7oJrPqJ29TJa6nHe6GWwvTKW22DMN8cWW4rKt1Ljp2WgOL8ANe6IhxkPY60IRBw+NdV/mEZnoDpHEx0TLJSrE1nXd0aNd0IyA3r2Dg/c4uK3ng3di4HhqdOsPyHSddGNOaX9JUScuF33oWNvVLUBi7UsmozXwykQuY+IGlZMG0zzHbGzmB8zom6bZUr4AwtqFOKxtXCRfo5Ws3Qt/jvpEk+bHqN1D32NhEugydN7APffm6VkXcgIg4wQUp5a1vabqNxMAjGZc6ytAJHWqZ6zMn0Z9Gh/oEDLRfRS5c2WhvvH856QsjGeGib0lyD8O436C865tbsSTiomuagV3VDeFoxUTm1sZyMWT+vIcDpXotxMu65V1JG5fE2GdVZtJXcpdhHp7pd+YJA00eJwjVVkaUJ372n2wGNb1MM2nCQPNsC9gXe1/qeEjkwmUc8hGPtJCMviG63Hu+PFd8Ih/9PNwUoN1ZW7eLSKBH3/GLT16XB7rO9m+ljFjDZFSwD9Oje6d+oDH/4pHL2AAafFTjKxaHeqDr/JtfsgfkAmqIMKnL6DkfoSYxtzzTrlyZa6/vHLV32aUvP+H4VPmleTmfD9FtvvjedDv/5nTbYY68+C4HEqHGGAEQjPcKB5NgLLYhA2tzMLVz6P/OqdrxDJv8Hmcz+RlUhk5iW/yUF/t7TjEGIul+/xKHtfyazXY2LpJam3oKybam5ZCn5MvsJhsff/PqfnvlJzDy1xBVA/v6+an287+eZ/PgVvvaN8qqRsf3QbvbbXWdoraLX9Yd72t87ikq3YP8e28MNDUvCSsMllwlDGJnYJwk7WgDXzEwpIYVibwXmZwwi0TGqDKRTkOQeWVMnMDH1J6gptnC/lBuZ4MSTXIliHGVKGURPMbHnEOxE+kspybsSLlIUFYDSG3iIYNwlnJgBMwGE7pOPFMzK51nfoY8RQMe/K/opJEG0kvJZZgUAQ+FGK5kcZXNXasrC6yE6VyEYQyGFNIE5pqi56eK2ToGDhALDKwUgx91Cw4R2dy4gh3lqzBaSFZh/oVxE91InqzkVYUi+s0ws/NIbEUrR4HT0WWGBB/GjLbJZkIGkfwRYR3D+CCdd8CKpBHmyKqH0Uy8DFWvre1lmQxoGG+HD2wLnJhXEk0z5b+Q4/FOzjJUhdjcWE9ZMXFHyf7t0beuAQxbGbFmIp5FKmtjTm8sAmBetTl84aqbAQ9YLC22U9DKHZvbML2XsMDhZZzqEzKcwvHLgDrFF9hEePju5dAh9fXVKOjjYnyExAmXORUXMXDBcIKNd8u0j+9FXYWbpt80gadNZqXKp1eXIu0+h6610mphyJSrKpIFEvBT81S02stFik696k2Yc79+KOndJXjxgD5BGbY3gnFws5/Zv11UAkvm1z/g5ZkfJcpjaXIYYFRackeqzJ2f9JdImclnOwsyqlFIYqSPKIUpGOITR13s56m/P44LeQmD/k0/RR2DxK5o2u89oc+SwQTiH08i9T9yXzUK7KOKton5OvZo0xmPe8ODSAe7Pdpcbe0ppKIfIAjAXFnW2EoEGF9Zf6YO6fwPYgUeAJy0WiV9DmB8r1/lsJQPEURxfP2zz3FU9XdgXpe3UbeYba/+DUKIny+0bVTqGHEYl2o80T/pfJ5dKEsd78GM/3SXhT2Bh5y38PgPp9r3/g32qlEH8dTas88TAaBFvnT80b8ctZe+gd49EuWTHAKz5gl/q5y3ACe2yVj68msH7WVsSQOZuaXGM8c+hywv5+AbqGn85tVR+/lPsKR0g/mfPnyEGsf+B1hzgvn3tFmSPrDuVtycO0W4834PLOK3QeyeGGgrrkSsLCLAYOBCDO5OUmn0wS9DWF2x4sJY0EWTztk4TU6aIZNErom6pFpmTx7BpAWc3vEmbxLzQxpm6JRFGo9PNj5MQEcsicwZT1DqTwIWtBKu5OVBixdhM5NoqJOJeHZOd+ySsbXimp7Ln3UwSfIkKcnroWJ6mGl4UY0iIlXP3XK8fBkoIXf8JBQ+lay0DvwxyVHpU2bKHUpLehJNzbWL77/ZXv7xn7Wt9Uvt+a9/vz321IuoN6yxAGBZS7rkAA8ZnKhQwMSpInIC1RGffXFrk5p4wggNdDbcA11ybDPS45i5I73Dj5sOt1HxUO1Es2w2lQyc+f0E5RHX2pi2+llIsCIoZrxUNkIXIr3nsoKf6KRF4WjS0EuPdYQ5nKVec9Rris9FMnhTlg988/jj4kCdZ6X/mszzJCc3IqbvOZCRVrN1C1jlWJjbR3WCLxEsdNzgls1+RzttmklNmFn4TTJ94kV4d+nfFiwjGXoSwwDvwSqqZNhvd8FP29A79AOlG4uULY1sJ6Xf71+8jsR7Kwy0TLUMfJwJusOrzrqSaruPGxmtZ0nZGXQJdJPj42fWqAsbQmF6yya0C2PbS5qU6kR0kGlLbVd7xLZt7F1VpiyUgFs2myE5cCFfwfDOJBKTj7xRsZSRRVelE1tJ5V0VJnmDPEjIAQdxv9X1IO815R2ncFTRVR8QcqofMDGFaQwZ+7uWiKR69PPVoED1idvWtXesHnmHpD3J53FP92fQOPPUXPsX/xfWH76FreK/Rq0L82kHLOBllTxAw6+TD72zDRhDIqvDWzyEtTbi1gYzvFyajjF5hn08Cxg3OInk97Fn2QPywUL74b/Ybf/63ynWR63jJ3xxPM9Y/hi6zCxYpP0dwDIgEg3cWU3eMbQyzbb9a3PtaTbJ/dt/td9eRF95ndMTf4xk+dfYW15AZeOHf4Ie8zdRuRsOLakjsav55CVWsR/Nx0WKlXXvIxheceGyzjPgtvIE4/mLs+3yOwsc5sUJgt/caf/hP261f/onM+00+e+JsaOoR+7TUeCe6GyXlQF0rs6Lzr0kqUydMKFdDaJ6YqV1xhp3dTx2mnRUOkz6yMf2WmNx5Em5/PZJMOHkc8Lu8bkPaStH/01qCs3/8NBxINAZtRAZ12kouYrpOUQCp3AsdcDfJYoBAT7jyXkA8FE4A5BAGmLNpBsY65CDqKF24OQDTyYfrpjJy0NyDnUgElDBAc/mxtX2zhu/4GSg9Xbpw/fCQK+dOtdWT55hR++Zpn9pme9ZMJlmdOGxD+OrNZ9IDF2MCI8/y/PoUtudZDDFhZ9Sa0KjZ6yVjgajurI8F+a569uKv/1CnV43rcmA90WPmzTGJyQiBdUu8TxKaMWIWtlP6ZJUTHGUV3aal7BvvIA9aCTRSKhnYVq1MDFmYk0dkjFAUWHVc1YwmTcHYyzzqRqHdJABNG6RLxAzMzuRBMtAq/aTNpFG0MQNoPbHhHW0Q7/+cHwPTV2giC5/eM2Zv9IXF7Gqj5OH+JlSXeF9dPNkhNXt1kSdkvMjJOguFgBDKnDh05i61uKoSb3VEwvtHDp/Ho99RfvU0MJ6eRy3OWSEZZBtG/u377IMt0y1Uva610bEMdNMuGkm33nfB80sBl/a1hNCfWdz0WfyxofmNVGEkQUD2HVwqrKLEgTiiqLlv/2vyPZaVwqfbussl2KlarLcNtGjwIebArfvHXTjtq7FgOhkon+KibITqMv5LtXP758qa+Dww+9jDeLkQfv+80ft/D9Hinr+iAM/sCjxASefYoN451r1abr0w+cg/hGL+/CVWSwwz2AX3mmmNj3fucoeHDaNPkXMw8KALp6A8cXqyhqn8Z2DGd1jk9/SgkIKDxmjmdH1S3t/DC17cOQjDpLmgSluuzDTCDuWl1HTWIW9YnPhGgy0m/5UwZlib88SpxeieZe5oY893h3VlTorTErZ+e0lVf0c+lfY0Pjtr2NJ5sPD9u5PUbdbB+bJ3fb815B+Y/FiPgzZnenxKPb+UOCeGGhRKOkNjZyZVoahpFYyWMyomQwjEbZTkGbkkUH0FrtFdBmHHiRjlY5Dtt6plMAZXkxjVbg61tC5Kyg9MeGkFXDXkaxDUCqReI4HFrwmjRuC+3PwoFzRNENwCKeYgBRc+IQ9ymcbPz2EXRkDISv+zpwVK1R1Tpm8GAWtkCjUDOEShv8yqZ2WQ5hD+CjLb3zglOLybWqgUV64KkFYKb94kzBFNzhK+sb6L9ubr/0cVYmFdvqxZ9sTz369Pfvid9o3vvvP2sIz6FpPY/kBhspT9twcl7ZwlACfuDD2VbaMrcyRdqAP+Jx1cKj0shZOKkqoCpAjwFEDSR358XN/ARXDqqvtXn3EehcNqt0dHC2Vett3CoOq91DX0GAIH9+CdKU2/wnsQZ89fRZby6fb+fMXY25OSatlyADaX4qWZSlDtZ1FVCJOEejGOjE1bBpaK2mXUe0WR1Q70XlioUyq0tOOZyImf6wLkaaAguOYYx9BPLjRbxN4HpHd3y+ZU03/SD+ZVKXRSUx7SFIl/F6ejOjXkzkG4k4G2/E6JvHsP+o4224ucFT7sP007idOQKpfylKivrG5G+ZcKbOSZ2mlnrLlkxA3DPb0Ses9ZnrBLdhxB3y1oX5CHQP4plTlAMPuXM5wIPJjHQWfNh/6b9XVwGNqxRs8DEsO7uUS3B8m7ulXquNQx5FqUSQMjSfSPPJ+RSgw0Zd6je1J2oh+G+bkrffokzBA3/nWdHvhGRbzxB33vp7j87/bl+GZ2gucvvrctzhI6KXWLm2ianBhCqHIUWM4b6/+fWvvs5ktX0NF6eNegM8f3c+nBMbZqVPzML0wvwt8+fv6YXv8GVRaaJSaq+9QLC/5FNJnbZf6vjteepdG66g+vM1C5NL7h+31V1GBu4qKjGkZd47HlzvANkpY3pgq5DlusLnwNy8fsQ8HYcY+Os1bjLEw5JvXp9r5K609jwrGKeoRwVBl/dS/jqcy0N98Htzpo3/GImDUhV7MDyUU+GL66aeuxEOU8J4YaOfwMJMhiEwIPcnO2keZ4W5HHDNEpO3jlkxgZk3Ckqfny3PBKeaqOn2NXsVsmd6Jz65itvThFF8vSTFeQzjxk26M39DzJ5kZc5hX3OyMpg1zR7hlpJwBmOE5dMJP6kRMk0Hmwrpq4m4EI8Q8nZWleOp62XmaBIjf6hhkokpnKjkMLyWc3LnwDWGmxt+B6U1eBhv8xvbBQtYoG9Mg/jRqG3vsdr18+XKZB+OI7HNPPNvOPf40DCJSSBAB7YG+egRG/rRvIsb0Ua1DKamM8z4cXuFdjPIC5u1y9Df0UXVDZq3r4Ip00M7PUAVA6xPvDAQgv8clTdMm1s0/yODgYxjU5u/YieYxNGJhlk7BPD/7/Ivt+Re+BgN9oV3YuRCpbGiUegGh/oO/8JWme2gMuzZpw5IuS3/xV9or45zNlQBRheE6qhPbqFrIaNpTxO12zjKPMQ6ytyTDagdwrgMjixMl32SKhRZyyqQe58KX/yFEP/U5LrrSythf51TFbZhr1T+EK5PqiYcyqYVTpxp5gKF02/TqVMs42/T2oWJuLcGAKnfKzg8QS06JFWyKetdtK/xRhZIwXKzRKt6sPDvxB5wFkRihPtos1psyucqZuGrXQ3p4hfa4ydgKM52+GdRxFrDf6h4Hpexhnim4xpKC9uj34aZAeoc/drjJrmK16SS7MFq//uVR++sfIRDg9LvZ/5vNX9gAPu0Y9kWRBrx8dXyHZtikxse0dm4FqwxuRFs4aFuoCnzwt5xbq+UGJJ0PjfOlpY2msG184gdL7dxTh+25E1vtD7/DoSHfwcQc0twwMaa7o5to6CGt487Fq5iye3mv/eIvWTRxBPc6DO6eO811E1kq4M6/MtDT85xg+25rf/WfsKzBomvNfoPNZqeZfTaaKI/REsjdupuqx4PzU7744g+a3DM03pTwbkt5lP5uKXBPDLQtVxNP9TQ7iT3FT7Q2Zi7CbNOaWp1ea7Iakpohf2GSBuyFaZ7OPCd/4Am3JuPKZXYLMEU54VaBxaY46FDA4AbmIslviphIA3wyzfWJXAaG3E74Y0YSrxJApdPFyOEnPlLjAQHxjM7yuOxCa0Akt45B1eU4oZjLs4YZBrDVM21qxEP+eryQyJrc/U7cMbQUlfwCknlyo5ifvQ72OaQDlY6NqxcxIbMFKVUiMKdtZD7pZck8eIuDOQQnGUnvkTrCYMKP4KSUeWW0VAGRyXT38CwDvsy0qhCWXTBV61BqqlqAIfXFoeotNJknpbGaRjTevFHrQLIdRpBn+5WRBZPSebQvefcyWhNxK3xHW107ieUSv7MVU16qL1U14RcofOYDfzeAeJCNbZG4gX5OotbUMi1f5lbmWUZ6REcJzSxfxAbX8ezPuQewPgssp0+ViyMMgao2giCfupYEP+2XMnvqDn/IP+B5DK3SuQBww6M2poOd6YCzhZSb2uFNQDHnDO62nzTcU/WDfLax/ds8YXKDL5A6gVntTNWRmCnQ8gdUstjLfEGASVycuNosBtpUlTYe/cRL39CLRMkLQHHKhbipw6/cJIaOotLx9tUt0qclyj8kTj9h06f1mGLB5ybIXg1yPXJfAQqkH9G3p7fpXdWhx7W2m2gJ5hLS3Td+xfT4CqbO/g82Q9MX2Zs17tfjDL9nT+/aaJS0RRjpmTPT7eI5mMvVYezOi3qfkALWFEIEF9luVuQNy/99gv7pwNggvKB+0V58aha9X076Y5Hw3e9Pt5eeZV5xH8V4IPh0ICdTbcHUXrjY2usvI9GHgZ5ZZmz6rAsQyKMQcQeTde+gWjH6YLY98T0Y6W+jMsiCZ4UDe86yYfBEDjq5B6S/gGaYpNkj/zEF7omBdiobT2yBWRPstC+cL7IdaihrnM7GJ55bXE18phvCyBCJn4web4b5O9M8TIdJWUySUIZyklDGpiZTgYcBddKHwenlVA4T6+recRFhy+jMcfwyaU6yA2ORSpFOJrRLIIeix+VlQgZ6n9BTdxIF/2OUU3wxL8e4BCMHDMpgzAgz4V1mRXZC5iD1oqad0VAymPpx9z8XeQwTTnfSM1ZFYGhnkMwqTcwzdZEZ9uXvl9nE5bilCoqDlRdZuJC+UogWFvbYFKhkdqTEFnrLQO9wjRCHRGcYlZEFVAZSHgDEyg2GSkFvoIsbk33o4ApThtHVtW2s7WsZSjEx77KbG/mYGkYo7JV4Ews+hnWag0LyjNUKfDQh//4MN8HG73Ov62EYR1QWYIg9vEMVnVkNgkJz+270ftOnXDjUs+WmUoIPMyncIYxyhxKJNNRwLt1wqwdihywBx0PHKe8AcI4XID3HrffUDEDcvbobvIEow0nbdGl2vgSRrqTLx3gVLXkfiROfwrwApT+a1EcToA6h16Dq75XOKKd2GWYrV2jxUNE8A5VMvrduwmWpkKFDk4uuL1QNiVoM99DCxBNuXEWDHVeCSyUIg0+/OHZVaN6fIaN9LEz9caJHvoeYAnaT9Cc+009zYMWtDHTvxPsc46wAYIEFvH3KbnVzz/viieSrQJcvx7177xtmjOdTnIo6xXh4tAlXmQLueymfjK7DBcXOMAbLiC4soLrhpjzH5M+KzlCXzHcAUfDhAinDy2eFaU3Im/4CZzViQ7jm7hzQFtB5hpRsMER9g4VPjUSfXPWe4laUxuNeT/Do/oVQ4J4Y6MI409owIRbTE4mVHYkENd/FlwAb3qO7i+GQKexzqf7OaCjRxW+6Ia2xMoqOGAQlv1D1e+nqczT5ZKYCucoXh2IGwFV/MAuQIa8AAo1nygwsBg1hkMGXLK4XVE8V5O8Q3YNTlgyWEzr5LdM02oG2hmMHvDC1MAvjzWIknEISbCq2B7R5vgvNHSn6MNzLoRzHC897mfDgWFiTD8lKCpQuVVYvUVxk/mR2NI8wJBvQFzeu4AiyZAp4ipisnmHCUUpzGAleJYAfC9PMvJNyrY8SbiXbc266W2IT3+JS7FkLQyfzubW93a5fX0ePGgZ7aZlNFAw2bHRbhFH2rlUPD4rRDrZSZ6XYhrt7OQwz5VqP1KW3Ew9pA+5lUo22DEctclW2pImXvpL81NI/N+CpvnCDkwUvD6bq3DB4ioNRHGF32LBnnJv1lJ5rT1kdYcs7phjMX56HskLMaq+UMuA8RjeYHFPZlrC9cwdEvQvH0Avq5O9QqXHQAEsONM579etUNjU1QsIRAw2Ou3blEULoYpJx3QKm+mG8RgI3fUb4SUxJvdwBZx6rr1ZdXLx5uWiLE74dCBcGmjhETnl/DpFWy4CrJeJcVI6HseuBk2FESuMhqqcYZwl9h1CypZ7HkY98XxUK2GW8bukgdsWtndm2cYO9DnxZ6j3rlmRfOJXEZ4wTnrH/XjETEDRww9v0YwtthN3htsWVL5T3Cvwz5O9tZB1zyRuUv7fNZ4A6ZKlx0Tb3QJKGetd9cahqaLNbRKeZy6aw1DHN3BJhGMXcrfsMWe62iEfpPwMF7o2Bpq9FwkfvkzGLRCuTreFgc0urR2oMU5k8PV3uTL1OxP4BszM/mbgJ6F06KYBpuGGCP5YmVV5p4ARezKPAKp3pw4CbwIcekbTCFFalTRzPmu9ScpYyzDK4Y4wICMJKWoEv05PnupeU3CTmKLbCSb3jbaYqcxgQANeZKlgwGGgvXjpHszjSi2fS8at0TQCDS3hKkvWvcO81RJAR54l5wYcGKj1vw+syR4HsrJs5jnGqJ35J3tvgOGxYPJmeS/3VPVQEdmAwZ5FgHCCZ3meAGjNNSYcawdZ2u3btGhv91pDyIl5AtD0nbhSimsgcDHP4LBYSU6g1jA7AcG4ROgxdF+6v11VcigaE4Ikfj/dOJ586yWyVobkqDb+hUhKwAKCxMBYSu9GhCImr7xY821cmWqsUKSPlFwz7jLAMd9BUYi+9o6ZCqNLebMijrukzhB3nMJ9/hXbPN0k7oiZcL4mgjojesd/41Gwiz7E3i82eVoJMuHrsmLkIKH9M2+EvHAmz4wzddIyN8Vwupqy/7Wh+v/AUA13L3EjD6dixHkJcbLjLZKOuMYN5qb4YnkCrvBQ0xrZ7+t0U+r163QwbXNXC6MkMPfbR/atMAcdoN2uPsGU2epzxd7bMxdmRPu/eYldNGbcWdJs+/Lm2EeVnXwL7ZerdvhWhz7X0TwAuLveLIJ9jvQTN4D+9xByGbrRniH/W0sp60WfN/QnkfBT9mSlwDwy0zIdMAFI+uAz1WcM1p1/XMBAmlgnRXuNEpWqGzIZMSHf6hKMUTIZEjsabE21nQH1ZBOMmLtMa7tRtKc7bxvU05fPJEs3E74BDAAdOjx3gJlOAmDECWqW9MrH+j/MVehWWCOoMkz0lE8SftChQAEGqLEchvhXKo7CTgh/CuzNFPfZY8CPAekqq0MXEZiGsMxRhTgwnW6Lw9D9DhFbPJqo05u9MtAzZCJNuMkMyN6WW4V36WNQE7gbc0VkHEvGfdiNtFlXMRgp/cxT1Lcpl4r/JUdjXr3lq4FyZ0TOf/YRM6kZHTQbx4y5Hh+3vbqUt106eQq95Icz4DJseZ3LMNHW1EwHTeuWibI8BV7XE5/ST/Ax1s37Wi7qP+yowVBXxqPZTEL+Ot0bnWl14wBu3iB1lTb7J6FnmlBL9gLEMgA30kxZ4MStEPj3AWEAa4QZE+4qbBXd2y7qFhANL8hdOSl3JUe1HXulQKkOWpBPxSTc852bOwU14K89EvqF9e5+ZTDqQCSCmt37iNtCJMPuljIaBWYiBaVm1KPjSof+pauTXVumn7r3SZJlo8/lX/Wzoc4QfQdMudU868t9UXQo+7puWV2Wa7FZnD+667kkH/I+4O4P4SPJHAQ8xBegL9lMtep56Er3VM3Ntjc16S3Ra++rn5dIF+Rl3RTy+Y46dDDl5fz6vsm8L13GITz4HWJDQZn6+fBL2yH1KCthVIFeEH+z/UbJtWw5T5KcEQrLAYUx0QnhE/k9Pt99TyntgoKtxx9IxJ74JpGtitMPw8hEXqRKdIcwG9zBbpLdPhCHuHINhjBxHSJ7SX+xAph/CnRAzafvMFeaSgk1m5+yMUsUNUvGkNcSJ13T6uYdZEbc8BkYVynMAmqji8ks9hqQVaFxgOcAcJ7W+YZjUIeOzv8xAuX4/Tiv8wsk7tSOJOno5EhvmarS+07ZQl1henA1TuYtt5ixAgOnmvJMrHKwh54uz3EgNuEvvznSpYiDTrKvqUA5l+EJrRUPcVY9YXETHGNvNnlCohDQbrLhX2qqguI6JMPitlV7VJGQKt7dlDItBPNj3qHMkODNIkLGA4EBQjHVNSLs719v61auYX+MQkG1UOMBjCSZzaVFby1zUW0seslcz04vRjd65wtGos5uEH2JSDmZ3maOsMVUXJzJcaSkqJunDzHUkUwF7URIl3nzpo5U1eWVyl1AVMZml288llG2ZC5ILu/obHpw6eUuqmNAuhhdRzMOV/MWc2y5KXQ9Jf4Dt0QP0rD2sxctTFGODm/gtFqYdL1s45Q13y7u9q3aquO4XPy9b6fYu5cA5KCE3XZlRxNuzhZAuYGtiH/cDPEeq85C0L5xM2p3MswxzipbxxeuXGm0+TfNVwgLsZx7fLfBMFEIjbf9SFbjmAW7KJVfcAHe4DbXzaQKBIWndJt/fSjMZclPSRw/3nQK2zNBI6ct3KmCynSf7053y3I84cZzjvXzy2aP27/7DRvvjF/faN7/O0cy8v/bWz8NZVwx/tGuoGbtZUVvA9s71nel2YWO2Pbd60J5d80skvfXjuvYkYqYJsScD78KfvABh7J9i7shEIcxe9r3Avgs0Hoaktq3j4x7Hbe9j3m6bjauHmslDBfFTOTrdCL3I0RbpgfOld1TjU9b8S1HVe2OgreLQpuko/HRmxecwhP2l582PxIm7c7SfJHRKG0NSCWsaw/gRrFJIJYCVkgB85jWdsPvndB4tBUaFyRrmxPTGaw83GxIJUZrZJd+mz0h0m/5YsIQnEMpx4vYpAYM3AIzn0o3vMps8J7m4oo4APmHye7rk7RkMJPkQJlunc/hUT1wVgj2+n+3DDKsk4BCqmtZhmAkH2rAnQih6ynSYl8s/membEB8jKm7GqXtd+sUr7HA4vbbUVjge2vJlujX1pZ6yNAz98EtXN3jprKtQTLeBJPmDDy+1q9e20GvWwoObcGQGsTAvNtTB2kkLmSTv4nh4sNn2ti6i/3zYFk7UMdRa2lB1QyZ2Hv3jeXSoZazdjDiLBYXgMOL0vbkd7Dsvtxeee5wLppvT9OIsSMRy1zO47oUu2WBmMGHiEXLozyXTyy53cKACziNDuKoHRbtISPGLoxsnTa+UdQlmfwXmP/SFbjLD0svTOgViOmEa7qYVvg83Vdyn+Vw8jW2qI87oPYKh3sP03D60YwlVhC5U+cWF8AKadPXc37/EWH9dT9qfK7SiiDOPfTUbPMFT+o7z4ElL2eSkFQTo150H395srLRdCU2fk4i4LDzyetsXSctl/V1EW0TKMT8P5k42/aoZWYb9BDpl0xfpUrcgJtAJJ6w81m89FQ627ce5cYzZetaPS/wo/J4oYNtm1KihY2j/24NM2iGd7ZK+cvukn0uow+rqGu8yTOsf/9F0O43d3eOvGPe/SM73aFcZJjd5QRgmGeXt6/WuaAWo9qV8QrnS6ROS3FW0L4cSli1ONmUsGr9G97WQu8JoIvH4zZ0IewC9HU068CGLI7YDcXokY1q+VPfIO+AtrekPkS2Qz/fgYXDOBQ+LuycG2vZ06pMJjrSS506bTIlDi+czd9LWJOhKOh1jTEUnz2JMCgIjCmlUC9EOrVJN4cqA90+/k9IpJ+pIBdE30kybE3LMn6lWgovpNvKKE/xOmKBM9OMOiYf/Yj5qynX8VverJ0m9/ElAsClULWBw5jdBNh0OSXr+9H7CfDZq7IZ0VbahlA8ccZ6PhPkEUubFtjADjYlbAilrpYRZ/m5hWi5DenEDuiTPxcCrRNhFRL2vQ+HiF4ZOKamMqhLeWU5NWsRe5RKS3MXkkeYeESrjbDsIs6whsHiGU/QvUmritrCi8dZb77W/+7t/xCj9JnQ7SR7bQYxpO+uIxHF0KIOsbiuIE5g/w492kU5fBa93Ug+TO3a7gJrGcv7MDIwlYdMc8jLNNuwpNpgd7V+j7tfa1154sv3LP/02p+sttifmzoHbLV1aekh1gfJjnaVtJJ4G4YKfCXoy7lZYIcEcfcp6mt100eflLu72O5+P5AoTQjyJZKrJlgWbpgFTZ5j/WJbQqgcHmxzt7XEEL22Qi/TgPcti4VB4tN2INrVP20+zKBQ3/Eqvfe7tHKQpWxemnjSFTVBKeH4MtF5xwwM3kudyoaf1E+Efukobpx1q5rPZcL1smftKJvs7ZCHA9V1PHEm2z2Ryp7vvvWDyNkKbYEsGj4M3XMY5KxZnHLr1iD5gv8sYIp1NVCn14AqDBFdkBRtu5XTDTW9Qyb3y9fzGPXKfDwXsLx5OsoeY1QW5DKpfleZ4wXoT9ZKZSnjvkdZh1ccxwH0QC5j98j7RjD3553MH3+rj9FJw0P95lr1BV3/rBvbqsS7xOJvNPMDO8eMxjn5+4QRiE4jkNelu7b1hvMk3Nc975nvSE0xksi7Z2Mb9dvETSeOdcl5hbPc9zOX7S9vlk5Lwb1NGMn7cz4BWnyfHL+PHpf99hH+WenwKvOwz1o/pjY30U22XdYinHXq65S7vggKk8EE3N+vtIZvm06S7fe4HK9T+43WL6/S6JfiBf7yF27gbfB3QBsaVl9v3e/IdL4awv2HcieyMbqbdIY8DZs/XJVKFhXq5fJ7nE76fxGXkNrb2cvyzDIoS02U+8VuO0r7OPNhptW97fdO0B+SdaWeRrC4jFZzDLNE1BqopwjPJ904pAgOqesO48Bx8XC6ZznjvQ7zpfDRtSXOpFWnzJ4Mq800eB37Fb/qThx/z5SdhecpzYizHix/T5/O/DBUA8twZkMQJp5gXpaSWkc1d8ciiyFQXuOQ3HFdtQ2lhSKr8EfrJR4c7XHQJkk0x0moN5Igl8z6WJ1QdsQXnkJSW/i+n9MEIXlnfaK/+5jUOHniFJfYH7enlHSbA9zgxSh1hSyOf9zBLo7a4fAKLHCeQdpYO8yEqC3u72+hCX8KsHaMMrt6xZAJ/GDql1+AURnTaEw4XOdZ1H7WPrfbrl9/m1D0Ogjl7iiNSV9uZU9pxkA5V16q9AeYvVRX7zz4dT8mp7VBJi8b6xxv8kIQeqP4iTs5QLF6Mj5k+pfNMMBjjiApG+jTAxv3RIqk4yVP/TvM8AMpypYtt0L/G9DYuGEiE6fdnHz/HATdn2ocfXMp78NyzT2C3+3q7foXvgbiOuwCP65yo4x+R8IqTrjrvXEP4OHqIqjbzQUes/76sccep/VISUL2jDSlyIy7vpn3WogKUGJCGfAmUcY5jcs4XIh+Jl3GOagjpXBjaePWeF6wxqMo9VOMYryGYxIYVjvyO3fAWjp8feT4/CmzCNLz+3lH75ctT7YP3OEr+3Kj94R8ete9+A5u42DmvcSLN3q7eGLXfvnPUXvnZTLvOIRePPXbY/vR/PWwvPs/7QDv2dr9v2E52igmgvrmWlWsivHvT04bu9llx8t11rLmBqsbVDSTdsxwBzeDnwv14aK4xpJfrXZRzDenYjoGZNBYanEqn4EJm1/juRDPzQ8a7WqAPL0xPcvPdzMxb0zTOHFY4ptcY94At43xwidNW32UzNyZI71alYMRcPFpizpa2jKsjVBQLsZuL/8jTRwhsjSZr+JEcny6gz+2Aug/QjssUPS/mhutvt/YrSLV9iXbdmWk/Z5o8+Rhm+DBrx6GwyhO+Os55QBN+w4dim1Uy+ZId0hYKSr5s7h4Y6KGqVF5C2AFz8ROGElpMroSNkzxjotVTGIgpJk/jpJ/pylNShxNs2FpEF1XmeY9J9QY7WWWKTyMxXVkuJizMs43DnzaDt9TDRX3AS1zUpe1pc3oP6Xx3dMNtwlPe4AuySTcgJmOjE6a+XPyEESVNPROXeAagEKbDSNaiVcLJZ33Nb0acNKjf8uUxDEBxJykhuJihWDYfvTJA4tHf44Acv4H+RW2hpx+eD2BgtzEl9/67b7Y3Xj3Ji82bDbN4yIJF1Yyt7T0OW9nhyNPdML6nz55rayfPQoMZ1DU22muvv9d+8YtftffeehX7lhiMn9JSxjZMLQw05fsJXhZIHCLxHu1gxXmfdFjSoJzpKU7vO7qBnteVdrSzKfJDuFIXsnHJY8m/2k/m2Wy4OseBKIvLbYMB6P33322//OVie/rZr7Wnn3mirSKtt9a2VRhk6jkQhXBgwoiFgUbqM5CK1KEOyZQMIPmi3rsswjawEOIR3TKyqytLgeuXjV2l8qRRMn+EOoIbYwPMMoEWtSQQtr2KabQiRODCSCOBV/IciXTKJMIGzJcEcLFD2IfAdWFpkUMSVto8tF5ZWebo9Sej0qKFk20+r6ruEAccgI/LqcBP/5seIoyxk4o6w6wJf4lGcmIx4BYaExbG3UZKM4t/Mo5zVkcfwkiWLxcmEg7POayG+vu1xDYTlKYYJckB/ce7VQvtArvoLF46fwv/PAbu4Bvfkm389Mjz+6KA7ba9c9Ref3PUfvQXc+3Xf7/QnvvBYTt3bqd96+tDw4JMb58bmxxN/dtR+x//Za69//Zi+9YP9ts3vr3ZXvg8EO6FTsB2uFIPeR89wvSum96J44S8nje9bh+T7DjDx/h8ffdYYGxtAG9lFDWwjlbKH/L1MLaXMK/xbmgeiATZawK+a8/OtW//Rw6rYgxRhHArPr6j165NMU4zl77Pe7VBZoFOFjKJIw03PQ9TfpqN2BzWMrVEUtJvI4TaQZ2uxrWPyzwJaMJvZ2AuHy0DT7WQi4hkJcCd8Eh2yhmK0ib/HipzqjdaRy/B3q1TGn8AA3+Do7yn2eXNUP6Z4HxsueKFrvP2+/Aj7+KHd8GKa3v5b+Fdzh22U2f4uvA4h6xA46FqHwvqkxN8fNYHKoZ2mlLPkQWfDToWqBC0zZHnOyz+HOsrlrTlfaB/74GBrpp2piOTKFVWtSASXKqtcQJTSQjj66pOL1XsOjUp+9QdOcjgSyHDVafXlSG3mkgpYwh3A1k+7VqAGSjDCXdogwAUFxmmOpzjeEOfWXT9fvwgVgPWvp23cePQlAuMBFS+4E34EBW8qoyCKp4+m8UBSRcaUjk/6wygSCMt6yoVmOENT35ivVNw0uenYNWvuf3r9asE4/LIFT1Ty9vdbVeuXW7/+A9/0y5/+GZbO7EU+lp1JYJbHOd8bX2zfXBxvZ0881R74aVvtSeeeQkIM+19jsX+xa/eaJcvftim+eR+YXsLxhuJNQzlrConADnIccmqgJQkemFhByn2JiobvEUgdIhaxy6M8y7SZzfT+VJR69Sv1HWUPKqfa79C0sKA8xhwz80tofKgRYyL7SonKf7Pn73avvOtZ9HjZlHVtM0sh8ymxt3NfDLe20O1BBzoCuiOF13SHweyUWxc9HnpQ5uIls9fXm+bqBCtQpMF1CvEbBup+y7SE+1LR3WJXGVjmuKIlwlUWq8JNhtnpNSaCQ7PsBCgbm4YhPmPGhJlhaEkn4N6zGeRzwNkDN/kE+o1mOcdFjKrq0juETedOnMSqyTonL/3YfHclGsnTB2GegzVqpthPRzYt3O9v9waZz+wHsLOBSAXiOp0y+BHR5nJ/ADajh3pbcdOjxnq0hdDMiiiEksbglbSzEBh+B7pbJNZ8s/SN/xK4H4bQifGCTE1oz/68iR560pIhZni2A1hyVeh3Vv3/nSc45HvM1IAUnZq2i67bChe56jpg0v77RTi0dNsEF9E9YxROe2ecc/+4ngDA33jEocyXd1pJ2myE0ujtkSHmDe+A/2MaH0kG+PARBdKtPrI1/jkfoMvlQszSElT6M39yb66S5/3wCXdHOoos4iNVee6W5ex369YMLRHSOZDuFvAWJ40Ug3mPY4Wf+8D1GE2wI3yldztwnjMn55r3/vXM+3Zs0g4oVnmhwEZy3BT+m9fb+0v/huj4zrCkRu3wbSXm7vEZswe7bYZ8JuxrgQdoMe7B7xswL8NiDsGWREY5xEWlI78eozit3OnJSk1H3can8FhCu5kivFedKaRgDPcQPfpdn1jhvGZU2wBJz929w7BDvXZZdfmhQvT7cbBAnBRNWTlnua+e4C3z0Gd3O8x7ddcFgoHbAS8/OPp9sqTbP5/glMJWTAto550X8u8PSYPdOiIyeHGHgs71lMMAcOI/kCjPEbuHhhoYdSEl8lXEeHw7HtirygJIH5fBt8U7tMQy7nWAcE09dmWtL49/GeWDglJnCzHb8gxI1zSPebbMEPkCjxhKRWUiZ5Bn3OOyVlp8VCUyXAFz6I+4lI+oT2SQVupbVZK3ocMQtAv3HFg4uoldxc17E9Ckgg4VW5BkMmSyTTFPIzRChLeE5hNM21ggmPKcNJgmuk0kbHkLaeuk/Ak9rFLTI/uD6kHaaCFtFFtQl24nKbIi+1pe79+7Q0Y0avt6SdOYwVjLnTcGvTPt2AaL1/fae+cv4Ek6XJbXvkpuB6idnGjXUeF45ADU+bR19Nmr0UKd2ERZo+2PsJShtWHbYSpxMoHuspnkGKfPHWmXblyGdWEG23zYJf0atQWOekVMIbSCPUOmNFd6CUlQhvqv7FxtZ3/8IPQ4sIlLHjszjGRzLdXXnmy7W5e5Drfdm5cbmtr821mCWsdWPV4/90LSGyv89nsqJ3GLBWKy+Sr/mK54h1EQVY83bAo07wzqHAYZ1/yQBd1xueymVGECy9bYVemevsgg3u3OqMKDqDaIoUs0MT5OkEdXEDYA2QandzmYLj9siVDuhXJyB4rcui5juk+Zo4tpM1XLl9v7751vj15eqWdgqm/QPqiWLDHP9z7Y+Lrx6DqfROBepPWuqGHrWScACdf6yvVu5M38NLFhrMMtOlom7QcwKvvkoBgo3R+Ncrbal9wYLCcjBUkIEOfQF0s5NQu8uDNQkTaRNUmAIVWQK1H+YZCjMLdtn6E35wqSW/z8+lS3Sbjo6DbUKC6Bn2bsWqTvRRXt+ba5mihHaxOt91To/YBX57ewCLB4yiJ7rPAXIcJVOr7u+tz7e0bs+0GfWTp8aP2xAu7jBn2ydsUci9BwBupKxEbk8c9Z4MN0O+cx/rFG0ft3Kobeklj2b7gerk+vHrU/uofp9sHbzJGMOY9//3D9l2k6c+eMd7Ed+eycOY9SRm3ZPWd2kTifP7yqL36u+n22k8O2/u/Ypxh7Brxfoi55iOP5g7aySdHbeXfTrVnnp1uT5w8fl8Zwtr5a0dt+zWk0O9PxyLEFAsYy73JBRghcAUu5A8RRux/81SbeYKvZQtHbQlO+ug9LCzNsrn5t+hGMzaHNsfkuwncrQ9T4IuosY0uDsRkdTxis3ne3Em9WIJGjK9Hc/PtgMHTcWHxJOMG4/jmpZ325nvQ4NmD9gTS8dMcjX2rfvit5d7uWdodbB609evzbY+y8hXR/USfsi63g3lr2Ih+O8Kq1RR9CpNK1ImZ7btrjSq0t36z0ba/w8oE6f7t2v1WWA/78//P3ps1aXJcaXqe+77XigIIgGSTbMq61TaSRouNjW5kc6nfOVe6kUkXMmuTpkfTrZ5mr9wJEFuh1qyq3PdNz/OeiC+zCgWQqAIxBPl5ZnwR4evx4x7hr584ftw27uZo36iqvhaAzoDJj2cf5QLF1r+AVO55wuqTUiBQJA7OiAXXyorrjyTJw7M+5EAH1wLHFqoDWgcQxNU7Bgkfs9jN3aPozExpJNP4JBJAH6Cvuw3wO0aNwwE75XA2LHSaee8si75dcLXzNNJV1z3feVN0QXoN3CB6ASzVTSaRjOfzPmHqt2q2zQVxSiyNLogVmB1zRk8A4DLelvk870NsvBDKizh/HX2RKOBXnLX0omJAXudT8QwvJ0CxklmIxeWECnOA5kN207sAoI4DhMaQFu/uA0QBaZpRW1uez0CwvXMQoH9Mz94DGG7uPmsHd58BpAS4e2ynOtK+/c4bAG6UMtBjVj1CECa4nEVHXcB5FlNsBZQ007a8PIu6xQq6jTfbPfSYT/cetylEDQFPVCZ9Azrl2REihhMWxahKYrPYnqqcnB5r2m8XNQhsRwPczwHwexu/aj/+5+vt7oczbXfzI0DyBJ+Jp9qD9Z9Far25edQeP3wK85msMOs/RLJBF8GqiYVWH/BSgOtCOkGykmf7sPUSYNbXjNpq3Dg6+a+T7mP62BEvghDL6CROdKHULI0wAp1+xhutDhcQqW73CfcC5YtR2mIcdRbiuMX59gF1hs/TqTP9lLxVJ9nia8AqYpcxVqTM0PejamM/kob0rlymTvLM5v9cZ3gXwVOOrkKenPTaB/NVAI+wikj2sYBpzone5TH4IhJPn3f4Cx/82jymFJ5JAjg6/SKh5mX+8sTyzI1r29kvvEcOchAo380sfcPrgesKHtxfXhjrpaEvBBjnao6XOQyvXoUD9qddTHZtbJ61jae+N1r7FED6ya+RGgKMT5i4bj47bz//KRPwrZN2c5Z39dloe3YEkCFs/REA+oMJ1MrQCX7juN24w+QT/d6XN+arUNilsR8xdARE51Gu3uKjxPredgK4Pwc0lqmcSmMMo25sXrS//Jup9rO/mmorUyftvz1nDcbKWXtjhSxfpTOZ5iVVlJeHgOeP7562f0B//O//fqJ99P8iMf2l7Kj3T1HGu5EMlnjHzAHiryOFvr3MBIT3hO+gLbYs/+gjeP5PTGR+odCAevSAtXv2fBGMIljwE/sF4Fw+nDGpOaIdzvZ5p/P8jgIGx7RO8g55rPOu2pcKedRT8RvOvMNGEA6M8G4bQ51h6ib5zrsgnC9tn7LWBL7Xw4iq3upYW3p3rN1555S1LRQxxfv39lhb/wBhzo/pX/+TY/0542Zfkd9Q9gvBeZf4JZG6jgDiIe2rfQ/IE8XjmIZtZxx82hjR7Op10BAqLDuYJ9wGVB9R94leMvECjX9Mt+mGX3UbfA0MfC0ALX32k9IbLbDqva4f5+wbYQ7nPJSAoYDZQRwecsLikpiHFxCRT+EASqVQAuhIlwOqui2U0YnWVrBhlbYAsrqre6gdCLInCZsFzJq2XL1QnpMSUHYG7i7G1ZNkVUp/eyIFALxoeqJNTyXzPgY8LqCvOotu9j5A3kWQAq3oEQNYDwX1vKj6z1/WcweQegxg2kRSqi3mfqMZX3BKL30hB3QECSvNK1Isr+Tw0CYN3SG/Pfgv6R7pYCFSZl+xF0gm5gPSVE04Q/KZDWPI9ATansGzWJkggxXizVGPY0D2GVu5CmYvWGS4NM8GI9e/A6BDtWHqqP3b//HPMdvGAPj0YaeuIYGqLfCJjc9iaIikPIGhhKmSMwlPgH6Ad6SuSLsvzqaJI0gWLFMOZ1SdAejYfYYntrEgSt65it+JyMLCQo69vV0+aT5pnz7abb/82d8jIWaR49hRW0Sce/9T9d9HA4QP0Z2/e3+dRTrHvNcEgLZZtZu8EuzHdrZty5/hs0g/LvwywLV2vROPunnOGxd+Qql3nav84gXPSRLwbR2cWPSTOLJDAk2E7sHIFwn6ywmfBQSbTjoivaesmdkZpPULSMJO2+zifFu5vtr2tzfbxdYWq/a1G33WtvmcWY48cf4GTMOv3j1/Jc0Vy3AXnqo+o9qLfdDQ0MiP557O3Jin7WNyf6xLd8iLPm1dVCl0s0gXJp2skcxBN88PCVVv8c9+5/IipfEnThacKPnCMENr47UMfcF91ueFCNyG1M964xNqXxryR+UJg+RR3OCi9/jtz/YD2+/uo/P2o3+6aD/6f8baw7sT7XCT99om/RpTBEr+nn6EYOT/BNDRj8aYfFv4OWDGTZ3OsYt+xlqKs2fo3757wdoDnn82oZCsK935tyfqJTGTT19Pzn2+nuf4VHTnxmn7+G3eVX464jntwyXCR/YUULvP5GCCXVYnzxEycK1qw0W3O2riE8/epbOo/joe3c/VfBPpSqBhdvkdVFr+8Uet/V//G1L5j1jMTTnjK9Dk58urjmfxHKD54T+Mtjdun7Vb1wHRK/JupD3Zoj1oi3/6P6jPKOPStvyUIp48AajPMdLkyTcn2/giwp/7qNNt4Pdgv53879QPYHvEJOZwGQHIvx5rc9eYDF2fbifPGDgQZlQNrxLzBdckUfI9uTzSbv6rsbb6/cl2tI3e+793vQlUSSJMnrvR2p/+D8ftf/13h+2tWyNth4WWP3101v72PrwnjhMDa9DzsD/3JcvzHPxcDcu1AQNHLi9rnEH4a1wAjgXOGvn2/TWBfvrswU5bvM1C+Nu0C5OT66juXF+kHaDhObJ+Q7FX69RH/TLp+zS/N+dvKPGvAaBLt3iepaRrmD875wGLugO9UV7YwC60UpokGJlEMqt0VosaDp4uxNrePWR2fADYdItLEtiJSChAcotk9UwPAMR+wtYplVZX6URwTD77R8yICQvv+THtIbqrWocQFGh542QO02DkJ3iRlkiDKTtpkuvn//hcGc98rc9VV34F+AS9BaqZkQMSJv30xHMTqSX0jeVTV81yBYC9NForDtGPJWOB9sW5zSHQRR2CXzQE2cAIySSHIBp5bh7E8Iq7gEBXXOk4SZOEujNi/0Q6d1ByeQjPVIHZV/KMZ8yDyQ+AcWwOA6Djj19oIcvrK0tcT9A+B/AOgIWe8+gpL08k1TexdvH2jXmAHRMaQPKEaitITCVEXbIxXtwC0HOWlQuO9wCIfh1QUr2/u4HUGjUPpK63VpG8L01FkmpbbyORF3hLv5LshbmpAHn7jHzLRi3EU2VknM/Ai7N84lubTx0/efSUFy3m4Mbn2hP0EhemT9rq3EkbQ7cwkl3oPuUz3Rj0bTH7P0Aaoq6xeY85Mtov+eqxjdhsFuAsqJ7pdjxUUj+v+gnqE6NMAp4gCbZ9Jzg0PTeiOQ7zkAV2HB35ea0E/wzxit4xy0XfnbI++KtPXZMLB46SRsyi260K0gFtpjWU0RgPRWzE2YWW0jcB4F1BQm6cbfq7efd9svqCLfGCi4cxOxLrknj1zPm8pp/rL0+oV/VL+wT9jT9tkMsXeVbrD+iv3lN3++PAdYVP8MyPG9dHmAmlUWpjGWP6rsADPfFMSEiTyQRtwj/stAzje+bCgT41NW25rpjcEKv760Ovnq0leXzG6Xc1l89E+IP16LiftqEbF3c6Fsnuz7iX+fWRYKFpfPVc8L7bA0Q//Ok46yqIQL8aAUSM+DKig/luzpd7VSj8MqFzZiWWMw7PoOa/RgifQA1rAlDrmopB30yCV/ixeIpTxz4SWK4985ohf/sZ9p+ZeN9abm0NSwlWSAydhefc6sIneJWJHhJQoDPvQOpGgPHMJzyo6JWG3y75Fd8qL92acj9zJqYY2QWGTx+Ntvu/RFrLu+IcQJ3IV3MivY79Ntr6ry7aj5FAzyyctX/7r6kP7+mnfHjbvIsQBPWNaSTUK/8zFbg2zRcCxu0PD9voOp8J5AlbTkciDD9iEYH306jtQZ1sp9OPGef+YqrNLqEad4N3+wOC1Ef4Mk5ayRIjTG3pjdbe+FPWlTxr7cNuogJlZIp0GV3vnQe0OePEEiokc/DhLhZa5tZG2upfjPNl4qIto9YxyThjm4TBHR96Zss/XtsVzrU89p6uNGjHMeZvyFw+RrvPhgAAQABJREFUw1Kiv7Yb2a9+b0P69VHzoLv3Rto7Pzxsb7+JJH13lMkN42ynbmM1pFF3tb/0fgZ53d8n4pWfLukVn+Hl75oDrwGgfbFoTs4nYY5OKZjllUzLO1D5AAYEgyRt2FmsaWir17M6sqpnPNvci56ptp4Du41I+mxzzMviOAO6A1/5CzQEe55LD9WFTDVoGsu/o0MWBJC3A7YbWtxYncO02TwkziCNPGk3Vhb5pM8T86J7offlNnWBJF/6XXz9pd96CPBWkdQ6iejVF1YWZ9kGejrx9VN6mrqRh/wRTJ6cALKR9B2dqN+FP0918uMcsM9mGgS3aX6mGUSw5MdD4+OFk8E58yOggBYZrKUI1TMm0YUT0PmUWX6Zhin+SkfUNATQJHXqoVTXF75tKY5RN3tzaz9S22Ukntpc9hN7zOOR7hi0fPzscbs2C3g+X2if3NvmZQTgo0hxrxn7QptC8p8FoNxYxiHgbxsgvgvO3Edcs8VnQcu/OONbHrQ6FB1dALJ5UauTrd8Eqh3j5zP0LTd3cdAqfe09VDbOGby297TIcpoJE+gfCfghIJ3FfhPLrIBGmsIioJmZYyZ47lIIaAac77FY0YnUPCaaNDgi7zLBg3/TgOVZ2m6evjKupBw/w+SVvJxCWr6EaHsfsOx23i5MnUOCJrDfRo9dXksnWUJ+AVCb6AigrjRVf3lifvJb1RS/mGQRIm0taM7CyWQiz6CNScv4yUGA9DmTj9OdrXbIFxalOAJZ87Ff9dLtfOEgvVk85zqPTLKgTRcvfzj0ty9KW2pAnBEaVQAt4Z590vzaZPfKZ0fLJZ5qMAHUZpS8K39zMp3x9RcUZ47FbcCs/vKMfuUz76QzNoAJFegYHLAO7wOguY8z4PPcIMwLK8aJy5TXpdErLnG9G/h0AX8cp3OfNZ7H3X0m6hN0KJ5B219egZ3SXtUfEvRZqecLbJKdJ0jdnrBgEKuUSCjpK0gVRxGXnke1iQiymoh2k7IK9Dzv7YcB0UQ7PsLSz84Ialj0DaSUz8ckwis481C9bgMTeTxW7Rl03mdR3i4Tct9b0rWHCsoB7yf764PHTAYA8P1GKsZ5QpozFhrqB+d4Hhsg9ZwvYS4e5r0F6Ob1kL4r/vSZzGSUtH0dLMf3rraxo0pG3z+Gd8gYig7p5H4/tHCNmsskBqJVBVPVYSSfqrrcutMZ/nvoSr+PCcDRpYv2/bcdQ1u79yn5IFFG0zdAeGKF99pNF1vz5e8e0g/GWl/gqmScmD9t5peCaisbCmJyyzt2g3cWizzVwSaDywpx+Vs5abXukHK4Db3mt1NtazEpB6Yd3EfPmaU2P0FdZXz6vPFhoj1ZR+0OM6sTy6qFnYEfWJyKdF1evujst/box+uMNwBVecbrM/fbjFP7eyJpBCC00wRqgrarfb4fZl/M71XunTSGt91DdM6OWbs/o2/8OwQ/tM+jZxPtMapOb6Pr7xdOyMvzSNXC8pRJFiZnqAAvwDPyNNyv2PYbn9XIFV58Xl+F4GGaL82B1wLQDo6zrqhlB7hxtlULCLPj0uL14rDxHZTdinoSaR7gOW9OZsjow95Eh3UNQOsCIr19ydRA6UDdSaE4x9mJiOenZoFUFgkCOJQC2tv6Z8gd9DzsWlNIv5aQYK4KailbwHL9+govPJGedOaUsgsAmOrSSbcuv177n4KkrwYZ84YNeVmahzaSBVSPqUsAFvw5wg71HpLfAxYMKnUuSSp6yDwBSiDNXz1ipRhKWI8ASIJL9YhddJcd9sh7QG+o4gdahDVCswv4uejEQRAOf+B6aMpiPB9IJc+AnyyyFIh2ExHB+zRiFvkpSHdyEJNtXG9s7TEgTPCg+pJyIsBAeII1CwDwvQez6HDdalMLN3ipL4a3JygPujW4NNWEQr7YthB6Mcu7xLbmSbfCPPWyEghImb30kr7kd0h85cXoKAB6B9qom7FtD5PbDy6UzJ5tM5DcZdHgI3ZCZFEGo88Y3wCtwzhvxuusTP/e2xxvAajJwfZ46JQfd2N1MWBWWgSK8xjmXEVVYnlxLjza2tmLVFtVHPMVoNp/tIZxDOo4h4eqCC0vUC+uH28wGmTQqT5c0qh0lqSNdJ9b294JYPpyQGPxI18rmJBZxzP6hO3jBNIFqTNMosIB+v4YExGl0gek3aQfkxUqK+z8yEUPnovB1lJG88vJfEODN3njln8i9HG6c3iSAOsifwD2HLpRytEiAuY88xL3Re7TJNBNOVybpkPNqW/AMJ76O+6bU+LYU7g/5pmQH87gkD0SWs485UueTfPsnVGu3nf+9vnQQJjBlJi/FyNbdo6kMxVFd3n8sZzkzwkiy8eP+ZTMp3F3AlXNy2Zw4d8GOsn7TPRPAb5+JcMYA9JPUn0RswgWGG08ZtHuewgzBGI0eBY9X2Ww14KAz2F27//swVj757+ebI9+xdesMTL+itwZQOYTJLqbSAN/9DeTbAJF/RFLpk9SB1UWPr3nswhou8vEmfUSPbHGeYzkdR9p7ij9lRU67eGD0fbXf3vKAmvev8iT7tw4bm/dZPKONPsAqSMfu9jNEOCkKkpXOfPxXabQYf0pes18yl8HhE/xQPiFhuDwXr+DI2i4ydhyZ6adsiDt5BFPCSbgRpxh63qGkZ8J9/dG2wPq9sGvT9rso4v28x+Po3dOGPVwrcnjf+AJ/BXP3CnvT6ydpDAyObp70o4dzGhrvwDEmbcHeWu/d/Of+OL1M1Q7RrXOYSP2hVf03/hrPhSxj/rHe/9htH34fgkUTlDRyA6lDt3UwUWO20/H2t/85Vz75EMEcJOnbV3A+ZD6H0y0v6YKv0TaPqj7SwqWixtMvj55j3cMYPsRTP+//2oarYrRdu8DR7Nan+LXvCxwfEker+UlL21o0a+E0uBMWVHLoQ0Y1za30emmnh/Pn2ZTNMVcj5h8HsoLU/gwcnHKc7rLRPLRYxZystg+r0ryW0fNSaHHCGOuoBo5TSYBr0XzMPGX4sBrAWgtFdxYW2q3FgCAvBwEwBmO0q/tApdOSWwBbALTPXz2BNqXL5VIm+hwBbK74a/PhngOsqWO4VPogNxJtywm95Vz1DXoWAKzbAsNMImUjjyWlhYCwAWWgj3+Q7Np8jKgPKKlnHxaJ2vDBmogBCpN3GER4wk6e1qscNtpAWOc6blQXUW/mF/TJjK8UaIpnQH98ECbwuZrPQT7WjcIPyjP7JRWage7l1qar7ypSYP8KScfBeJrbCZyxOf8qM0IPgA91kUVmUPArSblzgBmAsFIRClXyfUUW0jblgJP8/K5d0ZsOftIgRoP78QukxYA69nxLjSzsv6URT97s21c9YLRvTzITm7klYBHOvnvjhEk2uPt+jJ1AQzmgSee9fELgrrHp+S5j77YBtNwzTWZ0EVpvBK6gxO0RRruJRu/XCCdbUjxT09sU0QJSHFHkT6PT92MJHmZVdpry06kNJeF+Sy+lKgmYlu8c+daW+DrideCQ6XLSp+dyDhBW2TBjOdNdNSfbO5mYarS5uvLc1mgOsdXB/u0Nslth7RFV1/r7k5rAmz5f8FodO73VZwSZmvlVxKBt72FbsqnUjoiXx7kv+axslsVfdQFhVv0NQH1GBOKM3hsWtVPYkaLzJTYazrPvhM1DAvqXJ4x8iY5L1niUJ6USJf1kxZd0ekdh/WIpz84aHYSox89B8jAFwZujH1GH6EJABPkl4lBPZuJTD+q58p+S2ScvMkk1Gg+f/gpdQ6AdoIWn6KxgPNlPy+ikk0V3l0+fzJHC6tzf1dxev/nU9SdMf+IHKzY3R5t//J3DOQPecZpC8GcXHBStqdqF93TZ13PC/uvehe/gU32o2P0dA+QeKoeFinzl2Ur5WMsvu0ihfzorw7bIySQ41i7+KqcNO5t8AxhTeMD6nyPOftoZ0HIMnwU91EXsKqP5wC0sIeal5MNmKs/Qr1gFB3WUwDy5i9H2q8enrdPmISow/veKmY2URubwpzcMYD1CCskCzN+Ne2fvi4vCrCsbUzKPUU14+HiOQIfwFxXmGPTHqbP7v6CZ4CFd2e8h30djvIuyzjBbTcXrgzJT93oC3ScN6DpPznmQs/9u+gQPyEPVCNEWOeYb7vADF5ELwqbLM+03cLl+jJQfh2lg/zPWG9xpugT9btBvOci/XY35/SNMzZlOYLPVmIMyWrqza20SNIx9fj07/hS/T5SYjaZOWJBjTrgqh/+4gHWjfgy8EX90ayOGU/2UGE52TprW1z/9D/Qp2HS4RZAnHY8/5CyWSx6Bh0MQ1+YH6FfylUPqrqETr4oCNvv0Z5H0HCwDZCmX3xyzf7N80LuGxtMaO87dtNXYLOMONhiEvAT7Kjz1fUna6rZ+U5kQvAANdZnx20cnhxC/0MA+Q59jbWsQ/c1ceCVAbQdXL3QWSR3s/O8IFhIVuoUHeU8DcbxJ9v50jnt0H6u1t/O5TU4ig7RdzXims40pjVBBlnCiehgrJfuKvCOh2lIWIu9kA47Chgb/16v0tSCJQHrGS/MMco1TwEnEIdQgCt5pAwlLySWjkhRNd5unsT1xWFdBT5KSi23CCaNYdwrmddbKb2mzwSzEwBVgbzbZwusAy5ImDiEO8GIOkTO+BM35tCsiW9TMjTvkspZrv7FG4H46gkLBDnjRXnG883Pi4KXpAvETgFoSqezYI88o7fHGzaqHwBIAb+8CNBicqC6zFMGGvXwMJ7Bi5sHHwn7gZKpC/TLz7C+gfrNBeKpfoKRh1vC5F1PP/czgFiqzFnAKZ9sHTmM4+WhZFzwf4r455AXRXiffIxoixDbusoHz9DpG2aELx+jTbUc9KLdHnhynms33+HrCL2bWGy+owTZ15MvJlUeiMfg4oRG3tuP5auSf4/e2Zey4JGz4b5gbaP+sG3S/hncU5Oqj3E5bAP/plVFiY6fupzkDv1OajLR4TaTFUc+EYv1REJyjnRLHuy6c8IIC01ptxkmWfLJa+ukGhSkwXsH6nqWTq5KhcI6eEs70p275y2ctZT0i5Jy1MQpEmooME/IT13Cevz0MI1/PjceOltzvHsG5LX9QGe9e+ezqnOwF4+Zvy5PnDTyZ3mJR9wEw+vw3IhdfC+fu47Hy36SY/g8sAzSJTWroqZPh09QyNVC+rA/3LO13d8dab/4kZYd+PIDgKkhvLhj75NTtno5z/Kqu/28k+G+6+3nr+q6ok6fIoVEOo5w9sVGe9WcB+my3g86j7EFOeJjd9VRB9XZdGgXlOvZwF3q1oFq1hC2ww0O4tUSEEAfTwVPCDv5wVPHEWQMY7OMN4BZXVe94mzHTx5hHGn6gns+S0toYO3PPqBVvipgYNI5aBqT9g5vLV0c3bto//AesxDcmEBT8GyeFDQqAPYar6t51NqZ5/24e875nNaDbOJXd6rpjDDxH8OUXHJ6sQ3I2s1iDu4etsOPiEF4NmazfBxYvx7buv2cX9LxsunWdiLwQdpftj9ldXhwjIqHg8RIseo5fnxOpr+9t40Kvd3bKOVoq3T9X/iy8WOy4b0ce/koYvvVIXFlsEBblSplR9wKoO/943m7/88KMerLiETYVRgN2hjj8zEPySMse+yoWjN0XxsHXhlAS6Gr5XeQkB0gDTw85VM86ECJnk6wo8sDV49IgFmkXoI0wjWZ1kuo0nnwM5kgSemvoO+YWaemy3zw0x/JXgBp/s+B6KQtgCwJBaCLAGkIlOFCEJTrUFd0Vj6mLWBlfIGgThAr4NLP8n2XTQA6lxdhHWVmkDe+dawq651FaCm344e4wnJKMisFpCXMPx13KUMTcZnZ+8KABsuTYtNWAcarw5ALgKFBKdr89fOGhPLRuH7+R3gJGOQKAFsR5KP5hCHEF4wSV3LwUh/v2EV3zzba1MZue5M39z4v4j3SbKH3t0m4g4vSbI35Z4JDwQMAzbWTFcG5WW7vXbT3WMgS8M99PKXTunCS5gBBwL58fs5xX/w1wCv+qPcokt1pdj5cGMfqBibx5lCUm5/aAzivR7cQ0yZ89lppZ6vTfCJDTxmwL3C1sPuocmygE10gDQpCR02m1POVHgGyINWt4W2fp+jsq0f9ZGOHLcz303dtT4840hTtmCnkRSZA9kuExzimi6y0KjpaZYmePvGVyAuu8yBSrrHA/tF991O67e9CR9NKkwsS0zehzYlh/wykb/IjD8kmTj5Jg+YSldp0XKxA8ssiX8sM3cSmgByJaZ3spbKLvsCz6F2FkxdI2DB/pIf/9AG94sLSLg4eff8wzH7HP45wM5H3DCDOQ2JzHX+uEs7PwKXeFpTw3tt4Hldckj6fPsUR5bmYXVYv5nglpz/sS5jvBg9jS0zEYIzmxKpBOj55KwfyA5dy/i1YUl3tt4//eVnaMKhEpMk/L86r+vc0AmoxT/1ZZzjuM91Nzz5tzw/BmPlIL31T6WFJV3xr4Ny+mP7dZanP86wkH99nvop7/JxIXUTVYnyxXCDt5rcSk1ny7mkYJOAifkg1FyvQuXkAt3H6+P1Zv6vu8/z7OIb/pjh93N90pg5f2LaWQyUvWCgof+P68gf87vxfejIxATK+y8v+FNf5+cUgjPT+K3YlobdgXHfyfOEECJN2mlB06FBAN3C2s+11xUsgrbDBd2b6B2ddxaPfEN/1DG7jroro0H19HHh1AE0jKombY6He7Ng0n6gA0Eg8C5R1AyON7gAfybFnJGt+8lJ9wtfJBbpoDvCCXaVqfl7XYoQvcfuPktIAR54y7wM47TwdYOn6ER7GtzOWD32wHorOr/dPnxyEESeu0vmC48r3FL99CGfyrJeooTX4exXLAoTpV8BDKi7TIs8NVVQl/rCq4l6J05Hbj1mJkLJTf/lF5LiiqLiiB+WmbHz6Aso7ZUQCJDGGdfGUlud1nkIrp54vAwIAUwXq+SzP7NiNO3Y2N9E528sDyvqSNkubjTOBmEMthT0FkeSjyoFIBquCSEX5tInNyzP8hfIW5UNvObb5vioe8kPaOmd4SdR7nz6QgM752WsM3bFJ9CBnWPCB4Q0EKhTIYsIJVocIoie1oywY4NOg+ntatDjam24PH6p/v9ZWlqfSX0vKr84zW2RjaUPaAoIhRPBqf9RFPQg/daA3d1icSL+cR9d/hUWE9vF1dJ6n6ft3bq7y4jptv/zkUXTFfdFZP7ozZ99sZMa905io81ge6f1jXgZNAmjbsys3rcR94pAUb/OzD/qcHCJhdnGuE8y+3xXBaWrykfj4pFzLztFFSlAiGb/oSBCF9H3J4IrnuR+07TP0oAQiIe/yCDCmo2rT2vDKy19TXhYdMrrgmgxaiPnRVinD54x743SFp95mhd+AJu+vui7PvuirQZVP75NM+5sXzl8U9kLUP6hbmOeArfSZS89fifuKskmb+g78XTRPT6Pn/vpq5Xu/l5Xdh/Xxvb9CZ4DNc5kOnow+xWfP5OEz/mLWidh7ZiL92aSf8TG++fXt2af/TMTfA4/fRJvh9Wp8njlX+P2Ftbiav9emu+r0uxrnatjrXn9evoxPBX6rXwRfXC3rxXTeA4sykboaz2smb3lnEofhj+fYDvtiBi8mGt5/VRx4dQANBeoXr2L3ZxUzEUt8L7fp/EQuIBEoCUYEwbHGASBzp6ljwk4ACwKAc1r+hJ50jmrBOZK+MxZnnXFW5cHPwur+Rru+q62DqG/TdA8HfO4y6CdceJgIdeeI0DkH/cTl/nKAvnwvB4j0kY2YSJzpjAXau5xFWHo76JC/vldpSj54dNEqbkenNwEfpueQR8avCYJh0iOdL9ZLf1KkIFOaviub644l5NVdx+8yH+P3ztQJqWzSRoYl60QilDqbv5YenqxvAELZdpsvAIfoJwuClcjP8aVhTkSObvnkEgsD+QS1zQru+09P2tP9qXbINzPkw5RVH4LJzlI49WjQ+57gVDxEpP4pv4KNpROSz4zstJXpY2xmYjt0gX7Bhij7myyCQbdb6Y2qA9pn3QNXH0DjpAtmaKctdipcwxLLDDrL8ttV8gLhtwC+WkwRvNsWTqB08tEr/VTz2MbM4oMn2zncYOa7b13j6wILm9jme+bhs/bmrZWoQkzCi5FRpLRdFW0XJ45uAKSkV31n7ZbLP/Xd5aVl9lsAh1OmhU+OF3l+ICSf9riXKOujCofWPsw//ZqLovnSb9B/ZS31EKjnS0NSmRmOsHPUktT9tL510PIg9ryEk9bwakO/Jgj8ecCz6NLtV3VQk7S2XTLlbF7eFUW54Od5p5Tf5yu8J1+fmXzOTDRzeMF1mdpXPXTW+6rrvKvwKwED/87vhWRXYv4RX8qU31fG/K7p+qL8vyjsxe7yZeK+mNb7103/Yp5fdX4v5v913X9ePT7P/+ui63XKuUr71esvyvPFeP170LODBiD7MxOEL8pvGPbaHHgtAO3gp0RvCsCrJQABihsxeBY0iwLUc9Y28y5mvnYxPO/20DuoBuxwr7R51w1GOKs+oTUIJYNuRGLeZYKt6phBMx3Icvp6O+B3w7QRuDYov1wYpruUcBpff3ucn0RqsBfEBhTja0jKSgzyBvR7XwCh8k6ZeCZ1HznFSwt54ScA6ukx/5TY5WOQkwv9SzovUKIMfopiIugIjw40+VmmR/JKWYZbN3MuJ1iqOz7lGx8iCkCZuWVKB39cl9SPOCQ1DdH9JZ2fgjR3h9UQV7ewIsgNMCZAhmyDwJcCaDIfEkywsnwVQ/xzmnZTKY3VNUcsNNLkkjJjFwa6kCgFkv9laZYlsINP0kyZ0ikx4RsX0lQpDEPyPLbbbs1etLevz7EwcKrtbJ+2T9HPPkO1wMV0x4BR+SNAtS+6Wco5IFuLGR/cXWCRjpJrTNghnl7F0sbNtcV269pi1HNMrxRZCa95CHYVRAt45dn05H5oFfjGFCN7cju5s8/OsrDwBOl3AXFIBgmaVnxpLVwlLei1DkqgJ7vFh+pwC/zVf5bmEb/NQbPNYFtUv7BO5iEP/fd5Y90B+jgTfA4wnio0WYxKOaYtV9zrPexX2QGxD+5jyfPO2Vf6zVQumDiYt+mkWbrc1txFkdbKl0ZKI46fqyepnzsGnqOe4kTmMtdEDBn69fQNrklTfhYmmObdkXa0H+hHIl2XsL8dnPsLI3bXfZXkVe9MXpx93q8PH56HHBhyYMiBbxwHfLH5mvS1pq491j3qq0ONG8/VhziXb7/nQoY3r8GBVwbQjm/aw733aKM9xhzOBOZYBB4CCUffAGgIcyBU31OTbcd8fnaAVU9HYJHBltZ3UZ1gSkCiE3SfkC6DaDpI6SHXoqxEGfzYKQK+OHe4uHoU6dNh+BkM0+QlQJI+ftEn8pcz+MSrvoMZRTfIdxDIRRdoPonmPXVQgBl6SedCKQfwy8HczJJjzpYXMIuf9TavfsAPfRV5kMSSArgFXWQTHnM2bgFOb0KGhXBprKpN6DQsf71vxUkYMc2jJ08p5zZ2Ydd3J9v6yW0Wehy16dCH/QWAIjALYAW9fE/Stusecc/Z0ET7lEcnbIjS5tr5KIpmSDdlTerjxRUnX1MeDWaIfJJ3idZF7VN4PkNF5GhkjjLQYWYhzQS7Ce6xO+LhsSB9JgvkTsyExXqavjsh/gWqJAfQtwPcOzpaaKvj8+37765heYOvJkiSNT/nhC0TNaSw9q1x+qREuFpep5UNdZbd/Eeg7NkvIzRZue4sjeF5kntXLjwnjvWyvaPXzzMiYBZAOxFRfUNJd3RQKT9PgC/D/o/ESmvlmX6neXY6veiufNM7kTV/JwF9W/d0XD2bRyXj14vcOOGDvkwk/MZJLO7lTRajAmyl2WtT20eMb98dheeT6nDjp0s9r4BoJd+9dB/FD3NOXTj5Tz6QwI952YRO7OS+5VeWxqJcTxz1huBap1/vumtPVinxuUj1+jjD85ADQw4MOfCHxgFecqqEaP3mUAs4LlpFzTFji8Ckc3kneo3XpW8f+rs/+y52LBh8Vb1aZAKvenwzrl8ZQFs9F0N9/OBJ237yEHB8ECsKPYg0XAlWBt5uANbWsKBF02x+UhcwZ+Akrg1agI4BlnQO1D0gDpAVuOSwtzjAV3zj6gqoccEo7EBcKMfBWj8HcSPVAG9Z8Y4feTEq9wAl+tlkLniQ9tTHBElDAvyl7nKxU7wqXLoY9Y1e9XLg72jALyFWqohPfVK3pDBX8uqJoxRpdgFj8SVFBECoa245tey78kv9U4aZ+PAIRSy/owW/ngcWYXxBm+e+zSxbiaYA+tHuVHt4djum76ax0D8LyBwDKI+OsRqcydIoElUXIO0+oV2eMTlC6ry+v9D2AdAXrMxQpxfKi+gXfqUjtBBu/X2olEKn8hUQuvGtiQkgbediuT3Y3WWSdtBmNrQowoviiM1cCLugrsY9xwjr+YX2vrHPejqB1jS62PQ5C1sAMP/g2zfa7bVpVCjoh1gdiWSYlKYlUrUZlxMsmOzbXnCqysf1FUzbuWmQ8WUqZ4nsJzbeCvwiOWYGlUkG/SrdkzzztYP46pa7VuuUSaUb5UypBsMzcQHodyOEOOJFfzo8kTJ5VGBTiyqHrE7XNrd9TAnxBFJpnyV5OUb+3SOReptf1c7+BYWSrUfK8NxF4z5rEZgwSIv9wMAsoE0OVTf7Sqlf2DflmdJ2ADaxo0YDLWSZTNO2gG77lUVWj0irQoMSdPlX9XIWS0+iHhVfoXuIg9jk523nui6CPyEGds9c4nVeRrXMjnSiycWXO9Ml7cuDh75DDgw5MOTA7ycHfHHxYkPOhcUadmv8yIX02DVHUDQ7rfUr3s+8U3ktM1bwDuTaj4qOEb4P+3fp11E5y3LHYg8oCOF5u+OvUDED6NdByFdYxmsBaAdXATErCBlA3QhEabJm0VwwpTSwpJAOug5fMrCGQ4Y+RsgsEkSiFkBCoNI9gUB2ZEt6wY+NXOA5GZCX8cscm1JQ7VnW8CeYqbxIg1dKJT8/vY9rx5Yy0t84l2SMOBnEkaKSj1Y/zrQtbJnUJfEZnM1X571AqMy/ITW0VyYvEnRUeNW7gCvz7OsIGAhYJIJ5lRQaKkkkGHDDCumsiQUdrMs7+qsQLnBJHaFVqwingqg+L86RVEKHfFdnVdu9Wkax1pbnn2UmX58g7qOjjmTXjUFCL+F+MdjF+v8uW5EeYfdzDwnjDvlMjNPOYxxiKzlpVlnzaXugN62pP6XAQqU8JF1ZVlAqbDuTXnEGCcSkLw+VDWdc6SQ2SbijH2FnaOdiAXrYuMZVyfgrMHb2Y/3U5T1lm3H17NNc5HfB8mSB/g42Vt0/RcsZN7HIkT5LWs30qfOr6kD6HXwLGWQb28QUrurCLfZavb6KeTz6dQBeKIQuIicdgD3clVj/OQSAqrmkvxDP/iTYNX6eB8qawtThHMDe/n6itRm+6AhywycqaF9RxcMXXrjAPclrgb/sIn+t2ih5zi1e2vc2rvfSkgsr5X8+jXSe3ieSEeVlfTXaY1I8hi1R6bevlAWa6vfGS78NqCWMe+uaZ47CzK7q51cJeMMBB/Avqfgo/ajikg/tpjy6fx6kyt5ROvjVH6y2YD9dguv04Y5oT+auy6+EdO5KtTqfyr0PN+XgSAH1fF+GD6+GHBhyYMiBbwAHfLXxOjvAZvbHP8IQA4vm/+UGaofzAOlldopeBUivXbBHBHsiXGP9Esfq/EVb5SvrpONu3oW+w6uul2/Rru69x2dfql+KOWbj+3wB6yMLAHyQYr2CKVgB5jmqn2d8xe7pyEv9Ncv8UgS+YuTXAtCTgIu169fa+LUFNqAQUDJoDsAQgzKD+ykgxc0fHBzlTs65duC7AvYAJ5qHE5TWGMnwCLgR4OUgjwBc8sx0BeYKLMWwbgYSwC5gFIQCvse6vHJPuIOvoP0YO8PSdE5+0nXsBiP4S6sqKH6ejvQYgGO+Y1OAd/KcwLbwlLqv1LnyrgmCfFflpNcfjdm9bFrCgkhoF+AIzu2nLrAsm9gCL2hmsmF+U9Ps5Ej+E0xG3EFvYFsalglipFOAdcRW2IcHB9DpMt4CZymfa9NMuyHKzAw7F3rMkjd2pwFn5brJDKhTWqVzf3+vnXIodbfu8luprJt07B3Ujo+aUMMLk4V0eXq6R4FIgaA8BfJR/wD7PGyCJRKk8xcQqgbtnob0gaJIH7pLAGzVuSMVOkq9Jhni6RndaiDbCVZAgp65z8MPuor8GT6dAOAhhXrIm44EAKW0bWwftg8+3WB7d1JdLEWXOV8vkDaXSkxJYDt8VoRQrABynD7A3Dlg2ImLAJj/lGP7RCprz9Yvf5RNRtZPWnwm/CIQia39ED/LGRENk7+10y960X6L6/rgJLTNYilkni82WgFRYr0UKbhmIzNzSf8gQfLweZCGlMuvtJSTMH11/bnu+l/LV+p8xEus+FFsTmzCMlFNHtQL+lLTHtl61xWVelMnYbON4DyK3p72qDgV0fJsLPtc7wxJKEltG6OkiI7ktE0Yd9WjUiddn5HnLkqXY0KMM/COT/eTxJ/J4WqM4fWQA0MODDnw+8eB7rXl1urb987aPjuL3geLjbOJz9QCQpol9iFgM7GllfO2vHrWZldbW1ocQYWRNT4LLKjnGjsAbYYzctC2iJWrsjDGuzLvWs8vvDcp81XeluYzhRDFo3LscmEYvDhh7EIgOBjAfv84/VKKXhlAy4xJQN/KGnqlc2MBJD0IEJwKTA8PDwF92BIWsKIza7jplFIJHgWMEwDGSYDfBEBS82igzIzcgjw31ThBOmpeAj4B94Xb86geIEJi90PB7dQUn+XZRU6Aa76C0YBHQKoARRe9amliIaMg9Bi6lNwJfrJoDCA4gv7sFGBFKyDWbRoJ4Zh0ku80gHQWYGoZ+vVdqvIF0JDvwT62gcnTLa3duMMjIIb6qgoQm8gCMgC+0kfznJnDQoQHeQvSo54BTdKmTqp8ONw/aHsX2ymjJO/W3zxRX4Ch8sV6LywutIXlpTbPEzG/gMQUWgVVCiVrkmB+zFKhc3tzq53v7sFXVDKUZgOespCMco9Y+Ic3VRRcyj0AFKBJepQqjolq8gnent8Bv0g+jWtsgm1o2yttVp71uOhfLvcBZcYqKaUh8kw9qQqvVJZXHl3i7mYMKbMS6nPUDhB7Eqi01PQAPW4hD69RNn8ZaffY5nDhwWbqdAdvFwRO8nXCHSCtf+yNk8C0Ame7mM6623fN3r4SXpKvevzpp5l8dHQS31rLJ3lg2kz0yGzwQkqu8pS+Qrku8LO9o/4jH/lXKi7odlHtClLq882dbEJzY2ke9RMWH05qH90JWk0Q6usESa1wR3dO0n1JWkr2p8K4MIwbkwlmtScaUGuEpEtM+hk30EUt+LO9KvgCOjMRSVzCqecYk6xKSlzu7UL1FHKBq6jdLyeyjbO9yK6uTSctlosLzg5Pc9v9GE6YRyINvHNhfgNnhD5ePA20Jpfu6vWl7/BqyIEhB4Yc+D3ngC8vxiM/DmMwq42wg+Ue25i76c4F5mWDzQhjdEMQNd3O7ky2+R+ctbe/fdq+++5Zu/bmebvDLodvLmgq1nU5YjRwBddjqH6wR1mElY5hQrQIGXmF+rp+7j3L/ec54/FaH4yreSF3kZUbXTjAOhB9g9wrA2jrGPAJ+DrCYsOYxndlDsCDU8CCIFRVAqFQSSlLGlvSSj4Zu/McxwGas5FAOmiaHk478OaPsyoh5jW/yFSJzOMfYNDly7WDfsx8YdXjYo/tobgX7Khzml3oaJcMl+bdtfgY4GlxZrmtQuNoJMJIwaUZIC/IF0hJq4BJFYcDrIfsbu8lT1U9si02ksATPr0LQpXS2VHtUdZ7bn6B/CrPSK8B+ZkwAPiVPAcsWyHrQuffY5MOwXftiFeTj3zaZyJxjG6qW3HrppFYTyGZFIRPep1jpk0jfXbyMMYKAqXnohGl4NK9jzm6HOgR99dHTCSUbtte1jVghTTA5IAagV8CjRB+a2HDNgqSgjd6C/7kk5F08JdkAsDis61FvITUw1G/xtXfUMomn7qO5+W1kXTy1ROHUnz7lHc82/y6mBCLGWlXAaOEGeDrAuMg6A3PzM63b71zi1m3OzbtsbHLw/bWjWUscSxhXaIgXHbUS76hqHhieR2IEww7AYkpOQEvf4LTjjRi4rynPvJGNRb7QwFdJ5zypOvfRC3VkZKAn2MCT3FrD2LVJ3ajol4HewtzeoL9WzdW2p9fX2XL8glUbA7ZZnyvPX62zSYvu+3ZFluqu5Oiddd1p5yhy9v0T8+G8+vf8xEvn49B+sTtfyqldwHa8NqXX+9sD79QhKM9GbSLl/Xbl40H8Xzl+6tTl1p1FeO606F8lb68O+BNJkXm0uVrmuTLj34e9WLvSoqnPaAr4UpVL/OosuvXHIduyIEhB4Yc+IZxwBeYINTDl6LOswe7CPPyVB6WsXly9BjVSwSav7hoDz7E1Cu7ZE5yTM+xg/Ii69OWzhHGnbdFNuKZ5ZhfQmqNJHsWifVcpNZgGyTYyHYwZ8sYbDGXL9S84F/2Po3fywJI/011rwegHeQBfHvHSJnRYemBsW0mOLDxIn1D+urA5qGOb3gIw0u/En7jIehIe/PjvT4lkQOAxII4g2AFFK+5TnnQIKhREuhAm5xSrgDfT8QO6CX1jW51pzohSFZqq/TRtjePAAKoEHC77XUGbvIVvJYkHbDsNdLwUksBagL4zd+8lYJHBxwQKxBXCh7penevhN2JguVYnkBZ6bog2Xzl5fERwBlpthL3E2jws775T5P37PwigHkq0mpBdMCzYJxrgfkoEmmZrsR/f28fKbsqH4BnJM1KnY8O9iN9VwJ/BOinOWgTpYXwlnJ8uuTLyARmBFloN4uN70nUIvJwyFOezBEkvuM8gH4ZkG7bhOlFgKQNEzvg0Cvje8lnNaeAKFd2CpspJ+XOLvqzu+gIManBXnH0YCgeudfbvKIyZBtOoEd8wfcn4tonIvmncBfijfDF4vjkgJfHDC+CFVSOWGR4uN12nq639+89ZZOU/fbWrdU2322qItQqMguwSZBlhUecY4GCMpQYH6Mrvg5wPe03NjFtlz7wGpaal2ouSvRHeUbcddDJnX1bHexDJnyaptPah6ozMs2dAw85O7XZZXK6iRk9N3QBb7ZdLNm8Da23b6xmYqlqh7aqrYe7JH54b739fz/+IFZv5IccDA1eXHUy+qrLPT8v+l+N88K1+XbMGoTYVzxszqtF2uS9T9eiAdBwJWDbl74AOQcx3Qin0nOmP0VCjx/d1XnG57rQZBsQo6riFUcRUCQQkDB+nLj1m9h8bqbDgCEHhhwYcuCbwoGr78f+WmCNjNMXICIvXoBqBKA7jeALw1aMUfqyf4NWlZZR9eCYX7qIwGmW8wKyyzlA9Rxget6zwFoQPcdmevNgdNRF5jFpG5DNUBxg3b9kff/Wf8b5/lX8TWHnF9H56gBahtACAa7Y2z3ns78gUECo/ySDnmBxDFCntHVcdQ0PrB+oAhE1C4ClUlgHN4dcG1TQqqT1RPUNAJp2fAWvAZZcC2wFGQIlB2rBZQ3aZENeSmWjzpGzOsuoh1CO4PVS4usIapmAN1UkAJR7AM4DpLSCzgK2gGSkt8YJ4OU6JsxAnfmkT3rznl+YoxPNAW4xi4a1Bus10Mdmyhcpblc3yzpBariHFHh3axuQu5vyVFWpyUBgGhMGzpCo5H1seoa859BfWo5ahgDahYHWRz3qka4MgcAR21RbxjG2bDafPkNN41nb39mJHW75mv4Mk72G1QV2KQg8F96MApwvMBc34nbfAPO5SZ4QLGrkqwD19i+Rz/lmsLeFhHQbunn6pDeLBl3pW7rdtqEm19KolFZ/ZGdv5Mf65cbyO/4YJF2mcSqkS6nECWhK3Hjyo24x0v3pJdp7CZ1pp9kFoHudeb8SXJzTjm0TKyFj2EtG92tlmS2/l9o9+s0vfv5e+/DTxwH6SqJdXJhdAe3b/PX9SmIFdjr7qGFKiPcAtR/cfQzP6fvO6O2TxFGFJLGJ259VvTlgUWb6LLx0AYf97pSJiIsTD2m3rcNScwr4tlGYVTxSusxXDwHkwdFU+9nHj2l/pe2j2QxGm9bXVxagqJ6dG6uL7ecfPmjHm2WNw4ms9psnnSj53FgB45K/W792FFqpznlRwDt+Ve0+8CVnI5Cm448R+iQJSXbwY5B/RTDMJK4Kl1t9e0fKTEC2we3jEO8Myy/y/EWaLrMlH2589+i6U/pl/wVBwizXPHxekhc/FfcyJ6MM3ZADQw4MOfCN5sCLr7TuPqf+fa06hiiQoWAMM7UjHtyebLa28ay1TSMDrn1f5ospb2pHjXHWEo2tgk/emGzL3zpvt7912t54a7TdvH3ebl47zZ4Nc2rk8kkR+RAYgjw4lBEx1HXuRQJ7/2/O+ZUBtFUvsIs5LhijtQKlpP2iPcGf4K4He7JE4CFacSA8ZJHaIfs/ZyEf4ONUSawAHDAp+NLf6IIRwaUSWyV1AcyqRQDCBZNRjegAuoAyUuaAS+MWgBV8aP5LoHqARFYJr9Jey7AsQbo77xU4p4XpJKpteFimoHBSXe0OnE8DagcqFB1gdqKgBFgQ7zAtdlTCeAxAUodZCXBJgS0bqxeqgFAn1T6UmMKWAFWl4jN8GxE0zwHOLVOgrj52pMzQI+A8ZzGdnbqk2UwyqNMOoHxvZ5uJwC71RD2Dra5VPTmijvJSnWkvnAD4EMgTbR1Pz8y2RXSnR6fm2/o2C/XYJvvwBNClVJtdBp14eJRKh8ADnW0A6/gUuxBaB+hX2it4SRvB/+hVE1bgRCDtARG98ykVKOW+zoYaxX6SuqGa4cQqn+UB6NSWPyNxAAzHx5lMTAMexwDPfp8yIDrR9h1eBMymR85tF9oaGg9QDjtBgjs+P4Uk+np7m3Z/+On99uP376MCsdPevbPWlpgIqXtcQEzqKNPG4VI67Evyz7NmHO893si1CzvVDZ8inlzu309cDpz066ztmC8kMTJ8OXN9AFJqN0DXkp08sEjLtt+Hx9xtU+aH956wIHKv/eT9T9sK+tDujihozgGQPoKOlC3p8MgX2HfeutFusGrkybOdqHrs0tdP4IXSdIup+FBFGmkzaVxfCT0gqqg3Di5+eIuMDZDoLsCYvbdR/abI/2W+SWIieGowf0yDk43AOVemSQx+SGs/He/M6zkJ6Z1Xl/G868M6X+nGq/K8ErfPIOkHOVzxHV4OOTDkwJADf6Ac6F95DstXqji47l+jnnlJaylDIdkpYyDDSo0VW7yr907a3t2L9uQfz9r7c6hKIo12ceLMEpuOsXBxaQ1VECyBLK0gsV5k7MUS7NOnXZk9JOjK8lRjkO9rHMQM6PEezy6qd78X7pUBtNQL3s6QCLvBhnhX7CiAVorkeKqU6wyjt6cosgsUY0UDUKm0TrBqWvWHlVoHyHbnAmMADKRmmqCL2oOsw6ZhVATw9yw7BRoFJJkoATBc2IW4MaoVoQEAkkWIAei1iPAAQKtE+5wtqpUaCiSUWtpcgiTVMmw4hYBag3DAFkTHLJyV7AZwJxCRkPMZXcAlsEpv41fgqhTdxYo9eFbi6CTBckr1gzqRxAmFKQXhE5QfHnY0WKdIxJF2Wp+4gMVK6+RCvh6inhGp9u5O1Q1ayCqkapItqhpkkLI4B4RI8yBPdyA8Qw3gmAOJ/C58Yec+JyG1eQj8pu4XncRbqR4kOm0lL/lOYbrwhvqRTsBt/nAU2qljGFrRUixxTSWdvQt86iqqPeKAQOsRCTepCJPXkbxT/tkJ7ehXCWWYzloE8pyV4stVAWo7g+/o2m8zpX7yCJWYUzZfgW9+JdEG830AqXrhBwDLt26utGsr89jQdDdMi7O8TnqfzWHIlbTy3f694tJl3NOt3XaE34h1vFIfw7yVLU4GzNR8Y6cb/nRdif7FZzD69zSxXJjnbN14prV/ujOk5gXV534G2E+HMXMmcO+ynbhbk99Bp9sNi/ZcByCPCJbPb1xfbH/27TtJry617avKx102QfrowdOAbhL4n3TUIAQHdJoJLu1lnO66gHZ8E5443Jrmed+EJAOBrDGSr5edqyKK3nhJSOJ5R2xZCjOMl9+OaR1pyTuTGvjv8xJe81PR+txN2zuuRPhXXIp83utK6PByyIEhB4Yc+CPiQL2C68XPENq/s/Wu97i8cFwE53RqIM8cfhnjXEN1gjho+g4A+tZJW8J03jILFBewBjLDbsKPPmCN1TQ5uSECzvwO2UXxyZPW7j5EMAWWmEQSNcOBQRH2ZTBf4tb/5Tmpu5/Ll/tV39/59WsC6JKQnbO5xemhgKKAWn3uLnCmnxI8pWgFmuGyYMdfQU7AiOkEw94rxdREXM+RcC+jnwBPlo+TRuB6cbGbQV+wJkAMYAcsOnC6+AoPygSwA7CitkA6gYX5ONBWOgdawErQoIN4D8prwM3ATNwzwPb5AWAWoCr1lwO5aR3kS8otsBccW9dIl5UwQ1M+ncsLiaMSkBYJpPSED9wLEgXyLu5TfWV7YyPxjGtFlYjrBPM604ouTGM9S6JtnKKwB8tVq4qfjWLs4tCoNF8X6TsqH/uYwvn0/lF79thtvJl48CBMADSm+HzuVt5+vFFHCuVxNv1D6js2DQ3wi7rHGgR5ZVMNpYXQKF8lXfqrrb2DjvzWj3FMI1vCGuv0nIM/g3vCUmcfJ2vFROwcXW6lzQDlUdrIszmcYjc6Nqmh/+yMrwDYgn72eBsTPxvtaHMSmmwv+hG8nmPL7vWnW+0hxwY6zd9/91b71u01ViNTB/50fk2w3whkN1ist4fE3z7zBov6tLhx//FmeOCCQXfRLGdaXynWrfqFz8a4S5r5QtOvE+hNP9p3ZgD0U6o6Ubb+5i1w/vD+E6THeySz3SosuVPUE+i2fF9ELuBzNfYEW40PeAU9s1iXeQN71vLbXUJ3kZ7/+L1P2TTnEPvYLIylbrGY0fXfotws4LRsz5/V8eolrvPsQ6Wl590gtnFoj3p2yjd9OJeWqBvk0HE+XrQhvSB0JIvEjEeu6hlSJ/1A/tIuPpO2D//JJ32xp0nw3NHbZTQ8DTkw5MCQA0MOXOXA570je3/ep77NHeDYwyzv2oAaPq1OIlQd3b9o+++jZ/3L1h4q40KN8mKGg3VA535+DbDhRPqtx6396icC59ZuvNkA3A1B1mlbBXDPgaAd10pAW3hLeEiyGhMcGv4LvdJfE0ADnFS3QG+Yj+RIygSmxV2xWQ9QHawC8gAXgukMmjCgTH0V4yttQaVxdXAZCB3UBb4Ofg7ufsbV7NfhQd+CSlQF3AUGzVe1BMGaacpZXg2++glgBMNaUnCQ14SY9DngGg4WDCDsP9tr89b0qn/YWQSLAlPBTwZokpvOsh3kBUHSgweACmALvRZ0SXGBHDtDwiAywKXjkRYzDjs642/e/Jm39ZKG0JrKSTMAjThWQom6ccopBRa0UV/oPQdYatM5gAJ65Jt1IRnaDzWpOWYSdEj51tVFXH63Gaejz6JisIylFAw10s6k42vD/sRq2x9fAasxWQCICuAtOsBcgK+VEcqXjz14zmTKfANpUnTo88ko/uOX8FRnUI9cVBW7APKAiLHzvTZ3+qRNnSMph44J0qq2cTg63Z649XdDigz8PjtHQo/y1db2UXv6DCWJM/TUoU22aW9kju2aTlCHeAZ4/vmHD9su0v5jvpp8563r6A+Pt8cbu+0XH9xvnz56Rh4HbMqy2+6zM4uLS3+NDvSEjUmd3GEzE8LwriO/O9lH+vb0PKZ6k37QYD+aBFAvI81+5871LGpc1VwdIPgI4P7Jw2dtB6nyDuB9GRUTpes7SMsPdrFPRHvIu97GtDgz7QDQdlOVcfS+//EXd9v9R5ttZXG2XUeV4/Z1rI9w3FhbRAVkDjB92K6hCvLunWvwayQThPtPNuEZzzaZ9XTaBFQiNHt5ta1s1WrRrnXt832bca601DexrgQknRHIIZlUHL3ljc588pxyzkS0vCu65VDnM1R33E7eSWTRK7/rveB7qNS/SgVMfifr8J/0IbQrrMt7eBpyYMiBIQeGHPgCDtRLv3/tR0vzMjbv4v6V6lmkyRdWd6BF7oVqZZfY1z7w4+jRabv7dwDpX2MNZP6cnRSRQLMwcWIF62vXR9uNGydt9dZoW7sxwhh22tYA1vMCa97hhV76wi4p+DquXg9AO3AxYKkioRRQkKckUpjXg1pBHON7Br6AuwzwMo+BGUAssNA5bGbgM7JeASECR0ERA6hQCE6Zx3E3SJoueQIWyn6tCupKZCkE5+BvOUVD0QGh+BUIjVTa4hxIyd+ROtJUQa+x9O/sD2siLQCQPD2fKvHEr+rpIFy8oEmBZF0c8ilazCcZJn/LUiIprYIppYqCdOsS4J7Cq3wBKbnHpBmnlHkGnWanM13iUIBlSUcCORe4Jg75hg5ASgFH6S1g6zklOCMkr1HqOwaPFOBbhhMFVQrUuRbkkBMHf9T/nL2n5XsvaTevM+7hCpNNJ0umK14ESEtc/iWynJuJ+HcBAJYXukRLlCvxqtSkr0hI+JE+q66RuuB5VkzOA0XPgA4X5Vkvz0rp6Tvssodwv53Dc/luEvk3h2WLkjAfIs3dwo+ttSleYHmoqUXUgp5s7EUSvI4usQsIXST5yYNnAdnuMihvSRh6LikPtaG77+veSHNwW/ocPKLtbCMtejgJlF+RRAOstVc9xeLb2yx0/OG33wAIz+VrxDoLDDcwybcDkN4DUNsvnRjuoKJk68lHaXz/0/X28/fuxe/O7dX2g3dutj/51s1Y+DjIZOEsW5tfX1mMSop8eGf7WqTUStpVCVHfW0AtoJfOTL66qtlRbLnSW6fQtEP5JcB4+KV1u7Au1ABT5t9oA4d3z8NKR8hLovWx7GcnThT5M88+jWDZ9q1dIN2RlN7GYVs4kXZyqavfXA5/hhwYcmDIgSEHXpcDvsC713uhXLGGYx/+/cvdMnj5nqEyyvKttv1rMEOC+dqNGsgxa7AmvzvS7nzrol1/87xdd5Hi2mm7jqk95EGoeTS+CrO27XyyvfUdAPbX/CJ/PQBt3eFGDagl+fXTeMZIB3M/eyO6V0LWO68ExcVDQXMfompCSSITHgYLHS85rS5vJHwMehkEAy6rLRwHBSW6Uk3QZrFWKdgX3niAP7crFoRHYscg6qdsaVU6FSAO7T04iJSKwAJnfhau2Y6gR1u3pjWueY1HL1g6hM7yBEku0klBkAO1eTiIW1cHedONAS4F+EpOtRdc4FnaCoDJ14BPwTzpuqopAMysy/vQSl4nAEQjmcb6WJbXSrjBigO+xApJB/wF/9Je+dZZvylsFYPVAJfSTGLy3buYbLt05MCS0Ech3FFa+IoX+tvQTX3kQjgBONEwejiC1yAoKSuWuWT6SbiL0c7hRTk9EphbS6Io/7mqa+9OMU23NcZmMfpbccEy/K12CIwnBEgFj8bhsVoNWtmwHfJVQdaSrtd/X8CKyjQS4CcbO+39Tx5hY3mnfe/tW0hmr7c/++6bbW1prs0TRysX99Y3AZPH5ItUkzws2r4hLf7WGb/cx6uui+F4ONkIByUx/VSA+ujpdvvnX33SlEB/C/N6y2yiYl9yE5s76Gf/93/27fan37kTVQ8tdNxFOn0XyfijJ9uZWKrb/N7HD+j7ZNrRoypKtv6h4ptIz//jP2y3v/xbvqvRwLN87ZFGQfI29tNvX1tEfeVaJOLqW2/v7ke/20nDY2izzB3trONs80FNycQ+l4kBYX39E7H/iWdX586vfxP0/XCQsG9mzploQKVx6uiv+9RVXpVpn/SKyDjb3ncGryIinSR7g52s+eezn16aDpokw58hB4YcGHJgyIGvggP1Gq6cfH9/Xp4M/S7t4uNxcMeIAr3RozY3whdjdKO32KJ8+69a+zWAxpH9fBX10tutXb+GTWt0pRdvTbb/ZXYcSyCFZT6vmK/a//UANCnnScsAAEAASURBVKNZ6R0DJLkO2GQgEqAw1ciA6qWATjCnxDVSOkYwwZoATb1eJW5+gnbzDxmsLqNDo7qMntXbDVhMecRwAORwy0nT6Sy7dwU+AamAJT+VKyVXbqpzcDWt0ZW0JT3XplcaZW4CTcs27j60JB16qTZ/D1JTBmmsV6ScxLWEqJ1kwCZvKijwjpRLsAQ96mb30liBW6TgoC+Bs05eJE+uHdwD5KXKOJZBPpqrK1BR9QjQdmbQOZQpMsHwVt1s6Rp8CfBeBnTlGSeAAy8nGRN03LnJ43Z97pjZXdGkJNYGdf4YDgF0hUES0S/gJNuoiBwiqT0A8Pn9xmSDz+PGDXfNC0dgwuGPW4JXu0iEYWQGbyuHol31iAlnLsklKesammM2rkvnFwOptFtYH9t1Y4d+R53DP9JXWxcLLNeS/CKgjeax0QmsW8yFDu0q/wtgVtWOP/vem1mkpy7x9dX59j6qG3cfPyMM+9oAX+miqByy99IVzVIcPlcFK9j4+avb9C0uBcyCeAH1NODXtJYxiTRcCbPPkABbMH9zbal9753b2VRFDPgh0uZ10j7d2unKs49iAg8EKSXS5nkKXtozfNYEk27GYj99wMRA0K5E3mNxfoay5trbb1yDN+zoiCT6GSD8AXrX9wDuxt9ArUWe+jynH1NIyurqKv1x3UV6JNfG6X+cGMYNIntHDP17P9qzrgce3HrtYTvWXfLFR34kzLmEntCYvs+9nxfiR8GmFGQ/n9q0QzfkwJADQw4MOfA750D3Gnfo1+XV7YXv/Jz56dRA1CKIAAy96cdb7KyIoG7lGfrW/4Z0Bdcqzdfw+1oAugc9gg+PfqxzrIo5u24gFbwpCQ7QMxJMyXiWgaskcdZ1hIFewCWQkIVXzwLonqmWC884AE+AUgdv83ZADNimFcxCwGRBMts4XAIa9HLINC6gUwkw+pNKAwNgSKMKtvECPh2FzcM/8hBkmLdO4GG50mZRAl6vj50scKBpGxoyOKd8QQYMIHJJaykH/5jLqywBoU40yl5wAB/hfXmCQosWeCuBV7dTusxDumoyQd7GM6L+PS9I3NfBTMI76JCXklQ8tB7oFrM35OgFlh4Aa7qyyUumcs7MOWcBHDGpUe4FJsmH9OfMGgssWj/KpTxqxNm0zzufD6Xx1ZfCGmNyX5OZ1IvGHmejlHHO1sHfgGzVa2gpoaBgWT/I4J6DOoVflDmCNQ+2ouEe29kEyi8nLjrVVdI+tCM5kBZdZs0xUhkXGQpEd/cfoEIxjjT6JjaX55lYjAdU3ri/0D65j/S3k8qq6nHZP7rcpCv55lTEUUbapysxBBtsVNsC0gTRAmi7n/1AdRN3HlTnWn3prVsHbXEOG+GA3FuAaHRNMjmTjzMsihzZpn+EGSOY5ptpS4Bt1S9iAYe69xPS0AGY1DLHxtZ+e//DR0UICxXfvLncvvPm9fZtjjex8iGwdmvxSeo/i8mQRa5voPaxhRqJG714uLGLJv2cLOd5t4CwwJ+0XPoaN311419xXugfV26TBekrhz6gfM1r0O6dV19azn30nKudLS+kdWf5XG5w0XsMz0MODDkw5MCQA/8lOODr2Pe25xruM9a7oZs2X1XHRJ4I1kIQixEEx86v070WgBawTWFG68IFY/xZT7fgdZhT+itIFIQKbrSPzH8AgYw4B/z0A5gA2wEwQBcwFXvFBApGHNii30x4pNcAIgGPZXHiKPAbgIynYNQhUjDbS4Oj9yiAJK+oTVgef6bJoM4pQFLfxHPnOIAgQFVrEhPkZV2zQDL0ANy5F9hYWhpXf8FqABOgGABxEd3bngdV3hnhgYCULZi23NAFiCl6ihbrp7871Pk5Xh7pQbEBzpPQpMpLJPvE1Qn68kmaPK27CzMFMeabL9jkZ/2sczpj+F50mU8WYHI+PGKh3LMNpJOHyaNLIWFJmnuurX8mTl5Tdh30Ca6n0QORFsuWb+ri2jamtV6DuuITXkJXgWi/KphX0WX9tYBxsDOKKol52SfkbQFfwXDyypl80x6E2ZZcZyHrxBJ2kv2qIGAOBeGPYLIvS/6RRfjj5GCafn0HCxturrK+sdl+9LOPYiv6z7/3Vrut1Pdbt7KBye1rK+1DQK07AK6j8qGu8IsgOpW2gLS8ZymjsM5JUUd5aOhD9Jde62d7PmTh4ibS3p//+n67gaqFqiVKhpVCC6YXAMr5emFFLIt20S76O6qCEC7Qf4CqxyY7U1qQ7yA51TvVW8aYPYYnpN3EOsd//ulu+08/+SB63m+w6PDtW2vtTczmaXdalZJ3Add+4VFav76xjZrHTvSyNwHk7qLoDldOmGvCVSVVy/SlQqv/deojFMvwrJrg7YVOpkBbXejROcLzDIdfhlbaNHcSdXmZZ5dpsiF59Z8+o+F5yIEhB4YcGHLg94YD/bu/O/e3vtYdCTI2MLbn+msm+pUBtIPPODZHllbX2iqflv38nU1DtA6AabAjLHO4SCerLbuKdtgloDPgOgNrAadYrBAYA56UsPWgQeYIOPvBjmCuO9WODjwLqAVSxvUsIx2wXQgmGBCYq//swK2f8byX5QGBgH/BsuB3FIl0AJ9ADfAZlQAKF8ibJBJnkbu5SQx+Dty54LfEv51fF19vgfuF/CBuSewFvFWv5Jvyqh5Fv6ofAHkAJPgzdEqA6hm64xMBPfUyXw7rKU2Cbflh2AAYBLQnWVd2gTKiJ47xVQ3w7MRn0tWtqHJo/s/NZqp+VUNp63LCv+ogD6t8dKdpO9UcptiEResWkygeS4c648coxAsE5Zl1t3zTuVgumZGxeTnhkScuYFP394jFivvs0pe6Ekd6nJhlskQ88+eEq99cdZdj43wJ0KQO9SkVENpChlK4k5JMrqBDH7KkDH6QSls3/aaR5i6yoc0Gagt3sWShlFlJ9DsAV3cAnGHyqBm8WeoqiL6PSsPOnpvyqDTUEWFFceaps26pgxfG6qJ5oqkkLSkSaqAX/ES955TnCxOOLhoU4H6CHec11DlcWKhlDU3SOeGwqBTHjxLkP/+Tt3g+T0izH/WLX6DH/bFbmQOm65mx0OrTY7ShkzPBe7V9PTuWq9rKNosUraeS7flZNjOi/ex9Tprefeta+97YzQG96lXv7LkQUek0dqxRGXFjn4G0Gim//a544GSq+kARH5JSk+JdatQHDbhLhOecsXgk5Cw/3oWBl/2E274tDAvPn8theDPkwJADQw4MOfB7zYG843mD+3qvV/zXTu4rA+gBpYx4JV0GfJ6WVQ0BncDvHPAl1AUyFajLQClgEKAI4qh3xjeAIeBSqa1SzBpMS+pmsFLEqCuEYTWYC54CdghPPoZx4bV5CyDdhU1AxhgdcCRoixRbbhPej8SmMy8xnSohAjXLNa2D+3Fn8FtP89dPiTvDftrNuJaZQdsIOvPsrs3HmIJvAqiLeQvU5UyfJxJjaDJKpKQiiaQqWsgigC9qEFwraZRm8xSEZmKgPzz0MK0uEucirHKDpkht8TPMfAWpmqGTp/JgBinkLKCQ3c0juTarqmnlSqrkrxx/GgCplNb6a9Ghqiyf2eEQQDUDmLaukSK7aQ7gTn734EydcDctkSb5bhu5tbVxrMfeiNYlkMQDSK2j6gmCdHlneQKy4mvRKGVOUIKKSKfKyTTW2Oem2U2S/qD0+lSpaAg1tulsO6XkxU99FPh7diOfJVQXdE8xZ/f+3fWoUuwDYL//7m2sVsxGCiyAVqVBUHkPm8zPsBUtSAzoJ++UZJNUkclP3oeM3H3Oj2nk/iCtk6OR0LALkL3HZiiT7F6ppQ4l5tZBW9XWx7LkneD620ir5bU6zw+ebqavbbOpyg6TXWdo8tt29fkwnnak+68KscEJsbbxCfx7DEh/xITCtrLtF1Aj0QSfiyzXFufZKp0JBe3kOoLrZwsd8OcLB23oQmDP8kY6tWaiqspxp/aRLyr0QycgtrH8s32tT85cW668s4JSHRZxL32RdHuNr2lkgz85mSSRvcBVJnU9/B1yYMiBIQeGHBhy4Etw4JUBtAPTMQoo648et/2tdTRhTwKKLhj8HCCPkV66QYZQTp1I9Wj9ExQJhpVwGRdhX6SJscvsNfHOkVAJUj0c1B3IHdgLNAI+GUCVaAqGlH45lvaDZYFVgaS2npU8KgGtcVNAq8augDMDLOEO0DpVDAR9CYMorWM4vloXP/WrS5ww/HrQajpBr0A0OZqX/5xNp9NouPQLGDWlJa3WRZDngjt1tk2viTUpCXg2Fv8TxtMknKABYtw1z8/sPQg1vjSqD10TD+jGQ/OA8sMw/plAdOAUfl4FJIJM66Sqh3mGp8Rx4dri3CQqC6LIApdK8XXmWbkiwSXeKnaFBWhWfB0rDYJao3jIh5rIKKEW3BTvbeNESLxkCA1OVGpRp/W2vpZlHQvctUg715D6CsyNuwWQc1OTg1OtU1cfsL+QPM50HqsLU6gIuxW6bUc9ANXWx/50YrvQ7mln+qbgUZ7Iz3mMvivRD2Brs6FJMPkINQWlqkpz/9UP345+8OzMWgDkLVQr3kOl41cfPcJu9CZ0agnGiVFqUhUq7oTG9NeOH15bEdiWyZnXphq41Mc727b4aVbWYwtatI6h6pHqFC5YvWAbc/e9EaBqZcMvAwJj2+sm6hjLnO8+3CAvp4LVtkrnbcPDI585VbTG2ep9KqodJZWWN5ZtHy4aXI+wARjeOjhpn6xvpZ+7AHGVycUt2usGh9daA9Ecn4Dfh1JaD1BgE0zvQ9+uByaJdtD1Vt9bFRDpFmgXyK5+OnHsRktuem436vo5NOWLUD2J+EMnYelr4aM/9YylXySt9NO/oX/ohhwYcmDIgSEHhhz4Mhx4ZQBtIYKeI7bEdovqMTbZcMB1UFWSecrgqO1k7x24lOw6qOFRfp1aQcAFiKEHLQUmBZ/EFsgQX/Dh4iSzUqrlxSSDcYA6EjXjlR1egZHgWcsYNVhG/9o8AAbmI+hWKimAEggbXxrVdRbgKQkTwAhSLMe8ksahus+T8gTjsX8MDyZixk7JdalOCNIEYuYRkCHN3pGldAe0CrwTA3/im7dAWP1vr+VD9HfJxnrKJ8GoUljr67XxzMt8LNP8SypN3tAuD4VGPZi2vkr1bB/je21e5iNQlGOC+6VsT70G0BlvnwKwNGEWqS7hOn8zIQB41tcGJyKAUfKzfOkV8EiDi+F6XWh5a1nlqn0CYkknjfJaqsuqBZu1IOXN5AXaBG2mVeLc89lzcjNRR1su+2tuZINAeH7GviS/CsxrMs820krKcepecUtC7SJO2842dMKDRHYc6yQsxDM/+6TS3/eQRttmqnW8iW7wMtLXSXSnR9mpcRIVloW5WfSWtVLhNuEuCKw28knouWD+1VZe4aSZU88nr8s9n8YMzCO8sMN6w5cSbaTrp/UZN1yZ5PgYNQ+lxNcEskiJlfC7aYr62oJlN4gRzLpJy3feuhGJuxMqTeJtIqXe58vBzo7burOYkbRuLiMQH+fw65MPTmiht/EhCZUbgC481QzeHvV+Sj7LSOYXUPdYQBd7kUWaswBp1WPWUP+6TT72xx5M+6wfM7nMglrysY/YN1RhcdOXf/rl3fa3P/kQHtWkzmfAxZTff+tm+zYm+Ly3PvYfVUcE4wLxnFGv2VctiveBTBtlgiuvB92ymD38HXJgyIEhB4YcGHLgCznwWgDaUUfJsiCkk/cMCgs4ZYByoFWKJSxwYAeXDBzJot7hABawjEekuR0oFKwILhhDkeSdMnDXQkQHSPVZDd8FUGndrJeI1WffAirmL2CyyCyYAuQp6Q2wxzfAxTIIFyRJ8wkI4Opg6sCuc3KQmJ6orQA2YQziSn2l2wFdWCjYpNqhr/tJ3oaZh1n6Kdt8XE3aA3nLjS/1y4RDPuChHN+yBKY66yXtRRG/SUe9oF/rEvLZCYVp/KRveNqHs3SHdmhlgz7oll6lnrZBASRBkiBL6b7SwSeYcbPMni8Uk8rZboKUslOMzWnayEWdyWvfLagtINOm0K26TujmrAtINBx+SaRgXL/Uo7tO3taB2grAtfiQdPiEb5SX5IgRk60/lsOpv9DShlJpmzD2vLlxEmEdBdGngCv1oe0rBUjJM+1DDslcnpdqyfgo1kDoK040VNP4+QfsXIjkdQ/Q984b12Ol4vaN1UhZFwGkqn/ce+wkZBubymzRzkRIRqbvSaK8dE7opddxhPeVCK/LV78rt10lL+strW6E08ezHewDH99/2g6Q7CodV29bEK15OvWX3YnwMYv/lAq78+J/81+9jXR6Oaoe6lNrEs8JlNdu0KLk/xid9JNj+EUnd5IlkFY6bZ9zQpHyIVT1DHd1vPesNqZRJ34RoKu97UWONXhzjfJXkYSr8uGCR00IXrP/94edE+cXIEG0m8Zsc/znn3/MpJ1nyTalTL9KCP7/ux++G5qU/EeqjfR6m68FW/BeKf0mdq39enBAv63JmAtuT3hPFd3F6eHvkANDDgw5MOTAkANfzIHXAtCObQ50Sm9dLOjGJQ53NXADrBkQ1ZF1cOw/IztoCVrUjVXaOj7mp/taXMTYXFJXMq7PxQ5ugkY3wSg1jgysDtGWzY/mvUoSpuT7Uh9WGgQpDujmofRPqZMLGwWDJVWk+lwLmoJMKEkQqae/OsF2ABv+U356xikhKyCKpJu0pXcpTVpvKD1wF0qFN4At1UOkV9WB6IaLgri2KMvLbn7Q6y500i1vpE+4JO0eSU8yyz2lLtIi4HBhWBbD0Q6CQkFqL62NdJc8ncSkPvz4aZ9pCH/WkT/Kl45j8pT+KdpEGnQzU6dZJKdKh3mRffKJOg71FqTo5LM8kjYnEVplKGlyxzuZSxzLiePav5psmCcBRLFc/5gv1Nl86VfVlghYkbA6QQoVRoMGw/KVgpmGdeodwQNn/5KmcWZasKxohFal7kW7wJrUANlztoMm0+SUMCixHPlkvVUTUN95fHwxKjXr2EP+JQvytJDxF9/faz/49u12EwsV0zeWoxMtWL2G6TvNz73/8aMAuau0WZD06/ylCFlFO5ZfArqf9MOEQwu0GlfXxzS8j1Mhda/09T7PnbaefV5U5ZAukwsybavbmMH70+/cbt9nh0KtekiEz0vULJBAO1n46P6T9i/vfdp+ynbnW8922zRqPrPolk+Rn8/5DHwRyNbXnI7G4iR1JC/yeUpbbABix6mAgNtJmoBa/enbmMTTwomLImfpc1P0W3mTPmCPAKxbZ8uwrc2TrhJ++aypS2+9DE+fStv5DCkNP2Wih2oKEvFDVM+0EqKt7fVn6HMzgVDlpJ794tzwd8iBIQeGHBhyYMiBL+LAawFoBzMBTXSN2eHOEdlB2SFdkCzoENQJYJRc6fR30BTUFXgUGAPasPwgUNE5aIofAo4YGPnvBsQCkIKEEz7xmq+DqwBSmwcO+AEQpI0Elni1KYtgo4BQpLOCcWruJ2mSk4d6wpdWE5SiWjdpUNptXgIn6TFAs3YO4KeEQ0LqoRTMBKYxmvXkKqC+VCYEZQXqiUIcpdX4CDgpr6TQ0KjkE6JiZQJ+FPivOppxLXQr0I4CBXUOhCDHktBZT/mRCYP5ECIwjoScaxG24CuqIBAiLfIgEnbOlmd6z0qe9/j87WTG9GMCViK7c6J11Am+kgnX4T0BBmm9wwDr/FInrwzgJyCJaGl9o9sgcfIzsZK33aPKtfxLGgTm0leEkAFpiv/6qRpCH+zUR+yHSv9VbzgDPB47UQk/+CHPpODHetq/ehc6CFdtx0mZ0msX7qlionRWyeZP37+XieIP2G77FoBU6bNqOAHi0G5fegTgVm9bPV/7hfS5Y6Pl2jY9t1QhsT59fQ2Oq4hJk7R4Jo0RE9bF63IyzMnPOTwY6dRqVGVQIitdsfISfrB7JqooTtysl5Nbn0915uWZkmvtTX8Xix7/5r/WHN4WxyagfCc7GB7Cy0OkzT4rkwBYn/GoK8GrasPL9pJCF8PatLabX5Yeoj9/b24zizKXXIyJqoeg+joqHi7UlC7rZ16DvpyMzKyqrn8m2MQpVR15X/17lq1eLy6m065+pfGdpVUQpeRPMQ04vfJmgPdn2GgZQzfkwJADQw4MOTDkwAsceC0ALaAMQFYKiiqCg1yva+xAJogTwDpgeV2qFwywSJcEnFnQFoQg4HGxnBJdAVpZ4hAcigkELB4JJ76Aw0+wAqMJJLHS4YLEHpAIWlRDUDp7hAkOTak58DqoCialowdtAdbQpjRSR5TkI4AS1oxOhoKMwupkSpD5ZaAWM5MgusqO1FwLPK2DAE66ChwDKFOvkUjJrGvAOOVZzrgTAUCA6QTU0iYwjbSZMqU9kwwQpBYzTCMoUtosQBKKqwsTSankAr7IpnhnhQivelI38ki9pJ18xWnCNnkjQLWO8lqJnbvMKakzB9vLlECxotUy/ZfwOM/y19j657fuyys0QUnCE6Erv8+hiyZhxPHoQnJZoaYPr/ixHlVcnavsosH2N4V8N448tc0Ezkfw0Lx7dQ2lp5Wv5dn/Km7ag/vUi18ztN0iiebaNtaEo4s7NXOnnWUBmRZDXCD6xo2lgMOVxdnwyS8xgtNP2X57DLWGHdQL1Ot1EppSqjKh28J6Xllf69IFQIM31r/O3W0fHN/+xzhVf5MXb2xn9Z/Vl7af2UXUhXZbcLco9wuIElklutZRSfD0JOoWSwuY8LsVtR2l2R+w66HqIffWNzLZUmdalZ9DTO2dAE6dJPusy/e4IjjNGpo7It0YfJNJxadU1D5v/CX0x9+5vdZ+iKWTH777BlJqdMsh1OfU/i8PolXV5RHm4Ff9nAueB58lC7Ms/f1SpCWWMTaCmRjvQfkoZvmYSE3W9uWJ3bXDIOvhxZADQw4MOTDkwJADL3DgtQC0I5ODu6DCFe+Oj4IBJVYCZp0DsIBR0Opqf+P2CwcFMA6G5uOnZcEc/zhzKsmsC4uUiPrZ3KgCOQGrgNJP8i4eMo9DPg+rHuIgK3iaQQomgNZ/ZERTa/jNUV0GUUG+YFtwraRXQCG4CG3kFfUJ8g7w5z5SOiPhDDsVYAWQodYxWp+V3X1QPWtpFHiZRsnt1AT0jRdYc6vy1bW1Nr+wgNrJRA32xJUGUc4JafZ22YxjB2sW6JsqFZcm1VfkgYec0f5AgDu4JJI57gWKhhcHBcTGqQnNsXb8AI2mVrVEGsNHeQWN0hnJN9xXGiiYFnwogQ1QT52q7ZI/RMiv/Cs1tRPoI3GcvR/AP4M+x/Xp+lbvo1Xe5qOPP1CO1Dt3nCxGkDUoj/vKK1GSTsmw6QXV80gzl936GlCWCQ4WY+yffklQYmp7VT+kLUijNN7+IwD08/++klvqad+iK6cs+64TmJjxm5qqHfoAny4Y/On7n7IRzU77k2/dYJvtW1FRuIEax3QmXk64oAn940dIXdcxjafkVjWfvg7WtIOc3fNQXLh8Pqxn8T+8IZZ0C/5M+6KTn+EpAVVGV094OOYEkUTmvY51kf/4979CJeVhNkp5iw1Y3mKzlBtY7LCe9hP57gTLZ3oZ+9gCaqXZqng8RiVCMO124h89fNo+ebzF84mqkf2Jsm23UEKb9HTq53XC8fePIrJo8ZBJsjy7TfnsD5m+2U8s/WpQ/YPEnavay1+eSfzyfuHC58u42jaXX7ZjnnvORvRVFb6YaOiGHBhyYMiBIQeGHPgtOPB6AJrRRwmr+s0TDE6R7AZkAFKREvcSIEGYg5ZgsIAaskxGwJJqFjAT6BjHoTUDHFYSHLDH2QjDQVYwq/T07KwAjxBNQOjgV8OuElR8uxHZk7qeDoxKZtUXFli7Kl+gbVzDAvAZpCO9FgRDgzqUAeWCTsCCKh1Hft4GbAVcp1ylYAVEOiTnKFwgl3hH6FuOwIMJrDJMT2F1YH6hLa7wWX95uc3MzmSQF4RLm7qh+7u7bZsd7xzYrb9boY8gHdTucUA79Zdf1iGSe+hXZWUGHVSBs4sjj1gVKDAkecAdOUhpgASkhUzLFMD5ib3aB96Gr4KLHvh6btm62ToeIU2NnWg+e5cKSZcZNMg3kpN3zwvboNpFfohJLFMnv+uKG/0M1080lNvu3lSiU+IY3zp49spkuc7ZuhQg6qWc3vcLIOWXfciFctbXPLUgcTFZFj5sY/ujQEuem3aCAkxnOZLRx7FO6b/QGx4yOXHXzZrAGHkyusN+nXjIbn93sXzh5E3A/l02XnHnvrWVso29OD/d1pd2YpHCieFDTL+50M248kRXnPMqtfVCci6diDdhnLtLk8rPPuQysnzt7jgDJ5PSOuUp6sCoutJKx58A6j1/Agi+w+Ysd9jG+9a1pUjb59FXdsGhz5M7H84xEVDvWLN4t3eWA7i/hx71UyTy1sm+JTPtk7A699UPisHSJa99d8j/uM7PxcduFe7Cz6gKEdn+FrUl4vR14jL11l8e+r6RN5YT5lgATum16U94hyiJnqD97Xu+wxLveQ4nzfBnyIEhB4YcGHJgyIGXceA1AXQ3hDNQlbTnUlrqYHYuCMIBUxi4hEGC2RodLwQ3DpgOjsSNI7pDuuNdrGp4Pd2BGNKdAHwFjyeCYQ4HcXUZ+wVgliQgcGR1EM2CJsrw07JjqUXnEzNS7QLsZVbOz8x8zw6lDvTSdcLAL1gcxxyYgzsZcy5w5b06tdGRJc8y0VcAXoCbRU7Wj50a5xaQfC6stGs3brS1a2ttamYGsKa8XoIEz3w+RlrqeQfJ8x5WJrL7od+nYYRWDoyvjVzBn5/TBYWRDlMh66Wt63Gk3AeAdkG1xJp/QCFpw2d8zadUTgSZqpjYLoLIgg+SJH9tS6X8b7AQbgGTdvtYmXDhleo4vUTaNrItVQUowJIWTNtJUwFr2gOeaaVk0PYWUiR2hUoumeEEPNJv7ALGBY4D9IhTsS6TG0dexz42ddMpGdU8mhJkwaz3WsOw7ewr+jmByFcCrC+ckq7Kqvy9lhyBmLQcOWlg4emIevrwxUnHGGbqkocV5V9+SdvK0iz0oDpE2keCaECoJuCsrkB7dRG9XiTRqnHMMblzgjeHhNYw46sXbbv6FUewrjPfjj11Lx847Kfy1hihnMsCjPpri9uw4pX67pPUKxmRb5d18jFNJgnUQdx5dF4LepWkf3DvSew2uyhSCxdvv7GGNBogjTTfhX9T1HWa/mkf9XmU51rVsBy/Qh3wRUUVFUnpJ4sBwB2/pMPybZv6ElJtqF/qQrh9uDddWYC/6lS1SxUH9ay61GQvEwMiOTcLAbRC37dHed+cnY/l3mci7x9pucxueDXkwJADQw4MOTDkwBdy4LUAtIPPFJ92tX/bsAOtODjSxG5QdoDvpbYOpCeqEjBMOXAq1QWb/P/s3XlzZEuSn2cAhQJq3+7afXtWzlCkTKbv/xFkpr8kk1ESKc5Mb7fvUvsGFJaC3scDeXvGbHoxlZlII8+pSmTmOXEiPDz8pP/cw8NjFKQFesI6Jsa4a7yuAJdpbYqXEgRegD3AFbjgnaK4KWfnV+zk8iKqH9gDdClF7V5dATI8zgGmQIsygI8PwBRPs0V56LJl8QCornvXB/lrj0p1BezMvbWpXgpeI8CosvIAH9++s/fFzx7uPXj0eO/+w8dlK7g3nmjgGlBA/2lg6cXz53svnj3be/PyxXigT9r6D1AFeJUB4AF+9ZvmP2tL6svr+FQ8EybCawis4LU+owEAxbejxkYYwlXGy3yPZ4fVuxZR6VfAqlCVi0JrAEIHAKm+44O2sM7DKDOIEAbeVCnleMjHMOleY/aqGGl0zL3RZKyMhZhagAUQB6B1Qn+AHNfxfhZjRvd5vHSo2zU0MGoYDGjcAVzj5D51AF025QDkdgbLgC5DigOAbmWEyuAnWXXdbAnANPI1nsryRAdo3YV3ZKmC8Yu3H01kj5gtLyWZUp+wGm2IFcfbW7c9Snmk4/cXAU5tPCukwXbbFhfix98V0vFNRomwI6nb0ES2jNFDXukyW/DcWuSnXsA2UqZ98oCNs1FO6+ncO8CVQaBvXQM032ccAu3SvuG6Fy/xo+QXAHWI4dZNBoWsFIwzY9Xtyd0U0ZXhnzFBk2wd//ibH3rW7+RNf7j38zzTvyi8Q8YOecMZMWZbbpQvG9E8/kJn/vkxoTLRNeM84xgt0YTuG/Gh4epWz6BZDc8TI3z1gwwcZgjIgOMZHgL/WeV6ZlwYSOrTDU56RtCaaVnPhOdcm+ojrPp7gbc/dfyfVbp93DiwcWDjwMaBjQN/gAOfBKB3dVJQsi4MMCotHZA5Wy6PsgJwuTiXgqYElyJfXuKrQDRlN6ngUmIA0sdLUBbwBYKBoeXRHEXYF+/OU/g2awB8vEYHAgldM+VroeHU3XcAkdoFfKSmA0g+BoC1B5QDg8uTusI6lF+5n9G9PMHjtbTBQ3XzFO5AvSlmYPXug4d7X3395d4XX35RyEae5wf39+7cvTseSyBLT69q6+XzF3vf/va7vZcvX+Zxfr334eRtIFeauMUj4EfdgJF+zCtAdiswCSQAZ2gGgNSq7oNCXvBfWX0e40Ifq2d4r/8Vnty3gQrX1R+K2BMaWovDE31TnoEyWSbqL7CuDV0A6pwXE6uh28X/ngT6d8D3OBrxy7gAo8ZaM0DTbqHmgKT6CCCrG2CfhXS1CyAOsA+9DjDuuna9ujztSEeGHgvdHufVBYb0S1+MK7lZ4wM07Y23HcDTrt3tXNuNaTdFa4bBdd2N0NA64Lt63aNv0q45h94pXDn8E2rDIBmvcbypudnOG58YSwwgoQz/V6nu3rUJiO88uTYW+TywB/Dp584jLR/x989qol0FbZMtZIKn2sYjY4BFk/LCVPR78XfNSuiL7BivMsSAYtfATzMJ0tMZq2XwkYv1rDHMxC7LqCHfMz6ScwaZuO8xbM/bfCS+vWgmRxkhJ9/+8DwPu7zSD/Y+z2BgNNgUhWwYvygbOayWn8aOjJEDg3IU30Zu4yualozVAfyuDOBsVmWMiGrCV+Xr8ryvev0W6HVX+288VrpLpV3r1XNt06MannLaskPqfm10dWoWxsOo+P3hszq2Y+PAxoGNAxsHNg786xz4NACd0gHQeCcvz9dU9SVv562VM3m8rV0HWCgzyovHja6iGL0G0PW+y8Mq7ANAVO8CJYGAdB9gSIHy1g2oTvXNTmeFEFDKVTHgierzcv/5aeAvPQik8IhRsOPtzOMKOjqmXED0pDAFAHpCAAIo2phKK8M56/W+frxrQwqgYjxmgQCdOQbkim/+/Kuv9n7+zS/2Hj15MsAFuKL6zwN8yl0VCnDyrvjSf/r13n/+f/6x/gF9KXLKPaLxh2dRvDEQg4bLCYNZHjOgFX085MvrezXgCp+Xp22RDFyMQaL2+gTKeOEnT6jrQJl3vOptsnsAz9oF0oEv4wTU4z1QsxsXfHIOgBOCIP6ZDPgO3HkZs9mtsTpcH69347r6qOUV1hClYwgwBsgIYG+B6ITCBOLRMHm00dmBhoM2aQF9LAwF9AFcuxfKP6w/ZhHGmOi8OiecIx6Rkf39jCrgrLEBQvHtbbvTGYABpMMT4yGFGzmspeogL2NwxJcB/F3TvoNnXZy4xnnOhXHYEAQfLIKVzeRpWTdspAJACwn5+3bN47l9dJ2ijTEhtthYak+7DwPZXz65N+BUKjdZPFw3dmhfXnV98lzI7JI3/Vc/7P1v/8+vJ3zC88K7+uWT+3v/rkwWZhTm2dEnhPdHLm8bqfzDr+/s/ceD8lQHkk8tNI0vxn6ew4oaLyDULASD41kpDv/jL7+b5+qLtnP/m0I8/r4FhX9R5oyHhcwYR2MdCcM3NBrjMfCiyTM5XvzkP1EaQIveaaZ28MA9ZHH3W5CJjIipk0T/C9C761AlrqsZWd7Jgt8IRRho+409wG6NgnrI5sH1de1vx8aBjQMbBzYObBz4Uxz4NACdvqPkePf2q2mUnhZTfnYLo8kAZuAgx/SA5YviTilmitB0KlVOQfKoUrpHZbWg1NV73JQwpUsJmo89CpgAhgAQYHJ20VR3wAWQ4fXqdGWvAV9KEUgSQqD8AkKAztrsBV08xyvkZKqf8kdthNK3yvc3b3lFdCM6hKAAkr9POXanrA6PAs5fff3V3pPPPy9Uox3V7tydqWx9HMAasPtwkkfwdZ7BFy96F+fc1tiTZ+vaex6gEiox/Ion2hxvW7TjCXBkIxD8BWCiOp4u7yWvHwPlRbusOXbT1wDklT7qf+d5gwf4B04HmOtgF/C55urvAi34gleAtvaAZUDSPYCbwxigIwyS53SlOjv5sAC3NHEApgNIAYBmrGtnps9rDbBSHwCobVkThMfU3PSb4bHuA+BXaIxy6gHAhvAKC3N4lZwZF6EsDcfUqQgwXbUDosiKcADt4gsQCiyLXccbwHgtJEMLY6WNOqJX28YRreLSFY4d7WRnZgMwP5oyQD36htcBbzmOxaUL58EDsdGMIjm1f/2758PbV+Ue/rd/ncFVKMTy6C+PP9Cs79old8JcxBnzUEsvh52oJtNim3mKR+Y9M322Q6cts4H13fOoL11iTQX2l1G08oDr643JpvHv/vawkIzPJlyDh/m3eZgtJjyJmehwGB/t4pkDS7TNe/2qPNj/+NsfJ1f0X7ad9lfterg80reHT57P2NnBOCNXDOTFN3Sq26GpWDZjshpexrS4cuOEr+TITMOSHjcibPWLjB8cBLWr23PBsPLsTvnrevF3NiLCzFocI9NvzI6Izm7HxoGNAxsHNg5sHPhjHPg0AE3dpV0Bh/3iACgtQIwSAz7oo8MW61BSFKAXuBZkHt1IAc7UbXpM2QUaTccDDwt8f/wYmKju/UIUHKZ2l3dxKV3g2VQ3pTrhB8oM1kEbZZ2CpFxrAJQEhjTu3wLyKdzKHQQcp/2U9CjcAKe2eJ73rpbSRvdx0+D3Hzwovtnr4d7j4pwfPXk8IRsHgX+eabcATK/KqvGsGOfTvM7vA81A9NuybeATALfaB7z6DNl0AJWH0Tee2lHw+FKZ+oiuujKguo/zGS+88N0ZYGTq9V62gfG6BzABYX2e1G2AY9e7a4yO4eeM2fjjBmyYvgdMKzZ82Y8WdA4/a+ssYDKAvEWWwAngDnyjwcI7xyxe20kYtvdvgdJK1SkbstRVF6ZeNAnzkMFZW5GAwrlnCKloPVR8vurnZAjJAHEef2zbrUKATXvjNa/eCU1Q6hqYSosnVzG+MM7WzMYaO31c3tPqqTGfNUiOVt3CaMTjr0FADz6Lfx5wp9R1Hc7Lp/y4mGd9AjRt7Q3YMQDQJZYYOB6Dosr0w2ex0AwGxujOs3+njC68t2MAxG48wEPjwzCwXfadgD06ZgYnmp2fxad4Gm03GQmdq0t7BxMf32LXaGzvl8mmIePGz8phLcWefM9S8qEFIP3nh/vRh16LSW0o87Ty3+dtl3Xk8zzTFhzq+8NipxkHjDCgfRkBakNR/WjcjQUZGHmvzDwjnXtdOMtvvn8+ebM9678qw4n7ef6n8NTQn6oiiz22M+5TZ2XmXNcYNt0Qv9ZvCVkgj+OBXmR0XZnt2DiwcWDjwMaBjQN/nAM7ePPHS/2hqxT3DgGlgCjzXbjG8hZVoPO7TA2UI2/qfqCLmqIgB2j0DZDui08/AQkKegBlyn55rIQOrFACoJ0H0Gs8iwvdDKXXtVQTZQokqigQzitY++igrM8GtC6v3Sx2g5b7bzHeWZ5t5Y7zSN9MaVssuX+jqfM79/Z+/otvyqrx+d6Dhw/axrjFWdU7R+XFMgPP79+2RfDvfrf3q1/+cu/iNG982Q0A8otAyACFjATAfRbL5akcz3H3C9EA5NGBdwNGe0cHGp0ExGxrfSru96oMI/0DEuaW3oFpPMarjy3u5C3mZTNlfhNwDUjMQrLKCWlZBs+q47K4cB7C5U1lcCyvHzCigQUsDdUCp0ISlDGW6nfMZhfRDMnIcjH9iS5gZYyArl1WVl5eXmD9ETIAkLrOuz7tROt4PKvHWMwCuupjSy1TQmud7/6jpkAAp2blBzyTmy5NPQiftuO9dtCLxaenjXMzIhYj4rt6zASMMZMxALSi3XgBivjLQLp7cDzGhX4uoyueVg4oRffy5us+2Vve+3t3j2ddALpsIW3nPYszAVN9+7o0cEC8vvssT/TLZhW+LfzDbn83Xy95t0OfBa1CV8zMnI6RUzhL4R92AHyZdxxgZgo0kr0yuOob4MrY1Hf8HqA/z6twlwVGydGdW3cn/OTnXz7O0346YP8/Farx2zKKyPc8z2F98kh5rq5yQ+PLvOIBb/+vfvts7zd52tEonMM24X9Z3PdfffN54Sj3A/ll8OiZmoWrIyeNTwbNZakYgVkDZybj+Mps1EUx4W/2/pf//R/2/tf/8MsJe8Gz2S6+/t+sjd2xZpp+b7w7v+R1gWYGHd4w9EjqmpWKgOj+6XeM0GzHxoGNAxsHNg5sHPgTHPi99vkTBf+1ywNUUz68u3YCBFL6mDLiDbsOq+iEzAcT3xlAoLwBBi+r6QEmG4MoT3cJ5QAUKWo5m3lMB+2koYE6B0VfsxOCYeqfJ4+iXeBAeWA+T+YAMHWueF31nl/m+QtQAkQDejrHoyfulgJ2/sjnyDkrrvvenRWmcacFgvcftQnKA3mc7xQuEAgYb5r7KOMFnN/kZX7x9Oneix+f7r16+Wrv4OJs7+7xjfGUnhaTzUMoxMFitpDs0AA03QzY4AVQtuOFfgHZy7Or44GMwNzb6AdcLZa7tIW6IxoAPmX19+DaM8zDaZxulnoNv23mYqoff94HIHlSB1TEB/3HR2B5wEVYBrgcgBtPgT8vUB0gQ6dyu9d5AGgB4uU9NBDGecIMejem7lef18TBRhP+AUXkRKjFAProOji5Bja1DeCoh6EhfRpeTa7tzqvzprCLtoOfKf6+G0dhGWgDorThBeQCkgwpNHw4X6CXLEzcb2VmJqXCRzeFDTU2ydhF3nzXY1sV4TkjI9BcW8bIadeAZ7KAPvWQU8etjCSx2CsWf388u7zR//c/fTeLC/+umOi/aZvsz/LY2gIcgH4QUObBtXjPrn//qfhmWU/+6pvP9n4eKBX6UabEaVMbP42jLxlBc8yb52Xnla88RkQbg0FoiOw3K9NKspLLXfjLg7t5s7smx/PfRpdt3f+pEI3/8z9/OxvAzOYy8xwao1rSTi9G4pyI7+T3RWkZPa/ipr9rG3Ox4VLh/aLc0jzTZN8hVGvNeHgmnFkGnedBOJEdMb+3yLFYe4ajZyi2z6E7cX28+UJ5yJlxIAPkb2SudgB6Yz7VR7Rwl6MqOchojBk/jdWqdfu7cWDjwMaBjQMbB/4wBz4JQO+qHbCQshyvJuADw6YFKbEBhSmyiSFNcwEqANoC21TrOgfkrfCMpeyBjwXmKMDU6SjCBZDSgaMcXT++XCnpBgzXJmWe7l5thHMoY8CF4twtYhqQVv0wBmX6MSAkhhv4mjOUa6EaN4+f7H315ZNZFHjr7v0AdFPtt+8uIAeMVicv3OnJSXHNhWkUqvGy1HQvnz3dOylkg7IHrPYLAVleXt/6Xv3opNh57QFHdOLVqbCCUoHhH88n76FD/x0A4QDN+g4I2WVw6uoPWiYDAgAJ7AVodwewIXwFaIIkAWspweLoAItZ6Nf9+AEUupPnmsd1QEcVIGE83bUllOX4SB7oAEu9ZDQNSKuN6Rcg1Q27fqDNGC0wu8It0K0+Hl/8cejfZQMzAKnrQhuAXd/xB2G3bwVYp3pUVuiaLu3GhQGuO0BGprTp4GnlkyV/520biV4AjgE4ntUByBmB/VPTgLDGAN3oQ9tVZQAzL23faGZAu3F16hiDofPuMajz1nfGhrUCJXwMlN6ffj8rREJ4xn86/WHGXR//9i++mPAHBsr9QOzMsvQZMBSb/DLQffmbtQbgm0I/gFALCnft4rnP/a/V3x/oYXwYD/zSR8d63437opthMGMe4LzfPZ8FegFfGUEYjj/kPbeIkIecEUAe8XlXow+xKdlOlusTvvFM34j+u4H+L/Mo27r788f3p05tkcuZIakvDL3dDIl+8Kwr+9c/ezLpHAHz6a+QjK73f8aWfPhNcIwxlJBcD33XjdniiHPG/qpX3ZtQkANjO3dufzYObBzYOLBxYOPAn+bAJwLolA6QHNC6THFRShQVOAEgr1AIyhXokK1D1objATDAoXAOwGLiNVNgo/KrY8DmgJ21cl83gKCb1yCNx+98FiMuz7YwiF3IgXaBId4sip0y/lkLmnjZLDgTB6kpgG55qgB0HvOyKhQHeutOC8OCHndLQ/fVVzY/+Xx2EbzRFDmADYBMHHXq9jIaZNh49sOPe999+7vyOb/cO5kY54BvXlJxqR9KXWaBHdCGV0ArYDaApus+v32/APTwLLqvKgNUWNC4pqUX+AyOzYgqJ+TFrnmAqzJAoOn82+jTbnSBBHZcA8xMeedErd2b9TtAM/G/UskZrR2AXJ56nkyev+Wpj+62ewY0xvCpLuN88zpjBMDP7HCP9gY4RueH9ysu2RjbAAffxK8CU+o102DMqqrrLQQNJPLOOoAm4103JuyB9/b8svCBs2iprzeL28UDIO1GL2n/9EldV9fp/MihLCcf6vdPoR/4FG2n7j0pRKA+4DPgtWQBQF/800cyc9msAZrJUySNcUF23VN1fc9DXT/QS67EjuPNGAZDwzIkyCwayR+j4Msnj+bep2XAkMHkt9+XCzyQDCjLF21xoXzR+IYvf/uLLyf13e/aKtsW4M9fvd97U9m//vnn7dZ3f4wMxoN+k+1hIl72Wrxccks21Gksx2jQ9177dUYKQgaYZ2aFCy0DR/+lnftZsdGPi2UG+sVG2yhGPPL3pc4jbxOPPVJgFDvwIz66nzHGEDppVum7py/2XpRbWv5tmUjuZIx5f9Jiyzu3Vl5vswR4eJUxpc3/8W9/PjMsMpr807dPC2159VNLwPSMX32YJ6TvA+h7JyMfmzGY/vYbhAYzH35rpv4+eW6OjoVD4dbU0Pt2bBzYOLBxYOPAxoE/zIFPAtA8ekAqj9CHlDnlLYSAwndeCIXPwM5B8a4A02ySkqKiq6RlA8CUnVjgFFu+r73TywX+KP5bKVcH0KIugPO0mGLtAG1QE/8ZRU39UdYTR1kDZyntdycAH2/Y8oarD2AA4iysMlV+t621Kc7j2y14arfAew8fTXzzg/I42xwCwIZJ6NaZtgdQ3wdgXr3ce/Pi+d5vfvPd3o8/Pg+ErCnj8fR2z+SbZU7UD0peHUAmxe2z8wwIoRcUPJCmH7sFbzzB+sskOQyQj+ezcsDYDVPthRb4PGnt4uE6gFhYIG9094MDtbZAkvPOzBQB0As6X+29K1+2A2jSJq+z8+jD5wU4At0B0neFnsjD/Fn1P8z7KWRD6kHgaYVUKC+e+MaApvdlIJnQgsaK8SDsBO95iCcMxJjXjlAcY3EQkBKeMmnp4jNj6n2eTJk5hFTgh9AT9zMMrrIK0MkIO8oA0mfjbovsWchZHO8snIxP52JmqydyR+YGOAOQ8XTnqTbNT57fvzkro4qsI8BzMx31SRw8nn08aUzq7359J5fv+o5PwnNmMWDhM3KQX8gzXt14OeZFGE2bfO1CST4L+Cr/Q6ENr/PkPg1Unv/Dt/P5VWnh/q7Xk7Ks3I0OqfHutG37o/u3ZjOW75/ZbvvF3vM8wd8Ur/yXeWcft0iPnGvvXx7r+fAg4J+ZCTJIFMQhMzo8kO4S1qAvDs8zmRyPr+8RzjMsHt+Og9Lq/eKrR+OJ/jFAvcInlsHhWTfu5NnY4JtzDKz+N2ba6IO/vb1rnKTQMztk7GzQ8vn0vZmODBIx2eTjLwr9YFgopzxeqoVhNc9TcnSnMSQbngtjq8TMzLB4OrRN5mwqNPzyjNVXz8x2bBzYOLBxYOPAxoE/hwOfBKA1kDoc5WRRmAVyS3eniPrPE0c52oRBOcoT8Eh3LSXWdwodoArfBN7yknWOGhtQ1OdR5p0AcLwoOgflTBECm1UdEJDTt8/VvzzEy5NI+b+pfcoROHSfzyCjLZlvFc8sm8bRreJOH+Zh++yzdg982AYod8ZDrq1ps3b17+zEtHTbbudtflGoxvMff9z7vpRfAMCAp/gwCjragSsHqBBZ0y6AT0+vkAkeVXSK+XZSPwKK4TbhJfS9Oj4WKy0WeY7KAAMOPAUc1ouXP69vq+iAopUnePFbfwEFGPtDwGPxASAXA935OVfFDQJPdicnrMJ9Y2wMOPd5ARBFJkQiD7wy48mrHn2YuGFgKV6j/aR2WyI59AKP6sefmX0IPPMAE5Y75ZN+eC/jpjrIAxioXt7Zah5QDkQDZFNP5YR+4A25kiZRuMBVhppx2sWAE6a5jmd4XdlOTX1AOqCF78ZjGWHXXszODditX8Yf8F5guHZqFw/GmxvP8GBCVOoXj7Rr6lqv6V5ybgzWTpG874gABIVFLEPlRoDwXZ7ld7M7oOwi5Ng1238z9o4Pb+09CEwLZ3CvBaYvKv/LPLJ49lWLD93PsK1xHBwZMfazQLO+RuLIoudO3WMwNQZoRhSwi19LTsmqC9ce3njsGTxKvm62KPJBtBujk8/Oimu+P7HKOxkhx3g2hl6NktkZ6/i6q1tZPEaHd4sUzy/ywve8/rj/egwX/NnF4d/PQLidkfRjRsPtW9+1yDE6MXKOKu7A84nD7zkA2JEvVEM/xXajA23GXN8YBFPG+9Sw/dk4sHFg48DGgY0Df5oDnwSgKb7jvFAPm4o9C8G8HUXM82nBTlkBAtBAlEU/OyVlWhxmotzOW1jkmsVe5+dLs+8U/Cj2vvAmL9W2P0Cc0uPNEsJA6fJe58sOkK2QkVsBDdkMzN1SvLyNvLRAhHhXClj87uFhMc5CNiwO/MzugV8GnGXVsFsbDyygBADvQGSK/e2bvdelpnv5/Nneeynpinu2qMtOfACvDT9kuwC07Do3faDQ49MV77Trau4cRQ+EAv3akxEEsJjUbwyPyo33L/4A/ep0ACFAI/AxntzAIlqBOfTiswWRC6wsYFLXq3uBHzvPCaVQp7FRHn/UsRa/aVffA3zxkCeVRxdwEkrBGyo8Rf3ALQCONrTjrx3zbvMAVvfRxUqrBkg50DD5mY8ZGcsDDlBfth0lgGhc35SyzKIxWVBkQByeduPlR57I1a5Y2cvrMdKuzUIiZMBcl2oncFjiE6d5Ko0hfuPRGAh9138AGg94zAecdx5PyeY9AFW/1dX4aeedzXb6Lr6WB9NY8cICugAqXlj4qqx7zKoAavjj5boxX4ZmZfK03ut1sP9wnhczEVLGvY/nvy5tG6Eit//D/ld5nm0lb5Eo+T4cj6z6f1W2i99+/3LvP/7q+9LOvVnPRHR7TiKDqK1zjRWjxrOhf2YN9EM5tAKVZIBBF5nDO8RrD6iOGXvnyQDP+RgOM57GRdx9uyXGL7zCc/LswPNdekA8UlfkjCzhB6NDec+3cTLus2AwbzxD4LvyS6vLTJXtyHmgyYB28Hja6I9P6m0oMxKN1zKCLJhd/apEMr6MtjUm2mWskfMp3XV1bMfGgY0DGwc2Dmwc+HM48EkAekBJShJ4BJJMYfMIU5Q8igCDaVQKjprzndIEsnZxiC5ShgDaYJ1rxQhyUexAFQX7kaewYweE3EMp3wvQ1VxgoKVsefhqfkAqxT5KWuPp8+VpCzykVO8Fmm/dfTCe5vuFady9dzcFXUaA6BLnPNPb01ogNTDz9OnzvW9/89u9169ercWCpairwWgBzJZnG+CdrBT1owqmbe81jGr6e0AaumLC9APOGLDRqcmokULnfT5IqQ8YbcoewF7Aa4V36M6qDwgPTHcCL5wHCgYwBkj1YxdKcVUqO/cYI/wHGh2xL96BDYGmbgamVAJgyRX8san9fwFWpr/rPmNjLMQ3ow9QMe7oeCsEIwAM0APa9xsjQM5MAIBzpX/Wpmc4AABAAElEQVSBv7hHLGpjL8B0Uiz4As6zW1/3qt8LfQNma8eMxAKjeS6jEfjXvrYYLzcKn+BldpCpea/PjDT8JjPdNTxzHf8QNx77obHwknggn7QNfRhw4nHJrLE6zWAxqzG1TDPJpvor57W332xK9XkWlpEC7HXaWPfOCCH7K0xn0Sh8RUYNh3uFQ7yd3McvZkyEvvzbv/56whqOj3i5a73xvV288Jdl47h586gsFe9b2PemfMnFF7e4b2K2K4c2dJBN46uug31G2fXag/o/HuuuYcUYDNGAjukTUNw/5Y/LcuLZID8MOGXxbjzNnsG+e1Vk5GFn6Boj4Vzj+dUK8Yt3V/HYu8Ni2ZUR5KJ46FsTvgFMM7DxirH2Jg81r7t48VlgfN2++4f2oY1huTz8kTYHehqh2moQ0JIMoVMfyA4Z2MnZumP7u3Fg48DGgY0DGwf+OAc+CUBbFEeRAcn7E6cK0KSsOg8Qmh4HQMS6UoCAB3BGoXrxrlGggBeAC5RR+KPUevf9OKAwQHGAwJpqBgR48ngBbRoBUPBGU6JTZ7pS1epxXiO385A9vF+KsMeyanxeRo08z22IsotxFgZxzpsdAFIHkHCWZ/l1oRq/+/a7vV//6jd5nPPwWZxXQ0AJ0MWrRfma9hY/K6xATlteOscocTwZJe47cAKELl4txb2MgU5f84Bnb3ns1HljPIWAjHtXTDJwo87DywWKVbriOPOkVZHsHPIs8wDyxN+Uki2QMl7Arg/4GQpxZ9GDf3gLVJtBUI8YddlEtO26+1bbADfH5PKAA5dRlxHU+MVzQF452Q3wEzvU7X4A1r2AmzZuZSjwBFoY6rvD2O/AvYYZHgCvKJ1lAATqqhRdgKm2r/93X+MS0ASWyNPuQE81z9h0qfsbryJj8HTGsDZ5lVf9YnGLv0dot2m7/9MPO/3NuE0feJ7RnqwPjTvvMxPQOPAGz8eur7AM47DGfWU6cZU82HDF4ZlBK7D7q9+1uHB2UhSrfjHbessD7Xk5LATpQcbfcbnsxPHL6b3/9PX0m9eYDKrRczAzAmRVdyJoPOi1iTTjY2zQaUEmyf1JfuOJf+QdjRaXdsPcV7E5dvcqJ+5f/SMNBvO6Tp7tmQ3qjpEDjXXMc1AbC4QzjjIMkj1bnPv9AKD9vpjpedFGLe9fFlseHxmHPNNGlGedvDBu3jQDcL/fG9+1uZMJ/CZDwmekJNzRQH6QGSFTFk3bsXFg48DGgY0DGwf+FAc+CUADDlbV29o42JFHbHm5gGeKD8ARFwwYPAv5vC1+GHjgBQW8BtymtyyQAqhpsuXhSi12/kbKFLA6tLCJQgwMUqoA2uQ67pzyFK4p+JO8nkDTSkcHrAUeAnIHbfYgw8aTzwPPn31RfHOp6Grrw2nhAi0GRAfAQOlT60DeSSEYL9t6+1kxzm9evS4DRNmqAxfKUdjoW0AywJ1SPmAEUNJTQxtbXIMhoBZQXOEaZToIEMsr3O0DbIAutJi+723oF5ss1OWqrBM8lnfqJ8U/XtTaFzYAoKLzqp0aGSW8eyucRRX1LfAl3MDW6Lyb2kDfmr6XESVjAbgJDAGQ+OcE8BhJA7QnE0JfcsJDPQG7wHC8RPMs9IvfAJC24Srg6kagxT8LzU4/tMAur7M6GTkDZnmIr8GY78bW5iAAqrGCq3it0QX4A38AHkOFDGiv/3PoJz45eBW1K95VeA/vrMwe+k1eeDPF4qtPdhMLAu/eBTLzOFeH88IatIMG4yxfMaAlzvhlmSfwm2f5q1K68aDrm5CND2Sy+91orPFdqMrNQ/m+T2c2QX2zRT3e1C/gj2wYB/weQMyr3Pkn7eAHAP5Yhg6bENlIRAaZ75+/3fv3/+abFgx+tveoBZx2p9RX44cp37TADlB+XZvPXmVYxVPX39XG07zSNjARgqNP+LJ4iWtL5s1CeJ7qyYBosjprECqBVn10L1rli15jlnzXX3wnW54NdauT5xpAVa97mTsTY13foGnlzAgZ76nzp3E1lozUvNLxe2+/jDifBY7zQMsF7T4hT0c9B3jvXrnB/ebImS1E6Sheos9B9vSjYiODZ+WC13fG5GHPx5TDwzkajO3YOLBxYOPAxoGNA3+CA58EoOkcYMiq+YOm+9NJAY+lpAYMwWSdpMgptUctAuI5cuyAD+VlSr9qRhHzaO8U3UnZNihdK/6AcgoPsPDisVp1dz1lTCdTupTx5PbNS+WzcqaSz/NivSh9lnfgCaBZoCYwnuIFYAE6Xj/HRZ7Dk/I78ziD1a7z5o53EshIN/u883D7Lr2XcwMoustUPQghywWvIkAyAFpnOw4PA9YBAMYA6tEvDAEduxCU4zzHQBBgcxpgverluvaENUhPB7hoC392xsVuyt5ue2sXwwWyABigBu8GQARSgMEVb13fY6S6Vx+GrAAVYNolvK+tg+K5GTw3yiG3Az7AfRi/+OzVDyAnkqctHtQVkrKA4/Ql7/5ktcgLDESuursnVhg3gOdOgE9Z3m0bz9R68iasZZkpR22eMuA7fpjhqLFpb1LwJS8ANjqG1uoA/gA5MitE5U7GibCEN+/W7MjFbCFPhrUvRt+4rNkB46Yu4Bd/YDMxyUB3o2i3ntpZoSanvKAtsgOiefLNyODKo9KxRerw5fd0ZXw0hmPI1Bo+iPWVXpC8PSuuGXgWG/6r3z0d+i22+6t29rPDH7lkpM5YRvfu2ZCf2YwP8CqbBfky7kI/fBoZipYB0fEGyBypLGc5PjnQ6D78Nya82ejkET4pvd8yGlYd5EnHjJex9lUbP9UlJKZ+nrWDJnnWrno/Fm70sb4uL/KSUbxirIhtZ2wflLNb2XsZWt7ldbf9ua3DyYXfEkbcg35fGFkXzWSQcv3VTkM1bcu6QV6d01+9k+JuGaLLENPf7dg4sHFg48DGgY0Df4oDnwagUzYUN+W1H4CisihQOsiiMAoYoCsNcuUO9h7ebNvrPr8NYABNlNhafBWADcxQ7Lza0qiNgnN/yhEQ4OkGFgBxShTIUX8qMiWtnLCR8iAHdG7njQrPBHBcW2nirLZ/8/p1r1cDqCeutSl6Xivpt2YRVG3LxasPE4IS7c7fKyMHkAIQWFBnYd0o3fFwpaajIzNggAXAMMAAygqS+DzgsHdAl+cdrTydjpqc7wDKOnhlA8PO1/60OcBjpRQDwC4vuYTjFoByfde00TkAx0l1ANingdeDA3Hiiw6GDYCJV+gYr2HX1HUZfVeNiWNtZS4GNRqMaS8gGrC72zjcPLQbol0jhUmsUB68wYsdKEMKwG3WwEY6rqGDNx3gBTA/ln/7TC7pAC0ZwTZ9Vi/euMfnCKxv9d0CsXjpO5oYCg5yMgsPOy8Mw7bQZ8X6OrQ5sefVpQ8XzYYYXztOim3GA55k3l78xUvy9y5PrvFk5Klj2q0O5eSuXmN43d94j04GonAHPPFyDr/16VahFkC983jkGfgQgBxQN22SAffg00qhN3zv7OtA8+tA9Iff/jDv76MN8P76ekdCcm+bdrMMd3pG3nRdSAP+CTUS9mE3yjHGoiWK4t/itf7OkxRvds/dOGTxv7YX4NT/xZvzi2uZjpk99rWxjI6KzmfP8dTYBdeEjWRZTRpB8ql118noTbtHGvPrctojb34HltxlPEdvJE5fpMG8c/vRZBx5XeabSat43U/9ME5mvtCMCp2cUKFoXX3Tn/Vi2JMT1xk5O7DfTduxcWDjwMaBjQMbB/4oBz4NQKeI0nWTNWC/hWpCMWzZC6zahhhQ+lDKt8uPcti2jXEeO5CPErVgjMIDRj+0Zbbp5dkxMBDFq/swb5LQA17d8/EypewCg0CZ6W+KkaIU70oZW8z27t37cuEeT1tXZWHgITS9zUM+wC0g9yaley4+ONBk0SANz0PM46oMwAzkAlSvAiw8toWZDiiiYHm3zgNgvHCO1UZAomvKUtkA2Z28iN6dAKgwymYSv/vhRSXyRhYGAFzyTHvdastoXjixzwwFffoQsJy4zUJf3gHC9UUZYHcWMMY/4Sq8suoEmMdrWluAC6+wczI9TBx05QCxd3lchYnI5wzgA9I82EIbPta++hkteK9f/i0gEo8q/0Vp1N4yND6W45n3uvECzE8+CHMAfpdRxdNrij4i5vppISn7BxkCwG7ARbYJNVv4B2TrY80N0AE8bXBBRpzES3VrizdYOWMGiOOL9H3CNADGR/dbqFdfFvBmDMSX7gOs9YVhwot7eVG4RLG2X5eC7V33Pnv5LrrWwjL8EQajDQhQvZCXRWx2I8SHWyPPvJvF+8fD/cIBAGjbb2vzZR7SAdMsgaox02H7d2sCzAoI6UDzg2jY9UkubeMxALM+ew70Q995otXxbRk6hIZ4/U9/903e6M973o7rn103o+Ewg693YT4Mv5n1AOx74dvHPLrQ8Ixt/eN5rncTfrTflpw7Q5UsiYkGPPHssu/kwDPlWSWbdhicZ6exVs7R6dqpXJ+NzZovqB5ymiFFVmZjlUrcuVN7jec8K9VtBkqWErQ5N8Zonyc0Jj4bx5UTe20lzyu9MzQ1P+Es1eNAn0XAYwDVL55xRhr5ds7vkHoNsVsW9XPr9mfjwMaBjQMbBzYO/FEOfBKAVjOl+UAGgXKOASe8aePN6bPpa0qb8qfYLlJalDIFS6lTkIDb5eXyzE24Rd8pTZ7Fy7xGYivH9VVbFO8Fd5VMFbUL1FDUO6+ukAAA6E3g/Kd4ztrk8bsKXaBNGzyQANPHp2+qh7LfL4vByVybRYk8gHmvlUcvkA/w8OTtPO5AIsVLVatzgbXlfUbXbGGcgkbnjlaA/2HT+DbYiOy5rxsHQB/lHbRoDmh+X7q0xTMLy4rVDQADGUCH/ukzxe8AUoU0hDl6197yDjJKtIHPkIHFjfzkQJVFWO62LTPQIGxkdjmecjbDCWgAbd2Ltx/dG58AFVPmh4fvBmCL6wYqteMe4w3gaBBwBCZlyrh98/60A8ACRvj64N6t635EC1BVf9w73nn3VoskDcZcfwHW4fHQGz3Rip8jb5Ub2XNfcoMO/JPBJOoaQ17/6ihud3ZQDPi6gxzaza8WBrhNfzo3Hap+W28DhyM/6ok+fAcetXuWMSW+/yjPMrCP/zzhFtKRa1lMhr5451CP1I2zYNWAdUhP96RNSRgQsmeQTbwf3nl+zgO99eLLJ4VGRLfFdAyPV4HzX3oGqsOsyS++fjJg2314xbP+MSZ6/vBtPLLRh/8Tz0wOohWfpgw5rS7Pl4WjeNYITD/MFJCrs/NmjJIHz2UDG/9rv/ce+BlvdO+eR4Rpc4QvvuWA3juML+TiRluxB/XH4CQ3Dnw2Vu4Y2YtO9F11r98OzxA6AeDpT23dMt4fF5DXD/w1BsZp/RYZw5X2Dv3qN+g7j/pu9uIkw079QytitmPjwMaBjQMbBzYO/AkOfDKAppQoRWCHZ5FSkm2AJqTM6dABFxR3IGE8pJ2z6McU+sGN41G640WqjGOm4AOnF3m3VigBpZfSzRNIQQ9ISYnvPFS8fUJBAAwhBxcfW7iV4gQUKWYKdRRoxEwMcFtBmz4Hmi3aAlJ5nBkDo1xT0sofBoIoYvHQPLkLuJp+d71rAQcQRp3iVXm2KHfdAGpcH5AXSEYP3tzL0356wGunT8tb/fEaeFgw6V4p4NANNOOjGO4bLf7S/4uP8gzHG+BCHVUyWRt6Bz/wBE12x2PIjAe0cuKQD/L+Ak9AHXaaDu9Si+vybDY2A/ACxTx8FkHyXjpOK6QfRuckAHUV34QPrMVzC+AwGtxzg5ewugBIiyXRd6/NarQpvtyUOx6Lb+YBH0DZteF3bQwIiu6LxuiocrupdcDXeACAZ9XjEI5gwR7ZEYqDPmUArRWCE5+vARX6BojFT0zFww/xAg1mGowtusjsApnGeRmI2tkBQ/UyGI3zhw9CcYxtMfWHGWX1jefa5iEMF2W0Ewlzf29Dq7EbKmpPXnKA9/TjkjH9R8fuYNyRtwf37gQef/+48lRb3GjcxhudvNmN8LO839rGz7XL4HpeYiibYeRpnqH64bnQVzwGWoHZ/fiOn+SELF2WpkR5hux58ikNIe8tCo3ttFNbw18Mi16fNeXh79Z5n+vXPMYzY6Sf2p9XNJBnz8ySgWX4eE7wf4zUAc9rNsez0umRdfWQZ7x27zR63Vf0TdvouT6UZ3i65pn5kCE09O4KbO8bBzYObBzYOLBx4E9w4Pca+U8U/NcuU44U7XglA2cAorAEYEm4BgUq/hMY5AGkdCn1m7mjUt1dX4oY0EilBWaK2Q0cnZZKTl3iRXl/KXRlqlqVKfEAVG0DFGKnByxdn6MsgcJU8YAnninK9mYL3vZD+byMvJwU8yxYrDzgQKnqz+TJ5WkLYFCvxyntyUVd+VevT7oXGAeWF0C9ERjQL0BNBegDBNC0pokDh02Zj5evdt7nZQTaAAKePtEowAvPIlpno5cAEG+08/IBv6puC8vABfcBCeu1vHy84TtAP4ChkkBP1VWu0IFAFk8y+gBE8enqUmZ28+sb4KdvO960T3WgbW2Go+zt7jOOXsDxh4DOZQvJZvFenQbagDxjxKONKXhikR0jBY/fN7YDHmd8hpw43Mh3k5RymHea51zcNmAdDq1fC+zYSMN4A31oBNIv65P6xjPf5yV3+qafwGvANJna0cwIMK5CRfAEjeQK7ut/9TOE4lv1nwRItaWvE1IDrGXA8ECP8UMWk3M81p66jZkQGDLAe61P2qvG4TXZJGca89ksCXlbsdfXfM0buoBtCxubJdFX/EEHHrgdzSXomPCP92WL+e0Ptjf/MN+FczwuPAjNxtpCz5oZg0dID4PKy0l1kXFhSVzEBwzU/rlANjx7NgTy3b9h0vpTv+tVssXoJKdo8u6ZnbjiLlbLjN8Yv32bfkWDZ1xoj5mClX87voWAk6hkRN7ntRmNuvFpdgBtHMmC3wXnsd3z4ljG9ZI3v0fKOUb+okNf8NBupfq+rlZvvPXbYIz2+zx9nzu3PxsHNg5sHNg4sHHgj3PgkwA0PcVbDEBQVjycvM8TXpDepakou6UkF/ARh2g7Yoru6fM2JEmRjqczJZdKnHqWgqPjF+Cj9ACPe3n+JqNG088AJGAGGANLptXpU8BWWcockEUDcOc+cb0WDFKcAI+FVxYs2iVQei+eQEABYAeGxIPq2woRWUCUAXC3OOluDxDYQU9saUoZmKrv6jbNDbgN+Ks8ADKZCzoH6PDsAcoAAJren7b5w8RUa3MBOYsfAaxZZBk9+/HT9tQ6BDBYTAnEMEyEOfCouRmIHCDZ9R2w0QbuOs+gmTRrgYlbbcBxi5e4PgCsQ0Pe7wEtlRMD7UBTnZm+Xn+cEBX9YBg4BwgDgwPC61dQb3n7A9rijbXPU2rc0C9u2IwFMDr9iHdr3BhgvOsBMG7Fbuzj9DMpG/kATI2TumaL62j4cBO/GTvFFjMW3Bjh4otn4V79OY//Y3x17e6dwjCin4hM6EYf1LlCY6RGzCAorpgMSg23QGFVJs9v4guACgACX+5Ho89owj/3JaUzCzI8IzCdc37ksnq0iC/GBwAFDrWPD2K4u2NkkWyRdfe6wTNnduIHae4KV5pMFNHgOp7+7d6Xbf/9IJAq1CTZ7B7Go/bJi+fsZrTfTfYHyNf3MaCSszMZVqLNee8N34wFOdR36w+MC77ZCEVtnZjyrq/7UF4rtTfjW3uuicNfXdDHjOjG5F1bd5PTWDF9VZ9Y6QVop5rhTSyY59Ozhj/Ti4iY+vozvOlZu1EcepfnuFkIDcMNb/FBOJFynm+yMk9TzDmuj2Ow725ct29/Nw5sHNg4sHFg48Af5MAnAWj6ZhRbCmp/ppoXgKOMgSUHRQ+syg6w3zsAPQuccnoB0RTXhHpMOinT54tWipEC3gdOOwXQmjrniRPHS3U7f0nhdw2gBMouogPKoMh3L6B3n/IshRbvFpByMxAsTzBlrA8/LXKsXeEaN/JCyzZgkZd44qOyRVDEAITQB/dQxl7O64Owg4uLdtNLQTs63QsoX3XyelLeQk0o9onvrS/CIZY3jYd8xW/O90CGXlL2+qzvKgPS3V+vJjTDPTdbqOkYIBFN6JEeDHA5D9ShAu95bpd3vFCNq+UZjglDK1iC/ep1AP0+A6Wu6GddGpAGpezCFAAqPD2JbxOiUyHtKu/860mpVh+jWyiLkBd9l1fawUMMeCovU8Sq18wAo4Snc3lqx8ABxBrrm8Xc68ctYxG5No6p81MXIE8GhKIAnuo1prYx1zsLNu9mwAhLAI67vEBt92uL3BhjhhJwe1pu4am/fhqD01LwTf3RsbyYYtCNeWNlfK7HU13Oo0NsNmBvVqJiI9v4YOYAkFwHY3PFwgOKnpmzykTWgExglNFy6/7iEb4d7L8boxB4/+7Zq54HBlhjr5EOi3M9Yyv9INlZ4xCbO7cW1hkrz8W78rnPWFTHAcDdwQCu4NyHELWSk3mek0vPKF5Eqjf/e617+zjXGQz7gdljxhpmV1i1eDMx9gKkO/BSezPLEq8Ze7vnyzlGsBc6/PN7UtXDP0ahHOTreb6W4NogS4zcZSwxIIx3F6LBP5sNYT9DWhdWD+bD9mfjwMaBjQMbBzYO/EEOfBKAptCBRUrxdmm3Vo7cAFOZLp7l6QUggANKUiYMGS540968yxNbvCjgNSvjU9am+g8oyIDgKOAU4w6AAEAUIa8uIFQVAzyUGzBdO5QvsAuYAQQWLHZ5lKT45ttXMoDUBqWfsh29H1vUDahRpuO97vqkyuva8i4uJc5Te69Fd7Ybpn/1C1ADAtB9u/6h68MZ73cvXurwLoWONt48xoR7AQrxsqgDrh7eP957Wr5fIR0U+ZpmXuEvlP2NAABQB/ADAM9flQIOkArADRioZ4wRn4E7fFPP9LWOzhR3rbkH/XgoJZo823b/A3fQpY01o4C/puSvgVMlQBxtnNZfYRv4JnwFzTU1oHaMgsoAYRiMz+oATIDn06bLgeAJpUAXo6aiY9CoL3ngjTy6Gbjt/PCWbFSPjBXdWIq2Fu31zlhBD+J5LG/Ha4D6vLAS7+Kv8UEoxvKEMjoCUwHq4Uv0rJSFNkf5fRw+WoE2Y2ah6aSgqw08IqsWe0biT/3jiSY/cjW6b2J4r0EyOXTY6MdYjefTRjJVoF7PzTKwhEsIKxFfXS7j+MJoOwnUWgPQsAw93jHTu+dBto/Fzxsrq0h8et523v9Hz5utvf/qZ5/v/eyLh8lXG78kQ55XFZBzIUM812ZuvNRp/MqqN3y/tNC1cujTP+/4iWfqINf653l2L6N5woi6ugwCoHpdw5ePXWd34D0jahkKPOvLK+2eKMuYXM+bSnnOtSnNoXSHNg26vDBroAzj4br+2hzDoLLo9JyRZXJo/BmoK/f7inE3+2MsZht6Y93nqwzLPk7f/N2OjQMbBzYObBzYOPDHOPBJAHoAWXGZRx9tLbymsaX5AgQo+vul4KLMfB9AkjI7tiiJUkxhAV8fzt4GjM/2HrfZA4X4sS3Bu5wqpUwrE4iZ+OFABa82gGzRn3AOCg9YH+9lihOo2C/eWFsU8nieOq++8f4GuNx/Ow/kg3vAaIq4f/6j8TIFrU8DvAI0YmUpZsqYd1udDAaLIWXDgDq7dQCaclfqGy28lLfpcop+AcEFDtPpC1hHF6A3kRvV4bZOwQ1DAzqOOjmgq3YAAAYK8AsIAqG7GFK0AQqAyfIIFmZyfGvAKKPiHYBQXccBJGEpABGQrp/jAewa4MFTj2ec+P2ffn9soRw638ZngAm/8MNr0Rx/Oyd0YABY/UMjsCbTxmcP2wylcy/22vQiGnmp1Q6AaV/dA/CrTJ2FIE//r0JPa8yWd9pnKfPs+Pi2uFyebmZPrBhwKm0gYC/tmjAdmdpu3qjhOgK8GzfbjOMRbyTwDVQC48D2xEob6xkXCySXtxhfImvCPwA6QHhmIDopJ7a4Ykac+pwXZ4unZBUPyBueGhf9J/tAt50SB+A1Pq7hh4bQASAKqcEfBhavq/7zgiuLhXhlJuNBOxLyJMuG8TrQ7P6z83fduwzKN6V2/Ovion/25ePJGKIdBssAztpB4xhBQDK+9P0gr+yEaYxcLhlk2JAb1x3kgyHAMPSNfA2v+i6NJXove5YnjKgxc68xmzCn6Dfu+uA6WdTHG22M44GaZ3Ja6HPt6YvnyDUHI+8qj3YjO8+HPouvV/96/pTZyWh01cZK57fi0qfNxl0ZgH7CQqIhcjquG/FxOzYObBzYOLBxYOPAH+DAJwFogEtIw2Gg2HS8Lb0BLds8AyKzCUnAhrKUf5iillVgKcsUWEqTF/fy/fne7TsWuQVkAx/Aoy8DWLuXQlWWJxnQpbSfBLjT0yumOXBkgZXMDmKBteOiqWug+nwAQ2AhMKNq3vCH5Ys+aSOQBX4AufJXXytTSnu8yylkXjXtAdv6NXmCgYWUMsAANI53FRBK0Q+QHgABAA0mGhAlBhX2QPNhmnoAaP3SH+cGPFLiBqrvQOXy0K5KgKXOVhbPeUGXwQB8zIYSJ+8HXKkLKBCeMN7B7gLgxwsXkDuugLYGwPYOrKF5DI79NqkIBK5zACQDAICRxcOYBtri553bK0+1tvAXb+TGDt5NbDRvMeD4UVx59DnIyrkY8eK91QmIDsDsXrvHoQmwMx59mjEHynk28VdbA7S7ynsvRzODYkB79QNFaMOb8VBXj34zNIyfNi1eM9U/MevVc+duKQIzxrQzYL5+HlQO0J4Y7doWArI8/Xhfnypr7EeG4/MpoyBDy8DlO25cFhDzLAwwTeDe3JTrXKz7WhzXCCSvAcroc85YGl8h98D/xERHM+Pz1uSzXiD1Y5k65NIeHoUfecOPimN/eJ9XG6jsmXm9+CslHj7ZwRDz8OTrLx5Pf/CqJZkz7uRvjMfLJctLHoFo8pN8xHvj6/Bc8o5X3RxdXkcnnNM+owZ/bM7IqGhYC61Yz8rVT/eudQLG3zN6ZRw9mBVGm2q1CCJ3cyCaDJPD9fxol2xOOr9+V2TTYZwYX8Yb2SBPDCRH7J12GN5oq2eTY96MEiM0Kvfu3lyGzAzk3LX92TiwcWDjwMaBjQN/mAOfBKCtYOfhDBnN5hIzJRoooABNLbtGgd7N22YzksMWeq142bxyAbWvv3o4gMNU+dPiN634p0hnQV+K7qRpceAO2AOyHpYzFzADkn72s8ej2H/Z9sYACHDF60VBUoo8t8AVb62tzpyH5QAf08ZHh8UyP7w9NL7IcyfNGxCwPFUr8wJadguPTKVPqrSUM4AqDZ92gQaxwoCevs5r4N8uBvd6IVp0A98UO+V/0nx2eGI2OeE9PfkA+C+vIwDFY6ouXjKAz0I1O8stcLDaYVgAkbcDOIAY8DB1VL+4Z4ChKoYanlnXTPsDNgwEOYxvHqxcx8AcjzdAztPJuFAfdzRwxhMK44zHLo/n7hgA3b3vTtZsgfG9e6dxilYb1nz/45uAWMCwxZOMLICs9BnzmVeSAWZMteFlkR9PMr6O97F3fDCm5EBKQfHE6iJv7/er90Xe3YAi4wkAe/Lo/t6Pz16Pp1rb+GfchWBoQzwtvpARYQza+pgsj1ERqFPu9tHd8Wa7lwfZpj5o410+j3dnheoIwdjtfgiWMRKB46obPsmcwiPtO9kcACqfeH1hZADpmCMExaY+aAfwjeks1qu208Js3rxta/Bk//5dMyyn8XetA/C8SAXpeTA+Yh78Q4d80sDwsxdv9/7D5bcT4vH3f/l+75u2wBYmMkw1iPpem0J/lG8ourSMXPwY+anMbI/dzo47g0V4BzmutFqmuh3QlhkHyNWfyFn11lX1AfLqwFOGC/4tbz10vGTdfepGxxw+z4foacxcW1ubP9v7zXfPy0jyLmOMzJ4PkB6DS8Pdj8T+TtvGawyDoPnMwkQDA8lz8O//58O9n/3b9QzPPddNLwK2vxsHNg5sHNg4sHHgX3Lg90joX57/s76Zvl4e5EBMi+eAOF5EXlKghEJ28O5J6yX20DkgDIgdJZpCdI63C7AAWJQFwCfXa2CH91TOYaCJTrWA6W0gQRwpgEzNiw9e3kRgAB0p+JQqsChNmPsobiALOH0TcHpUbKjFVeMVT5kOaEvZ6gMlTcEftaofvXD4ig/NIxrwkf3h6BgA5OU29VzWiqbLzz6sMBGhLOg6vLHe6XPAACAGVnnaZb+g+NELYOETGoDd8QoPsFxT3Ac3gNnl+bbZyzqWVxVoEj5Q16afQB7wCwNoz6YuwOK5PNC1pzyP8IO88ACzLCT5KYfemhgPJy/0LES8pgk4Myaxa3jKIwhEGRuH+/CcUQAQXplm17fCcxghwBOPX9VOH2ccoaw+VGzOAY/anR0AqwswBHzxX2csdLOZh3/o5+/EywJR5v5Mld4DX90LOLuPt9ZYAuParMDE1grbGMAYyAeqyAZgbpbDgjd8U490a7Yuv+i+i0IStBdJE55igZ7dCwHAAYV5jEG9MT4CyDzITzLS8J7xIhSJlxwvhKHwUI/3HnBNXtQBWPNGM87MiqCHV/pxm60A1cbuXqFRsoJ8/5R8LwCMP+oFCPFMBhWzQUJmLl6+nb4yANAKRD8u9IOh0LB1a3/7T/6M4RxXgD6j6fce/JHneGSMmMk34gkv8hggfR4DqYq049nGT3R1acrgs8wyV40J2TpORizim9zh8UjbyuqTshMnHY3aGyp3bfQdHxkoj+oHGvDIfbeqQ7/f9UyZ+aq6IWD3rh5y4PemnvUMt2tlsvDZN6/mmSMi27FxYOPAxoGNAxsH/hQHPglAU3bAganij23ZzUtqCvtmymkyDqTYgBRA9GHIi9IzDT5xpyl591nsxAtoIReA4FjT6UuZijvloQQKgWFKlfL99rsXKVbZM7qnd1P1prRtHQ6YXLY47maJhN1DoQIvt9OcC7AGTPp82PS3tmhU9QACQBzwCtCiu6sDBniseMSADX3SD4DFLoE8eu6bhXkBlrkXcANuAJLK4QuAFDLouzaruHfxm0AN4LVbVDbXuowO1x2ADBqPj25NSMEAzXjC86p+3k2gEVgEkYHdhmGA4wDzAan4mOe7C8Adg8N97woxyBYawMno8EIvIwcIwfumGAbcfGzxnoWEvMv69v40r3XGxPLGB3661z2rf0PaAPvD2rt9zBsfByvD+FJWnDiwBBjueDqgMlkCuIFoA7zGY4E7sw2MEeDfLIf7fD5vO0Xg20udwKQ2xkvcOz5p/7LY6MPejeNpuz4OsE0+AP+VEm6FkAgRkAccH3ebAJERAJfxBbyZubA9/JKF42kXEOSRv+reB4WJAM82+wFs0c3wI/vGNtKRVRnGybpOvpdxaiGhmOhlONkN87Kd92zGg473J7dHticuvzq1C1TeuXM/g+r9yI22ydGaZVmZNhi6f/NN+aLbFRPI1e4uVMRYK9+poRUteKl/DBJhQcbnIB6Kdfb84/GMXXJA1siPOsZgTL4YvJ4j/fQsn035jNNkYq1vEMJC7qqvur0PgG78hM+QZ+c8y0s+Fz8Ok9H7d+/sff7kXZvKFLLSeFmc/KyFlLzSjA90DH3dH7mkbPjiSR4Pd1+ts+AIwOft2DiwcWDjwMaBjQN/Dgc+CUBTchTsKc3Yi9fJ4j6A400eYrvW8fTcb0ofaHr/3mYhgGfAMUVm0Q8PoWn1KhjACdS8PHtPvaWAl0JWjnKcUI3OmfruronF5QWUl9e09avXedwqR2lKVSa0wj1A2G4V/lmAiRI15b6LDwVWJl44ugEFYLjb9m7L9dVBrw54iG6L8FwD6NbmJ7qOzoBBafIOLNILfZx+eL9XWGn3Li+zsIz9pv0BAmDPVsv4xKMZC+ac/qIXWL9xO6B3pzbq1y6WFnAEksR7uncXQwzoj1f72sMIlH3z1ZMBkPhpeLQPHhgTcacWnb0r9ryeBOTWOBlLtE+89QBdoyIkJiATvQDfa2C/isYgCDDhNfA/ry5ohyEF7I+XOGJuHdruOiDUJiPhmMC9hXE3BtR9OFvpDifWuDaAnRXCIRREnm9hHStPspR1ZGWXWQOInNmGxg9QBIjUjzcPy/9sZgC/8kW28cviF29jLN9798oivz40poCZA8A1szCGU3QbC70je8ZBbPS9DD08wsePQFsgbTz+0Qj8GTv3a4cHl+fbDAD5Nw6Mi7m382Rwv/JkwnOCfn0GgpV9+37FCHt+jI1Dfc+ev5kY4WV0ZTjljbbJi0W71gIAxl99fr73OB7842+fBi7fDm1iqH/748v6czZx8//mL77c+8uvHy8gm0wU2LF3drTGzzgY1Y+FgiSNQ6c28Hx36C8ZBDw9N65Y/MlIMcPzqudS6Mt4xeMr+cXjGB4PzueFlw73T/aa+HBefQwOfDUDwLAew7D2YsvwKvJmQemdjCxlHt2/lzH+rpCVN5WX2eb2eOGf1XdGEaA/ADkidWGB/j7Xu6umloD07dg4sHFg48DGgY0Dfy4HPhFA85rxivHyAA0B4bQTVcSrxdMJgs2ZzvM+AVzp3EDW8uTyLAHLgB5ADkRQqpQcbQk4XByvMA/gBEif6eG8cdKDHV2DTiDbtLXYT97oK966vJtat2gQaFQpDzaatQvoAQTidrU9i8W699VbClyquGUgiIsGIKXwevc+Zdu9wFS+sgkHGY9cdAMBE6pSHcrrvnqVF1KhjxS5qXMAEuhGy21ZFKKh2zvWNLrQFBudPLdzYeAQbWgd46H34RXOdROg97FFip3u9s6FSVa7QP0C0MD5Cg3hLVzhIq/bxGKAfzwTXmMb7MnVXVuLR0Bf4E970462pFgDZBgZa2x5H1fbygmVKUSnhYbKGnN9k6Lu5s2+Nybi2cmK6+4FXoxb9s4YAjzbA8i6dpac4B0a1Kt+oE2DvJcAmnHBIzQDrYDzyEht5JTuaOzrh/uAcPQsT+eie7XPCFn9wRNjZiy0y2O8A4sXhRyQS2FBvM8MlyocY/B9QF2mEP3apXRjnABr411unMSmk/dJ3xadDuBZe8affBprMwzGDI/RQV7M0pBjwPIt72ry67pnpFPzWd3q8mx8/uRB478WUvJA89YDk86hSb2yYnz55GEA9E4ysBZ9osMY4MsA2/hOHkemYguKurTXZMQYm2SaUYz/IzcBUtxjiIpL1tbNM+ErYtQXkGaQ4i1aGdFZBjO+ZHl3L8CbONfu+j0wLmg7mN0exWnjz/pN2D2DI+cAekbP87zQnsOXvfO6exaWsWN9gV6szgD806h+bcfGgY0DGwc2Dmwc+DM48EkAmhJaICoFRB/1mjjolCIl6KCgARzKzjkxkHLMAmAALC8cwAGAAw+U+J1bAIFQgKXo1oKqgPUAszx0AWJAyb22fTaVzLMFhFG6vMmOAX2BU0pd49pXvzKziCuP8WXKmNIGPNQJbLt2Xh7eq2i62WLDBzMtbrHbRdtqB+aBpsofVrf3HYgdL2F9AYDwhfdz5+mi6Ie2eBZ75hUZ452TQxogo9ydk9ECCL5Rbm0eVovFHrZNtmwidmg7KPZa/dodr119HxANFOlk4wBQ4I3Y0Dt5NScvdLG9CwTZwCKQMRgqkCRGuRd0ano9LLTqHz4uQC9fNDbiz/kFQwUP1jjPjnQBICaF+k3Ny8BiXMmDfuODcfkYeAdUNe0cryQQvTzoKzYceCQvAA8gB/AB99pkFJEb180yyBpinM8uFlgCMgFoQApA69LwCGju1gGuwK1sGqd1FPgDYNHCOME+YwDYAb0rCwuD6GjAIO834H5+Y+d557mW0ULvGQTJUvfx3J4m51Ih8j4bE9wiZ+R4V3ciNjMKywDovtoVVz68iV9omYW63QsMDmisU2YD0PvTTEBtGPPJ09xNOx589dnD2gNsD/aeFgstXAEQFTr1n3/9Q57i07zQJ3u/+PqzgPT9mRlZtHmGrg0n90eLscWfg309BdTje2c8u9k5e0fx+DBDzrVd+9oihx/2i+0+X95kz4dnDVN4/2cGxbgm/xN6VDtkmyH8ew91pbVf3/wz5nhhmaw6zFKQTbKHh+LlVxagWwOggWgG9pueJc8amRrjbni8nv8I2o6NAxsHNg5sHNg48Gdx4BMB9PIQf1ZKuYsPh+P1eWc1f4odYBzPNA9kpJhm3cU70sKAi62jAZvxXHfSDoX3AriUOqCyAOUCMsCD6ekFkIR8BDyKPX356t0oSrsUAhUnKUeAxb03C++4WXjFWaABiADCKFegSqYAU8sACmX6tvCSt++BGx4yEGDtXnd5dTLKHPiyOGxidqOZMgc6gY0BP32XSUHYgkP8bLcEAORdFv8NeOdpDkuZxgcGTTWbdrfRxfl5U+tty6w+dQMveMQoUPas94NcfnOpdngEGQ0Ayiya6l4Hfgb/xoP+oVhwxsCjw2KJA5pistHcLX0WdyuntJzYhd3UrpAX90xGkYg3XmKllTnp/M3GFH3oAdZ4dvESaMRHgAjovfxogeadaC18pTYBaSDJ+AAtDcHIBG8swAMk8dzjOprUrd6ZSQiQyZLwKBkDfH58/lpD43VlGAlvsZsgWgEo9wGH7hUDr22AFYgnE+gHri3QY3yIyzZmFpdqH9/dA8AxiPTdPXcC3Q3MyI8+GRdQEVDUhwGB9e2ihZqZK11fQP9USEQ8MQ53bmUIVB8iXT8+Wu0AyEKQPDO2ED89xe/kB7iLIrIIhD6r7y8DgYAwPgOI5HlAt+Goj+h58vBufS22vlR6ZEmsNv7ok+wkxllKR97oq6vXlV1GIYD8zZePio0vlhuNyZ9+GQ+GMBA9YzUG2zIEV3iGtQ0r1eGplJQ9VwN+K4/v18JRHSs+Hh3Hycbi87URecyoXItiea7HQK4cad4f7zQQv4wiY+RwTR12r5wMLPGWwSZ8jDzLfe2FD98/fbH32x+e7z0obhxJTwuDEd5xkREwKR9razs2Dmwc2DiwcWDjwJ/LgU8C0JTm8gqaCg9OpNGOj3iqAAoafQHM9OgAI7GXYn8BE+qKkgayxQ4D0YCIFF4vWxgH7PBKqhfoAABdpzon80f1i7N8E6gCzgEHC/p47yh8WTmAbgof2BiVW6OU5w5UjeeQUr++R2wxJZ5OHpAFaJykfGUDEXKiXrHUQjBMOw+Q7P2g8IAbtWVaXn+AHW3yrtbD5WXjTW+qGC+AReD5sDhZflteYkYHYKC/vI/n8QSgu1MKQFCBfh/PZN/Quz9gdHnkhBIADuOdjHhACG/laxZT610IBaAJRBsaZWbKPv5oh/ePx1/7AJn3Oj7tqovXN85131rMGKYZcKYcYKX4jifGVsww/rsOlKN5YpnxpLbxGZDFC4vj3I+fwOyEP/RdyIW2lcNLbY/XX+GOnTEk3lpbQ0d0La+lMYuP8dS23zqiTZ7J8/kceM8IAa6nr10TvwvkMSDIrnu05PoyJlZ6RIB4spDM1WVo3K24+skU48wiWt7gWZRYeV51GV8OK+M2deKTePP7xfHqGx6btSD770pft7aaD9jHL3mlLVZ8xWjMQCBrFq8q6znY8YJR4RlazazQFos88WcyVlT/K1urM1Qak11Ix/AARWhr90LGiHNk3tipMHb0WvKFP+N1n37Et94X73qeDyyYBJAzjHpWjKG+Tp9V0gHgk3N0e76NsUMZ58g6YJuk1+b6ffmYrA59609/PVMRXDvoWkB//e7s6DQWM87JFTnxrJnVYayTu9cZnrsFnovKIWP7s3Fg48DGgY0DGwf+KAc+CUBT9jy+VrzL7Ush8RJb6PT+GjTRl7ye707fNJXaIsKu38/jOeEaKXUAwBTsYbuQzRR/N3Q7FZlepKyLcawc8OwAagHUmXIP8FGewj0O8vwBkPIz283OQiqgerxegVrA9uMZEJCijSZhBGeHediqg9cTAACMeDmXR5birm6p09q8wlbjQC8PuEVe+v36vXCEiwX+xyMcsL7On6xdqOEiIDwL3eIVIHEVUAB+Hj28M33gHfvu7avpm/7q+XiexbTWvtANih+fTq8zYfgMoJnKZgygG7/0YRdfzEgRGjKxtl0EmGSj+AAMRdh4bKvXoc8DXqNvZgrqC8AHxLjP5y79BHbuBdyCMgsA1abxRpOyymn7VSDvw1nhL3nYgftJOxhPeDcBuh1wArLw2YJOntid0TMArfYBK0DtTaDPOfK14ycjBUAT72zrduEJ5OVxvAWKzALwruILmngwV3aY+tPnwzJJqANAVA8wjfe7+4BbRsbsMBifeaInnKg+NkoZiUC6GOO1Q6Hr2gHy358m28kqoOjQD7wZD3yyAChGcseNvYd5iKWmE7dr9uQiWcUXPAbhxa6/5i3ue7fOolwyevd26eyuWnBbveTAYawYKk7iM7BctfMs4B35l23EwkL0CZ/Bq++fvormZnAqLCvMz794NCBa+eVxl+Uj4zTaumnqIc/a8WY8ZdtgCC/AHU09f8osr79FldI99jwkK2Z8yMUymjKk4hvQrRvqUQdAy3jwjyd8GVG7flYVXnV+2m78pv/RsTYDWmssnMN7z5FZKkaNcA6Lnf1G/Pji3Rh7ZjnW8zfVbH82Dmwc2DiwcWDjwB/lwCcB6NHoKURezdk4I2V2frEAzQJ9xdkCvL2A7eX1qcmQAMVNaQGk1TBKTryrtGzABTAMLBy3kA64oTYHIKdoeZR4oQ/aPhy4pnBpccDlXmmtfKWsKWRA9nCA8hSpDE/fLiRiTefzbktBN6C0tl8HOrQFsHTXvKtH6jFgVV8GJHRlAF/Ay7bFafmyvXnlHW+qHXAwFQ2koSk0sPch0KAO3m7gbDx8fectBT6WV9gCSG1AWIDAmmKPtAWsAlf4Z4XV8jgGtorJ1QZvs7CL93nWLnjPAxT4JY+x2G0eR6CofW32zqIPuDRGQErouxAT/BJfHpjMw7dOq78+Gudo2m9DjQUAVwhGA1E9y4OMb/rBwNFlNOuL2PfxIM/1PPV9t3hr8XEBMEB84t67U3jF8K+6GC76iVcTAx4fx8i4DNwfdU/hFECfth80/sCYsRRyA5h/FqAW7oKPaCE770/z4gLHyc8YHgEq7QCdQ3i5pdesCKC92kP/bN9depUSqkRDnuIMReNgnPF/PNWFhRxG42dt6KK+HSB8X/zt8CA5PcnDjO+zQDFQilf6p02ya4zIHEALaN4LMJNnBYVu4Pnv2nyI0cEL6zkCtHn7f3z2pst42whWBz76bvMgfHQAqi/tVniSUdv9H5PB12/f7f3DrxePGBN/cfykRZpyc6xZj52H3AMxccfRL7Z+ntGMZ8fIc3JWldOn2eGzUJ+bjODGxWHs3WOG4SqjFgDGl/vNlgDc6FGBN5UM6O86IMxb7T6y7Dfn8DJjrIJe7j1sBowR6LP7J7Y/HhgrswaeV2Ed6sXX54XD/O7p68Je7gyfNLkdGwc2Dmwc2DiwceBPceCTAHQ6ahQV5UzZfwiwnKfg9u7wRAVs24aXFgNmKF1eZ+BgecvyLqfYB6hWZjyspTSjwGBDyvagraUpPGCNd1Fdpvx55yw2MqWbLg3AA5rqv96oInpmulzMZEBmbWbye1p5riyAMr3LE7VAz9EAZ+CKF5dCDw0MmNTPHZ19HK+iPltsB7jxMrquk64PaO/+BQBXvuWd19XGGzzB5R6rZIC1vzeK05bOTB3Tt4ACUAFc6jttb+GV+FrfgYPu6vYFPLR7UIaLWy2+BAIxcd01OKFu8MB3xjgN8F7AWVyudpTGZ+BqtuSOPwMeG6815V38cyAIKdofg6B7AEvgXA125uPhNLa8htOXri9KFvDXPsDltV+7ujGZTvr+oWvDjO6Yqf3aAdLGqzkg6ffgDH/Fye48osqjQZvaRp/KGQK8zvq1FgMu+Zk48eRi2Nif+9FNBgZgT71qaxyjgWzhu2uO4UvtHAYsAbrnLV780OY5B7utsDMwLi6B9rszczAxxI2jeohpXR0eoZWn++QdL/XyvBuDBSYD5H0G9td47xVTfnv6wct/XOiPenmXycvnxYd/9fmjkUPn5OgGZL3wXxnyJyUgRmmHCTXPrJAW9AHfgdmz87cDWAf4N34/x5/WEgCu440uC4nnxyHumCEnHvyoOHjP7K1eZG2AtPYZlfGRDCq7jJCe7Tvxohh1/FSeLFWs64wnYwMAJwNdG570fYHi5f3Ge9/1gRzsjE0jx7hibOAhwwm95+fJXQZ31Y2MuNczxYi/VZjUbYstR15/EsPp4/Zn48DGgY0DGwc2DvxrHPgkAA3wjMJL6QGTC5AFvlJe56We4xmz2cFkCrjeTnumaYGlDopRaIT318V2AgWuU/jScPEQWozEUyd+mtfpVgoZIBqv5oCV5Q22s5yp9gEJg8WAU+2sMAf1UpCyL3z8CNzeaKr//myRzGN1/+7xtCf1FaCvfmEINnhAD3BuaphitysioGCXvd+0MEm90sABCDyalPJ4tOqn0JMHTR/zcjMkxlDIW3zLpiLhCyAN7eNlrR1AQyaDiwDeWZlAqHMeZX0D1N3vnFjhiszBowf023hErl6gF51oERcudhaoMhZATsXn+s77y3uq/0DFq7eBajQExk15n8X7ZxkJx9HrXoBX3WYFzDIIycCPs649akocoDEjYcHmMqIA2QWuZKcYwySqgSc5lxlUwNBpYP7G9WYi5IEsCS3wecCU+OQIB6r8I3D+WdwIhD1uISZea59RAzzbIt29szNicsao0uaNtsJ+0r08kNUU3fdmLC1IFf4AgBn/BSwbn2ZVdosbjdPPxAjXbwCNx/ygDBNi4487p335zvEdMP+2vMtSyAF4A+hr76DxtQuksfpwXnq5eHw7fpOvU0ZocmFB6u14arObupChV931/W33e7+0qNT5xvzLzx/v/UUbowiLOGhchDhZhHjZZi6MVGPmOWKMEBnG52H0nZ2XQz3ZkEsjB+14sM0y7BYpkjXhPX/RzoW383B7DvB8jLHalh/cFuBrw5KP9VdYSeUa24P4d6DPedt5rgF/zyZZi5S9w/q3kwvPKKOHh16dwrBGtBuc3TicW0DbnAj+MkwH0CfPxteBF0J9yI3n0vPIUJv46vjIYLmKl/q0+y3xDN0Vfx6NR4/vTb2x1uO1HRsHNg5sHNg4sHHgj3LgkwB0umw8TQDcfsqIcgQUAAL5cC0YnOnmFJIcsBTf3bw9y7Mk5CAFFmjg7RKPaTp6wDZl32sAUiCyZmYqmZIEHgArYNv9lC0g6TyQc3K1QCcgUQW9hBzs7d0VCpIifR996kXf3XvFAHdNPOibpq/VC1ygn8LnjQX4gDzeVaAY7QDGo0et5m/ridcpfR4uAAX4BXSeBCQBTOAKuBwvboobGFCffMiI83m8gyl6XkF18KbyTN4AYvsOnKwQkABEgOFYCrs6xHBxLz7xmuOfKXkAQ7aL8djXijGZzT4CmrxxjBp0nEQ34KlvjBXgarzT0bUAT17OxgwAY8gwioCRMQjq4xeP7kw6wXcnhQzED15AY9D/8fDx7g1oqT58t+ENWQDyGBqP7t0d0O4eu8gZowGJDbY4VTTeCgRNSEt04jvAiScMHuWN94/PxfLWt7Y613ceaMMOKIWnBjQDfHiCto/NiuwnA8pauKmdb394WV3JWX14+OB2/W+r7YAl4047vNN4rW78BDIZWi/fnOy9q1ytDH0D9vtm4eY3X96fRX5Cdd7X9n5ebDMeAPjjB7cGlNry+re1rQ9kWR+NAXov2rL89pFMJvUzQIhHc54RWR1jmHaN7Bn7N2gpLATv3mVACIeZMbvbbEb9wiOzN7ejTWw8mTSWFhYe3ijDSc/e83bww1Ox72Twl98+nfrs7PfF4/t5uu9ndCqfIdo4TX8HxOKllH2F9jSbsnY1ZDT1YNavW1fCZLqh/gnRYpiQJc8eXs6MVGODx54hu94Mv/GkMoyx83gofp9RvJ8BvB/grotTznOzDHPPdunyktVZhxEfLI71GzGGWvV7MiV4zwAAF2FJREFUNwNhBoOX3MzCGFL1m3zU3HZsHNg4sHFg48DGgT/JgU8C0MAFICddWFqrxoAzmSxMPaegUlIUIdChrANQcI7XkbbiJXV9Yl6dD+QBlsrtQOZx+X6PU4pSbw1ASNntALR4YpVToAAb5Qw8fQyc8CRCUwPm8jIFS+Y65e+YeOZ2Z7NADXDQYk0PIOF5A+7WEXA75a2yIcsKtaDo0TjbeNfOmp5eXuD7eZyDGHM9kkdJz/4b+gTty2XX5124g4bdzxAB7LyAKS/AFBDkGbUgTx8nREFZPG6BYwXHS42HNrf4GG8v4wdP5I8Xb8e7D2itrBxNxwc40L9iWoUnLG/mrrdAG5DBc3vEI1gqNlYMUGLsHkbHF3nspFz7cP5m0Tr8jCdd5y2/X8gBoM8QuX1/bdOuXTG9QJMxAazFVJOFvkb3MsiOSvc3U+y8vLXRbQN21A08A0EWhRpbG+l4FxaDV+qaUJTqHVqOjpOVlT6P19uYeT84CEgVdsID+9oi2Dr4sDhjCxDRjPezy11tXhY7qy712kVRWxct6ARkry55iNcMhPHzb4yhQJ/xYKRI62aRK2C3jInj2Snvw0Wb8wR++VbJrTE6E2YAGc741k5tk8W+VseiHxjmaQX+0QlAP332ctI/ytDBEDQGvLkMprP6z5iT1eIoms14tBXo0EqepBy8dxc43Wsnv3JFV5/yFtsxavGId/7ka4s094d29wlLOej5ZSySIbTMrEHjYHzxAfjF82UU8O6PsA/9wPDykGeoZVR6toBa/Z9nr/o8I8pceq8e8ofQ3XUy+THDysHAuV2fjw6ro3v7v/jatQHqjR+wDbzPv9pS2Y0b1iigZjs2Dmwc2DiwcWDjwJ/HgU8C0LyfFPWljU8AwxCQGGieUsBGyAJFBiSnnwZ4fPx4NtO8vF8ANhUGCKz40zzD1cOP5FqwOtCX1w6IqoKzpsrftb0xBb9TjsCFOOYvnpTdo7hUoPl1mQlejkcZyF0eW4v6KFj6F0AHWOQUBgIo4YfVQZma/q/5OYau+vAmQCC2lKeXFxqok0cWiOFR5+3+ULYNAMtLPVLzBbsG8J23M9vNwkJ4DW3mMECvewobjT/iM+tvG5VoeABE7emHF5oP0RONQAtvmv4DnkDLmzy6Qi2+/uzBxMmimffUdtE/ROMvf/N0AIgQkvzie0/yIoqn5X39rvCC54BRMbwX8XlAUQNiSlu2CQDSIreDfduyr5zd+s7Hq5338WPStEUnkDOexYAQ4HY7jzNAeFE8ghAWoEV+XuCIfKzMGqWH6NDOXlus8/yPTEWLMcAvcoNfPJxC6sXV7/Pqt0DydVs3y+Ms5MZ227Plecy6dby8uQCrKfqc7S0JzJCKBwCUUAk0GQuhLW8PSq+Yl/3zvKzCENAAMFtshtfffveifkR3mL1uDz0PMgoeP7o7nt/zAPWtaJAp4zRazaK8qG6efzvxDfCrTiFIvY1h8yyPsv6+KwZa2AP4xiO9Yq2FKckvvvJyW1twK5541gBI21Vb9DrhTpVjTDx/9abX2+HLMjJWOItNeMYYHL7nFW5W4ePVWpAJJFtc51m8f1NmlRYedo5x6pkgxwwtIShkDf0G5q8LF/ns4b0xDhgESjJAjT/51SYj0MzSUR5pB3Cq7DKabs5z5rdhwpPqm+fGONv23CwWuRtDstp39xo7AH4a7F48s3CSIcxLL8zoTnLn8LuiCxPDXr22rfebMTNjGWZk3Qs989y2+NTvgqd2OzYObBzYOLBxYOPAn+LAJwHonc+Gd4mHB9iztTLVtpSthX1rARNleBD4AaRgbeBwprcDHZSi7aEpMp95XF1/10vKK54pMb47TxbFB6TcuZ3Ht/a6lBI9n1AMZYBvoIX3T+or6vSiLBkW66WCB4QAd89ft5FCyhdN2hllmhIVdzpAx9R7d+cUHCBHAwOOs6I/pQzUHdV38dGALcXPWwes08Om/i1iBL4vLsqM0GeARH8uAy7vaxuI4DXFH/UzFCzK4nnTt+b/B2jNNH70iisGNPAeIECPsI/xtka3+iZsJECDCLsQMiLwDE0TJpNn1CFjyVGhLQwdYAfYAIhte13R8dy6yb0n0aUdQPW3P7wa4M3jqL9nwA56uoccqENMs/q8hE/o4zIK6mfNvyjcxHeA+saM04qFlyYN6AbgjIv+DRgL5Nkumlf9gwHpeHi/uNXGC+A7jJ/a+WjMhlZ8TbwDWJPFJTFQVv+FKACtPKQ8znZHxExT+e+/WzmVd/HN6GP8HGUYGD+y/jaAePKsdG+FQYj3lnXldRvu6LNxELpgsSgw+uOzPLqNs3EHMnmth4bqwS+f3weQl6fds2IRXjJWeW0BroD1+wDi6Vn0Fh7EY/xZYH/CW+Kr2PjXhXCQiaE7emz1jVf6hI4V4mDc43M09xSOlxgo/SxDAL9fvLqKH/fG6HuVcTLbcHdvl2JPf8r6YSzwxDgL67h7Z4Fi9AP/wCxQDEjLT+25cm3kbyhcBqzYbeNmfGW3WTNIKxSGzHmmJ4NG94yg1z4aGI5DSz2ZtHZd9twO+G2sbcDkFrIj5txv0mzVXT+nH9EvPEV5NHmegO0eye3YOLBxYOPAxoGNA382Bz4JQE+YRmCEouU5AlotpqLk7Kw2wCXlyZvGK2YKmaIEpoAYcbpAiKlvINRUNwU9oDDlSlGHHlJ2C/yI4aRMKUx13C4umXf77bv3Lfizk6BtlinOFdsLhKiDslQeDeJQLfACX0yfAzBnATbeS15Iit0U/612SovcUdJnLSIDuIGb5QELQPSdxw1gQMMKRQFCbBmcdzDFfDsX8yyoCuyffMgTmHd7NnaQUSHFbrpbuMko+mulP1kqohXNA/47rw8fAtV7ed8vC6fQPyAR/4FC/NIPwNnBewe4AA/6s5sFuHdnhVVMuEr3oVmf9g/kHw6sGcv4Pe0BbacHbWNeerf4/qBFerJFAL1if1++WZ7Bqqm9BdrdV7fjZ2Ex74QYkImD+PF+wOx4r+uPvkfd8JARcgFY1sbIS0Ouf3Ut/q40bLDNxGhXP4897/jE1Fc3FDpT/I2HxWEzTuQtI+H2bPXNsKnYae3EHyENygCcQlTQou2J+45nwjfwDQrjMSevvNg7z6hxd4/Y71cZSuLHhaaM9zTezPidlFVEmEWeafnQAdyPY8DV58rw+uu3EBhdYGSMt7bvCzxbR0DuA5T12XgC0RZOmm34/PGDwHNp61wbgL1AtueMUTApC6/7YrwceCp/tzAgtL55w/vO0z0CNmMOeOItfqrL2gCAFH1ntfV6ZN78kBR5snZYI7AfAOeNXj8lOAfEe56EW50WYgRYC80iq8rjn/qNMeNtDIUW1pIPY4MHQDIZV5/rZIuce6Y9d67znB9lJKlzwHXXpZP0O3T1Md52b+IxxvfNygHKwsAA9+FbITwHbfoi1ePd48YIQXNXb9uxcWDjwMaBjQP/VXPAb7zXf6njkwA0xUaJCgGg6E0xt5pwFCCl2akyGDRNG5Dkdd3vGiXK63ORFxFAMJVPmR107bDYxZDFAOo04pSleB3qwirgRjYFYRM8cDahABwvPp6M59ofMZ4WpPGOApY8yrJeAPcPOm8Tk8liEXq5sf9qee8003f0DMiqrRttEXwrxXszxQzYjyet7wDAVe0BEciivIGOu9XvHAPiqPYO8+4CE1+UIuvFy1t7v/7uKWd4/RSaUmhBIEOuYpuy3A0YAdc82bIVqMdUOB6rG7DgvVybRACp0VS7ABOkL3zgqLAAYILXERTA58NCGngDLRb7+ovHMzbiqdGMp3Yn/BBQPQuw8VgCKerdL5h6YmUbo5vRZXGdLAl2GKy5eGCBYoZKwAkgfP76VefX2AqpwJcSNIy3Ux+uivu2wY1+3IiH+msLZv1kREX2yMidwzzDQhpqRBYUcoAfgBMgapGn8AHHMpjiV+3uV+Zd9FtoaNtvY3SveizoBHSVBY4/f3x36P7xRR7wy8J6akeccVye8b1/9+4YCdoD/mTH4GW10E9IBiAnxt0Cx2ctngQEjdmNg6PhO94KmQC8efe/fGKLeQtbG4M8x/rgPuEzDLnHjYuZlzeFGJy9XoAcQCQbjJ9Cruf63fhM3m/E2+M2UMHf75+9GK+2GZHEdgwQW8PfDSgz4p5F8402KEIzfn/25EEhSPfG4/uPv3nWmJ3MM/t9m4mIK/d86CO5+erz0vTVh2eFATE058gQvGxVn81HyO2zZhGAe8+NmacFcJP92iT3vPF+HzyH7199WG0wOBobMmRs0ea5Zgx+bD2CY9YDdL6z19+XsQVYM0Bm1qN3bR7fXAaCkn5beNS7cWT+sufAbwyjQP88w7LbOGdW4KSxOM2w9ftxeSwf9jxKEVBl6Pvv4DAO/fROONn8aPx30OetixsHNg78N8KBFSE4uPC/RI8+CUBTOB8CH2GgCY/Yb2FWaK9XJ3p3/kN/joC9lJfpaIAF+BO3KTsBRcXD96jV/a4DaGtqNc9SwIJna9rpGg8p5Sd846bQg3Tn920aYYdDilwmEAphvG1leTgMCNxMed9MoQPDvtuBjsL8+AE9wkoARIvhePGqsPoBSN6oUahpU066WXhXX15flOGg64A2wCueF/i6ykjw7rs2eNUvqxMo+fmXj4qtLU73/fu85XY2LJVWoJExYFdGCvsw+ta21jyaNwIHN/e+LrevWFfT6YwMqc+s15QFRH8BL3G+PGhAl7hagI4H7k4g6/eeucu9O4GNw/p5UFneT+AcTnAAtLdvxYd4ytDAC+MDEOPRu/GG5skdsLTiugFens6rYoPfZ0AZGxlVgC4zDbYO7/JMl2vnTnw1dngKUIufvpuXXy5h4Ab95MUGJEIMLNj82d/9fACzDBO//t2zalkzHOpgFJz34The6+dhcb1ff/WoEehzPAC2In3vFeDcuGZ2jayRDf09qw0gdY7qE+5zK55JxYfXxofBxAi6kQweNY43ApdngbKdHIq5F0s+9Rvv6NFn8edxNX7WV1LROMWUmRU4TWjxlNGwvP/KFdbRPWKy3zUbALzzHIOQYrLFZquDbDtnlgPwHAOsPgghmTCTNkoRB3y3mYa3tqiuDjMAFvJpwz0TbqO/AVzypj4zCPvRZKMRMmUMPXfi5T2vT1srAPgv73DhVgD7u2Y58oqrF6j++vMHGXfJZ/dfZngM/+MjQ5p8GtuTvN5HzaBI7zcLK4FdfW2s+Jo9O2SXp12ecDLod8PzFol971pl7tS/m+TFyQwz40TeyD5LTHsH3aMuMnveLql+h4BrsokWNFe46hrjsnoI98ErZ6t13nv7b/ZgMhqjs4t4kyxyBVyW/UT/t2PjwMaBjQP/tXLA7/PuYPx/+JiOT8/TF37X/v88/j8DaEr2wYNHe3/5N3+/9/DRk5QPRWYzjry4Kc4v/CinxChUMZFiJoENB4ADaNz9ggcwcJXS5zkDWp41bcyD6Z7lxQugVhaoA2oXmN1lYlhxlkcPz/e+inGTwaMKeZx42gCa8apSqLUJFIyHqrIA2+e3Puw9/JIi5m3k/TK1XCxw1xcYSqHUuHvEcju3gN46B+grD0SgmSK/V3zlI57KakM3L9nP//LzvJ958W5/OcCG4gf61LsDvMozDIQmUORidE3XWyQoPEWIgZ0cgZi7eRZ56WYKG4CJLqAY8ByPW+MgB/JsNhMR+GYGYLzV9ZHHW70O9PPWatNhzKT+MlbjHWx88G63QYa29FPfKGD03Pn8dO/zX3wItOc9zqgYD30FeP8BdUCc91SfCDhQBPAYpwFg+BrQmj4F9oA2ean/4pvPhkcyQ+zdeR5NlxN2wtMIQD+uv8JukO67NvAV/Sv8Y41fpFbWtH1p6jJC9OfgwekA2poe0EDeeGkfFl4DvKLd2JBpfLz32dnek4wZWUTwSsiFtoTDCK9YvOdJXWMxISmNDQH3T992Mb9fRN/P2gGQh/lJOajJpbhqaQj1A18BmZlh6bkQdqGtMRoaFzMcxulxIHD4Fk+Nj3Gx6FbKxcN7PUcP386zxmgY2ew8nhvD/7e9s+mRmwgC6ByCIpTVLhGChBwQCodcECf+/x/ghvgJi4JQiHKLiDikXlW3x/Z4lyhiWuvRayUeu7u6Pl73uMse78yrL785vIiLS8YChplsRtyw5aKGecR7k8es+DYO4iQ2nktGln0+deJ9++g6Eu2r+NXF2OcTCQrfA82vRj6K/48j9ifBnjvzMOWikbmALR4n4T3FKDAXoipjZ8y420w7seIz85G5weM54XY+IsJYElve1Y7OIRp9ih/zkIsD5n+OWYwl/qPncdOXdkLXzdffHa5vbsIH/uAZ+pdd8ldb47Gs5y+/rU9c4qKH93LSB2IWOPT9VnWWl7Wd9fGW0bXM+nirD3WfKndX/7vqz6V3bW+UnbXd/+v4XP5v6d2qm8fxX+1z2XPv4wtlxPutLB23D4nD0avl3txHVtQobOJc/eHffw5Pn10fruPRxi/iHD+yRH44nS0/2S5dWNj+fvPmcHt7GwkZd8Ri0eoLT7Sz6OVciLpYx2pa5NxgExXxjz7ssCCTIORCyeIXx/UfPtV5urKI7lR1WyyGaQtNpTbv7LI4pwuxaRazDzIU2uibrXEQu1nm7VUTemNnXn/UVw3VXj7DpvuDYeKqu+gk3y0pbQpyGjR/ui1YUOjHos/iT/KAw5m4RBsJPyUZ5V7xJSa6o5f+7DXyVd904x+xU9LacZN1xLCcFvjSNGEjkpy8V4XBKIwjOvGvxg3h4tDXZPr3JB3mmCSxxiW0dHs9Ju7Oc4FCOxdfPVHMsKJ3Wo4NCRdR0L/HfOo/NoiJixQsk/y3GFEUVcmM5DDnTbRFO7ZrnpX+HmdqoDHK0hZ1ZWfiEDVVm9LpA33QhS3mKargR5zNU4STFzEhQ8lWgmgH8+NiX/MG2+giEadgn7p6bIlYKsnkGyxQmnMuhKhHFofqNeqCQ10oRVzVhMRUeEyjXwgmW4KhhDBx9pIxxzGtxD3ZRCDloqX+ZZfqiZLWnLVtg5Ksj032WfWNagquzFxIBulAtlc8KIDNVVwAPHv+IpNovrrxkgtj8T4u4F7/8efht19/P7z9K75lhtvyjdslx25sEpDABRGIczw/KnYVTzD8/MtPhx9+/D5u6N7UuX5AmJ+VQOMXJ+EPfDNA/HgDz2DOF8vyOyKbSj8zU8d+a+uHKdfqT+omJW1nIXDUtRDr9haV9xw0f7Yk1ua2ZE5Wnt6pXrs3ZaW2SzVd4rR2S7plDW3Ba9wWXbf1LUTuPdiyOrez1k8SwpzoSpts1HVN2TS1z+X6/ulr19dzstJ2ouS04501eNP7d8+6cK/vx3e9zvvRZ348O7xHXY8nRaZNMVxbLQZzZSt7iw5zOXwJ2alq2mk9oq2rWjelBJUl0P1tHU9euo9rNV39SYeoWMtuyczr5rqOnh0l5vq67FpuS6ZryD/6jUd4+GSNBP+SC+dqPu58H3/U/O7tu/y1Ua6lLBKQgAT2RoBPd3k89atInJ/wi8Tx2OW0tp05mM9OoM/sl+olIAEJSEACEpCABCTwIAlc9q2WB4lcpyQgAQlIQAISkIAE9kzABHrPo6fvEpCABCQgAQlIQALDCZhAD0euQQlIQAISkIAEJCCBPRMwgd7z6Om7BCQgAQlIQAISkMBwAibQw5FrUAISkIAEJCABCUhgzwRMoPc8evouAQlIQAISkIAEJDCcgAn0cOQalIAEJCABCUhAAhLYMwET6D2Pnr5LQAISkIAEJCABCQwnYAI9HLkGJSABCUhAAhKQgAT2TMAEes+jp+8SkIAEJCABCUhAAsMJmEAPR65BCUhAAhKQgAQkIIE9EzCB3vPo6bsEJCABCUhAAhKQwHACJtDDkWtQAhKQgAQkIAEJSGDPBEyg9zx6+i4BCUhAAhKQgAQkMJyACfRw5BqUgAQkIAEJSEACEtgzARPoPY+evktAAhKQgAQkIAEJDCdgAj0cuQYlIAEJSEACEpCABPZM4CNhK/z+mb0/iQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "1dc3150f", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "In segmentation, we consider an image mislabeled if the given mask does not match what truly appears in the image that is being segmented. More specifically, when a pixel is labeled as class `i` but the pixel _really_ belongs to class `j`. This generally happens when an image is annotated maunally by human annotators.\n", + "\n", + "Below are examples of three types of annotation errors common in segmentation datasets.\n", + "\n", + "![synthia_errors-2.png](attachment:synthia_errors-2.png)\n", + "\n", + "\n", + "Based on the given `labels` and out-of-sample `pred_probs`, cleanlab can quickly help us identify such label issues in our dataset by calling `find_label_issues()`. \n", + "\n", + "By default, the indices of the identified label issues are sorted by cleanlab’s self-confidence score, which measures the quality of each given label via the probability assigned to it by our trained model. The returned `issues` is a boolean mask of dimension `(N,H,W)`, where `True` corresponds to a detected error sorted by image quality with the lowest-quality images coming first." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c2ad9ad", + "metadata": {}, + "outputs": [], + "source": [ + "issues = find_label_issues(labels, pred_probs,downsample = 16, n_jobs=None, batch_size=100000)" + ] + }, + { + "cell_type": "markdown", + "id": "e8d9840b", + "metadata": {}, + "source": [ + "**Note:**\n", + " - The ``downsample`` flag gives us compute benefits to scale to large datasets, but for maximum label error detection accuracy, keep this value low.\n", + " - To maximize compute efficiency, try to use the largest `batch_size` your system memory allows.\n", + "\n", + "### Visualize top label issues\n", + "\n", + "Let's look at the top 2 images that cleanlab thinks are most likely mislabeled, namely images located at index 131 and 29. The part of image highlighted in red is where cleanlab believes the given mask does not match what really appears in the image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95dc7268", + "metadata": {}, + "outputs": [], + "source": [ + "display_issues(issues,top=2)" + ] + }, + { + "cell_type": "markdown", + "id": "717b3b7d", + "metadata": {}, + "source": [ + "We can also input `pred_probs`, `labels`, and `class_names` as auxiliary inputs to see more information." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57fed473", + "metadata": {}, + "outputs": [], + "source": [ + "display_issues(issues, labels=labels, pred_probs=pred_probs, class_names=SYNTHIA_CLASSES,top=2)" + ] + }, + { + "cell_type": "markdown", + "id": "116fff37", + "metadata": {}, + "source": [ + "After additionally inputting `pred_probs`, `labels`, and `class_names` we see more information:\n", + " - Inputs `labels` and `pred_probs` generates the first two columns. This segments the image based on the class that appears in the given label and what class the model predicted for those pixels.\n", + " - Input `class_names` creates the legend that color codes our segmentation.\n", + "\n", + "\n", + "In the leftmost plot we can see that the dark brown area (the `unlabeled` class as shown in the legend) was the given label. The middle plot shows our model believes that this area is infact the `sky`, a light brown shade in the legend. The rightmost plot highlights the discrepancy between these classes in red to indicate which area of the image is likely mislabeled.\n", + "\n", + "These plots clearly highlight the part of the sky that was mislabeled by annotators of this image." + ] + }, + { + "cell_type": "markdown", + "id": "d213b2b2", + "metadata": {}, + "source": [ + "### Classes which are commonly mislabeled overall \n", + "\n", + "We may also wish to understand which classes tend to be most commonly mislabeled throughout the entire dataset by calling `common_label_issues()`. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e4a006bd", + "metadata": {}, + "outputs": [], + "source": [ + "common_label_issues(issues, labels=labels, pred_probs=pred_probs, class_names=SYNTHIA_CLASSES)" + ] + }, + { + "cell_type": "markdown", + "id": "a35ef843", + "metadata": {}, + "source": [ + "The printed information above is also stored in a returned pandas DataFrame, which summarizes which classes are overall least reliably labeled in the dataset.\n", + "\n", + "### Focusing on one specific class\n", + "\n", + "We can also just focus on issues within a specific class of interest, say just the class `car`. Easily do so using `filter_by_class` to only look at the estimated label errors in the `car` class. \n", + "Here the color-coding reveals that the pixels depicting a car in the image were mistakenly left as the `unlabeled` class in the given label." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8f4e163", + "metadata": {}, + "outputs": [], + "source": [ + "class_issues = filter_by_class(SYNTHIA_CLASSES.index(\"car\"), issues,labels=labels, pred_probs=pred_probs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "716c74f3", + "metadata": {}, + "outputs": [], + "source": [ + "display_issues(class_issues, pred_probs=pred_probs, labels=labels, top=3, class_names=SYNTHIA_CLASSES)" + ] + }, + { + "cell_type": "markdown", + "id": "1759108b", + "metadata": {}, + "source": [ + "### Get label quality scores\n", + "\n", + "Cleanlab can provide an overall label quality score for each image to estimate our confidence that it is correctly labeled. These scores range from 0 to 1, such that lower scores indicate images more likely to contain some mislabeled pixels.\n", + "\n", + "**Note:** To automatically estimate *which* pixels are mislabeled (and the number of label errors) rather than ranking the images, use `find_label_issues()` instead. \n", + "\n", + "The label quality scores are most useful if you only have time to review a limited number of images and want to prioritize which ones to look at, or if you're specifically aiming to detect label errors with high precision (or high recall) rather than overall estimation of the set of mislabeled images and pixels." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db0b5179", + "metadata": {}, + "outputs": [], + "source": [ + "image_scores, pixel_scores = get_label_quality_scores(labels, pred_probs)" + ] + }, + { + "cell_type": "markdown", + "id": "d3586219", + "metadata": {}, + "source": [ + "Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style `True` or `False` mask as `find_label_issues()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "390780a1", + "metadata": {}, + "outputs": [], + "source": [ + "issues_from_score = issues_from_scores(image_scores, pixel_scores, threshold=0.5) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "933d6ef0", + "metadata": {}, + "outputs": [], + "source": [ + "display_issues(issues_from_score, pred_probs=pred_probs, labels=labels, top=5) " + ] + }, + { + "cell_type": "markdown", + "id": "eacdd73d", + "metadata": {}, + "source": [ + "We can see that the errors are dominated by label errors in the sky." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "86bac686", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "top_2_issues = np.argsort(-np.sum(issues, axis=(1, 2)))[:2]\n", + "assert (top_2_issues == [1, 21]).all()\n", + "\n", + "top_3_class_issues = np.argsort(-np.sum(class_issues, axis=(1, 2)))[:3]\n", + "assert (top_3_class_issues == [17, 19, 0]).all()\n", + "\n", + "highlighted_indices = [ 1, 21, 2, 24, 4, 3, 12]\n", + "top_issues_from_scores = np.argsort(-issues_from_score.sum((1,2)))[:len(highlighted_indices)]\n", + "if not len(set(top_issues_from_scores).difference(highlighted_indices)) == 0:\n", + " raise Exception(f\"Some highlighted examples are missing from ranked_label_issues. Highlighted indices: {top_issues_from_scores[:len(highlighted_indices)]}\")\n", + " \n", + "lowest_image_scores = np.argsort(image_scores)[:15] \n", + "assert len(set(top_issues_from_scores).difference(lowest_image_scores)) == 0" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_sources/tutorials/token_classification.ipynb b/v2.6.5/_sources/tutorials/token_classification.ipynb new file mode 100644 index 000000000..a90cf65c3 --- /dev/null +++ b/v2.6.5/_sources/tutorials/token_classification.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d0d2e007", + "metadata": {}, + "source": [ + "# Find Label Errors in Token Classification (Text) Datasets\n", + "\n", + "This 5-minute quickstart tutorial shows how you can use cleanlab to find potential label errors in text datasets for token classification. In token-classification, our data consists of a bunch of sentences (aka documents) in which every token (aka word) is labeled with one of K classes, and we train models to predict the class of each token in a new sentence. Example applications in NLP include part-of-speech-tagging or entity recognition, which is the focus on this tutorial. Here we use the [CoNLL-2003 named entity recognition](https://deepai.org/dataset/conll-2003-english) dataset which contains around 20,000 sentences with 300,000 individual tokens. Each token is labeled with one of the following classes:\n", + "\n", + "- LOC (location entity)\n", + "- PER (person entity)\n", + "- ORG (organization entity)\n", + "- MISC (miscellaneous other type of entity)\n", + "- O (other type of word that does not correspond to an entity)\n", + "\n", + "**Overview of what we'll do in this tutorial:** \n", + "\n", + "- Find tokens with label issues using `cleanlab.token_classification.filter.find_label_issues`. \n", + "- Rank sentences based on their overall label quality using `cleanlab.token_classification.rank.get_label_quality_scores`." + ] + }, + { + "cell_type": "markdown", + "id": "07936a54", + "metadata": {}, + "source": [ + "
\n", + "Quickstart\n", + "
\n", + " \n", + "cleanlab uses three inputs to handle token classification data:\n", + "\n", + "- `tokens`: List whose `i`-th element is a list of strings/words corresponding to tokenized version of the `i`-th sentence in dataset. \n", + " Example: `[..., [\"I\", \"love\", \"cleanlab\"], ...]`\n", + "- `labels`: List whose `i`-th element is a list of integers corresponding to class labels of each token in the `i`-th sentence. Example: `[..., [0, 0, 1], ...]`\n", + "- `pred_probs`: List whose `i`-th element is a np.ndarray of shape `(N_i, K)` corresponding to predicted class probabilities for each token in the `i`-th sentence (assuming this sentence contains `N_i` tokens and dataset has `K` possible classes). These should be out-of-sample `pred_probs` obtained from a token classification model via cross-validation. \n", + " Example: `[..., np.array([[0.8,0.2], [0.9,0.1], [0.3,0.7]]), ...]`\n", + "\n", + "Using these, you can find/display label issues with this code: \n", + "\n", + "
\n", + " \n", + "```python\n", + "\n", + "from cleanlab.token_classification.filter import find_label_issues \n", + "from cleanlab.token_classification.summary import display_issues\n", + " \n", + "issues = find_label_issues(labels, pred_probs)\n", + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels,\n", + " class_names=OPTIONAL_LIST_OF_ORDERED_CLASS_NAMES)\n", + "\n", + "```\n", + " \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "1da020bc", + "metadata": {}, + "source": [ + "## 1. Install required dependencies and download data\n", + "\n", + "You can use `pip` to install all packages required for this tutorial as follows: \n", + "\n", + " !pip install cleanlab " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae8a08e0", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -nc https://data.deepai.org/conll2003.zip && mkdir data \n", + "!unzip conll2003.zip -d data/ && rm conll2003.zip \n", + "!wget -nc 'https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz' " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "439b0305", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Package installation (hidden on docs website).\n", + "\n", + "dependencies = [\"cleanlab\"]\n", + "\n", + "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", + " %pip install cleanlab==v2.6.5\n", + " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", + " %pip install $cmd\n", + "else:\n", + " dependencies_test = [dependency.split('>')[0] if '>' in dependency \n", + " else dependency.split('<')[0] if '<' in dependency \n", + " else dependency.split('=')[0] for dependency in dependencies]\n", + " missing_dependencies = []\n", + " for dependency in dependencies_test:\n", + " try:\n", + " __import__(dependency)\n", + " except ImportError:\n", + " missing_dependencies.append(dependency)\n", + "\n", + " if len(missing_dependencies) > 0:\n", + " print(\"Missing required dependencies:\")\n", + " print(*missing_dependencies, sep=\", \")\n", + " print(\"\\nPlease install them before running the rest of this notebook.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1349304", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from cleanlab.token_classification.filter import find_label_issues \n", + "from cleanlab.token_classification.rank import get_label_quality_scores, issues_from_scores \n", + "from cleanlab.internal.token_classification_utils import get_sentence, filter_sentence, mapping \n", + "from cleanlab.token_classification.summary import display_issues, common_label_issues, filter_by_token \n", + "\n", + "np.set_printoptions(suppress=True)" + ] + }, + { + "cell_type": "markdown", + "id": "9ad75b45", + "metadata": {}, + "source": [ + "## 2. Get data, labels, and pred_probs\n", + "\n", + "In token classification tasks, each token in the dataset is labeled with one of *K* possible classes.\n", + "To find label issues, cleanlab requires predicted class probabilities from a trained classifier. These `pred_probs` contain a length-*K* vector for **each** token in the dataset (which sums to 1 for each token). Here we use `pred_probs` which are out-of-sample predicted class probabilities for the full CoNLL-2003 dataset (merging training, development, and testing splits), obtained from a BERT Transformer fit via cross-validation. Our example notebook [\"Training Entity Recognition Model for Token Classification\"](https://github.com/cleanlab/examples/blob/master/entity_recognition/entity_recognition_training.ipynb) contains the code to produce such `pred_probs` and save them in a `.npz` file, which we simply load here via a `read_npz` function (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "6cc832fd", + "metadata": {}, + "source": [ + "
See the code for reading the `.npz` file **(click to expand)** \n", + "\n", + "```python\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "def read_npz(filepath): \n", + " data = dict(np.load(filepath)) \n", + " data = [data[str(i)] for i in range(len(data))] \n", + " return data \n", + "\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab9d59a0", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "def read_npz(filepath): \n", + " data = dict(np.load(filepath)) \n", + " data = [data[str(i)] for i in range(len(data))] \n", + " return data " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "519cb80c", + "metadata": {}, + "outputs": [], + "source": [ + "pred_probs = read_npz('pred_probs.npz') " + ] + }, + { + "cell_type": "markdown", + "id": "a8136f37", + "metadata": {}, + "source": [ + "`pred_probs` is a list of numpy arrays, which we'll describe later. Let's first also load the dataset and its labels. We collect sentences from the original text files defining: \n", + "\n", + "- `tokens` as a nested list where `tokens[i]` is a list of strings corrsesponding to a (word-level) tokenized version of the `i`-th sentence\n", + "- `given_labels` as a nested list of the given labels in the dataset where `given_labels[i]` is a list of labels for each token in the `i`-th sentence. \n", + "\n", + "This version of CoNLL-2003 uses IOB2-formatting for tagging, where `B-` and `I-` prefixes in the class labels indicate whether the tokens are at the start of an entity or in the middle. We ignore these distinctions in this tutorial (as label errors that confuse `B-` and `I-` are less interesting), and thus have two sets of entities: \n", + "\n", + "- `given_entities` = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] \n", + "- `entities` = ['O', 'MISC', 'PER', 'ORG', 'LOC']. These are our classes of interest for the token classification task.\n", + "\n", + "We use some helper methods to load the CoNLL data (can skip these details)." + ] + }, + { + "cell_type": "markdown", + "id": "43a87745", + "metadata": {}, + "source": [ + "
See the code for reading the CoNLL data files **(click to expand)**\n", + "\n", + "```python\n", + "\n", + "# Note: This pulldown content is for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "\n", + "given_entities = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n", + "entities = ['O', 'MISC', 'PER', 'ORG', 'LOC'] \n", + "entity_map = {entity: i for i, entity in enumerate(given_entities)} \n", + "\n", + "def readfile(filepath, sep=' '): \n", + " lines = open(filepath)\n", + " data, sentence, label = [], [], []\n", + " for line in lines:\n", + " if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == '\\n':\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " sentence, label = [], []\n", + " continue\n", + " splits = line.split(sep) \n", + " word = splits[0]\n", + " if len(word) > 0 and word[0].isalpha() and word.isupper():\n", + " word = word[0] + word[1:].lower()\n", + " sentence.append(word)\n", + " label.append(entity_map[splits[-1][:-1]])\n", + "\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + "\n", + " tokens = [d[0] for d in data] \n", + " given_labels = [d[1] for d in data]\n", + " return tokens, given_labels\n", + "\n", + "```\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "202f1526", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "given_entities = ['O', 'B-MISC', 'I-MISC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n", + "entities = ['O', 'MISC', 'PER', 'ORG', 'LOC'] \n", + "entity_map = {entity: i for i, entity in enumerate(given_entities)} \n", + "\n", + "def readfile(filepath, sep=' '): \n", + " lines = open(filepath)\n", + " data, sentence, label = [], [], []\n", + " for line in lines:\n", + " if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == '\\n':\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " sentence, label = [], []\n", + " continue\n", + " splits = line.split(sep) \n", + " word = splits[0]\n", + " if len(word) > 0 and word[0].isalpha() and word.isupper():\n", + " word = word[0] + word[1:].lower()\n", + " sentence.append(word)\n", + " label.append(entity_map[splits[-1][:-1]])\n", + "\n", + " if len(sentence) > 0:\n", + " data.append((sentence, label))\n", + " \n", + " tokens = [d[0] for d in data] \n", + " given_labels = [d[1] for d in data] \n", + " return tokens, given_labels " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4381f03", + "metadata": {}, + "outputs": [], + "source": [ + "filepaths = ['data/train.txt', 'data/valid.txt', 'data/test.txt'] \n", + "tokens, given_labels = [], [] \n", + "\n", + "for filepath in filepaths: \n", + " words, label = readfile(filepath) \n", + " tokens.extend(words) \n", + " given_labels.extend(label)\n", + " \n", + "sentences = list(map(get_sentence, tokens)) \n", + "\n", + "sentences, mask = filter_sentence(sentences) \n", + "tokens = [words for m, words in zip(mask, tokens) if m] \n", + "given_labels = [labels for m, labels in zip(mask, given_labels) if m] \n", + "\n", + "maps = [0, 1, 1, 2, 2, 3, 3, 4, 4] \n", + "labels = [mapping(labels, maps) for labels in given_labels] " + ] + }, + { + "cell_type": "markdown", + "id": "46cb7c93", + "metadata": {}, + "source": [ + "To find label issues in token classification data, cleanlab requires `labels` and `pred_probs`, which should look as follows: " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7842e4a3", + "metadata": {}, + "outputs": [], + "source": [ + "indices_to_preview = 3 # increase this to view more examples\n", + "for i in range(indices_to_preview):\n", + " print('\\nsentences[%d]:\\t' % i + str(sentences[i])) \n", + " print('labels[%d]:\\t' % i + str(labels[i])) \n", + " print('pred_probs[%d]:\\n' % i + str(pred_probs[i])) " + ] + }, + { + "cell_type": "markdown", + "id": "9b71eb4a", + "metadata": {}, + "source": [ + "Note that these correspond to the sentences in the dataset, where each sentence is treated as an individual training example (could be document instead of sentence). If using your own dataset, both `pred_probs` and `labels` should each be formatted as a nested-list where: \n", + "\n", + "- `pred_probs` is a list whose `i`-th element is a np.ndarray of shape `(N_i, K)` corresponding to predicted class probabilities for each token in the `i`-th sentence (assuming this sentence contains `N_i` tokens and dataset has `K` possible classes). Each row of one np.ndarray corresponds to a token `t` and contains a model's predicted probability that `t` belongs to each possible class, for each of the K classes. The columns must be ordered such that the probabilities correspond to class 0, 1, ..., K-1. These should be out-of-sample `pred_probs` obtained from a token classification model via cross-validation. \n", + "\n", + "- `labels` is a list whose `i`-th element is a list of integers corresponding to class label of each token in the `i`-th sentence. For dataset with K classes, labels must take values in 0, 1, ..., K-1. " + ] + }, + { + "cell_type": "markdown", + "id": "1dc3150f", + "metadata": {}, + "source": [ + "## 3. Use cleanlab to find label issues \n", + "\n", + "Based on the given labels and out-of-sample predicted probabilities, cleanlab can quickly help us identify label issues in our dataset. Here we request that the indices of the identified label issues be sorted by cleanlab’s self-confidence score, which measures the quality of each given label via the probability assigned to it in our model’s prediction. The returned `issues` are a list of tuples `(i, j)`, which corresponds to the `j`th token of the `i`-th sentence in the dataset. These are the tokens cleanlab thinks may be badly labeled in your dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c2ad9ad", + "metadata": {}, + "outputs": [], + "source": [ + "issues = find_label_issues(labels, pred_probs) " + ] + }, + { + "cell_type": "markdown", + "id": "7221c12b", + "metadata": {}, + "source": [ + "Let's look at the top 20 tokens that cleanlab thinks are most likely mislabeled. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95dc7268", + "metadata": {}, + "outputs": [], + "source": [ + "top = 20 # increase this value to view more identified issues\n", + "print('Cleanlab found %d potential label issues. ' % len(issues)) \n", + "print('The top %d most likely label errors:' % top) \n", + "print(issues[:top]) " + ] + }, + { + "cell_type": "markdown", + "id": "65421a2d", + "metadata": {}, + "source": [ + "We can better decide how to handle these issues by viewing the original sentences containing these tokens.\n", + "Given that `O` and `MISC` classes (corresponding to integers 0 and 1 in our class ordering) can sometimes be ambiguous, they are excluded from our visualization below. This is achieved via the `exclude` argument, a list of tuples `(i, j)` such that tokens predicted as `entities[j]` but labeled as `entities[i]` are ignored." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e13de188", + "metadata": {}, + "outputs": [], + "source": [ + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "96d04902", + "metadata": {}, + "source": [ + "More than half of the potential label issues correspond to tokens that are incorrectly labeled. As shown above, some examples are ambigious and may require more thoughful handling. cleanlab has also discovered some edge cases such as tokens which are simply punctuations such as `/` and `(`. " + ] + }, + { + "cell_type": "markdown", + "id": "d213b2b2", + "metadata": {}, + "source": [ + "### Most common word-level token mislabels \n", + "\n", + "We may also wish to understand which tokens tend to be most commonly mislabeled throughout the entire dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e4a006bd", + "metadata": {}, + "outputs": [], + "source": [ + "info = common_label_issues(issues, tokens, \n", + " labels=labels, \n", + " pred_probs=pred_probs, \n", + " class_names=entities, \n", + " exclude=[(0, 1), (1, 0)]) " + ] + }, + { + "cell_type": "markdown", + "id": "9c417061", + "metadata": {}, + "source": [ + "The printed information above is also stored in pd.DataFrame `info`." + ] + }, + { + "cell_type": "markdown", + "id": "a35ef843", + "metadata": {}, + "source": [ + "### Find sentences containing a particular mislabeled word \n", + "\n", + "You can also only focus on the subset of potentially problematic sentences where a particular token may have been mislabeled." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8f4e163", + "metadata": {}, + "outputs": [], + "source": [ + "token_issues = filter_by_token('United', issues, tokens)\n", + "\n", + "display_issues(token_issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "1759108b", + "metadata": {}, + "source": [ + "### Sentence label quality score \n", + "\n", + "For best reviewing label issues in a token classification dataset, you want to look at sentences one at a time. Here sentences more likely to contain a label error should be ranked earlier. Cleanlab can provide an overall label quality score for each sentence (ranging from 0 to 1) such that lower scores indicate sentences more likely to contain some mislabeled token. We can also obtain label quality scores for each individual token and manually decide which of these are label issues by thresholding them. For automatically estimating which tokens are mislabeled (and the number of label errors), you should use `find_label_issues()` instead. `get_label_quality_scores()` is useful if you only have time to review a few sentences and want to prioritize which, or if you're specifically aiming to detect label errors with high precision (or high recall) rather than overall estimation of the set of mislabeled tokens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db0b5179", + "metadata": {}, + "outputs": [], + "source": [ + "sentence_scores, token_scores = get_label_quality_scores(labels, pred_probs)\n", + "issues = issues_from_scores(sentence_scores, token_scores=token_scores) \n", + "display_issues(issues, tokens, pred_probs=pred_probs, labels=labels, \n", + " exclude=[(0, 1), (1, 0)], class_names=entities) " + ] + }, + { + "cell_type": "markdown", + "id": "1759108c", + "metadata": {}, + "source": [ + "## How does cleanlab.token_classification work?\n", + "\n", + "The underlying algorithms used to produce these scores are described in [this paper](https://arxiv.org/abs/2210.03920)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a18795eb", + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Note: This cell is only for docs.cleanlab.ai, if running on local Jupyter or Colab, please ignore it.\n", + "highlighted_indices = [(2907, 0), (19392, 0), (9962, 4), (8904, 30), (19303, 0), \n", + " (12918, 0), (9256, 0), (11855, 20), (18392, 4), (20426, 28), \n", + " (19402, 21), (14744, 15), (19371, 0), (4645, 2), (83, 9), \n", + " (10331, 3), (9430, 10), (6143, 25), (18367, 0), (12914, 3)] \n", + "\n", + "if not all(x in issues for x in highlighted_indices):\n", + " raise Exception(\"Some highlighted examples are missing from ranked_label_issues.\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v2.6.5/_static/basic.css b/v2.6.5/_static/basic.css new file mode 100644 index 000000000..cfc60b86c --- /dev/null +++ b/v2.6.5/_static/basic.css @@ -0,0 +1,921 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/v2.6.5/_static/check-solid.svg b/v2.6.5/_static/check-solid.svg new file mode 100644 index 000000000..92fad4b5c --- /dev/null +++ b/v2.6.5/_static/check-solid.svg @@ -0,0 +1,4 @@ + + + + diff --git a/v2.6.5/_static/clipboard.min.js b/v2.6.5/_static/clipboard.min.js new file mode 100644 index 000000000..54b3c4638 --- /dev/null +++ b/v2.6.5/_static/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.8 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 + + + + diff --git a/v2.6.5/_static/copybutton.css b/v2.6.5/_static/copybutton.css new file mode 100644 index 000000000..f1916ec7d --- /dev/null +++ b/v2.6.5/_static/copybutton.css @@ -0,0 +1,94 @@ +/* Copy buttons */ +button.copybtn { + position: absolute; + display: flex; + top: .3em; + right: .3em; + width: 1.7em; + height: 1.7em; + opacity: 0; + transition: opacity 0.3s, border .3s, background-color .3s; + user-select: none; + padding: 0; + border: none; + outline: none; + border-radius: 0.4em; + /* The colors that GitHub uses */ + border: #1b1f2426 1px solid; + background-color: #f6f8fa; + color: #57606a; +} + +button.copybtn.success { + border-color: #22863a; + color: #22863a; +} + +button.copybtn svg { + stroke: currentColor; + width: 1.5em; + height: 1.5em; + padding: 0.1em; +} + +div.highlight { + position: relative; +} + +/* Show the copybutton */ +.highlight:hover button.copybtn, button.copybtn.success { + opacity: 1; +} + +.highlight button.copybtn:hover { + background-color: rgb(235, 235, 235); +} + +.highlight button.copybtn:active { + background-color: rgb(187, 187, 187); +} + +/** + * A minimal CSS-only tooltip copied from: + * https://codepen.io/mildrenben/pen/rVBrpK + * + * To use, write HTML like the following: + * + *

Short

+ */ + .o-tooltip--left { + position: relative; + } + + .o-tooltip--left:after { + opacity: 0; + visibility: hidden; + position: absolute; + content: attr(data-tooltip); + padding: .2em; + font-size: .8em; + left: -.2em; + background: grey; + color: white; + white-space: nowrap; + z-index: 2; + border-radius: 2px; + transform: translateX(-102%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); +} + +.o-tooltip--left:hover:after { + display: block; + opacity: 1; + visibility: visible; + transform: translateX(-100%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); + transition-delay: .5s; +} + +/* By default the copy button shouldn't show up when printing a page */ +@media print { + button.copybtn { + display: none; + } +} diff --git a/v2.6.5/_static/copybutton.js b/v2.6.5/_static/copybutton.js new file mode 100644 index 000000000..e0da19327 --- /dev/null +++ b/v2.6.5/_static/copybutton.js @@ -0,0 +1,248 @@ +// Localization support +const messages = { + 'en': { + 'copy': 'Copy', + 'copy_to_clipboard': 'Copy to clipboard', + 'copy_success': 'Copied!', + 'copy_failure': 'Failed to copy', + }, + 'es' : { + 'copy': 'Copiar', + 'copy_to_clipboard': 'Copiar al portapapeles', + 'copy_success': '¡Copiado!', + 'copy_failure': 'Error al copiar', + }, + 'de' : { + 'copy': 'Kopieren', + 'copy_to_clipboard': 'In die Zwischenablage kopieren', + 'copy_success': 'Kopiert!', + 'copy_failure': 'Fehler beim Kopieren', + }, + 'fr' : { + 'copy': 'Copier', + 'copy_to_clipboard': 'Copier dans le presse-papier', + 'copy_success': 'Copié !', + 'copy_failure': 'Échec de la copie', + }, + 'ru': { + 'copy': 'Скопировать', + 'copy_to_clipboard': 'Скопировать в буфер', + 'copy_success': 'Скопировано!', + 'copy_failure': 'Не удалось скопировать', + }, + 'zh-CN': { + 'copy': '复制', + 'copy_to_clipboard': '复制到剪贴板', + 'copy_success': '复制成功!', + 'copy_failure': '复制失败', + }, + 'it' : { + 'copy': 'Copiare', + 'copy_to_clipboard': 'Copiato negli appunti', + 'copy_success': 'Copiato!', + 'copy_failure': 'Errore durante la copia', + } +} + +let locale = 'en' +if( document.documentElement.lang !== undefined + && messages[document.documentElement.lang] !== undefined ) { + locale = document.documentElement.lang +} + +let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; +if (doc_url_root == '#') { + doc_url_root = ''; +} + +/** + * SVG files for our copy buttons + */ +let iconCheck = ` + ${messages[locale]['copy_success']} + + +` + +// If the user specified their own SVG use that, otherwise use the default +let iconCopy = ``; +if (!iconCopy) { + iconCopy = ` + ${messages[locale]['copy_to_clipboard']} + + + +` +} + +/** + * Set up copy/paste for code blocks + */ + +const runWhenDOMLoaded = cb => { + if (document.readyState != 'loading') { + cb() + } else if (document.addEventListener) { + document.addEventListener('DOMContentLoaded', cb) + } else { + document.attachEvent('onreadystatechange', function() { + if (document.readyState == 'complete') cb() + }) + } +} + +const codeCellId = index => `codecell${index}` + +// Clears selected text since ClipboardJS will select the text when copying +const clearSelection = () => { + if (window.getSelection) { + window.getSelection().removeAllRanges() + } else if (document.selection) { + document.selection.empty() + } +} + +// Changes tooltip text for a moment, then changes it back +// We want the timeout of our `success` class to be a bit shorter than the +// tooltip and icon change, so that we can hide the icon before changing back. +var timeoutIcon = 2000; +var timeoutSuccessClass = 1500; + +const temporarilyChangeTooltip = (el, oldText, newText) => { + el.setAttribute('data-tooltip', newText) + el.classList.add('success') + // Remove success a little bit sooner than we change the tooltip + // So that we can use CSS to hide the copybutton first + setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) + setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) +} + +// Changes the copy button icon for two seconds, then changes it back +const temporarilyChangeIcon = (el) => { + el.innerHTML = iconCheck; + setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) +} + +const addCopyButtonToCodeCells = () => { + // If ClipboardJS hasn't loaded, wait a bit and try again. This + // happens because we load ClipboardJS asynchronously. + if (window.ClipboardJS === undefined) { + setTimeout(addCopyButtonToCodeCells, 250) + return + } + + // Add copybuttons to all of our code cells + const COPYBUTTON_SELECTOR = 'div.highlight pre'; + const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) + codeCells.forEach((codeCell, index) => { + const id = codeCellId(index) + codeCell.setAttribute('id', id) + + const clipboardButton = id => + `` + codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) + }) + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} + + +var copyTargetText = (trigger) => { + var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); + + // get filtered text + let exclude = '.linenos'; + + let text = filterText(target, exclude); + return formatCopyText(text, '>>> |\\.\\.\\. |\\$ |In \\[\\d*\\]: | {2,5}\\.\\.\\.: | {5,8}: ', true, true, true, true, '', '') +} + + // Initialize with a callback so we can modify the text before copy + const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) + + // Update UI with error/success messages + clipboard.on('success', event => { + clearSelection() + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) + temporarilyChangeIcon(event.trigger) + }) + + clipboard.on('error', event => { + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) + }) +} + +runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/v2.6.5/_static/copybutton_funcs.js b/v2.6.5/_static/copybutton_funcs.js new file mode 100644 index 000000000..dbe1aaad7 --- /dev/null +++ b/v2.6.5/_static/copybutton_funcs.js @@ -0,0 +1,73 @@ +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +export function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} diff --git a/v2.6.5/_static/css/custom.css b/v2.6.5/_static/css/custom.css new file mode 100644 index 000000000..365c0171b --- /dev/null +++ b/v2.6.5/_static/css/custom.css @@ -0,0 +1,41 @@ +details { + margin-bottom: 0.75rem; + margin-top: 0.5rem; +} + +details summary { + cursor: pointer; +} + +details summary > * { + display: inline; +} + +details[open] summary { + padding-bottom: 0.75rem; + border-bottom: 2px dashed #ccc; +} + +details[open] { + border-bottom: 2px dashed #ccc; +} + +h1 { + font-size: 2em; +} + +h2 { + font-size: 1.5em; +} + +h3 { + font-size: 1.17em; +} + +h5 { + font-size: .83em; +} + +h6 { + font-size: .75em; +} diff --git a/v2.6.5/_static/debug.css b/v2.6.5/_static/debug.css new file mode 100644 index 000000000..74d4aec33 --- /dev/null +++ b/v2.6.5/_static/debug.css @@ -0,0 +1,69 @@ +/* + This CSS file should be overridden by the theme authors. It's + meant for debugging and developing the skeleton that this theme provides. +*/ +body { + font-family: -apple-system, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, + "Apple Color Emoji", "Segoe UI Emoji"; + background: lavender; +} +.sb-announcement { + background: rgb(131, 131, 131); +} +.sb-announcement__inner { + background: black; + color: white; +} +.sb-header { + background: lightskyblue; +} +.sb-header__inner { + background: royalblue; + color: white; +} +.sb-header-secondary { + background: lightcyan; +} +.sb-header-secondary__inner { + background: cornflowerblue; + color: white; +} +.sb-sidebar-primary { + background: lightgreen; +} +.sb-main { + background: blanchedalmond; +} +.sb-main__inner { + background: antiquewhite; +} +.sb-header-article { + background: lightsteelblue; +} +.sb-article-container { + background: snow; +} +.sb-article-main { + background: white; +} +.sb-footer-article { + background: lightpink; +} +.sb-sidebar-secondary { + background: lightgoldenrodyellow; +} +.sb-footer-content { + background: plum; +} +.sb-footer-content__inner { + background: palevioletred; +} +.sb-footer { + background: pink; +} +.sb-footer__inner { + background: salmon; +} +.sb-article { + background: white; +} diff --git a/v2.6.5/_static/doctools.js b/v2.6.5/_static/doctools.js new file mode 100644 index 000000000..d06a71d75 --- /dev/null +++ b/v2.6.5/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/v2.6.5/_static/documentation_options.js b/v2.6.5/_static/documentation_options.js new file mode 100644 index 000000000..05f76e701 --- /dev/null +++ b/v2.6.5/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/v2.6.5/_static/file.png b/v2.6.5/_static/file.png new file mode 100644 index 000000000..a858a410e Binary files /dev/null and b/v2.6.5/_static/file.png differ diff --git a/v2.6.5/_static/katex-math.css b/v2.6.5/_static/katex-math.css new file mode 100644 index 000000000..bdd1634d8 --- /dev/null +++ b/v2.6.5/_static/katex-math.css @@ -0,0 +1,50 @@ +/* Responsives: make equations scrollable on small screens. + * See: https://github.com/Khan/KaTeX/issues/327 */ +.katex-display > .katex { + max-width: 100%; +} +.katex-display > .katex > .katex-html { + max-width: 100%; + overflow-x: auto; + overflow-y: hidden; + padding-left: 2px; + padding-right: 2px; + padding-bottom: 1px; + padding-top: 3px; +} +/* Increase margin around equations */ +.katex-display { + margin: 1.2em 0; +} +/* Equation number floats to the right and shows permalink for mouse hover + on the right side of equation number. */ +div.math { + position: relative; + padding-right: 2.5em; +} +.eqno { + height: 100%; + position: absolute; + right: 0; + padding-left: 5px; + padding-bottom: 5px; + padding-right: 1px; +} +.eqno:before { + /* Force vertical alignment of number */ + display: inline-block; + height: 100%; + vertical-align: middle; + content: ""; +} +.eqno .headerlink { + display: none; + visibility: hidden; + font-size: 14px; + padding-left: .3em; +} +.eqno:hover .headerlink { + display: inline-block; + visibility: visible; + margin-right: -1.05em; +} diff --git a/v2.6.5/_static/language_data.js b/v2.6.5/_static/language_data.js new file mode 100644 index 000000000..250f5665f --- /dev/null +++ b/v2.6.5/_static/language_data.js @@ -0,0 +1,199 @@ +/* + * language_data.js + * ~~~~~~~~~~~~~~~~ + * + * This script contains the language-specific data used by searchtools.js, + * namely the list of stopwords, stemmer, scorer and splitter. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; + + +/* Non-minified version is copied as a separate JS file, is available */ + +/** + * Porter Stemmer + */ +var Stemmer = function() { + + var step2list = { + ational: 'ate', + tional: 'tion', + enci: 'ence', + anci: 'ance', + izer: 'ize', + bli: 'ble', + alli: 'al', + entli: 'ent', + eli: 'e', + ousli: 'ous', + ization: 'ize', + ation: 'ate', + ator: 'ate', + alism: 'al', + iveness: 'ive', + fulness: 'ful', + ousness: 'ous', + aliti: 'al', + iviti: 'ive', + biliti: 'ble', + logi: 'log' + }; + + var step3list = { + icate: 'ic', + ative: '', + alize: 'al', + iciti: 'ic', + ical: 'ic', + ful: '', + ness: '' + }; + + var c = "[^aeiou]"; // consonant + var v = "[aeiouy]"; // vowel + var C = c + "[^aeiouy]*"; // consonant sequence + var V = v + "[aeiou]*"; // vowel sequence + + var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/v2.6.5/_static/minus.png b/v2.6.5/_static/minus.png new file mode 100644 index 000000000..d96755fda Binary files /dev/null and b/v2.6.5/_static/minus.png differ diff --git a/v2.6.5/_static/nbsphinx-broken-thumbnail.svg b/v2.6.5/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 000000000..4919ca882 --- /dev/null +++ b/v2.6.5/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/v2.6.5/_static/nbsphinx-code-cells.css b/v2.6.5/_static/nbsphinx-code-cells.css new file mode 100644 index 000000000..a3fb27c30 --- /dev/null +++ b/v2.6.5/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/v2.6.5/_static/nbsphinx-gallery.css b/v2.6.5/_static/nbsphinx-gallery.css new file mode 100644 index 000000000..365c27a96 --- /dev/null +++ b/v2.6.5/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/v2.6.5/_static/nbsphinx-no-thumbnail.svg b/v2.6.5/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 000000000..9dca7588f --- /dev/null +++ b/v2.6.5/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/v2.6.5/_static/plus.png b/v2.6.5/_static/plus.png new file mode 100644 index 000000000..7107cec93 Binary files /dev/null and b/v2.6.5/_static/plus.png differ diff --git a/v2.6.5/_static/pygments.css b/v2.6.5/_static/pygments.css new file mode 100644 index 000000000..02b4b1281 --- /dev/null +++ b/v2.6.5/_static/pygments.css @@ -0,0 +1,258 @@ +.highlight pre { line-height: 125%; } +.highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +.highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +.highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #8f5902; font-style: italic } /* Comment */ +.highlight .err { color: #a40000; border: 1px solid #ef2929 } /* Error */ +.highlight .g { color: #000000 } /* Generic */ +.highlight .k { color: #204a87; font-weight: bold } /* Keyword */ +.highlight .l { color: #000000 } /* Literal */ +.highlight .n { color: #000000 } /* Name */ +.highlight .o { color: #ce5c00; font-weight: bold } /* Operator */ +.highlight .x { color: #000000 } /* Other */ +.highlight .p { color: #000000; font-weight: bold } /* Punctuation */ +.highlight .ch { color: #8f5902; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #8f5902; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #8f5902; font-style: italic } /* Comment.Preproc */ +.highlight .cpf { color: #8f5902; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #8f5902; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #8f5902; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #a40000 } /* Generic.Deleted */ +.highlight .ge { color: #000000; font-style: italic } /* Generic.Emph */ +.highlight .ges { color: #000000; font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #ef2929 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #000000; font-style: italic } /* Generic.Output */ +.highlight .gp { color: #8f5902 } /* Generic.Prompt */ +.highlight .gs { color: #000000; font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #a40000; font-weight: bold } /* Generic.Traceback */ +.highlight .kc { color: #204a87; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #204a87; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #204a87; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #204a87; font-weight: bold } /* Keyword.Pseudo */ +.highlight .kr { color: #204a87; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #204a87; font-weight: bold } /* Keyword.Type */ +.highlight .ld { color: #000000 } /* Literal.Date */ +.highlight .m { color: #0000cf; font-weight: bold } /* Literal.Number */ +.highlight .s { color: #4e9a06 } /* Literal.String */ +.highlight .na { color: #c4a000 } /* Name.Attribute */ +.highlight .nb { color: #204a87 } /* Name.Builtin */ +.highlight .nc { color: #000000 } /* Name.Class */ +.highlight .no { color: #000000 } /* Name.Constant */ +.highlight .nd { color: #5c35cc; font-weight: bold } /* Name.Decorator */ +.highlight .ni { color: #ce5c00 } /* Name.Entity */ +.highlight .ne { color: #cc0000; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #000000 } /* Name.Function */ +.highlight .nl { color: #f57900 } /* Name.Label */ +.highlight .nn { color: #000000 } /* Name.Namespace */ +.highlight .nx { color: #000000 } /* Name.Other */ +.highlight .py { color: #000000 } /* Name.Property */ +.highlight .nt { color: #204a87; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #000000 } /* Name.Variable */ +.highlight .ow { color: #204a87; font-weight: bold } /* Operator.Word */ +.highlight .pm { color: #000000; font-weight: bold } /* Punctuation.Marker */ +.highlight .w { color: #f8f8f8 } /* Text.Whitespace */ +.highlight .mb { color: #0000cf; font-weight: bold } /* Literal.Number.Bin */ +.highlight .mf { color: #0000cf; font-weight: bold } /* Literal.Number.Float */ +.highlight .mh { color: #0000cf; font-weight: bold } /* Literal.Number.Hex */ +.highlight .mi { color: #0000cf; font-weight: bold } /* Literal.Number.Integer */ +.highlight .mo { color: #0000cf; font-weight: bold } /* Literal.Number.Oct */ +.highlight .sa { color: #4e9a06 } /* Literal.String.Affix */ +.highlight .sb { color: #4e9a06 } /* Literal.String.Backtick */ +.highlight .sc { color: #4e9a06 } /* Literal.String.Char */ +.highlight .dl { color: #4e9a06 } /* Literal.String.Delimiter */ +.highlight .sd { color: #8f5902; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4e9a06 } /* Literal.String.Double */ +.highlight .se { color: #4e9a06 } /* Literal.String.Escape */ +.highlight .sh { color: #4e9a06 } /* Literal.String.Heredoc */ +.highlight .si { color: #4e9a06 } /* Literal.String.Interpol */ +.highlight .sx { color: #4e9a06 } /* Literal.String.Other */ +.highlight .sr { color: #4e9a06 } /* Literal.String.Regex */ +.highlight .s1 { color: #4e9a06 } /* Literal.String.Single */ +.highlight .ss { color: #4e9a06 } /* Literal.String.Symbol */ +.highlight .bp { color: #3465a4 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #000000 } /* Name.Function.Magic */ +.highlight .vc { color: #000000 } /* Name.Variable.Class */ +.highlight .vg { color: #000000 } /* Name.Variable.Global */ +.highlight .vi { color: #000000 } /* Name.Variable.Instance */ +.highlight .vm { color: #000000 } /* Name.Variable.Magic */ +.highlight .il { color: #0000cf; font-weight: bold } /* Literal.Number.Integer.Long */ +@media not print { +body[data-theme="dark"] .highlight pre { line-height: 125%; } +body[data-theme="dark"] .highlight td.linenos .normal { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; } +body[data-theme="dark"] .highlight span.linenos { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; } +body[data-theme="dark"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +body[data-theme="dark"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +body[data-theme="dark"] .highlight .hll { background-color: #404040 } +body[data-theme="dark"] .highlight { background: #202020; color: #d0d0d0 } +body[data-theme="dark"] .highlight .c { color: #ababab; font-style: italic } /* Comment */ +body[data-theme="dark"] .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */ +body[data-theme="dark"] .highlight .esc { color: #d0d0d0 } /* Escape */ +body[data-theme="dark"] .highlight .g { color: #d0d0d0 } /* Generic */ +body[data-theme="dark"] .highlight .k { color: #6ebf26; font-weight: bold } /* Keyword */ +body[data-theme="dark"] .highlight .l { color: #d0d0d0 } /* Literal */ +body[data-theme="dark"] .highlight .n { color: #d0d0d0 } /* Name */ +body[data-theme="dark"] .highlight .o { color: #d0d0d0 } /* Operator */ +body[data-theme="dark"] .highlight .x { color: #d0d0d0 } /* Other */ +body[data-theme="dark"] .highlight .p { color: #d0d0d0 } /* Punctuation */ +body[data-theme="dark"] .highlight .ch { color: #ababab; font-style: italic } /* Comment.Hashbang */ +body[data-theme="dark"] .highlight .cm { color: #ababab; font-style: italic } /* Comment.Multiline */ +body[data-theme="dark"] .highlight .cp { color: #ff3a3a; font-weight: bold } /* Comment.Preproc */ +body[data-theme="dark"] .highlight .cpf { color: #ababab; font-style: italic } /* Comment.PreprocFile */ +body[data-theme="dark"] .highlight .c1 { color: #ababab; font-style: italic } /* Comment.Single */ +body[data-theme="dark"] .highlight .cs { color: #e50808; font-weight: bold; background-color: #520000 } /* Comment.Special */ +body[data-theme="dark"] .highlight .gd { color: #ff3a3a } /* Generic.Deleted */ +body[data-theme="dark"] .highlight .ge { color: #d0d0d0; font-style: italic } /* Generic.Emph */ +body[data-theme="dark"] .highlight .ges { color: #d0d0d0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +body[data-theme="dark"] .highlight .gr { color: #ff3a3a } /* Generic.Error */ +body[data-theme="dark"] .highlight .gh { color: #ffffff; font-weight: bold } /* Generic.Heading */ +body[data-theme="dark"] .highlight .gi { color: #589819 } /* Generic.Inserted */ +body[data-theme="dark"] .highlight .go { color: #cccccc } /* Generic.Output */ +body[data-theme="dark"] .highlight .gp { color: #aaaaaa } /* Generic.Prompt */ +body[data-theme="dark"] .highlight .gs { color: #d0d0d0; font-weight: bold } /* Generic.Strong */ +body[data-theme="dark"] .highlight .gu { color: #ffffff; text-decoration: underline } /* Generic.Subheading */ +body[data-theme="dark"] .highlight .gt { color: #ff3a3a } /* Generic.Traceback */ +body[data-theme="dark"] .highlight .kc { color: #6ebf26; font-weight: bold } /* Keyword.Constant */ +body[data-theme="dark"] .highlight .kd { color: #6ebf26; font-weight: bold } /* Keyword.Declaration */ +body[data-theme="dark"] .highlight .kn { color: #6ebf26; font-weight: bold } /* Keyword.Namespace */ +body[data-theme="dark"] .highlight .kp { color: #6ebf26 } /* Keyword.Pseudo */ +body[data-theme="dark"] .highlight .kr { color: #6ebf26; font-weight: bold } /* Keyword.Reserved */ +body[data-theme="dark"] .highlight .kt { color: #6ebf26; font-weight: bold } /* Keyword.Type */ +body[data-theme="dark"] .highlight .ld { color: #d0d0d0 } /* Literal.Date */ +body[data-theme="dark"] .highlight .m { color: #51b2fd } /* Literal.Number */ +body[data-theme="dark"] .highlight .s { color: #ed9d13 } /* Literal.String */ +body[data-theme="dark"] .highlight .na { color: #bbbbbb } /* Name.Attribute */ +body[data-theme="dark"] .highlight .nb { color: #2fbccd } /* Name.Builtin */ +body[data-theme="dark"] .highlight .nc { color: #71adff; text-decoration: underline } /* Name.Class */ +body[data-theme="dark"] .highlight .no { color: #40ffff } /* Name.Constant */ +body[data-theme="dark"] .highlight .nd { color: #ffa500 } /* Name.Decorator */ +body[data-theme="dark"] .highlight .ni { color: #d0d0d0 } /* Name.Entity */ +body[data-theme="dark"] .highlight .ne { color: #bbbbbb } /* Name.Exception */ +body[data-theme="dark"] .highlight .nf { color: #71adff } /* Name.Function */ +body[data-theme="dark"] .highlight .nl { color: #d0d0d0 } /* Name.Label */ +body[data-theme="dark"] .highlight .nn { color: #71adff; text-decoration: underline } /* Name.Namespace */ +body[data-theme="dark"] .highlight .nx { color: #d0d0d0 } /* Name.Other */ +body[data-theme="dark"] .highlight .py { color: #d0d0d0 } /* Name.Property */ +body[data-theme="dark"] .highlight .nt { color: #6ebf26; font-weight: bold } /* Name.Tag */ +body[data-theme="dark"] .highlight .nv { color: #40ffff } /* Name.Variable */ +body[data-theme="dark"] .highlight .ow { color: #6ebf26; font-weight: bold } /* Operator.Word */ +body[data-theme="dark"] .highlight .pm { color: #d0d0d0 } /* Punctuation.Marker */ +body[data-theme="dark"] .highlight .w { color: #666666 } /* Text.Whitespace */ +body[data-theme="dark"] .highlight .mb { color: #51b2fd } /* Literal.Number.Bin */ +body[data-theme="dark"] .highlight .mf { color: #51b2fd } /* Literal.Number.Float */ +body[data-theme="dark"] .highlight .mh { color: #51b2fd } /* Literal.Number.Hex */ +body[data-theme="dark"] .highlight .mi { color: #51b2fd } /* Literal.Number.Integer */ +body[data-theme="dark"] .highlight .mo { color: #51b2fd } /* Literal.Number.Oct */ +body[data-theme="dark"] .highlight .sa { color: #ed9d13 } /* Literal.String.Affix */ +body[data-theme="dark"] .highlight .sb { color: #ed9d13 } /* Literal.String.Backtick */ +body[data-theme="dark"] .highlight .sc { color: #ed9d13 } /* Literal.String.Char */ +body[data-theme="dark"] .highlight .dl { color: #ed9d13 } /* Literal.String.Delimiter */ +body[data-theme="dark"] .highlight .sd { color: #ed9d13 } /* Literal.String.Doc */ +body[data-theme="dark"] .highlight .s2 { color: #ed9d13 } /* Literal.String.Double */ +body[data-theme="dark"] .highlight .se { color: #ed9d13 } /* Literal.String.Escape */ +body[data-theme="dark"] .highlight .sh { color: #ed9d13 } /* Literal.String.Heredoc */ +body[data-theme="dark"] .highlight .si { color: #ed9d13 } /* Literal.String.Interpol */ +body[data-theme="dark"] .highlight .sx { color: #ffa500 } /* Literal.String.Other */ +body[data-theme="dark"] .highlight .sr { color: #ed9d13 } /* Literal.String.Regex */ +body[data-theme="dark"] .highlight .s1 { color: #ed9d13 } /* Literal.String.Single */ +body[data-theme="dark"] .highlight .ss { color: #ed9d13 } /* Literal.String.Symbol */ +body[data-theme="dark"] .highlight .bp { color: #2fbccd } /* Name.Builtin.Pseudo */ +body[data-theme="dark"] .highlight .fm { color: #71adff } /* Name.Function.Magic */ +body[data-theme="dark"] .highlight .vc { color: #40ffff } /* Name.Variable.Class */ +body[data-theme="dark"] .highlight .vg { color: #40ffff } /* Name.Variable.Global */ +body[data-theme="dark"] .highlight .vi { color: #40ffff } /* Name.Variable.Instance */ +body[data-theme="dark"] .highlight .vm { color: #40ffff } /* Name.Variable.Magic */ +body[data-theme="dark"] .highlight .il { color: #51b2fd } /* Literal.Number.Integer.Long */ +@media (prefers-color-scheme: dark) { +body:not([data-theme="light"]) .highlight pre { line-height: 125%; } +body:not([data-theme="light"]) .highlight td.linenos .normal { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; } +body:not([data-theme="light"]) .highlight span.linenos { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; } +body:not([data-theme="light"]) .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +body:not([data-theme="light"]) .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +body:not([data-theme="light"]) .highlight .hll { background-color: #404040 } +body:not([data-theme="light"]) .highlight { background: #202020; color: #d0d0d0 } +body:not([data-theme="light"]) .highlight .c { color: #ababab; font-style: italic } /* Comment */ +body:not([data-theme="light"]) .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */ +body:not([data-theme="light"]) .highlight .esc { color: #d0d0d0 } /* Escape */ +body:not([data-theme="light"]) .highlight .g { color: #d0d0d0 } /* Generic */ +body:not([data-theme="light"]) .highlight .k { color: #6ebf26; font-weight: bold } /* Keyword */ +body:not([data-theme="light"]) .highlight .l { color: #d0d0d0 } /* Literal */ +body:not([data-theme="light"]) .highlight .n { color: #d0d0d0 } /* Name */ +body:not([data-theme="light"]) .highlight .o { color: #d0d0d0 } /* Operator */ +body:not([data-theme="light"]) .highlight .x { color: #d0d0d0 } /* Other */ +body:not([data-theme="light"]) .highlight .p { color: #d0d0d0 } /* Punctuation */ +body:not([data-theme="light"]) .highlight .ch { color: #ababab; font-style: italic } /* Comment.Hashbang */ +body:not([data-theme="light"]) .highlight .cm { color: #ababab; font-style: italic } /* Comment.Multiline */ +body:not([data-theme="light"]) .highlight .cp { color: #ff3a3a; font-weight: bold } /* Comment.Preproc */ +body:not([data-theme="light"]) .highlight .cpf { color: #ababab; font-style: italic } /* Comment.PreprocFile */ +body:not([data-theme="light"]) .highlight .c1 { color: #ababab; font-style: italic } /* Comment.Single */ +body:not([data-theme="light"]) .highlight .cs { color: #e50808; font-weight: bold; background-color: #520000 } /* Comment.Special */ +body:not([data-theme="light"]) .highlight .gd { color: #ff3a3a } /* Generic.Deleted */ +body:not([data-theme="light"]) .highlight .ge { color: #d0d0d0; font-style: italic } /* Generic.Emph */ +body:not([data-theme="light"]) .highlight .ges { color: #d0d0d0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +body:not([data-theme="light"]) .highlight .gr { color: #ff3a3a } /* Generic.Error */ +body:not([data-theme="light"]) .highlight .gh { color: #ffffff; font-weight: bold } /* Generic.Heading */ +body:not([data-theme="light"]) .highlight .gi { color: #589819 } /* Generic.Inserted */ +body:not([data-theme="light"]) .highlight .go { color: #cccccc } /* Generic.Output */ +body:not([data-theme="light"]) .highlight .gp { color: #aaaaaa } /* Generic.Prompt */ +body:not([data-theme="light"]) .highlight .gs { color: #d0d0d0; font-weight: bold } /* Generic.Strong */ +body:not([data-theme="light"]) .highlight .gu { color: #ffffff; text-decoration: underline } /* Generic.Subheading */ +body:not([data-theme="light"]) .highlight .gt { color: #ff3a3a } /* Generic.Traceback */ +body:not([data-theme="light"]) .highlight .kc { color: #6ebf26; font-weight: bold } /* Keyword.Constant */ +body:not([data-theme="light"]) .highlight .kd { color: #6ebf26; font-weight: bold } /* Keyword.Declaration */ +body:not([data-theme="light"]) .highlight .kn { color: #6ebf26; font-weight: bold } /* Keyword.Namespace */ +body:not([data-theme="light"]) .highlight .kp { color: #6ebf26 } /* Keyword.Pseudo */ +body:not([data-theme="light"]) .highlight .kr { color: #6ebf26; font-weight: bold } /* Keyword.Reserved */ +body:not([data-theme="light"]) .highlight .kt { color: #6ebf26; font-weight: bold } /* Keyword.Type */ +body:not([data-theme="light"]) .highlight .ld { color: #d0d0d0 } /* Literal.Date */ +body:not([data-theme="light"]) .highlight .m { color: #51b2fd } /* Literal.Number */ +body:not([data-theme="light"]) .highlight .s { color: #ed9d13 } /* Literal.String */ +body:not([data-theme="light"]) .highlight .na { color: #bbbbbb } /* Name.Attribute */ +body:not([data-theme="light"]) .highlight .nb { color: #2fbccd } /* Name.Builtin */ +body:not([data-theme="light"]) .highlight .nc { color: #71adff; text-decoration: underline } /* Name.Class */ +body:not([data-theme="light"]) .highlight .no { color: #40ffff } /* Name.Constant */ +body:not([data-theme="light"]) .highlight .nd { color: #ffa500 } /* Name.Decorator */ +body:not([data-theme="light"]) .highlight .ni { color: #d0d0d0 } /* Name.Entity */ +body:not([data-theme="light"]) .highlight .ne { color: #bbbbbb } /* Name.Exception */ +body:not([data-theme="light"]) .highlight .nf { color: #71adff } /* Name.Function */ +body:not([data-theme="light"]) .highlight .nl { color: #d0d0d0 } /* Name.Label */ +body:not([data-theme="light"]) .highlight .nn { color: #71adff; text-decoration: underline } /* Name.Namespace */ +body:not([data-theme="light"]) .highlight .nx { color: #d0d0d0 } /* Name.Other */ +body:not([data-theme="light"]) .highlight .py { color: #d0d0d0 } /* Name.Property */ +body:not([data-theme="light"]) .highlight .nt { color: #6ebf26; font-weight: bold } /* Name.Tag */ +body:not([data-theme="light"]) .highlight .nv { color: #40ffff } /* Name.Variable */ +body:not([data-theme="light"]) .highlight .ow { color: #6ebf26; font-weight: bold } /* Operator.Word */ +body:not([data-theme="light"]) .highlight .pm { color: #d0d0d0 } /* Punctuation.Marker */ +body:not([data-theme="light"]) .highlight .w { color: #666666 } /* Text.Whitespace */ +body:not([data-theme="light"]) .highlight .mb { color: #51b2fd } /* Literal.Number.Bin */ +body:not([data-theme="light"]) .highlight .mf { color: #51b2fd } /* Literal.Number.Float */ +body:not([data-theme="light"]) .highlight .mh { color: #51b2fd } /* Literal.Number.Hex */ +body:not([data-theme="light"]) .highlight .mi { color: #51b2fd } /* Literal.Number.Integer */ +body:not([data-theme="light"]) .highlight .mo { color: #51b2fd } /* Literal.Number.Oct */ +body:not([data-theme="light"]) .highlight .sa { color: #ed9d13 } /* Literal.String.Affix */ +body:not([data-theme="light"]) .highlight .sb { color: #ed9d13 } /* Literal.String.Backtick */ +body:not([data-theme="light"]) .highlight .sc { color: #ed9d13 } /* Literal.String.Char */ +body:not([data-theme="light"]) .highlight .dl { color: #ed9d13 } /* Literal.String.Delimiter */ +body:not([data-theme="light"]) .highlight .sd { color: #ed9d13 } /* Literal.String.Doc */ +body:not([data-theme="light"]) .highlight .s2 { color: #ed9d13 } /* Literal.String.Double */ +body:not([data-theme="light"]) .highlight .se { color: #ed9d13 } /* Literal.String.Escape */ +body:not([data-theme="light"]) .highlight .sh { color: #ed9d13 } /* Literal.String.Heredoc */ +body:not([data-theme="light"]) .highlight .si { color: #ed9d13 } /* Literal.String.Interpol */ +body:not([data-theme="light"]) .highlight .sx { color: #ffa500 } /* Literal.String.Other */ +body:not([data-theme="light"]) .highlight .sr { color: #ed9d13 } /* Literal.String.Regex */ +body:not([data-theme="light"]) .highlight .s1 { color: #ed9d13 } /* Literal.String.Single */ +body:not([data-theme="light"]) .highlight .ss { color: #ed9d13 } /* Literal.String.Symbol */ +body:not([data-theme="light"]) .highlight .bp { color: #2fbccd } /* Name.Builtin.Pseudo */ +body:not([data-theme="light"]) .highlight .fm { color: #71adff } /* Name.Function.Magic */ +body:not([data-theme="light"]) .highlight .vc { color: #40ffff } /* Name.Variable.Class */ +body:not([data-theme="light"]) .highlight .vg { color: #40ffff } /* Name.Variable.Global */ +body:not([data-theme="light"]) .highlight .vi { color: #40ffff } /* Name.Variable.Instance */ +body:not([data-theme="light"]) .highlight .vm { color: #40ffff } /* Name.Variable.Magic */ +body:not([data-theme="light"]) .highlight .il { color: #51b2fd } /* Literal.Number.Integer.Long */ +} +} \ No newline at end of file diff --git a/v2.6.5/_static/scripts/furo-extensions.js b/v2.6.5/_static/scripts/furo-extensions.js new file mode 100644 index 000000000..e69de29bb diff --git a/v2.6.5/_static/scripts/furo.js b/v2.6.5/_static/scripts/furo.js new file mode 100644 index 000000000..32e7c05be --- /dev/null +++ b/v2.6.5/_static/scripts/furo.js @@ -0,0 +1,3 @@ +/*! For license information please see furo.js.LICENSE.txt */ +(()=>{var t={212:function(t,e,n){var o,r;r=void 0!==n.g?n.g:"undefined"!=typeof window?window:this,o=function(){return function(t){"use strict";var e={navClass:"active",contentClass:"active",nested:!1,nestedClass:"active",offset:0,reflow:!1,events:!0},n=function(t,e,n){if(n.settings.events){var o=new CustomEvent(t,{bubbles:!0,cancelable:!0,detail:n});e.dispatchEvent(o)}},o=function(t){var e=0;if(t.offsetParent)for(;t;)e+=t.offsetTop,t=t.offsetParent;return e>=0?e:0},r=function(t){t&&t.sort((function(t,e){return o(t.content)=Math.max(document.body.scrollHeight,document.documentElement.scrollHeight,document.body.offsetHeight,document.documentElement.offsetHeight,document.body.clientHeight,document.documentElement.clientHeight)},l=function(t,e){var n=t[t.length-1];if(function(t,e){return!(!s()||!c(t.content,e,!0))}(n,e))return n;for(var o=t.length-1;o>=0;o--)if(c(t[o].content,e))return t[o]},a=function(t,e){if(e.nested&&t.parentNode){var n=t.parentNode.closest("li");n&&(n.classList.remove(e.nestedClass),a(n,e))}},i=function(t,e){if(t){var o=t.nav.closest("li");o&&(o.classList.remove(e.navClass),t.content.classList.remove(e.contentClass),a(o,e),n("gumshoeDeactivate",o,{link:t.nav,content:t.content,settings:e}))}},u=function(t,e){if(e.nested){var n=t.parentNode.closest("li");n&&(n.classList.add(e.nestedClass),u(n,e))}};return function(o,c){var s,a,d,f,m,v={setup:function(){s=document.querySelectorAll(o),a=[],Array.prototype.forEach.call(s,(function(t){var e=document.getElementById(decodeURIComponent(t.hash.substr(1)));e&&a.push({nav:t,content:e})})),r(a)},detect:function(){var t=l(a,m);t?d&&t.content===d.content||(i(d,m),function(t,e){if(t){var o=t.nav.closest("li");o&&(o.classList.add(e.navClass),t.content.classList.add(e.contentClass),u(o,e),n("gumshoeActivate",o,{link:t.nav,content:t.content,settings:e}))}}(t,m),d=t):d&&(i(d,m),d=null)}},h=function(e){f&&t.cancelAnimationFrame(f),f=t.requestAnimationFrame(v.detect)},g=function(e){f&&t.cancelAnimationFrame(f),f=t.requestAnimationFrame((function(){r(a),v.detect()}))};return v.destroy=function(){d&&i(d,m),t.removeEventListener("scroll",h,!1),m.reflow&&t.removeEventListener("resize",g,!1),a=null,s=null,d=null,f=null,m=null},m=function(){var t={};return Array.prototype.forEach.call(arguments,(function(e){for(var n in e){if(!e.hasOwnProperty(n))return;t[n]=e[n]}})),t}(e,c||{}),v.setup(),v.detect(),t.addEventListener("scroll",h,!1),m.reflow&&t.addEventListener("resize",g,!1),v}}(r)}.apply(e,[]),void 0===o||(t.exports=o)}},e={};function n(o){var r=e[o];if(void 0!==r)return r.exports;var c=e[o]={exports:{}};return t[o].call(c.exports,c,c.exports,n),c.exports}n.n=t=>{var e=t&&t.__esModule?()=>t.default:()=>t;return n.d(e,{a:e}),e},n.d=(t,e)=>{for(var o in e)n.o(e,o)&&!n.o(t,o)&&Object.defineProperty(t,o,{enumerable:!0,get:e[o]})},n.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||new Function("return this")()}catch(t){if("object"==typeof window)return window}}(),n.o=(t,e)=>Object.prototype.hasOwnProperty.call(t,e),(()=>{"use strict";var t=n(212),e=n.n(t),o=null,r=null,c=window.pageYOffset||document.documentElement.scrollTop;const s=64;function l(){const t=localStorage.getItem("theme")||"auto";var e;"light"!==(e=window.matchMedia("(prefers-color-scheme: dark)").matches?"auto"===t?"light":"light"==t?"dark":"auto":"auto"===t?"dark":"dark"==t?"light":"auto")&&"dark"!==e&&"auto"!==e&&(console.error(`Got invalid theme mode: ${e}. Resetting to auto.`),e="auto"),document.body.dataset.theme=e,localStorage.setItem("theme",e),console.log(`Changed to ${e} mode.`)}function a(){!function(){const t=document.getElementsByClassName("theme-toggle");Array.from(t).forEach((t=>{t.addEventListener("click",l)}))}(),function(){let t=0,e=!1;window.addEventListener("scroll",(function(n){t=window.scrollY,e||(window.requestAnimationFrame((function(){var n;n=t,0==Math.floor(r.getBoundingClientRect().top)?r.classList.add("scrolled"):r.classList.remove("scrolled"),function(t){tc&&document.documentElement.classList.remove("show-back-to-top"),c=t}(n),function(t){null!==o&&(0==t?o.scrollTo(0,0):Math.ceil(t)>=Math.floor(document.documentElement.scrollHeight-window.innerHeight)?o.scrollTo(0,o.scrollHeight):document.querySelector(".scroll-current"))}(n),e=!1})),e=!0)})),window.scroll()}(),null!==o&&new(e())(".toc-tree a",{reflow:!0,recursive:!0,navClass:"scroll-current",offset:()=>{let t=parseFloat(getComputedStyle(document.documentElement).fontSize);return r.getBoundingClientRect().height+.5*t+1}})}document.addEventListener("DOMContentLoaded",(function(){document.body.parentNode.classList.remove("no-js"),r=document.querySelector("header"),o=document.querySelector(".toc-scroll"),a()}))})()})(); +//# sourceMappingURL=furo.js.map \ No newline at end of file diff --git a/v2.6.5/_static/scripts/furo.js.LICENSE.txt b/v2.6.5/_static/scripts/furo.js.LICENSE.txt new file mode 100644 index 000000000..1632189c7 --- /dev/null +++ b/v2.6.5/_static/scripts/furo.js.LICENSE.txt @@ -0,0 +1,7 @@ +/*! + * gumshoejs v5.1.2 (patched by @pradyunsg) + * A simple, framework-agnostic scrollspy script. + * (c) 2019 Chris Ferdinandi + * MIT License + * http://github.com/cferdinandi/gumshoe + */ diff --git a/v2.6.5/_static/scripts/furo.js.map b/v2.6.5/_static/scripts/furo.js.map new file mode 100644 index 000000000..7b7ddb113 --- /dev/null +++ b/v2.6.5/_static/scripts/furo.js.map @@ -0,0 +1 @@ +{"version":3,"file":"scripts/furo.js","mappings":";iCAAA,MAQWA,SAWS,IAAX,EAAAC,EACH,EAAAA,EACkB,oBAAXC,OACPA,OACAC,KAbS,EAAF,WACP,OAaJ,SAAUD,GACR,aAMA,IAAIE,EAAW,CAEbC,SAAU,SACVC,aAAc,SAGdC,QAAQ,EACRC,YAAa,SAGbC,OAAQ,EACRC,QAAQ,EAGRC,QAAQ,GA6BNC,EAAY,SAAUC,EAAMC,EAAMC,GAEpC,GAAKA,EAAOC,SAASL,OAArB,CAGA,IAAIM,EAAQ,IAAIC,YAAYL,EAAM,CAChCM,SAAS,EACTC,YAAY,EACZL,OAAQA,IAIVD,EAAKO,cAAcJ,EAVgB,CAWrC,EAOIK,EAAe,SAAUR,GAC3B,IAAIS,EAAW,EACf,GAAIT,EAAKU,aACP,KAAOV,GACLS,GAAYT,EAAKW,UACjBX,EAAOA,EAAKU,aAGhB,OAAOD,GAAY,EAAIA,EAAW,CACpC,EAMIG,EAAe,SAAUC,GACvBA,GACFA,EAASC,MAAK,SAAUC,EAAOC,GAG7B,OAFcR,EAAaO,EAAME,SACnBT,EAAaQ,EAAMC,UACF,EACxB,CACT,GAEJ,EAwCIC,EAAW,SAAUlB,EAAME,EAAUiB,GACvC,IAAIC,EAASpB,EAAKqB,wBACd1B,EAnCU,SAAUO,GAExB,MAA+B,mBAApBA,EAASP,OACX2B,WAAWpB,EAASP,UAItB2B,WAAWpB,EAASP,OAC7B,CA2Be4B,CAAUrB,GACvB,OAAIiB,EAEAK,SAASJ,EAAOD,OAAQ,KACvB/B,EAAOqC,aAAeC,SAASC,gBAAgBC,cAG7CJ,SAASJ,EAAOS,IAAK,KAAOlC,CACrC,EAMImC,EAAa,WACf,OACEC,KAAKC,KAAK5C,EAAOqC,YAAcrC,EAAO6C,cAnCjCF,KAAKG,IACVR,SAASS,KAAKC,aACdV,SAASC,gBAAgBS,aACzBV,SAASS,KAAKE,aACdX,SAASC,gBAAgBU,aACzBX,SAASS,KAAKP,aACdF,SAASC,gBAAgBC,aAkC7B,EAmBIU,EAAY,SAAUzB,EAAUX,GAClC,IAAIqC,EAAO1B,EAASA,EAAS2B,OAAS,GACtC,GAbgB,SAAUC,EAAMvC,GAChC,SAAI4B,MAAgBZ,EAASuB,EAAKxB,QAASf,GAAU,GAEvD,CAUMwC,CAAYH,EAAMrC,GAAW,OAAOqC,EACxC,IAAK,IAAII,EAAI9B,EAAS2B,OAAS,EAAGG,GAAK,EAAGA,IACxC,GAAIzB,EAASL,EAAS8B,GAAG1B,QAASf,GAAW,OAAOW,EAAS8B,EAEjE,EAOIC,EAAmB,SAAUC,EAAK3C,GAEpC,GAAKA,EAAST,QAAWoD,EAAIC,WAA7B,CAGA,IAAIC,EAAKF,EAAIC,WAAWE,QAAQ,MAC3BD,IAGLA,EAAGE,UAAUC,OAAOhD,EAASR,aAG7BkD,EAAiBG,EAAI7C,GAV0B,CAWjD,EAOIiD,EAAa,SAAUC,EAAOlD,GAEhC,GAAKkD,EAAL,CAGA,IAAIL,EAAKK,EAAMP,IAAIG,QAAQ,MACtBD,IAGLA,EAAGE,UAAUC,OAAOhD,EAASX,UAC7B6D,EAAMnC,QAAQgC,UAAUC,OAAOhD,EAASV,cAGxCoD,EAAiBG,EAAI7C,GAGrBJ,EAAU,oBAAqBiD,EAAI,CACjCM,KAAMD,EAAMP,IACZ5B,QAASmC,EAAMnC,QACff,SAAUA,IAjBM,CAmBpB,EAOIoD,EAAiB,SAAUT,EAAK3C,GAElC,GAAKA,EAAST,OAAd,CAGA,IAAIsD,EAAKF,EAAIC,WAAWE,QAAQ,MAC3BD,IAGLA,EAAGE,UAAUM,IAAIrD,EAASR,aAG1B4D,EAAeP,EAAI7C,GAVS,CAW9B,EA6LA,OA1JkB,SAAUsD,EAAUC,GAKpC,IACIC,EAAU7C,EAAU8C,EAASC,EAAS1D,EADtC2D,EAAa,CAUjBA,MAAmB,WAEjBH,EAAWhC,SAASoC,iBAAiBN,GAGrC3C,EAAW,GAGXkD,MAAMC,UAAUC,QAAQC,KAAKR,GAAU,SAAUjB,GAE/C,IAAIxB,EAAUS,SAASyC,eACrBC,mBAAmB3B,EAAK4B,KAAKC,OAAO,KAEjCrD,GAGLJ,EAAS0D,KAAK,CACZ1B,IAAKJ,EACLxB,QAASA,GAEb,IAGAL,EAAaC,EACf,EAKAgD,OAAoB,WAElB,IAAIW,EAASlC,EAAUzB,EAAUX,GAG5BsE,EASDb,GAAWa,EAAOvD,UAAY0C,EAAQ1C,UAG1CkC,EAAWQ,EAASzD,GAzFT,SAAUkD,EAAOlD,GAE9B,GAAKkD,EAAL,CAGA,IAAIL,EAAKK,EAAMP,IAAIG,QAAQ,MACtBD,IAGLA,EAAGE,UAAUM,IAAIrD,EAASX,UAC1B6D,EAAMnC,QAAQgC,UAAUM,IAAIrD,EAASV,cAGrC8D,EAAeP,EAAI7C,GAGnBJ,EAAU,kBAAmBiD,EAAI,CAC/BM,KAAMD,EAAMP,IACZ5B,QAASmC,EAAMnC,QACff,SAAUA,IAjBM,CAmBpB,CAqEIuE,CAASD,EAAQtE,GAGjByD,EAAUa,GAfJb,IACFR,EAAWQ,EAASzD,GACpByD,EAAU,KAchB,GAMIe,EAAgB,SAAUvE,GAExByD,GACFxE,EAAOuF,qBAAqBf,GAI9BA,EAAUxE,EAAOwF,sBAAsBf,EAAWgB,OACpD,EAMIC,EAAgB,SAAU3E,GAExByD,GACFxE,EAAOuF,qBAAqBf,GAI9BA,EAAUxE,EAAOwF,uBAAsB,WACrChE,EAAaC,GACbgD,EAAWgB,QACb,GACF,EAkDA,OA7CAhB,EAAWkB,QAAU,WAEfpB,GACFR,EAAWQ,EAASzD,GAItBd,EAAO4F,oBAAoB,SAAUN,GAAe,GAChDxE,EAASN,QACXR,EAAO4F,oBAAoB,SAAUF,GAAe,GAItDjE,EAAW,KACX6C,EAAW,KACXC,EAAU,KACVC,EAAU,KACV1D,EAAW,IACb,EAOEA,EA3XS,WACX,IAAI+E,EAAS,CAAC,EAOd,OANAlB,MAAMC,UAAUC,QAAQC,KAAKgB,WAAW,SAAUC,GAChD,IAAK,IAAIC,KAAOD,EAAK,CACnB,IAAKA,EAAIE,eAAeD,GAAM,OAC9BH,EAAOG,GAAOD,EAAIC,EACpB,CACF,IACOH,CACT,CAkXeK,CAAOhG,EAAUmE,GAAW,CAAC,GAGxCI,EAAW0B,QAGX1B,EAAWgB,SAGXzF,EAAOoG,iBAAiB,SAAUd,GAAe,GAC7CxE,EAASN,QACXR,EAAOoG,iBAAiB,SAAUV,GAAe,GAS9CjB,CACT,CAOF,CArcW4B,CAAQvG,EAChB,UAFM,SAEN,uBCXDwG,EAA2B,CAAC,EAGhC,SAASC,EAAoBC,GAE5B,IAAIC,EAAeH,EAAyBE,GAC5C,QAAqBE,IAAjBD,EACH,OAAOA,EAAaE,QAGrB,IAAIC,EAASN,EAAyBE,GAAY,CAGjDG,QAAS,CAAC,GAOX,OAHAE,EAAoBL,GAAU1B,KAAK8B,EAAOD,QAASC,EAAQA,EAAOD,QAASJ,GAGpEK,EAAOD,OACf,CCrBAJ,EAAoBO,EAAKF,IACxB,IAAIG,EAASH,GAAUA,EAAOI,WAC7B,IAAOJ,EAAiB,QACxB,IAAM,EAEP,OADAL,EAAoBU,EAAEF,EAAQ,CAAEG,EAAGH,IAC5BA,CAAM,ECLdR,EAAoBU,EAAI,CAACN,EAASQ,KACjC,IAAI,IAAInB,KAAOmB,EACXZ,EAAoBa,EAAED,EAAYnB,KAASO,EAAoBa,EAAET,EAASX,IAC5EqB,OAAOC,eAAeX,EAASX,EAAK,CAAEuB,YAAY,EAAMC,IAAKL,EAAWnB,IAE1E,ECNDO,EAAoBxG,EAAI,WACvB,GAA0B,iBAAf0H,WAAyB,OAAOA,WAC3C,IACC,OAAOxH,MAAQ,IAAIyH,SAAS,cAAb,EAChB,CAAE,MAAOC,GACR,GAAsB,iBAAX3H,OAAqB,OAAOA,MACxC,CACA,CAPuB,GCAxBuG,EAAoBa,EAAI,CAACrB,EAAK6B,IAAUP,OAAOzC,UAAUqB,eAAenB,KAAKiB,EAAK6B,4CCK9EC,EAAY,KACZC,EAAS,KACTC,EAAgB/H,OAAO6C,aAAeP,SAASC,gBAAgByF,UACnE,MAAMC,EAAmB,GA2EzB,SAASC,IACP,MAAMC,EAAeC,aAAaC,QAAQ,UAAY,OAZxD,IAAkBC,EACH,WADGA,EAaItI,OAAOuI,WAAW,gCAAgCC,QAI/C,SAAjBL,EACO,QACgB,SAAhBA,EACA,OAEA,OAIU,SAAjBA,EACO,OACgB,QAAhBA,EACA,QAEA,SA9BoB,SAATG,GAA4B,SAATA,IACzCG,QAAQC,MAAM,2BAA2BJ,yBACzCA,EAAO,QAGThG,SAASS,KAAK4F,QAAQC,MAAQN,EAC9BF,aAAaS,QAAQ,QAASP,GAC9BG,QAAQK,IAAI,cAAcR,UA0B5B,CAkDA,SAASnC,KART,WAEE,MAAM4C,EAAUzG,SAAS0G,uBAAuB,gBAChDrE,MAAMsE,KAAKF,GAASlE,SAASqE,IAC3BA,EAAI9C,iBAAiB,QAAS8B,EAAe,GAEjD,CAGEiB,GA9CF,WAEE,IAAIC,EAA6B,EAC7BC,GAAU,EAEdrJ,OAAOoG,iBAAiB,UAAU,SAAUuB,GAC1CyB,EAA6BpJ,OAAOsJ,QAE/BD,IACHrJ,OAAOwF,uBAAsB,WAzDnC,IAAuB+D,IA0DDH,EA9GkC,GAAlDzG,KAAK6G,MAAM1B,EAAO7F,wBAAwBQ,KAC5CqF,EAAOjE,UAAUM,IAAI,YAErB2D,EAAOjE,UAAUC,OAAO,YAI5B,SAAmCyF,GAC7BA,EAAYtB,EACd3F,SAASC,gBAAgBsB,UAAUC,OAAO,oBAEtCyF,EAAYxB,EACdzF,SAASC,gBAAgBsB,UAAUM,IAAI,oBAC9BoF,EAAYxB,GACrBzF,SAASC,gBAAgBsB,UAAUC,OAAO,oBAG9CiE,EAAgBwB,CAClB,CAoCEE,CAA0BF,GAlC5B,SAA6BA,GACT,OAAd1B,IAKa,GAAb0B,EACF1B,EAAU6B,SAAS,EAAG,GAGtB/G,KAAKC,KAAK2G,IACV5G,KAAK6G,MAAMlH,SAASC,gBAAgBS,aAAehD,OAAOqC,aAE1DwF,EAAU6B,SAAS,EAAG7B,EAAU7E,cAGhBV,SAASqH,cAAc,mBAc3C,CAKEC,CAAoBL,GAwDdF,GAAU,CACZ,IAEAA,GAAU,EAEd,IACArJ,OAAO6J,QACT,CA6BEC,GA1BkB,OAAdjC,GAKJ,IAAI,IAAJ,CAAY,cAAe,CACzBrH,QAAQ,EACRuJ,WAAW,EACX5J,SAAU,iBACVI,OAAQ,KACN,IAAIyJ,EAAM9H,WAAW+H,iBAAiB3H,SAASC,iBAAiB2H,UAChE,OAAOpC,EAAO7F,wBAAwBkI,OAAS,GAAMH,EAAM,CAAC,GAiBlE,CAcA1H,SAAS8D,iBAAiB,oBAT1B,WACE9D,SAASS,KAAKW,WAAWG,UAAUC,OAAO,SAE1CgE,EAASxF,SAASqH,cAAc,UAChC9B,EAAYvF,SAASqH,cAAc,eAEnCxD,GACF","sources":["webpack:///./src/furo/assets/scripts/gumshoe-patched.js","webpack:///webpack/bootstrap","webpack:///webpack/runtime/compat get default export","webpack:///webpack/runtime/define property getters","webpack:///webpack/runtime/global","webpack:///webpack/runtime/hasOwnProperty shorthand","webpack:///./src/furo/assets/scripts/furo.js"],"sourcesContent":["/*!\n * gumshoejs v5.1.2 (patched by @pradyunsg)\n * A simple, framework-agnostic scrollspy script.\n * (c) 2019 Chris Ferdinandi\n * MIT License\n * http://github.com/cferdinandi/gumshoe\n */\n\n(function (root, factory) {\n if (typeof define === \"function\" && define.amd) {\n define([], function () {\n return factory(root);\n });\n } else if (typeof exports === \"object\") {\n module.exports = factory(root);\n } else {\n root.Gumshoe = factory(root);\n }\n})(\n typeof global !== \"undefined\"\n ? global\n : typeof window !== \"undefined\"\n ? window\n : this,\n function (window) {\n \"use strict\";\n\n //\n // Defaults\n //\n\n var defaults = {\n // Active classes\n navClass: \"active\",\n contentClass: \"active\",\n\n // Nested navigation\n nested: false,\n nestedClass: \"active\",\n\n // Offset & reflow\n offset: 0,\n reflow: false,\n\n // Event support\n events: true,\n };\n\n //\n // Methods\n //\n\n /**\n * Merge two or more objects together.\n * @param {Object} objects The objects to merge together\n * @returns {Object} Merged values of defaults and options\n */\n var extend = function () {\n var merged = {};\n Array.prototype.forEach.call(arguments, function (obj) {\n for (var key in obj) {\n if (!obj.hasOwnProperty(key)) return;\n merged[key] = obj[key];\n }\n });\n return merged;\n };\n\n /**\n * Emit a custom event\n * @param {String} type The event type\n * @param {Node} elem The element to attach the event to\n * @param {Object} detail Any details to pass along with the event\n */\n var emitEvent = function (type, elem, detail) {\n // Make sure events are enabled\n if (!detail.settings.events) return;\n\n // Create a new event\n var event = new CustomEvent(type, {\n bubbles: true,\n cancelable: true,\n detail: detail,\n });\n\n // Dispatch the event\n elem.dispatchEvent(event);\n };\n\n /**\n * Get an element's distance from the top of the Document.\n * @param {Node} elem The element\n * @return {Number} Distance from the top in pixels\n */\n var getOffsetTop = function (elem) {\n var location = 0;\n if (elem.offsetParent) {\n while (elem) {\n location += elem.offsetTop;\n elem = elem.offsetParent;\n }\n }\n return location >= 0 ? location : 0;\n };\n\n /**\n * Sort content from first to last in the DOM\n * @param {Array} contents The content areas\n */\n var sortContents = function (contents) {\n if (contents) {\n contents.sort(function (item1, item2) {\n var offset1 = getOffsetTop(item1.content);\n var offset2 = getOffsetTop(item2.content);\n if (offset1 < offset2) return -1;\n return 1;\n });\n }\n };\n\n /**\n * Get the offset to use for calculating position\n * @param {Object} settings The settings for this instantiation\n * @return {Float} The number of pixels to offset the calculations\n */\n var getOffset = function (settings) {\n // if the offset is a function run it\n if (typeof settings.offset === \"function\") {\n return parseFloat(settings.offset());\n }\n\n // Otherwise, return it as-is\n return parseFloat(settings.offset);\n };\n\n /**\n * Get the document element's height\n * @private\n * @returns {Number}\n */\n var getDocumentHeight = function () {\n return Math.max(\n document.body.scrollHeight,\n document.documentElement.scrollHeight,\n document.body.offsetHeight,\n document.documentElement.offsetHeight,\n document.body.clientHeight,\n document.documentElement.clientHeight,\n );\n };\n\n /**\n * Determine if an element is in view\n * @param {Node} elem The element\n * @param {Object} settings The settings for this instantiation\n * @param {Boolean} bottom If true, check if element is above bottom of viewport instead\n * @return {Boolean} Returns true if element is in the viewport\n */\n var isInView = function (elem, settings, bottom) {\n var bounds = elem.getBoundingClientRect();\n var offset = getOffset(settings);\n if (bottom) {\n return (\n parseInt(bounds.bottom, 10) <\n (window.innerHeight || document.documentElement.clientHeight)\n );\n }\n return parseInt(bounds.top, 10) <= offset;\n };\n\n /**\n * Check if at the bottom of the viewport\n * @return {Boolean} If true, page is at the bottom of the viewport\n */\n var isAtBottom = function () {\n if (\n Math.ceil(window.innerHeight + window.pageYOffset) >=\n getDocumentHeight()\n )\n return true;\n return false;\n };\n\n /**\n * Check if the last item should be used (even if not at the top of the page)\n * @param {Object} item The last item\n * @param {Object} settings The settings for this instantiation\n * @return {Boolean} If true, use the last item\n */\n var useLastItem = function (item, settings) {\n if (isAtBottom() && isInView(item.content, settings, true)) return true;\n return false;\n };\n\n /**\n * Get the active content\n * @param {Array} contents The content areas\n * @param {Object} settings The settings for this instantiation\n * @return {Object} The content area and matching navigation link\n */\n var getActive = function (contents, settings) {\n var last = contents[contents.length - 1];\n if (useLastItem(last, settings)) return last;\n for (var i = contents.length - 1; i >= 0; i--) {\n if (isInView(contents[i].content, settings)) return contents[i];\n }\n };\n\n /**\n * Deactivate parent navs in a nested navigation\n * @param {Node} nav The starting navigation element\n * @param {Object} settings The settings for this instantiation\n */\n var deactivateNested = function (nav, settings) {\n // If nesting isn't activated, bail\n if (!settings.nested || !nav.parentNode) return;\n\n // Get the parent navigation\n var li = nav.parentNode.closest(\"li\");\n if (!li) return;\n\n // Remove the active class\n li.classList.remove(settings.nestedClass);\n\n // Apply recursively to any parent navigation elements\n deactivateNested(li, settings);\n };\n\n /**\n * Deactivate a nav and content area\n * @param {Object} items The nav item and content to deactivate\n * @param {Object} settings The settings for this instantiation\n */\n var deactivate = function (items, settings) {\n // Make sure there are items to deactivate\n if (!items) return;\n\n // Get the parent list item\n var li = items.nav.closest(\"li\");\n if (!li) return;\n\n // Remove the active class from the nav and content\n li.classList.remove(settings.navClass);\n items.content.classList.remove(settings.contentClass);\n\n // Deactivate any parent navs in a nested navigation\n deactivateNested(li, settings);\n\n // Emit a custom event\n emitEvent(\"gumshoeDeactivate\", li, {\n link: items.nav,\n content: items.content,\n settings: settings,\n });\n };\n\n /**\n * Activate parent navs in a nested navigation\n * @param {Node} nav The starting navigation element\n * @param {Object} settings The settings for this instantiation\n */\n var activateNested = function (nav, settings) {\n // If nesting isn't activated, bail\n if (!settings.nested) return;\n\n // Get the parent navigation\n var li = nav.parentNode.closest(\"li\");\n if (!li) return;\n\n // Add the active class\n li.classList.add(settings.nestedClass);\n\n // Apply recursively to any parent navigation elements\n activateNested(li, settings);\n };\n\n /**\n * Activate a nav and content area\n * @param {Object} items The nav item and content to activate\n * @param {Object} settings The settings for this instantiation\n */\n var activate = function (items, settings) {\n // Make sure there are items to activate\n if (!items) return;\n\n // Get the parent list item\n var li = items.nav.closest(\"li\");\n if (!li) return;\n\n // Add the active class to the nav and content\n li.classList.add(settings.navClass);\n items.content.classList.add(settings.contentClass);\n\n // Activate any parent navs in a nested navigation\n activateNested(li, settings);\n\n // Emit a custom event\n emitEvent(\"gumshoeActivate\", li, {\n link: items.nav,\n content: items.content,\n settings: settings,\n });\n };\n\n /**\n * Create the Constructor object\n * @param {String} selector The selector to use for navigation items\n * @param {Object} options User options and settings\n */\n var Constructor = function (selector, options) {\n //\n // Variables\n //\n\n var publicAPIs = {};\n var navItems, contents, current, timeout, settings;\n\n //\n // Methods\n //\n\n /**\n * Set variables from DOM elements\n */\n publicAPIs.setup = function () {\n // Get all nav items\n navItems = document.querySelectorAll(selector);\n\n // Create contents array\n contents = [];\n\n // Loop through each item, get it's matching content, and push to the array\n Array.prototype.forEach.call(navItems, function (item) {\n // Get the content for the nav item\n var content = document.getElementById(\n decodeURIComponent(item.hash.substr(1)),\n );\n if (!content) return;\n\n // Push to the contents array\n contents.push({\n nav: item,\n content: content,\n });\n });\n\n // Sort contents by the order they appear in the DOM\n sortContents(contents);\n };\n\n /**\n * Detect which content is currently active\n */\n publicAPIs.detect = function () {\n // Get the active content\n var active = getActive(contents, settings);\n\n // if there's no active content, deactivate and bail\n if (!active) {\n if (current) {\n deactivate(current, settings);\n current = null;\n }\n return;\n }\n\n // If the active content is the one currently active, do nothing\n if (current && active.content === current.content) return;\n\n // Deactivate the current content and activate the new content\n deactivate(current, settings);\n activate(active, settings);\n\n // Update the currently active content\n current = active;\n };\n\n /**\n * Detect the active content on scroll\n * Debounced for performance\n */\n var scrollHandler = function (event) {\n // If there's a timer, cancel it\n if (timeout) {\n window.cancelAnimationFrame(timeout);\n }\n\n // Setup debounce callback\n timeout = window.requestAnimationFrame(publicAPIs.detect);\n };\n\n /**\n * Update content sorting on resize\n * Debounced for performance\n */\n var resizeHandler = function (event) {\n // If there's a timer, cancel it\n if (timeout) {\n window.cancelAnimationFrame(timeout);\n }\n\n // Setup debounce callback\n timeout = window.requestAnimationFrame(function () {\n sortContents(contents);\n publicAPIs.detect();\n });\n };\n\n /**\n * Destroy the current instantiation\n */\n publicAPIs.destroy = function () {\n // Undo DOM changes\n if (current) {\n deactivate(current, settings);\n }\n\n // Remove event listeners\n window.removeEventListener(\"scroll\", scrollHandler, false);\n if (settings.reflow) {\n window.removeEventListener(\"resize\", resizeHandler, false);\n }\n\n // Reset variables\n contents = null;\n navItems = null;\n current = null;\n timeout = null;\n settings = null;\n };\n\n /**\n * Initialize the current instantiation\n */\n var init = function () {\n // Merge user options into defaults\n settings = extend(defaults, options || {});\n\n // Setup variables based on the current DOM\n publicAPIs.setup();\n\n // Find the currently active content\n publicAPIs.detect();\n\n // Setup event listeners\n window.addEventListener(\"scroll\", scrollHandler, false);\n if (settings.reflow) {\n window.addEventListener(\"resize\", resizeHandler, false);\n }\n };\n\n //\n // Initialize and return the public APIs\n //\n\n init();\n return publicAPIs;\n };\n\n //\n // Return the Constructor\n //\n\n return Constructor;\n },\n);\n","// The module cache\nvar __webpack_module_cache__ = {};\n\n// The require function\nfunction __webpack_require__(moduleId) {\n\t// Check if module is in cache\n\tvar cachedModule = __webpack_module_cache__[moduleId];\n\tif (cachedModule !== undefined) {\n\t\treturn cachedModule.exports;\n\t}\n\t// Create a new module (and put it into the cache)\n\tvar module = __webpack_module_cache__[moduleId] = {\n\t\t// no module.id needed\n\t\t// no module.loaded needed\n\t\texports: {}\n\t};\n\n\t// Execute the module function\n\t__webpack_modules__[moduleId].call(module.exports, module, module.exports, __webpack_require__);\n\n\t// Return the exports of the module\n\treturn module.exports;\n}\n\n","// getDefaultExport function for compatibility with non-harmony modules\n__webpack_require__.n = (module) => {\n\tvar getter = module && module.__esModule ?\n\t\t() => (module['default']) :\n\t\t() => (module);\n\t__webpack_require__.d(getter, { a: getter });\n\treturn getter;\n};","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.g = (function() {\n\tif (typeof globalThis === 'object') return globalThis;\n\ttry {\n\t\treturn this || new Function('return this')();\n\t} catch (e) {\n\t\tif (typeof window === 'object') return window;\n\t}\n})();","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","import Gumshoe from \"./gumshoe-patched.js\";\n\n////////////////////////////////////////////////////////////////////////////////\n// Scroll Handling\n////////////////////////////////////////////////////////////////////////////////\nvar tocScroll = null;\nvar header = null;\nvar lastScrollTop = window.pageYOffset || document.documentElement.scrollTop;\nconst GO_TO_TOP_OFFSET = 64;\n\nfunction scrollHandlerForHeader() {\n if (Math.floor(header.getBoundingClientRect().top) == 0) {\n header.classList.add(\"scrolled\");\n } else {\n header.classList.remove(\"scrolled\");\n }\n}\n\nfunction scrollHandlerForBackToTop(positionY) {\n if (positionY < GO_TO_TOP_OFFSET) {\n document.documentElement.classList.remove(\"show-back-to-top\");\n } else {\n if (positionY < lastScrollTop) {\n document.documentElement.classList.add(\"show-back-to-top\");\n } else if (positionY > lastScrollTop) {\n document.documentElement.classList.remove(\"show-back-to-top\");\n }\n }\n lastScrollTop = positionY;\n}\n\nfunction scrollHandlerForTOC(positionY) {\n if (tocScroll === null) {\n return;\n }\n\n // top of page.\n if (positionY == 0) {\n tocScroll.scrollTo(0, 0);\n } else if (\n // bottom of page.\n Math.ceil(positionY) >=\n Math.floor(document.documentElement.scrollHeight - window.innerHeight)\n ) {\n tocScroll.scrollTo(0, tocScroll.scrollHeight);\n } else {\n // somewhere in the middle.\n const current = document.querySelector(\".scroll-current\");\n if (current == null) {\n return;\n }\n\n // https://github.com/pypa/pip/issues/9159 This breaks scroll behaviours.\n // // scroll the currently \"active\" heading in toc, into view.\n // const rect = current.getBoundingClientRect();\n // if (0 > rect.top) {\n // current.scrollIntoView(true); // the argument is \"alignTop\"\n // } else if (rect.bottom > window.innerHeight) {\n // current.scrollIntoView(false);\n // }\n }\n}\n\nfunction scrollHandler(positionY) {\n scrollHandlerForHeader();\n scrollHandlerForBackToTop(positionY);\n scrollHandlerForTOC(positionY);\n}\n\n////////////////////////////////////////////////////////////////////////////////\n// Theme Toggle\n////////////////////////////////////////////////////////////////////////////////\nfunction setTheme(mode) {\n if (mode !== \"light\" && mode !== \"dark\" && mode !== \"auto\") {\n console.error(`Got invalid theme mode: ${mode}. Resetting to auto.`);\n mode = \"auto\";\n }\n\n document.body.dataset.theme = mode;\n localStorage.setItem(\"theme\", mode);\n console.log(`Changed to ${mode} mode.`);\n}\n\nfunction cycleThemeOnce() {\n const currentTheme = localStorage.getItem(\"theme\") || \"auto\";\n const prefersDark = window.matchMedia(\"(prefers-color-scheme: dark)\").matches;\n\n if (prefersDark) {\n // Auto (dark) -> Light -> Dark\n if (currentTheme === \"auto\") {\n setTheme(\"light\");\n } else if (currentTheme == \"light\") {\n setTheme(\"dark\");\n } else {\n setTheme(\"auto\");\n }\n } else {\n // Auto (light) -> Dark -> Light\n if (currentTheme === \"auto\") {\n setTheme(\"dark\");\n } else if (currentTheme == \"dark\") {\n setTheme(\"light\");\n } else {\n setTheme(\"auto\");\n }\n }\n}\n\n////////////////////////////////////////////////////////////////////////////////\n// Setup\n////////////////////////////////////////////////////////////////////////////////\nfunction setupScrollHandler() {\n // Taken from https://developer.mozilla.org/en-US/docs/Web/API/Document/scroll_event\n let last_known_scroll_position = 0;\n let ticking = false;\n\n window.addEventListener(\"scroll\", function (e) {\n last_known_scroll_position = window.scrollY;\n\n if (!ticking) {\n window.requestAnimationFrame(function () {\n scrollHandler(last_known_scroll_position);\n ticking = false;\n });\n\n ticking = true;\n }\n });\n window.scroll();\n}\n\nfunction setupScrollSpy() {\n if (tocScroll === null) {\n return;\n }\n\n // Scrollspy -- highlight table on contents, based on scroll\n new Gumshoe(\".toc-tree a\", {\n reflow: true,\n recursive: true,\n navClass: \"scroll-current\",\n offset: () => {\n let rem = parseFloat(getComputedStyle(document.documentElement).fontSize);\n return header.getBoundingClientRect().height + 0.5 * rem + 1;\n },\n });\n}\n\nfunction setupTheme() {\n // Attach event handlers for toggling themes\n const buttons = document.getElementsByClassName(\"theme-toggle\");\n Array.from(buttons).forEach((btn) => {\n btn.addEventListener(\"click\", cycleThemeOnce);\n });\n}\n\nfunction setup() {\n setupTheme();\n setupScrollHandler();\n setupScrollSpy();\n}\n\n////////////////////////////////////////////////////////////////////////////////\n// Main entrypoint\n////////////////////////////////////////////////////////////////////////////////\nfunction main() {\n document.body.parentNode.classList.remove(\"no-js\");\n\n header = document.querySelector(\"header\");\n tocScroll = document.querySelector(\".toc-scroll\");\n\n setup();\n}\n\ndocument.addEventListener(\"DOMContentLoaded\", main);\n"],"names":["root","g","window","this","defaults","navClass","contentClass","nested","nestedClass","offset","reflow","events","emitEvent","type","elem","detail","settings","event","CustomEvent","bubbles","cancelable","dispatchEvent","getOffsetTop","location","offsetParent","offsetTop","sortContents","contents","sort","item1","item2","content","isInView","bottom","bounds","getBoundingClientRect","parseFloat","getOffset","parseInt","innerHeight","document","documentElement","clientHeight","top","isAtBottom","Math","ceil","pageYOffset","max","body","scrollHeight","offsetHeight","getActive","last","length","item","useLastItem","i","deactivateNested","nav","parentNode","li","closest","classList","remove","deactivate","items","link","activateNested","add","selector","options","navItems","current","timeout","publicAPIs","querySelectorAll","Array","prototype","forEach","call","getElementById","decodeURIComponent","hash","substr","push","active","activate","scrollHandler","cancelAnimationFrame","requestAnimationFrame","detect","resizeHandler","destroy","removeEventListener","merged","arguments","obj","key","hasOwnProperty","extend","setup","addEventListener","factory","__webpack_module_cache__","__webpack_require__","moduleId","cachedModule","undefined","exports","module","__webpack_modules__","n","getter","__esModule","d","a","definition","o","Object","defineProperty","enumerable","get","globalThis","Function","e","prop","tocScroll","header","lastScrollTop","scrollTop","GO_TO_TOP_OFFSET","cycleThemeOnce","currentTheme","localStorage","getItem","mode","matchMedia","matches","console","error","dataset","theme","setItem","log","buttons","getElementsByClassName","from","btn","setupTheme","last_known_scroll_position","ticking","scrollY","positionY","floor","scrollHandlerForBackToTop","scrollTo","querySelector","scrollHandlerForTOC","scroll","setupScrollHandler","recursive","rem","getComputedStyle","fontSize","height"],"sourceRoot":""} \ No newline at end of file diff --git a/v2.6.5/_static/searchtools.js b/v2.6.5/_static/searchtools.js new file mode 100644 index 000000000..97d56a74d --- /dev/null +++ b/v2.6.5/_static/searchtools.js @@ -0,0 +1,566 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = docUrlRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = docUrlRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/v2.6.5/_static/skeleton.css b/v2.6.5/_static/skeleton.css new file mode 100644 index 000000000..467c878c6 --- /dev/null +++ b/v2.6.5/_static/skeleton.css @@ -0,0 +1,296 @@ +/* Some sane resets. */ +html { + height: 100%; +} + +body { + margin: 0; + min-height: 100%; +} + +/* All the flexbox magic! */ +body, +.sb-announcement, +.sb-content, +.sb-main, +.sb-container, +.sb-container__inner, +.sb-article-container, +.sb-footer-content, +.sb-header, +.sb-header-secondary, +.sb-footer { + display: flex; +} + +/* These order things vertically */ +body, +.sb-main, +.sb-article-container { + flex-direction: column; +} + +/* Put elements in the center */ +.sb-header, +.sb-header-secondary, +.sb-container, +.sb-content, +.sb-footer, +.sb-footer-content { + justify-content: center; +} +/* Put elements at the ends */ +.sb-article-container { + justify-content: space-between; +} + +/* These elements grow. */ +.sb-main, +.sb-content, +.sb-container, +article { + flex-grow: 1; +} + +/* Because padding making this wider is not fun */ +article { + box-sizing: border-box; +} + +/* The announcements element should never be wider than the page. */ +.sb-announcement { + max-width: 100%; +} + +.sb-sidebar-primary, +.sb-sidebar-secondary { + flex-shrink: 0; + width: 17rem; +} + +.sb-announcement__inner { + justify-content: center; + + box-sizing: border-box; + height: 3rem; + + overflow-x: auto; + white-space: nowrap; +} + +/* Sidebars, with checkbox-based toggle */ +.sb-sidebar-primary, +.sb-sidebar-secondary { + position: fixed; + height: 100%; + top: 0; +} + +.sb-sidebar-primary { + left: -17rem; + transition: left 250ms ease-in-out; +} +.sb-sidebar-secondary { + right: -17rem; + transition: right 250ms ease-in-out; +} + +.sb-sidebar-toggle { + display: none; +} +.sb-sidebar-overlay { + position: fixed; + top: 0; + width: 0; + height: 0; + + transition: width 0ms ease 250ms, height 0ms ease 250ms, opacity 250ms ease; + + opacity: 0; + background-color: rgba(0, 0, 0, 0.54); +} + +#sb-sidebar-toggle--primary:checked + ~ .sb-sidebar-overlay[for="sb-sidebar-toggle--primary"], +#sb-sidebar-toggle--secondary:checked + ~ .sb-sidebar-overlay[for="sb-sidebar-toggle--secondary"] { + width: 100%; + height: 100%; + opacity: 1; + transition: width 0ms ease, height 0ms ease, opacity 250ms ease; +} + +#sb-sidebar-toggle--primary:checked ~ .sb-container .sb-sidebar-primary { + left: 0; +} +#sb-sidebar-toggle--secondary:checked ~ .sb-container .sb-sidebar-secondary { + right: 0; +} + +/* Full-width mode */ +.drop-secondary-sidebar-for-full-width-content + .hide-when-secondary-sidebar-shown { + display: none !important; +} +.drop-secondary-sidebar-for-full-width-content .sb-sidebar-secondary { + display: none !important; +} + +/* Mobile views */ +.sb-page-width { + width: 100%; +} + +.sb-article-container, +.sb-footer-content__inner, +.drop-secondary-sidebar-for-full-width-content .sb-article, +.drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 100vw; +} + +.sb-article, +.match-content-width { + padding: 0 1rem; + box-sizing: border-box; +} + +@media (min-width: 32rem) { + .sb-article, + .match-content-width { + padding: 0 2rem; + } +} + +/* Tablet views */ +@media (min-width: 42rem) { + .sb-article-container { + width: auto; + } + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 42rem; + } + .sb-article, + .match-content-width { + width: 42rem; + } +} +@media (min-width: 46rem) { + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 46rem; + } + .sb-article, + .match-content-width { + width: 46rem; + } +} +@media (min-width: 50rem) { + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 50rem; + } + .sb-article, + .match-content-width { + width: 50rem; + } +} + +/* Tablet views */ +@media (min-width: 59rem) { + .sb-sidebar-secondary { + position: static; + } + .hide-when-secondary-sidebar-shown { + display: none !important; + } + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 59rem; + } + .sb-article, + .match-content-width { + width: 42rem; + } +} +@media (min-width: 63rem) { + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 63rem; + } + .sb-article, + .match-content-width { + width: 46rem; + } +} +@media (min-width: 67rem) { + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 67rem; + } + .sb-article, + .match-content-width { + width: 50rem; + } +} + +/* Desktop views */ +@media (min-width: 76rem) { + .sb-sidebar-primary { + position: static; + } + .hide-when-primary-sidebar-shown { + display: none !important; + } + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 59rem; + } + .sb-article, + .match-content-width { + width: 42rem; + } +} + +/* Full desktop views */ +@media (min-width: 80rem) { + .sb-article, + .match-content-width { + width: 46rem; + } + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 63rem; + } +} + +@media (min-width: 84rem) { + .sb-article, + .match-content-width { + width: 50rem; + } + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 67rem; + } +} + +@media (min-width: 88rem) { + .sb-footer-content__inner, + .drop-secondary-sidebar-for-full-width-content .sb-article, + .drop-secondary-sidebar-for-full-width-content .match-content-width { + width: 67rem; + } + .sb-page-width { + width: 88rem; + } +} diff --git a/v2.6.5/_static/sphinx_highlight.js b/v2.6.5/_static/sphinx_highlight.js new file mode 100644 index 000000000..aae669d7e --- /dev/null +++ b/v2.6.5/_static/sphinx_highlight.js @@ -0,0 +1,144 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + parent.insertBefore( + span, + parent.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(SphinxHighlight.highlightSearchWords); +_ready(SphinxHighlight.initEscapeListener); diff --git a/v2.6.5/_static/styles/furo-extensions.css b/v2.6.5/_static/styles/furo-extensions.css new file mode 100644 index 000000000..bc447f228 --- /dev/null +++ b/v2.6.5/_static/styles/furo-extensions.css @@ -0,0 +1,2 @@ +#furo-sidebar-ad-placement{padding:var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal)}#furo-sidebar-ad-placement .ethical-sidebar{background:var(--color-background-secondary);border:none;box-shadow:none}#furo-sidebar-ad-placement .ethical-sidebar:hover{background:var(--color-background-hover)}#furo-sidebar-ad-placement .ethical-sidebar a{color:var(--color-foreground-primary)}#furo-sidebar-ad-placement .ethical-callout a{color:var(--color-foreground-secondary)!important}#furo-readthedocs-versions{background:transparent;display:block;position:static;width:100%}#furo-readthedocs-versions .rst-versions{background:#1a1c1e}#furo-readthedocs-versions .rst-current-version{background:var(--color-sidebar-item-background);cursor:unset}#furo-readthedocs-versions .rst-current-version:hover{background:var(--color-sidebar-item-background)}#furo-readthedocs-versions .rst-current-version .fa-book{color:var(--color-foreground-primary)}#furo-readthedocs-versions>.rst-other-versions{padding:0}#furo-readthedocs-versions>.rst-other-versions small{opacity:1}#furo-readthedocs-versions .injected .rst-versions{position:unset}#furo-readthedocs-versions:focus-within,#furo-readthedocs-versions:hover{box-shadow:0 0 0 1px var(--color-sidebar-background-border)}#furo-readthedocs-versions:focus-within .rst-current-version,#furo-readthedocs-versions:hover .rst-current-version{background:#1a1c1e;font-size:inherit;height:auto;line-height:inherit;padding:12px;text-align:right}#furo-readthedocs-versions:focus-within .rst-current-version .fa-book,#furo-readthedocs-versions:hover .rst-current-version .fa-book{color:#fff;float:left}#furo-readthedocs-versions:focus-within .fa-caret-down,#furo-readthedocs-versions:hover .fa-caret-down{display:none}#furo-readthedocs-versions:focus-within .injected,#furo-readthedocs-versions:focus-within .rst-current-version,#furo-readthedocs-versions:focus-within .rst-other-versions,#furo-readthedocs-versions:hover .injected,#furo-readthedocs-versions:hover .rst-current-version,#furo-readthedocs-versions:hover .rst-other-versions{display:block}#furo-readthedocs-versions:focus-within>.rst-current-version,#furo-readthedocs-versions:hover>.rst-current-version{display:none}.highlight:hover button.copybtn{color:var(--color-code-foreground)}.highlight button.copybtn{align-items:center;background-color:var(--color-code-background);border:none;color:var(--color-background-item);cursor:pointer;height:1.25em;opacity:1;right:.5rem;top:.625rem;transition:color .3s,opacity .3s;width:1.25em}.highlight button.copybtn:hover{background-color:var(--color-code-background);color:var(--color-brand-content)}.highlight button.copybtn:after{background-color:transparent;color:var(--color-code-foreground);display:none}.highlight button.copybtn.success{color:#22863a;transition:color 0ms}.highlight button.copybtn.success:after{display:block}.highlight button.copybtn svg{padding:0}body{--sd-color-primary:var(--color-brand-primary);--sd-color-primary-highlight:var(--color-brand-content);--sd-color-primary-text:var(--color-background-primary);--sd-color-shadow:rgba(0,0,0,.05);--sd-color-card-border:var(--color-card-border);--sd-color-card-border-hover:var(--color-brand-content);--sd-color-card-background:var(--color-card-background);--sd-color-card-text:var(--color-foreground-primary);--sd-color-card-header:var(--color-card-marginals-background);--sd-color-card-footer:var(--color-card-marginals-background);--sd-color-tabs-label-active:var(--color-brand-content);--sd-color-tabs-label-hover:var(--color-foreground-muted);--sd-color-tabs-label-inactive:var(--color-foreground-muted);--sd-color-tabs-underline-active:var(--color-brand-content);--sd-color-tabs-underline-hover:var(--color-foreground-border);--sd-color-tabs-underline-inactive:var(--color-background-border);--sd-color-tabs-overline:var(--color-background-border);--sd-color-tabs-underline:var(--color-background-border)}.sd-tab-content{box-shadow:0 -2px var(--sd-color-tabs-overline),0 1px var(--sd-color-tabs-underline)}.sd-card{box-shadow:0 .1rem .25rem var(--sd-color-shadow),0 0 .0625rem rgba(0,0,0,.1)}.sd-shadow-sm{box-shadow:0 .1rem .25rem var(--sd-color-shadow),0 0 .0625rem rgba(0,0,0,.1)!important}.sd-shadow-md{box-shadow:0 .3rem .75rem var(--sd-color-shadow),0 0 .0625rem rgba(0,0,0,.1)!important}.sd-shadow-lg{box-shadow:0 .6rem 1.5rem var(--sd-color-shadow),0 0 .0625rem rgba(0,0,0,.1)!important}.sd-card-hover:hover{transform:none}.sd-cards-carousel{gap:.25rem;padding:.25rem}body{--tabs--label-text:var(--color-foreground-muted);--tabs--label-text--hover:var(--color-foreground-muted);--tabs--label-text--active:var(--color-brand-content);--tabs--label-text--active--hover:var(--color-brand-content);--tabs--label-background:transparent;--tabs--label-background--hover:transparent;--tabs--label-background--active:transparent;--tabs--label-background--active--hover:transparent;--tabs--padding-x:0.25em;--tabs--margin-x:1em;--tabs--border:var(--color-background-border);--tabs--label-border:transparent;--tabs--label-border--hover:var(--color-foreground-muted);--tabs--label-border--active:var(--color-brand-content);--tabs--label-border--active--hover:var(--color-brand-content)}[role=main] .container{max-width:none;padding-left:0;padding-right:0}.shadow.docutils{border:none;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1)!important}.sphinx-bs .card{background-color:var(--color-background-secondary);color:var(--color-foreground)} +/*# sourceMappingURL=furo-extensions.css.map*/ \ No newline at end of file diff --git a/v2.6.5/_static/styles/furo-extensions.css.map b/v2.6.5/_static/styles/furo-extensions.css.map new file mode 100644 index 000000000..9ba5637f9 --- /dev/null +++ b/v2.6.5/_static/styles/furo-extensions.css.map @@ -0,0 +1 @@ +{"version":3,"file":"styles/furo-extensions.css","mappings":"AAGA,2BACE,oFACA,4CAKE,6CAHA,YACA,eAEA,CACA,kDACE,yCAEF,8CACE,sCAEJ,8CACE,kDAEJ,2BAGE,uBACA,cAHA,gBACA,UAEA,CAGA,yCACE,mBAEF,gDAEE,gDADA,YACA,CACA,sDACE,gDACF,yDACE,sCAEJ,+CACE,UACA,qDACE,UAGF,mDACE,eAEJ,yEAEE,4DAEA,mHASE,mBAPA,kBAEA,YADA,oBAGA,aADA,gBAIA,CAEA,qIAEE,WADA,UACA,CAEJ,uGACE,aAEF,iUAGE,cAEF,mHACE,aC1EJ,gCACE,mCAEF,0BAKE,mBAUA,8CACA,YAFA,mCAKA,eAZA,cALA,UASA,YADA,YAYA,iCAdA,YAcA,CAEA,gCAEE,8CADA,gCACA,CAEF,gCAGE,6BADA,mCADA,YAEA,CAEF,kCAEE,cADA,oBACA,CACA,wCACE,cAEJ,8BACE,UC5CN,KAEE,6CAA8C,CAC9C,uDAAwD,CACxD,uDAAwD,CAGxD,iCAAsC,CAGtC,+CAAgD,CAChD,uDAAwD,CACxD,uDAAwD,CACxD,oDAAqD,CACrD,6DAA8D,CAC9D,6DAA8D,CAG9D,uDAAwD,CACxD,yDAA0D,CAC1D,4DAA6D,CAC7D,2DAA4D,CAC5D,8DAA+D,CAC/D,iEAAkE,CAClE,uDAAwD,CACxD,wDAAyD,CAG3D,gBACE,qFAGF,SACE,6EAEF,cACE,uFAEF,cACE,uFAEF,cACE,uFAGF,qBACE,eAEF,mBACE,WACA,eChDF,KACE,gDAAiD,CACjD,uDAAwD,CACxD,qDAAsD,CACtD,4DAA6D,CAC7D,oCAAqC,CACrC,2CAA4C,CAC5C,4CAA6C,CAC7C,mDAAoD,CACpD,wBAAyB,CACzB,oBAAqB,CACrB,6CAA8C,CAC9C,gCAAiC,CACjC,yDAA0D,CAC1D,uDAAwD,CACxD,8DAA+D,CCbjE,uBACE,eACA,eACA,gBAGF,iBACE,YACA,+EAGF,iBACE,mDACA","sources":["webpack:///./src/furo/assets/styles/extensions/_readthedocs.sass","webpack:///./src/furo/assets/styles/extensions/_copybutton.sass","webpack:///./src/furo/assets/styles/extensions/_sphinx-design.sass","webpack:///./src/furo/assets/styles/extensions/_sphinx-inline-tabs.sass","webpack:///./src/furo/assets/styles/extensions/_sphinx-panels.sass"],"sourcesContent":["// This file contains the styles used for tweaking how ReadTheDoc's embedded\n// contents would show up inside the theme.\n\n#furo-sidebar-ad-placement\n padding: var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal)\n .ethical-sidebar\n // Remove the border and box-shadow.\n border: none\n box-shadow: none\n // Manage the background colors.\n background: var(--color-background-secondary)\n &:hover\n background: var(--color-background-hover)\n // Ensure the text is legible.\n a\n color: var(--color-foreground-primary)\n\n .ethical-callout a\n color: var(--color-foreground-secondary) !important\n\n#furo-readthedocs-versions\n position: static\n width: 100%\n background: transparent\n display: block\n\n // Make the background color fit with the theme's aesthetic.\n .rst-versions\n background: rgb(26, 28, 30)\n\n .rst-current-version\n cursor: unset\n background: var(--color-sidebar-item-background)\n &:hover\n background: var(--color-sidebar-item-background)\n .fa-book\n color: var(--color-foreground-primary)\n\n > .rst-other-versions\n padding: 0\n small\n opacity: 1\n\n .injected\n .rst-versions\n position: unset\n\n &:hover,\n &:focus-within\n box-shadow: 0 0 0 1px var(--color-sidebar-background-border)\n\n .rst-current-version\n // Undo the tweaks done in RTD's CSS\n font-size: inherit\n line-height: inherit\n height: auto\n text-align: right\n padding: 12px\n\n // Match the rest of the body\n background: #1a1c1e\n\n .fa-book\n float: left\n color: white\n\n .fa-caret-down\n display: none\n\n .rst-current-version,\n .rst-other-versions,\n .injected\n display: block\n\n > .rst-current-version\n display: none\n",".highlight\n &:hover button.copybtn\n color: var(--color-code-foreground)\n\n button.copybtn\n // Make it visible\n opacity: 1\n\n // Align things correctly\n align-items: center\n\n height: 1.25em\n width: 1.25em\n\n top: 0.625rem // $code-spacing-vertical\n right: 0.5rem\n\n // Make it look better\n color: var(--color-background-item)\n background-color: var(--color-code-background)\n border: none\n\n // Change to cursor to make it obvious that you can click on it\n cursor: pointer\n\n // Transition smoothly, for aesthetics\n transition: color 300ms, opacity 300ms\n\n &:hover\n color: var(--color-brand-content)\n background-color: var(--color-code-background)\n\n &::after\n display: none\n color: var(--color-code-foreground)\n background-color: transparent\n\n &.success\n transition: color 0ms\n color: #22863a\n &::after\n display: block\n\n svg\n padding: 0\n","body\n // Colors\n --sd-color-primary: var(--color-brand-primary)\n --sd-color-primary-highlight: var(--color-brand-content)\n --sd-color-primary-text: var(--color-background-primary)\n\n // Shadows\n --sd-color-shadow: rgba(0, 0, 0, 0.05)\n\n // Cards\n --sd-color-card-border: var(--color-card-border)\n --sd-color-card-border-hover: var(--color-brand-content)\n --sd-color-card-background: var(--color-card-background)\n --sd-color-card-text: var(--color-foreground-primary)\n --sd-color-card-header: var(--color-card-marginals-background)\n --sd-color-card-footer: var(--color-card-marginals-background)\n\n // Tabs\n --sd-color-tabs-label-active: var(--color-brand-content)\n --sd-color-tabs-label-hover: var(--color-foreground-muted)\n --sd-color-tabs-label-inactive: var(--color-foreground-muted)\n --sd-color-tabs-underline-active: var(--color-brand-content)\n --sd-color-tabs-underline-hover: var(--color-foreground-border)\n --sd-color-tabs-underline-inactive: var(--color-background-border)\n --sd-color-tabs-overline: var(--color-background-border)\n --sd-color-tabs-underline: var(--color-background-border)\n\n// Tabs\n.sd-tab-content\n box-shadow: 0 -2px var(--sd-color-tabs-overline), 0 1px var(--sd-color-tabs-underline)\n\n// Shadows\n.sd-card // Have a shadow by default\n box-shadow: 0 0.1rem 0.25rem var(--sd-color-shadow), 0 0 0.0625rem rgba(0, 0, 0, 0.1)\n\n.sd-shadow-sm\n box-shadow: 0 0.1rem 0.25rem var(--sd-color-shadow), 0 0 0.0625rem rgba(0, 0, 0, 0.1) !important\n\n.sd-shadow-md\n box-shadow: 0 0.3rem 0.75rem var(--sd-color-shadow), 0 0 0.0625rem rgba(0, 0, 0, 0.1) !important\n\n.sd-shadow-lg\n box-shadow: 0 0.6rem 1.5rem var(--sd-color-shadow), 0 0 0.0625rem rgba(0, 0, 0, 0.1) !important\n\n// Cards\n.sd-card-hover:hover // Don't change scale on hover\n transform: none\n\n.sd-cards-carousel // Have a bit of gap in the carousel by default\n gap: 0.25rem\n padding: 0.25rem\n","// This file contains styles to tweak sphinx-inline-tabs to work well with Furo.\n\nbody\n --tabs--label-text: var(--color-foreground-muted)\n --tabs--label-text--hover: var(--color-foreground-muted)\n --tabs--label-text--active: var(--color-brand-content)\n --tabs--label-text--active--hover: var(--color-brand-content)\n --tabs--label-background: transparent\n --tabs--label-background--hover: transparent\n --tabs--label-background--active: transparent\n --tabs--label-background--active--hover: transparent\n --tabs--padding-x: 0.25em\n --tabs--margin-x: 1em\n --tabs--border: var(--color-background-border)\n --tabs--label-border: transparent\n --tabs--label-border--hover: var(--color-foreground-muted)\n --tabs--label-border--active: var(--color-brand-content)\n --tabs--label-border--active--hover: var(--color-brand-content)\n","// This file contains styles to tweak sphinx-panels to work well with Furo.\n\n// sphinx-panels includes Bootstrap 4, which uses .container which can conflict\n// with docutils' `.. container::` directive.\n[role=\"main\"] .container\n max-width: initial\n padding-left: initial\n padding-right: initial\n\n// Make the panels look nicer!\n.shadow.docutils\n border: none\n box-shadow: 0 0.2rem 0.5rem rgba(0, 0, 0, 0.05), 0 0 0.0625rem rgba(0, 0, 0, 0.1) !important\n\n// Make panel colors respond to dark mode\n.sphinx-bs .card\n background-color: var(--color-background-secondary)\n color: var(--color-foreground)\n"],"names":[],"sourceRoot":""} \ No newline at end of file diff --git a/v2.6.5/_static/styles/furo.css b/v2.6.5/_static/styles/furo.css new file mode 100644 index 000000000..3d29a218f --- /dev/null +++ b/v2.6.5/_static/styles/furo.css @@ -0,0 +1,2 @@ +/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */html{-webkit-text-size-adjust:100%;line-height:1.15}body{margin:0}main{display:block}h1{font-size:2em;margin:.67em 0}hr{box-sizing:content-box;height:0;overflow:visible}pre{font-family:monospace,monospace;font-size:1em}a{background-color:transparent}abbr[title]{border-bottom:none;text-decoration:underline;text-decoration:underline dotted}b,strong{font-weight:bolder}code,kbd,samp{font-family:monospace,monospace;font-size:1em}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}img{border-style:none}button,input,optgroup,select,textarea{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{border-style:none;padding:0}[type=button]:-moz-focusring,[type=reset]:-moz-focusring,[type=submit]:-moz-focusring,button:-moz-focusring{outline:1px dotted ButtonText}fieldset{padding:.35em .75em .625em}legend{box-sizing:border-box;color:inherit;display:table;max-width:100%;padding:0;white-space:normal}progress{vertical-align:baseline}textarea{overflow:auto}[type=checkbox],[type=radio]{box-sizing:border-box;padding:0}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}details{display:block}summary{display:list-item}[hidden],template{display:none}@media print{.content-icon-container,.headerlink,.mobile-header,.related-pages{display:none!important}.highlight{border:.1pt solid var(--color-foreground-border)}a,blockquote,dl,ol,pre,table,ul{page-break-inside:avoid}caption,figure,h1,h2,h3,h4,h5,h6,img{page-break-after:avoid;page-break-inside:avoid}dl,ol,ul{page-break-before:avoid}}.visually-hidden{clip:rect(0,0,0,0)!important;border:0!important;height:1px!important;margin:-1px!important;overflow:hidden!important;padding:0!important;position:absolute!important;white-space:nowrap!important;width:1px!important}:-moz-focusring{outline:auto}body{--font-stack:-apple-system,BlinkMacSystemFont,Segoe UI,Helvetica,Arial,sans-serif,Apple Color Emoji,Segoe UI Emoji;--font-stack--monospace:"SFMono-Regular",Menlo,Consolas,Monaco,Liberation Mono,Lucida Console,monospace;--font-size--normal:100%;--font-size--small:87.5%;--font-size--small--2:81.25%;--font-size--small--3:75%;--font-size--small--4:62.5%;--sidebar-caption-font-size:var(--font-size--small--2);--sidebar-item-font-size:var(--font-size--small);--sidebar-search-input-font-size:var(--font-size--small);--toc-font-size:var(--font-size--small--3);--toc-font-size--mobile:var(--font-size--normal);--toc-title-font-size:var(--font-size--small--4);--admonition-font-size:0.8125rem;--admonition-title-font-size:0.8125rem;--code-font-size:var(--font-size--small--2);--api-font-size:var(--font-size--small);--header-height:calc(var(--sidebar-item-line-height) + var(--sidebar-item-spacing-vertical)*4);--header-padding:0.5rem;--sidebar-tree-space-above:1.5rem;--sidebar-caption-space-above:1rem;--sidebar-item-line-height:1rem;--sidebar-item-spacing-vertical:0.5rem;--sidebar-item-spacing-horizontal:1rem;--sidebar-item-height:calc(var(--sidebar-item-line-height) + var(--sidebar-item-spacing-vertical)*2);--sidebar-expander-width:var(--sidebar-item-height);--sidebar-search-space-above:0.5rem;--sidebar-search-input-spacing-vertical:0.5rem;--sidebar-search-input-spacing-horizontal:0.5rem;--sidebar-search-input-height:1rem;--sidebar-search-icon-size:var(--sidebar-search-input-height);--toc-title-padding:0.25rem 0;--toc-spacing-vertical:1.5rem;--toc-spacing-horizontal:1.5rem;--toc-item-spacing-vertical:0.4rem;--toc-item-spacing-horizontal:1rem;--icon-search:url('data:image/svg+xml;charset=utf-8,');--icon-pencil:url('data:image/svg+xml;charset=utf-8,');--icon-abstract:url('data:image/svg+xml;charset=utf-8,');--icon-info:url('data:image/svg+xml;charset=utf-8,');--icon-flame:url('data:image/svg+xml;charset=utf-8,');--icon-question:url('data:image/svg+xml;charset=utf-8,');--icon-warning:url('data:image/svg+xml;charset=utf-8,');--icon-failure:url('data:image/svg+xml;charset=utf-8,');--icon-spark:url('data:image/svg+xml;charset=utf-8,');--color-admonition-title--caution:#ff9100;--color-admonition-title-background--caution:rgba(255,145,0,.2);--color-admonition-title--warning:#ff9100;--color-admonition-title-background--warning:rgba(255,145,0,.2);--color-admonition-title--danger:#ff5252;--color-admonition-title-background--danger:rgba(255,82,82,.2);--color-admonition-title--attention:#ff5252;--color-admonition-title-background--attention:rgba(255,82,82,.2);--color-admonition-title--error:#ff5252;--color-admonition-title-background--error:rgba(255,82,82,.2);--color-admonition-title--hint:#00c852;--color-admonition-title-background--hint:rgba(0,200,82,.2);--color-admonition-title--tip:#00c852;--color-admonition-title-background--tip:rgba(0,200,82,.2);--color-admonition-title--important:#00bfa5;--color-admonition-title-background--important:rgba(0,191,165,.2);--color-admonition-title--note:#00b0ff;--color-admonition-title-background--note:rgba(0,176,255,.2);--color-admonition-title--seealso:#448aff;--color-admonition-title-background--seealso:rgba(68,138,255,.2);--color-admonition-title--admonition-todo:grey;--color-admonition-title-background--admonition-todo:hsla(0,0%,50%,.2);--color-admonition-title:#651fff;--color-admonition-title-background:rgba(101,31,255,.2);--icon-admonition-default:var(--icon-abstract);--color-topic-title:#14b8a6;--color-topic-title-background:rgba(20,184,166,.2);--icon-topic-default:var(--icon-pencil);--color-problematic:#b30000;--color-foreground-primary:#000;--color-foreground-secondary:#5a5c63;--color-foreground-muted:#646776;--color-foreground-border:#878787;--color-background-primary:#fff;--color-background-secondary:#f8f9fb;--color-background-hover:#efeff4;--color-background-hover--transparent:#efeff400;--color-background-border:#eeebee;--color-background-item:#ccc;--color-announcement-background:#000000dd;--color-announcement-text:#eeebee;--color-brand-primary:#2962ff;--color-brand-content:#2a5adf;--color-api-background:var(--color-background-hover--transparent);--color-api-background-hover:var(--color-background-hover);--color-api-overall:var(--color-foreground-secondary);--color-api-name:var(--color-problematic);--color-api-pre-name:var(--color-problematic);--color-api-paren:var(--color-foreground-secondary);--color-api-keyword:var(--color-foreground-primary);--color-highlight-on-target:#ffc;--color-inline-code-background:var(--color-background-secondary);--color-highlighted-background:#def;--color-highlighted-text:var(--color-foreground-primary);--color-guilabel-background:#ddeeff80;--color-guilabel-border:#bedaf580;--color-guilabel-text:var(--color-foreground-primary);--color-admonition-background:transparent;--color-table-header-background:var(--color-background-secondary);--color-table-border:var(--color-background-border);--color-card-border:var(--color-background-secondary);--color-card-background:transparent;--color-card-marginals-background:var(--color-background-secondary);--color-header-background:var(--color-background-primary);--color-header-border:var(--color-background-border);--color-header-text:var(--color-foreground-primary);--color-sidebar-background:var(--color-background-secondary);--color-sidebar-background-border:var(--color-background-border);--color-sidebar-brand-text:var(--color-foreground-primary);--color-sidebar-caption-text:var(--color-foreground-muted);--color-sidebar-link-text:var(--color-foreground-secondary);--color-sidebar-link-text--top-level:var(--color-brand-primary);--color-sidebar-item-background:var(--color-sidebar-background);--color-sidebar-item-background--current:var( --color-sidebar-item-background );--color-sidebar-item-background--hover:linear-gradient(90deg,var(--color-background-hover--transparent) 0%,var(--color-background-hover) var(--sidebar-item-spacing-horizontal),var(--color-background-hover) 100%);--color-sidebar-item-expander-background:transparent;--color-sidebar-item-expander-background--hover:var( --color-background-hover );--color-sidebar-search-text:var(--color-foreground-primary);--color-sidebar-search-background:var(--color-background-secondary);--color-sidebar-search-background--focus:var(--color-background-primary);--color-sidebar-search-border:var(--color-background-border);--color-sidebar-search-icon:var(--color-foreground-muted);--color-toc-background:var(--color-background-primary);--color-toc-title-text:var(--color-foreground-muted);--color-toc-item-text:var(--color-foreground-secondary);--color-toc-item-text--hover:var(--color-foreground-primary);--color-toc-item-text--active:var(--color-brand-primary);--color-content-foreground:var(--color-foreground-primary);--color-content-background:transparent;--color-link:var(--color-brand-content);--color-link--hover:var(--color-brand-content);--color-link-underline:var(--color-background-border);--color-link-underline--hover:var(--color-foreground-border)}.only-light{display:block!important}html body .only-dark{display:none!important}@media not print{body[data-theme=dark]{--color-problematic:#ee5151;--color-foreground-primary:#ffffffcc;--color-foreground-secondary:#9ca0a5;--color-foreground-muted:#81868d;--color-foreground-border:#666;--color-background-primary:#131416;--color-background-secondary:#1a1c1e;--color-background-hover:#1e2124;--color-background-hover--transparent:#1e212400;--color-background-border:#303335;--color-background-item:#444;--color-announcement-background:#000000dd;--color-announcement-text:#eeebee;--color-brand-primary:#2b8cee;--color-brand-content:#368ce2;--color-highlighted-background:#083563;--color-guilabel-background:#08356380;--color-guilabel-border:#13395f80;--color-api-keyword:var(--color-foreground-secondary);--color-highlight-on-target:#330;--color-admonition-background:#18181a;--color-card-border:var(--color-background-secondary);--color-card-background:#18181a;--color-card-marginals-background:var(--color-background-hover)}html body[data-theme=dark] .only-light{display:none!important}body[data-theme=dark] .only-dark{display:block!important}@media(prefers-color-scheme:dark){body:not([data-theme=light]){--color-problematic:#ee5151;--color-foreground-primary:#ffffffcc;--color-foreground-secondary:#9ca0a5;--color-foreground-muted:#81868d;--color-foreground-border:#666;--color-background-primary:#131416;--color-background-secondary:#1a1c1e;--color-background-hover:#1e2124;--color-background-hover--transparent:#1e212400;--color-background-border:#303335;--color-background-item:#444;--color-announcement-background:#000000dd;--color-announcement-text:#eeebee;--color-brand-primary:#2b8cee;--color-brand-content:#368ce2;--color-highlighted-background:#083563;--color-guilabel-background:#08356380;--color-guilabel-border:#13395f80;--color-api-keyword:var(--color-foreground-secondary);--color-highlight-on-target:#330;--color-admonition-background:#18181a;--color-card-border:var(--color-background-secondary);--color-card-background:#18181a;--color-card-marginals-background:var(--color-background-hover)}html body:not([data-theme=light]) .only-light{display:none!important}body:not([data-theme=light]) .only-dark{display:block!important}}}body[data-theme=auto] .theme-toggle svg.theme-icon-when-auto,body[data-theme=dark] .theme-toggle svg.theme-icon-when-dark,body[data-theme=light] .theme-toggle svg.theme-icon-when-light{display:block}body{font-family:var(--font-stack)}code,kbd,pre,samp{font-family:var(--font-stack--monospace)}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}article{line-height:1.5}h1,h2,h3,h4,h5,h6{border-radius:.5rem;font-weight:700;line-height:1.25;margin:.5rem -.5rem;padding-left:.5rem;padding-right:.5rem}h1+p,h2+p,h3+p,h4+p,h5+p,h6+p{margin-top:0}h1{font-size:2.5em;margin-bottom:1rem}h1,h2{margin-top:1.75rem}h2{font-size:2em}h3{font-size:1.5em}h4{font-size:1.25em}h5{font-size:1.125em}h6{font-size:1em}small{font-size:80%;opacity:75%}p{margin-bottom:.75rem;margin-top:.5rem}hr.docutils{background-color:var(--color-background-border);border:0;height:1px;margin:2rem 0;padding:0}.centered{text-align:center}a{color:var(--color-link);text-decoration:underline;text-decoration-color:var(--color-link-underline)}a:hover{color:var(--color-link--hover);text-decoration-color:var(--color-link-underline--hover)}a.muted-link{color:inherit}a.muted-link:hover{color:var(--color-link);text-decoration-color:var(--color-link-underline--hover)}html{overflow-x:hidden;overflow-y:scroll;scroll-behavior:smooth}.sidebar-scroll,.toc-scroll,article[role=main] *{scrollbar-color:var(--color-foreground-border) transparent;scrollbar-width:thin}.sidebar-scroll::-webkit-scrollbar,.toc-scroll::-webkit-scrollbar,article[role=main] ::-webkit-scrollbar{height:.25rem;width:.25rem}.sidebar-scroll::-webkit-scrollbar-thumb,.toc-scroll::-webkit-scrollbar-thumb,article[role=main] ::-webkit-scrollbar-thumb{background-color:var(--color-foreground-border);border-radius:.125rem}body,html{background:var(--color-background-primary);color:var(--color-foreground-primary);height:100%}article{background:var(--color-content-background);color:var(--color-content-foreground);overflow-wrap:break-word}.page{display:flex;min-height:100%}.mobile-header{background-color:var(--color-header-background);border-bottom:1px solid var(--color-header-border);color:var(--color-header-text);display:none;height:var(--header-height);width:100%;z-index:10}.mobile-header.scrolled{border-bottom:none;box-shadow:0 0 .2rem rgba(0,0,0,.1),0 .2rem .4rem rgba(0,0,0,.2)}.mobile-header .header-center a{color:var(--color-header-text);text-decoration:none}.main{display:flex;flex:1}.sidebar-drawer{background:var(--color-sidebar-background);border-right:1px solid var(--color-sidebar-background-border);box-sizing:border-box;display:flex;justify-content:flex-end;min-width:15em;width:calc(50% - 26em)}.sidebar-container,.toc-drawer{box-sizing:border-box;width:15em}.toc-drawer{background:var(--color-toc-background);padding-right:1rem}.sidebar-sticky,.toc-sticky{display:flex;flex-direction:column;height:min(100%,100vh);height:100vh;position:sticky;top:0}.sidebar-scroll,.toc-scroll{flex-grow:1;flex-shrink:1;overflow:auto;scroll-behavior:smooth}.content{display:flex;flex-direction:column;justify-content:space-between;padding:0 3em;width:46em}.icon{display:inline-block;height:1rem;width:1rem}.icon svg{height:100%;width:100%}.announcement{align-items:center;background-color:var(--color-announcement-background);color:var(--color-announcement-text);display:flex;height:var(--header-height);overflow-x:auto}.announcement+.page{min-height:calc(100% - var(--header-height))}.announcement-content{box-sizing:border-box;min-width:100%;padding:.5rem;text-align:center;white-space:nowrap}.announcement-content a{color:var(--color-announcement-text);text-decoration-color:var(--color-announcement-text)}.announcement-content a:hover{color:var(--color-announcement-text);text-decoration-color:var(--color-link--hover)}.no-js .theme-toggle-container{display:none}.theme-toggle-container{vertical-align:middle}.theme-toggle{background:transparent;border:none;cursor:pointer;padding:0}.theme-toggle svg{color:var(--color-foreground-primary);display:none;height:1rem;vertical-align:middle;width:1rem}.theme-toggle-header{float:left;padding:1rem .5rem}.nav-overlay-icon,.toc-overlay-icon{cursor:pointer;display:none}.nav-overlay-icon .icon,.toc-overlay-icon .icon{color:var(--color-foreground-secondary);height:1rem;width:1rem}.nav-overlay-icon,.toc-header-icon{align-items:center;justify-content:center}.toc-content-icon{height:1.5rem;width:1.5rem}.content-icon-container{display:flex;float:right;gap:.5rem;margin-bottom:1rem;margin-left:1rem;margin-top:1.5rem}.content-icon-container .edit-this-page svg{color:inherit;height:1rem;width:1rem}.sidebar-toggle{display:none;position:absolute}.sidebar-toggle[name=__toc]{left:20px}.sidebar-toggle:checked{left:40px}.overlay{background-color:rgba(0,0,0,.54);height:0;opacity:0;position:fixed;top:0;transition:width 0ms,height 0ms,opacity .25s ease-out;width:0}.sidebar-overlay{z-index:20}.toc-overlay{z-index:40}.sidebar-drawer{transition:left .25s ease-in-out;z-index:30}.toc-drawer{transition:right .25s ease-in-out;z-index:50}#__navigation:checked~.sidebar-overlay{height:100%;opacity:1;width:100%}#__navigation:checked~.page .sidebar-drawer{left:0;top:0}#__toc:checked~.toc-overlay{height:100%;opacity:1;width:100%}#__toc:checked~.page .toc-drawer{right:0;top:0}.back-to-top{background:var(--color-background-primary);border-radius:1rem;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 1px 0 hsla(220,9%,46%,.502);display:none;font-size:.8125rem;left:0;margin-left:50%;padding:.5rem .75rem .5rem .5rem;position:fixed;text-decoration:none;top:1rem;transform:translateX(-50%);z-index:10}.back-to-top svg{fill:currentColor;display:inline-block;height:1rem;width:1rem}.back-to-top span{margin-left:.25rem}.show-back-to-top .back-to-top{align-items:center;display:flex}@media(min-width:97em){html{font-size:110%}}@media(max-width:82em){.toc-content-icon{display:flex}.toc-drawer{border-left:1px solid var(--color-background-muted);height:100vh;position:fixed;right:-15em;top:0}.toc-tree{border-left:none;font-size:var(--toc-font-size--mobile)}.sidebar-drawer{width:calc(50% - 18.5em)}}@media(max-width:67em){.nav-overlay-icon{display:flex}.sidebar-drawer{height:100vh;left:-15em;position:fixed;top:0;width:15em}.toc-header-icon{display:flex}.theme-toggle-content,.toc-content-icon{display:none}.theme-toggle-header{display:block}.mobile-header{align-items:center;display:flex;justify-content:space-between;position:sticky;top:0}.mobile-header .header-left,.mobile-header .header-right{display:flex;height:var(--header-height);padding:0 var(--header-padding)}.mobile-header .header-left label,.mobile-header .header-right label{height:100%;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:100%}.nav-overlay-icon .icon,.theme-toggle svg{height:1.25rem;width:1.25rem}:target{scroll-margin-top:var(--header-height)}.back-to-top{top:calc(var(--header-height) + .5rem)}.page{flex-direction:column;justify-content:center}.content{margin-left:auto;margin-right:auto}}@media(max-width:52em){.content{overflow-x:auto;width:100%}}@media(max-width:46em){.content{padding:0 1em}article aside.sidebar{float:none;margin:1rem 0;width:100%}}.admonition,.topic{background:var(--color-admonition-background);border-radius:.2rem;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1);font-size:var(--admonition-font-size);margin:1rem auto;overflow:hidden;padding:0 .5rem .5rem;page-break-inside:avoid}.admonition>:nth-child(2),.topic>:nth-child(2){margin-top:0}.admonition>:last-child,.topic>:last-child{margin-bottom:0}.admonition p.admonition-title,p.topic-title{font-size:var(--admonition-title-font-size);font-weight:500;line-height:1.3;margin:0 -.5rem .5rem;padding:.4rem .5rem .4rem 2rem;position:relative}.admonition p.admonition-title:before,p.topic-title:before{content:"";height:1rem;left:.5rem;position:absolute;width:1rem}p.admonition-title{background-color:var(--color-admonition-title-background)}p.admonition-title:before{background-color:var(--color-admonition-title);-webkit-mask-image:var(--icon-admonition-default);mask-image:var(--icon-admonition-default);-webkit-mask-repeat:no-repeat;mask-repeat:no-repeat}p.topic-title{background-color:var(--color-topic-title-background)}p.topic-title:before{background-color:var(--color-topic-title);-webkit-mask-image:var(--icon-topic-default);mask-image:var(--icon-topic-default);-webkit-mask-repeat:no-repeat;mask-repeat:no-repeat}.admonition{border-left:.2rem solid var(--color-admonition-title)}.admonition.caution{border-left-color:var(--color-admonition-title--caution)}.admonition.caution>.admonition-title{background-color:var(--color-admonition-title-background--caution)}.admonition.caution>.admonition-title:before{background-color:var(--color-admonition-title--caution);-webkit-mask-image:var(--icon-spark);mask-image:var(--icon-spark)}.admonition.warning{border-left-color:var(--color-admonition-title--warning)}.admonition.warning>.admonition-title{background-color:var(--color-admonition-title-background--warning)}.admonition.warning>.admonition-title:before{background-color:var(--color-admonition-title--warning);-webkit-mask-image:var(--icon-warning);mask-image:var(--icon-warning)}.admonition.danger{border-left-color:var(--color-admonition-title--danger)}.admonition.danger>.admonition-title{background-color:var(--color-admonition-title-background--danger)}.admonition.danger>.admonition-title:before{background-color:var(--color-admonition-title--danger);-webkit-mask-image:var(--icon-spark);mask-image:var(--icon-spark)}.admonition.attention{border-left-color:var(--color-admonition-title--attention)}.admonition.attention>.admonition-title{background-color:var(--color-admonition-title-background--attention)}.admonition.attention>.admonition-title:before{background-color:var(--color-admonition-title--attention);-webkit-mask-image:var(--icon-warning);mask-image:var(--icon-warning)}.admonition.error{border-left-color:var(--color-admonition-title--error)}.admonition.error>.admonition-title{background-color:var(--color-admonition-title-background--error)}.admonition.error>.admonition-title:before{background-color:var(--color-admonition-title--error);-webkit-mask-image:var(--icon-failure);mask-image:var(--icon-failure)}.admonition.hint{border-left-color:var(--color-admonition-title--hint)}.admonition.hint>.admonition-title{background-color:var(--color-admonition-title-background--hint)}.admonition.hint>.admonition-title:before{background-color:var(--color-admonition-title--hint);-webkit-mask-image:var(--icon-question);mask-image:var(--icon-question)}.admonition.tip{border-left-color:var(--color-admonition-title--tip)}.admonition.tip>.admonition-title{background-color:var(--color-admonition-title-background--tip)}.admonition.tip>.admonition-title:before{background-color:var(--color-admonition-title--tip);-webkit-mask-image:var(--icon-info);mask-image:var(--icon-info)}.admonition.important{border-left-color:var(--color-admonition-title--important)}.admonition.important>.admonition-title{background-color:var(--color-admonition-title-background--important)}.admonition.important>.admonition-title:before{background-color:var(--color-admonition-title--important);-webkit-mask-image:var(--icon-flame);mask-image:var(--icon-flame)}.admonition.note{border-left-color:var(--color-admonition-title--note)}.admonition.note>.admonition-title{background-color:var(--color-admonition-title-background--note)}.admonition.note>.admonition-title:before{background-color:var(--color-admonition-title--note);-webkit-mask-image:var(--icon-pencil);mask-image:var(--icon-pencil)}.admonition.seealso{border-left-color:var(--color-admonition-title--seealso)}.admonition.seealso>.admonition-title{background-color:var(--color-admonition-title-background--seealso)}.admonition.seealso>.admonition-title:before{background-color:var(--color-admonition-title--seealso);-webkit-mask-image:var(--icon-info);mask-image:var(--icon-info)}.admonition.admonition-todo{border-left-color:var(--color-admonition-title--admonition-todo)}.admonition.admonition-todo>.admonition-title{background-color:var(--color-admonition-title-background--admonition-todo)}.admonition.admonition-todo>.admonition-title:before{background-color:var(--color-admonition-title--admonition-todo);-webkit-mask-image:var(--icon-pencil);mask-image:var(--icon-pencil)}.admonition-todo>.admonition-title{text-transform:uppercase}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) dd{margin-left:2rem}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) dd>:first-child{margin-top:.125rem}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list,dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) dd>:last-child{margin-bottom:.75rem}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list>dt{font-size:var(--font-size--small);text-transform:uppercase}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list dd:empty{margin-bottom:.5rem}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list dd>ul{margin-left:-1.2rem}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list dd>ul>li>p:nth-child(2){margin-top:0}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) .field-list dd>ul>li>p+p:last-child:empty{margin-bottom:0;margin-top:0}dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple)>dt{color:var(--color-api-overall)}.sig:not(.sig-inline){background:var(--color-api-background);border-radius:.25rem;font-family:var(--font-stack--monospace);font-size:var(--api-font-size);font-weight:700;margin-left:-.25rem;margin-right:-.25rem;padding:.25rem .5rem .25rem 3em;text-indent:-2.5em;transition:background .1s ease-out}.sig:not(.sig-inline):hover{background:var(--color-api-background-hover)}.sig:not(.sig-inline) a.reference .viewcode-link{font-weight:400;width:3.5rem}em.property{font-style:normal}em.property:first-child{color:var(--color-api-keyword)}.sig-name{color:var(--color-api-name)}.sig-prename{color:var(--color-api-pre-name);font-weight:400}.sig-paren{color:var(--color-api-paren)}.sig-param{font-style:normal}.versionmodified{font-style:italic}div.deprecated p,div.versionadded p,div.versionchanged p{margin-bottom:.125rem;margin-top:.125rem}.viewcode-back,.viewcode-link{float:right;text-align:right}.line-block{margin-bottom:.75rem;margin-top:.5rem}.line-block .line-block{margin-bottom:0;margin-top:0;padding-left:1rem}.code-block-caption,article p.caption,table>caption{font-size:var(--font-size--small);text-align:center}.toctree-wrapper.compound .caption,.toctree-wrapper.compound :not(.caption)>.caption-text{font-size:var(--font-size--small);margin-bottom:0;text-align:initial;text-transform:uppercase}.toctree-wrapper.compound>ul{margin-bottom:0;margin-top:0}.sig-inline,code.literal{background:var(--color-inline-code-background);border-radius:.2em;font-size:var(--font-size--small--2);padding:.1em .2em}pre.literal-block .sig-inline,pre.literal-block code.literal{font-size:inherit;padding:0}p .sig-inline,p code.literal{border:1px solid var(--color-background-border)}.sig-inline{font-family:var(--font-stack--monospace)}div[class*=" highlight-"],div[class^=highlight-]{display:flex;margin:1em 0}div[class*=" highlight-"] .table-wrapper,div[class^=highlight-] .table-wrapper,pre{margin:0;padding:0}pre{overflow:auto}article[role=main] .highlight pre{line-height:1.5}.highlight pre,pre.literal-block{font-size:var(--code-font-size);padding:.625rem .875rem}pre.literal-block{background-color:var(--color-code-background);border-radius:.2rem;color:var(--color-code-foreground);margin-bottom:1rem;margin-top:1rem}.highlight{border-radius:.2rem;width:100%}.highlight .gp,.highlight span.linenos{pointer-events:none;-webkit-user-select:none;-moz-user-select:none;user-select:none}.highlight .hll{display:block;margin-left:-.875rem;margin-right:-.875rem;padding-left:.875rem;padding-right:.875rem}.code-block-caption{background-color:var(--color-code-background);border-bottom:1px solid;border-radius:.25rem;border-bottom-left-radius:0;border-bottom-right-radius:0;border-color:var(--color-background-border);color:var(--color-code-foreground);display:flex;font-weight:300;padding:.625rem .875rem}.code-block-caption+div[class]{margin-top:0}.code-block-caption+div[class] pre{border-top-left-radius:0;border-top-right-radius:0}.highlighttable{display:block;width:100%}.highlighttable tbody{display:block}.highlighttable tr{display:flex}.highlighttable td.linenos{background-color:var(--color-code-background);border-bottom-left-radius:.2rem;border-top-left-radius:.2rem;color:var(--color-code-foreground);padding:.625rem 0 .625rem .875rem}.highlighttable .linenodiv{box-shadow:-.0625rem 0 var(--color-foreground-border) inset;font-size:var(--code-font-size);padding-right:.875rem}.highlighttable td.code{display:block;flex:1;overflow:hidden;padding:0}.highlighttable td.code .highlight{border-bottom-left-radius:0;border-top-left-radius:0}.highlight span.linenos{box-shadow:-.0625rem 0 var(--color-foreground-border) inset;display:inline-block;margin-right:.875rem;padding-left:0;padding-right:.875rem}.footnote-reference{font-size:var(--font-size--small--4);vertical-align:super}dl.footnote.brackets{color:var(--color-foreground-secondary);display:grid;font-size:var(--font-size--small);grid-template-columns:max-content auto}dl.footnote.brackets dt{margin:0}dl.footnote.brackets dt>.fn-backref{margin-left:.25rem}dl.footnote.brackets dt:after{content:":"}dl.footnote.brackets dt .brackets:before{content:"["}dl.footnote.brackets dt .brackets:after{content:"]"}dl.footnote.brackets dd{margin:0;padding:0 1rem}aside.footnote{color:var(--color-foreground-secondary);font-size:var(--font-size--small)}aside.footnote>span,div.citation>span{float:left;font-weight:500;padding-right:.25rem}aside.footnote>p,div.citation>p{margin-left:2rem}img{box-sizing:border-box;height:auto;max-width:100%}article .figure,article figure{border-radius:.2rem;margin:0}article .figure :last-child,article figure :last-child{margin-bottom:0}article .align-left{clear:left;float:left;margin:0 1rem 1rem}article .align-right{clear:right;float:right;margin:0 1rem 1rem}article .align-center,article .align-default{display:block;margin-left:auto;margin-right:auto;text-align:center}article table.align-default{display:table;text-align:initial}.domainindex-jumpbox,.genindex-jumpbox{border-bottom:1px solid var(--color-background-border);border-top:1px solid var(--color-background-border);padding:.25rem}.domainindex-section h2,.genindex-section h2{margin-bottom:.5rem;margin-top:.75rem}.domainindex-section ul,.genindex-section ul{margin-bottom:0;margin-top:0}ol,ul{margin-bottom:1rem;margin-top:1rem;padding-left:1.2rem}ol li>p:first-child,ul li>p:first-child{margin-bottom:.25rem;margin-top:.25rem}ol li>p:last-child,ul li>p:last-child{margin-top:.25rem}ol li>ol,ol li>ul,ul li>ol,ul li>ul{margin-bottom:.5rem;margin-top:.5rem}ol.arabic{list-style:decimal}ol.loweralpha{list-style:lower-alpha}ol.upperalpha{list-style:upper-alpha}ol.lowerroman{list-style:lower-roman}ol.upperroman{list-style:upper-roman}.simple li>ol,.simple li>ul,.toctree-wrapper li>ol,.toctree-wrapper li>ul{margin-bottom:0;margin-top:0}.field-list dt,.option-list dt,dl.footnote dt,dl.glossary dt,dl.simple dt,dl:not([class]) dt{font-weight:500;margin-top:.25rem}.field-list dt+dt,.option-list dt+dt,dl.footnote dt+dt,dl.glossary dt+dt,dl.simple dt+dt,dl:not([class]) dt+dt{margin-top:0}.field-list dt .classifier:before,.option-list dt .classifier:before,dl.footnote dt .classifier:before,dl.glossary dt .classifier:before,dl.simple dt .classifier:before,dl:not([class]) dt .classifier:before{content:":";margin-left:.2rem;margin-right:.2rem}.field-list dd ul,.field-list dd>p:first-child,.option-list dd ul,.option-list dd>p:first-child,dl.footnote dd ul,dl.footnote dd>p:first-child,dl.glossary dd ul,dl.glossary dd>p:first-child,dl.simple dd ul,dl.simple dd>p:first-child,dl:not([class]) dd ul,dl:not([class]) dd>p:first-child{margin-top:.125rem}.field-list dd ul,.option-list dd ul,dl.footnote dd ul,dl.glossary dd ul,dl.simple dd ul,dl:not([class]) dd ul{margin-bottom:.125rem}.math-wrapper{overflow-x:auto;width:100%}div.math{position:relative;text-align:center}div.math .headerlink,div.math:focus .headerlink{display:none}div.math:hover .headerlink{display:inline-block}div.math span.eqno{position:absolute;right:.5rem;top:50%;transform:translateY(-50%);z-index:1}abbr[title]{cursor:help}.problematic{color:var(--color-problematic)}kbd:not(.compound){background-color:var(--color-background-secondary);border:1px solid var(--color-foreground-border);border-radius:.2rem;box-shadow:0 .0625rem 0 rgba(0,0,0,.2),inset 0 0 0 .125rem var(--color-background-primary);color:var(--color-foreground-primary);display:inline-block;font-size:var(--font-size--small--3);margin:0 .2rem;padding:0 .2rem;vertical-align:text-bottom}blockquote{background:var(--color-background-secondary);border-left:4px solid var(--color-background-border);margin-left:0;margin-right:0;padding:.5rem 1rem}blockquote .attribution{font-weight:600;text-align:right}blockquote.highlights,blockquote.pull-quote{font-size:1.25em}blockquote.epigraph,blockquote.pull-quote{border-left-width:0;border-radius:.5rem}blockquote.highlights{background:transparent;border-left-width:0}p .reference img{vertical-align:middle}p.rubric{font-size:1.125em;font-weight:700;line-height:1.25}dd p.rubric{font-size:var(--font-size--small);font-weight:inherit;line-height:inherit;text-transform:uppercase}article .sidebar{background-color:var(--color-background-secondary);border:1px solid var(--color-background-border);border-radius:.2rem;clear:right;float:right;margin-left:1rem;margin-right:0;width:30%}article .sidebar>*{padding-left:1rem;padding-right:1rem}article .sidebar>ol,article .sidebar>ul{padding-left:2.2rem}article .sidebar .sidebar-title{border-bottom:1px solid var(--color-background-border);font-weight:500;margin:0;padding:.5rem 1rem}.table-wrapper{margin-bottom:.5rem;margin-top:1rem;overflow-x:auto;padding:.2rem .2rem .75rem;width:100%}table.docutils{border-collapse:collapse;border-radius:.2rem;border-spacing:0;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1)}table.docutils th{background:var(--color-table-header-background)}table.docutils td,table.docutils th{border-bottom:1px solid var(--color-table-border);border-left:1px solid var(--color-table-border);border-right:1px solid var(--color-table-border);padding:0 .25rem}table.docutils td p,table.docutils th p{margin:.25rem}table.docutils td:first-child,table.docutils th:first-child{border-left:none}table.docutils td:last-child,table.docutils th:last-child{border-right:none}table.docutils td.text-left,table.docutils th.text-left{text-align:left}table.docutils td.text-right,table.docutils th.text-right{text-align:right}table.docutils td.text-center,table.docutils th.text-center{text-align:center}:target{scroll-margin-top:.5rem}@media(max-width:67em){:target{scroll-margin-top:calc(.5rem + var(--header-height))}section>span:target{scroll-margin-top:calc(.8rem + var(--header-height))}}.headerlink{font-weight:100;-webkit-user-select:none;-moz-user-select:none;user-select:none}.code-block-caption>.headerlink,dl dt>.headerlink,figcaption p>.headerlink,h1>.headerlink,h2>.headerlink,h3>.headerlink,h4>.headerlink,h5>.headerlink,h6>.headerlink,p.caption>.headerlink,table>caption>.headerlink{margin-left:.5rem;visibility:hidden}.code-block-caption:hover>.headerlink,dl dt:hover>.headerlink,figcaption p:hover>.headerlink,h1:hover>.headerlink,h2:hover>.headerlink,h3:hover>.headerlink,h4:hover>.headerlink,h5:hover>.headerlink,h6:hover>.headerlink,p.caption:hover>.headerlink,table>caption:hover>.headerlink{visibility:visible}.code-block-caption>.toc-backref,dl dt>.toc-backref,figcaption p>.toc-backref,h1>.toc-backref,h2>.toc-backref,h3>.toc-backref,h4>.toc-backref,h5>.toc-backref,h6>.toc-backref,p.caption>.toc-backref,table>caption>.toc-backref{color:inherit;text-decoration-line:none}figure:hover>figcaption>p>.headerlink,table:hover>caption>.headerlink{visibility:visible}:target>h1:first-of-type,:target>h2:first-of-type,:target>h3:first-of-type,:target>h4:first-of-type,:target>h5:first-of-type,:target>h6:first-of-type,span:target~h1:first-of-type,span:target~h2:first-of-type,span:target~h3:first-of-type,span:target~h4:first-of-type,span:target~h5:first-of-type,span:target~h6:first-of-type{background-color:var(--color-highlight-on-target)}:target>h1:first-of-type code.literal,:target>h2:first-of-type code.literal,:target>h3:first-of-type code.literal,:target>h4:first-of-type code.literal,:target>h5:first-of-type code.literal,:target>h6:first-of-type code.literal,span:target~h1:first-of-type code.literal,span:target~h2:first-of-type code.literal,span:target~h3:first-of-type code.literal,span:target~h4:first-of-type code.literal,span:target~h5:first-of-type code.literal,span:target~h6:first-of-type code.literal{background-color:transparent}.literal-block-wrapper:target .code-block-caption,.this-will-duplicate-information-and-it-is-still-useful-here li :target,figure:target,table:target>caption{background-color:var(--color-highlight-on-target)}dt:target{background-color:var(--color-highlight-on-target)!important}.footnote-reference:target,.footnote>dt:target+dd{background-color:var(--color-highlight-on-target)}.guilabel{background-color:var(--color-guilabel-background);border:1px solid var(--color-guilabel-border);border-radius:.5em;color:var(--color-guilabel-text);font-size:.9em;padding:0 .3em}footer{display:flex;flex-direction:column;font-size:var(--font-size--small);margin-top:2rem}.bottom-of-page{align-items:center;border-top:1px solid var(--color-background-border);color:var(--color-foreground-secondary);display:flex;justify-content:space-between;line-height:1.5;margin-top:1rem;padding-bottom:1rem;padding-top:1rem}@media(max-width:46em){.bottom-of-page{flex-direction:column-reverse;gap:.25rem;text-align:center}}.bottom-of-page .left-details{font-size:var(--font-size--small)}.bottom-of-page .right-details{display:flex;flex-direction:column;gap:.25rem;text-align:right}.bottom-of-page .icons{display:flex;font-size:1rem;gap:.25rem;justify-content:flex-end}.bottom-of-page .icons a{text-decoration:none}.bottom-of-page .icons img,.bottom-of-page .icons svg{font-size:1.125rem;height:1em;width:1em}.related-pages a{align-items:center;display:flex;text-decoration:none}.related-pages a:hover .page-info .title{color:var(--color-link);text-decoration:underline;text-decoration-color:var(--color-link-underline)}.related-pages a svg.furo-related-icon,.related-pages a svg.furo-related-icon>use{color:var(--color-foreground-border);flex-shrink:0;height:.75rem;margin:0 .5rem;width:.75rem}.related-pages a.next-page{clear:right;float:right;max-width:50%;text-align:right}.related-pages a.prev-page{clear:left;float:left;max-width:50%}.related-pages a.prev-page svg{transform:rotate(180deg)}.page-info{display:flex;flex-direction:column;overflow-wrap:anywhere}.next-page .page-info{align-items:flex-end}.page-info .context{align-items:center;color:var(--color-foreground-muted);display:flex;font-size:var(--font-size--small);padding-bottom:.1rem;text-decoration:none}ul.search{list-style:none;padding-left:0}ul.search li{border-bottom:1px solid var(--color-background-border);padding:1rem 0}[role=main] .highlighted{background-color:var(--color-highlighted-background);color:var(--color-highlighted-text)}.sidebar-brand{display:flex;flex-direction:column;flex-shrink:0;padding:var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal);text-decoration:none}.sidebar-brand-text{color:var(--color-sidebar-brand-text);font-size:1.5rem;overflow-wrap:break-word}.sidebar-brand-text,.sidebar-logo-container{margin:var(--sidebar-item-spacing-vertical) 0}.sidebar-logo{display:block;margin:0 auto;max-width:100%}.sidebar-search-container{align-items:center;background:var(--color-sidebar-search-background);display:flex;margin-top:var(--sidebar-search-space-above);position:relative}.sidebar-search-container:focus-within,.sidebar-search-container:hover{background:var(--color-sidebar-search-background--focus)}.sidebar-search-container:before{background-color:var(--color-sidebar-search-icon);content:"";height:var(--sidebar-search-icon-size);left:var(--sidebar-item-spacing-horizontal);-webkit-mask-image:var(--icon-search);mask-image:var(--icon-search);position:absolute;width:var(--sidebar-search-icon-size)}.sidebar-search{background:transparent;border:none;border-bottom:1px solid var(--color-sidebar-search-border);border-top:1px solid var(--color-sidebar-search-border);box-sizing:border-box;color:var(--color-sidebar-search-foreground);padding:var(--sidebar-search-input-spacing-vertical) var(--sidebar-search-input-spacing-horizontal) var(--sidebar-search-input-spacing-vertical) calc(var(--sidebar-item-spacing-horizontal) + var(--sidebar-search-input-spacing-horizontal) + var(--sidebar-search-icon-size));width:100%;z-index:10}.sidebar-search:focus{outline:none}.sidebar-search::-moz-placeholder{font-size:var(--sidebar-search-input-font-size)}.sidebar-search::placeholder{font-size:var(--sidebar-search-input-font-size)}#searchbox .highlight-link{margin:0;padding:var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal) 0;text-align:center}#searchbox .highlight-link a{color:var(--color-sidebar-search-icon);font-size:var(--font-size--small--2)}.sidebar-tree{font-size:var(--sidebar-item-font-size);margin-bottom:var(--sidebar-item-spacing-vertical);margin-top:var(--sidebar-tree-space-above)}.sidebar-tree ul{display:flex;flex-direction:column;list-style:none;margin-bottom:0;margin-top:0;padding:0}.sidebar-tree li{margin:0;position:relative}.sidebar-tree li>ul{margin-left:var(--sidebar-item-spacing-horizontal)}.sidebar-tree .icon,.sidebar-tree .reference{color:var(--color-sidebar-link-text)}.sidebar-tree .reference{box-sizing:border-box;display:inline-block;height:100%;line-height:var(--sidebar-item-line-height);overflow-wrap:anywhere;padding:var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal);text-decoration:none;width:100%}.sidebar-tree .reference:hover{background:var(--color-sidebar-item-background--hover)}.sidebar-tree .reference.external:after{color:var(--color-sidebar-link-text);content:url("data:image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24' stroke-width='1.5' stroke='%23607D8B' fill='none' stroke-linecap='round' stroke-linejoin='round'%3E%3Cpath d='M0 0h24v24H0z' stroke='none'/%3E%3Cpath d='M11 7H6a2 2 0 0 0-2 2v9a2 2 0 0 0 2 2h9a2 2 0 0 0 2-2v-5M10 14 20 4M15 4h5v5'/%3E%3C/svg%3E");margin:0 .25rem;vertical-align:middle}.sidebar-tree .current-page>.reference{font-weight:700}.sidebar-tree label{align-items:center;cursor:pointer;display:flex;height:var(--sidebar-item-height);justify-content:center;position:absolute;right:0;top:0;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:var(--sidebar-expander-width)}.sidebar-tree .caption,.sidebar-tree :not(.caption)>.caption-text{color:var(--color-sidebar-caption-text);font-size:var(--sidebar-caption-font-size);font-weight:700;margin:var(--sidebar-caption-space-above) 0 0 0;padding:var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal);text-transform:uppercase}.sidebar-tree li.has-children>.reference{padding-right:var(--sidebar-expander-width)}.sidebar-tree .toctree-l1>.reference,.sidebar-tree .toctree-l1>label .icon{color:var(--color-sidebar-link-text--top-level)}.sidebar-tree label{background:var(--color-sidebar-item-expander-background)}.sidebar-tree label:hover{background:var(--color-sidebar-item-expander-background--hover)}.sidebar-tree .current>.reference{background:var(--color-sidebar-item-background--current)}.sidebar-tree .current>.reference:hover{background:var(--color-sidebar-item-background--hover)}.toctree-checkbox{display:none;position:absolute}.toctree-checkbox~ul{display:none}.toctree-checkbox~label .icon svg{transform:rotate(90deg)}.toctree-checkbox:checked~ul{display:block}.toctree-checkbox:checked~label .icon svg{transform:rotate(-90deg)}.toc-title-container{padding:var(--toc-title-padding);padding-top:var(--toc-spacing-vertical)}.toc-title{color:var(--color-toc-title-text);font-size:var(--toc-title-font-size);padding-left:var(--toc-spacing-horizontal);text-transform:uppercase}.no-toc{display:none}.toc-tree-container{padding-bottom:var(--toc-spacing-vertical)}.toc-tree{border-left:1px solid var(--color-background-border);font-size:var(--toc-font-size);line-height:1.3;padding-left:calc(var(--toc-spacing-horizontal) - var(--toc-item-spacing-horizontal))}.toc-tree>ul>li:first-child{padding-top:0}.toc-tree>ul>li:first-child>ul{padding-left:0}.toc-tree>ul>li:first-child>a{display:none}.toc-tree ul{list-style-type:none;margin-bottom:0;margin-top:0;padding-left:var(--toc-item-spacing-horizontal)}.toc-tree li{padding-top:var(--toc-item-spacing-vertical)}.toc-tree li.scroll-current>.reference{color:var(--color-toc-item-text--active);font-weight:700}.toc-tree .reference{color:var(--color-toc-item-text);overflow-wrap:anywhere;text-decoration:none}.toc-scroll{max-height:100vh;overflow-y:scroll}.contents:not(.this-will-duplicate-information-and-it-is-still-useful-here){background:rgba(255,0,0,.25);color:var(--color-problematic)}.contents:not(.this-will-duplicate-information-and-it-is-still-useful-here):before{content:"ERROR: Adding a table of contents in Furo-based documentation is unnecessary, and does not work well with existing styling.Add a 'this-will-duplicate-information-and-it-is-still-useful-here' class, if you want an escape hatch."}.text-align\:left>p{text-align:left}.text-align\:center>p{text-align:center}.text-align\:right>p{text-align:right} +/*# sourceMappingURL=furo.css.map*/ \ No newline at end of file diff --git a/v2.6.5/_static/styles/furo.css.map b/v2.6.5/_static/styles/furo.css.map new file mode 100644 index 000000000..d1dfb109d --- /dev/null +++ b/v2.6.5/_static/styles/furo.css.map @@ -0,0 +1 @@ +{"version":3,"file":"styles/furo.css","mappings":"AAAA,2EAA2E,CAU3E,KAEE,6BAA8B,CAD9B,gBAEF,CASA,KACE,QACF,CAMA,KACE,aACF,CAOA,GACE,aAAc,CACd,cACF,CAUA,GACE,sBAAuB,CACvB,QAAS,CACT,gBACF,CAOA,IACE,+BAAiC,CACjC,aACF,CASA,EACE,4BACF,CAOA,YACE,kBAAmB,CACnB,yBAA0B,CAC1B,gCACF,CAMA,SAEE,kBACF,CAOA,cAGE,+BAAiC,CACjC,aACF,CAeA,QAEE,aAAc,CACd,aAAc,CACd,iBAAkB,CAClB,uBACF,CAEA,IACE,aACF,CAEA,IACE,SACF,CASA,IACE,iBACF,CAUA,sCAKE,mBAAoB,CACpB,cAAe,CACf,gBAAiB,CACjB,QACF,CAOA,aAEE,gBACF,CAOA,cAEE,mBACF,CAMA,gDAIE,yBACF,CAMA,wHAIE,iBAAkB,CAClB,SACF,CAMA,4GAIE,6BACF,CAMA,SACE,0BACF,CASA,OACE,qBAAsB,CACtB,aAAc,CACd,aAAc,CACd,cAAe,CACf,SAAU,CACV,kBACF,CAMA,SACE,uBACF,CAMA,SACE,aACF,CAOA,6BAEE,qBAAsB,CACtB,SACF,CAMA,kFAEE,WACF,CAOA,cACE,4BAA6B,CAC7B,mBACF,CAMA,yCACE,uBACF,CAOA,6BACE,yBAA0B,CAC1B,YACF,CASA,QACE,aACF,CAMA,QACE,iBACF,CAiBA,kBACE,YACF,CCvVA,aAcE,kEACE,uBAOF,WACE,iDAMF,gCACE,wBAEF,qCAEE,uBADA,uBACA,CAEF,SACE,wBAtBA,CCpBJ,iBAOE,6BAEA,mBANA,qBAEA,sBACA,0BAFA,oBAHA,4BAOA,6BANA,mBAOA,CAEF,gBACE,aCPF,KCGE,mHAEA,wGAGA,wBAAyB,CACzB,wBAAyB,CACzB,4BAA6B,CAC7B,yBAA0B,CAC1B,2BAA4B,CAG5B,sDAAuD,CACvD,gDAAiD,CACjD,wDAAyD,CAGzD,0CAA2C,CAC3C,gDAAiD,CACjD,gDAAiD,CAKjD,gCAAiC,CACjC,sCAAuC,CAGvC,2CAA4C,CAG5C,uCAAwC,CChCxC,+FAGA,uBAAwB,CAGxB,iCAAkC,CAClC,kCAAmC,CAEnC,+BAAgC,CAChC,sCAAuC,CACvC,sCAAuC,CACvC,qGAIA,mDAAoD,CAEpD,mCAAoC,CACpC,8CAA+C,CAC/C,gDAAiD,CACjD,kCAAmC,CACnC,6DAA8D,CAG9D,6BAA8B,CAC9B,6BAA8B,CAC9B,+BAAgC,CAChC,kCAAmC,CACnC,kCAAmC,CCPjC,ukBCYA,srCAZF,kaCVA,mLAOA,oTAWA,2UAaA,0CACA,gEACA,0CAGA,gEAUA,yCACA,+DAGA,4CACA,CACA,iEAGA,sGACA,uCACA,4DAGA,sCACA,2DAEA,4CACA,kEACA,oGACA,CAEA,0GACA,+CAGA,+MAOA,+EACA,wCAIA,4DACA,sEACA,kEACA,sEACA,gDAGA,+DACA,0CACA,gEACA,gGACA,CAGA,2DACA,qDAGA,0CACA,8CACA,oDACA,oDL7GF,iCAEA,iEAME,oCKyGA,yDAIA,sCACA,kCACA,sDAGA,0CACA,kEACA,oDAEA,sDAGA,oCACA,oEAIA,CAGA,yDAGA,qDACA,oDAGA,6DAIA,iEAGA,2DAEA,2DL9IE,4DAEA,gEAIF,gEKgGA,gFAIA,oNAOA,qDAEA,gFAIA,4DAIA,oEAMA,yEAIA,6DACA,0DAGA,uDAGA,qDAEA,wDLpII,6DAEA,yDACE,2DAMN,uCAIA,yCACE,8CAGF,sDMjDA,6DAKA,oCAIA,4CACA,kBAGF,sBAMA,2BAME,qCAGA,qCAEA,iCAEA,+BAEA,mCAEA,qCAIA,CACA,gCACA,gDAKA,kCAIA,6BAEA,0CAQA,kCAIF,8BAGE,8BACA,uCAGF,sCAKE,kCAEA,sDAGA,iCACE,CACA,2FAGA,gCACE,CACA,+DCzEJ,wCAEA,sBAEF,yDAEE,mCACA,wDAGA,2GAGA,wIACE,gDAMJ,kCAGE,6BACA,0CAGA,gEACA,8BACA,uCAKA,sCAIA,kCACA,sDACA,iCACA,sCAOA,sDAKE,gGAIE,+CAGN,sBAEE,yCAMA,0BAMA,yLAMA,aACA,MAEF,6BACE,2DAIF,wCAIE,kCAGA,SACA,kCAKA,mBAGA,CAJA,eACA,CAHF,gBAEE,CAWA,mBACA,mBACA,mDAGA,YACA,CACA,kBACA,CAEE,kBAKJ,OAPE,kBAQA,CADF,GACE,iCACA,wCAEA,wBACA,aACA,CAFA,WAEA,GACA,oBACA,CAFA,gBAEA,aACE,+CAIF,UAJE,kCAIF,WACA,iBACA,GAGA,uBACE,CAJF,yBAGA,CACE,iDACA,uCAEA,yDACE,cACA,wDAKN,yDAIE,uBAEF,kBACE,uBAEA,kDAIA,0DAGA,CAHA,oBAGA,0GAYA,aAEA,CAHA,YAGA,4HAKF,+CAGE,sBAEF,WAKE,0CAEA,CALA,qCAGA,CAJA,WAOA,SAIA,2CAJA,qCAIA,CACE,wBACA,OACA,YAEJ,gBACE,gBAIA,+CAKF,CAGE,kDAGA,CANF,8BAGE,CAGA,YAEA,CAdF,2BACE,CAHA,UAEF,CAYE,UAEA,CACA,0CACF,iEAOE,iCACA,8BAGA,wCAIA,wBAKE,0CAKF,CARE,6DAGA,CALF,qBAEE,CASA,YACA,yBAGA,CAEE,cAKN,CAPI,sBAOJ,gCAGE,qBAEA,WACA,aACA,sCAEA,mBACA,6BAGA,uEADA,qBACA,6BAIA,yBACA,qCAEE,UAEA,YACA,sBAEF,8BAGA,CAPE,aACA,WAMF,4BACE,sBACA,WAMJ,uBACE,cAYE,mBAXA,qDAKA,qCAGA,CAEA,YACA,CAHA,2BAEA,CACA,oCAEA,4CACA,uBAIA,oCAEJ,CAFI,cAIF,iBACE,CAHJ,kBAGI,yBAEA,oCAIA,qDAMF,mEAEA,CACE,8CAKA,gCAEA,qCAGA,oCAGE,sBACA,CAJF,WAEE,CAFF,eAEE,SAEA,mBACA,qCACE,aACA,CAFF,YADA,qBACA,WAEE,sBACA,kEAEN,2BAEE,iDAKA,uCAGF,CACE,0DAKA,kBACF,CAFE,sBAGA,mBACA,0BAEJ,yBAII,aADA,WACA,CAMF,UAFE,kBAEF,CAJF,gBACE,CAHE,iBAMF,6CC9ZF,yBACE,WACA,iBAEA,aAFA,iBAEA,6BAEA,kCACA,mBAKA,gCAGA,CARA,QAEA,CAGA,UALA,qBAEA,qDAGA,CALA,OAQA,4BACE,cAGF,2BACE,gCAEJ,CAHE,UAGF,8CAGE,CAHF,UAGE,wCAGA,qBACA,CAFA,UAEA,6CAGA,yCAIA,sBAHA,UAGA,kCACE,OACA,CAFF,KAEE,cAQF,0CACE,CAFF,kBACA,CACE,wEACA,CARA,YACA,CAKF,mBAFF,OAII,eACA,CAJF,iCAJE,cAGJ,CANI,oBAEA,CAKF,SAIE,2BADA,UACA,kBAGF,sCACA,CAFF,WACE,WACA,qCACE,gCACA,2EACA,sDAKJ,aACE,mDAII,CAJJ,6CAII,kEACA,iBACE,iDACA,+CACE,aACA,WADA,+BACA,uEANN,YACE,mDAEE,mBADF,0CACE,CADF,qBACE,0DACA,YACE,4DACA,sEANN,YACE,8CACA,kBADA,UACA,2CACE,2EACA,cACE,kEACA,mEANN,yBACE,4DACA,sBACE,+EAEE,iEACA,qEANN,sCACE,CAGE,iBAHF,gBAGE,qBACE,CAJJ,uBACA,gDACE,wDACA,6DAHF,2CACA,CADA,gBACA,eACE,CAGE,sBANN,8BACE,CAII,iBAFF,4DACA,WACE,YADF,uCACE,6EACA,2BANN,8CACE,kDACA,0CACE,8BACA,yFACE,sBACA,sFALJ,mEACA,sBACE,kEACA,6EACE,uCACA,kEALJ,qGAEE,kEACA,6EACE,uCACA,kEALJ,8CACA,uDACE,sEACA,2EACE,sCACA,iEALJ,mGACA,qCACE,oDACA,0DACE,6GACA,gDAGR,yDCrEA,sEACE,CACA,6GACE,gEACF,iGAIF,wFACE,qDAGA,mGAEE,2CAEF,4FACE,gCACF,wGACE,8DAEE,6FAIA,iJAKN,6GACE,gDAKF,yDACA,qCAGA,6BACA,kBACA,qDAKA,oCAEA,+DAGA,2CAGE,oDAIA,oEAEE,qBAGJ,wDAEE,uCAEF,kEAGA,8CAEA,uDAKA,oCAEA,yDAEE,gEAKF,+CC5FA,0EAGE,CACA,qDCLJ,+DAIE,sCAIA,kEACE,yBACA,2FAMA,gBACA,yGCbF,mBAOA,2MAIA,4HAYA,0DACE,8GAYF,8HAQE,mBAEA,6HAOF,YAGA,mIAME,eACA,CAFF,YAEE,4FAMJ,8BAEE,uBAYA,sCAEE,CAJF,oBAEA,CARA,wCAEA,CAHA,8BACA,CAFA,eACA,CAGA,wCAEA,CAEA,mDAIE,kCACE,6BACA,4CAKJ,kDAIA,eACE,aAGF,8BACE,uDACA,sCACA,cAEA,+BACA,CAFA,eAEA,wCAEF,YACE,iBACA,mCACA,0DAGF,qBAEE,CAFF,kBAEE,+BAIA,yCAEE,qBADA,gBACA,yBAKF,eACA,CAFF,YACE,CACA,iBACA,qDAEA,mDCvIJ,2FAOE,iCACA,CAEA,eACA,CAHA,kBAEA,CAFA,wBAGA,8BACA,eACE,CAFF,YAEE,0BACA,8CAGA,oBACE,oCAGA,kBACE,8DAEA,iBAEN,UACE,8BAIJ,+CAEE,qDAEF,kDAIE,YAEF,CAFE,YAEF,CCjCE,mFAJA,QACA,UAIE,CADF,iBACE,mCAGA,iDACE,+BAGF,wBAEA,mBAKA,6CAEF,CAHE,mBACA,CAEF,kCAIE,CARA,kBACA,CAFF,eASE,YACA,mBAGF,CAJE,UAIF,wCCjCA,oBDmCE,wBCpCJ,uCACE,8BACA,4CACA,oBAGA,2CCAA,6CAGE,CAPF,uBAIA,CDGA,gDACE,6BCVJ,CAWM,2CAEF,CAJA,kCAEE,CDJF,aCLF,gBDKE,uBCMA,gCAGA,gDAGE,wBAGJ,0BAEA,iBACE,aACF,CADE,UACF,uBACE,aACF,oBACE,YACF,4BACE,6CAMA,CAYF,6DAZE,mCAGE,iCASJ,4BAGE,4DADA,+BACA,CAFA,qBAEA,yBACE,aAEF,wBAHA,SAGA,iHACE,2DAKF,CANA,yCACE,CADF,oCAMA,uSAIA,sGACE,oDChEJ,WAEF,yBACE,QACA,eAEA,gBAEE,uCAGA,CALF,iCAKE,uCAGA,0BACA,CACA,oBACA,iCClBJ,gBACE,KAGF,qBACE,YAGF,CAHE,cAGF,gCAEE,mBACA,iEAEA,oCACA,wCAEA,sBACA,WAEA,CAFA,YAEA,8EAEA,mCAFA,iBAEA,6BAIA,wEAKA,sDAIE,CARF,mDAIA,CAIE,cAEF,8CAIA,oBAFE,iBAEF,8CAGE,eAEF,CAFE,YAEF,OAEE,kBAGJ,CAJI,eACA,CAFF,mBAKF,yCCjDE,oBACA,CAFA,iBAEA,uCAKE,iBACA,qCAGA,mBCZJ,CDWI,gBCXJ,6BAEE,eACA,sBAGA,eAEA,sBACA,oDACA,iGAMA,gBAFE,YAEF,8FAME,iJClBF,YACA,gNAUE,6BAEF,oTAcI,kBACF,gHAIA,qBACE,eACF,qDACE,kBACF,6DACE,4BCxCJ,oBAEF,qCAEI,+CAGF,uBACE,uDAGJ,oBAkBE,mDAhBA,+CAaA,CAbA,oBAaA,0FAEE,CAFF,gGAbA,+BAaA,0BAGA,mQAIA,oNAEE,iBAGJ,CAHI,gBADA,gBAIJ,8CAYI,CAZJ,wCAYI,sVACE,iCAGA,uEAHA,QAGA,qXAKJ,iDAGF,CARM,+CACE,iDAIN,CALI,gBAQN,mHACE,gBAGF,2DACE,0EAOA,0EAKA,6EC/EA,iDACA,gCACA,oDAGA,qBACA,oDCFA,cACA,eAEA,yBAGF,sBAEE,iBACA,sNAWA,iBACE,kBACA,wRAgBA,kBAEA,iOAgBA,uCACE,uEAEA,kBAEF,qUAuBE,iDAIJ,CACA,geCxFF,4BAEE,CAQA,6JACA,iDAIA,sEAGA,mDAOF,iDAGE,4DAIA,8CACA,qDAEE,eAFF,cAEE,oBAEF,uBAFE,kCAGA,eACA,iBACA,mBAIA,mDACA,CAHA,uCAEA,CAJA,0CACA,CAIA,gBAJA,gBACA,oBADA,gBAIA,wBAEJ,gBAGE,6BACA,YAHA,iBAGA,gCACA,iEAEA,6CACA,sDACA,0BADA,wBACA,0BACA,oIAIA,mBAFA,YAEA,qBACA,0CAIE,uBAEF,CAHA,yBACE,CAEF,iDACE,mFAKJ,oCACE,CANE,aAKJ,CACE,qEAIA,YAFA,WAEA,CAHA,aACA,CAEA,gBACE,4BACA,sBADA,aACA,gCAMF,oCACA,yDACA,2CAEA,qBAGE,kBAEA,CACA,mCAIF,CARE,YACA,CAOF,iCAEE,CAPA,oBACA,CAQA,oBACE,uDAEJ,sDAGA,CAHA,cAGA,0BACE,oDAIA,oCACA,4BACA,sBAGA,cAEA,oFAGA,sBAEA,yDACE,CAIA,iBAJA,wBAIA,6CAJA,6CAOA,4BAGJ,CAHI,cAGJ,yCAGA,kBACE,CAIA,iDAEA,CATA,YAEF,CACE,4CAGA,kBAIA,wEAEA,wDAIF,kCAOE,iDACA,CARF,WAIE,sCAGA,CANA,2CACA,CAMA,oEARF,iBACE,CACA,qCAMA,iBAuBE,uBAlBF,YAKA,2DALA,uDAKA,CALA,sBAiBA,4CACE,CALA,gRAIF,YACE,UAEN,uBACE,YACA,mCAOE,+CAGA,8BAGF,+CAGA,4BCjNA,SDiNA,qFCjNA,gDAGA,sCACA,qCACA,sDAIF,CAIE,kDAGA,CAPF,0CAOE,kBAEA,kDAEA,CAHA,eACA,CAFA,YACA,CADA,SAIA,mHAIE,CAGA,6CAFA,oCAeE,CAbF,yBACE,qBAEJ,CAGE,oBACA,CAEA,YAFA,2CACF,CACE,uBAEA,mFAEE,CALJ,oBACE,CAEA,UAEE,gCAGF,sDAEA,yCC7CJ,oCAGA,CD6CE,yXAQE,sCCrDJ,wCAGA,oCACE","sources":["webpack:///./node_modules/normalize.css/normalize.css","webpack:///./src/furo/assets/styles/base/_print.sass","webpack:///./src/furo/assets/styles/base/_screen-readers.sass","webpack:///./src/furo/assets/styles/base/_theme.sass","webpack:///./src/furo/assets/styles/variables/_fonts.scss","webpack:///./src/furo/assets/styles/variables/_spacing.scss","webpack:///./src/furo/assets/styles/variables/_icons.scss","webpack:///./src/furo/assets/styles/variables/_admonitions.scss","webpack:///./src/furo/assets/styles/variables/_colors.scss","webpack:///./src/furo/assets/styles/base/_typography.sass","webpack:///./src/furo/assets/styles/_scaffold.sass","webpack:///./src/furo/assets/styles/content/_admonitions.sass","webpack:///./src/furo/assets/styles/content/_api.sass","webpack:///./src/furo/assets/styles/content/_blocks.sass","webpack:///./src/furo/assets/styles/content/_captions.sass","webpack:///./src/furo/assets/styles/content/_code.sass","webpack:///./src/furo/assets/styles/content/_footnotes.sass","webpack:///./src/furo/assets/styles/content/_images.sass","webpack:///./src/furo/assets/styles/content/_indexes.sass","webpack:///./src/furo/assets/styles/content/_lists.sass","webpack:///./src/furo/assets/styles/content/_math.sass","webpack:///./src/furo/assets/styles/content/_misc.sass","webpack:///./src/furo/assets/styles/content/_rubrics.sass","webpack:///./src/furo/assets/styles/content/_sidebar.sass","webpack:///./src/furo/assets/styles/content/_tables.sass","webpack:///./src/furo/assets/styles/content/_target.sass","webpack:///./src/furo/assets/styles/content/_gui-labels.sass","webpack:///./src/furo/assets/styles/components/_footer.sass","webpack:///./src/furo/assets/styles/components/_sidebar.sass","webpack:///./src/furo/assets/styles/components/_table_of_contents.sass","webpack:///./src/furo/assets/styles/_shame.sass"],"sourcesContent":["/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */\n\n/* Document\n ========================================================================== */\n\n/**\n * 1. Correct the line height in all browsers.\n * 2. Prevent adjustments of font size after orientation changes in iOS.\n */\n\nhtml {\n line-height: 1.15; /* 1 */\n -webkit-text-size-adjust: 100%; /* 2 */\n}\n\n/* Sections\n ========================================================================== */\n\n/**\n * Remove the margin in all browsers.\n */\n\nbody {\n margin: 0;\n}\n\n/**\n * Render the `main` element consistently in IE.\n */\n\nmain {\n display: block;\n}\n\n/**\n * Correct the font size and margin on `h1` elements within `section` and\n * `article` contexts in Chrome, Firefox, and Safari.\n */\n\nh1 {\n font-size: 2em;\n margin: 0.67em 0;\n}\n\n/* Grouping content\n ========================================================================== */\n\n/**\n * 1. Add the correct box sizing in Firefox.\n * 2. Show the overflow in Edge and IE.\n */\n\nhr {\n box-sizing: content-box; /* 1 */\n height: 0; /* 1 */\n overflow: visible; /* 2 */\n}\n\n/**\n * 1. Correct the inheritance and scaling of font size in all browsers.\n * 2. Correct the odd `em` font sizing in all browsers.\n */\n\npre {\n font-family: monospace, monospace; /* 1 */\n font-size: 1em; /* 2 */\n}\n\n/* Text-level semantics\n ========================================================================== */\n\n/**\n * Remove the gray background on active links in IE 10.\n */\n\na {\n background-color: transparent;\n}\n\n/**\n * 1. Remove the bottom border in Chrome 57-\n * 2. Add the correct text decoration in Chrome, Edge, IE, Opera, and Safari.\n */\n\nabbr[title] {\n border-bottom: none; /* 1 */\n text-decoration: underline; /* 2 */\n text-decoration: underline dotted; /* 2 */\n}\n\n/**\n * Add the correct font weight in Chrome, Edge, and Safari.\n */\n\nb,\nstrong {\n font-weight: bolder;\n}\n\n/**\n * 1. Correct the inheritance and scaling of font size in all browsers.\n * 2. Correct the odd `em` font sizing in all browsers.\n */\n\ncode,\nkbd,\nsamp {\n font-family: monospace, monospace; /* 1 */\n font-size: 1em; /* 2 */\n}\n\n/**\n * Add the correct font size in all browsers.\n */\n\nsmall {\n font-size: 80%;\n}\n\n/**\n * Prevent `sub` and `sup` elements from affecting the line height in\n * all browsers.\n */\n\nsub,\nsup {\n font-size: 75%;\n line-height: 0;\n position: relative;\n vertical-align: baseline;\n}\n\nsub {\n bottom: -0.25em;\n}\n\nsup {\n top: -0.5em;\n}\n\n/* Embedded content\n ========================================================================== */\n\n/**\n * Remove the border on images inside links in IE 10.\n */\n\nimg {\n border-style: none;\n}\n\n/* Forms\n ========================================================================== */\n\n/**\n * 1. Change the font styles in all browsers.\n * 2. Remove the margin in Firefox and Safari.\n */\n\nbutton,\ninput,\noptgroup,\nselect,\ntextarea {\n font-family: inherit; /* 1 */\n font-size: 100%; /* 1 */\n line-height: 1.15; /* 1 */\n margin: 0; /* 2 */\n}\n\n/**\n * Show the overflow in IE.\n * 1. Show the overflow in Edge.\n */\n\nbutton,\ninput { /* 1 */\n overflow: visible;\n}\n\n/**\n * Remove the inheritance of text transform in Edge, Firefox, and IE.\n * 1. Remove the inheritance of text transform in Firefox.\n */\n\nbutton,\nselect { /* 1 */\n text-transform: none;\n}\n\n/**\n * Correct the inability to style clickable types in iOS and Safari.\n */\n\nbutton,\n[type=\"button\"],\n[type=\"reset\"],\n[type=\"submit\"] {\n -webkit-appearance: button;\n}\n\n/**\n * Remove the inner border and padding in Firefox.\n */\n\nbutton::-moz-focus-inner,\n[type=\"button\"]::-moz-focus-inner,\n[type=\"reset\"]::-moz-focus-inner,\n[type=\"submit\"]::-moz-focus-inner {\n border-style: none;\n padding: 0;\n}\n\n/**\n * Restore the focus styles unset by the previous rule.\n */\n\nbutton:-moz-focusring,\n[type=\"button\"]:-moz-focusring,\n[type=\"reset\"]:-moz-focusring,\n[type=\"submit\"]:-moz-focusring {\n outline: 1px dotted ButtonText;\n}\n\n/**\n * Correct the padding in Firefox.\n */\n\nfieldset {\n padding: 0.35em 0.75em 0.625em;\n}\n\n/**\n * 1. Correct the text wrapping in Edge and IE.\n * 2. Correct the color inheritance from `fieldset` elements in IE.\n * 3. Remove the padding so developers are not caught out when they zero out\n * `fieldset` elements in all browsers.\n */\n\nlegend {\n box-sizing: border-box; /* 1 */\n color: inherit; /* 2 */\n display: table; /* 1 */\n max-width: 100%; /* 1 */\n padding: 0; /* 3 */\n white-space: normal; /* 1 */\n}\n\n/**\n * Add the correct vertical alignment in Chrome, Firefox, and Opera.\n */\n\nprogress {\n vertical-align: baseline;\n}\n\n/**\n * Remove the default vertical scrollbar in IE 10+.\n */\n\ntextarea {\n overflow: auto;\n}\n\n/**\n * 1. Add the correct box sizing in IE 10.\n * 2. Remove the padding in IE 10.\n */\n\n[type=\"checkbox\"],\n[type=\"radio\"] {\n box-sizing: border-box; /* 1 */\n padding: 0; /* 2 */\n}\n\n/**\n * Correct the cursor style of increment and decrement buttons in Chrome.\n */\n\n[type=\"number\"]::-webkit-inner-spin-button,\n[type=\"number\"]::-webkit-outer-spin-button {\n height: auto;\n}\n\n/**\n * 1. Correct the odd appearance in Chrome and Safari.\n * 2. Correct the outline style in Safari.\n */\n\n[type=\"search\"] {\n -webkit-appearance: textfield; /* 1 */\n outline-offset: -2px; /* 2 */\n}\n\n/**\n * Remove the inner padding in Chrome and Safari on macOS.\n */\n\n[type=\"search\"]::-webkit-search-decoration {\n -webkit-appearance: none;\n}\n\n/**\n * 1. Correct the inability to style clickable types in iOS and Safari.\n * 2. Change font properties to `inherit` in Safari.\n */\n\n::-webkit-file-upload-button {\n -webkit-appearance: button; /* 1 */\n font: inherit; /* 2 */\n}\n\n/* Interactive\n ========================================================================== */\n\n/*\n * Add the correct display in Edge, IE 10+, and Firefox.\n */\n\ndetails {\n display: block;\n}\n\n/*\n * Add the correct display in all browsers.\n */\n\nsummary {\n display: list-item;\n}\n\n/* Misc\n ========================================================================== */\n\n/**\n * Add the correct display in IE 10+.\n */\n\ntemplate {\n display: none;\n}\n\n/**\n * Add the correct display in IE 10.\n */\n\n[hidden] {\n display: none;\n}\n","// This file contains styles for managing print media.\n\n////////////////////////////////////////////////////////////////////////////////\n// Hide elements not relevant to print media.\n////////////////////////////////////////////////////////////////////////////////\n@media print\n // Hide icon container.\n .content-icon-container\n display: none !important\n\n // Hide showing header links if hovering over when printing.\n .headerlink\n display: none !important\n\n // Hide mobile header.\n .mobile-header\n display: none !important\n\n // Hide navigation links.\n .related-pages\n display: none !important\n\n////////////////////////////////////////////////////////////////////////////////\n// Tweaks related to decolorization.\n////////////////////////////////////////////////////////////////////////////////\n@media print\n // Apply a border around code which no longer have a color background.\n .highlight\n border: 0.1pt solid var(--color-foreground-border)\n\n////////////////////////////////////////////////////////////////////////////////\n// Avoid page break in some relevant cases.\n////////////////////////////////////////////////////////////////////////////////\n@media print\n ul, ol, dl, a, table, pre, blockquote\n page-break-inside: avoid\n\n h1, h2, h3, h4, h5, h6, img, figure, caption\n page-break-inside: avoid\n page-break-after: avoid\n\n ul, ol, dl\n page-break-before: avoid\n",".visually-hidden\n position: absolute !important\n width: 1px !important\n height: 1px !important\n padding: 0 !important\n margin: -1px !important\n overflow: hidden !important\n clip: rect(0,0,0,0) !important\n white-space: nowrap !important\n border: 0 !important\n\n:-moz-focusring\n outline: auto\n","// This file serves as the \"skeleton\" of the theming logic.\n//\n// This contains the bulk of the logic for handling dark mode, color scheme\n// toggling and the handling of color-scheme-specific hiding of elements.\n\nbody\n @include fonts\n @include spacing\n @include icons\n @include admonitions\n @include default-admonition(#651fff, \"abstract\")\n @include default-topic(#14B8A6, \"pencil\")\n\n @include colors\n\n.only-light\n display: block !important\nhtml body .only-dark\n display: none !important\n\n// Ignore dark-mode hints if print media.\n@media not print\n // Enable dark-mode, if requested.\n body[data-theme=\"dark\"]\n @include colors-dark\n\n html & .only-light\n display: none !important\n .only-dark\n display: block !important\n\n // Enable dark mode, unless explicitly told to avoid.\n @media (prefers-color-scheme: dark)\n body:not([data-theme=\"light\"])\n @include colors-dark\n\n html & .only-light\n display: none !important\n .only-dark\n display: block !important\n\n//\n// Theme toggle presentation\n//\nbody[data-theme=\"auto\"]\n .theme-toggle svg.theme-icon-when-auto\n display: block\n\nbody[data-theme=\"dark\"]\n .theme-toggle svg.theme-icon-when-dark\n display: block\n\nbody[data-theme=\"light\"]\n .theme-toggle svg.theme-icon-when-light\n display: block\n","// Fonts used by this theme.\n//\n// There are basically two things here -- using the system font stack and\n// defining sizes for various elements in %ages. We could have also used `em`\n// but %age is easier to reason about for me.\n\n@mixin fonts {\n // These are adapted from https://systemfontstack.com/\n --font-stack: -apple-system, BlinkMacSystemFont, Segoe UI, Helvetica, Arial,\n sans-serif, Apple Color Emoji, Segoe UI Emoji;\n --font-stack--monospace: \"SFMono-Regular\", Menlo, Consolas, Monaco,\n Liberation Mono, Lucida Console, monospace;\n\n --font-size--normal: 100%;\n --font-size--small: 87.5%;\n --font-size--small--2: 81.25%;\n --font-size--small--3: 75%;\n --font-size--small--4: 62.5%;\n\n // Sidebar\n --sidebar-caption-font-size: var(--font-size--small--2);\n --sidebar-item-font-size: var(--font-size--small);\n --sidebar-search-input-font-size: var(--font-size--small);\n\n // Table of Contents\n --toc-font-size: var(--font-size--small--3);\n --toc-font-size--mobile: var(--font-size--normal);\n --toc-title-font-size: var(--font-size--small--4);\n\n // Admonitions\n //\n // These aren't defined in terms of %ages, since nesting these is permitted.\n --admonition-font-size: 0.8125rem;\n --admonition-title-font-size: 0.8125rem;\n\n // Code\n --code-font-size: var(--font-size--small--2);\n\n // API\n --api-font-size: var(--font-size--small);\n}\n","// Spacing for various elements on the page\n//\n// If the user wants to tweak things in a certain way, they are permitted to.\n// They also have to deal with the consequences though!\n\n@mixin spacing {\n // Header!\n --header-height: calc(\n var(--sidebar-item-line-height) + 4 * #{var(--sidebar-item-spacing-vertical)}\n );\n --header-padding: 0.5rem;\n\n // Sidebar\n --sidebar-tree-space-above: 1.5rem;\n --sidebar-caption-space-above: 1rem;\n\n --sidebar-item-line-height: 1rem;\n --sidebar-item-spacing-vertical: 0.5rem;\n --sidebar-item-spacing-horizontal: 1rem;\n --sidebar-item-height: calc(\n var(--sidebar-item-line-height) + 2 *#{var(--sidebar-item-spacing-vertical)}\n );\n\n --sidebar-expander-width: var(--sidebar-item-height); // be square\n\n --sidebar-search-space-above: 0.5rem;\n --sidebar-search-input-spacing-vertical: 0.5rem;\n --sidebar-search-input-spacing-horizontal: 0.5rem;\n --sidebar-search-input-height: 1rem;\n --sidebar-search-icon-size: var(--sidebar-search-input-height);\n\n // Table of Contents\n --toc-title-padding: 0.25rem 0;\n --toc-spacing-vertical: 1.5rem;\n --toc-spacing-horizontal: 1.5rem;\n --toc-item-spacing-vertical: 0.4rem;\n --toc-item-spacing-horizontal: 1rem;\n}\n","// Expose theme icons as CSS variables.\n\n$icons: (\n // Adapted from tabler-icons\n // url: https://tablericons.com/\n \"search\":\n url('data:image/svg+xml;charset=utf-8,'),\n // Factored out from mkdocs-material on 24-Aug-2020.\n // url: https://squidfunk.github.io/mkdocs-material/reference/admonitions/\n \"pencil\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"abstract\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"info\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"flame\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"question\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"warning\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"failure\":\n url('data:image/svg+xml;charset=utf-8,'),\n \"spark\":\n url('data:image/svg+xml;charset=utf-8,')\n);\n\n@mixin icons {\n @each $name, $glyph in $icons {\n --icon-#{$name}: #{$glyph};\n }\n}\n","// Admonitions\n\n// Structure of these is:\n// admonition-class: color \"icon-name\";\n//\n// The colors are translated into CSS variables below. The icons are\n// used directly in the main declarations to set the `mask-image` in\n// the title.\n\n// prettier-ignore\n$admonitions: (\n // Each of these has an reST directives for it.\n \"caution\": #ff9100 \"spark\",\n \"warning\": #ff9100 \"warning\",\n \"danger\": #ff5252 \"spark\",\n \"attention\": #ff5252 \"warning\",\n \"error\": #ff5252 \"failure\",\n \"hint\": #00c852 \"question\",\n \"tip\": #00c852 \"info\",\n \"important\": #00bfa5 \"flame\",\n \"note\": #00b0ff \"pencil\",\n \"seealso\": #448aff \"info\",\n \"admonition-todo\": #808080 \"pencil\"\n);\n\n@mixin default-admonition($color, $icon-name) {\n --color-admonition-title: #{$color};\n --color-admonition-title-background: #{rgba($color, 0.2)};\n\n --icon-admonition-default: var(--icon-#{$icon-name});\n}\n\n@mixin default-topic($color, $icon-name) {\n --color-topic-title: #{$color};\n --color-topic-title-background: #{rgba($color, 0.2)};\n\n --icon-topic-default: var(--icon-#{$icon-name});\n}\n\n@mixin admonitions {\n @each $name, $values in $admonitions {\n --color-admonition-title--#{$name}: #{nth($values, 1)};\n --color-admonition-title-background--#{$name}: #{rgba(\n nth($values, 1),\n 0.2\n )};\n }\n}\n","// Colors used throughout this theme.\n//\n// The aim is to give the user more control. Thus, instead of hard-coding colors\n// in various parts of the stylesheet, the approach taken is to define all\n// colors as CSS variables and reusing them in all the places.\n//\n// `colors-dark` depends on `colors` being included at a lower specificity.\n\n@mixin colors {\n --color-problematic: #b30000;\n\n // Base Colors\n --color-foreground-primary: black; // for main text and headings\n --color-foreground-secondary: #5a5c63; // for secondary text\n --color-foreground-muted: #646776; // for muted text\n --color-foreground-border: #878787; // for content borders\n\n --color-background-primary: white; // for content\n --color-background-secondary: #f8f9fb; // for navigation + ToC\n --color-background-hover: #efeff4ff; // for navigation-item hover\n --color-background-hover--transparent: #efeff400;\n --color-background-border: #eeebee; // for UI borders\n --color-background-item: #ccc; // for \"background\" items (eg: copybutton)\n\n // Announcements\n --color-announcement-background: #000000dd;\n --color-announcement-text: #eeebee;\n\n // Brand colors\n --color-brand-primary: #2962ff;\n --color-brand-content: #2a5adf;\n\n // API documentation\n --color-api-background: var(--color-background-hover--transparent);\n --color-api-background-hover: var(--color-background-hover);\n --color-api-overall: var(--color-foreground-secondary);\n --color-api-name: var(--color-problematic);\n --color-api-pre-name: var(--color-problematic);\n --color-api-paren: var(--color-foreground-secondary);\n --color-api-keyword: var(--color-foreground-primary);\n --color-highlight-on-target: #ffffcc;\n\n // Inline code background\n --color-inline-code-background: var(--color-background-secondary);\n\n // Highlighted text (search)\n --color-highlighted-background: #ddeeff;\n --color-highlighted-text: var(--color-foreground-primary);\n\n // GUI Labels\n --color-guilabel-background: #ddeeff80;\n --color-guilabel-border: #bedaf580;\n --color-guilabel-text: var(--color-foreground-primary);\n\n // Admonitions!\n --color-admonition-background: transparent;\n\n //////////////////////////////////////////////////////////////////////////////\n // Everything below this should be one of:\n // - var(...)\n // - *-gradient(...)\n // - special literal values (eg: transparent, none)\n //////////////////////////////////////////////////////////////////////////////\n\n // Tables\n --color-table-header-background: var(--color-background-secondary);\n --color-table-border: var(--color-background-border);\n\n // Cards\n --color-card-border: var(--color-background-secondary);\n --color-card-background: transparent;\n --color-card-marginals-background: var(--color-background-secondary);\n\n // Header\n --color-header-background: var(--color-background-primary);\n --color-header-border: var(--color-background-border);\n --color-header-text: var(--color-foreground-primary);\n\n // Sidebar (left)\n --color-sidebar-background: var(--color-background-secondary);\n --color-sidebar-background-border: var(--color-background-border);\n\n --color-sidebar-brand-text: var(--color-foreground-primary);\n --color-sidebar-caption-text: var(--color-foreground-muted);\n --color-sidebar-link-text: var(--color-foreground-secondary);\n --color-sidebar-link-text--top-level: var(--color-brand-primary);\n\n --color-sidebar-item-background: var(--color-sidebar-background);\n --color-sidebar-item-background--current: var(\n --color-sidebar-item-background\n );\n --color-sidebar-item-background--hover: linear-gradient(\n 90deg,\n var(--color-background-hover--transparent) 0%,\n var(--color-background-hover) var(--sidebar-item-spacing-horizontal),\n var(--color-background-hover) 100%\n );\n\n --color-sidebar-item-expander-background: transparent;\n --color-sidebar-item-expander-background--hover: var(\n --color-background-hover\n );\n\n --color-sidebar-search-text: var(--color-foreground-primary);\n --color-sidebar-search-background: var(--color-background-secondary);\n --color-sidebar-search-background--focus: var(--color-background-primary);\n --color-sidebar-search-border: var(--color-background-border);\n --color-sidebar-search-icon: var(--color-foreground-muted);\n\n // Table of Contents (right)\n --color-toc-background: var(--color-background-primary);\n --color-toc-title-text: var(--color-foreground-muted);\n --color-toc-item-text: var(--color-foreground-secondary);\n --color-toc-item-text--hover: var(--color-foreground-primary);\n --color-toc-item-text--active: var(--color-brand-primary);\n\n // Actual page contents\n --color-content-foreground: var(--color-foreground-primary);\n --color-content-background: transparent;\n\n // Links\n --color-link: var(--color-brand-content);\n --color-link--hover: var(--color-brand-content);\n --color-link-underline: var(--color-background-border);\n --color-link-underline--hover: var(--color-foreground-border);\n}\n\n@mixin colors-dark {\n --color-problematic: #ee5151;\n\n // Base Colors\n --color-foreground-primary: #ffffffcc; // for main text and headings\n --color-foreground-secondary: #9ca0a5; // for secondary text\n --color-foreground-muted: #81868d; // for muted text\n --color-foreground-border: #666666; // for content borders\n\n --color-background-primary: #131416; // for content\n --color-background-secondary: #1a1c1e; // for navigation + ToC\n --color-background-hover: #1e2124ff; // for navigation-item hover\n --color-background-hover--transparent: #1e212400;\n --color-background-border: #303335; // for UI borders\n --color-background-item: #444; // for \"background\" items (eg: copybutton)\n\n // Announcements\n --color-announcement-background: #000000dd;\n --color-announcement-text: #eeebee;\n\n // Brand colors\n --color-brand-primary: #2b8cee;\n --color-brand-content: #368ce2;\n\n // Highlighted text (search)\n --color-highlighted-background: #083563;\n\n // GUI Labels\n --color-guilabel-background: #08356380;\n --color-guilabel-border: #13395f80;\n\n // API documentation\n --color-api-keyword: var(--color-foreground-secondary);\n --color-highlight-on-target: #333300;\n\n // Admonitions\n --color-admonition-background: #18181a;\n\n // Cards\n --color-card-border: var(--color-background-secondary);\n --color-card-background: #18181a;\n --color-card-marginals-background: var(--color-background-hover);\n}\n","// This file contains the styling for making the content throughout the page,\n// including fonts, paragraphs, headings and spacing among these elements.\n\nbody\n font-family: var(--font-stack)\npre,\ncode,\nkbd,\nsamp\n font-family: var(--font-stack--monospace)\n\n// Make fonts look slightly nicer.\nbody\n -webkit-font-smoothing: antialiased\n -moz-osx-font-smoothing: grayscale\n\n// Line height from Bootstrap 4.1\narticle\n line-height: 1.5\n\n//\n// Headings\n//\nh1,\nh2,\nh3,\nh4,\nh5,\nh6\n line-height: 1.25\n font-weight: bold\n\n border-radius: 0.5rem\n margin-top: 0.5rem\n margin-bottom: 0.5rem\n margin-left: -0.5rem\n margin-right: -0.5rem\n padding-left: 0.5rem\n padding-right: 0.5rem\n\n + p\n margin-top: 0\n\nh1\n font-size: 2.5em\n margin-top: 1.75rem\n margin-bottom: 1rem\nh2\n font-size: 2em\n margin-top: 1.75rem\nh3\n font-size: 1.5em\nh4\n font-size: 1.25em\nh5\n font-size: 1.125em\nh6\n font-size: 1em\n\nsmall\n opacity: 75%\n font-size: 80%\n\n// Paragraph\np\n margin-top: 0.5rem\n margin-bottom: 0.75rem\n\n// Horizontal rules\nhr.docutils\n height: 1px\n padding: 0\n margin: 2rem 0\n background-color: var(--color-background-border)\n border: 0\n\n.centered\n text-align: center\n\n// Links\na\n text-decoration: underline\n\n color: var(--color-link)\n text-decoration-color: var(--color-link-underline)\n\n &:hover\n color: var(--color-link--hover)\n text-decoration-color: var(--color-link-underline--hover)\n &.muted-link\n color: inherit\n &:hover\n color: var(--color-link)\n text-decoration-color: var(--color-link-underline--hover)\n","// This file contains the styles for the overall layouting of the documentation\n// skeleton, including the responsive changes as well as sidebar toggles.\n//\n// This is implemented as a mobile-last design, which isn't ideal, but it is\n// reasonably good-enough and I got pretty tired by the time I'd finished this\n// to move the rules around to fix this. Shouldn't take more than 3-4 hours,\n// if you know what you're doing tho.\n\n// HACK: Not all browsers account for the scrollbar width in media queries.\n// This results in horizontal scrollbars in the breakpoint where we go\n// from displaying everything to hiding the ToC. We accomodate for this by\n// adding a bit of padding to the TOC drawer, disabling the horizontal\n// scrollbar and allowing the scrollbars to cover the padding.\n// https://www.456bereastreet.com/archive/201301/media_query_width_and_vertical_scrollbars/\n\n// HACK: Always having the scrollbar visible, prevents certain browsers from\n// causing the content to stutter horizontally between taller-than-viewport and\n// not-taller-than-viewport pages.\n\nhtml\n overflow-x: hidden\n overflow-y: scroll\n scroll-behavior: smooth\n\n.sidebar-scroll, .toc-scroll, article[role=main] *\n // Override Firefox scrollbar style\n scrollbar-width: thin\n scrollbar-color: var(--color-foreground-border) transparent\n\n // Override Chrome scrollbar styles\n &::-webkit-scrollbar\n width: 0.25rem\n height: 0.25rem\n &::-webkit-scrollbar-thumb\n background-color: var(--color-foreground-border)\n border-radius: 0.125rem\n\n//\n// Overalls\n//\nhtml,\nbody\n height: 100%\n color: var(--color-foreground-primary)\n background: var(--color-background-primary)\n\narticle\n color: var(--color-content-foreground)\n background: var(--color-content-background)\n overflow-wrap: break-word\n\n.page\n display: flex\n // fill the viewport for pages with little content.\n min-height: 100%\n\n.mobile-header\n width: 100%\n height: var(--header-height)\n background-color: var(--color-header-background)\n color: var(--color-header-text)\n border-bottom: 1px solid var(--color-header-border)\n\n // Looks like sub-script/super-script have this, and we need this to\n // be \"on top\" of those.\n z-index: 10\n\n // We don't show the header on large screens.\n display: none\n\n // Add shadow when scrolled\n &.scrolled\n border-bottom: none\n box-shadow: 0 0 0.2rem rgba(0, 0, 0, 0.1), 0 0.2rem 0.4rem rgba(0, 0, 0, 0.2)\n\n .header-center\n a\n color: var(--color-header-text)\n text-decoration: none\n\n.main\n display: flex\n flex: 1\n\n// Sidebar (left) also covers the entire left portion of screen.\n.sidebar-drawer\n box-sizing: border-box\n\n border-right: 1px solid var(--color-sidebar-background-border)\n background: var(--color-sidebar-background)\n\n display: flex\n justify-content: flex-end\n // These next two lines took me two days to figure out.\n width: calc((100% - #{$full-width}) / 2 + #{$sidebar-width})\n min-width: $sidebar-width\n\n// Scroll-along sidebars\n.sidebar-container,\n.toc-drawer\n box-sizing: border-box\n width: $sidebar-width\n\n.toc-drawer\n background: var(--color-toc-background)\n // See HACK described on top of this document\n padding-right: 1rem\n\n.sidebar-sticky,\n.toc-sticky\n position: sticky\n top: 0\n height: min(100%, 100vh)\n height: 100vh\n\n display: flex\n flex-direction: column\n\n.sidebar-scroll,\n.toc-scroll\n flex-grow: 1\n flex-shrink: 1\n\n overflow: auto\n scroll-behavior: smooth\n\n// Central items.\n.content\n padding: 0 $content-padding\n width: $content-width\n\n display: flex\n flex-direction: column\n justify-content: space-between\n\n.icon\n display: inline-block\n height: 1rem\n width: 1rem\n svg\n width: 100%\n height: 100%\n\n//\n// Accommodate announcement banner\n//\n.announcement\n background-color: var(--color-announcement-background)\n color: var(--color-announcement-text)\n\n height: var(--header-height)\n display: flex\n align-items: center\n overflow-x: auto\n & + .page\n min-height: calc(100% - var(--header-height))\n\n.announcement-content\n box-sizing: border-box\n padding: 0.5rem\n min-width: 100%\n white-space: nowrap\n text-align: center\n\n a\n color: var(--color-announcement-text)\n text-decoration-color: var(--color-announcement-text)\n\n &:hover\n color: var(--color-announcement-text)\n text-decoration-color: var(--color-link--hover)\n\n////////////////////////////////////////////////////////////////////////////////\n// Toggles for theme\n////////////////////////////////////////////////////////////////////////////////\n.no-js .theme-toggle-container // don't show theme toggle if there's no JS\n display: none\n\n.theme-toggle-container\n vertical-align: middle\n\n.theme-toggle\n cursor: pointer\n border: none\n padding: 0\n background: transparent\n\n.theme-toggle svg\n vertical-align: middle\n height: 1rem\n width: 1rem\n color: var(--color-foreground-primary)\n display: none\n\n.theme-toggle-header\n float: left\n padding: 1rem 0.5rem\n\n////////////////////////////////////////////////////////////////////////////////\n// Toggles for elements\n////////////////////////////////////////////////////////////////////////////////\n.toc-overlay-icon, .nav-overlay-icon\n display: none\n cursor: pointer\n\n .icon\n color: var(--color-foreground-secondary)\n height: 1rem\n width: 1rem\n\n.toc-header-icon, .nav-overlay-icon\n // for when we set display: flex\n justify-content: center\n align-items: center\n\n.toc-content-icon\n height: 1.5rem\n width: 1.5rem\n\n.content-icon-container\n float: right\n display: flex\n margin-top: 1.5rem\n margin-left: 1rem\n margin-bottom: 1rem\n gap: 0.5rem\n\n .edit-this-page svg\n color: inherit\n height: 1rem\n width: 1rem\n\n.sidebar-toggle\n position: absolute\n display: none\n// \n.sidebar-toggle[name=\"__toc\"]\n left: 20px\n.sidebar-toggle:checked\n left: 40px\n// \n\n.overlay\n position: fixed\n top: 0\n width: 0\n height: 0\n\n transition: width 0ms, height 0ms, opacity 250ms ease-out\n\n opacity: 0\n background-color: rgba(0, 0, 0, 0.54)\n.sidebar-overlay\n z-index: 20\n.toc-overlay\n z-index: 40\n\n// Keep things on top and smooth.\n.sidebar-drawer\n z-index: 30\n transition: left 250ms ease-in-out\n.toc-drawer\n z-index: 50\n transition: right 250ms ease-in-out\n\n// Show the Sidebar\n#__navigation:checked\n & ~ .sidebar-overlay\n width: 100%\n height: 100%\n opacity: 1\n & ~ .page\n .sidebar-drawer\n top: 0\n left: 0\n // Show the toc sidebar\n#__toc:checked\n & ~ .toc-overlay\n width: 100%\n height: 100%\n opacity: 1\n & ~ .page\n .toc-drawer\n top: 0\n right: 0\n\n////////////////////////////////////////////////////////////////////////////////\n// Back to top\n////////////////////////////////////////////////////////////////////////////////\n.back-to-top\n text-decoration: none\n\n display: none\n position: fixed\n left: 0\n top: 1rem\n padding: 0.5rem\n padding-right: 0.75rem\n border-radius: 1rem\n font-size: 0.8125rem\n\n background: var(--color-background-primary)\n box-shadow: 0 0.2rem 0.5rem rgba(0, 0, 0, 0.05), #6b728080 0px 0px 1px 0px\n\n z-index: 10\n\n margin-left: 50%\n transform: translateX(-50%)\n svg\n height: 1rem\n width: 1rem\n fill: currentColor\n display: inline-block\n\n span\n margin-left: 0.25rem\n\n .show-back-to-top &\n display: flex\n align-items: center\n\n////////////////////////////////////////////////////////////////////////////////\n// Responsive layouting\n////////////////////////////////////////////////////////////////////////////////\n// Make things a bit bigger on bigger screens.\n@media (min-width: $full-width + $sidebar-width)\n html\n font-size: 110%\n\n@media (max-width: $full-width)\n // Collapse \"toc\" into the icon.\n .toc-content-icon\n display: flex\n .toc-drawer\n position: fixed\n height: 100vh\n top: 0\n right: -$sidebar-width\n border-left: 1px solid var(--color-background-muted)\n .toc-tree\n border-left: none\n font-size: var(--toc-font-size--mobile)\n\n // Accomodate for a changed content width.\n .sidebar-drawer\n width: calc((100% - #{$full-width - $sidebar-width}) / 2 + #{$sidebar-width})\n\n@media (max-width: $full-width - $sidebar-width)\n // Collapse \"navigation\".\n .nav-overlay-icon\n display: flex\n .sidebar-drawer\n position: fixed\n height: 100vh\n width: $sidebar-width\n\n top: 0\n left: -$sidebar-width\n\n // Swap which icon is visible.\n .toc-header-icon\n display: flex\n .toc-content-icon, .theme-toggle-content\n display: none\n .theme-toggle-header\n display: block\n\n // Show the header.\n .mobile-header\n position: sticky\n top: 0\n display: flex\n justify-content: space-between\n align-items: center\n\n .header-left,\n .header-right\n display: flex\n height: var(--header-height)\n padding: 0 var(--header-padding)\n label\n height: 100%\n width: 100%\n user-select: none\n\n .nav-overlay-icon .icon,\n .theme-toggle svg\n height: 1.25rem\n width: 1.25rem\n\n // Add a scroll margin for the content\n :target\n scroll-margin-top: var(--header-height)\n\n // Show back-to-top below the header\n .back-to-top\n top: calc(var(--header-height) + 0.5rem)\n\n // Center the page, and accommodate for the header.\n .page\n flex-direction: column\n justify-content: center\n .content\n margin-left: auto\n margin-right: auto\n\n@media (max-width: $content-width + 2* $content-padding)\n // Content should respect window limits.\n .content\n width: 100%\n overflow-x: auto\n\n@media (max-width: $content-width)\n .content\n padding: 0 $content-padding--small\n // Don't float sidebars to the right.\n article aside.sidebar\n float: none\n width: 100%\n margin: 1rem 0\n","//\n// The design here is strongly inspired by mkdocs-material.\n.admonition, .topic\n margin: 1rem auto\n padding: 0 0.5rem 0.5rem 0.5rem\n\n background: var(--color-admonition-background)\n\n border-radius: 0.2rem\n box-shadow: 0 0.2rem 0.5rem rgba(0, 0, 0, 0.05), 0 0 0.0625rem rgba(0, 0, 0, 0.1)\n\n font-size: var(--admonition-font-size)\n\n overflow: hidden\n page-break-inside: avoid\n\n // First element should have no margin, since the title has it.\n > :nth-child(2)\n margin-top: 0\n\n // Last item should have no margin, since we'll control that w/ padding\n > :last-child\n margin-bottom: 0\n\n.admonition p.admonition-title,\np.topic-title\n position: relative\n margin: 0 -0.5rem 0.5rem\n padding-left: 2rem\n padding-right: .5rem\n padding-top: .4rem\n padding-bottom: .4rem\n\n font-weight: 500\n font-size: var(--admonition-title-font-size)\n line-height: 1.3\n\n // Our fancy icon\n &::before\n content: \"\"\n position: absolute\n left: 0.5rem\n width: 1rem\n height: 1rem\n\n// Default styles\np.admonition-title\n background-color: var(--color-admonition-title-background)\n &::before\n background-color: var(--color-admonition-title)\n mask-image: var(--icon-admonition-default)\n mask-repeat: no-repeat\n\np.topic-title\n background-color: var(--color-topic-title-background)\n &::before\n background-color: var(--color-topic-title)\n mask-image: var(--icon-topic-default)\n mask-repeat: no-repeat\n\n//\n// Variants\n//\n.admonition\n border-left: 0.2rem solid var(--color-admonition-title)\n\n @each $type, $value in $admonitions\n &.#{$type}\n border-left-color: var(--color-admonition-title--#{$type})\n > .admonition-title\n background-color: var(--color-admonition-title-background--#{$type})\n &::before\n background-color: var(--color-admonition-title--#{$type})\n mask-image: var(--icon-#{nth($value, 2)})\n\n.admonition-todo > .admonition-title\n text-transform: uppercase\n","// This file stylizes the API documentation (stuff generated by autodoc). It's\n// deeply nested due to how autodoc structures the HTML without enough classes\n// to select the relevant items.\n\n// API docs!\ndl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple)\n // Tweak the spacing of all the things!\n dd\n margin-left: 2rem\n > :first-child\n margin-top: 0.125rem\n > :last-child\n margin-bottom: 0.75rem\n\n // This is used for the arguments\n .field-list\n margin-bottom: 0.75rem\n\n // \"Headings\" (like \"Parameters\" and \"Return\")\n > dt\n text-transform: uppercase\n font-size: var(--font-size--small)\n\n dd:empty\n margin-bottom: 0.5rem\n dd > ul\n margin-left: -1.2rem\n > li\n > p:nth-child(2)\n margin-top: 0\n // When the last-empty-paragraph follows a paragraph, it doesn't need\n // to augument the existing spacing.\n > p + p:last-child:empty\n margin-top: 0\n margin-bottom: 0\n\n // Colorize the elements\n > dt\n color: var(--color-api-overall)\n\n.sig:not(.sig-inline)\n font-weight: bold\n\n font-size: var(--api-font-size)\n font-family: var(--font-stack--monospace)\n\n margin-left: -0.25rem\n margin-right: -0.25rem\n padding-top: 0.25rem\n padding-bottom: 0.25rem\n padding-right: 0.5rem\n\n // These are intentionally em, to properly match the font size.\n padding-left: 3em\n text-indent: -2.5em\n\n border-radius: 0.25rem\n\n background: var(--color-api-background)\n transition: background 100ms ease-out\n\n &:hover\n background: var(--color-api-background-hover)\n\n // adjust the size of the [source] link on the right.\n a.reference\n .viewcode-link\n font-weight: normal\n width: 3.5rem\n\nem.property\n font-style: normal\n &:first-child\n color: var(--color-api-keyword)\n.sig-name\n color: var(--color-api-name)\n.sig-prename\n font-weight: normal\n color: var(--color-api-pre-name)\n.sig-paren\n color: var(--color-api-paren)\n.sig-param\n font-style: normal\n\n.versionmodified\n font-style: italic\ndiv.versionadded, div.versionchanged, div.deprecated\n p\n margin-top: 0.125rem\n margin-bottom: 0.125rem\n\n// Align the [docs] and [source] to the right.\n.viewcode-link, .viewcode-back\n float: right\n text-align: right\n",".line-block\n margin-top: 0.5rem\n margin-bottom: 0.75rem\n .line-block\n margin-top: 0rem\n margin-bottom: 0rem\n padding-left: 1rem\n","// Captions\narticle p.caption,\ntable > caption,\n.code-block-caption\n font-size: var(--font-size--small)\n text-align: center\n\n// Caption above a TOCTree\n.toctree-wrapper.compound\n .caption, :not(.caption) > .caption-text\n font-size: var(--font-size--small)\n text-transform: uppercase\n\n text-align: initial\n margin-bottom: 0\n\n > ul\n margin-top: 0\n margin-bottom: 0\n","// Inline code\ncode.literal, .sig-inline\n background: var(--color-inline-code-background)\n border-radius: 0.2em\n // Make the font smaller, and use padding to recover.\n font-size: var(--font-size--small--2)\n padding: 0.1em 0.2em\n\n pre.literal-block &\n font-size: inherit\n padding: 0\n\n p &\n border: 1px solid var(--color-background-border)\n\n.sig-inline\n font-family: var(--font-stack--monospace)\n\n// Code and Literal Blocks\n$code-spacing-vertical: 0.625rem\n$code-spacing-horizontal: 0.875rem\n\n// Wraps every literal block + line numbers.\ndiv[class*=\" highlight-\"],\ndiv[class^=\"highlight-\"]\n margin: 1em 0\n display: flex\n\n .table-wrapper\n margin: 0\n padding: 0\n\npre\n margin: 0\n padding: 0\n overflow: auto\n\n // Needed to have more specificity than pygments' \"pre\" selector. :(\n article[role=\"main\"] .highlight &\n line-height: 1.5\n\n &.literal-block,\n .highlight &\n font-size: var(--code-font-size)\n padding: $code-spacing-vertical $code-spacing-horizontal\n\n // Make it look like all the other blocks.\n &.literal-block\n margin-top: 1rem\n margin-bottom: 1rem\n\n border-radius: 0.2rem\n background-color: var(--color-code-background)\n color: var(--color-code-foreground)\n\n// All code is always contained in this.\n.highlight\n width: 100%\n border-radius: 0.2rem\n\n // Make line numbers and prompts un-selectable.\n .gp, span.linenos\n user-select: none\n pointer-events: none\n\n // Expand the line-highlighting.\n .hll\n display: block\n margin-left: -$code-spacing-horizontal\n margin-right: -$code-spacing-horizontal\n padding-left: $code-spacing-horizontal\n padding-right: $code-spacing-horizontal\n\n/* Make code block captions be nicely integrated */\n.code-block-caption\n display: flex\n padding: $code-spacing-vertical $code-spacing-horizontal\n\n border-radius: 0.25rem\n border-bottom-left-radius: 0\n border-bottom-right-radius: 0\n font-weight: 300\n border-bottom: 1px solid\n\n background-color: var(--color-code-background)\n color: var(--color-code-foreground)\n border-color: var(--color-background-border)\n\n + div[class]\n margin-top: 0\n pre\n border-top-left-radius: 0\n border-top-right-radius: 0\n\n// When `html_codeblock_linenos_style` is table.\n.highlighttable\n width: 100%\n display: block\n tbody\n display: block\n\n tr\n display: flex\n\n // Line numbers\n td.linenos\n background-color: var(--color-code-background)\n color: var(--color-code-foreground)\n padding: $code-spacing-vertical $code-spacing-horizontal\n padding-right: 0\n border-top-left-radius: 0.2rem\n border-bottom-left-radius: 0.2rem\n\n .linenodiv\n padding-right: $code-spacing-horizontal\n font-size: var(--code-font-size)\n box-shadow: -0.0625rem 0 var(--color-foreground-border) inset\n\n // Actual code\n td.code\n padding: 0\n display: block\n flex: 1\n overflow: hidden\n\n .highlight\n border-top-left-radius: 0\n border-bottom-left-radius: 0\n\n// When `html_codeblock_linenos_style` is inline.\n.highlight\n span.linenos\n display: inline-block\n padding-left: 0\n padding-right: $code-spacing-horizontal\n margin-right: $code-spacing-horizontal\n box-shadow: -0.0625rem 0 var(--color-foreground-border) inset\n","// Inline Footnote Reference\n.footnote-reference\n font-size: var(--font-size--small--4)\n vertical-align: super\n\n// Definition list, listing the content of each note.\n// docutils <= 0.17\ndl.footnote.brackets\n font-size: var(--font-size--small)\n color: var(--color-foreground-secondary)\n\n display: grid\n grid-template-columns: max-content auto\n dt\n margin: 0\n > .fn-backref\n margin-left: 0.25rem\n\n &:after\n content: \":\"\n\n .brackets\n &:before\n content: \"[\"\n &:after\n content: \"]\"\n\n dd\n margin: 0\n padding: 0 1rem\n\n// docutils >= 0.18\naside.footnote\n font-size: var(--font-size--small)\n color: var(--color-foreground-secondary)\n\naside.footnote > span,\ndiv.citation > span\n float: left\n font-weight: 500\n padding-right: 0.25rem\n\naside.footnote > p,\ndiv.citation > p\n margin-left: 2rem\n","//\n// Figures\n//\nimg\n box-sizing: border-box\n max-width: 100%\n height: auto\n\narticle\n figure, .figure\n border-radius: 0.2rem\n\n margin: 0\n :last-child\n margin-bottom: 0\n\n .align-left\n float: left\n clear: left\n margin: 0 1rem 1rem\n\n .align-right\n float: right\n clear: right\n margin: 0 1rem 1rem\n\n .align-default,\n .align-center\n display: block\n text-align: center\n margin-left: auto\n margin-right: auto\n\n // WELL, table needs to be stylised like a table.\n table.align-default\n display: table\n text-align: initial\n",".genindex-jumpbox, .domainindex-jumpbox\n border-top: 1px solid var(--color-background-border)\n border-bottom: 1px solid var(--color-background-border)\n padding: 0.25rem\n\n.genindex-section, .domainindex-section\n h2\n margin-top: 0.75rem\n margin-bottom: 0.5rem\n ul\n margin-top: 0\n margin-bottom: 0\n","ul,\nol\n padding-left: 1.2rem\n\n // Space lists out like paragraphs\n margin-top: 1rem\n margin-bottom: 1rem\n // reduce margins within li.\n li\n > p:first-child\n margin-top: 0.25rem\n margin-bottom: 0.25rem\n\n > p:last-child\n margin-top: 0.25rem\n\n > ul,\n > ol\n margin-top: 0.5rem\n margin-bottom: 0.5rem\n\nol\n &.arabic\n list-style: decimal\n &.loweralpha\n list-style: lower-alpha\n &.upperalpha\n list-style: upper-alpha\n &.lowerroman\n list-style: lower-roman\n &.upperroman\n list-style: upper-roman\n\n// Don't space lists out when they're \"simple\" or in a `.. toctree::`\n.simple,\n.toctree-wrapper\n li\n > ul,\n > ol\n margin-top: 0\n margin-bottom: 0\n\n// Definition Lists\n.field-list,\n.option-list,\ndl:not([class]),\ndl.simple,\ndl.footnote,\ndl.glossary\n dt\n font-weight: 500\n margin-top: 0.25rem\n + dt\n margin-top: 0\n\n .classifier::before\n content: \":\"\n margin-left: 0.2rem\n margin-right: 0.2rem\n\n dd\n > p:first-child,\n ul\n margin-top: 0.125rem\n\n ul\n margin-bottom: 0.125rem\n",".math-wrapper\n width: 100%\n overflow-x: auto\n\ndiv.math\n position: relative\n text-align: center\n\n .headerlink,\n &:focus .headerlink\n display: none\n\n &:hover .headerlink\n display: inline-block\n\n span.eqno\n position: absolute\n right: 0.5rem\n top: 50%\n transform: translate(0, -50%)\n z-index: 1\n","// Abbreviations\nabbr[title]\n cursor: help\n\n// \"Problematic\" content, as identified by Sphinx\n.problematic\n color: var(--color-problematic)\n\n// Keyboard / Mouse \"instructions\"\nkbd:not(.compound)\n margin: 0 0.2rem\n padding: 0 0.2rem\n border-radius: 0.2rem\n border: 1px solid var(--color-foreground-border)\n color: var(--color-foreground-primary)\n vertical-align: text-bottom\n\n font-size: var(--font-size--small--3)\n display: inline-block\n\n box-shadow: 0 0.0625rem 0 rgba(0, 0, 0, 0.2), inset 0 0 0 0.125rem var(--color-background-primary)\n\n background-color: var(--color-background-secondary)\n\n// Blockquote\nblockquote\n border-left: 4px solid var(--color-background-border)\n background: var(--color-background-secondary)\n\n margin-left: 0\n margin-right: 0\n padding: 0.5rem 1rem\n\n .attribution\n font-weight: 600\n text-align: right\n\n &.pull-quote,\n &.highlights\n font-size: 1.25em\n\n &.epigraph,\n &.pull-quote\n border-left-width: 0\n border-radius: 0.5rem\n\n &.highlights\n border-left-width: 0\n background: transparent\n\n// Center align embedded-in-text images\np .reference img\n vertical-align: middle\n","p.rubric\n line-height: 1.25\n font-weight: bold\n font-size: 1.125em\n\n // For Numpy-style documentation that's got rubrics within it.\n // https://github.com/pradyunsg/furo/discussions/505\n dd &\n line-height: inherit\n font-weight: inherit\n\n font-size: var(--font-size--small)\n text-transform: uppercase\n","article .sidebar\n float: right\n clear: right\n width: 30%\n\n margin-left: 1rem\n margin-right: 0\n\n border-radius: 0.2rem\n background-color: var(--color-background-secondary)\n border: var(--color-background-border) 1px solid\n\n > *\n padding-left: 1rem\n padding-right: 1rem\n\n > ul, > ol // lists need additional padding, because bullets.\n padding-left: 2.2rem\n\n .sidebar-title\n margin: 0\n padding: 0.5rem 1rem\n border-bottom: var(--color-background-border) 1px solid\n\n font-weight: 500\n\n// TODO: subtitle\n// TODO: dedicated variables?\n",".table-wrapper\n width: 100%\n overflow-x: auto\n margin-top: 1rem\n margin-bottom: 0.5rem\n padding: 0.2rem 0.2rem 0.75rem\n\ntable.docutils\n border-radius: 0.2rem\n border-spacing: 0\n border-collapse: collapse\n\n box-shadow: 0 0.2rem 0.5rem rgba(0, 0, 0, 0.05), 0 0 0.0625rem rgba(0, 0, 0, 0.1)\n\n th\n background: var(--color-table-header-background)\n\n td,\n th\n // Space things out properly\n padding: 0 0.25rem\n\n // Get the borders looking just-right.\n border-left: 1px solid var(--color-table-border)\n border-right: 1px solid var(--color-table-border)\n border-bottom: 1px solid var(--color-table-border)\n\n p\n margin: 0.25rem\n\n &:first-child\n border-left: none\n &:last-child\n border-right: none\n\n // MyST-parser tables set these classes for control of column alignment\n &.text-left\n text-align: left\n &.text-right\n text-align: right\n &.text-center\n text-align: center\n",":target\n scroll-margin-top: 0.5rem\n\n@media (max-width: $full-width - $sidebar-width)\n :target\n scroll-margin-top: calc(0.5rem + var(--header-height))\n\n // When a heading is selected\n section > span:target\n scroll-margin-top: calc(0.8rem + var(--header-height))\n\n// Permalinks\n.headerlink\n font-weight: 100\n user-select: none\n\nh1,\nh2,\nh3,\nh4,\nh5,\nh6,\ndl dt,\np.caption,\nfigcaption p,\ntable > caption,\n.code-block-caption\n > .headerlink\n margin-left: 0.5rem\n visibility: hidden\n &:hover > .headerlink\n visibility: visible\n\n // Don't change to link-like, if someone adds the contents directive.\n > .toc-backref\n color: inherit\n text-decoration-line: none\n\n// Figure and table captions are special.\nfigure:hover > figcaption > p > .headerlink,\ntable:hover > caption > .headerlink\n visibility: visible\n\n:target >, // Regular section[id] style anchors\nspan:target ~ // Non-regular span[id] style \"extra\" anchors\n h1,\n h2,\n h3,\n h4,\n h5,\n h6\n &:nth-of-type(1)\n background-color: var(--color-highlight-on-target)\n // .headerlink\n // visibility: visible\n code.literal\n background-color: transparent\n\ntable:target > caption,\nfigure:target\n background-color: var(--color-highlight-on-target)\n\n// Inline page contents\n.this-will-duplicate-information-and-it-is-still-useful-here li :target\n background-color: var(--color-highlight-on-target)\n\n// Code block permalinks\n.literal-block-wrapper:target .code-block-caption\n background-color: var(--color-highlight-on-target)\n\n// When a definition list item is selected\n//\n// There isn't really an alternative to !important here, due to the\n// high-specificity of API documentation's selector.\ndt:target\n background-color: var(--color-highlight-on-target) !important\n\n// When a footnote reference is selected\n.footnote > dt:target + dd,\n.footnote-reference:target\n background-color: var(--color-highlight-on-target)\n",".guilabel\n background-color: var(--color-guilabel-background)\n border: 1px solid var(--color-guilabel-border)\n color: var(--color-guilabel-text)\n\n padding: 0 0.3em\n border-radius: 0.5em\n font-size: 0.9em\n","// This file contains the styles used for stylizing the footer that's shown\n// below the content.\n\nfooter\n font-size: var(--font-size--small)\n display: flex\n flex-direction: column\n\n margin-top: 2rem\n\n// Bottom of page information\n.bottom-of-page\n display: flex\n align-items: center\n justify-content: space-between\n\n margin-top: 1rem\n padding-top: 1rem\n padding-bottom: 1rem\n\n color: var(--color-foreground-secondary)\n border-top: 1px solid var(--color-background-border)\n\n line-height: 1.5\n\n @media (max-width: $content-width)\n text-align: center\n flex-direction: column-reverse\n gap: 0.25rem\n\n .left-details\n font-size: var(--font-size--small)\n\n .right-details\n display: flex\n flex-direction: column\n gap: 0.25rem\n text-align: right\n\n .icons\n display: flex\n justify-content: flex-end\n gap: 0.25rem\n font-size: 1rem\n\n a\n text-decoration: none\n\n svg,\n img\n font-size: 1.125rem\n height: 1em\n width: 1em\n\n// Next/Prev page information\n.related-pages\n a\n display: flex\n align-items: center\n\n text-decoration: none\n &:hover .page-info .title\n text-decoration: underline\n color: var(--color-link)\n text-decoration-color: var(--color-link-underline)\n\n svg.furo-related-icon,\n svg.furo-related-icon > use\n flex-shrink: 0\n\n color: var(--color-foreground-border)\n\n width: 0.75rem\n height: 0.75rem\n margin: 0 0.5rem\n\n &.next-page\n max-width: 50%\n\n float: right\n clear: right\n text-align: right\n\n &.prev-page\n max-width: 50%\n\n float: left\n clear: left\n\n svg\n transform: rotate(180deg)\n\n.page-info\n display: flex\n flex-direction: column\n overflow-wrap: anywhere\n\n .next-page &\n align-items: flex-end\n\n .context\n display: flex\n align-items: center\n\n padding-bottom: 0.1rem\n\n color: var(--color-foreground-muted)\n font-size: var(--font-size--small)\n text-decoration: none\n","// This file contains the styles for the contents of the left sidebar, which\n// contains the navigation tree, logo, search etc.\n\n////////////////////////////////////////////////////////////////////////////////\n// Brand on top of the scrollable tree.\n////////////////////////////////////////////////////////////////////////////////\n.sidebar-brand\n display: flex\n flex-direction: column\n flex-shrink: 0\n\n padding: var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal)\n text-decoration: none\n\n.sidebar-brand-text\n color: var(--color-sidebar-brand-text)\n overflow-wrap: break-word\n margin: var(--sidebar-item-spacing-vertical) 0\n font-size: 1.5rem\n\n.sidebar-logo-container\n margin: var(--sidebar-item-spacing-vertical) 0\n\n.sidebar-logo\n margin: 0 auto\n display: block\n max-width: 100%\n\n////////////////////////////////////////////////////////////////////////////////\n// Search\n////////////////////////////////////////////////////////////////////////////////\n.sidebar-search-container\n display: flex\n align-items: center\n margin-top: var(--sidebar-search-space-above)\n\n position: relative\n\n background: var(--color-sidebar-search-background)\n &:hover,\n &:focus-within\n background: var(--color-sidebar-search-background--focus)\n\n &::before\n content: \"\"\n position: absolute\n left: var(--sidebar-item-spacing-horizontal)\n width: var(--sidebar-search-icon-size)\n height: var(--sidebar-search-icon-size)\n\n background-color: var(--color-sidebar-search-icon)\n mask-image: var(--icon-search)\n\n.sidebar-search\n box-sizing: border-box\n\n border: none\n border-top: 1px solid var(--color-sidebar-search-border)\n border-bottom: 1px solid var(--color-sidebar-search-border)\n\n padding-top: var(--sidebar-search-input-spacing-vertical)\n padding-bottom: var(--sidebar-search-input-spacing-vertical)\n padding-right: var(--sidebar-search-input-spacing-horizontal)\n padding-left: calc(var(--sidebar-item-spacing-horizontal) + var(--sidebar-search-input-spacing-horizontal) + var(--sidebar-search-icon-size))\n\n width: 100%\n\n color: var(--color-sidebar-search-foreground)\n background: transparent\n z-index: 10\n\n &:focus\n outline: none\n\n &::placeholder\n font-size: var(--sidebar-search-input-font-size)\n\n//\n// Hide Search Matches link\n//\n#searchbox .highlight-link\n padding: var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal) 0\n margin: 0\n text-align: center\n\n a\n color: var(--color-sidebar-search-icon)\n font-size: var(--font-size--small--2)\n\n////////////////////////////////////////////////////////////////////////////////\n// Structure/Skeleton of the navigation tree (left)\n////////////////////////////////////////////////////////////////////////////////\n.sidebar-tree\n font-size: var(--sidebar-item-font-size)\n margin-top: var(--sidebar-tree-space-above)\n margin-bottom: var(--sidebar-item-spacing-vertical)\n\n ul\n padding: 0\n margin-top: 0\n margin-bottom: 0\n\n display: flex\n flex-direction: column\n\n list-style: none\n\n li\n position: relative\n margin: 0\n\n > ul\n margin-left: var(--sidebar-item-spacing-horizontal)\n\n .icon\n color: var(--color-sidebar-link-text)\n\n .reference\n box-sizing: border-box\n color: var(--color-sidebar-link-text)\n\n // Fill the parent.\n display: inline-block\n line-height: var(--sidebar-item-line-height)\n text-decoration: none\n\n // Don't allow long words to cause wrapping.\n overflow-wrap: anywhere\n\n height: 100%\n width: 100%\n\n padding: var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal)\n\n &:hover\n background: var(--color-sidebar-item-background--hover)\n\n // Add a nice little \"external-link\" arrow here.\n &.external::after\n content: url('data:image/svg+xml,')\n margin: 0 0.25rem\n vertical-align: middle\n color: var(--color-sidebar-link-text)\n\n // Make the current page reference bold.\n .current-page > .reference\n font-weight: bold\n\n label\n position: absolute\n top: 0\n right: 0\n height: var(--sidebar-item-height)\n width: var(--sidebar-expander-width)\n\n cursor: pointer\n user-select: none\n\n display: flex\n justify-content: center\n align-items: center\n\n .caption, :not(.caption) > .caption-text\n font-size: var(--sidebar-caption-font-size)\n color: var(--color-sidebar-caption-text)\n\n font-weight: bold\n text-transform: uppercase\n\n margin: var(--sidebar-caption-space-above) 0 0 0\n padding: var(--sidebar-item-spacing-vertical) var(--sidebar-item-spacing-horizontal)\n\n // If it has children, add a bit more padding to wrap the content to avoid\n // overlapping with the